最佳灾情巡视路线的数学模型

杨庭栋 李哓涛 郑长江 指导教师: 赵 静 (解放军后勤工学院, 重庆 400016)

编者校 本文力求运用数学概念和方法来严格处理涉及的各种对象; 力求借助于几何直观和生活体验的 启发作用,为计算机搜索制定行之有效的操作规则,在数值结果方面,粗估与细节化相结合,从而起供 较为完备的数值描述。本文第四部分定理证明中有误,为版面计从删。欲窥全豹,试索原文

摘 要 本文将求最佳巡视路线问题转化为图论中求最佳推销员回路的问题,并用近似算法去寻求近似 最优解,对分组问题定义了均衡度用以衡量分组的均衡性,对问题 1 和问题 2 先定出几个分组的准则 进行初步分组,并用近似算法求每一组的近似最佳推销员回路,再根据均衡度进行微调,得到较优的均 衡分组和每组的近似最佳機销员回路,对问题 1 得出总路程较短且各组尽可能均衡的路线,各组的巡视 路程分别为 216.4 公里。 191.1 公里, 192.3 公里,总路程为 599.8 公里,对问题 2,证明了应至 少分为 4 组, 并求出了分为 4 组时各组的较优巡视路线, 各组的巡视时间分别为 22.74 小时, 22.59 小时, 21.69 小时, 22.54 小时,对问题 3, 求出完成巡视的最短时间为 6.43 小时,并用较为合理 的分组的准则,分成 22 个组,对问题 4 研究了在不影响分组的均衡条件下, T, t, V 的允许变化范 围,并得出了这三个变量的关系式,并由此对分三个组的情况进行了具体讨论.

一、问题重述 (略)

二、模型的假设与符号说明(略)

三、模型的建立与分析

本问题要求在某县的乡 (镇)、村公路网中,寻找从县政府所在地 (图中 O 点) 出发,走遍各乡 (镇)、村,又回到县政府所在地,使总路程或时间最少. 将公路网图中,每个乡(镇)或村看为图中 的一个节点,各乡(镇)、村之间的公路看作图中对应节点间的边,各条公路的长度(或行驶时间)看 作对应边上的权,所给公路网就转化为图论中的加权网络图,问题就转化为一个图论问题,即在给定 的加权网络图中寻找从给定点 () 出发、行遍所有顶点至少一次再回到 () 点、使得总权(路程或时间) 最小.

为了讨论方便, 先给出图论中相关的一些定义.

定义 1 经过图 G 的每个顶点正好一次的圈,称为 G 的哈米尔顿圈,简称 H 圈.

定义 2 在加权图 G = (V, E) 中

- (1) 权最小的哈米尔顿圈称为最佳 H 圈;
- (2) 经过每个顶点至少一次且权最小的闭通路称为最佳推销员回路.

由定义 2 可知, 本问题是一个寻求最佳推销员回路的问题. 最佳推销员回路的问题可转化为最佳 H 圈的问题. 方法是由给定的图 G = (V, E) 构造一个以 V 为顶点集的完备图 G' = (V, E'), E'中每条边 (x,y) 的权等于顶点 x = y 在图 G 中最短路径的权,即

$$\forall (x, y) \in E', \qquad \omega(x, y) = \min d_G(x, y).$$

在图论中有以下定理:

定理 1 加权图 G 的最佳推销员回路的权和 G' 的最佳 H 圈的权相同.

定理 2 在加权完备图中求最佳 H 圈的问题是 NP—— 完全问题.

我们采用一种近似算法求出该问题的一个近似最优解,来代替最优解,算法如下:

算法一 求加权图 G(V;E) 的最佳推销员回路的近似算法:

1. 用图论软件包求出 G 中任意两个顶点间的最短路,构造出完备图 G'(V, E')、

$$\forall (x, y) \in E', \omega(x, y) = \min d_G(x, y),$$

- 2. 输入图 G' 的一个初始 H 圈;
- 3. 用对角线完全算法 [2] 产生一个初始 H 圈:
- 4. 随机搜索出 G' 中若干个 H 圈, 例如 2000 个;
- 5. 对第 2 、 3 、 4 步所得的每个 H 圈, 用二边逐次修正法 $^{[2]}$ 进行优化,得到近似最佳 H 圈;
 - 6. 在第 5 步求出的所有 H 圈中,找出权最小的一个,此即要找的最佳 H 圈的近似解.

