CSE 211: Discrete Mathematics

(Due: 17/11/20)

Homework #1

Instructor: Dr. Zafeirakis Zafeirakopoulos

Assistant: Gizem Süngü

Student: Hasan Mutlu 1801042673

Course Policy: Read all the instructions below carefully before you start working on the assignment, and before you make a submission.

- It is not a group homework. Do not share your answers to anyone in any circumstance. Any cheating means at least -100 for both sides.
- Do not take any information from Internet.
- No late homework will be accepted.
- For any questions about the homework, send an email to gizemsungu@gtu.edu.tr
- The homeworks (both latex and pdf files in a zip file) will be submitted into the course page of Moodle.
- The latex, pdf and zip files of the homeworks should be saved as "Name_Surname_StudentId".{tex, pdf, zip}.
- If the answers of the homeworks have only calculations without any formula or any explanation -when needed- will get zero.
- Writing the homeworks on Latex is strongly suggested. However, hand-written paper is still accepted IFF hand writing of the student is clear and understandable to read, and the paper is well-organized. Otherwise, the assistant cannot grade the student's homework.

Problem 1: Conditional Statements

(5+5+5=15 points)

State the converse, contrapositive, and inverse of each of these conditional statements.

(a) If it snows tonight, then I will stay at home.

(Solution)

Converse: If I will stay at home, it snows tonight.

Contrapositive: If I won't stay at home, it doesn't snow tonight.

Inverse: If it doesn't snow, I won't stay at home.

(b) I go to the beach whenever it is a sunny summer day. (Solution)

Converse: It is a sunny summer day whenever I go to the beach.

Contrapositive: It isn't a sunny summer day whenever I don't go to the beach.

Inverse: I don't go to beach whenever it isn't a sunny summer day.

(c) If I stay up late, then I sleep until noon.

(Solution)

Converse: If I sleep until noon, then I stay up late.

Contrapositive: If I don't sleep until noon, then I don't stay up late.

Inverse: If I don't stay up late, then I don't sleep until noon

Problem 2: Truth Tables For Logic Operators

(5+5+5=15 points)

Construct a truth table for each of the following compound propositions.

(a) $(p \oplus \neg q)$

(Solution)

•					
	р	q	¬ q	$p \oplus \neg \ q$	
	1	1	0	1	
1]	1	0	1	0	
	0	1	0	0	
	0	0	1	1	

(b)
$$(p \iff q) \oplus (\neg p \iff \neg r)$$

(Solution)

	p	q	r	¬р	¬ r	$(p \iff q)$	$(\neg p \iff \neg r)$	$(p \iff q) \oplus (\neg p \iff \neg r)$
	1	1	1	0	0	1	1	0
	1	1	0	0	1	1	0	1
	1	0	1	0	0	0	1	1
[2]	1	0	0	0	1	0	0	0
_	0	1	1	1	0	0	0	0
	0	1	0	1	1	0	1	1
	0	0	1	1	0	0	0	0
	0	0	0	1	1	1	0	1

(c)
$$(p \oplus q) \Rightarrow (p \oplus \neg q)$$

(Solution)

[3]	p	q	¬ q	$(p \oplus q)$	$(p\oplus \neg q)$	$(p \oplus q) \Rightarrow (p \oplus \neg q)$
	1	1	0	0	1	1
	1	0	1	1	0	0
	0	1	0	1	0	0
	0	0	1	0	1	1

Problem 3: Predicates and Quantifiers

(21 points)

There are three predicate logic statements which represent English sentences as follows.

- P(x): "x can speak English."
- Q(x): "x knows Python."
- H(x): "x is happy."

Express each of the following sentences in terms of P(x), Q(x), H(x), quantifiers, and logical connectives or vice versa. The domain for quantifiers consists of all students at the university.

- (a) There is a student at the university who can speak English and who knows Python. (Solution) $\exists x (P(x) \land Q(x))$
- (b) There is a student at the university who can speak English but who doesn't know Python. (Solution) $\exists x (P(x) \land Q(x))$
- (c) Every student at the university either can speak English or knows Python. (Solution) $\forall x (P(x) \lor Q(x))$
- (d) No student at the university can speak English or knows Python. (Solution) $\exists x (P(x) \lor Q(x))$
- (e) If there is a student at the university who can speak English and know Python, then she/he is happy. (Solution) $\exists x (P(x) \land Q(x)) \rightarrow H(x)$
- (f) At least two students are happy. (Solution) $\exists x(H(x)), x \ge 2$
- (g) $\neg \forall x (Q(x) \land P(x))$ (Solution) Not every student can speak English and know Python.

Problem 4: Mathematical Induction

(21 points)

Prove that 3+3. 5+3. $5^2+\ldots+3$. $5^n=\frac{3(5^{n+1}-1)}{4}$ whenever n is a nonnegative integer. (Solution)

Solution is available with better quality in the other PDF document. I couldn't implement my solution into

Problem 5: Mathematical Induction

(20 points)

Prove that n^2 - 1 is divisible by 8 whenever n is an odd positive integer.

(Solution)

Solution is available with better quality in the other PDF document. I couldn't implement my solution into

Latex.

Bosis step: n=1 $1^2-1 \pmod{8} \equiv 0$ P(0) is true.

Induction step.

Let P(k) is true.

For P(k+2): $(k+2)^2-1=k^2+4k+4-1$ $=(k^2-1)+4\cdot(k+1)$ The ossume (k^2-1) is divisible by 8.

So $P(k+2) \pmod{8} \equiv 0$ is also true.

The statement is true by induction.

Problem 6: Sets (8 points)

Which of the following sets are equal? Show your work step by step.

- (a) $\{t : t \text{ is a root of } x^2 6x + 8 = 0\}$
- (b) {y : y is a real number in the closed interval [2, 3]}
- (c) $\{4, 2, 5, 4\}$
- **(d)** {4, 5, 7, 2} {5, 7}
- (e) $\{q: q \text{ is either the number of sides of a rectangle or the number of digits in any integer between 11 and 99\}$

(Solution)

Solution is available with better quality in the other PDF document. I couldn't implement my solution into Latex.

a.
$$x^{2}-6x+8 = (x-2)(x-4)=0$$

 $x=2$
 $x=4$
 $A = \{2,4\}$
b. $B = \{2,3\}$
c. $C = \{4,2,5\}$
d. $D = \{4,5,7,2\} - \{5,7\} = \{2,4\}$
then $A = 0$

Problem Bonus: Logic in Algorithms

(20 points)

Let p and q be the statements as follows.

- **p:** It is sunny.
- q: The flowers are blooming.

Figure 1: Combinational Circuit

In Figure 1, the two statements are used as input. The circuit has 3 gates as AND, OR and NOT operators. It has also a 2x1 multiplexer¹ which provides to select one of the two options. (a) Write the sentence that "result" output has.

(Solution)

(b) Convert Figure 1 to an algorithm which you can write in any programming language that you prefer (including pseudocode).

(Solution)

 $^{^{1} \}rm https://www.geeks forgeeks.org/multiplexers-in-digital-logic/$