CLAIMS

3 4

What is claimed is:

5 6

A compound having the structure: 1.

7

$$R_3$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8
 R_9
 R_9

8

15

16

17

18

19

20

21

22

23

24

25

26

27

wherein

9 R_1 is hydrogen, halogen, cyano, $-OR_A$, $-N(R_A)_2$, $-SR_A$, $-O(C=O)R_A$, $-N(R_A)(C=O)(R_A)$, 10 $-C(O)R_A$, $-C(O)OR_A$, $-CON(R_A)_2$, $-OCO_2R_A$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, 11 alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of RA is independently hydrogen, a 12 protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl 13 moiety; 14

 R_2 is hydrogen, halogen, cyano, -OR_B, -N(R_B)₂, -SR_B, -O(C=O)R_B, -N(R_B)(C=O)(R_B), $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, cyano, -OR_C, -N(R_C)₂, -SR_C, -O(C=O)R_C, -N(R_C)(C=O)(R_C), -C(O)R_C, -C(O)OR_C, -CON(R_C)₂, -OCO₂R_C, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_C is independently hydrogen, a protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, -C(O) R_D , -C(O) OR_D , -CON(R_D)₂, -OCO₂ R_D , or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, a

protecting group or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl 1 moiety; 2 Z is O, S, or NR_E, wherein R_E is hydrogen, a protecting group, an aliphatic, 3 heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or OR_F, wherein R_F is 4 hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 5 alkylheteroaryl moiety; 6 X is O, S or NR_G, wherein R_G is hydrogen or lower alkyl; 7 A and B together represent R_5 , R_6 , R_5 , R_6 , R_6 , R_6 8 -CHR5-CHR6-, -CR5=CR6-, wherein R5 and R6 are each independently hydrogen, halogen, 9 $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 10 $-CON(R_J)_2$, $-OCO_2R_J$, $-OS(=O)OR_J$ or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 11 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 12 group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 13 wherein R_7 is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -14 $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 15 heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 16 of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 17 heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR5-18 CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 19 heteroaliphatic, aryl or heteroaryl ring; 20

D and E together represent R_8 R_9 , R_8 R_8 R_8 R_8 R_9 21

-CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen, halogen, 22 $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(S=O)R_J, -O$ 23 -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 24 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 25 group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 26 wherein R_{10} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -27 $O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, \text{ or an aliphatic, } \\$ 28 29

heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of

- R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 1
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR8-2
- CHR₉-, R₉ and R₉ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 3
- heteroaliphatic, aryl or heteroaryl ring; 4

- -CHR₁₁-CHR₁₂-, -CR₁₁=CR₁₂-, wherein R₁₁ and R₁₂ are each independently hydrogen, halogen, 6
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 7
- -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 8
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 9
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 10
- wherein R₁₃ is hydrogen, a protecting group, -OR_K, -SR_K, -C(O)OR_K, -C(O)NR_K, -S(O)₂R_K, -11
- $O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, \text{ or an aliphatic, } \\$ 12
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 13
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 14
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR11-15
- CHR₁₂-, R₁₁ and R₁₂ taken together represent a substituted or unsubstituted 3-7 membered 16
- aliphatic, heteroaliphatic, aryl or heteroaryl ring; 17

- -CHR₁₄-CHR₁₅-, -CR₁₄=CR₁₅-, wherein R₁₄ and R₁₅ are each independently hydrogen, halogen, 19
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 20
- -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 21
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 22
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 23
- wherein R_{16} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -24
- $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 25
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 26
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 27
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR14-28

CHR₁₅-, R₁₄ and R₁₅ taken together represent a substituted or unsubstituted 3-7 membered 1 aliphatic, heteroaliphatic, aryl or heteroaryl ring; 2

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted; and pharmaceutically acceptable derivatives thereof.

