Übung 3 zu TILO

SoSe17

Bearbeitung bis 07.05.17

Besprechung der Übung am 8.5.17, ab 8.15 Uhr im D006

Aufgabe 17: (Baumdurchläufe)

Gegeben sei folgender Baum mit Zahlen als Knotenbeschriftungen:

Geben Sie die Knoten des Baumes in der Reihenfolge an, die sich bei einem

- **a)** depth-first left-to-right Durchlauf (Tiefensuche mit Backtracking)
- **b)** breadth-first left-to-right Durchlauf (Breitensuche) ergeben.

Aufgabe 19: (SLD-Resolutionsschritt)

a) Führen Sie jeweils einen SLD-Resolutionsschritt für das folgende Programm und die folgenden Queries und die leere Substitution durch.

Fakten:

vater(abraham,isaak).männlich(abraham).vater(haran,lot).männlich(isaak).vater(gott,X).männlich(lot).mutter(sarah,isaak).weiblich(sarah).

Regeln:

R1: sohn(X,Y) :- vater(Y,X), männlich(X). R2: sohn(X,Y) :- mutter(Y,X), männlich(X). R3: tochter(X,Y) :- vater(Y,X), weiblich(X).

Queries:

i) ?- sohn(lot,Z), weiblich(Z).
ii) ?- vater(Z,lot), weiblich(Z).
iii) ?- mutter(Z,isaak), weiblich(Z).

Geben Sie dabei für den Fall, dass eine nichtdeterministische Entscheidung getroffen werden muss, alle möglichen alternativen SLD-Resolutionsschritte an.

Übung 3 zu TILO

SoSe17

Bearbeitung bis 07.05.17

b) Gegeben sei folgendes Prolog-Programm zur Implementierung der Multiplikation auf natürlichen Zahlen in symbolischer Notation (siehe Aufg. 6):

Führen Sie eine Berechnung des nichtdet. Prolog-Berechnungsalgorithmus für die folgende Query auf: ?- mult(s(o), s(s(o)), z).

Aufgabe 20: (Operationen auf Listen in Prolog)

Listen seien mittels der Konstanten nil und dem 2-stelligen Funktor list, wie in der Vorlesung beschrieben, definiert.

Bsp.: nil, list(a,list(b,nil)) sind zwei Beispiele für Listen.

a) Implementieren Sie folgendes Prädikat in Prolog:

- anz(Xs,N): N (nat. Zahl in symbolischer Darstellung) ist die Anzahl der Einträge von Xs.

b) Implementieren Sie die folgendes Prädikat in Prolog:

- präfix(Xs,Ys) : Ys beginnt mit der Liste Xs.

Aufgabe 21: (Binärbaumstruktur und -operationen)

Ein Binärbaum ist eine Datenstruktur, die leer ist oder bei der jeder Knoten einen Eintrag enthält und 2 Nachfolgerbäume hat.

- a) Überlegen Sie, wie man Binärbäume in Prolog darstellen kann, dabei kann man mit einer Konstanten und einem dreistelligen Funktor auskommen.
- b) Schreiben Sie, analog zu Aufgabenteil a), ein Datentypprädikat binbaum (Xb), das überprüft, ob es sich beim Argument um einen gültigen Binärbaum handelt. Auch dabei sind die Einträge der Knoten beliebig.
- c) Implementieren Sie die folgenden Prädikate in Prolog, wobei jeweils mittels des in b) implementierten Prädikats überprüft wird, ob es sich um gültige Binärbäume handelt:

root (Xb,Y)
 ! Y ist der Wurzeleintrag des Binärbaumes Xb.
 left (Xb,Yb)
 right (Xb,Yb)
 ! Yb ist der linke Teilbaum des Binärbaumes Xb.
 ! Yb ist der rechte Teilbaum des Binärbaumes Xb.

Aufgabe 22: (Unifikationsalgorithmus)

Wenden Sie den Unifikationsalgorithmus jeweils auf die folgenden Paare von Prädikaten an und geben Sie seine Ausgabe an:

- a) f(f(X,f(a,g(X))),g(f(b,Y)))f(f(g(g(Z1)),Z2),g(f(Z3,f(Z3,a))))
- **b)** f(f(X,f(a,g(X))),g(f(b,X)))f(f(g(Z1)),Z2),g(f(Z3,f(Z3,a))))
- f(X,g(X))
 f(Z,Z)

Übung 3 zu TILO

SoSe17

Bearbeitung bis 07.05.17

Aufgabe 23: (Nichtdeterminismus im Prolog-Berechnungsalgorithmus)

Geben Sie ein Beispiel für eine Query an, die mit den linken Seiten beider Regeln für das Prädikat app auf Folie "Prolog-Semantik 8" unifizierbar ist und führen Sie alle Berechnungen des Prolog-Berechnungsalgorithmus für diese Query durch.

Aufgabe 24: (Prolog-Beweisbaum)

Geben Sie ein Beispiel für einen endlichen Prolog-Beweisbaum, dessen Höhe größer 1 ist, mit mehreren Variablen in der Query an. Dabei sollen zur Ermittlung der Antwortsubstitutionen die Substitutionen entlang der einzelnen Äste sukzessive in mehreren Schritten von oben nach unten berechnet werden.

Aufgabe 26: (Datentyprelationen)

Definieren Sie eine Datentyprelation tree(X) in Prolog, die beliebige Bäume in Termdarstellung über den folgenden Mengen enthält:

- Funktoren {f/2,g/1,h/3}
- Konstanten {a,b,c}
- Variablen {vX,vY,vZ}

Aufgabe 29: (Arithmetik)

Ändern Sie die Lösung aus Aufgabe 10.b) so ab, dass die natürlichen Zahlen nicht in symbolischer Darstellung, sondern in numerischer Darstellung angegeben werden. Listen sind dabei in Prolog-Notation zu definieren.

Aufgabe 30: (Arithmetik)

- a) Implementieren Sie das Prädikat listlength (Xs,N), so dass der zweite Parameter N die Länge der Liste Xs in numerischer Darstellung liefert.
- Implementieren Sie das Prädikat anz(X,Xs,N), so dass der dritte Parameter die Häufigkeit des Auftretens des Elements x in der Liste xs in numerischer Darstellung enthält.

Listen sind dabei in Prolog-Notation zu definieren.