MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

Chapter 7: Ordinary Differential Equations	2
Introduction	3
Simplest ODE	4
Separation of Variables	7
Homogenous Equations	10
First Order Linear Equations	13
Bernoulli's Equation	19
Initial Value Problem	22
Exponential Growth and Decay	25
Logistic Growth	27
Heat Transfer	29
Draining Tank Problem	31
Dog and Rabbit	33
Second Order Equations	36
Examples	39
Variation of Parameters	42
Examples	47
Operator Methods	50
Examples	54
Initial Value Problem	58

Introduction

- Recall that the derivative of a (differentiable) function determines the change of the function. More precisely, suppose $\frac{dy}{dx} = f(x)$ for all x.
 - $\circ \quad \text{Then } y = \int f(x) \, dx + C.$

So if $\frac{dy}{dx}$ is known, we can determine y up to a constant.

• In general, if there is a relation

$$F\left(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^n}\right) = 0,$$

known as the **ordinary differential equation** (ODE), we want to determine the relation of of x and y explicitly.

3/60

The Simplest Ordinary Differential Equations

- $\frac{dy}{dx} = f(x) \Rightarrow y = \int f(x) dx + C.$
 - o This is exactly the problem of integration.
- Examples.

$$\circ \quad \frac{dy}{dx} = 1 - \sqrt{x}.$$

•
$$y = \int (1 - \sqrt{x}) dx = x - \frac{2}{3}x^{3/2} + C.$$

$$\circ \quad \frac{dy}{dx} = \frac{x}{\sqrt{x^2 - 1}}.$$

•
$$y = \int \frac{x}{\sqrt{x^2 - 1}} dx = \sqrt{x^2 - 1} + C.$$

$$\circ \quad \frac{d^2y}{dx^2} = 0 \Rightarrow \frac{dy}{dx} = C \Rightarrow y = Cx + D.$$

The Simplest Ordinary Differential Equations

•
$$\frac{dy}{dx} = g(y) \Rightarrow \frac{dx}{dy} = \frac{1}{g(y)} \Rightarrow x = \int \frac{1}{g(y)} dy$$
.

$$\circ \quad \frac{dy}{dx} = 1 + y^2 \Rightarrow \frac{dx}{dy} = \frac{1}{1 + y^2} \quad \therefore y = \tan(x - C).$$

•
$$x = \int \frac{1}{1+y^2} dy = \tan^{-1} y + C.$$

$$\circ \quad \frac{dy}{dx} = e^y \Rightarrow \frac{dx}{dy} = \frac{1}{e^y} \quad \therefore y = -\ln(C - x).$$

•
$$x = \int e^{-y} dy = -e^{-y} + C$$
.

$$\circ \quad \frac{dy}{dx} = \sec y \Rightarrow \frac{dx}{dy} = \cos y.$$

•
$$x = \int \cos y \, dy = \sin y + C$$
.

5/60

The Simplest Ordinary Differential Equations

• Suppose $\frac{dy}{dx} = y$. Find y in terms of x.

$$\circ \quad \frac{dx}{dy} = \frac{1}{y} \Rightarrow x = \int \frac{1}{y} dy = \ln|y| + c. \leftarrow \text{--Problem!}$$

•
$$|y|=e^{x-c}$$
. Then $y=\pm e^{-c}e^x=Ce^{\sum_{i=1}^{n}}$

However, y may be zero somewhere.

o Define $z = ye^{-x}$. It is well-defined on \mathbb{R} .

•
$$\frac{dz}{dx} = \frac{dy}{dx}e^{-x} + y(-e^{-x}) = e^{-x}\left(\frac{dy}{dx} - y\right) = 0.$$

So $z=ye^{-x}=C$ is constant on \mathbb{R} , i.e., $y=Ce^x$.

• For computation purpose, we still use the non-rigorous method by ignoring the zeros of y. We omit the detailed explanation of the existence and uniqueness of the solution in our course.

Separation of Variables

• Consider a general problem: $\frac{dy}{dx} = f(x)g(y)$.

f(x)g(y) is a product of a function in x and function in y. The variables x and y in f(x)g(y) are separable.

- $\circ \quad \text{In differential forms: } \frac{1}{g(y)} \, dy = f(x) \, dx.$
- $\circ \quad \text{To be rigorous, } \frac{1}{g(y)} \, \frac{dy}{dx} = f(x).$
 - $\int f(x) dx = \int \frac{1}{g(y)} \frac{dy}{dx} dx = \int \frac{1}{g(y)} dy.$
- This method is called **separation of variables**.

7 / 60

Examples

• $2\sqrt{xy}\frac{dy}{dx} = 1$ (x, y > 0) $\therefore y = (\frac{3}{2}\sqrt{x} + \frac{3}{4}C)^{2/3}$.

$$\circ \int 2\sqrt{y} \, dy = \int \frac{1}{\sqrt{x}} \, dx \Rightarrow \frac{4}{3}y^{3/2} = 2\sqrt{x} + C.$$

• $\frac{dy}{dx} \sec x = e^{y + \sin x}$ \therefore $y = -\ln(-C - e^{\sin x}).$

$$\circ \int e^{-y} dy = \int e^{\sin x} \cos x dx \Rightarrow -e^{-y} = e^{\sin x} + C.$$

• $\frac{dy}{dx} \ln x = \frac{y}{x}$ $\therefore \quad y = \pm e^c \ln x = C \ln x.$

$$\circ \int \frac{1}{y} dy = \int \frac{1}{x \ln x} dx \Rightarrow \ln|y| = \ln|\ln x| + c.$$

Singular Solutions

- Example. $\frac{dy}{dx} = \sqrt[3]{xy} = \sqrt[3]{x} \cdot \sqrt[3]{y}$.
 - $\circ \int \frac{dy}{\sqrt[3]{y}} = \int \sqrt[3]{x} \, dx \Rightarrow \frac{3}{2} y^{2/3} = \frac{3}{4} x^{4/3} + C.$
 - Note that $\sqrt[3]{y} = 0 \Rightarrow y = 0$.
 - y = 0 is also a solution to the equation.
- Suppose $\frac{dy}{dx} = f(x)g(y)$.
 - $\circ \quad \text{If } y=C \text{ is a solution to } g(y)=0 \text{,}$

then it is a singular solution to $\dfrac{dy}{dx}=f(x)g(y).$ o The singular solution disappears if the equation is

- - $\frac{1}{q(y)}\frac{dy}{dx} = f(x)$.
- We IGNORE the singular solutions in our course.

