Operational Semantics, Part II

Jim Royer

CIS 352

February 18, 2016

Jim Royer | CIS 352 | February 18, 2016

1 / 37

Operational Semantics, Part II LC basics

LC: A tiny programming language

```
Phases P ::= A \mid B \mid C

Arithmetic Expressons A ::= n \mid !\ell \mid A \circledast A \quad (\circledast \in \{+, -, \times, \ldots\})

Boolean Expressons B ::= b \mid A \circledast A \quad (\circledast \in \{+, -, \times, \ldots\})

Commands C ::= \mathbf{skip} \mid \ell := A \mid C; C \mid \mathbf{if} B \mathbf{then} C \mathbf{else} C \mid \mathbf{while} B \mathbf{do} C

Integers n \in \mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}

Booleans b \in \mathbb{B} = \{\mathbf{true}, \mathbf{false}\}

Locations \ell \in \mathbb{L} = \{\ell_0, \ell_1, \ell_2, \ldots\}

\ell \in \mathbb{L} = \{\ell_0, \ell_1, \ell_2, \ldots\}
```

References

- Andrew Pitts' Lecture Notes on Semantics of Programming Languages: http://www.inf.ed.ac.uk/teaching/courses/lsi/sempl.pdf. We'll be following the Pitts' notes for a while and use a lot of his notation.
- The reading list for Matthew Hennessey's Introduction to the Semantics of programming languages course: https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/reading.php has lots of good references.
- Also, Hennessey's notes for the above course https://www.scss.tcd.ie/Matthew.Hennessy/splexternal2015/ LectureNotes/Notes14%20copy.pdf are very good.

Jim Royer | CIS 352 | February 18, 2016

2 / 37

Operational Semantics, Part II | LC basics

An Example LC Program

Pitts' version

Computes factorial($!\ell_0$)

```
\begin{array}{l} \ell_1 := 1; \\ \ell_2 := !\ell_0; \\ \text{while } (!\ell_2 \!\!>\!\! 0) \text{ do } \\ \ell_1 := !\ell_1 \!\!*\! !\ell_2; \\ \ell_2 := !\ell_2 \!\!-\!\! 1 \end{array}
```

- Pitts' $\ell_i \equiv \text{our } xi$
- Pitts' $!\ell_i \equiv \text{our val}(xi)$
- Pitts uses indenting for command bracketing.

Our version

Computes factorial(val(x0))

```
{ x1 := 1;
  x2 := val(x0);
  while (val(x2)>0) do {
    x1 := val(x1)*val(x2);
    x2 := val(x2)-1
  }
}
```

- We use { ...} for command bracketing.
- His version takes up less space.Our version is easier to parse.

Jim Royer | CIS 352 | February 18, 2016

3 / 37

Jim Royer | CIS 352 | February 18, 2016

Big-step (evaluation) semantics for LC

States

A *state* is a finite mapping of locations to values.

E.g.: $[\ell_0 \mapsto 11, \ell_1 \mapsto 29, \ell_{17} \mapsto 5]$

Configurations

A *configuration* is a pair $\langle P, s \rangle$ where P is a phrase \mathcal{E} s is a state.

E.g.: $\langle !\ell_{17} * 9 + !\hat{\ell}_1, [\ell_0 \mapsto 11, \ell_1 \mapsto 29, \ell_{17} \mapsto 5] \rangle$ *E.g.*: $\langle \ell_0 := 8, [\ell_0 \mapsto 11, \ell_1 \mapsto 29, \ell_{17} \mapsto 5] \rangle$

Terminal configurations

The *terminal* configurations are those of the form: $\langle n, s \rangle$, $\langle \text{true}, s \rangle$, $\langle \text{false}, s \rangle$, and $\langle \text{skip}, s \rangle$.

Jim Royer | CIS 352 | February 18, 2016

5 / 3

Operational Semantics, Part II | Big-step (evaluation) semantics

∜: The LC evaluation relation

The LC evaluation relation

$$\downarrow \subseteq (Phrases \times States) \times (Phrases \times States)$$

is defined inductively as follows ...

