PHÂN TÍCH DỮ LIỆU KINH DOANH

LAB02. THỐNG KÊ SUY DIỄN

(Statistical inference)

CÔNG CỤ: R, PYTHON, EXCEL

Trình bày: Nguyễn Minh Nhựt

SĐT: 0939013911 - 09851734105

- 2.1. Kiểm định ANOVA Kiểm định Levene
- · Tiền xử lý kiểm định ANOVA
- Điều kiện để kiểm định ANOVA được hay không?
- → Cần một phép kiểm định trước là kiểm định ANOVA
- Phát biểu bài toán
- Giả thuyết: Phương sai giữa các nhóm bằng nhau
- Đối thuyết: Phương sai giữa các nhóm không bằng nhau
- → Nếu chấp nhận giả thuyết (Tức phương sai giữa các nhóm bằng nhau) → Có thể kiểm định ANOVA

$$W = \frac{(n-k)}{(k-1)} \frac{\sum_{i=1}^{k} n_i (\overline{Z}_{i.} - \overline{Z}_{..})^2}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Z_{ij} - \overline{Z}_{i.})^2}$$

So sánh

$$W > F_{1-\alpha}(k-1;n-k)$$

Bác bỏ giả thuyết H0

- 2.1. Kiểm định ANOVA Kiểm định Levene
- · Tiền xử lý kiểm định ANOVA
- Điều kiện để kiểm định ANOVA được hay không?
- → Cần một phép kiểm định trước là kiểm định ANOVA
- Phát biểu bài toán

$$W = \frac{(n-k)}{(k-1)} \frac{\sum_{i=1}^{k} n_i (\overline{Z}_{i.} - \overline{Z}_{..})^2}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Z_{ij} - \overline{Z}_{i.})^2}$$

$$\begin{split} &Z_{ij} \!=\! |Y_{ij} \!-\! median Y_i| \\ &\overline{Z}_{..} \!=\! _{\mathsf{Mean of all}} Z_{ij} \,_{\mathsf{data}} \\ &\overline{Z}_{i.} \!=\! _{\mathsf{Mean}} Z_{ij} \,_{\mathsf{group}} \,_i \\ &N \!=\! \mathsf{total number of samples} \\ &N_i \!=\! \mathsf{number of samples in group} \,_i \\ &k \!=\! \mathsf{number of groups} \end{split}$$

2.2. Kiểm định ANOVA

- Kiểm định ANOVA hay tên gọi khác là *phân tích phương sai* (*Analysis of Variance*).
- Là một *kỹ thuật thống kê* tham số được sử dụng để phân tích sự khác nhau giữa *giá trị trung bình* của các *biến phụ thuộc* với nhau (Ronald Fisher, 1918).
- Kiếm định ANOVA gồm 3 phương pháp: ANOVA
 một chiều (One-way ANOVA), ANOVA hai chiều
 (Two-way ANOVA) và ANOVA đa biến (MANOVA)
- → Kiểm định ANOVA so sánh các **giá trị trung bình** (tìm xem yếu tố này có ảnh hưởng yếu tố khác hay không).

2.2. Kiểm định ANOVA

· Bài toán kiểm định ANOVA

(Giả thuyết)
$$H_0: \mu_1 = \mu_2 = ... = \mu_n$$

(Đối thuyết) H_1 : ít nhất 1 cái khác nhau

N1	N2	N3
x 1	y 1	z1
x2	y2	z2
х3	у3	z3
x4	y4	z4
x6	у5	z5

· Phát biểu bài toán

Có thể cho rằng trung bình giữa các nhóm N1, N2 và N3 bằng nhau được hay không.