7 8

3

4

5

6

The compound of claim 1, wherein Z and X are each O, and the compound has the 2. structure:

10

9

11 12

13

The compound of claim 1, wherein Z is O and X is NRG, and the compound has the 3.

structure: 14

$$R_3$$
 R_4
 R_6
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

15

16 The compound of claim 3, wherein R_G is H. 4. 17

18

The compound of claim 1, wherein G and J together represent -CH2-CH2- and the 5. 19 compound has the structure: 20

$$R_3$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_5
 R_6
 R_7
 R_7

3 6. The compound of claim 1, wherein A-B is -CH=CH- and the compound has the

4 structure:

$$R_3$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_5
 R_7
 R_7

5

7 7. The compound of claim 1, wherein K and L together represent -CH=CH- and the

8 compound has the structure:

$$R_3$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_7
 R_7

9 10

11 8. The compound of claim 1, wherein D and E together represent -CHOH=CHOH- and the

12 compound has the structure:

The compound of claim 1, wherein A, B, D, E, G, J, K, and L are as represented in the 1 9. 2

structure: 3

$$R_3$$
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2

4 5

> A compound of structure: 6 10.

7

8 A pharmaceutical composition comprising a compound of claim 1 and a 9 11.

pharmaceutically acceptable carrier. 10

- The pharmaceutical composition of claim 11, further comprising one or more additional 11 12. 12
- therapeutic agents. 13

14

- The pharmaceutical composition of claim 12, wherein the one or more additional 15 13.
- therapeutic agents comprises an anticancer agent. 16

- A method for treating cancer comprising: 14. 18
- administering a therapeutically effective amount of a compound of claim 1 to a subject in 19
- need thereof. 20

- The method of claim 14, wherein the therapeutically effective amount is in the range of 2 15.
- 0.001 mg/kg to 50 mg/kg of body weight. 3

- The method of claim 14, wherein the therapeutically effective amount is in the range of 16. 5
- 0.01 mg/kg to about 25 mg/kg of body weight. 6

7

- The method of claim 14, said method further comprising administering one or more 17. 8
- additional therapeutic agents in combination with the compound. 9

- The method of claim 17, wherein the one or more additional therapeutic agents comprises 10 11 18.
- an anticancer agent. 12

- A method for inhibiting the growth of or killing cancer cells, said method comprising: 13 19.
- 14 contacting the cancer cells with an amount of a compound of claim 1 effective to inhibit 15
- the growth of or kill cancer cells. 16

17

A method for the synthesis of a compound having the structure (I): 20. 18

19

$$R_4$$
 R_3
 R_2
 R_4
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8

(I)

- wherein 22 R₁ is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 23
- alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, a 24
- protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl 25
- 26
- moiety; R_2 is hydrogen, halogen, cyano, -OR_B, -N(R_B)₂, -SR_B, -O(C=O)R_B, -N(R_B)(C=O)(R_B), 27

1 -C(O)R_B, -C(O)OR_B, -CON(R_B)₂, -OCO₂R_B, or an aliphatic, heteroaliphatic, aryl, heteroaryl,

2 alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, a

protecting group or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl

4 moiety;

3

5

6

7

8

9

10

11

12

13

14

15

16

17

29

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, a protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O, S or NR_E, wherein R_E is hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or OR_F, wherein R_F is hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

X is O, S or NR_G, wherein R_G is hydrogen or lower alkyl;

18 $X \text{ is O, S or NR}_G$, wherein R_G is hydrogen of R_G , R_G ,

20 -CHR₅-CHR₆-, -CR₅=CR₆-, wherein R₅ and R₆ are each independently hydrogen, halogen,

21 cyano, $-OR_J$, $-N(R_J)_2$, $-SR_J$, $-O(C=O)R_J$, $-O(S=O)R_J$, $-N(R_J)(C=O)(R_J)$, $-C(=O)R_J$, $-C(=O)OR_J$, $-C(=O)OR_J$, $-C(=O)OR_J$, $-O(S=O)R_J$, $-O(S=O)R_$