9/60

Example

- $\frac{dy}{dx} = \frac{x+y}{x-y} = \frac{1+\frac{y}{x}}{1-\frac{y}{x}}$. It is NOT separable.
 - \circ Let $z = \frac{y}{x}$. Then y = zx.
 - $\frac{dy}{dx} = x \frac{dz}{dx} + z = \frac{1+z}{1-z}$.
 - $\circ \quad x \frac{dz}{dx} = \frac{1+z}{1-z} z = \frac{1+z^2}{1-z}.$
 - $\bullet \quad \int \frac{1-z}{1+z^2} \, dz = \int \frac{1}{x} \, dx.$
 - $\tan^{-1} z \frac{1}{2} \ln(1+z^2) = \ln|x| + C.$
 - $\therefore \tan^{-1}\frac{y}{x} = \frac{1}{2}\ln(x^2 + y^2) + C.$

Homogeneous Equations

- Consider $\frac{dy}{dx} = F(x, y)$.
 - Suppose F(x, y) is homogeneous of degree zero.
 - i.e., F(tx, ty) = F(x, y) for all $t \in \mathbb{R} \setminus \{0\}$.

For example: $\frac{x+y}{x-u}$, $\frac{xy+y^2}{x^2+xu}$, $\frac{\sqrt{x^2+y^2}}{|x|}$,

- \circ Let $z = \frac{y}{x}$. Then
 - y = xz and $\frac{dy}{dx} = x\frac{dz}{dx} + z$.
 - $F(x,y) = F(\frac{x}{x}, \frac{y}{x}) = F(1,z).$
- o The equation becomes
 - $x\frac{dz}{dx} + z = F(1, z)$, which is separable.

11/60

Examples

- $x \frac{dy}{dx} = y + 2xe^{-y/x} \Rightarrow \frac{dy}{dx} = \frac{y}{x} + 2e^{-y/x}$.
 - \circ Let $z = \frac{y}{x}$. Then y = xz and $\frac{dy}{dx} = x\frac{dz}{dx} + z$.
 - $x \frac{dz}{dx} + z = z + 2e^{-z} \Rightarrow x \frac{dz}{dx} = 2e^{-z}$.
 - $\int_{-\infty}^{ax} dz = \int_{-\infty}^{\infty} \frac{2}{x} dx \Rightarrow \boxed{2 \ln|x| + C}.$
- $y = x(\ln|2\ln|x| + C|).$ $\frac{dy}{dx} = y^2 + 2xy \Rightarrow \frac{dy}{dx} = \left(\frac{y}{x}\right)^2 + 2\frac{y}{x}.$
 - \circ Let $z=\frac{y}{x}$. We have $x\frac{dz}{dx}+$ $= z^2+2z$.
 - $\int \frac{dz}{z(z+1)} = \int \frac{dx}{x} \Rightarrow \stackrel{\text{Exercise}}{\cdots} \Rightarrow y = \frac{x^2}{C-x}$

First Order Linear Equations

• The most important type of differential equation is the linear equation. For example,

$$\circ \quad \frac{dy}{dx} = f(x)y + g(x).$$

$$\circ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} = f(x)y + g(x).$$

• How to solve the first order liner differential equation?

$$\circ \frac{dy}{dx} + p(x)y = q(x).$$

• If
$$p(x) = 0$$
: $\frac{dy}{dx} = q(x) \Rightarrow y = \int q(x) dx$.

• If
$$q(x) = 0$$
: $\frac{dy}{dx} + p(x)y = 0$.

$$\int \frac{dy}{-y} = \int p(x) \, dx, \, y = \pm \exp\left(-\int p(x) \, dx\right).$$

13/60

First Order Linear Equations

- We can solve $\frac{dy}{dx} + p(x)y = 0$ rigorously.
 - \circ $\;$ Take P(x) such that P'(x)=p(x). It is expected:

•
$$y = \pm \exp\left(-\int p(x) dx\right) = C \exp(-P(x)).$$

 \circ Let $z = ye^{P(x)}$. Then

•
$$\frac{dz}{dx} = \frac{d}{dx} \left(y e^{P(x)} \right) = \frac{dy}{dx} e^{P(x)} + y p(x) e^{P(x)}$$
$$= \left(\frac{dy}{dx} + p(x) y \right) e^{P(x)} = 0.$$

$$\therefore ye^{P(x)} = C$$
, i.e., $y = Ce^{-P(x)}$.

• $e^{P(x)}$ plays an important role in this integration. It is called the **integrating factor**. We can use it to solve the general first order linear equations.

First Order Linear Equations

- Consider the general equation $\frac{dy}{dx} + p(x)y = q(x)$.
 - $\circ \quad \text{Evaluate } P(x) = \int p(x) \, dx.$
 - Multiply an integrating factor $v(x) = e^{P(x)}$.
 - $e^{P(x)}\frac{dy}{dx} + e^{P(x)}p(x)y = e^{P(x)}q(x).$
 - $\frac{d}{dx}\left(e^{P(x)}y\right) = e^{P(x)}q(x).$
 - \circ Integrate with respect to x:
 - $e^{P(x)}y = \int e^{P(x)}q(x) dx$.
 - $y = \frac{1}{e^{P(x)}} \int e^{P(x)} q(x) dx = \frac{1}{v(x)} \int v(x)q(x) dx.$

15/60

Examples

- $\bullet \quad x\frac{dy}{dx} = x^2 + 3y, \quad x > 0.$
 - 1. Convert the equation to the standard form:

$$\circ \quad \frac{dy}{dx} - \frac{3}{x} \cdot y = x \bigcirc$$

2. Find an integrating factor v(x):

$$\circ \int \frac{-3}{x} dx = -3\ln x + c.$$

$$\circ$$
 Take $v(x) = e^{-3}$ $= x^{-3}$.

