T0-Theorie: Kosmische Relationen

Der universelle ξ -Konstant als Schlüssel zu Gravitation, CMB und kosmischen Strukturen

Johann Pascher

Abteilung für Kommunikationstechnik, Höhere Technische Bundeslehr- und Versuchsanstalt (HTL), Leonding, Österreich johann.pascher@gmail.com

9. September 2025

Inhaltsverzeichnis

1 Einführung in die T0-Theorie		
Fundamentale Skalen in der ξ -Theorie	2	
Mikroskopische Länge L_0 in der T0-Theorie	2	
3.1 Definition in ξ -Einheiten ($\hbar = c = 1$)	2	
3.3 Physikalische Bedeutung		
Charakteristische Vakuumlänge L_{ε} und CMB-Verbindung	3	
_ · · · · · · · · · · · · · · · · · · ·	3	
	3	
4.3 Numerische Verifikation der fundamentalen Beziehung		
Kosmische Länge R_0 und Skalenhierarchie	4	
	4	
Ableitung der minimalen Länge aus der Lagrange-Funktion	4	
6.1 Euler-Lagrange-Gleichung	5	
6.2 Diskrete Struktur und minimale Länge	5	
6.4 Skalierung mit dem universellen Konstanten ξ	5	
	Fundamentale Skalen in der ξ -Theorie Mikroskopische Länge L_0 in der T0-Theorie 3.1 Definition in ξ -Einheiten ($\hbar=c=1$) 3.2 Umrechnung in physikalische SI-Einheiten 3.3 Physikalische Bedeutung Charakteristische Vakuumlänge L_{ξ} und CMB-Verbindung 4.1 Fundamentale Beziehung in der T0-Theorie 4.2 Ableitung der charakteristischen Vakuumlänge L_{ξ} 4.2.1 CMB-Energiedichte 4.2.2 Numerische Berechnung 4.3 Numerische Verifikation der fundamentalen Beziehung Kosmische Länge R_0 und Skalenhierarchie 5.1 Definition von R_0 5.2 Verbindung zwischen L_{ξ} und R_0 via ξ Ableitung der minimalen Länge aus der Lagrange-Funktion 6.1 Euler-Lagrange-Gleichung 6.2 Diskrete Struktur und minimale Länge 6.3 Minimale Zeit und Länge via Dualität	

1 Einführung in die T0-Theorie

T
0-Theorie präsentiert einen neuartigen Rahmen, der Quantenphänomene mit kosmologischen Strukturen durch einen universellen dimensions
losen Konstanten ξ verbindet. Diese Theorie

stellt fundamentale Beziehungen zwischen mikroskopischen Quantenskalen und makroskopischen kosmischen Dimensionen her und bietet eine vereinheitlichte Perspektive auf die Physik vom Quantenbereich bis zum kosmologischen Horizont.

2 Fundamentale Skalen in der ξ -Theorie

Die Theorie basiert auf einem universellen, dimensionslosen Konstanten:

$$\xi \equiv \frac{4}{3} \times 10^{-4}$$

Diese reine Zahl ist der fundamentale Parameter. Um die mathematische Struktur der Theorie zu vereinfachen, definieren wir ein Einheitensystem, in dem diese Zahl dem Quadrat einer charakteristischen Energie E_0 (oder äquivalent dem inversen Quadrat einer charakteristischen Länge L_0) zugeordnet wird.

Dieser Rahmen macht sofort klar:

- Die reine Zahl ξ ist die fundamentale Eingabe.
- E_0 (äquiv. m_0) definiert die Energie-/Massenskala.
- L_0 definiert die fundamentale Längenskala.
- Die Relationen $E_0^2 = \xi$ und $L_0^2 = 1/\xi$ sind *Definitionen* innerhalb dieses spezifischen theoretischen Rahmens, keine unabhängigen Postulate.

