Econometrics-1

19.02.2021

Lecture 11

Multiple Linear Regrossion Model (MLRM)

Ji = Bxi1 + Bxi2+ --- + Bxix + Ui i=1,2,--,N

 $\frac{y}{y} = \frac{x}{x} + \frac{y}{x}$ $\frac{y}{x} = \frac{x}{x} + \frac{y}{x}$ $\frac{x}{x} = \frac{x}{x}$ $\frac{y}{x} = \frac{x}{x}$

Assumption to MIRM A1 : E(U | X) = 0

o MIRM
$$\frac{21}{21} = 0 \Rightarrow f(x^1 u) = 0$$
(causaling)

A2: E(yy'lx) = -2 Iv

A3: X has full rank = Rank(x)= K.

Aside
Quy do ne write of In as the variounce of y and not just of?
Au and not just or ?
NXI
Think about two rivs.
It r.v. Z. Normally, E(Z1) = M1=0; V(+1) = 5,2=02
ind V.V. Zz, Normally. F(Zz) > Mz=0; V(Zz) = 02 =02
$z_1 \sim N(M_1, \sigma_1^2); z_2 \sim N(M_2, \sigma_2^2)$
both are univariate distribution
Bivariate Zi Zi Zi Zi Zi Zi Zi Zi Zi Z
2x1 Vanance-Coveniente
yi= Bot B, xi + li ui can take many values with an attacky
Caen vi has E(hi)=0 prob. E(hi\x)=0 ean vi E(hi\x)=0

NXI NXN

NXI NXN

By A1+A4 By A2

E(UIX)=0

Y XIS non-shochoatic

the E(U)=0

A, Az, Au, AS together imply the above.

Next step. -> to estimate $B = \frac{|\beta_1|}{|\beta_2|}$ KXI $|\beta_K|$ KXI

Metho	od of leas	t squares	to estima	ate $\frac{\beta}{kx_1}$
min [(B, B2,, Pk)	Zyi - Pi	211-B2212-	Bx	ik)
Next:	ve can	conte doi	on our f	isst-order
min (B1, B2,)	S (B.,	β2,, β _κ j	{yi, {think	
foe:	set			
2 B		<i>k</i>	(-epuat	Cons
(ii) $\frac{\partial S}{\partial \beta_2}$	Set O	—	and unknown	yow,
(Kth condition)	DS set D		[13, 12	- Ph] - Po y

$$\min_{\beta} \frac{\sum_{i=1}^{N} u_{i}^{2}}{\beta} = \min_{\beta} \frac{\sum_{i=1}^{N} y_{i}(x)}{\beta}$$

$$S = \begin{bmatrix} U_1 U_2 - - U_N \end{bmatrix} \begin{bmatrix} U_1 \\ V_2 \end{bmatrix} = U_1^2 + U_2^2 + U_3^2 + U_8^2 + U_8^2 + U_8^2$$

$$= \sum_{i=1}^{N} U_i^2$$

$$= \sum_{i=1}^{N} U_i^2$$

$$S = U' U = \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right)$$

$$= \left(\frac{1}{3} -$$

Notice that we are differentiality a scalar entity with a rector!

To be able to evaluate 25/28 we will introduce as-Jacobian matrix

$$\frac{y}{MxI} = f(Z)$$

y and z are vectors

$$\int_{-2}^{2} \frac{\partial y}{\partial z_{1}} \frac{\partial y}{\partial z_{2}} \frac{\partial y}{\partial z_{2}} \frac{\partial y}{\partial z_{1}} \frac{\partial y}{\partial z_{2}} \frac{\partial y}{\partial z_{2}}$$

$$M = 1$$
 and $N = K$

$$\frac{\partial S_{1\times 1}}{\partial \beta_{K\times 1}} = \begin{bmatrix} \frac{\partial S}{\partial \beta_{1}} & \frac{\partial S}{\partial \beta_{2}} & -\frac{\partial S}{\partial \beta_{2}} \\ \frac{\partial S_{1\times 1}}{\partial \beta_{K\times 1}} & \frac{\partial S}{\partial \beta_{K\times 1}} \end{bmatrix}_{1\times K}$$

$$\frac{\partial S}{\partial B} = \frac{D}{D} - \frac{2 \times 1}{2 \times 1} + \frac{2 \times 1}{2 \times 1} \times \frac{1}{2 \times 1$$

$$\Rightarrow -2x'y + 2x'x\beta = 0$$

$$x'x\beta = x'y$$
Pre-multiply both sides with $(x'x)^{-1}$.

For the case of $\hat{\beta} = \underbrace{Z_{F_1}^{N}(x_i - \bar{x})(y_i - \bar{y})}_{X_{F_1}^{N}(x_i - \bar{x})^2} = \underbrace{Z_{F_1}^{N}(x_i - \bar{x})^2}_{X_{F_1}^{N}(x_i - \bar{x})^2} \underbrace{Z_{F_2}^{N}(x_i - \bar{x})^2}_{X_{F_2}^{N}(x_i - \bar{x})^2} \underbrace{Z_{F_2}^{N}($

investiz $(\hat{X}^{\prime}X)^{\prime\prime}$ So we need the (X1X) is non-singular.

(By A3 1:0, Rank(x) = k)

Bos is linear in y

Bos = A.y where $A = (x^1 x)^4 x^1$