D3.1 Liquids and Gases

Michael Kleiber¹ · Ralph Joh²
¹Uhde GmbH, Bad Soden, Germany
²Siemens AG, Frankfurt, Germany

In the previous edition, this section containing thermophysical data of 275 compounds had been supplemented by correlations for temperature-dependent properties in order to give a better opportunity for interpolation and, with the appropriate caution, extrapolation. With the help of these correlations, the user can make use of the data in process simulation programs.

Most of the data points given in the tables have been obtained by regression of experimental data from the literature or the relevant databanks. During this regression, a careful evaluation of the data has been performed, and outliers have been removed from the database. The equations listed below have been used for this regression. The final correlations are at least valid in the temperature range where data points are given in the tables. Although the correlations are usually suitable for extrapolation, one should be careful to go beyond this range. Especially when polynoms are used, a plausible curvature should be maintained (see) Chap. D1).

In comparison to the previous German edition of the VDI Heat Atlas, for the liquid density, the liquid viscosity, the enthalpy of vaporization and the specific heat capacities of liquids and ideal gases the new PPDS equations have been used. Currently, these equations seem to be the most accurate ones and show a reasonable extrapolation behavior. For the vapor pressure, the 2.5-5-form of the Wagner equation is used, which performs slightly better than the well established 3-6-form.

Whenever it was possible, high-precision equations of state have been used to obtain artificial data points as the basis for the regression. On the other hand, many values for transport properties, especially for gases, have been obtained by the estimation methods described in **Ochap.** D1.

In general, all the values and correlations are not the absolutely correct ones but refer to the best possible data according to the knowledge of the authors. Like all data collections, also this one cannot claim completeness or absolute reliability. The authors are grateful for hints on mistakes and general improvements of this chapter.

The correlation equations for the temperature-dependent properties are:

Liquid density

$$\frac{\rho_{\text{liq}}}{\text{kg/m}^3} = \frac{\rho_{\text{c}}}{\text{kg/m}^3} + A \left(1 - \frac{T}{T_{\text{c}}} \right)^{0.35} + B \left(1 - \frac{T}{T_{\text{c}}} \right)^{2/3} + C \left(1 - \frac{T}{T_{\text{c}}} \right) + D \left(1 - \frac{T}{T_{\text{c}}} \right)^{4/3} \tag{1}$$

Dynamic viscosity of liquids

$$\frac{\eta}{\text{Pa s}} = E \cdot \exp\left[A\left(\frac{C-T}{T-D}\right)^{1/3} + B\left(\frac{C-T}{T-D}\right)^{4/3}\right] \tag{2}$$

When Eq. (2) is programmed, it must be taken care that the term in brackets (C - T)/(T - D) sometimes turns out to be negative, so that it makes sense to write in these cases

$$\left(\frac{C-T}{T-D}\right)^{1/3} = -\left(\frac{T-C}{T-D}\right)^{1/3}$$
(2a)

 $\left(\frac{C-T}{T-D}\right)^{4/3} = -\left(\frac{T-C}{T-D}\right)^{1/3} \left(\frac{C-T}{T-D}\right)^{1/3}$

Dynamic viscosity of gases

$$\frac{\eta}{\operatorname{Pas}} = A + B \frac{T}{K} + C \left(\frac{T}{K}\right)^2 + D \left(\frac{T}{K}\right)^3 + E \left(\frac{T}{K}\right)^4 \tag{3}$$

Thermal conductivity of liquids

$$\frac{\lambda}{W/mK} = A + B\frac{T}{K} + C\left(\frac{T}{K}\right)^2 + D\left(\frac{T}{K}\right)^3 + E\left(\frac{T}{K}\right)^4 \tag{4}$$

Thermal conductivity of gases

$$\frac{\lambda}{W/mK} = A + B\frac{T}{K} + C\left(\frac{T}{K}\right)^2 + D\left(\frac{T}{K}\right)^3 + E\left(\frac{T}{K}\right)^4 \tag{5}$$

Surface tension

$$\frac{\sigma}{N/m} = A \left(1 - \frac{T}{T_c} \right)^{B + C(T/T_c) + D(T/T_c)^2 + E(T/T_c)^3}$$
 (6)

Vapor pressure

$$\ln \frac{p_{s}}{p_{c}} = \frac{T_{c}}{T} \left[A \left(1 - \frac{T}{T_{c}} \right) + B \left(1 - \frac{T}{T_{c}} \right)^{1.5} + C \left(1 - \frac{T}{T_{c}} \right)^{2.5} + D \left(1 - \frac{T}{T_{c}} \right)^{5} \right]$$
(7)

Specific heat capacity of liquids

$$c_{P}^{\text{liq}} = R \left(\frac{A}{1 - \frac{T}{T_{c}}} + B + C \left(1 - \frac{T}{T_{c}} \right) + D \left(1 - \frac{T}{T_{c}} \right)^{2} + E \left(1 - \frac{T}{T_{c}} \right)^{3} + F \left(1 - \frac{T}{T_{c}} \right)^{4} \right)$$
(8)

Equation (8) reduces to a polynomial if the first parameter A is set to 0. For many substances, only few data points are known so that it is not justified to fit all the parameters.

In these cases, extrapolation beyond the range of validity should be avoided.

Enthalpy of vaporization

$$\Delta h_{\rm v} = RT_{\rm c} \left[A \left(1 - \frac{T}{T_{\rm c}} \right)^{1/3} + B \left(1 - \frac{T}{T_{\rm c}} \right)^{2/3} + C \left(1 - \frac{T}{T_{\rm c}} \right) \right]$$

$$+ D \left(1 - \frac{T}{T_{\rm c}} \right)^{2} + E \left(1 - \frac{T}{T_{\rm c}} \right)^{6}$$
(9)

Specific heat capacity of ideal gases

$$\frac{c_{\rm p}^{\rm id}}{R} = B + (C - B) \left(\frac{T}{A + T}\right)^2 \left[1 - \frac{A}{A + T}\right] \left[1 - \frac{A}{A + T}\right] \left[D + E \frac{T}{A + T} + F \left(\frac{T}{A + T}\right)^2 + G \left(\frac{T}{A + T}\right)^3\right] (10)$$

The symbols are explained in **Ochap.** D1. If the data points are recalculated from the parameters, small deviations due to approximation errors of the parameters might occur.

D3.1. Table 1. Caloric and critical data

Substance	Formula	Molecular weight g/mol	Melting temperature °C	Enthalpy of fusion J/g	Boiling point at 1.013 bar °C	Enthalpy of vaporization at 1.013 bar J/g	Critical temperature K	Critical pressure bar	Critical density kg/m ³	Acentric factor
Elements	Torritala	g/mor		3/9		2/9	T.	Dai	Kg/III	idetoi
Xenon	Xe	131.29	-111.9	17.5	-108.1	95.6	289.73	58.42	1103	0.004
Krypton	Kr	83.80	-157.4	19.6	-153.4	107.1	209.48	55.25	910	-0.001
Argon	Ar	39.95	-189.4	29.6	-185.9	161.1	150.69	48.63	536	-0.002
Neon	Ne	20.18	-248.6	16.3	-246.1	85.8	44.49	26.79	482	-0.039
Helium	He	4.00	-271.4	12.5	-268.9	20.8	5.20	2.27	70	-0.384
Air	110	28.96	-210.1	25.7	-194.2	191.9	132.53	37.86	343	0.038
Hydrogen	H ₂	2.02	-259.3	58.1	-252.8	459.2	33.19	13.15	30	-0.219
Nitrogen	N ₂	28.01	-210.1	25.7	-195.8	199.2	126.19	33.96	313	0.037
Oxygen	02	32.00	-218.8	13.9	-183.0	213.1	154.60	50.46	427	0.022
Sulfur	S	32.06	115.3	53.9	444.2	277.4	1312.95	182.08	203	0.246
Fluorine	F ₂	38.00	-219.7	13.4	-188.1	174.3	144.41	52.40	593	0.051
Chlorine	Cl ₂	70.91	-101.0	90.3	-34.0	288.0	416.96	79.91	577	0.087
Bromine	Br ₂	159.82	-7.3	66.1	58.7	186.5	584.15	103.00	1183	0.129
lodine	I ₂	253.80	113.7	61.1	184.4	165.3	819.15	116.54	1637	0.112
Anorganic compounds	2									
Hydrogen fluoride	HF	20.01	-83.4	228.9	19.5	380.5	461.15	64.80	290	0.381
Hydrogen chloride	HCI	36.46	-114.3	54.9	-85.1	448.3	324.65	83.10	450	0.131
Hydrogen bromide	HBr	80.92	-86.9	29.7	-66.6	220.3	363.15	85.52	809	0.073
Hydrogen iodide	Н	127.91	-50.9	22.5	-35.4	158.4	423.85	83.10	1049	0.038
Hydrogen cyanide	HCN	27.02	-13.3	311.0	25.7	998.6	456.65	53.90	194	0.410
Water	H ₂ O	18.02	0.0	333.1	100.0	2256.6	647.10	220.64	322	0.344
Hydrogen sulfide	H ₂ S	34.08	-85.5	69.7	-60.3	546.5	373.10	89.99	349	0.100
Ammonia	NH ₃	17.03	-77.8	332.2	-33.3	1369.2	405.50	113.59	225	0.256
Nitric oxide	NO	30.01	-161.0	76.7	-151.8	452.6	180.15	64.80	517	0.583
Nitrogen dioxide	NO ₂	46.01	-11.3	318.4	21.2	720.5	431.15	101.32	558	0.851
Nitrous oxide	N ₂ O	44.01	-90.9	148.6	-88.5	374.4	309.52	72.45	454	0.162
Dinitrogentetroxide	N ₂ O ₄	92.01	-11.3	159.2	21.3	358.4	431.10	101.32	1115	0.853
Cyanogen	C ₂ N ₂	52.04	-27.9	155.8	-21.1	448.8	400.15	59.78	267	0.279
Phosphorus trichloride	PCI ₃	137.33	-92.0	51.6	75.0	216.9	563.15	56.70	528	0.220
Cyanogen chloride	CICN	61.47	-6.5	185.3	12.8	435.1	449.05	59.90	377	0.323
Silane	SiH ₄	32.12	-184.7	20.8	-112.0	374.5	269.75	48.40	242	0.093
Tetrachlorosilane	SiCl ₄	169.90	-68.8	45.1	57.2	165.4	507.05	35.90	521	0.232

		Molecular weight	Melting temperature	Enthalpy of fusion	Boiling point at 1.013 bar	Enthalpy of vaporization at 1.013 bar	Critical temperature	Critical pressure	Critical density	Acentric
Substance	Formula	g/mol	°C	J/g	°C	J/g	K	bar	kg/m³	factor
Carbon monoxide	СО	28.01	-205.0	30.0	-191.5	214.7	132.86	34.98	304	0.050
Carbon dioxide	CO ₂	44.01	-56.6	204.9			304.13	73.77	468	0.224
Carbon suboxide	C ₃ O ₂	68.03	-112.2	79.4	6.4	363.8	427.58	69.44	383	0.522
Carbonyl sulfide	COS	60.07	-138.9	78.7	-50.2	309.0	378.77	63.69	447	0.098
Phosgene	CCI ₂ O	98.92	-127.9	58.0	7.7	249.3	455.05	56.74	521	0.201
Carbon disulfide	CS ₂	76.14	-111.6	57.7	46.2	353.3	552.05	79.00	476	0.121
Sulfur dioxide	SO ₂	64.06	-73.2	115.5	-10.0	389.1	430.64	78.76	525	0.255
Sulfur trioxide	SO ₃	80.06	16.8	94.1	44.5	509.0	490.85	82.10	631	0.424
Sulfuryl chloride	Cl ₂ SO ₂	134.97	-54.1		69.4	222.1	545.05	46.10	577	0.176
Sulfur hexafluoride	SF ₆	146.05	-50.8	34.4			318.88	37.66	742	0.215
Organic compounds cont	aining sulfu	r								
Methyl mercaptan	CH ₄ S	48.11	-123.0	122.7	6.0	511.0	469.95	72.30	332	0.158
Ethyl mercaptan	C ₂ H ₆ S	62.13	-147.9	80.1	35.0	432.5	499.15	54.90	300	0.188
Dimethyl sulfide	C ₂ H ₆ S	62.13	-98.0		37.4	437.1	503.00	55.30	309	0.195
Diethyl sulfide	C ₄ H ₁₀ S	90.19	-103.9	132.0	92.2	352.4	557.15	39.60	284	0.290
Thiophene	C ₄ H ₄ S	84.14	-38.3	60.4	84.2	375.8	579.35	56.90	384	0.197
Halogenated hydrocarbo	ns									
Fluoromethane (R41)	CH ₃ F	34.03	-141.9	145.4	-78.4	487.8	317.28	59.06	319	0.200
Difluoromethane (R32)	CH ₂ F ₂	52.02	-136.1	99.2	-51.7	382.0	351.26	57.83	424	0.277
Trifluoromethane (R23)	CHF ₃	70.01	-155.2	58.0	-82.1	238.7	299.75	48.69	526	0.258
Tetrafluoromethane (R14)	CF ₄	88.00	-183.7	8.1	-128.1	133.6	227.55	37.40	629	0.178
Methyl chloride	CH₃CI	50.49	-97.8	129.7	-24.1	428.1	416.25	66.80	353	0.154
Methylene chloride	CH ₂ Cl ₂	84.93	-95.1	54.2	39.8	333.9	510.05	60.80	459	0.198
Chloroform	CHCl ₃	119.38	-63.5	79.9	61.1	247.5	536.45	55.54	508	0.229
Carbon tetrachloride	CCI ₄	153.82	-22.9	16.5	76.7	194.2	556.35	45.60	557	0.193
Bromomethane	CH ₃ Br	94.94	-93.6	63.0	3.6	255.2	467.05	80.00	609	0.191
Dibromomethane	CH ₂ Br ₂	173.85	-52.5	43.2	97.0	194.4	611.05	71.70	779	0.209
Tribromomethane	CHBr ₃	252.75	8.2	45.9	149.2	149.3	696.05	60.90	883	0.156
Tetrabromomethane	CBr ₄	331.65	92.0		189.3	120.6	724.80	96.31	1009	0.584
Chlorodifluoromethane (R22)	CHCIF ₂	86.47	-157.4	47.7	-40.8	234.0	369.28	49.88	520	0.221
Dichlorofluoromethane (R21)	CHCl₂F	102.92	-135.0	51.0	8.8	242.2	451.55	51.84	525	0.205
Chlorotrifluoromethane (R13)	CCIF ₃	104.46	-181.0	33.5	-81.4	150.0	302.05	38.70	579	0.172
Dichlorodifluoromethane (R12)	CCI ₂ F ₂	120.91	-158.0	34.2	-29.8	166.2	385.12	41.36	565	0.179
Trichlorofluoromethane (R11)	CCl₃F	137.37	-111.1	50.2	23.6	181.8	471.06	43.94	565	0.188
Ethyl fluoride (R161)	C ₂ H ₅ F	48.06	-143.3	124.8	-37.7	418.3	375.30	50.28	293	0.220
Ethyl chloride	C ₂ H ₅ Cl	64.52	-136.4	69.0	12.3	383.0	460.35	52.70	323	0.192
Ethyl bromide	C ₂ H ₅ Br	108.97	-118.6	53.8	38.4	249.6	503.75	62.30	507	0.252
1,1-Dichloroethane	C ₂ H ₄ Cl ₂	98.96	-97.0	79.5	57.1	296.7	523.05	50.70	412	0.233
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	98.96	-35.7	89.2	83.6	323.7	561.60	53.70	450	0.285
1,2-Dibromoethane	C ₂ H ₄ Br ₂	187.87	9.8	58.3	131.5	191.3	650.20	54.77	718	0.207
1,1,1-Trifluoroethane (R143a)	C ₂ H ₃ F ₃	84.04	-111.4	73.7	-47.2	226.7	345.86	37.62	431	0.262
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	133.41	-30.0	17.6	74.1	223.0	545.05	43.00	475	0.217
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄	167.85	-43.9	54.6	145.9	225.5	645.05	40.90	517	0.253
Pentachloroethane	C ₂ HCl ₅	202.29	-29.0	56.1	160.4	191.5	646.00	34.80	548	0.337
Hexachloroethane	C ₂ Cl ₆	236.74	186.8	41.2			695.05	33.40	575	0.238

					Boiling	Enthalpy of				
		Molecular	Melting	Enthalpy	point at	vaporization	Critical	Critical	Critical	
		weight	temperature	of fusion	1.013 bar	at 1.013 bar	temperature	pressure	density	Acentric
Substance	Formula	g/mol	°C	J/g	°C	J/g	K	bar	kg/m³	factor
1,1,2,2- Tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂	203.83	24.9	18.2	93.0	156.8	551.05	34.34	581	0.290
1,1,2- Trichlorotrifluoroethane	C ₂ Cl ₃ F ₃	187.38	-36.3	13.2	47.6	144.3	487.21	33.92	560	0.253
1,2- Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄	170.92	-92.5	8.8	3.6	135.7	418.85	32.60	581	0.252
1-Chloropropane	C₃H ₇ Cl	78.54	-122.9	70.6	46.5	354.7	503.15	45.80	318	0.227
1-Chlorobutane	C ₄ H ₉ Cl	92.57	-123.1	89.0	78.7	327.7	542.00	36.80	309	0.226
1-Chloropentane	C₅H ₁₁ Cl	106.60	-99.0		108.5	314.3	568.05	33.50	303	0.318
Chlorotrifluoroethene	C ₂ CIF ₃	116.47	-158.1	47.7	-28.8	224.2	379.15	40.53	549	0.242
Vinyl chloride	C ₂ H ₃ Cl	62.50	-153.9	75.9	-13.8	353.5	432.05	56.70	349	0.100
1,1-Dichloroethene	C ₂ H ₂ Cl ₂	96.94	-122.6	67.2	31.7	269.6	482.05	51.90	433	0.272
Trichloroethene	C ₂ HCl ₃	131.39	-84.9		86.2	242.4	571.05	49.10	513	0.210
Tetrachloroethene	C ₂ Cl ₄	165.83	-22.4	63.1	121.0	210.5	620.05	44.90	669	0.214
Fluorobenzene	C ₆ H ₅ F	96.10	-42.3	117.6	85.2	329.4	560.05	45.51	357	0.248
Chlorobenzene	C ₆ H ₅ Cl	112.56	-45.3	84.9	131.9	316.4	632.35	45.19	366	0.250
Bromobenzene	C ₆ H ₅ Br	157.01	-30.8	67.7	156.0	239.4	670.20	45.19	485	0.251
lodobenzene	C ₆ H ₅ I	204.01	-31.4	47.8	188.3	200.4	721.20	45.19	581	0.247
<i>m</i> -Chlorotoluene	C ₇ H ₇ Cl	126.59	-48.0	47.0	162.8	312.1	660.75	39.54	347	0.307
Benzyl chloride	C ₇ H ₇ Cl	126.59	-39.0		179.5	324.1	686.05	39.10	352	0.314
n-Alkanes	C7117C1	120.59	-39.0		179.5	324.1	000.03	39.10	332	0.514
Methane	CH ₄	16.04	-182.5	58.7	-161.5	510.8	190.56	45.99	163	0.011
Ethane	C ₂ H ₆	30.07	-182.9	95.1	-88.6	489.5	305.32	48.72	206	0.100
Propane	C ₂ H ₈	44.10	-182.3 -187.7	79.9	-42.1	426.1	369.82	42.48	221	0.152
n-Butane	C ₃ H ₁₀	58.12	-187.7 -138.4	80.2	-42.1 -0.5	385.9	425.13	37.96	228	0.132
n-Pentane	C ₄ H ₁₀	72.15	-129.8	116.4	36.1	357.7	469.66	33.69	235	0.252
n-Hexane	C ₅ I 1 ₁₂	86.18	-129.8 -95.4	151.8	68.7	334.9	507.79	30.42	223	0.300
	C ₆ H ₁₆			140.2					225	0.346
n-Heptane	C ₇ H ₁₆ C ₈ H ₁₈	100.21 114.23	-90.6 -56.9	181.6	98.4 125.6	316.7 302.1	541.23 569.57	27.74 25.07	223	0.346
n-Octane	1		-50.9 -53.5							0.394
<i>n</i> -Nonane <i>n</i> -Decane	C ₉ H ₂₀	128.26		120.6	150.8	288.5	594.55	22.82	234	
	C ₁₀ H ₂₂	142.29	-29.6	201.8	174.1	276.3	617.70	21.01	234	0.488
<i>n</i> -Undecane	C ₁₁ H ₂₄	156.31	-25.6	141.9	195.9	270.2	639.05	19.50	237	0.530
<i>n</i> -Dodecane	C ₁₂ H ₂₆	170.34	-9.5	216.3	216.3	256.2	658.10	18.18	238	0.574
<i>n</i> -Tridecane	C ₁₃ H ₂₈	184.37	-5.3	154.6	235.4	252.0	675.05	16.80	238	0.618
<i>n</i> -Tetradecane	C ₁₄ H ₃₀	198.39	6.0	227.2	253.5	242.5	693.05	15.70	239	0.643
<i>n</i> -Pentadecane	C ₁₅ H ₃₂	212.42	10.0	162.8	270.6	237.7	708.05	14.80	239	0.685
<i>n</i> -Hexadecane	C ₁₆ H ₃₄	226.45	18.3	235.6	286.7	231.6	723.05	14.00	240	0.717
<i>n</i> -Heptadecane	C ₁₇ H ₃₆	240.47	22.0	167.0	302.4	228.9	736.05	13.40	241	0.769
<i>n</i> -Octadecane	C ₁₈ H ₃₈	254.50	28.3	242.5	316.2	219.5	747.05	12.70	240	0.811
<i>n</i> -Nonadecane	C ₁₉ H ₄₀	268.53	32.0	170.6	330.1	214.2	758.05	12.10	240	0.852
n-Eicosane	C ₂₀ H ₄₂	282.56	36.5	247.3	343.7	204.8	769.63	11.28	234	0.875
Isoalkanes	1									
Isobutane	C ₄ H ₁₀	58.12	-159.6	78.1	-11.7	365.4	407.81	36.29	226	0.184
2-Methyl butane	C ₅ H ₁₂	72.15	-159.9	71.4	27.8	343.6	460.35	33.78	237	0.228
2,2-Dimethyl propane	C ₅ H ₁₂	72.15	-16.6	43.6	9.5	315.5	433.74	31.96	238	0.196
2-Methyl pentane	C ₆ H ₁₄	86.18	-153.6	72.7	60.2	323.0	497.70	30.43	236	0.280
3-Methyl pentane	C ₆ H ₁₄	86.18	-162.9	61.5	63.3	326.6	504.65	31.20	234	0.270
2,2-Dimethyl butane	C ₆ H ₁₄	86.18	-98.9	6.7	49.7	307.5	489.00	31.00	241	0.234
2,3-Dimethyl butane	C ₆ H ₁₄	86.18	-128.0	9.3	57.9	317.6	500.00	31.51	240	0.248

					Boiling	Enthalpy of				
		Molecular	Melting	Enthalpy	point at	vaporization	Critical	Critical	Critical	
		weight	temperature	of fusion	1.013 bar	at 1.013 bar	temperature	pressure	density	Acentric
Substance	Formula	g/mol	°C	J/g	°C	J/g	K	bar	kg/m³	factor
Olefins	-	1	1			1	·			1
Ethylene	C ₂ H ₄	28.05	-169.1	119.4	-103.8	482.7	282.35	50.42	214	0.087
Propylene	C ₃ H ₆	42.08	-85.4	71.4	-47.7	439.5	365.57	46.65	223	0.141
1-Butene	C ₄ H ₈	56.11	-185.4	68.6	-6.3	392.2	419.29	40.06	238	0.192
1-Pentene	C ₅ H ₁₀	70.14	-165.1	84.7	30.0	362.2	464.75	35.60	235	0.237
1-Hexene	C ₆ H ₁₂	84.16	-139.9	111.1	63.5	339.1	504.05	31.40	238	0.280
1-Heptene	C ₇ H ₁₄	98.19	-118.9		93.7	319.5	537.40	29.20	244	0.344
1-Octene	C ₈ H ₁₆	112.22	-101.8	136.4	121.3	306.4	567.05	26.80	240	0.392
Propadiene	C ₃ H ₄	40.06	-136.4		-34.4	489.5	393.15	50.90	243	0.132
1,2-Butadiene	C ₄ H ₆	54.09	-136.3	128.7	10.9	440.5	452.00	43.60	246	0.166
1,3-Butadiene	C ₄ H ₆	54.09	-108.9	147.6	-4.5	416.3	425.15	42.77	245	0.190
1,2-Pentadiene	C ₅ H ₈	68.12	-137.4	111.0	44.8	398.6	500.05	38.00	247	0.154
trans-1,3-Pentadiene	C ₅ H ₈	68.12	-87.4	104.9	42.0	392.2	500.05	37.40	247	0.116
1,4-Pentadiene	C₅H ₈	68.12	-148.3	89.2	26.0	359.5	479.00	37.40	225	0.084
2,3-Pentadiene	C ₅ H ₈	68.12	-125.7	95.8	48.3	407.4	497.00	38.00	231	0.218
Acetylene and derivative	ves									
Acetylene	C ₂ H ₂	26.04	-80.9	144.8			308.35	61.39	230	0.190
Propyne	C ₃ H ₄	40.06	-102.8	133.5	-23.1	554.9	402.40	56.30	244	0.211
2-Butyne	C ₄ H ₆	54.09	-32.3	170.7	27.0	492.0	473.20	48.70	245	0.238
1-Butyne	C ₄ H ₆	54.09	-125.8	111.5	8.1	459.8	440.00	46.00	260	0.247
Naphthenes	•						•			
Cyclopropane	C ₃ H ₆	42.08	-127.6	129.3	-32.8	473.4	397.95	54.95	259	0.133
Cyclobutane	C ₄ H ₈	56.11	-90.7	19.4	12.5	427.8	459.90	49.80	267	0.185
Cyclopentane	C ₅ H ₁₀	70.14	-93.9	8.7	49.2	387.3	511.70	45.25	270	0.196
Methyl cyclopentane	C ₆ H ₁₂	84.16	-142.4	82.3	71.8	347.6	532.75	37.90	264	0.231
Ethyl cyclopentane	C ₇ H ₁₄	98.19	-138.5	70.0	103.4	326.6	569.50	34.00	262	0.270
Propyl cyclopentane	C ₈ H ₁₆	112.22	-117.4	89.4	131.0	310.9	596.00	30.20	262	0.327
Butyl cyclopentane	C ₉ H ₁₈	126.24	-108.0	89.6	156.4	286.7	621.00	27.20	261	0.372
Pentyl cyclopentane	C ₁₀ H ₂₀	140.27	-83.0		180.5	278.1	656.20	24.67	257	0.329
Hexyl cyclopentane	C ₁₁ H ₂₂	154.30	-73.0		203.1	273.0	660.10	21.38	259	0.476
Cyclohexane	C ₆ H ₁₂	84.16	6.5	32.6	80.7	356.1	553.60	40.75	273	0.209
Methyl cyclohexane	C ₇ H ₁₄	98.19	-126.6	68.8	100.9	320.1	572.15	34.71	267	0.235
Ethyl cyclohexane	C ₈ H ₁₆	112.22	-111.4	74.3	131.9	305.6	609.15	30.40	261	0.246
Propyl cyclohexane	C ₉ H ₁₈	126.24	-94.9	82.1	156.7	288.7	639.20	28.07	265	0.260
Butyl cyclohexane	C ₁₀ H ₂₀	140.27	-74.8	100.9	181.0	278.2	667.00	25.70	263	0.274
Pentyl cyclohexane	C ₁₁ H ₂₂	154.30	-72.9		203.7	275.8	667.85	22.04	264	0.430
Hexyl cyclohexane	C ₁₂ H ₂₄	168.32	-45.3		224.7	270.6	693.60	22.60	249	0.468
Cyclopentene	C ₅ H ₈	68.12	-135.1	49.4	44.3	396.6	507.00	48.00	278	0.196
Cyclohexene	C ₆ H ₁₀	82.15	-103.5	40.1	83.0	371.3	560.45	43.50	282	0.211
Aromatic compounds	-0 10									
Benzene	C ₆ H ₆	78.11	5.5	126.3	80.1	393.7	562.01	49.01	306	0.210
Toluene	C ₇ H ₈	92.14	-95.0	72.0	110.6	360.8	591.75	41.26	292	0.266
Ethyl benzene	C ₈ H ₁₀	106.17	-94.9	86.5	136.2	336.8	617.05	36.13	283	0.304
Propyl benzene	C ₉ H ₁₂	120.19	-99.6	77.1	159.2	313.1	638.35	31.96	274	0.344
Butyl benzene	C ₁₀ H ₁₄	134.22	-99.0 -87.9	83.6	183.3	301.5	660.50	28.90	270	0.394
Pentyl benzene	C ₁₀ H ₁₆	148.25	−75.1	102.8	205.6	286.5	679.90	26.04	270	0.438
Hexyl benzene	C ₁₁ H ₁₈	162.28	-61.2	113.4	226.2	274.4	698.00	23.80	274	0.479
o-Xylene	C ₁₂ I 1 ₁₈ C ₈ H ₁₀	102.28	-01.2 -25.3	128.1	144.4	347.6	630.25	37.32	287	0.479
<i>m</i> -Xylene		106.17	-23.3 -47.9	109.0	139.1	342.3	617.05	35.41	283	0.312
III-Aylerie	C ₈ H ₁₀	100.17	-47.9	109.0	139.1	342.3	017.05	33.41	203	0.527

Substance	Formula	Molecular weight g/mol	Melting temperature °C	Enthalpy of fusion J/g	Boiling point at 1.013 bar °C	Enthalpy of vaporization at 1.013 bar J/g	Critical temperature K	Critical pressure bar	Critical density kg/m³	Acentric factor
<i>p</i> -Xylene		106.17	13.3	161.2	138.4	339.8	616.25	35.11	281	0.322
1,2,3-Trimethyl benzene	C ₈ H ₁₀	120.19	-25.4	68.1	176.2	335.4	664.50	34.54	290	0.322
1,2,4-Trimethyl benzene	C ₉ H ₁₂	120.19	-23.4 -43.9	109.7	169.4	328.2	649.05	32.32	280	0.307
1,3,5-Trimethyl benzene	C ₉ H ₁₂	120.19	-43.9 -44.8	79.2	164.7	326.1	637.30	31.27	278	0.378
1,2,3,4-Tetramethyl	C ₁₀ H ₁₄	134.22	-44.8 -6.3	83.7	205.1	320.1	693.00	31.10	283	0.399
benzene										
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄	134.22	-23.7	79.9	198.1	317.4	679.00	29.70	279	0.424
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄	134.22	79.3	156.5	196.7	317.9	676.00	29.00	279	0.422
Pentamethyl benzene	C ₁₁ H ₁₆	148.25	54.4	83.2	231.5	312.7	719.20	28.70	276	0.464
Hexamethyl benzene	C ₁₂ H ₁₈	162.28	165.5	127.2	263.5	311.5	758.00	27.70	274	0.496
Styrene	C ₈ H ₈	104.15	-30.6	105.1	145.4	355.7	636.05	38.40	296	0.295
Isopropyl benzene	C ₉ H ₁₂	120.19	-96.0	61.0	152.4	310.7	631.05	32.09	277	0.327
Biphenyl	C ₁₂ H ₁₀	154.21	69.2	120.5	255.3	315.5	789.00	38.50	310	0.365
Diphenyl methane	C ₁₃ H ₁₂	168.24	25.3	108.2	264.6	292.7	760.00	27.10	299	0.482
Triphenyl methane	C ₁₉ H ₁₆	244.34	92.2	90.0	359.5	245.5	865.00	22.00	325	0.574
Tetraphenyl methane	C ₂₅ H ₂₀	320.43	288.1		469.7	221.6	983.00	17.90	332	0.679
Naphthalene	C ₁₀ H ₈	128.17	80.3	148.1	218.0	338.5	748.45	40.50	315	0.304
1-Methylnaphthalene	C ₁₁ H ₁₀	142.20	-30.5	48.8	244.5	327.3	772.00	36.00	306	0.342
2-Methylnaphthalene	C ₁₁ H ₁₀	142.20	34.6	85.2	241.6	325.1	761.00	35.00	306	0.378
1-Ethylnaphthalene	C ₁₂ H ₁₂	156.23	-13.9	104.3	258.2	312.1	776.00	33.20	300	0.407
2-Ethylnaphthalene	C ₁₂ H ₁₂	156.23	-7.3	94.1	258.4	307.3	771.00	31.70	300	0.421
Alcohols	1	<u>l</u>				!	Į	Į.	Į.	
Methanol	CH ₄ O	32.04	-97.7	100.3	64.5	1102.0	513.38	82.16	282	0.563
Ethanol	C ₂ H ₆ O	46.07	-114.1	107.0	78.3	850.1	513.90	61.48	276	0.644
1-Propanol	C ₃ H ₈ O	60.10	-126.3	89.4	97.2	696.9	536.75	51.75	274	0.621
1-Butanol	C ₄ H ₁₀ O	74.12	-89.4	126.4	117.8	585.3	563.05	44.23	270	0.591
1-Pentanol	C ₅ H ₁₂ O	88.15	-77.6	111.1	137.9	500.4	586.15	38.80	270	0.591
1-Hexanol	C ₆ H ₁₄ O	102.18	-44.6	150.7	157.7	448.7	611.35	35.10	268	0.578
1-Heptanol	C ₇ H ₁₆ O	116.20	-34.1	156.4	176.6	401.2	632.60	30.58	267	0.567
1-Octanol	C ₈ H ₁₈ O	130.23	-15.6	172.8	195.3	368.5	652.55	28.60	266	0.593
Isopropanol	C ₃ H ₈ O	60.10	-87.9	90.0	82.2	677.2	508.25	47.62	273	0.663
2-Methyl-1-propanol	C ₄ H ₁₀ O	74.12	-108.0	85.3	107.9	564.0	547.75	43.00	272	0.590
3-Methyl-1-butanol	C ₅ H ₁₂ O	88.15	-117.3	75.0	131.3	500.5	577.25	39.30	270	0.595
Ethylene glycol	C ₂ H ₆ O ₂	62.07	-13.1	160.4	197.1	867.5	719.15	82.00	325	0.513
1,3-Propylene glycol	C ₃ H ₈ O ₂	76.09	-26.8	93.3	214.1	733.7	724.05	95.00	351	0.738
Glycerol	C ₃ H ₈ O ₃	92.09	18.3	198.5	287.7	718.6	850.05	75.00	349	0.512
Cyclohexanol	C ₆ H ₁₂ O	100.16	23.5	17.8	160.9	451.7	650.05	42.60	311	0.370
Benzyl alcohol	C ₇ H ₈ O	108.14	-15.3	83.0	204.5	454.3	720.15	45.01	323	0.362
Phenols	1	l.	l	I.		<u> </u>	l .	I.	I	
o-Cresol	C ₇ H ₈ O	108.14	31.0	146.3	190.8	423.1	697.55	50.10	383	0.433
m-Cresol	C ₇ H ₈ O	108.14	12.3	99.0	202.2	445.2	705.85	45.60	347	0.448
<i>p</i> -Cresol	C ₇ H ₈ O	108.14	34.8	117.5	202.0	445.3	704.65	51.50	391	0.509
Phenol	C ₆ H ₆ O	94.11	41.0	122.3	181.9	489.5	694.25	61.30	411	0.442
Carboxylic acids										
Formic acid	CH ₂ O ₂	46.02	8.5	275.9	100.6	480.7	588.05	58.10	368	0.316
Acetic acid	C ₂ H ₄ O ₂	60.05	16.8	195.3	117.9	397.9	591.95	57.86	334	0.463
Propionic acid	C ₃ H ₆ O ₂	74.08	-20.8	143.9	141.2	419.4	600.85	46.17	318	0.576
Butyric acid	C ₄ H ₈ O ₂	88.11	-5.3	131.5	163.7	402.6	615.75	40.64	302	0.681
Valeric acid	C ₅ H ₁₀ O ₂	102.13	-29.4	71.7	175.6	395.3	634.05	38.90	304	0.647

Substance	Formula	Molecular weight g/mol	Melting temperature °C	Enthalpy of fusion J/g	Boiling point at 1.013 bar °C	Enthalpy of vaporization at 1.013 bar J/g	Critical temperature K	Critical pressure bar	Critical density kg/m ³	Acentric factor
Caproic acid	C ₆ H ₁₂ O ₂	116.16	-3.8 -73.0	132.6	204.5	394.0	660.20	33.08	281	0.730
Acetic anhydride	C ₄ H ₆ O ₃	102.09	-73.0	102.8	139.5	394.5	606.05	40.00	352	0.454
Propionic anhydride	C ₆ H ₁₀ O ₃	130.14	-45.1	420.0	167.0	326.9	623.00	32.70	329	0.560
Chloroacetic acid	C ₂ H ₃ ClO ₂	94.50	60.0	130.2	189.0	523.8	686.05	57.80	428	0.546
Dichloroacetic acid	C ₂ H ₂ Cl ₂ O ₂	128.94	13.5	95.7	193.9	379.5	686.05	51.70	487	0.555
Trichloroacetic acid	C ₂ HCl ₃ O ₂	163.39	57.0	36.0	197.7	302.7	688.05	48.10	529	0.549
Ketones	Т	1	T	ı	1	1	I	1	1	1
Ketene	C ₂ H ₂ O	42.04	-151.1		-49.7	461.0	370.05	58.10	292	0.125
Acetone	C₃H ₆ O	58.08	-94.8	99.4	56.1	501.7	508.10	46.92	274	0.306
Methyl ethyl ketone	C ₄ H ₈ O	72.11	-86.8	116.3	79.6	441.2	535.55	41.50	270	0.323
Diethyl ketone	$C_5H_{10}O$	86.13	-39.0	134.6	101.9	393.3	561.00	37.40	256	0.345
Dipropyl ketone	C ₇ H ₁₄ O	114.19	-32.6	162.9	144.2	327.8	602.00	29.20	263	0.412
Acetophenone	C ₈ H ₈ O	120.15	19.7	85.7	202.4	367.4	709.50	38.40	311	0.364
Benzophenone	C ₁₃ H ₁₀ O	182.22	48.3	92.8	305.6	301.0	830.05	33.52	321	0.500
Ethers	1			I.				ı	ı	
Dimethyl ether	C ₂ H ₆ O	46.07	-141.5	107.2	-24.8	470.5	400.30	53.41	277	0.188
Diethyl ether	C ₄ H ₁₀ O	74.12	-116.4	97.0	34.5	357.7	466.63	36.51	264	0.283
Dipropyl ether	C ₆ H ₁₄ O	102.18	-123.3	105.4	90.0	310.4	530.60	30.28	268	0.369
Methyl propyl ether	C ₄ H ₁₀ O	74.12	-139.2	103.5	38.9	363.5	476.30	38.01	269	0.277
Ethyl propyl ether	C ₅ H ₁₂ O	88.15	-127.6	95.2	63.8	312.9	500.20	33.70	260	0.347
Ethylene oxide	C ₂ H ₄ O	44.05	-112.5	117.4	10.5	587.1	469.15	71.90	314	0.197
Furane	C ₂ H ₄ O	68.08	-85.6	55.9	31.4	400.2	490.15	55.00	312	0.203
	1									
1,4-Dioxane	C ₄ H ₈ O ₂	88.11	11.8	145.7	101.4	389.5	587.05	52.08	370	0.279
Aldehydes	CII O	20.02	02.0	2240	101	760.0	400.05	65.00	261	0.201
Formaldehyde	CH ₂ O	30.03	-92.0	234.8	-19.1	769.2	408.05	65.90	261	0.281
Acetaldehyde	C ₂ H ₄ O	44.05	-123.0	73.1	20.3	595.7	466.05	55.50	286	0.262
Paraldehyde	C ₆ H ₁₂ O ₃	132.16	12.7	104.8	124.2	285.1	579.05	35.00	362	0.437
Furfural	C ₅ H ₄ O ₂	96.08	-36.6	149.9	161.4	436.1	670.20	56.60	381	0.368
Benzaldehyde	C ₇ H ₆ O	106.12	-57.1	87.8	178.9	387.0	695.05	46.50	328	0.322
Salicylaldehyde	$C_7H_6O_2$	122.12	1.7	87.6	196.3	373.4	680.00	49.90	357	0.619
Esters										
Methyl formate	$C_2H_4O_2$	60.05	-99.0	125.4	31.8	470.6	487.25	60.00	349	0.255
Ethyl formate	C ₃ H ₆ O ₂	74.08	-79.6	124.3	54.0	405.6	508.45	47.40	324	0.276
Propyl formate	C ₄ H ₈ O ₂	88.11	-92.9	149.8	81.1	366.1	538.00	40.20	309	0.309
Methyl acetate	C ₃ H ₆ O ₂	74.08	-98.0	107.6	56.9	411.8	506.55	47.50	325	0.331
Ethyl acetate	C ₄ H ₈ O ₂	88.11	-83.5	118.9	77.1	366.2	523.20	38.30	308	0.361
Propyl acetate	C ₅ H ₁₀ O ₂	102.13	-95.0	109.7	101.5	336.1	549.75	33.60	296	0.390
Methyl propionate	C ₄ H ₈ O ₂	88.11	-87.6	114.6	79.5	368.4	530.60	40.04	312	0.347
Ethyl propionate	C ₅ H ₁₀ O ₂	102.13	-73.9	120.4	99.0	333.8	546.05	33.62	296	0.389
Propyl propionate	C ₆ H ₁₂ O ₂	116.16	−75.9	129.1	122.5	315.1	568.60	30.60	299	0.449
Methyl butyrate	C ₅ H ₁₀ O ₂	102.13	-85.8	112.6	102.7	336.5	554.50	34.73	300	0.378
Ethyl butyrate	C ₆ H ₁₂ O ₂	116.16	-98.1	107.6	121.4	310.9	571.00	29.50	288	0.401
Methyl benzoate	C ₈ H ₈ O2	136.15	-12.4	71.5	199.4	323.5	693.05	35.90	312	0.415
· · · · · · · · · · · · · · · · · · ·										
Ethyl benzoate	C ₉ H ₁₀ O ₂	150.18	-34.8 8.0	94.6	213.3	300.3	698.00	31.80	307	0.477
Methyl salicylate	C ₈ H ₈ O ₃	152.15	-8.0	117.0	220.6	313.7	709.00	40.90	371	0.581
Amines	CI A:			40		0.5.	40			
Methyl amine	CH₅N	31.06	-93.5	197.5	-6.4	843.4	430.05	74.60	202	0.282
Ethyl amine	C ₂ H ₇ N	45.09	-81.0	207.4	16.8	608.8	456.15	56.20	218	0.285
Propyl amine	C ₃ H ₉ N	59.11	-83.0	256.4	47.6	510.4	496.95	47.40	227	0.280
n-Butyl amine	C ₆ H ₁₅ N	73.14	-49.1	202.4	77.5	442.0	531.95	42.00	236	0.329
Dimethyl amine	C ₂ H ₇ N	45.09	-92.3	131.8	7.0	590.0	437.25	53.40	250	0.298

Substance	Formula	Molecular weight g/mol	Melting temperature °C	Enthalpy of fusion J/g	Boiling point at 1.013 bar °C	Enthalpy of vaporization at 1.013 bar J/g	Critical temperature K	Critical pressure bar	Critical density kg/m³	Acentric factor
Trimethyl amine	C ₃ H ₉ N	59.11	-117.1	110.7	3.1	391.1	433.25	41.02	233	0.206
Diethyl amine	C ₆ H ₁₅ N	73.14	-49.9	155.9	55.6	397.2	496.65	37.10	243	0.301
Triethyl amine	C6H15N	101.19	-114.8	84.2	88.8	304.8	535.15	30.40	260	0.318
Piperidine	C ₅ H ₁₁ N	85.15	-10.6	134.1	106.4	394.0	594.00	46.51	277	0.243
Pyridine	C ₆ H ₇ N	79.10	-41.7	104.7	115.2	447.6	620.00	56.30	311	0.239
Aniline	C6H7N	93.13	-6.0	113.2	183.9	479.5	699.05	53.10	345	0.378
N-methyl aniline	C ₇ H ₉ N	107.16	-57.1	88.8	195.6	423.2	701.50	52.00	287	0.475
N,N-dimethyl aniline	C ₈ H ₁₁ N	121.18	2.5	95.4	193.4	352.4	687.20	36.30	261	0.402
N,N-diethyl aniline	C ₁₀ H ₁₅ N	149.24	-38.1	56.9	216.1	304.4	702.00	28.50	268	0.426
Phenylhydrazine	C ₆ H ₈ N ₂	108.14	19.3	151.9	244.0	486.5	761.00	49.10	259	0.535
Diphenyl amine	C ₁₂ H ₁₁ N	169.23	53.0	110.5	302.4	323.7	817.00	31.80	314	0.530
Nitriles										
Acetonitrile	C ₂ H ₃ N	41.05	-43.9	198.9	81.4	778.7	545.55	48.30	237	0.334
Propionitrile	C ₃ H ₅ N	55.08	-92.9	91.3	97.7	572.2	564.40	41.80	241	0.324
Butyronitrile	C ₄ H ₇ N	69.11	-111.9	72.7	117.4	500.0	582.30	37.90	249	0.371
Benzonitrile	C ₇ H ₅ N	103.12	-12.8	105.5	190.8	403.6	699.35	42.15	329	0.367
Amides										
Formamide	CH ₃ NO	45.04	2.6	177.2	219.6	1136.0	771.00	78.00	276	0.412
Nitroderivates	•	•					•		•	•
Nitromethane	CH ₃ NO ₂	61.04	-28.6	159.0	101.2	571.4	588.20	63.10	353	0.347
Nitrobenzene	C ₆ H ₅ NO ₂	123.11	5.8	94.2	210.7	359.7	719.05	44.00	353	0.443
o-Nitrotoluene	C ₇ H ₇ NO ₂	137.14	-3.3	83.7	221.5	338.0	720.05	38.00	311	0.480
<i>m</i> -Nitrotoluene	C ₇ H ₇ NO ₂	137.14	16.2	102.5	232.7	343.1	734.05	38.00	311	0.495
<i>p</i> -Nitrotoluene	C ₇ H ₇ NO ₂	137.14	51.7	121.6	238.7	339.9	743.05	32.07	311	0.420

D3.1. Table 2. Density of saturated liquids in kg/m³

					Tem	Temperature (°C)	° C)					Equati	ion (1)	
Substance	Formula	-50	-25	0	20	20	100	150	200	250	А	В	C	О
Elements														
Xenon	Xe	2503.6	2256.2	1906.9							2097.8096	-117.2877	962.2241	-217.6634
Krypton	Kr										1612.0090	342.4370	130.7723	178.6945
Argon	Ar										895.4345	297.7907	-15.9601	119.8686
Air											410.6099	777.4610	-841.3265	495.5129
Nitrogen	N_2										470.9224	493.2507	-560.4689	389.6108
Oxygen	02										748.3728	396.2376	-416.2389	372.6904
Sulfur	S							1777.7	1752.9	1727.1	3728.2432	-5258.9909	5203.2088	-1927.9722
Fluorine	F ₂										677.5368	1399.1215	-1526.3565	870.3285
Chlorine	Cl ₂	1605.5	1537.6	1467.0	1407.8	1311.9	1113.0				908.9019	948.0463	-1353.2681	1093.5278
Bromine	Br ₂			3187.2	3119.8	3015.5	2831.1	2628.5	2397.7	2113.1	1672.7965	449.5091	676.7593	15.3973
lodine	12							3874.9	3729.9	3576.4	1995.2359	589.1905	627.3536	65.6236
Anorganic compounds														
Hydrogen fluoride	生	1124.3	1063.6	1002.2	952.4	875.9	739.5	574.6			232.8396	1347.9901	-1296.9204	1091.0626
Hydrogen chloride	HCI	1090.6	1009.6	916.3	825.2						640.0181	462.1796	-180.0873	273.3275
Hydrogen bromide	HBr	2115.2	2006.9	1887.2	1779.5	1584.0					1716.6784	-697.6208	1545.2372	-534.0575
Hydrogen iodide	H	2857.0	2752.5	2640.9	2545.3	2387.8	2061.5				2159.6727	-837.4455	1907.8899	-675.9615
Hydrogen cyanide	HCN			716.3	687.2	640.7	552.8	436.3			576.9982	-153.5039	576.1976	-153.0246
Water	H ₂ O			1000.0	0.866	988.0	958.0	917.0	865.0	799.0	1094.0233	-1813.2295	3863.9557	-2479.8130
Hydrogen sulfide	H ₂ S	931.0	884.3	833.0	787.4	706.2					454.1590	757.2956	-698.1045	404.4247
Ammonia	NH_3	701.9	671.5	638.7	610.4	562.8	456.7				531.7253	-31.5027	257.0928	-63.9457
Nitric oxide	ON										1496.5803	-1584.2431	2252.1437	-1031.3210
Nitrogen dioxide	NO ₂			1496.5	1450.1	1372.9	1211.1	901.6			1690.6809	-1592.7803	2233.6217	-968.0655
Nitrous oxide	N_2O	1109.7	1018.2	907.0	785.1						954.7062	-399.5870	1000.6634	-350.0132
Dinitrogentetroxide	N_2O_4			1472.7	1443.5						276.2115	-44.5981	604.1720	-135.9384
Cyanogen	C_2N_2		958.2	915.2	876.9	810.7	653.2				1378.7351	-1668.4751	2299.1821	-1052.1005
Phosphorus trichloride	PCI ₃	1702.5	1658.5	1613.1	1575.8	1517.7	1414.0	1298.3	1162.5	982.2	1077.6858	-98.8936	665.5992	-117.8757
Cyanogen chloride	CICN			1221.9	1182.2	1117.0	987.0	794.2			1387.6330	-1242.5960	1899.5222	-814.8977
Silane	SiH ₄	453.5	384.5								202.1021	310.6035	-45.2615	142.0821
Tetrachlorosilane	SiCl₄	1611.8	1566.7	1519.7	1480.4	1418.3	1303.4	1165.8	974.6		1212.2339	-448.0911	977.9054	-307.7212
Carbon monoxide	00										571.9328	-67.0956	387.1443	-121.7294
Carbon dioxide	CO ₂	1154.5	1054.3	927.4	773.5						897.8727	170.0410	169.0516	37.9218
Carbon suboxide	C ₃ O ₂	1195.8	1148.1	1097.1	1053.6	982.4	839.4				1139.6512	-1261.4775	2221.6476	-959.2381

D3.1. Table 2. (continued)

					Tem	Temperature (°C)	()					Equat	ion (1)	
Substance	Formula	-50	-25	0	20	50	100	150	200	250	А	В	C	О
Carbonyl sulfide	COS	1174.3	1118.4	1057.7	1004.2	910.3					614.6483	835.4859	-850.8364	540.4800
Phosgene	CCl ₂ O	1521.4	1471.5	1418.9	1374.4	1302.7	1163.2	967.3			1175.3830	-403.6009	832.6348	-231.8645
Carbon disulfide	CS ₂	1366.5	1330.7	1293.9	1263.5	1216.4	1132.1	1037.7	925.7	770.0	731.6284	105.4039	368.2583	-27.6945
Sulfur dioxide	SO ₂	1559.8	1499.3	1435.6	1381.6	1293.7	1115.8				1026.6061	287.4616	-59.1497	243.0818
Sulfur trioxide	SO ₃				1925.6	1782.4	1536.2	1269.4	931.1		441.4331	1592.9448	-778.3064	1407.6855
Sulfuryl chloride	Cl ₂ SO ₂	1806.7	1758.8	1709.4	1668.5	1604.5	1489.4	1358.8	1200.5	1.996	1181.0337	-220.5274	868.5840	-221.9166
Sulfur hexafluoride	SF ₆	1851.6	1716.1	1558.5	1395.0						1159.8382	1894.1251	-3293.5522	2428.5215
Organic compounds containing s	sulfur													
Methyl mercaptan	CH₄S	956.4	926.3	894.6	868.1	825.6	744.9	636.9			704.5697	-263.8878	591.8503	-181.3799
Ethyl mercaptan	C ₂ H ₆ S	915.7	889.3	861.9	838.9	802.6	735.2	653.5	534.8		691.9049	-266.2214	555.0990	-164.0295
Dimethyl sulfide	C ₂ H ₆ S	921.0	896.3	870.3	848.5	813.8	749.3	671.2	559.9		761.5375	-501.7612	869.4948	-333.3843
Diethyl sulfide	C ₄ H ₁₀ S	6.668	878.1	855.5	836.7	807.4	754.6	694.7	623.0	523.6	681.7218	-323.6418	640.5198	-212.6743
Thiophene	C_4H_4S		1115.5	1087.6	1064.7	1029.1	6.596	896.1	815.7	714.2	669.4387	34.8407	278.2567	-4.5806
Halogenated hydrocarbons														
Fluoromethane (R41)	CH ₃ F	818.4	755.0	678.8	599.2						579.2311	238.0353	7.7800	65.3812
Difluoromethane (R32)	CH_2F_2	1208.7	1135.8	1054.9	6.086	839.4					895.2753	224.1922	-50.9228	229.6600
Trifluoromethane (R23)	CHF ₃	1307.4	1188.8	1031.1	808.2						640.3526	2164.8814	-3066.7802	1825.7135
Tetrafluoromethane (R14)	CF_4	930.7									1095.6241	429.5476	-317.3820	397.1853
Methyl chloride	CH ₃ Cl	1051.8	1008.6	962.6	923.3	858.4	722.0				811.5515	-235.2020	591.6820	-153.4405
Methylene chloride	CH ₂ Cl ₂	1451.9	1408.7	1363.9	1326.8	1268.6	1162.4	1037.2	867.4		937.7851	96.8605	196.4483	106.8482
Chloroform	CHCl ₃	1613.5	1571.7	1528.2	1492.2	1435.6	1332.8	1214.1	1065.8	819.4	1175.1441	-347.5847	842.3866	-239.1385
Carbon tetrachloride	CCl₄			1629.5	1593.3	1536.9	1435.9	1322.4	1186.8	9.766	1168.4410	-175.3077	535.7568	-28.0071
Bromomethane	CH ₃ Br	1857.1	1795.2	1730.5	1676.2	1589.8	1425.3	1208.8			1295.9529	-43.9173	439.6850	35.7205
Dibromomethane	CH_2Br_2	2663.5	2604.8	2544.3	2494.6	2417.6	2281.2	2131.8	1963.3	1762.6	1922.8847	-620.7007	1443.7506	-392.2980
Tribromomethane	CHBr ₃				2889.3	2811.7	2677.1	2534.4	2381.4	2213.8	1813.5394	-117.4543	1179.3409	-192.4309
Tetrabromomethane	CBr_4						2966.4	2821.7	2668.8	2504.7	1925.6988	207.2291	370.8863	404.8231
Chlorodifluoromethane (R22)	CHCIF ₂	1435.3	1361.3	1281.2	1210.1	1083.1					904.1321	874.1686	-1176.1342	881.0060
Dichlorofluoromethane (R21)	CHCl ₂ F	1536.1	1483.2	1427.5	1380.5	1304.7	1157.1	946.9			1070.5872	-98.6131	523.2526	-85.7030
Chlorotrifluoromethane (R13)	CCIF ₃	1393.0	1271.2	1116.7	922.9						1180.7265	-216.9828	745.9367	-183.8510
Dichlorodifluoromethane (R12)	CCl_2F_2	1544.9	1472.7	1395.4	1328.3	1213.0	903.1				914.8406	994.9276	-1324.3128	961.0344
Trichlorofluoromethane (R11)	CCI ₃ F	1646.4	1591.1	1534.3	1487.3	1413.4	1275.1	1095.0			851.6332	1187.6894	-1625.7708	1135.7392
Ethyl fluoride (R161)	C_2H_5F	835.4	798.6	757.8	721.4	656.3	420.3				871.5416	-639.9577	872.5932	-320.7747
Ethyl chloride	C ₂ H ₅ Cl	992.5	92636	925.3	896.1	849.3	759.2	637.4			856.3593	-570.9783	973.9418	-348.5034

Ethyl bromide	C ₂ H ₅ Br	1598.9	1550.4	1500.0	1458.1	1392.2	1271.2	1127.1	926.4		1073.9100	-116.4739	607.8587	-92.9976
1,1-Dichloroethane	$C_2H_4CI_2$	1277.7	1242.6	1206.2	1175.9	1128.4	1041.7	940.7	810.5		885.9945	-205.7961	614.0614	-155.3254
1,2-Dichloroethane	$C_2H_4CI_2$		1317.1	1282.4	1253.7	1209.0	1129.1	1039.6	934.1	793.0	822.5207	-75.2915	548.0378	-126.6480
1,2-Dibromoethane	$C_2H_4Br_2$				2175.0	2115.7	2011.9	1900.3	1777.7	1638.1	1450.4550	59.2274	351.5599	106.9717
1,1,1-Trifluoroethane (R143a)	$C_2H_3F_3$	1174.5	1103.5	1023.8	950.2	803.5					9808.688	159.4135	-27.5628	218.1093
1,1,1-Trichloroethane	$C_2H_3CI_3$		1408.1	1369.8	1338.1	1288.4	1198.9	1096.9	972.9	787.9	966.6160	-230.0350	721.5753	-197.3209
1,1,2,2-Tetrachloroethane	$C_2H_2CI_4$		1662.9	1626.3	1596.2	1549.9	1468.8	1381.5	1285.7	1176.8	1072.7673	-212.8525	808.8989	-195.6070
Pentachloroethane	C ₂ HCl ₅		1742.5	1709.4	1681.8	1638.7	1561.9	1478.1	1386.3	1284.0	2495.1281	-4923.0789	6727.3035	-2845.4099
Hexachloroethane	C_2CI_6								1619.7	1506.3	1430.9034	-692.7360	1783.3601	-734.5438
1,1,2,2-Tetrachlorodifluoroethane	$C_2CI_4F_2$					1595.1	1487.3	1364.7	1216.7	1004.3	1175.4506	-180.3605	754.7753	-196.5778
1,1,2-Trichlorotrifluoroethan	$C_2Cl_3F_3$		1677.7	1622.0	1575.8	1503.1	1368.5	1201.9	924.6		1218.9337	135.4996	-143.7455	397.6751
1,2-Dichlorotetrafluoroethane	$C_2Cl_2F_4$	1661.5	1597.8	1529.4	1470.5	1373.1	1168.4				1357.5613	-783.4204	1599.8675	-650.4350
1-Chloropropane	C ₃ H ₇ Cl	971.9	944.1	915.1	6:068	852.7	782.1	697.4	577.9		731.5526	-294.7994	610.0420	-179.1843
1-Chlorobutane	C ₄ H ₉ Cl	0.096	934.4	908.1	886.4	852.4	791.0	720.2	631.7		364.8430	899.0805	-876.2568	472.1917
1-Chloropentane	$C_5H_{11}CI$	946.7	924.3	901.2	882.2	852.5	799.4	740.0	8.699	576.5	655.9881	-103.0953	303.1006	-33.1451
Chlorotrifluoroethene	C_2CIF_3	1539.5	1459.1	1372.2	1296.3	1166.0					1045.3953	-51.8354	734.1349	-161.2374
Vinyl chloride	C ₂ H ₃ Cl	1020.4	983.8	944.8	911.5	857.0	746.4				845.5168	-410.8391	753.8048	-252.5094
1,1-Dichloroethene	$C_2H_2CI_2$	1332.2	1292.3	1250.5	1215.4	1159.3	1053.3	919.2			1069.3566	-480.9307	903.7241	-294.1212
Trichloroethene	C ₂ HCl ₃	1573.0	1535.3	1496.3	1464.1	1413.9	1324.2	1223.9	1106.9	955.9	1044.2371	-345.2637	975.1438	-317.8707
Tetrachloroethene	C_2CI_4			1652.0	1621.0	1573.4	1489.9	1399.9	1300.4	1185.7	706.7100	340.6747	313.2121	-0.4034
Fluorobenzene	C_6H_5F		1077.0	1048.5	1025.2	1.686	925.2	854.0	7.69.7	653.4	714.7826	136.3923	-139.1048	267.2267
Chlorobenzene	C ₆ H ₅ Cl		1150.6	1125.8	1105.6	1074.3	1019.6	960.3	894.7	818.5	780.6202	-22.5318	178.8073	71.8433
Bromobenzene	C ₆ H ₅ Br		1548.7	1518.4	1493.6	1455.3	1388.3	1316.2	1237.3	1148.7	1089.0319	-346.8409	823.6222	-233.4489
Iodobenzene	C_6H_5I		1892.9	1858.3	1830.2	1787.1	1712.5	1633.7	1549.3	1457.4	1226.0761	-102.2072	516.6255	-13.8056
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl			1091.3	1072.2	1042.9	992.1	938.0	879.3	813.5	768.5321	-122.6643	283.8313	52.6685
Benzyl chloride	C ₂ H ₂ Cl		1142.6	1119.9	1101.3	1072.8	1023.1	970.1	912.7	849.0	691.0301	23.2005	325.7146	-44.8929
<i>n</i> -Alkanes														
Methane	CH ₄										267.8594	129.3958	-73.6070	69.9714
Ethane	C_2H_6	491.5	451.3	400.5							339.4205	278.1378	-326.5550	246.5842
Propane	C_3H_8	589.8	560.3	528.3	500.0	449.2					373.2481	324.1771	-431.6048	327.5258
<i>n</i> -Butane	C_4H_{10}	652.0	679	9.009	578.4	542.1	467.3				418.6986	246.8434	-317.6272	274.8875
<i>n</i> -Pentane	C_5H_{12}	691.0	668.3	644.9	625.6	595.0	537.4	460.4			331.1104	681.0817	-965.3279	602.3613
<i>n</i> -Hexane	C_6H_{14}	721.8	6.669	677.6	659.4	631.1	580.3	520.8	437.7		537.3940	87.8728	-283.3888	344.5049
<i>n</i> -Heptane	C_7H_{16}	742.1	721.4	700.6	683.7	622.9	612.5	561.2	496.3		308.4582	1071.6860	-1664.6321	990.2540
<i>n</i> -Octane	C_8H_{18}	758.0	738.2	718.3	702.3	677.8	635.3	588.6	533.4	457.1	314.7545	1031.5341	-1576.7740	940.0026
<i>n</i> -Nonane	C_9H_{20}	772.4	753.2	733.9	718.2	694.4	653.4	609.5	560.1	499.2	438.9742	485.2660	-813.4139	597.9116

D3.1. Table 2. (continued)

					Tem	Temperature (°C)	()					Equat	ion (1)	
Substance	Formula	-50	-25	0	20	20	100	150	200	250	А	В	C	Q
<i>n</i> -Decane	C ₁₀ H ₂₂		764.9	745.8	730.4	707.1	667.4	625.4	579.1	524.3	309.6055	987.2944	-1482.3904	909.4231
<i>n</i> -Undecane	C ₁₁ H ₂₄		771.4	754.3	740.2	718.6	9.089	9.689	594.4	542.6	507.1171	-85.9952	339.0114	-73.5121
<i>n</i> -Dodecane	C ₁₂ H ₂₆			761.9	748.3	727.4	6.069	651.7	9.809	560.0	444.4040	138.4886	69.0787	37.5477
<i>n</i> -Tridecane	C ₁₃ H ₂₈			771.2	757.2	735.7	698.4	658.7	615.8	568.4	448.8395	22.4550	270.4767	-35.9422
<i>n</i> -Tetradecane	C ₁₄ H ₃₀				762.8	742.3	9.907	6.899	628.4	584.0	463.1763	-2.7765	279.4555	-36.6553
<i>n</i> -Pentadecane	C ₁₅ H ₃₂				6.797	747.8	712.9	676.0	636.7	593.8	455.5302	11.7043	271.6956	-32.9927
<i>n</i> -Hexadecane	C ₁₆ H ₃₄				772.6	753.0	719.0	683.2	645.0	9.E09	452.8468	-20.7559	361.8764	-90.6718
<i>n</i> -Heptadecane	C ₁₇ H ₃₆					757.2	723.9	6889	651.8	611.9	447.6449	26.3796	258.9645	-26.2511
<i>n</i> -Octadecane	C ₁₈ H ₃₈					759.4	727.5	693.7	657.8	619.0	463.0348	-70.7347	461.9766	-157.7468
<i>n</i> -Nonadecane	C ₁₉ H ₄₀					765.4	732.9	8.869	662.9	624.5	444.3944	16.7270	294.2676	-43.2837
<i>n</i> -Eicosane	C ₂₀ H ₄₂					768.7	736.3	702.6	667.2	629.6	432.7631	133.9129	81.0102	76.9690
Isoalkanes														
Isobutane	C ₄ H ₁₀	634.5	608.3	580.5	556.7	517.3	429.8				383.6237	363.6942	-483.9167	353.6428
2-Methyl butane	C_5H_{12}	6.989	663.6	639.5	619.6	588.0	527.8	444.4			361.5111	560.1453	-819.7357	546.2874
2,2-Dimethyl propane	C_5H_{12}			611.1	590.0	555.4	484.3	360.6			399.8287	153.5783	29.4362	2.5978
2-Methyl pentane	C ₆ H ₁₄	715.3	693.4	671.1	652.8	624.5	573.0	510.5			341.4133	769.6707	-1184.6190	747.5074
3-Methyl pentane	C ₆ H ₁₄	722.8	703.0	682.3	665.1	637.7	586.9	525.5	438.2		573.2071	-229.0097	414.0510	-118.6548
2,2-Dimethyl butane	C ₆ H ₁₄	710.4	689.3	667.3	648.9	619.8	565.2	497.6			486.0676	-45.2379	223.2189	-32.0169
2,3-Dimethyl butane	C_6H_{14}	721.0	8.669	678.3	9.099	633.1	582.6	520.3	422.9		254.1215	1135.4205	-1652.2629	932.1970
Olefins														
Ethylene	C_2H_4	480.6	426.7								364.3614	211.7762	-203.5475	188.4411
Propylene	C_3H_6	611.6	579.2	544.1	512.9	456.3					369.7127	440.5724	-608.9598	438.0705
1-Butene	$C_{4}H_{8}$	673.9	646.3	617.7	593.7	554.8	473.7				375.1257	531.6721	-821.5718	584.8143
1-Pentene	C_5H_{10}	711.9	82.8	662.5	641.4	607.7	543.6	459.0			498.6016	-53.1963	229.8900	-12.1005
1-Hexene	C_6H_{12}	737.9	716.0	693.1	674.1	644.2	589.1	523.4	432.1		510.1814	-116.4131	367.6914	-90.9801
1-Heptene	C ₇ H ₁₄	755.9	736.1	715.7	698.7	672.1	623.8	568.4	499.8	388.8	532.8059	-176.2433	442.2244	-133.5518
1-Octene	C_8H_{16}	767.8	749.6	730.8	715.2	8.069	647.0	597.8	540.3	464.9	657.1207	-575.9768	946.0894	-359.8622
Propadiene	C_3H_4	683.0	651.2	617.0	587.3	537.2	419.7				502.0141	-158.5711	487.7855	-166.4310
1,2-Butadiene	C_4H_6	731.3	704.1	675.6	651.6	613.2	539.6	438.3			470.2546	-43.2316	338.1675	-71.5782
1,3-Butadiene	C_4H_6	701.7	674.9	646.4	621.9	581.9	499.5				516.9714	-153.0729	432.6257	-146.9736
1,2-Pentadiene	C_5H_8	758.1	735.6	712.2	692.6	661.8	604.8	536.3	438.0		526.0862	-102.9607	338.7486	-76.0606
trans-1,3-Pentadiene	C ₅ H ₈	741.6	719.1	9:269	0.979	645.0	587.6	518.8			459.5187	-71.6617	434.8700	-156.7892

	= (, , , ,	,	L	0	0	1 11	00,1				0	1	1,00
1,4-Pentadiene	C_5H_8	746.1	7.16.7	685.4	0.099	7.079	54/./	460.8			3/2.0249	140.8959	213./531	36.084/
2,3-Pentadiene	C_5H_8	761.7	738.8	715.0	695.1	663.5	604.9	533.7	428.2		601.3221	-231.5055	468.4758	-132.5235
Acetylene and derivatives														
Acetylene	C_2H_2	567.0	521.0	464.7	401.2						522.9178	-240.7307	475.3756	-144.5991
Propyne	C₃H₄	704.7	674.5	642.2	614.2	567.4	462.0				534.1335	-75.2467	252.8497	-31.8209
2-Butyne	C_4H_6		737.9	712.4	691.0	657.0	592.5	509.1	268.3		586.6064	-155.7016	326.9444	-53.3841
1-Butyne	C_4H_6	732.3	705.7	677.7	654.0	615.6	539.8	422.6			503.9674	-90.2536	337.8005	-80.7264
Naphthenes														
Cyclopropane	C_3H_6	7.007	670.3	637.7	4.609	561.9	453.1				509.4024	-123.2450	381.1163	-107.6052
Cyclobutane	C_4H_8	757.3	735.9	713.3	694.0	662.8	601.4	514.7			710.5761	-476.8125	625.0484	-214.8659
Cyclopentane	C_5H_{10}	810.3	787.9	765.2	746.5	717.6	665.2	602.6	513.3		450.0150	692.7447	-1131.7809	724.4630
Methyl cyclopentane	C_6H_{12}	810.6	789.4	767.4	749.2	720.5	668.5	608.5	533.1		586.1851	-206.8126	465.6426	-133.2315
Ethyl cyclopentane	C ₇ H ₁₄	821.9	802.8	783.0	7.997	741.3	695.7	644.5	584.1	504.2	591.7101	-161.9096	367.1965	-85.7409
Propyl cyclopentane	C ₈ H ₁₆	829.4	811.2	792.5	0.777	753.0	710.2	6.299	6.809	542.7	599.4701	-246.4926	524.2674	-166.6909
Butyl cyclopentane	C_9H_{18}	836.4	818.5	800.2	785.2	761.9	721.0	676.4	626.5	568.1	549.8797	-94.1561	328.1468	-64.8716
Pentyl cyclopentane	$C_{10}H_{20}$		825.6	806.5	791.1	767.5	726.7	683.3	635.8	581.5	21.3865	1705.0458	-1919.0378	944.3151
Hexyl cyclopentane	C ₁₁ H ₂₂			811.3	796.4	773.8	734.6	693.2	648.4	598.5	496.4226	118.3606	-44.5909	170.4166
Cyclohexane	C_6H_{12}				778.8	749.9	699.5	643.8	577.0	478.9	373.9221	848.7461	-1261.1653	815.8631
Methyl cyclohexane	C ₇ H ₁₄	827.2	807.2	786.7	769.8	743.5	9.969	644.4	583.6	504.8	541.8145	-87.5463	328.4257	-63.2825
Ethyl cyclohexane	C_8H_{16}	840.1	821.9	803.3	788.0	764.3	722.3	676.4	624.5	562.4	577.6869	-104.1979	295.7576	-43.8897
Propyl cyclohexane	C_9H_{18}	845.3	827.3	0.608	794.0	770.9	730.4	6.989	638.9	584.1	496.0892	31.4274	199.9535	-0.0783
Butyl cyclohexane	$C_{10}H_{20}$	848.1	831.1	813.7	799.5	777.6	739.4	698.5	654.2	604.6	506.3817	-49.6664	336.9189	-68.8765
Pentyl cyclohexane	$C_{11}H_{22}$			811.2	796.5	773.8	734.8	693.4	648.6	598.5	279.5792	762.8400	-746.6601	440.9901
Hexyl cyclohexane	$C_{12}H_{24}$			821.2	807.1	785.6	748.3	708.8	666.4	620.1	593.6577	-303.4227	620.1121	-164.7850
Cyclopentene	C_5H_8	842.1	818.4	793.6	772.9	739.9	679.0	606.7	509.5		725.9817	-741.6349	1302.8902	-550.8221
Cyclohexene	C_6H_{10}	873.1	851.8	829.8	811.7	783.3	732.4	675.1	6.909	514.2	599.5856	-158.4142	433.0116	-115.8632
Aromatic compounds														
Benzene	C_6H_6				877.7	847.1	792.9	732.4	660.4	560.5	502.4341	531.5980	-663.9865	469.5949
Toluene	C ₇ H ₈	931.9	909.1	886.0	867.4	839.0	789.7	736.5	676.0	600.3	439.5835	839.1558	-1234.8445	797.8741
Ethyl benzene	C_8H_{10}	927.5	906.1	884.6	867.2	840.7	795.0	746.4	692.8	629.6	570.2499	385.5562	-683.9919	559.6340
Propyl benzene	C_9H_{12}	970.6	899.9	879.3	862.8	838.0	796.2	752.6	705.4	650.5	374.7765	1406.9407	-2323.0960	1383.0818
Butyl benzene	C ₁₀ H ₁₄	915.2	896.3	876.9	861.1	836.8	794.3	748.9	699.4	643.8	567.3503	-44.2239	325.9459	-48.9536
Pentyl benzene	$C_{11}H_{16}$	907.1	890.1	872.6	858.3	836.3	797.9	756.7	711.8	661.8	625.0808	-192.5173	472.6577	-129.2587
Hexyl benzene	$C_{12}H_{18}$	6.906	889.8	872.4	858.2	836.4	798.6	758.3	714.9	667.2	560.4851	-87.4540	385.4265	-85.5450
<i>o</i> -Xylene	C_8H_{10}		915.6	896.0	879.8	854.7	810.5	762.3	708.5	646.1	676.6371	-299.1691	624.5571	-201.7643
<i>m</i> -Xylene	C_8H_{10}		8.006	9:088	864.0	838.3	792.9	743.3	9.789	622.0	670.0403	-300.7884	613.6168	-189.3359

314

D3.1. Table 2. (continued)

					Tem	Temperature (°C)	()					Equat	ion (1)	
Substance	Formula	-50	-25	0	20	20	100	150	200	250	А	8	C	О
<i>p</i> -Xylene	C ₈ H ₁₀				9.098	835.0	9.687	739.9	684.0	618.1	660.6795	-279.7896	602.8083	-192.6478
1,2,3-Trimethyl benzene	C ₉ H ₁₂		925.3	908.3	894.3	872.6	834.4	792.9	747.1	695.1	754.5071	-413.8427	666.3695	-223.9630
1,2,4-Trimethyl benzene	C ₉ H ₁₂		911.6	892.2	876.4	852.0	809.4	763.6	713.1	655.6	578.6385	85.6763	66.0157	76.6911
1,3,5-Trimethyl benzene	C ₉ H ₁₂		900.5	881.3	865.5	841.0	798.0	751.4	699.7	640.0	640.9570	-176.3320	437.2828	-109.0875
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄			919.6	905.0	882.5	843.0	800.5	754.3	703.0	673.8483	-377.2864	846.4842	-333.8113
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄			905.7	890.5	867.1	826.3	782.7	735.3	682.6	608.7104	-85.1256	355.8065	-66.4080
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄						823.0	781.8	736.6	685.8	716.4977	-373.2590	668.4023	-225.6822
Pentamethyl benzene	C ₁₁ H ₁₆				917.1	894.2	854.5	812.5	767.5	718.4	613.3655	-145.7886	514.0054	-142.3577
Hexamethyl benzene	C ₁₂ H ₁₈								803.3	763.8	856.0941	-710.6638	1125.6113	-483.2720
Styrene	C ₈ H ₈		944.7	923.2	905.5	878.3	830.6	779.2	722.7	658.1	596.1525	-108.0248	457.6070	-104.3199
Isopropyl benzene	C ₉ H ₁₂	918.8	899.2	879.1	862.6	837.3	792.8	744.8	691.7	630.2	612.6486	-67.4355	255.7468	2.0865
Biphenyl	C ₁₂ H ₁₀						969.4	929.7	888.7	845.5	-144.5769	3294.2798	-4370.6493	2181.5445
Diphenyl methane	C ₁₃ H ₁₂					983.6	945.6	905.4	862.5	816.1	721.9528	-259.8678	651.0631	-218.7731
Triphenyl methane	C ₁₉ H ₁₆						1011.7	976.3	939.4	2.006	658.1058	-42.5371	332.2151	-26.7722
Tetraphenyl methane	C ₂₅ H ₂₀										858.8627	-205.4402	780.2431	-214.3411
Naphthalene	$C_{10}H_8$						9.896	922.0	877.5	829.2	827.8845	-650.9380	1177.1336	-454.2853
1-Methylnaphthalene	C ₁₁ H ₁₀		1052.3	1034.7	1020.4	998.4	960.5	920.7	878.6	833.4	731.0545	-216.5763	499.7559	-106.6647
2-Methylnaphthalene	C ₁₁ H ₁₀			1018.5	1004.1	982.2	944.5	905.1	863.4	818.8	812.2186	-440.4793	644.4363	-123.2879
1-Ethylnaphthalene	$C_{12}H_{12}$			1021.1	1007.7	987.3	952.0	914.9	875.4	833.0	768.0808	-208.0320	385.7996	-59.6192
2-Ethylnaphthalene	C ₁₂ H ₁₂			1005.5	992.4	972.1	937.1	900.1	8.098	818.4	762.4014	-281.5464	517.9806	-131.1086
Alcohols														
Methanol	CH4O	857.7	834.1	810.5	791.5	762.4	710.1	646.4	549.4		164.7611	2257.7678	-3545.6923	1929.7376
Ethanol	C ₂ H ₆ O	842.2	824.9	806.2	790.2	763.9	712.9	648.1	554.9		748.6170	-412.3622	776.4394	-436.6757
1-Propanol	C ₃ H ₈ O	860.7	841.5	821.3	804.5	6.777	729.1	671.6	597.9		816.2709	-549.2099	696.9841	-232.0820
1-Butanol	C ₄ H ₁₀ O	862.9	844.4	825.2	809.3	784.3	738.9	687.1	624.4	536.7	777.2534	-446.8420	578.8813	-172.9538
1-Pentanol	C ₅ H ₁₂ O	866.9	849.3	831.0	815.9	792.2	749.5	701.4	644.9	572.7	751.4379	-445.8311	657.1566	-231.1445
1-Hexanol	C ₆ H ₁₄ O		850.4	833.5	819.5	797.6	758.4	714.9	665.1	604.5	779.5145	-533.7565	743.6153	-264.3245
1-Heptanol	C ₂ H ₁₆ O		855.8	837.8	823.1	800.3	760.0	716.0	0.799	6.609	637.2821	-224.8073	464.7011	-131.7231
1-Octanol	C ₈ H ₁₈ O			841.1	826.8	804.6	765.4	722.9	676.0	622.6	635.0506	-325.7666	688.5827	-254.0193
Isopropanol	C ₃ H ₈ O	845.4	825.4	804.3	786.5	758.0	704.4	638.5	544.2		865.9165	-744.0943	975.9052	-381.1278
2-Methyl-1-propanol	C ₄ H ₁₀ O	854.8	836.9	817.9	801.9	776.4	729.1	673.7	605.3	503.1	934.7519	-1180.1957	1728.8821	-777.3781
3-Methyl-1-butanol	C ₅ H ₁₂ O	858.5	842.2	825.2	811.0	788.7	748.1	701.7	646.1	572.0	879.1766	-733.0487	895.9805	-330.6835
Ethylene glycol	C ₂ H ₆ O ₂			1127.2	1113.5	1092.3	1054.7	1013.9	969.1	919.0	1305.5931	-1374.2561	1691.0501	-665.0358

1,3-Propylene glycol	C ₃ H ₈ O ₂		1079.0	1064.4	1052.4	1033.9	1001.5	2996	928.8	9.988	1122.4836	-875.9683	844.9680	-234.3532
Glycerol	C ₃ H ₈ O ₃				1261.0	1241.6	1208.0	1172.3	1134.3	1093.5	1341.5932	-1168.2050	1429.7634	-527.7710
Cyclohexanol	C ₆ H ₁₂ O					925.4	880.1	831.0	776.9	715.2	691.7418	-231.6456	571.5227	-175.7843
Benzyl alcohol	C ₂ H ₈ O			1061.0	1046.0	1022.8	982.4	939.3	892.7	841.5	850.4338	-421.4897	717.9510	-227.4262
Phenols														
o-Cresol	C ₂ H ₈ O					1021.9	979.2	933.9	885.2	831.7	632.5598	-17.3349	263.1021	0.0173
<i>m</i> -Cresol	C ₂ H ₈ O				1033.7	1011.1	971.7	929.5	883.7	832.9	789.9775	-285.5601	515.7326	-142.1040
<i>p</i> -Cresol	C ₂ H ₈ O					1011.3	971.7	929.7	884.5	834.9	622.7984	36.9513	126.9550	56.8974
Phenol	C ₆ H ₆ O					1050.1	1005.6	958.3	907.3	851.1	572.3325	39.7056	345.4050	-72.2556
Carboxylic acids														
Formic acid	CH ₂ O ₂				1220.1	1182.6	1115.5	1040.4	953.0	842.3	1181.5822	-735.7666	1040.1334	-334.6213
Acetic acid	C ₂ H ₄ O ₂				1048.0	1016.2	6.656	897.7	826.2	736.6	925.3897	-312.7993	340.0633	29.7204
Propionic acid	C ₃ H ₆ O ₂			1012.2	992.6	962.4	9.806	849.3	781.6	699.1	797.1701	-247.0129	471.4726	-96.1474
Butyric acid	C ₄ H ₈ O ₂			974.4	6.956	97676	882.2	830.4	772.3	702.9	863.4643	-339.3183	323.8065	40.4813
Valeric acid	C ₅ H ₁₀ O ₂		7.696	949.7	933.3	902.6	862.0	812.2	756.4	691.7	783.8282	-574.7117	1043.4452	-417.5824
Caproic acid	C ₆ H ₁₂ O ₂			937.3	922.8	900.1	860.0	816.3	9.797	712.0	864.3467	-628.7969	947.6116	-358.8242
Acetic anhydride	C ₄ H ₆ O ₃	1162.4	1134.3	1105.4	1081.7	1045.1	980.4	910.0	831.3	738.6	682.0673	-119.7326	679.5899	-205.8780
Propionic anhydride	C ₆ H ₁₀ O ₃		1058.0	1032.3	1011.1	978.5	921.3	859.4	791.0	712.3	634.5554	-111.1548	605.3432	-170.7870
Chloroacetic acid	C ₂ H ₃ ClO ₂						1320.5	1250.1	1174.0	1089.7	997.2610	-242.9622	764.1551	-197.3080
Dichloroacetic acid	C ₂ H ₂ Cl ₂ O ₂				1561.4	1515.8	1436.9	1353.7	1264.6	1167.5	835.2438	125.7524	573.8920	-58.3985
Trichloroacetic acid	C ₂ HCl ₃ O ₂						1542.5	1461.3	1374.0	1277.8	1051.8830	-25.9784	525.2987	-32.4824
Ketones														
Ketene	C ₂ H ₂ O	793.4	753.2	709.1	6.699	600.5					622.1840	-165.9732	442.6230	-119.5770
Acetone	C ₃ H ₆ O	865.8	839.7	812.9	790.8	756.2	693.3	619.0	516.3		547.3820	208.7420	-203.7599	253.9936
Methyl ethyl ketone	C ₄ H ₈ O	877.4	852.5	826.7	805.3	771.9	711.7	643.1	558.8		560.7857	-90.7312	454.3929	-120.5211
Diethyl ketone	C ₅ H ₁₀ O		857.3	833.8	814.5	784.3	730.1	669.3	597.3	500.2	631.4702	-197.4050	514.5685	-146.1064
Dipropyl ketone	C ₇ H ₁₄ O		855.2	833.9	816.4	789.4	741.8	689.7	631.1	560.9	550.0551	-47.0791	332.7349	-55.1781
Acetophenone	C ₈ H ₈ O				1027.7	1002.3	958.2	911.4	860.9	805.7	729.4145	-204.6406	556.0093	-145.9565
Benzophenone	C ₁₃ H ₁₀ O					1083.3	1045.9	1007.0	966.4	923.5	782.3121	-159.9513	358.9665	-0.1287
Ethers		•								,	•	•		
Dimethyl ether	C ₂ H ₆ O	764.6	731.2	695.4	664.4	612.4	494.3				493.6395	92.1379	137.7856	5.8434
Diethyl ether	C ₄ H ₁₀ O	794.9	766.5	737.5	713.7	676.5	607.7	518.6			521.2805	257.7528	-489.2726	486.7458
Dipropyl ether	C ₆ H ₁₄ O	806.5	785.9	764.5	746.8	718.9	668.1	609.1	533.7		560.6008	-66.0979	231.3743	-25.4168
Methyl propyl ether	C ₄ H ₁₀ O	804.4	7.77.7	749.8	726.5	689.5	620.3	533.2			519.3865	-39.7274	321.5971	-58.9568
Ethyl propyl ether	C ₅ H ₁₂ O	798.7	774.9	750.0	729.3	696.7	636.5	564.3	461.2		556.9149	-128.7853	384.7507	-88.7772
Ethylene oxide	C ₂ H ₄ O	963.3	932.8	900.7	873.6	830.3	747.5	638.5			757.9994	-286.5638	583.1649	-177.0206
Furane	C ₄ H ₄ O	1027.4	6.966	964.9	938.1	895.4	815.3	715.8	557.5		874.7486	-463.4642	800.9808	-268.1611

D3.1. Table 2. (continued)

					Tem	Temperature (°C)	°C)					Equati	on (1)	
Substance	Formula	-50	-25	0	20	20	100	150	200	250	A	В	U	О
1,4-dioxane	C ₄ H ₈ O ₂				1033.2	8.666	940.4	874.6	799.1	705.7	678.8964	-120.4207	544.3169	-167.1524
Aldehydes														
Formaldehyde	O^2HD	865.3	823.7	779.8	742.3	8.089	549.5				625.7638	5.7090	245.3425	43.9601
Acetaldehyde	C ₂ H₄O	6'998	837.4	806.5	9.087	739.4	661.2	558.6			588.8420	-39.6103	285.7658	-26.6228
Paraldehyde	$C_6H_{12}O_3$				993.9	959.1	898.2	831.9	756.5	662.3	560.5579	264.0982	-148.6559	262.2179
Furfural	$C_5H_4O_2$		1204.7	1179.9	1159.7	1128.5	1074.1	1016.0	952.7	882.1	747.7699	-99.6602	513.8809	-116.7313
Benzaldehyde	C ⁵ H ⁶ O	1103.7	1083.1	1062.1	1045.0	1018.7	973.0	924.3	871.7	813.7	696.5787	-30.8195	301.9063	-22.2959
Salicylaldehyde	$C_7H_6O_2$				1153.1	1127.9	1083.2	1034.6	980.7	919.5	1156.0689	-926.0141	1233.5363	-464.4392
Esters														
Methyl formate	$C_2H_4O_2$	1069.3	1036.8	1002.8	974.3	929.2	844.6	739.7			775.1812	-197.0272	529.3064	-138.9492
Ethyl formate	$C_3H_6O_2$	1.2001	976.6	946.8	922.1	882.9	810.8	725.0	6.709		765.9448	-360.7128	737.2408	-242.8289
Propyl formate	$C_4H_8O_2$	8.676	953.8	927.3	905.4	871.0	808.7	737.0	648.0		695.5638	-166.9122	452.1853	-110.8676
Methyl acetate	$C_3H_6O_2$	1019.0	7.686	959.4	934.1	894.2	820.7	732.9	610.5		735.8282	-133.1048	374.1594	-55.0194
Ethyl acetate	C ₄ H ₈ O ₂	977.3	950.7	923.1	1.006	864.1	798.2	720.9			660.3752	8.8513	207.1680	1.5101
Propyl acetate	$C_5H_{10}O_2$	5'856	934.1	908.7	887.8	855.1	796.1	729.2	648.0	530.1	682.4676	-162.2018	432.6427	-97.3592
Methyl propionate	$C_4H_8O_2$	990.9	964.5	937.1	914.4	878.8	814.0	738.9	643.7		708.5713	-154.0179	420.6243	-90.1472
Ethyl propionate	$C_5H_{10}O_2$	9.096	935.8	910.1	888.8	855.5	795.4	726.9	643.4	518.9	693.9231	-209.9952	516.2012	-141.1864
Propyl propionate	$C_6H_{12}O_2$	948.9	925.7	901.7	881.9	851.1	796.1	734.7	662.7	568.3	632.5301	-108.1101	391.7953	-80.5204
Methyl butyrate	$C_5H_{10}O_2$	965.2	942.0	918.0	898.1	6.998	810.6	746.4	668.7	558.1	752.8912	-322.2388	595.9627	-181.6941
Ethyl butyrate	$C_6H_{12}O_2$	944.4	921.6	898.2	878.8	848.7	794.7	734.3	663.5	571.0	676.2305	-183.8280	454.1518	-110.2246
Methyl benzoate	$C_8H_8O_2$			1105.3	1087.7	1060.6	1012.8	961.5	902.6	843.4	884.1769	-486.5499	965.3906	-361.7121
Ethyl benzoate	$C_9H_{10}O_2$		1086.5	1064.6	1046.8	1019.4	971.8	921.2	866.7	806.8	733.0282	-164.2079	529.3259	-121.7958
Methyl salicylate	$C_8H_8O_3$			1198.6	1180.9	1153.7	1106.2	1055.5	1000.6	940.2	905.2883	-355.4925	695.0348	-203.3611
Amines														
Methyl amine	CH ₅ N	743.6	715.9	686.4	661.1	619.5	533.7				803.3522	-545.1488	695.6625	-211.9019
Ethyl amine	C ₂ H ₇ N	760.9	734.5	706.6	683.1	645.1	571.2	466.7			633.5210	-127.7781	267.0804	-30.4806
Propyl amine	C ₃ H ₉ N	784.1	761.9	738.6	719.1	687.9	629.5	557.5	448.6		743.8388	-508.9910	757.8672	-271.2439

