SINGLE-SOURCE SHORTEST PATH ALGORITHMS

SINGLE-SOURCE SHORTEST PATH ALGORITHMS

- The shortest path problem is about finding a path between two vertices in a graph such that the total sum of the edges weights is minimum.
- single-source shortest-paths problem: given a graph G = (V, E), we want to find a shortest path from a given source vertex $s \in V$ to every vertex $s \in V$.
- Single-source shortest-paths algorithms:
 - Bellman Ford's Algorithm
 - Dijkstra's Algorithm

We initialize the shortest-path estimates and predecessors by the following procedure.

INITIALIZE-SINGLE-SOURCE (G, s)

```
1 for each vertex v \in G.V

2 v.d = \infty

3 v.\pi = NIL

4 s.d = 0
```

- The process of *relaxing* an edge (u, v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating v.d and $v.\pi$.
- A relaxation step may decrease the value of the shortest-path estimate v.d and update v's predecessor field v. π

The following code performs a relaxation step on edge (u, v).

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```


Dijkstra's Algorithm

- Dijkstra Algorithm is a very famous greedy algorithm.
- It is used for solving the single source shortest path problem.
- It computes the shortest path from one particular source node to all other remaining nodes of the graph.
- Dijkstra algorithm works only for connected graphs.
- Dijkstra algorithm works only for those graphs that do not contain any negative weight edge.
- Dijkstra algorithm works for directed as well as undirected graphs.

Algorithm Steps:

- Set all vertices distances = infinity except for the source vertex, set the source distance = 0.
- Initialize parent of each node to be NIL.
- Push the source vertex in a min-priority queue as the comparison in the min-priority queue will be according to vertices distances.
- Pop the vertex with the minimum distance from the priority queue (at first the popped vertex = source).
- Update the distances of the connected vertices to the popped vertex in case of "v.d > u.d + w(u,v)", then push the vertex with the new distance to the priority queue.
- If the popped vertex is visited before, just continue without using it.
- Apply the same algorithm again until the priority queue is empty.

DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- $S = S \cup \{u\}$
- for each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 for each vertex $v \in G.V$
- 2 $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \, s.d = 0$

- 1 if v.d > u.d + w(u, v)
- $2 \qquad v.d = u.d + w(u, v)$
- $v.\pi = u$

Time Complexity

- Time Complexity of Dijkstra's Algorithm is O(V²)
- but with min-priority queue it drops down to O(V+E logV).

Example 1:

Use Dijkstras algorithm to find the shortest path from A to each of the other six vertices in the graph:

Solution:

The problem is solved by considering the following information:

- Status[v] will be either '0', meaning that the shortest path from v to v₀ has
 definitely been found; or '1', meaning that it hasn't.
- Dist[v] will be a number, representing the length of the shortest path from v to v₀ found so far.
- Next[v] will be the first vertex on the way to v₀ along the shortest path found so far from v to v₀

The progress of Dijkstra's algorithm on the graph shown above is as follows:

Step 1:

Vertex	Α	В	C	D	E	F	G
Status Dist. Next	0	1	1	1	1	1	1
Dist.	0	3	6	oc	oc	oc	oc
Next	*	A	A	A	A	A	A

Step 2:

Vertex	A	В	C	D	E	F	G
Status	0	0	1	1	1	1	1
Dist.	0	3	5	7	oc	oc	oc
Next	*	Α	В	В	A	A	A

Step 3:

Vertex	A	В	C	D	E	F	G
Status Dist. Next	0	0	0	1	1	1	1
Dist.	0	3	5	6	9	7	oc
Next	*	A	B	C	C	C	A

Step 4:

Vertex	A	В	C	D	E	F	G
Status Dist. Next	0	0	0	0	1	1	1
Dist.	0	3	5	6	8	7	10
Next	*	A	В	C	D	C	D

Step 5:

Vertex	A	В	C	D	E	F	G
Status Dist. Next	0	0	0	0	1	0	1
Dist.	0	3	5	6	8	7	8
Next	*	A	В	C	D	C	F

Step 6:

Step 7:

Vertex		В	C	D	E	F	G
Status	0	0	0	0	0	0	0
Dist.	0	3	5	6	8	7	8
Next	28:	A	В	C	D	C	F

Example 2:

In a weighted graph, assume that the shortest path from a source 's' to a destination 't' is correctly calculated using a shortest path algorithm. Is the following statement true? If we increase weight of every edge by 1, the shortest path always remains same. Justify your answer with proper example.

- The shortest path may change. The reason is, there may be different number of edges in different paths from s to t. For example, let shortest path between a and c be of weight 8 and has 4 edges. Let there be another path with 2 edges and total weight 9. The weight of the shortest path is increased by 4*1 and becomes 8 + 4=12. Weight of the other path is increased by 2*1 and becomes 9 + 2=11. So the shortest path changes to the other path with weight as 11.
- False 1 Mark, Justification with example 2 Marks.

 Find the shortest path from s to all other vertices in the following graph using Dijkstra's Algorithm.[May 2019- 3 marks]

S-B =4, S-A =3, S-C=5, S-E=6, S-D=7, S-G=8, S-T=10, S-F =12