3. Solve the equation:

$$v = \frac{1}{v(x)} \int v(x)q(x) dx = \frac{1}{x^{-3}} \int x^{-3} \cdot x dx$$

$$= x^3 \int \frac{1}{x^2} dx = x^3 \left(\frac{-1}{x} + C\right) = Cx^3 - x^2.$$

- $\frac{dy}{dx} + (\tan x)y = \cos^2 x$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$.
 - 1. The equation is already in the standard form.
 - 2. Find an integrating factor v(x):

$$\circ \int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\ln(\cos x) + c.$$

$$\circ v(x) = e^{-\ln(\cos x)} = (\cos x)^{-1} = \sec x.$$

3. Solve the equation:

$$\circ \quad y = \frac{1}{\sec x} \int \sec x \cdot \cos^2 x \, dx$$
$$= \cos x \int \cos x \, dx = \cos x \left(\sin x + C\right)$$
$$= \frac{1}{2} \sin 2x + C \cos x.$$

17/60

Examples

$$\bullet \quad (e^y - 2xy) \frac{dy}{dx} = y^2.$$

 \circ It is not linear in y, but it is linear in x.

$$\bullet \quad \frac{dx}{dy} + \frac{2}{y} \cdot x = \frac{e^y}{y^2}.$$

 \circ Find an integrating factor v(y):

•
$$\int \frac{2}{y} dy = 2 \ln|y| + c$$
. $v(y) = e^{2 \ln|y|} = y^2$.

Solve the equation:

•
$$x = \frac{1}{y^2} \int y^2 \cdot \frac{e^y}{y^2} dy = \frac{1}{y^2} \int e^y dy$$

= $\frac{1}{y^2} (e^y + C) = y^{-2} e^y + C y^{-2}$.

Bernoulli's Equation

• Consider $\frac{dy}{dx} + p(x)y = q(x)y^n$.

$$\circ \quad \text{If } n = 0, \quad \frac{dy}{dx} + p(x)y = q(x);$$

$$\circ \quad \text{If } n = 1, \quad \frac{dx}{dy} + p(x)y = q(x)y.$$

The equation is linear if n=0 or 1. Suppose $n\neq 0,1$.

$$\circ \quad \text{Let } z=y^{1-n}. \text{ Then } \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}.$$

• Multiply $(1-n)y^{-n}$ to the equation:

•
$$(1-n)y^{-n}\frac{dy}{dx} + (1-n)p(x)y^{1-n} = (1-n)q(x).$$

o The equation is reduced to a linear equation:

•
$$\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x).$$

19/60

Examples

 $\bullet \quad x \frac{dy}{dx} + y = x^4 y^3.$

$$\circ \quad \frac{dy}{dx} + \frac{1}{x} \cdot y = x^3 y^3.$$

Let $z=y^{1-3}=y^{-2}.$ The equation becomes

$$\circ \quad \frac{dz}{dx} + (-2)\frac{1}{x} \cdot z = (-2)x^3.$$

$$\int \frac{-2}{x} dx = -2\ln|x| + c \Rightarrow v(x) = e^{-2\ln|x|} = x^{-2}.$$

$$z = x^2 \int x^{-2} \cdot (-2)x^3 dx = x^2 \int (-2x) dx$$

= $x^2 (-x^2 + C)$.

$$y^{-2} = x^2(-x^2 + C).$$

•
$$\frac{dy}{dx} + \frac{y}{x} = \sqrt{y}$$
, $(x > 0, y > 0)$.

$$\circ \quad \frac{dy}{dx} + \frac{1}{x} \cdot y = y^{1/2}.$$

Let $z=y^{1-1/2}=y^{1/2}.$ The equation becomes

$$z = x^{-1/2} \int x^{1/2} \cdot \frac{1}{2} dx = x^{-1/2} \left(\frac{x^{3/2}}{3} + C \right)$$

$$= \frac{x}{3} + \frac{C}{\sqrt{x}}.$$

$$\therefore y = z^2 = \left(\frac{x}{3} + \frac{C}{\sqrt{x}}\right)^2.$$

21 / 60

Initial Value Problem

- An initial value problem is an ordinary differential equation with specified values at given points.
 - In particular, a first order differential equation has one indeterminate, we need only one initial condition.

• Example.
$$\frac{dy}{dx} + (\tan x)y = \cos^2 x$$
, $y(\pi/6) = \sqrt{3}$.

- General solution: $y = \frac{1}{2}\sin 2x + C\cos x$.
- $\circ \quad \text{Let } x = \pi/6 \text{ and } y = \sqrt{3}:$

•
$$\sqrt{3} = \frac{1}{2}\sin\frac{\pi}{3} + C\cos\frac{\pi}{6} = \frac{\sqrt{3}}{4} + \frac{C\sqrt{3}}{2}$$
.

$$C = 3/2$$
.

The particular solution is $y = \frac{1}{2}\sin 2x + \frac{3}{2}\cos x$.

- $\frac{dy}{dx}\sin 2x = 2y + 2\cos x$, y is bounded as $x \to \pi/2$.
 - o Convert the equation into the standard form:

•
$$\frac{dy}{dx} + \left(-\frac{1}{\sin x \cos x}\right)y = \frac{1}{\sin x}$$
.

- - $\int \frac{-dx}{\sin x \cos x} = -\int \frac{\sec^2 x}{\tan x} dx = -\ln|\tan x| + C.$ $e^{-\ln|\tan x|} = \frac{1}{|\tan x|}.$ Use $v(x) = \frac{1}{\tan x} = \cot x.$
- o Find the general solution:
 - $y = \frac{1}{v(x)} \int v(x)q(x) dx$

23 / 60

Example

- $\frac{dy}{dx}\sin 2x = 2y + 2\cos x$, y is bounded as $x \to \pi/2$.
 - o Find the general solution:
 - $y = \tan x / \cot x \csc x \, dx$ $=\tan x(C - \csc x) = C\tan x - \sec x.$
 - o Find the particular solution:
 - $y = (C \sin x 1)/\cos x$.
 - $\lim_{x \to \pi/2} (C \sin x 1) = \lim_{x \to \pi/2} (y \cdot \cos x) = 0.$ C 1 = 0, i.e., C = 1.
 - Verification:
 - $\lim_{x \to \pi/2} (\tan x \sec x) = \dots = 0$. (Exercise!)
 - $\therefore y = \tan x \sec x.$

Exponential Growth and Decay

• Continuously Compounded Interest.

$$\circ \quad r \cdot \Delta t = \frac{\Delta\$}{\$} \Rightarrow r \cdot \$ = \frac{\Delta\$}{\Delta t}, \text{ where } r \text{ is a constant}.$$

Suppose one deposits $\$\,621$ in a bank account that pays 6% compounded continuously.

o How much money will he have 8 years later?

Let A(t) be the amount of money at time t (in year).

• ODE:
$$\frac{dA}{dt} = 0.06A$$
; IC: $A(0) = 621$.

