Denotational Semantics of simPL

YSC3208: Programming Language Design & Implementation

Răzvan Voicu

Week 5, Feb 6 - 10, 2017

- Denotational Semantics of simPL
 - Denotational Semantics of simPL0
 - Denotational Semantics of simPL1
 - Denotational Semantics of simPL2
 - Denotational Semantics of simPL3
 - Denotational Semantics of simPL4

A Critique of Current Approach

- Contraction relies on substitution; mathematically rather complex.
- Primitive operations that are not total functions, such as division, make the evaluation process get stuck. We want a more explicit way of handling runtime errors.
- simPL contains many "unreasonable" programs, which complicates the definition of a dynamic semantics

A Glimpse of Denotational Semantics

$$\begin{array}{ccc}
E_1 & \mapsto v_1 & E_2 & \mapsto v_2 \\
\\
+[E_1, E_2] & \mapsto v_1 + v_2
\end{array}$$

- syntactic domains E
- semantic domains v
- semantic functions $E \rightarrow v$

Sublanguages of simPL

- simPL0; integer and boolean expressions
- simPL1; add let and if
- simPL2; add division
- simPL3; add functions
- simPL4; add recursive functions

Syntactic Domain of simPL0

$$n$$
 true false E_1 E_2 $p \in \{1,\&,+,-,*,=,>,<\}$ $p[E_1,E_2]$ $p \in \{\backslash,^*\}$

Semantic Domains

Domain name	Definition	Explanation
Bool	{ true, false}	ring of booleans
Int	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$	ring of integers
EV	Bool + Int	expressible values

Expressible values $\mbox{\bf EV}$ are values that are the result of evaluating an expression.

Semantic Function

The semantic function

$$\cdot \rightarrowtail \cdot : \mathsf{simPL0} \to \mathsf{EV}$$

expresses the meaning of elements of **simPLO**, by defining the value of each element.

Semantic Rules

The function \rightarrowtail_N transforms the simPL0 integer syntax into an element of Int.

Semantic Rules (cont'd)

$$E_1 \rightarrow v_1$$
 $E_2 \rightarrow v_2$

$$E_1 + E_2 \rightarrow v_1 + v_2$$

$$E_1 \rightarrow v_1$$
 $E_2 \rightarrow v_2$

$$E_1 * E_2 \rightarrow v_1 \cdot v_2$$

$$\begin{array}{ccc}
E_1 & \rightarrowtail v_1 & E_2 & \rightarrowtail v_2 \\
\hline
E_1 - E_2 & \rightarrowtail v_1 - v_2
\end{array}$$

Semantic Rules (cont'd)

$$E_{1} \rightarrow v_{1} \qquad E_{2} \rightarrow v_{2}$$

$$E_{1} \& E_{2} \rightarrow v_{1} \wedge v_{2}$$

$$E \rightarrow v$$

$$\setminus E \rightarrow \neg v$$

$$E_1 \rightarrow v_1$$
 $E_2 \rightarrow v_2$

$$E_1 \mid E_2 \rightarrow v_1 \lor v_2$$

$$E_1 \rightarrow v_1$$
 $E_2 \rightarrow v_2$

$$E_1 = E_2 \rightarrow v_1 \equiv v_2$$

Semantic Rules (cont'd)

$$E_1 \rightarrow v_1 \qquad E_2 \rightarrow v_2$$

$$E_1 \triangleright E_2 \rightarrow v_1 > v_2$$

$$E_1 \rightarrowtail v_1 \qquad E_2 \rightarrowtail v_2$$

$$E_1 \lessdot E_2 \rightarrowtail v_1 \lessdot v_2$$

Example

1 + 2 > 3
$$\rightarrowtail$$
 false holds because 1 + 2 \rightarrowtail 3 and 3 > 3 is false.

simPL1

Add the following to simPL0:

- conditionals,
- identifiers,
- let

Syntactic Domain of simPL1

$$E$$
 E_1 E_2

if E then E_1 else E_2 end

$$E$$
 E_1 ... E_n

Χ

let $x_1 = E_1 \cdots x_n = E_n$ in E end

Motivation: Semantic Domains of simPL1

We need to introduce environments that allow us to keep track of the binding of identifiers. These environments map identifiers to denotable values.

