Word Embeddings for Political Science

Text Analysis

What are Word Embeddings?

D1: The cat jumps over the dog

D2: The kitten hops ovqer the hound

D3: Die Katze springt über den Hund

	the	cat	jump	over	dog	kitten	ovqer	hound	die	katze	springt	über	den	hund
D1	2	1	1	1	1	0	0	0	0	0	0	0	0	0
D2	2	0	0	0	0	1	1	1	0	0	0	0	0	0
D3	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Word Representations

- Each word is represented by its unique character sequence
- Spatial: dist(dog, hound) = dist(dog, cat) = dist(dog, stone) = ?

Word Representations

- Each word is represented by its unique character sequence
- Spatial: dist(dog, hound) = dist(dog, cat) = dist(dog, stone)
- Embeddings give each word a location in a space:

```
dog = [x, y] dog cat
hound = [z, w] hound
```

Word Representations

- Each word is represented by its unique character sequence
- Spatial: dist(dog, hound) = dist(dog, cat) = dist(dog, stone)
- Embeddings give each word a location in a space:

||dog - cat|| < ||dog - stone||

How to get them

- "A word is characterized by the company it keeps" (Firth 1957)
 - Factor analysis (documents)
 - Topic Models (documents)
 - Neural Networks (sliding window)
 - Other Dimension reduction techniques

Shallow neural networks allow for training on gigantic corpora. E.g. all of Google News or all of Wikipedia -> Good representation of 'general meaning' of words (Mikolov et al. 2013).

Document Embeddings

D1: The cat jumped over the dog

D2: The kitten hopped across the hound

D3: Die Katze springt über den Hund

	x	у	
D1	1.34	5	
D2	4.34	4.5	
D3	4.2	1.6	

Political Science Text Analysis

What we could use it for right away:

- Short documents (open ended survey answers, twitter posts, sentences, etc.)
- Transfer trained models between languages (e.g. comparative: use models trained on rich american politics data for other countries)
- Improve text sequence alignments (e.g. Smith Waterman Algorithm)

What is lacking:

- Statistical modeling of location in semantic spaces (e.g. identify significant change in location, model trajectories of words and documents, etc.)

Dissertation Outline

Introducing Word Embeddings

- a. Introduction
- b. Innovations/Addons
 - i. (Visual) Interpretation (unsupervised)
 - ii. Machine learning interpretation (supervised)

2. Political Science Application Application

- a. Short document classification (CAPR Poll, Twitter, Comparative Manifesto Data)
- b. Automatic text processing in multiple languages (Comparative Manifesto Project, Congressional Bill Project)

3. Methodological Development

- a. Spatial statistics of semantic spaces
 - i. Detect significant spatial differences between documents
 - ii. Detect movement of words