Final Exam Study Guide Math 157 (Calculus II), Spring 2024

- 1. Geometric applications of integrals [§6.1, 6.2, 6.3, 8.1, 8.2]
 - (a) Area between curves [§6.1]: area between y = f(x) and y = g(x) is $\int_a^b |f(x) g(x)| dx$.
 - (b) Volume of general solid [§6.2]: if A(x) = area of cross-section, then volume is $\int_a^b A(x) \ dx$.
 - (c) Volume of solid of revolution [§6.2, 6.3]: "disks/washers" & "cylindrical shells" methods. For region below curve y = f(x) from x = a to x = b:
 - i. rotated around x-axis, "disks method" gives volume = $\int_a^b \pi f(x)^2 dx$;
 - ii. rotated around y-axis, "shells method" gives volume = $\int_a^b 2\pi f(x) x \, dx$.
 - (d) Arc lengths of curves [§8.1]: length of y = f(x) from x = a to x = b is $\int_a^b \sqrt{1 + (f'(x))^2} dx$.
 - (e) Area of surface of revolution [§8.2]:
 - i. for y = f(x) from x = a to x = b rotated about x-axis, area is $\int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} dx$;
 - ii. for x = g(y) from y = c to y = d rotated about x-axis, area is $\int_c^d 2\pi y \sqrt{1 + (g'(y))^2} dy$.
- 2. Other applications of integrals [§6.4, 6.5]
 - (a) Work [§6.4]: if F(x) = force as function of distance, then work done is $W = \int_a^b F(x) \ dx$.
 - (b) Average of function [§6.5]: the average of f(x) from x = a to x = b is $\frac{1}{b-a} \int_a^b f(x) dx$.
- 3. Techniques for computing integrals $[\S 7.1,\, 7.2,\, 7.3,\, 7.4,\, 7.5]$
 - (a) Integration by parts [§7.1]: $\int u \, dv = uv \int v \, du$; choose u using "LIATE" rule
 - (b) Trigonometric integrals [§7.2]: for $\int \sin^n(x) \cos^m(x) dx$, use the Pythagorean identity $\sin^2(x) + \cos^2(x) = 1$ to isolate single factor of $\cos(x) dx$ or $\sin(x) dx$, then do a *u*-sub.
 - (c) Trigonometric substitution [$\S7.3$]:
 - i. for $a^2 x^2 \Rightarrow \sin x = a \sin(\theta)$, $dx = a \cos(\theta) d\theta$, and use $1 \sin^2(\theta) = \cos^2(\theta)$;
 - ii. for $a^2 + x^2 \Rightarrow \text{sub } x = a \tan(\theta), dx = a \sec^2(\theta) d\theta$, and use $1 + \tan^2(\theta) = \sec^2(\theta)$.
 - (d) Integrating rational functions by partial fractions [§7.4]: find roots of denominator Q(x) and solve system of equations to write P(x)/Q(x) = A/(x-a) + B/(x-b) + ... + Z/(x-z) and use $\int A/(x-a) \ dx = A \ln(x-a)$; for repeated roots do $A_1/(x-a) + A_2/(x-a)^2 + \cdots$.
- 4. Other concepts related to integration [§7.7, 7.8]
 - (a) Approximating definite integrals [§7.7]: two good approximations of $\int_a^b f(x) dx$ are
 - i. midpoint approximation $M_n = \sum_{i=1}^n f(\overline{x}_i) \Delta x$ where $\overline{x}_i = \frac{x_{i-1} + x_i}{2}$;
 - ii. trapezoid approximation $T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)).$
 - (b) Improper integrals [§7.8]: $\int_a^\infty f(x) dx = \lim_{t\to\infty} \int_a^t f(x) dx$, et cetera.

