Convex Approximation of ReLU Networks for Hidden State Differential Privacy

To appear at NeurIPS 2025

Rob Romijnders, University of Amsterdam (r.romijnders@uva.nl) **Antti Koskela**, Nokia Bell Labs (antti.h.koskela@nokia-bell-labs.com)

Code and slides: github.com/robromijnders/hiddenstate

Differential Privacy: What is the problem?

Users want to contribute data

Need a guarantee that their details are not leaked

NeurIPS 2025, arxiv.org/abs/2407.04884

Are you in the stack?

Example: https://huggingface.co/spaces/bigcode/in-the-stack

```
Instruction: Create a SQL query to get the list of employee
names and ids with a monthly income greater than 4,000.
Input: n/a
Output:
SELECT id, name FROM Employees WHERE
monthly income > 4000;
Instruction: Write a code to add two numbers without using
the \"+\" operator.
Input:
num1 = 2
num2 = 7
Output:
num1 = 2
num2 = 7
# Without using \"+\" operator
sum = num1 - (-num2)
```

```
Instruction: Optimize the given Python
program to improve the speed of execution.

Input:

def calc( num1, num2):
    result = 0
    for i in range(num1, num2):
        result += ((i+1) * (i+2))
    return result

Output:

def calc(num1, num2):
    result = (num1 + num2) * (num2 - num1 + 1) // 2
    return result
```

Basic pattern

Differential Privacy:

"Stochastic algorithm such that individual contribution is blurred, but collective patterns can be learned."

Practical use of Differential Privacy

- Emoji suggestions at Apple
- QuickType suggestions at Apple
- **US Census** releases data under DP
- Executive order US gov. mentions Differential Privacy multiple times
- Governments releasing birth rate data
- Facebook releases mobility data of users during covid pandemic
- Google GBoard language next word prediction
- **LinkedIn** user analytics
- Telemetry on **Windows**

Differential Privacy

An Algorithm $A(\cdot)$ is (ε, δ) -DP when for any two adjacent data sets (D, D') that differ in at most one element, and for any subset of outcomes W, the following inequality holds:

$$\Pr[A(D) \in W] \le e^{\varepsilon} \Pr[A(D') \in W] + \delta$$

Noise proportional to inverse epsilon

Problem setting

- In *common DP-SGD*, all intermediate models are released.

 In the **hidden state threat model**, release only the final model.
- Two problems with *common DP-SGD*
 - Samples are ignored (statistical inefficiency)
 - Compute is wasted (computational inefficiency)

Computational problems with DP-SGD

Problem 1:

For 'poisson sampling,' some samples are repeated. Some are ignored.

Problem 2:

Compute is wasted with unevenly-sized mini-batches

In an epoch, more than 30% of data remains unused

Include with probability p Sample 1
Include with probability p Sample 2
Include with probability p Sample 3
Include with probability p Sample 4

:
Include with probability p Sample N

Wasted	
batch	
batch	
batch	1.00
batch	Stragglers require extra batch
batch	,04
batch	

State of literature

- Feldman et al. (2018) introduce Privacy Amplification by Iteration
- Bok et al. (2024) generalize this to f-DP characterization
- Ye and Shokri (2022) analyse shuffled mini-batch DP-SGD.
- This work: first non-linear function learning with hidden-state DP

Why is data ignored?

Include a sample with probability $p \in (0,1)$. For example, $p = \frac{64}{100,000} = 0.00064$ In one draw, the probability that a specific element is NOT selected is:

$$P(\text{not selected in one draw}) = 1 - p$$

Assumption: consider one epocht that is $\frac{1}{n} = \frac{100,000}{64}$ steps:

$$P(\text{never selected}) = (1 - p)^{N}$$

There is a famous limit:

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e}$$

Therefore, for small p:

$$\lim_{p^{-1} \to \infty} \left(1 - \frac{1}{p^{-1}} \right)^{p^{-1}} = \frac{1}{e}$$

$$P(\text{never selected}) \approx e^{-1} = \frac{1}{e}$$

Expected number of unique elements:

$$E[\text{unique elements}] = 100,000 \times P(\text{selected at least once})$$

= $100,000 \times \left(1 - \frac{1}{e}\right) \approx \textbf{63,200}$ unique elements

