BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS SECOND SEMESTER 2018-2019

07-01-2019

Course Handout Part II

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F342

Course Title : DIFFERENTIAL GEOMETRY

Instructor-in-charge: B. MISHRA

1. Scope and Objective of the Course:

The objective of this course is to provide a systematic exposition of the essential concepts of modern differential geometry, and an understanding and appreciation for the intrinsic beauty of these concepts, as well as their deep relationships to computer and physical sciences. The under current is to generalize and reinforce the classical subject in a modern way.

2. Text Book: Andrew Pressley: Elementary Differential Geometry, Springer (India), 2001.

3. Reference Books:

- 1. Vaisman A First course in Differential geometry Marcel Dekker Inc. (1984).
- 2. Barrett O'Neill Elementary differential geometry, 2/E, A Harcourt Science and Company (1997).
- 3. Gray Modern differential geometry of curves and surfaces with MATHEMATICA, 2/E, CRC Press (1999).

4. Lecture Plan:

Lecture	Learning Objectives	Topics to be covered	Chapter in
			the Text
			Book
1-4	Understanding of Curves in the	Description of Curve, Arc-length,	1.1-1.4
	plane and in space.	Parameterization, Level Curves.	
5-8	To gain knowledge on curvature	Curvature, Plane curves, Space Curves.	2.1-2.3
	and torsion.		
9-11	To know the global results of	Simple Closed Curve, Isoperimetric	3.1-3.3
	curves	Inequality, Four Vertex Theorem	
12-16	To know different ways to	Definition of surface, Smooth Surface,	4.1-4.6
	formulate mathematically the	Tangents, Normal Orientability,	
	notion of surface.	Quadratic surfaces, Triply orthogonal	
		systems.	
17-20	To learn the process to compute	Lengths of Curves on Surfaces,	5.1-5.4
	the lengths, angles and area in	Isometries of surfaces, Conformal	
	the surface	Mappings of surfaces.	
21-25	To learn the different ways to	The Second Fundamental Form, The	6.1-6.4
	measure on how a surface is	Curvature of Curves on a Surface, The	
	curved.	Normal and Principal Curvatures,	
		Geometrical Interpretation of Principal	
		Curvatures	
26-31	To know few more measures of	The Gaussian and Mean Curvatures,	7.1-7.6

	curvature of a surface.	The Pedosphere, Flat Surfaces, Surfaces				
		of Constant Mean Curvature, Gaussian				
		Curvature of Compact Surfaces, The				
		Gauss map				
32-35	To learn the Gauss's most	Gauss's Remarkable Theorem,	10.1-10.4			
	important discovery on surfaces	aces Isometries of Surfaces, The Codazzi-				
	pertaining to the curvature.	Mainardi Equations, Compact Surfaces				
		of Constant Gaussian Curvature.				
36-40	To know various methods to	Definition and basic properties,	8.1-8.5			
	find the geodesics on surfaces.	Geodesic Equations, Geodesics on				
		surface of Revolution, Geodesics as				
		Shortest Paths, Geodesic Coordinates.				

5. Evaluation Scheme:

Component	Duration		Weightage (%)	Date & Time	Nature of Component
Mid-Semester	1 Hour Minutes	30	30	12/3 3.30 - 5.00 PM	Closed Book
Assignments (Three)	To announced the class	be in	20		Open Book
Quizzes (Two)	To announced the class	be in	10		Closed Book
Comprehensive Exam	3 Hours		40	04/05 AN	Closed Book

- **5. Chamber consultation Hour:** To be announced in the class.
- **6. Notice:** Notice, if any, concerning this course will be displayed only in CMS.
- **7. Make up**: Prior permission is needed for make up; make up will only be given if enough evidence is there for not being able to take regular test.
- **8** . **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge MATH F342