- Solve the equation: $A(t) = 621e^{0.06t}$.
- \circ Answer: $A(8) = 621e^{0.06 \times 8} \approx 1003.58$.

Why in the real lift the interest is credited monthly or yearly but not continuously? Answer: $e^x>1+x$ for all x>0.

25 / 60

Exponential Growth and Decay

• Radiocarbon Dating.

The half-life of a radioactive element is the time required for half of the radioactive nuclei present in a sample to decay. The ratio of radiocarbon, Carbon-14, is often used to determine the age of carbonaceous materials.

The half-life of Carbon-14 is about 5730 years.

 \circ Find the age of a sample in which 10% of the radioactive nuclei originally present have decayed. Let C(t) be the Carbon-14 left at time t (in year).

o ODE:
$$\frac{dC}{dt} = kC$$
; IC: $C(0) = 1$. $C(t) = e^{kt}$. $C(5730) = 1/2 \Rightarrow k = -\frac{\ln 2}{5730}$.

$$\qquad \qquad \text{Solve } (1-0.1) = e^{kt}. \text{ Then } t = \frac{\ln 0.9}{k} \approx 871 \text{ years}.$$

Logistic Growth

• Population Growth.

$$\circ \quad r \cdot \Delta t = \frac{\Delta \textcircled{r}}{\textcircled{r}} \Rightarrow r \cdot \textcircled{r} = \frac{\Delta \textcircled{r}}{\Delta t}. \quad \text{Is r a constant?}$$

The resource is limited! Only a maximum population M can be accommodated, called the **limiting** population.

$$\circ \quad \text{If } \ {}^{\raisebox{-2pt}{$\stackrel{\frown}{\mathcal Q}$}} > M, \, r < 0;$$

$$\circ$$
 If $\mathfrak{P} < M, r > 0$; as \mathfrak{P} increases, r decreases.

It is reasonable to use $r(M-\mbox{\ \ })$ as the rate.

$$\circ \quad \frac{dP}{dt} = r(M - P)P.$$

This can also be applied to marking; It is known as the logistic growth, and M is called the carrying capacity.

o The real-life problem is very complicated. Here we only estimate using a simple model.

27 / 60

Logistic Growth

- **Example**. A national park is known to be capable of supporting 100 grizzly bears, but no more. 10 bears are in the park at present.
 - \circ Model the population in logistic growth with r=0.001. When will be the bear population reach 50?

Let P(t) be the population of bear at time t (in year).

o ODE:
$$\frac{dP}{dt} = 0.001P(100 - P)$$
; IC: $P(0) = 10$.

• Solve the equation:
$$P(t) = \frac{100}{1 + 9e^{-0.1t}}$$
.

$$\circ \quad \text{Let } P(t) = 50. \text{ Then } t = 20 \ln 3 \approx 22.$$

- Remark. The logistic growth model may not give reliable results for very small population levels.
 - \circ As $t \to \infty$, $P(t) \to M$.

Heat Transfer

- Second Law of Thermodynamics (Clausius Statement):
 - Heat transfer always occurs from a higher-temperature object to a cooler temperature.
- Newton's Law of Cooling (1701):
 - \circ The rate of heat loss is proportional to the difference of temperature. (r > 0)
 - $\circ \quad \frac{dT}{dt} = -r \cdot (T T_S), T_S = \text{surrounding temperature}.$
 - $T > T_S \Rightarrow \frac{dT}{dt} < 0; \quad T < T_S \Rightarrow \frac{dT}{dt} > 0.$
 - o The equation can be solved using separation of variable or integrating factor:
 - $T(t) T_S = Ce^{-rt} = (T_0 T_S)e^{-rt}.$ As $t \to \infty$, $T(t) \to T_S$.

29 / 60

Heat Transfer

- **Example**. A boiled egg at 98° C is put in water of 18° C.
 - $\circ~$ After $5\,\mathrm{min},$ the temperature of egg becomes $38^{\circ}C.$ Assume that the water is not warmed appreciably.
 - $\circ~$ How much longer will it take the egg to reach $20^{\circ}C$?

$$\circ \int \frac{dt}{T - 18} = \int (-r) dt \Rightarrow \ln|T - 18| = -rt + c.$$

Solve the equation:

$$T(t) = 18 + 80e^{-rt}$$

$$\circ T(5) = 38 \Rightarrow r = \frac{1}{5} \ln 4.$$

Solve for t when $T(t) = 20 = 18 + 80e^{-rt}$.

$$\circ \quad t = \frac{\ln 40}{\frac{1}{5} \ln 4} \approx 13 \, \mathrm{min}.$$

Draining Tank Problem

• Consider a tank with water:

- o Torricelli's Law.
 - The rate of water runs out is proportional to the square root of the water's depth.

31/60

Draining Tank Problem

- $\bullet~$ A right circular cylindrical tank with radius $5\,\mathrm{ft}$ and height $16\,\mathrm{ft}$ is being drained at $0.5\sqrt{h}\,\mathrm{ft^3/min}.$
 - o How long to empty the tank?

 $\text{At height } h, \quad V = \pi r^2 h = 25\pi h.$

$$\circ \quad 25\pi \frac{dh}{dt} = \frac{dV}{dt} = -0.5\sqrt{h}.$$

ODE:
$$25\pi \frac{dh}{dt} = -0.5\sqrt{h};$$
 IC: $h(0) = 16.$

$$\circ \quad h(t) = \left(4 - \frac{t}{100\pi}\right)^2$$

Solve h(t) = 0.

$$\circ \quad t = 400\pi \, \mathrm{min} \approx 21 \, \mathrm{hrs}.$$

• Exercise. How about if the tank is a right circular cone?

Dog and Rabbit

- **Example**. A dog sees a rabbit running in a straight line across an open field and gives chase. Assume
 - o Rabbit is at (0,0); dog is at (100,0) (in meter).
 - Rabbit runs up the y-axis; dog runs straight for rabbit.
 - \circ Speed of rabbit is 5 m/s; speed of dog is 6 m/s.

How long can the dog catch the rabbit?

33 / 60

Dog and Rabbit

- Suppose at time t_0 , dog is at (x_0,y_0) , rabbit is at $(0,z_0)$.
 - $\circ \quad \text{Tangent line of } y = f(x) \text{ at } (x_0,y_0)\text{:}$
 - $y y_0 = f'(x_0)(x x_0)$.
 - Let x = 0 in the tangent line:
 - $z_0 = y_0 x_0 f'(x_0)$.
- Rabbit: r(x) = f(x) xf'(x).
 - $\circ \quad \text{Speed of rabbit: } r'(x) = -xf''(x).$

$$\text{Dog: } d(x) = \int_x^{100} \sqrt{1 + (f'(t))^2} \, dt.$$

- $\circ \quad \text{Speed of dog: } d'(x) = -\sqrt{1+(f'(x))^2}.$
- r'(x): d'(x) = 5:6.

