CCF ADL
Beijing
April 8, 2017

Deep Learning for Natural Language Processing 深度学习在自然语言处理的应用

Hang Li Noah's Ark Lab Huawei Technologies

Outline of Lecture

- Introduction
- Basics of DL for NLP
- State of the Art of DL for NLP
- Previous Work at Noah's Ark Lab
- Recent Progress at Noah's Ark Lab
- Advantages and Disadvantages
- Summary

Ultimate Goal: Natural Language Understanding

Natural Language Dialogue

Text Comprehension

Natural Language Understanding

- Two definitions:
 - Representation-based: if system creates proper internal representation, then we say it "understands" language
 - Behavior-based: if system follows instruction in natural language, then we say it "understands" language, e.g., "bring me a cup of tea"
- We take the latter definition

Five Characteristics of Human Language

- Incompletely Regular (Both Regular and Idiosyncratic)
- Compositional (or Recursive)
- Metaphorical
- Associated with World Knowledge
- Interactive

Natural Language Understanding by Computer Is Extremely Difficult

- It is still not clear whether it is possible to realize human language ability on computer
- On modern computer
 - The incomplete regularity and compositionality characteristics imply complex combinatorial computation
 - The metaphor, knowledge, and interaction characteristics imply exhaustive computation
- Big question: can we invent new computer closer to human brain?

Reason of the Challenge

- A computer system must be constructed based on math
- Open question: whether it is possible to process natural language as humans, using math models
- Natural language processing is believed to be AI complete

Simplified Problem Formulation May Work

- Eg., Question Answering

Question answering, including search, can be practically performed, because it is simplified

Data-driven Approach May Work

- Hybrid is most realistic and effective for natural language processing, and AI
 - machine learning based
 - human-knowledge incorporated
 - human brain inspired
- Big data and deep learning provides new opportunity

Al Loop

Advancement in AI, including NLP can be made through the closed loop

Fundamental Problems of Statistical Natural Language Processing

• Classification: assigning a label to a string $S \longrightarrow C$

Matching: matching two strings

$$s,t \rightarrow \mathbf{R}^+$$

Translation: transforming one string to another

$$s \rightarrow t$$

• Structured prediction: mapping string to structure

$$S \xrightarrow{\uparrow} S'$$

Markov decision process: deciding next state given previous state and action

Fundamental Problems of Statistical Natural Language Processing

- Classification
 - Text classification
 - Sentiment analysis
- Matching
 - Search
 - Question answering
 - Dialogue (single turn)
- Translation
 - Machine translation
 - Speech recognition
 - Hand writing recognition
 - Dialogue (single turn)

- Structured Prediction
 - Named entity extraction
 - Part of speech tagging
 - Sentence parsing
 - Semantic parsing
- Markov Decision Process
 - Dialogue (multi turn, task dependent)

Lower Bound of User Need vs Upper Bound of Technology

Deep Learning for Natural Language Processing (DL for NLP)

- Achieved State-of-Art Performances in
 - Classification
 - Matching
 - Translation
 - Structured Prediction
- E.g., Neural Machine Translation outperforms
 Statistical Machine Translation

Outline of Lecture

- Introduction
- Basics of DL for NLP
- State of the Art of DL for NLP
- Previous Work at Noah's Ark Lab
- Recent Progress at Noah's Ark Lab
- Advantages and Disadvantages
- Summary

Basics of DL for NLP

- Word Embedding
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Sequence-to-Sequence Learning

Word Embedding

Word Embedding

- Motivation: representing words with low-dimensional real-valued vectors, utilizing them as input to deep learning methods, vs one-hot vectors
- Method: SGNS (Skip-Gram with Negative Sampling)
- Tool: Word2Vec
- Input: words and their contexts in documents
- Output: embeddings of words
- Assumption: similar words occur in similar contexts
- Interpretation: factorization of mutual information matrix
- Advantage: compact representations (usually 100~ dimensions)

Skip-Gram with Negative Sampling (Mikolov et al., 2013)

