Sensing Technologies and Mathematics for Geomatics

GEO1001.2020 MSc Geomatics Delft University of Technology

Homework 1

Name (5374367) Konstantinos Pantelios

1 After lesson A1:

1.1 Compute mean statistics (mean, variance and standard deviation for each of the sensors variables), what do you observe from the results?

For 1.1, the code computes the mean, the variance and the standard deviation of all the different variables (19) from sensors A, B, C, D and E. The results (Figure 1) are displayed separately for each of the sensors and each variable takes occupies different rows.

rue Direction->		209.40630048465266		10104.857537040565			100.5229204561853
ind Speed->		1.290306946688207		1.2506491788047323			1.118324272652942
rosswind Speed->		0.9649434571890144		0.9262185347673694			0.962402480653166
leadwind Speed->		0.16352988691437803		1.034522111788517			1.017114601108703
emperature->		17.96910339256866		15.857862039390751			3.98219311929880
lobe Temperature->		21.544588045234246		68.1638115831204			8.256137812750003
/ind chill->		17.838206785137317		16.257877882926497			4.03210588686935
elative humidity->		78.18477382875606		375.8581970813183			19.3870626212770
Meat stress index->		17.899596122778675		14.990791436236988			3.87179434322601
ew point->		13.553877221324719		9.719544740983556			3.11761844057023
sychro Wet Bulb Temp->		15.270718901453955		6.9412225849577585			2.63462000769707
station pressure->		1016.1682552504037		38.45572894292478			6.20126833340767
Barometric pressure->		1016.1284329563813		38.4524145072175			6.20100108911597
ltitude->	mean:	-25.98707592891761	<pre>variance:</pre>	2662.5652610782413	standard	deviation:	51.6000509794151
ensity Altitude->	mean:	137.31663974151857	<pre>variance:</pre>	26499.337542182006	standard	deviation:	162.7861712252672
NA Wet Bulb Temperature-	>mean:	15.981542810985461	<pre>variance:</pre>	10.008064017149449	standard	deviation:	3.16355243628890
IBGT->	mean:	17.25432148626817	<pre>variance:</pre>	16.128741421686968	standard	deviation:	4.01606043551226
WL->	mean:	301.39293214862676	variance:	814.4374985107435	standard	deviation:	28.5383513628720
irection , Mag->	mean:	208.90508885298868	<pre>variance:</pre>	10101.595596074496	standard	deviation:	100.5066942848808
=== VALUES FOR SENSOR:	В ====						
rue Direction->	mean:	183.41235864297255	variance:	9973.18819944488	standard	deviation:	99.8658510174768
ind Speed->	mean:	1.242124394184168	variance:	1.300975939291838	standard	deviation:	1.14060332249728
rosswind Speed->	mean:	0.8356219709208401	variance:	0.8782302674332721	standard	deviation:	0.93713940661636
leadwind Speed->	mean:	-0.12980613893376414	variance:	1.25621175563275	standard	deviation:	1.12080852764098
'emperature->	mean:	18.065428109854604	variance:	16.622350826415005	standard	deviation:	4.07705173212396
lobe Temperature->	mean:	21.799434571890146	variance:	66.02264103731852	standard	deviation:	8.12543174467169
ind chill->	mean:	17.945920840064623	variance:	17.028945395995418	standard	deviation:	4.12661427758827
delative humidity->	mean:	77.87831179321486	variance:	408.4579746943844	standard	deviation:	20.2103432601820
eat stress index->	mean:	18.00428109854604		15.432921898366484	standard	deviation:	3.92847577291326
ew point->		13.530856219709205	variance:	9.632626245886195	standard	deviation:	3.10364724894537
sychro Wet Bulb Temp->	mean:	15.295516962843294	variance:	6.767528367644411	standard	deviation:	2.6014473601525
Station pressure->		1016.6570274636512		36.82705481507772			6.06852987263618
Barometric pressure->		1016.6164781906298		36.81399341269066			6.06745361850345
Altitude->		-30.05815831987076		2544.679977868311			50.4448211203916
ensity Altitude->		135.58077544426493		26852.460761272676			163.867204654478
				9.805292727795887			3.13134040433100
A Wet Bulb Temperature							
MA Wet Bulb Temperature-			variance:	15 82895992807201	etandard	deviation:	3 97856254545181
IA Wet Bulb Temperature- /BGT-> WL->	mean:	17.321970920840062 299.45169628432956		15.82895992807201 789.7501304021025			3.97856254545181 28.1024933129091

