Nuclear Data Sheets for A=43*

BALRAJ SINGH AND JUN CHEN#

Department of Physics and Astronomy McMaster University, Hamilton, ON L8S 4M1, Canada

*Present address: NSCL, MSU, East Lansing, MI 48824, USA

Abstract: The experimental data are evaluated for known nuclides of mass number A=43 (Al,Si,P,S,Cl,Ar,K,Ca, Sc,Ti,V,Cr). Detailed evaluated level properties and related information are presented, including adopted values of level and γ -ray energies, decay data (energies, intensities and placement of radiations), and other spectroscopic data. This work supersedes earlier full evaluations of A=43 published by 2001Ca24 and 1990En08 (also 1978En04, and 1998En04 update).

1978En04, and 1998En04 update).

No excited states are known in ⁴³Al, ⁴³Si and ⁴³Cr. Only one excited state is known in ⁴³V which is the probable the Isobaric Analog State (IAS) of ⁴³Cr ground state. Information for ⁴³P, ⁴³S, ⁴³Cl, ⁴³Ar and ⁴³Ti is limited; there is either no decay data available or the decay schemes are incomplete in view of large Q values and known excitations much lower than allowed by Q values. The ⁴³K, ⁴³Ca and ⁴³Sc nuclides remain the most extensively studied from many different reactions and decays.

Cutoff Date: Literature available up to March 31, 2015 has been included. Main bibliographic source was the NSR database (2011Pr03) at Brookhaven laboratory webpage: www.nndc.bnl.gov/nsr/.

General Policies and Organization of Material: See the January issue of the *Nuclear Data Sheets* or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.

General Comments: The statistical analysis of γ -ray data and deduced level schemes is carried out through computer codes available at NNDC, BNL website: www.nndc.bnl.gov. The direct feedings to excited states in β ⁻ and ε decays have generally been computed from I(γ +ce) intensity balances at each level; the associated log ft values are calculated using log ft code. The Q values and particle-separation energies have been adopted from 2012Wa38 (AME-12). In cases where weighted averaging procedures have been used, the assigned uncertainty is generally not lower than the lowest uncertainty given in a measurement. Nuclear charge radii have been adopted from 2013An02 evaluation. Moments are from 2014StZZ and 2013StZZ whenever possible. Theoretical total conversion coefficients are from BrIcc code (2008Ki07) for frozen-orbit option with an implicit uncertainty of 1.4% when not stated.

Acknowledgements: We thank Dr. E. McCutchan (NNDC, BNL) for a review of this work, and McMaster undergraduate students S. Geraedts, J. Roediger, A. MacDonald and M. Birch for XUNDL compilations of several datasets used in this work.

^{*} Work supported by the Office of Nuclear Physics, Office of Science, U.S. Department of Energy

Index for A=43

Nuclide	Data Type	Page	Nuclide	Data Type	Page
42	Skeleton Scheme for A=43			42 Ca(n, γ),(n,n):resonances .	122
$^{43}_{13}\text{Al}_{30}$				42 Ca(d,p)	125
43	Adopted Levels:tentative	_		42 Ca(α , 3 He)	127
$^{43}_{13}\text{Al}_{30}$	A			43 Ca(p,p')	129
43 a.	Adopted Levels			43 Ca(p,p' γ)	130
$^{43}_{14}Si_{29}$	Adopted Levels			43 Ca(d,d')	133
43 p	•	_		43 Ca (α,α')	
$^{43}_{15}P_{28}$	Adopted Levels, Gammas			Coulomb excitation	
	⁹ Be(44 S, 43 PX γ)	11		44 Ca(p,d)	137
	$^{9}\mathrm{Be}(^{44}\mathrm{S},^{43}\mathrm{P}\gamma)$	13		⁴⁴ Ca(d,t)	139
$^{43}_{16}S_{27}$				44 Ca(3 He, α),(pol 3 He, α)	141
16 27	Adopted Levels, Gammas			44 Ca(3 He, $\alpha\gamma$)	142
	⁴³ S IT decay (415 ns)	18		${}^{45}\operatorname{Sc}(\mu^-,2n\gamma)\ldots\ldots\ldots$	144
	9 Be(44 S,X γ)	20	43 a	45 Sc(d, α)	
	9 Be(45 Cl,X γ)	23	$^{43}_{21}\mathrm{Sc}_{22}$		
	9 Be(48 Ca,X γ)	26		Adopted Levels, Gammas	102
	Coulomb excitation	27		⁴³ Ti ε decay (509 ms)	105
$^{43}_{17}\text{Cl}_{26} \dots$				24 Mg(24 Mg, α p γ) 27 Al(18 O,2n γ)	204
17 20	Adopted Levels, Gammas			27 Al(19 F,p2n γ)	205
	43 S β^- decay (265 ms)	30		28 Si(20 Ne, α p γ)	210
	⁴⁴ S β ⁻ n decay (100 ms)	31		29g: $(160 - 10)$	210
	${}^{1}\mathrm{H}({}^{46}\mathrm{Ar},\mathrm{X}\gamma)$	32		29 Si(16 O,pn γ)	221
	9 Be(48 K,X γ)	34		40 Ca(α ,p γ)	224
	${}^{9}\text{Be}({}^{48}\text{Ca}, X\gamma) \dots \dots \dots \dots$	36		40 Ca(6 Li, 3 He)	224
42	208 Pb(40 Ar,X γ)	38		42 Ca(p, γ):resonances	225
$^{43}_{18}Ar_{25}$				42 Ca(p, γ) E=res	240
	Adopted Levels, Gammas			42 Ca(p,p):resonances	240
	$^{43}\text{Cl }\beta^- \text{ decay } (3.13 \text{ s}) \dots \dots \dots$	43		42 Ca(p,p' γ):resonances	265
	${}^{1}\text{H}({}^{43}\text{Ar},p')$	46		42 Ca(d,n)	266
	9 Be(36 S,2p γ)	47		42 Ca(3 He,d)	268
	48 Ca(α , 9 Be)	48		$^{42}\text{Ca}(^{16}\text{O},^{15}\text{N})$	271
43 17	208 Pb $(^{40}$ Ar, $X\gamma)$			43 Ca(p,n),(p,n γ)	272
$^{43}_{19}\text{K}_{24} \dots$				43 Ca(3 He,t)	274
	Adopted Levels, Gammas	50		45 Sc(p,t)	275
	⁴³ Ar β^- decay (5.37 min)	58		$^{46}\text{Ti}(p,\alpha),(\text{pol }p,\alpha)$	276
	${}^{9}\text{Be}({}^{36}\text{S,np}\gamma)\dots\dots\dots\dots$	62	$^{43}_{22}\text{Ti}_{21}$		
	${}^{40}\operatorname{Ar}(\alpha, p\gamma), {}^{41}\operatorname{K}(t, p\gamma) \dots \dots \dots$	66	22 - 21 · · · ·	Adopted Levels, Gammas	
	41 K(t,p)	69 70		44 Cr ε p decay (42.8 ms)	281
	$\operatorname{Ca}(\mu, \operatorname{vir} y) = \cdots = $	70 72		40 Ca $(\alpha, n\gamma)$	282
	44 Ca(t, α)			⁴⁰ Ca(⁶ Li,t)	284
	⁴⁴ Ca(¹¹ B, ¹² C)	73 74		⁴⁶ Ti(³ He, ⁶ He)	285
⁴³ ₂₀ Ca ₂₃	Ca(B, C)			$Be(^{58}Ni,X\gamma)$	286
₂₀ Ca ₂₃ · · · ·	Adopted Levels, Gammas			Be(58 Ni,X γ):isomers	288
	⁴³ K β^- decay (22.3 h)	94	$^{43}_{23}V_{20}$		
	43 Sc ε decay (3.891 h)	97	23 20	Adopted Levels	290
	$^{27}\text{Al}(^{19}\text{F,2pn}\gamma)$	99		43 Cr ε decay (21.2 ms)	
	30 Si(18 O, α n γ)	102		Ni(⁵⁸ Ni,X)	
	40 Ar $(\alpha, n\gamma)$	105	$^{43}_{24}\text{Cr}_{19}$		293
	41 K(3 He,p)	115	24 19	Adopted Levels	
	41 K(α ,d)	116		⁴⁵ Fe 2p decay (2.4 ms)	
	42 Ca(n, γ) E=thermal	117	References .		

Skeleton Scheme for A=43

S(p) 23340 CA $S(\alpha)$ 21730 CA

Skeleton Scheme for A=43 (continued)

Ground-State and Isomeric-Level Properties					
Nuclide	Level	$J\pi$	$T_{1/2}$	Decay Mode	
⁴³ Al	0.0		>170 ns	$^{-}\%\beta^{-}=?;\%\beta^{-}n=?;\%\beta^{-}2n=?$	
⁴³ Si	0.0		>60 ns	$\%\beta^-=?$; $\%\beta^-$ n=?; $\%\beta^-$ 2n=?	
⁴³ P	0.0	$1/2^{+}$	36.5 ms 15	$\%\beta^{-}=100; \%\beta^{-}n=100; \%\beta^{-}2n=?$	
^{43}S	0.0	$(3/2^{-})$	265 ms 15	$\%\beta^{-}=100; \%\beta^{-}n=40 10$	
⁴³ Cl	0.0	$(1/2^+)$	3.13 s 9	%β ⁻ =100	
⁴³ Ar	0.0	$5/2^{(-)}$	5.37 min 6	$\%\beta^{-}=100$	
⁴³ K	0.0	$3/2^{+}$	22.3 h 1	$\%\beta^{-}=100$	
⁴³ Ca	0.0	$7/2^{-}$	stable		
⁴³ Sc	0.0	$7/2^{-}$	3.891 h 12	$\%\varepsilon+\%\beta^{+}=100$	
⁴³ Sc	151.79	$3/2^{+}$	438 μs 7	%IT=100	
⁴³ Ti	0.0	$7/2^{-}$	509 ms 5	$\% \varepsilon + \% \beta^{+} = 100; \% \varepsilon p = ?$	
^{43}V	0.0		79.3 ms 24	$\%\varepsilon+\%\beta^{+}=100; \%\varepsilon p=?$	
⁴³ Cr	0.0	$(3/2^+)$	21.2 ms 7	$\%\varepsilon + \%\beta^{+} = 100; \%\varepsilon p = 79.3 \ 30; \%\varepsilon 2p = 11.6 \ 10$	
⁴⁴ S	0.0	0_{+}	100 ms 1	$\%\beta^{-}$ n=18 3	
⁴⁴ Cr	0.0	0_{+}	42.8 ms 6	%εp=12.0 20	
⁴⁵ Fe	0.0	$(3/2^+)$	2.4 ms 3	%2p=70 4	

Adopted Levels:tentative

 $\begin{array}{lll} Q(\beta^-) = 25330 \; SY; \; S(n) = 1090 \; SY; \; S(p) = 25640 \; SY; \; Q(\alpha) = -21730 \; CA & 2011AuZZ,1997Mo25 \\ \Delta(Q(\beta^-)) = 1210, \; \Delta(S(n)) = 1280, \; \Delta(S(p)) = 1210 \; (syst,2011AuZZ). \\ S(2n) = 1602 \; 1208, \; Q(\beta^-n) = 23800 \; 030 \; (syst,2011AuZZ). \; S(2p) = 53620 \; (calculated,1997Mo25). \\ Q(\beta^-), \; S(n), \; and \; S(p) \; from \; 2011AuZZ; \; Q(\alpha) \; from \; 1997Mo25. \\ First possible identification of \; ^{43}Al \; nuclide \; by \; 2007Ba71. \end{array}$

2007Ba71: W(48 Ca,X γ) E=141 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The

fragments were separated with the A1900 fragment separator. Isotopic identification by multiple ΔE signals, magnetic rigidity, total energy and time of flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes. 2008Ad08: calculated production cross section for 181 Ta(48 Ca,X): 40 fb.

One event was possibly assigned to ⁴³Al.

⁴³Al Levels

E(level) $T_{1/2}$ Comments

>170 ns $\%\beta^-=?; \%\beta^-n=?$ E(level): the observed event is assumed to correspond to the g.s. of ⁴³Al. $T_{1/2}$: limiting value estimated from time-of-flight of \approx 170 ns (figure 3 in 2007Ba71) at NSCL facility.

Actual half-life is expected to be much longer as suggested by 1.2 ms from calculations by 1997Mo25. J^{π} : $5/2^+$ (syst,1997Mo25).

Adopted Levels

 $Q(\beta^{-})=24840 \text{ SY}; S(n)=960 \text{ SY}; S(p)=23340 \text{ CA}; Q(\alpha)=-21730 \text{ CA}$ 2012Wa38,1997Mo25

Estimated uncertainties: $\Delta Q(\beta^-) = \Delta S(n) = 920$ (2012Wa38).

 $S(2n) = 2090\ 920,\ Q(\beta^-n) = 23310\ 860\ (syst, 2012Wa38).\ S(2p) = 53620\ (calculated, 1997Mo25).$

 $Q(\beta^{-})$ and S(n) from 2012Wa38; S(p) and $Q(\alpha)$ from 1997Mo25.

First possible identification of ⁴³Al nuclide by 2007Ba71.

2007Ba71: W(48 Ca,X γ) E=141 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The fragments were separated with the A1900 fragment separator. Isotopic identification by multiple ΔE signals, magnetic rigidity, total energy and time-of-flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes. 2008Ad08: calculated production cross section for 181 Ta(48 Ca,X): 40 fb.

⁴³Al Levels

E(level) $T_{1/2}$ Comments

> 170 ns $\%\beta^-=?; \%\beta^-n=?; \%\beta^-2n=?$ One event was assigned to 43 Al with a probability of 0.0024 that this event was due to possible contribution from the neighboring 42 Al.

E(level): the observed event is assumed to correspond to the g.s. of 43 Al. $T_{1/2}$: limiting value estimated from time-of-flight of \approx 170 ns (Fig. 3 in 2007Ba71) at NSCL facility. Actual half-life is expected to be much longer as suggested by 1.2 ms from calculations by 1997Mo25. J^{π} : $5/2^+$ (syst,1997Mo25).

Adopted Levels

 $Q(\beta^{-})=18420 SY; S(n)=1530 SY; S(p)=25030 SY; Q(\alpha)=-21600 SY$ 2012Wa38

Estimated uncertainties: $\Delta Q(\beta^-)=700$, $\Delta S(n)=780$, $\Delta S(p)=840$, $\Delta Q(\alpha)=790$ (2012Wa38).

 $S(2n)=5160\ 700,\ Q(\beta^-n)=14020\ 630\ (syst, 2012Wa38).$

S(2p)=50140 (calculated, 1997Mo25).

First identification of ⁴³Si nuclide by 2002No11.

2007Ta15: E=142 MeV/nucleon ⁴⁸Ca beam from the coupled cyclotron facility at the NSCL. Targets of 724 mg/cm² ⁹Be or 1111 mg/cm² ^{nat}W. Reaction products separated by the A1900 fragment separator and detected in a plastic scintillator at the focal plane. Measured production cross section, 5 pb 2.

2002No11: ⁴³Si seen in reaction: Ta(⁴⁸Ca,X) E=64 MeV/nucleon. Reaction fragments analyzed by RIPS recoil fragment separator at RIKEN facility. Identification by measurements of energy loss, total kinetic energy, time-of-flight and magnetic rigidity for each fragment. Four events were observed.

2008Ad08: calculated production cross section for ^{nat}W(⁴⁸Ca,X): 4.4 pb.

⁴³Si Levels

E(level) $T_{1/2}$ Comments

>60 ns $\%\beta^-=?; \%\beta^-n=?; \%\beta^-2n=?$ Four events were assigned to 43 Si by 2002No11. Production $\sigma=5$ pb 2 (2007Ta15). E(level): the observed 43 Si fragments are assumed to correspond to the g.s. $T_{1/2}$: limiting value from time-of-flight in 2002No11. Actual half-life is expected to be much longer as suggested by systematics value of 15 ms (2012Au07) and calculated value of 13.5 ms (1997Mo25). J^{π} : systematics: $3/2^-$ (2012Au07,1997Mo25).

Adopted Levels, Gammas

 $Q(\beta^{-})=16.88\times10^{3} \ 37; \ S(n)=4.40\times10^{3} \ 43; \ S(p)=19170 \ SY; \ Q(\alpha)=-18740 \ SY$ 2012Wa38

Estimated uncertainties: $\Delta S(p) = \Delta Q(\alpha) = 620$ (2012Wa38).

 $S(2n)=6480\ 380,\ S(2p)=43790\ 700\ (syst),\ Q(\beta^-n)=14250\ 370,\ (2012Wa38).$

First identification of ⁴³P nuclide by 1989Gu03.

⁴³P isotope identified in ¹⁸¹Ta(⁴⁸Ca,X) E=55 MeV/nucleon (1989Gu03) and in ⁶⁴Ni(⁴⁸Ca,X) E=60 MeV/nucleon (1995So03, GANIL facility), followed by measurement of fragment spectra. Measured %β⁻n.

2004Gr20 (also 2003Gr22): ⁴³P produced in ⁹Be(⁴⁸Ca,X) at E=60 MeV/nucleon, LISE3 spectrometer at GANIL, isotopic identification by energy loss, time-of-flight and magnetic rigidities, double-sided Si strip (DSSD) detectors for residues. Measured (β)(residues) time correlations and half-life using scintillation detectors for β-rays.

Mass measurement: 2000Sa21 (also 2001Sa72).

2006Fr13 (also 2005Fr19): see 9 Be(44 S, 43 P γ) dataset.

Mean-square radius from energy-integrated cross sections: 2006Kh08.

⁴³P Levels

Cross Reference (XREF) Flags

A
$${}^{9}\text{Be}({}^{44}\text{S}, {}^{43}\text{P}\gamma)$$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	1/2+	36.5 ms <i>15</i>	A	$\%\beta^-$ =100; $\%\beta^-$ n=100; $\%\beta^-$ 2n=? Measured mean-square radius (r_0^2)=1.77 fm ² 28 (2006Kh08). π 2s _{1/2} orbital (2006Fr13,2008Ri04). T _{1/2} : from β (⁴³ P) timing correlations followed up to 400 ms (2004Gr20, measurement at GANIL). Others: 33 ms <i>3</i> (1995So03, earlier measurement at GANIL), 1999YoZW. Weighted average of the two values (from 2004Gr20 and 1995So03) is 35.8 ms <i>15</i> . $\%\beta^-$ n: from 1995So03. Other: 1999YoZW.
184 <i>I</i>	3/2+		Α	$\pi 1d_{3/2}$ orbital (2006Fr13,2008Ri04).
845 <i>3</i>	$(5/2^+)$		A	
1009 5	$(5/2^+)$		Α	
1095 6	$(5/2^+)$		A	
1774 8	$(5/2^+)$		A	
2035 11	$(5/2^+)$		A	

 $^{^{\}dagger}$ From least-squares fit to E γ data.

$\gamma(^{43}P)$

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
184	3/2+	184 <i>1</i>	100	0	1/2+
845	$(5/2^+)$	661 <i>4</i>	100 13	184	$3/2^{+}$
		845 <i>4</i>	34 9	0	$1/2^{+}$
1009	$(5/2^+)$	825 <i>5</i>	100	184	$3/2^{+}$
1095	$(5/2^+)$	911 6	100	184	$3/2^{+}$
1774	$(5/2^+)$	765 6	100	1009	$(5/2^+)$
2035	$(5/2^+)$	1018 [‡] 6	71 14	1009	$(5/2^+)$
		1851 <i>11</i>	100 14	184	$3/2^{+}$

[†] From 2008Ri04.

[‡] From comparisons of experimental data with shell-model calculations (2008Ri04). For g.s., 184, 1009 and 1095 levels, parallel-momentum distributions give L=0 for g.s., and L=2 for all others in a proton-removal reaction.

[‡] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

9 Be(44 S, 43 PX γ) **2008Ri04,2006Fr13**

One-proton knockout reaction.

2008Ri04: E=91.7 MeV/nucleon ⁴⁴S beam was produced by the Coupled-Cyclotron facility at NSCL by fragmentation of 140 MeV/nucleon ⁴⁸Ca beam on a 705 mg/cm² ⁹Be fragmentation target and incident on a ⁹Be 376 mg/cm² reaction target. Fragments were separated by the A1900 fragment separator and S800 magnetic spectrograph. Projectiles were identified by time-of-flight and energy loss in the S800 ion chamber and γ-rays were detected by a 32-fold segmented high-purity germanium detector array (SeGA). Measured Eγ, Iγ, γγ. Deduced levels, J, π. Comparisons with shell-model calculations.

2007Ba47: E⁴⁴S=39 MeV/nucleon secondary beam produced from primary beam of ⁴⁸Ca produced at GANIL facility with E=60 MeV/nucleon. Fragments separated using *α* spectrometer. Decay residue identified using time-of-flight and energy loss measurements. Measured E*γ*, I*γ* using an array of 74 BaF₂ crystals arranged in two hemispheres above and below the ⁹Be target.

2006Fr13 (also 2005Fr19): E⁴⁴S=98.6 MeV/nucleon secondary beam produced from fragmentation of ⁴⁸Ca beam at 140 MeV/nucleon with a ⁹Be target. Fragments were separated by A1900 separator at NSCL, Michigan facility. The ⁴⁴S beam impinged another ⁹Be target and the residues were analyzed by S-800 spectrograph. The knockout residues were identified by time-of- flight, energy loss measurement, position and angle information. The γ rays were detected in coin with knockout residues of ⁴³P using SeGA array of highly-segmented HPGe detectors. Shell-model calculations.

Structure calculations: 2011Ka03, 2010Ga15, 2009No01, 1999Du05, 1995Pe19, 1995Zv02.

All data from 2008Ri04 unless otherwise noted.

Total cross section for ⁴³P=7.6 mb 11 in comparison with 11.6 mb from theoretical predictions (2006Fr13).

⁴³P Levels

E(level) [†]	$J^{\pi \ddagger}$	σ (mb) ^a
0	1/2+#	2.3 4
184 <i>I</i>	3/2 ⁺ @	3.1 <i>3</i>
845 <i>3</i>	$(5/2^+)^{\&}$	0.37 7
1009 5	$(5/2^+)^{\&}$	0.8 2
1095 6	$(5/2^+)^{\&}$	1.9 2
1774 8	$(5/2^+)$	0.4 1
2035 11	$(5/2^+)^{\&}$	0.7 2

[†] From least-squares fit to E γ data (by compilers).

 γ (43P)

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
184 <i>I</i>	100	184	3/2+	0	1/2+
661 4	8 1	845	$(5/2^+)$	184	$3/2^{+}$
765 6	3.9 6	1774	$(5/2^+)$	1009	$(5/2^+)$
825 5	17 <i>I</i>	1009	$(5/2^+)$	184	$3/2^{+}$
845 <i>4</i>	2.7 7	845	$(5/2^+)$	0	$1/2^{+}$
911 6	25 1	1095	$(5/2^+)$	184	$3/2^{+}$
1018 [†] 6	5 1	2035	$(5/2^+)$	1009	$(5/2^+)$
1851 <i>11</i>	7 1	2035	$(5/2^+)$	184	$3/2^{+}$

[†] Placement of transition in the level scheme is uncertain.

[‡] From comparisons of experimental data with shell model calculations.

[#] Configuration= $2s_{1/2}$.

[@] Configuration=1d_{3/2}.

[&]amp; Configuration=1d_{5/2}.

^a Partial cross section.

9 Be(44 S, 43 P γ) **2008Ri04,2006Fr13**

One-proton knockout reaction.

2008Ri04: E=91.7 MeV/nucleon ⁴⁴S beam was produced by the Coupled Cyclotron facility at NSCL by fragmentation of 140 MeV/nucleon ⁴⁸Ca beam on a 705 mg/cm² ⁹Be fragmentation target and incident on a ⁹Be 376 mg/cm² reaction target. Fragments were separated by the A1900 fragment separator and S800 magnetic spectrograph. Projectiles were identified by time-of-flight and energy loss in the S800 ion chamber and γ-rays were detected by a 32-fold segmented high-purity germanium detector array (SeGA). Measured Eγ, Iγ, γγ. Deduced levels, J, π. Comparisons with shell-model calculations.

2007Ba47: $E(^{44}S)$ =39 MeV/nucleon secondary beam produced from primary beam of 48 Ca produced at GANIL facility with E=60 MeV/nucleon. Fragments separated using α spectrometer. Decay residue identified using time-of-flight and energy loss measurements. Measured $E\gamma$, $I\gamma$ using an array of 74 BaF₂ crystals arranged in two hemispheres above and below the 9 Be target.

2006Fr13 (also 2005Fr19): $E(^{44}S)=98.6$ MeV/nucleon secondary beam produced from fragmentation of ^{48}Ca beam at 140 MeV/nucleon with a ^{9}Be target. Fragments were separated by A1900 separator at NSCL, Michigan State University (MSU) facility. The ^{44}S beam impinged another ^{9}Be target and the residues were analyzed by S800 spectrograph. The knockout residues were identified by time-of-flight, energy loss measurement, position and angle information. The γ -rays were detected in coin with knockout residues of ^{43}P using SeGA array of highly-segmented HPGe detectors. Shell-model calculations.

All data from 2008Ri04 unless otherwise noted.

⁴³P Levels

E(level) [†]	$J^{\pi \#}$	L^{\ddagger}	$\sigma \text{ (mb)}^{b}$
0	1/2+ @	0	2.3 4
184 <i>I</i>	3/2+&	2	3.1 3
845 <i>3</i>	$(5/2^+)^a$		0.37 7
1009 5	$(5/2^+)^a$	2	0.8 2
1095 6	$(5/2^+)^a$	2	1.9 2
1774 8	$(5/2^+)$		0.4 1
2035 11	$(5/2^+)^a$		0.7 2

[†] From least-squares fit to E γ data (by evaluators).

 $\gamma(^{43}P)$

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
184 <i>I</i>	100	184	3/2+	0	1/2+
661 <i>4</i>	8 1	845	$(5/2^+)$	184	$3/2^{+}$
765 <i>6</i>	3.9 6	1774	$(5/2^+)$	1009	$(5/2^+)$
825 <i>5</i>	17 <i>I</i>	1009	$(5/2^+)$	184	$3/2^{+}$
845 <i>4</i>	2.7 7	845	$(5/2^+)$	0	$1/2^{+}$
911 6	25 1	1095	$(5/2^+)$	184	$3/2^{+}$
1018 [†] 6	5 1	2035	$(5/2^+)$	1009	$(5/2^+)$
1851 <i>11</i>	7 1	2035	$(5/2^+)$	184	$3/2^{+}$

[†] Placement of transition in the level scheme is uncertain.

[‡] From parallel momentum distributions and comparison with eikonal-model calculations.

[#] From comparisons of experimental data with shell-model calculations.

[@] Configuration=2s_{1/2}.

[&]amp; Configuration=1d_{3/2}.

^a Configuration= $1d_{5/2}$.

^b Partial cross section.

Adopted Levels, Gammas

 $Q(\beta^-)=12.13\times 10^3 \ 10$; $S(n)=2629 \ 6$; $S(p)=20.49\times 10^3 \ 21$; $Q(\alpha)=-16940 \ 90$ 2012Wa38 $S(2n)=9330 \ 6$, $S(2p)=38890 \ 370$, $Q(\beta^-n)=4650 \ 140 \ (2012Wa38)$.

First identification of ⁴³S nuclide by 1979We10.

 43 S isotope produced and identified in 9 Be(48 Ca,X) E=212 MeV/nucleon (1979We10); 181 Ta(48 Ca,X) (1989Le16) and Th(p,X) E=800 MeV (1991Zh24), followed by measurement of fragment spectra. Measured (1989Le16) %β-n, $T_{1/2}$.

2012Ch16: TDPAD method used to measure spectroscopic quadrupole moment of $7/2^-$ isomeric state of 43 S at 320.5 keV. E=345 MeV/nucleon beam produced at RIKEN-RBF facility using BigRIPS spectrometer for fragment separation. 43 mS fragments were selected and implanted in Cu host. The g factor was first measured to validate the method. The 320.5-keV γ -ray was measured using four HPGe detectors. Time spectrum of each detector was used to generate R(t) function.

Mass measurement: 2012Ga45, 2009Ri12, 2007Ju03, 2000Sa21, 1991Zh24.

Mean-square radius from energy-integrated cross sections: 2006Kh08.

Structure calculations: 2011Ka03, 2010Ga15, 2009Ha02.

⁴³S Levels

Cross Reference (XREF) Flags

- A 43S IT decay (415 ns)
- 9 Be(44 S,X γ)
- 9 Be(45 Cl, $X\gamma$)
- D Coulomb excitation

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0#	$(3/2^{-})$	265 ms 15	ABCD	$\%\beta^{-}=100; \%\beta^{-}n=40 \ 10 \ (1989Le16)$
				Configuration= $\nu p_{3/2}$. This state is found to be part of well deformed K=1/2
				decoupled rotational band from shell-model calculations.
				J ^π : 3/2 ⁻ proposed from shell-model (2000Sa21,2009Ri11,2009Ga05); 7/2 ⁻ proposed (1999Ib01) from syst.
				$T_{1/2}$: weighted average of 282 ms 27 (2004Gr20) and 260 ms 15 (1998WiZV),
				from $\beta^{(43)}$ S) time correlation measurements. Other: 220 ms +80-50 (1989Le16).
				Measured mean-square radius $(r_0^2)=1.22 \text{ fm}^2 6 (2006\text{Kh}08)$.
320.7 5	$(7/2^{-})$	415 ns 5	Α	μ =-1.110 14 (2009Ga05,2014StZZ)
	(-7-)			Q=0.23 3 (2012Ch16,2014StZZ)
				$T_{1/2}$: from 2009Ga05. Other: 0.48 μ s 5 (2000Sa21).
				J^{π} : $7/2^-$ proposed from shell-model calculations (2000Sa21); also from
				agreement of g(Schmidt)= -0.546 for $vf_{7/2}$ with the experimental value (2009Ga05).
				μ : from g factor=-0.317 4 (2009Ga05) by TDPAD method, the uncertainty
				includes the statistical and that in the magnetic field.
				Q: TDPAD method (2012Ch16). This value is significantly larger than predicted
				by single-particle state which suggests that the isomer is not a spherical state (2012Ch16), only the magnitude is known, not the sign.
970 [#] 5	(5/27/2-)‡		BCD	

 $(5/2^-,7/2^-)^{\ddagger}$

BC

1153[#] 5

2616 9

 $^{^{\}dagger}$ From least-squares fit to Ey data.

[‡] Proposed from shell-model calculations (2009Ri11).

[#] Band(A): Ground-state band.

Adopted Levels, Gammas (continued)

γ (⁴³S)

Comments

B(E2)(W.u.)=0.040 4

 $B(E2)\downarrow=0.357\times10^{-4} \ 36 \ (2001Sa72)$

B(E2)= 0.517×10^{-4} 52 in 2000Sa21 (same group as 2001Sa72) seems a misprint.

 E_{γ} : from ⁴³S IT decay.

This γ either feeds the g.s. or a very close-lying level of energy <50 keV.

Mult.: for mult=M1 or E1, deduced hindrance factors are unrealistically large. Mult=E2 would be compatible with the measured lifetime.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

[†] From ${}^{9}\text{Be}({}^{44}\text{S},\text{X}\gamma)$ unless otherwise noted.

[‡] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Band(A): Ground-state band

⁴³S IT decay (415 ns) 2000Sa21,2009Ga05

Parent: ${}^{43}S$: E=320.7 5; J^{π} =(7/2⁻); $T_{1/2}$ =415 ns 5; %IT decay=100.0

 43 S-J^{π},T_{1/2}: From Adopted Levels.

2000Sa21, 2001Sa72: 43 S was produced by fragmentation of 48 Ca beam at 60 MeV/nucleon on a tantalum target. Measured magnetic rigidity of particles to deduce mass, tof measurements, Δ E-E measurement with an array of four-element silicon detector telescope. Delayed γ -rays measured with 4π NaI array surrounding the detector telescope. Precision mass measurement is reported in addition to a new isomer in 43 S. Delayed coincidence was measured using two Ge detectors and a Si telescope.

2009Ga05: E=60 MeV/nucleon 48 Ca beam was produced at GANIL. Fragments were separated by the LISE-2000 spectrometer. A 50 μ m thick plastic scintillator at the focal plane was used for g factor measurement using the Time Dependent Perturbed Angular Distribution (TDPAD); four coaxial Ge detectors for γ detection. Measured E γ , g factor. Comparison with various calculations such as shell-model, particle+rotor model, generator coordinate method (GCM), and Gaussian overlap approximation (GOA).

2012Ka36: ⁴³S was produced by Be(²³⁸U,Fγ) with E=345 MeV/nucleon ²³⁸U beam from the RIBF accelerator at RIKEN on a Be target. Fission fragments were separated and analyzed by BigRIPS separator, transported to focal plane of ZeroDegree spectrometer and finally implanted in an aluminum stopper. Particle identification was achieved by ΔE-tof-Bρ method. Delayed γ-rays from microsecond isomers were detected by three clover-type HPGe detectors (FWHM=2.1 keV at 1 MeV). Measured Eγ, Iγ, γγ-coin, isomer half-life. Deduced level. Comparison with previous studies.

⁴³S Levels

E(level)	J^{π}	T _{1/2}	Comments
0	$(3/2^{-})$	·	J^{π} : 3/2 ⁻ proposed from shell-model calculations (2000Sa21,2009Ga05).
320.7 5	$(7/2^{-})$	0.48 μs 5	Configuration= $\nu p_{3/2}$. This state is found to be part of well deformed K=1/2 decoupled rotational band from shell-model calculations (2009Ga05). μ =1.095 14 (2009Ga05)
320.7 3	(1/2)	0.46 μs 3	 J^π: from agreement of g(Schmidt)=-0.546 for νf_{7/2} with the experimental value (2009Ga05). T_{1/2}: from 2009Ga05, from time interval between an event in plastic scintillator and a signal in one of the Ge detectors. Others: 0.45 μs 5 (2000Sa21), 0.20 μs +14-7 (2012Ka36). μ: from g factor=-0.317 4 (2009Ga05) by TDPAD method, the uncertainty includes the statistical and that in the magnetic field. 2009Ga05 state that their g factor indicated that 320.5, J=7/2⁻¹ level is built on νf_{7/2} orbital.
			$\underline{\gamma(^{43}S)}$

320.7 5 320.7 (7/2⁻) 0 (3/2⁻) [E2] $B(E2)\downarrow=0.357\times10^{-4}$ 36 (2001Sa72) $B(E2)=0.517\times10^{-4}$ 52 in 2000Sa21 (same group as 2001Sa72) seems a misprint. E_{γ} : weighted average of 320.5 5 (2009Ga05) and 320.9 5 (2012Ka36). Mult.: E1 and M1 give very large hindrance factors. E2 would be compatible with the measured lifetime.

Comments

⁴³S IT decay (415 ns) 2000Sa21,2009Ga05

Decay Scheme %IT=100.0

9 Be(44 S,X γ) **2009Ri11**

2009Ri11: E=92 MeV/nucleon ⁴⁴S beam was produced by fragmentation of a 140 MeV/nucleon ⁴⁸Ca on a ⁹Be fragmentation target and incident on a target of 376 mg/cm² thick ⁹Be. Fragments (84% ⁴⁴S, 14% ⁴⁵Cl) were separated by the A1900 separator and identified by the time-of-flight and energy loss in the S800 ionization chamber; γ -rays were detected by the Segmented Germanium Array (SeGA). Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , branching ratios and rotational band. Comparisons with shell-model calculations.

This dataset shares the γ -energies with the dataset of ${}^9\text{Be}({}^{45}\text{Cl},\!X\gamma)$.

⁴³S Levels

E(level) [†]	$J^{\pi \ddagger}$
0#	3/2-
970 [#] 5	$(5/2^-,7/2^-)$
1153 [#] 5	$(5/2^-,7/2^-)$
2616 9	$(7/2^{-})$

 $^{^{\}dagger}$ From least-squares fit to Ey data.

 $\gamma(^{43}S)$

E_{γ}	I_{γ}	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
183 <i>I</i>	53 <i>3</i>	1153	$(5/2^-,7/2^-)$	970	$(5/2^-,7/2^-)$
^x 231 <i>1</i>	6 <i>1</i>				
^x 459 3	7 2				
^x 621 4	31 <i>3</i>				
^x 719 4	21 3				
x770 5	12 <i>3</i>				
^x 849 5	24 3				
971 6	56 <i>4</i>	970	$(5/2^-,7/2^-)$	0	3/2-
1154 7	100	1153	$(5/2^-,7/2^-)$	0	3/2-
^x 1203 7	21 <i>3</i>				
1468 9	5 <i>3</i>	2616	$(7/2^{-})$	1153	$(5/2^-,7/2^-)$
^x 1529 9	8 3				
^x 1855 11	5 <i>3</i>				
2600 16	98 <i>7</i>	2616	$(7/2^{-})$	0	3/2-

 $^{^{}x}$ γ ray not placed in level scheme.

[‡] From comparisons with shell-model calculations.

[#] Band(A): Ground state rotational band.

⁹Be(⁴⁴S,Xγ) **2009Ri11**

Level Scheme

Intensities: Relative I_{γ}

Legend

⁹Be(⁴⁴S,Xγ) **2009Ri11**

Band(A): Ground state rotational band

⁹Be(45 Cl,X γ) **2009Ri11**

2009Ri11: E=98 MeV/nucleon 45 Cl beam was produced by fragmentation of a 140 MeV/nucleon 48 Ca on a 9 Be fragmentation target and incident on a target of 376 mg/cm² thick 9 Be. Fragments (84% 44 S, 14% 45 Cl) were separated by the A1900 separator and identified by the time-of-flight and energy loss in the S800 ionization chamber; γ -rays were detected by the Segmented Germanium Array (SeGA). Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , branching ratios and rotational band. Comparisons with shell-model calculations.

This dataset shares the γ -energies with the dataset of ${}^9\text{Be}({}^{44}\text{S}, X\gamma)$.

⁴³S Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$
0#	3/2-
971 [#] 5	$(5/2^-, 7/2^-)$
1154 [#] 5	$(5/2^-,7/2^-)$

 $^{^{\}dagger}$ From least-squares fit to Ey data.

 γ (43S)

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^π
183 <i>I</i>	58 12	1154	$(5/2^-,7/2^-)$	971	$(5/2^-,7/2^-)$
^x 231 <i>1</i>	8 5				
x459 3	10 7				
^x 621 4	34 11				
^x 770 5	15 10				
^x 849 5	23 12				
971 6	62 17	971	$(5/2^-,7/2^-)$	0	$3/2^{-}$
^x 1060 5	40 15				
1154 7	100	1154	$(5/2^-,7/2^-)$	0	$3/2^{-}$
^x 1203 7	51 <i>15</i>				
^x 1529 9	93 22				

 $^{^{}x}$ γ ray not placed in level scheme.

[‡] From comparisons with shell-model calculations.

[#] Band(A): ground state rotational band.

⁹Be(⁴⁵Cl,Χγ) **2009Ri11**

Level Scheme

Intensities: Relative I_{γ}

⁹Be(⁴⁵Cl,Χγ) **2009Ri11**

Band(A): Ground state rotational band

9 Be(48 Ca, $X\gamma$) **2009Ga05**

2009Ga05: E=60 MeV/nucleon 48 Ca beam was produced at GANIL. Fragments were separated by the LISE-2000 spectrometer. A 50 μ g plastic scintillator at the focal plane was used for g-factor measurement using the Time Dependent Perturbed Angular Distribution (TDPAD); four coaxial Ge detectors for γ detection. Measured E γ , g factor. Comparison with various calculations such as shell model (Sm), particle+rotor (Pr) model, generator coordinate method (GCM), and Gaussian overlap approximation (GOA).

⁴³S Levels

E(level)	J^{π}	$T_{1/2}$	Comments
0	3/2-		Configuration= $\nu p_{3/2}$. This state is found to be part of well deformed K=1/2 decoupled rotational band.
320.5 5	$7/2^{-}$	415 ns 5	μ =1.095 14
			 T_{1/2}: from 2009Ga05, from time interval between an event in plastic scintillator and a signal in one of the Ge detectors. μ: from g factor=0.317 4 (2009Ga05) by TDPAD method, the uncertainty includes the statistical and that in the magnetic field. 2009Ga05 state that their g factor indicated that 320.5,7/2⁻ level is built on νf_{7/2} orbital. J^π: from agreement of g(Schmidt)=-0.546 for νf_{7/2} with the experimental value.

Coulomb excitation 1999Ib01

 197 Au(43 S, 43 S') E=42.0 MeV/nucleon. γ -rays detected with an array of 38 cylindrical NaI(Tl) detectors in coin with scattered 43 S ions. Comparisons with particle-rotor and particle-vibrator calculations.

⁴³S Levels

Coulomb excitation 1999Ib01

Level Scheme

Adopted Levels, Gammas

 $Q(\beta^{-}) = 7.69 \times 10^{3} \ 10; \ S(n) = 7.48 \times 10^{3} \ 17; \ S(p) = 13.97 \times 10^{3} \ 10; \ Q(\alpha) = -13.92 \times 10^{3} \ 13$

 $S(2n)=13160 \ 120, \ S(2p)=33920 \ 120, \ Q(\beta^-n)=2030 \ 100 \ (2012Wa38).$

First identification of ⁴³Cl nuclide by 1976Ka24.

⁴³Cl production and identification:

1976Ka24: ⁴⁸Ca(³He, ⁸B) E=74 MeV.

1981Vo04: U,Nb(p,X) E=600 MeV.

1991Zh24, 1990Tu01: Th(p,X) E=800 MeV followed by measurement of fragment spectra.

1998WiZX: fragmentation of 48 Ca beam E(48 Ca)=70 MeV/nucleon with a Be target. Measured γ , $\gamma\gamma$ coin, $\beta\gamma\gamma$ coin.

2006Wi10: ⁴³Cl isotope produced by fragmentation of a ⁴⁸Ca beam at 70 MeV/nucleon hitting a ⁹Be target. The fragments were separated by A1200 fragment separator at NSCL, MSU facility. Measured E γ , I γ , $\gamma\gamma$, β , $\beta\gamma$ coin, half-life using two Ge detectors for γ -rays and a plastic scintillator for β particles.

Mass measurements: 1976Ka24, 1990Tu01, 1991Zh24, 2000Sa21, 2007Ju03.

Mean-square radius from energy-integrated cross sections: 2006Kh08.

Structure calculations: 2011Ka03, 2009No01, 1987Sa19.

Level scheme is essentially that proposed in ${}^{9}\text{Be}({}^{48}\text{K},\text{X}\gamma)$ (2012St12).

⁴³Cl Levels

Cross Reference (XREF) Flags

Α	⁴³ S β^{-} decay (265 ms)	D	9 Be(48 K,X γ)
В	⁴⁴ S β ⁻ n decay (100 ms)	E	9 Be(48 Ca,X γ)
C	1 H(46 Ar,X γ)	F	208 Pb(40 Ar,X γ)

E(level)	Jπ†	T _{1/2}	XREF	Comments
0	$(1/2^+)$	3.13 s 9	ABCDEF	$\%\beta^{-}=100$
				Measured mean-square radius $(r_0^2)=1.184 \text{ fm}^2 21 (2006\text{Kh}08).$
				T _{1/2} : from fit to decay curve (2006Wi10). Earlier result from this group: 3.07 s 7 (1998WiZX). Others: 3.3 s 2 (1981Vo04), 3.4 s 3 (1981HuZT).
				J^{π} : $3/2^{+}$ proposed (2012Au07) from syst.
328 2	$(3/2^+)$		CDEF	
884? <i>4</i>	(1/2,3/2)		CDE	E(level): tentative level proposed in (48 K,X γ) from 882 <i>14</i> γ not in coin with any other γ -ray (2012St12). E γ =888 δ in 1 H(46 Ar,X γ) (2006Ga31) and 881 δ placed from an 1830 level.
				J^{π} : possible γ to $(1/2^{+})$ is dipole.
943 5	$(5/2^+)$		CDE	
1668 <i>6</i>	$(7/2^+)$		CDE	E(level): level proposed in (48 K,X γ) from 1338 <i>15</i> γ in coin with 327 γ (2012St12). E γ =1342 7 in 1 H(46 Ar,X γ) (2006Ga31) and 1338 6 placed from a 1338 level.
1924 <i>7</i>			D	

[†] From transition multipolarities determined from $\gamma(\theta)$ data in ${}^{9}\text{Be}({}^{48}\text{Ca},\text{X}\gamma)$ and shell-model predictions (2004So30,2012St12).

γ (43Cl)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^{π}	Mult.‡
328	$(3/2^+)$	328 2	100	0	$(1/2^+)$	D
884?	(1/2,3/2)	884 <mark>\$</mark> 4	100	0	$(1/2^+)$	D
943	$(5/2^+)$	615 5	100	328	$(3/2^+)$	D
1668	$(7/2^+)$	1340 6	100	328	$(3/2^+)$	(Q)
1924		256 <i>4</i>	100	1668	$(7/2^+)$	

[†] Weighted average of all available values.

Adopted Levels, Gammas (continued)

γ (43Cl) (continued)

 ‡ From $\gamma(\theta)$ in $^9 Be(^{48} Ca,\! X\gamma);$ mult=D indicates $\Delta J{=}1$ transition and mult=(Q) a $\Delta J{=}2$ transition. § Placement of transition in the level scheme is uncertain.

$^{43}{\rm S}\,\beta^-$ decay (265 ms) 1989Le16,1991Zh24

Parent: ⁴³S: E=0; J^{π}=(3/2⁻); T_{1/2}=265 ms 15; Q(β ⁻)=12.13×10³ 10; % β ⁻ decay=100.0 ⁴³S-J^{π},T_{1/2}: From Adopted Levels.

⁴³S-Q(β ⁻): From 2012Wa38.

 $\%\beta^{-}$ n=40 10 (1989Le16).

No information is available for population of levels in ⁴³Cl from ⁴³S decay.

⁴³Cl Levels

 $\frac{\text{E(level)}}{0}$

44 S β^- n decay (100 ms) 1989Le16,1995So03,2004Gr20

Parent: ⁴⁴S: E=0; J^{π}=0⁺; T_{1/2}=100 ms *I*; Q(β ⁻n)=7.05×10³ *10*; % β ⁻n decay=18 *3* ⁴⁴S-T_{1/2}: From ⁴⁴S Adopted Levels in ENSDF database.

⁴⁴S-Q(β ⁻n): From 2012Wa38.

⁴⁴S-%β-n decay: %β-n=18 3 (1995So03). Other: 30 10 (1989Le16).

No information is available for population of levels in 43 Cl from 44 S β^- n decay.

⁴³Cl Levels

 $\frac{\text{E(level)}}{0}$

1 H(46 Ar,X γ) **2006Ga31**

2006Ga31: E=76.4 MeV/nucleon 46 Ar was produced at the Coupled Cyclotron facility of the NSCL at MSU via projectile fragmentation of a 110 MeV/nucleon 48 Ca primary beam on a 376 mg/cm² 9 Be target located at the mid target position of the A1900 fragment separator. Target of a 191 mg/cm² polypropylene [(C₃H₆)_n] foil. The fragments were separated by A1900 fragment separator B ρ - Δ E-B ρ method and identified using the S800 spectrograph. Prompt γ -rays were detected by SeGA γ -detector array of 32-fold segmented HPGe detectors.

The level scheme is taken from ${}^{9}\text{Be}({}^{48}\text{Ca},\text{X}\gamma)$ in 2004So30.

⁴³Cl Levels

E(level) [†]	$J^{\pi\dagger}$	Comments
0	$(1/2^+)$	
329 <i>4</i>	$(3/2^+)$	
945 7	$(5/2^+)$	
1342 7	$(5/2^+)$	E(level): level not included in Adopted Levels due to revised placement of 1342γ .
1833 [‡] 9	$(7/2^+)$	E(level): level not included in Adopted Levels.

 $^{^{\}dagger}$ From level scheme proposed by 2004So30.

$\gamma(^{43}\text{Cl})$

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
^x 256 [†] 5					
329 <i>4</i>	329	$(3/2^+)$	0	$(1/2^+)$	
616 5	945	$(5/2^+)$	329	$(3/2^+)$	
888 6	1833	$(7/2^+)$	945	$(5/2^+)$	Note that this γ was not observed in coin with 330 γ or 614 γ in 2012St12, thus its placement from 1833 level is suspect.
1342 7	1342	$(5/2^+)$	0	$(1/2^+)$	

 $^{^{\}dagger}$ This γ not reported by 2004So30.

[‡] A tentative 1509 10 γ from this level reported by 2004So30 is not seen by 2006Ga31.

 $^{^{}x}$ γ ray not placed in level scheme.

1 H(46 Ar,X γ) **2006Ga31**

Level Scheme

9 Be(48 K,X γ) **2012St12**

2012St12: E=85 MeV/nucleon ⁴⁸K beam was produced from fragmentation of 140 MeV/nucleon ⁴⁸Ca beam with ⁹Be target at the Coupled cyclotron facility of NSCL at MSU. Target=376 mg/cm² ⁹Be. The beam was purified in A1900 fragment separator. The S800 spectrograph together with plastic scintillators was used for event-by-event identification of projectile-like reaction products and time-of-flight and energy loss information. Measured Eγ, Iγ, γγ coin, (fragment)γ coin using SeGA array of 32-fold segmented HPGe detectors. Shell-model calculations.

⁴³Cl Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	$(1/2^+)$	
327 5	$(3/2^+)$	
882? 14		
940 9	$(5/2^+)$	
1665 <i>16</i>		E(level): ordering of the 256-1338 γ cascade is not established in this work, but in 2006Ga31, intensity of the 256 γ is much weaker than that of the 1338 γ .
1921 <i>16</i>		

[†] From Eγ data.

$\gamma(^{43}\text{Cl})$

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	${\rm J}_f^\pi$	Comments
256 [†] 4	18 <i>I</i>	1921		1665	·	
327 5	100 <i>3</i>	327	$(3/2^+)$	0	$(1/2^+)$	
613 7	45 <i>3</i>	940	$(5/2^{+})$	327	$(3/2^{+})$	
882 14	30 <i>3</i>	882?		0	$(1/2^+)$	882 γ was not observed in coin with either the 327 γ or the 613 γ as proposed in 2004So30.
^x 1024 10	7 2					
1338 [†] <i>15</i>	22 3	1665		327	$(3/2^+)$	
^x 1494 [‡] 16						
^x 1529 [‡] 16						

[†] Ordering of the 256-1328 γ cascade is not established in this work, but it is based on much weaker intensity of 256 γ in 2006Ga31.

[‡] From shell-model calculations (2012St12).

[‡] Weak unresolved doublet.

 $^{^{}x}$ γ ray not placed in level scheme.

9 Be(48 Ca,X γ) **2004So30**

2004So30: E=60.3 MeV/nucleon ⁴⁸Ca beam was produced at GANIL and incident on a ⁹Be target of 2.76 mg/cm². The SPEG magnetic spectrometer was operated in a dispersive mode to identify the emerging fragments detected at the focal plane. Their energy losses and positions in the focal plane were determined by the combination of ionization and drift chambers. Their residual energies were obtained in a thick plastic scintillator. The time-of-flight was derived from the timing signals in the plastic scintillator with respect to the cyclotron radio frequency. It was corrected by the use of the position of the fragments in the focal plane of the SPEG spectrometer to obtain a better time resolution and subsequently a better identification of the nuclei. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\gamma(\theta)$ with an array of 74 BaF₂ and 3 segmented Ge clover detectors to identify the γ -rays emitted in flight by the excited fragments. The segmented Ge detectors at 85°, 122°, and 136° to the beam allowed for angular distribution measurements.

⁴³Cl Levels

E(level)	J^{π}	Comments
0.0	$(1/2^+)$	
330 <i>5</i>	$(3/2^+)$	
946 7	$(5/2^+)$	
1338 <i>6</i>	$(5/2^+)$	E(level): level not included in Adopted Levels due to revised placement of 1338γ.
1830 8	$(7/2^+)$	E(level): level not included in Adopted Levels due to revised placement of 882γ.
		$\underline{\gamma^{(43}\text{Cl})}$

	Mult.	\mathbf{J}_f^{π}	\mathbf{E}_f	\mathbf{J}_i^{π}	$E_i(level)$	I_{γ}	E_{γ}
Mult.: $\Delta J=1$ transition from $I\gamma(85^\circ)/I\gamma(136^\circ)=2.0$ 4.	D	(1/2+)	0.0	(3/2+)	330	100	330 5
Mult.: $\Delta J=1$ transition from $I\gamma(85^\circ)/I\gamma(136^\circ)=1.7$ 4.	D	(3/2+)	330	$(5/2^+)$	946	60	614 5
Note that this γ was not obse 2012St12, thus its placemed Mult.: $\Delta J=1$ transition from $I\gamma(85^{\circ})/I\gamma(136^{\circ})=2.0$ 5.	D	(5/2+)	946	(7/2+)	1830	50	881 [†] 5
Placement as ground-state tra observed in coin with 327. Mult.: $\Delta J=2$ or 0 transition f $I\gamma(85^{\circ})/I\gamma(136^{\circ})=1.0$ 3.	(Q)	(1/2+)	0.0	(5/2+)	1338	30	1338 6
E_{γ} : this γ -ray is specified at		$(3/2^+)$	330	$(7/2^+)$	1830	20	1509 [†] <i>10</i>

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

Comments	
Mult.: $\Delta J=1$ transition from $I\gamma(122^{\circ})/I\gamma(136^{\circ})=1.4$ 4; $I\gamma(85^{\circ})/I\gamma(136^{\circ})=2.0$ 4. Mult.: $\Delta J=1$ transition from $I\gamma(122^{\circ})/I\gamma(136^{\circ})=1.3$ 4; $I\gamma(85^{\circ})/I\gamma(136^{\circ})=1.7$ 4.	
Note that this γ was not observed in coin with 330 γ or 614 γ in 2012St12, thus its placement from 1830 level is suspect. Mult.: $\Delta J=1$ transition from $I\gamma(122^\circ)/I\gamma(136^\circ)=1.3$ 3; $I\gamma(85^\circ)/I\gamma(136^\circ)=2.0$ 5.	
Placement as ground-state transition is incorrect in view of 1338 γ observed in coin with 327 γ in 2012St12. Mult.: $\Delta J=2$ or 0 transition from $I\gamma(122^\circ)/I\gamma(136^\circ)=1.0$ 4; $I\gamma(85^\circ)/I\gamma(136^\circ)=1.0$ 3.	
t_{γ} : this γ -ray is specified at a 2.5 σ confidence level (2004So30).	

Coincidence

208
Pb(40 Ar,X γ) **2013Sz02**

Transfer channel: one-proton removal and four-neutron addition 2013Sz02: $E(^{40}Ar)=255$ MeV provided by the ECR ion source and accelerated by the superconducting ALPI-Linac accelerator of LNL, Legnaro facility. Target=300 μ g/cm² 208 Pb. Measured fragments, E γ , I γ , time-of-flight, energy loss, $\gamma\gamma$, (fragment) γ -coin using the Clara array and magnetic spectrometer Prisma. Deduced level, J, π .

⁴³Cl Levels

E(level)
$$J^{\pi^{\dagger}}$$
0 $(1/2^+)$
328 2 $(3/2^+)$

† From Adopted Levels.

$$\gamma$$
(43Cl)

$$\frac{E_{\gamma}}{328 \ 2} \quad \frac{I_{\gamma}^{\dagger}}{30 \ 10} \quad \frac{E_{i}(\text{level})}{328} \quad \frac{J_{i}^{\pi}}{(3/2^{+})} \quad \frac{E_{f}}{0} \quad \frac{J_{f}^{\pi}}{(1/2^{+})}$$

† Effective number of counts with correction for detector efficiency.

208 Pb(40 Ar,X γ) 2013Sz02

<u>Level Scheme</u>

Intensities: Relative I_{γ}

 $Q(\beta^{-})=4566 5$; S(n)=5658 8; $S(p)=14.39\times10^{3} 14$; $Q(\alpha)=-11270 50$ 2012Wa38 S(2n)=15085 5, S(2p)=27579 7 (2012Wa38). First identification of ⁴³Ar nuclide by 1969Ha03. 1971Ar32: ²³²Th(⁴⁰Ar, X), E=290 MeV; measured fragments isotopic yields.

2005Bl33: measured charge radii.

2007Na31: ¹³⁶Xe(p,X) production cross sections.

Mean-square radius from energy-integrated cross sections: 1999Ai02, 1997Li15.

Mass measurements: 2001He29.

2008Bl01: mass-separated ⁴³Ar ion beam obtained from spallation of Ti by 1.4 GeV beam provided by CERN synchrotron followed by on-line mass separation at ISOLDE-CERN facility. Measured spins, isotope shifts, hyperfine structure, mean-square charge radii, magnetic dipole and electric quadrupole moments by fast beam collinear laser spectroscopy using highly sensitive ion detection of optical resonance. Comparisons with spherical Skyrme-type Hartree-Fock mean-field calculations.

Structure calculations: 2011Ka03, 2007Sh10, 1991Wa19, 1987Sa19, 1974Gl04.

⁴³Ar Levels

Cross Reference (XREF) Flags

			A B	⁴³ Cl β ⁻ decay (3.13 s) D 48 Ca(α, 9 Be) ¹ H(43 Ar,p') E 208 Pb(40 Ar,Xγ)
			C	9 Be(36 S,2p γ)
E(level)	J^{π}	T _{1/2}	XREF	Comments
0	5/2(-)	5.37 min 6	ABCDE	 μ=-1.021 6 (2008Bl01,2014StZZ) Q=+0.142 14 (2008Bl01,2014StZZ) Evaluated rms charge radius=3.4414 fm 41 (2013An02). μ,Q: fast beam collinear laser spectroscopy using highly sensitive ion detection of optical resonance. Statistical uncertainty=0.002 and systematic uncertainty of 10% in Q due to electric field gradient and Sternheimer shielding correction are combined in quadrature. Isotope shift (38Ar,43Ar)=556.7 MHz 23 (2008Bl01); statistical uncertainty=1.4, systematic uncertainty=1.8. Measured mean-square radius (r₀²)=1.23 fm² 8 (beam energy=50 MeV/nucleon, 1999Ai02), 1.31 fm² 7 (beam energy=90 MeV/nucleon, 1999Ai02), 1.23 fm² 3 (beam energy=70 MeV/nucleon, 1997Li15). The rms charge radius (<r²>)^{1/2}=3.4415 fm 23 from δ<r²>(38Ar,43Ar)=+0.221 fm² 14(stat) 66(syst) (2008Bl01, laser spectroscopy).</r²></r²> Jπ̄: from laser spectroscopy in 2008Bl01. Hyperfine structure intervals and relative amplitudes of the resonances firmly establish 5/2. log ft=6.6 (log f¹ut<8.5) to 3/2 and log ft=6.2 to 5/2+ give 3/2 or 5/2. log ft=7.8 to 7/2- and log ft=7.9 to 7/2+ make 3/2 less likely. Model arguments as discussed by 1999Ma89 propose 5/2- or 7/2- from systematics of N=23 and 25 nuclides. Possible configuration= πd⁻_{3/2} vf⁻₃ (1999Ma89). T_{1/2}: from 1970Hu11 (β and γ activity measurements). Other: 5.35 min 15 (β decay, 1969Ha03), 6.5 min 18 (1969La16).
0+x 201.27? <i>16</i>	(7/2 ⁻) (7/2 ⁻)		C C	 E(level): predicted value of x≈100 keV (2011Sz02), 200 keV (2009Mo09). E(level): this level was proposed only in 2009Mo09 but not confirmed in other measurements. It is probably the same level as the 0+x level. J^π: from theoretical predictions in ⁹Be(³⁶S,2pγ).
762.05 8 1381.74 7 1441.48 <i>10</i>	(3/2-)		A E A A	200 40
1527.4+x 5	$(11/2^{-})$		E	J^{π} : assignment based on conclusion from 1999Ma89 that this is a negative parity

⁴³Ar Levels (continued)

E(level)	J^π	XREF	Comments
1610 <i>40</i>	(3/2	B	state which is dominated by a configuration with the valence neutrons in the fp shell and new results from 2006Wi10. β_2 =0.25 β (1999Ma89) β_2 is from assumed E2 excitation. J ^{π} : from syst (1999Ma89).
1740 <i>50</i> 1793.80 <i>I</i> 1816.8 <i>7</i>	0 (3/2	D A A	E(level): this level may correspond to the 1794 level reported in 43 Cl β^- . J^{π} : from shell-model prediction; allowed β^- decay from $(1/2^+)$.
1859+x 2	(9/2		J^{π} : assignment based on strong $2^+ \otimes f_{7/2}$ component of the wave function for the state, similar to that in 41 Ar.
1944.96? 2344.4 8 2390.50 <i>I</i> 2520.38 <i>I</i> 2798.8? 5 3374.8? 5	5 3	A A A D A	XREF: D(2550).
3395.8? <i>3</i> 3425.5? <i>5</i>	ī	A A	
3549.4? 7 4247.06 <i>I</i> 4289.0? 5 4550.8? 4	7 (3/2	A A	XREF: D(3560). J^{π} : log ft =4.9 from (1/2 ⁺) parent; 4247.0 γ to 5/2 ⁽⁻⁾ .
$4.74 \times 10^3 \ 10$		D	
			$\underline{\gamma^{(43}Ar)}$
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ} E_f J_f^{π}
201.27? 762.05 1381.74	(7/2 ⁻) (3/2 ⁻)	201.27 <i>16</i> 761.81 <i>11</i> 619.56 <i>10</i>	$ \begin{array}{cccc} & 0 & 5/2^{(-)} \\ 100 & 0 & 5/2^{(-)} \\ 36 & 3 & 762.05 & (3/2^{-}) \end{array} $
1441.48		1381.79 <i>7</i> 679.24 <i>10</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1527.4+x 1793.80	$(11/2^-)$ $(3/2^+)$	1441.69 23 1527.4 5 352.13 14 411.8 3 1031.84 9 1793.5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1816.8 1859+x 1944.96?	(9/2-)	1816.5 [†] 3 1859 2 1944.96 [†] 21	$ \begin{array}{cccc} 100 & 0 & 5/2^{(-)} \\ 100 & 0+x & (7/2^{-}) \end{array} $
2344.4		903†	1441.48
2390.50		2344 [†] 948.96 <i>17</i> 1008.82 <i>24</i> 1628.1 [†] <i>6</i> 2390.5 <i>4</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2520.38		726.58 <i>8</i> 1758.2 <i>5</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2798.8?		2036.4 [†] 4	100 762.05 (3/2 ⁻)
3374.8?		1933.3 [†] 5	100 1441.48

γ ⁽⁴³Ar) (continued)</sup>

$E_i(level)$	J_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	E_{γ}	I_{γ}	\mathbf{E}_f	\mathtt{J}^π_f
3395.8?		3395.8 [†] <i>3</i>	100	0 5/2 ⁽⁻⁾	4247.06	2805.43 17	83 9	1441.48	
3425.5?		1631.8 [†] 5	100	1793.80 (3/2+))	2865.7 4	24 <i>4</i>	1381.74	
3549.4?		2108.0 [†] 7	100	1441.48		4247.0 7	100 20	0	$5/2^{(-)}$
4247.06	$(3/2^+)$	2430.0 [†] 5	42 5	1816.8	4289.0?	2344.0 4	100	1944.96?	
		2452.7 6	39 <i>5</i>	1793.80 (3/2+)	4550.8?	3109.3 [†] 4	100	1441.48	

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

⁴³Cl β⁻ decay (3.13 s) 2006Wi10,1998WiZX,1981HuZT

Parent: ⁴³Cl: E=0; $J^{\pi}=(1/2^{+})$; $T_{1/2}=3.13 \text{ s } 9$; $Q(\beta^{-})=7.69\times10^{3} 10$; % β^{-} decay=100.0

2006Wi10: ⁴³Cl isotope produced by fragmentation of a ⁴⁸Ca beam at 70 MeV/nucleon hitting a ⁹Be target. The fragments were separated by A1200 fragment separator at NSCL, MSU facility. Measured E γ , I γ , $\gamma\gamma$, β , $\beta\gamma$ coin using two Ge detectors for γ -rays and a plastic scintillator for β -rays. Comparisons with shell-model calculations.

1998WiZX (also 1998WiZV): fragmentation of 48 Ca beam E(48 Ca)=70 MeV/nucleon with a Be target. Measured γ , $\gamma\gamma$ coin, $\beta\gamma\gamma$ coin.

Evaluators consider the decay scheme to be incomplete in view of several uncertain placements of γ transitions and unaccounted 28% 10 β feeding.

⁴³Ar Levels

E(level) [†]	J^{π}	E(level) [†]	E(level) [†]	E(level) [†]	J^{π}
0.0	5/2 ⁽⁻⁾ ‡	1816.65? 23	2798.4? 5	4009.2? 3	
762.02 8		1944.96? <i>21</i>	3374.8? 5	4247.02 <i>18</i>	$(3/2^+)^{@}$
1381.73 7		2344.4 8	3395.8? <i>3</i>	4289.0? 5	
1441.43 <i>11</i>		2390.47 <i>15</i>	3425.5? 5	4550.8? <i>4</i>	
1793.77 11	$(3/2^+)^{\#}$	2520.35 <i>13</i>	3549.4? 7		

[†] From least-squares fit to E γ data.

β^- radiations

There is a total of 28% 10 unidentified β feeding (2006Wi10). Up to 8% can be associated with feeding to the ground state. It is possible that some of the unidentified feeding is associated with β -delayed neutron decay of 43 Cl.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft
$(3.14 \times 10^{3 \ddagger} 10)$	4550.8?	0.53 12	5.7 1	$(5.17 \times 10^3 \ 10)$	2520.35	3.0 5	6.0 <i>1</i>
$(3.40 \times 10^{3} $ [‡] 10)	4289.0?	1.6 5	5.4 2	$(5.30 \times 10^3 \ 10)$	2390.47	4.6 7	5.8 <i>1</i>
$(3.44 \times 10^3 \ 10)$	4247.02	5.8 9	4.9 <i>1</i>	$(5.35 \times 10^3 \ 10)$	2344.4	3	6.0
$(3.68 \times 10^3 \ddagger 10)$	4009.2?	0.66 22	5.9 2	$(5.87 \times 10^3 \ 10)$	1816.65?	0.98 23	6.7 <i>1</i>
$(4.14 \times 10^{3} $ [‡] 10)	3549.4?	0.33 9	6.5 1	$(5.90 \times 10^3 \ 10)$	1793.77	50 7	5.0 <i>1</i>
$(4.26 \times 10^3 \stackrel{\ddagger}{10})$	3425.5?	0.74 17	6.2 <i>1</i>	$(6.25 \times 10^3 \ 10)$	1441.43	1.7 6	6.6 2
$(4.29 \times 10^{3} $ 10)	3395.8?	1.28 22	6.0 <i>1</i>	$(6.31\times10^3\ 10)$	1381.73	3.3 6	6.3 1
$(4.32 \times 10^{3} $ 10)	3374.8?	0.19 12	6.8 <i>3</i>	$(7.69 \times 10^{3} $ 10)	0.0	<8	$>8.5^{1u}$
$(4.89 \times 10^3 10)$	2798.4?	0.33 8	6.8 1	` ′			

[†] Absolute intensity per 100 decays.

⁴³Cl-J $^{\pi}$,T_{1/2}: From Adopted Levels.

⁴³Cl-Q(β^-): From 2012Wa38.

⁴³Cl identification and production: 1991Zh24 (also 1990Tu01), 1981Vo04, 1976Ka24.

[‡] From Adopted Levels. 1998WiZX suggested 5/2⁻ or 7/2⁻.

^{*} From shell-model prediction.

[@] Allowed β -decay from $(1/2^+)$ parent.

[‡] Existence of this branch is questionable.

43 Cl β^{-} decay (3.13 s) 2006Wi10,1998WiZX,1981HuZT (continued)

γ (⁴³Ar)

Iy normalization: Deduced by 2006Wi10 from intensity of γ -rays from ⁴³Ar decay.

E_{γ}^{\dagger}	I_{γ} †&	$E_i(level)$	\mathtt{J}_{i}^{π}	E_f	\mathbf{J}_f^{π}
352.13 <i>14</i>	2.1 3	1793.77	$(3/2^+)$	1441.43	
411.8 <i>3</i>	1.23 19	1793.77	$(3/2^+)$	1381.73	
619.56 10	2.25 22	1381.73		762.02	
679.24 10	10.0 7	1441.43		762.02	(0 (0±)
726.58 8	4.94 24	2520.35		1793.77	$(3/2^+)$
761.81 <i>11</i> 903 [‡] @	100.0 <i>21</i>	762.02		0.0	$5/2^{(-)}$
903+© 948.96 <i>17</i>	1 (0 17	2344.4 2390.47		1441.43 1441.43	
948.96 <i>17</i> 1008.82 <i>24</i>	1.69 <i>17</i> 0.68 <i>13</i>	2390.47		1381.73	
1008.82 24	89.7 <i>24</i>	1793.77	$(3/2^+)$	762.02	
1381.79 7	6.3 4	1381.73	(3/2)	0.0	5/2(-)
1441.69 [@] 23	1.6 <i>3</i>	1441.43		0.0	5/2 ⁽⁻⁾
1628.1 [@] 6	0.69 14	2390.47		762.02	
1631.8 [@] 5	1.29 23	3425.5?		1793.77	$(3/2^+)$
1758.2 <i>5</i>	0.31 13	2520.35		762.02	
1793.5 [§] 6	2.72 17	1793.77	$(3/2^+)$	0.0	$5/2^{(-)}$
1816.5 [@] 3	3.18 24	1816.65?		0.0	$5/2^{(-)}$
1933.3 [@] 5	0.34 20	3374.8?		1441.43	
1944.96 [@] 21	3.9 <i>3</i>	1944.96?		0.0	$5/2^{(-)}$
2036.4 [@] 4	0.57 11	2798.4?		762.02	
2108.0 [@] 7	0.58 13	3549.4?		1441.43	
2215.4 [@] 3	1.2 3	4009.2?		1793.77	$(3/2^+)$
2344 ^{‡@}		2344.4		0.0	$5/2^{(-)}$
2344.0 [@] 4	2.7 7	4289.0?		1944.96?	
2390.5 4	5.1 4	2390.47		0.0	$5/2^{(-)}$
2430.0 [@] 5	1.46 19	4247.02	$(3/2^+)$	1816.65?	
2452.7 6	1.38 17	4247.02	$(3/2^+)$	1793.77	$(3/2^+)$
2805.43 17	2.9 3	4247.02	$(3/2^+)$	1441.43	
2865.7 4	0.83 14	4247.02	$(3/2^+)$	1381.73	
3109.3 [@] 4	0.93 15	4550.8?		1441.43	
3395.8 [@] 3	2.24 20	3395.8?		0.0	5/2 ⁽⁻⁾
4247.0 7	3.5 7	4247.02	$(3/2^+)$	0.0	$5/2^{(-)}$

[†] From 2006Wi10, unless otherwise stated.

[‡] From 1981HuZT only.

[§] From 1998WiZX only.

& For absolute intensity per 100 decays, multiply by 0.57 8.

© Placement of transition in the level scheme is uncertain.

43 Cl β^- decay (3.13 s) 2006Wi10,1998WiZX,1981HuZT

1 H(43 Ar,p') 1999Ma89

1999Ma89: 43 Ar secondary beam produced by the fragmentation of a 48 Ca beam at E=60 MeV/nucleon, provided by the K1200 cyclotron at the NSCL, on a 285 mg/cm² Be production target, followed by a fragment-separator analyzer. Intensity of 43 Ar beam=16,000 particles/sec at 33 MeV/nucleon. Target of a thin 2 mg/cm² CH_{2n} foil. Recoiling protons were detected by a group of eight particle-detector telescopes (FWHM=850 keV). Measured $\sigma(E_p,\theta)$. Deduced levels, J, π from DWBA analysis.

⁴³Ar Levels

E(level) J^{π} L Comments

0 (5/2⁻,7/2⁻) J^{π} : from systematics (1999Ma89). 7/2⁻ is inconsistent with log ft values.

1610 40 (3/2⁻) 2 L: from $\sigma(\theta)$ and comparison with DWBA calculations. J^{π} : suggested by syst (1999Ma89). β_2 =0.25 3, assuming E2 excitation. For analysis of (p,p') data, $J\pi(g.s.)$ =5/2⁻ was assumed by

1999Ma89.

9 Be(36 S,2p γ) **2009Mo09**

2009Mo09: E=95 MeV 36 S beam was produced from the Tandem Accelerator at Maier-Leibnitz-Laboratorium. Targets of 610 μ g/cm 2 Be evaporated on 36 mg/cm 2 Au backing. Charged particles were detected by eleven telescopes and γ -rays by five Compton-suppressed Ge detectors. Measured E γ , I γ , (particle)- γ coincidence. Deduced levels.

⁴³Ar Levels

E(level)	J^{π}	Comments
0 201.27? <i>16</i>	5/2 ⁽⁻⁾ (7/2 ⁻)	J^{π} : from Adopted Levels. E(level): this level is uncertain since it has not been observed and confirmed in other experiments. J^{π} : from theoretical predictions.
		42

 γ (43Ar)

$$\frac{\mathrm{E}_{\gamma}}{201.27\ 16} \quad \frac{\mathrm{E}_{i}(\mathrm{level})}{201.27?} \quad \frac{\mathrm{J}_{i}^{\pi}}{(7/2^{-})} \quad \frac{\mathrm{E}_{f}}{0} \quad \frac{\mathrm{J}_{f}^{\pi}}{5/2^{(-)}}$$

⁹Be(³⁶S,2pγ) 2009Mo09

Level Scheme

⁴⁸Ca(α , ⁹Be) **1974Je01**

1974Je01: E=77.7 MeV α beam with intensity of $\approx 1~\mu\text{A}$ was produced from the Lawrence Berkeley Laboratory 88-in cyclotron. Target of a 96.25% isotopically enriched self-supporting ⁴⁸Ca. Recoiling particles were detected by two counter telescopes, each consisting of two transmission (Δ E-E) detector, 59 and 35 μ m thick, a 260 μ m E detector, and a 500 μ m reject detector. Measured α (E). Deduced levels.

⁴³Ar Levels

E(level)
0
1740 <i>50</i>
2550 <i>50</i>
3560 70
$4.74 \times 10^3 10$

208 Pb(40 Ar,X γ) **2011Sz02**

2011Sz02: E=255 MeV 40 Ar beam from an ECR ion source accelerated by the superconducting ALPI accelerator of the Laboratory Nazionali di Legnaro. Target=300 μ g/cm² 208 Pb. Projectile-like fragments identified by spectrometer Prisma by Δ E, E and time-of-flight measurements. γ -rays detected by the Clara array, consisting of twenty-four HPGe clover-type detectors. Measured E γ , I γ , fragment- γ coincidence. Deduced levels, J, π . Comparison with shell-model calculations. Also 2013Sz01.

⁴³Ar Levels

E(level)	Jπ†	Comments
0.0	$(5/2^{-})$	
0+x	$(7/2^{-})$	E(level): $x \approx 100 \text{ keV}$ predicted. Previous assignment of a 200-keV γ -ray from this level (2009Mo09) was not confirmed in the present work.
762.3 4	$(3/2^{-})$	•
1527.4+x 5	(11/2 ⁻)	J^{π} : assignment based on conclusion from 1999Ma89 that this is a negative parity state which is dominated by a configuration with the valence neutrons in the fp shell and new results from 2006Wi10.
1859+x 2	(9/2 ⁻)	J^{π} : assignment based on strong $2^{+}(^{42}Ar)\otimes \nu f_{7/2}$ component of the wave function for the state, similar to that in ^{41}Ar .

[†] From theoretical predications by shell-model calculations (2011Sz02).

$\gamma(^{43}Ar)$

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
762.3 4	64 21	762.3	$(3/2^{-})$	0.0	(5/2-)
1527.4 5	100 16	1527.4+x	$(11/2^{-})$	0+x	$(7/2^{-})$
1859 2	37 15	1859+x	$(9/2^{-})$	0+x	$(7/2^{-})$

²⁰⁸Pb(40 Ar,X γ) 2011Sz02

<u>Level Scheme</u>

Intensities: Relative I_{γ}

 $Q(\beta^-)=1833.4\ 5;\ S(n)=9624.7\ 4;\ S(p)=9442\ 6;\ Q(\alpha)=-9200.1\ 18$ 2012Wa38 $S(2n)=17158.5\ 4,\ S(2p)=23850\ 40\ (2012Wa38).$

Hyperfine studies, isotope shifts, moments, radius: 2014Pa45, 2014Kr04, 1982To02, 1982Du06.

Mass Measurements: 2007Ya08.

^{43}K Levels

Cross Reference (XREF) Flags

		B 9 C 4	³ Ar β^- decay Be(³⁶ S,np γ) ⁰ Ar(α ,p γ), ⁴¹ K(t,p)	F 44 Ca(d, 3 He)
E(level) [†]	$_{\mathrm{J}^{\pi}}^{\#}$	T _{1/2} ‡	XREF	Comments
0	3/2+	22.3 h <i>I</i>	ABCDEFGH	$^{\prime\prime}$ % $^{\prime\prime}$ =100 $^{\prime\prime}$ μ=+0.1633 8 (1982To02,2014StZZ) $^{\prime\prime}$ μ: ABLDS method (1982To02,1982Du06). Other: 1959Pe26. Evaluated rms charge radius=3.4556 fm 86 (2013An02). Adopted (by 1977En02) spectroscopic factor S=4.0 15 (proton pickup). $^{\prime\prime}$ δ $^{\prime\prime}$ δ $^{\prime\prime}$ δ $^{\prime\prime}$ 7 $^{\prime\prime}$ 8, $^{\prime\prime}$ 3K)=+0.049 fm $^{\prime\prime}$ 19(stat) 69(syst) (2014Kr04) for $^{\prime\prime}$ 6γ $^{\prime\prime}$ 9%, $^{\prime\prime}$ 4γ K)=+459.0 MHz 12 from literature. T _{1/2} : weighted average of 21.75 h 50 (1963Ho17), 22.1 h 1 (1972Em01), and 22.6 h 2 (1972Wa20). Other: 1955Ne01, 1969Ta07. J $^{\prime\prime}$ 5; spin from atomic-beam method; also from fitting of hyperfine structure (2014Pa45,2014Kr04); parity from L(t,p)=0; L(d, $^{\prime\prime}$ 3He)=L(t,α)=2. Configuration= $^{\prime\prime}$ 1d $^{-1}$ 1 (92%) (2014Pa45) from shell-model calculations.
561.20 ^{&} 5	1/2+	1.4 ps +17-7	ABCDEFGH	Adopted (by 1977En02) spectroscopic factor S=1.9 <i>5</i> (proton pickup). J ^π : L(d, ³ He)=0.
738.30 ^a 6	7/2-	200 ns 5	ABC EFGH	μ =+4.43 5 (1983Ra37,2014StZZ) XREF: F(748). μ : TDPAD method (1983Ra37). Others: 1976We23, 1976De41. J^{π} : L(d, 3 He)=L(t, α)=3; 5/2 ruled out by Δ J=2 to 3/2 ⁺ from $\gamma(\theta,\text{pol})$ in ($\alpha,\text{pγ}$). $T_{1/2}$: from pγ(t) in ($\alpha,\text{pγ}$).
975.32 6	3/2-	1.6 ps +14-6	ABCDEFGH	XREF: D(1007)H(984). J^{π} : L(d, 3 He)=1; L(t,p)=3.
1109.93 6	3/2+	1.0 ps 8	ABCDEFGH	XREF: F(1119)H(1121). J^{π} : L(d, ³ He)=L(t, α)=L(t,p)=2; 5/2 not allowed by RUL for γ to 1/2 ⁺ .
1206.91 <i>6</i>	$(5/2,7/2)^+$	>4.8 ps	ABCD G	J^{π} : L(t,p)=2 from 3/2 ⁺ ; γ from 7/2 ⁺ probably not E2 from RUL; L(t, α)=(2) supports 5/2 ⁺ .
1509.99 & 6	7/2+	5.7 ps <i>15</i>	ABCD	J^{π} : L(t,p)=2 from 3/2 ⁺ and ΔJ =2, E2 to 3/2 ⁺ from $\gamma(\theta,pol)$ in $(\alpha,p\gamma)$.
1549.96 9 1815 10 1849.57 ^a 8 1865.65 8 1956 10	3/2 ⁺ ,5/2 ⁺ @ (5/2 to 11/2) ⁺ 11/2 ⁻ (3/2,5/2 ⁺) (5/2 to 11/2) ⁺	0.09 ps 6 4.6 ps 12	A C FG D BC G A C F D	J^{π} : L(d, 3 He)=2. J^{π} : L(t,p)=4 from 3/2 ⁺ . J^{π} : stretched E2 to 7/2 ⁻ from $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$. J^{π} : γ to 1/2 ⁺ , log f t=7.7 from 5/2 ⁽⁻⁾ parent. J^{π} : L(t,p)=4 from 3/2 ⁺ .

⁴³K Levels (continued)

E(level) [†]	${ m J}^{\pi \#}$	T _{1/2} ‡	XREF	Comments
1986.57 8	(9/2)		ВС	XREF: C(?). J^{π} : $\Delta J=1$ stretched dipole to $7/2^+$.
2035 <i>10</i> 2048.88 <i>9</i> 2081.0 <i>4</i>	3/2 ⁺ (9/2) (5/2,7/2) ⁺	1.7 ps 6	D ABC B D	J^{π} : L(t,p)=0 from 3/2 ⁺ . J^{π} : γ to 7/2 ⁻ and RUL; ΔJ =1 stretched dipole to 7/2 ⁺ . J^{π} : L(t,p)=4 from 3/2 ⁺ ; γ to 3/2 ⁺ .
2177.68 11	5/2 ⁽⁺⁾	<0.07 ps	A C fg	J^{π} : γ decays to $3/2^-$, $3/2^+$, $7/2^-$ and $7/2^+$; $L(t,\alpha)=(2)$. But the parity is inconsistent with log $ft=5.8$ from $5/2^{(-)}$ parent.
2189.32 <i>14</i>	(3/2,5/2,7/2)		A fg	J ^{π} : γ to 3/2 ⁺ ; log ft =7.4 from 5/2 ⁽⁻⁾ parent. L(t, α)=(2) for a 2180 group gives (3/2 ⁺ ,5/2 ⁺) for one of the levels near this energy.
2218 10	$(3/2 \text{ to } 9/2)^-$	0.7	D	J^{π} : L(t,p)=3 from 3/2 ⁺ .
2344.96 <i>9</i> 2451 <i>10</i>	(3/2 ⁻) 1/2 ⁺	0.7 ps +14-4	A C FG	J^{π} : γ decays to 1/2 ⁺ and (5/2,7/2) ⁺ ; log ft =5.6 from 5/2 ⁽⁻⁾ parent. T=5/2 J^{π} : L(³ He,d)=L(t, α)=0.
2508.34 ^{&} 10	$(11/2^+)$	>5 ps	BCD	J^{π} : L(t,p)=(4) from 3/2+; ΔJ =2, Q γ to 7/2+; possible positive-parity yrast band member.
2548 10	$(1/2,3/2,5/2)^{-}$		D	J^{π} : L(t,p)=1 from 3/2 ⁺ .
2668 15	3/2+,5/2+@		FG	
2784 10	$(1/2 \text{ to } 7/2)^+$		D	J^{π} : L(t,p)=2 from 3/2 ⁺ .
2879 <i>10</i> 2981 <i>15</i>	$(1/2 \text{ to } 7/2)^+$		D G	J^{π} : L(t,p)=2 from 3/2 ⁺ .
2986.76 19	(13/2 ⁻)		В	J^{π} : probably high spin formed in coupling an $f_{7/2}$ proton with four $f_{7/2}$ neutrons in a 4^+ configuration.
3057.26 21	$(5/2)^+$		A fG	J^{π} : L(d, ³ He)=2; γ to $7/2^{-}$.
3084 15	$3/2^+, 5/2^+$		fG	J^{π} : L(d, 3 He)=2.
3114.69 ^a 10	15/2	3.5 ps 7	BC	J^{π} : stretched E2 to $11/2^-$ from $\gamma(\theta,pol)$ in $(\alpha,p\gamma)$.
3139.39 10	(13/2)		ВС	J^{π} : $\Delta J=1$ stretched dipole to (11/2).
3150 <i>18</i> 3190 <i>10</i>	$(1/2 \text{ to } 7/2)^+$		G D	J^{π} : L(t,p)=2 from 3/2 ⁺ .
	$3/2^+, 5/2^+$			J : L(t,p)=2 from 3/2.
3229 <i>15</i> 3264.34 <i>11</i>	$(3/2,5/2)^+$		FG A D	XREF: D(3254).
3204.34 11	(3/2,3/2)		и в	J^{π} : γ to $1/2^+$; $L(t,p)=2$ from $3/2^+$; $\log ft=5.9$ from $5/2^{(-)}$ parent.
3309.86 <i>13</i>	(3/2,5/2)+		A D	J^{π} : γ decays to $3/2^-$, $3/2^+$ and $(5/2,7/2)^+$; $L(t,p)=2$ from $3/2^+$; $\log ft=5.1$ from $5/2^{(-)}$ parent is inconsistent with positive parity.
3342 15	$3/2^+, 5/2^+$ @		FG	
3393.14 20	$(3/2 \text{ to } 7/2)^+$		A D	J^{π} : L(t,p)=2 from 3/2 ⁺ ; log ft=6.2 from 5/2 ⁽⁻⁾ parent.
3455.60 12	$(3/2^{-})$		A G	J^{π} : γ to $1/2^{+}$; $\log ft = 5.1$ from $5/2^{(-)}$ parent.
3580 <i>30</i>			G	
3591.28 ^{&} 10	(15/2+)		В	J^{π} : $\Delta J=2$ stretched quadrupole to $(11/2^+)$ from DCO ratios possible positive-parity yrast band member in.
3608.46 <i>15</i>	$(5/2^-,7/2^-)$		A	J^{π} : log $ft=5.1$ from $5/2^{(-)}$ parent; γ transitions to $7/2^{-}$ and $7/2^{+}$.
3646.1 <i>4</i> 3714.16 22	$(3/2,5/2,7/2^+)$ $(3/2^+,5/2^+)$		A G A FG	J^{π} : γ transitions to $3/2^+$ and $(5/2,7/2)^+$; log $ft=5.9$ from $5/2^{(-)}$. XREF: F(3730).
3/14.10 22	(3/2 ,3/2)		A FG	J ^{π} : γ transitions to 3/2 ⁺ , 3/2 ⁻ and (5/2,7/2) ⁺ ; L(d, He)=(2); log ft =5.6 from 5/2 ⁽⁻⁾ is inconsistent with positive parity.
3837 15			G	
3880 15	$(3/2^+,5/2^+)$		FG	J^{π} : L(d, ${}^{3}He$)=(2).
3970? 30			G	
3985.28 <i>25</i>	2/2+ 5/2+ @		В	
4018 <i>15</i> 4070 <i>30</i>	$3/2^+, 5/2^+$ @		FG	
4070 30 4124 <i>15</i>	3/2+,5/2+@		G	J^{π} : L(d, ${}^{3}He$)=2; but L(t, α)=(0) is inconsistent.
4124 15 4177 15	3/2",3/2"		FG G	J. L(u, rie)=2, but L(t, α)=(0) is inconsistent.
4234 15			G	

⁴³K Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
4290 <i>30</i> 4410 <i>40</i>		G G	
4472 <i>15</i> 4540 <i>40</i>	3/2+,5/2+@	FG G	
4540.4 <i>3</i> 4680? <i>40</i>		B G	
4794 <i>15</i> 4860? <i>40</i> 4920? <i>40</i>	3/2+,5/2+@	FG G G	
4930.3 3	(19/2 ⁻)	В	J^{π} : comparison with negative-parity levels of ⁴⁵ Sc suggests that the 1816 keV transition corresponds to the decay of a 19/2 ⁻ level to the 15/2 ⁻ level at 3116 keV (1998Mo16).
5030 <i>40</i> 5150? <i>40</i>		G G	
5194 <i>30</i> 5260 <i>40</i>	3/2+,5/2+@	FG G	
5380 <i>40</i> 5610 <i>30</i>	3/2+,5/2+@	G F	
5900 <i>30</i> 7450 <i>30</i>	$3/2^+, 5/2^+$ (3/2+,5/2+)	F F	J^{π} : L(d, ³ He)=(2).

[†] From least-squares fit to E γ data for levels populated in γ -ray studies. For others, weighted averages of available values are taken.

