Машинное обучение

Лекция 3. Методы кластеризации

Катя Тузова

Разбор летучки

Постановка задачи кластеризации

Кластеризация – задача разделения объектов одной природы на несколько групп так, чтобы объекты в одной группе обладали одним и тем же свойством.

Кластеризация – это обучение без учителя.

Постановка задачи кластеризации

X — пространство объектов $\rho: X \times X \to [0,\infty)$ — функция расстояния между объектами

Найти:

Y – множество кластеров

a:X o Y – алгоритм кластеризации

Степени свободы в постановке задачи

- Критерий качества кластеризации
- Число кластеров неизвестно заранее
- Результат кластеризации существенно зависит от метрики

Цели кластеризации

- Сократить объём хранимых данных
- Выделить нетипичные объекты
- Упростить дальнейшую обработку данных
- Построить иерархию множества объектов

Оценка качества кластеризации

Есть несколько разбиений на кластеры. Как их сравнить?

Оценка качества кластеризации

 Минимизировать среднее внутрикластерное расстояние

$$\frac{\sum\limits_{a(x_i)=a(x_j)}\rho(x_i,x_j)}{\sum\limits_{a(x_i)=a(x_j)}1}\to \min$$

– Максимизировать среднее межкластерное расстояние

$$\frac{\sum\limits_{a(x_i)\neq a(x_j)}\rho(x_i,x_j)}{\sum\limits_{a(x_i)\neq a(x_j)}1}\to \max$$

Методы кластеризации

- Иерархические
- Графовые
- Статистические

Графовые алгоритмы

Какие есть две очевидные идеи?

Графовые алгоритмы

Очевидные:

- Выделение связных компонент
- Минимальное покрывающее дерево

Выделение связных компонент

- Рисуем полный граф с весами, равными расстоянию между объектами
- Выбираем лимит расстояния r и выкидываем все ребра длиннее r
- Компоненты связности полученного графа наши кластеры

Выделение связных компонент

Как искать компоненты связности?

Минимальное покрывающее дерево

Минимальное остовное дерево – дерево, содержащее все вершины графа и имеющее минимальный суммарный вес ребер.

Как найти?

Минимальное покрывающее дерево

Как использовать минимальное остовное дерево для разбиения на кластеры?

Минимальное покрывающее дерево

Строим минимальное остовное дерево, а потом выкидываем из него ребра максимального веса.

Сколько ребер выбросим – столько кластеров получим.

Статистические алгоритмы

Алгоритм FOREL

Input: X, R
$$U=X,C=0$$
 while $U\neq 0$: выбрать случайную точку x_0 Повторять пока x_0 не стабилизируется:
$$c=\{x\in X|\rho(x,x_0)< R\}$$

$$x_0=\frac{1}{|c|}\sum_{x\in c}x$$

$$U=U\setminus c\text{, }C=C\cup\{c\}$$

Алгоритм FOREL

- ▶ +] Наглядность
- + Сходимость
- Зависимость от выбора x_0
- Плохо работает, если изначальная выборка плохо делится на кластеры

Идея:

минимизировать меру ошибки

$$E(X,C) = \sum_{i=1}^{n} ||x_i - \mu_i||^2$$

 μ_i – ближайший к x_i центр кластера

Инициализировать центры k кластеров

Пока c_i не перестанет меняться:

$$c_i = \arg\min_{c \in C} \rho(x_i, \mu_c) \qquad i = 1, \dots, l$$

$$\mu_c = \frac{\sum\limits_{c_i = c} f_j(x_i)}{\sum\limits_{c_i = c} 1} \qquad j = 1, \dots, n, c \in C$$

 μ_c — новое положение центров кластеров c_i — принадлежность x_i к кластеру $ho(x_i,\mu_c)$ — расстояние от x_i до центра кластера μ_c

Особенности метода k-средних

- Чувствительность к начальному выбору μ_c
- Необходимость задавать k

Как устранить эти недостатки?

$\mathsf{Heofxoдимость}$ задавать k

Устранение недостатков

- Несколько случайных кластеризаций
- Постепенное наращивание числа \boldsymbol{k}

Недостатки k-means

"Не сферические данные"

"Не сферические данные"

"Не сферические данные"

Разноразмерные кластеры

Разноразмерные кластеры

На следующей лекции

- Линейные методы классификации
- Минимизация эмпирического риска
- Метод градиентного спуска
- Принцип максимума правдоподобия
- Балансировка ошибок и ROC-кривая