27.08.2004

RECEIVED

2 1 OCT 2004

PCT

WIPO

# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 8月28日

出 願 番 号 Application Number:

特願2003-304964

[ST. 10/C]:

ン

[JP2003-304964]

出 願 人
Applicant(s):

株式会社林原生物化学研究所

特許庁長官 Commissioner, Japan Patent Office PRIORITY DOCUMENTS
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年10月 7日





【書類名】 特許願 【整理番号】 10102801

【あて先】 特許庁長官 今井 康夫 殿

【国際特許分類】 C07H 3/06 C12N 9/10 C12N 9/24 C12P 19/18

【発明者】

【住所又は居所】 岡山県岡山市下石井1丁目2番3号 株式会社林原生物化学研究

所内

【氏名】 向井 和久

【発明者】

【住所又は居所】 岡山県岡山市下石井1丁目2番3号 株式会社林原生物化学研究

所内

【氏名】 渡辺 光

【発明者】

【住所又は居所】 岡山県岡山市下石井1丁目2番3号 株式会社林原生物化学研究

所内

【氏名】 西本 友之

【発明者】

【住所又は居所】 岡山県岡山市下石井1丁目2番3号 株式会社林原生物化学研究

所内

【発明者】

【住所又は居所】 岡山県岡山市下石井1丁目2番3号 株式会社林原生物化学研究

所内

【氏名】 福田 恵温

【発明者】

【住所又は居所】 岡山県岡山市下石井1丁目2番3号 株式会社林原生物化学研究

所内

【氏名】 三宅 俊雄

【特許出願人】

【識別番号】 000155908

【氏名又は名称】 株式会社林原生物化学研究所

【代表者】 林原 健

【手数料の表示】

【予納台帳番号】 035736 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】明細書 1【物件名】図面 1【物件名】要約書 1

## 【書類名】特許請求の範囲

## 【請求項1】

サイクロ $\rightarrow$ 6)  $-\alpha$ -D-グルコピラノシルー( $1\rightarrow$ 4)  $-\alpha$ -D-グルコピラノシルー( $1\rightarrow$ 6)  $-\alpha$ -D-グルコピラノシルー( $1\rightarrow$ 4)  $-\alpha$ -D-グルコピラノシルー( $1\rightarrow$ 1 の構造を有する環状マルトシルマルトース。

## 【請求項2】

グルコース重合度が3以上の $\alpha-1$ , 4グルカンに作用し、サイクロ $\{\rightarrow 6\}$   $-\alpha-D$  - グルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$  - グルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$  - グルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$  - グルコピラノシルー  $(1\rightarrow 4)$  の構造を有する環状マルトシルマルトースを生成する作用を有する環状マルトシルマルトース生成酵素。

## 【請求項3】

下記の理化学的性質を有する請求項2に記載の環状マルトシルマルトース生成酵素。

- (1) 分子量
  - SDSーゲル電気泳動法において、72,000±20,000ダルトン。
- (2) 等電点 アンフォライン含有等電点電気泳動法において、p I 3. 6 ± 0. 5。
- (3)至適温度pH6.0、30分間反応の条件下で、50℃乃至55℃。
- (4) 至適pH40℃、30分間反応の条件下で、pH5.5乃至6.5。
- (5)温度安定性pH6.0、60分間保持の条件下で、30℃まで安定。1mMカルシウムイオン存在下では、50℃まで安定。
- (6) p H安定性4℃、24時間保持の条件下で、p H 5. 0乃至9. 0で安定。

## 【請求項4】

N末端アミノ酸配列として、配列表における配列番号1で示されるアミノ酸配列を有する 請求項2又は3記載の環状マルトシルマルトース生成酵素。

## 【請求項5】

グルコース重合度が3以上の $\alpha-1$ , 4 グルカンが、マルトオリゴ糖、マルトデキストリン、アミロデキストリン、アミロース、アミロペクチン、溶性澱粉、液化澱粉、糊化澱粉及びグリコーゲンから選ばれる1 種又は2 種以上の糖質である請求項2 乃至4 のいずれかに記載の環状マルトシルマルトース生成酵素。

#### 【請求項6】

環状マルトシルマルトース生成酵素が、微生物由来の酵素である請求項2万至5のいずれかに記載の環状マルトシルマルトース生成酵素。

## 【請求項7】

微生物が、アルスロバクター属の微生物である請求項6記載の環状マルトシルマルトース生成酵素。

#### 【請求項8】

アルスロバクター属の微生物が、アルスロバクター・グロビホルミス(Arthrobacter globiformis) M6(独立行政法人産業技術総合研究所 特許生物寄託センター、寄託番号FERM BP-8448)又はその変異株である請求項7記載の環状マルトシルマルトース生成酵素。

## 【請求項9】

請求項2乃至8のいずれかに記載の環状マルトシルマルトース生成酵素の産生能を有する微生物を栄養培地で培養して得られる培養物から、請求項2乃至8のいずれかに記載の環状マルトシルマルトース生成酵素を採取することを特徴とする環状マルトシルマルトース生成酵素の製造方法。

#### 【請求項10】

微生物が、アルスロバクター属の微生物である請求項9記載の環状マルトシルマルトース生成酵素の製造方法。

## 【請求項11】

アルスロバクター属の微生物が、アルスロバクター・グロビホルミス(Arthrob acter globiformis) M6(独立行政法人産業技術総合研究所 特許生物寄託センター、寄託番号FERM BP-8448)又はその変異株である請求項10記載の環状マルトシルマルトース生成酵素の製造方法。

## 【請求項12】

アルスロバクター・グロビホルミス(Arthrobacter globiformis) M6(独立行政法人産業技術総合研究所 特許生物寄託センター、寄託番号FER M BP-8448)又はその変異株である環状マルトシルマルトース生成酵素産生能を有する微生物。

## 【請求項13】

グルコース重合度が 3 以上の  $\alpha-1$ , 4 グルカンを含有する溶液に、請求項 2 乃至 8 のいずれかに記載の環状マルトシルマルトース生成酵素を作用させることを特徴とするサイクロ  $\{\rightarrow 6\}$   $-\alpha-D$ -グルコピラノシルー( $1\rightarrow 4$ )  $-\alpha-D$ -グルコピラノシルー( $1\rightarrow 6$ )  $-\alpha-D$ -グルコピラノシルー( $1\rightarrow 4$ )  $-\alpha-D$ -グルコピラノシルー( $1\rightarrow 4$ ) の構造を有する環状マルトシルマルトースの生成方法。

### 【請求項14】

## 【請求項15】

グルコース重合度が 3 以上の  $\alpha-1$ , 4 グルカンを含有する溶液に、請求項 2 乃至 8 のいずれかに記載の環状マルトシルマルトース生成酵素を作用させて得られるサイクロ  $\rightarrow 6$  )  $-\alpha-D-グルコピラノシル-(1 \rightarrow 4) -\alpha-D-グルコピラノシル-(1 \rightarrow 6) -\alpha-D-グルコピラノシル-(1 \rightarrow 4) -\alpha-D-グルコピラノシル-(1 \rightarrow 6) の構造を有する環状マルトシルマルトース、又はこれを含む糖質。$ 

#### 【請求項16】

グルコース重合度が 3 以上の  $\alpha-1$ , 4 グルカンが、マルトオリゴ糖、マルトデキストリン、アミロデキストリン、アミロース、アミロペクチン、溶性澱粉、液化澱粉、糊化澱粉及びグリコーゲンから選ばれる 1 種又は 2 種以上の糖質である請求項 1 5 記載のサイクロ $\{\rightarrow 6\}$   $\{\rightarrow 6\}$ 

## 【請求項17】

グルコース重合度が 3以上の  $\alpha-1$ , 4 グルカンを含有する溶液に、請求項 2 乃至 8 のいずれかに記載の環状マルトシルマルトース生成酵素を作用させてサイクロ  $\{\rightarrow 6\}$   $-\alpha-D-グルコピラノシル-(1\rightarrow 4)$   $-\alpha-D-グルコピラノシル-(1\rightarrow 6)$   $-\alpha-D-グルコピラノシル-(1\rightarrow 4)$  の構造を有する環状マルトシルマルトースとともに他の糖質を含有する溶液とし、これを、強酸性カチオン交換樹脂を用いるカラムクロマトグラフィーにかけて得られるサイクロ  $\{\rightarrow 6\}$   $-\alpha-D-グルコピラノシル-(1\rightarrow 4)$   $-\alpha-D-グルコピラノシル-(1\rightarrow 6)$   $-\alpha-D-グルコピラノシル-(1\rightarrow 4)$  の構造を有する環状マルトシルマルトース、又はこれを含む糖質。

#### 【請求項18】

サイクロ  $\{\rightarrow 6\}$   $-\alpha - D - グルコピラノシルー (1 <math>\rightarrow 4$ )  $-\alpha - D - グルコピラノシ$  出証特 2004-3090262

形態が、シラップ、マスキット、非晶質粉末、非晶質固状物、結晶又は結晶固状物のいずれかであることを特徴とするサイクロ $\{\rightarrow 6\}$   $-\alpha$  - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D - D

## 【請求項20】

【讀求項19】

## 【請求項21】

## 【請求項22】

澱粉を糊化及び/又は液化した溶液に、請求項2乃至8のいずれかに記載の環状マルトシルマルトース生成酵素とともにイソアミラーゼを作用させ、必要に応じて、更に $\alpha$ -アミラーゼ、 $\beta$ -アミラーゼ、サイクロマルトデキストリングルカノトランスフェラーゼ、グルコアミラーゼ、 $\alpha$ -グルコシダーゼから選ばれる1種又は2種以上の酵素を作用させることを特徴とする請求項20又は21記載のサイクロ $\rightarrow$ 6)  $-\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)  $-\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)  $-\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)  $-\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)  $-\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4) の構造を有する環状マルトシルマルトース、又はこれを含む糖質の製造方法。

#### 【請求項23】

澱粉を糊化及び/又は液化した溶液に、請求項2乃至8のいずれかに記載の環状マルトシルマルトース生成酵素とともにイソアミラーゼを作用させ、必要に応じて、更に $\alpha$ -アミラーゼ、 $\beta$ -アミラーゼ、サイクロマルトデキストリングルカノトランスフェラーゼ、グルコアミラーゼ、 $\alpha$ -グルコシダーゼから選ばれる1種又は2種以上の酵素を作用させた後、カラムクロマトグラフィーによる分画、膜による分離、微生物による発酵処理及びアルカリ処理による分解除去から選ばれる1種又は2種以上の精製方法を用いることを特徴とする請求項20乃至22のいずれかに記載のサイクロ $\{\rightarrow$ 6)- $\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)- $\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 6)- $\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)- $\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)- $\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 4)- $\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 5)の構造を有する環状マルトシルマルトース、又はこれを含む糖質の製造方法。

#### 【請求項24】

サイクロ  $\{ \rightarrow 6 \}$   $-\alpha$  - D -  $\phi$   $\nu$  -  $\alpha$  - D -  $\phi$  -  $\alpha$  - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0

## 【請求項25】

## 【請求項26】

サイクロ  $\} \rightarrow 6$ )  $-\alpha - D -$ グルコピラノシルー( $1 \rightarrow 4$ )  $-\alpha - D -$ グルコピラノシルー( $1 \rightarrow 6$ )  $-\alpha - D -$ グルコピラノシルー( $1 \rightarrow 4$ )  $-\alpha - D -$ グルコピラノシルー( $1 \rightarrow \}$  の構造を有する環状マルトシルマルトース又はこれを含む糖質を含有せしめた組成物。

## 【請求項27】

組成物が、飲食物、化粧品又は医薬品である請求項26記載の組成物。

#### 【請求項28】

サイクロ  $\{\rightarrow 6\}$   $-\alpha - D - グルコピラノシルー (1 <math>\rightarrow 4$ )  $-\alpha - D - グルコピラノシルー (1 <math>\rightarrow 6$ )  $-\alpha - D - グルコピラノシルー (1 <math>\rightarrow 4$ )  $-\alpha - D - グルコピラノシルー (1 <math>\rightarrow 4$ ) の構造を有する環状マルトシルマルトースを固形物当り 0. 1質量%以上含有せしめた請求項 2 6 又は 2 7 記載の組成物。

## 【書類名】明細書

【発明の名称】環状マルトシルマルトース及び環状マルトシルマルトース生成酵素とそれらの製造方法並びに用途

## 【技術分野】

## [0001]

本発明は、サイクロ  $\rightarrow$  6)  $-\alpha$  - D - グルコピラノシルー(1  $\rightarrow$  4)  $-\alpha$  - D - グルコピラノシルー(1  $\rightarrow$  6)  $-\alpha$  - D - グルコピラノシルー(1  $\rightarrow$  4)  $-\alpha$  - D - グルコピラノシルー(1  $\rightarrow$  4) の構造を有する環状マルトシルマルトース(以下、本明細書では単に「環状マルトシルマルトース」と略称することもある。)及び環状マルトシルマルトース 生成酵素とそれらの製造方法並びに用途に関し、詳細には、環状マルトシルマルトース及び環状マルトシルマルトース生成酵素とその製造方法、環状マルトシルマルトース生成酵素を産生する微生物、この酵素を用いた環状マルトシルマルトースの生成方法及び製造方法、並びに環状マルトシルマルトースを含有せしめた組成物に関する。

