AV Behavior in ghost_cutin with Reduced Friction

```
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
import scipy.stats
from scipy.stats import norm, binom, poisson
from dtaidistance import dtw
import json
```

Testing Parameters

```
• cloudiness = 100
```

- precipitation = 100
- precipitation_deposits = 100
- sun_altitude_angle = 5
- sun_azimuth_angle = 0
- wetness = 100
- fog_density = 30
- wind_intensity = 70

Reduced Friction Setup

Layered folders, parse into 2d lists of dicts

Examining results

```
In [3]: count = 0
    for txt in txt_lists:
        if txt['_checkpoint']['records'][0]['status'] == 'Completed':
             count += 1
```

```
print("Average complete ratio:", count/100)

Average complete ratio: 1.0

In [4]: count = 0
    for txt in txt_lists:
        count += txt['_checkpoint']['records'][0]['scores']['score_route']
    print("Average score route:", count/100)

Average score route: 100.0
```

Setting up into 2d lists of DataFrames

```
In [5]: df_array = np.empty(100, dtype=object)
        for i in range(len(df_array)):
            df_array[i] = pd.DataFrame()
In [6]: dir path = './Data/Friction Rain'
        # list to store files
        res = []
        # Iterate directory
        run index = 0
        for path in os.listdir(dir_path):
            # check if current path is a file
            if not os.path.isfile(os.path.join(dir path, path)):
                df = pd.DataFrame()
                for file in os.listdir(os.path.join(dir path, path)):
                    file_path = os.path.join(dir_path, os.path.join(path, file))
                    if "_ctl.csv" in file_path:
                         df = pd.read_csv(file_path)
                    elif "_cvip.csv" in file_path:
                        temp = pd.read csv(file path)
                         df = pd.concat([df, temp], axis=1)
                    elif "_traj.csv" in file_path:
                         temp = pd.read_csv(file_path)
                         df = pd.concat([df, temp], axis=1)
                 df_array[run_index] = df
                 run_index += 1
```

In [7]: df_array[0]

Out[7]:		ts	agent_id	throttle	steer	brake	ts	agent_id	cvip	cvip_x	cvi
	0	291905	0	0.900000	-0.021996	0.0	291905	0	500.497261	198.767441	-95.8326
	1	291906	0	0.900000	-0.003608	0.0	291906	0	5.598742	195.567444	-90.8326
	2	291907	0	0.900000	-0.003004	0.0	291907	0	5.595580	195.567444	-90.8326
	3	291908	0	0.900000	-0.001938	0.0	291908	0	5.592744	195.567444	-90.8326
	4	291909	0	0.900000	-0.000677	0.0	291909	0	5.590235	195.567444	-90.8326
	•••	•••	•••		•••		•••	•••			
	787	292692	0	0.464959	-0.004117	0.0	292692	0	50.645825	192.611008	93.7921
	788	292693	0	0.443359	-0.003297	0.0	292693	0	50.757453	192.607147	94.1242
	789	292694	0	0.300473	-0.003195	0.0	292694	0	50.869303	192.603271	94.4565
	790	292695	0	0.388461	-0.002975	0.0	292695	0	50.981369	192.599426	94.7887
	791	292696	0	0.464979	-0.002496	0.0	292696	0	51.093649	192.595566	95.1211

792 rows × 17 columns

Unmodified Friction Setup

Layered folders, parse into 2d lists of dicts

Examining results

Setting up into 2d lists of DataFrames

```
In [11]: df_array_orig = np.empty(100, dtype=object)
         for i in range(len(df_array_orig)):
             df_array_orig[i] = pd.DataFrame()
In [12]: dir_path = './Data/Rain/Simulations Rain PC/campaign_results_new/route_highway_epoch24
         # list to store files
          res = []
         # Iterate directory
          run_index = 0
          for path in os.listdir(dir path):
             # check if current path is a file
             if not os.path.isfile(os.path.join(dir_path, path)):
                 df = pd.DataFrame()
                 for file in os.listdir(os.path.join(dir path, path)):
                     file path = os.path.join(dir path, os.path.join(path, file))
                     if "_ctl.csv" in file_path:
                          df = pd.read_csv(file_path)
                     elif "_cvip.csv" in file_path:
                          temp = pd.read_csv(file_path)
                          df = pd.concat([df, temp], axis=1)
                     elif "_traj.csv" in file_path:
                          temp = pd.read_csv(file_path)
                          df = pd.concat([df, temp], axis=1)
                  df array orig[run index] = df
                  run_index += 1
```

```
In [13]: df array orig[0]
```

