STANISLAS Thème

Autour des endomorphismes nilpotents

PSI 2021-2022

Soient $n \in \mathbb{N}^*$, E un \mathbb{K} -espace vectoiel de dimension finie n et $f \in \mathcal{L}(E)$. Pour tout $k \in \mathbb{N}^*$, on note $f^k = \underbrace{f \circ \cdots f}_{k \text{fois}}$. L'endomorphisme f

est nilpotent s'il existe un entier $k \in \mathbb{N}$ tel que $f^k = 0_{\mathscr{L}(E)}$. Dans toute la suite, sauf mention contraire, f et g désignent des endomorphismes nilpotents. Pour tout $k \in \mathbb{N}$, on pose $r_k = \operatorname{Rg} f^k$ et $d_k = \dim(\operatorname{Ker} f^k)$.

Partie I: Généralités

- **1.** On suppose que f est non nul. Montrer qu'il existe un entier naturel non nul p tel que $f^{p-1} \neq 0_{\mathscr{L}(E)}$ et $f^p = 0_{\mathscr{L}(E)}$.
- L'entier p est l'indice de nilpotence de f. Par convention, l'indice de nilpotence de l'endomorphisme nul vaut 0.
- **2.** On note D l'opérateur de dérivation sur $\mathbb{R}_{n-1}[X]$. Montrer que D est un endomorphisme nilpotent et déterminer son indice de nilpotence.
- **3.** Montrer qu'il existe $x_0 \in E$ tel que $x_0 \notin \operatorname{Ker} f^{p-1}$. Dans toute la suite, on note $\mathscr{B} = (x_0, f(x_0), f^2(x_0), \dots, f^{p-1}(x_0))$.
- **4.** Montrer que \mathscr{B} est une famille libre et en déduire que $p \leq n$.
- **5.** Soit $u \in \mathcal{L}(E)$ tel que pour tout $x \in E$, il existe $k \in \mathbb{N}^*$ tel que $u^k(x) = 0_E$.
 - a) Montrer que u est un endomorphisme nilpotent.
- **b)** Montrer que ce résultat est faux si on ne suppose plus E de dimension finie.
- **6.** Montrer que, pour tout entier naturel k, $r_k r_{k+1} = \dim(\operatorname{Ker} f \cap \operatorname{Im} f^k)$.
- 7. On suppose que f et g commutent. Montrer que $f \circ g$ et f+g sont des endomorphismes nilpotents.

8. Le scalaire $\lambda \in \mathbb{K}$ est une valeur propre de f s'il existe un vecteur $x \in E$ non nul tel que $f(x) = \lambda x$. Montrer que λ est une valeur propre de f si et seulement si $\lambda = 0$.

Partie II : Cas où l'indice de nilpotence est maximal

On suppose dans cette partie que f est nilpotent d'indice de nilpotence égal à n.

- **9.** Montrer que la famille $\mathscr{B} = (x_0, f(x_0), f^2(x_0), \dots, f^{n-1}(x_0))$ est une base de E et décrire $\operatorname{Mat}_{\mathscr{B}}(f)$.
- **10.** Déterminer, pour tout $k \in [0, n]$, les valeurs de d_k et r_k et en déduire que Im $f^k = \operatorname{Ker} f^{n-k}$.
- 11. Soit F un sous-espace vectoriel de dimension r de E stable par f. On note g l'endomorphisme induit par f sur F.
 - a) Montrer que $g^n = 0_{\mathcal{L}(E)}$ et en déduire que $g^r = 0$.
 - **b)** Montrer que $F \subset \operatorname{Ker} f^r$.
 - c) En déduire que $F = \text{Ker } f^r$.
 - **d)** Décrire l'ensemble des sous-espaces vectoriels stables par f.
- **12.** On note $\mathscr{C}(f) = \{g \in \mathscr{L}(E) ; f \circ g = g \circ f\}$. Soit $g \in \mathscr{C}(f)$.
- **a)** On note a_0, \ldots, a_{n-1} les coordonnées de $g(x_0)$ dans la base \mathscr{B} . Exprimer, pour tout entier $k \in [0, n-1]$, les vecteurs $g(f^k(x_0))$ dans la base \mathscr{B} .
 - **b)** En déduire que g est un polynôme en f.
 - c) Déterminer $\mathscr{C}(f)$ ainsi que sa dimension.

Partie III : Réduction de JORDAN des endomorphismes nilpotents

13. Montrer qu'il existe une base $\widetilde{\mathscr{B}}$ de E telle que la matrice de f dans la

base
$$\widetilde{\mathscr{B}}$$
 soit de la forme $\begin{pmatrix} J_1 & & 0 \\ & \ddots & \\ 0 & & J_r \end{pmatrix}$, où, pour tout $i \in [\![1,r]\!]$, la ma-

Thème X PSI

trice
$$J_i$$
 est une matrice carrée de la forme $J_i = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$.

Les matrices J_i sont appelés blocs de Jordan.

Indication : On pourra raisonner par récurrence sur l'indice de nilpotence.

14. Relier la dimension du noyau de f à l'entier r.

Mathématiciens

JORDAN Camille (5 jan. 1838 à Lyon-22 jan. 1922 à Paris).