Input: occurrences between words and contexts

M	c_1	C_2	C_3	C_4	c_5
W_1	5		1	2	
W_2		2			1
W_3	3			1	

Probability model:

$$P(D=1|w,c) = \sigma(\vec{w}\cdot\vec{c}) = \frac{1}{1+e^{-\vec{w}\cdot\vec{c}}}$$

$$P(D=0 | w, c) = \sigma(-\vec{w} \cdot \vec{c}) = \frac{1}{1 + e^{\vec{w} \cdot \vec{c}}}$$

Skip-Gram with Negative Sampling

- Word vector and context vector: lower dimensional (parameter) vectors \vec{w}, \vec{c}
- Goal: learning of the probability model from data
- Take co-occurrence data as positive examples
- Negative sampling: randomly sample k unobserved pairs (w,c_N) as negative examples
- Objective function in learning

$$L = \sum_{w} \sum_{c} \#(w, c) \log \sigma(\vec{w} \cdot \vec{c}) + k \cdot \mathbf{E}_{C_N \sim P} \log \sigma(-\vec{w} \cdot \vec{c}_N)$$

• Algorithm: stochastic gradient descent

Interpretation as Matrix Factorization (Levy & Goldberg 2014)

Pointwise Mutual Information Matrix

M	C_1	c_2	c_3	C_4	C_5	
W_1	3		5	2		
W_2		1			-0.5	
W_3	1.5			1		
$\log \frac{P(w,c)}{P(w)P(c)}$						

Interpretation as Matrix Factorization

M	c_1	c_2	c_3	C_4	C_5
W_1	3		5	2	
W_2		1			-0.5
W_3	1.5			1	
$M = WC^T$ Matrix factorization, equivalent to SGNS					

	M = W	Matrix f equivale	
W	t_1	t_2	t_3
W_1	7	0.5	1
W_2		2.2	3
W_3	1	1.5	1

Convolutional Neural Network

Convolutional Neural Network

- Motivation: representing sequence of words and utilizing the representation in deep learning methods
- Input: sequence of word embeddings, denoting sequence of words (e.g., sentence)
- Output: representation of input sequence
- Learning of model: stochastic gradient descent
- Advantage: robust extraction of n-gram features; can be used as part of deep model for sequence processing (e.g., sentence classification)

Convolutional Neural Network (CNN) (Kim 2014, Blunsom et al. 2014, Hu et al., 2014)

Example: Image Convolution

Example: Image Convolution

Feature Map

0	0	0	0	0
0	0	1	1	0
0	1	3	2	0
0	1	3	1	0
0	1	1	0	0

Convolution Operation

- Scanning image with filter having 3*3 cells, among them 3 are dot cells
- Counting number of dark pixels overlapping with dot cells at each position
- Creating feature map (matrix), each element represents similarity between filer pattern and pixel pattern at one position
- Equivalent to extracting feature using the filter
- Translation-invariant

Convolution

$$z_i^{(l,f)} = \sigma(w^{(l,f)} \cdot z_i^{(l-1)} + b^{(l,f)}) \quad f = 1, 2, \dots, F_l$$

 $z_i^{(l,f)}$ is output of neuron of type f for location i in layer l $w^{(l,f)}, b^{(l,f)}$ are parameters of neuron of type f in layer l σ is sigmoid function

 $z_i^{(l-1)}$ is input of neuron for location *i* from layer l-1

 $z_i^{(0)}$ is input from cancatenated word vectors for location i

$$z_i^{(0)} = [x_i^T, x_{i+1}^T, \cdots x_{i+h-1}^T]^T$$

Filter → Feature Map
→ Neuron

Convolution

Equivalent to n-gram feature extraction at each position

Max Pooling

$$\begin{split} z_i^{(l,f)} &= \max(z_{2i-1}^{(l-1,f)}, z_{2i}^{(l-1,f)}) \\ z_i^{(l,f)} &\text{ is output of pooling of type } f \text{ for location } i \text{ in layer } l \\ z_{2i-1}^{(l-1,f)}, z_{2i}^{(l-1,f)} &\text{ are input of pooling of type } f \text{ for location } i \text{ in layer } l \end{split}$$

