Supervised learning in function spaces

Part III: Fourier Neural Operators

https://github.com/PredictiveIntelligenceLab/TRIPODS_Winter_School_2022

Instructors:

- Paris Perdikaris (University of Pennsylvania, pgp@seas.upenn.edu)
- Jacob Seidman (University of Pennsylvania, seidj@sas.upenn.edu)
- Georgios Kissas (University of Pennsylvania, gkissas@seas.upenn.edu)

A Neural Network Inspired Approach

 The basic MLP architecture is an alternating composition of linear (affine) and non-linear transformations.

$$W_L \circ \sigma \circ W_{L-1} \circ \cdots \circ \sigma \circ W_1$$

ullet For appropriate choices of $oldsymbol{\sigma}$ and enough width/depth, this can approximate any continuous map between finite dimensional spaces

Applying the classic architecture to function spaces

 We could use an MLP directly as an architecture, but this would only act pointwise on the target space of the input function

$$\mathcal{X} \stackrel{u}{-\!\!\!-\!\!\!-\!\!\!-} \mathbb{R}^{d_u} \stackrel{ ext{MLP}}{-\!\!\!\!-\!\!\!\!-} \mathbb{R}^{d_s}$$

- This won't be able to express general function to function mappings
 - Two curves that intersect at a point would always map to curves that intersect at the same point. Does not use global curve information.

Generalizing Linear/Nonlinear Compositions

- On function spaces we have many more linear transformations available besides pointwise operators.
- **Example:** On $C(\mathcal{X},\mathbb{R})$, any continuous $k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ defines a linear map

$$T_k:C(\mathcal{X},\mathbb{R}) o C(\mathcal{X},\mathbb{R})$$

$$T_k(u) := \int_{\mathcal{X}} k(\cdot, y) u(y) \ dy$$

These should be included in a layered architecture!

Additional motivation for integral kernel transformations

 A classic operator to learn is the solution operator for an inhomogeneous partial linear differential equation

$$Lu = f$$

where L is a linear differential operator.

- ullet The goal is to learn L^{-1} such that given f we can solve for u
- ullet A Green's function k(x,s) allows us to solve the PDE with

$$u = L^{-1}f = \int k(\cdot,y)f(y) \; dy$$

Neural Operators

A Neural Operator is a composition of layers of the form

$$v^{(\ell+1)}(y) = \sigma\left(Wv^{(\ell)}(y) + \int_D k(y,z)v^{(\ell)}(z)dz
ight)$$

where W is a pointwise linear transformation and σ is a pointwise nonlinearity

 No longer restricted to fixed number of input function measurements or even their locations

How to compute integral part?

- Option 1: Graph Neural Operator
- Use a monte-carlo approximation

$$\int k(x,z)u(z)\;dzpprox rac{1}{N}\sum_{i=1}^N k(x,z_i)u(z_i)$$

- If the kernel rapidly decays off its diagonal, (i.e. ||k(x,y)|| quickly becomes small as ||x-y|| grows), we can form a graph where each evaluation point x has an edge to the other measurement points z_i with non-negligible values of the kernel.
- This can be implemented with a message passing algorithm and the graph can be updated to include varying measurement points and locations
 - Additional tricks available (Nystrom/low rank approximations, multi-pole versions, etc.)

How to compute integral part?

- Option 2: Fourier Neural Operator (FNO)
- ullet When the kernel is stationary, $\,k(y,z)=k(y-z)\,$, the Fourier convolution theorem gives

$$\int_D k(y-z)v(z)dz = F^{-1}ig(\hat k(\xi)\hat v(\xi)ig)(y)$$

We can learn \hat{k} directly and approximate the integral with an FFT, IFFT, and a multiplication

Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

¹http://tensorlab.cms.caltech.edu/users/anima/pubs/GraphPDE_Journal.pdf

²Kovachki, Nikola, Samuel Lanthaler, and Siddhartha Mishra. "On universal approximation and error bounds for Fourier Neural Operators." arXiv preprint arXiv:2107.07562 (2021).

Benefits of Fourier Version

- FFTs are fast
 - The basic Graph Neural Operator implementation has a quadratic cost in the number of measurement points

- Trained models can be immediately deployed on higher resolution inputs without rebuilding neighborhood graph
- Naturally handles non-local transformations of functions
 - Efficient without strict assumptions decay of kernel away from its diagonal

Fourier Neural Operator Layer

Note the similarity to residual-like architectures (ResNets, etc.)

$$v^+(y) = \sigma\left(Wv(y) + F^{-1}ig(\hat{k}(\xi)\hat{v}(\xi)ig)(y)
ight)$$

Universality of FNO

Theorem 5 (Universal approximation) Let $s, s' \geq 0$. Let $\mathcal{G}: H^s(\mathbb{T}^d; \mathbb{R}^{d_a}) \to H^{s'}(\mathbb{T}^d; \mathbb{R}^{d_u})$ be a continuous operator. Let $K \subset H^s(\mathbb{T}^d; \mathbb{R}^{d_a})$ be a compact subset. Then for any $\epsilon > 0$, there exists a FNO $\mathcal{N}: H^s(\mathbb{T}^d; \mathbb{R}^{d_a}) \to H^{s'}(\mathbb{T}^d; \mathbb{R}^{d_u})$, of the form (6), continuous as an operator $H^s \to H^{s'}$, such that

$$\sup_{a \in K} \|\mathcal{G}(a) - \mathcal{N}(a)\|_{H^{s'}} \le \epsilon.$$

Kovachki, Nikola, Samuel Lanthaler, and Siddhartha Mishra. "On universal approximation and error bounds for Fourier Neural Operators." *Journal of Machine Learning Research* 22 (2021)

See below for universality statement with general Neural Operators
 Kovachki, Nikola, et al. "Neural operator: Learning maps between function spaces." arXiv preprint arXiv:2108.08481 (2021).

Training FNOs

- Input and output function locations $\{x_i\}$, $\{y_i\}$ typically on regular grids so FFT can be used.
- Single training example is

$$\Big\{ \{x_{i_1,\ldots,i_{d_x}}\}, \{u(x_{i_1,\ldots,i_{d_x}})\}, \{y_{j_1,\ldots,j_{d_y}}\}, \{s(y_{j_1,\ldots,j_{d_y}})\} \Big\}$$

where (i_1,\ldots,i_{d_x}) and (j_1,\ldots,j_{d_y}) range over the grids for x and y, respectively

Applications highlights

100,000x speed-up over traditional numerical weather models in emulating global climate variables (temperature, pressure, wind velocity)

NEXT UP

 An even more in-depth introduction to JAX and an example implementation of the FNO method.

THEN

Introduction to LOCA, PIDONS, and applications.