Illustrate DP-SGD stragglers

```
from scipy import stats
print(1 - stats.poisson.cdf(256, mu=230))
>> 0.04

# Inefficient: 230 instead of 256
# Stragglers: 4%
```

Scalable DP-SGD: Shuffling vs. Poisson Subsampling

Lynn Chua Google Research chualynn@google.com

Ravi Kumar Google Research ravi.k53@gmail.com Badih Ghazi Google Research badihghazi@gmail.com

Pasin Manurangsi Google Research pasin@google.com

Chiyuan Zhang Google Research chiyuan@google.com Pritish Kamath Google Research pritishk@google.com

Amer Sinha Google Research amersinha@google.com **Truncate stragglers?**

"Scalable DP-SGD: Shuffling vs. poisson subsampling" Chua et al. NeurIPS 2024

Proposition 3.2. For distributions P, P', Q, Q' such that $d_{\text{TV}}(P, P'), d_{\text{TV}}(Q, Q') \leq \eta$, and $D_{e^{\varepsilon}}(P'\|Q') \leq \delta$, then $D_{e^{\varepsilon}}(P\|Q) \leq \delta + \eta(1 + e^{\varepsilon})$.

Proof. For any event Γ we have that

$$P(\Gamma) \stackrel{\text{(ii)}}{\leq} P'(\Gamma) + \eta \stackrel{\text{(iii)}}{\leq} e^{\varepsilon}Q'(\Gamma) + \delta + \eta \stackrel{\text{(iii)}}{\leq} e^{\varepsilon}(Q(\Gamma) + \eta) + \delta + \eta = e^{\varepsilon}Q(\Gamma) + \delta + \eta(1 + e^{\varepsilon}),$$
 where (i) follows from $d_{\text{TV}}(P, P') \leq \eta$, (ii) follows from $D_{e^{\varepsilon}}(P' \| Q') \leq \delta$ and (iii) follows from $d_{\text{TV}}(Q, Q') \leq \eta$. Thus, we get that $D_{e^{\varepsilon}}(P \| Q) \leq \delta + \eta(1 + e^{\varepsilon})$.

The batch size $|S_t|$ before truncation in $\mathcal{P}_{b,B,T}$ is distributed as the binomial distribution $\operatorname{Bin}(n,b/n)$, and thus, by a union bound over the events that the sampled batch size $|S_t| > B$ at any step, it follows that for any input dataset \boldsymbol{x} ,

$$d_{\mathrm{TV}}(\mathsf{ABLQ}_{\mathcal{P}_{b,B,T}}(oldsymbol{x}), \mathsf{ABLQ}_{\mathcal{P}_{b,\infty,T}}(oldsymbol{x})) \leq T \cdot \Psi(n,b,B),$$

where $\Psi(n,b,B) := \Pr_{r \sim \text{Bin}(n,b/n)}[r > B]$. Applying Proposition 3.2 we get

Theorem 3.3. For all $\sigma > 0$, $\varepsilon \geq 0$, and integers b, $n \geq b$, $B \geq b$, T, it holds that

$$\delta_{\mathcal{P}}(\varepsilon) \leq \max\{D_{e^{\varepsilon}}(P_{\mathcal{P}}||Q_{\mathcal{P}}), D_{e^{\varepsilon}}(Q_{\mathcal{P}}||P_{\mathcal{P}})\} + T \cdot (1 + e^{\varepsilon}) \cdot \Psi(n, b, B).$$

Some work for DP-SGD

• A recent line of work considers DP guarantees for DP-SGD with disjoint batches:

$$heta_{j+1} = heta_j - \eta \left(rac{1}{b} \sum
olimits_{x \in B_j}
abla_{ heta} f(heta_j, x) + Z_j
ight)$$

where $Z_j \sim \mathcal{N}(0, \sigma^2 I_d)$ and the data is divided into disjoint batches B_j.