γ (43K

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.§	δ^{\S}	Comments
561.20	1/2+	561.10 5	100	0	3/2+			
738.30	7/2-	738.23 6	100	0	3/2+	M2+E3	-0.13 2	B(M2)(W.u.)=0.0567 15; B(E3)(W.u.)=7.7 24
975.32	3/2-	414.0 <i>I</i>	4.3 <i>3</i>	561.20	1/2+	[E1]		B(E1)(W.u.)=0.00020 +8-18
		975.3 <i>1</i>	100.0 <i>3</i>	0	3/2+	[E1]		B(E1)(W.u.)=0.00036 +14-32
1109.93	3/2+	548.62 <i>6</i>	43 5	561.20	1/2+			
		1110.1 <i>I</i>	100 5	0	3/2+			
1206.91	$(5/2,7/2)^+$	1206.95 9	100	0	3/2+			
1509.99	7/2+	303.09 <i>5</i>	9 2	1206.91	$(5/2,7/2)^+$			
		1510.05 7	100 2	0	3/2+	E2		B(E2)(W.u.)=1.3 4
1549.96	$3/2^+, 5/2^+$	439.3 <i>3</i>	12 2	1109.93	3/2+			
		1550.0 <i>I</i>	100 2	0	3/2+			
1849.57	$11/2^{-}$	1111.14 6	100	738.30	$7/2^{-}$	E2		B(E2)(W.u.)=8.1 22
1865.65	$(3/2,5/2^+)$	755.0 <i>3</i>	1.5 5	1109.93	3/2+			
		890.4 <i>1</i>	100 <i>3</i>	975.32	3/2-			
		1304.3 7	2.6 5	561.20	1/2+			
		1866.1 2	59 <i>3</i>	0	3/2+			
1986.57	(9/2)	476.58 6	100	1509.99	7/2+	D		
2048.88	(9/2)	1310.58 7	100	738.30	$7/2^{-}$	D		

[‡] From DSAM in $(\alpha,p\gamma)$, $(t,p\gamma)$, unless otherwise stated.

[#] When L-transfer arguments are used, the target is $J\pi=0^+$, except for $^{41}K(t,p)$, where target $J\pi=3/2^+$. Arguments based on log ft values are considered as tentative since the decay scheme of ^{43}Ar decay is not considered as well established.

[@] L(d, ³He) and/or L(t, α)=2.

[&]amp; Band(A): Possible positive-parity yrast band. Band from 1992Ko15.

^a Band(B): Possible negative-parity yrast band. Band from 1992Ko15.

$\gamma(^{43}\text{K})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}^{π}_f	Mult.§	δ^{\S}	Comments
2081.0	(5/2,7/2)+	873.9 4	100 24		(5/2,7/2)+			
2177.68	5/2 ⁽⁺⁾	2081.3 <i>7</i> 667.5 <i>3</i>	66 22 0.53 <i>13</i>	0 1509.99	3/2 ⁺ 7/2 ⁺			
		1202.4 3	30 5	975.32	3/2-			
		1439.8 2	100 5	738.30				
2100.22	(2/2 5/2 7/2)	2176.2 7	0.79 13	0	3/2+			
2189.32	(3/2,5/2,7/2)	639.7 <i>3</i> 1080.0 <i>3</i>	13.5 <i>14</i> 22 <i>4</i>	1109.93	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺			
		2189.2 3	100 4	0	3/2+			
2344.96	$(3/2^{-})$	167.1 2	1.13 13	2177.68				
	(-1)	479.2 2	53 <i>3</i>		$(3/2,5/2^+)$			
		1138.1 2	3.8 8		$(5/2,7/2)^+$			
		1235.7 3	2.8 5	1109.93				
		1369.9 2	90 5	975.32				
		1783.7 2 2344.5 2	5.6 5 100 5	561.20 0	3/2 ⁺			
2508.34	$(11/2^+)$	460.5 6	100 3	2048.88		D+Q	-0.2	
2000.01	(11/2)	998.81 <i>13</i>	69 4	1509.99		Q	0.2	
2986.76	$(13/2^{-})$	478.39 <i>16</i>	100	2508.34				
3057.26	$(5/2)^+$	2318.9 2	100	738.30				
3114.69	15/2-	1265.09 7	100	1849.57		E2		B(E2)(W.u.)=5.6 12
3139.39	(13/2)	630.86 <i>12</i> 1289.62 <i>8</i>	13.4 <i>18</i> 100 <i>12</i>	2508.34 1849.57	` ' '	D(+Q) D		
3264.34	$(3/2,5/2)^+$	1398.7 <i>I</i>	63 4		$(3/2,5/2^+)$	D		
	(5/2,5/2)	2287.6 5	33 6	975.32				E_{γ} : poor fit; $\Delta(E\gamma)$ was increased
					•			from 0.2 to 0.5 by evaluators.
	(0.10 = 10)	3264.3 2	100 6	0	3/2+			
3309.86	$(3/2,5/2)^+$	1121.0 3	4.0 18		(3/2,5/2,7/2)			
		1132.6 2 1443	15 <i>3</i> 60 <i>12</i>	2177.68				
		2102.3 5	12 3		$(3/2,5/2^+)$ $(5/2,7/2)^+$			
		2333.9 2	100 12	975.32				
		3309.9 <i>3</i>	9.2 12	0	3/2+			
3393.14	$(3/2 \text{ to } 7/2)^+$	3393.0 2	100	0	3/2+			
3455.60	$(3/2^{-})$	1277.9 5	3.8 6	2177.68				
		1590.4 2	16.2 16		$(3/2,5/2^+)$			
		1905.9 <i>6</i> 2345	6.0 <i>11</i> 1.9 <i>6</i>	1109.93	3/2 ⁺ ,5/2 ⁺			
		2479.9 2	100 3	975.32				
		2894.2 2	27 2	561.20				
		3455.1 4	3.0 17	0	3/2+			
3591.28	$(15/2^+)$	451.82 <i>4</i>	72.6 19	3139.39		D+Q	-0.2	
		476.4 3	11 5	3114.69		D		
3608.46	$(5/2^-,7/2^-)$	1083.15 <i>7</i> 1419.3 <i>2</i>	100 <i>11</i> 100 <i>9</i>	2508.34	(3/2,5/2,7/2)	Q		
3000.40	(3/2 , 1/2)	1559.9 ^{&} 2	147 22	2048.88				
		2057.9 3	83 9		3/2+,5/2+			
		2097.8 5	76 15	1509.99				
		2401.8 <i>3</i>	22 5	1206.91	$(5/2,7/2)^+$			
26155	(2.12. 5.15. = 12.1.)	2870.1 3	58 7	738.30	•			
3646.1	$(3/2,5/2,7/2^+)$	2438.9 5	100 5		$(5/2,7/2)^+$			
		2535.7 <i>7</i> 3646.4 <i>5</i>	18 <i>5</i> 7.3 <i>16</i>	1109.93 0	3/2 ⁺			
3714.16	$(3/2^+, 5/2^+)$	1369	4.3 25	2344.96				
	\(\cdot 1 \) \(\frac{1}{2} - 1 = \cdot \)				X1 /			

$\gamma(^{43}\text{K})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	$\underline{\hspace{1cm}}^{\pi}_f$
3714.16	$(3/2^+,5/2^+)$	2506.7 15	10 3	1206.91	$(5/2,7/2)^+$
		2603.4 <i>4</i>	10 4	1109.93	$3/2^{+}$
		2739.5 7	22 4	975.32	3/2-
		3714.3 <i>3</i>	100 6	0	$3/2^{+}$
3985.28		1477.0 <i>3</i>	100 20	2508.34	$(11/2^+)$
		1936.4 5	64 17	2048.88	(9/2)
4540.4		555.2 <i>3</i>	100 22	3985.28	
		1401.0 5	86 22	3139.39	(13/2)
		1553.1 6	93 22	2986.76	$(13/2^{-})$
4930.3	$(19/2^{-})$	1815.61 26	100 15	3114.69	15/2-

[†] From β^- decay, $(\alpha,p\gamma)$, $(t,p\gamma)$ and $(^{36}S,np\gamma)$. [‡] Primarily from β^- decay. Weighted averages are taken when values with uncertainties are also available from $^9Be(^{36}S,np\gamma)$, $(\alpha,p\gamma)$, $(t,p\gamma)$.

[§] From (α,pγ),(t,pγ) and (³⁶S,npγ). & Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

$$^{43}_{19}\mathrm{K}_{24}$$

⁴³Ar β⁻ decay (5.37 min) 1978Hu10

Parent: ⁴³Ar: E=0; $J^{\pi}=5/2^{(-)}$; $T_{1/2}=5.37 \text{ min } 6$; $Q(\beta^{-})=4566 5$; $\%\beta^{-}$ decay=100.0

1978Hu10: 43 Ar isotopes were produced in the spallation reaction 50 V(p,6pxn) with the proton beam from the 600 MeV external beam of the CERN synchrocyclotron bombarding a vanadium carbide target. Argon nuclides were separated in the ISOLDE on-line mass separator. γ -rays were detected in Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$. Deduced levels, branching ratios. See also 1970Hu11.

Others:

1969La16: Εγ, T_{1/2}.

1969Ha03: T_{1/2}.

All data from 1978Hu10 unless otherwise noted.

The decay scheme is considered incomplete in view of no uncertainties available on γ -ray intensities. Thus all β feedings and log ft values are considered as approximate. In Adopted dataset, log ft have been used but the J π based on these are considered as tentative.

⁴³K Levels

No evidence was found by 1978Hu10 for a 2892.7 level proposed by 1970Hu11.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
0	3/2+	1549.90 9	3/2+,5/2+	3264.18 <i>10</i>	(3/2,5/2)+
561.32 7	1/2+	1865.73 <i>7</i>	$(3/2,5/2^+)$	3310.11 9	$(3/2,5/2)^{+}$ @
738.03 8	7/2-	2048.5? [#] 1	(9/2)	3393.14 20	$(3/2,5/2,7/2)^+$
975.31 6	$3/2^{-}$	2177.72 8	5/2 ⁽⁺⁾	3455.49 9	$(3/2^{-})$
1109.96 7	3/2+	2189.32 <i>11</i>	(3/2,5/2,7/2)	3608.50 <i>12</i>	$(5/2^-,7/2^-)$
1206.94 10	$(5/2,7/2)^+$	2345.02 7	$(3/2^{-})$	3646.1 <i>4</i>	$(3/2,5/2,7/2^+)$
1509.85 9	7/2+	3057.00 22	$(5/2)^+$	3714.29 <i>17</i>	$(3/2^+,5/2^+)$

[†] From least-squares fit to E γ data. Since the quoted Δ (E γ) result in a poor fit, these were increased to 0.2 keV for strong γ -rays and 0.3 keV for weak γ -rays (I γ <1%) in the least-squares adjustment.

β^- radiations

E(decay)	E(level)	$I\beta^{-\ddagger}$	Log ft	E(decay)	E(level)	$I\beta^{-\ddagger}$	Log ft	E(decay)	E(level)	$I\beta^{-\ddagger}$	Log ft
$(852\ 5)$	3714.29	0.47	5.5	(1509 5)	3057.00	1.1	6.1	(3359 5)	1206.94	1.5	7.4
(920 5)	3646.1	0.28	5.8	$(2221\ 5)$	2345.02	19	5.6	(3456 5)	1109.96	0.9	7.7
(958 5)	3608.50	1.5	5.2	(2377 5)	2189.32	0.39	7.4	(3591 5)	975.31	16	6.5
(11115)	3455.49	3.5	5.1	(2388 5)	2177.72	16	5.8	(3828 5)	738.03	1.4	7.7
(1173 5)	3393.14	0.38	6.1	(2700 5)	1865.73	0.32	7.7	(4005 [#] 5)	561.32	0.1	9.0
$(1256\ 5)$	3310.11	5.5	5.1	(3016 5)	1549.90	0.29	7.9	(4566 5)	0	30 [†]	6.7
(1302 5)	3264.18	1.0	5.9	(3056 5)	1509.85	0.37	7.9				

[†] Estimated (by 1978Hu10) from a comparison of the observed ⁴³Ar-⁴³K (parent-daughter) activities with those expected from series decay.

 $^{^{43}}$ Ar-J^{π},T_{1/2}: From Adopted Levels of 43 Ar.

⁴³Ar-Q(β^-): From 2012Wa38.

[‡] From Adopted Levels.

[#] Level proposed (evaluators) based on $(\alpha, p\gamma)$ and 1560-1311 coin in 1978Hu10. But the adopted Jπ=(9/2) is inconsistent with the log ft=7.8 from $5/2^{(-)}$ parent.

[@] $\log ft = 5.1$ allowed decay from $5/2^{(-)}$ parent is inconsistent with parity=+.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

⁴³Ar β⁻ decay (5.37 min) 1978Hu10 (continued)

γ (⁴³K)

Iγ normalization: Σ (Iγ to g.s.)=70 7, based on I β (g.s.)=30 7 (1978Hu10).

Εγ	I_{γ}^{d}	E_i (level)	\mathtt{J}_{i}^{π}	\mathbb{E}_f	$\underline{\hspace{1cm}}^{\pi}_f$	Mult.	δ
167.1 <i>I</i> x231.4 <i>I</i>	2.5 2.8	2345.02	(3/2 ⁻)	2177.72	5/2 ⁽⁺⁾		
^x 236.2 <i>1</i>	3.4						
302.9 2	1.9	1509.85	7/2+	1206.94	$(5/2,7/2)^+$		
413.9 <i>1</i>	42.9	975.31	3/2-	561.32			
439.3 2	2.8	1549.90	3/2+,5/2+	1109.96			
479.2 1	116.0	2345.02	$(3/2^{-})$		$(3/2,5/2^+)$		
548.5 <i>1</i>	13.4	1109.96	3/2+	561.32			
561.1 <i>I</i>	94.0	561.32	1/2+	0	3/2+		
$x587.0^{\dagger} 1$	9.0						
639.7 <i>3</i>	2.7	2189.32	(3/2,5/2,7/2)	1549.90	$3/2^+,5/2^+$		
667.5 2	1.9	2177.72	$5/2^{(+)}$	1509.85	7/2+		
738.1 <i>1</i>	454.8	738.03	7/2-	0	3/2+	M2+E3 [§]	$-0.13^{\S} 2$
755.0 <i>3</i>	1.8	1865.73	$(3/2,5/2^+)$	1109.96			
^x 812.4 4	1.3						
^x 878.2 8	0.9						
890.4 1	118.3	1865.73	$(3/2,5/2^+)$	975.31	3/2-		
^x 910.5 9	1.0						
^x 922.5 5	1.7						
974.9 <mark>&</mark> 1	1000	975.31	3/2-	0	3/2+		
1080.0 [#] 2	4.6	2189.32	(3/2,5/2,7/2)	1109.96	3/2+		
1110.1 <i>I</i>	31.2	1109.96	3/2+	0	3/2+		
1121.0 2	3.2	3310.11	$(3/2,5/2)^+$		(3/2,5/2,7/2)		
1132.6 <i>I</i>	12.2	3310.11	$(3/2,5/2)^+$	2177.72			
1138.1 <i>I</i>	8.7	2345.02	$(3/2^{-})$	1206.94	$(5/2,7/2)^+$		
^x 1146.4 2	9.1						
^x 1184.3 3	5.1	2155 52	= (a(+)	077.01	2/2-		
1202.4 3	98.3	2177.72	5/2 ⁽⁺⁾	975.31			
1207.1 <i>3</i> 1235.7 ^{<i>a</i>} 2	75.8 6.3	1206.94 2345.02	$(5/2,7/2)^+$	0 1109.96	3/2+		
x _{1255.6} 3	3.2	2343.02	$(3/2^{-})$	1109.90	3/2		
1277.9 5	2.5	3455.49	$(3/2^{-})$	2177.72	5/2(+)		
1304.3 7	3.1	1865.73	$(3/2,5/2^+)$	561.32			
1311.4 ^e 1	22.7	2048.5?	(9/2)	738.03			
1369	0.4	3714.29	$(3/2^+,5/2^+)$	2345.02			
1369.9 <i>1</i>	200.0	2345.02	$(3/2^{-})$	975.31			
1398.7 <i>1</i>	9.5	3264.18	$(3/2,5/2)^+$		$(3/2,5/2^+)$		
1419.3 <i>1</i>	12.9	3608.50	$(5/2^-,7/2^-)$		(3/2,5/2,7/2)		
1439.8 <i>1</i>	369.0	2177.72	$5/2^{(+)}$	738.03			
1443	48.0	3310.11	$(3/2,5/2)^+$	1865.73	$(3/2,5/2^+)$		
^x 1487.8 5	2.7						
1509.7 <i>1</i>	20.7	1509.85	7/2+	0	3/2+		
1550.0 <i>I</i>	22.9	1549.90	3/2+,5/2+	0	3/2+		
1559.9 ^{ce} 1	15.9	3608.50	$(5/2^-,7/2^-)$	2048.5?			
1590.4 2	10.6	3455.49	$(3/2^{-})$	1865.73	$(3/2,5/2^+)$		
^x 1605.7 8 ^x 1621.7 5	2.6 5.5						
^x 1021.7 3 ^x 1713.3 6	3.3						
x1724.6 2	9.3						
^x 1750.0 5	2.0						

43 Ar β^- decay (5.37 min) 1978Hu10 (continued)

$\gamma(^{43}K)$ (continued)

E_{γ}	$I_{\gamma}^{ $	$E_i(level)$	\mathtt{J}_i^{π}	E_f	\mathbf{J}^{π}_f
^x 1758.2 [‡] 2	10.2			·	
1783.7 2	12.6	2345.02	$(3/2^{-})$	561.32	1/2+
^x 1849.6 8	2.5		(-1)		,
1866.1 [@] <i>1</i>	70.4	1865.73	$(3/2,5/2^+)$	0	3/2+
^x 1889.2 7	3.0	1000170	(5/2,5/2)	Ü	S, Z
1905.9 6	3.9	3455.49	$(3/2^{-})$	1549.90	$3/2^+, 5/2^+$
^x 1950.8 3	10.0		· /		, , ,
2057.9 <i>3</i>	10.7	3608.50	$(5/2^-,7/2^-)$	1549.90	$3/2^+,5/2^+$
2097.8 5	9.8	3608.50	$(5/2^-,7/2^-)$	1509.85	7/2+
2102.3 5	9.8	3310.11	$(3/2,5/2)^+$	1206.94	$(5/2,7/2)^+$
2176.2 7	2.5	2177.72	$5/2^{(+)}$	0	$3/2^{+}$
2189.2 <i>3</i>	20.4	2189.32	(3/2,5/2,7/2)	0	$3/2^{+}$
2287.6 ^b 2	4.7	3264.18	$(3/2,5/2)^+$	975.31	3/2-
2318.9 2	31.0	3057.00	$(5/2)^+$	738.03	7/2-
2333.9 2	81.9	3310.11	$(3/2,5/2)^+$	975.31	3/2-
2344.5 2	217.3	2345.02	$(3/2^{-})$	0	3/2+
2345	1.2	3455.49	$(3/2^{-})$	1109.96	3/2+
2401.8 <i>3</i>	2.8	3608.50	$(5/2^-,7/2^-)$	1206.94	$(5/2,7/2)^+$
2438.9 5	6.4	3646.1	$(3/2,5/2,7/2^+)$	1206.94	$(5/2,7/2)^+$
2479.9 <i>1</i>	65.5	3455.49	$(3/2^{-})$	975.31	$3/2^{-}$
2506.7 <i>15</i>	1.0	3714.29	$(3/2^+,5/2^+)$	1206.94	$(5/2,7/2)^+$
2535.7 7	1.2	3646.1	$(3/2,5/2,7/2^+)$	1109.96	$3/2^{+}$
2603.4 <i>4</i>	0.9	3714.29	$(3/2^+,5/2^+)$	1109.96	3/2+
2701.9 5	1.3	3264.18	$(3/2,5/2)^+$	561.32	1/2+
2739.5 7	2.1	3714.29	$(3/2^+,5/2^+)$	975.31	3/2-
2870.1 2	7.5	3608.50	$(5/2^-,7/2^-)$	738.03	7/2-
2894.2 2	17.9	3455.49	$(3/2^{-})$	561.32	1/2+
^x 2976.2 3	2.8	22112	(2 (2 7 (2))		0.10.1
3264.3 2	14.7	3264.18	$(3/2,5/2)^+$	0	3/2+
3309.9 2	7.4	3310.11	$(3/2,5/2)^+$	0	3/2+
x3380.6 7	0.8	2202.14	(2/2 5/2 5/2) +	0	2/24
3393.0 2	11.2	3393.14	$(3/2,5/2,7/2)^+$	0	3/2+
3455.1 4	2.0	3455.49	$(3/2^{-})$	0	3/2+
3646.4 5	0.5	3646.1	$(3/2,5/2,7/2^+)$	0	3/2+
3714.3 2	9.5	3714.29	$(3/2^+,5/2^+)$	0	3/2+

[†] In coin with 1758 γ .

[‡] In coin with 587γ .

[§] From Adopted Gammas.

[&]amp; Level-energy difference=975.4 1.

[@] Level-energy difference=1865.6 1.

[#] Level-energy difference=1079.3 2.

^a Level-energy difference=1235.0 2.

^b Poor fit. Level-energy difference=2288.6 2.

^c Placement (evaluator) based on 1560-1310 $\gamma\gamma$ coin.

^d For absolute intensity per 100 decays, multiply by 0.034 4.

^e Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme.

⁹Be(³⁶S,npγ) 1992Ko15,1998Mo16

1992Ko15: E=100 MeV 36 S beam was produced from the Argonne Tandem Linac Accelerator System (ATLAS). Target of a 2.34 mg/cm² thick rolled 9 Be foil evaporated onto a 10 mg/cm² Pb backing. Charged particles were detected by two Si surface-barrier detector telescopes at forward angles and γ -rays were detected by eight Compton-suppressed Ge detectors (CSGs). Measured E γ , I γ , $\gamma\gamma(\theta)$, DCO. Deduced levels, J, π , branching ratios.

1998Mo16: E=90-110 MeV 36 S beam was produced from the TANDEM accelerator of the University and Technical University Munich and impinged on beryllium targets. Recoils were identified by the Munich high-frequency recoil spectrometer and detected in ionization chamber. γ -rays were detected by an annular Compton-suppressed HPGe detector positioned at 180° relative to the beam direction, FWHM=2.8 keV at 1.3 MeV. Measured E γ , I γ , $\gamma\gamma(\theta)$, p γ -coin, (recoil) γ -coin. Deduced levels, branching ratios. Comparisons with shell-model calculations.

⁴³K Levels

E(level)	$J^{\pi \dagger}$	E(level)	J^{π} †	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$
0	3/2+	1206.97 7	$(5/2,7/2)^+$	2081.0 4		3591.90 ^a 8	$(15/2^+)^{\#}$
561.13 ^a 4		1510.07 ^a 7		2508.84 ^a 7		3985.69 24	
738.28 ^b 5	$7/2^{-}$	1850.43 ^b 7	$11/2^{-\ddagger}$	2987.26 <i>17</i>	$(13/2^{-})^{@}$	4540.9 <i>3</i>	
975.09 <i>4</i>	3/2-	1986.66 <i>10</i>	(9/2) [#]	3115.53 ^b 10	$15/2^{-\ddagger}$	4931.2 <i>3</i>	(19/2 ⁻)&
1109.83 6	$3/2^{+}$	2048.89 7	(9/2) [#]	3140.04 8	(13/2) [#]		

[†] From Adopted Levels unless otherwise noted.

$\gamma(^{43}K)$

Unplaced γ -rays from 1998Mo16.

DCO ratios measured as I(90°)/I(147°), statistical uncertainties only (1992Ko15). 1.2-1.4 for stretched dipole and 0.8-0.9 for stretched quadrupole.

$\mathbb{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	$\underline{\hspace{0.5cm}} \hspace{0.5cm} \mathbf{J}^{\pi}_{f}$	Mult.@	$\delta^{@}$	Comments
303.10 5	4.42 14	1510.07	7/2+	1206.97	$(5/2,7/2)^+$		<u> </u>	
413.97 [§] 5	0.58 [§] 7	975.09	3/2-	561.13	1/2+			
451.82 <i>4</i>	7.7 2	3591.90	(15/2+)	3140.04	(13/2)	D+Q	-0.2	R _{DCO} =0.89 <i>5</i> gated on 3140 to 1850 transition; 1.06 <i>12</i> gated on 3140 to 2509 transition.
459.93 <i>4</i>	21.2 6	2508.84	(11/2+)	2048.89	(9/2)	D+Q	-0.2	R _{DCO} =0.92 <i>3</i> gated on 2049 to 738 transition.
476.4 [§] 3	1.2 [§] 5	3591.90	$(15/2^+)$	3115.53	15/2-	D		R_{DCO} =0.77 10 gated on 3116 to 1850 transition.
476.58 6	5.2 <i>3</i>	1986.66	(9/2)	1510.07		D		R _{DCO} =1.31 9 gated on 1510 g.s. transition.
478.39 16	2.36 10	2987.26	(13/2 ⁻)	2508.84	$(11/2^+)$			R _{DCO} =1.04 <i>11</i> gated on 2509 to 1510 transition; 0.90 <i>3</i> gated on 2509 to 2049 transition.
^x 540.7 4	4.6 13							
^x 543.1 5	4.0 13							
548.65 [§] 5	6.8 [§] 3	1109.83	3/2+	561.13	1/2+			

[‡] From $\Delta J=2$ transitions indicated by R_{DCO} (1992Ko15).

[#] From $\Delta J=1$ transitions indicated by R_{DCO} (1992Ko15).

[@] Probably high spin formed in coupling an $f_{7/2}$ proton with four $f_{7/2}$ neutrons in a 4⁺ configuration (1992Ko15).

[&]amp; Comparison with negative-parity levels of ⁴⁵Sc suggests that the 1816 keV transition corresponds to the decay of a 19/2⁻ level to the 15/2⁻ level at 3116 keV (1998Mo16).

^a Band(A): Possible positive-parity yrast band (1992Ko15).

^b Band(B): Possible negative-parity yrast band (1992Ko15).

⁹Be(³⁶S,npγ) 1992Ko15,1998Mo16 (continued)

$\gamma(^{43}\text{K})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.@	Comments
555.2 ^{&} 3	1.4 & 3	4540.9		3985.69			
561.10 5	7.7 6	561.13	1/2+	0	3/2+		
630.86 [§] 12	1.5 [§] 2	3140.04	(13/2)	2508.84	(11/2+)	D(+Q)	R _{DCO} =1.42 22 gated on 2509 to 1510 transition; 1.32 3 gated on 2509 to 2049 transition.
738.26 5	>18	738.28	7/2-	0	3/2+		I_{γ} : the decaying state is a long-lived state and most γ transitions from this state were outside the coincidence window (1992Ko15). It is greater than 100 from intensity balance.
873.9 <mark>&</mark> 4	4.1 <mark>&</mark> <i>10</i>	2081.0	$(5/2,7/2)^+$	1206.97	$(5/2,7/2)^+$		
975.06 <i>5</i>	9.3 <i>3</i>	975.09	3/2-	0	3/2+		
998.77 8	14.7 8	2508.84	$(11/2^+)$	1510.07	,	Q	R _{DCO} =0.72 5 gated on 1510 g.s. transition.
1083.15 7	10.6 12	3591.90	$(15/2^+)$	2508.84	$(11/2^+)$	Q	R _{DCO} =0.64 7 gated on 2509 to 1510 transition.
1110.0 <i>1</i>	11.2 22	1109.83	3/2+	0	3/2+		
1112.15 6	100 <i>3</i>	1850.43	11/2	738.28	,	Q	R _{DCO} =0.77 3 gated on 738 g.s. transition.
1206.94 9	13.9 4	1206.97	$(5/2,7/2)^+$	0	3/2+		
1265.09 7	34.4 11	3115.53	15/2	1850.43	11/2-	Q	R _{DCO} =0.93 4 gated on 1850 to 738 transition.
1289.62 8	11.2 13	3140.04	(13/2)	1850.43		D	R_{DCO} =1.5 <i>I</i> gated on 1850 to 738 transition.
1310.56 7	25.5 7	2048.89	(9/2)	738.28	7/2-	D	R _{DCO} =1.22 10 gated on 738 g.s. transition.
1401.0 <mark>&</mark> 5	1.2 ^{&} 3	4540.9		3140.04	(13/2)		
1477.0 <mark>&</mark> <i>3</i>	5.9 <mark>&</mark> 12	3985.69		2508.84	$(11/2^+)$		
1510.18 <i>18</i>	38.1 12	1510.07	7/2+	0	3/2+		
1553.1 <mark>&</mark> 6	1.3 <mark>&</mark> 3	4540.9		2987.26	$(13/2^{-})$		
^x 1798.5 4	4.5 12				(- / /		
^x 1810.0 6	4.5 13						
1815.61 <mark>&</mark> 26	18.3 <mark>&</mark> 27	4931.2	$(19/2^{-})$	3115.53	15/2-		
1936.4 <mark>&</mark> 5	3.8 & 10	3985.69	` ' '	2048.89			
2081.3 ^{&} 7	2.7 ^{&} 9	2081.0	$(5/2,7/2)^+$	0	3/2+		
^x 2124.9 4	7.0 14	2001.0	(3/2,1/2)	U	5/2		
^x 2219.8 6	4.0 10						
^x 2442.3 6	2.9 10						
^x 2521.6 5	4.3 11						

[†] Weighted average from 1992Ko15 and 1998Mo16 unless otherwise noted. ‡ Weighted or unweighted average from 1992Ko15 and 1998Mo16 unless otherwise noted.

[§] From 1992Ko15 only.

[&]amp; From 1998Mo16 only.

[@] From 1992Ko15. x γ ray not placed in level scheme.

⁹Be(³⁶S,npγ) 1992Ko15,1998Mo16

Band(A): Possible positive-parity yrast band (1992Ko15)

<u>1/2</u>⁺ <u>561.13</u>

 $^{43}_{19}\mathrm{K}_{24}$

40 Ar(α ,p γ), 41 K(t,p γ) 1979Be28,1978MeZX

Includes ${}^{4}\text{He}({}^{40}\text{Ar},\text{p}\gamma)$ from 1983Ra37.

1979Be28: E=7-17 MeV α beam. Target of 2-5 mg/cm² solid natural Ar at 12-17 K on a 250 μ m thick Ta backing. Compton-suppressed Ge(Li) detectors for detecting γ -rays. Measured E γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(\text{lin pol})$. Deduced levels, J, π , T_{1/2} from DSAM

1978MeZX: E=11.7 MeV α beam. Measured E γ , I γ , p γ (t). Deduced levels, T_{1/2} by DSAM. Others:

1984Ra23 and 1983Ra37: ${}^4\text{He}({}^{40}\text{Ar},p\gamma)$ E=185, 190 MeV ${}^{40}\text{Ar}$ beam was produced the VICKSI accelerator. Helium gas target. NaI detector. Measured $\gamma(\theta,H,t)$. Deduced g factor and $T_{1/2}$, hyperfine interactions.

1980OIZX: E=116-11.9 MeV α beam. Measured $\gamma(\theta)$, $\gamma\gamma$, $T_{1/2}$ by DSAM.

1977Po07: E=10.4 MeV α beam. Argon gas target. Protons were detected by a surface-barrier detector and γ -rays were detected by a 5 cm by 5cm NaI(Tl). Measured γ (t). Deduced $T_{1/2}$.

1976We23: E=15 MeV α beam was produced from the Triangle Universities Nuclear Laboratory (TUNL) FN tandem accelerator facility. Argon gas target. Two 7.6 by 7.6 cm NaI detectors for detecting γ -rays. Measured $\gamma\gamma(\theta,H,t)$. Deduced g factor, $T_{1/2}$.

1976De41: E=12.7 MeV. Measured py(θ ,H,t). Deduced g factor, $T_{1/2}$.

1975Bo30: E=11.7 MeV α beam. Pure natural argon gas target. Two surface barrier detectors for detecting scattered α -particles; a 84 cm³ Ge(Li) detector for detecting γ -rays. Measured $\gamma(\theta)$, p- $\gamma(t)$, T_{1/2}(level).

1964La14: $E\approx20$ MeV α beam was produced from the Copenhagen cyclotron. Pure argon gas target. Protons were detected in a ionization chamber or a proportional counter; γ -rays were detected by a NaI crystal. Measured $\sigma(E_p)$, $p\gamma$.

⁴³K Levels

E(level) [†]	${\sf J}^{\pi \#}$	T _{1/2}	Comments
0 561.7 [@] 4	3/2 ⁺ 1/2 ⁺	1.4 [@] ps +17-7	
738.2 5	7/2-	200 ns 5	T _{1/2} : from pγ(t). Weighted average of 202 ns 4 (1983Ra37,1984Ra23), 184 ns 10 (1977Po07), 165 ns 17 (1976De41), 205 ns 10 (1975Bo30,1978MeZX).
975.3 [@] 4	3/2-	1.6 [@] ps +14-6	
1110.7 [@] 4	3/2+	1.0 [@] ps 8	
1207.0 4	$(5/2,7/2)^+$	>4.8 ^{&} ps	$T_{1/2}$: >2.1 ps (1978MeZX).
	7/2+	5.7 ^{&} ps 15	$T_{1/2}$: 1.7 ps +11-6 (1978MeZX).
1549.8 [@] 5	3/2+,5/2+	0.09 [@] ps 6	
1850.0 [‡] 6	$11/2^{-}$	4.6 ^{&} ps 12	
1866.2 4	$(1/2,3/2,5/2^+)$		E(level): from 1978MeZX.
1987? [‡] <i>1</i>	(9/2)	0	
2048.4 5	(9/2)	1.7 ^{&} ps 6	
2177.4 [@] 7	5/2 ⁽⁺⁾	<0.07 [@] ps	
2343.8 [@] 7		$0.7^{\textcircled{0}}$ ps $+14-4$	
2509.5 [‡] 5	$(11/2^+)$	>5 & ps	
3115.2 [‡] 7	15/2-	3.5 ^{&} ps 7	
3139 [‡] <i>1</i>	(13/2)		

[†] From least-squares fit to E γ data, assuming Δ (E γ)=0.5 or 1 keV when not given by the authors.

[‡] From 1979Be28.

^{*} From Adopted Levels.

[@] From 1978MeZX. Lifetime from DSAM.

[&]amp; From DSAM (1979Be28).

40 Ar(α ,p γ), 41 K(t,p γ) 1979Be28,1978MeZX (continued)

γ (⁴³K)

A₂, A₄ and polarization coefficients are from 1979Be28.

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathtt{J}^π_f	Mult.§	δ§	Comments
561.7	1/2+	561.6 <mark>&</mark>	· <u></u>	0	3/2+			
738.2	7/2-	738.4 <mark>&</mark>		0	3/2+	M2+E3	-0.13 2	A ₂ =+0.17 2, A ₄ =-0.04 2. Pol=-0.23 4.
975.3	3/2-	413.3 <mark>&</mark>	8 5	561.7	1/2+			
		975.4 <mark>&</mark>	92 5	0	3/2+			
1110.7	3/2+	549.1 <mark>&</mark>	40 10	561.7	1/2+			
		1110.5 <mark>&</mark>	60 10	0	3/2+			
1207.0	$(5/2,7/2)^+$	1206.9 5		0	3/2+			
1510.1	7/2+	303.1 2	7 4	1207.0	$(5/2,7/2)^+$			
		1509.9 6	93 4	0	3/2+	E2		A ₂ =+0.29 2, A ₄ =-0.07 2. Pol=+0.53 16.
1549.8	$3/2^+, 5/2^+$	1549.8 <mark>&</mark>		0	3/2+			
1850.0	11/2-	1111.8 4		738.2	7/2-	E2		A ₂ =+0.35 2, A ₄ =-0.21 3. Pol=+0.47 6.
1866.2	$(1/2,3/2,5/2^+)$	890.6 <mark>&</mark>		975.3	3/2-			
		1866.4 <mark>&</mark>		0	3/2+			
1987?	(9/2)	477 [@]		1510.1	7/2+			
2048.4	(9/2)	1310.4 6		738.2	·			
2177.4	5/2 ⁽⁺⁾	1439.1 <mark>&</mark>		738.2	7/2-			
2343.8		477.6 <mark>&</mark>		1866.2	$(1/2,3/2,5/2^+)$			
2509.5	$(11/2^+)$	461.1 2		2048.4				
		999.3 <i>3</i>		1510.1	7/2+			
3115.2	15/2-	1265.1 4		1850.0	11/2-	E2		A ₂ =+0.46 2, A ₄ =-0.19 2. Pol=+0.88 20.
3139	(13/2)	1289		1850.0	$11/2^{-}$			

 $^{^{\}dagger}$ From 1979Be28, unless otherwise stated. ‡ From 1978MeZX. $^{\$}$ From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ (1979Be28). & From 1978MeZX. $^{@}$ Placement of transition in the level scheme is uncertain.

⁴⁰Ar(α,pγ), ⁴¹K(t,pγ) 1979Be28,1978MeZX

Level Scheme

Intensities: % photon branching from each level

⁴¹**K**(**t**,**p**) **1984Mo17**

Target 41 K J $\pi = 3/2^+$.

1984Mo17: E=15 MeV triton beam was produced from the University of Pennsylvania FN tandem accelerator. Target of 55 μ g/cm² thick KCl enriched to 99.35% in ⁴¹K. Protons were momentum analyzed with a multi-angle spectrograph and recorded in 7.5° intervals in the angular range 3.75°-86.25° (lab), FWHM=20 keV. Measured σ (E_p, θ). Deduced levels, J, π , L from DWBA analysis.

1978MeZX: 41 K(t,p γ) E=11.7 MeV.

All data from 1984Mo17.

⁴³K Levels

E(level) [†]	Γ_{\ddagger}	E(level) [†]	L^{\ddagger}	E(level) [†]	L^{\ddagger}	E(level) [†]	Γ_{\ddagger}
0	0	1517 10	2	2218 10	3	3190 10	2
560 10	2	1815 <i>10</i>	4	2512 <i>10</i>	(4)	3254 10	2
1007 10	3	1956 <i>10</i>	4	2548 10	1	3312 10	2
1113 <i>10</i>	2	2035 10	0	2784 10	2	3399 10	2
1214 10	2	2086 10	4	2879 10	2		

[†] Uncertainty of 10 keV assigned by 1990En08.

[‡] From comparison of $\sigma(\theta)$ data with DWBA calculations.

⁴⁴Ca(μ^- ,ν**n**γ) **2006Me08**

2006Me08: the μ^- beam obtained from decay of π^- beam at 90 MeV/c from the M9B beam line at TRIUMF, including a 6-m, 1.2-T superconducting solenoid, beam rate 2×10^5 s⁻¹. Target of pure natural calcium with some oxide on the surface was contained in plastic containers with polyethylene walls. Three plastic scintillation counters were used to define the muon beam; two HPGe detectors for detecting γ -rays, FWHM=3 keV at 1.2 MeV. Measured E γ , I γ , $\gamma\gamma$, γ -p. Deduced levels.

Muonic Lyman series for natural Calcium

μ x-ray	Energy	Intensity in percent
2p-1s	783.659 <i>25</i>	83.8 10
3p-1s	940.63 10	6.2 <i>2</i>
4p-1s	995.48 10	2.0 1
5p-1s	1020.81 10	2.0 1
6p-1s	1034.62 10	1.8 1
7p-1s	1042.71 20	1.4 1
(8-∞)p-1s	1046-1063	2.8 4

Muonic Balmer series for natural Calcium

μ x-ray	Energy	Intensity in percent
3d-2p 4d-2p	157.35 <i>13</i> 212.03 <i>10</i>	64.5 <i>9</i> 8.85 <i>2</i> 0
5d-2p	237.31 10	4.34 20
6d-2p 7d-2p	251.06 10 259.45 10	3.29 <i>20</i> 1.37 <i>20</i>
(8-∞)d-2p	261-277	1.4 3

⁴³K Levels

E(level) [†]	$J^{\pi^{\dagger}}$
0	3/2+
561.2	$1/2^{+}$
738.3	$7/2^{-}$
975.3	$3/2^{-}$
1109.9	$3/2^{+}$

[†] From Adopted Levels, Gammas.

 $\gamma(^{43}K)$

E_{γ}^{\dagger}	Percent γ -ray yield	$E_i(level)$	${\rm J}_i^\pi$	\mathbf{E}_f	\mathbf{J}_f^{π}
548.6	<0.1	1109.9	3/2+	561.2	1/2+
561.1	0.3 1	561.2	$1/2^{+}$	0	$3/2^{+}$
738.2	0.45 12	738.3	$7/2^{-}$	0	$3/2^{+}$
975.3	0.2 1	975.3	$3/2^{-}$	0	$3/2^{+}$
1110.1	< 0.2	1109.9	$3/2^{+}$	0	$3/2^{+}$

[†] From Adopted Levels, Gammas.

⁴⁴Ca(μ^- ,νnγ) **2006Me08**

Level Scheme

Intensities: Percent γ -ray yield per muon capture

Legend

⁴⁴Ca(d, ³He) 1976Do05

- 1976Do05 (also 1975Wa17): E=52 MeV deuteron beam was produced from the Karlsruhe isochronous cyclotron and impinged on an 98.55% enriched self-supporting ⁴⁴Ca foil. ³He particles were detected by counter telescopes consisting of 300 μ m Δ E and 2000 μ m E surface barrier counters, FWHM=120 keV. Measured σ (E(³He), θ). Deduced levels, J, π , L, spectroscopic factors from DWBA analysis.
- 1974De36, E=19 MeV deuteron beam was produced from the University of Minnesota MP Tandem and impinged on a $60 \,\mu\text{g/cm}^2$ target prepared by evaporating a 98.5% enriched ⁴⁴Ca onto a 15 $\mu\text{g/cm}^2$ carbon foil. ³He particles were detected by solid state position detectors placed in the focal plane of an Enge split-pole spectrometer, FWHM=15 keV. Measured $\sigma(E(^3\text{He}),\theta)$. Deduced, levels, J, π , L, spectroscopic factors from DWBA analysis.
- 1969Yn01: E=22 MeV deuteron beam was produced from the Argonne cyclotron and impinged on enriched ⁴⁴Ca target on Formvar backing. ³He particles were detected with a Δ E-E telescope of surface-barrier detectors, FWHM=70-130 keV. Measured $\sigma(E(^3He),\theta)$. Deduced, levels, J, π , L, spectroscopic factors from DWBA analysis.

Target ⁴⁴Ca J π =0⁺.

All data from 1976Do05 unless otherwise noted.

⁴³K Levels

E(level)	L	C^2S^{\ddagger}	Comments
0	2	3.15	C ² S: 2.90 (1974De36), 4.5 (1969Yn01).
566 [†] 8	0	1.15	C ² S: 1.55 (1974De36), 2 (1969Yn01).
748 [†] 8	3	0.85	$C^2S: 0.98 (1974De36).$
982 [†] 8	1	0.16	$C^2S: 0.27 (1974De36).$
1119 [†] 8	2	0.36	C^2S : for d5/2. C^2S =0.50 for d3/2. Other: 0.30 (1974De36).
1540 <i>15</i>	2	0.24	
1870 <i>15</i>			
2180 <i>15</i>			
2450 <i>15</i>	0	0.32	
2670 <i>15</i>	2	0.41	
3070 <i>15</i>	2	0.16	
3230 <i>15</i>	2	0.20	
3340 <i>15</i>	2	0.56	
3730 <i>15</i>	(2)	0.13	
3880 <i>15</i>	(2)	0.1	
4020 15	2	0.15	
4120 <i>15</i>	2	0.31	
4470 <i>15</i>	2	0.17	
4790 <i>15</i>	2	0.14	
5190 <i>30</i>	2	0.23	
5610 <i>30</i>	2	0.23	
5900 <i>30</i>	2	0.30	
7450 <i>30</i>	(2)	0.1	

[†] From weighted average of 1974De36 and 1976Do05.

[‡] From 1976Do05. 1978En02 give S-factors which are adjusted upwards by ≈19% using standard normalization factors as discussed in 1977En02.

44 Ca(t, α) 1968Sa09,1970Aj01

Target ⁴⁴Ca J π =0⁺.

1968Sa09: E=13 MeV triton beam was produced from the Aldermaston tandem accelerator and impinged on an enriched target of 44 Ca. Alpha particles were momentum analyzed in the multi-angle spectrograph and detected in Ilford K1 emulsions. Measured $\sigma(E_{\alpha},\theta)$. Deduced levels, J, π , spectroscopic factors from DWBA analysis.

1970Aj01: E=20 MeV triton beam was produced from the Los Alamos MEG Tandem facility and impinged on a 44 Ca target of a 205 μ g/cm² layer of calcium metal deposited on a 50 μ g/cm² carbon foil, oriented at 30° to the beam. Alpha particles were analyzed in an Elbek-type spectrograph and detected with Ilford K-minus-one nuclear plates. Measured $\sigma(E_{\alpha},\theta)$. Deduced levels.

⁴³K Levels

E(level) [†]	<u>L</u> ‡	S ^{‡#}	E(level) [†]	<u>L</u> ‡	S ^{‡#}	E(level) [†]	<u>L</u> ‡	S ^{‡#}	E(level) [†]
0	2	2.2	2981 <i>15</i>			3890 <mark>&</mark> <i>30</i>			4680? & 40
560 15	(0)	1.3	3056 17			3970? ^{&} <i>30</i>			4820 <mark>&</mark> 40
740 15	3	0.48	3084 [@] 15			4015 [@] 15		0.24	4860? & <i>40</i>
967 15	(1)	0.10	3150 <i>18</i>			4070 ^{&} <i>30</i>			4920? ^{&} 40
1107 15	2	0.20	3228 21	2	0.19	4127 [@] <i>15</i>	(0)	0.06	5030 <mark>&</mark> 40
1202 15	(2)	0.06	3344 19	2	0.45	4177 <i>15</i>			5150? & 40
1544 <i>15</i>			3460 ^{&} <i>30</i>			4234 <i>15</i>			5200 <mark>&</mark> 40
1847 <i>15</i>			3580 ^{&} 30			4290 & <i>30</i>			5260 <mark>&</mark> 40
2177 15	(2)	0.05	3670 ^{&} 30			4410 ^{&} 40			5380 <mark>&</mark> 40
2446 17	0	0.24	3717 <i>15</i>			4490? & <i>40</i>			
2666 16	2	0.45	3837 15			4540 ^{&} 40			

[†] From weighted average of 1968Sa09 and 1970Aj01.

[‡] From 1968Sa09.

[#] 1978En02 point out that absolute S-factors given by 1968Sa09 are quite large; therefore, 1978En02 prefer to give relative S-factors, normalized to 3.8 for the ground state.

[@] From 1968Sa09 only.

[&]amp; Reported by 1970Aj01 only.

⁴⁴Ca(¹¹B, ¹²C) 1978DeZD

1978DeZD (also 1976DeXS): E=50 MeV. Measured $\sigma(\theta)$.

^{43}K Levels

E(level)	$J^{\pi \dagger}$	S [‡]
0#	3/2+	2.9
567 [#]	$1/2^{+}$	1.2
741 [@]	$7/2^{-}$	1.5
984 [@]	$3/2^{-}$	0.30
1121	$3/2^{+}$	0.30

 $^{^{\}dagger}$ From Adopted Levels.

[†] From bar chart shown in Fig. 2 of 1978DeZD. # $\sigma(\theta)$ distribution fits well with DWBA calculations. @ Poor fit of $\sigma(\theta)$ distribution with DWBA calculations.

 $Q(\beta^-)$ =-2220.7 19; S(n)=7932.89 17; S(p)=10675.76 25; $Q(\alpha)$ =-7592 5 2012Wa38 S(2n)=19413.56 18, S(2p)=19919.3 4 (2012Wa38).

Hyperfine structure measurements: 2011Av01, 2004Mo21, 2000Mu17.

⁴³Ca Levels

Cross Reference (XREF) Flags

	A B C D E F G	⁴³ K $β$ ⁻ decay ⁴³ Sc $ε$ decay ²⁷ Al(¹⁹ F,2pn; ³⁰ Si(¹⁸ O,αnγ) ⁴⁰ Ar(α,nγ) ⁴¹ K(³ He,p) ⁴¹ K(α,d) ⁴² Ca(n,γ) E=	(3.891 h) y)	I 42 Ca(n, γ),(n, 13 J 42 Ca(d,p) K 42 Ca(α , 3 He) L 43 Ca(p,p') M 43 Ca(p,p' γ) N 43 Ca(d,d') O 43 Ca(α , α ') P 44 Ca(p,d)	n):resonances	Q 44 Ca(d,t) R 44 Ca(3 He, α),(pol 3 He, α) S 44 Ca(3 He, $\alpha\gamma$) T 45 Sc(μ^{-} ,2n γ) U 45 Sc(d, α) V Coulomb excitation
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{@}$		XREF		Comments
0	7/2-	stable	ABCDEFGH	JKLMNOPQRSTUV	Q=-0.0408 8 Evaluated rms μ : optical met (NMR,1973) Q: from CFB1 -0.043 9 (10 (ABMR-LII spectroscop method, 190 -0.0552 11 -0.049 5 (10 Measured Δ 0.1254 fm² Adopted (by fineutron str	LS method (revised value by 1993Su36 from 991Si14). Other measurements: -0.062 <i>12</i> RF, 1982Ay02), -0.065 <i>20</i> (ABMR, laser y, 1979Gr05), -0.040 <i>8</i> (optical isotope shift 80Be13,1981Ar15). Recalculations and analyses: (2002Mi37), -0.0408 <i>8</i> (1993Su36,2008Py02), 984Sa10,1983Ar25,1982Ol05). r ² >(⁴³ Ca- ⁴⁰ Ca)=0.117 fm ² <i>25</i> (1981Wo02), <i>32</i> (1984Pa12), 0.1215 fm ² <i>4</i> (1991Si14). 1977En02) spectroscopic factor S=0.58 <i>6</i> ipping); 3.1 <i>3</i> (neutron pickup).
372.762 5	5/2-	34 ps <i>3</i>	ABCDE H	JKLMNOPQRSTUV	from optica Adopted (by stripping); (J ^{\pi} : L(d,t)=L(d	d,t)=L(α , ³ He)=L(p,d)=L(pol ³ He, α)=3; J l spectroscopy (1954Ke14); L(α ,d)=5. 1977En02) spectroscopic factor S<0.02 (neutron 0.17 8 (neutron pickup). α , ³ He)=L(p,d)=L(d,t)=L(pol ³ He, α)=3; $\gamma(\theta)$
593.394 5	3/2-	81 ps <i>4</i>	ABCDE H	JKLMNOPQRS UV	Adopted (by ineutron str J^{π} : L(d,p)=L(to 7/2 from	bl) in $(\alpha, n\gamma)$. 1977En02) spectroscopic factor S=0.04 2 ripping); 0.10 3 (neutron pickup). α , 3 He)=L(d,t)=L(p,d)=L(pol 3 He, α)=1; Δ J=2 m $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$.
990.257 ^a 5	3/2+	49 ps <i>4</i>	A CDEF H	JKLM PQRS U	Adopted (by a (neutron str J^{π} : $L(d,p)=L(L^{3}He,p)=0$ $(\alpha,n\gamma)$.	60 ps 10 from p' γ (t) in (p,p' γ). 1977En02) spectroscopic factor S=0.11 2 ipping); 2.2 4 (neutron pickup). d,t)=L(α , 3 He)=L(p,d)=L(pol 3 He, α)=2; b; Δ J=1 to $5/2^{-}$ from γ (θ) and γ (lin pol) in d average of 48 ps 4 from (α ,n γ) and 51 ps 8 pn γ).
1394.473 ^b 8	5/2+	1.84 ^{&} ps <i>35</i>	A CDEF H	JKLM PQRS U	J^{π} : $L(d,t)=L(d,t)$	$(x, {}^{3}\text{He}) = L(p, d) = 2; \Delta J = 1 \text{ to } 7/2^{-} \text{ from } \gamma(\theta)$ bol) in $(\alpha, n\gamma)$.
1677.84 <i>17</i>	11/2-	0.85 ^{&} ps 14	CDE	JKLMNOPQ S UV		$+4$; $\Delta J=2$ to $7/2^-$ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
1901.99 ^a 14	7/2+	0.53 ^{&} ps 10	CDE J LM	J ^π : ΔJ=2 E2 to 3/2 ⁺ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$ and RUL.
1931.53 <i>14</i>	5/2-	116 ^{&} fs 30	B E J LMNO S	J^{π} : L(α,α')=2+4; ΔJ =0 or 1 to 3/2 ⁻ , 5/2 ⁻ and 7/2 ⁻ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha,\eta\gamma)$ and RUL.
1957.4 <i>4</i>	1/2+	1.1 ps <i>3</i>	E H JKL PQR	Adopted (by 1977En02) spectroscopic factor S=0.05 2 (neutron stripping); 1.0 2 (neutron pickup). J^{π} : L(d,p)=L(d,t)=L(p,d)=L(pol 3 He, α)=0.
2046.21 <i>15</i>	3/2-	0.8 ps 2	EFGH JKLMNOPQR	Adopted (by 1977En02) spectroscopic factor S=0.72 9 (neutron stripping); 0.19 6 (neutron pickup). J^{π} : $L(d,p)=L(\alpha,^{3}He)=L(d,t)=L(p,d)=L(pol)$ $^{3}He,\alpha)=1$; $L(\alpha,\alpha')=2+4$ and γ to $7/2^{-}$ reject $1/2^{-}$.
2067.21 <i>17</i>	7/2-	21 fs 7	E LMNO	J^{π} : L(d,d')=4; L(α , α')=2+4; ΔJ =1 to 5/2 ⁻ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha,n\gamma)$. $T_{1/2}$: from DSAM in $(p,p'\gamma)$.
2093.81 <i>18</i>	9/2-	1.4 ^{&} ps 4	CDE LMNO	J^{π} : $L(\alpha, \alpha') = 2+4$; $\Delta J = 1$ to $7/2^-$ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$.
2102.7 <i>3</i> 2223.9 <i>4</i>	3/2 ⁻ 3/2 ⁻ ,5/2 ⁻	0.33 ps 9 28 fs <i>17</i>	E H J L E J LM	J ^{π} : L(d,p)=1; γ to 7/2 ⁻ . J ^{π} : Δ J=0 or 1 to 3/2 ⁻ and 5/2 ⁻ from $\gamma(\theta)$ and γ (lin pol) in $(\alpha,n\gamma)$; positive sign gives unacceptable M2 strength from $(\alpha,n\gamma)$.
2248 8			JK	8 (4, 7)
2249.01 <i>14</i>	9/2-	37 & fs 8	E LMNO	J ^{π} : L(α , α')=2+4; L(d,d')=2; Δ J=2 to 5/2 ⁻ from γ (θ) and γ (lin pol) in (α ,n γ).
2272.8 3	3/2+,5/2+	0.28 ps 8	EF H J LM PQ	XREF: P(2250). J^{π} : L(d,t)=L(p,d)=2.
2409.68 ^b 15	9/2+	1.2 ^{&} ps 4	CDE J LM	J ^{π} : γ decays to 5/2 ⁺ , 7/2 ⁺ and 7/2 ⁻ ; Δ J=2 to 5/2 ⁺ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$.
2523 <i>10</i> 2611.1 <i>3</i>	(1/2 ⁻ ,3/2 ⁻) 1/2 ⁻	0.13 ps 5	J E H JKL Q	J ^π : L(d,p)=(1). J ^π : L(d,p)=L(α , ³ He)=1; γ circular polarization from (n, γ) E=thermal rejects 3/2 ⁻ .
2674.3 8 2696.5 5	5/2 ⁻ ,7/2 ⁻ 3/2 ⁺ ,5/2 ⁺	36 ^{&} fs 16 <38 fs	E JKLM O E J LM OPQ S	J^{π} : L(d,p)=L(α , He)=3. XREF: P(2660)Q(2680).
				J ^{π} : L(d,p)=L(d,t)=L(p,d)=2; L(α,α')=2+4 is presumed to be in error or for a different level at 2694 5.
2748 8	1/2+	22 6 10	JK1	J^{π} : L(d,p)=0.
2754.00 21	15/2	23.6 ps <i>10</i>	CDE 1 0	J^{π} : $\Delta J=2$ to $11/2^-$ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$ and from DCO in $(^{18}O, \alpha n\gamma)$.
2769.6 5	(1/2,3/2,5/2)	0.10 ps 4	E	$T_{1/2}$: weighted average from (19 F,2pn γ). J^{π} : γ to $3/2^+$ and $3/2^-$.
2844.7 5	$(5/2)^+$	0.55 ps 15	EFG JKL OPQ	J^{π} : $L(p,d)=L(d,t)=2$ and γ to $7/2^-$. $L(d,p)=0$ suggests $1/2^+$. $L(\alpha,d)=4+6$ from $3/2^+$ is inconsistent with $J=5/2$.
2878.7 10	1/2-	107 fs 38	E H J L S	Inconsistent with $J=J/2$. J^{π} : L(d,p)=1. γ (circ pol) in (pol n, γ) does not allow $3/2^-$. $\gamma(\theta)$ of 2504 γ in (3 He, $\alpha\gamma$) is inconsistent with J=1/2. It is possible that the level seen in (3 He, $\alpha\gamma$) is different from that in (n, γ) and (α ,n γ).
2943.5 3	3/2-	<60 fs	E H JK1 S	J^{π} : L(d,p)=1. γ (circ pol) in (pol n, γ) does not allow $1/2^{-}$.
2951.33 ^a 19	11/2+	4.7 ps <i>12</i>	CDE G 1 0	J ^π : L(α ,d)=6 from 3/2 ⁺ ; Δ J=1 to 9/2 ⁺ from γ (θ) and γ (lin pol) in (α ,n γ).

E(level) [†]	$\mathrm{J}^{\pi\ddagger}$	$T_{1/2}^{@}$	XR	EF	Comments
3028.7 8	(3/2 to 7/2)	<60 fs	E J]	L 0 S	J ^π : γ to 5/2 ⁻ ; Δ J=1 to 5/2 ⁻ from $\gamma(\theta)$ in (³ He, $\alpha\gamma$).
3030.4 7	(1/2,3/2,5/2)]	L S	E(level): not resolved from 3028.6; γ decay seen only in (3 He, $\alpha\gamma$). J ^{π} : γ decays to $3/2^{+}$, $3/2^{-}$ L(p,d)=0+2 implies the
3049.6 <i>15</i>		<60 fs	E JKI	. Р	presence of a doublet. J^{π} : probable $1/2^+$ from $L(p,d)=0$ or $0(+2)$. E(level): population in $(\alpha,n\gamma)$ is considered suspect (evaluators).
3050.6 4	11/2-	<17 fs	E	0	Suspect (evaluators). J^{π} : $L(\alpha,\alpha')=2+4$; $\Delta J=2$ to $7/2^-$ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha,n\gamma)$.
3076.0 <i>15</i>	(5/2)+	<17 fs	E G JkI	. Q	J^{π} : L(d,t)=2 and γ to $7/2^-$. L(d,p)=0 gives $1/2^+$. L(α ,d)=4+6 is inconsistent with J=5/2.
3096.0 <i>7</i> 3097.0 <i>6</i> 3195.6 <i>5</i> 3270	(1/2 ⁻ to 7/2 ⁻) (5/2 ⁺ to 11/2 ⁺) 7/2 ⁺ ,9/2 ⁺ (5/2)	<17 fs 0.76 ps 21 118 fs 42	Ef jkl Ef jl E G JKI kl	l o . 0	J ^π : γ to 3/2 ⁻ and 5/2 ⁻ . J ^π : γ to 7/2 ⁺ and 9/2 ⁺ . J ^π : L(α , α')=3+5; L(α , ³ He)=4. J ^π : D+Q γ transitions to 5/2 ⁻ and 7/2 ⁻ ; γ to
3278 10	(3/2) (11/2 to 17/2) ⁺		G kl		5. $D+Q$ y transitions to $3/2^-$ and $7/2^-$, y to $5/2^+$; $\alpha\gamma(2288)$ favors $5/2$. J^{π} : $L(\alpha,d)=6$ from $3/2^+$; $L(\alpha,\alpha')=3+5$. $L(\alpha,^3He)=(4)$ implying $(7/2^+,9/2^+)$ is inconsistent with either of the $J\pi$ values for
3285.7 6	3/2-	<60 fs	Ef H J I	. Opq	3278 or 3270 levels. J^{π} : L(d,p)=1. γ (circ pol) in (pol n, γ) does not allow 1/2 ⁻ . L(α , α')=3+5 for 3277+3297 is inconsistent with π =
3315.2 <i>7</i> 3371.19 ^b <i>19</i>	1/2 ⁻ ,3/2 ⁻ 13/2 ⁺	0.13 ps 6	Ef H J	0	$J^{\pi} \colon L(d,p)=1.$
55/1.19" 19	13/2	<14 ps	CDE G	0	XREF: G(3372)O(3377). J^{π} : $L(\alpha,\alpha')=3+5$ and $\Delta J=2$ to $9/2^+$ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha,n\gamma)$.
3376.6 10			E JK		$T_{1/2}$: From (¹⁹ F,2pn γ). >3.5 ps from (α ,n γ).
3415 <i>8</i> 3469 <i>5</i>	5/2-,7/2-		JKI	0	J^{π} : $L(d,p)=L(\alpha,^{3}He)=3$.
3505.3 <i>3</i>	13/2+	73 fs 24	DE G K	0	J ^{π} : L(α ,d)=4+6 from 3/2 ⁺ ; L(α , α')=3+5; ΔJ=1 to 11/2 ⁻ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$.
3572.2 5	3/2-		Н Ј		J ^{π} : L(d,p)=1. γ (circ pol) in (pol n, γ) does not allow 1/2 ⁻ .
3604 10	(1/2)+		J	PQ	J^{π} ,E(level): L(d,p)=0. However, L(p,d)=2 giving $3/2^+$, $5/2^+$ may suggest a doublet near this energy.
3649 <i>8</i> 3662.5 <i>4</i>	(3/2 ⁺ ,5/2 ⁺) 13/2 ⁻	49 fs 21	JK E	0	J ^{π} : L(d,p)=(2). J ^{π} : ΔJ=1 to 11/2 ⁻ from $\gamma(\theta)$ and γ (lin pol) in $(\alpha, n\gamma)$ and γ to 9/2 ⁻ .
3705 <i>10</i> 3737 <i>10</i>			J J		
3772 <i>10</i> 3783 <i>10</i>	1/2-,3/2-		J J		J^{π} : $L(d,p)=1$.
3816.1 8	$(7/2^{-})$	69 fs <i>38</i>	E JK		XREF: K(3803). J^{π} : from L(d,p)=L(α , He)=(3) and γ to 9/2 ⁺ .
3837 <i>10</i> 3864 <i>10</i>	$(3/2 \text{ to } 13/2)^+$ $(1/2^-, 3/2^-)$		G J	0	J ^{π} : L(α ,d)=4 from 3/2 ⁺ . J ^{π} : L(d,p)=(1).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @		XRE	F	Comments
3898 10				J		
3918 8	(7/2,9/2)+		F	JK	0	E(level): possible doublet as suggested in $(\alpha,^3\text{He})$ and in 1990En08 evaluation. See also $J\pi$ comment. J^{π} : $L(^3\text{He},p)=2$ from $3/2^+$; $L(\alpha,\alpha')=3+5$; $L(\alpha,^3\text{He})=(4)$. $L(d,p)=(1)$ from 1974Br19 is in disagreement but $L(d,p)=4$ is also suggested by 1966Do02. Similarity to 4984, $9/2^+$ state in ^{41}Ca indicates 4p-1h component in this level
3943.81 ^a 24	15/2+	0.76 ps <i>21</i>	CDE G		0	(1968Do02). J^{π} : $\Delta J=1$ to 13/2 ⁺ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$; $L(\alpha, d)=6$ from 3/2 ⁺ .
3958 10				J		
3978 10	3/2+,5/2+			J	PQ	XREF: P(3950). J^{π} : L(d,p)=L(p,d)=L(d,t)=2.
4017 <i>10</i> 4044 8 4078 <i>10</i>	3/2+,5/2+			J JK J		$J^{\pi}: L(d,p)=2.$
4089 10	$(5/2^-,7/2^-)$			J		J^{π} : L(d,p)=(3).
4135.9 7	7/2+,9/2+	<260 fs	E G	JK	0	XREF: J(4124)K(4123). J^{π} : L(d,p)=4; inconsistent with L(α ,d)=6 from $3/2^{+}$.
4148 <i>10</i> 4174.8 <i>11</i>	1/2+		E	J		J^{π} : $L(d,p)=0$.
4186.5 4	15/2+	125 fs 50	DE G			J ^{π} : ΔJ=1 to 13/2 ⁺ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$; L(α ,d)=6 from 3/2 ⁺ .
4207.2 5	1/2-		Н	JK		XREF: J(4196)K(4193). J ^{π} : L(d,p)=L(α , 3 He)=1. γ (circ pol) in (pol n, γ) does not allow 3/2 $^{-}$. Not compatible with L(d,t)=2 or L(p,d)=(2,3).
4210? 20	3/2+,5/2+				PQ	J ^π : L(d,t)=2 and L(p,d)=(2,3). E(level): this level corresponds to 4207.1 if L transfer in (d,t) and (p,d) is ignored (1978En02).
4239 10	$1/2^-,3/2^-$			J		J^{π} : L(d,p)=1.
4268 10	$(3/2^+,5/2^+)$			J	Q	J^{π} : L(d,t)=2. L(d,p)=1 in 1974Br19 suggests $1/2^{-}$, $3/2^{-}$. In another experiment L(d,p)=2 is also suggested by 1966Do02.
4291 <i>10</i>	$(7/2 \text{ to } 13/2)^+$		G			J^{π} : L(α ,d)=4+6 from 3/2 ⁺ .
4298 10	1/2+			J		J^{π} : L(d,p)=0.
4364 10	$(7/2 \text{ to } 13/2)^+$		G	J		J^{π} : L(\alpha,d)=4+6 from 3/2 ⁺ .
4394.8 5	15/2	42 fs <i>17</i>	E			J ^{π} : ΔJ=2 to 11/2 ⁻ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$.
4401 10	5 IO- 5 IO-			J	_	77 J (1) 2 J (11) 11 (7 (2) 12 (2) †
4461 7	5/2-,7/2-		G	JK -	P	J ^{π} : L(d,p)=3. Incompatible with $(7/2 \text{ to } 13/2)^+$ from L(α ,d)=4+6 from 3/2 ⁺ .
4498 10	1 /0+			J		I# I (1) O
4533 10	1/2+			J		$J^{\pi}: L(d,p)=0.$
4569 8 4585 <i>10</i>				K J		
	17/2+	0.21 5	CDT C	J		IT AI 1 (15/0- C (()) 1 () '
4591.0 ^b 4	17/2+	0.21 ps 5	CDE G			J^{π} : $\Delta J=1$ to $15/2^-$ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$; $L(\alpha, d)=6$ from $3/2^+$.
4603.4 10	$(1/2,3/2,5/2^+)$	766.30	Н	J		J^{π} : γ from $1/2^+$ capture state.
4621.2 <i>4</i>	15/2+	76 fs 28	E			J ^{π} : ΔJ=1, M1 γ to 13/2 ⁺ from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$.

E(level) [†]	${\rm J}^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
4641.6 10	3/2+,5/2+		нј	J^{π} : L(d,p)=2.
4654 <i>10</i> 4703 <i>10</i>	1/2+		J G J pq	J^{π} : L(d,p)=0.
4736 10	3/2+,5/2+		J pq	J^{π} : $L(d,t)=2$.
4758 <i>10</i> 4783 <i>10</i>			J J	
4783 10 4796 10			J	
4826 8	$(5/2^-,7/2^-)$		JK	J^{π} : $L(\alpha, {}^{3}He)=(3)$.
4854 10	(7/2 +- 17/2)+		J	IT. I (. 1) (f 2/2+
4878 <i>8</i> 4901.2 <i>6</i>	$(7/2 \text{ to } 17/2)^+$ $1/2^-, 3/2^-$		G JK H J	J ^{π} : L(α ,d)=6 from 3/2 ⁺ . J ^{π} : L(d,p)=1. J π =1/2 ⁻ is preferred by γ (circ pol) in (pol n, γ).
4922 10			J	
4944 <i>10</i> 4982 <i>10</i>	$(3/2^+,5/2^+)$		J J	J^{π} : L(d,p)=2 from 1974Br19; but L(d,p)=1 implying
5004 8	$(5/2^-, 7/2^-)$		ЈК	$1/2^-, 3/2^-$ is suggested in 1966Do02. J^{π} : $L(\alpha, {}^{3}\text{He})=(3)$.
5037.5 11	1/2-,3/2-		H Jk	J^{π} : L(d,p)=1. $J\pi=1/2^-$ is preferred by γ (circ pol) in
50.45 10	1 /2 - 2 /2 -			(pol n, γ).
5047 <i>10</i> 5072 <i>10</i>	1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻		Jk J	J^{π} : $L(d,p)=1$. J^{π} : $L(d,p)=1$.
5100 10	1/2+,3/2		j	J^{π} : L(d,p)=0.
5155.4 6	$(13/2,17/2)^{-}$	76 fs 28	E	J^{π} : $\Delta J = 1$, M1+E2 γ to 15/2 ⁻ ; γ to 13/2 ⁻ .
5170 <i>10</i> 5189 <i>10</i>	$3/2^+, 5/2^+$ $(7/2 \text{ to } 13/2)^+$		J G	J^{π} : L(d,p)=2. J^{π} : L(α ,d)=4+6 from 3/2 ⁺ .
5193 10	1/2+		ЈК р	J^{π} : L(d,p)=0. L(α , 3 He)=(3) and L(p,d)=(2,3) is inconsistent.
5215 10	1/2+		J pQ	J^{π} : L(d,p)=0. L(p,d)=(2,3) is inconsistent.
5249 8 5351 <i>10</i>	$(7/2 \text{ to } 13/2)^+$ $(7/2 \text{ to } 13/2)^+$		G K G Q	J^{π} : L(α ,d)=4+6 from 3/2 ⁺ . J^{π} : L(α ,d)=4+6 from 3/2 ⁺ .
5394.7 11	(1/2 to 15/2) $(11/2^- \text{ to } 19/2^-)$	0.104 ps <i>31</i>	E K	E(level): 5410 group in $(\alpha,^3$ He) may define a
	· / /	1		different level. J^{π} : γ to $15/2^-$.
5430 20			P	,
5548 8 5555.4 ^a 6	$(15/2,19/2)^+$	1.4 ps <i>4</i>	K DE	J^{π} : $\gamma(\theta, pol)$ in $(\alpha, n\gamma)$ and RUL.
5647 8	(13/2,17/2)	1.4 ps 4	K	$J : \gamma(0,poi) \text{ in } (\alpha,n\gamma) \text{ and } \text{KoL}.$
5696 <i>10</i>	$(7/2 \text{ to } 13/2)^+$		G	J^{π} : $L(\alpha, d) = 4 + 6$ from $3/2^+$.
5728 8 5805 8	3/2+,5/2+		K PQ K	J^{π} : L(d,t)=2.
5889 8			K	
5931.5 8	(11/2 to 19/2) ⁻	55 fs <i>17</i>	E	J^{π} : M1(+E2) stretched dipole transition to (13/2,17/2) ⁻ from $\gamma(\theta, \text{lin pol})$ in $(\alpha, \text{n}\gamma)$.
5991 8	$(5/2^-,7/2^-)$		K	J^{π} : L(α , 3 He)=(3).
6015 <i>20</i> 6087 <i>10</i>	1/2+		PQ G	J^{π} : L(p,d)=0. L(d,t)=(2) is inconsistent.
6177 10	$(3/2^+,5/2^+)$		G PQ	$J^{\pi}: L(d,t)=(2).$
6223.6 ^b 8	$(17/2,21/2)^+$	0.58 ps 15	DE	J ^π : $\Delta J=1$ stretched dipole transition to $(15/2,19/2)^+$ from $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma)$; RUL.
6300			F	
6410 6460			F F	
6570			F	
6640			F	

E(level) [†]	$J^{\pi \ddagger}$	XREF		Comments
6680 6790 6950 7040 7090 7190 7500 7590 20 7730 7920		F F F F F F F	Q	
(7932.7 3)	1/2+	Н		
7941.88 <i>17</i>	1/2-,3/2-#	I		
7942.08 <i>17</i>	1/2+#	I		
7951.56 <i>17</i>	1/2-,3/2-#	I		
7955.13 <i>17</i>	1/2+#	I		
7956.17 <i>17</i>	1/2-,3/2-#	I		
7958.62 17	1/2+#	I		
7968.91 <i>17</i>	1/23/2-#	I		
7969.51 <i>17</i>	1/2 ⁻ ,3/2 ^{-#} 1/2 ^{+#}	I		
7972.10 <i>17</i>	1/2-,3/2-#	I		
7977.9	1/2+#	I		
7980.06 <i>17</i>	1/2+#	I		
7981.48 <i>17</i>	1/2-,3/2-#	I		
	1/2 ,3/2			
7981.65 17	1/2-,3/2-#	I		
7989.92 <i>17</i> 7990 <i>20</i>	1/2+# (3/2)+	I	PQR	T=5/2
7990-20	(3/2)	F	PQK	XREF: F(8033). J^{π} : L(p,d)=L(d,t)=L(3 He, α)=2. Strong L(3 He,p)=0 from 3/2 ⁺ indicates IAS of 43 K g.s., J_{π} =3/2 ⁺ .
7991.80 <i>17</i>	1/2+#	I		
7996.59 <i>17</i>	1/2+#	I		
8002.12 <i>17</i>	1/2-,3/2-#	I		
8006.45 17	1/2-,3/2-#	I		
8007.62 17	1/2+#	I		
8013.64 17	1/2+#	I		
8013.04 17	1/2-,3/2-#	I		
8020.16 <i>17</i>	1/2 ,3/2	Ī		
8020.52 17		Ī		
8023.49 19		I		
8023.77 19		I		
8025.59 19		I		
8028.55 19	1/2+#	I		
8033.83 20	1/2-,3/2-#	I		
8047.20 20	1/2 ⁻ ,3/2 ^{-#} 1/2 ^{+#}	I		
8049.25 20	1/2 ⁻ ,3/2 ^{-#} 1/2 ^{+#}	I		
8052.1 10	1/2+#	I		
8055.99 20	$1/2^{-},3/2^{-\#}$	I		
8057.0 <i>10</i>	1/2+#	I		
000010	- <i>i</i> -	-		

E(level) [†]	$J^{\pi \ddagger}$	XREF
8057.07 20	1/2-,3/2-#	I
8057.46 20		I
8058.34 20		I
8061.1 3	1/2-,3/2-#	I
8062.2 3	1/2+#	I
8066.1 3	1/2-,3/2-#	I
8073.9 3	1/2+#	I
8074.6 <i>3</i> 8075.5 <i>3</i>	1/2-,3/2-#	I I
8078.4 3	1/2+#	I
8081.0 <i>3</i>		Ī
8086.1 <i>3</i>	1/2+#	I
8089.4 <i>3</i>	•	I
8090.3 4		I
8099.3 4	1 /2+#	I
8103.3 10	1/2 ^{+#} 1/2 ^{+#}	I
8106.1 <i>4</i> 8113.7 <i>4</i>	1/2 "	I I
8115.4 4	1/2+#	I
8128.3 5	1/2	Ī
8132.9 5		I
8134.1 5		Ī
8138.2 5	1 /2+#	I
8139.9 5	1/2+#	I
8141.6 <i>5</i> 8144.3 <i>5</i>	1/2-,3/2-#	I I
8149.0 5	1/2-,3/2-#	I
8152.3 5	1/2 ,3/2 #	I
8157.2 5	1/2+#	I
8160	1/2	F
8165.9		I
8176.1	#	I
8181.0	1/2-,3/2-#	I
8186.4	1/2+#	I
8201.0	1/2+#	I
8201.5	1/2+#	I
8204.9 8206.9	1/2 - 2/2 - #	I
8223.0	1/2-,3/2-#	I I
8259.1		Ī
8263.0		I
8270	#	F
8281.1	1/2+#	I
8302.6 8308.9		I I
8323.1	1/2+#	I
8341.1	1/2+#	I
8348.0	1/2 ^{+#} 1/2 ^{+#}	I
8367.5	,	Ī

E(level) [†]	$J^{\pi \ddagger}$	XRE	F	Comments
8369.5		I		
8372.9	1/2+#	I		
8399.7	1/2+#	I		
8412.9	1/2+#	I		
8412.9	1/2	I		
8430.0		Ī		
8434.4	1/2+#	I		
8452.5	1/2+#	I		
8465.6	1/2+#	I		
8470	1/2	F		
8474.9	1/2+#	I		
8479.8	1/2+#	I		
8484.2	-, -	Ī		
8490.1	1/2+#	I		
8492.0		I		
8590 <i>20</i>	1/2+		PQ	T=5/2
				J^{π} : $L(p,d)=L(d,t)=0$.
9767 20	5/0- 7/0-		DO.	Possible IAS of $1/2^+$, 561 in 43 K.
8767 20	5/2-,7/2-		PQ	T=5/2 J^{π} : $L(p,d)=L(d,t)=3$.
				Possible IAS of $7/2^-$, 738 in 43 K.
8930		F		Tossible II is of 1/2, 150 iii K.
8993 20	1/2-,3/2-		PQ	T=5/2
				J^{π} : $L(p,d)=L(d,t)=1$.
				Possible IAS of $3/2^-$, 975 in 43 K.
9145 <i>30</i>	3/2+,5/2+		PQ	T=5/2
				J^{π} : L(p,d)=L(d,t)=2. Possible IAS of 3/2 ⁺ , 1110 in ⁴³ K.
10485 30	1/2+		PQ	Possible IAS of $3/2^{-1}$, 1110 in $^{-1}$ K. $T=5/2$
10403 30	1/2		1 Q	$J^{\pi}: L(p,d)=L(d,t)=0.$
				Possible IAS of $1/2^+$, 2451 in 43 K.
10720 <i>30</i>	3/2+,5/2+		PQ	J^{π} : L(d,t)=2.
11380 <i>30</i>			PQ	
12060 30	2/2+ 5/2+		P	IT I (1) 0
12265 <i>30</i> 13230 <i>30</i>	$3/2^+, 5/2^+$ $(3/2^+, 5/2^+)$		PQ PQ	$J^{\pi}: L(d,t)=2.$ $J^{\pi}: L(d,t)=(2).$
13700 30	(3/2 ,3/2)		PQ P	J. L(u,t)-(2).
13950 30			P	
14190 <i>30</i>			Q	
0			~	

 $[\]dagger$ From least-squares adjustment to measured E γ data when such data are available. Otherwise weighted averages of available level energies are taken.

[‡] When L-transfer arguments are used, the target is $J\pi=0^+$, except for $^{41}K(^3He,p)$ and $^{41}K(\alpha,d)$, where target $J\pi=3/2^+$.

[#] From s-wave or p-wave assignment in the analysis of neutron-resonance data (2006MuZX).

[@] From DSAM in $(\alpha, n\gamma)$, unless otherwise indicated. For levels from 7992 to 8590, see the (n, γ) , (n, n):resonances for Γ widths.

[&]amp; From DSAM. Weighted average of values in $(\alpha,n\gamma)$ and $(p,p'\gamma)$.

^a Band(A): Band based on 3/2⁺.

^b Band(B): Band based on 5/2⁺.

γ(⁴³Ca)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.§	δ§	Comments
372.762	5/2-	372.760 7	100	0 7/2-	M1+E2	-0.161 <i>14</i>	B(M1)(W.u.)=0.0122 11; B(E2)(W.u.)=6.5 13
							δ: 0.192 11 was deduced by 1978En02 from B(E2)=8.7×10 ⁻³ 7 (1971HoYN) and $T_{1/2}$ =48 ps 4. Using the same B(E2) and $T_{1/2}$ =34 ps 3, evaluators get δ=0.161 14. Sign from $\gamma(\theta, \text{lin})$ in $(\alpha, \text{n}\gamma)$. δ=-0.15 3 from $(^3\text{He}, \alpha\gamma)$.
593.394	3/2-	220.632 5	42.3 8	372.762 5/2-	M1+E2	-0.09 4	B(M1)(W.u.)=0.0075 4; B(E2)(W.u.)=4 +4-3
		593.390 6	100.0 4	0 7/2-	E2		δ : weighted average From $\gamma(\theta)$ in $(\alpha, n\gamma)$ and $(^3\text{He}, \alpha\gamma)$. B(E2)(W.u.)=7.5 4
990.257	3/2+	396.861 6	14.93 <i>13</i>	593.394 3/2-	E1(+M2)	-0.1 I	$B(E1)(W.u.)=2.31\times10^{-5} 20$
	-,	617.490 6	100.00 14	372.762 5/2-	E1(+M2)	-0.015 17	$B(E1)(W.u.)=4.1\times10^{-5} 4$; $B(M2)(W.u.)<0.4$
					()		δ : weighted average from $\gamma(\theta)$ in $(\alpha, n\gamma)$ and $(^3\text{He}, \alpha\gamma)$.
		990.245 8	0.36 5	$0 7/2^{-}$	[M2]		B(M2)(W.u.)=0.17 3
1394.473	5/2+	404.214 13	18.7 <i>7</i>	990.257 3/2+	M1+E2	+0.32 5	B(M1)(W.u.)=0.023 5; B(E2)(W.u.)=41 14
		801.070 <i>13</i>	7.5 7	593.394 3/2-	E1(+M2)	-0.034	$B(E1)(W.u.)=3.2\times10^{-5} 7; B(M2)(W.u.)<0.8$
		1021.698 <i>13</i>	100.0 9	372.762 5/2-	E1(+M2)	+0.11 12	B(E1)(W.u.)=0.00021 4
		1394.448 <i>14</i>	9 3	0 7/2-	E1		B(E1)(W.u.)=7.E-63
							I_{γ} : unweighted average of 6.7 4 from β^- decay, 15.1 5 from $(\alpha, n\gamma)$ and 4.8 8 from $(p,p'\gamma)$.
1677.84	$11/2^{-}$	1677.8 2	100	$0 7/2^{-}$	E2(+M3)	$-0.02\ 2$	$B(E2)(W.u.)=5.6\ 10$
1901.99	7/2+	507.8 <i>3</i>	24 3	1394.473 5/2+	[M1]		B(M1)(W.u.)=0.053 13
	•	911.6 <i>3</i>	19 6	990.257 3/2+	E2(+M3)	-0.02~3	B(E2)(W.u.)=25 10
		1901.8 2	100 6	0 7/2-	E1(+M2)	+0.03 4	B(E1)(W.u.)=0.000106 22; B(M2)(W.u.)<0.5
1931.53	5/2-	1338.3 5	11.7 <i>11</i>	593.394 3/2-	M1+E2	+2.2 25	B(M1)(W.u.)=0.0009 +18-9; $B(E2)(W.u.)=7.4$
		1558.8 2	59 2	372.762 5/2-	M1+E2	+0.28 14	B(M1)(W.u.)=0.016 5; B(E2)(W.u.)=1.5 +15-11
		1931.4 2	100 2	0 7/2-	M1+E2	$-0.8 \ 3$	B(M1)(W.u.)=0.009 4; B(E2)(W.u.)=4.6 25
1957.4	1/2+	967.1 <i>4</i>	28 1	990.257 3/2+	[M1]		B(M1)(W.u.)=0.0048 14
		1364.0 5	100 <i>I</i>	593.394 3/2-	[E1]		B(E1)(W.u.)=0.00015 5
2046.21	3/2-	651.2 4	2 1	1394.473 5/2 ⁺	[E1]		$B(E1)(W.u.)=3.2\times10^{-5} 18$
		1056.0 5	11 <i>I</i>	990.257 3/2+	E1(+M2)	0.00 3	$B(E1)(W.u.)=4.1\times10^{-5} II$
		1453.0 <i>3</i>	13 2	593.394 3/2-			
		1673.5 <i>4</i>	32 <i>3</i>	372.762 5/2-	[M1]		B(M1)(W.u.)=0.0012 4
		2046.2 <i>3</i>	100 6	$0 7/2^{-}$	E2(+M3)	0.00 2	B(E2)(W.u.)=1.4 4
2067.21	7/2-	1694.3 <i>3</i>	28.0 12	372.762 5/2-	M1+E2	-0.9024	B(M1)(W.u.)=0.026 11; B(E2)(W.u.)=21 10
		2067.2 2	100.0 12	0 7/2-	M1+E2	-0.10 6	B(M1)(W.u.)=0.09 3; B(E2)(W.u.)=0.6 +8-5
2093.81	9/2-	2093.8 2	100	$0 7/2^{-}$	M1+E2	-5.9 11	$B(M1)(W.u.)=4.8\times10^{-5} 22$; $B(E2)(W.u.)=1.1 4$
2102.7	3/2-	1509.2 5	50	593.394 3/2-	M1+E2	+2.0 17	B(M1)(W.u.)=0.0010 +14-10; $B(E2)(W.u.)=4.9 25$
		1730.0 6	100 40	372.762 5/2-	[M1]		B(M1)(W.u.)=0.006 4
		2102.8 5	50 <i>30</i>	0 7/2-	[E2]		B(E2)(W.u.)=1.2 9
2223.9	3/2-,5/2-	1630.4 5	100.0 23	593.394 3/2-	M1+E2		δ : -0.50 25 for J=5/2; +0.8 +4-10 for J=3/2.
		1851.2 <i>4</i>	74.5 23	372.762 5/2-	M1+E2		δ : -0.20 5 for J=5/2; >+11, or <-5.6 for J=3/2.
2249.01	9/2-	570.7 5	2.3 6	1677.84 11/2			

$\gamma(^{43}\text{Ca})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\ddagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.§	δ^{\S}	Comments
2249.01	9/2-	1876.3 2 2248.9 2	12.6 <i>11</i> 100.0 <i>11</i>	372.762 5/2 ⁻ 0 7/2 ⁻	E2(+M3) M1+E2	-0.01 <i>3</i> -0.75 <i>12</i>	B(E2)(W.u.)=8.1 <i>19</i> B(M1)(W.u.)=0.029 8; B(E2)(W.u.)=9 <i>3</i>
2272.8	3/2+,5/2+	877.8 <i>4</i>	19 <i>4</i>	1394.473 5/2+	M1+E2	-0.73 12	δ : -10 +4-13 for J=5/2; +0.1 4 for J=3/2.
2409.68	9/2+	1283.3 <i>5</i> 508.0 <i>7</i>	100 <i>4</i> 24 <i>4</i>	990.257 3/2 ⁺ 1901.99 7/2 ⁺	M1+E2		$δ$: -11 +2-4 for J=5/2; -0.26 5 for J=3/2. I_{γ} : from $(p,p'\gamma)$.
		732 ^{&} 1015.2 2	<15 98 9	1677.84 11/2 ⁻ 1394.473 5/2 ⁺	[E2]		B(E2)(W.u.)=22 8
		2409.6 <i>3</i>	100 9	0 7/2-	E1(+M2)	-0.03 4	$B(E1)(W.u.)=1.5\times10^{-5}$ 6; $B(M2)(W.u.)<0.04$
2611.1	1/2-	564.9 <i>3</i> 2017.6 <i>5</i>	54 <i>16</i> 100 <i>16</i>	2046.21 3/2 ⁻ 593.394 3/2 ⁻	[M1] [M1]		B(M1)(W.u.)=0.33 17 B(M1)(W.u.)=0.013 6
2674.3	5/2-,7/2-	1276.0 <mark>&</mark> <i>10</i>		1394.473 5/2+			
		2301.5 8 2674.6 8	100	372.762 5/2 ⁻ 0 7/2 ⁻			
2696.5	3/2+,5/2+	1706.2 <i>6</i> 2103.1	57.7 <i>14</i> 27 <i>14</i>	990.257 3/2 ⁺ 593.394 3/2 ⁻			
		2324.4 9	100.0 14	372.762 5/2-	[E1]		B(E1)(W.u.)>0.00062
2754.00 2769.6	15/2 ⁻ (1/2,3/2,5/2)	1076.14 <i>15</i> 1779.1 <i>6</i>	100	1677.84 11/2 ⁻ 990.257 3/2 ⁺	E2(+M3)	-0.02 2	B(E2)(W.u.)=1.86 8
2844.7	(5/2) ⁺	2176.6 8 942.1 6		593.394 3/2 ⁻ 1901.99 7/2 ⁺			
2044.7	(3/2)	1450.2		1394.473 5/2+			
2878.7	1/2-	2845.7 <i>11</i> 831.4 ^{&} <i>10</i>		0 7/2 ⁻ 2046.21 3/2 ⁻			γ seen in (n,γ) only.
2070.7	1/2	922.1 <mark>&</mark> 6		1957.4 1/2+			E_{γ} : γ seen in $(\alpha, n\gamma)$ only.
		2285.2 <i>10</i> 2505.9 &		593.394 3/2 ⁻ 372.762 5/2 ⁻			γ reported in (n,γ) and $(\alpha,n\gamma)$. γ seen in $(^{3}\text{He},\alpha\gamma)$ only.
2943.5	3/2-	840.9 10	12 8	2102.7 3/2-			y seen in (ric, a y) only.
		1953.2 2350.3 <i>4</i>	35 <i>13</i> 100 <i>12</i>	990.257 3/2 ⁺ 593.394 3/2 ⁻			
		2570.1 8 2943.4	100 <i>40</i> 12 <i>7</i>	372.762 5/2 ⁻ 0 7/2 ⁻			
2951.33	11/2+	541.5 <i>3</i>	21.5 15	2409.68 9/2+	M1+E2	-0.04 2	B(M1)(W.u.)=0.0041 11; B(E2)(W.u.)=0.06 +7-5
		857.6 <i>3</i> 1049.0 <i>4</i>	100.0 <i>15</i> 32.3 <i>15</i>	2093.81 9/2 ⁻ 1901.99 7/2 ⁺	E1(+M2) [E2]	0.00 2	B(E1)(W.u.)=0.00012 3 B(E2)(W.u.)=2.2 6
3028.7 3030.4	(3/2 to 7/2) (1/2,3/2,5/2)	2655.9 8 2040.1	100 45 <i>13</i>	372.762 5/2 ⁻ 990.257 3/2 ⁺			
	(1/2,3/2,3/2)	2436.9	100	593.394 3/2-			
3049.6 3050.6	11/2-	3049.5 ^{&} 15 801.7 7	100 23 2	0 7/2 ⁻ 2249.01 9/2 ⁻	[M1]		B(M1)(W.u.)>0.30
3030.0	11/2	1373.0 6	100 4	1677.84 11/2	M1+E2	+0.30 5	B(M1)(W.u.)>0.33; B(E2)(W.u.)>23
		1373.0 6	100 4	1677.84 11/2-	M1+E2	+0.30 5	B(M1)(W.u.)>0.23; B(E2)(W.u.)>23

$\gamma(^{43}\text{Ca})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.§	δ§	Comments
3050.6	11/2-	3049.7 11	69 4	0	7/2-	E2(+M3)	-0.02 2	B(E2)(W.u.)>5.1
3076.0	$(5/2)^+$	3075.9 <i>15</i>	100	0	7/2-			
3096.0	$(1/2^- \text{ to } 7/2^-)$	2502.4 8		593.394	3/2-			
		2723.4 11		372.762				
3097.0	$(5/2^+ \text{ to } 11/2^+)$	687.3 7		2409.68	9/2+			
		1195.0 <i>10</i>		1901.99	7/2+			
3195.6	7/2+,9/2+	350.7 <i>4</i>		2844.7	$(5/2)^+$			
		1294.1 7		1901.99	7/2+			
3270	(5/2)	1876 <mark>&</mark>	35	1394.473	5/2+			
		2280 <mark>&</mark>	100	990.257	3/2+	D+O	+0.07 5	
		3270 ^{&}	69	0	7/2-	D(+Q)	-0.13 <i>13</i>	
3285.7	3/2-	1239.6 9	100 30	2046.21	3/2-	[M1]	-0.13 13	B(M1)(W.u.)>0.096
3203.7	3/2	2692.2	50 20	593.394		[1411]		I_{γ} : quoted by 1978En02.
		2912.8	50 20	372.762				I_{γ} : quoted by 1978En02. I_{γ} : quoted by 1978En02.
3315.2	1/2-,3/2-	1269.0 6	100	2046.21	3/2-	[M1]		B(M1)(W.u.)=0.08 4
3371.19	13/2+	419.6 3	51 <i>3</i>	2951.33	11/2+	[1111]		B(M1)(Mai) 0.00 /
3371.17	15/2	617.1 7	63 <i>3</i>	2754.00	15/2-			
		961.6 2	100 <i>3</i>	2409.68	9/2+	E2(+M3)	0.00 2	B(E2)(W.u.)>2.3
		1693.7 9	29 3	1677.84	11/2-	(:::::)		_()()/
3376.6		1282.8 9		2093.81	9/2-			
3505.3	13/2+	554.1 5	16 <i>3</i>	2951.33	11/2+	M1+E2	-0.062	B(M1)(W.u.)=0.21 8; B(E2)(W.u.)=7 6
	,	751.1 6	17 <i>3</i>	2754.00	15/2-	[E1]		B(E1)(W.u.)=0.0023 9
		1827.4 9	100 <i>3</i>	1677.84	$11/2^{-}$	E1(+M2)	-0.03~3	$B(M2)\downarrow = 1.1 \ II$
								B(E1)(W.u.)=0.0009 3; B(M2)(W.u.)<3.5
3572.2	3/2-	1525.4 <i>10</i>	58 17	2046.21	3/2-			
		2978.9 <i>7</i>	100 25	593.394				
		3199.3	25 17	372.762				
3662.5	13/2-	612.0 7	20 3	3050.6	$11/2^{-}$	[M1]		B(M1)(W.u.)=0.24 11
		908.0 9	21 3	2754.00	$15/2^{-}$	[M1]		B(M1)(W.u.)=0.08 4
		1412.9 7	23 3	2249.01	9/2-	[E2]		B(E2)(W.u.)=32 15
		1984.8 9	100 3	1677.84	11/2	M1+E2	-0.60 14	B(M1)(W.u.)=0.026 12; B(E2)(W.u.)=7 3
3816.1	$(7/2^{-})$	1406.4 7	100	2409.68	9/2+	3.64 (7.75)		P. 0.410 (TV.) . 0.40 (
3943.81	15/2+	438.5 4	100 14	3505.3	13/2+	M1(+E2)	0.00 2	B(M1)(W.u.)=0.18 6
		572.6 2	67 <i>14</i>	3371.19	13/2+	[M1]		B(M1)(W.u.)=0.053 20
		993	20.14	2951.33	11/2+	FF 13		E_{γ} : from (¹⁸ O, α n γ).
4127.0	7.12+ 0.12+	1189.8 7	29 14	2754.00	15/2-	[E1]		B(E1)(W.u.)=6.E-5 4
4135.9	7/2+,9/2+	1184.6 6	100	2951.33	11/2+			
4174.8	15/0+	1902.0 10	100	2272.8	3/2+,5/2+	D. (11)		D(M1/W1) 0.00 4
4186.5	15/2+	681.1 4	16 4	3505.3	13/2 ⁺	[M1]	0.15.2	B(M1)(W.u.)=0.08 4
4207.2	1/2-	815.4 6	100 4	3371.19	13/2+	M1+E2	$-0.15\ 2$	B(M1)(W.u.)=0.27 11; B(E2)(W.u.)=27 13
4207.2	1/2-	2161.1 6	45 <i>13</i>	2046.21	3/2-			

γ (43Ca) (continued)

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${\rm J}_f^\pi$	Mult.§	δ§	Comments
4207.2 4394.8	1/2 ⁻ 15/2 ⁻	3613.4 8 731.9 5 1641.1 7	100 23 54 7 90 7	593.394 3662.5 2754.00	13/2 ⁻ 15/2 ⁻	[M1] M1+E2	-0.50 14	B(M1)(W.u.)=0.30 <i>13</i> B(M1)(W.u.)=0.035 <i>15</i> ; B(E2)(W.u.)=9 6
4591.0	17/2+	2717.4 <i>12</i> 404.4 <i>4</i> 647.2 <i>3</i> 1837.4 <i>9</i>	100 7 49 10 100 10 55 10	1677.84 4186.5 3943.81 2754.00	11/2 ⁻ 15/2 ⁺ 15/2 ⁺ 15/2 ⁻	E2(+M3) [M1] M1(+E2) E1(+M2)	0.00 2 0.00 2 0.00 2	B(E2)(W.u.)=4.2 <i>18</i> B(M1)(W.u.)=0.38 <i>13</i> B(M1)(W.u.)=0.19 <i>6</i> B(E1)(W.u.)=0.00011 <i>4</i>
4603.4 4621.2	$(1/2,3/2,5/2^+)$ $15/2^+$	4009.8 & 677.4 <i>4</i> 1249.9 <i>7</i>	39 <i>6</i> 100 <i>6</i>	593.394 3943.81 3371.19		[M1] M1(+E2)	-0.02 3	B(M1)(W.u.)=0.26 11 B(M1)(W.u.)=0.11 4; B(E2)(W.u.)<0.3
4641.6 4901.2	3/2 ⁺ ,5/2 ⁺ 1/2 ⁻ ,3/2 ⁻	2595.3 ^{&} 2628.3 2798.4 2854.9 4307.6	67 33 100 67 100 50 67 50	2046.21 2272.8 2102.7 2046.21 593.394				
5037.5 5155.4	1/2 ⁻ ,3/2 ⁻ (13/2,17/2) ⁻	2992.4 <i>10</i> 760.4 <i>5</i>	100 5	2046.21 4394.8	3/2 ⁻ 15/2 ⁻	M1+E2	-0.11 4	B(M1)(W.u.)=0.42 16; B(E2)(W.u.)=25 21 δ : from -0.15 2 (for J π =13/2 $^-$) and -0.08 2 (for J π =17/2 $^-$).
5394.7 5555.4	(11/2 ⁻ to 19/2 ⁻) (15/2,19/2) ⁺	1493.1 <i>5</i> 2640.6 <i>10</i> 964.5 <i>6</i>	54 5 100 66	3662.5 2754.00 4591.0	13/2 ⁻ 15/2 ⁻ 17/2 ⁺	M1 F2		, ,
5931.5 6223.6 (7932.7)	(11/2 to 19/2) ⁻ (17/2,21/2) ⁺ 1/2 ⁺	1611.4 7 776.1 5 668.2 5 2895.1 5 3031.3 10 3291.1 3330.0 3725.3 3 4359.5 5 4616.6 9 4646.2 6 4989.2 5 5054.2 5 5321.4 5 5828.6 15 5886.0 4 5975.2 15 7339.0 7	100 100 100 3.8 6 2.1 6 15.7 32 5.5 8 1.1 6 4.5 9 6.8 9 4.5 8 7.7 11 1.7 6 100 15 1.1 6 10.8 17	3943.81 5155.4 5555.4 5037.5 4901.2 4641.6 4603.4 4207.2 3572.2 3315.2 3285.7 2943.5 2878.7 2611.1 2102.7 2046.21 1957.4 593.394	15/2+ (13/2,17/2) ⁻ (15/2,19/2) ⁺ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 3/2 ⁺ ,5/2 ⁺ (1/2,3/2,5/2 ⁺) 1/2 ⁻ 3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 3/2 ⁻ 1/2 ⁻ 1/2 ⁻ 3/2 ⁻ 1/2 ⁻ 1/2 ⁻ 3/2 ⁻ 1/2 ⁻ 3/2 ⁻ 1/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻ 1/2 ⁻ 3/2 ⁻	M1,E2 M1(+E2) M1(+E2)		B(M1)(W.u.)<0.9

 $^{^{\}dagger}$ From weighted average of measured E γ values in different reactions and decays, when such data are available. Otherwise, the values represent level-energy

γ (43Ca) (continued)

differences.

