fUML Refactoring with EMF*

Sebastian Geiger (1127054) and Kristof Meixner (9725208)

Business Informatics Group Vienna Technical University

Abstract. In this work we will present some ideas and concepts for the refactoring of fUML. The main contribution of this work is the extension of existing UML refactorings to cover not only the static aspect of UML such as class diagrams but to also include refactorings for dynamic parts such as activity diagrams. In this work we will present basic concepts for refactoring with EMF and show how model semantics can be preserved through the use of OCL constraints. In the remainder of the paper we then present our tool chain and the used technologies such as EMF and Ecore and how we used them for refactoring. We also present a discussion of EMF.Refactor, which shows how such refactorings can be made available in the Eclipse GUIs such as the EMF tree editor or Papyrus.

 $^{^\}star$ This work has been created in the context of the course "Advanced Model Engineering" (188.952) in SS14.

Table of Contents

	Introduction
	Motivation
3	Refactorings Examples
	Refactoring of fUML models
	Tool chain and implementation
	5.1 Model refactoring
	5.2 GUI Integration
	Related Works
7	Conclusion
Re	ferences 9

1 Introduction

Model-based software development or model-driven software development is not only an extensive field of research but gets also more and more attention from the industry side. Nowadays models are not only used as visual explanations of the underlying concepts but as source for the development process itself. Thus models need to provide an abstraction of the represented domains in a high quality. Mohagheghi et al. [11] discussed possible quality attributes of models in their work.

To represent formal models the OMG developed the UML [13] which by now advanced to an industry standard for modeling. With these common semantics enriched models can be preserved over time and even reused.

Nevertheless models might have to be revised over the lifecycle of the software. With todays trend to more agile software development such as eXtreme Programming [4] or Scrum [16] changes on models have to be even more efficient which brings refactoring of models into the focus of research.

Refactoring is a technique that originates from source code development but can also be applied to model engineering. The goal is to introduce behavior preserving changes [15] that increase the quality and understandability of the models.

While refactoring source code respectively textual code applies to a single type of representation in UML different representations of models exist as various diagram types. This makes behavior preserving refactoring even harder as it needs to span over those different types of diagrams and semantics.

To prove the correctness of models before and after refactoring different approachs exist. One is the static analysis of UML models via metrics and the attempt to find model smells [2] which can be done via OCL [12]. Another one is to verify that models can be executed and debugged in some way. The OMG introduced a subset of UML named fUML [14] which narrowly defines semantics for class and activity diagrams to make them executable. Further more in [9] Mayerhofer proposed a framework based on fUML that is able to execute and debug those models.

The goal of this work is to introduce refactorings for fUML models, examine the requirements for co-refactoring of the corresponding diagram types and define which co-changes have to be done to preserve the behavior. Our approach to prove the correctness of the models after refactoring is twofold. On the one hand we use pre- and postconditions [17] to define if the specific changes can be applied and that the models are semantically correct afterwards. On the other hand the models have to stay executable as well as traceable after the changes.

The rest of the work is structured as follows. In section 3 we give an overview over fUML and provide a motivating example of a model that is used throughout the paper. Section Y describes a selection of useful refactorings inspired by Fowler [6] and Markovic and Baar [8] and their effects on class diagrams as well as activity diagrams. In section Z we show which pre- and postcondition that are needed for the refactorings and how we refactor the models. In section AA we

describe the toolchain that we use to define the models, implement a set of refactorings and test them. Related work is covered in section AC and a conclusion is drawn to summarize the paper.

2 Motivation

fUML is an extension of UML which builds on a subset of UML classes with the purpose of adding semantics to UML models such that they can be executed on the model level. The dominant concept for this is the activity diagram. If a refactoring is performed on a UML model such as a class diagram, then any activity diagram which is releated to the class diagram, has to be checked and possibly changed as well. In section 4 we will present some examples of fUML activity diagrams and present the implications that result from changing class diagrams.

Since a refactoring changes the structure of a model it is important to ensure that all changes maintain the original semantics of the model. Violating this requirement can result in models with either a different behavior, or in models which can no longer be executed. To ensure semantic preservation, two main techniques can be used. First, the refactoring can be broken down into smaller steps, each of which either guarantees to preseve the semantics of the model or makes it easier to verify that this is the case. Second, logical constraints can be used to limit refactorings on models to only those cases where semantic preservation can be ensured. For this purpose pre- and postconditions are specified with OCL constraints. A refactoring is then only applied if the original model satisfies the precondition before the refactoring is applied and the postcondition after the refactoring has been completed. Such constrains must be individually specified for each kind of refactoring that is to be performed, as such a part of this paper will discuss different OCL constraints for the refactorings that we introduce.

In this paper we will present a set of refactorings and give examples of how each refactoring can be applied to a concrete model.

