实变函数简明教程笔记

Zzy

目录

第一章	集合与点集	2
1.1	一道上下极限相关的题目	2
1.2	集合的基数相关结论	5
1.3	\mathbb{R}^n 开集构造定理与 Cantor 三分集	8
第二章	Lebesgue 测度	11
2.1	外测度	11
2.2	可测集与测度	12
2.3	可测集的特征	13

第一章 集合与点集

1.1 一道上下极限相关的题目

出处:第一章习题第6题.

例 1.1.1. 若

$$\lim_{n \to \infty} f_n(x) = f(x) \ (x \in E),$$

对于任意实数 c 用简写

$$E(f > c)$$
 $\not\sim E(f \ge c)$

表示

$$\{x\in R|f>c\} \ \text{for } \{x\in R|f\geq c\},$$

并令

$$E_{n,k} = E\left(f_n > c - \frac{1}{k}\right),\,$$

试证

$$\bigcap_{k=1}^{\infty} \overline{\lim}_{n \to \infty} E_{n,k} = \bigcap_{k=1}^{\infty} \underline{\lim}_{n \to \infty} E_{n,k},$$

并且

$$E(f \ge c) = \bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k}.$$

证明.由

$$\underline{\lim_{n\to\infty}} E_{n,k} \subset \overline{\lim_{n\to\infty}} E_{n,k}$$

对任意的 $k \in \mathbb{N}_+$ 均成立知

$$\bigcap_{k=1}^{\infty} \underline{\lim}_{n \to \infty} E_{n,k} \subset \bigcap_{k=1}^{\infty} \overline{\lim}_{n \to \infty} E_{n,k}.$$

由

$$\lim_{n \to \infty} f_n(x) = f(x) \ (x \in E)$$

知

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n > N, \ s.t. \ f_n(x) > f(x) - \varepsilon \ (x \in E).$$

$$\forall x \in \bigcap_{k=1}^{\infty} \overline{\lim}_{n \to \infty} E_{n,k}, \, \not \exists$$

$$\forall k \in \mathbb{N}_+, \forall m \in \mathbb{N}_+, \exists n > m, \ s.t. \ f_n(x) > c - \frac{1}{k} \ (\forall c \in \mathbb{R}),$$

令 $n \to \infty$ 有

$$f(x) \ge c - \frac{1}{k},$$

即有

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n > N, \ s.t. \ f_n(x) > f(x) - \varepsilon \ge c - \frac{1}{k} - \varepsilon,$$

由 ε 的任意性知

$$f_n(x) \ge c - \frac{1}{k},$$

又令 $k \to \infty$ 有

$$f_n(x) \ge c > c - \frac{1}{k} \ (\forall k \in \mathbb{N}_+),$$

即

$$\forall k \in \mathbb{N}_+, \exists N \in \mathbb{N}_+, \forall n > N, \ s.t. \ f_n(x) > c - \frac{1}{k},$$

故

$$x \in \bigcap_{k=1}^{\infty} \underline{\lim}_{n \to \infty} E_{n,k},$$

从而有

$$\bigcap_{k=1}^{\infty} \overline{\lim}_{n \to \infty} E_{n,k} \subset \bigcap_{k=1}^{\infty} \underline{\lim}_{n \to \infty} E_{n,k}.$$

综上, 即证得

$$\bigcap_{k=1}^{\infty} \overline{\lim}_{n \to \infty} E_{n,k} = \bigcap_{k=1}^{\infty} \underline{\lim}_{n \to \infty} E_{n,k}.$$

由上述过程知

$$\underline{\lim_{n\to\infty}} E_{n,k} = \overline{\lim_{n\to\infty}} E_{n,k},$$

即有

$$\bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k} = \bigcap_{k=1}^{\infty} \underline{\lim}_{n \to \infty} E_{n,k} = \bigcap_{k=1}^{\infty} \overline{\lim}_{n \to \infty} E_{n,k}.$$

 $\forall x \in E (f \ge c), \, \hat{\mathbf{q}}$

$$f(x) \ge c$$
.

