ARC - a novel RICH detector for a future e^+e^- collider DD4HEP discussion meeting

Martin Tat¹ Roger Forty² Guy Wilkinson¹

 $^{1}\mbox{University of Oxford}$

²CERN

15th December 2022

Motivation for RICH at FCC-ee

- FCC-ee will collect $5 \times 10^{12} \ Z$ boson decays in 4 years
 - Allows for a world-leading flavour physics programme
 - Combined with excellent PID capabilities, FCC-ee will reach an unprecedented precision
- Good PID performance is also required for Higgs, WW and $t\bar{t}$ physics
 - ullet In particular, kaon ID is crucial for H o sar s

Figure 1: $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$

B physics requires pion-kaon separation from low momentum up to 40 GeV

Array of RICH Cells

- Array of RICH Cells (ARC): A novel RICH detector concept
 - First presented by R. Forty at FCC week 2021
 - Compact, low-mass solution for particle ID for FCC-ee
 - Concept inspired by the compound eyes of an insect
- Adapted to fit into the CLD experiment concept, taking 10% from the tracker volume
 - Radial depth of 20 cm, radius of 2.1 m and a length of 4.4 m
 - ullet Aim to keep material budget below $0.1X_0$
- Aerogel and gas radiators with a spherical mirror
 - Aerogel also acts as thermal insulation between gas and detector

3/20

Figure 2: ARC has a cellular structure, similar to an insect's compound eyes

Martin Tat Roger Forty Guy Wilkinson ARC 15th December 2022

Array of RICH Cells

- All cells are the same size, organised on a hexagonal grid
 - Barrel (endcap) has 945 (402) cells in total, where 18 (23) are unique
 - Hexagonal shape avoids the corners, where performance is worse

Figure 3: Barrel (left) and endcap (right) cells

Array of RICH Cells

Figure 4: Barrel and endcap cells

Figure 5: Photon hits on photodetector

Event display

Figure 6: $B_s \rightarrow D_s K$

Examples of photon tracking through optimised layout

Figure 7: Tracking of photons from gas radiator (left) and aerogel radiator (right) through the ARC optics

- Parameters that are optimised:
 - Mirror curvature
 - Mirror vertical and horizontal position
 - Detector horizontal position and tilt

Performance of optimised ARC

Figure 8: Separation significance per track for π -K (left) and p-K (right)

- Gas (aerogel) provides over 3σ pion-kaon separation in the range 10-50 GeV (2-10 GeV)
- Combined, the aerogel and gas ensure excellent PID performance over the whole range of interest to flavour physics

Magnetic field effects

- Magnetic field will degrade the performance in two ways:
 - Tracks will be displaced in azimuthal direction, so aerogel photons may miss the sensor.
 - The emission point uncertainty will be larger because particles will change direction as it travels through the radiator.

Figure 9: Comparison of kaon-pion separation in the barrel in the presence of a magnetic field

10 / 20

Magnetic field effects

- Magnetic field will degrade the performance in two ways:
 - Tracks will be displaced in azimuthal direction, so aerogel photons may miss the sensor.
 - 2 The emission point uncertainty will be larger because particles will change direction as it travels through the radiator.

Figure 10: Comparison of kaon-pion separation in the end cap in the presence of a magnetic field

Summary and next steps

- ARC is a low mass and compact cellular PID detector designed to occupy minimum space (20 cm in the radial dimension) in a 4π detector at an e^+e^- collider such as FCC-ee
- \bullet We have developed an optimised layout that should achieve a 3σ kaon-pion separation in the range 2-50 GeV
 - Performance evaluated with custom built simulation that includes magnetic field effects, chromatic dispersion, pixel size, mirror reflectivity, sensor dead area and aerogel scattering
- We are ready to implement ARC in the DD4HEP framework

Thanks for your attention!

Backup: Estimated material budget breakdown

Units of radiation length X/X_0

Detector component	Pressurised	Non-pressurised
Vessel walls	5%	1%
Photosensor array/electronics	1%	1%
Cooling plate (3 mm CF)	1%	1%
Aerogel $(n=1.03)$	1%	0.5%
C_4F_{10} gas	1%	0.5%
Focusing mirror	1%	1%
Total	10%	5%

Backup: ARC radiators

- C_4F_{10} :
 - Baseline assumption, well known from LHCb RICH1
 - $n=1.0014 \implies \theta_c=53\,\mathrm{mrad}$, suitable for high momentum particles
 - \bullet C_4F_{10} is a greenhouse gas, plan to replace with suitable Novec gas, such as $C_5F_{10}O$
- Aerogel:
 - Well known as a RICH radiator, e.g. from ARICH at Belle II
 - $n=1.01\text{-}1.10 \implies \theta_c=141\text{-}430\,\mathrm{mrad}$, suitable at low momentum
 - Very low thermal conductivity
 - Suitable to separate gas from detector, which must be cooled
 - Cherenkov photons come for "free" and are focused by the same mirror
 - Drawback: Some loss of photons from scattering

Figure 11: Belle aerogel tiles (left) and aerogel transmission function (right).

Backup: Technical details about minimisation

- $f(\vec{x})$ is not easily to calculate analytically
- Approximate by simulating a large number of charged tracks
- Finite number of photons $\implies f(\vec{x})$ is not differentiable
 - Cannot be minimised using conventional methods (Minuit, etc)
- I have experimented with a new type of minimisation algorithms: Stochastic optimisation
 - Differential evolution
 - Start with a population of possible solutions, form new solutions by combining (mutating) existing solutions
 - Advantage: Doesn't require initial guess, robust against functions that a not continuous, noisy, change over time, etc
 - Disadvantage: No way to tell if optimal solution has been found, so it requires many iterations

Backup: Optimisation of ARC layout

- The following procedure is used to evaluate the ARC performance:
 - Generate straight particle track from IP and trace it through ARC
 - @ Generate Cherenkov photons from gas radiator
 - Track photons through the optics and to detector
 - Reconstruct Cherenkov angles and calculate standard deviation
- Three sources of uncertainty are considered:
 - Emission point uncertainty: Emission point is assumed to be the mid-point of the track inside the gaseous radiator
 - 2 Chromatic dispersion uncertainty: Spread in Cherenkov angle due to wavelength dependence on refractive index
 - 3 Pixel size: Will be chosen so that it does not limit the performance

Minimise the Cherenkov angle uncertainty:

$$\Delta heta = rac{1}{\sqrt{N}} imes rac{1}{1-N} imes \sum_{i=0}^{N-1} (heta - ar{ heta})^2$$

Backup: Optimised mirror curvature and mirror position

Figure 12: Optimised mirror parameters for barrel cells

Backup: Optimised detector position and detector tilt angle

Figure 13: Optimised detector parameters for barrel cells

Backup: Cherenkov angle uncertainty for gas radiator

Figure 14: Gas radiator performance averaged over all barrel cells

19 / 20

Backup: Cherenkov angle uncertainty for aerogel radiator

Figure 15: Aerogel radiator performance averaged over all barrel cells

20 / 20