此算法程序见附录 (略)(由于二边逐次修正法的结果与初始圈有关, 故本算法第 2 、 3 、 4 步分别用三种方法产生初始圈, 以保证能得到较优的计算结果)

问题一 若分为三组巡视 设计总路程最短且各组尽可能均衡的巡视路线.

此问题是多个撤销员的最佳推销员回路问题. 即在加权图 G 中求顶点集 V 的划分 V_1, V_2, \cdots, V_n ,将 G 分成 n 个生成子图 $G[V_1], G[V_2], \cdots, G[V_n]$ 使得

- (1) 顶点 $O \in V_i$, $i = 1, 2, 3, \dots, n$.
- $(2) \bigcup_{i=1}^{n} V_i = V(G).$

i=1 $\max\{\omega(C_1) - \omega(C_2)\}$

(3) $\frac{T_{i,j}}{\max_i \omega(C_i)} \le \alpha$, 其中 C_i 为 V_i 的导出子图 $G[V_i]$ 中的最佳 H 圈, $\omega(C_i)$ 为 C_i 的权, $i,j=1,2,3,\cdots,n$

$$(4) \sum_{i=1}^{n} \omega(C_i) = \min$$

 $\max_{\alpha} |\omega(C_1) - \omega(C_2)|$ 定义 3 称 $\alpha_0 = \frac{\log |\omega(C_1) - \omega(C_2)|}{\log |\omega(C_1)|}$ 为该分组的实际路程均衡度. α 为最大容许均衡度. 显然 $0 \le \alpha_0 \le 1$, α_0 越小,说明分组的均衡性越好. 取定一个 α 后, α_0 与 α 满足条件 (3) 的分组是一个均衡分组. 条件 (4) 表示总巡视路程最短.

此问题包含两方面: 第一,对顶点分组;第二,在每组中求最佳推销员回路,即为单个推销员的最佳推销员问题. 我们只能去寻求一种较合理的划分准则,对图 1 进行初步划分后,求出各部分的近似最佳推销员回路的权,再进一步进行调整,使得各部分满足均衡性条件(3)

从 O 点出发去其它点,要使路程较小应尽量走 O 点到该点的最短路。故用图论软件包求出 O 点到其余顶点的最短路,这些最短路构成一棵 O 为树根的树,将从 O 点出发的树枝称为干枝,见图 I. 从图中可以看出,从 O 点出发到其它点共有 G 条干枝,它们的名称分别为①,②,③,④,⑤,⑥。

根据实际工作的经验及上述分析,在分组时应遵从以下准则:

准则一 尽量使同一干枝上及其分枝上的点分在同一组;

准则二 应将相邻的干枝上的点分在同一组;

准则三 尽量将长的干枝与短的干枝分在同一组.

由上述分组准则, 们找到两种分组形式如下:

分组一: (⑥, ①), (②, ③), (⑤, ④);

分组二: (①, ②), (③, ④), (⑤, ⑥);

显然分组一的方法极不均衡,故考虑分组二.

对分组二中每组顶点的生成子图,用算法一求出近似最优解及相应的巡视路线. 使用算法一时,在每个子图所构造的完备图中,取一个尽量包含图 1 中树上的边的 H 圈作为其第 2 步输入的初始 圈.

分组二的近似解见表 1.

表 1 (单位: 公里)

小组名称	路 线	总路线长度	路线的总长度
I	O-P-28-27-26-N-24-23-22-		
	17-16-I-15		
	-I-18-K-21-20-25-M-O	191.1	
II	O-2-5-6-L-19-J-11-		
	G - 13 - 14 - H - 12 - F - 10 - F -		
	9-E-7-E-8-4-D-3-C-O	241.9	558.5
III	O+R-29-Q-30-32-31+	•	
	33-35-34-A-B-1-O	125.5	

因为该分组的均衡度

$$\alpha_0 = \frac{\omega(C_1) - \omega(C_2)}{\max_{i=1,2,3} \omega(C_i)} = \frac{241.9 - 125.5}{241.9} = 54.2\%$$

所以此分法的均衡性很差.

