

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Dokumentation

Gruppe 2

Anne Bundgaard Hoelgaard (201404492) Mette Hammer Nielsen-Kudsk (201408391) Ditte Heebøll Callesen (201408392) Martin Banasik (201408398) Albert Jakob Fredshavn (201408425) Johan Mathias Munk (201408450)

Vejleder Studentervejleder Peter Johansen Aarhus Universitet

Gruppe med lemmerAnne Bundgaard Hoelgaard (201404492) Dato Mette Hammer Nielsen-Kudsk (201408391) Dato Ditte Heebøll Callesen (201408392) Dato Martin Banasik (201408398) Dato Albert Jakob Fredshavn (201408425) Dato Johan Mathias Munk (201408450) Dato VejlederPeter Johansen Dato

Ordliste

Ord	Forklaring
(F)URPS+	Et akronym, der repræsenterer en model til klassificering af softwarens kvalitet
GUI	Graphical User Interface (Grafisk brugergrænseflade)
VPN	Virtual Private Network
DAQ	Data acquisition

Indholds for tegnelse

Ordliste				
Kapite	l 1 In	dledning	1	
Kapite	1 2 K	ravspecifikation	2	
2.1	Version	nshistorik	2	
2.2	Godke	ndelsesformular	2	
2.3	Indled	ning	3	
2.4	System	abeskrivelse	3	
2.5	Funkti	ionelle krav	3	
	2.5.1	Aktør-kontekstdiagram	3	
	2.5.2	Aktørbeskrivelse	4	
	2.5.3	Use case-diagram	4	
	2.5.4	Use Cases	5	
2.6	Ikke-fu	ınktionelle krav	8	
	2.6.1	$(F) URPS + \dots $	8	
Kapite	13 Sv	vstemarkitektur	11	
3.1	•	rare	12	
	3.1.1	Design	12	
	3.1.2	Implementering	13	
	3.1.3	Modultest	17	
3.2	Softwa	are	22	
	3.2.1	Design	22	
	3.2.2	Implementering	28	
	3.2.3	Modultest	33	
Kapite	14 A	ccepttest	34	
4.1		ttest af Use Cases	34	
4.2	-	ning		
	4.2.1	Use Case 1		
	4.2.2	Use Case 2		
	4.2.3	Use Case 3	36	
	4.2.4	Use Case 3 - Undtagelse 1	37	
	4.2.5	Use Case 4	37	
	4.2.6	Use Case 4 - Undtagelse 1	38	
	4.2.7	Use Case 5	39	
4.3		ttest af ikke-funktionelle krav	40	
4.4	-	$\operatorname{ndelses}$ formular	46	
Littera	tur		47	

ST3PRJ3 Gruppe 2	${ m Indholds for tegnelse}$

Figurer 47

Indledning

I dag bruges blodtryksmålere mange steder, både på hospitalet og i hjemmet. Blodtryksmålere kan måle en persons blodtryk, hvor den viser puls, samt diastoliske- og systoliske tryk i numeriskform og afbilledet i en graf.

Vi har valgt at arbejde ud fra, at blodtryksmåleren skal bruges til forskning. Derfor skal systemet gemme samtlige målinger, der bliver foretaget, så en forsker senere kan tilgå dem. Samtidig skal selve puls og tryk vises på en graf, som skal være nem at aflæse. Brugeren vil kunne benytte målere gennem et interface, hvor han kan starte og gemme målinger. Det er også her grafen vises.

Der var fra start givet nogle krav til systemet, samtidig har vi tilføjet nogen for at få de ting løst, vi som gruppe synes var vigtige. Disse kan findes i kravspecifikationen og i krav. Nærmere informationer om opbygning af Hardware og Software kan findes i systemarkitektur, som er delt ind efter Hardware og Software. Her under findes også Modultest. Under Modultest kan det læses, hvordan vi har testet systemet samlet, både Hardware og Software. Under Accepttest ses det, om systemet opfylder kravene der blev sat.

Ansvarsområde

Initialer:

Albert Jakob Fredshavn - AJF Martin Banasik - MBA Mette Hammer Nielsen-Kudsk - MHNK Ditte Heebøll Callesen - DHC Johan Mathias Munk - JMM Anne Bundgaard Hoelgaard - ABH

Afsnit

Ansvarlig

Indledning

Kravspecifikation

Hardware arkitektur

Software arkitektur

Software implementering

Accepttest

Fejlrapport

Kravspecifikation 2

2.1 Versionshistorik

Version	Dato	Ansvarlig	Beskrivelse
0.1	21-09-2015	MHNK og MB	Oprettelse og udfyldning af kravspecifikation
0.2	24-09-2015	DHC og ABH	Omskrivning af UC1 - UC5
0.3	28-09-2015	ABH	Ikke-funktionelle krav
0.4	08-10-2015	Alle	Tilrette efter review med Grp. 1
0.5	15-10-2015	MB	Indskrevet i LaTex
0.6	11-11-2015	ABH	Ændre Use Case 1 og 2 efter review med Grp. 4
0.7	20-10-2015	MHNK	Tilretning
0.8	26-11-2015	MHNK	Retning af hele kravspec.

2.2 Godkendelsesformular

Forfattere	Anne Hoelgaard, Ditte Heebøll, Martin Banasik, Albert Fredshavn, Mathias Munk og Mette Hammer Nielsen-Kudsk
Godkendes af	Peter Johansen
Antal sider	48
Kunde	IHA

Ved underskrivelse af dette dokument accepteres det af begge parter, som værende kravene til udviklingen af det ønskede system.

2.3.	Indledning	ASE
------	------------	-----

Sted	Dato
Kundens underskrift	Leverandørens underskrift

2.3 Indledning

På baggrund af krav fra kunden samt hvad leverandøren finder muligt, er denne kravspecifikation blevet udarbejdet. Denne kravspecifikation har til formål at specificere kravene til produktet. Dette projekt tager udgangspunkt i en blodtryksmåler, hvortil der er en række aktører, som interagerer med et system, der er beskrevet yderligere nedenfor.

2.4 Systembeskrivelse

Blodtryksmålersystemet ønskes udviklet således at systolisk og diastolisk blodtryk samt puls kan bestemmes ud fra en invasiv ateriel blodtryksmåling. Der udvikles instrumentering til den udleverede transducer som hardware og et software-program til kontinuerligt visning af målt blodtryk, samt til udskrivelse af løbende systoliske, diastoliske og puls værdier. Disse to dele udgør til sammen systemet.

2.5 Funktionelle krav

2.5.1 Aktør-kontekstdiagram

 $Figur\ 2.1:\ Akt \'{o}r\text{-}kontekst diagram$

Af dette diagram ses vores aktører til at være: Forsker, Måleobjekt og Database. Herunder er der en detaljeret beskrivelse af hver aktør.

2.5.2 Aktørbeskrivelse

Aktørnavn	Type	Beskrivelse
Forsker	Primær	Forskeren er aktøren, der starter og giver besked om at data ønskes gemt samt afslutter fysisk måling af blodtryk
Database	Sekundær	Databasen er aktøren, hvori måledata bliver gemt
Måleobjekt	Sekundær	Måleobjekt er aktøren, hvorfra blodtrykssignalet indhentes. Måleobjektet er tilkoblet transduceren I den endelige version er måleobjektet In Vitro maskinen, som findes i Cave Lab Under løbende test i udviklingsprocessen benyttes Analog Discovery og Waveform

Tabel 2.3: Aktørbeskrivelse

2.5.3 Use case-diagram

Figur 2.2: Use Case-diagram

Diagrammet ovenfor viser at systemet har fem Use Cases: Foretag nulpunktsjustering, Foretag kalibrering, Start måling, Gem data og Afslut måling. Herunder følger en nærmere beskrivelse af de enkelte Use Cases, gennem et fully-dressed Use Case skema.

Systemet består af en computer, hvor softwaren er placeret, en NI-DAQmx, en Analog Discovery samt en transducer med tilhørende implementering. Systemet gør det muligt at foretage en blodtryksmåling på et måleobjekt, som er tilsluttet og sender disse signaldata

ind i systemet via transduceren og det tilhørende hardware, hvor signalet vises. Det ønskede interval af blodtrykssignalet gemmes så i databasen.