<i>n</i> -Butyl amine	C ₆ H ₁₅ N		778.5	756.8	738.8	710.3	622.9	5963	516.8		536.8539	99.8023	86.4297	-0.0872
Dimethyl amine	C ₂ H ₇ N	727.2	703.3	677.7	622.9	620.0	547.1	425.2			669.2053	-452.4323	686.3039	-257.5126
Trimethyl amine	C_3H_9N	712.5	686.2	658.3	634.5	595.7	517.1				595.8605	-277.4351	522.6859	-170.4614
Diethyl amine	C ₆ H ₁₅ N		750.1	726.5	6.907	675.7	617.5	546.4	440.0		587.2056	-154.6153	354.6121	-84.9548
Triethyl amine	C ₆ H ₁₅ N	787.9	767.4	746.1	728.4	700.8	9:059	592.9	520.8		527.4070	-73.2089	292.3398	-56.6226
Piperidine	$C_5H_{11}N$			879.5	862.2	835.2	787.0	733.4	671.8	596.1	715.9263	-375.9305	715.6680	-252.9803
Pyridine	C ₆ H ₇ N	1051.2	1027.6	1003.3	983.4	952.5	898.1	838.9	773.0	0.969	690.1939	-203.6045	639.6026	-197.2534
Aniline	C ₆ H ₇ N			1036.0	1020.1	995.7	953.4	908.4	6:658	806.4	658.6221	-14.6944	242.0930	0.7157
N-methyl aniline	C ₂ H ₉ N	1037.2	1019.4	1001.2	86.3	963.3	923.0	879.7	832.7	780.5	864.2138	-497.9953	785.4701	-259.5471
N,N-dimethyl aniline	C ₈ H ₁₁ N				954.9	932.4	892.6	849.7	802.5	749.4	947.8512	-688.2637	967.8765	-348.1476
N,N-diethyl aniline	$C_{10}H_{15}N$		967.5	949.2	934.3	911.4	871.5	829.0	783.2	732.6	741.1539	-219.0978	404.9792	-62.8648
Phenylhydrazine	$C_6H_8N_2$				1096.2	1072.3	1030.5	985.7	937.4	884.7	1059.0386	-909.0434	1516.7029	-633.0667
Diphenyl amine	$C_{12}H_{11}N$						1023.9	984.5	942.9	8.868	741.2921	-188.1027	546.9112	-136.8931
Nitriles														
Acetonitrile	C_2H_3N		828.1	802.7	781.8	749.2	6.069	625.2	546.2	430.3	565.3431	-36.8917	312.7935	-27.5047
Propionitrile	C_3H_5N	846.0	823.8	801.0	782.2	752.9	700.5	641.9	573.1	481.8	593.9656	-143.8921	437.8666	-106.4610
Butyronitrile	C ₄ H ₇ N	851.5	830.4	808.7	790.8	763.1	713.8	659.4	596.8	518.5	574.0426	-109.8505	395.2330	-87.6033
Benzonitrile	C ₂ H ₅ N			1021.7	1005.0	979.3	934.8	887.7	837.1	781.6	609.1142	-3.9828	337.9801	-43.7599
Amides														
Formamide	CH ₃ NO				1132.8	1107.4	1063.3	1016.7	1.796	913.7	965.0375	-531.0847	957.2988	-315.4745
Nitroderivates														
Nitromethane	CH ₃ NO ₂		1191.9	1159.8	1133.4	1092.8	1021.5	943.5	854.9	745.7	675.9080	381.0708	-203.4493	278.9247
Nitrobenzene	C ₆ H ₅ NO ₂				1203.2	1173.7	1122.4	1067.9	1009.5	945.7	902.6390	-421.4692	914.1481	-291.7604
o-Nitrotoluene	C ₂ H ₂ NO ₂			1180.4	1162.6	1134.9	1085.5	1031.6	972.6	907.3	1144.0002	-1639.6486	2962.1530	-1405.4992
m-Nitrotoluene	C ₂ H ₂ NO ₂				1158.1	1130.8	1083.5	1033.5	980.2	922.2	921.6086	-241.0428	446.4670	-40.2498
<i>p</i> -Nitrotoluene	C ₂ H ₂ NO ₂						1080.0	1031.0	978.7	922.1	878.9128	-151.3942	353.3063	-0.4124

D3.1. Table 3. Boiling temperatures at different pressures in $^{\circ}\text{C}$

					Vap	Vapor pressure in mbar	ıre in mb	ar					Equati	on (7)	
Substance	Formula	2	10	20	100	250	200	1,000	2,000	2,000	10,000	А	В	C	D
Elements															
xenon	Xe							-108.3	-95.3	-74.2	-54.5	-6.00659	1.37325	-0.77703	-1.22529
Krypton	Kr							-153.6	-144.0	-128.5	-114.0	-5.98396	1.34334	-0.66521	-1.30012
Argon	Ar							-186.0	-178.9	-167.4	-156.6	-5.92801	1.21982	-0.53967	-1.52312
Neon	Ne						-248.2	-246.1	-243.6	-239.5	-235.6	-5.74238	1.08860	-0.05896	-1.19851
Helium	He			-271.0	-270.7	-270.1	-269.6	-268.9	-268.1			-4.06856	1.04379	1.11594	0.08835
Air						-204.8	-200.0	-194.4	-187.8	-177.0	-167.0	-5.35069	-0.21537	0.93623	-3.02641
Hydrogen	H ₂				-258.5	-256.6	-254.9	-252.8	-250.3	-246.0	-241.8	-4.83622	0.94200	0.76650	-0.47071
Nitrogen	N_2					-206.0	-201.3	-195.9	-189.5	-179.2	-169.4	-6.12498	1.26499	-0.76765	-1.78173
Oxygen	02	-214.6	-211.9	-204.4	-200.5	-194.5	-189.2	-183.1	-175.9	-164.3	-153.5	-6.05148	1.23506	-0.62883	-1.61288
Sulfur	S	211.7	232.1	287.9	316.6	360.3	398.8	443.3	495.5	579.7	622.9	-15.68872	19.60608	-12.56687	1.67046
Fluorine	F ₂	-217.2	-214.7	-207.8	-204.2	-198.7	-193.8	-188.2	-181.7	-171.2	-161.4	-6.27045	1.53939	-1.25605	-1.27235
Chlorine	Cl ₂			-85.8	-76.2	-61.7	-48.9	-34.3	-17.4	9.6	34.5	-6.43911	1.48278	-1.21184	-2.02926
Bromine	Br ₂				2.4	21.9	38.9	58.3	80.8	116.5	149.1	-6.76024	1.50339	-0.64097	-3.62166
lodine	ا2					134.5	157.5	183.8	214.3	262.8	307.5	-6.98158	2.33987	-1.48090	-3.73441
Anorganic compounds															
Hydrogen fluoride	HF		-75.2	-48.4	-35.2	-15.7	0.8	19.2	39.7	71.0	98.3	-9.73172	5.07747	-2.98832	5.51671
Hydrogen chloride	HCI					-106.5	-96.6	-85.3	-72.1	-51.2	-32.1	-6.63222	1.06066	0.05415	-4.45907
Hydrogen bromide	HBr						-79.4	-66.8	-52.4	-29.6	-8.7	-5.92115	0.77533	-1.67956	1.00212
Hydrogen iodide	IH						-50.5	-35.7	-18.6	8.8	34.0	-5.92123	0.95693	-1.04474	-1.03336
Hydrogen cyanide	NOH					-7.4	8.0	25.3	45.1	75.7	103.0	-9.77338	5.29679	-4.36059	1.58018
Water	H ₂ O		7.0	32.9	45.8	65.0	81.3	9.66	120.2	151.8	179.9	-7.86975	1.90561	-2.30891	-2.06472
Hydrogen sulfide	H ₂ S					-84.4	-73.3	9.09—	-45.9	-22.5	-1.1	-6.50342	1.52011	-1.36969	-1.96704
Ammonia	NH ₃				-71.2	-58.0	-46.5	-33.6	-18.8	4.1	24.9	-7.30274	1.64638	-2.01606	-1.96884
Nitric oxide	NO						-157.6	-151.9	-145.4	-135.3	-126.2	-8.38772	0.85755	-3.11447	-8.98765
Nitrogen dioxide	NO ₂					-6.2	6.8	20.9	36.4	59.3	78.7	-11.33898	2.37620	0.67820	-2.53997
Nitrous oxide	N ₂ O							-88.7	-76.2	-56.4	-38.2	-6.79599	1.59751	-1.85163	-2.29494
Dinitrogentetroxide	N_2O_4					-6.1	6.8	21.0	36.6	59.6	79.1	-11.71738	3.10196	0.59704	-5.33648
Cyanogen	C_2N_2							-21.4	-5.1	20.7	44.3	-7.51492	1.94916	-2.36750	-4.23472
Phosphorus trichloride	PCI ₃	-35.6	-25.9	0.7	14.4	35.2	53.5	74.6	99.2	138.4	174.6	-8.83133	5.61883	-4.80318	-1.25347
Cyanogen chloride	CICN						-3.9	12.5	30.9	59.3	84.9	-7.49333	1.78753	-4.04253	8.50574
Silane	SiH ₄	-167.8	-163.1	-150.2	-143.4	-132.8	-123.3	-112.3	-99.2	-78.2	-58.9	-7.30552	2.71060	-0.09783	-4.71464
Tetrachlorosilane	SiCl ₄	-47.9	-38.7	-13.3	-0.3	19.5	36.8	56.8	79.9	116.8	151.0	-6.60174	0.34409	-1.09066	-3.15050

Carbon monoxide	0)					-202.1	-197.2	-191.6	-185.0	-174.3	-164.2	-6.19574	1.32502	-0.95226	-1.98513
Carbon dioxide	CO ₂										-40.1	-7.02916	1.53937	-2.28330	-2.34853
Carbon suboxide	C_3O_2	-82.8	-74.8	-53.1	-41.9	-25.1	-10.5	0.9	24.9	53.8	78.8	-13.34201	11.51312	-6.91741	-0.29406
Carbonyl sulfide	COS	-123.0	-116.6	1.99-1	-90.1	-76.4	-64.3	-50.5	-34.3	-8.6	15.3	-6.51272	1.55373	-1.33074	-2.08761
Phosgene	CCl ₂ O	-80.1	-72.4	-51.3	-40.4	-23.9	-9.3	7.4	26.7	57.5	85.7	-6.82435	0.89402	-0.50281	-4.67598
Carbon disulfide	CS ₂	-57.9	-48.8	-23.8	-10.9	8.7	26.0	45.8	8.89	105.2	138.5	-6.58802	1.03676	0.15875	-3.44094
Sulfur dioxide	SO ₂			6.19—	-52.1	-37.5	-24.8	-10.3	6.3	32.5	56.3	-7.27858	1.72871	-2.37473	-2.70464
Sulfur trioxide	SO ₃					19.6	31.1	44.2	59.5	84.1	107.3	-8.74717	6.32513	-13.93665	-9.67972
Sulfuryl chloride	Cl ₂ SO ₂	-36.5	-27.0	-1.3	11.9	31.7	49.1	0.69	92.1	129.2	163.9	-6.32835	0.89929	-2.88437	-1.24330
Sulfur hexafluoride	SF ₆									-29.8	-8.0	-7.08034	1.65103	-1.96365	-0.25060
Organic compounds containing sulfur	g sulfur														
Methyl mercaptan	CH ₄ S	-81.6	-73.8	-52.6	-41.8	-25.3	-10.9	5.7	24.9	55.7	84.3	-8.04229	4.64898	-4.38751	-1.03684
Ethyl mercaptan	C_2H_6S	-62.2	-53.6	-30.1	-18.0	0.3	16.3	34.7	55.9	89.7	120.8	-6.85400	1.41434	-1.74027	-2.40242
Dimethyl sulfide	C_2H_6S	-59.7	-51.2	-27.9	-15.9	2.4	18.5	37.0	58.5	92.9	124.6	-7.20168	1.99080	-1.67979	-3.99499
Diethyl sulfide	$C_4H_{10}S$	-23.6	-13.1	15.4	29.8	51.5	70.3	91.7	116.3	155.0	190.5	-6.90446	0.48320	-1.77018	-0.12336
Thiophene	C_4H_4S	-26.0	-16.3	10.2	23.8	44.6	62.8	83.8	108.1	147.0	182.8	-7.01021	1.63774	-1.66720	-4.21813
Halogenated hydrocarbons															
Fluoromethane (R41)	CH ₃ F	-140.5	-135.0	-120.0	-112.2	-100.5	-90.3	-78.6	-65.1	-43.7	-24.0	-7.21927	1.95643	-1.73271	-2.07627
Difluoromethane (R32)	CH_2F_2	-119.6	-113.5	6'96-	-88.5	-75.7	-64.6	-51.9	-37.3	-14.3	9.9	-7.47027	1.75595	-2.01429	-2.62147
Trifluoromethane (R23)	CHF ₃	-141.6	-136.3	-121.8	-114.4	-103.2	-93.4	-82.3	-69.4	-49.1	-30.3	-7.38216	1.96234	-2.68392	-1.43178
Tetrafluoromethane (R14)	CF_4	-175.8	-171.6	-160.3	-154.4	-145.4	-137.4	-128.3	-117.6	-100.4	-84.6	-6.92188	1.54525	-1.41276	-2.87791
Methyl chloride	CH ₃ Cl		-96.2	-77.1	-67.3	-52.5	-39.4	-24.5	-7.1	20.4	45.7	-6.71862	1.27727	-0.96338	-3.14698
Methylene chloride	CH ₂ Cl ₂	-56.3	-47.8	-24.5	-12.6	5.5	21.3	39.4	60.5	94.2	125.5	-7.57368	3.17104	-3.53296	-2.27696
Chloroform	CHCl ₃	-41.8	-32.9	-8.2	4.5	23.9	41.0	60.7	83.6	120.0	153.4	-7.32485	1.69599	-0.93627	-5.89590
Carbon tetrachloride	CCI ₄			2.1	15.8	36.7	55.1	76.3	101.0	140.5	177.1	-7.11728	1.96174	-2.05900	-3.26771
Bromomethane	CH ₃ Br	-84.4	-76.6	-55.3	-44.4	-27.8	-13.3	3.3	22.4	52.7	80.2	-7.65380	2.84555	-1.71564	-2.54232
Dibromomethane	${\sf CH}_2{\sf Br}_2$	-16.0	-6.0	21.3	35.4	56.6	75.2	96.5	121.2	160.3	196.1	-7.25658	1.92921	-1.61527	-4.04404
Tribromomethane	CHBr ₃	18.8	30.4	62.0	78.2	102.7	124.1	148.7	177.2	223.0	265.7	-7.16326	2.92794	-3.91279	-1.16341
Tetrabromomethane	CBr_4			7:26	111.8	137.8	161.3	188.8	220.6	269.5	310.6	-13.48480	9.03531	1.84773	-22.26830
Chlorodifluoromethane (R22)	CHCIF ₂	-113.5	-107.0	-89.5	-80.4	-66.8	-54.8	-41.1	-25.2	0.1	23.4	-7.09210	1.61905	-2.01221	-2.73123
Dichlorofluoromethane (R21)	CHCl ₂ F	-78.7	-70.9	-49.8	-39.0	-22.5	-8.1	8.5	27.7	58.3	86.7	-6.95944	1.53177	-1.97969	-3.25683
Chlorotrifluoromethane (R13)	CCIF ₃	-144.2	-138.7	-123.7	-115.9	-104.1	-93.7	-81.7	-67.7	-45.2	-24.4	-6.82801	1.52677	-1.75147	-2.23841
Dichlorodifluoromethane (R12)	CCl_2F_2	-108.7	-101.8	-82.9	-73.1	-58.3	-45.2	-30.1	-12.5	15.7	41.7	-6.92085	1.62615	-1.73939	-2.58282
Trichlorofluoromethane (R11)	CCl ₃ F	-71.6	-63.3	40.4	-28.6	-10.7	5.1	23.3	44.4	78.2	109.4	-6.91946	1.52457	-1.66128	-2.85320
Ethyl fluoride (R161)	C_2H_5F	-113.2	-106.5	-88.2	-78.8	-64.6	-52.1	-38.0	-21.6	4.4	28.1	-7.07032	1.42577	-1.49199	-1.92623
Ethyl chloride	C_2H_5CI	-78.2	-70.2	-48.3	-37.1	-20.1	-5.2	11.9	31.7	63.4	92.7	-7.36967	2.69543	-3.02790	-1.39375
Ethyl bromide	C ₂ H ₅ Br	-62.1	-53.0	-28.2	-15.7	3.1	19.5	38.1	59.5	93.7	125.1	-9.71666	7.74488	-7.76676	3.99427

D3.1. Table 3. (continued)

					Vap	or pressu	Vapor pressure in mbar	ar					Equati	ion (7)	
Substance	Formula	2	10	20	100	250	200	1,000	2,000	2,000	10,000	А	В	С	D
1,1-Dichloroethane	$C_2H_4C_2H_4CI_2$	-45.7	-36.5	-11.5	1.3	20.6	37.4	56.7	78.9	114.0	146.3	-6.63204	0.36053	-1.04822	-2.87286
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	-26.2	-16.4	10.2	23.8	44.4	62.5	83.2	107.2	145.1	179.8	-8.26850	3.49184	-3.19752	-2.97053
1,2-Dibromoethane	C ₂ H ₄ Br ₂		17.5	47.9	63.4	86.8	107.4	131.0	158.4	202.3	243.1	-7.96068	4.07852	-4.74206	-0.88410
1,1,1-Trifluoroethane (R143a)	C ₂ H ₃ F ₃			-95.2	-86.4	-72.9	-61.1	-47.5	-31.8	-6.7	16.3	-7.35995	1.71203	-2.01879	-2.98413
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃		-25.9	0.4	14.0	34.6	52.8	73.7	98.0	136.9	172.8	-7.21356	1.90482	-2.08892	-3.31006
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄	18.0	29.5	6.09	76.9	100.9	121.7	145.4	172.7	215.9	256.0	-5.60385	-1.82148	-0.70234	-1.88475
Pentachloroethane	C ₂ HCl ₅	27.3	39.2	71.5	88.1	113.1	134.9	159.9	188.7	234.6	276.7	-7.59524	1.63691	-2.82337	-2.34305
Hexachloroethane	C ₂ Cl ₆								215.1	265.9	313.7	-6.84574	1.14406	-2.27578	-7.15228
1,1,2,2- Tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂				31.2	52.5	71.1	92.6	117.5	157.4	194.5	-7.71309	2.64672	-3.98878	-1.66517
1,1,2-Trichlorotrifluoroethan	C ₂ Cl ₃ F ₃			-20.7	-8.1	11.0	27.8	47.2	8.69	105.9	139.3	-7.24399	1.63003	-2.12928	-3.49922
1,2-Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄	-84.9	-77.0	-55.6	-44.7	-28.1	-13.5	3.3	22.8	54.1	83.3	-7.64719	2.95529	-4.23671	0.15959
1-Chloropropane	C ₃ H ₇ Cl	-53.5	-44.7	-20.6	-8.2	10.7	27.2	46.1	68.2	103.3	135.7	-7.23105	1.89946	-2.29641	-2.86891
1-Chlorobutane	C ₄ H ₉ Cl	-30.6	-21.1	4.9	18.4	39.0	57.2	78.3	102.8	142.2	178.8	-6.77199	0.79529	-1.25773	-5.53709
1-Chloropentane	C ₅ H ₁₁ Cl	-11.5	-1.0	27.7	42.5	65.1	85.0	108.0	134.8	177.6	216.6	-9.45097	5.86945	-5.57003	-2.09598
Chlorotrifluoroethene	C ₂ CIF ₃	-117.7	-108.5	-85.3	-74.1	-57.9	-44.3	-29.1	-11.8	15.5	40.7	-8.22217	4.87114	-7.47925	13.31070
Vinyl chloride	C ₂ H ₃ Cl	-96.2	-89.0	-69.2	-59.0	-43.5	-29.9	-14.1	4.3	33.8	61.3	-6.32153	1.11198	-1.35813	-3.25332
1,1-Dichloroethene	C ₂ H ₂ Cl ₂	-63.4	-55.1	-32.4	-20.7	-2.8	13.0	31.3	52.8	87.5	119.4	-10.49400	9.03819	-7.79814	-1.10724
Trichloroethene	C ₂ HCl ₃	-26.8	-16.6	11.2	25.3	46.4	64.8	85.7	109.9	148.4	184.2	-6.86463	1.75400	-3.57287	0.95588
Tetrachloroethene	C ₂ Cl ₄	-2.1	8.9	39.0	54.3	77.4	9.76	120.6	147.1	189.5	228.8	-6.50488	0.75823	-2.53992	-0.58809
Fluorobenzene	C_6H_5F	-26.8	-16.8	10.5	24.4	45.4	63.8	84.8	109.1	147.8	183.5	-7.42663	2.30457	-3.23481	-1.05236
Chlorobenzene	C ₆ H ₅ Cl	5.6	16.8	47.5	63.2	86.9	107.7	131.4	159.0	202.8	243.2	-7.41321	2.18452	-2.95675	-1.66197
Bromobenzene	C ₆ H ₅ Br	22.9	34.6	2.99	83.2	108.2	130.2	155.5	184.9	232.0	275.6	-8.10313	3.78791	-4.14347	-2.11742
lodobenzene	C_6H_5I	45.4	58.1	97.8	110.5	137.4	160.8	187.8	219.0	268.9	315.1	-7.47909	2.53825	-3.54320	-1.50458
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl	24.5	37.3	71.6	88.8	114.6	137.0	162.3	191.3	237.3	279.7	-7.90360	2.90903	-4.76707	3.62554
Benzyl chloride	C ₂ H ₂ Cl	42.9	55.4	89.2	106.2	131.8	153.9	179.0	207.9	253.8	296.4	-6.24204	-0.59859	-2.50951	0.21300
n-Alkanes															
Methane	CH₄					-176.1	-169.4	-161.6	-152.5	-137.8	-124.0	-6.02388	1.26813	-0.56948	-1.37648
Ethane	C_2H_6	-150.6	-145.2	-130.4	-122.7	-111.0	-100.7	-88.8	-75.0	-52.7	-32.1	-6.46252	1.35760	-1.04922	-2.03789
Propane	C_3H_8	-118.1	-111.5	-93.3	-83.9	9.69—	-57.0	-42.4	-25.5	1.7	26.9	-6.71480	1.38388	-1.30695	-2.56827
<i>n</i> -Butane	C_4H_{10}	-89.0	-81.3	-60.0	-49.1	-32.4	-17.7	-0.8	18.8	50.3	79.5	-7.08562	1.79335	-2.00003	-2.31975
<i>n</i> -Pentane	C_5H_{12}	-62.8	-54.1	-30.4	-18.1	0.5	16.9	35.7	57.6	97.6	124.9	-7.36401	1.94358	-2.47191	-2.34757
<i>n</i> -Hexane	C ₆ H ₁₄	-38.9	-29.5	-3.6	9.8	30.0	47.8	68.3	92.1	130.1	165.1	-7.61075	2.00527	-2.74158	-2.82824

<i>n</i> -Heptane	C ₇ H ₁₆	-16.7	9.9-	21.1	35.4	57.0	76.1	98.0	123.4	163.9	201.1	-7.75469	1.84795	-2.80333	-3.62418
<i>n</i> -Octane	C ₈ H ₁₈	3.9	14.6	43.9	59.0	81.9	102.0	125.2	152.0	194.8	234.1	-8.01133	1.98859	-3.26507	-3.99439
<i>n</i> -Nonane	C ₉ H ₂₀	22.7	34.0	64.9	80.7	104.8	126.0	150.3	178.5	223.3	264.4	-8.45145	2.57850	-4.17533	-3.66755
<i>n</i> -Decane	C ₁₀ H ₂₂	40.4	52.2	84.5	101.1	126.3	148.3	173.6	202.9	249.5	292.0	-8.62717	2.55890	-4.50221	-3.63420
<i>n</i> -Undecane	C ₁₁ H ₂₄	57.3	9.69	103.1	120.3	146.3	169.2	195.3	225.7	273.8	317.7	-8.73044	2.35716	-4.52576	-4.46648
<i>n</i> -Dodecane	C ₁₂ H ₂₆	73.2	85.9	120.4	138.2	165.1	188.7	215.7	247.1	296.6	341.4	-8.97902	2.40530	-4.55315	-5.99492
<i>n</i> -Tridecane	C ₁₃ H ₂₈	88.4	101.4	136.9	155.2	182.9	207.1	234.9	566.9	317.3	363.0	-8.71245	1.11086	-3.15308	-8.81599
<i>n</i> -Tetradecane	C ₁₄ H ₃₀	102.1	115.6	152.4	171.2	199.6	224.5	252.9	285.8	338.0	385.4	-8.99672	1.98553	-5.38986	-4.09226
<i>n</i> -Pentadecane	C ₁₅ H ₃₂	115.8	129.5	167.1	186.3	215.4	240.9	270.0	303.5	356.4	404.4	-8.86498	0.89612	-3.70098	-8.72916
<i>n</i> -Hexadecane	C ₁₆ H ₃₄	128.5	142.6	181.0	200.7	230.5	256.5	286.1	320.4	374.3	423.4	-8.96067	0.85195	-4.04080	-8.42218
<i>n</i> -Heptadecane	C ₁₇ H ₃₆	141.2	155.7	195.1	215.2	245.4	271.7	301.8	336.4	390.9	440.2	-9.43782	1.65057	-5.70751	-4.71679
<i>n</i> -Octadecane	C ₁₈ H ₃₈	152.6	167.3	207.3	227.7	258.4	285.1	315.6	350.8	406.1	455.6	-9.87775	2.42883	-7.03772	-3.36978
<i>n</i> -Nonadecane	C ₁₉ H ₄₀	163.9	178.8	219.3	240.0	271.2	298.5	329.5	365.1	420.8	470.3	-9.91003	1.64273	-5.20678	-10.43208
<i>n</i> -Eicosane	C ₂₀ H ₄₂	174.7	189.8	231.1	252.2	284.0	311.7	343.1	379.0	435.2	486.5	-8.99815	-1.30230	-1.45511	-16.74038
Isoalkanes															
Isobutane	C ₄ H ₁₀	-97.2	-89.8	-69.4	-58.8	-42.7	-28.5	-12.1	7.0	37.7	66.2	-6.90675	1.57740	-1.80160	-2.42893
2-Methyl butane	C ₅ H ₁₂	-69.3	-60.9	-37.6	-25.6	-7.3	8.9	27.5	49.1	83.7	115.8	-7.18224	1.72845	-2.05353	-2.71274
2,2-Dimethyl propane	C ₅ H ₁₂						-8.6	9.1	29.9	63.3	94.4	-6.98355	1.67850	-2.08470	-2.42800
2-Methyl pentane	C ₆ H ₁₄	-45.6	-36.3	-10.9	2.2	22.1	39.6	59.8	83.3	120.8	155.5	-7.49311	1.93828	-2.57247	-2.85203
3-Methyl pentane	C ₆ H ₁₄	-43.8	-34.4	-8.7	4.6	24.7	42.4	62.8	9.98	124.7	160.0	-7.76049	2.81104	-3.61863	-1.53175
2,2-Dimethyl butane	C ₆ H ₁₄	-54.7	-45.7	-20.7	-7.8	11.9	29.3	49.3	72.7	110.0	144.4	-6.84403	0.74239	-0.92872	-4.01577
2,3-Dimethyl butane	C ₆ H ₁₄	-48.7	-39.3	-13.7	-0.5	19.6	37.2	57.5	81.1	118.8	153.8	-7.23412	1.74312	-2.49507	-1.81829
Olefins															
Ethylene	C ₂ H ₄	-160.5	-155.5	-142.0	-135.0	-124.3	-114.9	-104.0	-91.3	-70.9	-51.8	-6.41327	1.45469	-1.24183	-1.99446
Propylene	C_3H_6	-121.5	-115.1	-97.4	-88.3	-74.4	-62.1	-48.0	-31.5	-5.2	19.2	-6.66599	1.43430	-1.39324	-2.46883
1-Butene	C ₄ H ₈	-92.5	-84.9	-64.3	-53.7	-37.4	-23.1	-6.7	12.6	43.3	71.8	-7.07897	1.87819	-2.02256	-2.64845
1-Pentene	C_5H_{10}	-67.1	-58.7	-35.4	-23.4	-5.1	11.0	29.6	51.2	85.6	117.4	-7.23957	1.68881	-1.87158	-3.19856
1-Hexene	C ₆ H ₁₂	-42.7	-33.4	-8.0	5.2	25.2	42.8	63.1	86.7	124.4	159.2	-7.47396	1.85450	-2.38903	-3.50639
1-Heptene	C ₇ H ₁₄	-20.6	-10.6	16.9	31.0	52.5	71.4	93.2	118.7	159.2	196.4	-8.62839	3.98397	-4.58652	-2.45443
1-Octene	C ₈ H ₁₆	0.0	10.6	39.8	54.8	77.7	97.8	120.8	147.5	189.7	228.1	-7.93750	1.47392	-1.85509	-5.72867
Propadiene	C ₃ H ₄	-109.8	-103.4	-85.8	-76.6	-62.4	-49.6	-34.7	-17.1	11.8	38.9	-8.00232	4.45942	-2.87994	-5.85178
1,2-Butadiene	C_4H_6	-80.9	-72.7	-50.4	-38.9	-21.7	-6.7	10.5	30.4	62.1	91.5	-6.07102	0.12159	-1.55692	-0.53215
1,3-Butadiene	C ₄ H ₆	-90.8	-83.3	-62.6	-52.0	-35.7	-21.4	-4.8	14.4	45.1	73.5	-6.79824	1.08553	-0.96279	-3.84778
1,2-Pentadiene	C ₅ H ₈	-55.0	-46.2	-22.1	-9.7	9.0	25.5	44.4	9.99	102.3	136.1	-5.94252	0.26690	-2.35857	-1.73048
trans-1,3-Pentadiene	C ₅ H ₈	-57.9	-49.1	-25.0	-12.6	6.2	22.6	41.6	63.8	99.7	133.9	-5.50529	-0.22313	-2.15448	-1.34395
1,4-Pentadiene	C ₅ H ₈	-69.3	6.09—	-38.0	-26.2	-8.3	7.4	25.6	46.9	81.5	114.7	-5.36609	-0.09618	-2.39750	-1.13323
2,3-Pentadiene	C ₅ H ₈	-51.8	-43.0	-18.7	-6.3	12.5	29.0	47.9	6.69	105.2	138.2	-6.57492	0.82240	-2.46643	-2.03177

322

D3.1. Table 3. (continued)

					Vap	Vapor pressure in mbar	re in mba	-					Equati	on (7)	
Substance	Formula	5	10	20	100	250	200	1,000	2,000	2,000	10,000	А	В	C	D
Acetylene and derivatives															
Acetylene	C ₂ H ₂								-72.1	-51.7	-32.9	-6.99241	1.57338	-1.33202	-5.21884
Propyne	C₃H₄	-100.9	-93.9	-75.0	-65.3	-50.7	-38.0	-23.4	9.9-	20.2	44.8	-7.11026	1.86493	-2.56109	-1.65671
2-Butyne	C_4H_6				-23.9	-6.3	9.1	26.6	46.9	79.1	108.6	-6.85375	0.83418	-1.42544	-2.91847
1-Butyne	C_4H_6	-79.1	-71.3	-50.2	-39.4	-23.0	-8.7	7.8	26.8	57.1	85.0	-7.17126	1.56844	-2.22263	-2.83839
Naphthenes															
Cyclopropane	C_3H_6	-111.2	-104.3	-85.4	-75.7	-61.0	-48.1	-33.1	-15.7	12.6	39.0	-8.18446	5.40338	-5.26106	0.29975
Cyclobutane	C ₄ H ₈	-80.0	-71.9	-49.6	-38.1	-20.7	-5.4	12.2	32.6	65.0	94.8	-7.11287	1.86338	-1.59855	-2.35844
Cyclopentane	C_5H_{10}	-53.7	-44.7	-19.9	-7.1	12.3	29.3	48.8	71.5	107.8	141.3	-7.00184	1.67430	-1.95254	-2.43833
Methyl cyclopentane	C ₆ H ₁₂	-37.7	-28.1	-1.8	11.8	32.4	50.5	71.4	95.7	134.5	170.5	-7.22687	1.83847	-2.26044	-2.89788
Ethyl cyclopentane	C ₇ H ₁₄	-15.1	7.4	23.7	38.4	60.7	80.3	102.9	129.2	171.2	209.9	-7.33383	1.58750	-2.00285	-3.84956
Propyl cyclopentane	C ₈ H ₁₆	5.5	16.5	46.6	62.1	85.8	106.6	130.5	158.3	202.5	243.0	-7.56400	1.41441	-1.85483	-4.86488
Butyl cyclopentane	C ₉ H ₁₈	24.6	36.3	68.2	84.5	109.2	130.9	155.9	185.0	231.7	274.9	-8.82045	4.56618	-6.39502	0.04910
Pentyl cyclopentane	C ₁₀ H ₂₀	42.1	54.5	87.9	105.0	130.9	153.6	179.9	210.8	261.3	309.1	-8.34838	4.60920	-8.05957	2.47945
Hexyl cyclopentane	C ₁₁ H ₂₂	60.4	72.9	107.3	125.0	151.9	175.5	202.6	233.9	283.6	328.9	-8.25942	1.53284	-2.79124	-6.47404
Cyclohexane	C ₆ H ₁₂				19.2	40.3	58.9	80.3	105.2	145.1	182.0	-7.00979	1.57475	-1.96820	-3.26095
Methyl cyclohexane	C ₇ H ₁₄	-17.9	7.7	20.7	35.4	57.8	77.6	100.5	127.1	169.6	208.9	-6.99290	1.02989	-1.06613	-4.84894
Ethyl cyclohexane	C_8H_{16}	4.7	15.7	46.2	61.9	85.9	107.0	131.4	159.8	205.4	247.9	-6.62098	0.32843	-1.34736	-4.41951
Propyl cyclohexane	C ₉ H ₁₈	23.2	34.9	67.0	83.5	108.6	130.7	156.2	186.0	233.9	279.1	-6.58910	0.42832	-2.35856	-3.12499
Butyl cyclohexane	$C_{10}H_{20}$	41.8	54.0	87.5	104.7	130.9	153.9	180.4	211.5	261.7	309.3	-6.34269	-0.12784	-2.48780	-3.28017
Pentyl cyclohexane	C ₁₁ H ₂₂	58.7	71.5	106.5	124.4	151.6	175.5	203.1	235.4	287.2	334.7	-9.46392	5.58832	-7.94937	0.81254
Hexyl cyclohexane	C ₁₂ H ₂₄	75.6	88.9	125.0	143.4	171.3	195.9	224.1	257.0	309.7	357.8	-9.74155	5.86346	-8.50766	1.30484
Cyclopentene	C ₅ H ₈	-57.1	-48.1	-23.7	-11.1	8.0	24.7	43.9	66.2	101.7	134.5	-7.05071	1.79116	-2.02594	-2.17803
Cyclohexene	C_6H_{10}	-29.4	-19.6	7.4	21.3	42.5	61.1	82.5	107.5	147.3	184.3	-7.19079	1.97175	-2.26256	-3.04106
Aromatic compounds															
Benzene	C_6H_6			6.3	20.0	40.6	58.8	79.7	103.9	142.6	178.4	-7.11451	1.83981	-2.25158	-3.15179
Toluene	C ₇ H ₈	-9.0	1.5	30.4	45.3	67.8	87.5	110.2	136.4	178.3	216.8	-7.50051	2.08939	-2.56368	-2.85042
Ethyl benzene	C_8H_{10}	9.6	20.8	51.3	0.79	8.06	111.7	135.7	163.5	207.7	248.4	-7.64476	2.01616	-2.69311	-3.25571
Propyl benzene	C ₉ H ₁₂	26.2	38.0	70.1	9.98	111.6	133.5	158.7	187.9	234.3	276.9	-7.90921	2.25623	-3.18277	-3.03789
Butyl benzene	C ₁₀ H ₁₄	44.8	57.0	90.4	107.5	133.6	156.5	182.8	213.2	261.3	305.3	-7.91469	1.51273	-2.16430	-5.64758
Pentyl benzene	$C_{11}H_{16}$	61.6	74.3	108.9	126.7	153.7	177.5	205.0	237.1	288.3	334.8	-9.80886	6.07290	-7.50612	-1.56859
Hexyl benzene	C ₁₂ H ₁₈	77.4	90.5	126.4	144.8	172.7	197.3	225.6	258.5	311.0	358.4	-9.64511	5.19130	-6.86455	-2.47938
o-Xylene	C_8H_{10}	15.6	27.0	58.1	74.1	98.4	119.6	143.9	172.1	216.8	257.9	-7.60791	1.79921	-2.42215	-3.36892
<i>m</i> -Xylene	C ₈ H ₁₀	12.1	23.3	54.0	8.69	93.7	114.6	138.6	166.4	210.5	250.9	-7.63902	1.65289	-2.19801	-3.94677

<i>p</i> -Xylene	C ₈ H ₁₀		22.2	53.0	68.8	92.8	113.8	137.9	165.8	210.0	250.6	-7.67395	1.81953	-2.39673	-3.44627
1,2,3-Trimethyl benzene	C ₉ H ₁₂	38.5	50.8	84.4	101.5	127.4	149.9	175.7	205.3	252.0	294.7	-7.62987	1.23706	-2.24536	-2.65979
1,2,4-Trimethyl benzene	C ₉ H ₁₂	34.2	46.2	79.0	92.8	121.2	143.5	168.9	198.3	244.8	287.2	-8.03805	2.10078	-2.99671	-3.00299
1,3,5-Trimethyl benzene	C ₉ H ₁₂	31.3	43.2	75.7	92.3	117.3	139.2	164.2	193.0	238.4	279.7	-7.82434	1.27065	-2.17890	-3.60299
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄	61.0	73.9	108.8	126.7	153.7	177.4	204.6	236.2	286.5	332.6	-9.61420	5.81425	-7.22553	-0.17754
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄	56.4	69.1	103.5	121.1	147.7	170.9	197.6	228.3	277.2	321.9	-8.71211	3.45458	-5.00258	-1.61174
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄			102.2	119.9	146.5	169.7	196.2	226.8	275.0	319.1	-7.76585	0.96770	-2.26413	-3.93132
Pentamethyl benzene	C ₁₁ H ₁₆	80.3	93.9	131.0	149.8	178.2	202.9	230.9	263.1	313.7	359.8	-8.00728	1.10336	-2.69076	-2.48217
Hexamethyl benzene	C ₁₂ H ₁₈				179.3	208.4	233.8	262.9	296.5	349.7	398.5	-8.54789	2.39022	-4.64673	-4.09546
Styrene	C ₈ H ₈	17.1	28.4	59.4	75.2	99.4	120.5	144.9	173.3	218.7	260.6	-8.15126	3.51813	-4.34082	-2.42333
Isopropyl benzene	C ₉ H ₁₂	21.7	33.2	64.6	80.8	105.5	127.1	151.9	180.7	226.6	268.8	-7.53496	1.50829	-2.32928	-4.31012
Biphenyl	C ₁₂ H ₁₀	97.0	111.1	149.7	169.4	199.2	225.1	254.7	288.9	342.9	392.4	-7.75945	1.70606	-2.96632	-3.06189
Diphenyl methane	C ₁₃ H ₁₂	105.4	119.5	158.1	177.9	207.8	234.0	264.0	298.6	353.1	402.4	-8.53233	2.00873	-2.93179	-6.03029
Triphenyl methane	$C_{19}H_{16}$	178.3	194.6	238.8	261.3	295.3	324.9	358.8	397.9	459.9	516.6	-8.84156	2.41421	-5.56532	-2.75668
Tetraphenyl methane	C ₂₅ H ₂₀			330.3	356.3	395.6	429.8	468.9	514.0	585.3	649.7	-9.59635	3.13229	-6.82319	-2.76211
Naphthalene	C ₁₀ H ₈		9.08	117.1	135.8	164.1	188.9	217.4	250.4	303.0	351.4	-7.97682	2.86601	-3.50249	-2.67778
1-Methylnaphthalene	C ₁₁ H ₁₀	8.98	100.9	139.4	159.0	188.7	214.5	243.9	277.8	331.2	380.1	-6.84372	-0.39471	-0.79459	-3.92723
2-Methylnaphthalene	C ₁₁ H ₁₀	9.28	99.2	136.6	155.8	185.1	211.0	241.0	276.1	332.4	383.7	-10.50759	8.20742	-8.41116	-1.58015
1-Ethylnaphthalene	C ₁₂ H ₁₂	8'66	113.9	152.3	171.9	201.6	227.7	257.6	292.3	347.6	398.3	-9.12884	4.70431	-6.05976	-1.87388
2-Ethylnaphthalene	C ₁₂ H ₁₂	8.96	111.0	150.0	170.1	200.5	227.2	257.8	293.0	348.3	398.1	-8.42943	2.12066	-1.95832	-6.02831
Alcohols															
Methanol	CH₄O	-29.3	-20.4	3.4	15.2	32.7	47.5	64.1	82.8	111.4	136.6	-8.72963	1.45860	-2.78449	-0.70669
Ethanol	C ₂ H ₆ O	-15.7	-6.7	17.2	29.0	46.5	61.4	77.9	9.96	125.2	150.7	-8.33803	0.08720	-3.30575	-0.26001
1-Propanol	C ₃ H ₈ O	2.0	6.6	34.3	46.4	64.3	9.62	8.96	116.3	146.8	174.5	-8.60671	2.17353	-8.04678	3.69194
1-Butanol	C ₄ H ₁₀ O	16.8	26.3	51.5	64.1	82.9	99.1	117.4	138.3	171.4	201.9	-8.33120	2.05530	-8.17754	0.19316
1-Pentanol	C ₅ H ₁₂ O	30.6	40.4	8.99	80.1	100.2	117.6	137.5	160.3	196.4	229.6	-8.62225	2.10135	-6.29175	-6.79293
1-Hexanol	C ₆ H ₁₄ O	44.9	55.2	83.0	97.0	118.1	136.4	157.3	181.5	220.1	256.1	-9.17319	4.30846	-10.11890	-0.93221
1-Heptanol	C ₂ H ₁₆ O	59.9	70.3	98.4	112.8	134.7	153.9	176.1	202.0	243.7	282.4	-8.85687	3.21033	-7.48606	-12.12938
1-Octanol	C ₈ H ₁₈ O	72.5	83.4	113.0	128.2	151.2	171.4	194.8	222.1	266.4	307.4	-10.26829	6.70186	-11.65601	-6.37873
Isopropanol	C ₃ H ₈ O	-8.9	-0.3	22.7	34.1	51.1	65.6	81.9	100.4	129.3	155.6	-8.44737	1.17402	-6.97876	0.69248
2-Methyl-1-propanol	C ₄ H ₁₀ O	11.8	20.5	44.2	56.2	74.2	89.7	107.5	127.9	160.2	190.0	-7.82960	0.44510	-5.32308	-10.00835
3-Methyl-1-butanol	C ₅ H ₁₂ O	27.6	36.9	62.3	75.2	94.6	111.5	130.9	153.1	188.4	220.8	-8.27417	1.16334	-5.04768	-11.64372
Ethylene glycol	C ₂ H ₆ O ₂	75.1	9.98	117.3	132.7	155.4	174.8	196.6	221.3	259.7	294.2	-7.85575	1.06762	-5.14271	-1.65660
1,3-Propylene glycol	C ₃ H ₈ O ₂	9.28	97.8	130.2	146.4	170.4	190.9	213.7	239.1	277.7	311.2	-10.42988	2.74631	-2.20347	-6.30476
Glycerol	C ₃ H ₈ O ₃	147.5	160.8	196.2	213.9	239.9	262.2	287.2	315.6	359.8	400.1	-6.94758	-0.33345	-5.98569	-1.33011
Cyclohexanol	C ₆ H ₁₂ O	1.74	57.3	84.8	8.86	120.2	138.9	160.4	185.6	226.3	264.7	-6.96569	0.93439	-5.00403	-10.29700
Benzyl alcohol	C ₂ H ₈ O	74.9	86.7	118.5	134.6	158.8	179.9	204.0	232.0	276.9	319.2	-7.38172	2.18313	-6.78536	-2.57851

324

D3.1. Table 3. (continued)

					Vap	Vapor pressure in mbaı	ire in mb	ar					Equat	ion (7)	
Substance	Formula	2	10	20	100	250	200	1,000	2,000	2,000	10,000	А	В	C	Q
Phenols															
o-Cresol	C ₂ H ₈ O	60.1	71.8	103.6	119.9	144.4	165.8	190.3	218.6	263.2	303.8	-8.83275	3.46650	-4.36291	-6.10327
<i>m</i> -Cresol	C ₂ H ₈ O	70.8	82.7	114.9	131.2	155.8	177.2	201.7	229.9	274.8	316.1	-8.84466	4.00993	-6.76021	-3.02124
<i>p</i> -Cresol	C ₇ H ₈ O	72.0	83.6	115.2	131.3	155.6	177.0	201.5	229.9	275.0	316.2	-11.38986	9.13086	-10.26796	-3.81158
Phenol	СеньО	55.5	0.79	98.0	113.8	137.4	158.0	181.4	208.5	251.5	290.9	-10.48951	7.87328	-9.54201	-0.49292
Carboxylic acids															
Formic acid	CH ₂ O ₂			22.3	37.0	59.2	78.4	100.2	125.0	163.7	198.4	-7.48216	0.88805	-0.32253	-2.58053
Acetic acid	C ₂ H ₄ O ₂			41.2	55.7	77.5	96.3	117.5	141.6	179.1	212.5	-9.34304	3.77735	-3.59092	-1.57006
Propionic acid	C ₃ H ₆ O ₂	23.7	34.8	64.3	79.0	100.9	119.7	140.8	164.7	201.7	234.9	-9.05245	2.46694	-4.73604	1.29659
Butyric acid	C ₄ H ₈ O ₂	46.8	57.6	8.98	101.4	123.2	142.0	163.2	187.4	225.0	258.8	-9.92279	3.73064	-6.94231	-1.65235
Valeric acid	C ₅ H ₁₀ O ₂	54.9	0.99	0.96	1111.1	133.6	153.1	175.1	200.2	239.3	274.5	-9.07960	1.91018	-4.75458	-4.73450
Caproic acid	C ₆ H ₁₂ O ₂	82.1	93.5	123.9	139.2	162.0	181.7	204.0	229.7	270.3	307.8	-9.90505	4.66763	-11.56156	2.59120
Acetic anhydride	C ₄ H ₆ O ₃	20.7	31.5	60.7	75.5	97.8	117.1	139.1	164.3	204.0	240.2	-8.15436	1.80785	-3.76039	-3.04616
Propionic anhydride	C ₆ H ₁₀ O ₃	37.5	50.2	83.5	8.66	123.8	144.0	166.5	191.9	231.3	267.1	-6.66964	-2.70670	-1.76623	7.54170
Chloroacetic acid	C ₂ H ₃ Cl O ₂	67.3	78.4	108.4	123.5	146.3	166.0	188.6	214.5	255.6	293.3	-10.72534	7.62232	-10.44634	-2.56382
Dichloroacetic acid	C ₂ H ₂ Cl ₂ O ₂	69.5	80.7	111.0	126.5	149.8	170.2	193.5	220.3	262.7	301.1	-10.38040	6.03907	-7.42780	-7.72727
Trichloroacetic acid	C ₂ HCl ₃ O ₂	70.5	82.3	114.1	130.0	153.7	174.1	197.2	223.6	265.1	302.8	-8.80390	2.91469	-6.75915	-0.26065
Ketones															
Ketene	C ₂ H ₂ O	-121.4	-114.9	-97.4	-88.5	-75.0	-63.3	-50.0	-34.6	-10.1	12.6	-5.93228	0.34819	-1.82981	-0.11750
Acetone	C ₃ H ₆ O	-44.6	-35.7	-11.2	1.4	20.3	36.8	55.7	77.5	111.9	143.3	-7.67033	1.96469	-2.44380	-2.90162
Methyl ethyl ketone	C₄H ₈ O	-28.9	-19.2	7.4	20.9	41.2	59.0	79.2	102.5	139.4	173.2	-7.89149	2.46953	-3.52510	-0.92713
Diethyl ketone	$C_5H_{10}O$	-11.4	-1.3	26.2	40.3	61.6	80.2	101.4	125.9	164.7	200.2	-7.27265	0.63120	-1.64177	-4.36962
Dipropyl ketone	C ₇ H ₁₄ O	18.2	29.3	59.9	75.5	99.2	120.0	143.7	171.1	214.5	254.0	-7.98923	1.58266	-2.61251	-4.38408
Acetophenone	C ₈ H ₈ O	60.3	73.0	107.7	125.4	152.1	175.4	201.9	232.4	280.4	324.2	-6.96667	-0.37241	-0.80507	-4.88404
Benzophenone	C ₁₃ H ₁₀ O	138.2	153.2	194.0	214.8	246.2	273.6	305.0	341.3	398.8	450.9	-10.03049	5.92909	-7.69343	-1.20468
Ethers															
Dimethyl ether	C ₂ H ₆ O	-103.8	-96.7	-77.5	9.79—	-52.8	-39.9	-25.1	-8.0	19.3	44.5	-7.33288	2.67700	-3.40250	-0.11957
Diethyl ether	C ₄ H ₁₀ O	-61.3	-52.8	-29.7	-17.8	0.2	16.0	34.1	55.1	88.7	119.7	-7.55709	2.15613	-3.02766	-2.37858
Dipropyl ether	C ₆ H ₁₄ O	-21.9	-12.0	15.0	28.8	49.9	68.3	9.68	114.2	153.4	189.1	-8.55629	3.49469	-4.22192	-2.61530
Methyl propyl ether	C ₄ H ₁₀ O	-57.9	-49.4	-26.1	-14.1	4.1	20.1	38.5	60.1	94.8	127.1	-8.76101	5.30514	-6.07025	-0.78235
Ethyl propyl ether	$C_5H_{12}O$	-39.8	-30.9	-6.3	6.4	25.9	43.2	63.4	87.1	125.2	160.0	-10.68465	8.88906	-8.58949	-2.06505
Ethylene oxide	C ₂ H ₄ O	-76.9	-69.1	-47.9	-37.1	-20.6	-6.2	10.2	29.1	58.9	86.0	-6.39656	-0.13545	0.30047	-4.54866

Furane	C ₄ H ₄ O	-64.6	-55.8	-32.1	-20.1	-2.2	13.3	31.0	51.4	84.1	114.6	-7.98347	4.71720	-6.64737	3.77132
1,4-Dioxane	C ₄ H ₈ O ₂			24.8	39.3	61.0	79.7	101.0	125.4	163.9	199.3	-7.40401	2.12025	-3.88819	1.69876
Aldehydes															
Formaldehyde	CH ₂ O		-90.5	-71.5	-61.7	-47.0	-34.1	-19.4	-2.6	23.8	47.7	-7.46907	1.28290	-0.50464	-4.29089
Acetaldehyde	C₂H₄O	-71.0	-62.8	-40.7	-29.3	-12.2	2.8	19.9	39.6	70.8	99.2	-7.48323	1.89754	-1.87991	-2.74165
Paraldehyde	$C_6H_{12}O_3$		18.9	47.2	61.6	83.3	102.2	123.8	148.7	188.1	224.3	-8.39247	2.66850	-4.68103	-2.64044
Furfural	C ₅ H ₄ O ₂	32.9	44.7	76.4	92.5	116.6	137.4	160.9	187.8	229.7	267.6	-7.19466	0.15098	-1.29504	-2.81404
Benzaldehyde	C ₂ H ₆ O	42.3	54.5	97.8	104.6	130.2	152.7	178.3	208.0	254.8	297.6	-7.62714	1.75696	-2.27084	-3.91930
Salicylaldehyde	C ₇ H ₆ O ₂	55.1	68.2	103.5	121.3	147.8	170.5	195.8	224.1	267.0	304.2	-10.08822	2.82918	-0.83177	-3.21642
Esters															
Methyl formate	C ₂ H ₄ O ₂	-60.4	-52.1	-29.6	-18.1	-0.8	14.2	31.4	51.2	82.5	111.3	-7.09661	1.33571	-2.14672	-2.79247
Ethyl formate	$C_3H_6O_2$	-43.7	-35.0	-11.4	0.7	19.0	35.1	53.6	75.0	109.1	140.5	-7.17811	1.31054	-2.17904	-4.85150
Propyl formate	$C_4H_8O_2$	-25.1	-15.7	10.0	23.1	43.1	9.09	9.08	103.9	141.1	175.4	-7.55263	1.95726	-3.16613	-3.81792
Methyl acetate	$C_3H_6O_2$	-42.1	-33.2	0.6—	3.3	21.9	38.1	9.99	78.0	112.0	143.2	-8.57584	4.22791	-5.37346	-0.82045
Ethyl acetate	C ₄ H ₈ O ₂	-27.4	-18.0	7.4	20.4	40.0	57.1	76.7	99.4	135.4	168.4	-7.89734	2.16798	-3.52390	-3.10641
Propyl acetate	$C_5H_{10}O_2$	-9.7	0.2	27.0	40.8	61.8	80.1	101.1	125.4	164.0	199.3	-7.89781	1.68898	-2.74051	-5.47967
Methyl propionate	$C_4H_8O_2$	-25.7	-16.2	9.4	22.5	42.2	59.4	79.1	102.0	138.4	172.0	-8.30872	3.53745	-5.20774	-1.27089
Ethyl propionate	$C_5H_{10}O_2$	-11.5	-1.7	25.1	38.8	9.69	7.77	98.5	122.7	161.4	197.0	-8.75519	4.14793	-5.89411	-1.78473
Propyl propionate	$C_6H_{12}O_2$	3.7	14.5	43.6	58.5	80.7	100.1	122.0	147.2	186.8	222.9	-7.79443	0.71065	-2.20915	-2.58752
Methyl butyrate	$C_5H_{10}O_2$	-9.5	9.0	27.9	41.8	62.8	81.2	102.3	126.6	165.6	201.5	-8.52321	3.78350	-5.74769	-0.69681
Ethyl butyrate	$C_6H_{12}O_2$	0.3	11.1	40.6	55.7	78.4	98.3	120.9	147.1	188.5	226.2	-8.18197	2.21896	-3.32406	-2.03342
Methyl benzoate	C ₈ H ₈ O2	0.09	72.3	105.8	123.1	149.3	172.4	198.9	229.7	278.6	323.1	-9.52872	5.22508	-5.67192	-4.59960
Ethyl benzoate	C ₉ H ₁₀ O ₂	70.8	83.0	117.0	134.6	161.5	185.3	212.8	244.5	294.5	339.0	-9.49777	3.93518	-3.00984	-10.93022
Methyl salicylate	C ₈ H ₈ O ₃	78.0	89.2	121.0	138.2	165.4	190.4	220.0	254.6	307.4	350.7	-14.30891	11.86128	-2.67256	-30.85630
Amines															
Methyl amine	CH ₅ N	-83.8	-76.8	-57.7	-48.1	-33.5	-21.0	-6.7	9.7	35.4	58.9	-6.93594	0.77016	-2.12846	-3.11687
Ethyl amine	C ₂ H ₇ N	-69.1	-61.3	-40.4	-29.7	-13.6	0.5	16.5	34.9	64.1	6.06	-7.14146	1.24486	-2.55143	-3.09059
Propyl amine	C ₃ H ₉ N	-48.5	-39.7	-16.1	-4.2	13.8	29.5	47.2	9.79	6.66	129.7	-6.32807	-0.41527	-1.86755	-1.82733
<i>n</i> -butyl amine	C ₆ H ₁₅ N	-27.3	-17.9	7.6	20.7	40.3	57.5	77.1	8.66	135.9	169.2	-7.88889	2.67770	-4.27421	-1.85122
Dimethyl amine	C ₂ H ₇ N	-74.4	-67.1	-47.3	-37.2	-22.0	-8.7	9.9	24.4	52.9	79.4	-8.48833	4.67224	-6.24955	-1.96675
Trimethyl amine	C ₃ H ₉ N	-84.8	-77.3	-56.4	-45.5	-28.9	-14.2	2.8	22.6	54.4	83.7	-7.30365	1.94801	-1.34682	-5.07582
Diethyl amine	$C_6H_{15}N$	-46.1	-36.9	-12.0	0.7	19.7	36.3	55.2	77.1	111.9	144.1	-7.36200	1.77888	-3.69788	0.28823
Triethyl amine	$C_6H_{15}N$	-24.6	-14.5	13.0	27.1	48.4	67.0	88.4	113.1	152.6	189.2	-7.73549	2.33990	-3.77932	-0.63259
Piperidine	C ₅ H ₁₁ N		-0.7	28.1	42.7	64.8	84.0	105.9	131.2	171.2	208.3	-6.79875	1.00957	-2.60941	-0.67208
Pyridine	C ₆ H ₇ N	-2.9	7.6	36.3	51.0	73.2	97.6	114.8	140.4	181.1	218.6	-7.07868	1.45189	-2.11714	-3.20359
Aniline	C ₆ H ₇ N	51.2	63.3	0.96	112.6	137.4	159.0	183.4	211.5	255.6	295.9	-7.86006	1.96206	-3.65571	-2.00622
<i>N</i> -methyl aniline	C ₂ H ₉ N	57.4	6.69	104.0	121.2	147.2	169.7	195.1	224.0	269.0	309.0	-8.99983	2.75304	-2.46251	-3.78980

D3.1. Table 3. (continued)

					Vap	Vapor pressure in mbar	ıre in mb	ar					Equat	ion (7)	
Substance	Formula	5	10	50	100	250	200	1,000	2,000	2,000	10,000	А	В	C	D
N,N-dimethyl aniline	C ₈ H ₁₁ N	52.0	65.0	100.0	117.7	144.2	1.791	192.9	222.4	268.6	310.8	-6.91926	-0.79562	-1.01346	-1.30692
N,N-diethyl aniline	$C_{10}H_{15}N$	73.6	9.98	121.6	139.3	166.0	1.89.1	215.5	246.0	294.7	340.1	-7.13341	0.21353	-3.88149	-0.98901
Phenylhydrazine	C ₆ H ₈ N ₂	93.8	107.0	143.4	162.1	190.4	215.2	243.4	275.7	325.9	370.0	-10.65944	5.59074	-3.56952	-8.23026
Diphenyl amine	$C_{12}H_{11}N$	134.0	149.3	190.7	211.7	243.3	270.7	301.8	337.3	392.8	442.8	-8.75985	2.00629	-3.23950	-3.32510
Nitriles															
Acetonitrile	C ₂ H ₃ N	-31.0	-20.6	7.3	21.4	42.3	60.5	81.0	104.6	141.9	175.9	-9.22263	5.68045	-6.67111	4.51306
Propionitrile	C ₃ H ₅ N	-17.9	7.7—	20.4	34.7	56.5	75.5	97.3	122.3	161.8	197.6	-7.82826	1.87534	-1.74704	-3.40003
Butyronitrile	C ₄ H ₇ N	-2.0	9.8	37.6	52.4	74.8	94.4	117.0	143.0	184.4	222.0	-9.07674	4.63491	-4.96526	-1.94727
Benzonitrile	C ₂ H ₅ N	51.3	63.4	8.96	114.1	140.4	163.6	190.3	221.2	270.1	314.2	-8.76503	3.46762	-2.58071	-7.03902
Amides															
Formamide	CH ₃ NO	82.2	94.8	129.0	146.2	171.9	194.0	219.1	247.6	292.1	332.3	-8.05102	1.89555	-3.34638	-3.18188
Nitroderivates															
Nitromethane	CH ₃ NO ₂	-11.8	-1.7	26.0	40.1	61.3	79.8	100.8	124.9	162.6	196.7	-8.40409	2.96310	-2.55125	-3.12626
Nitrobenzene	C ₆ H ₅ NO ₂	65.8	78.5	113.5	131.4	158.7	182.6	210.2	242.1	292.6	337.8	-11.42180	9.08136	-8.03968	-2.40144
o-Nitrotoluene	C ₇ H ₇ NO ₂	75.0	88.0	123.6	141.8	169.4	193.5	220.9	252.4	301.5	345.5	-9.20649	3.25360	-2.90528	-5.87732
<i>m</i> -Nitrotoluene	C ₇ H ₇ NO ₂	81.8	95.3	132.1	150.9	179.3	204.0	232.1	264.4	314.8	359.8	-9.97904	5.05231	-4.85807	-3.04363
p-Nitrotoluene	C ₇ H ₇ NO ₂	85.1	6.86	136.2	155.3	184.1	209.3	238.1	271.5	324.6	373.0	-9.14840	4.60236	-6.10485	-0.71761

					Temperature (°C)	ure (°C)						Equation (9		
Substance	Formula	-50	-25	0	20	20	100	150	200	А	В	C	О	E
Elements														
Xenon	eχ	77.9	65.5	45.8						4.69619	6.10287	-3.768319	-1.078236	0.917114
Krypton	Kr									4.53207	6.22827	-3.542952	-1.700226	4.022385
Argon	Ar									4.84261	5.03919	-2.218775	-2.402365	7.051085
Air										0.28652	11.97235	-1.145111	-8.064787	14.645081
Nitrogen	N_2									5.07184	5.47148	-2.581923	-2.026983	5.480425
Oxygen	02									4.97014	5.30204	-2.421192	-2.154911	3.472270
Sulfur	S	355.5	352.0	348.6	345.8	341.5	334.3	326.8	319.1	0.83391	0.29462	0.000023		
Fluorine	F ₂									4.47837	8.72648	-6.584538	0.389714	0.579951
Chlorine	Cl ₂	296.6	282.9	267.4	253.2	228.0	168.2			5.11396	5.49446	-1.638879	-2.194771	4.360453
Bromine	Br ₂			200.9	196.2	188.8	175.1	1.651	139.5	7.49419	0.92568	-0.113163	-0.025698	-0.197360
lodine	l ₂							171.4	162.4	6.56592	2.00206	0.000206		
Anorganic compounds														
Hydrogen fluoride	Ή	287.7	313.4	347.1	381.4	444.2	555.8	561.6		-5.18098	64.63309	-88.769460	38.475692	-19.213870
Hydrogen chloride	IDH	405.1	367.6	320.4	269.9					7.67088	0.20254	0.928667	-1.253068	4.544424
Hydrogen bromide	HBr	214.4	201.8	184.2	165.7	128.0				3.64108	7.03187	1.546295	-8.296772	2.449759
Hydrogen iodide	IH	162.9	155.0	146.3	138.8	126.0				6.52572	1.44631	-0.100655	-0.009376	-0.219261
Hydrogen cyanide	NOH			1024	1005	0.696	881.6	710.4		14.93438	-6.80314	-0.045868	-0.065004	-0.145955
Water	0 ^z H				2454	2380	2257	2115	1940	6.85307	7.43804	-2.937595	-3.282093	8.397378
Hydrogen sulfide	S ^z H	534.2	501.3	462.7	425.9	355.0				4.03399	11.42509	-8.776318	1.195807	0.952448
Ammonia	[€] HN	1416	1345	1263	1187	1051	715.6			5.74477	7.28288	-2.428744	-2.261942	2.909378
Nitric oxide	ON									9.22523	6.92520	-0.413269	-5.159373	97.203137
Nitrogen dioxide	^z ON									10.54674	37.16610	-51.619512	10.653997	68.680656
Nitrous oxide	N_2O	326.0	285.9	232.7	170.0					6.47229	3.13505	0.829428	-2.961623	12.969986
Dinitrogentetroxide	N_2O_4									17.10093	9.30852	-21.253959	-1.535179	102.679020
Cyanogen	C_2N_2		452.7	426.3	401.4	356.0	241.4			9.34416	-2.91283	7.147434	-6.240980	9.063880
Phosphorus trichloride	PCI ₃				236.3	226.1				5.00588	9.40431	-6.091275	0.740321	0.097910
Cyanogen chloride	CICN			446.3	428.6	398.9	336.7	234.8		9.94103	0.20022	-0.085934	-0.000108	-0.000005
Silane	⁵HIS	302.2	250.0							12.04169	-12.66485	9.554284	-3.383685	18.437953
Tetrachlorosilane	SiCl₄	197.0	188.7	181.6	176.2	167.6	150.0	124.9		5.69074	7.26313	-0.726791	-5.904069	18.531250
Carbon monoxide	CO									5.36544	4.61398	-1.500151	-2.362494	7.223824
Carbon dioxide	CO ₂	339.7	293.3	230.9						6.29356	5.58825	-1.150946	-2.168773	31.513859
Carbon suboxide	C ₃ O ₂	388.8	379.9	367.7						3.85706	12.51979	-1.466541	-12.059981	18.935744

D3.1. Table 4. Enthalpies of vaporization at different temperatures in J/g

328

D3.1. Table 4. (continued)

					Temperature (°C)	ure (°C)						Equation (9	(
Substance	Formula	-50	-25	0	20	20	100	150	200	А	В	C	q	E
Carbonyl sulfide	COS	308.9	291.1	270.3	250.5	213.0				5.26390	6.82633	-4.049718	-0.902566	4.719170
Phosgene	CCI_2O	277.4	265.4	253.2	243.0	226.1	190.2	128.3		1.27695	26.84919	-25.323901	7.711919	0.246138
Carbon disulfide	CS ₂		388.1	374.0	364.6	351.7	329.5	300.1	255.6	5.11988	10.62906	-9.288902	-0.698735	15.386540
Sulfur dioxide	202	423.2	402.2	380.0	360.8	328.2	256.5			6.43046	6.41093	-2.662978	-0.896060	6.489831
Sulfur trioxide	SO ₃				548.3	499.8	409.0	299.5	140.3	1.55618	23.48861	-9.147534	3.259366	-11.225329
Sulfuryl chloride	Cl ₂ SO ₂	270.8	261.6	252.0	243.9	231.0	207.0	178.7	142.6	4.81312	9.37570	-4.943116	1.064302	-0.564284
Sulfur hexafluoride	SF ₆	109.0	98.4	83.4	9.99					6.26231	6.40501	-2.747029	-2.003031	-72.803197
Organic compounds containing sulfur	sulfur													
Methyl mercaptan	CH₄S	562.7	540.6	516.9	496.6	463.2	396.4	301.9		6.55525	4.23299	-2.363875	0.468305	-0.180912
Ethyl mercaptan	C ₂ H ₆ S	493.3	476.5	459.0	444.2	420.1	372.1	308.0	205.0	6.80697	4.46965	-1.818387	-0.923775	2.612589
Dimethyl sulfide	C ₂ H ₆ S	503.5	486.0	467.4	451.6	426.0	376.8	313.7	216.4	6.69172	5.20665	-3.208643	0.819280	-0.480074
Diethyl sulfide	C ₄ H ₁₀ S	435.0	422.4	409.1	397.9	380.1	346.9	307.5	257.5	7.32192	5.56252	-3.142609	0.674413	-0.388006
Thiophene	C_4H_4S		438.8	425.7	414.7	397.2	365.1	327.9	282.4	6.26860	6.29557	-3.767889	0.917693	-0.585746
Halogenated hydrocarbons														
Fluoromethane (R41)	CH ₃ F	444.4	396.3	333.0	261.4					5.34432	8.19605	-4.716205	-0.915983	4.082077
Difluoromethane (R32)	CH ₂ F ₂	380.3	350.7	315.3	280.6	209.7				6.31467	6.57339	-2.449336	-1.596805	4.969907
Trifluoromethane (R23)	CHF ₃	208.4	178.1	136.1						5.33728	10.11434	-6.515737	0.912341	-0.142635
Tetrafluoromethane (R14)	CF_4	45.8								6.90451	4.53442	-2.632334	-0.511569	3.574074
Methyl chloride	CH ₃ Cl	449.6	428.9	406.1	385.7	350.1	266.4			7.52784	1.79702	-0.314797	-1.088274	3.513993
Methylene chloride	CH ₂ Cl ₂	389.5	375.2	360.1	347.3	326.8	287.7	238.9	168.1	5.48913	8.05864	-4.482770	0.992992	-0.431660
Chloroform	CHCl3	289.8	281.5	272.5	264.8	252.4	229.2	201.2	163.6	7.16193	6.32194	-5.851382	2.576553	-2.746384
Carbon tetrachloride	CCI ₄			219.0	212.8	203.3	185.8	165.0	138.1	6.79262	4.74990	-2.315979	-0.172679	3.053272
Bromomethane	CH ₃ Br	276.0	266.2	256.6	248.6	235.6	208.3	164.5		7.76803	5.56727	-7.230582	2.085873	4.403709
Dibromomethane	CH_2Br_2	236.4	229.5	222.5	216.9	208.3	193.5	177.3	158.7	5.90217	10.54835	-10.131479	4.169979	-0.342291
Tribromomethane	CHBr ₃				174.1	169.2	159.8	149.2	137.0	10.34541	-11.68591	15.407923	-5.463728	0.309434
Tetrabromomethane	CBr_4						148.5	131.0		2.94192	12.07940	-3.508842	-3.779087	76.220152
Chlorodifluoromethane (R22)	CHCIF ₂	239.7	223.5	204.9	187.4	154.1				5.95795	7.77266	-4.647429	0.074274	4.096136
Dichlorofluoromethane (R21)	CHCl ₂ F	272.7	260.3	247.1	235.8	217.3	179.1	118.6		4.64484	12.93588	-10.395393	3.264061	-0.819565
Chlorotrifluoromethane (R13)	CCIF ₃	132.9	115.4	91.3						6.92913	3.46700	-0.923899	-1.124899	1.918255
Dichlorodifluoromethane (R12)	CCl_2F_2	174.3	164.2	152.8	142.2	122.5				5.66938	8.02998	-5.154107	-0.177208	4.608970
Trichlorofluoromethane (R11)	CCI ₃ F	206.6	198.6	190.2	183.1	171.4	147.0	111.1		5.41567	8.96541	-5.714602	-0.216220	4.647955
Ethyl fluoride (R161)	C_2H_5F	429.8	405.7	378.1	352.6	304.6				9.51720	-1.16297	0.541747	-0.037504	-0.041491
Ethyl chloride	C ₂ H ₅ Cl	428.4	411.1	392.6	376.7	350.5	296.6	215.3		6.30209	7.06337	-5.249715	1.249095	0.126838

Ethyl bromide	C ₂ H ₅ Br	258.9	264.4	262.0	256.5	244.7	220.7	193.8	155.2	14.52139	-12.89817	4.869861	7.100285	-46.731533
1,1-Dichloroethane	$C_2H_4Cl_2$	345.8	334.6	323.8	314.9	300.4	271.3	232.9	178.4	8.70837	-2.71451	7.371502	-6.147699	8.485117
1,2-Dichloroethane	$C_2H_4CI_2$		379.1	366.5	356.6	341.5	314.6	283.3	243.5	8.56126	3.70808	-3.680483	1.403329	2.953142
1,2-Dibromoethane	$C_2H_4Br_2$				222.6	214.9	201.0	185.1	166.7	7.20165	-0.00816	5.018803	-3.197728	1.855801
1,1,1-Trifluoroethane (R143a)	$C_2H_3F_3$	228.6	210.2	187.8	165.6	118.5				6.71900	5.01141	-0.763635	-2.672683	10.182873
1,1,1-Trichloroethane	$C_2H_3CI_3$		260.4	251.2	243.9	232.6	211.9	186.7	153.1	6.56423	6.65046	-4.263724	0.292419	3.965763
1,1,2,2-Tetrachloroethane	$C_2H_2CI_4$		279.9	272.3	266.5	257.7	242.1	223.8	201.6	8.22713	-3.08321	10.707890	-7.956865	7.682273
Pentachloroethane	C ₂ HCl ₅				228.2	220.8	208.5	194.7	178.1	7.04290	8.50532	-4.661553	-1.636031	7.068760
Hexachloroethane	C ₂ CI ₆								162.3	4.61352	12.12143	-7.667006	2.877370	-12.587588
1,1,2,2-Tetrachlorodifluoroethane	$C_2CI_4F_2$					169.9	154.4	135.8	111.6	6.68635	7.51370	-3.993648	0.369246	-0.772752
1,1,2-Trichlorotrifluoroethan	$C_2Cl_3F_3$		166.1	158.7	152.8	143.6	125.4	100.5	55.8	6.97858	5.20404	-1.607386	-1.851544	12.696545
1,2-Dichlorotetrafluoroethane	$C_2Cl_2F_4$	152.3	145.1	137.0	129.7	117.3	89.1			7.99294	2.61639	-0.316162	-0.688124	-0.357781
1-Chloropropane	C ₃ H ₂ Cl	417.2	401.1	385.3	372.5	352.2	313.2	262.1	181.2	99006.9	6.18780	-4.021580	0.188325	5.019332
1-Chlorobutane	C_4H_9CI	402.1	391.1	377.8	366.1	347.0	312.5	272.7	220.3	1.98680	26.31367	-26.025459	11.315390	-11.713944
1-Chloropentane	$C_5H_{11}CI$	414.2	392.0	373.5	360.8	343.9	318.5	292.6		11.98674	0.04158	-5.045087	4.124543	14.191365
Chlorotrifluoroethene	C_2CIF_3		223.1	212.5	199.8					8.69389	10.04815	-6.152915	-4.930659	-53.084616
Vinyl chloride	C_2H_3CI	382.9	362.7	341.8	324.0	293.7	224.9			-0.22946	25.94228	-21.553912	5.266260	3.943125
1,1-Dichloroethene	$C_2H_2CI_2$	311.2	299.5	286.9	276.2	258.7	224.1	177.3		6.71423	5.31563	-2.937984	0.470263	-0.042603
Trichloroethene	C ₂ HCl ₃	302.7	288.5	276.7	268.3	256.5	236.7	213.4	182.8	6.16853	7.47248	-3.556057	-2.178505	14.713520
Tetrachloroethene	C ₂ Cl ₄			245.5	239.6	231.3	217.1	200.2	178.4	4.18516	10.62968	-2.623837	-5.374835	12.451366
Fluorobenzene	C_6H_5F		377.3	369.0	361.3	347.9	320.7	286.2	241.5	8.94237	-1.76739	4.988190	-3.559387	-1.628015
Chlorobenzene	C ^e H ^s Cl		380.9	371.5	364.0	352.4	331.4	307.2	278.1	8.17299	1.26513	1.758153	-2.434400	3.109045
Bromobenzene	C ₆ H ₅ Br		299.8	292.9	286.9	277.3	260.2	241.7	221.8	11.61418	-7.64685	6.214276	0.960149	-2.936095
lodobenzene	C ₆ H ₅ I		256.4	248.7	243.1	235.3	223.0	210.6	197.1	6.50840	7.27177	-3.890897	-0.822891	6.073514
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl				332.5	329.7	324.2	315.3		8.03813	9.13193	-6.497782	-5.826589	9.843847
Benzyl chloride	C ₂ H ₂ Cl		406.8	396.6	389.1	378.1	359.4	338.3	313.3	9.17816	-2.64989	8.362278	-6.724665	7.266772
<i>n</i> -Alkanes														
Methane	CH⁴									4.99314	5.01992	-2.261379	-2.477646	4.425783
Ethane	C_2H_6	429.7	376.8							5.22295	7.28006	-4.737913	-0.589830	2.231339
Propane	C^3H^8	434.3	406.9	374.7	344.1	284.9				5.52801	7.88661	-5.323736	0.088186	2.147194
<i>n</i> -Butane	C_4H_{10}	426.3	406.7	385.4	366.5	333.7	258.3			5.90836	7.81092	-4.959362	-0.194761	3.830824
<i>n</i> -Pentane	C_5H_{12}	419.5	402.5	385.0	370.3	346.0	296.2	222.9		5.75681	9.95286	-6.871727	0.521979	4.474608
<i>n</i> -Hexane	C_6H_{14}	412.6	397.1	381.6	368.8	348.5	309.6			5.82255	11.20578	-8.077144	1.351285	3.455363
<i>n</i> -Heptane	C_7H_{16}	412.6	396.3	380.7	368.2	349.4	315.6	275.2	220.2	3.33801	21.88936	-18.680507	5.467222	2.994395
<i>n</i> -Octane	C_8H_{18}	411.5	395.1	379.6	367.6	349.8	319.1	284.5	241.5	4.48143	19.69699	-16.729253	5.297036	4.040976
<i>n</i> -Nonane	C_9H_{20}	408.2	392.1	377.0	365.4	348.5	319.9	289.0	252.6	6.04659	15.52925	-12.556768	4.153161	5.008624

330

D3.1. Table 4. (continued)

					Temperature (°C)	ure (°C)						Equation (9)	
Substance	Formula	-50	-25	0	20	20	100	150	200	А	В	C	Q	E
<i>n</i> -Decane	C ₁₀ H ₂₂		389.9	375.1	363.8	347.3	320.0	291.4	258.8	4.95196	20.62050	-17.243223	5.887415	4.332104
<i>n</i> -Undecane	C ₁₁ H ₂₄		394.9	377.0	364.5	347.7	322.3	296.7	267.6	7.78079	10.07916	-4.141098	-1.829586	18.468668
<i>n</i> -Dodecane	C ₁₂ H ₂₆			377.1	364.3	346.9	320.5	294.5	266.3	7.96676	8.96561	-2.426306	-1.278554	16.571637
<i>n</i> -Tridecane	C ₁₃ H ₂₈			365.5	358.2	346.4	324.8	300.7	273.6	7.10363	14.69528	-8.501852	2.345396	-3.139495
<i>n</i> -Tetradecane	C ₁₄ H ₃₀				369.4	348.1	320.4	296.9	272.7	7.96599	7.28007	4.698876	-9.566327	41.044420
<i>n</i> -Tentadecane	C ₁₅ H ₃₂				372.1	348.6	318.6	294.6	272.3	10.21651	9.06799	-4.682578	-0.826136	38.409983
<i>n</i> -Hexadecane	C ₁₆ H ₃₄				369.6	347.8	318.3	294.0	271.8	11.99309	8.12193	-8.228896	5.197405	26.068465
<i>n</i> -Heptadecane	C ₁₇ H ₃₆					342.4	316.8	293.9	272.5	15.94792	2.03335	-8.589551	11.148766	7.322380
<i>n</i> -Octadecane	C ₁₈ H ₃₈					337.4	312.5	291.8	272.4	9.51541	13.40476	-6.317356	-2.039126	29.956901
<i>n</i> -Nonadecane	C ₁₉ H ₄₀					373.1	326.0	294.9	271.7	10.54728	11.87652	-5.153424	-3.744106	87.493331
<i>n</i> -Eicosane	C ₂₀ H ₄₂					322.6	306.7	289.2	270.1	12.81896	4.66635	-0.617286	2.595100	-5.396590
Isoalkanes														
Isobutane	C ₄ H ₁₀	397.1	377.0	354.5	334.3	298.5	211.2			5.98835	6.85491	-3.938590	-0.367091	2.965412
2-Methyl butane	C ₅ H ₁₂	397.4	381.1	364.2	349.6	325.3	274.3	196.8		6.35592	6.65305	-3.411011	-0.779434	4.472309
2,2-Dimethyl propane	C_5H_{12}			322.7	307.4	281.5	223.1	111.8		6.46867	4.15130	0.521940	-4.307291	26.542963
2-Methyl pentane	C_6H_{14}	394.5	378.9	363.4	350.6	330.4	291.0	238.5	150.9	4.81796	14.28905	-11.187698	2.386775	3.472905
3-Methyl pentane	C_6H_{14}	398.1	384.5	2'698	357.0	336.4	296.9	246.8	171.4	7.07983	5.84423	-3.391733	1.111535	-2.171129
2,2-Dimethyl butane	C_6H_{14}	365.9	351.5	337.4	325.9	307.4	270.0	218.2		7.18105	4.13376	-0.743441	-2.296211	8.667922
2,3-Dimethyl butane	C_6H_{14}	377.5	365.0	351.9	340.8	322.7	286.5	236.5	151.9	3.71503	17.70893	-14.535304	2.757326	1.283650
Olefines														
Ethylene	C_2H_4	383.5	311.1							5.15017	6.90546	-4.236236	-0.597914	3.214310
Propylene	C_3H_6	442.1	412.4	377.4	343.9	278.6				4.87035	9.25307	-6.242188	0.360560	1.336162
1-Butene	C_4H_8	431.3	409.5	386.1	365.6	330.3	249.3			5.50512	9.20052	-6.866370	1.422830	2.320790
1-Pentene	C_5H_{10}	418.8	401.4	384.3	369.8	345.6	293.9	216.4		7.66871	1.15392	3.415900	-4.960346	12.898598
1-Hexene	C_6H_{12}	413.3	397.1	381.4	368.8	348.8	309.9	258.5	178.6	7.38311	5.02928	-1.646030	-1.616197	7.915952
1-Heptene	C ₇ H ₁₄	405.3	391.6	377.4	365.7	347.5	315.3	278.5	231.1	10.68425	-0.03078	-1.897634	3.500746	-2.348299
1-Octene	C_8H_{16}	430.0	401.9	379.9	365.3	346.7	318.7	288.3	249.0	8.37599	7.64620	-5.811718	-0.575961	28.208226
Propadiene	C₃H₄	514.9	475.2	439.7	413.3	374.1				10.85574	-2.93460	-5.277903	10.932970	2.693704
1,2-Butadiene	C_4H_6	497.7	475.4	451.5	430.8	396.7	326.7	219.6		5.98729	6.05637	-3.164536	0.585024	-0.256915
1,3-Butadiene	C_4H_6	457.1	435.4	411.9	391.1	355.6	275.8			6.12668	7.20781	-4.977657	0.788958	0.983749
1,2-Pentadiene	C_5H_8	476.1	457.9	438.3	421.4	393.6	338.5	268.3	168.3	6.21662	0.23633	7.289616	-5.206911	3.359798
trans-1,3-Pentadiene	C ₅ H ₈	461.1	445.0	427.3	411.5	384.5	328.3	253.6		3.99567	3.66631	7.516396	-8.228076	5.648565

1.4 Boxtadiono		1771	406.2	20.4.0	265 2	225.1	ر 177	3000		090090	11 50101	0907301	197660	5080960
י,ל-דיפוומטוחי	€5⊓8	47.7	400.5	0.4.0	202.2	1.000	7.//7	C.202		2.02303	10106.11	-4.90/209	0.927034	-0.20000
2,3-Pentadiene	C ₅ H ₈	491.7	472.2	451.5	434.0	405.8	351.7	282.7	175.4	5.27437	9.08302	-4.723587	0.949364	-0.314331
Acetylene and derivatives														
Acetylene	C_2H_2	569.0	501.5	413.0						7.01232	5.82528	-5.445163	3.417345	-34.680940
Propyne	C₃H₄	588.0	557.3	522.7	491.2	435.4	296.5			6.48101	6.32478	-3.509968	-0.188971	0.363183
2-Butyne	C ₄ H ₆		537.5	516.3	498.6	468.4	402.0	302.0		6.53927	3.54709	3.287518	-7.257675	17.508732
1-Butyne	C_4H_6	517.4	494.0	468.6	446.3	408.6	327.6	188.7		6.40166	6.42355	-2.507973	-0.883718	2.487889
Naphthenes														
Cyclopropane	C ₃ H ₆	492.1	464.5	434.6	408.8	364.0	243.8			4.10398	16.22930	-17.831464	8.643670	-10.417706
Cyclobutane	C_4H_8	473.6	456.1	437.6	421.7	395.0	338.0	245.6		5.02909	12.58788	-11.443639	2.642137	1.339011
Cyclopentane	C_5H_{10}	455.0	438.5	421.9	408.3	386.8	345.8	292.4	208.8	3.48031	17.33664	-15.181137	4.136664	1.169032
Methyl cyclopentane	C_6H_{12}	420.4	406.4	392.2	380.4	362.0	327.5	284.9	225.7	5.36513	11.93058	-9.827485	2.605197	0.886476
Ethyl cyclopentane	C ₇ H ₁₄	407.5	396.1	384.1	374.1	358.2	328.8	294.3	251.2	7.41293	5.09188	-2.727834	0.483221	-0.097023
Propyl cyclopentane	C_8H_{16}	401.4	390.9	379.8	370.6	356.0	329.3	298.7	262.0	7.51798	6.17117	-3.334058	0.617716	-0.142182
Butyl cyclopentane	C_9H_{18}	399.4	387.8	375.8	365.8	350.2	322.2	290.9	255.0	4.61191	12.28173	-5.906447	1.146999	-0.354122
Pentyl cyclopentane	C ₁₀ H ₂₀		386.0	374.9	365.7	351.3	325.7	297.3	264.8	-2.36442	34.80637	-24.840574	5.444180	-1.296219
Hexyl cyclopentane	C ₁₁ H ₂₂						326.9	300.9	274.7	6.01832	12.39627	-3.910071	-6.188255	57.277450
Cyclohexane	C_6H_{12}				394.9	376.7	341.9	299.0	242.8	3.43321	14.08811	-8.768835	0.700818	-0.075958
Methyl cyclohexane	C ₇ H ₁₄	401.9	388.2	375.2	364.8	349.1	320.7	287.2	244.8	5.86225	8.38591	-4.688241	-0.234104	4.663049
Ethyl cyclohexane	C_8H_{16}	402.0	387.3	374.1	364.0	349.3	323.6	294.4	258.8	6.06462	5.99669	0.021058	-3.147369	8.089475
Propyl cyclohexane	C ₉ H ₁₈	390.6	380.1	369.2	360.2	346.0	320.8	292.8	260.8	4.77281	11.27564	-5.859548	1.220392	-0.393610
Butyl cyclohexane	$C_{10}H_{20}$	387.0	375.9	365.1	356.7	343.8	321.2	295.9	266.5	3.11699	13.76670	-3.940294	-2.637072	4.182641
Pentyl cyclohexane	C ₁₁ H ₂₂			369.2	354.9	338.2	317.8	299.5	277.7	1.09595	27.77240	-16.042648	-6.665319	37.301542
Hexyl cyclohexane	$C_{12}H_{24}$			372.8	357.4	339.3	317.3	299.6	281.1	7.39273	11.52195	-5.039922	-6.350955	35.495677
Cyclopentene	C_5H_8	457.4	442.4	426.7	413.6	392.4	350.6	294.7	205.3	4.47191	13.66093	-11.313902	2.320078	1.098033
Cyclohexene	C_6H_{10}	446.8	434.3	421.1	410.1	392.5	359.4	319.8	269.2	6.95475	4.47360	-1.826880	-0.308833	0.588157
Aromatic compounds														
Benzene	C_6H_6				436.6	415.4	378.6	335.9	281.5	5.01506	10.64512	-7.248132	1.081122	7.042247
Toluene	C ₇ H ₈	459.2	443.0	427.7	415.9	398.3	367.7	333.0	290.6	4.60584	13.97224	-10.592315	2.120205	4.277128
Ethyl benzene	C_8H_{10}	439.8	424.7	410.7	400.0	384.3	357.6	328.3	293.8	7.02317	7.61074	-4.976695	0.602265	5.080508
Propyl benzene	C ₉ H ₁₂	425.8	410.9	396.9	386.1	370.5	344.8	318.3	288.6	3.62566	22.73230	-21.222047	7.252477	2.271518
Butyl benzene	$C_{10}H_{14}$	473.3	439.2	412.0	394.1	372.1	343.3	318.4	292.5	5.14898	17.70384	-14.168239	1.589433	27.482771
Pentyl benzene	$C_{11}H_{16}$	402.7	393.4	383.8	375.8	363.4	341.3	317.0	289.8	6.66503	10.39716	-5.545843	1.118460	-0.335753
Hexyl benzene	C ₁₂ H ₁₈	399.1	389.9	380.5	372.7	360.5	338.9	315.4	289.4	6.28846	11.79255	-5.802187	1.043274	-0.288998
o-Xylene	C_8H_{10}		443.6	426.5	414.3	397.7	371.7	344.4	312.8	8.11493	5.01374	-2.818447	-0.894619	11.408042
<i>m</i> -Xylene	C_8H_{10}		425.1	413.4	404.1	389.8	364.4	335.6	301.1	7.31900	7.77601	-5.382762	0.652283	2.134955

D3.1. Table 4. (continued)

					Temperature (°C)	ure (°C)						Equation (9	()	
Substance	Formula	-50	-25	0	20	50	100	150	200	А	В	C	О	E
<i>p</i> -Xylene	C_8H_{10}				400.3	385.9	361.0	332.9	298.9	7.27992	7.34567	-4.422644	-0.568151	5.980841
1,2,3-Trimethyl benzene	C ₉ H ₁₂		428.5	414.6	404.9	391.8	371.1	348.8	322.0	10.39204	-4.42696	9.379954	-7.666363	13.273177
1,2,4-Trimethyl benzene	C ₉ H ₁₂		404.7	399.6	394.2	384.4	363.9	339.0	309.8	14.14613	-14.31772	14.977031	-4.290274	-4.728401
1,3,5-Trimethyl benzene	C ₉ H ₁₂		414.1	404.4	396.3	383.6	360.5	334.5	304.2	9.36093	3.70265	-2.284621	0.510869	-0.170751
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄		443.5	436.9	429.5	415.6	387.8	356.8	324.5	14.72574	-13.04599	9.651435	5.333190	-15.111565
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄		415.7	406.7	399.2	387.4	366.2	342.8	316.3	8.84089	5.68826	-3.500096	0.827094	-0.386192
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄						361.5	340.7	316.1	8.26210	3.55266	3.825610	-8.200753	20.230350
Pentamethyl benzene	C ₁₁ H ₁₆						364.8	347.4	327.3	8.55594	8.30926	-5.296077	-1.074775	2.719078
Hexamethyl benzene	C ₁₂ H ₁₈								344.6	9.10299	5.01384	-0.785047	0.133023	-10.509367
Styrene	C_8H_8		451.8	438.8	428.3	412.1	383.8	352.7	317.1	5.47731	11.91525	-8.564188	2.365441	0.547993
Isopropyl benzene	C ₉ H ₁₂	417.3	402.4	388.8	378.5	363.6	338.8	312.1	281.2	6.66408	9.33907	-6.038411	0.676301	5.975822
Biphenyl	C ₁₂ H ₁₀						382.4	362.8	341.6	1.70054	25.15686	-18.899436	4.251738	-0.855146
Diphenyl methane	C ₁₃ H ₁₂					394.0	366.0	342.8	321.4	9.00675	7.69856	-5.652358	0.748699	18.859222
Triphenyl methane	$C_{19}H_{16}$						348.0	320.9	301.0	11.04977	-4.00253	14.380095	-13.942709	51.676539
Tetraphenyl methane	$C_{25}H_{20}$									13.46819	-9.33186	20.483970	-18.580654	98.978472
Naphthalene	$C_{10}H_8$						395.7	373.8	348.6	6.77024	-1.52986	11.675602	-8.848106	6.693238
1-Methylnaphthalene	$C_{11}H_{10}$		419.6	413.2	407.7	398.9	383.1	365.6	346.3	9.25713	3.48065	-2.766466	1.004761	-1.145790
2-Methylnaphthalene	$C_{11}H_{10}$					406.5	381.7	361.6	342.4	3.25417	22.06250	-16.524312	-0.013957	18.711257
1-Ethylnaphthalene	C ₁₂ H ₁₂		423.9	415.9	409.2	398.9	380.7	361.1	339.8	7.36124	8.46271	-4.662002	0.982685	-0.388774
2-Ethylnaphthalene	C ₁₂ H ₁₂		417.8	407.3	399.5	388.5	370.9	353.0	333.5	9.05108	0.98067	4.290927	-4.442335	6.238904
Alcohols														
Methanol	CH₄O	1264	1236	1206	1178	1130	1020	860.5		5.87513	13.91543	-5.817880	-5.692542	6.867206
Ethanol	C ₂ H ₆ O	978.3	961.7	943.4	925.9	892.3	810.5	687.4	503.8	14.68765	-15.27120	26.062308	-20.049654	15.816504
1-Propanol	C ₃ H ₈ O	866.3	850.5	829.0	807.9	770.4	691.9	590.2	453.5	7.09691	11.44183	-0.591839	-4.892172	-6.194349
1-Butanol	C ₄ H ₁₀ O	785.7	763.0	738.2	716.6	681.3	612.9	529.8	425.3	4.03015	18.33568	-4.805636	-3.203926	0.121902
1-Pentanol	$C_5H_{12}O$	723.0	9.669	673.4	650.8	615.0	551.5	483.4	408.1	8.13707	10.66862	-5.837508	6.657004	-9.699874
1-Hexanol	C ₆ H ₁₄ O		644.3	621.1	601.7	571.3	517.3	458.4	392.0	2.44435	25.74538	-15.196810	5.362395	-3.664521
1-Heptanol	C ₂ H ₁₆ O		617.1	598.1	580.7	551.6	496.5	435.4	370.4	23.75612	-56.83212	67.088469	-16.584142	-7.134212
1-Octanol	C ₈ H ₁₈ O			593.8	565.8	528.4	473.0	419.6	362.9	1.58827	18.29196	1.067691	-4.809578	30.814714
Isopropanol	C ₃ H ₈ O	9.608	804.0	788.6	769.8	731.4	641.6	518.6	351.1	14.13231	-18.02015	33.713095	-20.808299	-7.959708
2-Methyl-1-propanol	C ₄ H ₁₀ O	789.9	758.2	725.5	698.3	655.5	577.3	486.9	376.0	4.97368	15.12048	-3.192398	-0.405800	1.018629
3-Methyl-1-butanol	$C_5H_{12}O$	715.4	9.069	664.3	642.2	607.4	544.0	472.4	388.0	3.88255	20.24928	-8.853088	2.052090	-2.258462
Ethylene glycol	$C_2H_6O_2$			1086	1067	1037	986.1	929.3	863.3	8.13928	4.42093	5.642486	-7.124221	6.367364

