Agentes Sistemas Multiagentes

Patricia Jaques
Unisinos

Sumário da Apresentação

- Inteligência Artificial Distribuída
- Agentes
- Sistemas Multiagentes
- Agentes de Software
- Sistemas Mutiagentes Reativos
 - Implementação Exemplo
- Sistemas Multiagentes Deliberativos
 - Agentes BDI
 - Implementação Exemplo
- MarketPlace
 - Implementação Exemplo final

Introdução à Inteligência Artificial

- Inteligência Artificial (IA):
 - IA Clássica
 - comportamento individual humano
 - Psicologia
 - representação do conhecimento
 - raciocínio
 - aprendizagem
 - IA Distribuída (IAD)
 - comportamento social
 - Sociologia
 - comportamento inteligente atribuído a entidades coletivas
 - colônia de formigas, time de futebol, etc

Inteligência Artificial Distribuída

- Quando?
 - problemas grandes e complexos;
 - vários domínios de conhecimento distintos;
 - dados distribuídos fisicamente;
 - ex: sistema de controle do espaço áereo

IAD

solução centralizada

solução colaborativa por um grupo de entidades distribuídas

- · conhecimento distribuído entres as entidades
- cada agente possui uma capacidade diferente
- entidades cooperam entre si para atingir um objetivo global da sociedade

Sistema Multiagente X Agente

- Sistema Multiagente
 - Coleção de entidades
- Agente
 - Cada uma das entidades

Agente

- Não há consenso!
- Shoam (1997):
 - "a software agent is an entity that functions autonomously and continuously in a particular environment always inhabited by other agents and processes".
 - autonomia: agente realiza as suas atividades sem a intervanção constante de uma pessoa.
 - agente **não existe** isoladamente

Agente

- Russel and Norvig (1995) Agente é qualquer entidade que:
 - **percebe** seu ambiente através de sensores (ex. câmeras, microfone, teclado, finger, ...)
 - age sobre ele através de efetuadores (ex. vídeo, auto-falante, impressora, braços, ftp, ...)

O que é um agente?

- é uma entidade real ou virtual;
- que está inserida em um ambiente;
- que pode perceber o seu ambiente;
- que pode agir no ambiente;
- que pode se comunicar com outros agentes;
- que tem um comportamento autônomo como conseqüência de suas observações, de seu conhecimento e de sua interação com outros agentes.

Agente Racional (McCarthy & Hayes 69, Newell 81)

- Agente Racional: fazer a melhor coisa possível
 - segue um princípio de racionalidade: dada uma seqüência perceptiva, o agente escolhe, segundo os seus conhecimentos, as ações que satisfazem melhor seu objetivo
- Racionalidade ≠ Onisciência, limitações de:
 - sensores
 - efetuadores
 - raciocinador (conhecimento, tempo, etc.)
 - Agir para obter mais dados perceptivos é racional!

Exemplos de agentes

Agente	Dados	Ações	Objetivos	Ambiente	
	perceptivos				
Diagnóstico médico	Sintomas, paciente, exames respostas,	Perguntar, prescrever exames, testar	Saúde do paciente, minimizar custos	Paciente, gabinete,	
Análise de imagens de satélite	Pixels	imprimir uma categorização	categorizar corretamente	lmagens de satélite	
Tutorial de português	Palavras digitadas	Imprimir exercícios, sugestões, correções,	Melhorar o desempenho do estudante	Conjunto de estudantes	
Filtrador de mails	mensagens	Aceitar ou rejeitar mensagens	Aliviar a carga de leitura do usuário	Mensagens, usuários	
Motorista de taxi	Imagens, velocímetro, sons	brecar, acelerar, dobrar, falar com passageiro,	Segurança, rapidez, economia, conforto,	Ruas, pedestres carros,	
Músico de jazz	Sons seus e de outros músicos, grades de acordes	Escolher e tocar notas no andamento	Tocar bem, se divertir, agradar	Musicos, publico, grade de acordes	

Desempenho

- Mapeamento: seqüência perceptiva => ação
- Medida de desempenho: Critério que define o grau de sucesso de um agente na realização de uma dada tarefa
 - Esta medida deve ser imposta do exterior (projetista)
 - Má escolha da MD pode acarretar comportamento indesejado
 - Compromissos entre objetivos múltiplos conflitantes
 - Resta o problema de saber quando avaliar o desempenho
 - Exs. aspirador de pó, provador de teoremas, filtragem de mails, policial de trânsito, avaliador de clima...

