Solution for Note 2 of 275A Probability Theory

shuyu qin

August 2023

1 Selected Exercises in Note 2

Exercise 3

Proof. We use strong induction on |A|. For convenience, we identify the index set A of cardinality n with the set $\{1,2,\ldots,n\}$. The base cases for |A|=1,2 are established already, now suppose the conclusions hold for $|A|=1,2,\ldots,n$ up to some natural number n>2. That is, up to some natural number n>2, there exists a unique probability measure $\prod_{i=1}^n \mu_i$ with the given property, and for any partition of the set $\{1,2,\ldots,n\}$ into two sets, this probability measure equals the product measure determined by this partition.

Now consider when |A| = n + 1. For any set E of the form $\prod_{i=1}^{n+1} E_i$ with $E_i \in \mathcal{F}_i$, E can be written as $(\prod_{i=1}^n E_i) \times E_{n+1}$. Hence by our induction hypothesis and the base case there exists a unique probability measure $\prod_{i=1}^n \mu_i \times \mu_{n+1}$ on

$$(\prod_{i=1}^n \Omega_i \times \Omega_{n+1}, \prod_{i=1}^n \mathcal{F}_i, \times \mathcal{F}_{n+1})$$
, with the property that

$$(\prod_{i=1}^n \mu_i \times \mu_{n+1})(E) = (\prod_{i=1}^n \mu_i)(\prod_{i=1}^n E_i)\mu_{n+1}(E_{n+1}) = \prod_{i=1}^n \mu_i(E_i) \cdot \mu_{n+1}(E_{n+1}),$$

by definition, this probability measure is exactly $\prod_{i=1}^{n+1} \mu_i$. Finally, for any partition of the set $\{1, 2, \dots, n+1\}$ into two sets, we see again from what just shown and the induction hypothesis that this probability measure equals the product measure determined by this partition.

Exercise 4

Proof. By definition, the Stieltjes measure function of the product measure $\mu_1 \times \ldots \times \mu_n$ maps (t_1, \ldots, t_n) to $\mu_1 \times \ldots \times \mu_n (\prod_{i=1}^n (-\infty, t_i]) = \prod_{i=1}^n \mu_i ((-\infty, t_i]) = F(t_1) \ldots F(t_n)$. The uniqueness of the product measure and the Stieltjes measures associated to the F_i 's then guarantee that this measure is unique.

Proof. We can express \mathbf{R} as a countable union of disjoint sets of measure 1 by writing $\mathbf{R} = \bigcup_{n \in \mathbf{Z}} I_n$, where $I_n := [n, n+1)$. Then for any Borel sets $E_1, E_2 \subset \mathbf{R}$, we have $E_1 = \bigcup_{n \in \mathbf{Z}} E_1 \cap I_n$, $E_2 = \bigcup_{m \in \mathbf{Z}} E_2 \cap I_m$, and $E_1 \times E_2 = \bigcup_{(n,m) \in \mathbf{Z}^2} F_{n,m}$, where $F_{n,m} := (E_1 \cap I_n) \times (E_2 \cap I_m)$.

By Theorem 1, there is a unique probability measure $m|_{I_n} \times m|_{I_m}$ on $(I_n \times I_m, \mathcal{B}[I_n] \times \mathcal{B}[I_m])$ such that $m|_{I_n} \times m|_{I_m} (F_{n,m}) = m(E_1 \cap I_n) m(E_2 \cap I_m)$. By characterization of the Lebesgue measure, $m|_{I_n} \times m|_{I_m}$ is exactly m^2 (restricted to $I_n \times I_m$). By countable additivity, we thus have:

$$m^2(E_1 \times E_2) = \sum_{(n,m) \in \mathbf{Z}^2} m^2(F_{n,m}) = \sum_{(n,m) \in \mathbf{Z}^2} m(E_1 \cap I_n) m(E_2 \cap I_m) = m(E_1) m(E_2),$$

where we have used Tonelli's theorem for series in the last step. \Box

Exercise 7

Proof. Suppose we have two measures μ_A and μ'_A on \mathcal{F}_A that are product measures of $\{\mu_i : i \in A\}$ in the sense that

$$\mu_A(\pi_B^{-1}(E_B)) = \mu'_A(\pi_B^{-1}(E_B)) = \mu_B(E_B)$$

for all finite subsets B of A and all E_B in \mathcal{F}_B , where $\mu_B := \prod_{i \in B} \mu_i$. Let \mathcal{F} be the collection of all $E \in \mathcal{F}_A$ such that $\mu_A(E) = \mu_A'(E)$, then \mathcal{F} contains all sets of the form $\pi_B^{-1}(E_B)$ where $B \subset A$ is a finite subset. That is, \mathcal{F} contains the collection \mathcal{A} of elementary sets. But \mathcal{A} is a Boolean algebra that generates \mathcal{F}_A , and from continuity from above and below wee see that \mathcal{F} is a monotone class. By the monotone class lemma, we conclude that \mathcal{F} is all of \mathcal{F}_A , hence $\mu_A = \mu_A'$.

Exercise 9

Proof. Note that the compatibility condition is needed for the existence of μ_A . As $\pi_B^{-1}(\pi_{B\to C}^{-1}(E_C)) = \pi_C^{-1}(E_C)$, so if μ_A is a product measure on $(\Omega_A, \mathcal{F}_A)$ that extends measures on all finite product spaces in the sense of (7), then on the one hand we have $\mu_A(LHS) = \mu_B(\pi_{B\to C}^{-1}(E_C))$, on the other hand we have $\mu_A(RHS) = \mu_C(E_C)$.

Now suppose we have two measures μ_A and μ'_A satisfying the extension property (7), following the same argument as in Exercise 7 gives the uniqueness of μ_A .

Note on Lemma 9:

