# LABORATÓRIO DE ELETRICIDADE APLICADA

## Universidade de Brasília

# Relatório do Experimento 4

# João Victor Avancini Guimarães 12/0122405

Professor: RUDI VAN ELS

16 de abril de 2017

# Sumário

| 1             | Introdução |          |                                  |   |  |
|---------------|------------|----------|----------------------------------|---|--|
| 2             | Ob         | jetivos  |                                  | 2 |  |
| 3 Experimento |            |          |                                  |   |  |
|               | 3.1        | Mater    | iais Utilizados                  | 2 |  |
|               | 3.2        | Cálcu    | los                              | 2 |  |
|               |            | 3.2.1    | Tenssão de Thevenín              | 2 |  |
|               |            | 3.2.2    | Impedância de Thevenín           | 3 |  |
|               |            | 3.2.3    | Circuito Equivalente de Thevenín | 4 |  |
|               | 3.3        | Procee   | dimento Experimental             | 4 |  |
| 4             | Res        | ultados  |                                  | 4 |  |
| 5             | Dis        | cussão e | e Conclusões                     | 5 |  |

### 1. INTRODUÇÃO

Circuitos lineares reagem diferentemente em corrente alternada e corrente contínua, naturalmente é mais fácil analisar circuitos que trabalham com corrente contínua visto que elementos passivos armazenadores de energia como capacitores e indutores podem ser substituidos por curto-circuitos e circuitos abertos respectivamente. Um método conveniente para analisar circuitos é o método do Equivalente de Thevenín, o mesmo permite substituir uma rede linear complexa por um circuito composto por uma fonte de tensão em sére com uma impedância. Para o cálculo da fonte de tensão de thevenín basta medir a tensão entre os pontos em que se deseja criar o equivalente. Para a definição da impedância de thevenín basta anular as fontes do circuito isto é, fontes de tensão em curto e fontes de corrente em aberto, e medir (ou calcular) a impedância.

#### 2. OBJETIVOS

Esse experimento teve como objetivo analisar circuitos com o método do equivalente de Thevenín assim como melhorar a capacidade dos alunos de trabalhar com os instrumentos e elementos do laboratório de eletricidade aplicada.

#### 3. EXPERIMENTO

#### 3.1. Materiais Utilizados

Os materiais usados para o experimento foram:

- 1 Multímetro
- 1 Fonte AC-DC
- 2 Resistores de  $50\Omega$
- 3 Resistores de  $150\Omega$
- cabos (diversos)

#### 3.2. Cálculos

O circuito para o experimento está representado na Figura 1.

#### 3.2.1. Tenssão de Thevenín

Para o cálculo da tensão de Thevenín podemos retirar a resistência  $R_3$  poís como seu segundo terminal não está ligado a nenhum elemento a medição da tensão de Thevenín será igual em quaisquer dos seus terminais. Usando o método dos nós se colocarmos a referência no nó inferior só teremos a tensão no nó (tensão de thevenín) desconhecida. As Equação 1 mostra esse procedimento.



Fig. 1. Esquemático Circuito

$$\frac{V_{TH} - 12}{R_1} + \frac{V_{TH} + 5}{R_2} = 0$$

$$V_{TH} \cdot \left(\frac{1}{50} + \frac{1}{150}\right) = \frac{12}{50} - \frac{5}{150}$$

$$V_{TH} = 7.75V$$
(1)

#### 3.2.2. Impedância de Thevenín

Para o cálculo da impedância de Thevenín devemos substituir as fontes de 12V e de 5V por curto circuitos, como mostra a Figura 2.



Fig. 2. Esquemático Circuito Impedância de Thevenín

A impedância equivalente é calculada pela Equação 2.

$$Z_{TH} = R_3 + R_1//R_2$$
  
 $Z_{TH} = R_3 + \frac{R_1 \cdot R_2}{R_1 + R_2}$   
 $Z_{TH} = 87.5\Omega$  (2)

#### 3.2.3. Circuito Equivalente de Thevenín

O Circuito Equivalente de Thevenín esta representado na Figura 3.



Fig. 3. Esquemático Circuito Equivalente de Thevenín

A tensão na carga  $Z_L$  pode ser cálculada facilmente pela Equação 3.

$$V_L(Z_L) = \frac{Z_L}{87.5 + Z_L} \tag{3}$$

Para cargas  $Z_L$  de  $150\Omega$  e  $75\Omega$  a tensão nas mesmas será de respectivamente 4.89V (159.72mW) e 3.58V (170.59mW).

#### 3.3. Procedimento Experimental

Primeiramente foi montado o circuito sem ligação com a fonte e foi medida a Resistência equivalente com o multímetro. Após o mesmo foram adicionadas as fontes e o circuito foi montado e a tensão de Thevenín foi medida com o voltímetro. Por último foi montado o circuito com cargas de  $150\Omega$  e  $75\Omega$  e foram medidas as tensões respectivas nas cargas.

#### 4. RESULTADOS

Os resultados das medições das tensões na carga  $Z_L$  e a tensão e a impedância de thevenín estão mostradas na Tabela 1.



Fig. 4. Diagrama de Montagem

Tabela 1. Resultados

|                         | Valor Medido | Valor Teórico | Erro  |
|-------------------------|--------------|---------------|-------|
| $R_{TH}$                | $94\Omega$   | $87.5\Omega$  | 7.42% |
| $V_{TH}$                | 7.35V        | 7.75V         | 5.16% |
| $V_L (Z_L = 150\Omega)$ | 4.54V        | 4.89V         | 7.15% |
| $V_L (Z_L = 75\Omega)$  | 3.29V        | 3.58V         | 8.10% |

### 5. DISCUSSÃO E CONCLUSÕES

Os valores de tensão medidos na carga no laboratório e os valores calculados teóricamente foram muito próximos, visto que a diferença entre eles foi menor que 10%. Esse valor é visto como muito baixo visto que os resistores usados para montagem do circuito possuem tolerância de  $\pm 5\%$ . Um fator que sugere esse erro foi que a impedância de Thevenín teve um valor medido alto em relação ao calculado, em teoria o valor para resistência da carga deveria ser de  $87.5\Omega$  (171.61mW) para a máxima tranferência de potência, na prática essa valor aumentou para  $94\Omega$  (143.68mW). Baseado nesses valores de erro muito baixos é possível dizer que o experimento foi um sucesso.