Unit I

Introduction

Algorithm

*An algorithm is any well-defined computational procedure that take some value, or set of values, as input and produces some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform the input into the output.

Algorithmic Solution

- With the definition, we can identify five important characteristics of algorithms :
 - Algorithms are well-ordered.
 - Algorithms have unambiguous operations.
 - Algorithms have effectively computable operations.
 - Algorithms produce a result.
 - Algorithms halt in a finite amount of time.

Properties of an Algorithm

- Finiteness: an algorithm terminates after a finite numbers of steps.
- Definiteness: each step in algorithm is unambiguous.
 This means that the action specified by the step cannot be interpreted (explain the meaning of) in multiple ways & can be performed without any confusion.
- Input:- an algorithm accepts zero or more inputs
- Output:- it produces at least one output.
- Effectiveness:- it consists of basic instructions that are realizable. This means that the instructions can be performed by using the given inputs in a finite amount of time.

Top Down Design

Write an algorithm to find the largest of a set of numbers. You do not know the number of numbers.

```
Input: A list of positive integers

1. Set Largest to 0

2. while (more integers)
2.1 if (the integer is greater than Largest)
then
2.1.1 Set largest to the value of the integer
End if
End while

3. Return Largest
End
```

Distinct Areas of Study of Algorithms

- Devise an Algoritm
 - Find good algorithms
- Validate a problem
 - Correct answers for all legal inputs
- Analyze an Algorithm
 - Computational time and memory requirements.
- Test a Program
 - Debugging and profiling

- Comments
 - **+** //
- Blocks
 - **+** { }
- Identifier
 - Starts with letter
- Assignment
 - ◆ Id:=4
- Boolean Values
 - True and false
- Multidimentional array
 - A[i,j]. Starts with zero index
- Input and Output
 - Use instructions as read and write

Selection (test)

- # If <condition> then task1
- # If <condition> then task1 else task2
- Multiple cases

```
case {
    :\langle condition \ 1 \rangle: \langle statement \ 1 \rangle
    :\langle condition \ n \rangle: \langle statement \ n \rangle
    :else: \langle statement \ n + 1 \rangle
}
```

Repetition

While/Repeat

While (cond) do

Do while /Repeat

Do ! while (cond)

One procedure

```
Algorithm Name (\langle parameter \ list \rangle)
```

* example

```
Algorithm Max(A, n)

// A is an array of size n.

Result := A[1];

for i := 2 to n do

if A[i] > Result then Result := A[i];

return Result;

}
```

Example: Selection Sort Algorithm

First Attempt :

Find the smallest from unsorted list and place next to sorted list

```
 \begin{array}{ll} \mathbf{for} \ i := 1 \ \mathbf{to} \ n \ \mathbf{do} \\ 2 & \{ \\ 3 & \operatorname{Examine} \ a[i] \ \text{to} \ a[n] \ \text{and suppose} \\ 4 & \operatorname{the \ smallest \ element \ is \ at} \ a[j]; \\ 5 & \operatorname{Interchange} \ a[i] \ \text{and} \ a[j]; \\ 6 & \} \end{array}
```

Smallest element is a[j], then Interchange a[i], a[j]

$$t := a[i]; a[i] := a[j]; a[j] := t;$$

Selection Sort

```
Algorithm SelectionSort(a, n)
2
3
    // Sort the array a[1:n] into nondecreasing order.
         for i := 1 to n do
5
6
             j := i;
              for k := i + 1 to n do
8
                  if (a[k] < a[j]) then j := k;
              t := a[i]; \ a[i] := a[j]; \ a[j] := t;
9
```

Recursive Algorithms

- Direct Recursion
 - Function Calling itself
- Indirect Recursion
 - Function A Calling B and B calling A again.

Example: Binomial Theorem

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} = \frac{n!}{m!(n-m)!}$$

Recursive Algorithms

Examples

Towers of Honoi


```
Algorithm TowersOfHanoi(n, x, y, z)

// Move the top n disks from tower x to tower y.

if (n \ge 1) then

TowersOfHanoi(n - 1, x, z, y);

write ("move top disk from tower", x,

"to top of tower", y);

TowersOfHanoi(n - 1, z, y, x);

TowersOfHanoi(n - 1, z, y, x);
```

Time and Space Complexity

Time complexity

Time complexity of an algorithm quantifies the amount of **time** taken by an algorithm to run as a function of the length of the input.

Space complexity

Space complexity of an algorithm quantifies the amount of space or memory taken by an algorithm to run as a function of the length of the input.

Count method to calculate time complexity

- introduce a new variable, count, into a program by identifying Program Step and by Increment the value of count by appropriate amount with respect to a statement in the original program executes.
- Program Step A synthetically meaningful segment of a program that requires execution time which is independent on the instance characteristics.

Count method to calculate time complexity...