22 -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or

23 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting

group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and

group, or an aliphatic, heteroaliphatic, aryl, heteroaly, and the surface of the group, or an aliphatic, heteroaliphatic, aryl, heteroaly, and the surface of the group, or an aliphatic, heteroaliphatic, aryl, heteroaly, and the surface of the su

wherein R_7 is hydrogen, a protecting group, $-O(R_K)$, $-O(R_K$

heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence

of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl,

heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR5-

1 CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 2 heteroaliphatic, aryl or heteroaryl ring;

D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each independently hydrogen or lower alkyl;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted; wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R₅, R₆, R_J, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, analogues of radicicol and monocillin, geldanamycin, analogues of geldanamycin, and steroids,

said method comprising:

(1) reacting an acidic component having the structure:

wherein R_L, J, and G are as defined above, with a chiral component having the structure:

- wherein A and B are as defined above, in the presence of an esterification reagent to
- 1 generate an intermediate having the structure: 2

5

(2) complexing the intermediate with a cobalt, such as dicobalt hexcarbonyl, to yield a structure:

7

6

8 9

(3) cyclizing the combalt complex in the presence of an olefin metathesis catalyst to 10 generate the compound: 11

$$OOC)_3Co$$
 CO
 $OOC)_3CO$
 OOC
 O

12

- removing the cobalt to form a ynolide; (4)
- 13 reacting the alkyne moiety of the ynolide with a diene under cyclcoaddition (5) 14
- conditions to generate the compound: 15

$$R_4$$
 R_3
 R_2
 R_1
 R_3
 R_4
 R_3
 R_4
 R_3
 R_4
 R_3
 R_4
 R_5
 R_7
 R_8
 R_8
 R_8
 R_9

- (6) optionally further reacting the macrocycle with one or more reagents to diversify and 1 optionally deprotecting the macrocycle to generate a compound having the formula (I). 2
- 3
- The method of claim 20, wherein the step of esterification is performed using 21. 4
- diethylazodicarboxylate (DIAD) in the presence of triphenylphosphine or trifurylphosphine. 5
- 6
- The method of claim 20, wherein the step of olefin metathesis is performed using an 22. 7 olefin metathesis catalyst. 8
- 9
- The method of claim 20, wherein the step of olefin metathesis is performed using a 10 23. ruthenium-based olefin metathesis catalyst. 11
- 12
- The method of claim 23, wherein the step of olefin metathesis is performed using Ru(1,3-24. 13
- dimesityl-4,5-dihydro-imidazol-2-ylidene)(=CHCH=C(CH₃)₂)PCp₃Cl₂. 14
- 15
- A method for synthesis of a macrocycle having the structure (IIa): 25. 16
 - R_0 R_1

(IIa)

