Executive Summary

Report Name: aaaaaaaaaaaaaaa

Sector(s): test Transport, Transport

Year(s): 1993,1994,1995,1996,1997,1998,1999,2000,2002,2016,2017,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2030,2031,

Table 1: Summary of the assessments of climate actions in test Transport, Transport sector

				Emission Reduction	MAC
NDC	Climate Action	Year	Туре	(tCO_2e)	(tCO ₂ e/USD)
25% trucks and buses using CNG by 2030	5 diesel powered trucks convered to CNG in 2023	2023	GHG Ex-ante	184	N/A
30% trucks and buses using CNG by 2040	Shift fossil fuel freight vehicle-(YY0001) to CNG	2023	GHG Ex-ante	184	N/A
Generic enabling activities	Test Project Pasan	2020	GHG Ex-ante	-10751	N/A
Generic enabling activities	Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030	2023	GHG Ex-post	565180	N/A
Introduce taxes and other instruments to promote public transport	Introduce cordon pricing for Colombo Metropolitan	2023	GHG Ex-post	23	N/A
Introduce taxes and other instruments to promote public transport	Introduce distance based charges to Katunayaka to Colombo road	2023	GHG Ex-post	-202	N/A

Figure 1 illustrates the status of achieving emissions reduction targets of test Transport, Transport sector of Sri Lanka. The expected emission reduction of the test Transport, Transport sector by 2030 year is 140 tCO₂e conditionally, and 153 tCO₂e unconditionally. Mitigation actions implemented by year 2030 were able to reduce test Transport, Transport sector emissions from 554618 tCO₂e.

image-charts.com

Emission Reduction Targets

Figure 1 Emissions reduction of test Transport, Transport sector of Sri Lanka

NDC

25% trucks and buses using CNG by 2030

5 diesel powered trucks convered to CNG in 2023

5 diesel powered trucks convered to CNG in 2023 Ministry of Industry by Government to 5 diesel powered trucks convered to CNG in 2023. Action includes 5 diesel powered trucks convered to CNG in 2023. The geographical boundary of the project includes null, null, null, null. Planned It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

GHG impact assessment

System boundary

Table System boundary of the GHG impact assessment of 5 diesel powered trucks convered to CNG in 2023

Boundary elements	Description
Geographic Boundary	null, null
Temporal Boundary	2023 - 2030
Transport subsector	Not specified
Upstream/downstream	No
GHGs Included	Only CO2

Measurement

Assessment Approach	Ex-ante
Base Year	2023
Assessment year(s)	2023
Methodology	ICAT methodology for cordon pricing

Baseline Scenario

Diesel powered trucks

Table Data required to assess baseline emissions of 5 diesel powered trucks convered to CNG in 2023

111111111111	
Key indicators	Unit
Total annual distance - Diesel-Truck - YY0001	km
Total annual tonnes of goods transported - Diesel-Truck - YY0001	tons
The annual average distance of transportation per tonnes of freight - Diesel-Truck - YY0001	km
Fuel efficiency - Diesel-Truck - YY0001	fuel/km
CO2 emission factor - Diesel	t-CO2/TJ
Net calorific value - Diesel	TJ/t

Baseline emissions attributed to the 5 diesel powered trucks convered to CNG in 2023 are given in Table.

Table Baseline emissions of 5 diesel powered trucks convered to CNG in 2023

Year	Emissions (MtCO2e)
2023	770

Project Scenario

CNG powered trucks

Table: Data required to assess project emissions of 5 diesel powered trucks convered to CNG in 2023

Key indicators	Unit
Fuel efficiency - CNG-Truck - YY0001	fuel/km
Total annual tonnes of goods transported - CNG-Truck - YY0001	tons
Total annual distance - CNG-Truck - YY0001	km
The annual average distance of transportation per tonnes of freight - CNG-Truck - YY0001	km
Net calorific value - CNG	TJ/t
CO2 emission factor - CNG	t-CO2/TJ
Consumption of fuel - CNG-Truck - YY0001	t/y

Direct project emissions attributed to the 5 diesel powered trucks convered to CNG in 2023 are given in Table 6.

