Éwiczenia 2 17.10

1. Czy graf konfiguraje elementamej sieci Petriego może mieć rozmiar syltadniczy?

70000 * Weźmy sieć JORDEO OF THE OF rozmiar (IPI + ITI + IFI) 3k+3 k tahich par miejsc * dla każdej pary marny dwie możliwaści potożenia

żetonu (leve albo prave miejsce), czyli Tacznie liczba możlicych konfiguracji wynosi $2 \cdot 2 \cdot ... \cdot 2 + 1 = 2^{k} + 1$ k razy konfiguracja poczatkowa

2.	Czy sieć	regionów	może	mieć nozmian	wyhtadniczy?
*	: wysta	τιου υρίαί	graf	shierowany i	paydzielić

kazdej hranedzi inna etyhiete, np. dla quiazdy many hdonovanie

* grafoni temu odpaniada jednah też sieć:

wiec many ich ughtadniczo wiele

* analogicznie można też rozważyć cykl,
o czym mowa w następnym zadaniu

3. Rozważ cyhl shienowany G o czterech wierschothach i czterech d b kraugdziach etyhietowanych kolejno literami a, b, c, d. Shonstrucj sieć o mniej niż czterech miejscach, której graf honfiguraji jest izomorficzny z G. * pamyst: pracujemy z sieciami elementamymi, wiec jedna, z konfigurajú może być konfiguraja petna (po żetonie na każdym miejscu); jedyna ahtywna transycja może bjć wtedy taha bez miejsc myjścionych

4. Czy sieć regionów skonstruowana z grafu Konfiguraji sieci S może być podubjnie wyhtadnicza względem 5 ? * zastanowny się, jakie sa, zależności między kolejnymi przejściami sieć regionów sieć graf Petniego konfiguraji |P| = n $|V| \le 2^n$ |T| = m etahiety $|E| \le {2^n \choose 2}$ $(1abels) \rightarrow |L| = m$ $|P'| \leq \frac{2}{3}$ $|T_i| = m$ * pozastaje oszacować liczbę miejsc IPI w sieci regionów - nystanczy sprawdzić ile jest możlinych typów miejsc w tej sieci (bo redundantne miejsca można usunajć) siei regionów ma m tranzyji, a dla dovolnej tranzy gí t miejsce p może być wejściowe ($p \in {}^{\bullet}t$), myiscione (peto) lub niezuiazane, miec 1911 5 3m stad nie będzie przejścia podrzejnie wytadniczego

5. Czy żyvotność jest monotoniczna w ogólnych sieciach Petriego?

Nie, mozna pohazać kontrpsyltad. Pomyst na jego utvorzenie: niech sieć z konfiguracją ma dvie Lyhonywane na zmiane sehvencje tranzycji 5, i 52 | przy czym Sz Wymaga więcej żetonów do nozporzęcia. Jeśli mniejsza konfiguracja M cymusza rospossecie od 51, wszystho idzie w poszadhu, ale gdy weźmieny M'>M, możliwe jest zaczęcie od 52 i sieć się błohuje. Na przyhład: $t_1 \longrightarrow p \longrightarrow t_2 \leftarrow \text{nieogranic2ona}$

Gdy na miejscu p jest jeden żeton, to odpalanie

to odpalanie

to odpalanie

to bedzie tam co najmniej 1 żeton. Jesli na miejsce

p położymy 2 żetony, to zablobujemy sieć, odpalając to.

6. Niech N będzie spójna ogólna siecia Petniego, dla której konfiguracja M jest 1-ograniczona i żywa. Udowodnij, że dowolna żywa Konfiguracja M'>M sieci N nie może być 1-ograniczona. * jeśli dla pewnego miejsca p zachodzi M'(p)>1, to nowa konfiguraja nie jest 1-ograniczona * w przeciwnym przypadku niech p będzie takim miejscem, ze $M(\rho) = 0$ i $M'(\rho) = 1$ miejsce p nie jest odizolowane, zatem bez straty ogólności możemy wziąć t, takie że pe t skoro M jest żywa, to istnieje sehvenja s tranzycji, dla litórej M 5 M" 5, czyli υ szczególności M" (ρ) = 1 * steed $M' \stackrel{5}{\longrightarrow} M'''$ i M'''(p) = 2, co double; ze M' nie jest 1 - ograniczona

7. Czy istnieje ogólna sieć Petriego N oraz dwie konfiguracje M i M', M'>M, tahie że M jest żywa i 1-ograniczona, a M' nie jest żywa?

* spójrzmy na sieć rozdzielania duóch zasobów:

* konfiguração niebieska jest zyra i 1-ograniczona,
bo sieć za każdym razem "idzie w levo albo pravo"

* po doTożeniu pomarańczowego żetanu i pójściu w prawo sięć może się zablohować po odpaleniu tz, tz, ty

luny hontrprojettad:

$$M(N) = (1,0,1,1,0,0,0)$$
 $M'(N) = (1,0,1,2,0,0,0)$

* Konfiguraçia M jest zyva i 1-ograniczona, bo odpala cyhlicznie; $t_3 \rightarrow t_1 \rightarrow t_4 \rightarrow t_2 \rightarrow t_3 \rightarrow \dots$

* konfiguração
$$M^1$$
 osiaga blohade po odpalenia $t_3 \rightarrow t_1 \rightarrow t_3$

w ogólnázi jest jednak 2-ograniczona

8. Zaproponuj transformaje n-VASSu do równoważnego (n+s)-VASu. Jak mate może być s? Zadanie do pomyślenia w domu (nieobowiązkowe)