Gas Laws: The behaviour of gases and the relation between variables like, m, V, T, P etc are explained by certain laws known as gas laws.

BOYLE'S LAW:

- 1. For a given mass of a gas at constant temperature, the volume is inversely proportional to the pressure.
- 2. For a given mass of a gas at constant temperature, the product of its volume and pressure is a constant value.
- 3. According to Boyle's law for a given mass of a gas at constant temperature the density of the gas is proportional to the pressure of it.
- 4. For a given mass of gas at constant temperature.

1.
$$V\alpha^{\frac{1}{p}}$$

2.
$$d\alpha P$$

PV = constant;

3.
$$P_1V_1 = P_2V_2$$
 4. $\frac{P_1}{d_1} = \frac{P_2}{d_2}$

$$4. \frac{P_1}{d_1} = \frac{P_2}{d_2}$$

CHARLES LAW:

- 1. For a given mass of a gas at constant pressure, the volume of the gas is directly proportional to its absolute temperature. This is known as Charles law.
- 2. For a given mass of gas at constant pressure the density of the gas is inversely proportional to its absolute temperature.
- 3. For a given mass of gas at constant pressure.

2) d
$$\alpha_{T}^{1}$$

1) V
$$\alpha$$
 T 2) d $\alpha \frac{1}{T}$ 3) $\frac{V}{T}$ Constant

4)
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
???5) dT=constant 6) d₁T₁ = d₂T₂

4. For a given mass of a gas at constant pressure the volume of the gas increases or decreases by 1/273th part of its volume at 0°C for every 1°C raise or fall in temperature

$$V_t = V_0 (1 + \alpha t)$$

Vt is volume at t⁰C; V₀ is volume at 0⁰C

$$\alpha = \frac{1}{273} = 0.00366$$
; $\alpha = 3.66 \times 10^{-3}$

(α is volume coefficient)

AVOGADRO'S LAW:

At constant temperature and pressure, the volume of a gas is proportional to the number of moles present in it. This is known as Avogadro's law V α n, $\frac{v_1}{v_2} = \frac{n_1}{n_2}$.

- 18. Under similar conditions of temperature and pressure equal volumes of all gases contain equal number of moles (or) molecules.
- 19. Under similar conditions of temperature and pressure equal volumes of all gases contain equal number of atoms. This is known as Berzilius hypothesis.
 - The Berzilius hypothesis leads to the conclusion that atoms are divisible, which is contrary to the Dalton's atomic theory and therefore it is discarded.
- 20. At constant temperature, for a gas having constant volume, the pressure is directly proportional to the number of moles present in it

P
$$\alpha n; \frac{p_1}{p_2} = \frac{n_1}{n_2}$$