1. Сигма алгебра

Множество \mathbb{F} , элементами которого являются подмножества множества Ω (не обязательно все) наз-ся σ -алгеброй (событий), если выполнены следующие условия:

- $\Omega \in \mathbb{F}$ (σ -алгебра событий содержит достоверное событие)
- если $A \in \mathbb{F}$, то $\overline{A} \in \mathbb{F}$ (вместе с любым событием σ -алгебра содержит противоположное событие)
- если $A_1, A_2, ... \in \mathbb{F}$, то $A_1 \cup A_2 \cup ... \in \mathbb{F}$ (вместе с любым счетным набором событий σ -алгебра содержит их объединение)

2. Вероятность

Пусть Ω - пр-во элементарных исходов, $F - \sigma$ -алгебра его подмножеств (событий). Вероятностью на (Ω, \mathbb{F}) называется функция $P : \mathbb{F} \to \mathbb{R}$, обладающая св-вами:

- $P(A) \ge 0$ для любого события $A \in \mathbb{F}$
- для любого счетного набора попарно несовместных событий $A_1, A_2, A_3, ... \in \mathbb{F}$ имеет место равенство

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

• Вероятность достоверного события равна единице: $P(\Omega) = 1$

3. Вероятностное пр-во

Вероятностное пр-во - тройка $\langle \Omega, \mathbb{F}, P \rangle$, в которой Ω - пр-во элементарных исходов, \mathbb{F} - σ -алгебра его подмножеств и P - вероятностная мера на \mathbb{F}

4. Условная вероятность

Условной вероятностью события A при условии, что произошло событие B, наз-ся число

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Условная вероятность определена только в том случае, когда P(B)>0

5. Формула Байеса

Пусть $H_1, H_2, ...$ - полная группа событий, и A - некоторое событие, вероятность которого положительна. Тогда условная вероятность того, что имело место событие H_k , если в результате эксперимента наблюдалось событие A, может быть вычислена по Φ -ле

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i)P(A|H_i)}$$

6. Случайная величина

Функция $\xi: \Omega \to \mathbb{R}$ наз-ся случайной величиной, если для любого борелевского множества $B \in \mathbb{B}(\mathbb{R})$ множество $\xi^{-1}(B)$ является событием, т. е. принадлежит σ -алгебре \mathbb{F}

7. Функция вероятности. Св-ва функции вероятности

Функцией распределения случайной величины ξ наз-ся функция $F_{\xi}: \mathbb{R} \to [0,1]$, при каждом $x \in \mathbb{R}$ равная вероятности случайной величине ξ принимать значения, меньшие x

$$F_{\xi}(x) = P(\xi < x) = P\{w : \xi(w) < x\}$$

Свойства:

- Она не убывает: если $x_1 < x_2$, то $F_{\xi}(x_1) \le F_{\xi}(x_2)$
- Существут пределы $\lim_{x\to -\infty} F_\xi(x) = 0$ и $\lim_{x\to +\infty} F_\xi(x) = 1$
- ullet Она в любой точке непрерывна слева: $F_{\xi}(x_0-0)=\lim_{x o x_0-0} F_{\xi}(x)=F_{\xi}(x_0)$

8. Дискретная случайная величина

Случайная величина ξ является дискретной (имеет дискретное распределение), если существует конечный или счетный набор чисел a_1, a_2, \dots такой, что для всех i

$$P(\xi = a_i) > 0$$

$$\sum_{i=1}^{\infty} P(\xi = a_i) = 1$$

9. Попарная независимость случайных величин

Случайные величины $\xi_1,...,\xi_n$ наз-ся попарно независимыми, если независимы любые две из них

10. Независимость в совокупности для случайных величин

Случайные величины $\xi_1, ..., \xi_n$ называют независимыми (в совокупности), если для любого набора борелевских множеств $B_1, ..., B_n \in \mathbb{B}(\mathbb{R})$ имеет место равенство

$$P(\xi_1 \in B_1, ..., \xi_n \in B_n) = P(\xi_1 \in B_1) \cdot ... \cdot P(\xi_n \in B_n)$$

