Chair of Statistics
Location: Berlin
Summer Term 2017
Lecture: Einführung in die Bayes-Statistik
Examiner: Dr. Florian Meinfelder

Program leave-one-out posterior predictive checking in R

Freie Universität Berlin

Contents

1	Introduction	4
2	Code	4
3	References	12

List of Figures

List of Tables

1 Introduction

2 Code

```
library(mvtnorm)
plotSampling <- function(betas, sigma, traces = TRUE, density = TRUE) {</pre>
  # Get number of parameters and adjust plot frame height
  q \leftarrow ncol(betas) + 1
  frameRows \leftarrow round(q/2+0.1)
  # Traces
  if(traces == TRUE) {
    par(mfrow = c(frameRows,2))
    for(i in 1:ncol(betas)) {
      plot(betas[,i], type='l', ylab=bquote(beta[.(i-1)]), main=bquote("Trace of" ~ beta[.(i-1)]))
    plot(sigma, type='l', ylab=bquote(sigma^2), main=bquote("Trace of" ~ sigma^2))
  # Marginal posterior densities (remove burn in)
  if(density == TRUE) {
    # Function to draw plot
    drawHistDensity <- function(para, para_name) {</pre>
      # para : Parameter (e.b. Beta, Sigma)
      # para_name: Title of plot
      # Estimate density for parameter values
      density <- density(para)</pre>
      # Draw histogram and add estimated density line
      hist(para, freq = FALSE, ylim = c(0,max(density$y)), xlab = para_name,
           ylab=NULL, main = "Marginal posterior density")
      lines(density, col="blue")
    # Adjust frame and plot all parameters
    par(mfrow = c(frameRows,2))
    for(i in 1:ncol(betas)) {
      drawHistDensity(betas[-(1:b),i], bquote(beta[.(i-1)]))
    drawHistDensity(sigma[-(1:b)], bquote(sigma))
}
# The Gibbs Sampler
gibbsSampler <- function(X, Y, B, ...) {</pre>
  # Size of design matrix
 n \leftarrow nrow(X)
  p \leftarrow ncol(X)
  # Variables to store the samples in
  betas <- matrix(NA, nrow = B, ncol = p)</pre>
  sigma \leftarrow c(1, rep(NA, B))
  # Sampling
```

```
for(i in 1:B){
    # OLS of beta
    V \leftarrow solve(t(X)%*%X)
                             # (X^T X) ^-1
    beta_hat <- V%*%t(X)%*%Y # (X^T X)^-1 X^T Y
    # OLS of sigma
    sigma_hat \leftarrow t(Y-X%*\%beta_hat)%*%(Y-X%*\%beta_hat)/(n-p)
    # Sample beta from the full conditional
    betas[i,] <- rmvnorm(1,beta_hat,sigma[i]*V)</pre>
    # Sample sigma from the full conditional
    sigma[i+1] \leftarrow 1/rgamma(1,(n-p)/2,(n-p)*sigma_hat/2)
  plotSampling(betas, sigma, ...)
  return(list(betas = betas, sigma = sigma))
}
crossValidation <- function(X, Y, B, ...) {</pre>
  # Size of design matrix
  n \leftarrow nrow(X)
  p <- ncol(X)
  Yhat <- rep(NA, n)
  betas <- matrix(NA, nrow = n, ncol = p)
  for(i in 1:n) {
    \# Remove i-th row from data
    Xi <- X[-i,]</pre>
    Yi <- Y[-i]
    # Run gibbs sampler to get sampled parameters and plot results from first run
    if(i == 1) {
      res <- gibbsSampler(Xi, Yi, B, ...)
    } else {
      res <- gibbsSampler(Xi, Yi, B, traces = FALSE, density = FALSE)
    # Calculate posterior mean from sampled betas
    betas[i,] <- apply(res$betas, 2, mean)</pre>
    # Predict value with posterior mean
    Yhat[i] <- X[i,]%*%betas[i,]</pre>
  # Calculate beta estimate
  beta_cv <- colMeans(betas)</pre>
  # Calculate MSE
  mse <- sum((Y-Yhat)^2)</pre>
  return(list(betas = beta_cv, mse = mse))
bayesModelEvaluation <- function(models, Y, B, ...) {</pre>
# Evaluate multiple models and return results from all models
```

```
results <- list()
  for(i in 1:length(models)) {
    results[[i]] <- crossValidation(models[[i]], Y, B, ...)</pre>
 return(results)
}
# Swiss data
dat <- swiss
# Response variable
Y <- dat$Fertility
# Design matrix
n <- nrow(dat)</pre>
X <- matrix(c(rep(1,n), dat$Education, dat$Agriculture), nrow=n)</pre>
models <- list(</pre>
  matrix(c(rep(1,n), dat$Education), nrow=n),
  matrix(c(rep(1,n), dat$Agriculture), nrow=n),
  matrix(c(rep(1,n), dat$Examination), nrow=n),
  matrix(c(rep(1,n), dat$Catholic), nrow=n),
  matrix(c(rep(1,n), dat$Education, dat$Agriculture), nrow=n),
  matrix(c(rep(1,n), dat$Education, dat$Examination), nrow=n),
  matrix(c(rep(1,n), dat$Education, dat$Catholic), nrow=n),
 matrix(c(rep(1,n), dat$Education, dat$Agriculture, dat$Examination), nrow=n),
 matrix(c(rep(1,n), dat$Education, dat$Agriculture, dat$Catholic), nrow=n),
 matrix(c(rep(1,n), dat$Education, dat$Examination, dat$Catholic), nrow=n),
 matrix(c(rep(1,n), dat$Education, dat$Agriculture, dat$Examination ,dat$Catholic), nrow=n)
)
# Number of samples
b <- 50 # Burn in
R <- 500 # Random draws to evaluate
B \leftarrow R + b
res <- bayesModelEvaluation(models, Y, B, traces = FALSE, density = TRUE)
```

74 76 78 80 82 84 86 β₀

Marginal posterior density

Marginal posterior density

$\begin{array}{c} \sigma \\ \text{Marginal posterior density} \end{array}$

Marginal posterior density

80 85 90 95 β₀

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

 $\begin{array}{c} \beta_2 \\ \text{Marginal posterior density} \end{array}$

Marginal posterior density

 $\beta_0 \\$

Marginal posterior density

Marginal posterior density

Marginal posterior density

 $\begin{array}{c} \beta_2 \\ \text{Marginal posterior density} \end{array}$

σ Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density

Marginal posterior density 70 80 90 100 110 β₀ Marginal posterior density

Marginal posterior density

 β_3

3 References