Các giá trị lưu ý:

- k: số nhóm khảo sát
- n: Là số lượng tổng thế
- ni: Là số lượng phần tử thứ i

2.2. Kiểm định ANOVA

· Tính trung bình từng nhóm

N1	N2	N3
x 1	y1	z1
x2	y2	z 2
x3	y3	z3
x4	y4	z4
х6	y5	z5
$\overline{N_1}$	$\overline{N_2}$	$\overline{N_3}$

• Trung bình mỗi nhóm:

$$\overline{N_i} = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$$

• Trung bình tổng thể:

$$\overline{N} = \frac{1}{n} \sum_{i=1}^{k} \overline{N_i} . n_i$$

• Tính các đại lượng biến thiên

Biến thiên nội bộ trong nhóm i

$$\left| SS_i = \sum_{i=1}^{n_i} \left(x_{ij} - \overline{N_i} \right)^2 \right|$$

Biến thiên trong nội bộ các nhóm

$$SSW = SS_1 + SS_2 + \dots + SS_K$$

2.2. Kiểm định ANOVA

• Biến thiên trong nội bộ các nhóm

$$SSW = SS_1 + SS_2 + \dots + SS_K$$

SSW (Within groups sum of square): là những biến thiên không do yếu tố kiểm soát (yếu tố dùng để phân tích nhóm) gây ra.

· Tổng bình phương độ lệch giữa các nhóm SSG

$$SSG = \sum_{i=1}^{n_i} n_i \left(\overline{N_i} - \overline{N} \right)^2$$

SSG (Between groups sum of square): là những biến thiên khác nhau giữa các nhóm tức là biến thiên do yếu tố nghiên cứu gây ra.

2.2. Kiếm định ANOVA

Tổng biến thiên của 1 quan sát bất kỳ so với trung bình

$$SST = SSG + SSW$$

SST (Total sum of square): là tổng bình phương các độ lệch giữa từng quan sát với trung bình của tất cả quan sát. Biến thiên tổng = Biến thiên nghiên cứu + Biên thiên do các yếu tố khác.

Nhân xét:

- Nếu phần biến thiên do các yếu tố tạo ra SSG > biến thiên do các yếu tố khác SSW. Vậy yếu tố đang nghiên cứu thật sự ảnh hưởng đến yếu tố kết quả.
- → Tăng khả năng bác bỏ H0.

2.2. Kiểm định ANOVA

• Tính các phương sai Phương sai do các yếu tố khác tạo ra

$$MSW = \frac{SSW}{n-k}$$

Phương sai do yếu tố nghiên cứu tạo ra

$$MSG = \frac{SSG}{k-1}$$

· Kiểm định phương sai

$$F = \frac{MSG}{MSW}$$

$$N\acute{e}u MSG l\acute{o}n, MSW nhỏ \rightarrow F l\acute{o}n$$

$$So sánh F > F_{\alpha}(k-1;n-k)$$

Bác bỏ giả thuyết H0

2.2. Kiểm định ANOVA

• Bảng ANOVA một yếu tố

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares (MS)	F
Within	$SSW = \sum_{j=1}^{k} \sum_{j=1}^{l} (X - \overline{X}_j)^2$	$df_w = k-1$	$MSW = \frac{SSW}{df_w}$	$F = \frac{\text{MSB}}{\text{MSW}}$
Between	$SSB = \sum_{j=1}^{k} (\overline{X}_j - \overline{X})^2$	$df_b = \mathbf{n} - \mathbf{k}$	$MSB = \frac{SSB}{df_b}$	
Total	$SST = \sum_{j=1}^{n} (\overline{X}_{j} - \overline{X})^{2}$	$df_t = n - 1$		

2.2. Kiểm định ANOVA

Ví dụ 1: Nghiên cứu về thu nhập của các hộ gia đình ở ngoại thành, người ta chia ngoại thành 7 địa bàn dân cư khác nhau. Chọn ngẫu nhiên các hộ gia đình trong từng địa bàn và ghi nhận địa bàn. Địa bàn dân cư thứ 3 có 13 hộ được chọn, các địa bàn còn lại đều chọn 19 bộ. Kết quả ANOVA như sau:

Source of Variation	SS	df	MS	F
Between Groups	187,2649			
Within Groups				
Total	1269,6891			

Ở mức ý nghĩa 1% có thể kết luận rằng thu nhập trung bình của các hộ gia đình ở các địa bàn dân cư khác nhau là như nhau được hay không?

