HW3 – Report

1. Name: 徐嘉駿, Institute: 資應所, Student ID: 107065528

2. Implement

Algorithm: Floyd Warshall
Time Complexity: O(V³/P)

• Test case generation:

(1) 輸入想要產出的 V 個點, E 個 edge。

(2) 建立 V^2 的 Table,存每個點到點的 weight。如兩點為同一點,值設為 -1,如圖。

	1	 n
1	-1	
•		•
•	•	 •
•	•	•
n	•	-1

- (3) 開始針對每個 edge 隨機產生一數字(0~100),如果小於 70,隨機產生 weight(0<=weight<=1000),如果大於 70,則賦予值 -1(代表沒有edge)。
- (4) 每產生一個 edge, 寫入 output 檔案,直到產出 E 個 edge 停止。

3. Experiment & Analysis

- Methodology:
- Time Profile & Speedup Factor:

使用 c21.1 做 measurement

(1) Strong Scalability & Time Profile

這裡使用 openmp static 方式分配

數值:

threads	Read Input File	Computation	Write Output File
1	0.088395	154.259077	7.089274
2	0.088395	82.608529	4.937442
4	0.088395	41.848158	2.189793
8	0.088395	24.958316	1.848742
12	0.088395	17.635263	1.784354

4. Conclusion

這次的作業我使用的是 OpenMP 撰寫 multi-threads。一開始寫時,並沒有遇到什麼大 bug,但在後面測試如何加速時,發現使用 OpenMP 內不同的 strategy (static, dynamic, guided),發現有差異,當 thread 數量越多,使用 static 會是最快的,我想原因是在於每個 thread 的工作內容都一樣的關係,所以只需要 static 給就好。