Théorie des Langages Rationnels Minimizing Automata

Adrien Pommellet, LRE

April 6, 2023

The whole pipeline

Regular expressions	n symbols
\downarrow Thompson's algorithm	
arepsilon-NFA	···· 2n states
\downarrow Backward removal of $arepsilon$ -transitions	
NFA ·····	2n states
↓ Pruning procedure	
pruned NFA	$\leq 2n$ states
Determinization procedure	
DFA ·····	$\leq 2^{2n}$ states

A trade-off

Determinization creates an **exponential blow-up** of the number of states, trading a compact representation for computation speed.

Optimizing what can be optimized

The determinization procedure may not yield the **smallest possible** DFA for a given language. Consider these equivalent pruned automata:

An equivalence relation

Indistinguishable states

Two states q_1 and q_2 of a DFA \mathcal{A} are said to be **indistinguishable** if for any word $w \in \Sigma^*$, from $q_1 \mathcal{A}$ accepts w if and only if from $q_2 \mathcal{A}$ accepts w. We also write $\mathcal{L}_{a_1}(\mathcal{A}) = \mathcal{L}_{a_2}(\mathcal{A})$.

Intuitively, starting a run from q_1 or q_2 yields the same result.

An application to minimization

Our intuition is to regroup indistinguishable states in equivalence classes and fuse them together. Here, q_2 and q_3 accept the same language.

Yielding the following automata:

The main theorem

Our minimization algorithm is based on the following theorem:

Theorem (Myhill-Nerode)

Given a rational language L, there exists an unique DFA $\mathcal A$ with a minimal number of states (equal to L's number of indistinguishability classes) such that $\mathcal L(\mathcal A)=L$, known as L's **canonical** automaton.

Thus, to find the canonical DFA, we need to be able to **decide** the indistinguishability relation.

Proving indistinguishability

How can we prove indistinguishability when it's a property that applies to an infinite number of words?

It is much easier to prove **distinguishability**: if from q_1 we accept a word w (here, a) but from q_2 we do not, then q_1 and q_2 can't be fused.

A property of indistinguishable states

We will later use the following property:

Property

If two states p_1 and p_2 of a DFA \mathcal{A} are indistinguishable and $p_1 \stackrel{a}{\to} q_1$, $p_2 \stackrel{a}{\to} q_2$, then q_1 and q_2 are indistinguishable as well.

Proof. By contradiction: were q_1 and q_2 distinguished by a word w, then p_1 and p_2 would be distinguished by $a \cdot w$. But they're indistinguishable.

Practical Application

Exercise 1. Guess the indistinguishability classes of A.

Figure 1: The DFA \mathcal{A} .

10 / 24

Answer

Figure 2: The indistinguishability classes of A.

11/24

Sketching the method

We will use a **refinement** algorithm:

- 1 Start from a simplistic model.
- 2 Spot a mistake in the model.
- Refine the model to remove that mistake.
- 4 Iterate until there is no mistake left.

Implementing the method

The practical implementation is the following for a complete DFA:

- Claim that there are only two indistinguishability classes: the accepting states F and the non-accepting states $Q \setminus F$, distinguished by ε .
- 2 Check that if two states belong to the same class, their successors for a given letter do as well.
- Split the classes if it is not the case.
- 4 Iterate until the classes are stable.

An example I

Classes	а	Ь
{0,1,2,3,4}	01 lead to 2 3 4	1 0 3 24
{5}	1 2 3 4	2 3 4 5

An example II

Classes	a	Ь
{0,1,3} {2,4} {5}	01 3 1 3	1 0 3 2 3 4

An example III

Classes	а	b
{0}	0 1	0 3
{1,3}	1 3 1 3	1 3 2 4
{2,4}	2 4 2 4	24 5
{5 }	5 5	5 5

An example IV

Once a table without contradictions has been found, a **minimal** DFA can be designed: to each class we match a state, the **initial** class is the one that contains the original initial state, and any class that contains an accepting state is **accepting**.

Classes	a	b
$A = \{0\}$	1	3
$B = \{1, 3\}$	13	2
$C = \{2, 4\}$	2 4	5
$D = \{5\}$	5	5

A summary

- Use a **table** whose columns are labelled by the alphabet Σ and whoses lines by the indistinguishability classes.
- 2 Start with the two classes F and $Q \setminus F$.
- For each letter, explore the successors of each class, keeping a trace of which state lead to which successor.
- There's a conflict if two distinguishable states appear in the same cell.
- To solve it, the problematic class is split into subclasses.
- Iterate until no further conflict can be found.
- O Design a DFA based on the table.

Practical Application

Exercise 2. Minimize the automaton A.

Figure 3: The DFA \mathcal{A} .

19 / 24

Answer I

Classes	a	Ь
{0,3,5}	3 0 5	0 3 5
{1,2,4}	0 3 5	1 4 5

Answer II

Classes	а	b
{0,3}	3 0 0 3	0 3 1 4
{1,2,4}	2,4 ₁ ₂ ₅	
{5}		

Answer III

Classes	a	b
{0,3}	3 0 0 3	0 3 1 4
$\{1\}$		
$\{2,4\}$		
{5}		

Answer IV

Classes	a	b
{0}	3	0 1
{3}	3 0	3 4
{1}	1 5	1 2
{2,4}	24 2	24 5
{5 }	5 5	5 5

Answer V

Classes	a	b
$A = \{0\}$	3	1
$B = \{3\}$	0	4
$C = \{1\}$	5	2
$D = \{2, 4\}$	2	5
$E = \{5\}$	5	5

