Assignment Case	
DS using CH1	BINUS UNIVERSITY
Periode Berlaku Semester Ganjil 2024/2025 Valid on Odd Year 2024/2025	Software Laboratory Center Assistant Recruitment 25-1

Soal

Case

Concoctiosnist

Deep in the woods of **Vinte e Três a Um**, lived a legendary alchemist known for creating potions so powerful they could regrow limbs. What few people knew, however, was that his success came from a chaotic yet legendary technique called **"random bull-sh*t go!"**.

In this process, the alchemist gathers N different materials stored in an array, each containing aether amounts M_1 , M_2 , ..., M_N . He then combines all possible continuous subarrays of these materials, creating new ones with varying aether values. Once done, he arranges the new materials in non-decreasing order based on their aether. Finally, he selects the materials between indices L and R to be infused into his latest creation.

Note. Make sure to print the output with Module $10^9 + 7$ as the number can get really big Input

- The first line will consist of N representing the number of materials on hand.
- The second line will consist of M₁, M₂, ..., M_N representing the aether contained on each element.
- The third line will consist of **L** and **R**, representing the starting and ending indices to sum all combinations of subarrays.

Halaman: 1 dari 3

Page 1 of 3

Constraint

 $1 \le N \le 200$

 $1 \le L \le R \le N$

 $1 \le M_1, M_2, ..., M_N \le 1000$

Output

Print the sum of aether obtained from the materials at indices L to R.

Example

Input	Output
4	13
1 2 3 4	
0 4	
3	2
1 1 1	
0 1	

Explanation

In the first test case,

Calculating all the possible combinations will result in a new array with size (n*(n-1)/2) which is [1, 3, 6, 10, 2, 5, 9, 3, 7, 4]. These combinations are from sum of non-empty subarrays which can be obtained from

[1] = 1

[2] = 2

[3] = 3

[4] = 4

Halaman : 2 dari 3

Page

2 of 3

$$[1, 2] = 1 + 2 = 3$$

$$[2, 3] = 2 + 3 = 5$$

$$[3, 4] = 3 + 4 = 7$$

$$[1, 2, 3] = 1 + 2 + 3 = 6$$

$$[2, 3, 4] = 2 + 3 + 4 = 9$$

$$[1, 2, 3, 4] = 1 + 2 + 3 + 4 = 10$$

This array will be re-arranged to be sorted in an increasing order [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. Lastly, we will sum from index 0 to 4 making 1 + 2 + 3 + 3 + 4 = 13

Note 1: Use scanf("%d", &A) to do the input, and use printf("%d\n",) to output the answer. Pay attention to the extra newline character at the end (See Note 2)!

Note 2: Always print a newline (\n) at the end of the answer

Halaman: 3 dari 3

Page 3 of 3