

主要特点

- IC控制电路与LED点光源共用一个电源。
- 控制电路与RGB芯片集成在一个4020封装的元器件中,构成一个完整的外控像素点。
- 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
- 内置上电复位和掉电复位电路。
- 每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示。
- 端口扫描频率2KHz。
- 串行级联接口,能通过一根信号线完成数据的接收与解码。
- 当刷新速率30帧/秒时,级联数不小于1024点。
- 数据发送速度可达800Kbps。
- 光的颜色高度一致,性价比高。
- 具有电源反接不会损坏。
- 外围不需要包含电容在内的所有任何电子元器件。

主要应用领域

- 消费性电子产品领域。
- LED灯饰亮化领域。
- 电脑及周边设备\游戏设备\各种电器设备领域。

产品概述

WS2812B-4020是一个集控制电路与发光电路于一体的智能外控LED光源,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,还包含有高精度的内部振荡器和可编程定电流控制部分,有效保证了像素点光的颜色高度一致。

数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN端接受从控制器传输过来的数据,首先送过来的24bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少24bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅受限信号传输速度要求。

高达 2KHz 的端口扫描频率,在高清摄像头的捕捉下都不会出现闪烁现象,非常适合高速移动产品的使用。 280μs以上的RESET时间,出现中断也不会引起误复位,可以支持更低频率、价格便宜的MCU。

LED具有低电压驱动、环保节能、亮度高、散射角度大、一致性好超、低功率及超长寿命等优点。将控制电路集成于LED上面,电路变得更加简单,体积小,安装更加简便。

机械尺寸(单位mm)

3D 示意图

引脚功能

序号	符号	管脚名	功 能 描 述
1	DIN	数据输入	控制数据信号输入
2	VDD	电源	供电管脚
3	DOUT	数据输出	控制数据信号输出
4	VSS	地	信号接地和电源接地

最大额定值(如无特殊说明,T_A=25℃,V_{SS}=0V)

参数	符号	范围	单位
电源电压	$V_{ m DD}$	+3.7~+5.3	V
逻辑输入电压	VI	-0.3V~VDD+0.7V	V

电气参数(如无特殊说明, T_A=25℃, V_{DD}=5V,V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
输入电流	II			±1	μΑ	VI=VDD/VSS
高电平输入	V_{IH}	2.7V		VDD+0.7V	V	D _{IN} , SET
低电平输入	V _{IL}	-0.3V		0.7V	V	D _{IN} , SET

开关特性(如无特殊说明, T_A=25℃, V_{DD}=5V,V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
传输延迟时间	t_{PLZ}			300	ns	CL=15pF, DIN→DOUT, RL=10KΩ
下降时间	t _{THZ}			120	μs	CL=300pF, OUTR/OUTG/OUTB
输入电容	CI			15	pF	

LED 特性参数

参数	符号	颜色	青	静态电流(中心值): 0.6mA						
多数	17 5	颜色	最小值	典型值	最大值	单位	(工作电流)			
		Red	300		500					
发光强度	IV	Green	600		1000	mcd	12mA			
		Blue	200		300					
		Red	620		625					
波长	λd	Green	515		525	nm	12mA			
		Blue	465		475					

数据传输时间

ТОН	0码, 高电平时间	220ns~380ns
T1H	1码, 高电平时间	580ns~1μs
T0L	0码, 低电平时间	580ns~1μs
T1L	1码, 低电平时间	580ns~1μs
RES	帧单位, 低电平时间	280μs 以上

时序波形图

输入码型:

连接方法:

数据传输方法

注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

24bit 数据结构

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	В7	В6	В5	B4	В3	B2	В1	В0
																							1

注: 高位先发, 按照 GRB 的顺序发送数据。

典型应用电路:外围电路不需要加滤波电容

表面贴装型 LED 使用注意事项

1. 描述

通常 LED 也像其它的电子元件一样有着相同的使用方法,为了让客户更好地使用华彩威电子的 LED 产品,请参看下面的 LED 保护预防措施。

2. 注意事项

2.1 灰尘与清洁

LED 的表面是采用改性环氧胶封装的,环氧胶对于 LED 的光学系统和抗老化性能都起到很好的保护作用。环氧胶易粘灰尘,保持作业环境的洁净。当 LED 表面有一定限度内的尘埃,也不会影响到发光亮度,但我们仍应避免尘埃落到 LED 表面。打开包装袋的就优先使用,安装过 LED 的组件应存放在干净的容器中。