又 $\forall \varepsilon > 0, \exists N \in \mathbb{N}_+, \forall n > N,$ 有

$$f_n(x) > f(x) - \varepsilon \ (x \in E),$$

即

$$f_n(x) > f(x) - \varepsilon \ge c - \varepsilon,$$

由 ε 的任意性知

$$f_n(x) \ge c > c - \frac{1}{k} \ (\forall k \in \mathbb{N}_+),$$

即

$$\forall k \in \mathbb{N}_+, \exists N \in \mathbb{N}_+, \forall n > N, \ s.t. \ f_n(x) \ge c - \frac{1}{k},$$

从而有

$$x \in \bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k},$$

即有

$$E(f \ge c) \subset \bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k}.$$

$$\forall x \in \bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k}, \, \not = 1$$

$$\forall k \in \mathbb{N}_+, \exists N \in \mathbb{N}_+, \forall n > N, \ s.t. \ f_n(x) > c - \frac{1}{k},$$

分别令 $n \to \infty, k \to \infty$, 有

$$f(x) \ge c$$
,

从而有

$$x \in E (f \ge c)$$
,

即有

$$\bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k} \subset E\left(f \ge c\right).$$

综上, 即证得

$$E(f \ge c) = \bigcap_{k=1}^{\infty} \lim_{n \to \infty} E_{n,k}.$$

1.2 集合的基数相关结论

定理 1.2.1. Bernstein 定理

若集合 X 与集合 Y 的一个真子集对等,同时 Y 与 X 的一个真子集对等,则 X 与 Y 对等.

定理 1.2.2. 整数集 Z 可列.

定理 1.2.3. 可列个可列集的并集是可列.

定理 1.2.4. 有理数集 ℚ 可列.

定理 1.2.5. \mathbb{Q}^n 可列.

定理 1.2.6. 实数区间 [1,0] 不可列.

证明. 利用反证法.

若[1,0]可列,则可以写成

$$[0,1] = \{x_1, x_2, \cdots, x_n, \cdots\}.$$

将 [0,1] 三等分, 必有一个闭子区间中不含有 x_1 , 记其为 I_1 . 将 I_1 三等分, 必有一个闭子区间中不含有 x_2 , 记其为 I_2 . 将此过程不断进行下去, 可以得到一个闭区间套 $\{I_n\}$, 使得

$$[0,1]\supset I_1\supset I_2\supset\cdots\supset I_n\supset\cdots,$$

且 $\forall n \in \mathbb{N}_+$, 有 $x_n \notin I_n$. 由闭区间套定理, 有

$$\exists \xi \in \bigcap_{n=1}^{\infty} I_n \subset [0,1],$$

故 $\exists m \in \mathbb{N}_+, \xi = x_m$. 但 $\xi = x_m \notin I_m$, 从而有

$$\xi \not\in \bigcap_{n=1}^{\infty} I_n,$$

故产生矛盾.

从而证得 [0,1] 不可列.

定理 1.2.7. 实数集 ℝ 不可列.

证明. $\mathbb{R} = (-\infty, +\infty) \sim (0, 1) \sim [0, 1]$, 但 [0, 1] 与 N 不对等, 从而 \mathbb{R} 不可列.

定理 1.2.8. $\overline{\overline{R}} = \aleph = 2^{\aleph_0} = \overline{\overline{\mathscr{P}(\mathbb{N})}}$.

证明. $\overline{\mathbb{R}} = \overline{[0,1]}, \overline{\mathscr{P}(\mathbb{N})} = \overline{\mathscr{P}(\mathbb{N}_+)},$ 故只需证 $\overline{[0,1]} = \overline{\mathscr{P}(\mathbb{N}_+)},$ 即证 $[0,1] \sim \mathscr{P}(\mathbb{N}_+).$ 作映射

$$f: \mathscr{P}(\mathbb{N}_+) \to [0,1]: A \mapsto \sum_{i=1}^{\infty} \frac{a_i}{3^i},$$

其中

$$a_i = \begin{cases} 1, & i \in A \\ 0, & i \notin A \end{cases}.$$

设 $\forall A, B \in \mathscr{P}(\mathbb{N}_+)$, 若 f(A) = f(B), 下面证明 A = B. 反证法, 假设 $A \neq B$. 记

$$A = \{a_1, a_2, \cdots, a_m, \cdots\}, B = \{b_1, b - 2, \cdots, b_n, \cdots\},\$$

