Cálculo I - C 2024/2025

Revisões de alguns conceitos sobre funções reais de variável real (f.r.v.r) estudados no ensino secundário

Departamento de Matemática Universidade de Aveiro

Notação

 \mathbb{R} Conjunto dos números reais

 \mathbb{R}^+ Conjunto dos números reais positivos

 \mathbb{R}^- Conjunto dos números reais negativos

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ Conjunto dos números inteiros

 $\mathbb{N} = \{1, 2, \ldots\}$ Conjunto dos números naturais

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ Conjunto dos números inteiros não negativos

 $\mathbb{Q}=\{rac{p}{q}:p\in\mathbb{Z},q\in\mathbb{Z}\setminus\{0\}\}$ Conjunto dos números racionais

Noções topológicas em $\mathbb R$

Nas definições seguintes considere $a \in \mathbb{R}$, $\varepsilon \in \mathbb{R}^+$ e $S \subseteq \mathbb{R}$.

• Chama-se vizinhança de centro a e raio ε ou vizinhança- ε de a ao conjunto

$$\mathcal{V}_{\varepsilon}(a) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

= $]a - \varepsilon, a + \varepsilon[.$

 a é ponto interior de S se existir uma vizinhança de a contida em S, isto é, se

$$\exists \varepsilon \in \mathbb{R}^+ \ \mathcal{V}_{\varepsilon}(a) \subseteq S.$$

- $a \notin \text{ponto exterior de } S \text{ se } a \text{ for ponto interior de } \mathbb{R} \backslash S$.
- a é ponto fronteiro de S se a não for ponto interior nem ponto exterior de S, isto é, se

$$\forall \varepsilon \in \mathbb{R}^+ \ (\mathcal{V}_{\varepsilon}(a) \cap S \neq \emptyset \ \land \ \mathcal{V}_{\varepsilon}(a) \cap (\mathbb{R} \backslash S) \neq \emptyset).$$

Noções topológicas em $\mathbb R$

Definições:

• $a \in \mathbb{R}$ é um ponto de acumulação de S se toda a vizinhança- ε de a contém um ponto de S distinto de a, isto é, se,

$$\forall \varepsilon > 0, (\mathcal{V}_{\varepsilon}(a) \setminus \{a\}) \cap S \neq \emptyset.$$

• $a \in S$ é um ponto isolado de S se não é ponto de acumulação de S.

Definição: Ao conjunto de todos os pontos de acumulação de S chamamos de derivado de S e denota-se por S'.

Observação: Todo o ponto interior de *S* é ponto de acumulação de *S*.

Exemplos:

- $A = [-2, 1] \cup \{3\}$: 1 é ponto de acumulação de A e 3 é ponto isolado.
- $S = \{\frac{1}{n} : n \in \mathbb{N}\}$: Todo o ponto de S é isolado e 0 é ponto de acumulação de S.

UA 2024/2025 Cálculo I - C Slides 0 4 / 43

Domínio, contradomínio, gráfico e restrição de uma f.r.v.r.

Definição: Seja $\emptyset \neq A \subseteq \mathbb{R}$. Uma função real f definida em A é uma correspondência que a cada elemento $x \in A$ associa um único elemento $f(x) \in \mathbb{R}$. Escrevemos $f: A \to \mathbb{R}$ e, sendo $a \in A$, chamamos a b = f(a) a imagem de a por f. O conjunto A é chamado de domínio de f e representa-se habitualmente por D_f . O conjunto das imagens $f(A) := \{f(x) : x \in A\}$ é designado por contradomínio de f e denota-se por CD_f .