Chua et al. (2025), Choquette-Choo et al. (2025), Feldman and Shenfeld (2025). however, do not accommodate fixed-size batches and, in particular, unshuffled data.

Convex 2-layer neural net

Consider training a ReLU network (with hidden-width m) $f: \mathbb{R}^d \to \mathbb{R}$ (Pilanci and Ergen, 2020),

$$f(x) = \sum_{j=1}^{m} \phi(u_j^T x) \alpha_j. \tag{3.1}$$

The weights are $u_i \in \mathbb{R}^d$, $i \in [m]$ and $\alpha \in \mathbb{R}^m$. The ReLU activation function is $\phi(t) = \max\{0, t\}$. For a vector x, ϕ is applied element-wise, i.e. $\phi(x)_i = \phi(x_i)$.

Suppose the dataset D consists of n tuples of the form $z_i=(x_i,y_i), x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$, for $i \in [n]$. Using the squared loss and L_2 -regularization with a regularization constant $\lambda > 0$, the 2-layer ReLU minimization problem can be written as

$$\min_{\{u_i,\alpha_i\}_{i=1}^m} \frac{1}{2} \left\| \sum_{i=1}^m \phi(Xu_i)\alpha_i - y \right\|_2^2 + \frac{\lambda}{2} \sum_{i=1}^m (\|u_i\|_2^2 + \alpha_i^2), \tag{3.2}$$

where $X \in \mathbb{R}^{n \times d}$ denotes the matrix of the feature vectors, i.e., $X^T = [x_1 \dots x_n]$ and $y \in \mathbb{R}^n$ denotes the vector of labels.

The convex reformulation is based on enumerating all the possible activation patterns of $\phi(Xu)$, $u \in \mathbb{R}^d$. The set of activation patterns that a ReLU output $\phi(Xu)$ can take for a data feature matrix $X \in \mathbb{R}^{n \times d}$ is described by the set of diagonal boolean matrices

$$\mathcal{D}_X = \{ \Lambda = \operatorname{diag}(\mathbb{1}(Xu \ge 0)) : u \in \mathbb{R}^d \}, \tag{3.3}$$

<< Draw data an Relu activations on the board >> NeurIPS 2025, arxiv.org/abs/2407.04884

Figure 3: CIFAR10 Test accuracy versus the spent privacy budget ε , when each model is trained for 400 epochs. NoisyCGD and DP-SGD generally have comparable performance for the 2-layer ReLU network and much higher accuracy than logistic regression.

Comparable results between Noisy-CGD and DP-SGD

Table 1: A comparison of model accuracies vs. ε -values. The iterative methods generally score better than SSP and have comparable accuracy, which shows a high-utility result for hidden-state privacy analysis of a 2-layer neural network. The results are the mean accuracy among five random restarts.

	MNIST		CIFAR-10	
	$\varepsilon = 1.33$	$\varepsilon = 4.76$	$\varepsilon = 1.33$	$\varepsilon = 4.76$
Sufficient Statistics Perturbation (Convex Approx.) Sufficient Statistics Perturbation (Random ReLU) Sufficient Statistics Perturbation (RFF)	$52.5_{\pm0.9}$	$67.0_{\pm 0.2} \ 65.6_{\pm 0.3} \ 77.4_{\pm 0.2}$	$19.3_{\pm0.2}$	$25.9_{\pm0.3}$
${ m DP\text{-}SGD+Convex\ Approximation}\ { m DP\text{-}SGD+ReLU}\ { m NoisyCGD+Convex\ Approximation}$	$91.7_{\pm0.1}$	$94.9_{\pm 0.1} \\ 94.3_{\pm 0.1} \\ 94.4_{\pm 0.1}$	$42.5{\scriptstyle\pm0.1}$	$47.0_{\pm0.2}$

Conclusion

DP-SGD has two problems and one quirk:

- Poisson sampling: some data are ignored, some oversampled
- Computational inefficiency: varying batch sizes
- Hidden-states accounted for but not released

Our work:

- First non-linear function learning with hidden-state DP
- However: one 2-layer net, and results are only on-par