Variational inference

Partly based on material developed together with Helge Langseth

Andrés Masegosa and Thomas Dyhre Nielsen

June 2019

Plan for this week

- Day 1: Probabilistic programming
 - Introduction to probabilistic programming
 - Probabilistic programming in Pyro
- Day 2: Variational inference
 - Recap of variational inference (variational inference as optimization)
 - Derivation and implementation of selected examples
 - Bayesian linear regression
 - Factor analysis
 - . .
- Day 3: Variational inference cont'd
 - Black box variational inference
 - Variational inference in Pyro
 - Variational auto-encoders

Variational inference – Part III

Black Box Variational Inference

Background

VI inference as optimization

We can minimize (improve the variational approximation)

$$\mathrm{KL}(q_{\lambda}(z), p(z \mid \mathbf{x}))$$

by maximizing the ELBO

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log \frac{p(\mathbf{z}, \mathbf{x})}{q(\mathbf{z})} \right]$$

VI inference as optimization

We can minimize (improve the variational approximation)

$$\mathrm{KL}(q_{\lambda}(z), p(z \mid \mathbf{x}))$$

by maximizing the ELBO

$$\mathcal{L}(q) = \mathbb{E}_q \left[\log \frac{p(\mathbf{z}, \mathbf{x})}{q(\mathbf{z})} \right]$$

The mean field assumption

We will often use the mean field assumption, which states that $\mathcal Q$ consists of all distributions that *factorizes* according to the equation

$$q(\mathbf{z}) = \prod_{i} q_i \left(z_i \right)$$

we can treat the variables independently.

BBVI - Vanilla version

Key requirements

We want the approach to be ...

"Black Box": Not requiring tailor-made adaptations by the modeller.

Applicable: Useful independently of the underlying model assumptions.

Efficient: Utilize modelling assumptions, including the mean field assumption, to improve computational speed.

Algorithm: Maximize $\mathcal{L}\left(q\right) = \mathbb{E}_{q_{\lambda}}\left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z})}\right]$ by gradient ascent

- Initialization:
 - $t \leftarrow 0$;
 - $\hat{\lambda}_0 \leftarrow$ random initialization;
- Repeat until negligible improvement in terms of $\mathcal{L}(q)$:
 - $t \leftarrow t + 1$;
 - $\hat{\boldsymbol{\lambda}}_{t} \leftarrow \hat{\boldsymbol{\lambda}}_{t-1} + \rho \left. \nabla_{\lambda} \mathcal{L} \left(q \right) \right|_{\hat{\boldsymbol{\lambda}}_{t-1}};$

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{q} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z})} \right].$$

With a bit of pencil pushing it follows that

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z})} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}) \right].$$

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{q} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z})} \right].$$

With a bit of pencil pushing it follows that

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z})} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}) \right].$$

Properties used for derivation

$$abla_{\lambda} \mathcal{L}\left(q
ight) = \left[\mathbb{E}_{q_{oldsymbol{\lambda}}} \left[\log \frac{p_{ heta}(\mathbf{z}, \mathbf{x})}{q_{oldsymbol{\lambda}}(\mathbf{z} \,|\, oldsymbol{\lambda})} \,\cdot\, \left|
abla_{\lambda} \log q_{oldsymbol{\lambda}}(\mathbf{z} \,|\, oldsymbol{\lambda}) \,
ight].$$

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda}) \right].$$

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \lambda)} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \lambda) \right].$$

• $q_{\lambda}(\mathbf{z})$ factorizes under MF, s.t. we can optimize per variable: $q_{\lambda_i}(z_i)$.

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$abla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})} \cdot \middle| \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda}) \right].$$

- $q_{\lambda}(\mathbf{z})$ factorizes under MF, s.t. we can optimize per variable: $q_{\lambda_i}(z_i)$.
- We must calculate $\nabla_{\lambda} \log q(\mathbf{z} \,|\, \lambda)$, which is also known as the "score function". This depends on the distributional family of $q(\cdot)$; can be precomputed for standard distributions.