Definição: Chama-se gráfico da função $f: D_f \to \mathbb{R}$ ao subconjunto de \mathbb{R}^2 definido por $G_f:=\{(x,f(x))\in\mathbb{R}^2:x\in D_f\}.$

Definição: Seja $f: D_f \to \mathbb{R}$ e $\emptyset \neq B \subseteq D_f$. Definimos a restrição de f a B como sendo a função $g: B \to \mathbb{R}$ tal que g(x) = f(x), para todo o $x \in B$, e escrevemos $g = f_{|_B}$

UA 2024/2025 Cálculo I - C Slides 0 5 / 43

Função composta

Definição: Dadas duas funções $f:D_f \to \mathbb{R}$ e $g:D_g \to \mathbb{R}$, define-se a função composta de g após f como sendo a função

$$g \circ f : D_{g \circ f} \to \mathbb{R}$$

onde

$$D_{g \circ f} = \{ x \in D_f : f(x) \in D_g \}$$

e

$$(g \circ f)(x) = g(f(x)).$$

Limite de uma f.r.v.r

Definição (Definição de limite segundo Cauchy): Seja $f:D_f\to\mathbb{R}$ uma f.r.v.r. Sejam a um ponto de acumulação de D_f e $\ell\in\mathbb{R}$. Dizemos que ℓ é o limite de f no ponto a ou que f(x) tende para ℓ quando x tende para a e escrevemos

$$\lim_{x \to a} f(x) = \ell$$

se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_f \ 0 < |x - a| < \delta \Rightarrow |f(x) - \ell| < \varepsilon,$$

ou, equivalentemente,

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_f \ x \in \mathcal{V}_{\delta}(a) \setminus \{a\} \Rightarrow f(x) \in \mathcal{V}_{\varepsilon}(l).$$

Observação: Esta definição traduz que f(x) está tão próximo de ℓ quanto se queira desde que x, distinto de a, esteja suficientemente próximo de a.

UA 2024/2025 Cálculo I - C Slides 0 7 / 43

Limite de uma f.r.v.r

Teorema (Teorema de Heine): Seja $f: D_f \to \mathbb{R}$ uma f.r.v.r. e a um ponto de acumulação de D_f . Então

$$\lim_{x \to a} f(x) = \ell$$

se e só se $\lim_{n\to+\infty} f(x_n) = \ell$ para todas as sucessões $(x_n)_{n\in\mathbb{N}}$ de elementos de $D_f \setminus \{a\}$ convergentes para a.

Observação: O resultado anterior permite concluir que a definição de limite de uma função num ponto apresentada no slide anterior é equivalente à definição de limite segundo Heine estudada no ensino secundário.

Teorema (Unicidade do limite): O limite de uma função num determinado ponto, quando existe, é único.

Exercício: Mostre que não existe $\lim_{x\to 0}$ sen $\left(\frac{1}{x}\right)$.

Propriedades dos limites

Proposição: Sejam $f:D_f\longrightarrow \mathbb{R}$ uma função, $a\in \mathbb{R}$ um ponto de acumulação de D_f e $\ell\in \mathbb{R}$. Então,

$$\lim_{x \to a} f(x) = \ell \quad \Leftrightarrow \quad \lim_{x \to a} (f(x) - \ell) = 0$$
$$\Leftrightarrow \quad \lim_{x \to a} |f(x) - \ell| = 0.$$

Proposição (Propriedades operatórias dos limites): Sejam f e g f.r.v.r. e a um ponto de acumulação de $D=D_f\cap D_g$. Se $\lim_{x\to a}f(x)=\ell_1\in\mathbb{R}$ e

 $\lim_{x \to a} g(x) = \ell_2 \in \mathbb{R}$, então

- ① $\lim_{x \to a} (f(x) \pm g(x)) = \ell_1 \pm \ell_2;$
- ② $\lim_{x\to a} (\alpha f(x)) = \alpha \ell_1$, para todo o $\alpha \in \mathbb{R}$;

Propriedades dos limites

Teorema: Sejam $f: D_f \to \mathbb{R}$ e $g: D_g \to \mathbb{R}$ tais que $g(D_g) \subseteq D_f$. Se $\lim_{x \to a} g(x) = b$ e $\lim_{x \to b} f(x) = \ell = f(b)$, então $\lim_{x \to a} (f(g(x))) = f(b)$.