- 17 18
- wherein 19
- R_0 is hydrogen, halogen, cyano, -ORz, -N(Rz)2, -SRz, -O(C=O)Rz, -N(Rz)(C=O)(Rz), -20
- $C(O)R_Z$, $-C(O)OR_Z$, $-CON(R_Z)_2$, $-OCO_2R_Z$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, 21
- alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of Rz is independently hydrogen, a 22
- protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl 23
- moiety 24
- R_1 is hydrogen, halogen, cyano, $-OR_A$, $-N(R_A)_2$, $-SR_A$, $-O(C=O)R_A$, $-N(R_A)(C=O)(R_A)$, 25
- -C(O) R_A , -C(O) OR_A , -CON(R_A)₂, -OCO₂ R_A , or an aliphatic, heteroaliphatic, aryl, heteroaryl, 26
- alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of RA is independently hydrogen, a 27

```
protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl
1
2
         moiety;
                        R_2 is hydrogen, halogen, cyano, -OR<sub>B</sub>, -N(R<sub>B</sub>)<sub>2</sub>, -SR<sub>B</sub>, -O(C=O)R<sub>B</sub>, -N(R<sub>B</sub>)(C=O)(R<sub>B</sub>),
3
         -C(O)R_B, -C(O)OR_B, -CON(R_B)_2, -OCO_2R_B, or an aliphatic, heteroaliphatic, aryl, heteroaryl,
4
          alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R<sub>B</sub> is independently hydrogen, a
5
          protecting group or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl
 6
          moiety;
 7
                         R_3 is hydrogen, halogen, cyano, -OR<sub>C</sub>, -N(R<sub>C</sub>)<sub>2</sub>, -SR<sub>C</sub>, -O(C=O)R<sub>C</sub>, -N(R<sub>C</sub>)(C=O)(R<sub>C</sub>),
 8
           -C(O)R<sub>C</sub>, -C(O)OR<sub>C</sub>, -CON(R<sub>C</sub>)<sub>2</sub>, -OCO<sub>2</sub>R<sub>C</sub>, or an aliphatic, heteroaliphatic, aryl, heteroaryl,
 9
           alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R<sub>C</sub> is independently hydrogen, a
10
           protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl
11
            moiety;
12
                          R_4 is hydrogen, halogen, cyano, -OR_D, -N(R_D)_2, -SR_D, -O(C=O)R_D, -N(R_D)(C=O)(R_D),
13
            -C(O)R_D, -C(O)OR_D, -CON(R_D)_2, -OCO_2R_D, or an aliphatic, heteroaliphatic, aryl, heteroaryl,
14
             alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R<sub>D</sub> is independently hydrogen, a
15
             protecting group or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl
 16
             moiety;
 17
                           Z is O, S, or NR<sub>E</sub>, wherein R<sub>E</sub> is hydrogen, a protecting group, an aliphatic,
 18
             heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or OR<sub>F</sub>, wherein R<sub>F</sub> is
 19
             hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or
  20
              alkylheteroaryl moiety;
  21
                             X is O, S or NR<sub>G</sub>, wherein R<sub>G</sub> is hydrogen or lower alkyl;
  22
                                                                                  R_6 R_5 R_6 R_6 R_6 R_6 R_6 R_6
                             A and B together represent
   23
               -CHR5-CHR6-, -CR5=CR6-, wherein R5 and R6 are each independently hydrogen, halogen,
   24
               cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(S=O)R_J, -O
   25
               -CON(R_J)_2, -OCO_2R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or
   26
                alkylheteroaryl moiety, wherein each occurrence of R<sub>J</sub> is independently hydrogen, a protecting
    27
                group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and
    28
                wherein R_7 is hydrogen, a protecting group, -OR_K, -SR_K, -C(O)OR_K, -C(O)NR_K, -S(O)_2R_K, -
    29
                O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, or an aliphatic,
```

- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence
- 2 of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl,
- 3 heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₅-
- 4 CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic,
- 5 heteroaliphatic, aryl or heteroaryl ring;

- 7 -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen, halogen,
- 8 cyano, $-OR_J$, $-N(R_J)_2$, $-SR_J$, $-O(C=O)R_J$, $-O(S=O)R_J$, $-N(R_J)(C=O)(R_J)$, $-C(=O)R_J$, $-C(=O)OR_J$, $-O(S=O)R_J$, $-O(S=O)R_J$
- 9 -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting
- alkylheteroaryl moiety, wherein each occurrence of a six and group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and
- wherein R_{10} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -
- O(C=O) R_K , -N(R_K)(C=O)(R_K), -C(O) R_K , -C(O)O R_K , -CON(R_K)₂, -OCO₂ R_K , or an aliphatic,
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of
- 15 R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl,
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₈-
- 17 CHR₉-, R₉ and R₉ taken together represent a substituted or unsubstituted 3-7 membered aliphatic,
- 18 heteroaliphatic, aryl or heteroaryl ring;