由于 $A \neq B$, 则 $\exists k \in \mathbb{N}_+$, 使得 $a_i = b_i (1 \leq i < k)$ 但 $a_k \neq b_k$, 不妨令 $a_k = 1$. 注意到

$$\sum_{i=k+1}^{\infty} \frac{b_i}{3^i} \le \sum_{i=k+1}^{\infty} \frac{1}{3^i} = \frac{1}{2 \times 3^k} < \frac{1}{3^k},$$

从而有

$$f(A) - f(B) = \sum_{i=1}^{\infty} \frac{a_i}{3^i} - \sum_{i=1}^{\infty} \frac{b_i}{3^i} > \frac{1}{3^k} - \sum_{i=k+1}^{\infty} \frac{b_i}{3^i} > \frac{1}{2 \times 3^k} > 0,$$

产生矛盾, 从而证得 A = B.

即有 f 为 $\mathcal{P}(\mathbb{N}_+)$ 到 $f(\mathcal{P}(\mathbb{N}_+)) \subset [0,1]$ 的单射,显然也是双射,从而有 $\overline{\mathcal{P}(\mathbb{N}_+)} \leq \overline{[0,1]}$. 我们不妨承认 [0,1] 中的的元素只有唯一的二进制表示 (若有重复则只取其中一种). 作映射

$$g: [0,1] \to \mathscr{P}(\mathbb{N}_+): x = \sum_{i=1}^{\infty} \frac{a_i}{2^i} \mapsto A,$$

其中

$$A = \{ i \in \mathbb{N}_+ | a_i = 1 \}.$$

此时 g 为 [0,1] 到 $g([0,1]) \subset \mathscr{P}(\mathbb{N}_+)$ 的双射, 从而有 $\overline{[0,1]} \leq \overline{\mathscr{P}(\mathbb{N}_+)}$. 由 Bernstein 定理有 $\overline{\mathscr{P}(\mathbb{N}_+)} = \overline{[0,1]}$, 即证得 $\overline{\overline{R}} = \aleph = 2^{\aleph_0} = \overline{\mathscr{P}(\mathbb{N})}$.

定理 1.2.9. $\overline{\mathbb{R}^n} = \aleph$.

证明. 利用数学归纳法证明.

当 n=1 时, 已经证明了 $\overline{\mathbb{R}}=\aleph$.

假设当 $1 \le n < N$ 时有 $\overline{\mathbb{R}^n} = \aleph$, 下面证明 $\overline{\mathbb{R}^N} = \aleph$.

由归纳假设知

$$\mathbb{R}^{N-1} \sim \mathscr{P}(\mathbb{N}) \sim \mathscr{P}(\mathbb{Z} - \mathbb{N}),$$

作映射

 $f:\mathscr{P}\left(\mathbb{N}\right)\times\mathscr{P}\left(\mathbb{Z}-\mathbb{N}\right)\to\mathscr{P}\left(\mathbb{Z}\right):A=\left\{ \left(X,Y\right)|X\in\mathscr{P}\left(\mathbb{N}\right),Y\in\mathscr{P}\left(\mathbb{Z}-\mathbb{N}\right)\right\} \mapsto X\cup Y,$

显然 f 为双射, 从而有

$$\mathscr{P}(\mathbb{N}) \times \mathscr{P}(\mathbb{Z} - \mathbb{N}) \sim \mathscr{P}(\mathbb{Z})$$
.

由

$$\mathbb{R}^{N} = \mathbb{R}^{N-1} \times \mathbb{R} \sim \mathscr{P}(\mathbb{N}) \times \mathscr{P}(\mathbb{Z} - \mathbb{N}) \sim \mathscr{P}(\mathbb{Z}) \sim \mathscr{P}(\mathbb{N})$$

知

$$\overline{\overline{\mathbb{R}^N}} = \aleph.$$

综上, 由数学归纳法证得 $\overline{\mathbb{R}^n} = \aleph$.

定理 1.2.10. 最大基数定理

任何集合 A 与其幂集 $\mathscr{P}(A)$ 不对等, 从而 $\overline{\overline{A}} < \overline{\overline{\mathscr{P}(A)}}$.

