Katya Artemova

Transformers

Sequence to sequence models

2021

About myself

- PostDoc at HSE University
- Research and teach Natural Language Processing (NLP)
- My main research areas are:
 - Dialog systems
 - Interpretation of deep neural networks
 - NLP for Digital Humanities

Sequence to sequence models

Intro to seq2seq models

Transformer

Inside Encoder blocks

Inside Decoder blocks

Random facts about machine translation

Takeaways

Intro to seq2seq models

Machine translation

We use MT on a daily basis...

Translate a sentence from one language into another

Encoder-decoder models

Seq2seq models consist of two parts

Source language Encoder Latent representation Decoder Target language

Encoder-decoder models

- Seq2seq models consist of two parts
- The encoder inputs a sentence in source language

Encoder-decoder models

- Seq2seq models consist of two parts
- The encoder inputs a sentence in the source language
- The decoder outputs a sentence in the target language

Encoder-decoder models

- Seq2seq models consist of two parts
- The encoder inputs a sentence in the source language
- The decoder outputs a sentence in the target language
- The latent representation is a vector representation of the input sentence

Machine translation

Problem formulation

Source sentence:

$$\mathbf{x}_{source} = (x_1, ..., x_n), x_i \in V_{source}$$

Source language

Encoder

Latent representation

Decoder

Target language

Machine translation

Problem formulation

Source sentence:

$$\mathbf{x}_{source} = (x_1, ..., x_n), x_i \in V_{source}$$

Target sentence:

$$\mathbf{y}_{target} = (y_1, ..., y_m), y_i \in V_{target}$$

Source language

Encoder

Latent epresentation

Decoder

Target language

Machine translation data

Parallel corpus

Machine translation

Problem formulation

- Source sentence: $\mathbf{x}_{source} = (x_1, ..., x_n), x_i \in V_{source}$
- Target sentence: $\mathbf{y}_{target} = (y_1, ..., y_m), y_i \in V_{target}$
- Our goal is to maximize $p(\mathbf{y} \mid \mathbf{x})$

Source language

Encoder

Latent representation

Decoder

Target language

Machine translation

Problem formulation

- Source sentence: $\mathbf{x}_{source} = (x_1, ..., x_n), x_i \in V_{source}$
- Target sentence: $\mathbf{y}_{target} = (y_1, ..., y_m), y_i \in V_{target}$
- Our goal is to maximize $p(\mathbf{y} \mid \mathbf{x})$

Objective function: $\mathcal{L}_{\theta} = \sum_{x,y \in C} \log p(\mathbf{y} \mid \mathbf{x}; \theta)$

Source language

Encoder

Latent representation

Decoder

Target language

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.

Encoder-decoder model

- A faster and more efficient model for machine translation that the previous ones
- Core ideas:
 - Multi-head attention mechanism
 - Two stacks of layers

Encoder-decoder model

- A faster and more efficient model for machine translation that the previous ones
- Core ideas:
 - Multi-head attention mechanism
 - Two stacks of layers

Encoder blocks

- The encoder block has two sublayers:
 - The self-attention layer helps to discover relations between words within sentence
 - The FFN layer aggregates outputs of the self-attention layer

Decoder blocks

- The decoder block has the same two layers, but between them there is an encoder-decoder attention layer
- An encoder-decoder attention layer helps the decoder to focus on different input words

Feed forward neural network Encoder-decoder attention Self-attention

Encoder blocks

- The encoder consists of N identical blocks
- Each block inputs the outputs of the previous block except the first one
- The first block inputs word embeddings

Word embeddings

Each word is a vector!

- Each word is represented with a single vector of size 512
- These vectors are dense
- The more similar words are, the closer their embeddings are $cos(x_i, x_i)$

 The embeddings actually are the sum of word embeddings and positional encodings

$$x_i = e_i + pe_i$$

Step 1. Self-attention

- Each word embedding is transformed into a query, a key and a value vectors
 - queries: $q_i = W^Q x_i$
 - keys: $k_i = W^K x_i$
 - values: $v_i = W^V x_i$
- Weight matrices W^Q , W^K , W^V are trainable (=are updated during the training)

Machine

Learning

Input

Step 1. Self-attention

- In matrix notation: word embeddings X are multiplied by weight matrices:
 - queries: $Q = XW^Q$,
 - keys: $K = XW^K$
 - values: $V = XW^V$

