Lattice-Based Zero-Knowledge Proofs: New Techniques for Shorter and Faster Constructions and Applications

Muhammed F. Esgin, <u>Ron Steinfeld</u>, Joseph K. Liu, and Dongxi Liu *Monash University and Data61, CSIRO*Faculty of IT

Monash University

Outline

- Background: Efficient Zero-Knowledge Proofs (ZKPs) for linear relations
 - Schnorr proof ZKP of knowledge of discrete-log
 - Lattice analogue of DL: Module-RingSIS / Module-RingLWE
 - Difficulties and solutions in porting DL-based to lattice-based proof
 - Lyubahsevky proof of knowledge of Module-Ring-LWE witness [Lyu12]
- Our new techniques: Efficient Lattice-based ZKPs for `non-linear' relations of degree k > 1
 - Framework for ZKPs for non-linear relation of degree k > 1
 - Issues in porting DL-based to lattice-based proofs in non-linear setting
 - Our `one-shot' (short proof) soundness analysis technique: adjugate matrices
 - Application: Commitments of Bits Proofs
 - Speed-up technique 1: Extraction with large challenges and NTT-friendly rings
 - Application: One-of-Many Proofs
 - Application: anonymous authentication -- Ring Signatures
 - Application: Integer Range Proofs
 - Speed-up technique 2: CRT-packing technique supporting inter-slot operations
 - Improves run-time by packing factor s

Properties:

witness

- 1) Completeness
- 2) Soundness
- 3) Zero-Knowledge

- 1) Completeness
- 2) Soundness
- 3) Zero-Knowledge

- 1) Completeness
- 2) Soundness
- 3) Zero-Knowledge

- 1) Completeness
- 2) Soundness
- 3) Zero-Knowledge

Properties:

- 1) Completeness
- 2) Soundness
- 3) Zero-Knowledge

We work in particular with Sigma protocols.

Easily made non-interactive using Fiat-Shamir heuristic.

Background: Types of ZKPs in Lattice-Based Crypto

- Two main types of ZK Proofs investigated in lattice-based crypto:
 - "Combinatorial" type (aka `Stern-type' [St96] ZK proofs) :
 - Verifier challenge chosen from a very small set (of size typically 3)
 - Different prover response algorithm explicitly specified for each possible challenge
 - Pro: Very powerful can be adapted to prove complex relations (e.g. [BLNW18])
 - Con: long/slow proofs: Many protocol repeats needed for high soundness level
 - "Algebraic" type (aka `Schnorr-type' [Sch89] ZK proofs) :
 - Verifier challenge can be chosen from a huge set (of size $> 2^{\lambda}$ for security parameter λ)
 - Prover response algorithm is an algebraic function of the verifier's challenge
 - Pro: can achieve short/fast proofs: `one-shot' challenge may be possible
 - Cons:
 - More limited in types of proofs so far achievable efficiently
 - May prove "approximate" (relaxed) relations rather than exact relations

Our focus in this talk

Classical ZKP 1: Schnorr proof ZKP of knowledge of discrete-log

Setup of Schnorr's ZKP of Knowledge of Discrete Log [Sch89]:

- Works in a cyclic multiplicative group G = <g>= {1,g¹,g²,...,g^{q-1}}
 - where Discrete-Logarithm (DL) problem is hard
- Fixed public generator g ∈ G for G
- Denote order (size) of G by q (assumed prime).
- Prover's Discrete-Log private-key (witness): $s \leftarrow U(Z_q)$.
- Prover's public-key (common input): $h = g^s \in G$.
- Write h = Com(s).
 - Com is homomorphic from Z_q to G: Com(s + t) = Com(s) · Com(t)

Classical ZKP 1: Schnorr proof ZKP of knowledge of discrete-log

Correctness: homomorphic property of Com

$$Com(f) = Com(u + x \cdot s) = Com(u) \cdot Com(s)^x$$

Soundness (2-special soundness): prover succeeds with prob > $1/|ChSet| \rightarrow prover knows a valid opening (DL) of <math>A_1$

• Given commitment A_0 , from **two** distinct successful challenge response pair pairs (x,f), (x',f'), extract witness s'

$$A_0 \cdot A_1^x \stackrel{?}{=} Com(f)$$

$$A_0 \cdot A_1^{x} = \operatorname{Com}(f)$$

$$A_0 \cdot A_1^{x'} = \operatorname{Com}(f')$$

$$A_1 = \operatorname{Com}(\frac{f - f'}{x - x'})_0$$

Classical ZKP 1: Schnorr proof ZKP of knowledge of discrete-log

Honest-Verifier Zero-Knowledge (HVZK): An honest verified can efficiently simulate a proof transcript without the prover's witness!

