Model Evaluation

AW

Lecture Overview

1. Missing Attributes Handling

2. Model Evaluation

3. Performance Comparison

Handling Missing Attribute Values

- Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
 - Needs method of how to distribute instance with missing value to child nodes
 - Needs method of how a test instance with missing value is classified

Computing Impurity Measure

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	?	Married	90K	Yes

Missing value

Before Splitting:

Entropy(Parent)

$$= -0.3 \log(0.3) - (0.7)\log(0.7)$$
$$= 0.8813$$

	Class	Class	
	= Yes	= No	
Refund=Yes	0	3	
Refund=No	2	4	
Refund=?	1	0	

Split on Refund:

$$Entropy(Refund = Yes) = 0$$

$$Entropy(Refund = No)$$

= $-(2/6)\log(2/6) - (4/6)\log(4/6)$
= 0.9183

Entropy (Children)

$$= 0.3 (0) + 0.6 (0.9183) = 0.551$$

 $Gain = 0.9 \quad 0.8813 - 0.551 = 0.2417$

Distribute Instances-J48 solutions

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Build DT With Distributed Instances

Tid	Refund	Marital Status	Taxable Income	Class
3	No	Single	70K	No
5	No	Divorced	95K	Yes
8	No	Single	85K	Yes

Tid	Refund	Marital Status	Taxable Income	Class
2	No	Married	100K	No
6	No	Married	60K	No
9	No	Married	75K	No
10	?	Married	90K	Yes

Marital

Taxable

Refund

Classify New Instances w/Missing Data

New record:

Tid	Refund	Marital Status	Taxable Income	Class
11	No	?	85K	?
,	•	•		

NO

Single,
Divorced

TaxInc

NO

NO

NO

YES

 $Pr(Marital\ Status = Married) = \frac{3.67}{6.67}$ $Pr(Marital\ Status \in \{Single, Divorced\})$ $= \frac{3}{6.67}$

Lecture Overview

1. Missing Attributes Handling

2. Model Evaluation

3. Performance Comparison

Model Evaluation | Model Evaluation | AW |

Data Fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision

Model Evaluation | Model Evaluation | AW | |

Model Evaluation

- Metrics for Model Evaluation
 - How to evaluate the performance of a model?
- Methods for Model Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation | Model Evaluation | AW | |

10

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS			
		Class = Yes	Class = No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

		PREDICTED CLASS			
•		sed metric:	Class=Yes	Class=No	
	ACTUAL	Class=Yes	a (TP)	b (FN)	
		Class=No	C	d	
			(FP)	(TN)	

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Model Evaluation | Model Evaluation | AW | |

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Model Evaluation | Model Evaluation | AW | |

13

Cost Matrix

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	=	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
<i>SE,</i> (86		60	250

Accuracy = 80%

Cost = 3910

Model M ₂	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	250	45
	•	5	200

Accuracy = 90%

Cost = 4255

Cost vs. Accuracy

Count	PREDICTED CLASS						
	Class=Yes Class	Class=No					
ACTUAL CLASS	Class=Ye	а	b				
CLASS	Class=No	С	d				

Accuracy is proportional to cost if we have

1. $C(Yes No)=C(No Yes)=qC$	1.	C(Yes	No)=C(No	Yes)	= qC
-----------------------------	----	-------	----------	------	------

2.
$$C(Yes|Yes)=C(No|No)=pC$$

and $p=1-q$
Let $N=a+b+c+d$
then $Accuracy=(a+d)/N$

Cost	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	рС	qC				
CLASS	Class=No	qC	рС				

$$Cost = pC (a + d)$$

$$+ qC (b + c)$$

$$= pC(a + d)$$

$$+ qC(N - a - d)$$

$$= qCN - (q - p)C(a + d)$$

$$= d$$

 $NC[q - (q - p) \times Accuracy]$

16

Model Evaluation | Model Evaluation | AW | | |

Cost-Sensitive Measures

$$Precision(p) = \frac{a}{a+c}$$

$$Recall(r) = \frac{a}{a+b}$$

$$F - measure(F) = \frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

$$Weighted Accuracy = \frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Model Evaluation | Model Evaluation | AW | |

18

Learning Curve

Learning curve shows how accuracy changes with varying sample size

Requires a sampling schedule for creating learning curve:

- Arithmetic sampling (Langley, et al)
- Geometric sampling (Provost et al)

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

19

Model Evaluation | Model Evaluation | AW | |

Arithmetic and Geometric Sampling

- Both methods are a progressive sampling that increase sample size until the objective is satisfied
- Objective = stopping condition for both methods is when the DT measure of accuracy stop changing (measure-wise m(i) = m(i+1)).
- Arithmetic sampling: sizes are increased so that sample sizes form an arithmetical progression, i.e. $S_i = S_0 + i * C$ where C is a constant and S_0 initial sample size
- Geometric sampling: sizes are increased so that sample sizes form a geometric progression, i.e. $S_i=S_0*C\cdot i$, where S_0 and C are as before

