# **Introduction to Bayesian Analysis**

Prof. Nagi Gebraeel Industrial and Systems Engineering Georgia Tech



ISyE 6810 Systems Monitoring & Prognostics

1

1

# **Degradation-Based Prognostic Modeling**



**Introduction to Bayesian Statistics** 

Bayesian vs. Frequentist perspectives Influence of Baye's Rule Prior Distribution and Likelihood Functions Posterior Distribution Conjugate Priors

**Detailed Example** 

ISyE 6810 Systems Monitoring & Prognostics

2

# **Frequentist versus Bayesian Statistics**

- In the classical statistical approach, the parameter  $\theta$  is thought to be an unknown, but fixed quantity.
- A random sample  $X=(X_1,...,X_n)$  is drawn from a population indexed by  $\theta$  and based on the observed values in the sample  $x=(x_1,...,x_n)$ , where the knowledge about the value of  $\theta$  is obtained.
- $\succ$  In contrast, the Bayesian statistical approach considers  $\theta$  to be a quantity whose variation can be described by a probability distribution that is updated using new observations.

ISyE 6810 Systems Monitoring & Prognostics

3

3

## **Frequentist versus Bayesian Statistics**

- In the Bayesian statistical approach,  $\theta$  is consider to be a quantity whose variation can be described by a probability distribution, which is called the **prior distribution**.
  - This is a subjective distribution based on the experimenter's belief, and perhaps some empirical evidence. It is formulated before any experimental data is obtained.
  - A sample is then drawn from a population indexed by  $\theta$  and the prior distribution is updated with the sample information. The updated distribution is called **posterior distribution**.
  - The updating framework is done according to Bayes' Rule.

ISyE 6810 Systems Monitoring & Prognostics

# **Overview of Bayesian Statistics**

If we denote the prior distribution of  $\theta$  by  $\pi(\theta)$  and the sampling distribution given  $\theta$  by  $f(\mathbf{x}|\theta)$ , then the posterior distribution, i.e., the conditional distribution of  $\theta$  given the sample x, is

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)\pi(\theta)}{\int f(\mathbf{x}|\theta)\pi(\theta)d\theta}$$

- In choosing a prior belonging to a specific distributional family,  $\pi(\theta)$ , some choices may be computationally more convenient than others.
- In particular, it might be possible to select a member of that family which is a **conjugate** to the likelihood function  $f(\mathbf{x}|\theta)$ , that is, one that leads to a posterior distribution  $\pi(\theta|\mathbf{x})$  belonging to the same distribution family as the prior.

ISyE 6810 Systems Monitoring & Prognostics

5

# **Explanatory Example**

- ➤ The following table displays historical data for launches of new rockets conducted by "new" companies during the period 1980–2002.
- ➤ A total of 11 launches were performed; 3 were successes and 8 were failures.
- Our goal in presenting this data is to specify a statistical model that can be used for predicting the future success of new rocket systems.
- Because a launch outcome can be regarded as either a success or failure, we can model launch outcome as Bernoulli data

| Vehicle     | Outcome |
|-------------|---------|
| Pegasus     | Success |
| Percheron   | Failure |
| AMROC       | Failure |
| Conestoga   | Failure |
| Ariane 1    | Success |
| India SLV-3 | Failure |
| India ASLV  | Failure |
| India PSLV  | Failure |
| Shavit      | Success |
| Taepodong   | Failure |
| Brazil VLS  | Failure |
|             |         |

 ${\sf ISyE~6810~Systems~Monitoring~\&~Prognostics}$ 

## **Explanatory Example**

If we let  $\pi$  denote the probability that a new launch vehicle selected at random succeeds, then we can express the probability of observing the sequence of successes and failures reported in the previous table as follows:

$$\pi^3(1-\pi)^8$$

The above expression can be generalized to the situation in which we observe y successes in n trials leading to the binomial probability density function, which we can write as:

$$f(y|n,\pi) = \binom{n}{y} \pi^y (1-\pi)^{n-y}$$

•  $f(y|n,\pi)$  specifies the probability of observing an outcome of a future experiment conducted on a sample of items drawn from the population of interest and is referred to as *Sampling Distribution*.

