# Melhores momentos

AULA 1

# Digrafos

digrafo = de vértices e conjunto de arcos
arco = par ordenado de vértices

Exemplo: v e w são vértices e v-w é um arco



# Especificação

Digrafos podem ser especificados através de sua lista de arcos

#### Exemplo:



d-f

b-d

a-c

b-e

e-f

a-b

#### Grafos

grafo = digrafo simétrico
aresta = par de arcos anti-paralelos

Exemplo: b-a e a-b formam uma aresta



#### Grafos

Um grafo é um digrafo simétrico

Exemplo: representação usual



#### Estrutura de dados

Vértices são representados por objetos do tipo Vertex.

Arcos sao representados por por objetos do tipo Arc

```
#define Vertex int

typedef struct {
    Vertex v;
    Vertex w;
} Arc;
```

# Grafos no computador

Usaremos duas representações clássicas:

- matriz de adjacência (agora)
- vetor de listas de adjacência (próximas aulas)

# Matriz de adjacência de digrafo

Matriz de adjacência de um digrafo tem linhas e colunas indexadas por vértices:

$$adj[v][w] = 1 \text{ se } v-w \text{ \'e um arco}$$
  
 $adj[v][w] = 0 \text{ em caso contrário}$ 

#### Exemplo:



|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | 0 | 0 |

Consumo de espaço:  $\Theta(V^2)$ 

fácil de implementar

## Estrutura digraph

```
V = número de vértices
A = número de arcos
adj = ponteiro para a matriz de adjacência
   struct digraph {
       int V
       int A
       int **adj;
   };
   typedef struct digraph *Digraph;
```

# Digrafo

## Digraph G



## Estruturas de dados



#### MATRIXint

Aloca uma matriz com linhas 0..r-1 e colunas 0..c-1, cada elemento da matriz recebe valor val

```
int **MATRIXint (int r, int c, int val) {
        Vertex i, j;
        int **m = malloc(r * sizeof(int *));
        for (i = 0; i < r; i++)
            m[i] = malloc(c * sizeof(int));
        for (i = 0; i < r; i++)
            for (i = 0; i < c; i++)
5
                m[i][j] = val;
6
        return m;
                               4 D > 4 P > 4 E > 4 E > 9 Q P
```

# Consumo de tempo

| linha | número de execuçõ                      | ies da linha              |  |
|-------|----------------------------------------|---------------------------|--|
|       |                                        |                           |  |
| 1     | = 1                                    | $=\Theta(1)$              |  |
| 2     | $= \mathbf{r} + 1$                     | $= \Theta({\tt r})$       |  |
| 3     | = r                                    | $=\Theta({	t r})$         |  |
| 4     | = r + 1                                | $=\Theta({	extbf{r}})$    |  |
| 5     | $= \mathbf{r} \times (\mathbf{c} + 1)$ | $=\Theta({	t r}{	t c})$   |  |
| 6     | $= r \times c$                         | $=\Theta({\tt r}{\tt c})$ |  |
| total | $\Theta(1) + 3\Theta(r) + 2\Theta(rc)$ |                           |  |

 $=\Theta(\mathbf{r}\,\mathbf{c})$ 

#### Conclusão

Supondo que o consumo de tempo da função malloc é constante

O consumo de tempo da função MATRIXint é  $\Theta(rc)$ .

#### **DIGRAPHinit**

Devolve (o endereço de) um novo digrafo com vértices 0,..,V-1 e nenhum arco.

```
Digraph DIGRAPHinit (int V) {
Digraph G = malloc(sizeof *G);
G->V = V;
G->A = 0;
G->adj = MATRIXint(V,V,0);
return G;
}
```

# AULA 2

# Funções básicas (continuação)

S 17.3

#### DIGRAPHinsertA

Insere um arco v-w no digrafo G. Se v == w ou o digrafo já tem arco v-w, não faz nada

#### void

DIGRAPHinsertA(Digraph G, Vertex w, Vertex w)

#### DIGRAPHinsertA

Insere um arco v-w no digrafo G. Se v == w ou o digrafo já tem arco v-w, não faz nada

#### void

```
DIGRAPHinsertA(Digraph G, Vertex v, Vertex w)
{
    if (v != w && G->adj[v][w] == 0) {
        G->adj[v][w] = 1;
        G->A++;
    }
}
```

#### DIGRAPHremoveA

Remove do digrafo G o arco v-w Se não existe tal arco, a função nada faz.

#### void

DIGRAPHremoveA(Digraph G, Vertex w, Vertex w)

#### **DIGRAPHremoveA**

Remove do digrafo G o arco v-w Se não existe tal arco, a função nada faz.

#### void

```
DIGRAPHremoveA(Digraph G, Vertex v, Vertex w)
{
   if (G->adj[v][w] == 1) {
      G->adj[v][w] = 0;
      G->A--;
   }
}
```

## **DIGRAPHshow**



#### DIGRAPHshow

Para cada vértice v de G, imprime, em uma linha, os vértices adjacentes a v

void DIGRAPHshow (Digraph G) {

#### DIGRAPHshow

Para cada vértice v de G, imprime, em uma linha, os vértices adjacentes a v

```
void DIGRAPHshow (Digraph G) {
        Vertex v, w;
        for (v = 0; v < G -> V; v++)
            printf("%2d:", v);
            for (w = 0; w < G -> V; w++)
               if (G->adj[v][w] == 1)
5
                   printf("\%2d", w);
6
            printf("\n");
```

## Consumo de tempo

| linha | número de execuções da linha |                |  |
|-------|------------------------------|----------------|--|
| 1     | = V + 1                      | $=\Theta(V)$   |  |
| 2     | = V   1<br>= V               | $=\Theta(V)$   |  |
| 3     | $= V \times (V+1)$           | $=\Theta(V^2)$ |  |
| 4     | $= V \times V$               | $=\Theta(V^2)$ |  |
| 5     | $<$ $\lor$ $\times$ $\lor$   | $= O(V^2)$     |  |
| 6     | _<br>= V                     | $=\Theta(V)$   |  |
| total | $3\Theta(V) + O(V^2) +$      | $3\Theta(V^2)$ |  |

total 
$$3\Theta(V) + O(V^2) + 3\Theta(V^2)$$
  
=  $\Theta(V^2)$ 

## Conclusão

O consumo de tempo da função DIGRAPHShow é  $\Theta(V^2)$ .

