Deep Learning for Time Series

Becoming gurus of time series together

Agenda

- 1. Time
- 2. Time series
- 3. Time series analysis
- 4. Limitation of traditional time series methods
- 5. Deep learning for time series

1. Why is "time" important?

Let's start with reaching a consensus of time

Albert Einstein's considered "Time" is the fourth dimension in the universe in Special Relativity.

Three main types of data science

Time Series Analysis

Methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data.

2. Concept Recap

Let's start with the time series analysis sharing two weeks ago

Basic components of time series

Trend

Long term movement of data

Cycle

Long term (1 year+) wavelike variations

Seasonality

Short term, regular variation

Random Variations

Residual variations after all other elements

Irregular Variations

Unusual circumstance and did not reflect typical behavior

Common trend and seasonality patterns

How to forecast?

Basically, classic time series forecasting models are trying to decompose and learn the series from the five elements.

```
E.g.

F = T+S+C+I
F = T*S*C*I
```

Decomposition of time series

But

Nonstationary and time-varying volatility make time series be hard to analyze.

We need to make series stationary to forecast easier.

What is nonstationary?

How

N-order differences or linear combination make series tend to be a constant or a linear function.

-Sir William Granger

N-order diff. = $Y_t - Y_{t-n}$ Linear com. = $Y_t - \alpha X_t$

Traditional time series methods

ARIMA family

AR, MA, ARMA, ARIMA, SARIMA, vecARIMA...

Exponential smoothing family

Single exp smoothing, double exp smoothing, Holt exp smoothing...

ARCH family

ARCH, GARCH, EGARCH...

Limitation of traditional forecast models

- Focus on complete data
- Focus on linear relationships
- Focus on fixed temporal dependence
- Focus on univariate data
- Focus on one-step forecasts

Deep Learning for Time Series

Start from what's for breakfast tomorrow?

RNN

Simplified RNN

Expend RNN

Limitation of RNN

- Short term memory
- Vanishing/ Exploding gradients

LTSM

Element by element addition

Squashing function

References

- 1. A beginner's guide to RNN and LSTM
- 2. <u>遞歸神經網路(RNN)和長短期記憶模型(LSTM)的運作原理</u>
- 3. <u>Deep learning for time series analysis</u>
- 4. <u>Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras</u>

Hands on