My first Raspberry Pi hands-on session

Paolo Burgio paolo.burgio@unimore.it

Programming is a skill best acquired by practice and example rather than from books.

3

General Purpose I/O ports (GPIO)

Provides electrical connectivity

- > Vertical vs. horizontal rails
- > (Typically, power vs other)
- > Can use jumper wires

Provides electrical connectivity

- > Vertical vs. horizontal rails
- > (Typically, power vs other)
- > Can use jumper wires

Provides electrical connectivity

- > Vertical vs. horizontal rails
- > (Typically, power vs other)
- > Can use jumper wires

The two sides of the + and - rails are wired together

> Typically, used for power/GND

Brought to the internal rails with jumper wires

> Where core/chip and other stuff reside

Light Emitting Diodes

- > You feed with electrons; they light up
- > They have a side!!!!
- > They need a resistance to lower the charge

Light Emitting Diodes

- > You feed with electrons; they light up
- > They have a side!!!!
- > They need a resistance to lower the charge

Light Emitting Diodes

- You feed with electrons; they light up
- > They have a side!!!!
- > They need a resistance to lower the charge

Light Emitting Diodes

- You feed with electrons; they light up
- > They have a side!!!!
- > They need a resistance to lower the charge

General Purpose I/O Ports

Our interface towards the external world

- > https://pinout.xyz/pinout/#
- > BCM vs. Standard Wiring

Software

Operative system

- > Debian-based GNU/Linux Distro called Raspberry Pi OS
 - Aka Raspbian
- > Also Ubuntu and Win10 IoT are supported
- > (and many more...)

(A number of) dev environments

- > Standard GCC toolchain
- > Arduino IDE (micro-kernel)
- > Google's TensorFlow for AI;)
- **>** ...

WiringPi

- > Library to interact with I/O
- > Uses "progressive" wiring

Raspberry Pi GPIO Header							
всм	WiringPi	Name	Ph	ysical	Name	WiringPi	BCM
		3.3v	1	2	5v		
2	8	SDA.1	3	4	5V		
3	9	SCL.1	5	6	0v		
4	7	1-Wire	7	8	TxD	15	14
		0v	9	10	RxD	16	15
17	0	GPIO. 0	11	12	GPIO. 1	1	18
27	2	GPIO. 2	13	14	0v		
22	3	GPIO. 3	15	16	GPIO. 4	4	23
		3.3v	17	18	GPIO. 5	5	24
10	12	MOSI	19	20	0v		
9	13	MISO	21	22	GPIO. 6	6	25
11	14	SCLK	23	24	CEO	10	8
		0v	25	26	CE1	11	7
0	30	SDA.0	27	28	SCL.0	31	1
5	21	GPIO.21	29	30	0v		
6	22	GPIO.22	31	32	GPIO.26	26	12
13	23	GPIO.23	33	34	0v		
19	24	GPIO.24	35	36	GPIO.27	27	16
26	25	GPIO.25	37	38	GPIO.28	28	20
		0v	39	40	GPIO.29	20	21
BCM	WiringPi	Name	Ph	ysical	Name	WiringPi	BCM

WiringPi API

```
Include library header
#include <wiringPi.h>
(In desktop environments doesn't exist, so you shall use macro to remove this code, e.g., NO PI)
Init library, and every GPio port
wiringPiSetup(); // Init lib
pinMode(0, OUTPUT); // GPio 0 is output port
Write to port
digitalWrite(0, true); // Set port 0
Link library
$ gcc ..... -1 wiringPi
```

H

E/E system

Exercise

 Implement the Moore machine of the FSM that understands whether a words is from L

> "Identify even sequences of a (even empty), followed by one, or more, or no, b, ended by c"

- ..and turns on the corresponding led color
 - **Blue** => GPIO 0
 - Red (error state) => GPIO 1
 - Yellow => GPIO 2
 - Green => GPIO 3

How to run the examples

> Find them in Code/ folder from the course website

For C++: compile

> \$ gcc code.cpp [-DNO_PI] -o code -Wall -l stdc++ -l wiringPi

Run (Unix/Linux)

\$./code

Run (Win/Cygwin)

\$./code.exe

References

Course website

http://hipert.unimore.it/people/paolob/pub/Industrial Informatics/index.html

My contacts

- > paolo.burgio@unimore.it
- http://hipert.mat.unimore.it/people/paolob/

Resources

- > https://www.digikey.com/en/maker/blogs/2019/how-to-use-gpio-on-the-raspberry-pi-with-c
- http://maxembedded.com/2014/07/using-raspberry-pi-gpio-using-python/
- https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
- https://pinout.xyz/pinout/pin11 gpio17#
- http://wiringpi.com/
- A "small blog "
 - http://www.google.com