Proposição (Lei do enquadramento): Sejam f, g e h funções r.v.r. e a um ponto de acumulação de $D = D_f \cap D_g \cap D_h$. Se existir $\delta > 0$ tal que

$$f(x) \le g(x) \le h(x)$$
, para todo o $x \in (\mathcal{V}_{\delta}(a) \setminus \{a\}) \cap D$,

e

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell,$$

então

$$\lim_{x \to a} g(x) = \ell.$$

Propriedades dos limites

Corolário: Sejam $f:D_f\to\mathbb{R},\,g:D_g\to\mathbb{R}$ e a um ponto de acumulação de $D_f\cap D_g$. Se

- $\bullet \lim_{x \to a} f(x) = 0$
- g é limitada em $(\mathcal{V}_{\delta}(a) \setminus \{a\}) \cap D_g$, para algum $\delta > 0$,

então

$$\lim_{x \to a} f(x)g(x) = 0.$$

Observações:

- O resultado anterior afirma que o produto de um infinitésimo por uma função limitada é um infinitésimo.
- Observe-se que o facto de g ser limitada no corolário anterior é fundamental para a validade do resultado. Por exemplo, se f(x) = x e $g(x) = \frac{1}{x}$, temos que $\lim_{x\to 0} f(x)g(x) = 1 \neq 0$.

Exercício: Calcule, justificando, $\lim_{x\to 0} x^2$. sen $\left(\frac{\pi}{x^5}\right)$.

UA 2024/2025 Cálculo I - C Slides 0 11 / 43

Limites laterais

Definições: Sejam $S \neq \emptyset$, $S \subseteq \mathbb{R}$ e $a \in \mathbb{R}$.

- a é ponto de acumulação à esquerda de S se $]a \delta, a[\cap S \neq \emptyset$, qualquer que seja $\delta > 0$.
- a é ponto de acumulação à direita de S se $]a, a + \delta[\cap S \neq \emptyset]$, qualquer que seja $\delta > 0$.

Definição (Limite lateral à esquerda): Sejam f uma f.r.v.r., a um ponto de acumulação à esquerda de D_f e $\ell \in \mathbb{R}$. Dizemos que ℓ é o limite de f(x) quando x tende para a por valores inferiores a a e escrevemos

$$\lim_{x \to a^{-}} f(x) = \ell$$

se $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_f \ a - \delta < x < a \Rightarrow |f(x) - \ell| < \varepsilon$.

UA 2024/2025 Cálculo I - C Slides 0 12 / 43

Limites laterais

Definição (Limite lateral à direita): Sejam f uma f.r.v.r., a um ponto de acumulação à direita de D_f e $\ell \in \mathbb{R}$. Dizemos que ℓ é o limite de f(x) quando x tende para a por valores superiores a a e escrevemos

$$\lim_{x \to a^+} f(x) = \ell$$

se
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_f \ a < x < a + \delta \Rightarrow |f(x) - \ell| < \varepsilon$$
.

Proposição: Sejam f uma f.r.v.r., a um ponto de acumulação à direita de D_f e à esquerda de D_f e $\ell \in \mathbb{R}$. Então

$$\lim_{x\to a} f(x) = \ell \quad \text{ se e só se } \quad \lim_{x\to a^-} f(x) = \ell = \lim_{x\to a^+} f(x).$$

UA 2024/2025 Cálculo I - C Slides 0 13 / 43

Limites laterais

Exercícios: Calcule, se existir, $\lim_{x\to 0} f(x)$:

①
$$f(x) = \begin{cases} x^3 \cdot \cos\left(\frac{1}{x^2}\right) & \text{se } x < 0 \\ \operatorname{arccotg}(\ln(x+e)) & \text{se } x \ge 0 \end{cases}$$

$$f(x) = \frac{x}{|x|}$$

Limites no infinito e limites infinitos

Definição: Seja $\ell \in \mathbb{R}$ e $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma f.r.v.r.