为改善均衡性,将第 Π 组中的顶点 C, 2, 3, D, 4 划归第 Π 组,重新分组后的近似最优解见表 2,各组的近似最优巡视路线见图 2.

表 2 (单位: 公里)

编号	路 线	路线长度	路线总长度
1	O - P - 28 - 27 - 26 - N - 24 - 23 - 22 - 17 - 16 - I		
	-15 - I - 18 - K - 21 - 20 - 25 - M - O	191.1	
П	O+2+5+6+7-E-8-E-9-F-10-F-		
	12-H-14-13-G-11-J-19-L-6-5-2-O	216.4	599.8
Ш	O - R + 29 + Q + 30 + 32 + 31 + 33 + 35 + 34 + A + 1		
	-B-C-3-D-4-D-3-2-O	192.3	

图 2 分为 3 组时各组的巡视路线图

注: 图中粗线部分为 11 组与 111 组共同经过的路线

下面对此结果进行分析. 因该分组的均衡度

$$\alpha_0 = \frac{\omega(C_3) - \omega(C_1)}{\max_{i=1,2,3} \omega(C_i)} = \frac{216.4 - 191.4}{216.4} = 11.69\%$$

所以这种分法的均衡性较好。若取最大容许的均衡度 $\alpha = 12\%$, 则这是一个均衡分组。

用算法一算出整个网络图的近似最佳推销员巡回为 *O-C-*3-2-5-*D*-4-8-*E*-9-*F*-10-*F*-12-*H*-12-*G*-11-*J*-19-*L*-7-6-*M*-*N*-25-20-21-*K*-18-*J*-13-14-15-*I*-16-17-22-23-24-27-26-*P*-28-*Q*-30-*Q*-29-*R*-31-33-31-32-35-34-*A*-*B*-*O*

总路长为 588.6 公里. 而表 2 中三组巡回的总路线长为 599.8 公里. 可以认为这样设计的分组方法和巡回路线能使总路线近似最短.

问题二 当巡视人员在各乡(镇)、村的停留时间一定,汽车的行驶速度一定,要在 24 小时内完成巡视、至少要分几组及最佳的巡视路线。

由于 T=2 小时, t=1 小时, V=35 公里 / 小时,需访问的乡镇共有 17 个,村共有 35 个. 计算出在乡 (镇) 及村的总停留时问为 $17\times2+35=69$ 小时,要在 24 小时内完成巡回,考虑 行走时间,故至少要分 4 组.

由于该网络的乡 (镇)、村分布较为均匀,故有可能找出停留时间尽量均衡的分组,当分 4 组时各组停留时间大约为 $\frac{69}{4}=17.25$ 小时,则每组分配在路途上的时间大约为 24-17.25=6.75 小时,而前面讨论过,分三组时有个总路程 599.8 公里的巡视路线,分 4 组时的总路程不会比 599.8 公里大太多,不妨以 599.8 公里来计算。路上时间约为 $\frac{599.8}{35}=17$ 小时,若平均分配给 4 个组,每个组约需 $\frac{17}{4}=4.25$ 小时 <6.75 小时,故分成 4 组是可能办到的。

现在尝试将顶点分为 4 组. 分组的原则:除遵从前面准则一、二、三外,还应遵从以下准则:

准则四 尽量使各组的停留时间相等.

用上述原则在图 1 上将图分为 1 组,同时计算各组的停留时间,然后用算法一算出各组的近似最佳推销员巡回,得出路线长度及行走时间,从而得出完成巡视的近似最佳时间。用算法一计算时,初始圈的输入与分三组时同样处理。

注 1. 图中粗线表示其中两组都要经过的路段。 2. 方框中的点表示其中两组都经过的地方。 3. 方框中有两字符,罗马字符表示要停留于此地的巡视组,另一字符表示此地点的代号。

这 4 组的近似最优解见表 3, 各组的近似最优巡视路线见图 3.