Semantic Domains of simPL1

Semantic domain	Definition	Explanation
Bool	{true, false}	ring of booleans
Int	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$	ring of integers
EV	Bool + Int	expressible values
DV	Bool + Int	denotable values
ld	alphanumeric string	identifiers
Env	ld ↔ DV	environments

Operations on Environments

We introduce an operation $\Delta[x \leftarrow v]$, which denotes an environment that works like Δ , except that $\Delta[x \leftarrow v](x) = v$

Semantic Functions for simPL1

Define $\cdot \rightarrowtail \cdot$ using auxiliary semantic function $\cdot \Vdash \cdot \rightarrowtail \cdot$ that gets an environment as additional argument.

$$\cdot \rightarrowtail \cdot : \mathsf{simPL1} \to \mathsf{EV}$$

$$\emptyset \Vdash E \rightarrowtail v$$

$$E \rightarrowtail v$$

Auxiliary Semantic Function for simPL1

$$\cdot \Vdash \cdot \rightarrowtail \cdot : \mathbf{Env} * \mathrm{simPL1} \to \mathbf{EV}$$

 $\Delta \Vdash \mathtt{true} \rightarrowtail \mathit{true}$

 $n \rightarrowtail_{\mathbf{N}} i$

 $\Delta \Vdash n \rightarrowtail i$

 $\Delta \Vdash \mathtt{false} \rightarrowtail \mathit{false}$

 $\Delta \Vdash x \rightarrowtail \Delta(x)$

$$egin{aligned} \Delta \Vdash E_1
ightharpoonup v_1 & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1 \& E_2
ightharpoonup v_1 \land v_2 \ & \Delta \Vdash E_1
ightharpoonup v_1 & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1 \Vdash E_2
ightharpoonup v_1 \lor v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2 \ & \Delta \Vdash E_2
ightharpoonup v_2 \ & \Delta \Vdash E_1
ightharpoonup v_2$$

$$\Delta \Vdash E_1 \rightarrowtail v_1$$
 $\Delta \Vdash E_2 \rightarrowtail v_2$

$$\Delta \Vdash E_1 \gt E_2 \rightarrowtail v_1 \gt v_2$$

$$\Delta \Vdash E_1 \rightarrowtail v_1$$
 $\Delta \Vdash E_2 \rightarrowtail v_2$

$$\Delta \Vdash E_1 \lt E_2 \rightarrowtail v_1 \lt v_2$$

$$\Delta \Vdash E
ightarrow \mathit{true} \quad \Delta \Vdash E_1
ightarrow v_1$$
 $\Delta \Vdash \mathit{if} \ E \ \mathsf{then} \ E_1 \ \mathsf{else} \ E_2 \ \mathsf{end}
ightarrow v_2$ $\Delta \Vdash \mathit{if} \ E \ \mathsf{then} \ E_1 \ \mathsf{else} \ E_2 \ \mathsf{end}
ightarrow v_2$

$$\Delta[x_1 \leftarrow v_1] \cdots [x_n \leftarrow v_n] \Vdash E \rightarrowtail v \quad \Delta \Vdash E_1 \rightarrowtail v_1 \quad \cdots \quad \Delta \Vdash E_n \rightarrowtail v_n$$

$$\Delta \Vdash \text{let } x_1 = E_1 \cdots x_n = E_n \text{ in } E \text{ end } \rightarrow V$$

Example

. . .

$$\emptyset [\texttt{AboutPi} \leftarrow 3] \Vdash \texttt{AboutPi} + 2 \rightarrowtail 5$$

$$\emptyset \Vdash$$
 let AboutPi = 3 in AboutPi + 2 end \rightarrowtail 5

let AboutPi = 3 in AboutPi + 2 end \rightarrow 5

Syntactic Domain of simPL2

The language simPL2 adds division to simPL1.

$$E_1$$
 E_2 E_1/E_2

The difficulty lies in the fact that division on integers is a partial function, not being defined for 0 as second argument.

Semantic Domains of simPL2

Domain name	Definition	Explanation
Bool	{ true, false}	ring of booleans
Int	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$	ring of integers
EV	$Bool + Int + \{\bot\}$	expressible values
DV	Bool + Int	denotable values
ld	alphanumeric string	identifiers
Env	ld → DV	environments

Modify Auxiliary Semantic Function

The semantic function $\cdot \Vdash \cdot \rightarrowtail \cdot$ is modified to take the occurrence of the error value \bot into account.

$$\Delta \Vdash E \rightarrowtail \bot$$

$$\Delta \Vdash$$
 if E then E_1 else E_2 end $\rightarrowtail \bot$

$$\Delta \Vdash E \rightarrowtail \textit{true} \quad \Delta \Vdash E_1 \rightarrowtail \textit{v}_1$$

$$\Delta \Vdash \text{if } E \text{ then } E_1 \text{ else } E_2 \text{ end} \rightarrowtail v_1$$

$$\Delta \Vdash E \rightarrowtail \mathit{false} \quad \Delta \Vdash E_2 \rightarrowtail v_2$$

$$\Delta \Vdash$$
 if E then E_1 else E_2 end $\rightarrowtail v_2$

$$\frac{\Delta \Vdash E_i \rightarrowtail \bot}{\Delta \Vdash \text{let } x_1 = E_1 \cdots x_n = E_n \text{ in } E \text{ end } \rightarrowtail \bot} \text{ for } i, 1 \leq i \leq n$$

$$\Delta [x_1 \leftarrow v_1] \cdots [x_n \leftarrow v_n] \Vdash E \rightarrowtail v \Delta \Vdash E_1 \rightarrowtail v_1 \cdots \Delta \Vdash E_n \rightarrowtail v_n$$

$$\Delta \Vdash \text{let } x_1 = E_1 \cdots x_n = E_n \text{ in } E \text{ end } \rightarrow v$$

Example

For any environment Δ , $\Delta \Vdash 5+(3/0) \rightarrow \bot$, since $\Delta \Vdash 3/0 \rightarrow \bot$.

