Dados do Plano de Trabalho								
Título do Plano de Trabalho:	Estudo da Degradação de corantes via fotocatálise solar							
Modalidade de bolsa solicitada:	Remunerado							
	Estudo da degradação de corantes em águas de abastecimento e residuárias via fotocatálise solar.							

1. OBJETIVOS

✓ Construir um reator solar;

1.1.Objetivos específicos

- ✓ Construir um reator solar;
- ✓ Avaliar a degradação de corantes têxteis;
- ✓ Estudar o efeito dos parâmetros reacionais: pH, concentração inicial, fotocatalisador, vazão de reciclo, etc.
- ✓ Otimizar o tratamento tendo em vista a remoção do contaminante via análises espectrofotométricas.
- ✓ Determinar a cinética da reação, estimando-se, numericamente, as constantes das taxas de degradação;

2. METODOLOGIA

2.1. Construção do Reator

Para os estudos de degradação será utilizada a configuração mostrada na Figura 5. O primeiro protótipo desse tipo de reator foi desenvolvido na UNICAMP por Kondo (1990), estudado posteriormente por Hilgendorf et al. (1992) e examinado em detalhe por Nogueira (1995) e Nogueira e Jardim (1996). O reator consiste de uma placa de vidro recoberta com TiO₂ colocada em um suporte de madeira voltado para o equador com uma inclinação variável de acordo com a latitude, buscando a máxima absorção de energia.

Figura 5. Esquema do reator solar de leito fixo e filme delgado (Nogueira e Jardim, 1996).

Vários parâmetros de construção/operação foram estudados, dentre eles: a inclinação da placa, a intensidade luminosa, a vazão e a geometria do reator, parâmetros estes que alteram significativamente a espessura do filme líquido, a intensidade luminosa que chega ao sistema, o tempo de retenção e a saturação do catalisador, variando, portando, sua eficiência. O reator foi operado nos modos contínuo e de recirculação. A parte estrutural será enviada para construção em uma serralheria e a parte hidráulica será construída pelo bolsista e orientador.

2.2. Deposição do fotocatalisador

Inicialmente a placa de vidro foi devidamente limpa utilizando detergente e ácido nítrico 10%. Em seguida, foi preparado uma suspensão de TiO₂ (1%) e com um borrifador foram realizadas 10 aplicações na superfície do vidro jateado. Entre cada aplicação foi realizada a secagem utilizando um secador de cabelo (VILELA et al., 2012).

2.3. Estudo de degradação

Utilizando os efluentes e corantes selecionados, serão realizados experimentos de degradação durante o período de maior incidência solar (9h às 16h), retirando amostra em períodos regulares e enviados para análises. Com estes resultados serão otimizadas todas as principais variáveis.

3. CRONOGRAMA DE ATIVIDADES

O primeiro bolsista será responsável para construção do reator, e realização dos experimentos. As atividades a serem realizadas pelo estudante são:

ATIVIDADES	1° ANO											
	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12
Revisão bibliográfica												
Construção da parte estrutu-												
ral do reator												
Deposição do fotocatalisa-												
dor												
Construção da parte hidráu-												
lica do reator												
Testes de variavéis (vazão e												
inclinação)												
Redação do relatório parcial												
Testes de degradação com												
Corante												
Estudo do efeito dos parâ-												
metros reacionais no desem-												
penho do processo												
Otimização do processo												
Determinação da cinética da												
reação e estimativa das												
constantes de taxa												
Redação do relatório final												
Redação de artigos												

Obs.: M1, M2, M3, ... referem-se aos 12 meses de execução do projeto.