Model Evaluation Model Evaluation AW

20

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k = n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement
 - Records that are not chosen become test set.
 - Since probability of being chosen uniformly at random is
 - $1 \left(1 \frac{1}{n}\right)^n \sim 1 e^{-1}$ on the average ~0.633 of the records are chosen

Lecture Overview

1. Missing Attributes Handling

2. Model Evaluation

3. Performance Comparison

Comapring 2 Models: Test of Significance

- Given two models:
 - Model M1: accuracy = 85%, tested on 30 instances
 - Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

- Recall: prediction can be regarded as a Bernoulli trial
 - A Bernoulli trial has 2 possible outcomes
 - Possible outcomes for prediction: correct or wrong
 - Collection of Bernoulli trials has a Binomial distribution:
 - $x \sim Bin(N, p)$ where x: number of correct predictions
 - e.g: Toss a fair coin 50 times, how many heads would turn up?

```
Expected number of heads = N \times p = 50 \times 0.5 = 25
Variance of the number of heads = N \times p \times (1 - p)
=25×0.5=12.5
```

• Given x (# of correct predictions) or equivalently, acc = x/N, and N (# of test instances). Can we predict p (true accuracy of model)?

Comparing Performance of 2 Models

- Given two models, say M_1 and M_2 , which is better?
 - M_1 is tested on D_1 (size= n_1), found x_1 incorrect predictions, experimental error rate = e_1
 - M_2 is tested on D_2 (size= n_2), found x_2 incorrect predictions, experimental error rate = e_2
 - Bernoulli trials x_i is random Binomially distributed number of errors in model $M_i \Rightarrow x_i/n_i$ is random binomially distributed error rate in model M_i after n_i trials. Theoretically

$$\mu_i = E(x_i)/n_i = n_i \times e_i/n_i = e_i$$

and

$$\sigma_i^2 = E((x_i/n_i - E(x_i/n_i))^2) = \mu_i \times (1 - \mu_i)/n_i$$

• If n_i is big enough approximate binomial distribution with normal

$$e_1 \sim N(\mu_1, \sigma_1)$$
 $e_2 \sim N(\mu_2, \sigma_2)$ $\hat{\mu}_i = e_i \text{ and } \hat{\sigma}_i = \frac{e_i(1-e_i)}{n_i}$

Estimate

What are We Testing?

- We assume that we know theoretical distribution of error rate (binomial modeled by normal), so we have accurate estimates of its variance, without using statistic (i.e. not sample variance)!
- Difference in accuracy is a random variable. Since D1 and D2 are independent, difference in accuracy is normally distributed variable with mean $\mu_1 \mu_2$ and $\sigma_1{}^2 \sigma_2{}^2$
- We test whether the sample mean difference in accuracy that we know $(d=e_1-e_2)$ is different from the unknown theoretical difference in accuracy.
- Hypothesis that we are testing is $H0: \mu_1 \mu_2 = 0$. So we pick the level of confidence at which we expect H0 to hold.
- Then we find the interval in which the theoretical mean difference lies around d at a given confidence level
- If it includes 0 then H0 is indeed valid.

Comparing Performance of 2 Models

• To test if performance difference is statistically significant:

$$d = e_1 - e_2$$

- $d \sim N(d_t, \sigma_t)$ where d_t is the true difference
- Since D1 and D2 are independent, their variance adds up:

$$\sigma_t^2 = \sigma_1^2 + \sigma_2^2 \cong \hat{\sigma}^2_t = \hat{\sigma}_1^2 + \hat{\sigma}_2^2$$

$$= \frac{e_1(1 - e_1)}{n_1} + \frac{e_2(1 - e_2)}{n_2}$$

- When $n_1 = n_2 = N$ we have $\sigma_t^2 = \frac{e_1(1-e_1)+e_2(1-e_2)}{N}$
- At (1α) confidence level,

$$d_t = d \pm Z_{\alpha/2} \hat{\sigma}_t$$

An Illustrative Example

- Given: M_1 : $n_1 = 30, e_1 = 0.15$ M_2 : $n_2 = 5000, e_2 = 0.25$
- $d = |e_2 e_1| = 0.1$ (2-sided test)
- At 95% confidence level, $Z_{\alpha/2}=1.96$

$$\hat{\sigma}_d^2 = \frac{0.15(1-0.15)}{30} + \frac{0.25(1-0.25)}{5000} = 0.0043$$

$$d_t = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$$

=> Interval contains 0 => difference may not be statistically significant

An Illustrative Example (cont.)

