Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Klausurfragen Bio Data Science

für Pflichtmodule

im 1. & 2. Semester B.Sc./M.Sc.

(Prüfungsleistung der Wahlpflichtmodule ist eine Portfolioprüfung)

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

Wintersemester 2024/25

"The test of a student is not how much he knows, but how much he wants to know." — Alice W. Rollins

1

Erlaubte Hilfsmittel

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten! Ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung. Keine digitalen Ausdrucke!
- Die Verwendung eines roten Farbstiftes ist nicht gestattet! Korrekturfarbe!
- You can answer the questions in English without any consequences.

Endnote

_____ von 20 Punkten sind aus den Multiple Choice Aufgaben erreicht.

_____ von 69 Punkten sind aus den Rechen- und Textaufgaben erreicht.

_____ von 89 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
85.0 - 89.0	1,0
80.5 - 84.5	1,3
76.5 - 80.0	1,7
72.0 - 76.0	2,0
67.5 - 71.5	2,3
63.0 - 67.0	2,7
58.5 - 62.5	3,0
54.5 - 58.0	3,3
50.0 - 54.0	3,7
44.5 - 49.5	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.

	A	В	С	D	E	✓
Aufgabe 1						
Aufgabe 2						
Aufgabe 3						
Aufgabe 4						
Aufgabe 5						
Aufgabe 6						
Aufgabe 7						
Aufgabe 8						
Aufgabe 9						
Aufgabe 10						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

Aufgabe	11	12	13	14	15	16	17
Punkte	10	9	8	12	10	10	10

• Es sind ____ von 69 Punkten erreicht worden.

Multiple Choice Aufgaben

Die Multiple Choice Aufgaben unterliegen dem Zufall. Die Reihenfolge der Antworten ist zufällig. Die Fragen und Antworten sind semantisch zufällig und haben somit verschiedene Textvarianten. Insbesondere die reinen Textaufgaben haben verschiedene Textvarianten. Die Semeantik mag sich unterscheiden, die Inhalte sind aber gleich.

ANOVA

1. Aufgabe (2 Punkte)

Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.31$. Welche Aussage ist richtig?

- **A** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
- **B** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.
- **C** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.
- **D** \square Das η^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Das η^2 ist damit mit dem R^2 aus der linearen Regression zu vergleichen.

2. Aufgabe (2 Punkte)

Sie führen ein Feldexperiment durch um das Gewicht von Brokoli zu steigern. Die Pflanzen wachsen unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.26$. Welche Aussage ist richtig?

- **A** \square Mit dem η^2 lässt sich auf die Qualität der Randomisierung und damit der Strukturgleichheit zwischen der Grundgesamtheit und der Stichprobe schließen. Es gilt dabei die Regel, dass ein η^2 -Wert von 1 zu bevorzugen ist.
- **B** \square Es werden 74% der Varianz durch die Behandlung erklärt. Das η^2 beschreibt den Anteil der Varianz, der von den unterschiedlichen Behandlungsbedingungen nicht erklärt wird.
- **C** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Daher werden 26% der Varianz durch die Behandlungsgruppen erklärt.
- **D** \square Es werden 26% der Varianz durch den Versuch erklärt. Das η^2 beschreibt den Anteil der Varianz, der durch Fehler in der Versuchsdurchführung entsteht.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Umweltbedingungen erklärt wird. Daher werden 26% der Varianz durch die Umweltbedingungen erklärt. Der Anteil der Varianz durch die Behandlungsgruppen ist dann 74%.

3. Aufgabe (2 Punkte)

Sie rechnen eine einfaktorielle ANOVA und erhalten eine Teststatistik. Nun müssen Sie diese Teststatistik interpretieren. Welche Aussage ist richtig?

- **A** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
- **B** □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.
- C □ Wenn die F-Statistik höher ist als der kritische Wert kann die Nullhypothese nicht abgelehnt werden. Die F-Statistik ist die Differenz der MS der Behandlung durch die MS des Fehlers.

- **D** Wenn die F-Statistik kleiner als der kritische Wert ist kann die Nullhypothese nicht abgelehnt werden. Die F-Statistik ist der Quotient der MS der Behandlung durch die MS des Fehlers.
- **E** □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.

Viele statistische Verfahren nutzen eine Teststatistik um eine Aussage über den Zusammenhang zwischen der Grundgesamthat und der Stichprobe abzubilden. Ein statistisches Testwerkzeug ist hierbei die ANOVA. Die ANOVA rechnet dabei...

- **A** □ ... den Unterschied zwischen der Mittelwerte und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist bekannt welcher Vergleich konkret unterschiedlich ist.
- **B** □ ... den Unterschied zwischen der Varianz über alle Behandlungsgruppen und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, muss ein Posthoc-Test angeschlossen werden.
- **C** □ ... den Unterschied zwischen mehreren Varianzen aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist nicht bekannt welcher Vergleich konkret unterschiedlich ist.
- **D** □ ... den Unterschied zwischen zwei paarweisen Mittelwerten aus verschiedenen Behandlungsguppen. Wenn die signifikant ist, ist daher bekannt welcher Vergleich konkret unterschiedlich ist.
- **E** \square ... den Unterschied zwischen der Varianz durch verschiedene Behandlungsguppen unter der Varianz über alle Behandlungsgruppen. Wenn die ANOVA signifikant ist, kann kein Effekt η^2 bestimmt werden.

5. Aufgabe (2 Punkte)

Die folgende Abbildung enthält die Daten aus einer Studie zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Igeln. Der Versuch wurde an 68 Tieren durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden erhielt. Welche Aussage ist richtig im Bezug auf eine zweifaktorielle ANOVA?

- **A** □ Eine mittlere bis starke Interaktion liegt vor ($p \le 0.05$)
- **B** \square Eine Korrelation liegt vor ($p \le 0.05$).
- **C** \square Die Koeffizienten sind positiv ($\beta_0 > 0$; $\beta_1 > 0$).
- **D** \square Keine Interaktion liegt vor $(p \le 0.05)$.
- **E** \square Das Bestimmtheitsmaß R^2 ist klein.

Deskriptive Statistik & Explorative Datenanalyse

6. Aufgabe	(2 Punkte)
Berechnen Sie den Mittelwert und Standardabweichung von y mit 11, 12, 12, 1 und 12.	
A □ Es berechnet sich 10.6 +/- 23.3	
B □ Es berechnet sich 9.6 +/- 4.83	
C □ Sie erhalten 9.6 +/- 2.415	
D □ Es ergibt sich 10.6 +/- 2.415	
E □ Sie erhalten 9.6 +/- 2.2	
7. Aufgabe	(2 Punkte)
Wie lautet der Median, das 1^{st} Quartile sowie das 3^{rd} Quartile von y mit 23, 20, 20, 14,	23, 23 und 42.
A □ Es berechnet sich 23 [20; 23]	
B □ Es ergibt sich 24 +/- 20	
C □ Es berechnet sich 24 [21; 24]	
D □ Sie erhalten 23 +/- 23	
E □ Es ergibt sich 23 +/- 20	
8. Aufgabe	(2 Punkte)
Mit einem Dotplot können Sie sehr gut die Verteilung von Daten visualisieren. Die empforan Beobachtungen ist dabei?	ગlene Mindestanzahl
A □ Damit wir hier sauber eine Abbilung von einem	
B □ 1 Beobachtung.	
C □ Wir brauchen fünf oder mehr Beobachtungen.	
D □ Die untere Grenze liegt bei einer Beobachtung.	
E □ 2-5 Beobachtungen.	
9. Aufgabe	(2 Punkte)
Die Varianz ist eine bedeutende deskriptive Statistik für die Analyse von Daten. Wie mum die Varianz zu berechnen?	üssen Sie vorgehen
A □ Wir berechnen erst den Mittelwert und dann die quadratischen Abstände zu de quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzah ziehen wir die quadratische Wurzel.	
B □ Als erstes berechnen wir den Mittelwert. Dann bilden wir die Summe der quadrat dem Mittelwert. Abschließend teilen wir durch die Fallzahl.	ischen Abstände zu
C □ Als erstes berechnen wir den Mittelwert. Dann bilden wir die Summe der quadrat dem Mittelwert. Abschließend subtrahieren wir die Fallzahl.	ischen Abstände zu
${f D} \; \square \;$ Den Mittelwert berechen, dann die absoluten Abstände zum Mittelwert aufsummie	eren
E □ Den Mittelwert berechnen und die Abstände quadrieren. Die Summe mit der Fallza	ahl multiplizieren.

In Ihrer Abschlußarbeit wolllen Sie Ihre Daten für den Ertrag in einem Boxplot darstellen. Sie nutzen den Boxplot auch, da der Boxplot zu den meist genutzten Visualiserungen von Daten gehört. Welche statistischen Maßzahlen stellt der Boxplot dar?

\Box	Der	Boxplot	stellt o	lie	Mittelwerte	und	die	Standard	labwe	eichung	dar.
--------	-----	---------	----------	-----	-------------	-----	-----	----------	-------	---------	------

- **B** □ Den Mittelwert sowie den Median und die Streuung.
- **C** □ Der Boxplot stellt den Median und die Quartile dar.
- **D** □ Der Boxplot stellt den Median und die Streuung dar.
- **E** □ Den Median und die Standardabweichung.

11. Aufgabe (2 Punkte)

Nachdem Sie in einem Feldexperiment zu Leistungssteigerung von Erdbeeren durchgeführt haben, berechnen Sie den Mittelwert und den Median. Der Mittelwert \bar{y} und der Median \hat{y} unterscheiden sich. Welche Aussage ist richtig?

- A 🗆 Der Mittelwert und der Median sollten gleich sein, wenn Outlier in den Daten vorliegen.
- **B** □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich keine Outlier in den Daten vor. Wir verweden den Datensatz so wie er ist.
- **C** □ Wenn sich der Mittelwert und der Median unterscheiden, liegen vermutlich keine Outlier in den Daten vor.
- **D** ☐ Wenn sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor.
- **E** □ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.

12. Aufgabe (2 Punkte)

Ihre Betreuung der Abschlussarbeit fragt überraschend in der letzten Besprechung, ob Ihre Messwerte einer Varianzhomogenität genügen. Sonst könnten Sie ja gar nicht einen t-Test rechnen. Da Ihnen die Zeit wegrennt, entscheiden Sie sich für eine schnelle Visualisierung im Anhang. Welche Visualisierung nutzen Sie und welche Regel kommt zur Abschätzung einer Varianzhomogenität zur Anwendung?

- **A** □ Einen Violinplot. Der Bauch der Violine muss hierbei einen höhren Wert annehmen als der Steg der Violine. Dann kann die Annahme einer Varianzhomogenität angenommen werden.
- **B** □ Wir erstellen uns für jede Behandlung einen Dotplot und schauen, ob die Dots und damit die Varianz für jede Behandlung gleich groß sind.
- C □ Wir erstellen uns für jede Behandlung einen Boxplot und schauen, ob die Box und damit das IQR für jede Behandlung gleich groß ist.
- **D** □ In einer explorativen Datanalyse nutzen wir den Violinplot. Dabei sollte der Bauch am Rand liegen. Dann können wir von einer Varianzhomogenität ausgehen.
- **E** □ In einer explorativen Datanalyse nutzen wir den Boxplot. Dabei sollte der Median als dicke Linie in der Mitte der Box liegen. Dann können wir von einer Varianzhomogenität ausgehen.

Nach der Durchführung Ihres Feldexperiments wollen Sie eine ANOVA rechnen. Dafür muss aber Ihr Messwert zumindestens approximativ einer Normalverteilung folgen. Welche der drei Abbildungen erlaubt Ihnen abzuschätzen, ob Sie eine Normalverteilung in Ihrem Endpunkt vorliegen haben?

- **A** □ Scatterplot, Mosaicplot, Boxplot
- **B** □ Boxplot, Densityplot, Violinplot
- **C** □ Barplot, Mosaicplot, Violinplot
- **D** □ Scatterplot, Densityplot, Barplot
- **E** □ Histogramm, Densityplot, Dotplot

14. Aufgabe (2 Punkte)

Bevor Sie in Ihrer Abschlussarbeit einen statistischen Test rechnen, wollen Sie einmal betrachten, welcher Verteilung Ihre n = 207 geernteten Pflanzen folgen. Welche Verteilung ist abgebildet?

- **A** □ In dem Histogramm ist eine Normalverteilung dargestellt.
- **B** □ Es handelt sich um eine Binomial-Verteilung.
- **C** □ Wir haben eine Gammaverteilung vorliegen.
- **D** □ Wir haben eine Poisson-Verteilung vorliegen.
- **E** □ In dem Histogramm ist eine Ordinalverteilung dargestellt.

Lineare Regression & Korrelation

15. Aufgabe (2 Punkte)

Im Allgemeinen gibt es zwei mögliche Ziele für ein Regressionsmodell. Wir können eine Vorhersagemodell oder ein kausales Modell rechnen. Welche Aussage ist für ein prädiktives Modell richtig?

- **A** □ Wenn ein prädiktives Modell gerechnet werden soll, dann muss zum einen ein Traingsdatensatz sowie ein Testdatensatz definiert werden. Dabei ist der Trainingsdatensatz meist 2/3 und der Testdatensatz 1/3 der Fallzahl groß. Der Testdatensatz dient zur Validierung.
- **B** □ Wir modellieren den Zusammenhang zwischen X und Y wenn ein prädiktives Modell rerechnet wird. Dabei kann nicht der gesamte Datensatz genutzt werden. Es wird ein Trainingsdatensatz zum Trainieren des Modells benötigt.
- **C** \square Ein prädiktives Modell möchte die Zusammenhänge von X auf Y modellieren. Hierbei geht es um die Effekte von X auf Y. Man sagt, wenn x_1 um 1 ansteigt ändert sich Y um einen Betrag β_1 .
- **D** □ Wenn ein prädiktives Modell gerechnet werden soll, dann muss zum einen ein Traingsdatensatz sowie ein Testdatensatz definiert werden. Dabei ist der Trainingsdatensatz meist 1/10 und der Testdatensatz 1/3 der Fallzahl groß. Der Testdatensatz dient zur Validierung.
- **E** \square Ein prädiktives Modell wird auf einem Trainingsdatensatz trainiert und anschliessend über eine explorative Datenanalyse validiert. Signifikanzen über β_i können hier nicht festgestellt werden.

Sie rechnen in eine linearen Regression und erhalten folgenden QQ Plot um die Annahme der normalverteilten Residuen zu überprüfen. Welche Aussage ist richtig?

- **A** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Geraden.
- **B** □ Wir betrachten die Gerade. Wenn die Punkte einigermaßen gleichmäßig um die Gerade verteilt liegen, dann gehen wir von normalverteilten Residuen aus. Dies ist hier nicht der Fall. Wir haben keine normalverteilten Residuen vorliegen.
- **C** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Geraden.
- **D** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden und Korrelation ist negativ.
- **E** □ Wir betrachten insbesondere die beiden Enden der Gerade. Der Rest ist mehr oder minder egal, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.

17. Aufgabe (2 Punkte)

Nach der Modellierung einer Regression stellt sich die Frage, ob die Residuen (.resid) gleichmäßig um die gefitte Gerade liegen. Sie können folgende Abbildung für die visuelle Überprüfung der Residuen nutzen. Welche Aussage ist richtig?

A □ Wenn wir die Nulllinie betrachten so müssen die Punkte gleichmäßig unter der Nulllinie liegen. Unser Modell erfüllt somit nicht die Annahme von normalverteilten Residuen mit einem Mittelwert von > 0 und einer Streuung von s.

- **B** □ Die Punkte müssen gleichmäßig in dem positiven Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Die Analyse ist gescheitert.
- C ☐ Wenn die Punkte gleichmäßig in dem positiven wie auch negativen Bereich ohne ein klares Muster liegen, dann hat unsere Modellierung geklappt. Wir können mit dem Modell weitermachen.
- **D** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Ein klares Muster ist zu erkennen und/oder einige Outlier sind zu beobachten.
- **E** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil auf der Diagonalen. Damit ist das Modell erfolgreich geschätzt worden.

Welche Aussage über den Korrelationskoeffizienten ρ ist richtig?

- **A** \square Der Korrelationskoeffizienten ρ liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ als standardisierte Steigung zu verstehen, wenn eine Standardisierung durchgeführt wurde. Diese Adjustierung nach Fischer muss am Anschluß der Berechnung der Korrelation durchgeführt werden.
- **B** \square Der Korrelationskoeffizienten ρ liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ einheitslos und kann als standardisierte Steigung verstanden werden.
- **C** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen 0 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos. Eine Signifikanz kann nicht nachgewiesen werden.
- **D** \square Der Korrelationskoeffizienten ρ wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ρ beschreibt den Anteil an erklärter Varianz durch die Regression. Dabei gibt er jedoch eine Richtung an und kann auch negativ werden.
- **E** \square Korrelationskoeffizienten ρ liegt zwischen 0 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ einheitslos und kann als Standardisierung verstanden werden.

19. Aufgabe (2 Punkte)

Sie haben ein Feldexperiment mit Brokkoli durchgeführt und wollen nun in einer simplen linearen Regression den Einfluss der Fe_3O_4 -Konzentration in $[\mu g]$ im Wasser auf das Wachstum in [kg] untersuchen. Sie erhalten einen $\beta_{Fe_3O_4}$ Koeffizienten von 2.3×10^{-9} und einen p-Wert mit 0.00051. Welche Aussage zu der Signifikanz und dem Effekt ist richtig?

- **A** \square Wenn der Effekt $\beta_{Fe_3O_4}$ sehr klein ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von $\beta_{Fe_3O_4}$ in y. Daher ist hier mit einer anderen Einheit in den Daten zu rechnen, so dass wir hier einen besser formatierten Effekt sehen. Der p-Wert stammt aus einer einheitslosen Teststatistik.
- **B** \square Die Einheit der Fe_3O_4 -Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p-Wert. Der p-Wert und die Einheit von der Fe_3O_4 -Konzentration hängen antiproportional zusammen.
- ${f C} \square$ Das Gewicht und die Fe_3O_4 -Konzentration korrelieren sehr stark, deshalb wird der $\beta_{Fe_3O_4}$ Koeffizient sehr klein. Mit einer ANOVA kann für die Korrelation korrigiert werden und der Effektschätzer passt dann zum p-Wert.
- **D** □ Die Fallzahl ist zu klein angesetzt. Je kleiner die Fallzahl ist, desto höher ist die Teststatsitik und damit auch der *p*-Wert kleiner. Wir brauchen also mehr Fallzahl um den geringen Effekt noch signifikant zu krigen.
- **E** \square Manchmal ist die Einheit der Einflussvariable X zu groß gewählt, so dass der Ansteig von 1 Einheit in X zu einer zu großen Änderung in y führt. Daher kann der Effekt $\beta_{Fe_3O_4}$ sehr klein wirken, da der p-Wert wird auf einer einheitslosen Teststatistik bestimmt wird.

Sie wollen nach der explorativen Datenanalyse (EDA) Ihre Daten in der Abschlussarbeit auswerten. Nach einiger Rechereche finden Sie heraus, dass Sie zuerst die Daten mit der Funktion lm() in modellieren müssen. Welche Anwendung folgt drauf?

