Lecture 14

Data Size - Data Complexity

eva.knirsch@kiu.edu.ge

relational databases on the right of the x-axis, on X

Lecture 14

Row Format

- RDBMS are -logically two-dimensional: columns (attributes) and rows (tuples).
- However, the storage of the data happens one-dimensionally in a file (heap file or B-Tree).
 → how to map from two dimensions to one dimension for storage?

teacherID	name	postal	email	DoB	gender	education	remark
41	Krawinkel	10045	krawinkel@wir_wis	1978-09-15	f	Master	
			sen_alles.xx				
42	Kaiser	10045	kaiser@zirkus.xx	2001-11-30	f	Ph.D	
43	Kern	10045	kern@immer_da.xx	1977-06-11	m	Ph.D	
44	Schuster	10004	schusterl@flieg.xx	1975-03-27	f	Master	
45	Newman	10010	new@kriech.xx	1995-11-20	m	Ph.D	

heap file storage

Header, 41, Krawinkel, 10045, krawinkel@wir_wissen_alles.xx ,1978-09-15,f,Master, Header, 42, Kaiser, 10045, kaiser@zirkus.xx ,2001-11-30,f,Ph.D, Header, 43, Kern 4,3, 10045_kern@immer_da.xx, 1977-06-11, m, Ph.D., Header, 44, Schuster 10004, schusterl@flieg.xx , 1975-03-27,f,Master, Header, 45, Newman, 10010, new@kriech.xx, 1995-11-20,m, Ph.D. Header, 41, Krawinkel, 10047,...

6 knirsch@htw-berlin.de

Column Store

Databases II

[41,42,43,44,45] [Krawinkel,Kaiser,Kern,Schuster,Neumann] [10045,10045,10045,10004,10010] [4,5,3,5,5]

select* from teacher where teacherID = 44

How is this query executed?

array position

Why not store a TID with each column value?

KUTAISI INTERNATIONAL UNIVERSITY Databases II

Column Compression

profID	
41	
42	
43	
44	
45	

41,42,43,44,45; Krawinkel,Kaiser,Kern,Schuster,Neumann; 10045,10045,10045,10004,10010; 4,5,3,5,5

- Columns often hold redundant values and / or a very limited number of different values. Those columns are suitable for compression.
- Popular compression method for columnar storage are bitmaps: each possible value gets a bitmap assigned. Each bitmap has same length as the column vector.
- Run-length encoding is used to further compact the bitmaps.

Lecture 14 2

Databases II

13

3

for compaction. advantage of the compression is performance.

Databases II KUTAISI INTERNATIONAL UNIVERSITY **RDBMS versus Column-Family Concepts** P2P - token ring RDBMS: Column-Family: schema schema no referential integrity (no fks) referential integrity normalization --> minimize denormalized, redundant data redundancy --> consistency no joins --> the query needs to be join answered by one table ACID Designing for optimal storage Sorting is a design decision "miniworld CAP - AP

 $https://cass and ra.apache.org/doc/latest/cass and ra/developing/data-modeling/data-modeling_rdbms.html\\$

Lecture 14

How are the queries mapped on the components of the Cassandra data model:

→ a table for each query

- Rowkeys (=partition keys)

- column-families (attribute group)

- Columns (attribute – value)

flushed to disk

Lecture 14 4

Databases II

5

Use Case Examples

```
CREATE TABLE history_by_user (
    user_id UUID,
    usage_timestamp TIMESTAMP, show_id TEXT,
    title TEXT,
    genre TEXT,
    duration_watched INT,
    location TEXT,
    PRIMARY KEY ((user_id), view_timestamp)
) WITH CLUSTERING ORDER BY (usage_timestamp DESC);
```

Other use cases:

- Global Press Agencies storing their articles / press releases by date / topic
- Social media: feeds by followed persons per user

Lecture 14