CPE201 Digital Design

By Benjamin Haas

Class 13: NAND/NOR Combinational Logic, Chip Properties

Dual Symbols

•
$$(AB)' = A' + B'$$

- NAND = negative-OR

NAND Example

- ((AB)'(CD)')'
- = (AB)'' + (CD)''
- = AB + CD

Now SOP

NAND Example

Equivalent NAND/Negative-OR logic diagram

AND-OR equivalent

NOR Example

•
$$((A+B)'+(C+D)')' \xrightarrow{A} G_2$$

= $(A+B)''(C+D)''$
= $(A+B)(C+D)$

Now POS

Example

Example

Example

- Implement using only NOR gates
 - -X = ABC
- Redo with only NAND gates

Waveforms

Logic applied at each transition

Waveforms

Real ICs

- TTL vs CMOS
 - TTL is older and consumes more power
 - CMOS is more common
 - Usually used now to refer to the logic high level
 - 5V vs 3.3V

Handling

- Electrostatic Discharge (ESD)
 - Will let out the blue smoke, every time
- Safe handling and usage
 - Carrying/Transport (cases, touching, storage)
 - Using (power up last, move unpowered)

Glue Logic or Bubblegum Logic

Info review on ICs

74 Series parts

7400 Quad NAND Gate

74 Series Parts

Reading a Datasheet

Ouad 2-Input NAND Gate High-Performance Silicon-Gate CMOS

The MC54/74HC00A is identical in pinout to the LS00. The device inputs are compatible with Standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

- · Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL.
- · Operating Voltage Range: 2 to 6 V
- . Low Input Current: 1 HA
- High Noise Immunity Characteristic of CMOS Devices In Compliance With the JEDEC Standard No. 7A
- Requirements
- Chip Complexity: 32 FETs or 8 Equivalent Gates

Pinout: 14-Load Packages (Top View)

MC54/74HC00A LSUFFIX CERAMIC PACKAGE CASE 632-08 N SUFFIX PLASTIC PACKAGE CASE 646-06 D SUFFIX SOIC PACKAGE CASE 751A-03 DT SUFFIX TSSOP PACKAGE CASE 948G-01 ORDERING INFORMATION MC54HCXXAJ Ceramic MC74HCXXAN Plastic

1	UNCTION	IABLE
Inp	uts	Output
A	В	Y
L	L	Н
L	H	H
H	L	H
H	H	L

SOIC

TSSOP

MC74HCXXAD

MC74HCXXADT

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to + 7.0	V
Vin	DC Input Voltage (Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
I _{in}	DC Input Current, per Pin	± 20	mA
I _{out}	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, V _{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic or Ceramic DIP+	750	mW
	SOIC Package+	500	
	TSSOP Package+	450	
T _{stg}	Storage Temperature	-65 to + 150	°C
T_L	Lead Temperature, 1 mm from Case for 10 Seconds		°C
	Plastic DIP, SOIC or TSSOP Package	260	
	Ceramic DIP	300	

- * Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
- † Derating Plastic DIP: 10 mW/°C from 65° to 125° C

Ceramic DIP: - 10 mW/°C from 100° to 125° C SOIC Package: - 7 mW/°C from 65° to 125° C TSSOP Package: - 6.1 mW/°C from 65° to 125° C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		in	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)		0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND))	V_{CC}	V
T_A	Operating Temperature, All Package Types		5	+125	°C
t_r, t_f		= 2.0 V ()	1000	ns
	V _{CC} =	= 4.5 V ()	500	
	V _{CC} =	6.0 V ()	400	

DC CHAPACTERISTICS (Voltages Referenced to CND)

MC54/74HC00A

			v_{cc}	Guaranteed Limit			
Symbol	Parameter	Condition	V	-55 to 25°C	≤85°C	≤125°C	Unit
V_{IH}	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{V or } V_{CC} - 0.1 \text{V}$	2.0	1.50	1.50	1.50	V
		$ I_{out} \le 20\mu A$	3.0	2.10	2.10	2.10	
			4.5	3.15	3.15	3.15	
			6.0	4.20	4.20	4.20	
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 V \text{ or } V_{CC} - 0.1 V$	2.0	0.50	0.50	0.50	V
		$V_{out} = 0.1 \text{V or } V_{CC} - 0.1 \text{V}$ $ I_{out} \le 20 \mu \text{A}$	3.0	0.90	0.90	0.90	
			4.5	1.35	1.35	1.35	
			6.0	1.80	1.80	1.80	

Propagation Delay

- Switching speed limit
 - t_{PHL} high to low propagation time
 - t_{PLH} low to high propagation time
 - 9ns for 7400 above
 - Be aware of race conditio

Supply voltage (Vcc)

- 5V, 3.3V, 2.5V, 1.8V
 - Input range can vary
 - Must match the rest of your circuits

Input/Output Logic Levels

- Varies with supply voltage
 - Stay out of the indeterminant zone

University of Nevada, Reno

Power Dissipation

- Each part draws power
 - Usually lost to heat
 - Keep it well below your maximum
 - Sometimes dependent on frequency of use

Fan-Out and Loading

- Each chip can only output so much current
- Fan-Out is how many of the same chips one chip could drive
- Ratio of output current to input current

Driving LEDs

 ICs can't usually source much current (~10mA)

- ICs can sink more curr

• LEDs usually take 30n-

Terminating Un-used Inputs

Floating inputs is bad

Reading

- This lecture
 - Sections 5.4-5.5, 3.8
- Next lecture
 - Sections 6.1-6.3