

Universidade Federal de Santa Catarina

Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 3-T

1. Componentes do Nível RT: Máquinas Sequenciais Síncronas.

Processamento Multiciclo e o modelo BO/BC

Profs. José Luís Güntzel e Cristina Meinhardt

{j.guntzel, cristina.meinhardt}@ufsc.br

Suponha que necessita-se de um hardware dedicado para realizar o seguinte cálculo:

$$S \leftarrow A + B + C + D$$

Assumir que as variáveis A, B, C e D sejam números inteiros sem sinal, representados em binário com 8 bits, **estando disponíveis ao mesmo tempo.**

- Como as variáveis de entrada estão disponíveis ao mesmo tempo, pode ser vantajoso executar este cálculo em um ciclo de relógio.
- Para reduzir o período do relógio, é importante explorar o paralelismo que o cálculo pode proporcionar.

Solução Monociclo (que evita ocorrência de overflow e tem custo mínimo)

Pontos Positivos:

- •Jamais ocorre overflow.
- •Este esquemático deixa claro como é gerado o bit mais significativo da saída dos somadores.
- •Somadores dimensionados de modo a economizar recursos (2 somadores p/ números com 8 bits e 1 somador para números de 9 bits) e minimizar o atraso crítico!

Suponha que necessita-se de um hardware dedicado para realizar o seguinte cálculo:

$$S \leftarrow A + B + C + D$$

Assumir que as variáveis A, B, C e D sejam números inteiros sem sinal, representados em binário com 8 bits, sendo fornecidas uma após a outra, em ciclos de relógio consecutivos,

- Como as variáveis de entrada são fornecidas uma após a outra (i.e., de maneira sequencial), não há vantagem em realizar este cálculo em um ciclo de relógio, pois seria necessário esperar a chegada de todas as variáveis.
- Então, projeta-se um bloco operativo para execução sequencial, buscando minimizar o custo.

1ª Solução Multiciclo:

ULA dedicada que realiza o cálculo de maneira sequencial, e

detecta overflow

$$S \leftarrow A + B + C + D$$

```
    R1 ← 0; R2 ← X; // A deve estar estável em X
    R1 ← R1 + R2; R2 ← X; // B deve estar estável em X
    R1 ← R1 + R2; R2 ← X; // C deve estar estável em X
    R1 ← R1 + R2; R2 ← X; // D deve estar estável em X
    R1 ← R1 + R2; // O resultado final S estará em R1
```

Neste esquemático RT, o relógio está omitido...

- Cada linha é executada em um ciclo de relógio
- As operações em uma mesma linha são feitas em paralelo
- Um bloco de controle (omitido) gera os sinais "sel", "c1" e "c2" para viabilizar a operação sequencial (multiciclo)
- Ao término da execução, o resultado estará em R1 (logo, R1 faz o papel de S)

2ª Solução Multiciclo:

ULA dedicada que realiza o cálculo de maneira sequencial, e

detecta overflow

$$S \leftarrow A + B + C + D$$

Neste esquemático RT, o relógio está omitido...

• Funcionamento similar ao da 1ª solução, porém necessita de um ciclo de relógio a menos (pois possui uma entrada que permite inicializar R1 com um valor ≠ 0)

2ª Solução: Análise do Funcionamento

- 1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
- 2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X
- 3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X
- 4. R1 ← R1 + R2; // O resultado final S estará em R1

Sistemas Digitais - semestre 2018/2

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns

2ª Solução: Análise do Funcionamento

- 1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
- 2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X
- 3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X
- 4. R1 ← R1 + R2; // O resultado final S estará em R1

Sistemas Digitais - semestre 2018/2

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns

2ª Solução: Análise do Funcionamento

- 1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
- 2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X
- 3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X
- 4. R1 ← R1 + R2; // O resultado final S estará em R1

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns

2ª Solução: Análise do Funcionamento

- 1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
- 2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X
- 3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X
- 4. R1 ← R1 + R2; // O resultado final S estará em R1

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns

2ª Solução: Análise do Funcionamento

- 1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
- 2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X
- 3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X
- 4. R1 ← R1 + R2; // O resultado final S estará em R1

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2·1	atraso	tdmux	1 ns

Sistemas Digitais - semestre 2018/2

tanto faz

A+B

A+B

8.tds

Slide 3T.23

 \mathbf{C}

tanto faz

A+B

tdmux tsu_{R1} th_{R1}

A+B+C

tsu_{R2}

2ª Solução: Análise do Funcionamento

tsu_{R2}

tdmux tsu_{R1} th_{R1}

Um novo cálculo só pode iniciar em t5

```
1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
```