- 2.3. Kiểm định ANOVA Kiểm định Turkey
- · Đặt vấn đề về kiểm định Turkey
- Kiếm định Turkey: Trong trường hợp bác bỏ giả thuyết H_0 ta muốn kết luận về sự hơn kém giữa các trung bình thì ta cần phân tích sâu hơn.
- → Được gọi là **phân tích ANOVA sâu** (Kiểm định Turkey)
- · Cách giải quyết bài toán kiếm định Turkey

Với cùng mức ý nghĩa α, ta so sánh từng cặp trung bình để phát hiện các nhóm khác nhau.

Ví dụ 2: Trường hợp có 3 nhóm trung bình sánh

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases} \begin{cases} H_0: \mu_1 = \mu_3 \\ H_1: \mu_1 \neq \mu_3 \end{cases} \begin{cases} H_0: \mu_2 = \mu_3 \\ H_1: \mu_2 \neq \mu_3 \end{cases}$$

- 2.3. Kiểm định ANOVA Kiểm định Turkey
- · Các bước kiểm định Turkey

Bước 1: Tính khoảng biến thiên trung bình giữa hai nhóm:

$$D_{ij} = \left| \overline{N_i} - \overline{N_j} \right|$$

Bước 2: Tính chỉ số Turkey

$$T = q_{\alpha}(k, n - k) \sqrt{\frac{MSW}{n_{\min}}}$$

Bước 3: Bác bỏ H_0 nếu $D_{ij} > T$

2.4. Thực hành kiểm định ANOVA - Insurance Survey

Công cụ Excel Tập dữ liệu Insurance Survey

nsurance Survey						
Age	Gender	Education	Marital Status	Years Employed	Satisfaction*	Premium/Deductible*
36	F	Some college	Divorced	4	4	N
55	F	Some college	Divorced	2	1	N
61	M	Graduate degree	Widowed	26	3	N
65	F	Some college	Married	9	4	N
53	F	Graduate degree	Married	6	4	N
50	F	Graduate degree	Married	10	5	N
28	F	College graduate	Married	4	5	N
62	F	College graduate	Divorced	9	3	N
48	M	Graduate degree	Married	6	5	N
31	M	Graduate degree	Married	1	5	N
57	F	College graduate	Married	4	5	N
44	M	College graduate	Married	2	3	N
38	M	Some college	Married	3	2	N
27	M	Some college	Married	2	3	N
56	M	Graduate degree	Married	4	4	Y
43	F	College graduate	Married	5	3	Y
45	M	College graduate	Married	15	3	Y
42	F	College graduate	Married	12	3	Y
29	M	Graduate degree	Single	10	5	N
28	F	Some college	Married	3	4	Y
36	M	Some college	Divorced	15	4	Y
49	F	Graduate degree	Married	2	5	N
46	F	College graduate	Divorced	20	4	N
52	F	College graduate	Married	18	2	N
Measured from 1-5 *Would you be willir						

2.4. Thực hành kiểm định ANOVA - Insurance Survey

Công cụ Excel

Chia nhóm về độ Satisfaction* của Education

College graduate	Graduate degree	Some college
5	3	4
3	4	1
5	5	4
3	5	2
3	5	3
3	4	4
3	5	4
4	5	
2		

2.4. Thực hành kiểm định ANOVA - Insurance Survey

- Ngôn Ngữ R
 - 1. Import dữ liệu Insurance Survey dạng CSV
 - 2. Cài thêm **Package car** để kiểm Levene Test
 - 3. Thực hiện kiêm định Levene

Hàm Levene Test

> leveneTest(value,group,center=mean)

2.4. Thực hành kiểm định ANOVA - Insurance Survey

• Ngôn Ngữ R

Hàm Levene Test

> leveneTest(value, group, center=mean)

Kết quả

```
Levene's Test for Homogeneity of Variance (center = mean)

Df F value Pr(>F)

group 2 0.9434 0.4052

21
```

Kết luận

- Vì Pr(>F) > 0.05 nên ta $ch \hat{a} p nh \hat{a} n$ giả thuyết H_0
- Hoặc có thể giá trị F-Value để kiểm định