Syntactic Domain of simPL3

Add (non-recursive) function definition and application.

,	• •
Ε	$E ext{ } E_1 ext{ } \cdots ext{ } E_n$
$f_{\text{lin}} \{t\} x_1 x_2 \rightarrow F \text{ end}$	(F F ₁ F _n)

Semantic Domains of simPL3

Domain name	Definition	Explanation
Bool	{ true, false}	ring of booleans
Int	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$	ring of integers
EV	$ Bool + Int + \{\bot\} + Fun $	expressible values
DV	Bool + Int + Fun	denotable values
ld	alphanumeric string	identifiers
Env	ld ⊶ DV	environments
Fun	DV * · · · * DV ~→ EV	function values

$$\Delta \Vdash \text{fun } \{ t \} x_1 \dots x_n \neg E \text{ end } \mapsto f$$
 $f \text{ is function such that } f(y_1, \dots, y_n) = v, \text{ where }$
 $\Delta[x_1 \leftarrow y_1] \cdots [x_n \leftarrow y_n] \Vdash E \mapsto v$

Such a function can be syntactically denoted by closure of the form:

$$\mathtt{CLS}(\Delta, [x_1 \cdots x_n], E)$$

Evaluation of Function Application

$$\frac{\Delta \Vdash E \rightarrowtail f \quad \Delta \Vdash E_1 \rightarrowtail v_1 \quad \cdots \quad \Delta \Vdash E_n \rightarrowtail v_n}{\Delta \Vdash (E E_1 \ldots E_n) \quad \rightarrowtail f(v_1, \ldots, v_n)}$$

Syntactic Domain of simPL4

Ε

recfun $f \{ t \} x_1 \dots x_n \rightarrow E \text{ end }$

Discussion simPL4

We would like to add the following rule to our definition of \rightarrowtail .

$$\Delta \Vdash \operatorname{recfun} g \{ t \} x_1 \dots x_n \rightarrow E \text{ end } \mapsto f$$
 $f \text{ is function such that}$
 $f(y_1, \dots, y_n) = v, \text{ where}$
 $\Delta[x_1 \leftarrow y_1] \cdots [x_n \leftarrow y_n] [g \leftarrow f] \Vdash E \mapsto v$

This can be syntactically denoted by circular closure :

$$v = \mathtt{CLS}(\Delta[g \leftarrow v], [x_1 \cdots x_n], E)$$

Problem

The symbol f occurs on the right hand side of the definition of f. How do we know that such a function f exists? Some expressions have unique solutions for f, others have multiple solutions. Example:

```
(recfun f {int \rightarrow int} x \rightarrow (f x) end 0)
```

Theory of fixpoints ...

Preprocessor for simPL

- type checking/inference for simPL
- simPL ====> simPL core
 This pre-processing can perform the following tasks:
 - Each Let construct is converted to a function application.
 - Each partial applications is converted to full application.

Input Language simPL

```
AST of simPL in OCaml
```

```
type sPL_expr =
  | BoolConst of bool
  | IntConst of int
  | Var of id
  | UnaryPrimApp of op_id * sPL_expr
  | BinaryPrimApp of op_id * sPL_expr * sPL_expr
  | Cond of sPL_expr * sPL_expr * sPL_expr
  | Func of sPL_type * (id list) * sPL_expr
  | RecFunc of sPL_type * id * (id list) * sPL_expr
  Appln of sPL_expr * sPL_type option * (sPL_expr list)
  Let of ((sPL_type * id * sPL_expr) list)
            * sPL_type * sPL_expr
```

Core Language simPL

Core Language of simPL in OCaml

```
type sPL_expr =
  | BoolConst of bool
  | IntConst of int
  | Var of id
  | UnaryPrimApp of op_id * sPL_expr
  | BinaryPrimApp of op_id * sPL_expr * sPL_expr
  | Cond of sPL_expr * sPL_expr * sPL_expr
  | Func of sPL_type * (id list) * sPL_expr
  | RecFunc of sPL_type * id * (id list) * sPL_expr
  | Appln of sPL_expr * sPL_type option * (sPL_expr list)
```

Interpreters for simPL

By substitution:

```
evaluate (e:sPL_expr): sPL_expr =
```

By type environment (similar to denotational semantics):

```
type env_val = (sPL_value ref) Environ.et
evaluate (env:env_val) (e:sPL_expr): sPL_value =
```

Values of simPL