From now on, we consider only sequences satisfying Rule 1.

When tabulating knot projections, one need use only standard sequences, with the subsequence $a_1, a_3, \ldots, a_{2n-1}$ minimal in lexicographic order when the transformations y = b + x and y = b - x, $b = 1, 2, \ldots, 2n$, are applied to i and a_i . However in this paper it will not be assumed that the sequences are standard.

Now let [0, 2n] denote the closed interval in \mathbb{R} . A realization of the sequence S is a piecewise linear mapping $\rho:[0,2n]\to\mathbb{R}^2$ such that

- (i) $\rho(0) = \rho(2n)$;
- (ii) $\rho(i) = \rho(a_i)$ for i = 1, 2, ..., 2n;
- (iii) ρ maps $[0, 2n]\setminus\{0, 1, \ldots, 2n\}$ homeomorphically;
- (iv) the arc $\rho([i-\frac{1}{2}, i+\frac{1}{2}])$ crosses the arc $\rho([a_i-\frac{1}{2}, a_i+\frac{1}{2}])$ at $\rho(i)$, where $i-\frac{1}{2}, i+\frac{1}{2}$, etc. are mod 2n.

For each such realization, there exists an alternating knot K which can be parametrized by [0, 2n] so that ρ is the projection of K to \mathbb{R}^2 . If there exists a realization of S, we say that S is realizable.

Let G be the 4-valent graph obtained from [0, 2n] by identifying 0 with 2n and then identifying i with a_i for i = 1, 2, ..., 2n. It follows from Rule 1 that

- (α) each edge of G joins two different vertices;
- (β) if any two of its edges are cut, G remains connected;
- (γ) if any vertex is removed, G remains connected.

A realization of S may be regarded as a piecewise linear embedding of G in \mathbb{R}^2 which preserves or reverses the cyclic order of the edges [i-1, i], $[a_i-1, a_i]$, [i, i+1], $[a_i, a_i+1]$ at each vertex i. Or more simply, a realization of S is a piecewise linear embedding $\tau: G \to \mathbb{R}^2$ which preserves the unoriented cyclic order at each vertex.

Let S^2 be the 2-sphere consisting of \mathbb{R}^2 with a point at ∞ . Let G be any finite graph. Two piecewise linear embeddings $\tau_1, \tau_2: G \to \mathbb{R}^2$ are called *equivalent* if there is a homemorphism $h: S^2 \to S^2$ such that $h \circ \tau_1 = \tau_2$. Hence we say that two realizations $\rho_1, \rho_2: [0, 2n] \to \mathbb{R}^2$ of S are *equivalent* if there is a homeomorphism $h: S^2 \to S^2$ such that $h \circ \rho_1 = \rho_2$.

If K_1 is a knot parametrized by [0, 2n] so that ρ_1 is its projection to \mathbb{R}^2 , and if ρ_2 is equivalent to ρ_1 , then there is a parametrized knot K_2 , of the same type as K_1 , whose projection to \mathbb{R}^2 is ρ_2 .

Theorem 1. If S is realizable, any two realizations of S are equivalent.

This is a consequence of the following lemma.

Lemma 1. Let G be a finite graph such that (α) each edge of G joins two different vertices; (β) if any two of its edges are cut, G remains connected; (γ) if any vertex is removed, G remains connected. Let there be given an unoriented cyclic order of edges at each vertex of G. If there exists a piecewise linear embedding of G in \mathbb{R}^2 which preserves the unoriented cyclic order at each vertex, then any two such embeddings are equivalent.