Transcript Simulator, given A_1 :

.
$$x \leftarrow \mathsf{CSet} = \mathbb{Z}_q$$

$$f \leftarrow \mathbb{Z}_q$$

$$A_0 \stackrel{?}{=} Com(\mathbf{f}) \cdot A_1^{-x}$$

$$A_0 \cdot A_1^{\alpha} \stackrel{?}{=} Com(\mathbf{f})$$

Application 1: Digital Signatures [Sch91]

- Fiat-Shamir Transformation: Generic conversion of an interactive ZK Sigma (3-move) proof to a non-interactive digital signature
 - Idea:
 - Prover uses a cryptographic one-way hash function H to generate challenge by hashing his protocol commitment A_0 and the signed message m
 - $x = H(A_0, m)$
- > Schnorr digital signature (similar to Digital Signature Standard, DSS):
 - **KG**: sk = s, $A_1 = Com(s)$
 - Sign(s, m) = (x,f)
 - $A_0 = Com(u)$
 - $x = H(A_0, m)$
 - $f = r + x \cdot s$
 - **Ver**(m,(x,f),pk):
 - $A_0 = Com(\mathbf{f}) \cdot A_1^{-x}$
 - $x \stackrel{?}{=} H(A_0, m)$

Lattice analogue of DL Problem:

Module-RingSIS / Module-RingLWE Problems

Structured lattice Setup:

- Work over a polynomial ring $R_q = \mathbb{Z}_q[x]/(x^d+1)$ for integer q
- Fixed public uniformly random matrix $A \subseteq R_q^{n \times m}$
- Conjectured-Hard Lattice problems
- Module-Ring-SIS $_{n,m,q,\beta}$ Problem:
 - Given $A \in R_q^{n \times m}$, find 'short' $v \in R_q^m$ ($||v|| \le \beta$) s.t. $A \cdot v = 0$

- Best known attacks take time 2^{λ} if
- $dn \ge \Omega(\lambda \cdot \frac{\log^2 \beta}{\log q})$, $\beta < q$ (SIS)
- $d(m-n) \ge \Omega(\lambda \cdot \frac{\log^2 \alpha^{-1}}{\log q}), \alpha^{-1} > 1$ (LWE)
- \rightarrow Balanced with $m=2n, \beta=\alpha^{-1}$

Hardness decreases with $\beta \rightarrow$ aim to minimize extracted witness norm in ZKPs!

- Module-Ring-LWE_{n,m,q,α} Problem:
 - Given $A \in R_q^{n \times m}$, and $t = A \cdot s \in R_q^n$ for a `short' $s \in R_q^m$ ($||s|| \le \alpha \ q \ \sqrt{m}$), find s (search-LWE) or distinguish t from uniform in R_q^n (decision-LWE)
- → Typical Prover's private-key (witness): `short' $s \leftarrow U([-B, B]^{n \times m}) = \text{RandSet}^{-1}$
- → Typical Prover's public-key (common input): $t = A \cdot s \in R_q^n$
- Write t = Com(s)
 - Com is homomorphic from Dom_s to R_q^n : Com(s + t) = Com(s) + Com(t)

Many SIS solutions /
Unique LWE solution with

$$m = 2n, \beta = \alpha^{-1} \ge \sqrt{dm} \cdot q^{1/2}$$

Lattice ZKP 1 Lattice-analogue of Schnorr ZKP 'Attempt 1'

Prover

Correctness: homomorphic property of Com

 $Com(f) = Com(u + x \cdot s) = Com(u) \cdot Com(s)^x$

Soundness (2-special soundness): prover succeeds with prob > $1/|ChSet| \rightarrow prover knows a valid opening of <math>A_1$

• Given commitment A_0 , from **two** distinct successful challenge response pair pairs (x,f), (x',f'), extract witness s'

Verifier

$$A_0 + x \cdot A_1 \stackrel{?}{=} Com(f)$$

 $||f||? < B' + max_{x,s}||x \cdot s||_{\infty}$

$$A_0 + x \cdot A_1 = \text{Com}(f)$$

$$A_0 + x' \cdot A_1 = \text{Com}(f')$$

$$A_1 = \text{Com}(\frac{f - f'}{g})$$

Difficulties & Solutions in porting DL-based to lattice-based ZK Proof

But, 'Attempt 1' does not quite work...

Issues with `Attempt 1':

1. Zero-Knowledge Property is not satisfied:

- Domain SSet and RSet for secrets s and u is `short' interval [-B,B] (< q)
 - Needed for hardness of the LWE/SIS lattice problems
 - Challenges x in ChallSet have to be `short' for same reason
- Prover's response value $f = u + x \cdot s$ leaks info. on secret $s : \mathbb{E}[f] = x \cdot s$

Difficulties & Solutions in porting DL-based to lattice-based ZK Proof

Main Issues with `Attempt 1':

- 1. Zero-Knowledge Property is not satisfied:
- Solution ([Lyu09,Lyu12]): Rejection sampling
 - Restart protocol with fresh u (and x) until f is independent of s, $\mathbb{E}[f] = 0$

Acceptance probability

$$p = (1 - \frac{|Bx|}{B'})^{md} = \Omega(1) \text{ if}$$

$$\frac{B'}{|Bx|} = O(md)$$

Masking size linear in dimension.

Using discrete Gaussian (instead of uniform) distribution for u can reduce masking size [Lyu12].