I systemet benyttes algoritmer til at analysere signalet, ud fra opsatte grænseværdier, så systolisk, diastolisk og puls værdier hentes frem. Disse algoritmer undersøger signalet for hvor top og bund er placeret. Da top er signalets systoliske værdi og bund er signalets diastoliske. Puls bestemmes ved at tælle antallet af blodtryksperioder pr. minut.

Brugergrænseflade er det, som forsker initierer med, altså herfra hvor systemet aktiveres. Brugergrænsefladen forkortes til GUI.

2.5.4 Use Cases

Use Case 1

Scenarie		Hovedscenarie
Navn		Foretag nulpunktsjustering
Mål		At få foretaget en nulpunktsjustering
Initiering		Startes af Forsker
Aktører		Forsker (primær), Måleobjekt (sekundær)
Referencer		
Samtidige forekomster		Én nulpunktsjustering pr. kørsel
Forudsætninger		Alle systemer er ledige og operationelle
Resultat		Nulpunktsjustering er blevet fortaget efter ønske
Hovedscenarie	1.	Pop-up vindue for nulpunktsjustering er åbent
	2.	Forsker trykker på:
		a. Ja-knap for at starte en nulpunktsjustering
		i. System beder om udlignelse af atmosfærisk tryk
		ii. System venter på bekræftigelse fra forsker
		iii. Nulpunktsjustering foretages og vinduet lukker efter endt justering
		b. Nej-knap for ikke at få foretaget en nulpunktsjustering
		ii. Vinduet lukker
${\bf Undtagelser}$		-

Tabel 2.4: Fully dressed Use Case 1

Use Case 2

Scenarie Hovedscenarie

Navn Foretag kalibrering

Mål At få foretaget et valg om kalibrering, samt evt. udført

kalibrering

Initiering Startes af Forsker

Aktører Forsker (primær), Måleobjekt (sekundær)

Referencer Use Case 1

Samtidige forekomster Én kalibrering pr. kørsel

Forudsætninger Alle systemer er ledige og operationelle

Resultat Kalibrering er blevet foretaget efter ønske

Hovedscenarie 1. Pop-up vindue for kalibrering er åbent

2. Forsker trykker på:

a. Ja-knap for at starte en kalibrering

i. System beder om signal til justering

ii. System venter på bekræftigelse fra forsker

iii. Kalibrering foretages og vinduet lukker efter endt

kalibrering

b. Nej-knap for ikke at få foretaget en kalibrering

ii. Vinduet lukker

Undtagelser -

Tabel 2.5: Fully dressed Use Case 2

Use Case 3

Scenarie Hovedscenarie

Navn Start Måling

Mål At få foretaget en blodtryksmåling

Initiering Startes af Forsker

Aktører Forsker (primær), Måleobjekt (sekundær)

Referencer Use Case 1 og Use Case 2

Samtidige forekomster Ét signal pr. måling

2.5. Funktionelle krav ASE

Forudsætninger		Use Case 1 og Use Case 2 er kørt succesfuldt, samt alle systemer kører og er klar til at foretage en måling
Resultat		Systolisk-, diastolisk blodtryk samt puls bliver vist på GUI
Hovedscenarie	1.	Forsker indtaster Forsøgsnavn
	2.	Filteret signal er valgt per default af systemet
		$[\mathit{Undtagelse}\ 1:]$ Forsker vælger ufiltreret signal på radiobutton
	3.	Forsker trykker på Start-knap på GUI
	4.	Signal for blodtryk vises på GUI
	5.	Systolisk og diastolisk blodtryk samt puls bliver vist i bokse på GUI
Undtagelser		[Undtagelse 1] Forsker vælger ufiltreret signal
	a.	Use Case fortsættes fra punkt 3

Tabel 2.6: Fully dressed Use Case 3

Use Case 4

Scenarie		Hovedscenarie
Navn		Gem data
Mål		At gemme data i databasen
Initiering		Startes af Forsker
Aktører		Forsker (primær), Database(sekundær)
Referencer		Use Case 1 - 3
Samtidige forekomster		Ét signal pr. måling
Forudsætninger		Use Case 1 og 2 er kørt succesfuldt, Use Case 3 kører. VPN er tilsluttet
Resultat		Systolisk- og diastolisk blodtryk samt puls er blevet gemt i en Database under Forsøgsnavn
Hovedscenarie	1.	Forsker trykker på Gem-knap
	2.	Systemet gemmer det fremadrettede ufiltreret signal i Database
	3.	Forsker trykker på Gem-knap for at stoppe med at gemme

		[<i>Undtagelse 1:</i>] Forsker trykker på Afslut-knap
4	l .	Det fremgår af GUI at data er gemt
Undtagelser		[Undtagelse 1:] Forsker trykker på Afslut-knap
a	ι.	Systemet stopper med at gemme, hvorefter systemet lukker

Tabel 2.7: Fully dressed Use Case 4

Use Case 5

Scenarie		Hovedscenarie	
Navn		Afslut måling	
Mål		At stoppe måling af blodtryk	
Initiering		Startes af Forsker	
Akt ører		Forsker (primær)	
Referencer Use Case 1 -3		Use Case 1 -3	
Samtidige forekomster Ét signal pr. må		Ét signal pr. måling	
Forudsætninger		Use Case 1 og 2 er kørt succesfuldt, Use Case 3 kører	
Resultat		Måling af blevet stoppet	
Hovedscenarie	1.	Forsker trykker på Afslut-knap	
	2.	Måling stopper, hvorefter systemet lukker	
Undtagelser		-	

Tabel 2.8: Fully dressed Use Case 5

2.6 Ikke-funktionelle krav

2.6.1 (F)URPS+

Functionality

- 1. Blodtryksmåleren skal indeholde en Start-knap til at igangsætte målingerne.
- 2. Blodtryksmåleren skal indeholde en Afslut-knap hvorfra måling kan stoppes.
- 3. Blodtryksmåleren skal indeholde en Gem-knap til at gemme målingerne i Databasen.

- 4. Blodtryksmåleren skal indeholde en tekstboks til forsøgsnavn, hvori forsker indtaster det pågældende forsøgsnavn.
- 5. Blodtryksmåleren skal indeholde radiobutton til filtreret signal, denne skal være default valget.
- 6. Blodtryksmåleren skal indeholde radiobutton til ufiltreret signal.
- 7. Blodtryksmåleren skal indeholde tekstbokse til puls, systolisk og diastolisk blodtryk som vises med op til tre cifre.
- 8. GUI'en skal se ud som vist på figuren herunder:

Figur 2.3: Skitse af GUI

Usability

1. Forskeren skal kunne starte en default-måling maksimalt 30 sekunder efter systemet er startet.

Reliability

- 1. Det skal maksimalt tage 5 timer at gendanne systemet (MTTR Mean Time To Restore)
- 2. Systemet skal have en oppetid uden nedbrud på minimum 1 måned (720 timer) (MTBF Mean Time Between Failure).
- 3. Systemet skal have en oppetid/køretid på:

$$Availability = \frac{MTBF}{MTBF + MTTR} * 100 = \frac{720}{720 + 5} * 100 = 99,31\%$$
 (2.1)

Performance

- 1. Blodtryksmåleren skal, indenfor 3 sekunder, kunne vise systolisk og diastolisk blodtryk via graf. Dette accepteres med en tolerance på +/- 15 %.
- 2. Blodtryksmåleren skal, inden for måleperioden, kunne alarmere hvis måleobjekt har forhøjet eller for lavt blodtryk. Defineres efter grænseværdier beskrevet i... xxxx...
- 3. Blodtryksmåleren skal, indenfor 30 sekunder fra der er trykket på Gem-knap, kunne gemme målingerne i Databasen. Dette accepteres med en tolerance på +/- 15 %.
- 4. Grafen vises i ét vindue, hvor y-aksen måles i mmHg (millimeter kviksølv) og x-aksen i tid pr. sekund.
- 5. Hvert 7. sekund skal værdier for systolisk og diastolisk blodtryk samt puls opdateres. Dette accepteres med en tolerance på +/- 15 %.
- 6. Graf for blodtryk skal køre kontinuerligt i GUI efter følgende princip, hvor det blå signal erstatter det orange signal ved at den seneste måling altid sættes ved cursorens placering.