#### 【背景技術】

## [0002]

グルコースを構成糖とする糖質としては、例えば、澱粉を原料として製造される澱粉部 分分解物であるアミロース、アミロデキストリン、マルトデキストリン、マルトオリゴ糖 、イソマルトオリゴ糖などが知られている。これらの糖質は、通常、分子の両端に非還元 性末端と還元性末端を有し、還元性を示すことが知られている。一般に、澱粉部分分解物 は、その固形物当りの還元力の大きさをデキストロース・エクイバレント(Dextro se Equivalent、DE)として表される。この値の大きいものは、通常、分 子が小さく低粘度で、甘味が強いものの、反応性が強く、アミノ酸や蛋白質などのアミノ 基を持つ物質とアミノカルボニル反応を起こし易く、褐変し、悪臭を発生して、品質を劣 化し易い性質のあることが知られている。斯かる欠点を改善するために、澱粉部分分解物 の構成糖であるグルコースを変えることなく、その還元力を低減、若しくは消滅させる方 法が古くから望まれていた。例えば、非特許文献1で開示されているように、澱粉にマセ ランス アミラーゼ (macerans amylase) を作用させることにより、6 乃至8分子のグルコースが $\alpha-1$ , 4グルコシド結合した $\alpha-$ 、 $\beta-$ 又は $\gamma-$ サイクロデ キストリンを生成させる方法が知られている。現在では、澱粉からこれらサイクロデキス トリンが工業的規模で生産され、これらサイクロデキストリンは、それらが有する、非還 元性で、無味であり、包接能を有するなどの特性を生かした用途に利用されている。また 、先に、本出願人が、特許文献1、特許文献2などで開示したように、マルトオリゴ糖な ど澱粉部分分解物に非還元性糖質生成酵素及びトレハロース遊離酵素を作用させることに より、2分子のグルコースが $\alpha$ ,  $\alpha-1$ , 1結合したトレハロースを生成させる方法も知 られている。現在では、澱粉からトレハロースが工業的規模で生産され、その非還元性や 温和で髙品質な甘味特性などを生かした用途に利用されている。さらに、先に、本出願人 が、特許文献3乃至特許文献5などで開示したように、澱粉又はその部分分解物にαーイ ソマルトシルグルコ糖質生成酵素とαーイソマルトシル転移酵素を作用させることにより 、4分子のグルコースが $\alpha-1$ , 3グルコシド結合及び $\alpha-1$ , 6グルコシド結合で交互 に結合した構造、すなわち、サイクロ $\rightarrow 6$ )  $-\alpha - D - \emptyset$ ルコピラノシルー( $1 \rightarrow 3$ )  $-\alpha-D$ ーグルコピラノシルー( $1\rightarrow 6$ ) $-\alpha-D$ ーグルコピラノシルー( $1\rightarrow 3$ ) $-\alpha$ - D-グルコピラノシルー(1→ の構造を有する環状四糖を生成させる方法も知られて いる。この環状四糖は、環状構造を有することから包接能を有し、揮発性有機物を安定化 する作用を示すとともに、非還元性の糖質であるため、アミノカルボニル反応を起こさず 、褐変、劣化を懸念することなく利用、加工できることが期待される。

#### [0003]

このように、グルコースを構成糖とする非還元性糖質として、グルコース重合度が6乃至8の $\alpha$ -、 $\beta$ -、 $\gamma$ -サイクロデキストリン、グルコース重合度が2の $\alpha$ ,  $\alpha$ -トレハロース及びグルコース重合度が4のサイクロ $\{\rightarrow 6\}$ - $\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 3)  $-\alpha$ -D-グルコピラノシルー(1 $\rightarrow$ 3

) $-\alpha-D-$ グルコピラノシルー( $1\rightarrow$ )の構造を有する環状四糖は、それぞれの特性を生かして種々の分野に利用されているものの、これら糖質以外にもグルコースを構成糖とする非還元性糖質が提供されれば非還元性糖質の選択の幅が広がり、更に多様な用途への利用が期待される。

## [0004]

【特許文献1】特開平7-143876号公報

【特許文献2】特開平7-213283号公報

【特許文献3】国際公開 WO 01/90338 A1号明細書

【特許文献 4 】国際公開 WO 02/055708 A1号明細書

【特許文献 5 】国際公開 WO 02/40659 A1号明細書

【非特許文献1】「ジャーナル・オブ・アメリカン・ケミカル・ソサイエティー(Journal of American Chemical Society)」、 米国、1949年、第71巻、353乃至358頁

## 【発明の開示】

【発明が解決しようとする課題】

## [0005]

本発明の課題は、グルコースを構成糖とする新規な非還元性糖質を提供し、非還元性糖質の選択の幅を広げるとともに当該非還元性糖質を生成する新規酵素と、それらの生成方法及び製造方法、並びに当該非還元性糖質を含んでなる組成物とその用途を提供することにある。

## 【課題を解決するための手段】

## [0006]

本発明者等は、上記課題を解決するために、澱粉部分分解物から新規な非還元性糖質を 生成する全く新しい酵素に期待を込めて、このような酵素を産生する微生物を広く検索し てきた。その結果、岡山県岡山市の土壌から、新たに分離した新規微生物、アルスロバク ター(Arthrobacter)属に属する新規微生物M6株が新規な酵素を産生し、 この新規酵素の作用により、澱粉又はその部分分解物などの α-1、4グルカンからサイ クロ $\rightarrow$ 6)  $-\alpha$  - D - グルコピラノシルー( $1\rightarrow$ 4)  $-\alpha$  - D - グルコピラノシルー(  $1 \rightarrow 6$ )  $-\alpha - D - グルコピラノシルー(<math>1 \rightarrow 4$ )  $-\alpha - D - グルコピラノシルー(<math>1 \rightarrow$ トの構造を有する新規な環状糖質、すなわち環状マルトシルマルトースを著量生成するこ とを見出した。また、環状マルトシルマルトース生成酵素の諸性質を明らかにするととも に、その製造方法を確立し、また、本酵素による環状マルトシルマルトース生成方法、及 び本酵素を用いた環状マルトシルマルトース又はこれを含む糖質の製造方法を確立した。 さらに、環状マルトシルマルトースはその過飽和水溶液から結晶を容易に晶出し、採取で・ きることを見出し、さらに、環状マルトシルマルトースがメチルアルコール、エチルアル コールや酢酸など揮発成分を包接する作用を有すること、アミノカルボニル反応を起こさ ず、褐変や劣化が少ないこと、熱やpHに対し安定であること、難消化性・難発酵性であ ることなど有用な特性を有していることを見出し、環状マルトシルマルトース、又はこれ を含む糖質を含有せしめた組成物、例えば、風味良好な高品質の食品、低カロリー又はダ イエット食品、安定で高品質な化粧品、更には、高活性で安定な医薬品などを容易に製造 し得ることを見出して、本発明を完成した。

#### [0007]

本発明は、サイクロ $\{\rightarrow 6\}$   $-\alpha$  - D -  $\phi$   $\nu$  -  $\alpha$  - D -  $\phi$   $\nu$  -  $\alpha$  -

#### 【発明の効果】

[0008]

本発明によれば、グルコースを構成糖とする非還元性糖質の選択の幅が広がる上に、従来未知であった新規環状糖質、環状マルトシルマルトースが大量に供給できることとなり、飲食物、化粧品、医薬品をはじめとする様々な分野における利用が可能となる。

#### 【発明を実施するための最良の形態】

## [0009]

本発明でいう環状マルトシルマルトースとは、4分子のグルコースが $\alpha-1$ , 4グルコシド結合及び $\alpha-1$ , 6グルコシド結合で交互に結合した環状の四糖、すなわち、サイクロ $\{\rightarrow 6\}$   $-\alpha-D$ -グルコピラノシル- $(1\rightarrow 4)$   $-\alpha-D$ -グルコピラノシル- $(1\rightarrow 6)$   $-\alpha$ -D-グルコピラノシル- $(1\rightarrow 4)$   $-\alpha$ -D-グルコピラノシル- $(1\rightarrow 4)$  の構造を有する環状の四糖を意味する。本糖質は、土壌より得た微生物の培養液中に本発明者らが初めて見出した従来未知の新規糖質であり、グルコースを構成糖とする環状の四糖は上記構造を有しているかぎり、その給源、形態、純度、製造方法を問わず本発明に包含される。

## [0010]

本発明でいう環状マルトシルマルトース生成酵素とは、グルコース重合度 3 以上の  $\alpha-1$ , 4 グルカンに作用し、マルトースを他の  $\alpha-1$ , 4 グルカンの非還元末端グルコースの 6 位に  $\alpha-1$ , 6 転移することにより  $6-\alpha$  ーマルトシル  $\alpha-1$ , 4 グルカンを生成し、次いで、これを環状化反応によりサイクロ  $\{\rightarrow 6\}$   $\{\rightarrow 6\}$ 

#### [0011]

本発明の環状マルトシルマルトース生成酵素の酵素活性は、次のようにして測定することができる。可溶性澱粉を濃度 2 w/v %となるよう 2 mM 塩化カルシウムを含む 5 0 m M酢酸緩衝液(p H 6. 0)に溶解させ基質液とし、その基質液 0.5 m 1 に酵素液 0.5 m 1 加えて、40 C で 30 O 間酵素反応し、その反応液を 10 O 間、約 100 C で加熱して反応を停止させた後、残存可溶性澱粉や夾雑オリゴ糖を分解するために  $\alpha$  ーグルコシダーゼを固形物 1 グラム当り 4000 単位とグルコアミラーゼを固形物 1 グラム当り 250 単位添加して 100 日時間処理し、その処理液中の環状マルトシルマルトース量を、後述する実験 100 に記載の 100 日 に 100 年 に記載の 100 日 に 100 日

#### [0012]

本発明の環状マルトシルマルトース生成酵素の具体例としては、例えば、下記の理化学 的性質を有する環状マルトシルマルトース生成酵素が挙げられる。

- (1)分子量
  - SDSーゲル電気泳動法において、72,000±20,000ダルトン。
- (2) 等電点 アンフォライン含有等電点電気泳動法において、p I 3. 6 ± 0. 5。
- (3)至適温度pH6.0、30分間反応の条件下で、50℃乃至55℃。
- (4) 至適pH40℃、30分間反応の条件下で、pH5.5乃至6.5。
- (5)温度安定性pH6.0、60分間保持の条件下で、30℃まで安定。1mMカルシウムイオン存在下では、50℃まで安定。
- (6) p H 安定性4℃、24時間保持の条件下で、p H 5.0乃至9.0で安定。

## [0013]

また、上記理化学的性質を有する本発明の環状マルトシルマルトース生成酵素の一つは、上記理化学的性質のみならず、そのN末端配列として、配列表における配列番号1で表されるアミノ酸配列を有している場合がある。

#### [0014]

しかしながら、上記理化学的性質又はN末端アミノ酸配列を有する環状マルトシルマルトース生成酵素はあくまで一例であって、上記と異なる理化学的性質又はN末端アミノ酸配列を有する酵素も、環状マルトシルマルトースを生成するかぎり本発明に包含されることはいうまでもない。

## [0015]

本発明の環状マルトシルマルトース生成酵素はその給源によって制限されないものの、好ましい給源として、微生物が挙げられ、とりわけ本発明者らが土壌より単離した微生物M6株が好適に用いられる。以下、環状マルトシルマルトース生成酵素産生能を有する微生物M6株の同定試験結果を示す。なお、同定試験は、『微生物の分類と同定』(長谷川武治編、学会出版センター、1985年)に準じて行った。

## [0016]

<A:細胞形態>

肉汁寒天培養、27℃

通常  $0.4 \times 1.0$  乃至  $0.8 \times 3.0 \mu$  m の短桿菌  $\sim$  球菌。多形性あり。 運動性あり。無胞子。グラム陽性。

EYG寒天培地、27℃

桿菌ー球菌の生育サイクルを示す。

## [0017]

## <B:培養性質>

(1) 肉汁寒天平板培養、27℃

形状: 円形 大きさは3日間で1乃至2mm。

周縁: 全縁

隆起: 半レンズ状

光沢: 鈍光表面: 平滑

色調: 不透明、淡い黄色

(2) 肉汁寒天斜面培養、27℃

生育: 中程度 形状: 糸状

(3) 肉汁ゼラチン穿刺培養、27℃

液化しない。

## [0018]

## <C: 生理学的性質>

- (1) VP試験: 陰性
- (2) インドールの生成: 陰性
- (3) 澱粉の加水分解: 陽性
- (5) 色素の生成: 可溶性色素の生成はない
- (6) ウレアーゼ: 陰性
- (7) オキシダーゼ: 陽性
- (8) カタラーゼ: 陽性
- (9) 生育の範囲: pH5.5乃至10.0、温度 15乃至37℃
- (10) 酸素に対する態度: 好気性
- (11) 細胞壁の主要ジアミノ酸: リジン
- (12) 細胞壁のペプチドグリカン型: リジンーアラニン
- (13) 細胞壁のN-アシル型: アセチル
- (14) 細胞壁の構成糖: ガラクトース、グルコース、ラムノース

- (15) ビタミンの要求性: なし
- (16) DNAのGC含量: 70%
- (17) DNA-DNAホモロジー:アルスロバクター・グロビホルミス (ATCC8010)との間で、69.3%のDNA-DNAホモロジーを示す。

## [0019]

以上の菌学的性質に基づいて、『バージーズ・マニュアル・オブ・システマティック・バクテリオロジー(Bergey's Manual of Systematic Bacteriology)、第2巻(1986年)を参考にして、公知菌との異同を検討した。その結果、本菌は、アルスロバクター・グロビホルミス(Arthrobacter globiformis)に属する微生物であることが判明した。これらの結果より本発明者等は、本菌を新規微生物アルスロバクター・グロビホルミス M6と命名し、平成15年8月6日付で日本国茨城県つくば市東1丁目1番地1 中央第6所在の独立行政法人産業技術総合研究所 特許生物寄託センターに寄託し、受託番号 FERM BP -8448として受託された。

### [0020]

本発明の環状マルトシルマルトース生成酵素産生能を有する微生物には、上記菌はもとより、その変異株、更には、環状マルトシルマルトース生成酵素産生能を有する他の微生物、及び、それらの変異株なども包含される。

## [0021]

本発明の微生物の培養に用いる培地は、微生物が生育でき、環状マルトシルマルトース生成酵素を産生しうる栄養培地であればよく、合成培地および天然培地のいずれでもよい。炭素源としては、微生物が生育に利用できる物であればよく、例えば、植物由来の澱粉やフィトグリコーゲン、動物や微生物由来のグリコーゲンやプルラン、また、これらの部分分解物やグルコース、フラクトース、ラクトース、スクロース、マンニトール、ソルビトール、糖蜜などの糖質、また、クエン酸、コハク酸などの有機酸も使用することができる。培地におけるこれらの炭素源の濃度は炭素源の種類により適宜選択できる。窒素源としては、例えば、アンモニウム塩、硝酸塩などの無機窒素化合物および、例えば、尿素、コーン・スティープ・リカー、カゼイン、ペプトン、酵母エキス、肉エキスなどの有機窒素合有物を適宜用いることができる。また、無機成分としては、例えば、カルシウム塩、マグネシウム塩、カリウム塩、ナトリウム塩、リン酸塩、マンガン塩、亜鉛塩、鉄塩、卵塩、モリブデン塩、コバルト塩などの塩類を適宜用いることができる。更に、必要に応じて、アミノ酸、ビタミンなども適宜用いることができる。

## [0022]

培養は、通常、温度15乃至37℃でpH5.5乃至10の範囲、好ましくは温度20乃至34℃でpH5.5乃至8.5の範囲から選ばれる条件で好気的に行われる。培養時間は当該微生物が増殖し得る時間であればよく、好ましくは10時間乃至150時間である。また、培養条件における培養液の溶存酸素濃度には特に制限はないが、通常は、0.5乃至20ppmが好ましい。そのために、通気量を調節したり、攪拌したりするなどの手段を適宜採用する。また、培養方式は、回分培養または連続培養のいずれでもよい。