2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X

3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X

4. R1 ← R1 + R2; // O resultado final S estará em R1

5. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X

tanto faz

tanto faz

8.tds

Sistemas Digitais - semestre 2018/2

 tsu_{R2} th_{R2}

tsu_{R1} th_{R1}

INE/CTC/UFSC

desconhecido

valor anterior

tdmux

tanto faz

sai-

tco_{R2}

tco_{R1}

valor anterior

X (tanto faz

6. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X

B

2ª Solução: Análise do Funcionamento

Um novo cálculo só pode iniciar em t5

- 1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
- 2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X
- 3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X
- 4. R1 ← R1 + R2; // O resultado final S estará em R1
- 5. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X
- 6. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X

A+B+C+2D

tanto faz

A+B

A+B

8.tds

Slide 3T.25

 \mathbf{C}

tanto faz

A+B

2ª Solução: Análise do Funcionamento

tsu_{R2}

tdmux tsu_{R1} th_{R1}

Estas formas de onda assumiram que:

- sel=1 na borda t1 e sel=0 nas bordas t2, t3 e t4
- c1=1 nas bordas t1 a t4

tco_{R2}

tco_{R1}

valor anterior

tanto faz

tanto faz

sai-

desconhecido

valor anterior

tsu_{R1} th_{R1}

INE/CTC/UFSC

tdmux

c2=1 nas bordas t1, t2, t3 (e c2=0 na borda t4)

tanto faz

tanto faz

8.tds

A geração destes sinais é responsabilidade do bloco de controle.

В

Α

Sistemas Digitais - semestre 2018/2

Tempos de Estabilização Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns
Sinal de controle (sel)	atraso	tdcontrol	0 ns

A análise inicia assumindo-se uma primeira borda de relógio (t0) aplicada a R1 e R2

Tempos de Estabilização Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns
Sinal de controle (sel)	atraso	tdcontrol	0 ns

Tempos de Estabilização Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns
Sinal de controle (sel)	atraso	tdcontrol	0 ns

Tempos de Estabilização Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns
Sinal de controle (sel)	atraso	tdcontrol	0 ns

Tempos de Estabilização

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns
Sinal de controle (sel)	atraso	tdcontrol	0 ns

Considerando o tempo de setup do registrador R1

Logo, atraso crítico = D = 5 ns

Caminho Crítico e Atraso Crítico

Supondo as seguintes características temporais dos componentes

Componente	Característica	Símbolo	Valor
Registradores R1, R2	tempo de setup	tsu	1 ns
Registradores R1, R2	tempo de hold	th	0,5 ns
Registradores R1, R2	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Mux 2:1	atraso	tdmux	1 ns
Sinal de controle (sel)	atraso	tdcontrol	0 ns

Estimativa do Período (Mínimo) do Relógio

sendo T >= D

Estimativa do Período (Mínimo) do Relógio (2)

Pode-se pular a etapa de determinação dos TEs, calculando o atraso crítico diretamente a partir do(s) caminho(s) crítico(s). Exemplo:

$$D = tco_{R1} + 8.tds + tdmux + tsu_{R1} =$$

= $tco_{R2} + 8.tds + tdmux + tsu_{R1} =$
= 1 ns + 8 . 0,25 ns + 1 ns + 1 ns = **5 ns**

sendo T >= D

Tempo de Execução

No exemplo em questão, o processamento requer 4 ciclos de relógio, com T >= D = **5 ns**.

```
1. R1 ← A; R2 ← X; // B deve estar estável em X
2. R1 ← R1 + R2; R2 ← X; // C deve estar estável em X
3. R1 ← R1 + R2; R2 ← X; // D deve estar estável em X
4. R1 ← R1 + R2; // O resultado final S estará em R1
```


Tempo de execução = nº ciclos x T

Onde:

nº de ciclos que o processamento demora T = período do relógio, (f = 1/T é a frequência do relógio)

Tempo de Execução

No exemplo em questão, o processamento requer 4 ciclos de relógio, com T >= D = 5 ns.

```
1. R1 ← A; R2 ← X; // B deve estar estável em X
2. R1 ← R1 + R2; R2 ← X; // C deve estar estável em X
3. R1 ← R1 + R2; R2 ← X; // D deve estar estável em X
4. R1 ← R1 + R2; // O resultado final S estará em R1
```


Comparação com Versão Monociclo

Componente	Característica	Símbolo	Valor
Registradores A, B, C, D, S	tempo de setup	tsu	1 ns
Registradores A, B, C, D, S	tempo de hold	th	0,5 ns
Registradores A, B, C, D, S	tempo de carga	tco	1 ns
Somador completo (full adder)	atraso	tds	0,25 ns
Sinal de controle (sel)	atraso	tdcontrol	0 ns

