

ACTIVIDAD EN CLASE 2

Instrucciones

Responda de manera clara y justifique cada respuesta. Use notación adecuada y, en los ejercicios numéricos, incluya las unidades correspondientes.

Parte I (Valor: 2.0): Preguntas conceptuales

- 1. Ley de Gauss: Explique por qué la Ley de Gauss es útil para calcular campos eléctricos en sistemas con simetría. En qué casos sería más práctico usar directamente la ley de Coulomb?
- 2. Potencial eléctrico: Defina el potencial eléctrico en un punto. ¿Por qué se dice que es una magnitud escalar mientras que el campo eléctrico es vectorial?
- 3. Relación entre campo y potencial: ¿Cómo se obtiene el campo eléctrico a partir del potencial eléctrico? ¿Qué significa físicamente el signo negativo en esa relación?
- 4. Energía potencial eléctrica: Explique la diferencia entre potencial eléctrico y energía potencial eléctrica. ¿Qué ocurre con la energía potencial de un sistema de dos cargas de signos opuestos al disminuir la distancia entre ellas?
- 5. Integración de conceptos: Elabore un mapa conceptual que conecte los siguientes términos, mostrando las relaciones entre ellos: carqa eléctrica, fuerza eléctrica, ley de Coulomb, campo eléctrico, ley de Gauss, potencial eléctrico, energía potencial eléctrica. Incluya palabras de enlace (por ejemplo: "genera", "se relaciona con", "permite calcular") que aclaren la conexión entre los conceptos.

Parte II (Valor: 3.0): Ejercicios de aplicación

Ejercicio 1: Ley de Gauss

Considere una esfera conductora hueca de radio $R = 0.25 \,\mathrm{m}$ cargada con una carga total $Q = +5 \,\mu\mathrm{C}$, distribuida uniformemente sobre su superficie.

- a) Usando la Ley de Gauss, determine el campo eléctrico en un punto situado a:
 - a) $r = 0.10 \,\mathrm{m}$ (dentro de la esfera).
 - b) $r = 0.50 \,\mathrm{m}$ (fuera de la esfera).
- b) Dibuje la gráfica cualitativa de la magnitud de E(r) en función de r.

Ejercicio 2: Potencial y energía potencial eléctrica

Dos cargas puntuales $q_1 = +2 \,\mu\text{C}$ y $q_2 = -3 \,\mu\text{C}$ se encuentran separadas una distancia de $d = 0.3 \,\text{m}$.

- a) Calcule el potencial eléctrico en un punto P ubicado en el punto medio entre las dos cargas.
- b) Determine la energía potencial eléctrica total del sistema formado por $q_1 ext{ y } q_2$.
- c) Analice: si la distancia entre las cargas se reduce a la mitad, ¿cómo cambia la energía potencial eléctrica del sistema? Explique.

Facultad de Ciencias

Ejercicio 3: Potencial en el centro de un semicírculo con tramos rectos

Se tiene un alambre con densidad lineal de carga uniforme $\lambda > 0$, formado por un **semicírculo** de radio R unido a **dos tramos rectos** de longitud R cada uno, como en la figura. El punto P está en el **centro del semicírculo**.

