МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет

Голод Е.С. Алгебра

3 семестр, первый поток

Оглавление

1 J	Іинейные представления (действия) групп	5
1.1	Определения	5
1.2	Прямая сумма представлений	5
1.3	Гомоморфизмы представлений	6
1.4	Матричные представления	6
1.5	Приводимые, неприводимые и вполне приводимые линейные представления	7
1.6	Конечномерное представление циклической группы над $\mathbb C$	7
1.7	Неприводимые представления абелевых групп над $\mathbb C$	8
1.8	Одномерные представления конечной группы	9
1.9	Пространства гомоморфизмов линейных представлений групп	9
1.10	Гомоморфизмы прямой суммы представлений	10
1.11	Ортогональные и унитарные представления	11
1.12	Критерий полной приводимости линейного представления над произвольным полем	12
1.13	Продолжение линейного действия группы на пространстве её представления вдоль действия её групповой алгебры	14
1.14	Размерность пространства гомоморфизмов регулярного представления	14
1.15	Кратность вхождения неприводимого представления в немодулярном случае	15
1.16	Разложение немодулярной групповой алгебры конечной группы в прямую сумму простых алгебр	15
1.17	Примеры построения всех неприводимых С-представлений	18
	1.17.1 Неприводимые С-представления группы диэдра	18
	1.17.2 Неприводимые \mathbb{C} -представления группы кватернионов	19
1.18	Примеры неприводимых \mathbb{C} -представлений групп A_n и S_n ($n\geqslant 4$)	19
1.19	Все неприводимые \mathbb{C} -представления групп A_4 и S_4	20

1.20 Характеры С-представлений конечных групп	21
1.21 Характеры как линейные функции на групповой алгебре	22
1.22 Характер регулярного представления группы ${\cal G}$	22
1.23 Х арактеры неприводимого С-представлений конечной группы	23
1.24 Соотношение ортогональности	23

Предметный указатель

```
Гомоморфизм
   представлений, 6
Действие
   линейное, 5
Изоморфизм
   представлений, 6
Кратность
   представления, 11
Лемма
   Шура, 10
Отщепимость, 12
Подпредставление, 5
Представление, 5
   вполне приводимое, 7
   матричное, 6
   модулярное, 13
   неприводимое, 7
   ортогональное, 11
   приводимое, 7
   регулярное, 14
   унитарное, 11
Прямая сумма
   внешняя
     представлений, 5
   внутренняя
     представлений, 5
Теорема
   Машке, 13
Факторпредставление, 5
Характер представления, 21
```

Глава 1

Линейные представления (действия) групп

1.1 Определения

Зафиксируем поле \mathbb{K} , над которым будем рассматривать векторное пространство $V(+,\cdot,\cdot)$ (умножение на скаляр и на элементы G).

Определение. Задано *линейное действие*, если задано умножение элементов из V слева на элементы из $G, \ \forall \ g \in G, v \in V(g,v) \mapsto gv \in V, \ \mathsf{T}. \ \mathsf{T}. \ \forall \ v, v_1, v_2 \in V \ \forall \ g, h \in G, \ \forall \ \lambda \in \mathbb{K}$

```
\mathbf{1}^{\circ} (gh)v = g(hv)
```

 $2^{\circ} ev = v$

 $\mathbf{3}^{\circ} \ g(v_1 + v_2) = gv_1 + gv_2$

 $\mathbf{4}^{\circ} \ g(\lambda v) = \lambda(gv)$

Линейное представление $\rho\colon G o \mathbf{GL}(V),\ \rho(g)(v)=gv$ и обратно $gv=\rho(g)(v).$

Обозначение. (G, V, ρ) эквивалентно записи $\rho = (G, V)$.

Определение. Подпространство $U \subseteq V$ является *подпредставлением*, если оно инвариантно относительно действий элементов G, т. е. $\forall u \in U \ \forall g \in G \ gu \in U$.

Определение. Пусть V — представление, и его инвариантное подпространство U. Тогда факторпредставление $V/U = \{v+U \mid v \in V\}$. Зададим операцию g(v+U) = gv+U. Проверим корректность. Возьмём два разных представителя: $v_1 + U = v_2 + U$, т. е. $v_1 - v_2 \in U$. Достаточно, что бы $gv_1 + U = gv_2 + U$. Но, так как U инвариантно, $g(v_1 - v_2) \in U$.

1.2 Прямая сумма представлений

Определение. Пусть заданы инвариантные подпространства $U_1, \ldots, U_s \subset V, \ V = U_1 \oplus \ldots \oplus U_s$ — разложение в (внутреннею) прямую сумму инвариантных подпространств (подпредставлений). $\rho_1 = (G, U_1), \ \rho_2 = (G, U_2), \ldots, \rho_s = (G, U_s)$

Определение. Внешняя прямая сумма представлений $V=V_1\oplus\ldots\oplus V_s=\{(v_1,\ldots,v_s)\mid v_i\in V_i\},\ g(v_1,\ldots,v_s)=(gv_1,\ldots,gv_s),$ далее будем **обозначать** $\rho=\rho_1\oplus\ldots\oplus\oplus\rho_s.$

Пусть задан гомоморфизм $H \xrightarrow{f} G \xrightarrow{\rho} \mathbf{GL}(V)$. Тогда композиция f и ρ даст представление H: hv = f(h)v

1.3 Гомоморфизмы представлений

Пусть имеем два представления: $\rho_1 = (G, V_1), \ \rho_2 = (G, V_2).$

Определение. Гомоморфизм представлений $\varphi \colon \rho_1(V_1) \to \rho_2(V_2)$ есть линейное отображение т.ч. $\varphi(gv) = g\varphi(v), \ \forall \ g \in G, v \in V, \ \text{т. e.} \ \forall \ g \in G \$ коммутативна диаграмма

$$V_1 \xrightarrow{\varphi} V_2$$

$$\rho_1(g) \downarrow \qquad \qquad \downarrow \rho_2(g)$$

$$V_1 \xrightarrow{\varphi} V_2$$

Определение. *Изоморфизм представлений* — это гомоморфизм, который является биекцией.

1.4 Матричные представления

 $ho=(G,V),\
ho\colon G o \mathbf{GL}(V).$ **Всегда** будем считать, что V — конечномерное пространство. $V=\langle e_1,\ldots,e_n\rangle\Rightarrow \mathbf{GL}(V)\cong \mathbf{GL}(n,\mathbb{K}).$ Рассмотрим сопоставление $ho(g)\mapsto A_g$ — матрица ho(g) относительно e_1 $scoe_n$.

Определение. Гомоморфизм $G \to \mathbf{GL}(n,\mathbb{K})$ будем называть матричным представлением. Так же потребуем:

$$\mathbf{1}^{\circ} A_{qh} = A_q A_h$$

$$\mathbf{2}^{\circ} A_e = E$$

$$\mathbf{3}^{\circ} \ A_{g^{-1}} = (A_g)^{-1}$$

Если задано матричное представление, то можем построить линейный оператор ⇒ матричное и линейное представления равносильны (хотя в одном случае неоднозначно).

Пусть $V = \langle e_1, \ldots, e_n \rangle = \langle e'_1, \ldots, e'_n \rangle$ и C — матрица перехода.

$$g \mapsto A_g \qquad (e_1, \dots, e_n)$$

$$g \mapsto A'_g \qquad (e_1, \dots, e_n)$$

$$A'_g = C^{-1}A_gC \qquad \forall g \in G$$

Определение. Два матричных представления называются эквивалентными, если $\exists \ C \colon A_q' = C^- 1 A_g C \ \forall \ g \in G.$

Утверждение 4.1. Два линейных представления изоморфны \Leftrightarrow соответствующие матричные представления относительно некоторых базисов эквивалентны.

 $\square \quad \Rightarrow$: Имеем представление $\rho=(G,V).$ Пусть имеется $\rho'=(G,V')$ и $\ \forall \ g\in G$ коммутативна

$$V_1 \xrightarrow{\varphi} V'$$

$$\rho_1(g) \downarrow \qquad \qquad \downarrow \rho'(g)$$

$$V_1 \xrightarrow{\varphi} V'$$

Выберем базисы в пространствах V и V', $V = \langle e_1, \dots, e_n \rangle$, $V' = \langle e'_1, \dots, e'_n \rangle$, $\rho = \{A_g\}$, $\rho' = \{A'_g\}$.

Пусть C — матрица для φ относительно выбранных базисов. Т. к. изоморфизм, то $\det C \neq 0$.

Композиции линейных отображений соответствует матрица \Rightarrow $A_g'C=CA_g\Rightarrow$ $A_g'=CA_gC^{-1}$ \Rightarrow эквиваленты.

 \Leftarrow : Пусть матричные представления эквивалентны относительно некоторых базисов \Rightarrow $\exists~C\colon A_a'=CA_gC^{-1}$

Но матрица C относительно базисов $\langle e_1,\ldots,e_n\rangle$ и $\langle e'_1,\ldots,e'_n\rangle$ \Rightarrow не вырождено отображение $A'_qC=CA_g\Rightarrow \rho'(g)\circ\varphi=\varphi\circ\rho(g)\Rightarrow$ линейные представления изоморфны. \blacksquare

1.5 Приводимые, неприводимые и вполне приводимые линейные представления

Определение. Представление ρ — *приводимое*, если оно имеет подпредставление на инвариантном подпространстве, отличном от тривиальных

Определение. Представление ρ — *неприводимое*, если не существует инвариантных подпространств отличных от тривиальных.