Porting DL-based to lattice-based ZK Proof

Main Issues with `Attempt 1':

2. Soundness Property is not satisfied

• Problem: extracted witness $s' = \frac{f - f'}{x - x'} \in R_q$ $A_1 = \text{Com}(\frac{f - f'}{x - x'})$

$$A_0 + x \cdot A_1 = \text{Com}(f)$$

$$A_0 + x' \cdot A_1 = \text{Com}(f')$$

$$A_1 = \text{Com}(\frac{f - f'}{x - x'})$$

- s' may not be `short' (<<q) > not in valid (secure) `short' Com domain
 - Issue: $(x x')^{-1}$ in R_q is usually not short in when x x' is short

Solutions

- Solution 1 (special challenges efficiency compromise) [L+14,L+19]:
 - Use a special challenge space CSet $\subseteq R_q$ such that $(x x')^{-1}$ is `short' for all $x \neq x'$ in CSet
 - But, largest such challenge space known is small (size $2d = O(\lambda)$)
 - Low efficiency: Many protocol repeats needed for high soundness level
- Solution 2 (approximate relations functionality compromise) [Lyu09,Lyu12]:
 - Prove knowledge of witness (c',s') to approximate relation $c' \cdot A_1 = \operatorname{Com}(s')$
 - c' is the `approximation' factor (must be `short' but not 1 as in exact relation)
 - ZK proof application must work securely with approximate proof

$$(x - x') \cdot A_1 = \operatorname{Com}(f - f')$$

Lattice ZKP 1 Lattice-analogue of Schnorr ZKP `Fixed Proof' idea (a-la [Lyu12])

Correctness: homomorphic property of Com

 $Com(f) = Com(u + x \cdot s) = Com(u) \cdot Com(s)^{x}$

Soundness (2-special soundness): prover succeeds with prob > $1/|ChSet| \rightarrow prover knows a valid opening of <math>A_1$

Given commitment A₀, from **two** distinct successful challenge response pair pairs (x,f), (x',f'), extract witness s'

Verifier

$$A_0 + x \cdot A_1 \stackrel{?}{=} \operatorname{Com}(\mathbf{f})$$

$$\|f\| ? < B' - \max_{x,s} \|x \cdot s\|_{\infty}$$

$$\begin{pmatrix}
A_0 + x \cdot A_1 &= \operatorname{Com}(f) \\
A_0 + x' \cdot A_1 &= \operatorname{Com}(f')_{s'} \\
(x - x') \cdot A_1 &= \operatorname{Com}(f - f')
\end{pmatrix}$$

Relaxation factor

Lattice ZKP 1 Lattice-analogue of Schnorr ZKP 'Fixed Proof' idea (a-la [Lyu12])

Honest-Verifier Zero-Knowledge (HVZK): An honest verified can efficiently simulate a proof transcript without the prover's witness!

Accepted Transcript Simulator, given A_1 :

.
$$x$$
 ← CSet ⊆ R_q

$$A_0 + x \cdot A_1 \stackrel{?}{=} Com(f)$$

.
$$f \leftarrow AccSet = \left[-(B' - max_{x,s} || x \cdot s||_{\infty}), (B' - max_{x,s} || x \cdot s||_{\infty})\right]^{dm}$$

$$A_0 = \text{Com}(f) - x \cdot A_1$$

Application 1: Digital Signatures [Lyu12,L17+]

- Lyubashevsky digital signature idea [variant of Lyu12]
 - KG: sk = s, A₁ = Com(s)
 Sign(s, m) = (x,f)

 A₀ = Com(u)
 x = H(A₀,m) ∈ {0,1}^d
 f = u + x·s Restart if ||f||_∞ > B' max_{x,s}||x·s||_∞.
 - **Ver**(m,(x,f),pk):
 - $A_0 = \operatorname{Com}(\mathbf{f}) x \cdot A_1$
 - $x \stackrel{?}{=} H(A_0, m)$
 - $||f|| ? < B' max_{x,s} ||x \cdot s||_{\infty}$
- Unforgeability proof ideas:
 - ZK simulator → simulate obs signatures by programming H, without secret key s
 - Approx. relation soundness \rightarrow forging alg. can be used to extract s' = f f' s.t
 - $(x x') \cdot A_1 = \text{Com}(f f') \rightarrow \text{solve Module-RingSIS} : \text{Com}((x x') \cdot s (f f')) = 0$
 - Hardness of decision Module-RingLWE → non-trivial solution for Module-RingSIS
- Optimised signature variants of above in NIST PQC second round:
 - Dilithium, Tesla

ZKPs for non-linear relations: One-out-of-

Goal: Prove knowledge of a secret associated to one of the public values without revealing the secret and the index of the public value

Ring Signatures [RST01, BKM09]

- 1) Correctness
- 2) Unforgeability
- 3) Anonymity

1-out-of-N proof \rightarrow Ring Signature

Users commit to their secret keys to form their public keys:

$$pk_i = \text{Com}(sk_i)$$

- Signer generates a non-interactive 1-out-of-N proof to prove knowledge of an opening of one of pk_i 's
 - i.e., proving knowledge of sk_ℓ without revealing ℓ

1-out-of-N ZKP		Ring Signature	
Completeness	\Rightarrow	Correctness	
Soundness	\Longrightarrow	Unforgeability	
Zero-Knowledge	\Rightarrow	Anonymity	

The transition may not go so smoothly in the lattice setting!