ISyE 6810 Systems Monitoring & Prognostics

7

7

## **Explanatory Example**

Using the classic statistical approach, a point estimate of the failure probability of a new launch system developed by an inexperienced manufacturer is provided by the MLE:  $\widehat{\pi} = \frac{y}{n} = \frac{3}{11} = 0.272$ 

The standard error for this estimate is

$$se(\widehat{\pi}) = \sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}} = \sqrt{\frac{0.272(1-0.272)}{11}} = 0.134.$$

 $\triangleright$  It follows that an approximate  $(1-\alpha)\times 100\%$  confidence interval for  $\pi$  is given by (for  $\alpha=0.1$ ),

$$(\widehat{\pi} - z_{\alpha/2} \operatorname{se}(\widehat{\pi}), \widehat{\pi} + z_{\alpha/2} \operatorname{se}(\widehat{\pi})) = (0.052, 0.492)$$

ISyE 6810 Systems Monitoring & Prognostics

# **Explanatory Example**

- Alternatively, we can use experience from vehicles launched prior to 1980 to specify *informative prior* distribution for success probabilities of post-1980 launch vehicles
  - We can specify prior information regarding the value of this parameter by using a probability density function on the unit interval.
  - This probability density is called the prior density, since it reflects information about  $\pi$  prior to observing experimental data
- ➤ In practice, the distribution used to reflect prior information may be dispersed, reflecting the fact that little is known about the parameter, or it may be concentrated in a particular region of the parameter space, reflecting the fact that more specific information is available.
  - In the former case, the prior distribution is sometimes called diffuse, noninformative, or vague;
  - In the latter, it is called informative.

ISyE 6810 Systems Monitoring & Prognostics

9

# **Explanatory Example**

- For the noninformative case, we assume that all values of  $\pi$  between 0 and 1 are equally plausible, i.e., this can be summarized by assuming that the prior distribution for  $\pi$  is uniform on the unit interval.
  - Unif(0,1) or Beta(1,1,)
- For the informative case we will assume that the prior distribution follows a Beta distribution with parameters  $\alpha = 2.4$  and  $\beta = 2$ .
  - Beta(2.4, 2)

 ${\sf ISyE~6810~Systems~Monitoring~\&~Prognostics}$ 

- Alternatively, we can use experience from vehicles launched prior to 1980 to specify *informative prior* distribution for success probabilities of post-1980 launch vehicles
- Once data are obtained, the prior distribution is updated using the new information.
- In this example, we will assume that the prior distribution follows a Beta distribution with parameters  $\alpha=2.4$  and  $\beta=2$

ISyE 6810 Systems Monitoring & Prognostics

11

11

### Informative vs. Non-informative Priors

- Prior distributions can be:
  - Dispersed, reflecting the fact that little is known about the parameter, aka.,
     Non-informative
  - Concentrated in a particular region of the parameter space, reflecting the fact that more specific information is available, aka., *informative*.
- **Example:** Suppose that little information is known  $\pi$ .
  - A priori, we might suppose that all values of  $\pi$  between 0 and 1 are equally plausible, i.e., this can be summarized by assuming that the prior distribution for  $\pi$  is uniform on the unit interval.
    - This prior distribution is an example of a diffuse prior since it reflects a lack of precise prior information about the true value of  $\pi$ .

ISyE 6810 Systems Monitoring & Prognostics

- Example: Calculating posterior distributions for the launch vehicle failure data for two prior distributions
  - $Beta(1, 1) \rightarrow$  equivalent to the non-informative uniform prior distribution
  - $Beta(2.4, 2) \rightarrow$  equivalent to the informative prior distribution



ISyE 6810 Systems Monitoring & Prognostics

13

13

# **Combining Data with Prior Information**

- Observations
  - The prior distribution is a beta distribution,

$$P(\pi|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma^{\alpha}\Gamma^{\beta}} \pi^{\alpha-1} (1-\pi)^{\beta-1}$$

• The corresponding likelihood function is,

$$f(y|\pi,n) = {n \choose y} \pi^{y} (1-\pi)^{n-y}$$

Therefore, the posterior distribution is,

$$P(\pi|Y) \propto f(Y|\pi,n) \cdot P(\pi|\alpha,\beta)$$

ISyE 6810 Systems Monitoring & Prognostics

> Case 1:

Case 2:

It follows that an approximate  $(1 - \alpha) \times 100\%$  confidence interval for  $\alpha = 0.1$  is given by (0.13, 0.58).

ISyE 6810 Systems Monitoring & Prognostics

15

15

# **Combining Data with Prior Information**

- This resulting model is called the **beta-binomial model**.
- Prior distributions that take the same functional form as the posterior distribution are called *conjugate prior distributions*.
  - Conjugate prior distributions can make posterior analysis easy.
  - Prior distributions should not be specified simply for computational convenience.
  - If a conjugate prior that adequately represents the data prior to the experimentation cannot be found, then non-conjugate priors should be used
  - We explore numerical techniques handling non-conjugate and conjugate with do not admit simple analytical forms later.