Figur 2.4: Graf for blodtryk

- 7. Når der trykkes på Gem-knap gemmes det ufiltrerede signal under det indtastede forsøgsnavn og et autogenereret nr. "forsøgsnavn_nr".
- 8. Systemet skal kunne måle blodtryksværdier fra 0 til 250 mmHg.

Supportability

- 1. Forskeren skal kunne udskifte hardwaren på 10 minutter.
- 2. Softwaren skal opbygges med lav kobling.

Version	Dato	Ansvarlig	Beskrivelse
0.1	03-11-2015	MB	Oprettelse
0.2	10-11-2015	DHC,MB	HW Start af skrivning, indsætning af billeder
0.3	10-11-2015	ABH	SW Start på design, indsætning af diagrammer
0.4	11-11-2015	DHC	HW Design Forstrækning
0.5	13-11-2015	ABH	SW Design klasse- og metodeidentifikation
0.6	18-11-2015	ABH	HW Rettelse af diagrammer
0.7	18-11-2015	DHC, AJF	HW Implementering Forstrækning, Modultest Lavpas
0.8	18-11-2015	MHNK, MJM	SW Design, Rettelse af domænemodel
0.9	18-11-2015	ABH	SW Design, Mere metodeidentifikation
1.0	20-11-2015	MHNK	SW Indskrivning af alle sekvensdiagrammer
1.1	26-11-2015	DHC	HW Modultest, Kalibrering ved vandsøjle
1.2	26-11-2015	DHC, AJF	HW Design Lavpas
1.3	02-12-2015	DHC	HW Referencer
1.4	02-12-2015	MHNK	HW Rettelser i tekst
1.5	02-12-2015	DHC,MB	HW Modultest
1.6	04-12-2015	ABH	SW Implementering, Generelt, Analyse og Digitalt filter
1.7	06-12-2015	ABH	SW Implementering, Kalibrering og nulpunktsjustering

I det følgende beskrives arkitekturen for systemet. Systemarkitekturen er vores udviklingsramme for den videreudvikling af design og implementering af blodtrykssystemet. Designet af systemet er grebet an således at der først kigges på det overordnede system, hvorefter systemet arbejdes ned i mindre brudstykker. Dette gøres ved at benytte diagrammer med tilhørende beskrivelser.

3.1 Hardware

3.1.1 Design

Systemets hardware kan illustreres i et BBD. Det ses at nedenstående figur at systemet består af fem hardware blokke: software system, forstærker, filter, DAQ og transducer. Disse fem blokke udgør til sammen selve blodtryksmåleren.

Figur 3.1: Block Definition Diagram for hardware

Ovenstående BDD-diagram fører videre til udarbejdelsen af IBD for hardware komponenterne. I IBD diagrammet vises koblingen mellem de forskellige blokke gennem port forbindelser. Det ses at signalet starter ved transduceren, hvorefter det bliver behandlet gennem forstærker, filter og DAQ. Til sidst sendes det ind i software systemet, som bliver påvirket af tryk på knapper på GUI.

Figur 3.2: Infernal Block Diagram for hardware

Forstærkning

Transduceren måler en trykændring som den omsætter til en spænding. Dette er udtrykt ved et differentieret signal, som sendes ind i forstærker-blokken. Da signalet fra transduceren er en lav spænding, skal det forstærkes op, for at passe med DAQ'ens

3.1. Hardware ASE

input. Denne forstærkning udregnes ud fra det maksimale output fra transduceren og det maksimale input til DAQ'en. Se beregningerne under Implementering.

Under simulering bruges Analog Discovery som en funktionsgenerator, der simulere det differentieret signal. Analog Discovery har en usikkerhed, når der arbejdes med små spændinger. Dette kan modarbejdes vha. spændingsdeler princippet. Dette gør at Analog Discovery kan sende en højere spænding ind i systemet, så usikkerheden mindskes.

Lavpas

I projektet skal der laves et 2. ordens lavpasfilter. Filteret skal laves for at sikre, at der ikke opstår aliasering. Det sikre derfor, at der ikke er noget signal ved den halve samplingsfrekvens.

Aliasering [1] er, hvor signalet bliver gentaget. Når man har signalet i det digitale domæne, bliver spektret for signalet en periodisk funktion. Det vil sige, at den gentager sig selv, efter et bestemt stykke tid.

Det skal sikres, at der ikke kommer overlap mellem signalet og et alias. Da det ellers kunne give anledning til misforståelser. Derfor laves et lavpasfilter, som sikre at der ikke ligger noget signal ved den halve samplingsfrekvens. Signalet her kan med fordel gøres så lille at DAQ'en ikke kan læse det, dvs. signalet skal være mindre end $1/2 \cdot LSB$ (Least Significant Bit).

Lavpasfilteret skal være et Sallen-Key Butterworth-filter med en knækfrekvens på 50 Hz og en samplingsfrekvens på 1kHz. Ud fra oplysninger givet til projektet, vides det at filteret skal dæmpe signalet med 20 dB, under antagelse af at den forekommende støj er mindre end signalet, også når det forekommer over knækfrekvensen.

Ved en typisk blodtryksmåling forekommer der ikke signal over 50 Hz, samtidigt er signalet her aftaget med ca. 70 dB. For at få signalet, ved den halve samplingsfrekvens til at være $1/2 \cdot LSB$, skal det ydeligere dæmpes 20 dB. Derfor oplyses filterets til at være 50 Hz, da dette giver en minimums dæmpning på 20 dB pr. dekade.

3.1.2 Implementering

Forstærkning

For at få den rette forstærkning er det blevet valgt, at benytte instrumentationsforstærkeren INA-114. Her kan transduceren sættes på med det differentierede signal. INA114 er valgt da følgende gælder[2] for instrumentationsforstærkere:

- Differentielt input single ended output
- Gain justering med ændring af kun én modstand
- Meget høj indgangsimpedans
- Stor Common Mode Rejection Ratio(CMRR)

Under opbygning og modultestning vil det differentierede signal blive simuleret af Analog Discovery.

For at udregne den korrekte forstærkning, bruges følsomheden fra transduceren og eksistationsspændingen. Først udregnes det maksimale output fra transduceren:

$$9V \cdot 250mmHg \cdot 5\mu \cdot 10^{-5}uV/V/mmHg = 11.25mV \tag{3.1}$$

Da det er besluttet at det maksimale input til DAQ'en [1] er 5V, kan forstærkningen (Gain) nu udregnes:

$$5V = 11.25mV \cdot G$$

$$G = 444.44$$
(3.2)

For at få den rette forstærkning udregnes den eksterne modstand (R_g) til INA114 [3]. INA114's forstærkning afhænger af størrelsen på R_g , hvis modstanden er stor, er forstærkningen lille og omvendt. R_g udregnes ved formlen:

$$G = 1 + \frac{50k\Omega}{R_g}$$

$$444.44 = 1 + \frac{50k\Omega}{R_g} \Rightarrow R_g = 112.75\Omega$$

$$(3.3)$$

Derved fås en værdi for den eksterne modstand til INA114, som skaber den ønskede forstærkning.

Det skal nu sikres at dette kan lade sig gøre. Derfor sikres det, at den ønskede forstærkning kan ske ved båndbredden. Dette kan undersøges da produktet af forstærkning og båndbredde er en konstant. Konstanten aflæses i databladet for INA114[3].

$$1000000Hz = G \cdot BW$$

$$BW = 2250Hz$$
(3.4)

Da båndbredden ligger over knækfrekvensen for lavpas filtret, er dette godkendt. Hvis båndbredde havde ligget under knækfrekvensen vil operationsforstærkeren ikke have kunnet arbejde med de ønskede frekvenserne. Derfor er det vigtigt at båndbredden er bred nok til at kunne indeholde frekvenser fra begge side af knækfrekvensen.

For at imødekomme usikkerheden ved Analog Discovery med lave spændinger, laves et kredsløb efter spændingsdelerprincippet. Signalerne fra Analog Discovery skal sendes igennem dette kredsløb, hvor de efter spændingsdeler princippet gøres mindre. I kredsløbet benyttes to modstande, hvis værdier er $R_1 = 100k\Omega$ og $R_2 = 1k\Omega$. Da vi kender signalet som skal ind i INA114 og modstandene i kredsløbet, kan størrelsen af den spænding, som skal sendes fra Analog Discovery, findes:

$$U_{INA} = U_{analog} \cdot \frac{R_2}{R_1 + R_2}$$

$$11.25mV = U_{analog} \cdot \frac{1k\Omega}{100k\Omega + 1k\Omega} \Rightarrow U_{analog} = 1.1362V$$
(3.5)

Derved kan Analog Discovery sende signaler med en højere spænding ud og usikkerheden mindskes. Der er taget højde for at, hvis modstandene i kredsløbet bliver for store, vil det skabe en termisk usikkerhed. Derfor er modstandene valgt som de er. Dette er kun under simulering, når transduceren benyttes, bruges spændingsdeleren ikke.

