Lista Prática

Question 1.

1.1. Funções de Verossimilhança e Estimadores

1) A mistura de normais é caracterizada da seguinte forma:

(1)
$$e_i \sim \begin{cases} N(\mu_1, \sigma_1^2), \text{ com probabilidade } 1/2, \\ N(\mu_2, \sigma_2^2), \text{ com probabilidade } 1/2. \end{cases}$$

Para computar a densidade, podemos modelar $f(e_i) \sim \text{Bern}(1/2)$ e calcular $\mathbb{E}_{\text{Bern}(1/2)}[f(e_i)]$:

$$\mathbb{E}_{\text{Bern}(1/2)}\left[f(e_i)\right] = \frac{1}{2} \times \left[\frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{1}{2\sigma_1^2} \left(y_i - \beta_0 - \beta_1 x_i - \mu_1\right)^2\right) + \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2\sigma_2^2} \left(y_i - \beta_0 - \beta_1 x_i - \mu_2\right)^2\right)\right]$$

Podemos escrever a função de verossimilhança amostral como

(3)
$$L(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; \mu_1, \mu_2, \sigma_1^2, \sigma_2^2) = \prod_{i=1}^n \frac{1}{2} \times \left[\frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{1}{2\sigma_1^2} (y_i - \beta_0 - \beta_1 x_i - \mu_1)^2\right) + \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2\sigma_2^2} (y_i - \beta_0 - \beta_1 x_i - \mu_2)^2\right) \right]$$
$$= \frac{1}{2^n} \prod_{i=1}^n \times \left[\frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{1}{2\sigma_1^2} (y_i - \beta_0 - \beta_1 x_i - \mu_1)^2\right) + \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2\sigma_2^2} (y_i - \beta_0 - \beta_1 x_i - \mu_2)^2\right) \right].$$

Obtendo a log-verossimilhança:

(4)
$$l(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; \mu_1, \mu_2, \sigma_1^2, \sigma_2^2) = -n\log(2) + \sum_{i=1}^n \log\left(\frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{1}{2\sigma_1^2} (y_i - \beta_0 - \beta_1 x_i - \mu_1)^2\right) + \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2\sigma_2^2} (y_i - \beta_0 - \beta_1 x_i - \mu_2)^2\right)\right).$$

O Estimador de Máxima Verossimilhança é dado por

(5)
$$\hat{\boldsymbol{\beta}} = \underset{\beta_0, \beta_1}{\operatorname{argmax}} \ l(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; \mu_1, \mu_2, \sigma_1^2, \sigma_2^2).$$

2) Função de verossimilhança amostral para u, com $u_i \sim \Gamma(a,b)$, definida para $u_i > 0$:

(6)
$$L(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; a, b) = \prod_{i=1}^{n} \frac{b^{a}}{\Gamma(a)} (y_{i} - \beta_{1} - \beta_{2}x_{i})^{a-1} \exp(-b(y_{i} - \beta_{1} - \beta_{2}x_{i}))$$
$$= \left(\frac{b^{a}}{\Gamma(a)}\right)^{n} \prod_{i=1}^{n} (y_{i} - \beta_{1} - \beta_{2}x_{i})^{a-1} \exp\left(-b\sum_{i=1}^{n} (y_{i} - \beta_{1} - \beta_{2}x_{i})\right).$$

Aplicando tranformação logarítmica

(7)
$$l(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; a, b) = n\log\left(\frac{b^a}{\Gamma(a)}\right) + (a-1)\sum_{i=1}^n\log(y_i - \beta_1 - \beta_2 x_i) - b\sum_{i=1}^n(y_i - \beta_1 - \beta_2 x_i).$$

O Estimador de Máxima Verossimilhança é dado por

(8)
$$\hat{\boldsymbol{\beta}} = \underset{\beta_0, \beta_1}{\operatorname{argmax}} \ l(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; a, b).$$

3) Sabemos que $v_i \sim \text{Cauchy}(0,1) \sim t(\nu=1)$, em que ν representa os graus de liberdade. Portanto, a função de verossimilhança amostral para \mathbf{v} , com $v_i \sim \text{Cauchy}(0,1)$ pode ser escrita como:

(9)
$$L(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; \nu) = \prod_{i=1}^{n} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{(y_i - \beta_1 - \beta_2 x_i)^2}{\nu}\right)$$
$$= \left[\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\right]^n \prod_{i=1}^{n} \left(1 + \frac{(y_i - \beta_1 - \beta_2 x_i)^2}{\nu}\right).$$

A log-verossimilhança, por sua vez,

(10)
$$l(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; \nu) = n \left[\log \left(\Gamma \left(\frac{\nu+1}{2} \right) \right) - \log \left(\sqrt{\nu \pi} \right) - \log \left(\Gamma \left(\frac{\nu}{2} \right) \right) \right] + \sum_{i=1}^{n} \log \left(1 + \frac{\left(y_i - \beta_1 - \beta_2 x_i \right)^2}{\nu} \right).$$

O Estimador de Máxima Verossimilhança é dado por

(11)
$$\hat{\boldsymbol{\beta}} = \underset{\beta_0, \beta_1}{\operatorname{argmax}} \ l(\boldsymbol{\beta}|\mathbf{y}, \mathbf{x}; \nu).$$

1.2. Distribuições Assintóticas

Vide [1], Teorema 14.1.M2, se são satisfeitas condições de regularidade,

(12)
$$\hat{\boldsymbol{\theta}} \stackrel{d}{\to} N\left(\boldsymbol{\theta}_0, \{\mathbf{I}(\boldsymbol{\theta}_0)\}^{-1}\right),$$

em que $\hat{\boldsymbol{\theta}}$ é o estimador de Máxima Verossimilhança de $\boldsymbol{\theta}_0$, e $\mathbf{I}(\boldsymbol{\theta}_0) = -\mathbb{E}\left[\frac{\partial^2 \log(L)}{\partial \boldsymbol{\theta}_0 \partial \boldsymbol{\theta}_0'}\right]$.

Condições de regularidade

blá blá blá

Referências

[1] WH Greene. Econometric analysis, 7th. saddle river, 2011.