#### [0023]

このようにして微生物を培養した後、本発明の酵素を含む培養物を回収する。環状マルトシルマルトース生成酵素活性は、主に培養物の除菌液に認められ、除菌液を粗酵素液として採取することも、培養物全体を粗酵素液として用いることもできる。培養物から菌体を除去するには公知の固液分離法が採用される。例えば、培養物そのものを遠心分離する方法、あるいは、プレコートフィルターなどを用いて濾過分離する方法、平膜、中空糸膜などの膜濾過により分離する方法などが適宜採用される。除菌液をそのまま粗酵素液として用いることができるものの、一般的には、濃縮して用いられる。濃縮法としては、硫安塩析法、アセトン及びアルコール沈殿法、平膜、中空膜などを用いた膜濃縮法などを採用することができる。

## [0024]

更に、環状マルトシルマルトース生成酵素活性を有する除菌液及びその濃縮液を用いて、環状マルトシルマルトース生成酵素を公知の方法により固定化することもできる。例えば、イオン交換体への結合法、樹脂及び膜などとの共有結合法・吸着法、高分子物質を用いた包括法などを適宜採用できる。

## [0025]

上記のように本発明の環状マルトシルマルトース生成酵素は、粗酵素液をそのまま又は 濃縮して用いることができるものの、必要に応じて、公知の方法によって、さらに分離・ 精製して利用することもできる。例えば、培養液の処理物を硫安塩析して濃縮した粗酵素 標品を透析後、『DEAEートヨパール(Toyopearl) 650S』樹脂を用い た陰イオン交換カラムクロマトグラフィー、続いて、『フェニルートヨパール(Phen yl-Toyopearl) 650M』樹脂を用いた疎水クロマトグラフィーを用いて 精製することにより、本発明の環状マルトシルマルトース生成酵素を電気泳動的に単一な 酵素として得ることができる。

## [0026]

このようにして得られる本発明の環状マルトシルマルトース生成酵素は、グルコース重合度が 3 以上の  $\alpha-1$ , 4 グルカンに作用し、サイクロ $\{\rightarrow 6\}$   $-\alpha-D$  ーグルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$  ーグルコピラノシルー  $(1\rightarrow 6)$   $-\alpha-D$  ーグルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$  ーグルコピラノシルー  $(1\rightarrow 4)$  の構造を有する環状マルトシルマルトースを生成する酵素である。本酵素はグルコース重合度が 3 以上の  $\alpha-1$ , 4 グルカンに作用し、分子間で  $\alpha$  ーマルトシル転移反応することによって、非還元性末端グルコースの6位に  $\alpha$  ーマルトシル残基が結合した 6  $-\alpha$  ーマルトシルー  $\alpha$  ー 1 , 4 グルカンを生成し、これを環状化することによって、サイクロ $\{\rightarrow 6\}$   $-\alpha$  ー 0 ーグルコピラノシルー  $(1\rightarrow 4)$  ー  $\alpha$  ー 0 ーグルコピラノシルー  $(1\rightarrow 6)$  ー  $\alpha$  ー 0 ーグルコピラノシルー  $(1\rightarrow 4)$  の構造を有する環状マルトシルマルトースを生成すると推察される。本発明の環状マルトシルマルトース生成酵素は、具体的には、下記の理化学的性質を有する場合がある。

- (1) 分子量
  - SDSーゲル電気泳動法において、72,000±20,000ダルトン。
- (2)等電点 アンフォライン含有等電点電気泳動法において、pI3.6±0.5。
- (3)至適温度pH6.0、30分間反応の条件下で、50℃乃至55℃。
- (4) 至適pH40℃、30分間反応の条件下で、pH5.5乃至6.5。
- (5)温度安定性pH6.0、60分間保持の条件下で、30℃まで安定。1mMカルシウムイオン存在下では、50℃まで安定。
- (6) p H 安定性4℃、24時間保持の条件下で、p H 5.0乃至9.0で安定。
- (7) N末端アミノ酸配列 配列表における配列番号1で示されるアミノ酸配列、すなわち、アスパラ ギン酸-プロリンースレオニンースレオニンーセリンのアミノ酸配列を有 する。

#### [0027]

elated Enzymes) (1988年) パーガモン・プレス社 (東京) に記載されている、 $\alpha$ -アミラーゼ (EC 3.2.1.1)、マルトテトラオース生成アミラーゼ (EC 3.2.1.60)、マルトペンタオース生成アミラーゼ、マルトヘキサオース生成アミラーゼ (EC 3.2.1.98) などのアミラーゼを用いて澱粉、アミロース、アミロペクチン、グリコーゲンなどを分解して得られる部分分解物を用いることができる。更には、部分分解物を調製する際、プルラナーゼ (EC 3.2.1.41)、イソアミラーゼ (EC 3.2.1.68) などの澱粉枝切り酵素を作用させることも随意である。

## [0028]

基質としての澱粉は、例えば、とうもろこし、小麦、米など由来の地上澱粉であっても、また、馬鈴薯、さつまいも、タピオカなど由来の地下澱粉であってもよく、好ましくは、澱粉を糊化及び/又は液化した溶液として用いられる。その澱粉の部分分解の程度は低い程、環状マルトシルマルトース生成率が高くなることから、DE約20以下、望ましくは約12以下、更に望ましくは約5以下の部分分解物が好適である。なお、本明細書でいう環状マルトシルマルトース生成率とは、式、環状マルトシルマルトース生成率(%) = (生成した環状マルトシルマルトースの質量) / (反応液中の全糖質の質量) ×100で算出される値を意味する。

#### [0029]

本発明の環状マルトシルマルトース生成酵素を基質に作用させるに際し、その基質濃度は特に限定されず、例えば、基質濃度 0.1%(w/v)の比較的低濃度の溶液を用いた場合でも、本発明の環状マルトシルマルトース生成酵素の反応は進行して環状マルトシルマルトースを生成する。工業的には、基質濃度 1%(w/v)以上が好適であり、この条件下で、環状マルトシルマルトースを有利に生成できる。また、基質溶液としては、完全に溶けきらない不溶性の基質を含有する高濃度の基質溶液であっても良い。反応温度は反応が進行する温度、即ち60℃付近までで行えばよい。好ましくは30万至50℃付近の温度を用いる。反応pHは、通常、5万至9の範囲、好ましくはpH5乃至7の範囲に調整するのがよい。酵素の使用量と反応時間とは密接に関係しており、目的とする酵素反応の進行により適宜選択すればよい。

#### [0030]

例えば、基質濃度1%(w/v)の澱粉又はその部分分解物やアミロースの水溶液に本発明の環状マルトシルマルトース生成酵素を作用させることにより、澱粉又はその部分分解物からは約30%以上、アミロースからは約44%の高い環状マルトシルマルトース生成率で本発明の環状マルトシルマルトースを得ることができる。この環状マルトシルマルトース生成酵素による環状マルトシルマルトースの生成メカニズムは、以下のように推察される。

- 1) 本酵素は、基質としてグルコース重合度が 3 以上の  $\alpha-1$ , 4 グルカンに作用し、その非還元性末端のマルトシル残基を他の分子の非還元性末端グルコース残基の 6 位水酸基に転移する分子間の  $6-\alpha$  ーマルトシル転移を触媒して、非還元末端に  $6-\alpha$  ーマルトシル基を有するグルコース重合度が 2 増加した  $6-\alpha$  ーマルトシルー  $\alpha-1$ , 4 グルカンと、グルコース重合度が 2 減じた  $\alpha-1$ , 4 グルカンとを生成する。
- 2) 本酵素はさらに、 $6-\alpha-\nu$ ルトシルー $\alpha-1$ , 4グルカンに作用し、環状化反応を触媒して、サイクロ  $\{\rightarrow 6\}$   $-\alpha-D$ -グルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$ -グルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$ -グルコピラノシルー  $(1\rightarrow 4)$   $-\alpha-D$ -グルコピラノシルー  $(1\rightarrow 4)$  の構造を有する環状マルトシルマルトースと、 $6-\alpha$ -マルトシルー $\alpha-1$ , 4グルカンから数えてグルコース重合度が4減じた $\alpha-1$ , 4グルカンを生成する。
- 3) 1)及び2)で新たに生じた $\alpha-1$ , 4グルカンは、再度、1)から2)の反応を受けることによって、環状マルトシルマルトースを生成する。

## [0031]

また、この環状マルトシルマルトース生成反応の際、他の酵素を更に同時併用して、環出証特2004-3090262

状マルトシルマルトース生成率を向上させることも有利に実施できる。例えば、澱粉に、 環状マルトシルマルトース生成酵素とイソアミラーゼなどの澱粉枝切り酵素を同時併用し て作用させることにより、環状マルトシルマルトースの生成率をさらに向上させることも 有利に実施できる。

## [0032]

上記の反応によって得られた反応液は、そのまま環状マルトシルマルトース含有糖液として用いることもできる。また、必要に応じて、環状マルトシルマルトース含有糖液に、 $\alpha$ -アミラーゼ、グルコアミラーゼ及び $\alpha$ -グルコシダーゼから選ばれる1種又は2種以上を作用させて、夾雑するオリゴ糖を加水分解した環状マルトシルマルトース含有糖液として用いることもできる。一般的には、環状マルトシルマルトース含有糖液として用いられる。精製方法としては、糖の精製に用いられる通常の方法を適宜採用すればよく、例えば、活性炭による脱色、H型、OH型イオン交換樹脂による脱塩、イオン交換カラムクロマトグラフィー、活性炭カラムクロマトグラフィー、シリカゲルカラムクロマトグラフィーなどのカラムクロマトグラフィーによる分画、アルコールおよびアセトンなど有機溶媒による分別、適度な分離性能を有する膜による分離、更には、環状マルトシルマルトースを利用せず夾雑糖質を資化、分解する微生物、例えば酵母などによる発酵処理や、アルカリ処理などにより残存している還元性糖質の分解除去するなどの1種または2種以上の精製方法が適宜採用できる。

#### [0033]

とりわけ、工業的大量生産方法としては、イオン交換カラムクロマトグラフィーの採用が好適であり、例えば、特開昭58-23799号公報、特開昭58-72598号公報などに開示されている強酸性カチオン交換樹脂を用いるカラムクロマトグラフィーにより夾雑糖類を除去し、目的物の含量を向上させた環状マルトシルマルトース、又はこれを含む糖質を有利に製造することができる。この際、固定床方式、移動床方式、疑似移動床方式のいずれの方式を採用することも随意である。

## [0034]

このようにして得られた環状マルトシルマルトースを含む水溶液、又はその含量を向上させた糖質水溶液は、通常、環状マルトシルマルトースを、固形物当たり、10質量%以上、望ましくは40質量%以上含有する糖質水溶液で、通常、これを濃縮し、シラップ状製品とする。このシラップ状製品は、更に、乾燥して粉末状製品にすることも随意である

## [0035]

環状マルトシルマルトースの結晶を製造するには、例えば、純度約50%以上、濃度約5万至90質量%の環状マルトシルマルトース含有液を助晶缶にとり、0.1万至20質量%の種結晶共存下で、温度95℃以下、望ましくは10万至90℃の範囲で、攪拌しつつ徐冷し、環状マルトシルマルトースの結晶を含有するマスキットを製造する。マスキットから環状マルトシルマルトースの結晶を製造する方法としては分蜜が挙げられ、また、環状マルトシルマルトースの含蜜結晶を製造する方法としては、例えば、ブロック粉砕、流動造粒、噴霧乾燥など公知の方法が挙げられる。このようにして製造される本発明の環状マルトシルマルトースの結晶又は含蜜結晶は、上品で低甘味を有する非還元性の白色粉末で、安定な糖質であり、他の素材、特にアミノ酸、オリゴペプチド、蛋白質などのアミノ酸を有する物質と混合、加工しても、褐変することも、異臭を発生することもなく、混合した他の素材を損なうことも少ない。

#### [0036]

また、本発明の環状マルトシルマルトースは包接能を有しており、包接した香気成分、 有効成分などの揮散、品質劣化を防止することから、香気成分、有効成分の安定化保持に 極めて優れている。この際、必要に応じて、サイクロデキストリン類、分岐サイクロデキ ストリン類、本出願人が特許文献 3 乃至 5 で開示したサイクロ  $\{\rightarrow 6\}$   $-\alpha - D - グルコ$ ピラノシルー  $(1 \rightarrow 3) - \alpha - D - グルコピラノシルー <math>(1 \rightarrow 6) - \alpha - D - グルコピラ$ ノシルー  $(1 \rightarrow 3) - \alpha - D - グルコピラノシルー <math>(1 \rightarrow 6)$  の構造を有する環状四糖、分 岐環状四糖類、サイクロデキストラン類、サイクロフラクタン類など他の環状糖質を併用 することで、包接能による安定化を強化することも有利に実施できる。サイクロデキスト リン類など環状糖質としては、高純度のものに限る必要はなく、低純度の環状糖質、例え ば、多量のマルトデキストリンとともに各種の環状糖質を含有した澱粉部分分解物なども 有利に利用できる。

## [0037]

更に、本発明の環状マルトシルマルトースはアミラーゼやαーグルコシダーゼによって 実質的に分解されないことから、経口摂取しても消化吸収されず、また、腸内細菌によっ て発酵されにくく、極めて低カロリーの糖質であって、水溶性食物繊維様の物質として利 用することができる。本発明の環状マルトシルマルトースが粉末製品の場合には、これ自 体の吸湿性が低く、付着、固結しにくいのみならず、他の粉末と混合して得られる粉末状 物の付着、固結を防止することもできる。更に、環状マルトシルマルトース自体は、無毒 、無害の天然甘味料であり、何らの危険性もない。

## [0038]

また、本発明の環状マルトシルマルトースは安定な甘味料であることより、結晶製品の 場合には、プルラン、ヒドロキシエチルスターチ、ポリビニルピロリドンなどの結合剤と 併用して錠剤や糖衣錠として利用することも有利に実施できる。また、浸透圧調節性、賦 形性、照り付与性、保湿性、粘性、他の糖の結晶防止性、難発酵性などの性質を具備して いる。

## [0039]

従って、本発明の環状マルトシルマルトース、又はこれを含む糖質は、甘味料、呈味改 良剤、品質改良剤、安定剤、変色防止剤、賦形剤などとして、飲食物、嗜好物、飼料、餌 料、化粧品、医薬品などの各種組成物に有利に利用できる。

