Eléments de théorie des groupes Résolutions des exercices

Enoncés de Josette Calais. Résolutions de Oestromemes abonnez vous

Table des matières

1	Structure de groupe	2

2 Classes modulo un sous-groupe 21

STRUCTURE DE GROUPE

1) Soit Z l'ensemble des entiers rationnels, muni de la loi de composition interne notée *, définie par :

$$*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z},$$

 $(a,b) \mapsto a - b.$

- a) La loi * est-elle associative? commutative?
- b) Vérifier qu'il existe dans $(\mathbb{Z},*)$ un élément neutre à droit, c'est-à-dire un élément e tel que

$$\forall a \in \mathbb{Z}, \ a * e = a.$$

e est-il neutre dans $(\mathbb{Z}, *)$?

- c) Existe-t-il, pour tout $a \in \mathbb{Z}$, un symétrique à droite relativement à e,c'est-à-dire un élément a' tel que a*a'=e
- a) $\forall a, b, c \in \mathbb{Z}$, (a*b)*c = a b c, et a*(b*c) = a b + c, la loi n'est pas associative car par exemple on a $(0*0)*1 = -1 \neq 1 = 0*(0*1)$. Et $2*1 = 1 \neq -1 = 1*2$ montre qu'elle n'est pas non plus commutative.
- b) On vérifie que 0 est un neutre à droite pour $*: \forall a \in \mathbb{Z}, \ a*0 = a-0 = a$. Il n'est cependant pas un neutre pour $*, \text{ car } 0*a = -a \neq a$, car on a par exemple $0*1 = -1 \neq 1$.
- c) $\forall a \in \mathbb{Z}, \ a*a' = e \Rightarrow a = a'$. Pour tout élément $a \in \mathbb{Z}, \ a$ est son propre inverse à droite.
- 2) Soit Q l'ensemble des nombres rationnels muni de la loi de composition interne notée * définie par :

$$*: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q},$$

 $(a,b) \mapsto a+b+ab.$

 $(\mathbb{Q}, *)$ est-il un groupe?

La loi * admet 0 comme élément neutre, en effet, $\forall a \in \mathbb{Q}, a*0 = 0*a = a$. Cependant, -1 n'est pas symétrisable par cette loi, car on a $\forall a \in \mathbb{Q}a*-1 = a-1-a = -1 \neq 0$, donc $(\mathbb{Q},*)$ n'est pas un groupe.

- 3) Soit G un ensemble non vide muni d'une loi de composition interne associative notée \cdot : on suppose que dans (G, \cdot) les deux conditions suivantes sont vérifiées :
 - 1° il existe un élément neutre à droite e (voir exercice 1);
 - 2° tout élément $x \in G$ admet un symétrique à droite, x' (voir exercice 1).

Démontrer que (G, \cdot) est un groupe; vérifier, par un contre exemple, que, sans l'associtivité de la loi \cdot , ce résultat n'est plus vrai.

Montrons que le symétrique à droite de tout élément a de G est aussi son symétrique à gauche.

$$aa' = e \Rightarrow a'(aa') = a',$$

 $\Rightarrow (a'a)a' = a'.$

En multipliant des deux cotés par le symétrique à droite de a', on obtient :

$$a'a = e$$
.

Ainsi, le symétrique à droite de a est aussi son symétrique à gauche.

Montrons que le neutre à droite de G est aussi un neutre à gauche, et donc un neutre tout court.

$$\forall a \in G, \ ea = (aa')a,$$

= $a(a'a),$
= a

Ainsi, le neutre à droite de G est aussi un neutre à gauche.

 (G,\cdot) est donc un groupe.

On a vérifié dans l'exercice 1 que pour $(\mathbb{Z}, -)$, la loi n'est pas associative, mais que 0 est un neutre à droite (et non à gauche) et que tout élément est symétrisable.

4) Soit G un ensemble fini, non vide, muni d'une loi de composition interne notée \cdot ; on suppose que la loi est associative et que dans (G, \cdot) tout élément est simplifiable à droite et à gauche.

Démontrer que (G, \cdot) est un groupe.

Comme tout les éléments de G sont simplifiables à droite et à gauche, les applications :

$$\begin{array}{cccc} \tau_g^y:G & \to G &, & \tau_d^y:G & \to G \\ x & \mapsto yx, & x & \mapsto xy \end{array}$$

Sont injectives. Le cardinal de G étant fini, ces translations sont bijectives.

Ainsi, pour a et b fixé, les équations a = xb et a = bx ont chacune une unique solution.

En particulier, pour chaque élément a de G, il existe des uniques e_d^a et e_g^a tel que $a=e_d^a a$ et $a=ae_d^a$. Vérifions qu'ils sont égaux :

$$\begin{split} \forall a \in G, \ aa &= aa, \\ a(e_g^a a) &= (ae_d^a)a, \\ ae_g^a a &= ae_d^a a, \\ ae_g^a &= ae_d^a \text{ (Simplifiation à droite)}, \\ e_g^a &= e_d^a \text{ (Simplifiation à gauche)}. \end{split}$$

Vérifions maintenant que tout les éléments ont le même neutre :

$$\forall a, b \in G, \quad ab = ab,$$

$$(ae^a)b = a(e^bb),$$

$$ae^ab = ae^bb,$$

$$ae^a = ae^b \text{ (Simplifiation à droite)},$$

$$e^a = e^b \text{ (Simplifiation à gauche)}.$$

Ainsi, dans G, il existe un unique élément neutre e.

Reste à montre que chaque élément a admet un unique inverse a^{-1} .

On sait que les équations e = ax et e = xa ont une unique solution chacune, notées respectivement a_g^* et a_d^* . Vérifions qu'il est le même des deux cotés, et est donc l'inverse de a.

$$\forall a \in G, \quad a=a,$$

$$a(a_g^*a)=(aa_d^*)a,$$

$$aa_g^*a=aa_d^*a,$$

$$a_g^*=a_d^* \text{ en simplifiant à droite et à gauche.}$$

Chaque élément possède un unique inverse, et G possède un élément neutre pour la loi associative ·. Ainsi, (G, \cdot) est un groupe.

5) Soit G un groupe d'élément unité e vérifiant la condition (\mathcal{C}) :

$$\forall x \in G, \ x^2 = e.$$

- a) Donner au moins un exemple de groupe, non réduit à l'élément unité, vérifiant la condition (C).
- b) Démontrer que tout groupe vérifiant la condition (C) est abélien.
- a) Le groupe $\left(\frac{\mathbb{Z}}{2\mathbb{Z}},+\right)$ vérifie de façon évidente la condition.
- b) la condition (C) implique que chaque élément est son proper inverse, ainsi :

$$\forall a, b \in G, \quad (ab)^2 = e,$$

$$abab = e,$$

$$bab = a,$$

$$ab = ba.$$

Tout groupe vérifiant la propriété est donc abélien.

6) G étant un groupe, prouver que l'application $f: G \to G$, est une permutation de G et que f $x \mapsto x^{-1}$. est un automorphisme si et seulement si G est abélien.

Chaque élément d'un groupe possède un unique inverse, l'application est donc trivialement bijective. Supposons que G soit abélien :

$$\forall a, b \in G, \quad f(ab) = (ab)^{-1},$$

= $b^{-1}a^{-1},$
= $a^{-1}b^{-1},$
= $f(a)f(b).$

Donc G abélien $\Rightarrow f$ est un automorphisme. Supposons que f soit un automorphisme :

$$\forall a,b \in G, \quad f(ab) = f(a)f(b) \Rightarrow b^{-1}a^{-1} = a^{-1}b^{-1},$$

$$\Rightarrow ab = ba \text{ en appliquant f des deux côtés}.$$

ainsi, f est un automorphisme si et seulement si G est abélien.

7) Montrer que si G est un groupe fini d'ordre pair, il existe au moins un élément $x \neq e$, dans G, tel que $x^2 = e$.

Soit G d'ordre 2n, définissons la relation d'équivalence :

$$x\mathcal{R}y \Leftrightarrow x = y \text{ ou } x = y^{-1}.$$

Soit $\{x_i\}_{i\in I}$ une famille de représentants des classes modulo \mathcal{R} . pour tout $\overline{x}\in G/\mathcal{R}$ a $1\leq |\overline{x}|\leq 2$. le groupe se partitionne en k classes d'un élément (correspondant aux éléments qui sont leur propre inverse) et l classes de deux éléments de la forme $\{x, x^{-1}\}$, et on a donc :

$$2n = k + 2l$$

Pour respecter la parité, il faut donc que k soit pair, et sachant que k > 1, qu'il existe au moins un élément différent du neutre tel que $x^2 = e$.

