アルゴリズムとデータ構造⑥

~探索問題(二分探索木)~

鹿島久嗣

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

探索問題:

データ集合から所望の要素を見つける

- 探索問題は、データ集合から特定のデータを見つける問題
 - ーデータは「キー」と「内容」からなる
 - ―与えられたキーに一致するキーをもったデータを見つけ、 その内容を返す
- ■これは、二分探索木やハッシュ等によって実現可能

二分探索木

二分探索木:

データ集合から所望の要素を見つけるデータ構造

- ●各節点が key, left (左の子), right (右の子), p (親) をそれぞれ最大1つもつ二分木
- キーには順序がつけられる; 2つの節点x,yに対して key(x) = key(y), key(x) > key(y), key(x) < key(y) のいずれかが成り立つ
- キーは以下の条件を満たす:y ∈ xの左の子を根とする部分木y' ∈ xの右の子を根とする部分木

とすると $key(y) \le key(x) \le key(y')$ が成立

二分探索木の例:

二分探索木の条件を満たすことを確認

二分探索木を用いた探索: 木の高さに比例する時間で可能

- ■キーの満たす条件を用いてO(h)で発見(hは木の高さ)
- SEARCH(x,k): これを[x] =根]で呼ぶ; kは探したいkey if x = NULL または k = key(x) then xを返す if k < key(x) then SEARCH(left(x), k): 左にあるはず if k > key(x) then SEARCH(right(x), k): 右にあるはず
- SEARCH(x, k) の再帰を用いない表現 while $x \neq \text{NULL}$ または $k \neq \text{key}(x)$ if k < key(x) then $x \leftarrow \text{left}(x)$ else $x \leftarrow \text{right}(x)$ end while; xを返す

二分探索木からソート済み配列を取り出す: 中順での巡回による要素列挙

■ 二分探索木から、全てのキーを整列された順で出力できる

INORDER(x): 中順での巡回(これを x = 根 で呼ぶ) if xが葉 then key(x)を出力

else

この順序が重要

- ① INORDER(left(x)): x以下の要素が列挙される
- ② key(x)を出力
- ③ INORDER(right(x)): x以上が列挙 end if
- ■なお、最小(最大)の要素の発見は left (right) をたどることでO(h)で可能

前順・後順での巡回: 要素出力のタイミングによって異なる巡回順になる

- PREORDER(x):前順での巡回
 - ② key(x) を出力

 □ 要素を出力する タイミングに注意
 - ① PREORDER(left(x))
 - \bigcirc PREORDER(right(x))
- POSTORDER(x):後順での巡回
 - ① POSTORDER(left(x))
 - \bigcirc POSTORDER(right(x))
 - ② key(x)を出力
- ■出力の位置に注意(中順は①→②→③)

次節点·前節点: 次に小さい(大きい)要素を取り出す

- ■次節点(successor):中順で次の節点(=次に小さい)
- ■前節点(predecessor):中順でひとつ前の節点
- ■SUCCESSOR(x):次節点の発見 if right(x) \neq NULL then MININUM(right(x))

 $y \leftarrow parent(x)$

右の子がいるなら その右部分木の最小要素が次接点

while $y \neq \text{NULL}$ かつ x = right(y)

 $x \leftarrow y; y \leftarrow \operatorname{parent}(x)$

end while

*x*を返す

自分が親の左の子なら 親が次節点のはず

自分が親の右の子である限り 上にあがっていく

(親は自分より先に挙げられるはずなので 親は次節点ではない)

(中順では、親は自分の次に挙げられる)

二分探索木への新たな要素の挿入: 挿入は、実際に探索してみることでO(h)で実行可能

- ■探索と同様にkeyの比較で辿っていき、該当する節点がなくなった時にそこに入れる
- ■高さhの木ではO(h)時間かかる
- ■これを繰り返して二分探索木を構成可能
 - -ランダムな順で挿入すれば平均高さO(log n)
 - $\approx 1.39 \log n$
 - -最悪の場合には、高さn

二分探索木からの要素削除: 次節点(か前節点)で置き換える

- 3つの場合に分けて考える
- 1. 削除する節点zが葉のときは単に削除
- 2. zの子が1つの場合: zを削除して子をその位置に移動
- 3. zの子が2つの場合:

SUCCESSORの最初の場合

- I. zの次節点yを見つける(yはzの右の子孫の最小要素)
- II. yを削除して、zの位置にyを入れる

上記1 or 2

- yの子は高々1個(右の子)なのでyの削除は容易
- 子孫との大小関係が保たれていることに注意

平衡木

平衡木: バランスのとれた二分探索木

- 二分探索木をもちいた探索のコストは、根から所望の節点までの道のりの長さ (探索対象が見つからない場合には葉までの長さ)
- ■二分探索木が完全二分木に近い場合にはO(log n) しかし、バランスが悪いとコストがかかる場合がある
- 平衡木:木の高さ(根から葉までの道のりの長さ)が常にの(log n)であるような探索木
 - AVL木、赤黒木、スプレー木、B木、...

AVL木: バランスのとれた二分探索木

■どの節点についても、右の部分木と左の部分木の高さの差が最大1であるような二分探索木

https://ja.wikipedia.org/wiki/AVL%E6%9C%A8#/media/File:AVLtreef.svg

AVL木の性能:

最悪ケースで $O(\log n)$

- 2分木のなかで最も低いものは完全二分木(log n)
- いっぽう、もっとも高いものが最悪ケース
 - ■頂点数nをもつ二分木のなかで最も高いもの
 - ⇔ 高さhの二分木のうち、もっとも頂点数が少ないもの
 - -高さhのAVL木の最小の頂点数を N_h とすると

$$N_h = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{h+3} - \left(\frac{1-\sqrt{5}}{2} \right)^{h+3} \right) - 1 \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{h+3}$$
 (hが大のとき)
$$- つまり h = \frac{\log n}{\log\left(\frac{1+\sqrt{5}}{2}\right)} - 3 \approx 1.44 \log n$$
 (最良ケースの1.44倍)

-つまり
$$h = \frac{\log n}{\log(\frac{1+\sqrt{5}}{2})} - 3 \approx 1.44 \log n$$
 (最良ケースの1.44倍)

補足:

なるべくバランスの悪いAVL木をつくる

—高さhのAVL木の最小の頂点数を N_h とすると $N_h = N_{h-1} + N_{h-2} + 1$

$$-f_h = N_h + 1$$
とすれば $f_h = f_{h-1} + f_{h-2}$ (フィボナッチ数列)

-フィボナッチ数列の解:

$$f_h = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{h+3} - \left(\frac{1 - \sqrt{5}}{2} \right)^{h+3} \right)$$