

AD-A044 779

FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO
ASYMPTOTIC EFFECTIVENESS OF GENERALIZED V-FILTERS. (U)

F/G 12/1

UNCLASSIFIED

FTD-ID(RS)I-0392-77

NL

| OF |
AD
A044779

END

DATE
FILMED

10-77

DDC

M-A044729

FTD-ID(RS)I-0392-77

FOREIGN TECHNOLOGY DIVISION

ASYMPTOTIC EFFECTIVENESS OF GENERALIZED V-FILTERS

by

V. T. Dolgochub, M. B. Sverdlik

D D C
REF ID: A651120
SEP 30 1977
RECORDED
D

Approved for public release;
distribution unlimited.

REF ID: A	
RTDS	White Section <input checked="" type="checkbox"/>
RTS	Off Section <input type="checkbox"/>
SAC	<input type="checkbox"/>
STANDARD	<input type="checkbox"/>
17. COMMUNICABILITY CODES	
A-1-A-2-A-3-A-4-SPECIAL	

FTD ID(RS)I-0392-77

EDITED TRANSLATION

A FTD-ID(RS)I-0392-77

30 March 1977

FD-77-C-000314

CSI73016983

ASYMPTOTIC EFFECTIVENESS OF GENERALIZED V-FILTERS

By: V. T. Dolgochub, M. B. Sverdlik

English pages: 6

Source: Izvestiya Vysshikh Uchebnykh Zavedeniy
Radioelektronika, Vol 15, NR 11, November
1972, PP. 1400-1401.

Country of origin: USSR

Translated by: Carol S. Nack

Requester: DRDMI/YDL

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-AFB, OHIO.

FTD

ID(RS)I-0392-77

Date 30 MAR 19 77

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
А а	А а	A, a	Р р	Р р	R, r
Б б	Б б	B, b	С с	С с	S, s
В в	В в	V, v	Т т	Т т	T, t
Г г	Г г	G, g	Ү ү	Ү ү	U, u
Д д	Д д	D, d	Ф ф	Ф ф	F, f
Е е	Е е	Ye, ye; E, e*	Х х	Х х	Kh, kh
Ж ж	Ж ж	Zh, zh	Ц ц	Ц ц	Ts, ts
З з	З з	Z, z	Ч ч	Ч ч	Ch, ch
И и	И и	I, i	Ш ш	Ш ш	Sh, sh
Й й	Й й	Y, y	Щ щ	Щ щ	Shch, shch
К к	К к	K, k	ъ ъ	ъ ъ	"
Л л	Л л	L, l	ы ы	ы ы	Y, y
М м	М м	M, m	ь ь	ь ь	'
Н н	Н н	N, n	Э э	Э э	E, e
О о	О о	O, o	Ю ю	Ю ю	Yu, yu
П п	П п	P, p	Я я	Я я	Ya, ya

*ye initially, after vowels, and after ъ, ь; е elsewhere.
When written as ё in Russian, transliterate as yё or ё.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.

GREEK ALPHABET

Alpha	A	α	α	Nu	N	ν
Beta	B	β		Xi	Ξ	ξ
Gamma	Γ	γ		Omicron	Ο	ο
Delta	Δ	δ		Pi	Π	π
Epsilon	E	ε	ε	Rho	Ρ	ρ
Zeta	Z	ζ		Sigma	Σ	σ
Eta	H	η		Tau	Τ	τ
Theta	Θ	θ	ϑ	Upsilon	Τ	υ
Iota	I	ι		Phi	Φ	φ
Kappa	K	κ	κ	Chi	Χ	χ
Lambda	Λ	λ		Psi	Ψ	ψ
Mu	M	μ		Omega	Ω	ω

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English
sin	sin
cos	cos
tg	tan
ctg	cot
sec	sec
cosec	csc
sh	sinh
ch	cosh
th	tanh
cth	coth
sch	sech
csch	csch
arc sin	\sin^{-1}
arc cos	\cos^{-1}
arc tg	\tan^{-1}
arc ctg	\cot^{-1}
arc sec	\sec^{-1}
arc cosec	\csc^{-1}
arc sh	\sinh^{-1}
arc ch	\cosh^{-1}
arc th	\tanh^{-1}
arc cth	\coth^{-1}
arc sch	sech^{-1}
arc csch	csch^{-1}
rot	curl
lg	log

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc.
merged into this translation were extracted
from the best quality copy available.

ASYMPTOTIC EFFECTIVENESS OF GENERALIZED V-FILTERS

V. T. Dolgochub and M. B. Sverdlik

A method of synthesizing filters which maximize the ratio (σ) of the square of the peak modulus to the sum of the squares of the side lobe moduli in a certain range of the reciprocal ambiguity function was proposed in [1]. One version of the realization of these filters, called generalized V-filters, consists of a delay line (DL) [J13] with leads to which complex weighting factors are connected. The duration (T_0) of the filter's pulse response can be equal to or greater than the signal length (T_s), while the intervals between the leads (τ_n) are equal to or shorter than the discrete (τ_d) signal length. The smoothing filter at the outlet of the DL is matched with interval τ_d .

Report [1] showed that parameter σ is the nondecreasing function of ratio T_ϕ/T_c . The analysis of the output signals of the calculated filters showed that parameter σ essentially increases with the increase in T_ϕ/T_c ; parameter μ (the ratio of the peak to the maximum side loop) also increases simultaneously, while ρ (the normalized signal/noise ratio) decreases. The main peak narrows and parameters δ , μ and ρ decrease as interval τ_w decreases.

It is convenient to estimate the asymptotic efficiency of generalized V-filters by comparing them with the well-known Mosk and Urkovits filters.