3.1. Hardware

Lavpas

For at opnå den ønskede effekt i lavpasfilteret, blev det oplyst at $f_c = 50 \text{ Hz}$, $f_s = 1 \text{kHz}$, $R_1 = R_2$ og $C_2 = 680 nF$. Ud fra disse værdier, udregnes de resterende komponentværdier for filteret.

Overføringsfunktionen for et 2. ordens filter er:

$$H(z) = \frac{\omega_n^2}{(s^2 + 2 \cdot \zeta \cdot \omega_n \cdot s + \omega_n^2)}$$
(3.6)

For at finde overføringsfunktionen for det gældende system, vides det at følge ligninger gælder [4]:

$$\omega_n = 2 \cdot \pi \ 50 = \frac{1}{\sqrt{R1 \cdot R2 \cdot C1 \cdot C2}}$$

$$2 \cdot \zeta \cdot \omega_n = \frac{1}{C2} \cdot \left(\frac{R1 + R2}{R1 \cdot R2}\right)$$
(3.7)

Derved fås en overføringsfunktion som hedder:

$$H(z) = \frac{\left(\frac{1}{\sqrt{R1 \cdot R2 \cdot C1 \cdot C2}}\right)^2}{s^2 + \left(\frac{1}{C2} \cdot \left(\frac{R1 + R2}{R1 \cdot R2}\right) \cdot s\right) + \left(\frac{1}{\sqrt{R1 \cdot R2 \cdot C1 \cdot C2}}\right)^2}$$
(3.8)

Da det bliver oplyst at R1 = R2, kan funktionen reduceres. Den kan samtidig simplificeres. I sidste ende fås oveføringsfunktionen, se Bilag for nærmere udregninger:

$$H(z) = \frac{\frac{1}{C1 \cdot C2 \cdot R^2}}{s^2 + s \cdot \frac{2}{R \cdot C2} + \frac{1}{C1 \cdot C2 \cdot R^2}}$$
(3.9)

Da der arbejdes med at 2. ordens Butterworth filter, vides det at udsvinget ζ skal være 0.7 [5]. Den sidste overføringsfunktion sammenlignes med den generelle for 2. ordens systemer. Det gælder at $C2 = 680 \cdot 10^{-9} nF$. Det er muligt at isolerer forskellige lige led. Først isoleres der for modstanden:

$$\frac{2}{R \cdot C2} = 2 \cdot \zeta \cdot \omega_n$$

$$\frac{2}{R \cdot 680 \cdot 10^{-9}} = 2 \cdot 0.7 \cdot (2 \cdot \pi \cdot 50)$$

$$\downarrow \qquad \qquad \downarrow$$

$$R = 6687\Omega$$
(3.10)

Derved er modstandene udregnet til $R=6687\Omega$. Nu kan der isoleres for den sidste kondensator C1:

$$\frac{1}{C1 \cdot C2 \cdot R^2} = \omega^2$$

$$\frac{1}{C1 \cdot 680 \cdot 10^{-9} \cdot 6687^2} = (2 \cdot \pi \cdot 50)^2$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$C1 = 333 \cdot 10^{-9} nF$$
(3.11)

Dette betyder, at kondensatoren C1 har værdien $333 \cdot 10^{-9} nF$ og $C2 = 680 \cdot 10^{-9} nF$. Derved er alle komponentværdierne til lavpasfilteret fundet og det kan nu realiseres.

Under udviklingen af lavpas filteret er komponent størrelserne, blevet ændret for at kunne realisere det. De brugte komponent størrelser er: $R=6.6k\Omega$, $C1=330\cdot 10^{-9}nF$ og $C2=680\cdot 10^{-9}nF$. For at være sikker på at filteret har de ønskede karakteristika, laves et bodeplot for den endelig overføringsfunktion:

$$H(z) = \frac{625000000000}{610929 \cdot \left(s^2 + \frac{250000}{561} \cdot s + \frac{62500000000}{610929}\right)}$$
(3.12)

Figur 3.3: Bodeplot

Udregning af den præcise oversving ζ ud fra de benyttet komponentværdier:

$$\frac{2}{R \cdot C1} = 2 \cdot \zeta \cdot \omega_n$$

$$\frac{2}{6600 \cdot 680 \cdot 10^{-9}} = 2 \cdot \zeta \cdot (2 \cdot \pi \cdot 50)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\zeta = 0.709$$

$$(3.13)$$

3.1. Hardware

Figur 3.4: Diagram over HW

På figur 3.4 ses et diagram over, hvordan hele kredsløber er bygget op. Her ses kredsløbet for realiseringen med transduceren og for simuleringen med Analog Discovery.

3.1.3 Modultest

Forstærkning

For at teste forstærkningen sendes et differentieret signal ind vha. Analog Discovery, hvor der ses på hvor meget signalet bliver forstærket. På figur 3.5 ses det signal, som sendes ind i forstærknings blokken og det, der måles på udgangen af blokken.

Figur 3.5: Forstærknings blok

Der sendes et differentieret signal ind i INA114. På udgangen, ses det at signalet er blevet forstærket op til $5~\rm V$ DC. Herved er maks. input til forstærknings-blokken blevet forstærket

så det passer med maks. input til DAQ'en. Signalet bliver ikke ændret på andre måde i denne blok.

Lavpas

For at teste lavpasfilteret foretages målinger med en sinus, hvor frekvensen variere for hver måling. Derved aflæses fasen, mellem indgang- og udgangssignal, og amplituden for hver måling. Ved knækfrekvensen skal fasedrejningen være 90°. Dette kan aflæses på figur 3.7. Efter knækfrekvensen skal amplituden gå mod nul. Ved målingen for 60 Hz figur 3.8, kan det ses hvordan amplituden er faldet drastisk efter knækfrekvensen.

Figur 3.6: Måling for 10 Hz

Figur 3.7: Måling for 50 Hz

3.1. Hardware ASE

Figur 3.8: Måling for 60 Hz

Kalibrering med vandsøjle

Efter forstærkning og lavpasfilteret er blevet testet hver for sig, udføres en kalibrering af systemet vha. en vandsøjle. Her bruges en udleveret vandsøjle med tre målepunkter, hvor det er angivet hvor højt trykket er ved hvert af disse punkter, målt i millimeter kviksølv (mmHg). Derved kan det testes om hardware-delen måler den rigtige spænding i forhold til mmHg. Ud fra det maksimale antal volt (V) spænding og mmHg kan det udregnes, hvad hardware skal vise ved 100 mmHg.

Figur 3.9: Graf til kalibrering, fra udregninger

Testen udføres ved, at fylde vand i søjlen til et bestemt punkt. Transduceren skal være tilkoblet et af de tre målepunkter, mens de andre er lukket til. Transduceren er sat til forstærkningen, der hvor Analog Discovery tidligere har været sat til. Transduceren er tilkoblet 0-9V, ved batterierne. På samme måde som ved simuleringen aflæses målingen på computeren ved hjælp af programmet WaveForms. Da det vides hvilken trykændring der måles på, ved vi fra grafen til kalibreringen, hvilken spænding den skal vise. Dette fortages for de tre målepunkter på vandsøjlen, hvor hver måling sammenlignes med den udregnede graf. For hver måling, skal transduceren flyttes til et af de andre målepunkter.

Figur 3.10: Opstilling

Opstillingen er gjort klar og der hentes ekstra vand under testen. Vandet skal bruges til at fylde vandsøjlen på til de forskellige målinger.

Ud fra grafen i figur 3.9 vides, hvad svaret på hver måling skal være. På figur 3.11 ses målingen, da transduceren var tilkoblet målepunktet for 50 mmHg. Ud fra figur 3.9 vides det at målingen skal vise 1V DC.