- G and J together represent

 -CHR₁₁-CHR₁₂-, -CR₁₁=CR₁₂-, wherein R₁₁ and R₁₂ are each independently hydrogen, halogen,
- 21 cyano, $-OR_J$, $-N(R_J)_2$, $-SR_J$, $-O(C=O)R_J$, $-O(S=O)R_J$, $-N(R_J)(C=O)(R_J)$, $-C(=O)R_J$, $-C(=O)OR_J$, $-O(S=O)R_J$, $-O(S=O)R_$
- 22 -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or
- 23 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and
- wherein R_{13} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, $-C(O)OR_K$,
- 26 $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic,
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl,
- 29 heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₁₁-

- CHR₁₂-, R₁₁ and R₁₂ taken together represent a substituted or unsubstituted 3-7 membered 1
- aliphatic, heteroaliphatic, aryl or heteroaryl ring; 2

- -CHR₁₄-CHR₁₅-, -CR₁₄=CR₁₅-, wherein R₁₄ and R₁₅ are each independently hydrogen, halogen, 4
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 5
- -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 6
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 7
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 8
- wherein R_{16} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, $-C(O)OR_K$, 9
- $O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, \text{ or an aliphatic,}$ 10
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 11
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 12
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR14-13
- CHR₁₅-, R₁₄ and R₁₅ taken together represent a substituted or unsubstituted 3-7 membered 14
- aliphatic, heteroaliphatic, aryl or heteroaryl ring; 15
- whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently 16
- be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, 17
- heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted, 18
- said method comprising: 19
 - (1) reacting a component having the structure:

22 23 wherein R_L, J, and G are as defined above, with a chiral component having the structure:

5

6

(2) complexing the intermediate with a cobalt, such as dicobalt hexcarbonyl, to yield a structure:

7 8

9

10

(3) cyclizing the combalt complex in the presence of an olefin metathesis catalyst to generate the compound:

11

removing the cobalt to form a ynolide; (4)

12 reacting the alkyne moiety of the ynolide with a diene under cyclcoaddition (5) 13

conditions to generate the compound: 14

$$R_3$$
 R_2
 R_1
 R_2
 R_3
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_7
 R_9
 R_9

(6) optionally further reacting the macrocycle with one or more reagents to diversify and optionally deprotecting the macrocycle to generate a compound having the formula (IIa).

4

3

The method of claim 25, wherein the method further comprises further diversifying the 26. 5 macrocycle to generate a compound having the structure (II) as defined herein. 6

7

The method of claim 25, wherein the step of olefin metathesis is performed using an 27. 8 olefin metathesis catalyst. 9

10

The method of claim 25, wherein the step of olefin metathesis is performed using a 28. 11 ruthenium-based olefin metathesis catalyst. 12

13

The method of claim 28, wherein the step of olefin metathesis is performed using Ru(1,3-29. 14 $dimesityl-4,5-dihydro-imidazol-2-ylidene) (=CHCH=C(CH_3)_2)PCp_3Cl_2.$ 15

16

A compound of the formula: 30. 17

- wherein 19
- Z is O, S or NR_E, wherein R_E is hydrogen, a protecting group, an aliphatic, 20
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or OR_F, wherein R_F is 21
- hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 22
- alkylheteroaryl moiety; 23
- X is O, S or NR_G, wherein R_G is hydrogen or lower alkyl; 24

 R_{5} , R_{6} , R_{5} , R_{6} , R_{6} , R_{6} , R_{6} A and B together represent 1 -CHR5-CHR6-, -CR5=CR6-, wherein R5 and R6 are each independently hydrogen, halogen, 2 $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 3 -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 4 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 5 group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 6 wherein R_7 is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -7 $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 8 heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 9 of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 10 heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR5-11 CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 12 heteroaliphatic, aryl or heteroaryl ring, 13 G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each 14 independently hydrogen or lower alkyl; 15 K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, 16 $-C(-S(CH_2)_3S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)_2, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, CH$ 17 $C=C(R_L)-N(R_L)_2$, $C=N-R_L$, $C=N-N(R_L)_2$, or, if the dotted line --- represents a bond, whereby a 18 double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of 19 R_L is independently hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, 20 alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-21 membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety; 22 whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently 23 be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, 24 heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted; 25 wherein one or any two of RA, RB, RC, RD, R5, R6, RJ, or RL are optionally a linker covalently 26 bonded to a compound selected from the group consisting of radicicol, monocillin, analogues of 27 radicicol and monocillin, geldanamycin, analogues of geldanamycin, and steroids. 28