- 1. Points in [0,1] that has two binary expansions must be of the form $0.\sigma000...$ and $0.\sigma111...$, where σ is a finite sequence, and there are countably many such points.
- 2. If we manage to show that (X,d) is Borel isomorphic to a Borel subset of $[0,1]^{\mathbf{N}}$ (and hence Borel isomorphic to a Borel subset A of [0,1]), then for any Borel subset Ω of X, Ω is Borel isomorphic to a Borel subset $B \subset A \subset [0,1]$ by the same isomorphism. That is, Ω is standard Borel.
- 3. To see that the map $x \mapsto (\frac{d(x,q_i)}{1+d(x,q_i)})_{i\in \mathbf{N}}$ is injective, let x and y be two distinct points in X, since the sequence (q_n) is dense, there exists an open ball centered at x with arbitrarily small radius(smaller than d(x,y)/2, for instance) containing some q_i , then $d(x,q_i) < d(y,q_i)$. In particular, the point $(\frac{d(x,q_i)}{1+d(x,q_i)})_{i\in \mathbf{N}}$ is distinct from the point $(\frac{d(y,q_i)}{1+d(xy,q_i)})_{i\in \mathbf{N}}$.
- 4. The map $x \mapsto (\frac{d(x,q_i)}{1+d(x,q_i)})_{i \in \mathbb{N}}$ is measurable since the individual map $x \mapsto \frac{d(x,q_i)}{1+d(x,q_i)}$ for each $i \in \mathbb{N}$ is measurable (being the ratio of two continuous maps).
- 5. To see that the image of the map $x \mapsto (\frac{d(x,q_i)}{1+d(x,q_i)})_{i \in \mathbf{N}}$ is the closure of points $(\frac{d(q_j,q_i)}{1+d(q_j,q_i)})_{i \in \mathbf{N}}$ in the uniform norm(hence a Borel subset of [0,1]), note that for any $x \in X$, there exists some q_j arbitrarily close to x, thus making $|\frac{d(x,q_i)}{1+d(x,q_i)} \frac{d(q_j,q_i)}{1+d(q_j,q_i)}|$ arbitrarily small for all $i \in \mathbf{N}$. That is, the point $(\frac{d(x,q_i)}{1+d(x,q_i)})_{i \in \mathbf{N}}$ is arbitrarily close to the point $(\frac{d(q_j,q_i)}{1+d(q_j,q_i)})_{i \in \mathbf{N}}$ in the uniform norm.

Exercise 13

Proof. We can use Theorem 10 as a "black box" to establish this Exercise. Let B be a box in \mathbf{R}^n , define an increasing sequence $E_1 \subset E_2 \subset \ldots$ of measurable sets in \mathbf{R}^{n+2} by setting $E_m := B \times \mathbf{R} \times [-m,m]$ for each m. Then from continuity from below one has

$$\mu_{n+2}(B \times \mathbf{R}^2) = \mu_{n+2}(\bigcup_{m=1}^{\infty} E_m) = \lim_{m \to \infty} \mu_{n+2}(E_m) = \lim_{m \to \infty} \mu_{n+1}(B \times [-m, m]) = \mu_{n+1}(B \times \mathbf{R}) = \mu_n(B).$$

By iteration, one obtains that for any $m \leq n$, $\mu_n(B \times \mathbf{R}^{n-m}) = \mu_m(B)$ for

all boxes $B \subset \mathbf{R}^m$ (Including the empty box). Also, if $\mu_n(B \times \mathbf{R}^{n-m}) = \mu_m(B)$ for some box $B \subset \mathbf{R}^m$, as we are dealing with probability measures, we have $\mu_n(\overline{B} \times \mathbf{R}^{n-m}) = 1 - \mu_n(B \times \mathbf{R}^{n-m}) = 1 - \mu_m(B) = \mu_m(\overline{B})$. Finally, let $B_1, B_2, \ldots \subset \mathbf{R}^m$ be boxes, then by continuity from below we get: $\mu_n(\bigcup_{i=1}^{\infty} B_i \times \mathbf{R}^{n-m}) = \lim_{k \to \infty} \mu_n(\bigcup_{i=1}^{k} B_i \times \mathbf{R}^{n-m}) = \lim_{k' \to \infty} \mu_n(\bigcup_{i=1}^{k'} B_i' \times \mathbf{R}^{n-m}) = \sum_{i=1}^{\infty} \mu_m(B_i') = \mu_m(\bigcup_{i=1}^{\infty} B_i)$, where we express the union of k boxes B_i as the union of k' disjoint boxes B_i' . As the Borel σ -algebra on \mathbf{R}^m is generated by the boxes, this implies the compatibility condition on μ_n that $\mu_n(\pi_{\mathbf{R}^n \to \mathbf{R}^m}^{-1}(E)) = \mu_m(E)$ for all Borel sets $E \subset \mathbf{R}^d$ by Exercise 11 of note 0. Since the spaces $(\mathbf{R}^n, \mathbf{B}[\mathbf{R}^n])$

are all standard Borel, by Theorem 10 there exists a unique probability measure

Exercise 14

 $\mu_{\mathbf{N}}$ on $\mathbf{R}^{\mathbf{N}}$ satisfying the given property.

Proof. Let G be the collection of Borel sets of $[0,1]^B$ on which μ_B is regular, then $G = \{E \in \mathcal{B}[[0,1]^B] : \forall \varepsilon > 0, \exists K \subset E \subset U \text{ such that } \mu_B(U \setminus K) < \varepsilon\}$, K compact and U open. First note that G contains all the open sets U. Clearly U can be approximated from above by itself. By Lemma 1.2.11 of "M", there is a sequence of closed boxes B_n such that $U = \bigcup_n B_n$, we can assume the sequence to be increasing(taking $B_n = \bigcup_n B_i$ if necessary), by continuity from below we get $\mu_B(U) = \lim_{n \to \infty} \mu_B(B_n)$, so U can be approximated from below by compact sets.

We claim that G is a Boolean algebra. Clearly $[0,1]^B \in G$ and $\emptyset \in G$. If $E_1, E_2 \in G$ and K_1, K_2, U_1, U_2 are such that K_1 and K_2 are compact sets approximating E_1 and E_2 respectively from below, and U_1 and U_2 are open sets approximating E_1 and E_2 respectively from above, then $K_1 \cup K_2$ is a compact set approximating $E_1 \cup E_2$ from below, and $U_1 \cup U_2$ is an open set approximating $E_1 \cup E_2$ from above, so $E_1 \cup E_2 \in G$. Similarly $E_1 \cap E_2 \in G$. By the monotone class lemma, $\langle G \rangle \subset \mathcal{B}[[0,1]^B]$. Conversely, as the Borel σ -algebra of $[0,1]^B$ is generated by the open sets, $\mathcal{B}[[0,1]^B] \subset \langle G \rangle$. Thus $\mathcal{B}[[0,1]^B] = \langle G \rangle$.

Let P(E) be the property of a Borel set $E \subset [0,1]^B$ such that $G = \{E \in \mathcal{B}[[0,1]^B] : P(E) \text{ is true}\}$. Assuming P(E) is true, and $K \subset E \subset U$ are such that $\mu_B(U \setminus K) < \varepsilon$, K compact and U open, then $U^C \subset E^C \subset K^C$ are such that $\mu_B(K^C \setminus U^C) = \mu_B(U \setminus K) < \varepsilon$, U^C compact and K^C open. That is, $P(E^C)$ is true. Next, assuming $P(E_1), P(E_2), \ldots$ are all true, with $K_i \subset E_i \subset U_i$ be such that $\mu_B(U_i \setminus K_i) < \varepsilon/2^i$ for each i. Denote $\bigcup_{i=1}^\infty K_i$ by K and $\bigcup_{i=1}^\infty U_i$ by U, then $K \subset \bigcup_{i=1}^\infty E_i \subset U$ are such that $\mu_B(U \setminus K) < \varepsilon$. By continuity from below, $\mu_B(U \setminus K) = \lim_{n \to \infty} \mu_B(U \setminus \bigcup_{i=1}^n K_i) < \varepsilon$. Hence there

exists n > 0 such that $K' = \bigcup_{i=1}^n K_i$ and $\mu_B(U \setminus K') < \varepsilon$, K' compact and Uopen. i.e. $P(\bigcup_{i=1}^{\infty} E_i)$ is true. Clearly P(E) is true for all $E \in G$, by Exercise 11 of Note 0 we get the desired result.

