EXERCICE N°1 **VOIR LE CORRIGÉ**

Soit f la fonction définie sur \mathbb{R} par $f(x)=2x^2-6x-20$ et C_f sa courbe représentative.

- 1) Montrer que pour tout réel x, f(x)=2(x+2)(x-5).
- 2) Déterminer l'image de -2 par la fonction f.
- 3) Déterminer le point de la courbe C_f , ayant pour abscisse x=-3.
- 4) Déterminer les antécédents éventuels de 0 et de -20 par la fonction f.

EXERCICE N°2 **VOIR LE CORRIGÉ**

Pour chacune des fonctions suivantes, déterminer le tableau de variations de la fonction sur \mathbb{R}

1)
$$f(x) = -5x^2 + 30x - 7$$

$$2) g(x) = 6x^2 - 18x - 1$$

1)
$$f(x)=-5x^2+30x-7$$
 2) $g(x)=6x^2-18x-1$ 3) $h(x)=0.3x^2+9x-1.2$

EXERCICE N°3 **VOIR LE CORRIGÉ**

On considère la parabole C_f rapportée à un repère orthogonal.

Déterminer la forme factorisée de cette fonction

EXERCICE N°4 **VOIR LE CORRIGÉ**

Soit g la fonction définie sur \mathbb{R} par $g(x)=x^2+x-6$ et C_g sa courbe représentative.

- 1) Montrer que pour tout réel x, g(x)=(x-2)(x+3).
- 2) Dressser le tableau des signes de la fonction g.

EXERCICE N°1 (Le corrigé)

RETOUR À L'EXERCICE 1

Soit f la fonction définie sur \mathbb{R} par $f(x)=2x^2-6x-20$ et C_f sa courbe représentative.

1) Montrer que pour tout réel x, f(x)=2(x+2)(x-5).

Soit
$$x \in \mathbb{R}$$
,
 $2(x+2)(x-5) = 2[x^2-5x+2x-10]$
 $= 2[x^2-3x-10]$
 $= 2x^2-6x-20$

Ainsi, pour tout réel x, f(x)=2(x+2)(x-5).

2) Déterminer l'image de -2 par la fonction f.

$$f(-2)=2(-2+2)(-2-5)$$

$$f(-2) = 0$$

On pouvait aussi écrire :

$$f(-2) = 2 \times (-2)^2 - 6 \times (-2) - 20$$

$$f(-2) = 0$$

On a simplement choisi le calcul le plus simple...

3) Déterminer le point de la courbe C_f , ayant pour abscisse x=-3.

Un point du plan muni d'un repère étant défini par ses coordonnées, l'énoncé nous demande en fait de déterminer l'ordonnée du point (l'abscisse est déjà connue : c'est -3).

Calculons H

$$f(-3) = 2(-3+2)(-3-5)$$

$$f(-3) = 2(-1)(-8)$$

$$f(-3) = 16$$

On en déduit que le point cherché est le point de coordonnées (-3; 16)

4) Déterminer les antécédents éventuels de 0 et de -20 par la fonction f.

Il s'agit ici de trouver (si il(s) existe(nt)) le(s) nombre(s) dont l'image par f est zéro.

• Commençons par les antécédents éventuels de 0 par f.

Soit x un antécédent de 0 par f . alors :

$$f(x) = 0$$

qui s'écrit encore :

$$2(x+2)(x-5) = 0$$

Or, un produit de facteurs est nul si et seulement si l'un au moins de ses facteurs est nul.

Done:

On en déduit que : 0 possède deux antécédents par f:-2 et 5

Ici, on a choisi de travailler avec la forme factorisée car on avait directement 0 pour membre de droite.

• Déterminons à présent les antécédents éventuels de -20 par f.

Soit x un antécédent de -20 par f alors,

les équations suivantes sont équivalentes :

$$f(x) = -20$$

$$2x^{2}-6x-20 = -20$$

$$2x^{2}-6x = 0$$

$$2x(x-3) = 0$$

Or, un produit de facteurs est nul si et seulement si l'un au moins de ses facteurs est nul.

Donc:

$$2x = 0$$
 ou $x-3 = 0$ $x = 3$

On en déduit que : -20 possède deux antécédents par f:0 et 3

EXERCICE N°2 (Le corrigé)

RETOUR À L'EXERCICE 2

Pour chacune des fonctions suivantes, déterminer le tableau de variations de la fonction sur

1)
$$f(x) = -5x^2 + 30x - 7$$

2)
$$g(x)=6x^2-18x-1$$

1)
$$f(x)=-5x^2+30x-7$$
 2) $g(x)=6x^2-18x-1$ 3) $h(x)=0.3x^2+9x-1.2$

$$f(x)$$
 est de la forme ax^2+bx+c avec $a=-5$, $b=30$ et $c=-7$

On a alors $\frac{-b}{2a} = -\frac{30}{2 \times (-10)} = 1,5$ et f(1,5) = 26,75

et commi	u > 0	, on en deduit le tableau surva	111t .
X	$-\infty$	1,5	+ ∞
f(x)		26,75	

$$g(x)$$
 est de la forme ax^2+bx+c avec $a=6$, $b=-18$ et $c=-1$

g(x) est de la forme ax^2+bx+c avec a=6, b=-18 et c=-1On a alors $\frac{-b}{2a} = \frac{-(-18)}{2\times 6} = 1,5$ et g(1,5) = -14,5

et comm	e a > 0	, on en déduit le tableau suivant :	
X	$-\infty$	1,5	+∞
g(x)		-14,5	,

$$h(x)$$
 est de la forme ax^2+bx+c avec $a=0,3$, $b=9$ et $c=-1,2$

On a alors $\frac{-b}{2a} = \frac{-9}{2 \times 0.3} = -15$ et h(-15) = -68.7

9	et comm	e <i>a</i> > 0	, on en dedui	t le tableat	i suivani :	
	X	$-\infty$		-15		+∞
	h(x)			-68,7	1	

EXERCICE N°3 (Le corrigé)

RETOUR À L'EXERCICE 3

On considère la parabole C_f rapportée à un repère orthogonal.

Déterminer la forme factorisée de cette fonction

 C_f est une parabole qui coupe l'axe des abscisses en -1 et 2.

On en déduit qu'il existe un nombre réel a tel que pour tout nombre réel réel x f(x) = a(x+1)(x-2)

f(x) = a(x-(-1))(x-2)

De plus, C_f coupe l'axe des ordonnées en 1.

On en déduit que f(0) = 1

Or f(0) = a(0+1)(0-2) = -2a

On obtient: -2a = 1 d'où l'on tire $a = -\frac{1}{2}$

Pour finir: $f(x) = -\frac{1}{2}(x+1)(x-2)$

EXERCICE N°4 (Le corrigé)

RETOUR À L'EXERCICE 4

Soit g la fonction définie sur \mathbb{R} par $g(x)=x^2+x-6$ et C_g sa courbe représentative. 1) Montrer que pour tout réel x, g(x)=(x-2)(x+3).

Soit
$$x \in \mathbb{R}$$
,
 $(x-2)(x+3) = x^2 + 3x - 2x - 6$
 $= x^2 - x - 6$

Ainsi, g(x) = (x-2)(x+3)

- 2) Dressser le tableau des signes de la fonction g.
- $x-2 > 0 \Leftrightarrow x > 2$
- $x+3 > 0 \Leftrightarrow x > -3$

On en déduit le tableau suivant :

X	$-\infty$		-3		2		+∞
x-2		_		_	0	+	
x+3		_	0	+		+	
g(x)		+	0	_		+	