

Лабораторная работа 2

- (общее) Написать три эквивалентных (описывающих один и тот же язык) регулярных выражения: академическое; с использованием отрицания; с использованием ленивой итерации Клини. Минимальная длина regex 10 символов. Сравнить производительность этих regex на 10 тестах длиной от 100 до 105 символов.
- Реализовать алгоритм решения системы регулярных выражений с беззвездными коэффициентами.
- (a) Реализовать алгоритм преобразования RG в regex (чет в списке группы).
- (b) Реализовать алгоритм преобразования DFA в regex (нечет в списке группы).

Синтаксис входных данных

Здесь и на следующем слайде чёрным обозначены элементы метаязыка, красным — элементы языка входных данных. Т.е. запись вида (|) обозначает альтернативу между закрывающей и открывающей скобками, а вида (||) — слово, состоящее из двух значков альтернативы. Чтение данных осуществляется из файла.

Синтаксис входных данных для решения системы уравнений:

```
 \begin{array}{lll} \langle system \rangle & ::= & \langle equation \rangle^+ \\ \langle equation \rangle & ::= & & \langle var \rangle = (\langle regex \rangle \langle var \rangle (+\langle regex \rangle \langle var \rangle)^* +)? \langle regex \rangle \\ \langle regex \rangle & ::= & (\langle expr \rangle \mid \langle alt.regex \rangle) \mid & \langle expr \rangle \\ \langle alt.regex \rangle & ::= & \langle expr \rangle \mid \langle alt.regex \rangle \mid & \langle expr \rangle \\ \langle expr \rangle & ::= & \langle letter \rangle \langle expr \rangle \mid & \langle letter \rangle \\ \langle var \rangle & ::= & [A-Z] \\ \langle letter \rangle & ::= & [a-z] \\ \end{array}
```


Синтаксис входных данных

Синтаксис RG — каждое правило с новой строки, стартовый нетерминал всегда S.

```
\begin{array}{lll} \langle \mathsf{grammar} \rangle & ::= & \langle \mathsf{rule} \rangle^+ \\ & \langle \mathsf{rule} \rangle & ::= & \langle \mathsf{nterm} \rangle \text{--} \text{--} (\langle \mathsf{letter} \rangle \langle \mathsf{nterm} \rangle \mid \langle \mathsf{letter} \rangle) \\ & \langle \mathsf{nterm} \rangle & ::= & [\mathsf{A} \text{--} \mathsf{Z}] \\ & \langle \mathsf{letter} \rangle & ::= & [\mathsf{a} \text{--} \mathsf{z}] \end{array}
```

Синтаксис DFA описан ниже. Первое состояние в списке — начальное. Список состояний в фигурных скобках задаёт множество конечных состояний. Список всех состояний явно не перечисляется, он восстанавливается по правилам перехода.

```
 \begin{array}{lll} \langle \mathsf{DFA} \rangle & ::= & <\langle \mathsf{state} \rangle, \{\langle \mathsf{transition} \rangle^+\}, \{\langle \mathsf{state} \rangle, (\langle \mathsf{state} \rangle)^*\} > \\ \langle \mathsf{transition} \rangle & ::= & <\langle \mathsf{state} \rangle, \langle \mathsf{letter} \rangle, \langle \mathsf{state} \rangle > \\ \langle \mathsf{state} \rangle & ::= & [\mathsf{A}-\mathsf{Z}][0-9]? \\ \langle \mathsf{letter} \rangle & ::= & [\mathsf{a}-\mathsf{z}] \end{array}
```


Пример входных данных

Пример корректной системы уравнений приведён ниже. Расстановка пробелов свободная.

$$X = (a|b)X+bY+aab$$

 $Y=aX + a$

Уравнение Z = (a|(b|a))X должно распознаваться как некорректное: каждый коэффицент может иметь только один уровень вложенности скобок. Некорректно и уравнение $Z = a|b\ Z$, потому что в нём нет скобок вокруг альтернативы. Уравнение X=Y+a некорректно, потому что все коэффициенты должны быть не пусты (в том числе в альтернативе). Нижеследующая система тоже некорректна — в ней нет уравнения на Z.

$$X = (a|b)X+bY+aab$$

 $Y=aZ + a$

Пример входных RG и DFA

В RG могут быть нетерминалы-ловушки, не выходящие на останов. Например,

$$S -> bN$$
 $S -> aM$ $S -> b$ $N -> aL$ $L -> aN$ $M -> aS$

Здесь N, L — ловушки. Аналогичная ситуация может быть и в DFA:

Здесь ловушка — состояние Q2. В DFA нужно проверить наличие переходов по всем буквам из всех состояний. Алфавит языка DFA восстанавливается как множество всех букв, по которым есть переходы хотя бы из одного состояния.

Отчёт по ЛР

В отчёте должны быть описаны:

- краткое обоснование эквивалентности трёх регулярных выражений;
- способ порождения тестов для регулярных выражений;
- время распознавания тестов (в виде таблицы) для трёх версий регулярных выражений;
- кратко возникшие сложности при реализации 2 и 3 задачи и способ их решения.