Exercise 8. Show that in Lemma 3.4.7 condition (b) cannot be replaced with the assumption that μ is σ -finite. (*Hint*: Let \mathscr{A}_0 be the algebra on \mathbb{R} defined in example 1.1.1(g) let $\{r_n\}$ be an enumeration of \mathbb{Q} , and let μ be the Borel measure on \mathbb{R} defined by $\mu = \sum_n \delta_{r_n}$.)

Lemma 3.4.7. Let (X, \mathcal{A}, μ) be a measure space. Suppose that \mathcal{A}_0 is an algebra of subsets of X such that

- (a) $\sigma(\mathscr{A}_0) = \mathscr{A}$, and
- (b) X is the union of a sequence of sets that belong to \mathcal{A}_0 and have finite measure under μ .

Then for each positive ε and each set A that belongs to \mathscr{A} and satisfies $\mu(A) < +\infty$ there is a set A_0 that belongs to \mathscr{A}_0 and satisfies $\mu(A \triangle A_0) < \varepsilon$.

Example 1.1.1. (g) Let \mathscr{A} be the collection of all subsets of \mathbb{R} that are unions of finitely many intervals of the form (a,b], $(a,+\infty)$ or $(-\infty,b]$. It is easy to check that each set that belongs to \mathscr{A} is the union of a finite disjoint collection of intervals of the types listed above, and then to check that \mathscr{A} is an algebra on \mathbb{R} (the empty set belongs to \mathscr{A} , since it is the union of the empty, and hence finite, collection of intervals). The algebra \mathscr{A} is not a σ -algebra; for example the bounded open subintervals of \mathbb{R} are unions of sequences of sets of \mathscr{A} but do not themselves belong to \mathscr{A} .

Proof. For all $b \in \mathbb{R}$, $(-\infty, b] \in \mathscr{A}$, so $\mathscr{B}(\mathbb{R}) \subset \sigma(\mathscr{A})$. Moreover, $\mathbb{R} = \bigcup_{r \in \mathbb{Q}} \{r\} \cup (\mathbb{R} - \mathbb{Q})$ is a countable union of sets of $\sigma(\mathscr{A})$ with finite measure: $\mu(\{r\}) = 1$ for all $r \in \mathbb{Q}$, and $\mu(\mathbb{R} - \mathbb{Q}) = 0$. So μ is σ -finite on $\sigma(\mathscr{A})$.

Every nonempty $A \in \mathscr{A}$ is the finite union of intervals mentioned in the example, and therefore contains a nonempty open interval. So there are infinitely many rational numbers in A, and $\mu(A)$ is infinite. From this we deduce that \mathbb{R} is not the union of sets of \mathscr{A} with finite measure, and so hypothesis (b) of the lemma does not hold.

Let $B = \{\sqrt{2}\} \in \sigma(\mathscr{A})$, and $A \in \mathscr{A}$ such that A is nonempty. Then A contains at least one rational number r, and since $r \notin B$, we have $r \in A \triangle B$. Therefore $\mu(A \triangle B) \ge 1$, but $\mu(\{B\}) = 0$, so the conclusion of the lemma does not hold if X is only σ -finite.