Applications and Our Focus

- Set membership proofs, group signatures, ...
- Privacy-aware cryptocurrencies, e.g., RingCT protocol in Monero
- e-voting systems

• ...

 We want: short (sublinear-sized) and "post-quantum" one-out-of-many proofs with no trusted setup

Advanced Zero-Knowledge Proofs Lattice

ZK proofs run smoothly

Discrete Log.

- No protocol repetitions (negligible soundness error in single execution)
- Exact soundness
- Any commitment opening is valid
- Very short and scalable 1-out-of-N
 proofs due to Groth and Kohlweiss
 [GK15] and Bootle et al. [BCC+15]
 - Proof length: $O(\log N)$
 - Short in practice as well
 - Only a few KB even for $N = 10^9$

- If you care about **efficiency**, then you have to make compromises
 - Relaxed soundness: prove knowledge of (γ, \vec{s}) s.t $\gamma \cdot C = \text{Com}(\vec{s})$
- Only short openings are valid
 - $\|\vec{s}\| \le T$ for some T < q
- You may have to work
 - with a **small** set of challenges
 - over a ring, not a field
- Log-sized ring signature due to Libert et al. [LLNW15]
 - **NOT short** in practice
 - 75 MB for N = 1000

Our Results: Summary

- New technical tools for algebraic lattice-based protocols
 - Handling approximate ZK protocols for non-linear (degree k > 1) relations in lattice setting
 - Many special sound protocols: Generalization of Lyubashevsky 2-sound protocol to k > 1 non-linear relations
 - Bounds on length of extracted witnesses and approximation factors
 - Speed-up Techniques: CRT message packing in commitment and adapting NTT-friendly rings
- Short one-out-of-many proofs from lattices
 - One shot challenges
 - Short both asymptotically and in practice
- Short ring signature from standard lattice assumptions
 - Based on Module-LWE and Module-SIS
 - No trusted setup
 - New ideas for soundness ⇒ unforgeability in a constraint (lattice) setting
- Variant proofs for range and set membership proofs
- Exploiting module variants of standard lattice assumptions for efficiency purposes [see the papers for details]

Lattice-Based Commitment schemes

- To hide low-entropy messages, need a randomised (hiding) commitment scheme Com(m; r)
- For remainder of this talk, Com will denote one of the two lattice-based (Module-LWE, Module-SIS) randomised commitment schemes [B+18]:
 - Hashed Message Commitment (HMC):

$$|\mathsf{Com}(m,r)| = |\mathsf{G}_{\mathsf{r}}| |\mathsf{G}_{\mathsf{m}}| r$$

• Unbounded-Message Commitment (UMC):

$$\mathsf{Com}(m,r) = \begin{bmatrix} \mathsf{G}_1 & & \\ & \mathsf{G}_2 & & \\ & & m \end{bmatrix}$$

Framework: ZKPs for non-linear relations

Witness Extraction

How to extract **useful** secret information given a set of **accepting** protocol transcripts with the same initial message for a lattice-based commitment scheme Com?

$$A_0 + xA_1 + \dots + x^k A_k \stackrel{?}{=} \text{Com}(\boldsymbol{f}; \boldsymbol{r})$$

Efficient proof systems from [GK15] and [BCC+15] have this structure! We need to 1) prove a degree-k relation for $k \ge 1$

2) extract a **valid** opening of A_k

Prover

Witness Extraction ((k + 1)-special soundness)

s.t.
$$A_0 + x_i A_1 + \dots + x_i^k A_k \stackrel{?}{=} Com(f_i; r_i)$$
 for $i = 0, \dots, k$

Proves a soundness error $\leq \frac{\kappa}{|ChSet|}$ (a cheating prover's max. success probability)

Witness Extraction

• We know that $A_0 + x_i A_1 + \cdots + x_i^k A_k \stackrel{?}{=} \operatorname{Com}(\boldsymbol{f}_i; \boldsymbol{r}_i)$ for $i = 0, \dots, k$

$$\begin{pmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^k \\
1 & x_1 & x_1^2 & \cdots & x_1^k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_k & x_k^2 & \cdots & x_k^k
\end{pmatrix} \cdot \begin{pmatrix}
A_0 \\
A_1 \\
\vdots \\
A_k
\end{pmatrix} = \begin{pmatrix}
\operatorname{Com}(\boldsymbol{f}_0; \boldsymbol{r}_0) \\
\operatorname{Com}(\boldsymbol{f}_1; \boldsymbol{r}_1) \\
\vdots \\
\operatorname{Com}(\boldsymbol{f}_k; \boldsymbol{r}_k)
\end{pmatrix} \text{ over a ring } \mathfrak{R}$$

• Goal: Recover an opening of $A_k \rightarrow V$, Vandermonde Matrix

For our lattice-based commitment, (\vec{m}, \vec{r}) is a valid opening of C if $C = \text{Com}(\vec{m}; \vec{r})$ AND (\vec{m}, \vec{r}) is short!