3 Mikroskopische Länge L_0 in der T0-Theorie

3.1 Definition in ξ -Einheiten ($\hbar = c = 1$)

Im Einheitensystem der Theorie definiert die fundamentale Konstante die Skalen:

Größe	Relation	Numerischer Wert
Konstante ξ	-	$\frac{4}{3} \times 10^{-4}$
Energie E_0	$E_0 = \sqrt{\xi}$	$\sqrt{\frac{4}{3} \times 10^{-4}} \approx 0.0155$
Masse m_0	$m_0 = E_0$	0.0155
Länge L_0	$L_0 = 1/E_0 = 1/\sqrt{\xi}$	≈ 64.5

Tabelle 1: Charakteristische mikroskopische Größen in den natürlichen Einheiten der Theorie. Werte sind dimensionslos.

3.2 Umrechnung in physikalische SI-Einheiten

Um L_0 als physikalische Länge auszudrücken, müssen wir von natürlichen Einheiten (wo $L_0 \approx 64.5$) zu Metern mit dem Umrechnungsfaktor $\hbar c$ konvertieren:

$$1 \, (\text{in Energie}^{-1}\text{-Einheiten}) = \hbar c \approx 1.973 \times 10^{-16} \, \text{m}$$

$$L_0^{(\text{SI})} = L_0^{(\text{nat.})} \times \hbar c \approx 64.5 \times 1.973 \times 10^{-16} \, \text{m} \approx 1.27 \times 10^{-14} \, \text{m}$$

Wichtiger Hinweis

T0-Theorie postuliert eine minimale Länge $L_0 \approx 1.27 \times 10^{-14}$ m, die nicht unterschritten werden kann. Diese minimale Länge ergibt sich natürlich aus der Lagrange-Dichte und der maximalen Feldfluktuation ohne beliebige Parameter.

3.3 Physikalische Bedeutung

- L_0 repräsentiert die fundamentale mikroskopische Längenskala in der T0-Theorie
- Es ist kein beliebiger Parameter, sondern wird durch den universellen Konstanten ξ bestimmt
- Es dient als Basis für alle anderen Längenskalen in der Theorie
- Die Skala 10⁻¹⁴ m ist vergleichbar mit dem klassischen Elektronenradius, was auf eine mögliche Verbindung zu fundamentalen elektromagnetischen Phänomenen hindeutet

4 Charakteristische Vakuumlänge L_{ξ} und CMB-Verbindung

4.1 Fundamentale Beziehung in der T0-Theorie

T0-Theorie postuliert eine fundamentale Beziehung zwischen grundlegenden Konstanten. Entscheidend ist, dass ξ in dieser Gleichung der dimensionslose Konstant ist:

Schlüsselformel

$$\hbar c = \xi \cdot \rho_{\rm CMB} \cdot L_{\xi}^4$$

Diese Gleichung verbindet Quantenmechanik ($\hbar c$), Kosmologie (ρ_{CMB}) und den fundamentalen Konstanten der Theorie (ξ) zur Definition der charakteristischen Vakuumlänge (L_{ξ}).

4.2 Ableitung der charakteristischen Vakuumlänge L_{ξ}

Aus der fundamentalen Beziehung folgt:

$$L_{\xi} = \left(\frac{\hbar c}{\xi \cdot \rho_{\text{CMB}}}\right)^{1/4}$$

4.2.1 CMB-Energiedichte

$$T_{\text{CMB}} \approx 2.725 \,\text{K} \quad \Rightarrow \quad \rho_{\text{CMB}} = \frac{\pi^2}{15} \frac{(k_B T_{\text{CMB}})^4}{(\hbar c)^3} \approx 4.17 \times 10^{-14} \,\text{J/m}^3$$

4.2.2 Numerische Berechnung

Mit den Werten:

- $\hbar c = 3.16 \times 10^{-26} \text{ J} \cdot \text{m}$
- $\xi = \frac{4}{3} \times 10^{-4}$ (dimensionslos)
- $\rho_{\rm CMB} = 4.17 \times 10^{-14} \; {\rm J/m^3}$

erhalten wir:

$$L_{\xi} = \left(\frac{3.16 \times 10^{-26}}{\left(\frac{4}{3} \times 10^{-4}\right) \times 4.17 \times 10^{-14}}\right)^{1/4} = \left(\frac{3.16 \times 10^{-26}}{5.56 \times 10^{-18}}\right)^{1/4} \approx 1.0 \times 10^{-4} \,\mathrm{m}$$