Example

If $q_{\lambda}(z)$ follows a normal distribution ($\lambda = (\mu, \sigma)$):

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right),\,$$

then

$$\nabla_{\mu} \log q_{\lambda}(z) = \frac{1}{\sigma^2} (z - \mu)$$

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda})} \cdot \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \mid \boldsymbol{\lambda}) \right].$$

- $q_{\lambda}(\mathbf{z})$ factorizes under MF, s.t. we can optimize per variable: $q_{\lambda_i}(z_i)$.
- We must calculate $\nabla_{\lambda} \log q(\mathbf{z} \,|\, \boldsymbol{\lambda})$, which is also known as the "score function". This depends on the distributional family of $q(\cdot)$; can be precomputed for standard distributions.
- The expectation will be approximated using a sample $\{\mathbf{z}_1, \dots, \mathbf{z}_M\}$ generated from $q(\mathbf{z} \mid \boldsymbol{\lambda})$. Hence we require that we can **sample from** $q_{\lambda_i}(\cdot)$.

• We only need access to the un-normalized $p_{\theta}(\mathbf{z}, \mathbf{x})$ – not $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

$$abla_{\lambda} \mathcal{L}(q) = \boxed{\mathbb{E}_{q_{\lambda}}} \left[\log \frac{p_{\theta}(\mathbf{z}, \mathbf{x})}{q_{\lambda}(\mathbf{z} \,|\, \boldsymbol{\lambda})} \cdot \, \middle| \nabla_{\lambda} \log q_{\lambda}(\mathbf{z} \,|\, \boldsymbol{\lambda}) \right].$$

- $q_{\lambda}(\mathbf{z})$ factorizes under MF, s.t. we can optimize per variable: $q_{\lambda_i}(z_i)$.
- We must calculate $\nabla_{\lambda} \log q(\mathbf{z} \,|\, \lambda)$, which is also known as the "score function". This depends on the distributional family of $q(\cdot)$; can be precomputed for standard distributions.
- The expectation will be approximated using a sample $\{\mathbf{z}_1,\ldots,\mathbf{z}_M\}$ generated from $q(\mathbf{z}\,|\,\boldsymbol{\lambda})$. Hence we require that we can **sample from** $q_{\lambda_i}(\cdot)$.

Calculating the gradient - in summary

We have observed the datapoint x, and our current estimate for λ_i is $\hat{\lambda}_i$. Then

$$\left. \nabla_{\lambda_{i}} \mathcal{L}\left(q\right) \right|_{\lambda = \hat{\lambda}_{i}} \approx \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(z_{i,j}, \mathbf{x})}{q(z_{i,j} \mid \hat{\lambda}_{i})} \cdot \left. \nabla_{\lambda_{i}} \log q_{i}(z_{i,j} \mid \hat{\lambda}_{i}). \right.$$

where $\{z_{i,1}, \ldots z_{i,M}\}$ are samples from $q_{\lambda_i}(\cdot | \hat{\lambda}_i)$.

ELBO optimization

Exercise: BBVI in Python

Consider the simple generative model:

- Derive the BBVI estimate of the gradient for the variational parameters of $q(\mu) = \mathcal{N}(\lambda, 1)$.
- Implement the gradient estimate in the notebook

 Perform gradient ascent using your gradient implementation by running the notebook.

Density of gradient estimates

000 000 000 000

PDF for the gradient calculated at $\lambda=9$, which is below the optimum ≈ 10 . Several values for M, the sample size used to generate the estimate, are shown.

Evolution of ELBO

Based on gradient estimates using 1 sample

BBVI-full.ipynb

- Since the gradient estimate is based on a random sample, it is meaningful to evaluate the estimators' "robustness" in terms of a density function.
- We would hope to see robust estimates, also for small M, and in particular high probability for moving in the correct direction (gradient larger than 0).
- This is not the case, which has lead to a major focus on variance reduction techniques: while important we will not cover them here.

