9. Элементы вариационного исчисления

Рассмотрим некоторые типовые примеры.

Пример 1. Найдите допустимую экстремаль функционала $J[y(x)] = \int_{0}^{1} (y'^2 + y^2 + 2xy \cdot e^x) dx$ при краевых условиях y(0) = y(1) = 0.

Решение

Так как $F(x, y, y') = y'^2 + y^2 + 2xy \cdot e^x$, то для записи уравнения Эйлера найдем:

$$\frac{\partial F}{\partial y} = 2y + 2xe^{x}, \qquad \frac{\partial F}{\partial y'} = 2y', \qquad \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 2y''.$$

А значит уравнение Эйлера (9.7) имеет вид: $2y + 2xe^x - 2y'' = 0$ или $y'' - y = xe^x$, которое является линейным неоднородным уравнением второго порядка со специальной правой частью. Решим его.

$$y''-y = xe^{x}$$
 (*)
 $y(x) = y_0(x) + y^{*}(x)$

Для нахождения $y_0(x)$ составим характеристическое уравнение:

$$k^2 - 1 = 0 \implies k_{1,2} = \pm 1 \implies y_0(x) = C_1 e^x + C_2 e^{-x}$$
.

Запишем в общем виде $y^*(x)$: $y^*(x) = x(Ax + B)e^x = (Ax^2 + Bx)e^x$, тогда

$$(y*(x))^{\vee} = (Ax^2 + (2A+B)x + B)e^x$$
 u $(y*(x))^{\vee} = (Ax^2 + (4A+B)x + 2A + 2B)e^x$.

Подставляя полученные выражения в уравнение (*) и сокращая e^x , получим

$$4Ax + 2A + 2B = x \implies A = \frac{1}{4}, \quad B = -\frac{1}{4} \implies y^*(x) = \frac{x(x-1)}{4}e^x.$$

Таким образом $y(x) = C_1 e^x + C_2 e^{-x} + \frac{x(x-1)}{4} e^x$.

Найдем значения C_1 и C_2 с учетом краевых условий: $\begin{cases} y(0) = C_1 + C_2 = 0, \\ y(1) = C_1 e + C_2 e^{-1} = 0. \end{cases}$

Получим, что $C_1 = C_2 = 0$, а значит $y(x) = \frac{x(x-1)}{4}e^x$ – искомая экстремаль.

Ответ:
$$y(x) = \frac{x(x-1)}{4}e^x$$
.

Пример 2. Найдите допустимую экстремаль функционала $J[y(x)] = \int_{1}^{e} (xy'^2 - 2y') dx$ при краевых условиях y(1) = 1, y(e) = 2.

Решение

Так как $F(x,y,y')=xy'^2-2y'$, то для записи промежуточного интеграла (9.8) найдем $\frac{\partial F}{\partial y'}=2xy'-2\,.$

А значит интеграл (9.8) имеет вид 2xy'-2 = C.

Тогда
$$y' = \frac{C+2}{2x}$$
, а значит $y(x) = C_1 \ln x + C_2$.

Далее найдем C_1 и C_2 потребовав, чтобы выполнялись краевые условия:

$$\begin{cases} y(1) = C_2 = 1, \\ y(e) = C_1 + C_2 = 2. \end{cases}$$

Получим $C_1 = C_2 = 1$. Следовательно, $y(x) = \ln x + 1$ – искомая экстремаль.

Ответ: $y(x) = \ln x + 1$.

Пример 3. Найдите допустимую экстремаль функционала $J[y(x)] = \int_{0}^{\frac{\pi}{4}} (y^{,2} - y^2) dx$ при краевых условиях y(0) = 1, $y\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.

Решение

Так как $F(x, y, y') = y'^2 - y^2$, то для записи уравнения Эйлера найдем:

$$\frac{\partial F}{\partial y} = -2y, \qquad \frac{\partial F}{\partial y'} = 2y', \qquad \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 2y''.$$

А значит уравнение Эйлера (9.7) имеет вид: -2y-2y''=0 или y''+y=0, которое является линейным однородным уравнением второго порядка. Решив его, получим

$$y''+y=0$$

Составим характеристическое уравнение:

$$k^2 + 1 = 0 \implies k_{1,2} = \pm i \implies y(x) = C_1 \cos x + C_2 \sin x$$
.