Table: Direct project emissions attributed to 5 diesel powered trucks convered to CNG in 2023

Year	Emissions (MtCO2e)
2023	-

Emissions estimated for 2023 are summarized in Table 9. According to the table, 5 diesel powered trucks convered to CNG in 2023 reduce 184 tCO2e in the 2023.

Table Emissions reduction due to 5 diesel powered trucks convered to CNG in 2023

Scenario	2023 Emissions (MtCO2)
Baseline emissions	770
Project emissions	586

Scenario	2023 Emissions (MtCO2)
Lekage reductions	null
Emission reductions	184

Projection of GHG Emissions

GHG emissions attributed to the 5 diesel powered trucks convered to CNG in 2023 are projected to undefined considering the 2023 based on the Gross Domestic Production (GDP). Figure 3 illustrates the BAU and project emissions of the 5 diesel powered trucks convered to CNG in 2023.

image-charts.com

Project Emmisions Of BAU and Project Scenarios(tCO₂)

Figure 3: BAU and project emissions of 5 diesel powered trucks convered to CNG in 2023

Test CA report 2

Test CA report 2 Ministry of Finance by Government to Objective is this. Action includes test data. The geographical boundary of the project includes Test NL 1, Test NL 2, Test NL 3. Adopted It is expected that the project will Test outcoome. In addition, mitigation action has various sustainable development benefits such as SDB and ISDB list

am-90

am-90 test by Government to test. Action includes test. The geographical boundary of the project includes null, null, null, null. Adopted It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

ppp-test

ppp-test test by Government to ssssss. Action includes sssssssssss. The geographical boundary of the project includes null, null, null, null, null, adopted It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

kasulTest

kasulTest kasulTest by Government to kasulTest. Action includes kasulTest. The geographical boundary of the project includes null, null, null, null, adopted It is expected that the project will kasulTest. In addition, mitigation action has various sustainable development benefits such as kasulTest and kasulTest

pradeep-test

pradeep-test test by Government to null. Action includes null. The geographical boundary of the project includes null, null, null. Adopted It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

testinggggggg

testinggggggg test by Government to fhfjfj. Action includes vhghjghj. The geographical boundary of the project includes null, null, null, null. Implemented It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

Sri Lanka

Sri Lanka test by Government to dddwd. Action includes null. The geographical boundary of the project includes null, null, null. Implemented It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

Introduce taxes and other instruments to promote public transport

Introduce cordon pricing for Colombo Metropolitan

Introduce cordon pricing for Colombo Metropolitan Ministry of Transport by Government to Emission reduction. Action includes Introduce cordon pricing for Colombo Metropolitan. The geographical boundary of the project includes null, null, null, lmplemented It is expected that the project will Emission reduction. In addition, mitigation action has various sustainable development benefits such as null and null

GHG impact assessment

System boundary

Table System boundary of the GHG impact assessment of Introduce cordon pricing for Colombo Metropolitan

Boundary elements	Description
Geographic Boundary	null, null, null
Temporal Boundary	2022 - 2023
Transport subsector	Not specified
Upstream/downstream	No
GHGs Included	Only CO2

Measurement

Assessment Approach	Ex-post
Base Year	2022
Assessment year(s)	2023
Methodology	ICAT methodology for cordon pricing

Baseline Scenario

Without

Table Data required to assess baseline emissions of Introduce cordon pricing for Colombo Metropolitan

. . . .

Key indicators	Unit
Density of Diesel - Diesel	Kg/m3
Specific fuel consumption - Diesel-Other	L per VKT
Vehicle kilometres travelled - Diesel-Other	VKT
Vehicle travel reduction percentage - Diesel-Other	%
Net calorific value of Diesel - Diesel	TJ/t
CO2 emission factor of Diesel - Diesel	t-CO2/TJ

Baseline emissions attributed to the Introduce cordon pricing for Colombo Metropolitan are given in Table.