Note:

 $\langle P, s \rangle \Downarrow \langle P', s' \rangle \approx \text{the final result of evaluating } \langle P, s \rangle \text{ is } \langle P', s' \rangle.$

Jim Royer | CIS 352 | February 18, 2016

(/ 27

Operational Semantics, Part II | Big-step (evaluation) semantics

Definition of \downarrow , 1

↓-Con:

$$\overline{\langle c,s \rangle \Downarrow \langle c,s \rangle}$$

 $(c \in \mathbb{Z} \cup \mathbb{B})$

$$\stackrel{\Downarrow}{-} \circledast: \frac{\langle A_1, s \rangle \Downarrow \langle n_1, s' \rangle \quad \langle A_2, s' \rangle \Downarrow \langle n_2, s'' \rangle}{\langle A_1 \circledast A_2, s \rangle \Downarrow \langle c, s'' \rangle} \quad (c = n_1 \circledast n_2)$$

Above * can be:

- \blacksquare +, -, or * for the arithmetic case, *or*
- ==, /=, <, >, <=, or >= for the boolean (comparison case).

Operational Semantics, Part II | Big-step (evaluation) semantics

Definition of \downarrow , 2

$$\Downarrow$$
-Skip: $\overline{\langle \mathbf{skip}, s \rangle \Downarrow \langle \mathbf{skip}, s \rangle}$

$$\downarrow$$
-Loc:
$$\frac{\langle !\ell,s \rangle \downarrow \langle s(\ell),s \rangle}{\langle !\ell,s \rangle \downarrow \langle s(\ell),s \rangle} \qquad (\ell \in dom(s))$$

$$\frac{\langle A, s \rangle \Downarrow \langle n, s' \rangle}{\langle \ell := A, s \rangle \Downarrow \langle \mathbf{skip}, s' [\ell \mapsto n] \rangle}$$

Notation: $s[\ell \mapsto k]$ is a modification of state s such that:

- $\bullet (s[\ell \mapsto k])(\ell) = k.$
- $[s[\ell \to k])(\ell') = s(\ell'), \text{ for } \ell' \neq \ell.$

E.g.: For $s = [\ell_0 \mapsto 12, \ell_1 \mapsto 3, \ \ell_2 \mapsto 9],$ $s[\ell_1 \mapsto 20] = [\ell_0 \mapsto 12, \ell_1 \mapsto 20, \ell_2 \mapsto 9].$ Stuck

 $\langle P, s \rangle$ is *stuck* when there is no rule that applies to it. *E.g.*: $\langle !\ell_1, \{ \ell_0 \rightarrow 11 \} \rangle$.

Divergent

 $\langle P, s \rangle$ is *divergent* when it is not stuck, but there is no finite derivation of $\langle P, s \rangle \Downarrow$ *something*.

E.g.: \langle **while** true **do skip**, $s \rangle$.

Terminating

 $\langle P, s \rangle$ is *terminating* when it is neither stuck nor divergent.

Jim Royer | CIS 352 | February 18, 2016

9 / 37

, ...

Operational Semantics, Part II | Big-step (evaluation) semantics

Definition of \downarrow , 4

V-While₁:

 $\frac{\langle B, s \rangle \Downarrow \langle \operatorname{true}, s' \rangle \quad \langle C, s' \rangle \Downarrow \langle \operatorname{skip}, s'' \rangle \quad \langle \operatorname{while} B \operatorname{do} C, s'' \rangle \Downarrow \langle \operatorname{skip}, s''' \rangle}{\langle \operatorname{while} B \operatorname{do} C, s \rangle \Downarrow \langle \operatorname{skip}, s''' \rangle}$

 \forall -While₂: $\frac{\langle B,s \rangle \Downarrow \langle \text{ false}, s' \rangle}{\langle \text{ while } B \text{ do } C,s \rangle \Downarrow \langle \text{ skip}, s' \rangle}$