# Funções básicas para grafos

# Funções básicas para grafos

```
#define GRAPHinit DIGRAPHinit #define GRAPHshow DIGRAPHshow
```

Função que insere uma aresta v-w no grafo G void

GRAPHinsertE (Graph G, Vertex v, Vertex w)

# Funções básicas para grafos

```
#define GRAPHinit DIGRAPHinit
     #define GRAPHshow DIGRAPHshow
Função que insere uma aresta v-w no grafo G
   void
   GRAPHinsertE (Graph G, Vertex v, Vertex w)
     DIGRAPHinsertA(G, v, w);
     DIGRAPHinsertA(G, w, v);
```

Exercício Escrever a função GRAPHremoveE

# Caminhos em digrafos

S 17.1

#### Caminhos

Um **caminho** num digrafo é qualquer seqüência da forma  $\mathbf{v}_0 - \mathbf{v}_1 - \mathbf{v}_2 - \dots - \mathbf{v}_{k-1} - \mathbf{v}_p$ , onde  $\mathbf{v}_{k-1} - \mathbf{v}_k$  é um arco para  $k = 1, \dots, p$ .

Exemplo: 2-4-1-3-5-4-5 é um caminho com **origem** 2 é **término** 5



# Caminhos simples

Um caminho é **simples** se não tem vértices repetidos Exemplo: 2-4-1-3-5 é um caminho simples de 2 a 5



#### Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 0 e t = 1 a resposta é SIM



#### Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 0 e t = 1 a resposta é SIM



#### Procurando um caminho

Problema: dados um digrafo G e dois vértices s e t decidir se existe um caminho de s a t

Exemplo: para s = 5 e t = 4 a resposta é NÃO



## DIGRAPHpath

Recebe um digrafo G e vértices S e t e devolve S se S e S e S e S existe um caminho de S a S ou devolve S em caso contrário

Supõe que o digrafo tem no máximo maxV vértices.

int DIGRAPHpath (Digraph G, Vertex s, Vertex t)

#### DIGRAPHpath(G,0,1)



#### DIGRAPHpath(G,0,1)











## pathR(G,1)













## pathR(G,5)



## pathR(G,5)



## pathR(G,5)

























#### DIGRAPHpath(G,0,1)



#### DIGRAPHpath(G,2,3)



#### DIGRAPHpath(G,2,3)







## pathR(G,1)











# pathR(G,4)



# pathR(G,5)



# pathR(G,5)



# pathR(G,5)



# pathR(G,4)



# pathR(G,2)



### DIGRAPHpath(G,2,3)



#### DIGRAPHpath

```
static int lbl[maxV];
int DIGRAPHpath (Digraph G, Vertex s, Vertex t)
   Vertex v.
   for (v = 0; v < G -> V; v++)
       1b1[v] = -1;
3
   pathR(G,s);
   if (lbl[t] == -1) return 0;
5
   else return 1;
```

#### pathR

Visita todos os vértices que podem ser atingidos a partir de  $\mathbf{v}$ 

void pathR (Digraph G, Vertex v)

#### pathR

Visita todos os vértices que podem ser atingidos a partir de v

```
void pathR (Digraph G, Vertex v)
    Vertex w:
   1b1[v] = 0;
   for (w = 0; w < G -> V; w++)
        if (G->adj[v][w] == 1)
3
            if (1b1[w] == -1)
                pathR(G, w);
```

### DIGRAPHpath(G,0,1)



### DIGRAPHpath(G,2,3)



Qual é o consumo de tempo da função DIGRAPHpath?

Qual é o consumo de tempo da função DIGRAPHpath?

| linha | número de execuçõe                               | es da linha            |
|-------|--------------------------------------------------|------------------------|
| 1     | = V + 1                                          | $=\Theta({	extsf{V}})$ |
| 2     | = V                                              | $=\Theta(V)$           |
| 3     | =1                                               | = ????                 |
| 4     | =1                                               | $=\Theta(1)$           |
| 5     | =1                                               | $=\Theta(1)$           |
| total | $= 2\Theta(1) + 2\Theta(V)$ $= \Theta(V) + ????$ | + ???                  |

#### Conclusão

O consumo de tempo da função DIGRAPHpath é ⊖(V) mais o consumo de tempo da função PathR.

Qual é o consumo de tempo da função PathR?

Qual é o consumo de tempo da função PathR?

| linha | número de execuções da linha              |            |
|-------|-------------------------------------------|------------|
| 1     | < V                                       | = O(V)     |
| 2     | $\leq \mathtt{V} \times (\mathtt{V} + 1)$ | $= O(V^2)$ |
| 3     | $\leq V \times V$                         | $= O(V^2)$ |
| 4     | $\leq$ V $	imes$ V                        | $= O(V^2)$ |
| 5     | $\leq V - 1$                              | = O(V)     |
| total | $= 2 O(V) + 3 O(V^{2})$<br>= $O(V^{2})$   |            |

#### Conclusão

O consumo de tempo da função PathR para matriz de adjacência é  $O(V^2)$ .

O consumo de tempo da função DIGRAPHpath para matriz de adjacência é  $O(V^2)$ .