«Моделирование»

Преподаватель: АЛИЕВ Тауфик Измайлович, доктор технических наук, профессор

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

6. СИСТЕМЫ С ПРИОРИТЕТНЫМ ОБСЛУЖИВАНИЕМ

- 1. Базовая модель с неоднородным потоком
- 2. Характеристики системы с ДО БП и ДО ОП
- 3. Характеристики системы с ОП в режиме перегрузки
- 4. Характеристики системы с АП
- 5. Дисциплины обслуживания со смешанными приоритетами (ДО СП)
- 6. GPSS-модель разомкнутой CeMO с неоднородным потоком и приоритетами

Литература

для самостоятельной подготовки

- 1. Алиев Т.И. Моделирование дискретных систем. СПб: СПбГУ ИТМО, 2009. 363 с. (раздел 4 «Аналитическое моделирование», параграф 4.3) https://books.ifmo.ru/book/445/osnovy_modelirovaniya_diskretnyh_sistem.htm
- 2. Алиев Т.И., Муравьева-Витковская Л.А., Соснин В.В. Моделирование: задачи, задания, тесты. Учебное пособие. СПб.: НИУ ИТМО, 2011. 197 с. (раздел 1 параграф 1.3 пункты 1.3.4 1.3.6; раздел 2 параграф 2.2 (задачи 2.14 2.21); раздел 4 параграф 4.4)

https://books.ifmo.ru/book/686/modelirovanie:_zadachi,_zadaniya,_testy.htm

Базовая модель с неоднородным потоком заявок

Деление на классы:

- 1) длительности обслуживания;
- 2) приоритеты.

Дисциплины обслуживания (ДО):

БП, ОП, АП, СП, ...

Две группы характеристик обслуживания заявок:

- характеристики <u>по кажедому классу</u> (потоку) заявок: y_i , ρ_i , l_i , m_i , w_i , u_i ($i=\overline{1,N}$);
- •характеристики объединенного (суммарного) потока заявок:

$$\Lambda = \sum_{i=1}^{H} \lambda_i; \quad Y = \sum_{i=1}^{H} y_i; \quad R = \sum_{i=1}^{H} \rho_i; \quad L = \sum_{i=1}^{H} l_i; \quad M = \sum_{i=1}^{H} m_i;$$

$$W=\sum_{i=1}^{H} \xi_i w_i$$
; $U=\sum_{i=1}^{H} \xi_i u_i$; $\xi_i=\lambda_i/\Lambda \leq 1$ $(i=\overline{1,H})$ - вероятность

Характеристики системы с ДО БП и ДО ОП

$$w_k^{\text{B\Pi}} = \frac{\sum_{i=1}^{H} \lambda_i b_i^2 (1 + \nu_{b_i}^2)}{2(1 - R)} \quad (k = 1, ..., H)$$

$$R = \sum_{i=1}^{H} \rho_i = \sum_{i=1}^{H} \lambda_i b_i < 1$$

$$w_k^{\text{OII}} = \frac{\sum_{i=1}^{H} \lambda_i b_i^2 (1 + \nu_{b_i}^2)}{2(1 - R_{k-1})(1 - R_k)} \qquad (k = 1, ..., H)$$

$$R_{k-1} = \sum_{i=1}^{k-1} \rho_i; \qquad R_k = \sum_{i=1}^{k} \rho_i \qquad (R_0 = 0)$$

Характеристики системы с ОП в режиме перегрузки

$$Y = y_1 + y_2 + y_3 = \lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3$$

Характеристики системы с АП

$$w_k^{A\Pi} = \frac{\sum_{i=1}^k \lambda_i b_i (1 + v_{b_i}^2)}{2(1 - R_{k-1})(1 - R_k)} + \frac{R_{k-1} b_k}{1 - R_{k-1}} \qquad (k = 1, ..., H) ; \quad R_{k-1} = \sum_{i=1}^{k-1} \rho_i ; \quad R_k = \sum_{i=1}^k \rho_i$$

Закон сохранения:

$$\sum_{i=1}^{H} \rho_{i} w_{i} = Const$$

$$\sum_{i=1}^{H} \rho_{i} w_{i} = \frac{R \sum_{i=1}^{H} \lambda_{i} b_{i}^{2} (1 + v_{bi}^{2})}{2(1 - R)}$$

Дисциплины обслуживания со смешанными приоритетами (ДО СП)

$$Q^{\text{AII}} = \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Q^{\mathbf{C}\Pi_1} = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Q^{\text{CII}_2} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

5. Сетевые модели дискретных систем

GPSS-модель разомкнутой CeMO с неоднородным потоком и

приоритетами

Met_2 SEIZE Uzel_2

ADVANCE (Exponential(50,0,10)+Exponential(50,0,10))

RELEASE Uzel_2
TRANSFER .Met 1

GENERATE (Exponential(10,0,50)),,,,2

QUEUE QUz1_k2

PREEMPT Uzel_1,PR,,25

DEPART QUz1 k2

ADVANCE 10,5

RETURN Uzel 1

TERMINATE 1

$\begin{array}{ccc} \mathbf{PREEMPT} & \mathbf{A}, [\mathbf{B}], [\mathbf{C}], [\mathbf{D}], [\mathbf{E}] \end{array}$

В=PR – приоритетный режим (АП)

[режим прерывания]

С – метка для прерв.транзакта [СБС]

D – номер параметра для $T_{\text{до}}$

E=RE – режим удаления

RETURN

(Сотл.пр.; Спр.; Сзад.)