- * Weighted average of available data from different reactions. \$ From $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$ and $(^3\text{He}, \alpha\gamma)$, unless otherwise noted. & Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

43 **K** β^{-} decay (22.3 h) 1988Wa28,1972Wa20

Parent: 43 K: E=0; J^{π} =3/2+; $T_{1/2}$ =22.3 h I; $Q(\beta^-)$ =1833.4 5; $\%\beta^-$ decay=100.0

 $^{43}\text{K-J}^{\pi}$, $T_{1/2}$: From Adopted Levels of ^{43}K .

⁴³K-Q(β ⁻): From 2012Wa38.

1988Wa28: 43 K was produced via the 44 Ca(t, α) reaction with tritons of 3.2 MeV from the Brookhaven National Laboratory Van de Graaff accelerator. γ -rays were detected by a Ge(Li) detector. Measured E γ , I γ , β^- spectra. Deduced levels, β^- and γ branching ratios. Shell-model calculations.

1972Wa20: measured E γ , I γ , T_{1/2}.

γ: 1970La11, 1969Ta07, 1968Ch12, 1967Cl05, 1959Be72, 1957Ba07, 1955Ne01, 1954Li42.

β: 1959Be72, 1954Li42, 1949Ov01.

γγ: 1957Ba07, 1959Be72.

βγ: 1959Be72. $\beta \gamma$ (t): 1970Ho26. $\gamma\gamma(\theta)$, $\beta\gamma(\theta)$: 1957Li39.

 $T_{1/2}$ and isotopic assignment: 1972Em01, 1963Ho17, 1954An25, 1954Li42, 1954Co70, 1949Ov01.

⁴³Ca Levels

E(level) [†]	$J^{\pi \ddagger}$
0	7/2-
372.762 5	5/2-
593.394 5	$3/2^{-}$
990.257 <i>5</i>	$3/2^{+}$
1394.473 8	$5/2^{+}$

 $[\]dagger$ From least-squares fit to E γ data.

β^- radiations

E(decay)	E(level)	$I\beta^{-1}$	Log ft	Comments
(438.9 5)	1394.473	2.60 4	6.10 <i>1</i>	
(843.1 5)	990.257	90.9 6	5.60 <i>1</i>	
(1240.05)	593.394	4.06 13	7.60 2	
(1460.65)	372.762	0.9 6	8.5 <i>3</i>	$I\beta^-$: from 1988Wa28.
(1833.4 5)	0	1.54 18	9.73 ¹ <i>u</i> 5	From magnetic spectrometer measurements (1988Wa28), the Kurie plot has the expected unique first-forbidden shape.
				$I\beta^-$: from $I\beta$ (g.s.)/ $I\beta$ (990)=0.017 2 (adopted by 1988Wa28 as the average of 0.019 (1954Li42) and 0.015 (1959Be72)).

[†] Absolute intensity per 100 decays.

γ (43Ca)

Iy normalization: $I(\gamma+ce)(\gamma s \text{ to g.s.})=98.46 \ 18. \ I\beta(g.s.)=1.54 \ 18.$

E_{γ}^{\dagger}	I_{γ}^{\dagger} &	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.§	δ^{\S}
220.632 5		593.394	- /		- /		-0.09 4
372.760 [‡] 7	100.0	372.762	$5/2^{-}$	0	$7/2^{-}$	M1+E2	-0.161 <i>14</i>
396.861 6	13.65 9						-0.1 I

Continued on next page (footnotes at end of table)

[‡] From Adopted Levels.

$^{43}{\rm K}\,\beta^-$ decay (22.3 h) 1988Wa28,1972Wa20 (continued)

γ (43Ca) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} †&	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.§	δ§
404.214 13	0.420 15	1394.473	5/2+	990.257 3/2+	M1+E2	+0.32 5
593.390 <i>6</i>	12.97 9	593.394	$3/2^{-}$	0 7/2-	E2(+M3)	≈0
617.490 <i>6</i>	91.2 7	990.257	$3/2^{+}$	372.762 5/2-	E1(+M2)	-0.015 17
801.070 <i>13</i>	0.170 15	1394.473	$5/2^{+}$	593.394 3/2-	E1(+M2)	-0.034
990.245 8	0.33 4	990.257	$3/2^{+}$	$0 7/2^{-}$		
1021.698 <i>13</i>	2.26 <i>3</i>	1394.473	$5/2^{+}$	372.762 5/2-	E1(+M2)	+0.11 12
1394.448 <i>14</i>	0.151 9	1394.473	$5/2^{+}$	$0 7/2^{-}$	E1(+M2)	≈0

[†] From 1988Wa28. ‡ Recoil correction removed from E γ =372.762 (1988Wa28). § From Adopted Gammas.

[&]amp; For absolute intensity per 100 decays, multiply by 0.868 2.

43 K β^- decay (22.3 h) 1988Wa28,1972Wa20

Decay Scheme

⁴³Sc ε decay (3.891 h) 1975Yo03

Parent: ⁴³Sc: E=0; J^{π} =7/2⁻; $T_{1/2}$ =3.891 h *12*; $Q(\varepsilon)$ =2220.7 *19*; % ε +% β ⁺ decay=100.0

 43 Sc-J $^{\pi}$,T $_{1/2}$: From Adopted Levels of 43 Sc.

⁴³Sc-Q(ε): From 2012Wa38.

1975Yo03: Activity of 43 Sc was produced via the 40 Ca(α ,p) reaction using a 12 MeV α beam from the University of Pennsylvania tandem accelerator. γ -rays were detected using a 65 cm³ Ge(Li) detector. Measured E γ ,I γ . Deduced levels, branchings.

Others:

γ: 1968Ch12, 1964Ba46, 1954Li42, 1954Nu22, 1953Nu08, 1952Ha44.

 β^+ : 1964Ba46, 1954Li42, 1952Ha44, 1945Hi04, 1945Hi05.

βγ: 1954Li42.

 $T_{1/2}$ and isotopic assignment: 1969Ra16, 1963Du11, 1945Hi05, 1945Hi04. Others: 1954An25, 1953Du22, 1952Ha44, 1940Wa01, 1937Wa07, 1935Fr04.

All data are from 1975Yo03, unless otherwise noted.

⁴³Ca Levels

E(level) [†]	$J^{\pi \ddagger}$
0	7/2-
372.9 <i>3</i>	5/2-
593.2 5	$3/2^{-}$
1931.0 <i>4</i>	$5/2^{-}$

[†] From least-squares fit to Eγ data.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ †	$I\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(289.7 20)	1931.0		0.0253 10	5.68 2	0.0253 10	
(1847.8 19)	372.9	17.2 5	5.33 17	4.98 2	22.5 7	
(2220.7 19)	0	70.9 6	6.64 9	5.04 <i>1</i>	77.5 7	$I(\varepsilon + \beta^+)$: from $I(\gamma^\pm) = 783\ 24$ relative to $I(373\gamma) = 100$ (1975 Yo 03).

[†] Absolute intensity per 100 decays.

γ (43Ca)

Iy normalization: $I(\gamma+ce)(\gamma s \text{ to g.s.})=22.5 \text{ 7.}$ Total $\varepsilon+\beta^+$ feeding to g.s.=77.5 7 deduced by 1975Yo03 from $I(\gamma^\pm)=783 \text{ } 24$ relative to $I(373\gamma)=100$. Other $\%\varepsilon+\beta^+=78$ (quoted by 1975Yo03 from 1963Du11).

E_{γ}	I_{γ} §	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
(220.4)	0.0040 [‡] 14	593.2	$3/2^{-}$	372.9 5/2-	M1+E2	-0.09 4	
372.9 <i>3</i>	100	372.9	$5/2^{-}$	$0 7/2^{-}$	M1+E2	-0.161 <i>14</i>	
593.3 7	0.0095 32	593.2	$3/2^{-}$	$0 7/2^{-}$	E2		$\delta(M3/E2)\approx 0$.
1337.9 7	0.0080 10	1931.0	$5/2^{-}$	593.2 3/2-			
1558.3 6	0.0375 22	1931.0	$5/2^{-}$	372.9 5/2-	M1+E2	+0.28 14	
1930.7 <i>6</i>	0.0672 34	1931.0	$5/2^{-}$	$0 7/2^{-}$	M1+E2	$-0.8 \ 3$	

[†] From Adopted Gammas.

[‡] From Adopted Levels.

[‡] Normalized from Adopted branching.

[§] For absolute intensity per 100 decays, multiply by 0.225 7.

⁴³Sc ε decay (3.891 h) 1975Yo03

Decay Scheme

Intensities: I_{γ} per 100 parent decays

²⁷Al(¹⁹F,2pn γ) **1976Po03**

Includes ²⁸Si(¹⁸O,n2py) from 1974Li06.

1976Po03 (also 1974Po10): E=40 MeV 19 F beam was produced at the Brookhaven National Laboratory. Target of aluminum evaporated onto a tungsten backing. γ -rays were detected by Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(\text{lin pol})$. Deduced levels, $T_{1/2}$ by recoil distance method. 1974Po10 also use 27 Al(18 O,pn γ) E=30 MeV reaction. 1974Li06: 28 Si(18 O,n2p γ). Measured $T_{1/2}$ by recoil-distance method for the level at 2755 keV.

⁴³Ca Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$
0	7/2-			$11/2^{-}$		2951.5 [@] 3	11/2+	<14 ps
372.81 5	5/2-		1901.80 [@] 20	7/2+		3371.2 [@] 4		
593.39 8	$3/2^{-}$		2093.90 20	9/2-		3943.8 [@] 5		<3.5 ps
	$3/2^{+}$	51 ps 8	2409.80 [@] 20	9/2+		4591.0 [@] 6	$17/2^{+}$	
1394.60 [@] 9	$5/2^{+}$		2753.96 25	$15/2^{-}$	23.6 [#] ps 10			

[†] From Adopted Levels.

γ (⁴³Ca)

When A₄=0, it indicates that the fit was not improved by the inclusion of P₄ term.

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
220.58	1.33	593.39	3/2-	372.81 5/2-	$A_2 = -0.11 5, A_4 = 0.$
372.81	≈24.0	372.81	5/2-	0 7/2-	
396.93	1.70	990.32	$3/2^{+}$	593.39 3/2-	
404.15	1.98	1394.60	5/2+	990.32 3/2+	$A_2 = -0.25 5, A_4 = 0.$
419.7 <i>3</i>	2.50	3371.2	$13/2^{+}$	2951.5 11/2 ⁺	$A_2 = -0.16 \ 12$, $A_4 = 0$. Pol=-0.41 13.
541.6 <i>3</i>	0.98	2951.5	$11/2^{+}$	2409.80 9/2+	$A_2 = -0.46 \ 19, A_4 = 0.$
572.64 20	4.03	3943.8	$15/2^{+}$	$3371.2 13/2^+$	$A_2 = -0.25 5$, $A_4 = 0$. Pol= $-0.08 5$.
617.23	≈1.3	3371.2	$13/2^{+}$	2753.96 15/2-	
617.51	6.44	990.32	$3/2^{+}$	372.81 5/2-	$A_2 = -0.21 \ 4$, $A_4 = 0$. Pol=+0.11 9.
647.2 <i>3</i>	1.35	4591.0	$17/2^{+}$	$3943.8 15/2^+$	$A_2 = -0.17 7, A_4 = 0.$
857.65 <i>25</i>	3.30	2951.5	$11/2^{+}$	2093.90 9/2-	$A_2 = -0.09 \ 10, \ A_4 = 0.$
911.49	≈0.63	1901.80	$7/2^{+}$	990.32 3/2+	$A_2 = +0.28 \ 2$, $A_4 = -0.16 \ 2$. Pol=+0.53 14.
961.60 <i>20</i>	4.13	3371.2	$13/2^{+}$	2409.80 9/2+	$A_2 = +0.23 5, A_4 = -0.10 5.$
1015.19	≈3.6	2409.80	9/2+	1394.60 5/2 ⁺	$A_2 = +0.35 \ 2$, $A_4 = -0.12 \ 2$. Pol=+0.19 15.
1021.78	4.15	1394.60	$5/2^{+}$	372.81 5/2-	$A_2 = +0.08 4$, $A_4 = 0$.
1049.1 <i>4</i>	≈1.0	2951.5	$11/2^{+}$	1901.80 7/2 ⁺	
1076.15 <i>15</i>	27.0	2753.96	$15/2^{-}$	1677.80 11/2-	$A_2 = +0.25 \ 2$, $A_4 = -0.11 \ 2$. Pol=+0.43 7.
1677.76	47 16	1677.80	$11/2^{-}$	0 7/2-	A_2 =+0.23 2, A_4 =-0.08 2 for unresolved γ . Pol=+0.30 8.
1693.36	≈1.0	3371.2	$13/2^{+}$	1677.80 11/2-	
1901.75	3.40	1901.80	$7/2^{+}$	0 7/2-	$A_2 = +0.17 6, A_4 = -0.13 6.$
2093.85	< 8.5	2093.90	$9/2^{-}$	$0 7/2^{-}$	$A_2 = -0.11 \ 3$, $A_4 = +0.11 \ 3$. Pol= $-0.05 \ 22$.
2409.73	3.71	2409.80	9/2+	0 7/2-	$A_2 = -0.23 5, A_4 = 0.$

[†] From level-energy differences, when no uncertainty is quoted.

[‡] Recoil-distance method in 1976Po03, unless otherwise noted.

[#] 27 ps 4 from 1974Li06.

[@] Band(A): 3/2⁺ band.

²⁷Al(19 F,2pn γ) 1976Po03

30 Si(18 O, α n γ) 1998Be29

1998Be29 (also 1997Be09,1996Be39): E=60 MeV 18 O beam was produced from the XTU Tandem of Laboratori Nazionali di Legnaro (LNL). Target of 360 μ g/cm 2 SiO 2 . γ -rays were detected in the multi-detector 4π GASP array of 36 Compton-suppressed HPGe detectors and 80 BGO detectors and heavy recoils were separated by the Recoil Mass Spectrometer (RMS). Measured E γ , I γ , $\gamma\gamma$. Deduced levels.

⁴³Ca Levels

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	$J^{\pi^{\dagger}}$
0	7/2-	1678 <i>1</i>	$11/2^{-}$	2951 [‡] <i>1</i>	11/2+	4591 [#] <i>1</i>	17/2+
				3371 [#] 1			
593 1	3/2-	2094 <i>1</i>	9/2-	3505 1	$13/2^{+}$	6223 [#] 2	$(21/2^+)$
				3944 [‡] 1			
1394 [#] <i>1</i>	$5/2^{+}$	2754 <i>1</i>	$15/2^{-}$	4187 <i>1</i>	$15/2^{+}$		

 $^{^\}dagger$ As proposed by 1998Be29 and 1996Be39 based on DCO ratio analysis.

$\gamma(^{43}\text{Ca})$

E_{γ}	I_{γ}	E_i (level)	J_i^π	\mathbf{E}_f	\mathbf{J}_f^{π}	Εγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
220	1.0	593	$3/2^{-}$	373	$5/2^{-}$	801	0.3	1394	$5/2^{+}$	593	$3/2^{-}$
373	33.9	373	5/2-	0	$7/2^{-}$	815	4.6	4187	$15/2^{+}$	3371	$13/2^{+}$
397	3.6	990	$3/2^{+}$	593	$3/2^{-}$	857	10.5	2951	$11/2^{+}$	2094	9/2-
404	2.6	1394	5/2+	990	$3/2^{+}$	912	1.1	1902	$7/2^{+}$	990	$3/2^{+}$
404	2.9	4591	$17/2^{+}$	4187	$15/2^{+}$	961	14.0	3371	$13/2^{+}$	2410	$9/2^{+}$
420	6.5	3371	$13/2^{+}$	2951	$11/2^{+}$	964	12.3	5555	$(19/2^+)$	4591	$17/2^{+}$
439	2.0	3944	$15/2^{+}$	3505	$13/2^{+}$	993	1.9	3944	$15/2^{+}$	2951	$11/2^{+}$
508	1.2	1902	$7/2^{+}$	1394	5/2 ⁺	1016	8.2	2410	9/2+	1394	5/2+
508	1.2	2410	9/2+	1902	$7/2^{+}$	1021	10.1	1394	5/2+	373	5/2-
541	2.9	2951	$11/2^{+}$	2410	$9/2^{+}$	1049	1.0	2951	$11/2^{+}$	1902	$7/2^{+}$
554	1.9	3505	$13/2^{+}$	2951	$11/2^{+}$	1076	75.4	2754	$15/2^{-}$	1678	$11/2^{-}$
573	19.6	3944	$15/2^{+}$	3371	$13/2^{+}$	1190	4.5	3944	$15/2^{+}$	2754	$15/2^{-}$
593	2.0	593	3/2-	0	$7/2^{-}$	1611	18.6	5555	$(19/2^+)$	3944	$15/2^{+}$
617		990	3/2+	373	5/2-	1678	100	1678	$11/2^{-}$	0	$7/2^{-}$
617	4.9	3371	$13/2^{+}$	2754	$15/2^{-}$	1837	4.5	4591	$17/2^{+}$	2754	$15/2^{-}$
647	9.6	4591	$17/2^{+}$	3944	$15/2^{+}$	2094	13.9	2094	$9/2^{-}$	0	$7/2^{-}$
668	5.4	6223	$(21/2^+)$	5555	$(19/2^+)$	2410	7.5	2410	9/2+	0	$7/2^{-}$
751	3.6	3505	$13/2^{+}$	2754	$15/2^{-}$						

[‡] Band(A): 3/2+ band.

[#] Band(B): 5/2+ band.

$\begin{array}{c|c} 30 \textbf{Si} (^{18}\textbf{O}, \alpha \textbf{n} \gamma) & \textbf{1998Be29} \\ \hline & \textbf{Legend} \\ \hline \\ \underline{\textbf{Level Scheme}} \\ \\ \textbf{Intensities: Relative I}_{\gamma} & \longrightarrow & \textbf{I}_{\gamma} < 2\% \times \textbf{I}_{\gamma}^{max} \\ \hline & & \textbf{I}_{\gamma} < 10\% \times \textbf{I}_{\gamma}^{max} \\ \hline & & \textbf{I}_{\gamma} > 10\% \times \textbf{I}_{\gamma}^{max} \\ \hline \end{array}$

30 Si(18 O, α n γ) 1998Be29

⁴⁰**Ar**(α,**n**γ) **1979Be27**

1979Be27 (also 1978Be16): E=5.5-19 MeV α beam was produced at the Oliver Lodge Laboratory of University of Liverpool. Target of solid natural argon (3-5 mg/cm²) on 250 μ m thick Au or Ta backings. γ -rays were detected in a Ge(Li) detector. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(\ln pol)$. Deduced levels, J, π , γ -branching ratios, T_{1/2} by DSAM.

Others:

```
1974Sc09: E=8.5 MeV. Measured T_{1/2} by DSAM.
1972Al12: E=13.5 MeV. Measured E\gamma, I\gamma, \gamma\gamma, \gamma(\theta).
1972Bi13: E=5.5-8 MeV. Measured \gamma, ce, T_{1/2} by DSAM.
1972Ka41, 1969Ka18: E=6.3-8.0 MeV. Measured T_{1/2} by DSAM.
1976Fi08: <sup>40</sup>Ar(\alpha,n) E=24.1 MeV. Measured \sigma(E<sub>n</sub>,\theta).
1987Wa29: <sup>40</sup>Ar(\alpha,n) E=26 MeV. Measured \sigma(E<sub>n</sub>,\theta).
```

⁴³Ca Levels

A 1984.8 level (decaying by a 1985 γ) proposed by 1972Al12 is not supported by the $\gamma\gamma$ coin and excitation function data of 1979Be27. From $\gamma\gamma$ data, the 1985 γ is assigned by 1979Be27 from the 3663 level.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ^a	Comments
0.0	7/2-		
372.76 14	5/2-	34 ps <i>3</i>	$T_{1/2}$: weighted average of 29 ps 6 (1974Sc09), 35 ps 3 (1972Bi13).
593.48 <i>14</i>	3/2-	81 ps 4	T _{1/2} : weighted average of 98 ps 10 (1974Sc09), 80 ps 4 (1972Bi13), 71 ps 9 (1972Ka41).
990.31 <i>18</i>	3/2+	48 ps 4	T _{1/2} : weighted average of 64 ps 7 (1974Sc09), 46 ps 3 (1972Bi13), 45 ps 6 (1972Ka41).
1394.78 20	5/2+	2.4 ps 8	$T_{1/2}$: other: 3.4 ps 6 (1972Ka41).
1677.7 <i>4</i>	11/2-	1.5 ps 9	-1-
1902.06 25	7/2+	0.50 ps <i>13</i>	
1931.85 24	5/2-	0.125 ps <i>35</i>	
1957.4 <i>4</i>	1/2+	1.07 ps 32	
2046.1 <i>3</i>	$3/2^{-}$	0.83 ps 24	
2067.5 5	$7/2^{-}$	<28 fs	$T_{1/2}$: other: <12 ps (1972Ka41).
2094.0 5	9/2-	1.5 ps 4	
2102.8 4	$3/2^{-}$	0.33 ps 9	
2223.8 4	$(3/2,5/2)^{-}$	28 fs 17	
2249.4 <i>4</i>	9/2-	24 fs 17	
2273.0 4	$(3/2,5/2)^+$	0.28 ps 8	
2409.8 <i>4</i>	9/2+	1.1 ps 4	
2611.1 <i>4</i>		0.13 ps 5	
2675.0 8		87 fs 42	
2696.9 <i>6</i>		<38 fs	
2753.9 <i>5</i>	$15/2^{-}$		
2769.7 <i>5</i>		0.10 ps 4	
2844.8 5		0.55 ps <i>15</i>	
2879.2 6		0.107 ps <i>38</i>	
2943.6 5		<60 fs	
2951.3 4	$11/2^{+}$	4.7 ps <i>12</i>	
3028.7 9		<60 fs	
3049.6 <i>15</i>		<60 fs	
3050.7 5	$11/2^{-}$	<17 fs	
3076.0 <i>15</i>		<17 fs	
3096.1 7		<17 fs	
3097.1 7		0.76 ps 20	
3195.7 5		0.12 ps 4	
3286.0 <i>10</i>		<60 fs	
3315.6 11	12/2+	0.13 ps 6	
3371.1 <i>4</i>	13/2+	>3.5 ps	

40 Ar(α ,n γ) **1979Be27** (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{a}$	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{a}$
3376.8 10	<u> </u>		4394.8 6	15/2-	42 fs <i>17</i>
3505.2 5	$13/2^{+}$	73 fs 24	4590.8 <i>5</i>	17/2+	0.21 ps 5
3662.5 5	$13/2^{-}$	49 fs 21	4621.0 6	15/2+	76 fs 28
3816.2 8		69 fs 38	5155.4 6	$13/2^-, 17/2^{-\#}$	76 fs 28
3943.6 5	$15/2^{+}$	0.76 ps 21	5394.6 11		0.104 ps <i>31</i>
4135.9 7		<0.26 ps	5555.2 7	$(15/2,19/2)^+$	1.4 ps 4
4175.0 11			5931.5 8	$(11/2,15/2,19/2)^{-}$	55 fs <i>17</i>
4186.4 5	$15/2^{+}$	0.13 ps 5	6223.4 9	$(17/2,21/2)^{+}$	0.58 ps 15

[†] From least-squares fit to E γ data. [‡] From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ (1979Be27).

[#] No observed transitions to J≤11/2 and excitation function favors 17/2.

[®] No observed transitions to J<11/2 and excitation function favors 19/2.

[&] No observed transitions to J<13/2 and excitation function favors 21/2.

^a From DSAM method (1979Be27) unless otherwise noted.

⁴⁰Ar(α ,n γ) 1979Be27 (continued)

$\gamma(^{43}\text{Ca})$

	$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
	372.76	5/2-	372.7 2	100	0.0 7/2	M1+E2	-0.161 <i>14</i>	Mult., δ : from Adopted Gammas; sign(δ) from $\gamma(\theta, \text{pol})$. A ₂ =+0.01 <i>I</i> , A ₄ =-0.02 <i>I</i> . Pol=-0.06 <i>I</i> .
	593.48	$3/2^{-}$	220.7 2	29.1 5	372.76 5/2	M1(+E2)	-0.07 7	$A_2 = +0.01 \ I$, $A_4 = -0.03 \ I$. Pol=-0.08 3.
			593.5 2	70.9 5	0.0 7/2	E2		$A_2=+0.08 I$, $A_4=-0.02 I$. Pol=+0.08 I. $\delta(O/Q)\approx 0$.
	990.31	3/2+	396.9 2	12.6 <i>3</i>	593.48 3/2-	E1		δ (M2/E1)=-0.1 <i>I</i> . A ₂ =+0.07 <i>I</i> , A ₄ =-0.02 <i>I</i> . Pol=-0.16 5.
			617.1 4	87.4 <i>3</i>	372.76 5/2-	E1		$\delta(M2/E1) = -0.02 2.$
	1394.78	5/2+	404.3 <i>3</i>	11.7 <i>4</i>	990.31 3/2+	M1+E2	+0.32 5	A ₂ =-0.05 <i>I</i> , A ₄ =+0.01 <i>I</i> . Pol=+0.09 <i>I</i> . A ₂ =+0.14 <i>I</i> , A ₄ =+0.02 <i>I</i> . Pol=-0.47 6.
	1374.70	3/2	801.2 4	5.7 4	593.48 3/2	E1	10.32 3	$\delta(M2/E1) = -0.03 \ 4.$
			1021.6 4	77.6 <i>4</i>	372.76 5/2-	E1		$A_2 = -0.21 \ 2$, $A_4 = +0.02 \ 2$. Pol=+0.35 <i>12</i> . $\delta(M2/E1) = +0.11 \ 12$.
								$A_2 = +0.25 \ I$, $A_4 = -0.02 \ I$. Pol=-0.31 3.
			1394.8 <i>4</i>	11.7 4	0.0 7/2-	E1		δ (M2/E1)=0. A ₂ =-0.25 3, A ₄ =+0.09 3. Pol=+0.12 19.
	1677.7	$11/2^{-}$	1677.7 6	100	0.0 7/2-	E2		$\delta(O/Q) = -0.02 \ 2.$
	1902.06	7/2+	507	17 <i>4</i>	1394.78 5/2 ⁺			$A_2 = +0.33 \ 2$, $A_4 = -0.10 \ 2$. Pol=+0.53 2.
l			911.6 <i>3</i>	13 4	990.31 3/2+	E2		$\delta(O/Q) = -0.02 \ 3.$ $A_2 = +0.54 \ 4, A_4 = -0.25 \ 4.$
			1902.1 5	70 [‡] 4	0.0 7/2-	E1		$A_2 = +0.344$, $A_4 = -0.234$. $\delta(M2/E1) = +0.034$.
	1021.05	<i>5.1</i> 2-			•		2.2.25	$A_2 = +0.33 \ I$, $A_4 = -0.01 \ I$. Pol=-0.45 12.
	1931.85	5/2-	1338.4 <i>5</i> 1559.6 <i>5</i>	6.6 <i>10</i> 35.1 <i>10</i>	593.48 3/2 ⁻ 372.76 5/2 ⁻	M1+E2 M1+E2	+2.2 25 +0.28 14	A ₂ =+0.52 8, A ₄ =+0.12 7. A ₂ =+0.43 2, A ₄ =-0.03 1. Pol=+0.48 17.
			1931.6 <i>3</i>	58.3 10	0.0 7/2	M1+E2	-0.8 3	A_2 =+0.31 <i>I</i> , A_4 =+0.02 <i>I</i> . Pol=-0.36 <i>I</i> 2.
	1957.4	$1/2^{+}$	967.1 4	28 1	990.31 3/2+			
	2046 1	2/2-	1364.0 5	100 1	593.48 3/2			
	2046.1	3/2-	651.0 <i>4</i> 1056.0 <i>5</i>	2 7	1394.78 5/2 ⁺ 990.31 3/2 ⁺	E1		$\delta(M2/E1) = 0.00 \ 3.$
			-000.00	•	2,0.01 0/2			$A_2=+0.40$ 5, $A_4=-0.11$ 4.
			1451	8	593.48 3/2-			
			1675	20	372.76 5/2			
			2046.6 9	63 [‡]	0.0 7/2	E2		$\delta(O/Q) = 0.00 \ 2.$ $A_2 = +0.08 \ I$, $A_4 = 0.00 \ I$. Pol=+0.25 7.
	2067.5	7/2-	1694.7 6	21.9 9	372.76 5/2-	M1+E2	-0.90 24	$A_2 = -0.06 I$, $A_4 = 0.00 I$. $10I = +0.25 I$. $A_2 = -0.94 3$, $A_4 = +0.12 3$. $Pol = +0.25 II$.
			2067.5 6	78.1 9	0.0 7/2	M1+E2	-0.10 6	$A_2 = +0.32 \ I$, $A_4 = +0.01 \ I$. Pol=+0.96 12.
	2094.0	9/2-	2094.2 8	100	$0.0 7/2^{-}$	M1+E2	-5.9 11	A ₂ =-0.19 2, A ₄ =+0.16 2. Pol=+0.09 5.
	2102.8	3/2-	1509.2 <i>5</i>	25	593.48 3/2	M1+E2	+2.0 17	δ: +0.3 to +3.7. A ₂ =+0.27 2, A ₄ =-0.05 3. Pol=-0.03 12.
			1730.1 6	50	372.76 5/2-			$A_2 = +0.09 \ 2$, $A_4 = -0.07 \ 2$. Pol=-0.20 8.

107

⁴⁰Ar(α ,n γ) **1979Be27** (continued)

γ (43Ca) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
2102.8	3/2-	2102.9 5	25	0.0				
2223.8	$(3/2,5/2)^{-}$	1630.3 5	57.3 <i>13</i>	593.48	$3/2^{-}$	M1+E2		δ : -0.50 25 for J=5/2; +0.8 +4-10 for J=3/2.
		105106	40.7.12	272.76	<i>51</i> 2-	M1 - E2		$A_2 = -0.48 I$, $A_4 = +0.01 I$. Pol=+0.01 5.
		1851.0 6	42.7 13	372.76	5/2	M1+E2		δ : -0.20 5 for J=5/2; >+11, or <-5.6 for J=3/2. A ₂ =+0.11 2, A ₄ =+0.01 2. Pol=+0.35 9.
2249.4	9/2-	1876.8 6	11 <i>I</i>	372.76	5/2-	E2		$\delta(O/Q) = -0.01 \ 3.$
	>/ -	10,0.0 0	** *	0.2	C/ Z			$A_2 = +0.40 \text{ 6}, A_4 = -0.34 \text{ 8}. \text{ Pol} = +1.0 \text{ 5}.$
		2249.5 7	89 <i>1</i>	0.0	$7/2^{-}$	M1+E2	-0.75 12	$A_2 = -0.85 \ 2$, $A_4 = +0.05 \ 3$. Pol=+0.15 7.
2273.0	$(3/2,5/2)^+$	877.8 <i>4</i>	16 <i>3</i>	1394.78	$5/2^{+}$	M1+E2		δ : -10 +4-13 for J=5/2; +0.1 4 for J=3/2.
								$A_2 = -0.10 \ I$, $A_4 = 0.00 \ I$. Pol= $-0.05 \ 3$.
		1283.3 <i>5</i>	84 3	990.31	$3/2^{+}$	M1+E2		δ: -11 +2-4 for J=5/2; -0.26 5 for J=3/2.
			e					$A_2 = +0.01 \ 2$, $A_4 = -0.03 \ 2$. $Pol = +0.24 \ 8$.
2409.8	9/2+	508.0 7	11 [§] 2	1902.06				
		1015	44 [§] 4	1394.78	$5/2^{+}$			
		2409.8 6	45 [‡] 4	0.0	$7/2^{-}$	E1		$\delta(M2/E1) = -0.03 \ 4.$
								$A_2 = -0.26 \ I$, $A_4 = +0.01 \ I$. Pol=+0.15 $I0$.
2611.1		565.0 <i>3</i>		2046.1				
		2017.5 6		593.48	,			
2675.0		2302.2 7		372.76				
2.00.0		2674.6 ^{&} 8	26.60	0.0				γ not seen in $(p,p'\gamma)$.
2696.9		1706.2 <i>6</i> 2324.9 <i>9</i>	36.6 9	990.31	,			A .0262 A .0022 B L 0.6172
2753.9	15/2-	2324.9 9 1076.0 5	63.4 <i>9</i> 100	372.76 1677.7	,	E2		A_2 =+0.26 2, A_4 =+0.02 2. Pol=-0.61 12. $\delta(O/O)$ =-0.02 2.
2133.9	13/2	1070.0 3	100	10//./	11/2	E2		$A_2 = +0.36 I$, $A_4 = -0.14 I$. Pol=+0.60 3.
2769.7		1779.1 6		990.31	3/2+			11/2-10.30 1, 114- 0.14 1. 101-10.00 3.
,,,		2176.6 8		593.48				
2844.8		750.9 <mark>&</mark>		2094.0	9/2-			γ treated as uncertain (by evaluators) in view of adopted J π (2844)=
					-/-			$(5/2)^+$ and $J\pi(2094)=9/2^-$.
		942.1 6		1902.06	$7/2^{+}$			
		1450.0		1394.78				
		2845.7 11			7/2-			
2879.2		922.1 6		1957.4	,			
2042 (2285.0 10		593.48	,			
2943.6		2350.4 <i>6</i> 2570.1 <i>8</i>		593.48 372.76				
2951.3	11/2+	541.5 3	14 <i>I</i>	2409.8	3/2 9/2 ⁺	M1+E2	-0.04 2	A ₂ =-0.16 <i>I</i> , A ₄ =+0.03 <i>I</i> . Pol=-0.20 <i>I</i> 3.
2/31.3	11/2	857.4 <i>4</i>	65 <i>1</i>	2094.0	,	E1	0.07 2	$\delta(M2/E1)=0.00 2.$
		50	00 1	307	-/-			$A_2 = -0.15 I$, $A_4 = +0.01 I$. Pol=+0.39 3.
		1048.9 5	21 <i>I</i>	1902.06	$7/2^{+}$			
3028.7		2655.9 8	100	372.76				$A_2 = +0.32 \ 2$, $A_4 = -0.05 \ 2$. Pol=+0.48 10.
3049.6		3049.5 <i>15</i>	100	0.0	$7/2^{-}$			

108

⁴⁰Ar(α ,n γ) **1979Be27** (continued)

γ (43Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
3050.7	11/2-	801.7 7	12 2	2249.4	9/2-			
		1373.0 6	53 2	1677.7	$11/2^{-}$	M1+E2	+0.30 5	$A_2 = +0.42 \ 2$, $A_4 = -0.02 \ I$. Pol=+0.50 $I0$.
		3049.7 <i>11</i>	36 2	0.0	7/2-	E2		$\delta(O/Q) = -0.02 \ 2.$
3076.0		3075.9 <i>15</i>	100	0.0	$7/2^{-}$			A ₂ =+0.37 2, A ₄ =-0.04 2. Pol=-0.50 16.
3096.1		2502.4 8		593.48				
		2723.4 11		372.76				
3097.1		687.3 7		2409.8				
		1195.0 <i>10</i>		1902.06	7/2+			Pol=+0.45 <i>10</i> .
3195.7		350.7 <i>4</i>		2844.8				
		1294.1 7		1902.06				
3286.0		1239.9 9		2046.1	3/2-			
3315.6		1269.5 <i>10</i>		2046.1	3/2-			
3371.1	$13/2^{+}$	419.5 5	21.0 12	2951.3	$11/2^{+}$			
		617.1 <i>7</i>	26.0 12	2753.9	15/2			
		961.6 8	41.0 <i>12</i>	2409.8	9/2+	E2		$\delta(O/Q) = 0.00 \ 2.$
								$A_2 = +0.27 \ 2$, $A_4 = -0.13 \ 2$. Pol=+0.55 7.
		1693.7 9	12.0 <i>12</i>	1677.7	$11/2^{-}$			
3376.8		1282.8 9		2094.0	9/2-			
3505.2	$13/2^{+}$	554.1 5	12 2	2951.3	$11/2^{+}$	M1+E2	$-0.06\ 2$	$A_2 = -0.30 \ 3$, $A_4 = -0.07 \ 4$. Pol=0.00 3.
		751.1 6	13 2	2753.9	$15/2^{-}$			
		1827.4 9	75 2	1677.7	$11/2^{-}$	E1		$\delta(M2/E1) = -0.03 \ 3.$
								$A_2 = -0.15 \ I$, $A_4 = 0.00 \ I$. Pol=+0.41 6.
3662.5	$13/2^{-}$	612.0 7	12 2	3050.7	$11/2^{-}$			
		908.0 9	13 2	2753.9	15/2			
		1412.9 7	14 2	2249.4	9/2-			
		1984.8 9	61 2	1677.7	$11/2^{-}$	M1+E2	-0.60 14	$A_2 = -0.92 \ 3$, $A_4 = +0.11 \ 4$. Pol= $-0.03 \ 10$.
3816.2		1406.4 7		2409.8	9/2+			
3943.6	$15/2^{+}$	438.5 4	51 7	3505.2	13/2+	M1(+E2)	0.00 2	$A_2 = -0.24 \ 2$, $A_4 = -0.01 \ 2$. Pol=-0.34 5.
		572.2 6	34 7	3371.1	$13/2^{+}$			
		1189.8 7	15 7	2753.9	15/2			
4135.9		1184.6 6		2951.3	11/2+			
4175.0	1	1902.0 <i>10</i>		2273.0	$(3/2,5/2)^+$			
4186.4	$15/2^{+}$	681.1 4	14 3	3505.2	13/2+		0.4.7.2	
12010	1.5/0-	815.4 6	86 <i>3</i>	3371.1	13/2+	M1+E2	-0.15 2	$A_2 = -0.50 \ 2$, $A_4 = -0.01 \ 2$. Pol=-0.28 5.
4394.8	$15/2^{-}$	731.9 5	22 3	3662.5	13/2) (1 F2	0.50 3.1	
		1641.1 7	37 3	2753.9	15/2-	M1+E2	-0.50 14	$A_2 = +0.43$ 7, $A_4 = -0.17$ 7. Pol=+0.56 25.
		2717.4 12	41 3	1677.7	$11/2^{-}$	E2		$\delta(O/Q) = 0.00 \ 2.$
4500 0	15 'a±	40.4.4.4	24 -	446 * *	1 = /o.+			$A_2 = +0.49 \ 7$, $A_4 = -0.18 \ 6$. Pol=+0.96 30.
4590.8	$17/2^{+}$	404.4 4	24 5	4186.4	15/2+		0.00.5	
		647.2 5	49 5	3943.6	15/2+	M1(+E2)	0.00 2	$A_2 = -0.30 \ I$, $A_4 = -0.03 \ 2$. Pol=-0.47 7.
		1837.4 9	27 5	2753.9	15/2	E1		$\delta(M2/E1) = 0.00 2.$
4621.0	$15/2^{+}$	677.4 <i>4</i>	28 4	3943.6	$15/2^{+}$			

40 Ar(α ,n γ) 1979Be27 (continued)

γ (43Ca) (continued)

$E_i(level)$	$_{\tt J}_i^\pi$	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
4621.0	15/2+	1249.9 7	72 4	3371.1	13/2+	M1(+E2)	-0.02 3	A ₂ =-0.26 5, A ₄ =+0.07 6. Pol=-0.47 20.
5155.4	$13/2^-, 17/2^-$	760.4 5	65 <i>3</i>	4394.8	15/2-	M1+E2		δ : $-0.08\ 2$ or $-0.15\ 2$.
								$A_2 = -0.36 \ 2$, $A_4 = -0.05 \ 2$. Pol= $-0.20 \ 10$.
		1493.1 6	35 <i>3</i>	3662.5	13/2-			δ : 0.00 2 for 17/2 to 13/2, but no $\gamma(\theta)$ data quoted.
5394.6		2640.6 10		2753.9	15/2-			
5555.2	$(15/2,19/2)^+$	964.5 6	<60	4590.8	17/2+			
		1611.4 7	>40	3943.6	15/2+	M1,E2		δ : 0.00 2 for $19/2^+$ to $15/2^+$; +0.7 1 for $15/2^+$ to $15/2^+$.
								$A_2 = +0.37 5$, $A_4 = -0.19 6$. Pol=+0.37 25.
5931.5	$(11/2,15/2,19/2)^{-}$	776.1 5	100	5155.4	13/2-,17/2-	M1(+E2)		δ : -0.03 2; +0.07 3; -0.11 2 for different Jπ values.
								$A_2 = -0.28 \ 3$, $A_4 = -0.01 \ 4$. Pol= $-0.33 \ 18$.
6223.4	$(17/2,21/2)^+$	668.2 <i>5</i>	100	5555.2	$(15/2,19/2)^+$	M1(+E2)		δ: -0.02 3; +0.06 3; +0.09 3 for different J $π$ values.
								$A_2 = -0.27 \ 4$, $A_4 = -0.05 \ 5$. Pol=-0.40 17.

[†] From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ (1979Be27).

110

[†] Quoted by 1979Be27 from 1978En02. § $I(508\gamma)=44$ 4 and $I(1015\gamma)=11$ 2 in 1979Be27 could be mistakenly assigned to each other. Values seem to be from $(p,p'\gamma)$ (1972Gr04). & Placement of transition in the level scheme is uncertain.

⁴⁰**Ar**(α,**n**γ) **1979Be27**

Level Scheme

40 Ar(α ,n γ) 1979Be27

Level Scheme (continued)

⁴⁰**Ar**(α,**n**γ) **1979Be27**

Level Scheme (continued)

⁴⁰**Ar**(α,**n**γ) **1979Be27**

Level Scheme (continued)

41 K(3 He,p) 1968Do02

 $J\pi(^{41}K \text{ g.s.})=3/2^+.$

1968Do02: E=13.0 MeV ³He beam was produced at the Laboratory for Nuclear Science. Target of enriched ⁴¹KI (99.18%) on a thin carbon backing, thickness of 78 $\mu g/cm^2$. Protons were analyzed with the MIT multiple gap spectrograph. Measured $\sigma(E_p,\theta)$ for transitions up to 9 MeV excitation. A total of 28 groups reported up to 9 MeV excitation. Deduced levels, J, π , L from DWBA analysis.

E(level)	L	$d\sigma/d\Omega \; (\mu b/sr)^{\dagger}$	Comments
0‡		10 [‡]	
990	0	18	Weak population is consistent with configuration= $1f_{7/2}^41d_{3/2}^{-1}$, J=3/2, T=3/2 as proposed by 1966Do02 in (d,p).
1393?		<4	Very weak population suggests a configuration more complicated than $1f_{7/2}^4 1d_{3/2}^{-1}$; J=3/2,T=3/2, proposed by 1966Do02 in (d,p).
2050 [‡]		10 [‡]	,,2 0,2
2270 [‡]		15 [‡]	
2843	0	46	Strongest transition below 6 MeV. Strong population relative to the 990 group is consistent with configuration= $1f_{7/2}^4 1d_{3/2}^{-1}$; $J\pi=3/2^+$, $T=3/2$.
3100 [‡]		15 [‡]	7 7
3300 [‡]		30 [‡]	
3916	2	10 [‡]	Similarity to 4984, 9/2 ⁺ state in ⁴¹ Ca indicates 4p-1h component in this level.
6300 [‡]		40 [‡]	
6410 [‡]		30 [‡]	
6460 [‡]		45 [‡]	
6570 [‡]		30 [‡]	
6640 [‡]		60 [‡]	
6680 [‡]		60 [‡]	
6790 [‡]		100 [‡]	
6950 [‡]		80 [‡]	
7040 [‡]		50 [‡]	
7090 [‡]		80 [‡]	
7190 [‡]		160 [‡]	
7500 [‡]		190 [‡]	
7570 [‡]		80 [‡]	
7730 [‡]		80 [‡]	
7920 [‡]		95 [‡]	
8033 <i>30</i>	0	640 [‡]	T=5/2 IAS of ⁴³ K ground state.
8160 [‡]		35 [‡]	
8270 [‡]		45 [‡]	
8470 [‡]		110 [‡]	
8930 [‡]		90 [‡]	

 $^{^{\}dagger}$ At θ =7.5°. ‡ Approximate value read from a plot (in 1968Do02) of excitation energy versus d σ /d Ω . Uncertainty in level energy is estimated at \approx 30 keV.

⁴¹**K**(α ,**d**) **1977Na30**

 $J\pi(^{41}K \text{ g.s.})=3/2^+$.

1977Na30 (also 1975Na18): E=40 MeV α beam was produced from the MSU Cyclotron. Enriched 41 K target (98%) on a thin carbon foil, thickness of $\approx 100~\mu g/cm^2$. Deuteron particles were analyzed with a split-pole magnetic spectrograph (FWHM=40 keV) and detected by a proportional-counter in the focal plane. Measured $\sigma(E_d,\theta)$ from 6° to 55° . Deduced levels, J, π , L from DWBA analysis. Absolute differential cross sections are accurate to 30%.

For transferred proton-neutron pair, proposed configurations are: $(d_{3/2}p_{3/2})$ for L=3, $[(f_{7/2})_5^2 + (f_{7/2}p_{3/2})_5]$ for L=4, $(d_{3/2}f_{7/2})$ for L=5, $[(f_{7/2})_5^2 + (f_{7/2}p_{3/2})_5 + (f_{7/2})_7^2]$ for L=4+6, and $(f_{7/2}^2)_7$ for L=6.

E(level)	J ^{π#}	L	$d\sigma/d\Omega \ (\mu b/sr)^{\ddagger}$
0	7/2 ⁻ @	5	150
2045 10	3/2 ⁻ @	3	65
2850 10	$(11/2^+,13/2^+)$	4+6	23, 20
2951 10		6	76
3072 10	$(11/2^+,13/2^+)$	4+6	10, 18
3196 [†] <i>10</i>			
3278 10	$(11/2^+ \text{ to } 17/2^+)$	6	24
3372 10		6	79
3500 10	$(11/2^+,13/2^+)$	4+6	130, 110
3838 10	$(7/2^+ \text{ to } 13/2^+)$	4	60
3944 10		6	135
4134 10	$(11/2^+,13/2^+)$	6	78
4191 <i>10</i>	$(11/2^+ \text{ to } 17/2^+)$	6	220
4291 <i>10</i>	$(11/2^+,13/2^+)$	4+6	32, 21
4357 10	$(11/2^+,13/2^+)$	4+6	58, 25
4462 10	$(11/2^+,13/2^+)$	4+(6)	33, 6
4591 <i>10</i>		6	510
4701 <i>10</i>			
4888 10	$(11/2^+ \text{ to } 17/2^+)$	6	105
5189 <i>10</i>	$(11/2^+,13/2^+)$	4+6	20,35
5246 10	$(11/2^+,13/2^+)$	4+6	110, 28
5351 <i>10</i>	$(11/2^+,13/2^+)$	4+6	78, 34
5696 10	$(11/2^+,13/2^+)$	4+6	42, 37
6087 10			
6173 <i>10</i>			

[†] Very weakly populated.

[‡] At 10°

[#] Above 2045, the assignments are from 1977Na30, based on $L(\alpha,d)$ from $3/2^+$. For transferred proton-neutron pair, proposed configurations are: $(d_{3/2}p_{3/2})$ for L=3, $[(f_{7/2})_5^2 + (f_{7/2}p_{3/2})_5]$ for L=4, $(d_{3/2}f_{7/2})$ for L=5, $[(f_{7/2})_5^2 + (f_{7/2}p_{3/2})_5 + (f_{7/2})_7^2]$ for L=4+6, and $(f_{7/2})_7^2$ for L=6.

[@] From Adopted Levels.

42 Ca(n, γ) E=thermal 1969Gr08,1978Ve06

1969Gr08: Thermal neutron beam was produced from the Dutch High Flux Reactor, with intensity of 10^7 cm⁻²s⁻¹ on enriched 42 Ca target. γ -rays were detected by a 6.5 cm³ planar Ge(Li) detector. Measured E γ , I γ , $\gamma\gamma$. Deduced levels, J, γ -branching ratios.

1978Ve06: Polarized thermal neutron beam was produced from the HFR at Petten, with intensity of 2×10⁷ cm⁻²s⁻¹ on enriched ⁴²Ca target. γ-rays were detected with Ge(Li) detectors. Measured γ(circ pol). Deduced levels, J.

Others:

1971BiZH: E=thermal. Measured E γ , I γ , $\gamma\gamma$.

1971Cr02: E=thermal. Measured E γ , I γ . Data for three secondary γ -rays.

1989Ra06: E=thermal.

⁴³Ca Levels

E(level) [‡]	${\sf J}^{\pi^{\frac{1}{7}}}$	T _{1/2}	Comments
0.0	7/2-		
372.72 17	5/2-		
593.31 23	3/2 ^{-&}		
990.4 <i>3</i>	3/2 ⁺ 5/2 ⁺		
1394.5 <i>5</i>	5/2 ⁺		
1957.3 8	1/2+		
2046.33 <i>21</i>	3/2 ^{-&}		
2102.8 5	3/2-		
2272.8 12			
2610.9 4	1/2 ^{-&}		
2878.2 5	1/2-&		
2943.5 <i>4</i>	3/2-&		
3286.1 <i>6</i>	3/2-&		
3315.4 6	1/2-,3/2-		
3572.6 <i>4</i>	3/2-&		
4207.3 <i>4</i>	1/2 ^{-&}		
4602.6 11			
4641.5 <i>11</i>	$(1/2,3/2,5/2^+)$ $3/2^+,5/2^+$		
4901.2 6	$1/2^{-},3/2^{-}$		
5037.8 6	1/2-,3/2-&		
(7932.7 [#] 3)	1/2+ @	1.1 eV 2	Γ from 2006MuZX.

[†] From Adopted Levels, unless otherwise stated.

γ (⁴³Ca)

Iy normalization: normalized assuming Iy(g.s.)=100. Capture σ_0 =0.68 b 7 (2006MuZX). Asymmetry ratios from (pol n,y) are given under comments as R values.

$E_{\gamma}^{\dagger \ddagger}$	$I_{\gamma}^{\dagger \&}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
220.6 3	11 <i>I</i>	593.31	$3/2^{-}$	372.72	5/2-
372.70 20	38 4	372.72	$5/2^{-}$	0.0	$7/2^{-}$
396.9 <i>4</i>	0.9 2	990.4	$3/2^{+}$	593.31	$3/2^{-}$

 $^{^{\}ddagger}$ Least-squares fit to E γ data.

[#] Observed de-excitation intensity is 88% 8 of g.s. feeding.

[®] s-wave capture in ⁴²Ca g.s.

[&]amp; From (pol n,γ) measurements (1978Ve06).

⁴²Ca(n, γ) E=thermal 1969Gr08,1978Ve06 (continued)

γ (43Ca) (continued)

$\mathrm{E}_{\gamma}^{\dagger\ddagger}$	I_{γ} †&	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}^{π}_f	Comments
404.0 8	0.5 2	1394.5	5/2+	990.4	3/2+	
564.4 6	1.5 5	2610.9	1/2-	2046.33		
593.4 6	23 2	593.31	3/2-	0.0	7/2-	
617.7 <i>3</i>	6.6 7	990.4	3/2+	372.72	5/2-	
651.6 6	0.9 5	2046.33	$3/2^{-}$	1394.5	5/2+	
831.4 10	0.4 2	2878.2	1/2-	2046.33	3/2-	
840.9 <i>10</i>	0.3 2	2943.5	$3/2^{-}$	2102.8	3/2-	
^x 878.2 6	0.9 2					
967.5 <i>15</i>	≈0.2	1957.3	1/2+	990.4	3/2+	
1021.5 10	1.4 4	1394.5	5/2+	372.72		
1055.9 6	4.2 6	2046.33	3/2-	990.4	3/2+	
1239.1 <i>12</i>	1.0 2	3286.1	3/2-	2046.33	,	
1268.9 6	0.7 2	3315.4	1/2-,3/2-	2046.33		
1363.9 10	1.5 10	1957.3	1/2+	593.31	3/2-	
^x 1370.5 10	1.1 2	2016.22	2/2-	502.21	2/2-	
1453.0 3	4.9 5	2046.33	3/2-	593.31		
1525.4 10	0.7 2	3572.6	3/2-	2046.33		
1673.5 4	11.9 12	2046.33	3/2-	372.72		
1729.9 10	1.2 4	2102.8	3/2-	372.72		
2017.8 <i>8</i> 2046.3 <i>3</i>	2.8 <i>3</i> 38 <i>4</i>	2610.9 2046.33	1/2 ⁻ 3/2 ⁻	593.31 0.0	3/2 7/2 ⁻	
2102.7 6	1.2 5	2102.8	3/2-	0.0	7/2 ⁻	
2161.1 6	2.1 3	4207.3	1/2-	2046.33		
2285.4 10	1.4 3	2878.2	1/2	593.31		
2350.3 4	2.5 3	2943.5	3/2-	593.31	,	
2595.3 [@]	2.0 0	4641.5	3/2+,5/2+	2046.33		
2628.4		4901.2	1/2 ⁻ ,3/2 ⁻	2272.8	3/2	$I\gamma(2628)/I\gamma(2855)=0.67$ 47 (quoted by 1990En08).
2798.4		4901.2	1/2 ,3/2 1/2 -,3/2 -	2102.8	3/2-	$I_{\gamma}(2028)/I_{\gamma}(2855)=0.07$ 47 (quoted by 1990En08). $I_{\gamma}(2798)/I_{\gamma}(2855)=1.00$ 85 (quoted by 1990En08).
2854.8		4901.2	1/2 ,3/2	2046.33		17(2770)/17(2033)=1.00 03 (quoted by 1770Enoo).
2895.1 5	2.0 3	(7932.7)	1/2+,3/2	5037.8	1/2-,3/2-	R=+2.1 9 (1978Ve06).
2978.9 7	1.2 3	3572.6	3/2-	593.31		11 (2)1 (15/6 (600))
2992.4 10	0.6 3	5037.8	1/2-,3/2-	2046.33		
3031.3 10	1.1 3	(7932.7)	1/2+	4901.2	1/2-,3/2-	R=+0.9 5 (1978Ve06).
3199.4	0.3 2	3572.6	3/2-	372.72		,
3291.1		(7932.7)	1/2+	4641.5	3/2+,5/2+	
3330.0		(7932.7)	1/2+	4602.6	$(1/2,3/2,5/2^+)$	
3613.4 8	4.7 12	4207.3	$1/2^{-}$	593.31	3/2-	
x3654.7 6	0.9 3					
3725.3 <i>3</i>	8.3 12	(7932.7)	1/2+	4207.3	1/2-	R=+0.98 15 (1978Ve06).
4009.8 [@]		4602.6	$(1/2,3/2,5/2^+)$	593.31	3/2-	
4307.6		4901.2	$1/2^-,3/2^-$	593.31	3/2-	$I\gamma(4308)/I\gamma(2855)=0.67$ 60 (quoted by 1990En08).
4359.5 5	2.9 4	(7932.7)	1/2+	3572.6	3/2-	R=-0.4 2 (1978Ve06).
4616.6 9	0.6 3	(7932.7)	1/2+	3315.4	$1/2^-,3/2^-$	
4646.2 6	2.4 5	(7932.7)	1/2+	3286.1	3/2-	R=-0.3 2 (1978Ve06).
^x 4836.8 9	≈0.1					
4989.2 5	3.6 5	(7932.7)	1/2+	2943.5	3/2-	$R=-0.55 \ 18 \ (1978 \text{Ve}06).$
5054.2 5	2.4 4	(7932.7)	1/2+	2878.2	1/2-	R=+0.6 3 (1978Ve06).
5321.4 5	4.1 6	(7932.7)	1/2+	2610.9	1/2-	R=+0.79 19 (1978Ve06).
^x 5420.7 12	≈0.2	(5022 5)	1 (2+	2102.0	2./2-	
5828.6 <i>15</i>	0.9 3	(7932.7)	1/2+	2102.8	3/2-	
5886.0 <i>4</i>	53 [§] 8	(7932.7)	1/2+	2046.33		$R=-0.50 \ 3 \ (1978Ve06).$
5975.2 <i>15</i>	0.6 3	(7932.7)	1/2+	1957.3	1/2+	D 0 70 11 (10 70 1 0 0)
7339.0 7	5.7 9	(7932.7)	1/2+	593.31	3/2	R=-0.50 11 (1978Ve06).

⁴²Ca(\mathbf{n} , γ) E=thermal 1969Gr08,1978Ve06 (continued)

γ (43Ca) (continued)

- \dagger From 1969Gr08. Recoil correction, applied by 1969Gr08, has been removed by the evaluators.
- [‡] Gamma energies in 1969Gr08 have been compared with those in the PGAA-LBL Budapest database (2007ChZX).
- § From measured elemental σ_{γ} =0.024 b 4 (2007ChZX, PGAA database), abundance of 42 Ca=0.647%, and σ_{0} =0.68 b 7 (2006MuZX), σ_{γ} =0.37 b 6 and I γ =54 10/100 n-captures, which agrees with 53 8 from 1969Gr08.
- & Intensity per 100 neutron captures.
- [®] Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

⁴²Ca(n,γ) E=thermal 1969Gr08,1978Ve06

⁴²Ca(\mathbf{n} , γ),(\mathbf{n} , \mathbf{n}):resonances **2006MuZX**

2006MuZX: Compilation of thermal neutron induced σ and resonance parameter data for nuclei of Z=1-100.

1977Mu02: E(n)>2.5 keV. Measured parameters for about 60 resonances (24 s-wave and 21 p-wave) between 9.143 keV and 229.6 keV.

1971Ch56: E(n)=10-100 keV. Measured $E\gamma$, resonances.

1966Fa02: E(n)=30-600 keV. Measured resonances Others: 1971Ch56, 1966Go38.

⁴³Ca Levels

 $g\Gamma_n = (2J+1)\Gamma_n/2$.

All resonance parameters including resonance neutron energies, $J\pi$, L, $g\Gamma_n$ and Γ_γ are directly adopted from the compilation in 2006MuZX unless otherwise indicated.

7929.2?	E(level) [†]	Γ_{γ}	L	E _n (lab) (keV)	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7929.2?	1.06 eV	0	-3.85	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$g\Gamma_n=1.0 \text{ eV } 5.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7942.02 17	0.645 eV 80	0	9.345 <i>4</i>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7951.50 <i>17</i>		1	19.06 <i>1</i>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.435 eV 50	0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$g\Gamma_n\Gamma_{\gamma}/\Gamma=0.42 \text{ eV } 5.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7956.11 <i>17</i>		1	23.78 1	$g\Gamma_n\Gamma_{\nu}/\Gamma=0.022 \text{ eV } 4.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7958.56 17	0.68 eV 10	0	26.29 <i>1</i>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$g\Gamma_n\Gamma_\gamma/\Gamma=0.56 \text{ eV } 6.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7968.85 <i>17</i>	0.56 eV 5	1	36.82 <i>1</i>	$g\Gamma_n=2$ eV.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7969.45 <i>17</i>	1.36 eV <i>15</i>	0	37.44 <i>1</i>	$g\Gamma_n = 1000 \text{ eV } 300.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		$g\Gamma_n\Gamma_\gamma/\Gamma=0.33 \text{ eV } 4.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7980.00 <i>17</i>	0.61 eV 6	0	48.24 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7981.59 <i>17</i>	0.31 eV 5	1	49.87 2	
7991.74 17 0.8 eV 1 0 60.26 2 $g\Gamma_n\Gamma_\gamma/\Gamma=0.68$ eV 7. $g\Gamma_n=20$ eV. $g\Gamma_n\Gamma_\gamma/\Gamma=0.77$ eV 8. 7996.53 17 0.38 eV 5 0 65.17 3 $g\Gamma_n=50$ eV. $g\Gamma_n\Gamma_\gamma/\Gamma=0.38$ eV 5. $g\Gamma_n\Gamma_\gamma/\Gamma=0.38$ eV 5. $g\Gamma_n\Gamma_\gamma/\Gamma=0.38$ eV 5. $g\Gamma_n\Gamma_\gamma/\Gamma=0.21$ eV 4. 8006.39 17 1 75.27 3 $g\Gamma_n\Gamma_\gamma/\Gamma=0.44$ eV 5. $g\Gamma_n\Gamma_\gamma/\Gamma=0.44$ eV 6. $g\Gamma_n\Gamma_\gamma/\Gamma=0.51$ eV 7. $g\Gamma_n\Gamma_\gamma/\Gamma=0.51$ eV 7. $g\Gamma_n\Gamma_\gamma/\Gamma=0.71$ eV 8. $g\Gamma_n\Gamma_\gamma/\Gamma=0.71$ eV 6. $g\Gamma_n\Gamma_\gamma/\Gamma=0.71$ eV 7. $g\Gamma_n\Gamma_\gamma/\Gamma=0.71$ eV 6. $g\Gamma_n\Gamma_\gamma/\Gamma=0.82$ eV 10.				* 0.04.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7989.86 17	0.79 eV 8	0	58.34 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7001.74.17	0.0 17.1	0	60.06.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/991./4 1/	0.8 eV 1	0	60.26 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7007 52 17	0.20 11.5	0	65 17 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/990.33 1/	0.38 eV 3	U	05.17 3	6
8006.39 17	2002 06 17		1	70.92.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 10 eV 15			
8013.58 17 0.44 eV 5 0 82.63 4 $g\Gamma_n = 200 \text{ eV } 50$. 8014.19 17 0.5 eV 1 1 83.25 4 $g\Gamma_n = 10 \text{ eV}$. 8020.10 17 89.31 4 $g\Gamma_n \Gamma_\gamma / \Gamma = 0.83 \text{ eV } 10$. 8020.46 17 89.68 4 $g\Gamma_n \Gamma_\gamma / \Gamma = 0.69 \text{ eV } 10$. 8023.43 19 92.72 8 $g\Gamma_n \Gamma_\gamma / \Gamma = 0.51 \text{ eV } 7$. 8023.71 19 93.00 8 $g\Gamma_n \Gamma_\gamma / \Gamma = 0.71 \text{ eV } 8$. 8025.53 19 94.87 8 $g\Gamma_n \Gamma_\gamma / \Gamma = 0.47 \text{ eV } 6$. 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_n \Gamma_\gamma / \Gamma = 0.82 \text{ eV } 10$.	0007.50 17	1.17 CV 13	U	70.40 3	6
8014.19 17 0.5 eV 1 1 83.25 4 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.44$ eV 5. $g\Gamma_{n}=10$ eV. $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.83$ eV 10. 8020.10 17 89.31 4 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.79$ eV 10. 8020.46 17 89.68 4 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.69$ eV 10. 8023.43 19 92.72 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.51$ eV 7. 8023.71 19 93.00 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.71$ eV 8. 8025.53 19 94.87 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.47$ eV 6. 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.82$ eV 10.	8013 58 <i>17</i>	0.44 eV 5	0	82 63 4	
8014.19 17 0.5 eV 1 1 83.25 4 $g\Gamma_n=10$ eV. $g\Gamma_n\Gamma_\gamma/\Gamma=0.83$ eV 10. 8020.10 17 89.31 4 $g\Gamma_n\Gamma_\gamma/\Gamma=0.79$ eV 10. 8020.46 17 89.68 4 $g\Gamma_n\Gamma_\gamma/\Gamma=0.69$ eV 10. 8023.43 19 92.72 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.51$ eV 7. 8023.71 19 93.00 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.71$ eV 8. 8025.53 19 94.87 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.47$ eV 6. 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.82$ eV 10.	0013.30 17	0.11013	Ü	02.03 /	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8014.19 <i>17</i>	0.5 eV 1	1	83.25 4	
8020.10 17 89.31 4 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.79 \text{ eV } 10.$ 8020.46 17 89.68 4 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.69 \text{ eV } 10.$ 8023.43 19 92.72 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.51 \text{ eV } 7.$ 8023.71 19 93.00 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.71 \text{ eV } 8.$ 8025.53 19 94.87 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.47 \text{ eV } 6.$ 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.82 \text{ eV } 10.$	001	0.0 0 . 1	•	00.20	C
8020.46 17 89.68 4 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.69 \text{ eV } 10.$ 8023.43 19 92.72 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.51 \text{ eV } 7.$ 8023.71 19 93.00 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.71 \text{ eV } 8.$ 8025.53 19 94.87 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.47 \text{ eV } 6.$ 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_{n}\Gamma_{\gamma}/\Gamma=0.82 \text{ eV } 10.$	8020.10 <i>17</i>			89.31 <i>4</i>	
8023.43 19 92.72 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.51 \text{ eV } 7.$ 8023.71 19 93.00 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.71 \text{ eV } 8.$ 8025.53 19 94.87 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.47 \text{ eV } 6.$ 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.82 \text{ eV } 10.$					
8023.71 19 93.00 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.71 \text{ eV } 8.$ 8025.53 19 94.87 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.47 \text{ eV } 6.$ 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_n\Gamma_\gamma/\Gamma=0.82 \text{ eV } 10.$					
8025.53 19 94.87 8 $g\Gamma_n\Gamma_{\gamma}/\Gamma=0.47 \text{ eV } 6.$ 8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_n=5 \text{ eV.}$ $g\Gamma_n\Gamma_{\gamma}/\Gamma=0.82 \text{ eV } 10.$					C = 1
8028.49 19 0.98 eV 15 0 97.90 8 $g\Gamma_n = 5$ eV. $g\Gamma_n \Gamma_{\gamma} / \Gamma = 0.82$ eV 10.	8025.53 19			94.87 8	
$g\Gamma_n\Gamma_{\gamma}/\Gamma=0.82 \text{ eV } 10.$		0.98 eV 15	0		
8033.77 20 1 103.3 I $g\Gamma_n\Gamma_{\gamma}/\Gamma=0.40 \text{ eV } 6.$					
	8033.77 20		1	103.3 <i>1</i>	$g\Gamma_n\Gamma_\gamma/\Gamma=0.40 \text{ eV } 6.$

⁴²Ca(n,γ),(n,n):resonances 2006MuZX (continued)

⁴³Ca Levels (continued)

E(level) [†]	Γγ	L	E _n (lab) (keV)	Comments
8047.14 20	1.60 eV 15	0	117.0 <i>I</i>	$g\Gamma_n=20$ eV.
				$g\Gamma_n\Gamma_\gamma/\Gamma=1.50 \text{ eV } 15.$
8049.19 20	0.41 eV 8	1	119.1 <i>I</i>	$g\Gamma_n=10 \text{ eV}.$
0052 0 10	1.55 37	0	100 1	$g\Gamma_n\Gamma_\gamma/\Gamma=0.76 \text{ eV } 12.$
8052.0 <i>10</i>	1.55 eV	0	122 <i>I</i>	$g\Gamma_n = 3750 \text{ eV}.$
9055 02 20	0.70 aV 9	1	126.0.1	$g\Gamma_n\Gamma_\gamma/\Gamma=1.55$ eV.
8055.93 20	0.70 eV 8	1	126.0 <i>I</i>	$g\Gamma_n=10 \text{ eV.}$ $g\Gamma_n\Gamma_\gamma/\Gamma=1.23 \text{ eV } 15.$
8057.0 10		0	127 <i>I</i>	$g\Gamma_n = 11000 \text{ eV}.$
0007.010		Ü	12, 1	$g\Gamma_n\Gamma_\gamma/\Gamma=1.5.$
8057.01 20		1	127.1 <i>1</i>	$g\Gamma_n\Gamma_{\gamma}/\Gamma = 1.03 \text{ eV } 13.$
8057.40 20			127.5 <i>1</i>	$g\Gamma_n\Gamma_{\gamma}/\Gamma=0.72 \text{ eV } 10.$
8058.28 20			128.4 <i>I</i>	$g\Gamma_n\Gamma_\gamma/\Gamma=1.26 \text{ eV } 15.$
8061.0 <i>3</i>	0.56 eV 8	1	131.2 2	$g\Gamma_n=5 \text{ eV}.$
0062.1.2		0	122.4.2	$g\Gamma_n\Gamma_\gamma/\Gamma=0.50 \text{ eV } 8.$
8062.1 <i>3</i> 8066.0 <i>3</i>	0.41 eV 8	0 1	132.4 2 136.3 2	$g\Gamma_n\Gamma_\gamma/\Gamma=0.87 \text{ eV } 10.$
8000.0 3	0.41 ev o	1	130.3 2	$g\Gamma_n=5 \text{ eV.}$ $g\Gamma_n\Gamma_\gamma/\Gamma=0.38 \text{ eV } 6.$
8073.8 <i>3</i>	0.94 eV 15	0	144.3 2	$g\Gamma_n=75 \text{ eV}.$
	01,710112			$g\Gamma_n\Gamma_\gamma/\Gamma=0.93 \text{ eV } 13.$
8074.5 <i>3</i>	0.47 eV 8	1	145.1 2	$g\Gamma_n=20$ eV.
				$g\Gamma_n\Gamma_\gamma/\Gamma=0.89 \text{ eV } 13.$
8075.4 <i>3</i>			146.0 2	$g\Gamma_n\Gamma_{\gamma}/\Gamma=0.67 \text{ eV } 9.$
8078.3 3		0	148.9 2	$g\Gamma_n\Gamma_\gamma/\Gamma=1.44 \text{ eV } 17.$
8081.0 3	1 (2 -11 10	0	151.6 3	$g\Gamma_n\Gamma_\gamma/\Gamma=0.90 \text{ eV } 12.$
8086.0 <i>3</i>	1.63 eV <i>18</i>	0	156.8 <i>3</i>	$g\Gamma_n = 300 \text{ eV } 50.$ $g\Gamma_n\Gamma_{\nu}/\Gamma = 1.62 \text{ eV } 18.$
8089.3 <i>3</i>			160.2 3	$g\Gamma_{n}\Gamma_{\gamma}/\Gamma = 1.02 \text{ eV } 16.$ $g\Gamma_{n}\Gamma_{\gamma}/\Gamma = 1.20 \text{ eV } 14.$
8090.2 <i>4</i>			161.1 4	$g\Gamma_n\Gamma_\gamma/\Gamma=1.53 \text{ eV } 18.$
8099.2 4			170.4 4	$g\Gamma_n\Gamma_{\gamma}/\Gamma=1.15 \text{ eV } 14.$
8103.2 <i>10</i>	1.9 eV 2	0	174.4 10	$g\Gamma_n = 2500 \text{ eV } 500.$
				$g\Gamma_n\Gamma_\gamma/\Gamma=1.9 \text{ eV } 2.$
8106.0 <i>4</i>	1.70 eV <i>18</i>	0	177.3 4	$g\Gamma_n = 200 \text{ eV}.$
011274			105 1 4	$g\Gamma_n\Gamma_\gamma/\Gamma=1.69 \text{ eV } 18.$
8113.6 <i>4</i> 8115.3 <i>4</i>	0.56 eV 10	0	185.1 <i>4</i> 186.8 <i>4</i>	$g\Gamma_n\Gamma_\gamma/\Gamma=0.78 \text{ eV } 11.$ $g\Gamma_n=300 \text{ eV}.$
0113.5 4	0.30 CV 10	U	100.0 4	$g\Gamma_n$ = 300 eV. $g\Gamma_n\Gamma_\gamma/\Gamma$ = 0.56 eV 10.
8128.2 5	1.02 eV 14		200.0 5	$g\Gamma_n=300 \text{ eV}.$
				$g\Gamma_n\Gamma_\gamma/\Gamma=1.02 \text{ eV } 14.$
8132.8 5			204.8 5	$g\Gamma_n\Gamma_{\gamma}/\Gamma=1.25 \text{ eV } 15.$
8134.0 <i>5</i>			206.0 5	$g\Gamma_n\Gamma_{\gamma}/\Gamma=0.87 \text{ eV } 11.$
8138.1 5	1.20 17.10	0	210.2 5	$g\Gamma_n\Gamma_\gamma/\Gamma=0.40 \text{ eV } 6.$
8139.8 <i>5</i>	1.30 eV <i>18</i>	0	211.9 5	$g\Gamma_n = 1750 \text{ eV}.$
8141.5 5	0.49 eV 10	1	213.7 5	$g\Gamma_n\Gamma_\gamma/\Gamma=1.33 \text{ eV } 18.$ $g\Gamma_n=20 \text{ eV.}$
0141.5 5	0.47 CV 10	1	213.7 3	$g\Gamma_n - 20 \text{ eV}$. $g\Gamma_n \Gamma_\gamma / \Gamma = 0.94 \text{ eV } 15$.
8144.2 5			216.4 5	$g\Gamma_n\Gamma_\gamma/\Gamma=0.63 \text{ eV } 10.$
8149.0 5	0.33 eV 5	1	221.2 5	$g\Gamma_n=260 \text{ eV}.$
				$g\Gamma_n\Gamma_\gamma/\Gamma=0.67 \text{ eV } 10.$
8152.2 5	0.325 eV <i>60</i>	1	224.6 5	$g\Gamma_n\Gamma_{\gamma}/\Gamma=0.31 \text{ eV } 6.$
8157.1 <i>5</i>	1.08 eV <i>18</i>	0	229.6 5	$g\Gamma_n=50 \text{ eV}.$
9165 9		_ 1	229 5	$g\Gamma_n\Gamma_\gamma/\Gamma=1.06 \text{ eV } 18.$
8165.8 8176.0		>1 >1	238.5 249	$g\Gamma_n$ =500 eV.
8181.0		1	254	$g\Gamma_n=800$ eV.
		-		g

⁴²Ca(n,γ),(n,n):resonances 2006MuZX (continued)

⁴³Ca Levels (continued)

E(level) [†]	L	E _n (lab) (keV)	Comments
8186.3	0	259.5	$g\Gamma_n$ =750 eV.
8201.0	0	274.5	$g\Gamma_n = 750 \text{ eV}.$
8201.4	>1	275	
8204.8	0	278.5	$g\Gamma_n=1500$ eV.
8206.8	1	280.5	$g\Gamma_n=750$ eV.
8223.0	>1	297	$g\Gamma_n=238$ eV.
8259.0	>1	334	$g\Gamma_n=460$ eV.
8263.0	>1	338	$g\Gamma_n = 550$ eV.
8281.0	0	356.5	$g\Gamma_n=1500$ eV.
8302.5	>1	378.5	$g\Gamma_n=295$ eV.
8308.8	>1	385	
8323.0	0	399.5	$g\Gamma_n=500$ eV.
8341.0	0	418	$g\Gamma_n=400$ eV.
8348.0	0	425	$g\Gamma_n=300$ eV.
8367.4	>1	445	
8369.4	>1	447	$g\Gamma_n=1000$ eV.
8372.8	0	450.5	$g\Gamma_n=1750$ eV.
8399.6	0	478	$g\Gamma_n=750$ eV.
8412.8	0	491.5	$g\Gamma_n=1000$ eV.
8418.7	>1	497.5	
8430.0	>1	509	
8434.3	0	513.5	$g\Gamma_n$ =5500 eV.
8452.4	0	532	$g\Gamma_n=6500$ eV.
8465.5	0	545.5	$g\Gamma_n=2000 \text{ eV}.$
8474.8	0	555	$g\Gamma_n=300 \text{ eV}.$
8479.7	0	560	$g\Gamma_n=500 \text{ eV}.$
8484.1	>1	564.5	
8490.0	0	570.5	$g\Gamma_n$ =10000 eV.
8492.0	>1	572.5	

 $^{^{\}dagger}$ From $E_{c.m.}+S(n)$ where S(n)=7932.89 17 (2012Wa38) and $E_{c.m.}$ deduced from $E_{n}(lab)$ in 2006MuZX.

⁴²Ca(d,p) 1966Do02,1974Br19,1977Sc05

Target 42 Ca J π =0⁺.

1966Do02: E=7.0, 7.1, 7.2 MeV deuteron beam was produced from the MIT-ONR electrostatic generator. Targets of 93.7% enriched CaCO₃ on carbon and Formvar foils. Protons were analyzed by a multiple-gap spectrograph (FWHM=12 keV) and detected by nuclear emulsions. Measured *σ*(*θ*) from 10° to 180°. A total of 83 groups reported. Deduced levels, L, spectroscopic factors from DWBA analysis.

1974Br19 (also 1971Br14): E=7, 8, 10, 12 MeV deuteron beam was produced at AWRE, Aldermaston. Target of 93.7% enriched CaCO₃ on a carbon backing. Protons were analyzed by a multi-gap spectrograph (FWHM=12 keV). Measured $\sigma(\theta)$. Deduced levels, L, spectroscopic factors from DWBA analysis.

1977Sc05: E=2.5 MeV. FWHM=20-25 keV. Measured E(p), $\sigma(\theta)$, deduced ex, L and (2J+1)s for 20 levels up to 5028 keV. DWBA code DWUCK results are given here. Results using code LOLA differ considerably for weakly-populated levels.

1991NaZZ: E=25 MeV. σ(θ), deduced L-transfers and S- factors for a large number of states up to 9 MeV excitation. Plots of excitation energy and (2J+1)S values are provided for 1d, 2s, 1f, 2p, 1g, 2d and 3s orbitals. No numerical (tabulated) data are available from this work.

1982En06: E=2, 3, 4, 4.5 MeV. Measured $\sigma(\theta)$ for 0, 373 and 593 levels.

1970Br27: E=10, 12 MeV. Measured $\sigma(\theta)$. Deduced L and (2J+1)s for 0, 2040, 2610 and 2940 states.

1968Be36: E=7.0, 7.2 MeV. Measured $\sigma(\theta)$; data for four states at 0, 990, 1899 and 2041 compared with other Ca isotopes.

1968An10: E=9.99 MeV. Measured $\sigma(\theta=35)$. Comparison of $7/2^-$ g.s. and $3/2^-$ state strengths amongst Ca isotopes.

1968De04, 1968De09: E=8, 10 MeV. Measured $\sigma(\theta)$. Studied J-dependence for g.s. and 990 transitions in ⁴³Ca and other f-shell nuclides.

1965Be23: E=7.0,7.2 MeV. $\sigma(\theta)$ for g.s. and 374 level.

1957Br19: E=5.0, 6.5, 7.4 MeV. θ =90, 130. A total of 26 proton groups reported up to 3420 keV excitation.

1957Bo99 (also 1957Bp01): E=7 MeV. Measured $\sigma(\theta)$, deduced L, strengths relative to ⁴¹Ca g.s. 35 groups reported up to 3584 keV excitation. L-transfers measured for 10 states.

Other: 1964Le02.

Cross section data at 10 MeV (1974Br19)

Level	$\mathrm{d}\sigma/\mathrm{d}\Omega$ (mb/sr)	Level	$\mathrm{d}\sigma/\mathrm{d}\Omega$ (mb/sr)
	(max)		(max)
0	2.85	3737	0.04 a
373	0.06	3772	0.11
593	1.36	3810	0.08
990	0.29	3864	0.35
1393	0.03	3898	0.02 a
1676	0.03	3916	0.48
1899	0.05	3958	0.07 a
1928	0.02	3978	0.10
1954	2.79	4017	0.09
2041	28.2	4048	0.10
2096	0.04	4089	0.07
2219	0.02	4124	0.06
2246	0.06	4148	0.28
2269	0.06	4196	10.3
2523	0.11	4239	1.41
2607	2.90	4268	0.26
2669	0.06	4298	0.32
2693	0.11	4401	0. 3 a
2758	0.15	4460	0.18
2843	0.11	4498	0.15
2874	2.05	4533	0.21
2939	2.10	4638	0.41
3022	0.02	4654	0.21
3045	0.03	4705	0.14
3071	0.30	4897	2.25
3091	0.1 a	4982	0.52
3287	1.34	5008	0.19
3314	0.37	5028	2.59

3352	0.03 a	5047	0.87
3376	0.02 a	5072	0.69
3417	0.16	5100	0.27
3566	2.30	5170	0.29
3604	0.06	5193	0.58
3655	0.05	5215	1.46
3705	0.02 a		

Uncertainties in cross sections=10%.

a: Estimated from plots given by 1966Do02.