Equivalent to n-gram feature selection

Sentence Classification Using Convolutional Neural Network

Recurrent Neural Network

Recurrent Neural Network

- Motivation: representing sequence of words and utilizing the representation in deep learning methods
- Input: sequence of word embeddings, denoting sequence of words (e.g., sentence)
- Output: sequence of internal representations (hidden states)
- Variants: LSTM and GRU, to deal with long distance dependency
- Learning of model: stochastic gradient descent
- Advantage: handling arbitrarily long sequence; can be used as part of deep model for sequence processing (e.g., language modeling)

Recurrent Neural Network (RNN) (Mikolov et al. 2010)

Recurrent Neural Network

$$h_t = f(h_{t-1}, x_t) = \tanh(W_h h_{t-1} + W_x x_t + b_{hx})$$

Long Term Short Memory (LSTM) (Hochreiter & Schmidhuber, 1997)

- A memory (vector) to store values of previous state
- Input gate, output gate, and forget gate to control
- Gate: element-wise product with vector of values in [0,1]

$$i_{t} = \sigma(W_{ih}h_{t-1} + W_{ix}X_{t} + b_{i})$$

$$f_{t} = \sigma(W_{fh}h_{t-1} + W_{fx}X_{t} + b_{f})$$

$$o_{t} = \sigma(W_{oh}h_{t-1} + W_{ox}X_{t} + b_{o})$$

$$g_{t} = \tanh(W_{gh}h_{t-1} + W_{gx}X_{t} + b_{g})$$

$$c_{t} = i_{t} \otimes g_{t} + f_{t} \otimes c_{t-1}$$

 $h_t = o_t \otimes \tanh(c_t)$

Gated Recurrent Unit (GRU) (Cho et al., 2014)

- A memory (vector) to store values of previous state
- Reset gate and update gate to control

$$r_{t} = \sigma(W_{rh}h_{t-1} + W_{rx}x_{t} + b_{r})$$

$$z_{t} = \sigma(W_{zh}h_{t-1} + W_{zx}x_{t} + b_{z})$$

$$g_{t} = \tanh(W_{gh}(r_{t} \otimes h_{t-1}) + W_{gx}x_{t} + b_{g})$$

$$h_{t} = z_{t} \otimes h_{t-1} + (1 - z_{t}) \otimes g_{t}$$

Recurrent Neural Network Language Model

Model

$$h_{t} = \tanh(W_{h}h_{t-1} + W_{x}x_{t} + b_{hx})$$

$$p_{t} = P(x_{t} \mid x_{1} \cdots x_{t-1}) = \text{soft max}(Wh_{t} + b)$$

Objective of Learning

$$\frac{1}{T} \sum_{t=1}^{T} -\log \hat{p}_t$$

- Input one sequence and output another
- In training, input sequence is same as output sequence

Sequence to Sequence Learning

Translation: Sequence to Sequence Learning

- Hierarchical LSTM
- Different LSTM models for encoder and decoder
- Reverse order of words in source sentence

$$P(y_t | y_1 \cdots y_{t-1}, \mathbf{x}) = g(y_{t-1}, s_t)$$

$$h_t = f_e(x_t, h_{t-1}), s_t = f_d(y_{t-1}, s_{t-1})$$

Sutskever et al. 2014

Translation: RNN Encoder-Decoder

- Context vector represents source sentence
- GRU is used

$$\begin{split} P(y_t \mid y_1 \cdots y_{t-1}, \mathbf{x}) &= g(y_{t-1}, s_t, c), c = h_T \\ s_t &= f_d(y_{t-1}, s_{t-1}, c) \\ h_t &= f_e(x_t, h_{t-1}) \end{split}$$

• Cho et al. 2014

Translation: Attention Mechanism

- Context vector represents attention
- Corresponds to alignment relation
- Encoder: Bidirectional RNN

$$P(y_{t} | y_{1} \cdots y_{t-1}, \mathbf{x}) = g(y_{t-1}, s_{t}, c_{t})$$

$$s_{t} = f_{d}(y_{t-1}, s_{t-1}, c_{t})$$

$$h_{t} = f_{e}(x_{t}, h_{t-1})$$

$$c_{t} = \sum_{j=1}^{T} \alpha_{tj} h_{j}$$

$$\alpha_{tj} = q(s_{t-1}, h_j)$$

Bahdanau, et al. 2014

Outline of Lecture

- Introduction
- Basics of DL for NLP
- State of the Art of DL for NLP
- Previous Work at Noah's Ark Lab
- Recent Progress at Noah's Ark Lab
- Advantages and Disadvantages
- Summary

