JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering

Electrical Science-I (15B11EC111)

Tutorial Sheet: 4

Q.1[CO1] For the circuit shown in Fig.1 determine the unknown current using KCL.

[ANS: $I_5 = 2$ Amp, $I_3 = 1.5$ Amp]

Fig. 1

Q.2 [CO1] Determine the node voltage at nodes B and C in the network shown in Fig.2.

[ANS: $V_B=V_C=114 \text{ Volt}$]

Fig. 2

Q.3 [CO1] Using loop current analysis, find the loop current shown in Fig. 3.

[ANS: I_1 = -0.25 Amp, I_2 =-4.75 Amp, I_3 = -4.0 Amp]

Fig. 3

Q. 4 [CO1] Determine the node voltage V_a for the circuit of Fig. 4.

[ANS: $V_a = 7 \text{ Volt}$]

- **Q. 5 [CO1]** The circled number in Fig. 5 is node number. The node voltage of this circuit are $V_1 = 10 \text{ V}$, $V_2 = 14 \text{ V}$ and $V_3 = 12 \text{ V}$:
- (a) Determine the value of current i_b.
- (b) Determine the value of r, the gain of the CCVS.

[ANS: (a) $i_b = -2$ Amp, (b) 4V/A]

Fig. 5

Q. 6 [CO1] Determine the value of the voltage measure by the voltmeter in Fig. 6.

[ANS: 8 V]

Fig. 6