Applications of compactness

Introductory Model Theory

October 28, 2021

Recommended reading: Poizat's Course in Model Theory, Sections 4.2 and 5.1, and Section 5.2 up to Theorem 5.1.

1 Proof of compactness via ultraproducts

Recall from last time...

Fact 1. Let I be a set. Let $\mathcal{P}(I)$ be the power set of I. Suppose $S \subseteq I$. If S has the finite intersection property (FIP), then there is an ultrafilter \mathcal{U} on I with $\mathcal{U} \supseteq S$.

Fact 2 (part of Łoś's theorem). Let M_i be an L-structure for each $i \in I$. Let \mathcal{U} be an ultrafilter on I and let M be the ultraproduct $\prod_{i \in I} M_i/\mathcal{U}$. Then for any L-sentence σ ,

$$M \models \sigma \iff \{i \in I : M_i \models \sigma\} \in \mathcal{U}.$$

We can use ultraproducts and Łoś's theorem to give another proof of compactness.

Theorem 3 (Compactness theorem). If T is a finitely satisfiable L-theory, then T is satisfiable.

Proof. Let $\{M_i : i \in I\}$ be a collection of L-structures containing at least one representative from every elementary equivalence class. For ϕ an L-sentence, let $[\phi] = \{i \in I : M_i \models \phi\}$. Let $\mathcal{S} = \{[\phi] : \phi \in T\}$. We claim \mathcal{S} has FIP. Otherwise, there are $\phi_1, \ldots, \phi_n \in T$ such that $\emptyset = \bigcap_{i=1}^n [\phi_i] = [\bigwedge_{i=1}^n \phi_i]$. But T is finitely satisfiable, so there is some $N \models \bigwedge_{i=1}^n \phi_i$. There is some $M_j \equiv N$, and then $j \in [\bigwedge_{i=1}^n \phi_i] = \emptyset$, a contradiction.

So there is an ultrafilter \mathcal{U} on I containing \mathcal{S} . Let $M = \prod_{i \in I} M_i / \mathcal{U}$. Then for $\phi \in T$, we have

$$\{i \in I : M_i \models \phi\} = [\phi] \in \mathcal{S} \subseteq \mathcal{U},$$

so $M \models \phi$ by Łoś's theorem. Thus $M \models T$.

2 The Löwenheim-Skolem theorem

Theorem 4 (Löwenheim-Skolem). Let T be an L-theory. Suppose T has an infinite model, or that for every $n < \omega$, T has a model of size > n. Then for any $\kappa \ge |L|$, T has a model of size κ .

Proof. Let L' be L plus new constant symbols c_{α} for $\alpha < \kappa$. Let T' be T plus the sentences $c_{\alpha} \neq c_{\beta}$ for $\alpha < \beta < \kappa$.

Claim. T' is finitely satisfiable.

Proof. Let $T_0 \subseteq_f T'$. Then there is $S \subseteq_f \kappa$ such that

$$T_0 \subseteq T \cup \{c_\alpha \neq c_\beta : \alpha, \beta \in S, \ \alpha < \beta\}.$$

Take $M \models T$ with $|M| \ge |S|$. Expand M to an L'-structure by interpreting c_{α} for $\alpha \in S$ as distinct elements of M (and define c_{α} randomly for $\alpha \notin S$). Then $M \models T_0$. \square_{Claim}

By compactness, T' has a model M. Then the c_{α}^{M} are pairwise distinct, so $|M| \geq \kappa$. By Downward Löwenheim-Skolem (also called Löwenheim's theorem), we can find an elementary substructure $N \leq M$ with $|N| = \kappa$. Then $N \equiv M$, so $N \models T$.

3 Elementary amalgamation

Given an L-structure M, and $A \subseteq M$, let L(A) be L plus a new constant symbol for each element of A. Then M is naturally an L(A)-structure.

Definition 5. T(A) is the set of L(A)-sentences true in M.

Taking A = M, the set T(M) is called the *elementary diagram* of M, and sometimes written $\operatorname{eldiag}(M)$. Poizat calls this the *diagram* of M, but some authors use "diagram" to mean the quantifier-free part of T(M).

Remark 6. Suppose $N \models T(M)$. Define $f: M \to N$ to be the map sending $c \in M$ to its interpretation $c^N \in N$. Then

$$M \models \phi(a_1, \dots, a_n) \iff \phi(a_1, \dots, a_n) \in T(M) \iff N \models \phi(f(a_1), \dots, f(a_n)).$$

So $f: M \to N$ is an elementary embedding. Conversely, if $f: M \to N$ is an elementary embedding then N is naturally a model of T(M).

Theorem 7. If $M_1 \equiv M_2$, then there is a structure N and elementary embeddings $M_1 \to N$ and $M_2 \to N$.

Proof. Note $T(M_i)$ is closed under conjunction for i = 1, 2.

Claim. $T(M_1) \cup T(M_2)$ is finitely satisfiable.

Proof. Otherwise, there is $\phi \in T(M_1)$ and $\psi \in T(M_2)$ with $\phi \wedge \psi$ being unsatisfiable. We can write ϕ as $\phi(\bar{a})$ for some L-formula ϕ and \bar{a} in M_1 . Similarly, we can write ψ as $\psi(\bar{b})$ for some L-formula ψ and \bar{b} in M_2 .

Then $M_2 \models \psi(\bar{b})$, so $M_2 \models \exists \bar{x} \ \psi(\bar{x})$, so $M_1 \models \exists \bar{x} \ \psi(\bar{x})$. Take \bar{c} in M_1 with $M_1 \models \psi(\bar{c})$. Expand M_1 to an $(L(M_1) \cup L(M_2))$ -structure by interpreting b_i as c_i . Then $M_1 \models \phi(\bar{a}) \land \psi(\bar{b})$, a contradiction. \square_{Claim}

By compactness, there is $N \models T(M_1) \cup T(M_2)$. Then there are elementary embeddings $M_1 \to N$ and $M_2 \to N$.

4 Types

Let M be an L-structure and $A \subseteq M$. Recall L(A) and T(A) from above.

Definition 8. Suppose $N \succeq M$ and $\bar{b} \in N^n$. The type of \bar{b} over A, written $\operatorname{tp}(\bar{b}/A)$ or $\operatorname{tp}^N(\bar{b}/A)$ is the set of L(A)-formulas satisfied by \bar{b} :

$$\{\phi(x_1,\ldots,x_n)\in L(A):N\models\phi(\bar{b})\}.$$

The space of n-types over A is

$$S_n(A) = \{ \operatorname{tp}^N(\bar{b}/A) : N \succeq M, \ \bar{b} \in N^n \}.$$

Definition 9. Let $\Sigma(\bar{x})$ be a set of L(A)-formulas.

- 1. If $N \succeq M$ and $b \in N^n$, then b satisfies $\Sigma(\bar{x})$, written $N \models \Sigma(b)$, if for every $\phi(\bar{x}) \in \Sigma(\bar{x})$ we have $N \models \phi(\bar{b})$. We also say that \bar{b} realizes Σ , or \bar{b} is a realization of Σ .
- 2. Σ is satisfiable in M if there is a realization in M.
- 3. Σ is finitely satisfiable in M if every finite $\Sigma_0 \subseteq_f \Sigma$ is satisfiable in M.

Exercise 10. Suppose $p \in S_n(A)$ and $\bar{b} \in N^n$ for some $N \succeq M$. Then \bar{b} realizes p iff $\operatorname{tp}(\bar{b}/A) = p$.

Theorem 11. Fix a structure M and subset $A \subseteq M$.

