МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

И ПРОГРАММНОЙ ИНЖЕНЕРИИ (КАФЕДРА №43)

АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ» КАФЕДРА КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

КУРСОВАЯ РАБОТА (ПРОЕКТ ЗАЩИЩЕНА С ОЦЕНКОЙ)	_		
РУКОВОДИТЕЛЬ:	(подпись)	<u>/</u>	/	А. А. Попов (инициалы, фамилия)
КК	ОЯСНИТЕЛЬН <i>А</i> УРСОВОЙ РАБО	ТЕ (ПРОЕКТУ		
Разработ для работы с электронным па ПО КУРСУ: «ПРОГРА		лия (ЭПИ) вс	тро	
РАБОТУ ВЫПОЛНИЛИ СТУД	ЕНТКИ ГРУППЫ:		/	Сидиропуло Х.В.
		4031		(инициалы, фамилия)

Содержание

1.	Задание на курсовое проектирование	3
	Техническое задание на прибор	
	. Основные требования	
3.	Схемы и алгоритмы работы	6
4.	Тестирование	12
5.	Заключение	13
6.	Список использованной литературы:	17
Пр	иложение 1. Код программы	18

1. Задание на курсовое проектирование.

Целью разработки является создание программы для ЭВМ на базе операционной системы Linux и микроконтроллера APM32F072x8xB.

Наименование изделия: Программный комплекс для работы с ЭПИ.

Индекс ПО:

- 1. для ПО микроконтроллера: TedsWriter.
- 2. для высокоуровневого ПО: TedsEditor.

2. Техническое задание на прибор

Программный комплекс должен состоять из двух программных модулей.

- 1. Модуль для чтения и записи ЭПИ по протоколу 1 Wire для микроконтроллера APM32F072x8xB (далее по тексту: TedsWriter).
- 2. Модуль с графическим пользовательским интерфейсом для отображения информации ЭПИ для операционных систем семейства Linux (далее по тексту: TedsEditor).
- 3. Операционная система Linux выбирается из реестра отечественного ПО, например AstraLinux.
 - 4. Тип памяти используемой для ЭПИ должен быть DS2431.
- 5. Программный комплекс должен быть совместим со стандартом IEEE 1451.4 в части работы с ЭПИ
- 6. TedsWriter должен общаться с ЭПИ установленной в изделиях по протоколу 1 Wire.
 - 7. TedsEditor должен общаться с TedsWriter по интерфейсу USB.
 - 8. TedsEditor является «Master», TedsWriter— «Slave».

2.1. Основные требования

Входы	Подключение к плате с памятью DS2431. Прошивка модуля микропрограммой осуществляется через USB при подаче высокого уровня на вход BOOT при старте.	
Выходы		
Функции	При включении микроконтроллера включить светодиоды: «Синий», «Зелёный», «Жёлтый», «Красный». 2. После загрузки и самотестирования погасить все светодиоды, и включить «Зелёный» («Зелёный» светодиод горит от начала подачи питания до конца подачи питания.). В случае если Хеш прошивки отличается от вычисленного Хеша включить «Красный» светодиод и выключить «Зелёный». 3. При подключении датчика включить «Синий» светодиод. (Светодиод должен гореть постоянно, пока есть подключение к компьютеру) 4. При подключении модуля к компьютеру включить «Жёлтый» светодиод. (Светодиод должен гореть постоянно, пока есть подключение к датчику) 5. Во время записи/чтения данных из датчика по протоколу 1 — Wire мигать «Синий» светодиодом с частотой 500 мс в случае успешной передачи данных. 6. В случае выявления ошибок (нет подключенного датчика с TEDS, невозможно передать данные в ПО TedsEditor и др.) включить «Красный» светодиод. (Светодиод должен гореть до снятия питания с модуля) 7. Модуль разработанный для микроконтроллера должен пройти проверку	

	компиляции встроенным анализатором в Qt — Creator на базе LLVM/clang без предупреждений
Особенности	Отсутствуют.
Питание	Питание от сети переменного тока через стандартный блок питания (USB адаптер).
Размеры и вес	Достаточно маленький
Стоимость производства	Примерная цена: АРМ плата — 4-5 тысяч рублей, память — 500 рублей

3. Схемы и алгоритмы работы

Рисунок 1. – Структурная схема микроконтроллера

tedseditor\Device\teds\api используется для чтения и записи в память.

The registration number is used to address the device in a multidrop, 1-Wire net environment.

Applications

Accessory/PCB Identification

Medical Sensor Calibration Data Storage Analog Sensor Calibration Including IEEE P1451.4 Smart Sensors

Ink and Toner Print Cartridge Identification After-Market Management of Consumables

Typical Operating Circuit

Pin Configurations appear at end of data sheet.

- ♦ Heads and Writes Over a Wide Voltage Hange from 2.8V to 5.25V from -40°C to +85°C
- ♦ Communicates to Host with a Single Digital Signal at 15.4kbps or 125kbps Using 1-Wire Protocol
- ♦ Also Available as Automotive Version Meeting AEC-Q100 Grade 1 Qualification Requirements (DS2431-A1; Refer to the IC Data Sheet for Details)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DS2431+	-40°C to +85°C	3 TO-92
DS2431+T&R	-40°C to +85°C	3 TO-92
DS2431P+	-40°C to +85°C	6 TSOC
DS2431P+T&R	-40°C to +85°C	6 TSOC
DS2431G+U	-40°C to +85°C	2 SFN (6mm x 6mm)
DS2431G+T&R	-40°C to +85°C	2 SFN (6mm x 6mm) (2.5k pcs)
DS2431GA+U	-40°C to +85°C	2 SFN (3.5mm x 6.5mm)
DS2431GA+T&R	-40°C to +85°C	2 SFN (3.5mm x 6.5mm) (2.5k pcs)
DS2431Q+T&R	-40°C to +85°C	6 TDFN-EP* (2.5k pcs)
DS2431X-S+	-40°C to +85°C	3x3 UCSPR (2.5k pcs)
DS2431X+	-40°C to +85°C	3x3 UCSPR (10k pcs)

Note: The leads of TO-92 packages on tape and reel are formed to approximately 100-mil (2.54mm) spacing. For details, refer to the package outline drawing.

+Denotes a lead(Pb)-free/RoHS-compliant package.
T&R = Tape and reel.

*EP = Exposed pad.

Рисунок 2. – Информация о памяти ds2431

Рисунок 3. – Диаграмма состояний системы для работы с памятью.

После этого система переходит в режим опроса состояния работы с памятью, и, при поступлении сигнала (завершения операции), система переходит в новое состояние, из которого снова попадает в состояние управления памятью.

Этот цикл повторяется до завершения работы с программой записи.

Рисунок 3. Полный список классов.

Рисунок 4. Классы с названием Dialog отвечают за реализацию GUI интерфейса приложения.

Рисунок 5. Реализация классов виджетов для взаимодействия с приложением.

Рисунок 6. Данные классы отвечают за настройку работы с базой данных.

Рисунок 7. Классы для заполнения элементов управления ComboBox.

Рисунок 8. Классы для работы с параметрами электронного паспорта изделия (teds)

Рисунок 9. Различные классы для хранения параметров TEDS.

Рисунок 10. Различные параметры датчиков для взаимодействия с элементами управления TreeView.

- Data : TLTEDS_DECODE_CONTEXT , TLTEDS_ENCODE_CONTEXT
- DataLen : TLTEDS_DECODE_CONTEXT , TLTEDS_ENCODE_CONTEXT
- Day : TLTEDS_INFO_DATE
- Flags : TLTEDS_DECODE_CONTEXT , TLTEDS_ENCODE_CONTEXT
- ManufacturerID : TLTEDS_INFO_BASIC
- ModelNumber : TLTEDS_INFO_BASIC
- Month : TLTEDS_INFO_DATE
- ProcBitPos: TLTEDS_DECODE_CONTEXT, TLTEDS_ENCODE_CONTEXT
- Reserved : TLTEDS_DECODE_CONTEXT, TLTEDS_ENCODE_CONTEXT
- SerialNumber : TLTEDS_INFO_BASIC
- VersionLetter : TLTEDS_INFO_BASIC
- VersionNumber : TLTEDS_INFO_BASIC
- Year: TLTEDS INFO DATE

Рисунок 11. Различные переменные, содержащие информацию для работы с памятью.