Определение. Представление *вполне приводимо*, если оно разлагается в прямую сумму неприводимых.

На матричном языке:

Пусть ρ приводимо $\Rightarrow 0 \neq U \subsetneq V$ — инвариантное подпространство. Выберем базис так: $V = \langle e_1, \dots, e_k, e_{k+1}, \dots, e_n \rangle$,

$$\rho(g) = \begin{pmatrix} B_g & * \\ 0 & C_g \end{pmatrix} = A_g,$$

где $\rho(g)(e_i) \in U, \ i=1,\ldots,k; \ \{B_g\}$ соответствует $\rho_{|_U}$

На V/U также имеется индуцированное представление: $V/U = \langle e_{k+1} + U, \dots, e_n + U \rangle$, g(v+U) = gv + U. Тогда $g(e_i + U) = ge_i + U$ достаточно задать на базисных векторах.

Если базис выбран произвольным образом, $C \colon \det C \neq 0$, то $\{C^{-1}A_g'C\}$ будут иметь общий угол нулей (C одна для всех g).

Пусть $\rho=\rho_1\oplus\ldots\oplus\rho_s,\ \rho_i=(G,V_i),\ V=V_1\oplus\ldots\oplus V_s,\ V_i$ — инвариантные подпространства в V.

Выберем базис в V_i и в качестве базиса V берём объединение базисов V_i . Тогда

$$\rho(g) = A_g = \begin{pmatrix} A_g^{(1)} & 0 \\ & \ddots & \\ 0 & A_g^{(s)} \end{pmatrix}$$

есть прямая сумма диагональных блоков.

Вполне приводимое, если каждая матрица — прямая сумма неприводимых блоков (в блоке нет угла нулей) ⇒ при любом выборе базиса будем получать матрицы, эквивалентные неприводимым.

1.6 Конечномерное представление циклической группы над ${\Bbb C}$

Пусть $G = \langle a \rangle$. Рассмотрим $\rho \colon G \to \mathbf{GL}(n, \mathbb{C})$

 ${f 1}^\circ~G=\langle a
angle_\infty.$ Достаточно задать ho(a). Положим $ho(a)=A\in {f GL}(n,\mathbb{C})$ — любая матрица. $ho'\sim
ho\Rightarrow~\exists~C\colon A'=C^{-1}AC\Rightarrow$ если верно для $A,~|C|\neq 0,$ то верно и для сопряжённой.

Теорема 6.1 (из линала). Матрицы сопряжены ⇔ сопряжены их жордановы формы

Тогда матрица $\rho(a)$ задаётся жордановой формой \Rightarrow размеры клеток определены однозначно.

$$CAC^{-1} = \begin{pmatrix} \lambda'_1 & & & & & & \\ & \ddots & & & & 0 \\ & & \lambda'_1 & & & \\ & & & \ddots & & \\ & & & \lambda'_s & & \\ & 0 & & & \ddots & \\ & & & & \lambda'_s \end{pmatrix}$$

Если есть жорданова клетка размерности $\geqslant 2$, то представление не вполне приводимо. Значит, вполне приводимо \Leftrightarrow матрица A диаганализуема.

 ${f 2}^\circ~G=\langle a
angle_n,~
ho(a)=A,~a^n=e\Rightarrow A^n=E.$ Тогда t^n-1 — аннулирующий для A. Но над ${\Bbb C}$ этот многочлен не имеет кратных корней \Rightarrow матрица диаганализуема:

$$\lambda_i^n = 1$$

$$C^{-1}AC = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

 \Rightarrow Любое представление конечной циклической группы (вполне) приводимо. Матрицы не эквиваленты \Leftrightarrow имеют разные характеристические многочлены.

1.7 Неприводимые представления абелевых групп над ${\mathbb C}$

Теорема 7.1. $Had\ \mathbb{C}$ представление абелевой группы неприводимо \Leftrightarrow оно одномерное.

Теорема 7.2. Пусть V — конечномерное пространство, $\dim V = n$. $\{\varphi_i\}$ — некоторое семейство попарно коммутирующих линейных операторов на V над \mathbb{C} . Тогда они имеют общий собственный вектор.

 \square Индукция по размерности n:

 1° n=1 — все собственные

 $\mathbf{2}^{\circ}$ Пусть n>1. Если все $\varphi_i=\lambda_i \varepsilon$, то доказывать нечего. Пусть φ_1 не скалярный $\Rightarrow \varphi_1$ имеет собственный вектор, т. е. $\varphi_1(e)=\lambda e$, $\lambda\in\mathbb{C}$

Рассмотрим подпространство V_{λ} всех собственных векторов со значением λ . $0 \neq V_{\lambda} = \mathrm{Ker}(\varphi_1 - \lambda \varepsilon) \subsetneq V$, т. к. не φ_1 не скалярный $\Rightarrow 1 \leqslant \dim V_{\lambda} < n$.

Покажем, что V_{λ} — инвариантное подпространство, через перестановочность операторов.

Пусть $v \in V_{\lambda}$, $\varphi_i(v) \in V_{\lambda} \Leftrightarrow \varphi_1(\varphi_i(v)) = \lambda \varphi_i(v)$. Но $\varphi_1 \varphi_i = \varphi_i \varphi_1 \Rightarrow$

$$\varphi_1(\varphi_i(v)) = \varphi_i(\varphi_1(v)) = \varphi_i(\lambda v) = \lambda \varphi_i(v).$$

Рассмотрим $\left\{ \varphi_i \Big|_{V_\lambda} \right\}$, $\dim V_\lambda < n \Rightarrow$ можем применить индуктивное предположение \Rightarrow φ_i имеют общий собственный вектор в $V_\lambda \Rightarrow$ и в V.

Пусть G — абелева, ρ — неприводимое над \mathbb{C} . $\{\rho(g)\mid g\in G\}$ — семейство попарно коммутирующих операторов (т. к. абелева группа) \Rightarrow по теор. 7.2 $\exists \ 0\neq v\in V$: $\rho(g)(v)=\lambda_g v$, но тогда $V\supset \langle v\rangle$ — инвариантное подпространство в $V\Rightarrow V=\langle v\rangle$

Пусть имеем произвольное поле \mathbb{K} , $\rho = (G,V)$, $\dim V = 1$. $\rho \colon G \to \mathbf{GL}(1,\mathbb{K}) = \mathbb{K}^*$. Тогда для $\rho' \colon G \to \mathbb{K}^*$ $\{a_g\}$, $\{a_g'\}$ $\exists C \in \mathbb{K}^* \colon a_g = C^{-1}a_gC = a_g \Rightarrow$ в одномерном случае эквивалентность — совпадение гоморфизмов \Rightarrow надо найти все гомоморфизмы $G \to \mathbb{K}^*$.

|G|=n — абелева группа, $\mathbb{K}=\mathbb{C}$. Найдём все комплексные представления конечной абелевой группы

$$G = \langle a_1 \rangle_{n_1} \oplus \ldots \oplus \langle a_s \rangle_{n_s} \xrightarrow{\rho} \mathbb{C}^*$$

Достаточно задать ρ на a_i , но $a_i^{n_i} = e \Rightarrow (\rho(a_i))^{n_i} = 1 \Rightarrow \rho(a_i) = \xi_i \in \sqrt[n_i]{1} \Rightarrow$ имеем гомоморфизм каждого слагаемого в \mathbb{C}^* .

 $G = \langle a_1 \rangle \times \ldots \times \langle a_s \rangle, \ \rho(a_1^{k_1} \cdot \ldots \cdot a_s^{k_s}) = \xi_1^{k_1} \cdot \ldots \cdot \xi_s^{k_s}, \ k_i \in \mathbb{Z}, \ k_i = 0, \ldots, n_i - 1.$ Проверим, что ρ — гомоморфизм прямого произведения:

$$\rho((a_1^{k_1} \cdot \ldots \cdot a_s^{k_s})(a_1^{l_1} \cdot \ldots \cdot a_s^{l_s})) = \rho((a_1^{k_1} a_1^{l_1}) \cdot \ldots \cdot (a_s^{k_s} a_s^{l_s})) =$$

$$= (\xi_1^{k_1} \xi_1^{l_1}) \cdot \ldots \cdot (\xi_s^{k_s} \xi_s^{l_s}) = (\xi_1^{k_1} \cdot \ldots \cdot \xi_s^{k_s})(\xi_1^{l_1} \cdot \ldots \cdot \xi_s^{l_s}) = \rho(a_1^{k_1} \cdot \ldots \cdot a_s^{k_s})\rho(a_1^{l_1} \cdot \ldots \cdot a_s^{l_s})$$

Утверждение 7.3. Если имеется гомоморфизм произведения в абелеву группу, то возможностей выбрать ξ_i -ые $n_1 \cdot \ldots \cdot n_s = n$

Комментарий. Доказывалось ранее в более общем виде.

Так, число различных одномерных С-представлений абелевой группы равно её порядку.

1.8 Одномерные представления конечной группы

 $\rho\colon G o\mathbb{K}^*$. \mathbb{K}^* — коммутативна $\Rightarrow\operatorname{Im}\rho\cong G/\operatorname{Ker}\rho$ — абелева. Факторгруппа абелева \Leftrightarrow $G'\subseteq\operatorname{Ker}\rho\Rightarrow$ нужны только такие гомоморфизмы.