• Suponhamos que D_f não é majorado. Escrevemos $\lim_{x\to+\infty} f(x)=\ell$ se

$$\forall \varepsilon > 0 \ \exists M > 0 \ \forall x \in D_f \ x > M \Rightarrow \mid f(x) - \ell \mid < \varepsilon.$$

• Suponhamos que D_f não é minorado. Escrevemos $\lim_{x \to -\infty} f(x) = \ell$ se

$$\forall \varepsilon > 0 \ \exists M > 0 \ \forall x \in D_f \ x < -M \Rightarrow |f(x) - \ell| < \varepsilon.$$

• Seja a um ponto de acumulação de D_f . Escrevemos $\lim_{x\to a} f(x) = +\infty$ se

$$\forall L > 0 \ \exists \delta > 0 \ \forall x \in D_f \ 0 < |x - a| < \delta \Rightarrow f(x) > L.$$

Limites no infinito e limites infinitos

De modo análogo se definem as noções:

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

16 / 43

Limites

Proposição:

① Se
$$\lim_{x \to a} f(x) = \pm \infty$$
, então $\lim_{x \to a} \frac{1}{f(x)} = 0$;

② Se
$$\lim_{x\to a} f(x) = 0^+$$
, então $\lim_{x\to a} \frac{1}{f(x)} = +\infty$;
③ Se $\lim_{x\to a} f(x) = 0^-$, então $\lim_{x\to a} \frac{1}{f(x)} = -\infty$.

Função contínua

Definição: Sejam $f: D_f \longrightarrow \mathbb{R}$ e a um ponto de acumulação de D_f . Dizemos que f é contínua em a se

$$a \in D_f$$
 e $\lim_{x \to a} f(x) = f(a)$,

isto é, se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_f \ |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Caso contrário, dizemos que f é descontínua em a.

Definição: Sejam $f: D_f \longrightarrow \mathbb{R}$ e $a \in D_f \cap (D_f)'$. Dizemos que:

- f é contínua à esquerda de a se $\lim_{x\to a^-} f(x) = f(a)$.
- f é contínua à direita de a se $\lim_{x\to a^+} f(x) = f(a)$.

UA 2024/2025 Cálculo I - C Slides 0 18 / 43

Propriedades das funções contínuas

Proposição: Sejam $f: D_f \longrightarrow \mathbb{R}$ e $a \in D_f \cap (D_f)'$. f é contínua em a se e só se f é contínua à esquerda e à direita de a.

Proposição: Sejam f e g duas funções contínuas num ponto a. Então as funções f+g, αf ($\alpha \in \mathbb{R}$) e fg são contínuas em a. Se $g(a) \neq 0$, então f/g é também uma função contínua em a.

Proposição: Sejam $f:D_f \longrightarrow \mathbb{R}$ e $g:D_g \longrightarrow \mathbb{R}$ tais que a função composta $g \circ f$ está definida. Se f é contínua em a e g é contínua em f(a), então $g \circ f$ é contínua em a.

UA 2024/2025 Cálculo I - C Slides 0 19 / 43

Derivada de uma função

Definição: Sejam $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ uma função e $a \in D_f$ um ponto interior de D_f . Chama-se derivada da função f no ponto a ao limite

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \quad \left(\text{ou } \lim_{x\to a} \frac{f(x)-f(a)}{x-a}\right)$$

se este limite existir, podendo ser finito, $+\infty$ ou $-\infty$.

- Notações mais usuais: f'(a) ou $\frac{df}{dx}(a)$
- Se uma função admite derivada num ponto dizemos que é derivável nesse ponto.
- Se f'(a) é finita dizemos que f é diferenciável em a.

Interpretação geométrica de derivada

No caso de f'(a) ser finita, f'(a) é o declive da reta tangente ao gráfico de f no ponto (a, f(a)).