- **A** □ Die Funktion lm() in wird klassischerweise für die nicht-lineare Regression genutzt. Ist die Einflussvariable *X* numerisch so werden die Gruppenmittelwerte geschätzt.
- **B** □ Neben der klassichen Verwendung der Funktion lm() in der linearen Regression kann auch ein Gruppenvergleich gerechnet werden. Dafür müssen aber alle Faktoren aus den Daten entfernt und numerishc umgewandelt werden. Dann kann das R Paket {emmeans} genutzt werden um die Korrelation zu berechnen. Eine Adjustierung ist dann nicht mehr notwendig.
- $\mathbf{C} \square$ Ist die Einflussvariable X numerisch so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich.
- D □ Die Funktion lm() in wird klassischerweise für die lineare Regression genutzt. Ist die Einflussvariable X ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich.
- **E** □ Die Funktion lm() in ist der letzte Schritt für einen Gruppenvergleich. Vorher kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion lm() werden die Gruppenvarianzen bestimmt.

21. Aufgabe (2 Punkte)

Wenn Ihr gemessener Endpunkt nicht einer Normalverteilung folgt, so können Sie dennoch Ihre Daten modellieren. Hierzu nutzen Sie dann das *generalisierte lineare Modell (GLM)*. Welche Aussage ist richtig?

- **A** □ Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.
- **B** In **R** ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann. Weitere Modellierungen sind in **R** auch mit zusätzlich geladenen Paketen nicht möglich.
- C □ In ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die neben der klassischen Normalverteilung auch die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann.
- **D** □ Das GLM erlaubt auch nicht normalverteilte Residuen in der Schätzung der Regressionsgrade.
- **E** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien außer die Normalverteilung mit einer linearen Regression modelliert werden. Dafür werden alle Verteilungen in eine Normalverteilung überführt und anschließend standardisiert.

Vermischte Themen

22. Aufgabe (2 Punkte)

Die Randomisierung von Beobachtungen zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig?

- **A** □ Randomisierung ist die direkte Folge von Strukturgleichheit. Die Strukturgleichheit erlaubt es erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- **B** □ Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte. Ohne Mittelwerte keine Varianz und somit auch kein statistischer Test.
- C □ Strukturgleichheit ist durch Randomisierung gegeben. Leider hilft die Randomisierung noch nicht um von der Stichprobe auf die Grundgesamtheit zu schließen. Deshalb wurde das Falsifikationsprinzip entwickelt.

D 🗆	Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr.
E	Randomisierung sorgt für Strukturgleichheit und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
23.	Aufgabe (2 Punkte)
	wollen Ihren Datensatz in 😱 einlesen und stehen nun vor einem Problem. Sie stellen fest, dass die seiten alle in englischer Sprache verfasst sind. Warum mag die Nutzung von Deutsch problematisch ?
A 🗆	Programmiersprachen können nur englische Begriffe verarbeiten. Zusätzliche Pakete können zwar geladen werden, aber meist funktionieren diese Pakete nicht richtig. Deutsch ist International nicht bedeutend genug.
В□	Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Die Nutzung von englischer Sprache umgeht dieses Problem in eleganter Art.
c 🗆	Die Spracherkennung von 😱 ist nicht in der Lage Deutsch zu verstehen.
D 🗆	Alle Funktionen und auch Anwendungen sind in \P in englischer Sprache. Die Nutzung von deutschen Wörtern ist nicht schick und das ist zu vermeiden.
E 🗆	Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Daher ist die Nutzung in Deutsch in den AGBs von \P untersagt.
24.	Aufgabe (2 Punkte)
	der explorativen Datenanalyse (EDA) in \mathbf{R} gibt es eine richtige Abfolge von Prozessschritten, auch Circle of life genannt. Wie lautet die richtige Reihenfolge für die Erstellung einer EDA?
A 🗆	Die Funktionsreihenfolge ist wie folgt: $read_excel() \rightarrow mutate() \rightarrow ggplot()$. Dabei ist bei der Transformation der Daten darauf zu achten, dass keine Faktoren erstellt werden.
B 🗆	Für eine explorativen Datenanalyse (EDA) in R müssen wir als erstes die Daten über read_excel() einlesen. Danach müssen wir schauen, dass wir die Zeilen richtig über mutate() transformiert haben. Insbesondere müssen Variablen mit kontinuierlichen Werten in einen Faktor umgewandelt werden. Am Ende nutzen wir die Funktion ggplot() für die eigentlich EDA.
C 🗆	Die Funktionsreihenfolge ist wie folgt: $read_excel() -> mutate() -> ggplot()$. Dabei ist bei der Transformation der Daten darauf zu achten, dass die Faktoren richtig erstellt werden.
D 🗆	Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben.
E 🗆	Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben.
25.	Aufgabe (2 Punkte)
	naben das abstrakte Modell $Y \sim X$ mit X als Faktor mit zwei Leveln vorliegen. Welche Aussage über s_2^2 ist richtig?
A 🗆	Es handelt sich um ein unbalanciertes Design.
ВП	Es handelt sich um ein balanciertes Design.

E □ Es liegt Varianzhetrogenität vor.

 $\mathbf{D} \ \square$ Es handelt sich um unabhängige Beobachtungen.

Die Leistung von Sauen soll auf einem Zuchtbetrieb gesteigert werden. Dafür werden die Ferkel verschiedener Sauen gemessen. Die Ferkel einer Muttersaue sind daher...

- **A** □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander abhängig.
- **B** □ Abhängig von der Stallanlage und des Experiments können die Ferkel abhängig oder unabhängig sein. Allgmein gilt, dass Ferkel von unterschiedlichen Sauen näher miteinander verwandt sind als Ferkel von gleichen Sauen. Das Fisher-Axiom.
- **C** □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander unabhängig.
- **D** □ Untereinander stark korreliert. Die Ferkel sind von einer Mutter und sommit miteinander korreliert. Dies wird in der Statistik jedoch meist nicht modelliert.
- **E** □ Untereinander unabhängig. Die Ferkel sind eigenständig und benötigen keine zusätzliche Behandlung.

27. Aufgabe (2 Punkte)

Sie führen ein Experiment zur Behandlung von Klaueninfektionen bei Ziegen durch. Bei 3 Tieren finden Sie eine Erkrankung der Klauen vor und 12 Tiere sind gesund. Welche Aussage über den Effektschätzer Odds ratio ist richtig?

- **A** □ Es ergibt sich ein Odds ratio von 4, da es sich um ein Anteil handelt.
- **B** □ Der Anteil der Kranken wird berechnet. Da es sich um ein Anteil handelt ergibt sich ein Odds ratio von 0.2.
- **C** □ Da es sich um ein Chancenverhältnis handelt ergibt sich ein Odds ratio von 5.
- **D** □ Der Anteil der Gesunden wird berechnet. Da es sich um ein Anteil handelt ergibt sich ein Odds ratio von 0.2.
- **E** □ Da es sich um ein Chancenverhältnis handelt ergibt sich ein Odds ratio von 0.25.

28. Aufgabe (2 Punkte)

Historisch gesehen ergibt sich ein Problem, wenn Sie mit sehr großen Datensätzen, wie in der Bio Data Sience üblich, rechnen. Warum ist es ein Problem, wenn Ihre Datensätze sehr groß werden hinsichtlich der Bewertung anhand der Signifikanz?

- **A** □ Mehr Fallzahl in Datensätzen bedeutet mehr signifikante Ergebnisse, da in mehr Daten auch mehr Informationen beinhaltet sind. Deshalb lohnen sich riesige Datensätze, die durch die vielen signifikanten Ergebnisse auch eine Menge an relevanten Erkenntnissen liefern.
- **B** □ Aktuell werden zu grosse Datensätze für die gänigige Statistik gemessen. Daher wendet man maschinelle Lernverfahren für kausale Modelle an. Hier ist die Relevanz gleich Signifikanz.
- C ☐ Eine große Fallzahl führt zu mehr signifikanten Ergebnissen auch bei kleinen Effekten. Daher werden fast alle Vergleich esignifikant, wenn die Fallzahl nur groß genug wird.
- $\mathbf{D} \square$ Relevanz und Signifikanz haben nichts miteinander zu tun. Daher gibt es auch keinen Zusammenhang zwischen hoher Fahlzahl (n > 10000) und einem signifikanten Test. Ein Effekt ist immer relevant und somit signifikant.
- **E** □ Aktuell werden immer größere Datensätze erhoben. Dadurch wird auch die Varianz immer höher was automatisch zu mehr signifikanten Ergebnissen führt.

Multiple Gruppenvergleiche

29. Aufgabe (2 Punkte)

Sie haben folgende unadjustierten p-Werte gegeben: 0.01, 0.001, 0.89, 0.42, 0.02 und 0.21. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0017, 2e-04, 0.1483, 0.07, 0.0033 und 0.035. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.06, 0.006, 1, 1, 0.12 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.06, 0.006, 5.34, 2.52, 0.12 und 1.26. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **D** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0017, 2e-04, 0.1483, 0.07, 0.0033 und 0.035. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **E** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.06, 0.006, 1, 1, 0.12 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 0.83% verglichen.

30. Aufgabe (2 Punkte)

Die Abkürzung *CLD* steht für welches statistische Verfahren? Welche folgende Beschreibung der Interpretation ist korrekt?

- **A** □ Compound letter display. Gleichheit in dem Outcomes wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des Verbunds (eng. compound) herausfordernd, da wir ja nach dem Unterschied suchen.
- **B** □ Compact letter display. Gleiche Buchstaben bedeuten, dass sich die Behandlungen unterscheiden. Daher ist das CLD sehr unintuitiv. Es wäre besser, wenn gleiche Buchstaben Gleichheit anzeigen würden. Dies ist aber leider in der statistischen Testtheorie nicht möglich.
- C □ Compact line display. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt. Früher wurden keine Buchstaben sondern eine durchgezogene Linie verwendet. Bei mehr als drei Gruppen funktioniert die Linie aber graphisch nicht mehr.
- **D** □ Compact letter detection. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt.
- **E** □ Compact letter display. Teilweise ist die Interpretation des CLD schwierig, da wir ja nach Unterschieden suchen aber nur Gleichheit in den Buchstaben sehen. Die Gleichheit der Behandlungen wird durch gleiche Buchstaben dargestellt.

31. Aufgabe (2 Punkte)

Der multiple Vergleich als Posthoc-Test nach einer ANOVA ist in den Agrarwissenschaften heutzutage Standard. Welches R Paket wird häufig für den multiplen Vergleich genutzt? Welche Beschreibung der Eigenschaften ist korrekt?

- **A** □ Da Sie für Ihre Bachelorarbeit einen Barplot mit CLD brauchen nutzen Sie das R Paket {emmeans} welches Ihnen schnell die notwenidigen Informationen liefert um einen Barplot zu erstelen. Die Berechnung eines CLD ist hierbei auch einfach.
- **B** □ Das R Paket {hmisc} erlaubt die Durchführung eines multiplen Gruppenvergleichs aus verschiedenen Modellen heraus. Aus einem hmisc Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- **C** □ Das R Paket {Im}. Das Paket {Im} erstellt selbstständig Konfidenzintervalle und entsprechende p-Werte. Da wir in dem Paket nicht adjustieren müssen, ist es bei Anwendern sehr beliebt.
- D □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem emmeans Objekt lässt sich leider kein CLD erstellen. Dennoch ist das Paket einfach zu bedienen und wird deshalb genutzt. Die Interpretation der statistischen Auswertung wird über einen Barplot abgebildet.
- **E** □ Das R Paket {ggplot}. Wir erhalten hier sofort eine Visualisierung der Daten. Anhand der Visualisierung lässt sich eine explorative Datenanalyse durchführen, die gleichwertig zu einem Posthoc-Test ist.

In den Humanwissenschaften werden multiple Vergleiche häufig anders behandelt als in den Agrarwissenschaften. In beiden Bereichen tritt jedoch das gleiche Phänomen bei multiplen Testen auf. Wie muss mit dem Phänomen umgegangen werden und wie ist es benannt?

- **A** \square Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel niedriger, bei ca. 1%. Es kommt zu einer α -Hyperinflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.
- **B** \square Beim multiplen Testen kann es zu einer α -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Welch das bekanneste Verfahren ist.
- ${f C} \ \square$ Die Adjustierung der p-Werte nach Bonferroni erlaubt es gegen die lpha-Inflation vorzugehen, die häufig beim multiplen Testen auftritt. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel höher. Das ist der Grund warum die p-Werte entsprechend adjustiert werden müssen.
- ${f D}$ ${f \Box}$ Beim multiplen Testen kann es zu einer ${f eta}$ -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 20%. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist.
- **E** \square Das globale Signifikanzniveau explodiert und erreicht Werte größer als Eins. Es kommt zu einer α Inflation. Dagegen kann mit der Adjustierung der α -Werte nach Bonferroni vorgegangen werden.

33. Aufgabe (2 Punkte)

In einem Feldversuch haben Sie einen Behandlungsfaktor mit mehreren Leveln vorliegen. Sie rechnen einen multiplen Vergleich. Vorher hatten Sie eine einfaktorielle ANOVA mit einem signifikanten Ergebnis vorliegen. Welche Aussage ist richtig?

- A □ Beim multiplen Testen kann es zu einer Effektüberschätzung (Δ-Inflation) kommen. Daher müssen die Effekte angepasst werden. Dies geschieht nicht händisch sondern intern in den angewendeten Algorithmen.
- **B** \square Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nach Bonferroni adjustiert werden. Dafür wird der Effekt mit der Anzahl an Vergleichen k multipliziert. Dies geschiet analog zu den p-Werten.
- ${f C}$ \square Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ adjustiert werden im Gegensatz zu den p-Werten.
- D □ Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nicht adjustiert werden. Bei einem Effekt im multiplen Testen handelt es sich um eine Wahrscheinlichkeit für das Auftreten der Nullhypothese.
- **E** \square Beim multiplen Testen muss der Effekt, hier der Mittelwertsunterschied Δ aus den paarweisen t-Tests, nicht adjusiert werden.

Statistische Testtheorie

34. Aufgabe (2 Punkte)

Sie haben den mathematischen Ausdruck $Pr(D|H_0)$ vorliegen, welche Aussage ist richtig?

- $A \square Pr(D|H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1 Pr(H_A)$
- **B** □ Die Inverse der Wahrscheinlichkeit unter der die Nullhypothese nicht mehr die Alternativehypothese überdeckt.
- $\mathbf{C} \square Pr(D|H_0)$ stellt die Wahrscheinlichkeit die Teststatistik T zu beobachten dar, wenn die Nullhypothese falsch ist.
- **D** □ Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
- $\mathbf{E} \square Pr(D|H_0)$ stellt die Wahrscheinlichkeit die Daten D und somit die Teststatistik T_D zu beobachten dar, wenn die Nullhypothese wahr ist.

Das statistische Testen basiert auf dem Falsifikationsprinzip. Es besagt,

A □ ... dass ein minderwertes Modell durch ein minderwertiges Modell ersetzt wird. Es gilt das Verifikationsprinzip nach Karl Popper.

- **B** □ ... dass Modelle meist falsch sind und selten richtig.
- **C** □ ... dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.
- **D** □ ... dass ein minderwertes Modell durch ein weniger minderwertiges Modell ersetzt wird. Es gilt das Falsifikationsprinzip nach Karl Popper.
- **E** □ ... dass ein schlechtes Modell durch das Falsifikationsprinzip durch ein noch schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.

36. Aufgabe (2 Punkte)

Der Fehler 1. Art oder auch Signifikanzniveau α genannt, liegt bei 5%. Welcher der folgenden Gründe für diese Festlegeung auf 5% als Signifikanzschwelle ist richtig?

- **A** □ Der Begründer der modernen Statistik, R. Fischer, hat die Grenze simuliert und berechnet. Dadurch ergibt sich dieser optimale Cut-Off.
- **B** \square Als Kulturkonstante hat $\alpha = 5\%$ den Rang einer Naturkonstante und wurde nach langer Diskussion in der UN im Jahre 1983 festgesetzt. Damals auch schon mit der Zustimmung der UdSSR.
- **C** \square Im Rahmen eines langen Disputs zwischen Neyman und Fischer wurde $\alpha = 5\%$ festgelegt. Leider werden die Randbedingungen und Voraussetzungen an statistsiche Modelle heute immer wieder ignoriert.
- **D** \square In der Wissenschaft gibt es neben der Naturkonstante, die sich aus der Beobachtung der Welt ergibt, noch die Kulturkonstante, die von einer Gruppe Menschen selbstgewählt wird. Dabei ist $\alpha = 5\%$ eine Kulturkonstante und wurde somit eher zufällig gewählt.
- **E** ☐ Auf einer Statistikkonferenz in Genf im Jahre 1942 wurde dieser Cut-Off nach langen Diskussionen festgelegt. Bis heute ist der Cut Off aber umstritten, da wegen dem 2. Weltkrieg viele Wissenschaftler nicht teilnehmen konnten.

37. Aufgabe (2 Punkte)

Betrachten wir die Teststatistik aus einem abstrakteren Blickwinkel. Beim statistischen Testen wird das "signal" mit dem "noise" aus den Daten D zu einer Teststatistik T_D verrechnet. Welche der Formel berechnet korrekt die Teststatistik T_D ?

A □ Es gilt
$$T_D = \frac{noise}{signal}$$

B □ Es gilt
$$T_D = \frac{signal}{noise}$$

C
$$\square$$
 Es gilt $T_D = \frac{signal}{noise^2}$

D
$$\square$$
 Es gilt $T_D = (signal \cdot noise)^2$

E
$$\square$$
 Es gilt $T_D = signal \cdot noise$

In der Theorie zur statistischen Testentscheidung kann folgende Aussage in welche richtige Analogie gesetzt werden?

H₀ beibehalten obwohl die H₀ falsch ist

- **A** \square In die Analogie eines Rauchmelders: *Fire without alarm*, dem β -Fehler.
- **B** \square *Fire without alarm,* dem β -Fehler als Analogie von Rauch im Haus.
- **C** \square In die Analogie eines Rauchmelders: *Alarm without fire police*, dem α -Fehler.
- **D** \square In die Analogie eines Rauchmelders: *Alarm without fire*, dem α -Fehler.
- **E** □ In die Analogie eines Rauchmelders: *Alarm with fire*.

39. Aufgabe (2 Punkte)

Sie sollen in Ihrer Abschlussarbeit die Relevanz und die Signifikanz in einer statistischen Maßzahl vereinen. Welche Aussage ist richtig?

- **A** \square Einem Konfidenzintervall. Das Konfidenzinterval bringt durch eine Visualisierung und drei Intervallgrenzen die Möglichkeit mit, eine Relevanzschwelle neben der Signifikanzschwelle und der α -Schwelle zu definieren.
- ${f B} \ \square$ Das Δ . Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werden muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.
- **C** \square Die Teststatistik. Durch den Vergleich von T_c zu T_k ist es möglich die H_0 abzulehnen. Die Relevanz ergibt sich aus der Fläche rechts vom dem T_c -Wert.
- D □ Das Konfidenzintervall. Durch die Visualizierung des Konfidenzintervals kann eine Relevanzschwelle vom Anwender definiert werden. Zusätzlich erlaubt das Konfidenzinterval auch eine Entscheidung über die Signifikanz.
- **E** \square Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.

40. Aufgabe (2 Punkte)

Ein statistischer Test produziert für einen Gruppenvergleich einen p-Wert. Welche Aussage zusammen mit dem Signifikanzniveau α gleich 5% stimmt?

