Mecânica e Campo Electromagnético

Ano lectivo de 2011/12 Exercícios do Capítulo 3.5 – Corrente Eléctrica e Circuitos DC

- 1. Uma colher de chá com a área de 7,0 cm² vai ser prateada. É ligada ao eléctrodo negativo de uma célula electrolítica contendo nitrato de prata (Ag⁺NO₃⁻). Se a célula for alimentada por uma bateria de 12 V e tiver uma resistência de 1,8 Ω, quanto tempo é necessário para que uma camada de prata com a espessura de 0,133 mm se deposite na colher? (A densidade da prata é 10,5×10³ Kg/m³ e a sua massa molar, 107,87 g/mole).
- 2. Suponha que a corrente através de um condutor decresce exponencialmente com o tempo de acordo com a expressão $I(t) = I_0 e^{-t/\tau}$, em que I_0 é a corrente inicial (em t = 0), e τ uma constante com dimensões de tempo. Considere um ponto de observação fixo no condutor.
 - a) Que quantidade de carga passa neste ponto entre t = 0 e $t = \tau$?
 - b) Que quantidade de carga passa neste ponto entre t = 0 e $t = 10\tau$?
 - c) Que quantidade de carga passa neste ponto entre t = 0 e $t = \infty$?
- 3. Uma pequena esfera carregada com uma carga *q* é feita rodar em círculo na extremidade de uma corda isoladora. A frequência angular da rotação é ω. Qual é o valor médio da corrente produzida pela esfera?
- 4. Um disco fino, de raios interior e exterior r_1 e r_2 respectivamente, carregado uniformemente com carga Q, está em rotação sobre o seu eixo com velocidade angular ω . Calcule a corrente equivalente em circulação.
- *5*. Um fio de tungsténio com 1,5 m de comprimento e uma secção de 0,60 mm² é sujeito a uma diferença de potencial de 0,90 V. Qual é a corrente no fio?
- **6**. Um cubo sólido de prata (densidade = 10,5 g/cm³) tem uma massa de 90,0 g.
 - a) Qual é a resistência eléctrica entre faces opostas do cubo?
 - b) Se houver um electrão de condução por cada átomo de prata, qual é a velocidade média dos electrões quando uma diferença de potencial de 10,0 mV é aplicada entre duas faces opostas? (o número atómico da prata é 47 e a sua massa molar é 107,87 g/ mole).
- 7. Um fio de resistência R é esticado para 1,25 vezes o seu comprimento original, ao ser puxado através de um pequeno orifício. Obtenha a resistência do fio depois de esticado.
 - a) Calcule a resistência entre as duas extremidades do corpo.
 - b) Qual deverá ser o diâmetro de um cilindro do mesmo material, e com o mesmo comprimento, para que tenha a mesma resistência?
- *8*. Um fio de carvão e um fio de níquel-crómio são ligados em série. Se a combinação tiver uma resistência de $10 \text{ K}\Omega$ a 0 °C, qual deverá ser a resistência de cada fio a 0 °C para que a resistência da combinação não varie com a temperatura?

- 9. Pretende-se calibrar a resistência de um fio de platina para medidas a baixas temperaturas. Um fio de platina com uma resistência de 1,00 Ω a 20 °C é imerso em azoto líquido, a 77 K (-196 °C). Se o comportamento do fio de platina for linear com a temperatura, qual é a sua resistência a -196 °C?
- **10**. Um enrolamento de aquecimento de 500 W foi desenhado para operar a 220 V e foi fabricado com fio de níquel-crómio com 0,5 mm de diâmetro.
 - a) Assumindo que a resistividade do níquel-crómio se mantém constante e igual ao seu valor a 20 °C, determine o comprimento do fio a ser usado.
 - b) Agora considere a variação da resistividade com a temperatura. Qual a potência que o enrolamento calculado na alínea a) de facto proporciona quando aquecido a uma temperatura de 1200 °C?
- **11**. Um enrolamento de níquel-crómio tem 25 m de comprimento. O fio tem um diâmetro de 0,40 mm, está a 20 °C e transporta uma corrente de 0,5 A.
 - a) Calcule a amplitude do campo eléctrico dentro do fio.
 - b) Calcule a potência por ele libertada.
 - c) Se a temperatura aumentar para 340 °C e a diferença de potencial através do fio permanecer constante, qual é a potência fornecida?
- 12. Uma torradeira tem um elemento de aquecimento feito de níquel-crómio. Quando a torradeira é inicialmente ligada a uma fonte de tensão de 120 V (e o fio está à temperatura de 20 °C), a corrente é 1,8 A. Contudo a corrente começa a decrescer à medida que o elemento aquece. Depois de a torradeira atingir a sua temperatura de operação final, a corrente cai para 1.53 A.
 - a) Calcule a potência que a torradeira consome à sua temperatura normal de operação.
 - b) Qual é a temperatura final do elemento de aquecimento?
- 13. Qual é a corrente numa resistência de 5,6 Ω ligada a uma bateria com uma resistência interna de 0,20 Ω , se a tensão na resistência for 10,0 V? Qual é a força electromotriz da bateria?
- 14. Uma bateria de automóvel tem uma força electromotriz de 12.6 V e uma resistência interna de $0.080~\Omega$. Os faróis de iluminação têm uma resistência total de $5.0~\Omega$ (constante). Qual é a diferença de potencial nos faróis quando...
 - a) Eles constituem a única carga da bateria?
 - b) O motor de arranque é accionado, requerendo uma corrente de 35 A.
- 15. Uma lâmpada de iluminação com a indicação "75 W a 220 V" é colocada num suporte numa extremidade de uma longa extensão de cabo no qual cada um dos condutores tem uma resistência de 0.80 Ω. A outra extremidade do cabo é ligada a uma ficha de 220 V. Faça um diagrama do circuito, e calcule a potência realmente fornecida à lâmpada.

