01. Portfolio Volatility

August 1, 2021

```
[1]: import pandas as pd
     import numpy as np
[2]: close_price_df = pd.read_csv("./sample_stock_close_price.csv", index_col=0,__
      →parse_dates=True)
     close_price_df.columns = ['Samsung Electronics', 'SK Hynix', 'KAKAO', 'NAVER', __
      _{\hookrightarrow} 'LG Chemistry', 'Samsung SDI', 'HyunDai', 'Celltrion', 'KODEX Inverse']
     close_price_df.tail(3)
[2]:
                 Samsung Electronics
                                       SK Hynix
                                                     KAKAO
                                                               NAVER LG Chemistry \
     date
     2021-07-28
                                       114000.0
                                                 148000.0
                                                                           835000.0
                              79200.0
                                                            442000.0
     2021-07-29
                              79000.0
                                       114000.0
                                                 148500.0
                                                            439500.0
                                                                           835000.0
     2021-07-30
                              78500.0 112500.0 147000.0
                                                            433500.0
                                                                           842000.0
                 Samsung SDI
                                HyunDai Celltrion KODEX Inverse
     date
     2021-07-28
                    759000.0
                               222500.0
                                          261500.0
                                                            3765.0
     2021-07-29
                    765000.0
                              222000.0
                                          261500.0
                                                            3755.0
     2021-07-30
                    741000.0 218000.0
                                          253500.0
                                                            3805.0
[3]: close_price_df['cash'] = 1
     close_price_df.tail(3)
[3]:
                                                               NAVER LG Chemistry \
                 Samsung Electronics
                                       SK Hynix
                                                    KAKAO
     date
     2021-07-28
                                       114000.0
                                                 148000.0
                                                            442000.0
                              79200.0
                                                                           835000.0
     2021-07-29
                              79000.0
                                       114000.0
                                                 148500.0
                                                            439500.0
                                                                           835000.0
     2021-07-30
                              78500.0
                                       112500.0 147000.0
                                                            433500.0
                                                                           842000.0
                 Samsung SDI
                                HyunDai
                                         Celltrion KODEX Inverse
     date
     2021-07-28
                    759000.0
                               222500.0
                                          261500.0
                                                            3765.0
                                                                       1
                                          261500.0
     2021-07-29
                    765000.0
                               222000.0
                                                            3755.0
                                                                       1
     2021-07-30
                    741000.0 218000.0
                                          253500.0
                                                            3805.0
                                                                       1
[4]: close_price_df.pct_change().std()
```

[4]: Samsung Electronics 0.017170 SK Hynix 0.024069 KAKAO 0.023309 NAVER 0.022415 LG Chemistry 0.024015 Samsung SDI 0.024331 HyunDai 0.021317 Celltrion 0.030325 KODEX Inverse 0.011115 cash 0.000000 dtype: float64

0.1 Portfolio Variance

$$\sigma_p^2 = \sum_{i,j} w_i w_j Cov(r_i, r_j)$$

$$= W^T \cdot K \cdot W$$
(1)

[5]: cov_matrix = close_price_df.pct_change().cov()
cov_matrix

[5]:		Samsung E	lectronics	SK Hynix	KAKAO	NAVER	\
	Samsung Electronics		0.000295	0.000210	0.000060	0.000082	
	SK Hynix		0.000210	0.000579	0.000100	0.000088	
	KAKAO		0.000060	0.000100	0.000543	0.000167	
	NAVER		0.000082	0.000088	0.000167	0.000502	
	LG Chemistry		0.000133	0.000170	0.000103	0.000081	
	Samsung SDI		0.000151	0.000196	0.000117	0.000096	
	HyunDai		0.000113	0.000131	0.000065	0.000069	
	Celltrion		0.000069	0.000111	0.000114	0.000090	
	KODEX Inverse		-0.000140	-0.000153	-0.000076	-0.000084	
	cash		0.000000	0.000000	0.000000	0.000000	

	LG Chemistry	Samsung SDI	HyunDai	Celltrion	
Samsung Electronics	0.000133	0.000151	0.000113	0.000069	
SK Hynix	0.000170	0.000196	0.000131	0.000111	
KAKAO	0.000103	0.000117	0.000065	0.000114	
NAVER	0.000081	0.000096	0.000069	0.000090	
LG Chemistry	0.000577	0.000290	0.000167	0.000116	
Samsung SDI	0.000290	0.000592	0.000126	0.000116	
HyunDai	0.000167	0.000126	0.000454	0.000082	
Celltrion	0.000116	0.000116	0.000082	0.000920	
KODEX Inverse	-0.000157	-0.000140	-0.000127	-0.000091	
cash	0.000000	0.00000	0.000000	0.000000	

KODEX Inverse cash Samsung Electronics -0.000140 0.0

```
0.0
SK Hynix
                          -0.000153
KAKAO
                          -0.000076
                                      0.0
                                      0.0
NAVER
                          -0.000084
                                      0.0
LG Chemistry
                          -0.000157
Samsung SDI
                         -0.000140
                                      0.0
HyunDai
                                      0.0
                          -0.000127
Celltrion
                          -0.000091
                                      0.0
KODEX Inverse
                                      0.0
                          0.000124
cash
                           0.000000
                                      0.0
```

0.1.1 Portfolio 1 Volatility

[7]: 0.00011289727684812392

```
[8]: portfolio_1_std = np.sqrt(portfolio_1_variance)
    portfolio_1_std
```

[8]: 0.010625313023536009

0.1.2 Portfolio 2 Volatility

```
[9]: portfolio_2_weights = np.array([0.1, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.0]) portfolio_2_weights, portfolio_2_weights.sum()
```

```
[9]: (array([0.1, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0. , 0. ]), 1.0)
```

[10]: 0.0001853926213836097

```
[11]: portfolio_2_std = np.sqrt(portfolio_2_variance)
    portfolio_2_std
```

[11]: 0.013615895908224684

0.1.3 Portfolio Volatility Compare

portfolio 1 Volatility: 0.0106 portfolio 2 Volatility: 0.0136 portfolio Volatility delta: 0.002991

0.1.4 Trying to Get Portfolio Volatility Delta using Portfolio Weights Delta

```
[13]: portfolio_weights_delata = portfolio_2_weights - portfolio_1_weights portfolio_weights_delata
```

```
[14]: portfolio_variance_delta = portfolio_weights_delata.dot(cov_matrix).

dot(portfolio_weights_delata)
```

```
[15]: np.sqrt(portfolio_variance_delta)
```

[15]: 0.0046617005562492346

-> It's not an appropriate methodology. In my opinion, it seems impossible to obtain with just the delta of portfolio weights.