31. A compound of the formula:

29

7

21

26

27

wherein
Z is O, S or NR_E, wherein R_E is hydrogen, a protecting group, an aliphatic,
heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or OR_F, wherein R_F is
hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or
alkylheteroaryl moiety;

X is O, S or NR_G, wherein R_G is hydrogen or lower alkyl;

represent R_5 , R_6 , R_5 , R_6 , R_6 , R_6

10 cyano, $-OR_J$, $-N(R_J)_2$, $-SR_J$, $-O(C=O)R_J$, $-O(S=O)R_J$, $-N(R_J)(C=O)(R_J)$, $-C(=O)R_J$, $-C(=O)OR_J$,

-CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or

alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting

alkylheteroaryl moiety, wherein each occurrence of a state of the stat

wherein R₇ is hydrogen, a protecting group, -OR_K, -SR_K, -C(O)OR_K, -C(O)NR_K, -S(O)₂R_K, -

O(C=O) R_K , -N(R_K)(C=O)(R_K), -C(O) R_K , -C(O)O R_K , -CON(R_K)₂, -OCO₂ R_K , or an aliphatic,

heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence

of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl,

heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR5-

19 CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic,

20 heteroaliphatic, aryl or heteroaryl ring,

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R_{10} and R_{11} are each independently hydrogen or lower alkyl;

independently hydrogen or lower alkyr,

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-,

24 -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O,

25 $C=C(R_L)-N(R_L)_2$, $C=N-R_L$, $C=N-N(R_L)_2$, or, if the dotted line --- represents a bond, whereby a

double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of

R_L is independently hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl,

alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted; wherein one or any two of RA, RB, RC, RD, R5, R6, RJ, or RL are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, analogues of radicicol and monocillin, geldanamycin, analogues of geldanamycin, and steroids.

9

10

1

2

3

4

5

6

7

8

A compound of the formula: 32.

11

wherein

12 Z is O, S or NR_E, wherein R_E is hydrogen, a protecting group, an aliphatic, 13 heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or OR_F, wherein R_F is 14 hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 15 alkylheteroaryl moiety; 16

X is O, S or NR_G, wherein R_G is hydrogen or lower alkyl; 17

 R_5 , R_5 , R_6 , R_6 , R_6 , R_6 , R_6 , R_6 A and B together represent 18

-CHR5-CHR6-, -CR5=CR6-, wherein R5 and R6 are each independently hydrogen, halogen, 19 $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 20 -CON(R_J)₂, -OCO₂ R_J , -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 21 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 22 group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 23

wherein R_7 is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -

24 $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 25

heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 26

- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl,
- 2 heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₅-
- 3 CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic,
- 4 heteroaliphatic, aryl or heteroaryl ring;
- D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each
- 6 independently hydrogen or lower alkyl;
- G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each
- 8 independently hydrogen or lower alkyl;
- 9 K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-,
- 10 -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O,
- 11 $C=C(R_L)-N(R_L)_2$, $C=N-R_L$, $C=N-N(R_L)_2$, or, if the dotted line --- represents a bond, whereby a
- double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of
- 13 R_L is independently hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl,
- alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-
- 15 membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;
- whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently
- be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl,
- heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;
- wherein one or any two of R_A, R_B, R_C, R_D, R₅, R₆, R_I, or R_L are optionally a linker covalently
- bonded to a compound selected from the group consisting of radicicol, monocillin, analogues of
- 21 radicicol and monocillin, geldanamycin, analogues of geldanamycin, and steroids.
- 22 23 33. The compound of claim 32, wherein D and E together represent -CR₈=CR₉-.
- 25 34. A compound of formula:

24

27 wherein

 R_0 is hydrogen, cyano, $-OR_Z$, $-N(R_Z)_2$, $-SR_Z$, $-O(C=O)R_Z$, $-N(R_Z)(C=O)(R_Z)$, $-C(O)R_Z$ 1 $C(O)OR_Z$, $-CON(R_Z)_2$, $-OCO_2R_Z$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 2 alkylheteroaryl moiety, wherein each occurrence of Rz is independently hydrogen, a protecting 3 group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety 4 Z is O, S, or NR_E, wherein R_E is hydrogen, a protecting group, an aliphatic, 5 heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or OR_F, wherein R_F is 6 hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 7 alkylheteroaryl moiety; 8 X is O, S or NR_G, wherein R_G is hydrogen or lower alkyl; 9 A and B together represent R_5 R_6 R_5 R_6 R_6 R_6 R_6 R_6 R_6 10 -CHR₅-CHR₆-, -CR₅=CR₆-, wherein R₅ and R₆ are each independently hydrogen, halogen, 11 $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 12 -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 13 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 14 group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 15 wherein R_7 is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -16 $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 17 heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 18 of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 19 heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR5-20 CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 21 heteroaliphatic, aryl or heteroaryl ring; 22 D and E together represent R_8 R_9 R_8 R_9 R_8 R_8 R_9 R_9 23 -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen, halogen, 24 cyano, $-OR_J$, $-N(R_J)_2$, $-SR_J$, $-O(C=O)R_J$, $-O(S=O)R_J$, $-N(R_J)(C=O)(R_J)$, $-C(=O)R_J$, $-C(=O)OR_J$, 25 -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 26 alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 27 group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 28 wherein R_{10} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -

- $O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, \text{ or an aliphatic,}$ 1
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of 2
- R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 3
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR8-4
- CHR₉-, R₉ and R₉ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 5
- heteroaliphatic, aryl or heteroaryl ring; 6

- -CHR₁₁-CHR₁₂-, -CR₁₁=CR₁₂-, wherein R₁₁ and R₁₂ are each independently hydrogen, halogen, 8
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 9
- $-CON(R_J)_2$, $-OCO_2R_J$, $-OS(=O)OR_J$ or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 10
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 11
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 12
- wherein R_{13} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -13
- $O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, or an aliphatic,$ 14
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 15
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 16
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR11-17
- CHR₁₂-, R₁₁ and R₁₂ taken together represent a substituted or unsubstituted 3-7 membered 18
- aliphatic, heteroaliphatic, aryl or heteroaryl ring; 19

- -CHR₁₄-CHR₁₅-, -CR₁₄=CR₁₅-, wherein R₁₄ and R₁₅ are each independently hydrogen, halogen, 21
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 22
- -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 23
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 24
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 25
- wherein R₁₆ is hydrogen, a protecting group, -OR_K, -SR_K, -C(O)OR_K, -C(O)NR_K, -S(O)₂R_K, -26
- $O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, or an aliphatic,$ 27
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 28
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 29

- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR14-1
- CHR₁₅-, R₁₄ and R₁₅ taken together represent a substituted or unsubstituted 3-7 membered 2
- aliphatic, heteroaliphatic, aryl or heteroaryl ring; 3
- whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently 4
- be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, 5
- heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted. 6