Figur 3.11: Måling ved 50 mmHg

3.1. Hardware

Figur 3.12: Måling ved 10mmHg

På målingen for 10 mmHg ses en del rystelser(udsving på signalet). Som det ses på figur 3.12 ligger signalet ikke præcist på 0.2V, dette kan skyldes at under testen, skal transduceren være i højde med målepunktet. Pga. korte ledninger, blev det under testen derfor nødvendigt at løfte og holde transducer, vevo board og Analog Discovery i højde med målepunktet.

Figur 3.13: Måling ved 100mmHg

Ved målingen for 100mmHg skulle der måles en spænding på 2V. Som det ses på figur 3.13 ligger den ikke præcist på 2V. Som under målingen for 10 mmHg skal transduceren være i samme højde som målepunktet. Her er målepunktet lavt, men det skaber stadig en del usikkerhed.

3.2 Software

3.2.1 Design

I dette beskrives systemets softwaredesign på baggrund af systembeskrivelsen og kravspecifikationen. De overvejelser vi har gjort i forbindelse med design af software vil blive præsenteret i dette afsnit.

Overordnet sekvensdiagram

Overordnet set ønskes det at udvikle et system, der kan interagerer med en forsker. Diagrammet herunder viser at forskerens opgave består i at starte, tage stilling til nulpunktsjustering og kalibrering samt gemme de ønskede data. Diagrammet er en simpel illustration som viser systemets adfærd gennem alle fem Use Cases. Formålet med dette diagram er udelukkende at skabe et overblik over det samlede system.

3.2. Software

Figur 3.14: Overordnet sekvensdiagram for systemet

Problemidentifikation

Første step i software designet er at klarlægge hvilke klasser systemet skal bestå af. Til dette er en domænemodel derfor udarbejdet med udgangspunkt i de fem Use Cases. I de fem Use Cases er de konceptuelle klasser blevet identificeret, og derefter indført som klasser i nedestående domænemodel. Modellen har til formål at vise hvilke dele systemet skal holde styr på.

 $Figur\ 3.15:\ Domænemodel$

Diagrammet viser tydeligt forskerens interaktion med display, samt hvilke handlinger denne interaktion starter i system. Hardware-komponenterne er medtaget for at vise signalets vej fra måleobjekt til system.

Klasseidentifikation

Ud fra domænemodellen kan et klassediagram udarbejdes, således tager dette diagram også udgangspunkt i de fem Use Cases. Hensigten med et klassediagram er at klarlægge hver klasses individuelle formål.

Figur 3.16: Applikations model for software

Dermed ses det at denne model er delt op i tre niveauer:

1. Grænsefladeklasse

- a) Transducer Indhentet data fra måleobjekt
- b) Display Brugergrænseflade til forsker

2. Kontrolklasse

- a) UC1: Foretag nulpunktsjustering
- b) UC2: Foretag kalibrering
- c) UC3: Start måling
- d) UC4: Gem måling
- e) UC5: Afslut måling

3. Domæneklasse

a) Database

3.2. Software

Metodeidentifikation

Klasserne i ovenstående klassediagram er med til at definere, hvilke blokke de følgende sekvensdiagrammer må indeholde. Det er yderst vigtigt at der er en sammenhæng mellem klasserne i klassediagrammet og blokkene i sekvensdiagrammet. Vi har valgt at udarbejde et sekvensdiagram for hver enkelt Use Case, hvori systemets interne kommunikation beskrives, når både normalforløb og undtagelser gennemløbes. I alle diagrammerne beskrives forløbet via de metodekald, der er nødvendige for at få de ønskede handlinger mellem blokkene udført.

Use Case 1

Figur 3.17: Sekvensdiagram for Use Case 1

Det ses af ovenstående sekvensdiagram at forsker interagerer med display. Her er der to mulige udfald "Vælger nulpunktsjustering" og "Vælger ikke nulpunktsjustering", disse implementeres som to muligheder forsker kan vælge imellem.

Use Case 2

Figur 3.18: Sekvensdiagram for Use Case 2

Diagrammet ovenfor viser at forsker interagerer med display, hvor der ved tryk enten vælges ja eller nej til kalibering. Afhængig af valg foretager systemet de nødvendige kald.

Use Case 3

Figur 3.19: Sekvensdiagram for Use Case 3

Ved Use Case 3 - Start måling ses det at display, transducer og filtreringsklassen vil komme i spil. Her modtages besked ved indtastning af forsøgsnavn og tryk på start-knap på display om, at signaldata fra transduceren skal hentes ind i systemet. Herefter foretages filtrering af signalet, samt visning af signal i graf, systoliske-, diastoliske og puls-værdier på display. Use Casen indeholder en undtagelse hvor filtrering af signal ikke ønskes foretaget, denne

3.2. Software

er ikke medtaget i sekvensdiagrammet.

Use Case 4

Figur 3.20: Sekvensdiagram for Use Case 4

Ovenstående diagram viser at for at få gemt data fra signalet, kræver det at der trykkes på Gem-knap på display, hvor efter systemet konstant vil sende data ned i databasen indtil der igen trykkes på Gem-knappen, for at stoppe gemning af data.

Use Case 5

Figur 3.21: Sekvensdiagram for Use Case 5

Ved afslutning af en måling ses det at forsker trykker på Afslut-knap på display, hvorefter indhentening af data fra DAQ stoppes og programmet lukker ned.

3.2.2 Implementering

Indledende implementeringsovervejelser

På baggrund af designfasen for softwaren kan implementeringen af softwaren påbegyndes. Softwaredesignet viser at systemet skal implementeres med en GUI applikation, som aktøren kan interagere med systemet gennem. Derudover er det kendt at softwaren skal indeholde en række klasser, hvor i funktionalitetér som kalibrering, nulpunktsjustering, digitalt filter og indhentning af systolisk-, diastoliske- og puls-værdier skal placeres. I det følgende beskrives de overvejelser vi har gjort i forhold til implementering af disse funktionaliteter og hele softwaresystemet generelt.

Implementeringen af softwaren sker i Visual Studio 2013 i sproget C#. Dette er valgt da programmet er godt til arbejde med GUI applikationer, samt til håndtering af tråde og tråd kommunikation. Tråde benyttes i softwaren, da systemet der skal implementeres er et eventdrevet system, hvilket vil sige at systemet skal kunne håndtere mange handlinger på en gang. Handlingerne igangsættes af events der kommer af aktørens interaktion med systemet. Tråd kommunikationen fungerer således at en tråd kan sende et signal ud som andre tråde kan reagere på.

Klasse implementering

På baggrund af designmodellerne er det besluttet at opbygge systemkoden efter principperne i en trelagsmodel. Trelagsmodellen indeholder et præsentations-lag, et logiklag og et data-lag. Præsentations-laget består af de klasser som systemets aktører har tilgang til. Logik-laget er det analyserende lag. Det er således i dette lag at signalet behandles. Logik-laget har tilgang til de andre lag som det eneste. Det betyder at præsentations-laget og data-laget ikke kan kommunikere sammen, derved skal denne kommunikation foregå gennem logik-laget. Data-laget er tilgangen til den implementerede database og til indhentning af blodtrykssignalet fra hardware.

Fordelen ved trelagsmodel opbygningen er at det skaber et godt overblik i koden, og skaber en kode med lav kobling, da hver enkelt klasse har hvert sit specifikke ansvar. Hvilket gør at koden er let at vedligeholde og ændre hvis funktionaliteter ønskes opbygget anderledes. Et overordnet klassediagram over systemet er udarbejdet på baggrund af præcisering af applikationsmodellen, se figur 3.22.

3.2. Software

Figur 3.22: Klassediagram

Brugergrænseflade

Displayet (GUI) er aktørens, i dette tilfælde forskerens, indgang til systemet. Derfor er det vigtigt at den er opbygget efter hvad der følger forskerens logik. Til at klarlægge dette er principperne om en god brugergrænseflade taget i mente. Brugen af disse kommer til udtryk ved, at det tydeligt fremgår af hver knap eller label hvad dens formål er, samt at størrelsen af det enkelte komponent er tilstrækkelig stor til at det ikke er til at overse. Komponenterne på display er logisk placeret, det vil sige at de dele som forsker først skal forholde sig til og eventuelt udfylde er placeret i venstre side af display. Dette vil give mening såfremt systemet benyttes af personer fra den vestlige verden, hvor læseretningen er fra venstre mod højre.

