Helpful Math Hints Rules for Exponents

- 1. $X^a = X$ times itself a times $5^3 = 5 * 5 * 5$ X is called the base, a is called the exponent
- 2. $X^0 = 1$ by definition anything raised to the zero power equals 1. and $X^1 = X$ $3^1 = 3$

3.
$$X^{-a} = 1/(X^a)$$
 $3^{-2} = 1/(3^2) = 1/9$

4.
$$X^a X^b = X^{a+b}$$
 $6^3 6^4 = (6*6*6) * (6*6*6*6) = 6^7 = 279,936$ (like bases – add exponent)

5.
$$\frac{X^a}{X^b} = X^{a-b}$$
 $(4^3)/(4^2) = (4*4*4)/(4*4) = 4^1 = 4$

6.
$$X^{(1/a)}$$
 = the a^{th} root of X $4^{(1/2)} = 2$ (square root of $4 = 2$, since $2*2=4$)

7.
$$X^{a}Y^{a} = (XY)^{a}$$
 $2^{2} * 3^{2} = 2*2 * 3*3 = 2*3 * 2*3 = 6 * 6 = 6^{2} = 36$ (like exponents, multiply bases)

8.
$$(X^a)^b = X^{ab}$$
 $(4^3)^2 = (4*4*4)^2 = (4*4*4) * (4*4*4) = (4*4*4*4*4*4) = 4^6$

9. Summation Notation:
$$\sum_{t=0}^{3} \frac{1}{(1+i)^{t}} = \frac{1}{(1+i)^{0}} + \frac{1}{(1+i)^{1}} + \frac{1}{(1+i)^{2}} + \frac{1}{(1+i)^{3}}$$
if $i = 10\%$, then
$$\sum_{t=0}^{3} \frac{1}{(1+1)^{t}} = \frac{1}{(1.1)^{0}} + \frac{1}{(1.1)^{1}} + \frac{1}{(1.1)^{2}} + \frac{1}{(1.1)^{3}} = 1 + 0.909 + 0.826 + 0.751 = 3.487$$

Rules for Findings Slopes (a. k. a. Partial Derivatives)

Derivative of a constant: Y = a $\frac{dY}{dX} = 0$

Example: y = 30 The derivative of Y with respect to (wrt) X is $\frac{dY}{dX} = 0$

Power Rule: $Y = aX^{b}$ $\frac{dY}{dX} = baX^{b-1}$

Example: $\pi = 30Q^2$. The derivative of profit (π) wrt Q is

$$\frac{d\pi}{dQ} = 2 * 30Q^{2-1} = 60Q^1 = 60Q$$

Derivatives of a Sum: Y = f(X) + g(X) $\frac{dY}{dX} = \frac{df}{dX} + \frac{dg}{dX}$

Example: $\pi = 40 + 2Q + 0.5Q^3$. The derivative of profit wrt Q is

$$\frac{d\pi}{dQ} = 0 + 2Q^{1-1} + 3 * 0.5Q^{3-1} = 2 + 1.5 * Q^2$$

For those who have had a calculus course – the following may be helpful refreshers.

Derivative of Products: Y=f(X)g(X) $\frac{dY}{dX} = f(x)\frac{dg}{dX} + g(x)\frac{df}{dX}$

Example: $C = (40 + Q)Q^2$. The derivative of C wrt Q is:

$$\frac{dC}{dQ} = (40+Q) * 2 * Q + Q^2 * (1) = 80Q + 2Q^2 + Q^2 = 80Q + 3Q^2$$

Chain Rule: Y=f(Z) and Z=g(X) then Y=f(g(X)). The derivative of Y wrt X is

 $\frac{dY}{dX} = \frac{dY}{dZ}\frac{dZ}{dX}$

Example: $Q = 20B^2 + 2$ and $B = -2P + 5P^2$ then $Q = 20(-2P + 5P^2)^2 + 2$

The derivative of Q wrt B is $\frac{dQ}{dB} = 2 * 20B$

The derivative of B wrt P is $\frac{dB}{dP} = -2 + 2*5P$

The derivative of Q wrt P is:

$$\frac{dQ}{dP} = \frac{dQ}{dB} \frac{dB}{dP} = \left[2 * 20 (-2P + 5P^2)\right] (-2 + 10P) = 160P - 1200P^2 + 2000P^3$$

(Suggestion: In many cases, you can avoid using the chain rule. First simply the function so that Q = f(P). Then find the slope of that simplified function. Both arrive at the same equation for the slope.)