- The number of steps in any program depends on the kind of statements. For example –
 - Comments count as zero steps
 - An assignment statement which does not involves any calls to other algorithm is counted as one step.
 - For looping statements the step count equals to the number of step counts assignable to goal value expression. And should be incremented by one within a block and after completion of block.
 - For conditional statements the step count should incremented by one before condition statement.
 - A return statement is counted as one step and should be write before return statement.

For example –

Algorithm Sum(a,n)

```
{ s:=0;
    for i:=1 to n do
    {
        s:=s+a[i];
    }
    return s;
}
```

Algorithm Sum(a,n) // After Adding Count

```
s:=0;
COUNT:=COUNT+1; // for assignment statement execution
for i:=1 to n do
      count:=count+1; //for For loop Assignment
     s:=s+a[i];
      COUNT:=COUNT+1;// for addition statement execution
count:=count+1; // for last time of for
count:=count+1; // for the return
return s;
```

Algorithm Sum(a,n) //Simplified version for algorithm Sum

```
for i:=1 to n do
{
      count:=count+2;
}
count:=count+3;
}
```

Form above example, Total number of program steps= 2n + 3, where n is the loop counter.

Algorithm RSum(a,n) if $n \le 0$ then return a[n]; else return RSum(a, n-1) + a[n];

```
Algorithm RSum(a,n)
     count:=count + 1; // for the if condition
     if n \le 0 then
              count:=count + 1;// for the return statement
              return a[n];
     else
              count:=count + 1; // for the addition, function invoked
& return
             return RSum(a, n-1) + a[n];
```

- Therefore we can write,
- tRSum(n) = 2 if n=0 and
- tRSum(n) = 2+ tRSum(n-1) if n>0

```
= 2 + 2 + tRSum(n - 2)
```

$$= 2(2) + tRSum(n - 2)$$

$$=3(2) + tRSum(n - 3)$$

•

•

= n(2) + tRSum(0)

=2n+2

So, the step count for RSum algorithm is 2n+2.

Algorithm RSum(a,n) //Simplified version of algorithm Rsum with counting's only

```
count:=count + 1;
if n \le 0 then
      Count:=count + 1;
else
      count:=count + 1;
```

Table method to calculate time complexity

- build a table in which we list the total number of steps contributed by each statement. This table contents three columns —
 - Steps per execution (s/e)- contents count value by which count increases after execution of that statement.
 - Frequency is the value indicating total number of times statement executes
 - Total steps can be obtained by combining s/e and frequency.
 - Total step count can be calculated by adding total steps contribution values.

Statement	s/e	Frequency	Total steps
Algorithm Sum(a,n)	0	1	0
{	0	1	0
s:=0; for i:=1 to n do	1	1	1
for i:=1 to n do	1	n+1	n+1
s:=s+a[i];	1	n	n
return s;	1	1	1
}	0	1	0

Total step count = 2n+3

Analyzing Algorithm

Phases of Analysis

- Priori Analysis
 - The bounds of time are obtained by formalating a function based on theroy.
 - Independent of programming languages and machine structures. Ex, O-notation.
- Posteriori Analysis
 - Depends on programming language and machine structure.
 - Time and space is recorded during execution.
 - More is the number of input more is the time taken.
 Ex. insertion sort

Types of Analysis

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

Lower Bound ≤ *Running Time* ≤ *Upper Bound*

Average case

- Provides a prediction about the running time
- Assumes that the input is random

How do we compare algorithms?

- We need to define a number of <u>objective</u> measures.
 - Compare execution times?
 - **Not good**: times are specific to a particular computer!!
 - Count the number of statements executed?
 - **Not good**: number of statements vary with the programming language as well as the style of the individual programmer.

Ideal Solution

- \blacksquare Express running time as a function of the input size n (i.e., f(n)).
- Compare different functions corresponding to running times.
- Such an analysis is independent of machine time, programming style, etc.

Example

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Algorithm 1 Algorithm 2 Cost $arr[0] = 0; c_1 for(i=0; i<N; i++) c_2$ $arr[1] = 0; c_1 arr[i] = 0; c_1$ $arr[2] = 0; c_1$ $arr[N-1] = 0; c_1$ $c_1+c_1+...+c_1 = c_1 \times N$ $(N+1) \times c_2 + N \times c_1 = (c_2+c_1) \times N + c_2$

Another Example

```
Algorithm 3
                                  Cost
  sum = 0;
  for(i=0; i<N; i++)
    for(j=0; j<N; j++)
         sum += arr[i][i];
                                        C_3
c_1 + c_2 \times (N+1) + c_2 \times N \times (N+1) + c_3 \times N^2
```

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: $f(n) \le g(n)$
- lacktriangle Ω notation: asymptotic "greater than":
 - $f(n) = \Omega(g(n))$ implies: $f(n) \le g(n)$
- Θ notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) "=" g(n)

Big-O Notation

- We say $f_A(n)=30n+8$ is order n, or O (n) It is, at most, roughly proportional to n.
- $\oint_B f_B(n) = n^2 + 1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- \blacksquare In general, any $O(n^2)$ function is fastergrowing than any O(n) function.