- 8) Dans l'ensemble des entiers \mathbb{Z} , on pose $U = \{-1, 1\}$.
- a) Vérifier que U est un groupe relativement à la multiplication des entiers, donc un sous-groupe de (\mathbb{Q}^*, \times) .
- b) Montrer que le groupe U est isomorphe au groupe $\left(\frac{\mathbb{Z}}{(2)},+\right)$.
- a) On a $U \subset \mathbb{Z}$. On vérifie aussi que, $\forall x, y \in U, xy \in U$ et $x^{-1} \in U$, c'est donc un sous-groupe de (Q^*, \times) .
- b) On pose l'application:

$$\varphi: \frac{\mathbb{Z}}{2\mathbb{Z}} \to U,$$

$$x \mapsto \left\{ \begin{array}{l} 1 \text{ si } x = \overline{0} \\ -1 \text{ si } x = \overline{1} \end{array} \right..$$

On vérifie de façon exhaustive que c'est un morphisme :

$$\begin{split} &\varphi(\overline{0+0})=1=1\times 1=\varphi(\overline{0})\varphi(\overline{0})\\ &\varphi(\overline{0+1})=-1=1\times -1=\varphi(\overline{0})\varphi(\overline{1})\\ &\varphi(\overline{1+0})=-1=-1\times 1=\varphi(\overline{1})\varphi(\overline{0})\\ &\varphi(\overline{1+1})=1=-1\times -1=\varphi(\overline{1})\varphi(\overline{1}) \end{split}$$

Elle est aussi bijective par définition, ainsi, U est isomorphe à $\left(\frac{\mathbb{Z}}{2\mathbb{Z}},+\right)$

9) Soit $\mathbf D$ le sous ensemble de $\mathbb Q$ formé par les nombres décimaux :

$$\mathbf{D} = \left\{ \frac{a}{10^n}; a \in \mathbb{Z}, n \in \mathbb{N} \right\}.$$

Prouvez que **D** est un sous-groupe de $(\mathbb{Q}, +)$.

De façon évidente, $\mathbf{D}\subset\mathbb{Q}$. Soit $\frac{a}{10^n},\frac{b}{10^m}\in\mathbf{D},$ $\frac{a}{10^n}-\frac{b}{10^m}=\frac{10^ma-10^nb}{10^{n+m}}.$

On a $10^m a - 10^n b \in \mathbb{Z}$ car $a, b \in \mathbb{Z}$, et $n + m \in \mathbb{N}$, donc $\frac{a}{10^n} - \frac{b}{10^m} \in \mathbf{D}$, ainsi $(\mathbf{D}, +)$ et un sous groupe de $(\mathbb{Q}, +)$

10) Soit, dans \mathbb{N} , un nombre premier p. On pose :

$$\mathbb{Q}_p = \left\{ \frac{a}{p^n}; a \in \mathbb{Z}, n \in \mathbb{N} \right\}.$$

- a) Vérifier que \mathbb{Q}_p est un sous-groupe de $(\mathbb{Q},+)$ et que $\mathbb{Q}_p = \bigcup_{n \in \mathbb{N}} \langle \frac{1}{p^n} \rangle$.
- b) Montrer que l'application $\varphi: \mathbb{Q}_p \to \mathbb{Q}_p$, est une permutation de \mathbb{Q}_p . L'application φ est-elle un $x \mapsto px$. automorphisme de $(\mathbb{Q}_p, +)$?

a) $\mathbb{Q}_p \in \mathbb{Q}$, et soit $\frac{a}{p^n}, \frac{b}{p^m} \in \mathbb{Q}_p$:

$$\frac{a}{p^n} - \frac{b}{p^m} = \frac{p^m a - p^n b}{p^{n+m}}.$$

On a $p^m a - p^n b \in \mathbb{Z}$, et $n + m \in \mathbb{N}$, donc $\frac{a}{p^n} - \frac{b}{p^m} \in \mathbb{Q}_p$, ainsi $(\mathbb{Q}_p, +)$ et un sous groupe de $(\mathbb{Q}, +)$. De

$$\bigcup_{n\in\mathbb{N}}\langle\frac{1}{p^n}\rangle=\bigcup_{n\in\mathbb{N}}\left\{\frac{a}{p^n};\ a\in\mathbb{Z}\right\}=\left\{\frac{a}{p^n};\ a\in\mathbb{Z},\ n\in\mathbb{N}\right\}=\mathbb{Q}_p.$$

b) φ est clairement injective. De plus, comme $\frac{a}{p^n} = p \frac{a}{p^{n+1}}$, on en déduite que φ est surjective, donc que c'est une permutation.

$$\forall x, y \in Q_p, \ \varphi(x+y) = p(x+y),$$
$$= px + py,$$
$$= \varphi(x) + \varphi(y).$$

ce qui prouve que φ est un morphisme, et donc un automorphisme.

11) Soit p un nombre premier dans \mathbb{N} . Vérifier les propriétés suivantes :

$$\{a + b\sqrt{p}; (a, b) \in \mathbb{Z} \times \mathbb{Z}\} < (\mathbb{R}, +)$$

 $\{a+b\sqrt{p};\ a\ {\rm et}\ b\ {\rm dans}\ \mathbb{Q}\ {\rm et}\ {\rm non\ simultan\'ement\ nuls}\ \}<(\mathbb{R}^*,\times)$

$$\{a + ib\sqrt{p}; (a, b) \in \mathbb{Z} \times \mathbb{Z}\} < (\mathbb{C}, +)$$

 $\{a+ib\sqrt{p}; a \text{ et } b \text{ dans } \mathbb{Q} \text{ et non simultanément nuls } \} < (\mathbb{C}^*,\times)$

On note que si p n'est pas un carré parfait, \sqrt{p} est irrationel, chaque élément du groupe s'écrit de façon unique et tout se passe nickel.

Posons $G = \{a + b\sqrt{p}; (a, b) \in \mathbb{Z} \times \mathbb{Z}\}$

De façon évidente, $G \subset \mathbb{R}$. Soit $a + b\sqrt{p}, a' + b'\sqrt{p} \in G$:

$$a + b\sqrt{p} - (a' + b'\sqrt{p}) = (a - a') + (b - b')\sqrt{p} \in G$$

Et idem pour les 3 autres flemme.

12) On pose :

$$\Gamma_{\infty} = \{ z \in \mathbb{C}; \ \exists n \in \mathbb{N}, z^n = 1 \}.$$

Vérifier que Γ_{∞} est un sous-groupe de (\mathbb{C}^*, \times) .

 $\Gamma_{\infty} \subset \mathbb{C}, \text{ soit } z_1, z_2 \in \Gamma_{\infty}, \text{ il existe } n_1, n_2 \in \mathbb{N} \text{ tel que } z_1^{n_1} = z_2^{n_2} = 1.$ On constate que $(z_1 z_2^{-1})^{n_1 n_2} = (z_1^{n_1})^{n_2} (z_2^{n_2})^{-n_1} = 1$, et donc $z_1(z_2)^{-1} \in \Gamma_{\infty}$, donc Γ_{∞} est un sous-groupe de (\mathbb{C}^*, \times).

13) A tout nombre réel a on associe l'application

$$\tau_a: \mathbb{R} \to \mathbb{R},$$

$$x \mapsto a + x.$$

Justifier la propriété :

 $T = \{\tau_a; a \in \mathbb{R}\}$ est un sous-groupe du groupe symétrique $S_{\mathbb{R}}$ et le groupe T est isomorphe au groupe $(\mathbb{R}, +)$.

Lemme (1.77)

14) On considère les groupes multiplicatifs \mathbb{R}^* , \mathbb{R}_+^* et \mathbb{C}^* (voir exemple (1.29)) et les applications :

$$f: \mathbb{R}^* \to R_+^*$$
, , où $|x|$ est la valeur absolue de x .

$$x \mapsto |x|.$$

et
$$g: \mathbb{C}^* \to \mathbb{R}_+^*$$
, , où $|z|$ est le module de z . $z \mapsto |z|$.

