Deep Generative Models

Lecture 6

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2025, Autumn

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \dots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^{K} \pi_k = 1.$$

Suppose the VAE employs a discrete latent code c, with prior p(c) = Uniform{1,..., K}.

ELBO

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|c, \theta) - \underbrace{\mathrm{KL}(q(c|\mathbf{x}, \phi) \parallel p(c))}_{\phi, \theta} \rightarrow \max_{\phi, \theta}.$$

$$\mathrm{KL}(q(c|\mathbf{x}, \phi) \parallel p(c)) = -\mathrm{H}(q(c|\mathbf{x}, \phi)) + \log K.$$

Vector Quantization

Define the codebook $\{\mathbf{e}_k\}_{k=1}^K$, where $\mathbf{e}_k \in \mathbb{R}^L$ and K is the size of the dictionary.

$$\mathbf{z}_q = \mathbf{q}(\mathbf{z}) = \mathbf{e}_{k^*}, \quad \text{where } k^* = \text{arg min } \|\mathbf{z} - \mathbf{e}_k\|.$$

Deterministic Variational Posterior

$$q(c_{ij} = k^* | \mathbf{x}, \phi) =$$

$$\begin{cases} 1, & \text{if } k^* = \arg\min_k \|[\mathbf{z}_e]_{ij} - \mathbf{e}_k\|; \\ 0, & \text{otherwise.} \end{cases}$$

ELBO

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q(c|\mathbf{x},\phi)} \log p(\mathbf{x}|\mathbf{e}_c,\theta) - \log K = \log p(\mathbf{x}|\mathbf{z}_q,\theta) - \log K.$$

Straight-Through Gradient Estimation

$$\frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \boldsymbol{\phi}} = \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_q}{\partial \boldsymbol{\phi}} \approx \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_e}{\partial \boldsymbol{\phi}}$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} \mathrm{KL}(q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi}) \parallel \boldsymbol{\rho}(\mathbf{z})) = \mathrm{KL}(q_{\mathrm{agg}}(\mathbf{z}|\boldsymbol{\phi}) \parallel \boldsymbol{\rho}(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}].$$

ELBO Surgery

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\phi,\theta}(\mathbf{x}_{i}) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i},\phi)} \log p(\mathbf{x}_{i}|\mathbf{z},\theta)}_{\text{Reconstruction Loss}} - \underbrace{\mathbb{I}_{q}[\mathbf{x},\mathbf{z}]}_{\text{MI}} - \underbrace{\text{KL}(q_{\text{agg}}(\mathbf{z}|\phi) \parallel p(\mathbf{z}))}_{\text{Marginal KL}}$$

Optimal Prior

$$\mathrm{KL}(q_{\mathrm{agg}}(\mathbf{z}|\phi) \parallel p(\mathbf{z})) = 0 \; \Leftrightarrow \; p(\mathbf{z}) = q_{\mathrm{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i}, \phi).$$

Thus, the optimal prior distribution $p(\mathbf{z})$ is the aggregated variational posterior $q_{\text{agg}}(\mathbf{z}|\phi)$.

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound, 2016

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}) \Rightarrow$ over-regularization.
- ▶ $p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}|\phi) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i, \phi) \Rightarrow \text{overfitting and}$ extremely high computational cost.

Revisiting ELBO

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\phi,\theta}(\mathsf{x}_i) = \mathsf{RL} - \mathsf{MI} - \mathsf{KL}(q_{\mathsf{agg}}(\mathsf{z}|\phi) \, \| \, \rho(\mathsf{z}|\lambda))$$

This is the forward KL divergence with respect to $p(\mathbf{z}|\boldsymbol{\lambda})$.

ELBO with Learnable VAE Prior

$$\begin{split} \mathcal{L}_{\phi,\theta}(\mathbf{x}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\phi)} \left[\log p(\mathbf{x}|\mathbf{z},\theta) + \log p(\mathbf{z}|\lambda) - \log q(\mathbf{z}|\mathbf{x},\phi) \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\phi)} \left[\log p(\mathbf{x}|\mathbf{z},\theta) + \underbrace{\left(\log p(f_{\lambda}(\mathbf{z})) + \log \left| \det(\mathbf{J_f}) \right| \right)}_{\text{flow-based prior}} - \log q(\mathbf{z}|\mathbf{x},\phi) \right] \\ \mathbf{z} &= \mathbf{f}_{\lambda}^{-1}(\mathbf{z}^*) = \mathbf{g}_{\lambda}(\mathbf{z}^*), \quad \mathbf{z}^* \sim p(\mathbf{z}^*) = \mathcal{N}(0,\mathbf{I}) \end{split}$$

