Linear Regression Introduction

Before getting into Linear Regression- "True regression functions are never linear" but it is still a useful tool for predicting a quantitative response.

Topics: Linear Regresion Model concepts and Least Squares Approach.

Important questions that are important to address from a given data:

- 1. Is there a relationship between the variable and the response? Determine whether the data providence of an association between the variable and the response.
- 2. How strong is the relationship between the variable and the corresponding responses? Strength of this relationship.
- 3. Association of the response with the variable: The need to separate out the individual contribution of each variable.
- 4. How large is this association?
- 5. Predicting the future and the accuracy of the same
- 6. Is the relationship linear? If the relationship between the variable and the response is approximately a straight-line relationship then linear regression is an appropriate tool
- 7. Synergy effect (in marketing) or interaction effect (in statistics)

Simple Linear Regression

For a quantitative response Y on the basis of a single predictor variable X, we assume that there is approximately a linear relationship between X and Y. We can mathematically write this relationship as:

$$Y \approx \beta_0 + \beta_1 X$$

 $\beta_0 \to \mathbf{intercept}$ of the linear model

 $\beta_1 \to$ slope of the linear model

They are known as the **model coefficients** or just **parameters**. We will then use our training data and determine the *estimates* of $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \tag{estimates}$$

where \hat{y} indicates a prediction of Y on the basis of X = x

Estimating the Coefficients

 β_0 and β_1 are unknown, we'll use our data to estimate the coefficients. Our data is:

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Our goal is to find the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ such that the linear model fits the available data well that is to say $y_i \approx \hat{\beta}_0 + \hat{\beta}_1 x_i$ for i = 1, 2, ..., n

Our task is to measure the *closeness*. The most common approach involves **minimizing the least squares criterion**

We define e_i as the residual

$$e_i = y_i - \hat{y}_1$$

As evident, the residual is basically the difference between the observed i-th value and the i-th response value that is predicter by our linear model. We define the **residual sum of squares RSS** as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

Linear Regression Introduction

The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS so using some calculus, we obtain the following least squares coefficient estimates for the linear regression:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta} \ \overline{x}$$

where $\overline{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\overline{x} \equiv \sum_{i=1}^{n} x_i$ are the sample means.

Assessing the Accuracy of the Coefficient Estimates

Assuming the *true* relationship between X and Y takes the form $Y = f(X) + \varepsilon$, here ε is a **mean-random error term**. Approximating f as a linear function we have:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

here, β_0 is the intercept term- expected value of Y when X=0 and β_1 is the slope- the average increase in Y associated with a one-unit increase in X

The analogy between linear regression and estimation of the mean of a random variable is an apt based on the concept of **bias**. If we use the sample mean $\hat{\mu}$ to estimate μ , this estimate is *unbiased* since $\hat{\mu} = \mu$ is expected by us. $\hat{\mu}$ might *underestimate* or *overestimate* the value of μ but if we could average a huge number of sets of observations, then this average would *exactly* equal μ . Hence, an <u>unbiased estimator</u> does NOT systematically over- or under-estimate the true parameter.

The same could be said for estimating the values of β_0 and β_1 , if we could average the estimates obtained over a huge number of data sets, then the average of these estimates would be spot on!

How far off will the estimate of $\hat{\mu}$ will be from μ :

$$\operatorname{Var}(\hat{\mu}) = \operatorname{SE}(\hat{\mu})^2 = \frac{\sigma^2}{n}$$
 (Standard error)

The standard error tells us the average amount that this estimate of $\hat{\mu}$ differs from the actual value μ For computing the standard errors associated with $\hat{\beta}_0$ and $\hat{\beta}_1$,

$$\operatorname{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$

$$\operatorname{SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

 σ^2 is the variance of the noise or $\sigma^2 = \text{Var}(\varepsilon)$. Assuming that the errors ε_i for each observation have common variance σ^2 and are uncorrelated

In general σ^2 is not known and has to be estimated from the data. This estimate of σ is known as the residual standard error and is given by the formula

$$RSE = \sqrt{\frac{RSS}{(n-2)}}$$

Standard errors can be used to compute confidence intervals.