Vérifier que f et g sont des épimorphismes de groupes.

Déterminer les noyaux de f et g.

Soit x un élément de \mathbb{R}_+^* , on a f(x) = x, donc f est surjective, vérifions que c'est un morphisme :

$$\forall x, y \in \mathbb{R}, \ f(xy) = |xy|,$$
$$= |x||y|,$$
$$= f(x)f(y).$$

C'est donc un épimorphisme de groupe, déterminons son noyau :

$$\text{Ker } f = \{x \in \mathbb{R}^*, \ f(x) = 1\},$$

$$= \{x \in \mathbb{R}^*, \ |x| = 1\},$$

$$= \{-1, 1\}.$$

Soit x un élément de \mathbb{R}_+^* , on a g(x)=x, donc g est surjective, vérifions que c'est un morphisme :

$$\forall x, y \in \mathbb{R}, \ g(xy) = |xy|,$$
$$= |x||y|,$$
$$= g(x)g(y).$$

C'est donc un épimorphisme de groupe, déterminons son noyau :

$$\begin{aligned} \text{Ker } g &= \left\{ x \in \mathbb{C}^*, \ f(x) = 1 \right\}, \\ &= \left\{ x \in \mathbb{C}^*, \ |x| = 1 \right\}, \\ &= \mathbb{U}. \end{aligned}$$

15) Démontrer que l'application $\lambda: \mathbb{R} \to \mathbb{R}_+^*$, est un isomorphisme du groupe $(\mathbb{R}, +)$ sur le groupe $x \mapsto 10^x$. (\mathbb{R}_+^*, \times) .

Vérifions que c'est une morphisme :

$$\forall a, b \in \mathbb{R}, \lambda(a+b) = 10^{a+b},$$
$$= 10^{a}10^{b},$$
$$= \lambda(a)\lambda(b).$$

L'injectivité :

$$x \in \text{Ker } \lambda \Rightarrow 10^x = 1 \Rightarrow x = 0.$$

La surjectivité :

$$\forall y \in \mathbb{R}_+^*, \ \lambda(log_{10} \ y) = y.$$

Donc λ est une isomorphisme de groupe.

16)

a) Le centre d'un groupe G étant désigné par Z(G), démontrer la propriété :

$$H \le G \Rightarrow Z(G) \cap H \le Z(H)$$

- b) G et G' étant deux groupes, si f est un épimorphismes de G sur G', prouver que l'on a : $f(Z(G)) \leq Z(G')$
- a) Un élément de H qui commute avec tout les élements de G commute aussi avec tout les élément de H, d'ou $Z(G) \cap H \subset Z(H)$. De plus, l'intersection de sous-groupes est un sous-groupe, donc $Z(G) \cap H \leq Z(H)$.
- b) Soit $y \in f(Z(G))$, il existe $x \in Z(G)$ tel que y = f(x). f étant surjective, pour tout $z \in G'$, il existe $w \in G$ tel que z = f(w). On a donc :

$$yz = f(x)f(w) = f(xw) = f(wx) = f(w)f(x) = zy.$$

D'où $y \in Z(G')$, et comme f(Z(G)) est un sous-groupe de G' inclus dans Z(G'), on a bien $f(Z(G)) \le Z(G')$.

17) Soit S une partie non vide d'un groupe G; on pose :

$$C_G(S) = \{ g \in G; \ gx = xg, \ \forall x \in S \}.$$

- a) Vérifier que $C_G(S)$ est un sous-groupe de G. $C_G(S)$ est appelé le centralisateur de S dans G. Si $S = \{x\}$, on le note $C_G(x)$ et on l'appelle le centralisateur de X dans G.
- b) Z(G) étant le centre de G, démontrer la relaion : $\bigcap_{x\in G} C_G(x) = Z(G)$
- c) Pour $x \in G$, posons $H = C_G(x)$; Vérifier que $x \in Z(H)$.
- a) Soit $h, g \in C_G(S)$, pour tout $x \in S$, on a :

$$(hg^{-1})x = hxg^{-1} = xhg^{-1}.$$

Donc $\forall h, g \in C_G(S), hg^{-1} \in C_G(S)$, c'est donc bien un sous-groupe de G.

b)

$$g \in Z(G) \Leftrightarrow \forall x \in G, \ gx = xg \Leftrightarrow \forall x \in G, \ g \in C_G(x) \Leftrightarrow g \in \bigcap_{x \in G} C_G(x)$$

c)

$$H = C_G(x) \Leftrightarrow \forall h \in H, \ hx = xh \Leftrightarrow x \in Z(H).$$

18) Soit A, B, C trois parties non vides d'un groupe G.

Soit $H = \langle A, B \rangle$ le sous-groupe de G engendré par $A \cup B$.

Si $K = \langle A, B, C \rangle$ est le sous-groupe de G engendré par $A \cup B \cup C$, démontrer que $K = \langle H, C \rangle$.

(j'ai repris la demo d'un mec, qui est pas complete je crois, la mienne a environ 200 indices avec des sommes donc chiant a taper)

Soit \mathcal{H}_S l'ensemble des sous groupe de G contenant S. Par définition,

$$H = \bigcap_{L \in \mathcal{H}_{A \cup B}} L, \quad K = \bigcap_{L \in \mathcal{H}_{A \cup B \cup C}} L.$$

Montrons que $\mathcal{H}_{A\cup B\cup C} = \mathcal{H}_{H\cup C}$

Soit $L \in \mathcal{H}_{A \cup B \cup C}$, comme $A \cup B \subset L$, on a $L \in \mathcal{H}_{A \cup B}$, et donc $L \in \mathcal{H}_{H \cup C}$.

De façon réciproque, soit $L \in \mathcal{H}_{H \cup C}$, on a $A \cup B \subset H \subset L$, donc $L \in \mathcal{H}_{A \cup B \cup C}$.

Ainsi, on a $\mathcal{H}_{A\cup B\cup C} = \mathcal{H}_{H\cup C}$, et donc que $K = \langle H, C \rangle$.

19) Démontrer que le groupe des quaternions (exemple (1.16)) est engendré par les matrices :

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Soit le groupe des quaternions :

$$\begin{cases} q_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, q_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, q_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, q_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \\ q_5 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, q_6 = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, q_7 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, q_8 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \end{cases}$$

On peut exprimer tout les q_1 en fonction de A, B

- $--q_1 = A^0$
- $-q_2 = A^2 = B^2$
- $-q_3 = A$
- $q_4 = q_2 A = A^3$
- $--q_5=B$
- $--q_6 = q_2 B = B^3$
- $-q_7 = BA$
- $--q_8 = B^3 A$

20) Dans l'ensemble $M_2(\mathbb{R})$ des matrices carrées d'ordre 2 sur \mathbb{R} , on considère le sous-ensemble Γ tel que :

$$\Gamma = \left\{ \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix} : \ x \in \mathbb{R}^* \right\}.$$

Démontrer que Γ est un groupe par rapport à la multiplication des matrices, mais que ce groupe n'est pas un sous-groupe de $GL_2(\mathbb{R})$.

Vérifier que le groupe Γ est isomorphe au groupe (\mathbb{R}^*, \times) .

Soit
$$\begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} y & y \\ 0 & 0 \end{pmatrix} \in \Gamma$:

$$\begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} y & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} xy & xy \\ 0 & 0 \end{pmatrix} \in \Gamma.$$

De plus, pour tout $\begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix} \in \Gamma$, son inverse $\begin{pmatrix} 1/x & 1/x \\ 0 & 0 \end{pmatrix} \in \Gamma$, et $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ est le neutre pour la multiplication des matrices dans cet ensemble.

On sait la loi associative, ainsi, Γ est un groupe pour la multiplication des matrices.

Ce n'est cependant pas un sous-groupe de $GL_2(\mathbb{R})$, car elles ne sont pas inversibles, ayant toutes un déterminant nul.