Probabilistic programming: Variational inference in Pyro

Pyro

Pyro (pyro.ai) is a Python library for probabilistic modeling, inference, and criticism, integrated with PyTorch.

Modeling: • Directed graphical models

Neural networks (via nn.Module)

• ...

Inference: • Variational inference – including BBVI, SVI

 Monte Carlo – including Importance sampling and Hamiltonian Monte Carlo

• ...

Criticism: • Point-based evaluations

Posterior predictive checks

• ...

... and there are also many other possibilities

 ${\tt Tensorflow} \ \textbf{is integrating probabilistic thinking into its core}, \ {\tt InferPy} \ \textbf{is a local alternative}, \ \textbf{etc.}$

Pyro models in general

- observations ⇔ pyro.sample with the obs argument
- latent random variables ⇔ pyro.sample
- parameters ⇔ pyro.param

Simple example

```
#The observations
obs = ('sensor': torch.tensor(18.0))

def model(obs):
    temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
    sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])
```

Pyro guides

Guides

Definition:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Pyro guides

Guides

Definition:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Guides are used for:

- Define the *q* **distributions** in variational settings.
- Define inference networks as in VAEs.
- Build proposal distributions in importance sampling, MCMC.
- ..

Guide requirements

Guide functions must satisfy these two criteria to be valid approximations for a particular model:

- all unobserved (i.e., not conditioned) sample statements that appear in the model appear in the guide.
- the guide has the same input signature as the model (i.e., takes the same arguments)

Example

```
#The observations
obs = {'sensor': torch.tensor(18.0)}

def model(obs):
    temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
    sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])
```

```
#The guide
def guide(obs):
    a = pyro.param("mean", torch.tensor(0.0))
    b = pyro.param("scale", torch.tensor(1.), constraint=constraints.positive)
    temp = pyro.sample('temp', dist.Normal(a, b))
```

Pyro example

 ${\tt Bayesian_linear_regression.ipynb}$

Pyro example

FA.ipynb

Code-task: VB for a simple Gaussian model

Exercise 1: Explore existing models

Go through and explore the notebooks

- Bayesian_linear_regression.ipynb
- FA.ipynb

Exercise 2: Pyro implementation for a simple Gaussian model

- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\bullet \ \mu \sim \mathcal{N}(0,\tau)$
- $\gamma \sim \text{Gamma}(\alpha, \beta)$

In this task you should implement a pyro model and guide for the graphical model above. This involves specifying appropriate parameters for the model (e.g. reflecting prior knowledge) as well as coming up with a suitable variational approximation in the form of the Pyro guide. Make your implementation in the notebook

which also contains a data generation component as well as the framework for the learning procedure.

Variational Auto-Encoders

17

Is a *Deep Neural Network* the solution?

Limits on the scope of deep learning*

Deep learning thus far ...

- ... is data hungry
- ... has no natural way to deal with hierarchical structure
- ... is not sufficiently transparent
- ... has not been well integrated with prior knowledge
- ... works well as an approximation, but its answers often cannot be fully trusted

^{*} Gary Marcus: Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.Al]

Is a *Deep Neural Network* the solution?

Limits on the scope of deep learning*

Deep learning thus far ...

- ... is data hungry
- ... has no natural way to deal with hierarchical structure
- ... is not sufficiently transparent
- ... has not been well integrated with prior knowledge
- ... works well as an approximation, but its answers often cannot be fully trusted

Deep Bayesian Learning

A marriage of Bayesian thinking and deep learning is a framework that ...

- ... allows explicit modelling.
- ... has a sound probabilistic foundation.
- ... balances expert knowledge and information from data.
- ... avoids restrictive assumptions about modelling families.
- ... supports efficient inference.