Outline

1. Likelihood-Free Learning

2. Generative Adversarial Networks (GAN)

3. Wasserstein Distance

4. Wasserstein GAN

Outline

- 1. Likelihood-Free Learning
- 2. Generative Adversarial Networks (GAN)

3. Wasserstein Distance

4. Wasserstein GAN

Poor Likelihood High-Quality Samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x}|\mathbf{x}_i, \epsilon \mathbf{I})$$

If ϵ is very small, this model produces excellent, sharp samples but achieves poor likelihoods on test data.

Poor Likelihood High-Quality Samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x} | \mathbf{x}_i, \epsilon \mathbf{I})$$

If ϵ is very small, this model produces excellent, sharp samples but achieves poor likelihoods on test data.

High Likelihood Poor Samples

$$p_2(\mathbf{x}) = 0.01p(\mathbf{x}) + 0.99p_{\text{noise}}(\mathbf{x})$$

Poor Likelihood High-Quality Samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x} | \mathbf{x}_i, \epsilon \mathbf{I})$$

If ϵ is very small, this model produces excellent, sharp samples but achieves poor likelihoods on test data.

High Likelihood Poor Samples

$$p_2(\mathbf{x}) = 0.01 p(\mathbf{x}) + 0.99 p_{\mathsf{noise}}(\mathbf{x})$$

 $\log \left[0.01 p(\mathbf{x}) + 0.99 p_{\mathsf{noise}}(\mathbf{x}) \right] \geq$

 $\geq \log [0.01p(x)] = \log p(x) - \log 100$

This model contains mostly noisy, irrelevant samples; for high dimensions, $\log p(\mathbf{x})$ scales linearly with m.

Poor Likelihood High-Quality Samples

$$p_1(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\mathbf{x} | \mathbf{x}_i, \epsilon \mathbf{I})$$

If ϵ is very small, this model produces excellent, sharp samples but achieves poor likelihoods on test data.

High Likelihood Poor Samples

$$p_2(\mathbf{x}) = 0.01 p(\mathbf{x}) + 0.99 p_{\text{noise}}(\mathbf{x})$$

 $\log [0.01 p(\mathbf{x}) + 0.99 p_{\text{noise}}(\mathbf{x})] \ge$
 $\ge \log [0.01 p(\mathbf{x})] = \log p(\mathbf{x}) - \log 100$

This model contains mostly noisy, irrelevant samples; for high dimensions, $\log p(\mathbf{x})$ scales linearly with m.

- Likelihood isn't always a suitable metric for evaluating generative models.
- Sometimes, the likelihood function can't even be computed exactly.

Motivation

We're interested in approximating the true data distribution $\pi(\mathbf{x})$. Instead of searching over all distributions, let's learn a model $p(\mathbf{x}|\boldsymbol{\theta}) \approx \pi(\mathbf{x})$.

Motivation

We're interested in approximating the true data distribution $\pi(\mathbf{x})$. Instead of searching over all distributions, let's learn a model $p(\mathbf{x}|\boldsymbol{\theta}) \approx \pi(\mathbf{x})$.

Suppose we have two sets of samples:

- $\blacktriangleright \{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real data;
- ▶ $\{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\boldsymbol{\theta})$ generated (fake) data.

Motivation

We're interested in approximating the true data distribution $\pi(\mathbf{x})$. Instead of searching over all distributions, let's learn a model $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Suppose we have two sets of samples:

- ▶ $\{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real data;
- $\{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\boldsymbol{\theta})$ generated (fake) data.

Define a discriminative model (classifier):

$$p(y = 1|\mathbf{x}) = P(\mathbf{x} \sim \pi(\mathbf{x})); \quad p(y = 0|\mathbf{x}) = P(\mathbf{x} \sim p(\mathbf{x}|\theta))$$

Motivation

We're interested in approximating the true data distribution $\pi(\mathbf{x})$. Instead of searching over all distributions, let's learn a model $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Suppose we have two sets of samples:

- ▶ $\{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real data;
- $\{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\boldsymbol{\theta})$ generated (fake) data.