- **A** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die Flächen unter der Kurve der Teststatistik, wenn die H_0 gilt.
- **B** \square Wir schauen, ob der *p*-Wert größer ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_A gilt.
- **C** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.
- **D** \square Wir machen ein Aussage über die Flächen und zwischen den Kurve der Teststatistiken der Hypothesen H_0 und H_A , wenn die H_0 gilt. Dabei werden Wahrscheinlichkeiten vergleichen, die durch die Flächen unter der Kurve repräsentiert werden.
- **E** □ Wir vergleichen die Effekte des *p*-Wertes mit den Effekten der Signifikanzschwelle unter der Annahme der Nullhypothese. Dabei gilt, dass wir die Nullhypothese nur ablehnen können anhand des Falsifikationsprinzips.

Um die Testtheorie besser zu verstehen, mag es manchmal sinnvoll sein ein Beispiel aus dem Alltag zu wählen. Die Ergebnisse der Analyse durch einen statistischen Test können auch in grobe Analogie zur Wettervorhersage gebracht werden. Welche Aussage trifft am ehesten zu?

- **A** □ In der Analogie der Maximaltemperatur: Was ist der maximale Unterschied zwischen zwei Gruppen. Wir erhalten hier eine Aussage über die Spannweite und den maximalen Effekt.
- **B** □ Die Analogie der Regenwahrscheinlichkeit: der statistische Test erlaubt es die Wahrscheinlichkeit für Regen abzuschätzen jedoch nicht die Menge und somit den Effekt.
- C □ In der Analogie des Niederschlags oder Regenmenge: ein statistischer Test gibt die Stärke eines Effektes wieder. Zum Beispiel, wie hoch ist der Mittelwertsunterschied.
- **D** □ In der Analogie der Sonnenscheindauer: Wie lange kann mit einem entsprechenden Effekt gerechnet werden? Die Wahrscheinlichkeit für den Effekt gibt der statistische Test wieder.
- **E** □ In der Analogie der Durchschnittstemperatur: Wie oft tritt ein Effekt durchschnittlich ein? Wir erhalten eine Wahrscheinlichkeit für die Effekte. Zum Beispiel, wie hoch ist die Wahrscheinlichkeit für einen Mittelwert als Durchschnitt.

42. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit wollen Sie eine Aussage über die untersuchte Population treffen. Dazu nutzen Sie einen statistischen Test. Können Sie eine valide Aussage treffen?

- **A** □ Nein, wir können die untersuchte Population nicht mit einem t-Test auswerten. Wir erhalten keine Aussage zur Population. Wir können aber den Effekt als Quelle der Relevanz nutzen.
- **B** □ Ja, die untersuchte Population können wir mit einem statistischen Test auswerten. Wir erhalten dann eine Aussage zur Population.
- **C** □ Weder eine Ausssage über die Population noch über das Individuum ist mit einem statistischen Test möglich. Wir erhalten eine Aussage über ein Experiment.
- **D** □ Nein, es ist nicht möglich die untersuchte Population mit einem t-Test auszuwerten. Wir erhalten dann leider keine Aussage zur Population.
- **E** □ Ja, wir können die untersuchte Population nicht mit einer ANOVA auswerten. Wir erhalten keine Aussage zur Population. Wir können aber den Test adjustieren und so die Auswertung ermöglichen.

43. Aufgabe (2 Punkte)

In der statistischen Testtheorie gibt es den Begriff Power. Was sagt der statistische Begriff Power aus?

- **A** \square Es gilt $\alpha + \beta = 1$ und somit liegt β meist bei 95%.
- **B** \square Die Power beschreibt die Wahrscheinlichkeit die H_A abzulehnen. Wir testen die Power jedoch nicht.
- **C** \square Alle statistischen Tests sind so konstruiert, dass die H_A mit 20% bewiesen wird. Die Power ist $1-\beta$ mit β gleich 80% gesetzt.
- **D** \square Die Power wird berechnet und ist keine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit H_0 bewiesen wird
- **E** \square Die Power 1 β wird auf 80% gesetzt. Alle statistischen Tests sind so konstruiert, dass die H_A mit 80% bewiesen wird.

In Ihrer Abschlussarbeit sollen Sie neben den p-Werten auch die Effekte mit angeben. Welche Aussage ist richtig?

- **A** □ Der Forschende muss am Anfang wissen, ob das Eregbnis eines Experiments relevant für seine Forschung ist. Dafür kann der Effekt eines statistischen Tests genutzt werden oder auch der Prähoc-Test. Damit beschreibt der Effekt den biologischen interpretierbaren Teil eines Experimnts vor der Durchführung. Zum Beispiel der Unterschied zwischen zwei Mittelwerten.
- **B** \square Durch den Effekt erfahren wir die statistische interpretierbare Ausgabe eines statistischen Tests. Zum Beispiel das η^2 aus einer ANOVA. Damit können wir die Signifikanz direkt mit dem Effekt verbinden. Am Ende muss der Forschende aber entscheiden, ob der Effekt entsprechend seinen Erwartungen als bedeutet zu bewerten ist.
- ${f C} \ \square$ Durch den Effekt erfahren wir die biologisch interpretierbare Ausgabe eines statistischen Tests. Zum Beispiel das η^2 aus einer ANOVA. Damit können wir die Relevanz direkt mit dem Effekt verbinden. Am Ende muss der Forschende aber entscheiden, ob der Effekt entsprechend seinen Erwartungen als bedeutet zu bewerten ist.
- D □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Moderen Algorithmen liefern keine Effekte mehr sondern nur noch bedingte Wahrscheinlichkeiten. Der Effekt spielt in der modernen Statistik keine Rollen mehr.
- **E** □ Der Effekt eines statistischen Tests beschreibt den Output oder die Wiedergabe eines Tests in einem Computer.

45. Aufgabe (2 Punkte)

Welche Aussage über die Entscheidung anhand des p-Wertes gegen die Nullhypothese ist richtig?

- **A** \square Ist $Pr(D|H_0)$ kleiner als das Signifikanzniveau α gleich 5% dann wird die Nullhypothese H_0 abgelehnt.
- **B** \square Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert in dem Signifikanzniveauintervall α dann kann die Nullhypothese abgelehnt werden.
- **C** \square Ist T_D höher als der kritische Wert $T_{\alpha=5\%}$ dann wird die Nullhypothese H_0 abgelehnt.
- **D** \square Anhand des p-Wertes lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert über oder gleich dem Signifikanzniveau α dann kann die Nullhypothese abgelehnt werden.
- **E** \square Ist in dem 95%-Konfidenzintervall nicht die Null enthalten dann wird die Nullhypothese H_0 abgelehnt.

46. Aufgabe (2 Punkte)

Ein statistischer Test benötigt für die richtige Durchführung Hypothesen H, sonst ist der Test nicht zu interpretieren. Welche Aussage ist richtig?

- **A** \square Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation.
- **B** \square Es gibt ein Hypothesenset bestehend aus k Hypothesen. Meistens wird die Nullhypothese H_0 und die Alternativhypothese H_A verwendet. Wegen des Falsifikationsprinzips ist es wichtig, die bekannte falsche und unbekannte richtige Hypothese mit in das Set zu nehmen.
- **C** \square Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet.
- **D** \square Mit der Nullhypothese H_A und der Alternativehypothese H_0 gibt es zwei Hypothesen, die aber selten genutzt werden.
- **E** \square Es gibt ein statistisches Hypothesenpaar mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 .

Statistische Tests für Gruppenvergleiche

47. Aufgabe (2 Punkte)

Welche Aussage über den t-Test im Allgmeinen ist richtig? Berücksichtigen Sie den Welch t-Test wie auch den Student t-Test!

- **A** \square Der t-Test testet generell zu einem erhöhten α -Niveau von 20%.
- **B** □ Der t-Test vergleicht zwei Gruppen indem die Mittelwerte miteinander verglichen werden.
- C □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.
- **D** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte *jeweils* von Null unterscheiden.
- **E** □ Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern

48. Aufgabe (2 Punkte)

Ein Versuch wurde in 7 Parzellen pro Gruppe durchgeführt. Die folgende Abbildung enthält die Daten aus diesem Versuch zur Bewertung der Wirkung des Mikronährstoff Nitrat auf den Ertrag in t/ha von Mango im Vergleich zu einer Kontrolle. Welche Aussage ist richtig, wenn Sie einen t-Test rechnen?

- **A** □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -2 unter einer groben Abschätzung. Wir müssen aber eine ANOVA rechnen um den Effekt wirklich bestimmen zu können.
- **B** □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -2 unter einer groben Abschätzung.
- **C** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt kann nicht bei einem t-Test aus Barplots bestimmt werden.
- **D** ☐ Der Test deutet auf ein signifikanten Unterschied hin. Der Effekt liegt vermutlich bei -2.
- **E** □ Der Effekt und die Signifikanz lassen sich nicht aus Barplots abschätzen. Höchtens der Effekt als relativer Unterschied zwischen der Höhe der Barplots. Standard ist der mediane Unterschied aus Boxplots.

49. Aufgabe (2 Punkte)

Sie rechnen einen gepaarten t-Test, da Ihre Beobachtungen verbunden sind. Welche der folgenden Aussagen ist richtig?

A □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir den Quotienten zwischen den beiden Zeitpunkten. Auf den Quotienten rechnen wir den gepaarten t-Test.

B □ Der gepaarte t-Test wird gerechnet, wenn die Beobachtungen abhängig voneinander sind. Wir messen jede Beobachtung nur einmal und berechnen dann die Differenz zu dem Mittel der anderen Beobachtungen.
 C □ Beim gepaarten t-Test kombinieren wir die Vorteile des Student t-Test für Varianzhomogenität mit den Vorteilen des Welch t-Test für Varianzheterogenität. Wir bilden dafür die Differenz der Einzelbeobachtungen.
 D □ Wenn die Beobachtungen unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir das Produkt zwischen den zwei Messpunkten.

50. Aufgabe (2 Punkte)

beiden Zeitpunkten. Auf den Differenzen rechnen wir den gepaarten t-Test.

E □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir die Differenz zwischen den

Sie führen paarweise t-Tests für alle Vergleiche der verschiedenen Rapssorten in Ihrem Experiment durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Ihr Experiment beinhaltet fünf Rapssorten und eine ANOVA ergibt p=0.045 für den Ertrag. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.052$. Welche Aussage ist richtig?

- **A** □ Das ist kein Wunder. Die ANOVA testet auf der gesamten Fallzahl und die paarweisen t-Tests verlieren immer eine oder mehr Gruppen als Fallzahl. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.
- **B** □ Die ANOVA testet auf der gesamten Fallzahl. Es wäre besser die ANOVA auf der gleichen Fallzahl wie die einzelnen t-Tests zu rechnen.
- **C** □ Die adjustierten p-Werte deuten in die richtige Richtung. Zusammen mit den nicht signifikanten rohen p-Werten ist von einem Fehler in der ANOVA auszugehen.
- **D** □ Es gibt einen Fehler in der Varianzstruktur. Daher kann die ANOVA nicht richtig sein und paarweise t-Tests liefern das richtige Ergebnis.
- **E** ☐ Hier kommt der Effekt der stiegenden Fallzahl auf die Anzahl an signifikante Ergebnisse zu tragen. Da die ANOVA auf weniger Fallzahl testet als die paarweisen t-Tests, kann die ANOVA schwerer einen signifikanten Unterscheid nachweisen.

Teil I.

Deskriptive Statistik & Explorative Datenanalyse

51. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tina steht vor einem ersten Problem, denn wenn es nach ihrer Betreuerin geht, soll sie in einem einem Freilandversuch Kartoffeln auswertet. Soweit eigentlich alles passend. Die Behandlung werden verschiedene Bewässerungstypen (low, mid und high) sein. In ihrer Exceldatei wird sie den Messwert (Y) Trockengewicht als drymatter aufnehmen. Vorab soll Tina aber eimal die folgenden Barplots ihrer Betreuerin nachbauen, damit sie den R Code schonmal für später vorliegen hat. Damit geht das Problem schon los.

Leider kennt sich Tina mit der Erstellung von Barplots in \mathbf{R} nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Barplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Barplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Tina einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki steht vor einem ersten Problem, denn wenn es nach ihrer Betreuerin geht, soll sie in einem einer Klimakammer Brokoli auswertet. Soweit eigentlich alles passend. Die Behandlung waren verschiedene Bewässerungstypen (low, mid und high). In ihrer Exceldatei hat sie den Outcome (Y) Trockengewicht als drymatter aufgenommen. Nun soll Yuki die Daten eimal als Barplots in einer Präsentation visualisieren, damit ihrer Betreuerin wieder klar wird, was sie eigentlich nochmal gemacht hat und was für ein Ergbnis in einem statistischen Test zu erwarten wäre.

treatment	drymatter
low	22.7
low	32.0
mid	29.4
mid	18.8
low	28.2
low	27.2
mid	18.2
high	23.6
high	34.5
high	27.3
mid	31.4

Leider kennt sich Yuki mit der Erstellung von Barplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichnen Sie in *einer* Abbildung die Barplots für die Behandlung von Brokoli! Beschriften Sie die Achsen entsprechend!**(4 Punkte)**
- 3. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Yuki *keinen Effekt* zwischen den Behandlungen von Brokoli erwarten würde, wie sehen dann die Barplots aus? *Antworten Sie mit einer Skizze der Barplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Anschauen, was andere vor einem gemacht haben, ist eine Möglichkeit schnell ans Ziel zu gelangen. Jessica soll in ihrer Hausarbeit Erdbeeren untersuchen. Die Behandlung in ihrer Hausarbeit werden verschiedene Genotypen (AA, AB und BB) sein. Erheben wird Jessica als Endpunkt (Y) Ertrag benannt als yield in ihrer Exceldatei. Von ihrem Betreuer erhält sie nun folgende Abbildung von Boxplots, die sie erstmal zur Übung nachbauen soll, bevor sie mit dem eigentlichen Versuch beginnt. Anhand von Boxplots lässt sich eine Aussage über die Varianzhomogenität über die Behandlungsgruppen treffen.

Leider kennt sich Jessica mit der Erstellung von Boxplots in \mathbf{R} nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Boxplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 2. Beschriften Sie einen der Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Boxplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Jessica einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Anschauen, was andere vor einem gemacht haben, ist eine Möglichkeit schnell ans Ziel zu gelangen. Deshalb hat sich Yuki viele Poster in der Fakultät angeschaut und ist zum Schluß gekommen, dass Boxplots eine häufig genutzte Abbildung sind. Yuki soll nun in ihrem Projektbericht Lauch untersuchen. Die Behandlung in ihrem Projektbericht sind verschiedene Genotypen (AA und BB). Erhoben wurden von Yuki als Messwert (Y) Trockengewicht benannt als drymatter in ihrer Exceldatei. Erwartungsgemäß erhält sie von ihrem Betreuer den Auftrag die erhobenen Daten als Boxplots darzustellen. Dann kann Yuki auch schonmal abschätzen, was bei einem statistischen Test rauskommen könnte. Darüber hinaus kann Yuki anhand Boxplots eine Aussage über die Varianzhomogenität über die Behandlungsgruppen treffen.

treatment	drymatter
AA	40.0
BB	25.0
BB	11.8
BB	35.2
AA	29.0
AA	37.9
BB	35.5
AA	41.8
BB	30.4
BB	37.9
AA	44.2
BB	19.7
BB	15.4
BB	24.1
AA	46.0
AA	41.1
AA	41.2
AA	40.8
BB	16.3
AA	42.8

Leider kennt sich Yuki mit der Erstellung von Boxplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Lauch! Beschriften Sie die Achsen entsprechend! **(5 Punkte)**
- 2. Wie ist Ihr Vorgehen, wenn Sie eine gerade Anzahl an Beobachtungen pro Gruppe haben? (1 Punkt)
- 3. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Sie *keinen Effekt* zwischen den Behandlungen von Lauch erwarten würden, wie sehen dann die beiden Boxplots aus? *Antworten Sie mit einer Skizze der Boxplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Steffen betrachtet die folgenden Daten nach einem Leistungssteigerungsversuch mit Lamas. In dem Experiment wurden die Anzahl an gedrehten Haaren pro cm^2 gezählt. Nach der Meinung seinem Betreuer muss als erstes geschaut werden, wie diese verteilt sind. Also welcher statistischen Verteilung die Anzahl an gedrehten Haaren pro cm^2 folgen. Dazu soll Steffen ein Histogramm verwenden. Dann hätte man auch einen guten Überblick über das Outcome (Y).

Die Anzahl an gedrehten Haaren pro cm^2 : 3, 1, 3, 6, 4, 7, 3, 5, 2, 2, 3, 6, 2, 5, 5, 3, 4, 4, 6, 2, 2, 5, 5, 3, 6, 5, 6, 2, 1, 5

Leider kennt sich Steffen mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die absoluten und relativen Häufigkeiten in der Abbildung! (1 Punkt)
- 4. Berechnen Sie aus den Daten die Wahrscheinlichkeit mehr als die Anzahl 4 zu beobachten! (1 Punkt)
- 5. Berechnen Sie aus den Daten die Chance mehr als die Anzahl 4 zu beobachten! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Gespräch mit ihrem Betreuer wird Tina gebeten seine Daten aus einem Kreuzungsexperiment mit Lamas in einem Histogramm darzustellen. In ihrem Experiment hat er die mittleren auffälligen Hautflecken erst fotographiert und dann ausgezählt. Laut ihrem Betreuer soll das Histogramm helfen, die Verteilung der die mittleren auffälligen Hautflecken zu bestimmen.

Die mittleren auffälligen Hautflecken: 10.6, 11.1, 8.7, 8, 11.5, 9.2, 7.7, 9.4, 8.7, 7.6, 9.8, 12.3, 8.2, 12.3, 11, 11.9, 13.8, 4.4, 10.3, 11.9, 10.3, 10.1, 7, 7.4, 11.8

Leider kennt sich Tina mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jessica möchte gerne den Zusammenhang zwischen mittlerer Eisenkonzentration [Fe/ml] und Gewichtszuwachs in der 1LW im Kontext von Lamas herausfinden. Hierfür hat Jessica einen Leistungssteigerungsversuch im Emsland durchgeführt. Nach einigen unvorgesehenen Ereignissen hat sie es geschafft folgende Datentabelle zu erstellen. Nun stellt sich die Frage für sie, ob es überhaupt einen Zusammenhang zwischen den gemessenen Variablen gibt. Deshalb möchte Jessica als erstes eine explorative Datenanalyse durchführen.

Mittlerer Eisenkonzentration [Fe/ml]	Gewichtszuwachs in der 1LW
25.8	16.9
41.0	24.4
28.0	21.5
14.1	10.1
25.5	16.6
18.4	13.2
26.6	16.0
31.8	21.9
23.8	20.1

Leider kennt sich Jessica mit der Erstellung einer explorativen Datenanalyse für kontinuierliche Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen entsprechend! (4 Punkte)
- 2. Schätzen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn *ein* Effekt von *x* auf *y* vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? **(2 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Zwei kategoriale Variablen darzustellen ist nicht so einfach. Tina hatte erst über einen Mittelwert nachgedacht, dann aber die Idee verworfen. In ein Stallexperiment in der Uckermark hatte sie sich zum einen die Behandlung Ökologisch [ja/nein] und zum anderen die Messung Gewichtszuwachs erreicht [ja/nein] im Kontext von Lamas angeschaut. Jetzt möchte ihre Betreuerin erstmal die langen Tabellen mit ja/nein in einer explorativen Datenanalyse zusammengefasst bekommen. Sonst geht es bei ihrer Hausarbeit nicht weiter.

