Dérivation

THÉORÊME Dérivées des fonctions usuelles

Soient un réel $\,\lambda\,$ et un entier naturel n ; on désigne par $\,D_f\,$ le domaine de définition de f et par $\,D_{f'}\,$ son domaine de dérivabilité.

$f\left(x ight)$	$f'\left(x ight)$	D_f	$D_{f'}$	
λ	0	\mathbb{R}	\mathbb{R}	
X	1	\mathbb{R}	\mathbb{R}	
$x^n~(n\geq 1)$	nx^{n-1}	\mathbb{R}	\mathbb{R}	
$rac{1}{x^n}(n\geq 1)$	$-rac{n}{x^{n+1}}$	\mathbb{R}^*	\mathbb{R}^*	
\sqrt{x}	$rac{1}{2\sqrt{x}}$	\mathbb{R}^+	\mathbb{R}^{+*}	
THÉORÊME Dérivées et opérations				

Soit un réel λ , on désigne par u et v deux fonctions dérivables sur un intervalle l.

	J
λu	$\lambda u'$
u+v	u'+v'
uv	u'v+uv'
$\frac{1}{u}$ (si u ne s'annule pas sur \emph{I})	$-rac{u'}{u^2}$
$\frac{u}{v}$ (si v ne s'annule pas sur /)	$\frac{u'v-uv'}{v^2}$
$u^n\ (n\geq 1)$	$nu'u^{n-1}$
\sqrt{u} (si $u\left(x\right) > 0$ sur l'intervalle l)	$rac{u'}{2\sqrt{u}}$
Continuité	

Soient f une fonction continue sur un intervalle l, et a et b deux réels de cet intervalle.

PROPRIÉTÉ

DÉFINITION Fonction continue

représentative sur / sans lever le crayon.

D'après le théorème des valeurs intermédiaires, pour tout réel k compris entre $f\left(a\right)$ et $f\left(b\right)$, il existe au moins un réel c compris entre a et b tel que : $f\left(c\right)=k$.

Toute fonction dérivable sur lest continue sur l. Attention, la réciproque est fausse.

Une fonction f est continue sur un intervalle I si et seulement s'il est possible de tracer sa courbe

0

f(a)

f(b)

THÉORÊME Théorème des valeurs intermédiaires

COROLLAIRE Corollaire du théorème des valeurs intermédiaires ullet Si f est continue sur [a;b] et si f (a) et f (b) sont de signes opposés, alors f s'annule au moins une

DÉFINITION Fonction concave Une fonction f est dite concave sur I lorsque sa courbe est située entièrement au-dessous de chacune de

THÉORÊME Fonction convexe et dérivées

THÉORÊME Fonction concave et dérivées La fonction f est concave sur I si et seulement si la dérivée f' est décroissante sur I, c'est-à-dire si sa dérivée seconde f" est négative sur l.

La fonction f est convexe sur l si et seulement si la dérivée f' est croissante sur l, c'est-à-dire si sa dérivée

Une fonction f est dite convexe sur I lorsque sa courbe est située entièrement au-dessus de chacune de

DÉFINITION Point d'inflexion Un point d'inflexion est un point où la représentation graphique d'une fonction traverse sa tangente en ce point, c'est-à-dire là où la dérivée seconde s'annule en changeant de signe.

Fonction exponentielle

seconde f" est positive sur l.

DÉFINITION Fonction convexe

ses tangentes.

ses tangentes.

DÉFINITION La fonction exponentielle La fonction exponentielle est la fonction définie sur $\,\mathbb{R}\,$ par $\,f\left(x
ight)=e^{x}$.

Soient deux réels x et y, et un entier n. • $e^x = e^y \Leftrightarrow x = y$

• $e^x < e^y \Leftrightarrow x < y$

 $\bullet \quad e^{x+y} = e^x e^y$

 $\bullet \quad e^{-x} = \frac{1}{e^x}$

 $\bullet \quad e^{x-y} = \frac{e^x}{e^y}$

THÉORÊME Propriétés algébriques de la fonction exponentielle

 $\bullet \quad (e^x)^n = e^{nx}$ THÉORÊME Dérivées

Fonction logarithme népérien

- **Fonction**

 e^x

 e^u

DÉFINITION	Fonction logarithme népérien
La fonction lo	ogarithme népérien, définie sur \mathbb{R}^{+st} est $f\left(x ight) =\ln \left(x ight) .$

PROPRIÉTÉ

Pour tout réel $x\colon \ln\left(e^x ight) = x$.
Pour tout réel x strictement positif : $e^{\ln(x)} = x$.
PROPRIÉTÉ
Pour tous réels strictement positifs x et y, et tout entier relatif n :
$\ln \left(xy ight) = \ln \left(x ight) + \ln \left(y ight)$

Dérivée

u

Dérivée

 e^x

 $u'e^u$

• $\ln\left(\frac{x}{y}\right) = \ln\left(x\right) - \ln\left(y\right)$ • $\ln\left(x^{n}\right) = n\ln\left(x\right)$ • $\ln\left(\sqrt{x}\right) = \frac{1}{2}\ln\left(x\right)$

Primitives des fonctions usuelles

 $F\left(x
ight)$

 $\ln\left(x\right)$

Opérations et primitives

fonction F est une primitive de f sur l'intervalle I.

 u^{n+1}

F

Soient un entier n, k un réel ; la fonction F est une primitive de f sur l'intervalle I.