Operational Semantics, Part II | Big-step (evaluation) semantics

Definition of \downarrow , 3

$$\psi
-Seq: \frac{\langle C_1, s \rangle \psi \langle \mathbf{skip}, s' \rangle \quad \langle C_2, s' \rangle \psi \langle \mathbf{skip}, s'' \rangle}{\langle C_1; C_2, s \rangle \psi \langle \mathbf{skip}, s'' \rangle}$$

$$\frac{\langle B, s \rangle \Downarrow \langle \operatorname{true}, s' \rangle \quad \langle C_1, s' \rangle \Downarrow \langle \operatorname{skip}, s'' \rangle}{\langle \operatorname{if} B \operatorname{then} C_1 \operatorname{else} C_2, s \rangle \Downarrow \langle \operatorname{skip}, s'' \rangle}$$

$$\frac{\langle B, s \rangle \Downarrow \langle \text{ false}, s' \rangle \quad \langle C_2, s' \rangle \Downarrow \langle \text{ skip}, s'' \rangle}{\langle \text{ if } B \text{ then } C_1 \text{ else } C_2, s \rangle \Downarrow \langle \text{ skip}, s'' \rangle}$$

Jim Royer | CIS 352 | February 18, 2016

10 / 2

Operational Semantics, Part II | Big-step (evaluation) semantics

An Example from Pitts (page 30)

Let:

$$C =_{\textit{def}} \text{ while } !\ell > 0 \text{ do } \ell := 0 \qquad \quad s =_{\textit{def}} \ \left\{ \ \ell \mapsto 1 \right\}$$

Then:

$$\frac{\langle !\ell,s\rangle \psi \langle 1,s\rangle}{\langle !\ell>0,s\rangle \psi \langle \text{true},s\rangle} \stackrel{(\psi_{\text{con}})}{\langle (\psi_{\text{op}})} \stackrel{(\psi_{\text{con}})}{\langle (\psi_{\text{op}})} \stackrel{(\psi_{\text{con}})}{\langle (\ell=0,s) \psi \langle \text{skip},s'\rangle} \stackrel{(\psi_{\text{con}})}{\langle (\psi_{\text{op}})} \stackrel{(\ell\ell>0,s') \psi \langle \text{false},s'\rangle}{\langle (\ell,s') \psi \langle \text{skip},s'\rangle} \stackrel{(\psi_{\text{con}})}{\langle (\psi_{\text{op}})} \stackrel{(\psi_{\text{con}})}{\langle (\psi_{\text{op}}) \psi \langle \text{skip},s'\rangle} \stackrel{(\psi_{\text{op}})}{\langle (\psi_{\text{op}}) \psi \langle \text{skip},s'\rangle} \stackrel{(\psi_{\text{op}})}{\langle (\psi_{\text{op}}) \psi \langle \text{skip},s'\rangle} \stackrel{(\psi_{\text{op}})}{\langle (\psi_{\text{op}}) \psi \langle (\psi_{\text{op}}$$

Big-step semantics as an implementation guide

See:

- LC.hs
- LCbs.hs

im Royer | CIS 352 | February 18, 2016

Let:

Exercise

 $C =_{def}$ while $B \operatorname{do} C'$

 $B =_{def} !\ell > 0$

 $C' =_{def} \ell' : =!\ell * !\ell'; \ \ell : =!\ell - 1$

 $s =_{def} \{ \ell \mapsto 3, \ell' \mapsto 1 \}$

Show (as much as you can stand of):

$$\langle C, s \rangle \Downarrow \langle \mathbf{skip}, s[\ell \mapsto 0, \ell' \mapsto 6] \rangle.$$

Jim Royer | CIS 352 | February 18, 2016

Operational Semantics, Part II | Big-step (evaluation) semantics

Do these rules make sense?, 1

;Theorem?

 $(\forall \langle A, s \rangle)(\exists !c)[\langle A, s \rangle \Downarrow \langle c, s \rangle].$

 $(\exists! \equiv there\ exists\ a\ unique)$

Counterexample: $\langle !\ell_1, \{ \ell_0 \mapsto 11 \} \rangle$

(since $\ell_1 \notin dom(s)$).

Definition

 $\langle P, s \rangle$ is *sensible* when every location that occurs in *P* is in *dom*(*s*).

¡Theorem!

