Acronyms

AOA Angle Of Attack. Also named alpha.

AOS Angle Of Sideslip. Also named beta.

FRD Body frame centered on the CG where the X-axis is pointing towards the Front of the vehicle, the Y-axis towards Right and the Z-axis is Down, completing the right-hand rule.

 \mathbf{FW} Fixed-Wing.

MC MultiCopter.

MPC or MCPC?? MultiCopter Position Controller.

NED Local inertial frame where the X-axis is pointing towards the true North, the Y-axis towards the East and the Z-axis is Down, completing the right-hand rule. Its origin is defined when and where the drone arms.

PID Controller with Proportional, Integral and Derivative actions.

Symbols

- **a** Acceleration vector. $\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{r}} = [a_x \quad a_y \quad a_z]^T$.
- α Angle of attack (AOA).

AR Aspect ratio. $AR = b^2/S$.

- b Wing span (from tip to tip).
- β Angle of sideslip (AOS).
- \bar{c} Mean aerodynamic chord (mac).
- c Wing chord length.
- $\delta_{a,e,r}$ Aerodynamic control surface angular deflection. Subscripts a, e and r stand for *aileron*, *elevator* and *rudder*, respectively. A positive deflection generates a negative moment.
- Ψ Attitude vector. $\Psi = [\phi \quad \theta \quad \psi]^T$.
- ϕ Roll euler angle. Also named $Bank\ angle$ in a viation.
- ψ Yaw euler angle. Also named *Heading*.

- θ Pitch euler angle.
- **F** Force vector. $\mathbf{F} = \begin{bmatrix} X & Y & Z \end{bmatrix}^T$.
- \mathbf{F}^w_{Aero} Aerodynamic forces in wind frame. Lift L, drag D and cross-wind force C. $\mathbf{F}^w_{Aero} = [-D \quad -C \quad -L]^T$.
- \mathbf{F}_T^b Thrust force in body frame. $\mathbf{F}_T^b = [X_T^b \quad Y_T^b \quad Z_T^b]^T$.
- **g** Gravity vector in the local NED frame. $\mathbf{g} = \begin{bmatrix} 0 & 0 & g \end{bmatrix}^T$.
- $\mathbf{M}^b_{Aero}\,$ Body aerodynamic moments. $\mathbf{M}^b_{Aero}=[\ell \quad m \quad n]^T.$
- \mathbf{M}_T^b Body aerodynamic moments. $\mathbf{M}_T^b = \begin{bmatrix} \ell_T & m_T & n_T \end{bmatrix}^T$.
- ${\cal M}$ Mach number. Can be neglected for scale aircrafts.
- $\tilde{\mathbf{q}}$ Hamiltonian attitude quaternion. $\tilde{\mathbf{q}} = (q_0, q_1, q_2, q_3) = (q_0, \mathbf{q})$
 - A vector in the local NED frame ℓ can be represented in the body framae
 - b using $\tilde{\mathbf{v}}^b = \tilde{\mathbf{q}} \, \tilde{\mathbf{v}}^\ell \, \tilde{\mathbf{q}}^*$ (or $\tilde{\mathbf{q}}^{-1}$ instead of $\tilde{\mathbf{q}}^*$ if $\tilde{\mathbf{q}}$ is not unitary).
 - $\tilde{\mathbf{v}}$ represents a quaternionized vector: $\tilde{\mathbf{v}} = (0, \mathbf{v})$.
- **r** Position vector $\mathbf{r} = [x \ y \ z]^T$.
- \mathbf{R}_a^b Rotation matrix. Rotates a vector from frame a to frame b. $\mathbf{v}^b = \mathbf{R}_a^b \mathbf{v}^a$.
- Λ Leading-edge sweep angle.
- λ Taper ratio $\lambda = c_{tip}/c_{root}$.
- \mathbf{v} Velocity vector. $\mathbf{v} = \dot{\mathbf{r}} = [v_x \quad v_u \quad v_z]^T$.
- \mathbf{v}^{ℓ} Velocity vector in local frame. $\mathbf{v}^{\ell} = \mathbf{v}_{w}^{\ell} + \mathbf{w}^{\ell}$.
- $\mathbf{v}_w^b \text{ Relative airspeed velocity vector in body frame. } \mathbf{v}_w^b = [u \quad v \quad w]^T.$
- \mathbf{w}^{ℓ} Wind velocity vector in local frame. $\mathbf{w}^{\ell} = [w_N \ w_E \ w_D]^T$ Usually w_D is assumed to be null.
- $\boldsymbol{\omega}^b$ Body rates vector. $\boldsymbol{\omega}^b = [p \quad q \quad r]^T$.
- \mathbf{x} General state vector.

Decorators

- ()* Complex conjugate.
- () Time derivative.
- $()^b$ Resolved in the body FRD frame.
- $()^{\ell}$ Resolved in the local NED frame.
- $()^w$ Resolved in the wind frame.
- () Estimate.
- $()^{-1}$ Matrix inverse.
- $()^T$ Matrix transpose.