Fonction $\ln\left(x\right)$

THÉORÊME Dérivées

• $\ln\left(\frac{1}{x}\right) = -\ln\left(x\right)$

 $\ln\left(u\right)$

Primitives

 $f\left(x\right)$

 e^x

f

 $u'u^n$

THÉORÊME

k	kx	\mathbb{R}
x^n	$\frac{x^{n+1}}{n+1}$	si $n \geq 1$: \mathbb{R} si $n \leq -2$: $]-\infty;0[\mathrm{U}]0;+\infty[$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	$]0;+\infty[$

Soit un entier n différent de 0 et -1. On désigne par u et v deux fonctions dérivables sur l'intervalle I; la

si $n\leq -2$: $u\left(x
ight)
eq 0$ sur/

Conditions

 $]0;+\infty[$

 \mathbb{R}

$\ln\left(u\right)$ u > 0 $2\sqrt{u}$ u > 0 $u'e^u$ e^u Intégrales Aires et intégrales **DÉFINITION** Intégrale d'une fonction continue positive Soient f une fonction continue et positive sur un intervalle $\left[a;b\right]\left(a < b\right)$, et C sa courbe représentative dans un repère orthogonal.

L'intégrale $\int_a^b f(x) \, \mathrm{d}x$ de la fonction f sur [a;b] est égale à l'aire (en unités d'aire) de la partie du plan

X

délimitée par la courbe $\it C$, l'axe des abscisses, et les droites d'équation $\it x=a$ et $\it x=b$.

DÉFINITION Intégrale d'une fonction continue négative

DÉFINITION

repère orthogonal.

dans un repère orthogonal.

L'intégrale $\int_a^b f\left(x
ight) \,\mathrm{d}x$ de la fonction f sur $\left[a;b
ight]$ est égale à l'opposé de l'aire (en unités d'aire) de la partie du plan délimitée par la courbe C , l'axe des abscisses, et les droites d'équation x=a et x=b .

Intégrale d'une fonction continue

f est positive et la somme des aires où f est négative.

Soient f une fonction continue sur un intervalle $\left[a;b\right]\left(a < b\right)$, et C sa courbe représentative dans un

L'intégrale $\int_a^b f\left(x\right) \,\mathrm{d}x$ de la fonction f sur $\left[a;b\right]$ est égale à la différence entre la somme des aires où

Soient f une fonction continue et négative sur un intervalle $\left[a;b\right]\left(a < b
ight)$, et C sa courbe représentative

B Propriétés de l'intégrale Valeur moyenne d'une fonction DÉFINITION

$\frac{1}{b-a} \int_a^b f(x) dx$ PROPRIÉTÉ Soient f et g deux fonctions continues sur un intervalle l, a, b et c trois réels de l, et k un réel quelconque.

On appelle valeur moyenne de f sur $\left[a;b
ight]\left(a < b
ight)$ le réel :

• Linéarité : $\int_{a}^{b}\left(f\left(x
ight)+g\left(x
ight)
ight) \,\mathrm{d}x=\int_{a}^{b}f\left(x
ight) \,\mathrm{d}x+\int_{a}^{b}g\left(x
ight) \,\mathrm{d}x$ PROPRIÉTÉ

C Intégrale et primitives

• $\int_{a}^{a} f(x) \, \mathrm{d}x = 0$

• $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$

• $\int_a^b kf(x) dx = k \int_a^b f(x) dx$

- Soient f et g deux fonctions continues sur un intervalle l , a et b deux réels de l tels que $\mathit{a} \leq \mathit{b}$, m et M deux réels tels que $\, m \leq f \leq M \,$ sur $\, [a;b] \, .$ ullet Positivité : si $f\geq 0$ sur [a;b] , alors $\int_a^b f\left(x
 ight) \,\mathrm{d}x\geq 0$.
- Comparaison : si $f \leq g$ sur [a;b] , alors $\int_{a}^{b} f\left(x
 ight) \, \mathrm{d}x \leq \int_{a}^{b} g\left(x
 ight) \, \mathrm{d}x$. • Inégalité de la moyenne : $m\left(b-a\right) \leq \int_{a}^{b} f\left(x
 ight) \; \mathrm{d}x \leq M\left(b-a\right)$.

• Relation de Chasles : $\int_{a}^{b}f\left(x
ight) \,\mathrm{d}x = \int_{a}^{c}f\left(x
ight) \,\mathrm{d}x + \int_{c}^{b}f\left(x
ight) \,\mathrm{d}x$

THÉORÊME Intégrale et primitives Soient fune fonction continue sur let Fune primitive de f sur l, a et b deux réels de l: $\int_{a}^{b} f(t) dt = F(b) - F(a)$

Dérivation II Continuité **III** Convexité **IV** Fonction exponentielle V Fonction logarithme népérien **VI** Primitives

Sommaire

VII Intégrales

A Aires et intégrales

B Propriétés de l'intégrale

C Intégrale et primitives