

I See You!

Robust Measurement of Adversarial Behavior

Multi-Agent Security Workshop @ NeurIPS 2023

Lars Ankile, Matheus V. X. Ferreira, David Parkes

Al and Multi-Agent Systems Are Evolving Rapidly

- Algorithms and Al's are everywhere –
 especially where fast decisions are
 rewarded, like financial markets
- As Als get more numerous and sophisticated, it gets next to impossible to keep up
- FINRA has moved to using more complex methods as Als tricked the standard, "hard-coded" rules [1]

Can we develop non-manipulable measures of the level of manipulative behavior in a multi-agent system?

The Blockchain as a Case-Study

- Permissionless and regulation free
- Easy to be anonymous and creating new identities (addresses) is virtually free
- Decentralized Exchanges process Billions of dollars of trading volume¹
- The right to manipulate the market is institutionalized in an auction
 - → Big incentives for adversarial behavior
- Being distributed, there is a lot of data
 - → Enabling experimentation

The Main Attack Class is Known as a Sandwich Attack

The observation in (c) motivates the intuition behind our proposed metric

Most Current Methods Rely on Rules or Heuristics

- The standard approach "hardcodes" the rules of a sandwich attack, e.g.:
 - T₁ and T₂ comes from the same sender
 - T₁ and T₂ are in opposite directions but same size
 - Simple strategies break the rules:
 - Create a new identity and send T₂ from that
 - Split T₂ into two halves

→ These tactics could be addressed, but Als are likely to win cat-and-mouse game

The DeFi Multi-Agent System as a Communication Game

- The communication game: Exchanges start with a state X_t
 - **Traders** submit transactions ($|\mathrm{BUY}(q,p)|$ Sell(q,p)) to a communication network
 - **Sequencers** connect to the network and observe sets of transactions $T = \{T_1, \ldots, T_n\}$ and outputs the order in which they will execute
 - The *Exchange* receives the transaction sequence and execute them in order $(T_{\sigma_1}, \ldots, T_{\sigma_n})$

- Malicious behavior includes: Message injection, deletion, and reordering
 - → Goal is to detect which sequencers behave maliciously

We Propose a Surveillance Metric on Price Trajectories

The p-surveillance metric for $p \geq 1$

$$S_p(T) = (\sum_{i=1}^n |p(T_{\leq i}) - p(\emptyset)|^p)^{\frac{1}{p}}$$

normalized surveillance metric

$$\bar{S}_p(T) := \frac{S_p(T)}{S_p(T^*)} - 1$$

$$T^* \in \arg\min_{T'} S_p(T')$$

In practice, finding the optimal order is NP-hard [2], so we make an approximation, detailed in Appendix D

The Surveillance Metric Applied to Blockchain Data

When comparing bundles created by auction with standard bundles

→ we observe a significant difference in the surveillance metric...

... and a relatively small number of observed bundles is needed to reach a reasonable level of confidence

More Detailed Analysis

See Appendix F for more analysis of the metric and data

Conclusion and Future Directions

- Empirical
 - Controlled experiment
 - Quantification of relationship between sequencer utility and metric
- Theoretical
 - Sufficient conditions for metric to be non-decreasing in adversary's utility
 - How to best define utility

Ankile, Lars, Matheus XV Ferreira, and David Parkes. "I See You! Robust Measurement of Adversarial Behavior." Multi-Agent Security Workshop@ NeurIPS'23. 2023. Engage with code and data on the project GitHub:

https://github.com/ankile/defi-measurement

Get in touch: larsankile@g.harvard.edu
(Applying for PhD positions this fall!)

matheus@seas.harvard.edu

References

[1] FINRA, ""Artificial Intelligence (AI) in the Securities Industry," Jun 2022. URL https://www.finra.org/sites/default/files/2020-06/ai-report-061020.pdf.

[2] Li, Yuhao, et al. "MEV Makes Everyone Happy under Greedy Sequencing Rule." arXiv preprint arXiv:2309.12640 (2023).

The Blockchain Ecosystem is Riddled with Jargon

- **Blockchain:** A decentralized and distributed digital ledger that records transactions across multiple computers in a secure and immutable manner
- **Block:** A collection of transactions in a blockchain, digitally linked to preceding and succeeding blocks, creating a chronological chain
- Sequencer: An entity or mechanism in a blockchain network responsible for ordering transactions before they are added to the blockchain
- **DEX:** Decentralized Exchange, a type of cryptocurrency exchange without a central authority, enabling direct peer-to-peer cryptocurrency transactions
- **MEV:** Miner Extractable Value, the profit a miner can make through their ability to arbitrarily include, exclude, or reorder transactions within a block
- **MEV-Boost:** A mechanism that allows block builders to bid for the right to propose the blocks, aiming to decentralize the process of extracting MEV

Ethereum is the largest smart contract-enabled blockchain

Flashbots, the original creators of the MEV-boost mechanism is one of many companies operating in the space

Most Current Methods Rely on Rules or Heuristics