 $\varphi: \mathbb{R}^* \to \Gamma,$ $x \mapsto \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}.$ est un isomorphisme de groupe. On vérifie directement que

$$x \quad \mapsto \quad \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$$

21) Soit n > 1 dans \mathbb{N} et $\left(\frac{\mathbb{Z}}{(n)}, +\right)$ le groupe des classes de congruence modulo n. On considère la correspondance μ définie par :

$$\mu: \frac{\mathbb{Z}}{(n)} \times \frac{\mathbb{Z}}{(n)} \to \frac{\mathbb{Z}}{(n)},$$
$$(\overline{x}, \overline{y}) \mapsto \overline{xy}.$$

- a) Prouver que la correspondance μ est une application [c'est-à-dire que : $(\overline{x'} = \overline{x} \text{ et } \overline{y'} = \overline{y} \Rightarrow \overline{x'y'} = \overline{xy})$]. En déduire que l'on peut définir dans $\frac{\mathbb{Z}}{(n)}$ une multiplication telle que $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$. Montrer alors que $\frac{\mathbb{Z}}{(n)}$ est un anneau unitaire, et commutatif.
- b) Soit, dans \mathbb{N} , un nombre premier p. On désigne par G_p l'ensemble des éléments non nuls de $\frac{\mathbb{Z}}{(p)}$. Prouver, en utilisant le résultat de l'exercice 4, que G_p est un groupe par rapport à la multiplication définie dans $\frac{\mathbb{Z}}{(p)}$.

En conclure que $\frac{\mathbb{Z}}{(p)}$ est un corps.

- c) Vérifier que si n n'est pas premier $\frac{\mathbb{Z}}{(p)}$ n'est pas un corps.
- a) Soit $x, y, x', y' \in \mathbb{Z}$ tel que $\overline{x} = \overline{x'}$ et $\overline{y} = \overline{y}$. On rappelle que :

$$\overline{x} = \overline{x'} \Leftrightarrow \exists k \in \mathbb{Z}, x = x' + kn, \overline{y} = \overline{y'} \Leftrightarrow \exists k' \in \mathbb{Z}, y = y' + k'n.$$

Ainsi:

$$\overline{xy} = \overline{(x'+kn)(y'+k'n)},$$

$$= \overline{x'y'+x'k'n+y'kn+kk'n^2},$$

$$= \overline{x'y'+n(x'k'+y'k+kk'n)},$$

$$= \overline{x'y'}.$$

la multiplication ainsi définie est associative, commutative, de neutre $\overline{1}$, et est distributive par rapport à l'addition. $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est donc un anneau unitaire commutatif.

- b) L'ensemble G_p est fini, est dans le a) on a montré que la loi de multiplication associée est associative. Montrons que chaque élément est simplifiable à droite et à gauche. Soit $\overline{a}, \overline{x}, \overline{y} \in G_p$ tel que $\overline{ax} = \overline{ay}$. On a $\overline{ax} = \overline{ay}$, autrement dit, que ax ay = a(x y) est un multiple de p. Comme p est un nombre premier ne divisant pas a par hypothèse, x y est un multiple de p d'après le lemme d'Euclide, et donc $\overline{x} = \overline{y}$. Par commutativité, tout les éléments sont simplifiable à droite et à gauche. D'après l'exo 4, G_p est un groupe. De plus, tout élément non nul de $\frac{\mathbb{Z}}{p\mathbb{Z}}$ est inversible, donc c'est un corps.
- c) Chapitre 3.

22) Vérifier que

$$\Gamma = \left\{I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \gamma_1 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \gamma_2 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \gamma_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \gamma_4 = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \gamma_5 = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}\right\}$$

est un sous-groupe de $GL(2,\mathbb{R})$ isomorphe au groupe $GL\left(2,\frac{\mathbb{Z}}{(2)}\right)$.

Ecrire la table de multiplication du groupe Γ ; en déduire que Γ est isomorphe au groupe symétrique S_3 .

Toutes les matrices de cet ensemble ont pour déterminant 1, la multiplication des matrices est associative, et $I \in \Gamma$. Posons dès maintenant la table de multiplication de Γ :

On remarque que chaque élément possède un unique inverse. Γ est donc bien un sous-groupe de $GL(2,\mathbb{R})$. On constate que ce groupe de décompose en deux sous groupes, $H=\{I,\gamma_1,\gamma_2\}$ et $K=\{I,\gamma_4\}$, tel que $\Gamma=HK$. D'ou l'isomorphisme évident (aka, flemme de rédiger) avec $GL(2,\frac{\mathbb{Z}}{2\mathbb{Z}})$ et S_3 .

23)

a) Démontrer les résultats suivants :

$$\Gamma_1 = \left\{ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \gamma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \gamma_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \gamma_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

est un sous-groupe de $GL(2,\mathbb{R})$.

$$\Gamma_2 = \{1, i, -1, -i\} \text{ où } i^2 = -1,$$

est un sous-groupe de (\mathbb{C}^*, \times) .

$$\Gamma_3 = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$$

sous-ensemble de $\frac{\mathbb{Z}}{(5)}$ est un groupe par rapport à la multiplication définie dans $\frac{\mathbb{Z}}{(5)}$.

b) Prouver que $\Gamma_1, \Gamma_2, \Gamma_3$ sont trois groupes isomorphes. Sont-ils cycliques?

De façon immédiate, on a que $\gamma_1 \subset GL(2,\mathbb{R})$, $\Gamma_2 \subset \mathbb{C}^*$ et $\Gamma_3 \subset \frac{\mathbb{Z}}{5\mathbb{Z}}$. Ecrivons leur table de Cayley pour vérifier la stabilité et l'existence d'un unique inverse.

On remarque que ce sont tous des groupes cyclique d'ordre 4, avec $\Gamma_1 = \langle \gamma_1 \rangle$, $\Gamma_2 = \langle i \rangle$ et $\Gamma_3 = \langle 2 \rangle$, ils sont donc tous isomorphes entre eux.

24)

a) Montrer que :

$$K_1 = \left\{ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

est un sous-groupe de $GL(2,\mathbb{R})$ et que $K_2 = \{\overline{1},\overline{3},\overline{5},\overline{7}\}$, sous-ensemble de $\frac{\mathbb{Z}}{(8)}$, est un groupe par rapport à la multiplication définie dans $\frac{\mathbb{Z}}{(8)}$.

b) Vérifier que ces deux groupes sont isomorphes. Ces groupes sont-ils isomorphes au groupe de Klein?

a) On sait la multiplication de matrice associative, et que I est le neutre pour cette opération. Vérifions la fermeture et l'inversibilité :

On a bien K_1 est un sous-groupe de $GL(2,\mathbb{R})$. Faisons pareil pour K_2 , dont on sait la loi associative :

On vérifie bien que K_2 est un groupe.

b) Il n'existe à isomorphisme près que 2 groupes d'ordre 4, $\frac{\mathbb{Z}}{4\mathbb{Z}}$ et $\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$. Comme il n'existe pas d'élément d'ordre 4 dans K_1 ou K_2 , on en déduit qu'ils sont isomorphes entre eux et au groupe de Klein.

25)

- a) Montrer que le groupe symétrique S_3 , les groupes Γ_2 et Γ_3 de l'exercice 23 et le groupe K_2 de l'exercice 24 admettent chacun une représentation matricielle fidèle de degré 2 sur \mathbb{R} .
- b) En associant à tout nombre complexe non nul a+ib la matrice $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, vérifier que le groupe multiplicatif \mathbb{C}^* admet aussi une représentation fidèle de degré 2 sur \mathbb{R} .
- a) On a démontré que $\Gamma_1 \simeq \Gamma_2 \simeq \Gamma_3$. Γ_1 étant un sous-groupe de $GL(2,\mathbb{R})$, Γ_2 et Γ_3 admettent un morphisme bijectif pour un sous-groupe $GL(2,\mathbb{R})$, qui est aussi un morphisme injectif dans $GL(2,\mathbb{R})$. En appliquant le même raisonement pour K_2 et S_3 , on trouve que ces 4 groupes admettent une représentation matricielle de degré 2 sur \mathbb{R} .
- b) Posons l'application φ tel que :

$$\begin{split} \varphi: \mathbb{C}^* &\to GL(2,\mathbb{R}), \\ a+ib &\mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}. \end{split}$$

Vérifions tout d'abord que toute image est bien dans $GL(2,\mathbb{R})$:

$$\forall a + ib \in \mathbb{C}, det(\varphi(a + ib)) = a^2 + b^2 \neq 0.$$

Vérifions que c'est un morphisme :

$$\begin{split} \forall a+ib,c+id \in \mathbb{C}^*, \varphi((a+ib)+(c+id)) &= \varphi((a+c)+i(b+d)), \\ &= \begin{pmatrix} a+c & -(b+d) \\ b+d & a+c \end{pmatrix}, \\ &= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix}, \\ \varphi(a+ib)\varphi(c+id). \end{split}$$

Enfin, vérifion son injectivité:

Ker
$$(\varphi) = \{a + ib \in C^*, \varphi(a + ib) = I_2\},$$

= $\{a + ib \in C^*, a = 1 \land b = 0\},$
= $\{1\}.$

Ainsi, le groupe multiplicatif C^* admet une représentation matricielle de degré 2 sur \mathbb{R} .