Exercise 15

Proof. (1). This follows from the definition and the fact that $\mu_0(\emptyset) = 0$.

- (2). This follows from the definition and the fact that $A \subset B$ implies inf $A \leq$ $\inf B$.
- (3). Let $\epsilon > 0$. by the axiom of countable choice, we can choose an open elementary open covering $\bigcup_{i=1}^{\infty} E_{n,i}$ of E_n such that $\sum_{i=1}^{\infty} \mu_0(E_{n,i}) < \mu^*(E_n) + \epsilon/2^n$ for each n. From this, $\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \mu_0(E_{n,i}) < \sum_{n=1}^{\infty} \mu^*(E_n) + \epsilon$. Since $\epsilon > 0$ is arbitrary, LHS $\leq \sum_{n=1}^{\infty} \mu^*(E_n)$. As the double sequence $(E_{n,i})_{n,i}$ is an open elementary covering of $\bigcup_{n=1}^{\infty} E_n$, the Tonelli's theorem for series and the definition of the outer measure teacther give countable gube definition. definition of the outer measure together give countable subadditivity.
 - (4). For any compact elementary set $E \subset [0,1]^A$, we claim that

$$\mu^*(E) = \inf_{V \supset E, V \text{ open elementary}} \mu_0(V).$$

Let $E = \pi_B^{-1}(E_B)$ for some finite $B \subset A$ and some Borel $E_B \subset [0,1]^B$. Since π_B is continuous, E_B is compact. Note that by definition LHS \leq RHS since every open elementary $V \supset E$ can be seen as a countable covering. Conversely, for every countable cover of E by open elementary sets E_i , $\pi_B(\bigcup_{i=1}^n E_i) = \bigcup_{i=1}^\infty \pi_B(E_i)$ is a countable cover of E_B by open sets(projection of open sets are open), and thus by Heine-Borel theorem there is a finite subcover $\bigcup_{i=1}^n \pi_B(E_i)$ of E_B . In particular, $V = \bigcup_{i=1}^n E_i$ is an open elementary cover of E such that $\sum_{i=1}^\infty \mu_0(E_i) \ge \sum_{i=1}^n \mu_0(E_i) \ge \mu_0(V) \ge \inf_{V \supset E, V \text{ open elementary}} \mu_0(V).$

$$\sum_{i=1}^{\infty} \mu_0(E_i) \ge \sum_{i=1}^{n} \mu_0(E_i) \ge \mu_0(V) \ge \inf_{V \supset E, V \text{ open elementary}} \mu_0(V).$$

This yields LHS \geq RHS. Hence by outer regularity of μ_B we see that $\mu^*(E) =$ $\mu_0(E)$ for compact elementary E.

To generalize to all elementary sets E, we show that the outer measure μ^* is inner regular on such E. That is, $\mu^*(E) = \sup_{K \subset E, K \text{compact}} \mu^*(K)$, from which follows that

$$\mu^*(E) = \sup_{K_B \subset E_B, K_B \text{ compact}} \mu^*(\pi_B^{-1}(K_B)) = \sup_{K_B \subset E_B, K_B \text{ compact}} \mu_0(\pi_B^{-1}(K_B)) =$$

 $\sup_{K_B \subset E_B, K_B \text{ compact}} \mu_B(K_B) = \mu_B(E_B) = \mu_0(E) \text{ by inner regularity of } \mu_B.$

By the regularity property of μ_B , we can find $K_B \subset E_B \subset U_B$, K_B compact and U_B open, with $K = \pi_B^{-1}(K_B)$ and $U = \pi_B^{-1}(U_B)$ such that $\mu^*(E) - \mu^*(K) \le$ $\mu_0(U) - \mu_0(K) = \mu_B(U_B) - \mu_B(K_B) \le \varepsilon$ for any $\varepsilon > 0$, By monotonicity, this implies that the outer measure is inner regular on elementary sets, as desired.

(5). Let C be the collection of $E \in \mathcal{F}_A$ that can be approximated (in terms of outer measure) by elementary sets, clearly C is a Boolean algebra containing all elementary sets. By the monotone class lemma and the definition of \mathcal{F}_A , $\langle C \rangle = \mathcal{F}_A$. Now we use Exercise 11 of Note 0 to generalize the defining property of C to $\langle C \rangle$.

Let $E_1, E_2, \ldots \subset [0,1]^A$ be an increasing sequence in C (for any sequence $E_n, E = \bigcup_n E_n$ can be viewed as the countable union of the increasing sequence $A_n := \bigcup_{m=1}^n E_m$). It remains to show that $E \in C$. By construction, we can select an elementary sequence E'_n with $\mu^*(E_n\Delta E'_n) < \varepsilon/2^n$. Setting E' = $\bigcup_n E'_n$, by countable subadditivity we have: $\mu^*(E\Delta E') = \mu^*(\bigcup_n E_n \Delta \bigcup_n E'_n) \le 1$

 $\mu^*(\bigcup_n E_n \Delta E'_n) \leq \sum_{n=1}^{\infty} \mu^*(E_n \Delta E'_n) < \sum_{n=1}^{\infty} \varepsilon/2^n = \varepsilon$. On the other hand, let $F'_n = \bigcup_{m=1}^n E'_m$, because the bounded monotone sequence $\mu_0(F'_n)$ converges, $\mu^*(F'_n \backslash F'_{n-1}) = \mu_0(F'_n \backslash F'_{n-1})$ is summable $(F'_0 := \emptyset)$. And their sum equals $\mu^*(E')$ by the definition of the outer measure. In particular, $\exists N > 0$ such that $\mu^*(E') - \sum_{n=1}^N \mu_0(F'_n \backslash F'_{n-1}) = \sum_{n=N+1}^\infty \mu_0(F'_n \backslash F'_{n-1}) < \varepsilon$. By countable subadditivity again, this means $\mu^*(E' \backslash F'_N) < \varepsilon$. By the triangle inequality, $\mu^*(E\Delta F_N') \le \mu^*(E\Delta E') + \mu^*(E'\backslash F_N') < 2\varepsilon$, as desired.

