Fundamentals of Information & Network Security ECE 471/571

Lecture #5: Early Ciphers

Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

Affine Cipher

Affine transformation: scale and then shift

$$y = e_K(x) = (ax + b) \mod 26,$$

 $d_K(y) = a^{-1}(y - b) \mod 26.$

- An example of an affine cipher: a=9, b=3
- Problem with choice of a?
- Multiplicative inverse: if $x \times y = 1 \mod n$, then x and y are each other's multiplicative inverse mode n
 - Example: $3 \times 7 = 1 \mod 10$

The Cardinality of Key Space for the Affine Cipher

- a has multiplicative inverse mod n iff a is relatively prime to n, or gcd(a,n) = 1
- How many of them? --- $\phi(n)$: Euler totient function
 - number of integers less than n and relatively prime to n.
 - $-\phi(n) = n-1$ if n is prime
 - $-\phi(p\times q)=(p-1)(q-1)$ if p and q are prime
 - In general.....
- The number of possible keys in Affine Cipher is $n \times \phi(n)$

Euler's Totient Function $\phi(n)$

- Number of positive integers less than n and relatively prime to n.
- If n=p*q, where p and q are primes, then $\emptyset(n)=(p-1)(q-1)$

n	φ(<i>n</i>)
1	1
2	1
3	2
4	2
5	4
6	2
7	6
8	4
9	6
10	4

n	$\phi(n)$
11	10
12	4
13	12
14	6
15	8
16	8
17	16
18	6
19	18
20	8

n	φ(<i>n</i>)
21	12
22	10
23	22
24	8
25	20
26	12
27	18
28	12
29	28
30	8

(This table can be found on page 48 in the textbook)

* ********

Substitution Cipher

The key can be any permutation of the 26 alphabetic characters

$$y = e_{\pi}(x) = \pi(x),$$

 $d_{\pi}(y) = \pi^{-1}(y).$

Substitution -> VUNVMZMUMZFS

Question: How many possible keys? Is it secure enough?

Frequency Analysis

Exploit the regularities of the language and counting letter frequencies

Similarly we can define, frequencies of digrams, trigrams, initial letters, final

letters, etc.

Activity

Let's crack this substitution cipher (see handouts):

EMGLOSUDCGDNCUSWYSFHNSFCYKDPUMLWGYICOXYSIPJCKQPKUGK MGOLICGINCGACKSNISACYKZSCKXECJCKSHYSXCGOIDPKZCNKSHICGI WYGKKGKGOLDSILKGOIUSIGLEDSPWZUGFZCCNDGYYSFUSZCNXEOJNC GYEOWEUPXEZGACGNFGLKNSACIGOIYCKXCJUCIUZCFZCCNDGYYSFEU EKUZCSOCFZCCNCIACZEJNCSHFZEJZEGMXCYHCJUMGKUCY

https://cryptoclub.org/#vAllTools

wheelbarrow