2.4. Thực hành kiếm định ANOVA - Insurance Survey

- Ngôn Ngữ R
 - 1. Import dữ liệu Insurance Survey dạng CSV
 - 2. Cài thêm **Package car** đề kiểm Levene Test
 - 3. Thực hiện kiêm định Levene
 - 4. Kiểm định ANOVA

Hàm kiểm định ANOVA

> aov(value~group,data=data_source)

Hàm tính F-Critical

> qf(p=.05,k-1,n-k, lower.tail=FALSE)

2.4. Thực hành kiểm định ANOVA - Insurance Survey

Ngôn Ngữ R

Hàm kiểm định ANOVA

> aov(value~group,data=data_source)

Kết quả

Kết luận

- Vì Pr(>F) < 0.05 nên ta $\mathbf{B}\acute{a}c\ b\acute{o}$ giả thuyết H_0
- Hoặc có thể giá trị **F-Value** để kiểm định

2.4. Thực hành kiểm định ANOVA - Insurance Survey

Ngôn Ngữ R

1. Import dữ liệu Insurance Survey dạng CSV

2. Cài thêm **Package car** để kiểm Levene Test

- 3. Thực hiện kiểm định Levene
- 4. Kiểm định ANOVA
- Vì ta bác bỏ giả thuyết H₀ giữa các nhóm. Nên ta sẽ lấy lần lượt 2 nhóm ra so sánh. → Sử dụng kiểm định Turkey.

2.4. Thực hành kiểm định ANOVA - Insurance Survey

Ngôn Ngữ R

Hàm kiểm định ANOVA

> TukeyHSD(Result of ANOVA)

Kết quả

```
> TukeyHSD(rs)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Satisfaction. ~ Education, data = data)

$Education

diff lwr upr p adj

Graduate degree-College graduate 1.0555556 -0.1715336 2.28264475 0.1003252

Some college-College graduate -0.3015873 -1.5742334 0.97105876 0.8230559

Some college-Graduate degree -1.3571429 -2.6641246 -0.05016107 0.0409193
```

Đưa ra nhận xét?

2.4. Thực hành kiểm định ANOVA - Insurance Survey

- Ngôn Ngữ Python
 - 1. Import dữ liệu Insurance Survey dạng CSV
 - 2. Chia nhóm dữ liệu thành hàm chia nhóm

Hàm chia nhóm

```
pythongroup = {}
def chiaGroup(dataframe, group):
    listGroup = dataframe[group].unique().tolist()
    i=1;
    for group_filter in listGroup:
        pythongroup[i] = 
    dataframe[dataframe[group]==group_filter]
        i = i+1
    return i-1
```

2.4. Thực hành kiếm định ANOVA - Insurance Survey

- Ngôn Ngữ Python
 - 1. Import dữ liệu Insurance Survey dạng CSV
 - 2. Chia nhóm dữ liệu thành hàm chia nhóm
 - 3. Sử dụng hàm Levene của Python để kiểm định Levene

Kiếm định Levene

```
stat, p = levene(group1, group2, group3,...,
center = 'mean')
print(stat, p)
//stat: Giá trị kiểm định Levene W
//p: Giá trị p-value
Nhận xét:
```

- p-value > 0.05 chấp nhận giả thuyết H0 (Có thể kiểm định ANOVA)
- Ngược lại không chấp nhận không thể kiểm định ANOVA

2.4. Thực hành kiểm định ANOVA - Insurance Survey

- Ngôn Ngữ Python
 - 1. Import dữ liệu Insurance Survey dạng CSV
 - 2. Chia nhóm dữ liệu thành hàm chia nhóm
 - 3. Sử dụng hàm Levene của Python để kiểm định Levene
 - 4. Kiểm định ANOVA bằng Python thông qua hàm f oneway

```
Kiểm định ANOVA
```

```
import scipy.stats as stats
fvalue, pvalue = stats.f_oneway(group1, group2,
group3,...)
print(fvalue, pvalue)
```