^{*} Gary Marcus: Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.Al]

The Variational Auto Encoder (VAE)

Model of interest

- $p_{\theta}(\mathbf{z}_i)$ usually is a isotropic Gaussian distribution.
- $p_{\theta}(\mathbf{x}_i | g_{\theta}(\mathbf{z}_i))$, where g is deep neural network (DNN).

$$\mathbf{x}_i | \mathbf{z}_i \sim Bernoulli(logits = g_{\theta}(\mathbf{z}_i))$$

- $g_{\theta}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- We want to learn θ to maximize the model's fit to the data-set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.

The Variational Auto Encoder (VAE)

Model of interest

- $p_{\theta}(\mathbf{z}_i)$ usually is a isotropic Gaussian distribution.
- $p_{\theta}(\mathbf{x}_i | g_{\theta}(\mathbf{z}_i))$, where g is deep neural network (DNN).

$$\mathbf{x}_i | \mathbf{z}_i \sim Bernoulli(logits = g_{\theta}(\mathbf{z}_i))$$

- $g_{\theta}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- We want to learn θ to maximize the model's fit to the data-set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.

Variational Inference:

Optimize \mathcal{L} to choose λ and θ , where

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\theta}) = -\mathbb{E}_{q_{\boldsymbol{\lambda}}} \left[\log \frac{q_{\boldsymbol{\lambda}}(\mathbf{z} \,|\, \mathbf{x}, \boldsymbol{\lambda})}{p_{\boldsymbol{\theta}}(\mathbf{z}, \mathbf{x} \,|\, \boldsymbol{\theta})} \right]$$

• The variational approximation $q_{\lambda}(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\lambda})$ is parameterized by $\boldsymbol{\lambda}$.

$$\mathbf{z}_i | \mathbf{x}_i \sim \mathcal{N}(\mu = h_{\lambda}(\mathbf{x}_i)[0], \Sigma = h_{\lambda}(\mathbf{x}_i)[1])$$

• $h_{\lambda}(\mathbf{x}_i)$ is a DNN which plays the role of a **ENCODER NETWORK**.

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9")

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9")

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}\left(\mathbf{0}_2, \mathbf{I}_2\right)$.
- The encoder network $X \rightsquigarrow Z$.

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9")

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}\left(\mathbf{0}_2, \mathbf{I}_2\right)$.
- The encoder network $X \rightsquigarrow Z$.
- The **decoder network Z** \leadsto X is a 64 + 256 neural net with ReLU units.

 $\mathbf{z}_i: 2 \dim \overset{\text{ReLU}}{\longrightarrow} \text{Hidden, 64-d} \overset{\text{ReLU}}{\longrightarrow} \text{Hidden, 256-d} \overset{\text{Linear}}{\longrightarrow} \text{logit}(\mathbf{p}_i), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d \overset{}{\longrightarrow} p_{\theta}(\mathbf{x}_i \, | \, \mathbf{z}_i, \theta) = \text{Bernoulli}\left(\mathbf{p}_i\right), 784-d$

After 1 epoch

After 250 epochs

After 500 epoch

Using separate test-set

Averaged distribution over **Z**

Averaged distribution over Z – per class

Manifold after 1 epoch

```
66660000000b
    79996666000000000000
7996666000000000000
aaabbbbooo00000000000
99666<mark>0000</mark>000000000000
```

Manifold after 250 epochs

```
92660000000666
    9=6600000000000
    $6660000000000
 7796666000000000000
7774666600000000000
7796660000000000000
7444600000000000000
```

