Laboratórna úloha číslo 5

Daniel Haluška

GitHub:

Link repozitára: https://github.com/DaNNym99/Digital-electronics-1

1. Zapojenie Nexis 7 a Tabuľka počítaných hodnôt:

1.1. Board

1.2. Mapovanie 7-segment

Ozacenie	Port (Entity)	Funkcia
J15	SW	L=0V, H=3,3V
P17	RESET	L=0V, H=3,3V
T10	CA	А
R10	СВ	В
K16	CC	С
K13	CD	D
P15	CE	E
T11	CF	F
L18	CG	G
J17	AN[0]	KAT 1
J18	AN[1]	KAT 2
T9	AN[2]	KAT 3
J14	AN[3]	KAT 4
P14	AN[4]	KAT 5
T14	AN[5]	KAT 6
K2	AN[6]	KAT 7
U13	AN[7]	KAT 8
H17 - V11	LED[0-15]	LED 1-16

1.3. Tabuľka prepočátaných hodnôt

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1a80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"f_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17d_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2fa_f080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5f5_e100"	b"0101_1111_0101_1110_0001_0000_0000"

2. Obojsmerný čítač

2.1. Proces p_cnt_up_down

```
p_cnt_up_down : process(clk)
   begin
       if rising edge(clk) then
                                    -- Synchronous reset
           if (reset = '1') then
               s_cnt_local <= (others => '0'); -- Clear all bits
           elsif (en_i = '1') then -- Test if counter is enabled
                -- TEST COUNTER DIRECTION HERE
               if (cnt_up_i = '1') then
                   s_cnt_local <= s_cnt_local + 1;</pre>
               elsif (cnt_up_i = '0') then
                    s_cnt_local <= s_cnt_local - 1;</pre>
               end if;
           end if;
       end if;
   end process p_cnt_up_down;
```

2.2. Proces p_reset_gen p_stimulus

```
p_reset_gen : process
begin
     s_reset <= '0';
    wait for 12 ns;
    -- Reset activated
    s reset <= '1';
    wait for 74 ns;
    s_reset <= '0';
    wait;
 end process p_reset_gen;
 p_stimulus : process
 begin
     report "Stimulus process started" severity note;
     -- Enable counting
     s_en <= '1';
    -- Change counter direction
     s_cnt_up <= '1';
    wait for 400 ns;
    s_cnt_up <= '0';
    wait for 340 ns;
     -- Disable counting
     s en <= '0';
```

```
report "Stimulus process finished" severity note;
wait;
end process p_stimulus;
```

2.3. Vystup symulácie

• Pri umiestnení kurzora dôjde k pretečeniu čátač počíta odznova

3. Top level

3.1. Súbor top.vhl pre 4-bit

```
g_CNT_WIDTH => 4
    port map(
         --- WRITE YOUR CODE HERE
         clk => CLK100MHZ,
         reset => BTNC,
         en_i => s_en,
         cnt_up_i => SW,
         cnt_o => s_cnt
      );
-- Instance (copy) of hex_7seg entity
hex2seg : entity work.hex_7seg
    port map(
         hex_i
                => s_cnt,
         seg_o(6) \Rightarrow CA,
         seg_o(5) \Rightarrow CB
         seg_o(4) \Rightarrow CC,
         seg_o(3) \Rightarrow CD,
         seg_o(2) \Rightarrow CE
         seg_o(1) \Rightarrow CF,
         seg_o(0) \Rightarrow CG
    );
-- Connect one common anode to 3.3V
AN <= b"1111_1110";
```

3.2. Rozšírenie pre 16-bit

```
clk_en1 : entity work.clock_enable
       generic map(
            --- WRITE YOUR CODE HERE
            g_MAX => 1000000
        )
        port map(
           --- WRITE YOUR CODE HERE
            clk => CLK100MHZ,
           reset => BTNC,
           ce_o => s_en_16
        );
        bin_cnt1 : entity work.cnt_up_down
        generic map(
           --- WRITE YOUR CODE HERE
           g_CNT_WIDTH => 16
        )
        port map(
            --- WRITE YOUR CODE HERE
            clk => CLK100MHZ,
            reset => BTNC,
```

3.3. Schema 4-bit + 16-bit čítača