衰 3 (路程单位: 公里; 时间单位: 小时)

组名	蜗 线	路线 总长度	停留 时间	行走 时间	完成巡视 的总时间
-	O-2-5-6-7-E-8-E-11-G-		-		,
	12-H-12-F-10-F-9-E-7-6-5-2-O	195.8	17	5.59	22.59
[]	$O - \overline{R} + 29 - Q - 30 - Q - 28 - 27 - 26 - N -$				
	$24-23-22-17-16-17-\overline{K}-22-23-N-26-P-O$	199.2	16	5.69	21.69
III	O - M - 25 - 20 - 21 - K - 18 - I -				
	$15-14-13-J-19-L-\overline{6}-\mathbf{M}-O$	159.1	18	4.54	22.54
IV	O-R-A-33-31-32-35-34-	,			
	$B-1-C-D-4-D-3-\overline{2}-O$	166	18	4.74	22.74

表中符号说明: 黑体表示前面经过并停留过,此次只经过不需停留;上加横线的表示此点只经过不停留. 该分组实际均衡度

$$\alpha_0 = \frac{22.7 - 21.69}{22.74} = 4.62\%$$

可以看出,表 3 分组的均衡度很好,且完全满足 24 小时完成巡视的要求.

问题三 在 T, t, V 的假定下,巡视人员足够多,完成巡视的最短时间为多少,并给出此条件下的的最佳路线。

我们发现从 O 点巡视 H 点的最短时间是所有最短时间中最长的,其距离为 77.5 公里,算出时间为

$$t_H = \frac{77.5}{35} \times 2 + 2 = 6.43$$
 小时,

因此, T=2 小时, t=1 小时, V=35 公里 / 小时时,若巡视人员足够多,完成巡视的最短时间为 6.43 小时.

在最短时间的限定下,完成巡视的最优路线应满足如下条件:

- (1) 每个组巡视的总时间不能超过最短时间 $t_H = 6.43$ 小时;
- (2) 所有的点都必须访问到,不能漏点;
- (3) 所需巡视组数要尽量少.

在寻求最优路线时, 从距离 O 点较远的一些点 (如 12, 10, 15, 22 等点) 开始搜索比较容易, 因为到这些点的路线比较少.

具体方法如下:

第一步 依据图 1 算出从 () 点到每一个点的最短距离;

第二步 找出其中最大的一个,算出从 O 点沿最短路巡视所需的时间 t_i ,并求 $\Delta t = t_H - t_i$.

第三步 若 $\Delta t < 1$, 则这一组只能访问这一点;

若 $\Delta t > 1$,则在余下的点中找到距离 O 点最远的点,根据条件看这一组能否巡视这一点。

第四步 若能巡视则算出 Δt , 转到第三步;

第五步 若不能,则依次判断次远点、第三远点 \cdots ,满足总巡视时间不超过 t_H ,就让这组巡视 这一点,直到 $\Delta t < 1$,然后再从第二步开始。

通过以上的方法, 最后我们找到的最优解是 22 个组. 如表 4.

表 4 (时间单位: 小时)

编号	巡视路径	停留地点	所需时间	时间差
1	O-H-O	H	6.43	υ
2	O-2-5-6-L-10-J-13-14-13-J-			
	19 - L - 6 - 5 - 2 - O	13,14	6.15	0.28
3	O-M-25-21-K-18-I-15-I-16+			
	17 - K - 21 - 25 - M - O	15,16	6.31	0.12
-1	O - 2 - 5 + 6 + 7 - E - 9 - F - 12 -			
	G-11-E-7-6-5-2-O	12,11	5.94	0.49
5	O-2-5-6-7-E-8-E-9-F-10-			
	F-9-E-7-6-5-2-O	8,10	6.22	0.21
6	O-2-5-6-7-E-11-G-11-			
	E-7-6-5-2-O	G	5.58	0.85
7	O-2-5-6-7-E-9-F-9-			
	E-7-6-5-2-O	9,F	6.14	0.29
8	O-2-5-6-L-19-J+18-K-21-25-M+O	J,18	6.29	0.14
9	O - M - 25 - 21 + K - 18 - I - 18 - K - 21 - 25 - M - O	I	5.49	0.94
10	O + M - 25 - 21 - K + 17 - 22 - 23 - N - 26 - P - O	17,22,23	6.12	0.31
11	O-2-5-6-L-19-L-6-5-2-O	L_119	5.64	0.79
12	O - M - 25 - 20 - 21 - 23 - 24 - N - 26 - P - O	20, 21, 24	6.10	0.33
13	O + M - 25 - 21 - K - 21 - 25 + M + O	25,K	5.50	0.93
14	O+2-5-6-7-E-7-6-5-2-O	6,7,E	6.38	0.05
15	O-R-31-32-35-34-A-1-O	31,32,35,34	6.32	0.11
16	O - R - 29 - Q - 30 - Q - 28 - P - O	Q,30,28	6.11	0.32
17	O - P - 26 - 27 - 26 - N - 26 - P - O	26,27, <i>N</i>	6.23	0.20
18	O-2-3-D-4-D-3-2+O	3,D,4	5.99	0.44
19	O-1-A-33-31-R-29-R+O	A,33,29	5.97	0.46
20	O-2+5-M-O	2,5,M	5.40	1.03
21	O-1-B-C-O	1,B,C	5.98	0.45
22	O-P-O-R-O	P,R	5.32	1.11

