Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2} k(6k^2 r_5 + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1t_3 + 2k^2 r_5 (t_1 + t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} \ (t_1-2 t_3)}{(1+2 k^2) (3 t_1 t_3+2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$		$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \tau^{\alpha\beta}$	$\sigma_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + \alpha$

_	$\sigma_{0^+}^{\#1}$	$\tau_{0^{+}}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^+}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

 $\frac{1}{3}$ \vec{i} k $(t_1 - 2t_3)$

 $\frac{t_1-2t_3}{3\sqrt{2}}$ $\frac{t_1+t_3}{3}$

 $\frac{1}{6} (6 k^2 r_5 + t_1 + 4 t_3)$

0

0

 $\frac{i k t_1}{\sqrt{2}}$

 $f_1^{\#1} + ^{\alpha\beta}$

 $\omega_{1}^{\#_1} \dagger^\alpha$

- 47

 $\frac{t_1-2t_3}{3\sqrt{2}}$

0

 $\omega_{1}^{\#2} \uparrow^{\alpha}$

0

 $f_{1^{\bar{-}1}}^{\#_1} +^{\alpha}$

0

0

 $f_{1^-}^{\#2}\alpha$

 $f_{1^-}^{\#1}{}_{\alpha}$

 $\omega_{1^{-}}^{\#1}{}_{\alpha}$

 $\frac{2}{3} k^2 (t_1 + t_3)$

0

 $-\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,k\,(t_1+t_3)$

 $-\frac{1}{3}ik(t_1-2t_3)$

0

0

0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^+}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1

$\omega_{0}^{\#1}$	0	0	0	-t ₁
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	-i $\sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	£3	$i \sqrt{2} k t_3$	0	0
	$\omega_{0}^{\#1}\dagger$	$f_0^{#1}$ †	$f_0^{\#2} +$	$\omega_{0}^{\#1} \dagger$

SO(3) irreps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$\tau_0^{\#1} - 2 \bar{l} k \sigma_0^{\#1} == 0$	1
$t_1^{\#2\alpha} + 2ik \ \sigma_1^{\#2\alpha} == 0$	3
$t_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	8
$t_2^{\#1}\alpha\beta - 2ik \ \sigma_2^{\#1}\alpha\beta = 0$	2
Total constraints:	16

Source constraints/gauge generators

Quadratic (free) Lagrangian density $ \frac{1}{3}t_1 \omega_{,\alpha}^{\alpha\prime} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ } + \frac{1}{3}t_3 \omega_{,\alpha}^{\alpha\prime} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ } + f^{\alpha\beta} t_{\alpha\beta}^{\ \ \ \ \ \ } + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{\ \ \ \ \ \ \ } - \frac{1}{2}t_1 \omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ } + f^{\alpha\beta} t_{\alpha\beta}^{\ \ \ \ \ \ \ \ } + \omega^{\alpha\beta\chi} \sigma_{\kappa\lambda\beta}^{\ \ \ \ \ \ \ \ \ } + c_5 \partial_6\omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Massive and massless spectra

Massive particle				
Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$			
Polarisations:	3			
Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$			
Spin:	1			
Parity:	Odd			

(No massless particles)

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1) || t_3 > 0))$