EMBEDDED SYSTEMS

LAB PROJECT

COE17B010

Group Details

- o Group number: 8
- o Group members:
 - 1. COE17B010
 - 2. COE17B036
 - 3. COE17B047
 - 4. CED17I001
 - 5. CED17I046

Project Outline

Create a DAC using R-2R Ladder for Piano using Buttons and Resistance for 8 bit.

Group Member Contribution

- Circuit Design
 - a. Integration of Modules CED17I001
 - b. Button Configuration Setting COE17B010, COE17B047
 - c. R2R Ladder COE17B036, CED17I046
- Tivac Code Logic
 - a. dac.c and dac.h COE17B010, CED17I001
 - b. sound.c and sound.h COE17B047, CED17I046
 - c. piano.c and piano.h COE17B036
 - d. *main.c* **COE17B010**, COE17B036, COE17B047, CED17I001, CED17I046

• COE17B010

- a. Worked on button to pin connections (VCC, GND, OUTPUT from Button)
- b. Worked on deciding which pins to use for DIGITAL INPUT from 8 buttons and assigned those pins as DIGITAL INPUT
- c. Worked on TIVAC Code for Initialising DAC Pins and required Clocks
- d. Worked on TIVAC Code for Writing 8 bit binary value to 8 ports of Port B

COE17B036

- a. Constructed R-2R Ladder Design for 8-bits in Tivac Board using RESISTORS and WIRE CONNECTORS
- b. Connection of Multimeter and LED in the R-2R Ladder.
- c. Initialize the GPIO Ports (E and F) as digital pins and set them to input mode. Unlock PORT E and F and disable the analog function. We also clear the PCTL register for Ports E and F.
- d. Worked on Tivac Code for checking which buttons are clicked by reading corresponding PORTS(Port E and F) and setting a frequency index for each button. Each button is corresponded with a different keynote.

COE17B047

- a. Worked on sending the pushbutton signals to Tiva C pin connections (VCC, GND, taking output signal from push buttons when pressed and feeding the input to Tiva C - 4 port E and 4 port F GPIO pins).
- b. Worked on deciding which pins to use for DIGITAL INPUT from 8 pushbuttons along with their configurations and the Tiva C board pin connections for resistors in R-2R ladder (port B pins).
- c. Worked on Tiva C code for sending binary input values (corresponding frequencies of piano notes) from Tiva C to corresponding R-2R Ladder resistors in the circuit.
- d. Calculated the frequencies of 8 different piano notes and worked on changing the output volume from the piezo speaker by connecting a potentiometer and verifying the correctness of output voltage using a multimeter.

CED17I001

- a. Integration of different modules(R-2R Ladder, PushButton and Arduino).
- b. Worked on WIRE CONNECTORS between Buttons to TIVAC, TIVAC to R-2R Ladder, R-2R Ladder to Piezo (Connections between all major modules)
- c. Worked on Initialising DAC Ports by enabling ports and initialising data directions
- d. Worked on Address Definitions for Port B and other required DAC Ports in header file

• CED17I046

- Constructed R-2R Ladder Design for 8-bits in Circuit using RESISTORS and WIRE CONNECTORS with LED Indicator and Multimeter for Validation of frequency
- b. Checking and Setting Frequency for 8 Basic notes in music for the generation of Sine Wave to get through DAC R-2R Ladder

- c. Worked in Tiva C Code for reading GPIO Port B in range of PB0-PB7 Pin from R-2R Ladder to corresponding Tiva C Button Connected GPIO Port ranging from PE0-PE3 and PF0-PF3 Port
- d. Worked in Tiva C Code for giving GPIO PE0-PE3 and PF0-PF3 port from Tiva C to R-2R ladder DAC to Piezo to play the specific frequency

Diagram

Components Used

- Tiva TM4C123GH6PM Microcontroller
- Buttons
- Multimeter
- Potentiometer
- Piezo speaker
- 10kΩ resistors 8
- 1kΩ resistors 24
- 500Ω resistor 1
- 1 Red LED

Pin Configurations

Pin Name	Pin Type	Connection
PB0	DIGITAL OUTPUT	R-2R Ladder Bit 1
PB1	DIGITAL OUTPUT	R-2R Ladder Bit 2
PB2	DIGITAL OUTPUT	R-2R Ladder Bit 3
PB3	DIGITAL OUTPUT	R-2R Ladder Bit 4
PB4	DIGITAL OUTPUT	R-2R Ladder Bit 5
PB5	DIGITAL OUTPUT	R-2R Ladder Bit 6
PB6	DIGITAL OUTPUT	R-2R Ladder Bit 7
PB7	DIGITAL OUTPUT	R-2R Ladder Bit 8
PE0	DIGITAL INPUT	BUTTON 1
PE1	DIGITAL INPUT	BUTTON 2
PE2	DIGITAL INPUT	BUTTON 3
PE3	DIGITAL INPUT	BUTTON 4

PF0	DIGITAL INPUT	BUTTON 5
PF1	DIGITAL INPUT	BUTTON 6
PF2	DIGITAL INPUT	BUTTON 7
PF3	DIGITAL INPUT	BUTTON 8

Code Logic

1. dac.c and dac.h

- a. InitDac() Initialize the 8-Bit DAC by doing the following
 - i. unlock port B clock
 - ii. allow time for clock to start
 - iii. unlock GPIO Port B
 - iv. allow change to PB7-PB0
 - v. disable analog function on PB7-PB0
 - vi. clear PCTL register on PB7-PB0
 - vii. PB7-PB0 outputs
 - viii. disable alternate function on PB7-PB0
 - ix. enable digital pins on PB7-PB0
 - x. enable 8-mA drive select on PB7-PB0
- b. OutDac(data) Writes the data to Port B Pins 0 to 7

2. sound.c and sound.h

- a. PlaySound(period) reset the RELOAD value for different frequencies and hence play a specific frequency
 - i. Use Sine Wave to generate amplitudes by sampling frequency
- b. StopSound() Stop playing by clearing PB7-PB0
- c. SysTick_Handler() SysTick interrupt service routine

3. piano.c and piano.h

- a. InitPiano() Initialize the Piano Button Inputs by doing the following
 - i. unlock port E clock
 - ii. allow time for clock to start
 - iii. unlock GPIO Port E
 - iv. allow change to PE3-PE0
 - v. disable analog function on PE3-PE0
 - vi. clear PCTL register on PE3-PE0
 - vii. PE3-PE0 inputs
 - viii. disable alternate function on PE3-PE0
 - ix. disable pull-up resistors on PE3-PE0
 - x. enable digital pins on PE3-PE0

- xi. unlock GPIO Port F
- xii. allow change to PF3-PF0
- xiii. disable analog function on PF3-PF0
- xiv. clear PCTL register on PF3-PF0
- xv. PF3-PF0 inputs
- xvi. disable alternate function on PF3-PF0
- xvii. disable pull-up resistors on PF3-PF0
- xviii. enable digital pins on PF3-PF0
- b. Pianoln() Check which button input is pressed

4. main.c

- a. Initialise the TExaS module
- b. Initialise the sound playing pins (initialize SysTick and DAC)
- c. Initialise the piano button inputs
- d. Enable interrupts
- e. Check which buttons are pressed and appropriately send binary data to DAC to play sound
- 5. TExaS.h Initialises Input and Output Ports for DAC
- 6. tm4c123gh6pm.h Library for accessing TIVAC pins