Билет 41

Автор1, ..., Aвтор<math>N

20 июня 2020 г.

Содержание

0.1	Б илет 41:	критерии	коши.	Аосолютная	сходимость.	т руппировка	членов ряда.	
	Свойства							1

0.1. Билет 41: Критерий Коши. Абсолютная сходимость. Группировка членов ряда. Свойства

Теорема 0.1 (Критерий Коши).

X – полное нормированное пространство.

$$\sum a_n$$
 сходится $\iff \forall \varepsilon > 0 \quad \exists N \quad \forall m > n > N \quad \left\| \sum_{k=n}^m a_k \right\| < \varepsilon$

Доказательство.

$$S_n := \sum_{k=1}^n a_k$$

$$\sum a_n$$
 – сходится \iff \exists конечный $\lim_{n \to \infty} S_n$

 \iff (полнота X) S_n – фундаментальная последовательность

$$\iff \forall \varepsilon > 0 \quad \exists N \quad \forall m, n > N \quad ||S_m - S_n|| < \varepsilon$$

$$||S_m - S_{n-1}|| = \left\| \sum_{k=n}^m a_k \right\|$$

Определение 0.1 (Абсолютная сходимость).

 $x_n \in X$ – нормированное пространство

$$\sum_{n=1}^{\infty} x_n$$
 — абсолютно сходится, если $\sum_{n=1}^{\infty} \|x_n\|$ — сходится

Теорема 0.2.

X – полное нормированное пространство

Если
$$\sum_{n=1}^{\infty} x_n$$
 – абсолютно сходится, то

1.
$$\sum_{n=1}^{\infty} x_n - \text{сходится}$$

Доказательство

$$\sum\limits_{n=1}^{\infty}\|x_n\|$$
 – сходится \implies (Критерий Коши для $\|x_n\|$) $\forall arepsilon$ $\exists N$ $m,n\geqslant N$ $\sum\limits_{k=n}^{m}\|x_k\|$

$$\varepsilon > \sum_{k=n}^{m} ||x_k|| \geqslant \left\| \sum_{k=n}^{m} x_k \right\|$$

$$\implies \forall \varepsilon \quad \exists N \quad \forall n, m \geqslant N \quad \left\| \sum_{k=n}^{m} x_k \right\| < \varepsilon$$

$$\Longrightarrow$$
 (Критерий Коши для x_n) $\sum\limits_{n=1}^{\infty}x_n$ – сходится

$$2. \left\| \sum_{n=1}^{\infty} x_n \right\| \leqslant \sum_{n=1}^{\infty} \|x_n\|$$

Доказательство.

$$\left\| \sum_{k=1}^{n} x_k \right\| \leqslant \sum_{k=1}^{n} \|x_k\|$$

$$\left\| \sum_{k=1}^{n} x_k \right\| \to \left\| \sum_{k=1}^{\infty} x_k \right\| \text{ if } \sum_{k=1}^{n} \|x_k\| \to \sum_{k=1}^{\infty} \|x_k\|$$

$$\implies \left\| \sum_{k=1}^{\infty} x_k \right\| \leqslant \sum_{k=1}^{\infty} \|x_k\|$$

Определение 0.2 (Группировка членов ряда).

$$(x_1+x_2)+(x_3+x_4+x_5)+x_6+(x_7+x_8)+\ldots$$

Замечание.

1. Если исходный ряд сходился, то ряд получившийся после группировки сходится к той же сумме.

2. В обратную сторону верно не всегда

Пример.
$$(1-1)+(1-1)+(1-1)+\dots$$

Теорема 0.3 (Когда верно в обратную сторону).

$$\sum_{n=1}^{\infty} x_n$$

$$S_n = \sum_{k=1}^n x_k$$

1. Если $\lim x_n = 0$ и количество слагаемых в каждой группе $\leqslant M$

Доказательство.

 S_{n_k} – подпоследовательность чатичных сумм $\lim_{k\to\infty} S_{n_k} = S$

(группировка – всего лишь выбор подпоследовательности частичных сумм)

$$(x_1 + x_2 + \ldots + x_{n_k}) + (x_{n_k+1} + \ldots + x_{n_k+r} + \ldots)$$

$$||S_{n_k+r} - S|| = ||S_{n_k} - S + x_{n_k+1} + \ldots + x_{n_k+r}|| \le$$

$$\leq ||S_{n_k} - S|| + ||x_{n_k+1}|| + \ldots + ||x_{n_k+r}||$$

Выберем K, т.ч. если $k\geqslant K$, то $\|S_{n_k}-S\|<\varepsilon$

Выберем N, т.ч. если $n\geqslant N$, то $\|x_n\|<\varepsilon$

Если выполняется и то, и то, тогда:

$$||S_{n_k} - S|| + ||x_{n_k+1}|| + \ldots + ||x_{n_k+r}|| < \varepsilon(M+1)$$

Значит
$$\forall \varepsilon > 0$$
 мы можем выбрать N_1 , т.ч. $\forall n \geqslant N_1 \quad \|S_n - S\| < \varepsilon$

2. Для числовых рядов. Если все члены ряда в группе одного знака.

Доказательство.

$$S_{n_k} \to S$$

$$\forall \varepsilon > 0 \quad \exists K \quad \forall k \geqslant K \quad |S_{n_k} - S| < \varepsilon$$

$$N := n_K$$

если $n \geqslant N$:

Билет 41 COДЕРЖАНИЕ

для некоторого k: $n_k \leqslant n < n_{k+1}$

$$S_n = S_{n_k} + x_{n_k+1} + x_{n_k+2} + \ldots + x_n$$

если в группе все члены $\geqslant 0$, то $S_n \geqslant S_{n_k}$

$$S_n = S_{n_{k+1}} - x_{n_{k+1}} - x_{n_{k+1}-1} - \ldots - x_{n+1}$$

$$S_{n_{k+1}} \geqslant S_n$$

Тогда
$$|S_n - S| < \varepsilon$$

Если в группе отрицательные члены

$$S_{n_k} \geqslant S_n \geqslant S_{n_{k+1}}$$

Тогда в этом случае тот же вывод

$$|S_n - S| < \varepsilon$$