Define a discriminative model (classifier):

$$p(y = 1|\mathbf{x}) = P(\mathbf{x} \sim \pi(\mathbf{x})); \quad p(y = 0|\mathbf{x}) = P(\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta}))$$

Assumption

The generative model $p(\mathbf{x}|\boldsymbol{\theta})$ matches $\pi(\mathbf{x})$ if a discriminative model $p(y|\mathbf{x})$ can't distinguish between them — that is, if $p(y=1|\mathbf{x})=0.5$ for every \mathbf{x} .

- The more expressive the discriminator, the closer we get to the optimal $p(\mathbf{x}|\theta)$.
- Standard classifiers are trained by minimizing cross-entropy loss.

- The more expressive the discriminator, the closer we get to the optimal $p(\mathbf{x}|\theta)$.
- Standard classifiers are trained by minimizing cross-entropy loss.

Cross-Entropy for Discriminator

$$\min_{p(y|\mathbf{x})} \left[-\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) - \mathbb{E}_{p(\mathbf{x}|\boldsymbol{ heta})} \log p(y=0|\mathbf{x}) \right]$$

$$\max_{p(y|\mathbf{x})} \left[\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log p(y=0|\mathbf{x}) \right]$$

- The more expressive the discriminator, the closer we get to the optimal $p(\mathbf{x}|\theta)$.
- Standard classifiers are trained by minimizing cross-entropy loss.

Cross-Entropy for Discriminator

$$\begin{split} & \min_{p(y|\mathbf{x})} \left[-\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) - \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log p(y=0|\mathbf{x}) \right] \\ & \max_{p(y|\mathbf{x})} \left[\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log p(y=0|\mathbf{x}) \right] \end{split}$$

Generative Model

Suppose $p(\mathbf{x}, \mathbf{z}|\theta) = p(\mathbf{x}|\mathbf{z}, \theta)p(\mathbf{z})$, where $p(\mathbf{z})$ is a base distribution, and $p(\mathbf{x}|\mathbf{z}, \theta) = \delta(\mathbf{x} - \mathbf{G}_{\theta}(\mathbf{z}))$ is deterministic.

Cross-Entropy for Discriminative Model

$$\max_{p(y|\mathbf{x})} \left[\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log p(y=0|\mathbf{x}) \right]$$

Cross-Entropy for Discriminative Model

$$\max_{p(y|\mathbf{x})} \left[\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log p(y=0|\mathbf{x}) \right]$$

- **Discriminator:** A classifier $p(y=1|\mathbf{x},\phi)=D_{\phi}(\mathbf{x})\in[0,1]$, distinguishing real and generated samples. The discriminator aims to **maximize** cross-entropy.
- ▶ **Generator:** The generative model $\mathbf{x} = \mathbf{G}_{\theta}(\mathbf{z})$, $\mathbf{z} \sim p(\mathbf{z})$, seeks to fool the discriminator. The generator aims to **minimize** cross-entropy.

Cross-Entropy for Discriminative Model

$$\max_{p(y|\mathbf{x})} \left[\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log p(y=0|\mathbf{x}) \right]$$

- ▶ **Discriminator:** A classifier $p(y=1|\mathbf{x},\phi)=D_{\phi}(\mathbf{x})\in[0,1]$, distinguishing real and generated samples. The discriminator aims to **maximize** cross-entropy.
- ▶ **Generator:** The generative model $\mathbf{x} = \mathbf{G}_{\theta}(\mathbf{z})$, $\mathbf{z} \sim p(\mathbf{z})$, seeks to fool the discriminator. The generator aims to **minimize** cross-entropy.

GAN Objective

$$\min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log (1 - D(\mathbf{x})) \right]$$

Cross-Entropy for Discriminative Model

$$\max_{p(y|\mathbf{x})} \left[\mathbb{E}_{\pi(\mathbf{x})} \log p(y=1|\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log p(y=0|\mathbf{x}) \right]$$

- **Discriminator:** A classifier $p(y=1|\mathbf{x},\phi)=D_{\phi}(\mathbf{x})\in[0,1]$, distinguishing real and generated samples. The discriminator aims to **maximize** cross-entropy.
- ▶ **Generator:** The generative model $\mathbf{x} = \mathbf{G}_{\theta}(\mathbf{z})$, $\mathbf{z} \sim p(\mathbf{z})$, seeks to fool the discriminator. The generator aims to **minimize** cross-entropy.