Gewichtszuwachs erreicht	Ökologisch
nein	ja
nein	nein
nein	ja
ja	nein
ja	ja
nein	ja
ja	ja
ja	nein
ja	nein
nein	ja
ja	nein
ja	ja
nein	nein
ja	ja
nein	ja

Gewichtszuwachs erreicht	Ökologisch
nein	ja
ja	ja
ja	nein
ja	ja
nein	ja
ja	nein
ja	ja
ja	ja
nein	nein
ja	nein
nein	nein
ja	ja
nein	nein
nein	ja
nein	ja

Leider kennt sich Tina mit der Erstellung einer explorativen Datenanalyse für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Stellen Sie den Zusammenhang zwischen den beiden kategorialen Variablen in einer zusammenfassenden Tabelle dar! (3 Punkte)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (3 Punkte)
- 3. Berechnen Sie die Verhältnisse in der Visualisierung! Welche Annahme haben Sie getroffen? (2 Punkte)
- 4. Wenn *ein* Effekt von der Behandlung vorliegen würde, wie würde die Tabelle und die Visualisierung aussehen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Zeichnen Sie über die untenstehenden Boxplots die entsprechende zugehörige Verteilung! (3 Punkte)
- 2. Zeichnen Sie unter die untenstehenden Boxplots die entsprechende zugehörige Beobachtungen als Stiche! (3 Punkte)
- 3. Wieviel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 4. Wieviel Prozent der Beobachtungen fallen in ±1s unter der Annahme einer Normalverteilung? Wenn möglich, ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie 4 Normalverteilungen in einer Abbildung mit $\bar{y}_1 \neq \bar{y}_2 \neq \bar{y}_3 \neq \bar{y}_4$ und $s_1 = s_2 = s_3 = s_4$! (3 **Punkte**)
- 2. Beschriften Sie die Normalverteilungen mit den entsprechenden Parametern! (2 Punkte)
- 3. Ergänzen Sie die Bereiche in der 68% und 95% der Beobachtungen fallen! Beschriften Sie die Grenzen der Bereiche mit der statistischen Maßzahl! (2 Punkte)
- 4. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

- 1. Skizieren Sie in die unten stehenden, freien Abbildungen die Verteilungen, die sich nach der Abbildungsüberschrift ergeben! (6 Punkte)
- 2. Beschriften Sie die Achsen der Abbildungen entsprechend! (1 Punkt)
- 3. Achten Sie auf die entsprechende Skalierung der beiden Verteilungen in den Abbildungen! (2 Punkte)

Pois(15) und Pois(2)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Sie haben folgende Zahlenreihe y vorliegen $y = \{23, 19, 20, 19, 14\}$.

- 1. Visualisieren Sie den Mittelwert von y in der untenstehenden Abbildung! (4 Punkte)
- 2. Beschriften Sie die Y und X-Achse entsprechend! (2 Punkte)
- 3. Für die Berechnung der Varianz wird der Abstand der einzelnen Werte y_i zum Mittelwert \bar{y} quadriert. Warum muss der Abstand, $y_i \bar{y}$, in der Varianzformel quadriert werden? Erklären Sie den Zusammenhang unter Berücksichtigung der Abbildung! (2 Punkte)

Teil II.

Statistisches Testen & statistische Testtheorie

63. Aufgabe (9 Punkte)

Grundlage des statistischen Testen ist das Verständnis von der Grundgesamtheit (eng. *population* oder *ground truth*) und der experimentellen Stichprobe (eng. *sample*).

- 1. Nennen Sie das statistische Verfahren und zwei konkrete Beispiele zur Durchführung um von einer Grundgesamtheit auf eine Stichprobe zu gelangen! (3 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! Beschriften Sie das Schaubild entsprechend! Nutzen Sie hierfür als Veranschaulichung die Körpergröße von Männern oder Frauen aus den Gummibärchendaten! (3 Punkte)
- 3. Erweitern Sie das Schaubild um die Entstehung von $Pr(D|H_0)$! Nutzen Sie hierfür als Veranschaulichung zusätzlich die Gruppierungsvariable "Modul" aus den Gummibärchendaten! (3 Punkte)

Für ein besseres Verständnis der statistischen Testtheorie, auch Null-Ritual genannt, kann eine Visualisierung als Kreuztabelle genutzt werden.

1. Tragen Sie folgende statistische Fachbegriffe zur statistischen Testtheorie korrekt eine selbst erstellte Kreuztabelle ein! (3 Punkte)

20% β -Fehler H₀ beibehalten α -Fehler

2. Ergänzen Sie Ihre erstellte Kreuztabelle um vier weitere, passende Fachbegriffe zur statistischen Testtheorie! (2 Punkte)

Die Entscheidungsfindung durch einen statistischen Test kann auch durch die Analogie zu einem Feuermelder abgebildet werden. Dabei symbolisiert der Feuermelder den statistischen Test und es soll getestet werden, ob ein Feuer ausgebrochen ist.

- 3. In der Analogie des Feuermelders, wie lautet der α -Fehler? (1 Punkt)
- 4. In der Analogie des Feuermelders, wie lautet der β -Fehler? (1 Punkt)
- 5. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem halben Jahr Alarm schlagen? Begründen Sie Ihre Antwort! **(2 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Abgebildet ist die t-Verteilung unter der Anahme der Gültigkeit der Nullhypothese. Beachten Sie, dass im Folgenden keine numerisch korrekte Darstellung verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 0.95"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $+T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche der Mittelwerte. Sie schätzen den Unterschied zwischen dem mittleren Trockengewicht nach Düngergabe zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine in den Kontext passende Relevanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein 95% Konfidenzintervall mit niedriger Varianz s_p in der Stichprobe als der Rest 95% der Konfidenzintervalle
 - (b) Ein signifikantes, relevantes 99% Konfidenzintervall.
 - (c) Ein nicht signifikantes, nicht relevantes 95% Konfidenzintervall
 - (d) Ein 95% Konfidenzintervall mit höherer Varianz s_p in der Stichprobe als der Rest der 95% Konfidenzintervalle
 - (e) Ein signifikantes, relevantes 95% Konfidenzintervall
 - (f) Ein signifikantes, nicht relevantes 95% Konfidenzintervall

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Beim statistischen Testen gibt es einen Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl. Gegeben sei die Formel für den Student t-Test auf den die folgenden Überlegungen basieren sollen. Welche Auswirkung hat die Änderungen der jeweiligen statistischen Maßzahl des Effekts Δ , der Streuung s und der Fallzahl n auf die Teststistik T_D , den p-Wert $Pr(D|H_0)$ sowie dem Konfidenzintervall $KI_{1-\alpha}$?

- 1. Visualisieren Sie den Zusammenhang zwischen der Teststatiatik T_D und dem p-Wert $Pr(D|H_0)$ für sich verändernde T_D -Werte! Geben Sie dafür ein numerisches Beispiel in dem Sie drei T_D -Werte und deren Einfluss auf den p-Wert vergleichen! (3 Punkte)
- 2. Füllen Sie die untenstehende Tabelle aus in dem Sie die Änderung der statistischen Maßzahlen auf die Teststatistik, den p-Wert sowie das Konfidenzintervall in *einem* Wort oder Symbol beschreiben! **(4 Punkte)**

		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$
Δ	1				Δ↓			
S	1				s ↓			
n	1				n ↓			

3. Visualisieren Sie ein 95%-iges Konfidenzintervall im Vergleich zu einem 99%-igen Konfidenzintervall! Begründen Sie Ihre Visualisierung anhand der Formel des Konfidenzintervalls des t-Tests mathematisch! (3 Punkte)

Teil III.

Der Student t-Test, Welch t-Test & gepaarter t-Test

68. Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der t-Test. Jonas erschaudert. Ein mächtiges Werkzeug in den Händen desjenigen, der einen normalverteilten Endpunkt (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Jonas überhaupt aus? Jonas hat ein Stallexperiment mit Lamas durchgeführt um eine neue technische Versuchsanlage zu testen. Bei dem Pilotexperiment mit sehr geringer Fallzahl ($n_1 = n_2 = 3$) wurde die Behandlung Elterlinie (Standard und Xray) an den Lamas getestet und dabei wurde geschaut, ob der Versuch überhaupt technisch klappen könnte. Gemessen hat Jonas dann als Messwert Protein/Fettrate [%/kg]. Warum der Versuch im Emsland für seinen Projektbericht stattfinden musste, ist ihm bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Protein/Fettrate [%/kg]?

treatment	weight
dose	14.3
dose	18.2
ctrl	15.5
dose	16.9
ctrl	18.3
ctrl	16.2

Leider kennt sich Jonas mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 3. Treffen Sie mit $T_{\alpha=5\%}=1.84$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 5. Formulieren Sie eine Antwort an Jonas über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der t-Test testet einen normalverteilten Messwert (Y).', liest Jonas laut. Das hilft jetzt auch nur bedingt weiter. Laut seiner Betreuerin ist zwar ihm Messwert Fettgehalt [%/kg] normalverteilt, aber wie rechnet er jetzt einen t-Test? Für seine Abschlussarbeit musste er ein Kreuzungsexperiment mit Lamas im Teuteburgerwald durchführen. Als wäre das nicht schon anstrengend genug gewesen. Jetzt soll er auch noch testen, ob die Behandlung Flüssignahrung (ctrl und flOw) ein signifikantes Ergebnis liefert.

Flüssignahrung	Fettgehalt
flOw	27.1
flOw	32.9
flOw	23.9
ctrl	44.5
ctrl	21.3
ctrl	42.9
ctrl	47.5
ctrl	30.6
flOw	28.5
flOw	27.7
ctrl	30.4
ctrl	14.4
flOw	34.9
flOw	27.6
ctrl	37.5
flOw	30.8
ctrl	46.1
flOw	23.8
flOw	44.1
ctrl	43.4

Leider kennt sich Jonas mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=2.68$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie *einen* Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann der Effekt? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Formulieren Sie eine Antwort an Jonas über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Paula ist im Wendland für einen Versuch mit Lamas. Allein diese Tatsache ist für sie eine Erzählung wert. Für ihren Projektbericht musste sie ein Kreuzungsexperiment mit Lamas durchführen und das sollte laut ihrem Betreuer an diesem Nichtort besonders gut gelingen. Ablenkung gibt es jedenfalls keine. Gar keine. Alleine sein hilft jetzt aber nur bedingt, denn ihre Behandlung Bestandsdichte (*Verordnung* und *Erhht*) und der Messwert Gewichtszuwachs in der 1LW sollen mit einem t-Test ausgewertet werden. Immerhin weiß sie, dass ihr Messwert einer Normalverteilung folgt.

Bestandsdichte	Gewichtszuwachs
Erhöht	43.7
Erhöht	25.8
Erhöht	16.2
Verordnung	35.2
Verordnung	39.3
Verordnung	41.5
Erhöht	14.5
Verordnung	39.9
Erhöht	22.8
Erhöht	37.6
Verordnung	42.7
Erhöht	34.4
Verordnung	40.6
Verordnung	38.0
Verordnung	41.1
Verordnung	37.3
Erhöht	34.0
Erhöht	24.3

Leider kennt sich Paula mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%} = 2.68$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie das 99% Konfidenzintervall. Welche Annahmen haben Sie getroffen? (2 Punkte)
- 6. Nennen Sie den statistischen Grund, warum Sie sich zwischen einem Student t-Test und einem Welch t-Test entscheiden müssen! (1 Punkt)
- 7. Formulieren Sie eine Antwort an Paula über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Alles voll mit Lamas. Das haben Steffen und Yuki gemeinsam in einer Hausarbeit gemacht! Worum ging es aber konkret? Beide haben als einen normalverteilten Messwert (Y) Gewichtszuwachs in der 1LW von Lamas bestimmt. Die Daten haben beide zusammen in einem Kreuzungsexperiment erhoben. In dem Experiment ging es um eine vorher/nachher Untersuchung an den gleichen Lamas. Als Behandlung wurde Bestandsdichte (hoch und niedrig) eingesetzt. Nach der Meinung des Betreuers muss hier ein gepaarter t-Test gerechnet werden.

ID	treatment	freshmatter
4	hoch	43.1
6	niedrig	20.0
1	niedrig	33.1
2	hoch	38.5
3	hoch	42.6
5	hoch	38.0
4	niedrig	25.4
6	hoch	41.8
7	hoch	36.5
7	niedrig	25.5
5	niedrig	37.5
3	niedrig	24.2
8	niedrig	18.9
2	niedrig	32.5
1	hoch	41.6

Leider kennen sich Steffen und Yuki mit der Berechnung eines gepaarten t-Tests überhaupt nicht aus. Deshalb brauchen sie beide bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines gepaarten t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie den *p*-Wert des gepaarten t-Tests ab! Begründen Sie Ihre Antwort mit einer Skizze! (2 **Punkte**)
- 6. Formulieren Sie eine Antwort an Steffen über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wir waren im Teuteburgerwald um Lamas in einem Leistungssteigerungsversuch zu messen.', Mark legt das Dokument auf den Tisch und schaut Steffen und Paula fragend an. Beide schauen fragend zurück. Die beiden sind zu ihm gekommen, da sie sich nicht mit Rauskennen und daher Hilfe bei der Interpretation des t-Tests brauchen. Kein Problem. Aber worum es in dem Versuch geht, lässt sich nur aus dem Text in seiner Hand erahnen. Vielleicht hilft da ja die Ausgabe des t-Tests in R weiter.

```
##
## Two Sample t-test
##
## data: Fettgehalt by Bestandsdichte
## t = 5.6283, df = 14, p-value = 6.227e-05
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 10.71133 23.90137
## sample estimates:
## mean in group Verordnung mean in group Erhöht
## 45.92857 28.62222
```

Helfen Sie Mark bei der Interpretation des t-Tests! Sonst geht es auch für Steffen und Paula nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie eine Abbildung in der Sie T_D , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.14|$ einzeichnen! **(4 Punkte)**
- 5. Beschriften Sie die Abbildung! (1 Punkt)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Rist schon ein tolles Programm, wenn man mit dem Ding umgehen kann. Super umgehen kann damit Yuki. Deshalb sind auch Paula und Alex bei ihr um sich bei einem gemeinsamen Projekt helfen zu lassen. Beide arbeiten gemeinsam an einer Abschlussarbeit. In dem zu beschreibenden Versuch geht es im Emsland um einem Stallexperiment mit Lamas. Dabei ging darum herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Lüftungssystem (keins und vorhanden) und dem Messwert Fettgehalt [%/kg] gibt. Da der Messwert Fettgehalt [%/kg] normalverteilt ist kann ein t-Test gerechnet werden.

```
##
## Two Sample t-test
##
## data: Fettgehalt by Lüftungssystem
## t = -2.7739, df = 15, p-value = 0.01419
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -17.160709 -2.247624
## sample estimates:
## mean in group keins mean in group vorhanden
## 36.86250 46.56667
```

Helfen Sie Yuki bei der Interpretation des t-Tests! Sonst geht es auch für Paula und Alex nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Rist schon ein tolles Programm, wenn man mit dem Ding umgehen kann. Super umgehen kann damit Steffen. Deshalb sind auch Jonas und Yuki bei ihm um sich bei einem gemeinsamen Projekt helfen zu lassen. Beide arbeiten gemeinsam an einer Hausarbeit. In dem zu beschreibenden Versuch geht es in der Uckermark um einem Leistungssteigerungsversuch mit Lamas. Dabei ging darum herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (ctrl und flOw) und dem Messwert Gewichtszuwachs in der 1LW gibt. Da der Messwert Gewichtszuwachs in der 1LW normalverteilt ist kann ein t-Test gerechnet werden.

```
##
## Two Sample t-test
##
## data: Gewichtszuwachs by Flüssignahrung
## t = 2.7322, df = 18, p-value = 0.01368
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 2.336019 17.884183
## sample estimates:
## mean in group ctrl mean in group flow
## 38.15455 28.04444
```

Helfen Sie Steffen bei der Interpretation des t-Tests! Sonst geht es auch für Jonas und Yuki nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie die sich ergebenden Boxplot! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Skizieren Sie die sich ergebenden Barplots! (2 Punkte)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es gibt ja immer die Möglichkeit sich Hilfe zu holen. Das geht natürlich auch immer in einer Hausarbeit. Deshalb arbeiten Yuki und Nilufar gemeinsam an einer Hausarbeit. Das macht dann auch die Analyse ihres Hauptversuches einfacher. Zwar hat jeder von ihnen noch ein Subthema, aber auch da kann man sich ja helfen. In dem Hauptversuch wurde Folgendes von den beiden gemacht. Yuki und Nilufar haben sich Lamas angeschaut. Dabei geht um Zusammenhang zwischen Flüssignahrung (1//d und 5//d) und Fettgehalt [%/kg]. Jetzt sollen beide einen gepaarten t-Test rechnen. Leider kennen sich beide nicht sehr gut in Raus.

```
##
## Paired t-test
##
## data: Fettgehalt by Flüssignahrung
## t = -0.044316, df = 8, p-value = 0.9657
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -8.249972 7.938861
## sample estimates:
## mean difference
## -0.1555556
```

Jetzt brauchen Yuki und Nilufar Ihre Hilfe bei der Berechnung eines gepaarten t-Tests in Rum ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Skizzieren Sie den sich ergebenden Boxplot der Differenzen! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Teil IV.

Die einfaktorielle & zweifaktorielle ANOVA

76. Aufgabe (11 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wir können jetzt anhand der Visualisuierung sehen, ob da schon was signifikant ist?', Jonas hebt die Augenbraue. 'Ja, können wir. Dafür müssen wir aber erstmal in {ggplot} uns die Daten anschauen. Oder wir zeichnen es flott mit der Hand. Geht auch.', meint Mark dazu. Jonas hatte sich in ein Kreuzungsexperiment verschiedene Lamas angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Ernährungszusatz (ctrl, fedX und getIt) und dem Messwert Fettgehalt [%/kg] gibt.

Ernährungszusatz	Fettgehalt
getIt	41
ctrl	40
fedX	40
fedX	40
getIt	41
ctrl	41
getIt	39
getIt	40
getIt	40
ctrl	40
ctrl	43
getIt	40
ctrl	39
fedX	40
fedX	40
ctrl	39
ctrl	41
fedX	40
fedX	40

Leider kennen sich Jonas und Mark mit Darstellung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung der Datentabelle! Beschriften Sie die Abbildung! (2 Punkte)
- 2. Benennen Sie die Visualisierung mit dem korrekten, statistischen Fachbegriff! (1 Punkt)
- 3. Zeichnen Sie folgende statistischen Maßzahlen passend ein!
 - Globale Mittelwert: β₀ (1 Punkt)
 - Mittelwerte der einzelnen Behandlungsstufen: $\bar{y}_{0.5}$, $\bar{y}_{1.5}$ und $\bar{y}_{2.5}$ (1 Punkt)
 - Mittelwertsdifferenz der einzelnen Behandlungsstufen: $\beta_{0.5}$, $\beta_{1.5}$ und $\beta_{2.5}$ (1 Punkt)
 - Residuen oder Fehler: ε (1 Punkt)
- 4. Liegt ein vermutlicher signifikanter Unterschied vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie die Effekte der Behandlungsstufen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Als erstes bauen wir uns aus unsere Daten die ANOVA Tabelle dann sehen wir schon, ob unser Gruppenvergleich in der ANOVA signifikant ist.', Paula schaut Jonas fragend an und hofft auf eine positive Regung im Gesicht. Wird aber enttäuscht. Jonas tut sich auch sehr schwer mit der einfaktoriellen ANOVA. Beide waren im Emsland um ein Stallexperiment mit Lamas durchzuführen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Bestandsdichte (standard, eng, weit und kontakt) und dem Messwert Gewichtszuwachs in der 1LW gibt.