43 Ca Levels

E(level) [†]	L [‡]	$(2J+1)S^{\ddagger}$	E(level) [†]	L [‡]	(2J+1)S [‡]	E(level) [†]	L [‡]	(2J+1)S [‡]
0	3	4.5	3314 10	1	0.03	4401 10		
373 [@] 10	3	3.9	3352 10			4429 [#] 10		
593 [@] 10	1	0.16	3376 10			4460 10	3 b	0.36 <mark>b</mark>
990 10	2 a	0.28 ^a	3417 10	3	0.19	4498 10		
1393 10	(2)	0.03	3566 10	1	0.19	4533 10	0	0.002
1676 <i>10</i>			3604 10	0	0.001	4585 10		
1899 <i>10</i>			3655 10	(2)	0.01	4609 <i>10</i>		
1928 <i>10</i>			3705 10			4638 10	2	0.06
1954 10	0	0.10	3737 10			4654 ^{&} 10	0	0.002
2041 10	1	2.9	3772 10	1	0.01	4705 10		
2096 10	1	0.04	3783 10			4736 10		
2219 <i>10</i>			3810 <i>10</i>	$(3)^{b}$	0.16 ^b	4758 10		
2246 10			3864 10	(1) ^e	0.05	4783 10		
2269 10	(2)	0.01	3898 10			4796 <i>10</i>		
2404 10			3916 <i>10</i>	$(1,4)^{C}$	0.04 ^c	4826 10		
2523 10	(1)	0.01	3958 10			4854 10		
2607 10	1	0.28	3978 10	2	0.01	4874 10		
2669 10	3	0.08	4017 10	2	0.01	4897 10	1	0.14
2693 10	2	0.02	4048 10	2	0.01	4922 10		
2758 10	0	0.002	4078 10			4944 10	. £	· · · · · · ·
2843 10	0	0.001	4089 10	(3)	0.08	4982 10	2^{f}	0.07^{f}
2874 10	1	0.18	4124 10	4	0.19	5008 10		0.16
2939 10	1	0.19	4148 10	0	0.003	5028 10	1	0.16
3022 <i>10</i> 3045 <i>10</i>			4196 <i>10</i> 4239 <i>10</i>	1	0.86	5047 5072	1 1	0.06
		0.000			0.10		-	0.04
3071 10	0	0.003	4268 10	1 ^d	0.04	5100	0	0.003
3091 10			4298 10	0	0.003	5170	2	0.04
3191 <i>10</i>		0.44	4324# 10			5193	0	0.006
3287 10	1	0.12	4370 10			5215	0	0.015

[†] From 1966Do02 up to 5028 keV and from 1974Br19 above this energy.

[‡] From 1974Br19, unless otherwise stated.

The existence of this level is considered unlikely by 1978En02.

[@] Principally populated via two-step processes (1982En06).

[&]amp; From 1974Br19.

^a From 1968Be36.

^b From 1966Do02.

^c L=4, S=1.19 (1966Do02); but L=(1) in 1974Br19.

^d L=1 in 1974Br19 but 2 in 1966Do02.

^e 1 (1966Do02).

^f L=1, S=0.05 (1966Do02). L=2 in 1974Br19.

⁴²Ca(α , ³He) 1982Ho17

Target 42 Ca J π =0⁺.

1982Ho17: E=36 MeV α beam was produced from the Orsay MP tandem. Target of 95% enriched ⁴²Ca backed by a 10 μ g/cm² carbon film, thickness of 160 μ g/cm². ³He particles were analyzed by a split-pole magnetic spectrograph and detected by six position sensitive silicon detectors in the focal plane, FWHM=20 keV. Measured σ (E(³He), θ) from 4° to 42°. Uncertainty in cross sections ≈15%. Deduced levels, L, spectroscopic factors from DWBA and coupled-reaction-channel (CRC) analysis.

C	cross section va	lues	
Level energy	$d\sigma/d\Omega$ (mb/sr)	Level energy	$\mathrm{d}\sigma/\mathrm{d}\Omega$ (mb/sr)
0	7.0	3645	0.019
373	0.105	3803	0.030
593	0.011	3913	0.062
990	0.180	4041	0.029
1395	0.013	4123	0.017
1678	0.014	4193	0.004
1957	0.023	4463	0.094
2046	0.093	4569	
2249	0.023	4826	0.037
2611	0.007	4880	0.022
2674	0.068	5001	0.052
2741	0.008	5040	0.018
2850	0.019	5200	0.120
2948	0.016	5251	0.018
3044	0.023	5410	0.006
3085	0.031	5548	0.035
3193	0.067	5647	0.012
3278	0.080	5727	0.025
3371	0.018	5805	0.022
3413	0.065	5889	0.027
3504	0.025	5991	0.049

E(level)	L	$(2J+1)S^{\dagger}$	Comments
0	3	5.40	
373 8	3	0.15	
593 8	1	0.17	
990 <mark>#</mark> 8	2	0.87	$\sigma(\exp)/\sigma(\text{theory-CRC})=8.5.$
1395 8	2	0.06	
1678 <mark>#</mark> 8			$\sigma(\exp)/\sigma(\text{theory-CRC})=0.04.$
1957 <mark>#</mark> 8	(0)		$\sigma(\exp)/\sigma(\text{theory-CRC})=3.$
2046 8	1	4.26	
2249 [#] 8			$\sigma(\exp)/\sigma(\text{theory-CRC})=0.70.$
2611 8	1	0.33	
2674.8	3	0.28,0.18	
2741 [#] 8			$\sigma(\exp)/\sigma(\text{theory-CRC})=1$.
2850 [#] 8	2	0.32,0.27	$\sigma(\exp)/\sigma(\text{theory-CRC})=2.1.$
2948 [‡] 8	(1)	0.74	$11/2^+$ component considered in CRC calculations. $\sigma(\exp)/\sigma(\text{theory-CRC})=0.5$ (for $11/2^+$ component).
3044 <mark>#</mark> 8			$\sigma(\exp)/\sigma(\text{theory-CRC})=0.06.$
3085 8	2	0.70,0.55	
3193 8	4	0.10	
3278 [‡] 8	(4)	0.13	
3371 [#] 8			$\sigma(\exp)/\sigma(\text{theory-CRC})=0.11.$

42 Ca(α , 3 He) **1982Ho17** (continued)

⁴³Ca Levels (continued)

E(level)	L	(2J+1)S [†]	Comments
3413 8	3	0.43,0.29	
3504 [#] 8		,	$\sigma(\exp)/\sigma(\text{theory-CRC})=0.13.$
3645 [#] 8			$\sigma(\exp)/\sigma(\text{theory-CRC})=3.$
3803 8	(3)	0.20	o (exp)/o (theory exec) 3.
3913 [‡] 8	(4)	0.14	
4041 8	()		
4123 8	(4)	0.04	
4193 8	1	0.44	
4463 8	(3)	1.45	
4569 8	(2)	0.00	
4826 <i>8</i> 4880 <i>8</i>	(3)	0.90	
5001 8	(3)	1.16	
5040 8 5200 8	(3)	2.80	
5251 [#] 8			$\sigma(\exp)/\sigma(\text{theory-CRC})=3.2.$
5410_8			
5548 [‡] 8			
5647 [‡] 8			
5727 [‡] 8			
5805 8			
5889 [‡] 8			
5991 8	(3)	2.75	

[†] Normalization factor N=46 used in the DWBA formula relating experimental and DW cross sections. When two values are quoted, these correspond to J=L-1/2 and J=L+1/2, respectively.

[†] Doublet. # Considered in coupled-reaction-channel (CRC) analysis. Multiplets considered are: f7/2 neutron coupled to 2⁺ at 1520, 4⁺ at 2750 and 3⁻ at 3440 in ⁴²Ca.

⁴³Ca(p,p') **1957Br19**

1957Br19: E=6.5, 7.0 MeV proton beam was produced from the MIT-ONR electrostatic generator. Target of enriched $CaCo_3$ (67.95% ^{43}Ca). Scattered protons were analyzed with a broad-range spectrograph. Measured $\sigma(E_p)$. Deduced levels.

1980Fa07: (p,p) E=35.2 MeV proton beam was produced from the Milan sector-focused cyclotron. Target of CaCO₃ enriched to 49.1% in 43 Ca. Scattered protons were detected by silicon surface-barrier detectors in rotatable counter telescopes. Measured $\sigma(E_p,\theta)$. Deduced deformation parameter.

All data are from 1957Br19 unless otherwise noted.

E(level) [†]	E(level) [†]	E(level) [†]	E(level) [†]
0#	2046	2671	3093
371	2067	2694	3193
591	2093	2751	3278
990	2105?	2842	3292 [‡]
1394	2223	2878?	3368?‡
1677	2248 [‡]	2946	3397?‡
1903	2271? [‡]	3026	3418
1931	2407	3047	
1956	2604?	3073	

 $^{^\}dagger$ Uncertainty is probably 5-10 keV (by evaluators).

[‡] Unresolved from impurities peaks from ⁴⁰Ca or ⁴⁴Ca.

[#] β_2 (electromagnetic)=0.25 (1980Fa07).

43 Ca(p,p' γ) 1972Gr04

1972Gr04: E=4.235 MeV proton beam was produced from the Groningen 5 MV Van de Graaff accelerator. Target consisted of a layer of 87 μg/cm² 9 CaO evaporated onto a 185 μg/cm² carbon foil, 81% in ⁴³Ca. γ-rays were detected by a 30 cm³ true-coaxial Ge(Li) detector. Measured Eγ, Iγ, pγ coin. Deduced levels, J, π, γ-branching, T_{1/2} by DSAM.

Other:

1968Ch12: 2.550, 3.235, 3.605 MeV. Measured γ , $\gamma\gamma$, excitation functions.

1967Fo01: Measured $T_{1/2}$ of the 593 keV level p' γ -coin..

1985Ki07: Measured thick target relative γ -yields.

⁴³Ca Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	Jπ‡	T _{1/2} #
0	7/2-		2067.10 17	7/2-	21 fs 7
372.76 7	$5/2^{-}$	>3.5 ps	2093.85 20	9/2-	1.2 ps 4
593.38 8	$3/2^{-}$	160 [@] ps <i>10</i>	2224.1 <i>4</i>	$3/2^-,5/2^-$	>49 fs
990.27 9	$3/2^{+}$	>4.9 ps	2248.95 <i>14</i>	9/2-	40 fs 8
1394.55 9	$5/2^{+}$	1.73 ps <i>35</i>	2272.4 5	$3/2^+,5/2^+$	>0.35 ps
1677.89 <i>19</i>	$11/2^{-}$	0.83 ps <i>14</i>	2409.74 18	9/2+	1.2 ps +6-4
1901.99 <i>16</i>	$7/2^{+}$	0.55 ps <i>10</i>	2673.5 <i>3</i>	$5/2^-,7/2^-$	31 fs <i>13</i>
1931.48 <i>15</i>	5/2-	0.11 ps <i>3</i>	2695.7 <i>15</i>	$3/2^+, 5/2^+$	<70 fs
2045.9 6	3/2-	>0.49 ps			

 $[\]dagger$ From least-squares fit to E γ data.

γ(⁴³Ca)

Measured limits of I γ values of γ -rays (involving $\Delta J>2$ or $\Delta J=2$, $\Delta \pi=yes$) from different levels are as follows:

990 level: $I\gamma < 1.5$ to g.s.

1678 level: I γ <2 to 373 level, I γ <1 to 593 level, I γ <0.5 to 990

and 1395 levels

1901 level: I γ <4 to 1678 level, I γ <3 to 593 level

1931 level: $I\gamma < 7$ to 1678 level 2067 level: $I\gamma < 5$ to 990 level

2093 level: $I\gamma < 1$ to 1395 level, $I\gamma < 2$ to 990 level, $I\gamma < 4$ to 593 level

2249 level: I γ <1.3 to 1395 level, I γ <2.5 to 990 and 593 levels

2409 level: I γ <6.7 to 990 level, I γ <4.4 to 593 level, I γ <9 to 373 level

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E_f	\mathbf{J}_f^{π}
372.76	5/2-	372.83 10	100	0	7/2-	1901.99	7/2+	1529 [§]	<3	372.76	,
593.38	$3/2^{-}$	220.66 10	33 2	372.76	5/2-			1901.8 2	70 <i>4</i>	0	7/2-
		593.36 10	67 2	0	$7/2^{-}$	1931.48	$5/2^{-}$	537 [§]	< 8.6	1394.55	5/2+
990.27	3/2+	396.9 2	13 2	593.38	3/2-			941 [§]	<19	990.27	3/2+
		617.51 7	87 2	372.76	$5/2^{-}$			1339.5 [‡] <i>16</i>	9 4	593.38	3/2-
1394.55	5/2+	404.3 2	13 <i>I</i>	990.27	$3/2^{+}$			1558.7 2	33 5	372.76	5/2-
		801.1 <i>16</i>	6 <i>1</i>	593.38	$3/2^{-}$			1931.4 2	58 <i>5</i>	0	$7/2^{-}$
		1021.80 7	77 2	372.76	$5/2^{-}$	2045.9	$3/2^{-}$	2045.8 6	100	0	7/2-
		1394.5 2	3.7 6	0	7/2-	2067.10	7/2-	389 <mark>\$</mark>	< 2.5	1677.89	$11/2^{-}$
1677.89	$11/2^{-}$	1677.8 2	100	0	$7/2^{-}$			672 <mark>\$</mark>	< 2.5	1394.55	5/2+
1901.99	$7/2^{+}$	507.8 [‡] <i>3</i>	17 2	1394.55	$5/2^{+}$			1474 <mark>\$</mark>	< 6.3	593.38	$3/2^{-}$
	,	911.7 5	13 4	990.27	,			1694.2 <i>3</i>	20 2	372.76	,

[‡] From Adopted Levels.

[#] From DSAM (1972Gr04).

[@] From p' γ (t) (1967Fo01).

43 Ca(p,p' γ) 1972Gr04 (continued)

γ (43Ca) (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	E_f J_j^r	τ f
2067.10	7/2-	2067.1 2	80 2	0 7/2	
2093.85	9/2-	416 [§]	<1	1677.89 11/2	<u>_</u>
		1721 [§]	<5	372.76 5/2	
		2093.8 2	100	0 7/2	
2224.1	$3/2^-,5/2^-$	1632 2	60 8	593.38 3/2	
		1851.3 <i>4</i>	40 8	372.76 5/2	
2248.95	9/2-	347 [§]	<1.3	1901.99 7/2+	
		570.7 [‡] 5	2.0 5	1677.89 11/2	_
		1876.2 2	18 5	372.76 5/2	
		2248.9 2	80 5	0 7/2	
2272.4	$3/2^+, 5/2^+$	877.8 [‡] <i>5</i>	100	1394.55 5/2+	
2409.74	9/2+	508.0 [‡] 10	11 2	1901.99 7/2+	
		732 <mark>\$</mark>	< 6.7	1677.89 11/2	_
		1015.2 2	44 <i>4</i>	1394.55 5/2+	
		2409.6 <i>3</i>	45 <i>4</i>	0 7/2	
2673.5	5/2-,7/2-	1276.0 [§] <i>10</i>	20	1394.55 5/2+	
		2300.7 <i>3</i>	100	372.76 5/2	
2695.7	3/2+,5/2+	2322.9 [‡] <i>15</i>	100	372.76 5/2	

[†] Recoil correction applied by 1972Gr04 is removed (evaluators). ‡ From coin spectra. § Placement of transition in the level scheme is uncertain.

43 Ca(p,p'γ) 1972Gr04

Level Scheme

⁴³Ca(d,d') **1965Be11**

Target 43 Ca J π =7/2 $^{-}$.

1965Be11: E=8.522 MeV deuteron beam was produced from the tandem electrostatic generator of the Atomic Weapons Research Establishment (AWRE), Aldermaston, England. Target of enriched 43 Ca (>99.9%). Deuteron spectra recorded with a multi-gap magnetic spectrometer, FWHM=15 keV. Measured $\sigma(\theta)$. Deduced levels, J, π , L, deformation parameters from DWBA analysis.

E(level)	L	β_2
0		
369 5	2	0.114
595 <i>5</i>	2	0.087
1675 <i>5</i>	2	0.13
1932 5	(2)	0.06
2051 5	(2)	0.08
2070 5	4	
2098 5	2	0.09
2252 5	2	0.114

⁴³Ca(α , α') 1974De42

1974De42: E=24.0, 28.5, 31.0 MeV of 250-400 nA α beam was produced from the University of Rochester MP tandem Van de Graaff accelerator. Target of a isotopically separated metallic calcium evaporated onto a 20 μ g/cm² carbon backing. Scattered α particles were analyzed with an Enge split-pole magnetic spectrograph and detected in the focal plane by a 30 cm long position sensitive proportional detector or 5cm silicon detectors or K-1, 50 μ m photographic emulsions. Measured $\sigma(E_{\alpha},\theta)$. Deduced levels, J, π , L, transition probabilities from analysis with DWBA and coupled-channel calculations.

E(level)	$J^{\pi\dagger}$	L	$BE(L)\uparrow (isoscalar)^{\ddagger}$	Comments
0	7/2-			
373 5	5/2-	2+4	0.0055	B(E4)↑=0.00011 L: 76% (L=2) 24% (L=4)
593 <i>5</i>	3/2-	2+4	0.0027	L: 76%(L=2), 24%(L=4). B(E4)↑=0.000068
	-7-			L: 73%(L=2), 27%(L=4).
1676 <i>5</i>	11/2-	2+4	0.0068	B(E4)↑=0.000053
1930 5	5/2-	2+4	0.0020	L: 80%(L=2), 20%(L=4). B(E4)↑=0.000015
1930 3	3/2	274	0.0020	L: 86%(L=2), 14%(L=4).
2045 5	3/2-	2+4	0.0015	B(E4)↑=0.000051
2066.5	7.10-	0 . 4	0.00072	L: 62%(L=2), 38%(L=4).
2066 5	7/2-	2+4	0.00073	B(E4)↑=0.000032 L: 58%(L=2), 42%(L=4).
2094 5	9/2-	2+4	0.0026	B(E4) \uparrow =0.000060
	,			L: 70%(L=2), 30%(L=4).
2248 5	9/2-	2+4	0.0068	B(E4)↑=0.000057
2668 <i>5</i>		2+4	0.0011	L: 83%(L=2), 17%(L=4). B(E4)↑=0.000014
2000 5		2	0.0011	L: 75%(L=2), 25%(L=4).
2694 5		2+4	0.00075	B(E4)↑=0.000021
2756 <i>5</i>		(4+6)		L: 65%(L=2), 35%(L=4).
2130 3		(4+0)		B(E4)↑=0.000073 B(E6)↑=0.0000032
				L: 57%(L=4), 43%(L=6).
2850 5		3+5	0.00019	$B(E5)\uparrow = 0.0000056$
2948 5	11/2+	3+5	0.00063	L: 73%(L=3), 27%(L=5). B(E5)↑=0.0000097
2940 J	11/2	3+3	0.00003	L: 80%(L=3), 20%(L=5).
3025 5				
3048 <i>5</i>	11/2-	2+4	0.0048	B(E4)↑=0.000038
3091 5		3+5	0.00068	L: 83%(L=2), 17%(L=4). B(E5)↑=0.000013
3071 3		313	0.00000	L: 77%(L=3), 23%(L=5).
3194 5	7/2+,9/2+	3+5	0.000615	B(E5)\(\gamma=0.000011\)
2277 10	(11/2 +- 17/2)+	2.5	0.00177	L: 78%(L=3), 22%(L=5).
3277 10	$(11/2 \text{ to } 17/2)^+$	3+5	0.00177	B(E5)↑=0.000040 L: 74%(L=3), 26%(L=5) for 3277+3297.
3297 10		3+5	0.00177	B(E5)↑=0.000040
				L,BE(L) \uparrow (isoscalar): for 3277+3297.
3377 5	13/2+	3+5	0.00116	B(E5)↑=0.000026 L: 72%(L=3), 28%(L=5).
3469 <i>5</i>				L. $12/0(D-3)$, $20/0(D-3)$.
3502 5	13/2+	3+5	0.00129	B(E5)↑=0.000019
2660.5	12/2-	(2 (4)	0.00002	L: 79%(L=3), 21%(L=5).
3660 <i>5</i>	13/2-	(2+4)	0.00092	B(E4)↑=0.00017 L: 31%(L=2), 69%(L=4).
3836 10				2. 02.70(2 2), 07.70(2 1).

⁴³Ca(α , α') 1974De42 (continued)

⁴³Ca Levels (continued)

E(level)	$J^{\pi \dagger}$	L	$BE(L)\uparrow (isoscalar)^{\ddagger}$	Comments
3929 10		3+5	0.00191	B(E5)↑=0.00011
				L: 68%(L=3), 32%(L=5) for 3929+3942.
				L,BE(L) \uparrow (isoscalar): for 3929+3942.
3942 10	15/2+	3+5	0.00191	B(E5)↑=0.00011
				L,BE(L) \uparrow (isoscalar): for 3929+3942.
4140 15	$7/2^+, 9/2^+$	3+5	0.00062	$B(E5)\uparrow=0.000029$
				L: 61%(L=3), 39%(L=5).

 $^{^{\}dagger}$ From Adopted Levels.

[‡] BE(L)↑ (isoscalar) for L=2 in case of L=2+4, and for L=3 for L=3+5 transitions. BE(L)↑ for L=4 and L=5 are given under comments. Statistical uncertainties are ≈15%.

Coulomb excitation 1971HoYN

1971HoYN: $(^{32}S,^{32}S'\gamma)$ E=45 MeV. Thick calcium fluoride (enriched in 43 Ca) target. Measured γ -ray yields, deduced B(E2) values for 373 and 1678 levels, normalized to measured B(E2) for $5/2^+$, 197 level to $1/2^+$, g.s. in 19 F.

⁴³Ca Levels

E(level)‡	$J^{\pi \dagger}$	Comments	_
0	7/2-		
373 593	5/2-	B(E2)↑=0.0065 5	
593	$3/2^{-}$		
1678	$11/2^{-}$	B(E2)↑=0.0115 28	

 $^{^{\}dagger}$ From Adopted Levels.

γ (43Ca)

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
221	593	3/2-	373 5/2-	·		
373	373	5/2-	0 7/2-	(M1+E2)	0.161 14	δ: from B(E2)=0.0086 7 (1971HoYN) and $T_{1/2}(373)=34$ ps 3.
593	593	$3/2^{-}$	$0 7/2^{-}$			B(E2)=0.0071 3 (1971HoYN), deduced from known lifetime of 593
						level and measured (but not quoted) branching ratio.
1678	1678	$11/2^{-}$	$0 7/2^{-}$			B(E2)=0.0077 19 (1971HoYN).

[†] Rounded values from Adopted Gammas.

Coulomb excitation 1971HoYN

Level Scheme

[‡] Rounded values from Adopted Levels.

⁴⁴Ca(p,d) 1972Ma23,1968Sm05

Target ⁴⁴Ca J π =0⁺.

1972Ma23 (also 1972MaXL): E=40 MeV proton beam was produced from the Grenoble variable-energy cyclotron. Targets of natural and enriched 44 Ca metal foils. Deuterons were detected with Δ E-E counter telescope, FWHM=120 keV. Measured $\sigma(E_d,\theta)$ from 10° to 60° in 4° steps. Overall accuracy on absolute cross sections \approx 10%. Deduced levels, J, π , L, spectroscopic factors from DWBA analysis.

1968Sm05: E=26.5 MeV proton beam was produced from the University of Colorado Cyclotron. Target of 98.61% enriched ⁴⁴Ca. Deuterons were detected with ΔE-E (silicon surface barrier, 211 μ m and 1090 μ m) counter telescope, FWHM=110 keV. Measured $\sigma(\theta)$ from 21° to 76° in 5° steps. Overall accuracy on absolute cross sections ≈25%. Deduced levels, J, π , L spectroscopic factors from DWBA analysis.

1966Co06: E=17.5 MeV proton beam was produced from the Princeton fm cyclotron. Target of 98.6% enriched 44 Ca. Deuterons were detected with ΔE-E (solid-state detector) counter telescope, FWHM=80-100 keV. Measured $\sigma(\theta)$ from 20° to 160° in 10° steps. Overall accuracy on absolute cross sections ≈25%. Deduced levels, J, π , L spectroscopic factors from DWBA analysis. Levels up to 2050 reported.

Cross	section	data (1968	Sm05)	
Level	energy	$\mathrm{d}\sigma/\mathrm{d}\Omega$	(mb/sr)	(max)
0		6.26		
373		0.224		
594		0.545		
992		3.23		
1395		0.14	1	
1680		0.07	4	
1959		2.20		
2050		0.53	1	
2252		0.23	4	
2690		0.25	3	
2870		0.26	5	
3050		0.52	3	
3280		0.25	5	
3600		0.04	5	
3920		0.21	3	
4200		0.26	5	
4460		0.308	3	
7970		0.179	9	

⁴³Ca Levels

Spectroscopic factor: N*C²S= $\sigma(\theta)^{\text{exp}}/\sigma(\theta)^{\text{DWBA}}$, where N=2.25 (1968Sm05) is the normalization factor.

E(level) [†]	$J^{\pi \ddagger}$	L#	$C^2S^{\textcircled{@}}$	Comments		
0	7/2-	3	2.8	C ² S: 3.7 (1968Sm05), 2.4 (1966Co06).		
374 25	5/2-	3	0.05	$C^2S: 0.15 (1968Sm05).$		
594 25	3/2-	1	0.04	C ² S: 0.10 (1968Sm05), 0.06 (1966Co06).		
993 25	3/2+	2	2.4	$C^2S: 2.5 (1968Sm05), 0.8 (1966Co06).$		
1389 25	$(3/2)^+$	2	0.34	C^2S : 0.16 for 3/2, 0.12 for 5/2 (1968Sm05).		
1680 25						
1960 25	1/2+	0	1.0	$C^2S: 0.62 (1968Sm05).$		
2050 25	3/2-	1	0.05	$C^2S: 0.18 (1968Sm05).$		
2250 20	$(5/2)^+$	2	0.26	C^2S : 0.20 for 5/2, 0.28 for 3/2 (1968Sm05).		
2660 20	$(5/2)^+$	2	0.26	C^2S : 0.26 for 5/2, 0.36 for 3/2 (1968Sm05).		
2840 20	$(5/2)^+$	2	0.34	C^2S : 0.22 for 5/2, 0.37 for 3/2 (1968Sm05).		
3050 20	$(5/2)^{+} & 1/2^{+}$	2+0	0.47,0.13	L: from 1972Ma23. Other: L=0, S=0.22 (1968Sm05).		
3260 20		(2,3)		L: from 1972Ma23. Other: L=3, S=0.28 for 7/2 ⁻ in 1968Sm05.		
3620 20	$(5/2)^+$	2	0.05	L: from 1972Ma23. Other: L=(1), S=0.02 in 1968Sm05.		
				Continued on next page (footnotes at end of table)		

⁴⁴Ca(p,d) **1972Ma23,1968Sm05** (continued)

⁴³Ca Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	L#	$C^2S^{\textcircled{@}}$	Comments
3950 20 4210 20 4460? 20	(5/2)+	2 (2,3)	0.26	C ² S: 0.28 for 5/2, 0.40 for 3/2 (1968Sm05). L: from 1972Ma23. Other: L=(2), S=0.75 for 3/2, 0.53 for 5/2 (1968Sm05). This group is assigned to ³⁹ Ca g.s. in 1972Ma23. 1968Sm05 assign this group as L=2, S=0.53 for 3/2,0.37 for 5/2 in ⁴³ Ca.
4720 ^{&} 20 5020 ^{&} 20				
5210 & 20		(2,3)		
5430 & 20 5730 & 20		(2,3)		
6010 ^{&} 20	1/2+	(2,3)	0.05	
6200 & 20	1/2	U	0.03	
7970 <i>30</i>	(3/2)+	2	0.31	C ² S: 1.1 (1968Sm05). 1978En02 quote S=1.9 (C ² =1/6 for T=5/2). IAS of ⁴³ K g.s., 3/2 ⁺ (1972Ma23).
8590 <i>30</i>	1/2+	0	0.15	L: from 1972Ma23. 1978En02 quote S=0.9 (C ² =1/6 for T=5/2). Possible IAS of 561 in ⁴³ K (1972Ma23).
8760 <i>30</i>	(7/2)-	3	0.07	L: from 1972Ma23. 1978En02 quote S=0.42 (C ² =1/6 for T=5/2). Possible IAS of 738 in ⁴³ K (1972Ma23).
9000 & <i>30</i>	(3/2)-	1	0.006	1978En02 quote S=0.04 (C^2 =1/6 for T=5/2). Possible IAS of 975 in ⁴³ K (1972Ma23).
9150 ^{&} <i>30</i>	$(5/2)^+$	2	0.05	1978En02 quote S=0.30 (C ² =1/6 for T=5/2). Possible IAS of 1110 in ⁴³ K (1972Ma23).
10500 & <i>30</i>	1/2+	0	0.03	1978En02 quote S=0.18 (C ² =1/6 for T=5/2). Possible IAS of 2451 in ⁴³ K (1972Ma23).
10730 ^{&} <i>30</i>				Possible IAS of 2670 in ⁴³ K (1972Ma23).
11390 <u>&</u> <i>30</i>				Possible IAS of 3393 in ⁴³ K (1972Ma23).
12060 & 30				Possible IAS of 4022 in ⁴³ K (1972Ma23).
12280 & 30				Possible IAS of 4270 in ⁴³ K (1972Ma23).
13260 & 30				Possible IAS of 5240 in ⁴³ K (1972Ma23).
13700 ^{&} 30 13950 ^{&} 30				

 $^{^\}dagger$ From 1966Co06 for levels up to 2050. From 1972Ma23 above 2050.

[‡] As given by 1972Ma23.

[#] From 1972Ma23.

[®] From 1972Ma23 for specified J (typically uncertainty 20%), unless otherwise stated. 1968Sm05 give two sets of values: for zero-range local and for finite-range non-local. The values from the latter set are quoted below under comments. 1978En02 give S-factors (C²=1 for T=3/2, 1/6 for T=5/2).

[&]amp; From 1972Ma23 only.

⁴⁴Ca(d,t) 1976Do05,1969Yn01

Target ⁴⁴Ca J π =0⁺.

1976Do05: E=52 MeV deuteron beam was produced from the Karlsruhe isochronous cyclotron. Target of a 840 μ g/cm² self-supporting isotopically enriched ⁴⁴Ca (98.55%). Tritons were detected by Δ E-E counter telescopes consisting of surface-barrier detectors, FWHM=90 keV. Measured σ (E_t, θ). Deduced levels, J, π , L, spectroscopic factors from DWBA analysis.

1969Yn01: E=21.4, 22.6 MeV deuteron beam was produced from the Argonne cyclotron. Target of isotopically enriched CaCO₃ onto a Formvar backing. Tritons were detected by Δ E-E counter telescopes consisting of surface-barrier detectors, FWHM=70-130 keV. Measured $\sigma(E_t, \theta)$. Deduced levels, J, π , L, spectroscopic factors from DWBA analysis. Data for 12 levels up to 3330.

Others:

1975BrYQ: E=52 MeV. Measured σ .

1982KuZU: E=5.8-10 MeV. $\sigma(\theta)$, DWBA analysis. Deduced 1f7/2 neutron-orbital rms radius.

⁴³Ca Levels

Spectroscopic factor: $N*C^2S=\sigma(\theta)^{\exp}/\sigma(\theta)^{DWBA}$, where N is the normalization factor. N=3.33 (1976Do05).

E(level) [†]	L^{\dagger}	C^2S^{\ddagger}	Comments
0	3	3.20	$C^2S: 4.0 (1969Yn01).$
370 20	3	0.15	C ² S: <0.12 (1969Yn01).
			C^2S : for 1f5/2.
590 20	1	0.07	$C^2S: 0.18 \ (1969Yn01).$
990 20	2	2.10 [#]	$C^2S: 2.2 (1969Yn01).$
1390 20	2	0.11#	$C^2S: 0.06 (1969Yn01).$
1670 20			
1960 20	0	0.75	$C^2S: 0.9 (1969Yn01).$
2050 20	1	0.11	$C^2S: 0.2 (1969Yn01).$
2260 20	2	0.15	$C^2S: 0.2 \text{ for } 2300 40 (1969\text{Yn}01).$
2610 20			
2680 20	2	0.14	C^2S : 0.22 for 2740 40 (1969Yn01).
2850 20	2	0.23	C^2S : 0.3 for 2900 40 (1969Yn01).
3070 20	2	0.56	$L,C^2S: L=0, S=0.3 \text{ for } 3150 40 (1969\text{Y} \text{n}01).$
3270 20	(2)	0.25	C^2S : 0.4 for 3330 40 (1969Yn01).
3610 20	_	0.04	
3960 20	2	0.21	
4210 20	2	0.2	
4270 <i>20</i> 4730 <i>20</i>	2 2	0.15 0.19	
5220 20	2	0.19	
5360 20			
5730 20	2	0.18	
6020 20	(2)	0.2	
6170 20	(2)	0.24	
7590 20			
7980 <i>20</i>	2	1.0#	1978En02 quote S=6.0 (C^2 =1/6 for T=5/2).
8590 20	0	0.25	1978En02 quote $S=1.5$ ($C^2=1/6$ for $T=5/2$).
8770 20	3	0.35	1978En02 quote S=2.1 (C^2 =1/6 for T=5/2).
8990 20	1	0.14	1978En02 quote S=0.84 (C^2 =1/6 for T=5/2).
9140 <i>30</i>	2	0.2	$C^2S: 0.3 \text{ for } 1d3/2.$
			1978En02 quote $S=1.8$ for $d3/2$ ($C^2=1/6$ for $T=5/2$).
10470 <i>30</i>	0	0.12	1978En02 quote S=0.72 (C^2 =1/6 for T=5/2).
10710 30	2	0.2	
11370 <i>30</i> 12250 <i>30</i>	2	0.2	
12230 30	4	0.2	

⁴⁴Ca(d,t) **1976Do05,1969Yn01** (continued)

⁴³Ca Levels (continued)

 $\frac{\text{E(level)}^{\dagger}}{13200 \ 30} \quad \frac{\text{L}^{\dagger}}{(2)} \quad \frac{\text{C}^2\text{S}^{\ddagger}}{0.2}$ $\frac{14190 \ 30}{0.2}$

[†] From 1976Do05.

 $^{^{\}ddagger}$ From 1976Do05. Orbitals used for DWBA calculations are: 2s1/2 for L=0, 2p3/2 for L=1, 1d5/2 for L=2 and 1f7/2 for L=3, unless otherwise stated. 1978En02 give S-factors (C^2 =1 for T=3/2, 1/6 for T=5/2).

[#] For 1d3/2.

44 Ca(3 He,α),(pol 3 He,α) 1967LyZY,1985Ha08

Target ⁴⁴Ca J π =0⁺.

1967LyZY (also 1968Ly01,1968Ly02): E=18 MeV 3 He beam was produced from the Heidelberg Emperor-Tandem accelerator. α particles were analyzed with a broad-range magnetic spectrograph (FWHM \approx 50 keV) and detected with a Δ E-E counter telescope. Measured σ (E $_{\alpha}$, θ). Deduced levels, J, π , L, spectroscopic factors from DWBA analysis.

1985Ha08: E=33.1 MeV polarized 3 He beam was produced from the University of Birmingham Radial Ridge Cyclotron. Target of pure self-supporting 44 Ca. α particles were detected by telescopes of Δ E-E detectors. Measured σ (E $_{\alpha}$, θ) and Ay(θ) for g.s. and 990 level. Deduced levels, J, π , spectroscopic factors from DWBA analysis.

Others

1970Pe07: E=10 MeV. Measured $\sigma(\theta)$. Reported six levels with energy (cross section in mb) at 0 (1.60), 370 (0.16), 590 (0.18), 990 (0.65), 1390 (0.07) and 1960 (0.64).

1971Ra35: E=13.0 MeV. Measured $\sigma(\theta)$ for g.s. and 990 level. DWBA analysis.

1981Gr05: E=50.4 MeV. Measured $\sigma(\theta)$ for g.s. and 990 level. DWBA analysis.

E(level) [†]	\mathbf{J}^{π}	L^{\dagger}	S [†]	Comments
0	7/2-‡	3	4.1	S: others: 3.0 2 or 2.4 <i>I</i> (1985Ha08), 4.2 (1981Gr05), 3.4 (1971Ra35), 3.5 (1968Ly01).
370		3	0.32	
590		1	0.16	
990	$3/2^{+}$	2	3.3	S: others: 1.9 3 or 1.3 2 (1985Ha08), 3.9 (1981Gr05), 2.1 (1971Ra35), 1.9 (1968Ly01).
1390				E(level): from 1970Pe07.
1960		0	1.6	
2050		1	0.36	
7990		2	9.9	S: for T=5/2.

[†] From 1978En02 (original data from 1967LyZY). 1978En02 state that many L=1 and L=3 transitions to, mostly unresolved, states reported by 1967LyZY in the 2.1-7.9 MeV region are not observed in other studies.

[‡] From Ay(θ) in (pol ³He, α) (1985Ha08).

⁴⁴Ca(³He,αγ) **1976Ta04**

1976Ta04: E=15 MeV 3 He beam was produced at the University of Pennsylvania. Target of 0.4 mg/cm 2 enriched 44 Ca metal sandwiched between a 0.3 mg/cm 2 gold backing and a 0.1 mg/cm 2 gold window. α particles were detected by a surface-barrier position-sensitive detector and γ -rays were detected with an array of 7.6 by 10.2 cm NaI(Tl) crystals. Measured E γ , I γ , $\gamma\gamma$ -coin, $\alpha\gamma(\theta)$. Deduced levels, γ -branching ratios, mixing ratios. Other: 1971HoYN.

⁴³Ca Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi\dagger}$
0	7/2-	1394	5/2+	2877	1/2-
373	5/2-	1678	11/2-	2943	3/2-
593	3/2-	1931	5/2-	3027	(3/2 to 7/2)
990	$3/2^{+}$	2695	$3/2^+,5/2^+$	3030	(1/2 to 5/2)
				3270	(5/2,7/2)

[†] From Adopted Levels.

γ (⁴³Ca)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
373	5/2-	373	100		7/2-	D+Q	-0.15 3	A_2 =+0.07 4, A_4 =+0.01 7. δ : other: -0.18 5 (1971HoYN).
593	3/2-	220	30	373	$5/2^{-}$	D+Q	-0.105	$A_2 = +0.01 5$, $A_4 = +0.08 8$.
		593	70	0	$7/2^{-}$			
990	3/2+	397	12	593	$3/2^{-}$			
		617	88	373	5/2-	D(+Q)	-0.012 17	$A_2 = -0.085 \ 19, A_4 = -0.012 \ 28.$
		990	28	0	$7/2^{-}$			
1394	5/2+	404	13	990	$3/2^{+}$			
		801	6	593	$3/2^{-}$			
		1021	77	373	$5/2^{-}$			
		1394	4	0	$7/2^{-}$			
1678	$11/2^{-}$	1678	100	0	$7/2^{-}$			
1931	5/2-	1338	7	593	$3/2^{-}$			
		1558	33	373				
		1931	60	0	$7/2^{-}$			
2695	$3/2^+, 5/2^+$	1705	19 9	990	$3/2^{+}$			
		2102	17 9	593	$3/2^{-}$			
		2322	64 11	373	$5/2^{-}$			
2877	1/2-	2504	≈75	373	5/2-			δ (Q/D)=+0.10 7 for J=3/2, -0.62 10 for J=5/2. But adopted J π (2877)=1/2 ⁻ . A ₂ =-0.21 8, A ₄ =-0.12 14.
2943	3/2-	1953	24 9	990	$3/2^{+}$			2, 4
	,	2570	68 9	373				
		2943	8 <i>5</i>		$7/2^{-}$			
3027	(3/2 to 7/2)	2654	100	373	5/2-	D+Q		δ (Q/D)=-0.09 6 for J=3/2, -0.37 6 for J=5/2. A ₂ =-0.01 7, A ₄ =+0.21 10.
3030	(1/2 to 5/2)	2040	31 9	990	3/2+			122 0.02 7, 114 1 0.21 10.
2020	(-/2 00 0/2)	2437	69 9	593	,			
3270	(5/2,7/2)	1876	17 6	1394	,			
	(-,-,-,-)	2280	49 6	990		D+Q	+0.07 5	$A_2 = -0.29 \ 11, A_4 = +0.38 \ 16.$
		3270	34 6		7/2-	D(+Q)	-0.13 <i>13</i>	$A_2 = +0.029 \ 17, \ A_4 = +0.18 \ 26.$
					,			₽ '7 T '' '' ''

[†] From $\gamma(\theta)$ data.

⁴⁴Ca(³He,α γ) 1976Ta04

Level Scheme

45
Sc(μ^- ,2n γ) 1971Ba10

1971Ba10: Muon beam was produced from the muon channel of the CERN synchrocyclotron. γ -rays were detected by two Ge(Li) detectors. Measured E γ , I γ . Deduced levels, neutron multiplicity probability.

⁴³Ca Levels

E(level)
$$J^{\pi \dagger}$$
0.0 $7/2^{-}$
372.7 $5/2^{-}$

† From Adopted Levels.

$$\gamma(^{43}\text{Ca})$$

$$\frac{E_{\gamma}}{372.75} \quad \frac{I_{\gamma}}{3.610} \quad \frac{E_{i}(\text{level})}{372.7} \quad \frac{J_{i}^{\pi}}{5/2^{-}} \quad \frac{E_{f}}{0.0} \quad \frac{J_{f}^{\pi}}{7/2^{-}}$$

45 Sc(μ $^-$,2n γ) 1971Ba10

Level Scheme

Intensities: Per 100 muon-captures

45 Sc(d,α) 1964Bj01

1964Bj01: E=3-4.3 MeV deuteron beam was produced from an electrostatic generator. Enriched ⁴⁵Sc target. α particles detected by broad-range electromagnetic spectrograph, energy resolution=0.4%. Measured $\sigma(E_{\alpha})$. Deduced levels, Q values. Other: 1962Ra11, 1967Ha41.

⁴³Ca <u>Levels</u>

E(lev	el)
0	
385	12
607	12
1009	12
1407	12
1693	12

 $Q(\beta^-)=-6867\ 7;\ S(n)=12138.3\ 19;\ S(p)=4929.8\ 19;\ Q(\alpha)=-4805.8\ 19$ 2012Wa38 $S(2n)=23688.3\ 19,\ S(2p)=15206.5\ 19$ (2012Wa38).

2011Av01: E=25-48 MeV. Isotopes produced at IGISOL facility at Jyvaskyla. Measured hyperfine structure, moments, isotope shifts, charge radii by collinear laser spectroscopy. Comparison with shell-model calculations. Known moments for ⁴⁵Sc g.s. used as reference.

⁴³Sc Levels

See (p,γ) , (p,p) and $(p,p'\gamma)$ resonance datasets for additional levels between 5919 keV and 8193 keV.

Cross Reference (XREF) Flags

		B 241 C 277 D 277 E 286 F 299 G 400	Fi ε decay (509 ms Mg(24 Mg,αpγ) Al(18 O,2nγ) Al(19 F,p2nγ) Si(20 Ne,αpγ) Si(16 O,pnγ) Ca(α,p)	S) H I J K L M N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level)	$J^{\pi #}$	$T_{1/2}^{\ddagger}$	XREF		Comments
0.0&	7/2-	3.891 h <i>12</i>	ABCDEFGHI K	NOPQRST	μ =+4.528 10 (2011Av01,2014StZZ) Q=-0.27 5 (2011Av01,2014StZZ) Evaluated rms charge radius=3.558 fm 15 (2013An02). μ ,Q: from 2011Av01 (also 2006Ga47) using laser spectroscopy. Others: μ =+4.503 4, Q=-0.208 22 (2006Ga47,laser spectroscopy); μ =+4.61 4, Q=-0.26 6 (1966Co13, atomic-beam method). Adopted (by 1977En02) spectroscopic factor S=0.81 12 (proton stripping). Measured δ <r<sup>2>(⁴⁵Sc, ⁴³Sc)=+0.082 fm² 14(stat) 88(syst) (2011Av01). J^π: spin from atomic-beam spectroscopy (1966Co13), parity from L(³He,d)=L(d,n)=3. T_{1/2}: weighted average of 3.92 h 2 (1945Hi04), 3.95 h 2 (1963Du11), and 3.885 h 5 (1969Ra16).</r<sup>
151.79 ^c 8	3/2+	438 μs 7	AB DE GH K	NO QR T	 %IT=100 μ=+0.348 6 (1977Mi10,2014StZZ) μ: TDPAD method (1977Mi10). Adopted (by 1977En02) spectroscopic factor S=0.35 6 (proton stripping). T_{1/2}: 435 μs 30 (1964Br27). J^π: L(³He,d)=L(d,n)=2; M2 γ to 7/2⁻.
472.60 14	3/2-	158 ps <i>13</i>	A D GHIK	NOPQRST	
845.18 9	5/2-	0.15 ps <i>1</i>	AB E GH K	0 RST	J^{π} : L(p,t)=2 from 7/2 ⁻ ; M1+E2 γ to 7/2 ⁻ ; primary γ from 3/2 ⁻
855.65 25	1/2+	22 ps 3	GH K	NO QR T	resonance in (p,γ) . 7/2 ruled out by $\gamma(\theta)$ in $(\alpha,p\gamma)$ and RUL. Adopted (by 1977En02) spectroscopic factor S=0.08 2 (proton stripping). J^{π} : $L(^{3}He,d)=L(d,n)=0$.
880.64 ^d 8	5/2+	4.6 ps 10	B DE GH K	O QR T	J^{π} : M1+E2 γ to 3/2 ⁺ ; γ to 7/2 ⁻ . Anisotropic $\gamma(\theta)$ rules out 1/2 ⁺ .

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XR	EF	Comments
1158.76 24	3/2+	4.4 ps 10	GH 1	K	J ^{π} : M1+E2 γ to 3/2 ⁺ ; dipole γ to 1/2 ⁺ . 1/2 ⁺ ruled out by anisotropic 1006 $\gamma(\theta)$.
1178.98 22	3/2-	0.28 ps 11	GHI 1	K NOPQRST	Adopted (by 1977En02) spectroscopic factor S=0.24 4 (proton stripping).
1337.53 ^c 7 1408.09 ^a 10	7/2 ⁺ 7/2 ⁻	0.83 ps <i>35</i> 0.19 ps <i>6</i>	B DE GH 1 AB E GHI 1		J ^{π} : L(3 He,d)=L(d,n)=1, γ to 7/2 $^{-}$. J ^{π} : stretched E2 γ to 3/2 $^{+}$. XREF: G(1418)N(1395)Q(1424). J ^{π} : L(p,t)=0 from 7/2 $^{-}$; M1+E2 to 7/2 $^{-}$; γ s to 5/2 $^{-}$
1651.22 25	5/2+	0.18 ps <i>3</i>	GH 1	K OQ T	and $3/2^-$. XREF: Q(1677). J^{π} : M1 γ to $3/2^+$; γ to $7/2^-$.
1811.1 4	3/2-	16 fs 6	GHI 1	K NOP RS	J^{π} : L(3 He,d)=L(d,n)=1. Anisotropic $\gamma(\theta)$ rules out 1/2.
1830.33 ^{&} 11	11/2-	0.20 ps <i>3</i>	BCDEFGHI	RST	J^{π} : $\Delta J=2$, E2 γ to $7/2^-$. $J=3/2$ ruled out by $\gamma(\theta, \text{lin pol})$.
1882.8 3	(5/2,9/2)	35 fs <i>17</i>	A GH	K RS	J^{π} : L(p,t)=2 from 7/2 ⁻ ; M1+E2 γ to 7/2 ⁻ . J=7/2 ruled out by $\gamma(\theta)$ in (α ,p γ). If 1730 γ to 151.8, 3/2 ⁺ exists, 9/2 will be ruled out.
1912 6 1932.55 ^d 9	9/2+	2.4 ps 6	G B DE GH	K S	J^{π} : L(p,t)=5 from 7/2 ⁻ ; ΔJ =2, E2 to 5/2 ⁺ ; M1+E2 γ
1962.89 20	(3/2,5/2) ⁻	70 fs <i>11</i>	A GH 1	K NO	to $7/2^+$. XREF: N(1947). J^{π} : M1+E2 γ to 3/2 ⁻ ; $\gamma(\theta)$ in (p, γ) rules out 1/2, prefers 5/2 over 3/2, L(³ He,d)=L(d,n)=1 support 3/2 ⁻ . The log ft =6.4 from 7/2 ⁻ disfavors 3/2 ⁻ , but the β feeding is small and a strong argument cannot be made to rule out 3/2 completely.
2094.8 <i>3</i> 2106.6 <i>5</i>	3/2 ⁻ (3/2,5/2)	0.29 ps +8-6 0.21 ps 7	GH 1		J ^π : L(³ He,d)=1; γ to 5/2 ⁺ . J=1/2 ruled out by $\gamma(\theta)$. J ^π : γ s to 3/2 ⁺ and 5/2 ⁺ ; 1/2 ⁺ and 7/2 ⁺ are possible but, with B(E2)(W.u.)≈75, less likely.
2114.5 5			1	K nO st	XREF: O(?). J ^π : L(p,t)=(3+5) from 7/2 ⁻ implies positive parity for 2114 and/or 2106; whereas L(d,n)=(1) implies negative parity for one of these levels.
2142.0 3	$(3/2^-,5/2^+)$	0.19 ps 4	GH 1	K t	J ^{π} : γ s to 1/2 ⁺ and 7/2 ⁻ . $\gamma(\theta)$ in (p, γ) prefers 7/2 over 5/2, but γ to 1/2 ⁺ and RUL exclude 7/2.
2242.8 6	$(3/2,5/2,7/2)^{-}$	0.19 ps 9	GH	RSt	J^{π} : L(p,t)=2 from 7/2 ⁻ ; γ s to 3/2 ⁻ and 7/2 ⁻ .
2288.65 <i>8</i> 2335.47 <i>10</i>	5/2 ⁻ 5/2 ⁻	<21 fs 28 fs <i>14</i>	A GHI I		J ^π : L(³ He,d)=3; γ to 3/2 ⁺ . J ^π : L(d,n)=3; L(p,t)=2 from 7/2 ⁻ . J=7/2 not allowed by $\gamma(\theta)$ in $(\alpha, p\gamma)$ and RUL.
2383.1 <i>4</i> 2458.68 <i>10</i>	3/2 ⁽⁺⁾ (5/2,9/2) ⁻	>0.31 ps 38 fs <i>14</i>	GH I	K O RS	J^{π} : (M1+E2) γ to $1/2^+$ and $\gamma(\theta)$ in $(\alpha,p\gamma)$. J^{π} : L(p,t)=2 from 7/2 ⁻ ; ΔJ =1, M1 γ to 7/2 ⁻ ;
2553.54 ^c 11 2580.8 4	11/2 ⁺ (5/2)	0.51 ps 7 0.10 ps 3	B DE GH I		log ft =4.5 from 7/2 ⁻ . J^{π} : ΔJ =1, dipole γ to 9/2 ⁺ , ΔJ =2, $Q \gamma$ to 7/2 ⁺ . J^{π} : primary transitions from 3/2 and 7/2 resonances
2606 10	(11/0)			0	in (p,γ) .
2635.35 ^a 13	(11/2)-	0.21 ps 7	B E GHI	RSt	J^{π} : L(p,t)=2 from 7/2 ⁻ ; D γ to 11/2 ⁻ ; γ to 7/2 ⁻ ; γ sequence. J=9/2 is not completely ruled out.
2650.5 16			Н		E(level): this level may be the same as 2657, $1/2^+$ level but γ to $5/2^-$ suggests a different level.
2657 10	1/2+			n0 t	E(level): see comment for 2650.5 level. J^{π} : $L(^{3}He,d)=0$.

E(level) [†]	$\mathrm{J}^{\pi \#}$	$T_{1/2}^{\ddagger}$	X	REI	F		Comments
2670.5 <i>4</i> 2760.10 <i>10</i>	3/2 ⁻ (5/2,7/2,9/2) ⁻	<28 fs	GH A GH	K	n0	RSt RS	J^{π} : L(p,t)=2 from 7/2 ⁻ ; γ to 1/2 ⁺ . J^{π} : L(p,t)=4 from 7/2 ⁻ ; γ to 7/2 ⁻ ; log ft =4.94 from
2795.4 <i>5</i> 2811.1 <i>6</i> 2840.7 <i>5</i>	3/2 ⁻ ,5/2 ⁻ (5/2,7/2,9/2) (5/2,7/2) ⁺	0.28 ps <i>16</i> <62 fs	GH	K K K	n	S S	7/2 ⁻ . J^{π} : L(p,t)=2 from 7/2 ⁻ ; γ s to 3/2 ⁺ and 7/2 ⁻ ; RUL. J^{π} : γ s to 7/2 ⁻ and 7/2 ⁺ . J^{π} : L(p,t)=5 from 7/2 ⁻ ; γ s to 7/2 ⁻ and (3/2) ⁺ ;
2846.2 8	(-1-,-1-)		Н		n		inconsistent with $L(d,n)=1+3$. J^{π} : $L(d,n)=1+3$ for a 2830 group suggests a doublet
2860.8 <i>4</i> 2874.7 <i>6</i>	(1/2,3/2,5/2) ⁺ (5/2) ⁺		Н	K K	0	S T	with $J\pi = 1/2^-, 3/2^-$ and $5/2^-, 7/2^-$ near this energy. J^{π} : L(p,t)=3 from $7/2^-$; γ transitions to $3/2^-$ and $3/2^+$. XREF: T(2870).
2930?	3/2+,5/2+	54 fo 11		17	N	D.o.	J^{π} : fit to $\sigma(\theta)$ and Ay in (pol p, α) gives $5/2^+$, $9/2^+$; γ to $3/2^+$ disfavors $9/2^+$. J^{π} : L(d,n)=2.
2985.0 <i>5</i> 2988.12 ^{&} <i>12</i>	(3/2,5/2)	54 fs <i>11</i>			NO	Rs	J^{π} : γ s to $3/2^+$, $5/2^-$, $5/2^+$ and $3/2^-$.
	15/2-	5.6 ps 7	BCDEFGHI			sT	J^{π} : $\Delta J=2$, E2 γ to $11/2^{-}$.
3123.73 ^{&} 15	19/2-	472 ns 4	BCDEFGHI	-		RST	μ =+3.122 7 (1978Ha07,2014StZZ) Q=0.199 14 (1981Da06,2014StZZ,2013StZZ) J ^π : L(p,t)=6 from 7/2 ⁻ ; ΔJ=2, E2 γ to 15/2 ⁻ . μ ,Q: TDPAD method (1978Ha07,1981Da06). Others: μ =3.108 18 (1994Zh43), 3.15 2 (1971Na10).
3142.05 ^d 12	13/2+	>0.55 ps	B DE GH				J^{π} : $\Delta J = 2$, E2 γ to $9/2^{+}$; γ to $11/2^{+}$.
3159.3 5	$(3/2^-,5/2,7/2^+)$	<0.42 ps		K			J^{π} : γ s to $7/2^{-}$ and $3/2^{+}$.
3198.2 10	$(1/2 \text{ to } 7/2^{-})$	<0.28 ps	Н		0	S	J^{π} : 1/2,3/2,5/2,7/2 ⁻ from γ to 3/2 ⁻ .
3260.1 8	$(7/2,9/2)^-$	42 fs 25	A GH	K	0	RS	J^{π} : L(p,t)=4 from 7/2 ⁻ ; log ft=5.9 from 7/2 ⁻ ; possible γ to 11/2 ⁻ .
3292.4 3	7/2-		B E GH	K		S	possible γ to $11/2$. J^{π} : L(p,t)=2 from $7/2^-$; γ s to $3/2^-$ and $9/2^+$. $T_{1/2}$: values <3.5 fs from (p, γ) and >55 fs from (α ,p γ) are discrepant.
3326.8 8	(3/2 ⁻ to 9/2)			K	no	Rs	J^{π} : γ to $7/2^-$; γ from 6696, 5/2. $L(^3He,d)=3$ for a 3328 group gives $5/2^-$, $7/2^-$ for 3327 or 3332 level. $L(p,t)=2$ from $7/2^-$ gives negative parity for one or both these levels.
3332.2 4	(3/2 ⁻ ,5/2)	0.13 ps <i>10</i>	Н	K	no	S	J ^{π} : γ s to 3/2 ⁻ , 5/2 ⁻ and 3/2 ⁺ ; possible γ to 7/2 ⁻ . L(d,n)=3 for a 3330 group suggests 5/2 ⁻ ,7/2 ⁻ for one of the levels near this energy.
3375.3 <i>5</i> 3452.1 <i>5</i>	(7/2,9/2) ⁻ 5/2 ⁺	<62 fs <2.1 fs	H gH		No	S S	J^{π} : L(p,t)=2 from 7/2 ⁻ ; γ s to 7/2 ⁻ , 7/2 ⁺ and 11/2 ⁻ . J^{π} : L(d,n)=2; L(p,t)=5 from 7/2 ⁻ ; 3/2 ⁺ ruled out by γ to 7/2 ⁻ and RUL.
3463.3 6	5/2-		gH	K	0	r T	XREF: O(3474). J^{π} : L(³ He,d)=3; γ to 3/2 ⁺ .
3480 <i>10</i> 3503.2 <i>6</i> 3613 <i>10</i>	(≤13/2) ⁺ 7/2 ⁻		G	K	0 n0	rSt S	J^{π} : L(p,t)=3 from 7/2 ⁻ . J^{π} : L(p,t)=0 from 7/2 ⁻ .
3631.7 <i>10</i> 3645.6 <i>5</i> 3683.2 <i>5</i>	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻) (3/2,5/2,7/2 ⁻) (3/2,5/2,7/2)		A G	K K	n	RS	J^{π} : possible allowed ε feeding from 7/2 ⁻ . J^{π} : γ s to 5/2 ⁺ ,5/2 ⁻ and 3/2 ⁻ . E(level), J^{π} : L(p,t)=3 from 7/2 ⁻ implying positive parity and L(3 He,d)= L(d,n)=3 implying 5/2 ⁻ ,7/2 ⁻ require two separate levels near this energy. 7/2 ⁻ is not likely from γ to 3/2 ⁺ .
3700 10	(5/2 to 19/2) ⁻					S	J^{π} : L(p,t)=6 from 7/2 ⁻ .
3734.0 5				K			
3755.43 ^c 16	15/2+		B DE				J^{π} : $\Delta J = 2$, Q γ to 11/2 ⁺ ; $\Delta J = 1$, M1+E2 γ to 13/2 ⁺ .

E(level) [†]	${ m J}^{\pi\#}$	T _{1/2} ‡	Х	KREI	7		Comments
3756.5 5	$(3/2^-,5/2,7/2^+)$			K			J^{π} : γ s to $3/2^{+}$ and $7/2^{-}$.
3771 10	$(3/2 \text{ to } 17/2)^+$					S	J^{π} : L(p,t)=5 from 7/2 ⁻ .
3807.2 4	$7/2^{-}$	<3.5 fs	G	K	0	ST	XREF: O(3786).
							J^{π} : $\Delta J = 1 \gamma$ to $5/2^+$; γ s to $3/2^-$ and $7/2^+$; $3/2^+$
							excluded by RUL. $L(p,t)=5$ from $7/2^-$ for 3807 group is incompatible.
3843.0 6	(≤9/2)		g	K		Rs	J^{π} : γ to 5/2 ⁻ . L(p,t)=5 from 7/2 ⁻ implies positive
3013.00	(=>/2)		9	•		110	parity for 3843 or 3860 level.
3860.1 <i>6</i>	$(\le 7/2)$		g	K		S	J^{π} : γ to $3/2^+$. See also comment for 3843 level.
3894 8						R	
3939 10	5/2-,7/2-		g		NO	R	J^{π} : L(³ He,d)=L(d,n)=3.
3949 10	$(\leq 13/2)^+$		gH			S	XREF: H(3956)S(3949).
3959.87 ^a 12	15/2-		ВЕ				J^{π} : L(p,t)=3 from 7/2 ⁻ . J^{π} : ΔJ =2, Q γ s to 11/2 ⁻ ; D γ to 15/2 ⁻ .
3985 10	13/2		G		0		$3 \cdot \Delta 3 - 2$, Q ys to $11/2$, D y to $13/2$.
4007.3 5	$(3/2,5/2)^+$		_	K	N	S	J^{π} : L(p,t)=5 from 7/2 ⁻ ; γ s to 1/2 ⁺ and 5/2 ⁺ .
4038.8 <i>6</i>	7/2-			K		S	J^{π} : L(p,t)=4 from 7/2 ⁻ ; γ s to 3/2 ⁻ and 9/2 ⁺ .
4132 8	$(3/2 \text{ to } 17/2)^+$					RS	J^{π} : L(p,t)=5 from 7/2 ⁻ .
4150 < 10	(0/0.11/0.10/0)=		677			•	E(level): population uncertain in (3 He,t).
4158.6 <i>10</i> 4211 <i>10</i>	$(9/2,11/2,13/2)^{-}$ $(9/2,13/2)^{+}$		GH			S ST	J^{π} : L(p,t)=4 from 7/2 ⁻ ; γ to 11/2 ⁺ . XREF: T(4180).
4211 10	(9/2,13/2)					31	J^{π} : L(p,t)=3 from 7/2 ⁻ ; $\sigma(\theta)$ and Ay in (pol p, α).
4236 8	7/2-				NO	RST	T=3/2
	•						J^{π} : L(p,t)=0 from 7/2 ⁻ ; L(³ He,d)=L(d,n)=3.
4276 8				K		R	XREF: K(4272).
4301.2 5	$(9/2,11/2,13/2^+)$		B E			_	J^{π} : γ to $9/2^+$.
4343 <i>8</i> 4360	$(17/2^{-})$					R T	J^{π} : $\sigma(\theta)$ and Ay in (pol p, α).
4371.5 5	5/2-,7/2-		G	K	0	R	XREF: O(4363).
.571.6	0/2 ,//2			-		-	J^{π} : L(³ He,d)=3. $\gamma(\theta)$ in (p, γ) preferred 7/2 ⁺ .
4383 9	5/2-,7/2-				NO		J^{π} : L(³ He,d)=L(d,n)=3.
4383.03 <i>23</i>	$17/2^{(-)}$	40 fs 17	B DE				J^{π} : D γ to 15/2 ⁻ ; D+Q γ to 19/2 ⁻ .
4430.2 5	$(1/2^+, 3/2, 5/2)$			K			J^{π} : γ s to $3/2^{-}$, $3/2^{+}$ and $5/2^{+}$.
4455.3 8	(5/2 to 9/2)	<3.5 fs		K		ъ	J^{π} : $\Delta J=1 \gamma$ to $7/2^{-}$.
4511 8 4555 <i>10</i>	$(11/2^+, 13/2^-)$				0	R T	J^{π} : $\sigma(\theta)$ and Ay in (pol p, α).
4583 10	(11/2 ,13/2)				NO	T	$\mathbf{y} : \mathcal{O}(0)$ and $\mathcal{O}(0)$ in (por \mathbf{p}, \mathbf{e}).
4633.6 19	(17/2,21/2)	<110 fs	D				J^{π} : $\Delta J=1 \gamma$ to $19/2^{-}$.
4660 8	1/2-,3/2-		G		NO	RS	XREF: G(4630).
							J^{π} : $L(^{3}He,d)=L(d,n)=1$.
4700	$(15/2^+)$					T	J^{π} : $\sigma(\theta)$ and Ay in (pol p, α).
4719 9	1/2-,3/2-				NO	ъ	J^{π} : L(³ He,d)=L(d,n)=1.
4766 8	1/2-,3/2-				0	R	J^{π} : L(3 He,d)=1. J^{π} : L(3 He,d)=1.
4817 <i>8</i> 4873 <i>8</i>	1/2-,3/2-				0	R R	J : L(* He,u)=1.
4893 9	1/2-,3/2-				NO	•	J^{π} : L(³ He,d)=1.
4927 10	=/= ,=/=		G		0		(-10,0) 1.
5018 9	1/2-,3/2-				NO		J^{π} : $L(^{3}He,d)=L(d,n)=1$.
5187 10					0		E(level): due to improbable $L(^3He,d)=8$ required for
							$17/2^+$, the 5187 level in (3 He,d) is considered as
5200	(17/2±)						different from 5200.
5200 5231.33 ^d 17	$(17/2^+)$		D DE			Т	J^{π} : $\sigma(\theta)$ and Ay in (pol p, α).
5231.33 ^a 17 5236 10	$(17/2^+)$		B DE G			ст	J^{π} : $\Delta J=1 \ \gamma$ to $15/2^+$; γ sequence.
3230 10			G			ST	

E(level) [†]	$^{\mathrm{J}^{\pi^{\#}}}$	T _{1/2} ‡	2	XREF	Comments
5258 <i>10</i> 5317 <i>10</i> 5446 <i>10</i>	1/2-,3/2-		G	NO O O	J^{π} : $L(^{3}He,d)=L(d,n)=1$.
5502 9 5519.00 ^c 15 5530 10 5641 9 5719 9 5793.51 24 5823 9	1/2 ⁻ ,3/2 ⁻ 19/2 ⁺ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ (15/2,17/2,19/2 ⁻)	<62 fs	B DEF G B E	NO O NO NO	J^{π} : L(³ He,d)=L(d,n)=1. J^{π} : ΔJ=2, E2 γ to 15/2 ⁺ ; ΔJ=1, dipole γ to 19/2 ⁻ . J^{π} : L(³ He,d)=1. J^{π} : L(³ He,d)=L(d,n)=1. J^{π} : L(³ He,d)=L(d,n)=1. J^{π} : γ to 15/2 ⁻ .
5871 <i>10</i> 5919.4 <i>4</i> 5950.5 <i>3</i> 5977 <i>12</i> 6033 <i>9</i>	3/2 (3/2,5/2) 1/2 ⁻ ,3/2 ⁻			O JK O JK NO	J^{π} : $\gamma(\theta)$ in (p,γ) . J^{π} : $\gamma(\theta)$ in (p,γ) . J^{π} : $L(^{3}He,d)=L(d,n)=1$.
6060.5 10 6067.23 ^a 14 6079 10	(5/2) 19/2 ⁻	55 fs <i>12</i>	B DE G	јк О	J^{π} : $\gamma(\theta)$ in (p,γ) . J^{π} : $\Delta J=2$, E2 γ s to $15/2^{-}$, γ sequence.
6103.2 <i>3</i> 6116 6127	(3/2-,5/2+)		d	JK O J	J^{π} : from γ decay of resonance in (p,γ) .
6136.2 <i>3</i> 6143.4 <i>3</i> 6146 <i>3</i>	3/2 3/2 ⁻ 1/2 ⁻ ,3/2 ⁻			JK JK J NO	J^{π} : from $\gamma(\theta)$ in (p,γ) . J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) . T=3/2 J^{π} : $L(^{3}He,d)=L(d,n)=1$.
6151 3	3/2-			J L N	Γ = 125 eV 15 Γ =1 from fit to resonance in (p,p).
6172.98 ^b 17	(19/2+)		В Е	J	J^{π} : γ s to 15/2 ⁺ , 19/2 ⁺ and 19/2 ⁻ ; γ sequence.
6182 6184.2 <i>10</i> 6190	5/2			J JK J	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .
6198.1 <i>4</i> 6200 6210	(3/2,5/2+)			JK J J	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .
6211 6217.4 <i>3</i> 6223	(3/2 ⁻ ,5/2 ⁺) 1/2 ⁺			JK	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) . T = 3/2 $\Gamma = 50$ eV $I0$ J^{π} : fit to resonance in (p,p) .
6228 <i>3</i> 6242 6247.2 <i>4</i> 6253 6262	(3/2,5/2)		G	J J JK J	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .
6280 <i>3</i> 6283.49 ^{<i>d</i>} 17 6286 6291 6297	(21/2+)	110 fs <i>38</i>	B DE	J 0 J J	J^{π} : γ to (17/2 ⁺); ΔJ =1, D γ to 19/2 ⁻ and 19/2 ⁺ .
6312 6315 6320.4 <i>3</i> 6348	5/2+			J J JK J	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡		XREF		Comments
6355 6370 6374 6384 3 6391 6395 6403 6410 6416 6417.6 6426				J J J O J J J J J J J)	
6431.04 ^c 17 6432	23/2+	16.3 ps <i>15</i>	B DEF	J		J ^{π} : ΔJ=2, E2 γ to 19/2 ⁺ ; γ to 19/2 ⁻ .
6439 <i>3</i>	1/2+			J L O)	Γ =1.5 eV 5 J^{π} : fit to resonance in (p,p).
6453 6461 6469 6479 6481 6493 6499 6503 6508				J J J J J J		
6510.7 6515 6535 6547 6551 6558	1/2+@			L J J J		
6561.4	1/2-@			L		
6564.1 6570.1 6576 6584 6596 6604 6625	1/2+@ 1/2+@			J L J L J J J		
6630.0	1/2-@			JL		
6651.0 6665 6674	1/2+@			L J J		
6677.4 6680	(1/2 ⁻)@			J L J		
6684.4 6685.1 <i>4</i>	1/2 ⁺ @ 1/2 ⁻			L JK		T=1/2&3/2 J ^π : γ decay of resonance and $\gamma(\theta)$ in (p, γ).
6685.3	3/2-@			L		2 . , 200ay of resonance and , (o) in (p,).
6694.8	1/2-@			J L		TT
6696.2 <i>3</i> 6709 <i>3</i>	5/2 1/2 ⁻			JK jkL o)	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) . T=1/2&3/2 J^{π} : γ decay of resonance in (p,γ) .

E(level) [†]	${\sf J}^{\pi \#}$	$T_{1/2}^{\ddagger}$	XR	REF	Comments
6709.5	1/2-@		j	kL o	
6713	,		J	l	
6716			J		
6719 6730			J		
6736.6	3/2-@			L	
6749	3/2		J		
6759			j		
6777.3 <i>3</i>	5/2		J	IK N	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) ; $L(d,n)=1$ is inconsistent.
6786 6794			J] 	
6795.1	1/2-@			L	
6795.4	1/2-@			L	
6801	,		J		
6811 <i>10</i>				0	
6814	(15/2= to 22/2=)	04 fa 20	J	l	
6814.5 <i>19</i> 6815.3	$(15/2^- \text{ to } 23/2^-)$ $1/2^+$	94 fs 20	D		
6818.42 <i>17</i>	$(21/2^+)$		ВЕ	L	J^{π} : γ s to $(17/2^+)$ and $(19/2^+)$.
6827.0	3/2-@		D L	L	\mathbf{J} . Ys to $(17/2)$ and $(17/2)$.
6830	3/2		J		
6834			J		
6846			J	l	
6849.7	$(3/2^+)^{@}$			L	
6850.8	1/2-@			L	
6853.9	$(3/2^+)^{@}$			L	
6855.0	1/2-@		J	L	
6859.0	$(3/2^+)^{@}$			L	
6861	. @		J		
6868.2	1/2+ @		-	L	
6871 6877			J		
6880.1	1/2+@			L	
6889	1/2		J		
6899.7	1/2-@		J	L	XREF: J(6901).
6906			J		
6912.4	1/2+@			L	
6918.6 <i>4</i> 6920	7/2			K O	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .
6925			J J		
6934			j	ļ	
6936.4	1/2+ @			L	
6942			J		
6943.7	1/2-@			L	
6946			J		
6961	(2/2+)@		J		
6966.0 6971	$(3/2^+)^{\textcircled{0}}$		J	L	
6978.9	(3/2 ⁺) [@]			L	
6983.6	1/2-@			L	
0703.0	1/4		J	L	

E(level)	${ m J}^{\pi\#}$	XREF	Comments
6991		J	
6996		J	
6999		J	
7004	(2/2-)	J	
7013.7 7022	$(3/2^{-})^{\textcircled{0}}$	J L J	XREF: J(7015).
7024.7	$(3/2^+)^{@}$	J L	
7027.7	1/2-	LN	J^{π} : fit to resonance in (p,p); L(d,n)=1.
7032.1	1/2+ @	L	4777
7033	-, -	J	
7037.2	3/2-@	L	
7042		J	
7046.4	$(5/2^+)^{@}$	L	
7051		J	
7058		J	
7063	1/2+@	J	
7067.5 7072	1/2+ @	L J	
7074.9	1/2-@	L	
7074.5	1/2	J	
7085.6	1/2-@	L	
7091	,	J	
7094.4	3/2-@	J L	
7099.1	1/2+@	J L	
7106.88 <mark>b</mark> <i>17</i>	(23/2+)	B DE	J^{π} : ΔJ=1, D γ to (21/2 ⁺); γ to (19/2 ⁺).
7108		J	, , , , , , ,
7116.8	1/2-@	J L	XREF: J(7118).
7118.8 <i>11</i>	$(15/2,17/2,19/2^+)$	ВЕ	J^{π} : γ to 15/2 ⁺ .
7123.4	$(3/2^+)^{@}$	L	
7125.0	1/2+@	L	
7127	(2/2/)	J	
7132.3	$(3/2^+)^{\textcircled{@}}$	L	
7135 7138.0	3/2-@	J	
7138.0	1/2+@	L	
7140.2 7146	1/2	J L J	
7150.5	$(3/2^+)^{@}$	L	
7154		J	
7155.8	3/2-@	L	
7159	3/2+,5/2+	J N	J^{π} : L(d,n)=2.
7170.2	1/2-@	J L	
7174	@	J	
7176.5	$(5/2^{-})^{@}$	J L	
7180 7183		J J	
7185.2	$(3/2^+)^{\textcircled{a}}$	L	
7198	(3/4)	J	
7211.0	$(1/2^{-})^{\textcircled{@}}$	J L	
7214		J	
7215.3	$(1/2^+)^{\textcircled{@}}$	L	

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XREF	Comments
7222.9	3/2+@			J L	
7227.1	$(3/2^+)^{@}$			J L	
7231.2	1/2-@			L	
7240.8	$(3/2^+)^{@}$			J L	
7247.5	1/2-@			L	
7251.0	$(3/2^+)^{@}$			J L	
7255.4	1/2+@			L	
7256.8	3/2-@			L	
7263				J	
7266.3	$(3/2^+)^{\textcircled{0}}$			L	
7269	(15/2 15/2 10/2+)			J	15 A 5 O b
7273.5 <i>7</i> 7275	$(15/2, 17/2, 19/2^+)$		B E	J	J^{π} : γ to $15/2^+$.
7273	$(1/2^{-})^{\textcircled{@}}$			J L	
7285	(1/2)			J	
7288				J	
7289.8	3/2 ⁺ @			L	
7290.9	$(3/2^+)^{\textcircled{0}}$			L	
7295				J	
7302 7305				J J	
7307.6	3/2-@			L	
7309.1	1/2-@			L	
7311.2	$(3/2^+)^{@}$			L	
7313				J	
7315.8	1/2+ @			L	
7326.9	1/2-@			L	
7329.5	$(3/2^+)^{\textcircled{0}}$			L	
7339.4	1/2+@			L	
7344.1 <i>3</i> 7349	3/2-,5/2			JK J	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .
7354				j	
7359.16 ^d 17	$(25/2)^+$	340 fs 21	B DEF		J^{π} : $\Delta J=1$, M1 γ to 23/2 ⁺ ; γ to (21/2 ⁺).
7363.5	1/2+ @			L	
7365.1	$1/2^{-}$			J L	
7369.7	$1/2^{-60}$			L	
7370.8	1/2-@			L	
7373	1 (2+10)			J	
7378.5 7380	1/2+ @ 1/2-,3/2-			L N	J^{π} : L(d,n)=1.
7382	1/2 ,3/2			J	$J : L(\mathbf{u}, \mathbf{n}) - 1.$
7385.5	$(5/2^{-})^{\textcircled{0}}$			L	
7388				J	
7390.3	1/2+@			L	T# 1 C 1 (A): /)
7394.18 23	3/2 ⁻ ,5/2 ⁺ 3/2 ⁺ @			JK	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .
7395.7 7402	3/2.			L J	
7412.4	1/2-@			JL	XREF: J(7411).
	•				

E(level) [†]	${ m J}^{\pi \#}$	XREF	Comments
7414.5	$(3/2^+)^{\textcircled{0}}$	J L	
7419.4	3/2-@	J L	XREF: J(7418).
7423		J	
7424.7	5/2 ⁺ [@]	L	
7429		J	
7433	~ / a @	J	
7439.9	5/2 ⁺ @	L J	
7443 7445.0	1/2+@		
7443.0	1/2-@	L	
7448.4 7450	1/2	L J	
7461.7	$(3/2^+)^{@}$	L	
7463.7	3/2-@	L	
7466	3/2	J	
7471		J	
7476.6	1/2-@	L	
7477.1	$(5/2^+)^{@}$	L	
7478.6	3/2-@	J L	XREF: J(7480).
7483.8	$(5/2^{-})^{@}$	J L	
7492.0	1/2+ @	J L	
7498	@	J	
7502.0	$(5/2^{-})^{\textcircled{@}}$	J L	
7508.5	3/2-@	L	T// 1 C 1 (0): () 1/0= C ():
7512.3 4	$(7/2^+)$	JKL -	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) . $1/2^-$ from (p,p) is inconsistent which may indicate a separate level.
7513	(5/0+)	J	
7517.6 7522	(5/2+)@	J L J	
7527.5	$(3/2^{-})^{@}$	L	
7530 7536	1/2-,3/2-	J L N J	J^{π} : L(d,n)=1; (3/2 ⁻) from (p,p).
7539.1	3/2-@	L	
7540.0	1/2+ @	L	
7544 7551		J J	
7551 7557 1	$(5/2^+)^{\textcircled{@}}$		
7557.1 7559	(3/2")	L J	
7560.2	3/2 ⁻ @	L	
7564.1	$(3/2^+)^{@}$	J L	
7570.1	1/2+@	L	
7581.4 <i>4</i>	$(3/2^-,5/2,7/2^+)$	JK	J^{π} : γ decay of resonance and $\gamma(\theta)$ in (p,γ) .
7586.6 7592	1/2-@	L J	
7595.5	$(3/2^+)^{@}$	L	
7596.9	$1/2^{-}$ @	L	
7599.6	1/2+@	J L	
7604.5	$(3/2^+)^{@}$	J L	XREF: J(7603).
7607	., ,	J	
7611		J	

E(level) [†]	$J^{\pi \#}$	XREF	Comments
7614.2	3/2-@	L	
7615.6	$(1/2^{-})^{@}$	L	
7619.5	1/2-@	J L	XREF: J(7418).
7620.8	$(3/2^+)^{@}$	L	
7624		J	
7625.8	$(3/2^+)^{@}$	L	
7627.1	$(5/2^+)^{\textcircled{0}}$	L	
7630.7	3/2-@	L	
7639.4	3/2-@	L	
7644.1	$(3/2^+)^{\textcircled{0}}$	L	
7646.1	$(3/2^+)^{@}$	L	
7659.6	3/2- @	L	
7666.6	1/2+@	L	
7668.0	1/2+ @	L	
7675.7	3/2-@	L	
7683.6	$(5/2^{-})^{\textcircled{0}}$	L	
7693.2	1/2-@	L	
7700	5/2-,7/2-	N	J^{π} : L(d,n)=3.
7703.3	$(5/2^+)^{\textcircled{0}}$	L	
7708.3	1/2+@	L	
7711.1	1/2-@	L	
7714.8	$(5/2^{-})^{@}$	L	
7721.7	1/2-@	L	
7733.7	$(5/2^+)^{\textcircled{@}}$	L	
7738.3	1/2-@	L	
7738.5	1/2+@	L	
7744.3	3/2-@	L	
7747.3	1/2-@	L	
7751.4	1/2-@	L	
7754.0	$(5/2^+)^{\textcircled{0}}$	L	
7760.9	$(5/2^+)^{\textcircled{@}}$	L	
7761.3	1/2-@	L	
7769.4	1/2+@	L	
7784.7	$(3/2^+)^{\textcircled{0}}$	L	
7785.3	$(5/2^{-})^{\textcircled{0}}$	L	
7797.5	(5/2 ⁺) [@]	L	
7803.6	1/2+@	L	
7807.2	3/2-@	L	
7807.7	1/2-@	L	
7810.8	$(3/2^+)^{\textcircled{0}}$	L	
7815.6	$(5/2^{+})^{\textcircled{a}}$	L	
7818.6	1/2+@	L	
7819.0	1/2+@	L	
7820.5	$(5/2^+)^{\textcircled{0}}$	L	
7829.6	1/2-@	L	

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XI	REF	Comments
7830.3	3/2-@			L	
7832.0	(5/2 ⁻) [@]			L	
7832.8	$(3/2^+)^{@}$			L	
7836.2	$(5/2^{-})^{@}$			L	
7838.0	$(3/2^+)^{\textcircled{@}}$			L	
7841.4	1/2+@			L	
7844.2	3/2-@			L	
7850.5	3/2-@			L	
7859.2	1/2-@			L	
7859.8	1/2-@			L	
7861.6	3/2+@			L	
7868.5	3/2-@			L	
7900.3	5/2 ⁻ ,7/2 ⁻			N	J^{π} : L(d,n)=3.
7919	$3/2^+, (5/2^+)^{@}$			L	3 · L(d,n)=3.
7926	1/2-,(3/2-)@			L	
7920	1/2 ,(3/2)			L	
7933 7941	1/2+@			L	
7941 7954	1/2 1/2 ⁻ ,(3/2 ⁻) [@]			L	
7934 7961	$1/2$, $(3/2)$ 0 $1/2$, $(3/2^-)$ 0				
8010.1 <i>4</i>	$(19/2,21/2,23/2^+)$		ВЕ	L	J^{π} : γ to 19/2 ⁺ .
8014	1/2-@		В Е	L	3 . y to 17/2 .
8019	$(3/2^+,5/2^+)^{\textcircled{a}}$			L	
8021	(3/2 ,3/2)			M	
8027				M	
8034	$(3/2^+,5/2^+)^{\textcircled{0}}$			L	
8045	$(3/2^+,5/2^+)^{\bigcirc 0}$			L	
8048	1/2+ @			L	
8054				M	
8061	1/2-@			L	
8063				M	
8065	$3/2^-,(1/2^-)^{@}$			L	
8068	3/2-@			M	
8071	3/2-@			L	
8074	3/2-@			M	
8075	$9/2^+,(7/2^+)^{@}$			L	
8093				M	TT T (1) 2
8111	5/2-,7/2-			MN	$J^{\pi}: L(d,n)=3.$
8122 8132				M M	
8139				M	
8149				M	
8193	- 10 10 -			M	TT T (1) 0
8380	5/2-,7/2-		D E	N	J^{π} : L(d,n)=3.
8434.37 <i>17</i> 8555.56 ^a <i>19</i>	23/2 ⁽⁻⁾ 23/2 ⁽⁻⁾		B E B E		J^{π} : $\Delta J=2$, $Q \gamma$ to $19/2^-$. J^{π} : $\Delta J=2$, $Q \gamma$ to $19/2^-$; γ sequence.
8555.56" <i>19</i> 8690	5/2 ⁻ ,7/2 ⁻		D Ľ	N	J^{π} : $\Delta J = 2$, $Q \gamma$ to $19/2$; γ sequence. J^{π} : $L(d,n)=3$.
8703.06 18	$(25/2^+)$		B DE		J^{π} : $\Delta J=1$, D γ to $23/2^+$.
8831.84 ^c 18	$(27/2^+)$	74 fs <i>15</i>	B DE		J^{π} : $\Delta J=1$, D γ to $(25/2)^{+}$; γ to $(23/2^{+})$.

E(level) [†]	${ m J}^{\pi \#}$			XREF	Comments
8910	5/2-,7/2-			N	J^{π} : L(d,n)=3.
9170	5/2-,7/2-			N	J^{π} : L(d,n)=3.
9218.8 <i>4</i>	$(21/2^{-})$	В	E		J^{π} : (D) γ to 19/2 ⁻ .
9450	5/2-,7/2-			N	J^{π} : L(d,n)=3.
9578.86 20	$(27/2^+)$	В	E		J^{π} : γ s to $(25/2)^{+}$ and $23/2^{+}$.
9750	5/2-,7/2-			N	J^{π} : $L(d,n)=3$.
9995.10 20	$(25/2^{-})$	В	E		J^{π} : $\Delta J=1$, D γ to 23/2 ⁻ ; γ to (23/2 ⁺).
10040	5/2-,7/2-			N	J^{π} : L(d,n)=3.
10084.47 17	27/2 ⁽⁻⁾	В	E		J^{π} : $\Delta J=1$, D γ to $(25/2^{+})$; $\Delta J=2$, Q γ to $23/2^{-}$.
10178.6 6	$(23/2,25/2,27/2^+)$	В	E		J^{π} : γ to (23/2 ⁺).
10230	3/2+,5/2+			N	$J^{\pi}: L(d,n)=2.$
10436.84 ^b 23	$(25/2^+)$	В	E		J^{π} : γ to (23/2 ⁺); member of a sequence based on (19/2 ⁺).
10613.21 <i>19</i>	$(27/2^{-})$	В	E		J_{-}^{π} : $\Delta J=1$, D γ to (25/2 ⁺); $\Delta J=2$, Q γ to 23/2 ⁽⁻⁾ .
10750	5/2-,7/2-			N	J^{π} : L(d,n)=3.
10856.18 <i>19</i>	$(27/2^{-})$	В	E		J^{π} : $\Delta J = 1$ d γs to $(25/2^{-})$ and $(25/2)^{+}$.
10910	5/2-,7/2-	_	_	N	J^{π} : L(d,n)=3.
11252.0 4	$(25/2^+)$	В	E		J^{π} : $\Delta J = (0) \gamma$ to $(25/2^+)$ from $\gamma(\theta)$.
11260	5/2-,7/2-	_	_	N	J^{π} : L(d,n)=3.
11355.60 ^a 23	27/2 ⁽⁻⁾	В	E		J^{π} : $\Delta J=2$, Q γ to $23/2^-$; γ to $(25/2)^+$; γ sequence.
11560	5/2-,7/2-		_	N	J^{π} : L(d,n)=3.
11661.0 5	(20/2=)	В	E		IT. A.I. 1 4- (27/2+) 1 (27/2-)
11807.36 <i>19</i> 11840	$(29/2^{-})$	В	E	N	J^{π} : $\Delta J = 1 \ \gamma s$ to $(27/2^+)$ and $(27/2^-)$. J^{π} : $L(d,n)=1$.
11920.54 25	1/2 ⁻ ,3/2 ⁻	В	E	N	J^{π} : L(d,fi)=1. J^{π} : D γ s to 23/2 ⁺ and (25/2) ⁺ .
12053.33 19	(25/2 ⁺) (29/2 ⁻)	В	E		J^{π} : $\Delta J=1$, D γ to $27/2^{(-)}$; γ to $(25/2^{-})$.
12073.15 21	$(29/2^{-})$	В	E		J^{π} : $\Delta J=1$, D γ to $27/2^{(-)}$.
12073.13 21	1/2-,3/2-	Ь	E	N	J^{π} : $\Delta J=1$, $D^{\pi}y$ to $2I/2^{\pi/2}$. J^{π} : $L(d,n)=1$.
12614.84 <i>19</i>	$(31/2^{-})$	В	E	N	J^{π} : $\Delta J = 2$, $Q \gamma$ to $27/2^{(-)}$.
12703.9 9	(31/2)	В	E		J^{*} . $\Delta J=2$, $Q^{*}\gamma$ to $2I/2^{*}\gamma$.
12804.39 24	(27/2,29/2)	В	E		J^{π} : γ s to $27/2^{(-)}$ and $(27/2^{+})$.
13044.65^{b} 22	$(29/2^+)$	В	E		J^{π} : $\Delta J=1$, D γ to $(27/2^{+})$; γ to $(25/2^{+})$.
13116.57 21	$(31/2^{-})$	В	E		J^{π} : $\Delta J=2$, Q to $27/2^{(-)}$; $\Delta J=1$, D γ to $(29/2^{-})$.
13122.7 6	(31/2)	В	E		$J: \Delta J=2, \ Q: (O:ZI/Z):$
13584.1 4	$(29/2^+)$	В	E		J^{π} : $\Delta J=1$, D γ to $(27/2^{+})$.
14405.80 19	$(33/2^{-})$	В	E		J^{π} : $\Delta J=1$, D γ to (31/2 ⁻); $\Delta J=2$, Q γ to (29/2 ⁻).
14451.1 <i>3</i>	$(29/2^+)$	В	E		J^{π} : γ s to $(25/2^{+})$ and $(27/2^{+})$.
14561.2 ^a 3	$(31/2^{-})$	В	E		J^{π} : γ to (29/2 ⁻); $\Delta J=2$, Q γ to 27/2 ⁽⁻⁾ ; γ sequence.
14914.3 <i>3</i>	(31/2)	В	E		J^{π} : $\Delta J = 2$, $Q \gamma$ to $(27/2^{+})$.
15910.7 <mark>b</mark> 3	$(33/2^+)$	В	E		J^{π} : γ s to (29/2 ⁺) and 31/2 ⁻ .
16703.6 <i>6</i>	(/-)	В	E		/ (=>/= /)/= .
16708.4 5		В	E		
16711.2 6		В	E		
17767.4 <i>3</i>	(35/2)	В	E		J^{π} : $\Delta J=(2)$, (Q) γ to (31/2).
17921.1 <i>4</i>	$(31/2^+)$	В	E		J^{π} : $\Delta J=1$, (D) γ to (29/2 ⁺).
18196.8 ^a 5	$(35/2^{-})$	В	E		J^{π} : $\Delta J = 2$, Q γ to $(31/2^{-})$.
18765.3 <i>4</i>	(37/2)	В	E		J^{π} : $\Delta J=1$, D γ to (35/2).
19208.6 <mark>b</mark> 4	$(37/2^+)$	В	E		J^{π} : γ to $(33/2^{+})$.
	. , ,				

[†] From adopted E γ data when measured γ -ray energies are available. In other cases weighted averages are taken of values available from different reactions. Values for proton resonances in (p,γ) and (p,p) reactions are considered to be associated with different excitation energies if separated by more than ≈ 1 keV. Relative uncertainty of excitation energies deduced from proton resonances is 0.1 keV in (p,p) and 1 keV in (p,γ) , whereas the absolute uncertainty is 2 keV, essentially due to uncertainty in S(p).

