Architecture technique

Dématérialisation d'un processus de paiement

COMETS Jean-Marie DELMARRE Adrian REYNOLDS Nicolas TURPIN Pierre

30 octobre 2014

Table des matières

1	Présentation générale	3
2	Choix de la solution cloud	4
3	Passage à l'échelle (scaling)	4
4	Sécurité 4.1 Sécurité d'infrastructure	4

1 Présentation générale

La figure 1 détaille l'architecture technique choisie. Cependant, certains points doivent être justifiés ou davantage expliqués.

FIGURE 1 – Schéma général de l'architecture technique choisie

Serveurs applicatifs L'accés aux serveurs applicatifs est gouverné par une couche **firewall** et une couche **proxy**. La couche firewall est nécessaire pour gérer le trafic indésirable (se référer à la section 4.2 pour plus de détails). La couche proxy permet de gérer le passage à l'échelle des serveurs applicatifs.

Le principe général du passage à l'échelle des serveurs applicatifs est basé sur la duplication et synchronisation de plusieurs instances des serveurs applicatifs, avec balance de charge sur ces dernières, régie par le proxy (se référer à la section **TODO** pour plus de détails).

Base de données L'accés au sous-système de base de données est régi par un deuxième firewall, spécifiquement conçu pour le SGBD choisi. L'idée est de bloquer l'accés au sous-système de base de données au monde extérieur, autorisant uniquement l'accés au proxy servant à répartir les accés aux différentes base de données "maîtres".

2 Choix de la solution cloud

3 Passage à l'échelle (scaling)

4 Sécurité

4.1 Sécurité d'infrastructure

En choisissant une solution cloud, la disponibilité de l'infrastructure est garantie par le prestataire cloud, en l'occurence **Amazon AWS**. Le système peut donc être considéré relativement sécurisé vis-à-vis des attaques par déni de service (DoS simple), ou autre attaque d'infrastructure.

De plus, la disponibilité du système est dépendante de la disponibilité d'AWS, en l'occurence celle-ci peut être assurée selon le prix de la prestation. Le taux de panne de 0% ne peut malheureusement pas l'être, du fait du nombre de facteurs externes entrant en jeu. Cependant, un taux de 99%, voire jusqu'à 99.95% peut l'être par AWS (source: http://aws.amazon.com/ec2/sla/).

En passant par une solution cloud, le système est aussi protégé des attaques physiques (coupure générale, attaque électromagnétique, etc...), mais encore dépendant de l'infrastructure d'AWS.

FIGURE 2 – Emplacements géographiques possibles des instances EC2

4.2 Gestion du trafic indésirable

Le trafic indésirable correspond au trafic qui n'est pas directement lié à l'utilisation normale du système. Il peut être utilisé comme attaque visant à réduire exploiter des failles d'autres services présents sur la VM, ou tout simplement visant à réduire la disponibilité du système en multipliant les accés (DoS).

EC2 met à disposition un firewall pour ses instances, ce qui permet de régler son accés. Cependant, les VM étant installées à l'intérieur d'une instance, elles doivent toutes être configurées séparément pour accepter uniquement le trafic qui les concerne.

Fermeture maximale Un document relatant des conseils de sécurisation d'instance EC2, produit par ce même service, est disponible à l'adresse suivante: http://aws.amazon.com/articles/1233/ (en date du 30 octobre 2014). L'idée est simplement de n'autoriser que le trafic qui est attendu, et par défaut de bloquer toute connexion entrante ne correspondant pas à une règle spécifiée.

Surcouche base de données Pour garantir la sécurité des données, une surcouche firewall est ajoutée au bloc "base de données. Dans le cas où un des systèmes applicatifs serait compromis, ce pare-feu supplémentaire limitera l'ampleur des dégâts (pas d'accés aux archives par exemple).