FORMULAS

real GDP per person: $\frac{Y_t}{population}$

 Y_t : real GDP at t

real GDP growth: $\frac{\mathbf{Y_{t}} - \mathbf{Y_{t-1}}}{\mathbf{Y_{t-1}}}$

 Y_{t-1} : real GDP at t-1

GDP deflator: $P_t = \frac{nGDP}{rGDP} = \frac{\$Y_t}{Y_t}$

 Y_t : nominal GDP

inflation rate: $\pi_{\mathbf{t}} = \frac{\mathbf{P_{t}} - \mathbf{P_{t-1}}}{\mathbf{P_{t-1}}}$

labor force: $\mathbf{L} = \mathbf{N} + \mathbf{U}$

U: unemployment; N: empolyment

unemployment rate: $\mathbf{u} = \frac{\mathbf{U}}{\mathbf{L}}$

participation rate: $\frac{\mathbf{L}}{\mathbf{population}}$

 ${\rm production/outoput/supply/GDP: \ Y = C + I + G} \qquad {\it C: consumption; I: investment; G: gov't spending}$

demand: $\mathbf{Z} \equiv \mathbf{C} + \mathbf{I} + \mathbf{G}$

consumption: $\mathbf{C} = \mathbf{c_0} + \mathbf{c_1} \times \mathbf{Y_D}$

disposable income: $\mathbf{Y_D} = \mathbf{Y} - \mathbf{T}$

Y: income; T: tax

goods market equilibirum: $\mathbf{Y} = \frac{1}{1-\mathbf{c}_1}[\mathbf{c_0} + \mathbf{I} + \mathbf{G} - \mathbf{c_1}\mathbf{T}]$

demand for money: $\mathbf{M}^{\mathbf{d}} = \mathbf{Y} \times \mathbf{L}(\mathbf{i})$

supply for money: $\mathbf{M}^{\mathbf{s}} = \mathbf{M}$

money market equilibirum: $\frac{\mathbf{M}}{\mathbf{P}} = \mathbf{YL}(\mathbf{i})$

IS relation: Y = C(Y - T) + I(Y, i) + G

LM relation: $\mathbf{i} = \overline{\mathbf{i}}$

real interest rate: $\mathbf{r_t} = \mathbf{i_t} - \pi_{t+1}^e$ i_t : nominal interest rate; π_{t+1}^e : expected inflation

risk premium: $\mathbf{x} = (\mathbf{1} + \mathbf{i}) \frac{\mathbf{p}}{\mathbf{1} - \mathbf{p}}$ i: interest rate on risk-free borrowing; p: probability of default

extended IS relation: $\mathbf{Y} = \mathbf{C}(\mathbf{Y} - \mathbf{T}) + \mathbf{I}(\mathbf{Y}, \mathbf{r} + \mathbf{x}) + \mathbf{G}$ r: real interest rate; x: risk premium

extended LM relation: $\mathbf{r} = \bar{\mathbf{r}}$ \bar{r} : policy rate