Kapitel 1

Körpererweiterungen

1.1 Einführung in die Körpererweiterungen

Definition Transzenddenzbasis [vlg. Anhang A1 David Eisenbud 1994] Sei L/k eine Körpererweiterung. Dann definieren wir:

• Eine endliche Teilmengen $\{l_1, \ldots, l_n\} \subseteq L$ heißt <u>algebraisch unabhängig</u> über k, falls gilt:

$$\forall P(x_1,\ldots,x_n) \in k[x_1,\ldots,x_n] : P(l_1,\ldots,l_n) \neq 0$$

- Eine Teilmenge $B \subseteq L$ heißt <u>transzendent</u> über k, falls jede ihrer endlichen Teilmengen $\{b_1, \ldots, b_n\} \subseteq B$ algebraisch unabhängig über k ist.
- Eine Teilmenge $B \subseteq L$ ist eine <u>Transzendenzbasis</u> von L/k, falls sie transzendent über k und die Körpererweiterung L/k(B) algebraisch ist.
- Falls eine Transzendenzbasis von B von L/k existiert, sodass k(B) = L gilt, so ist L/k eine pur transzendente Körpererweiterung.

pur transzendente Erweiterung [Eigene Überlegung]

Bemerkung 1. Sei L/k eine pur transzendente Körpererweiterung mit Transzendenzbasis B. Dann gilt:

$$L \simeq k(\{x_i\}_{i \in B})$$

Insbesondere ist $\{x_i\}_{i\in B}$ eine Transzendenzbasis der Körpererweiterung der rationalen Funktionen $k(\{x_i\}_{i\in B})$ über k.

Transzendenzbasis ist maximale transzendente Menge [Lemma 22.1 Christian Karpfinger, Kurt Meyberg 2009]

Lemma 2. Sei L/k ein Körpererweiterung und $B \subseteq L$ eine über k transzendente Teilmenge. Dann gilt:

B ist genau dann eine Transzendenzbasis von L/k, wenn B bezüglich der Inklusion ein maximales Element der Menge aller über k transzendenten Elemente aus L ist.

Beweis.

"⇒:" Sei B eine Transzendenzbasis über k. Zeige, dass für ein beliebiges Element $a \in L \setminus B$ die Menge $B \cup \{a\} \subseteq L$ nicht transzendent über k ist:

Da die Körpererweiterung L/k(B) algebraisch ist existiert $0 \neq P(x) \in k(B)[x]$ mit P(a) = 0.

Aus der Definition von k(B) geht hervor, dass $\{b_1, \ldots b_n\} \subseteq B$ existiert, mit $P(x) \in k(\{b_1, \ldots b_n\})[x]$.

Wir können ohne weitere Einschränkung annehmen, dass $P(x) \in k[\{b_1, \ldots, b_n\}][x]$ gilt, denn falls dies nicht der Fall sein sollte, wähle $m \in \mathbb{N}$ groß genug, sodass $(P(x) \cdot (\prod_i^n b_i)^m) \in k[\{b_1, \ldots, b_n\}]$ gilt.

Wähle nun $P'(x_1, \ldots, x_n, x) \in k[x_1, \ldots, x_n, x]$ mit $P'(b_1, \ldots, b_n, x) = P(x)$. Dies erfüllt $P'(b_1, \ldots, b_n, a) = 0$.

Folglich ist $B \cup \{b_1, \dots, b_n, a\}$ algebraisch abhängig und insbesondere $B \cup \{a\}$ nicht transzendent über k.

" \Leftarrow :" Sei B bezüglich der Inklusion ein maximales Element der Menge aller über k transzendenten Elemente aus L. Zeige für ein beliebiges Element $a \in L \setminus k(B)$, dass dieses algebraisch über k(B) ist:

Nach Voraussetzung existiert eine endliche Teilmenge $\{b_1, \ldots, b_n, a\} \subseteq B \cup \{a\}$, welche algebraisch abhängig über k ist.