26) Soit P le plan affine euclidien. Si f est une isométrie du plan P, on dit qu'un point A est fixe pour f si f(A) = A.

On désigne par $\mathcal{I}(2)$ l'ensemble des isométries du plan P.

Si Δ est une droite de P, on note s_{Δ} la symétrie du plan par rapport à Δ ; s_{Δ} : $P \rightarrow P$, A' est tel $A \mapsto A'$. que Δ est la médiatrice de AA'.

- a) Vérifier les propriétés suivantes :
 - L'identité de P, notée id_P , appartient à $\mathcal{I}(2)$.
 - quelle que soit la droite Δ , s_{Δ} appartient à $\mathcal{I}(2)$ et $s_{\Delta} \circ s_{\Delta} = id_P$.
 - Si f_1 et f_2 sont dans $\mathcal{I}(2)$, alors $f_2 \circ f_1 \in \mathcal{I}(2)$; $f_2 \circ f_1$ sera appelé le produit de f_1 et f_2 dans $\mathcal{I}(2)$.
- b) Soit $f \in \mathcal{I}(2)$; montrer que :
 - si f à deux points fixes distincts A et B, alors tout point de la droite AB est fixe pour f;
 - Si f à trois points fixes, A, B, C non alignés, alors $f = id_P$.
- c) Démontrer que toute isométrie $f \in \mathcal{I}(2)$ est le produit de 0, 1, 2, ou 3 symétries.
- d) Prouver que $\mathcal{I}(2)$ est un sous-groupe du groupe symétrique S_p et que $\mathcal{I}(2)$ est non-abélien.
- e) A tout vecteur v de l'espace vectoriel \mathbb{R}^2 on associe la translation de vecteur v du plan affine P, notée t_v . Montrer à l'aide de (c) que $t_v \in \mathcal{I}_2$ et que $\mathcal{T}(P) = \{t_v; v \in \mathbb{R}^2\}$ est un sous-groupe abélien de $\mathcal{I}(2)$, isomorphisme à $(\mathbb{R}^2, +)$.
- f) Soit O un point du plan P, pour $\alpha \in \mathbb{R}$; on note $r_{O,\alpha}$ la rotation du plan P de centre O et d'angle α . Montrer à l'aide de (c) que $r_{O,\alpha} \in \mathcal{I}(2)$. $\mathcal{R}(P,O)$ désignant l'ensemble de toutes les rotations $R_{O,\alpha}$ pour $\alpha \in \mathbb{R}$, vérifier que $\mathcal{R}(P,O) = \{r_{O,\alpha}; 0 \leq \alpha < 2\pi\}$ et que $\mathcal{R}(P,O)$ est un sous-groupe abélien de $\mathcal{I}(2)$.
- a) $-\forall A \in P, ||id_P(A)|| = ||A||, l'identité est donc une isométrie.$
 - Pour toute droite Δ et point A avec son symétrique par rapport à Δ A', on pose le repère de centre O l'intersection entre Δ et AA' et d'axes $\overrightarrow{OA'}$ et Δ . Dans ce repère, le symétrique d'un point (x,y) est (-x,y). Ainsi :

$$\forall (x,y) \in \mathbb{R}^2, \ ||s_{\Delta}(x,y)|| = ||(-x,y)|| = ||(x,y),||$$

et on a

$$\forall (x,y) \in \mathbb{R}^2, \ s_{\Delta}(s_{\Delta}((x,y))) = s_{\Delta}((-x,y)) = (x,y) = id_P((x,y)).$$

 $\forall f_1, f_2 \in \mathcal{I}(2), \forall A \in P, ||f_2 \circ f_1 \circ A|| = ||f_1 \circ A|| \text{ car } f_2 \text{ est une isométrie},$ $= ||A|| \text{ car } f_1 \text{ est une isométrie}.$

Ainsi, le produit de deux isométries est une isométrie.

b) — Soit M un point de la droite AB, d la fonction distance, comme f est une isométrie, on a

$$d(f(A), f(M)) = d(A, M), d(f(B), f(M)) = d(B, M)$$

De plus, comme A et B sont des points fixes, on a

$$d(A, f(M)) = d(A, M), d(B, f(M)) = d(B, M)$$

Donc le point f(M) est à la meme distance de A et B que le point M. Donc, les points M et f(M) sont sur le même cercle centré en A de rayon AM, et aussi sur le même cercle centré en B de rayon BM, cercles tangeant en M.

Ainsi, f(M) = M.

- c)
- d)
- e)
- f)

27) Notons \mathbb{C} le plan complexe, c'est-à-dire le plan affine euclidien \mathbb{R}^2 rapporté à un système d'axes orthonormés Oxy et dont tout point M(x,y) est considéré comme l'image du nombree complexe z=x+iy.

A toute famille de 4 nombres complexes (a, b, c, d) telle que $ad - bc \neq 0$, on associe l'application :

$$\begin{split} f:\mathbb{C} &\to \mathbb{C},\\ z &\mapsto \frac{az+b}{cz+d}, \text{ où } z \in \mathbb{C}.. \end{split}$$

On remarque que si $c \neq 0$, le point $-\frac{d}{c}$ n'a aucune image par f; d'autre part le point $\frac{a}{c}$ n'est l'image d'aucun point de \mathbb{C} . Pour remédier à ces difficultés, on rajoute au plan complexe un point dit à l'infini et noté ∞ .

On pose
$$\tilde{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$
, pour $c \neq 0$, $f\left(-\frac{d}{c}\right) = \infty$ et $f(\infty) = \frac{a}{c}$.

Une application telle que f est appelée une homographie du plar

Une application telle que f est appelée une homographie du plan complexe.

- a) Montrer que toute homographie f est une permutation de \mathbb{C} .
- b) Démontrer que l'ensemble \mathcal{H} des homographies du plan complexe est un sous-groupe du groupe symétrique
- c) En considérant le cas où c=0, prouver que \mathcal{H} contient comme sous-groupes le groupe des similitudes et translations du plan complexe.
- d) Vérifier que l'homographie $z\mapsto \frac{1}{z}$ est le produit (commutatif) de l'inversion de centre O et de puissance 1. et de la symétrie par rapport à l'axe Ox.
- e) Démontrer que toute homographie f du plan complexe conserve les angles et leurs orientation, ce que l'on exprime en disant que f est une transformation conforme du plan.
- f) Prouver que les homographies:

$$f_1: z \mapsto z; \ f_2: z \mapsto -z; \ f_3: z \mapsto \frac{1}{z}; \ f_4: z \mapsto -\frac{1}{z}$$

forment un sous-groupe de \mathcal{H} isomorphe au groupe de Klein.

g) Prouver que les homographies :

$$g_1:z\mapsto z;\ g_2:z\mapsto \frac{1}{1-z};\ g_3:z\mapsto \frac{z-1}{z},$$

$$g_4: z \mapsto \frac{1}{z}; \ g_5: z \mapsto 1 - z; \ g_6: z \mapsto \frac{z}{z - 1}$$

forment un sous-groupe de \mathcal{H} isomorphe au groupe symétrique S_3 .