1.3-Propylene alvcol	C;H ₂ O,	1045	988.0	941.2	909.5	869.8	818.5	778.6	743.5	14.64626	9.65793	-19.564276	9.124923	16.992097
Glycerol	C ₃ H ₈ O ₃				928.1	922.0	898.2	861.7	815.9	4.73387	16.62968	-6.646488	2.052518	-13.771300
Cyclohexanol	C ₆ H ₁₂ O					591.4	531.0	466.3	396.9	-2.55487	29.64441	-14.287549	6.116097	-7.186767
Benzyl alcohol	C ₂ H ₈ O						546.2	506.6	458.9	3.34913	13.24673	-1.996925	1.494200	-22.898760
Phenols														
o-Cresol	C ₂ H ₈ O					537.4	493.3	453.9	416.3	10.08581	4.98638	-6.884921	6.896322	9.981746
<i>m</i> -Cresol	C ₂ H ₈ O				585.7	563.9	527.1	488.6	447.1	4.82038	16.25429	-9.515663	2.639245	1.427210
<i>p</i> -Cresol	C ₂ H ₈ O					584.7	538.6	493.8	447.2	3.01380	18.92231	-9.261038	1.816957	9.840609
Phenol	C ₆ H ₆ O					603.1	564.5	519.4	472.4	16.25689	-15.34588	9.259460	8.211334	-23.563509
Carboxylic acids														
Formic acid	CH ₂ O ₂				432.3	447.4	480.2	504.1	503.2	9.14069	4.41867	-8.928896	-8.183706	34.855085
Acetic acid	$C_2H_4O_2$				390.6	390.7	396.1	398.9	389.6	6.68664	15.01449	-22.086618	3.077691	17.355072
Propionic acid	$C_3H_6O_2$			416.5	416.4	418.1	421.0	418.3	403.5	11.77484	2.45068	-8.403845	-2.905673	13.942673
Butyric acid	$C_4H_8O_2$			463.6	457.3	448.3	432.0	410.2	377.7	0.50559	36.57824	-33.991377	4.980803	6.390699
Valeric acid	$C_5H_{10}O_2$					449.3	432.5	410.4	377.7	2.90159	24.06047	-14.773870	-6.523610	19.2954
Caproic acid	$C_6H_{12}O_2$			554.6	540.5	519.0	481.7	441.9	398.1	4.25370	23.26701	-17.198935	5.834191	-1.078919
Acetic anhydride	$C_4H_6O_3$	540.1	513.8	491.9	476.5	455.7	422.6	386.4	342.1	7.67997	8.28034	-2.531167	-3.283667	18.320222
Propionic anhydride	$C_6H_{10}O_3$		419.3	409.4	401.1	388.1	364.3	337.1	305.1	11.45713	2.15584	-1.286751	0.295048	-0.165848
Chloroacetic acid	$C_2H_3CIO_2$						487.6	535.0	516.2	7.80889	14.48961	-14.106871	13.335034	-317.4308
Dichloroacetic acid	$C_2H_2CI_2O_2$						403.7	398.1	376.2	9.84708	2.73482	4.148698	-6.722742	-63.020357
Trichloroacetic acid	C ₂ HCl ₃ O ₂						351.0	327.6	301.4	8.28156	10.25534	-5.999703	1.470064	-1.111776
Ketones														
Ketene	C ₂ H ₂ O	461.4	431.4	395.2	360.6	296.1				8.36565	-5.55025	10.724366	-7.158805	6.288894
Acetone	C ₃ H ₆ O	602.9	582.5	558.9	539.4	508.3	448.7	372.3	258.2	5.74063	9.13074	-4.880084	0.019915	3.765513
Methyl ethyl ketone	C₄H ₈ O	518.1	506.6	494.0	482.7	463.4	423.7	370.6	295.2	7.14228	6.74892	-2.395885	-2.807929	1.610334
Diethyl ketone	$C_5H_{10}O$		479.9	463.3	450.5	431.0	394.8	350.0	291.2	7.24751	4.39650	1.992158	-4.861266	10.588261
Dipropyl ketone	C ₇ H ₁₄ O		418.0	406.8	397.3	382.4	355.2	323.9	286.6	8.54054	6.18280	-3.862185	0.981831	-0.611406
Acetophenone	C ₈ H ₈ O				452.6	439.4	417.4	394.4	368.7	-0.98031	38.40600	-33.357359	7.603605	1.866879
Benzophenone	C ₁₃ H ₁₀ O					394.5	381.6	365.5	346.9	7.76821	10.29210	-7.292775	3.327307	-7.132167
Ethers														
Dimethyl ether	C_2H_6O	493.8	470.7	442.6	415.8	366.9	242.6			6.61358	3.90987	0.389855	-3.265474	-1.047992
Diethyl ether	$C_4H_{10}O$	423.6	405.3	386.3	370.1	343.4	289.2	211.0		5.72696	9.12303	-4.705274	-0.175016	3.557340
Dipropyl ether	C ₆ H ₁₄ O	388.1	376.1	363.5	352.8	335.7	303.5	263.9	209.8	8.43477	5.37680	-3.634751	1.020844	-0.445512
Methyl propyl ether	C ₄ H ₁₀ O	438.5	418.7	397.9	380.5	353.1	302.4	240.0	104.8	12.29808	-12.22318	12.791077	-1.853721	-0.396068
Ethyl propyl ether	$C_5H_{12}O$	431.2	407.2	382.2	361.4	328.6	268.8	198.6	105.3	0.63409	15.10518	-3.156607	0.612196	-0.252355
Ethylene oxide	C ₂ H ₄ O	647.3	623.5	598.4	576.4	538.8	459.1	344.8		8.52547	-3.93731	8.784981	-6.457998	7.902455

D3.1. Table 4. (continued)

					Temperature (°C)	ure (°C)						Equation (9	(
Substance	Formula	-50	-25	0	20	50	100	150	200	А	В	C	D	E
Furane	C ₄ H ₄ O	461.7	443.4	424.9	409.4	384.2	334.4	267.3	153.4	6.01449	6.38875	-2.231449	-1.256419	4.886085
1,4-Dioxane	C ₄ H ₈ O ₂				422.1	413.0	390.3	357.2	311.3	8.80566	-2.87837	9.443275	-9.170193	0.833694
Aldehydes														
Formaldehyde	CH ₂ O	808.8	777.1	741.8	709.1	649.3	496.4			12.06808	-7.97155	7.710808	-4.856937	11.036836
Acetaldehyde	C ₂ H ₄ O	666.4	641.3	616.7	595.9	561.2	486.2			7.20109	6.63553	-4.441975	-1.480320	10.024175
Paraldehyde	$C_6H_{12}O_3$				338.9	325.6	299.4	268.4	230.8	9.33129	3.24299	-0.057958	0.120535	-6.743412
Furfural	$C_5H_4O_2$		532.3	518.8	508.6	494.0	469.5	442.8	411.0	0.70876	32.70269	-28.222034	5.205805	4.040472
Benzaldehyde	C ₂ H ₆ O	497.2	487.0	476.8	468.6	455.8	432.4	405.1	372.5	3.54711	12.53164	-3.340287	-3.677402	3.016282
Salicylaldehyde	$C_7H_6O_2$				416.6	410.3	399.5	387.2	372.2	26.90848	-41.82693	31.807059	-8.848384	5.540309
Esters														
Methyl formate	$C_2H_4O_2$	539.3	519.5	499.0	481.5	452.8	395.3	316.7		6.89413	6.01843	-2.694377	-0.840353	3.110258
Ethyl formate	$C_3H_6O_2$	488.5	470.3	451.1	434.9	409.2	360.8	300.0	208.3	4.47415	15.95005	-13.035900	4.462419	-2.281851
Propyl formate	$C_4H_8O_2$	455.6	440.3	424.4	411.1	390.0	350.2	302.3	239.8	7.59455	3.76681	0.594088	-1.239979	1.558213
Methyl acetate	$C_3H_6O_2$	488.2	474.0	457.2	442.2	417.8	371.3	313.0	222.2	6.24651	13.81319	-13.592686	6.280357	-9.776838
Ethyl acetate	$C_4H_8O_2$	450.9	436.3	420.9	407.9	387.0	347.0	297.2	228.4	8.65545	3.30110	-0.160488	-0.850538	1.010147
Propyl acetate	$C_5H_{10}O_2$	429.9	416.4	402.4	390.7	372.2	337.3	295.0	240.0	6.63509	9.44227	-4.350780	-0.398819	1.849160
Methyl propionate	$C_4H_8O_2$	460.0	444.3	427.8	414.0	391.9	350.8	301.6	236.5	8.24495	3.87501	-0.829044	0.344109	-0.413604
Ethyl propionate	$C_5H_{10}O_2$	386.5	395.1	393.0	386.0	369.5	333.0	290.7	241.3	10.48291	1.90991	-4.415043	9.017366	-46.620420
Propyl propionate	$C_6H_{12}O_2$			373.3	365.0	352.2	328.0	296.7	253.0	3.40390	24.73760	-19.159863	0.929405	7.696521
Methyl butyrate	$C_5H_{10}O_2$	429.7	416.6	402.8	391.2	372.7	338.5	298.1	246.7	7.22592	8.50382	-5.024452	1.195632	-0.550681
Ethyl butyrate	$C_6H_{12}O_2$	402.4	391.1	379.3	369.4	353.7	324.7	290.7	248.6	8.41156	6.59984	-3.794374	0.802575	-0.278759
Methyl benzoate	$C_8H_8O_2$						375.3	344.9		11.25328	1.94206	-1.556784	-5.351100	89.919764
Ethyl benzoate	$C_9H_{10}O_2$		386.0	378.7	372.7	363.2	346.3	327.6	306.5	11.62555	-0.15927	0.128177	-0.053452	0.079776
Methyl salicylate	C ₈ H ₈ O ₃			410.3	403.1	391.8	371.6	349.4	324.8	8.98498	7.09493	-4.043975	0.869200	-0.378981
Amines														
Methyl amine	CH ₅ N	923.1	878.6	830.6	788.2	714.8	552.2			6.68704	5.59469	-0.071556	-3.085246	7.431487

Ethyl amine	C ₂ H ₂ N	693.4	662.8	631.4	604.3	558.9	463.2	319.4		7.77766	1.82614	3.635806	-4.492103	9.842348
Propyl amine	C ₃ H ₉ N	586.4	570.3	552.7	536.6	507.8	443.2	348.7	197.7	3.39340	12.71924	-1.316011	-8.140440	9.108951
n-Butyl amine	C ₆ H ₁₅ N		525.8	507.5	492.0	467.0	419.5	361.0	282.1	6.90260	7.60459	-3.614348	0.074152	0.044303
Dimethyl amine	C ₂ H ₇ N	672.1	637.9	6.009	568.9	515.8	404.9	214.3		5.68174	10.17800	-5.691902	1.408236	-1.170463
Trimethyl amine	C ₃ H ₉ N	433.5	414.5	393.8	375.6	345.0	278.5			7.62398	3.76969	-2.925155	0.979043	-1.193023
Diethyl amine	C ₆ H ₁₅ N		469.6	448.8	431.2	402.8	348.5	279.3	171.7	5.33934	10.56571	-5.837037	1.428051	-1.122078
Triethyl amine	C ₆ H ₁₅ N	378.0	366.9	354.9	344.7	328.3	297.5	259.9	209.2	7.74933	6.41111	-4.878480	1.631371	-1.542623
Piperidine	C ₅ H ₁₁ N			461.8	450.3	432.0	398.6	360.3	314.4	6.48159	6.79118	-3.820956	0.886131	-0.635871
Pyridine	C ₆ H ₇ N		539.1	522.9	510.4	491.5	458.4	421.0	376.2	6.78808	5.19130	-1.422034	-1.391907	4.491260
Aniline	C ₆ H ₇ N			585.0	574.7	559.3	532.4	502.5	467.7	7.07225	8.70667	-3.991451	-1.656520	3.263408
<i>N-</i> Methyl aniline	C ₂ H ₉ N	527.4	518.8	509.9	502.5	490.9	470.2	447.0	420.8	13.26061	-5.02657	3.272891	-0.737961	0.244629
<i>N,N-</i> dimethyl aniline	C ₈ H ₁₁ N				418.6	408.8	391.3	371.7	349.3	13.47310	-6.35431	4.138973	-0.981377	0.533077
<i>N,N-</i> diethyl aniline	C ₁₀ H ₁₅ N		421.6	411.5	403.1	390.1	367.0	341.9	314.0	6.19042	11.73523	-5.842622	1.090567	-0.337465
Phenylhydrazine	$C_6H_8N_2$				564.3	555.4	540.2	523.8	505.3	21.89034	-26.13478	18.999009	-5.040744	2.813373
Diphenyl amine	C ₁₂ H ₁₁ N						397.0	381.4	364.4	11.96840	0.31904	-0.177413	0.024112	0.020506
Nitriles														
Acetonitrile	C ₂ H ₃ N					805.5	755.2	679.3	589.8	12.63773	-0.41956	-9.636566	15.912158	-123.3607
Propionitrile	C ₃ H ₅ N	725.9	703.1	679.2	659.2	627.6	569.4	501.7	417.9	5.39746	9.28762	-5.079418	1.116363	-0.448885
Butyronitrile	C ₄ H ₇ N	640.6	621.3	601.2	584.7	559.3	515.6	469.6	418.6	15.18066	-13.56898	8.892253	1.838158	-2.367991
Benzonitrile	C ₂ H ₅ N			508.3	497.9	482.2	455.3	427.4	398.0	9.80839	3.44990	-5.365836	4.172565	-1.195374
Amides														
Formamide	CH ₃ NO				1378	1346	1291	1230	1164	9.7007.6	3.52359	-2.149747	0.503265	-0.248567
Nitroderivates														
Nitromethane	CH ₃ NO ₂		6.699	649.6	634.0	611.1	572.4	529.3	476.6	10.84612	0.90457	-3.763319	2.190125	3.811262
Nitrobenzene	C ₆ H ₅ NO ₂				448.3	434.7	413.5	391.3	365.8	13.98596	-19.90491	26.349415	-13.211884	12.803755
o-Nitrotoluene	C ₂ H ₂ NO ₂			434.5	425.5	412.4	391.3	370.1	348.1	11.62596	2.43803	-5.209765	3.612648	1.807934
m-Nitrotoluene	C ₇ H ₇ NO ₂				417.8	411.8	397.4	379.1	358.1	12.46410	-0.06534	-3.559221	4.246115	-10.130675
<i>p</i> -Nitrotoluene	C ₂ H ₂ NO ₂						401.2	382.3	359.6	9.68851	4.92278	-5.325247	4.020553	-13.754145

D3.1. Table 5. Specific heat capacity op of liquids at constant pressure in J/g K

					Tempera	emperature (°C)						Equati	on (8)		
Substance	Formula	-25	0	20	50	100	150	200	250	А	В	C	О	E	F
Elements															
Xenon	Xe	0.470	0.770							0.4536	4.0921	3.9528	-29.0063	75.8030	-62.9962
Krypton	Kr									0.4540	4.3618	-0.8361	-2.7617	12.9684	-9.9919
Argon	Ar									0.4509	4.5477	-4.1814	18.3045	-39.5634	38.7660
Air										0.4764	5.5446	1.1919	-13.3371	37.8579	-29.7212
Nitrogen	N ₂									0.4786	5.6086	-1.1144	2.1294	5.8166	-8.5275
Oxygen	02									0.4842	5.1121	2.1237	-12.2421	29.7659	-21.3778
Sulfur	S						1.439				-11.2815	24.8360			
Fluorine	F ₂									0.5138	5.1344	3.5766	-14.2066	29.8332	-21.5485
Chlorine	Cl ₂	0.948	0.979	1.003	1.041	1.272				0.3453	9.6564	-36.4320	201.1762	-460.0757	367.6988
Bromine	Br ₂		0.484	0.477							7.2677	3.8178			
lodine	12						0.318	0.318	0.318		9.7011				
Anorganic compounds															
Hydrogen fluoride	生	2.297	2.428	2.562						1.0347	2.8797	4.1022	-9.5518	0.6808	10.6306
Hydrogen chloride	HCI									1.1345	-5.2809	71.8140	-174.0520	135.2957	12.3158
Hydrogen bromide	HBr										7.3745	-0.4312			
Hydrogen iodide	HI	0.455									5.2636	4.1993			
Hydrogen cyanide	HCN		2.607	2.621							8.9009	-1.0655			
Water	H ₂ O		4.212	4.188	4.180	4.217	4.313	4.499	4.869	0.2399	12.8647	-33.6392	104.7686	-155.4709	92.3726
Hydrogen sulfide	H ₂ S	2.021	2.095	2.208	2.565					0.5378	6.1881	4.7466	-25.8471	62.3782	-43.2404
Ammonia	NH ₃	4.488	4.616	4.746	5.064					0.5616	7.2382	2.7201	-7.7814	22.6538	-30.8592
Nitric oxide	NO									2.9046	28.5404	-169.6540	120.0529	913.7753	-1501.0300
Nitrogen dioxide	NO ₂		3.006	3.079	3.189	3.371					19.8275	-8.7134			
Nitrous oxide	N_2O	1.941	2.273	3.199						0.4454	8.8255	-6.7522	17.5923	-23.641	22.0174
Dinitrogentetroxide	N_2O_4		1.503	1.539	1.594	1.686					19.8244	-8.7114			
Cyanogen	C_2N_2	2.016	2.567	3.846						12.4311	-1.4598	-91.6976	13.6141	-159.9473	1104.1285
Phosphorus trichloride	PCI ₃	0.837	0.841	0.844	0.848						14.5988	-1.3758			
Cyanogen chloride	CICN		1.478	1.504	1.542						12.6072	-4.2927			
Silane	SiH ₄										7.8085	-0.8564			
Tetrachlorosilane	SiCl₄		0.814	0.821	0.831						18.2610	-3.5363			
Carbon monoxide	CO									0.4361	6.7941	-7.2244	22.9749	-33.6968	27.3780
Carbon dioxide	CO_2	2.115	2.542							0.4826	9.4642	-12.2772	62.6197	-153.1172	174.3140
Carbon suboxide	C ₃ O ₂	1.500									18.1002	-22.2303	19.8732		
Carbonyl sulfide	COS	1.218	1.277	1.347	1.535	5.383				0.4434	9.1623	-11.2214	33.1793	-58.3488	47.4275
Phosgene	CCI ₂ O	1.011	1.018							-0.1917	12.3376	5.7238	-11.6654	-15.9746	33.2033
Carbon disulfide	CS_2	0.988	0.994	1.001	1.019	1.072	1.165	1.316	1.546	-0.000602	15.8105	-34.7870	67.8378	-61.7414	23.2452

Sulfur dioxide	SO ₂	1.360	1.370	1.389	1.444	1.689	4.946		0.49318	9.838616	-5.2162	10.4498	-2.538	0.2025
Sulfur trioxide	SO ₃			3.224						31.0397				
Sulfuryl chloride	Cl ₂ SO ₂													
Sulfur hexafluoride	${\sf SF}_6$	0.904	1.027	1.225					0.4919	17.0151	-22.8856	17.9435	344.1647	-1202.8247
Organic compounds containing sulfur	sulfur													
Methyl mercaptan	CH₄S	1.812	1.838	1.872					1.2188	5.9008	6.5471	-5.9594	-2.3710	9.8656
Ethyl mercaptan	C_2H_6S	1.826	1.856	1.887					-0.2394	18.8932	-8.8336	-15.0253	33.0373	-11.4703
Dimethyl sulfide	C_2H_6S	1.847	1.867	1.884						15.3628	-3.0859			
Diethyl sulfide	C ₄ H ₁₀ S	1.816	1.854	1.885						24.8907	-9.3678			
Thiophene	C ₄ H ₄ S	1.372	1.423	1.463	1.528	1.660	1.818		-1.3455	36.7609	-57.0029	0.3735	132.9958	-120.8312
Halogenated hydrocarbons														
Fluoromethane (R41)	CH ₃ F	2.254	2.555	3.237					0.4573	7.35738	-1.7868	2.5438	3.9312	-0.887
Difluoromethane (R32)	CH_2F_2	1.645							0.4827	9.7395	-7.7860	19.1934	-23.1056	16.5271
Trifluoromethane (R23)	CHF ₃	1.462	1.847						0.5822	8.8835	2.9305	-24.8820	62.5446	-50.3571
Tetrafluoromethane (R14)	CF_4								-0.5912	21.4346	-54.6356	103.9865	-99.3261	44.1957
Methyl chloride	CH ₃ Cl	1.502	1.545	1.593	1.690	1.918			0.00097	13.2684	-17.7900	20.1696	-3.7396	-0.2871
Methylene chloride	CH_2CI_2	1.158	1.175	1.188						13.6156	-3.4804			
Chloroform	CHCl ₃	0.920	0.939	0.954	0.977					16.3925	-5.9310			
Carbon tetrachloride	CCI ₄		0.857	0.856	0.866	0.982			9.0974	-11.8485	-31.2549	116.6462	64.4058	-193.2563
Bromomethane	CH ₃ Br	0.820	0.823							9.6167	-0.5387			
Dibromomethane	CH_2Br_2	0.602	0.598	0.602	0.619				3.5496	4.5450	1.9519	-1.4975	-13.8676	34.9504
Tribromomethane	CHBr ₃				0.528					22.2716	-11.6166			
Tetrabromomethane	CBr ₄					0.410	0.421			19.4442	-6.3606			
Chlorodifluoromethane (R22)	CHCIF ₂	1.123	1.175	1.239	1.42				0.5093	11.1754	-3.9432	-0.5057	6998'6	-4.5687
Dichlorofluoromethane (R21)	CHCl ₂ F	1.014	1.033	1.049	1.073					14.5385	-4.4214			
Chlorotrifluoromethane (R13)	CCIF ₃	1.040							0.1045	14.5341	-11.4812	-6.1931	37.4740	-16.4165
Dichlorodifluoromethane (R12)	CCI_2F_2	0.894	0.934	0.976	1.071	1.996			0.4707	14.3575	-16.6484	52.1728	-101.8845	76.6065
Trichlorofluoromethane (R11)	CCI ₃ F	0.847	0.866	0.883	0.912	0.986	1.164		0.4914	14.93805	-5.8469	5.5124	-4.9302	1.4427
Ethyl fluoride (R161)	C_2H_5F	1.881							0.3964	10.9715	-2.7972	-5.3547	7.6366	-0.0810
Ethyl chloride	C ₂ H ₅ Cl	1.528	1.579	1.633	1.734				0.3496	15.7297	-11.0908	-10.4450	33.5779	-12.9713
Ethyl bromide	C ₂ H ₅ Br	0.875	0.898	0.917						14.5606	-6.0873			
1,1-Dichloroethane	$C_2H_4CI_2$	1.245	1.262	1.276	1.296					17.0357	-4.2085			
1,2-Dichloroethane	$C_2H_4CI_2$	1.273	1.285	1.301	1.330				0.1540	23.8336	-61.2569	203.4469	-341.8857	219.5230
1,2-Dibromoethane	$C_2H_4Br_2$			0.715	0.738	0.776				22.2955	-11.1806			
1,1,1-Trifluoroethane (R143a)	$C_2H_3F_3$	1.392	1.495	1.624	2.118				0.4659	15.4281	-20.4118	60.4809	-117.8952	92.7296
1,1,1-Trichloroethane	$C_2H_3Cl_3$	1.044	1.064	1.079	1.102					20.4451	-6.7692			
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄	0.971	0.986	1.000	1.027	1.085	1.159	1.251		34.1473	-40.8553	27.9921		
Pentachloroethane	C ₂ HCl ₅				1.010	1.023	1.065	1.133	0.8082	28.8553	-13.4334	-25.1521	56.4550	0.9020
Hexachloroethane	C ₂ CI ₆							0.995		36.1662	-24.5603			

338

D3.1. Table 5. (continued)

					Temperature (°C)	ure (°C)						Equati	on (8)		
Substance	Formula	-25	0	20	20	100	150	200	250	А	В	C	Q	3	F
1,1,2,2- Tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂				0.950						27.4571	-10.0780			
1,1,2-Trichlorotrifluoroethan	C ₂ Cl ₃ F ₃	0.878	0.896	0.913	0.943	1.006	1.117	1.786		0.51793	22.73059	-15.7371	45.2567	-105.0239	90.1894
1,2-Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄	0.973	1.000	1.021	1.053	1.106					23.7241	-9.1099			
1-Chloropropane	C ₃ H ₇ Cl	1.614	1.641	1.662							17.8270	-5.0952			
1-Chlorobutane	C₄H ₉ Cl	1.653	1.696	1.738	1.812					1.8076	17.3296	-0.7740	-11.4579	4.5232	9.2855
1-Chloropentane	$C_5H_{11}CI$	1.618	1.704	1.773	1.875	2.047					34.8116	-24.9739			
Chlorotrifluoroethene	C ₂ CIF ₃	1.058									19.4091	-18.1599	14.1834		
Vinyl chloride	C ₂ H ₃ Cl	1.117	1.246	1.349	1.504	1.762					15.5355	-16.7781			
1,1-Dichloroethene	$C_2H_2CI_2$	1.081	1.110	1.140						1.5539	8.3161	5.0683	-5.9131	-6.4196	13.4921
Trichloroethene	C ₂ HCl ₃	0.936	0.952	0.965	0.984						18.0501	-5.7665			
Tetrachloroethene	C ₂ Cl ₄		0.839	0.851	0.870	0.902					21.0779	-7.7665			
Fluorobenzene	C_6H_5F	1.455	1.492	1.522							22.1914	-9.6517			
Chlorobenzene	C ₆ H ₅ Cl	1.288	1.322	1.331	1.376					51.1281	-92.3533	-306.5358	812.1606	-43.2394	-574.0475
Bromobenzene	C ₆ H ₅ Br			0.940	0.992	1.077	1.163	1.249			29.9725	-21.7182			
lodobenzene	C ₆ H ₅ I		0.770	0.777	0.789						23.0925	-6.7777			
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl					1.609	1.803	1.997			41.4660	-38.9736			
Benzyl chloride	C ₂ H ₂ Cl	1.342	1.393	1.433	1.494	1.596	1.697				33.9739	-21.2148			
n-Alkanes															
Methane	CH₄									0.4708	5.7207	-0.6552	-0.4530	5.0199	-5.0556
Ethane	C_2H_6	2.961	3.621	5.682						0.4281	10.4584	-18.1757	51.6811	-75.8320	44.4690
Propane	C ₃ H ₈	2.340	2.503	2.676	3.094					0.5219	13.0156	-3.9111	-21.2164	49.1038	-30.2438
<i>n</i> -Butane	C_4H_{10}	2.206	2.311	2.412	2.599	3.102				0.4943	19.1915	-11.5900	-13.3471	38.1134	-18.8852
<i>n</i> -Pentane	C_5H_{12}	2.123	2.210	2.292	2.437	2.749	3.283			0.4935	25.3941	-18.4831	-8.8055	27.9787	-5.5481
<i>n</i> -Hexane	C ₆ H ₁₄	2.066	2.153	2.231	2.362	2.616	2.934	3.565		0.5687	29.2523	-5.2270	-66.7829	110.6460	-52.8290
<i>n</i> -Heptane	C_7H_{16}	2.079	2.153	2.222	2.340	2.565	2.828	3.184	4.544	0.6767	34.8802	-9.4333	-51.0547	57.7955	-1.9863
<i>n</i> -Octane	C_8H_{18}	2.074	2.144	2.209	2.321	2.531	2.766	3.040	3.500	0.6399	42.0897	-21.4435	-14.6527	-19.5539	54.7506
<i>n</i> -Nonane	C_9H_{20}	2.047	2.121	2.189	2.302	2.509	2.730	2.968	3.271	0.52876	50.2959	-37.7839	31.5903	-103.5592	105.4389
<i>n</i> -Decane	$C_{10}H_{22}$	2.025	2.104	2.174	2.288	2.493	2.706	2.929	3.180	0.5805	55.8884	-34.0842	6.4319	-67.7489	81.0979
<i>n</i> -Undecane	$C_{11}H_{24}$	2.051	2.137	2.206	2.309	2.481	2.653	2.825	2.997		63.8410	-41.3410			
<i>n</i> -Dodecane	$C_{12}H_{26}$		2.137	2.197	2.298	2.487	2.688	2.895	3.112	0.4831	71.9423	-57.3220	54.8202	-156.5306	146.1074
<i>n</i> -Tridecane	C ₁₃ H ₂₈		2.150	2.200	2.283	2.444	2.633	2.847	3.091	1.0540	74.7978	-31.5528	-117.6551	208.0928	-98.0633
n-Tetradecane	C ₁₄ H ₃₀			2.174	2.281	2.461	2.640	2.820	2.999		86.1144	-59.3516			
<i>n</i> -Pentadecane	$C_{15}H_{32}$			2.181	2.287	2.465	2.642	2.819	2.997		93.3129	-64.1464			
n-Hexadecane	C ₁₆ H ₃₄			2.168	2.275	2.453	2.631	2.809	2.986		100.7177	-70.0879			
<i>n</i> -Heptadecane	C ₁₇ H ₃₆				2.277	2.452	2.628	2.803	2.978		107.7204	-74.6158			
<i>n</i> -Octadecane	C ₁₈ H ₃₈				2.271	2.445	2.618	2.792	2.965		114.5685	-79.3947			

n-Nonadecane C ₁₉ H ₄₀ n-Eicosane C ₂₀ H ₄₂ Isoalkanes C ₄ H ₁₀ 2-Methyl butane C ₄ H ₁₂ 2,2-Dimethyl pentane C ₆ H ₁₄ 3-Methyl pentane C ₆ H ₁₄ 2,2-Dimethyl butane C ₆ H ₁₄ 2,3-Dimethyl butane C ₆ H ₁₄ 2,3-Dimethyl butane C ₆ H ₁₄ Propylene C ₇ H ₄ Propylene C ₃ H ₆ 1-Butene C ₃ H ₆ 1-Hexene C ₆ H ₁₀ 1-Hexene C ₆ H ₁₂	2.159 2.036 2.012 2.012 2.016	2.283		2.267	2.443	2.598	2.795	2.971		122.6402	-86.1313			
	2.159 2.036 2.012 2.016	2.283		7.744	7.471	2.598		56		42	1000			
	2.036 2.012 2.016	2.283								127.7403	- 25.002			
	2.036 2.012 2.016	2.283	•	٠			•	•						
	2.036		2.398	2.615	3.347				0.5019	18.6631	-13.6773	-3.2077	23.7670	-18.2744
	2.012	2.151	2.250	2.412	2.746	3.390			0.4261	26.6688	-36.0009	67.0523	-114.4751	80.5553
	2.012	2.166	2.280	2.468	2.899	4.955			0.4460	25.4168	-28.8264	36.1755	-53.5413	32.3813
	2.016	2.120	2.213	2.360	2.632	2.988	3.904		0.4974	31.9938	-35.1230	55.9259	-112.2866	88.1404
		2.109	2.190	2.321					0.2478	31.9772	-22.6839	-13.5507	32.0412	-11.1087
	1.997	2.092	2.168							30.1997	-19.2861			
	1.961	2.067	2.161	2.317	2.611	2.984	3.917		0.6360	29.6520	-15.3827	-23.3590	13.2590	21.6627
	3.290	6.565							0.4832	7.3899	-1.8990	-6.9588	33.3709	-27.4230
	2.282	2.440	2.617	3.078					0.5432	10.8992	4.9726	-56.4635	124.9919	-89.5562
	2.098	2.192	2.284	2.457	2.991				0.4539	17.8592	-18.9490	26.8206	-31.7310	21.9467
	2.054	2.138	2.213	2.333	2.550	2.900			0.4317	18.9109	14.8383	-83.2734	100.4051	-31.8309
	2.014	2.092	2.161	2.275	2.488	2.734			0.2126	29.3722	-17.2174	-13.0392	18.2316	4.7262
	1.940	2.042	2.128	2.262	2.485	2.715	3.083	5.879	1.1623	25.0569	22.4762	-75.7051	8.8914	49.3886
1-Octene C ₈ H ₁₆	1.997	2.069	2.135	2.245	2.443	2.656			0.8558	35.5492	-2.5332	-37.7196	-15.1334	59.2556
Propadiene C ₃ H ₄	2.262									12.6130	-4.6505			
1,2-Butadiene C ₄ H ₆	2.132	2.207							1.8310	7.9190	8.7781	-10.9833	-5.3964	16.0089
1,3-Butadiene C ₄ H ₆	2.064	2.163	2.259	2.431					0.1214	19.4545	-17.4079	-8.0930	41.2556	-21.3766
1,2-Pentadiene C ₅ H ₈	1.904	2.003	2.082	2.201						23.7833	-16.2516			
trans-1,3-Pentadiene C ₅ H ₈	2.037	2.108	2.164							22.4904	-11.5084			
1,4-Pentadiene C ₅ H ₈	1.990	2.064	2.138						2.2223	11.2795	5.5371	-13.7108	3.0954	10.8000
2,3-Pentadiene C ₅ H ₈	2.101	2.161	2.219						1.5604	16.3736	-7.4995	13.7603	-27.7122	23.9452
Acetylene and derivatives														
Acetylene C ₂ H ₂	3.310									11.2882	-4.7196			
Propyne C₃H₄	2.546									13.9264	-4.3314			
2-Butyne C ₄ H ₆	2.199	2.257	2.303							17.6692	-7.0682			
1-Butyne C ₄ H ₆	2.316	2.418	2.509						-0.0061	24.8755	-47.5092	107.1645	-157.0534	98.7463
Naphthenes														
Cyclopropane C ₃ H ₆	1.933	2.017	2.100						0.4150	9.4185	2.0685	-19.3393	25.3390	-6.3267
Cyclobutane C ₄ H ₈	1.766	1.845	1.909							16.4351	-9.8045			
Cyclopentane C ₅ H ₁₀	1.581	1.670	1.755	1.901	2.185	2.540	3.239		0.5911	20.2987	-8.6195	-31.5870	25.6255	17.1836
Methyl cyclopentane C ₆ H ₁₂	1.691	1.782	1.864	2.001					0.2323	30.2852	-24.7645	-17.6496	30.2720	0.5545
Ethyl cyclopentane C ₇ H ₁₄	1.705	1.793	1.874						5.7711	7.7296	16.3179	-15.4401	-38.2401	46.8886
Propyl cyclopentane C ₈ H ₁₆	1.741	1.830	1.908	2.031	2.241				-0.8267	43.7797	-15.1467	-53.0231	21.3862	32.6773
Butyl cyclopentane C ₉ H ₁₈	1.771	1.849	1.920	2.038	2.269	2.544			1.7801	45.8700	-36.6364	-26.1177	49.3700	-9.4185
Pentyl cyclopentane C ₁₀ H ₂₀		1.821	1.911	2.047	2.272	2.498	2.724	2.949		59.8890	-49.9621			

339

340

D3.1. Table 5. (continued)

Formula C ₁₁ H ₂ C ₁₁ H	Te 20	G .	_	250	•		Equati	on (8)		
ce Formula -25 0 20 dopentane C ₁ H ₂ 2 1.841 1.915 2 dopentane C ₆ H ₁ 2 1.841 1.915 2 sine C ₆ H ₁ 2 1.888 1.779 1.860 1 slohexane C ₆ H ₁ 6 1.596 1.788 1.866 1 clohexane C ₆ H ₁ 6 1.746 1.896 1 1.906 clohexane C ₇ H ₂ 1.746 1.818 1.896 1 clohexane C ₇ H ₁ 8 1.501 1.600 1.777 1 clohexane C ₇ H ₂ 1.501 1.601 1.787 1 clohexane C ₇ H ₂ 1.501 1.601 1.777 1 clohexane C ₆ H ₁ 0 1.561 1.737 1.742 1 clohexane C ₆ H ₁ 0 1.569 1.734 1.742 1 clohexane C ₆ H ₁ 0 1.561 1.777 1.826 1 crompounds	20			250	ν -					
cohentane C ₁₁ H ₂₂ 1.841 1.915 3 cane C ₆ H ₁₂ 1.688 1.779 1.873 1.773 yclohexane C ₆ H ₁₄ 1.688 1.779 1.860 1.773 yclohexane C ₆ H ₁₆ 1.686 1.779 1.860 1.773 yclohexane C ₆ H ₁₆ 1.728 1.818 1.860 1.860 1.860 1.860 1.860 1.860 1.860 1.860 1.860 1.777 1.887 1.860 1.777 1.887 1.777 1.887 1.777 1.883 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.880 1.777 1.820 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780 1.780		001	150 200	2.30	А	В	C	D	E	F
cane C ₆ H ₁₂ 1.773 1.773 yclohexane C ₅ H ₁₄ 1.688 1.779 1.860 lchexane C ₉ H ₁₆ 1.696 1.788 1.866 rclohexane C ₉ H ₁₈ 1.728 1.818 1.866 rclohexane C ₁₁ H ₂₂ 1.746 1.832 1.908 2.108 rclohexane C ₁₁ H ₂₂ 1.746 1.813 1.808 1.908 2.108 clohexane C ₁₁ H ₂₂ 1.746 1.832 1.908 2.108		2.226	2.432 2.651	2.886	0.1807	65.9848	-74.1315	62.1031	-74.2454	41.8551
yclohexane CyH14 1.688 1.779 1.860 clohexane C ₆ H16 1.696 1.788 1.866 clohexane C ₉ H16 1.728 1.818 1.866 clohexane C ₁ 0H20 1.746 1.812 1.908 2 clohexane C ₁ 1H22 1.746 1.815 1.893 1 clohexane C ₁ 1H22 1.746 1.815 1.898 1 clohexane C ₁ 1H22 1.746 1.815 1.893 1 clohexane C ₂ H8 1.600 1.690 1.777 1.893 1 clohexane C ₂ H6 1.617 1.673 1.771 1.796 1 ccompounds C ₂ H6 1.648 1.737 1.787 1 1 ccompounds C ₂ H6 1.648 1.737 1.787 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>1.773 1.979</td><td>2.248</td><td>2.511 2.848</td><td>3.574</td><td>0.4835</td><td>28.0569</td><td>-6.7431</td><td>-118.2361</td><td>355.2759</td><td>-383.5819</td></t<>	1.773 1.979	2.248	2.511 2.848	3.574	0.4835	28.0569	-6.7431	-118.2361	355.2759	-383.5819
cohexane C _g H ₁₆ 1.696 1.788 1.866 r(olohexane C _g H ₁₈ 1.728 1.818 1.896 2 c(olohexane) C ₁₀ H ₂₀ 1.746 1.832 1.908 2 c(olohexane) C ₁₁ H ₂₂ 1.746 1.815 1.893 2 c(olohexane) C ₁₁ H ₂₂ 1.841 1.915 3 c(olohexane) C ₁₂ H ₂₄ 1.600 1.690 1.777 cene C ₁₂ H ₂₃ 1.600 1.777 1.883 cene C ₆ H ₁₀ 1.617 1.707 1.787 1.796 neth C ₆ H ₁₀ 1.681 1.771 1.707 1.707 1.700					5.5654	8.9219	1.2715	-7.0391	-36.0234	35.0283
cohexane C ₉ H ₁₈ 1.728 1.818 1.896 2 clohexane C ₁₀ H ₂₀ 1.746 1832 1.908 2 clohexane C ₁₁ H ₂₂ 1.746 1.815 1.893 2 clohexane C ₁₂ H ₂₄ 1.600 1.690 1.777 1.893 2 clohexane C ₁₂ H ₂ 1.600 1.690 1.777 1.893 2 cene C ₂ H ₁ 1.600 1.600 1.777 1.787 1 centee C ₆ H ₁ 1.617 1.707 1.787 1 nzene C ₆ H ₁ 1.645 1.713 1.714 1 nzene C ₁₀ H ₄ 1.668 1.737 1.742 1 enzene C ₁₀ H ₁₄ 1.669 1.771 1.808 1 enzene C ₈ H ₁₀ 1.653 1.742 1 1 e C ₈ H ₁₀ 1.653 1.742 1 1 1 1 1 1 1 </td <td>·</td> <td>2.223</td> <td></td> <td></td> <td>2.3215</td> <td>32.3872</td> <td>-15.4092</td> <td>-20.3689</td> <td>6.6446</td> <td>12.0597</td>	·	2.223			2.3215	32.3872	-15.4092	-20.3689	6.6446	12.0597
Compounds		2.252 2.	2.514		1.8529	44.6977	-28.2578	-36.0078	45.5607	-8.2807
compounds		2.269 2.	2.543 2.856	3.206	0.0000	74.2074	-102.7589	37.7432	32.4584	-20.2443
compounds		2.225	2.432 2.651	2.887	0.2992	64.8603	-62.1122	17.0306	-0.3030	-3.1476
tene C ₆ H ₁ 1.600 1.690 1.777 c compounds C ₆ H ₁ 1.617 1.707 1.787 c compounds C ₆ H ₁ 1.617 1.707 1.787 r compounds C ₆ H ₂ 1.561 1.625 1.685 1.710 nzene C ₆ H ₁ 1.587 1.653 1.714 1.771 nzene C ₉ H ₁ 1.645 1.713 1.714 1.771 nzene C ₉ H ₁ 1.645 1.713 1.714 1.771 nzene C ₉ H ₁ 1.645 1.737 1.745 1.745 nzene C ₉ H ₁ 1.645 1.731 1.742 1.745 nzene C ₁ H ₁ 1.650 1.754 1.826 1.742 1.742 nethyl benzene C ₉ H ₁ 1.650 1.723 1.742 1.742 1.744 1.744 1.744 1.744 1.744 1.744 1.744 1.744 1.744 1.744 1.744 1.744 1.744 1.7		2.215	2.426 2.648	2.880	0.4211	70.2456	-45.4883	-67.7512	128.0094	-75.8804
compounds C ₆ H ₁₀ 1.617 1.707 1.787 c compounds C ₆ H ₆ 1.617 1.710 1.710 nzene C ₆ H ₆ 1.561 1.625 1.685 1.714 1.710 nzene C ₉ H ₁₂ 1.587 1.653 1.714 1.711 nzene C ₉ H ₁₂ 1.648 1.737 1.736 1.731 enzene C ₁ H ₁₄ 1.693 1.754 1.808 1.742 1.806 enzene C ₁ H ₁₄ 1.633 1.754 1.806 1.742 1.826 enzene C ₂ H ₁₀ 1.633 1.754 1.806 1.742 1.826 nethyl benzene C ₉ H ₁₀ 1.650 1.723 1.782 1.782 etramethyl benzene C ₁ OH ₁₄ 1.731 1.782 1.782 etramethyl benzene C ₁ OH ₁₄ 1.732 1.744 1.781 etramethyl benzene C ₁ OH ₁₄ 1.599 1.679 1.744 1.782 etramethyl benzene					1.7041	15.4605	-7.8794	-23.6606	37.9550	-8.0892
c compounds C ₆ H ₆ 1.561 1.625 1.710 Teene C ₇ H ₈ 1.561 1.625 1.685 Teene C ₇ H ₈ 1.561 1.625 1.685 nzene C ₈ H ₁₀ 1.587 1.653 1.714 nzene C ₉ H ₁₂ 1.645 1.713 1.771 enzene C ₁₂ H ₁₈ 1.693 1.754 1.808 enzene C ₁₂ H ₁₈ 1.693 1.754 1.806 enzene C ₁₂ H ₁₈ 1.652 1.737 1.826 e C ₈ H ₁₀ 1.653 1.742 1.808 nethyl benzene C ₉ H ₁₂ 1.650 1.723 1.782 nethyl benzene C ₁₀ H ₁₄ 1.731 1.787 1.782 etramethyl benzene C ₁₀ H ₁₄ 1.731 1.744 1.744 thyl benzene C ₁₀ H ₁₄ 1.599 1.679 1.744 1.744 thyl benzene C ₁₂ H ₁₆ 1.540 1.643 1.725 1.725						34.7359	-48.6391	26.8882		
C ₆ H ₆ 1.561 1.625 1.710 nzene C ₇ H ₈ 1.561 1.625 1.685 nzene C ₉ H ₁₀ 1.587 1.633 1.714 enzene C ₉ H ₁₂ 1.645 1.713 1.771 nzene C ₁₀ H ₁₄ 1.668 1.737 1.796 enzene C ₁₂ H ₁₈ 1.693 1.754 1.808 nzene C ₁₂ H ₁₈ 1.693 1.754 1.806 nzene C ₁₂ H ₁₈ 1.622 1.689 1.742 e C ₈ H ₁₀ 1.653 1.649 1.706 1.775 nethyl benzene C ₉ H ₁₂ 1.664 1.731 1.785 1.785 nethyl benzene C ₉ H ₁₂ 1.590 1.669 1.732 1.779 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1.787 etramethyl benzene C ₁₀ H ₁₄ 1.599 1.679 1.744 1.744 ethyl benzene C ₁₁ H ₁₆ 1.540 1.643 1.725 <td></td>										
reene C ₉ H ₁₀ 1.587 1.655 1.685 nzene C ₉ H ₁₀ 1.587 1.653 1.714 nzene C ₉ H ₁₂ 1.645 1.713 1.771 nzene C ₉ H ₁₂ 1.645 1.771 1.771 1.826 nzene C ₁₁ H ₁₆ 1.693 1.774 1.826 nzene C ₁₁ H ₁₆ 1.693 1.777 1.826 nzene C ₉ H ₁₀ 1.622 1.689 1.742 nethyl benzene C ₉ H ₁₂ 1.650 1.723 1.785 nethyl benzene C ₉ H ₁₂ 1.650 1.723 1.785 nethyl benzene C ₁₀ H ₁₄ 1.590 1.669 1.732 nthyl benzene C ₁₀ H ₁₄ 1.590 1.669 1.732 nthyl benzene C ₁₀ H ₁₄ 1.590 1.669 1.777 1.787 nthyl benzene C ₁₁ H ₁₆ 1.590 1.679 1.777 1.787 nthyl benzene C ₁₀ H ₁₄ 1.590 1.679 1.774 1.787 nthyl benzene C ₁₁ H ₁₆ 1.590 1.679 1.774 1.787 nthyl benzene C ₁₁ H ₁₆ 1.590 1.679 1.774 1.787 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.787 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.787 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.787 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1.785 nthyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.679 1.744 1.785 nthyl benzene C ₁₃ H ₁₂ 1.590 1.679 1.679 1.744 1.785 nthyl benzene C ₁₃ H ₁₂ 1.590 1.679 1.679 1.744 1.785	1.710 1.802	1.980	2.189 2.460	3.037	0.4928	22.5398	-16.8877	10.0243	-39.3837	49.5380
reene C ₉ H ₁₀ 1.587 1.653 1.714 nzene C ₉ H ₁₀ 1.645 1.713 1.771 nzene C ₁₀ H ₁₄ 1.668 1.737 1.796 nzene C ₁₀ H ₁₄ 1.668 1.737 1.796 nzene C ₁₁ H ₁₆ 1.683 1.754 1.808 1.72ene C ₁₂ H ₁₈ 1.658 1.777 1.826 nethyl benzene C ₉ H ₁₀ 1.622 1.689 1.742 nethyl benzene C ₉ H ₁₀ 1.650 1.723 1.785 nethyl benzene C ₉ H ₁₂ 1.650 1.731 1.785 nethyl benzene C ₁₀ H ₁₄ 1.590 1.669 1.732 1.779 etramethyl benzene C ₁₀ H ₁₄ 1.590 1.669 1.732 1.779 nethyl benzene C ₁₀ H ₁₄ 1.590 1.669 1.732 1.779 1.779 nethyl benzene C ₁₀ H ₁₄ 1.590 1.699 1.779 1.		1.964	2.158 2.380	2.697	0.4806	28.5306	-7.4267	39.8253	-98.5476	85.5686
rezene C ₉ H ₁₂ 1.645 1.713 1.771 nzene C ₁₀ H ₁₄ 1.668 1.737 1.796 nzene C ₁₁ H ₁₆ 1.693 1.754 1.808 nzene C ₁₁ H ₁₆ 1.693 1.754 1.808 nzene C ₁₁ H ₁₆ 1.693 1.777 1.826 nzeny C ₈ H ₁₀ 1.622 1.689 1.742 nethyl benzene C ₉ H ₁₀ 1.583 1.649 1.706 nethyl benzene C ₉ H ₁₂ 1.664 1.731 1.785 nethyl benzene C ₁₀ H ₁₄ 1.550 1.732 1.782 nethyl benzene C ₁₀ H ₁₄ 1.750 1.669 1.732 1.782 ntwlyl benzene C ₁₀ H ₁₄ 1.732 1.779 nthyl benzene C ₁₀ H ₁₄ 1.732 1.779 1.79 nthyl benzene C ₁₀ H ₁₄ 1.590 1.679 1.744 1.79 1.791 nthyl benzene C ₁₀ H ₁₄ 1.599 1.679 1.744 1.791 nthyl benzene C ₁₁ H ₁₆ 1.590 1.679 1.744 1.791 nthyl benzene C ₁₁ H ₁₆ 1.590 1.679 1.744 1.791 nethane C ₁₂ H ₁₀ 1.540 1.643 1.725 1.791 nethane		1.997	2.189 2.392	2.636	0.4534	35.2674	-36.6767	62.8911	-149.3270	122.1201
razene C ₁₁ H ₁₄ 1.668 1.737 1.796 razene C ₁₁ H ₁₆ 1.693 1.754 1.808 razene C ₁₁ H ₁₆ 1.693 1.754 1.808 razene C ₁₂ H ₁₈ 1.692 1.777 1.826 1.777 1.826 1.777 1.826 1.777 1.826 1.777 1.826 1.777 1.826 1.777 1.826 1.782 1.649 1.706 1.689 1.742 1.684 1.731 1.785 1.649 1.706 1.684 1.731 1.785 1.644 1.731 1.785 1.644 1.731 1.785 1.782 1.783 1.782 1.783 1.782 1.783 1.782 1.783 1.782 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783 1.783 1.725 1.783		2.034	2.211 2.395	2.598	0.7061	36.1020	-5.9477	-47.3163	24.7981	15.5593
enzene C ₁₁ H ₁₆ 1.693 1.754 1.808 1.2ene C ₁₂ H ₁₈ 1.622 1.689 1.742 1.826 1.68H ₁₀ 1.622 1.689 1.742 1.68H ₁₀ 1.652 1.689 1.742 1.68H ₁₀ 1.652 1.689 1.742 1.68H ₁₀ 1.583 1.649 1.706 1.69H ₁₀ 1.593 1.693 1.782 1.69H ₁₂ 1.650 1.723 1.782 1.69H ₁₂ 1.650 1.723 1.782 1.782 1.69H ₁₄ 1.730 1.669 1.732 1.782 1.799 1.619H ₁₄ 1.791 1.787 1.791		2.076			6.0249	17.9699	20.0300	-33.0605	-27.6367	42.2093
rizene C ₁₂ H ₁₈ 1.777 1.826 1.689 1.742 1.681 1.622 1.689 1.742 1.681 1.622 1.689 1.742 1.681 1.681 1.792 1.689 1.742 1.681 1.681 1.792 1.681 1.792 1.681 1.792 1.691 1.792 1.691 1.792 1.691 1.792 1.691 1.792 1.792 1.691 1.792 1.792 1.691 1.792 1.792 1.691 1.792 1.792 1.793 1.792 1.793		2.079	2.292 2.538		0.5085	62.6754	-60.6823	-34.3506	104.3206	-46.7914
e C ₈ H ₁₀ 1.622 1.689 1.742 e C ₈ H ₁₀ C ₈ H ₁₀ 1.583 1.649 1.706 1 1.583 1.649 1.706 1 1.684 1.706 1 1.675 1 1.675 1 1.675 1 1.675 1 1.675 1 1.675 1 1.675 1 1.675 1 1.675 1 1.732 1.744 1.684 1.592 1.679 1.679 1.744 1.684 1.592 1.679 1.744 1.684 1.592 1.679 1.744 1.684 1.694 1.679 1.744 1.684 1.694 1.694 1.694 1.735 1.		2.086	2.298 2.549		1.9918	62.0635	-52.3332	-40.5346	82.4337	-17.2071
e C ₈ H ₁₀ 1.583 1.649 1.706 nethyl benzene C ₉ H ₁₀ 1.664 1.731 1.675 nethyl benzene C ₉ H ₁₂ 1.664 1.731 1.785 nethyl benzene C ₉ H ₁₂ 1.650 1.733 1.782 etramethyl benzene C ₁₀ H ₁₄ 1.732 1.779 1.787 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1.787 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1.787 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1.787 ethyl benzene C ₁₀ H ₁₄ 1.599 1.679 1.744 1 c ₁₀ H ₁₀ 1.540 1.643 1.725 1 d benzene C ₁₂ H ₁₀ 1.643 1.725 1 methane C ₁₂ H ₁₀ 1.643 1.725 1		1.955				33.6972	-21.4077			
nethyl benzene		1.974	2.174 2.398	2.646	0.1118	38.6021	-35.2435	-15.7768	55.5289	-29.2411
nethyl benzene C ₉ H ₁₂ 1.664 1.731 1.785 nethyl benzene C ₉ H ₁₂ 1.650 1.723 1.782 nethyl benzene C ₁₀ H ₁₄ 1.590 1.669 1.732 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1.779 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1.787 etramethyl benzene C ₁₁ H ₁₆ 1.599 1.679 1.744 1 thyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1 thyl benzene C ₉ H ₁₂ 1.540 1.643 1.725 1 I benzene C ₁₂ H ₁₀ 1.643 1.725 1 I methane C ₁₃ H ₁₂ 1.540 1.643 1.725 1	1.675 1.770	1.955	2.145 2.341	2.580	-0.2990	48.9714	-144.5391	451.2798	-811.3867	551.2969
nethyl benzene C ₉ H ₁₂ 1.650 1.732 1.782 nethyl benzene C ₉ H ₁₂ 1.590 1.669 1.732 1 etramethyl benzene C ₁₀ H ₁₄ 1.732 1.779 1 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1 ethyl benzene C ₁₁ H ₁₆ C ₁₁ H ₁₆ 1 1 thyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1 I benzene C ₉ H ₁₂ 1.540 1.643 1.725 1 I methane C ₁₃ H ₁₂ 1.540 1.643 1.725 1		2.001	2.136			40.3021	-25.9359			
nethyl benzene C ₉ H ₁₂ 1.590 1.669 1.732 1 etramethyl benzene C ₁₀ H ₁₄ 1.732 1.779 1 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1 etramethyl benzene C ₁₀ H ₁₄ 1.777 1.787 1 thyl benzene C ₁₂ H ₁₆ 1.599 1.679 1.744 1 thyl benzene C ₉ H ₁₂ 1.599 1.679 1.744 1 I benzene C ₉ H ₁₂ 1.540 1.643 1.725 1 I methane C ₁₃ H ₁₂ 1.599 1.679 1.744 1						40.9035	-27.6128			
etramethyl benzene C ₁₀ H ₁₄ 1.732 1.779 1 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1 etramethyl benzene C ₁₀ H ₁₆ 1.590 1.679 1.744 1 lbenzene C ₁₂ H ₁₈ 1.590 1.679 1.744 1 lbenzene C ₉ H ₁₂ 1.540 1.643 1.725 1 methane C ₁₃ H ₁₂ 1.540 1.643 1.725 1						40.6495	-28.9186			
tramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1 1 etramethyl benzene C ₁₀ H ₁₄ 1.717 1.787 1 1 etramethyl benzene C ₁₁ H ₁₆ C ₁₁ H ₁₆ 1.599 1.679 1.744 1 1 1 benzene C ₉ H ₁₂ 1.540 1.643 1.725 1 C ₁₂ H ₁₀ C ₁₂ H ₁₀ 1.643 1.725 1 1 methane C ₁₃ H ₁₂ 1.110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.026	2.216 2.437		4.2848	23.9196	24.7840	-53.0483	-47.5743	89.1333
thyl benzene C ₁₁ H ₁₆ C ₁₇ H ₁₇		2.320	2.851		10.5141	41.7201	-50.9341	-52.6964	14.5810	114.1617
thyl benzene C ₁₂ H ₁₆ C ₁₇ H ₁₆ C ₁₇ H ₁₆ C ₁₇ H ₁₈ C ₁₇ H ₁₉		2.020 2.	2.144 2.267			44.6614	-26.8893			
thyl benzene C ₁₂ H ₁₈ 1.599 1.679 1.744 1 I benzene C ₉ H ₁₂ 1.540 1.643 1.725 1 C ₁₂ H ₁₀ C ₁₂ H ₁₀ 1 1 1 1 I methane C ₁₃ H ₁₂ 1 1 1 1 1		2.036 2.	2.197 2.357				-41.1902			
Loberzene C ₉ H ₁₂ 1.599 1.679 1.744 1 I benzene C ₉ H ₁₂ 1.540 1.643 1.725 1 C ₁₂ H ₁₀ C ₁₂ H ₁₀ 1.643 1.725 1 I methane C ₁₃ H ₁₀ 1.540 1.643 1.725 1			2.456	2.678		72.5988	-65.6444			
C ₉ H ₁₂ 1.540 1.643 1.725 1 C ₁₂ H ₁₀ C ₁₃ H ₁₂ 1 1		2.002				35.6852	-25.6714			
C ₁₃ H ₁₂		2.042	2.232 2.416	2.594		42.7501	-29.5504	-6.9534		
C ₁₃ H ₁₂		1.828	1.968 2.107	2.246		55.3863	-40.7411			
	1.632	1.750				53.9814	-36.4781			
Triphenyl methane C ₁₉ H ₁₆		1.849 2.	2.017 2.186	2.354		103.0521	-85.6927			
Tetraphenyl methane C ₂₅ H ₂₀						124.7397	-98.4474			
Naphthalene C ₁₀ H ₈		1.770 1.	1.968 2.156		2.4359	66.8590	-230.4433	405.3486	-105.5278	-276.8274

1-Methylnaphthalene	C ₁₁ H ₁₀	1.430	1.507	1.568	1.660	1.813					51.8774	-40.4029			
2-Methylnaphthalene	C ₁₁ H ₁₀				1.645	1.791	1.938	2.084			50.0618	-38.1222			
1-Ethylnaphthalene	C ₁₂ H ₁₂		1.454	1.552	1.692	1.903	2.085	2.238	2.365	1.1098	40.9009	20.6195	-46.8963	-59.6600	41.2343
2-Ethylnaphthalene	C ₁₂ H ₁₂				1.717	1.887	2.057	2.226	2.396		60.8250	-49.1561			
Alcohols															
Methanol	CH₄O	2.305	2.403	2.508	2.709	3.168	3.843	5.271		0.5687	14.1100	-11.9505	-23.4782	57.5551	-25.6027
Ethanol	C_2H_6O	2.005	2.273	2.512	2.871	3.408	3.901	4.811		0.4637	23.4689	-46.2095	199.4259	-540.6041	448.4512
1-Propanol	C ₃ H ₈ O	2.037	2.200	2.360	2.649	3.260				0.6912	38.2179	-58.7413	-12.0901	85.0842	-35.0164
1-Butanol	C ₄ H ₁₀ O	2.045	2.204	2.359	2.635	3.221				3.3654	31.6732	-30.7096	-46.5224	71.5993	-2.6518
1-Pentanol	C ₅ H ₁₂ O	2.038	2.191	2.336	2.590	3.117				5.7640	26.6380	-15.5749	-36.3870	3.5382	48.5789
1-Hexanol	C ₆ H ₁₄ O	2.189	2.228	2.267	2.338	2.488	2.677			0.9947	35.4470	-10.7701	-46.3435	73.1515	-22.5061
1-Heptanol	C ₂ H ₁₆ O	2.053	2.200	2.359	2.629	3.057				-2.9491	33.7457	165.4492	-191.4845	-590.5931	751.6760
1-Octanol	C ₈ H ₁₈ O		2.177	2.284	2.444	2.710	2.977				65.7798	-54.4787			
Isopropanol	C ₃ H ₈ O	2.079	2.326	2.556	2.927	3.538	4.078			0.0754	34.1737	-31.0153	31.5827	-23.8811	267.0049
2-Methyl-1-propanol	C ₄ H ₁₀ O	2.022	2.214	2.402	2.737	3.421				-1.1541	67.1054	-109.6802	-30.0361	184.3930	-91.2685
3-Methyl-1-butanol	C ₅ H ₁₂ 0		2.177	2.348	2.632	3.108				-7.5978	91.8057	-67.9468	-196.7676	270.8408	-45.4001
Ethylene glycol	$C_2H_6O_2$		2.285	2.382	2.527	2.769	3.010	3.252			33.1585	-25.9580			
1,3-Propylene glycol	$C_3H_8O_2$	2.096	2.223	2.324	2.475	2.728	2.980	3.233			41.1843	-33.4694			
Glycerol	C ₃ H ₈ O ₃				2.539	2.800	3.061	3.322	3.583		58.5772	-49.1381			
Cyclohexanol	$C_6H_{12}O$				2.353	2.778	3.204				61.8783	-66.6885			
Benzyl alcohol	C ₂ H ₈ O		1.852	1.977	2.164						60.3553	-58.4291			
Phenois															
o-Cresol	C ₂ H ₈ O				2.196	2.288					37.4785	-16.6030			
<i>m</i> -Cresol	C ₂ H ₈ O			2.072	2.160	2.307					42.7196	-26.9635			
<i>p</i> -Cresol	C ₂ H ₈ O				2.158	2.314					43.5313	-28.5582			
Phenol	C ₆ H ₆ O				2.171	2.340	2.509				38.7496	-26.5137			
Formic acid	CH ₂ O ₂			2.152	2.198	2.276					14.4461	-5.0581			
Acetic acid	$C_2H_4O_2$			2.028	2.172	2.412					24.9984	-20.5089			
Propionic acid	$C_3H_6O_2$		1.963	2.028	2.158	2.466					47.2236	-94.2476	72.8580		
Butyric acid	$C_4H_8O_2$		1.937	2.000	2.127	2.425	2.829				57.1427	-113.8183	86.2909		
Valeric acid	$C_5H_{10}O_2$	1.730	1.849	1.945	2.088	2.324	2.561	2.809	3.085	-0.0598	49.0702	-80.7494	137.7914	-190.2687	96.7981
Caproic acid	$C_6H_{12}O_2$		1.956	2.030							47.2637	-34.0079			
Acetic anhydride	$C_4H_6O_3$		1.726	1.826	1.976						41.6471	-37.2452			
Propionic anhydride	$C_6H_{10}O_3$	1.713	1.746	1.778	1.835	1.952	2.098			0.8390	38.3509	-23.8366	-16.1349	38.9280	-9.3758
Chloroacetic acid	$C_2H_3ClO_2$					1.705	1.878	2.051			31.6919	-26.9876			
Dichloroacetic acid	$C_2H_2CI_2O_2$			1.425	1.436	1.455	1.474				24.4101	-4.0323			
Trichloroacetic acid	C ₂ HCl ₃ O ₂				1.496						29.4068				
Ketones															
Ketene	C ₂ H ₂ O	2.356	2.605							1.0168	9.3536	8.0381	-38.4052	19.0861	26.1846
Acetone	C ₃ H ₆ O	2.048	2.089	2.131	2.210	2.390	2.667	3.351		0.4401	17.6746	-9.0149	-10.9833	32.7183	-16.4221

D3.1. Table 5. (continued)

					Tempera	emperature (°C)						Equati	on (8)		
Substance	Formula	-25	0	20	50	100	150	200	250	A	В	C	Q	E	F
Methyl ethyl ketone	C ₄ H ₈ O	2.120	2.154	2.190	2.260	2.430	2.671			0.0258	29.5239	-34.9573	9.5140	57.6739	-49.1627
Diethyl ketone	C ₅ H ₁₀ O	2.130	2.178	2.217	2.276	2.373					28.3672	-11.3035			
Dipropyl ketone	C ₇ H ₁₄ O	2.095	2.128	2.164	2.232	2.387	2.590	2.843		0.4867	44.1126	-28.1477	-54.4215	133.7556	-66.9157
Acetophenone	C ₈ H ₈ O				1.813	2.071	2.330	2.588	2.846		55.0435	-52.9669			
Benzophenone	C ₁₃ H ₁₀ O				1.663	1.787	1.912	2.037	2.162		64.1483	-45.3702			
Ethers															
Dimethyl ether	C ₂ H ₆ O	2.235									15.6505	-12.3916	9.9810		
Diethyl ether	C ₄ H ₁₀ O	2.167	2.228	2.287	2.394	2.644	3.120			0.4579	24.2072	-12.4384	-23.6768	75.2867	-53.6772
Dipropyl ether	C ₆ H ₁₄ O	2.036	2.100	2.157	2.252					0.8489	32.9852	-19.0684	-6.6259	17.1316	-1.3498
Methyl propyl ether	C ₄ H ₁₀ O	2.102	2.154	2.196							22.9736	-8.8446			
Ethyl propyl ether	C ₅ H ₁₂ O	2.122	2.178	2.223							28.5216	-11.9588			
Ethylene oxide	C ₂ H₄O	1.898	1.948							0.5144	9.1319	5.0866	-14.4010	-5.0022	23.4152
Furane	C₄H₄O	1.564	1.616	1.657							16.8854	-8.2558			
1,4-Dioxane	C₄H ₈ O ₂			1.737	1.861	2.504				14.9556	-8.2892	-15.2032	-10.6474	-95.5742	303.9206
Aldehydes															
Formaldehyde	CH ₂ O	2.260	2.252	2.245							7.9630	0.5129			
Acetaldehyde	C ₂ H ₄ O		2.172	2.187	2.237	2.366	2.529			0.0301	13.5502	-4.3471	-10.5345	10.1945	26.1676
Paraldehyde	$C_6H_{12}O_3$			1.932	2.023						44.4541	-27.8338			
Furfural	$C_5H_4O_2$		1.588	1.633	1.700	1.812	1.925				28.6613	-17.4104			
Benzaldehyde	C ₂ H ₆ O	1.514	1.573	1.619	1.690	1.807	1.924				32.6724	-20.7589			
Salicylaldehyde	$C_7H_6O_2$			1.806	1.924	2.090	2.216			-0.1761	35.6500	3.4142	-9.9814	-57.1498	28.5470
Esters															
Methyl formate	$C_2H_4O_2$	1.773	1.870	1.966						2.4323	8.5529	2.6949	-10.5378	-6.8571	22.7822
Ethyl formate	$C_3H_6O_2$		1.904	1.965	2.055	2.206					23.2978	-13.6769			
Propyl formate	C ₄ H ₈ O ₂				2.055	2.240					30.2098	-21.1066			
Methyl acetate	$C_3H_6O_2$			1.899	2.009	2.191					23.8692	-16.4962			
Ethyl acetate	$C_4H_8O_2$	1.837	1.878	1.925	2.020					2.7113	14.3161	4.2455	-12.3726	-9.7711	34.0380
Propyl acetate	$C_5H_{10}O_2$			1.919	2.032	2.220					35.4286	-25.3978			
Methyl propionate	C₄H ₈ O ₂				2.038	2.228					29.9676	-21.4123			
Ethyl propionate	$C_5H_{10}O_2$				2.013	2.209					35.4565	-26.2732			
Propyl propionate	$C_6H_{12}O_2$			1.922	2.091	2.373	2.655				48.5529	-44.7961			
Methyl butyrate	$C_5H_{10}O_2$			1.900	2.064	2.337					40.8805	-37.2237			
Ethyl butyrate	C ₆ H ₁₂ O2			1.928	2.075	2.321	2.567				46.0171	-39.2174			

Methyl benzoate	C ₈ H ₈ O2		1.468	1.511	1.576	1.684	1.792				38.8848	-24.5138			
Ethyl benzoate	C ₉ H ₁₀ O ₂	1.441	1.503	1.552	1.627	1.750	1.873	1.997			46.0903	-31.1162			
Methyl salicylate	C ₈ H ₈ O3				1.740	1.968	2.196	2.423	2.651		63.9845	-59.0472			
Amines															
Methyl amine	CH ₅ N	3.278									13.0650	-1.9359			
Ethyl amine	C ₂ H ₇ N	2.914	2.936								16.7792	-2.1398			
Propyl amine	C ₃ H ₉ N	2.688	2.721	2.747	2.787						21.4447	-4.6636			
<i>n</i> -Butyl amine	C ₆ H ₁₅ N	2.546	2.590	2.625	2.678						26.7711	-8.1938			
Dimethyl amine	C ₂ H ₇ N	2.992	3.023	3.047						0.0978	23.0471	-48.3890	105.8461	-43.5416	-68.4601
Trimethyl amine	C ₃ H ₉ N	2.129	2.187								18.2045	-7.1891			
Diethyl amine	C ₆ H ₁₅ N			2.418	2.525						27.6677	-15.6070			
Triethyl amine	C ₆ H ₁₅ N	2.004	2.095	2.168	2.277						37.1018	-23.6946			
Piperidine	C ₅ H ₁₁ N		2.080	2.116	2.170	2.260					27.2105	-10.9318			
Pyridine	C ₆ H ₇ N	1.556	1.622	1.675	1.754	1.885					24.1188	-15.5308			
Aniline	C ₆ H ₇ N		2.021	2.058	2.113	2.205	2.297				31.4110	-14.3919			
<i>N</i> -methyl aniline	C ₂ H ₉ N				1.982	2.165	2.348				43.4050	-33.1095			
<i>N,N</i> -dimethyl aniline	C ₈ H ₁₁ N			1.677	1.799	2.001	2.204				47.6961	-40.5442			
<i>N,N</i> -diethyl aniline	$C_{10}H_{15}N$				1.847	2.047	2.246	2.445			60.2696	-50.2392			
Phenylhydrazine	$C_6H_8N_2$						1.899	2.059	2.218		38.7215	-31.5745			
Diphenyl amine	C ₁₂ H ₁₁ N					1.806	1.964	2.122	2.280		65.2766	-52.4820			
Nitriles															
Acetonitrile	C ₂ H ₃ N	2.146	2.193	2.230	2.285						13.3227	-5.0019			
Propionitrile	C ₃ H ₅ N	2.071	2.117	2.159	2.233					1.5599	10.2610	6.6484	-9.8995	-9.1685	16.9766
Butyronitrile	C ₄ H ₇ N	2.130	2.193	2.243	2.318	2.444					24.6958	-12.1876			
Benzonitrile	C ₂ H ₅ N		1.548	1.595	1.666	1.783	1.901				31.6340	-20.4009			
Amides															
Formamide	CH ₃ NO			2.388	2.488	2.655	2.822	2.989			21.5877	-13.9625			
Nitroderivates															
Nitromethane	CH ₃ NO ₂	1.703	1.721	1.741	1.779	1.865	1.979	2.122		0.1694	16.3236	-5.5744	-21.9064	46.8488	-23.4828
Nitrobenzene	$C_6H_5NO_2$			1.477	1.518	1.629	1.812	2.077		4.9788	21.6842	-2.7282	-59.2234	47.0123	34.6561
o-Nitrotoluene	C ₂ H ₂ NO ₂		1.469	1.495	1.548	1.670	1.835			5.4736	20.8001	-1.6916	-20.7020	-12.8946	45.2649
<i>M</i> -Nitrotoluene	C ₇ H ₇ NO ₂			1.465	1.546	1.683	1.819				43.9773	-32.9937			
<i>p</i> -Nitrotoluene	C ₇ H ₇ NO ₂					1.680	1.834				46.5037	-37.7369			

D3.1. Table 6. Specific heat capacity $c_{
m P}$ of ideal gases at constant pressure in J/g K

				Ì	Femperature (°C)	:ure (°C)							Equation (10)		
Substance	Formula	-50	0	25	100	200	300	400	200	А	В	C	Q	E	F	G
Elements																
Xenon	Xe	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.0000	2.5000	2.5000	0.0000	0.0000	0.0000	0.0000
Krypton	Kr	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.0000	2.5000	2.5000	0.0000	0.0000	0.0000	0.0000
Argon	Ar	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.0000	2.5000	2.5000	0.0000	0.0000	0.0000	0.0000
Neon	Ne	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	0.0000	2.5000	2.5000	0.0000	0.0000	0.0000	0.0000
Helium	әН	5.193	5.193	5.193	5.193	5.193	5.193	5.193	5.193	0.0000	2.5000	2.5000	0.0000	0.0000	0.0000	0.0000
Air		1.003	1.004	1.006	1.013	1.027	1.047	1.068	1.091	2548.9320	3.5248	-0.6366	-3.4281	49.8238	-120.3466	98.8658
Hydrogen	H ₂	13.81	14.24	14.36	14.49	14.46	14.45	14.54	14.69	392.8422	2.4906	-3.6262	-1.9624	35.6197	-81.3691	62.6668
Nitrogen	N ₂	1.039	1.039	1.039	1.042	1.053	1.070	1.092	1.115	432.2027	3.5160	2.8021	-4.1924	42.0153	-114.2500	111.1019
Oxygen	02	0.910	0.915	0.919	0.935	0.963	0.992	1.021	1.047	2122.2098	3.5302	-7.1076	-1.4542	30.6057	-83.6696	79.4375
Sulfur	S			0.738												
Fluorine	F ₂	0.791	0.812	0.824	0.856	0.893	0.921	0.940	0.954	774.7434	3.5724	1.1782	-7.8357	66.9134	-126.3602	84.8592
Chlorine	Cl ₂	0.456	0.472	0.479	0.494	0.506	0.513	0.518	0.521	443.2316	3.4079	0.3974	-2.9833	39.3781	-76.8680	54.8748
Bromine	Br ₂	0.219	0.224	0.226	0.229	0.232	0.233	0.234	0.235	397.2602	3.4138	1.5597	2.2676	36.9159	-95.8106	76.6528
lodine	ا2	0.143	0.145	0.146	0.147	0.147	0.148	0.148	0.149	366.5747	3.6859	2.5951	6.9245	30.7878	-102.6339	89.1827
Anorganic compounds																
Hydrogen fluoride	JН	1.457	1.456	1.456	1.456	1.456	1.459	1.465	1.475	3438.3914	3.5031	2.9592	9.0174	-168.6398	1068.5062	-1578.0575
Hydrogen chloride	HCI	0.799	0.799	0.799	0.799	0.803	0.810	0.820	0.833	1638.3959	3.5004	2.9346	8.4727	-98.1948	399.2317	-384.8918
Hydrogen bromide	HBr	0.361	0.361	0.361	0.361	0.363	0.367	0.373	0.380	1203.5373	3.4970	2.7948	10.7652	-91.1043	274.9226	-208.0079
Hydrogen iodide	IH	0.228	0.228	0.228	0.229	0.232	0.236	0.241	0.247	441.4535	3.4542	3.0037	6.5208	-1.2264	-62.0818	106.0830
Hydrogen cyanide	NOH	1.212	1.288	1.325	1.422	1.523	1.602	1.670	1.733	515.6639	4.2813	-4.7794	-8.9029	56.8035	-102.7379	71.0228
Water	H ₂ O	1.884	1.868	1.869	1.890	1.940	2.000	2.064	2.131	706.3032	5.1703	-6.0865	-6.6011	36.2723	-63.0965	46.2085
Hydrogen sulfide	H ₂ S	0.982	0.994	1.001	1.030	1.078	1.131	1.185	1.238	1132.4648	4.0398	2.7018	-8.5655	67.3144	-72.9692	42.8369
Ammonia	NH ₃	2.016	2.057	2.090	2.219	2.422	2.623	2.809	2.977	931.6298	4.8468	-7.1757	-7.6727	51.3877	-93.4217	67.9515
Nitric oxide	NO				0.994	1.006	1.030	1.058	1.085	287.2527	2.8998	2.6046	85.3765	-134.9868	-124.2972	275.4122
Nitrogen dioxide	NO ₂	0.759	0.788	0.804	0.855	0.922	0.981	1.031	1.071	1102.7744	4.0267	-1.3131	-3.5919	52.4358	-106.3789	75.9808
Nitrous oxide	N_2O	0.791	0.849	0.875	0.947	1.025	1.087	1.137	1.179	617.4643	3.1103	1.2306	6.1055	46.3864	-110.8822	97.5602
Dinitrogentetroxide	N_2O_4	0.766	0.849	0.884	0.968	1.051	1.115	1.167	1.210	337.3088	5.7078	-0.9773	-19.6801	135.9757	-243.3166	160.1653
Cyanogen	C_2N_2	0.978	1.060	1.092	1.167	1.236	1.292	1.342	1.388	376.7870	4.4648	-3.8440	-9.8745	79.1176	-152.6285	105.8138
Phosphorus trichloride	PCI ₃	0.477	0.511	0.523	0.549	0.567	0.577	0.584	0.589	398.1926	4.3525	-0.1531	1.1615	71.8056	-167.9929	123.8929
Cyanogen chloride	CICN	0.669	0.719	0.738	0.781	0.819	0.849	0.875	0.899	398.4260	3.3356	-3.3611	-4.8745	57.6110	-119.3350	87.3449
Silane	SiH₄	1.154	1.270	1.334	1.530	1.780	2.000	2.188	2.349	629.0517	4.5596	-2.1197	-12.7035	79.0943	-122.6738	80.9687
Tetrachlorosilane	SiCl ₄	0.481	0.518	0.532	0.563	0.586	0.600	609.0	0.615	419.0276	5.0010	1.9959	14.9372	72.1162	-207.0673	166.0017
Carbon monoxide	00	1.039	1.039	1.040	1.045	1.059	1.080	1.105	1.131	407.9796	3.5028	2.8524	-2.3018	32.9055	-100.1815	106.1141

Carbon dioxide	CO ₂	0.761	0.817	0.844	0.916	966.0	1.060	1.113	1.158	514.5073	3.4923	-0.9306	-6.0861	54.1586	-97.5157	70.9687
Carbon suboxide	C ₃ O ₂		0.928	0.964	1.061	1.161	1.237	1.296	1.344	631.7238	4.7475	2.2252	5.2648	98.7873	-230.0819	182.8060
Carbonyl sulfide	SOO	0.616	0.667	069.0	0.747	0.803	0.843	0.875	0.901	543.0047	3.1567	-0.5532	-0.4687	52.1727	-114.4401	89.2277
Phosgene	CCI ₂ O	0.513	0.562	0.583	0.633	0.679	0.711	0.734	0.753	443.0941	4.0648	-1.2498	-6.3664	77.7307	-151.8155	106.2799
Carbon disulfide	CS ₂	0.541	0.582	0.599	0.641	0.681	0.709	0.732	0.750	436.2681	3.2047	-0.1319	0.2557	53.8613	-119.4039	93.1550
Sulfur dioxide	SO ₂	0.580	0.608	0.622	0.665	0.715	0.755	0.787	0.811	848.4734	4.1379	-0.0601	-4.0449	56.0276	-109.3350	76.8400
Sulfur trioxide	SO ₃	0.553	0.607	0.633	0.700	0.772	0.827	0.869	0.901	648.4989	3.5687	1.2040	8.5348	57.7911	-128.2153	100.3963
Sulfuryl chloride	Cl ₂ SO ₂	0.503	0.553	0.573	0.621	0.663	0.693	0.715	0.733	408.3318	3.3807	-0.1149	10.6613	66.5305	-176.9697	146.1224
Sulfur hexafluoride	SF ₆	0.525	0.621	0.664	0.768	0.861	0.920	0.958	0.984	524.1686	3.5677	-1.3539	-10.7270	196.7052	-395.4602	263.8890
Organic compounds containing sulfur	g sulfur															
Methyl mercaptan	CH₄S	0.933	1.003	1.043	1.174	1.348	1.503	1.630	1.733	1407.0543	5.1177	-17.2008	-4.5149	69.3978	-185.7461	168.6903
Ethyl mercaptan	C_2H_6S	1.002	1.103	1.161	1.348	1.590	1.787	1.945	2.105	2728.1680	6.8872	-201.1551	-1.9961	74.6970	-408.9731	728.6239
Dimethyl sulfide	C_2H_6S	1.043	1.138	1.193	1.363	1.578	1.770	1.939	2.089	472.3136	11.9843	1.2309	-32.3455	145.0474	-221.3676	136.0872
Diethyl sulfide	$C_4H_{10}S$	1.102	1.225	1.296	1.522	1.815	2.072	2.289	2.469	764.7944	12.8974	7.4937	-68.3733	426.8748	-709.5073	437.1287
Thiophene	C₄H₄S	0.637	0.775	0.850	1.073	1.322	1.496	1.626	1.767	1585.4574	5.5875	14.0271	85.1905	-1221.8570	4559.8896	-5488.4600
Halogenated hydrocarbons																
Fluoromethane (R41)	CH ₃ F	0.986	0.988	0.990	0.993	0.997	1.001	1.005	1.009	1176.9659	4.0143	3.8936	7.5362	27.9098	-97.9809	137.9880
Difluoromethane (R32)	CH ₂ F ₂		0.791	0.827	0.944	1.100	1.243	1.365	1.467	962.8984	4.3711	-5.4665	-7.5447	71.6125	-131.6434	90.6773
Trifluoromethane (R23)	CHF ₃	0.620	0.693	0.729	0.836	096'0	1.060	1.139	1.201	809.8615	3.9766	-1.6866	-4.3891	84.4263	-165.5706	115.7209
Tetrafluoromethane (R14)	CF_4	0.580	0.658	0.694	0.791	0.893	0.968	1.024	1.066	666.5894	3.2199	0.9296	19.5008	69.7537	-169.5636	132.1724
Methyl chloride	CH ₃ Cl	0.715	0.771	0.806	0.916	1.059	1.184	1.293	1.388	563.6035	6.6853	-8.5011	-13.6955	69.5041	-111.0175	71.4223
Methylene chloride	CH ₂ Cl ₂	0.517	0.574	0.602	0.678	0.762	0.831	0.890	0.939	444.2757	5.5626	-2.8582	-16.0285	90.2509	-150.0431	98.4722
Chloroform	CHCl ₃	0.477	0.528	0.550	0.606	0.661	0.703	0.735	0.762	432.3855	4.0882	0.0186	-4.9929	91.3991	-181.0173	132.7780
Carbon tetrachloride	CCI⁴		0.526	0.544	0.586	0.620	0.642	0.657	0.668	404.6502	3.9042	1.4383	10.3685	120.5467	-291.2140	219.4177
Bromomethane	CH ₃ Br	0.392	0.429	0.448	0.507	0.580	0.643	0.699	0.748	582.5462	4.7518	-3.2915	-11.6866	71.7139	-119.4291	82.6436
Dibromomethane	CH ₂ Br ₂	0.278	0.306	0.319	0.354	0.392	0.423	0.449	0.471	441.4487	5.5801	-1.4537	-16.0331	96.3766	-164.1834	108.8416
Tribromomethane	CHBr ₃	0.253	0.273	0.281	0.304	0.326	0.344	0.357	0.368	444.2945	5.0879	3.2074	4.1568	101.0388	-218.2270	173.4973
Tetrabromomethane	CBr ₄			0.275	0.288	0.300	0.308	0.312	0.315	708.6138	9.1392	6.7159	-4.8212	132.6970	-300.7419	213.9957
Chlorodifluoromethane (R22)	CHCIF ₂	0.557	0.62	0.65	0.733	0.827	0.905	0.960	1.006	923.7514	3.6501	1.0809	26.3036	33.6589	-138.0860	130.3725
Dichlorofluoromethane (R21)	CHCl ₂ F	0.511	0.568	0.594	0.661	0.731	0.785	0.828	0.863	448.3265	4.2561	0.0709	-8.4348	93.5761	-171.5023	122.5675
Chlorotrifluoromethane (R13)	CCIF ₃	0.542	0.611	0.642	0.720	0.798	0.852	0.892	0.921	530.6755	3.5003	0.9604	6.6125	106.4268	-228.0132	168.3566
Dichlorodifluoromethane (R12)	CCI ₂ F ₂	0.517	0.578	0.604	0.668	0.729	0.770	0.799	0.821	546.7956	3.4416	1.5333	31.2296	71.5046	-234.2425	204.0779
Trichlorofluoromethane (R11)	CCI ₃ F	0.501	0.553	0.576	0.629	0.678	0.710	0.732	0.749	497.5032	4.6223	1.5688	3.0209	115.7598	-261.4310	192.6300
Ethyl fluoride (R161)	C_2H_5F	1.034	1.152	1.221	1.444	1.738	1.994	2.201	2.365	1291.3906	5.7586	-60.6316	-2.6539	39.8753	-99.0265	86.9333
Ethyl chloride	C ₂ H ₅ Cl		0.911	0.969	1.143	1.354	1.532	1.683	1.811	613.2333	6.9421	-3.7386	-19.7168	117.1200	-194.1976	126.2574
Ethyl bromide	C ₂ H ₅ Br		0.555	0.591	0.695	0.815	0.917	1.004	1.079	559.9347	4.6195	-1.4702	-13.3648	114.1759	-202.0764	146.4189
1,1-Dichloroethane	C ₂ H ₄ C ₂ H ₄ Cl ₂	0.647	0.729	0.771	0.887	1.019	1.125	1.211	1.284	544.1036	7.3477	-0.0939	-23.5320	146.8019	-247.1889	160.4226

2	1	4
J	7	v

D3.1. Table 6. (continued)

					Temperature (°C)	ure (°C)							Equation (10)		
Substance	Formula	-50	0	25	100	200	300	400	200	¥	В	U	D	E	F	b
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	0.693	0.749	0.783	0.890	1.023	1.134	1.226	1.301	405.3433	15.1092	20.1123	78.6790	-267.3812	327.7670	-148.4968
1,2-Dibromoethane	C ₂ H ₄ Br ₂		0.437	0.454	0.510	0.580	0.637	0.684	0.724	520.5231	17.6437	4.0296	-44.3921	193.3612	-293.1946	165.7688
1,1,1-Trifluoroethane (R143a)	C ₂ H ₃ F ₃		0.875	0.929	1.076	1.239	1.370	1.475	1.561	787.7535	4.0477	1.6043	27.4029	120.4143	-334.2206	293.7670
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	0.588	0.658	0.691	0.780	0.874	0.945	1.00.1	1.047	502.9630	7.5393	1.5858	-21.3038	156.9331	-273.6844	179.7290
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄			0.589	0.667	0.748	0.807	0.852	0.886	593.3413	6.6303	1.6959	-10.3067	157.6395	-309.7356	215.3104
Pentachloroethane	C ₂ HCl ₅	0.510	0.564	0.587	0.643	0.697	0.739	0.771	0.797	359.0845	5.8297	2.0795	-6.1565	163.1966	-336.2104	248.4292
Hexachloroethane	C_2CI_6		0.569	0.590	0.637	0.676	0.701	0.720	0.734	388.1012	6.1294	1.8568	5.6538	139.7052	-321.6115	237.9069
1,1,2,2- Tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂			0.648	0.717	0.776	0.807	0.822	0.828	812.9972	8.3770	0.5771	9.2512	111.7561	-351.8827	296.9848
1,1,2-Trichlorotrifluoroethan	C ₂ Cl ₃ F ₃	0.557	0.619	0.647	0.720	0.791	0.841	0.876	0.902	554.3205	8.6962	2.2845	-10.0887	136.8359	-264.2738	178.3853
1,2-Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄		0.654	989.0	0.770	0.853	0.910	0.948	0.973	618.1865	9.1614	2.9195	-16.9605	175.4260	-328.2318	208.3301
1-Chloropropane	C ₃ H ₇ Cl	0.890	1.012	1.080	1.287	1.533	1.739	1.912	2.062	450.2002	17.8443	0.8004	-41.5155	178.9604	-268.0433	153.8763
1-Chlorobutane	C ₄ H ₉ Cl	0.953	1.089	1.164	1.387	1.655	1.881	2.073	2.237	499.3815	16.9613	-1.4125	-35.0788	166.1639	-258.1227	155.7875
1-Chloropentane	C ₅ H ₁₁ Cl		1.136	1.222	1.465	1.748	1.988	2.193	2.369	634.3626	5.5185	-0.3864	4.5387	128.3503	-260.6794	221.9824
Chlorotrifluoroethene	C ₂ CIF ₃				0.792	0.868	0.924	0.965	0.997	554.9252	6.3699	1.6592	-7.1911	107.4319	-205.1290	141.6516
Vinyl chloride	C ₂ H ₃ Cl	0.736	0.813	0.858	0.995	1.156	1.285	1.390	1.477	491.7027	10.6121	-5.5113	-24.6400	112.4196	-171.9770	100.5379
1,1-Dichloroethene	$C_2H_2CI_2$	0.605	0.661	0.692	0.782	0.879	0.953	1.009	1.055	483.9491	12.1716	-4.7585	-25.0224	116.3062	-180.1138	104.3240
Trichloroethene	C ₂ HCl ₃	0.529	0.584	0.609	0.676	0.741	0.788	0.823	0.851	451.8908	8.9582	-1.6449	-21.3433	117.8717	-193.6722	118.0824
Tetrachloroethene	C ₂ Cl ₄	0.513	0.559	0.578	0.623	0.665	0.695	0.718	0.736	358.9475	4.8891	1.7481	4.5515	104.8901	-235.9012	182.2698
Fluorobenzene	C ₆ H ₅ F		0.900	0.985	1.227	1.503	1.727	1.906	2.051	646.6513	4.7333	-2.1501	-19.1687	195.8215	-342.9686	228.1173
Chlorobenzene	C_6H_5Cl		0.820	0.873	1.055	1.291	1.485	1.637	1.755	676.0917	20.3111	-6.9381	-36.9151	185.3827	-302.0124	178.2699
Bromobenzene	C_6H_5Br		0.584	0.627	0.764	0.928	1.062	1.168	1.253	508.8340	20.2369	2.7854	-48.4022	210.5292	-306.5724	167.8627
lodobenzene	C_6H_5I		0.459	0.494	0.601	0.727	0.827	0.907	0.971	513.7413	18.0569	2.9747	-49.8646	225.0068	-333.4845	185.4410
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl			0.955	1.166	1.420	1.627	1.792	1.926	789.7233	11.4264	-17.9541	-15.6452	119.6219	-226.4380	155.1910
Benzyl chloride	C ₂ H ₂ Cl	0.586	0.709	0.773	0.954	1.159	1.321	1.451	1.556	522.1899	10.7951	-1.5160	-38.6145	205.2761	-324.2009	194.5097
n-Alkanes																
Methane	CH ₄			2.237	2.445	2.790	3.164	3.535	3.882	1530.8043	4.2038	-16.6150	-3.5668	43.0563	-86.5507	65.5986
Ethane	C_2H_6		1.651	1.748	2.059	2.481	2.873	3.220	3.520	1402.8537	4.3393	-13.6034	-2.2216	71.8248	-184.4821	162.4948
Propane	C ₃ H ₈	1.358	1.566	1.676	2.009	2.437	2.822	3.158	3.447	1089.3798	4.7246	-1.1767	3.7776	129.3687	-281.4223	216.9425
<i>n</i> -Butane	C_4H_{10}	1.391	1.591	1.698	2.028	2.449	2.823	3.144	3.418	852.6025	7.9657	-2.6234	-13.9200	143.1800	-262.3816	183.6957
<i>n</i> -Pentane	C_5H_{12}		1.562	1.667	1.995	2.422	2.803	3.131	3.411	789.3078	10.6168	0.9888	-24.2821	191.4972	-315.5929	203.9787
<i>n</i> -Hexane	C_6H_{14}		1.551	1.657	1.988	2.413	2.788	3.108	3.377	752.9844	13.4279	1.5402	-29.6772	208.3733	-342.0902	217.4263
<i>n</i> -Heptane	C_7H_{16}		1.545	1.652	1.983	2.408	2.780	3.095	3.358	785.9090	14.6277	-1.8476	-21.5324	168.6597	-283.0262	181.4694
<i>n</i> -Octane	C_8H_{18}		1.538	1.645	1.979	2.405	2.774	3.083	3.339	662.4091	20.7046	4.6878	-40.7644	232.4401	-359.1133	215.4126
<i>n</i> -Nonane	C_9H_{20}		1.532	1.641	1.977	2.401	2.768	3.073	3.324	828.9112	18.2983	-7.0327	-19.5401	163.6825	-294.9747	195.6096
<i>n</i> -Decane	C ₁₀ H ₂₂		1.528	1.638	1.976	2.400	2.764	3.066	3.315	807.8718	20.1071	-3.9883	-22.5527	184.3994	-327.2729	214.1176