- ‡ Weighted averages from (\$\alpha\$,p\$\gamma\$), (p,\gamma\$), (\$^{16}O\$,pn\$\gamma\$) and (\$^{19}F\$,p2n\$\gamma\$) unless otherwise noted.
- # In particle-transfer reactions, target $J\pi=0^+$ except for $^{45}Sc(p,t)$ where target $J\pi=7/2^-$. When assigning $J\pi$ to a level based on γ transitions from this level to a level of known $J\pi$, evaluators use the following rules: if $E\gamma<4$ MeV, transitions are only considered to be E1,M1 or E2; if $E\gamma>4$ MeV, M2 and E3 are considered to be possible. In heavy-ion fusion experiments leading to high-spin (>13/2 or so) it is assumed that spins generally ascend with excitation energy due to yrast nature of population of levels in such studies.
- [@] From (p,p) resonance.
- & Band(A): γ sequence based on g.s..
- ^a Band(B): γ sequence based on $7/2^-$.
- ^b Band(C): γ sequence based on (19/2⁺).
- ^c Band(D): γ sequence based on $3/2^+$.
- ^d Band(E): γ sequence based on $5/2^+$.

$\gamma(^{43}\mathrm{Sc})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} §	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&@	δ@	α#	Comments
151.79	3/2+	151.65 17	100	$0.0 7/2^{-}$	M2		0.0406	B(M2)(W.u.)=0.0691 11
				·				Mult.: from $\alpha(\exp t) = 0.041 \ 4 \ (1972Bi13)$ in $^{43}Ca(p,n\gamma)$; $\alpha(K)(\exp t) = 0.031 \ 2$, $K/L(\exp t) = 9.0 \ 7 \ (1966WaZW)$ in $^{40}Ca(\alpha,p\gamma)$.
472.60	$3/2^{-}$	320.1	4.2 11	151.79 3/2+	[E1]			$B(E1)(W.u.)=4.3\times10^{-6}$ 12
	- /	472.5 2	100.0 <i>21</i>	0.0 7/2-	E2			B(E2)(W.u.)=16.3 15
								Mult.: from $\alpha(K)(\exp t) = 7.7 \times 10^{-4} \ 19 \ (1966WaZW)$ in $^{40}Ca(\alpha, p\gamma)$.
845.18	$5/2^{-}$	373.2	<5	472.60 3/2-				E_{γ} , I_{γ} : as quoted by 1978En02.
	•	692.3	<4	151.79 3/2+				E_{γ} , I_{γ} : as quoted by 1978En02.
		845.2 1	100	$0.0 7/2^{-}$	M1+E2	+0.15 4		B(M1)(W.u.)=0.228 17; B(E2)(W.u.)=21 11
				,				E_{γ} , I_{γ} : as quoted by 1978En02.
855.65	$1/2^{+}$	383.1	26 4	472.60 3/2-	[E1]			$B(E1)(W.u.)=9.2\times10^{-5} 20$
	,	703.2	100 4	151.79 3/2+	. ,			
880.64	$5/2^{+}$	408.3	<5	472.60 3/2-				E_{γ} , I_{γ} : as quoted by 1978En02.
	,	728.7 1	100 <i>I</i>	151.79 3/2+	M1+E2	-0.527		$B(M1)(W.u.)=0.0092 \ 21; \ B(E2)(W.u.)=13 \ 5$
		880.5 2	3.6 2	0.0 7/2-	[E1]			$B(E1)(W.u.)=5.0\times10^{-6}\ 20$
1158.76	$3/2^{+}$	278.1	36 5	880.64 5/2+	M1(+E2)	+0.2 2		B(M1)(W.u.)=0.041 12; B(E2)(W.u.)<180
	-/-	303.3	53 16	855.65 1/2+	M1(+E2)	+0.2 2		B(M1)(W.u.)=0.047 19; B(E2)(W.u.)<180
		313.2	<6	845.18 5/2-	, ,			()(, , ()(,
		686.4	4 2	472.60 3/2-	[E1]			B(E1)(W.u.)=8.E-6.5
		1006.5	100 4	151.79 3/2+	M1+E2	-1.3 + 6 - 15		B(M1)(W.u.)=0.0009 6; B(E2)(W.u.)=4.5 19
1178.98	$3/2^{-}$	298.6 [‡] <i>a</i>	1	880.64 5/2+				
1170.70	3/2	333.7	18 <i>3</i>	845.18 5/2	[M1]			B(M1)(W.u.)=0.27 12
		706.9	100 6	472.60 3/2	M1+E2	-0.18 <i>13</i>		B(M1)(W.u.)=0.15 7; B(E2)(W.u.)=30 +50-28
		1178.9	22 3	0.0 7/2	[E2]	0.10 12		B(E2)(W.u.)=15 7
1337.53	$7/2^{+}$	456.73 10	39.4 15	880.64 5/2+	M1+E2	-0.23 4		B(M1)(W.u.)=0.06 3; B(E2)(W.u.)=46 24
	-7-							I_{γ} : 26 2 in (p,γ) E=res seems discrepant and is not included in averaging.
		1185.6 <i>1</i>	100 2	151.79 3/2+	E2			B(E2)(W.u.)=209
		1338.0 <i>I</i>	26.9 13	$0.0 7/2^{-}$	E1+M2	-0.10 8		$B(E1)(W.u.)=4.5\times10^{-5} 19$; $B(M2)(W.u.)<3$
1408.09	$7/2^{-}$	562.9 2	17.1 <i>12</i>	845.18 5/2	[M1]			B(M1)(W.u.)=0.09 3
		936.0 8	6.3 11	472.60 3/2-	[E2]			B(E2)(W.u.)=24 9
		1408.06 <i>12</i>	100 2	$0.0 7/2^{-}$	M1+E2	+0.15 5		B(M1)(W.u.)=0.033 11; B(E2)(W.u.)=1.1 8
1651.22	$5/2^{+}$	492.4	32 4	1158.76 3/2+	M1(+E2)	0.0 2		B(M1)(W.u.)=0.19 4
		770.5	12 <i>3</i>	880.64 5/2+				
		795.7	5.4 20	855.65 1/2+	[E2]			B(E2)(W.u.)=34 14
		1498.9	100 5	151.79 3/2+	M1(+E2)	-0.05 18		B(M1)(W.u.)=0.021 4; B(E2)(W.u.)<0.6
		1650.8	25 4	0.0 7/2-	[E1]			$B(E1)(W.u.)=9.8\times10^{-5} 23$
1811.1	$3/2^{-}$	631.8	100 7	1178.98 3/2-	M1+E2	-0.227		B(M1)(W.u.)=2.1 8
	•			,				B(E2)(W.u.)=720 +1230-470 as compared to RUL(E2)=300 suggests δ (E2/M1) \leq 0.15.

γ (43Sc) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} §	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult. & @	$\delta^{@}$	Comments
1811.1	3/2-	955.6	41 10	855.65 1/2			B(E1)(W.u.)=0.006 3
		1338.7	85 <i>7</i>	472.60 3/2		-0.227	B(M1)(W.u.)=0.18 8; B(E2)(W.u.)=14 11
		1658.8	26 8	151.79 3/2			B(E1)(W.u.)=0.0008 4
1830.33	11/2-	1830.10 <i>13</i>	100	0.0 7/2			B(E2)(W.u.)=15.4 24
1882.8	$(5/2,9/2)^{-}$	1002.3 [‡] <i>a</i>	21	880.64 5/2	2+		
		1038.4 ^a	<5	845.18 5/2			I_{γ} : from $(\alpha, p\gamma)$, $I_{\gamma}=16$ in (p, γ) .
		1730 ^a		151.79 3/2			
		1882.5 <i>3</i>	100 14	0.0 7/2	2 ⁻ M1+E2	$-0.19\ 2$	B(M1)(W.u.)=0.07 4; B(E2)(W.u.)=2.2 12
1000 55	0.12+	505.1.1	27.5.10	1007.50 7/)+ M1.F0	0.10.4	δ : for J=9/2, +0.42 3 for J=5/2 in (α,pγ).
1932.55	9/2+	595.1 <i>1</i>	37.5 10	1337.53 7/2	2 ⁺ M1+E2	-0.19 4	B(M1)(W.u.)=0.011 3; B(E2)(W.u.)=3.3 16
							I_{γ} : 19 2 in (p,γ) E=res seems discrepant and is not included in
		1051.9 <i>1</i>	100 <i>3</i>	880.64 5/2	2+ E2		averaging. B(E2)(W.u.)=15 4
		1931.4 [‡] <i>a</i>					D(L2)(W.u.)-13 7
1962.89	$(3/2,5/2)^{-}$	784.0	1 15 2	0.0 7/2 1178.98 3/2		-0.04 25	B(M1)(W.u.)=0.082 18; B(E2)(W.u.)<0.8
1902.09	(3/2,3/2)	804.5	4 1	1178.76 3/2		-0.04 23	B(E1)(W.u.)=0.0051 15
		1490.2 2	100 2	472.60 3/2		+0.21 6	B(M1)(W.u.)=0.00031 13 B(M1)(W.u.)=0.077 13; B(E2)(W.u.)=4.4 25
		$1962.5^{\ddagger a}$	100 2	0.0 7/2		. 0.21 0	2(111)(1111) 31077 10, 2(22)(11111) 111 20
2094.8	3/2-	915.4	100 9	1178.98 3/2		0.00 10	B(M1)(W.u.)=0.033 10
2071.0	3/2	713.1	100 /	1170.50 3/1	1111(122)	0.00 10	I_{γ} : from (p,γ) :E=res, also for other γ transitions from the same level.
		1214.0 [‡]	30 6	880.64 5/2	2+ [E1]		B(E1)(W.u.)=0.00011 4
		1239.2	55 6	855.65 1/2			B(E1)(W.u.)=0.00018 6
		1249.1‡	33 6	845.18 5/2			E_{γ} : Seen also in (α, p_{γ}) , but the placement is uncertain.
		1622.3	33 9	472.60 3/2			by. Seen also in (a,p/), out the placement is uncertain.
		1942.4	54 9	151.79 3/2			$B(E1)(W.u.)=4.6\times10^{-5} 15$
2106.6	(3/2,5/2)	455.4 ^a	17 9	1651.22 5/2			_()()
	(, , , ,	947.6	33 8	1158.76 3/2			
		1225.7	100 6	880.64 5/2	2+		
		1954.1 ^a	10	151.79 3/2	2+		
2114.5		955.9 [‡]	79 9	1158.76 3/2	2+		
		1962.4 [‡]	100 13	151.79 3/2	2+		
2142.0	$(3/2^-,5/2^+)$	490.9 [‡]	38	1651.22 5/2			I_{γ} : from (p,γ) :E=res, also for other γ transitions from the same level.
	(1 7-1)	962.8 [‡]	6 3	1178.98 3/2			1 4,77
		983.3	15 6	1158.76 3/2			
		1261.4	100 9	880.64 5/2		+0.27 10	
		1286.6 [‡]	12 6	855.65 1/2			
		1669.7	42 8	472.60 3/2			
		1989.8	74 6	151.79 3/2			I_{γ} : from 42 Ca(p, γ) E=Res. Other: 29 6 from 40 Ca(α ,p γ). Unweighted
							average is 52 22.
		2141.6	18 <i>7</i>	0.0 7/2	2^{-} D(+Q)	0.00 4	

161

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ} §	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&@	$\delta^{@}$	Comments
2242.8	$(3/2,5/2,7/2)^{-}$	1397.4	44	845.18 5/2-			
		1770.6	100	472.60 3/2-			
		2242.5	32	$0.0 7/2^-$			
2288.65	5/2-	880.7 5	1.1 2	1408.09 7/2-			
		1443.5 3	1.3 3	845.18 5/2			
		1815.4 <i>4</i>	0.9 5	472.60 3/2			5
		2137.1 <i>1</i>	2.1 4	151.79 3/2+	[E1]		$B(E1)(W.u.) > 5.4 \times 10^{-5}$
		2288.3 <i>1</i>	100 4	0.0 7/2	M1+E2	+0.08 5	B(M1)(W.u.)>0.082
2335.47	5/2-	2335.4 <i>1</i>	100	0.0 7/2	M1(+E2)	+0.08 5	B(M1)(W.u.)=0.06 3; B(E2)(W.u.)<0.5
2383.1	$3/2^{(+)}$	731.9	100	1651.22 5/2+			
	(= (= 0 (=)	1527.6	45	855.65 1/2+	(M1+E2)	+0.49 7	B(M1)(W.u.)<0.0053; B(E2)(W.u.)<1.8
2458.68	$(5/2,9/2)^-$	2458.6 <i>1</i>	100	$0.0 7/2^-$	M1(+E2)	+0.15 7	B(M1)(W.u.)=0.038 14; B(E2)(W.u.)<0.8
	4.40		100.3	4000 77 0/01	2.54		δ: for J=5/2, -0.02 5 for J=9/2.
2553.54	11/2+	620.35 15	100 3	1932.55 9/2+	(M1)		B(M1)(W.u.)=0.103 15
2500.0	(5.10)	1216.07 12	76 <i>3</i>	1337.53 7/2+	(E2)		B(E2)(W.u.)=20 3
2580.8	(5/2)	1421.6	52 10	1158.76 3/2+			
		1699.7	40 8	880.64 5/2 ⁺			
2625.25	(11/2)-	2428.0	100 13	151.79 3/2 ⁺	(M1)		D(M1)/W) 0.021 11
2635.35	$(11/2)^-$	804.4 <i>3</i> 1227.1 <i>3</i>	34 <i>3</i> 89 <i>7</i>	1830.33 11/2 ⁻ 1408.09 7/2 ⁻	(M1) [E2]		B(M1)(W.u.)=0.031 <i>11</i> B(E2)(W.u.)=43 <i>16</i>
		2636.0 <i>3</i>	100 15	$0.0 7/2^-$	[E2]		B(E2)(W.u.)=43 10 B(E2)(W.u.)=1.1 4
2650.5		1806.6	100 13	845.18 5/2 ⁻	$[\mathbf{E}2]$		D(E2)(W.u.)=1.14
	2/2-	1491.4 [‡]	16.4	·			
2670.5	3/2-		16 4	1178.98 3/2-			
		1790.0 [‡]	43 8	880.64 5/2+			
		1815.2	100 4	855.65 1/2+			
	(# ID # ID 0 ID) =	2198.2	45 6	472.60 3/2			
2760.10	$(5/2,7/2,9/2)^{-}$	2760.0 <i>1</i>	100	0.0 7/2			
2795.4	3/2-,5/2-	1387.2	36	1408.09 7/2-			
		1950.0	87	845.18 5/2			
		$2643.8^{\ddagger a}$	29	151.79 3/2+			
		2795.1	100	0.0 7/2			
2811.1	(5/2,7/2,9/2)	704.7	76 9	2106.6 (3/2,5/2)			
		1473.9	100 11	1337.53 7/2+			
2040 =	(510.510)	2810.6	70 30	0.0 7/2-			
2840.7	$(5/2,7/2)^+$	457.3	41	2383.1 3/2 ⁽⁺⁾			
		1503.2	100	1337.53 7/2+			
		1959.7 [‡] a	37	880.64 5/2+			
		2839.9	86	$0.0 7/2^-$			
2846.2		2846.1	100	0.0 7/2			
2860.8	$(1/2,3/2,5/2)^+$	1210.2	14 5	1651.22 5/2 ⁺			
		1682.1 [‡]	16 5	1178.98 3/2-			

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ} §	E_f	J_f^{π} Mult. & @	$\alpha^{\#}$	Comments
2860.8	$(1/2,3/2,5/2)^+$	1702.6 [‡]	23 7	1158.76 3/2			
		1980.7	100 5	880.64 5/2	-		
		2709.0	75 7	151.79 3/2	-		
2874.7	$(5/2)^+$	2723 [‡]		151.79 3/2+			
2985.0	(3/2,5/2)	1648.1 ^a		1337.53 7/2			I_{γ} : 84 in $(\alpha,p\gamma)$ but this branch is either absent (see 1977Di17) in
,	(=1=,=1=)			.,			(p,γ) or at the most $I\gamma=16$.
		1806.0 [‡]	34 8	1178.98 3/2	-		
		2104.5	71 5	880.64 5/2 ⁺			
		2139.6	58 8	845.18 5/2			
		2832.9	100 8	151.79 3/2			
2988.12	15/2-	1157.5 <i>1</i>	100	1830.33 11/2			B(E2)(W.u.)=5.4 7
3123.73	19/2-	135.6 <i>I</i>	100	2988.12 15/2		0.0934	B(E2)(W.u.)=2.67 2
3142.05	13/2+	588.2 <i>1</i>	9.4 <i>3</i>	2553.54 11/2	$^{+}$ (M1+E2)		B(M1)(W.u.)<0.017
		1209.8 <i>I</i>	100 <i>3</i>	1932.55 9/2			B(E2)(W.u.)<41
3159.3	$(3/2^-,5/2,7/2^+)$	2278.4	50	880.64 5/2			
		3006.8	88	151.79 3/2			
		3158.7	100	$0.0 7/2^{-1}$			
3198.2	$(1/2 \text{ to } 7/2^{-})$	2725.5	100	472.60 3/2			
3260.1	$(7/2,9/2)^-$	1432 ^a	4.2	1830.33 11/2			E_{γ} : from $(\alpha, p\gamma)$ only.
		3259.6 10	100	0.0 7/2			
3292.4	7/2-	1360.6 4	90	1932.55 9/2			E_{γ} : seen only in $(\alpha, p\gamma)$.
		1479.9 [‡] a	21 5	1811.1 3/2			
		2113.9	100 12	1178.98 3/2			
		2412.5	21 7	880.64 5/2			
		2447.6	91 9	845.18 5/2	•		
3326.8	$(3/2^- \text{ to } 9/2)$	3327.1 [‡]		$0.0 7/2^{-1}$	-		
3332.2	$(3/2^-,5/2)$	1369 [‡]	4 2	1962.89 (3/2	,5/2)-		
		1521 [‡]	13 4	1811.1 3/2	-		
		2153	100 4	1178.98 3/2			
		2174 [‡]	44 4	1158.76 3/2+			
		2487	29 6	845.18 5/2			
		2860	19 4	472.60 3/2			
		3334		0.0 7/2			E_{γ} : seen only in $(\alpha, p\gamma)$.
3375.3	$(7/2,9/2)^-$	1492.6	53		,9/2)-		j J. () [17]
	\ 1 7° 1 7	1545.3	63	1830.33 11/2			
		1967.2	100	1408.09 7/2			
		2038.3	40	1337.53 7/2			B(E1)(W.u.)>0.00013
		3375.1	77	0.0 7/2			
3452.1	5/2+	1640.8 <mark>a</mark>	270	1811.1 3/2	-		γ from $(\alpha, p\gamma)$ only.
		2571.1	100 7	880.64 5/2			

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	Ι _γ §	E_f	\mathtt{J}_f^π	Mult.&@	$\delta^{@}$
3452.1	5/2+	2606.2	45 7	845.18	5/2-		
		3299.9 [‡]	55 7	151.79	$3/2^{+}$		
		3451.3 [‡]	27 9	0.0	7/2-		
3463.3	5/2-	2582.9 [‡]	37 <i>4</i>	880.64	•		
2.00.0	5/2	3311.3	100 7	151.79			
3503.2	7/2-	2658 [‡]	100 10	845.18	•		
	- 1	3503 [‡]	100 10	0.0	7/2-		
3631.7	$(5/2^-,7/2^-,9/2^-)$	3631.5 10	100	0.0	7/2-		
3645.6	$(3/2,5/2,7/2^{-})$	1682.5	34 11		$(3/2,5/2)^{-}$		
		1994.5	66 13	1651.22			
		2466.4	100 16	1178.98	$3/2^{-}$		
		2765.0	63 13	880.64			
3683.2	(3/2,5/2,7/2)	2803	25 4	880.64			
		2838	56 6	845.18	,		
27240		3531	100 7	151.79			
3734.0		1445.5	31	2288.65	,		
		2325.7 2888.5	83 100	1408.09 845.18			
3755.43	15/2+	614.1 6	100 3	3142.05		M1+E2	-0.11 8
3733.43	13/2	766.9 2	3.00 14	2988.12		D	0.11 0
		1202.4 3	18.9 6	2553.54		Q	
3756.5	$(3/2^-,5/2,7/2^+)$	3605	100 10	151.79		~	
	· · · · · · · · · · · · · · · · · · ·	3757	43 7	0.0	7/2-		
3807.2	7/2-	2469.7	24 6	1337.53	7/2+		
		2926.2	100 5	880.64			
		3334.5	35 8	472.60			
3843.0	(≤9/2)	2998		845.18			
3860.1	(≤7/2)	3708	1406	151.79			
3959.87	15/2	971.5 <i>I</i>	14.8 6	2988.12	,	D	
		1324.5 <i>I</i> 2129.7 <i>I</i>	17.2 <i>7</i> 100 <i>3</i>	2635.35 1830.33		Q	
4007.3	$(3/2,5/2)^+$	3126	83 20	880.64	,	Q	
4007.3	(3/2,3/2)	3152	100 20	855.65	,		
		3535	50 13	472.60			
		3855	100 17	151.79	,		
4038.8	7/2-	2107	100 13	1932.55			
		3566	67 15	472.60			
4158.6	$(9/2,11/2,13/2)^{-}$	1605	100	2553.54			
4301.2	$(9/2,11/2,13/2^+)$	2368.6 5	100	1932.55			
4371.5	5/2-,7/2-	2265	37 7	2106.6	(3/2,5/2)		
		2720	32 10	1651.22	5/2 ⁺		

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ} §	E_f J_f^π	Mult.&@	Comments
4371.5	5/2-,7/2-	2963	49 12	1408.09 7/2-		
		3034	100 10	1337.53 7/2+		
1202.02	17/2 ⁽⁻⁾	3491	27 7	880.64 5/2 ⁺	D . O	E_{γ} : γ not seen in 24 Mg(24 Mg, α p γ) and 28 Si(20 Ne, α p γ) (2007Ch40)
4383.03	17/2	1258.8 9	100	3123.73 19/2	D+Q	E_{γ} : γ not seen in $-Mg(-Mg,\alpha p \gamma)$ and $-Si(-Ne,\alpha p \gamma)$ (2007Cn40) due to this transition feeding 470-ns isomer.
4.420.2	(1.10+.0.10.5.10)	1394.9 2	24	2988.12 15/2	D	
4430.2	$(1/2^+, 3/2, 5/2)$	3251	100 15	1178.98 3/2-		
		3271	75 <i>13</i>	1158.76 3/2+		
4455.0	(5/0 + 0/0)	3550	75 10	880.64 5/2+	D . O	
4455.3	(5/2 to 9/2)	4455	100	0.0 7/2-	D+Q	
4633.6	(17/2,21/2)	1509.8 19	100	3123.73 19/2	D+Q	
5231.33	$(17/2^+)$	1475.5 6	100	3755.43 15/2 ⁺	D+Q	DAMANU \ 0.00
5519.00	19/2+	287.9 <i>I</i>	2.34 9	5231.33 (17/2+)	(M1)	B(M1)(W.u.)>0.26
		1763.3 <i>1</i>	27.9 11	3755.43 15/2 ⁺	E2	B(E2)(W.u.)>13 B(E1)(W.u.)>0.00070
5502.51	(1.5/0.15/0.10/0-)	2394.86 12	100	3123.73 19/2-	(E1)	B(E1)(W.u.)>0.00050
5793.51	$(15/2,17/2,19/2^{-})$	1833.6 2	100	3959.87 15/2-		
5919.4	3/2	2629	33	3292.4 7/2		
		3249	33	2670.5 3/2-		
		3338	33	2580.8 (5/2)		
		3536	67	2383.1 3/2 ⁽⁺⁾		
		4268	67	1651.22 5/2 ⁺		
		4740	33	1178.98 3/2-		
		4760 5038	67 67	1158.76 3/2+		
		5038 5074		880.64 5/2 ⁺		
		5446	100 67	845.18 5/2 ⁻ 472.60 3/2 ⁻		
		5767	100	151.79 3/2 ⁺		
5950.5	(3/2,5/2)	2619	62	3332.2 (3/2 ⁻ ,5/2)		
3730.3	(3/2,3/2)	2660	19	3292.4 7/2		
		3369	14	2580.8 (5/2)		
		3615	5	2335.47 5/2		
		3661	5	2288.65 5/2		
		3808	10	2142.0 (3/2 ⁻ ,5/2 ⁺)	
		3836	5	2114.5	,	
		3856	10	2094.8 3/2-		
		3987	33	1962.89 (3/2,5/2)		
		4139	5	1811.1 3/2-		
		4299	67	1651.22 5/2 ⁺		
		4771	100	1178.98 3/2-		
		4791	14	1158.76 3/2+		
		5094	43	855.65 1/2+		
				•		

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} §	E_f	\mathbf{J}_f^{π}	Mult.&@	Comments
5950.5	(3/2,5/2)	5105 ^a 5477	43	845.18 472.60	3/2-		
6060.5	(5/2)	5798 6060	43	151.79	3/2 ⁺ 7/2 ⁻		
6067.23	19/2	2107.3 <i>1</i>	100 3	3959.87		E2	B(E2)(W.u.)=21 5
		3079.0 <i>1</i>	30.5 10	2988.12	15/2-	E2	B(E2)(W.u.)=0.97 22
6103.2	$(3/2^-,5/2^+)$	2260 2651	1.6 10	3843.0 3452.1	(≤9/2) 5/2 ⁺		
		2943	1.6	3159.3	$(3/2^-,5/2,7/2^+)$		
		3116	1.6	2985.0	(3/2,5/2)		
		3257 3262	1.6 <1.6	2846.2 2840.7	(5/2,7/2)+		
		3961	13	2142.0	(3/2, 7/2) $(3/2^-, 5/2^+)$		
		3996	5	2106.6	(3/2,5/2)		
		4695 4766	5 8	1408.09 1337.53			
		4924	3	1178.98			
		5247	1.6	855.65	1/2+		
		5258 5630	3 1.6	845.18 472.60			
		5951	100	151.79			
		6103	5	0.0	7/2-		
6136.2	3/2	3150^{a}	30	2985.0	(3/2,5/2)		
		3466 ^a 3555	15 35	2670.5 2580.8	3/2 ⁻ (5/2)		
		3994	24	2142.0	$(3/2^-,5/2^+)$		
		4041	71	2094.8	3/2-		
		4173 4485	100 35	1962.89	$(3/2,5/2)^-$ $5/2^+$		
		4957	65	1178.98			
		4977	53	1158.76			
		5255 5280	41 18	880.64 855.65			
		5291	24	845.18			
		5663	24	472.60			
6143.4	3/2-	5984 2336	100 21	151.79 3807.2			
0113.4	5,2	2853	21	3292.4	7/2-		
		3156	37	2985.0	(3/2,5/2)		
		3473 4048	32 32	2670.5 2094.8	3/2 ⁻ 3/2 ⁻		
1		10.10	32	2074.0	S, 2		

$\gamma(^{43}\text{Sc})$ (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ} §	E_f	J_f^π
6143.4	3/2-	4180	26	1962.89	$(3/2,5/2)^{-}$
		4332	11	1811.1	3/2-
		4964	68	1178.98	3/2-
		4984	16	1158.76	3/2+
		5262	11	880.64	5/2+
		5287	100	855.65	1/2+
		5298	53	845.18	5/2-
		5670	16	472.60	3/2-
		5991	74	151.79	3/2+
		6143	11	0.0	7/2-
6172.98	$(19/2^+)$	653.9 2	56 <i>5</i>	5519.00	19/2+
		941.4 <i>1</i>	94 <i>4</i>	5231.33	$(17/2^+)$
		2418.3 2	100 5	3755.43	15/2+
		3048.6 8	33 8	3123.73	19/2-
6184.2	5/2	6032		151.79	3/2+
6198.1	$(3/2,5/2^+)$	2464	16	3734.0	
		3862	20	2335.47	5/2-
		4056	16	2142.0	$(3/2^-,5/2^+)$
		4103	52	2094.8	3/2-
		4235	12	1962.89	$(3/2,5/2)^{-}$
		4547	48	1651.22	5/2+
		5317	100	880.64	5/2+
		5342	60	855.65	1/2+
		5353	12	845.18	5/2-
6017.4	(2/2- 5/2+)	6046	64	151.79	3/2+
6217.4	$(3/2^-,5/2^+)$	2357	2	3860.1	$(\leq 7/2)$
		2572	6	3645.6	$(3/2,5/2,7/2^{-})$
		2765	6	3452.1	5/2+
		3230 3357	8 12	2985.0 2860.8	(3/2,5/2)
		3547	10	2670.5	$(1/2,3/2,5/2)^+$
		4075	4	2070.3	$3/2^ (3/2^-, 5/2^+)$
		4110	2	2142.0	(3/2, 5/2)
		4110	4	2094.8	$3/2^{-}$
		4406	6	1811.1	3/2 ⁻
		4809	2	1408.09	7/2 ⁻
		4880	<2	1337.53	7/2+ 7/2+
		5336	6	880.64	5/2 ⁺
		5361	100	855.65	1/2 ⁺
		5744	16	472.60	3/2-
		6065	8	151.79	3/2+
		6217	8	0.0	7/2 ⁻
		J-17	9	0.0	· , -

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} §	E_f J_f^{π}	Mult.&@	$\delta^{@}$	Comments
6247.2	(3/2,5/2)	4105	50	$\overline{2142.0}$ $\overline{(3/2^-,5/2^+)}$			
		4152	17	2094.8 3/2-			
		4284 5068	33 17	1962.89 (3/2,5/2) ⁻ 1178.98 3/2 ⁻			
		5366	33	880.64 5/2 ⁺			
		5402	83	845.18 5/2			
		6095	100	151.79 3/2 ⁺			
6283.49	$(21/2^+)$	764.3 <i>1</i>	24.2 20	5519.00 19/2+	(M1)		B(M1)(W.u.)=0.07 3
	` ' '	1052.9 4	1.3 10	5231.33 (17/2+)	[E2]		B(E2)(W.u.)=84
		1648 <mark>a</mark>	39	4633.6 (17/2,21/2)			E_{γ} : reported as tentative γ only in $^{27}Al(^{19}F,p2n\gamma)$.
		3159.8 2	100 5	3123.73 19/2-	(E1)		B(E1)(W.u.)=9.E-5 4
6320.4	5/2+	2513	11	3807.2 7/2-			
		2868	5	3452.1 5/2 ⁺		0.00 /	
		3333	11	2985.0 (3/2,5/2)	D+Q	-0.024	
		3739 3937	3 2	2580.8 (5/2) 2383.1 3/2 ⁽⁺⁾	D.O	-0.18 8	
		3937 4178	10	$2383.1 3/2$ $(3/2^-, 5/2^+)$	D+Q D+Q	+0.07 6	
		4669	2	1651.22 5/2 ⁺	D+Q	+0.07 0	
		4983	3	1337.53 7/2+			
		5141	6	1178.98 3/2-	D+Q	0.00 3	
		5439	10	880.64 5/2+	D+Q	+0.14 5	
		5464	10	855.65 1/2+			$\delta(Q/D) = +0.01 \ 3 \text{ or } -3.1 \ 5.$
		5475	8	845.18 5/2			
6421.04	22/2+	6168	100	151.79 3/2 ⁺	D+Q	+0.03 3	D/F0/494 \ 5.7.6
6431.04	23/2+	912.0 <i>1</i> 3307.4 <i>4</i>	100 <i>3</i> 8.7 <i>3</i>	5519.00 19/2 ⁺ 3123.73 19/2 ⁻	E2 [M2]		B(E2)(W.u.)=5.7 6 B(M2)(W.u.)=0.031 4
6685.1	1/2-	4104	13	2580.8 (5/2)	[1V12]		B(M2)(W.u.) = 0.0314
0005.1	1/2	4590	79	2094.8 3/2			
		4722	42	1962.89 (3/2,5/2)			
		5506	38	1178.98 3/2-			
		5804	33	880.64 5/2+			
		5829	25	855.65 1/2+			
		6212	29	472.60 3/2			
((0)(2)	<i>5 1</i> 0	6533	100	151.79 3/2 ⁺			
6696.2	5/2	3013 3369 ^a	5 5	3683.2 (3/2,5/2,7/2) 3326.8 (3/2 ⁻ to 9/2			
			9	$2383.1 3/2^{(+)}$)		\$(O/D) = 0.12 10 cm 4.2 + 10 15 for L=(2282) = 7/2 cmd + 0.20 10 for
		4313		,			$\delta(Q/D) = -0.13 \ 10 \text{ or } -4.2 + 10 - 15 \text{ for } J\pi(2383) = 7/2 \text{ and } +0.20 \ 10 \text{ for } J\pi(2383) = 3/2.$
		4733	5	1962.89 (3/2,5/2)	D+Q	-0.47 8	
		5044	11	1651.22 5/2 ⁺	D+Q	-0.07 7	S(O/D) 0.14.6 22 + - 12
		5359	11	1337.53 7/2+			$\delta(Q/D) = -0.14 \ 6 \text{ or } -23 + \infty - 12.$

γ (43Sc) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ} §	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.&@	$\delta^{@}$
6696.2	5/2	5517	7	1178.98	3/2-		
	- /	5537	7	1158.76			
		5815	32	880.64		D+Q	+0.03 3
		5851	7	845.18		D+Q	-0.27 10
		6223	2	472.60		D+Q	+0.22 5
		6544	100	151.79		D+Q	-0.144
		6695	27	0.0	7/2-	D+Q	+0.02 4
6777.3	5/2	2322	64	4455.3	(5/2 to 9/2)		
		3790	45	2985.0	(3/2,5/2)		
		4196	55	2580.8	(5/2)		
		4394	36	2383.1	$3/2^{(+)}$		
		4635	82	2142.0	$(3/2^-,5/2^+)$		
		5125	91	1651.22			
		5369	18	1408.09			
		5440	27	1337.53	7/2+		
		5598	100	1178.98	3/2-		
		5896	91	880.64	5/2+		
		5921	45	855.65	1/2+		
		5932	82	845.18	5/2-		
		6304	91	472.60	3/2-		
		6625	82	151.79	3/2+		
6814.5	$(15/2^- \text{ to } 23/2^-)$	3691.0 <i>18</i>	100	3123.73			
6818.42	$(21/2^+)$	645.4 <i>1</i>	100 5	6172.98	$(19/2^+)$		
		1586.9 <i>3</i>	29 <i>3</i>	5231.33	$(17/2^+)$		
6918.6	7/2	3076	3	3843.0	(≤9/2)		
		3592	6	3326.8	$(3/2^- \text{ to } 9/2)$		
		3658	6	3260.1	$(7/2,9/2)^-$		
		4044	3	2874.7	$(5/2)^+$		
		4123	3	2795.4	3/2-,5/2-		
		5034	5	1882.8	$(5/2,9/2)^{-}$		
		5511	5	1408.09	,	D+Q	-0.04 4
		6037	3	880.64			
		6074	100	845.18		D+Q	0.00 2
		6917	11	0.0	$7/2^{-}$	D+Q	-0.29 8
7106.88	$(23/2^+)$	288.4 <i>I</i>	8.0 4	6818.42	\ / /		
		675.9 <i>1</i>	100 4	6431.04		D	
		823.3 <i>1</i>	69 3	6283.49	$(21/2^+)$	D	
		933.0 <i>5</i>	12.6 8	6174			
7118.8	$(15/2,17/2,19/2^+)$	3362.2 10	100	3755.43	,		
7273.5	$(15/2,17/2,19/2^+)$	3516.9 <i>5</i>	100	3755.43			
7344.1	$3/2^{-},5/2$	3484	13	3860.1	$(\le 7/2)$		
		3537	39	3807.2	7/2-		

169

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} §	\mathbb{E}_f	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Mult.&@	$\delta^{@}$		Comments
7344.1	3/2-,5/2	3661	10	3683.2	(3/2,5/2,7/2)				
		3698	10	3645.6	$(3/2,5/2,7/2^{-})$				
		4184	19	3159.3	$(3/2^-,5/2,7/2^+)$				
		5229	6	2114.5					
		5692	19	1651.22					
		6007	6	1337.53					
		6165	6	1178.98					
		6185	6	1158.76					
		6463 7191	100 55	880.64 151.79					
		7343	32		7/2 ⁻				
7359.16	$(25/2)^+$	252.3 <i>1</i>	2.84 16	7106.88		[M1]		B(M1)(W.u.)=0.109 11	
7337.10	(23/2)	928.2 <i>1</i>	100 3	6431.04		M1(+E2)	-0.1 <i>I</i>	B(M1)(W.u.)=0.105 11 B(M1)(W.u.)=0.078 6	
		1075.6 3	0.85 10	6283.49		[E2]	0.1 1	B(E2)(W.u.)=1.00 15	
7394.18	3/2-,5/2+	2964	20	4430.2	$(1/2^+,3/2,5/2)$	[22]		5(22)(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	-1 -1	3387	28	4007.3	$(3/2,5/2)^+$				
		3637	8	3756.5	$(3/2^-,5/2,7/2^+)$				
		3931	12	3463.3	5/2-				
		3942	12	3452.1	5/2+				
		4519	8	2874.7	$(5/2)^+$				
		4534	8	2860.8	$(1/2,3/2,5/2)^+$				
		4598	4	2795.4	3/2-,5/2-				
		4813	4	2580.8	(5/2)				
		5011	4	2383.1	3/2 ⁽⁺⁾				
		5252	4	2142.0	$(3/2^-,5/2^+)$				
		5279 5583	28 8	2114.5 1811.1	3/2-				
		5742	8	1651.22					
		5986	4	1408.09					
		6057	4	1337.53					
		6215	16	1178.98					
		6235	40	1158.76					
		6513	32	880.64					
		6538	20	855.65	1/2+				
		6548	16	845.18					
		6921	8	472.60					
		7241	100	151.79					
5510.0	(= (a+)	7393	4	0.0	7/2-				
7512.3	$(7/2^+)$	3141	12	4371.5	5/2-,7/2-				
		3474	3	4038.8	7/2-				
		3705 4671	10 3	3807.2 2840.7	7/2-				
		40/1	3	Z04U./	$(5/2,7/2)^+$				

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ} §	\mathbf{E}_f	J_f^π	Mult.&@	Comments
7512.3	$(7/2^+)$	4701	3	2811.1	(5/2,7/2,9/2)		
		4960	3	2553.54			
		5580	100	1932.55	9/2+		
		5627	3	1882.8			
		6353	5	1158.76			
		6666	3	845.18	5/2-		
		7511	22	0.0	7/2-		
7581.4	$(3/2^-,5/2,7/2^+)$	3151	3	4430.2	$(1/2^+, 3/2, 5/2)$		
		3898	18	3683.2	(3/2,5/2,7/2)		
		4078	5	3503.2	7/2-		
		4129	8	3452.1	5/2+		
		4207	5	3375.3	$(7/2,9/2)^-$		
		4721	3	2860.8	$(1/2,3/2,5/2)^+$		
		5439	13	2142.0	$(3/2^-,5/2^+)$		
		6700	100	880.64			
		7428	93	151.79			
0010.1	(10/0.01/0.00/0+)	7580	5	0.0	7/2-		
8010.1	$(19/2,21/2,23/2^+)$	2491.0 3	100	5519.00			
8434.37	$23/2^{(-)}$	2369.6 4	9.9 12	6067.23			E_{γ} : poor fit in the level scheme. Level-energy difference=2367.1.
	()	5310.5 <i>1</i>	100 7	3123.73		Q	
8555.56	23/2 ⁽⁻⁾	2488.2 <i>1</i>	100	6067.23	19/2	Q	
8703.06	$(25/2^+)$	1595.2 3	11.3 6	7108	22/24	-	
0021.04	(27/2±)	2271.8 2	100 4	6431.04		D	P.4.(1)(III) 0.000 10
8831.84	$(27/2^+)$	1472.5 <i>1</i>	100 3	7359.16		(M1)	B(M1)(W.u.)=0.089 19
0210.0	(01/0-)	1724.8 2	5.0 9	7106.88		[E2]	B(E2)(W.u.)=2.7 8
9218.8	$(21/2^{-})$	3151.4 3	100	6067.23		(D)	
9578.86	$(27/2^+)$	2219.2 2	70 17	7359.16			
0005.10	(05/0-)	3147.7 2	100 4	6431.04		D	
9995.10	$(25/2^{-})$	1439.5 1	100 4	8555.56		D	
10004 47	27/2(-)	2887.4 6	39 9	7106.88		D	
10084.47	$27/2^{(-)}$	1381.2 <i>I</i>	35 4	8703.06		D	
		1529.0 <i>I</i>	49 6	8555.56		Q	
		1650.3 <i>1</i>	100 4	8434.37		Q	
10150	(00/0.05/0.05/0.15	2725.6 2	21 5	7359.16		D	
10178.6	$(23/2,25/2,27/2^+)$	3071.6 5	100	7106.88			
10436.84	$(25/2^+)$	3329.9 2	100	7106.88			
10613.21	$(27/2^{-})$	2177.8 6	4.4 6	8434.37		Q	
		3253.9 1	100 4	7359.16		D	
10856.18	$(27/2^{-})$	771.6 4	10.3 12	10084.47		-	
		860.4 2	12.2 20	9995.10		D	
		3497.0 <i>1</i>	100 4	7359.16	$(25/2)^{+}$	D	

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} §	E_f	${\rm J}_f^\pi$	Mult.&@
11252.0	$(25/2^+)$	3892.6 <i>3</i>	100	7359.16	$(25/2)^+$	
11355.60	$27/2^{(-)}$	2799.5 2	100 4	8555.56	$23/2^{(-)}$	Q
11333.00	21/2	2920.2 10	12.7 22	8434.37	23/2 ⁽⁻⁾	Q
		3997.1 <i>3</i>	49 4	7359.16	$(25/2)^+$	
11661.0		3105.3 4	100	8555.56	$23/2^{(-)}$	
11807.36	$(29/2^{-})$	951.0 3	19.7 10	10856.18	$(27/2^{-})$	D
11007.50	(2)/2)	2228.0 2	28.5 19	9578.86	$(27/2^+)$	D
		2975.2 1	100 3	8831.84	$(27/2^+)$	D
11920.54	$(25/2^+)$	4560.5 3	66 6	7359.16	$(25/2)^+$	D
11,20.0	(20/2)	5489.0 <i>3</i>	100 4	6431.04	23/2+	D
12053.33	$(29/2^{-})$	1968.8 <i>I</i>	100 4	10084.47	27/2 ⁽⁻⁾	D
12033.33	(2)/2)	2058.7 2	25 6	9995.10	$(25/2^{-})$	D
12073.15	$(29/2^{-})$	1460.1 <i>I</i>	100	10613.21	$(27/2^{-})$	D
12614.84	$(31/2^{-})$	1757.9 7	14.1 8	10856.18	$(27/2^{-})$	
	. , ,	2530.6 <i>1</i>	100 3	10084.47	27/2 ⁽⁻⁾	Q
12703.9		4148.1 8	100	8555.56	$23/2^{(-)}$	
12804.39	(27/2,29/2)	2190.8 3	56 12	10613.21	$(27/2^{-})$	
	(1 , -1 ,	3972.5 2	100 4	8831.84	$(27/2^+)$	
13044.65	$(29/2^+)$	2607.8 2	61 <i>3</i>	10436.84	$(25/2^+)$	
		4213.0 <i>3</i>	100 4	8831.84	$(27/2^+)$	D
		4341.7 <i>3</i>	81 8	8703.06	$(25/2^+)$	
		5684.9 <i>4</i>	83 4	7359.16	$(25/2)^+$	
13116.57	$(31/2^{-})$	1043.6 <i>1</i>	32.3 16	12073.15	$(29/2^{-})$	D
		2503.1 <i>1</i>	100 4	10613.21	$(27/2^{-})$	Q
13122.7		3038.1 5	100	10084.47	$27/2^{(-)}$	
13584.1	$(29/2^+)$	4752.0 <i>3</i>	100	8831.84	$(27/2^+)$	D
14405.80	$(33/2^{-})$	1289.2 <i>3</i>	7.9 <i>7</i>	13116.57	$(31/2^{-})$	
		1791.2 <i>1</i>	100 4	12614.84	$(31/2^{-})$	D
		2353.2 <i>3</i>	26.9 17	12053.33	$(29/2^{-})$	Q
14451 1	(20 (2+)	2598.0 <i>1</i>	48.2 18	11807.36	$(29/2^{-})$	(Q)
14451.1	$(29/2^+)$	2530.4 1	100 4	11920.54	$(25/2^+)$	
		2644.5 5	38 9	11807.36	(29/2-)	
14561.0	(21/2-)	5620.1 5	58 13	8831.84	$(27/2^+)$	
14561.2	$(31/2^{-})$	2508.0 <i>3</i>	61 19	12053.33	$(29/2^{-})$	0
14014.2	(21/2)	3205.3 3	100 4	11355.60	27/2 ⁽⁻⁾	Q
14914.3	(31/2)	6081.0 3	100	8831.84	$(27/2^+)$	Q
15910.7	$(33/2^+)$	2866.3 <i>2</i> 3296.0 <i>4</i>	100 <i>5</i> 35.2 <i>20</i>	13044.65	$(29/2^+)$	
16703.6		3296.0 <i>4</i> 3586.9 <i>5</i>	35.2 20 100	12614.84 13116.57	$(31/2^{-})$	
16703.6		3124.2 <i>3</i>	100	13116.57	$(31/2^-)$ $(29/2^+)$	
16711.2		3906.6 5	100	12804.1	(29/2) $(27/2,29/2)$	
10/11.2		3700.0 3	100	12004.39	(41/4,43/4)	

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ} §	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&@
17767.4	(35/2)	2852.9 1	100	14914.3 (31/2)	(Q)
17921.1	$(31/2^+)$	3469.8 2	100	14451.1 (29/2+)	(D)
18196.8	$(35/2^{-})$	3635.4 <i>3</i>	100	14561.2 (31/2 ⁻)	Q
18765.3	(37/2)	997.9 <i>1</i>	100	17767.4 (35/2)	D
19208.6	$(37/2^+)$	1440.7 2	59 10	17767.4 (35/2)	
		3298.8 <i>3</i>	100 5	15910.7 (33/2+)	

[†] Values with ΔE are primarily from 43 Ti ε decay, (16 O,pn γ), (19 F,p2n γ), (20 Ne, α p γ) and (24 Mg, α p γ). Weighted averages are taken when available. Others are from level-energy differences.

 $^{^{\}ddagger}$ γ seen in (p,γ) only.

[§] Weighted average of all available γ-ray data, unless otherwise noted. In some cases unweighted averages are taken when values from two or more reactions are very different, and there does not seem a preference for any one value.

[&]amp; From $\gamma(\theta)$, $\gamma(\text{lin pol})$ or $\gamma\gamma(\theta)$ data in (p,γ) , $(\alpha,p\gamma)$, $(^{16}\text{O},pn\gamma)$, $(^{19}\text{F},p2n\gamma)$, $(^{20}\text{Ne},\alpha p\gamma)$ and $(^{24}\text{Mg},\alpha p\gamma)$.

[@] Primarily from $(\alpha, p\gamma)$, (p, γ) , $(^{16}O, pn\gamma)$, $(^{19}F, p2n\gamma)$. For δ , weighted average is taken when data from different reactions are available. If $T_{1/2}$ is unknown and parity is determined not by polarization measurements, evaluators use D and Q, instead of M1 and E2, or, E1 and M2.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

⁴³Ti ε decay (509 ms) 1987Ho14

Parent: ⁴³Ti: E=0; J^{π} =7/2⁻; $T_{1/2}$ =509 ms 5; $Q(\varepsilon)$ =6867 7; % ε +% β ⁺ decay=100.0

1987Ho14: 43 Ti nuclides were produced by the 40 Ca(α ,n) reaction with an 18 MeV alpha beam from the α (M)–20 cyclotron of the University of Jyvaskyla. β -rays were detected by a 500 μ m, 300 mm² Si(Au) surface-barrier detector and γ -rays by a 15.5% Ge detector. Measured E γ , I γ , E(β). Deduced levels, β - and γ -branchings, T_{1/2}. Comparison with shell-model calculations.

Others:

 $T_{1/2}$ and isotopic identification: 1967Al08, 1963Va37, 1961Ja22 (also 1960Ja12), 1954Ty33, 1948Sc20.

 β^+ : 1969Va41 (also 1963Va37), 1961Ja22.

γ: 1971BlZH.

⁴³Sc Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	7/2-	
151.25 <i>14</i>	3/2+	
472.7 [#] <i>3</i>	3/2-	
845.17 9	5/2-	
1408.03 9	7/2-	
1882.5 <i>3</i>	$(5/2,9/2)^{-}$	
1963.0 <i>4</i>	(3/2,5/2) ⁻	J^{π} : log ft =6.35 20 from $7/2^{-}$ parent state disfavors 3/2, but the level is weakly populated and this argument is not strong enough to reject 3/2 which is supported by L-transfers in other experiments.
2288.40 10	5/2-	•
2335.47 10	5/2-	
2458.68 10	$(5/2 \text{ to } 9/2)^-$	
2760.10 <i>10</i>	$(5/2 \text{ to } 9/2)^-$	
3259.7 10	$(7/2,9/2)^-$	
3631.7? 10	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	

[†] From least-squares fit to Eγ data.

ε, β^+ radiations

There is an apparent β^+ feeding of 0.11% 6 to the 3/2⁻ at 472.7 giving an unrealistic log ft=6.3 for 7/2⁻ to 3/2⁻. This imbalance is due either to missing γ transitions to the 472.7 level or to intensity problems in the γ -rays involved. Due to the large difference between the Q(β^-)value and the energy of highest populated level, this decay scheme seems incomplete.

E(decay)	E(level)	$\mathrm{I}\!\beta^+$ †	${ ext{I}}arepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$
(3235‡ 7)	3631.7?	0.016 4	0.00026 7	5.40 11	0.016 4
(36077)	3259.7	0.011 2	0.00011 2	5.86 8	0.011 2
(4107 7)	2760.10	0.20 3	0.0012 2	4.94 7	0.20 3
(4408 7)	2458.68	0.91 13	0.0042 6	4.46 7	0.91 13
(45327)	2335.47	0.38 6	0.0016 3	4.91 7	0.38 6
(45797)	2288.40	4.6 7	0.018 3	3.85 7	4.6 7
(49047)	1963.0	0.022 10	$7.\times10^{-5}$ 3	6.35 20	0.022 10
(49857)	1882.5	0.26 5	0.00075 15	5.32 9	0.26 5
(54597)	1408.03	0.67 10	0.0014 2	5.13 7	0.67 10
(60227)	845.17	2.6 4	0.0038 6	4.78 7	2.6 4

 $^{^{43}}$ Ti-J^{π},T_{1/2}: From Adopted Levels of 43 Ti.

 $^{^{43}}$ Ti-Q(ε): From 2012Wa38.

[‡] From Adopted Levels.

[#] Intensity balance gives apparent β^+ feeding of 0.11% 6.

$^{43}\text{Ti}\;\varepsilon\;\text{decay}\;(\text{509 ms})$ 1987Ho14 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	${\rm I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(6716 [‡] 7)	151.25	< 0.07	< 0.0001	$>8.5^{1u}$	< 0.07	
(6867 7)	0	90.2 14	0.0826 16	3.554 9	90.3 14	$I(\varepsilon + \beta^+)$: 100-summed feeding to higher levels.

[†] Absolute intensity per 100 decays.

$\gamma(^{43}\mathrm{Sc})$

Iy normalization: Iy(845γ)(per 100 decays)=2.8 4, from comparison of γ-ray yield to the yield of 0.5-s component of γ^{\pm} radiation (1987Ho14).

E_{γ}	I_{γ} §	$E_i(level)$	\mathtt{J}_i^{π}	\mathbf{E}_f \mathbf{J}'	Mult. [†]	δ^{\dagger}
(151.9)	2.9 [‡] 12	151.25	3/2+	0 7/2	2-	
472.7 4	4.8 10	472.7	3/2-	0 7/2	2-	
562.9 2	2.8 5	1408.03	7/2-	845.17 5/2	2-	
845.2 <i>1</i>	62.9 19	845.17	5/2-	0 7/2	2 ⁻ M1+E2	+0.15 4
880.7 5	1.1 2	2288.40	5/2-	1408.03 7/2	2-	
936.0 8	1.0 2	1408.03	7/2-	472.7 3/2	2-	
1408.0 <i>I</i>	12.6 4	1408.03	7/2-	0 7/2	2- M1+E2	+0.15 5
1443.5 <i>3</i>	1.3 <i>3</i>	2288.40	5/2-	845.17 5/2	2-	
1490.2 2	0.5 2	1963.0	$(3/2,5/2)^{-}$	472.7 3/2	2- M1+E2	+0.21 6
1815.4 <i>4</i>	0.9 5	2288.40	5/2-	472.7 3/2	2-	
1882.5 <i>3</i>	5.9 8	1882.5	$(5/2,9/2)^{-}$	0 7/2	2-	
2137.1 <i>I</i>	2.1 4	2288.40	5/2-	151.25 3/2	2+	
2288.3 <i>1</i>	100 4	2288.40	5/2-	0 7/2	2 ⁻ M1+E2	+0.08 5
2335.4 <i>1</i>	8.7 7	2335.47	5/2-	0 7/2	2-	
2458.6 <i>1</i>	20.7 8	2458.68	$(5/2 \text{ to } 9/2)^-$	0 7/2	2-	
2760.0 <i>1</i>	4.5 3	2760.10	$(5/2 \text{ to } 9/2)^-$	0 7/2	2-	
3259.6 10	0.24 4	3259.7	$(7/2,9/2)^-$	0 7/2	2-	
3631.5 ^{&} 10	0.36 6	3631.7?	(5/2-,7/2-,9/2-)	0 7/2	2-	

[†] Multipolarities and mixing ratios from Adopted Gammas. [‡] Estimated (evaluators) from $\log f^{\mathrm{lu}}t>8.5$ and $\mathrm{I}\gamma(2137\gamma)$.

[‡] Existence of this branch is questionable.

[§] For absolute intensity per 100 decays, multiply by 0.044 6. & Placement of transition in the level scheme is uncertain.

⁴³Ti ε decay (509 ms) 1987Ho14

Decay Scheme Legend Intensities: $I_{(\gamma+ce)}$ per 100 parent decays $I_{\gamma} < ~2\% \times I_{\gamma}^{\textit{max}}$ I_{γ} < 10% × I_{γ}^{max} $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain) 0 509 ms 5 Q⁺=6867 7 $\%\varepsilon + \%\beta^{+}=100$ $^{43}_{22}{\rm Ti}_{21}$ $I\beta^+$ Log ft $\underline{\text{I}\varepsilon}$ (5/2-,7/2-,9/2-) 3631.7, 0.016 0.00026 5.40 (7/2,9/2)-3259.7 0.011 0.00011 5.86 +2300.0055 + + 28.860 | 16.00.87 (5/2 to 9/2)-2760.10 0.20 0.0012 4.94 \$ \frac{1}{2} \fra - 14902 MI - 14902 - 1 (5/2 to 9/2) 2458.68 0.91 0.0042 4.46 2335.47 5/2 0.38 0.0016 4.91 5/2 2288.40 | 48 | 65 | 65 0.018 4.6 3.85 (3/2,5/2) 1963.0 0.022 0.00007 6.35 (5/2,9/2) 1882.5 0.000750.265.32 7/2-1408.03 0.67 0.0014 5.13 5/2 845.17 2.6 0.0038 4.78 472.7 3/2-1.65,9 0.13 3/2+ 151.25 $> 8.5^{1u}$ < 0.07 < 0.0001 7/2-90.2 0.0826 3.554 $^{43}_{21}{\rm Sc}_{22}$

24 Mg(24 Mg, α p γ) 2007Ch40

2007Ch40: E=94 MeV beam from Berkeley 88-in cyclotron. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) using Gammasphere with 102 Compton-suppressed HPGe detectors. Particles detected with an array of 95 CsI(T1) detectors with a 65% efficiency for detection of α particles and 50% for protons.

A similar experiment was done by 2007Ch40 using the reaction $^{28}Si(^{20}Ne,\alpha p\gamma)$. The γ -ray energies and angular distribution/correlation coefficients are averages from the two experiments. These coefficients are listed only with this dataset.

⁴³Sc Levels

E(level) [†]	$\mathrm{J}^{\pi \#}$	T _{1/2}	E(level) [†]	$J^{\pi \#}$
0.0	7/2-		9219.2 <i>4</i>	$(21/2^{-})$
152.25 ^b 11	3/2+	438 [‡] μs 7	9579.35 18	$(27/2^+)$
845.42 20	5/2-	,	9995.34 16	$25/2^{(-)}$
880.97 ^c 10	5/2+		10084.85 <i>14</i>	$27/2^{-}$
1337.85 ^b 9	7/2+		10179.1 6	
1408.38 <i>l</i> 16	7/2-		10437.43 ^a 22	$(25/2^+)$
1830.62 [@] 9	$11/2^{-}$		10613.82 <i>17</i>	$(27/2^{-})$
1932.83 ^c 10	9/2+		10856.86 <i>16</i>	$(27/2^{-})$
2554.07 ^b 10	$11/2^{+}$		11252.6 <i>10</i>	$25/2^{+}$
2635.72 ^{&} 12	$11/2^{-}$		11355.67 ^{&} 22	$27/2^{-}$
2988.74 [@] 11	$15/2^{-}$		11661.3 5	
3124.32 [@] <i>13</i>	$19/2^{-}$	470 [‡] ns 4	11807.67 <i>17</i>	$29/2^{(-)}$
3142.46 ^c 11	$13/2^{+}$		11921.6 5	$25/2^{(+)}$
3293.5 5	$7/2^{-}$		12053.72 <i>16</i>	$29/2^{(-)}$
3756.04 ^b 11	$15/2^{+}$		12073.76 <i>18</i>	$(29/2^{-})$
3960.31 ^{&} 11	$15/2^{-}$		12615.45 <i>16</i>	$(31/2)^{-}$
4301.5 5	()		12704.2 <i>10</i>	
4383.67 23	17/2 ⁽⁻⁾		12804.7 4	(20 /2±)
5232.02 ^c 13	17/2+		13045.3 ^a 3	$(29/2^+)$
5519.53 ^b 12 5793.95 23	19/2+		13117.20 <i>18</i> 13123.1 <i>6</i>	$(31/2^{-})$
6067.70 ^{&} 12	$19/2^{-}$		13584.6 <i>11</i>	$(29/2^+)$
6173.53 ^a 14	19/2+		14406.61 <i>17</i>	$(33/2^{-})$
6284.04 ^c 14	$21/2^{+}$		14452.1 <i>4</i>	$(29/2^+)$
6431.60 ^b 13	23/2+		14561.4 ^{&} 3	$31/2^{-}$
6818.98 <i>15</i>	$(21/2^+)$		14916.7 5	31/2
7107.43 ^a 13 7118.4 10	23/2+		15911.6 ^a 3 16704.3 11	$(33/2^+)$
7273.1 10			16708.9 11	
7359.77 ^c 14	$25/2^{+}$		16711.5 11	
8010.6 4	•		17769.8 <i>5</i>	(35/2)
8434.56 17	$23/2^{-}$		17922.0 5	$(31/2^+)$
8555.89 ^{&} 14	23/2-		18197.0 ^{&} <i>11</i>	$35/2^{-}$
8703.53 15	$25/2^{(+)}$		18767.7 <i>5</i>	(37/2)
8832.32 ^b 16	27/2+		19210.5 ^a 4	$(37/2^+)$

[†] From least-squares fit to E γ data. The normalized χ^2 =5.8 for the uncertainties as quoted by 2007Ch40. This value is much larger than the critical χ^2 =1.5. The uncertainties of the following ten γ -rays were increased by a factor of 2 or 3 to get an acceptable fit with normalized χ^2 =2.5: 287.9, 860.4, 1157.5, 1595.2, 2177.8, 2369.6, 2418.3, 2598.0, 2725.6, 6081.0. It should be that the uncertainties for level energies quoted in Table V of 2007Ch40 are much larger than those given here.

[‡] From Adopted Levels.

[#] From 2007Ch40 based on multipolarities deduced from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO) data, and band associations.

²⁴Mg(24 Mg, α p γ) **2007Ch40** (continued)

⁴³Sc Levels (continued)

$\gamma(^{43}\mathrm{Sc})$

The DCO values are for $\approx 90^{\circ}$ (range of $69.8^{\circ}-110.2^{\circ}$) and forward/ backward angles $(50.1^{\circ}-129.9^{\circ}$ range). The gates are on $\Delta J=2$, quadrupole or $\Delta J=0$, dipole transitions, unless otherwise stated. Expected values for $\Delta J=1$, dipole gate are: 1.6 for $\Delta J=2$, quadrupole or $\Delta J=0$, dipole; 1.0 for $\Delta J=1$, dipole; 0.5 to 1.9 for $\Delta J=1$, dipole+quadrupole; 1.1 to 1.7 for $\Delta J=0$, dipole+quadrupole. Expected values for $\Delta J=2$, quadrupole gate are: 1.0 for $\Delta J=2$, quadrupole or $\Delta J=0$, dipole; 0.6 for $\Delta J=1$, dipole+quadrupole; 0.3 to 1.2 for $\Delta J=1$, dipole+quadrupole; 0.6 to 1.1 for $\Delta J=0$, dipole+quadrupole.

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
135.5 <i>1</i>	1.73 8	3124.32	19/2-	2988.74	15/2-		
252.3 1	2.04 9	7359.77	$25/2^{+}$	7107.43	$23/2^{+}$		
287.9 <mark>\$</mark> 1	1.81 7	5519.53	19/2+	5232.02	$17/2^{+}$	D	$A_2 = -0.43 \ 12$; $A_4 = +0.09 \ 17$
288.4 1	0.60 5	7107.43	23/2+	6818.98	$(21/2^+)$		
456.7 <i>1</i>	3.72 16	1337.85	$7/2^{+}$	880.97	5/2+		
562.9 2	0.45 6	1408.38	$7/2^{-}$	845.42	5/2-		
588.2 <i>1</i>	3.02 11	3142.46	$13/2^{+}$	2554.07	$11/2^{+}$		
595.1 <i>1</i>	10.8 <i>3</i>	1932.83	9/2+	1337.85	$7/2^{+}$		
613.5 <i>1</i>	32.4 10	3756.04	$15/2^{+}$	3142.46	$13/2^{+}$	D	A ₂ =-0.42 8; A ₄ =+0.06 10
621.3 <i>1</i>	5.94 <i>21</i>	2554.07	$11/2^{+}$	1932.83	,	D	A ₂ =-0.43 8; A ₄ =-0.01 10
645.4 <i>1</i>	2.19 11	6818.98	$(21/2^+)$	6173.53	$19/2^{+}$		
653.9 2	1.08 9	6173.53	19/2+	5519.53	,		
675.9 <i>1</i>	7.3 <i>3</i>	7107.43	$23/2^{+}$	6431.60		D	DCO=1.06 4; A ₂ =+0.54 7; A ₄ =+0.21 10
728.7 1	49.1 <i>16</i>	880.97	5/2+	152.25		D	$A_2 = -0.35 \ 5; \ A_4 = +0.13 \ 6$
764.3 <i>1</i>	2.23 15	6284.04	$21/2^{+}$	5519.53		D	DCO=0.70 23
766.9 2	0.91 7	3756.04	$15/2^{+}$	2988.74		D	DCO=0.73 12
771.6 <i>4</i>	0.42 9	10856.86	$(27/2^{-})$	10084.85			
804.4 <i>3</i>	0.76 10	2635.72	11/2	1830.62		D	DCO=0.49 14
823.3 <i>1</i>	4.86 20	7107.43	$23/2^{+}$	6284.04		D	DCO=0.60 15
845.3 <i>3</i>	0.48 7	845.42	5/2-	0.0	$7/2^{-}$		
860.4 <mark>&</mark> 2	0.64 6	10856.86	$(27/2^{-})$	9995.34	$25/2^{(-)}$	D	DCO=0.43 10
880.5 2	1.95 12	880.97	5/2+	0.0	$7/2^{-}$		
912.0 <i>I</i>	100 <i>3</i>	6431.60	$23/2^{+}$	5519.53	$19/2^{+}$	Q	DCO=1.01 2; A ₂ =+0.37 3; A ₄ =+0.03 4
928.2 1	76.2 24	7359.77	$25/2^{+}$	6431.60	$23/2^{+}$	D	DCO=0.68 <i>I</i> ; A ₂ =-0.18 <i>3</i> ; A ₄ =+0.10 <i>4</i>
933.0 5	0.90 11	7107.43	$23/2^{+}$	6173.53	$19/2^{+}$		
941.4 <i>1</i>	1.82 8	6173.53	$19/2^{+}$	5232.02	$17/2^{+}$		
951.0 <i>3</i>	1.20 8	11807.67	$29/2^{(-)}$	10856.86	$(27/2^{-})$	D	DCO=0.70 11
971.5 <i>1</i>	2.28 10	3960.31	$15/2^{-}$	2988.74	$15/2^{-}$	D	DCO=1.01 18
997.9 <i>1</i>	0.65 4	18767.7	(37/2)	17769.8	(35/2)	D	DCO=0.65 17
1043.6 <i>1</i>	0.95 17	13117.20	$(31/2^{-})$	12073.76	$(29/2^{-})$	D	DCO=0.64 15
1051.9 <i>1</i>	29.4 9	1932.83	$9/2^{+}$	880.97	$5/2^{+}$	Q	A ₂ =+0.25 5; A ₄ =-0.07 7
1052.9 4	0.25 6	6284.04	$21/2^{+}$	5232.02	$17/2^{+}$		
1075.6 <i>3</i>	0.56 8	7359.77	$25/2^{+}$	6284.04	$21/2^{+}$		
1157.5 <mark>&</mark> 1	15.2 5	2988.74	$15/2^{-}$	1830.62	$11/2^{-}$	Q	DCO=1.05 5; A ₂ =+0.38 6; A ₄ =-0.02 8
1185.6 <i>1</i>	9.1 4	1337.85	7/2+	152.25		Q	$A_2 = +0.41 \ 5; \ A_4 = -0.08 \ 7$
1202.1 <i>1</i>	6.32 22	3756.04	15/2+	2554.07		~	-
1209.7 <i>1</i>	31.0 10	3142.46	13/2+	1932.83		Q	$A_2 = +0.27 \ 3; \ A_4 = +0.08 \ 5$

[@] Band(A): γ sequence based on g.s.

[&]amp; Band(B): γ sequence based on $7/2^-$.

^a Band(C): γ sequence based on $19/2^+$.

^b Band(D): γ sequence based on $3/2^+$.

^c Band(E): γ sequence based on $5/2^+$.

24 Mg(24 Mg, α p γ) 2007Ch40 (continued)

γ ⁽⁴³Sc) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	J_f^{π}	Mult.‡	Comments
1216.1 <i>1</i>	4.60 20	2554.07	11/2+	1337.85			
1227.1 3	1.90 25	2635.72	11/2-	1408.38			
1289.2 <i>3</i> 1324.5 <i>I</i>	0.44 <i>7</i> 2.52 <i>13</i>	14406.61 3960.31	(33/2 ⁻) 15/2 ⁻	13117.20 (2635.72		Q	DCO=0.96 10
1338.0 <i>I</i>	2.41 13	1337.85	7/2+		7/2-	Ď	DCO=1.03 11
1360.6 4	0.52 10	3293.5	7/2-	1932.83	9/2+		
1381.2 <i>I</i>	3.37 14	10084.85	27/2-	8703.53		D	DCO=0.47 3
1394.9 2	1.43 11	4383.67	$17/2^{(-)}$	2988.74		D	DCO=0.54 5
1408.3 <i>2</i> 1439.5 <i>I</i>	2.1 <i>5</i> 2.02 <i>11</i>	1408.38 9995.34	$7/2^{-}$ $25/2^{(-)}$	0.0 7 8555.89 2	7/2-	D D	DCO=1.19 23 DCO=0.66 4
1439.3 1	0.75 4	19210.5	$(37/2^+)$		23/2 (35/2)	D	DCO=0.00 4
1460.1 <i>I</i>	2.26 14	12073.76	$(29/2^{-})$	10613.82		D#	DCO=1.05 15
1472.5 <i>I</i>	36.1 11	8832.32	27/2+	7359.77		D	DCO=0.73 3; A ₂ =-0.15 3; A ₄ =+0.10 4
1476.0 <i>I</i>	5.54 21	5232.02	17/2+	3756.04			
1529.0 <i>I</i>	4.57 18	10084.85	27/2-	8555.89		Q	DCO=1.19 8
1586.9 <i>3</i>	0.64 6	6818.98	$(21/2^+)$	5232.02			
1595.2 [§] 3	0.95 <i>9</i> 8.3 <i>3</i>	8703.53	25/2 ⁽⁺⁾	7107.43 2 8434.56 2		0	DCO-0.04.7. A -+0.22.6. A -+0.06.8
1650.3 <i>I</i> 1724.8 2	6.3 3 1.47 <i>11</i>	10084.85 8832.32	27/2 ⁻ 27/2 ⁺	7107.43		Q	DCO=0.94 7; A ₂ =+0.33 6; A ₄ =+0.06 8
1757.9 7	1.62 11	12615.45	$(31/2)^{-}$	10856.86 (
1763.3 <i>1</i>	23.0 7	5519.53	19/2+	3756.04		Q	$A_2 = +0.50 \ 10$; $A_4 = -0.04 \ 10$
1791.2 <i>1</i>	4.80 20	14406.61	$(33/2^{-})$	12615.45 (D	DCO=0.47 7; A ₂ =-0.52 13; A ₄ =-0.17 18
1830.5 <i>I</i>	37.7 24	1830.62	$11/2^{-}$		7/2-	Q	DCO=1.04 3; A_2 =+0.36 3; A_4 =-0.01 4
1833.6 <i>2</i> 1968.8 <i>I</i>	1.90 <i>18</i> 4.89 <i>24</i>	5793.95 12053.72	29/2 ⁽⁻⁾	3960.31 1 10084.85 2		D	DCO=0.92 12; A ₂ =-0.14 9; A ₄ =+0.06 12
2058.7 2	1.51 9	12053.72	$29/2^{(-)}$	9995.34		D	DCO=0.92 12, A ₂ ==0.14 9, A ₄ =±0.00 12
2107.3 <i>I</i>	15.1 5	6067.70	$19/2^{-}$	3960.31		Q	DCO=0.96 3; A ₂ =+0.37 4; A ₄ =-0.08 6
2129.7 <i>1</i>	14.5 5	3960.31	15/2-	1830.62		Q	DCO= $1.03\ 4$; $A_2=+0.32\ 4$; $A_4=-0.14\ 5$
2177.8 [§] 6	0.32 6	10613.82	$(27/2^{-})$	8434.56		$Q^{@}$	DCO=1.1 4
2190.8 <i>3</i>	0.60 6	12804.7	(0=(0.1)	10613.82 (
2219.2 2	1.28 11	9579.35	$(27/2^+)$	7359.77			
2228.0 <i>2</i> 2271.8 <i>I</i>	1.78 <i>11</i> 8.0 <i>3</i>	11807.67 8703.53	29/2 ⁽⁻⁾ 25/2 ⁽⁺⁾	9579.35 (6431.60 2		D	DCO=0.54 5; A ₂ =-0.31 16; A ₄ =-0.22 21
2353.2 3	1.42 10	14406.61	$(33/2^{-})$	12053.72		Q@	DCO=1.0 4
2368.6 5	0.54 9	4301.5	(33/2)	1932.83		Q	DCO=1.0 4
2369.6 ^{&} 4	1.26 9	8434.56	23/2-	6067.70			
2394.9 <i>1</i>	79.4 25	5519.53	19/2+	3124.32		D	DCO=1.02 1; A ₂ =+0.40 1; A ₄ =+0.01 2
2418.3 [§] 2	1.93 10	6173.53	19/2+	3756.04	15/2 ⁺		
2488.2 <i>1</i>	13.3 4	8555.89	$23/2^{-}$	6067.70		Q	DCO=1.14 7; A ₂ =+0.15 5; A ₄ =-0.18 7
2491.0 <i>3</i>	2.17 18	8010.6		5519.53	-	#	
2503.1 <i>I</i>	3.00 14	13117.20				Q [#]	DCO=1.73 20
2508.0 <i>3</i> 2530.4 <i>I</i>	0.71 9	14561.4	31/2-	12053.72	29/2 ⁽⁻⁾ 25/2 ⁽⁺⁾		
2530.4 <i>1</i> 2530.6 <i>1</i>	2.45 <i>12</i> 10.6 <i>4</i>	14452.1 12615.45	$(29/2^+)$ $(31/2)^-$	11921.6 2 10084.85 2		Q	DCO=1.3 3; A ₂ =+0.18 6; A ₄ =-0.33 8
2598.0 ^{&} 1	2.33 11	14406.61	$(33/2^{-})$	11807.67	-	(Q)	A_2 =+0.41 24; A_4 =+0.4 3
2607.8 2	1.11 6	13045.3	$(29/2^+)$	10437.43 (,	(4)	112-10.41 27, 114-10.4 3
2636.0 <i>3</i>	2.3 4	2635.72	11/2	0.0	7/2-		
2644.5 5	1.23 8	14452.1	$(29/2^+)$	11807.67	$29/2^{(-)}$		
2725.6 [§] 2	2.36 11	10084.85	$27/2^{-}$	7359.77		D	DCO=0.68 14
2799.5 2	2.53 12	11355.67	27/2	8555.89		Q (O)	DCO=0.99 10
2852.9 <i>1</i> 2866.3 2	2.57 <i>11</i> 2.89 <i>13</i>	17769.8 15911.6	(35/2) $(33/2^+)$		31/2 (29/2 ⁺)	(Q)	$A_2 = +0.10 \ 18; \ A_4 = -0.4 \ 3$
2000.3 2	2.09 13	13711.0	(33/4)	13043.3 ((47/4)		

24 Mg(24 Mg, α p γ) 2007Ch40 (continued)

$\gamma(^{43}\text{Sc})$ (continued)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	J_i^π	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
2887.4 6	1.10 9	9995.34	25/2 ⁽⁻⁾	7107.43	23/2+		
2920.2 10	0.25 6	11355.67	$27/2^{-}$	8434.56			
2975.2 1	5.66 20	11807.67	$29/2^{(-)}$	8832.32	$27/2^{+}$	$D^{@}$	DCO=0.71 5; A ₂ =-0.35 12; A ₄ =+0.10 16
3038.1 5	1.04 10	13123.1	,	10084.85	$27/2^{-}$		
3048.6 8	0.63 15	6173.53	$19/2^{+}$	3124.32	$19/2^{-}$		
3071.6 5	0.57 8	10179.1		7107.43			
3079.0 <i>1</i>	4.76 18	6067.70	$19/2^{-}$	2988.74		Q	DCO=1.07 5; A ₂ =+0.16 6; A ₄ =-0.27 8
3105.3 4	0.58 5	11661.3		8555.89			
3124.2 3	0.64 5	16708.9	(27 (2±)	13584.6	$(29/2^+)$		
3147.7 2	2.43 15	9579.35	$(27/2^+)$	6431.60		~ @	P. G. A. A. A. E.
3151.4 3	1.62 9	9219.2	$(21/2^{-})$	6067.70		(D) @	DCO=1.14 15
3159.8 2	8.2 8	6284.04	$21/2^{+}$	3124.32	-	D#	DCO=0.91 8
3205.3 <i>3</i>	1.69 11	14561.4	$31/2^{-}$	11355.67		$Q^{@}$	DCO=1.11 16
3253.9 <i>1</i>	8.2 3	10613.82	$(27/2^{-})$	7359.77	,	D	DCO=0.55 3; A ₂ =-0.15 4; A ₄ =-0.08 6
3296.0 <i>4</i>	1.01 7	15911.6	$(33/2^+)$	12615.45			
3298.8 <i>3</i>	1.09 7	19210.5	$(37/2^+)$	15911.6	$(33/2^+)$	D (01	
3307.6 2	8.5 <i>3</i> 1.71 <i>10</i>	6431.60	23/2+	3124.32		[M2]	
3329.9 2 3362.2 <i>10</i>	0.26 7	10437.43 7118.4	$(25/2^+)$	7107.43 3756.04			
3469.8 2	1.70 9	17922.0	$(31/2^+)$	14452.1	$(29/2^+)$	(D)	DCO=0.77 10
3497.0 <i>1</i>	4.54 18	10856.86	$(27/2^{-})$	7359.77		D D	DCO=0.59 6; A_2 =-0.04 6; A_4 =-0.03 8
3516.9 5	0.48 5	7273.1	(21/2)	3756.04		D	0.07 0, 112 0.07 0, 114 0.03 0
3586.9 5	0.54 6	16704.3		13117.20			
3635.4 <i>3</i>	0.98 6	18197.0	$35/2^{-}$	14561.4	31/2-	$Q^{@}$	DCO=1.2 3
3892.6 <i>3</i>	2.67 13	11252.6	25/2+	7359.77			
3906.6 <i>5</i>	0.76 6	16711.5	•	12804.7	·		
3972.5 2	1.37 7	12804.7		8832.32			
3997.1 <i>3</i>	1.34 8	11355.67	$27/2^{-}$	7359.77			
4148.1 8	0.16 3	12704.2		8555.89		6	
4213.0 <i>3</i>	1.71 8	13045.3	$(29/2^+)$	8832.32		$D^{@}$	DCO=0.76 17
4341.7 <i>3</i>	1.25 7	13045.3	$(29/2^+)$	8703.53			
4560.5 <i>3</i>	1.76 8	11921.6	$25/2^{(+)}$	7359.77		D	DCO=1.02 8
4752.0 <i>3</i>	1.23 7	13584.6	$(29/2^+)$	8832.32	$27/2^{+}$	D@	DCO=0.48 9; A ₂ =-0.28 21; A ₄ =+0.2 3
5310.5 <i>1</i>	10.7 12	8434.56	$23/2^{-}$	3124.32	19/2-	$Q^{@}$	DCO=1.42 22; A ₂ =+0.19 9; A ₄ =-0.08 12
5489.0 <i>3</i>	2.43 11	11921.6	$25/2^{(+)}$	6431.60		D	DCO=0.84 11
5620.1 <i>5</i>	1.82 8	14452.1	$(29/2^+)$	8832.32			
5684.9 <i>4</i>	1.47 8	13045.3	$(29/2^+)$	7359.77			
6081.0 [§] 3	4.05 14	14916.7	31/2	8832.32	$27/2^{+}$	Q	DCO=1.19 <i>12</i> ; A ₂ =+0.44 <i>5</i> ; A ₄ =-0.21 <i>7</i>

[†] The quoted uncertainties are statistical only. Above 3.5 MeV (maximum range of calibration curve), systematic uncertainties can be 1-2 keV.

 $^{^{\}ddagger}$ 2007Ch40 assign multipolarities for most of the transitions, many based only on J π assignments. The evaluators assign mult=D for ΔJ =0,1 M1 or E1 and Q for ΔJ =2, Q transitions for which supporting angular distribution/correlation data are available. Dipole transitions with expected M1 character may include E2 component.

[§] Poor fit in the level scheme. The uncertainty is increased by a factor of 2 for fitting purposes.

[&]amp; Poor fit in the level scheme. The uncertainty is increased by a factor of 3 for fitting purposes.

[@] DCO value corresponds to an alternative DCO-like analysis (1989Kr01).

[#] DCO value corresponds to gate on ΔJ=1, stretched dipole transition.

 $^{43}_{21}\mathrm{Sc}_{22}$

0.0

7/2-

²⁴Mg(²⁴Mg, α p γ) **2007**Ch**40**

²⁷Al(18 O,2n γ) **2008Fe02**

2008Fe02: E=75 MeV beam provided by Tandem accelerator at IPN Orsay. Measured γ -rays with one clover and three single Ge detectors with BGO Compton suppression. Lifetime of isomer measured by $\gamma(t)$ as a side measurement (for confirmation purposes of main measurements for 139 Nd and 140 Nd) as the 18 O beam was hitting the target frame made of aluminum.

⁴³Sc Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}
0	7/2-	
1830	$11/2^{-}$	
2988	$15/2^{-}$	
3124	$19/2^{-}$	481 [‡] ns 9

 $^{^{\}dagger}$ From Adopted Levels.

γ (43Sc)

E_{γ}	$E_i(level)$	\mathbf{J}_{i}^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
136	3124	19/2-	2988	15/2-
1158	2988	$15/2^{-}$	1830	$11/2^{-}$
1830	1830	$11/2^{-}$	0	$7/2^{-}$

27 Al(18 O,2n γ) 2008Fe02

Level Scheme

[‡] From $\gamma(t)$ (2008Fe02).

27 Al(19 F,p2n γ) **2004Mo47,1976Po03**

2004Mo47: E=50 MeV beam was produced from the tandem accelerator at the Japan Atomic Energy Research Institute (JAERI). Target of a 0.92 mg/cm² ²⁷Al foil on 10 mg/cm² natural Pb backing. γ -rays were detected by the GEMINI-II array of 16 HPGe detectors with BGO anti-Compton shields. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$. Deduced levels J, π . Comparison with shell-model predictions.

1976Po03: E=40 MeV ¹⁹F beam was produced at the Brookhaven National Laboratory. Target of aluminum evaporated onto a tungsten backing. γ -rays were detected by Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(\text{lin pol})$. Deduced levels, T_{1/2} by recoil distance method.

1981Da06: E=45.5 MeV. Measured $\gamma\gamma(\theta,t)$, deduced Q of the $19/2^-$ isomer at 3123.

1994Zh43: E=50.06 MeV. Measured isomer g factor by $\gamma(\theta,H,t)$ method.

⁴³Sc Levels

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	$T_{1/2}^{@}$	Comments
0.0 ^c 151.65 ^b 17 472.50 20 880.24 ^b 22 1337.00 ^b 24 1829.9 ^c 3 1931.8 ^b 4 2552.6 ^b 4	7/2 ^{-#} 3/2 ^{+#} 3/2 ⁻ 5/2 ⁺ 7/2 ⁺ 11/2 ⁻ 9/2 ⁺	161 ^a ps 37 4.9 ^a ps 10	
2987.5 ^c 3	11/2 ⁺ 15/2 ⁻	ρ.	
3123.4 ^c 4	19/2-	469 ^{&} ns 4	Q=0.199 14 (1981Da06) g=0.3279 19 (1994Zh43) Q: time differential perturbed angular distribution method.
3140.8 ^b 4	13/2+		
3755.4 ^b 4	15/2+	40.6.17	
4382.2 <i>8</i> 4633.2 <i>20</i>	$(17/2^{-})$ $(17/2^{-},21/2^{-})$	40 fs <i>17</i> <110 fs	
5230.3^{b} 5	$(17/2^+,21/2^-)$	110 15	
5517.9 ^b 4	$(19/2^+)$		
6065.5 16	(11/2,15/2,19/2)	55 fs <i>12</i>	
6281.4 10	(17/2,21/2)	110 fs <i>38</i>	
6429.4 ^b 6 6814.5 <i>19</i>	$(23/2^+)$	04 fg 20	
7105.1 8	$(21/2^+,25/2^+)$	94 fs 20	
7356.4 ^b 12 8699.5 12	$(25/2^+)$ $(21/2^+,25/2^+)$	340 fs 21	
8828.4 ^b 16	$(27/2^+)$	74 fs 15	

 $^{^{\}dagger}$ From least-squares fit to E γ data.

[‡] From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ of 2004Mo47 and 1976Po03.

[#] From Adopted Levels.

[@] From DSAM, values are from e-mail reply of Dec 9, 2004 to B. Singh from the first author of 2004Mo47.

[&]amp; From $\gamma(t)$ in 1981Da06.

^a From Recoil-Distance-Method (RDM) in 1976Po03.

^b Band(A): $\Delta J=1$ sequence.

^c Band(B): γ sequence based on g.s..

²⁷**Al**(¹⁹**F,p2n**γ) **2004Mo47,1976Po03** (continued)

γ (43Sc)

 A_2 , A_4 and POL values are from 1976Po03. The ADO values are from priv. comm. (Dec. 9, 2004) from 2004Mo47. ADO=angular distribution ratio (147°/90°), values are from e-mail reply of December 9, 2004 from the first author. Expected values are larger than ≈ 1.3 for stretched quadrupole and ≈ 0.6 for stretched dipole transitions.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathtt{J}_i^{π}	\mathbb{E}_f	\mathtt{J}_f^{π}	Mult.&@	δ&	Comments
135.8‡ 2	40.6	3123.4	19/2-	2987.5	15/2-	E2		I _γ : 34.3 (1976Po03). ADO=2.18 <i>17</i> .
151.68 [‡] <i>17</i> 287.7 5	2.0	151.65 5517.9	3/2 ⁺ (19/2 ⁺)	0.0 5230.3	7/2 ⁻ (17/2 ⁺)	D+Q		ADO=0.83 16.
456.78 [‡] <i>12</i>	19.0	1337.00	7/2+	880.24	5/2+	D+Q		A ₂ =-0.27 10 I _y : 5.29 (1976Po03). ADO=0.80 6.
472.50 20		472.50	3/2-	0.0	7/2-	E2		ADO=0.00 0. A_2 =+0.09 3; A_4 =-0.09 3 E_y : only seen in 1976Po03. I_y : 6.35 (1976Po03). POL=+0.11 19.
588.4 <i>3</i>	13.0	3140.8	13/2+	2552.6	11/2+	D+Q		ADO=0.30 <i>13</i> .
594.6 5	86.0 [§]	1931.8	9/2+	1337.00	7/2+	M1+E2		A ₂ =-0.41 <i>9</i> POL=-0.19 <i>12</i> . ADO=0.46 <i>4</i> .
614.75 [‡] 25	18.6	3755.4	15/2+	3140.8	13/2+	M1+E2	-0.11 8	A ₂ =-0.73 <i>10</i> ; A ₄ =+0.28 <i>10</i> I _y : 6.35 (1976Po03). POL=-0.23 <i>15</i> . ADO=0.47 6.
620.8 [‡] 3	9.0	2552.6	11/2+	1931.8	9/2+	D+Q		A ₂ =-0.51 <i>15</i> I _y : 4.11 (1976Po03). ADO=0.49 9.
675.7 5	5.0	7105.1	$(21/2^+, 25/2^+)$	6429.4	$(23/2^+)$	D+Q		ADO=0.82 9.
728.64 [‡] 15	35.6	880.24	5/2+	151.65	3/2+	M1+E2		A ₂ =-0.52 2 I _y : 31.7 (1976Po03). POL=+0.23 6. ADO=0.55 5.
764 [#] 823.7 <i>7</i> 911.5 <i>6</i> 927.0 <i>10</i>	2.0 8.6 41.7 22.1	6281.4 7105.1 6429.4 7356.4	(17/2,21/2) (21/2 ⁺ ,25/2 ⁺) (23/2 ⁺) (25/2 ⁺)	5517.9 6281.4 5517.9 6429.4	(19/2 ⁺) (17/2,21/2) (19/2 ⁺) (23/2 ⁺)	Q D+Q		ADO=1.32 10. ADO=0.83 8.
1051.7 [‡] 4	35.9 [§]	1931.8	9/2+	880.24		E2		$A_2 = +0.23 \ 3; \ A_4 = -0.05 \ 3$
1031.7 4	33.9	1931.6	3/2	880.24	3/2	E2		I _γ : 22.8 (1976Po03). POL=+0.16 9. ADO=1.23 10.
1157.55 [‡] <i>15</i>	87.2	2987.5	15/2-	1829.9	11/2-	E2		A ₂ =+0.22 4; A ₄ =-0.18 4 I _γ : 113.6 (1976Po03). POL=+0.26 6. ADO=1.41 3.
1185.0 [‡] 5	67.0	1337.00	7/2+	151.65	3/2+	Q		A ₂ =+0.10 <i>3</i> I _γ : 11.1 (1976Po03). Mult.: γ(lin pol) result disagrees with expected mult=E2 (1976Po03). POL=-0.21 <i>21</i> . ADO=1.33 <i>7</i> .
1202.7 3	21.0	3755.4	15/2+	2552.6	11/2+	Q		ADO=1.11 14.
1209.1 [‡] 5	19.1	3140.8	13/2+	1931.8	9/2+	E2		A ₂ =+0.29 5; A ₄ =-0.08 5 I _y : 13.5 (1976Po03). POL=+0.63 28. ADO=1.29 6.
1215.6 [‡] 4	14.0	2552.6	11/2+	1337.00	7/2+	Q		A ₂ =+0.37 <i>10</i> I _y : 2.79 (1976Po03). ADO=1.17 8.

