Offline Diversity Maximization Under Imitation Constraints

Marin Vlastelica

Jin Cheng

Georg Martius

Pavel Kolev

MOTIVATION

Diverse

- Robust solutions
- Multiple options

[DIAYN, DADS, DOMINO]

online setting

Offline

- Use large datasets
- Safe learning

[AWAC, BC, CRR, IQL, CQL] single expert, not diverse

Imitation

- No reward engineering
- Human demonstrations

[GAIL, SMODICE] single expert, not diverse

MOTIVATION

Diverse

- Robust solutions
- Multiple options

[DIAYN, DADS, DOMINO]

online setting

Offline

- Use large datasets
- Safe learning

[AWAC, BC, CRR, IQL, CQL] single expert, not diverse

Imitation

- No reward engineering
- Human demonstrations

[GAIL, SMODICE] single expert, not diverse

Propose: principled algorithm for Diverse Offline Imitation (DOI) learning

PROBLEM FORMULATION

subject to

$$D_{\mathrm{KL}}(d_z(S)||d_E(S)) \le \varepsilon \quad \forall z$$

Input:

state-action behavior dataset

$$\mathcal{D}_O \sim d_O(s, a)$$

state-only expert dataset

$$\mathcal{D}_E \sim d_E(s)$$

RELAXED PROBLEM FORMULATION

$$\max_{\{d_z(S)\}_{z\in Z}} \mathcal{I}(S;Z)$$

Mutual Information: Variational Lower Bound

$$\mathcal{I}(S; Z) \geq \sum_{z} \mathbb{E}_{d_{z}(s)} \left[\frac{\log(|Z|q(z|s))}{|Z|} \right]$$

q(z|s) train a skill-discriminator

RELAXED PROBLEM FORMULATION

$$\max_{\{d_z(S)\}_{z\in Z}} \mathcal{I}(S;Z)$$

Mutual Information: Variational Lower Bound

$$\mathcal{I}(S; Z) \geq \sum_{z} \mathbb{E}_{d_{z}(s)} \left[\frac{\log(|Z|q(z|s))}{|Z|} \right]$$

q(z|s) train a skill-discriminator

subject to $D_{\mathrm{KL}}(d_z(S)||d_E(S)) \le \varepsilon \quad \forall z$

SMODICE expert (offline)

$$d_{\widetilde{E}}(S, A) \approx \arg \min_{d(s,a)} D_{\mathrm{KL}}(d(S)||d_{E}(S))$$

subject to $\mathrm{D_{KL}}(d_z(S,A)||d_{\widetilde{E}}(S,A)) \leq \varepsilon \quad \forall z$

ALGORITHMIC **A**PPROACH

(LAGRANGE)

$$\max_{\substack{d_z(s,a)\\q(z|s)}} \min_{\lambda \ge 0} \sum_{z} \mathbb{E}_{d_z(s)} \left[\frac{\log(|Z|q(z|s))}{|Z|} \right] + \left[\sum_{z} \lambda_z \left[\epsilon - \mathrm{D_{KL}} \left(d_z(S,A) || d_{\widetilde{E}}(S,A) \right) \right] \right]$$

Diversity

Imitation

ALGORITHMIC APPROACH

(FENCHEL)

$$\max_{\substack{d_z(s,a)\\q(z|s)}} \min_{\lambda \geq 0} \sum_{z} \mathbb{E}_{d_z(s)} \left[\frac{\log\left(|Z|q(z|s)\right)}{|Z|} \right] + \sum_{z} \lambda_z \left[\epsilon - \mathrm{D_{KL}}\left(d_z(S,A) || d_{\widetilde{E}}(S,A)\right) \right]$$

$$\max_{\substack{d_z(s,a)\\q(z|s)\\q(z|s)}} \min_{\lambda > 0} \sum_{z} \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}}\left(d_z(S,A) || d_O(S,A)\right) \right\}$$

$$\eta_z(s,a) = \frac{d_z(s,a)}{d_O(s,a)}$$

Regularized RL Problem

ALGORITHMIC APPROACH

$$\max_{\substack{d_z(s,a)\\q(z|s)}} \min_{\lambda \geq 0} \sum_z \mathbb{E}_{d_z(s)} \left[\frac{\log\left(|Z|q(z|s)\right)}{|Z|} \right] + \sum_z \lambda_z \left[\epsilon - \mathrm{D_{KL}} \left(d_z(S,A) || d_{\widetilde{E}}(S,A) \right) \right] \\ \max_{\substack{d_z(s,a)\\q(z|s)}} \min_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \max_{\substack{d_z(s,a)\\q(z|s)}} \min_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\lambda \geq 0} \sum_z \lambda_z \left\{ \epsilon + \mathbb{E}_{d_z(s,a)} \left[R_z^{\lambda}(s,a) \right] - \mathrm{D_{KL}} \left(d_z(S,A) || d_O(S,A) \right) \right\} \\ \prod_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\substack{d_z(s,a)\\q(z|s)}} \sum_{\substack{d_$$

ALTERNATING OPTIMIZATION SCHEME

EXPERIMENTS

I. Locomotion Task (SIM & REAL)

Solo12

II. Obstacle Navigation Task (SIM)

III. D4RL Envs (SIM)

Ant

EXPERIMENTS

I. Locomotion Task (SIM & REAL)

Solo12

II. Obstacle Navigation Task (SIM)

III. D4RL Envs (SIM)

Half-Cheetah

Ant

I. LOCOMOTION TASK (SIM)

(Expected Importance Ratios)

Offline Evaluation

1) DOI skills well-separate data

2) Constraint level ε controls ratio distance

I. LOCOMOTION TASK (SIM)

Online (Monte Carlo)
Evaluation

3) Relaxed constraints yield increased diversity, albeit at the expense of performance loss.

I. LOCOMOTION TASK (REAL)

4) DOI skills trained in SIM (with domain randomization) are successfully deployed in the Real System

EXPERIMENTS

I. Locomotion Task (SIM & REAL)

Solo12

III. D4RL Envs (SIM)

Walker2d

2d Half-Cheetah

Ant

II. OBSTACLE NAVIGATION TASK (SIM)

Online (Monte Carlo)
Evaluation

5) SMODICE expert struggles with out-of-distribution (higher) box heights, while a robust DOI skill successfully navigates by detouring (to the left side).

Box Height 0.3 m

Box Height 0.6 m

II. OBSTACLE NAVIGATION TASK (SIM)

Limitation:

6) Not all learned DOI skills are robust. Selection is required.

CONCLUSION

Principled algorithm (DOI)

Offline Diversity maximization under Imitation constraints

Project Website

Experiments

Show **DOI**'s effectiveness on:

- Solo12 tasks (Locomotion & Obstacle Navigation)
- Standard D4RL environments

Limitation

Agent's performance is sensitive to relaxing the imitation constraints