Полная документация была составлена с помощью doxygen находится по следующей ссылке:

https://github.com/sidiropulo/pvp/blob/main/htmlzip.zip

4. Тестирование

Тесты для контроля соответствия техническому заданию

При запуске программы появляется интерфейс наименований датчиков из базы данных

Рисунок 12. Дата записи является обозначением того, что в память была записана информация.

При добавлении записи в память выполняется запрос в базу данных, из этих же данных и строится интерфейс о наличии записей.

Рисунок 13. Доступна функция печати паспорта датчика в формат PDF.

Рисунок 14. Интерфейс работы с записью в память

Рисунок 15. Схема рабочей базы данных

JSON-файл для построения интерфейса

```
"TedsData": {
  "Fnn": "",
  "Ekps": "5955",
  "Okpd2": "26.51.66.130",
  "Weight": 170,
  "StartTime": 25,
  "DCVoltageLevel": 12.5,
  "IndividualData": [
    "Polarity": "Положительная",
    "Linearity": 2,
    "Sensitivity": 1.05,
    "MaxLinearityScale": 400,
    "MinLinearityScale": 0.1,
    "MaxFrequencyResponse": 1000,
    "MinFrequencyResponse": 1,
    "SensitivityDirection": "X",
    "TransverseSensitivity": 2.02,
    "AttenuationLowPassFilters": 7,
    "FlatnessFrequencyResponse": 6
   }
  ],
  "CalibrationDate": "2022-09-24",
  "CalibrationType": 4,
  "VSKVoltageLimit": 300,
  "CalibrationPeriod": 720
 },
 "BasicTeds": {
  "ModelNumber": "55",
  "SerialNumber": 220986,
  "VersionLetter": "F",
  "VersionNumber": "1",
  "ManufacturerID": 16381
 }
}
```

4. Заключение

В результате выполнения данного проекта было реализовано ПО для записи данных в память DS2431 по протоколу 1-Wire с использованием микроконтроллера APM32F072x8xB под отечественную операционную систему Astra Linux.

5. Список использованной литературы:

- 1. Микроконтроллеры. Разработка встраиваемых приложений: учебное пособие / А.Е. Васильев; С.-Петербургский государственный политехнический ун-т. -СПб. : Изд-во СПбГПУ, 2003. 211 с.
- 2. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors. Third Edition. Joseph Yiu. ARM Ltd., Cambridge, UK. [электронный ресурс] // URL: https://www.pdfdrive.com/the-definitive-guide-to-arm-cortex-m3-and-cortex-m4- processors-e187111520.html (дата обращения 12.05.2020).
- 3. Джозеф Ю. Ядро Cortex-M3 компании ARM. Полное руководство. 2012. ISBN:978- 5-94120-243-0. [электронный ресурс] // URL: https://b- ok.xyz/book/2373589/b5c3ad (дата обращения 12.05.2020).
- 4. RM0008. Reference manual STM32F101xx, STM32F102xx, STM32F103xx,STM32F105xx and STM32F107xx advanced Arm®-based 32-bit MCUs [электронный ресурс] // URL: https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf (дата обращения 12.05.2020).
- 5. Datasheet STM32F103x8 STM32F103xB Medium-density performance line ARM®-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 com.

 Interfaces. [электронный ресурс] // URL:

 https://www.st.com/resource/en/datasheet/stm32f103c8.pdf (дата обращения 12.05.2020).
- 6. Мартин М. Инсайдерское руководство по STM32 [электронный ресурс] // URL: https://istarik.ru/file/STM32.pdf (дата обращения 12.05.2020).
- 7. Рекомендация МСЭ-R М.1677-1 Международный код Морзе. Международный союз электросвязи 2009 [электронный ресурс] //URL: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1677-1-200910-I!!PDF-R.pdf (дата обращения 12.05.2020)

Приложение 1. Код программы

https://github.com/sidiropulo/pvp