Spring25 CS598YP

#### 17.2: Word2Vec

Yongjoo Park

University of Illinois Urbana-Champaign

# Neural Network Basics

## Linear boundary cannot express XOR



We can use non-linear mapping to express XOR

# Non-linear layers can express XOR



#### Parameters of two-layer neural network



• 
$$y = \sigma(w_{31}h_1 + w_{32}h_2 + b_3)$$

• 
$$h_1 = \sigma(w_{11}x_1 + w_{12}x_2 + b_1)$$

• 
$$h_2 = \sigma(w_{21}x_1 + w_{22}x_2 + b_2)$$

Objective function (negative log-likelihood)

• 
$$\ell = -(t \log y + (1 - t) \log(1 - y))$$

#### Colab example



# Word2Vec: Skip-gram Model

#### Word2Vec Overview



#### Word2Vec captures semantic relationship

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

| Relationship         | Example 1           | Example 2         | Example 3            |
|----------------------|---------------------|-------------------|----------------------|
| France - Paris       | Italy: Rome         | Japan: Tokyo      | Florida: Tallahassee |
| big - bigger         | small: larger       | cold: colder      | quick: quicker       |
| Miami - Florida      | Baltimore: Maryland | Dallas: Texas     | Kona: Hawaii         |
| Einstein - scientist | Messi: midfielder   | Mozart: violinist | Picasso: painter     |
| Sarkozy - France     | Berlusconi: Italy   | Merkel: Germany   | Koizumi: Japan       |
| copper - Cu          | zinc: Zn            | gold: Au          | uranium: plutonium   |
| Berlusconi - Silvio  | Sarkozy: Nicolas    | Putin: Medvedev   | Obama: Barack        |
| Microsoft - Windows  | Google: Android     | IBM: Linux        | Apple: iPhone        |
| Microsoft - Ballmer  | Google: Yahoo       | IBM: McNealy      | Apple: Jobs          |
| Japan - sushi        | Germany: bratwurst  | France: tapas     | USA: pizza           |

#### Training through Fake Task

Task: Given **blue**, predict <u>other words</u> in the window



Word2vec uses C=10 past and future words

#### Training through Fake Task

Task: Given **blue**, predict <u>other words</u> in the window



Word2vec uses C=10 past and future words

#### Word2Vec: Architecture for Fake Task



#### Training Architecture

#### Output Layer Softmax Classifier



#### Aim to learn embeddings through training





#### Embeddings will predict likely neighbor words





### Embeddings will predict likely neighbor words





### Embeddings will predict likely neighbor words



#### Summary

- Can we learn a word's meaning from its context?
- Skip-gram model: Predicts each neighbor words
- Use large corpus for training

Questions?