³⁵Ca εp decay (25.7 ms) 1999Tr04,1985Ay01

Parent: 35 Ca: E=0; $J^{\pi}=1/2^{+}$; $T_{1/2}=25.7$ ms 2; $Q(\varepsilon p)=1.587\times 10^{4}$ 11; % εp decay=95.8 3

1999Tr04, 1998Le45: A secondary 35 Ca beam at 0.3 ions/s and 98% purity was produced via the projectile fragmentation of a 95-MeV/nucleon 40 Ca $^{20+}$ primary beam impinging on a rotating natNi target, selected using ΔE -tof by the GANIL LISE3 spectrometer, and implanted into a 500 μ m silicon detector sandwiched between two 500- μ m silicon detectors for detecting β^+ particles. 3.5×10^4 35 Ca ions were stopped at a depth of 300 μ m with FWHM=70 μ m (setting 1) and 2.5×10^4 35 Ca ions were stopped at a depth of 450 μ m (setting 2). $\varepsilon+\beta^+$ -delayed protons were detected by the implantation detector. γ rays were detected by three Ge detectors and two NaI detectors. Measured E_p , I_p , E_γ , I_γ , E_{2p} , I_{2p} , βp -coin, $p\gamma$ -coin. Built the decay scheme consisting of 1p-emitting states in 35 K, a 2p-emitting state (T=5/2 IAS) in 35 K, 1p daughter states in 34 Ar, and a 2p daughter state in 33 Cl. Deduced decay branching ratios, B(GT) and B(F), and parent 35 Ca $T_{1/2}$ from implant-decay correlations.

1985Ay01: 35 Ca isotope discovery. 35 Ca was produced by bombarding a natural calcium target using a 135-MeV 3 He beam from the 88-inch Cyclotron at Lawrence Berkeley Laboratory. Recoiling products were slowed down, transported, and collected on a slowly rotating catcher wheel. The $\varepsilon+\beta^{+}$ -delayed protons were detected using Si detector telescopes. Measured E_p , I_p , pp-coin. Built the decay scheme consisting of a 2p-emitting state (T=5/2 IAS) in 35 K, sequential 2p intermediate states in 34 Ar, and 2p daughter states in 33 Cl. Deduced 35 Ca $T_{1/2}$ and 35 Ca mass using the known members of A=35, T=5/2 sextuplets IMME.

Theoretical studies involving ³⁵Ca decay: 2003Sm02, 1991De26, 1990Br26.

34Ar Levels

E(level) [†]	$J^{\pi \dagger}$
0	0+
2091.1 <i>3</i>	2+
3287.7 5	2+
3873 <i>3</i>	0_{+}

[†] From the Adopted Levels.

Delayed Protons (34Ar)

Particle normalization: from the renormalization of $\%\Sigma I(1p) + \%\Sigma I(2p) = 100.6$ in 1999Tr04 to 100.

$E(p)^{\dagger}$	$E(^{34}Ar)$	$I(p)^{\dagger a}$	$E(^{35}K)^{\ddagger}$	Comments
1427 5	0	48.5 13	1553	
2278 [#]	2091.1	5.4 9	4520 [@]	E(p): unresolved E(p) _{lab} =1909-2647 from 1999Tr04. I(p): 64.0% 93 of %I(p) _{tot} =8.4 6 from py coincidences in 1999Tr04.
2278 [#]	3287.7	1.0 4	5716 [@]	E(p): unresolved E(p) _{lab} =1909-2647 from 1999Tr04. I(p): 12.1% 49 of %I(p) _{tot} =8.4 6 from py coincidences in 1999Tr04.
2278 [#]	3873	2.0 7	6302 [@]	E(p): unresolved E(p) _{lab} =1909-2647 from 1999Tr04. I(p): 23.9% 79 of %I(p) _{tot} =8.4 6 from py coincidences in 1999Tr04.
2727 13	2091.1	6.0 5	4982	47
3224 [#]	2091.1	2.2 3	5493 [@]	E(p): unresolved E(p) _{lab} =2947-3500 from 1999Tr04.
3592 <i>25</i>	0	3.0 <i>3</i>	3781	
3822 <i>36</i>	0	3.8 <i>3</i>	4018	
4041 <i>71</i>	2091.1	2.9 3	6335	
4570 <i>48</i>	0	2.9 3	4788	
4754 <i>38</i>	0	4.2 4	4977	
5018 <i>71</i>	0	3.9 <i>3</i>	5249	

 $^{^{35}\}text{Ca-J}^{\pi}$, $T_{1/2}$: From the Adopted Levels of ^{35}Ca .