Ambiente

- Classes de ambientes
 - Físico: robôs
 - Software: softbots
 - Realidade virtual (simulação do ambiente físico): softbots e avatares
- Propriedades de um ambiente
 - acessível x inacessível
 - estático x dinâmico
 - determinista x não-determinista
 - discreto x contínuo
 - episódico x não-episódico
 - tamanho: número de percepções, ações, objetivos,...

Ambientes: propriedades

- Observável (x parcialmente observável): quando os sensores do agente conseguem perceber o estado completo do ambiente.
 - aspirador de pó com apenas um sensor não pode saber se tem sujeiras nos outros lados
- Determinístico (x Estocástico): o próximo estado do ambiente pode ser complemente determinado pelo estado atual e as ações selecionadas pelo agente.
 - ex determinístico : aspirador de pó (se esta sujo e agente limpa, vai ficar limpo senão tiver outros agentes)
 - ex. estocástico: ambiente do motorista de taxi (nunca sabemos quando um pneu vai furar).

Ambientes: propriedades

- **Episódico (x Seqüencial)**: a experiência do agente é dividida em episódios.
 - Episódio = percepção + ação do agente
 - Cada episódio não depende das ações que ocorreram em episódios prévios
 - ex. episódico: agente que verifica peças em uma linha de montagem (se uma peça é defeituosa não depende das outras)
- Ambientes seqüenciais: decisão atual pode afetar todas as decisões futuras.
 - ex. seqüencial: jogo de xadrez, motorista de taxi

Ambientes: propriedades

- Estático (x Dinâmico): o ambiente não muda enquanto o agente está escolhendo a ação a realizar.
 - ex. dinâmico: ambiente do motorista de taxi (outros taxis se movimentam enquanto um taxi fica decidindo como movimentar)
 - ex. estático: jogo de palavras cruzadas

Ambientes: propriedades

- Discreto: quando existe um número distinto e claramente definido de percepções e ações em cada turno.
 - ex discreto: jogo de xadrez: tem um número finito de estados distintos
- Contínuo: percepções e ações mudam em um espectro contínuo de valores.
 - ex. contínuo: motorista de taxi: velocidade, ângulo da direção, etc, mudam de forma contínua

Exemplos de ambientes

Agente	observável	determinista	episódico	estático	discreto
xadrez sem relógio	Sim	Sim	Não	Sim	Sim
xadrez com relógio	Sim	Sim	Não	Semi	sim
motorista de taxi	Não	Não	Não	Não	Não
médico	Não	Não	Não	Não	Não
tutor	Não	Não	Não	Não	Sim
Busca na web	Não	Não	Sim	Não	Sim

+ Tamanho = número de percepções, ações e objetivos possíveis

Propriedade dos Agentes de Software

- Devem possuir as seguintes habilidades (Wooldridge et al., 1995):
- Noção fraca de agente:
 - autonomia: agir sem a intervenção de humanos;
 - reatividade: percebe o ambiente e reage a ele;
 - pró-atividade: toma a iniciativa;
 - habilidade social: interação com outros agentes.

Propriedade dos Agentes de Software

- Noção Forte de Agente:
 - mobilidade: mover pela Internet;
 - veracidade: agente não irá comunicar informação falsa;
 - benevolência: irá ajudar os outros agentes;
 - racionalidade: agentes não irão agir de forma a impedir os seus objetivos de serem realizados;
 - cooperação: coopera com o usuário
 - intencionais:
 - emocionais:

Tipos de Agentes

Classificação de Agentes segundo sua Funcionalidade

- Agentes de Interface
 - Função: fazer uma tarefa para o usuário
 - Filtrar e-mails
 - Comércio eletrônico
- Agentes Pedagógicos
 - Função educacional
 - Agentes Pedagógicos Animados

Adele

- Exemplo de agente pedagógico animado
- Desenvolvido no Center for Advanced Research in Technology for Education da Universidade de Carolina do Sul (University of Southern California), USA.
- Auxiliar estudantes de medicina e odontologia.
- Ambiente de Simulação.
- Adele

Arquiteturas de Agentes

- Arquiteturas
 - Agente tabela
 - Agente reativo
 - Agente reativo baseado em modelo (com estado interno)
 - Agente baseado em objetivos (cognitivo)
 - Agente baseado na utilidade (otimizador)
 - Agente com aprendizagem (adaptativo)

autonomia complexidade

???