Also existiert $P(x_1, \ldots, x_{n+1}) \in k[x_1, \ldots, x_{n+1}]$ mit $P(b_1, \ldots, b_n, a) = 0$. \Rightarrow Für $P'(x) := P(b_1, \ldots, b_n, x) \in k(B)[x]$ gilt P'(a) = 0

Es existiert also ein Polynom $P'(x) := P(b_1, \ldots, b_n, x) \in k(B)[x]$ mit P'(a) = 0 gefunden. Somit ist a algebraisch über k(B).

[Christian Karpfinger, Kurt Meyberg 2009]

Korrolar 3. Jede Körpererweiterung $L \subseteq k$ besitzt eine Transzendenzbasis $B \subseteq L$.

Beweis. Verwende hierzu das Lemma von Zorn:

Das Lemma von Zorn besagt, dass jede partiell geordenete Menge, in der jede

2

Kette eine obere Schranke besitzt ist ein Maximales Element besitzt [vlg. Kapitel A2.3 Christian Karpfinger, Kurt Meyberg 2009].

lemma 2 besagt, dass die Transzendenzbasen von L/k gerade maximales Elemente der Menge aller über k transzendenten Elemente aus L sind.

Das Lemma von Zorn besagt, dass Jede

Transzendenzbasen sind immer gleich lang [Theorem A1.1 David Eisenbud 1994]

Proposition 4. Sei $L \supset k$ eine Körpererweiterung. Seinen weiter A, B zwei Transzendenzbasen von L über k. Dann gilt:

$$|A| = |B|$$

Wir nennen |B| den Transzendenzgrad von L über k.

Beweis. Im Fall von $|A| = |B| = \infty$ sind wir schon fertig, sei also ohne Einschränkung $A = \{a_1, \ldots, a_m\}$ und $B = \{b_1, \ldots, b_n\}$ mit $min(m, n) = n < \infty$. Wir wollen zunächst in n Schritten die Elemente aus B durch Elemente aus A ersetzten und damit zeigen, dass $\{a_1, \ldots, a_n\}$ eine Transzendenzbasis von L über k ist:

Für den *i*-ten Schritt definiere $A_i := \{a_1, \ldots, a_{i-1}\} \subseteq A, B_i := \{b_i, \ldots, b_n\} \subseteq B$ und gehe davon aus, dass $A_i \cup B_i$ eine Transzendenzbasis ist: Nach lemma 2 ist $\{a_i\} \cup A_i \cup B_i = A_{i+1} \cup B_i$ nicht transzendent und somit algebraisch abhängig.

Also existiert
$$P \in k[x, x_1, \dots, x_n]$$
 mit $P(a_i, a_1, \dots, a_{i-1}, b_i, \dots, b_n) = 0$.
Definiere $P'(x) := P(a_i, a_1, \dots, a_{i-1}, x, b_{i+1}, \dots, b_n) \in k(A_{i+1} \cup B_{i+1})[x]$.
Dieses erfüllt $P'(b_i) = 0$.

Da $A_i \subseteq A$ algebraisch unabhängig ist, gilt $P(a_1, \ldots, a_{i-1}, x_i, \ldots, x_n) \neq 0$. Nummeriere also gegebenenfalls B vor der Bildung von P'(x) so um, dass auch $P'(x) \neq 0$ gilt.

Die Existenz eines solchen P'(x) zeigt uns, dass die Körpererweiterungen $L \subset k(A_{i+1} \cup B_i) = k(A_{i+1} \cup B_{i+1})(\{b_i\}) \subset k(A_{i+1} \cup B_{i+1})$ algebraisch sind und legt nahe, dass $A_{i+1} \cup B_{i+1}$ wieder eine Transzendenzbasis ist. Um dies zu zeigen nehme zunächst an $A_{i+1} \cup B_{i+1}$ wäre algebraisch abhängig.

Also existiert
$$Q \in k[x_1, \ldots, x_n]$$
 mit $Q(a_1, \ldots, a_i, b_{i+1}, \ldots, b_n) = 0$.
Definiere $Q'(x) := Q(a_1, \ldots, a_{i-1}, x, b_{i+1}, b_n) \in k(a_1, \ldots, a_{i-1}, b_{i+1}, b_n)[x]$.
Dieses erfüllt $Q'(a_i) = 0$.