WALLIES FOR SENSOR.	C ======				
True Direction->	mean: 183.5889248181083	variance	: 7700.24936804366	standard deviati	on: 87.75106476871754
Wind Speed->	mean: 1.3714632174616000		: 1.4303416746777642		on: 1.1959689271372247
Crosswind Speed->	mean: 0.963298302344381		: 1.0421533895929145		on: 1.0208591428757028
Headwind Speed->	mean: -0.26289409862570		: 1.2712181399570899		on: 1.1274830996325798
Temperature->	mean: 17.91313662085691	variance	: 16.09802872264436	standard deviati	on: 4.012234878798145
Globe Temperature->	mean: 21.58738884397736	variance	: 67.91384257555865	standard deviati	on: 8.240985534240346
Wind chill->	mean: 17.77299919159256	variance	: 16.53443667987	standard deviati	on: 4.0662558551903745
Relative humidity->	mean: 77.96285367825384	variance	: 374.47121918069183	standard deviati	on: 19.35125885260935
Heat stress index->	mean: 17.82825383993533	variance	: 15.350046506300938	standard deviati	on: 3.917913539921592
Dew point->	mean: 13.45812449474535		: 10.080073442868077		on: 3.174913139420995
	mean: 15.196645109135003		: 7.236387289573896		on: 2.690053399019041
Station pressure->	mean: 1016.689329021827		: 37.67625638083111		on: 6.13809875945566
Barometric pressure->	mean: 1016.651899757477		: 37.660394531584316		on: 6.136806541808558
Altitude->	mean: -30.3387227162489		: 2607.4802547953855		on: 51.063492387373834
Density Altitude->	mean: 129.6228779304769		: 26975.694884846056		on: 164.2427924897956
	->mean: 15.93423605497170		: 10.476042928918309		on: 3.2366715818751692
WBGT->	mean: 17.22502021018593		: 16.540057093366812		on: 4.066946900731163
TWL->	mean: 301.8997574777688		: 766.2236781950229 : 7701.505933821689		on: 27.68074562209304 on: 87.75822430873183
Direction , Mag->	mean: 183.0836701697655	variance	: //01.505933821689	standard deviati	on: 87.75822430873183
=== VALUES FOR SENSOR.	D =======				
True Direction->	mean: 198.3265966046887		: 8130.602307980361	standard deviati	on: 90.16985254496295
Wind Speed->	mean: 1.581649151172190		: 1.739113529289902		on: 1.3187545371637217
Crosswind Speed->	mean: 1.210509296685529		: 1.450916232128608		on: 1.2045398424828495
Headwind Speed->	mean: -0.30056588520614	39 variance	: 1.2320045302185576	standard deviati	on: 1.109956994760859
Temperature->	mean: 17.99636216653193	variance	: 16.099081349837828	standard deviati	on: 4.012366053818847
Globe Temperature->	mean: 21.35929668552950	7 variance	: 61.17751462256783	standard deviati	on: 7.821605629445135
Wind chill->	mean: 17.83536782538399		: 16.55015978790578		on: 4.068188760112513
Relative humidity->	mean: 77.94203718674213		: 389.6984592290132		on: 19.740781626597595
<pre>Heat stress index-></pre>	mean: 17.92162489894907		: 15.11153317215288		on: 3.887355550004769
Dew point->	mean: 13.50860953920776		: 10.067811890385965		on: 3.172981545862813
	mean: 15.26018593371059		: 7.041555503019602		on: 2.6535929422237317
Station pressure->	mean: 1016.728011317704		: 34.973641396799955		on: 5.913851654953813
Barometric pressure->	mean: 1016.688884397736 mean: -30.6531932093775		: 34.938198997953734 : 2418.745529415378		on: 5.910854337399437
Altitude-> Density Altitude->	mean: -30.6531932093775		: 2418.745529415378 : 26505.40781590138		on: 49.18074348172644 on: 162.80481508819506
	mean: 132.41107518189169 ->mean: 15.91564268391269		: 20505.40781590138 : 9.983397181945264		on: 162.80481508819506
WBGT->	mean: 17.1767987065481		: 15.500916833369384		on: 3.9371203732384643
TWL->	mean: 305.254567502021		: 615.7608138186043		on: 24.814528281202612
Direction , Mag->	mean: 197.8261924009701		: 8132.027187846571		on: 90.17775328675344
pricedion , may	mount 13/10201324003/01	variance	. 01021027107040071	Junuara acviaci	50117776526076541
=== VALUES FOR SENSOR:	Е				
True Direction->	mean: 223.956363636363636		: 9304.524156473828		on: 96.459961416506
Wind Speed->	mean: 0.596242424242424		: 0.5110202240587696		on: 0.7148567856982051
Crosswind Speed->	mean: 0.438505050505050		: 0.3158143307825732		on: 0.5619736032791693
Headwind Speed->	mean: 0.194949494949494		: 0.3189441893684318		on: 0.5647514403420604
Temperature->	mean: 18.3539393939393939		: 19.035438016528925		on: 4.362962069114161
Globe Temperature->	mean: 21.17616161616161		: 63.18996102438527		on: 7.949211346063537
Wind chill-> Relative humidity->	mean: 18.2940202020202 mean: 76.7930505050505		: 19.129329898581776 : 406.3302224115906		on: 4.373708940771182 on: 20.157634345616813
Heat stress index->	mean: 18.28642424242424		: 18.46777529476584		on: 20.15/634345616813 on: 4.297414954919509
Dew point->	mean: 18.28642424242424 mean: 13.55878787878787		: 18.46///5294/6584 : 9.418778328741965		on: 4.29/414954919509 on: 3.0690028231889857
	mean: 13.558/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8		: 6.994618181818182		on: 3.0690028231889857
Station pressure->	mean: 1016.166101010100		: 38.92418015141312		on: 2.044/3404/464542/ on: 6.23892459895238
Barometric pressure->	mean: 1016.127797979798		: 38.91944545413724		on: 6.238545139224148
Altitude->	mean: -25.961212121212121		: 2691.26556620753		on: 51.877409015943826
Density Altitude->		e: 29702.92147070		tion: 172.34535523	
	->mean: 15.93688888888888		: 9.428372543209877		on: 3.0705655086986625
WBGT->	mean: 17.18553535353535		: 15.483612996224876		on: 3.934922235092439
TWL->	mean: 284.1153131313131		: 1289.3922059120498		on: 35.908107801888555
Direction , Mag->	mean: 223.8965656565656	variance	: 9264.263240730537	standard deviati	on: 96.25104280334077