- 5. Parametrized curves [§10.1, 10.2]
 - (a) Curve of form x = f(t) and y = g(t) for some auxiliary variable t ("time") [§10.1]
 - (b) Slope of tangent [§10.2] to curve given by chain rule: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}$
 - (c) Arc length [§10.2] is $\int_a^b \sqrt{(\frac{dy}{dt})^2 + (\frac{dx}{dt})^2} dt = \int_a^b \sqrt{g'(t)^2 + f'(t)^2} dt$
- 6. Polar coordinates and polar curves [§10.3, 10.4]
 - (a) Cartesian vs. polar [§10.3]: $(x,y) = (r\cos\theta, r\sin\theta)$ and $(r,\theta) = (\sqrt{x^2 + y^2}, \arctan(\frac{y}{x}))$
 - (b) Area inside [§10.4] polar curve $r = f(\theta)$ for $\alpha \le \theta \le \beta$ is $\int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^2 d\theta$
 - (c) Slope of tangent [§10.4] to polar curve $r = f(\theta)$ given by chain and product rules:

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{f(\theta)\cos\theta + f'(\theta)\sin\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$

- (d) Arc length [§10.4] of polar curve $r = f(\theta)$ is $\int_{\alpha}^{\beta} \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta = \int_{\alpha}^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta$
- 7. Sequences and series [§11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7]
 - (a) Sequence $\{a_n\}_{n=1}^{\infty} = a_1, a_2, \dots$ is list of numbers, $\lim_{n \to \infty} a_n$ defined like $\lim_{x \to \infty} f(x)$ [§11.1]
 - (b) Series $\sum_{n=0}^{\infty} a_n$ is "infinite sum" $a_1 + a_2 + \cdots$ of terms a_n ; its value is $s = \lim_{n \to \infty} s_n$ where $s_n = a_1 + a_2 + \cdots + a_n$ is the *n*th partial sum [§11.2]
 - (c) Important series: geometric series [§11.2] $\sum_{n=1}^{\infty} ar^{n-1}$ converges if and only if |r| < 1 (and $= \frac{a}{1-r}$ if it converges); p-series [§11.3] $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1
 - (d) Many tests for convergence / divergence of series:
 - i. (Divergence test [§11.2]) If $\lim_{n\to\infty} a_n \neq 0$, series $\sum_{n=0}^{\infty} a_n$ diverges.
 - ii. (Integral test [§11.3]) If f(x) continuous, decreasing, and positive, with $a_n = f(n)$, then $\sum_{n=0}^{\infty} a_n$ converges if and only if $\int_{1}^{\infty} f(x) dx$ converges. In this case, have error bounds for remainder $R_n = s - s_n$: $\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_{n}^{\infty} f(x) dx$.
 - iii. (Comparison tests [§11.4]) If $\sum_{n=0}^{\infty} b_n$ converges & $a_n \leq b_n$, then $\sum_{n=0}^{\infty} a_n$ converges. If $\sum_{n=0}^{\infty} b_n$ diverges & $a_n \geq b_n$, then $\sum_{n=0}^{\infty} a_n$ diverges. If $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists and is $\neq 0$, then $\sum_{n=0}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} a_n$ converges.
 - iv. (Alternating series test [§11.5]) Alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges as long as $b_{n+1} \leq b_n$ and $\lim_{n \to \infty} b_n = 0$. In this case, have error bound: $|R_n| \leq b_{n+1}$.
 - v. (Ratio test [§11.6]) For series $\sum_{n=1}^{\infty} a_n$, let $L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. If L < 1, series converges. If L > 1 (including ∞), series diverges. If L = 1, test is inconclusive.
- 8. Power series and Taylor series [§11.8, 11.9, 11.10, 11.11]
 - (a) The ratio test tells us that any power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has a radius of convergence R such that it converges when |x-a| < R and diverges when |x-a| > R [§11.8]
 - (b) Power series representations of functions $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$; getting a representation for one function from another via algebraic manipulations (like substitution) [§11.9]
 - (c) Differentiate, integrate, and multiply power series like they are polynomials [§11.9, 11.10]

 - (d) Taylor series of f(x) at x = a is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$, where $f^{(n)}$ is nth derivative [§11.10] (e) Important Taylor series [§11.10]: $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \ (R=1)$; $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (R=\infty)$; $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}x^{2n+1}}{(2n+1)!} \ (R=\infty)$; $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^nx^{2n}}{(2n)!} \ (R=\infty)$
 - (f) Taylor polynomial $T_n(x)$: nth partial sum of series; $f(x) \approx T_n(x)$ if $x \approx a$ [§11.10, 11.11]