State of the Art of DL for NLP

- Classification
- Matching
- Translation
- Structured Prediction

References can be found at Hang Li,
 Zhengdong Lu, SIGIR 2016 Tutorial

Classification

- Examples of Tasks
 - Search: query classification, document classification
 - Question Answering:
 question classification,
 answer classification
- Approaches
 - World Level Model
 - Character Level Model
 - Hierarchical Model (for document classification)

Sentence Classification: Word Level Model

Classifier:

Softmax

Neural Network:

Convolutional Neural Network, Deep Neural Network

Input:

Continuous Word Embedding, Discrete Word Embedding (one-hot)

- Kim 2014
- Blunsom et al. 2014
- Johnson & Zhang 2015
- lyyer et al. 2015

Document Classification: Character Level Model

Neural Network 1:

Deep Convolutional Neural Network

Neural Network 2:

3-Layer Fully-Connected Neural Network

Input:

Character Embedding

Data:

Large Scale Training Dataset

Class:

Semantic Topics

• Zhang et al. 2016

Document Classification: Hierarchical Model

Classifier:

Softmax

First Layer Network:

Recurrent Neural Network (LSTM, GRU)

Second Layer Network:

Recurrent Neural Network (LSTM, GRU)

Attention:

Can be Employed between Two Layers

- Tang et al. 2015
- Lai et al. 2015
- Yang et al. 2016

Matching

- Examples of Tasks
 - Search: query-document (title) matching, similar query finding
 - Question Answering:
 question answer matching
- Approaches
 - Projection to Latent Space
 - One Dimensional Matching
 - Two Dimensional Matching
 - Tree Matching

Matching: Projection to Latent Space

Neural Networks:

Convolutional Neural Network
Deep Neural Network
Recurrent Neural Network

- Huang et al. 2013
- Shen et al. 2014
- Severyn & Moschitti 2015

Matching: One Dimensional Matching

Neural Network 1:

Convolutional Neural Network

Neural Network 2:

Deep Neural Network, Tensor Network

- Hu et al. 2014
- Qiu & Huang 2015

Matching: Two Dimensional Matching

Neural Network 1:

Convolutional Neural Network

Neural Network 2:

Deep Neural Network

- Hu et al. 2014
- Pang et al. 2016
- Wan et al. 2016

Matching: Tree Matching

Translation

- Examples of Tasks
 - Machine Translation:
 sentence level translation
 - Question Answering:
 answer generation from question
 - Search: similar query generation
- Approaches
 - Sequence-to-Sequence Learning
 - RNN Encoder-Decoder
 - Attention Mechanism

Translation: Sequence-to-Sequence Learning (Same for RNN Encoder-Decoder)

Encoder:

Recurrent Neural

Network

Decoder:

Recurrent Neural Network

- Sutskever et al. 2014
- Cho et al. 2014

Translation: Sequence-to-Sequence Learning

Bahdanau, et al. 2014

Structured Prediction

- Examples of Tasks
 - Search: named entity recognition in query and document
 - Question Answering:
 named entity recognition
 in question and answer
- Approaches
 - CNN
 - Sequence-to-SequenceLearning
 - Neural Network based Parsing

Structured Prediction: CNN

Classifier at Each Position:

Softmax

Neural Network:

Convolutional Neural Network

• Collobert et al. 2011

Structured Prediction: Sequence-to-Sequence Learning

Neural Network:

Sequence-to-Sequence Learning Model

Training Data:

Pairs of Sentence and Linearized Parse Tree

E.g.,

John has a dog . \rightarrow (S (NP NNP)NP (VP VBZ (NP DT NN)NP)VP .)S

Structured Prediction: Neural Network based Parsing

Parser:

Transition-based Dependency Parser, Constituency Parser, CRF Parser

Neural Network:

Deep Neural Networks

Training Data:

Pairs of Sentence and Parse Tree

- Chen & Manning, 2014
- Durrett & Klein, 2015
- Zhou et al., 2015
- Andor et al., 2016

Outline of Lecture

- Introduction
- Basics
- State of the Art
- Previous Work at Noah's Ark Lab
- Recent Progress at Noah's Ark Lab
- Advantages and Disadvantages
- Summary

Question Answering

- DeepMatch CNN

Demo

Retrieval based Question Answering System

Deep Match Model CNN

- Represent and match two sentences simultaneously
- Two dimensional model
- State of art model for matching in question answering

Image RetrievalMultimodal CNN

Demo

Multimodal CNN

Experimental Results

- Experiment
 - Trained with 30K Flickr data
 - Outperforming other state-of-the-art models

Natural Language Dialogue

- Neural Responding Machine

Demo

Neural Responding Machine

Experimental Results

Experiment

- Trained with 4.4 million Weibo data (Chinese)
- 95% of responses are natural, 76% of responses are appropriate as replies

Message	Response
Occupy Central is finally over	Will Lujiazui (finance district in Shanghai) be the next?
I want to buy a Samsung phone	Let us support our national brand.

Neural Machine Translation

Demo

Neural Machine Translation

Coverage Vector

Experimental Results

- Experiment
 - Trained with 1.25 million LDC data (Chinese-English)

Experimental Result

- Google NMT system works better, apparently due to its larger training data and more powerful computing architecture
- Google NMT system also employs coverage mechanism

Outline of Lecture

- Introduction
- Basics of DL for NLP
- State of the Art of DL for NLP
- Previous Work at Noah's Ark Lab
- Recent Progress at Noah's Ark Lab
- Advantages and Disadvantages
- Summary

Question Answering

- Neural Enquirer

Question Answering from Relational Database

Q: How many people participated in the game in Beijing?

A: 4,200

SQL: select #_participants, where city=beijing

Relational Database

Neural Enquirer

- Query Encoder: encoding query
- Table Encoder: encoding entries in table
- Five Executors: executing query against table

Query Encoder and Table Encoder

- Creating query embedding using RNN
- Creating table embedding for each entry using DNN

Executors

- Five layers, except last layer, each layer has reader, annotator, and memory
- Reader fetches important representation for each row,
 e.g., city=beijing
- Annotator encodes result representation for each row,
 e.g., row where city=beijing

Experimental Results

Experiment

- Olympic database
- Trained with 25K and 100K synthetic data
- Accuracy: 84% on 25K data, 91% on 100K data
- Significantly better than SemPre (semantic parser)
- Criticism: data is synthetic

25K Data			100K Data		
Semantic Parser	End-to-End	Step-by-Step	Semantic Parser	End-to-End	Step-by-Step
65.2%	84.0%	96.4%	NA	90.6%	99.9%

Question Answering - GenQA

Question Answering from Knowledge Graph

Q: How tall is Yao Ming?

A: He is 2.29m tall and is visible from space.

(Yao Ming, height, 2.29m)

GenQA

- Interpreter: creates representation of question using RNN
- Enquirer: retrieves top k triples with highest matching scores using CNN model
- Generator: generates answer based on question and retrieved triples using attention-based RNN
- Attention model: controls generation of answer

Key idea:

- Generation of answer based on question and retrieved result
- Combination of neural processing and symbolic processing

Enquirer: Retrieval and Matching

- Retaining both symbolic representations and vector representations
- Using question words to retrieve top k triples
- Calculating matching scores between question and triples using CNN model
- Finding best matched triples

Generator: Answer Generation

- Generating answer using attention mechanism
- At each position, a variable decides whether to generate a word or use the object of top triple

Experimental Results

Experiment

- Trained with 720K question-answer pairs (Chinese)
 associated with 1.1M triples in knowledge-base, data is noisy
- Accuracy = 52%
- Data is still noisy

