ASSIGNMENT 11

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2023 JANUARY 31, SHIFT 1

	$(\frac{4}{5}) + \cos^{-1}\left(\frac{4}{5}\right) - \tan^{-1}\left(\frac{4}{5}\right)$ is equal to:	$^{-1}\left(\frac{77}{36}\right) = 0, \ 0 < \alpha <$	< 13 , then $\sin^{-1}(\sin \alpha)$ -	H
a) π	b) 16	c) 0	d) $16 - 5\pi$	

- 2) Let a circle C_1 be obtained on rolling the circle $x^2 + y^2 4x 6y + 11 = 0$ upwards 4 units on the tangent T to it at the point (3,2). Let C_2 be the image of C_1 in T. Let A and B be the centers of circles C_1 and C_2 respectively, and M and N be respectively the feet of perpendiculars drawn from A and B on the x-axis. Then the area of the trapezium AMNB is:
 - a) $2(2+\sqrt{2})$ b) $4(1+\sqrt{2})$ c) $3+2\sqrt{2}$ d) $2(1+\sqrt{2})$
- 3) S1: $(p \Rightarrow q) \lor (p \land (\neg q))$ is a tautology. S2: $((\neg p) \Rightarrow (\neg q)) \land ((\neg p) \lor q)$ is a contradiction. Then
 - a) only (S2) is correct
 - b) both (S1) and (S2) are correct
 - c) both (S1) and (S2) are wrong
 - d) only (S1) is correct
- 4) The value of $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3\sin x)}{\sin x(1+\cos x)} dx$ is equal to:
 - a) $\frac{7}{2} \sqrt{3} \log_e \sqrt{3}$

 - b) $-2 + 3\sqrt{3} + \log_e \sqrt{3}$ c) $\frac{10}{3} \sqrt{3} + \log_e \sqrt{3}$ d) $\frac{10}{3} \sqrt{3} \log_e \sqrt{3}$
- 5) A bag contains 6 balls. Two balls are drawn from it at random and both are found to be black. The probability that the bag contains at least 5 black balls is:
 - a) $\frac{5}{7}$ b) $\frac{2}{7}$ c) $\frac{3}{7}$ d) $\frac{5}{6}$
- 6) Let 5 digit numbers be constructed using the digits 0, 2, 3, 4, 7, 9 with repetition allowed, and are arranged in ascending order with serial numbers. Then the serial number of the number 42923 is:
 - a) 2997
- b) 2998
- c) 2999
- d) 2996

1

7) Let a_1, a_2, \dots, a_n be in A.P. If $a_5 = 2a_7$ and $a_{11} = 18$, then $12\left(\frac{1}{\sqrt{a_{10}} + \sqrt{a_{11}}} + \frac{1}{\sqrt{a_{11}} + \sqrt{a_{12}}} + \dots + \frac{1}{\sqrt{a_{17}} + \sqrt{a_{18}}}\right)$ is equal to:

d) 6

d) $\frac{16}{9}$

9)	Let $\alpha > 0$ be the st term $\beta x^{-\alpha}$, $\beta \in \mathbb{N}$.	mallest number such then α is equal to:	that the expansion of	$\left(x^{\frac{2}{3}} + \frac{2}{x^3}\right)^{30}$ has a			
	a) 10	b) 2	c) 14	d) 16			
10)	Let \vec{a} and \vec{b} be two Then $\left(\vec{a}\cdot\vec{b}\right)^2$ is equ	vectors such that $ \vec{a} $ and to:	$=\sqrt{14},\ \left \vec{b}\right =\sqrt{6},$	and $\left \vec{a} \times \vec{b} \right = \sqrt{48}$.			
	a) 16	b) 25	c) 36	d) 49			
11)	11) Let the line $L: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{1}$ intersect the plane $2x + y + 3z = 16$ at the point P . Let the point Q be the foot of perpendicular from the point $R(1, -1, -3)$ on the line L . If α is the area of triangle PQR , then α^2 is equal to:						
	a) $\frac{16}{3}$	b) $\frac{25}{3}$	c) $\frac{36}{3}$	d) $\frac{49}{3}$			
12)	The remainder on di	aviding 5^{99} by 11 is:					
	a) 1	b) 2	c) 3	d) 4			
	If the X_i 2 Frequency f_i 3 a) 7	yariance of 3 4 5 6 7 6 16 α 9 5 b) 8	the frequence $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$ is 2.5, then α is	cy distribution s equal to: d) 10			
14)	Let for $x \in \mathbb{R}$ $f(x)$ the curve $y = (f \circ g)$	$=\frac{x+ x }{2}$ and $g\left(x ight)=$ $f\left(x ight)$ $f\left(x ight)$ and the lines $f\left(x ight)$	$\begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$. Then $= 0, 2y - x = 15 \text{ is } 0$	the area bounded by equal to:			
	a) $\frac{225}{4}$	b) $\frac{425}{4}$	c) $\frac{325}{4}$	d) $\frac{525}{4}$			
15)	Number of 4-digit n by 3 or by 11, is eq	numbers that are less ual to:	than or equal to 2800	and either divisible			

c) 8

c) $\frac{9}{16}$

8) Let heta be the angle between the planes $P_1=\vec{r}\cdot\left(\hat{i}+\hat{j}+2\hat{k}\right)=9$ and $P_2=$

 $\vec{r}\cdot\left(2\hat{i}-\hat{j}+\hat{k}\right)=15.$ Let L be the line that meets P_2 at the point (4,-2,5) and makes an angle θ with the normal of P_2 . If α is the angle between L and P_2 , then

a) 3

a) 9

b) 4

b) 3

 $(\tan^2 \theta) (\cot^2 \alpha)$ is equal to:

a) 780 b) 781 c) 782 d) 783