Пусть $N \lhd G$, $\rho \colon G \to H$, $N \subseteq \operatorname{Ker} \rho$. Такие гомоморфизмы находятся в биективном соответствии с гомоморфизмами $G/N \to H$.

Одномерные представления G над \mathbb{K} находятся в биективном соответствии с гомоморфизмами $G/G' \xrightarrow{\overline{\rho}} K^*$, $\rho = \overline{\rho} \circ \pi \Rightarrow$ задача сводится к представлению абелевой группы.

Пусть $\mathbb{K}^* = \mathbb{C}^*$, $|G| = n < \infty \Rightarrow G/G'$ — конечная абелева группа. |G/G'| разных гомоморфизмов абелевого фактора \Rightarrow число одномерных представлений конечной группы G есть порядок G/G'

1.9 Пространства гомоморфизмов линейных представлений групп

Пусть \mathbb{K} — любое поле, $\rho = (G,V)$, $\rho' = (G,V')$. $\varphi \in \mathrm{Hom}\,(\rho,\rho')$ — множество гомоморфизмов $\rho \to \rho'$. $V \xrightarrow{\varphi} V'$ — линейное отображение т. ч. $\forall \ v \in V, g \in G \ \varphi(gv) = g\varphi(v)$. $\mathrm{Hom}\,(\rho,\rho') = \mathrm{Hom}_G\,(V,V') \subseteq \mathbf{L}\,(V,V')$.

Если $\dim V = n$, $\dim V' = m$, то $\mathbf{L}(V, V') \cong \mathrm{Mat}_{m,n}(\mathbb{K})$.

Утверждение 9.1. Hom (ρ, ρ') — подпространство в L(V, V').

 \square Пусть $\varphi_1, \varphi_2 \in \operatorname{Hom}_G(\rho, \rho')$.

$$\left(\varphi_{1}+\varphi_{2}\right)\left(gv\right)=\varphi_{1}(gv)+\varphi_{2}(gv)=g\varphi_{1}(v)+g\varphi_{2}(v)=g\left(\varphi_{1}(v)+\varphi_{2}(v)\right)=g\left(\varphi_{1}+\varphi_{2}\right)\left(v\right)$$

$$\left(\lambda\varphi_{1}\right)\left(gv\right)=g\left(\lambda\varphi_{1}\right)\left(v\right)-\text{ аналогичная проверка}$$

Рассмотрим V' = V. $\operatorname{Hom}_G(V, V) \subseteq \mathbf{L}(V)$ — пространство линейных операторов. Пространство линейных операторов — алгебра $\cong \operatorname{Mat}_n \mathbb{K}$.

Утверждение 9.2. $\text{Hom}_G(V, V') - nodanzeбра в L(V).$

Комментарий. Композиция представлений — представление.

Определение. Эндоморфизм — гомоморфизм на себя.

Автоморфизм — биективный эндоморфизм.

Обозначение. $\operatorname{End}_G(V)$ — алгебра эндоморфизмов представлений в V

Лемма 9.3 (Шур).

 ${f 1}^{\circ} \ (G,V,
ho)$, (G,V',
ho') — неприводимые представления. Тогда $\ \forall \, \varphi\colon
ho o
ho'$ — либо нулевой, либо биекция.

 $\mathbf{2}^{\circ} \operatorname{End}_{G}(V) - a$ лгебра c делением

 $\mathbf{3}^{\circ} \mathbb{K} = \mathbb{C} \Rightarrow \forall \varphi \in \operatorname{End}_{G}(V), \rho$ неприводимое $\varphi = \lambda \varepsilon, \lambda \in \mathbb{C}$

- ${f 1}^\circ$ ${
 m Ker}\, arphi\subseteq V,\ {
 m Im}\, arphi\subseteq V'$ инвариантные подпространства. Но т. к. V и V' неприводимые, то нет нетривиальных подпредставлений. ${
 m Im}\, arphi=0\Rightarrow arphi=0;\ {
 m Im}\, arphi=V'\Rightarrow {
 m Ker}\, arphi
 eq V$ $ightarrow {
 m Ker}\, arphi\neq 0\Rightarrow arphi$ биективено.
- 2° Простое следствие пункта 1° .
- 3° Докажем двумя способами:
 - (а) Пусть $\mathbb{K} = \mathbb{C}$. Тогда $\operatorname{End}_G(V) \mathbb{C}$ -алгебра с делением, $\dim_{\mathbb{C}} \operatorname{End}_G(V) < \infty$ (т. к. подалгебра в алгебре матриц) $\Rightarrow \operatorname{End}_G(V) = \mathbb{C}$.
 - (b) $\varphi \colon V \to V$ эндоморфизм \Rightarrow линейный оператор над $\mathbb{C} \Rightarrow$ обладает хотя бы одним собственным вектором:

$$\exists \ x \in V, x \neq 0, \lambda \in \mathbb{C} \colon \varphi(x) = \lambda x \Rightarrow (\varphi - \lambda \varepsilon)(x) = 0.$$

Но любой эндоморфизм либо нулевой, либо биективен. Значит имеет тривиальное ядро $\Rightarrow \varphi - \lambda \varepsilon = 0 \Rightarrow \varphi = \lambda \varepsilon$.

1.10 Гомоморфизмы прямой суммы представлений

Пусть $\rho = \rho_1 \oplus \ldots \oplus \rho_s$, $V = V_1 \oplus \ldots \oplus V_s$, $\rho_i = (G, V_i)$, $\rho' = (G, V')$ — любое.

Рассмотрим ${\rm Hom}_G\,(V_1\oplus\ldots\oplus V_s,V')$. Гомоморфизм прямой суммы определяет гомоморфизм каждого слагаемого $\varphi\in {\rm Hom}_G\,(V_1\oplus\ldots\oplus V_s,V'),\; \varphi_i\colon V_i\to V',$

$$\varphi(v) = \varphi(v_1, \dots, v_s) = \sum_{i=1}^s \varphi_i(v_i),$$

 $\forall v_i \in V_i \quad \varphi_i(v_i) = \varphi(v_i).$

Но если $\forall i$ задано φ_i : $V_i \rightarrow V'$, то

$$\varphi(v) := \varphi(v_1 + \ldots + v_s) = \sum_{i=1}^{s} \varphi_i(v_i)$$

 $\Rightarrow \varphi \in \operatorname{Hom}(\bigoplus V_i, V') \Rightarrow \operatorname{Hom}_G(V_1 \oplus \ldots \oplus V_s, V') \cong \operatorname{Hom}_G(V_1, V') \oplus \ldots \oplus \operatorname{Hom}_G(V_s, V').$ Применим это к гомоморфизму прямого произведения.

Следствие 10.1 (из Л.Шура). Пусть V, V' — неприводимые, тогда

$$\dim \operatorname{Hom}_{G}(V, V') = \begin{cases} 0, & V \ncong V' \\ \dim & V \cong V' \end{cases}$$

 $\rho(G,V)$ — вполне приводимо.

$$V = V_1 \oplus \ldots \oplus V_s = V_1 \oplus \ldots \oplus V_k \oplus V_{k+1} \oplus \ldots \oplus V_s$$

 $V_i, \ \rho' = (G, V')$ — неприводимы, $V_i \cong V', \ 1 \leqslant i \leqslant k, \ V_i \ncong V', \ k+1 \leqslant i \leqslant s. \ k$ — кратность вхождения V' в данное разложение вполне приводимого.

Утверждение 10.1. $\dim_{\mathbb{K}} \operatorname{Hom}_{G}(V, V') = k \dim_{\mathbb{K}} \operatorname{End}_{G}(V')$

□ Из предыдущего

$$\operatorname{Hom}_{G}(V, V') = \operatorname{Hom}_{G}(V_{1} \oplus \ldots \oplus V_{s}, V') = \underbrace{\operatorname{Hom}_{G}(V_{1}, V')}_{\cong \operatorname{End}_{G}(V')} \oplus \underbrace{\operatorname{Hom}_{G}(V_{k}, V')}_{=0} \oplus \underbrace{\operatorname{Hom}_{G}(V_{k+1}, V')}_{=0} \oplus \ldots \oplus \underbrace{\operatorname{Hom}_{G}(V_{k+1}, V')}_{=0}$$

 $\Rightarrow \dim \operatorname{Hom}_G(V, V') = k \operatorname{End}_G(V') \blacksquare$

Теорема 10.2. Кратность вхождения данного неприводимого представления в разложение вполне приводимого представления в прямую сумму не приводимых не зависит от выбора этого разложения

$$k = \frac{\dim \operatorname{Hom}_{G}(V, V')}{\dim \operatorname{End}_{G}(V')}$$
(1.10.1)

Легко видеть, что правая часть не зависит от выбора разложения, значит и левая.

Определение. *Кратностью* $\nu(V',V)$ неприводимого V' в вполне приводимом V называется кратность вхождения V' в любое разложение V в прямую сумму неприводимых.

Следствие 10.2.
$$\mathbb{K} = \mathbb{C}$$
, $\operatorname{End}_G(V) = \mathbb{C} \Rightarrow \nu(V', V) = \dim \operatorname{Hom}_G(V, V')$.

1.11 Ортогональные и унитарные представления

 $\mathbb{K}=\mathbb{R},\mathbb{C},\ V$ — линейное пространство, $\dim V<\infty$. Зададим на V евклидово (в случае $\mathbb{K}=\mathbb{C},$ эрмитово) скалярное произведение.