Quando $f'(a) = +\infty$ ou $f'(a) = -\infty$, essa reta tangente é a reta vertical de equação x = a.

UA 2024/2025 Cálculo I - C Slides 0 21 / 43

Reta tangente e reta normal

Definição: Sejam $f: D_f \longrightarrow \mathbb{R}$ e $a \in \text{int}(D_f)$ um ponto onde f é diferenciável.

À reta de equação

$$y - f(a) = f'(a)(x - a)$$

chamamos reta tangente à curva y = f(x) no ponto (a, f(a)).

• Chamamos normal à curva y = f(x) no ponto (a, f(a)) à reta que passa nesse ponto e é perpendicular à reta tangente à curva nesse ponto.

Nota: Atendendo à relação que existe entre os declives de duas retas perpendiculares, podemos concluir que a reta normal à curva y=f(x) no ponto M=(a,f(a)) é a reta que passa por este ponto e tem declive $-\frac{1}{f'(a)}$, quando $f'(a)\neq 0$. Se f'(a)=0, a reta normal à curva y=f(x) no ponto M=(a,f(a)) é a reta de equação x=a.

UA 2024/2025 Cálculo I - C Slides 0 22 / 43

Derivadas laterais

Definição:

• Seja $a \in D_f$ um ponto de acumulação à esquerda de D_f . Chama-se derivada lateral de f à esquerda de a, e denota-se por $f'_-(a)$, ao limite

$$\lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} \qquad \left(\text{ou } \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} \right)$$

se este limite existir, podendo ser finito, $+\infty$ ou $-\infty$.

• Seja $a \in D_f$ um ponto de acumulação à direita de D_f . Chama-se derivada lateral de f à direita de a, e denota-se por $f'_+(a)$, ao limite

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} \qquad \left(\text{ou } \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \right)$$

se este limite existir, podendo ser finito, $+\infty$ ou $-\infty$.

UA 2024/2025 Cálculo I - C Slides 0 23 / 43

Diferenciabilidade

Proposição: Sejam $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ uma função e $a \in D_f$ um ponto interior de D_f . Então f é diferenciável em a sse existem $f'_-(a)$ e $f'_+(a)$, são finitas e $f'_-(a) = f'_+(a)$.

Exemplo: A função f definida por

$$f(x) = \begin{cases} x^3 & \text{se } x < 0\\ x^2 + x^4 & \text{se } x \ge 0 \end{cases}$$

é diferenciável em x = 0 e f'(0) = 0, porque

$$f'_{-}(0) = \lim_{h \to 0^{-}} \frac{h^3 - 0}{h} = 0$$

e

$$f'_{+}(0) = \lim_{h \to 0^{+}} \frac{h^{2} + h^{4} - 0}{h} = 0.$$

Exercício

Exercício: Considere a função *g* definida por

$$g(x) = \begin{cases} x \ln(1+x^2) & \text{se } x \le 0 \\ \frac{xe^x}{e^x + 1} & \text{se } x > 0. \end{cases}$$

Estude g quanto à diferenciabilidade em x = 0.

Continuidade e diferenciabilidade

Proposição: Sejam $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ uma função e $a \in D_f$ um ponto interior de D_f . Se f é diferenciável em a, então f é contínua em a.

Corolário: Se f não é contínua em a, então f não é diferenciável em a.

Nota: Observe-se que uma função pode ser contínua num ponto e não ter derivada nesse ponto. Considere, por exemplo, a função f definida em $\mathbb R$ por f(x)=|x|. A função f é contínua em x=0 e não tem derivada em x=0.

UA 2024/2025 Cálculo I - C Slides 0 26 / 43

Continuidade e diferenciabilidade

Exemplo: Consideremos a função f definida por

$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$$

Uma vez que não existe o limite $\lim_{x\to 0} f(x)$, f não é contínua em x=0 e, portanto, f não é diferenciável em x=0.