Comment on Definition 16:

1. When talking about independence, all random variables under consideration are being modeled by a single probability space, such that the notion $\mathbf{P}(\bigwedge_{i\in B}(X_i\in S_i))=\mathbf{P}(\{\omega\in\Omega:X_i(\omega)\in S_i,i\in B\})\text{ makes sense.}$

2. To see why
$$\mathbf{P}(\bigwedge_{j=1}^{J}(X_{A_j} \in S_j)) = \prod_{j=1}^{J} \mathbf{P}(X_{A_j} \in S_j)$$
 follows from Exercise

2. To see why
$$\mathbf{P}(\bigwedge_{j=1}^{J}(X_{A_j} \in S_j)) = \prod_{j=1}^{J}\mathbf{P}(X_{A_j} \in S_j)$$
 follows from Exercise 3, let $B = \bigcup_{j=1}^{J}A_j$. By Exercise 3, $\prod_{i \in B}\mu_{X_i} = \prod_{j=1}^{J}(\prod_{i \in A_j}\mu_{X_i})$. Therefore, writting $A_j = A_j = A_j$.

ing
$$S_j = \prod_{i \in A_j} S_i$$
 for all j , we get: $\mathbf{P}(\bigwedge_{j=1}^J (X_{A_j} \in S_j)) = \mathbf{P}(\bigwedge_{i \in B} (X_i \in S_i)) =$

$$\prod_{i \in B} \mathbf{P}(X_i \in S_i) = \prod_{i \in B} \mu_{X_i}(S_i) = \prod_{j=1}^J (\prod_{i \in A_j} \mu_{X_i}(S_i)) = \prod_{j=1}^J \mathbf{P}(X_{A_j} \in S_j) \text{ by the fact that the } X_i \text{ are jointly independent.}$$

- 3. For the statement "This is the property of X and Y which is equivalent to independence (as can be seen by specialising to those F, G that take values in $\{0,1\}$)": If for instance $F=1_S$ and $G=1_T$ then $\mathbf{E}F(X)G(Y)=\mathbf{P}(X\in S)$ $X\in Y$ and $X\in Y$ and
- 4. For the reason why we fail to have independence in Example 17 if (X,Y) is drawn uniformly from say a parallelogram: If X,Y is drawn from a general shape (rather than a rectangle), then in general, knowing the value of X will give some information about Y and vice versa. This is for instance the observation that powers Berkson's paradox.

Proof. Let X be a random variable taking values in a locally compact, σ -compact metric space R, and is independent of itself. Then for any measurable set $A \subset R$, $\mathbf{P}(X \in A) = \mathbf{P}(X \in A \land X \in A) = \mathbf{P}(X \in A)\mathbf{P}(X \in A)$, giving $\mathbf{P}(X \in A) \in \{0,1\}$. For any $x \in R$, the sequence of balls B(x,1/n) is shrinking with n, hence either $\mathbf{P}(X \in B(x,1/n)) = 1$ for all n, or $\mathbf{P}(X \in B(x,1/n)) = 0$ for sufficiently large $n \geq N_x$. If the latter holds for all $x \in R$, then $B(x,1/N_x)$ forms an open cover of R, since every σ -compact space is Lindelöf, it induces a countable subcover $B(x_i,1/N_{x_i}), i=1,2,\ldots$ of R. By countable subadditivity, one would then get $1 = \mathbf{P}(X \in R) \leq \sum_{i=1}^{\infty} \mathbf{P}(X \in B(x_i,1/N_{x_i})) = 0$, a contradiction. Thus there exists at least one $x \in R$ such that $\mathbf{P}(X \in B(x,1/n)) = 1$ for all n, by continuity from above, $\mathbf{P}(X = x) = 1$.

Conversely, if X is almost surely equal to a constant x, for all measurable sets $A, B \subset R$, $\mathbf{P}(X \in A \land X \in B) = \mathbf{P}(X \in A)\mathbf{P}(X \in B)$ holds trivially (depending on if $x \in A \cap B$ or not). That is, X is independent of itself.

Exercise 19

Proof. Let X be a constant random variable, so $\mathbf{P}(X=c)=1$ for some constant c. For any measurable set A in the range of X, note that $\mathbf{P}(X\in A)=0$ (if $c\notin A$) or 1 (if $c\in A$). Hence for any other random variable Y and measurable set B in the range of Y, we have $\mathbf{P}(X\in A\wedge Y\in B)=\mathbf{P}(X\in A)\mathbf{P}(Y\in B)$ holds trivially. i.e. X is independent of any other random variable Y.

Proof. If X_1, \ldots, X_n are jointly independent, the conclusion follows from the definition of independence.

Conversely, suppose that $\mathbf{P}(\bigwedge_{i=1}^n (X_i = x_i)) = \prod_{i=1}^n \mathbf{P}(X_i = x_i)$ for all $x_1 \in R_1, \ldots, x_n \in R_n$. Let $S_1 \subset R_1, \ldots, S_n \subset R_n$, and note that $S = \prod_{i=1}^n S_i$ is at most countable since each S_i is. For clarification, write $X = (X_i)_{i < 1 < n}$, so

$$\mathbf{P}(\bigwedge_{i=1}^{n} X_i \in S_i) = \mathbf{P}(X \in S) = \sum_{x \in S} \mathbf{P}(X = x) \text{ by countable additivity.}$$
On the other hand, we have
$$\prod_{i=1}^{n} \mathbf{P}(X_i \in S_i) = \prod_{i=1}^{n} (\sum_{\substack{x_i \in S_i \\ n}} \mathbf{P}(X_i = x_i))$$

$$(x_i)$$
) = $\sum_{x \in S} \mathbf{P}(X = x)$ after expanding all the terms. Hence $\mathbf{P}(\bigwedge_{i=1}^n X_i \in S_i)$ =

$$\prod_{i=1}^{n} \mathbf{P}(X_i \in S_i) \text{ and the } X_i \text{ are independent of each other.}$$

Exercise 21

Proof. One direction follows trivially from the definition of independence.

