Оборачиваемость запасов

Оборачиваемость запасов – сумма периодов пребывания запасов сырья и материалов, готовой продукции и продукции незавершенного производства на балансе предприятия.

Расчет оборачиваемости:

$$\mathsf{O6}_3 = \frac{\mathsf{T}*(0,5*3_1 + \sum_{n=1}^{t-1} 3_n + 0,5*3_t)}{(t-1)*C_{\mathsf{TMI}}},$$
 где

Об, - период оборачиваемости запасов ТМЦ

3₁ — запасы на первую дату анализируемого периода

 $\mathbf{3}_{\mathsf{t}}\,$ — запасы на последнюю дату анализируемого периода

3_n – запасы на отчетную дату

n - отчетная дата

t - количество отчетных дат в анализируемом периоде

T — количество календарных дней анализируемого периода

 $C_{\text{тми}}$ — общее количество списанного ТМЦ за анализируемый период

Средняя оборачиваемость запасов за период характеризует скорость вовлечения / реализации запасов, и является суммой периодов пребывания запасов сырья и материалов, готовой продукции незавершенного производства на балансе предприятия.

Виды ТМЦ по показателю оборачиваемости (регулярности списания)

Рассматриваемый сегмент ТМЦ Определение целевого уровня Значение, формулировка, признак Высокая регулярность потребления – хотя Определяется расчетным: Высокооборачиваемые ТМЦ бы одно списание каждые два месяца на или регулярно потребляемые протяжении рассматриваемого периода • Для нормируемых/условно нормируемых: материалы - РПМ на основании плана потребления Для ненормируемых: на основании статистики списания Низкооборачиваемые ТМЦ Низкая регулярность потребления – меньше, Определяется расчетным методом чем одно списание каждые два месяца, на основании статистики списания или материалы разового стабильно на протяжении рассматриваемого потребления - МРП периода ТМЦ без списания – ни одного списания за Невостребованные ТМЦ Целевой уровень запаса – 0 рассматриваемый период

Прогнозируемая обеспеченность запасом

Обеспеченность запасом – это количество дней, в течение которых подразделение обеспечено необходимым количеством ТМЦ.

Определение прогнозируемой обеспеченности основывается на данных о списании ТМЦ предыдущих периодов.

Расчет прогнозируемой обеспеченности запасом в днях:

$$Q_{\text{об}} = \frac{Q_t}{\binom{C_{\text{ТМЦ}}}{T}}$$
, где

 $Q_{
m o6} - {
m o}$ беспеченность МПЗ в днях $C_{
m TMU} - {
m o}$ бщее количество списанного ТМЦ за анализируемый период

 Q_t — количество МПЗ на складах на последнюю дату

Т – количество календарных дней анализируемого периода

Информация об обеспеченности запасом способствует правильной оценке движения ТМЦ, правильности планирования с учетом статистических данных о списании, дает возможность управлять процессами как планирования, так и формирования запаса.

<u>Расчет оборачиваемости и обеспеченности ТМЦ</u>

Анализ остатков МПЗ на складах СП на 30.09.2019 г., тыс. руб.

Анализ обеспеченности ТМЦ для периода оборачиваемости 0-60 дней

Расчет оборачиваемости:

$$O6_3 = \frac{T*(0,5*3_1 + \sum_{n=1}^{t-1} 3_n + 0,5*3_t)}{(t-1)*C_T},$$
 где

Об₃ — период оборачиваемости запасов ТМЦ

31 – запасы на первую дату анализируемого периода

 3_t — запасы на последнюю дату анализируемого периода

 3_n — запасы на отчетную дату

n – отчетная дата

t – количество отчетных дат в анализируемом периоде

Т – количество календарных дней анализируемого периода

Ст - общее количество списанного ТМЦ за анализируемый период

Расчет обеспеченности запасами в днях:

$$T_{\text{об}} = \frac{Q_t}{\binom{C_T}{T}},$$
 где

 T_{00} — обеспеченность МПЗ в днях

Ст - общее количество списанного ТМЦ за анализируемый период

 Q_t — количество МПЗ на складах на последнюю дату

Т – количество календарных дней анализируемого периода

Расчет даты формирования заявки:

$$N_3 = T_{\text{of}} - \Pi \coprod \Pi T$$

 $N_{\scriptscriptstyle 3}$ — количество дней до формирования заявки на закупку

Для эффективного планирования заявок на закупку ТМЦ предлагается внести в систему SAP алгоритм расчета обеспеченности запасами и расчет даты формирования заявки

Анализ ТМЦ запланированных на 2020 г. СП

Категоризация ТМЦ по прогнозируемой обеспеченности

Результат:

Выполнена категоризация по следующим группам обеспеченности (с учетом динамики потребления ТМЦ в 2019):

- Обеспеченность до 1 года
- Обеспеченность от 1 года до 2-х лет
- Обеспеченность до 3-х лет
- Обеспеченность свыше 3-х лет

Анализ показал, что в заказах по СП на 2020 год преобладают ТМЦ, для которых категория обеспеченности не определена. Это могут быть ТМЦ с новыми кодами ЕНС, ТМЦ, которые не списывались в 2019 году и т.д.

Вывод: категории с ТМЦ обеспеченностью от 1 до 2-х лет, от 2 до 3-х лет, более 3-х лет и «Не определено» являются потенциальными группами для пересмотра количества заявленных МТР на 2020 г.