Exercício: Considere a função *h* definida por

$$h(x) = \begin{cases} x^2 \cos(\frac{\pi}{x}) & \text{se } x < 0\\ 0 & \text{se } x = 0\\ \frac{\sin(2x)}{x} & \text{se } x > 0. \end{cases}$$

- (a) Estude h quanto à continuidade em x = 0.
- **(b)** $h \in \text{diferenciável em } x = 0$? Justifique.

UA 2024/2025 Cálculo I - C Slides 0

27 / 43

Propriedades das derivadas

Proposição: Sejam f e g duas funções diferenciáveis em a. Então

• f + g é diferenciável em a e

$$(f+g)'(a) = f'(a) + g'(a)$$

• f - g é diferenciável em a e

$$(f-g)'(a) = f'(a) - g'(a)$$

• $f \cdot g$ é diferenciável em a e

$$(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$$

• αf , com $\alpha \in \mathbb{R}$, é diferenciável em a e

$$(\alpha f)'(a) = \alpha f'(a)$$

• se $g(a) \neq 0$, então $\frac{f}{g}$ é diferenciável em a e

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

28 / 43

Derivadas de algumas funções elementares

$$(c)' = 0$$
, com $c \in \mathbb{R}$

$$(x^p)' = px^{p-1}, \operatorname{com} p \in \mathbb{R}$$

$$(e^x)' = e^x$$

•
$$(a^x)' = a^x \ln a$$
, onde $a \in \mathbb{R}^+ \setminus \{1\}$

•
$$(\ln x)' = \frac{1}{x}, x > 0$$

•
$$(\log_a x)' = \frac{1}{x \ln a}, x > 0$$

•
$$(\operatorname{sen} x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(tg x)' = \sec^2 x$$

$$(\cot x)' = -\csc^2 x$$

$$\bullet (\sec x)' = \sec x \cdot \operatorname{tg} x$$

$$\bullet (\csc x)' = -\csc x \cdot \cot x$$

Regra da cadeia ou derivada da função composta

Teorema: Sejam $f:D_f\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ e $g:D_g\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ duas funções tais que $g\circ f$ está definida. Se f é diferenciável em a e g é diferenciável em f(a), então $g\circ f$ é diferenciável em a e

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a).$$

Derivadas de algumas funções compostas

Sejam f uma função diferenciável, $p \in \mathbb{R}$ e $a \in \mathbb{R}^+ \setminus \{1\}$

•
$$(f^p(x))' = pf^{p-1}(x)f'(x)$$

•
$$(e^{f(x)})' = f'(x) e^{f(x)}$$

•
$$(a^{f(x)})' = f'(x) a^{f(x)} \ln a$$

$$\bullet \ (\ln|f(x)|)' = \frac{f'(x)}{f(x)}$$

$$\bullet (\operatorname{sen}(f(x)))' = f'(x)\cos(f(x))$$

$$(\cos(f(x)))' = -f'(x) \operatorname{sen}(f(x))$$

•
$$(\operatorname{tg}(f(x)))' = f'(x) \operatorname{sec}^2(f(x))$$

$$(\cot g(f(x)))' = -f'(x)\csc^2(f(x))$$

$$\bullet (\sec(f(x)))' = f'(x)\sec(f(x))\operatorname{tg}(f(x))$$

•
$$(\operatorname{cosec}(f(x)))' = -f'(x)\operatorname{cosec}(f(x))\operatorname{cotg}(f(x))$$

UA 2024/2025 Cálculo I - C Slides 0 31 / 43

Exemplos

Exemplos:

• A f.r.v.r. definida por $f(x) = e^{x^2} \cos x$ é diferenciável em todo o $x \in \mathbb{R}$ e

$$f'(x) = (e^{x^2})' \cos x - e^{x^2} \sin x$$
$$= 2xe^{x^2} \cos x - e^{x^2} \sin x$$

para todo o $x \in \mathbb{R}$.

