

CND 211

Final Project

Complete ASIC Flow of I2C communication protocol

Submitted by:

Section 13 - CND211_Group 1

Name	ID
Ganna Hassan Helmi	v23010408
Yomnah Abdelaziz hassan	v23010327
Mohamed Waleed	v23010364
Zeyad Mohsen Abdelmenam	v23010303

Introduction

In this project we have pass by two flows firstly we have made Complete ASIC flow for the implementation of the I2C Master with wishbone interface , Concerning the ASIC flow we have made synthesis,STA, floorplanning, powerplanning , pnr , CTS&Prime time scribts & run them through different synopsys tool : dc_shell , icc2_shell , lm_shell & pm_shell . Also we have done formal verification for the design using fm_shell tool . We gonna show you the outputs of all of these steps in the rest of the documntation

Also we have passed by another flow which is the front end part & it's an additional part in the project as we have designed a new implementation of I2C protocoal between master & slave of sending 8-bits of data with taking refrence from a paper **Design of I2C Protocol in Verilog-A**New Approach[1], where in these approach we take in our consideration that we are going to implement our Design in RTL so we have changed some signals and we have done simulation of this part using questa sim tool

Synthesis output of the design:

Figure 1:synthesis of top module

Figure 2:synthesis of byte controller

It's clear that the synthesis has been done smoothly and in the following part we are going to show both area & worst slack timing path also you will find all of these reports attached to the project on github

Timing & Area reports:

Information: Updating design i	nformation (UID-85)	clock wb clk i (rise edge)	0.00	0.00
Library(s) Used:		clock network delay (ideal)	0.20	0.20
		input external delay	2.00	2.20 r
saed90nm_max_lth (File: /eda/synopsys/Waleed/standa _EDK/SAED_EDK90nm/Digital_Standard_cell_Library/synopsy		wb_rst_i (in) U148/ZN (INVX0)	0.00 0.05	2.20 r 2.25 f
				byte_controller/rst (i2c_master_byte_ctrl)
Number of ports:	185	byte_controller/U4/ZN (INVX0)	0.05 0.11	2.42 f 2.54 r
Number of nets:	820	<pre>byte_controller/U3/ZN (INVX0) byte controller/bit controller/rst (i2c master bit</pre>		2.54 P
Number of cells:	578	by te_controller/bit_controller/rate (126_master_bit_	0.00	2.54 r
		byte controller/bit controller/U7/ZN (INVX0)	0.10	2.63 f
Number of combinational cells:	415	byte_controller/bit_controller/U50/QN (NAND4X0)	0.14	2.77 r
Number of sequential cells:	153	<pre>byte_controller/bit_controller/U52/QN (NOR2X0)</pre>	0.17	2.94 f
Number of macros/black boxes:	0	byte_controller/bit_controller/U30/QN (NOR2X0)	0.14	3.08 r
Number of buf/inv:	67	byte_controller/bit_controller/U39/Q (A0222X1)	0.11	3.19 r
Number of references:	19	byte_controller/bit_controller/cnt_reg[0]/D (DFFARX	0.00	3.19 r
number of references:	19	data arrival time	0.00	3.19
		data diriyar time		3.13
Combinational area:	3735.244795	clock wb_clk_i (rise edge)	5.00	5.00
Buf/Inv area:	370.483210	clock network delay (ideal)	0.20	5.20
Noncombinational area:	4827.340860	clock uncertainty	-0.35	4.85
Macro/Black Box area: 0.000000		byte_controller/bit_controller/cnt_reg[0]/CLK (DFFARX1)		4.05
		library setup time	0.00 -0.07	4.85 r 4.78
Net Interconnect area:	500.337675	data required time	-0.07	4.78
				4.70
Total cell area:	8562.585655	data required time		4.78
Total area:	9062.923330	data arrival time		-3.19
1		slack (MET)		1.59

Figure 3:timing & area reports

The worst path has a slack with 1.59 which is a good slack depending on our requirements which just need no violations where all the setup & hold paths are MET depending on applied constraints

Formal verification:

Figure 4:formality output

It's obvious that the formal verification has passed successfully without any falling points

PnR Flow:

Figure 5:floorplan output

Figure 6:initial placment output

Figure 7:powerplan output

Figure 8: final placement output

Figure 9: Output after CTS

Figure 10:Global route congestion view

Figure 12: Adding filler Cells

Figure 13:Cell Congestion view

Finally after all of these steps we have got the GDSII File with no violations and achieving the requirements, so we have done Synthesis of the code, Performing static timing analysis, Performing Formal Verification, Creating the floor plan, Creating the power plan, Performing clock tree synthesis, Placing and routing, Design and layout of the pad ring with all the required inputs and outputs, Signoff and final complete layout

Implementation of I2C protocol new approach:

Figure 14: I2C block Diagram

Figure 15:FSM of the Design

There are the following states

1. State 0 = IDLE (reset =1, initiate =1)

Else when reset =0 and initiate =0 then the following states appear.

- 2. State 1 = START CONDITION SDA is pulled from high to low when SCL is still high
- 3. State 2= SLAVE ADDRESS Normal mode so, 7-bit slave address is sent.
- 4. State 3= READ/WRITE BIT- Write is 0 and Read is 1.

- 5. State 4 = ACK/NACK BIT- SDA line is low if acknowledged and SDA line is high if NACK (not acknowledged)
- 6. State 5 = DATA- 8-bit data is sent or received at once
- 7. State 6 = ACK_1 BIT After receiving the data ACK bit sent i.e. SDA line is pulled low. NACK bit means SDA line is high
- 8. State 7 = STOP CONDITION- Master will terminate the communication by pulling the SDA line from low to high when SCL line is still high.

FSM (finite state machine) gives the exact flow of the Protocol. Using this FSM, I2C protocol can be implemented in Verilog where SDA line which is a bidirectional one can be taken as SDA_out and SDA_in for master as well as slave later they can be combined as SDA_om and SDA_os respectively.

Simulation results:

Figure 15: read operation

It's obvious that the data stored in the slave has been read by the master at u1/data where u1 is module of master while u2 is the module of slave

Figure16:Write operation

It's obvious that the data stored in the master has been written by the master to slave at u2/data=8'f0 where u1 is module of master while u2 is the module of slave

Figure 17:Wrong slave address sent by master

It's obvious that the slave addres is 7'h48 while the address sent by the master is 7'h4c which is wrong so both master & slave go to the stop state as the checking is wrong