- (a) Suppose $\langle A, s \rangle$ is sensible. Then $(\exists!c)[\langle A, s \rangle \Downarrow \langle c, s \rangle]$.
- (b) Suppose $\langle B, s \rangle$ is sensible. Then $(\exists!b)[\langle B, s \rangle \Downarrow \langle b, s \rangle]$.

[How to prove?]

Operational Semantics, Part II | Big-step (evaluation) semantics

Do these rules make sense?, 2

Theorem?

Suppose $\langle C, s \rangle$ is sensible. Then $(\exists! s') [\langle C, s \rangle \Downarrow \langle \mathbf{skip}, s' \rangle]$.

Counterexample: C = while true do skip.

:Theorem!

Suppose $\langle C, s \rangle$ *is sensible. Then:*

- (a) $\langle C, s \rangle$ is not stuck.
- (b) There is at most one s' such that $\langle C, s \rangle \Downarrow \langle \mathbf{skip}, s' \rangle$.

[How to prove?]

A CEK machine for LC

Abstract machines for interpreting LC: (Note: Abstract machine \neq VM.)

- In §1.2 Pitts details an SMC (= Stack, Memory, Control) abstract machine for interpreting LC. (*Plotkin*)
- Here we sketch a CEK (= Context, Environment, Kontinuation) for interpreting LC. (*Felleisen and Friedman*)

CEK configurations: (c, s, ks)

c = the current phrase being evaluated

s =the state

ks = a "to-do" stack of things needed to complete pending evaluations. (*Examples forthcoming*)

See LCCEK.hs.

Jim Royer | CIS 352 | February 18, 2016

17 / 3

A transition system consists of

Operational Semantics, Part II | An abstract machine for LO

- a set (of states) *S* and
- a (transition) relation $\rightarrow \subseteq S \times S$.

Digression: Transition Systems

The "states" can be configurations, game-board positions, etc.

Example

Definition

- Machines/computations
- Games/plays
- Protocols/runs
- **.**..

Jim Royer | CIS 352 | February 18, 2016

8 / 37

Operational Semantics, Part II An abstract machine for LC

CEK Transitions

CEK configurations: (c, s, ks)

c = the current phrase being evaluated

s =the state

ks = a "to-do" stack of things needed to complete pending evaluations. (*Examples forthcoming*)

CEK transitions

$$(c, s, ks) \rightarrow (c', s', ks')$$
 means:

according to the rules (forthcoming) configuration (c, s, ks) can move to configuration (c', s', ks') in one step.

Note: The funny **s** 's are to make configurations easier to visually parse.

Operational Semantics, Part II | An abstract machine for LC

Integer expressions

```
(!\ell, \mathbf{s}, ks) \leadsto (s(\ell), \mathbf{s}, ks) \qquad (\ell \in dom(s))
(e_1 \circledast e_2, \mathbf{s}, ks) \leadsto (e_1, \mathbf{s}, (DoIOp1 \ e_2 \circledast) : ks)
(n_1, \mathbf{s}, (DoIOp1 \ e_2 \circledast) : ks) \leadsto (e_2, \mathbf{s}, (DoIOp2 \circledast n_1) : ks)
(n_2, \mathbf{s}, (DoIOp2 \circledast n_1) : ks) \leadsto (n_1, \mathbf{s}, ks) \qquad (n = n_1 \circledast n_2)
```

The big-step rules for integer expressions

$$\downarrow \text{-Loc: } \frac{}{\langle !\ell,s \rangle \Downarrow \langle s(\ell),s \rangle} \ (\ell \in dom(s))$$

$$\downarrow \text{-} \circledast: \frac{\langle A_1,s \rangle \Downarrow \langle n_1,s' \rangle}{\langle A_1 \circledast A_2,s \rangle \Downarrow \langle c,s'' \rangle} \ (c = n_1 \circledast n_2)$$

The set command

Evaluate

$$\langle ((!\ell_1+2)*!\ell_2, [\ell_1 \mapsto 1, \ell_2 \mapsto 5] \rangle$$

by both big-step rule and the CEK.

Notice how the CEK computation amounts to a stack-based traversal of the big-step derivation.

Jim Royer | CIS 352 | February 18, 2016

21 / 37

.