### [0040]

本発明の環状マルトシルマルトース、又はこれを含む糖質は、そのまま甘味付のための 調味料として使用できる。必要ならば、例えば、粉飴、ブドウ糖、異性化糖、砂糖、麦芽 糖、トレハロース、蜂蜜、メープルシュガー、ソルビトール、マルチトール、ジヒドロカ ルコン、ステビオシド、αーグリコシルステビオシド、ラカンカ甘味物、グリチルリチン 、ソーマチン、スクラロース、Lーアスパラチルフェニルアラニンメチルエステル、サッ カリン、グリシン、アラニンなどのような他の甘味料と、また、デキストリン、澱粉、乳 糖などのような増量剤と混合して使用することもできる。

#### [0041]

また、本発明の環状マルトシルマルトース、又はこれを含む糖質の粉末状製品は、その ままで、または必要に応じて、増量剤、賦形剤、結合剤などと混合して、顆粒、球状、短 棒状、板状、立方体、錠剤など各種形状に成形して使用することも随意である。

#### [0042]

また、本発明の環状マルトシルマルトース、又はこれを含む糖質の甘味は、酸味、塩か ら味、渋味、旨味、苦味などの他の呈味を有する各種の物質とよく調和し、耐酸性、耐熱 性も大きいので、一般の飲食物の甘味付、呈味改良に、また品質改良などに有利に利用で きる。

#### [0043]

例えば、醤油、粉末醤油、味噌、粉末味噌、もろみ、ひしお、フリカケ、マヨネーズ、 ドレッシング、食酢、三杯酢、粉末すし酢、中華の素、天つゆ、麺つゆ、ソース、ケチャ ップ、焼き肉のタレ、カレールウ、シチューの素、スープの素、ダシの素、複合調味料、 みりん、新みりん、テーブルシュガー、コーヒーシュガーなどの各種調味料への甘味料、 更には、呈味改良剤、品質改良剤などとして使用することも有利に実施できる。また、例 えば、せんべい、あられ、おこし、求肥、餅類、まんじゅう、ういろう、あん類、羊羹、 水羊羹、錦玉、ゼリー、カステラ、飴玉などの各種和菓子、パン、ビスケット、クラッカ ー、クッキー、パイ、プリン、バタークリーム、カスタードクリーム、シュークリーム、 ワッフル、スポンジケーキ、ドーナツ、チョコレート、チューインガム、キャラメル、ヌ ガー、キャンディーなどの各種洋菓子、アイスクリーム、シャーベットなどの氷菓、果実のシロップ漬、氷蜜などのシロップ類、フラワーペースト、ピーナッツペースト、フルーツペーストなどのペースト類、ジャム、マーマレード、シロップ漬、糖果などの果実、野菜の加工食品類、福神漬け、べったら漬、千枚漬、らっきょう漬などの漬物類、たくあん漬の素、白菜漬の素などの漬物の素、ハム、ソーセージなどの畜肉製品類、魚肉ハム、魚肉ソーセージ、カマボコ、チクワ、天ぷらなどの魚肉製品、ウニ、イカの塩辛、酢コンブ、さきするめ、ふぐのみりん干し、タラ、タイ、エビなどの田麩などの各種珍味類、海苔、山菜、するめ、小魚、貝などで製造される佃煮類、煮豆、ポテトサラダ、コンブ巻などの惣菜食品、乳製品、魚肉、畜肉、果実、野菜の瓶詰、缶詰類、合成酒、増醸酒、清酒、果実酒、発泡酒、ピールなどの酒類、珈琲、ココア、ジュース、炭酸飲料、乳酸飲料、乳酸菌飲料などの清涼飲料水、プリンミックス、ホットケーキミックス、即席ジュース、即席コーヒー、即席しるこ、即席スープなどの即席食品、更には、離乳食、治療食、ドリンク剤、ペプチド食品、冷凍食品などの各種飲食物への甘味付に、呈味改良に、品質改良などに有利に実施できる。

## [0044]

また、家畜、家禽、その他は蜜蜂、蚕、魚などの飼育動物のための飼料、餌料など嗜好性を向上させる目的で使用することもできる。その他、タバコ、練歯磨、口紅、リップクリーム、内服液、錠剤、トローチ、肝油ドロップ、口中清涼剤、口中香剤、うがい剤など各種の固形物、ペースト状、液状などで嗜好物、化粧品、医薬品などの各種組成物への甘味剤として、または呈味改良剤、矯味剤として、さらに品質改良剤、安定剤などとして有利に利用できる。

## [0045]

品質改良剤、安定剤としては、有効成分、活性など失い易い各種生理活性物質またはこ れを含む健康食品、機能性食品、医薬品などに有利に適用できる。例えば、インターフェ ロンー $\alpha$ 、 $-\beta$ 、 $-\gamma$ 、ツモア・ネクロシス・ファクター $-\alpha$ 、 $-\beta$ 、マクロファージ遊 走阻止因子、コロニー刺激因子、トランスファーファクター、インターロイキンIIなど のリンホカイン含有液、インシュリン、成長ホルモン、プロラクチン、エリトロポエチン 、卵細胞刺激ホルモンなどのホルモン含有液、BCGワクチン、日本脳炎ワクチン、はし かワクチン、ポリオ生ワクチン、痘苗、破傷風トキソイド、ハブ抗毒素、ヒト免疫グロブ リンなどの生物製剤含有液、ペニシリン、エリスロマイシン、クロラムフェニコール、テ トラサイクリン、ストレプトマイシン、硫酸カナマイシンなどの抗生物質含有液、チアミ ン、リボフラビン、Lーアスコルビン酸、肝油、カロチノイド、エルゴステロール、トコ フェロールなどのビタミン含有液、EPA、DHA、アラキドン酸、などの高度不飽和脂 肪酸又はそのエステル誘導体、リパーゼ、エステラーゼ、ウロキナーゼ、プロテアーゼ、 βーアミラーゼ、イソアミラーゼ、グルカナーゼ、ラクターゼなどの酵素含有液、薬用人 参エキス、スッポンエキス、クロレラエキス、アロエエキス、プロポリスエキスなどのエ キス類、ウイルス、乳酸菌、酵母などの生菌ペースト、ローヤルゼリーなどの各種生理活 性物質も、その有効成分、活性を失うことなく、安定で高品質の液状、ペースト状または 固状の健康食品、機能性食品や医薬品などを容易に製造できることとなる。

#### $[0\ 0\ 4\ 6]$

以上述べたような各種組成物に、環状マルトシルマルトース、又はこれを含む糖質を含有させる方法としては、その製品が完成するまでの工程に含有せしめればよく、例えば、混和、混捏、溶解、融解、浸漬、浸透、散布、塗布、被覆、噴霧、注入、晶析、固化など公知の方法が適宜選ばれる。その量は、通常 0. 1 質量%以上、望ましくは 1 質量%以上含有せしめるのが好適である。

## [0047]

以下、実験により本発明を詳細に説明する。

## [0048]

<実験1:非還元性糖質の調製>

澱粉部分分解物 (商品名『パインデックス#4』、松谷化学工業株式会社製造) 1.5 w 出証特2004-3090262 / v %、酵母抽出物(商品名『ポリペプトン』、日本製薬株式会社製造) 0. 5 w/v %、酵母抽出物(商品名『酵母エキスS』、日本製薬株式会社製造) 0. 1 w/v %、リン酸ニカリウム 0. 1 w/v %、リン酸ーナトリウム・2 水和物 0. 0 6 w/v %、硫酸マグネシウム・7 水和物 0. 0 5 w/v %、炭酸カルシウム 0. 3 w/v %、及び水からなる液体培地を、5 0 0 m 1 容三角フラスコ 1 2 a 本に 1 0 0 m 1 ずつ入れ、オートクレーブで 1 2 1 %、2 0 分間滅菌し、冷却した。次いで、アルスロバクター・グロビホルミス M 6(FERM BP-8448)を接種し、2 7 %、2 3 0 rpm で 1 2 0 時間回転振盪培養した。培養後、培養液を遠心分離(8, 0.0 0 rpm、2 0 分間)して菌体を除き、培養上清(約 1. 1 L)を得た。得られた培養上清の 1 L を酵素液として用いて、これを 2 w/v %可溶性澱粉及び  $2 \text{ mM塩化カルシウムを含有する 5 0 mM酢酸緩衝液 1 Lに添加し、<math>2 \text{ 4 時間}$ 、4 0 %で反応させた後、約 1 0 0 %で10分間、熱処理することによって反応を停止した。

## [0049]

得られた反応物中の糖質を調べるため、展開溶媒として $n-79/-\nu$ 、ピリジン、水混液(容量比6:4:1)を、また、薄層プレートとしてメルク社製『キーゼルゲル60』(アルミプレート、 $10\times20$ cm)を用い、2回展開するシリカゲル薄層クロマトグラフィー(以下、TLCと略す)を行い、糖質を分離した。硫酸ーメタノール法にて発色させ、分離した糖質を検出したところ、グルコース(Rg値として1.00)、マルトース(Rg6位として0.82)のほかに、Rg6位が約0.44の糖質及びRg6位が約0.21の糖質が検出された。これらの糖質は、アルスロバクター・グロビホルミス M60の培養上清中の酵素が可溶性澱粉に作用し生成したものと考えられた。なお、ここでいうRg6位とは、TLC1においてグルコースの移動距離に対する溶質の移動距離の比を表したもので、式、Rg6位=(溶質の原点からの移動距離)/(グルコースの原点からの移動距離)で算出される。

#### [0050]

続いて、上述の反応物を塩酸でpH5.0に調整した後、 $\alpha-グ$ ルコシダーゼ(商品名『トランスグルコシダーゼL「アマノ」』、天野エンザイム株式会社製造)を固形物 1 グラム当り 4 0 0 0 単位及びグルコアミラーゼ(ナガセ生化学工業株式会社販売)を固形物 1 グラム当り 2 5 0 単位添加して 5 0  $\mathbb C$ 、 1 6 時間反応させた。反応後、約 1 0 0  $\mathbb C$ で 1 0 分間、熱処理して反応を停止させた。得られた反応液中の糖質をTLCで分析したところ、グルコース及びRg値約 0.4 4 の糖質のみが検出され、マルトース、Rg値約 0.2 1 の糖質は検出されなかった。これらの結果から、マルトース及びRg値約 0.2 1 の糖質は  $\alpha-$ グルコシダーゼとグルコアミラーゼによってグルコースに分解されるが、Rg値約 0.4 4 の糖質はこれら酵素によって分解されないことが判明した。

#### [0051]

続いて、上述の反応液に水酸化ナトリウムを添加してpHを12に調整し、98℃で1時間保持することにより還元糖を分解した。不溶物を濾過して除去した後、三菱化学製イオン交換樹脂『ダイヤイオンSK-18』と『ダイヤイオンWA30』及びオルガノ製アニオン交換樹脂『IRA411』を用いて脱色、脱塩し、精密濾過した後、エバポレーターで濃縮し、真空乾燥して固形物として約4.0gの糖質粉末を得た。

## [0052]

得られた糖質の組成を高速液体クロマトグラフィー法(以下、HPLCと略称する。)で調べたところ、図1に示すように、溶出時間10.61分にピークが検出され、純度は97%以上で極めて高純度であることが判明した。なお、HPLCは、カラムに『Shodex SUGAR KS-801』(昭和電工株式会社製造)を用い、溶離液に水を用いて、カラム温度60 $^{\circ}$ 、流速0.5 $^{\circ}$ 12(東ソー株式会社製造)を用いて行った。

## [0053]

得られた糖質の還元力をソモギー・ネルソン法で測定したところ、その還元力は検出限界以下であり、本標品は実質的に非還元性糖質であると判断された。

[0054]

く実験2:非還元性糖質の構造解析>

[0055]

<実験2-1:質量分析>

実験1の方法で得られた非還元性糖質について、質量分析装置『LCQ Advantage』(サーモエレクトロン社製)を用いて質量分析したところ、質量数671のナトリウム付加分子イオンが顕著に検出され、本発明の非還元性糖質の質量数は648であることが判明した。

[0056]

〈実験2-2:構成糖分析〉

実験1の方法で得られた非還元性糖質について、常法に従って、硫酸を用いて単糖にまで加水分解し、ガスクロマトグラフィー法で構成糖を調べたところ、Dーグルコースのみが検出され、本発明の非還元性糖質の構成糖はDーグルコースであることが判明した。上述の質量数を考慮すると、本発明の非還元性糖質はDーグルコース4分子からなる環状糖質であることがわかった。

[0057]

<実験2-3:メチル化分析>

実験1の方法で得られた非還元性糖質について、常法に従って、メチル化分析を行いガス クロマトグラフィー法でメチル化物を調べた。結果を表1にまとめた。

[0058]

【表1】

| 分析メチル化物の種類    | 比率   |
|---------------|------|
| 2,3,4ートリメチル化物 | 1.03 |
| 2,3,6ートリメチル化物 | 1.00 |

#### [0059]

表1の結果から明らかなように、2,3,4ートリメチル化物と2,3,6ートリメチル化物がほぼ等量であることから、本発明の非還元性糖質を構成するD-グルコース4分子のうち、2分子は1位と6位でグルコシド結合しており、また、他の2分子は1位と4位でグルコシド結合していることが判明した。

[0060]

<実験2-4:核磁気共鳴分析>

[0061]



く実験3:環状マルトシルマルトース生成酵素の生産>

実験1に記載の液体培地を、500m1容三角フラスコ2本に100m1ずつ入れ、オートクレープで121℃、20分間滅菌し、冷却して、アルスロバクター・グロビホルミス M6 (FERM BP-8448) を接種し、27℃、230rpmで48時間回転振 盪培養したものを種培養とした。

[0063]

容量30Lのファーメンターに種培養と同じ組成の液体培地を約20L入れて、加熱滅菌、冷却して温度27℃とした後、種培養液約200mlを接種し、温度27℃、pH5.5乃至8.0に保ちつつ、96時間通気攪拌培養した。培養後、ファーメンターから培養液を抜き出し、遠心分離(8,000rpm、20分間)して菌体を除き、培養上清約18Lを得た。培養液及び培養上清について、環状マルトシルマルトース生成酵素活性を測定したところ、培養液中には該酵素活性を約0.028単位/ml含み、上清中には該酵素活性を約0.026単位/ml含むことがわかり、アルスロバクター・グロビホルミスM6によって生産される本発明の環状マルトシルマルトース生成酵素はその大部分が菌体外に存在することが判明した。

