Intégration de la dynamique hamiltonienne (1/2)

$$H(q,p) = \frac{1}{2} p^T M^{-1} p + V(q), \qquad \begin{cases} \dot{q}(t) = M^{-1} p(t) \\ \dot{p}(t) = -\nabla V(q(t)) \end{cases}$$

1) Montrer que H(q(t), p(t)) est constant

2) Discrétisation en temps :

https://github.com/noeblassel/imi_md_2025

- Implémenter un schéma numérique d'intégration en temps
- ullet Regarder évolution Hamiltonien en temps long, pour différents $\Delta t>0$

$$q, p \in \mathbb{R}, \qquad M = 1, \qquad V(q) = \frac{q^2}{2} \text{ ou } (q^2 - 1)^2$$

ullet Déterminer analytiquement le comportement en temps long de H pour un potentiel quadratique

Intégration de la dynamique hamiltonienne (2/2)

Implémenter les schémas suivants :

- Euler symplectique A
- Euler symplectique B
- Verlet

Vérifier dans chaque cas l'ordre de conservation de l'énergie ${\cal H}$

Travail optionnel:

- Euler symplectique : calculer H_1 et déterminer à quel ordre $H + \Delta t H_1$ est conservé
- Etudier le schéma du point milieu (implicite)

Intégration de la dynamique de Langevin

Premier exemple

- Implémenter le schéma OBABO
- Etudier comportement dans les limites $\gamma \to 0$ et $\gamma \to +\infty$
- comparer histogrammes positions/vitesses aux distributions obtenues dans la limite $\Delta t \to 0$ (cas $\gamma=1$)

Comparer différents schémas (stabilité, biais, ...) pour des gros Δt

- potentiel quadratique : déterminer analytiquement les moments d'ordre 2
- potentiel double puits : étude numérique des distributions marginales