3 Refactorings Examples

This section covers some general refactorings of UML class diagrams. As the basis of these refactorings an example from the insurance domain is used. In the insurance business there are domain objects such as an insurance policy. Cars and trucks can be insured by adding them to the policy. There is an insurance company which has customers and employees and employees may purchase an insurance policy for one of their cars or trucks. Figure 1 shows a class diagram of such an insurance policy. This class diagram would benefit from several possible refactorings such as an extract superclass which can be applied to both Car and Truck to extract a Vehicle class. A simple extract class can be used on Insurance-Policy to extract the from and until dates into their own Insurance-Period class. As part of the extract superclass refactoring two additional refactorings namely

pull up attribute and pull up method are used to move the identical attributes and methods of both classes to the new superclass. As the attributes weight and registration are public, we can use encapsulate field to make them private and provide getter and setter implementations. Finally the method addCar can be renamed into addVehicle with rename method and the addTruck method can be removed with remove method.

Fig. 1. A car object that could benefit of extract class

For each of the methods in the *InsurancePolicy* and *Company* classes a separate activity diagram exists which defines the semantics of these methods. As some of them are quite similar we will present only the diagrams for addCar() in figure 3, sellPolicy(Customer, Car) 4 and calculatePremium() figure 2.

The activity for the addCar operation is rather simple. It takes a car as a parameter and uses the AddStructuralFeatureValueAction to add the car to the insurance policy. In comparison calculatePremium is more complex, it calculates the insurance premium as follows:

- Each insurance policy starts with a base fee of 50.
- For each car the number of passengers is multiplied by 5.
- The sum of multiplications for each car plus the base fee is the result.

Finally the activity for the sellPolicy operation works as follows. It creates a new object of type InsurancePolicy and adds the car to the policy and the policy to the customer using AddStructuralFeatureValueAction. Finally the policy price (the premium) is calculated and returned.

Fig. 2. Activity diagram for calculate premium method

4 Refactoring of fUML models

In the last section we presented some models and their related activity diagrams. We also presented some of the possible refactorings such as *extract superclass* or *extract class*. This section discusses how the models actually need to be transformed in order to realize the refactoring.

Every model has two kinds of syntaxes. The concrete syntax, which defines how the model looks like, and the abstract syntax, which defines the language elements and the grammar of the model. In order to refactor a model, we need to look at its abstract syntax and transform it according to the refactoring rules.

A refactoring takes several parameters to configure the parts of the model that change and how they change. For example the *extract superclass* refactoring takes two parameters, the new name of the extracted superclass as well as the list of classes that participate in the refactoring and which will receive the new class as their superclass.

In terms of the abstract syntax of these models, the two classes Car and Truck are instances of type class of the meta-model a superclass named Vehicle would be an instance of type Class as well, and can be associated with these two classes through the recursive attribute *superclass* of the class *Class* to create the inheritance hierarchy. In order to guarantee that the refactoring is possible, we must ensure that each class that participates in the refactoring does not already have a superclass.

Fig. 3. Add car activity diagram

Fig. 4. Actity diagram for sellPolicy.

In this section we will present some general refactorings such as the "extract superclass" refactoring. A list of example refactorings is presented in figure 5.

5 Tool chain and implementation

For our tool chain we have relied on the moliz¹ repository, mainly for the ability to execute the fUML models with a virtual machine. The models are stored in the XMI format and loaded with an EMF ResourceSet. The ResourceSet can be used to retrieve a Resource object through an URI, which is then used to access the different objects in the model (see figure 6). All elements contained in the

¹ source...

Extract class
Extract superclass
Rename Class
Rename Method
Rename Variable
Add / Remove Parameter
Encapsulate Field
Pull up attribute
Pull up operation
Pull up association end
Remove unused class

Fig. 5. Refactoring examples

model are instances of eCore (the implementant ation of the MOF meta-meta-model) and they represent classes of the UML meta-model, which is implemented with eCore.

Fig. 6. Loading a UML model into a resource set

The extract superclass pre- and postconditions are shown in figure for single and multiple inheritance respectively. 7.

These ocl constraints are checked by the refactoring for each class object that participates in the refactoring. An object to type OCL from the org.eclipse.ocl package is used to create and evaluate these queries as can be seen in figure ??.