 $(\ell := a, \underline{s}, ks) \rightsquigarrow (a, \underline{s}, (DoSet \ \ell) : ks)$ $(n, \underline{s}, (DoSet \ \ell) : ks) \rightsquigarrow (\mathbf{skip}, \underline{s[\ell \mapsto n]}, ks)$

The big-step rules for the set command

$$\downarrow \text{-Set: } \frac{\langle A, s \rangle \Downarrow \langle n, s' \rangle}{\langle \ell := A, s \rangle \Downarrow \langle \mathbf{skip}, s' [\ell \mapsto n] \rangle}$$

Jim Royer | CIS 352 | February 18, 2016

22 / 27

Operational Semantics, Part II | An abstract machine for LC

Sequencing

$$(C_1; C_2, s, ks) \rightsquigarrow (C_1, s, (DoSeq C_2) : ks)$$

 $(\mathbf{skip}, s, (DoSeq C_2) : ks) \rightsquigarrow (C_2, s, ks)$

The big-step rules for sequencing

$$\Downarrow -Seq: \frac{\langle C_1, s \rangle \Downarrow \langle \mathbf{skip}, s' \rangle \quad \langle C_2, s' \rangle \Downarrow \langle \mathbf{skip}, s'' \rangle}{\langle C_1; C_2, s \rangle \Downarrow \langle \mathbf{skip}, s'' \rangle}$$

Operational Semantics, Part II | An abstract machine for LC

If-then-else

(if be then C_1 else C_2 , s, ks) \rightsquigarrow (be, s, (DoIf C_1 C_2) : ks) (true, s, (DoIf C_1 C_2) : ks) \rightsquigarrow (C_1 , s, ks) (false, s, (DoIf C_1 C_2) : ks) \rightsquigarrow (C_2 , s, ks)

The big-step rules for if-then-else

$$\psi\text{-}If_1: \frac{\langle B,s \rangle \psi \langle \text{true},s' \rangle \quad \langle C_1,s' \rangle \psi \langle \text{skip},s'' \rangle}{\langle \text{if } B \text{ then } C_1 \text{ else } C_2,s \rangle \psi \langle \text{skip},s'' \rangle}$$

$$\psi\text{-}If_1: \frac{\langle B,s \rangle \psi \langle \text{false},s' \rangle \langle C_2,s' \rangle \psi \langle \text{skip},s'' \rangle}{\langle \text{if } B \text{ then } C_1 \text{ else } C_2,s \rangle \psi \langle \text{skip},s'' \rangle}$$

Operational Semantics, Part II | An abstract machine for LC

(while be do C), s, ks)

(if be then { C; while be do C } else skip, s, ks)

The big-step rules for if-then-else

 \Downarrow -While₁:

 $\langle B, s \rangle \downarrow \langle \text{true}, s' \rangle \quad \langle C, s' \rangle \downarrow \langle \text{skip}, s'' \rangle \quad \langle \text{while } B \text{ do } C, s'' \rangle \downarrow \langle \text{skip}, s''' \rangle$ \langle while B do $C, s \rangle \downarrow \langle$ skip, $s''' \rangle$

 \downarrow -While₂:

 $\frac{\langle B, s \rangle \Downarrow \langle \text{ false}, s' \rangle}{\langle \text{ while } B \text{ do } C, s \rangle \Downarrow \langle \text{ skip}, s' \rangle}$

im Royer | CIS 352 | February 18, <u>2</u>016

Operational Semantics, Part II | An abstract machine for LC

Proof of equivalence with the big-step semantics

Theorem

For all $\langle P, s \rangle$ and all terminal $\langle V, s' \rangle$:

 $\langle P, s \rangle \Downarrow \langle V, s' \rangle \iff \langle P, s, [Halt] \rangle \rightsquigarrow {}^* \langle V, s', [Halt] \rangle$

Proof of \Longrightarrow .

Roughly, the CEK rules run a left-to-right traversal of the evaluation tree.

Proof of \Leftarrow .

Key idea: Show that if $\langle P, s, ks \rangle \sim {}^*\langle V, s', ks \rangle$,

then you can reconstruct the evaluation tree for $\langle P, s \rangle \Downarrow \langle V, s \rangle$.

