Corrigé du contrôle continu 1.

(durée: 45min)

Exercice 1. Analysons les différentes parties de la représentation graphique de f:

- entre 0 et 3 heures, la représentation de fonction distance est un segment de la droite qui passe par les points de cordonnées (0,0) et (3,18). Sa pente est donc $v_1 = \frac{18-0}{3-0} = 6$;
- entre 3 heures et 6 heures, la représentation de fonction distance est un segment de la droite qui passe par les points de cordonnées (3,18) et (6,18). Sa pente est donc $v_2 = \frac{18-18}{6-3} = 0$;
- entre 6 heures et 9 heures, la représentation de fonction distance est un segment de la droite qui passe par les points de cordonnées (6,18) et (9,9). Sa pente est donc $v_3 = \frac{9-18}{9-6} = -3$.

Ainsi, la fonction vitesse est une fonction $v:[0,9]\to\mathbb{R}$ définie par:

- $\forall t \in [0, 3], v(t) = 6;$
- $\forall t \in]3, 6], v(t) = 0;$
- $\forall t \in]6, 9], v(t) = -3.$

On peut représenter v comme suit:

Exercice 2. Analysons les différentes parties de la représentation graphique de v:

- entre 0 et 2 heures, la vitesse est constante égale à 20 km/h. la fonction distance f telle que f(0) = 0 qui lui correspond est donc donnée par: $\forall t \in [0, 2], f(t) = 20t$;
- on a donc en particulier f(2)=40. Entre 2 heures et 4 heures, la vitesse est nulle et la fonction distance est donc constante: $\forall t \in]2,4], f(t)=40$.

Ainsi, la fonction distance est une fonction $f:[0,4]\to\mathbb{R}$ définie par:

$$- \forall t \in [0, 2], f(t) = 20t;$$

$$- \forall t \in]2, 4], f(t) = 40.$$

On peut représenter f comme suit:

Exercice 3. On suppose que l'odomètre lit $f(t) = 4t^2 + 2t$ (f(t) en kilomètres et t en heures). **1.** (a) La vitesse moyenne entre t = 2 et t = 5/2 est:

$$\frac{f(5/2) - f(2)}{5/2 - 2} = 2.(4.(5/2)^2 + 5 - (4.2^2 + 4)) = 2.(25 + 5 - 16 - 4) = 20.$$

(b) La vitesse moyenne entre t = 2 et t = 2 + h est:

$$\frac{f(t+h) - f(t)}{h} = \frac{4 \cdot (t+h)^2 + 2 \cdot (t+h) - 4 \cdot t^2 - 2 \cdot t}{h} = 8t + 4h + 2 = 18 + 4h.$$

2. Quand h tend vers 0, on trouve:

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = 18$$

qui est le nombre dérivé de f au point 2.

Exercice 4. Soit f la fonction définie sur \mathbb{R} par $f(t) = \frac{t}{t^2+2}$. Les fonctions définies par $x \in \mathbb{R} \mapsto x$ et $x \in \mathbb{R} \mapsto x^2+2$ étant dérivable, il en est de même de la fonction quotient et on a:

$$f'(t) = \frac{(t^2+2)-2t^2}{(t^2+2)^2} = \frac{2-t^2}{(2+t^2)^2}.$$