- 16. Três resistências de $100~\Omega$ são ligadas como mostra a Figura. A potência máxima que podeser libertada com segurança por qualquer das resistências é 25 W.
 - a) Qual é a máxima tensão que pode ser aplicada entre os terminais *a* e *b*?
 - b) Para a tensão calculada na alínea anterior, qual é a potência fornecida a cada resistência? Qual é a potência total fornecida?

- 17. A corrente num circuito é triplicada ligando uma resistência de 500 Ω em paralelo com a resistência do circuito. Determine a resistência do circuito na ausência da resistência de 500 Ω .
- *18*. Três resistências de 2 Ω são ligadas como se mostra na Figura. Cada uma pode dissipar uma potência máxima de 32 W sem aquecer excessivamente. Determine a potencia máxima que pode ser fornecida à combinação de resistências.

- 19. Considere um circuito RC série para o qual $R = 1 \text{ M}\Omega$, $C = 5 \mu\text{F}$ e $\varepsilon = 30 \text{ V}$.
 - a) Calcule a constante de tempo do circuito.
 - b) Calcule a máxima carga no condensador depois de o interruptor ser fechado.
 - c) Se o interruptor for fechado em t = 0, calcule a corrente no condensador 10 s depois.

- **20.** No circuito da Figura, o interruptor *S* esteve aberto muito tempo, sendo fechado num dado instante.
 - a) Determine a constante de tempo do circuito antes e depois de o interruptor ser fechado.
 - b) Se o interruptor for fechado em *t* = 0, determine a corrente através dele como função do tempo.

- **21** Suponha que o interruptor *S* da figura seguinte esteve fechado durante um período de tempo suficientemente longo para que o condensador se tenha carregado completamente.
 - a) Calcule a corrente estacionária em cada resistência.
 - b) Calcule a carga Q no condensador.
 - c) O interruptor é aberto em t = 0. Escreva uma expressão para a

- corrente que passa na resistência R_2 como função do tempo.
- d) Obtenha o tempo que leva o condensador a descarregar-se para um quinto da sua tensão inicial.
- 22 Um condensador de placas paralelas é construído usando um material dieléctrico cuja constante dieléctrica é 3 e cuja rigidez dieléctrica é 2×10⁸ V/m. A capacidade requerida é 0.25 μF e o condensador deve poder suportar uma diferença de potencial máxima de 4000 V. Determine a área mínima das placas do condensador.
- 23 Uma placa condutora de espessura *d* e área *A* é inserida no espaço entre as placas de um condensador de placas paralelas espaçadas de *s* e com área *A*, como mostra a Figura. A placa não está necessariamente a meio caminho entre as placas do condensador. Qual é a capacidade do sistema?

- **24** Quando um condensador de placas paralelas com dieléctrico de ar é ligado a uma fonte de alimentação, adquire uma carga q_0 em cada uma das placas. Enquanto a ligação se mantém, um material dieléctrico é inserido entre as placas preenchendo completamente a região entre elas. Isto resulta na acumulação de uma carga adicional q em cada placa. Qual é a constante dieléctrica do material?
- 25 Um circuito electrónico necessita de um condensador com uma capacidade de 3 pF e uma tensão de ruptura de 800V. Se dispuser de um stock de condensadores de 6 pF, cada um com uma tensão de ruptura de 200 V, como poderia satisfazer o requisito deste circuito?
- 26 É possível obter grandes diferenças de potencial carregando primeiro um conjunto de condensadores ligados em paralelo e depois accionando um sistema de interruptores que desliga os condensadores uns dos outros e da fonte para depois os ligar em série. O conjunto é depois descarregado em série. Qual é a máxima diferença de potencial que pode ser obtida deste modo usando 10 condensadores, cada um com uma capacidade de 500 μF e uma fonte de 800 V?