ISyE 6810 Systems Monitoring & Prognostics

# **Conjugate Pairs**

| Sampling Distribution (Parameter)             | Conjugate Prior                            |  |
|-----------------------------------------------|--------------------------------------------|--|
| Binomial $(\pi)$                              | Beta                                       |  |
| Exponential $(\lambda)$                       | Gamma                                      |  |
| Gamma $(\lambda)$                             | Gamma                                      |  |
| Iultinomial $(\pi)$ Dirichlet                 |                                            |  |
| Multivariate Normal $(\mu, \Sigma)$           | nal $(\mu, \Sigma)$ Normal Inverse Wishart |  |
| Negative Binomial $(\pi)$                     | Beta                                       |  |
| Normal $(\mu, \sigma^2 \text{ known})$ Normal |                                            |  |
| Normal $(\sigma^2, \mu \text{ known})$        | Inverse Gamma                              |  |
| Normal $(\mu, \sigma^2)$ Normal Inverse Ga    |                                            |  |
| Pareto $(\beta)$                              | Gamma                                      |  |
| Poisson $(\lambda)$                           | Gamma                                      |  |
| Uniform $(0,\beta)$                           | Pareto                                     |  |

ISyE 6810 Systems Monitoring & Prognostics

17

17

# **Combining Data with Prior Information**

- ightharpoonup Posterior distributions represent all available information about  $\pi$  after both prior information and experimental data are combined.
- ightharpoonup All inferences about the success probability  $\pi$  are based on these posterior distributions
  - Posterior probability intervals are the Bayesian analogues of classical confidence intervals and can be summarized using the  $(1-\alpha) \times 100\%$  interval.
  - The posterior mean is given as

$$E(\pi|y) = \int_{0}^{1} \pi \, p(\pi|y) d\pi$$

ISyE 6810 Systems Monitoring & Prognostics

# **Combining Data with Prior Information**

- > To better understand the combination of prior information and data, consider the following explanation:
  - The mean of the Beta distribution is  $\frac{\alpha}{\alpha+\beta}$
  - Based on y successes and n y failures, the posterior mean is:

ISyE 6810 Systems Monitoring & Prognostics

19

19

# **Combining Data with Prior Information**

- For the Binomial example with prior distribution  $Beta(\alpha, \beta)$ , the posterior is  $Beta(y + \alpha, n y + \beta)$ 
  - 1. When y and n-y are large, the difference between  $Beta(y+\alpha,n-y+\beta)$  and Beta(y,n-y) becomes smaller.
  - 2. Thus, the influence of the prior distribution diminishes.
  - 3. For large values of y and n-y, a Beta(y,n-y) looks very much like a normal distribution.

ISyE 6810 Systems Monitoring & Prognostics

## **More on Bayesian Statistics**

**Example 2:** Let  $X \sim N(\theta, \sigma^2)$ , and suppose the prior distribution of is  $\theta \sim N(\mu, \tau^2)$ . Then, the posterior distribution of  $\theta$  is also normal, with mean and variance given by:

$$E(\theta|x) = \left(\frac{\tau^2}{\tau^2 + \sigma^2}\right)x + \left(\frac{\sigma^2}{\tau^2 + \sigma^2}\right)\mu, \qquad Var(\theta|x) = \frac{\sigma^2\tau^2}{\tau^2 + \sigma^2}$$

- $\blacktriangleright$  The Bayes estimator of  $\theta$  is the posterior mean,  $E(\theta|x)$ .
- ➤ Notice that the Bayes estimator is a linear combination of the prior and sample means.
- ightharpoonup As  $au^2$  tends to infinity, the Bayes estimator tends toward the sample mean.