Question	Answer	
Who wrote the Romance of the Three Kingdoms?	Luo Guanzhong in Ming dynasty	correct
How old is Stefanie Sun this year?	Thirty-two, he was born on July 23, 1978	wrong
When will Shrek Forever After be released?	Release date: Dreamworks Pictures	wrong

Natural Language Dialogue - CopyNet

Single Turn Dialogue with Generating and Copying Mechanism

Dialogue system can not only generate response, but also copy from given message

Architecture: CopyNet

CopyNet can either generate word based on attentive read, or copy word based on selective read

Characteristics: CopyNet

- Decoder can both generate and copy
- Mixture model of generating and copying
- Attentive read: find suitable word to influence generation of word in target sequence
- Selective read: find location of word to be copied from source sequence
- Model is fully differentiable
- Training: maximum likelihood of target sequence given source sequence

Experimental Results

Experiment

- Summarization of short text in Chinese
- Trained with 2.4M text-summary pairs
- Tested with 9.3K text-summary pairs

Model	ROUGE-1	ROUGE-2	ROUGE-L
RNN -C	29.9	17.4	27.2
RNN -W	26.8	16.1	24.1
CopyNet -C	34.4	21.6	31.3
CopyNet -W	35.0	22.3	32.0

Outline of Lecture

- Introduction
- Basics
- State of the Art
- Previous Work at Noah's Ark Lab
- Recent Progress at Noah's Ark Lab
- Advantages and Disadvantages
- Summary

Advantages and Disadvantages of DL

Strength

- Good at pattern recognition problems
- Data-driven, performance is high in many tasks
- End-to-end training, little or no domain knowledge is needed in system construction
- Representation learning, possible in cross modal processing
- Gradient-based learning,
 learning algorithm is simple
- Powerful for supervised learning setting

Weakness

- Not good at inference and decision problems
- Data-hungry and thus is not suitable when data size is small
- Difficult to handle tail phenomena
- Model is usually a black box and is difficult to understand
- Computational cost of learning is high
- Unsupervised learning methods are needed
- Still lack of theoretical foundation

End-to-End Learning

Generation-based Dialogue

Representation Learning

Symbolic Matching Models

Vector Space Model, BM25, Language Model for IR

Neural Matching Models

Neural matching models are natural extension of symbolic matching models

Multimodal Match Model (CNN), Ma et al. 2015

Challenge in Tail

Natural Language Processing Problems are Non-Parametric

How to deal with the long tail is challenging issue

Xinhua News Data

Vocabulary size increases when data size increases

Theoretical Analysis

Generalization Ability of Deep Learning

- In practice, usually both training errors and test errors are small, i.e., no over-fitting
- Neural networks can "memorize" training instances
- On the other hand, neural networks can over-fit (i.e., test errors are large although training errors are small), if random noise is injected into training data
- Number of parameters is larger than number of training instances
- Many open questions about the learning ability of deep learning

Inference and Decision

Comparison between Single-turn QA and Multi-turn QA by Humans

Single-turn QA

- Q: How tall is Yao Ming?
- A: He is 2.29m tall.

Multi-turn QA

- Q: How tall is Yao Ming?
- **A:** He is 2.29m tall.
- Q: Who is taller, Yao Ming or Liu Xiang?
- A: He is taller, and I think that Liu Xiang is only 1.89m tall.
- Single turn QA is only related to fact retrieval and answer generation.
- Multi-turn QA needs fact retrieval and answer generation, as well as other *mental processing*. More modules in human brain are involved.

Deep Learning and Multi-turn Dialogue

- DL may not be enough for natural language dialogue
- Key is dialogue management, including dialogue control and dialogue modeling
- Involvement of multiple "modules", each having multiple "states"
- Recent work tries to use reinforcement learning
- There are many open questions

Outline of Lecture

- Introduction
- Basics of DL for NLP
- State of the Art of DL for NLP
- Previous Work at Noah's Ark Lab
- Recent Progress at Noah's Ark Lab
- Advantages and Disadvantages
- Summary

Summary

- Deep Learning brings high performance in fundamental language processing problems, particularly translation
- Basic models: Word Embedding, CNN, RNN,
 Sequence to Sequence Learning
- Deep neural network models are state of the art for question answering, image retrieval, generation based dialogue, machine translation
- Recent progress, combination of symbolic and neural processing
- Advantages and limitations

