SYAM KRISHNA REDDY PULAGAM

REG NO: 21BAI1725 VIT CHENNAI CAMPUS

AI&ML ASSIGNMENT-2

Importing all the neccesary libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing dataset from csv file

In [2]:

```
df=pd.read_csv("House Price India.csv")
df
```

Out[2]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	numbei of views
0	6762810145	42491	5	2.50	3650	9050	2.0	0	4
1	6762810635	42491	4	2.50	2920	4000	1.5	0	С
2	6762810998	42491	5	2.75	2910	9480	1.5	0	С
3	6762812605	42491	4	2.50	3310	42998	2.0	0	С
4	6762812919	42491	3	2.00	2710	4500	1.5	0	С
14615	6762830250	42734	2	1.50	1556	20000	1.0	0	С
14616	6762830339	42734	3	2.00	1680	7000	1.5	0	С
14617	6762830618	42734	2	1.00	1070	6120	1.0	0	С
14618	6762830709	42734	4	1.00	1030	6621	1.0	0	С
14619	6762831463	42734	3	1.00	900	4770	1.0	0	С
14620 rows × 23 columns									
4									•

In [3]:

```
df.head()
```

Out[3]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	СО
0	6762810145	42491	5	2.50	3650	9050	2.0	0	4	
1	6762810635	42491	4	2.50	2920	4000	1.5	0	0	
2	6762810998	42491	5	2.75	2910	9480	1.5	0	0	
3	6762812605	42491	4	2.50	3310	42998	2.0	0	0	
4	6762812919	42491	3	2.00	2710	4500	1.5	0	0	

5 rows × 23 columns

→

In [4]:

df.shape

Out[4]:

(14620, 23)

In [5]:

columns=df.columns
columns

Out[5]:

In [6]:

```
type(columns)
```

Out[6]:

pandas.core.indexes.base.Index

In [7]:

```
for i in columns:
    print(f"'{i}'---> ",end="")
    print(df[i].dtype)
    print()
'id'---> int64
'Date'---> int64
'number of bedrooms'---> int64
'number of bathrooms'---> float64
'living area'---> int64
'lot area'---> int64
'number of floors'---> float64
'waterfront present'---> int64
'number of views'---> int64
'condition of the house'---> int64
'grade of the house'---> int64
'Area of the house(excluding basement)'---> int64
'Area of the basement'---> int64
'Built Year'---> int64
'Renovation Year'---> int64
'Postal Code'---> int64
'Lattitude'---> float64
'Longitude'---> float64
'living_area_renov'---> int64
'lot_area_renov'---> int64
'Number of schools nearby'---> int64
'Distance from the airport'---> int64
'Price'---> int64
```

```
In [8]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14620 entries, 0 to 14619
Data columns (total 23 columns):
    Column
                                           Non-Null Count Dtype
    -----
                                           -----
                                           14620 non-null int64
0
    id
 1
    Date
                                           14620 non-null int64
 2
    number of bedrooms
                                           14620 non-null int64
    number of bathrooms
 3
                                          14620 non-null float64
                                           14620 non-null int64
 4
    living area
 5
    lot area
                                           14620 non-null int64
 6
    number of floors
                                          14620 non-null float64
 7
    waterfront present
                                          14620 non-null int64
                                           14620 non-null int64
    number of views
 9
    condition of the house
                                          14620 non-null int64
 10 grade of the house
                                          14620 non-null int64
 11 Area of the house(excluding basement) 14620 non-null int64
 12 Area of the basement
                                           14620 non-null int64
 13 Built Year
                                           14620 non-null int64
 14 Renovation Year
                                           14620 non-null int64
                                           14620 non-null int64
 15 Postal Code
 16 Lattitude
                                           14620 non-null float64
 17 Longitude
                                          14620 non-null float64
 18 living_area_renov
                                          14620 non-null int64
 19 lot_area_renov
                                          14620 non-null int64
 20 Number of schools nearby
                                          14620 non-null int64
 21 Distance from the airport
                                          14620 non-null int64
 22 Price
                                          14620 non-null int64
dtypes: float64(4), int64(19)
memory usage: 2.6 MB
```

