VLSI Devices Lecture 10

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

State-of-the-art

- Multi-stacked nanosheet
 - -Three stacks
 - Inner spacers (Not shown)

Gate (Shared by three nanosheets)

Schematic of channel region (Planar)

- x = 0 at silicon surface
 - -y = 0 at the source and y = L at the drain
 - Source and substrate are grounded.
 - Uniform p-type substrate

Gradual channel approximation (GCA)

• Variation of the electric field in the y-direction is much less than the corresponding variation in the x-direction.

$$\left| \frac{\partial^2 \phi}{\partial x^2} \right| \gg \left| \frac{\partial^2 \phi}{\partial y^2} \right|$$

Poisson equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\frac{q}{\epsilon_{si}} [p(x, y) - n(x, y) - N_a]$$

- Poisson equation under the GCA

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\epsilon_{si}} [p(x,y) - n(x,y) - N_a]$$
 Taur, Eq. (2.175)

Electron quasi-Fermi potential, V(y) as ϕ_n in Taur,

It was written Eq. (2.61).

- It is assumed that V is independent of x.
 - Why? MOSFET current flows predominantly along the y-direction.
 - -Since $\mathbf{J}_n = -q\mu_n n \nabla \phi_n$, V varies mainly along the y-direction.
 - Boundary conditions:

$$V(y = 0) = V_S = 0$$

 $V(y = L) = V_d = V_{dS}$

• Electron density, n(x, y)

$$n(x,y) = \frac{n_i^2}{N_a} \exp\left(\frac{q}{k_B T} (\phi - V)\right)$$

Taur, Eq. (3.1)

5

Still, ϕ_R is the reference value.

Our previous expressions (1)

- They are modified by V. (Only terms related with the electron density)
 - Electric field

$$\begin{split} E_{x}^{2}(x,y) &= \left(\frac{d\phi}{dx}\right)^{2} \\ &= \frac{2k_{B}TN_{a}}{\epsilon_{si}} \left[\left(\exp\left(-\frac{q\phi}{k_{B}T}\right) + \frac{q\phi}{k_{B}T} - 1\right) \right. \\ &\left. + \frac{n_{i}^{2}}{N_{a}^{2}} \left(\exp\left(-\frac{qV}{k_{B}T}\right) \left(\exp\left(\frac{q\phi}{k_{B}T}\right) - 1\right) - \frac{q\phi}{k_{B}T} \right) \right] \text{ Taur, Eq. (3.2)} \end{split}$$

Our previous expressions (2)

- They are modified by V. (Only terms related with the electron density)
 - Surface inversion

$$\phi(0,y) = V(y) + 2\phi_B$$
 Taur, Eq. (3.3)

Maximum depletion layer width

$$W_{dm} = \sqrt{\frac{2\epsilon_{si}[V(y) + 2\phi_B]}{qN_a}}$$
 Taur, Eq. (3.4)

• Summary: With the GCA, our MOS expressions are re-used only with modification by V.

Drain current

• Electron current density at a point
$$(x, y)$$

$$J_n(x, y) = -q\mu_n n(x, y) \frac{dV}{dy}$$

 $\mathbf{J}_n = -q\mu_n n \nabla \phi_n$

Taur, Eq. (3.5)

- (It includes both the drift and diffusion currents.)

– When integrated from
$$x=0$$
 to x_i , (and from $z=0$ to W)
$$I_d(y) = qW \int_0^{x_i} \mu_n n(x,y) \frac{dV}{dy} dx \qquad \text{Taur, Eq. (3.6)}$$

Sign change due to convention of terminal current

z-directional width

Further simplification

• Electron current density at a point (x, y)

$$I_{d}(y) = qW \int_{0}^{x_{i}} \mu_{n} n(x, y) \frac{dV}{dy} dx = -\mu_{eff} W \frac{dV}{dy} \left(-q \int_{0}^{x_{i}} n(x, y) dx \right)$$

$$= -\mu_{eff} W \frac{dV}{dy} Q_{i}(y)$$
Taur, Eq. (3.8)

- We introduce an effective mobility, μ_{eff} .
- -Since V is a function of y only, V is interchangeable with y.

$$Q_i(y) = Q_i(V)$$

-Then,

$$I_d(y)dy = \mu_{eff}W[-Q_i(V)]dV$$

$I_d(y)$ is actually a constant.

