LISTA 3: FUNÇÕES MENSURÁVEIS À LEBESGUE

Exercício 1. Prove que o produto de duas funções simples também é simples. Depois prove que o produto de duas funções mensuráveis (à Lebesgue) é também mensurável.

Exercício 2. Seja $f: \mathbb{R}^d \to \mathbb{R}$ uma função mensurável que mora numa caixa. Prove que para todo $\epsilon > 0$ existem duas funções simples $s, \sigma \colon \mathbb{R}^d \to \mathbb{R}$, que moram na mesma caixa e tais que

$$s \le f \le \sigma$$
 e $\int (\sigma - s) < \epsilon$.

Exercício 3. Prove que se $f:[a,b] \to \mathbb{R}$ é uma função limitada e contínua em quase todo ponto, então f é Lebesgue mensurável.

Exercício 4. Seja $f: \mathbb{R}^d \to \mathbb{R}$ uma função mensurável e seja $\phi: \mathbb{R} \to \mathbb{R}$ uma função contínua. Prove que $\phi \circ f$ é mensurável.

Exercício 5. Seja $f: \mathbb{R}^d \to [0, \infty)$ uma função mensurável e seja $\phi: [0, \infty) \to [0, \infty)$ uma função não decrescente. Prove que $\phi \circ f$ é mensurável e para todo $\lambda \geq 0$, a seguinte desigualdade é valida:

$$m\{f \ge \lambda\} \le \frac{1}{\phi(\lambda)} \int \phi \circ f.$$

Exercício 6. Prove que se a sequência de funções mensuráveis $\{f_n\}_{n\geq 1}$ converge à função f em quase todo ponto, então o limite f também é mensurável.

Exercício 7. Seja $f:[a,\infty)\to[0,\infty)$ uma função localmente Riemann integrável (ou seja, Riemann integrável em cada intervalo [a,b], onde $b\geq a$). Suponha que a integral imprópria $\int_a^\infty f(x)\,dx$ converge. Prove que f é Lebesgue integrável e

$$\int_{[a,\infty)} f(x) dm(x) = \int_a^\infty f(x) dx.$$

Exercício 8. Enuncie e prove um resultado análogo ao resultado do exercício anterior, para integrais impróprias num intervalo finito. Use esse resultado para provar que a função

$$\log |x| \in L^1([-1,1])$$
.

Exercício 9. Seja $f \colon \mathbb{R}^d \to [0, \infty)$ uma função mensurável. Prove que

gráfico
$$(f) := \{(x,y) \colon x \in \mathbb{R}^d \ \text{e} \ y = f(x)\}$$

é um conjunto negligenciável em $\mathbb{R}^{d+1}.$