Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Allgemeine Betrachtungen Mechatronisches System

Allgemeine Betrachtungen

Aktoren – Wirkungsweise und gängige Wandler

Allgemeine Betrachtungen Energie und Leistung beim Energiewandler

Seite 5

Allgemeine Betrachtungen Verlustleistung und Wirkungsgrad des Energiewandlers

Verlustleistungen und Wurzungsgrade betiellen sich üblichesweise auf Enstande mit Ei= const. Vew. alEi zu,

Dann giet fins die Verlus tleis tung Prerlust Prerlust: $\hat{Q} = p^{2n} - p^{2n}$ und fins den Withungs grand y $V = \frac{p^{2n}}{p^{2n}}$

Allgemeine Betrachtungen Behandlung eines Energiewandlers als Vierpol

Allgemeine Betrachtungen Potenzial- und Flussgrößen von Energiewandlern

Leistungsform	Potenzialgröße p	Flussgröße f	Leistung P= p f
mechanisch translatorisch	They F	Greschw. V	FU
mechanisch rotatorisch	noment M	Dretizeschw. W	nes
elektrisch	Spanning U	Show 5	uz
fluidisch	Doner sp	Volumens from V	2 p V
thermisch	Temp st	Wasmelentwest 9-A	AT ZA

Allgemeine Betrachtungen Wirkungsgrade gängiger Wandler

$P^{ab} = P_2$ $P^{zu} = P_1$	mechanisch translatorisch	η	mechanisch rotatorisch	η
mechanisch translatorisch	$\uparrow F_1, v_1 \qquad \downarrow F_2, v_2$	F202 F121	F_1, v_1 M_2, ω_2	M262 F, v1
mechanisch rotatorisch	F_2, v_2 M_1, ω_1	#202 Mrw1	M_1, ω_1 M_2, ω_2	M2W2 M2 W1
elektrisch	Elektromagnet U_1 F_2 , V_2	42 N2 U1 91	Elektromotor I_1 M_2, ω_2 U_1	M262
fluidisch	Hydrozylinder F_2, v_2 $\dot{V_1}, \Delta p_1$	4202 492 VA	$\begin{array}{c c} M_2, \omega_2 & \textbf{Fluidmotor} \\ \hline & & \\ \hline \\ \hline$	Ma Wz ACI VI

Elektromechanische Wandler Klassifizierung

Elektromechanische Wandler Übersicht der behandelten Motorprinzipien

Elektromechanische Wandler / Aktoren

Grundgleichungen elektromechanische Wandler

Lorentzkraft - Kraftwirkung auf einen Leiter

Elementarmaschine

Leiter im magnetischen Fluss

Fur dem Belong der dorentzbraft grei |Fil = J | E | B | Sin x (E,B) Mit E I B |Fil = Fi = JeB]

Grundgleichungen elektromechanische Wandler

Induktion – Spannungsänderung bei Ф-Anderung

Magnetische Fluss einer Strom durchflossenen Spule

$$\overline{\Phi} = S B a A = ho h u y n A cos \neq (B, A)$$

Grundgleichungen elektromechanische Wandler Induktion – Spannungsänderung bei Ф-Änderung

deuzsches bieseh

Die Judurthousspaur ung ist so jepolt, dass sie durch einen vou iles erengten Strom des Ursacen des Judurthous vorjamjes entgegenwirken Raun

Seite 14

Gleichstrommotor Allgemein

- 1832: Erster Generator von H. Pixii (Franzose) mit rotierenden Hufeisenmagneten
- 1860: Entwicklung der Ringwicklung und dem vielteiligen Stromwender durch A. Pacinotti
- 1866: Entdeckung des dynamoelektrischen Prinzips durch Werner v. Siemens, Aufbau der nach heutigen Maßstäben "ersten" elektrischen Maschine

Mit Einführung des Drehstroms 1890 verloren die Gleichstrommaschinen ihre beherrschende Marktstellung an die Asynchron- und Synchronmaschinen. Im Bereich der drehzahlgeregelten Antriebe behauptet die Gleichstrommaschine noch immer einen bedeutenden Marktanteil.

Einsatzgebiete:

Unterhaltungselektronik, Spielzeuge, Haushaltsgeräte, Elektrowerkzeuge, Kfz-Elektrik, Werkzeugmaschinen, Förderanlagen, Walzstraßen, Fahrmotoren für Nahverkehrsbahnen.

Gleichstrommotor

Momentenwirkung auf eine Leiterschleife

$$M_L = 2F_L + sin 2$$

$$= 25 R + sin 2$$

$$= 5 R + sin 2$$

Gleichstrommotor

Motormoment mit Kommutator

The das Motor moment My gier

MM = MA D B A [Sind] weger

Momental

Fri das wither Modor moment

expect sich somit

MM = $\frac{1}{\pi}$ S MA D B A sind dd

Seite 17

Gleichstrommotor Prinzipskizze einer Gleichstrommaschine

Seite 18

Gleichstrommotor

U_{ind} bei einem Gleichstrommotor

Hina = UAB dA = UAB of (A cos x)

= - MABA sind WR

Fin die mittere molnzierte Spormung

Uind = 1 5 mg BA sind del WR

Seite 19

Vielen Dank für Ihre Aufmerksamkeit!