More Examples ...

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- $n^3 n^2$ is $O(n^3)$
- constants
 - **+** 10 is *O*(1)
 - **+** 1273 is *O*(1)

Visualizing Orders of Growth

On a graph, as you go to the right, a faster growing function eventually becomes larger...

Back to Our Example

Algorithm 1

Algorithm 2

$\begin{array}{c} \text{\textbf{Cost}} & \text{\textbf{Cost}} \\ \text{arr}[0] = 0; & c_1 & \text{for}(i=0;\,i< N;\,i++) & c_2 \\ \text{arr}[1] = 0; & c_1 & \text{arr}[i] = 0; & c_1 \\ \text{arr}[2] = 0; & c_1 & \\ \text{...} \\ \text{arr}[N-1] = 0; & c_1 & \\ \text{...} \\ \text{c}_1 + c_1 + \ldots + c_1 = c_1 \times N & (N+1) \times c_2 + N \times c_1 = \\ (c_2 + c_1) \times N + c_2 & \\ \end{array}$

Both algorithms are of the same order: O(N)

Example (cont'd)

Review: Asymptotic Performance

- Asymptotic performance: How does algorithm behave as the problem size gets very large?
 - Running time
 - Memory/storage requirements
 - Remember that we use the RAM model:
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time
 - Except, of course, function calls
 - Constant word size
 - Unless we are explicitly manipulating bits

Review: Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time We can be more exact if need be

Asymptotic Notations

Allow us

to analyze an algorithm's running time by identifying its behavior as the input size for the algorithm increases.

This is also known as an a rate.

Order of Growth classifica

Asymptotic Notations

Constant

• No matter the size of the data it receives, the algorithms the same amount of time to run. We denote this as a time complexity of O(1).

Linear

• The running duration of a linear algorithm is constant. It will process the input in n number of operations O(n).

Quadratic

• two nested loops, or nested linear operations, the algorithm process the input n^2 times.

Logarithmic

A logarithmic algorithm is one that reduces the size of the input at every step. We denote this time complexity as O(log n). Example: binary search algorithm

Asymptotic Notation

Quasilinear

• the time complexity O(n log n) can describe a data structure where each operation takes O(log n) time. example :quick sort, a divide-and-conquer algorithm.

Non-polynomial time complexity

• An algorithm with time complexity O(n!) often iterates through all permutations of the input elements. example brute-force search seen in the travelling salesman problem

Exponential

• An exponential algorithm often also iterates through all subsets of the input elements. It is denoted O(2n). The larger the data set, the more steep the curve becomes. a brute-force attack.

Order of Growth classification

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Asymptotic Notations- Big O Notation

$$\{f(n) = O(g(n))\}$$

 $f(n) \le cg(n)$ for all $n \ge n0$ there exist positive constants c>0 and n0 >=1

Example:

f(n)=3n+5	f(n)=27n ² +16n	$f(n)=$ $2n^{3+}6n^2+2n$
3n+5≤ 3n+n≤4n n≥5	$\begin{array}{c} 27 n^2 + 16 n \leq 27 n^2 + n^2 \\ \{n \leq n^2\} \\ 27 n^2 + 16 n \leq 28 n^2 \end{array}$	
f(n) = O(n)	$f(n) = O(n^2)$	

Asymptotic Notations- Big Omega (Ω)Notation

$$\{f(n)\} = \Omega (g(n))$$

$$cg(n) \le f(n)$$
 for all $n \ge n0$
there exist positive constants $c>0$ and $n0 >=1$

Example:

f(n)=3n+5	f(n)=27n ² +16n	$f(n)=2n^{3+}6n^{2}+2n$
$3n \le 3n + 5$	$27n^2 \le 27n^2 + 16n$	
$f(n) = \Omega(n)$	$f(n) = \Omega (n^2)$	

Asymptotic Notations- Big Theta (Θ)Notation

$${f(n)} = \Theta (g(n))$$

 $c1g(n) \le f(n) \le c2g(n)$ for all $n \ge n0$ there exist positive constants c1,c2 > 0 and n0 > = 1

Example:

f(n)=3n+5	f(n)=27n ² +16n	$f(n)=$ $2n^{3+}6n^2+2n$
3n≤3n+n≤4n C1=3 & c2=4	$\begin{array}{c} 27 n^2 + 16 n \leq 27 n^2 + n \\ \{n \leq n^2\} \\ 27 n^2 \leq 27 n^2 + 16 n \leq \\ 28 n^2 \end{array}$	
$f(n) = \mathbf{\Theta}(n)$	$f(n) = \Theta(n^2)$	

