

期中PROJECT CNN & RNN

人工智能实验

组员A学号: 17341088

组员A姓名: ____ 梁超

组员B学号: 17341178

组员B姓名: _____ 薛伟豪

目录

CNN

- 1/实现思路
- 2/网络结构
- 3/ 结果分析
- 4/创新

RNN

- 5/ 实现思路
- 6/ 网络结构
- 7/ 结果分析
- 8/创新

CNN

基于CIFAR-10数据集

> 数据处理

- 直接利用pytorch的接口加载数据
- 对训练集的图片进行数据增强,即对随机水平翻转,根据概率将图像转换为 灰度图,防止训练出现过拟合。
- 对训练集和测试集进行标准化

> 模型构建

- 通过pytorch的Model类API进行模型搭建
- · 搭建简单CNN模型,观察实验效果
- 改用VGG结构, 堆叠3*3卷积核, 加深神经网络
- 加上BatchNormalization层加速训练

► 简单CNN

	plane	car	bird	cat	deer	dog	frog	horse	ship	truck	Accuracy
plane	748	41	65	26	38	10	0	14	58	0	74.80%
car	44	836	16	32	20	11	0	6	35	0	83.60%
bird	85	15	508	81	165	87	0	46	13	0	50.80%
cat	32	25	89	471	98	229	0	44	12	0	47.10%
deer	31	8	78	59	645	62	0	103	14	0	64.50%
dog	14	7	76	166	61	606	0	66	4	0	60.60%
frog	44	99	129	311	277	92	0	29	19	0	0.00%
horse	18	9	42	38	79	91	0	720	3	0	72.00%
ship	131	65	23	15	14	23	0	8	721	0	72.10%
truck	737	449	27	131	31	45	0	100	80	0	0.00%

> Adam优化算法

	plane	car	bird	cat	deer	dog	frog	horse	ship	truck	Accuracy
plane	854	7	24	8	12	5	8	13	48	21	85.4%
car	6	934	2	2	1	0	2	0	8	45	93.40%
bird	35	2	788	31	44	35	33	23	5	4	78.80%
cat	13	6	41	616	53	159	54	26	15	17	61.60%
deer	8	2	28	31	837	25	26	39	2	2	83.70%
dog	4	6	28	90	28	791	19	29	1	4	79.10%
frog	6	2	19	25	11	17	908	4	5	3	90.80%
horse	5	1	11	17	27	22	5	906	0	6	90.60%
ship	27	15	7	4	0	3	4	1	921	18	92.10%
truck	7	41	1	4	2	2	2	4	13	924	92.40%

> SGD优化算法

	plane	car	bird	cat	deer	dog	frog	horse	ship	truck	Accuracy
plane	861	10	38	15	11	1	3	5	34	22	86.1%
car	5	941	5	2	1	1	0	0	12	33	94.10%
bird	35	1	822	27	41	31	22	9	7	5	82.20%
cat	9	3	54	708	32	112	37	25	8	12	70.80%
deer	5	1	56	48	834	18	14	22	0	2	83.40%
dog	4	7	38	106	25	770	16	25	4	5	77.00%
frog	2	5	55	34	14	6	876	2	3	3	87.60%
horse	7	0	16	26	32	29	3	879	1	7	87.90%
ship	37	11	5	3	4	4	2	2	916	16	91.60%
truck	10	45	5	7	0	0	1	2	10	920	92.00%

> 增加卷积核

	plane	car	bird	cat	deer	dog	frog	horse	ship	truck	Accuracy
plane	862	10	22	16	10	0	10	5	35	30	86.2%
car	4	933	1	6	2	0	2	0	11	41	93.30%
bird	42	3	757	70	42	23	42	16	3	2	75.70%
cat	15	9	33	772	42	59	40	16	4	10	77.20%
deer	10	2	38	53	840	14	16	22	2	3	84.00%
dog	5	4	19	206	28	685	20	26	1	4	68.50%
frog	5	2	27	49	16	8	881	5	5	3	88.10%
horse	8	2	15	47	47	24	6	843	0	8	84.30%
ship	37	9	8	13	3	2	8	1	889	30	88.90%
truck	9	41	1	7	1	0	7	2	10	922	92.20%

创新

▶ 使用Batch Normalization约束神经网络输入的分布,加速神经网络训练

RNN

基于STS-Benchmark数据集

> 数据处理

- 从所给的数据集中提取有效信息(提取相关系数、英文句子对,筛掉停用词)
- 对出现的单词进行编码(One-Hot× Word Embedding√)
 这里使用了glove的预训练模型,预训练的模型语料是glove.840B.50d
- 完成单词->id的映射
- 构建Embedding Matrix (第i行表示id为i的单词对应的向量)

Embedding Matrix

> 模型构建

- 通过Keras的Model类API进行模型搭建
- 先搭建简单LSTM模型,在此基础上进行优化
 基础结构: Input -> Embedding -> LSTM -> Dense ->Output
- 考虑加上Dropout层和BatchNormalization层进行优化
- 改用Bi-LSTM (即双向LSTM) 观察预测能力是否提高
- 个别参数的调整

- ➤ Embedding层 (词嵌入层)
- 词嵌入层的主要作用是将所有的单词序列映射 到一个低维的向量空间。
- 词嵌入层的参数权重是根据预先训练好的词嵌入参数来初始化的,这里我们预训练的模型语料是glove.840B.50d。

- ➤ Bi-LSTM层
- · LSTM网络以文本单词序列来学习句子的表示。
- 一个 Bi-LSTM 是由一个前向的 LSTM 和一个后向的 LSTM 组成。将两个方向的词向量信息进行综合,就可以得出最后的文本特征。

- ▶ Dropout层
- 随机丢掉某些连接,防止网络出现过拟合情况

- ▶ BatchNormalization层(批归一化层)
- 使输出规范化到N(0,1)的正态分布
- 可以让大型网络的训练速度加快很多倍,同时收敛后的预测准确率也可以得到大幅提升

- ▶ Dense层 (全连接层)
- 让之前提取的特征经过非线性变化,从而提取这些特征之间的关联,最后映射到输出空间上
- 多层Dense可以加快收敛

测试集loss 2.4008

相关系数 0.3910

测试集loss 2.1741

相关系数 0.4350

简单LSTM+批归一化层

简单LSTM+Dropout层+批归一化层

测试集loss 2.0236

相关系数 0.4706

•

Bi-LSTM

测试集loss: 2.0236

相关系数: 0.4706

测试集loss: 1.9046

相关系数: 0.4927

未进行停用词过滤的Bi-LSTM

进行停用词过滤的Bi-LSTM

测试集loss: 2.2496

相关系数: 0.4177

测试集loss: 1.9046

相关系数: 0.4927

创新

- ▶ 使用了BiLSTM模型,使得模型在测试集上的损失函数降到了1.9左右,预测结果和实际结果的相关系数超过了0.49
- ▶ 在本次实验中,我对实验文本进行了停用词过滤。对于文本语义相关性的评价,对停用词进行过滤可以有效地帮助我们提高关键词密度,使得信息更为集中、突出,更好地对文本的相关性进行评价。

THANKS

期中PROJECT CNN & RNN

- 人工智能实验
- @17341088梁超
- @17341178薛伟豪
- 2019.11.08