Da $(A_{i+1} \cup B_{i+1}) \setminus \{a_i\} \subseteq A_i \cup B_i$ algebraisch unabhängig ist gilt $Q'(x) \neq 0$. Die Existenz eines solchen Q'(x) zeigt uns, dass die Körpererweiterung $L \subset k(A_{i+1} \cup B_{i+1}) \subset k((A_{i+1} \cup B_{i+1}) \setminus \{a_i\}) = k((A_i \cup B_i) \setminus \{b_i\})$ algebraisch ist. Damit ist $(A_i \cup B_i) \setminus \{b_i\}$ eine Transzendenzbasis, was nach lemma 2 im Widerspruch dazu steht, dass $A_i \cup B_i$ eine Transzendenzbasis ist. Folglich ist $A_{i+1} \cup B_{i+1}$ transzendent und somit eine Transzendenzbasis von L über k.

Dieses Verfahren zeigt uns, dass $\{a_1, \ldots, a_n\} \subseteq A$ eine Transzendenbasis von L über k ist. Nach lemma 2 muss somit $A = \{a_1, \ldots, a_n\}$ und m = n gelten. \square

Korrolar 5. Für jede Körpererweiterung L/k existiert ein Zwischenkörper $K \subseteq L$, sodass K/k eine pur transzendente und L/K eine algebraische Körpererweiterung ist.

Beweis. Nach korrolar 3 existiert eine Transzendenzbasis B von L/k. Nach ?? ist somit k(B)/k pur Transzendent und L/k(B) algebraisch. Wähle also K := k(B)

Beispiel 6. Sei dazu L = k(y) der Körper der rationalen Funktionen über k. Betrachte zwei unterschiedliche Transzendenzbasen von L/k:

- 1. $B = \{y\}$ ist eine Transzendenzbasis von L/k mit $\deg(L/k(B)) = 1$.
- **2.** Für $n \in \mathbb{N}$ ist $B' = \{y^n\}$ eine Transzendenzbasis von L/k mit $\deg(L/k(B)) = n$.

 $f(x) = x^n - y^n \in k(y^n)[x]$ ist Minnimalpolynom von x über $k(y^n)$. $\Rightarrow k(y)/k(y^n)$ ist eine algebraische Körpererweiterung vom Grad n

Dies zeigt, dass die Form des Körpers k(B) und insbesondere der Grad der Körpererweiterung L/k(B) sehr von der Wahl der Transzendenzbasis B abhängt.

Erinnerung: Eine Algebraische Körpererweiterung $L \supset k$ heißt seperabel, falls für alle $\alpha \in L$ das Minimalpolynom $f(x) \in k[x]$ von α über L[x] in Linearfaktoren zerfällt.

Definition 7. Sei $L \supset k$ eine Körpererweiterung. Dann definieren wir:

- L ist seperabel generiert über k, falls eine Transzendenzbasis B von L über k existiert, sodass L/k(B) eine seperable Körpererweiterung ist.
- k ist <u>seperabel</u> über k, falls jeder über k endlich genierte Teilkörper von L über k seperabel generiert ist.

Definition 8. Sei k ein Körper mit charakteristik p und sei weiter L/k eine Körpererweiterung. Dann definieren wir:

• Eine endliche Teilmenge $B \subseteq L$ heißt p-Basis von L über k, falls $W := \{\prod_{b \in B} b^i | i < p\}$ eine Vektorraumbasis von K über $k * K^p$ bildet.

1.2 Differential von Körpererweiterungen

Definition der Differenzialbasis [vlg. Chapter 16.5 David Eisenbud 1994]

Definition 9. Sei $L \supset k$ eine Körpererweiterung. Dann nennen wir eine Teilmenge $\{b_i\}_{i \in \Lambda} \subseteq L$ eine Differenzialbasis von L über k, falls $\{d_K(b_i)\}_{i \in \Lambda}$ eine Vektorraumbasis von $\Omega_{L/R}$ über L ist.

