# INTEGRATED CIRCUITS

# DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

# **74HC/HCT253**Dual 4-input multiplexer; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990





# 74HC/HCT253

#### **FEATURES**

- · Non-inverting data path
- · 3-state outputs for bus interface
- and multiplex expansion
- · Common select inputs
- · Separate output enable inputs
- · Output capability: bus driver
- · I<sub>CC</sub> category: MSI

#### **GENERAL DESCRIPTION**

The 74HC/HCT253 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT253 have two identical 4-input multiplexers with 3-state outputs which select two bits from four sources selected by common data select inputs  $(S_0, S_1)$ .

When the individual output enable  $(1\overline{OE}, 2\overline{OE})$  inputs of the 4-input multiplexers are HIGH, the outputs are forced to the high impedance OFF-state. The "253" is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels applied to  $S_0$  and  $S_1$ .

The logic equations for the outputs are: 1Y =  $1\overline{OE}(1I_0.\overline{S}_1.\overline{S}_0+1I_1.\overline{S}_1.S_0+1I_2.S_1.\overline{S}_0+1I_3.S_1.S_0)$ 2Y =  $2\overline{OE}(2I_0.\overline{S}_1.\overline{S}_0+2I_1.\overline{S}_1.S_0+2I_2.S_1.\overline{S}_0+2I_3.S_1.S_0)$ 

# **APPLICATIONS**

- · Data selectors
- Data multiplexers

# **QUICK REFERENCE DATA**

GND = 0 V;  $T_{amb}$  = 25 °C;  $t_r$  =  $t_f$  = 6 ns

| SYMBOL                              | PARAMETER                                     | CONDITIONS                                  | TYP | UNIT |       |  |
|-------------------------------------|-----------------------------------------------|---------------------------------------------|-----|------|-------|--|
| STWIBUL                             | PARAMETER                                     | CONDITIONS                                  | нс  | нст  | CINIT |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay                             | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ |     |      |       |  |
|                                     | 1I <sub>n</sub> , 2I <sub>n</sub> to nY;      |                                             | 17  | 17   | ns    |  |
|                                     | S <sub>n</sub> to nY                          |                                             | 18  | 19   | ns    |  |
| Cı                                  | input capacitance                             |                                             | 3.5 | 3.5  | pF    |  |
| C <sub>PD</sub>                     | power dissipation capacitance per multiplexer | notes 1 and 2                               | 55  | 55   | pF    |  |

# Notes

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f<sub>i</sub> = input frequency in MHz

f<sub>o</sub> = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ 

C<sub>L</sub> = output load capacitance in pF

V<sub>CC</sub> = supply voltage in V

2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ For HCT the condition is  $V_I = GND$  to  $V_{CC} - 1.5$  V

# ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

# 74HC/HCT253

# **PIN DESCRIPTION**

| PIN NO.        | SYMBOL                             | NAME AND FUNCTION                 |
|----------------|------------------------------------|-----------------------------------|
| 1, 15          | 1 <del>OE</del> , 2 <del>OE</del>  | output enable inputs (active LOW) |
| 14, 2          | S <sub>0</sub> , S <sub>1</sub>    | common data select inputs         |
| 7, 9           | 1Y, 2Y                             | 3-state multiplexer outputs       |
| 8              | GND                                | ground (0 V)                      |
| 6, 5, 4, 3     | 1l <sub>0</sub> to 1l <sub>3</sub> | data inputs from source 1         |
| 10, 11, 12, 13 | 2l <sub>0</sub> to 2l <sub>3</sub> | data inputs from source 2         |
| 16             | V <sub>CC</sub>                    | positive supply voltage           |







Philips Semiconductors Product specification

# Dual 4-input multiplexer; 3-state

# 74HC/HCT253





# **FUNCTION TABLE**

| SELECT INPUTS  |                |                 | DATA I          | NPUTS           | OUTPUT ENABLE   | OUTPUT |    |
|----------------|----------------|-----------------|-----------------|-----------------|-----------------|--------|----|
| S <sub>0</sub> | S <sub>1</sub> | nl <sub>0</sub> | nl <sub>1</sub> | nl <sub>2</sub> | nl <sub>3</sub> | nOE    | nY |
| Х              | Х              | Х               | Х               | Х               | Х               | Н      | Z  |
| L              | L              | L               | X               | X               | Х               | L      | L  |
| L              | L              | Н               | X               | Х               | X               | L      | Н  |
| Н              | L              | X               | L               | X               | X               | L      | L  |
| Н              | L              | Х               | Н               | Х               | X               | L      | H  |
| L              | Н              | Х               | X               | L               | Х               | L      | L  |
| L              | Н              | Х               | X               | Н               | X               | L      | Н  |
| Н              | Н              | X               | X               | Х               | L               | L      | L  |
| Н              | Н              | Х               | X               | Х               | Н               | L      | Н  |