Now suppose that $\mathbf{P}(\bigwedge_{i=1}^n (X_i \leq t_i)) = \prod_{i=1}^n \mathbf{P}(X_i \leq t_i)$ for all $t_1, \ldots, t_n \in \mathbf{R}$, and let C be the collection of Borel subsets $S \subset \mathbf{R}^n$ such that $\mu_X(S) =$ $(\prod_{i=1}^n \mu_{X_i})(S)$, where we denote the joint variable $(X_i)_{i=1}^n$ by X. By assumption C contains all boxes of the form $\prod_{i=1}^{n} (-\infty, t_i]$ with $t_i \in \mathbf{R}$. Now if $S_1 \subset S_2 \subset \dots$

is a countable increasing sequence in
$$C$$
, then:
$$\mu_X(\bigcup_{j=1}^\infty S_j) = \lim_{j \to \infty} \mu_X(S_j) = \lim_{j \to \infty} (\prod_{i=1}^n \mu_{X_i})(S_j) = (\prod_{i=1}^n \mu_{X_i})(\bigcup_{j=1}^\infty S_j) \text{ by continuity from below. Thus } \bigcup_{i=1}^\infty S_i \in C.$$

One can show the same for a decreasing sequence $S_1 \supset S_2 \supset \dots$ in C, we see that C is a monotone class. Now we show that C contains all half-open rectangular boxes of the form $\prod_{i=1}^{n} (a_i, b_i]$ with $a_i < b_i \in \mathbf{R}$, which follows from

$$\mu_{X}(\prod_{i=1}^{n}(a_{i},b_{i}]) = \mathbf{P}(\bigwedge_{i=1}^{n}(a_{i} < X_{i} \leq b_{i})) = \mathbf{P}(\bigwedge_{i=1}^{n}(X_{i} \leq b_{i})) - \mathbf{P}(\bigwedge_{i=1}^{n}(X_{i} \leq a_{i})) = \prod_{i=1}^{n}\mathbf{P}(X_{i} \leq b_{i}) - \prod_{i=1}^{n}\mathbf{P}(X_{i} \leq a_{i}) = \prod_{i=1}^{n}\mathbf{P}(a_{i} < X_{i} \leq b_{i}) = (\prod_{i=1}^{n}\mu_{X_{i}})(\prod_{i=1}^{n}(a_{i},b_{i}]).$$

Define a half-open elementary set to be a finite union of half-open rectangular boxes, and let A be the collection of all half-open elementary sets and their complements, we show that A is a Boolean algebra contained in C.

By construction, $\emptyset \in A$, and $S^C \in A$ whenever $S \in A$. If $S_1, S_2 \in A$, then $S_1 \cap S_2, S_1 \cup S_2 \in A$, since the union and intersection of two half open rectangular boxes B_1 and B_2 are both in A. For any $S \in A$, either $S = \bigcup_{j=1}^k B_j$, or $S = (\bigcup_{j=1}^k B_j)^C$, B_j half-open boxes, it suffice to show $S \in C$ in the former case. For convenience we assume the B_i 's are disjoint, then again by finite

$$\mu_X(S) = \mu_X(\bigcup_{j=1}^k B_j) = \sum_{j=1}^k \mu_X(B_j) = \sum_{j=1}^k (\prod_{i=1}^n \mu_{X_i})(B_j) = (\prod_{i=1}^n \mu_{X_i})(\bigcup_{j=1}^k B_j) = (\prod_{i=1}^n \mu_{X_i})(S).$$

Finally, as boxes of the form $\prod_{i=1}^{n}(-\infty,t_i],t_i\in\mathbf{R}$ generate the Borel- σ algebra of \mathbb{R}^n , as can be seen by Exercise 1.4.14 of "M", A also generates the same algebra. By the monotone class theorem, we get the desired result.

Exercise 22

Proof. Let $\beta = \{e_1, \dots, e_r\}$ be an ordered basis of V, |F| = q. Since X is drawn uniformly at random from V, for any d-dimensional subspace S of V, $\mathbf{P}(X \in S) = q^d/q^r$.

WLOG, assume that $V = F^r$ (e.g. using the standard representation with respect to β). The conjunction of events $\bigwedge_{i=1}^{n} (\langle X, v_i \rangle = t_i)$ with $t_i \in F$ correspond

spect to
$$\beta$$
). The conjunction of events $\bigwedge_{i=1} (\langle X, v_i \rangle = t_i)$ with $t_i \in F$ correspond to the system of linear equations $Bx = t$, where $B = \begin{pmatrix} \varphi(v_1) \\ \vdots \\ \varphi(v_n) \end{pmatrix} \in M_{n \times r}(F)$, $\varphi(v_i) = (\langle e_k, v_i \rangle)_{1 \le k \le r}$ for all $1 \le i \le n$, $x \in V$ is viewed as a column vector, and $t = \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \in M_{n \times 1}(F)$. If s is the dimension of the span of v_1, \ldots, v_n , then $\operatorname{rank}(P) = s$ as P has greatly s independent rank $\varphi(v_i)$ (Note that non-

$$\varphi(v_i) = (\langle e_k, v_i \rangle)_{1 \leq k \leq r}$$
 for all $1 \leq i \leq n, x \in V$ is viewed as a column vector,

and
$$t = \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \in M_{n \times 1}(F)$$
. If s is the dimension of the span of v_1, \dots, v_n

then rank(B) = s as B has exactly s independent rows $\varphi(v_i)$. (Note that nondegeneracy ensures we don't get 0 as rows as none of the $v_i = 0$). By Theorem 3.8 of "L", the dimension of the solution space equals r-s. It follows that $\mathbf{P}(\bigwedge_{i=1}^n (\langle X, v_i \rangle = t_i)) = q^{r-s}/q^r = 1/q^s$. Similarly, $\mathbf{P}(\langle X, v_i \rangle = t_i) =$ $q^{r-1}/q^r=1/q$. By Exercise 20, the random variables $\langle X,v_1\rangle,\ldots,\langle X,v_n\rangle$ are jointly independent if and only if s = n, i.e. if and only if the vectors v_1, \ldots, v_n are linearly independent.

Exercise 23

Consider the vector space $V = \mathbf{R}^2$ over a finite field F, and Y a random variable drawn uniformly at random from V. Let $\langle , \rangle : V \times V \to F$ be a nondegenerate bilinear form on V, and $u, v \in V$ not on the same line, w := u + v. Let $X, Y, Z := \langle Y, u \rangle, \langle Y, v \rangle, \langle Y, w \rangle$ respectively. Then we see by Exercise 22 that the random variables X, Y, Z are pair-wise independent but not jointly independent.

Proof. First suppose the v_i are pairwise orthogonal, normalize the v_i such that $u_i = v_i/|v_i|$. By Theorem 6.7 of "L", we can extend the u_i into an orthonormal basis $\{u_i, 1 \leq i \leq n\}$ for \mathbb{R}^n .