## [0064]

く実験4:環状マルトシルマルトース生成酵素の精製>

実験3で得た培養上清のうち、約9.2L(総活性約240単位)に、最終濃度60%飽 和となるように硫安を添加し、4℃、24時間放置することにより塩析した。生成した塩 析沈殿物を遠心分離(11,000rpm、30分間)にて回収し、これを10mMトリ スー塩酸緩衝液 (pH7.5) に溶解後、同緩衝液に対して透析し、粗酵素液として約2 40mlを得た。粗酵素液中の環状マルトシルマルトース生成酵素活性は約0.83単位 /mlであった(総活性約200単位)。この粗酵素液を東ソー株式会社製『DEAE-トヨパール(Toyopearl) 650S』ゲルを用いた陰イオン交換クロマトグラ フィー(ゲル容量100m1)に供した。環状マルトシルマルトース生成酵素活性は、1 0mMトリスー塩酸緩衝液(pH7.5)で平衡化した『DEAEートヨパール(Toy opearl) 650S』ゲルに吸着し、食塩濃度0Mから0.4Mのリニアグラジエ ントで溶出させたところ、食塩濃度約 0.22 M付近に溶出した。この活性画分を回収し 、終濃度1Mとなるように硫安を添加して4℃、24時間放置した後、遠心分離して不溶 物を除き、東ソー株式会社製『フェニルートヨパール(Phenyl-Toyopear 650M』ゲルを用いた疎水クロマトグラフィー(ゲル容量10m1)に供した。 本発明の環状マルトシルマルトース生成酵素活性は、1M硫安を含む20mM酢酸緩衝液 (pH6.0)で平衡化した『フェニルートヨパール (Phenyl-Toyopear 1) 650 M』ゲルに吸着し、硫安濃度1 Mから0 Mのリニアグラジエントで溶出させ たところ、硫安濃度約0.1M付近に溶出した。この精製の各ステップにおける環状マル トシルマルトース生成酵素活性量、環状マルトシルマルトース生成酵素比活性及び収率を 表2に示す。

【0065】 【表2】

|             | · • | 環状マルトシルマルト<br>ース生成酵素比活性<br>(単位/mg蛋白) | 収率 (%) |
|-------------|-----|--------------------------------------|--------|
| 培養上清        | 240 | 0.13                                 | 100    |
| 硫安塩析後の透析液   | 200 | 0.66                                 | 83     |
| イオン交換カラム溶出液 | 140 | 7. 3                                 | 58     |
| 疎水カラム溶出液    | 96  | 10                                   | 40     |

精製した環状マルトシルマルトース生成酵素標品を5乃至20w/v%濃度勾配ポリアクリルアミドゲル電気泳動により酵素標品の純度を検定したところ、蛋白バンドは単一であり、純度の高い標品であった。

[0067]

く実験5:環状マルトシルマルトース生成酵素の性質>

[0068]

〈実験5-1:分子量〉

実験4の方法で得た精製環状マルトシルマルトース生成酵素標品をSDSーポリアクリルアミドゲル電気泳動法(5乃至20w/v%濃度勾配)に供し、同時に泳動した分子量マーカー(日本バイオ・ラッド・ラボラトリーズ株式会社製)と比較して分子量を測定したところ、本発明の環状マルトシルマルトース生成酵素の分子量は72,000±20,000 がルトンであることが判明した。

[0069]

<実験5-2:等電点>

[0070]

<実験5-3:酵素反応の至適温度及び至適pH>

実験4の方法で得た精製環状マルトシルマルトース生成酵素標品を用いて、酵素活性に及ぼす温度、pHの影響を活性測定の方法に準じて調べた。これらの結果を図5(至適温度)、図6(至適pH)に示した。本発明の環状マルトシルマルトース生成酵素の至適温度は、pH6.0、30分間反応の条件下で、50万至55℃であり、至適pHは、40℃、30分間反応の条件下で5.5万至6.5であることが判明した。

[0071]

く実験5-4:酵素の温度安定性及びpH安定性>

[0072]

<実験5-5:酵素活性に及ぼす金属塩の影響>

実験4の方法で得た精製環状マルトシルマルトース生成酵素標品を用いて、酵素活性に及ぼす金属塩の影響を濃度1mMの各種金属塩存在下で活性測定の方法に準じて調べた。結果を表3に示す。

[0073]



| 金属塩               | 相対活性(%) | 金属塩                | 相対活性(%) |
|-------------------|---------|--------------------|---------|
| · 無添加             | 100     | NiCl <sub>2</sub>  | 90      |
| MgCl2             | 98      | CuCl <sub>2</sub>  | 1       |
| A 1 C 13          | 13      | ZnCl <sub>2</sub>  | 73      |
| CaCl <sub>2</sub> | 99      | SrCl <sub>2</sub>  | 90      |
| MnCl <sub>2</sub> | 97      | BaCl <sub>2</sub>  | 90      |
| FeC l2            | 95      | HgCl <sub>2</sub>  | 2       |
| FeCl <sub>3</sub> | 32      | PbC l <sub>2</sub> | 36      |
| CoCl <sub>2</sub> | 95      | EDTA               | 25      |

## [0074]

表3の結果から明らかなように、本発明の環状マルトシルマルトース生成酵素活性は、Cu<sup>2+</sup>及びHg<sup>2+</sup>イオンで著しく阻害され、Al<sup>3+</sup>、Fe<sup>3+</sup>及びPb<sup>2+</sup>イオンで阻害されることも判明した。また、金属イオンのキレート剤であるEDTAによっても阻害されることも判明した。

#### [0075]

## <実験5-6:N末端アミノ酸配列>

実験4の方法で得た精製環状マルトシルマルトース生成酵素標品を用いて、本酵素のN末端アミノ酸配列を、プロテインシーケンサー モデル492HT(アプライドバイオシステムズ社製)を用いて分析したところ、配列表における配列番号1で示されるアミノ酸配列、すなわち、アスパラギン酸ープロリンースレオニンースレオニンーセリンのN末端アミノ酸配列を有していることが判明した。

## [0076]

## く実験6:各種糖質への作用>

## [0077]



## 【表4】

| 基質         | 作用  | 基質           | 作用  |
|------------|-----|--------------|-----|
| マルトース      | -   | パノース         | _   |
| マルトトリオース   | +   | イソパノース       | _   |
| マルトテトラオース  | +++ | マルチトール       | _   |
| マルトペンタオース  | +++ | マルトトリイトール    | _   |
| マルトヘキサオース  | +++ | αーサイクロデキストリン | _   |
| マルトヘプタオース  | +++ | β-サイクロデキストリン | _   |
| ネオトレハロース   | -   | ィーサイクロデキストリン | _   |
| トレハロース     |     | アミロース        | +++ |
| コージビオース    | _   | 可溶性澱粉        | +++ |
| ニゲロース      | _   | グリコーゲン       | ++  |
| イソマルトース    | -   | プルラン         |     |
| イソマルトトリオース |     | デキストラン       |     |

## 注) 酵素反応前後で、

- ーは、「変化無し」を示し、
- +は、「基質のスポットが僅かに減少し、他の生成物が認められる」を示し、
- ++は、「基質のスポットがかなり減少し、他の生成物が認められる」を示し、
- +++は、「基質のスポットがほとんど消失し、他の生成物が認められる」を示す。

## [0078]

表4の結果から明らかなように、本発明の環状マルトシルマルトース生成酵素は、試験した糖質のうち、マルトテトラオース、マルトペンタオース、マルトへキサオース、マルトへプタオースによく作用し、また、マルトトリオースに僅かに作用した。さらに、アミロース、澱粉、グリコーゲンにも、本発明の環状マルトシルマルトース生成酵素はよく作用した。これらの結果より、本酵素はグルコース重合度が3以上の $\alpha-1$ , 4グルカンに作用することが判明した。

#### [0079]

く実験7:作用メカニズム>

#### [0800]

く実験7-1:マルトテトラオースからの生成物>

[0081]

【表 5】

| 反応時間マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース<br>マルトース | トシル マルトテトラ | フェートションフェ | 1        |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|-------|-------|
| マルトー、<br>0.0<br>9.0<br>9.0<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | インとインとイン  | <b>☆</b> | 糖質X   | か の 色 |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | くリマー       | トース       | オース      |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.0       | 0.0      | 0.0   | 2.7   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.5       | LC.       | 3.9      | 11.3  | 1.8   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           | J        | 11 0  | 9 6   |
| 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51.7       | 0.9       | •        |       | 2.6   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35. 5      | 1.8       | 5.4      | 14. ( | 3.0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0 6       | 1 1      | 10 8  | ۲.    |
| 8 31.7 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.1       | 3.8       | 4.1      | 10.0  |       |
| 16 36.3 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.9       | 6.9       | 2.5      | 2.8   | 0.0   |
| 38.7 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9        | 9.6       | 1.2      | 7.1   | 9.1   |

[0082]

表5の結果から明らかなように、本酵素の作用の結果、基質マルトテトラオースから、 反応初期(反応1時間)において、マルトースと糖質Xが顕著に生成することが判明した



。また、少量ながら、マルトへキサオース、環状マルトシルマルトース及びマルトシルマルトース( $6^2-\alpha$ ーマルトシルマルトース、非環状)が生成することもわかった。さらに、反応の進行とともに、これら生成糖質のうち、マルトースと環状マルトシルマルトースとが著量蓄積し、少量ながらマルトシルマルトース量も増加した。一方、糖質 X 及びマルトへキサオースの生成量は、反応 4 時間まで増加したものの、それ以降は減少することが判明した。これらの結果から推察すると、反応初期において、本発明の環状マルトシルマルトース生成酵素はマルトテトラオースに作用し、主にマルトースと糖質 X を生成し、さらに反応が進むとともに、本酵素は糖質 X に作用し、環状マルトシルマルトースを生成すると推定され、糖質 X が、マルトテトラオースからの環状マルトシルマルトース生成反応の中間体であると考えられた。また、マルトシルマルトースやマルトへキサオースが同時に生成することから本酵素はマルトース単位での糖転移を触媒する酵素であり、糖質 X もマルトシル転移による生成物と推定された。

## [0083]

## <実験7-2:糖質Xの単離>

マルトテトラオースから環状マルトシルマルトースを生成する反応における反応中間体と 考えられる糖質 X の単離を行った。最終濃度 1 w/v %のマルトテトラオース水溶液 2 L に、最終濃度20mM酢酸緩衝液(pH6.0)と最終濃度1mM塩化カルシウムを加え た後、実験4の方法で得た精製環状マルトシルマルトース生成酵素を、基質固形物1グラ ム当たり1単位加え、40℃、pH6.0で4時間作用させた後、100℃で10分間保 持して反応を停止させた。次いで、予備試験により糖質Χがβーアミラーゼによって分解 されないことを確認した後、上記で得られた反応液をpH5.5に調整し、 $\beta-アミラー$ ゼ(シグマ社製)を基質固形物1グラム当り5単位添加して50℃、16時間処理するこ とにより、反応液中の残存するマルトテトラオースをマルトースに分解した。反応液を1 00℃で10分間保持して反応を停止させ、不溶物を濾過して除去した後、三菱化学製イ オン交換樹脂『ダイヤイオンWA30』を用いて脱色、脱塩し、さらに、三菱化学製カチ オン交換樹脂『ダイヤイオンSK-1B』とオルガノ製アニオン交換樹脂『IRA411 S』を用いて脱色、脱塩し、精密濾過した後、エバポレーターで濃縮し、分画原料とした 。これを、分取用HPLCカラム『YMC-Pack ODS-A R355-15S-1 5 12A』 (株式会社ワイエムシイ製) に供して精製し、上記のマルトテトラオースか らの反応物から、純度99.3%以上の糖質X標品を固形物収率約6.7%で得た。

## [0084]

<実験7-3:糖質Xの構造解析>

#### [0085]

<実験7-3-1:環状マルトシルマルトースの生成試験>

実験 7-2 の方法で得た糖質 X精製標品の水溶液(最終濃度 1 w / v %)に、最終濃度 2 0 m M 酢酸緩衝液(p H 6 . 0)と最終濃度 1 m M 塩化カルシウムを加えた後、実験 4 の方法で得た精製環状マルトシルマルトース生成酵素を基質固形物 1 グラム当たり 1 単位加え、4 0  $\mathbb C$ 、p H 6 . 0  $\mathbb C$  2 4 時間作用させ、1 0 0  $\mathbb C$   $\mathbb C$  1 0 分間保持して反応を停止した後、実験 1 記載の T L  $\mathbb C$  法及び H  $\mathbb C$  上  $\mathbb C$  法で分析し、生成物を調べたところ、主にマルトースと環状マルトシルマルトースが生成することが判明し、糖質  $\mathbb X$  が環状マルトシルマルトース生成反応の中間体であることが確認された。

## [0086]

#### <実験7-3-2:質量分析>

実験7-2の方法で得た糖質X精製標品について、実験2-1に記載した方法で質量分析を行ったところ、質量数1013のナトリウム付加分子イオンが顕著に検出され、糖質Xの質量数が990であることが判明し、この質量数から、糖質XはDーグルコース6分子で構成されていることがわかった。

## [0087]

く実験7-3-3:プルラナーゼによる分解試験>

実験7-2の方法で得た糖質X精製標品の水溶液(最終濃度1w/v%)にプルラナーゼ

[0088]

<実験7-3-4:メチル化分析>

実験7-2の方法で得た糖質X標品を用いて、常法に従ってメチル化分析を行い、ガスクロマトグラフィー法でメチル化物を調べた。結果を表6にまとめた。

[0089]

【表6】

| 分析メチル化物の種類       | 比率   |
|------------------|------|
| 2,3,4-トリメチル化物    | 1.00 |
| 2,3,6-トリメチル化物    | 4.04 |
| 2,3,4,6-テトラメチル化物 | 0.85 |

## [0090]

表6の結果から明らかなように、2、3、4ートリメチル化物と2、3、6ートリメチル化物と2、3、4、6ーテトラメチル化物が約1:4:1の比率であることから、糖質Xを構成するグルコース6分子のうち、1分子は1位と6位でグルコシド結合しているグルコースであり、4分子は1位と4位でグルコシド結合しているグルコースであり、他の1分子は1位のみがグルコシル結合したグルコースであることが判明した。また、この結果から、マルトースとマルトテトラオースが $\alpha-1$ 、6結合した糖質Xにおける1、6グルコシド結合は非還元末端グルコース残基に存在することが判明した。

## [0091]

実験 7-3 の結果から、本発明の環状マルトシルマルトース生成酵素によってマルトテトラオースから生成する糖質 X は、環状マルトシルマルトース生成反応の中間体であり、その構造はマルトテトラオースの非還元末端グルコース残基の 6 位水酸基にマルトース基が  $\alpha$  結合した 6 糖で、構造式 1 で表される  $\alpha$  ーマルトシルマルトテトラオース  $(6^4-\alpha)$  ーマルトシルマルトテトラオース であることが判明した。

[0092]

構造式1:

【化1】

 $\alpha$ -D-Glcp-(1 $\rightarrow$ 4)- $\alpha$ -D-Glcp-(1 $\rightarrow$ 6)- $\alpha$ -D-Glcp-(1 $\rightarrow$ 4)- $\alpha$ -D-Glcp-(1 $\rightarrow$ 4)-

