${\rm HPC~4MA~2021/2022}$

Members

PHAM Tuan Kiet VO Van Nghia

Date

 $12~\mathrm{Dec},\,2021$

Contents

Contents i				
1	OpenMP 1			
1.1	Optimization techniques	1		
1.1.1	Naive dot 1			
1.1.2	Spatial locality 1			
1.1.3	OpenMP parallelization	3		

Chapter 1

OpenMP

1.1 Optimization techniques

1.1.1 Naive dot

We first mention here the original naive_dot function. This function serves as an anchor (or base case) for performance comparision as well as for making sure we have the right result when using other techniques.

```
for (i = 0; i < M; i++)
  for (j = 0; j < N; j++)
   for (k = 0; k < K; k++) C[i + ldc * j] += A[i + lda * k] * B[k + ldb *
        j];</pre>
```

Below is the output of naive_dot for M = 1, K = 2 and N = 2:

```
## ( 1.00 1.50 )
##
## ( 1.00 1.50 )
## ( 1.50 2.00 )
##
## Frobenius Norm = 5.550901
## Total time naive = 0.000001
## Gflops = 0.013333
##
## ( 3.25 4.50 )
```

As

$$\begin{pmatrix} 1 & 1,5 \end{pmatrix} \begin{pmatrix} 1 & 1,5 \\ 1,5 & 2 \end{pmatrix} = \begin{pmatrix} 3,25 & 4,5 \end{pmatrix}$$

The result of this function is correct. We move on to the next technique.

1.1.2 Spatial locality

Spatial locality refers to the following scenario: if a particular storage location is referenced at a particular time, then it is likely that nearby memory locations will be referenced in the near future. In order to take advantages of this property, we notice that:

- In memory, A, B, C are stored in contiguous memory block.
- When using the index order i, j, k, we access B consecutively (as we access B by B[k + ldb * j]), but not A and C.
- Data from A, B, C are loaded in a memory block consisting of severals consecutive elements to cache. Thus, we could make use of spatial locality when reading data continuously.

From 3 points above, we decide to switch the index order to k, j, i. Now we see that both reading and writing operations on C are in cache, this brings us a critical gain in performance. In addition, reading operations on A are in cache too but those on B are not.

```
for (k = 0; k < K; k++)
  for (j = 0; j < N; j++)
   for (i = 0; i < M; i++) C[i + ldc * j] += A[i + lda * k] * B[k + ldb *
    j];</pre>
```

For comparision, we have a table below with M = 4, K = 8 and N = 4.

Table 1.1: naive vs saxpy when M, N, K is small

algo	time	norm	gflops
naive	0.000002	3.461352	0.111304
saxpy	0.000001	3.461352	0.182857

We have the frobenius norm of both techniques are 3,461352 which indicate we have the right computation result. In addition, calculating time is already significantly small (≈ 0 second in both methods) and the difference between these two can therefore be ommitted.

However, if we set M=2048, K=2048 and N=2048, there will be a huge performance gain as in the table shown below. In addition, from now, for an easier comparision between results, we will consider the default value of M, K and N is M=2048, K=2048 and N=2048 if not explicitly mentioned.

Table 1.2: naive vs saxpy when M, N, K is big

algo	time	norm	gflops
naive saxpy	$149.30573 \\ 62.04563$	$\begin{array}{c} 2.323362 \\ 2.323362 \end{array}$	$\begin{array}{c} 0.115065 \\ 0.276891 \end{array}$

Here, the naive_dot function is approximately 2,41 times slower than the saxpy_dot function.

1.1.3 OpenMP parallelization

In this section, we will analyse the main technique of this chapter: OpenMP. First, we show how we enable it on each function. We add a directive above each loop we want to parallelize whose general form is as below:

- Variables inside private are tied to one specific thread (each thread has their own copies of those variables).
- SCHEDULE_HPC is replaced by the schedule we want.
- NUM_THREADS_HPC is corresponding to the number of threads to use for parallel regions.

```
#pragma omp parallel for schedule(SCHEDULE_HPC) default(shared) private(i, j
    ) \
    num_threads(NUM_THREADS_HPC)
```

In addition, inside norm function, we add a reduction clause reduction(+ : norm) as we want to sum up every norm from each thread to one final norm and taking square of that final sum. Finally, we have to add #pragma omp atomic above each line that updating the result matrix (C). It is because that matrix is shared among threads, atomic makes sure that there is only one += operation (which is essentially reading and writing) on one specific pair of indices at a given time. Note that norm does not need atomicity thank to reduction.

Here, we show a comparision between with and without OpenMP. Default OpenMP options will be SCHEDULE_HPC = static and NUM_THREADS_HPC = 4.

algo	time	norm	gflops	omp
naive	45.08355	2.323362	0.381067	X
naive	149.30573	2.323362	0.115065	
saxpy	15.29221	2.323362	1.123440	\mathbf{x}
saxpy	62.04563	2.323362	0.276891	

Table 1.3: naive vs saxpy with OpenMP

Thank to OpenMP, naive approach is faster than 0,3 times while the saxpy_dot took less 0,25 times than before. Both approachs performance are significantly improved.