Figure 1: 'Mean, variance and standard deviation for each variable of the 5 sensors'

From a first glance we can see that in most variables the statistical indicators hold similar values between all the sensors.

There is a notable observation that can be derived from the variables Altitude and Density Altitude. The difference between the mean and the standard deviations is such that could be only possible if the sensors are NOT fixated on the ground. So, we can hypothesize that all the sensors are strapped on balloons or drones and the measurement are taken from different heights Looking at the variable Wind Direction, True, it is apparent that the wind was rarely blowing from the North (in comparison to the other directions), which is information that can be used to calculate various correlations.

In general, there many different but related variables and the statistical indicators can reveal, on a surface level, possible correlations and interesting underlying facts or questions.

GEO1001: Homework 1

1.2 Create 1 plot that contains histograms for the 5 sensors Temperature values. Compare histograms with 5 and 50 bins, why is the number of bins important?

For 1.2, the codes computes and plots the Temperature histograms of 5 and 50 bins for each of the 5 different sensors. The following figure (Figure 2) illustrates the above comment in 10 different plots where each row of plots corresponds to each sensor and each column corresponds to the histogram with the respective number of bins.

Figure 2: 'Bin comparison of 5 sensor Temperature Histogram'

It is immediately apparent that the number of bins in a histogram plays a major role in the transmission of the message that plot tries to convey. Basically, the number of bins depend on the scale of data (values) that need to be illustrated. As such, five (5) bins are not enough to be able to get substantial information from almost 2.500 different values and we lose important levels of detail. On the other hand, using 50 bins allows the graph to show much more detailed results. However, too many bars can also hinder the overall illustration of the figure.

