

Vegova ulica 4, 1000 Ljubljana

Poročila vaj pri predmetu fizika

Poročila maturitetnih vaj

Mentor: Tomo Omahna, prof. Avtor: Jaka Kovač, G 4. b

Povzetek

V tem delu bom predstavil kako sem izvedel maturitene vaje, njihove rezultate. Ob vsaki vaji sem preverjal veljavnost meritev s teoretično izračunaimi vrednostmi.

Ključe besede: poročila maturitetnih vaj - fizika, fizika za srednjo šolo

Abstract

This paper describes how to use LaTeX to write a paper.

Keywords: LaTeX, paper, LaTeX template

Kazalo

1	Lastno nihanje vzmetnega nihala				
2	Prosti pad				
3	Odbojnost				
4	Boylov zakon				
5	Atwoodovo padalo				
6	Dušeno nihanje v električnem krogu				
7	Gostota zemljinega električnega polja				
8	Merjenje goriščne razdalje leč				
9	Plinski emisijski spektri				
10	Viri i	n literatura	16		
Sl	ike				
	1	Zbiralna leča	12		
	2	Razpršilna leča	13		
	3	Sestavljena leča	13		

O zapisu meritev

Prikazane številčne vrednosti so zaokrožene na 3 od 0 različna decimalna mesta (znanstven zapis). V izračunih se uporablja dejanska vrednost. Kjer ni drugače navedeno je vrednost podana na ± 0.5 enot na zadnjem prikazanem mestu. Primer: s=10.0 m ± 0.05 m

1 Lastno nihanje vzmetnega nihala

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

2 Prosti pad

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

3 Odbojnost

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

4 Boylov zakon

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

5 Atwoodovo padalo

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

6 Dušeno nihanje v električnem krogu

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

7 Gostota zemljinega električnega polja

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

8 Merjenje goriščne razdalje leč

Opis vaje in teoritična podlaga

Vaja zajema merjenje goriščne razdalje konveksne (zbiralne), konkavne (razpršilne) in stavljene leče. Formula za izračun goriščne razdalje leče je f=2R, kjer je f goriščna razdalja, R pa polmer leče ali zrcala. Goriščna razdalja sestavljene leče (dve zaporedni leči) se izračuna z $\frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1\cdot f_2}$ [3], kjer sta f_1 in f_2 goriščni razdalji sestavnih leč, d pa razdalja med njima.

Uporabljeni pripomočki

Svetilka v ohišju z režami, ŠMI z vezicami, milimeterski papir, svinčnik, geotrikotnik, konveksna in konkavna leča ($R=35~{\rm mm}$ za obe leči)

Skice

Slika 1: Zbiralna leča

Slika 2: Razpršilna leča

Slika 3: Sestavljena leča

Analiza rezultatov

Izmerjena goriščna razdalja konveksne leče je $f=77~\mathrm{mm}\pm0,5~\mathrm{mm},$ izračunana razdalja pa je

$$f = 2R = 2 \cdot 35 \text{ mm} = 70 \text{ mm}$$
 (1)

Za konkavno lečo pa sem izmeril goriščno razdaljo $f=72~\mathrm{mm}\pm0,5~\mathrm{mm}$, izračunana goriščna razdalja je

$$f = -2R = -2 \cdot 35 \text{ mm} = -70 \text{ mm} \tag{2}$$

Pri sestavljeni lečo sem izmeril goriščno razdaljo $f=157~\mathrm{mm}\pm0,5~\mathrm{mm},$ izračunal pa sem

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 \cdot f_2}$$

$$f = \left(\frac{1}{-70 \text{ mm}} + \frac{1}{70 \text{ mm}} - \frac{51 \text{ mm}}{-70 \text{ mm} \cdot 70 \text{ mm}}\right)^{-1}$$

$$f = 102 \text{ mm}$$
(3)

če za izračun uporabimo izmerjene vrednosti dobimo, da je goriščna razdalja f=120 mm. Kljub vsemu osnovne formule za izračun goriščne razdalje sestavljene leče sam ne morem potrditi.

9 Plinski emisijski spektri

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

10 Viri in literatura

- [1] B. Murovec. *Napotki za piseanje diplomskih nalog in drugih tehničnih besedil*, (2014), spletni naslov: http://lie.fe.uni-lj.si/Napotki_TehnicnaBesedila.pdf (dostopano: 29. 10. 2022).
- [2] R. Snoj, *FIZIKA Eksperimentalne maturitene vaje djakov G4A*, *G4B*, Ljubljana: Vegova Ljubljana, 2023.
- [3] sodelavci Wikipedia-je. *Leča (optika)*, (2024), spletni naslov: https://sl.wikipedia.org/wiki/Le%C4%8Da_(optika)#Sestavljene_le%C4%8De (dostopano: 17. 2. 2024).

Izjava o avtorstvu

Izjavljam, da je seminarska naloga v celoti moje avtorsko delo, ki sem ga izdelal samostojno s pomočjo navedene literature in pod vodstvom mentorja.

18. februar 2024 Jaka Kovač