<i>n</i> -Undecane	C ₁₁ H ₂₄		1.543	1.647	1.975	2.389	2.746	3.047	3.303	527.8639	45.4181	14.2637	-55.4188	248.2431	-370.4082	213.9896
<i>n</i> -Dodecane	C ₁₂ H ₂₆		1.523	1.634	1.974	2.397	2.760	3.059	3.303	844.1850	21.6766	2.1683	-25.2676	244.7925	-447.8236	295.3902
<i>n</i> -Tridecane	C ₁₃ H ₂₈		1.520	1.634	1.981	2.399	2.749	3.042	3.293	474.4332	59.5849	22.6875	-66.2783	286.5523	-426.4025	241.9263
<i>n</i> -Tetradecane	C ₁₄ H ₃₀		1.528	1.640	1.977	2.389	2.741	3.038	3.291	544.0586	42.6709	4.2513	-40.5758	203.7442	-317.2459	194.1666
<i>n</i> -Pentadecane	C ₁₅ H ₃₂		1.518	1.632	1.981	2.400	2.748	3.038	3.285	499.0399	65.1836	8.3493	-48.4514	218.6957	-332.8050	192.8519
<i>n</i> -Hexadecane	C ₁₆ H ₃₄		1.519	1.638	1.980	2.387	2.734	3.030	3.283	668.1744	18.2523	2.5022	-4.1518	177.7261	-329.3481	256.6324
<i>n</i> -Heptadecane	C ₁₇ H ₃₆		1.527	1.638	1.974	2.385	2.735	3.031	3.282	578.0195	45.7412	5.8301	-39.9872	215.2157	-341.8782	213.0248
<i>n</i> -Octadecane	C ₁₈ H ₃₈		1.526	1.637	1.974	2.384	2.733	3.027	3.279	536.1229	55.9070	9.8791	-44.9358	222.4113	-345,4429	210.0998
<i>n</i> -Nonadecane	C ₁₉ H ₄₀		1.528	1.638	1.972	2.381	2.731	3.026	3.277	582.1373	49.4869	10.0892	-42.4034	230.8885	-366,4691	228.9834
<i>n</i> -Eicosane	C ₂₀ H ₄₂	1.323	1.527	1.637	1.972	2.380	2.729	3.024	3.274	566.8372	54.1062	12.4032	-44.8725	237.4861	-374.5789	232.4371
Isoalkanes																
Isobutane	C ₄ H ₁₀	1.326	1.551	1.667	2.016	2.453	2.838	3.166	3.442	1301.6129	5.3582	-3.2872	14.9841	121.8152	-370.6200	338.4127
2-Methyl butane	C ₅ H ₁₂	1.287	1.532	1.653	2.002	2.428	2.807	3.142	3.436	796.3567	4.0740	1.8753	88.8118	-8.9551	-19.1416	144.6959
2,2-Dimethyl propane	C ₅ H ₁₂	1.296	1.548	1.674	2.038	2.483	2.877	3.225	3.534	788.3550	5.1118	0.2138	14.9499	142.6273	-312.3498	289.4580
2-Methyl pentane	C ₆ H ₁₄	1.286	1.529	1.651	2.008	2.442	2.819	3.142	3.418	1104.3653	6.0050	-0.6741	40.9931	79.5055	-276.2953	271.7875
3-Methyl pentane	C ₆ H ₁₄	1.252	1.495	1.621	1.986	2.422	2.795	3.115	3.393	521.3512	13.5283	2.8620	-47.9590	267.2919	-436,4879	284.5608
2,2-Dimethyl butane	C ₆ H ₁₄	1.274	1.509	1.635	2.007	2.456	2.844	3.180	3.477	516.5015	18.4334	3.0526	-50.8916	257.3425	-416.1133	262.7746
2,3-Dimethyl butane	C ₆ H ₁₄	1.213	1.485	1.616	1.983	2.421	2.806	3.142	3.434	544.9676	20.1015	-0.2858	-34.4718	167.8659	-253.4422	152.8084
Olefins																
Ethylene	C ₂ H ₄	1.308	1.449	1.530	1.792	2.137	2.443	2.707	2.934	765.3491	4.9341	-7.9136	-11.0137	74.3661	-127.7199	86.5313
Propylene	C ₃ H ₆	1.267	1.441	1.532	1.810	2.168	2.490	2.768	3.005	1453.8112	4.3426	-6.0609	7.4494	78.9678	-249.5605	239.4544
1-Butene	C ₄ H ₈	1.235	1.424	1.520	1.814	2.194	2.540	2.842	3.097	479.7773	4.3256	3.2718	58.5093	-95.3387	274,4396	26.8526
1-Pentene	C ₅ H ₁₀	1.247	1.437	1.542	1.861	2.247	2.575	2.852	3.089	502.0995	16.7161	0.9681	-40.6210	189.9928	-289.8708	173.3031
1-Hexene	C ₆ H ₁₂		1.454	1.569	1.890	2.268	2.594	2.876	3.118	518.3938	4.6055	-0.3015	3.6653	130.7511	-256.1823	235.6529
1-Heptene	C ₇ H ₁₄		1.478	1.576	1.886	2.280	2.618	2.903	3.145	576.1412	24.8325	-1.5064	-36.2342	175.2815	-271.1906	162.1852
1-Octene	C ₈ H ₁₆		1.460	1.569	1.900	2.301	2.635	2.911	3.142	498.9280	28.4670	10.9147	-62.5606	280.9159	-414.8178	236.4554
Propadiene	C ₃ H ₄	1.221	1.384	1.472	1.723	2.008	2.241	2.437	2.607	465.8339	10.5594	-7.2102	-23.6194	112.3287	-177.9108	107.9555
1,2-Butadiene	C ₄ H ₆	1.226	1.381	1.466	1.725	2.046	2.319	2.548	2.742	831.1926	7.9556	-123.6259	-1.1003	16.8009	-32.1157	26.9538
1,3-Butadiene	C ₄ H ₆	1.144	1.357	1.470	1.800	2.172	2.465	2.696	2.885	504.8693	12.3472	-3.1700	-35.7105	172.8337	-267.9782	156.3704
1,2-Pentadiene	C ₅ H ₈	1.206	1.383	1.479	1.766	2.112	2.404	2.652	2.865	502.0836	13.9603	5.1488	-56.7015	270.6766	-417.5797	251.6702
trans-1,3-Pentadiene	C ₅ H ₈	1.169	1.355	1.454	1.745	2.092	2.385	2.634	2.850	472.2185	14.6639	0.2031	-38.6990	182.6697	-283.2016	172.1526
1,4-Pentadiene	C ₅ H ₈	1.187	1.400	1.511	1.832	2.189	2.460	2.664	2.822	612.0521	11.1024	-0.1201	-42.4491	249.5228	-421.3161	255.7897
2,3-Pentadiene	C ₅ H ₈	1.265	1.455	1.548	1.809	2.112	2.376	2.611	2.821	395.7408	14.3200	2.2651	-43.4952	207.7465	-335.7468	210.2750
Acetylene and derivatives																
Acetylene	C ₂ H ₂		1.611	1.689	1.883	2.065	2.196	2.304	2.404	484.7405	5.5806	-12.0091	-11.2823	67.5455	-119.9447	79.3902
Propyne	C ₃ H ₄	1.281	1.424	1.500	1.728	2.002	2.230	2.420	2.583	727.9002	6.1061	3.7308	-66.5183	462.2200	-863.7855	588.4012
2-Butyne	C ₄ H ₆		1.363	1.435	1.670	1.969	2.232	2.462	2.664	435.9800	20.0593	3.1224	-42.6319	171.2131	-248.9928	140.1474
1-Butyne	C ₄ H ₆	1.236	1.406	1.496	1.758	2.068	2.328	2.546	2.734	594.1889	8.2395	5.6383	-93.5136	553.0655	-936.2200	602.0223
Naphthenes																
Cyclopropane	C ₃ H ₆		1.208	1.324	1.679	2.120	2.493	2.800	3.055	713.7107	5.4496	-10.9497	-15.5049	104.0811	-178.3456	116.5964

348

D3.1. Table 6. (continued)

				•	Temperature (°C)	ure (°C)							Equation ((0		
Substance	Formula	05-	0	25	100	200	300	400	200	А	В	C	Q	E	F	G
Cyclobutane	C ₄ H ₈	0.951	1.140	1.248	1.598	2.057	2.459	2.792	3.062	930.8483	6:09:9	2.5778	-89.4518	677.7646	-1285.7835	851.3535
Cyclopentane	C_5H_{10}		1.064	1.183	1.553	2.019	2.426	2.772	3.063	473.9844	12.2517	0.5415	-45.2376	197.8917	-275.7756	164.1954
Methyl cyclopentane	C ₆ H ₁₂	0.983	1.188	1.302	1.662	2.122	2.519	2.851	3.125	791.7216	10.3687	-14.9347	-19.6640	139.2833	-244,4440	160.0311
Ethyl cyclopentane	C ₇ H ₁₄	1.032	1.236	1.350	1.711	2.172	2.568	2.893	3.159	852.6188	12.3264	7.3838	-124.4888	900.0820	-1660.7870	1083.7922
Propyl cyclopentane	C ₈ H ₁₆	1.095	1.289	1.399	1.748	2.198	2.588	2.910	3.173	879.8969	14.9509	7.5889	-92.9435	686.4537	-1278.7989	840.7984
Butyl cyclopentane	C ₉ H ₁₈	1.055	1.285	1.409	1.776	2.212	2.580	2.891	3.157	510.2287	24.5355	-6.6885	-36.8382	182.9135	-287.1827	176.4629
Pentyl cyclopentane	C ₁₀ H ₂₀		1.356	1.470	1.816	2.243	2.613	2.924	3.186	744.0656	15.0124	-2.5387	-23.5233	200.6802	-346.2344	230.7800
Hexyl cyclopentane	C ₁₁ H ₂₂		1.384	1.494	1.833	2.259	2.625	2.933	3.192	651.5098	24.8279	4.4206	-45.1909	260.9829	-418.0936	259.0299
Cyclohexane	C ₆ H ₁₂		1.132	1.262	1.651	2.138	2.568	2.936	3.245	1034.0205	2.2661	-9.7253	12.5999	83.1032	-176.0842	129.9521
Methyl cyclohexane	C ₇ H ₁₄		1.261	1.380	1.755	2.232	2.648	2.997	3.287	700.0371	13.0168	-3.3396	-33.5298	208.2013	-329.5953	202.0251
Ethyl cyclohexane	C_8H_{16}		1.300	1.417	1.793	2.266	2.669	3.006	3.288	494.0977	37.1700	-3.2420	-40.6508	172.9927	-249.9383	140.6195
Propyl cyclohexane	C ₉ H ₁₈		1.353	1.463	1.825	2.290	2.687	3.015	3.288	552.0598	40.0743	-1.2145	-43.5560	193.6083	-286.0221	161.3476
Butyl cyclohexane	C ₁₀ H ₂₀			1.485	1.836	2.292	2.687	3.015	3.287	676.3415	28.9482	-2.9127	-39.5752	211.5104	-334.3413	199.5951
Pentyl cyclohexane	C ₁₁ H ₂₂		1.377	1.496	1.855	2.301	2.687	3.013	3.285	813.5232	13.5351	-1.2542	-15.0986	213.1065	-381.0515	259.5647
Hexyl cyclohexane	C ₁₂ H ₂₄		1.398	1.515	1.869	2.309	2.692	3.015	3.285	851.9134	15.6834	-6.0321	-11.2562	167.7792	-308.2092	211.9792
Cyclopentene	C ₅ H ₈	0.875	1.079	1.192	1.533	1.943	2.286	2.571	2.810	524.2790	12.7122	-6.6494	-32.6534	158.5544	-243.7381	146.0656
Cyclohexene	C ₆ H ₁₀	868'0	1.115	1.233	1.586	2.010	2.365	2.663	2.914	481.0918	16.5468	1.9341	-54.6373	249.2469	-373.4469	218.8272
Aromatic compounds																
Benzene	C_6H_6		0.956	1.055	1.349	1.703	1.991	2.212	2.373	809.7723	3.7727	-3.6189	-9.0633	149.9616	-223.5093	99.7303
Toluene	C ₇ H ₈	0.839	1.029	1.127	1.417	1.767	2.061	2.302	2.499	841.2618	5.3563	-8.1268	-8.4229	132.4066	-258.0367	181.8666
Ethyl benzene	C ₈ H ₁₀		1.102	1.201	1.498	1.859	2.160	2.405	2.604	908.5227	7.9010	-9.1146	-12.9499	165.9928	-343.4212	248.2148
Propyl benzene	C ₉ H ₁₂		1.161	1.264	1.565	1.926	2.229	2.475	2.674	1950.0270	5.3147	-37.4089	24.6757	-9.7945	-173.2279	305.2206
Butyl benzene	C ₁₀ H ₁₄		1.193	1.295	1.604	1.975	2.285	2.543	2.759	485.2103	29.2013	7.1705	-55.8817	250.3890	-371.2898	213.7531
Pentyl benzene	C ₁₁ H ₁₆	1.037	1.220	1.323	1.636	2.016	2.329	2.584	2.796	753.8201	23.4443	-425.7090	-1.9835	20.1155	-37.1862	29,4457
Hexyl benzene	C ₁₂ H ₁₈		1.257	1.357	1.662	2.038	2.357	2.621	2.839	775.6700	16.7476	7.0631	-47.8570	404.9666	-713.9274	462.9704
o-Xylene	C ₈ H ₁₀		1.151	1.249	1.529	1.857	2.137	2.375	2.579	609.8388	5.3273	-0.3832	-3.6723	168.1564	-306.0474	244.1396
<i>m</i> -Xylene	C ₈ H ₁₀	0.899	1.086	1.185	1.479	1.829	2.122	2.366	2.572	524.8743	14.4547	2.1723	-49.8936	255.6358	-395.9105	241.3380
<i>p</i> -Xylene	C ₈ H ₁₀	0.895	1.083	1.182	1.475	1.826	2.121	2.366	2.573	554.5575	12.5185	1.7380	-47.3879	260.5644	-409.1711	253.7921
1,2,3-Trimethyl benzene	C ₉ H ₁₂	1.056	1.232	1.324	1.597	1.929	2.215	2.458	2.666	552.6305	14.7160	6.4505	-50.8017	292.8565	-458.6487	296.1082
1,2,4-Trimethyl benzene	C ₉ H ₁₂	1.017	1.193	1.284	1.554	1.884	2.170	2.417	2.630	531.4374	13.9593	-1.2014	-26.5814	156.1717	-248.3199	167.1423
1,3,5-Trimethyl benzene	C ₉ H ₁₂	0.957	1.139	1.236	1.528	1.878	2.168	2.410	2.615	759.3563	14.4362	-307.7057	-1.3812	17.7781	-33.6487	27.8002
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄	1.126	1.305	1.397	1.668	1.996	2.278	2.519	2.726	569.2235	15.7579	5.5793	-36.6740	237.6957	-384.0478	257.8036
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄	1.075	1.252	1.346	1.623	1.955	2.240	2.486	2.699	425.1269	29.6833	10.6318	-59.1867	258.9429	-389.8433	231.4145
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄	1.107	1.275	1.364	1.633	1.962	2.248	2.494	2.706	496.9808	21.4489	10.2592	-59.7259	294.1429	-449.9035	282.1546
Pentamethyl benzene	C ₁₁ H ₁₆	1.174	1.358	1.453	1.730	2.062	2.345	2.587	2.793	518.4634	20.1576	9.4405	-50.8594	287.9065	-455.8520	296.4273
Hexamethyl benzene	C ₁₂ H ₁₈	1.221	1.414	1.512	1.793	2.125	2.406	2.645	2.850	503.3786	22.0085	5.6201	-36.1051	211.8811	-343.8426	227.8486
Styrene	C ₈ H ₈		1.091	1.178	1.445	1.767	2.033	2.250	2.427	614.9612	14.2195	1.6222	-45.1906	248.7041	-395.9648	237.9188

Isopropyl benzene	C ₉ H ₁₂		1.162	1.258	1.557	1.926	2.231	2.479	2.683	541.8872	28.4457	5.2895	-54.7513	249.1932	-373.2738	210.7473
Biphenyl	C ₁₂ H ₁₀	0.783	0.928	1.021	1.323	1.695	1.984	2.197	2.357	839.2611	29.0956	-840.9403	-1.7659	18.1764	-34.5202	27.6537
diphenyl methane	$C_{13}H_{12}$	0.763	0.980	1.083	1.373	1.704	1.975	2.195	2.376	912.0247	0.3789	-7.3276	68.9251	-6.9247	-117.1357	156.2244
Triphenyl methane	$C_{19}H_{16}$				1.322	1.648	1.917	2.136	2.315	693.7541	12.2683	-1.5320	-26.8670	285.6544	-503.9054	335.7974
Tetraphenyl methane	C ₂₅ H ₂₀				1.317	1.645	1.913	2.129	2.306	704.0798	11.6368	-13.1994	-10.6609	180.0007	-329.3314	227.2214
Naphthalene	C ₁₀ H ₈	0.741	0.933	1.030	1.310	1.633	1.896	2.107	2.278	810.0175	5.4557	-126.8803	-0.3906	20.9245	-42.2188	34.6214
1-Methylnaphthalene	$C_{11}H_{10}$	0.824	1.006	1.103	1.394	1.734	2.000	2.198	2.346	737.4298	13.6993	4.6727	-76.5654	524.0127	-924.2788	562.5966
2-Methylnaphthalene	C ₁₁ H ₁₀			1.122	1.397	1.719	1.984	2.200	2.378	692.3897	7.8093	-0.1056	-21.8522	268.0494	-481.6940	328.2843
1-Ethylnaphthalene	C ₁₂ H ₁₂			1.178	1.464	1.797	2.069	2.291	2.472	688.2104	9.5394	-3.1238	-18.5037	207.2486	-373.2825	253.7499
2-Ethylnaphthalene	C ₁₂ H ₁₂			1.180	1.460	1.787	2.057	2.278	2.460	701.0440	9.2404	-1.2002	-16.7838	224.0503	-407.6486	281.3767
Alcohols																
Methanol	CH₄O		1.328	1.376	1.545	1.795	2.035	2.253	2.445	846.6321	5.7309	-4.8842	-12.8501	78.9997	-127.3725	82.7107
Ethanol	C_2H_6O		1.524	1.599	1.827	2.115	2.372	2.596	2.791	615.0622	7.4449	10.6424	39.8445	-229.0321	358.5449	-228.5963
1-Propanol	C ₃ H ₈ O	1.169	1.338	1.431	1.708	2.045	2.336	2.586	2.804	506.0032	12.1539	0.0041	-36.1389	175.9466	-276.1927	171.3886
1-Butanol	C ₄ H ₁₀ O	1.167	1.354	1.456	1.765	2.133	2.440	2.699	2.920	492.3989	18.1172	0.2036	-41.5543	192.4340	-295.5686	175.0644
1-Pentanol	C ₅ H ₁₂ O	1.186	1.375	1.481	1.799	2.175	2.486	2.746	2.967	456.0466	26.3377	5.3197	-51.8114	223.3194	-331.4368	188.1740
1-Hexanol	C ₆ H ₁₄ O		1.413	1.515	1.816	2.179	2.492	2.760	2.989	539.7646	13.6357	-2.5712	-21.6173	133.0466	-212.0847	143.2168
1-Heptanol	C ₇ H ₁₆ O		1.406	1.514	1.839	2.227	2.547	2.810	3.031	472.7577	32.1074	12.4362	-65.6487	284.9801	-418.5724	235.1440
1-Octanol	C ₈ H ₁₈ O		1.434	1.539	1.847	2.220	2.541	2.814	3.046	473.5372	21.6301	3.8006	-36.3164	182.8327	-277.2652	176.9866
Isopropanol	C ₃ H ₈ O	1.186	1.389	1.492	1.783	2.114	2.389	2.624	2.826	418.8801	14.1696	-1.4167	-36.6301	168.5334	-261.1031	156.5725
2-Methyl-1-propanol	C ₄ H ₁₀ O				1.766	2.118	2.427	2.690	2.913	798.5957	9.0864	1.3782	-21.1202	195.9087	-342.6424	230.5518
3-Methyl-1-butanol	C ₅ H ₁₂ O			1.483	1.794	2.155	2.464	2.729	2.957	551.4814	3.6966	-0.0476	15.9099	144.3529	-303.3896	290.0544
Ethylene glycol	$C_2H_6O_2$				1.454	1.705	1.924	2.111	2.271	710.7946	6.0109	1.5905	-11.3311	139.2296	-234.0852	165.8867
1,3-Propylene glycol	$C_3H_8O_2$				1.539	1.835	2.084	2.284	2.446	764.0921	18.9126	-9.9306	-31.5200	172.4209	-303.9785	193.8688
Glycerol	C ₃ H ₈ O ₃			1.251	1.450	1.705	1.917	2.087	2.226	830.0781	16.2564	-11.1044	-25.4696	162.1117	-309.8217	212.4448
Cyclohexanol	$C_6H_{12}O$			1.325	1.633	2.036	2.401	2.711	2.964	335.6044	3.1522	-2.1230	29.3992	-48.7158	11.4720	130.4559
Benzyl alcohol	C ₇ H ₈ O			1.033	1.303	1.630	1.900	2.118	2.296	806.5585	9.1764	-22.3177	-13.5166	111.0271	-211.6739	146.7900
Phenols																
o-Cresol	C ₇ H ₈ O		1.084	1.180	1.442	1.736	1.977	2.176	2.341	781.3184	1.5589	-4.2264	52.1150	-23.7416	-39.2506	93.9738
<i>m</i> -Cresol	C ₇ H ₈ O		1.050	1.154	1.432	1.734	1.976	2.173	2.337	711.0546	-1.1668	-7.9357	48.3832	-20.0224	-58.0273	111.3934
<i>p</i> -Cresol	C ₇ H ₈ O		1.054	1.151	1.418	1.717	1.961	2.162	2.332	493.7805	6.6781	-4.1148	-23.5492	172.1028	-293.9660	200.9190
Phenol	C ₆ H ₆ O	0.817	1.015	1.108	1.359	1.637	1.867	2.060	2.222	344.0544	12.3852	-3.4905	-38.7742	183.2357	-287.4124	175.9400
Carboxylic acids																
Formic acid	CH_2O_2	0.859	0.947	0.992	1.132	1.314	1.479	1.621	1.741	1422.9543	3.5792	-2.8439	8.3366	48.7114	-138.2338	113.0764
Acetic acid	$C_2H_4O_2$	0.858	0.987	1.054	1.254	1.501	1.716	1.899	2.054	608.8356	5.1040	0.3115	-18.4327	135.3287	-205.9415	138.0387
Propionic acid	$C_3H_6O_2$			1.211	1.446	1.699	1.904	2.079	2.231	457.0683	5.1709	-3.4822	-24.0638	172.4621	-312.7397	215.4305
Butyric acid	$C_4H_8O_2$			1.312	1.541	1.812	2.043	2.237	2.398	459.6913	5.9009	4.0620	3.9149	181.7266	-291.7462	291.5314
Valeric acid	$C_5H_{10}O_2$			1.349	1.599	1.888	2.134	2.342	2.521	514.8584	995999	2.2909	-9.1907	194.6026	-358.7199	290.3090
Caproic acid	$C_6H_{12}O_2$			1.386	1.647	1.946	2.200	2.416	2.602	451.7423	7.1043	-2.0512	-11.4873	139.7141	-261.2768	206.1596
Acetic anhydride	C ₄ H ₆ O ₃		0.908	0.977	1.189	1.446	1.659	1.831	1.973	539.2754	16.7548	-0.7395	-39.4099	184.3347	-277.7276	159.5938

ر	J	•

D3.1. Table 6. (continued)

Substance Propionic anhydride						200		-								
Propionic anhydride	Formula	-50	0	25	100	2002	300	400	200	٧	В	U	Q	Е	F	b
	C ₆ H ₁₀ O ₃			1.161	1.409	1.677	1.898	2.085	2.244	532.8036	-3.1593	-10.1506	49.8107	-27.4669	-59.7251	135.5787
Chloroacetic acid	C ₂ H ₃ ClO ₂			0.823	0.952	1.093	1.205	1.296	1.371	513.1194	5.0317	0.1128	-13.7464	135.2842	-240.6474	169.3052
Dichloroacetic acid	C ₂ H ₂ Cl ₂ O ₂				0.792	0.876	0.947	1.005	1.051	817.0589	10.0416	4.6688	-22.0572	170.5135	-302.1516	192.3847
Trichloroacetic acid	C ₂ HCl ₃ O ₂				0.737	0.810	0.863	0.904	0.935	576.9782	8.1143	3.1010	-8.6521	139.2451	-275.8220	193.3559
Ketones																
Ketene	C ₂ H ₂ O	0.993	1.097	1.149	1.297	1.462	1.596	1.711	1.811	468.8498	8006:9	-5.6398	-17.1500	88.2773	-144.6588	91.7470
Acetone	C ₃ H ₆ O	1.092	1.216	1.286	1.505	1.792	2.049	2.270	2.458	705.8948	7.7263	0.4677	-23.3910	148.3440	-229.3625	144.1393
Methyl ethyl ketone	C ₄ H ₈ O	1.210	1.344	1.420	1.655	1.950	2.210	2.436	2.632	482.3897	15.6860	4.3811	-42.2777	189.9671	-285.2067	172.9528
Diethyl ketone	C ₅ H ₁₀ O	1.286	1.434	1.509	1.737	2.030	2.296	2.532	2.735	1765.2345	9.0644	-1.5515	40.2552	-22.0621	-74.5494	104.5099
Dipropyl ketone	C ₇ H ₁₄ O	1.288	1.449	1.534	1.792	2.118	2.406	2.651	2.857	735.3618	14.3567	9.4665	-32.5304	310.8597	-478.7656	302.7430
Acetophenone	C ₈ H ₈ O			0.940	1.174	1.472	1.731	1.946	2.121	763.6426	10.1937	-2.3585	-29.5326	204.0248	-329.8159	198.9534
Benzophenone	C ₁₃ H ₁₀ O				1.232	1.528	1.774	1.976	2.140	733.7134	6:8829	-0.9461	-4.1615	224.2713	-394.9366	268.1667
Ethers																
Dimethyl ether	C ₂ H ₆ O	1.22.1	1.353	1.426	1.656	1.950	2.217	2.459	2.675	465.9073	10.4329	-2.4883	-24.9240	115.5549	-180.8060	116.0588
Diethyl ether	C ₄ H ₁₀ O	1.391	1.523	1.598	1.841	2.172	2.464	2.701	2.894	2983.3712	10.7009	-42.8010	-5.8344	309.3391	-1779.9754	3121.8402
Dipropyl ether	C ₆ H ₁₄ O		1.466	1.553	1.825	2.179	2.497	2.771	3.004	705.4836	15.9106	6.9763	-38.3882	243.6142	-372.7539	231.0957
Methyl propyl ether	C ₄ H ₁₀ O			1.519	1.771	2.102	2.404	2.668	2.896	882.1014	9.7244	0.6484	-12.9184	142.8094	-245.9753	166.8905
Ethyl propyl ether	C ₅ H ₁₂ O			1.535	1.803	2.151	2.465	2.739	2.973	1138.2872	9.6137	1.3570	5.9532	147.9699	-323.5530	242.4878
Ethylene oxide	C ₂ H ₄ O	0.872	1.012	1.091	1.334	1.637	1.896	2.113	2.294	634.8610	5.7870	-8.5443	-15.4287	89.6330	-144.6410	92.4648
Furane	C ₄ H ₄ O		0.871	0.960	1.222	1.518	1.749	1.931	2.079	486.3671	12.0372	-4.5658	-36.8218	170.9486	-259.5831	148.5210
1,4-Dioxane	$C_4H_8O_2$		0.953	1.046	1.326	1.667	1.956	2.198	2.403	484.0338	15.6011	-0.2760	-44.0774	198.9436	-295.1276	172.8842
Aldehydes																
Formaldehyde	CH ₂ O	1.119	1.157	1.182	1.272	1.415	1.565	1.708	1.835	1636.6439	4.0763	-17.0910	-2.4580	38.3216	-87.5064	71.7045
Acetaldehyde	C ₂ H ₄ O	1.094	1.195	1.253	1.435	1.676	1.895	2.088	2.256	586.5086	6.5867	0.0587	-20.9195	110.1906	-164.8871	107.6335
Paraldehyde	$C_6H_{12}O_3$				1.415	1.792	2.085	2.296	2.450	773.1687	27.7745	-44.6451	-25.3175	148.3349	-268.2676	171.6125
Furfural	$C_5H_4O_2$	0.791	0.949	1.026	1.238	1.475	1.668	1.824	1.951	413.7560	7.7545	1.2143	-39.4944	214.9979	-331.8139	211.2817
Benzaldehyde	C ₂ H ₆ O		0.971	1.054	1.298	1.584	1.817	2.004	2.154	671.1861	8:3938	-1.9508	-26.9338	201.7159	-344.2504	219.1408
Salicylaldehyde	C ₂ H ₆ O ₂				1.328	1.607	1.836	2.020	2.168	6909.699	5.1161	0.0212	3.1101	172.7490	-303.1054	213.6292
Esters																
Methyl formate	C ₂ H ₄ O ₂		1.039	1.105	1.295	1.521	1.710	1.867	1.999	650.0705	5.0360	-0.4487	-13.5453	126.9502	-219.5695	151.4586
Ethyl formate	$C_3H_6O_2$	0.998	1.137	1.204	1.396	1.638	1.861	2.064	2.242	404.9129	3.7636	0.9389	10.0507	93.3832	-253.2640	280.9690
Propyl formate	$C_4H_8O_2$			1.249	1.498	1.793	2.035	2.232	2.395	648.4015	11.8633	-2.9629	-29.6799	181.7404	-312.5326	200.3552
Methyl acetate	C ₃ H ₆ O ₂			1.147	1.342	1.591	1.817	2.014	2.183	1067.5571	5.8357	3.3580	24.4866	171.0516	-317.8321	204.6031
Ethyl acetate	C ₄ H ₈ O ₂		1.238	1.290	1.485	1.763	2.012	2.219	2.386	750.2984	19.6540	-1.2186	-36.4137	186.0861	-297.5340	174.1510
Propyl acetate	C ₅ H ₁₀ O ₂			1.330	1.565	1.849	2.099	2.313	2.496	468.6307	6.3075	4.6248	25.2463	171.5921	-323.6548	393,4110

Methyl propionate	C ₄ H ₈ O ₂				1.534	1.817	2.037	2.218	2.374	511.6446	8.3735	-3.5348	-32.5843	210.7834	-374.4899	246.1545
Ethyl propionate	$C_5H_{10}O_2$				1.579	1.887	2.134	2.335	2.503	573.7088	7.7317	-1.7971	-24,4531	206.2430	-371.7278	254.3115
Propyl propionate	$C_6H_{12}O_2$			1.335	1.627	1.948	2.202	2.411	2.588	578.4427	8.0466	-10.2830	-14.6931	135.7510	-254.7277	179.9220
Methyl butyrate	$C_5H_{10}O_2$			1.318	1.592	1.889	2.127	2.327	2.499	481.5596	7.2303	-4.7969	-24.3266	182.1370	-329.2853	227.0399
Ethyl butyrate	$C_6H_{12}O_2$			1.341	1.624	1.942	2.199	2.411	2.590	611.9893	8.3737	-6.7042	-12.5524	135.5255	-253.6930	181.7482
Methyl benzoate	$C_8H_8O_2$				1.143	1.433	1.675	1.867	2.020	777.6575	19.3345	-21.9744	-26.0082	154.6223	-274.4153	175.8682
Ethyl benzoate	$C_9H_{10}O_2$				1.215	1.520	1.771	1.972	2.136	746.8498	13.3061	-3.6685	-38.3335	264.3178	-475.3466	308.6488
Methyl salicylate	C ₈ H ₈ O ₃				1.173	1.435	1.648	1.818	1.954	731.4071	11.4812	-1.4487	-32.3335	247.6723	-444.5874	288.4964
Amines																
Methyl amine	CH _S N	1.450	1.618	1.710	1.988	2.317	2.596	2.834	3.043	526.2987	8.1347	-6.7634	-19.4168	99.1609	-161.5452	102.4923
Ethyl amine	C ₂ H ₇ N		1.530	1.615	1.895	2.258	2.577	2.851	3.087	536.5039	13.9460	-0.9874	-33.9284	152.3293	-230.0192	135.6922
Propyl amine	C ₃ H ₉ N		1.529	1.621	1.916	2.288	2.610	2.884	3.121	485.4942	20.2338	1.8071	-40.8876	174.7357	-258.6134	148.6605
<i>n</i> -Butyl amine	C ₆ H ₁₅ N		1.524	1.616	1.913	2.294	2.623	2.904	3.144	521.8162	22.5154	3.3114	-43.2202	190.4295	-283.4029	163.9525
Dimethyl amine	C ₂ H ₇ N		1.480	1.572	1.869	2.248	2.579	2.862	3.104	517.1446	13.7294	-1.4905	-33.7718	150.1642	-224.7214	131.9666
Trimethyl amine	C ₃ H ₉ N		1.448	1.556	1.880	2.281	2.628	2.923	3.173	556.5448	8.8001	1.0661	-31.1281	176.1563	-265.6208	170.2390
Diethyl amine	C ₄ H ₁₁ N		1.489	1.584	1.889	2.279	2.618	2.907	3.154	481.9254	24.4069	7.0965	-51.6239	214.2465	-308.3217	173.5640
Triethyl amine	C ₆ H ₁₅ N		1.488	1.584	1.902	2.307	2.654	2.945	3.191	471.8903	40.9534	6.6919	-46.2079	186.7660	-265.4862	145.4154
Piperidine	C ₅ H ₁₁ N				1.843	2.279	2.641	2.921	3.132	789.5315	14.3328	-7.2974	-28.8283	185.2647	-313.8948	186.7509
Pyridine	C ₆ H ₇ N		0.895	0.992	1.261	1.567	1.816	2.020	2.187	931.3885	-0.2894	-4.7426	61.0122	-41.5212	-31.1320	87.8622
Aniline	C ₆ H ₇ N	906.0	1.096	1.192	1.467	1.779	2.027	2.226	2.389	553.0789	10.0504	-2.1951	-33.8931	200.8168	-328.5051	204.3701
N-methyl aniline	C ₂ H ₉ N				1.468	1.808	2.080	2.300	2.479	617.5389	4.7482	-4.0307	-16.4466	192.1456	-342.6990	234.9554
N,N-dimethyl aniline	C ₈ H ₁₁ N				1.454	1.820	2.120	2.366	2.565	588.2014	2.5877	-2.6448	-3.1347	202.5766	-325.4600	235.2223
N,N-diethyl aniline	$C_{10}H_{15}N$				1.542	1.922	2.233	2.486	2.693	695.7592	8.7586	-8.2134	-16.8824	178.2587	-319.5727	215.8269
Phenylhydrazine	$C_6H_8N_2$				1.417	1.724	1.968	2.163	2.321	596.7362	3.9280	-2.2980	-14.6956	225.7757	-416.3451	292.5245
Diphenyl amine	$C_{12}H_{11}N$				1.334	1.666	1.932	2.144	2.315	705.0600	5.5301	-7.3743	-12.6309	204.7976	-387.7767	268.3223
Nitriles																
Acetonitrile	C ₂ H ₃ N	1.119	1.218	1.271	1.435	1.642	1.827	1.989	2.132	575.7440	5.8067	-0.7216	-15.8722	92.6961	-149.0017	101.9069
Propionitrile	C ₃ H ₅ N	1.115	1.260	1.337	1.562	1.827	2.051	2.244	2.413	467.1284	11.0885	-1.3805	-31.1335	148.5534	-234.2472	144.0482
Butyronitrile	C ₄ H ₇ N	1.168	1.336	1.423	1.677	1.973	2.221	2.431	2.610	495.5976	11.9010	4.4644	-53.0329	268.1488	-426.2804	263.2369
Benzonitrile	C ₂ H ₅ N	0.832	0.977	1.056	1.288	1.556	1.770	1.942	2.081	486.6942	17.2633	2.8971	-49.4846	226.3075	-336.3367	190.1459
Amides																
Formamide	CH ₃ NO			1.020	1.187	1.412	1.612	1.781	1.922	771.4776	0.0800	-8.0917	-13.8793	84.4610	-140.6239	89.9474
Nitroderivates																
Nitromethane	CH ₃ NO ₂	0.788	0.877	0.927	1.086	1.292	1.468	1.612	1.726	1055.4685	5.3794	-10.9553	-8.2607	88.4218	-187.4973	138.2815
Nitrobenzene	$C_6H_5NO_2$			1.044	1.201	1.424	1.620	1.777	1.901	766.3016	22.4706	0.2908	-41.1361	213.1554	-347.2088	202.9334
o-Nitrotoluene	C ₇ H ₇ NO ₂			1.096	1.268	1.510	1.724	1.899	2.039	815.1681	23.1378	1.0993	-41.1763	228.3301	-381.3986	227.7271
<i>m</i> -Nitrotoluene	C ₂ H ₂ NO ₂			1.096	1.268	1.510	1.724	1.899	2.039	815.1681	23.1378	1.0993	-41.1763	228.3301	-381.3986	227.7271
<i>p</i> -Nitrotoluene	C ₇ H ₇ NO ₂			1.096	1.268	1.510	1.724	1.899	2.039	815.1681	23.1378	1.0993	-41.1763	228.3301	-381.3986	227.7271

D3.1. Table 7. Dynamic viscosity of saturated liquids in mPa s

				1	Temperature (°C)	()°C)						Equation (2)		
Substance	Formula	-50	-25	0	20	50	100	150	200	А	В	С	D	E
Elements														
Xenon	Xe	0.23	0.16	0.11						0.55314	-37.82854	164.800	-1106.936	0.00050739
Krypton	Kr									1.20479	0.60580	216.325	2.278	0.00008756
Argon	Ar									2.92010	3.51821	151.048	-164.493	0.00002311
Air										2.22755	0.49596	132.897	4.000	0.00001638
Nitrogen	N_2									2.23392	0.01273	127.145	36.807	0.00001343
Oxygen	02									2.14927	0.00116	157.423	36.005	0.00001839
Fluorine	F ₂									3.79391	2.18842	331.029	-177.692	0.000000000
Chlorine	Cl ₂	0.56	0.46	0.39	0.34	0:30	0.24			0.48281	1.35353	439.327	-110.083	0.00017187
Bromine	Br ₂			1.25	1.02	0.77				3.19074	1.61660	499.481	-209.817	0.00005839
lodine	12							1.78	1.28	3.26629	2.09143	793.019	-407.779	0.00007227
Anorganic compounds														
Hydrogen fluoride	生	95'0	0.36	0.26						0.52901	0.61638	475.848	81.999	0.00007721
Hydrogen chloride	HCI		0.14	0.11	0.08					6.63052	-0.88397	445.763	72.787	0.00000041
Hydrogen bromide	HBr	0.55	0.39	0.28	0.21	0.14				4.16618	0.00407	382.714	11.651	0.00001234
Hydrogen iodide	Н	1.46	1.08	0.81	0.64	0.45	0.23	60.0		5.17952	-0.00350	446.147	-81.737	0.00001373
Hydrogen cyanide	HCN			0.24	0.19					0.59249	1.74862	394.903	-1.249	0.00008283
Water	H_2O				1.01	0.56	0.28	0.18	0.13	0.45047	1.39753	613.181	63.697	0.00006896
Hydrogen sulfide	H ₂ S	0.37	0.25	0.17	0.12	0.07				5.74095	-0.46553	425.493	98.235	0.00000105
Ammonia	NH ₃	0.33	0.23	0.17	0.14	0.10	0.06			0.76099	6.53802	373.726	-304.733	0.00005863
Nitric oxide	NO									7.22569	-0.17859	202.500	-106.123	0.00000172
Nitrogen Dioxide	NO ₂			0.53	0.43	0:30	0.14			6.86768	-0.14884	423.463	-446.706	0.00000919
Nitrous oxide	N_2O	0.17	0.12	0.09						3.47166	2.50311	379.730	-222.126	0.00000792
Dinitrogentetroxide	N_2O_4			0.53	0.43					-0.03739	0.96651	615.987	11.286	0.00013891
Cyanogen	C_2N_2		19.29	3.09	0.91					1.47085	5.11957	729.566	-34.528	0.00000010
Phosphorus trichloride	PCI ₃	1.22	0.87	99.0	0.55	0.44				0.41897	0.69273	676.023	-10.272	0.00013570
Cyanogen chloride	CICN			0.78						0.85260	1.26974	632.123	-38.108	0.00006912
Silane	SiH ₄	0.07								0.61446	0.39805	505.030	-16.673	0.00002342
Tetrachlorosilane	SiCl ₄			0.56	0.47	0.37	0.25	0.17		2.64937	4.43604	883.209	-795.200	0.00000763
Carbon monoxide	CO									1.12644	1.20497	177.745	-40.077	0.00002545
Carbon dioxide	CO ₂	0.23	0.15	0.10	0.07					2.68801	4.19607	305.198	-186.836	0.00002914
Carbon suboxide	C ₃ O ₂	2.00	1.18	0.76	0.57	0.39	0.24	0.17		1.36451	1.23603	651.929	-33.959	0.00003443
Carbonyl sulfide	COS	0.33								1.09689	1.29173	344.677	-34.000	0.00008662

Phosgene	CCI5O			0.59						2.05445	0.57499	405.660	-78.105	0.00011430
Carbon disulfide	CS ₂	96.0	09:0	0.44	0.36					-1.21697	2.07022	423.015	16.676	0.00044103
Sulfur dioxide	502		0.53	0.38	0.29	0.19	0.10			11.30591	4.76771	588.187	-978.880	0.00000014
Sulfur trioxide	503				2.19					1.05142	1.92462	096.089	61.410	0.00001373
Sulfuryl chloride	Cl ₂ SO ₂			0.91	0.73	0.55				0.89331	0.87316	742.201	-42.953	0.00007532
Sulfur hexafluoride	${\sf SF}_6$	0.54	0.42	0.34	0.29					1.61414	2.05898	451.978	-219.147	0.00006271
Organic compounds containing sulfur	sulfur													
Methyl mercaptan	CH₄S	0.50	0.38	0:30						0.95210	0.76506	550.522	-25.991	0.00005879
Ethyl mercaptan	C ₂ H ₆ S	0.67	0.48	0.36	0:30					-0.01119	1.88058	472.369	-65.473	0.00014524
Dimethyl sulfide	C ₂ H ₆ S		0.48	0.36	0.29					0.72488	0.86931	589.869	-12.293	0.00006185
Diethyl sulfide	C ₄ H ₁₀ S		0.78	0.56	0.45	0.33				1.53683	1.21439	583.673	-63.530	0.00004208
Thiophene	C₄H₄S			0.87	99.0	0.47	0:30			0.41152	1.31563	668.146	-36.622	0.00009023
Halogenated hydrocarbons														
Fluoromethane (R41)	CH ₃ F	0.21								-1.76244	6.54755	277.164	-206.901	0.00033288
Difluoromethane (R32)	CH_2F_2	0.37	0.26	0.19						2.02991	0.63260	324.135	42.295	0.00005219
Trifluoromethane (R23)	CHF ₃	0.21	0.16							0.72088	2.00276	267.675	-32.095	0.00011482
Tetrafluoromethane (R14)	CF_4	0.16								1.28783	0.76244	405.676	-14.981	0.00002872
Methyl chloride	CH ₃ Cl	0.46	0.31	0.22	0.18	0.14	0.09			0.67544	2.38486	379.438	-35.279	0.00007741
Methylene chloride	CH ₂ Cl ₂	1.07	0.73	0.53	0.43	0.33	0.24			0.85505	0.90417	608.752	-18.795	0.00007319
Chloroform	CHCl ₃	1.50	0.99	0.71	0.57	0.43				0.61822	0.98765	660.257	-29.324	0.00009188
Carbon tetrachloride	CCI ₄			1.31	0.96	0.64	0.38	0.26		0.83033	2.29078	562.119	-73.328	0.00009929
Bromomethane	CH ₃ Br	0.65	0.49	0.38						0.58164	1.14346	527.197	-56.840	0.00010019
Dibromomethane	CH_2Br_2		1.93	1.33	1.04	0.77				2.55875	-0.00001	884.158	142.141	0.00001849
Tribromomethane	CHBr ₃				1.99	1.39	0.88			1.18800	0.70521	870.903	-15.622	0.00009053
Tetrabromomethane	CBr ₄						0.25	0.13	80.0	0.71298	1.97356	549.836	121.421	0.00003942
Chlorodifluoromethane (R22)	CHCIF ₂	0.32	0.25	0.20	0.16	0.12				2.50542	0.00079	369.199	56.279	0.00002948
Dichlorofluoromethane (R21)	CHCl ₂ F	0.72	0.52	0.40	0.33	0.26	0.19	0.13		1.10954	1.04245	429.188	-2.978	0.00009772
Chlorotrifluoromethane (R13)	CCIF ₃	0.22	0.17							0.76360	1.63878	278.217	-10.329	0.00010624
Dichlorodifluoromethane (R12)	CCl ₂ F ₂	0.43	0.32	0.24	0.19	0.14				2.23435	96.51808	363.171	-3940.344	0.00007311
Trichlorofluoromethane (R11)	CCI ₃ F	0.98	0.72	0.53	0.42	0.31	0.18			1.85826	74.83744	443.154	-3365.675	0.00007753
Ethyl fluoride (R161)	C ₂ H ₅ F	0.24								-2.84655	2.06943	550.110	-106.565	0.00052565
Ethyl chloride	C ₂ H ₅ Cl	0.58	0.42	0.32	0.26	0.20				2.32681	0.36985	448.229	35.146	0.00003041
Ethyl bromide	C ₂ H ₅ Br	0.97	0.66	0.48	0.39					0.83478	2.99446	335.850	-59.764	0.00021716
1,1-Dichloroethane	C ₂ H ₄ Cl ₂	1.35	0.88	0.62	0.49	0.36				1.37295	1.23179	556.460	-39.335	0.000005608
1,2-Dichloroethane	C ₂ H ₄ Cl ₂		1.56	1.09	0.84	0.58	0.33	0.21	0.14	-0.45273	17.42862	610.982	-1044.345	0.00008499
1,2-Dibromoethane	C ₂ H ₄ Br ₂				1.73	1.14	0.67			1.30990	0.80947	895.720	-17.882	0.00004775
1,1,1-Trifluoroethane (R143a)	C ₂ H ₃ F ₃	0.31	0.22	0.16	0.13	0.00				4.61506	1.76477	546.015	-252.896	0.00000187

354

D3.1. Table 7. (continued)

				T	Temperature (°C)	e (°C)						Equation (2)		
Substance	Formula	-50	-25	0	20	50	100	150	200	А	В	C	D	E
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃		1.86	1.13	0.82	0.56	0.35			0.61256	2.57080	431.477	-5.988	0.00020394
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄		4.65	2.60	1.77	1.11	0.63	0.43		-1.87216	3.09287	643.532	-79.592	0.00064250
Pentachloroethane	C ₂ HCl ₅		6.15	3.46	2.35	1.45	0.78	0.47		1.19161	3.53080	457.262	-59.526	0.00026156
Hexachloroethane	C_2Cl_6								0.38	0.93763	1.54402	933.967	-95.372	0.00004948
1,1,2,2-Tetrachlorodifluoroethane	$C_2CI_4F_2$					0.89				2.43919	1.98108	589.547	-55.108	0.00002928
1,1,2-Trichlorotrifluoroethan	$C_2Cl_3F_3$		1.47	0.94	0.70	0.49	0:30			0.82677	1.39278	641.776	-33.411	0.00006607
1,2-Dichlorotetrafluoroethane	$C_2Cl_2F_4$	1.07	69.0	0.48	0.37	0.27	0.17			1.87065	0.72922	852.495	-53.946	0.00001040
1-Chloropropane	C ₃ H ₇ Cl	0.89	0.61	0.44	0.36	0.27	0.18	0.11		1.92904	0.84928	457.628	5.103	0.00004817
1-Chlorobutane	C ₄ H ₉ Cl	1.28	0.82	0.57	0.45	0.33	0.22	0.16		1.52415	0.59496	866.798	-26.351	0.00001925
1-Chloropentane	C ₅ H ₁₁ Cl	1.86	1.14	0.77	0.59	0.42	0.27			0.62392	1.37795	655.392	-49.534	0.00007030
Chlorotrifluoroethene	C ₂ CIF ₃	2.80								2.44328	0.87633	677.365	-14.748	0.00001698
Vinyl chloride	C ₂ H ₃ Cl	0.39	0.29	0.22	0.18	0.14	0.10	0.07		3.40346	0.04475	1554.962	-9.904	0.00000057
1,1-Dichloroethene	$C_2H_2CI_2$	1.21	0.79	0.54	0.42					1.81449	1.43005	596.573	-79.313	0.00002607
Trichloroethene	C ₂ HCl ₃		0.97	0.70	0.57	0.44				0.09853	0.87464	646.099	-1.547	0.00016897
Tetrachloroethene	C ₂ Cl ₄			1.12	0.89	0.67	0.45	0.33	0.25	1.65634	0.78790	633.414	-20.306	0.00006745
Fluorobenzene	C_6H_5F		1.17	0.76	0.58	0.42	0.27	0.18		2.04963	0.38729	532.926	91.376	0.00004074
Chlorobenzene	C ₆ H ₅ Cl			1.06	0.80	0.57	0.37	0.26	0.19	2.62728	-0.00003	685.399	159.643	0.00001868
Bromobenzene	C ₆ H ₅ Br		2.47	1.55	1.14	0.78	0.48	0.34		2.12889	0.10412	1705.036	59.324	0.00000753
lodobenzene	C ₆ H ₅ I		4.05	2.38	1.69	1.11	0.65	0.43		2.37813	0.16293	1304.037	67.555	0.00001003
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl		2.08	1.30	0.95	0.65	0.41	0.29		0.66570	2.57537	448.320	-26.587	0.00021128
Benzyl chloride	C ₂ H ₂ Cl		2.67	1.67	1.20	0.79	0.44	0.28		1.98218	1.93498	643.943	-99.094	0.00003369
n-Alkanes														
Methane	CH₄									2.31365	0.66803	200.211	-19.178	0.00001039
Ethane	C_2H_6	0.10	0.08	90.0						2.43591	0.09710	309.734	33.467	0.00001554
Propane	C_3H_8	0.22	0.16	0.13	0.10	0.07				2.56344	0.16137	372.533	38.033	0.00001751
<i>n</i> -Butane	C_4H_{10}	0.36	0.26	0.20	0.17	0.13	0.08			2.62924	0.23703	428.069	37.093	0.00001801
<i>n</i> -Pentane	C_5H_{12}	0.51	0.37	0.28	0.23	0.18	0.11			2.80331	0.25074	474.455	32.856	0.00001653
<i>n</i> -Hexane	C ₆ H ₁₄	0.75	0.51	0.38	0.31	0.24				0.69508	0.53665	704.295	16.747	0.00005657
<i>n</i> -Heptane	C_7H_{16}	1.17	0.76	0.53	0.42	0.30	0.19			2.96002	0.24715	553.942	62.172	0.00001424
<i>n</i> -Octane	C ₈ H ₁₈	1.63	1.03	0.71	0.55	0.39	0.24			2.87088	0.35483	577.534	48.983	0.00001722
<i>n</i> -Nonane	C ₉ H ₂₀	2.48	1.45	0.94	0.70	0.48	0.29	0.19		2.91497	0.49850	609.361	38.982	0.00001562
<i>n</i> -Decane	C ₁₀ H ₂₂		2.01	1.28	0.94	0.64	0.38	0.24		2.76810	0.64646	621.362	24.170	0.00002107
<i>n</i> -Undecane	C ₁₁ H ₂₄		2.95	1.71	1.19	0.76	0.43	0.28		1.42789	1.36923	615.194	-0.597	0.00005825

<i>n</i> -Dodecane	C ₁₂ H ₂₆			2.25	1.50	0.92	0.51	0.33	0.23	1.87106	0.59429	757.672	63.871	0.00003070
<i>n</i> -Tridecane	C ₁₃ H ₂₈			2.78	1.87	1.14	09:0	0.37	0.26	1.05863	1.73484	695.337	-39.851	0.00006504
<i>n</i> -Tetradecane	C ₁₄ H ₃₀				2.29	1.34	69:0	0.42	0.29	1.70345	1.10500	696.658	26.022	0.00004770
<i>n</i> -Pentadecane	C ₁₅ H ₃₂				2.75	1.60	0.80	0.47	0.32	1.32056	1.61496	714.996	-23.879	0.00006051
<i>n</i> -Hexadecane	C ₁₆ H ₃₄				3.30	1.87	0.91	0.53	0.35	1.75863	0.59899	1140.067	17.721	0.00001758
<i>n</i> -Heptadecane	C ₁₇ H ₃₆					2.16	1.03	0.59	0.39	0.25719	1.55014	986.952	-71.139	0.00007134
<i>n</i> -Octadecane	C ₁₈ H ₃₈					2.44	1.13	0.64	0.42	1.77701	0.56471	1241.303	18.268	0.00001609
<i>n</i> -Nonadecane	C ₁₉ H ₄₀					2.79	1.29	0.72	0.46	0.56468	1.52936	1020.103	-76.599	0.00005702
<i>n</i> -Eicosane	C ₂₀ H ₄₂					3.20	1.44	0.79	0.49	0.77549	2.16016	789.785	-65.277	0.00008902
Isoalkanes														
Isobutane	C ₄ H ₁₀	0.38	0.27	0.20	0.16					2.79529	0.37315	419.630	28.072	0.00001567
2-Methyl butane	C_5H_{12}	0.55	0.38	0.28	0.22					1.34155	1.33584	426.654	-16.753	0.00005280
2,2-Dimethyl propane	C ₅ H ₁₂			0.33	0.24	0.18	0.12			0.20382	2.65306	366.672	40.292	0.00012836
2-Methyl pentane	C ₆ H ₁₄	0.75	0.50	0.36	0.29	0.22				1.25443	1.20225	495.370	-20.972	0.00005066
3-Methyl pentane	C ₆ H ₁₄	0.73	0.51	0.38	0:30	0.23				-1.65266	4.71153	545.792	-273.697	0.00021598
2,2-Dimethyl butane	C ₆ H ₁₄	1.10	69.0	0.48	0.37					0.78335	1.79719	521.065	-50.880	0.000006606
2,3-Dimethyl butane	C ₆ H ₁₄	1.04	0.70	0.49	0.38	0.27				2.40720	2.47024	483.731	-163.832	0.00002948
Olefins														
Ethylene	C_2H_4	0.09	0.07							2.09844	0.09095	281.469	47.654	0.00002107
Propylene	C ₃ H ₆	0.18	0.14	0.11	0.10					1.41868	0.31808	772.733	-16.157	0.00001059
1-Butene	C ₄ H ₈	0.30	0.22							1.12328	1.46382	431.592	-78.509	0.00004504
1-Pentene	C_5H_{10}	0.43	0.31	0.24	0.20					1.23863	0.83928	552.930	-31.663	0.00003416
1-Hexene	C_6H_{12}	0.63	0.43	0.32	0.26	0.20				0.78658	1.77502	489.925	-75.082	0.00006364
1-Heptene	C ₇ H ₁₄	0.87	0.59	0.44	0.35	0.27	0.19	0.15	0.12	0.86573	0.25317	1520.715	-26.413	0.00001982
1-Octene	C_8H_{16}	1.36	0.88	0.61	0.48	0.35	0.23			1.29101	1.29302	586.319	-48.960	0.00004920
Propadiene	C₃H₄	0.22	0.19	0.16	0.14					0.89336	0.66484	424.315	-49.755	0.00006299
1,2-Butadiene	C_4H_6	0.28	0.23	0.19						0.67336	0.50405	612.623	-27.742	0.00005206
1,3-Butadiene	C_4H_6			0.19	0.15	0.10	90.0			0.88238	101.98307	384.667	-3372.077	0.00005430
1,2-Pentadiene	C_5H_8	0.39	0.30	0.24	0.20					0.90990	0.49699	702.284	-22.926	0.00003729
trans-1,3-Pentadiene	C_5H_8	0.39	0.30	0.24	0.20					0.67882	1.19675	469.034	-52.560	0.00007247
1,4-Pentadiene	C ₅ H ₈	0.39	0:30	0.24	0.20					0.95705	0.89154	474.141	-25.365	0.00006023
2,3-Pentadiene	C ₅ H ₈	0.39	0.30	0.24	0.20					0.87673	0.76868	537.821	-27.161	0.00005318
Acetylene and derivatives														
Acetylene	C ₂ H ₂	0.15	0.12	0.10						2.52365	1.17810	426.582	-212.035	0.00001364
Propyne	C₃H₄	0.29	0.22	0.17	0.15	0.12	0.09			1.51137	0.90164	554.417	-83.957	0.00002240
2-Butyne	C_4H_6		0.35	0.27	0.22	0.17				1.18604	2.76132	469.413	-204.254	0.00004722
1-Butyne	C ₄ H ₆	0.40	0.31	0.25	0.21	0.17	0.13			1.63188	0.65707	586.283	-56.906	0.00002696

356

D3.1. Table 7. (continued)

				T	Temperature (°C)	e (°C)						Equation (2)		
Substance	Formula	-50	-25	0	20	50	100	150	200	А	В	C	D	E
Naphthenes														
Cyclopropane	C_3H_6	0.31	0.24	0.19						1.54429	0.85237	493.205	-65.344	0.00003113
Cyclobutane	C_4H_8	0.54	0.41	0.32	0.27	0.22				1.32593	0.96765	615.982	-101.863	0.00003774
Cyclopentane	C_5H_{10}		0.79	0.56	0.43					0.87341	38.24451	488.485	-1832.850	0.00005995
Methyl cyclopentane	C_6H_{12}		0.93	0.65	0.50	0.36				2.03241	1.34658	511.445	-48.471	0.00004178
Ethyl cyclopentane	C ₇ H ₁₄			0.72	0.57	0.41	0.27			1.26432	1.29189	649.180	-71.893	0.00004633
Propyl cyclopentane	C ₈ H ₁₆	2.32	1.36	0.89	0.68	0.49	0.33			-0.10699	1.30324	655.283	-17.596	0.00015405
Butyl cyclopentane	C ₉ H ₁₈	3.26	1.88	1.20	0.89	0.61	0.37	0.25		1.34628	1.62686	558.215	-34.525	0.00007450
Pentyl cyclopentane	$C_{10}H_{20}$			1.59	1.14	0.76	0.45	0.31	0.24	-1.11498	1.19528	983.833	-53.542	0.00023152
Hexyl cyclopentane	$C_{11}H_{22}$			2.10	1.47	0.94	0.53	0.35	0.26	-1.13172	1.69976	925.702	-92.482	0.00020910
Cyclohexane	C_6H_{12}				0.97	0.61	0.33	0.21	0.14	0.75690	2.02779	787.882	-117.742	0.00003221
Methyl cyclohexane	C ₇ H ₁₄	2.83	1.59	66.0	0.73	0.50	0.33			-0.74619	6:01029	429.985	-152.623	0.00034647
Ethyl cyclohexane	C_8H_{16}	3.18	1.78	1.13	0.84	0.58	0.36			1.52910	0.51211	842.298	28.257	0.00003076
Propyl cyclohexane	C ₉ H ₁₈	4.60	2.35	1.40	1.00	0.67	0.42	0.30		-0.55711	1.64220	646.674	-10.660	0.00024150
Butyl cyclohexane	$C_{10}H_{20}$			1.88	1.30	0.84	0.50	0.37		-0.87038	1.86712	617.939	2.177	0.00036852
Pentyl cyclohexane	$C_{11}H_{22}$	6.63	3.52	2.09	1.47	0.94	0.53	0.35	0.26	-2.02019	1.03757	1391.703	-90.787	0.00038189
Hexyl cyclohexane	$C_{12}H_{24}$			3.55	2.18	1.26	0.69	0.47	0.36	0.39759	0.73957	722.436	94.236	0.00016567
Cyclopentene	C ₅ H ₈	0.88	0.60	0.44	0.35	0.26	0.18			3.03864	0.13240	1265.791	-1.551	0.00000199
Cyclohexene	C_6H_{10}	2.22	1.33	0.87	99.0	0.46	0.29			1.32523	1.09890	682.520	-31.539	0.00003971
Aromatic compounds														
Benzene	C_6H_6				0.64	0.44	0.26	0.17	0.11	2.35743	2.43122	760.674	-267.449	0.00001031
Toluene	C ₇ H ₈	2.12	1.20	0.78	0.59	0.42	0.26			2.95480	0.00003	1048.107	137.144	0.00000397
Ethyl benzene	C_8H_{10}	2.24	1.35	06:0	0.68	0.48	0.30			1.62469	0.79236	745.185	-16.276	0.00002899
Propyl benzene	C ₉ H ₁₂	3.40	1.89	1.18	0.86	0.58	0.36	0.25		0.57949	1.41702	663.886	-28.020	0.00008430
Butyl benzene	C ₁₀ H ₁₄	4.71	2.44	1.46	1.04	0.69	0.41	0.28		1.15033	1.50259	547.276	7.044	0.00009568
Pentyl benzene	$C_{11}H_{16}$			2.03	1.35	0.86	0.50	0.31	0.18	2.25142	0.05803	500.962	195.336	0.00006352
Hexyl benzene	$C_{12}H_{18}$			2.69	1.69	1.01	0.58	0.35	0.28	0.63147	1.93122	423.312	91.152	0.00033398
o-Xylene	C_8H_{10}		1.73	1.10	0.81	0.56	0.34			1.88479	0.23639	1377.129	22.892	0.00000003
<i>m</i> -Xylene	C_8H_{10}		1.19	0.80	0.62	0.44	0.29			0.83592	1.33199	637.761	-46.156	0.00006847
<i>p</i> -Xylene	C_8H_{10}				0.65	0.46	0.29			0.80720	1.37688	638.213	-40.858	0.00006787
1,2,3-Trimethyl benzene	C ₉ H ₁₂		2.47	1.43	0.98	0.61	0.33	0.20		1.30935	2.05880	633.423	-61.927	0.00003863
1,2,4-Trimethyl benzene	C ₉ H ₁₂		2.22	1.35	96.0	0.62	0.35	0.22		1.53346	1.54307	674.260	-51.363	0.00003357

triple britane (1,0H ₁ a) 271 1,73 0,97 0,46 0.26 0.16 13695.2 a ctrannethyl benzene (1,0H ₁ a) 2.06 135 0,39 0.23 1,372.5 a ctrannethyl benzene (1,0H ₁ a) 2.06 13.6 0.39 0.39 0.23 1,372.5 a ctrannethyl benzene (1,0H ₁ a) 1.11 1,12 1,02 0.76 0.25 0.34 0.17 1,224.2 1 1,224	,3,5-Trimethyl benzene	C ₉ H ₁₂		1.91	1.14	0.81	0.53	0.31	0.21		0.66691	1.78474	611.651	-30.201	0.00007216
cramethyly benzene C ₁₀ H ₁₄ 206 135 0.93 0.23 13725 13725 etamentyly benzene C ₁₀ H ₁₄ 1 206 135 0.03 0.03 0.03 13725 0.09413 styly benzene C ₁₀ H ₁₆ 1 1	2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄			2.71	1.73	0.97	0.46	0.26	0.16	1.36952	2.99462	598.830	-76.944	0.00004700
triputching benzene	2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄			2.06	1.35	0.79	0.39	0.23		1.37525	2.47071	620.301	-64.925	0.000003980
thyl benzene (-, +h ₁ h ₀) = 1, 12, 12, 12, 12, 12, 12, 12, 12, 12,	2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄						0.40	0.25		0.99413	2.50337	681.125	-109.874	0.00004350
thy benzene (2,4h ₁₀) 1.12 1.02 0.05 0.32 0.32 1.1 1.2472 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	entamethyl benzene	C ₁₁ H ₁₆						0.58	0.28	0.16	1.45987	4.29539	616.285	-107.695	0.00003215
Cohe Cohe 150 102 0.05 0.	examethyl benzene	C ₁₂ H ₁₈								0.17	1.22472	10.29732	584.012	-288.554	0.00004085
The the number C ₂ H ₁ D ₂ 3.11 1.72 1.08 0.89 0.55 0.34 1.59 0.50 0.55 0.37 1.44526 0.44424 0.4444 0.4444 0.4444 0.4444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.344444 0.3444444 0.3444444 0.3444444 0.3444444 0.3444444 0.34444444 0.3444444 0.3444444 0.3444444 0.3444444 0.3444444 0.3444444 0.34444444 0.3444444444444444444444444444444444444	yrene	C ₈ H ₈		1.61	1.02	92'0	0.52	0.32			2.52817	0.19295	1189.840	44.635	0.00000538
C12H10 C12H10 S174 S16 S36 I195 O.96 O.56 O.37 I144526 Interthane C19H12 S174 4.64 3.04 I.79 O.91 O.55 O.37 O.73771 O.79771	opropyl benzene	C ₉ H ₁₂	3.11	1.72	1.08	0.80	0.55	0.34			1.59020	0.52734	825.677	29.696	0.00002771
Innethane C ₁₉ H ₁ , 874 464 304 1.79 691 655 6.37 0.7371 Innethane C ₁₉ H ₁ , 874 1.10279 Innethane C ₁₉ H ₁ , 871.00 Innethane C ₁₉ H ₂ , 871.00 I	phenyl	C ₁₂ H ₁₀		6.77	5.16	3.36	1.95	96.0	0.56	0.37	1.44526	0.96526	1040.250	-32.003	0.00002670
Interhane C ₁₉ H ₁₆ T ₁ T ₂ D 31.26 T ₁ T ₂ D S ₁ T ₂ D T ₁ T ₂ D S ₁ T ₂ D T ₁	iphenyl methane	C ₁₃ H ₁₂		8.74	4.64	3.04	1.79	0.91	0.55	0.37	0.73771	1.12625	964.267	-30.528	0.00006040
lene (2,24) ₂₀ (2,24)	iphenyl methane	C ₁₉ H ₁₆		71.70	31.26	17.65	8.47	3.20	1.51	0.84	1.19279	2.16005	961.714	-90.134	0.00004502
Inaphthalene	etraphenyl methane	C ₂₅ H ₂₀									1.13557	4.22608	895.853	-201.703	0.00010734
Page	aphthalene	$C_{10}H_8$						0.77	0.53	0.38	2.91719	-0.00009	725.690	152.240	0.00002552
Inaphthalene C ₁₁ H ₁₀ 8.07 4.11 1.40 0.72 0.48 0.37 -0.95968 aphthalene C ₁₂ H ₁₂ 8.07 4.11 1.97 0.94 0.64 0.55 -3.11745 aphthalene C ₁₂ H ₁₂ 3.06 2.92 1.57 0.79 0.63 0.24 0.65 0.23 0.71 0.75 0.79 0.75 0.71745 sl C ₁₂ H ₁₂ 2.22 1.26 0.89 0.58 0.39 7 4.91749 2.11745 sl C ₂ H ₁₀ O 2.21 1.17 0.69 0.32 0.17 6.16832 - - 4.91749 sl C ₂ H ₁₀ O 2.21 1.26 0.89 0.28 0.37 0.17 4.91749 sl C ₂ H ₁₀ O 35.76 1.217 5.16 2.91 1.42 0.55 0.75 0.75 0.17 0.14 sl C ₂ H ₁₀ O 35.76 1.27 2.12 2.25 0.12 0.25 <td>Methylnaphthalene</td> <td>C₁₁H₁₀</td> <td></td> <td>16.26</td> <td>90.9</td> <td>3.34</td> <td>1.73</td> <td>0.88</td> <td>0.63</td> <td>0.56</td> <td>-4.70967</td> <td>2.73910</td> <td>679.956</td> <td>24.202</td> <td>0.00797964</td>	Methylnaphthalene	C ₁₁ H ₁₀		16.26	90.9	3.34	1.73	0.88	0.63	0.56	-4.70967	2.73910	679.956	24.202	0.00797964
aphthalene C ₁₂ H ₁₂ 8 07 4.11 1.97 0.94 0.64 0.55 -3.11745 sp aphthalene C ₁₂ H ₁₂ 5.06 2.92 1.57 0.79 0.53 0.42 -2.15924 sp ch 2.22 1.26 0.80 0.58 0.39 0.77 0.73 0.77 0.73 0.77 0.73 0.74 0.74 0.78 0.78 0.78 0.77 0.78 0.78 0.78 0.74 0.78 0.78 0.78 0.77 0.78 0.78 0.78 0.78 0.79 0.77 0.78 0.79 0.77 0.79 0.77 0.79 0.77 0.79 0.77 0.79 0.77 0.79 0.77 0.79 0.77 0.79 0.71 0.79 0.71 0.79 0.71 0.79 0.71 0.79 0.71 0.79 0.71 0.79 0.71 0.71 0.79 0.71 0.79 0.71 0.79 0.71 0.79 0	Methylnaphthalene	C ₁₁ H ₁₀					1.40	0.72	0.48	0.37	-0.95968	1.92015	645.748	28.287	0.00043145
spirthalene C ₁₂ H ₁₂ 5.06 2.92 1.57 0.79 0.53 0.42 -2.15924 st CH ₄ O 2.22 1.26 0.80 0.58 0.39 3 0.42 -2.15926 ol C ₂ H ₆ O 6.27 3.13 1.76 1.17 0.69 0.32 0.17 6.16832 -0.1526 ol C ₂ H ₆ O 6.27 3.13 1.76 1.17 0.69 0.32 0.17 6.16832 -0.1565 ol C ₂ H ₆ O 2.141 8.01 3.70 2.20 1.12 0.55 0.17 4.91749 ol C ₆ H ₁ O 35.76 12.17 5.16 2.91 1.42 0.55 0.7 4.91749 ol C ₆ H ₁ O 35.76 12.17 5.16 2.91 1.82 0.65 0.7 4.91749 ol C ₆ H ₁ O 35.98 11.48 4.46 2.33 1.02 0.7 0.43 1.75100 H-I-Dutanol	-Ethylnaphthalene	$C_{12}H_{12}$			8.07	4.11	1.97	0.94	0.64	0.55	-3.11745	2.51548	622.592	56.635	0.00267011
st CH4O 2.22 1.26 0.89 0.58 0.39 3.79226 ool C2H6O 6.27 3.13 1.76 1.17 0.69 0.32 0.17 6.16832 ool C2H6O 6.27 3.13 1.76 1.17 0.69 0.32 0.17 6.16832 ol C3H6O 35.76 12.17 5.16 2.20 1.12 9 4.91749 ol C4H0O 35.76 12.17 5.16 2.91 1.42 0.55 9 4.35655 ol C5H12O 35.76 12.17 5.16 2.91 1.42 0.55 1.29844 1.29844 ol C5H12O 10.78 5.30 1.81 0.65 0.78 4.35655 1.238169 ol C5H12O 35.91 15.68 6.98 2.68 0.88 0.44 -0.90610 ol C3H6O 35.91 15.88 6.98 1.68 0.89 0.69 0.35	Ethylnaphthalene	C ₁₂ H ₁₂			5.06	2.92	1.57	0.79	0.53	0.42	-2.15924	2.20844	659.680	28.821	0.00106785
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Icohols														
nol G_2H_0O 6.27 3.13 1.76 1.17 0.69 0.32 0.17 0.69 0.32 0.17 0.69 0.32 0.17 0.61832 0.17 0.178 0.112 0.17 0.178 0.178 0.178 0.178 0.178 0.112 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.188	ethanol	CH ₄ O	2.22	1.26	0.80	0.58	0.39				3.79226	0.17755	546.563	87.845	0.00000791
rol C ₃ H ₆ O 2141 8.01 3.70 2.20 1.12 4.91749 ol C ₄ H ₁ O 35.76 12.17 5.16 2.91 1.42 0.55 9 4.91749 ol C ₄ H ₁ O 35.76 12.17 5.16 2.91 1.42 0.55 9 4.35655 ol C ₆ H ₁ O 35.76 12.17 5.16 2.91 1.81 0.65 9 4.35655 ol C ₆ H ₁ O C ₆ H ₁ O 10.78 5.50 1.07 0.25 0.78 0.78 0.36 1.2984 ol C ₆ H ₁ O 55.91 15.68 6.98 2.68 0.88 0.44 -0.90610 ol C ₆ H ₁ O 103.71 25.05 8.23 3.97 1.63 0.54 0.13 1.75100 H-I-butanol C ₂ H ₀ O 103.71 25.02 21.23 0.62 0.93 0.61 2.37997 I-I-butanol C ₂ H ₀ O 103.71 1.63 0.54<	hanol	C ₂ H ₆ O	6.27	3.13	1.76	1.17	69.0	0.32	0.17		6.16832	-0.00125	740.323	90.778	0.00000038
ol C ₄ H ₁₀ O 35.76 12.17 5.16 2.91 1.42 0.55 4.35655 ol C ₅ H ₁₂ O 35.76 12.17 5.63 4.03 1.81 0.65 1.29844 ol C ₅ H ₁₂ O 55.91 10.78 5.30 2.25 0.78 0.36 2.38169 nol C ₇ H ₁₆ O 55.91 15.68 6.98 2.68 0.88 0.44 -0.90610 ol C ₂ H ₁₆ O 35.91 15.68 6.98 2.68 0.89 0.43 -0.90610 ol C ₃ H ₁₀ O 103.71 25.05 8.23 1.02 7 0.43 1.75100 1-1-butanol C ₄ H ₁₀ O 103.71 25.05 8.23 3.97 1.63 0.54 0.13 1.75100 r-1-butanol C ₂ H ₆ O 103.71 25.05 21.23 6.98 1.99 0.93 0.61 -2.46697 ylycol C ₃ H ₆ O ₂ 103.71 25.72 21.23 6.98 1.	Propanol	C ₃ H ₈ O	21.41	8.01	3.70	2.20	1.12				4.91749	0.83615	482.980	73.079	0.00001026
tol C ₅ H ₁₂ O 7.63 4.03 1.81 0.65 1.29984 1.29984 ol C ₆ H ₁₄ O 10.78 5.30 2.25 0.78 0.36 2.38169 2.38169 rol C ₇ H ₁₆ O 55.91 15.68 6.98 2.68 0.88 0.44 -0.90610 rol C ₇ H ₁₆ O 35.98 11.48 4.46 2.33 1.02 -3.07172 -0.90610 r-1-propanol C ₄ H ₁₀ O 103.71 25.05 8.23 3.97 1.63 0.54 0.13 1.75100 r-1-butanol C ₂ H ₁₂ O 103.71 25.05 8.23 3.97 1.63 0.62 -2.46697 -2.46697 r-1-butanol C ₂ H ₆ O ₂ 8.57 21.23 6.98 1.99 0.93 0.61 -2.46697 ylene glycol C ₃ H ₈ O ₂ 8.57 21.23 6.98 1.99 0.93 0.61 -2.46697 canol C ₆ H ₈ O ₂ 8.57 1.43 15.77 1.49	Butanol	$C_4H_{10}O$	35.76	12.17	5.16	2.91	1.42	0.55			4.35655	1.01095	742.263	26.911	0.00000214
ol C ₆ H ₁₄ O 10.78 5.30 2.25 0.78 0.36 2.38169 nol C ₇ H ₁₆ O 55.91 15.68 6.98 2.68 0.78 0.74 —0.90610 nol C ₉ H ₁₆ O 35.98 11.48 4.46 2.33 1.02 — —0.90610 H-1-propanol C ₄ H ₁₀ O 103.71 25.05 8.23 3.97 1.63 0.54 0.13 1.75100 H-1-butanol C ₅ H ₁₀ O 103.71 25.05 8.23 3.97 1.63 0.54 0.14 0.13 1.75100 H-1-butanol C ₅ H ₁₀ O 103.71 25.05 8.23 3.97 1.63 0.54 0.14 0.13 1.75100 H-1-butanol C ₂ H ₁₀ O 103.71 25.05 8.23 3.97 1.63 0.62 0.24 0.13 1.75100 Silycol C ₃ H ₈ O ₂ R R 2.23 1.23 1.39 2.02 -2.46697 C ₃ H ₈ O ₂ R	Pentanol	$C_5H_{12}O$			7.63	4.03	1.81	0.65			1.29984	2.31754	793.256	-36.745	0.00001600
rol C ₇ H ₁₆ O 55.91 15.68 6.98 2.68 0.84 0.44 —0.90610 sl Sl 4.6 2.33 1.02 0.97 0.43 —3.01414 Inol C ₃ H ₈ O 35.98 11.48 4.46 2.33 1.02 — 3.07172 I-1-propanol C ₄ H ₁₀ O 103.71 25.05 8.23 3.97 1.63 0.54 0.13 1.75100 I-1-butanol C ₂ H ₁₂ O 103.71 25.05 8.27 4.28 1.82 0.62 0.03 0.61 -2.46697 I-1-butanol C ₂ H ₆ O ₂ 8.57 21.23 6.98 1.99 0.93 0.61 -2.46697 ylene glycol C ₃ H ₈ O ₂ 8.57 21.23 6.98 1.99 0.93 0.61 -2.46697 cohol C ₆ H ₁ O 0 1433 15.14 14.49 3.93 2.02 -3.91153 cohol C ₇ H ₈ O 0 0 0 0 0	Hexanol	C ₆ H ₁₄ O			10.78	5.30	2.25	0.78	0.36		2.38169	2.01882	628.673	36.282	0.00002196
oll C_gH_1gO 8.70 3.25 0.97 0.43 -3.01414 inol C_gH_1gO 35.98 11.48 4.46 2.33 1.02 0.54 0.24 0.13 1.75100 1-1-butanol C_gH_12O 103.71 25.05 8.23 3.97 1.63 0.54 0.13 1.75100 1-1-butanol C_gH_12O 8.57 4.28 1.82 0.62 2.37997 1-1-butanol C_gH_0O 8.57 4.28 1.82 0.62 2.37997 1-1-butanol C_gH_0O 8.57 21.23 6.98 1.99 0.93 0.61 -2.46697 ylene glycol $C_3H_8O_2$ 8.57 21.23 6.98 1.99 0.93 0.61 -2.46697 canol $C_3H_8O_3$ 8.8 14.43 3.93 2.02 -3.91153 cohol C_2H_3O 8.9 1.39 0.70 0.70 0.03 0.44 0.44585	Heptanol	C ₇ H ₁₆ O		55.91	15.68	6.98	2.68	0.88	0.44		-0.90610	4.79159	549.369	-1.348	0.00030998
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-Octanol	C ₈ H ₁₈ O				8.70	3.25	0.97	0.43		-3.01414	4.51847	742.731	-58.271	0.00043189
Figure 2 Figure 3	opropanol	C ₃ H ₈ O	35.98	11.48	4.46	2.33	1.02				3.07172	3.84587	580.414	-62.691	0.00000742
-1-butanol	-Methyl-1-propanol	C ₄ H ₁₀ O	103.71	25.05	8.23	3.97	1.63	0.54	0.24	0.13	1.75100	4.27573	508.236	-6.909	0.00005339
glycol C2H ₆ O ₂ 55.27 21.23 6.98 1.99 0.93 0.61 —2.46697 ylene glycol C ₃ H ₈ O ₂ 15.57 3.72 1.37 4.54401 canol C ₃ H ₈ O ₃ 1433 15.14 14.49 3.93 2.02 -3.91153 canol C ₆ H ₁₂ O 13.88 5.93 2.50 1.09 0.70 0.02813 cholol C ₇ H ₈ O 13.88 5.93 2.50 1.05 0.63 0.44 0.44585	-Methyl-1-butanol	$C_5H_{12}O$			8.57	4.28	1.82	0.62			2.37997	2.49622	630.920	5.329	0.00001584
ylene glycol C ₃ H ₈ O ₂ T ₄ S ₄ O ₁ T ₄ S ₂ T ₄ S ₄ O ₁	hylene glycol	$C_2H_6O_2$			55.27	21.23	6.98	1.99	0.93	0.61	-2.46697	5.00103	587.004	10.679	0.00132759
canol C ₆ H ₁₂ O 14.38 15.14 14.49 3.93 2.02 -3.91153 Icohol C ₆ H ₁₂ O 13.88 5.93 2.50 1.09 0.70 0.02813 Icohol C ₇ H ₈ O 13.88 5.93 2.50 1.05 0.63 0.44 0.44585	3-Propylene glycol	C ₃ H ₈ O ₂					15.57	3.72	1.37		4.54401	0.75893	711.876	132.080	0.00000695
canol C ₆ H ₁₂ O 0.02813 Icohol C ₇ H ₈ O 13.88 5.93 2.50 1.05 0.63 0.44 0.44585	lycerol	$C_3H_8O_3$				1433	151.4	14.49	3.93	2.02	-3.91153	6.54946	582.480	73.885	0.00799640
Icohol C,HgO 13.88 5.93 2.50 1.05 0.63 0.44 0.44585	yclohexanol	C ₆ H ₁₂ O					12.72	1.99	0.70		0.02813	3.61442	534.094	121.724	0.00026465
2180618	enzyl alcohol	C ₇ H ₈ O			13.88	5.93	2.50	1.05	0.63	0.44	0.44585	0.08077	2571.495	151.699	0.00007198
C-H-O	henols			•	•		-		•		-		-		
010001	o-Cresol	C ₂ H ₈ O					2.95	1.00	0.50		-1.89618	3.60949	631.884	15.554	0.00052426

D3.1. Table 7. (continued)

358

				1	Temperature (°C)	(_° C)						Equation (2)		
Substance	Formula	-50	-25	0	20	20	100	150	200	А	В	C	Q	E
<i>m</i> -Cresol	C ₂ H ₈ O					4.20	1.19	0.58	0.32	1.25683	1.54210	482.684	175.193	0.00021035
<i>p</i> -Cresol	C ₂ H ₈ O					4.60	1.29	0.61	0.36	1.06826	2.00817	491.556	150.679	0.00022764
Phenol	C ₆ H ₆ O					3.46	1.10	0.58	0.43	-0.58868	3.54041	505.278	86.084	0.00049135
Carboxylic acids														
Formic acid	CH ₂ O ₂				1.78	1.04	0.53			1.06486	0.68065	1102.891	11.307	0.00002427
Acetic acid	C ₂ H ₄ O ₂				1.22	0.79	0.45			1.74793	1.33728	482.347	41.780	0.00009963
Propionic acid	C ₃ H ₆ O ₂			1.53	1.10	0.74	0.45			1.40324	1.23452	507.512	36.027	0.00011180
Butyric acid	C ₄ H ₈ O ₂			2.31	1.61	1.01	0.55	0.35		-0.59438	3.25801	702.490	-155.864	0.00016068
Valeric acid	C ₅ H ₁₀ O ₂		6.19	3.37	2.23	1.31	0.64	0.36		4.18858	0.59968	696.703	32.858	0.00000596
Caproic acid	C ₆ H ₁₂ O ₂			5.23	3.17	1.75	0.87	0.55	0.41	-0.09052	2.89549	536.223	1.885	0.00035472
Acetic anhydride	$C_4H_6O_3$	3.41	1.93	1.22	0.90	0.61	0.38			0.83036	2.94744	443.462	-55.683	0.00018360
Propionic anhydride	$C_6H_{10}O_3$			1.59	1.13	0.74	0.43	0.28		0.91350	1.53689	664.075	-33.692	0.00007064
Chloroacetic acid	C ₂ H ₃ ClO ₂					3.30	1.29			1.55021	0.00012	475.704	291.063	0.00024327
Dichloroacetic acid	C ₂ H ₂ Cl ₂ O ₂				7.29	3.17	0.68			11.44422	0.73703	438.241	-120.582	0.00000190
Trichloroacetic acid	C ₂ HCl ₃ O ₂						1.10	0.19		0.89511	-51.82878	337.101	-405.316	0.00359585
Ketones														
Ketene	C ₂ H ₂ O	0.52								1.31545	1.31192	334.574	-25.576	0.00012225
Acetone	C ₃ H ₆ O	0.80	0.54	0.40	0.32	0.24				1.65496	0.57330	610.687	11.477	0.00002915
Methyl ethyl ketone	C ₄ H ₈ O	1.08	0.73	0.53	0.42	0.31	0.20	0.14	0.10	3.36887	0.15106	994.604	10.710	0.00000262
Diethyl ketone	C ₅ H ₁₀ O		0.83	0.59	0.47	0.34	0.23			1.78235	1.27121	589.709	-76.509	0.00003465
Dipropyl ketone	C ₇ H ₁₄ O		1.74	1.06	0.76	0.51	0:30			0.53899	1.60566	636.434	-28.275	0.00007612
Acetophenone	C ₈ H ₈ O				1.81	1.10				1.33990	0.72070	519.145	125.271	0.00014141
Benzophenone	C ₁₃ H ₁₀ O						1.74	0.75		-1.02889	2.62407	887.912	-31.349	0.00014250
Ethers														
Dimethyl ether	C_2H_6O	0.18	0.15							-24.14991	826.18026	333.839	-9717.889	0.00504502
Diethyl ether	$C_4H_{10}O$	0.53	0.39	0.29	0.24	0.18	0.11			2.19245	3.83507	520.594	-370.873	0.00002040
Dipropyl ether	C ₆ H ₁₄ O	1.24	0.79	0.54	0.42	0:30				1.70133	1.11633	592.026	-34.625	0.00003012
Methyl propyl ether	$C_4H_{10}O$	0.59	0.41	0.31	0.25					1.23830	1.16190	484.926	-27.978	0.00004941
Ethyl propyl ether	C ₅ H ₁₂ O	0.78	0.54	0.40	0.32	0.24				1.88361	1.70057	486.071	-102.106	0.00003744
Ethylene oxide	C ₂ H₄O	0.57	0.41	0.32						2.03182	0.24658	923.371	-4.439	0.00000986
Furane	C ₄ H ₄ O	0.99	99.0	0.48	0.38					0.99383	1.26306	558.327	-41.885	0.00006015
1,4-Dioxane	C ₄ H ₈ O ₂				1.30	0.81	0.46			-0.88995	5.54776	466.802	-109.574	0.00041685

Aldehydes														
Formaldehyde	CH ₂ O	0.33	0.24							962690	1.14046	549.921	-44.110	0.000003565
Acetaldehyde	C ₂ H ₄ O	0.58	0.39	0.28	0.22					1.93622	1.28342	451.995	-34.901	0.00003002
Paraldehyde	C ₆ H ₁₂ O ₃				1.19	0.68	0.37			2:30632	0.16500	580.288	180.024	0.00002892
Furfural	C ₅ H ₄ O ₂		5.01	2.55	1.72	1.13	0.75	0.65		-1.74070	2.22317	510.261	48.654	0.00137465
Benzaldehyde	C ₂ H ₆ O	6.53	3.47	2.09	1.49	0.97	0.57	0.38		0.68640	1.42033	705.459	-31.539	0.00010016
Salicylaldehyde	C ₇ H ₆ O ₂				5.69	1.57	08.0	0.49		-1.05492	3.11770	694.096	-97.628	0.00030993
Esters														
Methyl formate	C ₂ H ₄ O ₂			0.44	0.35					-0.91668	1.04562	600.645	30.794	0.00025227
Ethyl formate	C ₃ H ₆ O ₂	1.09	0.71	0.50	0.40	0.30				0.70107	1.29587	586.673	-38.736	0.00006727
Propyl formate	C ₄ H ₈ O ₂	1.62	1.00	0.68	0.52	0.37				3.44810	0.00004	653.964	118.712	0.00000644
Methyl acetate	$C_3H_6O_2$			0.47	0.38	0.28	0.18	0.12		2.35777	1.57824	508.322	-127.221	0.00002998
Ethyl acetate	C ₄ H ₈ O ₂	1.08	0.78	0.57	0.45	0.33	0.20	0.13	60.0	2.87505	3.82999	701.624	-475.816	0.00000853
Propyl acetate	C ₅ H ₁₀ O ₂			0.75	0.59	0.42	0.25	0.16	0.10	2.51468	7.47712	600.279	-667.720	0.00002056
Methyl propionate	C ₄ H ₈ O ₂			0.58	0.46	0.34				1.95117	0.93694	615.575	-40.012	0.00002716
Ethyl propionate	$C_5H_{10}O_2$			69.0	0.53	0.38				1.13267	1.39120	636.287	-63.713	0.00004664
Propyl propionate	$C_6H_{12}O_2$	2.60	1.47	0.93	69.0	0.47	0.29			0.97927	1.56323	602.941	-33.934	0.00006131
Methyl butyrate	$C_5H_{10}O_2$	1.88	1.14	0.76	0.58	0.41	0.26			1.19242	1.14545	659.315	-32.416	0.00004368
Ethyl butyrate	C ₆ H ₁₂ O ₂			0.89	0.67	0.47	0:30			0.69721	1.44466	631.106	-37.809	0.00007509
Methyl benzoate	C ₈ H ₈ O2				2.03	1.14	0.55	0.32		1.09205	2.23998	629.397	-30.878	0.00006372
Ethyl benzoate	C ₉ H ₁₀ O ₂			3.46	2.19	1.27	0.67	0.44	0.33	-0.52423	2.21075	621.267	-1.514	0.00029435
Methyl salicylate	C ₈ H ₈ O ₃			4.50	2.83	1.61	0.81	0.50	0.35	0.78116	2.21500	566.049	2.932	0.00017111
Amines														
Methyl amine	CH ₅ N	0.46	0.31	0.23						0.67474	1.15788	540.516	-19.923	0.00004244
Ethyl amine	C ₂ H ₇ N	0.82	0.48	0.30						4.57723	3.23212	461.592	-187.220	0.00000375
Propyl amine	C ₃ H ₉ N	1.27	0.78	0.53	0.40					1.43759	1.38853	576.592	-41.604	0.00003388
<i>n</i> -Butyl amine	C ₆ H ₁₅ N			0.83	0.62	0.41				4.93315	5.56240	539.687	-504.926	0.000000690
Dimethyl amine	C ₂ H ₇ N	0.41	0.31	0.23	0.19	0.14				2.36300	0.00009	401.423	108.715	0.00002662
Trimethyl amine	C ₃ H ₉ N	0.39	0.29	0.23	0.19	0.14				2.49364	3.31500	473.868	-357.809	0.00001998
Diethyl amine	C ₆ H ₁₅ N		0.70	0.46	0.35	0.24				2.23041	0.67794	410.269	75.910	0.00004206
Triethyl amine	C ₆ H ₁₅ N			0.46	0.37	0.27				1.14057	1.76812	540.640	-101.165	0.00005323
Piperidine	$C_5H_{11}N$				1.50	0.93	0.47			2.87595	2.15313	604.743	-97.645	0.00002125
Pyridine	C ₆ H ₇ N		2.45	1.37	96:0	0.63	0.40			-1.07330	2.28184	531.855	668.6	0.00042903
Aniline	C ₆ H ₇ N			10.34	4.54	1.95	0.83	0.49		0.85750	1.71069	462.011	136.981	0.00028187
N-methyl aniline	C ₂ H ₉ N			3.95	2.26	1.19	0.57	0.37		-1.58729	2.74662	611.361	10.495	0.00047319
N,N-dimethyl aniline	C ₈ H ₁₁ N				1.40	0.90	0.52	0.35		2.17192	0.33015	782.598	90.952	0.00002587

