A Book of Abstract Algebra (2nd Edition)

(a) Subspace is represented by 3x - 2y + z = 0

2 vectors with first 2 components being linearly independent are (x = 1, y = 0; x = 0, y = 1).

Substituting these in plane equation 3rd component of these 2 vector are obtained.

For
$$(x = 1, y = 0)$$
, $z = -3$

For
$$(x = 0, y = 1)$$
, $z = 2$

Hence basis for given subspace is
$$\begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

Comment

Step 3 of 4

(b) Subspace is represented by x + y - z = 0

2 vectors with first 2 components being linearly independent are (x = 1, y = 0; x = 0, y = 1).

Substituting these in plane equation 3rd component of these 2 vector are obtained.

For
$$(x = 1, y = 0)$$
, $z = 1$

For
$$(x = 0, y = 1)$$
, $z = 1$

Hence basis for given subspace is $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Comment

Step 4 of 4

- (c) subspace is represented by 2x y + z = 0
- 2 vectors with first 2 components being linearly independent are (x = 1, y = 0; x = 0, y = 1).

Substituting these in plane equation 3rd component of these 2 vector are obtained.

For
$$(x = 1, y = 0)$$
, $z = -2$

For
$$(x = 0, y = 1)$$
, $z = 1$

	(1)	1	(0)
Hence basis for given subspa	ice is 0	,	1
	(-2)		(1)

.....

Comment