Witness Extraction

We have $V \cdot a = c$, and we want to eliminate V

[Turner66]

$$V^{-1} = \begin{pmatrix} \frac{*}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_k)} & \frac{*}{(x_0 - x_1)(x_1 - x_2) \cdots (x_1 - x_k)} & \cdots & \frac{*}{(x_0 - x_k)(x_1 - x_k) \cdots (x_{k-1} - x_k)} \\ \frac{*}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_k)} & \frac{*}{(x_0 - x_1)(x_1 - x_2) \cdots (x_1 - x_k)} & \cdots & \frac{*}{(x_0 - x_k)(x_1 - x_k) \cdots (x_{k-1} - x_k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_k)} & \frac{-1}{(x_0 - x_1)(x_1 - x_2) \cdots (x_1 - x_k)} & \cdots & \frac{(-1)^k}{(x_0 - x_k)(x_1 - x_k) \cdots (x_{k-1} - x_k)} \end{pmatrix}$$

Two approaches:

- Approach 1 [E+19a]: Use special challenge space so that challenge differences
 - 1) are invertible, and
 - 2) have a `short' inverse!
 - Drawback: Small challenge space \rightarrow multiple repetitions needed for high soundness security \rightarrow Long proofs, length = $\tilde{O}(\lambda^2)$
- Approach 2 [This work]: Clear the denominators by multiplying by det(V) and find good bounds on det(V) for a set of `short' challenges
 - Advantage: can support large challenge space ('`one-shot') \rightarrow short proofs, length = $\tilde{O}(\lambda)$

Our approach: adjugate matrices

- Instead of multiplying by V^{-1}, we multiply by adj(V):
 - We have $V \cdot a = c \rightarrow det(V) \cdot a = adj(V) \cdot c$
 - Relaxation factor: $det(V) = \prod_{0 \le i < j \le k} (x_i x_j)$

$$adj(V) = \begin{pmatrix} \frac{*}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_k)} & \frac{*}{(x_0 - x_1)(x_1 - x_2) \cdots (x_1 - x_k)} & \cdots & \frac{*}{(x_0 - x_k)(x_1 - x_k) \cdots (x_{k-1} - x_k)} \\ \frac{*}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_k)} & \frac{*}{(x_0 - x_1)(x_1 - x_2) \cdots (x_1 - x_k)} & \cdots & \frac{*}{(x_0 - x_k)(x_1 - x_k) \cdots (x_{k-1} - x_k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\det(V)}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_k)} & \frac{-\det(V)}{(x_0 - x_1)(x_1 - x_2) \cdots (x_1 - x_k)} & \cdots & \frac{(-1)^k \det(V)}{(x_0 - x_k)(x_1 - x_k) \cdots (x_{k-1} - x_k)} \end{pmatrix}$$

Extracted witness for last commitment:

$$\det(V) \cdot A_k = \sum_{i=0}^k \Gamma_i \cdot Com(f_i; r_i) = Com(\sum_{i=0}^k \Gamma_i \cdot f_i; \sum_{i=0}^k \Gamma_i \cdot r_i)$$
where $\Gamma_i = (-1)^{i+k} \prod_{0 \le l < j \le k} \sum_{l,j \ne i} (x_j - x_l)$

$$\widehat{m}_k$$

$$\widehat{r}_k$$

Our approach: adjugate matrices

• In particular, our adjugate matrix analysis approach allows large challenge spaces of the form

$$C_{w,p}^d = \{ x \in \mathbb{Z}[X] : \deg(x) = d - 1 \land \mathsf{HW}(x) = w \land ||x||_{\infty} = p \}.$$

- 'One shot' possible with 'short' challenges
 - e.g. size of $C_{w,p}^d > 2^{256}$ if (d, w, p) = (256, 60, 1)
- No invertibility condition on challenge space needed (V can even be singular)
 - → no special condition on ring modulus q needed
 - \rightarrow can use `NTT-friendly' q
- Moderately short bounds on relaxation factor / witness size for small k:
 - Relaxation factor: $\det(V) \leq (2p)^{k(k+1)/2} \cdot w^{k(k+1)/2-1}$
 - Extracted witness norm:

$$\|\widehat{m}_k\| \le (k+1) \cdot d \cdot (2p)^{k(k-1)/2} \cdot w^{k(k-1)/2-1} \cdot \max_i \|f_i\|$$
$$\|\widehat{r}_k\| \le (k+1) \cdot d \cdot (2p)^{k(k-1)/2} \cdot w^{k(k-1)/2-1} \cdot \max_i \|r_i\|$$

