Simple Feedback Systems

Simple Feedback Systems

Block diagram

Why control?

Satellite positioning

Control at a distance

Control at a distance

Curiosity (Mars Science Laboratory)

Simple reference input

Disk drive

Track following

Reduce disturbances

Yaw movement of wind mill

Unstable systems

Magnetically levitated train

has to be stabilized

Unstable systems

Fighter aircraft

has to be stabilized

helicopter

Also unstable without control

submarine

History of control

ca. 300 B.C.

Water clock

Incubator by Cornelis Drebbel

1624

Regulator by James Watt —

Controlled steam engine

Steam engine with Watt's regulator

Development of the Control Theory:

-Stability
-System theory
-Control techniques

Feedback control / controller design

Bode, Nyquist