Differential von rationalen Funktionen 1 [vlg. Chapter 16.5 David Eisenbud 1994]

Beispiel 10. Sei k ein Körper und $L = k(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über k.

Dann gilt:

$$\Omega_{L/k} \simeq L \langle d_{k[x_1, \dots x_n]}(x_i) \rangle$$

Insbesondere ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ eine Differenzialbasis von $\Omega_{L/k}$.

Beweis. Betrachte $L=k[x_1,\ldots,x_n][k[x_1,\ldots,x_n]^{-1}]$ als Lokalisierung um ?? anwenden zu können. Anschließend forme noch $\Omega_{k[x_1,\ldots,x_n]/k}$ mithilfe von ?? isomorph um:

$$\Omega_{L/k} \simeq L \otimes \Omega_{k[x_1,...,x_n]/k}$$

$$\simeq L \otimes \bigoplus_{i \in \{1,...,n\}} k[x_1,...,x_n] \langle d_{k[x_1,...x_n]}(x_i) \rangle$$

$$\simeq L \langle d_{k[x_1,...x_n]}(x_i) \rangle$$

Damit ist $\{d_L(x_i)\}_{i\in\{1,\ldots,n\}}$ eine Vektorraumbasis von $\Omega_{L/k}$.

Differential von rationalen Funktionen 2 [Aufgabe 16.6 David Eisenbud 1994]

Korrolar 11. Sei k ein Körper und $L \supset k$ eine Körpererweiterung und $T = L(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über L. Dann gilt:

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Beweis. Betrachten T als Lokalisierung von $L[x_1, \ldots, x_n]$ und gehen dann analog zu beispiel 10 vor:

$$\Omega_{T/k} \simeq T \otimes_{L[x_1, \dots, x_n]} \Omega_{L[x_1, \dots, x_n]/k} (??)$$

$$\Omega_{L[x_1, \dots, x_n]/R} \simeq (L[x_1, \dots, x_n] \otimes_L \Omega_{L/R}) \oplus_{i \in \{1, \dots, n\}} L[x_1, \dots, x_n] \langle d_{L[x_1, \dots, x_n]}(x_i) \rangle (??)$$

$$\Rightarrow \Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Cotangent Sequenz von Koerpern 1 [Aufgabe 16.6 David Eisenbud 1994]

Bemerkung 12. Sei $L \supset k$ eine Körpererweiterung und $T = L(x_1, \ldots, x_n)$ der Körper der rationalen Funktionen in n Variablen über L. Dann ist die COTAN-GENT SEQUENZ (??) von $k \hookrightarrow L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Im Genauen ist $\varphi: T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k}$, $t \otimes d_L(l) \longmapsto t \cdot d_T(l)$ injektiv.

Beweis. Die Injektivität von φ folgt direkt aus der isomorphen Darstellung von $\Omega_{T/k}$, die wir uns in korrolar 11 erarbeitet haben.

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Um sicher zu gehen definiere $\varphi' \simeq \varphi$ und durchlaufe die in korrolar 11 genutzten Isomorphismen noch einmal Schritt für Schritt:

$$\varphi': T \otimes_L \Omega_{L/k} \longrightarrow T \otimes_L \Omega_{L/R} \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

$$T \otimes_L \Omega_{L/k} \qquad t \otimes d_L(l)$$

$$\downarrow \Omega_{T/k} \qquad t d_T(l)$$

$$\downarrow ?? \qquad \qquad \downarrow$$

$$T \otimes_S \Omega_{L[x_1, \dots, x_n]/k} \qquad t \otimes d_S(l)$$

$$\downarrow ?? \qquad \qquad \downarrow$$

$$T \otimes_S ((S \otimes_L \Omega_{L/k}) \oplus \bigoplus_{i \in \{1, \dots, n\}} S \langle d_S(x_i) \rangle) \qquad t \otimes (d_L(l), 0)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle \qquad (t \otimes d_L(l), 0)$$

Damit ist φ eine injektive Einbettung von $T \otimes_L \Omega_{L/k}$ in $\Omega_{T/k}$.

