Санкт-Петербургский государственный электротехнический университет имени В. И. Ленина "ЛЭТИ"

билеты

КОМБИНАТОРИКА И ТЕОРИЯ ГРАФОВ

 Студент:
 Придчин В.Е.

 Группа:
 2308

 Лектор:
 Зяблицева Л.

IATEX

Санкт-Петербург 2024 1 Основные определения теории графов. Смежность и инцидентность вершин и ребер графа. Степени вершин в графе и орграфе. Теоремы о сумме степеней вершин в графе и орграфе. Матрицы смежности и инцидентности. Найти матрицы смежности и инцидентности указанного графа.

V – множество вершин.

E – множество пар вида $(u, v) : u, v \in V$ (множество ребер).

Опр: Графом – называют совокупность 2-ух множеств непустого множества ${\bf E}$

$$E = \{(u,v): u,v \in V\}, \ G(V,E)$$
 — обозначение графа

Опр: Петля – пара вида (v, v) в множестве E.

Опр: Кратные ребра – одинаковые пары в множестве E. Количество кратных ребер - кратность ребра.

Существуют следующие виды графов:

- 1. Псевдограф в графе могут быть и кратные ребра, и петли.
- 2. Мультиграф в графе есть кратные ребра, но нет петель.
- 3. Простой граф отсутствуют и $\kappa pamныe\ peбpa$ и nem nu.

Опр: Ориентированный граф (орграф) – граф с ориентированными ребрами.

Опр: Если e=(u,v) – ребро неориентированного графа, то u,v - концы ребра.

Опр: Если e=(u,v) – ребро (дуга) ориентированного графа, то u - начало ребра, v - конец ребра.

Опр: a, b смежные $\Leftrightarrow e = (u, v)$.

Опр: u, v инцидентны ребру $e \Leftrightarrow e = (u, v)$.

Опр: Степенью вершины v неориентированного графа называется количество ребер инцидентных данной вершине, $\delta(v)$ (петлю считают два раза).

Теорема: Сумма степеней вершин неориентированного графа равна удвоенному числу ребер

$$\sum_{u \in V} \delta(v) = 2r$$
, где r - число ребер

Док-во: Теорема справедлива, так как вклад каждого ребра равен двум.

Опр: Если степень вершины равна нулю, то вершина *изолированная*, $\delta(v) = 0$.

Опр: Если степень вершины равна единице, то вершина *висячая*, $\delta(v)=1$

Опр: Полустепенью исхода(захода) вершина v ориентированного графа называют количество ребер исходящих(заходящих) в данную вершину. $\delta^-(v)$ – полустепень исхода

 $\delta^+(v)$ – полустепень захода

Теорема: Для орграфа справедливо равенство

$$\sum_{u\in V}\delta^-(v)=\sum_{u\in V}\delta^+(v)=r$$
, где r - число ребер

Опр: Матрицей смежности графа(орграфа) называют квадратную матрицу размерностью n, где n=|v| (мощность множества вершин), в котором $a_{ij}=k$, где k - число ребер (v_i,v_j)

Опр: Пусть G(V, E) – неориентированный граф. Матрицей инцидентности неориентированного графа называется матрица B размером n*r, |v|=n, |E|=r, где каждый элемент матрицы:

$$b_{ij} = \left\{ egin{array}{ll} 1, \ {
m ec}$$
ли v_i инцидентно ребру e_j 0, иначе

Такая матрица будет симметричной.

Опр: Пусть G(V,E) — ориентированный граф. Матрицей инцидентности ориентированного графа называется матрица B размером $n*r, \ |v| = n, |E| = r,$ где каждый элемент матрицы:

Если есть петля, то на соответствующее место ставят любое число.

Поиск матрицы смежности A и инцидентности B для неориентированного графа:

$$A = \begin{array}{cccc} a & b & c & d \\ a & 0 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ c & 1 & 2 & 0 & 1 \\ d & 0 & 0 & 1 & 1 \end{array}$$

$$B = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ a & 1 & 1 & 0 & 0 & 0 & 0 \\ b & 1 & 0 & 1 & 1 & 0 & 0 \\ c & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Поиск матрицы смежности A и инцидентности B для ориентированного графа:

2 Полные и двудольные графы. Число ребер в полном графе с n вершинами и в полном двудольном графе (вывод формул). 3 Изоморфизм и гомеоморфизм графов. Примеры изоморфных и гомеоморфных графов. Способы проверки изоморфизма графов. Инварианты графа. Дополнение графа, проверка изоморфизма графов с помощью дополнений. Выяснить, являются ли графы G1 и G2 изоморфными, гомеоморфными.

4 Маршруты, цепи, циклы в графе. Метрические характеристики графа. Найти эксцентриситет вершины указанного графа, радиус, диаметр графа, центральные и периферийные вершины указанного графа.

5 Алгоритмы обхода графа в глубину и ширину.