GAN Objective

$$\min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{\rho(\mathbf{x}|\boldsymbol{\theta})} \log (1 - D(\mathbf{x})) \right]$$

$$\min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z}))) \right]$$

Outline

1. Likelihood-Free Learning

2. Generative Adversarial Networks (GAN)

3. Wasserstein Distance

4. Wasserstein GAN

Generative Models Zoo

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

achieves its global optimum when $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, and $D^*(\mathbf{x}) = 0.5$.

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

achieves its global optimum when $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, and $D^*(\mathbf{x}) = 0.5$.

Proof (Fixed G)

$$V(G, D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x}))$$

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

achieves its global optimum when $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, and $D^*(\mathbf{x}) = 0.5$.

Proof (Fixed G)

$$\begin{split} V(G,D) &= \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x})) \\ &= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta}) \log(1 - D(\mathbf{x}))\right]}_{y(D)} d\mathbf{x} \end{split}$$

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z})))}_{V(G,D)} \right]$$

achieves its global optimum when $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, and $D^*(\mathbf{x}) = 0.5$.

Proof (Fixed G)

$$\begin{split} V(G,D) &= \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x})) \\ &= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta}) \log(1 - D(\mathbf{x}))\right]}_{y(D)} d\mathbf{x} \end{split}$$

$$\frac{dy(D)}{dD} = \frac{\pi(\mathbf{x})}{D(\mathbf{x})} - \frac{p(\mathbf{x}|\boldsymbol{\theta})}{1 - D(\mathbf{x})} = 0 \qquad \Rightarrow \quad D^*(\mathbf{x}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}$$

Proof Continued (Fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right)$$

Proof Continued (Fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right)$$
$$= KL \left(\pi(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) + KL \left(p(\mathbf{x}|\boldsymbol{\theta}) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) - 2\log 2$$

Proof Continued (Fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log \left(\frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})} \right)$$

$$= KL \left(\pi(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) + KL \left(p(\mathbf{x}|\boldsymbol{\theta}) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) - 2\log 2$$

$$= 2 JSD(\pi(\mathbf{x}) \parallel p(\mathbf{x}|\boldsymbol{\theta})) - 2\log 2.$$

Proof Continued (Fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)} \right) + \mathbb{E}_{p(\mathbf{x}|\theta)} \log \left(\frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)} \right)$$

$$= KL \left(\pi(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2} \right) + KL \left(p(\mathbf{x}|\theta) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\theta)}{2} \right) - 2\log 2$$

$$= 2 \operatorname{JSD}(\pi(\mathbf{x}) \parallel p(\mathbf{x}|\theta)) - 2\log 2.$$

Jensen-Shannon Divergence (Symmetric KL Divergence)

$$\mathrm{JSD}(\pi(\mathbf{x}) \| \rho(\mathbf{x} | \boldsymbol{\theta})) = \frac{1}{2} \left[\mathrm{KL} \left(\pi(\mathbf{x}) \| \frac{\pi(\mathbf{x}) + \rho(\mathbf{x} | \boldsymbol{\theta})}{2} \right) + \mathrm{KL} \left(\rho(\mathbf{x} | \boldsymbol{\theta}) \| \frac{\pi(\mathbf{x}) + \rho(\mathbf{x} | \boldsymbol{\theta})}{2} \right) \right]$$

Proof Continued (Fixed $D = D^*$)

$$V(G, D^*) = \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + \rho(\mathbf{x}|\theta)} \right) + \mathbb{E}_{\rho(\mathbf{x}|\theta)} \log \left(\frac{\rho(\mathbf{x}|\theta)}{\pi(\mathbf{x}) + \rho(\mathbf{x}|\theta)} \right)$$

$$= KL \left(\pi(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + \rho(\mathbf{x}|\theta)}{2} \right) + KL \left(\rho(\mathbf{x}|\theta) \parallel \frac{\pi(\mathbf{x}) + \rho(\mathbf{x}|\theta)}{2} \right) - 2\log 2$$

$$= 2 \operatorname{JSD}(\pi(\mathbf{x}) \parallel \rho(\mathbf{x}|\theta)) - 2\log 2.$$

Jensen-Shannon Divergence (Symmetric KL Divergence)

$$JSD(\pi(\mathbf{x}) \| p(\mathbf{x}|\boldsymbol{\theta})) = \frac{1}{2} \left[KL \left(\pi(\mathbf{x}) \| \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) + KL \left(p(\mathbf{x}|\boldsymbol{\theta}) \| \frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2} \right) \right]$$

This can be regarded as a proper distance metric!

$$V(G^*, D^*) = -2 \log 2$$
, $\pi(\mathbf{x}) = p(\mathbf{x}|\theta)$, $D^*(\mathbf{x}) = 0.5$.