Det er et krav at forsker indtaster et forsøgsnavn inden at en måling startes, derfor er komponenterne implementeres således at knappen "Start måling" først bliver aktiveret når der er indtastet noget i tekstboksen hvori forsøgsnavn skal indtastes. Systoliske-, diastoliske og puls-værdi er placeret efter hvilken rækkefølge det typisk ses på standard blodtryksapparater.

Indsæt figur - Evt. alle tre form i et billede

Af figur xx ses det at grafen er en væsentlig del af display's brugergrænseflade. Grafen implementeres som en Windows Form komponent. Det vælges at få vist signalet som en kurve, og førsteaksen indstilles til tid i sekunder fra 0 til 7 sekunder, og andenaksen til en minimums værdi på 0 mmHg og en maksimum værdi på 250 mmHg, hvilket er givet i kravspecifikationen.

Observer / Strategy

Skriv om princippet bag Observer og Strategy

Samplefrekvensen er som krav givet til 1000 Hertz. Hvilket svarer til at systemet modtager 1000 samples i sekunder. Varigheden af en sample er givet ved:

$$\frac{1}{f_s} = \frac{1}{1000} = 0.001 sek \tag{3.14}$$

Det har vist sig under arbejdet med softwaren, at systemet ikke kan følge med til at modtage så mange målinger i sekundet. Derfor er det valgt at skære i antallet af målinger pr. sekund der skal videre bearbejdes i logik-laget og udskrives i præsentations-laget. Antallet skæres ned til 50 målinger pr. sekund. Dette gøres ved at gennemsnittet af 20 målinger efter hinanden bestemmes, hvorefter gennemsnitsværdien returneres og gemmes i listen der sendes videre i systemet. Herefter findes så gennemsnittet af de næste 20 målinger og således fortsættende.

Nulpunktsjustering

Formålet med en nulpunktsjustering er at flytte signalets offset enten op eller end, så det atmosfæriske tryk altid er placeret ved 0 volt på outputsignalet. Dette gøres ved at åbne for den tilsluttede transducer til systemet, så det atmosfæriske tryk måles. Ud fra denne værdi kan justeringsfaktoren så bestemmes ved, hvor x er det målte atmosfæriske tryk i volt modtaget gennem DAQ'en:

$$faktor_{jus} = 0 - (x) (3.15)$$

Af ligningen ses det at justeringsfaktoren både vil kunne blive positiv og negativ, afhængig af om offset værdien skal rykkes op eller ned for at blive placeret i nul. Optimalt set vil det atmosfæriske tryk være en konstant værdi ved den samme måling, men det opleves at der er en smule støj på signalet og derfor vil den målte værdi være en tilnærmelse af det atmosfæriske tryk. Systemet ønskes nulpunktsjusteret for at sikre at alle de målte blodtrykssignaler har samme udgangspunkt. Hvilket gør at målingerne kan sammenlignes. Justeringsfaktoren skal lægges til samtlige samples fra DAQ'en som ønskes udskrevet i graf på displav.

Kalibrering

Ved kalibrering ønskes det at bestemme hardwarens visningsfejl. I dette projekt betyder det at omsætningsfaktoren fra volt til millimeter kviksølv bestemmes. Denne bestemmes ved at tilkoble en væskesøjle til systemet. Væskesøjlen fyldes med vand til den vil give et kendt mængde tryk på systemet angivet i mmHg. Herefter kan output i volt fra hardwaren måles. Omsætningsfaktor er givet ved:

$$faktor = \frac{x[mmHg]}{y[Volt]} \tag{3.16}$$

x angiver trykket fra væskesøjlen, denne hardcodes til 50 mmHg. y angiver den målte spændingsoutput på hardwaren. Denne indtaster forsker i implementeret teksboks i

3.2. Software

KalibreringsForm. Optimalt set er omsætningsfaktoren givet ved

$$\frac{250[mmHg]}{5[V]} = 50\tag{3.17}$$

, hvor 250 mmHg er det maksimale blodtryk systemet kan måle og 5 Volt er maks spændingen i volt. Grafisk vil det se ud som vist på figur 3.8 under hardware modultest. Af figur 3.8 kan det aflæses at den optimale outputspænding ved 50 mmHg er 1 Volt. Omsætningsfaktoren skal ganges på samtlige sample-værdier der kommer fra DAQ'en og som ønskes udskrevet på graf i display.

Det er vigtigt at pointere at nulpunktsjusteringsfaktoren lægges til samtlige værdier i signalet førend at kalibreringsfaktoren ganges på. Dette implementeres med en for-løkke i logik-klassen som vist på figur 3.23.

Figur 3.23: Aktivitetsdiagram

Digitalt Filter

Formålet med implementering af et digitalt filter er at fjerne støj fra det indhentede signal. Dette gøres ved at udglatte signalet. Til dette kan en række forskellige filtre benyttes. Vi har valgt at implementere et glidende middelværdifilter (moving average filter). Fordelen

ved dette filter er at det er simpelt at forstå og at det er optimalt at bruge på signaler i tidsdomænet. Skulle signalet være vist i frekvensdomænet ville valget have faldet på et helt andet filter.

Det glidende middelværdifilter fungerer ved midling af en række punkter fra inputsignalet for at frembringe hvert punkt i outputsignalet. Hvilke punkter der tages fra inputsignalet vil flytte sig en plads for hvert beregnet outputsignal punkt, heraf kommer den glidende effekt. Matematisk er filtret givet ved:

$$y[i] = \frac{1}{M} \cdot \sum_{j=0}^{M-1} x[i+j]$$
 (3.18)

Hvor x[] er inputsignalet, y[] er outputsignalet og M er antallet af punkter der benyttes i det glidende middelværdifilter. Denne beregning benytter sig udelukkende af punkter placeres på den samme side af output sample nummeret, hvilket vil føre til en relativ forskydning mellem input og output. M sættes til 50. Implementeringen af filtret er vist i et aktivitetsdiagram på figur 3.24.

Figur 3.24: Aktivitetsdiagram af metoden Filtrering()

Systemet gør det muligt for forsker selv at vælge om signalet ønskes vist filtreret eller ufiltreret. Dette vælges på brugergrænsefladen. Vælges visning af det ufiltrede signal sendes

3.2. Software

det indhentede signal naturligvis ikke gennem det digitale filter.

Analyse

Analyse dækker over indhentningen af de systoliske-, diastoliske- og puls-værdi ud fra blodtrykssignalet. Dette er implementeret i en klasse kaldet Analyse(). Heri er placeret algoritmer der gemmer målinger i et array[] med 3000, når dette array så er fyldt op sendes det op til præsentationslaget, hvor den pågældende maximum og minimums værdi udskrives på display. I en blodtrykskurve er den systoliske værdi givet ved maximum på kurven og den diastoliske er givet ved minimums værdien på kurven. Når dette er sket tømmes array'et og processen kører igen og igen, så værdierne opdateres i display hvert 3 sekund. I løbet af 3 sekunder vil der være gennemløbet 3-5 blodtryksperioder, afhængig af pulsfrekvensen. Dermed vil samtlige systoliske og diastoliske værdier ikke blive udskrevet. Intervallet på 3 sekunder er valgt da det er passende tid til at kunne nå og aflæse den pågældende værdi.

Pulsen bestemmes ved at tælle antallet af systoliske-værdier på 10 sekunder, hvorefter denne værdi ganges med 6. Da puls er angivet i slag pr. minut. Det er en udfordring at bestemme hvornår der præcist er gået 10 sekunder, da det er usikkert om den systoliskeog diastoliske værdi opdateres præcist hvert tredje sekund. Dette skyldes at der er implementeres en timer i programmet, som er baseret på tråde. Ved implementering af mange tråde kan det føre til et langsomt gennemløb af koden. Parametre som computerens processer og RAM størrelse spiller også ind på hvor hurtigt en kode kan gennemløbes.

Gennemsnit af værdier?

Database

I systemet er der implementeret en lokal database. Formålet med databasen er at lagre de målte ufiltrerede blodtrykssignaler. Det er valgt at implementere databasen som typen SQL, da denne database-type indeholder de funktioner som er nødvendige for dette system. Data gemmes i tabeller i denne type database, derfor er relevante tabeller oprettet. Et blodtrykssignal indeholder en stor mængde datapunkter, derfor gemmes signalet i en BLOB (Binar Large OBject) hvor en række binære datapunkter gemmes som en enkelt enhed i databasen. Dette er valgt for at spare på data pladsen i databasen.

