Chapter 2

Random Matrices

(**Definition**) Random Matrix. Suppose we have an arbitrary matrix, $P \in \mathcal{M}_{\mathbb{R}}[M, N]$ for some $M, N \in \mathbb{N}^+$. Then, we call P a random matrix is all of its entries p_{ij} are random variables.

(Definition) Ergodic Matrix. A matrix is ergodic if it is aperiodic, and positive irreducible.

Ergodicity

• .

Notation

Suppose we have a $M \times M$ square matrix \mathbf{P} (for some $M \in \mathbb{N}$) on a field F. We notate $\mathbf{P} \in \mathcal{M}_F[M^2]$. Take $\mathbf{P} \in \mathcal{M}_F[M^2]$.

Structural Properties of Matrices

If **P** is symmetric, then its upper triangle is equal to the lower triangle.

If P is tridiagonal, then it is a band matrix of width 1.

Entry-wise Properties of Matrices

```
If \mathbf{P} is row-stochastic, then \forall i: \sum_j p_{ij} = 1. 
\mathrm{RM\_stoch} < \text{-} \mathrm{function}(\mathrm{M}, \mathrm{symm} = \mathrm{F}, \mathrm{sparsity} = \mathrm{F}) \{ \dots \} 
If \mathbf{P} is \mathcal{N}(\mu, \sigma^2), then its entries satisfy p_{ij} \sim \mathcal{N}(\mu, \sigma^2). 
\mathrm{RM\_normal} < \text{-} \mathrm{function}(\mathrm{M}, \mathrm{normal\_args} = \mathrm{c}(0,1), \mathrm{symm} = \mathrm{F}) \{ \dots \} 
If \mathbf{P} is p-\mathrm{sparse}, then \forall i,j \in S_M: p_{ij}/c \sim \mathrm{Bern}(p) for some c \in \mathbb{R}. 
\mathrm{RM\_erdos} < \text{-} \mathrm{function}(\mathrm{M}, \mathrm{p\_sparse}) \{ \dots \}
```