Univariate Analysis

```
In [9]:
```

```
if len(df['id'])==len(df['id'].unique()):
    print(len(df['id']))
    print("it has all unique values. so it shows no relation with price column")
else:
    print("it has duplicates")
```

14620

it has all unique values. so it shows no relation with price column

In [10]:

```
plt.figure(figsize=(12,6))
plt.plot(df['id'])
```

Out[10]:

[<matplotlib.lines.Line2D at 0x1b1b33cab80>]

In [11]:

```
plt.figure(figsize=(12,6))
plt.hist(df['number of bedrooms'])
plt.ylabel("No of Bedrooms")
plt.xlabel("bedroom index in dataset")
plt.title("Visualizing the number of bedrooms column in the dataset")
plt.figure(figsize=(12,6))
plt.plot(df['number of bedrooms'])
```

Out[11]:

[<matplotlib.lines.Line2D at 0x1b1b3d9fd30>]

In [12]:

```
plt.figure(figsize=(12,6))
plt.plot(df['living area'],'g')
plt.ylabel("living area")
plt.xlabel("living area data index in dataset")
plt.title("Visualizing the living area column in the dataset")
```

Out[12]:

Text(0.5, 1.0, 'Visualizing the living area column in the dataset')

In [13]:

```
plt.figure(figsize=(15,8))
a=[1.0,2.0,1.5,3.0,2.5,3.5]
colors=['b','g','m','r','k']
plt.pie(df['number of floors'].value_counts(),labels=a,colors=colors,autopct = "%1.1f%%"
plt.title("Distribution of values in number of floors column")
plt.show()
```

Distribution of values in number of floors column

In [14]:

```
plt.figure(figsize=(12,6))
plt.plot(df['lot_area_renov'],'m')
plt.ylabel("living_area_renov")
plt.xlabel("living_area_renov index in dataset")
plt.title("Visualizing the living_area_renov column in the dataset")
```

Out[14]:

Text(0.5, 1.0, 'Visualizing the living_area_renov column in the dataset')

In [15]:

```
plt.figure(figsize=(15,8))
label=[3,4,2,5,6,1,7,8,9,10,33,11]
colors=['g','r','b','k','m']
plt.pie(df['number of bedrooms'].value_counts(),labels=label,colors=colors,autopct = "%1
plt.title("Distribution of values in number of bedrooms column")
plt.show()
```

Distribution of values in number of bedrooms column

In [16]:

```
plt.figure(figsize=(12,6))
plt.plot(df['living_area_renov'],)
plt.ylabel("living_area_renov")
plt.xlabel("living_area_renov index in dataset")
plt.title("Visualizing living_area_renov column in the dataset")
plt.grid(True)
```


In [17]:

```
plt.figure(figsize=(12,8))
plt.plot(df['Price'],color='orange')
plt.ylabel("number of views")
plt.xlabel("number of views index in dataset")
plt.title("Visualizing number of views column in the dataset")
plt.grid(True)
```


Bi - Variate Analysis

In [18]:

```
plt.figure(figsize=(12,6))
plt.plot(df['number of bedrooms'])
plt.plot(df['Number of schools nearby'])
plt.xlabel("Number of schools nearby")
plt.ylabel("number of bedrooms")
plt.title("Visualizing relation between number of bedrooms and Number of schools nearby
plt.legend(['number of bedrooms','Number of schools nearby'])
```

Out[18]:

<matplotlib.legend.Legend at 0x1b1b5879f70>

In [19]:

```
plt.figure(figsize=(12,6))
plt.plot(df['living_area_renov'])
plt.plot(df['living area'])
plt.xlabel("living area")
plt.ylabel("living_area_renov")
plt.title("Visualizing relation between living area and living_area_renov nearby column"
plt.legend(['living_area_renov','living area'])
```

