BIAS FROM SPECIFICATION OR MEASUREMENT

ANSCOMBE'S QUARTET A LESSON IN MODEL FIT

Anscombe's Quartet

	x1	y1	x2	y2	x3	у3	x4	y4
1	10	8.04	10	9.14	10	7.46	8	6.58
2	8	6.95	8	8.14	8	6.77	8	5.76
3	13	7.58	13	8.74	13	12.74	8	7.71
4	9	8.81	9	8.77	9	7.11	8	8.84
5	11	8.33	11	9.26	11	7.81	8	8.47
6	14	9.96	14	8.1	14	8.84	8	7.04
7	6	7.24	6	6.13	6	6.08	8	5.25
8	4	4.26	4	3.1	4	5.39	19	12.5
9	12	10.84	12	9.13	12	8.15	8	5.56
10	7	4.82	7	7.26	7	6.42	8	7.91
11	5	5.68	5	4.74	5	5.73	8	6.89
Mean	9	7.5	9	7.5	9	7.5	9	7.5
Variance	11	4.12	11	4.12	11	4.12	11	4.12
Correlation 0.816		0.816		0.816		0.816		
Regression	y = 3 + 0.5x		y = 3 + 0.5x		y = 3 + 0.5x		y = 3 + 0.5x	

Anscombe's 4 Regression data sets

BUT THEY ARE VERY DIFFERENT RELATIONSHIPS!

Anscombe's 4 Regression data sets

Anscombe's Quartet is often cited because (a) whoever created this example is a genius, and (b) it is a vivid demonstration of causes and consequences of SPECIFICATION BIAS.

We will consider what happens to slopes when outliers are present, or we use a linear specification when the relationship is non-linear.

CLASSES OF INFERENTIAL FAILURE TYPE I AND TYPE II ERRORS

TYPE I ERROR FALSE POSITIVE CLAIMING PROGRAM HAS IMPACT WHEN IT DOESN'T

TYPE II ERROR
FALSE NEGATIVE
FAILING TO IDENTIFY TRUE
PROGRAM IMPACT

Type I errors are typically caused by OVB

IMPLICATIONS OF MEASUREMENT ERROR

"Linear Transformations"

$$X2 = X1 + 100$$

Variance of X is unchanged

After linear transformations slopes b1 are identical

 $var(x2) = var(x1) \rightarrow slopes$ and standard errors same mean(x2) = mean(x1) + 100 \rightarrow x-axis moves right Intercept b0 (y when x=0) will be different

"Linear Transformations"

$$X2 = X1 + 100$$

Must add the **same constant** to every value of X Just moves the distribution to right or left

Measurement Error

$$X2 = X1 + \epsilon$$

Add random error to every X.

Random means each X is equally likely to be overmeasured as undermeasured.

X2 has the same mean as X1, but more variance

ADDING MEASUREMENT ERROR TO THE DV

ADDING MEASUREMENT ERROR TO THE INDEPENDENT VARIABLE: "ATTENUATION BIAS"

slope with measurement error

$$b_1 \downarrow = \frac{\operatorname{cov}(x_1, y)}{\operatorname{var}(x_1)} \uparrow$$

$$SE_{b1} \downarrow = \frac{residual}{samplesize \cdot var(x_1) \uparrow}$$

Measurement Error Added to the Independent Variable: Attenuation Bias

Measurement Error Added to the Independent Variable: Attenuation Bias

OUTLIERS

SLOPES TOO LARGE SE LARGER

SLOPES OK SE LARGER

SLOPES TOO SMALL SE LARGER

Extreme of X:
Risk of bias in slope **↑**Risk of false positive

Middle of X: Don't bias slope Increased risk of false negative

Extreme of X:

Risk of bias in slope ↓

Increased risk of false negative

	Depe	Dependent variable:				
		У				
	(1)	(2)	(3)	(4)		
X	1.00***	1.00***	0.55*	1.45***		
	(0.00)	(0.30)	(0.26)	(0.26)		
Constant	0.00***	0.91	3.64*	-1.82		
	(0.00)	(2.06)	(1.78)	(1.78)		

Residual Analysis

IDENTIFYING
OUTLIERS
USING
RESIDUALS
AND COOK'S
DISTANCE

	Dependent variable:			
	у3			
	(1)	(2)		
x3	0.50***	0.35***		
	(0.12)	(0.0003)		
Constant	3.00**	4.01***		
	(1.12)	(0.003)		
Observations	11	10		
R^2	0.67	1.00		
Adjusted R ²	0.63	1.00		
Note:	ote: p<0.1; p<0.05; p<0.			

LOGGED REGRESSION MODELS

NON-LINEAR RELATIONSHIPS QUADRATIC MODELS

Linear: $Y = b0 + b1(X_1) + e$

Quadratic: $Y = b0 + b1(X_1) + b2(X_1)^2 + e$

Quadratic Fit