Leider kennen sich Paula und Jonas mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bestandsdichte	3	955.46			
error	23	347.28			
Total	26				

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.03$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wie füllen wir jetzt extitgenau die Tabelle der ANOVA aus und schauen, ob da was signifikant ist?', Jonas hebt die Augenbraue. 'Das ist eine sehr gute Frage. Ich glaube man kann alles in der Tabelle relativ einfach mit wenigen Informationen berechnen.', meint Mark dazu. Jonas hatte sich in ein Kreuzungsexperiment verschiedene Lamas angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Bestandsdichte (standard, eng, weit und kontakt) und dem Messwert Schlachtgewicht [kg] gibt. Nun möchte erstmal seine Betreuerin eine ANOVA Tabelle sehen. Was immer da auch drin zu erkennen sein mag.

Leider kennen sich Jonas und Mark mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bestandsdichte	3	73.94			
Error	24	442.17			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.01$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA? (1 Punkt)
- 6. Berechnen Sie einen Student t-Test für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 Punkte)

Bestandsdichte	Fallzahl (n)	Mittelwert	Standardabweichung
standard	7	7.43	2.23
eng	9	7.44	6.69
weit	7	10.29	2.29
kontakt	5	11.20	2.39

7. Gegebenen der ANOVA Tabelle war das Ergebnis des Student t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jessica schaut sich fragend in der Bibliothek um. Jessica hatte gehofft, dass jemand hier sein würde, den sie kennt und sich mit auskennt. Wird aber enttäuscht. Jessica war im Emsland um ein Stallexperiment mit Lamas durchzuführen. Nun möchte ihr Betreuer ihrer Abschlussarbeit erstmal eine ANOVA sehen und die Ergebnisse präsentiert bekommen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Genotypen (AA, AB und BB) und dem Messwert Protein/Fettrate [%/kg] gibt.

```
## Analysis of Variance Table
##
## Response: Protein/Fettrate
## Df Sum Sq Mean Sq F value Pr(>F)
## Genotypen 2 3029.93 1515.0 48.1 6.063e-09
## Residuals 23 724.41 31.5
```

Leider kennen sich Jessica mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkte)
- 4. Berechnen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 5. Skizzieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ein Kreuzungsexperiment wurden Lamas mit dem Behandlung Lüftungssystem (keins, storm, tornado und thunder) sowie der Behandlung Genotypen (AA und BB) untersucht. Es wurde als Messwert Schlachtgewicht [kg] bestimmt. Paula ahnte schon, dass es komplexer wird, als sie mit ihrer Hausarbeit angefangen hat. Das es jetzt aber so kompliziert wird, hätte sie jetzt aber auch nicht gedacht. Paula kratzt sich am Kopf. Eventuell muss sie dann doch nochmal Hilfe in der statistischen Beratung holen. Jetzt versucht sie es aber erstmal selber.

Leider kennen sich Paula mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Lüftungssystem	3	238.28			
Genotypen	1	0.5			
Lüftungssystem:Genotypen	3	329.2			
Error	18	333.26			

4. Schätzen Sie den p-Wert der Tabelle ab. Begründen Sie Ihre Antwort! (3 Punkte)

	$\emph{F}_{lpha=5\%}$
Lüftungssystem	4.26
Genotypen	3.40
Lüftungssystem:Genotypen	5.23

- 5. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA? (2 Punkte)
- 6. Was sagt der Term Lüftungssystem:Genotypen aus? Interpretieren Sie das Ergebnis! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einen Leistungssteigerungsversuch wurden Lamas mit der Behandlung Flüssignahrung (ctrl, superIn und flOw) sowie der Behandlung Lüftungssystem (keins und thunder) untersucht. Es wurde als Messwert Fettgehalt [%/kg] bestimmt. Jetzt starrt Jonas mit auf die Rausgabe einer zweifaktoriellen ANOVA. Leider starrt seine Betreuerin in der gleichen Art Jonas zurück an. Das wird ein langer Nachmmittag, denkt er sich und kreuselt seinen Mund. 'Und was machen wir jetzt?' entfährt es ihm überrascht entnervt. Immerhin war geht es ja um seine Hausarbeit. Jonas hätte doch nichts mit Lamas machen sollen. Lamas – was soll das auch bedeutendes sein?

```
## Analysis of Variance Table
##
## Response: Fettgehalt
                                Df Sum Sq Mean Sq F value
##
                                                             Pr(>F)
## Flüssignahrung
                                 2 247.07 123.54 5.9129
                                                            0.01062
## Lüftungssystem
                                 1 36.47
                                           36.47 1.7454
                                                            0.20300
## Flüssignahrung:Lüftungssystem 2 679.16 339.58 16.2537 9.274e-05
## Residuals
                                18 376.06 20.89
```

Leider kennen sich Jonas mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (3 Punkte)
- 4. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! **(5 Punkte)**

In der untenstehenden Tabelle ist die Formel für den F-Test aus der ANOVA und die Formel für den Student t-Test dargestellt. In der ANOVA berechnen Sie die F-Statistik F_{calc} und in dem Student t-Test die T-Statistik T_{calc} .

$$F_{calc} = rac{MS_{treatment}}{MS_{error}}$$
 $T_{calc} = rac{ar{y}_1 - ar{y}_2}{s_p \cdot \sqrt{2/n_g}}$

- 1. Erklären Sie den konzeptionellen Zusammenhang zwischen der F_{calc} Statistik und T_{calc} Statistik! (2 **Punkte**)
- 2. Visualisieren Sie eine nicht signifikante F_{calc} Statistik sowie eine signifikante F_{calc} Statistik anhand von $MS_{treatment}$ und MS_{error} ! Beschriften Sie die Abbildung! (2 Punkte)
- 3. Erklären Sie an der Formel des F-Tests sowie an der Abbildung warum das Minimum der F-Statistik 0 ist! (2 Punkte)
- 4. Wenn die F-Statistik 0 ist, spricht dies eher für oder gegen die Nullhypothese? Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen eine zweifaktorielle ANOVA und erhalten einen signifikanten Interaktionseffekt zwischen den beiden Faktoren f_1 und f_2 . Der Faktor f_1 hat drei Level. Der Faktor f_2 hat dagegen nur zwei Level.

- 1. Visualisieren Sie in zwei getrennten Abbildungen eine schwache und eine starke Interaktion zwischen den Faktoren f_1 und f_2 ! (4 Punkte)
- 2. Erklären Sie den Unterschied zwischen den beiden Stärken der Interaktion! (2 Punkte)
- 3. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen bei einem Posthoc-Test? (2 Punkte)

Sie rechnen eine einfaktorielle ANOVA mit einem Faktor f_1 mit fünf Leveln. Nachdem Sie die einfaktorielle ANOVA gerechnet haben, erhalten Sie einen p-Wert von 0.078 und eine F Statistik mit $F_{calc}=1.2$. Als Sie sich die Boxplots der Behandlungen anschauen, stellen Sie fest, dass es eigentlich einen Mittelwertsunterschied zwischen dem dritten und ersten Level geben müsste. Die IQR-Bereiche überlappen sich nicht und die Mediane liegen auch weit vom globalen Mittel entfernt.

- 1. Erklären Sie die Annahme der Normalverteilung und die Annahme der Varianzhomogenität für eine ANOVA an einer passenden Abbildung! (3 Punkte)
- 2. Visualisieren Sie die Berechnung von F_{calc} am obigen Beispiel! (3 Punkte)
- 3. Erklären Sie das Ergebnis der obigen einfaktoriellen ANOVA unter der Berücksichtigung der Annahmen an eine ANOVA! (3 Punkte)

Teil V.

Multiple Gruppenvergleiche

85. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Moment, die haben ja das Gleiche gemacht wie wir!', ruft Steffen laut aus. Jonas schaut etwas verwundert. 'Das glaube ich eher nicht. Lass uns mal unsere Daten mit den Ergebnissen von Qui et al. (2017) vergleichen.', antwortet Jonas. In ein Stallexperiment mit Lamas wurde die Behandlung Flüssignahrung (*ctrl, superIn, compostIn* und *flOw*) auf den Messwert Schlachtgewicht [kg] untersucht. Jetzt müssen die beiden mal schauen, ob sie wirklich was Neues gefunden haben oder ob die Ergebnisse alle die gleichen sind wie schon bei Qui et al. (2017). Es ergab sich dann die folgende Tabelle der rohen p-Werte für die Vergleiche zu Qui et al. (2017).

Adjustierte p-Werte	Nullhypothese ablehnen?
	Adjustierte p-Werte

Leider kennen sich Steffen und Jonas mit der Adjustierung von p-Werten und dem Signifikanzniveau α überhaupt nicht aus. Deshalb brauchen die beiden bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Füllen Sie die Spalte Adjustierte p-Werte nach der Bonferoni-Methode aus! (2 Punkte)
- 4. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese abgelehnt werden kann! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Wie ist Ihr Vorgehen, wenn Sie anstatt der p-Werte das Signifikanzniveau α adjustieren? (2 Punkte)
- 6. Erklären Sie warum die p-Werte oder das Signifikanzniveau α bei multiplen Vergleichen adjustiert werden müssen! (2 **Punkte**)
- 7. Würden Sie die Adjustierung der p-Werte oder die Adjustierung des Signifikanzniveaus α vorziehen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jonas hatte in seiner Abschlussarbeit ein Kreuzungsexperiment durchgeführt. Soweit so gut. Dabei hat er sich mit Lamas beschäftigt. Angeblich der neueste heiße Kram... aber das ist wiederum was anderes. So richtig mitgenommen hat Jonas das Thema dann doch nicht. Hat er sich doch mit Genotypen (00, AA, AB und BB) und Gewichtszuwachs in der 1LW schon eine Menge an Daten angeschaut. Nach seiner Betreuerin soll er nun ein CLD bestimmen. Weder weiß er was ein CLD ist, noch war sein erster Gedanke mit Köln und die LGBTQ Community richtig...

Behandlung	Compact letter display
00	а
AA	b
AB	ac
BB	bc

Leider kennen sich Jonas mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand des Compact letter display (CLD) ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD) zu den Barplots! (1 Punkt)
- 5. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)
- 6. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten eines Student t-Tests, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Jessica sitzt schon etwas länger bei ihr Betreuer. So langsam macht Jessica sich Gedanken, ob sie nicht doch mal anmerken sollte, dass sie von CLD noch nie was gehört hat. Aber noch kann gelauscht werden, ein Ende ist erstmal nicht in Sicht! Jessica hatte in ihre Abschlussarbeit ein Kreuzungsexperiment durchgeführt. Deshalb sitzt sie hier. Also eigentlich nein, deshalb nicht. Jessica will fertig werden. Hat sie sich doch mit Genotypen (00, AA, AB und BB) und Fettgehalt [%/kg] schon eine Menge angeschaut. Jessica beugt sich leicht nach vorne. Nein, doch keine Pause. Weiter warten auf eine Lücke im Fluss... 'Wir müssen als erstes die Gruppen nach absteigender Effektstärke sortieren!', hört Jessica noch aus der Ferne bevor sie einnickt.

Genotypen	Fallzahl (n)	Mittelwert	Standardabweichung
00	9	9.82	1.99
AA	7	9.06	2.25
AB	8	15.29	2.47
BB	8	15.11	2.41

Leider kennen sich Jessica mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich ergebenden Barplots! (1 Punkt)
- 4. Berechnen Sie die Matrix der p-Werte anhand von Student t-Tests! (4 Punkte)
- 5. Ergänzen Sie das *Compact letter display (CLD)* zu den gezeichneten Barplots! Begründen Sie Ihre Antwort! **(4 Punkte)**
- 6. Interpretieren Sie das Compact letter display (CLD) für Jessica und Jonas! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Okay, dann nochmal für mich. Ich habe jetzt alles in SPSS gemacht, aber das Wichtigste, was gemacht werden soll, nämlich das CLD, das kann ich nicht in SPSS machen?', Nilufar muss sich echt beherrschen. Immerhin betreut ihre Betreuerin ja erst nicht seit gestern Abschlussarbeiten und wusste ja was gemacht werden soll! Nilufar hatte sich zwei Variablen mit Genotypen (00, AA, AB und BB) und Schlachtgewicht [kg] in ein Kreuzungsexperiment mit Lamas angeschaut. Jetzt möchte sie eigentlich fertig werden und nicht nochmal alles neu in \mathbb{R} und {emmeans} machen. Deshalb soll jetzt das CLD per Hand aus der Matrix der p-Wert abgeleitet werden. 'Ich glaube ich wechsel nochmal das Thema...', denkt Nilufar, verwirft dann aber den Gedanken.

	00	AA	AB	ВВ
00	1.0000000	0.8141722	0.0891114	0.5122440
AA	0.8141722	1.0000000	0.1800959	0.4139665
AB	0.0891114	0.1800959	1.0000000	0.0258606
BB	0.5122440	0.4139665	0.0258606	1.0000000

Leider kennen sich Nilufar mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand der Matrix der p-Werte ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD)! Begründen Sie Ihre Antwort! (4 Punkte)
- 5. Interpretieren Sie das Compact letter display (CLD) für Nilufar und Jonas! (2 Punkte)

Teil VI.

Der Chi-Quadrat-Test & Der diagnostische Test

89. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet.', liest Alex in seiner Mitschrift. So richtig helfen tut ihm das jetzt eherlichweise dann doch nicht. Alex hatte sich in ein Kreuzungsexperiment n=114 Beobachtungen von Lamas angeschaut. Dabei hat er als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Schlachtgewicht im Zielbereich [ja/nein] ermittelt. Am Ende möchte dann sein Betreuer gerne einen \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

38	11	
27	38	

Leider kennt sich Alex mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}_{\alpha=5\%}^2=3.841!$ Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie die \mathcal{X}^2 -Verteilung, wenn die H_0 wahr ist! Ergänzen Sie $\mathcal{X}^2_{\alpha=5\%}$ und \mathcal{X}^2_D in der Abbildung! **(2 Punkte)**
- 7. Berechnen Sie den Effektschätzer Cramers V! Interpretieren Sie den Effektschätzer! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende hätte Jonas dann doch einen normalverteilten Endpunkt in seinem Projektbericht nehmen sollen. Vor ihm liegen jetzt die Daten von zwei Variablen als Kategorien oder wie es in \P so schön heißt, als Faktoren. Aber immerhin, hofft er das was bei den Daten rausgekommen ist. Gezählt hat Jonas einiges mit n=139 Beobachtungen von Lamas. Zum einen hat er als Behandlung *Klimakontrolle [ja/nein]* bestimmt und zum anderen die Variable *Gewichtszuwachs erreicht [ja/nein]* ermittelt. Nun möchte sein Betreuer gerne einen \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

		78
		61
74	65	139

Leider kennt sich Jonas mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle, so dass *ein* signifikanter Effekt zu erwarten wäre! **(2 Punkte)**
- 4. Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests. Erklären Sie Ihr Vorgehen an einem Beispiel! (2 Punkte)
- 5. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 6. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des Standard Chi-Quadrat-Tests anwenden? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende hätte Paula dann doch einen normalverteilten Endpunkt in ihrer Abschlussarbeit nehmen sollen. Vor ihr liegen jetzt die Daten von zwei Variablen als Kategorien oder wie es in \mathbb{R} so schön heißt, als Faktoren. Aber immerhin, hofft sie das was bei den Daten rausgekommen ist. Gezählt hat Paula einiges mit n=139 Beobachtungen von Lamas. Zum einen hat sie als Behandlung *Klimakontrolle* [ja/nein] bestimmt und zum anderen die Variable *Fettgehalt erreicht* [ja/nein] ermittelt. Nun möchte ihre Betreuerin gerne einen \mathbb{R}^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen. Nach ihrem Experiment erhielt sie folgende 2x2-Kreuztabelle aus ihren erhobenen Daten.

```
## Klimakontrolle
## Fettgehalt erreicht ja nein
## ja 13 5
## nein 7 18
```

Dann rechnete Paula den Fisher-Exakt-Test auf der 2x2-Kreuztabelle in \mathbb{R} und erhielt folgende \mathbb{R} Ausgabe der Funktion fisher.test().

```
##
## Fisher's Exact Test for Count Data
##
data: Fettgehalt erreicht
## p-value = 0.005898
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.462677 32.500828
## sample estimates:
## odds ratio
## 6.352594
```

Leider kennt sich Paula mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung des 95% Konfidenzintervalls! (1 Punkt)
- 6. Interpretieren Sie das Odds ratio im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)

Die Prävalenz von Klauenseuche bei Wollschweinen wird mit 2% angenommen. In 75% der Fälle ist ein Test positiv, wenn das Wollschwein erkrankt ist. In 8% der Fälle ist ein Test positiv, wenn das Wollschwein nicht erkrankt ist und somit gesund ist. Sie werten 1000 Wollschweine mit einem diagnostischen Test auf Klauenseuche aus.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! Beschriften Sie auch die Äste des Doppelbaumes, mit denen Ihnen bekannten Informationen! (8 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Was sagt Ihnen die Wahrscheinlichkeit $Pr(K^+|T^+)$ aus? (1 Punkt)

Folgender diagnostischer Doppelbaum nach der Testung auf Klauenseuche bei Fleckvieh ist gegeben.

- 1. Füllen und beschriften Sie den untenstehenden Doppelbaum! (4 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 3. Berechnen Sie die Prävalenz für Klauenseuche! (2 Punkte)
- 4. Berechnen Sie die Sensifität und Spezifität des diagnostischen Tests für Klauenseuche! Erstellen Sie dafür zunächst eine 2x2 Kreuztabelle aus dem ausgefüllten Doppelbaum! (4 Punkte)

Teil VII.

Nicht parametrische Tests

94. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Die Anzahl an Nematoden wurde vor und nach einer Behandlung mit einem bioaktiven Dünger gezählt. Es ergibt sich folgende Datentabelle.

Vorher	Nachher	Differenz	Vorzeichen	Rang	Positiv Rang	Negativ Rang
12	11					
8	11					
8	12					
11	15					
8	10					
11	13					
14	15					
13	13					
11	11					
12	12					
11	13					
9	12					
11	14					
11	14					
10	13					

- 1. Ergänzen Sie die obige Tabelle mit den notwendigen Informationen, die Sie benötigen um einen Wilcoxon-Vorzeichen-Rang-Test zu rechnen! (4 Punkte)
- 2. Bestimmen Sie die Teststatistik W_D mit $W_D = \min(T_-; T_+)$ und berechnen Sie den erwarteten Wert

$$\mu_W = \frac{n_{!0} \cdot (n_{!0} + 1)}{4}!$$
 (2 Punkte)

- 3. Berechnen Sie anschließend den z-Wert mit $z = \frac{W_D \mu_W}{12.748}!$ (2 Punkte)
- 4. Liegt mit einer Signifikanzschwelle von $z_{\alpha=5\%}=1.96$ ein Unterschied zwischen den beiden Zeitpunkten vor? Begründen Sie Ihre Antwort! (2 **Punkte**)
- 5. Berechnen Sie die Effektstärke mit $r = |\frac{z}{\sqrt{n}}|$ und interpretieren Sie die Effektstärke! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einer Behandlung mit RootsGoneX wurde die mittelere Anzahl an Wurzeln an der invasiven Lupine (*Lupinus polyphyllus*) gezählt. Es ergab sich folgender Datensatz an mittleren Wurzelanzahl.