Os agentes devem ter todas as capacidades inteligentes estudadas pela IA clássica:

- representação do conhecimento
- raciocínio
- aprendizagem

Agente reativo

- Vantagens e desvantagens
 - Regras condição-ação: representação inteligível, modular e eficiente
 - ex. luzVermelha(carroDaFrente,acesa) => frear
 - Não pode armazenar uma seqüência perceptiva, pouca autonomia
- Ambientes:
 - Reflexo imprescindível em ambientes dinâmicos
 - Observável, episódico, pequeno

Agente tabela

- Limitações
 - Mesmo Problemas simples -> tabelas muito grandes (ex. xadrez 30^100)
 - Nem sempre é possível, por ignorância ou questão de tempo, construir a tabela
 - Não há autonomia nem flexibilidade
- Ambientes
 - observável, deterministíco, episódico, estático, discreto e minúsculo!

Agentes Reativos (FERBER, 1994)

- Introduzida por Brooks (1986) no domínio da Robótica.
- não há representação explícita do conhecimento
- não possuem representação interna simbólica do ambiente
 - agem através de um comportamento do tipo estímulo/resposta para responder ao estado atual do ambiente ao qual estão inseridos;
- não há memória das ações
- organização biológica
- grande número de membros

Uma sociedade multiagente formada por agentes reativos é um Sistema Multiagente Reativo.

Agentes Reativos: Modelo da Funcionalidade Emergente

- Steels 1990, 1991:
 - decomposição do controle em camadas (Subsumption)

Figura de Alvares & Sichman, 1997

Exemplo: Robôs exploradores

- Uso da arquitetura de Subsumption
 - Steel
- Simulação da exploração de um planeta distante com o objetivo de coletar amostras de pedras de um determinado tipo.
- A localização das amostras não é conhecida.
- Existe inúmeras versões desse problema
 - O versão apresentada aqui é a mais simples
 - Não cooperativa
 - Contato com a base através de sinal de propagação

DIMAp/UFRN

Comportamentos (1)

- Procurar por amostras
 - Agentes procuram por amostras aleatoriamente
 Move aleatoriamente no terreno
- Coletar amostra
 - Agentes coletam as amostras que encontrarem
 Se (detecta uma amostra), então (a colhe)
- Retornar a base
 - Agentes carregando amostras devem retornar a nave-mãe

Se (carrega uma amostra), então (move em direção a base)

Comportamentos (2)

- Depositar amostra
 - Agentes depositam as amostras na nave-mãe

Se (carrega uma amostra e está na base), então (deposita amostra)

- Desviar de obstáculo
 - Agentes se desviam de obstáculos no seu caminho

Se (detecta um obstáculo no caminho), então (contorna-o)

Comportamentos em camadas Desviar de obstáculo Coletar amostra Percepção Depositar amostra Retornar a base Procurar por amostra

DIMAp/UFRN

Exemplo: Robôs mineradores Objetivo: robôs devem encontrar e levar

amostras minerais para uma base dentral.

Exemplo (continuação)

- Comportamentos elementares dos robôs:
 - 1. evitar obstáculos;
 - 2. SE perceber um mineral E não estiver carregado, **ENTÃO** pegar mineral
 - 3. SE perceber a base central E estiver carregado, ENTÃO descarregar mineral na base
 - 4. **SE** estiver carregado. ENTÃO seguir o sinal da base central (na direção do maior gradiente)
 - 5. realizar movimento randômico

Exemplo (continuação)

Comportamentos elementares dos robôs:

evitar obstáculos;

2. SE perceber um mineral E não estiver carregado, ENTÃO pegar mineral

maior

Quando um robô descarrega o mineral na base, passa a procurar aleatoriamente mais minerais

ENTÃO seguir o sinal da base central (na direção do maior gradiente), **deixando uma pista**