How to Determine Complexities

♦ In general, how can you determine the running time of a piece of code? The answer is that it depends on what kinds of statements are used.

```
Sequences of Statements
Statement 1;
Statement 2;
.......
Statement k;

Total Time = time(statement1) +
time(statement2) +........ +
time(statement k)
```


How to Determine Complexities

Complexity

The loop executes N times, so the sequence of statements also executes N times. which is **O(N)** overall.

```
Nested loops

for (i = 0; i < N; i++) {
   for (j = 0; j < M; j++) {
      sequence of statements
   }
}</pre>
```

Complexity

The outer loop executes N times. Every time the outer loop executes, the inner loop executes M times

Thus, the complexity is O(N * M)

```
x = 0;
A[n] = some array of
length n;
    while (x != A[i])
{
        i++;
}
```

Complexity

The loop executes N times, so the sequence of statements also executes N times. which is **O(N)** overall.

Asymptotic notations

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Examples — ('=' symbol readed as 'is' instead of 'equal')

- ♦ The function 3n+2 = O(n) as $3n+2 \le 4n$ for all $n \ge 2$
- ♦ The function 3n+3 = O(n) as $3n+3 \le 4n$ for all $n \ge 3$
- ♦ The function 100n+6 = O(n) as $100n+6 \le 101n$ for all $n \ge 6$
- The function 10n2+4n+2 = O(n^2) as 10n^2+4n+2 ≤ 11n2 for all n≥5
- ♦ The function 1000n2+100n-6 = O(n2) as $1000n2+100n-6 \le 1001n2$ for all $n \ge 100$
- ♦ The function 6*2n+n2 = O(2n) as $6*2n +n2 \le 7*2n$ for all $n \ge 4$
- ♦ The function 3n+3 = O(n2) as $3n+3 \le 3n2$ for all $n\ge 2$

Tabular Method

n	Function f(n)	compare	c. g(n)
	10n^2+4n+2		11n^2
1	10+4+2=16	>	11
2	40+8+2=50	>	44
3	90+12+2=104	>	99
4	160+16+2=178	>	176
5	250+20+2=272	<	275
6	360+24+2=386	<	396

- Consider the job offers from two companies. The first company offer contract that will double the salary every year. The second company offers you a contract that gives a raise of Rs. 1000 per year. This scenario can be represented with Big-O notation as —
 - For first company, New salary = Salary X 2ⁿ (where n is total service years)
 - Which can be denoted with Big-O notation as O(2^n)
 - For second company, New salary = Salary +1000n (where n is total service years)
 - Which can be denoted with Big-O notation as O(n)

O(1)

Describes an algorithm that will always execute in the same time (or space) regardless of the size of the input data set i.e. a computing time is a constant time.

```
int IsFirstElementNull(char String[])
{
    if(strings[0] == '\0')
    {
       return 1;
    }
    return 0;
}
```

O(N): is called *linear time*,

Describe an algorithm whose performance will grow linearly and in direct proportion to the size of the input data set.

```
int ContainsValue(char String[], int no, char ch)
   for( i = 0; i < no; i++)
         if(string[i] == ch)
                  return 1;
   return 0;
```

$O(N^K)$: (k fixed) refers to polynomial time; (if k=2, it is called quadratic time, k=3, it is called cubic time),

- which represents an algorithm whose performance is directly proportional to the square of the size of the input data set.
 - This is common with algorithms that involve nested iterations over the data set. Deeper nested iterations will result in $O(N^3)$, $O(N^4)$ etc.

```
bool Contains Duplicates (String[] strings)
    for(int i = 0; i < strings.Length; i++)
         for(int j = 0; j < strings.Length; j++)
                    if(i == j) // Don't compare with self
                   continue;
                   if(strings[i] == strings[i])
                   return true;
         return false;
```

$O(2^N)$: is called *exponential time*,

- Denotes an algorithm whose growth will double with each additional element in the input data set.
 - \bullet The execution time of an $O(2^N)$ function will quickly become very large.

Big-O Visualization

O(g(n)) is the set of functions with smaller or same order of growth as g(n)

An Example: Insertion Sort

```
InsertionSort(A, n) {
 for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     A[j+1] = key
```

Insertion Sort

```
What is the precondition
InsertionSort(A, n) {
                               for this loop?
  for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
           A[j+1] = A[j]
           j = j - 1
     A[j+1] = key
```

Insertion Sort

```
InsertionSort(A, n) {
  for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
     A[j+1] = key
                            How many times will
                            this loop execute?
```