Manifold after 500 epochs

Wrapping things up

VAE.ipnyb

25

```
class Decoder (nn. Module):
   def init (self, z dim, hidden dim):
        super (Decoder, self). init ()
        # Setup the two linear transformations used
        self.fcl = nn.Linear(z dim, hidden dim)
        self.fc21 = nn.Linear(hidden dim, 784)
        # Setup the non-linearities
        self.softplus = nn.Softplus()
        self.sigmoid = nn.Sigmoid()
    def forward(self, z):
        # Define the forward computation on the latent z
        # First compute the hidden units
       hidden = self.softplus(self.fcl(z))
        # Return the parameter for the output Bernoulli
        # Each is of size batch size x 784
        loc_img = self.sigmoid(self.fc21(hidden))
        return loc ima
# define the model p(x|z)p(z)
def model(self, x):
    # register PvTorch module `decoder` with Pvro
    pyro.module("decoder", self.decoder)
    with pyro.plate("data", x.shape[0]):
        # setup hyperparameters for prior p(z)
        z loc = x.new zeros(torch.Size((x.shape[0], self.z dim)))
        z scale = x.new ones(torch.Size((x.shape[0], self.z dim)))
        z = pyro.sample("latent", dist.Normal(z loc, z scale).to event(1))
        # decode the latent code z
        loc img = self.decoder.forward(z)
        # score against actual images
       pyro.sample("obs", dist.Bernoulli(loc img).to event(1),
                    obs=x.reshape(-1, 784))
```

Notes

- The PYRO.MODULE call registers the parameters in the decoder network with Pyro.
- The decoder network is a subclass of NN.MODULE; the class inherits methods such as PARAMETERS() and BACKWARD for calculating gradients.


```
class Encoder (nn. Module):
    def init (self, z dim, hidden dim):
        super(Encoder, self). init ()
        # Setup the three linear transformations used
        self.fcl = nn.Linear(784, hidden dim)
        self.fc21 = nn.Linear(hidden dim, z dim)
        self.fc22 = nn.Linear(hidden dim, z dim)
        # Setup the non-linearities
        self.softplus = nn.Softplus()
    def forward(self, x):
        # Define the forward computation on the image x
        # First shape the mini-batch to have pixels in
        # the rightmost dimension
        x = x.reshape(-1, 784)
        # then compute the hidden units
        hidden = self.softplus(self.fcl(x))
        # Return a mean vector and a (positive) square
        # root covariance each of size batch_size x z dim
        z loc = self.fc21(hidden)
        z scale = torch.exp(self.fc22(hidden))
        return z loc. z scale
# define the guide (i.e. variational distribution) q(z|x)
def quide(self, x):
    # register PyTorch module `encoder` with Pyro
    pyro.module("encoder", self.encoder)
    with pyro.plate("data", x.shape[0]):
        # use the encoder to get the parameters used to define q(z|x)
```

z loc, z scale = self.encoder.forward(x)

pyro.sample("latent", dist.Normal(z loc, z scale).to event(1))

sample the latent code z

Notes

 The encoder and guide follow the same structure as the encoder and model

Conclusions

Conclusions

- PPLs are the right tool for probabilistic modeling.
 - Enormous expressibility.
 - Powerful inference engines (BlackBox Variational Inference)

- PPLs are the right tool for probabilistic modeling.
 - Enormous expressibility.
 - Powerful inference engines (BlackBox Variational Inference)
- Conjugate Exponential Models.
 - Variational Inference is very efficient and stable.
 - Requires manual derivation of updating equations.
 - There are tools (variational message passing) that avoid that (Infer.net, Amidst Toolbox, etc).

Variational inference – Part III Conclusions 28

PPLs are the right tool for probabilistic modeling.

- Enormous expressibility.
- Powerful inference engines (BlackBox Variational Inference)

Conjugate Exponential Models.

- Variational Inference is very efficient and stable.
- Requires manual derivation of updating equations.
- There are tools (variational message passing) that avoid that (Infer.net, Amidst Toolbox, etc).

Beyond Conjugate Exponential Models.

- Combine deep learning and probabilistic modeling.
- Black-Box VI is not so efficient and stable.
- But it works well in many cases.

Variational inference – Part III Conclusions