11. Абсолютно непрерывная случайная величина

Случайная величина ξ является абсолютно непрерывной (имеет абсолютно непрерывное распределение), если существует неотрицательная функция $f_{\xi}(x)$ такая, что для любого борелевского множества B имеет место равенство

$$P(\xi \in B) = \int_{B} f_{\xi}(x)dx$$

12. Математическое ожидание в общем случае

Пусть задано вероятностное пр-во $\langle \Omega, \mathbb{F}, P \rangle$ и $\xi : \Omega \to \mathbb{R}$ - заданная на нем случайная величина. Если существует интеграл Лебега от ξ по пр-ву Ω , то он наз-ся математическим ожиданием

$$E\xi = \int_{\Omega} \xi(w) \cdot P(d\omega)$$

13. Математическое ожидание для дискретной случайной величины

Математическим ожидание $E\xi$ случайной величины ξ с дискретным распределением наз-ся число

$$E\xi = \sum_{k} a_k p_k = \sum_{k} a_k P(\xi = a_k),$$

если данный ряд абсолютно сходится, т. е. если $\sum |a_i|p_i < \infty$. Иначе говорят, что математическое ожидание не существует.

14. Математическое ожидание абсолютно непрерывной случайной величины

Математическим ожидание $E\xi$ случайной величины ξ с абсолютно непрерывным распределением наз-ся число

$$E\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx$$

если этот интеграл абсолютно сходится, т. е. если $\int\limits_{-\infty}^{\infty}xf_{\xi}(x)dx<\infty$

15. Дисперсия

Пусть $E|\xi|^k < \infty$. Число $E\xi^k$ наз-ся моментом порядка k или k-м моментом случайной величины ξ , число $E|\xi|^k$ наз-ся абсолютным k-м моментом, $E(\xi-E\xi)^k$ наз-ся центральным k-м моментом, и $E|\xi-E\xi|^k$ - абсолютным центральным k-м моментом случайной величины ξ .

Число $D\xi=E(\xi-E\xi)^2$ (центральный момент второго порядка) наз-ся дисперсией случайной величины ξ

16. Ковариация

Ковариацией $cov(\xi,\eta)$ случайных величин ξ и η наз-ся число $cov(\xi,\eta) = E((\xi-E\xi)(\eta-E\eta)) =$ $E\xi\eta - E\xi E\eta$

17. Коэффициент корреляции

Коэффициентом корреляции $\rho(\xi,\eta)$ случайных величин ξ и η , дисперсии которых существуют и отличны от нуля, наз-ся число

$$\rho(\xi,\eta) = \frac{cov(\xi,\eta)}{\sqrt{D\xi}\sqrt{D\eta}}$$

18. Квантиль. Медиана

Пусть задано вероятностное пр-во $\langle \Omega, \mathbb{F}, P \rangle$ с заданным распределением P^{ξ} случайной величины ξ . Пусть фиксировано $\alpha \in (0,1)$. Тогда квантилем уровня α распределения P^{ξ} наз-ся число $x_{\alpha} \in \mathbb{R}$, такое что

$$\begin{cases} P(\xi \le x_{\alpha}) \ge \alpha, \\ P(\xi \ge x_{\alpha}) \ge 1 - \alpha \end{cases}$$

Медианой распределения случайной величины ξ наз-ся любое из чисел μ таких, что

$$\begin{cases} P(\xi \le \mu) \ge \frac{1}{2}, \\ P(\xi \ge \mu) \ge \frac{1}{2} \end{cases}$$

19. Биномиальная случайная величина

$$\xi \sim Bin(n,p)$$

Распределение вероятностей $P(\xi = k) = C_n^k p^k (1-p)^{n-k}, n \in \mathbb{N}, p \in (0,1), k = 0,1,...n$