Table Baseline emissions of Introduce cordon pricing for Colombo Metropolitan

Year	Emissions (MtCO2e)
2023	29

Project Scenario

With

Table: Data required to assess project emissions of Introduce cordon pricing for Colombo Metropolitan

, , , ,

Key indicators Unit

Direct project emissions attributed to the Introduce cordon pricing for Colombo Metropolitan are given in Table 6.

Table: Direct project emissions attributed to Introduce cordon pricing for Colombo Metropolitan

Year	Emissions (MtCO2e)
2023	-

,,,, ,,,,,

Emissions estimated for 2023 are summarized in Table 9. According to the table, Introduce cordon pricing for Colombo Metropolitan reduce 23 tCO2e in the 2023.

Table Emissions reduction due to Introduce cordon pricing for Colombo Metropolitan

Scenario	2023 Emissions (MtCO2)
Baseline emissions	29
Project emissions	6
Lekage reductions	null
Emission reductions	23

Introduce distance based charges to Katunayaka to Colombo road Ministry of Transport by Government to Emission reduction. Action includes Introduce distance based charges to Katunayaka to Colombo road. The geographical boundary of the project includes null, null, null, null. Implemented It is expected that the project will Emission reduction. In addition, mitigation action has various sustainable development benefits such as null and null

GHG impact assessment

System boundary

Table System boundary of the GHG impact assessment of Introduce distance based charges to Katunayaka to Colombo road

Boundary elements	Description
Geographic Boundary	null, null
Temporal Boundary	2022 - 2023
Transport subsector	Not specified
Upstream/downstream	No
GHGs Included	Only CO2

Measurement

Assessment Approach	Ex-post
Base Year	2022
Assessment year(s)	2023
Methodology	ICAT methodology for toll roads and distance-based charges

Baseline Scenario

Without

Table Data required to assess baseline emissions of Introduce distance based charges to Katunayaka to Colombo road

1111111111	
Key indicators	Unit
Specific fuel consumption - Diesel-bus	L per VKT
Vehicle kilometres travelled - Diesel-bus	VKT
Fuel economy - Diesel-bus	liters/km
Net calorific value of Diesel - Diesel	TJ/t
CO2 emission factor of Diesel - Diesel	t-CO2/TJ
Density of Diesel - Diesel	Kg/m3

Baseline emissions attributed to the Introduce distance based charges to Katunayaka to Colombo road are given in Table.

Table Baseline emissions of Introduce distance based charges to Katunayaka to Colombo road

Year	Emissions (MtCO2e)
2023	28652

Project Scenario

With

Table: Data required to assess project emissions of Introduce distance based charges to Katunayaka to Colombo road

Key indicators	Unit
Toll increase - Diesel-bus	LKR/km
Existing toll - Diesel-bus	LKR/km
Actual fuel price (annual average) in local currency for the assessment year - Diesel	
Diesel Vehicle travel elasticity - Diesel	
country Code - Diesel	
Actual per capita income in local currency for the assessment year - Diesel	price per liter

Direct project emissions attributed to the Introduce distance based charges to Katunayaka to Colombo road are given in Table 6.

Table: Direct project emissions attributed to Introduce distance based charges to Katunayaka to Colombo road

Year	Emissions (MtCO2e)
2023	•

Emissions estimated for 2023 are summarized in Table 9. According to the table, Introduce distance based charges to Katunayaka to Colombo road reduce -202 tCO2e in the 2023.

Table Emissions reduction due to Introduce distance based charges to Katunayaka to Colombo road

Scenario	2023 Emissions (MtCO2)
Baseline emissions	28652
Project emissions	28854
Lekage reductions	null

Scenario	2023 Emissions (MtCO2)
Emission reductions	-202

Generic enabling activities

Implement a national fuel levy (5%) on gasoline cars by 2025

Implement a national fuel levy (5%) on gasoline cars by 2025 Ministry of Transport by Government to Emission reduction. Action includes Implement a national fuel levy (5%) on gasoline cars by 2025. The geographical boundary of the project includes null, null, null, Implemented It is expected that the project will Emission reduction. In addition, mitigation action has various sustainable development benefits such as null and null

