Curso de Engenharia da Computação Disciplina: Organização de Computadores

Professor: Jacson Luiz Matte

- 1. Se o tempo para a operação da ALU puder ser encurtado para 25% (em comparação com a tabela abaixo), então:
 - a. Isso afetará o ganho de velocidade obtido pela técnica de pipelining? Neste caso, em quanto? Caso contrário, por quê?
 - b. E se a operação da ALU agora exigir 25% mais tempo?

Classe de instruções	Busca de Instruções	Leitura de registrador es	Operação da ALU	Acesso a dados	Escrita de registradores	Tempo total
Load Word(lw)	200 ps	100ps	200ps	200ps	100ps	800ps
Store word (sw)	200ps	100ps	200ps	200ps		700ps
Formate R	200ps	100ps	200ps		100ps	600ps
Branch	200ps	100ps	200ps			500ps

- Uma arquitetura de computadores precisa projetar o pipeline de um novo microprocessador. Ela tem um núcleo de um programa de exemplo com 10⁶ instruções. Cada instrução exige 100ps para terminar.
 - a. Quanto tempo será necessário para executar esse núcleo de programa em um processador sem pipeline?
 - b. O microprocessador mais moderno tem cerca de 20 estágios de pipeline. Suponha que ele tenha um pipeline perfeito. Quanto é o ganho de velocidade conseguido em comparação com o processador sem pipeline?
- 3. Usando um desenho semelhante ao da figura abaixo, mostre os caminhos de forwarding necessários para executar as quatro instruções a seguir:

add \$3, \$4, \$6 sub \$5, \$3, \$2 lw \$7, 100(\$5) add \$8, \$7, \$2

4. Identifique todas as dependências de dados no código a seguir. Quais dependências são hazards de dados que serão resolvidas por meio de forwarding? Quais dependências são hazards de dados que causarão stall?

```
add $3, $4, $2
sub $5, $3, $1
lw $6, 200($3)
add $7, $3, $6
```

- 5. Explique o funcionamento da tabela Look-up associativa como predição dinâmica.
- 6. Exemplifique cada uma das dependências de dados abaixo:
 - a. Dependência verdadeira (read after write)
 - b. Antidependência (write after read)
 - c. Dependência de saída (write after writer)