- 5. ao encontrar uma pista, se estiver descarregado seguir no sentido oposto ao sinal da base central (na direção do menor gradiente)
- 6. realizar movimento randômico

prioridade de e

menor

Outros Modelos de SMA Reativos

- Eco-Resolução
 - agentes tendem a atingir um estado estável que é chamado de solução de problema.
 - Exemplo: jogo quebra-cabeça

Е	В	O	D
Α	N	М	F
Н	0	G	J
K	_	L	

- agentes possuem um conjunto de comportamentos elementares que o levam a um estado de satisfação
- agentes buscam estado de satisfação
- podem ser incomodados por outros agentes
- agridem os outros agentes que incomodam
- agentes agredidos são obrigados a fugir
- na fuga, podem agredir outros agentes que estão incomodando

Ambientes de Desenvolvimento de SMA Reativos

- SIEME
- SWARM
- SIMULA (UFRGS)

Agente reativo baseado em modelos

- Desvantagem: pouca autonomia
 - não tem objetivo, não encadeia regras
- Ambientes: determinista e pequeno

Agente cognitivo (baseado em objetivo)

- Vantagens e desvantagens:
 - Mais complicado e ineficiente, porém mais flexível, autônomo
 - Não trata objetivos conflitantes
- Ambientes: determinista
 - Ex.: motorista freando *para não bater*

Agentes Cognitivos ou Deliberativos

- Derivam do paradigma do pensamento deliberativo:
 - "agents that possess an explicitly represented, symbolic model of the world and in which decisions (for example about what actions to perform) are made via symbolic reasoning" (WOOLDRIDGE; JENNINGS, 1995).
 - Capacidades Inteligentes:
 - percepção e interpretação de dados de entrada e mensagens;
 - raciocínio sobre suas crenças;
 - tomada de decisão (seleção de objetivos);
 - planejamento (seleção ou construção de planos de ações, resolução de conflitos e alocação de recursos);

Agentes BDI

- Agentes são visualizados como sistemas intencionais, ou seja, possuem estados mentais de informação e manipulam o conhecimento.
- Entre estados mentais estão as seguintes características: crenças, conhecimento, desejos, intenções, obrigações etc.
- Estados mentais: Crenças, Desejos e Intenções.
- Esses estados mentais são representados internamente nos agentes.

Exemplo

- Implementação no X-BDI
- X-BDI
 - Tese de Micheal Móra na UFRGS
 - Ferramenta para modelar, desenvolver e testar agentes BDI.
- Implementação:
 - Inferência das emoções de um aluno e escolha da ação pedagógica afetiva em um ambiente educacional inteligente.

Scenario

```
[current_time(2),sense(student_goal(performance),1)].
[current_time(3),sense(event(not_correct_answer),2)].

/* The agent's desires to apply an affective tactic */
des(mediador,apply_tactics(Tactic),Tf,[0.6]) if
   bel(mediador,choose_tactics(Tactic)).
act(mediador,send_tactic(Tactic)) causes
   bel(mediador,apply_tactics(Tactic))
   if bel(mediador,choose_tactics(Tactic)).
```

Inferência das Emoções

```
bel(mediador event_pleasantness(not_correct_answer,displeased)) if
  bel(mediador,student_goal(performance)),
  bel(mediador,event(not_correct_answer)).

bel(mediador,student_emotion(disappointment))if
  bel(mediador,event_pleasantness(Event,displeased)),
  bel(mediador,-is_mediador_action),
  bel(mediador,is_prospect_event(Event)).
```

Escolha das Táticas Afetivas

```
bel(mediador, choose_tactics(increase_student_self_ability))
  bel(mediador,student_emotion(disappointment)),
  bel(mediador,event(not_correct_answer)),
  bel(mediador,student_goal(performance)).

bel(mediador,student_emotion(disappointment)),
  bel(mediador,student_emotion(disappointment)),
  bel(mediador,student_goal(performance)).

bel(mediador,student_goal(performance)).

bel(mediador,student_goal(performance)) if
  bel(mediador,student_emotion(disappointment)),
  bel(mediador,student_emotion(disappointment)),
  bel(mediador,student_goal(performance)).
```

Agente baseado em utilidade (otimizador)

- Ambiente: sem restrição
- Desvantagem: não tem adaptabilidade

Agente que aprende

- Ambiente: sem restrição
- Vantagem: tem adaptabilidade (aprende)
- Ex. motorista sem o mapa da cidade

Sistema Multiagente

- Sistema composto por vários agentes.
- Além disso, eles devem ser capazes de se comunicar possuindo, para tanto, uma linguagem de alto nível.
- Cada agente deverá possuir conhecimento e habilidades para executar uma determinada tarefa, podendo cooperar ou não, para atingir um objetivo global.