Having that in mind I continue to code and plot the rest of the graphs using 30 bins when needed.

1.3 Create 1 plot where frequency poligons for the 5 sensors Temperature values overlap in different colors with a legend.

For 1.3, the code generates a plot of the frequency polygons for the variable Temperature, for each of the 5 sensors. The frequency polygons graph (Figure 3) derives from a Tem-

perature CDF stepped histogram of 50 bins and the 5 sensors are overlapping each other with different colors.

Figure 3: 'Frequency polygons of the 5 sensors for Temperature'

1.4 Generate 3 plots that include the 5 sensors boxplot for: Wind Speed, Wind Direction and Temperature.

For 1.4, the code creates boxplots for the variables Wind Speed, Wind Direction and Temperature. The figure (Figure 4) shows the 3 different plots side by side with their respective variables' values for the x axis and the 5 different sensors as the boxes. The plot provides visualization of min, max, 25th, 50th,75th percentiles, mean and outliers.

Figure 4: 'Boxplots of the 5 sensors for Wind Speed Wind Direction and Temerature'

2 After lesson A2:

2.1 Plot PMF, PDF and CDF for the 5 sensors Temperature values in independent plots (or subplots). Describe the behaviour of the distributions, are they all similar? what about their tails?

For 2.1, the code computes and plots the PMF, PDF and CDF for the variable Temperature and for each of the 5 sensors. The figures (Figure 5, Figure 6, Figure 7) illustrate the above by combining the 5 sensors in one figure every time in order to display the 3 distributions separately.

Figure 5: 'PMF of the 5 sensor for Temperature Histograms'

Figure 6: 'PDF of the 5 sensor for Temperature Histograms'

Figure 7: 'CDF of the 5 sensor for Temperature Histograms'

Comparing the 3 distribution we can immediately figure out that there are major differences between each other as they use different methods. However, when comparing between sensors for each distribution the pattern remains basically the same. As for their tails, they seem to be right skewed.

2.2 For the Wind Speed values, plot the pdf and the kernel density estimation. Comment the differences.

For 2.2, the code outputs 5 plots of the PDF and KDE of the variable Wind Speed for each of the sensors. The figure (Figure 8) is a comparison between the PDF and the KDE of the above variable.

Figure 8: 'PDF and KDE of the 5 sensor for Wind Speed'

As it is expected the KDE resembles the respective PDF as it smooths it out

3 After lesson A3:

3.1 Compute the correlations between all the sensors for the variables:

Temperature, Wet Bulb Globe Temperature (WBGT), Crosswind Speed.

Perform correlation between sensors with the same variable, not between two different variables; for example, correlate Temperature time series between sensor A and B. Use Pearson's and Spearmann's rank coefficients. Make a scatter plot with both coefficients with the 3 variables.

For 3.1, the codes computes Pearson's and Spearman's coefficients between all the of the 5 sensors for the variables Temperature, Wet Bulb Globe Temperature (WBGT), Crosswind Speed. The figure (Figure 9) illustrates the above mentions with 6 scatter plots (Pearson and Spearman for each variable). The sensor pairs are 10 in total (disregarding the symmetry).

Pearson and Spearman Correlations between the 5 sensors for Temperature. Wet Bulb Global Temperature and Cross Wind Speed

Figure 9: 'Pearson and Spearman Correlations between the 5 sensors for Temperature, Wet Bulb Global Temperature and Cross Wind Speed'

3.2 What can you say about the sensors' correlations?

For 3.2, almost all of the correlations of the sensors tend to follow the same patterns. Overall, is seems that sensor E is considerably distant (in term of correlation) from the other sensors. In detail, sensors pairs A-B, A-C, A-D, B-C, B-D and C-D show that relate the highest, ranging from 98.4 to almost 100 percent. While sensor pairs A-E, B-E, C-E and D-E seem to fall behind by 1-3%. The above correspond to all of the 3 variables for both correlation methods. However, for the variable Cross Wind Speed, Spearman's method reveals an outlier in the overall correlation of the sensors for this variable. The pattern stays somewhat the same as the others, but with much lower overall correlation (from just 50 to 65%).

3.3 If we told you that that the sensors are located as follows, hypothesize which location would you assign to each sensor and reason your hypothesis using the correlations.