D3.1. Table 7. (continued)

					Temperature (°C)	e (°C)						Equation (2)		
Substance	Formula	05-	-25	0	20	20	100	150	200	У	В	C	q	E
N,N-diethyl aniline	C ₁₀ H ₁₅ N			3.55	2.18	1.22	0.61	0.39	0.29	-2.17946	2.59836	712.387	-32.879	0.00061721
Phenylhydrazine	C ₆ H ₈ N ₂				16.49	4.57	0.85			4.03637	4.11517	716.323	-44.624	0.00000082
Diphenyl amine	C ₁₂ H ₁₁ N						1.69	0.80	0.50	-1.88236	2.76806	703.956	42.025	0.00069814
Nitriles														
Acetonitrile	C ₂ H ₃ N				0.37	0.28				-0.08444	3.22207	685.539	-331.224	0.00006935
Propionitrile	C ₃ H ₅ N			0.54	0.43	0.32				0.15621	2.63370	600.424	-178.151	0.00008475
Butyronitrile	C⁴H ² N	1.75	1.09	0.75	0.57	0.41	0.27			1.43860	0.97107	678.200	-30.941	0.00003687
Benzonitrile	C ₂ H ₅ N			1.92	1.33	0.87	0.52	0.36		1.74964	0.45048	621.897	104.361	0.00006329
Amides														
Formamide	ON ^ε HϽ				3.85	1.89	0.84	0.50	0.36	-0.82268	2.80139	592.004	19.366	0.00038574
Nitroderivates														
Nitromethane	CH ³ NO ⁵		1.27	98.0	0.67	0.48	0:30			2.74060	0.08984	536.681	119.119	0.00002704
Nitrobenzene	$C_6H_5NO_2$				2.05	1.26	0.71	0.48	0.35	1.75794	0.36655	600.629	124.816	0.00006683
<i>o</i> -Nitrotoluene	$C_7H_7NO_2$			3.82	2.37	1.38	0.76	0.54	0.46	-1.52541	2.37156	581.717	24.432	0.00083353
<i>m</i> -Nitrotoluene	C ₂ H ₂ NO ₂				2.33	1.36	0.76	0.54	0.45	-1.89318	2.22744	626.017	17.125	0.00099984
<i>p</i> -Nitrotoluene	C+H+NO						0.75	0.54	0.45	0.00118	1.22450	513.379	128.908	0.00041885

D3.1. Table 8. Dynamic viscosity of gases in μPa s at low pressures

				Te	mpera	ture (°	°C)					quation (3))	
Substance	Formula	-50	0	25	100	200	300	400	500	10 ⁵ A	10 ⁷ B	10 ¹⁰ C	10 ¹² D	10 ¹⁵ E
Elements														
Xenon	Xe	17.4	21.3	23.2	28.6	35.3	41.5	47.3	52.7	-0.23692	0.98454	-0.48314	0.01953	-0.00342
Krypton	Kr	19.6	23.5	25.4	30.8	37.5	43.5	49.1	54.2	-0.07920	1.02624	-0.55428	0.02187	-0.00369
Argon	Ar		21.1	22.6	27.0	32.5	37.5	42.2	46.5	0.16196	0.81279	-0.41263	0.01668	-0.00276
Neon	Ne	25.4	29.6	31.5	37.1	43.7	49.6	54.9	59.9	0.23014	1.22527	-0.97141	0.05386	-0.01103
Helium	He	16.2	18.6	19.8	23.2	27.4	31.3	35.1	38.6	0.39223	0.61300	-0.31007	0.01479	-0.00284
Air		14.6	17.2	18.5	21.9	26.1	29.8	33.2	36.5	-0.01702	0.79965	-0.72183	0.04960	-0.01388
Hydrogen	H ₂	7.3	8.3	8.9	10.4	12.2	14.0	15.6	17.1	0.18024	0.27174	-0.13395	0.00585	-0.00104
Nitrogen	N ₂	14.0	16.5	17.8	21.1	25.2	28.7	32.0	35.0	-0.01020	0.74785	-0.59037	0.03230	-0.00673
Oxygen	O ₂	16.2	19.2	20.7	24.7	29.5	33.8	37.7	41.4	-0.10257	0.92625	-0.80657	0.05113	-0.01295
Sulfur	S					6.9	8.3	9.7	11.1	0.09670	0.11835	0.01588		
Fluorine	F ₂	18.1	21.5	23.2	27.8	33.6	38.9	43.9	48.7	-0.11373	1.03844	-0.96327	0.08073	-0.02846
Chlorine	Cl ₂	10.0	12.3	13.4	16.6	20.8	24.8	28.6	32.2	-0.06348	0.49801	-0.09451		
Bromine	Br ₂		14.3	15.4	19.0	23.8	28.7			0.19483	0.43743	0.05031		
lodine	l ₂					21.8	26.0	30.2	34.3	0.06758	0.46358	-0.03714		
Anorganic compounds	I.	l		l			l		l	I				
Hydrogen fluoride	HF			11.3	16.0					-7.08883	4.18933	-1.19859	-1.98523	2.59754
Hydrogen chloride	HCI	10.8	13.4	14.6	18.3	22.9	27.3	31.5	35.4	-0.12146	0.56696	-0.12126		
Hydrogen bromide	HBr	13.8	16.6	18.1	22.2	27.7	33.1	38.5	43.7	0.09163	0.58825	-0.04531		
Hydrogen iodide	Н		17.4	19.0	23.5	29.4	35.1			-0.01823	0.67176	-0.09695		
Hydrogen cyanide	HCN				3.6					-0.06954	0.08177	0.09107		
Water	H ₂ O		9.1	9.9	12.4	16.2	20.3	24.5	28.6	0.64966	-0.15102	1.15935	0.10080	0.03100
Hydrogen sulfide	H ₂ S		11.7	12.6	15.7	20.6				0.54442	0.10851	0.44565		
Ammonia	NH ₃	7.4	9.2	10.1	12.9	16.5	20.1	23.7	27.4	-0.07883	0.36749	-0.00451		
Nitric oxide	NO	14.9	17.8	19.1	22.9	27.3	31.2	34.8	38.0	-0.09105	0.84998	-0.71473	0.04240	-0.01020
Nitrogen dioxide	NO ₂				18.7	24.6	29.4	33.6	37.4	-2.28505	1.75834	-2.29768	0.17134	-0.04920
Nitrous oxide	N ₂ O	11.0	13.4	14.6	18.1	22.4	26.4	30.0	33.4	-0.09569	0.57181	-0.16548		
Dinitrogentetroxide	N ₂ O ₄	13.5	16.6	18.1	22.5	28.2	33.6	38.7	43.6	-0.08683	0.67450	-0.12834		
Cyanogen	C ₂ N ₂	15.5	9.3	10.1	12.7	16.0	19.3	30.7	.5.0	-0.00521	0.34573	-0.01265		
Phosphorus trichloride	PCl ₃	7.8	9.6	10.5	13.2	16.6	19.8	22.9	26.0	-0.11382	0.42969	-0.14926	0.00744	-0.00177
Cyanogen chloride	CICN	6.2	7.6	8.4	10.4	13.1	15.6	18.0	20.2	-0.07162	0.32567	-0.07104	0.007	0.00177
Silane	SiH ₄	8.9	10.7	11.6	14.2	17.8	21.3	24.8	28.4	0.10189	0.35395	0.07.10.1		
Tetrachlorosilane	SiCl ₄	7.5	9.3	10.2	12.8	16.1	19.2	22.2	25.1	-0.13422	0.42941	-0.15995	0.00734	-0.00161
Carbon monoxide	CO	14.0	16.5	17.7	20.9	24.9					0.74306			
Carbon dioxide	CO ₂	11.2	13.8	15.0	18.4	22.6	26.5	30.0	33.3	-0.18024	0.65989	-0.37108	0.01586	-0.00300
Carbon suboxide	C ₃ O ₂	9.1	11.2	12.2	15.2	19.0	22.6	26.1	29.4	-0.05865	0.45539	-0.08739	0.01300	0.00300
Carbonyl sulfide	COS	9.5	11.7	12.8	16.0	20.2	24.1	27.8	31.4	-0.10565	0.49410	-0.09608		
Phosgene	CCl ₂ O	7.5	11.7	9.3	11.6	14.6	17.3	20.0	22.5	-0.06483	0.35637	-0.07409		
Carbon disulfide	CS ₂	7.3	9.0	9.9	12.5	16.0	19.4	22.7	26.0	-0.00483	0.36608	-0.07409 -0.02490		
Sulfur dioxide	SO ₂	9.5	11.8	12.9	16.1	20.3	24.2	27.9	31.3	-0.07840 -0.13559	0.51230	-0.02490 -0.11626		
Sulfur trioxide	SO ₃	9.3	11.0	13.6	16.8	20.9	24.7	28.1	31.3	-0.13339	0.54605	-0.11020 -0.16261		
Sulfuryl chloride	Cl ₂ SO ₂	8.1	10.1	11.1	14.1	17.9	21.6	25.2	28.6	-0.12083 -0.12421	0.43363	-0.16261 -0.06167		
Sulfur hexafluoride	SF ₆	10.8	13.6	15.0	18.7	23.2	27.3	30.9	34.3	-0.12421 -0.41132	0.43363	-0.51939	0.02409	-0.00438
Organic compounds containing		10.6	13.0	15.0	10.7	23.2	27.3	30.9	34.3	-0.41132	0.77406	-0.51939	0.02409	-0.00436
		7.0	0.6	0.5	11.0	15.0	10.0	20.0	22.6	0.00006	0.26622	0.06330		
Methyl mercaptan	CH ₄ S	7.0	8.6	9.5	11.9	15.0	18.0	20.9	23.6	-0.08906 -0.05276	0.36632	-0.06330		
Ethyl mercaptan	C ₂ H ₆ S	6.5	8.0	8.7	10.9	13.8	16.5	19.2	21.8		0.32400	-0.04604		
Dimethyl sulfide	C ₂ H ₆ S	6.1	7.7	8.5	10.9	13.9	16.8	19.5	22.1	-0.14799	0.35516	-0.06417		
Diethyl sulfide	C ₄ H ₁₀ S	5.5	6.8	7.4	9.3	11.8	14.2	16.6	18.8	-0.05015	0.27483	-0.03176		
Thiophene	C ₄ H ₄ S		7.3	8.1	10.6	13.8	16.9	20.0	22.9	-0.21336	0.35715	-0.04267		
Halogenated hydrocarbons	CU F		44.0	42.0	450	10.5	22.4	26.2	20.2	0.0100	0.4000=	0.1222		
Fluoromethane (R41)	CH₃F	9.7	11.8	12.9	15.9	19.6	23.1	26.3	29.2	-0.06024	0.49305	-0.13889		
Difluoromethane (R32)	CH ₂ F ₂	10.5	12.9	14.0	17.4	21.6	25.5	29.2	32.5	-0.09600	0.54630	-0.14683		

				Te	mpera	ture (S	C)					Equation (3)		
Substance	Formula	-50	0	25	100	200	300	400	500	10 ⁵ A	10 ⁷ B	10 ¹⁰ C	10 ¹² D	10 ¹⁵ F
Trifluoromethane (R23)	CHF ₃	10.8	13.1	14.3	17.7	21.9	25.9	29.5	32.8	-0.07808	0.55122	-0.15092		
Tetrafluoromethane (R14)	CF ₄	13.3	15.9	17.2	20.8	25.3	29.5	33.2	36.5	0.04703	0.61890	-0.19722		
Methyl chloride	CH ₃ CI	15.5	10.0	10.9	13.6	17.1	20.4	23.7	30.3	-0.02001	0.38917	-0.05170		
Methylene chloride	CH ₂ Cl ₂	7.7	9.5	10.5	13.2	16.6	19.9	22.9	25.8	-0.13776	0.42638	-0.09660		
Chloroform	CHCl ₃	7.6	9.4	10.2	12.8	16.1	19.2	22.3	25.2	-0.06453	0.38402	-0.06457		
Carbon tetrachloride	CCI ₄	7.0	9.2	10.0	12.4	15.4	18.2	20.8	23.2	-0.07132	0.39021	-0.10535		
Bromomethane	CH ₃ Br	10.1	12.4	13.5	16.9	21.1	25.2	29.0	32.6	-0.08606	0.51383	-0.10426		
Dibromomethane	CH ₂ Br ₂	10.1	12.7	15.5	15.5	19.6	23.6	27.4	31.1	-0.10912	0.47247	-0.07256		
Tribromomethane	CHBr ₃		7.3	8.1	10.5	13.6	25.0	27.7	31.1	-0.17201	0.34298	-0.04096		
Tetrabromomethane	CBr ₄	14.0	16.7	18.1	22.5	28.5	34.6	40.6	46.4	0.43125	0.31175	0.68684	-0.06508	0.01952
Chlorodifluoromethane (R22)	CHCIF ₂	14.0	11.8	12.9	15.9	19.9	23.7	27.2	30.6	-0.04130	0.47290	-0.09230	-0.00308	0.01932
` '	CHCl ₂ F		11.0	11.5	14.3	17.8	21.3	24.6						
Dichlorofluoromethane (R21)		10.0	13.3		17.8		25.8		27.8 32.5	0.01328	0.39826	-0.05196		
Chlorotrifluoromethane (R13) Dichlorodifluoromethane (R12)	CCIF ₃	10.9		14.4		21.9		29.3	32.3	-0.05012	0.54778	-0.15645		
,	CCI ₂ F ₂	0.6	11.6	12.5	15.3	18.9	22.5	25.6	20.2	0.13920	0.37652	-0.01344		
Trichlorofluoromethane (R11)	CCl₃F	8.6	10.6	11.6	14.5	18.3	22.0	25.6	29.2	-0.03449	0.40992	-0.03558		
Ethyl fluoride (R161)	C ₂ H ₅ F	7.7	9.5	10.4	13.0	16.2	19.1	21.9	24.5	-0.09973	0.41549	-0.11166		
Ethyl chloride	C ₂ H ₅ Cl	7.2	8.9	9.7	12.1	15.1	17.9	20.6	23.0	-0.07591	0.37662	-0.08906		
Ethyl bromide	C ₂ H ₅ Br	8.0	10.0	11.0	13.9	17.5	21.0	24.3	27.4	-0.14674	0.44584	-0.09301		
1,1-Dichloroethane	C ₂ H ₄ Cl ₂	7.1	8.7	9.6	11.9	15.0	17.9	20.7	23.3	-0.06882	0.36469	-0.07069		
1,2-Dichloroethane	C ₂ H ₄ Cl ₂		8.3	9.1	11.4	14.3	17.2	19.9	22.5	-0.10944	0.37538	-0.13037	0.00629	-0.00146
1,2-Dibromoethane	C ₂ H ₄ Br ₂			11.0	14.0	17.8	21.6	25.4	29.0	-0.12583	0.42355	-0.04178		
1,1,1-Trifluoroethane (R143a)	C ₂ H ₃ F ₃	9.2	11.3	12.3	15.3	19.0	22.5	25.6	28.5	-0.09470	0.48575	-0.13494		
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃		8.1	9.0	11.4	14.5	17.5	20.3	23.0	-0.15006	0.37287	-0.07221		
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄		7.9	8.6	10.8	13.7	16.4	19.1	21.7	-0.06039	0.32246	-0.04471		
Pentachloroethane	C ₂ HCl ₅		7.6	8.4	10.5	13.3	16.0	18.6	21.1	-0.05940	0.31301	-0.04155		
Hexachloroethane	C ₂ Cl ₆					12.9	15.5	18.1	20.6	-0.08639	0.31029	-0.04215		
1,1,2,2-Tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂				11.7	14.7	17.7	20.5	23.2	-0.08776	0.36025	-0.06342		
1,1,2-Trichlorotrifluoroethan	C ₂ Cl ₃ F ₃		9.6	10.6	13.4	17.0	20.4	23.6	26.6	-0.14690	0.43026	-0.08626		
1,2-Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄		10.6	11.5	14.1	17.4	20.7	23.9	27.1	0.09820	0.36272	-0.03272		
1-Chloropropane	C ₃ H ₇ Cl	6.0	7.5	8.3	10.4	13.1	15.7	18.2	20.5	-0.10368	0.33313	-0.07059		
1-Chlorobutane	C ₄ H ₉ Cl	5.4	6.8	7.5	9.4	11.9	14.3	16.6	18.7	-0.09753	0.30131	-0.06077		
1-Chloropentane	C ₅ H ₁₁ Cl					11.0	13.2	15.3	17.3	-0.07931	0.27190	-0.04930		
Chlorotrifluoroethene	C ₂ CIF ₃		11.1	12.1	14.9	18.6	22.0	25.2	28.2	-0.06719	0.46061	-0.11357		
Vinyl chloride	C ₂ H ₃ Cl	7.8	9.5	10.3	12.8	15.9	18.9	21.8	24.5	-0.03375	0.37915	-0.07484		
1,1-Dichloroethene	C ₂ H ₂ Cl ₂	7.3	9.1	10.0	12.6	15.8	18.9	21.8	24.5	-0.12601	0.40415	-0.09104		
Trichloroethene	C ₂ HCl ₃	6.9	8.5	9.3	11.6	14.6	17.6	20.3	23.0	-0.07353	0.35321	-0.05952		
Tetrachloroethene	C ₂ Cl ₄		7.9	8.8	11.1	14.2	17.1	19.9	22.5	-0.15830	0.36902	-0.07459		
Fluorobenzene	C ₆ H ₅ F				9.9	12.5	15.0	17.3	19.6	-0.05724	0.29935	-0.04944		
Chlorobenzene	C ₆ H ₅ Cl		6.8	7.4	9.3	11.8	14.2	16.5	18.7	-0.05654	0.28115	-0.04142		
Bromobenzene	C ₆ H ₅ Br					13.1	15.8	18.4	20.9	-0.09017	0.31781	-0.04670		
lodobenzene	C ₆ H ₅ I		7.7	8.5	11.1	14.4	17.6	20.7	23.7	-0.19399	0.36436	-0.04213		
<i>m</i> -Chlorotoluene	C ₇ H ₇ Cl		6.4	7.1	9.2	11.8	14.4	17.0	19.4	-0.14194	0.29743	-0.03641		
Benzyl chloride	C ₇ H ₇ Cl					10.8	13.1	15.3	17.4	-0.09774	0.26922	-0.04092		
n-Alkanes										!		ı l		
Methane	CH ₄	8.7	10.4	11.2	13.5	16.3	18.8	21.2	23.4	-0.07759	0.50484	-0.43101	0.03118	-0.00981
Ethane	C ₂ H ₆	7.0	8.5	9.3	11.5	14.2	16.7	19.1	21.2	-0.04537	0.35537	-0.09658		
Propane	C ₃ H ₈	6.2	7.5	8.2	10.2	12.8	15.2	17.5	19.6	0.07353	0.20874	0.24208	-0.03914	0.01784
<i>n</i> -Butane	C ₄ H ₁₀	5.8	7.0	7.6	9.3	11.6	13.9	16.1	18.3	0.02688	0.25130	-0.02326		
<i>n</i> -Pentane	C ₅ H ₁₂	5.2	6.4	6.9	8.6	10.8	12.9	14.9	16.9	-0.01656	0.24855	-0.03565		
<i>n</i> -Hexane	C ₆ H ₁₄	4.7	5.9	6.4	8.1	10.3	12.3	14.3	16.1	-0.07450	0.25522	-0.04815		
<i>n</i> -Heptane	C ₇ H ₁₆	4.3	5.3	5.8	7.3	9.3	11.2	13.1	14.9	-0.05425	0.22117	-0.02853	l	!

				Te	mpera	ture (°	°C)					Fouation (3)		
Substance	Formula	-50	0	25	100	200	300	400	500	10 ⁵ A	10 ⁷ B	10 ¹⁰ C	10 ¹² D	10 ¹⁵ E
<i>n</i> -Nonane	C ₉ H ₂₀	3.4	4.4	4.9	6.3	8.2	10.1	12.0	13.7	-0.11361	0.20732	-0.01914		_
n-Decane	C ₁₀ H ₂₂		4.3	4.7	6.1	7.9	9.7	11.5	13.3	-0.07177	0.18465	-0.00450		
<i>n</i> -Undecane	C ₁₁ H ₂₄		4.0	4.4	5.7	7.5	9.3	11.0	12.7	-0.09673	0.18199	-0.00624		
<i>n</i> -Dodecane	C ₁₂ H ₂₆		3.7	4.1	5.4	7.1	8.9	10.5	12.2	-0.11853	0.18014	-0.00876		
n-Tridecane	C ₁₃ H ₂₈		3.4	3.8	5.1	6.7	8.3	9.9	11.5	-0.10665	0.16513	-0.00257		
<i>n</i> -Tetradecane	C ₁₄ H ₃₀			3.7	4.8	6.4	8.0	9.6	11.1	-0.10594	0.15831	-0.00071		
<i>n</i> -Pentadecane	C ₁₅ H ₃₂			3.5	4.7	6.2	7.8	9.3	10.9	-0.11473	0.15678	-0.00150		
n-Hexadecane	C ₁₆ H ₃₄			3.4	4.5	6.1	7.6	9.2	10.7	-0.13795	0.16148	-0.00748		
<i>n</i> -Heptadecane	C ₁₇ H ₃₆			3.3	4.4	5.9	7.5	9.0	10.5	-0.12993	0.15482	-0.00366		
<i>n</i> -Octadecane	C ₁₈ H ₃₈				4.3	5.8	7.3	8.7	10.2	-0.12837	0.15164	-0.00385		
<i>n</i> -Nonadecane	C ₁₉ H ₄₀				4.2	5.7	7.1	8.5	10.0	-0.12631	0.14796	-0.00355		
<i>n</i> -Eicosane	C ₂₀ H ₄₂				4.1	5.5	6.9	8.3	9.7	-0.12507	0.14488	-0.00364		
Isoalkanes	-20: 142													
Isobutane	C ₄ H ₁₀	5.6	6.9	7.5	9.3	11.7	13.9	16.0	18.0	-0.03056	0.27695	-0.05120		
2-Methyl butane	C ₅ H ₁₂	5.4	6.6	7.2	8.9	11.0	13.0	14.8	16.5	-0.04174	0.27672	-0.07472		
2,2-Dimethyl propane	C ₅ H ₁₂	511	6.5	7.1	9.0	11.3	13.5	15.6	17.6	-0.08799	0.28748	-0.06331		
2-Methyl pentane	C ₆ H ₁₄	4.8	6.0	6.5	8.2	10.2	12.1	13.8	15.4	-0.06762	0.26309	-0.07101		
3-Methyl pentane	C ₆ H ₁₄	4.9	6.0	6.6	8.3	10.3	12.3	14.1	15.8	-0.07196	0.26542	-0.06661		
2,2-Dimethyl butane	C ₆ H ₁₄	5.3	6.4	7.0	8.6	10.7	12.6	14.4	16.1	-0.01151	0.25664	-0.06103		
2,3-Dimethyl butane	C ₆ H ₁₄	5.2	6.4	7.0	8.8	11.0	13.0	14.9	16.7	-0.07160	0.28230	-0.07453		
Olefins	C61114	3.2	0.1	7.0	0.0	11.0	15.0	12	10.7	0.07100	0.20230	0.07 133		
Ethylene	C ₂ H ₄	7.6	9.3	10.1	12.5	15.5	18.2	20.6	22.9	-0.06216	0.39695	-0.12059		
Propylene	C ₃ H ₆	6.3	7.8	8.6	10.7	13.4	15.9	18.2	20.4	-0.08571	0.34209	-0.08730		
1-Butene	C ₄ H ₈	5.7	7.1	7.7	9.7	12.1	14.4	16.6	18.5	-0.08782	0.31254	-0.07958		
1-Pentene	C ₅ H ₁₀	5.3	6.5	7.1	8.9	11.2	13.3	15.3	17.1	-0.07462	0.28548	-0.07046		
1-Hexene	C ₆ H ₁₂	4.8	6.0	6.5	8.1	10.2	12.0	13.8	15.4	-0.06612	0.26302	-0.07209		
1-Heptene	C ₇ H ₁₄	4.7	5.8	6.4	8.0	10.2	11.9	13.8	15.6	-0.05798	0.25536	-0.08534	0.00392	-0.00072
1-Octene	C ₈ H ₁₆	4.4	5.4	5.9	7.3	9.1	10.7	12.3	13.7	-0.05166	0.23337	-0.06468	0.00372	0.00072
Propadiene	C ₃ H ₄	6.2	7.5	8.2	10.0	12.3	14.4	16.2	17.9	-0.01925	0.30937	-0.09700		
1,2-Butadiene	C ₄ H ₆	5.6	6.8	7.4	9.1	11.2	13.1	14.9	16.5	-0.03543	0.28468	-0.08701		
1,3-Butadiene	C ₄ H ₆	6.3	7.8	8.5	10.5	13.1	15.6	17.9	20.0	-0.05408	0.32462	-0.07543		
1,2-Pentadiene	C ₅ H ₈	5.1	6.2	6.7	8.3	10.3	12.1	13.7	15.2	-0.04030	0.26299	-0.07884		
trans-1,3-Pentadiene	C ₅ H ₈	3.1	0.2	0.7	8.2	10.1	11.8	13.4	14.9	0.03342	0.23396	-0.05955		
1,4-Pentadiene	C ₅ H ₈				8.8	11.1	13.2	15.2	17.1	-0.08176	0.28139	-0.06431		
2,3-Pentadiene	C ₅ H ₈	5.1	6.3	6.8	8.5	10.6	12.6	14.4	16.1	-0.04668	0.26365	-0.06320		
Acetylene and Derivatives	C31 18	3.1	0.5	0.0	0.5	10.0	12.0		10.1	0.0 1000	0.20303	0.00320		
Acetylene	C ₂ H ₂	7.6	9.4	10.2	12.7	15.7	18.5			-0.11075	0.42019	-0.13611		
Propyne	C ₃ H ₄	6.4	7.9	8.6	10.7	13.3	15.7	17.9	19.9	-0.08716	0.34947	-0.10490		
2-Butyne	C ₄ H ₆	0.1	6.9	7.5	9.4	11.8	14.0	16.1	18.0	-0.08278	0.30252	-0.07563		
1-Butyne	C ₄ H ₆	5.4	6.8	7.4	9.3	11.8	14.1	16.3	18.4	-0.09787	0.30050	-0.06407		
Naphthenes	C41 16	J.¬	0.0	7.7	5.5	11.0	17.1	10.5	10.4	0.05707	0.50050	0.00407		
Cyclopropane	C₃H ₆	6.6	8.1	8.9	11.0	13.6	16.1	18.3	20.4	-0.07419	0.35270	-0.10321		
Cyclobutane	C ₄ H ₈	6.0	7.4	8.1	10.1	12.6	14.9	17.1	19.1	-0.07904	0.32310	-0.08579		
Cyclopentane	C ₅ H ₁₀	5.6	6.9	7.5	9.3	11.6	13.8	15.9	17.8	-0.04981	0.28692	-0.06427		
Methyl cyclopentane	C ₅ H ₁₀	5.1	6.3	6.9	8.7	10.9	13.0	15.0	16.8	-0.04981	0.28092	-0.06915		
Ethyl cyclopentane	C ₆ H ₁₂	4.8	5.9	6.5	8.1	10.9	12.2	14.0	15.7	-0.08377 -0.07561	0.26139	-0.06289		
Propyl cyclopentane	C ₇ H ₁₄ C ₈ H ₁₆	4.7	5.8	6.3	7.8	9.8	11.6	13.3	14.8	-0.06188	0.25185	-0.06289 -0.06740		
Butyl cyclopentane	C ₈ H ₁₆	4.7	5.4	5.9	7.6	9.0	10.9	12.4	13.9	-0.05389	0.23625	-0.06740 -0.06461		
Pentyl cyclopentane		4.4	5.0	5.4	6.7	8.5	10.9	12.4	13.9	0.10176	0.23623	0.18840	-0.01918	0.00597
Hexyl cyclopentane	C ₁₀ H ₂₀	3.9	4.6	5.0	6.3	8.0	9.6	11.3	12.9	0.10176	0.10630	0.18840	-0.01918 -0.01789	0.00553
Cyclohexane	C ₁₁ H ₂₂ C ₆ H ₁₂	3.9	4.0	7.1	8.7	10.9	12.9	14.9	16.9	0.09880	0.09722	-0.03187	-0.01709	0.00333
Methyl cyclohexane		4.8	5.9	6.5		10.9		14.9	15.8	-0.07951		-0.03187 -0.06422		
Metriyi cyclonexane	C ₇ H ₁₄	4.8	3.9	0.5	8.2	10.3	12.2	14.1	13.8	-0.07931	0.26416	-0.00422		

				Te	mpera	ture (°	°C)					Equation (3)		
Substance	Formula	-50	0	25	100	200	300	400	500	10⁵ <i>A</i>	10 ⁷ B	10 ¹⁰ C	10 ¹² D	10 ¹⁵ F
Ethyl cyclohexane	C ₈ H ₁₆	4.4	5.5	6.0	7.5	9.3	11.1	12.7	14.2	-0.05710	0.23787	-0.06047		_
Propyl cyclohexane	C ₉ H ₁₈	4.2	5.2	5.7	7.1	8.8	10.5	12.0	13.4	-0.06014	0.22794	-0.05991		
Butyl cyclohexane	C ₁₀ H ₂₀	4.0	4.9	5.4	6.7	8.3	9.9	11.3	12.6	-0.04605	0.21223	-0.05550		
Pentyl cyclohexane	C ₁₁ H ₂₂	3.9	4.7	5.1	6.3	8.0	9.7	11.4	13.0	0.10143	0.09711	0.17962	-0.01790	0.00551
Hexyl cyclohexane	C ₁₂ H ₂₄	4.0	4.8	5.2	6.4	8.1	9.9	11.6	13.2	0.11242	0.09394	0.18952	-0.01844	0.00561
Cyclopentene	C ₅ H ₈	5.8	7.2	7.8	9.8	12.3	14.6	16.8	18.8	-0.07481	0.30921	-0.07262		
Cyclohexene	C ₆ H ₁₀	5.2	6.5	7.1	8.9	11.2	13.4	15.4	17.3	-0.09348	0.28961	-0.06919		
Aromatic compounds	-0 10													
Benzene	C ₆ H ₆			7.6	9.4	11.9	14.4	16.9	19.3	0.00177	0.25542	-0.00711		
Toluene	C ₇ H ₈	5.1	6.4	7.0	8.7	10.8	12.9	14.8	16.5	-0.07109	0.27885	-0.07300		
Ethyl benzene	C ₈ H ₁₀	4.7	5.9	6.4	8.0	10.1	12.0	13.8	15.5	-0.06862	0.25645	-0.06139		
Propyl benzene	C ₉ H ₁₂	4.5	5.5	6.1	7.6	9.5	11.4	13.1	14.7	-0.06657	0.24175	-0.05492		
Butyl benzene	C ₁₀ H ₁₄	4.2	5.3	5.8	7.2	9.1	10.8	12.5	14.0	-0.06561	0.23072	-0.05302		
Pentyl benzene	C ₁₁ H ₁₆	4.0	5.0	5.4	6.8	8.5	10.1	11.6	13.0	-0.05520	0.21706	-0.05321		
Hexyl benzene	C ₁₂ H ₁₈	3.9	4.8	5.2	6.5	8.1	9.6	11.0	12.2	-0.04233	0.20516	-0.05370		
o-Xylene	C ₈ H ₁₀	5.5	5.8	6.4	8.0	10.0	12.0	13.8	15.5	-0.07549	0.25676	-0.06047		
m-Xylene	C ₈ H ₁₀		5.8	6.4	8.0	10.1	12.0	13.8	15.5	-0.07474	0.25782	-0.06128		
<i>p</i> -Xylene	C ₈ H ₁₀		3.0	6.3	7.9	9.9	11.7	13.5	15.1	-0.05863	0.24914	-0.06026		
1,2,3-Trimethyl benzene	C ₉ H ₁₂		5.5	6.1	7.6	9.6	11.4	13.1	14.7	-0.07172	0.24462	-0.05774		
1,2,4-Trimethyl benzene	C ₉ H ₁₂		5.5	6.0	7.5	9.4	11.2	12.9	14.4	-0.06620	0.23995	-0.05812		
1,3,5-Trimethyl benzene	C ₉ H ₁₂		5.3	5.8	7.3	9.2	11.0	12.6	14.2	-0.00020 -0.05772	0.23072	-0.05097		
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄		5.2	5.7	7.2	9.1	10.9	12.8	14.5	-0.03772 -0.03426	0.20863	-0.02088		
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄		5.2	5.7	7.2	8.9	10.5	12.2	13.6	-0.05896	0.22610	-0.05454		
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄		3.2	5.7	7.1	8.7	10.4	11.9	13.3	-0.03890	0.21491	-0.05071		
Pentamethyl benzene	C ₁₀ H ₁₆				6.8	8.6	10.4	11.9	13.3	-0.07246	0.22029	-0.04972		
Hexamethyl benzene	C ₁₁ H ₁₈				0.8	8.3	9.9	11.5	13.0	-0.07240 -0.07149	0.21074	-0.04372 -0.04305		
Styrene	C ₁₂ I I ₁₈		5.9	6.4	8.0	10.0	11.9	13.6	15.3	-0.05863	0.25269	-0.04303		
Isopropyl benzene	C ₈ H ₁₂	4.5	5.6	6.1	7.7	9.7	11.5	13.3	14.9	-0.06816	0.24574	-0.05656		
Biphenyl	C ₁₂ H ₁₀	4.5	5.0	0.1	6.8	8.8	10.6	12.4	14.1	-0.00810 -0.11853	0.22925	-0.04067		
Diphenyl methane					7.0	8.7	10.6	12.4	13.8	0.03209	0.22923	-0.04067 -0.00911		
Triphenyl methane	C ₁₃ H ₁₂ C ₁₉ H ₁₆				5.9	7.5	9.0	10.6	12.1	-0.02175	0.16673	-0.00911		
Tetraphenyl methane	C ₁₉ H ₂₀				3.9	7.5	7.8	9.1	10.5	-0.02173 -0.05425	0.15092	-0.01080		
Naphthalene	C ₂₅ H ₂₀				7.6	9.6	11.6	13.5	15.3	-0.03423 -0.10205	0.13092	-0.01080		
1-Methylnaphthalene	C ₁₀ H ₁₀		F 2	E 7				12.8		-0.10203 -0.08065	0.24744	-0.04743		
2-Methylnaphthalene			5.2	5.7	7.2 7.1	9.2	11.0	12.5	14.4	-0.08063 -0.07835		-0.04407		
	C ₁₁ H ₁₀		4.8	5.3	6.6	8.2	9.8	11.3		-0.07833 -0.04469	0.23048	-0.04990 -0.04940		
1-Ethylnaphthalene 2-Ethylnaphthalene	C ₁₂ H ₁₂ C ₁₂ H ₁₂		5.0	5.5	6.9	8.8	10.5	12.2	12.6 13.7	-0.0 44 69 -0.08142	0.20718 0.22516	-0.04940 -0.04792		
Alcohols	C ₁₂ 11 ₁₂		5.0	ر.ر	0.9	0.0	10.5	12.2	13.7	-0.06142	0.22310	-0.04792		
Methanol	CH ₄ O		8.7	9.6	12.2	15.6	18.8	22.0	24.9	-0.15159	0.39270	-0.06541		
Ethanol	C ₂ H ₆ O	6.7	8.2	8.9	11.0	13.7	16.3	18.8	21.2	-0.13139	0.39270	-0.00341	0.01280	-0.00413
1-Propanol	C ₂ H ₆ O	5.4	6.9	7.6	9.7	12.4	15.0	17.5	19.9	-0.06394 -0.14675		-0.17984 -0.05720	0.01260	-0.00413
· '		-									0.32078			
1-Butanol 1-Pentanol	C ₄ H ₁₀ O	5.0	6.3	6.9	8.8	11.2	13.5	15.7	17.8	-0.11787 -0.05553	0.28940 0.25174	-0.05708 -0.03963		
	C ₅ H ₁₂ O		E 6	6 1	7.7		12.6	14.6	16.5					
1-Hexanol	C ₆ H ₁₄ O		5.6	6.1		9.8	11.8	13.7	15.6	-0.07635	0.24326	-0.04168		
1-Heptanol	C ₇ H ₁₆ O		5.2	5.7	7.2	9.2	11.2	13.0	14.7	-0.09367	0.23519	-0.04239		
1-Octanol	C ₈ H ₁₈ O		4.9	5.4	6.9	8.8	10.6	12.3	14.0	-0.08403	0.22020	-0.03669		
Isopropanol	C ₃ H ₈ O	5.5	7.0	7.7	9.8	12.5	15.0	17.5	19.9	-0.11534	0.31142	-0.05033		
2-Methyl-1-propanol	C ₄ H ₁₀ O	5.3	6.6	7.3	9.2	11.7	14.0	16.2	18.4	-0.10257	0.29598	-0.05854		
3-Methyl-1-butanol	C ₅ H ₁₂ O	5.1	6.3	6.9	8.6	10.8	12.9	15.0	17.0	-0.04325	0.25708	-0.04134		
Ethylene glycol	C ₂ H ₆ O ₂		7.5	8.3	10.4	13.1	15.8	18.4	21.0	-0.05600	0.30619	-0.03555		
1,3-Propylene glycol	C ₃ H ₈ O ₂		6.8	7.4	9.4	12.0	14.5	17.1	19.6	-0.03782	0.26432	-0.00784		
Glycerol	C ₃ H ₈ O ₃			6.8	8.5	10.8	13.1	15.4	17.7	-0.00146	0.22666	0.00328		

Substained Part P					Te	mnera	ture (°	°C)					Equation (3)	
Cycloheanol Cyling Cyli	Substance	Formula	-50	0					400	500	10 ⁵ A			10 ¹⁵ F
Peners	Cyclohexanol	C ₆ H ₁₂ O				8.9	11.3	13.7	16.1	18.4				
Person C.				6.0										
Ceresis	· ·	-7 0-												
Mathematical Mat		C ₇ H₀O				8.3	10.5	12.6	14.7	16.7	-0.05130	0.24653	-0.03094	
Profession					6.4									
Prenof Carhoo Carhoo Carhoo Carboo C														
Campaign	•													
Formic acid		-00			l .									
Acetic acid C_4H_02 C_4H_02 C_4H_03	,	CH ₂ O ₂			9.3	11.8	14.9	18.0	20.9	23.7	-0.11464	0.37037	-0.06416	
Propionic acid														
Buymir acid				6.7										
Valeric acid C ₄ H ₁₀ O ₂ R 6,1 6,7 8,4 10.6 12,7 14,8 16,8 9,0 2,5 6,1 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,7 8,0 11,6 13,5 15,0 10.0 0.														
Captroic acid	· ·													
Acetic anhydride C ₄ H ₆ O ₃ S ₉ 7.3 8.0 10.1 12.9 15.5 18.0 2.0 -0.07992 0.31028 -0.04599 . Propionic anhydride C ₄ H ₃ O ₂ 1 5.4 5.9 7.4 9.3 11.0 13.0 14.8 -0.03616 0.21856 -0.04939 . Chloroacetic acid C ₂ H ₂ O ₂ 1 8.5 10.4 13.2 15.9 18.2 10.0 -0.06382 0.31055 -0.04966 . Trichloroacetic acid C ₂ H ₂ O ₂ 7.6 9.4 10.4 13.0 16.4 15.2 12.9 10.0 -0.04675 0.00475 0.09870 . Ketone C ₂ H ₂ O 7.6 9.4 10.4 15.0 16.4 15.2 12.2 2.5 2.1 0.017271 0.41928 -0.09870 . Ketone C ₂ H ₂ O 7.6 9.4 10.4 10.1 11.2 11.2 10.0 0.00432 0.00533 . 0														
Propionic anhydride			5.0											
Chioroacetic acid			3.3											
Dichioroacetic acid C ₃ HC ₁ C ₉ C ₄	. ,			5.4	3.9									
Trichioroacetic acid C ₂ HCi ₃ Co ₂ C C C C C C C C C					0.2									
Ketones Ketene C ₂ H ₂ O 7.0 9.4 10.4 13.0 16.4 19.5 22.5 2.0 -0.04063 0.06930 -0.0833 -0.0833 -0.0833 -0.080633 -0.080633 -0.080633 -0.080					0.3									
Ketene C ₂ H ₂ O 7.6 9.4 10.4 13.0 16.4 19.5 22.5 22.5 22.0 -0.12721 0.41928 -0.09870 . Acetone C ₃ H ₄ O 5.5 6.8 7.5 9.0 11.3 17.3 19.9 -0.040632 0.20633 -0.00704 Methyl ethyl ketone C ₄ H ₆ O 5.5 6.6 7.2 9.0 11.3 13.7 16.1 15.0 0.040632 0.24695 -0.00701 . Dipropyl ketone C ₂ H ₁ O 1 5.3 8.8 7.3 9.2 10.1 12.4 -0.04362 0.21469 -0.03379 Acetophenone C ₂ H ₁ O 1 6 8.2 10.5 11.8 15.0 17.4 -0.04362 0.21469 -0.03339 Berzophenone C ₂ H ₁ O 1 6 8.2 10.5 18.2 10.5 18.2 10.5 18.2 10.0 12.2 0.00533 0.02186 0.01869 0.00533 0.02186		C ₂ nCl ₃ O ₂				10.3	13.0	15.0	18.2	20.7	-0.04673	0.30091	-0.03513	
Actone C,H ₂ O 5.5 6.8 7.5 9.5 12.1 14.7 17.3 19.9 -0.04063 0.26639 -0.00533 . Methyl ethyl ketone C _H H ₂ O 5.5 6.6 7.2 9.0 11.3 13.7 16.1 18.5 0.03088 0.22920 0.00704 . Diethyl ketone C _H H ₂ O 1 6.0 6.5 8.2 10.3 12.4 14.3 16.2 -0.04632 0.24090 -0.040379 . Acetophenone C _H H ₂ O 1 6.5 8.2 10.5 12.8 15.0 17.2 -0.05627 0.24176 -0.01586 . Benzophenone C _J H ₁ O 1 6.5 8.2 10.0 11.7 13.4 -0.02330 0.21864 -0.03379 . Benzophenone C _J H ₁ O 1 6.5 8.2 10.2 10.2 10.2 0.02330 0.21400 -0.03379 . Ether C _J H ₁ O 6.0 8.8		611.0	7.0	0.4	10.4	12.0	16.4	10.5	22.5	25.2	0.12721	0.41020	0.00070	
Methyl ethyl ketone														
Diethyl ketone														
Dipropyl ketone C ₉ H ₁₄ O C ₉ H ₁₆ O C ₁ H ₁₆ O	, ,		5.5											
Acetophenone C ₉ H ₉ O I 6.5 8.2 10.5 12.0 13.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0	,													
Part	,			5.3										
Dimethyl ether C2H6O 6.8 8.4 9.2 11.6 14.5 17.3 19.9 22.3 -0.10763 0.37311 -0.09094					6.5									
Dimethyl ether C2H6O 6.8 8.4 9.2 11.6 14.5 17.3 19.9 22.3 -0.10763 0.37311 -0.09094		$C_{13}H_{10}O$				6.3	8.2	10.0	11.7	13.4	-0.12330	0.21440	-0.03233	
Diethyl ether C ₄ H ₁₀ O S.6 6.9 7.6 9.5 1.9 1.1 1.2 1.2 1.3 1.5 0.04652 0.21533 0.0252 0.04644 0.0464		1			ı			ı						
Dipropylether C ₄ H ₁₀ C S.2 6.2 6.7 8.2 10.1 12.1 13.9 15.8 0.04652 0.21533 0.02252	•													
Methyl propyl ether C ₄ H ₁₀ O 5.7 6.9 7.6 9.4 11.8 14.0 16.2 18.2 -0.02933 0.27827 -0.04984 Ethyl propyl ether C ₃ H ₁₂ O 5.0 6.2 6.8 8.6 10.9 15.0 15.0 0.02933 0.27850 -0.06111 Ethylene oxide C ₃ H ₄ O 7.0 8.7 9.5 11.9 15.0 18.1 21.0 23.9 -0.07074 0.35618 -0.04906 Furane C ₃ H ₄ O 6.2 7.8 8.6 11.0 14.0 16.9 19.6 22.2 -0.14789 0.36008 -0.08069 Furane C ₃ H ₄ O 6.2 7.8 8.6 11.0 14.0 16.9 19.6 22.2 -0.14789 0.36008 -0.08069 10.00009 Algebydes CH ₂ O 8.8 11.8 11.7 18.3 12.7 25.0 25.0 -0.078126 0.3214	Diethyl ether										-0.08933	0.30626		
Ethyl propyl ether C ₅ H ₁₂ O 5.0 6.2 6.8 8.6 1.09 13.0 16.9 -0.09340 0.27850 -0.06111 Ethylene oxide C ₂ H ₄ O 7.0 8.7 9.5 11.9 15.0 18.1 21.0 23.9 -0.07074 0.35618 -0.04906 -0.04906 Furane C ₂ H ₄ O 6.2 7.8 8.6 11.0 14.0 16.9 19.6 22.2 -0.14789 0.36008 -0.06966 -0.08042 <td>Dipropyl ether</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.1</td> <td></td> <td></td> <td></td> <td>0.04652</td> <td>0.21533</td> <td></td> <td></td>	Dipropyl ether						10.1				0.04652	0.21533		
Ethylene oxide C ₂ H ₄ O 7.0 8.7 9.5 11.9 15.0 18.1 21.0 23.9 -0.07074 0.35618 -0.04906 Furane Furane C ₂ H ₄ O 6.2 7.8 8.6 11.0 14.0 16.9 19.6 22.2 -0.14789 0.36008 -0.06896 -0.08042 1,4-Dioxane C ₄ H ₈ O ₂ 1 1.29 16.1 20.3 24.4 28.3 32.0 -0.09914 0.48891 -0.08042 -0.08042 -0.08048 -0.08049 <t< td=""><td>, , , ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	, , , ,													
Furane C2H4O 6.2 7.8 8.6 11.0 14.0 16.9 19.6 22.2 -0.14789 0.36008 -0.06896 1.4-Dioxane C4H8O2 12.9 16.1 20.3 24.4 28.3 32.0 -0.09914 0.48891 -0.08042	, , , ,													
Aldehydes C ₄ H ₈ O ₂ Image: Normal Relation of Street Between Stree	Ethylene oxide	C ₂ H ₄ O	7.0	8.7	9.5	11.9	15.0	18.1	21.0	23.9	-0.07074	0.35618	-0.04906	
Aldehydes Formaldehyde CH2O 8.8 10.8 11.8 14.7 18.3 21.7 25.0 28.0 -0.08285 0.45568 -0.10791	Furane	C ₂ H ₄ O	6.2	7.8	8.6	11.0	14.0	16.9	19.6	22.2	-0.14789	0.36008	-0.06896	
Formaldehyde	1,4-Dioxane	C ₄ H ₈ O ₂			12.9	16.1	20.3	24.4	28.3	32.0	-0.09914	0.48891	-0.08042	
Acetaldehyde C ₂ H ₄ O 6.4 7.8 8.6 10.7 13.4 16.0 18.5 20.9 -0.04826 0.32014 -0.05638	Aldehydes													
Paraldehyde C ₆ H ₁₂ O ₃ Respect to the properties of the prop	Formaldehyde	CH ₂ O	8.8	10.8	11.8	14.7	18.3	21.7	25.0	28.0	-0.08285	0.45568	-0.10791	
Furfural C ₅ H ₄ O ₂ 7.3 8.0 10.1 12.9 15.6 18.3 21.0 -0.05317 0.29341 -0.02009	Acetaldehyde	C ₂ H ₄ O	6.4	7.8	8.6	10.7	13.4	16.0	18.5	20.9	-0.04826	0.32014	-0.05638	
Benzaldehyde C ₇ H ₆ O 4.7 5.9 6.5 8.2 10.5 12.6 14.8 16.8 -0.07865 0.25494 -0.03580 Salicylaldehyde C ₇ H ₆ O ₂ 6.3 8.0 10.1 12.1 14.1 16.0 -0.04767 0.23738 -0.03800 Esters Methyl formate C ₂ H ₄ O ₂ 6.8 8.6 9.4 12.0 15.3 18.4 21.4 24.3 -0.13632 0.38184 -0.06475	Paraldehyde	$C_6H_{12}O_3$			7.7	9.8	12.7	15.4	18.0	20.5	-0.16710	0.32863	-0.05351	
Salicylaldehyde C ₇ H ₆ O ₂ 6.3 8.0 10.1 12.1 14.1 16.0 -0.04767 0.23738 -0.03080 Esters Methyl formate C ₂ H ₄ O ₂ 6.8 8.6 9.4 12.0 15.3 18.4 21.4 24.3 -0.13632 0.38184 -0.06475 1.0 Ethyl formate C ₃ H ₆ O ₂ 6.0 7.6 8.4 10.8 13.8 16.6 19.4 22.0 -0.15589 0.35441 -0.06412 1.0 <td>Furfural</td> <td>C₅H₄O₂</td> <td></td> <td>7.3</td> <td></td> <td>10.1</td> <td>12.9</td> <td>15.6</td> <td>18.3</td> <td>21.0</td> <td>-0.05317</td> <td>0.29341</td> <td>-0.02009</td> <td></td>	Furfural	C ₅ H ₄ O ₂		7.3		10.1	12.9	15.6	18.3	21.0	-0.05317	0.29341	-0.02009	
Esters Methyl formate C ₂ H ₄ O ₂ 6.8 8.6 9.4 12.0 15.3 18.4 21.4 24.3 -0.13632 0.38184 -0.06475	Benzaldehyde	C ₇ H ₆ O	4.7	5.9	6.5	8.2	10.5	12.6	14.8	16.8	-0.07865	0.25494	-0.03580	
Methyl formate C ₂ H ₄ O ₂ 6.8 8.6 9.4 12.0 15.3 18.4 21.4 24.3 -0.13632 0.38184 -0.06475 Ethyl formate C ₃ H ₆ O ₂ 6.0 7.6 8.4 10.8 13.8 16.6 19.4 22.0 -0.15589 0.35441 -0.06412 Propyl formate C ₄ H ₈ O ₂ 5.5 7.0 7.7 9.9 12.6 15.3 17.9 20.3 -0.14742 0.32392 -0.05416 Methyl acetate C ₃ H ₆ O ₂ 7.2 8.0 10.2 13.0 15.7 18.2 20.6 -0.15412 0.33832 -0.06684 Ethyl acetate C ₄ H ₈ O ₂ 5.6 6.9 7.6 9.6 12.0 14.4 16.5 18.6 -0.09641 0.30876 -0.07229 Propyl acetate C ₅ H ₁₀ O ₂ 4.9 6.2 6.8 8.6 10.8 13.0 15.1 17.0 -0.08641 0.27161 -0.05164 Methyl propionate C ₄ H ₈ O ₂ <	Salicylaldehyde	C ₇ H ₆ O ₂			6.3	8.0	10.1	12.1	14.1	16.0	-0.04767	0.23738	-0.03080	
Ethyl formate C3H6O2 6.0 7.6 8.4 10.8 13.8 16.6 19.4 22.0 -0.15589 0.35441 -0.06412 -0.06412 Propyl formate C4H8O2 5.5 7.0 7.7 9.9 12.6 15.3 17.9 20.3 -0.14742 0.32392 -0.05416 Methyl acetate C3H6O2 7.2 8.0 10.2 13.0 15.7 18.2 20.6 -0.15412 0.33832 -0.06684 Ethyl acetate C4H8O2 5.6 6.9 7.6 9.6 12.0 14.4 16.5 18.6 -0.09641 0.30876 -0.07229 Propyl acetate C5H10O2 4.9 6.2 6.8 8.6 10.8 13.0 15.1 17.0 -0.08641 0.27161 -0.05164 Methyl propionate C4H8O2 5.4 6.7 7.4 9.3 11.8 14.1 16.4 18.5 -0.10184 0.29907 -0.06099	Esters													
Propyl formate C ₄ H ₈ O ₂ 5.5 7.0 7.7 9.9 12.6 15.3 17.9 20.3 -0.14742 0.32392 -0.05416 Methyl acetate C ₃ H ₆ O ₂ 7.2 8.0 10.2 13.0 15.7 18.2 20.6 -0.15412 0.33832 -0.06684 Ethyl acetate C ₄ H ₈ O ₂ 5.6 6.9 7.6 9.6 12.0 14.4 16.5 18.6 -0.09641 0.30876 -0.07229 Propyl acetate C ₅ H ₁₀ O ₂ 4.9 6.2 6.8 8.6 10.8 13.0 15.1 17.0 -0.08641 0.27161 -0.05164 Methyl propionate C ₄ H ₈ O ₂ 5.4 6.7 7.4 9.3 11.8 14.1 16.4 18.5 -0.10184 0.29907 -0.06099	Methyl formate	C ₂ H ₄ O ₂	6.8	8.6	9.4	12.0	15.3	18.4	21.4	24.3	-0.13632	0.38184	-0.06475	
Methyl acetate C ₃ H ₆ O ₂ 7.2 8.0 10.2 13.0 15.7 18.2 20.6 -0.15412 0.33832 -0.06684 Ethyl acetate C ₄ H ₈ O ₂ 5.6 6.9 7.6 9.6 12.0 14.4 16.5 18.6 -0.09641 0.30876 -0.07229 Propyl acetate C ₅ H ₁₀ O ₂ 4.9 6.2 6.8 8.6 10.8 13.0 15.1 17.0 -0.08641 0.27161 -0.05164 Methyl propionate C ₄ H ₈ O ₂ 5.4 6.7 7.4 9.3 11.8 14.1 16.4 18.5 -0.10184 0.29907 -0.06099	Ethyl formate	C ₃ H ₆ O ₂	6.0	7.6	8.4	10.8	13.8	16.6	19.4	22.0	-0.15589	0.35441	-0.06412	
Ethyl acetate C ₄ H ₈ O ₂ 5.6 6.9 7.6 9.6 12.0 14.4 16.5 18.6 -0.09641 0.30876 -0.07229 Propyl acetate C ₅ H ₁₀ O ₂ 4.9 6.2 6.8 8.6 10.8 13.0 15.1 17.0 -0.08641 0.27161 -0.05164 Methyl propionate C ₄ H ₈ O ₂ 5.4 6.7 7.4 9.3 11.8 14.1 16.4 18.5 -0.10184 0.29907 -0.06099	Propyl formate	C ₄ H ₈ O ₂	5.5	7.0	7.7	9.9	12.6	15.3	17.9	20.3	-0.14742	0.32392	-0.05416	
Propyl acetate C ₅ H ₁₀ O ₂ 4.9 6.2 6.8 8.6 10.8 13.0 15.1 17.0 -0.08641 0.27161 -0.05164 Methyl propionate C ₄ H ₈ O ₂ 5.4 6.7 7.4 9.3 11.8 14.1 16.4 18.5 -0.10184 0.29907 -0.06099	Methyl acetate	C ₃ H ₆ O ₂		7.2	8.0	10.2	13.0	15.7	18.2	20.6	-0.15412	0.33832	-0.06684	
Methyl propionate C ₄ H ₈ O ₂ 5.4 6.7 7.4 9.3 11.8 14.1 16.4 18.5 -0.10184 0.29907 -0.06099	Ethyl acetate	C ₄ H ₈ O ₂	5.6	6.9	7.6	9.6	12.0	14.4	16.5	18.6	-0.09641	0.30876	-0.07229	
	Propyl acetate	C ₅ H ₁₀ O ₂	4.9	6.2	6.8	8.6	10.8	13.0	15.1	17.0	-0.08641	0.27161	-0.05164	
Ethyl propionate C ₅ H ₁₀ O ₂ 6.6 8.3 9.1 11.5 14.6 17.6 20.4 23.0 -0.13863 0.37449 -0.07577	Methyl propionate	C ₄ H ₈ O ₂	5.4	6.7	7.4	9.3	11.8	14.1	16.4	18.5	-0.10184	0.29907	-0.06099	
	Ethyl propionate	C ₅ H ₁₀ O ₂	6.6	8.3	9.1	11.5	14.6	17.6	20.4	23.0	-0.13863	0.37449	-0.07577	

				Te	mpera	iture (°	°C)					Equation (3)		
Substance	Formula	-50	0	25	100	200	300	400	500	10⁵ A	10 ⁷ B	10 ¹⁰ C	10 ¹² D	10 ¹⁵ E
Propyl propionate	C ₆ H ₁₂ O ₂	4.6	5.7	6.3	8.0	10.1	12.2	14.1	16.0	-0.08710	0.25499	-0.04799		
Methyl butyrate	C ₅ H ₁₀ O ₂	4.9	6.2	6.8	8.6	10.9	13.0	15.1	17.1	-0.09985	0.27719	-0.05607		
Ethyl butyrate	C ₆ H ₁₂ O ₂	4.5	5.7	6.3	8.0	10.1	12.2	14.1	16.0	-0.09654	0.25850	-0.05101		
Methyl benzoate	C ₈ H ₈ O ₂					10.1	12.1	14.1	16.1	-0.03621	0.23330	-0.02657		
Ethyl benzoate	C ₉ H ₁₀ O ₂		5.5	6.0	7.5	9.5	11.4	13.3	15.2	-0.03954	0.22199	-0.02695		
Methyl salicylate	C ₈ H ₈ O ₃		5.6	6.1	7.7	9.7	11.7	13.6	15.5	-0.04401	0.22727	-0.02759		
Amines														
Methyl amine	CH₅N	6.6	8.2	8.9	11.2	14.0	16.7	19.2	21.5	-0.09272	0.35586	-0.08531		
Ethyl amine	C ₂ H ₇ N	5.9	7.3	8.0	10.0	12.6	15.0	17.3	19.4	-0.09010	0.31981	-0.07363		
Propyl amine	C₃H ₉ N	5.5	6.7	7.4	9.2	11.5	13.8	15.9	17.9	-0.05315	0.28073	-0.05425		
n-butyl amine	C ₄ H ₁₁ N		6.2	6.8	8.5	10.7	12.8	14.8	16.7	-0.05588	0.26084	-0.04835		
Dimethyl amine	C ₂ H ₇ N	7.0	8.6	9.3	11.6	14.5	17.3	19.9	22.3	-0.06089	0.35730	-0.07854		
Trimethyl amine	C ₃ H ₉ N	5.7	7.1	7.8	9.9	12.5	15.0	17.4	19.6	-0.11661	0.32114	-0.06794		
Diethyl amine	C ₄ H ₁₁ N		6.7	7.3	9.2	11.7	14.0	16.1	18.2	-0.09105	0.29587	-0.06378		
Triethyl amine	C ₆ H ₁₅ N	4.9	6.2	6.8	8.7	11.1	13.4	15.6	17.8	-0.11188	0.27992	-0.04612		
Piperidine	C ₅ H ₁₁ N					11.3	13.7	16.0	18.3	-0.14811	0.29184	-0.04677		
Pyridine	C₅H₅N		6.7	7.3	9.3	11.9	14.4	16.9	19.4	-0.07020	0.27549	-0.02026		
Aniline	C ₆ H ₇ N		6.0	6.7	8.5	10.8	13.0	15.2	17.3	-0.09488	0.26669	-0.03931		
N-Methyl aniline	C ₇ H ₉ N	5.1	6.3	6.9	8.6	10.8	13.1	15.2	17.3	-0.03068	0.24766	-0.02540		
N,N-dimethyl aniline	C ₈ H ₁₁ N			5.9	7.4	9.5	11.5	13.5	15.5	-0.05089	0.21904	-0.01598		
N,N-diethyl aniline	C ₁₀ H ₁₅ N		5.1	5.6	7.0	8.9	10.7	12.5	14.2	-0.01689	0.19904	-0.01628		
Phenylhydrazine	C ₆ H ₈ N ₂			6.2	7.8	9.9	11.9	14.0	15.9	-0.02900	0.22291	-0.01672		
Diphenyl amine	C ₁₂ H ₁₁ N				7.0	9.0	10.8	12.7	14.5	-0.06505	0.21491	-0.02526		
Nitriles														
Acetonitrile	C ₂ H ₃ N		6.5	7.1	8.9	11.2	13.5	15.7	17.9	-0.01722	0.25237	-0.02396		
Propionitrile	C ₃ H ₅ N	5.0	6.1	6.7	8.3	10.5	12.6	14.6	16.5	-0.04528	0.25157	-0.04200		
Butyronitrile	C ₄ H ₇ N	4.7	5.8	6.3	7.9	9.9	11.9	13.7	15.6	-0.03917	0.23503	-0.03726		
Benzonitrile	C ₇ H ₅ N		6.4	7.0	8.9	11.3	13.7	16.1	18.4	-0.04813	0.25611	-0.01517		
Amides														
Formamide	CH₃NO			8.6	10.7	13.6	16.4	19.1	21.8	-0.04372	0.31013	-0.02858		
Nitroderivates														
Nitromethane	CH ₃ NO ₂		6.6	7.3	9.6	12.4	15.2	18.0	20.6	-0.18903	0.32181	-0.04020		
Nitrobenzene	C ₆ H ₅ NO ₂			6.8	8.9	11.6	14.2	16.8	19.4	-0.16371	0.29108	-0.02490		
o-Nitrotoluene	C ₇ H ₇ NO ₂		5.8	6.3	8.0	10.2	12.4	14.5	16.7	-0.04061	0.22985	-0.01161		
<i>m</i> -Nitrotoluene	C ₇ H ₇ NO ₂			6.3	7.9	10.1	12.3	14.4	16.5	-0.04500	0.22850	-0.01162		
<i>p</i> -Nitrotoluene	C ₇ H ₇ NO ₂				7.8	10.0	12.2	14.3	16.4	-0.05845	0.23080	-0.01379	_	

D3.1. Table 9. Thermal conductivity of saturated liquids in W/mK

					Temperature (°C)	ture (°C)						Equation (4)		
Substance	Formula	-50	-25	0	20	50	100	150	200	А	10² B	10 ⁴ C	10 ⁷ D	10 ¹⁰ E
Elements														
Xenon	γ	0.049	0.039							0.1372	-0.03997	0.00074	-0.00377	0.00562
Krypton	Kr									0.1728	-0.06558	-0.00193	-0.00094	0.01428
Argon	Ar									0.1821	-0.03726	-0.02781	-0.11115	0.30999
Air										-0.0006	0.95952	-1.70225	11.14335	-26.70110
Nitrogen	N_2									0.2621	-0.15793	-0.00737	-0.01546	0.23198
Oxygen	02									0.2716	-0.12812	-0.01371	0.08022	-0.16812
Sulfur	S							0.138	0.152	-0.0986	0.06958	0.00029	-0.01067	0.00553
Fluorine	F ₂									0.2755	-0.16169	-0.00200	0.01254	-0.02573
Chlorine	Cl ₂	0.171	0.160	0.148	0.138	0.122	0.091			0.2265	-0.00950	-0.00608	-0.00441	0.00391
Bromine	Br ₂			0.129	0.125	0.117	0.105	0.093	0.081	-0.1426	0.34711	-0.15092	0.26902	-0.17744
lodine	l ₂							0.112	0.105	0.1156	0.00461	0.00003	-0.00384	0.00158
Anorganic compounds														
Hydrogen fluoride	生	0.509	0.482	0.455	0.433	0.400	0.346			0.7335	-0.08293	-0.01349	0.03071	-0.02573
Hydrogen chloride	IDH			0.230	0.188	0.125				0.6690	-0.09277	-0.02690	-0.01103	0.06800
Hydrogen bromide	HBr	0.131	0.119	0.107						0.2371	-0.04914	0.00020	0.00372	-0.00821
Hydrogen iodide	IH		0.049	0.046	0.043	0.039	0.030			0.1510	-0.06435	0.00443	0.03809	-0.07231
Hydrogen cyanide	NOH			0.243	0.229					0.4031	-0.04529	-0.00361	-0.01167	0.02592
Water	O^2H			0.555	0.598	0.643	0.680	0.682	0.661	-2.4149	2.45165	-0.73121	0.99492	-0.53730
Hydrogen sulfide	S ^z H	0.220	0.190	0.161						0.4588	-0.08190	-0.01903	0.04211	-0.03272
Ammonia	^E HN	0.602	0.563	0.518	0.478	0.416	0.298			-0.5047	1.74960	-0.92075	1.97003	-1.61999
Nitric oxide	ON									0.2268	0.01517	-0.02647	-0.19936	0.14484
Nitrogen dioxide	NO ₂			0.157						0.3147	-0.05645	-0.00064	0.00262	-0.00698
Nitrous oxide	N_2O									0.1011				
Dinitrogentetroxide	N_2O_4					0.131				0.1864	0.01841	-0.01083	-0.00544	0.01509
Cyanogen	C_2N_2		0.254							0.3376	-0.01640	0.00048	-0.00449	-0.10407
Phosphorus trichloride	PCI ₃	0.146	0.140	0.134	0.129	0.121	0.109			0.2008	-0.02466			
Cyanogen chloride	CICN			0.175						0.2788	-0.03245	-0.00008	-0.00364	-0.01280
Silane	[†] H!S	950'0	0.032							0.2764	-0.09858			
Tetrachlorosilane	SiCl⁴			0.103	0.100	0.096				0.1371	-0.01265			
Carbon monoxide	CO									0.2845	-0.17440	-0.00543	0.02657	-0.02637
Carbon dioxide	CO ₂	0.169	0.139	0.108	0.084					0.3881	-0.06561	-0.01769	0.00700	0.03031
Carbon suboxide	C ₃ O ₂	0.159	0.149	0.138	0.128	0.113	0.084			0.2203	0.00745	-0.02962	0.08522	-0.10022

368

D3.1. Table 9. (continued)

					Temperature (°C)	ture (°C)						Equation (4		
Substance	Formula	-50	-25	0	20	20	100	150	200	У	10 ₅ B	104 C	10 ₂ D	10 ₁₀ E
Carbonyl sulfide	COS									0.2620	-0.05256	0.00567	-0.02701	0.04524
Phosgene	CCl ₂ O	0.150	0.144	0.138						0.2004	-0.01457	-0.00721	0.02243	-0.02587
Carbon disulfide	CS ₂	0.172	0.165	0.158	0.153					0.2301	-0.02261	-0.00269	0.00630	-0.00523
Sulfur dioxide	502	0.243	0.227	0.211	0.199	0.180	0.149			0.3833	-0.06393	0.00065	-0.00130	9600000
Sulfur trioxide	SO ₃				0.254	0.211	0.150	0.102	0.067	0.8854	-0.26459	0.01050	0.02624	-0.01586
Sulfuryl chloride	Cl ₂ SO ₂	0.148	0.141	0.135	0.129	0.121				0.2029	-0.02307	-0.00003	-0.00468	0.00811
Sulfur hexafluoride	SF ₆	0.107	0.091	0.074	0.061					0.2444	-0.05733	-0.00157	-0.00339	0.00914
Organic compounds containing sulfur	sulfur													
Methyl mercaptan	CH₄S	0.176	0.166	0.156						0.2492	-0.01542	-0.01615	0.04983	-0.05680
Ethyl mercaptan	C ₂ H ₆ S	0.162	0.154	0.146	0.140					0.2336	-0.03104	-0.00100	0.00389	-0.00522
Dimethyl sulfide	C ₂ H ₆ S	0.166	0.157	0.149	0.142					0.2365	-0.02907	-0.00203	0.00431	-0.00321
Diethyl sulfide	C ₄ H ₁₀ S	0.152	0.146	0.139	0.134	0.126				0.2119	-0.02688	-0.00039	0.00280	-0.00416
Thiophene	C ₄ H ₄ S		0.156	0.151	0.147	0.141				0.2031	-0.01367	-0.00462	0.01347	-0.01388
Halogenated hydrocarbons														
Fluoromethane (R41)	CH ₃ F	0.217	0.191	0.166						0.4469	-0.10555	0.00200	-0.00503	0.00417
Difluoromethane (R32)	CH ₂ F ₂	0.188	0.167	0.147	0.131					0.3594	-0.06623	-0.01007	0.03153	-0.03617
Trifluoromethane (R23)	CHF ₃	0.109								0.2216	-0.02927	-0.02195	0.07958	-0.10654
Tetrafluoromethane (R14)	CF ₄									0.2200	-0.09284	-0.00627	0.09634	-0.17838
Methyl chloride	CH ₃ Cl	0.221	0.200	0.179	0.162	0.137				0.4125	86980'0-	9600000	-0.00171	0.00103
Methylene chloride	CH ₂ Cl ₂	0.164	0.156	0.147	0.141	0.131				0.2449	-0.04325	0.00563	-0.01401	0.01288
Chloroform	CHCl ₃	0.133	0.128	0.123	0.118	0.112	0.102			0.1773	-0.01965	-0.00020	0.00020	0.00005
Carbon tetrachloride	CCI ₄			0.105	0.101	0.095				0.1509	-0.01298	-0.00156	-0.00071	0.00398
Bromomethane	CH ₃ Br	0.124	0.117	0.109	0.104	0.095				0.1885	-0.02596	-0.00217	0.00518	-0.00456
Dibromomethane	CH ₂ Br ₂	0.125	0.120	0.114	0.110	0.103				0.1724	-0.01869	-0.00166	0.00309	-0.00203
Tribromomethane	CHBr ₃				0.100	0.095	0.088			0.1476	-0.01496	-0.00122	0.00389	-0.00383
Tetrabromomethane	CBr ₄						0.083	0.077	0.071	0.1310	-0.01303	-0.00001	-0.00003	0.00041
Chlorodifluoromethane (R22)	CHCIF ₂	0.12	0.109	0.097	0.088	0.075				0.2211	-0.04472	-0.00061	0.00210	-0.00241
Dichlorofluoromethane (R21)	CHCl ₂ F	0.128	0.119	0.110	0.102	0.091	0.073			0.2104	-0.03641	-0.00024	0.00024	0.00015
Chlorotrifluoromethane (R13)	CCIF ₃	0.082	690.0	0.056	0.046					0.1950	-0.05177	0.00095	-0.00340	0.00432
Dichlorodifluoromethane (R12)	CCl ₂ F ₂	0.103	0.092	0.081	0.073	0.059				0.2016	-0.04522	0.00090	-0.00227	0.00212
Trichlorofluoromethane (R11)	CCl ₃ F	0.115	0.106	0.098	0.092	0.082	0.066			0.1863	-0.03138	-0.00054	0.00107	-0.00077
Ethyl fluoride (R161)	C ₂ H ₅ F	0.148	0.135	0.123						0.2590	-0.04949	-0.00012	-0.00053	0.00161
Ethyl chloride	C ₂ H ₅ Cl	0.150	0.140	0.129	0.121	0.108	0.087			0.2416	-0.03815	-0.00223	0.00563	-0.00509

Ethyl bromide	C ₂ H ₅ Br	0.121	0.115	0.108	0.103	0.095	0.082			0.1780	-0.02343	-0.00143	0.00321	-0.00262
1,1-Dichloroethane	C ₂ H ₄ Cl ₂	0.131	0.124	0.118	0.112	0.105	0.092			0.1888	-0.02598	-0.00015	0.00055	-0.00058
1,2-Dichloroethane	C ₂ H ₄ Cl ₂			0.141	0.136	0.128				0.2140	-0.02654	-0.00002		
1,2-Dibromoethane	C ₂ H ₄ Br ₂				0.102	0.098	0.092			0.1313	-0.00855	-0.00025	-0.00182	0.00300
1,1,1-Trifluoroethane (R143a)	$C_2H_3F_3$	0.104	60.0	0.082						0.1742	-0.02303	-0.00300	-0.00627	0.01123
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃		0.111	0.106	0.102	960.0	0.086	0.076	990.0	0.1593	-0.01887	-0.00027	0.00014	0.00014
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄				0.114	0.108	0.099			0.1622	-0.01468	-0.00061	-0.00061	0.00162
Pentachloroethane	C ₂ HCl ₅		0.102	0.098	0.095	060:0	0.083	0.075	0.067	0.1379	-0.01362	-0.00063	0.00108	-0.00067
Hexachloroethane	C ₂ Cl ₆								990:0	0.0559	0.02715	-0.00627	0.00044	0.00350
1,1,2,2-Tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂					0.077	0.070	0.062	0.054	0.1263	-0.01442	-0.00058	0.00147	-0.00122
1,1,2-Trichlorotrifluoroethan	C ₂ Cl ₃ F ₃		580'0	0.079	0.075	690:0	0.058	0.048		0.1404	-0.02415	0.00098	-0.00131	0.00053
1,2-Dichlorotetrafluoroethane	$C_2Cl_2F_4$	0.083	9/0.0	0.070	0.065	0.058	0.046			0.1382	-0.02496	0.00001	0.00019	-0.00030
1-Chloropropane	C ₃ H ₂ Cl	0.137	0.130	0.122	0.117	0.108	0.094			0.2004	-0.02756	-0.00062	0.00111	-0.00064
1-Chlorobutane	C ₄ H ₉ Cl	0.139	0.132	0.125	0.120	0.112	660.0			0.1985	-0.02671	-0.00008	0.00030	-0.00038
1-Chloropentane	C ₅ H ₁₁ Cl	0.134	0.128	0.122	0.117	0.110	0.098	0.086		0.1870	-0.02372	-0.00005	0.00010	-0.00008
Chlorotrifluoroethene	C ₂ CIF ₃	0.096	0.088	0.080	0.074	0.064	0.048			0.1671	-0.03202	0.00003	0.00010	-0.00027
Vinyl chloride	C ₂ H ₃ Cl	0.146	0.136	0.126	0.118	0.107				0.2326	-0.03792	-0.00091	0.00274	-0.00303
1,1-Dichloroethene	C ₂ H ₂ Cl ₂	0.127	0.119	0.112	0.107	0.098	0.084			0.1900	-0.02748	-0.00079	0.00219	-0.00220
Trichloroethene	C ₂ HCl ₃	0.137	0.130	0.122	0.116	0.108				0.2069	-0.03658	0.00406	-0.00961	0.00841
Tetrachloroethene	C ₂ Cl ₄			0.116	0.111	0.104	0.091			0.1862	-0.02656	0.00059	-0.00111	0.00079
Fluorobenzene	C_6H_5F		0.140	0.133	0.127	0.119				0.1968	-0.01565	-0.00363	0.00207	0.00333
Chlorobenzene	C ₆ H ₅ Cl		0.137	0.132	0.128	0.122	0.113			0.1831	-0.01817	-0.00034	0.00045	-0.00016
Bromobenzene	C ₆ H ₅ Br		0.121	0.116	0.112	0.106	960.0	0.086		0.1677	-0.01823	-0.00023	-0.00051	0.00107
lodobenzene	C ₆ H ₅ I		0.105	0.102	0.100	0.097	0.092	0.087		0.1313	-0.01133	0.00049	-0.00093	0.00066
<i>m</i> -chlorotoluene	C ₂ H ₂ Cl		0.136	0.131	0.127	0.121	0.111	0.101		0.1860	-0.02044	0.00012	-0.00004	-0.00015
Benzyl chloride	C ₂ H ₂ Cl		0.145	0.140	0.136	0.130	0.121	0.111	0.101	0.1923	-0.01925		0.00002	-0.00003
n-Alkanes														
Methane	CH⁴									0.4011	-0.19773	-0.01440	0.22814	-0.38138
Ethane	C_2H_6	0.133	0.111	0.091	0.075					0.3505	-0.09878	-0.00627	0.04136	-0.04929
Propane	C ₃ H ₈	0.133	0.120	0.107	0.097	0.082				0.2661	-0.06336	0.00057	0.00655	-0.00701
<i>n</i> -Butane	C_4H_{10}	0.140	0.128	0.117	0.109	0.097	0.079			0.2699	-0.06508	0.00136	0.00992	-0.00933
<i>n</i> -Pentane	C_5H_{12}	0.142	0.132	0.122	0.114	0.103	0.087	0.072		0.2529	-0.05640	0.00284	0.00123	-0.00089
<i>n</i> -Hexane	C ₆ H ₁₄	0.146	0.137	0.128	0.121	0.111				0.2331	-0.04813	0.00735	-0.01833	0.01680
<i>n</i> -Heptane	C ₂ H ₁₆	0.147	0.140	0.132	0.126	0.117				0.2149	-0.02998	-0.00030	0.00103	-0.00120
<i>n</i> -Octane	C ₈ H ₁₈	0.150	0.142	0.135	0.129	0.120	0.106			0.2150	-0.02839	-0.00072	0.00203	-0.00206
<i>n</i> -Nonane	C ₉ H ₂₀	0.150	0.143	0.137	0.132	0.124	0.110	0.097		0.2096	-0.02727	0.00046	-0.00109	0.00095

370

D3.1. Table 9. (continued)

					Temperature (°C)	ture (°C)						Equation (4)		
Substance	Formula	-50	-25	0	20	20	100	150	200	А	10 ² B	10⁴ C	10 ⁷ D	10 ₁₀ E
<i>n</i> -Decane	C ₁₀ H ₂₂		0.144	0.138	0.133	0.126	0.113	0.101		0.2084	-0.02784	0.00139	-0.00298	0.00234
<i>n</i> -Undecane	C ₁₁ H ₂₄		0.146	0.140	0.135	0.128	0.116	0.104		0.2053	-0.02477	0.00062	-0.00165	0.00147
<i>n</i> -Dodecane	$C_{12}H_{26}$			0.141	0.137	0.130	0.118	0.106	0.095	0.1994	-0.01715	-0.00259	0.00480	-0.00330
<i>n</i> -Tridecane	C ₁₃ H ₂₈			0.143	0.138	0.131	0.120	0.109	0.097	0.2043	-0.02259	8000000	-0.00031	0.00030
<i>n</i> -Tetradecane	C ₁₄ H ₃₀				0.139	0.132	0.122	0.111	0.100	0.2023	-0.02148	0.00001	-0.00025	0.00029
<i>n</i> -Pentadecane	C ₁₅ H ₃₂				0.142	0.136	0.125	0.114	0.103	0.2098	-0.02412	0.00040	0.00002	-0.00041
<i>n</i> -Hexadecane	C ₁₆ H ₃₄				0.143	0.137	0.126	0.115	0.104	0.2106	-0.02430	090000	-0.00059	0.00017
<i>n</i> -Heptadecane	C ₁₇ H ₃₆					0.138	0.127	0.116	0.104	0.2074	-0.02019	-0.00075	0.00127	-0.00078
<i>n</i> -Octadecane	C ₁₈ H ₃₈					0.141	0.130	0.118	0.107	0.2078	-0.01754	-0.00153	0.00204	-0.00099
<i>n</i> -Nonadecane	C ₁₉ H ₄₀					0.141	0.130	0.119	0.108	0.2078	-0.01771	-0.00152	0.00234	-0.00133
<i>n</i> -Eicosane	C ₂₀ H ₄₂					0.146	0.134	0.123	0.112	0.2178	-0.02203	-0.00020	0.00043	-0.00030
Isoalkanes														
Isobutane	C ₄ H ₁₀	0.123	0.114	0.105	0.097	980:0	0.068			0.2042	-0.03609	-0.00027	0.00057	-0.00042
2-Methyl butane	C ₅ H ₁₂	0.133	0.125	0.118	0.111	0.102				0.2031	-0.02924	-0.00163	0.00417	-0.00379
2,2-Dimethyl propane	C ₅ H ₁₂			0.105	0.097	0.087	0.071	0.055		0.2663	-0.08142	89/00'0	0.00622	-0.01599
2-Methyl pentane	C ₆ H ₁₄	0.131	0.124	0.117	0.111	0.103	0.089			0.1932	-0.02786	-0.00004	-0.00010	0.00028
3-Methyl pentane	C ₆ H ₁₄	0.133	0.126	0.119	0.113	0.105	0.091			0.1950	-0.02734	-0.00055	0.00169	-0.00182
2,2-Dimethyl butane	C ₆ H ₁₄	0.121	0.115	0.108	0.103					0.1797	-0.02584	0.00012	-0.00186	0.00334
2,3-Dimethyl butane	C ₆ H ₁₄	0.123	0.117	0.111	0.106	0.099				0.1770	-0.02372	-0.00046	0.00156	-0.00197
Olefins														
Ethylene	C ₂ H ₄	0.129	0.105	0.082						0.4145	-0.14789	0.00393	0.03157	-0.03936
Propylene	C ₃ H ₆	0.131	0.121	0.111	0.102	0.090				0.2229	-0.04006	26000 000	0.00325	-0.00390
1-Butene	C ₄ H ₈	0.135	0.127							0.2141	-0.03645	0.00124	-0.00451	0.00593
1-Pentene	C ₅ H ₁₀	0.139	0.131	0.124	0.117					0.2079	-0.03131	0.00028	-0.00052	0.00023
1-Hexene	C ₆ H ₁₂	0.146	0.138	0.129	0.122	0.112				0.2227	-0.03417	-0.00015	0.00069	-0.00101
1-Heptene	C ₇ H ₁₄	0.148	0.141	0.133	0.126	0.116	660.0	0.082	0.064	0.1390	0.05288	-0.03202	0.05190	-0.03149
1-Octene	C ₈ H ₁₆	0.144	0.138	0.132	0.128	0.121	0.110			0.1934	-0.02199	-0.00014	-0.00009	0.00041
Propadiene	C ₃ H ₄	0.140								0.2303	-0.04051	0.00039	-0.00356	0.00770
1,2-Butadiene	C ₄ H ₆	0.143	0.134	0.126						0.2168	-0.02879	-0.00406	0.01300	-0.01536
1,3-Butadiene	C_4H_6	0.141	0.131							0.2111	-0.01862	-0.01043	0.02551	-0.02178
1,2-Pentadiene	C ₅ H ₈	0.147	0.139	0.132	0.126					0.2110	-0.02792	-0.00072	0.00163	-0.00126
trans-1,3-Pentadiene	C ₅ H ₈	0.144	0.136	0.129	0.123					0.2116	-0.03216	0.00080	0.00067	-0.00361

	- 0	7,7	0 1 2 4	7	70,7					,000	00000	1 1000	17 0000	11000
ı,4-Pentadiene	C5H8	0.142	0.134	0.127	0.121					0.2084	-0.03030	0.00054	-0.00241	0.00371
2,3-Pentadiene	C ₅ H ₈	0.148	0.140	0.133	0.127					0.2147	-0.03021	-0.00001	0.00055	-0.00114
Acetylene and derivatives														
Acetylene	C ₂ H ₂	0.147	0.126							0.3031	-0.05158	-0.00609	-0.02848	0.08429
Propyne	C₃H₄	0.144	0.133							0.2345	-0.04068	0.00133	-0.01037	0.01914
2-Butyne	C₄H ₆		0.141	0.133	0.126					0.2147	-0.02341	-0.00179	-0.00702	0.01726
1-Butyne	C₄H ₆	0.145	0.136	0.127						0.2167	-0.02247	-0.00888	0.02718	-0.03070
Naphthenes														
Cyclopropane	C ₃ H ₆	0.148								0.2399	-0.03803	-0.00119	-0.00420	0.01611
Cyclobutane	C₄H ₈	0.147	0.138	0.130						0.2169	-0.02128	-0.01016	0.03434	-0.04204
Cyclopentane	C_5H_{10}	0.146	0.140	0.133	0.128					0.2060	-0.02668	0.00020	-0.00149	0.00235
Methyl cyclopentane	C_6H_{12}	0.137	0.131	0.125	0.120	0.112				0.1927	-0.02441	-0.00045	0.00165	-0.00210
Ethyl cyclopentane	C ₇ H ₁₄	0.134	0.128	0.122	0.118	0.111	0.100			0.1812	-0.01850	-0.00234	0.00616	-0.00587
Propyl cyclopentane	C_8H_{16}	0.130	0.125	0.120	0.116	0.110	0.099			0.1763	-0.02054	-0.00007	0.00017	-0.00013
Butyl cyclopentane	C ₉ H ₁₈	0.127	0.123	0.118	0.114	0.108	0.099	0.089		0.1705	-0.01968	0.00034	-0.00099	0.00099
Pentyl cyclopentane	$C_{10}H_{20}$			0.129	0.122	0.113	0.100	0.089	0.079	0.2731	-0.06961	0.00448	0.00963	-0.01333
Hexyl cyclopentane	C ₁₁ H ₂₂			0.129	0.122	0.113	0.100	0.089	0.080	0.2744	-0.07215	0.00619	0.00514	-0.00925
Cyclohexane	C_6H_{12}				0.125	0.117				0.1771	-0.01050	-0.00114	-0.00967	0.01707
Methyl cyclohexane	C ₇ H ₁₄			0.116	0.112	0.105	0.094			0.1656	-0.01293	-0.00155	-0.00297	0.00681
Ethyl cyclohexane	C ₈ H ₁₆	0.132	0.127	0.122	0.118	0.112	0.101			0.1761	-0.01964	-0.00013	-0.00006	0.00034
Propyl cyclohexane	C ₉ H ₁₈	0.128	0.124	0.119	0.115	0.110	0.101	0.091		0.1691	-0.01769	-0.00041	0.00082	-0.00057
Butyl cyclohexane	$C_{10}H_{20}$	0.126	0.121	0.117	0.114	0.108	0.100	0.091		0.1652	-0.01888	0.00085	-0.00187	0.00149
Pentyl cyclohexane	C ₁₁ H ₂₂			0.129	0.122	0.113	0.100	0.089	0.080	0.2744	-0.07215	0.00619	0.00514	-0.00925
Hexyl cyclohexane	$C_{12}H_{24}$			0.132	0.125	0.117	0.104	0.093	0.084	0.2636	-0.06258	0.00398	0.00716	-0.00970
Cyclopentene	C ₅ H ₈	0.156	0.149	0.142	0.136	0.128				0.2182	-0.02857	0.00046	-0.00108	0.00087
Cyclohexene	C_6H_{10}	0.151	0.145	0.138	0.133	0.125				0.2104	-0.02785	0.00105	-0.00259	0.00231
Aromatic compounds														
Benzene	C_6H_6				0.145	0.136	0.120			0.2318	-0.03081	0.00151	-0.00546	0.00564
Toluene	C ₇ H ₈	0.151	0.144	0.138	0.134	0.126	0.114	0.102	0.090	0.2038	-0.02353	-0.00019	0.00010	0.00013
Ethyl benzene	C_8H_{10}	0.147	0.141	0.135	0.130	0.123	0.111			0.1996	-0.02319	-0.00039	0.00102	-0.00094
Propyl benzene	C ₉ H ₁₂	0.143	0.138	0.133	0.129	0.123	0.113	0.103	0.093	0.1873	-0.02008	8000000	-0.00010	0.00003
Butyl benzene	C ₁₀ H ₁₄	0.142	0.137	0.132	0.128	0.122	0.112	0.102	0.092	0.1866	-0.01959	-0.00010	-0.00004	0.00020
Pentyl benzene	C ₁₁ H ₁₆	0.142	0.137	0.133	0.129	0.124	0.114	0.105	960'0	0.1835	-0.01867	0.00010	-0.00022	0.00018
Hexyl benzene	$C_{12}H_{18}$	0.143	0.138	0.133	0.130	0.124	0.115	0.106	0.097	0.1851	-0.02027	0.00087	-0.00170	0.00121
<i>o</i> -Xylene	C_8H_{10}		0.143	0.137	0.133	0.126	0.114			0.1990	-0.02186	-0.00052	0.00107	-0.00085
<i>m</i> -Xylene	C ₈ H ₁₀		0.142	0.136	0.131	0.124	0.113			0.1992	-0.02211	-0.00057	0.00095	-0.00053

372

D3.1. Table 9. (continued)

						0						F		
					ı emperature (~⊂)	inre (°C)						Equation (4)		
Substance	Formula	—50	-25	0	20	50	100	150	200	А	10 ² B	10 ⁴ C	10 ⁷ D	10 ¹⁰ E
<i>p</i> -Xylene	C ₈ H ₁₀				0.131	0.124	0.112			0.2036	-0.03045	0.00408	-0.00977	0.00825
1,2,3-Trimethyl benzene	C_9H_{12}		0.140	0.135	0.131	0.125	0.115	0.105		0.1888	-0.02000	0.00017	-0.00028	0.00011
1,2,4-Trimethyl benzene	C_9H_{12}		0.140	0.135	0.130	0.124	0.114	0.103		0.1917	-0.02076	-0.00001	-0.00022	0.00033
1,3,5-Trimethyl benzene	C_9H_{12}		0.146	0.141	0.136	0.130	0.119	0.107		0.2023	-0.02354	0.00053	-0.00077	0.00036
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄			0.134	0.130	0.125	0.115	0.105	960:0	0.1856	-0.01764	-0.00071	0.00132	-0.00092
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄			0.132	0.128	0.122	0.113	0.103		0.1814	-0.01489	-0.00202	0.00392	-0.00282
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄						0.123	0.114	0.105	0.1925	-0.02008	0.00040	0.00003	-0.00030
Pentamethyl benzene	C ₁₁ H ₁₆						0.119	0.114	0.109	0.1494	-0.00447	-0.00139	0.00113	-0.00004
Hexamethyl benzene	C ₁₂ H ₁₈								0.107	0.1125	-0.00097	-0.00005	-0.00001	0.00004
Styrene	C_8H_8		0.148	0.142	0.138	0.131	0.120			0.2002	-0.02031	-0.00044	0.00017	0.00043
Isopropyl benzene	C ₉ H ₁₂	0.139	0.134	0.128	0.124	0.118	0.108			0.1856	-0.02089	-0.00008	0.00023	-0.00015
Biphenyl	$C_{12}H_{10}$						0.134	0.126	0.119	0.1919	-0.01611	0.00024	-0.00026	0.00010
Diphenyl methane	C ₁₃ H ₁₂					0.133	0.127	0.120	0.114	0.1751	-0.01287	0.00004	-0.00023	0.00023
Triphenyl methane	C ₁₉ H ₁₆						0.124	0.116	0.108	0.1855	-0.01942	0.00126	-0.00164	0.00079
Tetraphenyl methane	C ₂₅ H ₂₀									0.1758	-0.00352	-0.00044	-0.00217	0.00184
Naphthalene	$C_{10}H_8$						0.133	0.128	0.123	0.1684	-0.00779	-0.00075	0.00110	-0.00059
1-Methylnaphthalene	C ₁₁ H ₁₀		0.153	0.149	0.145	0.140	0.131	0.122	0.113	0.1962	-0.01643	-0.00061	0.00105	-0.00067
2-Methylnaphthalene	$C_{11}H_{10}$					0.137	0.127	0.118	0.109	0.1958	-0.01847	0.00016	-0.00046	0.00040
1-Ethylnaphthalene	C ₁₂ H ₁₂			0.144	0.140	0.135	0.126	0.118	0.109	0.1905	-0.01568	-0.00093	0.00191	-0.00136
2-Ethylnaphthalene	C ₁₂ H ₁₂			0.142	0.138	0.133	0.124	0.116	0.107	0.1903	-0.01802	0.00014	-0.00010	-0.00002
Alcohols														
Methanol	CH₄O	0.221	0.214	0.207	0.201	0.193				0.2803	-0.02234	-0.00359	0.00975	-0.00974
Ethanol	C_2H_6O	0.188	0.181	0.175	0.169	0.162				0.2467	-0.02636			
1-Propanol	C ₃ H ₈ O	0.172	0.167	0.161	0.157	0.151				0.2219	-0.02331	0.00067	-0.00097	0.00039
1-Butanol	$C_4H_{10}O$	0.168	0.163	0.158	0.154	0.148	0.138			0.2139	-0.02011	-0.00044	0.00178	-0.00215
1-Pentanol	$C_5H_{12}O$			0.157	0.154	0.149				0.1967	-0.01311	-0.00042	-0.00120	0.00264
1-Hexanol	C ₆ H ₁₄ O		0.165	0.159	0.155	0.148	0.137	0.126	0.115	0.2200	-0.02279	0.00031	-0.00052	0.00032
1-Heptanol	C ₇ H ₁₆ O		0.168	0.162	0.158	0.151	0.140	0.128	0.117	0.2241	-0.02268	-0.00001	0.00008	-0.00008
1-Octanol	$C_8H_{18}O$			0.166	0.161	0.154	0.142	0.130	0.118	0.2332	-0.02571	0.00060	-0.00096	0.00056
Isopropanol	C_3H_8O	0.152	0.146	0.141	0.136	0.129	0.118			0.2028	-0.02238	-0.00031	0.00083	-0.00069
2-Methyl-1-propanol	$C_4H_{10}O$	0.145	0.141	0.136	0.133	0.127	0.118			0.1845	-0.01726	-0.00022	0.00028	-0.00004
3-Methyl-1-butanol	C ₅ H ₁₂ O	0.161	0.154	0.148	0.142	0.134	0.12	0.106		0.2225	-0.02752	0.00005	-0.00014	0.00013