Мат. ожидание $E\xi = np$

Дисперсия $D\xi = np(1-p)$

20. Геометрическая случайная величина

$$\xi \sim Geom(p)$$

Распределение вероятностей $P(\xi = k) = p(1-p)^{k-1}, p \in (0,1), k = 1,2,3...$

Maт. ожидание $E\xi = \frac{1}{n}$

Дисперсия $D\xi = \frac{1-p}{p^2}$

21. Пуассоновская случайная величина

$$\xi \sim Pois(\lambda)$$

Распределение вероятностей $P(\xi=k)=e^{-\lambda \frac{\lambda^k}{k!}},\ \lambda>0,\ k=0,1,2,...$

Мат. ожидание $E\xi = \lambda$

Дисперсия $D\xi = \lambda$

22. Равномерная случайная величина

 $\xi \sim U(a,b)$ (равномерное непрерывное распределение)

Плотность

$$f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b], \\ 0, & x \notin [a, b] \end{cases}$$

Мат. ожидание $E\xi=\frac{a+b}{2}$ Дисперсия $D\xi=\frac{(b-a)^2}{12}$

23. Показательная случайная величина

 $\xi \sim Exp(\alpha)$

Плотность

$$f_{\xi}(x) = \begin{cases} \alpha e^{-\alpha x}, & x \ge 0, \\ 0, & x < 0 \end{cases}$$

Мат. ожидание $E\xi = \frac{1}{\alpha}$ Дисперсия $D\xi = \frac{1}{\alpha^2}$

24. Гамма случайная величина

$$\xi \sim \Gamma(\lambda, \alpha)$$

Плотность ($\alpha > 0, \lambda > 0$)

$$f_{\xi}(x) = \begin{cases} c \cdot x^{\lambda - 1} e^{-\alpha x}, \\ 0, \ x \le 0 \end{cases}$$

 $c=rac{lpha^\lambda}{\Gamma(\lambda)},$ где $\Gamma(\lambda)=(\lambda-1)\Gamma(\lambda-1)$ - гамма-функция Эйлера, $\Gamma(1)=1$ Мат. ожидание $E\xi=\lambda \alpha$

Дисперсия $D\xi = \lambda \alpha^2$

25. Нормальная случайная величина

$$\xi \sim N(\alpha, \sigma^2)$$

Плотность $f_\xi(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\alpha)^2}{2\sigma^2}},\ x\in\mathbb{R}$ Мат. ожидание $E\xi=\alpha$ Дисперсия $D\xi=\sigma^2$

26. Производящая функция для дискретной неотрицательной случайной величины

Если ξ является дискретной случайной величиной, принимающей неотрицательные целочисленные значения $\{0,1,...\}$, то производящая функция вероятностей от случайной величины ξ определяется как

$$\psi_{\xi}(z) = Ez^{\xi} = \sum_{x=0}^{\infty} p(x)z^{x}$$

где p - функция вероятности ξ . Указанный степенной ряд сходится, по крайней мере, для всех комплексных чисел z, т. ч. |z| < 1, иначе не обязательно сходится.

27. Характеристическая функция случайной величины

Функция $\psi_{\xi}(t)=Ee^{it\xi}$ вещественной переменной t наз-ся характеристической функцией случайной величины ξ

28. Теорема Бохнера-Хинчина.

Пусть ϕ - непрерывная функция и $\phi(0) = 1$. Для того, чтобы ϕ была характеристической функцией некоторого случайного вектора, необходимо и достаточно, чтобы ϕ была неотрицательно определенной, то есть при каждом целом n>0 для любых вещественных чисел $x_1,x_2,...,x_n$ и любых комплексных чисел $z_1, z_2, ..., z_n$ выполняется неравенство $\sum_{i,j=1}^n \phi(x_i - x_j) z_i \bar{z_j} \ge 0$

