Given an integer n, find each x such that:

- $\begin{array}{l} \bullet \ 0 \leq x \leq n \\ \bullet \ n+x=n \oplus x \end{array}$

where \oplus denotes the <u>bitwise XOR</u> operator. Print the number of x's satisfying the criteria.

For example, if n = 4, there are four values:

- $4+0=4\oplus 0=4$
- $4+1=4\oplus 1=5$
- $4+2=4\oplus 2=6$ $4+3=4\oplus 3=7$.

Function Description

Complete the sumXor function in the editor below. It should return the number of values determined, as an integer.

sumXor has the following parameter(s):

- n: an integer

Input Format

A single integer, n.

Constraints

• $0 < n < 10^{15}$

Subtasks

• 0 < n < 100 for 60% of the maximum score.

Output Format

Print the total number of integers \boldsymbol{x} satisfying the criteria.

Sample Input 0

Sample Output 0

Explanation 0

For n = 5, the x values 0 and 2 satisfy the conditions:

- 5+0=5, $5\oplus 0=5$
- 5+2=7, $5\oplus 2=7$

Sample Input 1

10

Sample Output 1

Explanation 1

For n = 10, the x values 0, 1, 4, and 5 satisfy the conditions:

- 10 + 0 = 10, $10 \oplus 0 = 10$ 10 + 1 = 11, $10 \oplus 1 = 11$

- 10+4=14, $10 \oplus 4=14$ 10+5=15, $10 \oplus 5=15$