Определение. V — евклидово пространство. Тогда $\rho = (G,V)$ называется *ортогональным*, если $\forall \ g \in G \rho(g)$ — ортогонален.

V — эрмитово пространство. Тогда $\rho=(G,V)$ называется $\mathit{yhumaphыm},$ если $\ \forall \ g\in G\rho(g)$ — унитарен.

 \mathring{M} атричное представление называется ортогональным (унитарным), если все A_g — ортогональны (унитарны).

Если зададим ортогональные (унитарные) матрицы и ортонормированный (унитарный) базис, то получим ортогональное (унитарное) представление и наоборот.

Теорема 11.1. Любое \mathbb{R} -представление конечной группы изоморфно ортогональному, а над \mathbb{C} — унитарному.

 \square Докажем для $\mathbb C$ (для $\mathbb R$ аналогично). Достаточно доказать, что любое матричное представление эквивалентно унитарному матричному.

Пусть $\rho = (G, V)$ дано. На V есть эрмитово скалярное произведение, относительно которого ρ — унитарно, т. е. все $\rho(g)$ — унитарные операторы.

Пусть $V=\langle e_1,\ldots,e_n\rangle$ — базис, $F(x,y)=\sum_{i=1}^n\overline{x_i}y_i$ — скалярное произведение. Введём новое:

$$(x,y) := \sum_{g \in G} F(gx, gy)$$

Покажем, что

- $\mathbf{1}^{\circ}$ получилось эрмитово скалярное произведение: $\forall \ g \ F(gx,gy)$ положительно определённая полуторолинейная форма.
- 2° относительно (x,y) все операторы $\rho(g)$ унитарны, т. е. $\forall h \in G \ \rho(h)$ унитарный. Но

$$(hx,hy)=\sum_{g\in G}F(ghx,ghy)$$
 так же сумма по всей группе

$$\Rightarrow (hx, hy) = (x, y) \Rightarrow h$$
 — унитарен.

Следствие 11.1. Любое представление конечной группы над $\mathbb R$ или $\mathbb C$ — вполне приводимы.

- Индукция по размерности представления:
- 1° Любое одномерное представление всегда неприводимо.
- $\mathbf{2}^{\circ}$ Пусть $\dim V = n$ и для меньших размерностей доказано. Это представление изоморфно унитарному ⇒ можем считать, что представление — унитарно. Если неприводимо, то доказывать нечего. Если же существует инвариантное подпространство $0 \neq U \subsetneq V$, то U, U^{\perp} — инвариантны относительно унитарных $\rho(g)$.

 $V=U\oplus U^{\perp},\;\dim U,\;\dim U^{\perp}< n,\;$ тогда по индуктивному предположению U и U^{\perp} прямая сумма неприводимых $\Rightarrow V$ разлагается в прямую сумму неприводимых.

Критерий полной приводимости линейного 1.12 представления над произвольным полем

Определение. Представление ρ на V обладает свойством *отщепимости*, если $\forall U' \subset V$ — инвариантного $\exists U'' \subset V : V$ — инвариантное и $V = U' \oplus U''$

Утверждение 12.1. Следующие свойства эквиваленты:

- 1° (G,V) вполне приводимо
- $\mathbf{2}^{\circ}$ (G,V) обладает свойством отщепимости
- $\mathbf{3}^{\circ} \quad \forall \ U \subset V \$ инвариантное $\exists \ \varphi \in \operatorname{End}_G(V) \ \$ проекция на U
- \mathfrak{I} вивалентность $\mathbf{2}^\circ$ и $\mathbf{3}^\circ$ известна из линейной алгебры.

Проекция φ — гомоморфизм представлений $\Rightarrow U'' = \operatorname{Ker} \varphi$ — инвариантно.

Если U'' — инвариантно, то проекция φ на U' параллельно U'' — гомоморфизм представлений: $\forall v = v' + v'', v' \in U', v'' \in U'' \varphi(v) = v'.$

Докажем эквивалентность $\mathbf{1}^\circ$ и $\mathbf{2}^\circ$.

Т. к. пересечение нулевое, то $U'\oplus U''$ — прямая сумма. Покажем, что $V=U'\oplus U''$.

Пусть $U'\oplus U''\subsetneq V\Rightarrow \exists V_j\colon V_j\not\subset U'\oplus U''$ Но V_j — неприводимо $\Rightarrow (U'\oplus U'')\cap V_j=0\Rightarrow U'\oplus U''\oplus V_j$ — прямая сумма, что противоречит максимальности $U''\Rightarrow U'\oplus U''=V$. $\mathbf{2}^\circ\Rightarrow\mathbf{1}^\circ$:

Лемма 12.2. Если V обладает свойством отщепимости, то любое его подпредставление обладает этим свойством.

 \square $U\subset V,U'\subset U$ — инвариантные, $V=U'\oplus U''$ — инвариантное, тогда $U=U'\oplus (U''\cap U)$

$$U' \cap (U'' \cap U) = 0$$
, т. к. $U' \cap U'' = 0$

$$\forall u \in U \ u = v' + v'', v' \in U', v'' \in U'' v'' = u - v' \in U \Rightarrow v'' \in U \cap U''$$

Индукция по размерности $\dim V = n$

 $\mathbf{1}^{\circ}$ n=1 очевидно.

 ${f 2}^\circ$ если V — неприводимо, то доказывать нечего. Пусть $\exists \ 0
eq U' \subsetneq V \Rightarrow V = U' \oplus U''$ — инвариантные и имеют меньшую размерность. По Лемме ${f 12.2}$ они обладают свойством отщепимости \Rightarrow к ним применимо индуктивное предположение $\Rightarrow V$ — вполне приводимо.

Следствие 12.1. Подпредставление и факторпредставление вполне приводимого — вполне приводимы.

□ Для подпредставления свойство наследуется по Лемме 12.2.

Рассмотрим V/U. $V=U\oplus U'\Rightarrow V/U\cong U'$, но U' — подпредставление \Rightarrow вполне приводимо. \blacksquare

Теорема 12.3 (Машке). Пусть G — конечная группа и поле \mathbb{K} . \mathbb{K} -представление G вполне приводимо $\Leftrightarrow \operatorname{char} \mathbb{K} \nmid |G|$

Определение. Представление *модулярно*, если $\operatorname{char} \mathbb{K} \mid |G|$.

 $\square \quad \Leftarrow$: Докажем с помощью условия $\mathbf{3}^\circ$ из критерия.

Из линейной алгебры: $\exists \ \psi \colon V \to V, \ \psi$ — проекция на U. Хотим получить проекцию φ , т. ч. $\varphi(hv) = h\varphi(v) \ \forall \ v \in V, \ h \in G$. Пусть $|G| = n, \ 0 \neq n \cdot 1 \in \mathbb{K} \Rightarrow \frac{1}{n} = (n \cdot 1)^{-1}$. Определим φ :

$$\varphi(v) = \frac{1}{n} \sum_{g \in G} g^{-1} \psi(gv)$$

Докажем, что φ — эндоморфизм.

$$\varphi(hv) = \frac{1}{n} \sum_{g} g^{-1} \psi(ghv) = \frac{1}{n} \sum_{g} h(gh)^{-1} \psi((gh)v) = h \cdot \frac{1}{n} \sum_{gh=x \in G} x^{-1} \psi(xv) = h\varphi(v)$$

Проверим, что φ — проекция на U.

$$\psi(gv) \in U \Rightarrow \varphi(v) = \frac{1}{n} \sum_{v} g^{-1} \psi(gv) \Rightarrow \operatorname{Im} \varphi \subseteq U$$

 $v \in U \Rightarrow gv \in U$ (инвариантность) $\Rightarrow \psi(gv) = gv \Rightarrow g^{-1}\psi(gv) = gv \Rightarrow \psi(v) = \frac{1}{n} \cdot n \cdot v = v$

Продолжение линейного действия группы 1.13 на пространстве её представления вдоль действия её групповой алгебры

Пусть G — группа, \mathbb{K} — поле, |G|=n. Рассмотрим n-мерное векторное пространство, отождествив элементы G с базисом. $\mathbb{K}G = \left\{\sum_{g \in C} a_g g\right\}, \ a_g \in \mathbb{K},$

$$\left(\sum_{g \in G} a_g g\right) \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} \left(\sum_{h,k \colon hk = g} a_h b_k\right) g$$

Пусть имеем представление V над \mathbb{K} $\rho = (G, V) \Rightarrow$ задано $gv, g \in G, v \in V, \rho \colon G \to \mathbf{GL}(V)$ — невырожденные линейные операторы. Но $G \subset \mathbb{K}G \Rightarrow \forall \tau = \sum a_a g, \ g \in G$,

$$\tau v = \left(\sum_{g} a_g g\right)(v) \coloneqq \sum_{g} a_g(gv)$$

Свойства этой операции:

$$\mathbf{1}^{\circ} \ \tau(v_1 + v_2) = \tau v_1 + \tau v_2 \qquad \forall \ \tau \in \mathbb{K}G, \ \forall \ v_1, v_2 \in V$$
$$\mathbf{2}^{\circ} \ \tau(\lambda v) = \lambda(\tau v) \qquad \forall \ \lambda \in \mathbb{K}$$

$$\mathbf{2}^{\circ} \ \tau(\lambda v) = \lambda(\tau v) \qquad \forall \ \lambda \in \mathbb{K}$$

$$3^{\circ} (\tau_1 + \tau_2) v = \tau_1 v + \tau_2 v$$

$$\mathbf{4}^{\circ} \ (\tau_1 \tau_2) \, v = \tau_1 \, (\tau_2 v)$$

$$\mathbf{5}^{\circ} \ (\lambda e) \, v = \lambda v \qquad e -$$
единица в $\mathbb{K} G$, т. е. в $G, \ \lambda \in \mathbb{K}$

Свойства $\mathbf{1}^{\circ}$, $\mathbf{2}^{\circ}$ задают линейный оператор. Раньше имели $\varphi(g)v=gv$. А теперь $\varphi\colon \mathbb{K}G\to$ $\mathbf{L}(V)$ — алгебра всех линейных операторов.