Treatment	Count
RootsGoneX	10.8
Kontrolle	8.4
RootsGoneX	11.3
Kontrolle	8.0
RootsGoneX	11.6
Kontrolle	7.8
Kontrolle	9.1
RootsGoneX	9.0
RootsGoneX	10.6
Kontrolle	8.5

Rechnen Sie einen Mann-Whitney-U-Test auf den obigen Daten.

1. Bestimmen Sie hierfür U_D mit $U_D = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1!$ (4 Punkte)

2. Geben Sie eine Aussage über die Signifikanz von U_D durch $z=\frac{U_D-\frac{n_1n_2}{2}}{\sqrt{\frac{n_1n_2(n_1+n_2+1)}{12}}}$ und dem kritischen Wert von $z_{\alpha=5\%}=1.96$. Begründen Sie Ihre Antwort! **(2 Punkte)**

3. Berechnen Sie die Effektstärke mit $r = |\frac{z}{\sqrt{n}}|$ und interpretieren Sie die Effektstärke! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Die Anzahl an Blüten der Vanilleplanze pro Box wurde nach der Gabe von zusätzlichen Phosporlösung (Kontrolle, Dosis 20 und Dosis 40) bestimmt. Es ergeben sich folgende nach der Anzahl der Blüten geordnete Daten.

Treatment	Count	Rang Kontrolle	Rang Dosis 20	Rang Dosis 40
Dosis 20	10.5			
Dosis 40	11.4			
Dosis 20	11.8			
Dosis 20	11.7			
Dosis 40	13.9			
Kontrolle	7.2			
Kontrolle	5.9			
Kontrolle	6.2			
Dosis 40	12.7			
Dosis 20	8.8			
Kontrolle	5.3			
Dosis 20	11.1			
Dosis 40	12.9			
Kontrolle	6.5			
Dosis 20	13.0			
Dosis 40	13.9			

Rechnen Sie einen Kruskal-Wallis-Test auf den obigen Daten.

- 1. Bestimmen Sie hierfür H_D mit $H_D = \frac{12}{n(n+1)} \left(\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \frac{R_3^2}{n_3} \right) 3(n+1)!$ (6 **Punkte**)
- 2. Geben Sie eine Aussage über die Signifikanz von H_D durch den kritischen Wert von $H_{\alpha=5\%}=5.99!$ (1 **Punkt**)
- 3. Wie lautet die statistische Nullhypothese die Sie mit dem Kruskal-Wallis-Test überprüfen? (1 Punkt)
- 4. Was sagt ein signifikantes Ergebnis des Kruskal-Wallis-Test in Bezug auf die einzelnen Gruppenvergleiche aus? (1 Punkt)
- 5. Nennen Sie das statistische Verfahren, welches Sie als Posthoc Test nach einem signifikanten Kruskal-Wallis-Test durchführen würden! (1 Punkt)

Teil VIII.

Lineare Regression & Korrelation

97. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Hatten wir das als Aufgabe nicht schon mal, das wir aus kontinuierlichen Daten eine Abbildung bauen sollten?', fragt Alex. Jessica schaut fragend zurück. 'Kann mich wie immer an nichts erinnern. Können wir trotzdem jetzt erstmal die Daten auswerten? Columbo?', antwortet Jessica leicht angespannt. Die beiden hatten ein Kreuzungsexperiment im Teuteburgerwald mit Lamas durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlichen Bewegungsscore [Movement/h] und Gewichtszuwachs in der 1LW. Jetzt haben die beiden eigentlich alles zusammen. Eigentlich...

Durchschnittlichen Bewegungsscore [Movement/h]	Gewichtszuwachs in der 1LW
20.0	33.9
10.7	16.9
22.9	34.0
17.7	27.6
20.1	30.2
22.5	35.3
23.2	37.4
20.8	37.4
21.0	29.6
21.6	33.2
18.5	34.0

Leider kennen sich Alex und Jessica mit der linearen Regression für kontinuierliche Daten überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen! (2 Punkte)
- 3. Schätzen Sie die Regressionsgleichung aus der obigen Abbildung ab! (2 Punkte)
- 4. Beschriften Sie die Grade mit den statistischen Maßzahlen der linearen Regressionsgleichung! (2 Punkte)
- 5. Liegt ein Zusammenhang zwischen x und y vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Grade aussehen? Antworten Sie mit einer Skizze der Geraden! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen!', ruft Jonas. 'Ich sehe nur zwei Zeilen und keine Punkte. Wie soll ich da denn jetzt eine Gerade durchzeichnen?', fragt Nilufar. Jonas atmet schwer ein und starrt auf die Rausgabe der Funktion lm(). Die beiden hatten ein Stallexperiment in der Uckermark mit Lamas durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Bewegungsscore [Movement/h] und Fettgehalt [%/kg]. Jetzt will die Betreuung von den beiden einmal die Visualisierung der Daten und auch gleich noch die lineare Regression gerechnet bekommen. Das haben beide in Regression, aber wie soll das jetzt gehen?

term	estimate	std.error	t statistic	p-value
(Intercept)	-3.26	3.59		
Durchschnittlicher Bewegungsscore	1.05	0.37		

Leider kennen sich Jonas und Nilufar mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung der lm()-Ausgabe. Beschriften Sie die Achsen! (2 Punkte)
- 3. Beschriften Sie die Visualisierung mit den statistischen Maßzahlen der der lm()-Ausgabe! (2 Punkte)
- 4. Formulieren Sie die Regressionsgleichung! (1 Punkt)
- 5. Ergänzen Sie die t Statistik in der lm()-Ausgabe! (2 Punkte)
- 6. Ergänzen Sie den p-Wert in der lm()-Ausgabe mit $T_{\alpha=5\%}=1.96!$ (2 Punkte)
- 7. Interpretieren Sie den p-Wert im Kontext der wissenschaftlichen Fragestellung! (1 Punkt)
- 8. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!


```
##
## Call:
## Gewichtszuwachs ~ Mittlere_Anzahl
##
## Residuals:
                10 Median
##
       Min
                                30
                                        Max
## -2.6811 -0.9746 -0.0060 1.0285
                                    3.3808
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     6.3290
                                2.7430
                                          2.307
                                                  0.0347
## Mittlere_Anzahl
                     2.1045
                                0.2613
                                          8.054 5.08e-07
##
## Residual standard error: 1.55 on 16 degrees of freedom
## Multiple R-squared: 0.8022, Adjusted R-squared: 0.7898
## F-statistic: 64.87 on 1 and 16 DF, p-value: 5.078e-07
```

Leider kennen sich Paula und Steffen mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (2 Punkte)
- 3. Interpretieren Sie die p-Werte im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 4. Visualisieren Sie die Verteilung der Residuen! (2 Punkte)
- 5. Ist die Annahme der Normalverteilung erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 6. Erklären Sie kurz den Begriff R-squared! Was sagt Ihnen der Wert 0.8 aus? (2 Punkte)

Sie erhalten folgende R Ausgabe der Funktion cor.test().

```
##
## Kendall's correlation
##
## data: drymatter and water
## t = -4.614, df = 8, p-value = 0.001724
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9644665 -0.4812858
## sample estimates:
## cor
## -0.8525605
```

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (2 Punkt)
- 2. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! Erklären Sie eine der Eigenschaften an einem Beispiel! (2 Punkte)
- 3. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Visualisieren Sie die Teststatistik und den p-Wert! Beschriften Sie die Abbildung! (2 Punkte)
- 5. Sind die Variablen drymatter and water normalverteilt? Begründen Sie Ihre Antwort! (1 Punkt)

Im folgenden sehen Sie drei leere Scatterplots. Füllen Sie diese Scatterplots nach folgenden Anweisungen.

- 1. Zeichnen Sie für die angegebene ρ -Werte eine Gerade in die entsprechende Abbildung! (3 Punkte)
- 2. Zeichnen Sie für die angegebenen R^2 -Werte die entsprechende Punktewolke um die Gerade. (3 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R²-Werte über das jeweilige Modell? (3 **Punkte**)

Pearsons $\rho = 0.5$

10.0

7.5

5.0

2.5

0.0

$$R^2 = 0.75$$

Pearsons $\rho = -0.25$

2.5

$$R^2 = 0.25$$

0.0

5.0

7.5

Im folgenden sehen Sie vier Scatterplots. Ergänzen Sie die Überschriften der jeweiligen Scatterplots.

- 1. Schätzen Sie die ρ -Werte in der entsprechenden Abbildung! (4 Punkte)
- 2. Schätzen Sie die R^2 -Werte in der entsprechenden Punktewolke um die Gerade! (4 Punkte)
- 3. Sie rechnen ein statistisches Modell. Was sagen Ihnen die R^2 -Werte über das jeweilige Modell? (1 **Punkt**)

Sie rechnen eine lineare Regression um nach einem Feldexperiment den Zusammenhang zwischen Trockengewicht kg/m^2 (*drymatter*) und Wassergabe l/m^2 (*water*) bei Spargel zu bestimmen. Sie erhalten folgende Datentabelle.

.id	drymatter	water	.fitted	.resid
1	12.3	2.0	11.0	
2	32.9	13.8	29.8	
3	16.7	5.8	17.0	
4	26.4	11.8	26.7	
5	30.9	14.4	30.7	
6	17.1	7.9	20.5	
7	21.3	8.0	20.5	
8	30.2	14.0	30.1	
9	31.7	15.8	33.1	

- 1. Ergänzen Sie die Werte in der Spalte .resid in der obigen Tabelle. Geben Sie den Rechenweg und Formel mit an! (4 Punkte)
- 2. Zeichnen Sie den sich aus der obigen Tabelle ergebenden Residualplot. Beschriften Sie die Abbildung! **(4 Punkte)**
- 3. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)

Zeichen Sie in die drei untenstehenden, leeren Abbilungen die Zeile des Regressionskreuzes der Normalverteilung. Wählen Sie die Beschriftung der y-Achse sowie der x-Achse entsprechend aus! (6 Punkte)

- 2. Ergänzen Sie die jeweiligen statistischen Methoden zu der Abbildung! (2 Punkte)
- 3. Welchen Effektschätzer erhalten Sie aus der entsprechend linearen Regression bzw. den Gruppenvergleich? Geben Sie ein Beispiel! (2 Punkte)
- 4. Wenn Sie keinen Effekt erwarten, welchen Zahlenraum nimmt dann der Effektschätzer ein? Geben Sie ein Beispiel! (2 Punkte)

Ein Feldexperiment wurde mit n=200 Pflanzen durchgeführt. Folgende Einflussvariablen (x) wurden erhoben: height, block und center. Als mögliche Outcomevariablen stehen Ihnen nun folgende gemessene Endpunkte zu Verfügung: drymatter, yield, count, quality score und dead.

- 1. Wählen Sie ein Outcome was zu der Verteilungsfamilie Gaussian gehört! (1 Punkt)
- 2. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} in der Funktion glm() üblich ist *ohne Interaktionsterm*! (3 Punkte)
- 3. Schreiben Sie das Modell in der Form $y \sim x$ wie es in \mathbb{R} üblich ist und ergänzen Sie einen Interaktionsterm nach Wahl! (1 Punkt)
- 4. Zeichen Sie eine *schwache* Interaktion in die Abbildung unten für den Endpunkt *yield*. Ergänzen Sie eine aussagekräftige Legende. Wie erkennen Sie eine Interaktion? Begründen Sie Ihre Antwort! **(4 Punkte)**

Teil IX.

Experimentelles Design

106. Aufgabe (10 Punkte)

Nach einem erfolgreichen Pilotversuch zur Wirksamkeit von Fe-Düngern bei Brokoli in einem Feldexperiment wollen Sie nun den Versuch eine Nummer größer anlegen. Dafür entscheiden Sie sich für ein faktorielles Versuchsdesign. In Ihrem Hauptversuch stellt die Wirksamkeit von Fe-Düngern den ersten Faktor mit insgesamt 3 Leveln dar. Der zweite Faktor mit der Sorte beinhaltet 4 Level.

Im ersten Schritt überlegen Sie ein einfaches experimentelles Design zu probieren. Sie entscheiden sich für das *Randomized complete block design (RCBD)*.

- 1. Skizieren Sie das Randomized complete block design (RCBD) für Ihren Versuch! (4 Punkte)
- 2. Skizieren Sie eine Datentabelle für den Versuch mit zwei Wiederholungen! (2 Punkte)
- 3. Skizieren Sie eine Abbilung mit Barplots und einem angenommenen normalverteilten Outcome! (4 Punkte)

Teil X.

Mathematik

107. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte¹.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 0.9mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 13m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser in *m* der Eiche im Jahr 1840 als Herodot in der Eiche versteckt werden sollte? **(2 Punkte)**
- 2. Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 190cm, eine Breite von 95cm sowie eine Länge von 240cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (1 Punkt)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *mühsam* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in *cm*! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! **(2 Punkte)**
- 5. Unter einer Dicke der Eichenwand von 25*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! (1 Punkt)

¹Die Quelle der Inspiration für die Aufgabe war eine Fahrt an die Ostsee und folgender Artikel: Entdecke das erste Nationale Naturmonument Deutschlands - Ivenacker Eichen und Hutewald

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 200 Sonnenblumen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Sonnenblumen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Sonnenblumen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 9cm und eine Höhe von 7cm. Der Kubikmeterpreis für Torf liegt bei 310 EUR.

- 1. Skizzieren Sie den Versuchsplan auf vier Tischen im Gewächshaus! (2 Punkte)
- 2. Berechnen Sie die benötigte Anzahl an Pflanztöpfen, wenn Sie Randpflanzen mit berücksichtigen wollen! (1 Punkt)
- 3. Welche Pflanztopffläche in m^2 gegeben der Anzahl an Pflanztöpfen inklusive Randpflanzen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (3 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf in Liter *l*, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von *einem Zylinder* für die Pflanztöpfe aus! **(3 Punkte)**
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Rinderstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Rinderstall hat eine Höhe h_{ν} von 5m. Die hintere Seite des Rinderstall hat eine Höhe h_{b} von 9m. Der Rinderstall hat eine Tiefe t von 12m und eine Breite b von 50m.

- 1. Skizzieren Sie den Rinderstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! **(2 Punkte)**
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Rinderstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1.2m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 12t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 20% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80° C eine Dichte von $235kg/m^3$. Bei -100° C hat Methan eine Dichte von $290kg/m^3$. Sie betrieben Ihre Anlage bei -85° C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 Punkte)
- 5. Berechnen Sie die maximale Höhe h_{max} in m für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von einer ältern Dame mit aufgespannten Regenschirm. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Netto über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile². Tja, die Deutschen und Südamerika

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von einer ältern Dame mit aufgespannten Regenschirm?

- 1. Wenn 6 Blaubeerschalen 10.74 Euro kosten, wie viel kosten 11 Schalen? (1 Punkt)
- 2. Wenn Sie die 11 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 2.89 EUR können Sie sich dann noch für 200 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Netto über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 1801 Wasser. Eine Strauchtomate wiegt 90 115g.
- Ein Kilo Salat benötigt 140l Wasser. Ein Salatkopf wiegt 280 530g.
- Ein Kilo Avocado benötigt 980l Wasser. Eine Avocado wiegt 130 380g.
- Ein Kilo Blaubeeren benötigt 880l Wasser. Eine Blaubeere wiegt 3 3.8g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (2 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2021 blieben die Erträge von Blaubeeren mit 7.9×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 7.2%. Die Exporte für Avocados fielen in dem gleichen Zeitraum um 18.1% auf 1.9×10^5 t.

4. Wie viele Tonnen Wasser hat Chile in dem Exportjahr 2020 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur zwei Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 48 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 3 - 12 Liter pro Minute Händewaschen und 9 - 14 Liter pro Spülgang.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von einer ältern Dame mit aufgespannten Regenschirm erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! **(1 Punkt)**

²Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Kardaschow-Skala • Dyson-Sphäre • Hohlerde • Entropie • Proton $r_P = 1.7 \times 10e - 15$ • Wasserstoff $r_H = 5.3 \times 10e - 11$

Die Dampfnudelerde "Was für einen Unsinn!", rufen Sie. Jetzt haben Sie kostbaren Schlaf prokrastiniert um einem Ernährungswissenschaftler auf YouTube über die Erde als Dampfnudel zu lauschen. Irgendwie passt es dann doch mit der Analogie. Übermüdet müssen Sie darüber nachdenken, warum vor 69 Millionen Jahren die Dinosaurier - so groß sie auch waren - nicht von der Schwerkraft zu Boden gerissen wurden. Hat der Dampfplauderer etwa recht und war die Schwerkraft vor Millionen von Jahren eine andere? Sind deshalb alle Lebewesen auf der Erde heutzutage so viel kleiner, weil die Schwerkraft größer ist als damals? War die Erde kleiner und hatte weniger Masse? Oder ist es nur ein Rechenfehler wie bei der Theorie der Hohlerde von Edmond Halley aus dem 17.–18. Jahrhundert? Müde reiben Sie sich die Augen. So wird es nichts mehr mit dem Schlafen, dann können Sie auch mal etwas rechnen³.

Betrachten wir die Schwerkraft oder Gewichtskraft, die auf Lebewesen damals und heute gewirkt haben soll. Nehmen Sie für die Fallbeschleunigung g der Erde heutzutage einen Wert von 9.87m/s^2 an. Im Weiteren hat die Erde einen ungefähren Durchmesser von $1.235 \times 10^4 \text{km}$ und eine mittlere Dichte ρ von 5.86g/cm^3 . Das Gewicht von einem heute lebenden Waldelefanten mit 2.7 t liegt bei 6t und das Gewicht von einem Tyrannosaurus rex (T. rex) bei 4.5 t bis 8 t.

- 1. Welchen Durchmesser müsste die Erde vor 69 Millionen Jahren gehabt haben, wenn Dinosaurier und Elefanten die gleiche Gewichtskraft $\overrightarrow{F_G}$ damals und heute erfahren hätten? Beantworten Sie die Frage anhand der folgenden Teilaufgaben!
 - a) Berechnen Sie die Fallbeschleunigung von vor 69 Millionen Jahren unter der obigen Annahme gleich wirkender Gewichtskraft $\overrightarrow{F_G}$ auf Elefant und Dinosaurier! (1 Punkt)
 - b) Berechnen Sie Masse der heutigen Erde! (2 Punkte)
 - c) Schließen Sie über die Masse auf den Durchmesser der Erde vor 69 Millionen Jahren! (2 Punkte)
- 2. Beantworten Sie die Eingangsfrage mit 1-2 Antwortsätzen! (1 Punkt)

Die Distanz zwischen Sonne und Erde entspricht 1.05 astronomische Einheiten (AE). Die Einheit 1 AE wird mit 1.52×10^8 km angegeben. Der *massebehaftete* Sonnenwind besteht aus 79% Wasserstoffkernen mit einer molaren Masse von 1.01g/mol, 9% Heliumkernen mit 4.32g/mol sowie 12% weiteren Atomkernen mit 152.01g/mol. Die Teilchendichte bei Eintritt in die Erdatmosphäre liegt zwischen 0.4 bis 100 Teilchen cm $^{-3}$ pro Sekunde mit einer mittleren Teilchendichte von 8cm $^{-3}$ pro Sekunde.

