Importing the Dependencies

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

Data Collection

loading the dataset to a Pandas DataFrame
wine_dataset = pd.read_csv('/content/winequality-red.csv')

number of rows & columns in the dataset
wine_dataset.shape

→ (1599, 12)

first 5 rows of the dataset
wine_dataset.head()

₹		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

checking for missing values
wine_dataset.isnull().sum()

_	fixed acidity	0
	volatile acidity	0
	citric acid	0
	residual sugar	0
	chlorides	0
	free sulfur dioxide	0
	total sulfur dioxide	0
	density	0
	рН	0
	sulphates	0
	alcohol	0
	quality	0
	dtype: int64	

Data Analysis and Visulaization

statistical measures of the dataset
wine_dataset.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	s di
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0
4							+

number of values for each quality sns.catplot(x='quality', data = wine_dataset, kind = 'count')

<seaborn.axisgrid.FacetGrid at 0x7fb106addb50>

volatile acidity vs Quality plot = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y = 'volatile acidity', data = wine_dataset)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb10649bbd0>

citric acid vs Quality plot = plt.figure(figsize=(5,5)) sns.barplot(x='quality', y = 'citric acid', data = wine_dataset) <matplotlib.axes._subplots.AxesSubplot at 0x7fb106506a10>

Correlation

- 1. Positive Correlation
- 2. Negative Correlation

correlation = wine_dataset.corr()

constructing a heatmap to understand the correlation between the columns
plt.figure(figsize=(10,10))
sns.heatmap(correlation, cbar=True, square=True, fmt = '.1f', annot = True, annot_kws={'size':8}, cmap = 'Blues')

<matplotlib.axes._subplots.AxesSubplot at 0x7fb0fd356950>

Data Preprocessing

separate the data and Label

 $X = wine_dataset.drop('quality',axis=1)$

print(X)

```
fixed acidity volatile acidity citric acid ...
                                                                 pH sulphates alcohol
                     7.4
                                      0.700
                                                    0.00 ... 3.51
                                                                           0.56
                                                    0.00 ... 3.20
                     7.8
                                      0.880
                                                                           0.68
                                                                                     9.8
     1
     2
                     7.8
                                     0.760
                                                    0.04 ...
                                                               3.26
                                                                          0.65
                                                                                     9.8
     3
                    11.2
                                      0.280
                                                    0.56 ... 3.16
                                                                           0.58
                                                                                     9.8
                                                    0.00 ... 3.51
     4
                                     0.700
                                                                                     9.4
                     7.4
                                                                          0.56
     1594
                     6.2
                                      0.600
                                                    0.08 ... 3.45
                                                                          0.58
                                                                                    10.5
                                                    0.10 ...
                                      0.550
                                                                          0.76
                                                                                    11.2
     1595
                     5.9
                                                               3.52
     1596
                                     0.510
                                                    0.13 ... 3.42
                                                                          0.75
                                                                                    11.0
                     6.3
     1597
                     5.9
                                      0.645
                                                    0.12 ... 3.57
                                                                          0.71
                                                                                    10.2
     1598
                     6.0
                                      0.310
                                                    0.47
                                                               3.39
                                                                          0.66
                                                                                    11.0
     [1599 rows x 11 columns]
Label Binarizaton
Y = wine_dataset['quality'].apply(lambda y_value: 1 if y_value>=7 else 0)
print(Y)
₹
             0
     2
             0
             0
     1594
             0
     1595
     1596
             0
     1597
             0
     1598
     Name: quality, Length: 1599, dtype: int64
Train & Test Split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=3)
print(Y.shape, Y_train.shape, Y_test.shape)
→ (1599,) (1279,) (320,)
Model Training:
Random Forest Classifier
model = RandomForestClassifier()
model.fit(X_train, Y_train)
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='auto',
                            max_leaf_nodes=None, max_samples=None,
                            min_impurity_decrease=0.0, min_impurity_split=None,
                            min_samples_leaf=1, min_samples_split=2,
                            min_weight_fraction_leaf=0.0, n_estimators=100,
                            n_jobs=None, oob_score=False, random_state=None,
                            verbose=0, warm_start=False)
Model Evaluation
Accuracy Score
# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy : ', test_data_accuracy)
→ Accuracy : 0.925
```

Building a Predictive System

```
input_data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5)

# changing the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the data as we are predicting the label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if (prediction[0]==1):
    print('Good Quality Wine')
else:
    print('Bad Quality Wine')
```