• A f.r.v.r. definida por $g(x) = \frac{\ln(3x)}{x}$ é diferenciável em todo o $x \in \mathbb{R}^+$ e $g'(x) = \frac{1 - \ln(3x)}{x^2}, \ x \in \mathbb{R}^+.$

UA 2024/2025 Cálculo I - C Slides 0 32 / 43

Função derivada

Definição: Seja $f: D_f \longrightarrow \mathbb{R}$ uma função. Seja $S \subseteq D_f$ o conjunto dos pontos interiores de D_f onde f é diferenciável.

Chamamos função derivada de f à função:

$$f': S \longrightarrow \mathbb{R}$$
$$x \longmapsto f'(x)$$

Exemplo: A função definida por f(x) = |x| é diferenciável em $\mathbb{R} \setminus \{0\}$ e a sua função derivada é

$$f': \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

$$x \longmapsto f'(x) = \begin{cases} 1 & \text{se } x > 0 \\ -1 & \text{se } x < 0 \end{cases}$$

UA 2024/2025 Cálculo I - C Slides 0 33 / 43

Derivadas de ordem superior

A f' também é usual chamar função derivada de primeira ordem de f. A partir de f' podemos determinar a sua função derivada, f'', definida nos pontos onde f' é diferenciável, tal que

$$f''(x) = (f')'(x).$$

A f'' chamamos função derivada de ordem dois ou função derivada de segunda ordem de f.

Dada a função derivada de ordem n-1 de f, $f^{(n-1)}$, a função derivada de ordem n é a função $f^{(n)}$, cujo domínio é o conjunto de pontos onde $f^{(n-1)}$ é diferenciável e

$$f^{(n)}(x) := (f^{(n-1)})'(x).$$

UA 2024/2025 Cálculo I - C Slides 0 34 / 43

Mínimo e máximo de uma função

Definição: Sejam $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D_f$.

• a é um maximizante local (resp. minimizante local) de f se existir $\delta > 0$ tal que

$$f(a) \ge f(x), \ \forall x \in]a - \delta, a + \delta[\cap D_f]$$
(resp. $f(a) \le f(x), \ \forall x \in]a - \delta, a + \delta[\cap D_f]$).

No caso de a ser um maximizante local (resp. minimizante local) de f, f(a) diz-se um máximo local (resp. mínimo local) de f.

• a é um maximizante global (resp. minimizante global) de f se

$$\forall x \in D_f \ f(x) \le f(a) \ \ (\text{resp.} \ \forall x \in D_f \ f(x) \ge f(a)) \ .$$

Caso a seja um maximizante global (resp. minimizante global) de f dizemos que f(a) é o máximo global (resp. o mínimo global) de f.

UA 2024/2025 Cálculo I - C Slides 0 35 / 43

Extremos e extremantes

Aos máximos e mínimos locais chamamos extremos locais.
 Ao máximo e mínimo global chamamos extremos globais.

Aos maximizantes e minimizantes locais chamamos extremantes locais.
 Aos maximizantes e minimizantes globais chamamos extremantes globais.

Extremos locais

Proposição: Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua em [a,b] e diferenciável em [a,b], excepto possivelmente em $c \in]a,b[$. Então,

(i) se

$$f'(x) > 0$$
, para todo o $x < c$ e $f'(x) < 0$, para todo o $x > c$ então,

f(c) é um máximo local de f;

(ii) se

$$f'(x) < 0$$
, para todo o $x < c$ e $f'(x) > 0$, para todo o $x > c$ então,

f(c) é um mínimo local de f.

UA 2024/2025 Cálculo I - C Slides 0 37 / 43

Concavidades do gráfico de uma função

Definição: Seja f uma função diferenciável em]a,b[.

• Dizemos que o gráfico de f tem a concavidade voltada para cima em]a, b[se, para todo o $c \in]a, b[$,

$$f(x) > f(c) + f'(c)(x - c)$$
, para todo o $x \in]a, b[\setminus \{c\}]$.