Application: Commitments of Bits Relaxed ZKP

- One-shot variant of multi-shot lattice ZKP [E+19a], DL ZKP in [GK15]
 - Prover witness $b \in \{0, 1\}^s, r \leftarrow \text{Sset (`short')}$
 - Verifier input: B = Com(b; r)
 - Original Goal: prove that b is a vector of bits
 - Relaxed Goal: prove that b = y b' for vector of bits b' and `short' relaxation factor y
 - ZKP Idea encode binary requirement as a quadratic relation:
 - $b_i \in \{0,1\} \leftarrow (over\ a\ field)$ $b_i \cdot (1-b_i) = 0$
 - Usual basic setting:
 - Prover sends commitment of masking randomness $A = Com(a; r_a)$
 - Verifier sends challenge x
 - Prover sends response encodings $f_i = a_i + \mathbf{x} \cdot b_i$
 - To verify binary requirement, verifier computes quadratic function of x over encodings:
 - $g_i(x) = f_i \cdot (x f_i) = [-a_i^2] + [a_i(1 2b_i)] \cdot x + [b_i(1 b_i)] \cdot x^2$
 - And checks that x² coefficient is zero, by checking
 - $Com(g_i(x)) = ? Com([-a_i^2]) + Com([a_i(1-2b_i)])*x$
 - To allow verifier to do this, prover also sends in first step commitments to the non-zero coefficients

Application: Commitment to bits ZKP (basic idea)

$$B = \operatorname{Com}(\boldsymbol{b}; \boldsymbol{r})$$

$$A + x \cdot B \stackrel{?}{=} Com(f; z_b)$$

$$D + x \cdot C \stackrel{?}{=} Com(\boldsymbol{g}; \boldsymbol{z_c})$$

$$\|(f, \mathbf{z_b}, \mathbf{z_c})\| ? < B'$$

$$g = [g_i(x)] = [f_i \cdot (x - f_i)]$$

Application: Commitment to bits ZKP (basic idea)

- Commit to bits ZKP Soundness argument sketch:
 - Using **three** rewindings of a prover on distinct challenges: x_1 , x_2 , x_3 (same commitments, but different responses $f_{i,j}$ (j=1,2,3)
 - -> Get 3 relaxed openings $(\widehat{a}, \widehat{b}, \widehat{c}, \widehat{d})$ of A,B,C,D
 - with relaxation factor $y = x_1 x_2$
 - Must be same openings by binding of Com, hence:
 - $y \cdot f_{i,j} = x_j \cdot \hat{b}_i + \hat{a}_i$ (j=1,2,3)
 - $y \cdot f_{i,j} \cdot (x_j f_{i,j}) = x_j \cdot \hat{c}_i + \hat{d}_i$ (j=1,2,3)
 - \rightarrow Combine above pairs of relations to get a Vandermonde linear system over R_q:

$$\begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{pmatrix} \cdot \begin{pmatrix} -\hat{a}_i^2 - y\hat{d}_i \\ \hat{a}_i(y - 2\hat{b}_i) - y\hat{c}_i \\ \hat{b}_i(y - \hat{b}_i) \end{pmatrix} = 0$$

• Our adjugate technique implies $\det(V) \hat{b}_i (y - \hat{b}_i) = 0$ in R_q

Application: Commitment to bits ZKP (basic idea)

- Commit to bits ZKP Soundness argument sketch (cont.):
- Our adjugate technique implies $\det(V) \hat{b}_i (y \hat{b}_i) = 0$ in R_q , where
- $det(V) = (x_1 x_2)(x_1 x_3)(x_2 x_3)$
- Want to use `NTT-friendly' rings and `large' challenges
 - Cannot assume det(V) is invertible in R_q
- But, still want to "cancel" det(V) factor
- → Speed-up Lemma 1:

```
Lemma 7. Let f_1, \ldots, f_n \in R for some n \geq 1. If \prod_{i=1}^n f_i = 0 in R_q and q/2 > ||f_1||_{\infty} \cdot \prod_{i=2}^n ||f_i||_1, then there exists 1 \leq j \leq n such that f_j = 0.
```

- -> We choose q large enough s.t. Lemma 7 applies: $q/2 > \det(V) \hat{b}_i(y \hat{b}_i) \rightarrow$ can cancel det(V) to conclude
 - $\hat{b}_i(y \hat{b}_i) = 0 \rightarrow$ "relaxed" soundness holds: $\hat{b}_i = y \cdot b'_i$ with $b'_i \in \{0,1\}$

Application: One-of-N ZKP

- One-shot variant of multi-shot lattice ZKP [E+19a], DL ZKP in [GK15]