Insertion Sort

```
Statement
                                                       Effort
InsertionSort(A, n) {
  for i = 2 to n \{
                                                       c_1 n
                                                       c_2(n-1)
       key = A[i]
       j = i - 1;
                                                       c_3(n-1)
       while (j > 0) and (A[j] > key) {
                                                 c<sub>⊿</sub>T
                                                       c_5(T-(n-1))
               A[j+1] = A[j]
                                                       c_6(T-(n-1))
               i = i - 1
       A[j+1] = key
                                               c_7(n-1)
                                                       0
```

 $T = t_2 + t_3 + ... + t_n$ where t_i is number of while expression evaluations for the ith for loop iteration

Analyzing Insertion Sort

- $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 T + c_5 (T (n-1)) + c_6 (T (n-1)) + c_7 (n-1)$ $= c_8 T + c_9 n + c_{10}$
- What can T be?
 - Best case -- inner loop body never executed
 - $t_i = 1 \rightarrow T(n)$ is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - $t_i = i \rightarrow T(n)$ is a quadratic function
 - Average case
 - 555

Upper Bound Notation

- $\textcircled{We say InsertionSort's run time is } O(n^2)$
 - Properly we should say run time is in O(n²)
 - Read O as "Big-O" (you'll also hear it as "order")
- In general a function
 - \bullet f(n) is O(g(n)) if there exist positive constants c and n_0 such that f(n) $\leq c \cdot g(n)$ for all $n \geq n_0$
- Formally
 - \bullet O(g(n)) = { f(n): ∃ positive constants c and n_0 such that f(n) ≤ $c \cdot g(n) \forall n \ge n_0$

Insertion Sort Is O(n²)

Proof

- Suppose runtime is an² + bn + c
 - If any of a, b, and c are less than 0 replace the constant with its absolute value

```
+ an^2 + bn + c \le (a + b + c)n^2 + (a + b + c)n + (a + b + c)
```

- \leq 3(a + b + c)n² for n \geq 1
- Φ Let c' = 3(a + b + c) and let n_0 = 1

Question

- Is InsertionSort O(n³)?
- Is InsertionSort O(n)?

Omega notation (Ω)

- specifically describes the best-case scenario, and can be used to describe the minimum execution time (asymptotic lower bounds) required or the space used (e.g. in memory or on disk) by an algorithm.
- ♦ The function f(n) = Ω(g(n)) (read as 'f of n is said to be Omega of g of n') if and only if there exists a real, positive constant C and a positive integer n0 such that, f(n) ≥ C*g(n) for all n ≥ n0
- Here, n0 must be greater than 0.

Asymptotic notations (cont.)

\triangle Ω - notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples –

- The function $3n+2 = \Omega(n)$ as $3n+2 \ge 3n$ for all $n \ge 1$
- The function $3n+3 = \Omega(n)$ as $3n+3 \ge 3n$ for all $n \ge 1$
- The function $100n+6 = \Omega(n)$ as $100n+6 \ge 100n$ for all $n\ge 1$
- The function $10n2+4n+2 = \Omega(n2)$ as $10n2+4n+2 \ge n2$ for all $n\ge 1$
- The function $6*2n+n2 = \Omega(2n)$ as $6*2n+n2 \ge 2n$ for all $n\ge 1$
- The function $3n+3 = \Omega(1)$
- The function $10n2+4n+2 = \Omega(n)$
- The function $10n2+4n+2 = \Omega(1)$

Theta notation (Θ)

- Theta specifically describes the average-case scenario, and can be used to describe the average execution time required or the space used by an algorithm.
- A description of a function in terms of Θ notation usually only provides an tight bound on t
- ♦ The function f(n) = Θ(g(n)) (read as 'f of n is said to be Theta of g of n') if and only if there exists a positive constants C1, C2, and a positive integer n0 such that, C1*g(n) ≤ f(n) ≤ C2*g(n) for all n≥n0

Asymptotic notations (cont.)

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an *asymptotically tight bound* for f(n).

Examples

- The function 3n+2 = Θ(n) as
 3n+2 ≥ 3n for all n≥2 and
 - 3n+2 ≤4n for all n≥2
- So, c1=3, c2=4 and n0=2.
- The function $3n+3 = \Theta(n)$
- The function $10n^2+4n+2 = \Theta(n^2)$
- The function 6 * 2ⁿ +n² = Θ(2ⁿ)

Next Lecture

Recurrence Relations

Recurrence Relations

- Definition: Given a recursive algorithm a recurrence relation for the algorithm is an equation that gives the run time on an input size in terms of the run times of smaller input sizes.
- ♦ When iterative formulas for T(n) are difficult or impossible to obtain, one can use either
 - a recursion tree method,
 - an iteration method, or
 - \bullet a substitution method with Induction to get T(n) or a bound U(n)of T(n), where T(n)= $\Theta(U(n))$.

Recursion Tree

A recursion tree is a tree generated by tracing the execution of a recursive algorithm.