ISyE 6810 Systems Monitoring & Prognostics

21

21

# **Example 2**

**Example 1:** Let  $X \sim N(\theta, \sigma^2)$ , and suppose the prior distribution of is  $\theta \sim N(\mu, \tau^2)$ . Then, the posterior distribution of  $\theta$  is also normal, with mean and variance given by:

ISyE 6810 Systems Monitoring & Prognostics



# **Example 2**

ISyE 6810 Systems Monitoring & Prognostics

25

25

# **More on Bayesian Statistics**

$$E(\theta|x) = \left(\frac{\tau^2}{\tau^2 + \sigma^2}\right)x + \left(\frac{\sigma^2}{\tau^2 + \sigma^2}\right)\mu, \qquad Var(\theta|x) = \frac{\sigma^2\tau^2}{\tau^2 + \sigma^2}$$

- > Some observations:
  - As the prior information becomes more vague, the Bayes estimator tends to give more weight to the sample information.
  - On the other hand, if the prior information is good, i.e.,  $\sigma^2 > \tau^2$ , then the prior mean is given more weight

ISyE 6810 Systems Monitoring & Prognostics

## **More on Bayesian Statistics**

**Example 3:** Consider a random IID sample from a normal distribution, i.e.,  $X_i \sim N(\theta, \sigma^2)$  for i = 1, ..., n. Suppose the prior distribution of is  $\theta \sim N(\mu, \tau^2)$ . Then, the posterior distribution of  $\theta$  is also normal, with mean and variance given by:

$$E(\theta|x_1,\ldots,x_n) = \frac{n\tau^2}{n\tau^2 + \sigma^2} \left(\frac{\sum_{i=1}^n x_i}{n}\right) + \frac{\sigma^2}{n\tau^2 + \sigma^2} \mu, \quad Var(\theta|x_1,\ldots,x_n) = \frac{\sigma^2\tau^2}{n\tau^2 + \sigma^2}$$

- ➤ Notice that as we get more and more sample data, i.e., as *n* increases, the posterior estimate places more weight on the sample information and less on the prior.
- Moreover, when  $n \to \infty$ , the Bayes estimator of  $\theta$ ,  $E(\theta|x_1, ..., x_n)$ , tends toward the sample mean  $\frac{\sum_{i=1}^n x_i}{n}$ .

ISyE 6810 Systems Monitoring & Prognostics

27

27

# **Example 3**

- Further, if we want to determine the distribution of a future draw from the population,  $X_{n+1}$ , which is IID with  $X_1, \ldots, X_n$ , we can jointly use the posterior distribution of  $\theta$  based on the information from observations  $X_1, \ldots, X_n$ , and the distribution of  $X_{n+1}$ .
- In other words, we have the following:

$$X_{n+1} \sim N(\hat{\mu}, \sigma^2 + \hat{\tau}^2)$$

Where  $\hat{\mu} = E(\theta | x_1, ..., x_n)$ , and  $\hat{\tau}^2 = Var(\theta | x_1, ..., x_n)$ 

ISyE 6810 Systems Monitoring & Prognostics

# Overview of "Empirical" Bayes Approach

- ➤ The basic empirical Bayes approach uses observed data to estimate the parameters of the prior distribution, which are called *hyper parameters*.
- ➤ The name Empirical Bayes arises from the fact that data from experiments are used to estimate the parameters of the prior distribution.
- ➤ EB is sometimes classified into parametric EB and nonparametric EB.
  - The major difference is that the parametric approach specifies a parametric family of prior distributions, but the nonparametric approach leaves the prior completely unspecified, and thus the prior distribution is fitted using the observed data.

ISyE 6810 Systems Monitoring & Prognostics

29

29

# Overview of "Empirical" Bayes Approach

- > We demonstrate how to get EB estimators for the Normal case in which the prior and likelihood functions are Normal.
- $\triangleright$  Suppose p random variables are observed, each from a normal population with different means but the same known variance, that is,

$$X_i \sim N(\theta_i, \sigma^2), \quad i = 1, ..., p$$

> Then the Bayesian assumption is made as,

$$\theta_i \sim N(\mu, \tau^2), \quad i = 1, ..., p$$

ightharpoonup According to Bayes' rule, the Bayes estimator for  $heta_i$  is given by

$$\mu^{EB}(X_i) = \left(\frac{\sigma^2}{\sigma^2 + \tau^2}\right)\mu + \left(\frac{\tau^2}{\sigma^2 + \tau^2}\right)X_i$$