Theoretically, this filter [2] makes it possible to suppress the side lobes of the output signal to the zero level (here $\delta = -$, $\mu = -$). However, the pulse response of this filter cannot be realized. In view of the behavior of parameters σ and μ , we can assume that V-filters asymptotically approximate Mosk filters at $\tau_w=\tau_A$ and with the increase in ratio T_ϕ/T_c . To confirm this assumption, we calculated the root-mean-square deviation ϵ of the frequency characteristics of generalized V-filters from those of the Mosk filter. Figure 1 shows the dependence of ϵ on T_ϕ/T_c for a 15-position biphase signal. The curve shows that the value of ϵ actually decreases with the increase in T_ϕ/T_c ; at $T_\phi/T_c=3$ the value of ϵ is already forty times smaller than that of ϵ at

$T_\phi/T_c=1$. At $T_\phi/T_c=3$ the parameters of the output signal from the generalized V-filter assume the values $\sigma = 177$, $\mu = 28$, $\rho = 0.78$.

Thus, it follows that the asymptotic estimate of parameter ρ of a generalized V-filter is determined by the value of parameter ρ of the Mosk filter. For the example in question, the asymptotic value of $\rho_{\text{asym}} \approx 0.66$.

Thus, generalized V-filters with controlled pulse response time make it possible to realize virtually any approximation of Mosk filters.

The frequency characteristic $\Phi(j\omega)$ of the well-known Urkovits filters is defined as [3]

$$\Phi(j\omega) = S^*(j\omega)/|S(j\omega)|^2,$$

where $S(j\omega)$ is the signal spectrum.

It is obvious that with this form of the frequency characteristic and infinite widening of the spectrum, the output signal is a delta function, while parameters $\sigma=\infty$, $\mu=\infty$, $\rho=0$.

Urkovits filters are optimum for isolating signals against a background of reflections off local objects; however, they cannot be

realized in practice.

Since the passband of a generalized V-filter widens with the decrease in interval τ_m , the duration of the output signal peak decreases, which makes it logical to assume that generalized V-filters approximate Urkovits filters during asymptotic widening of the passband ($\tau_m \rightarrow 0$). Indeed, the analysis of the frequency characteristics confirms this hypothesis.

The comparison with Urkovits filters was made in the area under the frequency characteristics in sections $0 \leq f_1 < 1/\tau_A$, $1/\tau_A < f_2 < 2/\tau_A$, $2/\tau_A < f_3 < 3/\tau_A$.

Figure 2 shows graphs of the redistribution of area depending on the interval τ_m at $T_\phi = T_c$. As the graphs indicate, the nature of the redistribution indicates the approximation of the generalized V-filters to the Urkovits filter.

However, we must keep in mind that widening the passband of generalized V-filters at $T_\phi = T_c$ causes an increase in the side lobe level. Therefore, it is necessary to increase ratio T_ϕ/T_c in order to decrease the side lobe level.

Thus, we can say that generalized V-filters asymptotically

approximate Urkovits filters with the increase in ratio T_ϕ/T_c and widening of the passband; therefore, they can be considered to be the practical realization of the approximation of Urkovits filters with controlled memory and passband.

Received 29 1971

Bibliography

1. Долгочуб В. Т., Свердлик М. Б., Обобщенные ψ -фильтры, Радиотехника и электроника, 1970, 15, № 1.
2. Mosca E., Sidelobe reduction in phase-coded pulse compression radars, IEEE Trans., Jan., 1967, IT.
3. Урковиц Г., Фильтр для обнаружения слабых радиолокационных сигналов на фоне мешающих отражений, Вопросы радиолокационной техники, 1954, № 2.

DOC = 0392

6

Fig. 1. Root-mean-square deviation of frequency characteristics of generalized \vee -filters and Mosk filter ($\tau_H = \tau_A$).

Fig. 2. Graphs of redistribution of area under frequency characteristics of generalized \vee -filters ($T_\phi = T_c$). , the broken line shows the area of the corresponding section for the Urkovits filter):
a, b, c - sections f_1 , f_2 and f_3 , respectively.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER FTD-ID(RS)I-0392-77	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) ASYMPTOTIC EFFECTIVENESS OF GENERALIZED V-FILTERS		5. TYPE OF REPORT & PERIOD COVERED Translation
7. AUTHOR(s) V. T. Dolgochub, M. B. Sverdlik		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Foreign Technology Division Air Force Systems Command U. S. Air Force		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE November 1972
		13. NUMBER OF PAGES 6
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 09		

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION	MICROFICHE	ORGANIZATION	MICROFICHE
A205 DMATC	1	E053 AF/INAKA	1
A210 DMAAC	2	E017 AF/RDXTR-W	1
B344 DIA/RDS-3C	8	E404 AEDC	1
C043 USAMIIA	1	E408 AFWL	1
C509 BALLISTIC RES LABS	1	E410 ADTC	1
C510 AIR MOBILITY R&D LAB/FIO	1	E413 ESD FTD	2
C513 PICATINNY ARSENAL	1	CCN	1
C535 AVIATION SYS COMD	1	ETID	3
C557 USAIIC	1	NIA/PHS	1
C591 FSTC	5	NICD	5
C619 MIA REDSTONE	1		
D008 NISC	1		
H300 USAICE (USAREUR)	1		
P005 ERDA	2		
P055 CIA/CRS/ADD/SD	1		
NAVORDSTA (50L)	1		
NAWPNSCEN (Code 121)	1		
NASA/KSI	1		
544 IES/RDPO	1		
AFIT/LD	1		