a) Vérifions l'injectivité de f:

$$\forall x, y \in \tilde{\mathbb{C}}, \ f(x) = f(y) \Rightarrow \frac{ax+b}{cx+d} = \frac{ay+b}{cy+d},$$

$$\Rightarrow (ax+b)(cy+d) = (ay+b)(cx+d),$$

$$\Rightarrow acxy + adx + bcy + bd = acxy + ady + bcx + bd,$$

$$\Rightarrow adx + bcy = ady + bcx,$$

$$\Rightarrow ad(x-y) + bc(y-x) = 0,$$

$$\Rightarrow (ad-bc)(x-y) = 0,$$

$$\Rightarrow x = y, \text{ car on sait que } ad-bc \neq 0.$$

Vérifions la surjectivité, $\forall w \in \mathbb{C}^*$, on vérifie que $f\left(\frac{wd-b}{-wc+a}\right) = w$. avec par définition quand c est non nul $f\left(\frac{-d}{c}\right) = \infty$ et $f(\infty) = \frac{a}{c}$.

b) L'ensemble \mathcal{H} est non vide, l'application identité f(z) = z étant une homographie de paramètre $\{1, 0, 0, 1\}$. De plus, chaque homographie est inversible, et son inverse est aussi une homographie. Vérifions que cet ensemble est stable par composition, soit f une homographie de paramètres $\{a, b, c, d\}$ et q une homographie de paramètres $\{\alpha, \beta, \gamma, \delta\}$:

$$(f \circ g)(z) = \frac{(a\alpha + b\gamma)z + (a\beta + b\delta)}{(c\alpha + d\gamma) + c\beta + d\delta}.$$

Avec $(a\alpha + b\gamma)(c\beta + d\delta) - (a\beta + b\delta)(c\alpha + d\gamma) \neq 0$, donc \mathcal{H} est stable pas composition.

La composition de fonctions étant associative, on conclut que \mathcal{H} est un sous-groupe de \mathbb{C} .

c) Le groupe des similitudes de \mathbb{C} étant les application de la forme az + b avec $a \in \mathbb{C}^*, b \in \mathbb{C}$, on constate que ce sont les homographie de paramètres $\{a, b, 0, 1\}$.

Les translations étant des similitudes où a=1, on vérifie immédiatement qu'elles sont incluses dans le groupe des homographies.

- d) L'inversion de centre O est $z\mapsto \frac{1}{\overline{z}}$, et la symétrie par Ox $z\mapsto \overline{z}$. Le produit des deux est donc l'homographie
- e) Quand c=0, les homographies sont des similitudes, qui préservent les angles et leurs orientations. Soit f une homographie de paramètres $\{a, b, c, d\}$, avec $c \neq 0$. On peut écrire

$$a + bz = \frac{a}{c}(cz + d) - \frac{ad - bc}{c},$$

ce qui permet de réécrire f comme :

$$f = \frac{a}{c} - \frac{ad - bc}{c^2} \frac{1}{z + \frac{d}{c}}.$$

On peut décomposer f comme une composition de :

- $t: z \mapsto z + \frac{d}{c}$, une translations,
- $i: z \mapsto \frac{1}{z}$, une inversion de centre O et de puissance 1,
- $\begin{array}{ll} & c: z \mapsto \overline{z}, \text{ une symétrie selon l'axe Ox,} \\ & s: z \mapsto -\frac{ad-bc}{c^2}z + \frac{a}{c} \text{ une similitude,} \end{array}$

telle que $f = s \circ c \circ i \circ t \circ$.

Toutes ces applications préservent les angles, de plus i et c changent l'orientation. On en conclut que fest une transformation conforme du plan.

f) Soit $K = \{f_1, f_2, f_3, f_4\}$, posons la table de Cayley de cet ensemble muni de la composition :

Qui permet immédiatement de conclure que K est isomorphe au groupe de Klein.

g) Posons $H = \{g_1, g_2, g_3, g_4, g_5, g_6\}$, et posons sa table de Cayley encore :

H est stable par composition et passage à l'inverse, c'est donc un sous-groupe de \mathcal{H} . En posant la bijection avec S_3 :

$$e \mapsto g_1, \ \sigma_1 \mapsto g_2, \ \sigma_2 \mapsto g_3, \ t_1 \mapsto g_4, \ t_2 \mapsto g_5, \ t_3 \mapsto g_6$$

on constate que les tables de Cayley sont identitique, donc que H et S_3 sont isomorphes.

28)

- a) Démontrer le corrolaire (1.49)
- b) Démontrer la proposition (1.53)
- a) Démontrons par récurrence sur n.
 - Initialisation:

Soit H_1, H_2 deux sous-groupes de G tel que H_1H_2 est un sous-groupe de G, la propriété est vérifiée.

— Hérédité :

Supposons qu'il existe n tel que la propriété est vraie, c'est à dire que pour $\{H_i\}_{1 \leq i \leq n}$ une famille de sous-groupe de G tel que $H_iH_j = H_jH_i$ pour tout (i,j) tel que $1 \leq i < j \leq n, H_1H_2 \dots H_n$ est un sous-groupe de G. Vérifions que la propriété est vrai pour n+1.

Soit une $\{H_i\}_{1 \leq i \leq n+1}$ une famille de sous-groupe de G tel que $H_iH_j = H_jH_i$ pour tout (i,j) tel que $1 \leq i < j \leq n+1$, on a :

$$(H_1H_2...H_{n-1}H_n)H_{n+1} = H_1H_2...H_{n-1}H_{n+1}H_n$$
, par hypothèse,
$$= H_1H_2...H_{n+1}H_{n-1}H_n,$$

$$\vdots$$

$$= H_{n+1}(H_1H_2...H_{n-1}H_n).$$

De plus, par hypothèse de récurrence, $(H_1H_2...H_{n-1}H_n)$ est un sous-groupe de G.

Ainsi, $H_1H_2...H_nH_{n+1}$ est un sous-groupe de G.

— Conclusion:

Le corrolaire est démontré.

b) Soit I un ensemble non vide et $\{H_i\}_{i\in I}$ une famille de sous-groupes d'un groupe abélien G. Montrons que le sous-groupe $G'\Sigma_{i\in I}H_i$ est en somme directe si et seulement si tout $x\in G'$ s'écrt de façon unique :

$$x \in \sum_{i \in I} x_{i_k}.$$

Supposons que chaque $z \in G'$ s'écrive de façon unique. Soit $Z \in \bigcap_{i \in I} H_i$, pour tout $j \in J$, on peut écrire :

$$z = \underbrace{z}_{\in H_j} + \underbrace{0}_{\in \sum_{i \neq j} H_i} = \underbrace{0}_{\in H_j} + \underbrace{z}_{\in \sum_{i \neq j} h_i}$$

z s'écrivant de façon unique, on en conclut que z=0, donc G' est en somme directe.

Supposons que G' soit en somme directe, c'est-à-dire que $\bigcap_{i\in I} H_i = \{0\}$. Soit $z\in G'$, supposons que z s'écrive de deux façcons différentes :

$$z = \sum_{i \in I} x_i = \sum_{i \in I} x_i'$$
, avec au moins un i tel que $x_i \neq x_i'$

pour tout $j \in I$, on peut écrire :

$$x_j - x'_j = \sum_{\substack{i \in I \\ i \neq j}} x'_i - \sum_{\substack{i \in I \\ i \neq j}} x_i = \sum_{\substack{i \in I \\ i \neq j}} x'_i - x_i.$$

On a
$$x_j - x'j \in H_j$$
, et $\sum_{\substack{i \in I \\ i \neq j}} x'_i - x_i \in \sum_{\substack{i \in I \\ i \neq j}} H_i$, donc $x_j - x'_j \in H_j \cap \sum_{\substack{i \in I \\ i \neq j}} x'_i - x_i = 0$.

Donc, pour tout $j \in I$, z s'écrit de façon unique.

29) Soit E un ensemble non vide et G un groupe d'élément unité e. On désigne par G^E l'ensemble des applications f de E dans G. On considère la loi de composition définie dans G^E par :

$$G^E \times G^E \to G^E$$

 $(f,g) \mapsto fg,$

Où fg est telle que pour tout $x \in E$, (fg)(x) = f(x)g(x).

Prouver que $(G^{\tilde{E}})$ est ainsi muni d'une structure de groupe.

Vérifier que G^E est un groupe abélien si et seulement si G est abélien.

