

Gods Unchained

Lucas de Brito Silva

O que é Gods Unchained?

GODS— UNCHAINED

O problema é saber qual é o momento certo de se lançar determinada carta.

Sumário

Exploratory Data AnalysisPreprocessing

%

Dataset de Treinamento

- Dataset com 788 linhas e 8 colunas;
- Dataset sem valores faltantes;
- **432** cartas classificadas como "early" e **356** classificadas como "late";
- A coluna de variável resposta (strategy) pode ser transformada para booleano, ou seja, 1 ou 0.

	id	name	mana	attack	health	type	god	strategy
0	1118	Firewine	5	0	0	spell	nature	early
1	1036	Leyhoard Hatchling	10	2	1	creature	magic	late
2	244	Aetherfuel Alchemist	6	4	4	creature	neutral	late
3	215	Millenium Matryoshka	4	2	2	creature	neutral	late
4	87013	Poison Peddler	4	1	3	creature	neutral	late

id	int64
name	object
mana	int64
attack	int64
health	int64
type	object
god	object
strategy	object
dtype: obj	ect

mana

Exploratory Data Analysis

Analysis

Late = True **Early** = False

False creature 189
spell 186
weapon 33
god power 24
True creature 337
weapon 14
spell 5
Name: count, dtype: int64

Late = True Early = False

Late = True **Early** = False

Análises

- Forte correlação entre attack e health, strategy e health, attack e strategy, respectivamente.
- As combinações attack e mana e health e mana possuem perfis de distribuições não linear, pois os melhores discretizadores foram Gradient Boosting e SVC;
- Os campos health e attack têm como melhor opção o discretizador K-Bins, combinado com LogisticRegression e LinearSVC;
- É possível observar que os campos attack e health possuem a maior concentração de valores à esquerda;
- A distribuição dos dados é considerada normal para os campos attack, health e mana, mas é
 possível observar alguns valores discrepantes nos campos.
- A maioria dos tipos de cartas são creatures, seguidas de spells.
- As cartas neutral são as mais comuns na coluna de gods, seguidas pelas cartas associadas a diferentes deuses, sem que nenhum deus único domine a distribuição;
- Não há cartas god power classificada como late.

Feature Engineering

Transformação Logaritmica

Aplicado em attack, mana e health.

Combinação de Caracteristicas

Gerando attack_mana, attack_health, mana_health e attack_mana_health.

Características Combinadas

Gerando att_greater_5, mana_greater_7, health_greater_6, att_greater_mana, att_freater_health, mana_greater_health

Feature Engineering

Feature Engineering Select KBest


```
('attack_mana_health', 192.90500920601278)

('mana_health', 144.91037613043042)

('attack_mana', 144.2699076506875)

('mana', 133.27924334029575)

('attack_health', 116.05697458589944)

('attack', 64.00187565167143)

('health', 57.523697903414)

('god_neutral', nan)

('type_god power', nan)

('type_spell', nan)
```

Utilizando Teste Qui-Quadrado

Feature Engineering

Mutual Information

attack_mana_health	0.583453
attack_mana	0.525046
mana_health	0.503692
attack_health	0.448270
health	0.347232
attack	0.338541
mana	0.287186
type_spell	0.124505
god_war	0.025890
god_neutral	0.018468
god_light	0.006464
att_greater_mana	0.001243

Model Building

O1 Preparação do Dataset de Teste

Adicionando *Feature Engineering* de treino.

Divisão e Treinamento

> O dataset de teste não tem a variável resposta. Utilizou-se o dataset de treinamento.

Seleção de Modelos

Regressão Logística, Random Forest, Gradient Boosting, Support Vector e Support Vector Linear

> Escolha do Melhor Modelo

04

Pipeline

Criando Pipelines para Produtização de Modelos de Machine Learning Alvaro Leandro Cavalcante Carneiro

Pipeline

Considerações finais

Será julgado seu poder de síntese, <mark>de fazer mais com menos</mark>, de arquitetar a solução da forma mais simples e robusta possível, de uma forma que seja manutenível, com qualidade e elegância.

Você pode, em caso de dúvidas relacionadas ao desafio, nos encaminhar um email com essas perguntas.

Esperamos que você consiga concluir o desafio em 1 semana, mas se precisar de mais tempo basta nos informar.

Esperamos que se divirta no processo.

Boa sorte!

Application Programming Interface

Melhorias e Aprendizados

Melhorias

- Dar push nos artefatos dentro da branch main;
- Combinar prometheus com grafana, para monitoramento;
- Adicionar segurança mais robusta;
- Implementação de Feature Store;
- Fazer limpeza do redis a cada deploy de modelo;
- Migrar para AWS Sagemaker ou Airflow.

Aprendizados

- Manifestos para kubernetes;
- Aprender usar Kubeflow;
- Aprender usar DVC;
- Aprender usar Deepchecks.

Obrigado! Dúvidas?

https://lucasbrito.com.br lucasbsilva29@gmail.com

