CELL DEATH CLASSIFICATION WITH MACHINE LEARNING

Paulina Kaczyńska, Nazanin Amirinejad, Tomasz Lipniacki

Institute of Fundamental Technological Research, Polish Academy of Sciences

Cell Deaths

Cell death is a fundamental biological process essential for development, tissue homeostasis, and immune responses. Different types of programmed cell death serve distinct physiological functions and trigger varying immune reactions.

Non-Immunogenic Cell Death

- Apoptosis: "Silent" cell death with intact membrane, no inflammatory response Immunogenic Cell Death
- Pyroptosis: Inflammatory cell death with membrane rupture

Fig. 1: Microscopic image containing pyroptotic cells

Why This Matters:

- **Apoptosis**: Cells die quietly, immune system does not learn about the threat, such as a viral infection
- **Pyroptosis**: Membrane breaks, releases cellular contents \to innate immune system recognizes threat \to adaptive immunity develops

Fig. 2: Pyroptosis morphology

Current Approaches & Limitations

Methods of cell death detection

- Fluorescent markers that translocate to dying cells (e.g., propidium iodide) or are triggered by a specific death pathway
- Cell morphology analysis

Key Problems:

- Marker constraints using fluorescent markers for death detection limits the use of them for other signaling.
- Pathway specificity most tools only detect apoptosis or general cell death
- **Resolution limitations** whole-image classification rather than single-cell detection
- Very few methods specifically detect pyroptosis

Dataset Creation

Data Sources & Experiment Design

- Live-cell time-lapse microscopy of viral infection experiments
- 6 independent experiments on epithelial cells,
 - infected with influenza,
 - stimulated with viral RNA analog, poly(I:C),
 - co-incubated with natural killer cells

all leading to cell death.

• Reference standard: Propidium iodide staining for cell death confirmation

Available Channels

- Brightfield (BF): Cell morphology in white light
- CellEvent (CE): Caspase-3 activation indicator
- Propidium Iodide (PI): Dead cell indicator
- Cell Nuclei
- Differential Phase Contrast (DPC)

Fig. 3: Example channels visualization

Created Dataset Types

Dataset Type	Description	Size (train / test)
2D Classification	Single timepoint crops containing cell of interest	7317 / 1830
3D Classification	9 consecutive frames (t-4 to t+4)	1601 / 403
Object Detection	Full field images with annotations	2476 / 619

Annotation Process

- 1. **Pyroptosis identification**: Human annotation based on PI signal and morphological criteria
- 2. Ground truth: PI channel provides cell death information
- 3. Temporal tracking: Cells tracked across time

single snapshot clasification with 2D CNN

Training Strategy: Classification of single-timepoint images (224 by 224 pixels) containing the cell of interest and its surroundings.

The network (ResNet-18, EfficientNet-B0) is trained to classify the input into

- Binary: Pyroptotic vs. Non-pyroptotic
- 3-class: Pyroptotic vs. Apoptotic vs. Healthy/Other

The network is trained on all channels or one chosen channel.

Snapshot sequence classification with 2D CNN+LSTM

- ResNet + LSTM: 2D feature extraction followed by temporal modeling by LSTM layer
- 9-frame sequences centered on target timepoint
- 64×64 pixel frames

Classification Schemes

- Binary: Pyroptotic vs. Non-pyroptotic
- 3-class: Pyroptotic vs. Apoptotic vs. Healthy/Other

Results

Three class classification

Approach	Backbone	Channels	Accuracy (%) (mean)
2D CNN	ResNet-18	All	95.9
2D CNN	ResNet-18	Brightfield	82.30
2D CNN	ResNet-18	PI	89.34
2D CNN	ResNet-18	CE	85.74
CNN+LSTM	ResNet-18	All	94.29
CNN+LSTM	ResNet-18	Brightfield	76.59
CNN+LSTM	ResNet-18	PI	91.07
CNN+LSTM	ResNet-18	CE	82.13

Binary classification (Pyroptotic vs. others)

Approach	Backbone	Channels	Accuracy (%)
2D CNN	ResNet-18	All	96.39
2D CNN	ResNet-18	Brightfield	89.96
2D CNN	ResNet-18	PI	84.04
2D CNN	ResNet-18	CE	89.67
CNN+LSTM	ResNet-18	All	88.09
CNN+LSTM	ResNet-18	Brightfield	84.29
CNN+LSTM	ResNet-18	PI	89.0
CNN+LSTM	ResNet-18	CE	88.34

Where to find the datasets?

Datasets are available on HuggingFace:

2D Classification 3D Classification

kaczyniec/pyroptosis classification-2d

kaczyniec/pyroptosisclassification-3d