在 LED 表面需要清洁时,如果使用三氨乙烯或者丙酮等溶液会出现使 LED 表面溶解等现象,不可使用具用溶解性的溶液清洁 LED,可使用一此异丙基的溶液,在使用任何清洁溶液之前都应确认是否会对 LED 有溶解作用。

请不要用超声波的方法清洁 LED,如果产品必须使用超声波,那么就要评估影响 LED 的一些参数,如超声波功率、烘烤的时间和装配的条件等,在清洁之前必须试运行,确认是否会影响 LED。

2.2 防潮包装

TOP SMD LED 属于湿敏元件,将 LED 包装在铝膜的袋中是为了避免 LED 在运输和储存时吸收湿气,在包装袋中放有干燥剂,以吸收湿气。如果 LED 吸收了水汽,那么在 LED 过回流焊时,水气就会蒸发而膨胀,有可能使胶体与支架脱离以及损害 LED 的光学系统。由于这个原因,防湿包装是为了使包装袋内避免有湿气。此款产品防潮等级为: LEVEL5a。

表一: IPC/JEDEC J-STD-020 规定的材料防潮等级(MSL)定义

	包装折	封后车间寿命
防潮等级	时间	条件
LEVEL1	无限制	≤30°C/85%RH
LEVEL2	1年	≤30°C/60%RH
LEVEL2a	4 周	≤30°C/60%RH
LEVEL3	168 小时	≤30°C/60%RH
LEVEL4	72 小时	≤30°C160%RH
LEVEL5	48 小时	≤30°C/60%RH
LEVEL5a	24 小时	≤30°C/60%RH
LEVEL6	取出即用	≤30°C/60%RH

2.3 SMT 贴片说明:

- 1.请在 T<30℃, RH<60%条件下使用;
- 2.产品开袋至回流焊完成时间段控制在 24H 内;
- 3.如超时, 需要对 LED 产品进行除湿烘烤;
- 2.4 除湿要求: 75℃/>24H

3. 回流焊接

经过用下面所列参数检测证明,表面贴装型 LED 符合 JEDEC J-STD-020C 标准。作为一般指导原则,建议遵循所用焊锡膏制造商推荐使用的焊接温度曲线。

温度曲线描述	无铅回流焊
最低预热温度(Tsmin)	150℃
最高预热温度(Tsmax)	200℃
预热区时间(Tsmin to Tsmax)(ts)	60-180 S
平均升温速率(Tsmax to Tp)	<3°C/S
液相温度(TL)	217℃
液相区保温时间(tL)	60-150 S
峰值温度(Tp)	240℃
高温区(峰值温度-5℃)停留时间(tp)	<10 S
降温速率	<6°C/S
室温至峰值温度停留时间	<6 min

- 注: 1. 以上为一般指导原则可能并不适用于所有 PCB 设计和回流焊的配置。
 - 2. 所有温度是指在封装本体上表面测的温度。

5. 产品配装过程注意事项

1. 通过使用适当的工	2. 不可直接用手或尖锐	3. 不可将模组材料堆积在一	4.不可用在 PH<7 的酸性
具从材料侧面夹取	金属压胶体表面,它可能	起,它可能会损坏内部电路	场所
	会损坏内部电路		
			CPM7

文件更改记录

版本号	状态	修改内容概要	修订日期	修订人	批准人
V1.0	N	新建	20180913	沈金国	尹华平
V1.1	M	修正参数	20190125	沈金国	尹华平
V1.2	M	修正推荐焊盘	20190708	沈金国	尹华平
		修改贴片说明			

版本号命名规则:

- 1.新增参数或修改参数 ,修改版本号第二位,如: $V1.0 \rightarrow V1.1$
- 2.重大的版本设计或修改参数较多,修改版本号第一位,如: $V1.0 \rightarrow V2.0$,

产品型号加版本号第一位,如:WS28xx-V1 → WS28xx-V2

3.状态包括: N--新建, A--增加, M--修改, D--删除