The compound of claim 34, wherein A and B together represent -CR₅=CR₆-. 35. 8

9

A compound of the formula: 36. 10

- wherein 12
- R_0 is hydrogen, cyano, $-OR_Z$, $-N(R_Z)_2$, $-SR_Z$, $-O(C=O)R_Z$, $-N(R_Z)(C=O)(R_Z)$ 13
- $C(O)R_Z$, $-C(O)OR_Z$, $-CON(R_Z)_2$, $-OCO_2R_Z$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, 14
- alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of Rz is independently hydrogen, a 15
- protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl 16
- moiety 17
- Z is O, S, or NR_E, wherein R_E is hydrogen, a protecting group, an aliphatic, 18
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or ORF, wherein RF is 19
- hydrogen, a protecting group, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 20
- alkylheteroaryl moiety; 21
- X is O, S or NR_G, wherein R_G is hydrogen or lower alkyl; 22

22
$$X \text{ is O, S of NRG, wherein RG is all and B together represent } R_5$$

$$R_6 R_5 R_6 R_6$$

$$R_7 R_6 R_6 R_7 R_6$$

$$R_7 R_6 R_7 R_6 R_7 R_6$$

- -CHR₅-CHR₆-, -CR₅=CR₆-, wherein R₅ and R₆ are each independently hydrogen, halogen, 24
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 25

- -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 1
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 2
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 3
- wherein R_7 is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -4
- $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 5
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 6
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 7
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR5-8
- CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 9
- heteroaliphatic, aryl or heteroaryl ring; 10

- -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen, halogen, 12
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 13
- -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 14
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 15
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 16
- wherein R_{10} is hydrogen, a protecting group, -OR_K, -SR_K, -C(O)OR_K, -C(O)NR_K, -S(O)₂R_K, -17
- $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 18
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of 19
- R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 20
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR8-21
- CHR₉-, R₉ and R₉ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, 22
- heteroaliphatic, aryl or heteroaryl ring; 23

- -CHR₁₁-CHR₁₂-, -CR₁₁=CR₁₂-, wherein R₁₁ and R₁₂ are each independently hydrogen, halogen, 25
- cyano, $-OR_J$, $-N(R_J)_2$, $-SR_J$, $-O(C=O)R_J$, $-O(S=O)R_J$, $-N(R_J)(C=O)(R_J)$, $-C(=O)R_J$, $-C(=O)OR_J$, 26
- -CON(R_J)₂, -OCO₂ R_J , -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 27
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 28
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 29

- wherein R_{13} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, $-C(O)OR_K$, 1
- $O(C=O)R_K$, $-N(R_K)(C=O)(R_K)$, $-C(O)R_K$, $-C(O)OR_K$, $-CON(R_K)_2$, $-OCO_2R_K$, or an aliphatic, 2
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 3
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 4
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR11-5
- CHR₁₂-, R₁₁ and R₁₂ taken together represent a substituted or unsubstituted 3-7 membered 6
- aliphatic, heteroaliphatic, aryl or heteroaryl ring; 7

- -CHR₁₄-CHR₁₅-, -CR₁₄=CR₁₅-, wherein R₁₄ and R₁₅ are each independently hydrogen, halogen, 9
- $cyano, -OR_J, -N(R_J)_2, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -O(C=O)R_J, -O$ 10
- -CON(R_J)₂, -OCO₂R_J, -OS(=O)OR_J or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or 11
- alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, a protecting 12
- group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and 13
- wherein R_{16} is hydrogen, a protecting group, $-OR_K$, $-SR_K$, $-C(O)OR_K$, $-C(O)NR_K$, $-S(O)_2R_K$, -14
- $O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)_2, -OCO_2R_K, \text{ or an aliphatic,}$ 15
- heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence 16
- of R_K is independently hydrogen, a protecting group or an aliphatic, heteroaliphatic, aryl, 17
- heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR14-18
- CHR₁₅-, R₁₄ and R₁₅ taken together represent a substituted or unsubstituted 3-7 membered 19
- aliphatic, heteroaliphatic, aryl or heteroaryl ring; 20
- whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently 21
- be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, 22
- heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted. 23
- 24 The compound of claim 36, wherein A and B together represent -CR₅=CR₆-. 37. 25
- 26 The compound of claim 36, wherein the compound has the formula: 38. 27