# **NOTES**

- 1. H = HIGH voltage level
  - L = LOW voltage level
  - X = don't care
  - Z = high impedance OFF-state

Philips Semiconductors Product specification

# Dual 4-input multiplexer; 3-state

74HC/HCT253

# DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I<sub>CC</sub> category: MSI

# **AC CHARACTERISTICS FOR 74HC**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

|                                     |                                                                | T <sub>amb</sub> (°C) |                |                 |      |                 |      |                 |    | TEST CONDITIONS        |           |
|-------------------------------------|----------------------------------------------------------------|-----------------------|----------------|-----------------|------|-----------------|------|-----------------|----|------------------------|-----------|
|                                     |                                                                | 74HC                  |                |                 |      |                 |      |                 |    |                        |           |
| SYMBOL                              | PARAMETER                                                      | +25                   |                | +25             |      | -40 to +85      |      | −40<br>to +125  |    | V <sub>CC</sub><br>(V) | WAVEFORMS |
|                                     |                                                                | min.                  | typ.           | max.            | min. | max.            | min. | max.            |    |                        |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay 1I <sub>n</sub> to nY; 2I <sub>n</sub> to nY |                       | 55<br>20<br>16 | 175<br>35<br>30 |      | 220<br>44<br>37 |      | 265<br>53<br>45 | ns | 2.0<br>4.5<br>6.0      | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay S <sub>n</sub> to nY                         |                       | 58<br>21<br>17 | 175<br>35<br>30 |      | 220<br>44<br>37 |      | 265<br>53<br>45 | ns | 2.0<br>4.5<br>6.0      | Fig.6     |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable time nOE to nY                           |                       | 30<br>11<br>9  | 100<br>20<br>17 |      | 125<br>25<br>21 |      | 150<br>30<br>26 | ns | 2.0<br>4.5<br>6.0      | Fig.7     |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable time nOE to nY                          |                       | 41<br>15<br>12 | 150<br>30<br>26 |      | 190<br>38<br>33 |      | 225<br>45<br>38 | ns | 2.0<br>4.5<br>6.0      | Fig.7     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                                         |                       | 14<br>5<br>4   | 60<br>12<br>10  |      | 75<br>15<br>13  |      | 90<br>18<br>15  | ns | 2.0<br>4.5<br>6.0      | Fig.6     |

74HC/HCT253

#### DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I<sub>CC</sub> category: MSI

# Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT           | UNIT LOAD COEFFICIENT |
|-----------------|-----------------------|
| 1I <sub>n</sub> | 0.40                  |
| 2 <u>In</u>     | 0.40                  |
| nOE             | 1.10                  |
| $S_0$           | 1.10                  |
| S <sub>1</sub>  | 1.10                  |

#### **AC CHARACTERISTICS FOR 74HCT**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              | PARAMETER                                                      | T <sub>amb</sub> (°C) |      |      |            |      |             |      |      | TEST CONDITIONS |            |
|-------------------------------------|----------------------------------------------------------------|-----------------------|------|------|------------|------|-------------|------|------|-----------------|------------|
|                                     |                                                                | 74HCT                 |      |      |            |      |             |      |      |                 | WAVEFORMS  |
|                                     |                                                                | +25                   |      |      | −40 to +85 |      | -40 to +125 |      | UNIT | V <sub>CC</sub> | WAVEFORWIS |
|                                     |                                                                | min.                  | typ. | max. | min.       | max. | min.        | max. |      | (-)             |            |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay 1I <sub>n</sub> to nY; 2I <sub>n</sub> to nY |                       | 20   | 38   |            | 48   |             | 57   | ns   | 4.5             | Fig.6      |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>S <sub>n</sub> to nY                      |                       | 22   | 40   |            | 50   |             | 60   | ns   | 4.5             | Fig.6      |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable time nOE to nY                           |                       | 14   | 30   |            | 38   |             | 45   | ns   | 4.5             | Fig.7      |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable time nOE to nY                          |                       | 13   | 30   |            | 38   |             | 45   | ns   | 4.5             | Fig.7      |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                                         |                       | 5    | 12   |            | 15   |             | 18   | ns   | 4.5             | Fig.6      |

# 74HC/HCT253

# **AC WAVEFORMS**



Fig.6 Waveforms showing the input (1I<sub>n</sub>, 2I<sub>n</sub>) to output (1Y, 2Y) propagation delays and the output transition times



#### **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".