고객데이터바탕으로 연령 예측하기

2021.05.26 ~ 2021.06.15

1차 Competition

어떻게 진행할 것인지 계획 수립 및 목표 설정

Feature 생성

연령대에 영향을 미칠 만한 유의미한 feature 생성 (각자 따로 생성)

Feature 완성

과적합의 위험이 있는 feature 삭제 및 정규화 여부 결정

가중평균

기본 모델로 가중평균 진행

115

2차 Competition

1차에서 보완해야 될 부분 2차의 방향성 및 목표 설정

Feature 완성

비슷한 방식으로 생성된 feature를 제외한 feature 추가 및 W2V사용

Modeling Parameter Tuning

Optimization을 통해 최적의 파라미터 튜닝

가중평균 Mean Ensemble

만들어진 csv파일을 가지고 가중평균과 mean ensemble

1th COMPETITION

유의미한 feature 생성

예측값이 feature에 영향을 많이 받을 것이라고 예측되어 최대한 유의 미한 결과를 이끌어 낼 수 있는 feature를 생성하고자 함.

모델링보다는 feature에 집중

1차 때에는 모델링보다 feature를 만드는 것에 집중을 하고, 2차 때 모델링에 집중하고자 함. 또한 feature의 수가 많으면 오버피팅의 위험이덜 할것이라고 생각되어, 최소 4000개의 feature를 생성하고자 함.

Feature

Data Cleansing

Engineering

Selection

수치형

주기 할인율 금액-총,실,환불,최대 원본 데이터

표준화 + 정규화 실행

4705

Datetime 생성 part_nm 통일

3387

범주형

날짜 브랜드 상품군 지점

가공하지 않은 data사용

가중평균

2차 COMPETITION 방향성

기존 Model

오류때문에

시도해보지 못했던 모델

의 오류 해결

단일모델의 성능을 높이는데 최적의 값을 찾자!

Feature

Ridge, DNN 등 새로운 모델 사용

> 새로운 Model

2차 COMPETITION

feature 보완

보다 유의미한 데이터를 포함한 feaeture를 추가하여 모델의 성능을 최대치로 발휘할 수 있는 환경을 만들고자 함.

모델링 & 튜닝

1차 때는 시도하지 못했던 다양한 모델링을 통해, 우리의 feature에 맞는 모델을 찾고 튜닝을 하면서 모델 성능의 최대치를 이끌어내고자 함.

가중평균, 앙상블, 스태킹 시도

성능이 오른 모델을 바탕으로 1차 때에는 효과가 미미했던 앙상블과 가중 평균의 효과를 극대화하고, 스태킹을 시도하고자 함.

2차 COMPETITION 목표

피쳐를 보완하여 단일모델의 성능으로 1등, 2등, 3등의 Private 값을 넘기자!

Feature 완성

기존 feature에 추가

기존의 feature에 수치형 데이터가 부족하다고 생각되어, 수치형 feature 추가 및 범주형 데이터 선택적 추가

feature selection

총 2번의 공통된 feature selection진행 $19096 \rightarrow 10502 \rightarrow 7351$

Word 2 Vec

각 단어의 조합을 통해 새로운 feature를 생성해주는 Word 2 Vec 기법 사용 7351 → 7751

여러번의 feature selection을 통해 유의미한 feature을 남기고자 함. 공통 3번 + 모델링 전 1번(각 모델별) =총 4번의 selection 진행

모델 별 feature selection

각 모델을 돌리기 전, 코드에 포함된 feature selection을 통해 최적의 성능을 위한 selection 진행

feature selection

많은 양의 feature로 인해 모델이 돌아가는 데 너무 오랜 시간이 소요되어 feature selection 한 번 더 진행 $7751 \rightarrow 7595$

Modeling & Parameter Tuning

그 밖의 모델들

- · Ridge: 여러 번의 튜닝과 파라미터 조정을 해도 9.26이 최대
- → 다른 모델과의 성능차이가 너무 커서 빼기로 결정
- ·DNN:모델 튜닝을 통해 8.5까지 성능 향상
- Gradient : 성능은 괜찮지만, 시간이 너무 오래 걸려서 빼기로 결정
- XGB : LGBM의 성능이 더 높은 관계로 빼 기로 결정

가중평균 & Mean Ensemble 1

1등 submission 2등 submission 3등 submission

LGBM과 CAT이 같은 트리계열 부스팅 모델이라 둘만 넣어 가중평균을 하는 것보다 dnn을 포함하는 것이 낫다고 판단. dnn의 성능이 생각보다 낮아서 위와 같이 가중치를 부여함

가중평균 & Mean Ensemble 2

우리 csv 파일과 3등의 submission 파일이 가장 상관관계 가 낮을것이라고 생각되어, 위와 같이 가중치를 부여함

가중평균 & Mean Ensemble 3

우리모델로만든 DNN 모델보다교수님이올려주신 DNN의 성능이 더 좋아서 가중평균을 할 때, DNN을 제외한 두모델의 평균을 구함

최종모델

sub_123 20%

우리모델_2 40%

교수님이 올려주신 DNN 40%

아쉬운점

예상치 못한 문제

각각 모델마다 셀렉션을 해서 모델마다 fitting된 열의 수가 달라짐

- → 스태킹이나 가중평균의 비율을 알려주는 코드 실행 불가
- → 임의로 가중평균하기로 결정

모델

feature 정규화 및 로그화, 셀렉션 진행 모델 변경, 파라미터 튜닝 등 dnn과 ridge의 성능을 올리기 위해 노력했지만 결국 원하던 성능을 이끌어내지 못함 두 모델의 성능을 더 높였다면, 더 좋은 결과가 나왔을 것으로 예상됨

시간상의 제약

stacking을 시도했으나, 시간상의 문제로 중단하여 결과를 확인하지 못함 feature가 너무 많아서 모델을 돌아가는 데 시간이 오래걸려 다양한 시도를 하지 못함

감사합니다

신예주 X 윤경서