问题四 巡视组数已定,要求尽快完成巡视,讨论 T. I 和 V 的改变对最佳巡视路线的影响。 要尽快完成巡视,就得要求每组完成巡视时间尽量均衡,因为总的完成巡视时间按最长的完成巡 视时间计算. 现在讨论在均衡度允许的范围内已分成 n 组后, 改变 T,t,V 对最佳巡视路线的影响. 显然在分组不变的情况下,无论 $T_{\cdot,t}$ 、 V_{\cdot} 如何改变,对每组内的最佳巡视路线是没有影响的,但可能 会影响各组间的均衡性. 因此该问题实际上是讨论 T.I,V 对分组的影响,即在不破坏原来分组均衡的条件下, T,t,V 允许的最大变化范围.

在3 n 组的情况下,设

 S_i :表示第i组的最佳推销员回路路线总长度;

 X_i :表示第 i 组所要停留的乡镇的数目;

 Y_i :表示第 i 组所要停留的村的数目;

 $i = 1, 2, 3, \cdots, n$.

显然,当 $X_i = X_j, Y_i = Y_j, S_i = S_j; i, j = 1, 2, 3, \cdots, n$ 时,即每组的乡 (镇) 数、村数、最佳巡回的长度均相等,因而分组绝对均衡时,即 $\alpha_0 = 0$,无论 T, t, V 如何改变都不会改变原来分组的均衡。

(-) 不影响分组的均衡时, T,t,V 的最大允许变化范围的讨论: 对任意一个组 i, 其完成巡视的时间

$$T_i = X_i T + Y_i t + \frac{S_i}{V}, \qquad i = 1, 2, 3, \cdots, n.$$
 许时间均衡度为 α ,即

设均衡分组的最大允许时间均衡度为 α, 即

$$\frac{|T_i - T_i|}{\max_{i \in \{1, 2, \dots, n\}} T_i} \le \alpha, \qquad i \ j = 1, 2, \dots, n,$$

则有

$$|T_i - T_j| \leq \alpha \cdot \max_{i=1,2,\dots,n} T_i$$

记 $\epsilon = \alpha \cdot \max_{i=1,2,\cdots,n} T_i,$ 则 ϵ 表示均衡分组所允许的最大时间误差,称为最大允许时间误差。则

$$\left| (X_i - X_j) \cdot T + (Y_i - Y_j) \cdot t + \frac{S_i - S_j}{V} \right| \le \varepsilon \tag{1}$$

由式(1)我们得到

$$-\varepsilon \le (X_i - X_j) \cdot T + (Y_i - Y_j) \cdot t + \frac{S_i - S_j}{V} \le \varepsilon, \tag{2}$$

由式 (2) 可推出以下结果

1. 当 $X_i - X_j > 0$ 时,要保持原均衡分组不变, T 必须满足的条件为

$$\max_{\substack{X_i - X_j > 0}} \left\{ \frac{-\varepsilon - (Y_i - Y_j) \cdot t - \frac{S_i - S_j}{V}}{X_i - X_j} \right\}$$

$$\leq T \leq \min_{\substack{X_i - X_j > 0}} \left\{ \frac{\varepsilon - (Y_i - Y_j) \cdot t - \frac{S_i - S_j}{V}}{X_i - X_j} \right\}. \tag{3}$$

