GATE - 2023 - PH

1

EE1030: Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

- 1) A spin $\frac{1}{2}$ particle is in a spin up state along the x-axis (with unit vector \hat{x}) and is denoted as $\left|\frac{1}{2},\frac{1}{2}\right\rangle_x$. What is the probability of finding the particle to be in a spin up state along the direction \hat{x}' , which lies in the xy-plane and makes an angle θ with respect to the positive x-axis, if such a measurement is made?
 - a) $\frac{1}{2}\cos^2\frac{\theta}{4}$
 - b) $\cos^2 \frac{\theta}{4}$ c) $\frac{1}{2}\cos^2 \frac{\theta}{2}$
 - d) $\cos^2 \frac{\theta}{2}$
- 2) Different spectral lines of the Balmer series (transitions $n \to 2$, with n being the principal quantum number) fall one at a time on a Young's double slit apparatus. The separation between the slits is d and the screen is placed at a constant distance from the slits. What factor should d be multiplied by to maintain a constant fringe
- 3) Under parity and time reversal transformations, which of the following statements is(are) TRUE about the electric dipole moment p and the magnetic dipole moment μ ?
 - a) **p** is odd under parity and μ is odd under time reversal

width for various lines, as n takes different allowed values?

- b) **p** is odd under parity and μ is even under time reversal
- c) **p** is even under parity and μ is odd under time reversal
- d) **p** is even under parity and μ is even under time reversal
- 4) Consider the complex function

$$f(z) = \frac{z^2 \sin(z)}{(z - \pi)^4}$$

At $z = \pi$, which of the following options is(are) CORRECT?

- a) The order of the pole is 4
- b) The order of the pole is 3
- c) The residue at the pole is $\frac{\pi}{6}$
- d) The residue at the pole is $\frac{9\pi}{3}$
- 5) Consider the vector field \overrightarrow{V} consisting of the velocities of points on a thin horizontal disc of radius R=2 m, moving anticlockwise with uniform angular speed $\omega=2$ rad/sec about an axis passing through its center. If $V = |\overrightarrow{V}|$, then which of the following options is (are) CORRECT ? (In the options, \hat{r} and $\hat{\theta}$ are unit vectors corresponding to the plane polar coordinates r and θ).

You may use the fact that in cylindrical coordinates (s, ϕ, z) (s is the distance from the z-axis), the gradient, divergence, curl and Laplacian operators are:

$$\begin{split} \overrightarrow{\nabla}f &= \frac{\partial f}{\partial s} \hat{s} + \frac{1}{s} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z}; \\ \overrightarrow{\nabla} \cdot \overrightarrow{A} &= \frac{1}{s} \frac{\partial}{\partial s} \left(s A_s \right) + \frac{1}{s} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z}; \\ \overrightarrow{\nabla} \times \overrightarrow{A} &= \left(\frac{1}{s} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \right) \hat{s} + \left(\frac{\partial A_s}{\partial z} - \frac{\partial A_z}{\partial s} \right) \hat{\phi} \\ &+ \frac{1}{s} \left(\frac{\partial}{\partial s} \left(s A_\phi \right) - \frac{\partial A_s}{\partial \phi} \right) \hat{z}; \\ \overrightarrow{\nabla}^2 f &= \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial f}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}. \end{split}$$

- a) $\overrightarrow{\nabla} V = 2\hat{r}$ b) $\overrightarrow{\nabla} \cdot \overrightarrow{V} = 2$
- c) $\overrightarrow{\nabla} \times \overrightarrow{V} = 4\hat{z}$, where \hat{z} is a unit vector perpendicular to the (r, θ) plane
- d) $\overrightarrow{\nabla}^2 V = \frac{4}{3}$ at r = 1.5 m
- 6) A slow moving π^- particle is captured by a deuteron (d) and this reaction produces two neutrons (n) in the final state, i.e., $\pi^- + d \rightarrow n + n$. Neutron and deuteron have even intrinsic parities, whereas π^- has odd intrinsic parity. L and S are the orbital and spin angular momenta, respectively of the system of two neutrons. Which of the following statements regarding the final two-neutron state is(are) CORRECT?
 - a) It has odd parity
 - b) L + S is odd
 - c) L = 1.S = 1
 - d) L = 2, S = 0
- 7) Two independent electrostatic configurations are shown in the figure. Configuration (I) consists of an isolated point charge q = 1 C, and configuration (II) consists

of another identical charge surrounded by a thick conducting shell of inner radius $R_1=1$ m and outer radius $R_2=2$ m, with the charge being at the center of the shell. $W_I=\frac{\epsilon_0}{2}\int E_I^2\ dV$ and $W_{II}=\frac{\epsilon_0}{2}\int E_{II}^2\ dV$, where E_I and E_{II} are the magnitudes of the electric fields for configurations (*I*) and (*II*) respectively, ϵ_0 is the permittivity of vacuum, and the volume integrations are carried out over all space. If $\frac{8\pi}{\epsilon_0}|W_I-W_{II}|=\frac{1}{n}$, what is the value of the integer n?

- 8) In pion nucleon scattering, the pion and nucleon can combine to form a short lived bound state called the Δ particle $(\pi + N \rightarrow \Delta)$. The masses of the pion, nucleon and the Δ particle are 140 MeV/ c^2 , 938 MeV/ c^2 and 1230 MeV/ c^2 , respectively. In the lab frame, where the nucleon is at rest, what is the minimum energy (in MeV/ c^2 , rounded off to one decimal place) of the pion to produce the Δ particle?
- 9) Consider an electromagnetic wave propagating in the z-direction in vacuum, with the magnetic field given by $\overrightarrow{B} = \overrightarrow{B_0} e^{i(kz-\omega t)}$. If $B_0 = 10^{-8}$ T, the average power passing through a circle of radius 1.0 m placed in the xy plane is P (in Watts). Using $\epsilon_0 = 10^{-11} \frac{C^2}{Nm^2}$, what is the value of $\frac{10^3 P}{\pi}$ (rounded off to one decimal place)?
- 10) An α -particle is emitted from the decay of Americium (Am) at rest, i.e., $^{241}_{94}$ Am \rightarrow^{237}_{92} U + α . The rest masses of $^{241}_{94}$ Am, $^{237}_{92}$ U and α are 224.544 GeV/ c^2 , 220.811 GeV/ c^2 and 3.728 GeV/ c^2 respectively. What is the kinetic energy (in MeV/ c^2 , rounded off to two decimal places) of the α -particle?
- 11) Consider 6 identical, non-interacting, spin $\frac{1}{2}$ atoms arranged on a crystal lattice at absolute temperature T. The z-component of the magnetic moment of each of these atoms can be $\pm \mu_B$. If P and Q are the probabilities of the net magnetic moment of the solid being $2\mu_B$ and $6\mu_B$ respectively, what is the value of $\frac{P}{Q}$ (in integer)?
- 12) Two identical, non-interacting ${}^4\text{He}_2$ atoms are distributed among 4 different non-degenerate energy levels. The probability that they occupy different energy levels is p. Similarly, two ${}^3\text{He}_2$ atoms are distributed among 4 different non-degenerate energy levels, and the probability that they occupy different levels is q. What is the

value of $\frac{p}{a}$ (rounded off to one decimal place) ?

13) Two identical bodies kept at temperatures 800 K and 200 K act as the hot and the cold reservoirs of an ideal heat engine, respectively. Assume that their heat capacity (C) in Joules/K is independent of temperature and that they do not undergo any phase change. Then, the maximum work that can be obtained from the heat engine is $n \times C$ Joules. What is the value of n (in integer)?