Let U be the matrix with columns u_1, \ldots, u_n , then U is an orthogonal matrix by Exercise 23 in Section 6.1 of "L". Let $Y = U^T X$, and $g(x) = \frac{1}{(2\pi)^{n/2}} e^{-|x|^2/2}$ the pdf of the standard normal distribution on \mathbf{R}^n , by Exercise 1.3.16 of "M", the r.v's X and Y are equal in distribution:

$$\mathbf{P}(Y \in S) = \mathbf{P}(X \in US) = \int_{\mathbf{R}^n} g 1_{US}(x) \ dx = \int_{\mathbf{R}^n} g 1_S(U^{-1}x) \ dx$$

$$\stackrel{y = U^T x}{=} |\det(U)| \int_{\mathbf{R}^n} g(Uy) 1_S(y) \ dy = \int_S g(Uy) \ dy = \mathbf{P}(X \in S).$$

That $|\det(U)| = 1$ follows from Exercise 12 in Section 4.3 of "L". For notational simplicity, write $X = (X_1, \ldots, X_n)$, and $g_i(x) = \frac{1}{\sqrt{2\pi}} e^{-x_i^2/2}$ as the pdf of the standard normal distribution on **R**. Since $g(x) = \prod_{i=1}^n g_i(x_i)$, we have by Fubini's theorem:

$$\mathbf{P}(\bigwedge_{i=1}^{m} (X \cdot v_{i} \in S_{i})) = \mathbf{P}(\bigwedge_{i=1}^{m} (X \cdot u_{i} \in S_{i}/|v_{i}|)) = \int_{\prod_{i=1}^{n} A_{i}} \prod_{i=1}^{n} g_{i}(x_{i}) \ d(x_{1}, \dots, x_{n})$$

$$= \prod_{i=1}^{n} \int_{A_{i}} g_{i}(x_{i}) \ d(x_{i}) = (\prod_{i=1}^{m} \int_{S_{i}/|v_{i}|} g_{i}(x_{i}) \ d(x_{i}) \underbrace{(\prod_{i=m+1}^{n} \int_{\mathbf{R}} g_{i}(x_{i}) \ d(x_{i}))}_{=1}$$

$$= \prod_{i=1}^{m} \int_{S_{i}/|v_{i}|} g_{i}(x_{i}) \ d(x_{i}) = \prod_{i=1}^{m} \mathbf{P}(X \cdot v_{i} \in S_{i}).$$

Note the last equality follows again by rotational invariance of the standard Gaussian distribution, as $\mathbf{P}(X \cdot v_i \in S_i) = \mathbf{P}(UX \in \mathbf{R} \times \cdots \times S_i / |v_i| \times \cdots \times \mathbf{R}) = \int_{S_i/|v_i|} g_i(x_i) \ d(x_i)$. Hence the $X \cdot v_i$ are independent.

Conversely, assume $v_1, v_2 \in \mathbf{R}^n$ are not orthogonal. As $\mu_X = \prod_{i=1}^n \mu_{X_i}$ by condition, where μ_{X_i} is the standard normal distribution on \mathbf{R} , the components X_i are independent, and thus uncorrelated. Furthermore, either by direct computation or by Exercise 37 in note 1, $EX_i, E(X \cdot v_i) = 0$ for all $1 \le i \le n$, thus $EX_i X_j = 0$ for all $i \ne j$. By linearity:

$$\mathbf{E}(X \cdot v_1)(X \cdot v_2) = \mathbf{E}(v_{1,1}X_1 + \dots v_{1,n}X_n)(v_{2,1}X_1 + \dots v_{2,n}X_n) = \sum_{i=1}^n v_{1,i}v_{2,i}$$

$$\neq 0 = \mathbf{E}(X \cdot v_1)\mathbf{E}(X \cdot v_2).$$

As $X \cdot v_1$ and $X \cdot v_2$ are not uncorrelated, they can't be independent.

Comment on equivalent formulation of a family of independent events: The cases where both 1 and 0 are in S_i and where none of 0 and 1 is in S_i are obvious. Hence we assume that for all finite $B \subset A$ and Borel subsets $S_i \subset \mathbf{R}, i \in B$, either $0 \in S_i$ or $1 \in S_i$, but not both. Undoing the definition, we have $\mathbf{P}(\bigwedge_{i \in B} (1_{E_i} \in S_i)) = \mathbf{P}(\bigwedge_{i \in A_1} \sum_{j \in A_2} \overline{E_j}) = \prod_{i \in A_1} \mathbf{P}(E_i) \prod_{j \in A_2} \mathbf{P}(\overline{E_j})$, where $B = A_1 \uplus A_2, \ 1 \in E_i, 0 \notin E_i$ for all $i \in A_1$ and $0 \in E_j, 1 \notin E_j$ for all $j \in A_2$.

Exercise 25

Proof. (1). By definition (and symmetry), E and F are jointly independent if and only if $\mathbf{P}(E \wedge \overline{F}) = \mathbf{P}(E)\mathbf{P}(\overline{F})$, which holds if and only if $\mathbf{P}(E) - \mathbf{P}(E \wedge F) = \mathbf{P}(E)(1 - \mathbf{P}(F))$, if and only if $\mathbf{P}(E \wedge F) = \mathbf{P}(E)\mathbf{P}(F)$.

- (2). The necessity of the condition follows from the definition of independent events. Now let $\Omega = \{H, T\}$ be the result of a fair coin toss, equipped with the discrete algebra. Let $E = \{H\}, F = \{T\}, G = \emptyset$, then $\mathbf{P}(E \wedge F \wedge G) = 0 = \mathbf{P}(E)\mathbf{P}(F)\mathbf{P}(G)$, but $\mathbf{P}((E \wedge F) \wedge \overline{G}) = 0 \neq 1/4 = \mathbf{P}(E)\mathbf{P}(F)\mathbf{P}(\overline{G})$. So the condition is not sufficient.
- (3). Let $\Omega=\{1,2,3,4\}$ with $\mathcal{F}=2^{\Omega}$ and p the uniform distribution. If $E=\{1,2\}, F=\{1,3\}, G=\{2,3\}$, then E,F,G are pairwise independent but not jointly independent. \square

Exercise 27

Proof. (1). Let $X = \sum_{n=1}^{\infty} 2^{-n} \epsilon_n$, and $t \in [0,1]$ with binary expansion $\sum_{n=1}^{\infty} 2^{-n} t_n, t_n \in \{0,1\}.$ Note that $\mathbf{P}(\epsilon_n < t_n) = \frac{1}{2} t_n$ for all n, and $\mathbf{P}(X = t) = 0$. Hence:

$$\mathbf{P}(X \le t) = \mathbf{P}(X < t) + \mathbf{P}(X = t)
= \mathbf{P}((\epsilon_1 < t_1) \lor (\epsilon_1 = t_1 \land \epsilon_2 < t_2) \lor (\epsilon_1 = t_1 \land \epsilon_2 = t_2 \land \epsilon_3 < t_3) \lor \dots)
= \mathbf{P}(\epsilon_1 < t_1) + \mathbf{P}(\epsilon_1 = t_1 \land \epsilon_2 < t_2) + \mathbf{P}(\epsilon_1 = t_1 \land \epsilon_2 = t_2 \land \epsilon_3 < t_3) + \dots
= \frac{1}{2}t_1 + (\frac{1}{2})^2t_2 + (\frac{1}{2})^3t_3 = t.$$

i.e. X is uniformly distributed on the unit interval [0,1].