2. 当 $Y_i - Y_j > 0$ 时,要保持原均衡分组不变, t 必须满足的条件为

$$\max_{Y_{i} = Y_{j} > 0} \left\{ \frac{-\varepsilon - (X_{i} - X_{j}) \cdot T - \frac{S_{i} - S_{j}}{V}}{Y_{i} - Y_{j}} \right\}$$

$$\leq t \leq \min_{Y_{i} = Y_{j} > 0} \left\{ \frac{\varepsilon - (X_{i} - X_{j}) \cdot T - \frac{S_{i} - S_{j}}{V}}{Y_{i} - Y_{j}} \right\}$$
(4)

$$(X_j - X_i) \cdot T + (Y_j - Y_i) \cdot t - \varepsilon \le \frac{S_i - S_j}{V} \le \varepsilon (X_i - X_j) \cdot T - (Y_i - Y_j) \cdot t$$

① 当 $0 < (X_i - X_i) \cdot T + (Y_i - Y_i) \cdot t < \varepsilon$ 时,有

$$V \ge \max_{S_i - S_j > 0} \left\{ \frac{S_i - S_j}{\varepsilon - (X_i - X_j) \cdot T - (Y_i - Y_j) \cdot t} \right\}$$
 (5)

② 当 $(X_j - X_i) \cdot T + (Y_j - Y_i) \cdot t > \varepsilon$ 时,有

$$\max_{S_{i}-S_{j}>0} \left\{ \frac{S_{i}-S_{j}}{\varepsilon - (X_{i}-X_{J}) \cdot T - (Y_{i}-Y_{j}) \cdot t} \right\}$$

$$\leq V \leq \min_{S_{i}-S_{j}>0} \left\{ \frac{S_{i}-S_{j}}{(X_{j}-X_{i}) \cdot T + (Y_{j}-Y_{i}) \cdot t - \varepsilon} \right\}$$
(6)

由(3)-(6)式,当 T. t. V 三个变量中任意两个变量无论如何变化、都可计算出为保持均衡分组不 变,三个变量所允许的最大变化范围.

(二) 分三组的实例讨论

现对分三组的情况进行讨论. 对问题一中所得的三个分组, 若考虑停留时间和行驶时间, 且取T= $T_0 = 2$ 小时, $t = t_0 = 1$ 小时, $V = V_0 = 35$ 公里 / 小时时, 结果如表 5.

表 5 (路程单位: 公里; 时间单位: 小时)

编号	X_i	Y_i	S_i	行驶时间	总时间
1	5	13	191.1	5.46	28.46
11	6	11	192.3	5.49	28.49
111	6	11	216.4	6.18	29.18

实际均衡度为 $\alpha_0 = \frac{29.18 - 28.46}{29.18} = 2.5\%$. 实际时间误差为 $\varepsilon_0 = 2.5\% \times 29.18 = 0.72$ 小时.

现分别规定均衡分组的最大允许均衡度 $\alpha = 2.5\%$ 和 $\alpha = 5\%$, 即最大容许的时间误差分别为 $\varepsilon = 0.72$ 小时和 $\varepsilon = 1.44$ 小时, 计算出 T, t, V 三个参量中固定任意两个时, 要不破坏原均衡分组, 另一个参量所容许的变化范围. 结果如下表:

表 6

	1,1 不变	T,V 不变	T,t 不变
α=2 5%	$1.25 \leq T \leq 2$	1≤t≤1.38	V ≥35
ε =0.72 小时			
α=5%	$0.51 \le T \le 2.74$	$0.63 \le t \le 1.75$	V≥17.3
ε=1.44 小时			

表上表可以看出:

(1) 当实际均衡度 $\alpha_0 = 2.5\%$ 刚好等于最大容许均衡度 $\alpha = 2.5\%$ 时,要保持原均衡分组,当 t,V 不变时, T 只能减小,且下界为 1.25 小时; T 的上界为 $T_0=2$ 小时;

T, V 不变时, t 只能增大,且上界为 1.38 小时; t 的下界为 $t_0 = 1$;

T, t 不变时, V 只能增大,且无上界。 V 的下界为 $V_0 = 35$.