## $\alpha$ -D-Glcp-(1 $\rightarrow$ 4)-D-Glcp

[0093]

以上のことから、本発明の環状マルトシルマルトース生成酵素による環状マルトシルマルトース生成の反応メカニズムは以下のように考えられた。

- 1) 本酵素は、基質としてグルコース重合度が 3 以上の  $\alpha-1$ , 4 グルカンに作用し、その非還元性末端のマルトシル残基を他の  $\alpha-1$ , 4 グルカン分子の非還元性末端グルコース残基の 6 位水酸基に転移する分子間の  $6-\alpha$  ーマルトシル転移を触媒することにより、非還元末端に  $6-\alpha$  ーマルトシル基を有するグルコース重合度が 2 増加した  $6-\alpha$  ーマルトシルーマルトオリゴ糖と、グルコース重合度が 2 減じたマルトオリゴ糖とを生成する
- 2) 本酵素はさらに、6-α-マルトシルーマルトオリゴ糖に作用し、分子内α-マル 出証特2004-3090262

トシル転移することにより環状化し、サイクロ $\rightarrow 6$ )  $-\alpha - D - \emptyset$ ルコピラノシルー( $1 \rightarrow 4$ )  $-\alpha - D - \emptyset$ ルコピラノシルー( $1 \rightarrow 6$ )  $-\alpha - D - \emptyset$ ルコピラノシルー( $1 \rightarrow 4$ )  $-\alpha - D - \emptyset$ ルコピラノシルー( $1 \rightarrow 6$ ) の構造を有する環状マルトシルマルトースと、グルコース重合度が4減じたマルトオリゴ糖を生成する。

3) 本酵素は、僅かながら分子間の $4-\alpha-$ マルトシル転移も触媒し、マルトオリゴ糖から、グルコース重合度が2増加したマルトオリゴ糖と、グルコース重合度が2減じたマルトオリゴ糖とを僅かに生成する。

## [0094]

く実験8:各種基質からの環状マルトシルマルトースの生成>

各種糖質を用いて、本発明の環状マルトシルマルトース生成酵素の作用による環状マルトシルマルトースの生成を試験した。マルトトリオース、マルトテトラオース、マルトペンタオース、マルトヘキサオース、アミロース、可溶性澱粉、澱粉部分分解物(商品名『パインデックス#100』、松谷化学工業株式会社製造)、グリコーゲン(トウモロコシ由来、キューピー株式会社製造)の溶液を調製した。

#### [0095]

これらの水溶液(最終濃度 1.0 w/v%)に、最終濃度 20 mM酢酸緩衝液(pH6.0)と最終濃度 1 mM塩化カルシウムを加えた後、実験 4の方法で得た精製環状マルトシルマルトース生成酵素標品を固形物 1グラム当たり 1単位加え、これらを 40  $\mathbb C$ 、pH6.0で48時間作用させた後、その反応液を 100 $\mathbb C$ で10分間加熱して反応を停止させた。実験 1と同様に  $\alpha$  - グルコシダーゼ・グルコアミラーゼ処理した後、HPLC法で環状マルトシルマルトースを定量し、環状マルトシルマルトースの生成率を求めた。それらの結果を表 7 に示す。

## [0096]

## 【表7】

| 基質        | 環状マルトシルマル<br>トース生成率(%) |
|-----------|------------------------|
| マルトトリオース  | 0.6                    |
| マルトテトラオース | 27.3                   |
| マルトペンタオース | 24.4                   |
| マルトヘキサオース | 41.6                   |
| マルトヘプタオース | 36.6                   |
| アミロース     | 41.8                   |
| 可溶性澱粉     | 31.4                   |
| 澱粉部分分解物   | 32.6                   |
| グリコーゲン    | 29.5                   |

## [0097]

表7の結果から明らかなように、試験したいずれの糖質からも、環状マルトシルマルトース生成酵素の作用によって環状マルトシルマルトースが生成した。その生成率は、基質がマルトトリオースの場合約0.6%と低いのに対して、基質がアミロースの場合約42%と最も高く、次いでマルトへキサオース、マルトへプタオースの順であった。可溶性澱粉、澱粉部分分解物及びグリコーゲンからも30%程度の生成率で環状マルトシルマルトースが生成した。

## [0098]

く実験9:環状マルトシルマルトース生成反応と反応産物の還元力>

可溶性澱粉の水溶液(最終濃度1.0 w/v%)に、最終濃度20mM酢酸緩衝液(pH6.0)と最終濃度1mM塩化カルシウムを加えた後、実験4の方法で得た精製環状マルトシルマルトース生成酵素標品を固形物1グラム当たり1単位加え、これらを40℃、

pH6.0で反応させ、酵素添加直後にサンプリングし、直ちに約100℃で10分間加熱して反応を停止し、水冷し、反応0時間の反応液を得た。続いて、反応1、2、3、4時間、それぞれの時点でサンプリングし、直ちに約100℃で10分間加熱して反応を停止し、水冷し、反応1時間、反応2時間、反応3時間、反応4時間のそれぞれの反応液を得た。得られた反応液の還元糖量をソモギー・ネルソン法で、全糖量をアンスロン法で測定し、全糖量に占める還元糖量の割合を百分率(%)で表し、還元力とした。また、反応液を実験1と同様に $\alpha$ -グルコシダーゼ・グルコアミラーゼ処理した後、HPLC法で環状マルトシルマルトースを定量し、環状マルトシルマルトースの生成率を求めた。これらの結果を表8にまとめた。

【0099】 【表8】

| 反応時間 | 還元力 | 環状マルトシルマル |
|------|-----|-----------|
| (時間) | (%) | トース生成率(%) |
| 0    | 0.3 | 0         |
| 1    | 0.3 | 4.7       |
| 2    | 0.4 | 8.4       |
| 3    | 0.5 | 11.2      |
| 4    | 0.5 | 13.7      |

[0100]

表8の結果から明らかなように、本発明の環状マルトシルマルトース生成酵素を可溶性 澱粉に作用させ、環状マルトシルマルトースを生成させたところ、環状マルトシルマルトースの生成率が10%以上の場合でも、還元力の増加は0.2%程度とごく僅かであることが判明した。このことは、本発明の環状マルトシルマルトース生成酵素が本質的に転移・環状化反応を触媒する酵素であり、それら反応に際してはほとんど加水分解を伴わないことを意味している。澱粉やその分解物などに本酵素を作用させ、環状マルトシルマルトースを生成させる際、反応前の澱粉やその分解物の還元力、即ち、DEを低くしておけば、増加する還元力が僅かなため、還元力が低い生成物が得られることがわかった。

#### [0101]

[0102]

## 【表9】

| イソアミラーゼ | 環状マルトシルマル |
|---------|-----------|
| 添加量(単位) | トース生成率(%) |
| 0       | 32.2      |
| 125     | 40.1      |
| 250     | 40.1      |
| 500     | 40.9      |
| 1250    | 41.0      |
| 2500    | 41.7      |

## [0103]

表9の結果から明らかなように、イソアミラーゼを添加することによって、環状マルトシルマルトースの生成率が増加することが判明した。

## [0104]

## 【0105】 【表10】

| α-アミラーゼ使用量<br>(質量%/g-澱粉) | DE   | 環状マルトシルマル<br>トース生成率(%) |
|--------------------------|------|------------------------|
| 0.2                      | 3.1  | 32.6                   |
| 0.4                      | 4.8  | 30.3                   |
| 0.6                      | 7.9  | 26.2                   |
| 1.0                      | 12.6 | 23.1                   |
| 1.5                      | 17.4 | 21.2                   |
| 2.0                      | 20.4 | 20.9                   |

## [0106]

表10の結果から明らかなように、本発明の環状マルトシルマルトース生成酵素による環状マルトシルマルトースの生成率は、液化澱粉のDEによって影響をうけ、DEが低値であるほど、環状マルトシルマルトースの生成率は高く、逆に、DEが高値であるほど、環状マルトシルマルトースの生成率が低いことが判明した。具体的には、液化澱粉のDEは約20以下、望ましくは、DE約8以下、更に望ましくは、DE約5以下が適していることが判明した。

## [0107]

<実験12:結晶環状マルトシルマルトースの調製>

アミロース (林原生物化学研究所製造)、酢酸緩衝液 (pH6.0)、及び塩化カルシウ

ムを、最終濃度として、それぞれ、1.25 W/v%、20 mM、1 mM含む水溶液16 Lに、実験4の方法で得た精製環状マルトシルマルトース生成酵素標品を固形物1グラム 当たり1単位加え、これを40  $\mathbb C$ 、pH6.0で90時間作用させた後、反応液を約98  $\mathbb C$ で10分間加熱し反応を停止させた。得られた反応液を、実験1に記載の方法でグルコ アミラーゼ処理し、水酸化ナトリウムにてアルカリ処理することにより還元糖を分解した 後、濾過脱色、脱塩、精密濾過、濃縮、真空乾燥して、固形物として約80.5 gの環状 マルトシルマルトース粉末を得た。HPLC法で分析したところ、環状マルトシルマルト ースの純度は98.9%であった。

## [0108]

得られた環状マルトシルマルトース粉末(固形物として36g)を144gの水に加え、約90℃に加温して環状マルトシルマルトースを完全に溶解させた後、約25℃で2日間静置したところ、結晶状の物質が生成した。得られた結晶状物質を含む液を濾過し、濾紙上に結晶状物質を回収し、続いて、少量の水で洗浄した後、結晶状物質を集め、常温常圧で風乾し、21.8gの結晶状粉末を得た。HPLC法で分析したところ、環状マルトシルマルトースの純度は99.9%以上で、極めて高純度であった。

## [0109]

得られた環状マルトシルマルトースの結晶状粉末について、X線回折装置 RAD-II X (株式会社リガク製)を用いて粉末 X 線回折測定を行ったところ、図 9 に示すように、主な回折角  $(2\theta)$  として、 $5.6^\circ$ 、 $9.3^\circ$ 、 $16.5^\circ$  及び  $27.1^\circ$  を特徴とする粉末 X 線回折図が得られた。また、この結晶状粉末の水分をカールフィッシャー法で測定したところ、水分は 12.8 質量%であることがわかり、環状マルトシルマルトース 1 分子当り 5 分子の水を含む含水結晶であることが判明した。

## [0110]

さらに、この環状マルトシルマルトースの結晶粉末を熱重量測定したところ、図10に示す熱重量曲線が得られ、その重量変化と温度との関係から、温度約100℃までの上昇で5分子の水に相当する重量減少が認められ、さらに、温度約280℃付近から環状マルトシルマルトース自体の熱分解と考えられる重量減少が認められた。これらのことから、本発明の環状マルトシルマルトース含水結晶は、常圧において、温度を100℃まで上昇させることにより結晶分子当り5分子の水が離脱して無水物になることが判明した。

#### [0111]

<実験13:環状マルトシルマルトースの水に対する飽和濃度>

温度25℃での水に対する環状マルトシルマルトースの飽和濃度を調べるため、密栓付きガラス製容器に水10mlを入れ、それに実験12の方法で得られる環状マルトシルマルトース含水結晶粉末を、完全に溶解する量以上の量を加えた後、ガラス容器を密封し、飽和に達するまで温度25℃で保温しながら2日間攪拌した。この環状マルトシルマルトース飽和溶液を精密濾過して溶けていない環状マルトシルマルトースを除いた後、その濾液の水分を乾燥減量法で調べ飽和濃度を求めたところ、温度25℃での水に対する環状マルトシルマルトースの飽和濃度は約8.0質量%であることが判明した。

## [0112]

<実験14:環状マルトシルマルトースの甘味度>

実験12の方法で得られる環状マルトシルマルトース含水結晶粉末を脱イオン水に溶かして、固形物濃度5質量%の水溶液とし、この水溶液を甘味度試験溶液とした。一方、蔗糖(市販グラニュー糖)0.5乃至5質量%水溶液を調製し、対照とした。パネラー5名で官能試験を行ったところ、環状マルトシルマルトースの甘味度は蔗糖の約20%であると推定され、環状マルトシルマルトースが低甘味の糖質であることが判明した。

## [0113]

<実験15:環状マルトシルマルトースの熱安定性>

実験12の方法で得られる環状マルトシルマルトース含水結晶粉末を水に溶解し濃度7w/v%の環状マルトシルマルトース水溶液を調製し、その溶液8mlをガラス製試験管に採り、密封した後、120℃で30乃至90分間加熱した。放冷後、それら溶液の着色度

の測定と、HPLC法による環状マルトシルマルトースの純度測定を行った。着色度は、480nmにおける1cmセルでの吸光度とした。結果を表11に示した。

# 【0114】 【表11】

| 加熱時間 (分) | 着色度<br>(A480nm) | 純度<br>(%) |
|----------|-----------------|-----------|
| 0        | 0               | 100       |
| 30       | 0               | 100       |
| 60       | 0               | 100       |
| 90       | 0               | 100       |

## [0115]

表11の結果から明らかなように、環状マルトシルマルトース水溶液は120℃の高温 加熱でも着色はなく、分解による純度低下も認められず、環状マルトシルマルトースは熱 に対して安定な糖質であることが判明した。

## [0116]

く実験16:環状マルトシルマルトースのpH安定性>

# 【0117】 【表12】

| рН  | 緩衝液     | 着色度      | 純度  |
|-----|---------|----------|-----|
| pii | の種類     | (A480nm) | (%) |
| 2.0 | 酢酸      | 0        | 93  |
| 3.0 | 酢酸      | 0        | 100 |
| 4.0 | 酢酸      | 0        | 100 |
| 5.0 | 酢酸      | 0        | 100 |
| 6.0 | Tris一塩酸 | 0        | 100 |
| 7.0 | Tris-塩酸 | 0        | 100 |
| 8.0 | Tris一塩酸 | 0        | 100 |
| 9.0 | アンモニウム  | 0        | 100 |

#### [0118]

表12の結果から明らかなように、環状マルトシルマルトース水溶液は100℃の高温で24時間加熱しても、pH2乃至9の広範囲で着色はなく、pH2において環状マルトシルマルトースは僅かに分解され、純度低下が認められたものの、pH3乃至9の範囲では全く分解されず、環状マルトシルマルトースは広いpH範囲で煮沸してもきわめて安定な糖質であることが判明した。

## [0119]

<実験17:アミノカルボニル反応>

実験12の方法で得られる環状マルトシルマルトース含水結晶粉末を水に溶解し、さらに、市販試薬特級のグリシン及びリン酸緩衝液を加え、50mMリン酸緩衝液でpH8.0に調整した0.5w/v%グリシンを含む2.5w/v%環状マルトシルマルトース水溶

