Comparing Statistical Models

Andy Grogan-Kaylor

 $\{\{.1\}\}\ \{\{.2\}\}$

Introduction

In this example, we explore the predictors of the *count of Adverse Childhood Experiences* (ACES) that children experience. Using the *general linear model* framework, we could conceivably compare different statistical models on several grounds.

- 1. Theoretical plausibility
- 2. Functional form of the dependent variable
- 3. Functional form of the entire model
- 4. Statistical criteria of fit.

Frequently, there is no one correct way to analyze data, and different statistical approaches need to be weighed on multiple criteria to ascertain which approach(es) is / are appropriate.

Theoretical and Functional Concerns

			Functional Form	_
			of Dependent	Functional Form of
Statistical Model	Stata Command	Theoretical Rationale	Variable	Entire Model
OLS	regress	Continuous dependent variable	$-\infty < y < \infty$	y is a linear function of the x's
Logistic Regression	logit	Binary dependent variable	y = 0 or 1	$\ln\left(\frac{p(y)}{1-p(y)}\right)$ is a linear function of x's
Ordinal logistic regression	ologit	Ordered dependent variable where distance between categories does not matter	$-\infty < y < \infty$	$\ln \left(\frac{p(y \text{ this level of the outcome})}{p(y \text{ not this level of the outcome})} \right)$ is a linear function of x's
Multinomial Logistic Regression	mlogit	Dependent variable with multiple unordered categories	$-\infty < y < \infty$	$\ln \left(\frac{p(y \text{ another category})}{p(y \text{ reference category})} \right)$ is a linear function of x's
Poisson Regression	poisson	Dependent variable representing a count	y is integer ≥ 0	ln(y (count)) is a linear function of x's
Negative Binomial Regression	nbreg	Dependent variable representing a count	y is integer ≥ 0	ln(y (count)) is a linear function of x's

Assessing Model Fit

Get Data And Create Count of ACEs

- . clear all
- . use "NSCH_ACES.dta", clear
- . egen acecount = anycount(ace*R), values(1) // generate count of ACES

Describe The Data

. describe acecount $sc_sex\ sc_race_r\ higrade$

Variable name	Storage type	Display format	Value label Variable label
acecount	byte	%8.0g	<pre>ace1R ace3R ace4R ace5R ace6R ace7R ace8R ace9R ace10R == 1</pre>
sc_sex	byte	%30.0g	sc_sex_lab
			Sex of Selected Child
sc_race_r	byte	%48.0g	sc_race_r_lab
			Race of Selected Child, Detailed
higrade	byte	%61.0g	higrade_lab
			Highest Level of Education among Reported Adults

Explore Some Models

Only some of the above listed models are relevant. We use quietly to suppress model output at this stage.

- . quietly: regress acecount sc_sex i.sc_race_r i.higrade // OLS
- . estimates store OLS
- . quietly: ologit acecount sc_sex i.sc_race_r i.higrade // ordinal logit
- . estimates store ${\tt ORDINAL}$
- . quietly: poisson acecount sc_sex i.sc_race_r i.higrade // Poisson
- . estimates store ${\tt POISSON}$
- . quietly: nbreg acecount sc_sex i.sc_race_r i.higrade // Negative Binomial
- . estimates store NBREG

Compare The Models Including Fit Measures

. estimates table OLS ORDINAL POISSON NBREG, var(20) star stats(N 11 aic bic) equations(1)

Variable	OLS	ORDINAL	POISSON	NBREG
#1 sc_sex	01358634	02856135	01282301	0127557
sc_race_r Black or African American Indian o	.32583464*** .88542522***	.47967243*** .88482406***	.26627607*** .59710627***	.28235733*** .62278046***

Asian alone Native Hawaiian a Some Other Race a Two or More Races	46503425*** .2516065 .07433855 .33035205***	76002818*** .35416681 .14197623* .39265187***	62438214*** .20674094* .06755212* .28181254***	62012779*** .21879323 .08062919 .28198179***
higrade High school (inc) More than high sc	.10021068 45113751***	.17111252* 62649139***	.06324858* 37861085***	.06584405 38098265***
_cons	1.411494***		.33994246***	.33915207***
cut1 _cons		78624597***		
cut2cons		.65037457***		
cut3		1.5299647***		
cut4cons		2.2019291***		
cut5		2.8850071***		
cut6		3.6106908***		
cut7		4.4853373***		
cut8		5.9106719***		
cut9		7.5036903***		
lnalpha _cons				54430672***
Statistics N 11 aic bic	30530 -52340.464 104700.93 104784.19	30530 -42451.588 84939.175 85089.052	30530 -44758.999 89537.999 89621.263	30530 -42775.864 85573.728 85665.319

Legend: * p<0.05; ** p<0.01; *** p<0.001

In terms of log-likelihood a higher value indicates a better fit. We can also use the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) to compare models. For AIC and BIC, lower values indicate a better fit.

Thus, on strictly statistical grounds, the *ordinal* model would appear to provide the best fit, followed by the *negative binomial* model, the *Poisson* model, and the *OLS* model. However, we should note that the differences in fit between the *ordinal*, *negative binomial* and *Poisson* models are not exceptionally large. We would also worry that any differences in fit that we do see might be due to overfitting in this particular sample, or to capitalizing upon chance.

Lastly, we'd worry that the ordinal model might not satisfy the *proportional hazards* assumption, and should examine this with a **brant** test.

We need to balance these differences in fit against the fact that theoretically, a count data model seems more appropriate.

In this case, we would most likely choose to proceed with a count regression model.