Найдем значения C_1 и C_2 с учетом краевых условий: $\begin{cases} y(0) = C_1 = 1, \\ y\left(\frac{\pi}{4}\right) = C_1\frac{\sqrt{2}}{2} + C_2\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}. \end{cases}$

Получим, что $C_1 = 1$, $C_2 = 0$, а значит $y(x) = \cos x$ – искомая экстремаль.

Ответ: $y(x) = \cos x$.

Пример 4. Найдите допустимую экстремаль функционала $J[y(x)] = \int_0^1 (2e^y - y^2) dx$ при краевых условиях y(0) = 1, y(1) = e.

Решение

Так как $F(x, y, y') = 2e^y - y^2$, то для записи уравнения Эйлера найдем:

$$\frac{\partial F}{\partial y} = 2e^y - 2y, \qquad \frac{\partial F}{\partial y'} = 0, \qquad \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0.$$

А значит уравнение Эйлера (9.7) имеет вид: $2e^y - 2y = 0$ или $e^y - y = 0$, которое не является дифференциальным и не удовлетворяет заданным краевым условиям. Следовательно, у исходной задачи нет решения.

Ответ: нет решения.

Задачи для самостоятельного решения

Найдите допустимую экстремаль функционала $J[y(x)] = \int_a^b F(x,y(x),y'(x))dx$ при заданных краевых условиях $y(a) = y_A, \ y(b) = y_B$:

1)
$$J[y(x)] = \int_{0}^{\frac{\pi}{6}} (y^{2} - 9y^{2} + 4xy\sin x)dx$$
 при $y(0) = -\frac{1}{16}$, $y(\frac{\pi}{6}) = \frac{\pi}{48}$.

$$\left(\text{Ответ}: \quad y(x) = \frac{\sqrt{3}}{32}\sin 3x - \frac{1}{16}\cos x + \frac{1}{4}x\sin x\right)$$

2)
$$J[y(x)] = \int_{0}^{\pi} (4y\cos x + y'^2 - y^2)dx$$
 при $y(0) = y(\pi) = 0$.
(Ответ: $y(x) = (C + x)\sin x$)

3)
$$J[y(x)] = \int_{0}^{1} (x + y'^{2}) dx$$
 при $y(0) = 1$, $y(1) = 2$.

(Otbet:
$$y(x) = x+1$$
)

4)
$$J[y(x)] = \int_{1}^{3} (12xy' + y'^2) dx$$
 при $y(1) = 0$, $y(3) = 26$.

(Other:
$$y(x) = -3x^2 + 25x - 22$$
)

5)
$$J[y(x)] = \int_{1}^{3} xy'(6+x^2y')dx$$
 при $y(1) = 5$, $y(3) = 3$.

$$\left(\text{Othet:} \quad y(x) = \frac{3}{x} + 2\right).$$

6)
$$J[y(x)] = \int_{0}^{1} yy'^{2} dx$$
 при $y(0) = 1$, $y(1) = \sqrt[3]{4}$.

OTBET:
$$y(x) = \sqrt[3]{(x+1)^2}$$

7)
$$J[y(x)] = \int_{1}^{2} \frac{x^3}{y'^2} dx$$
 при $y(1) = 1$, $y(2) = 4$.

(Otbet:
$$y(x) = x^2$$
).

8)
$$J[y(x)] = \int_{0}^{2} (y'^2 - 4y'e^{2x} + \sin^2 x) dx$$
 при $y(0) = 1$, $y(2) = -2$.

OTBET:
$$y(x) = e^{2x} - \frac{x(2+e^4)}{2}$$
.

9)
$$J[y(x)] = \int_{0}^{2} (e^{y'} + 3) dx$$
 при $y(0) = 0$, $y(2) = 1$.

$$\left(\text{Ответ}: \quad y(x) = \frac{x}{2}\right).$$

10)
$$J[y(x)] = \int_{1}^{3} (3x - y) dx$$
 при $y(1) = 1$, $y(3) = \frac{9}{2}$.

(Ответ: нет решений).