1.3 \mathbb{R}^n 开集构造定理与 Cantor 三分集

定理 1.3.1. \mathbb{R}^n 开集构造定理

- 1. № 中的非空开集必定是可数个互不相交的开区间的并
- $2. \mathbb{R}^n (n > 2)$ 中的非空开集必定是可数个互不相交的半开方体的并

定义 1.3.1. Cantor 三分集

构造如下

1. 将区间 [0,1] 三等分, 移去中间的开区间

$$I_1 = \left(\frac{1}{3}, \frac{2}{3}\right),\,$$

记

$$F_1 = [0, 1] - I_1$$

2. 将 F₁ 中的闭区间分别三等分, 并移去中间的开区间

$$I_2 = \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right),$$

记

$$F_2 = [0,1] - (I_1 \cup I_2)$$

3. 重复上述步骤, 将 F_2 中的闭区间分别三等分, 并移去中间的开区间

$$I_3 = \left(\frac{1}{27}, \frac{2}{27}\right) \cup \left(\frac{7}{27}, \frac{8}{27}\right) \cup \left(\frac{19}{27}, \frac{20}{27}\right) \cup \left(\frac{25}{27}, \frac{26}{27}\right),$$

记

$$F_3 = [0,1] - (I_1 \cup I_2 \cup I_3)$$

4. 如此进行下去, 第 k 步去掉 2^{k-1} 个长度为 $1/3^k$ 的开区间, 记它们的并为 I_k , 并记

$$F_k = [0, 1] - \bigcup_{i=1}^k I_i$$

5. 作点集

$$C = \bigcap_{k=1}^{\infty} F_k = \bigcap_{k=1}^{\infty} \left(\bigcup_{i=1}^k I_i\right)^c = \left(\bigcup_{k=1}^{\infty} \bigcup_{i=1}^k I_i\right)^c = \left(\bigcup_{k=1}^{\infty} I_k\right)^c = [0,1] - \bigcup_{k=1}^{\infty} I_k,$$

称 C 为 Cantor 三分集

定理 1.3.2. Cantor 三分集的性质

- 1. C 是非空闭集.
- 2. C = C', 即 C 为完全集.
- 3. C 无内点.
- 4. $\overline{\overline{C}} = \aleph$.

证明. 以下分别进行证明.

1. 由 $0 \in C$ 知 $C \neq \emptyset$. 由

$$C = [0,1] - \bigcup_{k=1}^{\infty} I_k$$
 且 $\bigcup_{k=1}^{\infty} I_k$ 为开集

知 C 为闭集.

综上证得 C 为非空闭集.

2. 由于 C 为闭集, 从而有 $C' \subset C$, 故只需证 $C \subset C'$.

 $\forall x \in C$, 有 $\forall k \in \mathbb{N}_+$, 满足 $x \in F_k$. $\forall \delta > 0$, 当 k 足够大时, 总有 $F_k \subset (x - \delta, x + \delta)$. 设 $J_k = [s_k, t_k] \subset F_k$ 为包含 x 的闭区间, 则有 $J \subset (x - \delta, x + \delta)$, 此时定有 $s_k \neq x$ 或 $t_k \neq x$ 成立.

故 $\forall \delta > 0, \exists y \in C, y \neq x \ s.t. \ y \in (x - \delta, x + \delta),$ 即有 $x \in C'$, 从而说明 $C \subset C'$. 综上证得 C = C'.

3. 由于

$$C = [0,1] - \bigcup_{k=1}^{\infty} I_k,$$

而所有开区间 I_k $(k=1,2,\cdots)$ 的长度和为

$$\sum_{k=1}^{\infty} \frac{2^{k-1}}{3^k} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = 1,$$

从而 C 中不可能再包含任何一个开区间. 综上证得 C 中无内点.

4. 由 $C \subset [0,1]$ 知, $\overline{\overline{C}} \leq \overline{\overline{[0,1]}}$. 作映射

$$f: [0,1] \to C: x = \sum_{k=1}^{\infty} \frac{a_k}{2^k} \mapsto \sum_{k=1}^{\infty} \frac{b_k}{3^k},$$

其中

$$a_k = 0, 1, \ b_k = \begin{cases} 0, & a_k = 0 \\ 2, & a_k = 1 \end{cases}, k = 1, 2, \dots,$$

可知 f 为单射, 从而有 $[0,1] \subset C$, 即有 $\overline{\overline{[0,1]}} \leq \overline{\overline{C}}$. 综上证得 $\overline{\overline{C}} = \overline{\overline{[0,1]}} = \aleph$.

