

$$y_i = 000$$

$$M = \frac{500 + 000}{500}$$

If we have
$$K$$
 frames, then $d\theta = \frac{2\pi L}{K}$

Assume the particle is in 2-D plane:

particle location

$$y_1 = ODD = object - object$$
 of distance magnification = $M = \frac{50D+00D}{50D}$

M paraticle,
$$k = M_{P,R} = \frac{500 + 4_{0,R} + 000 - 4_{0,R}}{500 + 4_{0,R}} = \frac{500 + 000}{500 + 4_{0,R}}$$

2 SOD to ODD Variation from mechanical imperspection (Mistance sensor can solve the problem — by Hubert) known: 500,000, Xik # of eq= 1

(MKnown: Xoik, Moik .. We need notation

Mattix of transformation =
$$A = \frac{A}{(y^{(1)})} = A \left[\frac{x^{(1)}}{y^{(1)}} \right] = \frac{COS\theta}{Sin\theta}$$

Matrix of transformation = $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ $\begin{bmatrix} x^{(1)} \\ y^{(2)} \end{bmatrix} = A \begin{bmatrix} x^{(1)} \\ y^{(1)} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x^{(1)} \\ y^{(1)} \end{bmatrix} = \begin{bmatrix} x^{(1)} \sin(\Delta\theta) + y^{(1)} \cos(\Delta\theta) \end{bmatrix}$

coordinates often notation

40 unce

equations: $(1) \quad \chi_0^{(2)} = \chi_0^{(1)} \cos(\Delta\theta) - \chi_0^{(1)} \sin(\Delta\theta)$

$$(2) \mathcal{Y}_{0}^{(1)} = \chi_{0}^{(1)} Sin(\Delta\theta) + \mathcal{Y}_{0}^{(1)} (cs(\Delta\theta))$$

(3)
$$\chi_{0}^{(2)} = \frac{\chi_{0}^{(2)}(500+y_{0}^{(2)})}{500+000}$$

$$(4) \quad \chi_0^{(1)} = \frac{\chi_{\hat{i}}^{(1)}(500 + y_0^{(1)})}{500 + 500}$$

Unknowns: $\chi_0^{(2)}$, $\chi_0^{(2)}$, $\chi_0^{(2)}$, $\chi_0^{(1)}$

For uncertainty \longrightarrow the particle is essentially stationary but moves a little over time sol: take the average of $\begin{bmatrix} \chi_0(i) \end{bmatrix} \longrightarrow \chi_0 \approx \frac{1}{2} \begin{pmatrix} \chi_0(i) \\ \chi_0(i) \end{bmatrix}$ same calculated from coordinate it

& Step 1 of phase I done

If particle is a 2d circle:

system of egs ((yrus' idea)

 $M_{p,k} = \frac{400 + 4_{o,k} + 000 - 4_{o,k}}{500 + 4_{o,k}} = \frac{500 + 000}{500 + 4_{o,k}}$ is same for both L and R ends of the particle

Xo, R-Xo, L= particle diameter

Step 2 done!

Now work in 3d space

· the 2-coordinate

Sceen $\sqrt{20=2i\cdot\frac{500+90}{000+500}}$ $2i\cdot\frac{2}{5}$ onle we get 90 from 100even w.10. notation!

Step 3 done!

(Full Form of Phase 1: 3d particle in 3d spale

· the 2-coordinate

Sceen
$$\int_{Z}$$
 Similarly:
 $Z_{0,U} = \frac{Z_{1,U}}{M_P} = Z_{1,U} \cdot \frac{50P+y_0}{0DD+50D}$
 $Z_{1,U}$