La loi de composition est clairement une loi interne. Vérifions qu'elle est associative :

$$\begin{split} \forall f,g,h \in G^E, \ (f(gh))(x) &= f(x)((gh)(x)), \\ &= f(x)(g(x)h(x)), \\ &= (f(x)g(x))h(x) \text{ car } f(x),g(x),h(x) \in G, \text{ un groupe,} \\ &= ((fg)(x))(h(x)), \\ &= ((fg)h)(x). \end{split}$$

Vérifions l'existence d'un élément neutre. Soit e le neutre de G, et $i(x) \in G^E$, tel que $\forall x \in Z, i(x) = e$, pour tout x dans E on a (fi)(x) = f(x)i(x) = f(x) = i(x)f(x) = (if)(x), i est donc un neutre.

Pour tout $f \in G^E$, on pose g tel que $\forall x \in E$, $g(x) = f(x)^{-1}$. On vérifie que $\forall x \in Z, (fg)(x) = f(x)g(x) = f(x)f(x)^{-1} = e = i(x)$, et pareil pour gf.

On en conclut que G^E est un groupe.

Supposons que G soit abélien, soit $f, g \in G^E$:

$$\forall x \in E, (fg)(x) = f(x)g(x),$$

= $g(x)f(x),$
= $(gf)(x).$

Supposons que G^E soit abélien. Pour tout $a,b\in G$, on pose $f,g\in G^E$ tel que $\forall x\in E, f(x)=a$ et g(x)=b. Ainsi on a :

$$\begin{aligned} \forall a,b \in G, \forall x \in E, \ ab &= f(x)g(x), \\ &= (fg)(x), \\ &= (gf)(x), \\ &= g(x)f(x), \\ &= ba. \end{aligned}$$

On conclut que G^E est un groupe abélien si et seulement si G est abélien.

30) \mathbb{R} désignant le groupe additif des réels, on pose :

$$J = \{x \in \mathbb{R}; 0 < x < 1\}.$$

L'addition de \mathbb{R} induit dans l'ensemble \mathbb{R}^J une structure de groupe additif abélien.

- a) Vérifier les propriétés suivantes :
 - l'ensemble des fonctions $f \in \mathbb{R}^J$, continues sur J, est un sous-groupe de $(\mathbb{R}^J, +)$, que l'on notera $\mathcal{C}(J)$;

- si, pour tout $a \in \mathbb{R}$, on note c_a la fonction constante de J dans \mathbb{R} telle que $c_a(x) = a$ pour tout $x \in J$, alors $\Gamma = \{c_a; a \in \mathbb{R}\}$ est un sous-groupe de $(\mathcal{C}(J), +)$.
- b) On considère les applications F_i de $\mathcal{C}(J)$ dans \mathbb{R} telles que :

$$F_1: f \mapsto f(1), \quad F_2: f \mapsto |f(0)|, \quad F_3: f \mapsto \int_0^1 f(x) dx$$

$$F_4: f \mapsto \frac{\pi}{3} \int_0^1 f(x) \cos \frac{\pi x}{6} dx, \quad F_5: f \mapsto \int_0^1 \cos \frac{\pi f(x)}{6} dx.$$

Déterminer les F_i qui sont des homomorphismes de groupes de $(\mathcal{C}(J), +)$ dans $(\mathbb{R}, +)$. Pour chacun des morphismes de groupes F_i , prouver que, quel que soit $a \in \mathbb{R}$, $F_i(c_a) = a$ et montrer qu'il existe un unique $m_i \in \mathbb{R}$ tel que $F_i(id_J - C_{m_i}) = 0$. En déduire que les Ker F_i sont deux à deux distincts.

c) Démontrer que pour tout $F \in Hom(\mathcal{C}(J), \mathbb{R})$, tel que $F(c_a) = a$, quel que soit $a \in \mathbb{R}$, on a

$$C(J) = \operatorname{Ker} F \oplus \Gamma.$$

En conclure qu'il existe de nombreux sous-groupes de $\mathcal{C}(J)$ tels que $\mathcal{C}(J) = H \oplus \Gamma$.

- a) Les fonctions de \mathbb{R}^J continues sur J sont un sous-ensemble des fonctions de \mathbb{R}^J . De plus, la différence de deux fonctions continues est continues. Donc $\mathcal{C}(J)$ est un sous-groupe de $(\mathbb{R}^J,+)$. De la même façon, les fonctions constantes sont des fonctions continues, et $c_a-c_b=c_{a-b}$.
- b) F_1, F_3, F_4 sont des morphismes, en efffet, $\forall f, g \in \mathcal{C}(J)$:

$$\begin{split} F_1(f+g) &= (f+g)(1) = f(1) + g(1) = F_1(f) + F_1(g), \\ F_3(f+g) &= \int_0^1 (f+g)(x) dx = \int_0^1 f(x) + g(x) dx = \int_0^1 f(x) dx + \int_0^1 g(x) dx = F_3(f) + F_3(g), \\ F_4 &: \text{Par linéarité de l'intégrale comme } F_3. \end{split}$$

Cependant, $F_2(c_{-1}+c_1)=F_2(c_0)=0$, mais $F_2(c_{-1})+F_2(c_1)=2$, ce n'est pas un morphisme. Et $F_5(c_0)=1\neq 0$, donc ce n'est pas un morphisme non plus.

On vérifie trivialement (que j'ai la flemme de le taper) que pour ces morphismes, $\forall a \in \mathbb{R}, F_i(c_a) = a$. Posons le calcul pour F_1 :

$$F_1(Id_J - c_m) = 0 \Rightarrow F_1(Id_J) - F(c_m) = 0$$
$$\Rightarrow F_1(Id_J) = F_1(c_m),$$
$$\Rightarrow Id_J(1) = m,$$
$$\Rightarrow m = 1.$$

Et on vérifie qu'on a bien $F_1(Id_J-c_1)=0$ (Peut être qu'en bossant par équivalences successives on aurait pas à revérifier, mais j'suis traumatisée car j'en mettais trop), l'unique m_1 est donc 1. De la même façon, on trouve $m_3=0.5$ et $m_4=1+\frac{6\sqrt{3}-12}{\pi}$.

Comme le c_m est unique pour chacun de ses morphismes, ont en conclut que leurs noyaux sont distincts.

c) Soit $f \in \mathcal{C}(J)$, on peut écrire

$$f = \underbrace{f - c_{F(f)}}_{\in \text{Ker } F} + \underbrace{c_{F(f)}}_{\in \Gamma}.$$

Vérifions ensuites que l'intersection de ces deux ensembles est triviale. Soit $c_a \in \Gamma$, $F(c_a) = a$, donc on a bien Ker $F \cap \Gamma = \{c_0\}$.

Soit la famille de morphismes $\{F_{\alpha}\}$ avec $\alpha \in [0;1]$, tel que $F_{\alpha} = \frac{1}{\alpha} \int_{0}^{\alpha} f(x) dx$.

Par linéarité de l'intégrale, ce sont bien des morphismes. De plus, $\forall a \in \mathbb{R}, F_{\alpha}(c_a) = a$. De la même façon que précédemment, on vérifie que $F_{\alpha}(Id_J - c_{m_{\alpha}}) = 0$ admet une unique solution $m_{\alpha} = \alpha$. On a donc une famille infinie de morphismes aillant des noyaux distincts, ces noyaux permettant la décomposition de $\mathcal{C}(J)$ en somme directe de Ker F_{α} et Γ .

- **31)** Soit deux groupes G_1 et G_2 .
- a) Prouver que les groupes $G_1 \times G_2$ et $G_2 \times G_1$ sont isomorphes.
- b) Γ_1 et Γ_2 étant aussi deux groupes, démontrer la propriété : $(\Gamma_1 \simeq G_1 \text{ et } \Gamma_2 \simeq G_2) \Rightarrow \Gamma_1 \times \Gamma_2 \simeq G_1 \times G_2$.
- c) Si H_1 et H_2 sont respectivement des sous-groupes de G_1 et G_2 , montrer que $H_1 \times H_2$ est un sous-groupe de $G_1 \times G_2$.

