Analysis of Algorithms

Binomial and Fibonacci Heaps

If more than one question appears correct, choose the more specific answer, unless otherwise instructed.

Assume min-heaps unless otherwise directed.

Rinon	nial	heaps
DIHOH	шаі	neaus

1.	After 1 insertion into an empty binomial heap, how many su	abheaps are in the root list?
	(A) 3	(C) 2
	(B) 1	(D) 0
2.	After 2 consecutive insertions into an empty binomial heap,	how many subheaps are in the root list?
	(A) 1	(C) 3
	(B) 0	(D) 2
3.	After 7 consecutive insertions into an empty binomial heap,	how many subheaps are in the root list?
	(A) 3	(C) 1
	(B) 2	(D) 0
4.	After 8 consecutive insertions into an empty binomial heap,	how many subheaps are in the root list?
	(A) 3	(C) 0
	(B) 2	(D) 1
5.	Continuing with the previous question, how many subheaps	are in the root list if we perform an extractMin?
	(A) 2	(C) 3
	(B) 0	(D) 1
6.	How many elements are in a binomial heap with only a degr	ree 0 subheap?
	(A) 1	(C) 0
	(B) 2	(D) 3
7.	How many elements are in a binomial heap with only a degr	ree 2 and a degree 3 subheap?
	(A) 0	(C) 4
	(B) 8	(D) 12
8.	How many elements are in a binomial heap with only a degr	ree 2 and a degree 5 subheap?
	(A) 0	(C) 54
	(B) 18	(D) 36
9.	What is the binary representation of 29?	
	(A) 0001 1101	(C) 0010 0010
	(B) 0010 1001	(D) 0000 0000
10.	How many subheaps are in a binomial heap with 29 element	s?
	(A) 2	(D) 4
	(B) 3	(E) 1
	(C) 0	

11.	. What is the binary representation of	of 8?
	(A) 0010	(D) 1000
	(B) 0100	(E) 0001
	(C) 0000	(_) ***-
12.	. What is the degree of the subheap	in a binomial heap with 8 elements?
	(A) 2	(C) 1
	(B) 3	(D) 0
13.	. ${f T}$ or ${f F}$: You can delete an element	from a binomial heap without consolidating.
14.	. ${f T}$ or ${f F}$: You can decrease a key in	a binomial heap without consolidating.
15.	. ${\bf T}$ or ${\bf F}:$ Sometimes, a decrease key	operation in a binomial heap can cause consolidation.
16.	. After inserting a 0 and a 1 into an	empty binomial min-heap, which element(s) will be in the root list
	(A) 1	(C) 0
	(B) None	(D) Both of them
17.	. Continuing with the previous quest	cion, inserting a 2 yields which values in the root list?
	(A) 2	(E) 0 and 1
	(B) 0	(F) $0, 1, \text{ and } 2$
	(C) None	(G) 1
	(D) 1 and 2	(H) 0 and 2
18.	. Continuing with the previous quest	cion, inserting a 3 yields which values in the root list?
	(A) 0	(E) 2
	(B) None	(F) 1 and 2
	(C) 3	(G) 0 and 3
	(D) $0, 1, 2, \text{ and } 3$	(H) 1
19.	. Continuing with the previous quest	tion, performing an extractMin yields which values in the root list?
	(A) 3	(E) 2
	(B) 1	(F) None
	(C) 2 and 3	(G) 1 and 2
	(D) 1, 2, and 3	(H) 1 and 3
20.	. After 7 consecutive inserts into an	empty binomial heap, how many subheaps are in the root list?
	(A) 7	(E) 5
	(B) 4	(F) 6
	(C) 1	(G) 2
	(D) 8	(H) 3
21.	. After 9 insertions into an empty bin	nomial heap, how many subheaps are there?
	(A) 6	(E) 4
	(B) 5	(F) 8
	(C) 3	(G) 2
	(D) 9	(H) 7

