Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 14: Raggiungibilità e controllabilità a tempo discreto (parte 2)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021

In questa lezione

- ▶ Sistemi non raggiungibili: forma di Kalman
- ▶ Test PBH di raggiungibilità
- ▶ Controllabilità di sistemi lineari a t.d.

Spazi raggiungibili: interpretazione geometrica

Definizione: Data una $F \in \mathbb{R}^{n \times n}$, uno spazio vettoriale W si dice F-invariante se

$$\forall v \in W \implies Fv \in W$$
.

Proprietà: Lo spazio raggiungibile X_R è F-invariante e contiene im(G).

Forma canonica di Kalman (o forma standard di raggiungibilità)

 Σ non raggiungibile \implies rank $(\mathcal{R}) = k < n$

Obiettivo: costruire un cambio di base *T* in modo da "separare" la parte raggiungibile del sistema da quella non raggiungibile!

$$T = \begin{bmatrix} v_1 & \cdots & v_k & \tilde{v}_1 & \cdots & \tilde{v}_{n-k} \end{bmatrix}, \quad X_R = \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

$$\forall v \in X_R, \ w = Fv \in X_R \implies \underbrace{\begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}}_{T^{-1}FT} \underbrace{\begin{bmatrix} v^{(1)} \\ 0 \end{bmatrix}}_{v} = \underbrace{\begin{bmatrix} w^{(1)} \\ 0 \end{bmatrix}}_{w}, \ \forall v^{(1)} \implies F_{21} = 0$$

$$\operatorname{im}(G) \subseteq X_R \implies \underbrace{\begin{bmatrix} G_1 \\ G_2 \end{bmatrix}}_{T^{-1}G}, \ G_2 = 0$$

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021

5 / 17

Forma canonica di Kalman (o forma standard di raggiungibilità)

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_R(t+1) = F_{11}x_R(t) + F_{12}x_{NR}(t) + G_1u(t)$$
: sottosistema raggiungibile

$$x_{NR}(t+1) = F_{22}x_{NR}(t)$$
: sottosistema non raggiungibile

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021

Forma canonica di Kalman (o forma standard di raggiungibilità)

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\mathcal{R}_K = T^{-1}\mathcal{R} = \begin{bmatrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\operatorname{\mathsf{rank}}(\mathcal{R}_K) = \operatorname{\mathsf{rank}}\left(\left[egin{matrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \end{smallmatrix} \right] \right) = k$$

Esempi

1.
$$F = \begin{bmatrix} 2 & 1 & \frac{1}{2} \\ 0 & 2 & 4 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 \\ 1 \\ \hline 0 \end{bmatrix}$ \Longrightarrow sistema in forma di Kalman con $F_{11} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$, $G_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

2.
$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 1 \\ 1 \\ \hline 0 \end{bmatrix}$ \implies sistema **non** in forma di Kalman

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021

7 / 17

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021

Forma canonica di Kalman e matrice di trasferimento

$$F_{K} \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_{K} \triangleq T^{-1}G = \begin{bmatrix} G_{1} \\ 0 \end{bmatrix}, \quad H_{K} \triangleq HT = \begin{bmatrix} H_{1} & H_{2} \end{bmatrix}$$

$$W(z) = H(zI - F)^{-1}G + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} zI - F_{11} & -F_{12} \\ 0 & zI - F_{22} \end{bmatrix}^{-1} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} (zI - F_{11})^{-1} & \star \\ 0 & (zI - F_{22})^{-1} \end{bmatrix} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= H_{1}(zI - F_{11})^{-1}G_{1} + J$$

W(z) = matrice di trasferimento del sottosistema raggiungibile!!

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021 9 / 17

Test di Popov, Belevitch e Hautus (PBH)

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è raggiungibile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno (rank $[zI - F \ G] = n$) per ogni $z \in \mathbb{C}$.

Se Σ non è raggiungibile, la matrice PBH di raggiungibilità ha rango non pieno (rank[zI-F G] < n) per tutti e soli gli $z\in\mathbb{C}$ che sono autovalori di F_{22} (= matrice di stato del sottosistema non raggiungibile di Σ).

N.B. Essendo gli autovalori di F_{22} un sottoinsieme degli autovalori di F, il rango della matrice PBH può essere valutato solo per gli z che sono autovalori di F!

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021 10 /

Esempi

1.
$$F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ \implies raggiungibile

2.
$$F = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ \Longrightarrow non raggiungibile

Controllabilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t), x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$0 = x(t) = F^{t}x_{0} + \sum_{k=0}^{t-1} F^{t-k-1}Gu(k) = F^{t}x_{0} + \mathcal{R}_{t}u_{t}$$

Insieme di stati x_0 controllabili al tempo t (= in t passi) allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati $x_0 \in \mathbb{R}^n$?

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

Spazio controllabile

 $X_C(t) = \text{spazio controllabile in } t \text{ passi} = \{x \in \mathbb{R}^n : F^t x \in \text{im}(\mathcal{R}_t)\}$

Teorema: Gli spazi di controllabilità soddisfano:

$$X_C(1) \subseteq X_C(2) \subseteq X_C(3) \subseteq \cdots$$

Inoltre, esiste un primo intero $i \leq n$ tale che

$$X_C(i) = X_C(j), \forall j \geq i.$$

i = indice di controllabilità

 $X_C \triangleq X_C(i) =$ (massimo) spazio controllabile

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021

Criterio di controllabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$, con t indice di controllabilità.

$$\Sigma$$
 controllabile \iff im $(F^n) \subseteq$ im $(\mathcal{R}) = X_R$

 Σ raggiungibile $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$ controllabile

 Σ controllabile $\not\Rightarrow$ Σ raggiungibile !!!

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021 14

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \implies \text{non raggiungibile } \forall \alpha_1, \alpha_2 \text{ ma controllabile se } \alpha_1 = 0$$

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \implies \text{raggiungibile e quindi controllabile}$$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 \implies non raggiungibile ma controllabile (in 2 passi)

Controllabilità e forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_{NR}(t) = F_{22}^t x_{NR}(0)$$

- 1. Σ controllabile $\iff \exists \bar{t} : F_{22}^t = 0, t \geq \bar{t} \Leftrightarrow F_{22}$ nilpotente (autovalori di $F_{22} = 0$)
- **2.** $X_R \subseteq X_C$ e $X_R = X_C$ se F_{22} invertibile
- **3.** Σ reversibile (= F invertibile) $\Longrightarrow F_{22}$ invertibile $\Longrightarrow X_R = X_C$

G. Baggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021

15 / 17

ggio

Lez. 14: Raggiungibilità e controllabilità a t.d. (pt. 2)

25 Marzo 2021

Test PBH di controllabilità

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è controllabile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno (rank $[zI-F \ G]=n$) per ogni $z\in\mathbb{C}$ con $z\neq 0$.

