$\begin{array}{c} \textit{University of Lethbridge} \\ \text{Department of Mathematics and Computer Science} \\ \textbf{MATH 1560 - Tutorial \#11} \\ \text{Monday, March 26} \end{array}$

Name:			

Note: You may do this assignment as a group, if you wish, by listing additional names under the space above, up to a maximum of 3 students per group.

1. Evaluate the definite integral:

(a)
$$\int_0^{\pi/2} \cos(x) \, dx$$

(b)
$$\int_0^2 (x^3 - 2x + 3) dx$$

(c)
$$\int_0^3 x\sqrt{1+x} \, dx$$

$$(d) \int_0^1 x^2 \sin(x^3) \, dx$$

2. Evaluate the integral $\int_0^2 |2x-2| dx$.

Suggestion: either use properties of integrals to simplify, or sketch the graph and evaluate by interpreting the result as an area.

3. Find the area between the curves $y = 2 - x^2$ and $y = x^2$.

- 4. Calculate the indicated Taylor polynomial:
 - (a) Degree 5, for $f(x) = \cos(x)$, about $x = \pi/3$.

(b) Degree 2, for $f(x) = \sec(x)$, about x = 0.

5. Use the degree 3 Maclaruin polynomial for $f(x) = \sin(x)$ to approximate the value of $\sin(1)$.