Ethylene glycol	C ₂ H ₆ O ₂			0.249	0.253	0.257	0.259	0.254		0.1125	0.06626	-0.00088	-0.02300	0.01597
1,3-Propylene glycol	C ₃ H ₈ O ₂		0.212	0.218	0.222	0.226	0.227	0.222	0.210	0.0867	0.06667	-0.00281	-0.01797	0.01228
Glycerol	C ₃ H ₈ O ₃				0.291	0.295	0.300	0.306	0.312	0.2562	0.01190	0.00023	-0.00105	0.00102
Cyclohexanol	C ₆ H ₁₂ O					0.131	0.125	0.118	0.112	0.1708	-0.01180	-0.00028	0.00044	-0.00026
Benzyl alcohol	C ₂ H ₈ O			0.162	0.161	0.159	0.155	0.152	0.149	0.1798	-0.00640	-0.00004	_000000	0.00014
Phenols														
o-Cresol	C ₂ H ₈ O					0.150	0.143	0.137		0.1969	-0.01634	0.00043	0.00088	-0.00164
<i>m</i> -Cresol	C ₂ H ₈ O				0.150	0.147	0.141	0.135	0.130	0.1813	-0.01047	-0.00004	-0.00027	0.00038
<i>p</i> -Cresol	C ₂ H ₈ O					0.141	0.135	0.129	0.123	0.1914	-0.02103	0.00224	-0.00167	-0.00031
Phenol	СеньО					0.156	0.151	0.146		0.1828	-0.00700	-0.00007	-0.00181	0.00243
Carboxylic acids														
Formic acid	CH ₂ O ₂				0.270	0.267	0.262			0.2971	-0.00743	-0.00030	-0.00196	0.00347
Acetic acid	C ₂ H ₄ O ₂				0.160	0.155	0.146			0.1726	0.01538	-0.00818	0.00287	0.00746
Propionic acid	C ₃ H ₆ O ₂			0.151	0.147	0.142	0.134	0.126	0.118	0.1954	-0.01641			
Butyric acid	C ₄ H ₈ O ₂			0.151	0.147	0.142	0.134	0.126	0.117	0.1967	-0.01681			
Valeric acid	C ₅ H ₁₀ O ₂		0.145	0.139	0.134	0.126	0.114	0.102		0.2114	-0.02925	0.00156	-0.00236	0.00120
Caproic acid	$C_6H_{12}O_2$			0.146	0.143	0.138	0.131	0.124	0.116	0.1906	-0.01948	0.00172	-0.00261	0.00146
Acetic anhydride	C ₄ H ₆ O ₃	0.182	0.176	0.170	0.165	0.158	0.146			0.2363	-0.02436	0.00013	-0.00047	0.00054
Propionic anhydride	$C_6H_{10}O_3$		0.156	0.150	0.145	0.137	0.125	0.112		0.2206	-0.02771	0.00099	-0.00141	0.00058
Chloroacetic acid	C ₂ H ₃ ClO ₂						0.159	0.146		0.2322	-0.01111	-0.00091	-0.00730	0.00999
Dichloroacetic acid	$C_2H_2CI_2O_2$				0.188	0.180	0.166	0.151		0.2727	-0.02907	0.00011	-0.00001	-0.00009
Trichloroacetic acid	C ₂ HCl ₃ O ₂						0.181	0.165		0.2848	-0.02372	-0.00046	-0.00339	0.00463
Ketones														
Ketene	C ₂ H ₂ O	0.228								0.3761	-0.03390	-0.03604	0.14382	-0.21167
Acetone	C ₃ H ₆ O	0.193	0.182	0.171	0.163	0.150				0.2871	-0.04233	0.00019	-0.00148	0.00228
Methyl ethyl ketone	C ₄ H ₈ O	0.164	0.158	0.151	0.146	0.139				0.2215	-0.02706	0.00061	-0.00008	-0.00132
Diethyl ketone	C ₅ H ₁₀ O		0.156	0.150	0.145	0.138	0.126			0.2044	-0.01212	-0.00441	0.00636	-0.00254
Dipropyl ketone	C ₇ H ₁₄ O		0.150	0.144	0.140	0.133	0.121	0.110	0.098	0.2075	-0.02376	0.00032	-0.00052	0.00030
Acetophenone	C ₈ H ₈ O				0.148	0.143	0.134	0.126	0.117	0.1965	-0.01643	0.00018	-0.00114	0.00127
Benzophenone	C ₁₃ H ₁₀ O					0.186	0.175	0.163	0.152	0.2610	-0.02455	0.00066	-0.00093	0.00049
Ethers														
Dimethyl ether	C ₂ H ₆ O	0.186	0.172	0.158	0.146					0.3129	-0.05870	0.00170	-0.00532	0.00607
Diethyl ether	C ₄ H ₁₀ O	0.159	0.149	0.138	0.130	0.118	0.098	0.077		0.2499	-0.04131	0.00036	-0.00086	0.00073
Dipropyl ether	C ₆ H ₁₄ O	0.149	0.141	0.134	0.128	0.119	0.105			0.2131	-0.02833	-0.00043	0.00088	-0.00065
Methyl propyl ether	C ₄ H ₁₀ O	0.164	0.155	0.145	0.138	0.126				0.2475	-0.03664	-0.00060	0.00132	-0.00100
Ethyl propyl ether	C ₅ H ₁₂ O	0.154	0.145	0.137	0.131	0.121	0.104			0.2276	-0.03363	0.00036	-0.00079	0.00060

D3.1. Table 9. (continued)

					Temperature (°C)	:ure (°C)						Equation (4)		
Substance	Formula	-50	-25	0	20	50	100	150	200	А	10 ² B	10 ⁴ C	10 ⁷ D	10 ¹⁰ E
Ethylene oxide	C_2H_4O	0.181	0.171	0.161						0.2529	-0.00990	-0.01984	0.05755	-0.06175
Furane	C_4H_4O	0.150	0.142	0.134	0.128					0.2058	-0.01538	-0.00537	0.00236	0.00981
1,4-Dioxane	$C_4H_8O_2$				0.161	0.147	0.123			0.2815	-0.03069	-0.00435	0.00160	0.00401
Aldehydes														
Formaldehyde	CH_2O	0.228								0.3834	-0.07422	0.00084	0.01156	-0.02638
Acetaldehyde	C ₂ H ₄ O	0.214	0.203	0.192	0.183					0.2979	-0.01871	-0.01741	0.05316	-0.05982
Paraldehyde	$C_6H_{12}O_3$					0.142	0.135			0.1820	-0.00949	-0.00080	-0.00103	0.00253
Furfural	$C_5H_4O_2$				0.173	0.167	0.157			0.1911	0.00303	-0.00101	-0.01267	0.01783
Benzaldehyde	C_7H_6O	0.166	0.162	0.157	0.153	0.148	0.139	0.130	0.121	0.2080	-0.01952	0.00048	-0.00069	0.00035
Salicylaldehyde	$C_7H_6O_2$				0.168	0.160	0.147	0.134		0.2425	-0.02472	-0.00062	0.00149	-0.00122
Esters														
Methyl formate	$C_2H_4O_2$	0.220	0.208	0.197	0.187	0.173	0.150			0.3250	-0.04714	0.00001	0.00041	-0.00076
Ethyl formate	$C_3H_6O_2$	0.185	0.177	0.169	0.162	0.152	0.136	0.119		0.2619	-0.03750	0.00233	-0.00521	0.00426
Propyl formate	$C_4H_8O_2$	0.166	0.159	0.153	0.147	0.139	0.126	0.113	0.100	0.2246	-0.02626	-0.00010	0.00026	-0.00023
Methyl acetate	$C_3H_6O_2$	0.185	0.174	0.164	0.155	0.143	0.122			0.2795	-0.04392	0.00097	-0.00169	0.00097
Ethyl acetate	$C_4H_8O_2$	0.171	0.162	0.153	0.146	0.135				0.2487	-0.03472	0.00014	-0.00183	0.00289
Propyl acetate	$C_5H_{10}O_2$	0.164	0.156	0.149	0.142	0.133	0.118	0.102		0.2323	-0.03003	-0.00030	0.00028	0.00007
Methyl propionate	$C_4H_8O_2$	0.165	0.159	0.152	0.147	0.139	0.125	0.112	0.098	0.2242	-0.02552	-0.00054	0.00096	-0.00060
Ethyl propionate	$C_5H_{10}O_2$	0.158	0.151	0.145	0.140	0.132	0.120	0.107	0.095	0.2140	-0.02537	0.00005	0.00001	-0.00008
Propyl propionate	$C_6H_{12}O_2$	0.157	0.150	0.143	0.138	0.129	0.115	0.101		0.2208	-0.02909	0.00039	-0.00048	0.00011
Methyl butyrate	$C_5H_{10}O_2$	0.160	0.153	0.147	0.142	0.134	0.121	0.108	0.095	0.2173	-0.02580	0.0	-0.00012	0.00017
Ethyl butyrate	$C_6H_{12}O_2$	0.155	0.149	0.142	0.137	0.130	0.117	0.105		0.2097	-0.02404	-0.00036	0.00064	-0.00039
Methyl benzoate	$C_8H_8O_2$			0.160	0.155	0.149	0.137	0.125	0.114	0.2246	-0.02449	0.00055	-0.00106	0.00074
Ethyl benzoate	$C_9H_{10}O_2$		0.155	0.150	0.145	0.139	0.128	0.118	0.107	0.2074	-0.02103	-0.00005	0.00001	0.00004
Methyl salicylate	$C_8H_8O_3$			0.149	0.145	0.138	0.128	0.118	0.107	0.1937	-0.00824	-0.00491	0.00838	-0.00525

Amines														
Methyl amine	CH ₅ N	0.224	0.217	0.210						0.3130	-0.03506	-0.00970	0.04159	-0.03482
Ethyl amine	C ₂ H ₂ N	0.204	0.197	0.191	0.187					0.2923	-0.04639	0.00066	0.01270	-0.00936
Propyl amine	C ₃ H ₉ N	0.188	0.182	0.177	0.173	0.168				0.2597	-0.03808	0.00174	0.00537	-0.00462
<i>n</i> -butyl amine	C ₄ H ₁₁ N		0.171	0.166	0.162	0.157				0.2685	-0.04797	0.00062	0.01465	-0.01150
Dimethyl amine	C ₂ H ₂ N	0.170	0.162	0.153	0.146	0.136	0.119			0.2444	-0.03272	-0.00039	0.00057	-0.00027
Trimethyl amine	C ₃ H ₉ N	0.152	0.143	0.133						0.2257	-0.01529	-0.01592	0.04807	-0.05383
Diethyl amine	C ₆ H ₁₅ N		0.150	0.142	0.136	0.127	0.115	0.104		0.2496	-0.04387	-0.00016	0.00792	-0.00526
Triethyl amine	C ₆ H ₁₅ N	0.137	0.131	0.125	0.120	0.113	0.100	0.088	0.076	0.1914	-0.02402	-0.00020	0.00032	-0.00016
Piperidine	C ₅ H ₁₁ N			0.187	0.181	0.171	0.154			0.2913	-0.05011	0.00823	-0.01803	0.01475
Pyridine	C ₆ H ₇ N		0.177	0.169	0.164	0.155	0.141	0.127	0.112	0.2477	-0.02862	0.00001	-0.00003	0.00003
Aniline	C ₆ H ₇ N			0.178	0.173	0.167	0.156	0.145	0.135	0.2365	-0.02199	0.00023	-0.00036	0.00021
<i>N</i> -methyl aniline	C ₂ H ₉ N	0.172	0.167	0.162	0.159	0.153	0.144	0.135	0.125	0.2137	-0.01923	0.00025	-0.00040	0.00024
<i>N,N-</i> dimethyl aniline	C ₈ H ₁₁ N				0.143	0.138	0.129	0.121		0.1921	-0.01666	-0.00006	-0.00004	0.00012
N,N-diethyl aniline	C ₁₀ H ₁₅ N		0.151	0.146	0.142	0.136	0.126	0.116	0.105	0.2028	-0.02163	0.00050	-0.00087	0.00057
Phenylhydrazine	$C_6H_8N_2N_2$				0.141	0.135	0.126	0.117	0.108	0.1942	-0.01858	0.00016	-0.00028	0.00020
Diphenyl amine	$C_{12}H_{11}N$						0.127	0.119	0.110	0.1832	-0.01130	-0.00178	0.00261	-0.00142
Nitriles														
Acetonitrile	C ₂ H ₃ N		0.208	0.198	0.190	0.178				0.3109	-0.04357	0.00094	-0.00022	-0.00134
Propionitrile	C ₃ H ₅ N	0.192	0.184	0.176	0.169	0.159				0.2660	-0.03337	0.00048	-0.00181	0.00209
Butyronitrile	C ₄ H ₇ N	0.191	0.183	0.175	0.169	0.160	0.144			0.2602	-0.03188	0.00057	-0.00161	0.00164
Benzonitrile	C ₂ H ₅ N			0.154	0.150	0.143	0.132	0.121		0.2152	-0.02440	0.00126	-0.00244	0.00175
Amides														
Formamide	CH ₃ NO				0.353	0.350	0.345	0.340	0.334	0.3852	-0.01102	0.00005	0.00008	-0.00017
Nitroderivates														
Nitromethane	CH ₃ NO ₂		0.227	0.217	0.209	0.197	0.176			0.3307	-0.04243	-0.00006	0.00219	-0.00330
Nitrobenzene	C ₆ H ₅ NO ₂				0.149	0.145	0.138			0.1793	-0.00759	-0.00088	-0.00120	0.00295
o-Nitrotoluene	C ₂ H ₂ NO ₂			0.146	0.142	0.136	0.126	0.116	0.106	0.2013	-0.02041	0.00018	-0.00043	0.00032
<i>m</i> -Nitrotoluene	C ₂ H ₂ NO ₂				0.141	0.135	0.125	0.116	0.106	0.1961	-0.01788	-0.00049	0.00064	-0.00030
<i>p</i> -Nitrotoluene	C ₂ H ₂ NO ₂						0.126	0.117	0.107	0.1968	-0.01682	-0.00101	0.00159	-0.00093

D3.1. Table 10. Thermal conductivity of gases in W/mK at low pressures

					Temperature (°C)	ure (°C)						Equation (5)	
Substance	Formula	-20	0	25	100	200	300	400	200	10³ A	10³ B	10 ⁶ C	10 ⁹ D	10 ¹² E
Elements														
Xenon	Xe	0.0043	0.0052	0.0056	6900'0	0.0086	0.0102	0.0117	0.0132	-0.006	0.020	-0.003680		
Krypton	Kr	0.0073	0.0088	0.0095	0.0115	0.0140	0.0163	0.0184	0.0204	-0.389	0.039	-0.021190	0.008780	-0.001520
Argon	Ar		0.0166	0.0177	0.0209	0.0249	0.0288	0.0326	0.0362	4.303	0.047	-0.007780		
Neon	Ne	0.0393	0.0459	0.0490	0.0578	0.0682	0.0774	0.0858	0.0936	2.778	0.194	-0.155500	0.086380	-0.017700
Helium	He	0.1263	0.1446	0.1536	0.1793	0.2116	0.2420	0.2708	0.2983	34.000	0.457	-0.214890	0.100710	-0.019140
Air		0.0204	0.0244	0.0263	0.0317	0.0383	0.0444	0.0502	0.0557	-0.908	0.112	-0.084333	0.056964	-0.015631
Hydrogen	H ₂	0.1429	0.1685	0.1807	0.2149	0.2566	0.2952	0.3319	0.3678	0.651	0.767	-0.687050	0.506510	-0.138540
Nitrogen	N_2	0.0198	0.0237	0.0256	0.0309	0.0375	0.0437	0.0495	0.0551	-0.133	0.101	-0.060650	0.033610	-0.007100
Oxygen	0 ₂	0.0201	0.0244	0.0264	0.0324	0.0398	0.0468	0.0534	0.0597	-1.285	0.107	-0.052630	0.025680	-0.005040
Sulfur	S								0.0145	1.596	0.016	0.001450		
Fluorine	F_2	0.0195	0.0237	0.0258	0.0318	0.0395	0.0469	0.0539	0.0605	-0.246	0.093	-0.018470		
Chlorine	Cl ₂	0.0063	0.0081	0.0089	0.0115	0.0147	0.0179	0.0210	0.0239	-1.867	0.038	-0.006090		
Bromine	Br ₂				0.0061	0.0089				5.455	-0.018	0.054230		
lodine	I ₂					0.0052	0.0063	0.0074	0.0085	-0.014	0.011	0.000020		
Anorganic compounds														
Hydrogen fluoride	HF	0.0167	0.0198	0.0214	0.0263	0.0329	0.0396	0.0464	0.0534	2.921	0.060	0.006940		
Hydrogen chloride	HCI	0.0112	0.0134	0.0146	0.0179	0.0224	0.0269	0.0314	0.0359	1.233	0.045	0.000370		
Hydrogen bromide	HBr	0.0061	0.0077	0.0086	0.0110	0.0142	0.0173			-1.740	0.036	-0.004870		
Hydrogen iodide	HI		0.0056	0.0061	0.0077	0.0098	0.0118	0.0138	0.0157	-0.308	0.022	-0.001840		
Hydrogen cyanide	HCN		0.0098	0.0118	0.0178	0.0259	0.0338	0.0418		-12.121	0.080	-0.0000500		
Water	H ₂ O			0.0185	0.0239	0.0329	0.0433	0.0547	6990.0	13.918	-0.047	0.258066	-0.183149	0.055092
Hydrogen sulfide	H ₂ S	0.0083	0.0126	0.0144	0.0190	0.0247	0.0308			-37.786	0.366	-0.980220	1.341110	-0.662840
Ammonia	NH_3		0.0221	0.0251	0.0344	0.0476	0.0618	0.0770	0.0931	-6.678	0.092	0.047670		
Nitric oxide	NO	0.0196	0.0236	0.0255	0.0312	0.0383	0.0449	0.0509		0.144	0.093	-0.02601		
Nitrogen dioxide	NO_2				0.0280					66.085	-0.479	1.011240		
Nitrous oxide	N_2O	0.0119	0.0157	0.0176	0.0234	0.0310	0.0388	0.0465	0.0543	-5.049	0.076	0.001460		
Dinitrogentetroxide	N_2O_4													
Cyanogen	C_2N_2		0.0144	0.0160	0.0211	0.0280	0.0351	0.0424	0.0499	-2.939	0.061	0.009930		
Phosphorus trichloride	PCI ₃	0.0053	0.0068	0.0075	0.0098	0.0127	0.0156	0.0183	0.0209	-1.274	0.028	0.008226	-0.013677	0.005121
Cyanogen chloride	CICN			0.0094	0.0122	0.0160	0.0196	0.0231	0.0265	-2.531	0.042	-0.005290		
Silane	SiH_4	0.0157	0.0204	0.0228	0.0305	0.0416	0.0534	0.0659	0.0788	-1.601	0.062	0.074888	-0.029302	0.003487
Tetrachlorosilane	SiCl₄	0.0043	0.0057	0.0065	0.0086	0.0115	0.0144	0.0173	0.0202	-2.173	0.029			

Carbon monoxide	00	0.0193	0.0231	0.0249	0.0302	0.0366	0.0426	0.0481	0.0534	-0.783	0.103	-0.067590	0.039450	-0.009470
Carbon dioxide	CO ₂		0.0145	0.0165	0.0225	0.0306	0.0386	0.0463	0.0536	-3.882	0.053	0.071460	-0.070310	0.018090
Carbon suboxide	C ₃ O ₂	0.0077	0.0110	0.0127	0.0183	0.0260	0.0335	0.0405	0.0472	1.362	-0.017	0.267780	-0.322540	0.133290
Carbonyl sulfide	COS	0.0095	0.0125	0.0140	0.0184	0.0242	0.0300	0.0356	0.0412	-4.089	0.062	-0.004270		
Phosgene	CCI ₂ O		0.0076	0.0088	0.0125	0.0179	0.0238	0.0301	0.0368	-3.777	0.036	0.021900		
Carbon disulfide	CS ₂		0.0077	0.0087	0.0118	0.0159	0.0200	0.0241	0.0282	-3.468	0.041	0.000210		
Sulfur dioxide	SO ₂		0.0084	0.0095	0.0131	0.0183	0.0238	0.0292	0.0343	0.358	0.013	0.069520	-0.032070	-0.008300
Sulfur trioxide	SO ₃				0.0172	0.0231	0.0287	0.0340	0.0391	-7.361	0.071	-0.014220		
Sulfuryl chloride	Cl ₂ SO ₂				0.0119	0.0159	0.0199	0.0238	0.0276	-3.541	0.043	-0.002860		
Sulfur hexafluoride	${\sf SF}_{\sf 6}$		0.0118	0.0135	0.0184	0.0243	0.0296	0.0343	0.0384	-9.510	0.087	-0.031860		
Organic compounds containing sulfur	sulfur													
Methyl mercaptan	CH₄S		0.0116	0.0137	0.0199	0.0284	0.0371	0.0461	0.0554	-9.622	0.074	0.012580		
Ethyl mercaptan	C ₂ H ₆ S				0.0202	0.0289	0.0381	0.0478	0.0579	-8.457	0.068	0.022700		
Dimethyl sulfide	C ₂ H ₆ S				0.0204	0.0293	0.0386	0.0484	0.0587	-8.509	0.069	0.023630		
Diethyl sulfide	C ₄ H ₁₀ S				0.0180	0.0270	0.0365	0.0463	0.0566	-12.116	0.073	0.020380		
Thiophene	C ₄ H ₄ S				0.0163	0.0239	0.0320	0.0406	0.0496	-8.013	0.057	0.023220		
Halogenated hydrocarbons														
Fluoromethane (R41)	CH ₃ F	0.0099	0.0129	0.0144	0.0190	0.0250	0.0310	0.0369	0.0429	-3.680	0.061	-0.001100		
Difluoromethane (R32)	CH ₂ F ₂	0.0073	0.0098	0.0111	0.0148	0.0199	0.0251	0.0304	0.0358	-3.440	0.047	0.004350		
Trifluoromethane (R23)	CHF ₃	0.0088	0.0120	0.0136	0.0189	0.0263	0.0337	0.0408	0.0475	-0.732	0.018	0.136890	-0.135880	0.041920
Tetrafluoromethane (R14)	CF_4	0.0099	0.0138	0.0158	0.0219	0.0302	0.0382	0.0456	0.0524	-2.200	0.026	0.167240	-0.199700	0.074660
Methyl chloride	CH ₃ Cl	0.0064	0.0092	0.0107	0.0159	0.0241	0.0338	0.0450		-1.448	0.018	0.075410		
Methylene chloride	CH ₂ Cl ₂			0.0072	0.0108	0.0159	0.0214	0.0274	0.0337	-4.536	0.033	0.021050		
Chloroform	CHCl ₃		090000	0.0066	0.0083	0.0106	0.0130	0.0153	0.0177	-0.216	0.022	0.001040		
Carbon tetrachloride	CCI ₄		0.0059	0.0067	0.0088	0.0118	0.0147	0.0175	0.0204	-2.101	0.030	-0.000530		
Bromomethane	CH ₃ Br		0.0066	0.0077	0.0108	0.0152	0.0198	0.0247	0.0297	-3.766	0.035	0.010400		
Dibromomethane	CH ₂ Br ₂				0.0069	0.0104	0.0142	0.0182	0.0226	-3.217	0.021	0.015550		
Tribromomethane	CHBr ₃					0.0083	0.0114	0.0149	0.0187	-1.531	0.012	0.017770		
Tetrabromomethane	CBr ₄	0.0081	0.0097	0.0105	0.0132	0.0168	0.0205	0.0240	0.0273	2.432	0.018	0.041190	-0.032120	0.004000
Chlorodifluoromethane (R22)	CHCIF ₂		0.0094	0.0109	0.0154	0.0212	0.0269	0.0324	0.0377	-8.104	0.066	-0.009410		
Dichlorofluoromethane (R21)	CHCl ₂ F			0.0086	0.0125	0.0177	0.0227	0.0275	0.0323	-7.857	0.057	-0.006660		
Chlorotrifluoromethane (R13)	CCIF ₃	0.0076	0.0106	0.0121	0.0169	0.0232	0.0293	0.0348	0.0397	-1.734	0.020	0.132510	-0.160810	0.059510
Dichlorodifluoromethane (R12)	CCI ₂ F ₂		0.0085	0.0097	0.0135	0.0193	0.0257	0.0328		-1.873	0.029	0.034090		
Trichlorofluoromethane (R11)	CCI ₃ F		0.0069	0.0079	0.0108	0.0150				-2.430	0.031	0.012940		
Ethyl fluoride (R161)	C_2H_5F		0.0121	0.0140	0.0196	0.0275	0.0359	0.0446	0.0538	-6.157	0.061	0.021240		
Ethyl chloride	C ₂ H ₅ Cl		0.0095	0.0112	0.0167	0.0247	0.0335	0.0431	0.0535	-6.153	0.046	0.039790		
Ethyl bromide	C ₂ H ₅ Br				0.0135	0.0192	0.0252	0.0314	0.0379	-5.547	0.046	0.012890		

D3.1. Table 10. (continued)

					Temperature (°C)	ure (°C)						Equation ((2)	
Substance	Formula	-50	0	25	100	200	300	400	200	10³ A	10³ B	10 ⁶ €	10 ₉ D	10 ¹² E
1,1-Dichloroethane	C ₂ H ₄ Cl ₂				0.0141	0.0212	0.0290	0.0376	0.0470	-6.137	0.041	0.036390		
1,2-Dichloroethane	$C_2H_4CI_2$				0.0127	0.0192	0.0266	0.0346	0.0433	0.513	-0.004	0.125349	-0.085225	0.028133
1,2-Dibromoethane	C ₂ H ₄ Br ₂					0.0136	0.0178	0.0222	0.0267	-4.774	0.036	0.006440		
1,1,1-Trifluoroethane (R143a)	C ₂ H ₃ F ₃		0.0112	0.0128	0.0181	0.0260	0.0346	0.0435	0.0524	0.069	0.014	0.111220	-0.053330	-0.001330
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃				0.0125	0.0191	0.0265	0.0345	0.0433	-5.829	0.035	0.036400		
1,1,2,2-Tetrachloroethane	C ₂ H ₂ Cl ₄					0.0144	0.0200	0.0264	0.0334	-2.397	0.019	0.035930		
Pentachloroethane	C ₂ HCl ₅					0.0134	0.0188	0.0248	0.0316	-2.200	0.016	0.035390		
Hexachloroethane	C_2CI_6					0.0122	0.0172	0.0228	0.0290	-2.033	0.014	0.033490		
1,1,2,2-Tetrachlorodifluoroethane	C ₂ Cl ₄ F ₂				9600.0	0.0149	0.0207	0.0271	0.0341	-4.773	0.028	0.029320		
1,1,2-Trichlorotrifluoroethan	C ₂ Cl ₃ F ₃		0.0076	0.0089	0.0125	0.0171	0.0216	0.0259	0.0300	-6.397	0.054	-0.008760		
1,2-Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄			0.0103	0.0143	0.0196	0.0247	0.0296	0.0343	-6.889	090.0	-0.008890		
1-Chloropropane	C ₃ H ₇ Cl				0.0162	0.0244	0.0334	0.0433	0.0540	-7.089	0.047	0.041460		
1-Chlorobutane	C ₄ H ₉ Cl		0.0084	0.0100	0.0153	0.0232	0.0322	0.0421	0.0530	-5.369	0.037	0.050150		
1-Chloropentane	C ₅ H ₁₁ Cl				0.0150	0.0232	0.0324	0.0427	0.0541	-5.738	0.035	0.054510		
Chlorotrifluoroethene	C ₂ CIF ₃		0.0102	0.0117	0.0170	0.0250	0.0338	0.0432	0.0528	0.014	600.0	0.116740	-0.051520	-0.0000700
Vinyl chloride	C ₂ H ₃ Cl		0.0104	0.0121	0.0173	0.0252	0.0341	0.0440	0.0549	-3.095	0.036	0.050930		
1,1-Dichloroethene	C ₂ H ₂ Cl ₂		0.0068	0.0079	0.0117	0.0171	0.0232	0.0299	0.0371	-3.531	0:030	0.029680		
Trichloroethene	C ₂ HCl ₃			0.0079	0.0107	0.0144	0.0180	0.0217	0.0254	-3.226	0.037	-0.000650		
Tetrachloroethene	C ₂ Cl ₄					0.0122	0.0152	0.0182	0.0211	-2.838	0.033	-0.002620		
Fluorobenzene	C_6H_5F				0.0167	0.0256	0.0358			-5.050	0.034	0.065160		
Chlorobenzene	C ₆ H ₅ Cl					0.0217	0.0307	0.0407	0.0516	-8.355	0.041	0.046620		
Bromobenzene	C ₆ H ₅ Br					0.0154	0.0210	0.0266	0.0323	-10.831	0.055	0.000840		
lodobenzene	C ₆ H ₅ I					0.0132	0.0182	0.0233	0.0284	-9.845	0.047	0.002660		
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl					0.0124	0.0171	0.0224	0.0283	-2.219	0.017	0.028710		
Benzyl chloride	C ₂ H ₂ Cl					0.0159	0.0217	0.0275	0.0333	-11.207	0.057	0.001190		
<i>n</i> -Alkanes														
Methane	CH₄	0.0241	0.0305	0.0340	0.0453	0.0619	0.0797	0.0985	0.1184	8.154	0.008	0.351530	-0.338650	0.140920
Ethane	C ₂ H ₆	0.0127	0.0184	0.0215	0.0320	0.0481	0.0661	0.0857	0.1066	-0.907	0.009	0.267380	-0.165560	0.048330
Propane	C ₃ H ₈		0.0154	0.0181	0.0272	0.0411	0.0571	0.0750	0.0950	-6.656	0.053	0.101810		
<i>n</i> -Butane	C_4H_{10}		0.0134	0.0162	0.0253	0.0389	0.0543	0.0715	0.0905	-9.954	0.061	0.088710		
<i>n</i> -Pentane	C ₅ H ₁₂		0.0128	0.0150	0.0224	0.0340	0.0475	0.0630	0.0806	-3.267	0.032	0.099040		
<i>n</i> -Hexane	C ₆ H ₁₄				0.0203	0.0311	0.0439	0.0587	0.0753	-3.277	0.027	0.096500		
<i>n</i> -Heptane	C ₇ H ₁₆				0.0190	0.0297	0.0422	0.0564	0.0724	-5.442	0.033	0.088020		
]

<i>n</i> -Octane	C ₈ H ₁₈				0.0179	0.0278	0.0396	0.0532	0.0687	-2.456	0.020	0.093390		
<i>n</i> -Nonane	C ₉ H ₂₀					0.0262	0.0374	0.0505	0.0653	-2.317	0.017	0.090970		
<i>n</i> -Decane	C ₁₀ H ₂₂					0.0242	0.0351	0.0479	0.0625	-1.409	0.009	0.095140		
<i>n</i> -Undecane	C ₁₁ H ₂₄					0.0229	0.0338	0.0462	0.0603	-6.240	0.023	0.081070		
<i>n</i> -Dodecane	C ₁₂ H ₂₆						0.0323	0.0441	0.0575	-7.217	0.027	0.073790		
<i>n</i> -Tridecane	C ₁₃ H ₂₈						0.0308	0.0422	0.0551	-7.043	0.025	0.071680		
<i>n</i> -Tetradecane	C ₁₄ H ₃₀						0.0296	0.0403	0.0526	-1.684	0.010	0.077940		
<i>n</i> -Pentadecane	C ₁₅ H ₃₂						0.0281	0.0388	0.0508	-6.608	0.022	0.068200		
<i>n</i> -Hexadecane	C ₁₆ H ₃₄						0.0269	0.0373	0.0490	-6.286	0.019	0.067930		
<i>n</i> -Heptadecane	C ₁₇ H ₃₆							0.0339	0.0451	1.219	-0.007	0.081760		
<i>n</i> -Octadecane	C ₁₈ H ₃₈							0.0327	0.0435	1.394	-0.007	0.079670		
<i>n</i> -Nonadecane	C ₁₉ H ₄₀							0.0315	0.0421	-1.657	0.000	0.072870		
<i>n</i> -Eicosane	C ₂₀ H ₄₂							0.0307	0.0409	1.519	-0.008	0.075880		
Isoalkanes														
Isobutane	C ₄ H ₁₀		0.0139	0.0164	0.0251	0.0383	0.0528	0.0679	0.0832	1.433	-0.022	0.305790	-0.226490	0.058610
2-Methyl butane	C ₅ H ₁₂		0.0120	0.0144	0.0227	0.0353	0.0491	0.0635	0.0782	0.912	-0.029	0.319870	-0.259160	0.079360
2,2-Dimethyl propane	C ₅ H ₁₂		0.0120	0.0149	0.0241	0.0372	0.0512	0.0660	0.0817	-16.839	0.093	0.044110		
2-Methyl pentane	C ₆ H ₁₄				0.0206	0.0329	0.0455	0.0585	0.0719	-22.140	0.108	0.017500		
3-Methyl pentane	C ₆ H ₁₄				0.0205	0.0328	0.0455	0.0586	0.0721	-22.148	0.107	0.019360		
2,2-Dimethyl butane	C ₆ H ₁₄				0.0216	0.0342	0.0474	0.0610	0.0752	-20.993	0.105	0.025680		
2,3-Dimethyl butane	C ₆ H ₁₄				0.0207	0.0332	0.0462	0.0595	0.0733	-22.295	0.107	0.020880		
Olefins														
Ethylene	C ₂ H ₄	0.0130	0.0180	0.0208	0.0303	0.0454	0.0628	0.0823	0.1036	3.246	-0.010	0.271040	-0.156820	0.050860
Propylene	C_3H_6		0.0151	0.0178	0.0263	0.0389	0.0529	0.0685	0.0855	-7.786	0.064	0.073320		
1-Butene	C ₄ H ₈		0.0130	0.0152	0.0225	0.0341	0.0478	0.0636	0.0815	-2.290	0.027	0.104930		
1-Pentene	C_5H_{10}				0.0208	0.0319	0.0449	0.0599	0.0768	-2.635	0.026	0.099680		
1-Hexene	C_6H_{12}				0.0203	0.0315	0.0441	0.0581	0.0735	-8.882	0.052	0.070750		
1-Heptene	C ₇ H ₁₄	0.0052	0.0097	0.0120	0.0192	0.0296	0.0412	0.0542	0.0687	-15.924	0.106	-0.085770	0.168444	-0.067405
1-Octene	C ₈ H ₁₆					0.0279	0.0395	0.0525	0.0669	-7.408	0.041	0.071630		
Propadiene	C ₃ H ₄		0.0130	0.0155	0.0234	0.0340	0.0450	0.0562	0.0677	-14.020	0.095	0.013700		
1,2-Butadiene	C_4H_6			0.0129	0.0205	0.0309	0.0417	0.0529	0.0644	-15.212	0.089	0.017970		
1,3-Butadiene	C_4H_6		0.0132	0.0157	0.0244	0.0388	0.0565	0.0774	0.1015	-0.789	0.007	0.162080		
1,2-Pentadiene	C ₅ H ₈				0.0189	0.0294	0.0401	0.0511	0.0624	-17.311	0.092	0.014980		
trans-1,3-Pentadiene	C_5H_8				0.0190	0.0297	0.0404	0.0513	0.0624	-19.350	0.100	0.007280		
1,4-Pentadiene	C ₅ H ₈				0.0203	0.0312	0.0422	0.0535	0.0650	-18.130	0.099	0.011060		
2,3-Pentadiene	C ₅ H ₈				0.0192	0.0294	0.0400	0.0509	0.0621	-15.702	0.087	0.017770		

3	8	C

D3.1. Table 10. (continued)

					Temperature (°C)	ure (°C)						Equation (2)	
Substance	Formula	-50	0	25	100	200	300	400	200	10³ A	10³ B	10 ⁶ C	10 ⁹ D	10 ¹² E
Acetylene and derivatives														
Acetylene	C ₂ H ₂	0.0140	0.0188	0.0213	0.0295	0.0418	0.0555			-3.020	0.059	0.074580		
Propyne	C₃H₄		0.0138	0.0164	0.0244	0.0354	0.0466	0.0582	0.0700	-13.853	0.097	0.014860		
2-Butyne	C₄H ₆				0.0201	0.0306	0.0416	0.0530	0.0648	-15.509	0.088	0.021160		
1-Butyne	C_4H_6			0.0143	0.0225	0.0337	0.0452	0.0569	0.0689	-16.681	0.100	0.014050		
Naphthenes														
Cyclopropane	C₃H ₆		0.0135	0.0160	0.0245	0.0383	0.0551	0.0747	0.0972	-1.614	0.016	0.144720		
Cyclobutane	C₄H ₈			0.0147	0.0235	0.0373	0.0537	0.0725	0.0938	-6.078	0.033	0.125010		
Cyclopentane	C ₅ H ₁₀				0.0208	0.0338	0.0495	0.0677	0.0885	-5.091	0.021	0.129630		
Methyl cyclopentane	C_6H_{12}				0.0188	0.0304	0.0434	0.0571	0.0711	4.354	-0.058	0.346100	-0.262790	0.072170
Ethyl cyclopentane	C ₇ H ₁₄					0.0291	0.0411	0.0535	0.0665	-20.576	0.093	0.025380		
Propyl cyclopentane	C ₈ H ₁₆					0.0287	0.0392	0.0506	0.0627	-10.781	0.065	0.039010		
Butyl cyclopentane	C ₉ H ₁₈					0.0259	0.0370	0.0484	0.0601	-23.525	0.098	0.012600		
Pentyl cyclopentane	$C_{10}H_{20}$	0.0057	0.0087	0.0105	0.0165	0.0261	0.0369	0.0486	0.0607	1.460	-0.023	0.215370	-0.134660	0.028890
Hexyl cyclopentane	$C_{11}H_{22}$	0.0052	0.0078	0.0093	0.0146	0.0230	0.0324	0.0425	0.0531	1.294	-0.018	0.184080	-0.113900	0.024090
Cyclohexane	C_6H_{12}				0.0187	0.0310	0.0462	0.0642	0.0850	-2.616	0.005	0.140460		
Methyl cyclohexane	C ₇ H ₁₄					0.0311	0.0428	0.0556	0.0694	-10.624	0.064	0.051310		
Ethyl cyclohexane	C ₈ H ₁₆					0.0286	0.0394	0.0511	0.0637	-10.644	0.062	0.044020		
Propyl cyclohexane	C ₉ H ₁₈					0.0272	0.0371	0.0480	0.0601	-5.219	0.043	0.053230		
Butyl cyclohexane	$C_{10}H_{20}$					0.0261	0.0359	0.0465	0.0578	-10.937	0.061	0.035720		
Pentyl cyclohexane	C ₁₁ H ₂₂	0.0049	0.0077	0.0093	0.0149	0.0238	0.0339	0.0447	0.0560	1.206	-0.023	0.200870	-0.121290	0.023210
Hexyl cyclohexane	$C_{12}H_{24}$	0.0044	0.0070	0.0084	0.0135	0.0216	0.0308	0.0407	0.0510	1.058	-0.020	0.179090	-0.105400	0.019300
Cyclopentene	C ₅ H ₈				0.0193	0.0310	0.0439	0.0575	0.0711	3.598	-0.055	0.354970	-0.285390	0.083400
Cyclohexene	C_6H_{10}				0.0207	0.0312	0.0426	0.0550	0.0682	-10.302	0.066	0.046170		
Aromatic compounds														
Benzene	C_6H_6				0.0169	0.0263	0.0369	0.0488	0.0618	-7.339	0.042	0.061410		
Toluene	C ₇ H ₈					0.0280	0.0392	0.0517	0.0653	-9.260	0.051	0.059090		
Ethyl benzene	C ₈ H ₁₀					0.0264	0.0375	0.0498	0.0634	-8.932	0.045	0.063110		
Propyl benzene	C ₉ H ₁₂					0.0238	0.0334	0.0433	0.0534	-17.869	0.082	0.013230		
Butyl benzene	C ₁₀ H ₁₄					0.0229	0.0323	0.0420	0.0519	-18.506	0.082	0.011860		
Pentyl benzene	$C_{11}H_{16}$						0.0317	0.0408	0.0504	-10.248	0.058	0.025960		
Hexyl benzene	C ₁₂ H ₁₈						0.0302	0.0394	0.0488	-18.297	0.079	0.010450		

o-Xylene	C ₈ H ₁₀			0.0200	0.0294	0.0390	0.0486	0.0583	-14.739	0.092	0.003690		
<i>m</i> -Xylene	C ₈ H ₁₀			0.0149	0.0265	0.0382	0.0503	0.0633	-30.341	0.123	0.009470	-0.060540	0.058390
<i>p</i> -Xylene	C ₈ H ₁₀			0.0158	0.0267	0.0380	0.0495	0.0615	-21.818	0.095	0.016980		
1,2,3-Trimethyl benzene	C ₉ H ₁₂				0.0244	0.0334	0.0429	0.0531	-10.155	0.059	0.029520		
1,2,4-Trimethyl benzene	C ₉ H ₁₂				0.0235	0.0322	0.0415	0.0514	-9.642	0.056	0.029870		
1,3,5-Trimethyl benzene	C ₉ H ₁₂				0.0227	0.0321	0.0417	0.0517	-16.563	0.075	0.017570		
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄					0.0322	0.0414	0.0512	-10.379	0.059	0.026580		
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄				0.0229	0.0315	0.0406	0.0503	-10.012	0.056	0.028030		
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄				0.0230	0.0316	0.0407	0.0503	-9.990	0.057	0.027510		
Pentamethyl benzene	C ₁₁ H ₁₆					0.0309	0.0401	0.0497	-10.473	0.056	0.028030		
Hexamethyl benzene	C ₁₂ H ₁₈					0.0304	0.0394	0.0489	-10.820	0.057	0.026460		
Styrene	C ₈ H ₈				0.0231	0.0322	0.0416	0.0510	-17.470	0.081	0.009440		
Isopropyl benzene	C ₉ H ₁₂				0.0247	0.0348	0.0453	0.0560	-19.870	0.088	0.013230		
Biphenyl	C ₁₂ H ₁₀			0.0111	0.0195	0.0279	0.0362	0.0446	-20.015	0.083	0.000330		
Diphenyl methane	C ₁₃ H ₁₂					0.0258	0.0332	0.0410	-9.251	0.050	0.019680		
Triphenyl methane	C ₁₉ H ₁₆						0.0292	0.0362	-9366	0.047	0.016050		
Tetraphenyl methane	C ₂₅ H ₂₀							0.0311	-14.302	0.056	0.004050		
Naphthalene	C ₁₀ H ₈					0.0288	0.0371	0.0458	-9.546	0.053	0.023490		
1-Methylnaphthalene	C ₁₁ H ₁₀					0.0278	0.0362	0.0448	-15.377	0.068	0.013020		
2-Methylnaphthalene	C ₁₁ H ₁₀					0.0280	0.0360	0.0445	-9.656	0.053	0.022100		
1-Ethylnaphthalene	C ₁₂ H ₁₂					0.0271	0.0349	0.0430	-9.589	0.052	0.020140		
2-Ethylnaphthalene	C ₁₂ H ₁₂					0.0281	0.0362	0.0447	-9.941	0.054	0.021040		
Alcohols													
Methanol	CH ₄ O	0.0137	0.0157	0.0227	0.0344	0.0487	0.0656	0.0852	2.362	0.005	0.131510		
Ethanol	C ₂ H ₆ O		0.0152	0.0227	0.0348	0.0490	0.0653	0.0839	-2.398	0.024	0.118133	-0.009986	0.003912
1-Propanol	C ₃ H ₈ O			0.0216	0.0331	0.0467	0.0623		-3.174	0.028	0.102720		
1-Butanol	C ₄ H ₁₀ O			0.0225	0.0314	0.0439	0.0599	0.0796	20.932	-0.063	0.178900		
1-Pentanol	C ₅ H ₁₂ O				0.0273	0.0392	0.0532	0.0692	-2.061	0.014	0.100590		
1-Hexanol	C ₆ H ₁₄ O				0.0266	0.0382	0.0519	0.0676	-0.248	0.008	0.103440		
1-Heptanol	C ₂ H ₁₆ O				0.0259	0.0372	0.0504	0.0655	-1.443	0.012	0.096390		
1-Octanol	C ₈ H ₁₈ O				0.0243	0.0350	0.0477	0.0624	-0.202	9000	0.097410		
Isopropanol	C ₃ H ₈ O			0.0231	0.0348	0.0489	0.0656	0.0848	1.447	0.011	0.124550		
2-Methyl-1-propanol	C ₄ H ₁₀ O				0.0275	0.0394	0.0531	0.0688	-2.405	0.018	0.096240		
3-Methyl-1-butanol	C ₅ H ₁₂ O				0.0286	0.0412	0.0559	0.0728	-2.114	0.015	0.106160		
Ethylene glycol	C ₂ H ₆ O ₂				0.0254	0.0357	0.0477	0.0615	-0.375	0.014	0.085000		
1,3-Propylene glycol	C ₃ H ₈ O ₂					0.0401	0.0540	0.0698	-3.521	0.023	0.093530		
Glycerol	C ₃ H ₈ O ₃					0.0313	0.0397	0.0485	-9.158	0.059	0.020260		

D3.1. Table 10. (continued)

382

					Temperature (°C)	ure (°C)						Equation (5)	
Substance	Formula	-50	0	25	100	200	300	400	200	10³ A	10 ³ B	10 ⁶ €	10 ⁹ D	10 ¹² E
Cyclohexanol	C ₆ H ₁₂ O					0.0283	0.0402	0.0525	0.0653	-21.830	0.095	0.022340		
Benzyl alcohol	C ₂ H ₈ O						0.0296	0.0382	0.0468	-18.135	0.082	0.003140		
Phenols														
o-Cresol	C ₂ H ₈ O					0.0229	0.0307	0.0388	0.0472	-9.427	0.061	0.016190		
<i>m</i> -Cresol	C ₂ H ₈ O						0.0307	0.0388	0.0471	-9.645	0.062	0.015310		
<i>p</i> -Cresol	C ₂ H ₈ O						0.0308	0.0389	0.0474	969.6	0.062	0.015840		
Phenol	C ₆ H ₆ O					0.0233	0.0320	0.0407	0.0495	-16.864	0.083	0.003190		
Carboxylic acids														
Formic acid	CH ₂ O ₂					0.0284	0.0372	0.0462	0.0555	-9.344	0.073	0.013480		
Acetic acid	C ₂ H ₄ O ₂			0.0107	0.0160	0.0251	0.0366	0.0504		2.600	-0.008	0.116860		
Propionic acid	C ₃ H ₆ O ₂						0.0418	0.0537		82.837	-0.233	0.282310		
Butyric acid	C₄H ₈ O ₂						0.0405	0.0513		118.594	-0.344	0.362900		
Valeric acid	$C_5H_{10}O_2$					0.0251	0.0334	0.0420	0.0509	-9.912	990:0	0.015740		
Caproic acid	C ₆ H ₁₂ O ₂						0.0312	0.0394	0.0479	-9.851	0.063	0.015240		
Acetic anhydride	C ₄ H ₆ O ₃					0.0236	0.0321	0.0407	0.0495	-14.506	0.077	0.007670		
Propionic anhydride	C ₆ H ₁₀ O ₃					0.0191	0.0263	0.0333	0.0402	-16.900	0.080	-0.007700		
Chloroacetic acid	C ₂ H ₃ ClO ₂					0.0192	0.0250	0.0310	0.0370	-7.014	0.053	0.005220		
Dichloroacetic acid	$C_2H_2CI_2O_2$					0.0151	0.0194	0.0237	0.0280	-5.032	0.042	0.000710		
Trichloroacetic acid	C ₂ HCl ₃ O ₂					0.0135	0.0171	0.0208	0.0244	-4.036	0.038	-0.001120		
Ketones														
Ketene	C ₂ H ₂ O		0.0156	0.0180	0.0252	0.0348	0.0442	0.0536	0.0630	-10.895	0.098	-0.003100		
Acetone	C ₃ H ₆ O				0.0173	0.0272	0.0392	0.0533	0.0695	-1.474	0.012	0.103580		
Methyl ethyl ketone	C ₄ H ₈ O				0.0172	0.0270	0.0392	0.0536	0.0704	0.660	0.000	0.115870		
Diethyl ketone	C ₅ H ₁₀ O		060000	0.0107	0.0168	0.0270	0.0396	0.0547	0.0722	0.018	0.000	0.120990		
Dipropyl ketone	C ₇ H ₁₄ O					0.0251	0.0371	0.0514	0.0681	0.722	-0.005	0.118740		
Acetophenone	C ₈ H ₈ O						0.0273	0.0356	0.0442	-16.048	0.069	0.010920		
Benzophenone	C ₁₃ H ₁₀ O							0.0278	0.0340	-8.154	0.045	0.011700		
Ethers														
Dimethyl ether	C ₂ H ₆ O		0.0138	0.0164	0.0251	0.0384	0.0532	0.0689	0.0851	-0.250	-0.009	0.263410	-0.171130	0.038110
Diethyl ether	C ₄ H ₁₀ O	0.0092	0.0129	0.0150	0.0222	0.0337	0.0476			-0.513	0.018	0.115680		
Dipropyl ether	C ₆ H ₁₄ O				0.0184	0.0273	0.0367	0.0465	0.0568	-10.871	0.070	0.022340		
Methyl propyl ether	C ₄ H ₁₀ O				0.0221	0.0320	0.0424	0.0532	0.0644	-10.912	0.080	0.022060		
Ethyl propyl ether	C ₅ H ₁₂ O		0.0114	0.0138	0.0208	0.0299				-16.155	0.106	-0.018180		

Ethylene oxide	C ₂ H ₄ O	0.0102	0.0121	0.0195	0.0333	0.0514	0.0738	0.1006	6.735	-0.047	0.217600		
Furane	C ₄ H ₄ O			0.0208	0.0334	0.0482	0.0654	0.0848	-5.580	0.028	0.115470		
1,4-Dioxane	C ₄ H ₈ O ₂				0.0252	0.0349	0.0466	0.0602	5.404	-0.004	0.097250		
Aldehydes													
Formaldehyde	CH ₂ O	0.0140	0.0159	0.0222	0.0323	0.0443	0.0581	0.0737	0.887	0.023	0.092560		
Acetaldehyde	C ₂ H ₄ O	0.0103	0.0119	0.0174	0.0263	0.0371	0.0496	0.0639	0.076	0.013	0.090020		
Paraldehyde	C ₆ H ₁₂ O ₃				0.0279	0.0389	0.0496	0.0601	-26.540	0.120	-0.010130		
Furfural	$C_5H_4O_2$				0.0246	0.0328	0.0414	0.0503	-9.590	0.064	0.017620		
Benzaldehyde	C ₂ H ₆ O				0.0208	0.0285	0.0362	0.0441	-14.819	0.074	0.003070		
Salicylaldehyde	C ₂ H ₆ O ₂				0.0199	0.0275	0.0350	0.0425	-16.830	0.079	-0.003160		
Esters													
Methyl formate	C ₂ H ₄ O ₂			0.0204	0.0316	0.0453	0.0614	0.0799	0.081	600.0	0.122170		
Ethyl formate	C ₃ H ₆ O ₂			0.0183	0.0287	0.0413	0.0561	0.0730	-1.656	0.013	0.107800		
Propyl formate	C ₄ H ₈ O ₂			0.0156	0.0249	0.0363	0.0499	0.0656	-0.466	0.003	0.106020		
Methyl acetate	C ₃ H ₆ O ₂			0.0178	0.0278	0.0401	0.0546	0.0715	0.813	0.003	0.114990		
Ethyl acetate	C ₄ H ₈ O ₂	0.0092	0.0107	0.0159	0.0248	0.0361	0.0496	0.0654	2.735	-0.007	0.114350		
Propyl acetate	C ₅ H ₁₀ O ₂				0.0242	0.0356	0.0491	0.0647	0.005	0.000	0.108330		
Methyl propionate	C ₄ H ₈ O ₂			0.0159	0.0250	0.0363	0.0497	0.0653	0.707	0.001	0.107360		
Ethyl propionate	C ₅ H ₁₀ O ₂			0.0142	0.0217	0.0314	0.0430	0.0567	3.777	-0.010	0.101720		
Propyl propionate	C ₆ H ₁₂ O ₂				0.0246	0.0361	0.0499	0.0660	1.430	-0.006	0.115150		
Methyl butyrate	C ₅ H ₁₀ O ₂				0.0237	0.0347	0.0478	0.0631	-0.099	0.001	0.104930		
Ethyl butyrate	C ₆ H ₁₂ O ₂				0.0228	0.0336	0.0465	0.0614	0.286	-0.002	0.104790		
Methyl benzoate	C ₈ H ₈ O ₂				0.0178	0.0249	0.0321	0.0393	-14.909	0.068	0.003120		
Ethyl benzoate	C ₉ H ₁₀ O ₂					0.0246	0.0317	0.0389	-15.024	0.068	0.002650		
Methyl salicylate	C ₈ H ₈ O ₃					0.0236	0.0298	0.0362	-7.619	0.048	0.011280		
Amines													
Methyl amine	CH ₅ N	0.0132	0.0158	0.0252	0.0411	0.0611			0.998	-0.010	0.200200		
Ethyl amine	C ₂ H ₇ N		0.0169	0.0254	0.0372	0.0494	0.0622	0.0754	-14.418	0.098	0.023590		
Propyl amine	C ₃ H ₉ N			0.0225	0.0336	0.0454	0.0576	0.0704	-14.582	0.089	0.026680		
n-Butyl amine	C ₆ H ₁₅ N	0.0125	0.0145	0.0209	0.0306	0.0413	0.0526	0.0642	-0.321	0.012	0.150360	-0.086020	0.014280
Dimethyl amine	C ₂ H ₂ N		0.0204	0.0300	0.0433	0.0573	0.0719	0.0871	-14.266	0.107	0.031230		
Trimethyl amine	C ₃ H ₉ N	0.0128	0.0154	0.0239	0.0365	0.0499	0.0634	0.0770	-2.224	-0.008	0.294620	-0.263930	0.086550
Diethyl amine	C ₆ H ₁₅ N	0.0113	0.0140	0.0222	0.0335	0.0451	0.0571	0.0695	-16.698	0.098	0.017830		
Triethyl amine	C ₆ H ₁₅ N	0.0102	0.0124	0.0198	0.0310	0.0431	0.0555	0.0681	-0.268	-0.025	0.295400	-0.257610	0.084340
Piperidine	C ₅ H ₁₁ N				0.0319	0.0444	0.0569	0.0691	-29.974	0.135	-0.008300		
Pyridine	C ₆ H ₇ N				0.0240	0.0354	0.0487	0.0639	-3.523	0.012	0.096720		
Aniline	C ₆ H ₇ N				0.0246	0.0328	0.0414	0.0503	-9.960	0.065	0.016230		

D3.1. Table 10. (continued)

					Temperature (°C)	ture (°C)						Equation (2)	
Substance	Formula	-20	0	25	100	200	300	400	200	10³ A	10³ B	10° C	10 ⁹ D	10 ¹² E
<i>N</i> -methyl aniline	C ₂ H ₉ N					0.0242	0.0334	0.0427	0.0521	-18.314	0.088	0.003880		
<i>N,N-</i> dimethyl aniline	C ₈ H ₁₁ N					0.0210	0.0298	0.0387	0.0477	-18.759	0.081	0.006300		
<i>N,N</i> -diethyl aniline	C ₁₀ H ₁₅ N						0.0288	0.0369	0.0453	-9.478	0.055	0.020120		
Phenylhydrazine	$C_6H_8N_2$						0.0290	0.0368	0.0448	-9.778	0.059	0.014480		
Diphenyl amine	C ₁₂ H ₁₁ N							0.0325	0.0397	-9.441	0.054	0.012730		
Nitriles														
Acetonitrile	C ₂ H ₃ N				0.0141	0.0218	0.0320	0.0447	0.0600	7.632	-0.030	0.125860		
Propionitrile	C ₃ H ₅ N		0.0076	0.0000	0.0140	0.0226	0.0336	0.0472	0.0640	0.189	0.001	0.100180	-0.018130	0.033270
Butyronitrile	C ₄ H ₇ N		0.0070	0.0092	0.0159	0.0251	0.0344	0.0439	0.0536	-16.453	0.083	0.009510		
Benzonitrile	C ₂ H ₅ N					0.0224	0.0302	0.0383	0.0467	-9.406	0.059	0.017860		
Amides														
Formamide	CH ₃ NO						0.0367	0.0462	0.0562	-11.800	0.075	0.016570		
Nitroderivates														
Nitromethane	CH ₃ NO ₂					0.0216	0.0297	0.0380	0.0464	-15.934	0.077	0.004770		
Nitrobenzene	C ₆ H ₅ NO ₂						0.0287	0.0364	0.0446	-9.275	0.056	0.017100		
<i>o</i> -Nitrotoluene	C ₂ H ₂ NO ₂						0.0263	0.0334	0.0408	-8.654	0.052	0.015100		
<i>m</i> -Nitrotoluene	C ₂ H ₂ NO ₂						0.0260	0.0331	0.0404	-8.730	0.052	0.014750		
<i>p</i> -Nitrotoluene	C ₂ H ₂ NO ₂						0.0259	0.0329	0.0402	-8.747	0.052	0.014500		

					Temperature (°C)	ure (°C)						Equation (6)		
Substance	Formula	-50	-25	0	20	50	100	150	200	А	В	C	D	E
Elements														
Xenon	Хе	8.2	4.5	1.4						0.05435	1.28359			
Krypton	Kr									0.04405	1.22807			
Argon	Ar									0.03813	1.29069			
Air										0.02919	1.15656	0.06889	0.17918	-0.14564
Nitrogen	N_2									0.02921	1.25537			
Oxygen	02									0.03797	1.21036			
Sulfur	S							58.3	55.0	0.08603	1.00082			
Fluorine	F ₂									0.04004	1.22411			
Chlorine	Cl ₂	29.4	25.3	21.3	18.1	13.4	5.9			0.06760	1.08562			
Bromine	Br_2			45.2	41.8	36.8	28.8	21.0	13.6	0.09404	1.16321			
lodine	l ₂							44.3		0.23475	2.29332			
Anorganic compounds														
Hydrogen fluoride	보	14.3	12.3	10.3	8.8	9.9	3.5	1.1		0.03648	1.41220			
Hydrogen chloride	HCI	18.9	13.1	7.8	4.1					0.08517	1.29670			
Hydrogen bromide	HBr	23.5	18.5	13.7	10.1	5.1				0.07541	1.22318			
Hydrogen iodide	王	28.6	24.7	21.0	18.0	13.6	6.5			0.06376	1.07475			
Hydrogen cyanide	HCN			20.6	18.3	14.9	9.2	3.6		0.05231	1.02047			
Water	H_2O			77.8	73.8	6.79	58.2	48.3	37.7	0.15488	1.64129	-0.75986	-0.85291	1.14113
Hydrogen sulfide	H ₂ S	22.8	18.0	13.5	10.1	5.5				0.07436	1.30090			
Ammonia	NH_3	38.5	32.2	26.1	21.4	14.6	4.7			0.10175	1.21703			
Nitric oxide	NO									0.12062	1.54592			
Nitrogen dioxide	NO_2			31.1	27.3	21.6	11.9			0.08109	0.95509			
Nitrous oxide	N_2O	15.3	10.1	5.4	2.1					0.07134	1.20607			
Dinitrogentetroxide	N_2O_4			49.4	41.9	31.1	14.5	1.3		0.16856	1.22183			
Cyanogen	C_2N_2		22.9	18.5	15.0	10.1	2.9			0.07339	1.20282			
Phosphorus trichloride	PCI ₃	38.3	34.9	31.5	28.9	25.0	18.8	12.9	7.5	0.07098	1.22441			
Cyanogen chloride	CICN			26.1	22.6	17.5	9.6	2.7		0.07941	1.18902			
Silane	SiH ₄	5.1	2.0							0.04274	1.21421			
Tetrachlorosilane	SiCl₄	26.6	24.0	21.3	19.3	16.2	11.3	9.9	2.4	0.05154	1.14006			
Carbon monoxide	00									0.02792	1.13266			
Carbon dioxide	CO ₂	15.2	9.5	4.5	1.2					0.08167	1.27339			
Carbon suboxide	C ₃ O ₂	40.9	34.9	29.1	24.6	18.1	8.2	0.4		0.10041	1.21621			

D3.1. Table 11. Surface tensions in mN/m

386

D3.1. Table 11. (continued)

					Temperature (°C)	ure (°C)						Equation (6	(
Substance	Formula	-50	-25	0	20	20	100	150	200	А	В	C	Q	E
Carbonyl sulfide	COS	20.6	16.0	11.7	9.8	4.6				0.07598	1.46595			
Phosgene	CCI ₂ O	29.8	26.1	22.5	19.7	15.5	8.9	3.0		0.06520	1.16027			
Carbon disulfide	CS ₂	43.5	39.5	35.5	32.4	27.8	20.6	13.7	7.5	0.08219	1.22945			
Sulfur dioxide	SO ₂	36.8	31.7	26.6	22.7	16.9	8.1			0.08730	1.18191			
Sulfur trioxide	SO ₃				34.1	27.9	18.1	9.5	1.8	0.10346	1.21917			
Sulfuryl chloride	Cl ₂ SO ₂	46.0	41.5	37.1	33.6	28.6	20.6	13.3	8.9	0.09002	1.27637			
Sulfur hexafluoride	${\sf SF}_6$	11.6	8.6							0.03785	0.98021			
Organic compounds containing sulfur	ılfur													
Methyl mercaptan	CH₄S	37.2	32.6	28.2	24.7	19.7	11.8	4.8		0.08186	1.22601			
Ethyl mercaptan	C ₂ H ₆ S	32.0	28.9	25.8	23.4	19.8	13.9	8.1	2.6	0.06002	1.06332			
Dimethyl sulfide	C ₂ H ₆ S	34.6	31.1	27.6	24.8	20.8	14.3	8.2	2.6	0.06790	1.15009			
Diethyl sulfide	C ₄ H ₁₀ S	33.6	30.5	27.6	25.2	21.8	16.3	11.1	6.3	0.06254	1.21632			
Thiophene	C₄H₄S		39.0	35.1	32.1	27.7	20.7	14.3	8.5	0.08229	1.33643			
Halogenated hydrocarbons														
Fluoromethane (R41)	CH_3F	14.2	9.6	5.5	2.5					0.06598	1.26598			
Difluoromethane (R32)	CH_2F_2	21.0	15.9	11.1	7.6	3.0				0.07647	1.28512			
Trifluoromethane (R23)	CHF ₃	10.8	9.9	2.9						0.05858	1.23456			
Tetrafluoromethane (R14)	CF_4	0.4								0.05626	1.23364			
Methyl chloride	CH ₃ CI	28.5	23.8	19.4	16.0	11.2	4.2			0.07623	1.28255			
Methylene chloride	CH ₂ Cl ₂	40.2	35.8	31.4	28.1	23.2	15.5	9.8	2.9	0.08432	1.28714			
Chloroform	CHCl ₃	36.8	33.4	30.0	27.3	23.4	17.1	11.1	5.6	0.06931	1.17639			
Carbon tetrachloride	CCl₄			29.4	26.9	23.2	17.3	11.8	6.7	0.06666	1.21285			
Bromomethane	CH ₃ Br	34.4	29.9	25.5	22.1	17.3	6.6	3.7		0.08027	1.30463			
Dibromomethane	${\sf CH}_2{\sf Br}_2$	53.1	48.7	44.4	41.0	36.0	28.0	20.6	13.8	0.09615	1.30603			
Tribromomethane	CHBr ₃				45.5	41.6	35.1	28.8	22.7	0.08674	1.17862			
Tetrabromomethane	CBr ₄						62.6	51.9	41.6	0.15153	1.22270			
Chlorodifluoromethane (R22)	CHCIF ₂	19.8	15.7	11.8	8.8	4.7				0.06238	1.23996			
Dichlorofluoromethane (R21)	CHCl ₂ F	29.5	25.5	21.6	18.6	14.3	7.7			0.06925	1.25278			
Chlorotrifluoromethane (R13)	CCIF ₃	10.1	6.3	2.9						0.05415	1.25006			
Dichlorodifluoromethane (R12)	CCl ₂ F ₂		15.5	12.0	9.3	5.6	0.7			0.05898	1.28862			
Trichlorofluoromethane (R11)	CCl ₃ F	28.4	24.8	21.3	18.6	14.7	8.7	3.5		0.06409	1.27077			
Ethyl fluoride (R161)	C ₂ H ₅ F	19.7	16.2	12.6	6.6	0.9				0.05419	1.11840			

Ethyl chloride	C,H,Cl	29.1	25.3	21.7	18.9	14.8	8.5	3.0		0.06597	1.23494			
Ethyl bromide	C ₂ H ₅ Br	35.2	31.1	27.2	24.1	19.7	12.9	8.9	1.9	0.07599	1.31627			
1,1-Dichloroethane	C ₂ H ₄ Cl ₂	35.5	31.9	28.3	25.5	21.4	15.0	9.0	3.8	0.07110	1.24746			
1,2-Dichloroethane	C ₂ H ₄ Cl ₂		39.1	35.3	32.3	27.8	20.8	14.2	8.1	0.08099	1.24885	96000.0	-0.01186	0.00695
1,2-Dibromoethane	$C_2H_4Br_2$				38.8	34.9	28.4	22.3	16.4	0.08093	1.22574			
1,1,1-Trifluoroethane (R143a)	$C_2H_3F_3$	15.9	12.3	8.9	6.2	2.5				0.05023	1.11401			
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃		31.4	28.2	25.7	22.0	16.1	10.6	9.9	0.06587	1.22121			
1,1,2,2-Tetrachloroethane	C₂H₂Cl₄		41.9	38.6	36.1	32.3	26.2	20.4	14.9	0.07626	1.23498			
Pentachloroethane	C ₂ HCl ₅		40	37.1	34.8	31.4	25.9	20.5	15.3	0.07017	1.15768			
Hexachloroethane	C_2CI_6								31.9	0.14133	1.30430			
1,1,2,2-Tetrachlorodifluoroethane	$C_2CI_4F_2$					20.5	14.9	6.7	5.1	0.06418	1.29363			
1,1,2-Trichlorotrifluoroethan	C ₂ Cl ₃ F ₃		22.9	20	17.7	14.4	9.2	4.5	0.7	0.05521	1.23559			
1,2-Dichlorotetrafluoroethane	$C_2Cl_2F_4$	20.1	16.9	13.9	11.5	8.2	3.3			0.05178	1.24664			
1-Chloropropane	C ₃ H ₇ Cl	31.7	28.1	24.6	21.9	18	11.9	6.4	1.8	0.06684	1.27458			
1-Chlorobutane	C ₄ H ₉ Cl	31.8	28.8	26	23.7	20.4	15	8.6	4.9	0.06373	1.36371	0.17790	-1.11469	0.86417
1-Chloropentane	C ₅ H ₁₁ Cl	33.4	30.5	27.7	25.5	22.2	16.9	11.9		0.06031	1.18716			
Chlorotrifluoroethene	C ₂ CIF ₃	25.9	20.6	15.6	11.8	6.7				0.08373	1.31939			
Vinyl chloride	C ₂ H ₃ Cl	27.9	23.7	19.7	16.6	12.2	5.6			0.07032	1.27270			
1,1-Dichloroethene	C ₂ H ₂ Cl ₂	36.4	32.2	28.1	24.9	20.2	12.8	6.1		0.07702	1.20663			
Trichloroethene	C ₂ HCl ₃	39.7	36	32.5	29.7	25.7	19.2	13.2	7.8	0.07498	1.28458			
Tetrachloroethene	C ₂ CI ₄			34.7	32.2	28.6	22.8	17.3	12.1	0.07067	1.22671			
Fluorobenzene	C_6H_5F		33.7	30.2	27.5	23.5	17.3	11.5	6.4	0.07216	1.30234			
Chlorobenzene	C ₆ H ₅ Cl		39.1	36	33.5	29.9	24	18.4	13.1	0.07269	1.24185			
Bromobenzene	C ₆ H ₅ Br		41.9	38.9	36.5	33	27.2	21.7	16.4	0.07406	1.23020			
lodobenzene	C ₆ H ₅ I		44.7	41.8	39.5	36	30.4	25	19.9	0.07595	1.25538			
<i>m</i> -Chlorotoluene	C ₂ H ₂ Cl		38.8	35.8	33.4	30	24.6	19.5	14.6	0.07978	1.77729	-0.55705	-0.51952	0.63993
Benzyl chloride	C ₂ H ₂ Cl		43.4	40.1	37.5	33.7	27.7	21.9	16.5	0.07908	1.33849			
n-Alkanes														
Methane	CH₄									0.03640	1.14306			
Ethane	C_2H_6	10.1	6.5	3.3	1.0					0.04863	1.19828			
Propane	C_3H_8	16.5	13.1	6.6	7.5	4.1				0.05094	1.22051			
<i>n</i> -Butane	C ₄ H ₁₀	21.0	17.9	14.8	12.5	9.1	4.0			0.05203	1.21961			
<i>n</i> -Pentane	C_5H_{12}	23.9	21.0	18.2	16.0	12.8	7.7	3.2		0.05202	1.20435			
<i>n</i> -Hexane	C_6H_{14}	26.4	23.5	20.7	18.5	15.2	10.2	5.7		0.05500	1.26769			
<i>n</i> -Heptane	C ₇ H ₁₆	27.8	25.1	22.4	20.3	17.3	12.5	8.0	4.0	0.05422	1.25287			
<i>n</i> -Octane	C ₈ H ₁₈	28.6	26.0	23.6	21.6	18.8	14.2	8.6	5.9	0.05277	1.23210			

388

D3.1. Table 11. (continued)

Formula 50 -25 0 20 50 100 150						Temperature (°C)	ure (°C)						Equation (6)		
C ₀ H ₂ 0 30.0 27.4 24.9 22.9 20.0 15.4 11.1 7.1 C ₀ H ₂ 0 C ₀ H ₂ 0 38.3 25.8 23.9 21.0 16.5 12.2 8.3 C ₁ H ₂ 0 7 25.6 24.7 21.9 17.5 13.3 9.4 C ₁ H ₂ 0 7 25.6 24.7 21.9 18.3 14.2 8.3 C ₁ H ₂ 0 7 25.6 23.9 19.0 15.6 11.8 C ₁ H ₂ 0 7 26.6 23.9 19.0 15.6 11.2 C ₁ H ₂ 0 7 27.2 26.9 20.7 16.2 11.2 C ₁ H ₂ 0 7 7 27.2 24.9 20.7 16.2 11.2 C ₁ H ₂ 0 7 7 27.2 24.9 20.7 16.6 11.9 C ₁ H ₂ 0 7 7 1.2 24.9 20.7 16.6 11.9 C ₁ H ₂ 1 7 7 7		Formula	-50	-25	0	20	20	100	150	200	А	В	U	Q	E
C ₁₀ H ₂₂ 283 284 239 210 165 122 83 G ₁₁ H ₂₄ 290 266 247 219 175 133 94 G ₁₃ H ₂₆ 27 254 227 183 142 103 G ₁₃ H ₂₆ 27 278 266 233 190 150 112 G ₁₆ H ₂₆ 27 27 275 20 166 129 118 G ₁₆ H ₂₆ 27 27 27 20 166 129 118 G ₁₆ H ₂₆ 27 27 27 20 166 129 118 G ₁₆ H ₂₆ 27 27 249 207 166 129 118 G ₁₆ H ₂₆ 27 27 249 207 166 129 129 G ₁₆ H ₂₆ 27 27 249 27 149 142 142 G ₁₆ H ₂₆ 27 27 27 27 27 <t< td=""><td></td><td>C₉H₂₀</td><td>30.0</td><td>27.4</td><td>24.9</td><td>22.9</td><td>20.0</td><td>15.4</td><td>11.1</td><td>7.1</td><td>0.05496</td><td>1.28917</td><td></td><td></td><td></td></t<>		C ₉ H ₂₀	30.0	27.4	24.9	22.9	20.0	15.4	11.1	7.1	0.05496	1.28917			
C ₁₁ H ₂₄ 290 266 247 219 175 133 94 C ₁₂ H ₂₆ 1 272 254 227 183 142 103 C ₁₃ H ₂₆ 1 278 266 233 190 150 112 C ₁₂ H ₂₀ 1 1 266 239 196 156 112 C ₁₂ H ₂₀ 1 1 2 266 239 196 156 112 C ₁₂ H ₂₀ 1 1 2 266 239 196 156 112 C ₁₃ H ₂₀ 1 1 2 266 239 201 166 129 C ₁₉ H ₂₀ 1 1		C ₁₀ H ₂₂		28.3	25.8	23.9	21.0	16.5	12.2	8.3	0.05540	1.30900			
C ₁₂ H ₂₆ C ₁₂ H ₂₆ C ₁₂ H ₂₆ 27.2 25.4 22.7 18.3 14.2 10.3 C ₁₃ H ₂₈ C ₁₃ H ₂₈ C ₁₃ H ₂₈ 2.0 23.3 190 15.0 11.2 C ₁₃ H ₂₈ C ₁₃ H ₂₈ 2.2 2.6 23.9 19.6 15.6 11.2 C ₁₃ H ₂₈ 2.2 2.2 2.4 2.0 16.2 11.2 C ₁₃ H ₂₈ 2.2 2.2 2.4 2.0 16.2 11.2 C ₁₃ H ₂₀ 2.2 2.2 2.4 2.0 16.2 11.2 C ₁₃ H ₂₀ 2.2 2.2 2.2 2.1 17.2 13.4 C ₂₀ H ₁₀ 19.0 15.2 17.2 12.9 14.2 14.2 C ₂₀ H ₁₀ 15.0 17.2 15.0 11.8 6.8 2.4 17.2 13.4 E ₂ H ₁₀ 15.3 2.0 17.2 15.0 11.8 4.0 0.4 17.2 C ₆ H ₁₄ 2.3 2.3<	e	C ₁₁ H ₂₄		29.0	26.6	24.7	21.9	17.5	13.3	9.4	0.05555	1.32037			
C ₁ H ₂ B <	a	C ₁₂ H ₂₆			27.2	25.4	22.7	18.3	14.2	10.3	0.05549	1.32644			
C ₁₄ H ₂₀ C ₁₄ H ₂₀ 1 266 23.9 196 156 11.8		$C_{13}H_{28}$			27.8	26.0	23.3	19.0	15.0	11.2	0.05539	1.32719			
C ₁₉ H ₂₂ C ₁₀ H ₂₄ 1 27.2 24.5 20.2 16.2 12.5 C ₁₀ H ₂₄ C ₁₀ H ₂₄ 1 2 27.6 24.9 20.7 16.6 12.9 C ₁₀ H ₂₈ 1 1 2 2 2.5.3 21.1 17.2 13.4 C ₁₀ H ₂₈ 1 1 1 1 2 2 2 1	ine	C ₁₄ H ₃₀				26.6	23.9	19.6	15.6	11.8	0.05634	1.36445			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ane	C ₁₅ H ₃₂				27.2	24.5	20.2	16.2	12.5	0.05644	1.36901			
C ₁ H ₃₆ 1 25.3 21.1 17.2 134 C ₁₉ H ₄₀ 1 1 <td< td=""><td>ine</td><td>C₁₆H₃₄</td><td></td><td></td><td></td><td>27.6</td><td>24.9</td><td>20.7</td><td>16.6</td><td>12.9</td><td>0.05742</td><td>1.40834</td><td></td><td></td><td></td></td<>	ine	C ₁₆ H ₃₄				27.6	24.9	20.7	16.6	12.9	0.05742	1.40834			
C ₁₉ H ₃₈ 1 25.8 21.6 17.6 13.9 C ₁₉ H ₄₀ 1 1 1 26.1 21.9 17.9 14.2 C ₂₀ H ₄₂ 1 1 <td>ane</td> <td>C₁₇H₃₆</td> <td></td> <td></td> <td></td> <td></td> <td>25.3</td> <td>21.1</td> <td>17.2</td> <td>13.4</td> <td>0.05701</td> <td>1.40336</td> <td></td> <td></td> <td></td>	ane	C ₁₇ H ₃₆					25.3	21.1	17.2	13.4	0.05701	1.40336			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ne	C ₁₈ H ₃₈					25.8	21.6	17.6	13.9	0.05782	1.42315			
C ₂₀ H ₄₂ 190 15.9 12.8 10.5 7.2 2.3 18.3 14.5 C ₄ H ₁₀ 19.0 15.9 12.8 10.5 7.2 2.3 18.3 14.5 e C ₅ H ₁₂ 22.9 20.0 17.2 15.0 11.8 6.8 2.4 0.0 9.4 17.4 8.4 4.0 0.4 1.4 8.4 4.0 0.4 1.4 8.4 4.0 0.4 1.4 8.8 2.4 0.0 0.4 1.4 9.6 5.2 1.4 1.4 9.6 5.2 1.4 1.4 9.6 5.2 1.4 1.4 9.6 5.2 1.4 1.4 9.6 5.2 1.4 1.4 9.6 5.2 1.4 1.4 9.6 5.2 1.4 1.4 9.6 5.2 1.4 1.5 1.7 1.4 9.7 5.3 1.5 1.7 1.4 9.7 5.3 1.5 1.7 1.4 9.7 5.3 <t< td=""><td>ane</td><td>C₁₉H₄₀</td><td></td><td></td><td></td><td></td><td>26.1</td><td>21.9</td><td>17.9</td><td>14.2</td><td>0.05806</td><td>1.44010</td><td></td><td></td><td></td></t<>	ane	C ₁₉ H ₄₀					26.1	21.9	17.9	14.2	0.05806	1.44010			
C ₆ H ₁₀ 19.0 15.9 12.8 10.5 7.2 2.3		C ₂₀ H ₄₂					26.5	22.3	18.3	14.5	0.05887	1.46686			
e C ₆ H ₁₀ 19.0 15.9 12.8 10.5 7.2 2.3															
e C ₅ H ₁₂ 22.9 20.0 17.2 15.0 11.8 6.8 2.4 4.0 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.6 5.2 1.4 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.6 5.5 1.7 C ₆ H ₁₄ 22.3 20.7 18.2 16.3 13.4 8.8 4.6 1.7 1.7 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.6 5.5 1.7 1.2 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.6 5.5 1.7 1.2 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.7 5.3 1.5 1.5 1.2 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.7 5.3 1.5 1.5 1.5 1.2 C ₆ H ₁₅ 22.0 18.6 15.3 12.7 9.1 3.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		C ₄ H ₁₀	19.0	15.9	12.8	10.5	7.2	2.3			0.05132	1.25196			
e C ₅ H ₁₂ 24.7 22.0 19.4 11.4 8.4 4.0 0.4 9.6 5.2 1.4 C ₆ H ₁₄ 25.8 23.0 20.3 18.1 15.0 10.0 5.5 1.7 C ₆ H ₁₄ 23.3 20.7 18.2 16.3 13.4 8.8 4.6 1.7 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.7 5.3 1.7 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.7 5.3 1.5 1.7 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.7 5.3 1.5 1.5 C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.7 5.3 1.5 1.5 C ₆ H ₁₅ 25.9 12.0 18.6 15.3 12.7 9.1 3.7 1.5 1.5 C ₆ H ₁₅ 25.9 23.2 20.5 18.4 15.3 10.4 5.9 1.9 1.9 C ₆ H ₁₆ 28.9 26.3 23.8 21.8 18.9 14.2 9.8 5.7 21.8 18.9 14.2 9.8 5.7 21.8 18.9 14.2 9.8 5.7 21.8 18.9 15.5 11.8 6.1 1.6 1.9 C ₆ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 1.6 1.8 C ₆ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 1.6 1.8 C ₆ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 21.8 12.8 24.8 24.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15	ıtane	C ₅ H ₁₂	22.9	20.0	17.2	15.0	11.8	8.9	2.4		0.05095	1.20843			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/I propane	C_5H_{12}			13.4	11.4	8.4	4.0	0.4		0.04660	1.25255			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	intane	C_6H_{14}	24.7	22.0	19.4	17.4	14.4	9.6	5.2	1.4	0.05005	1.18920			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ntane	C_6H_{14}	25.8	23.0	20.3	18.1	15.0	10.0	5.5	1.7	0.05324	1.24020			
C ₆ H ₁₄ 24.7 22.0 19.4 17.4 14.4 9.7 5.3 1.5 C ₂ H ₄ 7.2 3.6	l butane	C_6H_{14}	23.3	20.7	18.2	16.3	13.4	8.8	4.6		0.04744	1.16905			
C2H4 7.2 3.6 4.0 4.0 C3H6 17.1 13.6 10.2 7.6 4.0 6.4 C4H8 22.0 18.6 15.3 12.7 9.1 3.7 3.1 C5H10 23.8 21.0 18.2 16.0 12.8 7.7 3.1 C6H12 25.9 23.2 20.5 18.4 15.3 10.4 5.9 1.9 C7H14 28.3 25.4 22.6 20.4 17.2 12.2 7.6 3.6 C8H16 28.9 26.3 23.8 21.8 18.9 14.2 9.8 5.7 C3H4 19.8 16.2 12.7 10.0 6.4 1.3 1 C4H6 25.4 21.8 15.6 11.8 6.1 1.6 1.4 C5H8 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4 CH 35.4 27.8 24.6 21.5 19.1 15.6 10.1 6.4 1.7	l butane	C ₆ H ₁₄	24.7	22.0	19.4	17.4	14.4	6.7	5.3	1.5	0.05015	1.20133			
C2H4 7.2 3.6 9.0 7.6 4.0 9.0															
C ₃ H ₆ 17.1 13.6 10.2 7.6 4.0 9.1 3.7 9.1 C ₄ H ₈ 22.0 18.6 15.3 12.7 9.1 3.7 3.1 9.1 C ₅ H ₁₀ 23.8 21.0 18.2 16.0 12.8 7.7 3.1 9.1 C ₆ H ₁₂ 25.9 23.2 20.5 18.4 15.3 10.4 5.9 1.9 C ₇ H ₁₄ 28.3 25.4 22.6 20.4 17.2 12.2 7.6 3.6 C ₈ H ₁₆ 28.9 26.3 23.8 21.8 18.9 14.2 9.8 5.7 C ₃ H ₄ 19.8 16.2 12.7 10.0 6.4 1.3 9.8 5.7 C ₄ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 1.6 C ₄ H ₆ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4 C ₄ H ₆ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4		C ₂ H ₄	7.2	3.6							0.05296	1.27846			
C ₄ H ₈ 22.0 18.6 15.3 12.7 9.1 3.7 3.1 C ₅ H ₁₀ 23.8 21.0 18.2 16.0 12.8 7.7 3.1 C ₅ H ₁₀ 23.8 21.0 18.2 16.0 12.8 7.7 3.1 C ₇ H ₁₄ 28.3 23.2 20.5 18.4 15.2 7.6 3.6 C ₈ H ₁₆ 28.9 26.3 23.8 21.8 18.9 14.2 9.8 5.7 C ₈ H ₄ 19.8 16.2 12.7 10.0 6.4 1.3 C ₄ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 C ₄ H ₆ 22.2 18.8 15.6 13.1 9.5 4.1 C ₅ H ₈ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4		C_3H_6	17.1	13.6	10.2	7.6	4.0				0.05312	1.19763			
C ₅ H ₁₀ 23.8 21.0 18.2 16.0 12.8 7.7 3.1 C ₆ H ₁₂ 25.9 23.2 20.5 18.4 15.3 10.4 5.9 1.9 C ₇ H ₁₄ 28.3 23.2 20.5 18.4 15.3 10.4 5.9 1.9 C ₈ H ₁₆ 28.3 25.4 22.6 20.4 17.2 12.2 7.6 3.6 C ₃ H ₄ 19.8 16.2 12.7 10.0 6.4 1.3 9.8 5.7 C ₄ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 1.6 C ₄ H ₆ 25.2 18.8 15.6 13.1 9.5 4.1 1.4 C ₄ H ₆ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4 C ₄ H ₈ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4		C ₄ H ₈	22.0	18.6	15.3	12.7	9.1	3.7			0.05607	1.23722			
C ₆ H ₁₂ 25.9 23.2 20.5 18.4 15.3 10.4 5.9 1.9 C ₇ H ₁₄ 28.3 25.4 22.6 20.4 17.2 12.2 7.6 3.6 C ₈ H ₁₆ 28.9 26.3 23.8 21.8 18.9 14.2 9.8 5.7 C ₃ H ₄ 19.8 16.2 12.7 10.0 6.4 1.3 9.7 C ₄ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 1.6 C ₄ H ₆ 22.2 18.8 15.6 13.1 9.5 4.1 1.6 C ₄ H ₈ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4		C ₅ H ₁₀	23.8	21.0	18.2	16.0	12.8	7.7	3.1		0.05072	1.15769			
C ₅ H ₁₆ 28.3 25.4 22.6 20.4 17.2 12.2 7.6 3.6 3.6 C ₈ H ₁₆ 28.9 26.3 23.8 21.8 18.9 14.2 9.8 5.7 C ₄ H ₆ 19.8 16.2 12.7 10.0 6.4 1.3		C_6H_{12}	25.9	23.2	20.5	18.4	15.3	10.4	5.9	1.9	0.05216	1.19509			
C ₈ H ₁₆ 28.9 26.3 23.8 21.8 18.9 14.2 9.8 5.7 C ₃ H ₄ 19.8 16.2 12.7 10.0 6.4 1.3 8.7 5.7 C ₄ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 1.6 C ₄ H ₆ 22.2 18.8 15.6 13.1 9.5 4.1 1.6 C ₅ H ₈ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4		C ₇ H ₁₄	28.3	25.4	22.6	20.4	17.2	12.2	7.6	3.6	0.05697	1.33692	-0.12198	0.13265	-0.05353
C ₃ H ₄ 19.8 16.2 12.7 10.0 6.4 1.3		C ₈ H ₁₆	28.9	26.3	23.8	21.8	18.9	14.2	9.8	5.7	0.05394	1.24599			
C ₄ H ₆ 25.4 21.8 18.3 15.6 11.8 6.1 1.6 7 1.6 C ₄ H ₆ 22.2 18.8 15.6 13.1 9.5 4.1 7 1.4 C ₄ H ₈ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4 1.4 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		C ₃ H ₄	19.8	16.2	12.7	10.0	6.4	1.3			0.05813	1.28260			
C ₄ H ₆ 22.2 18.8 15.6 13.1 9.5 4.1	e.	C_4H_6	25.4	21.8	18.3	15.6	11.8	6.1	1.6		0.06322	1.33841			
C ₅ H ₈ 27.8 24.6 21.5 19.1 15.6 10.2 5.3 1.4	Je	C_4H_6	22.2	18.8	15.6	13.1	9.5	4.1			0.05629	1.24878			
CH 254 224 105 173 141 01 47	ene	C ₅ H ₈	27.8	24.6	21.5	19.1	15.6	10.2	5.3	1.4	0.05944	1.28818			
\tag{2.18}	trans-1,3-Pentadiene	$C_{5}H_{8}$	25.4	22.4	19.5	17.3	14.1	9.1	4.7		0.05506	1.31227			

