INSTITUTO FEDERAL Norte de Minas Gerais Campus Januária	Curso	Bacharelado em Sistemas de Informação - BSI		
	Disciplina	Estruturas de Dados II	Período	3
	Professor	Helder Seixas Lima	Semestre	2020/1
	Atividade	Trabalho Prático 1		
	Aluno	Jeferson Lopes Coutinho		

Análise da complexidade da Ordenação por Seleção e Inserção

Algoritmo de Ordenação por Seleção:

Operação relevante:

Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos de cid(cidades), se Cid contiver n elementos.

Temos:

Melhor caso:
$$f(n) = \frac{n^2 - n}{2}$$

Pior caso:
$$f(n) = \frac{n^2 - n}{2}$$

Caso médio: f(n) =
$$\left(\frac{1}{\frac{n^2-n}{2}} * \frac{n^2-n}{2}\right) * \frac{n^2-n}{2} = \frac{n^2-n}{2}$$

Para todos os casos a função de complexidade será a mesma. pois, para ordenar os dados é necessário comparar a posição do vetor com todas as posições posteriores.

Sendo a função complexidade dada por:

$$f(n) = \sum_{i=1}^{n-1} (n-i) = \frac{n^2-n}{2}$$

Comportamento assintótico firmes:

O comportamento assintótico firme, será o mesmo para todos os casos.

Sendo:

$$\Theta(n^2)$$

Algoritmo de Ordenação por Seleção:

```
def Ordenar_insertion(cidades=[]):
37
         h = "Habitantes"
         for i in range(1, len(cidades)):
             c = i-1
39
              while c >=0 and cidades[i][h] < cidades[c][h]:</pre>
                      aux = cidades[c]
41
42
                      cidades[c] = cidades[i]
43
                      cidades[i] = aux
44
                      i = c
                      c = i - 1
47
         return cidades
```

Operação relevante:

Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos de cid(cidades), se cid contiver n elementos.

Melhor caso: f(n) = n-1 (Pois o vetor já estar ordenado, e a operação relevante sempre será falsa, sendo verificada so n-1 vezes).

Pior caso: $f(n) = \frac{n^2 - n}{2}$ (Pois o vetor está ordenado de forma contrária ao desejado, e a operação relevante será executada n-i vezes para cada elemento do vetor.

Logo:

$$f(n) = f(n) = \sum_{i=1}^{n-1} (n-i) = \frac{n^2-n}{2}$$

Caso médio:

Caso foi obtido a partir da média do melhor caso é pior caso:

$$f(n) = \frac{(n-1)+(\frac{n^2-n}{2})}{2} = \frac{\frac{n^2+n-2}{2}}{2} = \frac{n^2+n-2}{4}$$

Comportamento assintótico firmes:

Melhor caso:

$$\Theta(n)$$

Pior caso:

$$\Theta(n^2)$$

Caso médio:

$$\Theta(n^2)$$