 - Original Goal [GK15]: prove that $P_{\ell} = \text{Com}(\mathbf{0}; \mathbf{r})$
 - Relaxed Goal (Our protocol): prove that $y' \cdot P_{\ell} = Com(0; \hat{r})$ for 'short' y' and \hat{r}
 - ZKP Idea encode requirement as a polynomial relation:
 - Decompose $\ell = \sum_{i=0}^{k-1} \ell_i \beta^j$ and $i = \sum_{i=0}^{k-1} i_i \beta^j \in [N]$ into $k = O(\log N)$ base- β digits
 - Write each digit ℓ_j in unary: $\delta_j = (\delta_{\ell_j,0}, \dots, \delta_{\ell_j,\beta-1})$ is a bit vector with 1 in ℓ_j 'th pos. and 0 else.
 - Then $P_{\ell} = \text{Com}(\mathbf{0}; r)$ is equiv. to $\sum_{i \in [N]} \left(\prod_{j \in [k]} \delta_{\ell_i, i_j} \right) \cdot P_i = Com(\mathbf{0}; r)$ (*)
 - Prover commits to δ_i 's and uses `Commit to Bits' Protocol variant to prove δ_i 's are well formed
 - Prover sends commitments of masking randomness $A = Com(a; r_a)$ (and C, D)
 - Verifier sends challenge x
 - Prover sends response encodings $f_{j,i_j} = a_{j,i_j} + x \cdot \delta_{\ell_j,i_j}$
 - To verify 1-of-N relation (*), verifier computes degree k function of x over encodings:
 - $P(x) = \sum_{i \in [N]} p_i(x) \cdot P_i = \sum_{i \in [N]} \left(\prod_{j \in [k]} f_{j,i_j} \right) \cdot P_i = \sum_{i \in [N]} \left(\left[e_{i,0} \right] + \left[e_{i,1} \right] \cdot x + \dots + \left[\prod_{j \in [k]} \delta_{\ell_i, i_j} \right] \cdot x^k \right) \cdot P_i$
 - And checks that x^k coefficient is a commitment zero, by checking
 - $P(x) ([\sum e_{i,0}P_i] + [\sum e_{i,1}P_i] \cdot x + \dots + [\sum e_{i,k-1}P_i] \cdot x^{k-1}) = \text{Com}(0,z)$ for a z sent by the prover
 - To allow verifier to do this, prover also sends in first step commitments in the coefficients of x^j (j < k)

Application: One-of-N ZKP

- Commit to bits ZKP Soundness argument sketch:
 - Using the extractor of our Relaxed `Commit to Bits' protocol with relaxation factor $y = x_1 x_2$, we extract an opening $\hat{\ell}$ and $\hat{p_i}$
 - Using **k+1** rewindings of a prover on distinct challenges: $x_1, ..., x_{k+1}$
 - \rightarrow get a (k+1)'th order Vandermonde linear system with matrix V over R_q
 - > By our adjugate technique, extract a relaxed decommitment of the form
 - $\det(V) y^k P_{\hat{\ell}} = Com(0, \sum_{i \in [N]} \Gamma_i y^k \mathbf{z}_i)$
 - To reduce the relaxation factor to det(V) y, we apply another observation:

Lemma 6. Let
$$f, g \in R = \mathbb{Z}[X]/(X^d+1)$$
. If $f \cdot g^k = 0$ in $R_q = \mathbb{Z}_q[X]/(X^d+1)$ for some $k \in \mathbb{Z}^+$, then $f \cdot g = 0$ in R_q .

- We apply our bounds on det(V) and y to bound the extracted witness norm.
- Moderately practical since k+1 = O(log N) is small
 - in practice for N up to millions, usually optimal to use k a small constant k < 3

Application: Ring Signature Length Comparison

Ring Size	26	2^{10}	2 ¹⁶	2^{20}	2^{30}
[LLNW15]	47000	75000	118000	146000	217000
[ESSLL19]	774	1021	1487	1862	3006
[E SLL19]	57	89	154	241	541

eprint.iacr.org/2018/773 – "multi-shot" proofs (ACNS'19)

eprint.iacr.org/2019/445 - Advanced "one-shot" proofs

(to appear in CRYPTO'19)

Signature lengths are in KB. Security level ≈ 128 bits

Application: Integer Range ZKP

- Integer range Proofs:
- Prover witness: $\ell \in [0, 2^k 1]$, r `short'
- Verifier input: (*P*)
- Original Goal: prove that $P = Com(\ell; r)$ with $\ell \in [0, 2^k 1]$
- Relaxed Goal (Ours): prove that $y' \cdot P = Com(y' \cdot \ell; \hat{r})$ for 'short' y' and \hat{r}
- Basic ZKP idea:
 - Decompose $\ell = \sum_{i=0}^{k-1} \ell_i 2^i$ in binary, $\ell_i \in \{0,1\}$
 - Prover commits to bits $B = Com(\ell_0, ..., \ell_{k-1};)$
 - Use `Commit to Bits' protocol to prove $\ell_i \in \{0,1\}$
 - Prover sends commitment of masking randomness $A = Com(a; r_a)$
 - Verifier sends challenge x
 - Prover sends response encodings $f_i = Enc_x(\ell_i) = a_i + x \cdot \ell_i$
 - Verifier checks `Commit to Bits' Proof and also checks that bits decompose
 - Inter-bit homomorphic encoding operation on encodings:
 - Verifier computes encoding $v = Enc_x(\sum_{i=0}^{k-1} 2^i \ell_i)$ from encodings of ℓ_i
 - $\sum_{i=0}^{k-1} 2^i \cdot Enc_x(\ell_i) = \sum_{i=0}^{k-1} 2^i \cdot a_i + x \cdot \sum_{i=0}^{k-1} 2^i \ell_i$
 - Checks that Com(v) and x^*P are commitments to same ℓ