Exercise

Let:

$$C =_{def}$$
 while $!\ell > 0$ do $\ell := 0$

$$s =_{def} \{\ell \mapsto 1\}$$

Trace the CEK evaluation of $\langle C, s \rangle$ and compare to:

$$\frac{\langle !\ell,s \rangle \Downarrow \langle 1,s \rangle }{\langle !\ell \rangle 0,s \rangle \Downarrow \langle \textbf{true},s \rangle } \stackrel{(\Downarrow_{\text{con}})}{(\Downarrow_{\text{op}})} \stackrel{(\Downarrow_{\text{con}})}{\langle 0,s \rangle \Downarrow \langle \textbf{o},s \rangle } \stackrel{(\Downarrow_{\text{con}})}{\langle 0,s \rangle \Downarrow \langle \textbf{o},s \rangle } \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}})} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}})} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}})} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}})} \stackrel{(\Downarrow_{\text{con}})}{\langle (\vdash_{\text{c}}),s \rangle \Downarrow \langle \textbf{skip},s' \rangle} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}}),s \rangle} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}}),s \rangle \Downarrow \langle \textbf{skip},s' \rangle} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}}),s \rangle \Downarrow \langle \textbf{skip},s' \rangle} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}}),s \rangle \Downarrow \langle \textbf{skip},s' \rangle} \stackrel{(\Downarrow_{\text{con}})}{\langle (\Downarrow_{\text{op}}),s \rangle} \stackrel{(\Downarrow_{\text{op}})}{\langle (\Downarrow_{\text$$

Jim Royer | CIS 352 | February 18, 2016

Operational Semantics, Part II | Small-step (transition) semantics

Small-step (transition) semantics of LC

The LC transition relation

 \rightarrow \subseteq (Phrases \times States) \times (Phrases \times States)

is defined inductively as follows ...

Note:

 $\langle P, s \rangle \rightarrow \langle P', s' \rangle \approx \langle P, s \rangle$ "rewrites" to $\langle P', s' \rangle$ in one step.

Definition of \rightarrow , 1

$$\rightarrow -op1: \qquad \frac{\langle A_1, s \rangle \rightarrow \langle A'_1, s' \rangle}{\langle A_1 \circledast A_2, s \rangle \rightarrow \langle A'_1 \circledast A_2, s' \rangle}$$

$$\rightarrow$$
-op2: $\langle A_2, s \rangle \rightarrow \langle A'_2, s' \rangle \over \langle n_1 \circledast A_2, s \rangle \rightarrow \langle n_1 \circledast A'_2, s' \rangle$

$$\rightarrow$$
-op3: $(c = n_1 \circledast n_2)$

Jim Royer | CIS 352 | February 18, 2016

29 / 37

Operational Semantics, Part II —Small-step (transition) semantics

Exercise: Justify

Answer to 1.

Answer to 2.

Exercise: Justify

1.
$$(((3*2)+(8-3))*(5-2)) \rightarrow ((6+(8-3))*(5-2))$$

2.
$$((6+(8-3))*(5-2)) \rightarrow ((6+5)*(5-2))$$

3.
$$((6+5)*(5-2)) \rightarrow (11*(5-2))$$

4.
$$(11*(5-2)) \rightarrow (11*3)$$

$$(11*3) \rightarrow 33$$

The above parts justifies each step of the complete transition sequence:

$$\begin{array}{cccc} (((3*2)+(8-3))*(5-2)) & \to & ((6+(8-3))*(5-2)) \\ \to & ((6+5)*(5-2)) & \to & (11*(5-2)) & \to & (11*3) & \to & 33 \end{array}$$

Jim Royer | CIS 352 | February 18, 2016

30 / 37

Operational Semantics, Part II Small-step (transition) semantics

└─Exercise: Justify

 $((6+5)*(5-2)) \rightarrow (11*(5-2))$ $(11*(5-2)) \rightarrow (11*3)$ $(11*3) \rightarrow 33$ $(11*3) \rightarrow 33$ we above party justifies each shop of the complete transitions sequence: $((1/5,7)+(5-7))(5/2,7) \rightarrow (4/5,7)+(5/5,7)$

Answer to 3.