Soluções:

Tabela de resistividades e coeficientes de temperatura para a resistividade. Tabela de constantes dieléctricas.

Material	ρ (Ω.m)	α (°C ⁻¹)	Material	$\mathbf{\epsilon}_{\mathrm{r}}$	Rigidez dieléctrica (V/m)
Prata	1,59×10 ⁻⁸	3,8×10 ⁻³	Ar (seco)	1,00059	3×10 ⁶
Cobre	1,7×10 ⁻⁸	3,9×10 ⁻³	Baquelite	4,9	24×10 ⁶
Ouro	2,44×10 ⁻⁸	3,4×10 ⁻³	Borracha	6,7	12×10 ⁶
Alumínio	2,82×10 ⁻⁸	3,9×10 ⁻³	Nylon	3,4	14×10 ⁶
Tungsténio	5,6×10 ⁻⁸	4,5×10 ⁻³	Papel	3,7	16×10 ⁶
Ferro	10×10 ⁻⁸	5,0×10 ⁻³	Polistireno	2,56	24×10 ⁶
Platina	11×10 ⁻⁸	3,92×10 ⁻³	Porcelana	6	12×10 ⁶
Chumbo	22×10 ⁻⁸	3,9×10 ⁻³	Vidro pirex	5,6	14×10 ⁶
Niquel-crómio	1,50×10 ⁻⁶	0,4×10 ⁻³	Titanato de	233	8×10 ⁶

			estroncio		
Carvão	3,5×10 ⁻⁵	-0,5×10 ⁻³	Teflon	2,1	60×10 ⁶
Silício	640	-75×10 ⁻³	Vácuo	1	-
Vidro	10 ¹⁰ a 10 ¹⁴		Água	80	-

1. $\Delta t = 131 \text{ s}$.

2. a)
$$\Delta q = I_0 \tau (1 - 1/e)$$
 b) $\Delta q = I_0 \tau (1 - e^{-10})$ c) $\Delta Q = I_0 \tau$.

3.
$$\bar{I} = q\omega/2\pi$$
.

4.
$$I = \frac{Q}{T} = \frac{\omega Q}{2\pi}$$
.

5.
$$I = 6.4$$
 A.

6.
$$\langle v \rangle = 3,29 \, \text{mm/s}$$
.

7.
$$R' = 1,56R$$
.

8.
$$R_C = 5,56 \text{ K}\Omega$$
; $R_{NiCr} = 4,44 \text{ K}\Omega$.

9.
$$R' = 0.15 \Omega$$
.

10. a)
$$l = 12.7 \text{ m}$$
 b) $P = 340 \text{ W}$.

b)
$$P = 340 \text{ W}$$

11. a)
$$E = 6 \text{ V/m}$$
;

b)
$$P = 74.5 \text{ W}$$

c)
$$P' = 66W$$
.

12. a)
$$P = 183.6 \text{ W}$$
 b) $T_f = 461 \text{ }^{\circ}\text{C}$

b)
$$T_{\rm f} = 461 \, ^{\circ}{\rm C}$$

13.
$$\varepsilon$$
= 10.4V

14. a)
$$V = 12,4 \text{ V}$$

b)
$$V = 9.65 \text{ V}$$

15.
$$P = 74,7 \text{ W}$$

16. a)
$$V_{ab} = 75 \text{ V}$$
.

17.
$$R = 1000 \Omega$$
.

18.
$$P = 48 \text{ W}$$
.

19. a)
$$\tau = 5$$
 s

b)
$$Q = 150 \,\mu$$
C

19. a)
$$\tau = 5$$
 s b) $Q = 150 \,\mu\text{C}$ c) $I(10) = 4.1 \,\mu\text{A}$.

20. a) Antes
$$\tau = 1.5$$
 s Depois $\tau = 1.0$ s b) $I(t) = 10^{-4} e^{-t}$ (A).

21. a) 12K: 1/3 mA; 15K: 1/3 mA; 3K: 0. b)
$$Q = 50 \,\mu\text{C}$$
. c) $I(t) = 0.278e^{-t/0.18} \,\text{mA}$; d) $t = 0.29 \,\text{s}$.

22.
$$A = 0.188 \text{ m}^2$$
.

23.
$$C = \frac{A\varepsilon_0}{d'} \operatorname{com} d' = s - d.$$

24.
$$\varepsilon_r = 1 + q/q_0$$
.

25. Série de 4 condensadores em paralelo com outra série de 4 condensadores.

26.
$$\Delta V = 8 \text{ KV}$$
.