4.3 Numerische Verifikation der fundamentalen Beziehung

Rückrechnung zur Verifikation:

$$\xi \cdot \rho_{\text{CMB}} \cdot L_{\xi}^4 = \left(\frac{4}{3} \times 10^{-4}\right) \times \left(4.17 \times 10^{-14}\right) \times (10^{-4})^4 = 3.13 \times 10^{-26} \,\text{J} \cdot \text{m}$$

Im Vergleich zu $\hbar c = 3.16 \times 10^{-26} \text{ J} \cdot \text{m}$ zeigt dies eine Abweichung von weniger als 1%.

5 Kosmische Länge R_0 und Skalenhierarchie

5.1 Definition von R_0

Die kosmische Länge R_0 wird theoretisch durch die Hierarchie zwischen L_0 und der Planck-Länge L_P abgeleitet:

$$R_0 \sim \frac{L_P^2}{L_0} \sim 10^{26} \,\mathrm{m}$$

Sie kann numerisch mit der Hubble-Länge verglichen werden:

$$L_H = c/H_0 \sim 10^{26} \,\mathrm{m}$$

5.2 Verbindung zwischen L_{ξ} und R_0 via ξ

T0-Theorie postuliert eine Hierarchie:

$$\frac{R_0}{L_{\xi}} \sim \xi^{-N} \quad \Rightarrow \quad R_0 \sim L_{\xi} \, \xi^{-N}$$

Mit $N \approx 30$ und $L_{\xi} \sim 10^{-4}$ m erhalten wir:

$$R_0 \sim 10^{-4} \times (10^4)^{30/4} = 10^{-4} \times 10^{30} = 10^{26} \,\mathrm{m}$$

Dies verbindet direkt die charakteristische Vakuumlänge L_{ξ} mit der kosmischen Länge R_0 .

6 Ableitung der minimalen Länge aus der Lagrange-Funktion

Ausgehend von der T0-Theorie Lagrange-Funktion:

$$\mathcal{L} = \varepsilon (\partial \delta m)^2, \quad \delta m(x,t) = m(x,t) - m_0$$
 (6.1)

wobei δm die Fluktuation des Massenfeldes um eine Referenzmasse m_0 ist und ε eine Skalierungskonstante.

6.1 Euler-Lagrange-Gleichung

Die Euler-Lagrange-Gleichung für die Massenfluktuation δm ist

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \delta m)} - \frac{\partial \mathcal{L}}{\partial \delta m} = 0 \tag{6.2}$$

Da $\mathcal{L} \sim (\partial \delta m)^2$, haben wir $\frac{\partial \mathcal{L}}{\partial \delta m} = 0$ und

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\delta m)} = 2\varepsilon \partial_{\mu}\delta m \tag{6.3}$$

was zur klassischen Wellengleichung führt:

$$\partial_{\mu}\partial^{\mu}\delta m = 0 \tag{6.4}$$

6.2 Diskrete Struktur und minimale Länge

Betrachtung von ebenen Wellen-Lösungen

$$\delta m(x) \sim e^{ik \cdot x}, \quad k = |k|$$
 (6.5)

Die Feldenergie skaliert als

$$E_k \sim \varepsilon k^2 |\delta m_k|^2 \tag{6.6}$$

sodass hohe Frequenzen (kurze Wellenlängen) energetisch unterdrückt werden.

Die Auferlegung einer maximal erlaubten Feldfluktuation $\delta m_{\rm max}$ definiert natürlich eine charakteristische maximale Masse

$$m_{\text{max}} \sim m_0 + \delta m_{\text{max}} \tag{6.7}$$

6.3 Minimale Zeit und Länge via Dualität

Verwendung der fundamentalen T0-Theorie-Dualität

$$T \cdot m = 1 \quad \Rightarrow \quad T_{\min} = \frac{1}{m_{\max}}$$
 (6.8)

und in natürlichen Einheiten (c=1) übersetzt sich dies direkt in eine minimale Länge

$$r_0 \sim T_{\min} \sim \frac{1}{m_{\max}} \sim \frac{1}{m_0 + \delta m_{\max}} \tag{6.9}$$