Filnavnet som hvert enkelt signal gemmes under? Forsøgsnavn...

3.2.3 Modultest

- 1. GUI test
- 2. Test af tråde (observer strategy)
- 3. Test af systolisk, diastolisk og puls-værdier
- 4. Test af Gem i database

Version	Dato	Ansvarlig	Beskrivelse
0.1	28-09-2015	MHNK og MB	Oprettelse og udfyldelse af Accepttest
0.2	30-09-2015	ABH	Tilrette accepttest
0.3	08-10-2015	Alle	Tilrette efter review med Grp. 1
0.4	15-10-2015	MB	Indskrevet i LaTex
0.5	20-10-2015	MHNK	Tilretning
0.6	26-11-2015	MHNK	Retning af hele accepttesten. Konsekvent med stavemåder

4.1 Accepttest af Use Cases

4.2 Indledning

Accepttestene skal vise om produktet lever op til de standarder vi har sat op for, at den aktivt kan indgå i en forskningssituation. Accepttesten er en opfølgning af kravspecifikation, som har til formål at sikre at alle kravene er overholdt. Der vil blive testet både på hovedscenarier samt på undtagelser. Det er målsætningen, at disse test sikrer produktets kvalitet, idet produktet vil blive afprøvet før det tages i brug. Derfor er det accepttestens ansvarsfunktion, at godkende de opsatte delmål for produktet hvad angår både funktionalitet samt ikke-funktionelle krav.

Data der benyttes til målingerne fås fra In Vitro, der i form af tryk genererer et fysiologisk tryk. Brugergrænsefladen er det som forskeren initierer med, altså hvorfra systemet aktiveres. Brugergrænsefladen forkortes til GUI. Den benyttede Database er en lokal database. Når der i feltet Godkendt er et flueben, betyder det at testen er godkendt. Hvis der er et flueben i parenteser, betyder det at den er delvis godkendt.

4.2.1 Use Case 1

Indsæt beskrivelse og figurer med NI-DAQ, Analog discovery og transduceren. Det forventes for Use Case 1 , at forskeren har fået påmonteret det væskefyldte kateter samt tændt for apparaturet.

4.2. Indledning ASE

Scenarie	Hovedscenarie
Prækondition	Blodtryksmålesystemet er monteret korrekt. Forskeren har tændt for Blodtryksmåleren og pop-up vindue for nulpunktsjustering er åbent

	Handling	${\bf For ventet\ observa-} \\ {\bf tion/resultat}$	${\bf Faktisk observa-} \\ {\bf tion/resultat}$	Godkendt
	Hoved scenarie			
1.	Forsker trykker på Ja-knap for at starte en nulpunktsjustering	Systemet foretager nulpunktsjustering, hvorefter vinduet lukker		
2.	Forsker trykker på Nej-knap for ikke at få foretaget en nulpunktsjustering	Vinduet lukker		

Tabel 4.3: Accepttest af Use Case 1

4.2.2 Use Case 2

Test af Use Case 2	Foretag kalibrering
Scenarie	Hovedscenarie
Prækondition	Blodtryksmålesystemet er monteret ved 50 mmHg på væskesøjlen. Forskeren har tændt for Blodtryksmåleren og pop-up vindue for kalibrering er åbent. UC1 er kørt succesfuldt

	Handling	Forventet observa- tion/resultat	Faktisk tion/resu	observa- ltat	Godkendt
	Hoved scenarie				
1.	Forsker trykker på Ja-knap for at starte en kalibrering	Systemet foretager kalibrering, hvorefter vinduet lukker			

2. Forsker trykker på
Nej-knap for ikke at
få foretaget en
kalibrering

Vinduet lukker

Tabel 4.5: Accepttest af Use Case 2

4.2.3 Use Case 3

Test af Use Case 3	Start måling
Scenarie	Hovedscenarie
Prækondition	Blodtryksmålesystemet er monteret korrekt. Forskeren har tændt for Blodtryksmåleren. UC1 og UC2 er kørt succesfuldt

	Handling	${\bf For vent et~observa-} \\ {\bf tion/resultat}$	Faktisk tion/resul	observa- ltat	Godkendt
	Hoved scenarie				
1.	Forsker indtaster Forsøgsnavn.	Systemet godkender Forsøgsnummeret og tilgængeliggør Start-knap			
2.	Filteret signal er valgt per default af systemet	Radiobutton til filtret signal er checket af			
3.	Forsker trykker på Start-knap på GUI	GUI skriver at Start-knappen er blevet trykket			
4.	Signal for blodtryk vises på GUI	GUI viser blodtryksmåling kontinuerligt			
5.	Systolisk og diastolisk blodtryk samt puls bliver vist i bokse på GUI	GUI udskriver systoliske, diastoliske og puls værdier			

 $\it Tabel~4.7: Accept test~af~Use~Case~3$

4.2. Indledning ASE

4.2.4 Use Case 3 - Undtagelse 1

Test af Use Case 3 Start måling

Scenarie Undtagelse 1

Prækondition Blodtryksmålesystemet er monteret korrekt. Forskeren har tændt for Blodtryksmåleren. UC1 - 2 er kørt succesfuldt

	Handling	${\bf For vent et~observa-} \\ {\bf tion/resultat}$	${f Faktisk} \ {f tion/resul}$	observa- ltat	Godkendt
	Hoved scenarie				
1.	Forsker indtaster Forsøgsnavn	Systemet godkender Forsøgsnummeret og tilgængeliggør Start-knap			
2.	Forsker vælger ufiltreret signal	Radiobutton til ufiltreret signal er checket af			
3.	Forsker trykker på Start-knap på GUI	GUI skriver at Start-knappen er blevet trykket.			
4.	Signal for blodtryk vises på GUI	GUI viser blodtryksmåling kontinuerligt			
5.	Systolisk og diastolisk blodtryk samt puls bliver vist i bokse på GUI	GUI udskriver systoliske, diastoliske og puls værdier			

 $Tabel \ 4.9: Accept test \ af \ Use \ Case \ 3 - Und tagel se \ 1$

4.2.5 Use Case 4

Test af Use Case 4 Gem data

Scenarie Hovedscenarie

Prækondition Blodtryksmålesystemet er monteret korrekt. Forskeren har tændt

for Blodtryksmåleren. Use Case 1 og 2 er kørt succesfuldt, Use

 ${\it Case 3 \ kører}$

	Handling	Forventet observa- tion/resultat	${\bf Faktisk observa-} \\ {\bf tion/resultat}$	Godkendt
	Hoved scenarie			
1.	Forsker trykker på Gem-knappen	Systemet viser at Gem-knappen er blevet trykket		
2.	Systemet gemmer det fremadrettede ufiltreret signal i Database	Ufiltreret signal er blevet gemt i Database		
3.	Forsker trykker på Gem-knap for at stoppe med at gemme	Det fremgår af GUI at data er gemt i Database		

Tabel 4.11: Accepttest of Use Case 4

4.2.6 Use Case 4 - Undtagelse 1

Test af Use Case 3	Gem data
Scenarie	Undtagelse 1
Prækondition	Blodtryksmåle systemet er monteret korrekt. Forskeren har tændt for Blodtryksmåleren. Use Case 1 og 2 er kørt succesfuldt, Use Case 3 kører

Handling	Forventet observa-	$\mathbf{Faktisk}$	observa-	$\mathbf{Godkendt}$
	${\bf tion/resultat}$	${f tion/resu}$	ltat	

4.2. Indledning ASE

1. Forsker trykker på Systemet viser at Gem-knappen er Gem-knappen blevet trykket 2. Systemet gemmer det Ufiltreret signal er fremadrette deblevet gemt i ufiltreret signal i Database Database 3. Forsker trykker på Systemet stopper med Afslut-knap at gemme, hvorefter systemet lukker

Tabel~4.13:~Accept test~af~Use~Case~4~-~Und tagelse~1

4.2.7 Use Case 5

Test af Use Case 4	Afslut måling
Scenarie	Hovedscenarie
Prækondition	Blodtryksmåle systemet er monteret korrekt. Forskeren har tændt for Blodtryksmåleren. Use Case 1 og 2 er kørt succesfuldt, Use Case 3 kører

