Compression-Aware Video Super-Resolution

Yingwei Wang¹*, Takashi Isobe²*, Xu Jia¹, Xin Tao³, Huchuan Lu^{1,4}, Yu-Wing Tai⁵

¹Dalian University of Technology, ²Xiaohongshu Inc., ³Kuaishou Technology, ⁴Peng Cheng Laboratory, ⁵The Hong Kong University of Science and Technology

Compressed Video Super-Resolution

EDVR RealBasic VSR

COMISR

Network

Motivation

- Problems:
 - ☐ unaware of compression level
 - artifacts
 - detail loss
 - ☐ disregard of meta data

- Solution:
 - take advantage of meta data to facilitate the base VSR
 - be aware of compression with input videos and exert power adaptively.

Contribution

- A compression encoder to perceive compression levels of input frames.
- A compression-aware modulation module to encourage the base model to perform adaptively under various compression.
- Alignment and propagation process assisted by metadata.

Meta Data of Compressed Videos

CRF (Constant Rate Factor)

Frame Type

Overall

Compression Encoder

- Pretraining
 - > Learning to rank

Ranking Loss Function:

$$\mathcal{L}_{R} = max(0, (s_{i} - s_{j}) * \kappa + \xi)$$

$$where \begin{cases} \kappa = 1 & \text{if } Q_{f/c}(i) < Q_{f/c}(j) \\ \kappa = -1 & \text{if } Q_{f/c}(i) > Q_{f/c}(j) \end{cases}$$

Compression Encoder

Compression-Aware Modulation

$$CAM(\mathbf{F}|\gamma_i,\beta_i) = \gamma_i \odot \mathbf{F} + \beta_i$$

Meta-assisted alignment.

Meta-assisted Propagation.

$$\begin{cases} h_t = \alpha * \tilde{h}_t + (1 - \alpha) * \hat{h}_{t-1} & if \ T_t = B \\ h_t = \tilde{h}_t & otherwise, \end{cases}$$

where,

 \tilde{h}_t current hidden state, \hat{h}_{t-1} aligned previous hidden state α momentum coefficient

Evaluation

	Params (M)	Runtime (ms)	Vid4 (Y)			REDS4 (RGB)		
			CRF 15	CRF 25	CRF 35	CRF 15	CRF 25	CRF 35
EDVR	20.6	378	26.53/0.794	24.76/0.694	22.39/0.544	29.31/0.836	26.27/0.742	23.78/0.625
RealBasic VSR	6.3	63	26.94/0.813	24.87/0.701	2239/0.531	29.76/0.849	26.49/0.746	23.63/0.626
COMISR	6.2	73	26.66/0.801	25.14/0.713	22.62/0.546	29.76/0.832	26.96/0.749	23.87/0.629
FTVSR	10.8	850	27.50/0.826	25.51/0.732	22.79/0.561	30.89/0.864	28.10/0.786	24.83/0.674
Ours	8.9	93	27.42/0.833	25.65/0.742	22.84/0.574	30.76/0.873	28.15/0.798	24.93/0.682

- Our method outperforms most of the previous VSR methods on the three compression levels both in PSNR and SSIM.
- Compressed to the latest FTVSR model, our method obtains comparable performance with lighter computation and GPU memory usage

Comparison to Existing Methods

- smoothing out noise,
- preserving details,
- maintaining temporal consistency

Ablation Studies

CAM	OA	MA	МН	CRF 15	CRF 25	CRF 35
	✓			26.76	24.54	22.06
✓	✓			27.25	25.41	22.74
✓		✓		27.40	25.60	22.80
✓		✓	✓	27.42	25.65	22.84

- With the compression-aware modulation (CAM)
 - Being awarded of compression level performance improved significantly
- Replacing optical flow alignment (OA) with meta-assisted alignment (MA)
 - More accurate motion estimation and improved temporal consistency
- With meta-assisted propagation (MP)
 - The propagation process is more stable, resulting in fewer artifacts

Performance of Compression Encoder

	loss		da	nta	CDE 45	CDE 25	CDE 25
	CL	RL	CRF	IBP	CRF 15	CRF 25	CRF 35
(a)	✓		√		26.76	24.54	22.06
(b)	✓		✓	✓	27.25	25.41	22.74
(c)		\checkmark	✓		27.40	25.60	22.80
(d)		✓	✓	✓	27.42	25.65	22.84

- Pretraining with ranking learning is more effective than contrastive learning and training
- Introduction of frame type information can improve the performance

Conclusion

- A compression encoder and a compression-aware modulation
 - Perceiving compression level using rank-based pretrained encoder
 - Modulating feature extraction stage based on compression representation
- A meta-assisted alignment and propagation process
 - Leveraging the information from bitstream to enhance motion and temporal consistency modeling
- A meta-assisted propagation strategy
 - The propagation process is more stable, resulting in fewer artifacts
 - Reducing the computational cost and parameters of the optical flow network