

Web Programming (CSci 130)

Department of Computer Science
College of Science and Mathematics
California State University Fresno
H. Cecotti

Learning outcomes

Web semantic

- ➤ What does it mean?
- ➤ What is it for?
- ➤ The relationships with other fields

Rationale

Current stage

- ➤ Web programming == Web document
 - \circ GUI / Web page $\leftarrow \rightarrow$ Data (from databases)
 - \circ GUI / Query (client) \rightarrow Class (JS) \rightarrow jSON \rightarrow Class (PHP) \rightarrow MySQL (database)
 - Databases
- **➢On the web**: request (e.g. search engine) → result
 - Not a result to the query but a list of documents related to the query

Current challenges

- o Difficulties to find, present, access, or maintain available electronic information on the web
 - Too much information?
- Need for a data representation to enable software products (agents) to provide intelligent access to heterogeneous and distributed information.

Rationale

User query

- ➤ Simple answer(s)
 - List of documents containing data
 - 1. Up to the user to find the most relevant documents
 - 2. Up to the user to extract the information
 - Output: sorted list of documents
 - o Ideal output: 1 document that organizes all the extracted data
- ➤ May involve several websites
 - Example
 - Vacation = flight + hotel + car renting + activities ...
 - Change your address
 - → automatically updated everywhere where your address is mentioned

Introduction

■ "The Semantic Web is a major research initiative of the World Wide Web Consortium (W3C) to create a **metadata-rich** Web of resources that can describe themselves not only by how they should be displayed (**HTML**) or syntactically (**XML**), but also by the **meaning** of the metadata."

- > From W3C Semantic Web Activity Page
- "The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."
 - ➤ Tim Berners-Lee, James Hendler, Ora Lassila,
 - > The Semantic Web, Scientific American, May 2001

Ontology

- From the philosophy / metaphysics
 - > The study of being or existence

Definition

- > A specification of a conceptualization
- > A set of representational primitives with which to model a domain of knowledge or discourse
- Representation of information
 - Classes (sets)
 - > Attributes (properties)
 - > Relationships (or relations among class members).
 - > Information
 - About the meaning of the elements
 - Constraints on their logically consistent application
- Database systems
 - > level of abstraction of data models = hierarchical and relational models
 - o **BUT** for modeling knowledge about individuals, their attributes, and their relationships to other individuals.

Ontology

- Specification with languages that allow abstraction away from
 - > Data structures and implementation strategies
- Languages of ontologies
 - ➤ Closer in expressive power to first-order logic
 - > than languages used to model databases
 - → ontologies at the semantic level
 - → database schema are models of data at the logical or physical level
- Independence from lower level data models
 - > used for integrating heterogeneous databases
 - > -> enabling interoperability among disparate systems
 - > specifying interfaces to independent, knowledge-based services.
- Semantic Web standards
 - ➤ Ontologies → an **explicit** layer
 - Standard component of knowledge systems (KS)

Ontology

- Domain ontologies
 - Express background knowledge about the application domain
 - o the domain of the data at hand on which KDD and data mining are performed.
- Ontologies for data mining process
 - ➤ Define knowledge about the data mining process
 - Steps and algorithms + their possible parameters
- Metadata ontologies
 - > Describe meta knowledge about the data at hand
 - Provenance information
 - Example: the processes used to construct certain datasets
- Connections with Symbolic Artificial Intelligence
 - ➤ Manipulation of symbols
 - Manipulation of abstract compositional representations whose elements stand for objects and relations

Data mining in the web

Example

- "Concept" lattice
 - **≻**Objects
 - o integers (1 to 10)
 - **≻**Attributes
 - o composite (c)
 - o square (s)
 - o even (e)
 - o odd (o)
 - o prime (p).

Current view of data

JSON/XML

- ➤ Nodes of information with a **parent** node
- ➤ Root at the top with **no** parent

Data graph

➤ No root, no hierarchy

Resource Description Framework (RDF)

- **RDF** → part of the W3C specifications
 - ➤ Written in XML
- General method for conceptual description of information
 - >Implemented in web resources
 - ➤ Used in knowledge management applications
- A framework for describing and interchanging metadata
 - ➤ Data describing the web resources
 - ➤ Gives machine understandable semantics for metadata →
 - better precision in resource discovery than full text search
 - assisting applications as schemas evolve
 - interoperability of metadata

RDF

- Paradigm shift
 - ➤ Hierarchical/Relational databases → **Graph** databases
 - Directed, labeled graph
 - The edges represent the named link between two resources
- Expressions (triple)
 - **>** Subject
 - Resource (e.g. earth)
 - An URI
 - > Predicate
 - Aspect of the resource (e.g. is shaped like)
 - Relationship between Subject and Object
 - **→** Object
 - o (e.g. a sphere)
- OOP
 - > earth = object , shape = property, value = sphere

RDF

eRDF

- ➤ Embedded RDF (in HTML)
 - The subject of the triple is the current HTML page
 - The object of the triple is the current HTML page
 - The subject is a unique identifier on the current page
 - The object is a unique identifier on the current page

RDFa markup

https://www.w3.org/TR/html-rdfa/#extensions-to-the-html5-syntax

Turtle

- ➤ A textual representations of an RDF graph
 - o https://www.w3.org/TR/turtle/

RDF

- Examples
 - ➤ For the description of
 - Properties of shopping items
 - Time schedules for different events
 - Content and rating for web images
 - Content of search engine
- Syntax and examples
 - ➤ RDF_examples.xml

Conclusion

- To always think about the semantic/meaning of each element
 - > Definition of atomic elements representing "data"
 - That can be reused/linked with other elements
- Web semantic
 - > A Pandora box?
 - RDF, Turtle, Sparkle...
 - Linked with AI
 - Symbolic knowledge extraction (Graph, Lattices,...) Case Base Reasoning
 - Machine learning/Pattern recognition for extraction of information from images, data
 - Classification, Clustering...

Data mining

- > Using Semantic Web based approaches, Semantic Web Technologies,
 - + Linked Open Data to support the process of knowledge discovery
- Using data mining techniques to mine the Semantic Web (Semantic Web Mining)
- ➤ Using machine learning techniques to create and improve Semantic Web data.

Conclusion

- Al & Machine learning for
 - ➤ Adding knowledge to the web content
 - ➤ Labelling images → automatic creation of alt=...
 - ➤ Connecting elements
 - \circ Text $\leftarrow \rightarrow$ Multimedia files

Addition of Machine Learning to Web Programing

Further reading

- ➤ Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic Web, Scientific American, May 2001.
 - o http://www.w3.org/2001/sw/
- ➤ Gruber, T. R., A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5(2):199-220, 1993.
- ➤ Gruber, T. R., Toward Principles for the Design of Ontologies Used for Knowledge Sharing. Int. Journal Human-Computer Studies, 43(5-6):907-928, 1995.
- ➤ Proceedings of the International Semantic Web Conference
- + Links on Canvas

Lab of week 16

- Support for the Project
 - **≻**Lab session
 - Goal(s) + Target(s) + Problem(s)
 - Web page organization
 - Database queries
 - POST/GET
 - ➤ You must know at what stage you are
 - ➤ What should not happen:

