Лабораторная работа 6

дослідження чотириполюсника ПРИ ДІЇ СИНУСОЇДНОГО СТРУМУ

1. Мета роботи

1. Визначення коефіцієнтів рівнянь чотириполюсника в формі "А" експериментальним методом.

2. Визначення коефіцієнтів передачі чотириполюсника за

напругою та за струмом.

3. Побудова кругової діаграми струму I_1 чотириполюєника і перевірка правильності її побудови за результатами експерименту.

2. Короткі теоретичні відомості

Електричний ланцюг, що має дві вхідні і дві вихідні клеми, можна назвати чотириполюсником. Трансформатор, лінія передачі електричної енергії постійного або змінного струму, мостова схема, напівпровідниковий тріод можна розглядати також як чотириполюсник. Прийнято позначати чотириполюсник у вигляді прямокутника з двома вхідними і двома вихідними клемами або полюсами (рис.28).

Рис. 28

Як видно з схеми, чотириполюсник характеризується двома напругами U_1 і U_2 і двома струмами I_1 і I_2 . Будь-які дві величини з чотирьох можна визначити через інші. Оскільки число комбінацій з чотирьох по два дорівнює шести, то можливі шість форм запису рівнянь пасивного чотириполюсника " Y", "Z", "A", "В", "G" "Н ". У даній лабораторній роботі ми будемо визначати коефіцієнти рівнянь чотириполюсника в формі "А", 42

тобто встановлювати залежність вхідної напруги U_1 і вхідного струму I_1 , за коефіцієнтами чотириполюсника з його вихідними значеннями напруги U_2 і струму I_2 . Рівняння чоториполюєника в формі "А" мають вигляд:

$$\underline{U}_1 = \underline{A}_{11} \underline{U}_2 + \underline{A}_{12} \underline{I}_2;
\underline{I}_1 = \underline{A}_{21} \underline{U}_2 + \underline{A}_{22} \underline{I}_2.$$

Для того, щоб визначити коефіцієнти чотириполюсника проведемо три досліди:

1. Дослід прямого неробочого ходу, тобто опір навантаження дорівнює нескінченності ($Z_H = \infty$), а значення струму нулю ($I_2 = 0$):

$$\underline{Z}_{1X} = \underline{U}_{1X} / \underline{I}_{1X} = \underline{A}_{11} / \underline{A}_{21} .$$

2. Дослід прямого короткого замикання, тобто опір навантаження дорівнює нулю (Z_H = 0) і значення напруги нулю $(U_2=0)$:

$$\underline{Z}_{1K} = \underline{U}_{1K} / \underline{I}_{1K} = \underline{A}_{12} / \underline{A}_{22}$$
.

3. Дослід зворотного короткого замикання, тобто опір навантаження ($Z_{\rm H}=0$) і значення напруги ($U_{\rm I}=0$) дорівнює нулю. При цьому досліді напруга подається з боку вихідних клем, а навантаження підключене з боку вхідних клем. Рівняння чотириполюсника мають вигляд:

$$\underline{U}_2 = \underline{A}_{22} \ \underline{U}_1 + \underline{A}_{12} \ \underline{I}_1;
\underline{I}_2 = \underline{A}_{21} \ \underline{U}_1 + \underline{A}_{11} \ \underline{I}_1,$$

і отже:

$$\underline{Z}_{2K} = \underline{U}_{2K} / \underline{I}_{2K} = \underline{A}_{12} / \underline{A}_{11}.$$

Визначимо значення коефіцієнтів \underline{A}_{12} , \underline{A}_{21} , \underline{A}_{22} , через отримані опори Z_{1X} , Z_{1K} , Z_{2K} , і коефіцієнт A_{11} :

 $\underline{A}_{12} = \underline{Z}_{2 \text{ K}} \underline{A}_{11}$, $\underline{A}_{21} = \underline{A}_{11} / \underline{Z}_{1 \text{ X}}$, $\underline{A}_{22} = \underline{A}_{11} \underline{Z}_{2 \text{ K}} / \underline{Z}_{1 \text{ K}}$

і, використовуючи основну властивість рівнянь чотириполюсника в формі "А"

$$\underline{A}_{11}\underline{A}_{22} - \underline{A}_{12}\underline{A}_{21} = 1,$$

отримаємо вираз для визначення коефіцієнта \underline{A}_{11} . Набувши значення коефіцієнта А11, отримуємо і всі інші значення:

$$\underline{A}_{11} = \sqrt{\frac{\underline{Z}_{1K} \cdot \underline{Z}_{1X}}{\underline{Z}_{2K} \cdot (\underline{Z}_{1X} - \underline{Z}_{1K})}}$$

Враховуючи, що всі значення коефіцієнтів являють собою