Speed-up technique 2: CRT-packing technique supporting inter-slot operations

- Efficiency problem:
 - Each bit ℓ_i consumes a whole ring element in the B commitment (UMC)

$$|\mathbf{Com}(\ell,r)| = |\mathbf{G}_1| r + 0$$

$$|\mathbf{G}_2| \ell$$

- > k additional ring elements in commitment output
- \rightarrow Can maintain commitment length (set ring dimension d \rightarrow d/k)
- \rightarrow But Com eval run-time still goes up by factor k (G_2 has $\geq k^2$ Ring elements)
- Our Speedup Technique 2: Use CRT-packing (a-la FHE) to pack k bits into 1 ring element

Speed-up technique 2: CRT-packing technique supporting inter-slot operations

- CRT message packing of k bits into 1 ring element:
 - Use R_q such that $z^d + 1$ splits into k irreducible factors $P_i(z)$ mod q (each of degree d/k:
 - $R_q \simeq R_q^{(1)} \times \cdots \times R_q^{(k)}$
 - $m \rightarrow CRT(m) = (m_1, ..., m_k) = (m \mod P_1, ..., m \mod P_k)$
- Packed Encoding is now:
 - $f = Enc_x(\ell_1, ..., \ell_k) = CRT^{-1}(a_1, ..., a_k) + x \cdot CRT^{-1}(\ell_1, ..., \ell_k)$
 - Can extract from f encodings of individual slots:
 - $f_i = Enc_{x \bmod P_i}(\ell_i) = a_i + x \bmod P_i \cdot \ell_i$
 - But to support interslot homomrphic property of Enc, need all extracted encodings with respect to same $x \rightarrow \text{need } x \mod P_i = x \text{ for all } i$
 - $\sum_{i=0}^{k-1} 2^i \cdot Enc_x(\ell_i) = \sum_{i=0}^{k-1} 2^i \cdot a_i + x \cdot \sum_{i=0}^{k-1} 2^i \ell_i$
 - Our solution: choose challenge x of degree $< d/k \rightarrow x \mod P_i = x$ for all i

Speed-up technique 2: CRT-packing technique supporting inter-slot operations

Table 2: The (minimal) asymptotic time and space complexities of lattice-based protocols involving commitment to $k = O(\log q)$ messages. $\beta_{\rm SIS}$: M-SIS solution norm, q: modulus, κ : the number of protocol repetitions, n: module rank for M-SIS, v: message vector dimension in a commitment, d: polynomial ring dimension, m: randomness vector dimension in a commitment. Assume: $\log q < \log^2 \beta_{\rm SIS}/2$ and degree-d polynomial multiplication costs $\widetilde{O}(d)$. To optimize both costs, one would set n = v in all cases.

		Multi-shot [26, 19]	One-shot	One-shot + CRT
	Formula	$\kappa = \widetilde{O}(\lambda), v = k$	$\kappa = 1, v = k$	$\kappa = 1, v = O(1)$
Space UMC	$\kappa(n+v)d\log q$	$\widetilde{O}(\lambda^2 \log^2 eta_{ m SIS})$	$\widetilde{O}(\lambda \log^2 eta_{ m SIS})$	$\widetilde{O}(\lambda \log^2 eta_{ m SIS})$
Time UMC	$\kappa(n+v)md$	$\widetilde{O}(\lambda^2 \log^2 eta_{ m SIS})$	$ \widetilde{O}(\lambda \log^2 eta_{ m SIS}) $	$\left \widetilde{O}(\lambda \log^2 eta_{ ext{SIS}}/\log q) ight $
Space HMC	$\kappa nd \log q$	$\widetilde{O}(\lambda^2 \log^2 eta_{ m SIS})$	$\widetilde{O}(\lambda \log^2 eta_{ m SIS})$	N/A
Time HMC	$\kappa n(m+v)d$	$\widetilde{O}(\lambda^2 \log^2 eta_{ m SIS})$	$\left \widetilde{O}(\lambda\log^2eta_{ m SIS}) ight $	N/A

Selected references

- [GMR85] Goldwasser et al., "The knowledge complexity of interactive proof-systems", STOC '85.
- [Sch89] Schnorr, "Efficient identification and signatures for smart cards", CRYPTO '89.
- [Lyu09] Lyubashevsky, "Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures", ASIACRYPT '09.
- [Lyu12] Lyubashevsky, "Lattice Signatures without Trapdoors.", EUROCRYPT '12.
- [GK15] Groth and Kohlweiss, "One-out-of-many proofs: Or how to leak a secret and spend a coin", EUROCRYPT '15.
- [D+17] Ducas et al., "CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme", CHES '18.
- [E+19a] Esgin et al., "Short lattice-based one-out-of-many proofs and applications to ring signatures, ACNS '19
- [E+19b] Esgin et al., "Lattice-based Zero-Knowledge Proofs: New Techniques for Shorter and Faster Constructions and Applications", CRYPTO '19 (to appear)

THANK YOU