At what confidence the difference is statistically significant?

$$\hat{\sigma}^2_d = 0.0043$$

$$d_t = 0.100 \pm Z_{\alpha/2} \times \sqrt{0.0043} > 0$$
?

$$Z_{\alpha/2} < \frac{0.100}{\sqrt{0.0043}} = 1.527 \Rightarrow (1 - \alpha) = .937$$

=> Interval does not contains 0 => difference may is statistically significant

Comparing Performance of 2 Algorithms

- Each learning algorithm may produce *k* models:
 - L_1 may produce M_{11} , M_{12} , ..., M_{1k}
 - L_2 may produce M_{21} , M_{22} , ..., M_{2k}
- If models are generated on the same test sets D_1, D_2, \dots, D_k (e.g., via k-cross-validation)
 - For each test set: compute $d_j = e_{1j} e_{2j}$
 - $oldsymbol{d}_{j}$ are i.i.d. variables with mean d_{t} and variance σ_{t}
 - Estimate d_t with $\bar{d} = \frac{1}{k} \sum_{1}^{k} d_i$
 - So what is the variance then? we do not know it, so we need to estimate it statistically

Confidence Intervals - Student Distribution

So what are we doing with these confidence interval calculations?

- We are trying to determine whether the true *unknown* mean, d_t is based on a sample mean \bar{d} . It's a range of plausible values for d_t .
- But the calculation of confidence intervals (so far) assumes we know true standard deviation σ (or at least have a good estimate of it without using statistic)
- This doesn't often happen in real life. If we are trying to estimate μ , we will also probably have to estimate σ for unknown distribution from the same statistic.
- What's our sample-based estimate of the standard deviation? s
- This throws off everything. The calculation is no longer based on a normal distribution, but a *t*-distribution

Confidence Intervals - Student (cont.)

• When the true standard deviation σ is not known we need to use s instead. The usual formula:

$$\left(\overline{x}-z^*\frac{\sigma}{\sqrt{n}}, \overline{x}+z^*\frac{\sigma}{\sqrt{n}}\right)$$

is then replaced by:

$$\left(\overline{x} - t_{df}^* \frac{s}{\sqrt{n}}, \, \overline{x} + t_{df}^* \frac{s}{\sqrt{n}}\right)$$

where the multiplier z^* is replaced by a value from the t-distribution with df = (n-1) `degrees of freedom'.

• the t-distribution is really a family of distributions that look like the normal distribution, but is spread out further (fatter tails).

Confidence Intervals - Student (cont.)

	Upper tail probability p											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501 4.297	5.041
9	0.703	0.883	1.100	1.383 1.372	1.833 1.812	2.262 2.228	2.398 2.359	2.821 2.764	3.250 3.169	3.690 3.581	4.144	4.781
1	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
2	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
3	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
4	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
5	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
6	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
7	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
8	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
9	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
0.	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
1	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
2	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
.3	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
4	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
.5	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
6	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
7	0.684	0.855	1.057 1.056	1.314	1.703	2.052 2.048	2.158	2.473 2.467	2.771 2.763	3.057 3.047	3.421 3.408	3.690
8	0.683	0.855 0.854	1.055	1.313 1.311	1.701 1.699	2.045	2.154 2.150	2.462	2.756	3.038	3.396	3.674
0	0.683	0.854	1.055	1.310	1.697	2.043	2.147	2.457	2.750	3.030	3.385	3.646
0	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
0	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
0	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
ŏ	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
ŏ l	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
0	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
*	0.674	0.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.99

Significance Test for Unknown Variance

• To test the hypothesis H0: $\mu = \mu_0$ against an alternative hypothesis, compute the one-sample t-statistic

$$t_{df} = \frac{\overline{X} - \mu_0}{s / \sqrt{N}}$$

computed using sample mean and variance

• Confidence p-values are computed by comparing the statistic with a t-distribution with df = N - 1.

2 Algorithms Peformance Comparison (cont.)

• Estimate:

$$S_t^2 = \frac{\sum_{j=1}^k (d_j - \overline{d})^2}{(k-1)};$$

• Hypothesis H0 that we are testing is that $d_t=0$ so we find confidence interval

$$d_t = d \pm t_{1-\alpha,k-1} \frac{s_t}{\sqrt{k}}$$

at appropriate confidence level and if contains 0 then H0 is valid

Instructive Example

In 7-cross validation experiments on two DT trees out of 2000 test records accurately were evaluated

```
DT<sub>1</sub>: 1200 1219 1103 1213 1258 1325 1295
DT<sub>2</sub>: 1247 1098 1185 1087 1377 1363 1121
```

- So d_1 , ... d_7 values are: $-0.024\ 0.061\ -0.041\ 0.063\ -0.060\ -0.019\ 0.087$
- \bar{d} =0.0095, s=0.0589; at 95% level of confidence 0.0095-2.365× 0.0589/ $\sqrt{7}$ $\leq d_t \leq$ 0.0095+2.365×0.0589/ $\sqrt{7}$ or -0.042 \leq d_t \leq 0.061 so the difference between models is not statistically significant

Reading

• 2.2, 3.6-3.8