Lösen Sie den folgenden Aufgabenteil mit einer aussagekräftigen Skizze!

- 4. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die gesamte Erde pro Sekunde treffen! (2 Punkte)
- 5. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die Sonne pro Sekunde in alle Richtungen aussendet! (2 Punkte)
- 6. Berechnen Sie die Masse, die die Erde pro Jahr durch die *massebehafteten* Teilchen des Sonnenwind zunimmt! (2 Punkte)

³Die Quelle der Inspiration für die Aufgabe war folgender Artikel: "Skeptische Anmerkungen — Die Erde als Dampfnudel" in Der Humanistische Pressedienst

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Entschuldigung, ist das Ihre Feder in meinem Auge? So hört man häufiger höfliche Puten in Mastställen sagen. Das ist natürlich etwas ungünstig, den dann kommt es zu Picken und Kannibalismus. Denn wenn der Nachbar nervt, dann muss zu Maßnahmen gegriffen werden. Kennt jeder aus einer mittelmäßigen Wohngemeinschaft. Das wollen wir aber als vorsorgliche Puten-Halter:innen nicht⁴. Betrachten wir also einmal das Platzangebot (eng. *space allowance*, abk. *SA*) der Puten für vier Tätigkeiten und versuchen die notwendige Fläche zu optimieren. Wie immer gibt es dafür eine mathematische Formel:

$$SA = \sum_{i=1}^{n} (A_i \times PB_i)$$
 $A_i = \pi \times (r_i + R_i)^2$

mit

- SA dem benötigten Platzangebot aller aufsummierten Verhalten i.
- Ai dem benötigten Platz für ein Verhalten i.
- PBi dem Anteil des Auftretens eines Verhaltens i.
- r_i dem Radius Pute plus dem benötigten Radius für das Verhalten i.
- Ri dem notwendigen Abstand zu den Nachbarn für das Verhalten i.
- i dem Verhalten: (1) preening, (2) walking, (3) sitting und (4) drinking/eating.

In der folgenden Tabelle 1 sind die Werte für r_i , R_i und PB_i für ein spezifisches Verhalten i aus drei wissenschaftlichen Veröffentlichungen dargestellt.

	Aldridge et al. (2021)	Baxter et al. (2022)	Jabcobs et al. (2019)
preening	28cm; 21cm; 50.1%	25cm; 41cm; 64.1%	38cm; 35cm; 50.1%
walking	38cm; 24cm; 1.8%	41cm; 20cm; 2.1%	32cm; 25cm; 3.5%
sitting	36cm; 26cm; 8.1%	33cm; 24cm; 5.2%	48cm; 22cm; 5.1%
drinking/eating	29cm; 39cm; 13.2%	35cm; 31cm; 16.4%	29cm; 20cm; 12.8%

- 1. Erstellen Sie eine zusammenfassende Tabelle mit den mittleren Werten für r, R und PB aus der obigen Tabelle 1 für die jeweiligen Verhalten! (3 Punkte)
- 2. Ergänzen Sie eine Spalte mit dem benötigten Platz A für das jeweilige Verhalten, welches sich aus den mittleren Werten ergibt! (1 Punkt)
- 3. Berechnen Sie das benötigte Platzangebot SA für alle betrachteten Verhalten! (1 Punkt)
- 4. Skizzieren Sie die Werte r_i , R_i und A_i für zwei nebeneinander agierende Puten für ein Verhalten i. Nutzen Sie hierfür vereinfachte geometrische Formen! (2 Punkte)
- 5. Sie entnehmen der Literatur folgende Aussage zur Verteilung der Puten in der Fläche A: "Assuming, that the animals will optimally and equally distribute in an area A, we observe a small part, which is not covered. This area is called ω and is calculated with $\omega = \frac{A}{0.9069}$." Veranschaulichen Sie die Fläche ω in einer aussagekräftigen Abbildung! (1 Punkt)
- 6. Ein Tier braucht Platz für sich selbst. Berechnen Sie nun die Körperfläche α , die ein Tier einnimmt. Welche Annahmen haben Sie für die Berechnung der Körperfläche getroffen? (2 Punkte)

⁴Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftliche Artikel: EFSA Panel on Animal Health and Welfare, et al. (2023) Welfare of broilers on farm. EFSA Journal 21.2.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 42 Tagen die ersten Symptome ein; die ersten Toten sind nach 60 Tagen zu beklagen; nach 110 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 222 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Schätzen Sie die Überlebenswahrscheinlichkeit nach 95 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $4000\mu g/50mg$ Vitamin C. Der Bedarf liegt bei 105mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in *t* an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 18 Tage über den Pazifik! **(3 Punkte)**
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Event Horizon – Am Rande des Universums Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{28} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 2500m kollabiert, wird die Sonne 40% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. Sie haben folgende Formeln für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{grav} gegeben⁵.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \qquad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- ullet m_f , gleich der Masse [kg] des fliehenden Objektes
- m_s, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- G, gleich der Gravitationskonstante mit $6.165 \cdot 10^{-11} m^3 (kg \cdot s^2)^{-1}$

Im Folgenden wollen wir uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (1 Punkt)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (1 Punkt)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Gehen Sie von einer Lichtgeschwindigkeit von $2.9 \times 10^8 m/s$ aus. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! (2 **Punkte**)
- 6. Ein Flugzeug und eine Feder stürzen aus großer und gleicher Höhe in ein schwarzes Loch. Welches der beiden Objekte überschreitet zuerst den Ereignishorizont des schwarzes Loches? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

⁵Die Quelle der Inspiration für die Aufgabe war ein Montagnachtfilm: Event Horizon – Am Rande des Universums

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Fermi Paradoxon Der Kernphysiker Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: "Where is everybody?". Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten? Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?⁶

Wir treffen folgende Annahmen. Eine außerirdische Zivilisation schickt drei Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $6.3587 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 750 Jahren ist die Replikation abgeschlossen und wiederum drei Sonden werden ausgesendet. Gehen Sie von 4.24 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 1.5×10^{11} Sterne in der Milchstraße. Nehmen Sie eine Lichtgeschwindigkeit von $2.9 \times 10^8 m/s$ an.

- Skizzieren Sie in einer Abbildung die ersten drei Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer und der Anzahl an Sonden für jeden Schritt der Vervielfältigung! (4 Punkte)
- Berechnen Sie die theoretische Anzahl an Vervielfältigungsschritten die benötigt werden um mit einem einzigen Vervielfältigungsschritt die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 3. Berechnen Sie die Dauer, die eine außerirdische Zivilisation annährungsweise benötigt um die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 4. Bei einem vermutetet Alter der Erde von 4.1×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 9×10^7 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)

⁶Die Quelle der Inspiration für die Aufgabe war folgender Wikipediaeintrag: Fermi-Paradoxon

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die oldenburgischen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 72 Grad im Vergleich zu den ägyptischen Pyramiden mit 51 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 44 Königsellen. Eine Königselle misst 52.4cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 44 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 5cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m^3 ! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 2 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Rückenschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 85% aus. In eine Schubkarre passen 95 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 9°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die oldenburgische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Versicherungsverteter*) mit, das die Pyramide zu steil sei und somit nicht in die oldenburgische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 5° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Geocaching – Von Satelliten und Plastikdosen Es ist Wochenende und das Wetter ist *sweet*. Sie schwingen sich auf Ihr Cachermobil um mit 15km/h, geleitet von modernster Satellietentechnologie und einem Supercompter aus dem Jahr 2000 in Ihren Händen, Plastikdosen in der Natur und an sehenswerten Orten zu finden. Sie wollen diesmal endlich die abwärts Terrainchallenge durchführen. Die Reihenfolge der Caches nach Terrainwertung gibt daher die von Ihnen abzufahrenden Orte vor. Die Terrain- und Schwierigkeitswertungen laufen von 1 (leichteste Wertung) bis 5 (schwierigste Wertung) in 0.5 Schritten. Folgende Informationen zu den Orten und den entsprechenden Caches stehen Ihnen für Ihre Planung der Route zu Verfügung⁷.

Ort	Cache	Wertung (S T G)
Α	GC2PUCW	4.5 2.5 Mikro
В	GCHIPYJ	4.0 3.0 Klein
С	GCZVYNV	3.5 1.5 Klein
D	GCMSMPT	2.0 3.5 Klein
Е	GCWJKSZ	1.5 4.0 Klein

Im Weiteren sind Ihnen folgende Informationen zu den Entfernungen der Orte zugänglich. Der Entfernungsvektor \overrightarrow{AC} ist 6km. Im Weiteren ist Ihnen der Entfernungsvektor \overrightarrow{CB} mit 4.5km bekannt. Der Entfernungsvektor \overrightarrow{BE} ist das 2.1-fache des Entfernungsvektor \overrightarrow{CB} . Wenn Sie von dem Ort A den Ort C anpeilen, so liegt der Ort B ungefähr 30° nördlich. Wenn Sie von dem Ort C den Ort B anpeilen, so liegt der Ort D ungefähr 35° östlich. Vom Ort B betrachtet, bilden die Orte C und D einen rechten Winkel am Ort B. Der Ort B liegt auf gerader Linie zwischen den Orten C und E. Somit liegt der Ort E nördlich von B. Die Strecke zwischen A und E ist nicht passierbar. Sie starten an dem Ort E Ihre Cachertour.

- 1. Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Orte und Caches. Bezeichnen Sie die Strecken und die Winkel Ihrer Skizze entsprechend! (2 Punkte)
- 2. Welche Strecke in km legen Sie bei der Bewältigung der abwärts Terrainchallenge zurück? (5 Punkte)
- 3. Gehen Sie von einer zusätzlichen Suchzeit in Stunden für die Caches an den jeweiligen Orten zur reinen Reisezeit mit Ihrem Cachermobil aus. Die Suchzeit in Stunden für jeden einzelnen Cache wird durch die Funktion

$$Suchzeit = 0.05 + 0.15 \cdot Schwierigkeit$$

beschreiben. Wie lange in Stunden benötigen Sie um die abwärts Terrainchallenge zu erfüllen? (3 Punkte)

4. An der höchsten Schwierigkeit müssen Sie angeln. Ihre Angel ist ausgefahren 7m lang. Erreichen Sie einen Cache in der Höhe von 8.6m? Berechnen Sie dazu Ihre maximale mögliche Angelhöhe! Welche Annahmen mussten Sie treffen um die Aufgabe zu lösen? (2 Punkte)

⁷Die Quelle der Inspiration für die Aufgabe war folgende Tätigkeit: Geocaching – Mach mit bei der weltweit größten Schatzsuche.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Brot aus Luft • Walöl • Haber-Bosch-Verfahren • 1. Weltkrieg • 40% N im menschlichen Körper • Positivist

Die atmende Wand und Brot aus Luft Als Kellerkind vom Dorf wollen das Ausmaß der Radonbelastung in ihrem Kellerzimmer bestimmen und lüften daher nicht. Spart dann auch Energie und lüften wird sowieso überschätzt. Während einer Messperiode von 7:00 Uhr bis 23:00 bestimmen Sie dreimal automatisch die Radonbelastung in Ihrem Kellerraum in Bq/m^3 . Es ergibt sich folgende Abbildung⁸.

1. Wie lange dauert es in Stunden bis Sie eine kritische Belastung von $300Bq/m^3$ in Ihrem ungelüfteten Kellerraum erreicht haben? (2 Punkte)

Radon zerfällt mit einer Halbwertszeit von 3.7d zu Polonium. Polonium wiederum zerfällt mit einer Halbwertszeit von 160d zu Blei. Nur Radon und Polonium tragen zur radioaktiven Strahlenbelastung bei.

2. Wie lange dauert es in Stunden bis Ihre kritische Radonbelastung von $300Bq/m^3$ auf unter $110Bq/m^3$ gefallen ist? **(4 Punkte)**

Folgende Tabelle enthält die Informationen zur Zusammensetzung der normalen Umgebungsluft.

	Vol-%	M [g/mol]	ppm
Stickstoff	78.1	28.4	
Sauerstoff	21.3	16.5	
Kohlenstoffdioxid	0.035	11.8	

3. Rechnen Sie die Volumenprozente (Vol-%) der Umgebungsluft in die entsprechenden ppm-Werte um und ergänzen Sie die berechneten ppm-Werte in die Tabelle! (1 Punkt)

Während Sie Ihr etwas pappiges Toastbrot mampfen kommt Ihnen die Dokumentation über Brot aus Luft in den Sinn. Sie denken darüber ein wenig nach. Für die Umwandlung von Stickstoff N_2 mit Wasserstoff H_2 zu Ammoniak NH_3 gilt folgende Reaktionsgleichung⁹:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Ein Mol eines beliebigen Gases hat bei normalen Umweltbedingungen ein Volumen von 22.4 Liter.

- 4. Welche Masse an Ammoniak in Kilogramm kg können Sie aus einem Kubikmeter m^3 Luft unter normalen Umweltbedingungen gewinnen? (2 Punkte)
- 5. Wieviel Ammoniak in mol erhalten Sie aus einem Kubikmeter Luft? (1 Punkt)

⁸Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Atmende Wand

⁹Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Haber-Bosch-Verfahren – Brot aus Luft

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Finsternis Ihr Studentenjob war nach Ladenschluss bei Penny die Regale einzuräumen. Dabei ist Ihnen in der Auslage der Sonderangebote das Necronomicon¹⁰ in die Hände gefallen. Nun sind Sie eine Magierin der Zeichen geworden! Also eigentlich können Sie nur Mathe und das dämliche Necronomicon hat Sie in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 1091 n. Chr. für den neuen Lehnsherren Fürsten Arthur. Sie bauen natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Ihnen stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung.

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- v, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit $9.81\frac{m}{s^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 10mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 10m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 10m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 3.5mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 1.7mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 2.3×10^5 Bleikugeln zusammen. Blei hat eine Dichte von $15.1q/cm^3$.

4. Wie schwer in Kilogramm kg sind die 2.3×10^5 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 700 Bleikugeln produzieren wollen und die Bleikugel im Fall 1.2cm Abstand haben müssen? (1 Punkt)

 $^{^{10}}$ Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Kaninchen Leider hat es mit Ihrer Faultierpension in Down Under nicht geklappt. War vielleicht auch nicht *so* die beste Idee... aber dafür haben Sie eine Neue! Oder wie es Mike Tyson zugeschrieben wird: "Ich wurde nie niedergeschlagen, ich war immer am Aufstehen!". Daher machen Sie jetzt einen Großhandel mit Kaninchenfleisch und damit dem teuersten Fleisch in Australien auf. Moment, hopsen hier nicht, seit Thomas Austin im Jahr 1875 ungefähr 32 Kaninchen entlassen hat, Millionen von Kaninchen rum? Wieso ist das Kaninchenfleisch dann so exklusiv? Dem wollen wir mal mathematisch nachgehen!¹¹

Forscherinnen fand folgende Sättigungsfunktion für das jährliche Wachstum der gesamten Kaninchenpopulation im westlichen Australien.

$$f(t) = 1.1 \times 10^{10} - 1.4 \times 10^9 \cdot 2.3^{-0.1 \cdot t + 2.4}$$

- 1. Skizzieren Sie die Sättigungsfunktion annäherungsweise in einer Abbildung! (1 Punkt)
- 2. Wie viele Kaninchen können nach der Sättigungsfunktion maximal im westlichen Australien leben? Ergänzen Sie den Wert in Ihrer Abbildung! (2 Punkte)
- 3. Wie viele Millionen Kaninchen leben nach der Sättigungsfunktion nach 9 Jahren auf dem australischen Kontinent? (1 Punkt)

Um den Kaninchen Einhalt zu gebieten wurde das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) in 20 Kaninchen ausgebracht. Da die Kaninchen keine Maßnahmen gegen die Ausbreitung vornehmen können, verläuft die Ausbreitung mit einem wöchentlichen Wachstumsfakor von 1.8 nach folgender Formel.

$$N(t) = N(0) \cdot a^t$$

3. Wie viele Wochen benötigen die Viren um theoretisch die gesamte Kaninchenpopulation nach 7 Jahren Wachstum zu durchseuchen? (1 Punkt)

Das Myxoma Virus und das RHDV töten 98.5% der Kaninchenpopulation innerhalb weniger Wochen.

4. Wie lange in Jahren dauert es bis eine Kaninchenpopulation nach einer Viruspandemie wieder auf 70% der gesättigten Kaninchenpopulation angewachsen ist? (2 Punkte)

Thomas Austin entließ die Kaninchen im äußersten Süden von Australien. Australien hat eine West-Ost-Ausdehnung von 4000km und eine Nord-Süd-Ausdehnung von knapp 3400km. Die Kaninchen breiten sich radial mit einer Geschwindigkeit von 9.8km pro Jahr aus.

5. Wie lange dauert es in Jahren bis die Kaninchen jeden Ort in Australien erreicht haben? Lösen Sie die Aufgabe unter der Verwendung einer schematischen Skizze! (2 Punkte)

Eine jährliche Impfung gegen das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) kosten 10\$ pro Tier und der durchführende Arzt verlangt ca. 42\$ pro Tier.

6. In Ihrem Stall leben 900 Mastkaninchen. Mit welchen jährlichen Zusatzkosten für die Impfungen der Kaninchen müssen Sie daher kalkulieren? (1 Punkt)

¹¹Die Quelle der Inspiration für die Aufgabe war der folgendes YouTube Video: Incredible Stories – Why don't they eat wild rabbits in Australia? They have millions of them! The reason is surprising...

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Ostfriesland. Unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer des Esels Frida und Ihnen. Grünes Gras unter Ihren Füßen und ein strammer Wind im Gesicht, egal wohin Sie schauen. Ein schmatzendes Geräusch ertönt unter Ihnen. Sie sinnieren, sollten Sie Ihre weiten Graslandschaften jetzt schon düngen? Dafür benötigen Sie die *Grünlandtemperatur*! Die Grünlandtemperatur (GLT) ist die Summe aller positiven Tagesmitteltemperaturen seit Jahresbeginn. Ab einer GLT von 200° kann mit der Stickstoffdüngung begonnen werden. Sie sehen nicht ein, Geld für einen Agrarmetrologen zu bezahlen. Also rechnen Sie mit folgenden Informationen zu Monatsmultiplikatoren des GLT-Wertes: Januar mit 0.6×, Februar mit 0.7× und März mit 1.05×. Sie haben noch im letzten Jahr folgende Temperaturen gemessen.

Datum	C°
01. Jan 2023	0.3
01. Feb 2023	1.5
01. Mrz 2023	3.1
01. Apr 2023	6.1

- 1. Erstellen Sie eine Skizze aus den Informationen aus der Temperaturtabelle! (1 Punkt)
- 2. Stellen Sie die linearen Funktionen $f_1(t)$, $f_2(t)$ und $f_3(t)$ aus der obigen Temperaturtabelle auf! (1 **Punkt**)
- 3. Bestimmen Sie die Stammfunktionen $F_1(t)$, $F_2(t)$ und $F_3(t)$ für Ihre linearen Funktionen aus der obigen Temperaturtabelle! **(1 Punkt)**
- 4. Osterglocken beginnen ab einer GLT von 200°C zu blühen. An welchem Tag im 1. Quartal des Jahres 2023 war dies der Fall? *Ignorieren Sie ein eventuelles Schaltjahr in Ihrer Berechnung.* **(4 Punkte)**

Auf dem Weg zu Ihrer Jonagoldplantage wurden Sie mit Ihrem Trecker von einer Gruppe elektrifizierter Renter abgedrängt. Der Trecker muss wieder aus dem Graben! Frida und die elektrifizierten Rentner ziehen an zwei, separaten Seilen. Dabei zieht Frida mit 120N. Die elektrifizierter Renter bringen eine Kraft von 140N auf.

Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Kraftvektoren. Bezeichnen Sie die Kraftvektoren und die Winkel Ihrer Skizze entsprechend!

- 5. Im ersten Versuch legen Sie das Seil für Frida lotrecht über einen Ast oberhalb des Treckers. Die Rentner ziehen in einer geraden Linie über die Böschung hinweg am anderen Seil. Welche Kraft wird aufgebracht? (2 Punkte)
- 6. Im zweiten Versuch ziehen Frida und die Rentner mit einem 50° Winkel mit ihrem Seil an dem Trecker. Welche Kraft wird aufgebracht? (2 Punkte)
- 7. Mit welcher Beschleunigung ziehen Sie den 1.3t schweren Trecker *jeweils* aus dem Graben, wenn $F = m \cdot a$ gilt? **(1 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In der Kartonagenfabrik Wenn man sich zu spät anmeldet, dann ist die Exkursion nicht so toll. Also geht es mit Rektor Skinner und Mrs. Krabappel in die Kartonagenfabrik. Wie schon im vorherigen Semester... In der Kartonagenfabrik angekommen erfahren Sie, dass die Kartons zum Versand von Nägeln nicht hier zusammengebaut werden sondern das sich die Endfertigung in Flint, Michigan befindet. Unter anderem wird dort der berühmte *Doppelt gewellte, 6-mal-gefaltete, 0.7mm, 60-cm-Karton* durch Falzung hergestellt. Beim letzten Mal war Rektor Skinner die Stimmung zu schlecht und deshalb geht es erst nach Hause, wenn ein paar Aufgaben gelöst sind. Martin gefällt das. An dem Vorrat an Zigaretten von Mrs. Krabappel meinen Sie wenig Zuversicht zu erkennen.

Jetzt heißt es Kartons optimieren. Der nun zu optimierende, flache Karton hat eine Länge von 60cm und eine Breite von 23cm. Die Kartonagenmaschine in Flint soll dann einen quadratischen Eckenausschnitt der Länge \boldsymbol{x} falzen.

- 1. Erstellen Sie eine Skizze des Karton*blatt*rohlings! Beschriften Sie die Skizze mit den entsprechenden Längenangaben (1 Punkt)
- 2. Berechnen Sie die Falztiefe x für ein maximales Volumen des flachen Kartons! (3 Punkte)
- 3. Welches Volumen in Liter ergibt sich mit der von Ihnen berechneten Falztiefe x? (1 Punkt)
- 4. Sie wollen noch einen bündig mit dem Boden abschließenden Deckel für den Karton stanzen lassen. Wie groß ist die Fläche des Kartondeckel*blattr*ohlings in *cm*²? **(2 Punkte)**

Rektor Skinner möchte sich gerne wieder in seinem Vorgarten aufhalten und nicht die ganze Zeit von Bart mit Erdnüssen beworfen werden. Deshalb möchte er einen geräumigen Teil seines Vorgartens einzäunen. Ein Teil der Umzäunung bildet seine Vorderhauswand. Wegen Lieferschwierigkeiten stehen Rektor Skinner nur 110m Zaun zu Verfügung. Sie wollen nun die maximale Fläche des abgeschirmten Vorgartens in Abhängigkeit der Seitenlängen bei der Verwendung von 110m Zaun bestimmen!

- 5. Welche Seitenlängen für den Zaun ergeben sich für die maximale Fläche des abgeschirmten Vorgartens? (2 Punkte)
- 6. Berechnen Sie die Fläche des abgeschirmten Vorgartens! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Ein Pfund Insekten, bitte! Das wird wohl häufiger gehört werden, wenn wir die Menschheit mit Proteinen ausreichend ernähren wollen¹². Schauen wir uns dazu einmal den Vergleich Deutschland zu Nigeria an. Nigeria hat eine der am schnellsten wachsenden Bevölkerungen der Welt und wird vermutlich im Jahr 2100 zu den Top 5 der bevölkerungsreichsten Länder zählen. Im Jahr 2021 leben ca. 8.2×10^7 Menschen in Deutschland und ca. 1.79×10^8 Menschen in Nigeria. Mit den Informationen wollen wir anfangen und dann eine Prognose für den Fleischkonsum im Jahr 2050 zu treffen.

Im folgenden ist Abbildung des Fleischkonsums im Jahr 2021 in Deutschland und Nigeria in [kg] einmal dargestellt.

- 1. Stellen Sie den Fleischkonsum in Deutschland und Nigeria im Jahr 2021 *pro Kopf* in einer aussagekräftigen Tabelle dar! (2 Punkte)
- 2. Ergänzen Sie in der Tabelle eine Spalte in der Sie für den Fleischkonsum in Nigeria auf Deutschland normieren, daher ins Verhältnis Nigeria/Deutschland, setzen! (1 Punkt)

In der nächsten Abbildung finden Sie die CO₂-Emission in [kg] nach Lebensmittel, die durch die Produktion entsteht, abgebildet.

3. Stellen Sie in einer Tabelle die Treibhausgasemissionen an CO_2 pro Kopf, die durch den Fleischkonsum in Deutschland und Nigeria im Jahr 2021 entstehen, dar! Ergänzen Sie auch hier das Verhältnis Nigeria zu Deutschland! (2 Punkte)

¹²Die Quelle der Inspiration für die Aufgabe war der folgende Artikel aus dem Spiegel: Acht Milliarden - sind wir bald zu viele Menschen auf der Erde?

In der folgenden Abbildung sehen Sie die Bevölkerungsentwicklung [Millionen] in Nigeria von 1950 bis ins Jahr 2030 fortgeführt.

- 4. Schätzen Sie graphisch die zu erwartende Bevölkerung [Millionen] in Nigeria im Jahr 2050, die sich anhand der Informationen aus der Abbildung ergibt!
 - a) Ohne Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
 - b) Unter Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
- 5. Berechnen Sie den geschätzten Fleischkonsum von Nigeria im Jahr 2050 unter der Annahme 80%-iger Angleichung der Lebensbedingungen zu Deutschland im Jahr 2021! (1 Punkt)
- 6. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria im Jahr 2050 im Vergleich zum Jahr 2021, der sich durch den angeglichenen Fleischkonsum ergibt! (1 Punkt)
- 7. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria, wenn die gesamte Proteinaufnahme durch Insekten ersetzt würde! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tödliche Seuche AIDS – Die rätselhafte Krankheit Irritiert legen Sie die historische Ausgabe des Spiegels aus den 80zigern beiseite. Sie sind bei Ihrem Hautarzt und wollen einen AIDS-Test machen lassen. Woanders leider keinen Termin gekriegt... Immerhin denken Sie und Ihr Partner über Nachwuchs nach und da geht es eben nur durch ungeschützten Sex. Was wissen Sie nun aber über AIDS und dem diagnostischen AIDS-Test, den Sie nun machen werden?

Die Prävalenz von AIDS bei einem Menschen in Europa wird mit 0.1% angenommen. In 90% der Fälle ist ein HIV-Test positiv, wenn der Patient erkrankt ist. In 3% der Fälle ist ein HIV-Test positiv, wenn der Patient nicht erkrankt ist und somit gesund ist. Sie stutzen. Wie wahrscheinlich ist es denn eigentlich an AIDS erkrankt zu sein (K^+), wenn Sie einen positiven AIDS-Test vorliegen haben (T^+)? Gehen Sie für die folgenden Berechnungen von $n=2\times 10^4$ Patienten mit einem diagnostischen Test für AIDS aus. Sie nehmen sich also einen Kuli und fangen an auf der historischen Ausgabe des Spiegels zu rechnen¹³.

- 1. Welche Wahrscheinlichkeit Pr wollen Sie berechnen? (1 Punkt)
- 2. Zeichnen Sie einen Häufigkeitsdoppelbaum zur Bestimmung der gesuchten Wahrscheinlichkeit *Pr*! (2 **Punkte**)
- 3. Beschriften Sie den Häufigkeitsdoppelbaum, mit denen Ihnen bekannten Informationen zu der AIDS Erkrankung und dem AIDS-Test! (1 Punkt)
- 4. Füllen Sie den Häufigkeitsdoppelbaum mit den sich ergebenden, absoluten Patientenzahlen n aus! (2 Punkte)
- 5. Berechnen Sie die gesuchte Wahrscheinlichkeit Pr! (1 Punkt)

Bei dem folgenden Arztgespräch erfahren Sie, dass beim diagnostischen Testen *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)* auftreten. Das verstehen Sie so noch nicht und deshalb stellen Sie für sich den Zusammenhang in einer 2x2 Kreuztabelle dar.

- Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (1 Punkt)
- 7. Berechnen Sie die Sensitivität und Spezifität des diagnostischen Tests für AIDS! Füllen Sie dafür die 2x2 Kreuztabelle mit den Informationen aus dem Häufigkeitsdoppelbaum aus! (2 Punkte)
- 8. Was beschreibt die Sensitivität und die Spezifität im Bezug auf die Gesunden und Kranken? Stellen Sie beide diagnostische Maßzahlen als Wahrscheinlichkeiten *Pr* dar! **(2 Punkte)**

¹³Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftlicher Artikel: Binder et al. (2022) Von Baumdiagrammen über Doppelbäume zu Häufigkeitsnetzen – kognitive Überlastung oder didaktische Unterstützung? Journal für Mathematik-Didaktik, 1-33

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Network-Marketing oder Schneeballschlacht! Eine Möglichkeit, leicht Geld zu verdienen, ist es anderen Menschen für Geld zu versprechen, wie man leicht reich werden kann. Am besten natürlich ohne viel Aufwand und ortsunabhängig. Dann wollen wir mal loslegen. Schnell ein YouTube-Werbevideo gedreht und auf geht es mit unserem Network-Marketing. Aber Moment, wie funktioniert Network-Marketing eigentlich und was hat das alles mit einer Schneeballschlacht zu tun? Wir wollen hier einmal in die Untiefen des "passiven Einkommens" abtauchen¹⁴.

Das Jahr 2022 war das erfolgreichste Jahr in der Geschichte von Healthy Herbs Manufacture International (HeHeMan). Das Unternehmen steigerte den Umsatz um rund 18 Prozent von 290 Millionen Euro im Jahr 2021. Doch wie viel kommt bei den Partnern an? Laut HeHeMan habe das Unternehmen 3.6×10^5 aktive Partner.

- 1. Berechnen Sie zuerst den Umsatz der Firma HeHeMan im Jahr 2022! (1 Punkt)
- 2. Wie viel von dem Umsatz im Jahr 2022 wird im Durchschnitt von jedem aktiven Partner erwirtschaftet? (1 Punkt)
- 3. Welche *monatlicher* Umsatz ergibt sich dadurch im Durchschnitt für jeden aktiven Partner bei einer direkten Provision von 35%? (1 Punkt)

Ihr zu vermarkendes Produkt, hinter dem Sie voll stehen, kostet 75EUR pro Einheit im Direktverkauf. Die direkte Provision für die erste Stufe beträgt 25%. Für die zweite, dritte und vierte Stufe betragen die indirekten Provisionen jeweils 2%, 1% und 0.5%. Jeder Ihrer angeworbenen "Partner" wirbt wiederum fünf Partner für sich selbst an. Pro Monat werden im Schnitt vier Einheiten vom Produkt verkauft. Sie wollen nun 1800EUR im Monat passiv – also durch indirekte Provisionen – erwirtschaften.

4. Ergänzen Sie die folgende Tabelle mit den obigen Informationen! (2 Punkte)

Stufe	Anzahl Partner	Umsatz/Stufe	Provision
1	Sie selber		
2			
3			
4			

5. Wie viele Partner müssen Sie auf der 2 Stufe anwerben um Ihr passives Einkommen durch indirekte Provision zu erreichen? Wie viele Menschen arbeiten am Ende indirekt für Sie? Stellen Sie den Zusammenhang graphisch dar! (3 Punkte)

Sie mussten zum Einstieg bei HeHeMan Einheiten des Produkts für 3375EUR kaufen. Diese Einheiten können Sie nur direkt verkaufen. Leider mussten Sie den Kauf über einen Kredit über 6.2% p.a. über 48 Monate finanzieren.

- 6. Berechnen Sie die Gesamtsumme, die Sie als Kredit abbezahlen müssen! (2 Punkte)
- 7. Wie viele Einheiten müssen Sie pro Monat verkaufen um die anfallenden Zinsen durch die direkte Provision zu erwirtschaften? (1 Punkt)
- 8. Wie lange in Monaten benötigen Sie um den Kredit durch die direkte Provision abzubezahlen? (1 Punkt)

¹⁴Die Quellen der Inspiration für die Aufgabe waren folgendes YouTube Video: Simplicissimus – Die meistgesuchte Betrügerin der Welt und der Artikel: Deutschlandfunk Kultur – Die Illusion, schnell reich zu werden

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Höhlen & Drachen Nachdem Sie sich begeistert in der Serie *Stranger Thinks* verloren haben, wollen Sie bei einer Ihrer Freundinnen einmal *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen Sie fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen stellen.

In dem Spiel haben Sie nun auf einmal 6 achtseitige Würfel (6d8) zum würfeln in der Hand. Wenn Sie eine 8 würfeln, haben Sie einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 4 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Sie betrachten nun aufmerksam die ausufernden Ausrüstungstabellen. Ihnen wird aber geholfen und Sie müssen sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei vierseitigen Würfeln (2d4) als Schaden oder das Schwert mit einem zwölfseitigen Würfel plus 5 (1d12+5) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Sie sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass Ihr Rettungswurf gegen den zaubernden Hexer funktioniert. Sie haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.6, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.75. Sie haben mitgezählt und festgestellt, dass in 45 von 100 Fällen Ihr Rettungswurf bei einem erfolgeichen Zauber funktioniert hat.

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega = 100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 **Punkte**)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! (1 **Punkt**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Retrocheck im TV "Und hier ist sie wieder, die Show der fantastischen Preise. Seien Sie mit dabei, wenn es wieder heißt: Der Preis ist heiß!", ertönt es und Sie fragen sich, ob Sie nicht doch lieber bezahlter Gast bei Barbara Salesch hätten sein sollten. Aber Sie brauchen das Geld und jetzt heißt es Spielschows farmen! Erstmal eine Kaffemaschine von Mitropa gewinnen. Ein Kandidat gewinnt die Kaffeemaschine von Mitropa, wenn nicht alle Kandidaten überbieten (eng. *outbid*). Mit Ihnen bilden Thorsten und Günther das Team der drei Kandidaten.

Name	P(win)	P(outbid)
Thorsten	0.1	0.11
Günther	0.4	0.12

- 1. Mit welcher Wahrscheinlichkeit gewinnen Sie die Kaffeemaschine von Mitropa, wenn keiner der Kandidaten überbietet? (1 Punkt)
- 2. Wenn Ihre Überbietungswahrscheinlichkeit *P(outbid)* bei 0.076 liegt, mit welcher Wahrscheinlichkeit gewinnt *keiner* die Kaffeemaschine von Mitropa? **(1 Punkt)**

Glücksrad für Arme auf der Kirmes! Leider hat es für Maren Gilzer nicht gereicht. Deshalb sind Sie jetzt auf der Kirmes und spielen mit einem einäugen Piraten um das große Geld. Das Glücksrad hat 22 Felder. Sie drehen das Glücksrad zweimal. Auf 8 Feldern gewinnen Sie 5000EUR sonst 2000EUR. Ganz schön viel Geld und ganz schön zwielichtig hier...

- 3. Skizzieren Sie das Glücksrad und ergänzen Sie die Wahrscheinlichkeiten! (1 Punkt)
- 4. Zeichnen Sie das zugehörige Baumdiagramm für das zweimalige Drehen! Ergänzen Sie die Wahrscheinlichkeiten und die entsprechenden Ereignisse (2 Punkte)
- 5. Mir welcher Wahrscheinlichkeit gewinnen Sie 7000EUR? (1 Punkt)

Nach Ihrem Fiebertraum reisen Sie im Zug nach Köln um bei "Geh aufs Ganze!" mitzuspielen. Sie schaffen es tatsächlich ins Finale und können als Hauptgewinn ein Auto hinter einer der drei Türen gewinnen.

- 6. Bevor die Show beginnt, wird das Auto hinter eine zufällig bestimmte Tür gestellt. Mit welcher Wahrscheinlichkeit wird jeweils eine der drei Türen ausgewählt? Zeichnen Sie ein Baumdiagramm! (1 Punkt)
- 7. Mit welcher Wahrscheinlichkeit wählen Sie sofort die Tür mit dem Auto? Erweitere Sie das Baumdiagramm entsprechend! (1 Punkt)
- 8. Der Moderator öffnet nun eine der nicht gewählten Türen, aber natürlich nicht die mit dem Auto. Mit welcher Wahrscheinlichkeit steht das Auto hinter der anderen Tür? Erweitern Sie das Baumdiagramm entsprechend! (2 Punkte)
- 9. Lösen Sie nun das "Ziegenproblem"! Berechne Sie dazu die Wahrscheinlichkeiten der einzelnen Pfade. Lohnt sich ein Wechsel der anfangs gewählte Tür? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

Teil XI.

Angewandte Nutztier- und Pflanzenwissenschaften (M.Sc.)

128. Aufgabe (6 Punkte)

Vergleichen Sie die Standardabweichung mit dem Standardfehler und grenzen Sie die beiden Kennzahlen voneinander ab.

129. Aufgabe (8 Punkte)

Ihnen liegt folgendes Varianzanalysemodell mit der üblichen Beschreibung zur Auswertung des Merkmals fett- und eiweißkorrigierte Milchleistung pro Kuh und Jahr in kg vor:

$$Y_{ijkl} = \mu + Var_i + EKA_i + VarEKA_{ij} + V_k + b(L_{ij} - L) + e_{ijkl}$$

mit

- Yijkl: I-te Beobachtung
- μ: Populationsmittel
- Var_i: fixer Effekt der i-ten Variante (i: Kontrolle, Versuchsgruppe 1, Versuchsgruppe 2)
- EKA_i: fixer Effekt der j-ten Erstkalbealtergruppe (j: EKA ≤ 25 Monate, EKA > 25 Monate)
- VarEKAii: fixer Effekt der Interaktion Variante x Erstkalbealtergruppe
- V_k: zufälliger Effekt des Vaters
- $b(L_{ii} L)$: lineare Kovariable Laktationsnummer
- eiikl: zufälliger Restfehler

Erläutern Sie anhand dieses Beispiels die Begriffe fixer Effekt, Interaktion, zufälliger Effekt und Kovariable und grenzen Sie diese Begriffe voneinander ab.

130. Aufgabe (6 Punkte)

Wie bestimmen Sie die richtige Stichprobengröße? Welche Kennzahlen / statistische Maßzahlen benötigen Sie dabei und nennen Sie die Voraussetzungen.