Practical Data Science - COSC2670

Practical Data Science:

Identifying In-App User Actions from Mobile Web Logs

Dr. Yongli Ren (with my colleagues)

(yongli.ren@rmit.edu.au)

Computer Science & IT

School of Science

Outline

- Project
- Data
- Exploration
- Modelling
- Conclusion

Project

- We address the problem of
 - identifying in-app user actions from Web access logs
 - -when
 - -the content of those logs is both *encrypted* (through HTTPS) and
 - also contains automated Web accesses.
- We find that
 - -the *distribution of time gaps* between HTTPS accesses can
 - Distinguish user actions from automated Web accesses
 - which generated by the apps.
- We determine that
 - -it is reasonable to identify meaningful user actions within mobile Web logs
 - by modelling this temporal feature with DBSCAN.

Data

Table 2. User Actions Examined

Minute	User Action	Description
1	Open App	starting an application session
2	Browsing	reading content and scrolling through at normal reading speed
3	Dwelling	reading one post and stop scrolling through
4	Skimming	reading content and scrolling through at skim reading speed
5	Close App	closing an application by pressing devices home button

Exploration

- We first conducted
 - -a comprehensive analysis (exploration) of the time gap,
 - -which is defined as the gap in seconds
 - between consecutive URL requests from the same device and app.
- We examine the logs of six representative apps:
 - Facebook, Twitter, Instagram, Path, MSN, Sina;
 - on four different devices (Android Tablet, iOS Phone/Tablet/music player)
- The gaps are separated into two groups:
 - -idle that means there are no user actions, and
 - active that means there are user actions with the device.

Exploration

Statistical (Kolmogorov-Smirnov (KS)) tests are deployed to examine whether
the idle vs active time gap distributions are significantly.

Device	app	D	<i>p</i> -value
	Facebook	0.340	< 0.0001
	Twitter	0.333	< 0.0001
Andreid Tablet	Instagram	0.364	< 0.0001
Android Tablet	Path	0.341	< 0.0001
	MSN	0.460	< 0.0001
	Sina	0.494	< 0.0001
	Facebook	0.297	< 0.0001
	Twitter	0.311	< 0.0001
iOS Phone	Instagram	0.294	0.016
105 Phone	Path	0.306	< 0.0001
	MSN	0.453	< 0.0001
	Sina	0.490	< 0.0001
	Facebook	0.299	< 0.0001
	Twitter	0.299	< 0.0001
iOS Tablet	Instagram	0.297	< 0.0001
105 Tablet	Path	0.299	< 0.0001
	MSN	0.404	< 0.0001
	Sina	0.389	< 0.0001

Fig. 1. ECDF of time gap feature in two cases: Idle VS. Active

Modelling

- We set MinPts = 3 as a fair number of URL requests in a single transaction.
 - This is based on observation that a user action on an application is often triggered by more than one or two URL requests.
- *Epsilon* selection:

Fig. 3. Example distribution of the sorted 3rd-nearest neighbour distance

Modelling

Device	Application	TimeWindow	DBSCAN
	Facebook	71.74%	86.96%
	Twitter	53.57%	89.29%
Android	Instagram	56.18%	98.88%
Tablet	Path	62.07%	86.21%
	MSN	76.83%	67.89%
	Sina	60.31%	68.70%
	Facebook	76.27%	88.14%
	Twitter	51.43%	87.14%
'OG DI	Instagram	54.55%	90.91%
iOS Phone	Path	71.76%	81.18%
	MSN	65.50%	89.96%
	Sina	57.45%	100%
	Facebook	85.00%	85.00%
	Twitter	60.68%	99.15%
:Og	Instagram	56.06%	56.92%
iOS Tablet	Path	50.48%	51.43%
	MSN	76.83%	98.35%
	Sina	55.48%	81.51%
	Facebook	56.25%	71.88%
	Twitter	61.54%	65.38%
iOS Music	Instagram	51.35%	51.35%
Player	Path	57.32%	73.17%
	MSN	N/A	N/A
	Sina	74.67%	74.93%
Average A	Accuracy	62.35%	80.19%

Reference

- Bilih Priyogi, Mark Sanderson, Flora Salim, Jeffrey Chan, Martin Tomko, Yongli Ren.
 - Identifying In-App User Actions from Mobile Web Logs.
 - -**PAKDD** 2018.
 - -(CORE Rank A)

Thanks!