27 Al(19 F,p2n γ) 2004Mo47,1976Po03 (continued)

$\gamma(^{43}Sc)$ (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&@	Comments
1258.8 9	29.0	4382.2	$(17/2^{-})$	3123.4	19/2-	D+O	ADO=0.86 10.
1336.8 <i>15</i>	20.0	1337.00	7/2+		7/2-	D	ADO= $1.060\ 10$; $\Delta J=0$, dipole.
1394.6 <i>13</i>	7.0	4382.2	$(17/2^{-})$	2987.5	15/2-	D+Q	ADO=0.66 17.
1472.0 <i>10</i>	78.0	8828.4	$(27/2^+)$	7356.4	$(25/2^+)$	D+Q	ADO=0.66 7.
1474.9 5	6.0	5230.3	$(17/2^+)$	3755.4	15/2+	D+Q	ADO=0.59 16.
1509.8 <i>19</i>	13.0	4633.2	$(17/2^-,21/2^-)$	3123.4	19/2-	D+Q	ADO=0.86 11.
1648 [#]	13.0	6281.4	(17/2,21/2)	4633.2	$(17/2^-,21/2^-)$		
1762.6 <i>3</i>	44.0	5517.9	$(19/2^+)$	3755.4	15/2+	Q	ADO=1.30 16.
1829.8 [‡] <i>3</i>	100	1829.9	11/2-	0.0	7/2-	E2	$A_2 = +0.16 I$; $A_4 = -0.06 I$
2270.0.10	5 40	9600 5	(21/2+ 25/2+)	C420 4	(22/2+)	D . O	POL=+0.43 9. ADO=1.39 3.
2270.0 10	54.0	8699.5	$(21/2^+,25/2^+)$		$(23/2^+)$	D+Q	ADO=0.65 12.
2394.3 5	29.2	5517.9	$(19/2^+)$	3123.4	,	D	ADO=1.55 15 ; ΔJ =0, dipole.
3077.9 15	10.0	6065.5	(11/2,15/2,19/2)	2987.5	15/2	D,Q	ADO=1.49 18 ; $\Delta J=0$, dipole or $\Delta J=2$, quadrupole.
3157.8 20	33.0	6281.4	(17/2,21/2)	3123.4	19/2-	D+Q	ADO=0.54 8.
3305.8 7	38.0	6429.4	$(23/2^+)$	3123.4	19/2-	Q	Mult.: 2004Mo47 suggest octupole admixture.
							ADO=1.93 22.
3691.0 <i>18</i>	16.0	6814.5		3123.4	19/2-		ADO=0.90 22.

[†] From e-mail reply of December 9, 2004 from the first author (T. Morikawa) of 2004Mo47. Intensities from 1976Po03 relative to 100 for 1830γ are given under comments.

[‡] Weighted average from 2004Mo47 and 1976Po03.

[§] In comparison with branching ratio of 595γ and 1051γ in four reactions, it seems intensities listed in priv. comm. from 2004Mo47 are reversed.

[&]amp; From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ of 2004Mo47 and 1976Po03.

[@] Mult=Q implies ΔJ =2, mult=D+Q implies ΔJ =1 transition. # Placement of transition in the level scheme is uncertain.

27 Al(19 F,p2n γ) 2004Mo47,1976Po03

Band(A): $\Delta J=1$ sequence

 $^{43}_{21}{\rm Sc}_{22}$

²⁸Si(²⁰Ne,α**p** γ) **2007Ch40**

2007Ch40: E=84 MeV beam from ATLAS accelerator at Argonne National Laboratory. Target of self-supporting 0.5 mg/cm² ²⁸Si on Ta foil. γ -rays were detected by the Gammasphere array of 102 Compton- suppressed HPGe detectors and charged particles by an array of 95 CsI(T1) detectors with a 65% efficiency for detection α particles and 50% for protons. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO). Deduced levels, J, π , γ branching ratios.

A similar experiment was done by 2007Ch40 using the reaction 24 Mg(24 Mg, α p γ). The γ -ray energies and angular distribution/correlation coefficients are averages from the two experiments. The coefficients from these measurements are listed in 24 Mg(24 Mg, α p γ) dataset.

⁴³Sc Levels

E(level) [†]	J^π	T _{1/2} ‡	E(level) [†]	J^π	E(level) [†]	J^π
0.0#	7/2-		6431.60 ^a 13	23/2+	12053.72 16	29/2 ⁽⁻⁾
152.25 ^a 11	3/2+	$438 \ \mu s \ 7$	6818.98 <i>15</i>	$(21/2^+)$	12073.76 <i>18</i>	$(29/2^{-})$
845.42 20	5/2-		7107.43 <mark>&</mark> <i>13</i>	$23/2^{+}$	12615.45 <i>16</i>	$(31/2)^{-}$
880.97 <mark>b</mark> 10	5/2+		7118.4 <i>10</i>		12704.2 <i>10</i>	
1337.85 ^a 9	$7/2^{+}$		7273.1 10		12804.7 <i>4</i>	
1408.38 [@] 16	$7/2^{-}$		7359.77 ^b 14	$25/2^{+}$	13045.3 ^{&} 3	$(29/2^+)$
1830.62 [#] 9	$11/2^{-}$		8010.6 <i>4</i>		13117.20 <i>18</i>	$(31/2^{-})$
1932.83 ^b 10	$9/2^{+}$		8434.56 17	$23/2^{-}$	13123.1 6	
2554.07 ^a 10	$11/2^{+}$		8555.89 [@] 14	$23/2^{-}$	13584.6 <i>11</i>	$(29/2^+)$
2635.72 [@] 12	$11/2^{-}$		8703.53 <i>15</i>	$25/2^{(+)}$	14406.61 <i>17</i>	$(33/2^{-})$
2988.74 [#] 11	$15/2^{-}$		8832.32 ^a 16	$27/2^{+}$	14452.1 <i>4</i>	$(29/2^+)$
3124.32 [#] <i>13</i>	$19/2^{-}$	472 ns 4	9219.2 <i>4</i>	$(21/2^{-})$	14561.4 [@] 3	$31/2^{-}$
3142.46 ^b 11	$13/2^{+}$		9579.35 <i>18</i>	$(27/2^+)$	14916.7 <i>5</i>	31/2
3293.5 5	$7/2^{-}$		9995.34 <i>16</i>	$25/2^{(-)}$	15911.6 <mark>&</mark> 3	$(33/2^+)$
3756.04 ^a 11	$15/2^{+}$		10084.85 <i>14</i>	$27/2^{-}$	16704.3 <i>11</i>	
3960.31 [@] 11	$15/2^{-}$		10179.1 6		16708.9 <i>11</i>	
4301.5 5			10437.43 <mark>&</mark> 22	$(25/2^+)$	16711.5 <i>11</i>	
4383.67 23	$17/2^{(-)}$		10613.82 <i>17</i>	$(27/2^{-})$	17769.8 <i>5</i>	(35/2)
5232.02 ^b 13	$17/2^{+}$		10856.86 <i>16</i>	$(27/2^{-})$	17922.0 5	$(31/2^+)$
5519.53 ^a 12	$19/2^{+}$		11252.6 <i>10</i>	$25/2^{+}$	18197.0 [@] <i>11</i>	$35/2^{-}$
5793.95 <i>23</i>			11355.67 [@] 22	$27/2^{-}$	18767.7 <i>5</i>	(37/2)
6067.70 [@] 12	$19/2^{-}$		11661.3 5		19210.5 <mark>&</mark> 4	$(37/2^+)$
6173.53 ^{&} <i>14</i>	$19/2^{+}$		11807.67 <i>17</i>	$29/2^{(-)}$		
6284.04 ^b 14	$21/2^{+}$		11921.6 5	$25/2^{(+)}$		

[†] From least-squares fit to E γ data. The normalized χ^2 =5.8 for the uncertainties as quoted by 2007Ch40. This value is much larger than the critical χ^2 =1.5. The uncertainties of the following ten γ -rays were increased by a factor of 2 or 3 to get an acceptable fit with normalized χ^2 =2.5: 287.9, 860.4, 1157.5, 1595.2, 2177.8, 2369.6, 2418.3, 2598.0, 2725.6, 6081.0. It should be that the uncertainties for level energies quoted in Table V of 2007Ch40 are much larger than those given here.

[‡] From Adopted Levels.

[#] Band(A): γ sequence based on g.s.

[@] Band(B): γ sequence based on 7/2⁻.

[&]amp; Band(C): γ sequence based on $19/2^+$.

^a Band(D): γ sequence based on $3/2^+$.

^b Band(E): γ sequence based on $5/2^+$.

²⁸Si(20 Ne, α p γ) **2007Ch40** (continued)

$\gamma(^{43}\mathrm{Sc})$

The DCO values are for $\approx 90^\circ$ (range of $69.8^\circ - 110.2^\circ$) and forward/ backward angles $(50.1^\circ - 129.9^\circ \text{ range})$. The gates are on $\Delta J=2$, quadrupole or $\Delta J=0$, dipole transitions, unless otherwise stated. Expected values for $\Delta J=1$, dipole gate are: 1.6 for $\Delta J=2$, quadrupole or $\Delta J=0$, dipole; 1.0 for $\Delta J=1$, dipole; 0.5 to 1.9 for $\Delta J=1$, dipole+quadrupole; 1.1 to 1.7 for $\Delta J=0$, dipole+quadrupole. Expected values for $\Delta J=2$, quadrupole gate are: 1.0 for $\Delta J=2$, quadrupole or $\Delta J=0$, dipole; 0.6 for $\Delta J=1$, dipole; 0.3 to 1.2 for $\Delta J=1$, dipole+quadrupole; 0.6 to 1.1 for $\Delta J=0$, dipole+quadrupole. See $^{24}\text{Mg}(^{24}\text{Mg},\alpha p\gamma)$ dataset for values of the coefficients from these measurements.

$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.
135.5 <i>1</i>	3.19 18	3124.32	19/2-	2988.74	15/2-	
252.3 1	2.26 8	7359.77	$25/2^{+}$	7107.43	23/2+	
287.9 [§] 1	1.96 7	5519.53	$19/2^{+}$	5232.02	$17/2^{+}$	D
288.4 <i>1</i>	0.58 <i>3</i>	7107.43	$23/2^{+}$	6818.98	$(21/2^+)$	
456.7 <i>1</i>	3.60 14	1337.85	7/2+	880.97	5/2+	
562.9 2	0.57 4	1408.38	7/2-	845.42	5/2-	
588.2 <i>I</i>	2.88 10	3142.46	13/2 ⁺ 9/2 ⁺	2554.07	11/2 ⁺ 7/2 ⁺	
595.1 <i>1</i> 613.5 <i>1</i>	10.8 <i>3</i> 31.3 <i>9</i>	1932.83 3756.04	15/2 ⁺	1337.85 3142.46	13/2 ⁺	D
621.3 <i>I</i>	5.73 19	2554.07	11/2+	1932.83	9/2+	D
645.4 <i>I</i>	1.33 7	6818.98	$(21/2^+)$	6173.53	19/2 ⁺	D
653.9 2	0.66 6	6173.53	19/2+	5519.53	19/2+	
675.9 <i>1</i>	7.33 24	7107.43	23/2+	6431.60	23/2+	D
728.7 <i>1</i>	50.8 19	880.97	5/2+	152.25	$3/2^{+}$	D
764.3 <i>1</i>	2.29 12	6284.04	21/2+	5519.53	19/2+	D
766.9 2	0.97 5	3756.04	15/2+	2988.74	15/2	D
771.6 4	0.53 6	10856.86	$(27/2^{-})$	10084.85	27/2	D
804.4 <i>3</i> 823.3 <i>1</i>	0.90 8 5.24 <i>19</i>	2635.72 7107.43	11/2 ⁻ 23/2 ⁺	1830.62 6284.04	11/2 ⁻ 21/2 ⁺	D
845.3 <i>3</i>	0.29 4	845.42	5/2-	0.0	$\frac{21/2}{7/2^{-}}$	
860.4 & 2	0.51 4	10856.86	$(27/2^{-})$	9995.34	$25/2^{(-)}$	D
880.5 2	1.65 10	880.97	5/2+	0.0	$\frac{23}{2}$	D
912.0 <i>I</i>	100 3	6431.60	23/2 ⁺	5519.53	19/2 ⁺	Q
928.2 1	75.4 24	7359.77	25/2+	6431.60	23/2+	Ď
933.0 5	0.93 7	7107.43	23/2+	6173.53	19/2+	
941.4 <i>1</i>	1.11 5	6173.53	19/2+	5232.02	$17/2^{+}$	
951.0 <i>3</i>	1.23 6	11807.67	$29/2^{(-)}$	10856.86	$(27/2^{-})$	D
971.5 <i>1</i>	2.18 8	3960.31	15/2-	2988.74	15/2-	D
997.9 <i>I</i>	0.87 4	18767.7	(37/2)	17769.8	(35/2)	D
1043.6 <i>1</i> 1051.9 <i>1</i>	1.19 <i>6</i> 28.5 <i>9</i>	13117.20 1932.83	$(31/2^{-})$ $9/2^{+}$	12073.76 880.97	(29/2 ⁻) 5/2 ⁺	D Q
1051.9 1	0.07 4	6284.04	21/2 ⁺	5232.02	17/2 ⁺	Q
1075.6 3	0.70 7	7359.77	25/2 ⁺	6284.04	21/2+	
1157.5 <mark>&</mark> 1	15.2 6	2988.74	15/2-	1830.62	11/2-	Q
1185.6 <i>I</i>	9.2 4	1337.85	7/2+	152.25	3/2+	Q
1202.1 <i>I</i>	5.76 19	3756.04	15/2+	2554.07	11/2+	
1209.7 <i>1</i>	30.9 9	3142.46	13/2+	1932.83	9/2+	Q
1216.1 <i>I</i>	4.45 17	2554.07	$11/2^{+}$	1337.85	7/2+	
1227.1 3	2.37 19	2635.72	11/2	1408.38	7/2-	
1289.2 3	0.46 4	14406.61	$(33/2^{-})$	13117.20	$(31/2^{-})$	0
1324.5 <i>I</i> 1338.0 <i>I</i>	2.57 <i>11</i> 2.51 <i>12</i>	3960.31 1337.85	15/2 ⁻ 7/2 ⁺	2635.72 0.0	11/2-	Q D
1358.0 <i>1</i> 1360.6 <i>4</i>	2.51 <i>12</i> 0.65 <i>6</i>	3293.5	7/2-	1932.83	7/2 ⁻ 9/2 ⁺	D
1300.0 4 1381.2 <i>I</i>	3.52 12	10084.85	27/2 ⁻	8703.53	25/2 ⁽⁺⁾	D
1394.9 2	1.75 8	4383.67	$17/2^{(-)}$	2988.74	15/2	D D
1374.7 4	1.75 0	+505.07	11/4	2700.14	13/2	D

²⁸Si(²⁰Ne,αpγ) **2007Ch40** (continued)

γ (43Sc) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡
1408.3 2	3.3 8	1408.38	7/2-	0.0	7/2-	D
1439.5 <i>1</i>	2.66 10	9995.34	$25/2^{(-)}$	8555.89	23/2-	D
1440.7 2	0.79 4	19210.5	$(37/2^+)$	17769.8	(35/2)	
1460.1 <i>1</i>	3.12 13	12073.76	$(29/2^{-})$	10613.82	$(27/2^{-})$	$D^{\#}$
1472.5 <i>I</i>	35.9 11	8832.32	27/2+	7359.77	25/2+	D
1476.0 <i>I</i>	5.49 20	5232.02	$17/2^{+}$	3756.04	$15/2^{+}$	
1529.0 <i>1</i>	4.63 16	10084.85	$27/2^{-}$	8555.89	$23/2^{-}$	Q
1586.9 <i>3</i>	0.39 4	6818.98	$(21/2^+)$	5232.02	$17/2^{+}$	
1595.2 [§] 3	1.09 7	8703.53	$25/2^{(+)}$	7107.43	$23/2^{+}$	
1650.3 <i>1</i>	10.7 4	10084.85	27/2-	8434.56	23/2	Q
1724.8 2	2.10 10	8832.32	27/2+	7107.43	23/2+	
1757.9 7	1.71 9	12615.45	$(31/2)^{-}$	10856.86	$(27/2^{-})$	
1763.3 <i>I</i>	22.0 7	5519.53	19/2+	3756.04	15/2+	Q
1791.2 <i>I</i> 1830.5 <i>I</i>	6.06 21	14406.61	$(33/2^{-})$	12615.45	$(31/2)^{-}$	D
1833.6 2	22.9 <i>14</i> 2.85 <i>13</i>	1830.62 5793.95	11/2-	0.0 3960.31	7/2 ⁻ 15/2 ⁻	Q
1968.8 <i>I</i>	6.30 25	12053.72	29/2(-)	10084.85	27/2-	D
2058.7 2	1.23 7	12053.72	29/2(-)	9995.34	$25/2^{(-)}$	D
2107.3 <i>1</i>	16.5 5	6067.70	$19/2^{-}$	3960.31	$15/2^{-}$	Q
2129.7 <i>I</i>	15.1 5	3960.31	$15/2^{-}$	1830.62	$11/2^{-}$	Q
2177.8 [§] 6	0.40 5	10613.82	$(27/2^{-})$	8434.56	23/2-	Q [@]
2190.8 3	1.19 6	12804.7	(21/2)	10613.82	$(27/2^{-})$	Q
2219.2 2	2.43 10	9579.35	$(27/2^+)$	7359.77	25/2+	
2228.0 2	1.76 8	11807.67	29/2(-)	9579.35	$(27/2^+)$	
2271.8 <i>1</i>	9.9 <i>3</i>	8703.53	$25/2^{(+)}$	6431.60	23/2+	D
2353.2 <i>3</i>	1.57 8	14406.61	$(33/2^{-})$	12053.72	29/2(-)	Q [@]
2368.6 5	0.99 7	4301.5	` ' '	1932.83	9/2+	
2369.6 ^{&} 4	1.26 7	8434.56	$23/2^{-}$	6067.70	$19/2^{-}$	
2394.9 <i>1</i>	82 <i>3</i>	5519.53	19/2+	3124.32	19/2-	D
2418.3 [§] 2	1.18 6	6173.53	19/2+	3756.04	$15/2^{+}$	
2488.2 <i>1</i>	13.9 4	8555.89	$23/2^{-}$	6067.70	$19/2^{-}$	Q
2491.0 <i>3</i>	2.69 16	8010.6		5519.53	$19/2^{+}$	
2503.1 <i>1</i>	3.68 14	13117.20	$(31/2^{-})$	10613.82	$(27/2^{-})$	Q [#]
2508.0 <i>3</i>	1.67 8	14561.4	$31/2^{-}$	12053.72	$29/2^{(-)}$	
2530.4 <i>I</i>	3.02 12	14452.1	$(29/2^+)$	11921.6	$25/2^{(+)}$	
2530.6 <i>1</i>	12.7 4	12615.45	$(31/2)^{-}$	10084.85	$27/2^{-}$	Q
2598.0 ^{&} 1	2.91 <i>11</i>	14406.61	$(33/2^{-})$	11807.67	29/2 ⁽⁻⁾	(Q)
2607.8 2	1.12 5	13045.3	$(29/2^+)$	10437.43	$(25/2^+)$	
2636.0 <i>3</i>	2.6 4	2635.72	11/2-	0.0	7/2-	
2644.5 5	0.97 6	14452.1	$(29/2^+)$	11807.67	29/2 ⁽⁻⁾	
2725.6 ⁸ 1	1.93 10	10084.85	27/2-	7359.77	25/2+	D
2799.5 2	2.70 10	11355.67	27/2	8555.89	23/2	Q (O)
2852.9 <i>1</i> 2866.3 2	3.06 <i>11</i> 3.50 <i>12</i>	17769.8 15911.6	(35/2) $(33/2^+)$	14916.7 13045.3	31/2 (29/2 ⁺)	(Q)
2887.4 6	0.90 6	9995.34	$25/2^{(-)}$	7107.43	$(29/2)$ $23/2^+$	
2920.2 10	0.39 5	11355.67	27/2	8434.56	23/2	
2975.2 1			29/2 ⁽⁻⁾		27/2 ⁺	D@
2975.2 <i>I</i> 3038.1 <i>5</i>	6.45 <i>21</i> 1.27 <i>9</i>	11807.67 13123.1	23/L` '	8832.32 10084.85	27/2	ט י
3048.6 8	0.38 9	6173.53	19/2 ⁺	3124.32	19/2	
3071.6 5	0.90 6	10179.1	,-	7107.43	23/2+	
3079.0 <i>1</i>	4.92 17	6067.70	$19/2^{-}$	2988.74	15/2-	Q

28 Si(20 Ne, α p γ) 2007Ch40 (continued)

$\gamma(^{43}Sc)$ (continued)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡
3105.3 4	0.70 4	11661.3		8555.89	23/2-	
3124.2 <i>3</i>	1.03 5	16708.9		13584.6	$(29/2^+)$	
3147.7 2	2.80 11	9579.35	$(27/2^+)$	6431.60	$23/2^{+}$	
3151.4 <i>3</i>	1.53 7	9219.2	$(21/2^{-})$	6067.70	$19/2^{-}$	(D) [@]
3159.8 2	10.0 5	6284.04	$21/2^{+}$	3124.32	$19/2^{-}$	D#
3205.3 <i>3</i>	2.09 9	14561.4	$31/2^{-}$	11355.67	$27/2^{-}$	$Q^{@}$
3253.9 <i>1</i>	8.5 <i>3</i>	10613.82	$(27/2^{-})$	7359.77	$25/2^{+}$	D
3296.0 <i>4</i>	1.24 7	15911.6	$(33/2^+)$	12615.45	$(31/2)^{-}$	
3298.8 <i>3</i>	1.58 7	19210.5	$(37/2^+)$	15911.6	$(33/2^+)$	
3307.6 2	8.9 <i>3</i>	6431.60	$23/2^{+}$	3124.32	$19/2^{-}$	[M2]
3329.9 2	2.04 9	10437.43	$(25/2^+)$	7107.43	$23/2^{+}$	
3362.2 10	0.40 5	7118.4		3756.04	$15/2^{+}$	
3469.8 2	1.74 8	17922.0	$(31/2^+)$	14452.1	$(29/2^+)$	(D)
3497.0 <i>1</i>	4.99 18	10856.86	$(27/2^{-})$	7359.77	$25/2^{+}$	D
3516.9 <i>5</i>	0.55 4	7273.1		3756.04	$15/2^{+}$	
3586.9 <i>5</i>	0.47 3	16704.3		13117.20	$(31/2^{-})$	
3635.4 <i>3</i>	1.31 6	18197.0	$35/2^{-}$	14561.4	$31/2^{-}$	$Q^{@}$
3892.6 <i>3</i>	2.96 12	11252.6	$25/2^{+}$	7359.77	$25/2^{+}$	
3906.6 <i>5</i>	0.58 5	16711.5		12804.7		
3972.5 2	1.75 7	12804.7		8832.32	$27/2^{+}$	
3997.1 <i>3</i>	1.23 7	11355.67	$27/2^{-}$	7359.77	$25/2^{+}$	
4148.1 8	0.32 3	12704.2		8555.89	$23/2^{-}$	
4213.0 <i>3</i>	1.88 7	13045.3	$(29/2^+)$	8832.32	$27/2^{+}$	$D^{@}$
4341.7 <i>3</i>	1.66 7	13045.3	$(29/2^+)$	8703.53	$25/2^{(+)}$	
4560.5 <i>3</i>	1.89 8	11921.6	$25/2^{(+)}$	7359.77	$25/2^{+}$	D
4752.0 <i>3</i>	1.33 6	13584.6	$(29/2^+)$	8832.32	27/2+	$D_{\overline{e}}$
5310.5 <i>1</i>	13.8 10	8434.56	23/2-	3124.32	$19/2^{-}$	Q [@]
5489.0 <i>3</i>	3.19 12	11921.6	$25/2^{(+)}$	6431.60	$23/2^{+}$	D
5620.1 5	1.45 7	14452.1	$(29/2^+)$	8832.32	$27/2^{+}$	
5684.9 <i>4</i>	1.52 7	13045.3	$(29/2^+)$	7359.77	$25/2^{+}$	
6081.0 [§] 3	4.69 16	14916.7	31/2	8832.32	$27/2^{+}$	Q

[†] The quoted uncertainties are statistical only. Above 3.5 MeV (maximum range of calibration curve), systematic uncertainties can be 1-2 keV

 $^{^{\}ddagger}$ 2007Ch40 assign multipolarities for most of the transitions, many based only on J π assignments. The evaluators assign mult=D for ΔJ =0,1 M1 or E1 and Q for ΔJ =2, Q transitions for which supporting angular distribution/correlation data are available. Dipole transitions with expected M1 character may include E2 component.

[§] Poor fit in the level scheme. The uncertainty is increased by a factor of 2 for fitting purposes.

[&]amp; Poor fit in the level scheme. The uncertainty is increased by a factor of 3 for fitting purposes.

[@] DCO value corresponds to an alternative DCO-like analysis.

[#] DCO value corresponds to gate on ΔJ=2, quadrupole transition.

 $^{43}_{21}\mathrm{Sc}_{22}$

1932.83

1830.62

1408.38 1337.85

0.0

9/2+

11/2

 $\frac{7/2^-}{7/2^+}$

7/2-

²⁸Si(²⁰Ne,αpγ) **2007Ch40**

29 Si(16 O,pn γ) 1980Sh09

1980Sh09: E=40, 42 MeV 16 O beam. Target of a 200 μ g/cm 2 29 Si (enriched to 95%) on a 250 μ m gold backing. γ -rays were detected by Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t), $\gamma(\theta)$, γ (lin pol). Deduced levels, J, π , mixing ratios, γ -branchings, $T_{1/2}$ by Doppler-shift attenuation method (DSAM).

⁴³Sc Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$
0.0	7/2-	
1829.94 20	$11/2^{-}$	
2987.5 4	$15/2^{-}$	
3123.3 5	$19/2^{-}$	
5517.3 8	$19/2^{+}$	<62 [#] fs
6428.6 9	$23/2^{+}$	16.3 [@] ps <i>15</i>
7354.8 11	$25/2^{+}$	0.42 [#] ps <i>11</i>

 $^{^{\}dagger}$ From least-squares fit to Ey data.

$\gamma(^{43}Sc)$

$E_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
135.8 <i>3</i>	14 <i>I</i>	3123.3	19/2-	2987.5	15/2-	E2		A_2 =+0.36 5, A_4 =-0.09 5 (1980Sh09). δ (O/O)=0.00 1.
911.3 5	11 <i>I</i>	6428.6	23/2+	5517.3	19/2+	E2		A ₂ =+0.32 2, A ₄ =-0.25 2. Pol=+0.67 9 (1980Sh09). δ (M3/E2)=0.00 2.
926.2 5	4.0 5	7354.8	25/2+	6428.6	23/2+	M1(+E2)	-0.1 <i>I</i>	Mult., δ : from A ₂ =-0.14 5, A ₄ =0.00 5. Pol=-0.4 5 (1980Sh09).
1157.5 3	71 2	2987.5	15/2-	1829.94	11/2-	E2		A ₂ =+0.30 2, A ₄ =-0.12 2. Pol=+0.48 7 (1980Sh09). δ (M3/E2)=0.00 1.
1829.9 2	100 3	1829.94	11/2-	0.0	7/2-	E2		A ₂ =+0.26 2, A ₄ =-0.10 2. Pol=+0.45 9 (1980Sh09). δ (M3/E2)=0.00 1.
2393.9 7	14 <i>I</i>	5517.3	19/2+	3123.3	19/2-	E1(+M2)	0.0 1	Mult.,δ: A ₂ =+0.43 3, A ₄ =0.00 4. Pol=-0.8 4 (1980Sh09).
3305.5 15	1.0 5	6428.6	23/2+	3123.3	19/2-	M2+E3	+0.27 9	$I\gamma(3305)/I\gamma(911)=0.07 I.$ Mult.,6: $A_2=+0.69 I5$, $A_4=+0.24 II$ (1980Sh09).

[‡] From Adopted Levels.

[#] DSAM (1980Sh09).

[@] RDM (1980Sh09).

 $^{^{\}dagger}$ From 1980Sh09. ‡ From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ of 1980Sh09.

40 Ca(α,p) 1981Sm03,1970Gi10,1967Sc08

- 1981Sm03: E=35.6 MeV α beam was produced from the University of Colorado cyclotron. Target of natural calcium on a 20 μ g/cm² carbon foil, thickness of 280 μ g/cm². Protons were momentum analyzed with a magnetic spectrograph and detected in the helical focal plane counter backed by a plastic scintillator, overall FWHM=25-30 keV. Measured σ (E_p, θ). Deduced levels, J, π from DWBA analysis.
- 1970Gi10 (also 1966GiZZ): E=31 MeV α beam was produced from the MIT cyclotron. Target of 1 mg/cm² 97% enriched self-supporting ⁴⁰Ca foil. Protons were detected by a Δ E-E solid-state counter telescope, FWHM=90 keV. Measured σ (E_p, θ). Deduced levels, J, π , L from DWBA analysis.
- 1967Sc08: E=12 MeV α beam was produced from the tandem Van de Graaff accelerator at Argonne National Laboratory. Target of $10~\mu g/cm^2$ natural calcium on a $10~\mu g/cm^2$ carbon backing. Protons were momentum analyzed with a 75 cm broad-range magnetic spectrograph and detected in nuclear emulsions. Measured $\sigma(E_p,\theta)$. Deduced levels.
- 1987Fr09: E=12 MeV α beam was produced from the 6 MV Van de Graaff accelerator of the National Accelerator Center (NAC) at Faure. Target of natural CaO on a thin carbon backing. Particles scattered at 90° and 120° to the beam were detected by a Δ E-E detector telescope. Measured relative cross sections compared to those calculated from Hauser-Feshbach analysis for possible J π assignments. Deduced levels.
- 1979Th03: E=25 MeV α beam was produced from the Niels Bohr Institute FN tandem Van de Graaff accelerator. Target of a 15 μ g/cm² 81.9% enriched ⁴¹Ca (81.9% in ⁴¹Ca and 18.1% in ⁴⁰Ca) on a carbon backing. Protons were analyzed with a single-gap magnetic spectrograph and detected in nuclear emulsions. Measured σ (E_p, θ). Deduced levels, J, π from DWBA analysis for 0, 1179, 1811 and 1830 levels. In the spectrum, 13 groups assigned to ⁴³Sc.
- 1985Ba77: E=25.8 MeV. Measured $\sigma(\theta)$, DWBA analysis. Data for 0, 472, 1179 levels.
- 1970Ba51: E=11.94 MeV. FWHM=50 keV. Particle spectrum in coin with γ -rays.
- 1983HaZJ: E=60 MeV. Measured $\sigma(\theta)$. DWBA calculations.
- 1974Ho39: E-4-10 MeV. Measured cross section.
- 1972Fi20: E=28.5 MeV. Measured $\sigma(\theta)$. DWBA calculations.
- 1971Po03: E=9.5, 11 MeV. Measured proton spectrum FWHM≈150 keV. DWBA calculations.
- 1966Cu01: E=9, 10 MeV. Measured $\sigma(\theta)$. FWHM≈25 keV. DWBA calculations.
- 1963La04: E=20 MeV or less. Measured $\sigma(\theta)$ for selected groups. A total of 14 groups reported.
- 1961Ma03: E=21 MeV. Measured $Q(\beta^-)$ value.

Relative	total c	cross	sections	(1987Fr 0 9)
Level	cross	sect	tion	
1811	3.9	5		
1829	9.6	11		
1963	4.5	5		
2094	3.6	5		
2106	5.4	8		
2141	4.9	6		
2243	5.9	6		
2289	4.1	5		
2335	4.0	5		
2382	3.1	4		
2459	6.5	7		
2551	6.7	7		
2580	4.4	5		
2669	2.9	4		
2762	5.6	7		

⁴³Sc Levels

E(level) ‡ $J^{\pi \dagger}$ L^d σ (DWBA)/ σ (exp) c Comments	
0 7/2 3 0.258	
151 ^b 2	
473^{a} 2 $3/2^{-}$ 1 0.358 S-factor=0.267, 0.280 (relative to 1 for g.s.) (1985Ba77).	

Continued on next page (footnotes at end of table)

$^{40}{\rm Ca}(\alpha,{\rm p})$ 1981Sm03,1970Gi10,1967Sc08 (continued)

E(level)‡	$J^{\pi \dagger}$	$L^{\underline{d}}$	σ (DWBA)/ σ (exp) ^C	Comments
844 ^a 2 855 ^{&} 882 ^b 2 1156 ^a 2	5/2-		0.265	
1178 ^a 2	3/2-	1		S-factor=1.22, 1.28 (relative to 1 for g.s.) (1985Ba77), 1.39 (1981Sm03).
1335 ^b 2 1418 ^a 2 1646 ^b 2	7/2-	3	0.024	
1810 ^a 2			0.394	J^{π} : 1981Sm03 assign 1/2 ⁻ , but adopted J_{π} =3/2 ⁻ . Also $\sigma(\theta)$ fitted well to 3/2 ⁻ by 1979Th03.
1827 ^a 2 1877 ^b 2 1912 [#] 6 1928 ^a 2 1963 [@] 2094 [@] 2106 [@] 2141 [@] 2243 [@]	11/2-	5	0.168	
2243 ° 2289 ° 2335 ° 2382 ° 2459 ° 2551 ° 2580 ° 25	5/2-	3		
2634 2669 [@] 2762 [@] 2810 ^{&} 2839 ^{&}	(9/2 ⁻)		0.110	J^{π} : adopted $J_{\pi}=(9/2,11/2)^{-}$.
2987 3123 3141& 3250? 3289& 3450? 3485& 3677& 3807&	15/2 ⁻ (19/2 ⁻)	7 ^e 9 ^e	0.379 1.0	J^{π} : 1970Gi10 fit a 2980 group to J=1/2.
3807& 3850? 3955& 3990& 4157& 4370 4630 4940 5230				E(level): from 1963La04 only.

40 Ca(lpha,p) 1981Sm03,1970Gi10,1967Sc08 (continued)

⁴³Sc Levels (continued)

E(level)‡

5340

5690

6080

- [†] From comparison of $\sigma(\theta)$ data with cluster transfer DWBA calculations (1981Sm03, 1970Gi10).
- [‡] From 1981Sm03 up to 3200 and from 1970Gi10 above 3200, unless otherwise stated.
- # From 1966Cu01.
- [@] From 1987Fr09. & From 1970Ba51, protons detected in coin with γ -rays.
- ^a From 1967Sc08.
- ^b Weighted average of 1966Cu01 and 1967Sc08.
- ^c From 1981Sm03, normalized to 1.0 for 3123, (19/2⁻) state.
- d From 1970Gi10, unless otherwise indicated.
- ^e From 1983HaZJ.

40 Ca(α,pγ) 1987Fr09,1972Ba04,1971Po03

1987Fr09: E=12 MeV α beam was produced from the 6 MV Van de Graaff accelerator of the NAC at Faure. Target of natural CaO on a thin carbon backing. γ -rays were detected by Ge(Li) detectors and protons were detected at forward angles by two surface barrier detectors. Measured E γ , I γ , p γ -coin. Deduced levels, γ -branching ratios, mixing ratios, T_{1/2} by DSAM.

1972Ba04, 1970Ba51: E=7-12 MeV (1972Ba04), E=11.8-15.5 MeV (1970Ba51) α beam was produced from the Chalk River MP Tandem accelerator. Targets of 400 μ g/cm² natural Ca on thick gold backings. γ -rays were detected in a 44 cm³ Ge(Li) detector inside a split annular NaI(Tl) detector and protons were detected by an annular surface barrier detector. Measured E γ , I γ , p γ (θ), p γ -coin. Deduced levels, J, π , mixing ratios, γ -branching ratios, T_{1/2} by DSAM.

1971Po03: E=9.5 MeV and 11.0 MeV α beam was produced from the Utrecht 2×6-MV tandem Van de Graaff, current of up to 0.25 μ A. Target of natural CaCO₃ on a thick carbon backing. γ -rays were detected in a 36-cc Ge(Li) detector and protons by two silicon surface barrier detectors. Measured E γ , p γ -coin. Deduced levels, T_{1/2} by DSAM.

Others:

1987Ar18: E=20 MeV. Isomer production and decay.

1980ShZN: measured E γ , I γ , p γ coin, $\gamma(\theta)$, $\gamma(\text{lin pol})$, lifetimes by DSAM.: details of this work are not available.

1978Ha07: E=21 MeV. Measured g factor and lifetime of $19/2^-$ state by $\gamma(\theta,H,t)$ (TDPAD method).

1977Mi10: E=20 MeV. Measured g factor of 152 level by $\gamma(\theta,H,t)$.

1974Br04 (also 1974BrYR): E=14.0 MeV. Measured lifetime of 2987 level by recoil-distance method.

1973Sa10: E=12.2, 13.2, 14.2 MeV. Measured E γ , $\gamma\gamma$, lifetimes by Doppler-shift method.

1971Na10: E=19 MeV. Measured lifetime and g factor of $19/2^-$ level by $\alpha\gamma(\theta,H,t)$.

1971Ba92: E=10.6 MeV. Measured lifetime of four levels by recoil-distance method:

1970Sa24: E=10-26 MeV. Measured decay mode and lifetime of 19/2 level.

1970Fo06: E=7-12 MeV. Measured E γ , $\gamma(\theta)$, lifetimes of four levels by Doppler-shift attenuation method.

1968Me14: E=10 MeV. Measured lifetime of 472 level by $p\gamma(t)$.

1967Ph01: E=9.00, 9.35 MeV. Measured E γ , $\gamma(\theta)$.

1967Cr08: E=9.5 MeV. Measured lifetime of 472 level by RDM.

1967Sc08: E=12 MeV. Measured E γ , I γ , p γ -coin. Deduced levels.

1966WaZW: measured ce, deduced $\alpha(K)$ (expt) and K/L ratios for 152 γ and 472 γ .

1965De15: E=22 MeV. Measured lifetime of 150-keV isomer.

1964Ho14: E=8 MeV. Also 43 Ca(p,n γ) E=6 MeV. Measured lifetime of the 150-keV isomer.

1964Sa26: measured E γ , $\gamma\gamma$, deduced resonances.

⁴³Sc Levels

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	Comments
0.0	7/2-		
151.6 <i>3</i>	3/2+	438 μs 7	g=+0.232 4 (1977Mi10)
		•	$T_{1/2}$: 470 μ s 20 (1965De15), 435 μ s 7 (1964Ho14).
471.9 2	3/2-	158 ps <i>13</i>	T _{1/2} : 152 ps 21 (RDM,1971Ba92), 360 ps 104 (RDM,1967Cr08), 157 ps 13 (1968Me14), >7.6 ps (1971Po03).
843.9 <i>3</i>	5/2-	0.17 ps 6	$T_{1/2}$: 166 fs 35 (1971Po03), 0.31 ps 6 (1972Ba04), 76 fs +69-42 (1987Fr09).
853.4 9	1/2+	22 ps <i>3</i>	$T_{1/2}$: from 1971Ba92 by RDM. Others: >0.43 ps (1971Po03), >4.2 ps (1972Ba04).
879.9 <i>4</i>	5/2+	4.2 ps 10	$T_{1/2}$: from 1971Ba92 by RDM. Others: 4.0 ps +18-10 (DSAM,1970Fo06, 1972Ba04),
			0.56 ps +19-13 (1971Po03), >1.73 ps (1987Fr09).
1158.0 <i>5</i>	3/2+	4.4 ps 10	$T_{1/2}$: from 1971Ba92 by RDM. Others: 2.1 ps +25-8 (1971Po03); 236 fs +388-125
			(1987Fr09), 3.5 ps $+14-8$ $(1972Ba04)$.
1177.0 8	$3/2^{-}$	0.49 ps <i>14</i>	$T_{1/2}$: 0.34 ps +16-11 (1971Po03), 0.59 ps 10 (1972Ba04).
1336.8 2	7/2+	0.83 ps <i>35</i>	$T_{1/2}$: 1.39 ps 28 (DSAM,1970Fo06,1972Ba04), 0.58 ps +24-14 (1971Po03).
1406.1 <i>3</i>	$7/2^{-}$	0.19 ps 6	T _{1/2} : 166 fs 31 (1971Po03); 0.27 ps 4 (1972Ba04), 159 fs +118-55 (1987Fr09).
1650.3 6	5/2 ⁺	0.17 ps <i>3</i>	T _{1/2} : 204 fs +87-65 (1971Po03), 0.159 ps 35 (1972Ba04).
1810.7 8	$3/2^{-}$	<55 fs	$T_{1/2}$: from 1972Ba04.
1829.3 <i>3</i>	$11/2^{-}$	0.20 ps 3	$T_{1/2}$: 80 fs +104-74; 211 fs 44 (1971Po03); 0.26 ps 4 (1972Ba04), 132 fs +69-42
			(1987Fr09).
1882.3 5	$(5/2,9/2)^{-}$	35 fs 17	$T_{1/2}$: <21 fs; 57 fs +42-36 (1971Po03); 0.055 ps 21 (1972Ba04), 17 fs 14 (1987Fr09).
			J^{π} : 7/2 choice does not seem allowed from p $\gamma(\theta)$ (1970Ba51).

E(level) [†]	$J^{\pi \ddagger}$	${{ m T}_{1/2}}^{\#}$	Comments
1930.6 5	9/2+	2.4 ps 6	$T_{1/2}$: from DSAM (1970Fo06,1972Ba04). Others: 0.83 ps $+\infty$ -50; 1.0 ps $+27$ -4 (1971Po03); >1.39 ps (1987Fr09).
1962.5 5	(3/2,5/2)	<83 fs	$T_{1/2}$: from 1987Fr09, 1972Ba04. J^{π} : 5/2 is preferred in py(θ) (1970Ba51).
2093.9 12	3/2-	0.33 ps 9	$T_{1/2}$: 0.34 ps +15-10 (1971Po03), 0.32 ps 9 (1972Ba04).
2105.7 5	(3/2,5/2)	0.21 ps 7	$T_{1/2}$: 121 fs +69-42 (1987Fr09), 0.28 ps 6 (1972Ba04).
2141.2 6	$(3/2^-,5/2^+)$	0.21 ps 4	T _{1/2} : 0.19 ps +11-9 (1971Po03); 0.24 ps 10 (1972Ba04), 159 fs +395-111 (1987Fr09).
2242.6 <i>4</i>	$(3/2,5/2,7/2)^{-}$	0.19 ps 9	$T_{1/2}$: 0.30 ps 11 (1972Ba04), 194 fs +118-63 (1987Fr09).
2288.8 <i>4</i>	5/2-	<21 fs	$T_{1/2}$: from 1972Ba04. Other: <2.1 fs (1987Fr09).
2335.4 4	5/2-	28 fs 14	$T_{1/2}$: from 1987Fr09. Other: <0.042 ps (1972Ba04).
2382.1 11	$3/2^{(+)}$	>0.31 ps	$T_{1/2}$: from 1987Fr09.
2458.6 5	$(5/2 \text{ to } 9/2)^-$	38 fs <i>14</i>	$T_{1/2}$: from 1987Fr09. Other: <0.042 ps (1972Ba04).
2550.7 6	11/2+	0.51 ps 7	$T_{1/2}$: from DSAM (1970Fo06,1972Ba04). Other: 270 fs +242-111 (1987Fr09).
2579.9 <i>4</i>	(5/2)	0.19 ps +19-9	$T_{1/2}$: from 1987Fr09.
2635.5 7	9/2-,11/2-	0.21 ps 7	$T_{1/2}$: from 1972Ba04. Other: 520 fs +1143-243 (1987Fr09).
2650.5 16			
2669 2	3/2-		
2762.2 <i>4</i>	$(5/2 \text{ to } 9/2)^-$	<28 fs	$T_{1/2}$: from 1987Fr09. Other: <0.042 ps (1972Ba04).
2795.2 5		0.28 ps +21-10	$T_{1/2}$: from 1987Fr09.
2810.7 8	(5/2,7/2,9/2)	<62 fs	$T_{1/2}$: from 1987Fr09. Other: <0.083 ps (1972Ba04).
2840.0 5	$(5/2,7/2)^+$		
2846	(1 /2 2 /2 7 /2) +		
2862.7 18	$(1/2,3/2,5/2)^+$	60 C 20	T (1070D 04 O4 07 (150 72 (1007D 00)
2984.1 8	(3/2,5/2)	62 fs 28	$T_{1/2}$: from 1972Ba04. Other: 97 fs +159-73 (1987Fr09).
2987.6 <i>4</i> 3123.2 <i>3</i>	15/2 ⁻ 19/2 ⁻	5.6 ps 7 473 ns 5	T _{1/2} : from 1974Br04, other: >0.55 ps (1987Fr09). g=+0.3286 7 (1978Ha07)
3123.2 3	19/2	4/3 118 3	$T_{1/2}$: from 1978Ha07. Others: 450 ns 14 (1971Na10), 0.5 μ s 1 (1970Sa24).
			g: other: +0.331 2 (1971Na10).
3139.9 7	13/2+	>0.55 ps	T _{1/2} : from 1987Fr09.
3158.8 <i>13</i>	$(3/2^-,5/2,7/2^+)$	<0.42 ps	T _{1/2} : from 1987Fr09.
3197.6 18	(0,2 ,0,2,1,2)	<0.28 ps	$T_{1/2}$: from 1987Fr09.
3264.0 <i>6</i>	$(7/2,9/2)^-$	42 fs +28-21	$T_{1/2}$: from 1987Fr09.
3293.7 6	7/2-	>55 fs	$T_{1/2}$: from 1987Fr09.
3334 <i>1</i>	,	0.13 ps +12-7	$T_{1/2}$: from 1987Fr09.
3375.2 5	$(7/2,9/2)^{-}$	<62 fs	$T_{1/2}$: from 1987Fr09.
3451.2 9	5/2+	<2.1 fs	$T_{1/2}$: from 1987Fr09.
3463.3 <i>14</i>	5/2-		
4157			E(level): from 1970Ba51 only.

[†] From 1987Fr09. ‡ From Adopted Levels.

[#] Weighted averages of values given in comments, unless otherwise stated.

40 Ca(α ,p γ)	1987Fr09,1972Ba04,1971Po03 (continued)

γ (43Sc)

								-
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} §	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&	δ&	$\alpha^{@}$	Comments
151.6	3/2+	151.6	100	0.0 7/2-	M2		0.0406	Mult.: from $\alpha(K)(\exp t) = 0.031 \ 2$, $K/L(\exp t) = 9.0 \ 7 \ (1966WaZW)$.
471.9	$3/2^{-}$	320.3	4 2	151.6 3/2 ⁺				
		471.9	96	0.0 7/2	E2			Mult.: from α (K)(expt)=7.7×10 ⁻⁴ 19 (1966WaZW). A ₂ =+0.075 34 (1967Ph01).
843.9	5/2-	692.3	<4	151.6 3/2+				2
		843.9	100	0.0 7/2	M1+E2	+0.11 2		δ: average of +0.09 2 (1987Fr09), +0.12 3 (1970Ba51). Other: 0.13 (1967Ph01).
								$A_2 = -0.30 \ 3 \ (1967Ph01).$
853.4	$1/2^{+}$	381.5	30 6	471.9 3/2-				$I\gamma(383)/I\gamma(703)=25/75 (1987Fr09).$
		701.8	70 6	151.6 3/2+				
879.9	5/2+	728.3	100	151.6 3/2 ⁺	M1+E2	-0.61 24		δ: from 1970Ba51. Others: -1.18 7 (1987Fr09), 0.16 (1967Ph01). A ₂ =-0.703 14, -0.44 3 (1967Ph01).
		879.9	2 1	$0.0 \ 7/2^{-}$				
1158.0	$3/2^{+}$	278.1	19 4	879.9 5/2+				$I\gamma(278)/I\gamma(1006)=17/55$ (1987Fr09).
		304.6	33 5	853.4 1/2+				$I\gamma(303)/I\gamma(1006)=28/55$ (1987Fr09).
		314.1	<3	843.9 5/2				
		1006.4	48 6	151.6 3/2+	M1+E2	-1.3 +6- <i>1</i> 5		δ: from 1970Ba51. Others: -0.51 5 or -4.5 +12-25 (1987Fr09), 0.85 or 2.2 (1967Ph01). A ₂ =-0.51 6 (1967Ph01).
1177.0	$3/2^{-}$	333.1	19 6	843.9 5/2-				$I_{\gamma}(334)/I_{\gamma}(707)=8/68 (1987Fr09).$
1177.0	3/2	705.1	68 4	471.9 3/2	M1+E2	-0.18 <i>13</i>		δ : -0.18 13 or <-22 or $>+4.9$ (1970Ba51).
		1177.0	13 4	0.0 7/2	1111122	0.10 15		$I_{\gamma}(1179)/I_{\gamma}(707)=19/73$ (1987Fr09).
1336.8	$7/2^{+}$	456.9	19 3	879.9 5/2 ⁺	M1+E2	-0.234		$I_{\gamma}(457)/I_{\gamma}(1185)=23/64 \ (1987Fr09).$
	- /			,				δ: from 1970Fo06. Others: -0.28 10 or -1.20 18 (1970Ba51).
		1185.2	61 <i>3</i>	151.6 3/2+	E2			δ : +0.02 3 (1987Fr09) for 7/2 to 3/2.
								$A_2 = +0.48 6$, $A_4 = -0.27 7$ (1967Ph01).
		1336.8	20 <i>3</i>	$0.0 \ 7/2^{-}$	E1+M2	-0.10 8		$I\gamma(1337)/I\gamma(1185)=13/64$ (1987Fr09).
								δ: from 1970Ba51. Others: -0.03 7 (1987Fr09), $+1.8$ +7-5 (1970Ba51).
1406.1	$7/2^{-}$	562.2	10 2	843.9 5/2-				$I\gamma(563)/I\gamma(1406)=10/82$ (1987Fr09).
		934.2	3 1	471.9 3/2-				$I\gamma(936)/I\gamma(1406)=9/82 (1987Fr09).$
		1406.1	90 2	0.0 7/2	M1+E2	+0.15 5		δ: from 1970Ba51. Others: -0.16 5 (1987Fr09), 0.02 (1967Ph01). A ₂ =+0.50 4 (1967Ph01).
1650.3	5/2+	492.3	22 3	1158.0 3/2+				$I\gamma(492)/I\gamma(1499)=21/58$ (1987Fr09). $I\gamma=12$ (1967Ph01).
	- /	770.4	7	879.9 5/2+				$I_{\gamma}(771)/I_{\gamma}(1499)=7/58 \ (1987Fr09).$
		796.9	4 2	853.4 1/2+				
		1178.4		471.9 3/2-				E_{γ} , I_{γ} : unresolved from 1179 γ from 1179 level. I_{γ} =12 (1967Ph01).
		1498.7	57 <i>5</i>	151.6 3/2+	M1(+E2)	0.06		δ: from 1967Ph01.
								$A_2 = +0.55 \ 4 \ (1967Ph01).$
		1650.3	17 <i>3</i>	0.0 7/2-				δ: 0.0 (1967Ph01).
								$I\gamma(1651)/I\gamma(1499)=14/58 \ (1987Fr09).$
								A ₂ =+0.19 5 (1967Ph01).
1810.7	$3/2^{-}$	633.7	55 <i>4</i>	1177.0 3/2	M1+E2	-0.227		δ: from 1970Ba51. Other: >+8 or <-19 (1970Ba51).

γ (43Sc) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} §	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&	δ&	Comments
1810.7	3/2-	1338.8	45 <i>4</i>	471.9 3/2-	M1+E2	-0.22 7	$δ$: from 1970Ba51. Other: >+8 or <-19 (1970Ba51). $I_γ(1339)/I_γ(632)=43/42$ (1987Fr09).
		1659.1	16	151.6 3/2+			
		1810 ^{‡#}		$0.0 \ 7/2^{-}$			
1829.3	11/2-	949‡#		879.9 5/2+			E_{γ} ,Mult.: this γ is suspect since implied E3 multipolarity is inconsistent with RUL.
		1677 ^{‡#}		151.6 3/2+			E_{γ} ,Mult.: this γ is suspect since implied M4 multipolarity is inconsistent with RUL.
		1830.1 5	100	$0.0 \ 7/2^{-}$			E_{γ} : from 1970Sa24.
1882.3	$(5/2,9/2)^{-}$	1038.4 [#]	<5	843.9 5/2-			
		1730 ^{‡#}		151.6 3/2 ⁺			
		1882.3	100	0.0 7/2	M1+E2		δ: -0.19 2 for 9/2 to 7/2, +0.42 3 or +4.1 5 for 5/2 to 7/2 (1970Ba51); -0.22 3 or -1.37 6 for 9/2 to 7/2 (1987Fr09).
1930.6	9/2+	593.8	31 <i>3</i>	1336.8 7/2+	M1+E2	-0.21 4	$I\gamma(595)/I\gamma(1051)=25/75$ (1987Fr09).
		1050.7	69 <i>3</i>	879.9 5/2+	E2		δ: weighted average of -0.14 <i>6</i> (1970Ba51), -0.24 <i>4</i> (1970Fo06). δ: -0.02 2 (1987Fr09) for 9/2 to 5/2.
		1030.7 1779 ^{‡#}	09.3	151.6 3/2+	E2		E _{γ} ,Mult.: this γ is suspect since implied M3 multipolarity is inconsistent
	(2/2 7/2)		•				E_{γ} , Mult.: this γ is suspect since implied with multipolarity is inconsistent with RUL.
1962.5	$(3/2,5/2)^-$	785.5	20	1177.0 3/2	M1 - E2	.0.21.6	S. francis 1070D=51 O45-m > 10 are 4 17 (1070D=51)
2093.9	3/2-	1490.6 916.9	80 58 <i>7</i>	471.9 3/2 ⁻ 1177.0 3/2 ⁻	M1+E2	+0.21 6	δ : from 1970Ba51. Other: >+9 or <-17 (1970Ba51).
2073.7	5/2	1250.0 [#]	77	843.9 5/2			
		1622.0	31	471.9 3/2			
		1942.3	35 6	151.6 3/2+			$I\gamma(1942)/I\gamma(915)=16/52$ (1987Fr09).
2105.7	(3/2,5/2)	455.4 [#]	10 5	1650.3 5/2 ⁺			
		947.7	32 5	1158.0 3/2+			$I\gamma(948)/I\gamma(1226)=19/73$ (1987Fr09).
		1225.8	58 6	879.9 5/2 ⁺			
		1954.1 [#]	6	151.6 3/2+			
2141.2	$(3/2^-,5/2^+)$	983.2	21	1158.0 3/2+			
		1261.3 1669.3	55 <i>5</i> 19 <i>3</i>	879.9 5/2 ⁺ 471.9 3/2 ⁻			
		1989.6	16 3	151.6 3/2+			$I_{\gamma}(1990)/I_{\gamma}(1261)=26/53$ (1987Fr09).
		2141.1	10 4	0.0 7/2			
2242.6	$(3/2,5/2,7/2)^{-}$	1398.7	25	843.9 5/2-			
		1770.7	57	471.9 3/2			δ : +0.58 13 for 5/2 to 3/2, +0.14 8 or +2.5 +6-4 for 3/2 to 3/2 (1970Ba51)
2200.0	5/2 ⁻	2242.5	18	0.0 7/2	M1 , E2	.0.00 5	C. f 1070D-51 Od 10.25 4 (1007E-00) 12 14 12 (1070D-51)
2288.8 2335.4	5/2 ⁻ 5/2 ⁻	2288.7 2335.3	100.0 <i>7</i> 100	0.0 7/2 ⁻ 0.0 7/2 ⁻	M1+E2 M1(+E2)	+0.08 5	δ: from 1970Ba51. Others: +0.35 4 (1987Fr09), -12 +4-12 (1970Ba51). δ: +0.12 3 for 5/2 to 7/2 (1987Fr09), +0.03 3 or -6.9 +21-14 for 5/2 to 7/2 and +0.07 2 or >+6 or <-29 for 9/2 to 7/2 (1970Ba51).
2382.1	3/2 ⁽⁺⁾	731.8	69	1650.3 5/2+			1/2 and 10.012 of 210 of \ 22101 //2 to 1/2 (1710 Data).

γ (43Sc) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} §	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	δ&	Comments
2382.1	3/2 ⁽⁺⁾	1528.7	31	853.4	1/2+	M1+E2	+0.49 7	δ: from 1987Fr09.
2458.6	(5/2 to 9/2) ⁻	2458.5	100		7/2-	M1(+E2)		δ : +0.15 7 or >+19 or <-11 for 5/2 to 7/2 and -0.02 5 for 9/2 to 7/2 (1970Ba51).
2550.7	11/2+	620.1	61 <i>4</i>	1930.6	9/2+			δ: -0.06 4 or -2.6 3 (1987Fr09) for 11/2 to 9/2; -0.20 7 for 11/2 to 9/2 (1970Fo06).
		1213.9	39 4	1336.8	7/2+			δ : 0.00 4 (1987Fr09) for 11/2 to 7/2. Iy(1215)/Iy(621)=46/54 (1987Fr09).
2579.9	(5/2)	1421.9	36	1158.0	$3/2^{+}$			
		1700.0	16	879.9	5/2+			
		2428.2	48	151.6				
2635.5	9/2-,11/2-	806.2	17	1829.3				
	, , -,-	1229.4	23	1406.1				
		2635.4	60		7/2-			δ : +0.15 15 for 7/2 to 7/2, +0.49 7 for 9/2 to 7/2 (1987Fr09); -0.42 14 or -1.5 +5-7 for 5/2 to 7/2, -0.15 9 or +2.0 +5-4 for 7/2 to 5/2 and +0.36 7 for 9/2 to 7/2 (1970Ba51).
2650.5		1806.6		843.9	5/2-			
2669	3/2-	1816	56	853.4	1/2+			
		2197.0	44	471.9				
2762.2	(5/2 to 9/2) ⁻	2762.1	100		7/2-			δ: +0.30 3 for 9/2 to 7/2 (1987Fr09); +0.16 3 for 9/2 to 7/2 and -0.09 5 or -3.8 5 for 5/2 to 7/2 (1970Ba51).
2795.2		1389.1	16	1406.1	$7/2^{-}$			
		1951.3	39	843.9				
		2795.1	45	0.0	7/2-			
2810.7	(5/2,7/2,9/2)	705.0	35 4		(3/2,5/2)			$I_{\gamma}(705)/I_{\gamma}(1474)=37/46$ (1987Fr09).
	(-1)-1)-1)	1473.9	46 5	1336.8				δ : +0.02 4 for 9/2 (1987Fr09).
		2810.6	19 5		7/2-			$I_{\gamma}(2811)/I_{\gamma}(1474)=17/46 (1987Fr09).$
2840.0	$(5/2,7/2)^+$	457.9	18	2382.1				
2070.0	(3/2, 1/2)	1503.2	44	1336.8				
		2839.9	38		7/2 ⁻			
2846		2839.9 2846	100		7/2 ⁻			
2862.7	$(1/2,3/2,5/2)^+$	1212.4	21	1650.3				
2002.7	(1/2,3/2,3/2)	1982.8	29	879.9				
		2711.0	50	151.6	-			
2984.1	(3/2,5/2)	1053.5 [#]		1930.6				$I\gamma(1052)/I\gamma(2104)=22\ 3/34\ 5\ (1970Ba51).$
		1647.3	27	1336.8				$I\gamma(1647)/I\gamma(2104)=35\ 5/34\ 5\ (1970Ba51).$
		2104.1	28	879.9				
		2140.1	13	843.9				
		2832.4	32	151.6	3/2+			I _{γ} : weak γ in 1970Ba51, but the most intense γ from this level in 1987Fr09. Iy(2833)/Iy(2104)=9 4/34 5 (1970Ba51).
2987.6	15/2-	1157.1 2	100	1829.3	11/2-			δ: +0.01 5 for 15/2 to 11/2 and +0.74 +17-14 for 11/2 to 11/2 (1987Fr09), +0.04 +110-21 for 11/2 to 11/2 (1970Ba51). E _γ : from 1970Sa24.

$\gamma(^{43}\text{Sc})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ} §	E_f	\mathbf{J}_f^{π}	Comments
3123.2	19/2-	135.8 2	100	2987.6	15/2-	E_{γ} : from 1970Sa24.
3139.9	13/2+	1209.3	100	1930.6	9/2+	δ : -0.48 12 or -1.4 4 for 7/2 to 9/2; -0.08 10 or +1.27 23 for 9/2 to 9/2 and +0.41 7 for 11/2 to 9/2 (1970Ba51). But the adopted Jπ for the 3140 level is 13/2+.
3158.8	$(3/2^-,5/2,7/2^+)$	2278.8	21	879.9	5/2+	
		3007.1	37	151.6	3/2+	
		3158.7	42	0.0	7/2-	
3197.6		2725.6	100	471.9	3/2-	
3264.0	$(7/2,9/2)^{-}$	1434.7	4	1829.3	$11/2^{-}$	
		3263.9	96	0.0	7/2-	
3293.7	$7/2^{-}$	1363.1	32	1930.6	9/2+	
		2116.6	26	1177.0	3/2-	
		2413.7	10	879.9	5/2+	
		2449.7	32	843.9	5/2-	
3334		2157	22	1177.0	3/2-	
		2490	21	843.9	5/2-	
		2862	26	471.9	3/2-	
		3334	31	0.0	7/2-	
3375.2	$(7/2,9/2)^-$	1492.9	16	1882.3	$(5/2,9/2)^{-}$	
		1545.9	19	1829.3	$11/2^{-}$	
		1969.1	30	1406.1		
		2038.3	12	1336.8	7/2+	
		3375.1	23		7/2-	
3451.2	5/2+	1640.5	73	1810.7		
		2571.2	27	879.9		
3463.3	5/2-	3311.6	100	151.6		
4157		1606	100	2550.7	$11/2^{+}$	

[†] Level-energy differences.

[‡] Reported only by 1967Sc08.

[§] Values quoted with uncertainties are from 1970Ba51 and/or 1972Ba04, others are from 1987Fr09.

[&]amp; From $\gamma(\theta)$ and RUL (for E2 and M2).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

40 Ca(α ,p γ) 1987Fr09,1972Ba04,1971Po03

Level Scheme

40 Ca(α,pγ) 1987Fr09,1972Ba04,1971Po03

Level Scheme (continued)

40 Ca(α ,p γ) 1987Fr09,1972Ba04,1971Po03

Level Scheme (continued)

40 Ca(α ,p γ) 1987Fr09,1972Ba04,1971Po03

Level Scheme (continued)

⁴⁰Ca(⁶Li,³He) **1974Li01**

1974Li01: E=34, 36 MeV 6 Li beam of 300-400 nA was produced from the University of Rochester MP Tandem accelerator. Targets of \approx 75 μ g/cm 2 40 Ca prepared by evaporating natural calcium onto thin carbon and gold backings. 3 He particles were detected in a spark counter mounted in the focal plane of a magnetic spectrograph, FWHM \approx 50 keV. Measured $\sigma(\theta)$. Deduced levels, J, π , L from DWBA analysis.

1986Pl01: E=156 MeV. Measured (fragment)(γ) coin following breakup, deduced projectile breakup cross section. All data are from 1974Li01.

⁴³Sc Levels

E(level)	J ^π @	L	$\Sigma (\sigma(\exp))/\Sigma (\sigma(DWBA))^{\#}$
0	7/2-	3	0.36
470 [‡] <i>30</i>	3/2-		
1180 <i>30</i>	3/2-	1	1.5
1410 [‡]	7/2-		
1810 [†] <i>30</i>	3/2-	1	0.67
1830 [†] <i>30</i>	$11/2^{-}$	(5)	0.38
2290 30	5/2-	3	0.85
2620 <i>30</i>	$9/2^-,11/2^-$	5	0.25
2990 <i>30</i>	$15/2^{-}$	7	0.16
3120 30	$(19/2)^{-}$	(9)	0.60

 $^{^{\}dagger}$ Unresolved doublet. Strength divided by analogy with $^{43}\mathrm{Ti}$ mirror states.

[‡] Weak peak in spectrum.

[#] Sum is over all measured angles.

[@] From Adopted Levels.

⁴²Ca(p,γ):resonances 1977Di17,1969Wa19

1977Di17: E=1.999-2.758 MeV proton beams were produced from the 4 and 3 MV Van de Graaff accelerators, at the Centre de Recherches Nucleaires, Strasbourg, France and at McMaster University respectively, for E>2 MeV; from the 3 MeV Van de Graaff accelerator at the Accelerator Laboratory at University of Helsinki, Finland, for E<2 MeV. Targets of enriched CaCO₃ on tungsten and gold backings. γ-rays were detected by Ge(Li) detectors. Measured γ yields. Deduced energies of resonances.

1969Wa19: E=1.201-2.063 proton beams were produced from the Aerospace Research Laboratories (ARL) 2 MeV Van de Graaff accelerator, FWHM=1 keV. Targets of enriched CaCO₃ on a 10-mil-thick Ag backing. γ-rays were detected by an 8-in-diam by 8-in-long NaI(Tl) detector. Measured γ yields. Deduced energies of resonances, relative resonance strengths.

Others:

1968So11: eight resonances in E(p)(lab)=1345-1424 keV region.

1965Br31, 1966Br21, 1964Br29: E=1013-1421.

⁴³Sc Levels

E(level) [†]	Jπ&	E(p)(LAB) @	Relative intensity#	Comments
5919 [‡]	3/2	1013		E(level): S(p)=4929.8 19 (2012Wa38). E(p)(LAB): from 1965Br31.
5950 [‡]	(3/2,5/2)	1044		E(p)(LAB): from 1977Di17. Absolute strength=0.67 (1977Di17).
6060 [‡]	(5/2)	1157		E(p)(LAB): from 1965Br31.
6103 [‡]	$(3/2^-, 5/2^+)$	1201	105	Absolute strength=0.68 (1977Di17).
6116		1214	7	
6127 6136 [‡]	3/2	1226 1234.8	13 109	Absolute strength -0.69 14 (1060Ws10)
6143‡	3/2 3/2 ⁻			Absolute strength=0.68 <i>14</i> (1969Wa19).
6146	3/2	1241.9 1245	148 27	Absolute strength=0.92 18 (1969Wa19).
6151		1250	74	
6174		1274	6	
6182 [‡]	5/2	1282	42	
6185		1285	91	
6190		1290	6	
6198‡	$(3/2,5/2^+)$	1298	121	Absolute strength=0.74 (1977Di17).
6200 6210		1300 1310	14 13	
6211		1312	91	
6217 [‡]	$(3/2^-,5/2^+)$	1318	91	Absolute strength=0.73 (1977Di17).
6228	(-1	1329	46	
6242		1343	7	
6247 [‡]	(3/2,5/2)	1348	116	
6253		1354	36	
6262 6280		1364 1382	13 59	
6286		1388	4	
6291		1393	34	
6297		1400	71	
6312		1415	10	
6315	5 /O.T	1418	22	AL 1 1 - 1 - 27 - 27 (10 COVV 10)
6320 [‡] 6348	5/2+	1422.8 1452	202 70	Absolute strength=1.37 27 (1969Wa19).
6355		1459	13	
6370		1474	20	
6374		1478	85	
6386		1491	3	
6391 6395		1496	13 85	
0393		1500	63	

${}^{42}\text{Ca}(\textbf{p,}\gamma) : \textbf{resonances} \qquad \textbf{1977Di17,1969Wa19} \; (\textbf{continued})$

E(level) [†]	Jπ&	E(p)(LAB)	Relative intensity#	Comments
6403		1509	53	
6410		1515	15	
6416		1521	50	
6426		1532	49	
6432		1538	61	
6439		1545	128	
6453		1559	22	
6461		1567	9	
6469		1576	56	
6479		1586	53	
6481		1588	53	
6493		1600	5	
6499		1606	92	
6503		1610	38	
6508		1616	34	
6515		1623	23	
6535		1643	100	
6547		1656	6	
6551		1660	49	
6558		1667	24	
6564		1673	41	
6571		1680	21	
6576		1685	58	
6584		1693	31	
6596		1706	75	
6604		1714	195	
6625		1735	99	
6631		1741	51	
6665		1776	63	
6674		1786	47	
6676		1788	64	
6680		1792	77	
6685 [‡]	1/2-	1797	95	
6694	1/2	1806	40	
6697 [‡]	5/2	1808.3	255	Absolute strength=2.2 4 (1969Wa19).
6709 [‡]	1/2-	1821	41	
6713	1/2	1825	16	
6716		1829	48	
6719		1832	127	
6730		1843	57	
6736		1850	142	
6749		1862	33	
6759		1873	111	
6777 [‡]	5/2	1891	163	Absolute strength=1.47 29 (1969Wa19).
6786	3/2	1900	63	Absolute strength=1.47 29 (1909 wa19).
6794		1908	148	
6801		1916	135	
6814		1916	177	
6830		1945	185	
6834		1949	47	
6846		1962	183	
6856		1972	113	
6861		1972	107	
6871		1987	34	
00/1		1701	JT	

${}^{42}\text{Ca}(\textbf{p,}\gamma) : \textbf{resonances} \qquad \textbf{1977Di17,1969Wa19} \; (\textbf{continued})$

E(level) [†]	Jπ&	E(p)(LAB)@	Relative intensity#	Comments
6877		1993		
			183	
6881		1997	52	
6889		2006	4	
6901		2018	37	
6906		2023	37	
6913		2030	221	
6920 [‡]	7/2	2036.6	301	Absolute strength=3.0 6 (1969Wa19).
6925		2042	30	
6934		2052	110	
6942		2060	190	
6946		2064	87	
6961		2079		
6967		2086		
6971		2090		
6979		2098		
6984		2103		
6991		2110		
6996		2115		
6999		2119		
7004		2123		
7015		2135		
7022		2142		
7025		2145		
7033		2153		
7042		2162		
7051		2171		
7058		2179		
7063		2184		
7072		2193		
7080		2201		
7091		2212		
7095		2217		
7099		2221		
7108		2230		
7118		2240		
7127		2249		
7135		2257		
7141		2264		
7146		2269		
7154		2277		
7159		2282		
7171		2294		
7174		2297		
7177		2300		
7180		2304		
7183		2307		
7198		2322		
7212 7214		2336		
7214		2339 2348		
7223				
7228 7240		2353		
7240 7250		2365 2375		
7250 7263				
7263 7269		2389 2395		
1209		4373		

42 Ca(p, γ):resonances 1977Di17,1969Wa19 (continued)

E(level) [†]	Jπ&	E(p)(LAB)	Comments
7275		2401	
7280		2406	
7285		2411	
7288		2414	
7295		2421	
7302		2428	
7305		2432	
7313		2440	
7344 [‡]	$(3/2^-,5/2)$	2471	Absolute strength=3.59 (1977Di17).
7349	(-1- ,-1-)	2477	
7354		2482	
7366		2494	
7373		2501	
7382		2510	
7388		2517	
7394 [‡]	$(3/2^-,5/2^+)$	2523	Absolute strength=2.28 (1977Di17).
7402	(5/2 ,5/2)	2531	Trosorde stronger 2.20 (1)//21//)
7411		2540	
7414		2543	
7418		2547	
7423		2552	
7429		2559	
7433		2563	
7443		2573	
7450		2580	
7466		2596	
7471		2602	
7480		2611	
7483		2614	
7491		2622	
7498		2629	
7501		2632	
7512 [‡]	$(5/2^+,7/2,9/2^-)$	2643	Absolute strength=4.20 (1977Di17).
7513		2645	
7518		2650	
7522		2654	
7531 7536		2663	
7536		2668	
7544 7551		2676	
7551 7559		2683	
		2692	
7564	(2)2- 5/2 5/2+	2697	Al. 1. (1.000 (1077D)17)
7581 [‡]	$(3/2^-, 5/2, 7/2^+)$	2714	Absolute strength=2.93 (1977Di17).
7592		2725	
7600 7602		2734	
7603 7607		2737 2741	
7607 7611		2745	
7618		2752	
7624		2758	
1024		2130	

[†] From $E_{c.m.}+S(p)$ where S(p)=4929.8 19 from 2012Wa38 and $E_{c.m.}$ deduced from $E_p(lab)$ from 1969Wa19 and 1977Di17. † Detailed primary and secondary γ -ray data from this resonance is available. See $^{42}Ca(p,\gamma)$ E=res dataset.

[#] From 1969Wa19.

⁴²Ca(p,γ):resonances **1977Di17,1969Wa19** (continued)

[®] Proton energies are from 1969Wa19 from 1201 to ≈2000 and from 1977Di17 above 2 MeV. 2 keV uncertainty for energies from 1969Wa19. Uncertainty in proton energies given by 1977Di17 is estimated (by the evaluators) to be about 1 keV, whereas the uncertainty in excitation energies is 2 keV, essentially due to $\Delta S(p)$.

[&]amp; From Adopted Levels.

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31

Gamma decay of resonances in ⁴³Sc.

1977Di17: E=2.00-2.75 MeV proton beams were produced from the 4 and 3 MV Van de Graaff accelerators, at the Centre de Recherches Nucleaires, Strasbourg, France and at McMaster University respectively, for E>2 MeV; from the 3 MeV Van de Graaff accelerator at the Accelerator Laboratory at University of Helsinki, Finland, for E<2 MeV. Targets of enriched CaCO₃ on tungsten and gold backings. γ -rays were detected by Ge(Li) detectors. Measured E γ , I γ , $\gamma(\theta)$. Deduced levels, J, π , γ -branchings ratios.

1969Wa19, 1970Ma13 (also 1974Ma39,1971Po03): E=1.1-2.1 MeV, E=11, 9.5 MeV in 1971Po03 and E=1.796 MeV and 1.822 MeV in 1974Ma39. proton beams were produced from the Aerospace Research Laboratories (ARL) 2 MeV Van de Graaff accelerator, FWHM=1 keV. Targets of enriched CaCO₃ on a 10-mil-thick Ag backing. γ-rays were detected by Ge(Li) detectors. Measured Eγ, Iγ, γ(θ), γ(lin pol), γγ, γγ(θ). Deduced levels, J, π, γ-branchings, mixing ratios, T_{1/2} by DSAM. 1970Ma13 report γ-ray data from five resonances at E(p)=1235, 1242, 1423, 1808 and 2037 keV. Lifetime data by Doppler-shift method reported by 1971Po03.

1965Br31 (also 1966Br21,1964Br29,1963Du11): E=1.013-1.421 MeV resonances. Proton beams were produced from the Van de Graaff generator at the Chalmers University of Technology. Target of enriched 42 Ca foil on carbon backing. γ -rays were detected by NaI(Tl) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, γ -branchings.

Others:

1982Mi06: E=0.63-3.01 MeV. Measured yields.

1979Ch29, 1978Vl02: E=0.66-5.39 MeV. Measured cross sections.

1971Ga40: E=1.424 MeV. Measured E γ , I γ , $\gamma(\theta)$.

1968So11: measured cross sections for eight resonances.

⁴³Sc Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	7/2-		
151.9 5	3/2 ⁺		
472.3 4	3/2 ⁻	0.146 . 7 . 11	T 0.16 .0.5 (1071D 02)
845.0 5	5/2 ⁻ 1/2 ⁺	0.146 ps +7-11	$T_{1/2}$: or 0.16 ps +9-5 (1971Po03).
855.3 <i>4</i> 880.5 <i>4</i>	5/2 ⁺		
1158.3 4	3/2+		
1179.0 5	$\frac{3/2}{3/2^{-}}$	0.23 ps +9-6	
1336.3 5	7/2 ⁺	0.23 ps +9-0	
1408 <i>I</i>	7/2-		
1651.2 6	5/2 ⁺	0.25 ps +7-6	
1810.3 7	3/2-	16 fs 6	$T_{1/2}$: or 14 fs +12-9 (1971Po03).
1884.6 6	$(5/2,9/2)^{-}$		1/2
1931.2 6	9/2+		
1962.5 5	$(3/2,5/2)^{-}$	71 fs <i>11</i>	$T_{1/2}$: or 67 fs +24–18 (1971Po03).
2094.3 <i>3</i>	3/2-	0.23 ps +14-7	-1-
2106.4 7	(3/2,5/2)		
2114.3 9			
2141.9 <i>13</i>	$(3/2,5/2^+)$	0.17 ps +6-4	J^{π} : (7/2) from $\gamma\gamma(\theta)$ (1970Ma13), but γ to 1/2 ⁺ excludes 7/2.
2200?			E(level): from 1965Br31 only.
2289.3 8	5/2-		
2335.8 9	5/2-		
2382.9 5	3/2 ⁽⁺⁾		
2552.0 <i>15</i>	11/2+		
2580.4 8	(5/2)	100 fs +35-24	J^{π} : primary transitions from 7/2 and 3/2 resonances.
2670.3 6	3/2-		
2796 2			
2811.2 10	(5/2 7/2)+		
2840.5 <i>15</i> 2846.2 <i>15</i>	$(5/2,7/2)^+$		
2859.7 16			
2875 2	$(5/2)^+$		
2013 2	(3/2)		

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31 (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	Comments
2986.7 <i>12</i> 3160 <i>2</i>	(3/2,5/2)	53 fs <i>11</i>	
3261 2 3290.2 16 3327 2 3331.4 17	(7/2,9/2) ⁻ 7/2 ⁻	<3.5 fs	
3374 2 3451.7 10 3463 2 3503 2 3645.4 18 3683 2 3733.8 18 3757 2	(7/2,9/2) ⁻ 5/2 ⁺ 5/2 ⁻ 7/2 ⁻	7 fs +7-6	
3807 <i>1</i> 3843 <i>2</i>	7/2-	<3.5 fs	
3860 2 4007 2 4038 2 4272	(3/2,5/2) ⁺ 7/2 ⁻		E(level): from 1969Wa19.
4371 2 4430 2	5/2-,7/2-		J^{π} : $7/2^+$ preferred in $p\gamma(\theta)$.
4454.7 5919 5950 6060 6103 6136	(5/2 to 9/2) 3/2 (3/2,5/2) (5/2) (3/2 ⁻ ,5/2 ⁺) 3/2 3/2 ⁻	<3.5 fs	E(level): E(p)(lab)=1013. E(level): E(p)(lab)=1045. E(level): E(p)(lab)=1157. E(level): E(p)(lab)=1201. E(level): E(p)(lab)=1234.8. J ^{\pi} : from 1970Ma13. E(level): E(p)(lab)=1241.9. J ^{\pi} : from 1970Ma13.
6182 6198	5/2 (3/2,5/2 ⁺)		E(level): E(p)(lab)=1282. E(level): E(p)(lab)=1298.
6217 6247	$(3/2^-, 5/2^+)$ (3/2, 5/2)		E(level): $E(p)(lab)=1318$. E(level): $E(p)(lab)=1348$.
6320 6685	5/2 ⁺ 1/2 ⁻		E(level): E(p)(lab)=1422.8. E(level): E(p)(lab)=1797. J ^π : from 1974Ma39. 14% γ branching proceeds through unidentified transitions.
6696 6709	5/2 1/2 ⁻		E(level): E(p)(lab)=1808.3. E(level): E(p)(lab)=1821. Very weak resonance (1974Ma39).
6777 6919	5/2 ⁺ 7/2		J^{π} : from 1974Ma39. E(level): E(p)(lab)=1891. E(level): E(p)(lab)=2036.6. J^{π} : from 1970Ma13.
7344 7394 7512	(3/2 ⁻ ,5/2) (3/2 ⁻ ,5/2 ⁺) (7/2 ⁺)		E(level): E(p)(lab)=2471. E(level): E(p)(lab)=2523. E(level): E(p)(lab)=2643. J^{π} : from Adopted Levels. 9/2+ proposed only by 1977Di17, but γ to 3/2+ rules out
7581	(3/2 ⁻ ,5/2,7/2 ⁺)		this assignment. E(level): E(p)(lab)=2714.

 $^{^{\}dagger}$ Average of values from 1977Di17, 1969Wa19 and 1965Br31. Above 4454, excitation energies for proton resonances are obtained from S(p)+E(p)(c.m.), where S(p)=4929.8 *19* (2012Wa38). Values of E(p)(lab) are given under comments.

 $^{^{\}ddagger}$ From Adopted Levels up to 5919 keV. For resonances, J π assignments are from 1977Di17, unless otherwise stated.

[#] From Doppler-shift method (1971Po03).

γ (43Sc)

Data for different resonances are from the following references: from 1977Di17 for E(p)=1045, 1201, 1299, 1319, 2038, 2471, 2523, 2643 and 2714; from 1969Wa19 (also 1970Ma13,1974Ma39) for 1235, 1242, 1423, 1796, 1808, 1822, 1891 and 2037; from 1965Br31 (also 1966Br21,1964Br29) for 1013, 1157 and 1346. Data for 1045, 1235, 1242, 1299, and 1423 resonances are also given by 1965Br31.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.§	δ^{\S}	Comments
151.9	3/2+	151.9	100	$0.0 7/2^{-}$			
472.3	3/2-	320.3	4 1	151.9 3/2+			
		472.3	100 2	$0.0 \ 7/2^{-}$			
845.0	5/2-	845.0	100	$0.0 \ 7/2^{-}$	M1+E2	+0.18 2	
855.3	1/2+	383.0	25 2	472.3 3/2-			
		703.3	100 4	151.9 3/2+			
880.5	5/2+	728.5	100 2	151.9 3/2+	M1+E2	-0.51 7	δ: weighted average of -0.49 8 and -0.64 18 (1970Ma13).
		880.5	2 1	$0.0 7/2^{-}$			
1158.3	3/2+	277.8	35 <i>5</i>	880.5 5/2+			$\delta(Q/D) = +0.23 \ 20, +23 +19 - \infty \text{ or } < -5.7.$
		303.0	37 5	855.3 1/2+			$\delta(Q/D) = +0.19 \ 20 \text{ or } -2.9 \ +13-85.$
		686.0	4 2	472.3 3/2			
44=0.0	2.12	1006.3	100 4	151.9 3/2+			$\delta(Q/D) = -1.3 5 \text{ or } +1.5 15.$
1179.0	3/2-	298.5	1	880.5 5/2+			
		334.0	17 3	845.0 5/2			
		706.7	100 8	472.3 3/2			
		1027.0 <mark>&</mark>		151.9 3/2+			
		1179.0	23 3	0.0 7/2			
1336.3	7/2+	455.8	26 2	880.5 5/2+			
		1184.3	100 2	151.9 3/2+			
		1336.3	20 5	0.0 7/2			
1408	7/2-	563	16 <i>3</i>	845.0 5/2			
		936	9 3	472.3 3/2			
16510	5 /0+	1408	100 4	0.0 7/2			S(O/D) 0.00.20 2.4 12.50
1651.2	5/2+	492.9	30 <i>3</i>	1158.3 3/2+			$\delta(Q/D) = 0.00 \ 20 \text{ or } -2.4 + 12 - 50.$
		770.7	12 3	880.5 5/2 ⁺			
		795.9 1499.2	5 2 100 5	855.3 1/2 ⁺	M1(+E2)	-0.05 18	
			20 3	151.9 3/2+	M1(+E2)	-0.03 18	
1810.3	3/2-	1651.2 631.3	100 13	0.0 7/2 ⁻ 1179.0 3/2 ⁻			
1610.5	3/2	955.0	41 10	855.3 1/2 ⁺			
		1338.0	90 10	472.3 3/2			
		1658.3	26 8	151.9 3/2+			
1884.6	$(5/2,9/2)^{-}$	1004.1	21	880.5 5/2 ⁺			
1000	(0/=,>/=)	1039.6	16	845.0 5/2			
		1884.6	100	0.0 7/2	D+Q		$\delta(Q/D) = -0.4 + 2 - 11$ for $9/2$; $+(1.1 + 13 - 6)$ for $5/2$.
1931.2	9/2+	594.9	19 2	1336.3 7/2+	D+Q	-0.14 6	$A_2 = +0.63 \ II, A_4 = +0.01 \ I2 \ (1977Di17).$
	- /	1050.7	100 4	880.5 5/2+	Q		$A_2 = -0.38 6$, $A_4 = +0.30 6$ (1977Di17).
		1931.2	1	0.0 7/2-			2 , 4 (, , ,
1962.5	$(3/2,5/2)^{-}$	783.5	15 2	1179.0 3/2			$\delta(Q/D) = -0.04 \ 25 \text{ or } +(1.5 + \infty - 10).$
		804.2	4 1	1158.3 3/2+			•
		1490.2	100 2	472.3 3/2-			
		1962.5		0.0 7/2			
2094.3	3/2-	915.3	100 9	1179.0 3/2-			$\delta(Q/D)=0.00\ 10,\ +(3.7\ +25-10)\ \text{or}\ -10\ +4-48.$
		1213.8	30 6	880.5 5/2+			
		1239.0	55 6	855.3 1/2 ⁺			
		1249.3	33 6	845.0 5/2			

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31 (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.§	δ^{\S}	Comments
2094.3	3/2-	1622.0	33 9	472.3 3/2-			
2106.4	(3/2,5/2)	1942.3 948.1	52 9 30 4	151.9 3/2 ⁺ 1158.3 3/2 ⁺			
	(-1)-1)	1225.9	100 6	880.5 5/2+			
2114.3		956.0 1962.3	79 9 100 <i>13</i>	1158.3 3/2 ⁺ 151.9 3/2 ⁺			
2141.9	$(3/2,5/2^+)$	490.7	38	1651.2 5/2+			I_{γ} : from Fig. 1 of 1977Di17.
		962.9 983.6	6 <i>3</i> 15 <i>6</i>	1179.0 3/2 ⁻ 1158.3 3/2 ⁺			
		1261.4	100 9	880.5 5/2 ⁺			$\delta(Q/D) = +0.27 \ 10 \text{ or } -23 \ +12 -\infty.$
		1286.6 1669.6	12 <i>6</i> 50 <i>6</i>	855.3 1/2 ⁺ 472.3 3/2 ⁻			
		1989.9	74 6	151.9 3/2+			
		2141.8 <mark>&</mark>		0.0 7/2	D(+Q)	0.00 4	I_{γ} : 102 (1969Wa19). γ not reported by 1977Di17.
2200?	<i>5.1</i> 2-	2200&	100	0.0 7/2-			
2289.3 2335.8	5/2 ⁻ 5/2 ⁻	2289.2 2335.7	100 100	0.0 7/2 ⁻ 0.0 7/2 ⁻			
2382.9	3/2 ⁽⁺⁾	731.7	100	1651.2 5/2+			
2552.0	11/2+	620.8 1215.7	100 8	1931.2 9/2 ⁺			
2580.4	(5/2)	617.9	67 7	1336.3 7/2 ⁺ 1962.5 (3/2,5/2)	_		I_{γ} : 1969Wa19 report only the 617 and 1401
2000	(0/2)			1,0216 (6,2,6,2)			γ s from 2580 level, with $I\gamma(617)/I\gamma(1401)=0.33$.
		1401.4 ^{&}		1179.0 3/2			$\delta(Q/D) = +0.11 \ 10 \text{ or } -5.7 \ +20-80.$
		1422.1 1699.9	52 <i>10</i> 40 <i>8</i>	1158.3 3/2 ⁺ 880.5 5/2 ⁺			
		2428.3	100 13	151.9 3/2+			
2670.3	3/2-	1262.3 <mark>&</mark>		1408 7/2-			I_{γ} : 1969Wa19 report 1260 and 1492 γ s from 2670 level, with $I_{\gamma}(1260)/I_{\gamma}(1492)=0.33$.
		1491.3	16 4	1179.0 3/2-			I_{γ} : other: 100 (1969Wa19).
		1789.8 1815.0	43 8 100 <i>4</i>	880.5 5/2 ⁺ 855.3 1/2 ⁺			
		2197.9	45 6	472.3 3/2			
2796		1951	100 9	845.0 5/2			
2811.2		2644 1474.9	33 <i>5</i> 100 <i>10</i>	151.9 3/2 ⁺ 1336.3 7/2 ⁺			
		2811.1	100 10	0.0 7/2-			
2840.5	$(5/2,7/2)^+$	1960.0 2840.4	43 9 100 7	880.5 5/2 ⁺ 0.0 7/2 ⁻			
2846.2		2846.1	100	0.0 7/2			
2859.7		1208.5	14 5	1651.2 5/2 ⁺			
		1680.7 1701.4	16 <i>5</i> 23 <i>7</i>	1179.0 3/2 ⁻ 1158.3 3/2 ⁺			
		1979.2	100 5	880.5 5/2+			
2875	(5/2)+	2707.6 2723	75 7	151.9 3/2 ⁺ 151.9 3/2 ⁺			From intensity belonge this or ray accounts
2013	(3/4)	2123		131.7 3/2			From intensity balance, this γ -ray accounts for 80% of the total intensity, other 20% intensity is unaccounted for.
2986.7	(3/2,5/2)	1650.4	16	1336.3 7/2+			
		1807.7 2106.1	34 8 71 <i>5</i>	1179.0 3/2 ⁻ 880.5 5/2 ⁺			$\delta(Q/D) = -0.95 \ 50 \ \text{for } 5/2; +0.13 \ 11 \ \text{or } -11$
		2100.1	/1 J	000.3 3/2			$\delta(Q/D) = -0.93 \ 30 \ \text{for } 3/2; +0.13 \ 11 \ \text{or } -11 +7 -\infty \text{ for } 3/2.$

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
2986.7	(3/2,5/2)	2141.6	58 8	845.0 5/2-	S(O/D) - (O/C) - (O/20) 5 - 5/0 - 0.00 0 (A.5 - 20 - 12) 5 - 2/0
3160		2834.6 2279	100 8	151.9 3/2 ⁺ 880.5 5/2 ⁺	$\delta(Q/D) = +(0.66 + 60 - 30)$ for 5/2; 0.00 9 or +(4.5 + 30 - 13) for 3/2. From intensity balance, this γ -ray accounts for 25% of the total
3261	(7/2,9/2)	3261		0.0 7/2-	intensity, other 75% intensity is unaccounted for. From intensity balance, this γ -ray accounts for 60% of the total intensity, other 40% intensity is unaccounted for.
3290.2	7/2-	1479.9 2111.1 2409.6	21 <i>5</i> 100 <i>12</i> 21 <i>7</i>	1810.3 3/2 ⁻ 1179.0 3/2 ⁻ 880.5 5/2 ⁺	
		2445.1	91 9	845.0 5/2-	
3327		3290 ^{&} 3327		0.0 7/2 ⁻ 0.0 7/2 ⁻	This is the only γ reported from 3290 level by 1969Wa19. From intensity balance, this γ -ray accounts for 70% of the total intensity, other 30% intensity is unaccounted for.
3331.4		1368.9 1521.1 2152.3 2173.0	4 2 13 4 100 4 44 4	1962.5 (3/2,5/2) ⁻ 1810.3 3/2 ⁻ 1179.0 3/2 ⁻ 1158.3 3/2 ⁺	
		2486.3 2859.0	29 6 19 4	845.0 5/2 ⁻ 472.3 3/2 ⁻	
3374	(7/2,9/2)-	3374	100.7	0.0 7/2-	From intensity balance, this γ -ray accounts for 50% of the total intensity, other 50% intensity is unaccounted for.
3451.7	5/2+	2571.1 2606.6 3299.6	100 7 45 7 55 7	880.5 5/2 ⁺ 845.0 5/2 ⁻ 151.9 3/2 ⁺	
3463	5/2-	3451.6 2582	27 <i>9</i> 37 <i>4</i>	0.0 7/2 ⁻ 880.5 5/2 ⁺	I_{γ} : 1969Wa19 report this as the only γ from 3452 level.
3503	7/2-	3311 2658	100 7 100 10	151.9 3/2 ⁺ 845.0 5/2 ⁻	
3645.4		3503 1682.9 1994.2	100 <i>10</i> 34 <i>11</i> 66 <i>13</i>	0.0 7/2 ⁻ 1962.5 (3/2,5/2) ⁻ 1651.2 5/2 ⁺	
		2466.3 2764.8	100 <i>16</i> 63 <i>13</i>	1179.0 3/2 ⁻ 880.5 5/2 ⁺	
3683		2803 2838	25 <i>4</i> 56 <i>5</i>	880.5 5/2 ⁺ 845.0 5/2 ⁻	
3733.8		3531 1444.5 2325.7	100 <i>11</i> 31 83	151.9 3/2 ⁺ 2289.3 5/2 ⁻ 1408 7/2 ⁻	
3757		2888.7 3605	100 100 <i>10</i>	845.0 5/2 ⁻ 151.9 3/2 ⁺	
3807	7/2-	3757 2471 2926	43 7 24 6 100 5	0.0 7/2 ⁻ 1336.3 7/2 ⁺ 880.5 5/2 ⁺	A ₂ =-0.36 9, A ₄ =+0.11 10 (1977Di17).
		3335	35 8	472.3 3/2	$\delta(Q/D) = 0.00 \ 10$ for $7/2$ to $5/2$ transition.
3843		3807 2998	33 8	0.0 7/2 ⁻ 845.0 5/2 ⁻	This is the only γ reported by 1969Wa19 from the 3807 level. From intensity balance, this γ -ray accounts for 40% of the total
3860		3708		151.9 3/2+	intensity, other 60% intensity is unaccounted for. From intensity balance, this γ -ray accounts for 80% of the total intensity, other 20% intensity is unaccounted for
4007	(3/2,5/2)+	3126 3152 3535 3855	83 20 100 20 50 13 100 17	880.5 5/2 ⁺ 855.3 1/2 ⁺ 472.3 3/2 ⁻ 151.9 3/2 ⁺	intensity, other 20% intensity is unaccounted for.