Dog and Rabbit

• $\frac{1}{5}xf''(x) = \frac{1}{6}\sqrt{1 + (f'(x))^2}; \quad f'(100) = f(100) = 0.$

Let $u=f^{\prime}(x).$ It reduces to a first order equation:

$$\circ \quad \frac{1}{5}xu' = \frac{1}{6}\sqrt{1+u^2}; \quad u(100) = 0.$$

Solution:
$$u(x) = \sqrt[3]{10} \left(\frac{x^{5/6}}{200} - \frac{5\sqrt[3]{10}}{x^{5/6}} \right)$$
.

Solve
$$f'(x) = \sqrt[3]{10} \left(\frac{x^{5/6}}{200} - \frac{5\sqrt[3]{10}}{x^{5/6}} \right); \quad f(100) = 0.$$

$$\circ \quad f(x) = \frac{20\sqrt[3]{10}x^{11/6}}{1100} - 30\sqrt[3]{100}x^{1/6} + \frac{3000}{11}.$$

Therefore,
$$T=\frac{f(0)}{5}=\frac{600}{11}\approx 54.5$$
 seconds.

35/60

Second Order Equations

• A second order linear differential equation has the form

$$\circ \quad \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = r(x). \tag{1}$$

It is called **homogeneous** if r(x) is the zero function:

$$\circ \quad \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0. \tag{2}$$

Theorem.

- o If y_1 and y_2 are solutions to (2) such that y_1/y_2 is non-constant. Then the **general solution** to (2) is
 - $y = C_1y_1 + C_2y_2$, C_1, C_2 are constant.
- \circ If further y_p is a solution to (1), then the **general solution** to (1) is given by
 - $y = C_1y_1 + C_2y_2 + y_p$, C_1, C_2 are constant.

Second Order Equations

• In MA1521, we only consider the special case when p(x) and q(x) are constant functions.

$$\circ \quad \frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x). \tag{3}$$

• We first consider the homogeneous case.

$$\circ \quad \frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0, \text{ or simply } y'' + py' + qy = 0.$$

Note that $(e^{\lambda x})' = \lambda e^{\lambda x}$. Let us try $y = e^{\lambda x}$:

- $\circ \quad \lambda^2 e^{\lambda x} + p\lambda e^{\lambda x} + q e^{\lambda} = 0.$
- $\circ (\lambda^2 + p\lambda + q)e^{\lambda x} = 0.$

Definition. The equation $\lambda^2 + p\lambda + q = 0$ is called the **characteristic equation** of the equation (3).

37 / 60

Second Order Equations

• Given $\lambda^2 + p\lambda + q = 0$, its roots are given by

$$\circ \quad \lambda_1, \lambda_2 = rac{-p \pm \sqrt{\Delta}}{2}$$
, where $\Delta = p^2 - 4q$.

• Theorem. The general solution to y'' + py' + qy = 0 is given by $y = C_1y_1 + C_2y_2$,

- $\circ \quad \Delta > 0 \Rightarrow \lambda_1 \neq \lambda_2$ are distinct real numbers.
 - $y_1 = e^{\lambda_1 x}$, $y_2 = e^{\lambda_2 x}$.
- $\circ \quad \Delta = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda \text{ is real.}$
 - $y_1 = e^{\lambda x}$, $y_2 = xe^{\lambda x}$.
- $\circ \quad \Delta < 0 \Rightarrow \lambda_1, \lambda_2 = a \pm bi, \quad a, b \in \mathbb{R}, b \neq 0.$
 - $y_1 = e^{ax} \cos bx$, $y_2 = e^{ax} \sin bx$.

- Find the general solutions of the following equations.
 - y'' + y' 6y = 0.
 - $\lambda^2 + \lambda 6 = 0 \Rightarrow \lambda = -3, 2.$

Therefore, $y = C_1 e^{-3x} + C_2 e^{2x}$.

- $\circ \quad y'' + y' = 0.$
 - $\lambda^2 + \lambda = 0 \Rightarrow \lambda = -1, 0.$

Therefore, $y = C_1 e^{-1x} + C_2 e^{0x} = C_1 e^{-x} + C_2$.

- $\circ y'' 9y' + 20y = 0.$
 - $\lambda^2 9\lambda + 20 = 0 \Rightarrow \lambda = 4, 5.$

Therefore, $y = C_1 e^{4x} + C_2 e^{5x}$.

39 / 60

Examples

- Find the general solutions of the following equations.
 - y'' + 2y' + y = 0.
 - $\lambda^2 + 2\lambda + 1 = 0 \Rightarrow \lambda_{1,2} = -1$.

Therefore, $y = C_1 e^{-x} + C_2 x e^{-x}$.

- y'' 4y' + 4y = 0.
 - $\lambda^2 4\lambda + 4 = 0 \Rightarrow \lambda_{1,2} = 2$.

Therefore, $y = C_1 e^{2x} + C_2 x e^{2x}$.

- $\circ \quad y'' = 0.$
 - $\lambda^2 = 0 \Rightarrow \lambda_{1,2} = 0$.

Therefore, $y = C_1 e^{0x} + C_2 x e^{0x} = C_1 + C_2 x$.

- · Find the general solutions of the following equations.
 - $\circ y'' 6y' + 25y = 0.$
 - $\lambda^2 6\lambda + 25 = 0 \Rightarrow \lambda_{1,2} = 3 \pm 4i$.

Therefore, $y = C_1 e^{3x} \cos 4x + C_2 e^{3x} \sin 4x$.

- $\circ \quad y'' + 8y = 0.$
 - $\lambda^2 + 8 = 0 \Rightarrow \lambda_{1,2} = \pm 2\sqrt{2}i$.

$$y = C_1 e^{0x} \cos(2\sqrt{2}x) + C_2 e^{0x} \sin(2\sqrt{2}x)$$

= $C_1 \cos(2\sqrt{2}x) + C_2 \sin(2\sqrt{2}x)$.