6.4 Skalierung mit dem universellen Konstanten ξ

Einbeziehung des universellen Skalierungskonstanten $\xi \ll 1$ der T0-Theorie wird die minimale Länge zu

$$r_0 \sim \sqrt{\xi} \,\ell_P \tag{6.10}$$

Mit $\xi = \frac{4}{3} \times 10^{-4}$ und $\ell_P \approx 1.616 \times 10^{-35}$ m:

$$r_0 \sim \sqrt{\frac{4}{3} \times 10^{-4}} \times 1.616 \times 10^{-35} \,\mathrm{m} \approx 0.0155 \times 1.616 \times 10^{-35} \,\mathrm{m} \approx 1.27 \times 10^{-14} \,\mathrm{m}$$

Somit ergibt sich die minimale Länge r_0 natürlich aus der Lagrange-Funktion, der maximalen Feldfluktuation und der intrinsischen Masse-Zeit-Dualität ohne beliebige Parameter.

Erkenntnis

T0-Theorie sagt eine minimale Länge von $r_0 \sim \sqrt{\xi} \, \ell_P \approx 1.27 \times 10^{-14}$ m voraus, die nicht unterschritten werden kann. Dies ergibt sich natürlich aus der Lagrange-Dichte und der fundamentalen Masse-Zeit-Dualität der Theorie.

Verifikation der charakteristischen Vakuumlänge L_{ξ} Skala

Wichtiger Hinweis

Die charakteristische Vakuumlänge L_{ξ} beträgt tatsächlich ungefähr 0,1 mm:

$$L_{\xi} \approx 1.0 \times 10^{-4} \,\mathrm{m} = 0.1 \,\mathrm{mm}$$

Diese Längenskala wird konsistent aus der fundamentalen Beziehung der T0-Theorie abgeleitet:

$$\hbar c = \xi \rho_{\rm CMB} L_{\xi}^4$$

mit $\xi = \frac{4}{3} \times 10^{-4}$ und der CMB-Energiedichte $\rho_{\rm CMB} \approx 4.17 \times 10^{-14}\,{\rm J/m}^3$.

Numerische Verifikation

$$L_{\xi} = \left(\frac{\hbar c}{\xi \rho_{\text{CMB}}}\right)^{1/4}$$

$$= \left(\frac{3.16 \times 10^{-26} \,\text{J} \cdot \text{m}}{\frac{4}{3} \times 10^{-4} \times 4.17 \times 10^{-14} \,\text{J/m}^3}\right)^{1/4}$$

$$\approx \left(\frac{3.16 \times 10^{-26}}{5.56 \times 10^{-18}}\right)^{1/4}$$

$$\approx \left(5.68 \times 10^{-9}\right)^{1/4}$$

$$\approx 1.0 \times 10^{-4} \,\text{m} = 0.1 \,\text{mm}$$

Physikalische Bedeutung

Die Längenskala von 0,1 mm ist besonders signifikant, weil sie:

- Im beobachtbaren Bereich von Casimir-Effekten liegt
- Eine natürliche Grenze zwischen mikroskopischen und makroskopischen Phänomenen darstellt
- Direkt mit der CMB-Strahlung verbunden ist
- Die Hierarchie zwischen Quanten- und Kosmos-Skalen vermittelt