2.4. Thực hành kiểm định ANOVA - Insurance Survey

- Ngôn Ngữ Python
 - 1. Import dữ liệu Insurance Survey dạng CSV
 - 2. Chia nhóm dữ liệu thành hàm chia nhóm
 - 3. Sử dụng hàm Levene của Python để kiểm định Levene
 - 4. Kiểm định ANOVA bằng Python thông qua hàm f oneway
 - 5. Kiếm định Turkey bằng Python thông qua pairwise_tukeyhsd

Kiểm định ANOVA

2.4. Thực hành kiểm định ANOVA - Insurance Survey

Ngôn Ngữ Python

Cách làm khác

```
[32] li_group = [d["Satisfaction* "] for _, d in df.groupby("Education")]
    stat levene, p_value levene = stats.levene(*li_group, center="mean")
[41] print(f"stats levene = {stat_levene}")
     print(f"p_value levene = {p_value levene}")
     stats levene = 0.9433580072525427
     p_value levene = 0.40520616699352924
[42] fvalue_anova, pvalue_anova = stats.f_oneway(*li_group)
     print(fvalue anova, pvalue anova)
     3.9246517319277117 0.03563539756488997
```

2.4. Thực hành kiểm định ANOVA - Insurance Survey

Ngôn Ngữ Python

Cách làm khác

2.5. Kiểm định Chi-quare

- Đặt vấn đề bài toán Chi-quare
 - 1. Kiếm định sự độc lập/phụ thuộc của hai biến dạng phân loại.
 - 2. Phát biểu bài toán

 H_0 : Hai biến phân loại là độc lập

 H_1 : Hai biến phân loại là phụ thuộc

$$\chi^2 = \sum \frac{\left(f_0 - f_e\right)^2}{f_e}$$

$$f_e$$
 của dòng i cột j = $\frac{(tổng i)*(tổng j)}{tổng quan sát}$

2.6. Thực hành kiểm định Chi-quare - Energy Drink Survey

- Ngôn ngữ R
 - 1. Import dữ liệu **Energy Drink Survey** dạng CSV
 - 2. Cài thêm Package MASS để kiểm Chiquare
 - 3. Thực hiện kiếm định Chi-quare

Thống kê bảng nhóm cần kiếm định chi-quare

> tb = table(group1 ,group2)

Tinh Expect, Chiquare?

2.6. Thực hành kiểm định Chi-quare - Energy Drink Survey

- Ngôn ngữ R
 - 1. Import dữ liệu **Energy Drink Survey** dạng CSV
 - 2. Cài thêm Package MASS để kiểm Chiquare
 - 3. Thực hiện kiếm định Chi-quare

Thống kê bảng nhóm cần kiểm định chi-quare

> chisq.test(tb)

```
> chisq.test(tb)

Pearson's Chi-squared test

data: tb
X-squared = 6.4924, df = 2, p-value = 0.03892

> |
```

Nhận xét kết quả?

- 2.6. Thực hành kiểm định Chi-quare Energy Drink Survey
 - Ngôn ngữ Python
 - 1. Import dữ liệu Energy Drink Survey dạng CSV
 - 2. Thực hiện kiếm định Chi-quare

```
Thống kê bảng nhóm cần kiểm định chi-quare > chisqt=pd.crosstab(group1, group2, margins = True) print(chisqt)
```

Ví dụ ta được bảng sau đây:

```
In [118]: chisqt = pd.crosstab(df_chiq.Gender, df_chiq['Brand Preference'], margins=True)
print(chisqt)

Brand Preference Brand 1 Brand 2 Brand 3 All
Gender
Female 9 6 22 37
Male 25 17 21 63
All 34 23 43 100
```

2.6. Thực hành kiểm định Chi-quare - Energy Drink Survey

- Ngôn ngữ Python
 - 1. Import dữ liệu Energy Drink Survey dạng CSV
 - 2. Thực hiện kiểm định Chi-quare
 - 3. Tiến hành kiểm định Chi-quare bằng

Thống kê bảng nhóm cần kiểm định chi-quare

```
>c, p, dof, expected =
stats.chi2_contingency(chisqt)
print(p)
```

Giải thích các giá trị:

- c: The test statistic
- p: The p-value of the test
- dof: Degrees of freedom
- **expected:** The expected frequencies, based on the marginal sums of the table