References

- 1. Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu, and Hang Li. Context Gates for Neural Machine Translation. Transactions of the Association for Computational Linguistics (TACL 2017).
- 2. Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang Li, Deyi Xiong, and Min Zhang. Neural Machine Translation Advised by Statistical Machine Translation. The 31st AAAI Conference on Artificial Intelligence (AAAI 2017), 3330-3336, 2017.
- Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, and Hang Li. Neural Machine Translation with Reconstruction. The 31st AAAI Conference on Artificial Intelligence (AAAI 2017), 3097-3103. 2017
- 4. Fandong Meng, Zhengdong Lu, Hang Li, Qun Liu. Interactive Attention for Neural Machine Translation. Proceedings of the 26th International Conference on Computational Linguistics (COLING'16), 2174-2185, 2016.
- 5. Mingxuan Wang, Zhengdong Lu, Hang Li, Qun Liu. Memory-enhanced Decoder for Neural Machine Translation. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP'16), 278-286, 2016.
- 6. Pengcheng Yin, Zhengdong Lu, Hang Li, Ben Kao, Neural Enquirer: Learning to Query Tables in Natural Language. IEEE Data Engineering Bulletin 39(3): 63-73, 2016.
- 7. Jiatao Gu, Zhengdong Lu, Hang Li, Victor O. K. Li. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. Proceedings of the 54th Annual Meeting of Association for Computational Linguistics (ACL'16), 2016.
- 8. Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu and Hang Li. Modeling Coverage for Neural Machine Translation. Proceedings of the 54th Annual Meeting of Association for Computational Linguistics (ACL'16), 2016.
- 9. Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, Xiaoming Li. Neural Generative Question Answering. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16), 2972-2978, 2016.

References

- 10. Pengcheng Yin, Zhengdong Lu, Hang Li, Ben Kao. Neural Enquirer: Learning to Query Tables with Natural Language. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16), 2308-2314, 2016.
- 11. Lin Ma, Zhengdong Lu, Hang Li. Learning to Answer Questions From Image Using Convolutional Neural Network. Proceedings of the Thirtieth AAAI Conference (AAAI'16), 2016.
- 12. Lin Ma, Zhengdong Lu, Lifeng Shang, Hang Li, Multimodal Convolutional Neural Networks for Matching Image and Sentence. Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV), 2623-2631, 2015.
- 13. Baotian Hu, Zhaopeng Tu, Zhengdong Lu, Hang Li, Qingcai Chen. Context-Dependent Translation Selection Using Convolutional Neural Network. Proceedings of the 53th Annual Meeting of Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP'15), 536-541, 2015.
- 14. Lifeng Shang, Zhengdong Lu, Hang Li. Neural Responding Machine for Short Text Conversation. Proceedings of the 53th Annual Meeting of Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP'15), 1577-1586, 2015.
- 15. Mingxuan Wang, Zhengdong Lu, Hang Li, Wenbin Jiang, Qun Liu. GenCNN: A Convolutional Architecture for Word Sequence Prediction. Proceedings of the 53th Annual Meeting of Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP'15), 1567-1576, 2015.
- 16. Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Wenbin Jiang, Qun Liu. Encoding Source Language with Convolutional Neural Network for Machine Translation. Proceedings of the 53th Annual Meeting of Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP'15), 20-30, 2015.

References

- 17. Mingxuan Wang, Zhengdong Lu, Hang Li, Qun Liu. Syntax-based Deep Matching of Short Texts. Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI'15), 1354-1361, 2015.
- 18. Baotian Hu, Zhengdong Lu, Hang Li, Qingcai Chen. Convolutional Neural Network Architectures for Matching Natural Language Sentences. Proceedings of Advances in Neural Information Processing Systems 27 (NIPS'14), 2042-2050, 2014.
- 19. Zhengdong Lu, Hang Li. A Deep Architecture for Matching Short Texts. Proceedings of Neural Information Processing Systems 26 (NIPS'13), 1367-1375, 2013.

Thank you!