Déterminer tous les sous-groupes de $\frac{\mathbb{Z}}{(2)} \times \frac{\mathbb{Z}}{(2)}$; en déduire compte tenu des notations précedentes, qu'un sous-groupe de $G_1 \times G_2$ n'est pas nécessairement de la forme $H_1 \times H_2$.

a) Vérifions que l'application suivante est un isomorphisme de groupe :

$$\varphi: G_1 \times G_2 \to G_2 \times G_1,$$
$$(g_1, g_2) \mapsto (g_2, g_1).$$

 φ est un morphisme, en effet :

$$\forall (g_1, g_2), (h_1, h_2) \in G_1 \times G_2, \ \varphi((g_1, g_2)(h_1, h_2)) = \varphi((g_1 h_1, g_2 h_2)),$$

$$= (g_2 h_2, g_1 h_1),$$

$$= (g_2, g_1)(h_2, h_1),$$

$$= \varphi(g_1, g_1)\varphi(h_1, h_2).$$

Vérifions qu'elle est injective :

$$\forall (g_1, g_2) \in G_1 \times G_2, \ \varphi(g_1, g_2) = (e_2, e_1) \Leftrightarrow (g_2, g_1) = (e_2, e_1).$$

Elle est aussi trivialement surjective, car pour tout $(g_2, g_1) \in G_2 \times G_1$, on a $\varphi(g_1, g_2) = (g_2, g_1)$. Ainsi, φ est un isomorphisme, donc pour tout groupe G_1 et G_2 , on a $G_1 \times G_2 \cong G_2 \times G_1$.

b) Soit φ_1 un isomorphisme de Γ_1 vers G_1 et φ_2 un isomorphisme de Γ_2 vers G_2 . On vérifie de la même façon que a) que :

$$\varphi: \Gamma_1 \times \Gamma_2 \to G_1 \times G_2,$$
$$(\gamma_1, \gamma_2) \mapsto (\varphi_1(\gamma_1), \varphi_2(\gamma_2)).$$

est un isomorphisme de groupe (flemme de taper, et franchement c'est la même chose que a)), donc on a $\Gamma_1 \times \Gamma_2 \cong G_1 \times G_2$.

c) On a $H_1 \times H_2 \subseteq G_1 \times G_2$, et

$$\forall (h_1, h_2), (k_1, k_2) \in H_1 \times H_2, \ (h_1, h_2)(k_1, k_2)^{-1} = (h_1, h_2)(k_1^{-1}, k_2^{-1}),$$
$$= (h_1 k_1^{-1}, h_2 k_2^{-1}) \in G_1 \times G_2.$$

Donc $H_1 \times H_2$ est un sous-groupe de $G_1 \times G_2$.

Les sous groupes de $\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$ sont :

$$\left\{(\overline{0},\overline{0})\right\},\ \left\{(\overline{0},\overline{0}),(\overline{1},\overline{1})\right\},\ \left\{(\overline{0},\overline{0}),(\overline{0},\overline{1})\right\},\ \left\{(\overline{0},\overline{0}),(\overline{1},\overline{0})\right\},$$

On constate que $\{(\overline{0},\overline{0}),(\overline{1},\overline{1})\}$ n'est pas produit de sous-groupes de $\frac{\mathbb{Z}}{2\mathbb{Z}}\times\frac{\mathbb{Z}}{2\mathbb{Z}}$, mais est un sous-groupe de $\frac{\mathbb{Z}}{2\mathbb{Z}}\times\frac{\mathbb{Z}}{2\mathbb{Z}}$.

32) Pour deux groupes G_1 et G_2 , démontrer les propriétés :

- a) $G_1 \simeq G_2 \Rightarrow Aut(G_1) \simeq Aut(G_2)$
- b) $G_1 \simeq G_2 \Rightarrow Int(G_1) \simeq Int(G_2)$.
- a) Soit G_1 et G_2 deux groupes isomorphes et φ un isomorphisme de G_1 vers G_2 .

$$G_1 \stackrel{\varphi}{\longleftarrow} G_2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

On pose l'application Ψ tel que :

$$\Psi: Aut(G_1) \to Aut(G_2),$$

 $a \mapsto \varphi \circ \alpha \circ \varphi^{-1}.$

C'est un morphisme, en effet :

$$\forall \alpha_1, \alpha_2 \in Aut(G_1), \ \Psi(\alpha_1 \circ \alpha_2) = \varphi \circ (\alpha_1 \circ \alpha_2) \circ \varphi^{-1},$$

$$= \varphi \circ \alpha_1 \circ \alpha_2 \circ \varphi^{-1},$$

$$= \varphi \circ \alpha_1 \circ \varphi^{-1} \circ \varphi \circ \alpha_2 \circ \varphi^{-1},$$

$$= \Psi(\alpha_1) \circ \Psi(\alpha_2).$$

Vérifions l'injectivité :

$$\forall \alpha \in Aut(G_1), \Psi(\alpha) = Id_{G_2} \Leftrightarrow \varphi \circ \alpha \circ \varphi^{-1} = Id_{G_2},$$
$$\Leftrightarrow \varphi \circ \alpha = \varphi,$$
$$\Leftrightarrow \alpha = Id_{G_1}.$$

Et si $\alpha \in Aut(G_2)$, on a $\Psi(\varphi^{-1} \circ \alpha \circ \varphi) = \alpha$, montrant la surjectivité, et donc que $G_1 \cong G_2 \Rightarrow Aut(G_1) \cong Aut(G_2)$.

b) De la même façon, on pose :

$$\Psi_{Int}: Int(G_1) \to Int(G_2),$$

 $\sigma_a \mapsto \Psi(\sigma_a).$

On vérifie que Ψ_{Int} est bien définie, avec $\Psi_{Int}(\sigma_g) = \sigma_{\varphi(g)}$. De la même façon que a), on montre que Ψ_{Int} est un isomorphisme de groupes, et donc que $G_1 \cong G_2 \Rightarrow Int(G_1) \cong Int(G_2)$.

33) Soit $\{G_i\}_{i\in I}$ une famille de groupes; montrer que, pour tout groupe G, l'ensemble $Hom\left(G,\prod_{i\in I}G_i\right)$ est équipotent à l'ensemble $\prod_{i\in I}Hom(G,G_i)$.

Même démo que le théorème 1.91 mais pour tout n.

CLASSES MODULO UN SOUS-GROUPE

1) Soient H et K deux sous-groupes finis d'un groupe G, tels que $\sigma(H) = p$ et $\sigma(K) = q$. Montrer que si p et q sont premiers entre eux, alors $H \cap K$ est réduit à l'élement neutre de G.

 $H \cap K$ est un sous-groupe de H, son ordre divise p, et c'est aussi un sous-groupe de K, son ordre divise q. L'ordre de $H \cap K$ divise p et q, mais p et q sont premiers entre eux, on en déduit que $\sigma(H \cap K) = 1$, donc que $H \cap K$ est réduit à l'élément neutre de G.

- 2) Soient H et K deux sous-groupes d'un groupe G. On suppose [G:K] fini.
- a) Soit $\{x\}_{i\in I}$ une famille de représentants des classes à droite distinctes de H modulo $H\cap K$.
 - Démontrer que dans G, on a :

$$Kx_i = Kx_i \Leftrightarrow i = j.$$

En déduire la relation : $[H:H\cap K]\leq [G:K]$; en conclure que $[H:H\cap K]$ est fini.

- Prouver que $[H:H\cap K]=[G:K]$ si G=HK.
- b) On suppose de plus [G:H] fini ; montrer que les résultats précédents impliquent :

$$[G:H\cap K]\leq [G:H][G:K]$$
 (formule (2.5) chap. II)

et que l'égalité à lieu si G = HK.

a)

$$Kx_i = Kx_j \Rightarrow x_i x_j^{-1} \in K,$$

 $\Rightarrow x_i x_j^{-1} \in H \cap K \text{ car x famille de H modulo } H \cap K,$
 $\Rightarrow (H \cap K)x_i = (H \cap K)x_j,$
 $\Rightarrow i = j.$

La réciproque étant triviale, on a bien $Kx_i = Kx_j \Leftrightarrow i = j$.

Un représentant d'une classe à droite de H modulo $H \cap K$ est aussi un réprésentant d'une classe à droite de G modulo K, on en déduit que :

$$[H:H\cap K]\leq [G:K]<\infty.$$

On a démontré que $G \supseteq \bigcup_i Kx_i$.

Soit $g \in G$, par hypothèse, $\exists (h, k) \in H \times K$ tel que g = hk. Il existe $i \in I$ tel que $h \in (H \cap K)x_i \subseteq Kx_i$, et donc $G = \bigcup Kx_i$.

b) D'après la formule des indices, on a :

$$[G:H\cap K] = [G:H][H:H\cap K] \leq [G:H][G:K].$$