Answer to 4.

→-op3:
$$\frac{(5-2)}{(11*(5-2))}$$
 → $\frac{(5-2)}{(11*3)}$

Answer to 5.

$$\rightarrow$$
-op3: $(11*3) \rightarrow 33$

Definition of \rightarrow , 2

$$\rightarrow$$
-loc: $(\ell \in dom(s))$

$$\rightarrow$$
-set1: $\langle A, s \rangle \rightarrow \langle A', s' \rangle \over \langle \ell := A, s \rangle \rightarrow \langle \ell := A', s' \rangle$

$$\rightarrow$$
-set2: $\langle \ell := n, s \rangle \rightarrow \langle \mathbf{skip}, s[\ell \mapsto n] \rangle$

Jim Royer | CIS 352 | February 18, 2016

31 / 37

.

Definition of \rightarrow , 3

$$\rightarrow -seq1: \qquad \frac{\langle C_1, s \rangle \rightarrow \langle C_1', s' \rangle}{\langle C_1; C_2, s \rangle \rightarrow \langle C_1'; C_2, s' \rangle}$$

$$\rightarrow$$
-seq2: $\langle \mathbf{skip}; C, s \rangle \rightarrow \langle C, s \rangle$

 \rightarrow -while: $\overline{\langle \text{ while } B \text{ do } C, s \rangle} \rightarrow \langle \text{ if } B \text{ then } \{C; \text{ while } B \text{ do } C \} \text{ else skip, } s \rangle$

Jim Royer | CIS 352 | February 18, 2016

32 / 37

Operational Semantics, Part II | Small-step (transition) semantics

Definition of \rightarrow , 4

$$\rightarrow$$
-if1: $\langle B, s \rangle \rightarrow \langle B', s' \rangle$ $\langle \text{if } B \text{ then } C_1 \text{ else } C_2, s \rangle \rightarrow \langle \text{if } B' \text{ then } C_1 \text{ else } C_2, s' \rangle$

$$\rightarrow$$
-if2: $\overline{\langle \text{ if true then } C_1 \text{ else } C_2, s \rangle \rightarrow \langle C_1, s \rangle}$

$$\rightarrow$$
-if3: $\overline{\langle \text{ if false then } C_1 \text{ else } C_2, s \rangle \rightarrow \langle C_2, s \rangle}$

Operational Semantics, Part II | Small-step (transition) semantics

A sample transition, 1

Let:

$$\begin{array}{lll} C & =_{def} & \textbf{while } B \textbf{ do } C' & B & =_{def} & !\ell > 0 \\ C' & =_{def} & \ell' : = !\ell * !\ell'; & \ell : = !\ell - 1 & s & =_{def} & \{ \ \ell \mapsto 3, \ \ell' \mapsto 1 \ \} \end{array}$$

The start of the full transition

$$\langle C, s \rangle \rightarrow \langle \text{ if } B \text{ then } \{C'; C\} \text{ else skip, } s \rangle$$

$$\rightarrow \langle \text{ if } 3 > 0 \text{ then } \{C'; C\} \text{ else skip, } s \rangle$$

$$\rightarrow \langle \text{ if true then } \{C'; C\} \text{ else skip, } s \rangle$$

$$\rightarrow \langle C'; C, s \rangle$$

$$\rightarrow$$
 * \langle skip, $s[\ell \mapsto 0, \ell' \mapsto 6] \rangle$.

Note: Each step of a transition must be justified by a derivation.

A sample transition, 2

Let:

$$\begin{array}{lll} C & =_{\textit{def}} & \textit{while } B \; \textit{do} \; C' & B & =_{\textit{def}} \; !\ell > 0 \\ C' & =_{\textit{def}} \; \; \ell' : = !\ell * !\ell'; \; \; \ell : = !\ell - 1 & s \; =_{\textit{def}} \; \; \left\{ \; \ell \mapsto 3, \; \ell' \mapsto 1 \; \right\} \\ \end{array}$$

Note: Each step of a transition must be justified by a derivation.

