Real Analysis

Problem Set 1: Hints to selected problems

I. **Problem.** Let $r \in \mathbb{Q} \setminus \{0\}$, $k \in \mathbb{R} \setminus \mathbb{Q}$. Show that $\frac{1}{k}$, r + k, $rk \in \mathbb{R} \setminus \mathbb{Q}$.

Solution. Assume the contrary. It is clear that $k \neq 0$.

- $\frac{1}{k} \in \mathbb{Q} \implies k \in \mathbb{Q}$.
- $r + k \in \mathbb{Q} \implies k = (r + k) r \in \mathbb{Q}$.
- $r \cdot k \in \mathbb{O} \implies k = r^{-1} \cdot r \cdot k \in \mathbb{O}$
- 2. Define $f: \mathbb{Q} \to \mathbb{Q}$ by $f(x) = x^2$. Show that $f^{-1}(2) = \emptyset$. You may assume properties of integers and natural numbers.
- 3. Let K be an ordered field. Show that 1 > 0. It can be shown that $x^2 \ge 0$ with equality iff x = 0.
- 4. Let K be an ordered field and $\emptyset \neq S \subseteq K$ which is bounded above. Show that if l and l' are both least upper bounds of S, then l = l'.
- 5. Let *K* be an ordered field. We can define the *greatest lower bound* (*glb*) of a nonempty subset of *K*, bounded below, similar to the least upper bound. Come up with such a definition. The *glb* will be referred to as the *infimum*.
 - When do we say K has the glb property? Come up with a definition. Build a similar problem like Problem 4 and convince yourself that it's true.
- 6. Let K be an ordered field with the *lub* property. Let S be a non-empty subset of K which is bounded above. Let $-S := \{-x : x \in S\}$. Here -x denotes the additive inverse of x in K. You may assume that such an additive inverse always exists and is unique.
 - (a) Does -S have a glb?
 - (b) Every nonempty subset of K bounded above has an $lub \iff$ every nonempty subset of K bounded below has a glb. Prove or disprove. If false, suggest a reasonable salvage and prove it.
- 7. Let $a, b, c, d \in \mathbb{R}$. Prove the following.
 - (a) If a < b and $c \le d$ then a + c < b + d.
 - (b) If 0 < a < b and 0 < c < d then ac < bd.
 - (c) If $a, b, c, d \in \mathbb{R}^+$ and $\frac{a}{b} < \frac{c}{d}$ then $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$.
- 8. Consider the function $f: \mathbb{R}^{\times} \to \mathbb{R}^{\times}$ given by $f(x) = \frac{1}{x}$. Assume algebraic properties. Prove the following.
 - (a) If a > 0 then f(a) > 0.
 - (b) f is a bijection.

- 9. Prove the following using the principle of mathematical induction:
 - (a) $\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}$. Notice that $n(n+2) = (n+1)^2$.
 - (b) $n < 2^n \forall n \in \mathbb{Z}, n \ge 0$
 - (c) Any nonempty subset of \mathbb{N}_0 has a least element. Known as the Well-Ordering principle. The equivalence of this statement with the principle of induction can be found in any standard textbook.
 - (d) If x > -1 then $(1 + x)^n \ge 1 + nx \ \forall \ n \in \mathbb{Z}_{\ge 1}$. Known as Bernouli's inequality. Look up Bartle Sherbert's book.

Definition. I. The empty set \emptyset is said to have cardinality 0.

- 2. A set S is said to have cardinality $n \in \mathbb{Z}_{\geq 1}$ if \exists a bijection $f : S \to \{1, 2, \dots, n\}$.
- 3. A set S is said to be finite if $S = \emptyset$ or there is some $n \in \mathbb{Z}_{\geq 1}$ and a bijection $f : S \to \{1, 2, \dots, n\}$.
- 4. A set *S* is said to be infinite if it is not finite.

Lemma 1

Let $S \neq \emptyset$ be a finite set. Say $m, n \in \mathbb{Z}_{\geq 1}$ are such that there are bijections $f: S \to \{1, 2, \dots, n\}$ and $g: S \to \{1, 2, \dots, m\}$. Then m = n.

Corollary 2

The cardinality of a finite set is well-defined. Denote the cardinality of S by |S|.

10. **Problem.** Assume the above. $h: A \to B$ is a bijection where A, B are finite sets. Show that |A| = |B|.