(2). Let $X = \sum_{n=1}^{\infty} 3^{-n}(2\epsilon_n) = \sum_{n=1}^{\infty} 3^{-n}X_n$, $c:[0,1] \to [0,1]$ be the Cantor function, then X takes value in the middle thirds Cantor set C, and $\forall t \in C$, $t = \sum_{n=1}^{\infty} t_n 3^{-n}$, where $t_n \in \{0,2\}$, by Exercise 1.6.47 of "M", we have

$$\mathbf{P}(X \le t) = \mathbf{P}(X < t) + \mathbf{P}(X = t) = \mathbf{P}(X < t) = \mathbf{P}((X_1 < t_1) \lor (X_1 = t_1 \land X_2 < t_2) \lor \dots)$$

$$= \mathbf{P}(X_1 < t_1) + \mathbf{P}(X_1 = t_1)\mathbf{P}(X_2 < t_2) + \dots = \frac{t_1}{2}2^{-1} + \frac{t_2}{2}2^{-2} + \dots$$

$$= c(t).$$

Let I = [a, b] be one of the intervals used in the n^{th} cover I_n of C, then $\mathbf{P}(X \in I) = \mathbf{P}(X \leq b) - \mathbf{P}(X \leq a) = |c(I)| = 2^{-n}$, again by Exercise 1.6.47 of "M". By the fact that the Cantor distribution is the unique probability distribution for which for any n $(n \in \{0, 1, 2, 3, ...\})$, the probability of a particular interval in I_n containing the Cantor-distributed random variable is identically 2^{-n} on each one of the 2^n intervals, the claim holds.

Exercise 28

Example 1: Let $X \in \{0,1\}$ be the Bernoulli r.v with expectation 1/2, and $Y \in \{0,1,-1\}$ be the real r.v such that Y=0 when X=0 and Y=1 or -1 each with probability 1/2 when X=1. Then E(XY)=E(X)E(Y)=0, i.e. the covariance Cov(X,Y)=0, but X and Y are dependent.

Example 2: Let X be a real r.v with the probability density function $x \mapsto \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ of the standard normal distribution, and $Y = X^2$. Then X and Y are dependent, but by Exercise 37 in note 0 the covariance Cov(X,Y) = 0.

Exercise 29

Proof. For completeness we include the proof that the multivariate normal distribution indeed gives a pdf.

Denote $X := (X_1, \ldots, X_n)$, By Theorem 6.20 of "L", Σ is orthogonally equivalent to a diagonal matrix D. Specifically, let $\beta = \{u_1, \ldots, u_n\}$ be an orthonormal basis for \mathbf{R}^n consisting of eigenvectors of Σ , let Q be the matrix whose columns are vectors in β , then Q is orthogonal and $D = Q^{-1}\Sigma Q$, or equivalently $\Sigma^{-1} = QD^{-1}Q^{-1}$, where D is the diagonal matrix with its j^{th} diagonal entry λ_j the eigenvalue of Σ corresponding to the j^{th} column of Q.

Fix a Borel subset $S \in \mathbf{R}^n$, and set $c = \frac{1}{(2\pi)^{n/2}(\det \Sigma)^{1/2}}$. By linear change of variables, one obtains:

$$\mathbf{P}(X \in \mathbf{R}^{n}) \stackrel{y=x-\mu}{=} c \int_{\mathbf{R}^{n}} e^{-\frac{1}{2}y^{T} \Sigma^{-1} y} dy$$

$$\stackrel{z=Q^{T}y}{=} c |\det Q| \int_{\mathbf{R}^{n}} \exp(-\frac{1}{2}(Qz)^{T} \Sigma^{-1}(Qz)) dz$$

$$= c \int_{\mathbf{R}^{n}} e^{-\frac{1}{2}z^{T} D^{-1} z} dz \stackrel{w=z+\mu}{=} c \int_{\mathbf{R}^{n}} e^{-\frac{1}{2}(w-\mu)^{T} D^{-1}(w-\mu)} dw$$

The last integral splits by Fubini's theorem into:

$$c \int_{\mathbf{R}^n} \exp(-\frac{1}{2} \sum_{i=1}^n \frac{(w_i - \mu_i)^2}{\lambda_i}) d(w_1, \dots, w_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\lambda_i}} \int_{\mathbf{R}} \exp(-\frac{1}{2} \frac{(w_i - \mu_i)^2}{\lambda_i}) dw_i,$$

which equals 1. Note that the positive definite hypothesis ensures $\lambda_i > 0$ for all i (Exercise 17 in Section 6.4 of "L"), so the integrals on the RHS are all well defined.

(1). If $Y \in \mathbf{R}^n$ is the gaussian random vector with $Y \sim N(0_{\mathbf{R}^n}, D)$, then $Z = QY + \mu$ is a copy of X. Indeed, by condition,

$$\mathbf{P}(X \in S) = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} \int_{S} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} dx$$

$$y = Q^{T} = \frac{1}{(2\pi)^{n/2} (\det D)^{1/2}} \int_{Q^{T}(S-\mu)} e^{-\frac{1}{2}y^{T} D^{-1}y} dy$$

$$= \mathbf{P}(Y \in Q^{T}(S-\mu)) = \mathbf{P}(QY + \mu \in S).$$

Taking the function f to be the ith coordinate projection π_i in Theorem 33 of note 1, we see that $\mathbf{E}X_i = \mathbf{E}Z_i$. Hence $\mathbf{E}X_i = \mathbf{E}(\sum_{j=1}^n Q_{ij}Y_j + \mu_i) = \sum_{j=1}^n Q_{ij}\mathbf{E}Y_j + \mu_i = \mu_i$ by linearity.

By the change of variables formula, for random vectors $U \stackrel{\text{d}}{=} V$,

 $\mathbf{E}(U_iU_j) = \int_{\mathbf{R}^n} \pi_1(u)\pi_2(u) \ d\mu_U(u) = \int_{\mathbf{R}^n} \pi_1(v)\pi_2(v) \ d\mu_V(v) = \mathbf{E}(V_iV_j),$ so in particular $\mathrm{Cov}(U_i,U_j) = \mathrm{Cov}(V_i,V_j)$. Since the components of Y are independent, we get:

$$Cov(X_i, X_j) = Cov(Z_i, Z_j) = \sum_{r=1}^n Q_{ir} Q_{jr} \mathbf{E}(Y_r^2) = \sum_{r=1}^n \lambda_r Q_{ir} Q_{jr} = \sigma_{ij}.$$

We haven shown that every positive definite real symmetric matrix Σ is the covariance matrix of some gaussian random vector $Z = QY + \mu$.

