Uitwerking van opgave 3c bij paragraaf 1.5 van Huth&Ryan

Stelling. De verzameling connectieven $\{\neg, \leftrightarrow\}$ is niet functioneel volledig.

Notatie Laat $v: atoms \rightarrow \{T, F\}$ een waardetoekenning zijn.

We schrijven $\llbracket \phi \rrbracket_v$ voor de waarde van ϕ onder v. Met $v \diamond p$ bedoelen we de waardetoekenning v met alleen de waarde voor p veranderd:

$$v \diamond p (q) = \begin{cases} v(q) & \text{als } q \neq p \\ v(q)^{-1} & \text{anders} \end{cases}$$

Lemma 1. Laat ϕ een welgevormde formule zijn over $\{\mathtt{atoms}, \neg, \leftrightarrow\}$. Voor iedere $p \in \mathtt{atoms}$ geldt

 $\llbracket \phi \rrbracket_v \neq \llbracket \phi \rrbracket_{v \diamond p} \text{ voor iedere waardetoekenning } v, \text{ of}$

 $\llbracket \phi \rrbracket_v = \llbracket \phi \rrbracket_{v \diamond p} \ voor \ iedere \ waarde toekenning \ v.$

Bewijs. Via inductie naar de structuur van ϕ :

Basisgeval $\phi = q$

Triviaal.

Inductiestap $\phi = \neg \psi$

Direct via de inductiehypothese en $\llbracket \phi \rrbracket_v \neq \llbracket \neg \psi \rrbracket_v$ voor willekeurige v.

Inductiestap $\phi = \psi \leftrightarrow \chi$

Beschouw $p \in atoms$. De inductiehypothesen geven vier gevallen:

- 1. $\llbracket \psi \rrbracket_u = \llbracket \psi \rrbracket_{u \diamond p}$ en $\llbracket \chi \rrbracket_w = \llbracket \chi \rrbracket_{w \diamond p}$ voor alle $u, w \Rightarrow \llbracket \phi \rrbracket_v = \llbracket \phi \rrbracket_{v \diamond p}$ voor alle v
- 2. $\llbracket \psi \rrbracket_u \neq \llbracket \psi \rrbracket_{u \diamond p}$ en $\llbracket \chi \rrbracket_w \neq \llbracket \chi \rrbracket_{w \diamond p}$ voor alle $u, w \Rightarrow \llbracket \phi \rrbracket_v = \llbracket \phi \rrbracket_{v \diamond p}$ voor alle v
- 3. $\llbracket \psi \rrbracket_u = \llbracket \psi \rrbracket_{u \diamond p}$ en $\llbracket \chi \rrbracket_w \neq \llbracket \chi \rrbracket_{w \diamond p}$ voor alle $u, w \Rightarrow \llbracket \phi \rrbracket_v \neq \llbracket \phi \rrbracket_{v \diamond p}$ voor alle v
- 4. $\llbracket \psi \rrbracket_u \neq \llbracket \psi \rrbracket_{u \diamond p}$ en $\llbracket \chi \rrbracket_w = \llbracket \chi \rrbracket_{w \diamond p}$ voor alle $u, w \Rightarrow \llbracket \phi \rrbracket_v \neq \llbracket \phi \rrbracket_{v \diamond p}$ voor alle v

Bewijs van stelling. Stel $\{\neg, \leftrightarrow\}$ is functioneel volledig. Laat ϕ een welgevormde formule zijn over $\{\mathtt{atoms}, \neg, \leftrightarrow\}$ met $\phi \equiv p \to q$. Dan $[\![\phi]\!]_v = [\![\phi]\!]_{v \diamond p}$ voor iedere v met $v(q) = \mathsf{T}$ en $[\![\phi]\!]_v \neq [\![\phi]\!]_{v \diamond p}$ voor iedere v met $v(q) = \mathsf{F}$. Dit is in tegenspraak met lemma 1.