Predicting Dengue Fever

Machine Learning Project

Group Members:

140045E - S. Arunan

140338F - A.B.P.R.Lakshani

140571L - S.P.A. Senanayake

Problem?

Predict **Total Dengue Cases** per week for San Juan and Iquitos cities by using past weather data

Develop machine learning models for predictions such that Mean Squared Error is at minimized.

Dengue Fever

- Mosquito-borne disease
- Life cycle spanning to 1.5 3 weeks
- Transition dynamic dependant on climate (eg: temperature, precipitation)
- Possibility of outbreak increase with climate

Due to this timely relationship and climatic relationship with dengue transmission indicates possibility of predicting dengue cases using Machine Learning

Feature Set

- Temperature
 - Max, min, average, diurnal range, dew point
- Precipitation
 - Total rainfall
- Humidity
 - Mean relative and mean specific
- Vegetation
 - Level of vegetation in NW, NE, SW and SE

Approach

In order to build the final machine learning model, we incrementally followed given steps

- Exploratory Data Analysis (EDA)
 - Visualize distribution of features, patterns in features and total_cases
- Data Imputation
 - To fill missing values in features
- Feature Engineering
 - Find optimal set of features that shows significant relationship for predictions

Approach cont.

- Evaluate machine learning models
 - To find the optimal machine learning model giving minimum error
- Results
 - Analysing results

Distribution of Total cases over Time

Total_case over time for San Juan

Total_case over time for Iquitos

Data Imputation

- Almost all the features contained missing values
- Imputation using
 - Forward fill
 - Fill data from predecessor values
 - Mean value
 - Fill data from mean value
 - Redundant values
 - Use reanalysis features to impute station values in features

Feature Engineering

- Use correlation matrix to find strength of relationship between features and total_case
- Add time-series features
- Drop unnecessary features
- Normalize features
 - To ensure all the numeric values of values are in the same range

Correlation matrix for Iquitos dataset

Time Series data

- Mosquitoes precise weather conditions to reproduce
- Hence cases for a given week will be results of past weather conditions
- Required to analyze past weather records for current predictions
- Use Moving Average
 - Smooth short term fluctuations
 - Highlight long term trends
 - For features recent_mean_dew_point, recent_mean_spec_humid,
 recent_sum_precip use moving average of 100 for San Juan, 30 for Iquitos

Drop Unnecessary features

Features which does not have a significant correlationship with total_cases was dropped to ensure predictions are based on features with strong relationship

Sample dropped feature:

- ndvi_ne, ndvi_nw, ndvi_se, ndvi_sw
- Precipitation_amt_mm
- reanalysis_air_temp_k etc

Machine Learning Model

In-order to find the Machine learning model having minimum squared error for predictions, first we used five different models.

- Linear regression
- KNN
- SVM
- Gradient Boosting
- Random Forest
- MLP

Cross Validation

Before the training process

Training data was splitted to training and cross-validating

After the training process

Cross validation is used to minimize overfitting and underfitting of data

Results

Minimum error from Gradient boosting for San Juan and SVM for Iquitos

Cross Validation Error for Different Learning Techniques

Machine Leaning Techniques

Challenges

- Model cannot not predict outbreaks, just increased caseloads
- Overfitting the data. Received better validation scores, but worse test scores after Submitting to DrivenData

Additional Information

Final code here - https://github.com/arunans23/DengAl-datadriven