Exos AL4 - Espaces préhilbertiens

Exercice 1

Soit $E = C^1([0,1], \mathbb{R})$. Pour f et g dans E, on pose :

$$\varphi(f,g) = \int_0^1 f'(t)g'(t)dt + f(1)g(0) + f(0)g(1)$$

Montrer que φ est un produit scalaire sur E.

Exercice 2

On se place dans un espace préhilbertien $(E,(\cdot|\cdot))$. Soient a un vecteur unitaire de E, et $k\in\mathbb{R}$. Donner une condition nécessaire et suffisante sur k pour que l'application φ définie sur E^2 par :

$$\varphi(x,y) = (x|y) + k(x|a) (y|a)$$

soit un produit scalaire.

Exercice 3

On se place dans $E = C^1([-1;1],\mathbb{R})$, muni du produit scalaire :

$$\forall (f,g) \in E^2, (f|g) = \int_{-1}^{1} fg.$$

- **1.** Soient $F = \{ f \in E / \forall x \in [-1, 0], f(x) = 0 \}$ et $G = \{ g \in E / \forall x \in [0, 1], g(x) = 0 \}$. Montrer que F et G sont des sous-espaces vectoriels orthogonaux entre eux.
- **2.** On note pour tout $i \in [0, 2]$:

$$f_i: \left| \begin{array}{cc} [-1,1] & \to \mathbb{R} \\ x & \mapsto x^i \end{array} \right|$$

Calculer la distance de f_2 à Vect $\{f_0, f_1\}$.

Exercice 4

On se place dans \mathbb{R}^3 muni du produit scalaire euclidien. Soit $F = \text{Vect}\{(1,0,-1),(-1,2,2)\}$.

- 1. Donner une équation de F.
- **2.** Donner une base de l'orthogonal de F.
- **3.** Donner le projeté orthogonal de (1,1,1) sur F.

Exercice 5

On munit \mathbb{R}^4 du produit scalaire euclidien canonique.

1. On définit $F = \text{Vect}\left\{(1;1;1;0), \left(0;2;0;\frac{1}{3}\right)\right\}$. Déterminer la matrice dans la base canonique de la projection orthogonale sur F.

- **2.** On définit $G = \{(x, y, z, t) \in \mathbb{R}^4 / x y + z = 0 \text{ et } x + 2y + z t = 0\}.$
 - a. Déterminer une b.o.n. de G.
 - **b.** Calculer la distance de u = (1, 1, 1, 1) à G.

Exercice 6

On se place dans $E = \mathbb{R}_2[X]$.

- 1. On muni E du produit scalaire usuel : $\forall (P,Q) \in E^2, (P|Q) = \int_0^1 P(x)Q(x)dx$.
 - a. Déterminer une b.o.n. de $F = \text{Vect}\{X^0, X\}$, et le projeté orthogonal de X^2 sur F.
 - **b.** En déduire $\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 (x^2 a bx)^2 dx$.
- **2a.** Montrer que l'application φ définie $sur E^2$ par :

$$\forall (P,Q) \in E^2, \varphi(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

est un produit scalaire sur E.

On considère par la suite E muni de ce produit scalaire.

- **b.** Orthonormaliser la base canonique de E.
- **c.** Calculer la distance de X^2 à F.

Exercice 7

Soient E un espace préhilbertien, F et G des sous-espaces vectoriels. Montrer que :

- 1. $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$;
- **2.** si E est euclidien (de dimension finie), alors $F^{\perp \perp} = F$;
- **3.** si E est euclidien, $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice 8

On se place dans $E=\mathcal{M}_2(\mathbb{R}).$ On considère l'application φ définie sur E^2 par :

$$\forall (M, N) \in E^2, \varphi(M, N) = \operatorname{tr}({}^t M N)$$

- 1. Montrer que φ est un produit scalaire sur E.
- **2.** Soient $M_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $M_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, et $M_3 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

Montrer que $\mathcal{B} = \{M_1, M_2, M_3\}$ est une base de F = Ker(tr).

- **3.** Orthonormaliser la base \mathcal{B} .
- 4. Expliciter le projeté orthogonal d'une matrice M sur F.
- 5. Vérifier que $I_2 \in F^{\perp}$, et retrouver rapidement le résultat précédent.

Exercice 9

Soit E un espace euclidien de dimension $n \geq 2$. On considère un endomorphisme u de E tel que :

$$\forall x \in E, (u(x)|x) = 0.$$

- 1. Montrer que $\forall (x,y) \in E^2$, (u(x)|y) = -(x|u(y)).
- **2.** Montrer que $Ker(u) \oplus Im(u) = E$.