Bioénergétique

Dr abbou

introduction

- La bioénergétique traite de l'origine et du devenir de l'énergie dans la matière vivante.
- L'énergie chimique peut être stockée sous formes:
- 1. composés phosphorylés riche en énergie : ATP , ADP ,CP
- 2. un Travail mécanique
- 3. Servir un travail chimique (élaboration de molécules)
- Cependant, cette transduction na pas de rendement parfait car elle produit de la chaleur.

THERMODYNAMIQUE

ÉNERGIE → travail mécanique (20 %) + CHALEUR (80%)

LES SYSTÈMES ENERGÉTIQUES

- les systèmes d'énergie fonctionnent de manière continue
- La contribution relative d'énergie de chaque système à une activité physique particulière dépendra des exigences d'énergie qui seront directement en rapport avec l'intensité et la durée de l'exercice.

CARBURANTS

Système d'énergie	Carburant	Durée Optimale de l'effort maximal
Anaérobie Alactique	Phospho Créatine	0 – 4 secondes
Anaérobie Lactique	Hydrates de carbone (sans oxygène)	45 secondes – 2 minutes
Aérobie	Hydrates de Carbone - Graisse	2 – 3 heures

Calorimétrie

- 1 KCAL est la quantité d'énergie qui permet d'élever la T° de 1 kg d'eau de 15 à 16 °.
- 1 KCAL = 4,185 KJ
- <u>La Calorimétrie mesure la quantité d'énergie</u> <u>utilisée par un organisme vivant par</u>:
- 1. Quantification de l'apport énergétique alimentaire
- 2. Calculant les déchets thermique
- 3. Quantité d'oxygène consommée

Calorimétrie directe

- Permet l'évaluation totale de l'énergie utilisée par l'organisme en mesurant la quantité de chaleur produite et cédée à l'environnement ..
- 1. <u>Calorimétrie globale</u> :mesure la chaleur captée d'un sujet mis dans une enceinte adiabatique iso thermique .
- **2.** <u>Calorimétrie fonctionnelle</u>: estime l'énergie produite séparément par conduction, convection, radiation et évaporation.

calorimétrie indirect

1. Thermochimie alimentaire:

calcul l'énergie apporté par la ration alimentaire (méthodes ingesta)ou la mesure du gaz carbonique et de l'urée excrétée (méthodes des egesta)

a) <u>Méthodes des ingesta</u>: estime l'énergie fournie par les aliments ingérés (glucide, lipide, protide) dont la valeur calorique est calculée par un la bombe de Bertholot.

VALEUR CALORIQUE PRATIQUE

- 1 G GLUCIDE \rightarrow 4 kcal \rightarrow 16.7 KJ
- 1G LIPIDE \rightarrow 9 Kcal \rightarrow 37.7 KJ
- 1 g protide \rightarrow 4 Kcal \rightarrow 16.7 KJ

- EXEMPLE : si un sujet consome 200 g glucides , 100 g DE LIPIDES , 100 g de protides , sa ration calorique en kcal est égale à :
- (200 * 4) + (100*9) + (100*4) = 2100 Kcal/ 24H

Méthode des egesta

 Consiste à estimer l'énergie chimique utilisée par l'organisme à partir de la mesure des déchets (carbone, urée, eau) contenus dans l'air expiré, l'urines et les matières fécales.

THERMOCHIMIE RESPIRATOIRE

- Cette méthode repose sur le calcul de l'énergie utilisée par l'organisme à partir de la mesure de la consommation d'oxygène VO2.
- EN PRATIQUE on utilise généralement l'<u>équivalent</u> calorique moyen qui est égale à 4.8 Kcal/L O2.
- GLUCIDE: 5.05 Kcal / L O2
- LIPIDE: 4.7 kcal/LO2
- PROTIDE: 4.7 kcal/ L O2
- Nb: les Lipides nécessite 10% d'O2 de plus que le glucose pour produire l'énergie

Métabolisme

- Anabolisme : activités de construction
- Catabolisme : activité de combustion
- Métabolisme de fond résulte des activités irréductibles comme la respiration, croissance, activité cardiaque, calculer au repos, T° NEUTRE, sujet éveillé.
- Dépense énergétique de fond = équivalent calorique moyen * **VO**2/60.
- Métabolisme de base : est la dépense énergétique de fond rapportée à la surface corporelle. (W/m²)
- SURFACE CORPORELLE SELON DU BOIS

Thermorégulation

 C'est entretenir la température centrale dans des limites étroites .

• LUTTE CONTRE LE FROID :

- 1. Diminue la thermolyse (perte de chaleur)
- Augmente la thermogenèse (frissons, 个tonus musculaire, 个 l'activité musculaire volontaire)
- 3. Adaptation du régime en fonction du climat

Thermorégulation

- Lutte contre le chaud :
- Thermolyse_: par exemple vasodilatation cutanée qui accentue les perte de chaleur par conduction et convection, dont le mécanisme est limité par une T° ambiante de 35.5°
- Sudation ou évaporation

MERCI Pour votre attention