Recurrence Relations

 \clubsuit A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, ... a_n$ for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + a_{n-2}$ for $n = 1, 2, 3, \ldots$, and suppose that $a_0 = 2$. What are $a_1, a_2, and a_3$?

Solution: We see from the recurrence relation that

$$a_1 = a_0 + 3 = 2 + 3 = 5.$$

$$a_2 = 5 + 3 = 8$$
 and

$$a_3 = 8 + 3 = 11$$

♦ Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} - a_{n-2}$ for $n = 2, 3, 4, \ldots$, and suppose that $a_0 = 3$ and $a_1 = 5$. What are a_2 , and a_3 ?

Solution: We see from the recurrence relation that $a_2 = a_1 - a_0 = 5 - 3 = 2$ and $a_3 = a_2 - a_1 = 2 - 5 = -3$

We can find a4, a5, and each successive term in a similar way.

Creating Recurrence Relation

```
Fib(a)
                                   T(n)
  if(a==1 | | a==0)
  return 1;
  return Fib(a-1) + Fib(a-2);
                                 T(n-1)+T(n-2)
(comparison, comparison, addition) and also
  calls itself recursively.
```

 $f_n = f_{n-1} + f_{n-2}$

The Fibonacci sequence, f0, f1, f2, . . . , is defined by the initial conditions f0 = 0, f1 = 1, and the recurrence relation fn = fn-1 + fn-2 for n = 2, 3, 4,

- Find the Fibonacci numbers f2, f3, f4, f5, and f6.
- Solution: Because the initial conditions tell us that f0 = 0 and f1 = 1, using the recurrence relation in the definition we find that

$$f2 = f1 + f0 = 1 + 0 = 1,$$

$$f3 = f2 + f1 = 1 + 1 = 2,$$

$$f4 = f3 + f2 = 2 + 1 = 3,$$

$$f5 = f4 + f3 = 3 + 2 = 5,$$

Solving Recurrence Relations

A recurrence relation is an equation that recursively defines a sequence where the next term is a function of the previous terms (Expressing Fn as some combination of Fi with i < n).

Recurrence Relations

Substitution Method

- The substitution method for solving recurrences comprises two steps:
 - Guess the form of the solution.
 - Use mathematical induction to find the constants and show that the solution works.
- We substitute the guessed solution for the function when applying the inductive hypothesis to smaller values; hence the name "substitution method."
- This method is powerful, but we must be able to guess the form of the answer in order to apply it.

Example
$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$
,

ightharpoonup We guess that the solution is $T(n) = O(n \lg n)$. The substitution method requires us to prove that $T(n) \leq c n \lg n$ for an appropriate choice of the constant c > 0. We start by assuming that this bound holds for all positive m < n, in particular for $m = \lfloor n/2 \rfloor$, yielding

$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor).$$

Substituting into the recurrence yields

$$T(n) \le 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$

 $\le cn \lg(n/2) + n$
 $= cn \lg n - cn \lg 2 + n$
 $= cn \lg n - cn + n$
 $\le cn \lg n$,

where the last step holds as long as $c \ge 1$.

```
 \{ 3T(n-1), if n>0, 
 T(n) = \{ 1, otherwise \}
```

Let us solve using substitution.

$$T(n) = 3T(n-1) = 3(3T(n-2))$$

$$= 3^{2}T(n-2)$$

$$= 3^{3}T(n-3) ...$$

$$= 3^{n}T(n-n)$$

$$= 3^{n}T(0)$$

$$= 3^{n}$$

This clearly shows that the complexity of this function is $O(3^n)$.

How to solve linear recurrence relation Homogeneous Recurrence Relations

- ♦ Suppose, a two ordered linear recurrence relation is $F_n = AF_{n-1} + BF_{n-2}$ • where A and B are real numbers.
- ♦ The characteristic equation for the above recurrence relation is $x^2 Ax B = 0$
- Three cases may occur while finding the roots –
- **Case 1** If this equation factors as $(x-x_1)(x-x_1)=0$ and it produces two distinct real roots \mathcal{X}_1 and \mathcal{X}_2 , then f(x)=f(x)=0 is the solution. [Here, a and b are constants]
- **Case 2** If this equation factors as $(x-x_1)^2$
- riangle and it produces single real root x_1 , then $F_n = ax_1^n + bnx_1^n$ is the solution.
- **Case 3** If the equation produces two distinct complex roots, χ_1 and χ_2 in polar form $x_1 = r \angle \Theta$ and $x_2 = r \angle (-\Theta)$, then following is the solution