5.1 Model refactoring

Describe our tool chain, how we created models, how we load them, what information of the abstract syntax we use for refactoring, etc.

```
1 Single Inheritance:
      pre: self.superClass->isEmpty() and
           self.owner.ownedElement
3
               ->select(class|class.oclIsTypeOf(Class))
4
               .oclAsType(Class).name
5
6
               ->forAll(o | o<>newSuperClass.name)
      post: self.superClass->size() = 1
9
  Multiple Inheritance:
     pre: self.owner.ownedElement
10
               ->select(class|class.oclIsTypeOf(Class))
               .oclAsType(Class).name
               ->forAll(o | o<>newSuperClass.name)
13
     post: self.general->contains(superClass)
14
```

Fig. 7. OCL pre and post conditions for extract superclass

Fig. 8. OCL validation in Java

5.2 GUI Integration

At the time of this writing our GUI integration is not finished, so we cannot describe it here. The idea is to use EMF.Refactor to add

6 Related Works

In this section we give an overview on the related work. Refactoring in a general way with preconditions was described by Opdyke [15] in his master thesis and stated more precisely by Roberts [17] who also introduced postconditions for refactorings. Fowler [6] generated an extensive yet simple to understand catalog of refactorings for Java and Ruby which can be be adapted to model refactorings.

Sunyé et. al. [18] described how several refactorings can be applied to *UML* diagrams and introduced OCL as a possibility to specify pre- and postconditions.

Gorp et al. [7] extends the discussion with the usage of OCL for additinal analysis such as code smells of models.

Despite of the further discussion of model refactoring ([5], [3], [1]) most authors concertate on static analysis and class diagram representations of models. Dynamic analysis of models by execution and debugging fUML models is discussed by Mayerhofer [9] and provides the basis for the approach discussed here. Mayerhofer et al. [10] furthermore introduce a runtime model and an implementation² that is capable to test the models and directly show impacts of refactorings.

Arendt and Taentzer [1] present a framework that is based on *Eclipse* and the *Eclipse Modelling Framework* which allows static model analysis and refactorings that are implemented in different languages (Java, OCL & Henshin) and can be directly extended in *Eclipse*.

7 Conclusion

We conclude this paper with...

² http://www.modelexecution.org

References

- ARENDT, T., AND TAENTZER, G. A tool environment for quality assurance based on the eclipse modeling framework. Autom. Softw. Eng. 20, 2 (2013), 141–184.
- ARENDT, T., TAENTZER, G., AND WEBER, A. Quality assurance of textual models within eclipse using ocl and model transformations. In OCL@MoDELS (2013), pp. 1–12.
- BAAR, T., AND MARKOVIC, S. A graphical approach to prove the semantic preservation of uml/ocl refactoring rules. In *Ershov Memorial Conference* (2006), pp. 70–83.
- BECK, K. Embracing change with extreme programming. IEEE Computer 32, 10 (1999), 70–77.
- CORREA, A. L., AND WERNER, C. M. L. Applying refactoring techniques to uml/ocl models. In *UML* (2004), pp. 173–187.
- FOWLER, M. Refactoring Improving the Design of Existing Code. AddisonWesley, July 1999.
- 7. Gorp, P., Stenten, H., Mens, T., and Demeyer, S. Towards automating source-consistent uml refactorings. In *UML 2003 The Unified Modeling Language*. *Modeling Languages and Applications*, P. Stevens, J. Whittle, and G. Booch, Eds., vol. 2863 of *Lecture Notes in Computer Science*. Springer Berlin Heidelberg, 2003, pp. 144–158.
- 8. Markovic, S., and Baar, T. Refactoring ocl annotated uml class diagrams. Software and System Modeling 7, 1 (2008), 25–47.
- 9. Mayerhofer, T. Testing and debugging uml models based on fuml. In *ICSE* (2012), pp. 1579–1582.
- 10. MAYERHOFER, T., LANGER, P., AND KAPPEL, G. A runtime model for fuml. In *Models@run.time* (2012), pp. 53–58.
- 11. Mohagheghi, P., Dehlen, V., and Neple, T. Definitions and approaches to model quality in model-based software development a review of literature. *Information & Software Technology* 51, 12 (2009), 1646–1669.
- 12. OMG. OMG Object Constraint Language, 2.3.1 ed. OMG, http://www.omg.org/spec/OCL/2.3.1, 01 2011.
- 13. OMG. OMG Unified Modeling Language, 2.4.1 ed. OMG, http://www.omg.org/spec/UML/2.4.1/, 05 2011.
- OMG. Semantics of a Foundational Subset for Executable UML Models, 1.1 ed. OMG, http://www.omg.org/spec/FUML/1.1, 08 2013.
- 15. Opdyke, W. F. Refactoring object-oriented frameworks. Master's thesis, University of Illinois, 1992.
- 16. RISING, L., AND JANOFF, N. S. The scrum software development process for small teams. *IEEE Software* 17, 4 (2000), 26–32.
- 17. Roberts, D. Practical analysis for refactoring. Master's thesis, University of Illinois, 1999.
- 18. Sunyé, G., Pollet, D., Traon, Y. L., and Jézéquel, J.-M. Refactoring uml models. In UML (2001), pp. 134–148.