AMENDMENTS

In the Claims

Current Status of Claims

1	1.(currently amended) An apparatus for performing low level sulfur UV fluorescence
2	detection comprising:
3	an oxidation or combustion chamber including:
4	a sample inlet,
5	an oxidizing agent inlet,
6	an oxidation zone, and
7	an oxidized sample outlet;
8	a transfer tube connected to the oxidized sample outlet;
9	an UV interference reduction system capable of reducing or eliminating interference from
10	nitrogen oxides permitting detection of sulfur in concentrations below 100 ppb; and
11	a detector/analyzer system including:
12	an excitation light source,
13	an UV chamber having:
14	an excitation light port in optical communication with the light source,
15	an oxidized sample inlet connected to the transfer tube,
16	an oxidized sample outlet for exhausting the oxidized sample from the
17	chamber after irradiation from the excitation light,
18	a fluorescent light port oriented at an angle to the excitation light, where the
19	angle is sufficient to reduce or eliminate excitation light from entering the
20	fluorescent light port;
21	a fluorescent light detector in optical communication with the fluorescent light port
22	capable of converting the detected light into an electrical output signal, and
23	an analyzer in electrical communication with the detector for converting the
24	electrical output signal into a concentration of sulfur in the sample based on sulfur
25	dioxide fluorescence,
26	where the UV interference reduction system is adapted to prevent interference from nitrogen
27	oxides in the detector allowing detection of sulfur levels of less than 100 ppb.

- The apparatus of claim 1, wherein the UV interference reduction 1 2.(previously presented) 2 system comprises an ozone generator. The apparatus of claim 2, wherein the generated ozone is introduced 1 3.(previously presented) 2 into the oxidizing agent inlet of the combustion chamber. The apparatus of claim 2, wherein the generated ozone is introduced 1 4.(previously presented) 2 into the oxidizing zone through an ozone inlet. 1 5.(previously presented) The apparatus of claim 2, wherein the generated ozone is introduced 2 into the combustion chamber at its distal end through an ozone inlet. 1 6.(previously presented) The apparatus of claim 2, wherein the generated ozone is introduced 2 into the transfer tube. 1 7.(currently amended) The apparatus of claim 2, wherein the generated ozone is introduced 2 into an ozone chamber interposed between the combustion chamber and the UV chamber through 3 an ozone inlet, where the generated ozone eliminates interfering nitrogen oxides formed from 4 nitrogen gas during analyte oxidation. 1 The apparatus of claim 2, wherein the generated ozone is introduced 8.(previously presented) 2 into a first sub-chamber of a bifurcated UV chamber through an ozone inlet. 1 9.(previously presented) The apparatus of claim 1, further comprising a nitrogen gas removal 2 system connected to the oxidizing agent inlet to remove trace amounts of nitrogen gas (N₂) in the 3 oxidizing gas prior to the oxidizing agent entering the oxidizing agent inlet of the combustion 4 chamber. 1 10.(original) The apparatus of claim 1, wherein the UV chamber further includes an optical filter
- 1 11.(canceled)

2

associated with the fluorescent port and the detector is a PMT.

2	12.(canceled)
1	13.(previously presented) The method of claim 21, wherein the UV interference reduction agent
2	comprises a NO reactive species selected from the group consisting of ozone and hydrogen
3	peroxide.
1	14.(previously presented) The method of claim 13, wherein the UV interference reduction agent
2	comprises ozone.
1	15.(original) The method of claim 14, wherein the ozone is introduced into the oxidizing agent.
1	16.(original) The method of claim 14, wherein the ozone is introduced into the oxidizing sample.
1	17.(original) The method of claim 14, wherein the ozone is introduced into the oxidized sample.
1	18.(previously presented) The method of claim 21, further comprising the step of:
2	contacting the oxidizing agent with a nitrogen gas removal reagent to reduce or eliminate
3	nitrogen gas present in the oxidizing agent.
1	19.(previously presented) The method of claim 21, wherein the oxidizing agent comprising an
2	oxygen containing gas.
1	20.(previously presented) The apparatus of claim 1, wherein the oxidizing agent comprising an
2	oxygen containing gas.
1	21.(previously presented) A method for improving low level sulfur detection using UV
2	fluorescent spectrometry, comprising the steps of:
3	introducing a sample and sufficient oxidizing agent to completely oxidize all oxidizable
4	sample components into their corresponding oxides into a combustion chamber for a time and at an
5	elevated temperature sufficient to convert substantially all oxidizable components into there

corresponding oxides to produce an oxidized sample; and

6

7	introducing an UV interference reduction agent into the sample, the oxidizing agent, the
8	oxidizing sample and/or the oxidized sample in an amount sufficient to substantially eliminate
9	interfering nitrogen oxides to produce a modified oxidized sample,
0	forwarding the modified oxidized sample to a UV chamber,
1	irradiating the modified oxidized sample with excitation light,
2	detecting fluorescent light emitted by electronically excited SO ₂ molecules in the modified
3	oxidized sample, and
4	converting the detected light into a concentration of sulfur in the sample where the UV
5	interference reduction agent is adapted to improve sulfur detection limits to sulfur concentration
6	levels below 100 ppb.
1	22.(previously presented) The method of claim 21, wherein the UV interference reduction agent
2	is adapted to improve sulfur detection limits to below 50 ppb.
1	23.(previously presented) The method of claim 21, wherein the oxidizing agent comprising an
2	oxygen, oxygen in argon, ultra-pure oxygen, ultra-pure oxygen in argon, or ultra-pure oxygen in
3	ultra-pure argon.
1	24.(previously presented) The method of claim 21, further comprising the step of:
2	adjusting the ozone concentration to simultaneously minimize interfering NO fluorescence
3	and ozone absorption of excitation light and/or SO ₂ fluorescent light during SO ₂ fluorescence
4	detection.
1	25.(previously presented) The apparatus of claim 1, wherein the UV interference reduction
2	system capable of reducing or eliminating interference from nitrogen oxides permitting detection
3	of sulfur in concentrations below 50 ppb.
1	26.(previously presented) The apparatus of claim 1, wherein the oxidizing agent comprising an
2	oxygen, oxygen in argon, ultra-pure oxygen, ultra-pure oxygen in argon, or ultra-pure oxygen in
3	ultra-pure argon.

- 1 27.(previously presented) The apparatus of claim 1, wherein the ozone generator produces
- 2 variable concentrations of ozone to simultaneously minimize interfering NO fluorescence and ozone
- 3 absorption of excitation light and/or SO₂ fluorescent light during SO₂ fluorescence detection.