Problem

(AMC) Two circles are externally tangent. Lines PAB and PA'B' are common tangents with A and A' on the smaller circle and B and B' on the larger circle. If PA = AB = 4, then the area of the smaller circle is

- (A) 1.44π
- (B) 2π
- $(C)^{'}2.56\pi$
- (D) $\sqrt{8}\pi$
- (E) 4π

Solution

(B) Connect PO, BO, AO_l . Since $PA = AB, OB \perp PB, O_1A \perp PB,$ $PB = PA + AB = 8, \quad OB = 2r.$ PO = 2OO' = 2(R+r) = 2(2r+r) = 6r By the Pythagorean Theorem in right triangle $POB, PO^2 = OB^2 + PB^2$.

The area of the smaller circle is 2π .