Optimizavimo metodai. Paskaitų konspektas Rimantas Grigutis

8 paskaita. Skaitiniai besąlyginiai optimizavimo metodai. Daugiamatė optimizacija. Newtono metodas

Uždavinys.

Tegu f(x) yra aprėžta iš apačios funkcija visoje erdvėje \mathbb{R}^n ir visos jos dalinės yra tolydžios visuose taškuose.

Rasti toki $x^* \in \mathbf{R}^n$, kad

$$f\left(x^{*}\right) = \min_{x \in \mathbf{R}^{n}} f\left(x\right).$$

Newtono algoritmas

 $\check{Z}ingsnis\ 1$. Pasirinkti $x^0, \varepsilon_1 > 0, \varepsilon_2 > 0, M$ - itercijų ribinis skaičius. Apsakičiuoti gradientą $\nabla f(x)$ ir Hesse matricą H(x).

Žingsnis 2. Apibrėžti k=0.

Žingsnis 3. Apskaičiuoti $\nabla f(x^k)$.

Žingsnis 4. Patikrinti algoritmo pabaigos sąlygą $\|\nabla f(x^k)\| \leq \varepsilon_1$:

- a) jei nelygybė teisinga, tai algoritmas baigiamas ir $x^* = x^k$.
- b) jei nelygybė neteisinga, tai pereiti prie Žingsnio 5.

Žingsnis 5. Patikrinti algoritmo pabaigos salyga k > M:

- a) jei nelygybė teisinga, tai algoritmas baigiamas ir $x^* = x^k$.
- b) jei nelygybė neteisinga, tai pereiti prie Zingsnio 6.

 $Zingsnis \ 6$. Apskaičiuoti matricą $H(x^k)$.

Žingsnis 7. Apskaičiuoti matricą $H^{-1}(x^k)$.

Žingsnis 8. Patikrinti sąlygą $H^{-1}(x^k) > 0$:

- a) jei nelygybė teisinga, tai pereiti prie Žingsnio 9.
- b) jei nelygybė neteisinga, tai priskirti $d^k := -\nabla f(x^k)$ ir pereiti prie Žingsnio 10.

Žingsnis 9. Priskirti $d^k := -H^{-1}(x^k) \nabla f(x^k)$. *Žingsnis 10.* Rasti tašką $x^{k+1} = x^k + t_k d^k$, čia t_k parenkamas taip:

jei
$$d^k := -H^{-1}\left(x^k\right) \nabla f\left(x^k\right)$$
, tai $t_k = 1$,

jei $d^k := -H^{-1}(x^k) \nabla f(x^k)$, tai $t_k = 1$, jei $d^k := -\nabla f(x^k)$, tai t_k parenkamas taip, kad būtų teisinga $f(x^{k+1}) < 0$ $f(x^k)$.

Zingsnis 11. Patikrinti algoritmo pabaigos sąlygas

$$||x^{k+1} - x^k|| < \varepsilon_2, \qquad ||f(x^{k+1}) - f(x^k)|| < \varepsilon_2:$$

- a) jei teisingos abi nelygybės su k ir su k=k-1, tai algoritmas baigiamas ir $x^*=x^{k+1};$
- b) jei kuri nors nelygybė yra neteisinga, tai priskiriame k:=k+1 ir pereiti prie $\check{Z}ingsnio~3.$

Uždavinio sprendimas.

- 1. Newtono algoritmu rasti tokį tašką x^k , kuris tenkina nors vieną algoritmo pabaigos salygą.
- 2. Rastam taškui x^k patikrinti pakankamą minimumo sąlygą $H\left(x^k\right)>0$. Jeigu nelygybė teisinga, tai taškas x^k gali būti laikomas ieškomasis minimumas: $x^*=x^k$.

Pavyzdys 8.1