Podstawy sztucznej inteligencji Al

Lab 6 – wskazówki do zadania z siecią neuronową rozpoznającą 1,4 i 7

Architektura sieci

Sieć złożona jest z **dwóch neuronów sigmoidalnych*** z **unipolarną funkcją aktywacji** w jednej warstwie:

Każdy z dwóch neuronów ma **swój zestaw 13-tu wag**. A zatem sieć ma **26 wag**.

^{*} Szczegóły na temat neuronu sigmoidalnego w pliku: PAI_lab_zadania_5.pdf

Wejście i wyjście sieci

Sieć na wejściu otrzymuje kolejno 3 tablice (każda 13 elementowa) reprezentujące cyfry: 1, 4 i 7.

Ponieważ **neurony w sieci są dwa**, zatem **na wyjściu sieci** otrzymujemy dwie liczby y_1 (odpowiedź neuronu 1) y_2 (odpowiedź neuronu 2).

Z definicji **unipolarnej funkcji aktywacji** wynika, że y_1 i $y_2 \in (0,1)$.

Wartości oczekiwane

Neurony są dwa, a zatem wartości oczekiwane mają postać:

$$d = (d_1, d_2)$$

gdzie d_1 to wartość oczekiwana na neuronie 1 i d_2 to wartość oczekiwana na neuronie 2. Mamy zatem do dyspozycji następujące wartości oczekiwane dla sieci:

W ciągu uczącym mamy 3 cyfry (1,4,7) zatem możemy im przypisać następujące wartości oczekiwane:

$$1 \rightarrow d = (1,1)$$
 $4 \rightarrow d = (1,0)$ $7 \rightarrow d = (0,0)$

Petla ucząca

Wybierz pierwszy element (tzn. 1) z ciągu uczącego (zawierającego tablice reprezentujące 1, 4 i 7):

- A. Wylicz odpowiedzi neuronów y_1 (odpowiedź neuronu 1) i y_2 (odpowiedź neuronu 2).
- B. Zmodyfikuj wagi obu neuronów.
- C. Wylicz **błąd** na neuronie 1 (E_1) i błąd na neuronie 2 (E_2).
- D. Oblicz **błąd** dla sieci: $E_1 + E_2$ po podaniu **1**.

Powtórz kroki A-D dla każdego elementu z ciągu uczącego. Potem wylicz sumę błędów z punktu D uzyskanych dla cyfr 1, 4 i 7. Jeżeli suma ta będzie mniejsza od pewnej wartości progowej (np. 0.01) zakończ działanie pętli. Sieć jest nauczona.