Dennis Kuzminer CSCI-UA 310-001 PS5

2.

- a. $n > m \rightarrow$ The number of jobs is more than the number of machines. If there are m machines, and m is strictly less than n, then there must be at least one machine with 2 jobs (pigeonhole principle). If we order in descending order, then the first job to be assigned to a machine with a pre-existing job is the m+1 job. Since the ordering is descending, we know that the time of the m+1 job (t_{m+1}) is at least as great as all of the jobs that came before it $(t_1 \ge t_2 \ge ... \ge t_{m+1})$. Because there are now at least 2 jobs assigned to this machine, and the first job was at least as long as the second, we can say that $T^* \ge 2t_{m+1}$.
- b. Let l be the last job scheduled on machine k. Right before I was scheduled: the load on machine k was $T_k t_l$ and the load on k was minimal.

From class, we derived that $T_k \le t_l + \frac{1}{m} \sum_j t_j$. We also know that $2t_{m+1} \le T^* \to 1$

 $t_{m+1} \le T^*/2$. Since I was the last job, we can say that $t_l \le t_{m+1}$. Combining: $t_l \le t_{m+1} \le T^*/2$, showing that t_l is bounded ($t_l \le T^*/2$).

By Lemma 2, $\frac{1}{m} \sum_{j} t_{j}$ is also bounded $\frac{1}{m} \sum_{j} t_{j} \leq T^{*}$.

Substituting: $T_k \le T^*/2 + T^* \rightarrow T \le 3T^*/2$