- v'' + 2y' + 3y = 0.
 - $\lambda^2 + 2\lambda + 3 = 0 \Rightarrow \lambda_{1,2} = -1 \pm \sqrt{2}i$.

Therefore, $y = C_1 e^{-x} \cos(\sqrt{2}x) + C_2 e^{-x} \sin(\sqrt{2}x)$.

41 / 60

Variation of Parameters

- We now discuss the general solution to
 - $\circ y'' + py' + qy = r(x).$

It is given by $y(x) = y_h(x) + y_p(x)$.

- $y_h(x) = C_1 y_1(x) + C_2 y_2(x)$ is the general solution of the homogeneous equation y'' + py' + qy = 0.
- $\circ y_p(x)$ is a particular solution to y'' + py' + qy = r(x).
- We will use the method of variation of parameters to find a particular solution to y'' + py' + qy = r(x).
 - This method was invented by Joseph-Louis Lagrange (1736 1813), French mathematician and astronomer.
 - \circ The method can be applied to any second order linear equation y'' + p(x)y' + q(x) = r(x).

Variation of Parameters

- Find a particular solution y_p to y'' + py' + qy = r(x).
 - Suppose the general solution to y'' + py' + qy = 0 is
 - $y_h(x) = C_1 y_1(x) + C_2 y_2(x)$.
 - o It is suggested to try
 - $y_p(x) = v_1(x)y_1(x) + v_2(x)y_2(x)$.

Then
$$y'_n = (v'_1y_1 + v_1y'_1) + (v'_2y_2 + v_2y'_2).$$

- Further assume that $v_1'y_1 + v_2'y_2 = 0$.
 - $y_p' = v_1 y_1' + v_2 y_2'$.
 - $y_p'' = (v_1'y_1' + v_1y_1'') + (v_2'y_2' + v_2y_2'').$
- $r(x) = y_p'' + py_p' + qy_p$ $= (v_1'y_1' + v_1y_1'') + (v_2'y_2' + v_2y_2'')$ $+ p(v_1y_1' + v_2y_2') + q(v_1y_1 + v_2y_2).$

43 / 60

Variation of Parameters

- Find a particular solution y_p to y'' + py' + qy = r(x).
 - Suppose the general solution to y'' + py' + qy = 0 is
 - $y_h(x) = C_1 y_1(x) + C_2 y_2(x)$.
 - Assume that $y_p = v_1 y_1 + v_2 y_2$ and $v_1' y_1 + v_2' y_2 = 0$.

$$r(x) = y_p'' + py_p' + qy_p$$

$$= (v_1'y_1' + v_1y_1'') + (v_2'y_2' + v_2y_2'')$$

$$+ p(v_1y_1' + v_2y_2') + q(v_1y_1 + v_2y_2)$$

$$= v_1(y_1'' + py_1' + qy_1) + v_2(y_2'' + py_2' + qy_1)$$

$$+ v_1'y_1' + v_2'y_2'$$

$$= v_1'y_1' + v_2'y_2'.$$

- Solve the system in v_1' and v_2' :
 - $v'_1y_1 + v'_2y_2 = 0$ and $v'_1y'_1 + v'_2y'_2 = r(x)$.

Variation of Parameters

- Find a particular solution y_p to y'' + py' + qy = r(x).
 - \circ Suppose the general solution to y'' + py' + qy = 0 is
 - $y_h(x) = C_1 y_1(x) + C_2 y_2(x)$.
 - \circ Assume that $y_p = v_1 y_1 + v_2 y_2$ and $v_1' y_1 + v_2' y_2 = 0$.
 - Solve the linear system in v'_1 and v'_2 :
 - $v_1'y_1 + v_2'y_2 = 0$ and $v_1'y_1' + v_2'y_2' = r(x)$.

$$v_1' = \frac{-y_2 r(x)}{W(y_1, y_2)}$$
 and $v_2' = \frac{y_1 r(x)}{W(y_1, y_2)}$,

where $W(y_1,y_2)=\begin{vmatrix} y_1&y_2\\y_1'&y_2' \end{vmatrix}=y_1y_2'-y_1'y_2$ is the Wronskian of y_1 and y_2 .

$$\circ \quad v_1 = \int \frac{-y_2 r(x)}{W(y_1, y_2)} \, dx \text{ and } v_2 = \int \frac{y_1 r(x)}{W(y_1, y_2)} \, dx.$$

45 / 60

Variation of Parameters

- Variation of Parameters. y'' + py' + qy = r(x).
 - 1. Find the solution to the homogeneous equation

$$y'' + py' + qy = 0$$
, say $y_h = C_1y_1 + C_2y_2$.

- 2. Evaluate the Wronskian $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$.
- 3. Evaluate the parameters

$$v_1 = \int \frac{-y_2 r(x)}{W(y_1, y_2)} dx, v_2 = \int \frac{y_1 r(x)}{W(y_1, y_2)} dx.$$

- 4. A particular solution is given by $y_p = v_1y_1 + v_2y_2$.
- 5. The general solution is given by

$$\circ \quad y = y_h + y_p = C_1 y_1 + C_2 y_2 + (v_1 y_1 + v_2 y_2).$$

•
$$y'' - y' - 6y = e^{-x}$$
.

1.
$$\lambda^2 - \lambda - 6 = 0 \Rightarrow \lambda = -2$$
, 3.

$$y_h = C_1 e^{-2x} + C_2 e^{3x}; \quad y_1 = e^{-2x}, y_2 = e^{3x}.$$

2.
$$W(y_1, y_2) = \begin{vmatrix} e^{-2x} & e^{3x} \\ -2e^{-2x} & 3e^{3x} \end{vmatrix} = 5e^x$$
.

3.
$$v_1' = \frac{-y_2 r(x)}{W(y_1, y_2)} = \frac{-e^{3x} e^{-x}}{5e^x} = -\frac{1}{5}e^x$$
.

$$v_2' = \frac{y_1 r(x)}{W(y_1, y_2)} = \frac{e^{-2x} e^{-x}}{5e^x} = \frac{1}{5}e^{-4x}.$$

$$v_1 = -\frac{1}{5}e^x$$
, $v_2 = -\frac{1}{20}e^{-4x}$.