Out[19]:

<matplotlib.legend.Legend at 0x1b1b60c8760>

In [20]:

```
plt.figure(figsize=(12,6))
plt.plot(df['lot_area_renov'],'m')
plt.plot(df['lot area'])
plt.xlabel("lot area")
plt.ylabel("lot_area_renov")
plt.title("Visualizing relation between lot area and lot_area_renov nearby column")
plt.legend(['lot_area_renov','lot area'])
```

Out[20]:

<matplotlib.legend.Legend at 0x1b1b5f6ebe0>

In [21]:

```
plt.figure(figsize=(12,6))
plt.plot(df['waterfront present'],'o-m')
plt.plot(df['number of views'])
plt.xlabel("number of views")
plt.ylabel("waterfront present")
plt.title("Visualizing relation between number of views and waterfront present nearby co
plt.legend(['waterfront present','number of views'])
plt.grid(True)
```


In [35]:

```
sns.jointplot(x= 'number of bedrooms',y ='number of bathrooms',data=df)
```

Out[35]:

<seaborn.axisgrid.JointGrid at 0x1b1bdd9ea30>

In [22]:

```
#using hist
plt.figure(figsize=(15,8))
plt.hist(df['Built Year'])
plt.hist(df['Renovation Year'])
plt.xlabel("Renovation Year")
plt.ylabel("Built Year")
plt.title("Visualizing relation between Renovation Year and Built Year column")
plt.legend(['Built Year', 'Renovation Year'])
#using plot
plt.figure(figsize=(15,8))
plt.plot(df['Built Year'])
plt.plot(df['Renovation Year'])
plt.xlabel("Renovation Year")
plt.ylabel("Built Year")
plt.title("Visualizing relation between Renovation Year and Built Year column")
plt.legend(['Built Year', 'Renovation Year'])
plt.grid(True)
```

```
C:\Users\HP\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.p
y:240: RuntimeWarning: Glyph 9 missing from current font.
  font.set_text(s, 0.0, flags=flags)
C:\Users\HP\anaconda3\lib\site-packages\matplotlib\backends\backend_agg.p
y:203: RuntimeWarning: Glyph 9 missing from current font.
  font.set_text(s, 0, flags=flags)
```


In [40]:

df.corr()

Out[40]:

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	numbe of floor
id	1.000000	0.045966	-0.329034	-0.516909	-0.648127	-0.100269	-0.31230
Date	0.045966	1.000000	-0.015663	-0.026485	-0.021958	0.004392	-0.01033
number of bedrooms	-0.329034	-0.015663	1.000000	0.509784	0.570526	0.034416	0.17729
number of bathrooms	-0.516909	-0.026485	0.509784	1.000000	0.753517	0.080806	0.50292
living area	-0.648127	-0.021958	0.570526	0.753517	1.000000	0.174420	0.35474
lot area	-0.100269	0.004392	0.034416	0.080806	0.174420	1.000000	-0.00413
number of floors	-0.312305	-0.010335	0.177294	0.502924	0.354743	-0.004138	1.00000
waterfront present	-0.112937	0.012006	-0.006257	0.060104	0.105837	0.026282	0.01631
number of views	-0.293004	-0.004782	0.078665	0.183789	0.287728	0.078308	0.02015
condition of the house	-0.045061	-0.027402	0.026597	-0.128232	-0.063358	-0.008548	-0.26992
grade of the house	-0.673448	-0.033097	0.352945	0.663054	0.761835	0.110546	0.46308
Area of the house(excluding basement)	-0.565116	-0.015994	0.473599	0.684391	0.875793	0.183553	0.52564
Area of the basement	-0.290806	-0.015711	0.300332	0.287190	0.441491	0.019755	-0.24297
Built Year	-0.068645	-0.005869	0.152954	0.498127	0.309602	0.051615	0.48156
Renovation Year	-0.109155	-0.011636	0.016132	0.049669	0.059400	0.006848	0.00670
Postal Code	0.294709	0.018243	-0.044156	-0.105546	-0.080303	0.070131	-0.12978
Lattitude	-0.479334	-0.023327	-0.013163	0.031156	0.054518	-0.090983	0.05073
Longitude	-0.070841	-0.018231	0.135712	0.223904	0.240208	0.221432	0.12755
living_area_renov	-0.599900	-0.032495	0.389855	0.570530	0.757571	0.149744	0.28509
lot_area_renov	-0.089604	-0.000050	0.029400	0.078627	0.180312	0.706812	-0.01012
Number of schools nearby	-0.004821	-0.004071	0.003397	0.002180	0.002370	-0.012671	-0.00757
Distance from the airport	-0.004542	0.011457	-0.006157	0.009206	0.002511	0.003291	0.01656
Price	-0.773114	-0.027919	0.308460	0.531735	0.712169	0.081992	0.26273
23 rows × 23 colu	mns						