Nesta versão monociclo, não há

Calculando o atraso crítico diretamente a partir do(s) caminho(s) crítico(s):

D = T =
$$tco + td_C + tsu(S) =$$

= 1 + 8 x 0,25 + 9 x 0,25 + 1 =
= **6,25 ns**

cout1 3 cout2 3 cout2 3

Tempo de execução = n° ciclos x T = = 1 x 6,25 ns = 6,25 ns

Tempo de Execução: Multiciclo x Monociclo

Tempo de execução = 6,25 ns

Tempo de execução = 20 ns

Tempo de execução(multiciclo) / Tempo de execução(monociclo) = 20/6,25 = 3,2 Versão monociclo é 220% mais rápida do que versão multiciclo

Custo do Hardware: Multiciclo x Monociclo

Componente RT	Custo, nº de trans			
Somador	24n			
Mux 2:1	4n			
Reg. com carga paralela	18n			
Reg. com carga paralela controlada	22n			

onde n = nº de bits

Custo = $8 \times (2 \times 22 + 1 \times 24 + 1 \times 4) =$

352 + 192+ 32= **576** transistores

INE/CTC/UFSC
Sistemas Digitais - semestre 2018/2

Profs. Güntzel & Meinhardt

Slide 3T.38

Custo do Hardware: Multiciclo x Monociclo (2)

Componente RT	Custo, nº de trans			
Somador	24n			
Mux 2:1	4n			
Reg. com carga paralela	18n			
Reg. com carga paralela controlada	22n			

onde $n = n^{\circ}$ de bits

Comparação mais justa: em ambas versões A+B+C+D não gera overflow ...

Porém, ainda falta o custo do B.C.

INE/CTC/UFSC

cout

Slide 3T.39

Profs. Güntzel & Meinhardt

O Modelo Bloco Operativo / Bloco de Controle

• Este é um modelo simples de sistemas digitais, porém didático e aplicável na maioria dos casos.

Bloco Operativo: funções

- Realiza transformações sobre dados, geralmente provenientes do ambiente externo
- As transformações são realizadas em um ou mais passos, cada passo demorando um ciclo de relógio
- Gera sinais de "status" que são usados pelo Bloco de Controle para definir a sequência de operações a serem realizadas (às vezes são chamados de "flags")

Bloco Operativo: componentes

- Unidades Funcionais (UFs): somadores, subtratores, deslocadores, multiplicadores, UFs combinadas (somadores/subtratores, ULAs)
- Elementos de armazenamento: registradores ou banco de registradores, memórias (SRAM)
- Rede de interconexão: fios, multiplexadores, barramentos + *buffers tri-state*

Bloco de Controle: funções

- Gera comandos, que são sinais de controle na ordem necessária para que o bloco operativo realize os passos desejados
- Recebe sinais de controle do ambiente externo: opcode, no caso de CPUs, sinais específicos (por exemplo, "iniciar"), no caso de CPUs dedicadas e de blocos aceleradores
- Pode gerar uma ou mais saídas de controle para se comunicar com outros sistemas digitais (p. ex.: "done", "bus request", "ack")

Bloco de Controle: componentes

- Em um esquema monociclo: é um bloco combinacional
- Em um esquema multiciclo: é uma máquina de estados (FSM Finite State Machine)

Máquinas de Estados Finitos (FSM)

- Podem ser síncronas (cadenciadas por um sinal monótono chamado relógio ou *clock*) ou assíncronas (sem relógio).
- Máquina Sequenciais Síncronas são mais utilizadas porque:
 - São mais fáceis de projetar e de validar.
 - Têm operação mais segura, são mais robustas.
- Há dois modelos: Moore e Mealy.
- Registradores podem ser vistos como Máquina Sequenciais Síncronas.

Modelo de Moore

Característica principal: as saídas dependem apenas do estado atual.

Modelo de Moore

Característica principal: as saídas dependem apenas do estado atual.

Modelo de Mealy

Característica principal: as saídas dependem do estado atual e de entrada(s) primária(s)

Síntese de Circuitos Sequenciais

Roteiro para a Síntese (=Projeto)

- 1. Determinar quantos estados são necessários (e o nº de variáveis de estado)
- 2. Construir o diagrama de estados, observando com cuidado o comportamento solicitado para a FSM e adotando um modelo de FSM (Moore ou Mealy):
 - Determinar as transições entre estados necessárias
 - Selecionar um estado para servir como estado inicial
- 3. Construir a tabela de próximo estado e a tabela das saídas
- 4. Escolher uma codificação para os estados e definir o tipo de flip-flops para compor o registrador de estados.
- 5. Sintetizar (projetar) os circuitos combinacionais: lógica de próximo estado e lógica de saída.