4.
$$y_p = v_1 y_1 + v_2 y_2 = -\frac{1}{5} e^{-x} - \frac{1}{20} e^{-x} = -\frac{1}{4} e^{-x}$$
.

$$\therefore y = y_h + y_p = C_1 e^{-2x} + C_2 e^{3x} - \frac{1}{4} e^{-x}.$$

47 / 60

Examples

$$\bullet \quad y'' - 2y' + y = 2x.$$

1.
$$\lambda^2 - 2\lambda + 1 = 0 \Rightarrow \lambda = 1$$
.

$$\circ y_h = C_1 y_1 + C_2 y_2; \quad y_1 = e^x, y_2 = x e^x.$$

2.
$$W(y_1, y_2) = \begin{vmatrix} e^x & xe^x \\ e^x & (1+x)e^x \end{vmatrix} = e^{2x}$$
.

3.
$$v_1' = \frac{-y_2 r(x)}{W(y_1, y_2)} = \frac{-xe^x \cdot 2x}{e^{2x}} = -2x^2 e^{-x}.$$

$$v_2' = \frac{y_1 r(x)}{W(y_1, y_2)} = \frac{e^x \cdot 2x}{e^{2x}} = 2xe^{-x}.$$

$$v_1 = 2(2 + 2x + x^2)e^{-x}, \quad v_2 = -2(1+x)e^{-x}.$$

4.
$$y_p = v_1 y_1 + v_2 y_2 = \dots = 4 + 2x$$
.

$$\therefore y = y_h + y_p = C_1 e^x + C_2 x e^x + (4 + 2x).$$

$$\bullet \quad y'' + y = x.$$

1.
$$\lambda^2 + 1 = 0 \Rightarrow \lambda = \pm i$$
.

$$\circ y_h = C_1 y_1 + C_2 y_2; \quad y_1 = \cos x, y_2 = \sin x.$$

2.
$$W(y_1, y_2) = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = 1.$$

3.
$$v_1' = \frac{-y_2 r(x)}{W(y_1, y_2)} = \frac{-\sin x \cdot x}{1} = -x \sin x.$$

$$v_2' = \frac{y_1 r(x)}{W(y_1, y_2)} = \frac{\cos x \cdot x}{1} = x \cos x.$$

$$\circ v_1 = -\sin x + x\cos x, \quad v_2 = \cos x + x\sin x.$$

4.
$$y_p = v_1 y_1 + v_2 y_2 = \dots = x$$
.

$$\therefore y = y_h + y_p = C_1 \cos x + C_2 \sin x + x.$$

49 / 60

Operator Methods

• Consider the first order differential equation

$$\circ \quad \frac{dy}{dx} - ky = r(x).$$

•
$$\int (-k) dx = -kx + c, \quad v(x) = e^{-kx}.$$

•
$$y = e^{kx} \int e^{-kx} r(x) dx$$
.

• Let $D = \frac{d}{dx}$. The equation has the form

$$\circ \quad Dy - ky = r(x), \quad \text{or simply } (D-k)y = r(x).$$

• Then
$$y = \frac{1}{D-k} r(x)$$
.

• Therefore, define
$$\frac{1}{D-k} r(x) = e^{kx} \int e^{-kx} r(x) dx$$
.

Operator Methods

• Let
$$D = \frac{d}{dx}$$
 in $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x)$.

$$\circ \quad D^2y + pDy + qy = r(x), \text{ or simply }$$

$$\circ \quad (D^2 + pD + q)y = r(x).$$

Factorize
$$\lambda^2 + p\lambda + q = (\lambda - \lambda_1)(\lambda - \lambda_2)$$
.

$$\circ D^2 + pD + q = (D - \lambda_1)(D - \lambda_2).$$

The equation becomes

$$\circ (D - \lambda_1)(D - \lambda_2)y = r(x).$$

Therefore,
$$y = \frac{1}{D - \lambda_1} \frac{1}{D - \lambda_2} r(x)$$
.

This is called the operator method, introduced by Oliver Heaviside (1850 – 1925), a self-taught English electrical engineer, mathematician, and physicist.

51/60

Operator Methods

• Suppose
$$y'' + py' + qy = 0$$
.

• Suppose
$$y''+py'+qy=0.$$
 Then $y=\frac{1}{D-\lambda_1}\frac{1}{D-\lambda_2}\,0,$

where λ_1, λ_2 are roots to $\lambda^2 + p\lambda + q = 0$.

$$\circ \quad \frac{1}{D - \lambda_2} 0 = e^{\lambda_2 x} \int e^{-\lambda_2 x} \cdot 0 \, dx = C e^{\lambda_2 x}.$$

$$0 \quad y = \frac{1}{D - \lambda_1} C e^{\lambda_2 x}$$

$$= e^{\lambda_1 x} \int e^{-\lambda_1 x} \cdot C e^{\lambda_2} x \, dx$$

$$= C e^{\lambda_1 x} \int e^{(\lambda_2 - \lambda_1) x} \, dx.$$

Operator Methods

- Suppose y'' + py' + qy = 0. Then $y = Ce^{\lambda_1 x} \int e^{(\lambda_2 - \lambda_1)x} dx$.
 - $\begin{array}{l} \circ & \text{If } \lambda_1=\lambda_2 \text{, then} \\ & y=Ce^{\lambda_1 x}(x+D)=C_1 e^{\lambda_1 x}+C_2 x e^{\lambda_1 x}. \end{array}$
 - $\begin{array}{l} \circ \quad \text{If } \lambda_1 \neq \lambda_2 \text{, then} \\ y = C e^{\lambda_1 x} \left(\frac{e^{(\lambda_2 \lambda_1) x}}{\lambda_2 \lambda_1} + D \right) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}. \end{array}$

In the 2nd case, suppose $\lambda_{1,2}=a\pm bi,\,a,b\in\mathbb{R},\,b
eq0.$

 $= C_1 e^{ax} (\cos bx + i\sin bx) + C_2 e^{ax} (\cos bx - i\sin bx)$ $= (C_1 + C_2)e^{ax}\cos bx + i(C_1 - C_2)e^{ax}\sin bx$ $= C_1^* e^{ax} \cos bx + C_2^* e^{ax} \sin bx.$

53 / 60

Examples

- Find a particular solution of $y'' y = e^{-x}$.
 - $e^{-x} = D^2 y y = (D^2 1)y = (D 1)(D + 1)y.$ $v = \frac{1}{D 1} \frac{1}{D + 1} e^{-x}.$

$$y = \frac{1}{D-1} \frac{1}{D+1} e^{-x}$$
.