液を調製した。対照として、環状マルトシルマルトース含水結晶粉末の代わりにマルトースを用いた以外は上記と同様にしてマルトース水溶液を調製した。それぞれの溶液4mlをガラス製試験管に採り、密封した後、100℃で30万至90分間加熱した。室内で放冷後、それらの着色度を測定しアミノカルボニル反応性を調べた。着色度は、1cmセルでの480nmにおける吸光度とした。結果を表13に示す。

【0120】 【表13】

|         | 着色度(A480nm) |       |
|---------|-------------|-------|
| 加熱時間(分) | 環状マルトシル     | マルトース |
|         | マルトース       | (対照)  |
| 0       | 0.00        | 0.00  |
| 30      | 0.00        | 0.02  |
| 60      | 0.00        | 0.08  |
| 90      | 0.00        | 0.17  |

## [0121]

表13の結果から明らかなように、対照のマルトースはグリシン共存下で加熱すると着色し、褐変を引き起こした。一方、本発明の環状マルトシルマルトースは、グリシン共存下で加熱しても着色せず、褐変を引き起こさない、アミノカルボニル反応 (メイラード反応) を起こしにくい安定な糖質であることが判明した。

## [0122]

<実験18:アミノカルボニル反応>

実験12の方法で得られる環状マルトシルマルトース含水結晶粉末と市販ポリペプトン(日本製薬製)とを脱イオン水に溶かし、5 W / v %ポリペプトンを含む5 W / v %環状マルトシルマルトース溶液を調製した。対照として、環状マルトシルマルトース含水結晶粉末の代わりにマルトースを用いた以外は上記と同様にしてマルトース水溶液を調製した。それぞれの溶液4 m 1 をガラス製試験管に採り、密封した後、120℃で30万至90分間加熱した。室内で放冷後、それらの着色度を測定しアミノカルボニル反応性を調べた。同時に、ポリペプトンのみを含む溶液をブランクとして同様に加熱した。着色度は、480 n m における1 c m セルでの吸光度とし、ブランクの吸光度を差し引いた値とした。結果を表14に示す。

【0123】 【表14】

|         | 着色度(A480nm)      |               |
|---------|------------------|---------------|
| 加熱時間(分) | 環状マルトシル<br>マルトース | マルトース<br>(対照) |
| 0       | 0.00             | 0.00          |
| 30      | 0.00             | 0.10          |
| 60      | 0.00             | 0.30          |
| 90      | 0.00             | 0.62          |

## [0124]

表14の結果から明らかなように、対照のマルトースはポリペプトン共存下で加熱すると着色し、褐変を引き起こした。一方、環状マルトシルマルトースは、ポリペプトン共存下で加熱しても着色せず、褐変を引き起こさない、アミノカルボニル反応を起こしにくい安定な糖質であることが判明した。

[0125]

く実験19:環状マルトシルマルトースの包接作用>

実験12の方法で得られる環状マルトシルマルトース含水結晶粉末を脱イオン水に溶かし、8質量%水溶液を調製した。その水溶液100g当たりに、香気成分の具体例として、メタノール1.2g、エタノール1.7g又は酢酸2.2gをそれぞれ加えて包接を行なった。その後、それぞれを濾過し濾液を凍結乾燥し、未包接物を除去した。対照として、包接能を有することが知られている分岐サイクロデキストリン(商品名イソエリートP、マルハ株式会社販売)を用いて同様の操作を行なった。凍結乾燥粉末中の包接物量を測定するために、それぞれの凍結乾燥粉末1gを5mlの水に溶かし、それに5mlのジエチルエーテルを加えて抽出を行い、再度、抽出を繰返した後、ジエチルエーテル中の抽出物をガスクロマトグラフィー法で定量した。結果を表15に示す。

【0126】 【表15】

|       | 包接量(mg/g-凍結乾燥粉末) |        |  |
|-------|------------------|--------|--|
| 包接物   | 環状マルトシル          | 分岐サイクロ |  |
|       | マルトース            | デキストリン |  |
| メタノール | 4.30             | 3.23   |  |
| エタノール | 4.20             | 8.67   |  |
| 酢酸    | 30.55            | 38.14  |  |

## [0127]

表15の結果から明らかなように、環状マルトシルマルトースは包接能を有していることが判明し、その包接能は、分岐サイクロデキストリンのものと比べ、メタノールでは重量当たり約1.3倍、エタノールでは約0.5倍、酢酸では約0.8倍の強さであった。

## [0128]

<実験20:環状マルトシルマルトースの消化性試験>

実験12の方法で得た環状マルトシルマルトース含水結晶粉末を用いて、日本栄養食糧学会誌、第43巻、第23乃至29頁(1990)に記載の岡田らの方法に準じて、試験管内での唾液アミラーゼ、人工胃液、膵液アミラーゼ、小腸粘膜酵素による環状マルトシルマルトースの消化性を調べた。対照として、難消化性糖質として知られているマルチトールを用いて行った。結果を表16に示す。

## [0 1 2 9]

【表16】

|         | 分解率(%)  |        |
|---------|---------|--------|
| 消化酵素    | 環状マルトシル | マルチトール |
|         | マルトース   | (対照)   |
| 唾液アミラーゼ | 0       | 0      |
| 人工胃液    | 0       | 0      |
| 膵液アミラーゼ | 0       | 0      |
| 小腸粘膜酵素  | 0       | 4      |

#### [0130]

表16の結果から明らかなように、環状マルトシルマルトースは、唾液アミラーゼ、人工胃液、膵液アミラーゼ及び小腸粘膜酵素のいずれによっても全く消化されないことがわかり、極めて消化されにくい糖質であることが判明した。

## [0131]

く実験21:環状マルトシルマルトースの発酵性試験>

実験12の方法で得られる環状マルトシルマルトース含水結晶粉末を用いて、『ジャーナル・オブ・ニュートリション・サイエンス・アンド・ビタミノロジー(Journal of Nutritional Science and Vitaminology 出証特2004-3090262

)』、第37巻、529乃至544頁(1991年)に記載の奥らの方法に準じて、ラット盲腸内容物による環状マルトシルマルトースの発酵性を調べた。盲腸内容物は、ウィスター系雄ラットをエーテル麻酔下で屠殺し嫌気的に採取し、4倍量の0.1M炭酸水素ナトリウム水溶液に懸濁したものを用いた。環状マルトシルマルトースは盲腸内容物重量当り約7質量%を添加し、添加直後および12時間後に残存する環状マルトシルマルトース量をガスクロマトグラフィー法で定量した。その結果、添加直後の環状マルトシルマルトース決度は盲腸内容物1グラム当り68.5mg、12時後の環状マルトシルマルトース決度は盲腸内容物1グラム当り63.0mgであり、約92%が発酵されずに残存していることがわかり、環状マルトシルマルトースは極めて発酵されにくい糖質であることが判明した。

## [0132]

#### 〈実験22:急性毒性試験〉

マウスを使用して、実験 12の方法で得た環状マルトシルマルトースを経口投与して急性毒性試験を行なった。その結果、環状マルトシルマルトースは低毒性の物質で、投与可能な最大投与量においても死亡例は認められず、その $LD_50$  値は、5g/kgーマウス体重以上であった。

## [0133]

以上の実験20乃至22の結果から、環状マルトシルマルトースは、経口摂取しても、消化、吸収されにくく、無カロリー乃至低カロリーの可食素材として、ダイエット甘味料、高甘味度甘味料の賦形剤、ダイエット飲食物の増粘剤、増量剤、賦形剤、更には、食物繊維、脂肪代替食品材料などとして有利に利用できる。

## [0134]

以下、本発明の環状マルトシルマルトース及びそれを含む糖質の製造方法を実施例1乃至6で、環状マルトシルマルトース及びそれを含む糖質を含有せしめた組成物を実施例7乃至23で示す。

## 【実施例1】

#### [0135]

アルスロバクター・グロビホルミス M6 (FERM BP-8448) を実験3の方法に準じて、種培養した。続いて、容量30Lのファーメンターに、澱粉部分分解物(商品名『パインデックス#100』、松谷化学工業株式会社製造)3.0 w/v%、大豆ペプチド(商品名『ハイニュートSMS』、不二製油株式会社製造)3.6 w/v%、リン酸二カリウム0.1 w/v%、リン酸一ナトリウム・2 水塩0.06 w/v%、硫酸マグネシウム・7 水塩0.05 w/v%、炭酸カルシウム0.3 w/v%、及び水からなる液体培地を約20L入れて、加熱滅菌、冷却して温度27℃とした後、種培養液1 v/v%を接種し、温度27℃、pH5.5乃至8.0 に保ちつつ、96時間通気培養した。培養後、SF膜を用いて除菌濾過し、約18Lの培養濾液を回収し、更に、その濾液をUF膜濃縮し、3.8単位/mlの本発明の環状マルトシルマルトース生成酵素を含む濃縮酵素液約1Lを回収した。

## 【実施例2】

#### [0136]

馬鈴薯澱粉乳を濃度約1質量%澱粉乳とし、これに最終濃度1mMとなるように塩化カルシウムを加え、pH6.0に調整し、95℃に約20分間加熱して糊化を行い、次いで約40℃に冷却し、これに実施例1の方法で得た環状マルトシルマルトース生成酵素を含む濃縮酵素液を澱粉固形物1グラム当り0.26ml(約1単位)の割合になるように加え、pH6.0、温度40℃で48時間反応させた。その反応液を95℃に加熱し30分間保った後、冷却し、濾過して得られる濾液を、常法に従って、活性炭で脱色し、H型及びOH型イオン交換樹脂により脱塩して精製し、更に、濃縮して濃度65質量%の環状マルトシルマルトース含有シラップを固形物当たり収率約90%で得た。本品は、固形物当たり、環状マルトシルマルトース31.4質量%、マルトース2.2質量%、マルトトリオース1.5質量%、及びその他の糖質を65.9質量%含有しており、低還元性で、温



## 【実施例3】

## [0137]

タピオカ澱粉を濃度約1質量%澱粉乳とし、これに濃度0.1質量%となるように炭酸 カルシウムを加え、ρH6.0に調整し、これにαーアミラーゼ(ノボ社製造、商品名『 ターマミール60L』を澱粉固形物グラム当り0.2質量%になるように加え、95℃で 10分間反応させ、次いで120℃に20分間オートクレーブし、更に約40℃に急冷し てDE約3の液化溶液を得、これに実施例1の方法で得た環状マルトシルマルトース生成 酵素を含む濃縮液を澱粉固形物 1 グラム当り 0. 2 6 m 1 (約 1 単位) とイソアミラーゼ (株式会社林原生物化学研究所製造)を澱粉固形物1グラム当り1000単位の割合にな るように加え、p H 6. 0、温度 4 0 ℃で 4 8 時間反応させた。その反応液を 9 5 ℃に加 熱し30分間保った後、冷却し、濾過して得られる濾液を、常法に従って、活性炭で脱色 し、H型及びOH型イオン交換樹脂により脱塩して精製し、更に濃縮して、固形物当り環 状マルトシルマルトースを41.1%含む濃度60質量%のシラップを得た。得られたシ ラップを糖液として、強酸性カチオン交換樹脂(アンバーライトCR-1310、Na型 、オルガノ株式会社製造)を用いたカラム分画を行なった。樹脂を内径5.4cmのジャ ケット付きステンレス製カラム4本に充填し、直列につなぎ樹脂層全長20mとした。カ ラム内温度60℃に維持しつつ、糖液を樹脂に対して5∨/v%加え、これに60℃の温 水をSV0.13で流して分画し、溶出液の糖組成をHPLC法でモニターし、環状マル トシルマルトース含有画分を含む低分子画分を採取し、精製し、濃縮し、噴霧乾燥して、 環状マルトシルマルトース含有粉末を固形物当たり収率約54%で得た。本品は、固形物 当たり、環状マルトシルマルトース63.2質量%、マルトース7.4質量%、マルトト リオース 6.2 質量%、及びその他の糖質を 23.2 質量%含有しており、低還元性で、 温和な甘味、適度の粘度、保湿性、包接性を有し、甘味料、呈味改良剤、品質改良剤、離 水防止剤、安定剤、変色防止剤、賦形剤、包接剤などとして、各種飲食物、化粧品、医薬 品など各種組成物に有利に利用できる。

#### 【実施例4】

## [0138]

トウモロコシ澱粉を濃度約1質量%澱粉乳とし、これに濃度0.1質量%となるように 炭酸カルシウムを加え、pH6.0に調整し、これにα-アミラーゼ(商品名『ネオスピ ターゼ』、ナガセ生化学工業株式会社製)を澱粉固形物グラム当り0.2%になるように 加え、85乃至90℃で20分間反応させ、次いで120℃に20分間オートクレープし 、更に約40℃に急冷してDE約3の液化溶液を得、これに実施例1の方法で得た環状マ ルトシルマルトース生成酵素を含む濃縮液を澱粉固形物 1 グラム当り 0. 2 6 m 1 (約 1 単位)とイソアミラーゼ(株式会社林原生物化学研究所製造)を澱粉固形物1グラム当り 1000単位の割合になるように加え、pH6.0、温度40℃で48時間反応させた。 その反応液を95℃に加熱し30分間保った後、pH5.0、温度50℃にし、それにグ ルコアミラーゼ(商品名『グルコチーム』、ナガセ生化学工業株式会社製)を澱粉1グラ ム当り100単位の割合になるように加え、pH5.0、温度50℃で16時間反応させ た。その反応液を95℃に加熱し30分間保った後、冷却し、濾過して得られる濾液を、 常法に従って、活性炭で脱色し、H型及びOH型イオン交換樹脂により脱塩して精製し、 更に濃縮して、濃度60質量%の環状マルトシルマルトース含有シラップを固形物当たり 収率約95%で得た。本品は、固形物当たり、環状マルトシルマルトース42.6質量% 、グルコース53.0質量%、及びその他の糖質を4.4質量%含有しており、温和な甘 味、適度の粘度、保湿性、包接性を有し、甘味料、呈味改良剤、品質改良剤、離水防止剤 、安定剤、変色防止剤、賦形剤、包接剤、粉末化基材などとして、各種飲食物、化粧品、 医薬品など各種組成物に有利に利用できる。

## 【実施例5】

## [0139]

実施例4の方法で得た環状マルトシルマルトース含有シラップを、常法に従って、水素添加して還元性糖質を糖アルコール化し、精製し、濃縮し、真空乾燥し、粉砕して、環状マルトシルマルトース含有粉末を固形物当たり収率約90%で得た。本品は、固形物当たり、環状マルトシルマルトース42.6質量%、ソルビトール53.2質量%、及びその他の糖アルコールを4.2質量%含有しており、実質的に還元力を示さず、アミノカルボニル反応を起こしにくく、低還元性で、温和な甘味、適度の粘度、保湿性、包接性を有し、甘味料、呈味改良剤、品質改良剤、離水防止剤、安定剤、変色防止剤、賦形剤、包接剤などとして、各種飲食物、化粧品、医薬品など各種組成物に有利に利用できる。