Свойства 3° , 4° и 5° задают гомоморфизм алгебр (линейное представление задаёт гомоморфизм алгебр $\mathbb{K}G \to \mathbf{L}(V)$).

Заметим, что имеют место свойства:

- $U \subset V$ инвариантно относительно $G \Rightarrow \tau v \in U, \ \forall \ v \in U, \tau \in \mathbb{K}G$.
- $\varphi \colon V \to V$ гомоморфизм представлений $\Rightarrow \varphi(\tau v) = \tau \varphi(v), \ \forall v \in V, \tau \in \mathbb{K}G$.

Определение. \mathbb{K} -представление группы G в $\mathbb{K}G$ и с действием, задаваемым умножением в групповой алгебре:

$$g\left(\sum a_h h\right) = \sum a_g g h$$

называется регилярным.

1.14 Размерность пространства гомоморфизмов регулярного представления

Пусть $\rho = (G, V)$ — любое представление.

Утверждение 14.1. $\dim \operatorname{Hom}_G(\mathbb{K}G, V) = \dim_{\mathbb{K}} V$

$$\square$$
 $\forall \varphi \colon \mathbb{K}G \to V$ задаётся значением $\varphi(e) \in V$, т. к. $\varphi(\tau) = \varphi(\tau e) = \tau \varphi(e)$.

В обратную сторону: задано $\varphi(e) \Rightarrow \forall \tau \in \mathbb{K} G \ \varphi(\tau) = \varphi(\tau e) \coloneqq \tau \varphi(e)$.

Покажем, что эта биекция $V \leftrightarrow \operatorname{Hom}_G(\mathbb{K}G,V)$ — гомоморфизм векторных пространств.

Пусть $v_0 = \varphi(e), \ v_o \leftrightarrow \varphi \in \operatorname{Hom}_G(\mathbb{K}G, V). \ \varphi(\tau) = \tau v_0.$ Возьмём v_0' и $v_0'', \ v_0 = v_0' + v_0'', \ \varphi'(\tau) = \tau v_0', \ \varphi''(\tau) = \tau v_0''.$

$$\varphi(\tau) = \tau \left(v_0' + v_0'' \right) = \tau v_0' + \tau v_0'' = \varphi'(\tau) + \varphi''(\tau) = \left(\varphi' + \varphi'' \right) (\tau)$$
$$\varphi_{\lambda v_0'}(\tau) = \tau \left(\lambda v_0' \right) = \lambda \varphi'(\tau) = \left(\lambda \varphi' \right) (\tau)$$

Значит имеем изоморфизм векторных пространств $\Rightarrow \dim \operatorname{Hom}_G(\mathbb{K}G,V) = \dim_{\mathbb{K}}V$.

1.15 Кратность вхождения неприводимого представления в немодулярном случае

В немодулярном случае любое представление G вполне приводимо \Rightarrow регулярное представление вполне приводимо \Rightarrow можно говорить о кратности вхождения неприводимого представления в регулярное. $\rho=(G,V)$ — неприводимое, $k=\nu(V,\mathbb{K}G)$. Применим формулу 1.10.1:

$$k = \frac{\dim_{\mathbb{K}} \operatorname{Hom}_{G}(\mathbb{K}G, V)}{\dim_{\mathbb{K}} \operatorname{End}_{G}(V)} = \frac{\dim_{\mathbb{K}} V}{\dim_{\mathbb{K}} \operatorname{End}_{G}(V)}$$

 \Rightarrow \forall V — неприводимого, кратность его вхождения в $\mathbb{K}G$ ненулевая \Rightarrow любое неприводимое встречается в разложении регулярного.

T. к. слагаемых в разложении конечное число, то с точностью до изоморфизма имеется конечное число представлений группы G.

Если $\mathbb{K} = \mathbb{C}$, то $\dim_{\mathbb{C}} \operatorname{End}_{G}(V) = 1$.

Утверждение 15.1. Кратность вхождения неприводимого представления в регулярное над \mathbb{C} равно размерности пространства представления.

Следствие 15.1. Сумма квадратов размерностей неприводимых представлений конечной группы G над $\mathbb C$ равна |G|.

 \square $(G,V_1),\ldots,(G,V_s)$ — список всех неприводимых представлений (с точностью до изоморфизма) группы G над \mathbb{C} , $\dim_{\mathbb{K}}V_i=k_i$,

$$\mathbb{K}G = \underbrace{V_{1,1} \oplus \ldots \oplus V_{1,k_1}}_{V_{1,j} \cong V_1} \oplus \ldots \oplus \underbrace{V_{s,1} \oplus \ldots \oplus V_{s,k_s}}_{V_{s,j} \cong V_s}$$

⇒ число слагаемых в каждой группе равно размерности представления

$$|G| = \dim_{\mathbb{K}} \mathbb{K}G = \sum_{i=1}^{s} k_i^2$$

1.16 Разложение немодулярной групповой алгебры конечной группы в прямую сумму простых алгебр

 $\operatorname{char} \mathbb{K} \nmid |G|$. Тогда $(G,V_1),\dots,(G,V_s)$ — все неприводимые, k_i — кратность вхождения V_i в $\mathbb{K} G$

$$k_i = \frac{\dim_{\mathbb{K}} \operatorname{Hom}_G(\mathbb{K}G, V_i)}{\dim_{\mathbb{K}} \operatorname{End}_G(V_i)}$$

Задача 16.1. Показать, что если $\operatorname{char} K \mid |G|$, то регулярное представление не является вполне приводимым.

Указание. Показать, что имеется подпредставление и на него нет проекции.

$$\mathbb{K}G = \underbrace{V_{1,1} \oplus \ldots \oplus V_{1,k_1}}_{V_{1,j} \cong V_1} \oplus \ldots \oplus \underbrace{V_{s,1} \oplus \ldots \oplus V_{s,k_s}}_{V_{s,j} \cong V_s}$$
(1.16.1)

Подпредставление в регулярном представлении — подпространство, инвариантное относительно умножения слева на элементы из $G \Rightarrow$ на любые элементы из алгебры (т. е. это левые идеалы в $\mathbb{K}G$).

 $I \subset \mathbb{K}G$, I — неприводим $\Leftrightarrow I \neq 0$ и нет строго меньших ненулевых левых идеалов (минимальный левый идеал).

Теорема 16.1. Немодулярная групповая алгебра является прямой суммой простых алгебр.

 \square Имеем разложение $\mathbb{K}G=V_{1,1}\oplus\ldots\oplus V_{1,k_1}\oplus\ldots\oplus V_{s,1}\oplus\ldots\oplus V_{s,k_s}$. Докажем, что блоки $(R_i$ из формулы 1.16.1)— двусторонние идеалы. Заметим, что блоки определены однозначно. Докажем, что первый (значит и любой) блок содержит неприводимое подпредставление $I\cong V_1$.

Пусть
$$\exists \tau_0 \in I, \ \tau_0 \notin R_i, \ \tau_0 = \sum \tau_{i,j}, \ \tau_{i,j} \in V_{i,j}, \ \exists \ \tau_{i,j} \neq 0 \ i \neq 1.$$

Рассмотрим проекцию на $V_{i,j}$: $\varphi\colon I\to V_{i,j},\ \varphi(\tau)=\tau_{i,j},\ \tau\in I$. Но т. к. было разложение в прямую сумму, то получили гомоморфизм представлений. Этот гомоморфизм не нулевой, т. к.

 $\varphi(\tau_0) \neq 0$. Значит по Л.Шура $V_{i,j} \cong V_1$, что противоречит $i \neq 1 \Rightarrow I \subseteq R_1 \Rightarrow$ блоки не зависят от разложения.

Докажем, что R_1 — двусторонний идеал. Осталось показать, что правый.

Пусть $\tau \in \mathbb{K}G$, $R_1\tau \subseteq R_1$

$$\mathbf{1}^{\circ} V_{1,i} \cdot \tau = 0$$

 ${f 2}^\circ\ V_{1,j}\cdot au
eq 0.$ Рассмотрим отображение $\varphi\colon V_{1,j} o V_{1,j}\cdot au\colon x\in V_{1,j},\ \varphi(x)=x au.$ Заметим, что φ — сюръективен.

Покажем, что φ — гомоморфизм представлений:

$$\varphi(gx) = (gx)\tau = g\varphi(x)$$

Но $V_{i,j}$ было неприводимо, однако $\operatorname{Ker} \varphi \subsetneq V_{i,j} \Rightarrow \operatorname{Ker} \varphi = 0 \Rightarrow \varphi$ — изоморфизм представлений. $V_{1,j} \cdot \tau \cong V_{1,j} \cong V_1 \Rightarrow V_{1,j} \cdot \tau \subseteq R_1 \Rightarrow R_i$ — двусторонний идеалы.