Theorem

The following minimax game

$$\min_{G} \max_{D} \Bigl[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z}))) \Bigr]$$

achieves its global optimum precisely when $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, and $D^*(\mathbf{x}) = 0.5$.

Expectations

If the generator can express **any** function and the discriminator is **optimal** at every step, the generator **will converge** to the target distribution.

Theorem

The following minimax game

$$\min_{G} \max_{D} \Bigl[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(\mathbf{G}(\mathbf{z}))) \Bigr]$$

achieves its global optimum precisely when $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, and $D^*(\mathbf{x}) = 0.5$.

Expectations

If the generator can express **any** function and the discriminator is **optimal** at every step, the generator **will converge** to the target distribution.

Reality

- ► Generator updates are performed in parameter space, and the discriminator is often imperfectly optimized.
- Generator and discriminator losses typically oscillate during GAN training.

GAN Training

Assume both generator and discriminator are parametric models:

$$D_{\phi}(\mathbf{x})$$
 and $\mathbf{G}_{\theta}(\mathbf{z})$.

Objective

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D_{\boldsymbol{\phi}}(\mathbf{x}) + \mathbb{E}_{\rho(\mathbf{z})} \log (1 - D_{\boldsymbol{\phi}}(\mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z}))) \right]$$

GAN Training

Assume both generator and discriminator are parametric models: $D_{\phi}(\mathbf{x})$ and $\mathbf{G}_{\theta}(\mathbf{z})$.

Objective

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D_{\boldsymbol{\phi}}(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D_{\boldsymbol{\phi}}(\mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z}))) \right]$$

GAN Training

Assume both generator and discriminator are parametric models: $D_{\phi}(\mathbf{x})$ and $\mathbf{G}_{\theta}(\mathbf{z})$.

Objective

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D_{\boldsymbol{\phi}}(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D_{\boldsymbol{\phi}}(\mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z}))) \right]$$

- ightharpoonup $\mathbf{z} \sim p(\mathbf{z})$ is a latent variable.
- ▶ $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} \mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z}))$ serves as a deterministic decoder (like normalizing flows).
- ► There is no encoder present.

Mode Collapse

Mode collapse refers to the phenomenon where the generator in a GAN produces only one or a few different modes of the distribution.

Mode Collapse

Mode collapse refers to the phenomenon where the generator in a GAN produces only one or a few different modes of the distribution.

Numerous methods have been proposed to tackle mode collapse: changing architectures, adding regularization terms, injecting noise.

Goodfellow I. J. et al. Generative Adversarial Networks, 2014 Metz L. et al. Unrolled Generative Adversarial Networks, 2016

Jensen-Shannon vs Kullback-Leibler Divergences

- $\blacktriangleright \pi(\mathbf{x})$ is a fixed mixture of two Gaussians.
- $p(\mathbf{x}|\mu,\sigma) = \mathcal{N}(\mu,\sigma^2).$

Mode Covering vs. Mode Seeking

$$\mathrm{KL}(\pi \parallel p) = \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}, \quad \mathrm{KL}(p \parallel \pi) = \int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{\pi(\mathbf{x})} d\mathbf{x}$$

$$JSD(\pi \parallel \rho) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + \rho(\mathbf{x})}{2} \right) + KL\left(\rho(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + \rho(\mathbf{x})}{2} \right) \right]$$

Jensen-Shannon vs Kullback-Leibler Divergences

- $\blacktriangleright \pi(\mathbf{x})$ is a fixed mixture of two Gaussians.
- $p(\mathbf{x}|\mu,\sigma) = \mathcal{N}(\mu,\sigma^2).$

Mode Covering vs. Mode Seeking

$$\mathrm{KL}(\pi \parallel p) = \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}, \quad \mathrm{KL}(p \parallel \pi) = \int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{\pi(\mathbf{x})} d\mathbf{x}$$

$$JSD(\pi \parallel p) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2} \right) + KL\left(p(\mathbf{x}) \parallel \frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2} \right) \right]$$

Outline

1. Likelihood-Free Learning

- 2. Generative Adversarial Networks (GAN)
- 3. Wasserstein Distance

4. Wasserstein GAN

The dimensionality of z is less than that of x, so $p(x|\theta)$ with $x = G_{\theta}(z)$ lives on a low-dimensional manifold.

