Tutorial Notes 8 of MATH3424

1 Summary of course material

1. Autocorrelation:

When the observations have a **natural sequential order**, the correlation is referred to as **autocorrelation**.

2. Runs test: n_1 residuals positive and n_2 residuals negative

Run test statistic= $\frac{\# \text{ of runs } -\mu}{\sigma}$ with

$$\mu = \frac{2n_1n_2}{n_1 + n_2} + 1, \quad \sigma^2 = \frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}$$

Under H_0 : the residuals are uncorrelated random, this test statistic (approximately) follows a distribution N(0,1).

3. Durbin-Watson Statistic

(a) Assumption: successive errors are correlated, i.e., $\epsilon_t = \rho \epsilon_{t-1} + \omega_t$, $|\rho| \leq 1$, with $\omega_t \stackrel{i.i.d}{\sim} N(0, \sigma_\omega^2)$. This is the first-order autocorrelation.

(b) The Durbin-Watson statistic:

$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$

where e_i is the i-th ordinary least squares (OLS) residual. The statistics d is used for testing the null hypothesis $H_0: \rho = 0$ against an alternative $H_1: \rho > 0$.

i. $d < d_L$, reject H_0

ii. $d > d_U$, do not reject H_0

iii. $d_L < d < d_U$, the test is inconclusive.

(c) An estimate of ρ is given by

$$\hat{\rho} = \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2}, \quad d \approx 2(1 - \hat{\rho})$$

4. Remedial measures for autocorrelation

(a) Addition of predictor variables

(b) Transformation (Cochrane-Orcutt Procedure)

$$y_t^* = \beta_0^* + \beta_1^* x_t^* + \omega_t$$

1

where

$$y_t^* = y_t - \rho y_{t-1}$$

$$x_t^* = x_t - \rho x_{t-1}$$

$$\beta_0^* = \beta_0 (1 - \rho)$$

$$\beta_1^* = \beta_1$$

2 Questions

2.1

For each of the following tests concerning the autocorrelation parameter ρ in the following regression model with first-order autocorrelation:

$$Y_t = \beta_0 + \beta_1 X_{t1} + \beta_2 X_{t2} + \beta_3 X_{t3} + \epsilon_t, \quad \epsilon_t = \rho \epsilon_{t-1} + \omega_t$$

State the appropriate decision rule based on the Durbin-Watson test statistic for a sample of size 38:

- (1) $H_0: \rho = 0, \quad H_a: \rho > 0, \quad \alpha = .01$
- (2) $H_0: \rho = 0, \quad H_a: \rho < 0, \quad \alpha = .05$
- (3) $H_0: \rho = 0, \quad H_a: \rho \neq 0, \quad \alpha = .02$

2.2

A staff analyst for a manufacturer of microcomputer components has compiled monthly data for the past 16 months on the value of industry production of processing unit that use the. e components (X, in million dollars) and the value of the firm's components used (Y, in thousand dollars). The analyst believes that a simple linear regression relation is appropriate but anticipates positive autocorrelation. The data follow:

<i>t</i> :	1	2	3	 14	15	16
X_i :	2.052	2.026	2.002	 2.080	2.102	2.150
		101.5				

1. Fit a simple linear regression model by ordinary least squares and obtain the residuals. Also obtain s.e. $(\hat{\beta}_0)$ and s.e. $(\hat{\beta}_1)$.

Call: lm(formula = Y ~ X, data = df)

Residuals:

Min 1Q Median 3Q Max -1.91277 -0.67136 0.09514 0.53886 1.80259

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.739 7.175 -1.079 0.299
X 53.953 3.520 15.329 3.82e-10 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 0.9543 on 14 degrees of freedom Multiple R-squared: 0.9438, Adjusted R-squared: 0.9398

F-statistic: 235 on 1 and 14 DF, p-value: 3.818e-10

2. Plot the residuals against time and explain whether you find any evidence of positive autocorrelation.

3. Conduct a formal test for positive autocorrelation using $\alpha = .05$. State the alternatives, decision rule, and conclusion. Is the residual analysis in part (b) in accord with the test result?

- 4. The analyst has decided to employ regression model with first-order autocorrelation and use the Cochrane-Orcutt procedure to fit the model.
 - (a) Obtain a point estimate of the autocorrelation parameter. How well does the approximate relationship $d \approx 2(1-\hat{\rho})$ hold here between this point estimate and the Durbin-Watson test statistic?

(b) Use one iteration to obtain the estimates $\hat{\beta}_0^*$ and $\hat{\beta}_1^*$ of the regression coefficients β_0^* and β_1^* in transformed model ((7.4) in lecture slides) and state the estimated regression function. Also obtain s.e.($\hat{\beta}_0^*$) and s.e.($\hat{\beta}_1^*$).

```
Call:
lm(formula = Ystar ~ Xstar)
Residuals:
                    Median
     Min
               10
                                 30
                                          Max
-1.51142 -0.43478 -0.05777 0.41365
                                     1.42613
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                          4.121
                                  -0.26
(Intercept)
              -1.073
                                            0.799
              51.244
                                  12.03 2.04e-08 ***
Xstar
                          4.261
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8135 on 13 degrees of freedom
Multiple R-squared: 0.9175,
                                Adjusted R-squared:
F-statistic: 144.6 on 1 and 13 DF, p-value: 2.036e-08
```

(c)	Test whether any positive autocorrelation remains after the first iteration using $\alpha=.05.$ State the alternatives, decision rule, and conclusion.
(d)	Restate the estimated regression function obtained in part (b) in terms of the original variables. Also obtain s.e. $(\hat{\beta}_0)$ and s.e. $(\hat{\beta}_1)$. Compare the estimated regression coefficients obtained with the Cochrane-Orcutt procedure and their estimated standard deviations with those obtained with ordinary least squares in part 1.
(e)	On the basis of the results in parts $4(c)$ and $4(d)$, does the Cochrane-Orcutt procedure appear to have been effective here?