Aufbaulemma Koerperdifferenzial [vlg. Lemma 16.15 David Eisenbud 1994]

Lemma 13. Sei $L \subset T$ eine seperable und algebraische Körpererweiterung und $R \longrightarrow L$ ein Ringhomomorphismus. Dann gilt:

$$\Omega_{T/R} = T \otimes_L \Omega_{L/R}$$

Insbesondere ist in diesem Fall die COTANGENT SEQUENZ (??) von $R \to L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/R} \longrightarrow \Omega_{T/R} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Beweis. Wähle $\alpha \in T$ mit $L[\alpha] = T$. Sei weiter f(x) das Minimalpolynom von α . Betrachte dazu die conormale Sequenz von $\pi : L[x] \longrightarrow L[x]/(f) \simeq T$ (??):

$$(f)/(f^2) \stackrel{1 \otimes d_{L[x]}}{\longrightarrow} T \otimes_{L[x]} \Omega_{L[x]/R} \stackrel{D\pi}{\longrightarrow} \Omega_{T/R} \longrightarrow 0$$

Wende nun Proposition 16.6 auf $\Omega_{L[x]/R}$ an und tensoriere mit T, somit gilt:

$$T \otimes_{L[x]} \Omega_{L[x]/R} \simeq T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle$$

Zusammen mit der conormalen Sequenz bedeutet dies:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle) / (d_{L[x]}(f))$$

Wenn wir $d_{L[x]}:(f)\longrightarrow T\otimes_L\Omega_{L/R}\oplus T\langle d_{Lx}\rangle$ wie in ?? betrachten , sehen wir:

$$d_{L[x]}((f)) = J \oplus (f'(\alpha)d_{L[x]}) = J \oplus T\langle d_{S[x]}(x)\rangle$$
, wobei $J \subseteq T \otimes_L \Omega_{L/R}$ ein Ideal ist.

Für die letzte Gleichheit nutze, dass $T \supset L$ seperabel und somit $f'(\alpha) \neq 0$ ist und nach obiger Wahl $T = L[\alpha]$ gilt.

Damit erhalten wir nun:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R})/J$$

$$\Rightarrow T \otimes_L \Omega_{L/R} \hookrightarrow \Omega_{T/R} \text{ ist surjektiv.}$$

Somit muss J = 0 gelten und es folgt $T \otimes_L \Omega_{L/R} \simeq \Omega_{T/R}$.

Damit haben wir insbesondere auch gezeigt, dass $T \otimes_L \Omega_{L/R} \to \Omega_{T/R}$ injektiv und somit die COTANGENT SEQUENZ von $R \to L \hookrightarrow T$ eine kurze exakte Sequenz ist.

Transzendenzbasis ist Differenzialbasis [vlg. Theorem 16.4 David Eisenbud 1994]

Theorem 14. Sei $T \supset k$ eine seperabel generierte Körpererweiterung und $B = \{b_i\}_{i \in \Lambda} \subseteq T$. Dann ist B genau dann eine Differenzialbasis von T über k, falls eine der folgedenen Bedingungen erfüllt ist:

- 1. char(k) = 0 und B ist eine Transzendenzbasis von T über k.
- **2.** char(k) = p und B ist eine p-Basis von T über k.

Beweis.

1., ←": Sei B eine Transzendenzbasis von T über k.

Damit ist die Körpererweiterung $L := k(B) \supset k$ algebraisch und seperabel. Mit lemma 13 folgt:

$$\Omega_{T/k} = T \otimes_L \Omega_{L/k}$$

Betrachte $L = k[B][k[B] \setminus 0^{-1}]$ als Lokalisierung und wende ?? auf $\Omega_{L/k}$ an, somit gilt:

$$\Omega_{L/k} = L \otimes_{k[B]} \Omega_{k[B]/k}$$

In ?? haben wir gesehen, dass $\Omega_{k[B]/k}$ ein freis Modul über k[B] mit $\{b_i\}_{i\in\Lambda}$ als Basis ist. Dies liefert uns letztendlich die gewünschte Darstellung

$$\Omega_{T/k} = \bigoplus_{\{i \in \Lambda\}} T \langle d_T(b_i) \rangle.$$

 $\underline{\mathbf{1}}_{\cdot,,\Rightarrow}$ ": Sei $d_T(B)$ eine Vektorraumbasis von $\Omega_{T/k}$.