Out[13]:		ts	agent_id	throttle	steer	brake	ts	agent_id	cvip	cvip_x	(
	0	2177908	0	0.900000	-0.019394	0.0	2177908	0	500.491189	198.767441	-95.83
	1	2177909	0	0.900000	-0.002667	0.0	2177909	0	5.595580	195.567444	-90.83
	2	2177910	0	0.900000	-0.004700	0.0	2177910	0	5.592365	195.567444	-90.83
	3	2177911	0	0.900000	0.003541	0.0	2177911	0	5.589578	195.567444	-90.83
	4	2177912	0	0.900000	-0.000345	0.0	2177912	0	5.587154	195.567444	-90.83
	•••				•••				•••	•••	
	756	2178664	0	0.417004	-0.001579	0.0	2178664	0	56.217592	192.540756	99.2
	757	2178665	0	0.329465	-0.001539	0.0	2178665	0	56.325781	192.534561	99.5
	758	2178666	0	0.284043	-0.001386	0.0	2178666	0	56.434533	192.527802	99.8
	759	2178667	0	0.269944	-0.001319	0.0	2178667	0	56.543857	192.520477	100.2
	760	2178668	0	0.480651	-0.001058	0.0	2178668	0	56.653767	192.512665	100.54

761 rows × 17 columns

Comparison

Since no accident, check cvip

```
In [14]: plt.figure(figsize=(10,6))
         df_avg_orig_cvip = df_array_orig[0]['cvip']
         count = 0
         for i in range(1, len(df_array_orig)):
             if(df_array_orig[i]['cvip'].dtypes == 'object'):
                 print(i)
             else:
                 if not df_array_orig[i]['cvip'].isnull().values.any():
                      df_avg_orig_cvip+=df_array_orig[i]['cvip']
                      count+=1
          df_avg_orig_cvip.interpolate().dropna()/count
         df_avg_cvip = df_array[0]['cvip']
         count = 0
         for i in range(1, len(df_array)):
             if(df_array[i]['cvip'].dtypes == 'object'):
                 print(i)
             else:
                 if not df_array[i]['cvip'].isnull().values.any():
                     df_avg_cvip+=df_array[i]['cvip']
                      count+=1
         df_avg_cvip.interpolate().dropna()/count
```

```
df_avg_orig_cvip.iloc[100:].plot(title="cvip")
df_avg_cvip.iloc[100:].plot()
plt.legend(["cvip with original friction", "cvip with reduced friction"])
```

Out[14]: <matplotlib.legend.Legend at 0x14aff790fa0>


```
In [16]: fig = plt.figure(figsize=(10, 6))

df_avg_orig.plot.density()

df_avg.plot.density()

plt.xlabel("steer")

plt.title('Density distribution of steer')

plt.legend(["Steer with original friction", "Steer with reduced friction"])

plt.show()
```


0.00

0.05

-0.05

steer

-0.10

140

120 -

100 -

80

60

40 -

20 -

0

-0.15

Density


```
In [18]: fig = plt.figure(figsize=(10, 6))

df_avg_orig.plot.density()

df_avg.plot.density()

plt.xlabel("break")

plt.title('Density distribution of break')

plt.legend(["break with original friction", "break with reduced friction"])

plt.show()
```

Density distribution of break


```
In [20]: fig = plt.figure(figsize=(10, 6))

df_avg_orig.plot.density()

df_avg.plot.density()

plt.xlabel("throttle")

plt.title('Density distribution of throttle')

plt.legend(["throttle with original friction", "throttle with reduced friction"])

plt.show()
```

Density distribution of throttle


```
In [22]: fig = plt.figure(figsize=(10, 6))

df_avg_orig.plot.density()

df_avg.plot.density()

plt.xlabel("velocity")

plt.title('Density distribution of velocity')

plt.legend(["velocity with original friction", "velocity with reduced friction"])

plt.show()
```


Dynamic time warping (DTW) for cvip

measuring similarity between two temporal sequences

```
In [23]: distance = dtw.distance(df_avg_orig_cvip, df_avg_cvip)
In [24]: distance
Out[24]:
```

KS Test for cvip

```
In [25]: import scipy as sp
In [26]: sp.stats.ks_2samp(df_avg_orig_cvip, df_avg_cvip)
Out[26]: KstestResult(statistic=0.12902845803634239, pvalue=4.2177381979173086e-06, statistic_location=741.6077406786436, statistic_sign=-1)
```

You reject the null hypothesis that the two samples were drawn from the same distribution if the p-value is less than your significance level. **pvalue=4.2177381979173086e-06**