- The dimensionality of z is less than that of x, so $p(x|\theta)$ with $x = G_{\theta}(z)$ lives on a low-dimensional manifold.
- The true data distribution $\pi(\mathbf{x})$ is also supported on a low-dimensional manifold.

- The dimensionality of z is less than that of x, so $p(x|\theta)$ with $x = G_{\theta}(z)$ lives on a low-dimensional manifold.
- The true data distribution $\pi(\mathbf{x})$ is also supported on a low-dimensional manifold.

If $\pi(\mathbf{x})$ and $p(\mathbf{x}|\boldsymbol{\theta})$ are disjoint, a smooth optimal discriminator can exist!

- The dimensionality of z is less than that of x, so $p(x|\theta)$ with $x = G_{\theta}(z)$ lives on a low-dimensional manifold.
- The true data distribution $\pi(\mathbf{x})$ is also supported on a low-dimensional manifold.

- If $\pi(\mathbf{x})$ and $p(\mathbf{x}|\boldsymbol{\theta})$ are disjoint, a smooth optimal discriminator can exist!
- ► For such low-dimensional, disjoint manifolds:

$$\mathrm{KL}(\pi \parallel p) = \mathrm{KL}(p \parallel \pi) = \infty, \quad \mathrm{JSD}(\pi \parallel p) = \log 2$$

Weng L. From GAN to WGAN, 2019 Arjovsky M., Bottou L. Towards Principled Methods for Training Generative Adversarial Networks, 2017

Wasserstein Distance (Discrete)

Also known as the Earth Mover's Distance.

Optimal Transport Formulation

The minimum cost of moving and transforming a pile of "dirt" shaped like one probability distribution to match another.

Wasserstein Distance (Continuous)

$$W(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \frac{\gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}}{\gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}}$$

 $\gamma(x, y)$ is the transport plan: the amount of "dirt" assigned from x to y.

$$\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} = p(\mathbf{y}); \quad \int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \pi(\mathbf{x}).$$

- $ightharpoonup \Gamma(\pi, p)$ denotes the set of all joint distributions $\gamma(\mathbf{x}, \mathbf{y})$ with marginals π and p.
- $ightharpoonup \gamma(x,y)$ is the mass, $\|x-y\|$ is the distance.

Wasserstein Distance (Continuous)

$$W(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \frac{\gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}}{\gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}}$$

 $\gamma(x, y)$ is the transport plan: the amount of "dirt" assigned from x to y.

$$\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} = p(\mathbf{y}); \quad \int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \pi(\mathbf{x}).$$

- ▶ $\Gamma(\pi, p)$ denotes the set of all joint distributions $\gamma(\mathbf{x}, \mathbf{y})$ with marginals π and p.
- $ightharpoonup \gamma(x,y)$ is the mass, $\|x-y\|$ is the distance.

Wasserstein Metric

$$W_s(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \left(\mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\|^s \right)^{1/s}$$

In our setting, $W(\pi, p) = W_1(\pi, p)$, which is the transport cost using the ℓ_1 norm.

Consider two-dimensional distributions:

$$\pi(x, y) = (0, U[0, 1])$$

$$p(x,y|\theta) = (\theta, U[0,1])$$

Consider two-dimensional distributions:

$$\pi(x, y) = (0, U[0, 1])$$

$$p(x,y|\theta) = (\theta, U[0,1])$$

 $\theta = 0$: Both distributions are identical.

$$KL(\pi \parallel p) = KL(p \parallel \pi) = JSD(p \parallel \pi) = W(\pi, p) = 0$$

Consider two-dimensional distributions:

$$\pi(x, y) = (0, U[0, 1])$$

$$p(x,y|\theta) = (\theta, U[0,1])$$

 $\theta = 0$: Both distributions are identical.

$$KL(\pi \parallel p) = KL(p \parallel \pi) = JSD(p \parallel \pi) = W(\pi, p) = 0$$

 $\theta \neq 0$:

$$\mathrm{KL}(\pi \parallel p) = \int_{U[0\,1]} 1\log\frac{1}{0}\,dy = \infty = \mathrm{KL}(p \parallel \pi)$$

Consider two-dimensional distributions:

$$\pi(x,y) = (0, U[0,1])$$

$$p(x,y|\theta) = (\theta, U[0,1])$$

 $\theta = 0$: Both distributions are identical.

