

Multimedia: Real-Time Processing Requirements

- Occurs in predetermined usually periodic intervals
- Compete at certain deadlines.
- RT process manager
 - performs admission control
 - determines a schedule
 - gives processing guarantees.
- Problem: how to find a feasible schedule.

4/10/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Content of this lecture

- Reminder
 - Quiz4 is due today
 - Conflict exam: signup before 4/14 Noon unless documented medical or family emergency
- Multimedia Scheduling
 - Traditional RT Scheduling
 - System Model of RT Scheduling
 - Rate Monotonic Algorithm
 - Earliest Deadline First Algorithm

4/10/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Group Discussion

- Tasks
 - Sleep: once every 24 hours, each time takes 8 hours
 - Walk the dog: once every 12 hours, each time takes 30 minutes
 - Call parents: once every 6 hours, each time takes 15 minutes
 - Eat: once every 4 hours, each time takes 1 hour
 - Attend lectures: once every 3 hours, each time 3 1 hour
 - n you schedule these tasks?

4/10/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Goals of Multimedia Scheduling

- non-RT process should not starve when RT process is running
- RT process should not be subject to priority inversion.
 - (what is priority inversion?)

4/10/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Discussion

Does the following scheduler have the same goals?

- Scheduler for traditional time-sharing computers
- Traditional RT scheduler
- Multimedia scheduler

.

4/10/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Scheduling Environments

- Traditional scheduling on time-sharing computers
 - optimal throughput, optimal resource utilization, and fair queueing.
- Traditional RT scheduling in operation research

4/10/2003

- guarantee hard deadlines with no adaptation to changes of the workload.
- Multimedia scheduling
 - Guarantee soft deadlines,i.e., work in a dynamic environment with adaptation to changes of the workload in bounds of timing requirements

CS 323 - Operating Systems, Yuanyuan Zhou

Rate Monotonic Scheduling

- This algorithm was designed and proved correct by C.L. Liu and Layland in 1973.
- This algorithm is static and optimal, priority-driven for preemptive periodic jobs.
 - Optimal means that there is no other static algorithm that is able to schedule a task set which can't be scheduled by the ratemonotonic algorithm.
- The algorithm was proven under the following assumptions:
 - tasks are periodic
 - each task must be completed before the next request occurs
 - all tasks are independent
 - run-time of each task request is constant
 - any non-periodic task in the system has no required deadlines

13

4/10/2003

CS 323 - Operating Systems, Yuanvuan Zhou

Yuanyuan Zhou

Earliest Deadline First Algorithm

- One of the best known algorithms for RT processing
- It is an optimal dynamic algorithm. It produces a valid schedule whenever one exists.
- Upper bound of process utilization is 100 %.
- If priorities should be used, then the earliest deadline gets the highest priority.

15

4/10/2003

CS 323 - Operating Systems, Yuanyuan Zhou

Admission Control

- Process utilization for RM algorithm is upper bounded by U≤ In2 (Liu and Layland condition).
- The schedulability test is then $\sum_{i=1}^{n} \frac{\epsilon_i}{p_i} \le ln^2$
- With EDF algorithm, the 100% utilization can be achieved: *U* ≤ 1
- ullet The schedulability test is then $\sum_{i=1}^n$

CS 323 - Operating Systems, 4/10/2003 Yuanyuan Zhou