• When integrated from y=0 to L, (from V=0 to V_{ds})

$$I_d = \mu_{eff} \frac{W}{L} \int_0^{V_{ds}} [-Q_i(V)] dV$$
 Taur, Eq. (3.10)

-Then, how can we find $Q_i(V)$? (We must perform the x-directional integration.)

egration.)
$$Q_{i} = -q \int_{0}^{x_{i}} n(x,y) dx = -q \int_{\phi_{s}}^{\delta} \frac{dx}{d\phi} d\phi \qquad \text{but not zero.}$$

$$= -q \int_{\delta}^{\phi_{s}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V)\right)}{E_{x}(\phi, V)} d\phi \qquad \text{Taur, Eq. (3.12)}$$

Pao-Sah double integral

ullet Finally, the expression for I_d reads

$$I_{d} = q\mu_{eff} \frac{W}{L} \int_{0}^{V_{ds}} \left[\int_{\delta}^{\phi_{s}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V)\right)}{E_{x}(\phi, V)} d\phi \right] dV$$

Taur, Eq. (3.13)

- It is the Pao-Sah double integral.
- Rigorous within the GCA, but it is difficult to evaluate.

How can we determine ϕ_s ?

• For given
$$V_{gs}$$
 and V , we can solve the MOS equation.
$$V_{gs} = V_{fb} + \phi_s - \frac{Q_s}{C_{ox}}$$

$$= V_{fb} + \phi_s + \frac{\sqrt{2\epsilon_{si}k_BTN_a}}{C_{ox}} \left[\frac{q\phi_s}{k_BT} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q}{k_BT}(\phi_s - V)\right) \right]^{1/2}$$
 Taur, Eq. (3.14)

Only two important terms are kept.

– We can numerically solve the above equation to obtain ϕ_s . (Newton method)

Write a code. (1)

- Calculate I_d at V_{ds} = 1.1 V and V_{ds} = 0.5 V.
 - We follow the Riemann sum approach.
 - -Then, let's introduce 101 V values, from 0 V to 0.5 V. (5 my spacing)

$$I_{d} \approx q \mu_{eff} \frac{W}{L} \sum_{j=0}^{100} \left[\int_{\delta}^{\phi_{S}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V_{j})\right)}{E_{x}(\phi, V_{j})} d\phi \right] \Delta V_{j}$$

- When j = 0 or j = 100, ΔV_j is 2.5 mV.
- Otherwise, ΔV_j is 5 mV.
- -Use $q\mu_{eff} \frac{W}{L}$ = 4.8 X 10⁻¹⁷ A cm² V⁻¹.

Write a code. (2)

Test the integral.

- Assume that
$$\left[\int_{\delta}^{\phi_{S}} \frac{(n_{i}^{2}/N_{a}) \exp\left(\frac{q}{k_{B}T}(\phi - V_{j})\right)}{E_{x}(\phi, V_{j})} d\phi \right] = 1 \text{ cm}^{-2}$$

- -Then, the integral shoud be 2.4 X 10⁻¹⁷ A.
- Check your code.

2.399999999999955e-17

Write a code. (3)

• Now, we must perform the ϕ -integral.

$$\int_{\delta}^{\phi_{S}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V_{j})\right)}{E_{x}(\phi, V_{j})} d\phi$$

- We must know two bounds, δ and ϕ_s .
- We can set a small value for δ . (It doesn't matter. $\delta = V_j + 1$ mV, for example)
- However, ϕ_s is not easy to evaluate. (We must adopt the Newton method.)
- Instead, an approximate value for ϕ_s will be used.

Write a code. (4)

• The ϕ -integral is approximated as

$$\int_{\delta}^{\phi_{S}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V_{j})\right)}{E_{x}(\phi, V_{j})} d\phi$$

$$\approx \sum_{k=1}^{k_{S}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(k \text{ mV})\right)}{E_{x}(V_{j} + k \text{ mV}, V_{j})} \times 1 \text{mV}$$

- Here, $V_j + k_s$ mV is a good approximation of ϕ_s .
- Parameters: V_{fb} is -1.08 V. C_{ox} is 2.88X10⁻⁶ F/cm². (t_{ox} is 1.2 nm.) N_a is 10^{18} cm⁻³.

Write a code. (5)

• A specific example, when V_i is 0 V.

 $-\operatorname{Draw}\frac{\left(n_i^2/N_a\right)\exp\left(\frac{q}{k_BT}(\phi-V_j)\right)}{E_{\chi}(\phi,V_j)} \text{ as a function of } \phi.$

– Stopped when the MOS equation changes its sign. (Approximate ϕ_s) – Integrated electron density is about 1.517 X 10^{13} cm⁻².

Approximate ϕ_{ς}

Write a code. (6)

- Integrand of the V-integral
 - By integrating it, we can find I_d = 252.8 μ A.
 - Instead of 1 mV, we can try an even finer ϕ spacing.
 - With 0.2 mV, I_d = 252.9 μ A.

Thank you!