 $^{^{35}}$ Ca-Q(εp): Deduced by evaluators from mass excesses of 4777 105 for 35 Ca measured by 2023La09 and -18378.289 80 for 34 Ar from 2021Wa16. Q(εp) from 2021Wa16: Q(εp)=16280 200 (syst).

³⁵Ca-%εp decay: 95.8 3 derived from the renormalization of %ΣI(1p)+%ΣI(2p)=100.6 in 1999Tr04 to 100. The original decay branching ratios in 1999Tr04: %ΣI(1p)=96.4 18 and %ΣI(2p)=4.2 3.

³⁵Ca εp decay (25.7 ms) 1999Tr04,1985Ay01 (continued)

Delayed Protons (continued)

$E(p)^{\dagger}$	$E(^{34}Ar)$	$I(p)^{\dagger a}$	$E(^{35}K)^{\ddagger}$	Comments
5294 <i>48</i>	0	0.72 18	5533	
5466 <i>48</i>	0	0.61 15	5710	
5616 <i>37</i>	0	1.43 17	5865	
5834 60	0	1.40 19	6089	
6316 [#]	0	1.09 17	6585 [@]	E(p): unresolved E(p) _{lab} =5983-6649 from 1999Tr04.
6783 22	2091.1	3.8 2	9168 <mark>&</mark>	$E(^{35}K)$: $E(p1)_{lab}=6783$ 22 corresponds to $E(^{35}K)=9157$ 23.
7509 [#]	0	1.1 2	7813 [@]	E(p): unresolved E(p) _{lab} =7131-7887 from 1999Tr04.
8802 89	0	0.41 6	9168 <mark>&</mark>	$E(^{35}K)$: $E(p0)_{lab}$ =8802 89 corresponds to $E(^{35}K)$ =9144 92.

[†] From 1999Tr04. E(p) is in lab frame. I(p) is obtained from the number of observed proton events and the total number of implants, with simulated proton-detection efficiencies.

[‡] Evaluators deduced $E(level)(^{35}K)=E(p)_{lab}\times[m(p)+m(^{34}Ar)]/m(^{34}Ar)+S(p)(^{35}K)+E(level)(^{34}Ar)$, with $S(p)(^{35}K)=83.6\ 5$ (2021Wa16), $E(level)(^{34}Ar)$ from the Adopted Levels of ^{34}Ar , and $E(p)_{lab}$ from 1999Tr04. For a ^{35}K proton-emitting level with multiple proton branches, evaluators take the weighted average for $E(level)(^{35}K)$ values deduced from each proton branch. 1999Tr04 used $S(p)(^{35}K)=78\ 20$ from 1993Au07, which causes a small difference between the original $E(level)(^{35}K)$ in 1999Tr04 and the deduced $E(level)(^{35}K)$ here.

[#] Unresolved protons.

[®] Unresolved proton-emitting levels in ³⁵K corresponding to a group of unresolved protons populating one daughter state in ³⁴Ar.

[&]amp; T=5/2 isobaric analog state in ³⁵K, which also decays by E(2p0)_{lab}=4305 *26*, proton line 8 in 1999Tr04, corresponding to E(³⁵K)=9186 27 with S(2p)(³⁵K)=4747.5 *6* (2021Wa16) and adding a +7-keV correction for the difference in the recoil effect between 1p and 2p emissions (1999Tr04). 9168 *23* is obtained from a weighted average of the three E(³⁵K) values of 9144 *92* (p0), 9157 *23* (p1), and 9186 *27* (2p0). Other: E(2p0)_{lab}=4089 *30*, E(2p0)_{c.m.}=4311 *40* (1985Ay01), corresponding to E(³⁵K)=9059 *41* with S(2p)(³⁵K)=4747.5 *6* (2021Wa16). 1985Ay01 also observed E(2p1)_{lab}=3287 *30* and proposed both 2p0 and 2p1 proceed via a sequential decay mechanism with the first proton E(p)_{lab}=2213 keV, corresponding to an intermediate state in ³⁴Ar at 6807 keV. 2p1 has been ruled out in 1999Tr04 due to the nonobservation of expected py coincidences. 1999Tr04 also states that the observed ratio I(2p0)/I(1p)=0.98 *9* agrees with the calculated branching ratio I(2p)/I(1p)=1 for the IAS (1991De26).

^a For absolute intensity per 100 decays, multiply by 0.994.

³⁵Ca εp decay (25.7 ms) 1999Tr04,1985Ay01

Decay Scheme

I(p) Intensities: I(p) per 100 parent decays