第二章 Lebesgue 测度

2.1 外测度

定义 2.1.1. L 覆盖与外测度

- 1. 对于 $E \in \mathbb{R}^n$, 若可数个开矩体 $\{I_k\}$ 满足 $E \subset \bigcup_{k=1}^{\infty} I_k$, 则称 $\{I_k\}$ 为 E 的 L 覆盖.
- 2. 定义

$$\inf \left\{ \sum_{k=1}^{\infty} |I_k| : |I_k| \neq E$$
的 L 覆盖 $\right\}$

为 E 的 Lebesgue 测度, 简称为外测度, 记为 m^*E .

定理 2.1.1. 外测度的性质

- 1. 非负性: $\forall E \in \mathbb{R}^n, 0 \leq m^*E \leq \infty$.
- 2. 单调性: $E_1 \subset E_2 \Rightarrow m^*E_1 \leq m^*E_2$.
- 3. 次可加性: $m^*\left(\bigcup_{k=1}^{\infty} E_k\right) \leq \sum_{k=1}^{\infty} m^* E_k$.

例 2.1.1. Cantor 集 C 为零测集.

 $\mathbf{m}. \ \forall N \in \mathbb{N}_+, F_k$ 为 C 的构造过程中第 k 步所留下的 2^k 个闭区间, 有

$$0 \le m^*C = m^* \left(\bigcap_{k=1}^{\infty} F_k\right) \le m^* F_N = \frac{2^N}{3^N},$$

令 $N \to \infty$, 得到 $m^*C = 0$, 即证得 C 为零测集.

2.2 可测集与测度

定义 2.2.1. Lebesgue 可测集, Lebesgue 测度与可测集类

1. 设 $E \in \mathbb{R}^n$, 若 $\forall T \in \mathbb{R}^n$ 都有

$$m^*T = m^* (T \cup E) + m^* (T \cup E^c), \qquad (2.1)$$

则称 E 为 Lebesgue 可测集, 简称 E 可测或 E 为可测集. 其中公式 (2.1) 被称为 Carath'eodory 条件, T 称为试验集.

- 2. 可测集 E 的外测度称为 E 的 Lebesque 测度, 记为 mE, 简称为 E 的测度.
- 3. 全体可测集组成的集合称为可测集类. 记为 . M.

定理 2.2.1. 可测的充要条件 (外测度的隔离可加性)

 \mathbb{R}^n 中的集合 E 可测的充要条件是 $\forall A \in E, \forall B \in E^c, \ \pi \ m^*(A \cup B) = m^*(A) + m^*(B).$

推论 2.2.1. 由可测集的定义可知

- 1. E 可测当且仅当 E^c 可测.
- 2. E 可测的充要条件是, $\forall T \in \mathbb{R}^n$, 有

$$m^*T > m^* (T \cap E) + m^* (T \cap E^c)$$
.

3. E 可测的充要条件是, 对于任意的开矩体 I, 有

$$|I| > m^* (I \cap E) + m^* (I \cap E^c)$$
.

故为了检验点集的可测性,可只验证当试验集为矩体时, Carathéodory 条件是否成立.

定理 2.2.2. 测度的完全可加性

- 1. 若 $E_1, E_2 \in \mathcal{M}$, 则 $E_1 \cup E_2, E_1 \cap E_2, E_1 E_2 \in \mathcal{M}$.
- 2. 若 $E_k \in \mathcal{M}(k=1,2,\cdots)$,则 $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$. 若还有 $E_i \cap E_j = \emptyset \ (i \neq j, i, j=1,2,\cdots)$,则有

$$m\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m(E_k).$$

推论 2.2.2. 测度完全可加性的推论

1. 若
$$E_k \in \mathcal{M}(k=1,2,\cdots)$$
, 则 $\bigcap_{k=1}^{\infty} E_k \in \mathcal{M}$.

2. 若 $E_1 \subset E_2$, $E_1, E_2 \in \mathcal{M}$, 则 $m(E_2 - E_1) = m(E_2) - m(E_1)$.