Anhang: Notation und Symbolerklärungen

Symbole und Notation in der T0-Theorie

Symbol	Beschreibung
ξ	Universeller dimensionsloser Konstant, fundamentaler Parameter
	der T0-Theorie: $\xi = \frac{4}{3} \times 10^{-4}$
L_0	Minimale Längenskala, fundamentale mikroskopische Länge: $L_0 =$
	$1/\sqrt{\xi} \cdot \hbar c \approx 1.27 \times 10^{-14} \text{ m}$
E_0	Charakteristische Energieskala: $E_0 = \sqrt{\xi}$ (in natürlichen Einheiten)
m_0	Referenzmassenskala: $m_0 = E_0$ (in natürlichen Einheiten)
L_{ξ}	Charakteristische Vakuumlängenskala: $L_{\xi} \approx 1.0 \times 10^{-4} \text{ m}$
$ ho_{ m CMB}$	Energiedichte der kosmischen Mikrowellenhintergrundstrahlung
T_{CMB}	Temperatur der kosmischen Mikrowellenhintergrundstrahlung:
	$T_{\mathrm{CMB}} \approx 2.725 \mathrm{\ K}$
R_0	Kosmische Längenskala: $R_0 \sim 10^{26} \text{ m}$
L_P	Planck-Länge: $L_P \approx 1.616 \times 10^{-35} \text{ m}$
L_H	Hubble-Länge: $L_H = c/H_0 \sim 10^{26} \text{ m}$
\hbar	Reduzierte Planck-Konstante: $\hbar = h/2\pi$
c	Lichtgeschwindigkeit im Vakuum
k_B	Boltzmann-Konstante
${\cal L}$	Lagrange-Dichte
$\mathcal{L}_{\xi} \ \phi_{\xi}$	ξ -Feld-Komponente der Lagrange-Dichte
$\phi_{m{\xi}}$	ξ -Feld Skalarfeld
δm	Massenfluktuationsfeld: $\delta m(x,t) = m(x,t) - m_0$
ε	Skalierungskonstante in der Lagrange-Funktion
∂_{μ}	Partielle Ableitung (4-Gradient in der Raumzeit)
ℓ_P	Alternative Notation für Planck-Länge
r_0	Alternative Notation für minimale Längenskala
T_{\min}	Minimale Zeitskala abgeleitet aus Masse-Zeit-Dualität
$m_{ m max}$	Maximale Massenskala aus Feldfluktuationen
N	Skalierungsexponent in Hierarchierelation: $N \approx 30$
$\Delta_\%$	Prozentuale Abweichung zwischen theoretischen und beobachteten
	Werten

Mathematische Notation

Notation	Bedeutung
~	Proportional zu oder ungefähr gleich
\approx	Ungefähr gleich
=	Definiert als
:=	Definitionsgleichheit
$\partial_{\mu} \ \partial^{\mu}$	Partielle Ableitung nach Koordinate x^{μ}
∂^{μ}	Kontravariante partielle Ableitung
$\partial_{\mu}\partial^{\mu}$	d'Alembert-Operator (Wellenoperator)
[E]	Dimension der Energie (natürliche Einheiten)
[L]	Dimension der Länge (natürliche Einheiten)

Notation	Bedeutung
[m]	Dimension der Masse (natürliche Einheiten)
GeV	Giga-Elektronenvolt, Energieeinheit: 1 $\text{GeV} = 10^9 \text{ eV}$
${\rm GeV}^{-1}$	Inverse GeV, Längeneinheit in natürlichen Einheiten
$\mathrm{J/m}^3$	Joule pro Kubikmeter, Einheit der Energiedichte
K	Kelvin, Temperatureinheit

Spezielle Konstanten und Werte

Konstante/Wert	Beschreibung
$\xi = \frac{4}{3} \times 10^{-4}$	Fundamentaler dimensionsloser Konstant der T0-
	Theorie
$L_0 \approx 1.27 \times 10^{-14} \text{ m}$	Minimale Längenskala abgeleitet aus ξ
$E_0 = \sqrt{\xi}$	Charakteristische Energieskala (natürliche Einheiten)
$L_{\xi} \approx 0.1 \text{ mm}$	Charakteristische Vakuumlängenskala
$R_0 \sim 10^{26} \; { m m}$	Kosmische Skala vergleichbar mit Hubble-Länge
4% Abweichung	Unterschied zwischen R_0 und Hubble-Länge L_H
$\hbar c = 3.16 \times 10^{-26} \text{ J} \cdot \text{m}$	Produkt aus reduzierter Planck-Konstante und Lichtgeschwindigkeit
$\rho_{\rm CMB} \approx 4.17 \times 10^{-14}$	CMB-Energiedichte
$\mathrm{J/m^3}$	
$T_{\rm CMB} = 2.725 \; {\rm K}$	Gemessene CMB-Temperatur
$1 \text{ GeV}^{-1} = 1.973 \times$	Umrechnungsfaktor zwischen natürlichen und SI-
10^{-16} m	Einheiten