Zeige zunächst, dass T algebraisch über L := k(B) ist:

Die COTANGENT SEQUENZ (??) von $k \hookrightarrow L \hookrightarrow T$ besagt $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(S) \rangle$ und nach Vorraussetzung gilt $\Omega_{T/k} = T \langle d_T(B) \rangle$. $\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$

Da, wie wir in " \Leftarrow_1 ."gezeigt haben, jede Transzendenzbasis B' von T über L auch eine Differenzialbasis von $\Omega_{T/L}=0$ ist, gilt für diese $B'=\emptyset$. Somit ist T schon algebraisch über L.

Zeige noch, dass B auch algebraisch unabhängig über L ist:

Sei dazu Γ eine minimale Teilmenge von Λ , für welche T noch algebraisch über $k(\{b_i\}_{i\in\Gamma})$ ist. Für diese ist $\{b_i\}_{i\in\Gamma}$ algebraisch unabhängig über K. Damit ist nach " \Leftarrow_1 ." $\{b_i\}_{i\in\Gamma}$ ebenfalls eine Differenzialbasis von T über k. Also muss schon $\Gamma = \Lambda$ gegolten haben und B ist eine Transzendenzbasis von T über k.

2. ,, ←": Sei B eine p-Basis von T über k.

Somit wird nach DEFINITION-PROPOSITION T von B als Algebra über $(k*T^p)$ und $\Omega_{T/(k*T^p)}$ von $d_T(B)$ als Vektorraum über T (PROPOSITION) erzeugt. Zeige also $\Omega_{T/k} \simeq \Omega_{T/(T^p*k)}$:

Die Cotangent Sequenz (??) von $K \hookrightarrow (k * T^p) \hookrightarrow T$ besagt:

$$\Omega_{T/(T^p*k)} \simeq \Omega_{T/k}/d_T(T^p*k)$$

Für beliege
$$t^p \in T^p$$
 gilt $d_T(t^p) = pt^{p-1}d_T(t) = 0$, da $char(T) = p$.

$$\Rightarrow d_T(T^p * k) = d_T(k(T^p)) = 0$$

Damit ist $d_T: T \longrightarrow \Omega_{T/k}$ auch $(T^p * k)$ -linear und es gilt $\Omega_{T/k} \simeq \Omega_{T/(T^p * k)}$.

2.,,⇒": Sei $d_T(B)$ eine Vektorraumbasis von $\Omega_{T/k}$.

Zeige zunächst, dass T von B als Algebra über k erzeugt wird:

Die COTANGENT SEQUENZ (??) von
$$k \hookrightarrow L := k(B) \hookrightarrow T$$
 besagt $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle$ und nach Vorraussetzung gilt $\Omega_{T/k} = T \langle d_T(B) \rangle$.
 $\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$

Da, wie wir in $\underset{\leftarrow}{}_{\infty}$ "gezeigt haben, jede p-Basis B' von T über L auch eine Differenzialbasis von $\Omega_{T/L}=0$ ist, gilt für diese $B'=\emptyset$. Somit wird T schon von B als Algebra über k erzeugt.

Zeige noch, dass B auch minimal als Erzeugendensystem von T als Algebra über k ist:

Sei dazu Γ die minimale Teilmenge von Λ , für welche T noch von $\{b_i\}_{i\in\Gamma}$ als Algebra über k erzeugt wird. Dann ist $\{b_i\}_{i\in\Gamma}$ eine p-Basis von T über k. Somit ist nach $\underset{\leftarrow}{}_{\infty}$: $\{b_i\}_{i\in\Gamma}$ ebenfalls eine Differenzialbasis von T über k. Es muss also schon $\Gamma = \Lambda$ gegolten haben und B ist eine p-Basis von T über k.