1 Exercises

Task 1.1

- 1. A clique in a graphical model is a subset obtained from the total set of nodes of the graph which represents the graphical model in which all nodes are connected between them. Therefore, a clique is a complete graph.
- 2. In the first graph \mathcal{G}_1 , two cliques can be observed: the one conformed by nodes A and C, and the one conformed by B and C.

In the second graph \mathcal{G}_2 , a total of seven cliques are observed: two conformed by three nodes: the one built by the nodes A, B and D, and the one conformed by nodes B, C and D. Five conformed by two nodes: A and B, A and D, B and C, B and D, and C and D.

The cliques can be observed in the following pictures:

Figure 1: Cliques in \mathcal{G}_1 .

Figure 2: Cliques in \mathcal{G}_2 .

Task 1.2

1. According to the structure of \mathcal{G}_3 , the following nodes are independent, given x_5 and x_4 :

Figure 3: Independent nodes in \mathcal{G}_3 .

The left nodes (surrounded in red) are mutually dependent and independent of the right nodes (surrounded in blue), which are also mutually dependent.

2. For x_2 , it is necessary to know x_1 , x_3 and x_5 to be totally independent of the rest of the graph. x_6 is totally independent of the rest of the graph given x_4 , x_5 , x_7 and x_8 .

Task 1.3

- 1. Given nodes B and D, A and C are independent, because all paths between them are blocked. Nevertheless, given A and C, because of d-separation rules, B and D will be dependent given C
- 2. This model, according to d-separation rules, makes A and B independent not given C, and dependent when given. Nevertheless, in undirected graphs, when a node is given, the path between two nodes is blocked, and if it is not, then they are dependent. This is why A and C cannot be independent in an undirected graph if C is not given.

Figure 4: \mathcal{G}_4 and \mathcal{G}_5 .

2 Exercises

Task 2.1

- 1. There are two types of cliques, those input-input, joining two x nodes, and those input-output, those joining x and y nodes. There is no output-output cliques in here.
- 2. x_5 will be independent of the rest of the graph given x_2 , x_4 , x_6 , x_8 and y_6 .
- 3. This expression is given by:

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \left[\prod_{i=1}^{4} \phi(y_i, x_i) \right] \phi(x_1, x_2) \phi(x_2, x_3) \phi(x_3, x_4) \phi(x_4, x_1)$$
Where $Z = \sum_{x_1, \dots, x_n} \prod_{c \in \mathcal{C}} \phi_c(x_c)$

Task 2.2

- 1. MAP inference allows solving two major issues: non-parallelization and memory consumption. This allows to perform taking advantage of parallel architectures and outperform other methods in computational cost [1]. Moreover, the fact that only the maximum probability is stored allows to save memory since not all outcomes need to be stored.
- 2. The joint probability derived before can be expressed as:

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} U(x_i, y_i) V(x_i, x_j)$$

This, according to what was explained before, means the following:

$$U(x_i, y_i) = \prod_{i=i}^{4} \phi(y_i, x_i)$$

$$V(x_i, x_j) = \phi(x_1, x_2) \phi(x_2, x_3) \phi(x_3, x_4) \phi(x_4, x_1)$$

Therefore, $U(x_i, y_i)$ represents the joint probability between the correspondent pairs of hidden states and pixels (x, y) and $V(x_i, x_j)$ between those hidden states that are related.

3 Exercises

Task 3.1

- 1. Implemented in matlab code.
- 2. The following results were obtained from the code:

Figure 5: Noisy figure to improve.

Figure 6: Improved figure.

Figure 7: Energy vs iterations plot.

This results were obtained with the value of 1.0 for λ and τ . As it can be seen, the energy reduces per iteration, but from the fifth one, this reduction is much smoother, converging around 4.8×10^4 . tau sets how closer the outcome will be to the original input, while λ determines how close it will be to the criterion selected (in this case, the maximum probability (Max-product algorithm)).

Task 3.2

After applying the algorithm, the following is obtained:

Figure 8: Original image.

Figure 9: Original image after noise addition.

Figure 10: Obtained image after applying the algorithm.

 λ sets the importance of the neighbor pixels. A big value of λ makes the image full white since most part of it is defined by white pixels. Lower values make this effect smoother. In this sense, λ acts a regularizer term.

References

- [1] S. Alchatzidis, A. Sotiras, and N. Paragios. Efficient parallel message computation for map inference. In 2011 International Conference on Computer Vision, pages 1379–1386. IEEE, 2011.
- [2] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.