Tugas Mandiri - 8

Pengantar Sistem Digital Semester Ganjil 2022/2023

Petunjuk pengerjaan:

- Kerjakan dengan tulisan tangan atau diketik.
- Tuliskan Nama, Kelas, dan NPM pada setiap lembar jawaban.
- Tuliskan penjelasan dari cara mendapatkan jawaban tersebut.
- Apabila ditulis tangan, hasil pekerjaan di scan / foto dan dimasukan ke dalam satu file berformat .pdf.
- Format nama file (tanpa tanda kurung): [KodeAsdos]_TM8_[Nama]_[NPM].pdf
 dan [KodeAsdos]_TM8_[Nama]_[NPM].circ (kumpulkan 2 file).
- Tugas mandiri dikumpulkan Senin, 12 Desember 2022 pukul 17.00 pada slot yang sudah disediakan di SCELE.
- Jika mengumpulkan telat sebelum pukul 23:59 pada hari yang sama, akan dikenakan penalti sebesar 40 poin. Terlebih dari waktu tersebut, tugas mandiri tidak akan dinilai
- 1. (14 poin) Jawablah pertanyaan-pertanyaan berikut:
 - a. (3 poin) Sebutkan dan jelaskan komponen utama dari register transfer operations

Register transfer operations memiliki tiga komponen utama, yaitu:

- 1) Himpunan register di dalam sistem
- 2) Operasi yang dilakukan pada data yang tersimpan dalam register
- 3) Kontrol yang mengawasi urutan operasi dalam sistem
- b. (4 poin) Jelaskan tentang kekurangan dan kelebihan dari:
 - i. Multiplexer-Based Transfers

Kelebihan:

- Multiplexer terhubung ke setiap input register menghasilkan struktur transfer yang sangat fleksibel
- Dapat melakukan transfer secara bersamaan

Kekurangan:

- Mahal karena memiliki banyak sekali operasi logika (banyak multiplexer)
- Tingginya jumlah interkoneksi

ii. Bus-Based Transfers

Kelebihan:

- Setiap bus dikendalikan oleh sebuah multiplexer
- Dapat melakukan transfer secara bersamaan
- Murah jika dibandingkan dengan Multiplexer-Based Transfers

Kekurangan:

- Terbatas pada transfer yang tersedia
- c. (3 poin) Diketahui dua buah register R0 dan R1. Pada suatu *clock cycle* yang sama, terjadi dua operasi register transfer secara serentak: R0←R1; R1←R0. Apakah single-bus system dapat melakukan register transfer tersebut? Jelaskan!

	Select			Load		
Register Transfer	S1	S0	L2	L1	L0	
<i>R</i> 0 ← <i>R</i> 2	1	0	0	0	1	
$R0 \leftarrow R1, R2 \leftarrow R1$	0	1	1	0	1	
$R0 \leftarrow R1, R1 \leftarrow R0$		Impossible				

Tidak dapat melakukan transfer tersebut. Karena transfer tersebut membutuhkan dua sumber yang bekerja secara bersamaan (simultan). Dengan demikian, transfer ini setidaknya membutuhkan setidaknya dua bus atau satu bus yang digabungkan dengan dedicated path dari satu register ke register lainnya.

Akmal Ramadhan - PSD B - 2206081534

d. (4 poin) Jelaskan perbedaan Ripple Counter dengan Synchronous Counter!

Ripple Counter	Synchronous Counter		
Flip-flop dipengaruhi oleh clock yang berbeda (tidak simultan)	Flip-flop dipengaruhi oleh clock yang sama (simultan)		
Lamban	Cepat		
Dapat menghasilkan decoding error	Tidak dapat menghasilkan error		
Disebut juga Serial Counter	Disebut juga Parallel Counter		
Mudah diimplementasikan	Rumit diimplementasikan		
Delay yang tinggi	Delay yang rendah		
Urutan hitung nya tetap	Urutan hitung dapat ditentukan		

Akmal Ramadhan - PSD B - 2206081534

2. (36 poin) Diketahui dua buah register 5-bit A dan B. Register B menyimpan nilai 11010, sedangkan register A menyimpan nilai 01001. Register A memiliki control input sebagai berikut:

a. Cx'Cy' : A ← A
 b. Cx'Cy : A ← sl A
 c. CxCy' : A ← sr A

d. $CxCy : A \leftarrow A \oplus B$

Untuk setiap operasi shift, serial input merupakan komplemen dari serial output.

Lengkapi tabel berikut

Input ke-	Сх	Су	Serial Output	Serial Input	Deskripsi Operasi	Isi Register
Awal	-	-	-	-	-	01001
1	1	0	1	0	Shift Right	00100
2	0	1	0	1	Shift Left	01001
3	0	0	-	-	Hold	01001
4	1	1	-	-	Complements Bits	10011
5	1	0	1	0	Shift Right	01001
6	0	1	0	1	Shift Left	10011
7	0	0	-	-	Hold	10011
8	1	0	1	0	Shift Right	01001
9	1	1	-	-	Complements Bits	10011
10	0	1	1	0	Shift Left	00110
11	0	0	-	-	Hold	00110
12	1	0	0	1	Shift Right	10011

- 3. (25 poin) Buatlah sebuah sirkuit yang dapat menghitung mundur bilangan biner 2-bit ketika tombol *enable* menyala. Jika *counter* sudah mencapai 0 dan di-*decrement, counter* akan kembali ke bilangan terbesar. Tuliskan langkah-langkah pengerjaannya:
 - a. (4 poin) pembuatan state diagram
 - b. (4 poin) state table 1 dimensi
 - c. (4 poin) optimasi sirkuit menggunakan K-map
 - d. (13 poin) pembuatan sirkuit

Berikan screenshot circuit yang telah dibuat serta kumpulkan file .circ nya

State Diagram

State Table 1 Dimensi

Present State		Input	Next	State
S₁(t)	S ₀ (t)	E	S₁(t+1)	S ₀ (t+1)
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

Optimisasi

Sirkuit

4. (25 poin) Perhatikan sirkuit berikut

Register yang dipakai pada sirkuit di atas berupa rising edge-triggered register. Jika diketahui bahwa $Q_3(t) = 0$, $Q_2(t) = 0$, $Q_1(t) = 0$, dan $Q_0(t) = 1$ seperti pada gambar dan informasi mengenai Clock serta enable E diketahui sebagai berikut,

Catatan:

E = 1 => Operasi: Shift Left dengan modifikasi bit LSB

E = 0 => Operasi: Hold

Lengkapi tabel berikut

Waktu	Output X	A ₃	A_2	A ₁	A ₀
t0	0	0	0	0	1
t1	0	0	0	1	0
t2	1	0	1	0	0
t3	1	1	0	0	1
t4	0	0	0	1	1
t5	1	0	1	1	0