## 【実施例6】

## [0140]

実施例4の方法で得た環状マルトシルマルトース含有シラップを原糖液とし、環状マルトシルマルトースの含量を高めるため、実施例3の方法に準じて塩型強酸性カチオン交換 樹脂を用いるカラムクロマトグラフィーを行なって、環状マルトシルマルトース高含有画 分を採取し、精製して、固形物当たり約90質量%の環状マルトシルマルトースを含有している環状マルトシルマルトース高含有液を固形物当たり収率約40%で得た。本溶液を濃縮しながら連続晶析させ、得られるマスキットをバスケット型遠心分離機で分蜜し、結晶を少量の水でスプレーし洗浄し、温風乾燥して、高純度の環状マルトシルマルトース含水結晶を固形物当たり約25%の収率で得た。本品は、純度99%以上の極めて純度の高い環状マルトシルマルトース含水結晶であって、還元性が極めて低く、アミノカルボニル反応を起こしにくく、吸湿性も示さず、取扱いが容易であり、温和な低甘味、適度の粘度、保湿性、包接性、難消化性、を有し、甘味料、低カロリー食品素材、呈味改良剤、風味改良剤、品質改良剤、離水防止剤、安定剤、変色防止剤、賦形剤、包接剤、粉末化基材などとして、各種飲食物、化粧品、医薬品など各種組成物、更には、工業試薬、化学原料などにも有利に利用できる。

## 【実施例7】

#### [0141]

#### <甘味料>

実施例 6 の方法で得た環状マルトシルマルトース含水結晶 0.8 質量部に、トレハロース含水結晶(株式会社林原商事販売、登録商標『トレハ』)0.2 質量部、 $\alpha$  ーグリコシルステビオシド(東洋精糖株式会社販売、商品名『 $\alpha$  Gスィート』)0.0 1 質量部、およびLーアスパルチルーLーフェニルアラニンメチルエステル(商品名『アスパルテーム』)0.0 1 質量部を均一に混合し、顆粒成型機にかけて顆粒状甘味料を得た。本品は、甘味の質が優れ、蔗糖の約 2 倍の甘味度を有している。本品のカロリーは、環状マルトシルマルトースが難消化性、難発酵性で実質的に無乃至低カロリーである。しかも、室温保存下、変質劣化の懸念も無く安定である。従って、本品は、高品質の低カロリー、低う蝕性甘味料として好適である。

#### 【実施例8】

## [0142]

#### <ハードキャンディー>

濃度55%蔗糖溶液100質量部に実施例4の方法で得た環状マルトシルマルトース含有シラップ50質量部を加熱混合し、次いで減圧下で水分2%未満になるまで加熱濃縮し、これにクエン酸0.6質量部および適量のレモン香料と着色料とを混和し、常法に従って成型し、製品を得た。本品は歯切れ、呈味、風味とも良好で、蔗糖の晶出も起こさず、吸湿性少なく、ダレも起こさない安定で高品質のハードキャンディーである。

## 【実施例9】

#### [0143]

## **<チューイングガム>**

ガムベース3質量部を柔らかくなる程度に加熱溶融し、これに無水マルチトール2質量部、キシリトール2質量部、実施例6の方法で得た環状マルトシルマルトース含水結晶2

質量部、およびトレハロース含水結晶1質量部とを加え、更に適量の香料と着色料とを混合し、常法に従って、ロールにより練り合わせ、成型、包装して製品を得た。本品は、テクスチャー、呈味、風味良好で、低う蝕性、低カロリーのチューイングガムとして好適である。

## 【実施例10】

[0144]

### <加糖練乳>

原乳100質量部に実施例2の方法で得た環状マルトシルマルトース含有シラップ4質量部および蔗糖2重量を溶解し、プレートヒーターで加熱殺菌し、次いで濃度70%に濃縮し、無菌状態で缶詰して製品を得た。本品は、温和な甘味で風味も良く、フルーツ、コーヒー、ココア、紅茶などの調味用に有利に利用できる。

## 【実施例11】

[0145]

#### <乳酸菌飲料>

脱脂粉乳175質量部、実施例3の方法で得た環状マルトシルマルトース含有粉末100質量部およびラクトスクロース高含有粉末(株式会社林原商事販売、登録商標『乳果オリゴ』)を水1、500質量部に溶解し、65℃で30分間殺菌し、40℃に冷却後、これに、常法に従って、乳酸菌のスターターを30質量部植菌し、37℃で8時間培養して乳酸菌飲料を得た。本品は、風味良好で、オリゴ糖、環状マルトシルマルトースを含有し、乳酸菌を安定に保つだけでなく、ビフィズス菌増殖促進作用、整腸作用を有する乳酸菌飲料として好適である。

## 【実施例12】

[0146]

## く粉末ジュース>

噴霧乾燥により製造したオレンジ果汁粉末33質量部に対して、実施例6の方法で得た環状マルトシルマルトース含水結晶粉末50質量部、無水結晶マルチトール10質量部、無水クエン酸0.65質量部、リンゴ酸0.1質量部、2-〇-αーグルコシルーLーアスコルビン酸0.2質量部、クエン酸ソーダ0.1質量部、プルラン0.5質量部および粉末香料の適量をよく混合攪拌し、粉砕し微粉末にして、これを流動層造粒機に仕込み、排風温度40℃とし、これに実施例2の方法で得た環状マルトシルマルトース含有シラップをバインダーとして適量スプレーし、30分間造粒し、計量し、包装して製品を得た。本品は、果汁含有率約30%の粉末ジュースである。又、本品は、異味、異臭がなく、高品質で、低カロリーのジュースとして商品価値の高いものである。

#### 【実施例13】

[0147]

## <カスタードクリーム>

コーンスターチ100質量部、実施例2の方法で得た環状マルトシルマルトース含有シラップ100質量部、トレハロース含水結晶60質量部、蔗糖40質量部、および食塩1質量部を充分に混合し、鶏卵280質量部を加えて攪拌し、これに沸騰した牛乳1、000質量部を徐々に加え、更に火にかけて攪拌を続け、コーンスターチが完全に糊化して全体が半透明になった時に火を止め、これを冷却して適量のバニラ香料を加え、計量、充填、包装して製品を得た。本品は、なめらかな光沢を有し、風味良好で、澱粉の老化も抑制され、高品質のカスタードクリームである。

#### 【実施例14】

[0148]

#### くういろうの素>

米粉90質量部に、コーンスターチ20質量部、無水結晶マルチトール70質量部、実施例5の方法で得た環状マルトシルマルトース含有粉末50質量部、およびプルラン4質量部を均一に混合してういろうの素を製造した。ういろうの素と適量の抹茶と水とを混練し、これを容器に入れて60分間蒸し上げて抹茶ういろうを製造した。本品は、照り、口



## 【実施例15】

[0149]

#### くあん>

原料あずき10質量部に、常法に従って、水を加えて煮沸し、渋切り、あく抜きし、水 溶性夾雑物を除去して、あずきつぶあん約21質量部を得た。この生あんに蔗糖14質量 部、実施例2の方法で得た環状マルトシルマルトース含有シラップ5質量部と水4質量部 を加えて煮沸し、これに少量のサラダオイルを加えてつぶあんを壊さないように練り上げ 、製品のあんを約35質量部得た。本品は、色焼け、離水もなく安定で、舌触り、風味良 好で、あんパン、まんじゅう、団子、最中、氷菓などの製菓材料として好適である。

## 【実施例16】

[0150]

#### <パン>

小麦粉100質量部、イースト菌2質量部、蔗糖5質量部、実施例3の方法で得た環状マルトシルマルトース含有粉末1質量部および無機フード0.1質量部を、常法に従って、水でこね、中種を26℃で2時間発酵させ、その後30分間熟成、焼き上げた。本品は、色相、すだちとも良好で、適度の弾力、温和な甘味を有する高品質のパンである。

## 【実施例17】

[0151]

#### <ハム>

豚もも肉1、000質量部に食塩15質量部および硝酸カリウム3質量部を均一にすり込んで、冷室に1昼夜堆積する。これを水500質量部、食塩100質量部、硝酸カリウム3質量部、実施例5の方法で得た環状マルトシルマルトース含有粉末40質量部および香辛料からなる塩漬液に冷室で7日間漬け込み、次いで、常法に従い、冷水で洗浄し、ひもで巻き締め、薫煙し、クッキングし、冷却、包装して製品を得た。本品は、色合いもよく、風味良好な高品質のハムである。

## 【実施例18】

[0152]

## <粉末ペプチド>

40%食品用大豆ペプチド溶液(不二製油株式会社販売、商品名『ハイニュートS』) 1質量部に、実施例6の方法で得た環状マルトシルマルトース含水結晶粉末2質量部を混合し、プラスチック製バットに入れ、50℃で減圧乾燥し、粉砕して粉末ペプチドを得た。本品は風味良好で、プレミックス、冷菓などの低カロリー製菓材料として有用であるのみならず、経口流動食、経管流動食のための難消化性の食物繊維、整腸剤量としても有用である。

## 【実施例19】

[0153]

## <化粧用クリーム>

モノステアリン酸ポリオキシエチレングリコール 2 質量部、自己乳化型モノステアリン酸グリセリン 5 質量部、実施例 6 の方法で得た環状マルトシルマルトース含水結晶粉末 2 質量部、 $\alpha$  - グルコシル ルチン(株式会社林原販売、商品名  $\alpha$  G ルチン) 1 質量部、流動パラフィン 1 質量部、トリオクタン酸グリセリン 1 0 質量部および防腐剤の適量を常法に従って加熱溶解し、これに L - 乳酸 2 質量部、 1 、 3 - ブチレングリコール 5 質量部および精製水 6 6 質量部を加え、ホモゲナイザーにかけ乳化し、更に香料の適量を加えて攪拌混合し、化粧用クリームを製造した。本品は、抗酸化性を有し、安定性は高く、高品質の日焼け止め、美肌剤、色白剤などとして有利に利用できる。

#### 【実施例20】

[0154]

## <練歯磨>



## 【実施例21】

[0155]

## <流動食用固体製剤>

実施例3の方法で得た環状マルトシルマルトース含有粉末100質量部、トレハロース含水結晶200質量部、マルトテトラオース高含有粉末200質量部、粉末卵黄270質量部、脱脂粉乳209質量部、塩化ナトリウム4.4質量部、塩化カリウム1.8質量部、硫酸マグネシウム4質量部、チアミン0.01質量部、Lーアスコルビン酸ナトリウム0.1質量部、ビタミンEアセテート0.6質量部およびニコチン酸アミド0.04質量部からなる配合物を調製し、この配合物25グラムずつ防湿性ラミネート小袋に充填し、ヒートシールして製品を得た。本品は、環状マルトシルマルトースにより難消化性の食物繊維を強化し、整腸作用に優れた流動食とし、経口的、または鼻腔、胃、腸などへ経管的使用方法により利用され、生体へのエネルギー補給用に有利に利用できる。

## 【実施例22】

[0156]

## く錠剤>

アスピリン50質量部に実施例6の方法で得た環状マルトシルマルトース含水結晶粉末14質量部、コーンスターチ4質量部を充分に混合した後、常法に従って打錠機により打錠して厚さ5.25mm、1錠680mgの錠剤を製造した。本品は、環状マルトシルマルトースの賦形性を利用したもので、吸湿性がなく、物理的強度も充分にあり、しかも水中での崩壊はきわめて良好である。

## 【実施例23】

[0157]

#### <外傷治療用膏薬>

実施例6の方法で得た環状マルトシルマルトース含水結晶粉末100質量部およびマルトース300質量部に、ヨウ素3質量部を溶解したメタノール50質量部を加え混合し、更に10w/v%プルラン水溶液200質量部を加えて混合し、適度の延び、付着性を示す外傷治療用膏薬を得た。本品は、環状マルトシルマルトースによりヨウ素、メタノールの揮散を防止し、経時変化が少ない商品価値の高い膏薬である。又、本品は、ヨウ素による殺菌作用のみならず、マルトースによる細胞へのエネルギー補給剤としても作用することから治癒期間が短縮され、創面もきれいに治る。

#### 【産業上の利用可能性】

## [0158]

#### 【図面の簡単な説明】

## [0159]

- 【図1】非還元糖質標品のHPLC溶出パターンを示す図である。
- 【図2】単離した非還元性糖質の1 H-NMRスペクトルを示す図である。



- 【図4】本発明の環状マルトシルマルトースの構造を示す図である。
- 【図5】環状マルトシルマルトース生成酵素の至適温度を示す図である。
- 【図6】環状マルトシルマルトース生成酵素の至適pHを示す図である。
- 【図7】環状マルトシルマルトース生成酵素の温度安定性を示す図である。
- 【図8】環状マルトシルマルトース生成酵素のpH安定性を示す図である。
- 【図9】結晶環状マルトシルマルトースの粉末X線回折図を示す図である。
- 【図10】結晶環状マルトシルマルトースの熱重量曲線を示す図である。

## 【符号の説明】

[0160]

- $a:1位が \alpha-1$ , 4グルコシド結合しているグルコース残基
- b:1位がα-1,6グルコシド結合しているグルコース残基

# 【配列表】

## SEQUENCE LISTING

<110> Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo

<120> Cyclic maltosylmaltose, cyclic maltosylmaltose-forming enzyme, their prepa
ration and uses

<130> 10102801

<160> 1

<210> 1

<211> 5

<212> PRT

<213> Arthrobacter globiformis

<400> 1
Asp Pro Thr Thr Ser

【書類名】図面【図1】



【図2】



[図3]











# 【図6】







# 【図8】









## 【書類名】要約書

【要約】

【課題】 グルコースを構成糖とする新規な非還元性糖質を提供し、非還元性糖質の選択の幅を広げるとともに、当該非還元性糖質を生成する新規酵素と、それらの生成方法及び製造方法、並びに当該非還元性糖質を含んでなる組成物とその用途を提供することを課題とする。

【解決手段】 サイクロ  $\{\rightarrow 6\}$   $-\alpha$  - D -  $\alpha$  - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

【選択図】 なし



# 認定 · 付加情報

特許出願の番号 特願2003-304964

受付番号 50301427073

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年 8月29日

<認定情報・付加情報>

【提出日】 平成1

平成15年 8月28日



特願2003-304964

出願人履歴情報

識別番号

[000155908]

1. 変更年月日 [変更理由]

1998年10月21日

住所

住所変更 岡山県岡山市下石井1丁目2番3号

氏 名

株式会社林原生物化学研究所