For 3.3, using the correlation of the sensor in combination with the proximity of the different sensor on the picture, we can guess their exact positions as below(Figure 10). The discrepances in the coefficients were such that the relative positions cannot be estimated with high certainty.

Figure 10: 'Possible Sensor Positions'

4 After lesson A4:

4.1 Plot the CDF for all the sensors and for variables Temperature and Wind Speed, then compute the 95% confidence intervals for variables Temperature and Wind Speed for all the sensors and save them in a table (txt or csv form).

For 4.1, the code creates the file confidents.txt where the 95% confidence intervals for variables Temperature and Wind Speed for all the sensors are stored. Additionally, it shows a figure (Figure 11) of 10 plots for the CDFs (stepped histogram) of Temperature and Wind Speed for all the sensors.

CDF of the 5 sensor for Temperature and Wind Speed Histograms

Figure 11: 'CDF of the 5 sensor for Temperature and Wind Speed Histograms'

```
≡ confidence.txt

    1.246227038990971, 1.3343868543854427
 2
     1.1971663346979249, 1.287082453670411
 3
     1.3243037885948932, 1.418622646328308
     1.5296480419653757, 1.633650260379006
 5
     0.5680599051948441, 0.6244249432900044
     17.81214113267346, 18.126065652463858
 6
     17.90472689963894, 18.226129320070267
 7
 8
     17.754926235060246, 18.071347006653575
 9
     17.83814660824381, 18.15457772482005
     18.181933946027776, 18.525944841851015
10
11
```

Figure 12: '95% confidence intervals for Wind Speed(lines 1-5) and Temperature(lines 6-10) of all the sensors'

- 4.2 Test the hypothesis: the time series for Temperature and Wind Speed are the same for sensors
 - 1) E, D;
 - 2) D, C;
 - 3) C, B;
 - 4) B, A;

For 4.2, to test the hypothesis, the code computes with "ttest" the p-values of the sensor pairs E-D, D-C, C-B, B-A (Figure 13).

GEO1001: Homework 1

4.3 What could you conclude from the p-values?

Figure 13: 'p-values from ttest for Temperature(lines 1-4) and Wind Speed(lines 5-8)'

Judging from the p-values, the conclusion for the temperature is:

```
E-D is statistically significant, null hypothesis rejected D-C is statistically insignificant, null hypothesis accepted C-B is statistically insignificant, null hypothesis accepted B-A is statistically insignificant, null hypothesis accepted
```

The conclusion for Wind Speed is:

```
E-D is statistically significant, null hypothesis rejected D-C is statistically significant, null hypothesis rejected C-B is statistically significant, null hypothesis rejected B-A is statistically insignificant, null hypothesis accepted
```

```
The condition that was used to test the hypothesis was: p-value
<0.05 -> Reject p-value
>0.05 -> Accept
```

5 Bonus Question:

Your "employer" wants to estimate the day of maximum and minimum potential energy consumption due to air conditioning usage. To hypothesize regarding those days, you are asked to identify the hottest and coolest day of the measurement time series provided. How would you do that? Reason and program the python rutine that would allow you to identify those days.

GEO1001: Homework 1

The measurements are taken every 20 minutes for every day of 24 hours (72 mesumements pre day). So, the first step is to group the measurements for each day. To do this, the code selects all the values of temperature that correspond to each different day, computes the mean of these values and matches them inside a dataframe. After obtaining the mean temperatures for each day, the code finds the days where the maximum and minimum temperatures occurred (table 1).

However, speculations of logical error to the results could be made, as the employer does not clarify the term "Day". The calculations were made with the assumption that the term "Day" relates to a 24 hour day.

In the occasion that the term "Day" corresponds to specific hours with sufficient sunlight, then at the first step we would have to define these hours and grab their respective measurment to calculate the mean of the day.

Sensors	Min	Max
Sensor A	10-06-2020	26-06-2020
Sensor B	10-06-2020	26-06-2020
Sensor C	10-06-2020	26-06-2020
Sensor D	10-06-2020	26-06-2020
Sensor E	08-07-2020	25-06-2020

Table 1: 'Days that maximum and minimum temperature measurements occure for each of the 5 sensors'