Comunicação

- Como?
 - Via chamada de métodos local?
 - Devido aos agentes estarem distribuídos, eles usam protocolos de comunicação Internet tais como TCP/IP, SMTP e HTTP.
 - Linguagem de Comunicação
 - Agent Communication Language (ACL)
 - As ACL mais conhecidas:
 - Knowledge Query Manipulation Language (KQML)
 - FIPA-ACL

KQML

- Sintaxe para as mensagens
- Número de performativas

Exemplo de mensagem KQML

ask-one

:language LPROLOG

:ontology NYSE_TICKS

:sender joe

:receiver stock-server

:reply-with ibm-stock

:content (PRICE IBM ?price) camada de conteúdo

Categorias de Performativas

Category	Name	
Basic Query	Evaluate, ask-if, ask-about, ask-one, ask-all	
Multi-response (query)	Stream-about, stream-all, eos	
Response	Reply, sorry	
Generic informational	Tell, achieve, cancel, untell, unachieve	
Generator	Standby, ready, next, rest, discard, generator	
Capability-definition	Advertise, subscribe, monitor, import, export	
Networking	Register, unregister, forward, broadcast, route	

sockets

ask-one language LPROLOG:ontology NYSE_TICKS .

String

camada de

mensagem

camada de comunicação

parser KML

parser KML

•Os sockets TCP/IP são usados para implementar conexões confiáveis, bi-direcionais e ponto a ponto, com base em um stream entre computadores.

Agente Servidor de Nomes

Cooperação

- Quando agentes precisam realizar uma tarefa o qual não são capazes de realizar individualmente.
- Permitem que os agentes juntem as suas habilidades a fim de resolver um problema maior.
- Agentes Benovelentes, agentes egoístas, etc.

Negociação

- Troca de mensagens a fim de negociar:
 - alocação de tarefa e recurso
 - reconhecimento de conflitos
 - resolução de disparidade de objetivos.
- Protocolo conhecido:
 - redes de contrato

Onde tudo começa:

- Todos os agentes devem se registrar com o FacilitatorAgent.
- SellerAgents:
 - Notificam o FacilitatorAgent que eles querem vender algo
- BuyerAgents:
 - Pedem ao FacilitatorAgent para indicar um vendedor.

Exemplo de Implementação

- MarketPlace (Bigus & Bigus, 1997)
 - Sistema multi-agente
 - Representa um espaço virtual para compra e venda de produtos
 - Agentes Vendedores (<u>SellerAgent</u>) e Compradores (<u>BuyerAgent</u>) se comunicam para vender e comprar produtos para os seus donos
 - Tem um Agente Gerenciador (<u>FacilitatorAgent</u>) que gerencia o o market place.

Como funciona:

- Buyer pede para o Facilitator recomendar um Seller para um item p;
- Facilitator notifica o nome do Seller;
- Buyer pergunta se Seller tem produto p para vender;
- Seller passa o preço do produto ou diz que não tem produto;
- Buyer pode aceitar a oferta (dando um reply com mesmo conteudo de mensagem) ou fazer uma contra-oferta;
- Seller pode aceitar, fazer contra-oferta ou rejeitar;
- Se Seller aceita, ele manda mensagem para o Buyer e transação está completa;
- Se Seller rejeita a oferta, a negociação está finalizada.

Exemplo:

- Buyer tem lista de compras:
 - guitar \$100,00
 - set of drums \$ 200,00
 - guitar \$100,00
- Comunicação entre agentes via Eventos
 - maneira correta: sockets
- Troca de mensagens KQML
 - CIAEventMessage

Agentes

Outras classes importantes

Implementação

Para saber mais?

- JATLite (Java Agent Template)
 - http://www-cdr.stanford.edu/ProcessLink/papers/JATL.html
- JADE
 - http://jade.tilab.com/