Vinod Raman

vkraman@umich.edu

https://vinodkraman.github.io

Education

University of Michigan

PhD Student in Statistics

Ann Arbor, MI

2021 - 2026

Thesis Advisor: Ambuj Tewari

University of Michigan Ann Arbor, MI

BSE Computer Science, BSE Chemical Engineering

Thesis Advisors: Mahdi Cheraghchi, Sindhu Kutty, Andrej Lenert

2015 - 2020

Industry Experience

AppleCupertino, CAAIML Research InternMay - Aug. 2024

 Worked with Kunal Talwar and Hilal Asi on differentially private adversarial bandits and privately tracking the best expert

- Worked with Parikshit Gopalan on the communication complexity of uniform convergence
- Work resulted in a paper currently in submission at ICLR 2025

AmazonSeattle, WASoftware Engineering InternMay 2021

• Used React to design a mobile user dashboard for the Alexa Fashion team

WoveSan Francisco, CASoftware Engineering InternMay - Aug. 2019

- Deployed bot-detection mechanism in Java and Ruby to improve the robustness of customer interaction
 - Engineered and deployed Beta distribution priors for estimating click-to-conversion rates of new ad-placements in Java
 - Implemented contextual bandit algorithms for improving click-through-rate and helped design an off-policy bandit evaluation framework in Python

Publications

*denotes equal contribution

data against web crawlers

1. **V.Raman***, U.Subedi*, A.Tewari. A Unified Theory of Supervised Online Learnability. *Conference on Algorithmic Learning Theory (ALT)*, 2025.

https://arxiv.org/abs/2307.03816

2. **V.Raman***, U.Subedi*, A.Tewari. A Characterization of Multioutput Learnability. *Journal of Machine Learning Research (JMLR)*, 2024.

https://arxiv.org/abs/2301.02729

3. **V.Raman**, A.Tewari. Online Classification with Predictions. *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

https://arxiv.org/abs/2405.14066

- 4. S.Hanneke*, **V.Raman***, A. Shaeiri*, U.Subedi*. Multiclass Transductive Online Learning. *Conference on Neural Information Processing Systems (NeurIPS)*, 2024. Spotlight.
- 5. **V.Raman***, U.Subedi*, A.Tewari. Smoothed Online Classification can be Harder than Batch Classification. *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

https://arxiv.org/pdf/2405.15424

6. **V.Raman***, U.Subedi*, A. Raman, A.Tewari. Apple Tasting: Combinatorial Dimensions and Minimax Rates. *Conference on Learning Theory (COLT)*, 2024.

https://arxiv.org/abs/2310.19064

7. **V.Raman***, U.Subedi*, A.Tewari. Online Learning with Set-Valued Feedback. *Conference on Learning Theory (COLT)*, 2024.

https://arxiv.org/abs/2306.06247

8. **V.Raman***, U.Subedi*, A.Tewari. Online Infinite-Dimensional Regression: Learning Linear Operators. *Conference on Algorithmic Learning Theory (ALT)* 2024.

https://arxiv.org/abs/2309.06548

9. A.Raman, **V.Raman***, U.Subedi*, I.Mehalel*, A.Tewari. Multiclass Online Learnability under Bandit Feedback. *Conference on Algorithmic Learning Theory (ALT)* 2024.

https://arxiv.org/abs/2308.04620

10. **V.Raman***, U.Subedi*, A.Tewari. On Proper Learnability between Average- and Worst-case Robustness. *Conference on Neural Information Processing Systems (NeurIPS)* 2023.

https://arxiv.org/abs/2211.05656

11. **V.Raman***, U.Subedi*, A.Tewari. On the Learnability of Multilabel Ranking. *Conference on Neural Information Processing Systems (NeurIPS)* 2023. **Spotlight**.

https://arxiv.org/abs/2304.03337

12. S.Hanneke*, S.Moran*, **V.Raman***, U.Subedi*, A.Tewari. Multiclass Online Learning and Uniform Convergence. *Conference on Learning Theory (COLT)* 2023.

https://arxiv.org/abs/2303.17716

13. **V.Raman**, A.Tewari. Online Agnostic Multiclass Boosting. *Conference on Neural Information Processing Systems (NeurIPS)* 2022.

https://arxiv.org/abs/2205.15113

14. **V.Raman**, T.Burger, A.Lenert. Design of thermophotovoltaics for tolerance of parasitic absorption. *Optics Express*, 27(22):31757–31772, 2019.

https://doi.org/10.1364/OE.27.031757

Works In Submission

1. **V.Raman***, U.Subedi*, A.Tewari. The Complexity of Sequential Prediction in Dynamical Systems. *Preprint*, 2024.

https://arxiv.org/abs/2402.06614

2. H. Asi, V.Raman*, K. Talwar. Faster Rates for Private Adversarial Bandits. In Submission, 2024

Preprints

1. A.Raman, V.Raman. Generation from noisy examples. Preprint, 2025.

https://arxiv.org/abs/2501.04179

- 2. **V.Raman**, A.Tewari. Generation through the lens of learning theory. *Preprint*, 2024. https://arxiv.org/abs/2410.13714
- 3. **V.Raman***, D.Zhang*, Y.Jung, A.Tewari. Online Boosting for Multilabel Ranking with Top-*k* Feedback. *Preprint*, 2020.

https://arxiv.org/abs/1910.10937

Software

- Programming: Python, C++, Java, Javascript, Matlab, React Native
- Frameworks: PyTorch, Tensorflow, DialogFlow, MapReduce, Hadoop, Mockito

Awards & Scholarships

MSSISS Best Oral Presentation (University of Michigan)
NeurIPS Scholar Award
Outstanding First-Year Ph.D. Student (University of Michigan)
Departmental Outstanding GSI Team Award (University of Michigan)
NSF Graduate Research Fellowship
First-year Rackham Fellowship (University of Michigan)
American Statistical Association Best Poster Award (University of Michigan) 2020
Landes Prize in Technical Communication (University of Michigan)
Future Leaders In Chemical Engineering
Bandemer Scholarship (University of Michigan)
Pursley Scholarship (University of Michigan)
A.H. White Scholarship (University of Michigan)
James B. Angell Scholar (University of Michigan)
Dean's List (University of Michigan)

Talks

- 1. Lower Bounds for Differential Privacy Under Continual Observation and Online Threshold Queries. *COLT*, 2024.
- 2. Apple Tasting: Combinatorial Dimensions and Minimax Rates. *COLT*, 2024.
- 3. Trichotomies in Online Learnability. Apple MLR Reading Group, 2024.
- 4. Revisiting the Learnability of Apple Tasting. *Michigan Student Symposium for Interdisciplinary Statistical Sciences (MSSISS)*, 2024.
- 5. Multiclass Online Learnability under Bandit Feedback. ALT, 2024.
- 6. Multiclass Online Learning and Uniform Convergence. *University of Michigan EECS Theory Seminar*, 2024.
- 7. On Classification-Calibration of Gamma-Phi Losses. COLT, 2023.

References

- 1. **Ambuj Tewari**, Professor, Statistics, University of Michigan, Ann Arbor MI, USA. *Email*: tewaria@umich.edu | *Phone*: 734-615-0928
- 2. **Steve Hanneke**, Assistant Professor, Computer Science, Purdue University, West Lafayette IN, USA. *Email*: steve.hanneke@gmail.com

3.	Mahdi Cheraghchi , Associate Professor, Computer Science, University of Michigan, Ann Arbor MI, <i>Email</i> : mahdich@umich.edu <i>Phone</i> : 734-763-9165	USA.