Докажем, что R_i — простые. $\mathbb{K}G = R_1 \oplus \ldots \oplus R_s$, $e = e_1 \oplus \ldots \oplus e_s$, $e_i \in R_i$ — единица в R_i Т. к. R_i — двусторонние идеалы, то произведение элементов из разных подалгебр равно нулю.

$$\tau \in R_i \Rightarrow \tau = \tau e = \underbrace{\tau e_1}_{=0} \oplus \ldots \oplus \underbrace{\tau e_i}_{=\tau} \oplus \ldots \oplus \underbrace{\tau e_s}_{=0}$$

Пусть $0 \neq J \subsetneq R_1$ — двусторонний идеал.

$$R_1 = J \oplus J'$$

 $R_1 = \underbrace{I_1 \oplus \ldots \oplus I_k}_{J} \oplus I_{k+1} \oplus \ldots \oplus I_{k_1}, \quad k \neq k_1$

 $\forall \ \tau \in J \ \tau I_{k+1} \subseteq I_{k+1}$, т. к. I_{k+1} — подпредставление, $\tau I_{k+1} \subseteq J$, т. к. $\tau \in J$, J — двусторонний идеал. $J \cap I_{k+1} = 0 \Rightarrow \tau I_{k+1} = 0$. $I_{k+1} \cong V_1 \cong V_{1,j}, \ j=1,\ldots,k_1$. Оператор действует одинаковым образом на изоморфных представлениях $\Rightarrow \tau V_{1,j} = 0 \ \forall \ j \Rightarrow \tau R_1 = 0 \Rightarrow \tau = \tau e_1 = 0$. Противоречие. \blacksquare

Рассмотрим $\mathbb{K} = \mathbb{C}$, $\mathbb{C}G = R_1 \oplus \ldots \oplus R_s$.

Теорема 16.2. Групповая алгебра конечной группы над \mathbb{C} разлагается в прямую сумму полных матричных алгебр.

 \square Покажем, что R_i изоморфен полной матричной алгебре.

$$\mathbb{C}G = V_{1,1} \oplus \ldots \oplus V_{1,r_1} \oplus \ldots \oplus V_{s,1} \oplus \ldots \oplus V_{s,r_s}$$

 $r_i=\dim V_i$, т. к. над $\mathbb C$ кратность вхождения в регулярное совпадает с размерностью. $\dim R_i=r_i^2$, покажем, что $R_1\cong \mathrm{Mat}_{r_1}(\mathbb C)$

$$\rho_1 = (G, V_1) \qquad G \xrightarrow{\rho_1} \mathbf{GL}(V_1)$$

$$\cap \qquad \qquad \cap$$

$$\mathbb{C}G \xrightarrow{\rho_1} \mathbf{L}(V_1)$$

 $ho_1 \colon R_1 \to \mathbf{L}(V_1)$ — гомоморфизм алгебра, при котором $\ \forall \ \tau \in R, \ v \in V_1 \ \
ho_1(\tau)(v) = \tau v.$

Это гомоморфизм ненулевой, т. к. $e_1 \in R_1$, $V_{1,j} \cong V_1$, $\rho_1(e_1)(v) = e_1v = v \Rightarrow \operatorname{Ker} \rho_1 \neq R_1$, но R_1 — простая алгебра, а $\operatorname{Ker} \rho_1$ — двусторонний идеал $\Rightarrow \operatorname{Ker} \rho_1 = 0 \Rightarrow \rho_1$ — инъективен. Заметим, что $\dim R_1 = r_1^2$, $\dim V_1 = r_1 \Rightarrow \dim \mathbf{L}(V_1) = r_1^2 \Rightarrow \rho_1$ — сюръективен (т. к. размерности совпадают) $\Rightarrow \rho_1$ — изоморфизм алгебр $R_1 \cong \mathbf{L}(V_1) \cong \operatorname{Mat}_{r_1}(\mathbb{C})$.

Теорема 16.3. Число неприводимых \mathbb{C} -представлений конечной группы G, c точностью до изоморфизма, равно числу её классов сопряжённых элементов.

 $\mathbb{C}G = \mathrm{Mat}_{r_1}(\mathbb{C}) \oplus \ldots \oplus \mathrm{Mat}_{r_s}(\mathbb{C}), \quad s$ — число неприводимых представлений.

Посчитаем размерность центра групповой алгебры.

$$Z(\mathbb{C}G) = Z(\operatorname{Mat}_{r_1}(\mathbb{C})) \oplus \ldots \oplus Z(\operatorname{Mat}_{r_s}(\mathbb{C}))$$

Но центры — скалярные матрицы \Rightarrow все слагаемые имеют размерность один \Rightarrow dim $Z(\mathbb{C}G) = s$. С другой стороны, $a \in \mathbb{C}G$, $a = \sum a_g g$, $a \in Z(\mathbb{C}G) \Leftrightarrow ha = ah \ \forall \ h \in G$.

$$hah^{-1} = a \ \forall \ h \in G$$

$$a = \sum_{g} a_g g \Rightarrow hah^{-1} = \sum_{g \in G} a_g hgh^{-1} \Rightarrow$$

$$a_g = a_{hgh^{-1}} \Leftrightarrow a \in Z(\mathbb{C}G)$$

t — число классов сопряжённости в G, g_1, \ldots, g_t — представители классов, $\mathrm{Cl}(g_i)$ — класс сопряжённости с g_i .

$$a \in Z(\mathbb{C}G) \Leftrightarrow a = \sum_{g_i} a_{g_i} \sum_{g \in \mathrm{Cl}(g_i)} g$$

Значит, базис $Z(\mathbb{C}G)$ есть $\left\{\sum_{g\in \mathrm{Cl}(g_i)}g\mid i=1,\ldots,t\right\}$ \Rightarrow

$$t = \dim Z(\mathbb{C}G) = s$$

1.17 Примеры построения всех неприводимых С-представлений

1.17.1 Неприводимые С-представления группы диэдра

$$D_n = \{a^k b^{\varepsilon} \mid k = 0, \dots, n - 1; \varepsilon = 0, 1\}$$

Найдём одномерные представления $(G \xrightarrow{\pi} G/G' \xrightarrow{\rho} \mathbb{C}^*)$:

 $\mathbf{1}$ ° Пусть $2 \nmid n$.

$$D_n' = \langle a \rangle_n, \ D_n/D_n' = \{\langle a \rangle_n, b \langle a \rangle_n\} = \langle \overline{b} \rangle_2$$

$$\begin{array}{c|cccc}
 & D_n' & bD_n' \\
\hline
\rho_1 & 1 & 1 \\
\hline
\rho_2 & 1 & -1
\end{array}$$

$$2^{\circ} \ 2 \mid n.$$

$$D_{n'} = \langle a^2 \rangle_{n/2}, \ D_n/D_{n'} = \{ \overline{e} = D_{n'}, \overline{a} = aD_{n'}, \overline{b} = bD_{n'}, \overline{c} = abD_{n'} \}.$$

$$\overline{a}^2 = \overline{b}^2 = \overline{c}^2 = \overline{e}, \ \overline{c} = \overline{a}\overline{b}$$

$$D_n/D_n' = \langle aD_n' \rangle_2 \times \langle aD_n' \rangle_2$$

	D_n'	aD_n'	bD_n'	abD_n'
$\overline{\rho_1}$	1	1	1	1
ρ_2	1	-1	1	-1
ρ_3	1	1	-1	-1
ρ_4	1	-1	-1	1

Других одномерных представлений в обоих случаях нет.

Найдём представления размерности > 1.

$$a = \begin{pmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Через ρ_i будем обозначать двумерные представления.

$$\rho_k(a) = \begin{pmatrix} \cos\frac{2\pi k}{n} & -\sin\frac{2\pi k}{n} \\ \sin\frac{2\pi k}{n} & \cos\frac{2\pi k}{n} \end{pmatrix}, \quad k = \begin{cases} 1, \dots, \frac{n-1}{2}, & 2 \nmid n \\ 1, \dots, \frac{n}{2} - 1, & 2 \mid n \end{cases}$$

$$\rho_k(b) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\rho_k(b)\rho_k(a) = \rho_k(a)^{-1}\rho_k(b)$$

Докажем, что они неприводимы и неизоморфны и других нет.

1° Неприводимость.

У $\rho_k(b)$ ровно 2 инвариантных подпространства (столько собственных значений). Это одномерные представления, порождённые базисными векторами. Но они не инвариантны относительно поворота $\rho_k(a) \Rightarrow$ они все неприводимы.

 2° Неизоморфность.

 $C\rho_p(a)C^{-1}=\rho_q(a)$. Собственные значения для $\rho_k(a)=\cos\frac{2\pi k}{n}\pm\sin\frac{2\pi k}{n}$. При pneq имеем различные собственные значения. \Rightarrow все неизоморфны.