Step 1. Self-attention

- Score similarities between queries and keys: $\alpha_{11}=q_1k_1$
- Scores are further divided by default value of 8 and fed into softmax. Finally, the normalised scores are multiplied by Value matrix.
- Using matrix notation:

$$Z = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Step 2. Multi-head self-attention

- Transformer used eight attention heads
- The outputs of eight heads are concatenated

$$Z = \text{concat}([Z^1, Z^2, ..., Z^8])$$

• The output of the encoder block is $W^{\cal O}Z$

Residual connections

- There are two Add & Norm layers insider the Encoder block
- Multi-head attention-mechanism inputs the matrix X and outputs the matrix Z: $X \rightarrow \text{MHA} \rightarrow Z$
- The Add & Norm layers applies LayerNorm (subtract mean value and divide by standard deviation) to the sum of X+Z

Attention weights

Encoder-decoder attention

- The encoder processes the input sequence
- The output of the top encoder block are key and value matrices K_{encdec} , V_{encdec}
- The decoder generates words one by one until the stop symbol is generated

Encoder-decoder attention

- The encoder processes the input sequence
- The output of the top encoder block are key and value matrices K_{encdec} , V_{encdec}
- The decoder generates words one by one until the stop symbol is generated
- The decoder transforms the input sequence \mathbf{y} into the matrices $Q^{dec}, K^{dec}, V^{dev}$

Inside the Decoder block

Masked attention

- The attention mechanism in the Encoder is able to access the whole input sequence
- In the Decoder the masked attention mechanism is only allows to earlier words (to the left words)
- Future positions are masked by setting their weights to $-\infty$

The Encoder's attention mechanism

The Decoder's attention mechanism

Inside the Decoder block

How to predict next word?

 The size of the output layer is equal to the size of target vocabulary:

$$|W_{dec}^{O}| = |V_{target}|$$

- Each position corresponds to a single word
- The output scores are normalised by softmax, which turns the scores into the probabilities
- We can use a greedy strategy: peek the word with the highest probability

Recap of training

The loss function

• Cross-entropy compares gold standard one-hot encodings to softmax outputs: $CE(p,q) = \sum_{x \in V} p(x) \log q(x)$

Positional encodings

 Word embeddings are summed up with positional encodings:

$$x_i = x_i + pe_i$$

 Non-trainable sin/cos positional encodings

 $pe^{(i)} = \begin{cases} \sin(\omega_k, t) & \text{if } i = 2k \\ \cos(\omega_k, t) & \text{if } i = 2k + 1 \end{cases}$, where $\omega_k = \frac{1}{10000^{2k/d}}$

Positional encodings

128 dim positional encodings for a sequence of length 50

Positional encodings

128 dim positional encodings for a sequence of length 50

Random facts about MT

Attention maps

The Transformer learns word alignment

Quality metrics in machine translation

BLEU (bilingual evaluation understudy)

- BLEU uses a modified form of precision to compare a candidate translation against multiple reference translations.
- BLEU computes the same modified precision metric using ngrams.
- BLEU's output is always a number between 0 and 1. The higher the value is, the better.
- BLEU correlates well with human judgements.
- BLEU is non differentiable and can not be optimised directly when the model is trained.

Gender bias in NMT systems

Finish	English
Hän on lääkäri	He is a doctor
Hän on sairaanhoitaja	She is a nurse

State-of-the-art NMT systems suffer from gender biases

Machine translation

Research directions

- Translation from many languages to many languages using one model only
- Non-autoregressive models which can generate an output sequence simultaneously
- Reinforcement learning to optimise BLEU
- Training without parallel data
- Detection and removal of ethical biases

Other related research directions

- Other applications in NLP, including speech-to-text and text-tospeech transformations
- Transformers in Vision and for Time Series
- Interpretation of learnt attention maps
- Are convolutional nets and Transformers related?
- Making Transformers smaller: distillation, pruning, quantization

Takeaways

- Many tasks can be formulated as sequence-to-sequence problems
- Transformers are great for such tasks and are widely used now not only for machine translation
- We love Transformers because they gain better results and are faster than many other architectures

Thank you for your attention!

References

- Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin.
 "Attention is all you need." In *Advances in neural information* processing systems, pp. 5998-6008. 2017.
- Tomalin, Marcus, Bill Byrne, Shauna Concannon, Danielle Saunders, and Stefanie Ullmann. "The practical ethics of bias reduction in machine translation: Why domain adaptation is better than data debiasing." *Ethics and Information Technology* (2021): 1-15.