Passenger modal shift from private vehicle to train

Passenger modal shift from private vehicle to train Ministry of Transport by Government to Emission reduction. Action includes Emission reduction. The geographical boundary of the project includes null, null, null. Planned It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

unfccc-90

unfccc-90 test by Government to ssssss. Action includes sssssss. The geographical boundary of the project includes null, null, null. Adopted It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

Implement national fuel levy on gasoline (5%) and diesel (4%) by 2030

Implement national fuel levy on gasoline (5%) and diesel (4%) by 2030 Ministry of Transport by Government to Emission reduction. Action includes Implement national fuel levy on gasoline (5%) and diesel (4%) by 2030. The geographical boundary of the project includes null, null, null, null, limplemented It is expected that the project will Emission reduction. In addition, mitigation action has various sustainable development benefits such as null and null

Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030

Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030 Ministry of Environment by Government to Emission reduction. Action includes Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030. The geographical boundary of the project includes null, null, null, null, implemented it is expected that the project will Emission reduction. In addition, mitigation action has various sustainable development benefits such as null and null

GHG impact assessment

System boundary

Table System boundary of the GHG impact assessment of Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030

Boundary elements	Description
Geographic Boundary	null, null, null
Temporal Boundary	2022 - 2023
Transport subsector	Not specified
Upstream/downstream	No
GHGs Included	Only CO2

Measurement

Assessment Approach	Ex-post
Base Year	2022
Assessment year(s)	2023
Methodology	ICAT methodology for fuel subsidy removal and increased fuel tax or levy Approach A (top-down energy-use data_Fuel mix)

Baseline Scenario

Without

Table Data required to assess baseline emissions of Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030

, , , , , ,

,,,,,	
Key indicators	Unit
Share of fuel - Petrol	%
Total fuel used for ground transport(Fuel mix) - Common	TJ
CO2 emission factor - Petrol	t-CO2/TJ
Share of fuel type - Diesel	
CO2 emission factor - Diesel	t-CO2/TJ

Baseline emissions attributed to the Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030 are given in Table.

Table Baseline emissions of Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030

Year	Emissions (MtCO2e)
2023	56069400

Project Scenario

With

Table: Data required to assess project emissions of Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030

, , , , , ,

Key indicators	Unit
Fuel mix own - price elasticity - Fuel Mix	
Relative fuel mix price increase - Fuel Mix	%

Direct project emissions attributed to the Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030 are given in Table 6.

Table: Direct project emissions attributed to Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030

Year	Emissions (MtCO2e)
2023	-

,,,,,,

Emissions estimated for 2023 are summarized in Table 9. According to the table, Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030 reduce 565180 tCO2e in the 2023.

Table Emissions reduction due to Implement a national fuel levy (4.2%) on gasoline and diesel cars by 2030

Scenario	2023 Emissions (MtCO2)
Baseline emissions	56069400
Project emissions	55504220
Lekage reductions	null
Emission reductions	565180

Implement a national fuel levy (5%) on gasoline and diesel cars by 2025

Implement a national fuel levy (5%) on gasoline and diesel cars by 2025 Ministry of Transport by Government to Implement a national fuel levy (5%) on gasoline and diesel cars by 2025. Action includes Implement a national fuel levy (5%) on gasoline and diesel cars by 2025. The geographical boundary of the project includes null, null, null, null, null, null, implemented It is expected that the project will Emission reduction. In addition, mitigation action has various sustainable development benefits such as null and null

Promote public passenger transport

Shift passenger from private vehicles to public vehicles

Shift passenger from private vehicles to public vehicles Ministry of transport by Government to emission reduction. Action includes Emission reduction. The geographical boundary of the project includes null, null, null. Planned It is expected that the project will. In addition, mitigation action has various sustainable development benefits such as and

30% trucks and buses using CNG by 2040

Test CA

Test CA Ministry of Finance by Government to null. Action includes test. The geographical boundary of the project includes null, null, null. Adopted It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

Passenger Shift from multiple modes (Motor car, Motor bike) to multiple mode (Bus, Van)