29. Формула свёртки двух независимых случайных величин

Если случайные величины ξ_1 и ξ_2 независимы и имеют абсолютно непрерывные распределения с плотностями $f_{\xi_1}(u)$ и $f_{\xi_2}(v)$, то плотность распределения суммы $\xi_1 + \xi_2$ существует и равна "свертке" плотностей f_{ξ_1} и f_{ξ_2} :

$$f_{\xi_1+\xi_2}(t) = \int_{-\infty}^{\infty} f_{\xi_1}(u) f_{\xi_2}(t-u) du = \int_{-\infty}^{\infty} f_{\xi_2}(u) f_{\xi_1}(t-u) du$$

30. Свойство характеристических функций для суммы независимых случайных величин

Характеристическая функция суммы независимых случайных величин равна произведению характеристических функций слагаемых: если случайные величины ξ и η независимы, то по свойству матожиданий (ξ и η независимы $\Rightarrow E(\xi\eta) = E\xi E\eta$),

$$\phi_{\xi+\eta}(t) = Ee^{it(\xi+\eta)} = Ee^{it\xi}Ee^{it\eta} = \phi_{\xi}(t)\phi_{\eta}(t)$$

31. Сходимость случайных величин почти наверно

Последовательность ξ_n сходится почти наверное к случайной величине ξ при $n \to \infty$ ($\xi_n \to \xi$ п.н.), если $P\{\omega|\xi_n(\omega)\to\xi(\omega)$ при $n\to\infty\}=1$

32. Сходимость случайных величин по вероятности

Последовательность ξ_n сходится по вероятности к случайной величине ξ при $n \to \infty$, если для любого $\varepsilon > 0$: $P(|\xi_n - \xi| \ge \varepsilon) \to 0$ при $n \to \infty$

- 33. Сходимость случайных величин в среднем порядка k Последовательность ξ_n сходится в среднем к случайной величине ξ в L^k (k>0), если $E|\xi_n-\xi|^k\to 0$ при $n\to\infty$
- 34. Сходимость случайных величин по распределению Последовательность ξ_n сходится по распределению к случайной величине ξ , если для любого x такого, что функция распределения F_ξ непрерывна в точке x, имеет место сходимость $F_{\xi_n}(x) \to F_\xi(x)$ при $n \to \infty$
- 35. Слабая сходимость случайных величин Последовательность ξ_n сходится слабо к случайной величине ξ , если для любой функции f(x), такой что f(x) непрерывна, выполнено: $Ef(\xi_n) \to E(f_\xi)$ при $n \to \infty$
- 36. Неравенство Маркова Если $E|\xi| < \infty$, то для любого x > 0:

$$P(|\xi| \ge x) \le \frac{E|\xi|}{r}$$

37. Неравенство Чебышева Если $D\xi$ существует, то для любого x > 0:

$$P(|\xi - E\xi| \ge x) \le \frac{D\xi}{x^2}$$

38. Предельная теорема Пуассона для биномиальной случайной величины Пусть $n \to \infty$ и $p_n \to 0$ так, что $np_n \to \lambda > 0$. Тогда для любого $k \ge 0$ вероятность получить k успехов в n испытаниях Бернулли с вероятностью успеха p_n стремится к величине $e^{-\lambda} \frac{\lambda^k}{k!}$:

$$P(v_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \to e^{-\lambda} \frac{\lambda^k}{k!}$$

39. Закон больших чисел в форме Чебышева Для любой последовательности $\xi_1, \xi_2, ...$ попарно независимых и одинаково распределенных случайных величин с конечным вторым моментом $E\xi_1^2 < \infty$ имеет место сходимость

$$\frac{\xi_1 + \dots + \xi_n}{n} \to E\xi_1$$

40. Центральная предельная теорема для независимых одинаково распределенных случайных величин Пусть ξ_1, ξ_2, \dots - независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией: $0 < D\xi_1 < \infty$. Тогда имеет место слабая сходимость

$$\frac{\xi_1 + \dots + \xi_n - nE\xi_1}{\sqrt{nD\xi_1}} \Rightarrow N(0,1)$$

последовательности центрированных и нормированных сумм случайных величин к стандартному нормальному распределению.