Branch: CSE/IT

Batch: English

Discrete Mathematics Graph Theory

Planarity Part-1

DPP-10

[NAT]

1. If G is a disconnected graph with 11 vertices and maximum number of edges, then matching number of G + chromatic number of G = _____.

[MCQ]

2. The matching number of the graph shown is ____.

- (a) 4
- (b) 3
- (c) 5
- (d) 6

[NAT]

3. Number of maximal matching in the graph shown below is _____.

[MCQ]

4. The covering number of the graph shown below is

- (a) 4
- (b) 5
- (c) 6
- (d) 7

[MCQ]

5. Consider the graph shown below.

Which of the following is correct?

- (a) Covering set = $\{e_1, e_4, e_5, e_7\}$
- (b) Covering set = $\{e_1, e_3, e_5, e_7\}$
- (c) Covering set = $\{e_1, e_3, e_4, e_5, e_7\}$
- (d) Covering set = $\{e_3, e_5, e_7, e_8\}$

Answer Key

(15) 1.

2. (a)

3. (3)

4. (b) 5. (b, c)

Hints and solutions

1. (15)

The given graph G is disconnected graph with 11 vertices and maximum edges.

So,

Single Vertex

Partition 2

Partition 1

Now,

The chromatic number of $K_{10} = 10$

And

The matching number of complete graph

$$K_{10} = \left| \frac{n}{2} \right| = \left| \frac{10}{2} \right| = 5$$

 \therefore Final value = 5 + 10 = 15

2. (a)

To find the maximal matching with maximum number of edges, start with the edges with less no of adjacency.

So,

The maximum matching: $\{e_9, e_2, e_6, e_{12}\}$

: the matching number of the given graph is 4.

NOTE: The maximal matching set may or may not be unique but matching number will be always unique.

3. (3)

Let's name the edges of the given graph.

I. Maximal matching $m_1 = \{e_1, e_6\}$

II.
$$m_1 = \{e_2, e_4\}$$

III.
$$m_1 = \{e_3, e_5\}$$

Hence, we have total 3 maximal matching set for the graph.

4. (b)

Covering: The set of edges, which covers all the vertices.

Covering No: The size of the smallest covering set. Now, The smallest covering =

$$\{(a, b), (b, g), (c, h), (d, i), (d, e)\}$$

Hence, the covering number of the given graph is 5.

5. (b, c)

Option a: Incorrect

The covering set edges did not cover vertex "d".

Option b and c: Correct

The given covering set edges covers all the vertices and option b is the minimal covering set.

Option d: Incorrect

The given cover set edges did not cover vertex "a". Hence, option b and c are the correct option.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if