- 1. If $p(\bar{x})$ is an n-type, then p is finitely satisfiable in M.
- 2. If $\Sigma(\bar{x})$ is a set of L(A)-formulas that is finitely satisfiable in M, then there is $p \in S_n(A)$ with $p \supseteq \Sigma$.
- Proof. 1. Take $N \succeq M$ and $\bar{b} \in N^n$ with $\operatorname{tp}(\bar{b}/A) = p$. Suppose $\Sigma_0 \subseteq_f p$. Then $N \models \bigwedge \Sigma_0(\bar{b})$ so $N \models \exists \bar{x} \bigwedge \Sigma_0(\bar{x})$ so $M \models \exists \bar{x} \bigwedge \Sigma_0(\bar{x})$ so $\Sigma_0(\bar{x})$ is realized in M.
 - 2. Let c_1, \ldots, c_n be new constant symbols not in L(A). For any finite $\Sigma_0(\bar{x}) \subseteq \Sigma(\bar{x})$, there is a model of $T(M) \cup \Sigma_0(\bar{c})$, namely M with \bar{c} interpreted as a realization of $\Sigma_0(\bar{x})$. By compactness, $T(M) \cup \Sigma(\bar{c})$ has a model N. There is an elementary embedding $M \to N$ because $N \models T(M)$; without loss of generality $M \preceq N$. Then \bar{c} satisfies $\Sigma(\bar{x})$, so $\operatorname{tp}(\bar{c}/A) \supseteq \Sigma(\bar{x})$.

5 ω -saturated structures

Definition 12. A structure M is ω -saturated if for every finite $A \subseteq_f M$, every $p \in S_1(A)$ is realized in M.

Lemma 13. Suppose $M_1 \leq M_2 \leq M_3 \leq \cdots$. Then there is an L-structure on $M = \bigcup_i M_i$ such that $M_i \leq M$ for all i.

Proof. For each i, $T(M_i)$ is finitely satisfiable, complete, and has the witness property. Therefore the union $\bigcup_i T(M_i)$ is finitely satisfiable, complete, and has the witness property. Take the canonical model. (Or see Theorem 2.6 in Poizat's textbook for a more elementary proof.)

Lemma 14. Let M be a structure. There is $M' \succeq M$ such that if $A \subseteq_f M$ and $p \in S_1(A)$, then p is realized in M'.

Proof. Add a new constant symbol c_p for each $p \in \bigcup_{A \subseteq_{f} M} S_1(A)$. Then $T(M) \cup \bigcup_{p \in S_1(A)} p(c_p)$ is finitely satisfiable, because each p is finitely satisfiable in M. Therefore there is a model N. There is an elementary embedding $M \to N$ because $N \models T(M)$. We may assume $M \preceq N$. Then c_p^N (the interpretation of c_p in N) realizes p.

Theorem 15. Let M be any structure. Then there is an ω -saturated $M' \succeq M$.

Proof. Build a chain $M = M_0 \leq M_1 \leq M_2 \leq \cdots$ such that every type over a finite set in M_i is realized in M_{i+1} . Let $M' = \bigcup_i M_i$. Then $M' \succeq M_0 = M$. If $A \subseteq_f M'$, then $A \subseteq M_i$ for $i \gg 0$, so every type over A is realized in M_{i+1} , hence in M' (as $M_{i+1} \leq M'$).

Remark 16. Let M be ω -saturated. Let A be a finite subset. Let $\Sigma(x)$ be a set of L(A)formulas in x. If $\Sigma(x)$ is finitely satisfiable in M, then $\Sigma(x)$ extends to a type p(x), so there
is some $a \in M$ realizing p(x) and therefore realizing $\Sigma(x)$.

Example. $(\mathbb{R}, +, \cdot, 0, 1)$ is *not* ω -saturated. The following set of formulas is finitely satisfiable in \mathbb{R} , but not realized in \mathbb{R} :

$$\Sigma(x) = \{\exists y \ (y \cdot y + \underbrace{1 + \dots + 1}_{n \text{ times}} = x) : n \in \mathbb{N}\}.$$

On the other hand, one can show that $(\mathbb{C}, +, \cdot, 0, 1)$ is ω -saturated.