 3° Покажем, что других нет:

1 способ. Воспользуемся следствием 15.1:

$$2 \nmid n \Rightarrow 1 + 1 + 4 \cdot \frac{n-1}{2} = 2n = |D_n|$$
$$2 \mid n \Rightarrow 1 + 1 + 1 + 1 + 4 \cdot \left(\frac{n}{2} - 1\right) = 2n = |D_n|$$

2 способ. Воспользуемся теор. 16.3

$$2 \nmid n \Rightarrow \text{Cl} = \left\{ \{e\}, \left\{ a^k, a^{-k} \right\} \left(k = 1, \dots, \frac{n-1}{2} \right), \left\{ a^k b \mid k = 0, \dots, n-1 \right\} \right\} \Rightarrow$$

$$\# \text{Cl} = \frac{n-1}{2} + 2$$

$$2 \nmid n \Rightarrow$$

$$\text{Cl} = \left\{ \{e\}, \left\{ a^{\frac{n}{2}} \right\}, \left\{ a^k, a^{-k} \right\} \left(k = 1, \dots, \frac{n}{2} - 1 \right) \right\} \cup$$

$$\cup \left\{ \left\{ a^{2i+1} b \mid i = 0, \dots, \frac{n}{2} - 1 \right\}, \left\{ a^{2i} b \mid i = 0, \dots, \frac{n}{2} - 1 \right\} \right\} \Rightarrow$$

$$\# \text{Cl} = 4 + \frac{n}{2} - 1$$

1.17.2 Неприводимые С-представления группы кватернионов

 $Q_8,\ {Q_8}'=\{\pm 1\},\ \mathbb{Q}_8/{Q_8}'=\{\mathbb{Q}_8',i\mathbb{Q}_8',j\mathbb{Q}_8',k\mathbb{Q}_8'\}=\langle i\mathbb{Q}_8'\rangle_2\oplus\langle j\mathbb{Q}_8'\rangle_2$ Таблица одномерных представлений аналогична D_{2n} .

Осталось только одно двумерное представление (следствие 15.1).

 \mathbb{H} — алгебра кватернионов, $Q_8 \subset \mathbb{H}^*, \mathbb{C} \subset \mathbb{H}$. \mathbb{H} — двумерное векторное пространство над \mathbb{C} , умножение на скаляр — умножение справа:

$$\lambda \in \mathbb{C}, x \in \mathbb{H}, \lambda \cdot x = x\lambda$$

Пусть $g \in Q_8$ $\rho(g)(x) = gx$ — линейный оператор в $\mathbb{H} \Rightarrow$ получили линейное представление Q_8 . Неприводимо, т. к. подпредставление — левый идеал, но \mathbb{H} — алгебра с делением \Rightarrow в ней нет нетривиальных левых идеалов.

1.18 Примеры неприводимых \mathbb{C} -представлений групп A_n и S_n ($n \geqslant 4$)

Рассмотрим векторное пространство $\mathbb{C}^n = \langle e_1, \dots, e_n \rangle$. $\pi \in S_n$, $\pi e_i = e_{\pi(i)}$, это представление приводимо (имеется собственный вектор $e_1 + \dots + e_n$).

 $e_1 + \ldots + e_n$ — ортонормированный базис относительно стандартного унитарного скалярного произведения. Значит получили унитарное представление $\Rightarrow \langle e_1 + \ldots + e_n \rangle^\perp = V$ — инвариантное подпространство \Rightarrow можем рассмотреть представления этих групп на этом подпространстве $V = \{\sum a_i e_i \mid \sum_{i=1}^n a_i = 0\} = \langle e_1 - e_2, \ldots, e_1 - e_n \rangle$.

Утверждение 18.1. При $n \geqslant 4$ представление группы A_n — неприводимо

Следствие 18.1. При $n \geqslant 4$ представление группы A_n — неприводимо

 \square Покажем, что $0 \neq U \subset V$, U — инвариантно относительно $A_n \Rightarrow U = V$.

$$u \in U$$
, $u = \sum_{i=1}^{n} a_i e_i \neq 0$, $\sum_{i=1}^{n} a_i = 0$.

Занумеруем векторы т., ч. $a_1, \ldots, a_k \neq 0, \ a_{k+1}, \ldots, a_n = 0, \ 2 \leqslant k \leqslant n.$

Рассмотрим k=2. $u=a_1e_1+a_2e_2,\ a_1+a_2=0\Rightarrow u=e_1-e_2\in U.$ U инвариантно относительно действия любой чётной перестановки. $(2,i,i+1)u=e_1-e_i,\ i=3,\ldots,n-1,$ при $n\geqslant 4$ получим весь базис $U\Rightarrow V\subset U\Rightarrow$ при k=2 U=V.

Рассмотрим $k=3.\ 0 \neq u=a_1e_1+a_2e_2+a_3e_3 \in U$. Т. к. $k\neq 2\ 0 \neq a_3=-(a_1+a_2)$.

$$(1,2)(3,4)u = a_1e_2 + a_2e_1 + a_3e_4 = u'$$

$$u + u' = (a_1 + a_2)e_1 + (a_1 + a_2)e_2 + a_3(e_3 + e_4) = e_1 + e_2 - e_3 - e_4 \in U$$

Пусть:

$$u = e_1 + e_2 - e_3 - e_4$$

$$u' = (1, 2, 3)u = e_2 + e_3 - e_1 - e_4 \in U$$

$$u - u' = 2e_1 - 2e_3 = 2(e_1 - e_3) \in U$$

Пришли к случаю $k=2 \Rightarrow U=V$.

Рассмотрим случай $k \geqslant 4$. Т. к. $\sum a_i = 0$, то не все совпадают. Пусть $a_1 \neq a_2$. Рассмотрим

$$u' = (1, 2, 3)u = a_1e_2 + a_2e_3 + a_3e_1 + \sum a_ie_i \in U$$

$$u - u' = (a_1 - a_3)e_1 + (a_2 - a_1)e_2 + (a_3 - a_2)e_3 \in U$$

Так пришли к случаю $k \leqslant 3$

Обозначим
$$\rho \colon S_n \to \mathbf{GL}(V), \ \rho|_{A_n} \colon A_n \to \mathbf{GL}(V).$$

Предъявим ещё одно неприводимое представление на $V\colon \rho'\colon S_n\to \mathbf{GL}(V),\quad \rho'(\pi)=\mathrm{sgn}(\pi)\rho(\pi).$ Покажем, что $\rho'\ncong\rho.$

Пусть arphi — невырожденный линейный оператор, т.ч. диаграмма коммутативна

$$V \xrightarrow{\varphi} V \\ \rho(\pi) \downarrow \qquad \qquad \downarrow \rho'(\pi) \\ V \xrightarrow{\varphi} V$$

Т. е. $\forall \pi \in S_n \ \rho'(\pi)\varphi = \varphi \rho(\pi)$. Ограничим это равенство на A_n : $\rho(\pi)\varphi = \varphi \rho(\pi)$. Получили автоморфизм над \mathbb{C} .

Но по Л.Шура такой автоморфизм — скалярный оператор, т. е. $\varphi = \lambda \varepsilon$, $\lambda \neq 0$.

Тогда $\forall \pi \in S_n \ \rho'(\pi) = \rho(\pi)$. Но для нечётных перестановок это неверно. $\Rightarrow \rho$ и ρ' неизоморфны.

1.19 Все неприводимые \mathbb{C} -представления групп A_4 и S_4

Рассмотрим A_4 . Одномерные представления $A_4 \to A_4/A_4' \to \mathbb{C}^*$. Но $A_4/A_4' = V_4 = \{\varepsilon, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}, \ |A_4/A_4'| = 3, \ A_4/V_4 = \langle \pi V_4 \rangle, \ \pi = (1,2,3)$. Одномерные представления:

A_4	V_4	πV_4	$\pi^2 V_4$
ρ_1	1	1	1
ρ_2	1	ε	ε^2
ρ_3	1	ε^2	ε

где $\varepsilon = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$. $\rho_4 = (A_4, V)$, $\dim V = 3 \Rightarrow 3 + 3^2 = 12 = |A_4| \Rightarrow$ нашли все неприводимые представления группы A_4 .

Рассмотрим теперь S_4 , $S_4' = A_4$, $|S_4/A_4| = 2$, $\rho_1, \rho_2 \colon S_4 \to \mathbb{C}^*$, $\rho_1(\pi) = 1$, $\rho_2(\pi) = \mathrm{sgn}(\pi) - \beta$ два одномерных представления. Также знаем 3-х мерные: $\dim V = 3$, $\rho_3 \colon S_4 \to \mathbf{GL}(V)$, $\rho_4(\pi) = \mathrm{sgn}(\pi)\rho_3(\pi)$.

Знаем, что $V_4 \lhd S_4$, $S_4/V_4 \cong S_3$, $S_4 = S_3V_4$.

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ i_1 & i_2 & i_3 & 4 \end{pmatrix} \right\} \subset S_4$$

T. к. $S_3 \cong D_3$

$$S_4 \xrightarrow{\psi} S_4/V_4 \xrightarrow{cong} S_3 \xrightarrow{\rho} \mathbf{GL}(\mathbb{C}^2),$$

получили $\rho_5 = \rho \circ \psi$.

Но тогда сумма квадратов $2 + 2 \cdot 3^2 + 2^2 = 24 = |S_4|$.

1.20 Характеры С-представлений конечных групп

Пусть имеем группу G, $|G|<\infty$. Пусть имеем $\rho\colon G\to \mathbf{GL}(V),\ g\mapsto \rho(g)\in \mathbf{GL}(V),\ g\mapsto A_g,$ A_g — матрица $\rho(g)$ в фиксированном базисе.