• Dizemos que o gráfico de f tem a concavidade voltada para baixo em]a, b[se, para todo o $c \in]a$, b[,

$$f(x) < f(c) + f'(c)(x - c)$$
, para todo o $x \in]a, b[\setminus \{c\}]$.

Concavidades do gráfico de uma função

Proposição: Seja f uma função diferenciável em]a,b[tal que existe e é finita f''(x), para todo o $x \in]a,b[$.

- Se f''(x) > 0, $\forall x \in]a, b[$, então o gráfico de f tem concavidade voltada para cima em]a, b[.
- Se $f''(x) < 0, \forall x \in]a, b[$, então o gráfico de f tem concavidade voltada para baixo em]a, b[.

Definição: Um ponto (c, f(c)) do gráfico de uma função contínua f diz-se ponto de inflexão do gráfico de f se existir um intervalo aberto]a, b[contendo c tal que ocorra uma das duas situações:

- f''(x) > 0 se a < x < c e f''(x) < 0 se c < x < b;
- f''(x) < 0 se a < x < c e f''(x) > 0 se c < x < b.

UA 2024/2025 Cálculo I - C Slides 0 39 / 43

Ilustração gráfica

Assíntotas ao gráfico de uma função

Definição:

- Seja f uma função cujo domínio contém um intervalo da forma $a, +\infty$ para algum $a \in \mathbb{R}$. Dizemos que a reta de equação y = mx + b é uma assíntota ao gráfico de f à direita ou quando $x \to +\infty$ se $\lim_{x \to +\infty} (f(x) - mx - b) = 0.$
- Seja f uma função cujo domínio contém um intervalo da forma $]-\infty,a[$ para algum $a \in \mathbb{R}$. Dizemos que a reta de equação y = mx + b é uma assíntota ao gráfico de f à esquerda ou quando $x \to -\infty$ se $\lim_{x \to -\infty} (f(x) - mx - b) = 0.$
- A reta de equação x = a diz-se uma assíntota vertical ao gráfico de f se se verificar uma das condições:

$$\lim_{x\to a^+} f(x) = +\infty, \quad \text{ou} \quad \lim_{x\to a^+} f(x) = -\infty, \quad \text{ou}$$

$$\lim_{x\to a^-} f(x) = +\infty, \quad \text{ou} \quad \lim_{x\to a^-} f(x) = -\infty.$$

Assíntotas ao gráfico de uma função

Proposição: Seja f uma função cujo domínio contém um intervalo da forma $]a, +\infty[$ para algum $a \in \mathbb{R}$. A reta de equação y = mx + b é uma assíntota ao gráfico de f à direita se e só se existem e são finitos os limites

$$\lim_{x \to +\infty} \frac{f(x)}{x} \quad e \quad \lim_{x \to +\infty} (f(x) - mx)$$

e temos

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 e $b = \lim_{x \to +\infty} (f(x) - mx)$.

Proposição: Seja f uma função cujo domínio contém um intervalo da forma $]-\infty,a[$ para algum $a\in\mathbb{R}$. A reta de equação y=mx+b é uma assíntota ao gráfico de f à esquerda se e só se existem e são finitos os limites

$$\lim_{x \to -\infty} \frac{f(x)}{x} \quad e \quad \lim_{x \to -\infty} (f(x) - mx)$$

e temos

$$m = \lim_{x \to -\infty} \frac{f(x)}{x}$$
 e $b = \lim_{x \to -\infty} (f(x) - mx)$.

UA 2024/2025 Cálculo I - C Slides 0 42 / 43

Esboço do gráfico de uma função

Devemos ter em conta:

- o domínio da função
- os pontos de intersecção com os eixos OX e OY
- o sinal da função
- os pontos de descontinuidade
- as assíntotas ao gráfico
- os intervalos de monotonia
- os extremantes locais
- os pontos de inflexão e as concavidades.