$$F_n = r^n (a\cos(n\theta) + b\sin(n\theta))$$

Problem 1

Solve the recurrence relation where $F_0 = 1$ and $F_1 = 4$

$$F_{n} = 5F_{n-1} - 6F_{n-2}$$

Solution

♦ The characteristic equation of the recurrence relation is $-x^2-5x+6=0$

So.
$$(x-3)(x-2) = 0$$

Hence, the roots are – $x_1 = 3$

and
$$x_2 = 2$$

The roots are real and distinct. So, this is in the form of case 1

Hence, the solution is –

$$F_n = ax_1^n + bx_2^n$$

- \bullet Here, $F = a3^n + b2^n$ (As x1=3 and x2=2)
- Therefore,

$$1 = F_0 = a3^0 + b2^0 = a + b$$
$$4 = F_1 = a3^1 + b2^1 = 3a + 2b$$

- ♦ Solving these two equations, we get a=2 and b=-1
- Hence, the final solution is –

$$F_n = 2.3^n + (-1).2^n = 2.3^n - 2^n$$

Problem 2

Solve the recurrence relation $F_n = 10F_{n-1} - 25F_{n-2}$ where $F_0 = 3$ and $F_1 = 17$

- Solution
- The characteristic equation of the recurrence relation is $x^2 10x 25 = 0$
- So $(x-5)^2 = 0$
- ightharpoonup Hence, there is single real root $x_1 = 5$
- As there is single real valued root, this is in the form of case 2
- Name Hence, the solution is $F_n = ax_1^n + bnx_1^n$
- $3 = F_0 = a.5^0 + b.0.5^0$ $17 = F_1 = a.5^1 + b.1.5^1$
- \diamond Solving these two equations, we get a=3
- \Rightarrow and b=2/5
- ightharpoonup Hence, the final solution is $F_n = 3.5^n + (2/5).n.2^n$

Problem 3

Solve the recurrence relation $F_n = 2F_{n-1} - 2F_{n-2}$

$$F_n = 2F_{n-1} - 2F_{n-2}$$

where
$$F_0 = 1$$
 and $F_1 = 3$

- Solution
- **The characteristic equation is** $x^2 2x 2x = 0$ Hence, the roots are $-x_1 = 1+i$ and $x_2 = 1-i$
- In polar form, $x_1 = r \angle \theta$ And $x_2 = r \angle (-\theta)$ where $r = \sqrt{2}$ and $\theta = \frac{\pi}{4}$
- The roots are imaginary. So, this is in the form of case 3.

Whence,
$$F_n = (\sqrt{2})^n (a\cos(n.\Pi_{4}^{\prime}) + b\sin(n.\Pi_{4}^{\prime}))$$

$$1 = F_0 = (\sqrt{2})^0 (a\cos(0.\Pi_{4}^{\prime}) + b\sin(0.\Pi_{4}^{\prime})) = a$$

$$3 = F_1 = (\sqrt{2})^1 (a\cos(1.\Pi_{4}^{\prime}) + b\sin(1.\Pi_{4}^{\prime})) = \sqrt{2}(a/\sqrt{2} + b\sqrt{2})$$

Solving these two equations we get a=1 and b=2

Hence, the final solution is –

$$F_n = (\sqrt{2})^n (\cos(n. \frac{\Pi}{4}) + 2\sin(n. \frac{\Pi}{4}))$$

Example: Fibonacci sequence

$$f_n = f_{n-1} + f_{n-2}$$

$$f_0 = 0, \quad f_1 = 1$$

Has solution:
$$f_n = \lambda_1 r_1^n + \lambda_2 r_2^n$$

Characteristic roots: $r_1 = \frac{1+\sqrt{5}}{2}$ $r_2 = \frac{1-\sqrt{5}}{2}$

$$r_1 = \frac{1+\sqrt{5}}{2}$$

$$r_2 = \frac{1 - \sqrt{5}}{2}$$

$$\lambda_1 = \frac{f_1 - f_0 r_2}{r_1 - r_2} = \frac{1}{\sqrt{5}}$$

$$\lambda_2 = \frac{f_0 r_1 - f_1}{r_1 - r_2} = -\frac{1}{\sqrt{5}}$$

$$f_{n} = \lambda_{1} r_{1}^{n} + \lambda_{2} r_{2}^{n}$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n}$$

Recursion Tree (Back Subtitution)

$$T(n) = 2T(n/2) + 1$$

Here the number of leaves $= 2^{\log n} = n$

and the sum of effort in each level except leaves is

$$\sum_{i=0}^{\log_2(n)-1} i = 2^{\log_2(n)} - 1 = n - 1$$

Recursion Tree (Back Subtitution)

$$T(n) = 2T(n/2) + n^2$$

$$T(n) = \sum_{i=0}^{\infty} n^2 / 2^i = n^2 \sum_{i=0}^{\infty} 1 / 2^i = \Theta(n^2)$$

$$T(n) = 2T(n/2) + n$$

for $k \le n$,

$$T(k) = 2T(\frac{k}{2}) + k.$$

$$T(n/2)$$
 $T(n/2)$

$$\frac{n}{2} \qquad \frac{n}{2} \qquad \frac{n}{2} \qquad \qquad T(\frac{n}{4}) \qquad T(\frac{n}{4}) \qquad T(\frac{n}{4}) \qquad T(\frac{n}{4})$$

The sum of the values at each level of the tree is n (m nodes times the value $\frac{n}{m}$ in each node). There are $k = \log_2 n$ levels since we can cut the array in half k times. Thus, the sum of the elements in all nodes of the tree is $n \cdot \log_2 n$. Therefore, $T(n) = \Theta(n \cdot \log_2 n)$.

