

Power and load prediction using lidar measurements and deep learning

Jens Visbech Madsen, Tuhfe Göçmen, Albert Meseguer (DTU Wind Energy) **Antoine Larvol (Windar Photonics)**

Acknowledgements: Funding EUDP grant 64019-0580 for the LIdar-assisted COntrol for REliability IMprovement (LICOREIM) project (Jan. 2020- Dec. 2022).

DTU

Content

- Motivation
- Experimental setup
- Data description and processing
- Modelling
- Results
- Limitations

Motivation

- Increase AEP through an improved representation of real-time wind inflow
- Reduction of structural loads both fatigue and extreme using feed-forward control strategies
- Wind class upgrade of wind turbines to operate at sites with a more severe wind climate than original intended
- Optimal power production in cases of specific load and grid requirement using dynamic power rating from real-time turbulence intensity

Experimental setup

- Test turbine
 - Vestas V52 (850 kW)
 - 50 Hz strain gauge system

- Lidar systems
 - Nacelle-mounted CW lidar
 - 2- and 4-beamed system

Meteorological mast

Time series example

- Target features are electrical power and blade flapwise bending moment
- Input features are lidar signals are gives as LOS wind speeds which can be transformed into wind speed components

Pre-processing

Initial filtering on 10-min statistics

Paramete	Condition	
Wind speed	[m/s]	4 < U
Wind direction	[deg]	$265 < \theta < 295$
El. power	[kW]	0 < P
Rotational speed	[RPM]	$16 < \Omega$
Collective pitch	[deg]	$\theta_p < 23$

 Caption matrix showing distribution of wind speed and TI

- 10

- 8

6 count

-4

-2

-0

Date DTU

Time delay analysis

Time delay analysis

Sequence-to-sequence modelling

- Sequential transformation of input/outputs
 - Specifying n_{lag} and n_{out}
- Padding and masking
- Structure into tensor format

x_1^{t-1}	x_2^{t-1}	x_1^{t-2}	x_2^{t-2}	x_1^{t-3}	x_2^{t-3}	y_1^t	y_1^{t+1}	y_1^{t+2}
NaN	NaN	NaN	NaN	NaN	NaN	189.62	173.60	168.57
6.34	5.25	NaN	NaN	NaN	NaN	173.60	168.57	181.02
5.92	4.42	6.34	5.25	NaN	NaN	168.57	181.02	
3.37	4.36	5.92	4.42	6.34	5.25	181.02		
7.45	6.89					268.31	245.89	263.66
8.01	7.11	7.45	6.89			245.89	263.66	257.12
7.78	6.34	8.01	7.11	7.45	6.89	263.66	257.12	NaN
9.29	5.73	7.78	6.34	8.01	7.11	257.12	NaN	NaN

Recurrent neural networks

- Uses hidden states to process sequences and allows information to persist
- Common types are:
 - GRU
 - LSTM

- Network architecture:
 - Two layers with 50 units in each layer

Model: "4-beamed LiDAR"

Layer (type)	Output Shape	Param #
masking (Masking)	(None, None, 9)	 0
lstm (LSTM)	(None, None, 50)	12000
activation (Activation)	(None, None, 50)	0
lstm_1 (LSTM)	(None, 50)	20200
dense (Dense)	(None, 80)	4080

10

Total params: 36,280 Trainable params: 36,280 Non-trainable params: 0

Forecast horizon performance

Multi-step power forecast

Multi-step flapwise bending moment forecast

2-beamed LSTM model

4-beamed LSTM model

Limitations

Model is trained on low-turbulent data only

 Underestimation due to down-sampling of power and load signals

Time to impact varies with wind speed

 Rotor-plane is generalized based on finite number of measuring points

Questions