	Handling	${\bf For ventet\ observa-} \\ {\bf tion/resultat}$	${f Faktisk} \ {f tion/resu}$	0.0002.14	Godkendt
	Hoved scenarie				
1.	Forsker trykker på Afslut-knappen	Måling stopper, hvorefter systemet lukker ned			

 $Tabel\ 4.15 \colon Accept test\ af\ Use\ Case\ 5$

4.3 Accepttest af ikke-funktionelle krav

Krav nr.	Krav	Test	Forventet resultat	Resultat	Godkendt
1.	Blodtryks- måleren skal indeholde en Start-knap til at igangsætte målingerne	Åbn systemet og kør Use Case 1 og Use Case 2	Start-knap er på GUI		
2.	Blodtryks- måleren skal indeholde en Afslut-knap hvor fra måling kan stoppes.	Åbn systemet og kør Use Case 1 og Use Case 2	Afslut-knap er på GUI		
3.	Blodtryks- måleren skal indeholde en Gem-knap til at gemme målingerne i Databasen	Åbn systemet og kør Use Case 1 og Use Case 2	Gem-knap er på GUI		
4.	Blodtryks- måleren skal indeholde en tekstboks til forsøgsnavn, hvori forsker indtaster det pågældende forsøgsnavn	Åbn systemet og kør Use Case 1 og Use Case 2	Tekstboks til forsøgsnavn er på GUI		
5.	Blodtryks- måleren skal indeholde radiobutton til filtreret signal, denne skal være default valget	Åbn systemet og kør Use Case 1 og Use Case 2	Radiobutton til filtreret signal er på GUI		

6.	Blodtryks- måleren skal indeholde radiobutton til ufiltreret signal	Åbn systemet og kør Use Case 1 og Use Case 2	Radiobutton til ufiltreret signal er på GUI
7.	Blodtryks- måleren skal indeholde tekstbokse til puls, systolisk og diastolisk blodtryk som vises med op til tre cifre	Åbn systemet og kør Use Case 1 og Use Case 2	Systolisk- boks, diastolisk- boks og puls-boks er på GUI
8.	GUI'en skal se ud som på figur xxx i KS	GUI'en ser ud som figur xxx i KS	GUI'en ser ud som figur xxx i KS
9.	Forskeren skal kunne starte en default-måling maksimalt 30 sekunder efter systemet er startet	Systemet åbnet samtidig med at der startes et stopur. Når måling er startet stoppes uret	Måling er star- tet og stopu- ret viser min- dre end 30 se- kunder
10.	Det skal maksimalt tage 5 timer at gendanne systemet (MTTR - Mean Time To Restore)		Kan ikke testes på prototypen

11.	Systemet skal have en oppetid uden nedbrud på minimum 1 måned (720 timer) (MTBF - Mean Time Between Failure)		Kan ikke testes på prototypen
12.	Systemet skal have en oppetid/køretid på: $\frac{MTBF}{MTBF+MTTR}*100 = 99,31\%$		Kan ikke te- stes på proto- typen
13.	Blodtryks- måleren skal, indenfor 3 sekunder, kunne vise systolisk og diastolisk blodtryk via graf. Dette accepteres med en tolerance på +/- 15 %	Use Case 1 og 2 køres. Der trykkes på Start-knappen samtidig med at et stopur startes. Når måling vises i graf stoppes uret	Stopuret viser mellem 2.55 - 3.45 sekunder

14.	Blodtryks- måleren skal, inden for måleperioden, kunne alarmere hvis patienten har forhøjet eller for lavt blodtryk. Defineres efter grænseværdier beskrevet i xxxx	Use Case 1 - 2 køres. Indsend et signal i systemet der indeholder værdier uden for grænse- værdierne. Der trykkes på Start-knappen samtidig med at et stopur startes. Når alarm starter stoppet uret. Måleperiode: 30 sek.	Alarm er startet og stopuret viser mindre end 30 sekunder
15.	Blodtryks- måleren skal, indenfor 30 sekunder fra der er trykket på Gem-knap, kunne gemme målingerne i Databasen. Dette accepteres med en tolerance på +/- 15 %	Use Case 1 - 3 køres. Der trykkes på Gem-knappen samtidig med at et stopur startes. Når målingerne er gemt i Database stoppes uret	Stopuret viser mellem 25.5 - 34.5 sekunder
16.	Grafen vises i ét vindue, hvor y-aksen måles i mmHg og x-aksen i tid pr. sekund	Use Case 1 - 3 køres	På GUI er y- aksen målt i mmHg og x- aksen i tid pr. sekund

17.	Hver 7 sekund skal værdier for systolisk og diastolisk blodtryk samt puls opdateres. Dette accepteres med en tolerance på $+/-$ 15 %	Use Case 1 - 2 køres. For- søgsnummer indtastes og der trykkes på Start-knappen samtidig med at et stopur startes. Når værdier i bokse vises stoppes uret	Stopuret viser mellem 5.95 - 8.05 sekunder
18.	Graf for blodtryk skal kører kontinuerligt i GUI efter princip beskrevet i KS	Use Case 1 - 3 køres	Grafen i GUI kører kontinu- erligt efter be- skrevet princip i KS
19.	Når der trykkes på Gem-knap gemmes det ufiltrerede signal under det indtastede forsøgsnavn og et autogenereret nr. "forsøgs- navn_nr"	Use Case 1 - 4 køres	Data er blevet gemt i Databasen under filnavnet "forsøgsnavn_nr"
20.	Systemet skal kunne måle blodtryksvær- dier fra 0 til 250 mmHg	Use Case 1 - 3 køres	Det indhen- tede signals blodtryks- værdier er indenfor 0 til 250 mmHg på grafens y-akse

21.	Forskeren skal kunne udskifte hardwaren på 10 minutter	Udskiftning af hardware påbegyndes samtidig med at stopur startes. Når hardware er udskiftet stoppes uret	Stopuret viser mindre end 10 minutter
22.	Softwaren skal opbygges med lav kobling	Åbn systemets programkode	Koden er opbygget med lav kobling

 $Tabel\ 4.16:\ Accept test\ af\ Ikke-funktionelle\ krav$

4.4 Godkendelsesformular

Sted		Dato
/ed underskriv	velse af dette dokument g	odkendes den kørte accepttest.
Oato for test		
Kunde	IHA	
Godkendes af	Peter Johansen	

Litteratur

- [1] Richard G. Lyons. Understanding Digital Signal Processing. Prentice Hall, 2011.
- [2] Peter Johansen. Instrumentationsforstærkeren. IHA, 2014.
- [3] INA114 Datasheet.
- $[4] \ \ https://en.wikipedia.org/wiki/Sallenkl\ 13.16.$
- [5] Gregory J. Toussaint Rolande E. Thomas, Albert J. Rose. *The Analysis and Design og Linear Circuits*. Wiley, 2012.

Figurer

2.1	Aktør-kontekstdiagram	3
2.2	Use Case-diagram	4
2.3	Skitse af GUI	9
2.4	Graf for blodtryk	10
3.1	Block Definition Diagram for hardware	12
3.2	Infernal Block Diagram for hardware	12
3.3	Bodeplot	16
3.4	Diagram over HW	17
3.5	Forstærknings blok	17
3.6	Måling for 10 Hz	18
3.7	Måling for 50 Hz	18
3.8	Måling for 60 Hz	19
3.9	Graf til kalibrering, fra udregninger	19
3.10	Opstilling	20
3.11	Måling ved 50 mmHg	20
3.12	Måling ved 10mmHg	21
3.13	Måling ved 100mmHg	22
	Overordnet sekvensdiagram for systemet	
3.15	Domænemodel	23
3.16	Applikationsmodel for software	24
	Sekvensdiagram for Use Case 1	
	Sekvensdiagram for Use Case 2	
	Sekvensdiagram for Use Case 3	
	Sekvensdiagram for Use Case 4	
3.21	Sekvensdiagram for Use Case 5	$\overline{27}$

ST3PRJ3 Gruppe 2						
3.22 Klassediagram	29					
3.23 Aktivitetsdiagram	31					
3.24 Aktivitetsdiagram af metoden Filtrering()	32					