						-	-	-				_
1,4-Pentadiene	C_5H_8	26.9	22.9	19.1	16.2	12.3	9.9	2.4		0.07299	1.58928	
2,3-Pentadiene	C_5H_8	27.5	24.3	21.2	18.9	15.4	10.0	5.2	1.2	0.05870	1.27433	
Acetylene and derivatives												
Acetylene	C_2H_2	13.2	8.9	4.8	1.9					0.05698	1.13545	
Propyne	C₃H₄	24.9	21.0	17.2	14.2	8.6	3.2			0.06252	1.13872	
2-Butyne	C ₄ H ₆		28.8	24.9	21.8	17.4	10.5	4.4		0.07283	1.24690	
1-Butyne	C_4H_6	26.0	22.7	19.4	16.8	13.0	7.0	1.5		0.05729	1.11793	
Naphthenes												
Cyclopropane	C^3H^ϱ	23.5	19.4	15.4	12.4	8.1	2.0			0.06588	1.25086	
Cyclobutane	C_4H_8	31.3	27.2	23.3	20.2	15.7	8.9	3.0		0.07176	1.25065	
Cyclopentane	C ₅ H ₁₀	33.2	29.3	25.4	22.5	18.3	11.9	6.3		0.07418	1.40256	
Methyl cyclopentane	C_6H_{12}	30.8	27.7	24.6	22.2	18.8	13.3	8.2	3.8	0.06138	1.27048	
Ethyl cyclopentane	C ₇ H ₁₄	31.3	28.6	25.9	23.8	20.8	15.8	11.1	6.7	0.05675	1.19902	
Propyl cyclopentane	C_8H_{16}	32.0	29.4	26.9	24.9	22.0	17.2	12.7	8.4	0.05638	1.20639	
Butyl cyclopentane	C ₉ H ₁₈	32.8	30.3	27.8	25.9	23.0	18.3	13.9	6.7	0.05690	1.23479	
Pentyl cyclopentane	$C_{10}H_{20}$			29.9	27.0	23.0	16.9	11.7		0.08233	1.88316	
Hexyl cyclopentane	$C_{11}H_{22}$			30.4	27.6	23.6	17.6	12.4		0.08116	1.83729	
Cyclohexane	C_6H_{12}			27.7	25.3	21.6	15.9	10.5	5.7	0.06560	1.26601	
Methyl cyclohexane	C ₇ H ₁₄	32.3	29.2	26.2	23.9	20.5	15.1	10.2	5.9	0.06306	1.35225	
Ethyl cyclohexane	C_8H_{16}	33.2	30.4	27.7	25.6	22.5	17.5	12.8	8.5	0.06008	1.30159	
Propyl cyclohexane	C_9H_{18}	33.2	30.8	28.4	26.5	23.8	19.3	15.0	10.9	0.05586	1.21290	
Butyl cyclohexane	$C_{10}H_{20}$	34.0	31.5	29.0	27.0	24.1	19.5	15.2	11.1	0.05898	1.35018	
Pentyl cyclohexane	$C_{11}H_{22}$			30.4	27.6	23.6	17.5	12.4		0.08212	1.88661	
Hexyl cyclohexane	$C_{12}H_{24}$			29.8	28.0	25.3	21.0	16.8	12.9	0.05687	1.29305	
Cyclopentene	C_5H_8	32.6	29.0	25.5	22.8	18.8	12.6	7.0	2.2	0.06801	1.26679	
Cyclohexene	C_6H_{10}	35.7	32.4	29.2	26.6	22.9	17.0	11.5	6.5	0.06763	1.25801	
Aromatic compounds												
Benzene	$C_{6}H_{6}$				28.9	24.9	18.7	12.8	7.3	0.07178	1.23593	
Toluene	C_7H_8	37.1	34.0	30.9	28.5	25.0	19.3	14.0	9.0	0.06676	1.24386	
Ethyl benzene	C_8H_{10}	37.3	34.3	31.4	29.1	25.8	20.4	15.2	10.5	0.06576	1.26285	
Propyl benzene	C ₉ H ₁₂	36.7	33.9	31.2	29.0	25.9	20.8	15.9	11.4	0.06332	1.26870	
Butyl benzene	$C_{10}H_{14}$	36.8	34.0	31.3	29.2	26.0	21.0	16.3	11.9	0.06364	1.32979	
Pentyl benzene	$C_{11}H_{16}$	36.5	34.0	31.5	29.6	26.7	22.1	17.6	13.4	0.06026	1.26163	
Hexyl benzene	$C_{12}H_{18}$	37.2	34.7	32.3	30.4	27.5	22.9	18.5	14.3	0.06098	1.28086	
o-Xylene	C_8H_{10}		35.2	32.3	30.1	26.8	21.5	16.4	11.7	0.06547	1.24184	
<i>m</i> -Xylene	C_8H_{10}		34.0	31.1	28.8	25.5	20.1	15.0	10.3	0.06539	1.27146	

390

D3.1. Table 11. (continued)

					Temperature (°C)	ure (°C)						Equation (6)		
Substance	Formula	-50	-25	0	20	20	100	150	200	A	В	O	D	E
<i>p</i> -Xylene	C ₈ H ₁₀				28.5	25.1	19.8	14.8	10.1	0.06456	1.26881			
1,2,3-Trimethyl benzene	C ₉ H ₁₂		36.1	33.4	31.3	28.1	23.1	18.2	13.6	0.06489	1.25491			
1,2,4-Trimethyl benzene	C ₉ H ₁₂		34.5	31.8	29.7	26.6	21.6	16.8	12.3	0.06319	1.25600			
1,3,5-Trimethyl benzene	C ₉ H ₁₂		32.9	30.4	28.5	25.5	20.8	16.2	11.8	0.05903	1.18447			
1,2,3,4-Tetramethyl benzene	C ₁₀ H ₁₄			38.8	36.5	33.1	27.6	22.4	17.3	0.07244	1.24623			
1,2,3,5-Tetramethyl benzene	C ₁₀ H ₁₄			36.2	34.0	30.8	25.5	20.5	15.7	0.06826	1.23312			
1,2,4,5-Tetramethyl benzene	C ₁₀ H ₁₄						22.9	18.5	14.3	0.05884	1.17748			
Pentamethyl benzene	C ₁₁ H ₁₆						29.8	24.4	19.2	0.07615	1.28379			
Hexamethyl benzene	C ₁₂ H ₁₈								23.5	0.07106	1.12978			
Styrene	C ₈ H ₈		38.5	35.1	32.5	28.8	23.0	17.5	12.2	0.09046	2.08018	-0.54300	-1.54530	1.58212
Isopropyl benzene	C ₉ H ₁₂	36.1	33.2	30.4	28.2	25.0	19.9	15.0	10.5	0.06364	1.30197			
Biphenyl	C ₁₂ H ₁₀						32.2	27.2	22.5	0.09827	2.35540	-1.14035	-0.87565	1.17200
Diphenyl methane	C ₁₃ H ₁₂					35.7	30.7	25.9	21.2	0.07086	1.23688			
Triphenyl methane	C ₁₉ H ₁₆						34.4	30.0	25.6	0.07159	1.29713			
Tetraphenyl methane	C ₂₅ H ₂₀									0.15512	1.30899			
Naphthalene	C ₁₀ H ₈						31.8	26.1	20.7	0.08245	1.37955			
1-Methylnaphthalene	C ₁₁ H ₁₀		45.7	42.9	40.7	37.4	32.1	27.0	22.1	0.07538	1.29250			
2-Methylnaphthalene	C ₁₁ H ₁₀					35.1	30.1	25.3	20.7	0.07043	1.25945			
1-Ethylnaphthalene	C ₁₂ H ₁₂			40.5	38.4	35.4	30.4	25.6	21.0	0.07116	1.29758			
2-Ethylnaphthalene	C ₁₂ H ₁₂			39.1	37.0	34.0	29.1	24.4	19.9	0.06961	1.31923			
Alcohols														
Methanol	CH₄O			24.2	22.6	20.1	15.6	10.4		0.04372	0.86460	-0.07327	-0.51872	0.66269
Ethanol	C_2H_6O			24.1	22.5	19.9	15.3	10.2	4.5	0.06165	2.37635	-3.15086	1.98424	-0.15806
1-Propanol	C ₃ H ₈ O				23.8	21.4				0.04419	0.78485			
1-Butanol	C ₄ H ₁₀ O			26.4	24.8	22.3	18.0			0.04839	0.91063			
1-Pentanol	$C_5H_{12}O$				25.7	23.1	18.8			0.05084	0.98216			
1-Hexanol	C ₆ H ₁₄ O		30.1	28.0	26.3	23.8	19.6	15.5	11.3	0.05089	1.01000			
1-Heptanol	C ₂ H ₁₆ O		31.1	28.9	27.2	24.5	20.2	16.0	11.8	0.05380	1.09810			
1-Octanol	C ₈ H ₁₈ O			29.1	27.5	25.1	21.1	17.2	13.3	0.05146	1.04985			
Isopropanol	C ₃ H ₈ O			22.9	21.4	19.0				0.04172	0.77686			
2-Methyl-1-propanol	C ₄ H ₁₀ O				22.9	20.6	16.5			0.04451	0.86556			
3-Methyl-1-butanol	C ₅ H ₁₂ O	30.4	28.2	26.0	24.3	21.7	17.3	13.0	8.7	0.05018	1.02349			
Ethylene glycol	C ₂ H ₆ O ₂			50.0	48.4	45.8	41.4	36.9		0.07130	0.74162			

								-				
1,3-Propylene glycol	$C_{3}H_{8}O_{2}$				46.0	43.2	38.5			0.07242	0.87291	
Glycerol	$C_3H_8O_3$				64.1	61.3	9.99	51.7		0.09019	0.80707	
Cyclohexanol	$C_6H_{12}O$					30.8	25.5	20.4	15.4	0.06671	1.12611	
Benzyl alcohol	C ₂ H ₈ O			42.0	39.8	36.5	31.2	25.9	20.9	0.07347	1.17511	
Phenols												
o-Cresol	C ₂ H ₈ O					34.9	29.6	24.5	19.4	0.07124	1.14543	
<i>m</i> -Cresol	C ₂ H ₈ O				37.0	34.1	29.2	24.5	19.8	0.06621	1.08611	
<i>p</i> -Cresol	C ₂ H ₈ O					33.9	29.4	24.9	20.4	0.06352	1.02226	
Phenol	C ₆ H ₆ O					37.9	32.5	27.1	21.7	0.07444	1.07602	
Carboxylic acids												
Formic acid	CH ₂ O ₂				37.7	34.4	28.9			0.06684	0.83158	
Acetic acid	$C_2H_4O_2$				27.5	24.6	19.7	14.9	10.2	0.05749	1.07671	
Propionic acid	$C_3H_6O_2$			28.7	26.7	23.7	18.8	14.1	9.6	0.05827	1.16546	
Butyric acid	$C_4H_8O_2$			28.6	26.6	23.8	19.1	14.6	10.3	0.05651	1.16381	
Valeric acid	$C_5H_{10}O_2$		29.5	27.2	25.5	22.9	18.6	14.5	10.6	0.05273	1.17141	
Caproic acid	$C_6H_{12}O_2$			29.6	27.9	25.4	21.2	17.1	13.1	0.05396	1.12272	
Acetic anhydride	$C_4H_6O_3$	43.7	39.7	35.7	32.7	28.3	21.4	15.2	9.6	0.08435	1.43282	
Propionic anhydride	$C_6H_{10}O_3$		35.9	32.8	30.4	26.9	21.3	16.0	11.0	0.06895	1.28546	
Chloroacetic acid	$C_2H_3ClO_2$						31.8	25.8	20.1	0.08078	1.18886	
Dichloroacetic acid	$C_2H_2CI_2O_2$				35.7	32.9	28.3	23.7	19.1	0.06283	1.01553	
Trichloroacetic acid	C ₂ HCl ₃ O ₂					31.0	26.5	22.0	17.6	0.06108	1.07076	
Ketones												
Ketene	C ₂ H ₂ O	16.4	12.9	9.6	7.1	3.8				0.05360	1.28253	
Acetone	C ₃ H ₆ O	32.5	29.3	26.1	23.7	20.0	14.0	8.3	3.1	0.06223	1.12463	
Methyl ethyl ketone	C ₄ H ₈ O	32.6	29.7	26.8	24.5	21.2	15.7	10.4	5.4	0.05945	1.11696	
Diethyl ketone	$C_5H_{10}O$		30.3	27.5	25.3	22.0	16.7	11.6	6.9	0.06000	1.17040	
Dipropyl ketone	C ₇ H ₁₄ O		30.6	28.0	25.9	22.8	17.9	13.2	8.8	0.05888	1.23032	
Acetophenone	C ₈ H ₈ O				39.5	36.1	30.6	25.2	20.0	0.07479	1.19785	
Benzophenone	C ₁₃ H ₁₀ O					40.9	35.7	30.8	26.0	0.07725	1.29069	
Ethers												
Dimethyl ether	C ₂ H ₆ O	22.4	18.6	14.9	12.0	8.0	2.2			0.06105	1.23032	
Diethyl ether	$C_4H_{10}O$	25.9	22.7	19.5	17.0	13.5	7.9	3.1		0.05804	1.23997	
Dipropyl ether	C ₆ H ₁₄ O	28.2	25.4	22.7	20.5	17.4	12.4	7.8	3.6	0.05497	1.22576	
Methyl propyl ether	$C_4H_{10}O$	27.7	24.1	20.7	18.1	14.3	8.5	3.6		0.06336	1.31065	
Ethyl propyl ether	$C_5H_{12}O$	27.4	24.6	21.9	19.8	16.6	11.5	9.9	2.1	0.05275	1.11029	
Ethylene oxide	C ₂ H ₄ O	35.8	31.7	27.6	24.4	19.7	12.2	5.3		0.07469	1.14048	

D3.1. Table 11. (continued)

					Temperature (°C)	ure (°C)						Equation (6)		
Substance	Formula	-50	-25	0	20	20	100	150	200	A	В	U	О	E
Furane	C ₄ H ₄ O	33.9	30.3	26.8	24.1	20.0	13.4	7.2	1.5	0.06708	1.12451			
1,4-Dioxane	C ₄ H ₈ O ₂				33.7	29.3	22.3	15.8	6.6	0.08221	1.29052			
Aldehydes														
Formaldehyde	O ^z HD	54.6	45.0	35.9	29.0	19.4	0.9			0.15579	1.32552			
Acetaldehyde	C ₂ H ₄ O	32.7	28.6	24.6	21.5	17.0	10.0	3.9		0.07272	1.22767			
Paraldehyde	$C_6H_{12}O_3$				26.2	22.8	17.4	12.3	7.6	0.06289	1.24144			
Furfural	$C_5H_4O_2$		49.6	46.3	43.6	39.6	33.1	26.8	20.6	0.08451	1.15138			
Benzaldehyde	C ² H ² O	47.7	44.6	41.6	39.2	35.7	29.9	24.4	19.0	0.07643	1.21837			
Salicylaldehyde	$C_7H_6O_2$				42.8	39.0	33.0	27.0	21.2	0.08057	1.12359			
Esters														
Methyl formate	$C_2H_4O_2$	37.1	32.7	28.4	25.1	20.2	12.7	6.1		0.08104	1.27510			
Ethyl formate	$C_3H_6O_2$	32.3	29.2	26.1	23.7	20.1	14.2	9.8	3.2	0.06099	1.10043			
Propyl formate	$C_4H_8O_2$	32.5	29.6	26.8	24.5	21.2	15.7	10.5	5.5	0.05942	1.12521			
Methyl acetate	$C_3H_6O_2$	33.8	30.7	27.6	25.1	21.5	15.4	9.4	3.6	0.06212	1.04624			
Ethyl acetate	$C_4H_8O_2$	32.1	29.1	26.1	23.8	20.4	14.8	9.4	4.3	0.05977	1.11993			
Propyl acetate	$C_5H_{10}O_2$	32.9	29.8	26.8	24.4	21.0	15.5	10.3	5.5	0.06223	1.22645			
Methyl propionate	$C_4H_8O_2$	34.1	30.8	27.5	25.0	21.2	15.3	9.6	4.5	0.06560	1.20059			
Ethyl propionate	$C_5H_{10}O_2$	32.9	29.8	26.7	24.3	20.8	15.2	10.0	5.2	0.06295	1.23411			
Propyl propionate	$C_6H_{12}O_2$	32.5	29.7	26.9	24.7	21.5	16.4	11.5	6.9	0.05922	1.20436			
Methyl butyrate	$C_5H_{10}O_2$	33.7	30.6	27.5	25.1	21.7	16.1	10.8	0.9	0.06334	1.22797			
Ethyl butyrate	$C_6H_{12}O_2$	32.1	29.3	26.6	24.5	21.3	16.3	11.5	7.0	0.05815	1.20103			
Methyl benzoate	$C_8H_8O_2$			40.3	37.9	34.3	28.5	22.9	17.6	0.07654	1.27952			
Ethyl benzoate	$C_9H_{10}O_2$		40.0	37.3	35.2	32.1	27.0	22.1	17.4	0.06785	1.20294			
Methyl salicylate	$C_8H_8O_3$			43.1	40.7	37.0	31.1	25.4	20.0	0.07943	1.25423			
Amines														
Methyl amine	CH ₅ N	34.2	29.1	24.1	20.3	14.9	8.9			0.08559	1.25562			

Ethyl amine	C ₂ H ₂ N	31.5	27.2	23.1	19.9	15.4	8.4	5.6		0.07421	1.27662		
Propyl amine	C ₃ H ₉ N	31.7	28.2	24.8	22.0	18.1	11.9	6.3	1.6	0.06625	1.23432		
<i>n</i> -Butyl amine	C ₆ H ₁₅ N		29.7	26.6	24.2	20.7	15.0	9.6	4.6	0.06231	1.17982		
Dimethyl amine	C ₂ H ₇ N	26.8	23.3	19.9	17.1	13.2	6.9	1.2		0.06007	1.12956		
Trimethyl amine	C ₃ H ₉ N	23.0	19.6	16.4	13.9	10.3	4.8			0.05664	1.24654		
Diethyl amine	C ₆ H ₁₅ N		25.3	22.5	20.3	17.0	11.7	9.9	1.9	0.05398	1.09669		
Triethyl amine	C ₆ H ₁₅ N	28.2	25.5	22.8	20.8	17.7	12.8	8.2	4.0	0.05414	1.20778		
Piperidine	C ₅ H ₁₁ N			31.9	29.5	26.0	20.3	14.9	9.8	0.06712	1.20830		
Pyridine	C ₆ H ₇ N		43.7	40.2	37.4	33.3	26.6	20.2	14.1	0.08141	1.21501		
Aniline	C ₆ H ₇ N			45.3	43.0	39.5	33.9	28.3	22.8	0.07730	1.08060		
<i>N</i> -methyl aniline	C ₂ H ₉ N	47.7	44.9	42.0	39.8	36.5	31.0	25.7	20.5	0.07391	1.14353		
N,N-dimethyl aniline	C ₈ H ₁₁ N				36.4	33.1	27.7	22.5	17.5	0.07084	1.19971		
<i>N,N</i> -diethyl aniline	C ₁₀ H ₁₅ N		39.0	36.4	34.3	31.2	26.1	21.3	16.6	0.06723	1.24697		
Phenylhydrazine	C ₆ H ₈ N ₂				45.5	41.7	35.6	29.7	24.1	0.08574	1.30394		
Diphenyl amine	C ₁₂ H ₁₁ N						35.2	30.0	25.1	0.07841	1.31441		
Nitriles													
Acetonitrile	C ₂ H ₃ N		35.1	31.9	29.3	25.5	19.3	13.2	7.4	0.06835	1.09864		
Propionitrile	C ₃ H ₅ N	35.3	32.4	29.5	27.2	23.8	18.3	13.0	7.9	0.06264	1.13719		
Butyronitrile	C ₄ H ₇ N	34.9	32.2	29.6	27.5	24.3	19.2	14.2	9.4	0.05959	1.10579		
Benzonitrile	C ₂ H ₅ N			41.4	39.1	35.7	30.1	24.7	19.5	0.07466	1.19036		
Amides													
Formamide	CH ₃ NO				58.2	55.5	50.8			0.08328	0.74835		
Nitroderivates													
Nitromethane	CH ₃ NO ₂		43.9	40.1	37.1	32.6	25.4	18.5	12.0	0.08458	1.19508		
Nitrobenzene	C ₆ H ₅ NO ₂				43.8	40.3	34.6	29.0	23.5	0.07946	1.13667		
<i>o</i> -Nitrotoluene	C ₂ H ₂ NO ₂			43.7	41.4	38.0	32.4	27.0	21.7	0.07678	1.17965		
m-Nitrotoluene	C ₂ H ₂ NO ₂				41.1	37.7	32.2	26.9	21.7	0.07641	1.21693		
<i>p</i> -Nitrotoluene	C ₂ H ₂ NO ₂						32.3	27.2	22.3	0.07341	1.17727		

D3.2 Properties at Saturation

Roland Span Ruhr-Universität Bochum, Bochum, Germany

The tables in this chapter contain values of thermal, caloric, and transport properties of the saturated liquid and vapor of the corresponding fluids. Originally, these tables were adapted from the Heat Exchanger Design Handbook (*R. N. Maddox*, Hemisphere Publishing Corporation, 1983). However, most tables were recalculated by now. References are included to enable access to more detailed information. An alphabetic list of references is given at the end of Subchap. D3.2.

At a given temperature, properties of the saturated vapor (except for the saturated vapor density) can be used for the homogeneous gas region as a first-order approximation. In the same sense, data for the saturated liquid can be used for the homogeneous liquid at a given temperature. However, when approaching the critical temperature this approximation results in an increasing systematic error. Wherever possible, the cited equations of state should be used to directly calculate properties at homogeneous states.

Since critical parameters are required for many relations used to calculate properties on the phase boundary and since they are important parameters of the correlations used to calculate the given tables, values of the critical temperature, T_c , the critical pressure, p_c , and the critical density, ρ_c , are given for each of the fluids. The values given in this chapter are parameters of the used correlations and are as such independent of the values reported in \bigcirc Chap. D1.

The following properties are reported in the tables of this section:

T_{s}	Saturation temperature in K
ps	Vapor pressure in kPa
h	Specific enthalpy in kJ/kg
$\Delta h_{\rm v}$	Specific enthalpy of evaporation in kJ/kg
c_p	Specific isobaric heat capacity in kJ/(kg K)
η	Dynamic viscosity in kg/(m s)
λ	Thermal conductivity in W/(m K)
Pr	Prandtl number
σ	Surface tension in N/m
β'	volumetric expansion coefficient of the liquid in K ⁻¹ with
	$\beta' = \frac{(\nu_2 - \nu_1)}{\nu_1(T_2 - T_1)}$

Properties marked with ' denote saturated liquid states. Properties marked with " denote saturated vapor states.

In most cases, "typical" uncertainties exist for properties of the saturated liquid or of the saturated vapor at temperatures ranging from the normal-boiling temperature to about 90% of the critical temperature. In most cases, the uncertainty of all properties except for the vapor pressure significantly increases at temperatures above 90% of the critical temperature. Between triple-point temperature and normal-boiling temperature particularly, relative uncertainties of vapor pressure and saturated vapor density increase. However, depending on the data situation the uncertainty of properties may very well vary significantly with temperature even in the range where by principle no problems would be expected. Thus, reducing a discussion of uncertainties to a single value always is a critical simplification. On the other hand, information on the uncertainty of properties is essential for the user. Therefore, it has been tried to characterize the "typical" relative uncertainty of the data presented in the tables by classifying them into groups a to f:

a	$\Delta y/y \leq \pm 0.2\%$
b	$\Delta y/y \leq \pm 0.5\%$
С	$\Delta y/y \leq \pm 1\%$
d	$\Delta y/y \leq \pm 2\%$
е	$\Delta y/y \leq \pm 5\%$
f	$\Delta y/y \leq \pm 10\%$
g	$\Delta y/y > \pm 10\%$
h	Insufficient information for classification

Typically, the category h is found where data were adapted from other compilations.

Interpolation between the values given in the tables is permitted. However, due to large temperature steps in the tables simple linear interpolation may result in errors up to 10% even at moderate temperatures sufficiently far away from the critical temperature. The magnitude of the error caused by interpolation strongly depends on the algorithm used for interpolation and on characteristics of the property. Based on the general formula for interpolation,

$$y = y_1 + \frac{\tau - \tau_1}{\tau_2 - \tau_1} (y_2 - y_1),$$

we recommend the following algorithms.

Linear interpolation over temperature ($\tau = T$) for enthalpies of the saturated liquid (y = h') and the saturated vapor (y = h'') and for the thermal conductivity of the saturated liquid ($y = \lambda'$).

Linear interpolation in the logarithmic distance to the critical temperature ($\tau = \ln(T_c - T)$) for the dynamic viscosity ($y = \eta''$) and the thermal conductivity ($y = \lambda''$) of the saturated vapor.

Tables are given for the following fluids:

Inorganic compounds	
Inorganic compounds	D2.2.2
Normal hydrogen H ₂	D3.2 3
Argon Ar	D3.2 3
Neon Ne	D3.2 3
Chlorine Cl ₂	D3.2 4
Fluorine F ₂	D3.2 4
Mercury Hg	D3.2 4
Hydrogen fluoride HF	D3.2 5
Hydrogen chloride HCl	D3.2 5
Hydrogen sulfide H ₂ S	D3.2 5
Ammonia NH ₃	D3.2 6
Carbon monoxide CO	D3.2 6
Refrigerants	-
R22 CHCIF ₂	D3.2 6
R123 C ₂ HCL ₂ F ₃	D3.2 7
R125 C ₂ HF ₅	D3.2 7
R134a C ₂ H ₂ F ₄	D3.2 7
R152a C ₂ H ₄ F ₂	D3.2 8
C ₁ compounds	<u>.</u>
Methane CH ₄	D3.2 8
Methanol CH₃OH	D3.2 8
C ₂ compounds	·
Ethane C ₂ H ₆	D3.2 9
Ethylene C ₂ H ₄	D3.2 9
Ethyne C ₂ H ₂	D3.2 9
Ethanol CH ₃ CH ₂ OH	D3.2 10
Ethylene oxide (CH ₂) ₂ O	D3.2 10
Acetic acid C ₂ H ₄ O ₂	D3.2 10
C ₃ compounds	
Propane C₃H ₈	D3.2 11
Propylene CH ₃ CH=CH ₂	D3.2 11
1-Propanol CH ₃ CH ₂ CH ₂ OH	D3.2 11
Propylene oxide CH ₃ (CHCH ₂)O	D3.2 12
Isopropyl alcohol (CH ₃) ₂ CHOH	D3.2 12
Acetone CH ₃ COCH ₃	D3.2 12
Methyl acetate C ₃ H ₆ O ₂	D3.2 13
C ₄ compounds	•
n-Butane C ₄ H ₁₀	D3.2 13
Isobutane C ₄ H ₁₀	D3.2 13
1,2-Butadiene CH ₃ CH=C=CH ₂	D3.2 14
1,3-Butadiene CH ₂ =CHCH=CH ₂	D3.2 14
n-Butanol C₂H₅CH₂CH₂OH	D3.2 14
Tert-Butanol (CH ₃) ₃ COH	D3.2 15

Ethyl acetate $CH_3CO_2C_2H_5$ D3.2 15 C_5 compounds D3.2 16 n -Pentane C_5H_{10} D3.2 16 2 -Methyl butane $(CH_3)_2C(CH_3)_2$ D3.2 16 2 -Poimethylpropane $C(CH_3)_4$ D3.2 17 Methyl-Tert-Butylether $CH_3OC_4H_9$ D3.2 17 C_6 compounds C_6 compounds n -Hexane C_6H_{14} D3.2 17 Cyclohexane C_6H_{12} D3.2 18 Benzene C_6H_6 D3.2 18		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethyl ether (CH ₃ CH ₂) ₂ O	D3.2 15
n -Pentane C_5H_{12} D3.2 16 Cyclopentane C_5H_{10} D3.2 16 2-Methyl butane $(CH_3)_2C(CH_3)_2$ D3.2 16 2 -Poimethylpropane $C(CH_3)_4$ D3.2 17 Methyl-Tert-Butylether $CH_3OC_4H_9$ D3.2 17 C_6 compounds C_6 compounds n -Hexane C_6H_{14} D3.2 17 Cyclohexane C_6H_{12} D3.2 18 Benzene C_6H_6 D3.2 18 Phenol C_6H_6O D3.2 18 Aniline $C_6H_5NH_2$ D3.2 19 C_7 - C_{10} compounds n -Heptane C_7H_{16} D3.2 19 n -Octane C_8H_{18} D3.2 19 n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene C_6H_5 - CH_2CH_3 D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	Ethyl acetate CH₃CO₂C₂H₅	D3.2 15
$\begin{array}{c} \text{Cyclopentane C_5H}_{10} & \text{D3.2 16} \\ \text{2-Methyl butane } & \text{(CH}_3)_2\text{C(CH}_3)_2 & \text{D3.2 17} \\ \text{2,2-Dimethylpropane C(CH}_3)_4 & \text{D3.2 17} \\ \text{Methyl-Tert-Butylether CH}_3\text{OC}_4\text{H}_9 & \text{D3.2 17} \\ \text{C_6 compounds} & \\ \textbf{n-\text{Hexane C_6H}_{14}$} & \text{D3.2 17} \\ \text{Cyclohexane C_6H}_{12} & \text{D3.2 18} \\ \text{Benzene C_6H}_6 & \text{D3.2 18} \\ \text{Phenol C_6H}_6\text{O} & \text{D3.2 18} \\ \text{Aniline C_6H}_5\text{NH}_2 & \text{D3.2 19} \\ \textbf{C_7-C_{10}$ compounds} & \\ \textbf{n-\text{Heptane C_7H}_{16}$} & \text{D3.2 19} \\ \textbf{n-\text{Octane C_8H}_{18}$} & \text{D3.2 19} \\ \textbf{n-\text{Nonane C_9H}_{20}$} & \text{D3.2 20} \\ \text{Ethylbenzene C_6H}_5\text{-CH}_2\text{CH}_3$} & \text{D3.2 20} \\ \text{Toluene C_6H}_5\text{CH}_3 & \text{D3.2 21} \\ \textbf{m-Xylol C_6H}_4\text{(CH}_3)_2$} & \text{D3.2 21} \\ \textbf{o-Xylol C_6H}_4\text{(CH}_3)_2$} & \text{D3.2 21} \\ \end{array}$	C ₅ compounds	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n-Pentane C₅H ₁₂	D3.2 16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cyclopentane C₅H ₁₀	D3.2 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Methyl butane (CH ₃) ₂ C(CH ₃) ₂	D3.2 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2-Dimethylpropane C(CH ₃) ₄	D3.2 17
n -Hexane C_6H_{14} D3.2 17 Cyclohexane C_6H_{12} D3.2 18 Benzene C_6H_6 D3.2 18 Phenol C_6H_6O D3.2 18 Aniline $C_6H_5NH_2$ D3.2 19 C_7 - C_{10} compounds n -Heptane C_7H_{16} D3.2 19 n -Octane C_8H_{18} D3.2 19 n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene C_6H_5 - CH_2CH_3 D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	Methyl-Tert-Butylether CH ₃ OC ₄ H ₉	D3.2 17
Cyclohexane C_6H_{12} D3.2 18 Benzene C_6H_6 D3.2 18 Phenol C_6H_6O D3.2 18 Aniline $C_6H_5NH_2$ D3.2 19 C_7-C_{10} compounds D3.2 19 n -Heptane C_7H_{16} D3.2 19 n -Octane C_8H_{18} D3.2 19 n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene $C_6H_5-CH_2CH_3$ D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	C ₆ compounds	
Benzene C_6H_6 D3.2 18 Phenol C_6H_6O D3.2 18 Aniline $C_6H_5NH_2$ D3.2 19 C_7-C_{10} compounds D3.2 19 n -Heptane C_7H_{16} D3.2 19 n -Octane C_8H_{18} D3.2 19 n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene $C_6H_5-CH_2CH_3$ D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	n-Hexane C ₆ H ₁₄	D3.2 17
Phenol C_6H_6O D3.2 18 Aniline $C_6H_5NH_2$ D3.2 19 C_7-C_{10} compounds D3.2 19 n -Heptane C_7H_{16} D3.2 19 n -Octane C_8H_{18} D3.2 19 n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene $C_6H_5-CH_2CH_3$ D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	Cyclohexane C ₆ H ₁₂	D3.2 18
Aniline $C_6H_5NH_2$ D3.2 19 $C_7-C_{10} \ compounds$ $n-Heptane \ C_7H_{16}$ D3.2 19 $n-Octane \ C_8H_{18}$ D3.2 19 $n-Nonane \ C_9H_{20}$ D3.2 20 $n-Decane \ C_{10}H_{22}$ D3.2 20 $Ethylbenzene \ C_6H_5-CH_2CH_3$ D3.2 20 $Toluene \ C_6H_5CH_3$ D3.2 21 $m-Xylol \ C_6H_4(CH_3)_2$ D3.2 21 $o-Xylol \ C_6H_4(CH_3)_2$ D3.2 21	Benzene C ₆ H ₆	D3.2 18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phenol C ₆ H ₆ O	D3.2 18
n -Heptane C_7H_{16} D3.2 19 n -Octane C_8H_{18} D3.2 19 n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene C_6H_5 -CH $_2$ CH $_3$ D3.2 20 Toluene C_6H_5 -CH $_3$ D3.2 21 m -Xylol C_6H_4 (CH $_3$) $_2$ D3.2 21 o -Xylol C_6H_4 (CH $_3$) $_2$ D3.2 21	Aniline C ₆ H ₅ NH ₂	D3.2 19
n -Octane C_8H_{18} D3.2 19 n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene C_6H_5 - CH_2CH_3 D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	C ₇ –C ₁₀ compounds	
n -Nonane C_9H_{20} D3.2 20 n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene C_6H_5 - CH_2CH_3 D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	n-Heptane C ₇ H ₁₆	D3.2 19
n -Decane $C_{10}H_{22}$ D3.2 20 Ethylbenzene C_6H_5 - CH_2CH_3 D3.2 20 Toluene C_6H_5 CH ₃ D3.2 21 m -Xylol C_6H_4 (CH ₃) ₂ D3.2 21 o -Xylol C_6H_4 (CH ₃) ₂ D3.2 21	n-Octane C ₈ H ₁₈	D3.2 19
Ethylbenzene C_6H_5 - CH_2CH_3 D3.2 20 Toluene $C_6H_5CH_3$ D3.2 21 m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	n-Nonane C ₉ H ₂₀	D3.2 20
Toluene $C_6H_5CH_3$ D3.2 21 m-Xylol $C_6H_4(CH_3)_2$ D3.2 21 o-Xylol $C_6H_4(CH_3)_2$ D3.2 21	n-Decane C ₁₀ H ₂₂	D3.2 20
m -Xylol $C_6H_4(CH_3)_2$ D3.2 21 o -Xylol $C_6H_4(CH_3)_2$ D3.2 21	Ethylbenzene C ₆ H ₅ –CH ₂ CH ₃	D3.2 20
o-Xylol C ₆ H ₄ (CH ₃) ₂ D3.2 21	Toluene C ₆ H ₅ CH ₃	D3.2 21
	m-Xylol C ₆ H ₄ (CH ₃) ₂	D3.2 21
<i>p</i> -Xylol CH ₄ (CH ₃) ₂ D3.2 22	o-Xylol C ₆ H ₄ (CH ₃) ₂	D3.2 21
	p-Xylol CH ₄ (CH ₃) ₂	D3.2 22

Logarithmic interpolation in the logarithmic distance to the critical temperature $(\tau = \ln(T_c - T))$ for the saturated liquid density $(y = \ln(\rho'))$, the enthalpy of evaporation $(y = \ln(\Delta h_v))$, the isobaric heat capacity of the saturated liquid $(y = \ln(c_p'))$ and the saturated vapor $(y = \ln(c_p''))$, the Prandtl number of the saturated liquid $(y = \ln(Pr'))$ and of the saturated vapor $(y = \ln(Pr''))$, the surface tension $(y = \ln(\sigma))$ and the volumetric expansion coefficient of the liquid $(y = \ln(\beta'))$.

Linear interpolation in the inverse temperature $(\tau = T^{-1})$ for the dynamic viscosity of the saturated liquid $(y = \eta')$.

Logarithmic interpolation in the inverse temperature $(\tau = T^{-1})$ for the vapor pressure $(y = \ln(p_s))$ and the saturated vapor density $(y = \ln(\rho''))$.

Even when these algorithms are used, additional uncertainties between $\pm 0.2\%$ and $\pm 1\%$ have to be considered for interpolated values. This becomes particularly relevant for properties with the uncertainty class a or b – the "typical" uncertainties given in the tables do not include errors due to interpolation. Interpolation errors up to $\pm 3\%$ occur for the Prandtl number of the saturated vapor. Interpolation between the last two columns of the table (for temperatures close to the critical temperature) may result in significantly larger errors.

Normal Hydrogen H₂ (T_c = 33.15 K, p_c = 1.296 MPa, ρ_c = 31.26 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p′} , kJ/(kg K)	с _р ", kJ/(kg K)	* 1	η", 10 ⁻⁶ kg/(m s)	λ' , 10^{-3} W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
20.37	101.33	70.85	1.332	0.00	448.7	448.70	9.772	12.036	12.7	1.1	119	16.3	1.04	0.83	1.92	16.68
21	121.5	70.12	1.570	6.47	451.97	445.50	10.137	12.311	12.0	1.2	121	16.9	1.01	0.85	1.81	17.61
23	204.38	67.59	2.533	28.72	459.87	431.15	11.489	13.471	10.5	1.3	126	19.2	0.96	0.91	1.47	21.24
25	321.00	64.70	3.894	54.16	463.36	409.20	13.297	15.289	9.1	1.4	127	22	0.95	0.99	1.13	26.57
27	477.89	61.31	5.806	83.72	461.17	377.45	15.987	18.357	7.8	1.6	122	25	1.03	1.15	0.796	35.35
29	682.05	57.12	8.560	119.19	450.91	331.71	20.807	24.444	6.8	1.7	112	29	1.26	1.47	0.483	52.82
30	804.32	54.54	10.44	140.29	441.18	300.88	25.284	30.424	6.3	1.9	106	31	1.50	1.83	0.333	70.28
31	941.65	51.38	12.91	165.07	426.40	261.33	33.758	42.068	5.7	2.0	100	35	1.91	2.40	0.207	105.2
32	1095.7	47.09	16.50	196.72	402.29	205.56	57.285	74.634	5.0	2.2	91	40	3.15	4.09	0.106	208.3
33.15	1296.4	31.26	31.26	298.15	298.15				3.4	3.4	60	60				
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	h ¹	h ¹	h ²	h ²	h ³	h ³	h ¹	d ¹

¹Ref. [51]; ²Ref. [117]; ³Calc. from other properties.

Argon Ar (T_c = 150.69 K, p_c = 4.863 MPa, ρ_c = 535.6 kg/m³)

<i>T_s,</i> K	p _s , kPa	ρ', kg/m³	$ ho''$, kg/m 3	h′, kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
83.81	68.89	1416.8	4.055	-121.44	42.28	163.72	1.116	0.555	290.2	6.86	133.63	5.36	2.42	0.71	13.42	4.294
87.3	101.33	1395.4	5.774	-117.52	43.62	161.14	1.117	0.566	260.3	7.17	128.46	5.62	2.26	0.721	12.53	4.443
90	133.51	1378.6	7.436	-114.49	44.57	159.06	1.121	0.576	240	7.41	124.51	5.83	2.16	0.731	11.85	4.575
100	323.77	1313.7	16.86	-103.06	47.4	150.46	1.154	0.627	181.3	8.35	110.22	6.69	1.9	0.782	9.42	5.222
110	665.26	1242.8	33.29	-91.13	48.84	139.97	1.218	0.712	140.4	9.37	96.41	7.73	1.77	0.863	7.11	6.219
120	1213	1162.8	60.14	-78.35	48.41	126.77	1.332	0.863	110.2	10.54	83.13	9.15	1.77	0.993	4.96	7.886
130	2025.5	1068.1	103.56	-64.16	45.3	109.46	1.564	1.172	85.9	12.03	70.43	11.45	1.91	1.23	3	11.2
140	3168.2	943.7	178.86	-47.16	37.47	84.63	2.225	2.104	63.6	14.32	58.06	16.39	2.44	1.84	1.29	21.01
145	3889.6	854.3	244.44	-36.19	29.76	65.95	3.399	3.896	52.1	16.27	52.01	22.53	3.4	2.81	0.58	39.75
150.69	4863	535.6	535.6	-4.33	-4.33											
Uncertainty	a ¹	a ¹	a ¹	b ¹	b ¹	b ¹	b ¹	b ¹	c ²	c ²	d ²	d ²	d ³	d ³	d ⁴	b ¹

¹Ref. [111]; ²Ref. [54]; ³Calc. from other properties; ⁴Ref. [57].

Neon Ne (T_c = 44.49 K, p_c = 2.679 MPa, ρ_c = 481.9 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	c _p ", kJ/(kg K)		η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)		Pr′	Pr″	<i>σ</i> , 10 ⁻³ N/m	β, 10 ⁻³ /K
27.11	101.34	1206.95	9.579	0	85.75	85.75	1.862	1.415	127	4.6	113	7.7	2.09	0.85	4.78	14.56
29	172.87	1172.99	15.647	3.63	86.96	83.32	1.948	1.306	105	5	110	8.5	1.86	0.77	4.15	16.129
31	283.24	1134.02	24.803	7.7	87.79	80.09	2.079	1.347	92.5	5.4	108	9.3	1.78	0.79	3.5	18.499
33	437.82	1091.23	37.584	12.05	88.18	76.13	2.22	1.469	77.9	5.8	102	10.2	1.7	0.84	1.87	21.425
35	645.43	1044.24	55.106	16.69	88.04	71.35	2.384	1.669	65.9	6.1	96.5	11.1	1.63	0.92	2.26	25.243
37	915.4	992.03	79.087	21.67	87.22	65.55	2.625	1.994	56.6	6.8	88.6	12.4	1.68	1.1	1.69	30.959
39	1258.1	932	112.575	27.18	85.48	58.3	3.059	2.584	47.3	7.4	78.9	13.9	1.83	1.38	1.15	41.31
41	1685.5	857.03	162.165	33.62	82.25	48.63	4.089	3.916	38.6	8.5	67.3	16	2.35	2.07	0.65	66.81
43	2212.1	739.37	248.26	42.54	75.96	33.42	8.761	9.132	27.8	11.9	50.3	22.8	4.84	4.77	0.2	195.49
44.49	2678.6	481.91	481.91	59.46	59.46				16.7	16.7	33	33				
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	h ^{1,2}	h ²	h ³	h ³	h ⁵	h ⁵	h ^{1,4}	d ¹

¹Ref. [44]; ²Ref. [121]; ³Ref. [118]; ⁴Ref. [73]; ⁵Calc. from other properties.

Chlorine Cl (T_c = 416.92 K, p_c = 7.9914 MPa, ρ_c = 576.8 kg/m³)

<i>T_s,</i> K	P _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	<i>h,</i> / kJ/kg	h", kJ/kg	Δh _v , kJ/kg	с _р ′, kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)			λ", 10 ⁻³ W/(m K)	Pr′	Pr"	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
172.18	1.39	1743.2	0.07	-380.8	-57.9	322.9	1.03	0.44	1256	7.9	196.8	4.3	6.57	0.82	39.9	
195	8.73	1677.6	0.38	-358.5	-47.9	310.6	0.94	0.44	788.5	9	186.9	5	3.97	0.79	35	1.59
217	34.07	1620.3	1.35	-338	-38.4	299.6	0.93	0.45	552.1	10	176.7	5.7	2.91	0.79	30.6	1.59
139.17	101.33	1562.5	3.7	-317.4	-29.3	288.1	0.94	0.46	411.9	11.1	165.7	6.5	2.34	0.78	26.3	1.7
267	299.85	1486.3	10.1	-290.9	-19.1	271.8	0.97	0.49	305.5	12.4	151.1	7.7	1.96	0.75	21.2	1.92
296	733.88	1400.2	23.5	-262	-10.8	251.2	1	0.53	232.4	13.9	134.9	9.1	1.72	0.81	16.3	2.25
324	1482.8	1308.6	46.7	-233.2	-6.1	227.1	1.04	0.6	181	15.5	118.1	10.7	1.59	0.87	11.9	2.73
352	2675.9	1204.8	86.3	-203.1	-6	197.1	1.12	0.75	141.4	17.4	100.4	12.7	1.58	1.03	8	3.59
380	4447.6	1077.2	156.2	-170.2	-13.2	157	1.36	1.12	108	20.4	81.7	15.6	1.8	1.46	4.3	5.79
408.6	7040.5	858.4	322.3	-124.9	-39.5	85.4	3.62	3.97	71.8	28.8	61.5	51.9	4.22	5.12	0.9	23.97
Uncertainty	c ¹	c ¹	e ¹	e ¹	e ¹	e ¹	e ¹	e ¹	g ^{2,6}	f ^{2,6}	g ^{3,6}	g ^{4,6}	g ⁷	g ⁷	g ^{5,6}	e ¹

¹Ref. [2]; ²Ref. [14]; ³Ref. [68]; ⁴Ref. [108]; ⁵Ref. [41]; ⁶Estimated values; ⁷Calc. from other properties.

Fluorine F2 (T_c = 144.41 K, p_c = 5.172 MPa, ρ_c = 592.9 kg/m³)

<i>T_{sr}</i> K	p _s , kPa	ho', kg/m³	$ ho''$, kg/m 3	h', kJ/kg	<i>h</i> ", kJ/ kg	Δh _ν , kJ/kg	с _р /, kJ/(kg K)	с _р ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
53.49	0.24	1706.7	0.02	-46.79	152.27	199.06	1.525	0.767	854.8	4.4	205.7	4.1	6.34	0.82	22.7	3.887
64	3.74	1640.3	0.268	-31.36	160.19	191.55	1.475	0.771	499.6	5.2	192.4	5	3.83	0.8	20	3.831
74	23.22	1576.4	1.452	-16.55	167.35	183.9	1.485	0.787	332.4	6.1	178.8	6	2.76	0.8	16.6	4.151
85.04	101.32	1501.8	5.641	0	174.37	174.37	1.511	0.825	231.7	7	162.8	7.1	2.15	0.81	13.6	4.691
92	210.8	1451.6	11.1	10.65	178.11	167.45	1.539	0.864	190.2	7.6	151.8	7.9	1.93	0.83	11.7	5.158
102	500.9	1373.8	24.96	26.41	182.29	155.88	1.6	0.946	147.7	8.5	135.4	9.3	1.75	0.86	9.2	6.081
112	1012.9	1286.9	49.27	42.99	184.73	141.73	1.705	1.076	116.5	9.6	118	10.9	1.68	0.95	6.8	7.549
122	1824.4	1185.5	90.14	60.92	184.6	123.69	1.914	1.328	91.4	10.9	99.7	13	1.75	1.11	4.5	10.384
132	3023	1054.7	162	81.51	179.9	98.39	2.483	2.061	68.8	13.1	80.3	16.1	2.13	1.68	2.4	18.31
144.41	5172.4	592.9	592.9	133.13	133.13				45.6	17.8	61.2	22.5			0.55	
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	e ²	f ^{3,8}	g ^{4,8}	g ^{5,8}	h ⁹	h ⁹	g ^{6,7,8}	d ¹

¹Ref. [90]; ²Ref. [34]; ³Ref. [14]; ⁴Ref. [68]; ⁵Ref. [108]; ⁶Ref. [19]; ⁷Ref. [38]; ⁸Estimated values; ⁹Calc. from other properties.

Mercury Hg (T_c = 1763.2 K, p_c = 151.00 MPa, ρ_c = 5500 kg/m³)

T _s , K	p _s , kPa	ho', kg/m³	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _p ′ kJ/(kg K)	c _p ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ' , 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
630.1	101.3	12737	3.91	91.8	386.7	294.9	0.136	0.104	884	61.7	121.9	10.4	0.987	0.617		0.194
650	145	12688	5.37	94.5	388.7	294.2	0.136	0.104	870	63.5	123.6	10.8	0.957	0.612		0.192
700	316	12567	10.9	101.3	393.6	292.3	0.137	0.105	841	68.6	128	11.7	0.9	0.616		0.192
750	620	12444	20.1	108.2	398.4	290.2	0.138	0.106	816	73.5	131.9	12.6	0.854	0.618		0.198
800	1120	12318	34.2	115.2	403	287.8	0.14	0.107	794	78.4	135.1	13.5	0.823	0.621		0.205
850	1880	12190	54.6	122.3	407.4	285.1	0.142	0.108	776	83.5	137.8	14.4	0.8	0.626		0.212
900	2990	12059	82.7	129.5	411.6	282.1	0.144	0.109	760	88.4	141.8	15.3	0.772	0.63		0.218
950	4530	11927	119.9	136.9	415.5	278.6	0.146	0.111	746	93.2	144.5	16.2	0.754	0.637		0.226
1000	6580	11791	167.7	144.4	419.1	274.7	0.149	0.113	736	98	146.9	17.2	0.744	0.644		0.234
1050	9230	11650	227.3	153.8	423	269.2	0.153	0.116	723	103	147.9	18.1	0.748	0.66		0.246
Uncertainty	h ¹	h ¹	h ¹	h ¹	h ¹	h ¹	h ¹	h ¹	h ¹	h ¹	h ^{1,2}	h ¹	h ⁴	h ⁴		h ³

¹Ref. [125]; ²Ref. [119]; ³Estimated values; ⁴Calc. from other properties.

Hydrogen fluoride HF (T_c = 461.15 K, p_c = 6.485 MPa, ρ_c = 290 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	<i>h</i> ", kJ/ kg	Δh _v , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
292.69	101.3	968	2	0	330	330	3.04	1.46	215	10.9	402	21	1.63	0.76	8.65	1.93
305	152	945	3.5	37.9	407.9	370	3.12	1.46	191	12.2	387	21.8	1.54	0.82	7.85	2.08
325	285	905	5	101.6	536.6	435	3.26	1.46	161	13.5	362	23	1.45	0.85	6.75	2.29
345	500	862	10	168	653	485	3.44	1.46	139	14.5	335	24.3	1.43	0.87	5.6	2.59
365	820	816	14	239	769	530	3.68	1.46	121	15.4	310	25.6	1.44	0.88	4.6	2.91
385	1320	765	20	316	896	580	4	1.46	106	16.3	283	26.9	1.5	0.88	3.5	3.48
405	2100	710	28	400	1010	610	4.41	1.46	93	17.2	255	28.3	1.61	0.88	2.5	4.46
425	3150	640	45	493	1068	574	4.92	1.46	81.6	18.1	227	29.6	1.77	0.89	1.6	6.6
445	4800	545	88	598	993	395	5.56	1.46	71.2	18.9	199	30.9	1.99	0.89	0.7	15.54
461.15	6490	290	290						39.8	39.8		32	2.22			
Uncertainty	h ¹	h ¹	h ¹	h ¹¹	h ¹¹	h ²	h ³	h ⁴	h ^{8,1}	h ^{9,1}	h ^{5,1}	h ^{6,1}	h ¹¹	h ¹¹	h ⁷	h ¹⁰

¹Ref. [37]; ²Ref. [29]; ³Ref. [67]; ⁴Ref. [6]; ⁵Ref. [68]; ⁶Ref. [69]; ⁷Ref. [73]; ⁸Ref. [71]; ⁹Ref. [70]; ¹⁰Estimated values; ¹¹Calc. from other properties.

Hydrogen chloride HCl (T_c = 324.6 K, p_c = 8.309 MPa, ρ_c = 450 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	ho'', kg/m³	<i>h,</i> / kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _p /, kJ/(kg K)	c _p ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
188.05	101.3	1190	2.5	0	442	442	1.61	0.85	407	9	337	8.6	1.94	0.89	23.2	2.31
200	180	1155	5	20	452	432	1.66	0.87	332	9.6	323	9.3	1.71	0.9	21	2.42
215	370	1115	10	45	461	416	1.74	0.91	259	10.4	305	10.5	1.48	0.9	18.3	2.55
230	670	1070	15	71	467	396	1.84	0.96	204	11.2	285	12	1.32	0.9	15.5	2.97
245	1100	1020	25	99	473	374	1.95	1.04	160	12.1	264	13.5	1.18	0.93	12.9	3.27
260	1800	970	40	130	478	348	2.15	1.16	126	13	242	15.6	1.12	0.97	10.2	3.26
275	2700	925	55	164	480	316	2.34	1.36	101	14.1	219	17.8	1.08	1.06	7.7	4.59
290	3800	845	90	203	478	275	2.67	1.74	77	15.1	195	21.6	1.05	1.22	5.2	6.78
305	5500	755	140	247	465	218	3.28	2.74	60	16.8	169	26.9	1.16	1.71	2.8	19.38
324.6	8309	450	450						34	34	61	61				
Uncertainty	h ¹	h ¹	h ¹	h ¹¹	h ¹²	h ²	h ^{3,4}	h ^{5,6}	h ^{11,1}	h ^{12,1,7}	h ^{8,1}	h ^{9,13}	h ¹⁵	h ¹⁵	h ¹⁰	h ¹⁴

¹Ref. [37]; ²Ref. [29]; ³Ref. [67]; ⁴Ref. [63]; ⁵Ref. [6]; ⁶Ref. [52]; ⁷Ref. [107]; ⁸Ref. [68]; ⁹Ref. [69]; ¹⁰Ref. [73]; ¹¹Ref. [71]; ¹²Ref. [70]; ¹³Ref. [108]; ¹⁴Estimated values; ¹⁵Calc. from other properties.

Hydrogen sulfide H₂S (T_c = 373.15 K, p_c = 8.937 MPa, ρ_c = 346 kg/m³)

Т _s , К	p _s , kPa	ρ′, kg/m³	ρ″, kg/m³	h′, kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/(kg K)	c _p ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
212.8	101.3	965	2	-356	199	555	1.83	1.02	423	9.2	233	9.1	3.32	1.03	29	1.86
220	140	955	2.6	-341	204	545	1.85	1.03	378	9.6	224	9.6	3.12	1.03	27.5	1.96
240	325	915	5.5	-301	219	520	1.91	1.08	272	10.5	199	11.1	2.61	1.02	23.5	2.19
260	680	875	11	-256	230	485	2	1.16	205	11.4	175	12.9	2.34	1.03	19.6	2.44
280	1200	830	21	-207	239	445	2.13	1.28	162	12.4	153	14.7	2.26	1.08	16	2.87
300	2000	780	35	-161	244	405	2.35	1.45	130	13.5	131	17	2.33	1.15	12.5	3.56
320	3250	720	55	-104	241	345	2.64	1.77	110	14.8	107	19.8	2.71	1.32	9.2	4.55
340	4890	650	95	-42	228	270	3.1	2.48	87	16.5	85	24.1	3.17	1.7	5.5	6.06
360	7050	565	160	45	190	145	4.38	6.45	66	19.2	62	30.5	4.66	4.06	2.2	18.66
373.15	8937	346	346	68	68				40.5	40.5	49.5	49.5				
Uncertainty	h ¹	h ²	h ¹	h ⁹	h ^{3,4}	h ¹	h ⁵	h ^{1,3,4}	h ^{1,6}	h ^{1,7}	h ^{1,8}	h ^{1,8}	h ¹⁰	h ¹⁰	h ¹	h ⁹

¹Refs. [121]; ²Ref. [37]; ³Ref. [115]; ⁴Ref. [52]; ⁵Ref. [63]; ⁶Ref. [59]; ⁷Ref. [107]; ⁸Ref. [108]; ⁹Estimated values; ¹⁰Calc. from other properties.

Ammonia NH₃ (T_c = 405.5 K, p_c = 11.353 MPa, ρ_c = 234.7 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h,′ kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η' , 10 $^{-6}$ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
195.5	60.9	732.9	0.064	-143.1	1341.2	1484.3	4.202	2.063	559	6.84					43.9	
239.75	101	682.1	0.886	48.4	1418.2	1369.8	4.448	2.296	256.4	8.05	613.7	17.53	1.86	1.05	33.9	1.76
270	381	642.9	3.087	185.45	1458.8	1273.4	4.599	2.634	176.1	8.96	544.3	21.34	1.49	1.11	26.9	2.17
290	774	614.8	6.074	278.8	1477.8	1199	4.722	2.967	142.7	9.58	499.6	24.78	1.35	1.15	22.4	2.63
310	1424	584.5	11.019	375.1	1489	1112.9	4.897	3.423	117.5	10.22	454.9	28.67	1.26	1.22	18	3.11
330	2421	550.9	18.983	475.6	1490.2	1014.6	5.176	4.078	97.32	10.93	409.8	33.19	1.23	1.34	13.7	4.03
350	3866	512.4	31.334	582.6	1477.9	895.3	5.671	5.125	80.43	11.79	364.3	39.14	1.25	1.54	9.6	5.36
370	5878	465.3	51.729	700.8	1444.7	743.9	6.715	7.214	65.49	13.05	318.7	48.2	1.38	1.95	5.74	8.3
390	8605	399.6	90.224	842.75	1369.9	527.15	10.305	14.192	50.88	15.53	273.4	64.74	1.92	3.4	2.21	17.63
400	10305	344.6	131.09	941.86	1288.8	346.94	22.728	34.924	42.02	18.45	251.2	81.52	3.8	7.9	0.68	41.72
Uncertainty	a ¹	a ¹	b ¹	b ¹	b ¹	b ¹	c ¹	c ¹	c ²	c ²	e ^{3,4,5,6}	e ⁷	f ¹¹	f ¹¹	d ^{8,9}	h ¹⁰

¹Ref. [112]; ²Ref. [131]; ³Ref. [124]; ⁴Ref. [121]; ⁵Ref. [76]; ⁶Ref. [95]; ⁷Ref. [1]; ⁸Ref. [104]; ⁹Ref. [72]; ¹⁰Estimated values; ¹¹Calc. from other properties.

Carbon monoxide CO (T_c = 132.86 K, p_c = 3.494 MPa, ρ_c = 303.9 kg/m³)

<i>Т_s,</i> к	<i>p₅,</i> kPa	$ ho'$, kg/m 3	ho'', kg/m ³	h', kJ/kg	h", kJ/kg	$\Delta h_{_{V^{\prime}}}$ kJ/kg	c _{p'} , kJ/(kg K)	ς _p ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)		λ' , 10 ⁻³ W/(m K)	λ'' , 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
81.66	101.58	793.12	4.371	0.05	214.7	214.65	2.146	1.132	154	7.1	141	6.9	2.34	1.16	9.47	5.544
90	238.52	755.35	9.66	18.18	220.39	202.22	2.188	1.216	120	7.5	125	8.2	2.1	1.11	7.73	6.33
95	368.6	731.15	14.568	29.3	223.03	193.73	2.236	1.29	105	7.8	116	8.9	2.02	1.13	6.71	6.978
100	544.38	705.41	21.204	40.71	224.95	184.24	2.306	1.389	93.5	8.1	107	9.7	2.02	1.16	5.71	7.828
105	774.17	677.71	30.038	52.52	226	173.47	2.408	1.526	83.9	8.4	98.2	10.5	2.06	1.23	4.73	8.984
110	1066.6	647.44	41.743	64.89	225.97	161.09	2.558	1.725	75.9	8.8	89.3	11.5	2.17	1.32	3.78	10.642
115	1430.7	613.63	57.368	78.02	224.56	146.54	2.793	2.039	69.1	9.2	80.3	12.6	2.4	1.49	2.86	13.21
120	1876.5	574.58	78.772	92.3	221.2	128.9	3.202	2.601	63.3	9.8	71.4	14	2.84	1.82	1.97	17.76
125	2415.7	526.53	109.99	108.5	214.7	106.21	4.1	3.898	58.3	11.7	62.5	18.4	3.82	2.48	1.13	28.14
132.86	3494	303.91	303.91	164.71	164.71											
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	h ²	h ^{3,4}	h⁵	h ^{5,6}	h ⁸	h ⁸	h ⁷	d ¹

¹Ref. [58]; ²Ref. [71]; ³Ref. [70]; ⁴Ref. [107]; ⁵Ref. [118]; ⁶Ref. [108]; ⁷Ref. [73]; ⁸Calc. from other properties.

R22 CHCIF₂ (T_c = 369.3 K, p_c = 4.990 MPa, ρ_c = 523.8 kg/m³)

<i>T_s,</i> K	p _s , kPa	ho', kg/m³	ρ", kg/m³	<i>h',</i> kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _{р'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ^{–6} kg/ (m s)	η", 10 ⁻⁶ kg/ (m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr″	<i>σ</i> , 10 ⁻³ N/m	β, 10 ⁻³ /K
115.73	0.000379	1721.3	0.000034	29.6	332.71	303.11	1.075	0.425	13435.3	4.88	177.01	2.59	81.61	0.8	38.56	1.53
200	16.67	1499.7	0.875	119.22	372.15	252.93	1.064	0.539	544	8.37	129.11	5.54	4.48	0.814	23.46	1.809
225	70.91	1430.3	3.371	146.03	384.3	238.27	1.081	0.589	379.4	9.4	116.85	6.68	3.51	0.828	19.27	2.001
232.34	101.33	1409.2	4.704	154	387.75	233.75	1.09	0.606	345.4	9.7	113.37	7.05	3.32	0.834	18.08	2.074
250	216.9	1356.3	9.605	173.51	395.71	222.2	1.117	0.655	279.6	10.41	105.22	7.99	2.97	0.854	15.25	2.292
275	528.65	1275.2	22.5	202.17	405.72	203.55	1.174	0.747	211.7	11.44	93.91	9.53	2.65	0.897	11.42	2.742
300	1097	1183.4	46.54	232.62	413.5	180.88	1.265	0.885	161	12.61	82.64	11.51	2.47	0.97	7.82	3.51
325	2026.4	1073.2	90.19	265.84	417.55	151.71	1.438	1.139	120.1	14.21	71.01	14.52	2.43	1.11	4.51	5.155
350	3442.7	920.1	177.54	304.7	413.7	109	1.996	1.956	83.1	17.33	58.3	21.29	2.85	1.59	1.62	11.35
369.3	4990	523.8	523.8	366.9	366.9											
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	e ²	e ²	e ³	e ³	e ⁴	e ⁴	f ⁵	b ¹

¹Ref. [43]; ²Ref. [45]; ³Ref. [66]; ⁴Calc. from other properties; ⁵Ref. [79].

R123 C₂HCl₂F₃ (T_c = 456,83 K, p_c = 3.662 MPa, ρ_c = 550 kg/m³)

<i>T_s,</i> K	<i>p_s,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	<i>h,</i> / kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
166	0	1771	0.0005	98.811	322.5	223.69	0.929	0.474	7170	5.57	113.83	4.99	58.52	0.53	32.07	
210	0.62	1672.1	0.054	139.52	344.95	205.42	0.93	0.548	1690.6	7.39	101.92	6.61	15.43	0.61	26.19	1.333
255	13.27	1569.4	0.967	182.21	370.61	188.41	0.97	0.62	729.19	9.17	89.73	8.42	7.88	0.68	20.43	1.495
301	101.3	1456.6	6.471	228.03	398.22	170.19	1.023	0.701	405.78	10.89	77.05	10.5	5.38	0.72	14.84	1.771
325	224.8	1392.7	13.752	253.01	412.6	159.59	1.054	0.749	313.9	11.65	70.36	11.74	4.7	0.74	12.07	1.989
350	451.5	1320.8	26.977	279.89	427.12	147.23	1.094	0.808	244.14	12.58	63.41	13.19	4.21	0.77	9.31	2.322
375	818.5	1240.6	49.027	307.89	440.74	132.85	1.148	0.885	190.27	13.73	56.46	14.89	3.87	0.82	6.7	2.866
400	1372	1146.8	85.321	337.45	452.74	115.3	1.237	1.004	145.85	15.33	49.51	16.96	3.64	0.91	4.27	3.907
425	2167	1026.4	148.41	369.63	461.53	91.897	1.438	1.273	106.17	17.96	42.56	19.71	3.59	1.16	2.08	6.604
447	3126	857.44	265.82	403.31	461.79	58.478	2.34	2.55	71.78	23.28	36.44	23.06	4.61	2.57	0.49	19.644
Uncertainty	a ¹	a ¹	d ¹	d ¹	d ¹	d ¹	d ¹	d ¹	f ²	f ³	f ^{4,5}	f ⁶	g ⁸	g ⁸	e ⁷	c ¹

¹Ref. [136]; ²Ref. [80]; ³Ref. [75]; ⁴Ref. [31]; ⁵Ref. [123]; ⁶Ref. [133]; ⁷Ref. [77]; ⁸Calc. from other properties.

R125 C₂HF₅ (T_c = 339.17 K, p_c = 3.618 MPa, ρ_c = 573.6 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	<i>h",</i> kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
172.52	2.914	1690.7	0.2446	87.13	277.39	190.26	1.035	0.569	1152.4	7.43	116.02	5.23	10.28	0.81	21.79	1.906
200	24.6	1600.5	1.804	115.98	293.01	177.02	1.069	0.631	631	8.63	103.06	7.04	6.54	0.774	17.43	2.101
225.06	101.32	1513.6	6.79	143.34	307.44	164.1	1.115	0.697	411.1	9.71	91.3	8.75	5.02	0.774	13.63	2.391
240	200.04	1458.2	12.918	160.26	315.87	155.6	1.149	0.744	327.4	10.35	84.44	9.81	4.45	0.785	11.45	2.643
260	432.5	1378	27.179	183.82	326.63	142.8	1.205	0.819	245.4	11.25	75.52	11.36	3.92	0.811	8.66	3.14
280	827.82	1287.2	52.22	208.69	336.3	127.6	1.286	0.919	184.7	12.27	66.94	13.17	3.55	0.856	6.04	3.991
300	1446.3	1178.2	95.71	235.45	343.83	108.38	1.425	1.104	136.9	13.64	58.67	15.68	3.32	0.961	3.62	5.741
320	2360	1031.3	177.36	265.53	347.03	81.5	1.783	1.643	95.6	16.1	50.53	20.57	3.37	1.29	1.49	11.184
330	2957.9	921.1	255.28	283.42	344.56	61.13	2.468	2.736	74.6	18.77	46.66	26.61	3.95	1.93	0.6	23.14
339.17	3617.7	573.6	573.6	318.06	318.06											
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	c ¹	c ¹	e ²	e ²	e ³	e ³	e ⁴	e ⁴	f⁵	b ¹

¹Ref. [55]; ²Ref. [39], ³ Ref. [85]; ⁴Calc. from other properties; ⁵Ref. [78].

R134a $C_2H_2F_4$ ($T_c = 374.18$ K, $p_c = 4.056$ MPa, $\rho_c = 508$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	ρ″, kg/m³	<i>h,'</i> kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/(kg K)	c _p ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ' , 10^{-3} W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
169.85	0.39	1591.1	0.0282	71.45	334.94	263.49	1.18	0.585	1152	6.5	141	2.34	9.65	1.63	28.07	
195	4.27	1524	0.27	101.38	349.96	248.58	1.2	0.646	749	7.63	129	4.76	6.95	1.03	23.79	1.77
220	24.43	1455.2	1.39	131.78	365.65	233.87	1.23	0.711	521	8.73	118	7.08	5.47	0.876	19.69	1.93
246.78	100	1377.6	5.19	165.43	382.59	217.16	1.28	0.793	368	9.89	105	9.49	4.47	0.827	15.48	2.18
265	215.67	1321.2	10.76	189.14	393.78	204.64	1.32	0.862	294	10.67	97.3	11.2	3.99	0.821	12.75	2.43
285	440.83	1254.5	21.48	216.12	405.35	189.23	1.38	0.955	231	11.54	88.4	13.1	3.59	0.841	9.88	2.83
305	811.97	1180.2	39.63	244.4	415.71	171.31	1.46	1.08	181	12.47	79.4	15.22	3.31	0.885	7.17	3.47
325	1380.3	1093.6	69.76	274.51	424.1	149.59	1.58	1.27	139	13.59	70.2	17.82	3.14	0.967	4.67	4.65
345	2205.9	984.7	121.84	307.51	428.85	121.34	1.84	1.66	104	15.23	60.8	21.62	3.13	1.17	2.42	7.43
365	3369.1	816.3	232.9	347.23	424.04	76.81	3.04	3.58	68.7	19.21	52.2	31.02	4	2.22	0.565	21.55
Uncertainty	a ¹	a ¹	d ¹	d ¹	d ¹	d ¹	c ¹	c ¹	f ²	f ²	e ²	f ²	f ⁴	f ⁴	e ³	c ⁴

¹Ref. [114]; ²Ref. [47]; ³Ref. [77]; ⁴Calc. from other properties.

R152a $C_2H_4F_2$ ($T_c = 386.41$ K, $p_c = 4.517$ MPa, $\rho_c = 368$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	<i>h,′</i> kJ/kg	<i>h",</i> kJ/kg	Δh _ν , kJ/kg	с _{р'} , kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(ms)	η", 10 ⁻⁶ kg/(m s)		λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
154.56	0.07	1190.3	0.003	14.26	417.09	402.83	1.472	0.727	1935.2	9.02	171.33	2.62	16.63	2.51	31.65	
190	2.78	1125.8	0.117	66.99	443.85	376.86	1.511	0.805	746.5	9.78	155.02	5.5	7.28	1.43	25.85	
220	22.82	1069.2	0.837	113.13	467.32	354.2	1.567	0.902	430.43	10.43	141.21	7.94	4.78	1.18	21.11	1.809
249.13	101.3	1010.8	3.38	159.78	489.53	329.74	1.636	1.046	305.24	11.06	127.8	10.34	3.91	1.12	16.69	2.06
270	235.51	965.9	7.51	194.62	504.5	309.88	1.699	1.173	226.77	11.51	118.2	12.05	3.26	1.12	13.65	2.321
290	465.43	919.43	14.499	229.39	517.72	288.34	1.774	1.312	179.43	11.94	108.99	13.86	2.92	1.13	10.84	2.679
310	835.96	868.14	26.018	265.86	529.29	263.43	1.875	1.483	144.1	12.37	99.78	16.44	2.71	1.12	8.16	3.231
330	1393.7	809.51	44.602	304.64	538.31	233.67	2.028	1.728	114.48	12.8	90.58	19.8	2.56	1.12	5.64	4.181
350	2192.4	738.36	75.333	346.87	542.95	196.08	2.31	2.182	88.18	13.24	81.37	23.91	2.5	1.21	3.3	6.175
378	3850.9	580.1	176.16	419.75	529.48	109.73	4.519	6.02	56.44	16.72	68.48	30.98	3.72	3.25	0.55	23.59
Uncertainty	a ¹	a ¹	d ¹	d ¹	d ¹	d ¹	d ¹	d ¹	f ^{2,3}	f ^{2,4}	f ⁵	f ⁵	f ⁷	f ⁷	e ⁶	c ¹

¹Ref. [113]; ²Ref. [32]; ³Ref. [49]; ⁴Ref. [109]; ⁵Ref. [31]; ⁶Ref. [78]; ⁷Calc. from other properties.

Methane CH₄ (T_c = 190.564 K, p_c = 4.5992 MPa, ρ_c = 162.66 kg/m³)

<i>T_s,</i> K	<i>p₅,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	<i>h",</i> kJ/kg	Δh _ν , kJ/kg	с _{р'} , kJ/(kg K)	ς _ρ ", kJ/(kg K)		η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)		Pr′	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
111.67	101.3	422.36	1.8165	-910.9	-397.9	513	3.481	2.162	106.5	4.49	193	12.1	1.88	0.77	13.5	3.473
120	191.4	409.9	3.2619	-881.5	-386.9	494.6	3.549	2.293	86.05	4.84	178	12.9	1.7	0.79	11.5	3.776
130	367.3	394.04	5.9804	-845.3	-373.3	472	3.658	2.421	71.65	5.28	163	16.4	1.6	0.71	9.28	4.254
140	641.2	376.87	10.152	-807.7	-362.6	445.1	3.813	2.611	61.26	5.74	148	19.6	1.56	0.68	7.22	4.928
150	1040	357.9	16.328	-768.3	-355.7	412.6	4.047	2.908	52.24	6.27	133	23	1.55	0.69	5.31	5.942
160	1592.1	336.31	25.382	-726.1	-353.9	372.3	4.435	3.419	44.54	6.89	118	27.6	1.56	0.72	3.58	7.633
170	2328.3	310.5	38.974	-679.7	-359.4	320.3	5.187	4.459	37.69	7.69	103	33.7	1.89	0.83	2.06	11.01
180	3285.2	276.23	61.375	-625.0	-378.1	246.9	7.292	7.574	30.98	8.89	88	39.9	2.62	1.33	0.81	21.07
185	3861.7	251.36	80.435	-590.4	-398.5	191.9	11.109	13.527	26.92	9.84	80	45.3	3.8	1.38	0.33	40.71
190	4518.6	200.78	125.18	-532.7	-451.9	80.8	94.01	140.81	19.34	12.96	73	62	18.8	58.01	0.01	523.3
Uncertainty	a ¹	a ¹	a ¹	a ¹	a ¹	a ¹	c ¹	c ¹	h ²	h ²	h ³	h ⁴	h ⁶	h ⁶	h⁵	c ¹

¹Ref. [96]; ²Ref. [125]; ³Ref. [118]; ⁴Ref. [60]; ⁵Ref. [73]; ⁶Calc. from other properties.

Methanol CH₃OH (T_c = 512.6 K, p_c = 8.1035 MPa, ρ_c = 275.6 kg/m³)

T _s , K	p _s , kPa	ρʹ, kg/m³	ρ", kg/m³	<i>h,'</i> kJ/kg	<i>h",</i> kJ/kg	Δh _ν , kJ/ kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/ (m s)	η", 10 ⁻⁶ kg/ (m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr″	σ, 10 ⁻³ N/m	<i>β,</i> 10 ⁻³ /K
175.61	0.0002	904.56	4.10^{-6}	-1471.8	-157.33	1314.5	2.2	1.26			243		108.5			
230	0.1511	850.76	0.0025	-1350.9	-92.77	1258.2	2.26	1.9	1890		224		19.05			1.1
280	6.177	803.22	0.0864	-1234.2	-38.60	1195.6	2.43	3.17	713		207		8.38		23.8	1.17
337.63	101.33	748.35	1.221	-1083.5	17.52	1101.1	2.83	4.44	329	11.1	188	18.3	4.95	2.69	18.9	1.28
360	229.92	725.36	2.668	-1018.0	35.91	1053.9	3.03	4.86	248	11.8	183	21.4	4.11	2.68	16.9	1.48
385	507.17	697.22	5.744	-938.7	51.43	990.15	3.31	5.44	187	12.7	178	24.9	3.47	2.78	14.5	1.73
410	1006.4	665.22	11.401	-852.0	58.35	910.35	3.63	6.36	141	13.6	173	29.1	2.96	2.97	11.8	2.04
435	1834.9	627.36	21.486	-756.2	53.26	809.48	4.06	7.71	107	14.6	170	34.2	2.56	3.29	9.08	2.28
460	3121.6	580.14	38.821	-648.6	41.38	689.97	4.71	8.2	82	15.9	165	41.6	2.34	3.13	6.08	3.94
500	6525	451.53	109.88	-426.5	-35.42	391.06	9.97	19.04	54	20.4		66.4		5.85	1.26	12.2
Uncertainty	a ¹	a ¹	d ¹	d ¹	d ¹	d ¹	c ¹	d ¹	f ²	f ²	f ²	f ^{3,5}	f ⁶	f ⁶	e ⁴	c ¹

¹Ref. [91]; ²Ref. [35]; ³Ref. [120]; ⁴Ref. [125]; ⁵Estimated values; ⁶Calc. from other properties.

Ethane C_2H_6 ($T_c = 305.32$ K, $p_c = 4.872$ MPa, $\rho_c = 206.2$ kg/m³)

Т _s , <u>К</u>	<i>p_s,</i> kPa	ρ', kg/m³	ρ", kg/m³	h', kJ/kg	<i>h",</i> kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/ (m s)	η", 10 ⁻⁶ kg/ (m s)	λ', 10 ⁻³ W/ (m K)	λ", 10 ⁻³ W/ (m K)	Pr'	Pr"	σ, 10 ^{–3} N/m	β, 10 ^{–3} /K
90.37	0.001142	651.5	0.000046	-219.19	375.58	594.77	2.326	1.168	1280.8	3.04	255.62	2.91	11.65	1.22	31.67	1.692
150	9.64	585.2	0.234	-82.41	448	530.41	2.333	1.312	269.6	4.8	200.71	6.67	3.13	0.944	21.67	1.968
175	58.59	555.6	1.239	-23.21	478.35	501.56	2.403	1.387	187.9	5.58	176.17	8.64	2.56	0.896	17.58	2.196
184.57	101.33	543.8	2.05	0	489.4	489.4	2.439	1.433	166.4	5.89	166.97	9.49	2.43	0.888	16.03	2.313
200	217.2	524	4.17	38.3	506.19	467.89	2.512	1.537	138.3	6.39	152.56	11.01	2.28	0.892	13.59	2.55
225	589.4	488.9	10.72	103.4	529.76	426.36	2.687	1.775	104	7.28	130.24	13.97	2.15	0.924	9.76	3.14
250	1300.8	448	23.59	174.18	546.53	372.35	2.994	2.16	78.2	8.34	109.29	17.93	2.14	1.01	6.16	4.28
275	2495.2	395.8	48.64	254.92	550.55	295.63	3.702	3.11	56.9	9.92	89.37	24.32	2.36	1.27	2.91	7.37
300	4357.3	303.5	114.5	364.39	514.1	149.7	10.022	13.299	35	14.02	71.49	47.46	4.9	3.93	0.33	43.3
305.32	4872.2	206.2	206.2	438.99	438.99											
Uncertainty	a ¹	a ¹	a ¹	b ¹	b ¹	b ¹	c ¹	c ¹	d ²	d ²	d ²	d ²	d ³	d ³	e ⁴	b ¹

¹Refs. [8]; ²Ref. [21]; ³Calc. from other properties; ⁴Ref. [53].

Ethylene C_2H_4 ($T_c = 282.35$ K, $p_c = 5.042$ MPa, $\rho_c = 214.2$ kg/m³)

<i>Т_s,</i> К	p _s , kPa	$ ho'$, kg/m 3	ρ″, kg/m³	<i>h</i> ′, kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/ (m s)	η", 10 ⁻⁶ kg/ (m s)	λ′, 10 ^{–3} W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr"	σ , 10 $^{-3}$ N/m	β, 10 ⁻³ /K
103.99	0.122	654.6	0.00396	-158.10	409.42	567.52	2.429	1.187	685.7	0.77	270.65	6.8	6.16	0.135	28.14	1.93
125	2.53	627.7	0.068	-107.04	434.12	541.17	2.422	1.195	378.7	3.83	242.07	7.01	3.79	0.652	24.03	2.067
150	27.38	594.6	0.624	-46.74	462.39	509.13	2.404	1.232	233.4	5.31	209.67	8.51	2.68	0.769	19.32	2.284
169.38	101.33	567.7	2.09	0	482.41	482.41	2.418	1.295	175.5	6.03	186.47	9.68	2.28	0.807	15.83	2.529
175	139.4	559.5	2.81	13.66	487.76	474.1	2.428	1.32	163	6.23	180.09	10.04	2.2	0.819	14.84	2.618
200	455.5	521.2	8.49	75.68	508.13	432.45	2.529	1.492	120.5	7.13	153.73	11.86	1.98	0.897	10.63	3.177
225	1127.6	477.2	20.59	141.72	520.8	379.08	2.764	1.826	90.2	8.26	129.81	14.61	1.92	1.03	6.74	4.253
250	2329.5	422	44.97	216.09	520.38	304.3	3.363	2.661	65.4	9.93	106.84	19.56	2.06	1.35	3.27	7.052
275	4275.2	330.8	106.46	314.62	484.31	169.7	7.588	9.293	40.4	13.76	81.58	39.17	3.76	3.27	0.51	30.78
282.35	5041.8	214.2	214.2	399.43	399.43											
Uncertainty	a ¹	a ¹	a ¹	b ¹	b ¹	b ¹	c ¹	c ¹	e ²	f ²	e ²	f ²	e ³	f ³	f ⁴	b ¹

¹Ref. [98]; ²Ref. [36]; ³Calc. from other properties; ⁴Ref. [99].

Ethine C_2H_2 ($T_c = 308.7 \text{ K}$, $p_c = 6.240 \text{ MPa}$, $\rho_c = 230 \text{ kg/m}^3$)

T _s , K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
192.2	128	617	2.16	-369.5	214.8	584.3	3.09	1.47	169	7.35	55.9	11.2	9.34	0.96	19.1	2.2
200	189	606	3.11	-351.8	222.9	574.7	3.12	1.51	156	7.67	54.3	12	8.96	0.97	17.6	2.4
210	304	590	4.86	-331.6	230.9	562.5	3.15	1.59	146	8.1	51.9	13.1	8.86	0.98	15.6	2.66
230	689	556	10.8	-271.6	248.6	520.2	3.27	1.8	127	8.68	48	15.4	8.65	1.01	11.8	3.2
240	986	538	15.6	-236.1	254.4	490.5	3.35	1.93	116	9.03	48.3	16.9	8.39	1.03	9.92	3.49
250	1370	519	22.1	-202.0	257.6	459.6	3.46	2.14	99.6	9.44	44.9	18.5	7.68	1.09	8.12	3.87
270	2450	473	41	-136.2	257	393.2	3.87	2.64	79.9	10.5	43	22.6	7.19	1.23	4.64	5.56
280	3190	445	54	-100.5	252.8	363.3	4.25	2.93	66.9	11.2	42.2	25	6.75	1.31	3.11	6.45
290	4080	411	73.2	-66.2	238.8	305	5.14	3.39	56.9	12.1	41.5	28.3	7.04	1.45	1.73	10.36
308.7	6240	231	231	104.7	104.7											
Uncertainty	h ¹	h ¹	h ¹	h ¹	h ¹	h ¹	h ^{2,3}	h ¹	h ^{2,4}	h ^{5,6}	h ⁷	h ^{8,9}	h ¹²	h ¹²	h ¹⁰	h ¹¹

¹Ref. [60]; ²Ref. [89]; ³Ref. [137]; ⁴Ref. [59]; ⁵Ref. [106]; ⁶Ref. [42]; ⁷Ref. [93]; ⁸Ref. [117]; ⁹Ref. [108]; ¹⁰Ref. [40]; ¹¹Estimated values; ¹²Calc. from other properties.

Ethanol C₂H₆O, CH₃CH₂OH (T_c = 513.90 K, p_c = 6.148 MPa, ρ_c = 276.0 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	ρ", kg/m³	<i>h',</i> kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr"	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
300	8.84	783.82	0.164	265.2	1185	919.7	2.597	1.605	1043	8.6	175.1	15.1	15.47	0.91	21.95	1.083
320	25.46	766.38	0.446	319.6	1216.1	896.4	2.838	1.673	736.3	9.2	171.4	16.8	12.19	0.92	20.25	1.174
340	63.54	747.74	1.058	378.7	1247.0	868.3	3.064	1.753	534	9.8	167.6	18.7	9.76	0.92	18.45	1.3
351.39	101.33	736.44	1.647	414.3	1264.3	849.9	3.185	1.806	448.7	10.2	165.4	19.9	8.64	0.93	17.38	1.388
375	239.88	711.05	3.75	492.4	1298.5	806.0	3.423	1.944	319	11	160.9	22.6	6.79	0.94	15.09	1.619
400	524.46	680.64	8.009	581.2	1331.2	750.0	3.665	2.148	226.4	11.8	155.7	25.3	5.33	1	12.53	1.959
425	1029.28	645.46	15.701	676.0	1358.3	682.2	3.923	2.444	163	12.6	149.6	28.2	4.27	1.09	9.85	2.472
450	1850.55	603.51	29.001	777.7	1377.2	599.5	4.261	2.916	118.5	13.6	141.2	31.6	3.58	1.25	7.08	3.36
475	3096.32	550.1	51.995	888.7	1383.7	495	4.877	3.823	86.7	14.8	127.2	35.7	3.32	1.58	4.25	5.36
513.9	6148	276	276	1191.8	1191.8				63.7	16.9	100.1	42.5			1.43	
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	f ¹	e ²	f ¹	h ^{3,4}	h ⁵	h ⁵	e ¹	d ¹

¹Ref. [16]; ²Ref. [125]; ³Ref. [118]; ⁴Ref. [108]; ⁵Calc. from other properties.

Ethylenoxide C_2H_4O , $(CH_2)_2O$ $(T_c = 469 \text{ K}, p_c = 7.194 \text{ MPa}, \rho_c = 315 \text{ kg/m}^3)$

<i>T_s,</i> K	<i>p_s,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	с _{р'} , kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ'' , 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
283.5	101.3	889	1.94	-440	129	569	1.96	1.09	284	9	158	11.5	3.52	0.85	25.87	1.6
300	186	866	3.44	-409	144	553	2.01	1.17	245	9.6	152	13.6	3.24	0.83	23.24	1.71
320	359	835	6.33	-367	161	528	2.09	1.28	210	10.3	144	16.3	3.04	0.81	20.1	1.86
340	621	804	10.8	-333	178	511	2.19	1.4	182	11	135	19.3	2.93	0.8	17.03	2.08
360	1030	760	17.5	-289	193	482	2.32	1.55	160	11.7	127	22.5	2.92	0.81	14.03	2.32
380	1660	721	27.2	-238	206	444	2.48	1.73	142	12.5	119	25.1	2.97	0.86	11.11	2.68
400	2480	691	41.1	-183	215	398	2.68	1.99	128	13.4	110	29.9	3.12	0.89	8.29	3.26
420	3450	682	61.6	-129	219	348	2.92	2.47	116	14.4	102	34.5	3.34	1.01	5.5	4.42
440	4830	584	93.9	-65	211	276	3.21	3.4	105	15.9	93	40.4	3.63	1.34	3.05	6.08
469	7194	315	315	66	66				47	47	69	69				
Uncertainty	h ¹	h ²	h ³	h ¹¹	h ^{4,3}	h ¹	h ⁵	h ^{3,4}	h ^{6,1}	h ^{1,7}	h ^{8,1}	h ^{9,1}	h ¹²	h ¹²	h ¹⁰	h ¹¹

¹Ref. [22]; ²Ref. [97]; ³Ref. [52]; ⁴Ref. [6]; ⁵Ref. [67]; ⁶Ref. [71]; ⁷Ref. [107]; ⁸Ref. [68]; ⁹Ref. [69]; ¹⁰Ref. [48]; ¹¹Estimated values; ¹²Calc. from other properties.

Acetic acid $C_2H_4O_2$ ($T_c = 594.75$ K, $p_c = 5.790$ MPa, $\rho_c = 350.6$ kg/m³)

<i>T_s,</i> K	<i>p_s,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η'' , 10^{-6} kg/(m s)	λ' , 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
391.15	101.3	939	1.93	260	642	382	2.42	1.39	372	10.4	158	20.7	5.7	0.7	18.1	1.4
420	230	900	4.53	326	703	377	2.55	1.49	276	11.4	150	23.8	4.69	0.71	15.3	1.46
440	382	874	7.56	372	740	368	2.66	1.58	232	11.9	143	26.3	4.32	0.71	13.5	1.52
460	427	846	12	420	775	355	2.76	1.69	194	12.4	137	29	3.91	0.72	11.6	1.68
480	898	815	18.4	473	807	334	2.91	1.82	166	13	131	32.2	3.69	0.73	9.7	1.94
500	1320	782	27.3	524	834	310	3.04	1.99	138	13.7	125	35.9	3.36	0.76	7.9	2.29
520	1890	743	39.9	580	850	270	3.21	2.24	115	14.4	118	40.3	3.13	0.8	6	2.86
540	2630	697	57.8	643	874	231	3.43	2.66	95	15.3	112	45.9	2.91	0.89	4.28	3.82
560	3590	642	85	710	882	172	3.82	3.59	76	16.5	105	53.6	2.76	1.11	2.47	5.47
594.75	5790	350.6	350.6	854	854						93	93				
Uncertainty	h ¹	h ¹	h ²	h ³	h ³	h ¹³	h ⁴	h ^{5,2}	h ^{6,7}	h ^{6,8}	h ^{9,10,11}	h ^{10,12}	h ¹⁴	h ¹⁴	h ¹	h ¹³

¹Ref. [125]; ²Ref. [52]; ³Ref. [12]; ⁴Ref. [63]; ⁵Ref. [115]; ⁶Ref. [87]; ⁷Ref. [59]; ⁸Ref. [107]; ⁹Ref. [94]; ¹⁰Ref. [89]; ¹¹Ref. [88]; ¹²Ref. [108]; ¹³Estimated values; ¹⁴Calc. from other properties.

Propane C_3H_8 ($T_c = 369.89$ K, $p_c = 4.251$ MPa, $\rho_c = 220.5$ kg/m³)

<i>T_s,</i> K	P _s , kPa	ho', kg/m³	$ ho''$, kg/m 3	<i>h',</i> kJ/kg	<i>h",</i> kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/ (m s)	η", 10 ⁻⁶ kg/ (m s)	λ', 10 ⁻³ W/ (m K)	λ", 10 ⁻³ W/ (m K)	Pr'	Pr″	<i>σ,</i> 10 ⁻³ N/m	<i>β,</i> 10 ⁻³ /K
85.53	1.7×10 ⁻⁷	733.1	1×10 ⁻⁸	-196.63	366.26	562.9	1.916	0.879	10779	2.64	207.92	1.71	99.32	1.36	37.71	1.425
200	20.19	615.4	0.542	32.53	488.63	456.1	2.127	1.287	288	5.51	147.84	8.97	4.14	0.791	20.27	1.752
225	77.02	587.8	1.873	86.86	518.7	431.85	2.219	1.407	211.4	6.15	132.73	11.04	3.53	0.784	16.68	1.94
231.04	101.33	580.9	2.416	100.36	525.95	425.59	2.246	1.44	197.2	6.31	129.18	11.57	3.43	0.786	15.83	1.997
250	217.96	558.3	4.94	143.93	548.45	404.52	2.343	1.558	160	6.8	118.37	13.32	3.17	0.796	13.21	2.218
275	501.8	526.1	10.93	204.64	576.9	372.26	2.507	1.756	123.2	7.5	105.02	15.95	2.94	0.826	9.89	2.652
300	997.7	489.4	21.63	270.15	602.6	332.45	2.74	2.041	95.3	8.34	92.86	19.24	2.81	0.885	6.76	3.409
325	1783.3	445.2	40.43	342.46	622.87	280.41	3.128	2.552	72.5	9.51	81.81	23.89	2.77	1.02	3.89	5.031
350	2951.4	383.8	77.03	426.7	629.95	203.26	4.208	4.16	51.6	11.63	71.48	32.73	3.03	1.48	1.4	10.95
369.89	4251.2	220.5	220.5	555.24	555.24											
Uncertainty	a ¹	a ¹	a ¹	b ¹	b ¹	b ¹	c ¹	c ¹	d ²	d ²	d ³	d ³	d ⁴	d ⁴	e ⁵	b ¹

¹Ref. [56]; ²Ref. [128]; ³Ref. [65]; ⁴Calc. from other properties; ⁵Ref. [4].

Propylene C₃H₆, CH₃CH=CH₂ (T_c = 364.21 K, p_c = 4.555 MPa, ρ_c = 230.1 kg/m³)

<i>T_s,</i> K	P _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr″	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
225.53	101.33	610.1	2.358	90.12	529.08	438.96	2.193	1.332	151	6.6	119	9.5	2.78	0.93	16.5	2.039
240	187.15	591.8	4.178	122.32	544.59	422.27	2.25	1.413	132	7.1	111	11.2	2.68	0.9	14.7	2.2
255	325.97	571.9	7.044	156.71	560.08	403.37	2.324	1.512	108	7.5	104	13	2.41	0.88	12.6	2.417
270	531.03	550.8	11.239	192.34	574.7	382.36	2.414	1.632	101	8	98.6	14.9	2.47	0.88	10.5	2.706
285	819.2	528	17.2	229.48	588.12	358.64	2.53	1.782	99.2	8.7	93.6	17.1	2.68	0.91	8.7	3.109
300	1208.6	503.1	25.57	268.52	599.85	331.32	2.684	1.976	90.3	9.3	90.9	19.4	2.67	0.94	6.5	3.706
315	1718.6	474.9	37.35	310.03	609.01	298.98	2.906	2.279	80.9	10.1	88	22.2	2.67	1.04	5.1	4.68
330	2370.8	441.7	54.41	355.01	614.32	259.32	3.279	2.802	78.7	11.4	83.3	25.4	3.1	1.26	3.4	6.52
345	3191.3	398.9	81.3	405.8	612.16	206.36	4.143	4.102	61.1	12.7	76.1	29.6	3.33	1.76	2	11.39
364.21	4555	230.1	230.1	529.62	529.62				32	32	49.3	49.3				
Uncertainty	a ¹	a ¹	a ¹	b ¹	b ¹	b ¹	c ¹	c ¹	h ²	h ²	h ³	h ^{4,5}	h ⁶	h ⁶	h ²	b ¹

¹Ref. [81]; ²Ref. [22]; ³Ref. [93]; ⁴Ref. [74]; ⁵Ref. [108]; ⁶Calc. from other properties.

