EIGENVALUES AND EIGENVECTORS

A.K.Lal

IIT Kanpur

2017

OUTLINE

- INTRODUCTION
 - Characterstic Polynomial and Equation
 - Eigenvalues and Eigenvectors
- 2 Cayley Hamilton Theorem
- O DIAGONALIZATION
 - Matrix Diagonalization
 - Condition for diagonalization

Introduction

DEFINITION (CHARACTERISTIC POLYNOMIAL, CHARACTERISTIC EQUATION)

Let A be a square matrix of order n. The polynomial $\det(A-\lambda*I)$ is called the characteristic polynomial of A and is denoted by $p_A(\lambda)$ (in short, $p(\lambda)$, if the matrix A is clear from the context). The equation $p(\lambda)=0$ is called the characteristic equation of A. If $\lambda\in\mathbb{F}$ is a solution of the characteristic equation $p(\lambda)=0$, then λ is called a characteristic value of A.

THEOREM

Let $A \in \mathbb{M}_n(\mathbb{F})$. Suppose $\lambda = \lambda_0 \in \mathbb{F}$ is a root of the characteristic equation. Then there exists a non-zero $v \in \mathbb{F}^n$ such that $Av = \lambda_0 v$.

DEFINITION OF EIGENVALUES AND EIGENVECTORS

DEFINITION

Let $A \in \mathbb{M}_n(\mathbb{F})$ and let the linear system $Ax = \lambda x$ has a non-zero solution $x \in \mathbb{F}^n$ for some $\lambda \in \mathbb{F}$. Then

- $\lambda \in \mathbb{F}$ is called an eigenvalue of A,
- $x \in \mathbb{F}^n$ is called an eigenvector corresponding to the eigenvalue λ of A, and
- the tuple (λ, x) is called an eigen-pair.

CAYLEY HAMILTON THEOREM

Theorem

Let A be a square matrix of order n. Then A satisfies its characteristic equation. That is, $A^n + a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_1A + a_0I = 0$ holds true as a matrix identity.

DIAGONALIZATION

DEFINITION (MATRIX DIAGONALIZATION)

A matrix A is said to be diagonalizable if there exists a non-singular matrix P such that $P^{-1}AP$ is a diagonal matrix.

Theorem (Condition for Diagonalization)

Let $A \in \mathbb{M}_n(\mathbb{R})$. Then A is diagonalizable if and only if A has n linearly independent eigenvectors