- (2) 当实际均衡度 $\alpha_0=2.5\%$ 小于最大容许均衡度 $\alpha=5\%$ 时,即 $\varepsilon_0<\varepsilon$ 时要保持原均衡分组、当
 - t, V 不变时, T 变化的下界为 0.51 小时,上界为 2.74 小时;
 - T.V 不变时、 t 变化的下界为 0.63 小时、上界为 1.75 小时;
 - T, t 不变时, V 可以增大但无上界,也可减小,且下界为 17.3 公里 / 小时.
 - (三) 对实例结果的分析.

上述实例的均衡分组有一个特点: 各组的停留时间相等,即取 $T=T_0=2$ 小时, $t=t_0=1$ 小时, $V=V_0=35$ 公里 / 小时时,在表 5 的分组中

$$(X_i - X_j) \cdot T_0 + (Y_i - Y_j) \cdot t_0 = 0, \qquad i, j = 1, 2, 3$$
 (7)

定义 4 各组的停留时间相等的均衡分组称为停留时间相等的均衡分组. 由 (7) 式得

$$T_0 = -\frac{Y_i - Y_j}{X_i - X_j} \cdot t_0, \quad X_i - X_j \neq 0, \qquad i, j = 1, 2, 3$$
 (8)

现讨论对停留时间相等的均衡分组, T,t,V 的变化规律. 对停留时间相等的均衡分组, 分组的实际时间误差:

$$\varepsilon_{0} = \max_{i,j} \left\{ \left| (X_{i} - X_{j}) \cdot T_{0} + (Y_{i} - Y_{j}) \cdot t_{0} + \frac{S_{i} - S_{j}}{V_{0}} \right| \right\}$$

$$= \max_{i,j} \left\{ \left| \frac{S_{i} - S_{j}}{V_{0}} \right| \right\} = \frac{S_{i'} - S_{j'}}{V_{0}}$$
(9)

其中, i' 为使 S_i 最大的组的标号; j' 为使 S_j 最小的组的标号. (*) 当 T, t 不变时,即 $T = T_0$, $t = t_0$ 时因 $(X_i - X_j) \cdot T_0 + (Y_i - Y_j) \cdot t_0 = 0 < \varepsilon$,由式 (6) 知,要保持平衡分组, V 的下界应为

$$V_{min} = \max_{S_i - S_j > 0} \left\{ \frac{S_i - S_j}{\varepsilon - (X_i - X_j) \cdot T_0 - (Y_i - Y_j) \cdot t_0} \right\}$$

$$= \max_{S_i - S_j > 0} \left\{ \frac{S_i - S_j}{\varepsilon} \right\}$$

$$= \frac{S_{i'} - S_{j'}}{\varepsilon} \qquad i', j'$$
的含义同(*)

① 取 $\varepsilon = \varepsilon_0$ 时,由 (9) 式得

$$V_{\max} = \frac{S_{i'} - S_{j'}}{\varepsilon} = V_0$$

② $\varepsilon > \varepsilon_0$ 时,由 (9) 式得

$$V_{min} = \frac{S_{i'} - S_{j'}}{\varepsilon} < V_0$$

故有以下定理

定理 当取 $V=V_0, T=T_0, t=t_0$ 时,对图进行停留时间相等的均衡分组后,设该分组的实际时间误差为 ε_0 .

- (1) 若取最大允许时间误差 $\varepsilon=\varepsilon_0$, 当 T,t 不变时,要使该均衡分组保持不变, V 的下界为 V_0 , 即 V 只能增加不能减少;
- (2) 若取最大允许时间误差 $\varepsilon > \varepsilon_0$, 当 T,t 不变时,要使该均衡分组保持不变, V 的变化范围的下界小于 V_0 .

四、模型的推广(略)

五、优缺点分析

优点

- 1. 本文提出的分组准则简便易行,可操作性强,且可逐步调整使分组达到均衡.
- 2. 用均衡度的概念定量的刻画了分组的均衡性.
- 3. 在用近似算法求近似最佳推销员回路时,采取了三种不同的方法产生初始圈,使得算法比较完善,得到了误差很小的近似最优解.
 - 4. 从理论上定量地讨论了 V, T, t 的变化对均衡分组灵橄发的影响,得到了很好的结果. 缺点 (略)

参考文献

- [1] 舒贤林、徐志才编著、图论基础及应用。
- [2] 龚劬编,图论与网络最优算法.
- [3] 费培之编著,图和网络及其应用.