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31 (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \qquad \mathbf{J}_f^{\pi}$	Comments
4038	7/2-	2107	100 13	1931.2 9/2+	
4371	5/2-,7/2-	3566 2265	67 <i>15</i> 37 <i>7</i>	472.3 3/2 ⁻ 2106.4 (3/2,5/2)	
1071	0/2 ,./2	2720	32 10	1651.2 5/2 ⁺	
		2963	49 12	1408 7/2 ⁻	
		3035 3490	100 <i>10</i> 27 <i>7</i>	1336.3 7/2 ⁺ 880.5 5/2 ⁺	
4430		3251	100 15	1179.0 3/2	
		3272	75 <i>13</i>	1158.3 3/2+	
4454.7	(5/2 to 9/2)	3549 4454.5	75 <i>10</i> 100	880.5 5/2 ⁺ 0.0 7/2 ⁻	$\delta(Q/D) = +0.13 5$ for $9/2$; $-0.05 5$ or $-5.7 +14-35$ for $5/2$.
5919	3/2	2629	33	3290.2 7/2-	0(0,2) - 0.00 0 0.00 0 0.00 0.00 0.00 0.00 0.
		3249	33	2670.3 3/2-	
		3338 3536	33 67	2580.4 (5/2) 2382.9 3/2 ⁽⁺⁾	
		3719 <mark>&</mark>	07	2200?	
		4268	67	1651.2 5/2+	$A_2 = -0.25 (1966Br21).$
		4740	33	1179.0 3/2	$A_2 = -0.43 (1966Br21).$
		4760 5038	67 67	1158.3 3/2 ⁺ 880.5 5/2 ⁺	$A_2 = -0.33 (1966Br21).$ $A_2 = -0.43 (1966Br21).$
		5074	100	845.0 5/2	$A_2 = -0.77 (1966Br21).$
		5446	67	472.3 3/2 ⁻	$A_2 = -0.15 (1966Br21).$
5950	(3/2,5/2)	5767 2143 <mark>&</mark>	100	151.9 3/2 ⁺ 3807 7/2 ⁻	$A_2 = -0.28 (1966Br21).$
3930	(3/2,3/2)	2619	62	3331.4	
		2660	19	3290.2 7/2-	I_{γ} : 1965Br31 report this as the strongest γ -ray from this level.
		2964 ^{&}		2986.7 (3/2,5/2)	
		3369 3615	14 5	2580.4 (5/2) 2335.8 5/2 ⁻	
		3661	5	2289.3 5/2	
		3808	10	2141.9 (3/2,5/2+)	
		3836 3856	5 10	2114.3 2094.3 3/2 ⁻	
		3987	33	1962.5 (3/2,5/2)	
		4139	5	1810.3 3/2	
		4299 4771	67 100	1651.2 5/2 ⁺ 1179.0 3/2 ⁻	
		4791	14	1158.3 3/2+	
		5094	43	855.3 1/2+	E_{γ} : 5105 from level difference in 1965Br31. $I(5105\gamma)/I(4771\gamma)=0.33$.
		5477	43	472.3 3/2	
		5798	43	151.9 3/2+	E_{γ} : 5805 from level difference in 1965Br31. I(5805 γ)/I(4771 γ)=1.
6060	(5/2)	6060		0.0 7/2-	
6103	$(3/2^-,5/2^+)$	2260 2651	1.6 10	3843 3451.7 5/2 ⁺	
		2943	1.6	3160	
		3116	1.6	2986.7 (3/2,5/2)	
		3257 3262	1.6 <1.6	2846.2 2840.5 (5/2,7/2) ⁺	
		3262 3961	13	2141.9 (3/2,5/2 ⁺)	
		3996	5	2106.4 (3/2,5/2)	
		4695 4766	5 8	1408 7/2 ⁻ 1336.3 7/2 ⁺	
		7700	o	1330.3 1/2	

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
6103	$(3/2^-,5/2^+)$	4924	3	1179.0 3/2-	
		5247	1.6	855.3 1/2+	
		5258	3	845.0 5/2	
		5630	1.6	472.3 3/2-	
		5951 6103	100 5	151.9 3/2+	
(126	2/2	2329&	3	0.0 7/2-	
6136	3/2			3807 7/2-	
		2846 ^{&}		3290.2 7/2-	
		3150 ^{&}	30	2986.7 (3/2,5/2)	
		3466 <mark>&</mark>	15	2670.3 3/2-	
		3555	35	2580.4 (5/2)	$\delta(Q/D) = -0.14 \text{ 7 or } -2.6 + 5 - 7 \text{ for } J\pi(res) = 3/2 \text{ (1970Ma13)}.$
		3994	24	2141.9 (3/2,5/2+)	((O/D)
		4041 4173	71 100	2094.3 3/2 ⁻ 1962.5 (3/2,5/2) ⁻	$\delta(Q/D) = +0.07 5 \text{ or } +2.7 +6-10 \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$ $\delta(Q/D) = +0.14 10 \text{ or } -19 +13-\infty \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
		4485	35	1902.3 (3/2,3/2) 1651.2 5/2 ⁺	$\delta(Q/D) = +0.36 \text{ 2 or } +7.6 +48 - \infty \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
		4957	65	1179.0 3/2	$\delta(Q/D) = -0.36 6 \text{ or } -9.5 + 30 - 70 \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
		4977	53	1158.3 3/2+	$\delta(Q/D) = -0.05 \text{ 3 or } +4.7 +7-20 \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
		5255	41	880.5 5/2+	$\delta(Q/D) = -0.05 \ 3 \text{ for } J\pi(res) = 3/2 \ (1970Ma13).$
		5280	18	855.3 1/2+	
		5291	24	845.0 5/2-	
		5663	24	472.3 3/2	$\delta(Q/D) = -0.36 \text{ 2 or } -7.6 + 20 - 38 \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
6142	2/2-	5984 2336	100	151.9 3/2 ⁺ 3807 7/2 ⁻	$\delta(Q/D)=0.00\ 2 \text{ or } +3.7\ 5 \text{ for } J\pi(res)=3/2\ (1970Ma13).$
6143	3/2-	2853	21 21	3807 7/2 ⁻ 3290.2 7/2 ⁻	$\delta(Q/D) = 0.00 \ 6 \text{ or } +3.7 \ +8-15 \text{ for } J\pi(\text{res}) = 3/2 \text{ and } J\pi(3290) = 3/2;$
		2156	27	2006 7 (2/2 5/2)	$-0.81\ 20$ for J π (3290)=5/2 (1970Ma13). δ (O/D)=+0.11 12 or +2.7 +5-13 for J π (res)=3/2 and
		3156	37	2986.7 (3/2,5/2)	$J_{\pi}(2987)=3/2$; -0.78 40 for $J_{\pi}(2987)=5/2$ and $J_{\pi}(2987)=3/2$; -0.78 40 for $J_{\pi}(2987)=5/2$ (1970Ma13).
		3473	32	2670.3 3/2-	$J_{N}(2767) - 3/2$, $-0.76 + 0.101 J_{N}(2767) - 3/2 (1770 Wal13)$.
		4048	32	2094.3 3/2	$\delta(Q/D) = +0.13 \text{ 7 or } +2.4 \text{ 5 for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
		4180	26	1962.5 (3/2,5/2)	$\delta(Q/D) = +0.06 5$ for $J\pi(res) = 3/2$ (1970Ma13).
		4332	11	1810.3 3/2-	
		4964	68	1179.0 3/2	$\delta(Q/D) = -0.17 \text{ 4 or } +19 +8-28 \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
		4984	16	1158.3 3/2+	
		5262 5287	11 100	880.5 5/2 ⁺ 855.3 1/2 ⁺	
		5298	53	845.0 5/2 ⁻	
		5670	16	472.3 3/2	$\delta(Q/D)=0.00 \ 3 \text{ or } +3.7 +5-8 \text{ for } J\pi(\text{res})=3/2 \ (1970\text{Ma}13).$
		5991	74	151.9 3/2+	$\delta(Q/D) = -0.10 \text{ 3 or } +8.8 +25-65 \text{ for } J\pi(\text{res}) = 3/2 \text{ (1970Ma13)}.$
		6143	11	0.0 7/2-	
6182	5/2	6032		151.9 3/2+	
6198	$(3/2,5/2^+)$	2464	16	3733.8	
		3862	20	2335.8 5/2-	
		4056	16	2141.9 (3/2,5/2+)	
		4103 4235	52 12	2094.3 3/2 ⁻ 1962.5 (3/2,5/2) ⁻	
		4547	48	1651.2 5/2 ⁺	
		5317	100	880.5 5/2 ⁺	
		5342	60	855.3 1/2 ⁺	
		5353	12	845.0 5/2-	
		6046	64	151.9 3/2+	
6217	$(3/2^-,5/2^+)$	2357	2	3860	
		2572	6	3645.4 2451.7 5/2+	
		2765	6	3451.7 5/2 ⁺	

6217 (3/2 ⁻ ,5/2 ⁺) 3230 8 2986.7 (3/2,5/2) 3357 12 2859.7 3547 10 2670.3 3/2 ⁻ 4075 4 2141.9 (3/2,5/2) 4110 2 2106.4 (3/2,5/2) 4122 4 2094.3 3/2 ⁻ 4406 6 1810.3 3/2 ⁻ 4809 2 1408 7/2 ⁻ 4880 <2 1336.3 7/2 ⁺ 5336 6 880.5 5/2 ⁺ 5361 100 855.3 1/2 ⁺ 5744 16 472.3 3/2 ⁻ 6065 8 151.9 3/2 ⁺ 6065 8 0.0 7/2 ⁻	$E_i(level)$	\mathbf{J}_i^{π}
3547 10 2670.3 3/2 ⁻ 4075 4 2141.9 (3/2,5/2 ⁺) 4110 2 2106.4 (3/2,5/2) 4122 4 2094.3 3/2 ⁻ 4406 6 1810.3 3/2 ⁻ 4809 2 1408 7/2 ⁻ 4880 <2 1336.3 7/2 ⁺ 5336 6 880.5 5/2 ⁺ 5361 100 855.3 1/2 ⁺ 5744 16 472.3 3/2 ⁻ 6065 8 151.9 3/2 ⁺ 6217 8 0.0 7/2 ⁻	6217	$\overline{(3/2^-,5/2^+)}$
4075		
4110 2 2106.4 (3/2,5/2) 4122 4 2094.3 3/2 ⁻ 4406 6 1810.3 3/2 ⁻ 4809 2 1408 7/2 ⁻ 4880 <2 1336.3 7/2 ⁺ 5336 6 880.5 5/2 ⁺ 5361 100 855.3 1/2 ⁺ 5744 16 472.3 3/2 ⁻ 6065 8 151.9 3/2 ⁺ 6217 8 0.0 7/2 ⁻		
4122		
4406 6 1810.3 3/2 ⁻ 4809 2 1408 7/2 ⁻ 4880 <2 1336.3 7/2 ⁺ 5336 6 880.5 5/2 ⁺ 5361 100 855.3 1/2 ⁺ 5744 16 472.3 3/2 ⁻ 6065 8 151.9 3/2 ⁺ 6217 8 0.0 7/2 ⁻		
4809 2 1408 7/2 ⁻ 4880 <2 1336.3 7/2 ⁺ 5336 6 880.5 5/2 ⁺ 5361 100 855.3 1/2 ⁺ 5744 16 472.3 3/2 ⁻ 6065 8 151.9 3/2 ⁺ 6217 8 0.0 7/2 ⁻		
4880 <2 1336.3 7/2+ 5336 6 880.5 5/2+ 5361 100 855.3 1/2+ 5744 16 472.3 3/2- 6065 8 151.9 3/2+ 6217 8 0.0 7/2-		
5361 100 855.3 1/2+ 5744 16 472.3 3/2- 6065 8 151.9 3/2+ 6217 8 0.0 7/2-		
5744 16 472.3 3/2 ⁻ 6065 8 151.9 3/2 ⁺ 6217 8 0.0 7/2 ⁻		
6065 8 151.9 3/2 ⁺ 6217 8 0.0 7/2 ⁻		
6217 8 0.0 7/2		
0		
6247 (3/2,5/2) 2957 3290.2 1/2	60.47	(2/2.5/2)
0	6247	(3/2,5/2)
4047& 2200?		
4105 50 2141.9 (3/2,5/2 ⁺) 4152 17 2094.3 3/2 ⁻		
4284 33 1962.5 (3/2,5/2)		
$4596^{\&}$ 1651.2 5/2 ⁺		
5068 17 1179.0 3/2-		
5366 33 880.5 5/2 ⁺		
5402 83 845.0 5/2		
6095 100 151.9 3/2+		~ (0.1
6320 5/2+ 2513 11 3807 7/2-	6320	5/2+
2868 5 3451.7 $5/2^+$ 3333 11 2986.7 $(3/2,5/2)$ $\delta(Q/D) = -0.02 4$ for $J\pi(2987) = 3/2$ and $-0.81 12$		
for $J\pi(2987)=5/2$ (1970Ma13).		
3739 3 2580.4 (5/2)		
3937 2 2382.9 $3/2^{(+)}$ $\delta(Q/D) = +0.45 \text{ 8 or } +2.7 +5-8 \text{ for } J\pi(2383) = 7/2$ and $-0.18 \text{ 8 for } J\pi(2383) = 3/2 \text{ (1970Ma13)}.$		
4178 10 2141.9 (3/2,5/2 ⁺) D+Q +0.07 6		
4669 2 1651.2 5/2+		
4983 3 1336.3 7/2+		
5141 6 1179.0 3/2 D+Q 0.00 3		
5439 10 880.5 5/2 ⁺ D+Q +0.14 5		
5464 10 855.3 $1/2^+$ $\delta(Q/D)=+0.01 3 \text{ or } -3.1 5.$ 5475 8 845.0 $5/2^-$		
6168 100 151.9 3/2+ D+Q +0.03 3		
6685 1/2 ⁻ 4104 13 2580.4 (5/2)	6685	1/2-
4590 79 2094.3 3/2-		,
4722 42 1962.5 (3/2,5/2)		
5506 38 1179.0 3/2		
5804 33 880.5 5/2 ⁺		
5829 25 855.3 1/2 ⁺		
6212 29 472.3 3/2 ⁻		
6533 100 151.9 3/2 ⁺ 6696 5/2 3013 5 3683	6696	5/2
$3369^{\&}$ 5 3327	0070	5/2
4313 9 2382.9 $3/2^{(+)}$ $\delta(Q/D) = -0.13 \ 10 \text{ or } -4.2 + 10 - 15 \text{ for}$		
$J\pi(2383)=7/2$ and $+0.20 \ 10$ for $J\pi(2383)=3/2$.		
4733 5 1962.5 (3/2,5/2) ⁻ D+Q -0.47 8		
5044 11 1651.2 5/2 ⁺ D+Q -0.07 7		

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^π	Mult.§	δ§	Comments
6696	5/2	5359 5517 5537 5815 5851 6223 6544 6695	11 7 7 32 7 2 100 27	1336.3 7/2 1179.0 3/2 1158.3 3/2 880.5 5/2 845.0 5/2 472.3 3/2 151.9 3/2 0.0 7/2	- + + - -	D+Q D+Q D+Q D+Q D+Q	+0.03 3 -0.27 10 +0.22 5 -0.14 4 +0.02 4	$\delta(Q/D) = -0.14 \ 6 \text{ or } -23 + \infty - 12.$
6709	1/2-	3722& 4614& 4747& 6236& 6557&	25 100 19 8	2986.7 (3/2 2094.3 3/2 1962.5 (3/2 472.3 3/2	- 2,5/2) ⁻ -			
6777	5/2+	2322 3790 4196 4394 4635 5125 5369 5440 5598 5896 5921 5932 6304	17 64 45 55 36 82 91 18 27 100 91 45 82	151.9 3/2 4454.7 (5/2 2986.7 (3/2 2580.4 (5/2 2382.9 3/2 2141.9 (3/2 1651.2 5/2 1408 7/2 1336.3 7/2 1179.0 3/2 880.5 5/2 845.0 5/2 472.3 3/2	2 to 9/2) 2,5/2) 2) (+) 2,5/2 ⁺) + - + + -			
6919	7/2	2647. 2647. 3076. 3592. 3658. 4044. 4123.	82 13 5 3 6 6 3 3	151.9 3/2 4454.7 (5/2 4272 3843 3327 3261 (7/2 2875 (5/2 2796	2 to 9/2) 2,9/2) ⁻			$\delta(Q/D)$ =+0.18 6 for J π (res)=7/2 and J π (4455)=9/2; -0.04 6 for J π (4455)=5/2 (1970Ma13). γ from 1969Wa19 only.
		4338&	3 5	2580.4 (5/2 1884.6 (5/2				$\delta(Q/D)$ =+0.32 10 for J π (res)=7/2 (1970Ma13). $\delta(Q/D)$ =-0.18 16 or -5.7 +20-60 for J π (res)=7/2 and J π (1885)=9/2; +0.22 16 for
7344	(3/2 ⁻ ,5/2)	5511 6037 6074 6446& 6917 3484 3537 3661 3698 4184 5229 5692	5 3 100 3 11 13 39 10 10 19 6 19	1408 7/2 880.5 5/2 845.0 5/2 472.3 3/2 0.0 7/2 3860 3807 7/2 3683 3645.4 3160 2114.3 1651.2 5/2	+ - - -			Jπ(1885)=5/2 (1970Ma13). $\delta(Q/D)=-0.04$ 4 for Jπ(res)=7/2 (1970Ma13). $\delta(Q/D)=0.00$ 2 for Jπ(res)=7/2 (1970Ma13). $\delta(Q/D)=+0.04$ 4 for Jπ(res)=7/2 (1970Ma13). $\delta(Q/D)=-0.29$ 8 for Jπ(res)=7/2 (1970Ma13).

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
7344	$(3/2^-,5/2)$	6007	6	1336.3	7/2+	
		6165	6	1179.0	3/2-	
		6185	6	1158.3		
		6463	100	880.5		
		7191	55	151.9		
7204	(2/2-5/2+)	7343	32		7/2-	
7394	$(3/2^-, 5/2^+)$	2964 3387	20	4430	(2/2 5/2)+	
		3637	28 8	4007 3757	$(3/2,5/2)^+$	
		3931	12	3463	5/2-	
		3942	12	3451.7		
		4519	8	2875	$(5/2)^+$	
		4534	8	2859.7		
		4598	4	2796		
		4813	4	2580.4		
		5011	4	2382.9		
		5252	4		$(3/2,5/2^+)$	
		5279	28	2114.3	2/2-	
		5583	8	1810.3		
		5742 5986	8 4	1651.2 1408	7/2-	
		6057	4	1336.3		
		6215	16	1179.0		
		6235	40	1158.3		
		6513	32	880.5		
		6538	20	855.3	1/2+	
		6548	16	845.0		
		6921	8	472.3		
		7241	100	151.9		
7510	(7/2+)	7393	4		7/2-	A - 10.28 5 A - 0.02 5 (1077D:17)
7512	$(7/2^+)$	3141	12	4371	5/2-,7/2-	A_2 =+0.28 5, A_4 =-0.02 5 (1977Di17). $\delta(Q/D)$ =+0.31 6 for 9/2 to 7/2 transition.
		3474	3	4038	7/2-	$A_2 = -0.22 \ 12$, $A_4 = +0.04 \ 13 \ (1977\text{Di}17)$.
		0.,.		.000	.,_	$\delta(Q/D) = +0.05 $ 8 for 9/2 to 7/2; -0.70 22 for 9/2 to 9/2; and +0.02
						11 for 9/2 to 11/2.
		3705	10	3807	7/2-	$A_2 = -0.31 \ 10, A_4 = -0.18 \ 10 \ (1977Di17).$
						$\delta(Q/D) = -0.05$ 6 for 9/2 to 7/2 transition.
		4671	3		$(5/2,7/2)^+$	
		4701	3	2811.2	11/0+	
		4960	100	2552.0		A - 10.28 4 A - 0.14 4 (1077D:17)
		5580	100	1931.2	9/2	A_2 =+0.38 4, A_4 =-0.14 4 (1977Di17). $\delta(Q/D)$ =+0.90 14 or -0.20 7 for 9/2 to 9/2 transition.
		5627	3	1884.6	$(5/2,9/2)^-$	
		6353	5	1158.3		
		6666	3	845.0		A 0.00 0 A 0.01 0 (1077D)17)
		7511	22		7/2-	$A_2 = -0.20 \ 9$, $A_4 = +0.01 \ 9 \ (1977\text{Di}17)$. $\delta(Q/D) = +0.05 \ 7$ for $9/2$ to $7/2$ transition.
7581	$(3/2^-,5/2,7/2^+)$	3151	3	4430		
		3898	18	3683	7/0-	
		4078	5	3503	7/2 ⁻	
		4129 4207	8 5	3451.7 3374	$(7/2,9/2)^{-}$	
		4721	3	2859.7	(1/4,7/4)	
		5439	13		$(3/2,5/2^+)$	
				/	(-1)-1=)	

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31 (continued)

[†] Level-energy differences.

[‡] From average of data from 1977Di17, 1969Wa19 and 1965Br31. § From $\gamma(\theta)$, $\gamma\gamma(\theta)$, $\gamma(\text{lin pol})$ data of 1970Ma13, unless otherwise stated. & Placement of transition in the level scheme is uncertain.

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme

⁴²Ca(p,γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

⁴²Ca(p,γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

⁴²Ca(p,γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

42 Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

⁴²Ca(p,γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

⁴²Ca(p, γ) E=res 1977Di17,1969Wa19,1965Br31

Level Scheme (continued)

⁴²Ca(p,p):resonances 1976Wi16,1974Ma39

S(p)=4929.8 19 (2012Wa38).

1976Wi16: E=1.2-3.0 MeV proton beams were produced from the TUNL 3 MV Van de Graaff accelerator, FWHM=325 eV. Targets of enriched CaCO₃ (94.42% 42 Ca) on carbon backings. Elastically scattered protons were detected by surface barrier detectors. Measured $\sigma(E,\theta)$. Deduced resonances, levels, J, Γ_p .

1974Ma39: E=1.20-3.23 MeV proton beams were produced from the Aerospace Research Laboratories (ARL) 8-MeV tandem accelerator, FWHM=200 eV. Targets of enriched CaCO₃ on carbon backings. Scattered protons were detected by surface barrier detectors. Measured $\sigma(E,\theta)$. Deduced resonances, levels, J, π , Γ .

1968Br27: E=1.24-1.82 MeV. Deduced resonances at 1240, 1792, 1802, 1817.

⁴³Sc Levels

6149.5 $3/2^-$ 125 eV 15 1248.7 129.90 E(p)=1241.9 5, Γ_p =145 eV 5, γ_p^2 =145 keV (1974Ma39). 6222.9 $1/2^+$ 50 eV 10 1323.9 10.99 6417.6 $1/2^+$ 1.5 eV 5 1523.2 1.10 6440.6 $1/2^+$ 1.5 eV 5 1546.8 0.99 6510.7 $1/2^+$ 15 eV 5 1618.5 0.72 6561.4 $1/2^-$ 180 eV 20 1670.4 18.52 6564.1 $1/2^+$ 15 eV 5 1673.2 0.57 6670.1 $1/2^+$ 10 eV 5 1679.4 0.37 6630.0 $1/2^-$ 5 eV 3 1740.7 40.3 6651.0 $1/2^+$ 175 eV 20 1762.2 4.72 6677.4 (1/2 ⁻) 10 eV 5 1796.4 0.36 6684.4 $1/2^+$ 15 eV 5 1796.4 0.36 6685.3 $3/2^-$ 65 eV 10 1797.3 4.01 E(p)=1797 1, Jπ=1/2 ⁻ , Γ_p =120 eV 10, γ_p^2 =145 keV (1974Ma39). 6694.8 $1/2^-$ 45 eV 10 1807.0 2.68 E(p)=1803.3 5, Γ_p =75 eV 5, γ_p^2 =7.8 keV (1974Ma39). 6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 E(p)=1803.3 5, Γ_p =75 eV 5, γ_p^2 =135 keV (1974Ma39). 6736.6 $3/2^-$ 45 eV 10 1849.8 2.29 6795.1 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96 685.8 1/2 25 eV 7 1966.8 0.85	E(level) [†]	J^{π} †#	${\Gamma_p}^{\dagger}$	E(p) (lab) [†]	$\gamma_{\rm p}^2~{ m keV}^\dagger$	Comments
6222.9 $1/2^+$ 50 eV 10 1323.9 10.99 6417.6 $1/2^+$ 15 eV 5 1523.2 1.10 6440.6 $1/2^+$ 1.5 eV 5 1546.8 0.99 6510.7 $1/2^+$ 15 eV 5 1618.5 0.72 6561.4 $1/2^-$ 180 eV 20 1670.4 18.52 6564.1 $1/2^+$ 15 eV 5 1673.2 0.57 6570.1 $1/2^+$ 10 eV 5 1679.4 0.37 6630.0 $1/2^-$ 5 eV 3 1740.7 40.3 6651.0 $1/2^+$ 175 eV 20 1762.2 4.72 6677.4 (1/2 ⁻) 10 eV 5 1789.2 0.68 6684.4 $1/2^+$ 15 eV 5 1796.4 0.36 6685.3 $3/2^-$ 65 eV 10 1797.3 4.01 E(p)=1797 I, $J\pi$ =1/2 ⁻ , $Γ_p$ =120 eV 10, $γ_p^2$ =145 keV (1974Ma39). 6694.8 $1/2^-$ 45 eV 10 1807.0 2.68 E(p)=1803.3 5, $Γ_p$ =75 eV 5, $γ_p^2$ =7.8 keV (1974Ma39). 6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 E(p)=1803.3 5, $Γ_p$ =1450 eV 50, $γ_p^2$ =135 keV (1974Ma39). 6736.6 $3/2^-$ 45 eV 10 1849.8 2.29 6795.1 $1/2^-$ 500 eV 50 1909.7 20.60 6795.4 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96	6149.5	3/2-	125 eV 15	1248.7	129.90	$E(p)=1241.9$ 5. $\Gamma_p=145$ eV 5. $\gamma_p^2=145$ keV (1974Ma39).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Σ(p) 12 (1) ε, 1 p 1 ιε ε + ε, γ p 1 ιε ιε + (2) γ (1) (1) (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
6561.4 $1/2^-$ 180 eV 20 1670.4 18.52 6564.1 $1/2^+$ 15 eV 5 1673.2 0.57 6570.1 $1/2^+$ 10 eV 5 1679.4 0.37 6630.0 $1/2^-$ 5 eV 3 1740.7 40.3 6651.0 $1/2^+$ 175 eV 20 1762.2 4.72 6677.4 $(1/2^-)$ 10 eV 5 1789.2 0.68 6684.4 $1/2^+$ 15 eV 5 1796.4 0.36 6685.3 $3/2^-$ 65 eV 10 1797.3 4.01 $E(p)=1797\ I$, $J\pi=1/2^-$, $Γ_p=120\ eV\ I0$, $γ_p^2=145\ keV$ (1974Ma39). 6694.8 $1/2^-$ 45 eV 10 1807.0 2.68 $E(p)=1803.3\ 5$, $Γ_p=75\ eV\ 5$, $γ_p^2=7.8\ keV$ (1974Ma39). 6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 $E(p)=1803.3\ 5$, $Γ_p=1450\ eV\ 50$, $γ_p^2=135\ keV$ (1974Ma39). 6736.6 $3/2^-$ 45 eV 10 1849.8 2.29 6795.1 $1/2^-$ 500 eV 50 1909.7 20.60 6795.4 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 (3/2+) 10 eV 5 1965.6 1.96						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
6570.1 $1/2^+$ 10 eV 5 1679.4 0.37 6630.0 $1/2^-$ 5 eV 3 1740.7 40.3 6651.0 $1/2^+$ 175 eV 20 1762.2 4.72 6677.4 $(1/2^-)$ 10 eV 5 1789.2 0.68 6684.4 $1/2^+$ 15 eV 5 1796.4 0.36 6685.3 $3/2^-$ 65 eV 10 1797.3 4.01 $E(p)=1797\ I$, $J\pi=1/2^-$, $Γ_p=120\ eV\ I0$, $γ_p^2=145\ keV$ (1974Ma39). 6694.8 $1/2^-$ 45 eV 10 1807.0 2.68 $E(p)=1803.3\ 5$, $Γ_p=75\ eV\ 5$, $γ_p^2=7.8\ keV\ (1974Ma39)$. 6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 $E(p)=1802\ I$, $Γ_p=1450\ eV\ 50$, $γ_p^2=135\ keV\ (1974Ma39)$. 6736.6 $3/2^-$ 45 eV 10 1849.8 2.29 6795.1 $1/2^-$ 500 eV 50 1909.7 20.60 6795.4 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 $(3/2^+)$ 10 eV 5 1965.6 1.96						
6651.0 $1/2^+$ 175 eV 20 1762.2 4.72 6677.4 $(1/2^-)$ 10 eV 5 1789.2 0.68 6684.4 $1/2^+$ 15 eV 5 1796.4 0.36 6685.3 $3/2^-$ 65 eV 10 1797.3 4.01 $E(p)=1797\ I$, $Jπ=1/2^-$, $Γ_p=120\ eV\ I0$, $γ_p^2=145\ keV$ (1974Ma39). 6694.8 $1/2^-$ 45 eV 10 1807.0 2.68 $E(p)=1803.3\ 5$, $Γ_p=75\ eV\ 5$, $γ_p^2=7.8\ keV\ (1974Ma39)$. 6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 $E(p)=1803.3\ 5$, $Γ_p=1450\ eV\ 50$, $γ_p^2=135\ keV\ (1974Ma39)$. 6736.6 $3/2^-$ 45 eV 10 1849.8 2.29 6795.1 $1/2^-$ 500 eV 50 1909.7 20.60 6795.4 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 $(3/2^+)$ 10 eV 5 1965.6 1.96						
6677.4 (1/2 ⁻) 10 eV 5 1789.2 0.68 6684.4 1/2 ⁺ 15 eV 5 1796.4 0.36 6685.3 3/2 ⁻ 65 eV 10 1797.3 4.01 E(p)=1797 1, $J_{\pi}=1/2^-$, $\Gamma_p=120$ eV 10, $\gamma_p^2=145$ keV (1974Ma39). 6694.8 1/2 ⁻ 45 eV 10 1807.0 2.68 E(p)=1803.3 5, $\Gamma_p=75$ eV 5, $\gamma_p^2=7.8$ keV (1974Ma39). 6709.2 1/2 ⁻ 900 eV 90 1821.8 50.71 6709.5 1/2 ⁻ 300 eV 30 1822.1 16.88 E(p)=1822 1, $\Gamma_p=1450$ eV 50, $\gamma_p^2=135$ keV (1974Ma39). 6736.6 3/2 ⁻ 45 eV 10 1849.8 2.29 6795.1 1/2 ⁻ 500 eV 50 1909.7 20.60 6795.4 1/2 ⁻ 500 eV 50 1910.0 20.58 6815.3 1/2 ⁺ 30 eV 7 1930.4 0.46 6827.0 3/2 ⁻ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96	6630.0	$1/2^{-}$	5 eV 3	1740.7	40.3	
6684.4 $1/2^+$ 15 eV 5 1796.4 0.36 6685.3 $3/2^-$ 65 eV 10 1797.3 4.01 $E(p)=1797\ I$, $Jπ=1/2^-$, $Γ_p=120\ eV$ 10, $γ_p^2=145\ keV$ (1974Ma39). 6694.8 $1/2^-$ 45 eV 10 1807.0 2.68 $E(p)=1803.3\ 5$, $Γ_p=75\ eV$ 5, $γ_p^2=7.8\ keV$ (1974Ma39). 6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 $E(p)=1803.3\ 5$, $Γ_p=75\ eV$ 5, $γ_p^2=7.8\ keV$ (1974Ma39). 6736.6 $3/2^-$ 45 eV 10 1849.8 2.29 6795.1 $1/2^-$ 500 eV 50 1909.7 20.60 6795.4 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 (3/2+) 10 eV 5 1965.6 1.96	6651.0	1/2+	175 eV 20	1762.2	4.72	
6685.3 $3/2^-$ 65 eV 10 1797.3 4.01 $E(p)=1797\ 1$, $J\pi=1/2^-$, $\Gamma_p=120\ eV$ 10, $\gamma_p^2=145\ keV$ (1974Ma39). 6694.8 $1/2^-$ 45 eV 10 1807.0 2.68 $E(p)=1803.3\ 5$, $\Gamma_p=75\ eV\ 5$, $\gamma_p^2=7.8\ keV$ (1974Ma39). 6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 $E(p)=1802.1\ I/2^-$ 500 eV 50 1909.7 20.60 6795.1 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 (3/2+) 10 eV 5 1965.6 1.96	6677.4	$(1/2^{-})$	10 eV 5	1789.2	0.68	
	6684.4	$1/2^{+}$	15 eV 5	1796.4	0.36	
6694.8 1/2 ⁻ 45 eV 10 1807.0 2.68 E(p)=1803.3 5, Γ_p =75 eV 5, γ_p^2 =7.8 keV (1974Ma39). 6709.2 1/2 ⁻ 900 eV 90 1821.8 50.71 6709.5 1/2 ⁻ 300 eV 30 1822.1 16.88 E(p)=1822 1, Γ_p =1450 eV 50, Γ_p =135 keV (1974Ma39). 6736.6 3/2 ⁻ 45 eV 10 1849.8 2.29 6795.1 1/2 ⁻ 500 eV 50 1909.7 20.60 6795.4 1/2 ⁻ 500 eV 50 1910.0 20.58 6815.3 1/2 ⁺ 30 eV 7 1930.4 0.46 6827.0 3/2 ⁻ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96	6685.3	3/2-	65 eV <i>10</i>	1797.3	4.01	E(p)=1797 <i>I</i> , $J\pi=1/2^-$, $\Gamma_p=120$ eV <i>10</i> , $\gamma_p^2=145$ keV (1974Ma39)
6709.2 $1/2^-$ 900 eV 90 1821.8 50.71 6709.5 $1/2^-$ 300 eV 30 1822.1 16.88 $E(p)=1822\ I$, $\Gamma_p=1450\ eV$ 50, $\gamma_p^2=135\ keV$ (1974Ma39). 6736.6 $3/2^-$ 45 eV 10 1849.8 2.29 6795.1 $1/2^-$ 500 eV 50 1909.7 20.60 6795.4 $1/2^-$ 500 eV 50 1910.0 20.58 6815.3 $1/2^+$ 30 eV 7 1930.4 0.46 6827.0 $3/2^-$ 40 eV 10 1942.4 1.48 6849.7 $(3/2^+)$ 10 eV 5 1965.6 1.96	6694 8	1/2-	45 eV 10	1807.0	2 68	
6709.5 1/2 ⁻ 300 eV 30 1822.1 16.88 E(p)=1822 I, Γ_p =1450 eV 50, γ_p^2 =135 keV (1974Ma39). 6736.6 3/2 ⁻ 45 eV 10 1849.8 2.29 6795.1 1/2 ⁻ 500 eV 50 1909.7 20.60 6795.4 1/2 ⁻ 500 eV 50 1910.0 20.58 6815.3 1/2 ⁺ 30 eV 7 1930.4 0.46 6827.0 3/2 ⁻ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96						Σ(p) 1003.5 3, 1 p / 5 e γ 3, γ p / 1.0 ke γ (15 γ 11 11 12 5).
6736.6 3/2 45 eV 10 1849.8 2.29 6795.1 1/2 500 eV 50 1909.7 20.60 6795.4 1/2 500 eV 50 1910.0 20.58 6815.3 1/2+ 30 eV 7 1930.4 0.46 6827.0 3/2 40 eV 10 1942.4 1.48 6849.7 (3/2+) 10 eV 5 1965.6 1.96						$F(n)=1822 I \Gamma_n=1450 \text{ eV } 50 \chi^2=135 \text{ keV } (1974Ma39)$
6795.1 1/2 ⁻ 500 eV 50 1909.7 20.60 6795.4 1/2 ⁻ 500 eV 50 1910.0 20.58 6815.3 1/2 ⁺ 30 eV 7 1930.4 0.46 6827.0 3/2 ⁻ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96						E(p)=1022 1, 1 p=1430 e v 30, /p=133 ke v (1)/41/403).
6795.4 1/2 ⁻ 500 eV 50 1910.0 20.58 6815.3 1/2 ⁺ 30 eV 7 1930.4 0.46 6827.0 3/2 ⁻ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96						
6815.3 1/2 ⁺ 30 eV 7 1930.4 0.46 6827.0 3/2 ⁻ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96						
6827.0 3/2 ⁻ 40 eV 10 1942.4 1.48 6849.7 (3/2 ⁺) 10 eV 5 1965.6 1.96		1/2+				
$6849.7 (3/2^+) 10 \text{ eV } 5 1965.6 1.96$						
6853.9 (3/2 ⁺) 10 eV 5 1969.9 1.93						
6855.0 1/2 ⁻ 22 eV 7 1971.0 0.74						
6859.0 (3/2 ⁺) 13 eV 5 1975.1 2.47						
6868.2 1/2+ 45 eV 10 1984.6 0.58						
6880.1 1/2 ⁺ 120 eV 15 1996.7 1.50						
6899.7 $1/2^-$ 190 eV 20 2016.8 5.52 E(p)=2021 1, Γ_p =310 eV 10, γ_p^2 =13.7 keV (1974Ma39).						E(p)=2021 1, Γ_p =310 eV 10, γ_p^2 =13.7 keV (1974Ma39).
6912.4 $1/2^+$ 240 eV 25 2029.8 2.73 $E(p)=2033 \ I$, $\Gamma_p=280 \ eV \ I0$, $\gamma_p^2=5.3 \ keV (1974Ma39)$.						$E(p)=2033 I$, $\Gamma_p=280 \text{ eV}$ 10, $\gamma_s^2=5.3 \text{ keV}$ (1974Ma39).
6899.7 1/2 ⁻ 190 eV 20 2016.8 5.52 E(p)=2021 I , Γ_p =310 eV $I0$, γ_p^2 =13.7 keV (1974Ma39). 6912.4 1/2 ⁺ 240 eV 25 2029.8 2.73 E(p)=2033 I , Γ_p =280 eV $I0$, γ_p^2 =5.3 keV (1974Ma39). 6936.4 1/2 ⁺ 150 eV $I5$ 2054.4 1.59 E(p)=2059 I , Γ_p =205 eV $I5$, Γ_p =4 keV (1974Ma39).						$F(n)=2059 I \Gamma_{n}=205 \text{ eV} 5 v^{2}=4 \text{ keV} (1974\text{Ma}39)$
6943.7 $1/2^-$ 165 eV 15 2061.9 4.19 E(p)=2066 1, Γ_p =214 eV 5, γ_p^2 =9.6 keV (1974Ma39).						$F(p) = 2066 I \Gamma_{\nu} = 214 \text{ eV} 5 \chi^2 = 9.6 \text{ keV} (1974\text{Ma}39)$
6966.0 $(3/2^+)$ 15 eV 5 2084.7 1.95						E(p)=2000 1, 1 p=214 e v 3, /p=3.0 ke v (15/414183).
6978.9 (3/2 ⁺) 20 eV 5 2097.9 2.49						
6983.6 1/2 8 eV 5 2102.7 0.18						
7013.7 $(3/2^-)$ 15 eV 5 2133.5 0.31						
7024.7 $(3/2^+)$ 15 eV 5 2144.8 1.61						
7027.7 1/2 150 eV 15 2147.8 2.97 E(p)=2151 1, Γ_p =224 eV 5, γ_p^2 =7.2 keV (1974Ma39).						$F(n)=2151 I \Gamma_{n}=224 \text{ eV} 5 \chi^{2}=7.2 \text{ keV} (1974\text{Mg}39)$
7027.7 1/2 130 eV 13 2147.8 2.97 $E(p)=2131 \ 1, 1_p=224 \ eV \ 3, y_p=7.2 \ \text{keV} \ (1974 \text{Mass}).$ 7032.1 $1/2^+$ 10 eV 5 2152.4 0.08						$\Sigma_{(p)}$ -2131 1, 1 p-227 0 v 3, γ_p -7.2 ke v (1)/41via3/).
7037.2 3/2 35 eV 7 2157.6 0.67						
7037.2 5/2 53 CV 7 2157.0 0.07 $7046.4 (5/2^+) 25 eV 7 2167.0 2.50$						
7067.5 1/2+ 800 eV 80 2188.6 5.99						
7074.9 1/2 25 eV 7 2196.2 0.43						

42Ca(p,p):resonances <u>1976Wi16,1974Ma39</u> (continued)

E(level) [†]	$J^{\pi\dagger\#}$	$\Gamma_{\mathrm{p}}^{}\dagger}$	E(p) (lab) [†]	$\gamma_{\rm p}^2~{\rm keV}^{\dagger}$	Comments
7085.6	1/2-	300 eV <i>30</i>	2207.1	5.05	
7094.4	3/2-	75 eV <i>15</i>	2216.1	1.23	
7099.1	1/2+	50 eV 10	2221.0	0.35	
7116.8	$1/2^{-}$	2.50 keV 25	2239.1	38.71	
7123.4	$(3/2^+)$	10 eV 5	2245.8	0.79	
7125.0	1/2+	350 eV <i>35</i>	2247.5	2.28	
		10 eV 5	2254.9	0.77	
7132.3	$(3/2^+)$				
7138.0	3/2-	600 eV 60	2260.8	8.80	
7140.2	1/2+	600 eV 60	2263.0	3.77	
7150.5	$(3/2^+)$	25 eV 7	2273.6	1.82	
7155.8	3/2-	50 eV 10	2279.0	0.70	
7170.2	1/2-	600 eV 60	2293.7	8.10	
7176.5	$(5/2^{-})$	5 eV 3	2300.2	3.37	
7185.2	$(3/2^+)$	10 eV 5	2309.1	0.66	
7211.0	$(1/2^{-})$	10 eV 5	2335.5	0.12	
7215.3	$(1/2^+)$	5 eV 3	2339.8	0.03	
7222.9	3/2+	35 eV 7	2347.7	2.07	
7227.1	$(3/2^+)$	10 eV 5	2352.0	0.58	
7231.2	1/2-	500 eV <i>50</i>	2356.2	5.81	
7240.8	$(3/2^+)$	10 eV 5	2366.0	0.56	
7247.5	$1/2^{-}$	150 eV <i>15</i>	2372.9	1.68	
7251.0	$(3/2^+)$	15 eV 5	2376.5	0.82	
7255.4	$1/2^{+}$	70 eV 10	2381.0	0.34	
7256.8	$3/2^{-}$	30 eV 7	2382.4	0.33	
7266.3	$(3/2^+)$	20 eV 5	2392.1	1.05	
7281.0	$(1/2^{-})$	10 eV 5	2407.2	0.10	
7289.8	$3/2^{+}$	35 eV 7	2416.2	1.73	
7290.9	$(3/2^+)$	25 eV 7	2417.3	1.23	
7307.6	3/2-	40 eV 10	2434.4	0.39	
7309.1	1/2-	1.00 keV 10	2435.9	9.69	
7311.2	$(3/2^+)$	5 eV 3	2438.1	0.23	
7315.8	1/2+	25 eV 7	2442.8	0.11	
7326.9	1/2-	3.00 keV 30	2454.2	27.92	E(p)=2460 1, Γ_p =2.92 keV 5, γ_p^2 =42.2 keV (1974Ma39).
7329.5	$(3/2^+)$	20 eV 5	2456.8	0.89	E(p) 2100 1, 1 p 2.52 ke v 3, 7 p 12.2 ke v (157 mass).
7339.4	1/2+	600 eV 60	2467.0	2.46	$E(p) = 2473 I \Gamma = 540 \text{ eV} = 20 \text{ ev}^2 = 4 \text{ keV} (1074 \text{Mg} 30)$
	1/2+				E(p)=2473 1, Γ_p =540 eV 20, γ_p^2 =4 keV (1974Ma39). E(p)=2500 2, Γ_p =130 eV 10, γ_p^2 =0.9 keV (1974Ma39).
7363.5		100 eV 15	2493.7	0.39	$E(p)=2300 2$, $I_p=130 \text{ eV } 10$, $\gamma_p=0.9 \text{ keV } (1974\text{MaS9})$.
7365.1	1/2-	90 eV 15	2493.3	0.77	E() 2504.2 E (76. W.5. 2 0.61 W.(107.04.20)
7369.7	1/2-	700 eV <i>70</i>	2498.0	5.93	E(p)=2504 2, Γ_p =676 eV 5, γ_p^2 =8.6 keV (1974Ma39).
7370.8	1/2-	40 eV <i>10</i>	2499.1	0.34	2
7378.5	1/2+	80 eV 15	2507.0	0.30	E(p)=2514 2, Γ_p =85 eV 5, γ_p^2 =0.5 keV (1974Ma39).
7385.5	$(5/2^{-})$	5 eV 3	2514.2	0.77	
7390.3	1/2+	300 eV <i>30</i>	2519.1	1.12	
7395.7	$3/2^{+}$	40 eV <i>10</i>	2524.6	1.50	
7412.4	1/2	225 eV <i>25</i>	2541.7	1.74	
7414.5	$(3/2^+)$	5 eV 3	2543.9	0.18	
7419.4	3/2-	110 eV 15	2548.9	0.84	
7424.7	5/2+	30 eV 7	2554.3	1.05	
7439.9	5/2+	50 eV 10	2569.9	1.69	
7445.0	$1/2^{+}$	400 eV 40	2575.1	1.35	
7448.4	$1/2^{-}$	20 eV 5	2578.6	0.14	
7461.7	$(3/2^+)$	15 eV 5	2592.2	0.48	
7463.7	3/2-	20 eV 5	2594.2	0.14	
7476.6	1/2-	500 eV 50	2607.4	3.40	
7477.1	$(5/2^+)$	25 eV 7	2608.0	0.77	

42Ca(p,p):resonances <u>1976Wi16,1974Ma39</u> (continued)

E(level) [†]	$J^{\pi\dagger\#}$	$\Gamma_{\mathrm{p}}^{}\dagger}$	E(p) (lab) [†]	$\gamma_{\rm p}^2~{\rm keV}^{\dagger}$	Comments
7478.6	3/2-	30 eV 7	2609.5	0.20	
7483.8	$(5/2^{-})$	2 eV 2	2614.8	0.54	
7492.0	1/2+	175 eV 20	2623.2	0.54	
7502.0	$(5/2^{-})$	5 eV 3	2633.4	1.28	
7508.5	3/2-	70 eV <i>10</i>	2640.1	0.45	
7512.1	1/2-	1.00 keV 10	2643.8	6.34	
7517.6	$(5/2^+)$	15 eV 5	2649.4	0.42	
7527.5	$(3/2^{-})$	15 eV 5	2659.6	0.09	
7539.1	3/2-	550 eV 55	2671.4	3.31	
7540.0	1/2+	15 eV 5	2672.3	0.04	
7557.1	$(5/2^+)$	20 eV 5	2689.9	0.51	
7560.2	$3/2^{-}$	150 eV 15	2693.0	0.87	
7564.1	$(3/2^+)$	15 eV 5	2697.0	0.38	
7570.1	$1/2^{+}$	400 eV 40	2703.2	1.08	E(p)=2715 2, Γ_p =380 eV 30, γ_p^2 =1.1 keV (1974Ma39). E(p)=2727 2, Γ_p =150 eV 10, γ_p^2 =1.2 keV (1974Ma39).
7586.6	$1/2^{-}$	125 eV 15	2720.1	0.69	E(p)=2727 2, Γ_p =150 eV 10, γ_p^2 =1.2 keV (1974Ma39).
7595.5	$(3/2^+)$	15 eV 5	2729.2	0.35	T. P.
7596.9	$1/2^{-}$	400 eV 40	2730.6	2.16	E(p)=2737 2, Γ_p =550 eV 20, γ_p^2 =4.5 keV (1974Ma39).
7599.6	1/2+	80 eV 15	2733.4	0.21	E(p)=2737 2, Γ_p =550 eV 20, γ_p^2 =4.5 keV (1974Ma39). E(p)=2740 2, Γ_p =90 eV 10, γ_p^2 =0.4 keV (1974Ma39).
7604.5	$(3/2^+)$	15 eV 5	2738.4	0.35	у, то
7614.2	3/2-	20 eV 5	2748.3	0.10	
7615.6	$(1/2^{-})$	10 eV 5	2749.7	0.05	
7619.5	1/2-	3.50 keV 35	2753.7	18.16	E(p)=2761 2, Γ_p =770 eV 40, γ_p^2 =5.6 keV (1974Ma39).
7620.8	$(3/2^+)$	10 eV 5	2755.1	0.22	ч ур
7625.8	$(3/2^+)$	15 eV 5	2760.2	0.33	E(p)=2768 2, Γ_p =30 eV 10, γ_p^2 =1 keV (1974Ma39).
7627.1	$(5/2^+)$	20 eV 5	2761.6	0.44	(1) P / P
7630.7	3/2-	185 eV 20	2765.2	0.94	E(p)=2772 2, Jπ=1/2 ⁻ , Γ_p =320 eV 10, γ_p^2 =2.3 keV (1974Ma39).
7639.4	$3/2^{-}$	20 eV 5	2774.1	0.10	(
7644.1	$(3/2^+)$	15 eV 5	2778.9	0.32	
7646.1	$(3/2^+)$	15 eV 5	2781.0	0.32	
7659.6	$3/2^{-}$	50 eV 10	2794.5	0.24	
7666.6	$1/2^{+}$	500 eV <i>50</i>	2802.0	1.17	
7668.0	$1/2^{+}$	600 eV 60	2803.4	1.40	
7675.7	3/2-	50 eV 10	2811.3	0.24	
7683.6	$(5/2^{-})$	18 eV 5	2819.4	2.90	
7693.2	1/2-	60 eV <i>10</i>	2829.2	0.27	
7703.3	$(5/2^+)$	8 eV 5	2839.5	0.15	
7708.3	1/2+	100 eV 10	2844.7	0.22	
7711.1	1/2-	700 eV <i>70</i>	2847.5	3.10	
7714.8	$(5/2^{-})$	15 eV 5	2851.3	2.24	
7721.7	1/2-	25 eV 7	2858.4	0.11	
7733.7	$(5/2^+)$	20 eV 5	2870.7	0.35	
7738.3 7738.5	1/2 1/2 ⁺	75 eV <i>15</i> 25 eV <i>7</i>	2875.4 2875.6	0.32 0.05	
7744.3	3/2-	700 eV <i>70</i>	2881.5	2.93	
7747.3	$\frac{3/2}{1/2^{-}}$	40 eV 10	2884.6	0.17	
7751.4	1/2	25 eV 7	2888.8	0.17	
7754.0	$(5/2^+)$	25 eV 7	2891.4	0.10	
7760.9	$(5/2^+)$	25 eV 7	2898.5	0.42	
7761.3	1/2-	35 eV 7	2898.9	0.14	
7769.4	1/2+	650 eV <i>65</i>	2907.2	1.32	
7784.7	$(3/2^+)$	15 eV 5	2922.9	0.24	
7785.3	$(5/2^{-})$	5 eV 3	2923.5	0.63	
7797.5	$(5/2^+)$	30 eV 7	2936.0	0.47	

⁴²Ca(p,p):resonances 1976Wi16,1974Ma39 (continued)

E(level) [†]	J^{π} †#	$\Gamma_{ m p}^{\dagger}$	E(p) (lab) [†]	$\gamma_{\rm p}^2~{\rm keV}$
7803.6	1/2+	125 eV <i>15</i>	2942.2	0.24
7807.2	3/2-	115 eV <i>15</i>	2945.9	0.44
7807.7	1/2-	35 eV 7	2946.4	0.13
7810.8 7815.6	$(3/2^+)$	5 eV <i>3</i> 10 eV <i>5</i>	2949.6 2954.5	0.08 0.15
7813.6 7818.6	(5/2 ⁺) 1/2 ⁺	200 eV 20	2954.5 2957.6	0.13
7819.0	1/2 1/2 ⁺	80 eV 15	2957.0	0.38
7820.5	$(5/2^+)$	20 eV 5	2959.5	0.13
7820.5 7829.6	$\frac{(3/2)}{1/2^{-}}$	25 eV 7	2968.8	0.09
7830.3	3/2-	240 eV 25	2969.6	0.88
7832.0	$(5/2^{-})$	3 eV 3	2971.3	0.34
7832.8	$(3/2^+)$	30 eV 7	2972.1	0.34
7836.2	$(5/2^{-})$	8 eV 5	2975.6	0.90
7838.0	$(3/2^+)$	25 eV 7	2977.4	0.36
7841.4	1/2+	200 eV 20	2980.9	0.37
7844.2	3/2-	120 eV 15	2983.3	0.43
7850.5	3/2-	75 eV <i>15</i>	2990.2	0.27
7859.2	1/2-	225 eV 25	2999.1	0.79
7859.8	1/2-	30 eV 7	2999.8	0.11
7861.6	3/2+	20 eV 5	3001.6	0.28
7868.5	3/2-	50 eV 10	3008.7	0.17
7919 [‡]	$3/2^+,(5/2^+)^{\ddagger}$	150 [‡] eV 20	3060 [‡]	7 [‡]
7926 [‡]	$1/2^-,(3/2^-)^{\ddagger}$	420 [‡] eV <i>50</i>	3067 [‡]	2 [‡]
7933 [‡]	1/2+‡	270 [‡] eV <i>20</i>	3074 [‡]	0.6 [‡]
7941 [‡]	1/2+‡	1.36 [‡] keV 6	3083 [‡]	3.1 [‡]
7954 [‡]	$1/2^-,(3/2^-)^{\ddagger}$	160 [‡] eV <i>10</i>	3096 [‡]	0.7^{\ddagger}
7961 [‡]	$1/2^-,(3/2^-)^{\ddagger}$	150 [‡] eV <i>10</i>	3103 [‡]	0.6 [‡]
8014 [‡]	1/2-‡	260 [‡] eV <i>10</i>	3157 [‡]	1‡
8019 [‡]	$3/2^+,(5/2^+)^{\ddagger}$	30 [‡] eV <i>10</i>	3163 [‡]	0.4‡
8034 [‡]	$3/2^+,(5/2^+)^{\ddagger}$	80 [‡] eV <i>10</i>	3178 [‡]	1 [‡]
8045 [‡]	$3/2^+,(5/2^+)^{\ddagger}$	40 [‡] eV <i>10</i>	3189 [‡]	0.5
8048 [‡]	1/2+‡	140 [‡] eV <i>10</i>	3192 [‡]	0.3‡
8061 [‡]	1/2-‡	300 [‡] eV 10	3206 [‡]	1‡
				-
8065‡	$3/2^-,(1/2^-)^{\ddagger}$	90 [‡] eV <i>10</i>	3210 [‡]	0.3‡
8071 [‡]	3/2-‡	80 [‡] eV <i>10</i>	3216 [‡]	2.6
8075 [‡]	$9/2^+,(7/2^+)^{\ddagger}$	>55 [‡] eV	3220 [‡]	53 [‡]

[†] From 1976Wi16, unless otherwise indicated. Uncertainty in proton energies is estimated to be 0.1 keV (as specified in a previous paper by 1976Wi16), whereas the uncertainty in the excitation energy is 2 keV, essentially due to $\Delta S(p)$. \ddagger From 1974Ma39. \ddagger From theoretical fits to the experimental data.

42 Ca(p,p' γ):resonances 1984Ka27

1984Ka27: E=3.00-3.35 MeV. Measured (inelastically) scattered protons and γ -rays, $\sigma(\theta)$. For proton spectrum, FWHM=6 keV.

⁴³Sc Levels

E(level) [†]	J^{π}	$E(p)(lab)^{@}$	Cross section (MB)@	E(level) [†]	E(p)(lab) @	Cross section (MB)@
8021‡		3165	11	8112 [#]	3258	0.9
8027 [#]		3171	0.3	8122 [#]	3268	1.7
8054 [#]		3198	0.4	8132 [#]	3278	2.9
8063 [‡]		3208	37	8139 [#]	3285	1.3
8068 [‡]	3/2-	3212	27	8149 <mark>#</mark>	3296	1.4
8074 ^{‡#}	$3/2^{-}$	3220 ^a	51	8193 [#]	3341	0.7
8093‡#		3237 ^b	20			

 $^{^{\}dagger}$ From E_{c.m.}+S(p) where S(p)=4929.8 19 from 2012Wa38 and E_{c.m.} deduced from E_p(lab) unless otherwise noted.

 $^{^{\}ddagger}$ (p,p') from 1525, 2^+ (1525 γ) in 42 Ca. $^{\#}$ (p,p') from 1837, 0^+ (312 γ to 1525 level) in 42 Ca. $^{@}$ Values read off the plots shown by 1984Ka27.

[&]amp; From $\sigma(\theta)$.

^a σ =2.9 mb for scattering from 1837, 0⁺.

^b σ =1.1 mb for scattering from 1837, 0⁺.

⁴²Ca(d,n) **1971Bo04,1968Gr06**

Target 42 Ca J π =0 $^+$.

1971Bo04: E=5.0-6.05 MeV deuteron beam was produced from the εN Van de Graaff at the Hahn-Meitner-Institute, Berlin. Target of a 100 $\mu g/cm^2$ CaCO $_3$ enriched to 92%. Neutron energy was measured by time-of-flight, FWHM \approx 100 keV. Measured $\sigma(E_n,\theta)$. Deduced levels, J, π , L and spectroscopic factors from DWBA analysis.

1968Gr06: E=5.15 MeV deuteron beam was produced from the University of Alberta 5.5 MeV Van de Graaff accelerator. Target of a 86.4% enriched 42 Ca metal evaporated onto a 125 μ m gold backing. Measured $\sigma(E_n,\theta)$. Deduced levels, spectroscopic factors from DWBA analysis.

1992NaZN: E=25 MeV. Measured $\sigma(\theta)$, deduced spectroscopic factors. FWHM≈150 keV. A total of 48 groups reported, out of which 22 groups are above 6.2 MeV.

1971De17: E<5.5 MeV. Measured σ (E).

1965Ok01: measured $\sigma(\theta)$.

⁴³Sc Levels

E(level) [†]	L#	$(2J+1)C^2S^{\ddagger}$	Comments
0	3	4.0	$(2J+1)C^2S$: other: 4.1 (1992NaZN).
152 <i>12</i>	2	1.1	$(2J+1)C^2S$: other: 0.91 (1992NaZN).
475 11	1	0.31	$(2J+1)C^2S$: other: 0.30 (1992NaZN).
860 10	0	0.14	$(2J+1)C^2S$: other: 0.64 (1992NaZN).
1177 9	1	0.72	$(2J+1)C^2S$: other: 0.69 (1992NaZN).
1395 <i>13</i>			
1817 9	1	0.40	$(2J+1)C^2S$: other: 0.35 (1992NaZN).
1947 <i>13</i>	1	0.04	$L_{1}(2J+1)C^{2}S: L=0, S=0.03 (1968Gr06).$
2117 9	(1)	0.08	$(2J+1)C^2S$: other: 0.085 (1992NaZN).
2310 <i>10</i>	3	1.3	$(2J+1)C^2S$: other: 1.1 (1992NaZN).
2657 10	(0)	0.05	E(level): from 1971Bo04 and 1992NaZN.
			$(2J+1)C^2S$: other: 0.18 (1992NaZN).
2830 [@]	1+3 [@]	0.020,0.11	$(2J+1)C^2S$: for p3/2 and f5/2.
2930 [@]	2 ^{@}	$0.070,.054^{@}$	
2977 11			
3330 [@]	3 [@]	0.34,0.28 [@]	
3460	2	0.25,0.20	E(level): from 1971Bo04 and 1992NaZN.
			L , $(2J+1)C^2S$: from 1992NaZN.
3630 9	_		2-
3683 9	3	0.90	$(2J+1)C^2S$: other: 0.84,0.61 (1992NaZN).
3940	3	0.80,0.60	E(level): from 1971Bo04 and 1992NaZN.
4011 <i>12</i>			$L,(2J+1)C^2S$: from 1992NaZN.
4243 9	3	2.2	$(2J+1)C^2S$: 1978En02 give $(2J+1)S=6.5$ with $C^2=2$ for $T=3/2$. Other: 1.5 (1992NaZN).
4379 9	3	0.8	$(2J+1)C^2S$: other: 0.50,0.37 (1992NaZN).
4580 15	3	0.8	(2J+1)C 3. Utilet. 0.30,0.37 (17921VdZIV).
4670 9	1	0.13	
4725 9	1	0.13	$(2J+1)C^2S$: 1978En02 give $(2J+1)S=0.38$ with $C^2=2$ for $T=3/2$. Other: 0.33,0.34 (1992NaZN).
4898 9	(1)	0.21	$E(level),L,(2J+1)C^2S: 1992NaZN$ give L=2, S=0.33,0.27 for a 4910 group.
5026 9	1	0.47	$(2J+1)C^2S$: other: 0.56,0.56 (1992NaZN).
5260 [@]	1 [@]	0.13,0.13	
5511 9	1	0.37,0.38	$L_{1}(2J+1)C^{2}S$: from 1992NaZN for a 5540 group.
5647 9	1	0.11	
5715 9	1	0.16	$(2J+1)C^2S$: other: 0.37,0.38 (1992NaZN).
5826 9			
5988 9			
6041 9	1	0.08	$(2J+1)C^2S$: other: 0.26,0.27 (1992NaZN).
6155 9	1	1.15	$(2J+1)C^2S$: 1978En02 give $(2J+1)S=3.4$ with $C^2=2$ for $T=3/2$. Other: $S=1.7$ (1992NaZN).

⁴²Ca(d,n) **1971Bo04,1968Gr06** (continued)

E(level) [†]	L#	$(2J+1)C^2S^{\ddagger}$	E(level) [†]	L#	$(2J+1)C^2S^{\ddagger}$	E(level) [†]	L#	$(2J+1)C^2S^{\ddagger}$
6777 [@]	1 @	0.53,0.48	8380 [@]	3 [@]	0.77,0.57	10750 [@]	3 [@]	0.44,0.32
7030 [@]	1@	0.51,0.55 [@]	8690 [@]	3 [@]	0.35,0.26	10910 [@]	3 [@]	$0.57, 0.42^{@}$
7160 [@]	2 ^{@}	0.19,0.18 [@]	8910 [@]	3 [@]	0.42,0.31	11260 [@]	3 [@]	0.58,0.43 [@]
7380 [@]	1 @	0.35,0.37 [@]	9170 [@]	3 <mark>@</mark>	0.45,0.33 [@]	11560 [@]	3 [@]	0.31,0.23 [@]
7530 [@]	1@	0.32,0.34	9450 [@]	3 [@]	0.55,0.40 [@]	11840 [@]	1@	$0.25, 0.27^{@}$
7700 [@]	3 [@]	0.41,0.30 [@]	9750 [@]	3 [@]	0.62,0.45 [@]	12090 [@]	1@	$0.30, 0.32^{@}$
7900 [@]	3 [@]	0.20,0.15 [@]	10040 [@]	3 [@]	0.46,0.34 [@]			
8111 [@]	3 [@]	0.30,0.23	10230 [@]	2 [@]	0.18,0.17 [@]			

[†] From 1968Gr06, unless otherwise stated. Above 6155, levels reported by 1992NaZN only are not given in the Adopted Levels due to poor resolution in this region and weak peaks, as judged from spectrum shown by 1992NaZN.

[‡] From 1971Bo04. When unknown, J=3/2 for L=1 and J=7/2 for L=3 is assumed. Relative values for first few levels are also available from 1968Gr06. Values quoted by 1978En02 are (2J+1)S and have been adjusted upwards by ≈50% based on revised normalization factor N. When values are quoted from 1992NaZN, the first value corresponds to L-1/2 and the second value to L+1/2.

[#] From 1971Bo04, unless otherwise stated. L values from 1968Gr06 measured for g.s., 475, 860, 1177, 1817, 1947 and 6155 are in agreement with those from 1971Bo04, except for the 1947 level.

[®] From 1992NaZN only.

⁴²Ca(³He,d) 1971Bo04,1968Br08,1966Sc17

1971Bo04 (also 1967LyZY): E=18 MeV 3 He beam was produced from the E(n) Tandem Van de Graaff of the Max-Planck-Institut, Heidelberg. Target enriched 42 Ca metal foil. Deuterons were momentum analyzed with a broad-range magnetic spectrograph and detected by a Δ E-E counter telescope, overall FWHM=20 keV. Measured σ (E_d, θ). Deduced levels, J, π , L, spectroscopic factors from DWBA analysis. The uncertainty in cross sections is expected to be about 25%.

1968Br08: E=16.5 MeV. A total of 50 groups reported, but about 15 groups not confirmed by 1971Bo04.

1966Sc17: E=11 MeV 3 He beam was produced from the tandem Van de Graaff accelerator at Argonne National Laboratory. Target of enriched CaCO $_3$ on tantalum backing. Deuterons were momentum analyzed with a broad-range magnetic spectrograph and detected in nuclear emulsions. Measured $\sigma(E_d,\theta)$. A total of 30 groups reported with L transfers for ten of these.

Others:

1974La14: E=15, 18 MeV.

1973GuZR (also 1972BrXX): no details are available.

1968To17: measured $\sigma(\theta)$.

1968Ly02: E=18 MeV, measured $\sigma(E_d, \theta)$.

	(max) mb/sr (1971B		amaga gagtian
E(level) 0	cross section 4.13	4662	1.84
-			
154	1.28	4712	1.77
470	5.35	4765	0.22
851	2.07	4810	0.76
1179	14.2	4887	2.25
1809	6.70	5007	4.86
1958	0.71	5187	0.76
2097	1.10	5258	1.07
2291	1.41	5317	0.25
2657	0.69	5490	0.62
2681	0.53	5530	0.47
2978	0.08	5633	1.58
3330	1.24	5724	3.12
3474	0.27	5819	0.52
3613	0.59	5871	0.64
3673	1.77	5921	1.52
3786	0.11	5964	0.75
3939	0.30	6024	1.35
3956	0.15	6079	1.40
3985	0.29	6145	10.3
4234	5.49	6384	0.50
4363	0.62	6444	0.81
4388	0.65	6704	5.54
4555	0.61	6811	1.20
4584	0.21	6917	0.33

._____

⁴³Sc Levels

E(level) [†]	Γ_{\ddagger}	$(2J+1)C^2S^{\#}$	Comments
0.0	3	4.4	$(2J+1)C^2S$: 6.4 (1966Sc17).
154 10	2	0.95	$(2J+1)C^2S$: 1.05 (1966Sc17).
470 <i>10</i> 846 8	1	0.30	$(2J+1)C^2S: 0.57 (1966Sc17).$
851 10	0	0.11	E(level): 856 (1966Sc17), 857 (1968Br08). (2J+1)C ² S: 0.38 (1966Sc17).
876 [@] 8 1179 <i>10</i> 1647 <i>10</i>	1	0.81	(2J+1)C ² S: 1.4 (1966Sc17). E(level): from 1966Sc17. Not reported by 1971Bo04.

⁴²Ca(³He,d) 1971Bo04,1968Br08,1966Sc17 (continued)

E(level) [†]	<u>L</u> ‡	$(2J+1)C^2S^{\#}$	Comments
1809 10	1	0.45	$(2J+1)C^2S: 0.57 (1966Sc17).$
1958 10	1	0.04	(2011)6 8. 0.87 (19008617).
2097 10	1	0.07	$(2J+1)C^2S: 0.10 (1966Sc17).$
2120? [@] 10	1	0.07	(271)6 5. 6.16 (17665617).
		1 -	(27.1) (27.1) (10.00)
2291 10	3	1.6	$(2J+1)C^2S: 1.3 (1966Sc17).$
2339 [@] 10			
2395 [@] 10			
2606 [@] 10			
2657 10	0	0.06	
2681 10			
2875 [@] 10			
2978 10			
3191 [@] 10			
3258 [@] 10			
	2	0.25	
3330 10	3	0.25	
3452 [@] 10	_		
3474 10	3	0.13	
3500 [@] 10			
3613 <i>10</i>			
3673 10	3	0.85	$(2J+1)C^2S$: 0.67 (1966Sc17).
3786 10			
3939 10	3	0.11	
3956 10			
3985 10			
4234 10	3	2.2	$(2J+1)C^2S$: 2.1 (1966Sc17) 1978En02 quote $(2J+1)S=5.5$ for $T=3/2$.
4363 10	3	0.17	
4388 10	3	0.24	
4555 10			
4584 10	1	0.15	
4662 10	1	0.15	$(2J+1)C^2S$: 1978En02 quote $(2J+1)S=0.32$ for $T=3/2$.
4712 10	1	0.13	$(2J+1)C^{-}S$: 19/8En02 quote $(2J+1)S=0.32$ for $1=3/2$.
4765 <i>10</i> 4810 <i>10</i>	1 1	0.02 0.07	
	1	0.07	
4876 [@] 10	1	0.21	
4887 10	1	0.21	
4927 [@] 10		0.25	
5007 <i>10</i>	1	0.35	
5187 <i>10</i>		0.14	
5258 10	1	0.14	
5317 10			
5446 [@] 10			
5490 <i>10</i>	1	0.07	
5530 10	1	0.05	
5633 <i>10</i> 5724 <i>10</i>	1	0.16	
	1	0.31	
5819 <i>10</i> 5871 <i>10</i>			
5921 10			
5964 <i>10</i>			
6024 10	1	0.16	
6079 10	•	3.10	
6105 [@] 10			
0105 10			

42 Ca(3 He,d) 1971Bo04,1968Br08,1966Sc17 (continued)

E(level) [†]	L [‡]	$(2J+1)C^2S^{\#}$	Comments
6145 <i>10</i> 6282 <i>10</i> 6384 <i>10</i> 6444 <i>10</i>	1	1.4	(2J+1)C ² S: 1978En02 quote (2J+1)S=3.5 for T=3/2. E(level): from 1966Sc17, not reported by 1971Bo04.
6704 <i>10</i> 6811 <i>10</i> 6917 <i>10</i>	(1)		

[†] From 1971Bo04, unless otherwise stated. † From 1971Bo04.

[#] From 1971Bo04. Values quoted by 1978En02 are (2J+1)S and adjusted upwards by ≈25% based on standardized normalization factors as in 1977En02.

[@] From 1968Br08 only. Above 2610, values quoted by 1968Br08 are lowered by 15 keV, based on comparison of energies in

¹⁹⁷¹Bo04 and 1966Sc17. Below 2610, the values may be 7 keV too high.

⁴²Ca(¹⁶O, ¹⁵N) **1973Ko01**

1973Ko01: E=48 MeV 16 O beam was produced from the Argonne FN tandem accelerator with intensity of 200-500 nA. Target of isotopically enriched 100 μ g/cm² thick 42 Ca foil on 20 μ g/cm² carbon backings. The ejectiles were identified and detected by up to six Δ E-E counter telescopes of \approx 15- μ m and \approx 100- μ m silicon surface barrier detectors, FWHM \approx 250 keV. Measured $\sigma(\theta)$. Deduced levels, J, π , L from DWBA analysis. Absolute cross sections are accurate to 15%.

⁴³Sc Levels

E(level)	$J^{\pi \dagger}$	L	$d\sigma/d\Omega$ (max) (mb/sr)
0	7/2-	4	0.98
470	$3/2^{-}$	2	0.08
1180	$3/2^{-}$	2	0.12
1810	$3/2^{-}$	2	0.10

[†] From Adopted Levels.

43 Ca(p,n),(p,n γ) 1967Mc07

1967Mc07: (p,n): E=4.0-5.5 MeV proton beam was produced from the SUNI 5.5 MV Van de Graaff accelerator. Target of CaO evaporated onto 0.025 cm tantalum discs 2.5 cm in diam. Neutrons were detected by a Ne 213 liquid scintillator. Measured $\sigma(E_n)$. Deduced levels.

1960Mc12: (p,n): E<4.9 MeV. Measured σ (E). Deduced levels.

1971De17: (p,n): E<5.6 MeV. Measured σ (E).

1972Bi13: (p,n γ): measured ce, deduced α (expt) for 152 γ .

⁴³Sc Levels

E(level) 0 152[‡] 5 476[#] 5 855[@] 5 881 5 1175 10 1347 10 1424 10 1677 15 † From 1967Mc07. [‡] 138 8 (1960Mc12). # 456 10 (1960Mc12). @ 874 10 (1960Mc12).

 $\gamma(^{43}Sc)$

Comments

 E_i (level) E_f Mult. 0 M2 Mult.: from $\alpha(\text{expt})=0.041 \ 4 \ (1972\text{Bi}13)$.

⁴³Ca(p,n),(p,nγ) 1967Mc07

Level Scheme

⁴³Ca(³He,t) **1971Al19**

 $J\pi(^{43}Ca \text{ g.s.})=7/2^{-}$.

1971A119 (also 1971ScYM): E=26 MeV 3 He beam was produced from the MP tandem Van de Graaff at the University of Rochester Nuclear Structure Laboratory. Target of 81.12% enriched 50 μ g/cm 2 CaCO $_3$ on a 20 μ g/cm 2 carbon backing. Tritons were momentum analyzed with an ENge split-pole spectrograph (FWHM=15-20 keV) and detected in 50 μ g NTB emulsion in the focal plane. Measured σ (E $_1$, θ). Deduced levels. Uncertainty in cross sections is \approx 25%.

1971Be29: E=24.6 MeV. Measured $\sigma(\theta)$. Deduced Coulomb-displacement energy=7238 4. All data are from 1971Al19 unless otherwise noted.

⁴³Sc Levels

E(level)	$d\sigma/d\Omega$ (30°) (μ b/sr)	E(level)	L	$d\sigma/d\Omega$ (30°) (μ b/sr)
0@	28.9	2983 4		16.3
152 [†]	1.7	3120 4		15.4
473 [†]	0.8	3254 <i>4</i>		9.9
846 [†]	<1.1 [#]	3324 <i>4</i>		9.6
856 [†]	<1.1 [#]	3464 [‡] 8		7.7
880 [†]	<1.1#	3667 8		
1178 <i>4</i>	3.9	3843 8		7.4
1402 <i>4</i>	1.5	3894 8		13.9
1810 [†]	0.8	3931 8		7.1
1826 <i>4</i>	9.2	4128? <mark>&</mark> 8		3.2
1881 <i>4</i>	6.5	4230 ^a 8	0	46.8
2244 [†]	0.6	4276 8		3.5
2284 [@] 4	11.6	4343 8		3.0
2333 [†]	0.7	4371 [‡] 8		18.9
2455 [‡] 4	16.7	4511 8		8.8
2620? [†]	< 0.5	4658 [‡] 8		
2630 <i>4</i>	6.3	4766 8		8.8
2670 [†]	1.2	4821 ^b 8	2	4.4
2756 [@] 4	4.7	4871 8		21.2

[†] Rounded off energy from Adopted Levels. Poor statistics in (³He,t) (1971Al19).

[‡] Doublet.

^{# 1.1} for 846+856+880.

[@] $\sigma(\theta)$ is similar to 1⁺ to 0⁺ spin-flip transitions.

[&]amp; Possible contaminant.

^a Average of 4234 8 (1971Be29) and 4226 8 (1971Al19). Strongest transition. Interpreted as Δ (t)=0 transition to the IAS of ⁴³Ca g.s. Coulomb-displacement energy=7238 4 (1971Be29).

^b Probable IAS of 593, 3/2⁻ in ⁴³Ca.

⁴⁵Sc(p,t) 1977SaZF,1973Se01

 $J\pi(^{45}Sc\ g.s.)=7/2^{-}$.

1977SaZF: E=40 MeV. Measured $\sigma(\theta)$, DWBA analysis.

1973Se01: E=52 MeV proton beam was produced from the synchrocyclotron at the Institute for Nuclear Studies. Target of scandium oxide on Mylar backings. Tritons were momentum analyzed with a broad-range spectrograph and detected with a proportional counter, FWHM \approx 70 keV. Measured $\sigma(E_t,\theta)$.Deduced levels, L from DWBA analysis.

1972KrZD: E=27 MeV. Measured $\sigma(\theta)$.

⁴³Sc Levels

E(level) [†]	L [‡]	E(level) [†]	L [‡]	E(level) [†]	L‡	E(level) [†]	L [‡]
0	0 ^c	2337 10	2 ^c	3257 10	4	3949 10	3
470 [#] 10	2	2460 10	2 ^c	3290 10	2	4015 10	5
850 [#] 10	2	2549 10	(5,6)	3328 10	2	4049 10	4
1180 [#] <i>10</i>	2	2633 10	2	3373 10	2	4138 <i>10</i>	5
1410 [#] <i>10</i>	0 ^c	2670 10	2	3448 10	5	4169 <i>10</i>	4
1811 [@]	2	2760 ^b 10	4^{b}	3480 10	3	4211 <i>10</i>	3
1830 [#] <i>10</i>	2 c	2793 10	2	3509 10	0	4239 10	$0^{\it c}$
1880 [#] <i>10</i>	2 ^c	2838 10	5	3676 10	3	4650 [#] 10	
1933 [@]	5	2859 10	3	3700 10	6	5236 ^a 10	
2110 <mark>&</mark> <i>10</i>	(3+5)	2984 10	4	3771 10	5		
2246 10	2	3123 <i>10</i>	6	3807 10	5		
2291 10	4	3205 10	(4)	3848 10	5		

[†] From 1977SaZF (as quoted by 1978En02), unless otherwise stated. There are four additional levels between 5700 and 6100 in

[‡] From 1977SaZF (as quoted by 1978En02), unless otherwise stated.

[#] From 1973Se01.
@ Rounded off energy from Adopted Levels.

[&]amp; Doublet.

^a 5250 (1973Se01).

^b L=3 for a 2780 group (1973Se01).

^c From 1973Se01.

⁴⁶Ti(p,α),(pol p,α) 1982Ab03,1981Bo37,1965Pl01

1982Ab03: (p,α) E=40.35 MeV proton beam was produced from the University of Manitoba sector-focused cyclotron. Target of 81.2% enriched Ti metal. α particles were detected by 6 counter telescopes of Δ E-E silicon surface barrier detectors, FWHM=70-80 keV. Measured σ (E $_{\alpha}$, θ). Deduced levels, J, π from DWBA analysis.

1981Bo37: (pol p, α) E=79.2 MeV polarized proton beam was produced from the Indiana University Cyclotron Facility (IUCF). Target of self-supporting enriched Ti foils. α particles were momentum analyzed with the IUCF QDDM magnetic spectrograph and detected in the 1 m long focal plane detector, FWHM=80-100 keV. Measured $\sigma(\alpha,\theta)$ and $A_y(\theta)$. Deduced levels, J, π from DWBA calculations.

1965Pl01: (p,α) E=10 MeV proton beam was produced from the Florida State University Tandem Van de Graaff accelerator. Target of TiO₂ on a carbon backing. α particles were momentum analyzed with a broad range magnetic spectrograph and detected on 50 μ m thick Kodak-NTA emulsions. Measured $\sigma(E_{\alpha},\theta)$. Deduced levels.

1971NoZX: (p,α) E=30 MeV. Measured $\sigma(\theta)$.

⁴³Sc Levels

 σ (theory)=N× σ (DWBA), where N=47.2×10⁶ to give 1.0 for g.s.

E(level) [†]	${f J}^\pi$	Relative cluster factors b	Comments
0 151 <i>3</i> 479 <i>5</i>	7/2 ^{-&a} 3/2 ^{+a}	1.2	$\sigma(\exp)/\sigma(\text{theory})=1.0.$ $\sigma(\exp)/\sigma(\text{theory})=0.75.$
840 [‡] 856 8 884 8 1188 8	5/2-& 1/2+ <i>a</i>		$\sigma(\exp)/\sigma(\text{theory})=2.5.$
1400 1640 [‡]	$7/2^{-a}$ $5/2^{+}$		$\sigma(\exp)/\sigma(\text{theory})=0.1.$
1830 2130 [@]	$11/2^{-}$ &a	0.27	$\sigma(\exp)/\sigma(\text{theory})=1.8.$
2250 [@] 2650 [@]			
2870	$(5/2^+,9/2^+)^{\#}$		J^{π} : $\sigma(\theta)$ (1982Ab03) fits 7/2 ⁺ . $\sigma(\exp)/\sigma(\text{theory})=5.5$.
2990	15/2 ^{-&}	0.67	$\sigma(\exp)/\sigma(\text{theory})=1.2.$
3120 3470 [@] 3810 [@]	19/2-&	1.0	$\sigma(\exp)/\sigma(\text{theory})=0.5.$
4180 [‡] 4230	$(9/2^+, 13/2^+)^{\#}$ $7/2^{-a}$		$\sigma(\exp)/\sigma(\text{theory})=1.1.$
4360 [‡]	17/2-	≤0.11	J^{π} : poor fit of $\sigma(\theta)$ and $Ay(\theta)$ data in (pol p,α) to $17/2^-$ due probably to contribution from other levels in the vicinity or to complex reaction mechanism.
4550?‡ 4700‡ 5200‡ 5230 6220	$(11/2^+, 13/2^-)^\#$ $(15/2^+)^\#$ $17/2^{+\#}$ $3/2^+a$ $1/2^+a$	0.34	Tenney of to complex reaction incentainsin.

[†] From 1965Pl01 for levels below 1200. Above this energy, values are from 1982Ab03, unless otherwise indicated.

[‡] From 1981Bo37.

[#] From Ay(θ) in (pol p, α).

[@] From spectrum figure of 1982Ab03.

46 Ti(p,α),(pol p,α) 1982Ab03,1981Bo37,1965Pl01 (continued)

 $^{^\&}amp;\,\sigma(\theta)$ and ${\rm Ay}(\theta)$ data in (pol p,\$\alpha\$) are consistent with the assigned J\$\pi\$.

^a From comparison of $\sigma(\theta)$ with DWBA calculations (1982Ab03).

^b From 1981Bo37, normalized to 1.0 for 19/2⁻, 3120 state.

Adopted Levels, Gammas

Q(β^-)=-11400 40; S(n)=12288 7; S(p)=4489 7; Q(α)=-4463 7 2012Wa38 S(2n)=29766 29, S(2p)=8761 7, Q(ϵ p)=1937 7 (2012Wa38). 1988Kr11: 40 Ca(12 C, 9 Be), E=480 MeV 12 C beam at GANIL populated only the 19/2⁻ 3066 keV level. 1987Th02: 42 Ca(pol p, π^-), measured cross section and analyzing power. 1983Wa05: 40 Ca(3 He, γ), E=3.19 MeV, measured σ (E, θ), deduced a broad resonance at level of 18.7 MeV 2 with Γ=3.1 MeV 3. 1982Vi05: 42 Ca(p, π^-), measured cross section. 1974An36, 1972Sc21: 40 Ca(12 C, 9 Be), E=114 MeV, measured σ . Mass measurement: 2000HaZY, 1977Mu03, 1972Pr10. Production cross section measurements: 1994B110. Structure calculations: 2010Qi01, 2008Bo23, 2008Pe13, 2006Za08, 2003Ra45, 2001Ro13, 2000De10, 1999Ca12, 1997Bo47, 1992Po04.