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

e. $T(n) = 3T(n/4) + cn^2$.

Total: $O(n^2)$

Analysis: First we find the height of the recursion tree. Observe that a node at depth i reflects a subproblem of size $n/4^i$ The sub problem size hits n = 1 when $n/4^i = 1$ or $i = \log_4 n$. So the tree has $\log_4 n + 1$ levels Now we determine the cost of each level of the tree. The number of nodes at depth is \mathbb{Z} is 3^i Each node at depth $i = 0, 1, ... \log_4 n - 1$ has a cost $c(n/4^i)^2$ of so the total cost of level \mathbf{z} is $3^i c(n/4^i)^2 = (3/16)^i cn^2$ However, the bottom level is special. Each of the bottom nodes contribute cost T(1), and there are $3^{\log_4 n} = n^{\log_4 3}$ of them.

So the total cost of the entire tree is

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4} n - 1}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$= \sum_{i=0}^{\log_{4} n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4} 3})$$

The left term is just the sum of a geometric series. So T(n) evaluates to

$$\frac{(3/16)^{\log_4 n} - 1}{(3/16) - 1} cn^2 + \Theta(n^{\log_4 3})$$

This looks complicated but we can bound it (from above) by the sum of the infinite series

$$\sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^{i} cn^{2} + \Theta(n^{\log_{4} 3}) = \frac{1}{1 - (3/16)} cn^{2} + \Theta(n^{\log_{4} 3})$$

igotimes Since functions in $\Theta(n^{\log_4 3})$ are also in $O(n^2)$, this whole expression is $O(n^2)$, Therefore, we can guess that $T(n) = O(n^2)$

Master Theorem

- This method is useful to solve the recurrences of the form, T(n) = aT(n/b) + f(n) where $a \ge 1$ and b > 1 and f(n)
- This recurrence describes an algorithm that divides a problem of size n into a subproblems, each of size n=b, and solves them recursively.

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Simplified

$$T(n) = aT\left(\frac{n}{b}\right) + \theta(n^k \log^p n)$$

- - Case 1: if $a > b^k$, then $T(n) = \theta(n^{\log_b a})$
 - \bullet Case 2: if $a = b^k$ then
 - a. If p > -1, then $T(n) = \theta(n^{\log_b a} \log^{p+1} n)$
 - b. If p = -1, then $T(n) = \theta(n^{\log_b a} \log \log n)$
 - c. If p < -1, then $T(n) = \theta(n^{\log_b a})$
 - \bullet Case 3: if $a < b^k$,
 - a. If $p \ge 0$ then $T(n) = \theta(n^k \log^p n)$
 - b. If p < 0 then $T(n) = O(n^k)$

Examples

$$1 T(n) = 9T(n/3) + n$$

$$n^{\log_b a} = n^{\log_3 9} = n^2$$

$$f(n) = n$$
Comparing $n^{\log_b a}$ and $f(n)$

$$n = O(n^2)$$

Satisfies Case 1 of Master's Theorem That implies $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$

2.
$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1 = f(n)$$
Comparing $n^{\log_b a}$ and $f(n)$

$$n^{\log_b a} = \Theta(f(n))$$
Satisfies Case 2 of Master's Theorem
That implies $T(n) = \Theta(n^{\log_b a}, \log n) = \Theta(\log n)$

3.
$$T(n) = 2T(n/2) + n$$

3.
$$T(n) = 2T(n/2) + n$$

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n = f(n)$$
Comparing $n^{\log_b a}$ and $f(n)$

$$n^{\log_b a} = \Theta(f(n))$$
Satisfies Case 2 of Master's Theorem

That implies $T(n) = \Theta(n^{\log_b a} \cdot \log n) = \Theta(n \log n)$

4.
$$T(n) = 3T(n/4) + n \log n$$

$$n^{\log_b a} = n^{\log_4 3}$$
$$f(n) = n \log n$$

Comparing $n^{\log_b a}$ and f(n)

Satisfies Case 3 of Master's Theorem

Checking the regularity condition

a.f(n/b) < c.f(n) (for some constant c < 1)

 $(3n/4)\log n/4 < c.n\log n$

 $(3/4)n[\log n - \log 4] < (3/4)n\log n \text{ where } (c=3/4)$

That implies the regularity condition is satisfied

That implies $T(n) = \Theta(f(n)) = \Theta(n \log n)$