Rutherford scattering data

The following data is from Geiger and Marsden's 1913 paper where y is the number of scattering events for silver foil.

Let x be the momentum transfer part of $d\sigma$.

$$x_i = \frac{1}{(1 - \cos \theta_i)^2}$$

The scattering probability for angle θ_i is x_i normalized by $\sum x = 4529$.

$$\Pr(\theta_i) = \frac{x_i}{4529}$$

Predicted values \hat{y}_i are $\Pr(\theta_i)$ times total scattering events $\sum y = 134295$.

$$\hat{y}_i = \Pr(\theta_i) \times 134295$$

The following table shows the predicted values \hat{y} .

The coefficient of determination \mathbb{R}^2 measures how well predicted values fit the data.

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = 0.999$$

The result indicates that $d\sigma$ explains 99.9% of the variance in the data.