22.	\mathbf{T} or \mathbf{F} : Consider a sequence of n insertions into an empty binomial heap, followed by a single $extractMin$ operation. At this point, the number of subheaps in the root list can be calculated from n .	
23.	Consider inserting the following values, in the order given	::
	3 2 9 5 6 4 1 0	
	into an empty binomial heap. The value 0 is found in a s	ubheap whose root has value:
	(A) 7	(E) 6
	(B) 2	(F) 4
	(C) 5	(G) 1
	(D) 0	(H) 3
24.	Consider inserting the consecutive integers from 0 to 12, in After 3 $\it extractMin$ operations, the value 12 can be found	nclusive and in increasing order, into an empty binomial heap. in the subheap whose root has value:
	(A) 3	(E) 0
	(B) 7	(F) 6
	(C) 4	(G) 2
	(D) 1	(H) 5
25.	25. Consider inserting the consecutive integers from 0 to 12, inclusive and in increasing order, into an empty binom After deleting the value 5, the value 12 can be found in the subheap whose root has value:	
	(A) 6	(E) 1
	(B) 4	(F) 2
	(C) 3	(G) 5
	(D) 7	(H) 0
26.	One expects to insert a value into a binomial heap in tim	e that is:
	(A) log-linear	(D) linear
	(B) constant	(E) log
	(C) log log	
27.	Consider inserting the consecutive integers from 0 to 12, heap. What is the largest root value possible after all val	inclusive and not necessarily in order, into an empty binomial ues have been inserted?
Fib	onacci heaps	
	After one insertion into an empty fibonacci heap, how ma	any subheaps are in the root list?
	(A) 2	(C) 3
	(B) 0	(D) 1
29.	After two consecutive insertions into an empty fibonacci	heap, how many subheaps are in the root list?
	(A) 1	(C) 2
	(B) 3	(D) 4
30.	After four consecutive insertions into an empty fibonacci	heap, how many subheaps are in the root list?
	(A) 3	(C) 2
	(B) 1	(D) 4
31.	After 8 consecutive insertions into an empty fibonacci hea	ap, how many subheaps are in the root list?
	(A) 8	(C) 7
	(B) 5	(D) 6

32.	. Continuing with the previous question, how many subheaps are in the root list if we perform an extractMin?	
	(A) 6	(C) 1
	(B) 8	(D) 3
33.	After inserting 0 and 1 into an empty fibonacci min-heap, \mathbf{v}	which element(s) will be in the root list?
	(A) 1	(C) 0
	(B) None	(D) 0 and 1
34.	Continuing with the previous question, inserting a 2 yields	which values in the root list?
	(A) 0, 1, and 2	(E) 0
	(B) 0 and 1	(F) 1 and 2
	(C) 2	(G) 1
	(D) 0 and 2	(H) None
35.	Continuing with the previous question, inserting a 3 yields	which values in the root list?
	(A) 2	(E) 1 and 2
	(B) 1	(F) 0
	(C) 0 and 3	(G) None
	(D) 0, 1, 2, and 3	(H) 3
36.	Continuing with the previous question, performing an extra	actMin yields which values in the root list?
	(A) 1	(E) 1 and 2
	(B) 2	(F) 1 and 3
	(C) 2 and 3	(G) None
	(D) 3	(H) 1, 2, and 3
conso of A .	ne for fibonacci heaps that newly inserted values are insellidation runs from left to right. Assume that in the union of Assume that <i>extractMin</i> appends the child list of the extractor list is ordered with lower degree subheaps to the left of heaps.	heaps A and B , the root list of B is appended to the root list eted value to the root list. Assume that after consolidation,
37.	After 7 consecutive inserts into an empty fibonacci heap, he	ow many subheaps are in the root list?
	(A) 4	(E) 5
	(B) 2	(F) 3
	(C) 1	(G) 6
	(D) 8	(H) 7
38.	${f T}$ or ${f F}$: Consider a sequence of n insertions into an empty At this point, the number of subheaps in the root list can be	
39.	${f T}$ or ${f F}$: Consider a sequence of n insertions into an empoperations. At this point, the number of subheaps in the re	
40.	Consider inserting the following values, in the order given: $ \\$	
	3 2 9 5 6 4 1 0	
	into an empty fibonacci heap. The value 0 is found in a substitute of the substit	pheap whose root has value:
	(A) 5	(E) 1
	(B) 3	(F) 2
	(C) 6	(G) 0
	(D) 4	(H) 7

41.	. Consider inserting the consecutive integers from 0 to 12, inclusive and in increasing order, into an empty fibonacci heap After 3 extractMin operations, the value 12 can be found in the subheap whose root has value:		
	(A) 4	(E) 1	
	(B) 7	(F) 2	
	(C) 5	(G) 6	
	(D) 0	(H) 3	
42.	Consider inserting the consecutive integers from 0 to 12, inc. After deleting the value 5, the value 12 can be found in the	clusive and in increasing order, into an empty fibonacci heap. e subheap whose root has value:	
	(A) 2	(E) 5	
	(B) 3	(F) 1	
	(C) 4	(G) 7	
	(D) 6	(H) 0	
43.	Consider inserting the consecutive integers from 0 to 12 into an empty fibonacci heap. After deleting the value 5, which node is marked?		
	(A) 3	(E) 2	
	(B) 0	(F) 1	
	(C) 4	(G) 5	
	(D) the answer is not given	(H) no node is marked	
44.	One expects to find a value in a Fibonacci heap in amortiz	ed:	
	(A) $\Theta(\log n \times \log n)$ time	(D) $\Theta(\log n)$ time	
	(B) $\Theta(n)$ time	(E) $\Theta(n \log n)$ time	
	(C) $\Theta(\log(\log n))$ time	(F) $\Theta(1)$ time	
45.	One expects to find a value in a Fibonacci heap in the wor	st case in:	
	(A) $\Theta(\log n \times \log n)$ time	(D) $\Theta(n)$ time	
	(B) $\Theta(\log(\log n))$ time	(E) $\Theta(1)$ time	
	(C) $\Theta(\log n)$ time	(F) $\Theta(n \log n)$ time	
46.	Consider this set of operations: 15 inserts and one extraction of the minimum (in any order). What is the fewest / most number of subheaps found after the set is performed on an initially empty fibonacci heap?		
	(A) 3 / 14	(F) 4 / 13	
	(B) 3 / 15	(G) 4 / 15	
	(C) 3 / 13		
	(D) 4 / 12	(H) 4 / 14	
	(E) 3 / 12		
47.	${\bf T}$ or ${\bf F} \colon {\bf A}$ $decreaseKey$ operation can be performed upon t	he root node of a subheap.	
48.	${\bf T}$ or ${\bf F} \colon {\bf A}$ decrease Key operation can cause a root node to	lose multiple children.	
49.	${\bf T}$ or ${\bf F} \colon {\bf A}$ single cut (not cascading) can remove more than	n one node from a subheap.	
50.	What degree is the lowest degree subheap in which a casca	ding cut can be performed?	
	(A) 4	(D) 5	
	(B) 1	(E) 0	
	(C) 2	(F) 3	