Solution. Let n = |A|, m = |B|. We have $f: A \xrightarrow{\sim} \{1, \dots, n\}$ and $g: B \xrightarrow{\sim} \{1, \dots, m\}$. We know that bijections between sets have inverses which are themselves bijections, that is, $\exists u: B \xrightarrow{\sim} A$ such that $u(b(a)) = a \ \forall \ a \in A$, and that composition of bijections is a bijection, that is, $v := (f \circ u): B \xrightarrow{\sim} \{1, \dots, n\}$. So $v: B \xrightarrow{\sim} \{1, \dots, n\}$ and $g: B \xrightarrow{\sim} \{1, \dots, m\}$ are bijections. By lemma i, m = n.

- 11. A, B are finite disjoint sets. Show that $|A \cup B| = |A| + |B|$.
- 12. Determine the set of all real numbers x that satisfy $3x + 4 \le 5$.
- 13. The real numbers have the trichotomy property, which is stated as follows. For any $a \in \mathbb{R}$ exactly one of the following is true: a < 0, a = 0, a > 0. If $a, b \in \mathbb{R}$ are such that ab > 0 show that either $a, b \in \mathbb{R}^+$ or $a, b \in \mathbb{R}^-$.
- 14. Find all real numbers x satisfying $x^2 x > 6$. Use the trichotomoy property.
- 15. For a positive real number a, we mean by $a^{1/n}$ (for some $n \in \mathbb{Z}_{\geq 1}$) another positive real number which when raised to the n^{th} power gives a. Assume that $a^{1/n}$ exists and is unique for all $a \in \mathbb{R}^+$. Show that $a > b \iff a^{1/n} > b^{1/n}$.
- 16. Assume existence of roots as before. Let $a \in \mathbb{R}^+$ and $m, n \in \mathbb{Z}_{\geq 1}$. Show that $a^{1/m} > a^{1/n} \iff n > m$.

2

17. **Problem.** Let $a \in \mathbb{R} \setminus \{0\}$ and $n \in \mathbb{Z}_{\geq 1}$. Show that $(a^{-1})^n = (a^n)^{-1}$.

Solution. We proceed by induction on n. The base case is trivial because $(a^{-1})^1 = a^{-1} = (a^1)^{-1}$. Suppose $(a^{-1})^k = (a^k)^{-1}$ for some $k \ge 1$, $k \in \mathbb{Z}$. Then notice that $(a^{-1})^{k+1}(a^{k+1}) = (a^k)^{-1} \cdot a^{-1} \cdot a \cdot a^k = (a^k)^{-1} \cdot a^k = 1$. By uniqueness of inverses, we conclude that $(a^{k+1})^{-1} = (a^{-1})^{k+1}$. Notice that we tried to avoid commutativity of multiplication.

- 18. Let $a \in \mathbb{R} \setminus \{0\}$ and $m, n \in \mathbb{Z}$. Show that $a^m a^n = a^{m+n}$.
- 19. Let $a \in \mathbb{R} \setminus \{0\}$ and $m, n \in \mathbb{Z}$. Show that $(a^m)^n = a^{mn}$.
- 20. **Problem.** Using induction, prove the AM-GM inequality. You may assume properties of exponentiation. Here is the satement of the inequality:

Let
$$a_n, \ldots, a_n \in \mathbb{R}^+ \cup \{0\}$$
, then $\frac{a_1 + \cdots + a_n}{n} \ge (a_1 \cdot a_2 \cdot \ldots \cdot a_n)^{\frac{1}{n}}$

Solution. Base case (one variable) is trivial. We just show the inductive step. Suppose the above statement is true for any n non-negative real numbers a_i (induction hypothesis).

Let $x_1, \dots, x_n, x_{n+1} \in \mathbb{R}_{\geq 0}$. WLOG, assume these are in descending order. Then their mean is $\overline{x} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i$. If $x_i = \overline{x} \forall i$, we are done. Suppose not. Then $x_1 > \overline{x}$. It follows that $x_{n+1} < \overline{x}$. Consider a new quantity $y = x_1 + x_{n+1} - \overline{x}$. Clearly $y \geq 0$. It follows that $y \cdot \overline{x} = (\overline{x} - x_{n+1})(x_1 - \overline{x}) + x_n x_{n+1} > x_n x_{n+1}$ Note that the arithmetic mean of the numbers x_2, x_3, \dots, x_n, y is \overline{x} . We thus have

$$\prod_{i=1}^{n+1} x_i = (x_2 \cdots x_n) (x_n x_{n+1}) < (x_2 \cdots x_n) (y \cdot \overline{x}) = (x_2 \cdots x_n \cdot y) \overline{x} \stackrel{\text{IH}}{\leq} (\overline{x})^n \cdot \overline{x} = (\overline{x})^{n+1}.$$