Passenger Shift from multiple modes (Motor car, Motor bike) to multiple mode (Bus, Van) Ministry of Transport by Government to improve public transportation. Action includes improve public transportation. The geographical boundary of the project includes Western, Colombo, Battaramulla. Planned It is expected that the project will emission reduction. In addition, mitigation action has various sustainable development benefits such as Climate change and Climate change - Goal 13

KHtest

KHtest asdas by Government to axdasd. Action includes test. The geographical boundary of the project includes null, null, null, null. Adopted It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

Shift fossil fuel freight vehicle-(YY0001) to CNG

Shift fossil fuel freight vehicle-(YY0001) to CNG Ministry of Industry by Government to reduce the emissions. Action includes Reduce the emissions. The geographical boundary of the project includes null, null, null. Planned It is expected that the project will null. In addition, mitigation action has various sustainable development benefits such as null and null

GHG impact assessment

System boundary

Table System boundary of the GHG impact assessment of Shift fossil fuel freight vehicle-(YY0001) to CNG

Boundary elements	Description
Geographic Boundary	null, null, null
Temporal Boundary	2022 - 2023
Transport subsector	Frieght
Upstream/downstream	N/A
GHGs Included	Only CO2

Measurement

Assessment Approach	Ex-ante
Base Year	2022
Assessment year(s)	2023
Methodology	AMS-III.S - Introduction of low-emission vehicles/technologies to commercial vehicle fleets (Freight)

Baseline Scenario

Fossil fuel used truck

Table Data required to assess baseline emissions of Shift fossil fuel freight vehicle-(YY0001) to CNG

1111111111111	
Key indicators	Unit
Fuel efficiency - Diesel-Truck - AB Route	fuel/km
CO2 emission factor - Diesel	t-CO2/TJ
Net calorific value - Diesel	
The annual average distance of transportation per tonnes of freight - Diesel-Truck - AB Route	
Total annual tonnes of goods transported - Diesel-Truck - AB Route	
Total annual distance - Diesel-Truck - AB Route	

Baseline emissions attributed to the Shift fossil fuel freight vehicle-(YY0001) to CNG are given in Table.

Table Baseline emissions of Shift fossil fuel freight vehicle-(YY0001) to CNG

Year	Emissions (MtCO2e)
2023	770

Project Scenario

CNG used trucks

Table: Data required to assess project emissions of Shift fossil fuel freight vehicle-(YY0001) to CNG

,,,,,,,,,,	
Key indicators	Unit
Fuel efficiency - CNG-Truck - AB Route	fuel/km
Total annual tonnes of goods transported - CNG-Truck - AB Route	tons
Net calorific value - CNG	TJ/t
CO2 emission factor - CNG	t-CO2/TJ
Total annual distance - CNG-Truck - AB Route	
The annual average distance of transportation per tonnes of freight - CNG-Truck - AB Route	
Consumption of fuel - CNG-Truck - AB Route	t/y

Direct project emissions attributed to the Shift fossil fuel freight vehicle-(YY0001) to CNG are given in Table 6.

Table: Direct project emissions attributed to Shift fossil fuel freight vehicle-(YY0001) to CNG

Year	Emissions (MtCO2e)
2023	-

Emissions estimated for 2023 are summarized in Table 9. According to the table, Shift fossil fuel freight vehicle-(YY0001) to CNG reduce 184 tCO2e in the 2023

Table Emissions reduction due to Shift fossil fuel freight vehicle-(YY0001) to CNG

Scenario	2023 Emissions (MtCO2)
Baseline emissions	770
Project emissions	586
Lekage reductions	null
Emission reductions	184

Projection of GHG Emissions

GHG emissions attributed to the Shift fossil fuel freight vehicle-(YY0001) to CNG are projected to undefined considering the 2023 based on the Population Growth (POP). Figure 3 illustrates the BAU and project emissions of the Shift fossil fuel freight vehicle-(YY0001) to CNG.

Project Emmisions Of BAU and Project Scenarios(tCO₂)

Figure 3: BAU and project emissions of Shift fossil fuel freight vehicle-(YY0001) to CNG