Exercise: Justify

- 1 $\langle C, s \rangle \rightarrow \langle \text{ if } B \text{ then } \{C'; C\} \text{ else skip, } s \rangle$
- 2 \langle if B then $\{C'; C\}$ else skip, $s \rangle \rightarrow \langle$ if 3 > 0 then $\{C'; C\}$ else skip, $s \rangle$
- 3 \langle if 3 > 0 then $\{C'; C\}$ else skip, $s \rangle$ $\rightarrow \langle$ if true then $\{C'; C\}$ else skip, $s \rangle$
- **4** \langle if true then $\{C'; C\}$ else skip, $s \rangle \rightarrow \langle C'; C, s \rangle$

Jim Royer | CIS 352 | February 18, 2016

35 / 37

Operational Semantics, Part II —Small-step (transition) semantics

☐A sample transition, 2

Answer to 3.

$$\rightarrow -if1: \frac{\rightarrow -op3: \frac{}{\langle 3 > 0, s \rangle \rightarrow \langle \text{ true}, s \rangle} \text{ (since } 3 > 0 \text{ is true)}}{\langle \text{ if } 3 > 0 \text{ then } \{C'; C\} \text{ else skip, } s \rangle \rightarrow \langle \text{ if true then } \{C'; C\} \text{ else skip, } s \rangle}$$

Answer to 4.

$$\rightarrow$$
-if2: $\overline{\langle \text{ if true then } \{C'; C\} \text{ else skip, } s \rangle \rightarrow \langle \{C'; C\}, s \rangle}$

Operational Semantics, Part II

—Small-step (transition) semantics

└A sample transition, 2

Let: $C =_{ab} \text{ while B do } C' \qquad B =_{ab} \text{ M} \times 0$ $C' =_{ab} (f - 2d + 2f \cdot f + 1d - 1 + a - a \cdot f \cdot f + 3, f' + 1)$ Note Each step of a transition must be justified by a derivation. Exercise justify $B (C_s) = (\text{if B them } (C, C|\text{obs. akip.}s)$ $B (B + 2f \cdot f + 2f \cdot f$

Answer to 1.

2016-02-18

$$\rightarrow$$
-while: $\overline{\langle C, s \rangle \rightarrow \langle \text{ if } B \text{ then } \{C'; C\} \text{ else skip, } s \rangle}$

Answer to 2. Recall $B =_{def} !\ell > 0$.

Operational Semantics, Part II | Small-step (transition) semantics

Some properties of \rightarrow

Theorem (Determinacy)

If $\langle P, s \rangle$ *is neither stuck nor terminal, then* $(\exists! \langle P', s' \rangle) [\langle P, s \rangle \rightarrow \langle P', s' \rangle].$

Theorem (Subject reduction)

If $\langle P, s \rangle \rightarrow \langle P', s' \rangle$, then P and P' are the same type (i.e., command, integer-expression, boolean-expression).

Theorem (Expressions have no side-effects)

If P is an integer or boolean expression and $\langle P, s \rangle \rightarrow \langle P', s' \rangle$ *, then* s = s'.

[How to prove?]

Equivalence of the big-step & small-step semantics

Theorem

For all $\langle P, s \rangle$ and all terminal $\langle V, s' \rangle$:

$$\langle P, s \rangle \Downarrow \langle V, s' \rangle \iff \langle P, s \rangle \rightarrow^* \langle V, s' \rangle$$

Proof.

One needs to show:

(a)
$$\langle P, s \rangle \Downarrow \langle V, s' \rangle \implies \langle P, s \rangle \rightarrow^* \langle V, s' \rangle$$
.

(b)
$$\langle P, s \rangle \rightarrow \langle P', s' \rangle \& \langle P', s' \rangle \Downarrow \langle V, s'' \rangle \implies \langle P, s \rangle \Downarrow \langle V, s'' \rangle.$$

(c)
$$\langle P, s \rangle \to {}^* \langle V, s' \rangle \implies \langle P, s \rangle \Downarrow \langle V, s' \rangle$$
.

Jim Royer | CIS 352 | February 18, 2016

37 / 3