定义 2.2.2. σ 代数

设X是一个集合, $\Gamma \subset \mathcal{P}(X)$,若满足

- 1. $\varnothing \in \Gamma$
- 2. 若 $A \in \Gamma$, 则 $A^c \in \Gamma$
- 3. 若 $A_k \in \Gamma(k=1,2,\cdots)$, 则 $\bigcup_{k=1}^{\infty} A_k \in \Gamma$

则称 Γ 为 X 的一个 σ 代数.

特别的, \mathcal{M} 是 \mathbb{R}^n 的一个 σ 代数.

定理 2.2.3. 上下极限与可测集

1. 渐张可测集列 $\{E_k: E_k \subset E_{k+1}, \forall k \in \mathbb{N}_+\}$ 的极限集 $\lim_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} E_k$ 可测, 且有

$$m\left(\lim_{k\to\infty} E_k\right) = \lim_{k\to\infty} m(E_k).$$

2. 渐缩可测集列 $\{E_k: E_{k+1} \subset E_k, \forall k \in \mathbb{N}_+\}$ 的极限集 $\lim_{k \to \infty} E_k = \bigcap_{k=1}^{\infty} E_k$ 可测, 若 $\exists N \in \mathbb{N}_+$, 使得 $m(E_N) < \infty$, 则有

$$m\left(\lim_{k\to\infty} E_k\right) = \lim_{k\to\infty} m(E_k).$$

2.3 可测集的特征

定理 2.3.1. 任意 (H, \mathbb{R}) (开, \mathbb{R}) 矩体 I 是可测集, 且 m(I) = |I|. 特别的, 任意开集和闭集都是可测集.

定义 2.3.1. F_{δ} 型集, G_{δ} 型集和 Borel 集

- 1. \mathbb{R}^n 中可以表示为可数个闭集的并的点集称为 F_{δ} 型集.
- 2. \mathbb{R}^n 中可以表示为可数个开集的交的点集称为 G_δ 型集.

3. 可以用开集或闭集的可数次交并运算表示的点集称为 Borel 集, 所有 Borel 集组成的集合称为 Borel 集类.

Borel 集的例子: 开集, 闭集, 可数点集 (特别是有理点集), 无理点集, Cantor 集, 空集 \varnothing . 全空间 \mathbb{R}^n .

定理 2.3.2. F_{δ} 型集, G_{δ} 型集和 Borel 集都是可测集.

定理 2.3.3. Borel 集类与可测集类

- 1. Borel 集类是 M 的 σ 子代数.
- 2. Borel 集类的基数为 Ⅺ, ℳ 的基数为 2¾, 从而存在非 Borel 集的可测集.

定理 2.3.4. 若 $E \subset \mathbb{R}^n$ 可测, 则

- 1. 对任意的 $\varepsilon > 0$, 存在开集 G, 使得 $E \subset G$ 且 $m(G E) < \varepsilon$.
- 2. 对任意的 $\varepsilon > 0$, 存在闭集 F, 使得 $F \subset E$ 且 $m(E F) < \varepsilon$.

定理 2.3.5. 若 $E \subset \mathbb{R}^n$, 则 E 可测的充分必要条件分别为

- 1. 存在 G_{δ} 型集 H 使得 $E \subset H$, 且 m(H E) = 0. 注: 当 E 可测时, 有 m(H) = m(E), 称 H 为 E 的等测包.
- 2. 存在 F_{δ} 型集 K 使得 $K \subset E$, 且 m(E K) = 0. 注: 当 E 可测时, 有 m(K) = m(E), 称 K 为 E 的等测核.

定理 2.3.6. 设 $E \subset \mathbb{R}^n$

- 1. 若对任意的 $\varepsilon > 0$, 存在开集 G, 使得 $E \subset G$ 且 $m^*(G E) < \varepsilon$, 则 E 可测.
- 2. 若对任意的 $\varepsilon > 0$, 存在闭集 F, 使得 $F \subset E$ 且 $m^*(E F) < \varepsilon$, 则 E 可测.

定理 2.3.7. 可测集的特征

- 1. 可测集是可以用外包于它的开集 (或内含于它的闭集) 逼近的点集. 依外测度而言, 逼近的误差可以任意小.
- 2. 可测集是一个 G_{δ} 型集减去一个零测集, 或是一个 F_{δ} 型集并上一个零测集.
- 3. 可测集就是 Borel 集与零测集的并集或差集.

定理 2.3.8. \mathbb{R}^n 中存在不可测集.