Определение. Характером ρ называется функция $\chi_{\rho} \colon G \to \mathbb{C}, \ \chi_{\rho}(g) = \operatorname{tr} \rho(g) = \operatorname{tr} A_g$. Заметим, что след совпадает с коэффициентом при λ^{n-1} в характеристическом многочлене, \Rightarrow определение не зависит от базиса.

Свойства характера:

 ${f 1}^\circ$ $ho'\cong
ho\Rightarrow\chi_{
ho'}=\chi_
ho$, т. к. соответствующие матрицы сопряжены и следы совпадают.

 ${f 2}^\circ$ g и h сопряжены в G, то $\chi_
ho(g)=\chi_
ho(h)$, т. к. соответствующие матрицы сопряжены \Rightarrow $\chi_
ho$ постоянна на классах сопряжённых элементов.

 $\mathbf{3}^{\circ} \ \chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$

 $g^n=e,\ t^n-1$ — аннулирующий для $A_g\Rightarrow$ все собственные значения матрицы A_g — корни из 1.

Характеристический многочлен, $m = \dim V$,

$$f_{A_g}(\lambda) = \prod_{i=1}^m (\lambda - \lambda_i),$$

 $\chi_{\rho}(g)=\sum_{i=1}^m\lambda_i,\ A_{g^{-1}}=A_g^{-1}.\ \lambda_1,\dots,\lambda_m$ — корни с учётом кратности. Т. к. λ_i — корни n-й степени из 1, то $\lambda_i^{-1}=\overline{\lambda_i}$ \Rightarrow

$$\chi_{\rho}(g^{-1}) = \sum_{i=1}^{m} \lambda_i^{-1} = \sum_{i=1}^{m} \overline{\lambda_i} = \overline{\chi_{\rho}(g)}.$$

 4°

$$\rho = \bigoplus_{j=1}^{k} \rho_j \Rightarrow A_g = \begin{pmatrix} A_g^{(1)} & & \\ & \ddots & \\ & & A_g^{(k)} \end{pmatrix}$$

$$\chi_{\rho} = \sum_{j=1}^{k} \chi_{\rho_j}$$

1.21 Характеры как линейные функции на групповой алгебре

$$\mathbb{C}G = \left\{ a = \sum_{h \in G} a_h h \right\}$$

$$\rho(a) = \sum_{h \in G} a_h \rho(h)$$

$$G \xrightarrow{\rho} \mathbf{GL}(V)$$

$$\cap \qquad \cap$$

$$\mathbb{C}G \xrightarrow{\rho} \mathbf{L}(V)$$

Если задать функцию на базисе, то она будет определена для любого элемента векторного пространства (алгебры). Так можно определить $\chi_{\rho}(a) = \operatorname{tr} \rho(a) = \sum_{h \in G} a_h \chi_{\rho}(h)$.

Рассмотрим функции, постоянные на классах сопряжённых элементов $\mathcal{F}(G) \subseteq (\mathbb{C}G)^*$. Пусть g_1, \ldots, g_s — представители всех классов сопряжённых элементов. $f \in \mathcal{F}(G)$. Тогда $f(g_1), \ldots, f(g_s) \in \mathbb{C} \Rightarrow \mathcal{F}(G) \cong \mathbb{C}^s$ и $\chi_{\rho} \in \mathcal{F}(G)$.

Теорема 21.1. $\mathcal{F}(G) = \langle \chi_{\rho} \mid \rho - \textit{неприводимое} \rangle$

□ Покажем, что все характеры линейно независимы. Действительно, пусть имеем

$$0 = \sum_{j=1} a_j \chi_{\rho_j}$$

Применим это к $e_i \in R_i$ (из формулы 1.16.1)

$$0 = a_i \dim_{\mathbb{C}} V_i \Rightarrow a_i = 0.$$

Значит все $a_j = 0$. Тогда по теор. 16.3 имеем $s = \dim \mathcal{F}(G)$ линейно независимых функций \Rightarrow Характеры неприводимых представлений образуют базис в $\mathcal{F}(G)$

1.22 Характер регулярного представления группы G

 $\rho_{reg} \colon G \to \mathbf{GL}(\mathbb{C}G), \ |G| = n,$

$$\rho_{reg}(g)\left(\sum_{h\in G}a_hh\right) = \sum_{h\in G}a_hgh$$

$$A_g = \begin{cases} E, & g = e \\ \sum_{i;j \neq i} E_{i,j}, & g \neq e, \text{ t. k. } \forall \ hgh \neq h \end{cases}$$

$$\chi_{reg}(g) = \begin{cases} n, & g = e \\ 0, & g \neq e \end{cases}$$

Пусть
$$a = \sum_{h \in G} a_h h$$
, $ag^{-1} = \sum_{h \in G} a_h hg^{-1}$

 $\chi_{reg}(ag^{-1}) = \sum_{h \in G} a_h \chi_{reg}(hg^{-1}) = na_g$, т. к. все слагаемые равны, кроме случая, когда h = g

$$\Rightarrow a_g = \frac{1}{n}\chi(ag^{-1}) \Rightarrow a = \frac{1}{n}\sum_{g \in G}\chi_{reg}(ag^{-1})g$$
(1.22.1)

Последнее равенство — формула разложения групповой алгебры по базису в терминах характера регулярного представления.

1.23 Характеры неприводимого С-представлений конечной группы

 $ho_1 = (G, V_1), \dots,
ho_s = (G, V_s)$ — неприводимые, s — число классов сопряжённых элементов. $\dim
ho_i = \dim V_i = r_i, \; \chi_i \coloneqq \chi_{
ho_i}$ — характер неприводимого ho_i . Рассмотрим формулу 1.16.1

$$\mathbb{C}G = R_1 \oplus \ldots \oplus R_s$$

$$R_i \triangleq V_i \oplus \ldots \oplus V_i \cong \mathrm{Mat}_{r_i}(\mathbb{C})$$

Единица $e \in \mathbb{C}G \Rightarrow e = e_1 \oplus \ldots \oplus e_s, \ e_i \in R_i$ — единица в R_i . Напомним, $\forall \ a \ in\mathbb{C}G \ \rho(a)$ — оператор умножения на элемент алгебры a слева. Из формулы 1.22.1

$$e_i = \frac{1}{n} \sum_{g \in G} \chi_{reg}(e_i g^{-1}) g$$

Ho
$$R_i \cong \underbrace{V_i \oplus \ldots \oplus V_i}_{r_i} = r_i V_i, \ \rho_{reg} = r_1 \rho_1 \oplus \ldots \oplus r_s \rho_s, \ \chi_{reg} = \sum_{j=1}^s r_j \chi_j \Rightarrow$$

$$e_{i} = \frac{1}{n} \sum_{g \in G} \left(\sum_{j=1}^{s} r_{j} \chi_{j} (\underbrace{e_{i} g^{-1}}) g \right) = \frac{1}{n} \sum_{g \in G} r_{i} \chi_{i} (e_{i} g^{-1}) g \stackrel{\circ}{=}$$

$$\text{T. K. } e_{i} = e - \sum_{i \neq j} e_{j}$$

$$\stackrel{\circ}{=} \frac{r_{i}}{n} \sum_{g \in G} \chi_{i} (g^{-1} - \sum_{i \neq j} e_{j} g^{-1}) g = \frac{r_{i}}{n} \sum_{g \in G} \chi_{i} (g^{-1}) g \Rightarrow$$

$$e_{i} = \frac{r_{i}}{n} \sum_{g \in G} \chi_{i} (g^{-1}) g \qquad (1.23.1)$$

 $R_i = (\mathbb{C}G)e_i$. Можем выписать разложение алгебры в прямую сумму блоков.

Пусть G — абелева, $\chi_i=\rho_i\colon G\to\mathbb{C}^*,\ |G|=n,$ размерность всех неприводимых представлений равна $1\Rightarrow$

$$\mathbb{C}G = \bigoplus_{i=1}^{n} \langle e_i \rangle$$

1.24 Соотношение ортогональности

Пусть $f_1, f_2 \in \mathcal{F}(G)$

$$(f_1, f_2) = \frac{1}{n} \sum_{g \in G} \overline{f_1(g)} f_2(g)$$

Усилим результат теор. 21.1

Утверждение 24.1. Неприводимые характеры образуют ортонормированный базис в $\mathcal{F}(G)$.

 \square Рассмотрим $\chi_j(e_i)$

$$\chi_j(e_i) = \begin{cases} 0, i \neq j \\ 1, i = j, \end{cases}$$

Применим к обоим частям формулы 1.23.1 χ_i :

$$\chi_j(e_j) = \frac{r_i}{\sum_{g \in G}} \chi_i(g^{-1}) \chi_j(g),$$

тогда, воспользовавшись свойством $\mathbf{3}^{\circ}$,

$$(\chi_i, \chi_j) = \chi_j(e_j) = \begin{cases} 0, i \neq j \\ 1, i = j, \end{cases}$$

Следствие 24.1. По характеру χ_{ρ} можно восстановить ρ , с точностью до изоморфизма.

 $\chi_{\rho} = \sum_{j=1}^{s} (\chi_j, \chi_{\rho}) \chi_j \Rightarrow \rho = \bigoplus_{j=1}^{s} (\chi_j, \chi_{\rho}) \rho_j$

Легко видеть, что χ_{ρ} — неприводим \Leftrightarrow только один не нулевой коэффициент. Значит ρ — неприводимо \Leftrightarrow скалярный квадрат его характера равен 1.