⁴³Ti Levels

Cross Reference (XREF) Flags

⁴⁴Cr ε p decay (42.8 ms) D

⁴⁰Ca(⁶Li,t)

```
Be(^{58}Ni,X\gamma)
                                                                                                                     ^{46}\text{Ti}(^{3}\text{He}, ^{6}\text{He})
                                                                                                            Ε
                                                             В
                                                                     ^{40}Ca(\alpha,n\gamma)
                                                            XREF
                                                                                                                            Comments
                                                            ABCDE
                                                                          \%\varepsilon + \%\beta^{+} = 100; \%\varepsilon p = ?
                                                                          \mu=0.85 2 (1993Ma67,2014StZZ)
                                                                          μ: β-NMR in Pt (1993Ma67,1993Ma72,1992Ma63).
                                                                          J^{\pi}: log ft=3.56 to 7/2<sup>-</sup> g.s. of <sup>43</sup>Sc (super-allowed transition). Mirror state of
                                                                             7/2^{-}, g.s. in ^{43}Sc.
                                                                          T_{1/2}: from \beta activity in 1987Ho14. Others: 0.58 s 4 (1948Sc20), 0.58 s
                                                                             (1954Ty33), 0.56 s 2 (1961Ja22), 0.528 s 3 (1960Ja12), 0.50 s 2 (1962Pl02),
                                                                             0.40 s 5 (1963Va37), 0.49 s I (1967Al08).
                                                              BC E J^{\pi}: (3/2<sup>+</sup>) proposed in (<sup>3</sup>He, <sup>6</sup>He) from similarity of \sigma(\theta) pattern of 3/2<sup>+</sup>
 313.0 10 (3/2<sup>+</sup>)
                                           11.9 μs 3
                                                                             states, all believed to be from d<sub>3/2</sub> orbit, in <sup>39</sup>Ca, <sup>47</sup>Cr, <sup>51</sup>Fe and <sup>55</sup>Ni.
                                                                             Possible mirror state of 150, 3/2<sup>+</sup> level in <sup>43</sup>Sc.
                                                                          T_{1/2}: weighted average of 11.7 \mus 3 (2011Ho02) and 12.6 \mus 6 (1978Me15),
                                                                             both from \gamma(t).
  475 10
                                                                          XREF: D(520).
                  (3/2^{-})
                                                                          J^{\pi}: possible mirror state of 3/2^{-}, 472 level in ^{43}Sc.
  998 10
                  (1/2^+)
                                                                        E(level): population of this level in (\alpha, n\gamma) is uncertain. From energy
                                                                             matching, the strong group in (<sup>3</sup>He, <sup>6</sup>He) may correspond to 1022.4 from
                                                                             (\alpha, n\gamma) (as proposed in 1990En08) but proposed J\pi assignments (1/2<sup>+</sup> for
                                                                             998 in ({}^{3}\text{He}, {}^{6}\text{He}) and 5/2<sup>+</sup> for 1022 in (\alpha, n\gamma)) disfavor this correspondence.
                                                                          J^{\pi}: (1/2<sup>+</sup>) proposed in (<sup>3</sup>He, <sup>6</sup>He) from similarity of \sigma(\theta) pattern of 1/2<sup>+</sup>
                                                                             states, all believed to be from d3/2 orbit, in <sup>39</sup>Ca, <sup>47</sup>Cr, <sup>51</sup>Fe and <sup>55</sup>Ni.
1022.4 10
                  (5/2^+)
                                                                          J^{\pi}: possible mirror state of 5/2<sup>+</sup>, 880 level in <sup>43</sup>Sc.
1160 10
                  (1/2 \text{ to } 5/2)^{-}
                                                                          J^{\pi}: L(<sup>6</sup>Li,t)=1 suggests 1/2<sup>-</sup>,3/2<sup>-</sup>,5/2<sup>-</sup>.
                                                                  DE
                                                                        J^{\pi}: possible mirror state of 7/2<sup>+</sup>, 1337 level in <sup>43</sup>Sc.
1483.5 10
                  (7/2^+)
                                                                CE
1760 30
                  (1/2 \text{ to } 5/2)^{-}
                                                                 De
                                                                         J^{\pi}: L(<sup>6</sup>Li,t)=1 suggests 1/2<sup>-</sup>,3/2<sup>-</sup>,5/2<sup>-</sup>.
                                                                          J^{\pi}: L(<sup>6</sup>Li,t)=(5) suggests 7/2<sup>-</sup> to 13/2<sup>-</sup>. 11/2<sup>-</sup> is supported by yrast sequence
1857.7 10
                  (11/2^{-})
                                                              BCDe
                                                                             (19/2^{-}) - (15/2^{-}) - (11/2^{-}) - 7/2 and probable mirror state of 11/2^{-}, 1830
                                                                             level in <sup>43</sup>Sc.
                                                                          J^{\pi}: possible mirror state of 9/2<sup>+</sup>, 1931 level in <sup>43</sup>Sc.
2062.4 10
                  (9/2^+)
                                                                C
2250 10
                                                                 DE
                                                                         J^{\pi}: L(<sup>6</sup>Li,t)=3 suggests 3/2<sup>-</sup> to 9/2<sup>-</sup>.
2438 9
                                                                   Ε
2640 30
                                                                 D
                                                                          J^{\pi}: L(<sup>6</sup>Li,t)=5 suggests 7/2<sup>-</sup> to 13/2<sup>-</sup>.
2951.7 10
                                                              BCDE
                                                                          XREF: E(2990).
                 (15/2^{-})
```

Adopted Levels, Gammas (continued)

⁴³Ti Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF	Comments
3066.4 10	(19/2 ⁻)	556 ns 6	BC	J ^π : L(⁶ Li,t)=7 suggests 11/2 ⁻ to 17/2 ⁻ . 15/2 ⁻ is supported by γ from (19/2 ⁻) in an yrast sequence and probable mirror state of 15/2 ⁻ , 2987 level in ⁴³ Sc. μ =+7.22 I (1978Ha07,2014StZZ) Q=0.33 δ (1981Da06,2014StZZ,2013StZZ) μ : TDPAD (1978Ha07). Q: TDPAD (1981Da06; original value of 0.30 7 re-evaluated to 0.33 δ by 2013StZZ. J ^π : from agreement of experimental μ with that calculated from shell-model with configuration= ν ($f_{7/2}^3 + f_{7/2}^2 f_{5/2}$). Probable mirror state of (19/2 ⁻), 3123 level in ⁴³ Sc with T _{1/2} =472 ns δ . T _{1/2} : weighted average of 551 ns 7 (2011Ho02), 560 ns δ (1978Ha07), 553 ns 2 δ (1981Da06), 560 ns 35 (1978Me09); from γ (t). J ^π : L(⁶ Li,t)=(9) suggests 15/2 ⁻ to 21/2 ⁻ .
3220 30			D	J : L(L1,t) = (7) suggests $13/2 - 10/21/2$.

[†] From $(\alpha, n\gamma)$. From (³He, ⁶He) when a level is not populated in γ -ray study.

γ(⁴³Ti)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
313.0	(3/2+)	312.7 2	100	0	7/2-	[M2]	B(M2)(W.u.)=0.0710 18 E_{γ} : from Be(⁵⁸ Ni, X_{γ}).
1022.4	$(5/2^+)$	709.4		313.0	$(3/2^+)$		
1483.5	$(7/2^+)$	1170.5		313.0	$(3/2^+)$		
1857.7	$(11/2^{-})$	1857.7		0	$7/2^{-}$	[E2]	
2062.4	$(9/2^+)$	1040.0		1022.4	$(5/2^+)$		
2951.7	$(15/2^{-})$	1094.0		1857.7	$(11/2^{-})$	[E2]	
3066.4	$(19/2^{-})$	114.7	100	2951.7	$(15/2^{-})$	[E2]	B(E2)(W.u.)=5.7 3

[†] From $(\alpha, n\gamma)$ unless otherwise noted.

Adopted Levels, Gammas

Level Scheme

⁴⁴Cr εp decay (42.8 ms) 2007Do17,2014Po05

Parent: 44 Cr: E=0; $J^{\pi}=0^{+}$; $T_{1/2}=42.8$ ms 6; $Q(\varepsilon p)=8400$ SY; % εp decay=12.0 20

⁴⁴Cr-T_{1/2}: From ⁴⁴Cr Adopted Levels in ENSDF database, taken from 2007Do17. Others: 25 ms +6-4 from 2014Po05 (time correlation of implantation events due to ⁴⁴Cr and subsequent emission of protons, and using the maximum likelihood method); 53 ms +4-3 (1992Bo37). All the three values are in disagreement. Unweighted average of three values is 40.3 ms 82, much nearer to the 2007Do17 value.

 44 Cr-Q(εp): 8400 300 (syst,2012Wa38).

⁴⁴Cr-% ε p decay: % ε p=10 *I* (2014Po05), 14.0 9 (2007Do17). 2014Po05 discuss accuracy of results in the two measurements.

2007Do17: Fragmentation reaction used to produce ⁴⁴Cr isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator=α-LISE3. Fragment identification by energy loss, residual energy and time-of- flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ-rays were detected by four Ge detectors. Coincidences measured between charged particles and γ-rays. T_{1/2} measured by time correlation of implantation events due to ⁴⁴Cr and subsequent emission of protons and γ-rays. Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed-α and delayed-2p decays are ignored.

2014Po05: ⁴⁴Cr isotope produced in fragmentation of Ni target with a ⁵⁸Ni beam at 160 MeV/nucleon from the NSCL, MSU facility. Fragments separated with the A1900 fragment separator and identified using time-of-flight and energy-loss techniques. The optical time projection chamber (OTPC) was used to detect fragments and the decay of heavy particles such as protons or *α* particles. Measured half-life of ⁴⁴Cr g.s. from time correlation of implantation events and subsequent emission of protons. Total proton branching ratio was measured based on incoming ions and decay events.

⁴³Ti Levels

E(level)

Delayed Protons (⁴³Ti)

E(p) [†]	E(⁴³ Ti)	I(p)	Comments
742 26		0.6 2	-(F)F
			velocity added in quadrature.
1384 <i>12</i>		1.1 3	$E(p)=13\dot{4}0$ 62, $I(p)=\dot{1}.4\%$ 3 (2014Po05).
1741 <i>15</i>		0.6 <i>3</i>	$E(p)=1680 \ 44, I(p)=0.5\% \ 2 \ (2014Po05).$
908 11	0	1.7 3	E(p)=896 53, $I(p)=2.7% 5 (2014Po05)$.

[†] The proton energies are in the center-of-mass system.

⁴⁰Ca(α,**n**γ) **1978Me15**

1978Me15, 1978Me09: E=20 MeV α beam was produced at the Argonne National Laboratory. Target of an enriched (>99.9%) 40 Ca with thickness of about 1 mg/cm², evaporated onto a 0.127 mm thick Pb foil. Neutrons and γ -rays were separated by pulse-shape discrimination using a 5-cm diam by 2.5-cm thick stilbene crystal. γ -rays were detected with a 70-cm³ Ge(Li) detector. Measured E γ , I γ , γ (t), n γ (t), γ (t). Deduced levels, T_{1/2}.

1978Ha07: E=21 MeV α beam was produced from the Chalk River MP tandem accelerator. Targets of ≈ 10 mg/cm² 40 Ca. Delayed γ -rays were detected with Ge(Li) detectors. Measured $\gamma(\theta,H,t)$. Deduced g factors, $T_{1/2}$.

1981Da06: E=21 MeV α beam was produced from the Stony Brook FN tandem. Target of a 400 μ g/cm² Ca. γ -rays were detected with both NaI and Ge(Li) detectors. Measured $\gamma\gamma(\theta,H,t)$. Deduced levels, $T_{1/2}$, quadrupole moments.

Others: 1976Fi08.

All data are from 1978Me15 and 1978Me09 unless otherwise noted.

⁴³Ti Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	7/2-		J^{π} : from Adopted Levels.
313.0 <i>10</i>	$(3/2^+)$	12.6 μs 6	$T_{1/2}$: from $\gamma(t)$ in 1978Me15.
999?	$(1/2^+)$		
1022.4 <i>10</i>	$(5/2^+)$		
1483.5 <i>10</i>	$(7/2^+)$		
1857.7 <i>10</i>	$(11/2^{-})$		
2062.4 10	$(9/2^+)$		
2951.7 <i>10</i>	$(15/2^{-})$		
3066.4 10	$(19/2^{-})$	560 ns 6	μ =+7.22 <i>I</i> (1978Ha07); Q=0.30 <i>T</i> (1981Da06)
			μ ,Q: DPAD method.
			$T_{1/2}$: from $\gamma(t)$ (1978Ha07). 553 ns 21 from 1981Da06.

[†] From analogy with mirror nucleus ⁴³Sc.

γ(⁴³Ti)

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	J_f^{π}	Mult.
114.7	3066.4	$(19/2^{-})$	2951.7	$(15/2^{-})$	[E2]
313.0	313.0	$(3/2^+)$	0.0	$7/2^{-}$	
686 [†]	999?	$(1/2^+)$	313.0	$(3/2^+)$	
709.4	1022.4	$(5/2^+)$	313.0	$(3/2^+)$	
1040.0	2062.4	$(9/2^+)$	1022.4	$(5/2^+)$	
1094.0	2951.7	$(15/2^{-})$	1857.7	$(11/2^{-})$	
1170.5	1483.5	$(7/2^+)$	313.0	$(3/2^+)$	
1857.7	1857.7	$(11/2^{-})$	0.0	$7/2^{-}$	

[†] Placement of transition in the level scheme is uncertain.

⁴⁰Ca(α,**n**γ) **1978Me15**

Level Scheme

⁴⁰Ca(⁶Li,t) **1974Li01**

1974Li01: E=34.0 and 36.0 MeV 6 Li beams were produced from the University of Rochester MP Tandem accelerator, with intensity of 300-400 nA. Targets of \approx 75 μ g/cm 2 natural 40 Ca on carbon and gold backings. Tritons were detected in a spark counter mounted in the focal plane of a magnetic spectrograph, FWHM \approx 50 keV. Measured $\sigma(\theta)$. Deduced levels, L, J, π from DWBA analysis.

1986Pl01: E=156 MeV Measured (fragment) γ -coin, $\sigma(\theta)$.

1982Ne02: E=156 MeV, measured $\sigma(\theta)$.

All data are from 1974Li01 unless otherwise noted.

⁴³Ti Levels

E(level)	<u>L</u> †	S
0	3	1.0
520 <i>30</i>		
1150 <i>30</i>	1	2.5
1760 <i>30</i>	1	1.5
1860 <i>30</i>	(5)	0.63
2230 30	3	1.8
2640 <i>30</i>	5	0.35
2950 <i>30</i>	7	0.24
3220 <i>30</i>	(9)	0.55

[†] From $\sigma(\theta)$. J π values implied are: 1/2⁻ to 5/2⁻ for L=1; 3/2⁻ to 9/2⁻ for L=3; 7/2⁻ to 13/2⁻ for L=5; 11/2⁻ to 17/2⁻ for L=7 and 15/2⁻ to 21/2⁻ for L=9.

⁴⁶Ti(³He, ⁶He) **1977Mu03**

1977Mu03 (also 1977MuZS): E=70 MeV 3 He beam was produced by the MSU cyclotron and incident on thin isotopically enriched carbon-backed metal foils. 6 He particles were detected by a resistive-wire gas-proportional counter. Measured $\sigma(\theta)$. Deduced levels, mass access, Q.

1972Pr10: E=65-75 MeV beams were produced from the MSU sector-focused cyclotron. 6 He particles were analyzed and detected in the focal plane of an Enge split-pole magnetic spectrograph. Measured $\sigma(E(^6\text{He}))$. Deduced mass. Others: 1975Mu09.

⁴³Ti Levels

E(level) [†]	$J^{\pi \ddagger}$
0	$(7/2^{-})$
319 6	$(3/2^+)$
475 10	
998 10	$(1/2^+)$
1160 <i>10</i>	
1470 <i>10</i>	
1800 <i>15</i>	
2250 10	
2438 9	
2990 <i>15</i>	

[†] From 1977Mu03.

[†] From similarity of $\sigma(\theta)$ pattern with states of similar configuration in ³⁹Ca, ⁴⁷Cr, ⁵¹Fe and ⁵⁵Ni (1977Mu03).

Be(58 **Ni**,**X** γ) **2011Ho02**

2011Ho02: E(⁵⁸Ni)=550 MeV/nucleon beam was produced from the UNILAC-SIS accelerator complex at the GSI Helmholtzzentrum fur Schwerionenforschung mbH, Darmstadt, Germany. Target of 4 g/cm² Be. Reaction products were separated by a 70 m long fragment separator (FRS) and identified by time-of-flight and energy loss in the MUSIC detectors. *γ*-rays were detected by 15 high-resolution and high-efficiency CLUSTER germanium detectors. Measured E*γ*, I*γ*. Deduced levels, T_{1/2}.

⁴³Ti Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0 312.7 2	7/2 ⁻ (3/2 ⁺)	11.7 μs 3	$T_{1/2}$: measured by 2011Ho02, γ (t). Adopted value of 11.9 μ s 3 is given in 2011Ho02 based on averaging current value with literature value taken from ENSDF database.
1858 2952	$(11/2^{-})$ $(15/2^{-})$		
3067	$(19/2^{-})$	551 ns 7	$T_{1/2}$: measured by 2011Ho02, γ (t). Adopted value of 556 ns 5 is given in 2011Ho02 based on averaging current value with literature value taken from ENSDF database.

[†] From Adopted Levels.

γ(⁴³Ti)

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_j^r	Mult.	α^{\dagger}	Comments
114.7 2	3067	(19/2-)	2952 (15/	,	0.201 4	B(E2)(W.u.)=4.82 8
312.7 2	312.7	$(3/2^+)$	0 7/2	[M2]	0.0048	B(M2)(W.u.)=0.072 2
1094	2952	$(15/2^{-})$	1858 (11/	2 ⁻) [E2]		
1858	1858	$(11/2^{-})$	0 7/2	[E2]		

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Be(58 Ni,X γ) 2011Ho02

Level Scheme

Be(58 Ni, $X\gamma$):isomers 2011Ho02

2011Ho02: E(⁵⁸Ni)=550 MeV/nucleon beam was produced from the UNILAC-SIS accelerator complex at the GSI Helmholtzzentrum fur Schwerionenforschung mbH, Darmstadt, Germany. Target of 4 g/cm² Be. Reaction products were separated by a 70 m long fragment separator (FRS) and identified by time-of-flight and energy loss in the MUSIC detectors. *γ*-rays were detected by 15 high-resolution and high-efficiency CLUSTER germanium detectors. Measured E*γ*, I*γ*. Deduced levels, T_{1/2}.

⁴³Ti Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments			
0 312.7 2	7/2 ⁻ (3/2 ⁺)	11.7 μs 3	$T_{1/2}$: measured by 2011Ho02, γ (t). Adopted value of 11.9 μ s 3 is given in 2011Ho02 based on averaging current value with literature value taken from ENSDF database.			
1858 2952	$(11/2^{-})$ $(15/2^{-})$					
3067	(19/2-)	551 ns 7	$T_{1/2}$: measured by 2011Ho02, γ (t). Adopted value of 556 ns 5 is given in 2011Ho02 based on averaging current value with literature value taken from ENSDF database.			

[†] From Adopted Levels.

γ(⁴³Ti)

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\dagger \ddagger}$	Comments
114.7 2	3067	$(19/2^{-})$	2952	$(15/2^{-})$	[E2]	0.200	B(E2)(W.u.)=4.82 8
312.7 2	312.7	$(3/2^+)$	0	$7/2^{-}$	[M2]	0.0048	B(M2)(W.u.)=0.072 2
1094	2952	$(15/2^{-})$	1858	$(11/2^{-})$	[E2]		
1858	1858	$(11/2^{-})$	0	$7/2^{-}$	[E2]		

[†] Calculated values from 2008Ki07.

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Be(58 Ni,X γ):isomers 2011Ho02

Level Scheme

Adopted Levels

 $Q(\beta^{-})=-15620 \text{ SY}; S(n)=18370 \text{ SY}; S(p)=100 \text{ } 40; Q(\alpha)=-6170 \text{ } 50$ 2012Wa38

Estimated uncertainties: $\Delta Q(\beta^-)=400$, $\Delta S(n)=300$ (2012Wa38). S(p)=84 43 (2013Ya03, mass measurement using the cooler storage ring CSRe at Lanzhou).

 $S(2n)=34260\ 300\ (syst),\ S(2p)=3850\ 40,\ Q(\varepsilon p)=6920\ 40\ (2012Wa38).$

First identification of ⁴³V nuclide by 1987Po04.

⁴³V produced by Ni(⁵⁸Ni,X) E=55 MeV/nucleon (1987Po04) and E=69 MeV/nucleon (1992Bo37), followed by measurement of fragment spectra.

Mass measurement: 2013Ya03 by storage ring and 2000HaZY by Schottky-mass spectrometry.

Structure and reaction calculations: 2009Pa18, 1999Ca12, 1997Co19, 1995He18, 1993Ma72, 1987Sa19, 1976Ha07, 1975Be56.

⁴³V Levels

Cross Reference (XREF) Flags

- 43 Cr ε decay (21.2 ms)
- $Ni(^{58}Ni,X)$

E(level)	J^{π}	T _{1/2}	XREF	Comments
0		79.3 ms 24	AB	$\%\varepsilon + \%\beta^+ = 100; \%\varepsilon p = ?$
				$T_{1/2}$: from 2007Do17. J^{π} : $7/2^{-}$ proposed from syst (2012Au07).
				Shell-model calculations by 2010Pe15 predict magnetic dipole moment μ =+5.106
				49.
8.25×10^3 ? 23	$(3/2^+)$		A	E(level), J^{π} : probable IAS of ⁴³ Cr g.s. (2001Gi01).

$^{43}\mathrm{Cr}\ \varepsilon\ \mathrm{decay}\ (21.2\ \mathrm{ms})$ 2001Gi01

Parent: ⁴³Cr: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=21.2$ ms 7; $Q(\varepsilon)=15620$ SY; $\%\varepsilon+\%\beta^+$ decay=100.0

 $^{43}\text{Cr-J}^{\pi}$, $T_{1/2}$: From Adopted Levels of ^{43}Cr .

⁴³Cr-Q(ε): 15620 400 (syst,2012Wa38).

⁴³Cr decays also by β^+ p to ⁴²Ti and by β^+ 2p to ⁴¹Sc; by β^+ 3p to ⁴⁰Ca (2011Po01,2012Au08).

2001Gi01: E=74.5 MeV/nucleon 43 Cr beam was produced in projectile fragmentation experiment using Ni(58 Ni,X) at the GANIL facility. Target of a 230.6 mg/cm² thick natural nickel and 2.7 mg/cm² thick carbon stripper. Isotopes were selected with the Alpha spectrometer and the LISE3 separator. The selected isotopes were implanted in a silicon telescope of two silicon detectors. Measured $T_{1/2}(^{43}$ Cr) and delayed-proton spectra.

⁴³V Levels

E(level) J^{π} Comments 8.25×10³ 23 (3/2⁺) Main β^{+} decay may be to IAS state of ⁴³Cr g.s. at 8255 230 (2001Gi01).

 ε, β^+ radiations

 $\frac{\text{E(decay)}}{(7370 \text{ SY)}} = \frac{\text{E(level)}}{8250}$

Ni(58Ni,X) 2007Do17

2007Do17: E=74.5 MeV/nucleon 58 Ni²⁶⁺ beam was produced at SISSE/LISE3 facility in GANIL. Target of natural Ni. Fragments were selected by the separator α -LISE3 and identified by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ -rays were detected by four Ge detectors. Coincidences measured between charged particles and γ -rays.

Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed- α and delayed-2p decays are ignored (2007Do17).

⁴³V Levels

E(level) $T_{1/2}^{\dagger}$ Comments

79.3 ms 24 $T_{1/2}$: earlier measured value was >800 ms by 1992Bo37.

No delayed protons were detected. Thus ⁴³V decays almost 100% by $\beta^++\varepsilon$ decay to ⁴³Ti (2007Do17).

[†] From time correlation of implantation events due to 43 V and subsequent emission of protons and γ -rays (2007Do17).

Adopted Levels

 $S(n)=16610 SY; S(p)=1970 SY; Q(\alpha)=-6920 SY$ 2012Wa38

Estimated uncertainties (2012Wa38): $\Delta S(n)=570$, $\Delta S(p)=500$, $\Delta Q(\alpha)=450$.

S(2n)=37330 (calculated, 1997Mo25). S(2p)=1180 413, $Q(\epsilon p)=15520$ 400 (syst, 2012Wa38).

First identification of ⁴³Cr nuclide by 1992Bo37.

1992Bo37: 43 Cr produced by Ni(58 Ni,X) E=69 MeV/nucleon, followed by measurement of fragment spectra. Measured β^+ p, E(p), I(p), T_{1/2}.

1994B110: ⁴³Cr produced by ⁹Be(⁵⁸Ni,X) E=600 MeV/nucleon. Measured production cross sections.

2001Gi01, 2001Gi02: 43 Cr produced by Ni(58 Ni,X) E=74.5 MeV/nucleon. Selected isotopes implanted in a Δ E-E silicon detector telescope. Measured $T_{1/2}$, E(p), I(p).

2007Do17: E=74.5 MeV/nucleon ⁵⁸Ni was produced at the SISSI-LISE3 facility of GANIL, incident on a natural nickel target of 250 mg/cm². Fragments were selected by the α -LISE3 separator, identified by two micro-channel plate (MCP) detectors and detected in a detection setup consisting of silicon and germanium detectors. Measured β -delayed proton and γ spectra, branching ratios, half-life

2011Po01: E=161 MeV/nucleon ⁵⁸Ni beam was produced at the NSCL, MSU, incident on a target of 800 mg/cm² natural nickel foil. Reaction products were separated by the A1900 fragment separator and identified by time-of-flight (tof) and energy-loss. Decays were detecte using the Optical Time Projection Chamber (OTPC). Measured Ep, Ip, branching ratios for difference decay modes. Deduced half-life.

2012Au08 (also 2012As02): 43 Cr nuclei produced in the reaction Ni(58 Ni,X), E(58 Ni)=75 MeV/nucleon using LISE3 separator at GANIL 43 Cr ions were separated, identified and then implanted onto the time projection chamber (TPC). Decays were detected in a time-projection chamber (TPC), where signals from four gas electron multipliers (GEM) detected in a two-dimensional strip detector combined with drift-time analysis were used to reconstruct the tracks of the particles in three dimensions. Characterization of the TCP was done with the β^+ p decay of 52 Ni with reference to proton energies and branching ratios. Measured energy loss, decay events, angular correlation between two protons. Deduced delayed one-, two-, and three-proton decay branching ratio. Implantation and decay events were time correlated. Recorded events in this study: 180 events for β^+ 2p emission, and three events for β^+ 3p emission from decay of 43 Cr.

Structure and reaction calculations: 2004Bb14, 2003Br07, 2003Gr04, 2003Gr24, 1997Co19, 1994B110, 1991De26, 1975Be56.

⁴³Cr Levels

 $\%\varepsilon + \%\beta^{+} = 100; \%\varepsilon p = 79.3 \ 30 \ (2012Au08); \%\varepsilon 2p = 11.6 \ 10 \ (2012Au08)$ $\% \varepsilon 3p = 0.13 + 18 - 8 (2012Au08)$ Other: $\%\varepsilon + \%\beta^{+} = 12.4$, $\%\varepsilon p = 81.4$, $\%\varepsilon 2P = 7.1.4$, $\%\varepsilon 3p = 0.08.3$ (2011Po01). $\%\beta^+\alpha=?$ ${}^{6}\beta^{+}p=23\ 6$ and ${}^{6}\beta^{+}2p=6\ 5$ from 1992Bo37. ${}^{6}\beta^{+}p+{}^{6}\beta^{+}$ 2p=12 4 to the IAS (1992Bo37). Search for β delayed α decay proved inconclusive (1992Bo37). Theory: 1991De26. Total delayed-proton emission of 88% 4 from 2011Po01 compares well with another recent measurement of 92.5% 28 by 2007Do17. Relative branching ratios of delayed protons: 91.8% 3 for one-proton, 8.1% 3 for two-proton and 0.096% 30 for three-proton emissions (2011Po01). Relative branching ratios of delayed protons: 87.1% 25 for one-proton, 12.7% 10 for two-proton and 0.14% + 19-9 for three-proton emissions (2012Au08). Absolute branches were deduced using total delayed proton emission branch of 91.0% 23 from 2007Do17 and 2011Po01. Measured E(p)=4363 keV 9 (2007Do17) assigned to β^+ 2p mode. From simulations studies and in comparison with the experimental results, 2012Au08 show that the two protons do not share equally the delayed-2p decay energy and are emitted sequentially. A ratio of 34%-66% between the two protons is in good agreement with experimental data. In addition, an isotropic distribution of the relative angle angle between the two protons is a signature of sequential emission which is supported by measured angular correlation between two protons emitted by

the decay of ⁴³Cr (2012Au08).

 J^{π} : proposed by 2001Gi01 from the β^+ decay to the (3/2⁺) IAS state in ⁴³V.

 $T_{1/2}$: weighted average of 20.6 ms 9 (2011Po01, decay time distribution of β -delayed one-proton events), 21.1 ms 4 (2007Do17, decay time distribution), 21.6 ms 7 (2001Gi01, decay time distribution), 21 ms +4-3 (1992Bo37, decay time distribution).

⁴⁵Fe 2p decay (2.4 ms) 2012Au08,2009Mi29,2007Gi10

Parent: 45 Fe: E=0; J^{π} =(3/2+); $T_{1/2}$ =2.4 ms 3; Q(2p)=1210 50; %2p decay=70 4

⁴⁵Fe-Q(2p): From 2012Au08: Other: 1154 keV 16 (2012Wa38).

⁴⁵Fe-J^π: From systematics (2012Au07: NUBASE-2012).

 45 Fe-T_{1/2}: Weighted average of 2.6 ms 2 (2007Mi36,2007Mi40, from decay time), 3.6 ms +16-8 (2012Au08,2007Gi10, determined by the time difference between implantation events and subsequent decay event), 1.6 ms +5-3 (2005Do20, from decay of the daughter activity), 3.2 ms +26-10 (2002Pf02, decay time distribution), 4.7 ms +34-14 (2002Gi09, decay time).

⁴⁵Fe-%2p decay: %2p=70 4, %ε+%β⁺=30 4 (2007Mi36,2007Mi40) Others: %2p=57 10 (2005Do20), 65% 5 (2008Bl03), 78 +14-22 (2012Au08).

2012Au08: visualization of two individual protons from a 2p decay mode. This study was a new analysis of data from the first observation of two proton decay data in ⁴⁵Fe that has already been presented in 2007Gi10. ⁴⁵Fe nuclei were produced in the reaction Ni(⁵⁸Ni,X) using the LISE3 separator at GANIL. ⁴⁵Fe ions were separated, identified and then implanted onto the time projection chamber (TPC). The identification was done by measuring energy loss in the first Si detector and tof between the micro-channel plate and the Si detector. Decays were detected in a time-projection chamber (TPC), where signals from four gas electron multipliers (GEM) detected in a two-dimensional strip detector combined with drift-time analysis were used to reconstruct the tracks of the particles in three dimensions. Characterization of the TCP was done with the β⁺p decay of ⁵²Ni with reference to proton energies and branching ratios. Measured energy loss, decay event counts, angular correlation between two protons. Deduced T_{1/2} of ⁴⁵Fe, branching ratio. Experimental T_{1/2} of ⁴⁵Fe was compared with predictions from three-body model. Implantation and decay events were time correlated with ten events were recorded for ⁴⁵Fe implantations and seven events recorded for the 2p decay of ⁴⁵Fe. Other recorded events in this study: β⁺ delayed one-proton decay (one event) and β⁺ delayed two-proton decay (two events). This study was a new analysis of data from the first observation of two proton decay data in ⁴⁵Fe that has already been presented in 2007Gi10.

2007Mi36, 2007Mi40, 2009Mi29: E=161 MeV/nucleon provided by the K500-K1200 coupled cyclotrons at the NSCL, MSU. ⁴⁵Fe ions were separated from other reaction products by the A1900 fragment separator. Decays of ⁴⁵Fe were detected using the Optical Time Projection Chamber (OTPC), consisting of parallel wire mesh electrodes and filled with a gas mixture of 66% He, 32% Ar, 1% N₂, 1% CH₄. Incoming ⁴⁵Fe ions and their decay products induce ionizing electrons along their trajectories which result in a camera signal, and a photo-multiplier signal which are used to reconstruct the particle momentum. Two dgf-4C modules record ΔE and time-of-flight information. Measured decay particle spectra, half-lives, branching ratios and angular and energy correlations between the two protons emitted from the ⁴⁵Fe ground state.

2007Gi10: ⁴⁵Fe nuclei produced in the reaction Ni(⁵⁸Ni,X) at the SISSI-α-LISE3 facility at GANIL. Two individual protons observed for the first time in a 2-proton decay mode using a time-projection chamber. Measured half-life and total decay energy. A total of ten ⁴⁵Fe implantations were recorded.

2005Do20: 45 Fe produced by fragmentation of a primary beam of 58 Ni at 74.5 MeV/nucleon with a natural Ni target. Fragments selected by α -LISE3 separator, the detection system for fragments and β particles consisted of four silicon detectors, time-of-flight technique. A total of 30 implantation events were assigned to 45 Fe. Also see 2005Bl31, 2005Gi15.

Others: 2011B101, 2009B106, 2008Mi03, 2007Gr12, 2007Gr13, 2006Ro09, 2005Pf01, 2005Pf02, 2004B105, 2004B119, 2004Pf02, 2003B121, 2003Gi13, 2003Pf01, 2002Gi09, 2002Pf02, 2002Pf03, 2001Gi01, 2001Gi02, 1992Bo37.

⁴³Cr Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{J}^{\pi}}{(3/2^{+})} \quad \frac{\text{T}_{1/2}}{21.2 \text{ ms } 7}$

Comments

 J^{π} , $T_{1/2}$: from Adopted Levels.

From two-proton emission from ⁴⁵Fe, total decay energy=1.21 MeV 5 (2012Au08), in agreement with previous measurement of 1.151 MeV 15 (2008Bl03). The protons share equally the decay energy, and are emitted simultaneously (2012Au08).

REFERENCES FOR A=43

```
1935Fr04
                O.R.Frisch - Nature 136, 220 (1935).
                H.Walke - Phys.Rev. 52, 400 (1937).
1937Wa07
1940Wa01
                H.Walke - Phys.Rev. 57, 163 (1940).
1945Hi04
                C.T.Hibdon, M.L.Pool - Phys.Rev. 67, 313 (1945).
                C.T.Hibdon, M.L.Pool, J.D.Kurbatov - Phys.Rev. 67, 289 (1945).
1945Hi05
1948Sc20
                A.D.Schelberg, M.B.Sampson, A.C.G.Mitchell - Rev.Sci.Instr. 19, 458 (1948).
                R.Overstreet, L.Jacobson, P.R.Stout - Phys.Rev. 75, 231 (1949).
1949Ov01
1952Ha44
                J.R.Haskins, J.E.Duval, L.S.Cheng, J.D.Kurbatov - Phys.Rev. 88, 876 (1952).
1953Du22
                J.E.Duval, M.H.Kurbatov - J.Am.Chem.Soc. 75, 2246 (1953).
1953Nu08
                R.H.Nussbaum, R.van Lieshout, A.H.Wapstra - Phys.Rev. 92, 207 (1953).
1954An25
                G.Andersson - Phil.Mag. 45, 621 (1954).
1954Co70
                B.L.Cohen - Phys.Rev. 94, 117 (1954).
1954Ke14
                F.M.Kelly, H.Kuhn, A.Pery - Proc.Phys.Soc.(London) 67A, 450 (1954).
                T.Lindqvist, A.C.G.Mitchell - Phys.Rev. 95, 1535 (1954).
1954Li42
1954Nu22
                R.H.Nussbaum - Thesis, University of Amsterdam (1954).
1954Ty33
                H.Tyren, P.A.Tove - Phys.Rev. 96, 773 (1954).
1955Ne01
                W.E.Nervik, G.T.Seaborg - Phys.Rev. 97, 1092 (1955).
                G.Backstrom, T.Lindqvist - Arkiv Fysik 11, 465 (1957).
1957Ba07
                C.K.Bockelman, C.M.Braams, C.P.Browne, W.W.Buechner et al. - Phys.Rev. 107, 176 (1957).
1957Bo99
1957Bp01
                C.K.Bockelman, W.W.Buechner - Phys.Rev. 107, 1366 (1957).
1957Br19
                C.M.Braams - Phys.Rev. 105, 1023 (1957).
                T.Lindqvist - Arkiv Fysik 12, 495 (1957).
1957Li39
1959Be72
                N.Benczer-Koller, A.Schwarzschild, C.S.Wu - Phys.Rev. 115, 108 (1959).
1959Pe26
                F.R.Petersen, V.J.Ehlers, W.B.Ewbank, L.L.Marino, H.A.Shugart - Phys.Rev. 116, 734 (1959).
1960Ja12
                J.Janecke - Z.Naturforsch. 15a, 593 (1960).
1960Mc12
                G.J.McCallum, A.T.G.Ferguson, G.S.Mani - Nuclear Phys. 17, 116 (1960).
                J.Janecke, H.Jung - Z.Phys. 165, 94 (1961).
1961Ja22
                H.J.Martin, M.B.Sampson, D.W.Miller - Phys.Rev. 121, 877 (1961).
1961Ma03
1962Pl02
                H.S.Plendl, B.Sarma, J.W.Nelson - Conf.Low Energy Nuclear Phys., Harwell (September 1962); AERE-R-4131,p.22,
                 Abstr.7a.8 (1962).
1962Ra11
                J.Rapaport, A.Sperduto - Mit-Lns Progr. Rept. p.62 (November 1962).
                J.Dubois, L.Broman - Trans. Chalmers Univ. Technol. Gothenburg. No. 268 (1963).
1963Du11
                S.Hontzeas, L.Yaffe - Can.J.Chem. 41, 2194 (1963).
1963Ho17
1963La04
                N.O.Lassen, C.Larsen - Nucl. Phys. 42, 183 (1963).
                S.S. Vasilev, L.Y. Shavtvalov - Zh. Eskperim. i Teor. Fiz. 45, 1385 (1963); Soviet Phys. JETP 18, 955 (1964).
1963Va37
1964Ba46
                K.A.Baskova, S.S.Vasilev, M.A.Khamo-Leila, L.Y.Shavtvalov - Zh. Eksperim. i Teor. Fiz. 47, 1162 (1964); Soviet
                 Phys. JETP 20, 781(1965).
                J.H.Bjerregaard, P.F.Dahl, O.Hansen, G.Sidenius - Nucl. Phys. 51, 641 (1964).
1964Bi01
1964Br27
                K.Brandi, R.Engelmann, V.Hepp, E.Kluge et al. - Nucl. Phys. 59, 33 (1964).
1964Br29
                L.Broman - Arkiv Fysik 26, 243 (1964).
1964Ho14
                R.E.Holland, F.J.Lynch, K.-E.Nysten - Phys.Rev.Letters 13, 241 (1964).
                N.O.Lassen, C.Larsen - Nucl. Phys. 56, 259(1964).
1964La14
                L.L.Lee, Jr., J.P.Schiffer - Bull.Am.Phys.Soc. 9, No.4, 457, GA7 (1964).
1964Le02
1964Sa26
                Z.Sawa, N.G.E.Johansson, J.Sztarkier, G.Wickenberg - Arkiv Fysik 26, 281 (1964).
1965Be11
               T.A.Belote, J.H.Bjerregaard, O.Hansen, G.R.Satchler - Phys.Rev. 138, B1067 (1965).
                T.A.Belote, W.E.Dorenbusch, O.Hansen, J.Rapaport - Nucl. Phys. 73, 321 (1965).
1965Be23
1965Br31
                L.Broman, J.Dubois - Nucl. Phys. 72, 529 (1965).
1965De15
                A.G.Demin, Y.P.Kushakevich - Yadern. Fiz. 1, 198 (1965); Soviet J.Nucl. Phys. 1, 138 (1965).
                V.V.Okorokov, D.L.Tolchenkov - Yad.Fiz. 1, 448 (1965); Sov.J.Nucl.Phys. 1, 320 (1965).
1965Ok01
                H.S.Plendl, L.J.Defelice, R.K.Sheline - Nucl. Phys. 73, 131 (1965).
1965Pl01
1966Br21
               L.Broman, J.Dubois, G.Holmen - Arkiv Fysik 32, 407 (1966).
                T.W.Conlon, B.F.Bayman, E.Kashy - Phys.Rev. 144, 941 (1966).
1966Co06
1966Co13
                R.G.Cornwell, W.Happer, Jr., J.D.McCullen - Phys.Rev. 141, 1106 (1966).
1966Cu01
                B.Cujec - Nucl. Phys. 81, 523(1966).
                W.E.Dorenbusch, T.A.Belote, O.Hansen - Phys.Rev. 146, 734 (1966).
1966Do02
                J.A.Farrell, E.G.Bilpuch, H.W.Newson - Ann. Phys. (N.Y.) 37, 367 (1966).
1966Fa02
1966GiZZ
                R.O.Ginaven - Thesis, Massachusetts Institute of Technology (1966).
                W.M.Good, D.Paya, R.Wagner, T.Tamura - Phys.Rev. 151, 912 (1966).
1966Go38
1966Sc17
                J.J.Schwartz, W.P.Alford - Phys.Rev. 149, 820 (1966).
1966WaZW
                D.Ward, M.J.Emmott, J.Leigh, W.R.Phillips - Bull.Am.Phys.Soc. 11, No.3, 406, KA7 (1966).
                A.M.Aldridge, H.S.Plendl, J.P.Aldridge, III - Nucl. Phys. A98, 323(1967).
1967Al08
1967Cl05
                J.E.Cline, R.L.Heath - IDO-17222 (1967).
                T.A.Critchley, W.R.Phillips - Phys.Letters 25B, 328 (1967).
1967Cr08
1967Fo01
                D.B.Fossan, A.R.Poletti - Phys.Letters 24B, 38 (1967).
```

```
1967Ha41
                O.Hansen - Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba Press, p.527
                U.Lynen - Thesis, Heidelberg Univ. (1967).
1967LyZY
                W.R.McMurray, M.Peisach, R.Pretorius, P.van der Merwe, I.J.van Heerden - Nucl. Phys. A99, 6 (1967).
1967Mc07
1967Ph01
                W.R.Phillips, R.De la Pena, T.A.Critchley - Nucl. Phys. A90, 379(1967).
1967Sc08
                J.J.Schwartz, W.P.Alford, T.H.Braid, L.Meyer-Schutzmeister - Phys.Rev. 155, 1191 (1967).
                S.A.Andersen, O.Hansen, R.Chapman, S.Hinds - Nucl. Phys. A120, 421 (1968); Erratum Nucl. Phys. A139, 707 (1969).
1968An10
1968Be36
               T.A.Belote, W.E.Dorenbusch, J.Rapaport - Nucl. Phys. A120, 401 (1968).
                L.Broman - Arkiv Fysik 35, 371 (1968).
1968Br08
                J.C.Browne, G.A.Keyworth, D.P.Lindstrom, J.D.Moses et al. - Phys.Letters 28B, 26 (1968).
1968Br27
1968Ch12
                C.Chasman, K.W.Jones, R.A.Ristinen - Phys.Rev. 169, 911 (1968).
1968De04
                A.Denning, A.E.MacGregor, A.E.Ball, G.Brown, R.N.Glover - Phys.Letters 26B, 437 (1968).
1968De09
                A.Denning, J.G.B.Haigh, G.Brown - Phys.Letters 27B, 159(1968).
                W.E.Dorenbusch, F.T.Dao, J.Rapaport, T.A.Belote - Phys.Letters 26B, 148 (1968).
1968Do02
1968Gr06
                T.B.Grandy, W.J.McDonald, W.K.Dawson, G.C.Neilson - Nucl. Phys. A111, 469(1968).
1968Ly01
                U.Lynen, R.Santo, D.Schmitt, R.Stock - Phys.Letters 27B, 76 (1968).
1968Ly02
                U.Lynen, R.Santo, R.Stock, R.Bock - Proc.Symp.Direct Reactions with <sup>3</sup>He, Tokyo (1967), K.Matsuda, H.Kamitsubo,
                  Eds., IPCR Cyclotron Progr.Rept., Suppl.1, p.147 (1968).
                J.C.Merdinger, N.Schulz, R.W.Kavanagh - Nucl.Phys. A115, 204(1968).
1968Me14
1968Sa09
                R.Santo, R.Stock, J.H.Bjerregaard, O.Hansen et al. - Nucl. Phys. A118, 409 (1968); Erratum Nucl. Phys. A139, 711
                S.M.Smith, A.M.Bernstein, M.E.Rickey - Nucl. Phys. A113, 303(1968).
1968Sm05
1968So11
                A.Sorriaux, B.de la Fourniere, J.Ritaine - Nucl.Instr.Methods 62, 61 (1968).
                D.L.Tolchenkov - Yadern.Fiz. 8, 1096 (1968); Soviet J.Nucl.Phys. 8, 636 (1969).
1968To17
1969Gr08
                H.Gruppelaar, A.M.F.Op Den Kamp, A.M.J.Spits - Nucl. Phys. A131, 180 (1969).
1969Ha03
                P.G.Hansen, P.Hornshoj, H.L.Nielsen, K.Wilsky et al. - Phys.Lett. 28B, 415 (1969); Erratum Phys.Lett. 28B, 663
1969Ka18
                R.W.Kavanagh, N.Schulz, J.C.Merdinger - Rev.Phys.Appl. 4, 215 (1969).
1969La16
                R.E.Larson, C.M.Gordon - Nucl. Phys. A133, 237(1969).
1969Ra16
                H.Ravn - J.Inorg.Nucl.Chem. 31, 1883 (1969).
                H.W.Taylor, J.D.King, H.Ing, R.J.Cox - Can.J.Phys. 47, 1539 (1969).
1969Ta07
1969Va41
                S.S. Vasilev, N.N. Kolesnikov, L.Y. Shavtvalov - Vestn. Mosk. Univ., Fiz., Astron. No.5, 3 (1969).
1969Wa19
                J.Walinga, J.C.Manthuruthil, C.P.Poirier - Phys.Rev. 185, 1439 (1969).
1969Yn01
                J.L. Yntema - Phys. Rev. 186, 1144 (1969).
1970Aj01
               F.Ajzenberg-Selove, G.Igo - Nucl. Phys. A142, 641 (1970).
1970Ba51
                G.C.Ball, J.S.Forster, F.Ingebretsen, C.F.Monahan - Can.J.Phys. 48, 2735 (1970).
                G.Brown, A.Denning, A.E.MacGregor - Nucl. Phys. A153, 145 (1970).
1970Br27
1970Fo06
                J.S.Forster, G.C.Ball, F.Ingebretsen, C.F.Monahan - Phys.Lett. 32B, 451 (1970).
1970Gi10
                R.O.Ginaven, A.M.Bernstein - Nucl. Phys. A154, 417 (1970).
                R.E.Holland, F.J.Lynch - Phys.Rev. C2, 1365 (1970).
1970Ho26
1970Hu11
                J.Hudis, E.Hagebo, P.Patzelt - Nucl. Phys. A151, 634 (1970).
1970La11
                R.E.Larson, C.M.Gordon - Radiochim. Acta 13, 61 (1970).
1970Ma13
                J.C.Manthuruthil, C.P.Poirier, J.Walinga - Phys.Rev. C1, 507 (1970).
1970Pe07
                F.Pellegrini, R.A.Ricci - Nuovo Cimento 65A, 318 (1970).
1970Sa24
               Z.Sawa, J.Sztarkier, I.Bergstrom - Phys.Scr. 2, 261 (1970).
                W.P.Alford, N.Schultz, A.Jamshidi - Nucl. Phys. A174, 148 (1971).
1971Al19
1971Ar32
                A.G.Artukh, V.V.Avdeichikov, G.F.Gridnev, V.L.Mikheev et al. - Nucl. Phys. A176, 284 (1971).
1971Ba10
                G.Backenstoss, S.Charalambus, H.Daniel, W.D.Hamilton et al. - Nucl. Phys. A162, 541 (1971).
                G.C.Ball, J.S.Forster, D.Ward, C.F.Monahan - Phys.Lett. 37B, 366 (1971).
1971Ba92
1971Be29
                F.D.Becchetti, D.Dehnhard, T.G.Dzubay - Nucl. Phys. A168, 151 (1971).
                R.E.Birkett - Thesis, Univ.California (1971); UCRL-51060 (1971).
1971BiZH
                J.N.Black - Thesis, Michigan State Univ. (1971); Diss.Abstr.Int. B33, 621 (1972).
1971BIZH
                J.Bommer, K.Grabisch, H.Kluge, G.Roschert et al. - Nucl. Phys. A160, 577 (1971).
1971Bo04
                G.Brown, A.Denning, A.E.Macgregor, R.N.Glover - Nucl. Phys. A165, 641 (1971).
1971Br14
1971Ch56
                D.M.H.Chan, J.R.Bird - Aust.J.Phys. 24, 671 (1971).
1971Cr02
               F.P.Cranston, D.H.White - Nucl. Phys. A169, 95 (1971).
1971De17
               T.J.de Waal, M.Peisach, R.Pretorius - Radiochim. Acta 15, 123 (1971).
                C.Gaarde, K.Kemp, Y.V.Naumov - Izv.Akad.Nauk SSSR, Ser.Fiz. 35, 687 (1971); Bull.Acad.Sci.USSR, Phys.Ser. 35,
1971Ga40
                  629 (1972).
                R.N.Horoshko, C.Towsley, D.Cline - Proc.Topical Conf.Struct.Of 1f<sub>7</sub>/<sub>2</sub> Nuclei, Legnaro (Padova), R.A.Ricci, Ed., Ed-
1971HoYN
                 itrice Compositori, Bologna, p.419 (1971).
                K.Nakai, B.Skaali, N.J.S.Hansen, B.Herskind - Phys.Rev.Lett. 27, 155 (1971).
1971Na10
1971NoZX
                J.A.Nolen, Jr., P.Zemany - Bull.Am.Phys.Soc. 16, No.10, 1183, FB1 (1971).
                C.P.Poirier, A.Tveter, J.C.Manthuruthil, J.Walinga et al. - Phys.Rev. C3, 1939 (1971).
1971Po03
```

```
1971Ra35
                J.Rapaport, W.E.Dorenbusch, T.A.Belote - Nucl. Phys. A177, 307 (1971).
1971ScYM
                N.Schulz, W.P.Alford, A.Jamshidi - Proc.Top.Conf.Structure 1f<sub>7</sub>/<sub>2</sub> Nuclei, Legnaro, Padova, R.A.Ricci, Ed., Editrice
                 Compositori, Bologna, p.373 (1971).
                N.G.Alenius, S.E.Arnell, O.Skeppstedt, E.Wallander, Z.P.Sawa - Nuovo Cim. 8A, 147 (1972).
1972A112
                G.C.Ball, J.S.Forster, F.Ingebretsen, C.F.Monahan - Nucl. Phys. A180, 517 (1972).
1972Ba04
                M.Bini, P.G.Bizzeti, A.M.Bizzeti Sona - Phys.Rev. C6, 784 (1972).
1972Bi13
                G.Bruge, A.Chaumeaux, S.Fortier, P.Gaillard et al. - CEA-N-1600, p.104 (1972).
1972BrXX
                J.F.Emery, S.A.Reynolds, E.I.Wyatt, G.I.Gleason - Nucl.Sci.Eng. 48, 319 (1972).
1972Em01
                I.Fischman, C.E.Thorn, A.M.Bernstein, D.Cline - Phys.Lett. 41B, 298 (1972).
1972Fi20
1972Gr04
                H.Gruppelaar, P.J.M.Smulders - Nucl. Phys. A179, 737 (1972).
1972Ka41
                R.W.Kavanagh, N.Schulz, J.C.Merdinger - Nucl. Phys. A195, 302 (1972).
                J.J.Kraushaar, R.Graetzer, J.R.Shepard - COO-535-674, p.18 (1972).
1972KrZD
1972Ma23
                P.Martin, M.Buenerd, Y.Dupont, M.Chabre - Nucl. Phys. A185, 465 (1972).
                P.Martin - Thesis, Univ.Sci.Med.Grenoble (1972); FRNC-TH-201 (1972).
1972MaXL
19720101
               L.Olschewski - Z.Phys. 249, 205 (1972).
1972Pr10
                I.D.Proctor, W.Benenson, J.Dreisbach, E.Kashy et al. - Phys.Rev.Lett. 29, 434 (1972).
1972Sc21
                D.K.Scott, P.N.Hudson, P.S.Fisher, C.U.Cardinal et al. - Phys.Rev.Lett. 28, 1659 (1972).
1972Wa20
                S.L.Waters - Radiochim. Acta 17, 63 (1972).
                A.Guichard, P.Gaillard, J.-Y.Grossiord, M.Gusakow et al. - LYCEN-7301, p.13 (1973).
1973GuZR
                H.J.Korner, G.C.Morrison, L.R.Greenwood, R.H.Siemssen - Phys.Rev. C7, 107 (1973).
1973Ko01
1973Lu08
                O.Lutz, A.Schwenk, A.Uhl - Z.Naturforsch. 28a, 1534 (1973).
1973Sa10
                Z.P.Sawa - Phys.Scr. 7, 5 (1973).
                K.K.Seth, H.Ohnuma, T.Suehiro, S.Yamada, S.Takeda - Phys.Rev.Lett. 30, 132 (1973); Erratum Phys.Rev.Lett. 30, 250
1973Se01
                N.Anyas-Weiss, J.C.Cornell, P.S.Fisher, P.N.Hudson et al. - Phys.Rep. 12, 201 (1974).
1974An36
1974Br04
                B.A.Brown, D.B.Fossan, J.M.McDonald, K.A.Snover - Phys.Rev. C9, 1033 (1974).
1974Br19
                G.Brown, A.Denning, J.G.B.Haigh - Nucl. Phys. A225, 267 (1974).
1974BrYR
                B.A.Brown - Thesis, State Univ. of New York at Stony Brook (1974); Diss. Abstr. Int. B35, 433 (1974).
1974De36
                D.Dehnhard, M.E.Cage - Nucl. Phys. A230, 393 (1974).
                M.J.A.de Voigt, D.Cline, R.N.Horoshko - Phys.Rev. C10, 1798 (1974).
1974De42
1974Gl04
                D.H.Gloeckner, R.D.Lawson, F.J.D.Serduke - Phys.Rev. C9, 2071 (1974).
1974Ho39
                A.J.Howard, H.B.Jensen, M.Rios, W.A.Fowler, B.A.Zimmerman - Astrophys.J. 188, 131 (1974).
1974Je01
                N.A.Jelley, K.H.Wilcox, R.B.Weisenmiller, G.J.Wozniak, J.Cerny - Phys.Rev. C9, 2067 (1974).
1974La14
                H.Laurent, J.P.Schapira, S.Fortier, S.Gales, J.M.Maison - Nucl.Instrum.Methods 117, 17 (1974).
1974Li01
                R.A.Lindgren, R.G.Markham, H.W.Fulbright - Phys.Lett. 48B, 209 (1974).
                K.P.Lieb, M.Uhrmacher - Z.Phys. 267, 399 (1974).
1974Li06
1974Ma39
                J.C.Manthuruthil, C.P.Poirier, S.Maripuu, W.A.Anderson - Phys.Rev. C10, 1678 (1974).
1974Po10
                A.R.Poletti, B.A.Brown, D.B.Fossan, P.Gorodetzky et al. - Phys.Rev. C10, 997 (1974).
                O.Schaile, H.Grawe, R.Konig - Nucl.Instrum.Methods 116, 185 (1974).
1974Sc09
1975Be56
                W.Benenson - Nukleonika 20, 775 (1975).
                E.Bozek, C.Gehringer, C.Jaeger, J.C.Merdinger - Nucl. Phys. A250, 257 (1975).
1975Bo30
1975BrYQ
                H.Breuer, P.Doll, S.T.Hsieh, K.T.Knopfle et al. - Max-Planck-Inst.Kernphysik, Heidelberg, Ann.Rept., p.38 (1975).
                Y.Eisen, H.T.Fortune, W.Henning, D.G.Kovar et al. - ANL-75-75, p.18 (1975).
1975EiZT
1975Mu09
                D.Mueller, E.Kashy, W.Benenson, H.Nann - Phys.Rev. C12, 51 (1975).
                H.Nann, W.S.Chien, A.Saha, B.H.Wildenthal - Phys.Lett. 60B, 32 (1975).
1975Na18
1975Wa17
                G.J.Wagner, P.Doll, K.T.Knopfle, G.Mairle - Phys.Lett. 57B, 413 (1975).
                K.C. Young, Jr., S.L. Tabor, L.K. Fifield, R.W. Zurmuhle - Phys. Rev. C12, 567 (1975).
1975Yo03
                M.De Poli, F.Brandolini, C.Rossi-Alvarez, C.Savelli, G.B.Vingiani - Lett.Nuovo Cim. 17, 518 (1976).
1976De41
1976DeXS
                D.Dehnhard, E.Friedland, M.Goldschmidt, H.Hafner et al. - Max-Planck-Inst.Kernphysik, Heidelberg, Ann.Rept., p.83
1976Do05
                P.Doll, G.J.Wagner, K.T.Knopfle, G.Mairle - Nucl. Phys. A263, 210 (1976).
1976Fi08
                W.Fitz, F.Kienle, R.Maschuw, B.Zeitnitz et al. - Phys.Rev. C14, 755 (1976).
1976Ha07
                B.Haas, J.Chevallier, A.Knipper, J.Styczen, P.Taras - Phys.Lett. 61B, 141 (1976).
1976Ka24
                E.Kashy, W.Benenson, D.Mueller, H.Nann, L.Robinson - Phys.Rev. C14, 1773 (1976).
1976Po03
                A.R.Poletti, E.K.Warburton, J.W.Olness, J.J.Kolata, P.Gorodetzky - Phys.Rev. C13, 1180 (1976).
1976Ta04
                S.L. Tabor, K.C. Young, Jr., D.P. Balamuth, R.W. Zurmuhle - Phys. Rev. C13, 2262 (1976).
1976We23
                S.A. Wender, C.R. Gould, D.R. Tilley, D.G. Rickel et al. - Phys. Rev. C14, 1179 (1976).
1976Wi16
                W.M.Wilson, E.G.Bilpuch, G.E.Mitchell - Nucl. Phys. A271, 49 (1976).
                G.U.Din, B.Heusch - Aust.J.Phys. 30, 417 (1977).
1977Di17
                P.M.Endt - At.Data Nucl.Data Tables 19, 23 (1977).
1977En02
                R.J.Mitchell, T.V.Ragland, R.P.Scharenberg, R.E.Holland, F.J.Lynch - Phys.Rev. C16, 1605 (1977).
1977Mi10
                A.R.de L.Musgrove, B.J.Allen, J.W.Boldeman, D.M.H.Chan, R.L.Macklin - Nucl. Phys. A279, 317 (1977).
1977Mu02
                D.Mueller, E.Kashy, W.Benenson - Phys.Rev. C15, 1282 (1977).
1977Mu03
```

D.W.Mueller - Diss.Abst.Int. 37B, 4536 (1977).

1977MuZS

```
1977Na30
               H.Nann, W.S.Chien, A.Saha - Nucl. Phys. A292, 205 (1977).
1977Po07
                A.R.Poletti, J.R.Southon - J.Phys.(London) G3, 945 (1977).
1977SaZF
                A.Saha, K.K.Seth, H.Nann - Proc.Intern.Conf.Nuclear Structure, Tokyo, Vol.1, p.233 (1977).
1977Sc05
                H.Schar, D.Trautmann, E.Baumgartner - Helv. Phys. Acta 50, 29 (1977).
                A.H.Behbehani, A.M.Al-Naser, C.J.Lister, P.J.Nolan, J.F.Sharpey-Schafer - Phys.Lett. 74B, 219 (1978).
1978Be16
                D.Dehnhard, E.Friedland, H.Hafner, K.T.Knopfle et al. - Proc.Int.Conf. on Medium-Light Nuclei, Florence, Italy, 1977,
1978DeZD
                 P.Blasi, R.A.Ricci, Eds., p.505 (1978).
1978En02
                P.M.Endt, C.van der Leun - Nucl. Phys. A310, 1 (1978).
1978En04
                P.M.Endt, C.van der Leun - Nucl. Phys. A310, 38 (1978).
                O.Hausser, T.K.Alexander, T.Faestermann, D.Horn et al. - Phys.Lett. 73B, 127 (1978).
1978Ha07
                A.Huck, G.Klotz, A.Knipper, C.Miehe et al. - Phys.Rev. C18, 1803 (1978).
1978Hu10
                L.Meyer-Schutzmeister, A.J.Elwyn, K.E.Rehm, G.Hardie - Phys.Rev. C17, 1299 (1978).
1978Me09
1978Me15
                L.Meyer-Schutzmeister, A.J.Elwyn, S.A.Gronemeyer, G.Hardie et al. - Phys.Rev. C18, 1148 (1978).
                J.C.Merdinger, C.Jaeger, E.Bozek, C.Gehringer - Proc.Int.Conf. on Medium-Light Nuclei, Florence, Italy, 1977, P.Blasi,
1978MeZX
                  R.A.Ricci, Eds., p.537 (1978).
                R. Vennink, W. Ratynski, J. Kopecky - Nucl. Phys. A299, 429 (1978).
1978Ve06
1978V102
                A.E.Vlieks, C.W.Cheng, J.D.King - Nucl. Phys. A309, 506 (1978).
1979Be27
                A.H.Behbehani, A.M.Al-Naser, A.J.Brown, L.L.Green et al. - J.Phys.(London) G5, 1117 (1979).
                A.H.Behbehani, A.M.Al-Naser, L.L.Green, A.N.James et al. - J.Phys.(London) G5, 971 (1979).
1979Be28
1979Ch29
                C.W.Cheng, J.D.King - J.Phys.(London) G5, 1261 (1979).
                P.Grundevik, M.Gustavsson, I.Lindgren, G.Olsson et al. - Phys.Rev.Lett. 42, 1528 (1979).
1979Gr05
                T.F.Thorsteinsen, G.Lovhoiden, K.Nybo, P.B.Vold - Nucl. Phys. A320, 225 (1979).
1979Th03
1979We10
                G.D.Westfall, T.J.M.Symons, D.E.Greiner, H.H.Heckman et al. - Phys.Rev.Lett. 43, 1859 (1979).
1980Be13
                E.Bergmann, P.Bopp, C.Dorsch, J.Kowalski et al. - Z.Phys. A294, 319 (1980).
                E.Fabrici, S.Micheletti, M.Pignanelli, F.G.Resmini et al. - Phys.Rev. C21, 844 (1980).
1980Fa07
1980OIZX
                L.D.Olivier, J.W.Koen, W.J.Naude, N.J.A.Rust - SUNI-65, South.Univ.Nucl.Inst., (S.Africa), 1980 Ann.Rept., p.25
1980Sh09
                H.M.Sheppard, P.A.Butler, R.Daniel, P.J.Nolan et al. - J.Phys.(London) G6, 511 (1980).
                H.M.Sheppard, P.A.Butler, R.Daniel, P.J.Nolan et al. - Univ.Liverpool, 1979-1980 Ann.Rept., p.12 (1980).
1980ShZN
                M.Arnold, E.Bergmann, P.Bopp, C.Dorsch et al. - Hyperfine Interactions 9, 159 (1981).
1981Ar15
1981Bo37
                R.N.Boyd, E.Sugarbaker, S.L.Blatt, T.R.Donoghue et al. - Nucl. Phys. A372, 51 (1981).
                E.Dafni, H.E.Mahnke, J.W.Noe, M.H.Rafailovich, G.D.Sprouse - Phys.Rev. C23, 1612 (1981).
1981Da06
                R.J.Griffiths, F.Duggan, N.M.Clarke - J.Phys.(London) G7, 381 (1981).
1981Gr05
                A.Huck, G.Klotz, A.Knipper, C.Miehe et al. - Proc.Int.Conf.Nuclei Far from Stability, Helsingor, Denmark, Vol.2, p.378
1981HuZT
                 (1981); CERN-81-09 (1981).
                P.A.Smith, R.J.Peterson - Nucl. Phys. A363, 287 (1981).
1981Sm03
1981Vo04
                B. Vosicki, T.Bjornstad, L.C. Carraz, J. Heinemeier, H.L. Ravn - Nucl. Instrum. Methods 186, 307 (1981).
1981Wo02
                H.D.Wohlfahrt, E.B.Shera, M.V.Hoehn, Y.Yamazaki, R.M.Steffen - Phys.Rev. C23, 533 (1981).
1982Ab03
                O.A.Abou-zeid, W.R.Falk, S.K.Datta, S.P.Kwan, J.Campbell - Nucl. Phys. A382, 185 (1982).
1982Ay02
                R.Avdin, W.Ertmer, U.Johann - Z.Phys. A306, 1 (1982).
                H.T.Duong, P.Juncar, S.Liberman, J.Pinard et al. - J.Phys.(Paris) 43, 509 (1982).
1982Du06
1982En06
                H.Endo, T.Yamaya, K.Umeda, S.Morita - J.Phys.Soc.Jpn. 51, 3782 (1982).
1982Ho17
                E.Hourani, S.Fortier, J.M.Maison, S.Gales, J.P.Schapira - Nucl. Phys. A391, 432 (1982).
1982KuZU
               P.H.Kutt - Diss.Abst.Int. 42B, 4468 (1982).
               L.W.Mitchell, M.R.Anderson, S.R.Kennett, D.G.Sargood - Nucl. Phys. A380, 318 (1982).
1982Mi06
1982Ne02
                B.Neumann, H.Rebel, H.J.Gils, R.Planeta et al. - Nucl. Phys. A382, 296 (1982).
19820105
                G.Olsson, S.Salomonson - Z.Phys. A307, 99 (1982).
                F.Touchard, P.Guimbal, S.Buttgenbach, R.Klapisch et al. - Phys.Lett. 108B, 169 (1982).
1982To02
1982Vi05
                S.E.Vigdor, T.G.Throwe, M.C.Green, W.W.Jacobs et al. - Phys.Rev.Lett. 49, 1314 (1982).
                M.Arnold, J.Kowalski, T.Stehlin, F.Trager, G.zu Putlitz - Z.Phys. A314, 303 (1983).
1983Ar25
                J.J.Hamill, A.M.van den Berg, J.M.R.van der Blij - KVI 1982 Ann.Rept., p.27 (1983).
1983HaZJ
                F.Raether, F.J.Bergmeister, M.Uhrmacher, K.P.Lieb et al. - Hyperfine Interactions 15/16, 59 (1983).
1983Ra37
1983Wa05
                C.E. Waltham, S.H.Chew, J.Lowe, J.M.Nelson, A.R.Barnett - Nucl. Phys. A395, 119 (1983).
1984Ka27
                K.V.Karadzhev, V.I.Manko, A.N.Nersesyan - Yad.Fiz. 40, 47 (1984).
1984Mo17
                S.Mordechai, H.T.Fortune, C.F.Clement - Phys.Rev. C30, 507 (1984).
                C.W.P.Palmer, P.E.G.Baird, S.A.Blundell, J.R.Brandenberger et al. - J.Phys.(London) B17, 2197 (1984).
1984Pa12
1984Ra23
                F.Raether, F.J.Bergmeister, K.P.Lieb, M.Uhrmacher et al. - Hyperfine Interactions 20, 285 (1984).
1984Sa10
                S.Salomonson - Z.Phys. A316, 135 (1984).
1985Ba77
                Bao Xiumin, Li Shuming, Wang Yuanda, Yuan Rongfang et al. - Chin.J.Nucl.Phys. 7, 226 (1985).
1985Ha08
                J.S.Hanspal, N.M.Clarke, R.J.Griffiths, O.Karban, S.Roman - Nucl. Phys. A436, 236 (1985).
1985Ki07
                A.Z.Kiss, E.Koltay, B.Nyako, E.Somorjai et al. - J.Radioanal.Nucl.Chem. 89, 123 (1985).
1986Pl01
                R.Planeta, H.Klewe-Nebenius, J.Buschmann, H.J.Gils et al. - Nucl. Phys. A448, 110 (1986).
                J.Arje, J.Aysto, P.Taskinen, J.Honkanen, K.Valli - Nucl.Instrum.Methods Phys.Res. B26, 384 (1987).
1987Ar18
```

S.Froneman, W.J.Naude, W.A.Richter, J.A.Stander, J.W.Koen - Z.Phys. A327, 469 (1987).

1987Fr09

```
1987Ho14
                J.Honkanen, V.Koponen, H.Hyvonen, P.Taskinen et al. - Nucl. Phys. A471, 489 (1987).
1987Po04
                F.Pougheon, J.C.Jacmart, E.Quiniou, R.Anne et al. - Z.Phys. A327, 17 (1987).
                L.Satpathy - J.Phys.(London) G13, 761 (1987).
1987Sa19
1987Th02
                T.G.Throwe, S.E.Vigdor, W.W.Jacobs, M.C.Green et al. - Phys.Rev. C35, 1083 (1987).
                Wang Xiaozhong, Tang Hongqing, Zhang Ying, Xu Jun et al. - Chin.J.Nucl.Phys. 9, 193 (1987).
1987Wa29
1988Kr11
                L.Kraus, A.Boucenna, I.Linck, B.Lott et al. - Phys.Rev. C37, 2529 (1988).
1988Wa28
                E.K.Warburton, D.E.Alburger - Phys.Rev. C38, 2822 (1988).
                D.Guillemaud-Mueller, Yu.E.Penionzhkevich, R.Anne, A.G.Artukh et al. - Z.Phys. A332, 189 (1989).
1989Gu03
                A.Kramer-Flecken, T.Morek, R.M.Lieder, W.Gast et al. - Nucl.Instrum.Methods Phys.Res. A275, 333 (1989).
1989Kr01
                M.Lewitowicz, Yu.E.Penionzhkevich, A.G.Artukh, A.M.Kalinin et al. - Nucl. Phys. A496, 477 (1989).
1989Le16
1989Ra06
                S.Raman, S.Kahane, R.M.Moon, J.A.Fernandez-Baca et al. - Phys.Rev. C39, 1297 (1989).
1990En08
                P.M.Endt - Nucl.Phys. A521, 1 (1990); Errata and Addenda Nucl.Phys. A529, 763 (1991); Errata Nucl.Phys. A564,
                  609 (1993).
                X.L.Tu, X.G.Zhou, D.J.Vieira, J.M.Wouters et al. - Z.Phys. A337, 361 (1990).
1990Tu01
1991De26
                C.Detraz - Z.Phys. A340, 227 (1991).
1991NaZZ
                A.Narita, T.Tohei, T.Nakagawa, J.Takamatsu et al. - Inst.Nucl.Study, Univ.Tokyo, Ann.Rept., 1990, p.15 (1991).
1991Si14
                R.E.Silverans, L.Vermeeren, R.Neugart, P.Lievens, and the ISOLDE Collaboration - Z.Phys. D18, 351 (1991).
1991Wa19
                E.K. Warburton - Phys. Rev. C44, 268 (1991).
                X.G.Zhou, X.L.Tu, J.M.Wouters, D.J.Vieira et al. - Phys.Lett. 260B, 285 (1991).
1991Zh24
                V.Borrel, R.Anne, D.Bazin, C.Borcea et al. - Z.Phys. A344, 135 (1992).
1992Bo37
1992Ko15
                R.L.Kozub, C.R.Bybee, M.M.Hindi, J.F.Shriner et al. - Phys.Rev. C46, 1671 (1992).
                K.Matsuta, A.Ozawa, Y.Nojiri, T.Minamisono et al. - Nucl.Instrum.Methods Phys.Res. B70, 304 (1992).
1992Ma63
                A.Narita, T.Tohei, T.Nakagawa, A.Satoh et al. - Cyclotron Rad.Center, Tohoku Univ., Ann.Rept., 1991, p.21 (1992).
1992NaZN
1992Po04
                I.V.Poplavsky - Yad.Fiz. 55, 938 (1992); Sov.J.Nucl.Phys. 55, 525 (1992).
1993Ma67
                K.Matsuta, A.Ozawa, Y.Nojiri, T.Minamisono et al. - Hyperfine Interactions 78, 123 (1993).
1993Ma72
                K.Matsuta, A.Ozawa, Y.Nojiri, T.Minamisono et al. - Hyperfine Interactions 80, 1219 (1993).
1993Su36
                D.Sundholm, J.Olsen - J.Chem.Phys. 98, 7152 (1993).
                B.Blank, S.Andriamonje, R.Del Moral, J.P.Dufour et al. - Phys.Rev. C50, 2398 (1994).
1994B110
1994Zh43
                S.-Y.Zhu, A.-L.Li, Z.-H.Gou, S.-N.Zheng, G.-S.Li - Chin.J.Nucl.Phys. 16, No 3, 239 (1994).
1995He18
                H.Herndl, J.Gorres, M.Wiescher, B.A.Brown, L.Van Wormer - Phys.Rev. C52, 1078 (1995).
                Yu.E.Penionzhkevich - Bull.Rus.Acad.Sci.Phys. 59, 766 (1995).
1995Pe19
1995So03
                O.Sorlin, D.Guillemaud-Mueller, R.Anne, L.Axelsson et al. - Nucl. Phys. A583, 763c (1995).
1995Zv02
                M.V.Zverev, N.V.Klochkova, Yu.S.Lutostanski, E.K.Yudina - Yad.Fiz. 58, No 12, 2172 (1995); Phys.Atomic Nuclei 58,
1996Be39
                P.Bednarczyk, R.Broda, M.Lach, W.Meczynski et al. - Acta Phys.Pol. B27, 145 (1996).
1997Be09
                P.Bednarczyk, J.Styczen, R.Broda, M.Lach et al. - Phys.Lett. 393B, 285 (1997).
1997Bo47
                A.Boucenna - Nuovo Cim. 110A, 711 (1997).
                B.J.Cole - Phys.Rev. C56, 1866 (1997).
1997Co19
                I.Licot, N.Added, N.Carlin, G.M.Crawley et al. - Phys.Rev. C56, 250 (1997).
1997Li15
1997Mo25
                P.Moller, J.R.Nix, K.-L.Kratz - At.Data Nucl.Data Tables 66, 131 (1997).
1998Be29
                P.Bednarczyk, J.Styczen, R.Broda, M.Lach et al. - Eur. Phys. J. A 2, 157 (1998).
                P.M.Endt - Nucl. Phys. A633, 1 (1998).
1998En04
                M.Moralles, P.Janker, H.Leitz, K.E.G.Lobner et al. - Phys.Rev. C58, 739 (1998).
1998Mo16
1998WiZV
                J.A.Winger, H.H.Yousif, W.C.Ma, V.Ravikumar et al. - Proc.Conf on Exotic Nuclei and Atomic Masses, Bellaire,
                  Michigan, June 23-27, 1998, p.606 (1998); AIP Conf. Proc. 455 (1998).
                J.A.Winger, P.F.Mantica, R.M.Ronningen - Proc.Intern.Conf.Fission and Properties of Neutron-Rich Nuclei, Sanibel
1998WiZX
                  Island, Florida, November 1997, J.H.Hamilton, A.V.Ramayya, Eds., p.311 (1998).
1999Ai02
                N.Aissaoui, N.Added, N.Carlin, G.M.Crawley et al. - Phys.Rev. C60, 034614 (1999).
1999Ca12
                E.Caurier, G.Martinez-Pinedo, F.Nowacki, A.Poves et al. - Phys.Rev. C59, 2033 (1999).
1999Du05
                J.Duflo, A.P.Zuker - Phys.Rev. C59, R2347 (1999).
1999Ib01
                R.W.Ibbotson, T.Glasmacher, P.F.Mantica, H.Scheit - Phys.Rev. C59, 642 (1999).
1999Ma89
                F.Marechal, T.Suomijarvi, Y.Blumenfeld, A.Azhari et al. - Phys.Rev. C60, 064623 (1999).
1999YoZW
                K. Yoneda, H.Sakurai, N.Aoi, N.Fukuda et al. - RIKEN-98, p.78 (1999).
2000De10
                Y.D.Devi, S.Robinson, L.Zamick - Phys.Rev. C61, 037305 (2000).
2000HaZY
                M.Hausmann, J.Stadlmann, F.Attallah, K.Beckert et al. - GSI 2000-1, p.22 (2000).
2000Mu17
                P.Muller, B.A.Bushaw, W.Nortershauser, K.Wendt - Eur.Phys.J. D 12, 33 (2000).
                F.Sarazin, H.Savajols, W.Mittig, F.Nowacki et al. - Phys.Rev.Lett. 84, 5062 (2000).
2000Sa21
2001Ca24
                J.A.Cameron, B.Singh - Nucl.Data Sheets 92, 783 (2001).
2001Gi01
                J.Giovinazzo, B.Blank, C.Borcea, M.Chartier et al. - Eur.Phys.J. A 10, 73 (2001).
                J.Giovinazzo, B.Blank, C.Borcea, M.Chartier et al. - Nucl. Phys. A685, 127c (2001).
2001Gi02
                F.Herfurth, J.Dilling, A.Kellerbauer, G.Audi et al. - Phys.Rev.Lett. 87, 142501 (2001).
2001He29
2001Ro13
                S.J.Q.Robinson, L.Zamick - Phys.Rev. C63, 064316 (2001).
2001Sa72
                F.Sarazin, H.Savajols, W.Mittig, F.Nowacki et al. - Hyperfine Interactions 132, 147 (2001).
```

J.Giovinazzo, B.Blank, M.Chartier, S.Czajkowski et al. - Phys.Rev.Lett. 89, 102501 (2002).

2002Gi09

```
2002Mi37
                T.Minamisono, K.Matsuta, K.Minamisono, S.Kudo et al. - Z.Naturforsch. 57a, 595 (2002).
2002No11
                M.Notani, H.Sakurai, N.Aoi, Y.Yanagisawa et al. - Phys.Lett. 542B, 49 (2002).
                M.Pfutzner, E.Badura, C.Bingham, B.Blank et al. - Eur.Phys.J. A 14, 279 (2002).
2002Pf02
2002Pf03
                M.Pfutzner, E.Badura, R.Grzywacz, Z.Janas et al. - Nucl.Instrum.Methods Phys.Res. A493, 155 (2002).
                B.Blank, J.Giovinazzo, M.Pfutzner - C.R.Physique 4, 521 (2003).
2003B121
                B.A.Brown, F.C.Barker - Phys.Rev. C 67, 041304 (2003).
2003Br07
                J.Giovinazzo, B.Blank, C.Borcea, B.A.Brown et al. - Nucl. Phys. A722, 434c (2003).
2003Gi13
                L.V.Grigorenko, I.G.Mukha, M.V.Zhukov - Nucl. Phys. A714, 425 (2003).
2003Gr04
                S.Grevy, J.Mrazek, J.C.Angelique, P.Baumann et al. - Nucl. Phys. A722, 424c (2003).
2003Gr22
2003Gr24
                L.V.Grigorenko, M.V.Zhukov - Phys.Rev. C 68, 054005 (2003).
                M.Pfutzner, B.Blank, J.Giovinazzo, E.Badura et al. - Acta Phys.Pol. B34, 2363 (2003).
2003Pf01
2003Ra45
                A.A.Raduta, L.Zamick, E.Moya de Guerra, A.Faessler, P.Sarriguren - Phys.Rev. C 68, 044317 (2003).
2004Bb14
                C.Basu - Pramana 63, 1047 (2004).
2004B105
                B.Blank, J.Giovinazzo, M.Pfutzner, Y.Blumenfeld, T.Zerguerras - Nucl. Phys. A734, 303 (2004).
2004B119
                B.Blank - Nucl. Phys. A746, 236c (2004).
2004Gr20
                S.Grevy, J.C.Angelique, P.Baumann, C.Borcea et al. - Phys.Lett. B 594, 252 (2004).
2004Mo21
                A.Mortensen, J.J.T.Lindballe, I.S.Jensen, P.Staanum et al. - Phys.Rev. A 69, 042502 (2004).
                T.Morikawa, M.Nakamura, T.Sugimitsu, H.Kusakari et al. - Phys.Rev. C 70, 054323 (2004).
2004Mo47
2004Pf02
                M.Pfutzner - Nucl.Phys. A738, 101 (2004).
                O.Sorlin, Zs.Dombradi, D.Sohler, F.Azaiez et al. - Eur.Phys.J. A 22, 173 (2004).
2004So30
2005B131
                B.Blank, N.Adimi, A.Bey, G.Canchel et al. - Eur. Phys. J. A 25, Supplement 1, 169 (2005).
2005B133
                K.Blaum, W.Geithner, J.Lassen, P.Lievens et al. - Hyperfine Interactions 162, 101 (2005).
2005Do20
                C.Dossat, A.Bey, B.Blank, G.Canchel et al. - Phys.Rev. C 72, 054315 (2005).
                J.Fridmann, I.Wiedenhover, A.Gade, L.T.Baby et al. - Nature(London) 435, 922 (2005).
2005Fr19
2005Gi15
                J.Giovinazzo - J.Phys.(London) G31, S1509 (2005).
2005Pf01
                M.Pfutzner - Acta Phys.Pol. B36, 1399 (2005).
                M.Pfutzner - Eur.Phys.J. A 25, Supplement 1, 165 (2005).
2005Pf02
2006Fr13
                J.Fridmann, I.Wiedenhover, A.Gade, L.T.Baby et al. - Phys.Rev. C 74, 034313 (2006).
                A.Gade, B.A.Brown, D.Bazin, C.M.Campbell et al. - Phys.Rev. C 74, 034322 (2006).
2006Ga31
                Y.Gangrsky, K.Marinova, S.Zemlyanoi, M.Avgoulea et al. - Hyperfine Interactions 171, 209 (2006).
2006Ga47
2006Kh08
                A.Khouaja, A.C.C.Villari, M.Benjelloun, D.Hirata et al. - Nucl. Phys. A780, 1 (2006).
2006Me08
                D.F.Measday, T.J.Stocki - Phys.Rev. C 73, 045501 (2006).
2006MuZX
                S.F.Mughabghab - Atlas of Neutron Resonances, 5ed., Resonance Parameters and Thermal Cross Sections, Z = 1-100,
                  Elsevier, Amsterdam (2006).
                J.Rotureau, J.Okolowicz, M.Ploszajczak - Nucl. Phys. A767, 13 (2006).
2006Ro09
                J.A.Winger, P.F.Mantica, R.M.Ronningen - Phys.Rev. C 73, 044318 (2006).
2006Wi10
2006Za08
                L.Zamick, A.Escuderos - Int.J.Mod.Phys. E15, 1681 (2006).
                B.Bastin, S.Grevy, D.Sohler, O.Sorlin et al. - Phys.Rev.Lett. 99, 022503 (2007).
2007Ba47
                T.Baumann, A.M.Amthor, D.Bazin, B.A.Brown et al. - Nature(London) 449, 1022 (2007).
2007Ba71
                C.J.Chiara, M.Devlin, E.Ideguchi, D.R.LaFosse et al. - Phys.Rev. C 75, 054305 (2007); Publisher's note Phys. Rev. C
2007Ch40
                  75, 059904 (2007).
2007ChZX
                H.D.Choi, R.B.Firestone, R.M.Lindstrom, G.L.Molnar et al. - IAEA-STI/PUB/1263 (2007).
2007Do17
                C.Dossat, N.Adimi, F.Aksouh, F.Becker et al. - Nucl. Phys. A792, 18 (2007).
2007Gi10
                J.Giovinazzo, B.Blank, C.Borcea, G.Canchel et al. - Phys.Rev.Lett. 99, 102501 (2007).
                L.V.Grigorenko, M.V.Zhukov - Phys.Rev. C 76, 014008 (2007).
L.V.Grigorenko, M.V.Zhukov - Phys.Rev. C 76, 014009 (2007).
2007Gr12
2007Gr13
                B.Jurado, H.Savjols, W.Mittig, N.A.Orr et al. - Phys.Lett. B 649, 43 (2007).
2007Ju03
2007Mi36
                K.Miernik, W.Dominik, Z.Janas, M.Pfutzner et al. - Phys.Rev. C 76, 041304 (2007).
2007Mi40
                K.Miernik, W.Dominik, Z.Janas, M.Pfutzner et al. - Phys.Rev.Lett. 99, 192501 (2007).
2007Na31
                P.Napolitani, K.-H.Schmidt, L.Tassan-Got, P.Armbruster et al. - Phys.Rev. C 76, 064609 (2007).
2007Sh10
                K.Shibata - J.Nucl.Sci.Technol.(Tokyo) 44, 10 (2007).
2007Ta15
                O.B. Tarasov, T.Baumann, A.M. Amthor, D.Bazin et al. - Phys. Rev. C 75, 064613 (2007).
                C. Yazidjian, G.Audi, D.Beck, K.Blaum et al. - Phys.Rev. C 76, 024308 (2007).
2007Ya08
2008Ad08
                G.G.Adamian, N.V.Antonenko, S.M.Lukyanov, Yu.E.Penionzhkevich - Phys.Rev. C 78, 024613 (2008).
2008B101
                K.Blaum, W.Geithner, J.Lassen, P.Lievens et al. - Nucl. Phys. A799, 30 (2008).
                B.Blank, M.Ploszajczak - Rep.Prog.Phys. 71, 046301 (2008).
2008B103
                I.N.Boboshin - Phys. Atomic Nuclei 71, 1250 (2008); Yad.Fiz. 71, 1278 (2008).
2008Bo23
2008Fe02
                M.Ferraton, R.Bourgain, C.M.Petrache, D.Verney et al. - Eur.Phys.J. A 35, 167 (2008).
2008Ki07
                T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson et al. - Nucl.Instrum.Methods Phys.Res. A589, 202 (2008).
2008Mi03
                K.Miernik, W.Dominik, Z.Janas, M.Pfutzner et al. - Acta Phys.Pol. B39, 477 (2008).
                S.M.Perez, W.A.Richter, B.A.Brown, M.Horoi - Phys.Rev. C 77, 064311 (2008).
2008Pe13
2008Py02
                P.Pyykko - Molecular Physics 106, 1965 (2008).
2008Ri04
                L.A.Riley, P.Adrich, T.R.Baugher, D.Bazin et al. - Phys.Rev. C 78, 011303 (2008).
2009B106
                B.Blank - Int.J.Mod.Phys. E18, 2124 (2009).
```

```
2009Ga05
                L.Gaudefroy, J.M.Daugas, M.Hass, S.Grevy et al. - Phys.Rev.Lett. 102, 092501 (2009).
2009Ha02
                I.Hamamoto - Phys.Rev. C 79, 014307 (2009).
2009Mi29
                K.Miernik, W.Dominik, Z.Janas, M.Pfutzner et al. - Eur.Phys.J. A 42, 431 (2009).
2009Mo09
                M.Moralles, P.Janker, K.E.G.Lobner, P.R.Pascholati - Phys.Rev. C 79, 037302 (2009).
2009No01
                F.Nowacki, A.Poves - Phys.Rev. C 79, 014310 (2009).
                A.Parikh, J.Jose, C.Iliadis, F.Moreno, T.Rauscher - Phys.Rev. C 79, 045802 (2009).
2009Pa18
                L.A.Riley, P.Adrich, T.R.Baugher, D.Bazin et al. - Phys.Rev. C 80, 037305 (2009).
2009Ri11
2009Ri12
                R.Ringle, C.Bachelet, M.Block, G.Bollen et al. - Phys.Rev. C 80, 064321 (2009).
2010Ga15
                L.Gaudefroy - Phys.Rev. C 81, 064329 (2010).
2010Pe15
                S.M.Perez, W.A.Richter, B.A.Brown, M.Horoi - Phys.Rev. C 82, 064305 (2010).
2010Qi01
                C.Qi - Phys.Rev. C 81, 034318 (2010).
2011AuZZ
                G.Audi, W.Meng - Priv.Comm. (2011).
2011Av01
                M.Avgoulea, Yu.P.Gangrsky, K.P.Marinova, S.G.Zemlyanoi et al. - J.Phys.(London) G38, 025104 (2011).
2011Bl01
                B.Blank, P.Ascher, L.Audirac, G.Canchel et al. - Acta Phys.Pol. B42, 545 (2011).
2011Ho02
                R.Hoischen, D.Rudolph, H.L.Ma, P.Montuenga et al. - J.Phys.(London) G38, 035104 (2011).
2011Ka03
                K.Kaneko, Y.Sun, T.Mizusaki, M.Hasegawa - Phys.Rev. C 83, 014320 (2011).
2011Po01
                M.Pomorski, K.Miernik, W.Dominik, Z.Janas et al. - Phys.Rev. C 83, 014306 (2011).
2011Pr03
                B.Pritychenko, E.Betak, M.A.Kellett, B.Singh, J.Totans - Nucl.Instrum.Methods Phys.Res. A640, 213 (2011).
2011Sz02
                S.Szilner, L.Corradi, F.Haas, D.Lebhertz et al. - Phys.Rev. C 84, 014325 (2011).
2012As02
                P.Ascher, N.Adimi, L.Audirac, B.Blank et al. - Acta Phys.Pol. B43, 261 (2012).
2012Au07
                G.Audi, F.G.Kondev, M.Wang, B.Pfeiffer et al. - Chin.Phys.C 36, 1157 (2012).
                L.Audirac, P.Ascher, B.Blank, C.Borcea et al. - Eur.Phys.J. A 48, 179 (2012).
2012Au08
2012Ch16
                R.Chevrier, J.M.Daugas, L.Gaudefroy, Y.Ichikawa et al. - Phys.Rev.Lett. 108, 162501 (2012).
                L.Gaudefroy, W.Mittig, N.A.Orr, S. Varet et al. - Phys.Rev.Lett. 109, 202503 (2012).
2012Ga45
                D.Kameda, T.Kubo, T.Ohnishi, K.Kusaka et al. - Phys.Rev. C 86, 054319 (2012).
2012Ka36
2012St12
                S.R.Stroberg, A.Gade, T.Baugher, D.Bazin et al. - Phys.Rev. C 86, 024321 (2012).
2012Wa38
                M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev et al. - Chin. Phys. C 36, 1603 (2012).
2013An02
                I.Angeli, K.P.Marinova - At.Data Nucl.Data Tables 99, 69 (2013).
2013StZZ
                N.J.Stone - REPT INDC(NDS)-0650 (2013).
2013Sz01
                S.Szilner, L.Corradi, G.Pollarolo, E.Fioretto et al. - Acta Phys.Pol. B44, 417 (2013).
                S.Szilner, L.Corradi, F.Haas, G.Pollarolo et al. - Phys.Rev. C 87, 054322 (2013).
2013Sz02
2013Ya03
                X.L.Yan, H.S.Xu, Yu.A.Litvinov, Y.H.Zhang et al. - Astrophys.J. 766, L8 (2013).
2014Kr04
                K.Kreim, M.L.Bissell, J.Papuga, K.Blaum et al. - Phys.Lett. B 731, 97 (2014).
                J.Papuga, M.L.Bissell, K.Kreim, C.Barbieri et al. - Phys.Rev. C 90, 034321 (2014).
2014Pa45
2014Po05
                M.Pomorski, M.Pfutzner, W.Dominik, R.Grzywacz et al. - Phys.Rev. C 90, 014311 (2014).
2014StZZ
                N.J.Stone - REPT INDC(NDS)-0658 (2014).
```