51.	How many nodes is it possible to cut from a subheap of deg	gree 2?
	(A) 0	(D) 2
	(B) 4	(E) 5
	(C) 1	(F) 3
52.	How many nodes is it possible to cut from a subheap of de	gree 3?
	(A) 4	(D) 2
	(B) 0	(E) 5
	(C) 1	(F) 3
53.	How many nodes is it possible to cut from a subheap of de	gree 4?
	(A) 6	(D) 9
	(B) 11	(E) 7
	(C) 8	(F) 10
54.	How many nodes is it possible to cut from a subheap of de	gree d ?
	$(A) 2^d - fib(d+2)$	(D) $d^2 - fib(d+2)$
	(B) $d^2 - fib(d+1)$	(E) $2^d - fib(d+1)$
	(C) $2^d - fib(d)$	(F) $d^2 - fib(d)$
55.	Consider cuts that only remove a single node. How many causing a cascading cut?	of these cuts can be made in a subheap of degree 3 without
	(A) 3	(E) 5
	(B) 2	(F) 8
	(C) 4	(G) 1
	(D) 6	(H) 7
56.	Consider cuts that only remove a single node. How many causing a cascading cut?	of these cuts can be made in a subheap of degree n without
	(A) $2^{n-1} + 1$	(C) n^2
	(B) 2^{n+1}	(D) $n^2 - 1$
	n cutting a node out of a Fibonacci subheap, the degree of thess it is a root) is either marked, if it hasn't been previously	
57.	What is the most number of nodes that can be cut in a sin	gle cascade on a subheap of degree 4?
	(A) 5	(E) 4
	(B) 2	(F) 6
	(C) 1	(G) 8
	(D) 3	(H) 7
58.	What is the most number of marked nodes that can exist it	n a subheap of degree 4?
	(A) 15	(E) 4
	(B) 8	(F) 7
	(C) 16	(G) 2
	(D) 3	(H) 5

59.	What are the most number of nodes the root is not reduced?	at can be cut from a Fibonacci subheap of degree 4 such that the degree of the
	(A) 8	(E) 6
	(B) 10	(F) 7
	(C) 3	(G) 5
	(D) 4	(H) 9
60.	What are the most number of nodes the root is reduced by exactly one?	at can be cut from a Fibonacci subheap of degree 4 such that the degree of the
	(A) 12	(E) 9
	(B) 10	(F) 11
	(C) 14	(G) 7
	(D) 13	(H) 8
Pric	ority Queues	
61.	Consider a priority queue (max) based	upon a singly lined list. What is the time complexity of the insert operation?
	(A) logarithmic	(C) constant
	(B) log linear	(D) linear
62.	Consider a priority queue (max) based	upon a normal heap. What is the time complexity of the insert operation?
	(A) logarithmic	(C) constant
	(B) linear	(D) log linear
63.	Consider a priority queue (max) based operation?	d upon a singly lined list. What is the time complexity of the increase-key
	(A) linear	(C) constant
	(B) logarithmic	(D) log linear
64.	Consider a priority queue (max) based u	apon a normal heap. What is the time complexity of the increase-key operation?
	(A) logarithmic	(C) linear
	(B) log linear	(D) constant
65.	Consider a priority queue (max) based operation? Assume the link list is sort	l upon a singly lined list. What is the time complexity of the decrease-key
	(A) logarithmic	(C) constant
	(B) linear	(D) log linear
66.	Consider a priority queue based upon a	normal heap. What is the time complexity of the decrease-key operation?
	(A) log linear	(C) constant