In [23]:

```
plt.figure(figsize=(20,15))
sns.heatmap(df.corr(),annot=True)
```

Out[23]:

<AxesSubplot:>

In [32]:

```
sns.pairplot(
    df,
    x_vars=["number of bedrooms", "number of bathrooms", "Number of schools nearby"],
    y_vars=["number of bedrooms", "number of bathrooms", "Number of schools nearby"],
    kind='scatter',
    diag_kind='kde'
)
```

Out[32]:

<seaborn.axisgrid.PairGrid at 0x1b1bcf16c10>

In [39]:

```
sns.pairplot(
    df,
    x_vars=["living area", "lot area"],
    y_vars=["living_area_renov", "lot_area_renov"],
    diag_kind='kde'
)
```

Out[39]:

<seaborn.axisgrid.PairGrid at 0x1b1be9d9040>

Descriptive statistics on the dataset

```
In [25]:
```

```
df.describe()
```

Out[25]:

mber of views	condition of the house	 Built Year	Renovation Year	Postal Code	Lattitude	Longit
.000000	14620.000000	 14620.000000	14620.000000	14620.000000	14620.000000	14620.000
.233105	3.430506	 1970.926402	90.924008	122033.062244	52.792848	-114.404
.766259	0.664151	 29.493625	416.216661	19.082418	0.137522	0.141
.000000	1.000000	 1900.000000	0.000000	122003.000000	52.385900	-114.709
.000000	3.000000	 1951.000000	0.000000	122017.000000	52.707600	-114.519
.000000	3.000000	 1975.000000	0.000000	122032.000000	52.806400	-114.421
.000000	4.000000	 1997.000000	0.000000	122048.000000	52.908900	-114.315
.000000	5.000000	 2015.000000	2015.000000	122072.000000	53.007600	-113.505

Handling the Missing values

In [26]:

df.isnull().any()

Out[26]:

id	False
Date	False
number of bedrooms	False
number of bathrooms	False
living area	False
lot area	False
number of floors	False
waterfront present	False
number of views	False
condition of the house	False
grade of the house	False
Area of the house(excluding basement)	False
Area of the basement	False
Built Year	False
Renovation Year	False
Postal Code	False
Lattitude	False
Longitude	False
living_area_renov	False
lot_area_renov	False
Number of schools nearby	False
Distance from the airport	False
Price	False
dtyne: hool	

dtype: bool

In [27]:

```
df.isnull().sum() #no null values in the dataset
```

Out[27]:

id	0
Date	0
number of bedrooms	0
number of bathrooms	0
living area	0
lot area	0
number of floors	0
waterfront present	0
number of views	0
condition of the house	0
grade of the house	0
Area of the house(excluding basement)	0
Area of the basement	0
Built Year	0
Renovation Year	0
Postal Code	0
Lattitude	0
Longitude	0
living_area_renov	0
lot_area_renov	0
Number of schools nearby	0
Distance from the airport	0
Price	0
dtype: int64	