Страховой запас

Страховой запас (SS)
$$= z \cdot \sqrt{L_t \cdot \sigma_d^2 + d^2 \cdot \sigma_{Lt}^2}$$

z = уровень сервиса; L_t = период между поставками; d = средний расход ТМЦ; σ_{Lt} = стандартное отклонение периода между поставками(колебания периода между поставками); σ_d = стандартное отклонение расхода ТМЦ (колебания расхода ТМЦ)

Страховой запас – это «буферный» запас для защиты от неопределенностей, необходим для покрытия двух видов риска для производства:

- риск того, что фактический темп потребления превысит плановый;
- ✓ риск того, что произойдет задержка материалов в пути.

При расчете страхового запаса каждый из данных рисков оценивается с помощью соответствующих показателей:

- относительное отклонение потребления оценивает риск превышения планового объем потребления;
- относительное отклонение сроков поставки оценивает риск задержки ресурса в пути.

Преимущества:

 Позволяет повысить уровень сервиса для заявителя (материал всегда в наличии на складе)

Риски:

 Образование неликвидных запасов, если потребность в материале исчезнет

Коэффициент уровня сервиса (s) определяет терпимость к отсутствию ТМЦ на складе при ее необходимости. Например, уровень сервиса 90 % означает, что СП терпимо к отсутствию ТМЦ на складе в 1 из 10 случаев, когда оно понадобилось.

Точка заказа

Заказ должен происходить в точке, запаса в которой ровно столько, что запас опустится до страхового уровня за срок поставки ТМЦ при текущих темпа расходования

Точка заказа (*англ. Reorder Point*) или момент возобновления заказа является таким уровнем складских остатков, когда должен быть размещен новый заказ на поставку для пополнения запасов.

Расчет точки заказа:

для высокооборачиваемого ТМЦ:

$$RP = d * L_t + z * \sqrt{L_t * \sigma_d^2 + d^2 * \sigma_{Lt}^2}$$

для низкооборачиваемых ТМЦ

$$RP = d + z * \sigma_d$$

где

z – уровень сервиса;

 L_t — срок поставки;

d — средний расход ТМЦ;

 σ_{Lt} — стандартное отклонение срока поставки;

 σ_d — стандартное отклонение расхода ТМЦ (колебания расхода ТМЦ)

Аварийно-технический запас (АТЗ)

Аварийно-технический запас – запасные части и узлы, предназначенные для устранения технологических нарушений и их последствий на оборудовании.

Условный вид зависимости ущерба от технологического нарушения

Оптимальный объем аварийно-технического запаса экономически обоснованное количество номенклатурных позиций запасных частей оборудования В составе аварийно-технического запаса, определяемое минимальным уровнем затрат приобретение на аварийного содержание рисков запаса OT технологических нарушений, обусловленных его отсутствием.

Алгоритм формирования АТЗ

Алгоритм определения оборудования, для формирования АТЗ

Алгоритм принятия решений при расчете и определении оптимального количества АТЗ

Расчет $N_{c.p.}$ Расчет 3_{Π риоб.и содерж. $N_{c.p}$ Нет Да 3_{Π риоб.и содерж. $N_{c.p}$ $< S_{\text{простоя}}$ $N_{c.p.} = \frac{S_{\text{простоя}}}{3_{\text{приобр.и содерж.}}}$ Принимаем расчетное количество

Обоснована необходимость формирования АТЗ

Определено оптимальное количество АТЗ для определенного ТМЦ

Число округляем до целого в

меньшую сторону

AT3 $N_{\rm c.p}$

Расчет АТЗ

Действие	Формула, определение критерия
Обоснование формирования АТЗ	категория критичности оборудования «А» или «В»
Определение затрат на хранение AT3:	$S(s) = s * 3_{\text{приобр. и содерж.}}$
 затраты на приобретение и содержание аварийно-технического запаса (тыс. руб.) 	$3_{\text{приобр. и содерж.}} = \ \ensuremath{\mbox{\ensuremath{I}}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
 упущенная выгода в случае альтернативных вложений средств, затраченных на приобретение аварийного запаса в инвестиционные проекты 	$\mathbf{y}_{\mathrm{B}_{\mathrm{a.B.}}} = \mathbf{u}_{\mathrm{поставки}} * \mathit{WACC}$
Определение размера ущерба производства от простоя оборудования определяется	$S_{\text{простоя}} = Q * v * M\Pi$
Расчет оптимального количества ТМЦ в АТЗ:	
■ вероятность отказа оборудования	$p_{ ext{otk}} = rac{\sum t_{ ext{otk}}}{\sum t_{ ext{otk}} + \sum T}$
■ норматив потребности в аварийном запасе	$N_{\text{c.p}} = N_9 * p_{\text{otk}} + 2 * \sqrt{N_9 * p_{\text{otk}} * (1 - p_{\text{otk}})}$
Расчет затрат на приобретение норматива потребности AT3	$3_{\Pi \text{риоб.и содерж.} N_{\text{c.p}}} = 3_{\Pi \text{риоб.и содерж.}} * N_{\text{c.p}}$
Сравнение $3_{\text{Приоб.и содерж.}N_{\text{с.р}}}$ с потерями производства $S_{\text{простоя}}$	$3_{\Pi_{ m DИOG.H}}$ содерж. $N_{ m c.p}$ $< S_{ m простоя}$
По результатам вычислений принимается или не принимается расчетное количество	Определено оптимальное количество АТЗ данного ТМЦ