1-Propanol C₃H₈O, CH₃CH₂CH₂OH (T_c = 536.85 K, p_c = 5.050 MPa, ρ_c = 273 kg/m³)

T _s , K	<i>p_s,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h′, kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _{р'} , kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10 ⁻⁶ kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	<i>σ</i> , 10 ⁻³ N/m	β, 10 ⁻³ /K
373.2	109.4	732.5	2.26	0	687	687	3.21	1.65	447	9.61	142.4	20.9	10.1	0.76	17.6	1.33
393.2	218.5	711	4.43	65	710	645	3.47	1.82	337	10.3	139.2	23	8.4	0.82	16.15	1.52
413.2	399.2	687.5	8.05	139	733	594	3.86	1.93	250	10.9	138.4	26.2	6.97	0.8	14.42	1.79
433.2	683.6	660	13.8	222	766	544	4.36	2.05	188	11.5	133.5	28.9	5.14	0.82	12.7	2.19
453.2	1089	628.5	22.5	315	802	486	5.02	2.2	148	12.2	127.9	31.4	5.81	0.85	10.77	2.7
473.2	1662	592	35.3	433	860	427	5.9	2.36	119	12.9	120.7	34.7	5.82	0.88	8.85	3.35
493.2	2426	548.5	55.6	548	904	356	6.78	2.97	90.6	14.2	111.8	38	5.5	1.11	6.35	4.36
513.2	3402	492	90.4	691	955	264	7.79	3.94	70	15.7	100.6	43.9	5.42	1.41	4.04	6.17
523.2	3998	452.5	118			209			61.4	17	94.1	47.5			2.6	8.4
533.1	4689	390.5	161			138			53.9	19.3	89.3	53.5		0.96		
Uncertainty	h ¹	h ¹	h ¹	h ⁹	h ⁹	h ¹	h ²	h ^{3,4}	h ^{1,5}	h ^{5,6}	h ²	h ^{5,7}	h ⁹	h ⁹	h ²	h ⁸

¹Ref. [125]; ²Ref. [73]; ³Ref. [67]; ⁴Ref. [18]; ⁵Ref. [68]; ⁶Ref. [107]; ⁷Ref. [108]; ⁸Estimated values; ⁹Calc. from other properties.

Propylene oxide C_3H_6O , $CH_3(CHCH_2)O$ ($T_c = 482.2$ K, $p_c = 4.920$ MPa, $\rho_c = 312$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/(kg K)	c _p ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
307.5	101.3	812	2.38	-293	184	477	2.06	1.32	278	9.1	147	12.1	3.9	0.9	19.9	1.59
320	159	796	3.57	-271	198	469	2.1	1.39	251	9.5	143	13.3	3.69	0.99	18.2	1.68
340	297	769	6.39	-220	220	440	2.18	1.49	217	10.2	135	15.5	3.49	0.98	15.5	1.8
360	496	740	10.7	-177	242	419	2.29	1.62	191	10.8	128	17.8	3.41	0.98	12.9	2.04
380	814	709	17.2	-135	263	39	2.42	1.76	171	11.5	120	20.5	3.44	0.99	10.4	2.31
400	1230	675	26.6	-86	282	368	2.6	1.94	155	12.3	113	23.5	3.57	1.02	8	2.72
420	1790	636	40.5	-37	298	335	2.81	2.19	143	13.1	105	26.9	3.84	1.07	5.7	3.34
440	2480	591	61.1	33	309	276	3.07	2.63	133	14.1	96	31.3	4.23	1.18	3.5	3.76
460	3450	531	95.9	106	307	201	3.38	3.83	125	15.5	88	47.4	4.79	1.25	1.6	12.69
482.2	4920	312	312	200	200				48	48	71	71				
Uncertainty	h ¹	h ²	h ³	h ¹³	h ^{3,4}	h ¹	h ⁵	h ^{3,4}	h ^{1,6}	h ^{1,7,8}	h ^{9,1}	h ^{10,1}	h ¹³	h ¹³	h ¹¹	h ¹²

¹Ref. [22]; ²Ref. [97]; ³Ref. [52]; ⁴Ref. [6]; ⁵Ref. [67]; ⁶Ref. [71]; ⁷Ref. [70]; ⁸Ref. [107]; ⁹Ref. [68]; ¹⁰Ref. [69]; ¹¹Ref. [48]; ¹²Estimated values; ¹³Calc. from other properties.

Isopropylalcohol C₃H₈O, (CH₃)₂CHOH ($T_c = 508.75 \text{ K}, p_c = 5.370 \text{ MPa}, r_c = 274 \text{ kg/m}^3$)

<i>T</i> _s , K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
355.65	101.3	732.3	2.06	0	677.8	677.8	3.37	1.63	502	9.08	131.1	19.8	12.9	0.75	18.6	1.41
373	200	712.7	4.15	60.1	688	627.9	3.55	1.71	376	9.8	127.5	22.2	10.5	0.75	17.2	1.76
390	380	683	7.73	121.8	736.8	615	3.71	1.8	295	10.3	124.3	24.6	8.81	0.75	14.2	2.12
408	580	660	14.3	190.2	767.9	577.7	3.88	1.94	230	10.9	122.8	27.1	7.27	0.78	11.84	2.39
425	925	630.1	21	257.6	796.1	538.5	4.04	2.15	184	11.4	120.1	29.3	6.19	0.84	9.4	2.75
443	1425	597.4	32.78	331.8	822.9	491.1	4.2	2.37	147	11.9	117.3	31.8	5.27	0.89	6.9	3.22
459	2025	566	46.4	400.1	841.7	441.6	4.34	2.83	122	12.5	115.8	34.9	4.57	1.01	4.97	3.94
478	3039	514.8	72.3	484	851.5	367.5	4.49	3.97	93.5	13.7	113.2	38.9	3.71	1.4	2.6	5.46
498	4052	460.5	108.4			284.5			72.5	15.2	110.7	42.3		1.05	23.46	
508	5369	288	252			82.5				28.2	107.7	47.1			0	
Uncertainty	h ^{1,2}	h ^{1,2}	h ^{1,2}	h ⁹	h ⁹	h ^{1,3}	h ²	h ^{4,5}	h ¹	h ^{1,6}	h ¹	h ^{1,7}	h ⁹	h ⁹	h ¹	h ⁸

¹Ref. [125]; ²Ref. [116]; ³Ref. [132]; ⁴Ref. [42]; ⁵Ref. [18]; ⁶Ref. [107]; ⁷Ref. [108]; ⁸Estimated values; ⁹Calc. from other properties.

Acetone C_3H_6O , CH_3COCH_3 ($T_c = 508.10$ K, $p_c = 4.700$ MPa, $\rho_c = 273$ kg/m³)

<i>T</i> _s , K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h′, kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	<i>σ</i> , 10 ⁻³ N/m	β, 10 ⁻³ /K
329.23	101.33	748.95	2.268	0	501.43	501.43	2.229	1.567	235	9.4	142	12.7	3.69	1.16	18.4	1.587
340	144.5	736.03	3.173	24.23	513.55	489.32	2.264	1.635	213	9.8	137	14.1	3.52	1.14	17	1.659
360	261.88	711.08	5.597	70.28	535.79	465.51	2.336	1.77	188	10.4	129	16.1	3.4	1.14	14.5	1.824
380	442.4	684.55	9.313	117.89	557.43	439.54	2.42	1.921	165	11.1	121	18.5	3.3	1.15	12.1	2.043
400	705.59	655.92	14.83	167.3	578.03	410.74	2.519	2.099	141	11.8	112	21.2	3.17	1.17	9.6	2.346
420	1073.31	624.5	22.895	218.84	596.98	378.14	2.643	2.322	119	12.6	104	24.2	3.02	1.21	7.1	2.789
440	1570.25	589.14	34.72	272.98	613.25	340.28	2.81	2.634	99	13.5	96	27.2	2.9	1.31	4.6	3.49
460	2224.94	547.85	52.555	330.55	625.11	294.57	3.067	3.156	80	14.4	87	31	2.82	1.47	3.1	4.76
480	3072.5	496.13	81.608	393.32	628.82	235.5	3.597	4.338	64	15.8	77	36	2.99	1.9	1.6	7.84
508.1	4700	272.97	272.97	544.34	544.34				49	49	58	58				
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	h ^{2,3,4}	h ^{5,6}	h ^{7,8,9}	h ^{8,9}	h ¹¹	h ¹¹	h ¹⁰	d ¹

¹Ref. [58]; ²Ref. [89]; ³Ref. [82]; ⁴Ref. [59]; ⁵Ref. [106]; ⁶Ref. [107]; ⁷Ref. [93]; ⁸Ref. [127]; ⁹Ref. [108]; ¹⁰Ref. [61]; ¹¹Calc. from other properties.

Methyl acetate $C_3H_6O_2$ (T_c = 506.8 K, p_c = 4.687 MPa, ρ_c = 325 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h′, kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
331	101.3	875	2.83	-173.4	228.5	401.9	1.92	1.19	260	8.9	157	14.2	3.18	0.75	19.4	1.64
350	200	850	5.16	-136.1	249.1	385.2	1.99	1.25	225	9.5	146	15.7	3.07	0.76	17	1.79
370	359	820	8.87	-96.5	269.8	366.3	2.08	1.35	192	10.1	133	17.5	3	0.78	14.7	1.98
390	537	780	14.5	-57.7	289.8	347.5	2.18	1.45	168	10.7	122	19.5	3	0.8	12	2.19
410	854	750	22.7	-17.8	308.8	326.6	2.32	1.57	145	11.4	110	21.7	3.04	0.82	9.4	2.53
430	1344	715	34.6	26.7	326	297.3	2.46	1.72	121	12.1	98	24.1	3.05	0.86	6.9	3
450	1930	680	52.2	76.4	340.2	263.8	2.65	1.95	99	13.1	86	27	3.06	0.95	4.6	3.78
470	2688	620	79.3	126.7	348.6	221.9	2.94	2.38	80	14.1	74	30.4	3.18	1.1	2.4	5.12
490	3723	540	127.8	196.4	342.9	146.5	3.58	3.86	62	16.1	61	35.3	3.64	1.76	1.1	8.89
506.8	4687	325	325	254.6	254.6				56	56	50.3	50.3				
Uncertainty	h ¹	h ¹	h ²	h ¹⁰	h ^{3,2}	h ¹	h⁴	h ^{1,2}	h ^{1,5}	h ^{1,6}	h ^{1,7}	h ^{1,7}	h ¹⁰	h ¹⁰	h ^{1,8}	h ⁹

¹Ref. [22]; ²Ref. [52]; ³Ref. [115]; ⁴Ref. [63]; ⁵Ref. [126]; ⁶Ref. [107]; ⁷Ref. [108]; ⁸Ref. [89]; ⁹Estimated values; ¹⁰Calc. from other properties.

n-Butane C_4H_{10} (T_c = 425.13 K, p_c = 3.796 MPa, ρ_c = 228 kg/m³)

<i>Т_s,</i> К	p _s , kPa	ho', kg/m ³	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/ kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/ (m s)	η", 10 ⁻⁶ kg/ (m s)	λ', 10 ⁻³ W/ (m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
134.9	0.000666	735	0.000034	-89.82	406.11	495.93	1.973	1.106	2304.3	3.32	176.56	4.85	25.75	0.757	33.49	1.271
225	10.57	649.9	0.331	93.36	518.07	424.71	2.127	1.412	349.8	5.6	137.5	10.25	5.41	0.771	20.97	1.506
250	39.15	625	1.118	147.6	552.57	404.97	2.213	1.523	259.3	6.21	125.77	12.2	4.56	0.775	17.72	1.635
272.66	101.33	601.3	2.71	198.87	584.58	385.71	2.31	1.641	203.5	6.76	115.53	14.14	4.07	0.784	14.88	1.795
300	257.6	570.7	6.52	264	623.58	359.58	2.451	1.811	155.6	7.44	103.93	16.78	3.67	0.802	11.6	2.073
325	520.1	539.9	12.83	327.34	658.9	331.56	2.612	2.002	123.3	8.12	94.24	19.6	3.42	0.83	8.76	2.467
350	944.2	505.2	23.39	395.14	692.84	297.7	2.82	2.25	97.6	8.96	85.5	23.06	3.22	0.875	6.1	3.13
375	1581.6	463.7	41.01	468.72	723.35	254.63	3.132	2.637	75.9	10.11	77.68	27.66	3.06	0.964	3.66	4.45
400	2495.4	408.5	73.08	551.22	745.21	193.99	3.838	3.623	56	12.03	70.6	35.03	3.04	1.24	1.53	8.52
425.13	3796	228	228	693.91	693.91											
Uncertainty	a ¹	a ¹	a ¹	b ¹	b ¹	b ¹	c ¹	c ¹	d ²	d ²	d³	d ³	d ⁴	d ⁴	e ⁵	b ¹

¹Refs. [9]; ²Ref. [130]; ³Ref. [86]; ⁴Calc. from other properties; ⁵Ref. [10].

Isobutane C_4H_{10} ($T_c = 407.81$ K, $p_c = 3.629$ MPa, $\rho_c = 225.5$ kg/m³)

<i>T_s,</i> K	p _s , kPa	ho', kg/m³	ρ", kg/m³	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/ kg	c _{p'} , kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/ (m s)	λ', 10 ⁻³ W/ (m K)	λ", 10 ⁻³ W/ (m K)	Pr′	Pr″	σ, 10 ⁻³ N/m	<i>β,</i> 10 ⁻³ /K
113.73	0.000023	740.3	0.000001	-112.38	368.32	480.7	1.689	0.88	8767.2	2.85	157.92	2.27	93.76	1.1	33.23	1.276
225	18.62	632.5	0.586	95.57	490.85	395.28	2.061	1.353	367.5	5.7	118.44	10.03	6.39	0.769	18.92	1.623
250	63.35	606.3	1.825	148.44	523.43	374.99	2.168	1.481	262	6.3	107.94	12.17	5.26	0.767	15.83	1.784
261.4	101.33	593.8	2.83	173.49	538.6	365.1	2.222	1.547	227.8	6.58	103.29	13.2	4.9	0.771	14.44	1.877
275	167.51	578.4	4.53	204.24	556.82	352.58	2.293	1.631	194.4	6.91	97.91	14.48	4.55	0.778	12.81	2.01
300	370	548.3	9.61	263.5	590.37	326.87	2.442	1.81	148.2	7.55	88.6	17.02	4.09	0.802	9.89	2.349
325	716.6	514.7	18.42	326.92	623.2	296.28	2.631	2.036	114.7	8.28	80.17	20.02	3.76	0.842	7.11	2.9
350	1258.7	475.5	33.23	395.61	653.77	258.16	2.898	2.355	88.6	9.24	72.68	23.93	3.53	0.91	4.52	3.95
375	2055.7	425.3	59.24	471.92	678.4	206.48	3.404	3.031	66.2	10.81	66.12	30.04	3.41	1.09	2.2	6.69
407.81	3629	225.5	225.5	633.94	633.94											
Uncertainty	a ¹	a ¹	a ¹	b ¹	b ¹	b ¹	c ¹	c ¹	d ²	d ²	d ³	d ³	d ⁴	d ⁴	e ⁵	b ¹

¹ Refs. [9]; ²Ref. [130]; ³Ref. [84]; ⁴Calc. from other properties; ⁵Ref. [4].

1,2-Butadiene C_4H_6 , CH_3 $CH=C=CH_2$ ($T_c=443.7$ K, $p_c=4.500$ MPa, $\rho_c=246.8$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{pʻ} , kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
284	101.3	651	2.32	-197	237	434	2.2	1.48	200	7.4	126	12.5	3.62	0.88	18	1.71
300	189	643	4.04	-166	257	423	2.24	1.56	185	7.78	119	14.1	3.48	0.86	15.7	1.87
315	265	625	6.43	-131	275	406	2.3	1.65	170	8.27	113	15.8	3.46	0.86	13.9	2.02
330	445	605	9.8	-94	293	387	2.41	1.75	150	8.76	107	17.5	3.38	0.88	12.1	2.18
345	661	585	14.4	-57	311	368	2.49	1.87	134	9.26	102	19.3	3.27	0.9	10.4	2.39
360	945	563	20.7	-19	327	346	2.6	2.01	116	9.77	98	21.2	3.08	0.93	8.65	3.26
375	1310	537	29.2	79	341	322	2.72	2.18	100	10.4	93	23.3	2.92	0.97	7	3.39
390	1770	507	40.7	61	354	293	2.87	2.43	85	11	88	25.6	2.77	1.04	5.3	3.78
400	2140	485	50.8	88	359	271	3.01	2.68	76	11.5	82	27.3	2.79	1.13	4.1	4.28
443.7	4500	246.8	246.8	255	255				43	43	49	49				
Uncertainty	h ^{1,2}	h ¹	h ³	h ¹⁰	h ^{1,3}	h ¹	h ¹	h ^{1,3}	h ^{1,4}	h ^{1,5}	h ⁶	h ^{7,8}	h ¹⁰	h ¹⁰	h ¹	h ⁹

¹Ref. [22]; ²Ref. [27]; ³Ref. [52]; ⁴Ref. [59]; ⁵Ref. [42]; ⁶Ref. [93]; ⁷Ref. [74]; ⁸Ref. [108]; ⁹Estimated values; ¹⁰Calc. from other properties.

1,3-Butadiene C_4H_6 , CH_2 =CHCH= CH_2 (T_c = 425.15 K, p_c = 4.330 MPa, ρ_c = 245 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
268.69	101.3	650	2.53	493.3	908.7	415.4	2.14	1.42	200	7.57	126	9.54	3.4	1.13	16.6	1.79
285	184	631	4.41	529	928.4	399.4	2.22	1.53	164	8.43	117	12.3	3.11	1.05	14.5	1.92
300	298	612	6.97	563	946.4	383.4	2.29	1.63	138	8.91	110	14.7	2.87	0.99	12.7	2.07
315	458	593	10.5	598.4	964.4	366	2.37	1.74	117	9.41	103	17.3	2.169	0.95	10.9	2.24
330	676	572	15.5	635	981.7	346.7	2.47	1.87	99.5	9.94	95.6	19.9	2.57	0.93	9.12	2.5
350	1080	541	26.7	686.5	1003.8	317.3	2.63	2.07	84.3	10.7	86.6	23.7	2.56	0.93	6.86	2.97
370	1630	507	38.7	741.5	1023.2	281.7	2.81	2.35	71.3	11.6	78	27.5	2.57	1.02	4.73	3.81
390	2370	464	53.5	800.1	1038.3	238.2	3.03	2.92	61.7	12.6	69.8	31.6	2.68	1.16	2.75	5.45
410	3350	405	101	867.5	1041.4	173.9	3.28	4.54	53.4	15	62	37.8	2.83	1.3	1	12.46
425.15	4330	245	245								53.7	53.7				
Uncertainty	h ¹	h ¹	h ¹	h ¹	h ¹	h ¹	h ^{1,2}	h ^{3,4}	h ^{1,5}	h ^{6,7}	h ⁸	h ^{9,10}	h ¹³	h ¹³	h ¹¹	h ¹²

¹Ref. [125]; ²Ref. [67]; ³Ref. [6]; ⁴Ref. [18]; ⁵Ref. [71]; ⁶Ref. [70]; ⁷Ref. [42]; ⁸Ref. [68]; ⁹Ref. [69]; ¹⁰Ref. [108]; ¹¹Ref. [73]; ¹²Estimated values; ¹³Calc. from other properties.

n-Butanol C₄H₁₀O, C₂H₅CH₂CH₂OH (T_c = 561.15 K, p_c = 4.960 MPa, ρ_c = 270.5 kg/m³)

<i>Т_{s,}</i> К	<i>p₅,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	с _{р′} , kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
390.65	101.3	712	2.3	0	591.3	591.3	3.2	1.87	422.9	9.29	122.9	21.7	11.01	0.81	17.1	1.69
410.2	182	688	4.1	64.8	629.8	565	3.54	1.95	317.3	10.3	117.9	24.2	9.53	0.83	15.6	1.86
429.2	327	664	7.9	135	672.3	537.3	3.95	2.03	245	10.7	113.1	26.7	8.58	0.81	13.9	2.04
446.5	482	640	12.5	206.8	716.5	509.7	4.42	2.14	196.4	11.4	108.7	28.2	7.97	0.86	12.3	2.11
469.5	759	606	23.8	315.3	784.1	468.8	5.15	2.24	149	12.1	102.9	31.3	7.46	0.87	10.2	2.54
485.2	1190	581	27.8	399.6	836.8	437.2	5.74	2.37	124	12.7	99	33.1	7.22	0.91	7.5	2.84
508.3	1830	538	48.2	541.9	924.4	382.5	6.76	2.69	96.8	13.9	93.2	36.9	7.02	1.01	6.44	3.7
530.2	2530	487	74	700.2	1015.3	315.1	7.9	3.05	76.9	15.4	87.7	40.2	6.93	1.17	4.23	5.78
545.5	3210	440	102.3			248.4	3.97	65.8	17.1	74	43.6		1.56	2.11	9.08	
558.9	4030	364	240.2			143			57.6	28.3	62.8	51.5			0.96	
Uncertainty	h ¹	h ²	h ¹	h ¹⁰	h ¹⁰	h ³	h ²	h ^{4,5}	h ⁶	h ^{6,7}	h ²	h ^{6,8}	h ¹⁰	h ¹⁰	h ²	h ⁹

¹Ref. [73]; ²Ref. [116]; ³Ref. [132]; ⁴Ref. [67]; ⁵Ref. [18]; ⁶Ref. [68]; ⁷Ref. [107]; ⁸Ref. [108]; ⁹Estimated values; ¹⁰Calc. from other properties.

Tert.-butanol C₄H₁₀O, (CH₃)₃COH (T_c = 506.2 K, p_c = 3.970 MPa, ρ_c = 270 kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _{p'} , kJ/(kg K)	с _р ", kJ/(kg K)	h', 10 ⁻⁶ kg/(m s)	h", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
355.6	101.3	710	2.64	-182.0	324.6	506.6	2.9	1.81	531	9.4	109	17.9	14.1	0.95	14.5	1.84
375	207	688	5.12	-130.7	355	485.7	3.06	1.92	312	10	104	19.8	9.18	0.97	13	2.03
390	322	670	8.11	-78.4	378	456.4	3.19	2.02	235	10.4	100	21.4	7.5	0.98	11.5	2.19
405	483	647	12.4	-35.2	400.2	435.4	3.34	2.13	180	11	96	23.1	6.26	1.01	10	2.98
420	779	621	18.5	15	421.1	406.1	3.47	2.26	142	11.5	92	24.9	5.36	1.04	8.6	3.04
435	1010	596	27.1	63.3	440.1	376.8	3.62	2.42	118	12.1	88	26.9	4.85	1.09	7.1	3.23
450	1516	567	39.1	117.4	456.5	339.1	3.79	2.64	98	12.8	83	29.1	4.47	1.16	5.5	3.65
465	1896	533	56.4	171.2	468.5	297.3	4.01	3	84	13.6	77	31.6	4.37	1.29	3.8	4.49
480	2619	487	82.3	238.1	472.6	234.5	4.38	3.73	66	14.8	70	34.5	4.13	1.59	2.2	6.26
506.2	3970	270	270	351.6	351.6				65	65	53	53				
Uncertainty	h ¹	h ¹	h ²	h ¹²	h ^{2,3}	h ¹	h ⁴	h ^{1,2}	h ^{5,6}	h ^{1,7}	h ^{1,8}	h ^{1,9}	h ¹²	h ¹²	h ^{1,10}	h ¹¹

¹Ref. [22]; ²Ref. [52]; ³Ref. [115]; ⁴Ref. [63]; ⁵Ref. [126]; ⁶Ref. [59]; ⁷Ref. [107]; ⁸Ref. [93]; ⁹Ref. [108]; ¹⁰Ref. [89]; ¹¹Estimated values; ¹²Calc. from other properties.

Ethyl ether $C_4H_{10}O$, $(CH_3CH_2)_2O$ $(T_c = 467 \text{ K}, p_c = 3.610 \text{ MPa}, \rho_c = 265 \text{ kg/m}^3)$

T _s , K	<i>p_s,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _р ′, kJ/(kg K)	c _p ", kJ/(kg K)	h', 10 ⁻⁶ kg/(m s)	h", 10 ⁻⁶ kg/(m s)	λ' , 10 ⁻³ W/(m K)	λ'' , 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
307.75	101.3	696.2	3.16	0	349.9	349.9	2.37	1.4	210	7.86	126	15.8	3.95	0.7	15.25	1.93
323	170	676.4	5.08	36.6	373.6	337	2.43	1.96	177	8.28	120	17.4	3.58	0.93	13.5	1.75
343	307	653.2	8.92	85.9	404.1	318.2	2.51	2.05	148	8.86	112	19.5	3.32	0.93	11.3	1.88
363	511	625	14.77	137	434.3	297.3	2.61	2.14	127	9.45	104	22.4	3.19	0.9	9.1	2.23
383	811	594.2	23.49	190.3	464.5	274.2	2.72	2.26	109	10.1	95.6	24.2	3.1	0.94	7	2.79
403	1220	558	36.38	248.6	497.7	249.1	2.86	2.43	95	10.9	87.5	27	3.11	0.98	4.9	3.51
423	1770	517.9	55.51	305	520.6	215.6	3.01	2.75	84	11.7	79.9	30.2	3.16	1.07	3.1	4.54
443	2490	465.8	87.31	367.1	532.5	165.4	3.2	3.44	77	13.1	71.4	34.2	3.45	1.32	1.5	5.9
458	3150	401.8	132	416.1	523.9	107.8	3.75	4.15	70	15	65.3	38.6	4.02	1.61	0.5	14.89
463	3490	366.3	162	433	524.6	81.6	4.07	4.5	67	16.4	63.3	41.5	4.31	1.78	0.2	24.04
Uncertainty	h ¹	h ¹	h ¹	h ⁹	h ⁹	h ¹	h ¹	h ^{2,3}	h ^{1,8}	h ^{4,5}	h ⁶	h ^{6,7}	h ⁹	h ⁹	h ¹	h ⁸

¹Ref. [125]; ²Ref. [6]; ³Ref. [18]; ⁴Refs. [122]; ⁵Ref. [107]; ⁶Ref. [118]; ⁷Ref. [108]; ⁸Estimated values; ⁹Calc. from other properties.

Ethylacetate $C_4H_8O_2$, $CH_3CO_2C_2H_5$ ($T_c = 523.25$ K, $p_c = 3.832$ MPa, $\rho_c = 307.7$ kg/m³)

<i>Т_s,</i> К	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _p ', kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
350.25	101.3	830	3.2	-89.7	274.6	364.3	2.1	1.46	255	8.9	125	15.8	4.28	0.82	17.4	1.65
370	193	800	5.63	-47.3	300.2	347.5	2.17	1.54	221	9.5	118	17.4	4.08	0.84	15	1.79
390	310	770	9.45	- 6.7	326.2	332.9	2.28	1.63	193	10.1	111	19.3	3.96	0.85	12.6	1.99
410	510	740	15.1	35.7	351.8	316.1	2.36	1.73	158	10.7	104	21.5	3.59	0.86	10	2.23
430	792	705	23.4	81.3	376.5	295.2	2.5	1.85	134	11.4	98	23.5	3.42	0.9	7.8	2.57
450	1172	670	35.5	131.7	399.6	267.9	2.64	2	111	12.2	92	25.8	3.19	0.95	5.8	3.06
470	1655	625	54.2	182	420.6	238.6	2.82	2.25	90	13	85	28.5	2.99	1.03	3.9	3.89
490	2275	570	81.3	241.7	434.3	192.6	3.09	2.68	72	14.3	77	32	2.89	1.2	2.3	5.36
510	3172	475	134.5	315.8	433	117.2	3.76	4.52	56	16.4	66	36.5	3.19	2.03	0.74	9.46
523.2	3832	307.7	307.7	362.8	362.8				57	57	48.2	48.2				
Uncertainty	h ¹	h ¹	h ²	h ¹¹	h ^{3,2}	h ¹	h ^{1,4}	h ^{3,2}	h ^{5,6}	h ^{1,7}	h ^{8,9}	h ^{1,9}	h ¹¹	h ¹¹	h ¹¹	h ¹⁰

¹Ref. [22]; ²Ref. [52]; ³Ref. [115]; ⁴Ref. [63]; ⁵Ref. [126]; ⁶Ref. [59]; ⁷Ref. [42]; ⁸Ref. [93]; ⁹Ref. [108]; ¹⁰Estimated values; ¹¹Calc. from other properties.

n-Pentane C_5H_{12} ($T_c = 469.70$ K, $p_c = 3.370$ MPa, $\rho_c = 232.0$ kg/m³)

		ρ',	ho'',	h',	h",	Δh_{v_r}	ς _p ',	c _p ",	η', 10 ⁻⁶	η", 10 ⁻⁶	λ', 10 ⁻³	λ", 10 ⁻³		- "	σ, 10 ⁻³	β,
T _s , K	p_s , kPa	kg/m³	kg/m³	kJ/kg	kJ/kg	kJ/kg	kJ/(kg K)	kJ/(kg K)	kg/(m s)	kg/(m s)	W/(m K)	W/(m K)	Pr'	Pr"	N/m	10 ⁻³ /K
300	73.17	619	2.194	-21.63	343.22	364.86	2.324	1.714	218.6	6.7	106.6	14.9	4.77	0.77	15.26	1.609
309.21	101.33	609.7	2.975	0	357.58	357.58	2.368	1.764	201.3	7	102.7	15.7	4.64	0.78	14.26	1.672
320	144.35	598.6	4.15	25.86	374.55	348.69	2.422	1.826	183.2	7.2	98.9	16.7	4.49	0.79	13.11	1.758
340	260.16	577	7.261	75.45	406.37	330.92	2.532	1.951	154.5	7.8	92.4	18.7	4.23	0.81	11	1.957
360	436.1	553.9	11.98	127.38	438.38	311.01	2.656	2.092	130.7	8.4	86.8	21	4	0.83	8.96	2.234
380	689.2	528.4	18.93	181.94	470.15	288.21	2.801	2.258	110.7	9	81.5	23.6	3.8	0.86	6.99	2.641
400	1038.4	499.7	29.12	239.57	500.99	261.41	2.981	2.471	93.7	9.7	76.6	26.4	3.65	0.91	5.12	3.29
420	1505	466	44.32	300.97	529.66	228.69	3.233	2.789	78.9	10.7	71.6	29.8	3.56	1	3.37	4.46
440	2114.7	423.5	68.6	367.61	553.52	185.91	3.689	3.441	66.1	12.3	66.5	34.9	3.67	1.22	1.77	7.23
469.7	3370	232	232	520.48	520.48				54.9	14.2	61.5	45.8	,	,	0.44	
Uncertainty	a ¹	a ¹	c ¹	c ¹	c ¹	c ¹	d ¹	d ¹	f ⁵	f ²	f ³	f³	h ⁶	h ⁶	e ⁴	d ¹

¹Ref. [102]; ²Ref. [25]; ³Ref. [11]; ⁴Ref. [100]; ⁵Ref. [50]; ⁶Calc. from other properties.

Cyclopentane C_5H_{10} ($T_c=511.8$ K, $p_c=4.508$ MPa, $\rho_c=272$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _р /, kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
322.4	101.3	706	10.8	-288.7	104.9	393.6	1.92	1.34	320	7.9	125	16.3	4.92	0.65	18.6	1.49
350	239	680	20	-217.3	138.6	355.9	2.05	1.47	255	8.9	117	18.5	4.47	0.71	15.1	1.69
370	406	656	36.3	-179.4	163.9	343.3	2.12	1.61	200	9.7	111	20.8	3.82	0.75	13	1.85
390	642	635	52.1	-155.3	189.6	334.9	2.22	1.79	160	10.5	105	23.2	3.38	0.81	11.1	2.07
410	948	607	69.2	-92.8	215.4	318.2	2.37	1.93	128	11.2	98	25.7	3.1	0.84	8.7	2.35
430	1309	577	97.5	-44.2	240.5	284.7	2.53	2.11	109	11.9	91	28.4	3.03	0.88	6.6	2.75
450	1861	547	117	-3.8	264.1	267.9	2.73	2.4	92	12.8	85	31.3	2.95	0.98	4.7	3.38
470	2742	505	141	62.2	284.1	221.9	3.04	2.81	76	13.9	79	34.8	2.92	1.12	2.9	4.45
490	3562	455	176	127.4	294.9	167.5	3.78	3.91	58	15.9	68	39	3.22	1.59	1.3	7.12
511.8	4508	272	272	227.1	227.1				43	43	51.1	51.1				
Uncertainty	h ¹	h ¹	h ¹¹	h ¹¹	h ^{2,3}	h ¹	h ^{1,4}	h ^{1,3}	h ^{1,5}	h ^{1,6}	h ⁷	h ^{1,8}	h ¹¹	h ¹¹	h ^{1,9}	h ¹⁰

¹Ref. [22]; ²Ref. [115]; ³Ref. [52]; ⁴Ref. [126]; ⁵Ref. [59]; ⁶Ref. [42]; ⁷Ref. [68]; ⁸Ref. [108]; ⁹Ref. [89]; ¹⁰Estimated values; ¹¹Calc. from other properties.

Isopentane, 2-Methyl Butane C_5H_{12} , $(CH_3)_2C(CH_3)_2$ ($T_c = 460.4$ K, $p_c = 3.380$ MPa, $\rho_c = 236$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _p ′, kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
301	101.3	613	3.07	290.8	632.7	341.9	2.29	1.72	201	7.4	103	14.7	4.47	0.87	14	1.73
325	217	586	6.3	348.9	669.9	321	2.43	1.86	163	8	95	17.4	4.17	0.86	11.5	1.94
340	328	569	9.41	383.8	693.1	309.3	2.53	1.96	146	8.5	91	19.3	4.06	0.86	9.9	2.11
355	476	552	13.5	423.3	716.4	293.1	2.62	2.08	126	9	87	21.5	3.79	0.87	8.4	2.32
370	667	532	18.9	465.2	739.7	274.5	2.71	2.2	111	9.5	84	23.4	3.58	0.89	7	2.59
385	915	511	26.2	504.7	765.3	260.6	2.8	2.34	97	9.9	80	25	3.4	0.93	5.6	2.95
400	1222	488	36	546.6	783.9	237.3	2.91	2.54	84	10.5	75	27.6	3.22	0.97	4.3	3.47
415	1603	461	49.3	588.5	807.1	218.6	3.05	2.81	71	11.2	70	29.4	3.05	1.07	3	4.26
430	2070	428	68.3	639.7	825.7	186	3.24	3.28	60	12.2	63	33.4	2.99	1.2	1.9	5.66
460.4	3380	236	236	790.8	790.8						48.3	48.3				
Uncertainty	h ¹	h ¹	h ¹	h ²	h ²	h ²	h ^{11,3}	h ^{1,4}	h ^{5,6}	h ^{2,7}	h ^{8,9}	h ^{2,10,9}	h ¹²	h ¹²	h³	h ¹¹

¹Ref. [125]; ²Ref. [110]; ³Ref. [89]; ⁴Ref. [52]; ⁵Ref. [126]; ⁶Ref. [59]; ⁷Ref. [42]; ⁸Ref. [93]; ⁹Ref. [108]; ¹⁰Ref. [22]; ¹¹Estimated values; ¹²Calc. from other properties.

Neopentane, 2,2-Dimethylpropane C_5H_{12} , $C(CH_3)_4$ ($T_c = 433.78$ K, $p_c = 3.196$ MPa, $\rho_c = 238$ kg/m³)

<i>T_s,</i> K	P _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _p ′, kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
282.65	101.3	603	3.28	-111	204	315	2.14	1.65	280	6.89	90	13.2	6.66	0.86	12.9	1.8
305	215	575	6.38	-50	237	297	2.27	1.8	211	7.44	84	15	5.7	0.89	10.6	2.01
320	362	558	9.91	-25	260	284	2.37	1.91	169	7.88	80	16.3	5.01	0.92	9.11	2.2
335	482	543	14.5	13	282	269	2.48	2.03	140	8.27	76	18	4.57	0.03	7.67	2.44
350	676	519	20.7	51	305	254	2.63	2.16	112	8.73	72	19.8	4.09	0.95	6.27	2.75
365	945	497	29	91	327	236	2.77	2.32	94	9.25	67	21.6	3.89	0.99	4.93	3.16
380	1280	472	40.2	128	347	219	2.96	2.53	82	9.87	63	24.2	3.85	1.03	3.65	3.76
395	1700	443	55.8	175	366	191	3.2	2.85	69	10.3	58	26.6	3.81	1.1	2.45	4.75
410	2200	407	79.1	221	379	158	3.59	3.51	61	11.8	54	30.8	4.06	1.34	1.34	6.74
433.78	3196	238	238	329	329				36	36	42	42				
Uncertainty	h ¹	h ¹	h ^{1,2}	h ¹³	h ^{3,2}	h ¹	h ⁴	h ^{3,2}	h ^{5,6}	h ^{7,1,8}	h ^{9,1,10}	h ^{1,10}	h ¹³	h ¹³	h ¹¹	h ¹²

¹Ref. [30]; ²Ref. [52]; ³Ref. [115]; ⁴Ref. [63]; ⁵Ref. [126]; ⁶Ref. [59]; ⁷Ref. [60]; ⁸Ref. [42]; ⁹Ref. [93]; ¹⁰Ref. [108]; ¹¹Ref. [7]; ¹²Estimated values; ¹³Calc. from other properties.

Methyl-tert-butylether $C_5H_{12}O$, $CH_3OC_4H_9$ ($T_c = 503.4$ K, $p_c = 3.411$ MPa, $\rho_c = 275$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _p /, kJ/(kg K)	c _p ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
331.2	101.3	706	3.4	-22.2	292.2	314.4	2.3	1.78	231	8.5	108	15.4	4.9	0.98	14.7	1.56
340	133	697	4.39	-1.7	306.6	308.3	2.35	1.83	214	8.76	106	16.2	4.76	0.99	13.8	1.62
360	234	673	7.51	46.5	339.8	293.3	2.46	1.95	184	9.38	100	18.2	4.53	1.01	11.7	1.76
380	386	649	12.2	96.6	373.7	277.1	2.57	2.08	151	10	94	20.3	4.12	1.02	9.8	1.96
400	602	623	18.9	143.7	407.8	259.1	2.69	2.23	129	10.7	89	22.5	3.92	1.06	7.9	2.17
420	897	591	28.5	203.1	441.8	238.7	2.83	2.39	109	11.5	83	24.9	3.73	1.1	6.1	2.55
440	1290	556	42.3	259.8	474.9	215.1	3.01	2.61	91	12.3	78	27.6	3.52	1.16	4.3	3.22
460	1800	517	62.7	319.2	505.4	186.3	3.27	2.95	74	13.3	71	30.7	3.36	1.28	2.7	4.12
480	2440	467	96.2	382	529.3	147.3	3.83	3.76	59	14.9	62	34.4	3.53	1.63	1.3	6.68
503.4	3411	275	275	488.1	488.1				44	44	47	47				
Uncertainty	h ¹	h ²	h ³	h ¹⁶	h ^{3,4}	h ^{5,6}	h ⁷	h ^{3,4}	h ^{8,9}	h ^{10,11}	h ¹²	h ^{13,14}	h ¹⁶	h ¹⁶	h ¹³	h ¹⁵

¹Ref. [26]; ²Ref. [33]; ³Ref. [52]; ⁴Ref. [92]; ⁵Ref. [13]; ⁶Ref. [132]; ⁷Ref. [5]; ⁸Ref. [126]; ⁹Ref. [62]; ¹⁰Ref. [106]; ¹¹Ref. [107]; ¹²Ref. [93]; ¹³Ref. [89]; ¹⁴Ref. [108]; ¹⁵Estimated values; ¹⁶Calc. from other properties.

n-Hexane C_6H_{14} ($T_c = 507.82$ K, $p_c = 3.034$ MPa, $\rho_c = 233.2$ kg/m³)

<i>T_s,</i> K	P_{sr} kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	c _p ′, kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	<i>σ</i> , 10 ⁻³ N/m	<i>β</i> , 10 ⁻³ /K
300	21.87	653	0.768	-98.60	265.66	364.26	2.26	1.682	294.8	6.4	117.8	12.8	5.66	0.84	17.73	1.413
325	57.77	629.5	1.906	-40.70	306.52	347.22	2.371	1.809	235.2	6.9	109	15.1	5.12	0.83	15.05	1.53
341.86	101.33	613	3.231	0	334.93	334.93	2.452	1.901	203.7	7.3	103.5	16.8	4.83	0.82	13.3	1.631
350	129.92	604.8	4.086	20.14	348.84	328.71	2.493	1.948	190.4	7.5	101	17.7	4.7	0.82	12.48	1.689
375	258.2	578.6	7.87	84.18	392.27	308.09	2.626	2.101	155.6	8.1	93.6	20.4	4.37	0.83	10.01	1.911
400	466.1	550.1	14.05	151.72	436.28	284.56	2.774	2.275	127.8	8.8	87	23.2	4.08	0.87	7.68	2.238
425	780.3	518.2	23.81	223.16	480.06	256.9	2.948	2.485	105	9.8	81.1	26.3	3.82	0.93	5.49	2.76
450	1231.3	481.1	39.36	299.18	522.12	222.94	3.18	2.785	86	11.2	76	29.5	3.6	1.06	3.48	3.75
475	1856.7	433.6	66.1	381.51	559.07	177.57	3.606	3.4	69.9	13.2	71.5	32.9	3.52	1.37	1.7	6.34
507.82	3034	233.2	233.2	543.34	543.34				56.1	17.5	68	36			0.27	
Uncertainty	a ¹	a ¹	c ¹	c ¹	c ¹	c ¹	d ¹	d ¹	f ³	e ⁴	e ⁵	e ⁶	h ⁷	h ⁷	d ²	d ¹

¹Ref. [102]; ²Ref. [101]; ³Ref. [50]; ⁴Ref. [25]; ⁵Ref. [20]; ⁶Ref. [15]; ⁷Calc. from other properties.

Cyclohexane C_6H_{12} ($T_c = 553.64$ K, $p_c = 4.075$ MPa, $\rho_c = 273.0$ kg/m³)

<i>Т_s,</i> К	p., kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	ς _p ', kJ/(kg K)	ς _ρ ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
353.89	101.33	719.5	3.013		355.99	355.99	2.149	1.586	400	8.6	102	16.5	8.43	0.83	18	1.409
360	121.31	713.3		13.25	364.83	351.58	2.143		370	8.7	100	17.4			17.2	1.437
300	121.51	/13.3	3.567	13.23	304.83	331.38	2.18	1.623	3/0	8.7	100	17.4	8.07	0.81	17.2	1.437
385	236.5	687.2	6.7	69.43	401.95	332.52	2.308	1.787	280	9.4	92.6	20.1	6.98	0.84	13	1.577
410	420.5	659.5	11.66	128.84	440.26	311.42	2.439	1.972	230	10.2	86.5	22.9	6.49	0.88	11	1.773
435	695.1	629.5	19.23	191.64	479.15	287.51	2.581	2.189	190	10.7	77.9	26	6.3	0.9	8.1	2.062
460	1084.5	596.1	30.6	258.14	517.81	259.67	2.745	2.465	160	11.6	69.2	30.4	6.35	0.94	5.2	2.52
485	1614.7	557.5	47.84	328.91	555.1	226.19	2.954	2.856	135	12.3	60.6	36.1	6.58	0.98	2	3.32
510	2315	510.5	75.19	404.95	589.18	184.23	3.267	3.509	115	13.6	56.5	39.4	6.65	1.21	1.5	4.96
535	3223.2	444.4	126	489.85	615.4	125.54	4.287	5.038	95	17.7	48.3	46	8.43	1.94	0.5	12.06
553.64	4075	273	273	596.89	596.89				54	54	57.9	57.9				
Uncertainty	a ¹	a ¹	c ¹	c ¹	c ¹	c ¹	d ¹	d ¹	h ^{2,3}	h ⁴	h ^{5,6}	h ⁷	h ⁹	h ⁹	h ⁸	d ¹

¹Ref. [83]; ²Ref. [17]; ³Ref. [23]; ⁴Ref. [105]; ⁵Ref. [93]; ⁶Ref. [71]; ⁷Ref. [127]; ⁸Ref. [12]; ⁹Calc. from other properties.

Benzene C₆H₆ ($T_c = 562.05 \text{ K}, p_c = 4.895 \text{ MPa}, \rho_c = 305.0 \text{ kg/m}^3$)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	<i>h,</i> / kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _p ', kJ/ (kg K)	c _p ", kJ/ (kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
278.7	4.79	896.5	0.16	0	447.3	447.3	1.69		815						30.8	
300	13.81	872.2	0.44	36.7	469.9	433.2	1.75		587	7.83	140.5		7.3		28	1.17
325	38.81	844.3	1.14	81.3	495.5	414.2	1.82		428	8.49	132.3		5.9		24.7	1.26
353.3	101.5	812.9	2.79	134.3	528.2	393.9	1.92	1.29	321	9.26	122.9	14.8	5.02	0.81	21.1	1.36
400	352.3	759.2	9.02	228.5	585.4	356.9	2.1	1.53	205	10.7	119	19.8	3.62	0.83	15.5	1.66
450	971.6	694.3	24.4	339.3	648.2	308.9	2.3	1.81	138	12.5	106	26.7	2.99	0.85	9.88	2.37
475	1481.9	656	37.9	398.9	678.6	279.7	2.46	2.01	116	13.7	100	31	2.85	0.89	7.25	3.03
500	2166.4	610.9	57.9	461.9	706.7	244.8	2.66	2.32	97.6	15	93.5	35.7	2.78	0.97	4.79	4.19
525	3060.9	553.8	89.4	530	729.9	199.8	3.05	2.73	80.7	16.8	87.1	41.1	2.83	1.12	2.54	6.68
550	4215.5	465.5	151.1	609.6	738.7	129.1	4.26		59.6	19.1	77.4	50.2	3.28		0.63	16.48
Uncertainty	b ¹	b ¹	c ¹	c ¹	c ¹	c ¹	d ¹	d ^{2,3}	c ^{4,5}	d ^{5,6}	e ^{7,8}	e ^{8,9}	h ¹³	h ¹³	d ^{10, 11}	h ¹²

¹Ref. [28]; ²Ref. [122]; ³Ref. [18]; ⁴Ref. [46]; ⁵Ref. [125]; ⁶Ref. [24]; ⁷Ref. [3]; ⁸Ref. [121]; ⁹Ref. [108]; ¹⁰Ref. [40]; ¹¹Refs. [100]; ¹²Estimated values; ¹³Calc. from other properties.

Phenol C₆H₆O (T_c = 693.2 K, p_c = 6.130 MPa, ρ_c = 435.7 kg/m³)

Т _s , К	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	с _p /, kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
455	101.3	955	2.6	-153	336	351	12.8	175	28.9	489	2.55	1.63	5.11	0.72	24.5	0.91
480	216	932	5.36	-93	374	256	13.5	170	31.6	467	2.61	1.74	3.93	0.74	20.9	1.02
505	404	905	9.88	-41	411	219	14.3	166	34.8	452	2.66	1.85	3.51	0.76	18.2	1.2
530	693	877	16.9	20	447	166	15.2	162	38.4	427	2.76	1.95	2.83	0.77	14.6	1.23
555	1100	851	27.2	80	482	137	16.2	157	42.4	402	2.85	2.06	2.59	0.79	12.4	1.63
580	1650	809	41.9	147	515	113	17.3	154	46.8	368	3.01	2.22	2.21	0.82	10.02	2.04
605	2360	772	62.9	206	545	90.1	18.6	149	51.4	339	3.1	2.44	1.87	0.88	7.6	2.63
635	3410	713	101	290	575	75.2	20.2	141	56.2	285	3.43	2.94	1.57	1.07	5.3	3.52
665	4720	636	170	399	587	65.3	23.4	130	64.3	188	3.77	5.1	1.89	1.86	2.7	10.39
693.15	6129	436	436	514	514				45.3	45.3	92	92				
Uncertainty	h ¹	h ²	h ³	h ¹⁶	h ^{3,4}	h ⁵	h ⁶	h ^{3,7}	h ⁸	h ^{9,10}	h ¹¹	h ^{12,13}	h ¹⁶	h ¹⁶	h ¹⁴	h ¹⁵

¹Ref. [26]; ²Ref. [127]; ³Ref. [52]; ⁴Ref. [48]; ⁵Ref. [29]; ⁶Ref. [67]; ⁷Ref. [6]; ⁸Ref. [71]; ⁹Ref. [70]; ¹⁰Ref. [107]; ¹¹Ref. [68]; ¹²Ref. [69]; ¹³Ref. [108]; ¹⁴Ref. [73]; ¹⁵Estimated values; ¹⁶Calc. from other properties.

Aniline $C_6H_5NH_2$ ($T_c = 699 \text{ K}, p_c = 5.301 \text{ MPa}, \rho_c = 340 \text{ kg/m}^3$)

T _s , K	р _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _p /, kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	<i>σ</i> , 10 ⁻³ N/m	β, 10 ⁻³ /K
457.5	101.3	875	2.56	-114	357	471	2.37	1.74	303	11.8	154	23.5	4.66	0.87	25.2	1.17
500	276	828	6.62	-10	427	437	2.52	1.89	213	13.1	146	28.1	3.68	0.88	19.9	1.34
525	456	800	10.7	53	468	415	2.61	1.99	178	13.9	141	30.9	3.29	0.89	16.9	1.48
550	716	769	16.7	137	509	372	2.71	2.09	152	14.7	136	33.8	3.03	0.91	14	1.65
575	1080	736	25.3	184	549	365	2.84	2.2	132	15.6	131	36.8	2.86	0.93	11.2	1.88
600	1560	699	37.5	154	589	335	2.97	2.35	117	16.5	126	40.1	2.76	0.97	8.5	2.21
625	2200	658	55.1	323	623	300	3.13	2.55	104	17.6	121	43.6	2.69	1.03	5.9	2.72
650	3010	608	81.7	396	653	257	3.36	2.9	94	19	116	47.8	2.72	1.5	3.6	3.65
675	4050	541	128	473	669	196	3.84	3.95	86	21.1	111	53.1	2.98	1.57	1.5	6.07
699	5300	340	340	584	584				71	71	70	70				
Uncertainty	h ¹	h ²	h ³	h ¹⁴	h ^{3,4}	h ²	h ⁵	h ^{3,4}	h ⁶	h ^{7,8}	h ⁹	h ^{10,11}	h ¹⁴	h ¹⁴	h ¹²	h ¹³

¹Ref. [125]; ²Ref. [22]; ³Ref. [52]; ⁴Ref. [115]; ⁵Ref. [63]; ⁶Ref. [71]; ⁷Ref. [70]; ⁸Ref. [107]; ⁹Ref. [68]; ¹⁰Ref. [69]; ¹¹Ref. [108]; ¹²Ref. [89]; ¹³Estimated values; ¹⁴Calc. from other properties.

n-Heptane C₇H₁₆ (T_c = 540.13 K, p_c = 2.736 MPa, ρ_c = 232.0 kg/m³)

<i>T</i> _s , K	P _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	$\Delta h_{_{V}}$, kJ/kg	с _р ′, kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η'' , 10^{-6} kg/(m s)	λ' , 10^{-3} W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	<i>σ</i> , 10 ⁻³ N/m	β, 10 ⁻³ /K
371.53	101.33	614.2	3.471	0	316.89	316.89	2.558	2.028	201	7.3	98	18	5.25	0.82	12.5	1.559
380	129.1	606.1	4.369	21.85	332.52	310.67	2.599	2.076	186	7.7	95.5	18.4	5.06	0.87	11.8	1.617
400	218.25	586	7.228	74.89	369.98	295.09	2.701	2.193	159	8.3	88.8	20.1	4.84	0.91	10	1.785
420	348.5	564.6	11.424	130.03	407.99	277.96	2.81	2.32	135	9	82.9	22.6	4.58	0.92	8.3	2.013
440	530.7	541.3	17.46	187.43	446.19	258.76	2.93	2.462	115	9.7	76.1	24.9	4.43	0.96	6.6	2.34
460	777	515.3	26.08	247.33	484.07	236.74	3.072	2.632	97	10.7	69.9	27.7	4.26	1.02	5.1	2.841
480	1101.1	485.3	38.6	310.15	520.77	210.62	3.255	2.863	82	12.1	61.1	29.9	4.37	1.16	3.6	3.71
500	1519.1	448.2	57.74	376.79	554.66	177.87	3.549	3.257	67	14	52	33	4.57	1.38	2.2	5.56
520	2052.4	395.8	91.1	449.77	581.67	131.9	4.312	4.338	54	17.6	41.8	36	5.57	2.12	0.8	11.91
540.13	2736	232	232	562.23	562.23				41	41						
Uncertainty	a ¹	a ¹	c ¹	c ¹	c ¹	c ¹	d ¹	d ¹	h ¹	h ¹	h ^{2,3}	h ²	h ⁴	h ⁴	h ¹	d ¹

¹Ref. [102]; ²Ref. [22]; ³Ref. [89]; ⁴Calc. from other properties.

n-Octane C_8H_{18} ($T_c = 569.32$ K, $p_c = 2.497$ MPa, $\rho_c = 234.9$ kg/m³)

<i>Т_s,</i> К	P _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	H", kJ/kg	Δh _ν , kJ/kg	ς _ρ ′, kJ/(kg K)	ς _ρ ″, kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)		λ", 10 ⁻³ W/(m K)	Pr'	Pr"	<i>σ</i> , 10 ⁻³ N/m	β, 10 ⁻³ /K
398.77	101.33	612.2	3.696	0	302.19	302.19	2.649	2.143	203	7.4	98	18.4	5.49	0.86	11.9	1.535
415	155.82	596.7	5.576	43.63	334.31	290.67	2.726	2.232	174	7.9	93	20.3	5.1	0.87	10.5	1.652
435	251.55	576.6	8.869	99.18	374.56	275.38	2.826	2.347	149	8.5	88	22.5	4.78	0.89	8.9	1.84
455	386.97	554.8	13.596	156.77	415.29	258.52	2.933	2.471	126	9.2	83	24.3	4.45	0.94	7.3	2.098
475	571.7	531	20.29	216.57	456.14	239.57	3.052	2.612	107	10	78	26.7	4.19	0.98	5.8	2.475
495	816.3	504	29.79	278.83	496.55	217.72	3.195	2.785	91	11.1	73	29.1	3.98	1.06	4.4	3.073
515	1133	472.3	43.61	344.02	535.57	191.55	3.39	3.031	75	12.5	68	31.6	3.74	1.2	2.9	4.16
535	1536.6	432	65.14	413.22	571.24	158.01	3.732	3.5	61	14.7	62	34.4	3.67	1.5	1.8	6.69
555	2047.6	370.7	105.7	489.95	597.73	107.78	4.905	5.241	48	19.4	56	38.6	4.2	2.63	0.6	18.07
569.32	2497	234.9	234.9	575.52	575.52						47.7	47.7				
Uncertainty	a ¹	a ¹	c ¹	c ¹	c ¹	c ¹	d ¹	d ¹	h ¹	h ^{1,4}	h ^{2.3}	h ^{2,3,5}	h ⁶	h ⁶	h ¹	d ¹

 1 Ref. [102]; 2 Ref. [110]; 3 Ref. [22]; 4 Ref. [42]; 5 Ref. [108]; 6 Calc. from other properties.

n-Nonane C_9H_{20} ($T_c = 594.63$ K, $p_c = 2.289$ MPa, $\rho_c = 234$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	c _p /, kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ' , 10^{-3} W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
423.97	101.3	614	3.94	195	490	295	2.72	2.24	213	7.4	95	20.8	6.1	0.8	11.3	1.6
435	134	602	5.18	226	513	287	2.77	2.3	177	7.6	92	22	5.33	0.79	10.4	1.68
455	214	581	8.22	282	555	273	2.87	2.4	153	7.9	87	24.1	5.04	0.79	8.86	1.84
475	338	560	12.6	340	598	258	2.97	2.51	132	8.3	82	26.4	4.78	0.79	7.33	2.07
495	496	535	18.7	402	640	238	3.1	2.63	112	8.7	77	28.7	4.51	0.8	5.86	2.35
515	717	510	27.3	464	683	219	3.23	2.77	94	9.1	72	31.2	4.22	0.81	4.46	2.77
535	965	479	39.6	529	724	195	3.38	2.95	78	9.7	66	33.8	3.99	0.85	3.13	3.9
555	1320	444	58	594	762	168	3.59	3.25	63	10.6	60	36.6	3.77	0.94	1.9	4.56
575	1750	394	89.8	664	792	128	4	4.05	50	12.2	55	40	3.64	1.24	1.81	7.51
594.63	2289	234	234	754	754						49	49				
Uncertainty	h ^{1,2}	h ²	h ³	h ¹⁵	h ^{3,4}	h ²	h ⁵	h ^{3,4}	h ^{6,7}	h ^{8,9}	h ^{10,11,12}	h ^{11,12}	h ¹⁵	h ¹⁵	h ¹³	h ¹⁴

¹Ref. [27]; ²Ref. [110]; ³Ref. [52]; ⁴Ref. [115]; ⁵Ref. [63]; ⁶Ref. [125]; ⁷Ref. [126]; ⁸Ref. [42]; ⁹Ref. [93]; ¹⁰Ref. [74]; ¹¹Ref. [108]; ¹²Ref. [7]; ¹³Estimated values; ¹⁴Calc. from other properties.

n-Decane $C_{10}H_{22}$ ($T_c = 617.6 \text{ K}, p_c = 2.096 \text{ MPa}, \rho_c = 235.9 \text{ kg/m}^3$)

<i>Т</i> _s , к	<i>p_s,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _р /, kJ/(kg K)	с _р ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
447.31	101.3	621	4.13	265	542	277	2.79	2.33	205	8.1	91	21.8	6.29	0.87	10.64	1.61
460	141	608	5.6	299	569	270	2.85	2.39	180	8.3	88	23.1	5.83	0.86	9.68	1.66
480	227	588	8.73	357	613	256	2.94	2.49	149	8.7	83	25.3	5.28	0.86	8.2	1.88
500	329	564	13.2	416	658	242	3.06	2.59	127	9.1	78	27.5	4.98	0.86	6.77	2.09
520	479	538	19.4	476	702	226	3.16	2.71	108	9.6	73	29.8	4.68	0.87	5.39	2.35
540	675	513	28.1	538	746	208	3.29	2.85	91	10.1	68	32.1	4.4	0.9	4.07	2.81
560	927	479	40.7	603	789	186	3.44	3.03	75	10.7	63	34.7	4.1	0.93	2.83	3.53
580	1250	445	59.6	673	829	156	3.65	3.33	61	11.6	58	37.5	3.84	1.03	1.68	4.73
600	1650	392	93.1	743	859	116	4.06	4.2	48	13.3	54	40.9	3.61	1.37	0.67	8.08
617.6	2096	235.9	235.9	824	824						49	49				
Uncertainty	h ^{1,2}	h ²	h ³	h ¹⁵	h ^{3,4}	h ²	h ⁵	h ^{3,4}	h ^{6,7}	h ^{8,9}	h ^{10,11,12}	h ^{11,12}	h ¹⁵	h ¹⁵	h ¹³	h ¹⁴

¹Ref. [27]; ²Ref. [110]; ³Ref. [52]; ⁴Ref. [115]; ⁵Ref. [63]; ⁶Ref. [126]; ⁷Ref. [59]; ⁸Ref. [135]; ⁹Ref. [42]; ¹⁰Ref. [93]; ¹¹Ref. [74]; ¹²Ref. [108]; ¹²Ref. [7]; ¹³Estimated values; ¹⁴Calc. from other properties.

Ethylbenzene C_8H_{10} , C_6H_5 - CH_2CH_3 ($T_c = 617.1$ K, $p_c = 3.610$ MPa, $\rho_c = 284$ kg/m³)

<i>Т_s,</i> К	<i>p₅,</i> kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _р ′, kJ/(kg K)	с _р ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η'' , 10^{-6} kg/(m s)	λ', 10 ⁻³ W/(m K)	λ'' , 10 ⁻³ W/(m K)	Pr'	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
409.3	101.3	751	3.26	-42.8	298.8	341.6	1.98	1.67	230	9	99	16.9	4.6	0.87	16.6	1.35
433	189	727	5.76	9	335.6	326.6	2.04	1.77	197	9.6	95	19.4	4.31	0.88	14.5	1.47
453	297	705	8.88	53.3	367.3	314	2.11	1.86	176	10.3	90	21.5	4.13	0.89	12.5	1.6
473	447	682	13.2	101.6	399.3	297.7	2.19	1.95	158	11	85	23.6	4.07	0.91	10.5	1.75
493	645	657	29	159.3	431.4	272.1	2.28	2.05	142	11.7	80	25.9	4.05	0.93	8.8	1.95
513	903	630	26.9	207.9	463.3	255.4	2.38	2.16	129	12.4	75	28.2	4.09	0.95	7.1	2.21
553	1640	568	52.1	306.7	524.4	217.7	2.63	2.48	108	13.7	65	33.2	4.37	1.02	3.9	3.13
573	2150	529	72.9	368.2	550.8	192.6	2.85	2.78	99	14.8	60	36.1	4.7	1.14	2.5	4.09
593	2770	478	106	427.8	570.2	142.4	3.22	3.52	91	16.6	55	39.5	5.32	1.48	1.2	6.29
613	3450	388	189	481.6	557	75.4	4.2	17.5	84	22.6	50	45.8	7.02	8.64	0.23	
Uncertainty	h ¹	h ¹	h ²	h ¹⁴	h ^{3,2}	h ⁴	h ⁵	h ^{3,2}	h ⁶	h ^{7,8}	h ⁹	h ^{10,11}	h ¹⁴	h ¹⁴	h ¹²	h ¹³

¹Ref. [110]; ²Ref. [52]; ³Ref. [115]; ⁴Ref. [29]; ⁵Ref. [67]; ⁶Ref. [71]; ⁷Ref. [70]; ⁸Ref. [42]; ⁹Ref. [68]; ¹⁰Ref. [74]; ¹¹Ref. [108]; ¹²Ref. [73]; ¹³Estimated values; ¹⁴Calc. from other properties.

Toluene C_7H_8 , $C_6H_5CH_3$ ($T_c = 591.75$ K, $p_c = 4.126$ MPa, $\rho_c = 292.0$ kg/m³)

T _s , K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h′, kJ/kg	h", kJ/kg	Δh_{v} , kJ/kg	c _p ', kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
320	10.73	841.66	0.374	-120.29	279.68	399.96	1.773	1.221	434.4	7.6	123	7.1	6.26	1.31	25.44	1.124
350	34.82	812.87	1.124	-65.51	316.49	382	1.878	1.348	327.4	8.3	115	8.9	5.35	1.26	22.06	1.202
383.75	101.33	779.14	3.05	0	360.7	360.7	2.003	1.496	247.7	9.1	106.8	11.1	4.65	1.23	18.38	1.323
410	202.14	751.46	5.847	53.98	396.7	342.72	2.105	1.616	203.2	9.7	101.1	13	4.23	1.2	15.6	1.455
440	396.98	717.63	11.17	119.04	438.98	319.94	2.228	1.762	164.3	10.4	95	15.2	3.85	1.2	12.54	1.666
470	709.05	680.44	19.83	187.96	481.72	293.75	2.365	1.926	134.2	11.5	89.4	17.4	3.55	1.27	9.6	1.99
500	1176.62	638.14	33.64	261.19	523.74	262.55	2.529	2.132	110.5	11.7	84.3	19.8	3.31	1.26	6.83	2.54
530	1844.36	587.26	56.18	339.64	562.96	223.32	2.762	2.453	91.5	12.4	79.5	22.3	3.18	1.37	4.24	3.65
560	2769.1	519.05	96.97	425.67	594.41	168.74	3.259	3.269	76.1	13.1	75.1	25.4	3.3	1.68	1.93	6.99
591.75	4126.3	291.99	291.99	565.77	565.77				63.5	13.8	71	34.1			0.11	
Uncertainty	a ¹	a ¹	b ¹	c ¹	c ¹	c ¹	d ¹	d ¹	e ²	f ³	e ⁴	h ^{5,6}	h ⁸	h ⁸	d ⁷	d ¹

¹Ref. [58]; ²Ref. [103]; ³Ref. [15]; ⁴Ref. [64]; ⁵Ref. [135]; ⁶Ref. [108]; ⁷Ref. [134]; ⁸Calc. from other properties.

m-Xylol C₈H₁₀, C₆H₄(CH₃)₂ ($T_c = 617 \text{ K}, p_c = 3.543 \text{ MPa}, \rho_c = 283 \text{ kg/m}^3$)

<i>Т_s,</i> К	P _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	H', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	с _p /, kJ/(kg K)	с _р ", kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
412	101.3	752	3.22	-34.6	310.8	345.4	2.13	1.66	232	9.1	92	16.9	5.38	0.89	16.7	1.38
430	162	731	4.98	-1.2	337.9	339.1	2.19	1.73	207	9.5	88	19.4	5.18	0.85	14.8	1.46
455	281	700	8.69	50.2	376.8	326.6	2.29	1.84	182	10	82	22.1	5.08	0.83	12.5	1.61
480	472	673	14.3	114.7	416.1	301.4	2.4	1.95	158	10.7	77	24.6	4.92	0.85	10.2	1.83
505	741	642	22.6	172.6	455.2	282.6	2.54	2.08	135	11.4	72	27.2	4.76	0.87	8	2.11
530	1121	604	34.6	233.9	493.5	259.6	2.69	2.24	112	12.2	67	29.9	4.54	0.91	5.9	2.52
555	1601	570	52.6	299.2	529.5	230.3	2.87	2.47	90	13.2	62	33.1	4.17	0.99	3.9	3.25
580	2264	505	81.3	371.4	559.8	188.4	3.16	2.91	71	14.6	57	37.1	3.94	1.15	2.1	4.59
605	3052	396	140	460.6	571.1	100.5	3.86	5.27	55	18.3	52	42.2	4.08	2.29	0.5	9.48
617	3543	283	283	516.7	516.7				54	54	50	50				
Uncertainty	h ^{1,2}	h ³	h ⁴	h ¹⁴	h ^{4,5}	h³	h ⁶	h ^{4,5}	h ^{3,7}	h ^{3,8}	h ^{3,9}	h ^{3,10}	h ¹³	h ¹³	h ^{3,11}	h ¹²

¹Ref. [125]; ²Ref. [110]; ³Ref. [22]; ⁴Ref. [52]; ⁵Ref. [115]; ⁶Ref. [63]; ⁷Ref. [59]; ⁸Ref. [42]; ⁹Ref. [93]; ¹⁰Ref. [108]; ¹¹Ref. [89]; ¹²Estimated values; ¹³Calc. from other properties.

o-Xylol C_8H_{10} , $C_6H_4(CH_3)_2$ ($T_c = 630.4$ K, $p_c = 3.729$ MPa, $\rho_c = 288$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _ν , kJ/kg	с _p /, kJ/(kg K)	<i>c_p"</i> , kJ/(kg K)	η', 10 ⁻⁶ kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr′	Pr"	σ, 10 ⁻³ N/m	β, 10 ⁻³ /K
417.56	101.3	764	3.17	6.5	349.9	343.4	2.16	1.71	253	9.2	99	18.4	5.51	0.86	17.9	1.31
430	142	751	4.31	30.4	369.5	339.1	2.2	1.76	231	9.5	96	19.3	5.28	0.87	16.4	1.37
455	249	725	7.54	83.2	409.8	326.6	2.3	1.86	197	10.2	91	21.9	5	0.87	14.1	1.51
480	422	696	12.5	145	450.5	305.5	2.4	1.97	171	10.8	85	24.4	4.83	0.88	11.4	1.69
505	655	666	19.6	201.7	491.4	289.7	2.52	2.08	147	11.5	80	27	4.65	0.89	9.2	1.92
530	995	632	30	263.7	531.7	268	2.65	2.22	124	12.2	74	29.9	4.43	0.91	7	2.24
555	1420	594	45.1	331	570.5	239.5	2.81	2.4	102	13.1	69	33	4.14	0.95	4.9	2.75
580	2040	549	67.8	400.6	605.8	205.2	3.02	2.7	82	14.3	63	36.5	3.92	1.06	3	3.67
605	2750	489	107	476.9	631.8	154.9	3.44	3.49	65	16.3	58	40.6	3.87	1.4	1.3	5.99
630.4	3729	288	288	581.2	581.2				55	55	52	52				
Uncertainty	h ^{1,2}	h ³	h ⁴	h ¹⁴	h ^{4,5}	h ³	h ⁶	h ^{4,7}	h ^{3,8}	h ^{3,9}	h ^{3,10}	h ^{3,11}	h ¹⁴	h ¹⁴	h ^{3,12}	h ¹³

¹Ref. [125]; ²Ref. [110]; ³Ref. [22]; ⁴Ref. [52]; ⁵Ref. [29]; ⁶Ref. [63]; ⁷Ref. [115]; ⁸Ref. [59]; ⁹Ref. [42]; ¹⁰Ref. [93]; ¹¹Ref. [108]; ¹²Ref. [89]; ¹³Estimated values; ¹⁴Calc. from other properties.

p-Xylol C_8H_{10} , $CH_4(CH_3)_2$ ($T_c = 616.3$ K, $p_c = 3.510$ MPa, $\rho_c = 280$ kg/m³)

<i>T_s,</i> K	p _s , kPa	$ ho'$, kg/m 3	$ ho''$, kg/m 3	h', kJ/kg	h", kJ/kg	Δh _v , kJ/kg	с _p /, kJ/(kg K)	c _p ", kJ/(kg K)	η' , 10^{-6} kg/(m s)	η", 10 ⁻⁶ kg/(m s)	λ', 10 ⁻³ W/(m K)	λ", 10 ⁻³ W/(m K)	Pr'	Pr″	<i>σ,</i> 10 ⁻³ N/m	β, 10 ⁻³ /K
412	101.3	753	3.23	-35.7	309.7	354.4	2.11	1.64	232	8.8	98	17.1	5	0.84	16	1.57
430	161	734	5.08	-2.4	337.7	339.1	2.18	1.72	205	9.5	93	19.7	4.81	1.83	14.2	1.69
455	287	706	8.83	49.7	376.3	326.6	2.27	1.83	176	1.01	87	22.1	4.59	0.84	11.8	1.72
480	476	676	14.5	113.8	415.2	301.4	2.39	1.94	155	10.7	81	24.6	4.57	0.84	10	1.77
505	752	643	22.8	171.4	454	282.6	2.52	2.07	132	11.4	75	27.2	4.44	0.87	7.8	2.24
530	1120	607	34.9	232.3	491.9	259.6	2.67	2.23	109	12.2	69	30	4.22	0.91	5.7	2.44
555	1590	565	52.9	297.2	527.5	230.3	2.86	2.46	89	13.1	63	33	4.04	0.98	3.8	3.65
580	2270	513	81.8	368.9	557.3	188.4	3.15	2.92	70	14.6	57	37.1	3.87	1.15	2	8.38
605	3100	432	142	466.7	567.2	100.5	3.88	5.51	54	18	52	42.3	4.03	2.34	0.5	24.5
616.3	3510	280	280	514	514				53	53	49	49				
Uncertainty	h ¹	h ²	h ³	h ¹³	h ^{3,4}	h ²	h ^{2,5}	h ^{3,4}	h ^{2,6}	h ^{2,7}	h ^{2,8}	h ^{2,9}	h ¹²	h ¹²	h ^{2,10}	h ¹¹

¹Refs. [22, 125]; ²Ref. [52]; ³Ref. [115]; ⁴Ref. [63]; ⁵Ref. [59]; ⁶Ref. [42]; ⁷Ref. [93]; ⁸Ref. [108]; ⁹Ref. [89]; ¹⁰Estimated values; ¹¹Calc. from other properties.

1 Bibliography

- Ahrendts J, Baehr HD (1979) Die thermodynamischen Eigenschaften von Ammoniak. VDI-Forschungsheft 596. VDI-Verlag, Düsseldorf
- Angus S, Armstrong B, De Reuck KM (1985) Chlorine tentative tables. IUPAC Chemical Data Series, No. 31. Pergamon Press, Oxford
- Assael MJ, Ramires MLV, Nietro de Castro CA, Wakeham WA (1990) Benzene: A further liquid thermal conductivity standard. J Phys Chem Ref Data 19:113–117
- Baidakov VG, Sulla II (1985) Surface tension of propane and isobutane at near-critical temperatures. Russ J Phys Chem 59:551–554
- Bondi A (1966) Estimation of the heat capacity of liquids. Ind Eng Chem Fundam 5:442–449
- Borreson RW, Schorr GR, Yaws CL (1976) Correlation constants for chemical compounds – heat capacities of gases. Chem Eng 16:79–81
- Brock JR, Bird RB (1955) Surface tension and the principle of corresponding states. AIChE J 1:174–177
- Bücker D, Wagner W (2006) A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa. J Phys Chem Ref Data 35: 205, 266
- Bücker D, Wagner W (2006) Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J Phys Chem Ref Data 35:929–1019
- Calado JCG, McLure IA, Soares VAM (1978) Surface tension for octafluorocyclobutane, n-butane and their mixtures from 233 K to 254 K, and vapour pressure, excess gibbs function and excess volume for the mixture at 233 K. Fluid Phase Equilibria 2:199–213
- Carmichael LT, Jacobs J, Sage BH (1969) Thermal conductivity of fluid n-pentane. J Chem Eng Data 14:31–37
- 12. Chase JD (1979) Persönliche Mitteilung
- Chen NH (1965) Generalized correlation for latent heat of vaporization.
 J Chem Eng Data 10:207–210
- 14. Chung TH, Ajlan M, Lee LL, Starling KE (1984) Ind Eng Chem Fundam 23:8
- Daubert TE, Danner RP (1985) Data compilation tables of properties of pure components. American Institute of Chemical Engineers, New York
- Dillon HE, Penoncello SG (2004) A fundamental equation for calculation of the thermodynamic properties of ethanol. Int J Thermophys 25: 321–335
- Dixon JA, Schiesser RW (1954) Viscosities of benzene-d6 and cyclohexaned12. J Phys Chem 58:430–432
- Edminster WC (1961) Applied hydrocarbon thermodynamics, vol. 56. Gulf Publishing Co., Houston, TX
- Elverum GW, Doescher RN (1952) Physical properties of liquid fluorine. J Chem Phys 20:1834–1836

- Fillipov LP, Nefedov SN, Kolykalova EA (1980) An experimental investigation into the complex of thermophysical properties of liquids. Inzherno-Fizicheskii Zhurnal 38:644–650
- Friend DG, Ingham H, Ely JF (1991) Thermophysical properties of ethane.
 J Phys Chem Ref Data 20:275–347
- 22. Gallant RW (1970) Physical properties of hydrocarbons, vols. 1 and 2. Gulf Publishing Co., Houston, TX
- Geist JM, Cannon MR (1946) Viscosities of pure hydrocarbons, Ind Eng Chem Anal Ed 18:611–613
- 24. Golubev IF (1959) Viscosity of gases and gas mixtures. Fizmat Press, Moscow
- Golubev IF, Agaev NA (1964) Viscosity of limiting hydrocarbons.
 Azerbaydzhan State Press, Baku
- Gomez-Nieto M, Thodos G (1977) Generalized treatment for the vapour pressure behaviour of polar and hydrogen-bonding compounds. Can J Chem Eng 55:445

 –449
- Gomez-Nieto M, Thodos G (1978) Generalized vapour pressure equation for nonpolar substances. Ind Eng Chem Fundam 17:45–51
- Goodwin RD (1988) Benzene thermophysical properties from 279 to 900 k at pressures to 1000 bar. J Phys Chem Ref Data 17:1541–1635
- Gorin CE, Yaws CL (1976) correlation constants for chemical compounds heat of vaporization, Chem Eng 83:85–87
- GPSA Engineering Data Book (1977) Gas processors suppliers association.
 Tulsa, Oklahoma
- Gross U, Song YW, Hahne E (1992) Thermal conductivity of the new refrigerants R134a, R152a and R123 measured by the transient hot-wire method. Int J Thermophys 13:957–983
- 32. Van der Gulik PS (1993) The viscosity of the refrigerant 1,1-difluoroethane along the saturation line. Int J Thermophys 12:105–117
- Gunn RD, Yamada TA (1971) Corresponding states correlation of saturated liquid volumes. AIChE J 17:1341–1345
- Haynes WM (1974) Measurements of the viscosity of compressed gaseous and liquid fluorine. Physica 76:1–20
- Ho CY (1988) Data series on material properties, vol. 5: properties of inorganic and organic fluids
- Holland PM, Eaton BE, Hanley HJM (1983) A correlation of the viscosity and thermal conductivity data of gaseous and liquid ethylene. J Phys Chem Ref Data 12:917–932
- Horvath AL (1975) Physical properties of inorganic compounds SI units.
 Crane, Russak & Company, New York
- 38. Hu J-H, Johnston HL, White D (1954) The density and surface tension of liquid fluorine between 66 and 80 K. J Am Soc 76:2584–2586
- Huber ML, Laesecke A (2006) Correlation for the viscosity of pentafluoroethane (R125) from the triple point to 500 K at pressures up to 60 MPa. Ind Eng Chem Res 45:4447–4453
- Jasper JJ (1972) The surface tension of pure liquid compounds. J Phys Chem Ref Data 1:841–1009

- Johnson FMJ, McIntosh D (1909) Liquid chlorine. J Am Chem Soc 31: 1138–1144
- 42. Jossi JA, Stiel LI, Thodos G (1962) The viscosity of pure substances in the dense gaseous and liquid phases. AIChE J 8:59–63
- Kamei A, Beyerlein SW, Jacobsen RT (1995) Application of nonlinear regression in the development of a wide range formulation for HCFC-22. Int J Thermophys 16:1155–1164
- Katti RS, Jacobsen RT, Stewart RB, Jahangiri M (1986) Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures to 700 MPa. Adv Cryo Eng 31:1189–1197
- Klein SA, McLinden MO, Laesecke A (1997) An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int J Refrig 20:208–217
- 46. Knappstad B, Skjolsvik PA, Oye HA (1989) Viscosity of pure hydrocarbons. J Chem Eng Data 34:37–43
- Kraus R, Luettmer-Strahtmann J, Sengers J, Stephan K (1993) Transport properties of 1,1,1,2-tetrafluorethane (R134a). Int J Thermophys 14: 951–988
- Kudchadker AP, Alani GH, Zwolinski BJ (1968) Critical constants of organic substances. Chem Rev 68:729–735
- Kumagi A, Takahashi S (1991) Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K. Int J Thermophys 12:105–117
- Latini G, Laurenti L, Marcotullio F, Pierpaoli P (1990) Liquid dynamic viscosity: A general method with application to refrigerant and refrigerant mixtures. Int J Refrig 13:248–255
- Leachman JW, Jacobsen RT, Penoncello SG, Lemmon EW (2009) Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J Phys Chem Ref Data 38:721
- 52. Lee BI, Kesler MG (1975) A generalized thermodynamic correlation based on three- parameter corresponding states. AIChE J 21:510–527
- Lemmon EW (2009) The surface tension of ethane. Private Communication, NIST, Boulder
- Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25:21–69
- Lemmon EW, Jacobsen RT (2005) A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC-125). J Phys Chem Ref Data 34:69–108
- Lemmon EW, McLinden MO, Wagner W (2009) Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and Pressures up to 1000 MPa. J Chem Eng Data 54: 3141–3180
- Lemmon EW, Penoncello SG (1994) The surface tension of air and air component mixtures. Adv Cryo Eng 39:1927–1934
- Lemmon EW, Span R (2006) Short fundamental equations of state for 20 industrial fluids. J Chem Eng Data 51:785–850
- Letsou A, Stiel LI (1973) Viscosities of saturated nonpolar liquids at elevated pressures. AIChE J 19:409

 411
- Liquide L (1976) Gas encyclopaedia. Elsevier Scientific Publishing Co., Amsterdam, Netherlands
- Livingston J, Morgan R, Owen FT (1911) The weight of a falling drop and the laws of tate. J Am Chem Soc 33:1713
- Lydersen AL (1955) Estimation of critical properties of organic compounds.
 Eng. Exp. Stn. Rep. 3, University of Wisconsin College of Engineering, Madison.
- Lyman TJ, Danner RP (1976) Correlation of liquid heat capacities with a four-parameter corresponding states method. AIChE J 22:759–765
- Mamedov AM (1978) Thermal-conductivity of six aromatic hydrocarbons. Inzhenerno-Fizicheskii Zhurnal 34:465–470
- Marsh K, Perkins R, Ramires MLV (2002) Measurement and correlation of the thermal conductivity of propane from 86 to 600 K at pressures to 70 MPa. J Chem Eng Data 47:932–940
- McLinden MO, Klein SA, Perkins R (2000) An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int J Refrig 23:43–63
- Miller JW, Jr., Gordon RS, Yaws CL (1976) Correlation constants for liquids – heat capacities. Chem Eng 83(25):129–131
- Miller JW, Jr., McGinley JJ, Yaws CL (1976) Correlation constants for liquids

 thermal conductivities. Chem Eng 83(25):133–135

- Miller JW, Jr., Gordon RS, Yaws CL (1976) Correlation constants for chemical compounds – thermal conductivity of gas. Chem Eng 153–155
- Miller JW, Jr., Gordon RS, Yaws CL (1976) Correlation constants for chemical compounds – gas viscosity. Chem Eng 86(24):155–157
- Miller JW, Jr., Gordon RS, Yaws CL (1976) Correlation constants for chemical compounds – liquid viscosity. Chem Eng 86(24):157–159
- 72. Miller JW, Yaws CL, Shah PN, Schorr GR, Patel PM (1976) Chem Eng 83(25):153
- Miller JW, Jr., Yaws CL (1976) Correlation constants for liquids surface tension. Chem Eng 83(22):127–129
- 74. Misic D, Thodos G (1961) The thermal conductivity of hydrocarbon gases at normal pressure. AIChE J 7:264–267
- Nabizadeh H, Mayinger F (1992) Viscosity of gaseous R123. High Temp. High Pres. 24:221–230
- 76. Needham DP, Ziebland H (1965) Ammonia and its anomalous behaviour in the vicinity of the critical point. Int J Heat Mass Transfer 8:1387–1411
- 77. Okada M, Higashi Y (1994) Surface tension correlation of HFC-134a and HCFC-123. Progress Report to IEA Annex 18, Boulder
- Okada M, Higashi Y (1995) Experimental surface tensions for HFC-32, HCFC-124, HFC-125, HCFC-141b, HCFC-142b, and HFC-152a. Int J Thermophys 16:791–800
- Okada M, Watanabe K (1988) Surface tension correlations for several fluorocarbon refrigerants. Heat Transf Jpn Res 17:35–52
- Okubo T, Nagashima A (1992) Measurement of the viscosity of HCFC-123 in the temperature range 233–418 K and at pressures up to 20 MPa. Int J Thermophys 13:401–410
- 81. Overhoff U (2006) Development of a new equation of state for the fluid region of propene for temperatures from the melting line to 575 K with pressures to 1000 MPa as well as software for the computation of thermodynamic properties of fluids. Ph.D. Dissertation, Ruhr-University, Bochum, Germany
- 82. Pennington RE, Kobe KA (1957) The thermodynamic properties of acetone. J Am Chem Soc 79:300–305
- 83. Penoncello SG, Goodwin ARH, Jacobsen RT (1995) A thermodynamic property formulation for cyclohexane. Int J Thermophys 16:519–531
- Perkins RA (2002) Measurement and correlation of the thermal conductivity of isobutane from 114 K to 600 K at pressures to 70 MPa. J Chem Eng Data 47:1272–1279
- 85. Perkins RA, Huber ML (2006) Measurement and correlation of the thermal conductivity of pentafluoroethane (R125) from 190 K to 512 K at pressures to 70 MPa. J Chem Eng Data 51:898–904
- Perkins RA, Ramires MLV, Nieto de Castro CA, Cusco L (2002) Measurement and correlation of the thermal conductivity of butane from 135 K to 600 K at pressures to 70 MPa. J Chem Eng Data 47:1263–1271
- Perry JH (1950) Chemical Engineer's Handbook, 3rd edn. McGraw-Hill, New York
- 88. Perry RH, Chilton CH (1973) Chemical Engineer's Handbook, 5th edn. McGraw-Hill. New York
- 89. Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids, 3rd edn. McGraw-Hill, New York
- De Reuck KM (1990) International thermodynamic tables of the fluid state-11 fluorine. International union of pure and applied chemistry, Pergamon Press, Oxford
- 91. De Reuck KM, Craven RJB (1993) International tables of the fluid state, vol. 12: Methanol. Hemisphere, London
- 92. Rihani DN, Doraiswamy LK (1965) Estimation of heat capacity of organic compounds from group contributions. Ind Eng Chem Fundam 4:17–21
- Robbins LA, Kingrea CL (1962) Estimate thermal conductivity. Hyd Proc Pet Ref 41(5):133–136
- Sakiadis BC, Coates J (1955) Studies in thermal conductivity of liquids.
 AIChE I 1:275–288
- 95. Sellschopp W (1935) Z Ver Dt Ing 75:69
- Setzmann U, Wagner W (1991) A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J Phys Chem Ref Data 20:1061–1155
- 97. Shah PN, Yaws CL (1976) Densities of liquids. Chem Eng 25:131-133
- Smukala J, Span R, Wagner W (2000) A new equation of state for ethylene covering the fluid region for temperatures from the melting line to 450 K at pressures up to 300 MPa. J Phys Chem Ref Data 29:1053–1122

- Soares VAM, Almeida BJVS, McLure IA, Higgins RA (1986) Surface tension of pure and mixed simple substances at low temperature. Fluid Phase Equilibria 32:9–16
- Somayajulu GR (1988) A generalized equation for surface tension from the triple point to the critical point. Int J Thermophys 9:559–566
- 101. Somayajulu GR (1988) A new equation for enthalpy of vaporization from the triple point to the critical point. Int J Thermophys 9:567–574
- Span R, Wagner W (2003) Equations of state for technical applications. II.
 Results for nonpolar fluids. Int J Thermophys 24:41–109
- Stephan K, Hildwein H (1987) recommended data of selected compunds and binary mixtures. Chemistry data series, vol. 4: Part 1 + 0032, DECHEMA
- Stairs RA, Sienko MJ. (1956) Surface tension of ammonia and of solutions of alkali halides in ammonia. J Am Chem Soc 78:920–923
- 105. Stiel LI, Thodos G (1961) The viscosities of nonpolar gases at normal pressures. AIChE J 7:611–615
- 106. Stiel LI, Thodos G (1962) The viscosity of polar gases at normal pressures. AIChE J 8:229–232
- Stiel LI, Thodos G (1964) The viscosity of polar substances in the dense gaseous and liquid regions. AIChE J 10:275–277
- 108. Stiel LI, Thodos G (1964) The thermal conductivities of nonpolar substances in the dense gaseous and liquid regions. AIChE J 10:26–29
- Takahashi M, Yokoyama C, Takahshi S (1987) Viscosities of gaseous R13B1, R142b, and R152a. J Chem Eng Data 32:98–103
- 110. Technical Data Book-Petroleum Refining, American Petroleum Institute Division of Refining. Washington, DC, 1970
- 111. Tegeler Ch, Span R, Wagner W (1999) A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J Phys Chem Ref Data 28:779–850
- Tillner-Roth R, Harms-Watzenberg F, Baehr HD (1993) Eine neue Fundamentalgleichung für Ammoniak. DKV-Tagungsbericht 20:167–181
- 113. Tillner-Roth R (1995) A fundamental equation of state for 1,1-difluorethane (HFC-152a). Int J Thermophys 16:91–100
- 114. Tillner-Roth R, Baehr HD (1994) An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluorethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa. J Phys Chem Ref Data 23:657–729
- Thinh TP, Duran JL, Ramalho RS, Kaliaguine S (1971) Equations improve Cp° predictions. Hyd Proc 50:98–104
- Timmermans J (1950) Physico- chemical constants of pure organic compounds. Elsevier Publishing Co., New York, pp 303–325
- Touloukian YS, Makitu T (1970) Thermophysical properties of matter, vol. 6. IFI/Plenum. New York
- 118. Touloukian YS, Liley PE, Saxena SC (1970) Thermophysical properties of matter, vol. 3. IFI/Plenum, New York

- Touloukian YS, Powell RW, Ho CY, Klemens PG (1970) Thermophysical properties of matter, vol. 1. IFI/Plenum, New York
- 120. Touloukian YS, Liley PE, Saxena SC (1970) Thermophysical properties of matter, vol. 6. IFI/Plenum, New York
- 121. Touloukian YS, Liley PE, Hestermans P (1975) Thermophysical properties of matter, vol. 11. IFI/Plenum New York
- 122. Touloukian YS, Saxena SC, Hestermans P (1975) Thermophysical properties of matter, vol. 11. IFI/Plenum, NewYork
- Tsvetkov OB, Laptev YuA, Asambaev AG (1994) Thermal conductivity of refrigerants R123, R134a, and R125 at low temperatures. Int J Thermophys 15:203–214
- Tufeu R, Clifford AA (1988) Thermal conductivity of gaseous and liquid ammonia. J Heat Transf 110:992–993
- Vargaftik NB (1975) Tables on the thermophysical properties of liquids and gases, 2nd edn. Hemisphere Publishing Corp., Washington, DC
- Van Velzen D, Cardozo RL, Langenkamp H (1972) A liquid viscosity temperature chemical constitution relation for organic compounds. Ind Eng Chem Fundam 11:20–25
- 127. Vines RG, Bennett LA (1954) The thermal conductivity of organic vapors. The relationship between thermal conductivity and viscosity, and the significance of the euken faktor. J Chem Phys 22:360–366
- Vogel E, Kuechenmeister C, Bich E, Laesecke A (1998) Reference correlation of the viscosity of propane. J Phys Chem Ref Data 27:947–970
- 129. Vogel E, Kuechenmeister C, Bich E (1999) Viscosity for n-butane in the fluid region. High Temp High Press 31:173-186
- Vogel E, Kuechenmeister C, Bich E (2000) Viscosity correlation for isobutane over wide ranges of the fluid region. Int J Thermophys 21:343–356
- Wakeham WA, Fenghour A (1995) The viscosity of ammonia, persönliche Mitteilung. (Artikel im Druck bei J Phys Chem Ref Data)
- 132. Watson KM (1943) Thermodynamics of the liquid state. Ind Eng Chem 35:398–400
- Yamamoto R, Matsuo S, Tanaka Y (1992) Thermal conductivity of halogenated ethanes HFC-134a, HFC-123 and HCFC-141b. Int J Thermophys 14:79–90
- 134. Yaws CL (1991) Calculate liquid heat capacity. Hyd Proc 73-77
- Yoor P, Thodos G (1970) Viscosity of nonpolar gaseous mixtures at normal pressures. AIChE J 16:300–304
- Younglove BA, McLinden MO (1994) An international standard equation of state for the thermodynamic properties of refrigerant 123. J Phys Chem Ref Data 23:731–779
- Yuan TF, Stiel LI (1970) Heat capacity of saturated nonpolar and polar liquids. Ind Eng Chem Fundam 9:393–400