ISyE 6810 Systems Monitoring & Prognostics

# Overview of "Empirical" Bayes Approach

 $\triangleright$  The posterior distribution of  $\theta_i$  given  $X_i$ , denoted by  $\pi(\theta_i|X_i)$ , is given by,

$$\pi(\theta_i|X_i)\sim N[\mu^{EB}(X_i),\sigma^2\tau^2/(\sigma^2+\tau^2)]$$

- The EB model agrees with the Bayes model, but refuses to specify values for  $\mu$  and  $\tau^2$ .
- Instead, the EB model uses the observed data to estimate the parameters in statistical way.
- All of the information about  $\mu$  and  $\tau^2$  is contained in the marginal distribution of  $X_i$  (unconditional on  $\theta_i$ ) and some standard calculation shows that this marginal distribution of  $X_i$ ,  $f(X_i)$ , is given by:

$$f(X_i) \sim N(\mu, \sigma^2 + \tau^2), i = 1..., p$$

ISyE 6810 Systems Monitoring & Prognostics

31

31

# Overview of "Empirical" Bayes Approach

- Vising this fact, the unknown parameters in the expression of  $\mu^{EB}(X_i)$ , namely,  $\mu$ ,  $\left(\frac{\sigma^2}{\sigma^2 + \tau^2}\right)$ , and  $\left(\frac{\tau^2}{\sigma^2 + \tau^2}\right)$ , can be estimated.
- From Casella\*, the following two equalities hold true:

$$E(\overline{X}) = \mu$$
,  $E\left(\frac{(p-3)\sigma^2}{\sum_{i=1}^{p}(X_i - \overline{X})^2}\right) = \frac{\sigma^2}{\sigma^2 + \tau^2}$ 

> Then the EB estimators of those three parameters mentioned above are,

$$\bar{X}$$
,  $\frac{(p-3)\sigma^2}{\sum_{i=1}^p (X_i - \bar{X})^2}$ ,  $1 - \frac{(p-3)\sigma^2}{\sum_{i=1}^p (X_i - \bar{X})^2}$ 

\* Casella, G. "An Introduction to Empirical Bayes Data Analysis," The American Statistician, May 1985, vol. 39, no.2, pp. 83-87.

ISyE 6810 Systems Monitoring & Prognostics

# Overview of "Empirical" Bayes Approach

 $\triangleright$  Thus the EB estimator of  $\theta_i$ ,  $\mu^{EB}(X_i)$ , is

$$\mu^{EB}(X_i) = \left(\frac{(p-3)\sigma^2}{\sum_{i=1}^{p} (X_i - \overline{X})^2}\right) \overline{X} + \left(1 - \frac{(p-3)\sigma^2}{\sum_{i=1}^{p} (X_i - \overline{X})^2}\right) X_i$$

- $\triangleright$  Casella demonstrates that  $\mu^{EB}(X_i)$  is a good estimator of  $\theta_i$  through several examples.
- In addition, EB estimation, on the average, is closer to  $\theta_i$  than  $X_i$ , which is the usual/classical estimator of  $\theta_i$ . Also if measured by the mean squared error (MSE),  $\mu^{EB}(X_i)$  has the minimal MSE.
- $\triangleright$  The variance of EB estimator of  $\theta_i$ ,  $V^{EB}(X_i)$ , is

$$V^{EB}(X_i) = \sigma^2 \left( 1 - \frac{(p-1)(p-3)\sigma^2}{p \sum_{i=1}^p (X_i - \overline{X})^2} \right) + \frac{2}{(p-3)} \left( \frac{(p-3)\sigma^2}{\sum_{i=1}^p (X_i - \overline{X})^2} \right)^2 (X_i - \overline{X})^2$$

ISyE 6810 Systems Monitoring & Prognostics

33

33

## Informative vs. Non-informative Priors

- In many cases, the goal of an analysis is to predict values of a future sample.
  - For example, estimate the number of new launch vehicles that will succeed in, say, *m* future launches scheduled.
  - If we knew the success probability for the launch of a new vehicle,  $\pi$ , the problem would be simple. However, we only know its posterior distribution.
  - In this case, the predictive probability of z (for a future sample of size m), given a posterior distribution on  $\pi$  based on past data y, is given by the integral

$$p(z|y) = \int_{0}^{1} f(z|\pi) p(\pi|y) d\pi \quad z = 0,1,...,m$$

ISyE 6810 Systems Monitoring & Prognostics

- In essence, by integrating the sampling distribution  $f(z|\pi)$  over the posterior distribution on the parameter  $\pi$ . We average over the uncertainty in this parameter.
- $\triangleright$  The predictive distribution p(z|y) provides a full account for the uncertainty in the unknown parameter, in this case  $\pi$ .

ISyE 6810 Systems Monitoring & Prognostics

35

35

# **Section Summary**



Covered the Basics of Bayesian Statistics.

Bayesian vs. Frequentist perspectives
Influence of Baye's Rule
Prior Distribution and Likelihood Functions Posterior
Conjugate Priors
Detailed Examples

ISyE 6810 Systems Monitoring & Prognostics