(2). By definition, independence implies vanishing covariance. Conversely, if all the covariances $\mathrm{Cov}(X_i,X_j)$ for $1\leq i\neq j\leq n$ vanish, Σ becomes a diagonal matrix $diag(\sigma_{11},\ldots,\sigma_{nn})$. Hence the pdf of X splits and we have:

$$\mathbf{P}(X \in \prod_{i=1}^n S_i) = \prod_{i=1}^n \int_{S_i} \exp\left(-\frac{1}{2} \frac{(x_i - \mu_i)^2}{\sigma_{ii}}\right) dx_i = \prod_{i=1}^n \mathbf{P}(X_i \in S_i). \text{ That is, } (X_1, \dots, X_n) \text{ are jointly independent.}$$

(3). Let X be a real standard gaussian r.v., and R a random variable taking 1 and -1 each with probability 1/2 (a random sign). Then Y = RX is such that:

$$\begin{aligned} \mathbf{P}(Y \in S) &= \mathbf{P}(RX \in S) = \mathbf{P}(R=1)\mathbf{P}(X \in S) + \mathbf{P}(R=-1)\mathbf{P}(X \in -S) = \\ \frac{1}{2\sqrt{2\pi}} \int_{S} e^{-\frac{1}{2}x^2} \, dx + \frac{1}{2\sqrt{2\pi}} \int_{-S} e^{-\frac{1}{2}x^2} \, dx = \frac{1}{\sqrt{2\pi}} \int_{S} e^{-\frac{1}{2}x^2} \, dx. \\ \text{i.e. } Y \text{ is also standard gaussian. Clearly } X \text{ and } Y \text{ are not independent, but} \end{aligned}$$

 $Cov(X,Y) = \mathbf{E}(RX^2) - \mathbf{E}(X)\mathbf{E}(RX) = \mathbf{E}(R)[\mathbf{E}(X^2) - \mathbf{E}(X^2)] = 0.$

Exercise 31

Proof. Let $B \subset A$ be finite. The event $E_i \in \sigma(X_i)$ for any $i \in B$ corresponds with the event $X_i \in S_i$ for some measurable set S_i in the range of X_i , hence by definition $(X_i)_{i\in A}$ are jointly independent random variables if and only if $(\sigma(X_i))_{i\in A}$ are jointly independent σ -algebras.

Exercise 32

Proof. Let (R_n, \mathcal{B}_n) be the range of X_n for $n = 1, 2, \ldots$ For sufficiency, assume that $\sigma(X_{n+1})$ is independent of $\sigma(X_1,\ldots,X_n)$ for all natural numbers n. Let $B \subset \mathbf{N}$ be finite with |B| > 1 (the case for |B| = 1 being trivial). Let N := $\max(B)$, if we set $S'_n := S_n$ for $n \in B$ and $S'_n := R_n$ otherwise, then:

$$\mathbf{P}(\bigwedge_{n\in B}(X_n\in S_n)) = \mathbf{P}(\bigwedge_{n=1}^N(X_n\in S_n')) = \mathbf{P}(\bigwedge_{n=1}^{N-1}(X_n\in S_n') \land (X_N\in S_N'))$$

$$= \mathbf{P}(E_1 \land E_2) = \mathbf{P}(E_1)\mathbf{P}(E_2)$$

$$= \mathbf{P}(\bigwedge_{n=1}^{N-1}(X_n\in S_n'))\mathbf{P}(X_N\in S_N').$$

Where $E_1 \in \sigma(X_1, \dots, X_{N-1}), E_2 \in \sigma(N)$. By iteration, one gets

$$\mathbf{P}(\bigwedge_{n\in B}X_n\in S_n)=\prod_{n=1}^N\mathbf{P}(X_n\in S_n')=\prod_{n\in B}\mathbf{P}(X_n\in S_n). \text{ That is, } (X_n)_{n=1}^\infty$$
 are jointly independent.

Conversely, suppose that $(X_n)_{n=1}^{\infty}$ are jointly independent. $\forall n \in \mathbf{N}$, by definition, $\sigma(X_1,\ldots,X_n)=\langle\bigcup_{i=1}^n\sigma(X_i)\rangle$, and by the previous Exercise $\sigma(X_{n+1})$ is independent of $\sigma(X_i)$ for all $1 \leq i \leq n$. We use induction to extend from the the set of generators to the entire σ -algebra.

We let P(E) be the property of any event $E \subset \Omega$ that $\mathbf{P}(E \cap F) = \mathbf{P}(E)\mathbf{P}(F)$ for any event $F \in \sigma(X_{n+1})$. $P(\emptyset)$ holds trivially since any event is independent of the empty event. If $\mathbf{P}(E \cap F) = \mathbf{P}(E)\mathbf{P}(F)$, then $\mathbf{P}(E^C \cap F) = \mathbf{P}(F \setminus E) =$ $\mathbf{P}(F) - \mathbf{P}(E \cap F) = \mathbf{P}(F) - \mathbf{P}(E)\mathbf{P}(F) = \mathbf{P}(E^C)\mathbf{P}(F)$ by finite additivity. Lastly, If $E_1, E_2, \dots \subset \Omega$ are such that $P(E_n)$ is true for all n, without loss of generality we assume that the E_n are pairwise disjoint, then $\mathbf{P}((\bigcup_{n=1}^{\infty} E_n) \cap F) = \mathbf{P}(\bigcup_{n=1}^{\infty} (E_n \cap F)) = \sum_{n=1}^{\infty} \mathbf{P}(E_n \cap F) = \sum_{n=1}^{\infty} \mathbf{P}(E_n) \mathbf{P}(F) = \mathbf{P}(\bigcup_n E_n) \mathbf{P}(F)$ by countable additivity. The claim then follows by induction.

Comment on the proof of Theorem 33 (Kolmogorov zero-one law):

- 1. The algebras $\sigma(X_1, \ldots, X_n)$ are increasing in n, by Exercise 32 and the fact that independent to the larger algebra implies independent to the smaller algebra, the generators $\sigma(X_{n+1}), \sigma(X_{n+2}), \ldots$ of $\sigma(X_i : i > n)$ are all independent to $\sigma(X_1, \ldots, X_n)$, by induction the σ -algebra $\sigma(X_i : i > n)$ is thus independent of $\sigma(X_1, \ldots, X_n)$.
- 2. Let $C = \{E \in \sigma(X_i : i \geq 1) : E \text{ is independent to all tail events } F \in \mathcal{T}\}$, then C is a monotone class containing $\sigma(X_1, \ldots, X_n)$ for all $n = 1, 2, \ldots$, by monotone class lemma $C \supset \sigma(X_i : i \geq 1)$. i.e. \mathcal{T} is independent of $\sigma(X_i : i \geq 1)$.