Projetando o Bloco de Controle para a Solução 2.1

Obs: embora omitido, ck também sincroniza as cargas de R1 e R2.

Descrever o comportamento do BC usando uma máquina de estados (FSM)

Projetando o Bloco de Controle para a Solução 2.1

FSMD (= FSM c/ Dados)

1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X

2. R1 \leftarrow R1 + R2; R2 \leftarrow X; // C deve estar estável em X

3. R1 \leftarrow R1 + R2; R2 \leftarrow X; // D deve estar estável em X

4. R1 ← R1 + R2; // O resultado final S estará em R1

// "iniciar" é o sinal de entrada que ordena o início do cálculo

// "pronto" é o sinal que avisa que o cálculo terminou...

Obs: embora omitido, ck sincroniza as cargas de R1 e R2.

Projetando o Bloco de Controle para a Solução 2.1

1. R1 \leftarrow A; R2 \leftarrow X; // B deve estar estável em X

Obs: embora omitido, ck sincroniza as cargas de R1 e R2.

Projetando o Bloco de Controle para a Solução 2.1

INE/CTC/UFSC
Sistemas Digitais - semestre 2018/2

Slide 3T.53

Profs. Güntzel & Meinhardt

Projetando o Bloco de Controle para a Solução 2.1

Projetando o Bloco de Controle para a Solução 2.1

Tabela de Sinais de Saídas

FSM iniciar iniciar
Reset pronto = 1
$\mathbf{S0} \mathbf{erro} = 0 \mathbf{E} \mathbf{erro} = 1$
iniciar pronto=0 erro =0
S1 sel=1; c1=1; c2=1
$+ \overline{ov}$ $\begin{array}{c} & & & & & \\ \hline & & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline \\ \hline$
ov $c2=1;$ ov
solution S3 pronto=0
pronto=0 S4)sel=0; c1=1;
c2=0;

F 4 1	Sinais	s de coma	Saídas de controle					
Estado	sel	c1	c2	pronto	erro			
Е	X	0	0	1	1			
S0	X	0	0	1	0			
S1	1	1	1	0	0			
S2	0	1	1	0	0			
S3	0	1	1	0	0			
S4	0	1	0	0	0			

INE/CTC/UFSC Sistemas Digitais - semestre 2018/2 Slide 3T.55

Profs. Güntzel & Meinhardt

Projetando o Bloco de Controle para a Solução 2.1

Tabela de Transição de Estados

Estado atual	iniciar	ov	Próximo estado
Е	0	X	E
Е	1	X	S1
S0	0	X	S0
S0	1	X	S1
S1	X	X	S2
S2	X	0	S3
S2	X	1	E
S3	X	0	S4
S3	X	1	E
S4	X	0	S0
S4	X	1	E

Projetando o Bloco de Controle para a Solução 2.1

FSM

Assinalamento de Estados

- •Escolher uma codificação binária para representar os estados...
- •Se for para minimizar o número de bits, log₂ *N*, onde *N* é o número de estados. Exemplo

Estado	Código binário					
Estado	Q2	Q1	Q0			
Е	0	0	0			
S0	0	0	1			
S1	0	1	0			
S2	0	1	1			
S3	1	0	0			
S4	1	0	1			

Projetando o Bloco de Controle para a Solução 2.1

Estado	Q2	Q1	Q0	Sinais de comando sel c1 c2			Saídas de controle		
							pronto	erro	
Е	0	0	0	X	0	0	1	1	
S0	0	0	1	X	0	0	1	0	
S1	0	1	0	1	1	1	0	0	
S2	0	1	1	0	1	1	0	0	
S3	1	0	0	0	1	1	0	0	
S4	1	0	1	0	1	0	0	0	

Sinais de comando: pronto = erro =

Sinais de controle sel = c1 = c2 =

Projetando o Bloco de Controle para a Solução 2.1

Tabela de Transição de Estados

Estado atual	Q2	Q1	Q0	iniciar	ov	Q2 ⁺	Q1 ⁺	Q0 ⁺	Próximo estado
Е	0	0	0	0	X	0	0	0	E
Е	0	0	0	1	X	0	0		S1
S0	0	0	1	0	X	0	0	1	S0
S0	0	0	1	1	X	0	1	0	S1
S1	0	1	0	X	X	0	1	1	S2
S2	0	1	1	X	0	1	0	0	S3
S2	0	1	1	X	1	0	0	0	E
S3	1	0	0	X	0	1	0	1	S4
S3	1	0	0	X	1	0	0	0	E
S4	1	0	1	X	0	0	0	1	S0
S4	1	0	1	X	1	0	0	0	E

Sinais de Próx. Estado

$$O2^{+} =$$

$$O1^{+} =$$

$$Q2^{+} =$$