•
$$\frac{1}{D+1}e^{-x} = e^{-x} \int e^x e^{-x} dx = e^{-x}x.$$

•
$$y = \frac{1}{D-1} e^{-x} x = e^x \int e^{-x} \cdot e^{-x} x \, dx$$

$$= e^x \int x e^{-2x} \, dx = -\frac{e^x}{2} \int x \, d(e^{-2x})$$

$$= -\frac{e^x}{2} \left(x e^{-2x} - \int e^{-2x} \, dx \right)$$

$$= -\frac{e^x}{2} \left(x e^{-2x} + \frac{e^{-2x}}{2} \right) = -\frac{e^{-x}}{4} (2x+1).$$

• Find a particular solution of $y'' - y = e^{-x}$.

$$\circ y = \frac{1}{(D-1)(D+1)} e^{-x}
= \frac{1}{2} \left[\frac{1}{D-1} - \frac{1}{D+1} \right] e^{-x}
= \frac{1}{2} \frac{1}{D-1} e^{-x} - \frac{1}{2} \frac{1}{D+1} e^{-x}
= \frac{1}{2} e^{x} \int e^{-x} e^{-x} dx - \frac{1}{2} e^{-x} \int e^{x} e^{-x} dx
= \frac{1}{2} e^{x} \int e^{-2x} dx - \frac{1}{2} e^{-x} \int 1 dx
= \frac{1}{2} e^{x} \frac{-1}{2} e^{-2x} - \frac{1}{2} e^{-x} x
= -\frac{1}{4} e^{-x} - \frac{1}{2} x e^{-x}.$$

55 / 60

Examples

• Find a particular solution of $y'' + 4y' + 4y = 20x^3e^{-2x}$.

$$\circ \quad 20x^3e^{-2x} = (D^2 + 4D + 4)y = (D+2)^2y.$$

•
$$\frac{1}{D+2} 20x^3 e^{-2x} = e^{-2x} \int x^{2x} 20x^3 e^{-2x} dx$$
$$= e^{-2x} \int 20x^3 dx = 5e^{-2x} x^4.$$

•
$$y = \frac{1}{D+2} 5e^{-2x}x^4$$

 $= e^{-2x} \int e^{2x} 5e^{-2x}x^4 dx$
 $= e^{-2x} \int 5x^4 dx$
 $= e^{-2x}x^5$.

- If r(x) is a polynomial, we may try series expansion.
- Find a particular solution of $y'' + y = x^3 3x^2 + 1$.
 - $(D^{2}+1)y = x^{3} 3x^{2} + 1.$ $\frac{1}{D^{2}+1} = \frac{1}{1 (-D^{2})} = 1 D^{2} + D^{4} D^{6} + \cdots$ $y = \frac{1}{D^{2}+1} (x^{3} 3x^{2} + 1)$ $= (1 D^{2} + D^{4} D^{6} + \cdots) (x^{3} 3x^{2} + 1)$ $= (x^{3} 3x^{2} + 1) D^{2}(x^{3} 3x^{2} + 1)$ $+ D^{4}(x^{3} 3x^{2} + 1) D^{6}(x^{3} 3x^{2} + 1) + \cdots$ $= (x^{3} 3x^{2} + 1) (6x 6) + 0 0 + \cdots$ $= x^{3} 3x^{2} 6x + 7.$
- Note that $D^n(x^k) = 0$ if n > k.

57 / 60

Initial Value Problem

- Recall that an initial value problem is an ordinary differential equation with specified values at given points.
 - o The solution to a second order differential equation
 - $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x)$

is of the form $y = C_1y_1 + C_2y_2 + y_p$, which has two indeterminates. In order to uniquely determine the solution, we need **two initial conditions**.

- Usually, the initial conditions are given as following:
 - (i) y = A and $\frac{dy}{dx} = B$ at $x = x_0$;
 - (ii) y = A at $x = x_0$ and y = B at $x = x_1$.

- Suppose the general solution is $y = C_1y_1 + C_2y_2 + y_p$.
 - Initial conditions: $y(x_0) = A$ and $y(x_1) = B$.
 - $A = y(x_0) = C_1 y_1(x_0) + C_2 y_2(x_0) + y_p(x_0)$
 - $B = y(x_1) = C_1 y_1(x_1) + C_2 y_2(x_1) + y_p(x_1)$.

Solve the above linear system to obtain C_1 and C_2 .

- Example. y'' + y = x; $y(-\pi/4) = 0$ and $y(\pi/4) = 0$.
 - $\circ \quad \text{General solution: } y = C_1 \cos x + C_2 \sin x + x.$

General solution:
$$y = C_1 \cos x + C_2 \sin x + x$$
.

$$0 = y(-\frac{\pi}{4}) = \frac{C_1}{\sqrt{2}} - \frac{C_2}{\sqrt{2}} - \frac{\pi}{4}$$

$$0 = y(\pi/4) = \frac{C_1}{\sqrt{2}} + \frac{C_2}{\sqrt{2}} + \frac{\pi}{4} \Rightarrow \begin{cases} C_1 = 0 \\ C_2 = -\frac{\sqrt{2}}{4} \end{cases}$$

 $\circ \quad \text{Solution: } y = -\frac{\sqrt{2}}{4}\sin x + x.$

59/60

Examples

- Suppose the general solution is $y = C_1y_1 + C_2y_2 + y_p$.
 - Initial conditions: $y(x_0) = A$ and $y'(x_0) = B$.
 - $A = y(x_0) = C_1 y_1(x_0) + C_2 y_2(x_0) + y_p(x_0)$
 - $B = y'(x_0) = C_1 y'_1(x_0) + C_2 y'_2(x_0) + y'_p(x_0).$

Solve the above linear system to obtain C_1 and C_2 .

- Example. y'' + y = x; $y(\pi/4) = 0$ and $y'(\pi/4) = 0$.
 - General solution: $y = C_1 \cos x + C_2 \sin x + x$.

$$0 = y(\frac{\pi}{4}) = \frac{C_1}{\sqrt{2}} - \frac{C_2}{\sqrt{2}} + \frac{\pi}{4}$$

$$1 = y'(\frac{\pi}{4}) = -\frac{C_1}{\sqrt{2}} + \frac{C_2}{\sqrt{2}} + 1 \Rightarrow \begin{cases} C_1 = -\frac{\sqrt{2}\pi}{8} \\ C_2 = -\frac{\sqrt{2}\pi}{8} \end{cases}$$

 $\circ \quad \text{Solution: } y = -\frac{\sqrt{2}\pi}{8}\cos x - \frac{\sqrt{2}\pi}{8}\sin x + x.$