$$KL(\pi \parallel p) = KL(p \parallel \pi) = JSD(p \parallel \pi) = W(\pi, p) = 0$$

 $\theta \neq 0$:

$$\mathrm{KL}(\pi \parallel p) = \int_{U[0,1]} 1 \log \frac{1}{0} \, dy = \infty = \mathrm{KL}(p \parallel \pi)$$

$$JSD(\pi \parallel p) = \frac{1}{2} \left(\int_{U[0,1]} 1 \log \frac{1}{1/2} dy + \int_{U[0,1]} 1 \log \frac{1}{1/2} dy \right) = \log 2$$

Consider two-dimensional distributions:

$$\pi(x,y) = (0, U[0,1])$$

$$p(x,y|\theta) = (\theta, U[0,1])$$

 $\theta = 0$: Both distributions are identical.

$$KL(\pi \parallel p) = KL(p \parallel \pi) = JSD(p \parallel \pi) = W(\pi, p) = 0$$

 $\rightarrow \theta \neq 0$:

$$\mathrm{KL}(\pi \parallel \rho) = \int_{U[0,1]} 1 \log \frac{1}{0} \, dy = \infty = \mathrm{KL}(\rho \parallel \pi)$$

$$JSD(\pi \parallel p) = \frac{1}{2} \left(\int_{U[0,1]} 1 \log \frac{1}{1/2} dy + \int_{U[0,1]} 1 \log \frac{1}{1/2} dy \right) = \log 2$$

$$W(\pi, p) = |\theta|$$

Theorem 1

Let $\mathbf{G}_{\theta}(\mathbf{z})$ be (almost) any feedforward neural network, and $p(\mathbf{z})$ a prior over \mathbf{z} such that $\mathbb{E}_{p(\mathbf{z})}\|\mathbf{z}\|<\infty$. Then $W(\pi,p)$ is continuous everywhere and differentiable almost everywhere.

Theorem 1

Let $\mathbf{G}_{\theta}(\mathbf{z})$ be (almost) any feedforward neural network, and $p(\mathbf{z})$ a prior over \mathbf{z} such that $\mathbb{E}_{p(\mathbf{z})}\|\mathbf{z}\|<\infty$. Then $W(\pi,p)$ is continuous everywhere and differentiable almost everywhere.

Theorem 2

Let π be a distribution on a compact space \mathcal{X} and let $\{p_t\}_{t=1}^{\infty}$ be a sequence of distributions on \mathcal{X} .

$$\mathrm{KL}(\pi \parallel \rho_t) \to 0 \quad (\text{or } \mathrm{KL}(\rho_t \parallel \pi) \to 0)$$
 (1)

$$JSD(\pi \parallel p_t) \to 0 \tag{2}$$

$$W(\pi, p_t) \to 0 \tag{3}$$

In summary, as $t \to \infty$, (1) \Rightarrow (2), and (2) \Rightarrow (3).

Outline

1. Likelihood-Free Learning

Generative Adversarial Networks (GAN)

3. Wasserstein Distance

4. Wasserstein GAN

Wasserstein Distance

$$W(\pi \parallel p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \, d\mathbf{y}$$

Wasserstein Distance

$$W(\pi \parallel p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \, d\mathbf{y}$$

The infimum over all possible $\gamma \in \Gamma(\pi, p)$ is computationally intractable.

Wasserstein Distance

$$W(\pi \parallel p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \, d\mathbf{y}$$

The infimum over all possible $\gamma \in \Gamma(\pi, p)$ is computationally intractable.

Theorem (Kantorovich-Rubinstein Duality)

$$W(\pi \parallel p) = rac{1}{K} \max_{\|f\|_{\ell} \leq K} \Bigl[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \Bigr]$$

where $f : \mathbb{R}^m \to \mathbb{R}$ is K-Lipschitz ($||f||_L \le K$):

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le K ||\mathbf{x}_1 - \mathbf{x}_2||, \quad \forall \ \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}.$$

Wasserstein Distance

$$W(\pi \parallel p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \, d\mathbf{y}$$

The infimum over all possible $\gamma \in \Gamma(\pi, p)$ is computationally intractable.

Theorem (Kantorovich-Rubinstein Duality)

$$W(\pi \parallel p) = rac{1}{K} \max_{\|f\|_{L} \leq K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right]$$

where $f: \mathbb{R}^m \to \mathbb{R}$ is K-Lipschitz ($||f||_L \le K$):

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le K ||\mathbf{x}_1 - \mathbf{x}_2||, \quad \forall \ \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}.$$

We can thus estimate $W(\pi \parallel p)$ using only samples and a function f.

Theorem (Kantorovich-Rubinstein Duality)

$$W(\pi \parallel
ho) = rac{1}{K} \max_{\|f\|_{L} \leq K} \Bigl[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \Bigr]$$

- ▶ We must ensure that *f* is *K*-Lipschitz continuous.
- Let $f_{\phi}(\mathbf{x})$ be a feedforward neural network parameterized by ϕ .
- ▶ If the weights ϕ are restricted to a compact set Φ , then f_{ϕ} is K-Lipschitz.

Theorem (Kantorovich-Rubinstein Duality)

$$W(\pi \parallel p) = rac{1}{K} \max_{\|f\|_{I} \leq K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right]$$

- ▶ We must ensure that *f* is *K*-Lipschitz continuous.
- Let $f_{\phi}(\mathbf{x})$ be a feedforward neural network parameterized by ϕ .
- ▶ If the weights ϕ are restricted to a compact set Φ , then f_{ϕ} is K-Lipschitz.
- ► Clamp weights within the box $\Phi = [-c, c]^d$ (e.g. c = 0.01) after each update.

$$\begin{split} K \cdot W(\pi \parallel p) &= \max_{\|f\|_{L} \leq K} \Bigl[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \Bigr] \geq \\ &\geq \max_{\phi \in \mathbf{\Phi}} \Bigl[\mathbb{E}_{\pi(\mathbf{x})} f_{\phi}(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f_{\phi}(\mathbf{x}) \Bigr] \end{split}$$

Standard GAN Objective

$$\min_{m{ heta}} \max_{m{\phi}} \mathbb{E}_{\pi(\mathbf{x})} \log D_{m{\phi}}(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D_{m{\phi}}(\mathbf{G}_{m{ heta}}(\mathbf{z})))$$

WGAN Objective

$$\min_{\boldsymbol{\theta}} W(\pi \parallel p) \approx \min_{\boldsymbol{\theta}} \max_{\phi \in \Phi} \Big[\mathbb{E}_{\pi(\mathbf{x})} f_{\phi}(\mathbf{x}) - \mathbb{E}_{p(\mathbf{z})} f_{\phi}(\mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z})) \Big]$$

Standard GAN Objective

$$\min_{m{ heta}} \max_{m{\phi}} \mathbb{E}_{\pi(\mathbf{x})} \log D_{m{\phi}}(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D_{m{\phi}}(\mathbf{G}_{m{ heta}}(\mathbf{z})))$$

WGAN Objective

$$\min_{\boldsymbol{\theta}} W(\pi \parallel \boldsymbol{p}) \approx \min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} \Big[\mathbb{E}_{\pi(\mathbf{x})} f_{\boldsymbol{\phi}}(\mathbf{x}) - \mathbb{E}_{\boldsymbol{p}(\mathbf{z})} f_{\boldsymbol{\phi}}(\mathbf{G}_{\boldsymbol{\theta}}(\mathbf{z})) \Big]$$

- ► The discriminator *D* is replaced by function *f*: in WGAN, it is known as the **critic**, which is *not* a classifier.
- "Weight clipping is a clearly terrible way to enforce a Lipschitz constraint."
 - ▶ If c is large, optimizing the critic is hard.
 - If c is small, gradients may vanish.

- WGAN provides nonzero gradients even if distributions' supports are disjoint.
- ▶ JSD($\pi \parallel p$) is poorly correlated with sample quality and remains near its maximum value log 2 \approx 0.69.
- $W(\pi \parallel p)$ is tightly correlated with quality.

0.8

Density of real Density of fake

GAN Discriminator WGAN Critic

Summary

- Likelihood is not a reliable metric for generative model evaluation.
- Adversarial learning casts distribution matching as a minimax game.
- ► GANs, in theory, optimize the Jensen-Shannon divergence.
- KL and JS divergences fail as objectives when the model and data distributions are disjoint.
- ► The Earth Mover's (Wasserstein) distance provides a more meaningful loss for distribution matching.
- Kantorovich-Rubinstein duality allows us to compute the EM distance using only samples.
- Wasserstein GAN enforces the Lipschitz condition on the critic through weight clipping—although better alternatives exist.