Using **HPO** in genomic medicin

VEP course 2019

Jeroen van Reeuwijk Researcher Translational Genomics

Lecture objectives & outline

Objectives

- Next-generation phenotyping: <u>Human Phenotype Ontology</u>
- HPO tools for variant/disease gene prioritization

Outline

Part 1: Introduction to HPO

- Use of phenotypic information in clinical genetics
- Standardized phenotyping using HPO
- HPO structure

Part 2: Applications using HPO

- Capturing patient clinical data in HPO format
- Using HPO-profiles in variant-disease interpretation
- Phenotype matching tools
- Outlook

Use of phenotypic information

- Pre-genetic testing:
 - differential diagnosis
 - choice of genetic testing: single gene, genepanel(s), exome/genome, SNP array
- Post-genetic testing:
 - genotype-phenotype correlation
 - candidate disease gene/variants analysis
 - disease processes and biochemical pathways
 - clinically similar patients
 - animal disease models

Figure 1 of Washington et al. PLoS Biol 7(11): e1000247

Use of phenotypic information

in exome/genome diagnostics:

Variant Effect Predictions

Clinical symptoms

Clinical molecular diagnosis

Computational use of phenotypic info

Computable data:

- Standardized terminology
- Relationship between terms
- → "Next-generation phenotyping"

Human Phenotype Ontology: HPO

Am J Hum Genet. 2008 Nov;83(5):610-5. doi: 10.1016/j.ajhq.2008.09.017. Epub 2008 Oct 23.

The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease.

Robinson PN1, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S.

Peter Robinson & Sebastian Köhler

- Standardized clinical terminology
- Ontology data model: entities, attributes and relations

UNIVERSITÄTSMEDIZIN BERLIN

Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources

HPO Today: the standard for electronic clinical phenotyping in medical genetics

- Standardized clinical terminology for ~14.000 clinical features
- Annotation of 7000+ disorders with HPO terms
- Algorithms for diagnostics & translational research

Global Alliance for Genomics & Health

Collaborate. Innovate. Accelerate.

International recognition core resource

Standardized phenotyping using HPO

Table 1. A selection of public-facing clinical databases using HPO to annotate patient data for disease-gene discovery projects

Name	URL
PhenomeCentral DDD (Deciphering Developmental Disorders) DECIPHER (DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources)	phenomecentral.org www.ddduk.org decipher.sanger.ac.uk
ECARUCA (European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations)	http://umcecaruca01.extern.umcn.nl: 8080/ecaruca/ecaruca.jsp
The 100 000 Genomes Project Geno2MP (Exome sequencing data linked to phenotypic information from a wide variety of Mendelian gene discovery projects)	https://www.genomicsengland.co.uk/ http://geno2mp.gs.washington.edu
NIH UDP (Undiagnosed Diseases Program) NIH UDN (Undiagnosed Diseases Network) HDG (Human Disease Gene Website series) Phenopolis (An open platform for harmonization and analysis of sequencing and phenotype data)	available via phenomecentral.org available via phenomecentral.org www.humandiseasegenes.com https://phenopolis.github.io
GenomeConnect (Patient portal developed by ClinGen (67) FORGE Canada & Care4Rare Consortium RD-Connect Genesis	www.genomeconnect.org available via phenomecentral.org platform.rd-connect.eu thegenesisprojectfoundation.org

Köhler et al. AJHG 2017

Standardized phenotyping using HPO

Commercial software for variant interpretation such as

- FDNA: Face2Gene
- Cartagenia BENCH
- GEPADO Software Solutions for Genetics GmbH
- BioDiscovery's NxClinical
- Diploid: Diagnosing rare diseases: Moon
- Centogene
- SimulConsult
- Fabric Genomics
- Qiagen
- Congenica

Ontology-Driven Representation of Fanconi Anemia and Acquired Aplastic Anemia.

HPO: structure & ontologies

- HPO structure
 - Terms (~14.000)
 - Term relationship (subclass of ..)

Intellectual disability

Primary ID: HP:0001249

Synonyms: mental retardation, ...

Textual definition: Subnormal

intellectual functioning ...

...defined as an IQ score below 70.

HPO subontologies:

HPO-browser: https://hpo.jax.org/app/

HPO-subontology Phenotypic abnorm.

HPO-browser: https://hpo.jax.org/app/

HPO-annotation disorders

Manual by HPO-team (mainly OMIM) example:

HPO-annotation disorders

Manual & semi-automated (OMIM, Orphanet, DECIPHER) example:

→ difference in number of HPO associated with gene OMIM: disease subtypes → more specific; Orphanet: more inclusive

HPO-annotation of genes

- Gene annotation files:
 - Source: OMIM, Orphanet or All
 - Frequent (present >50% patients) or all frequencies
 - Most specific HPO or including all "ancestors"

- Gene ←→ Disorder(s) ←→ HPO-term(s)
 - SMARCA4 → COFFIN-SIRIS SYNDROME 4 (OMIM) → 30 most specific HPO terms
 - 1220 Genes ← 1382 Disorders (OMIM) ← Intellectual disability (incl. more specific "descendants" terms)

Summary part 1

- Importance of clinical information in genetic testing
- The HPO project provides a great computable resource for clinical features that characterize diseases and associated genes

Part 2: Applications using HPO

- Capturing patient clinical data in HPO format
- Using HPO-profiles in variant-disease interpretation
- Phenotype matching tools
- Outlook

Capturing phenotypic information

- (Electronic) Patient Dossier:
 - No standardised terminology
 - Unstructured text
 - At different locations
 - Limited access

Reden van verwijzing: verstandelijke beperking

Gaarne onderzoek voor ivm mentale retardatie eci. 1

Locatie:

Aanwezig: en beide ouders

Medische voorgeschiedenis

- aangeboren heupluxatie/dysplasie
- blindheid (hoge myopie)
- verstandelijke bepeking
- refluxoesophagitis
- kyphose/scoliose

Anamnese

Hulpvraag: diagnose ook voor de andere kinderen

Graviditeit en partus: ongecompliceerd. Apgar 9/10.

Congenitale afwijkingen: heupluxatie/dysplasie

Neonatale periode: geen voedingsproblemen; bij drie maanden veel oorontstekingen en ook na de tweede vaccinatie had zij ee

Psychomotore ontwikkeling: de ontwikkeling is traag verlopen. herkent de dagelijkse patronen. Structuur is sowieso belangrijk

Overige tractusanamnese: ziet slecht. De visus is -13 dpt (via

Psychosociaal: woont bij haar ouders. Ze gaat naar de

Versleten linker heup. Obstipatie.

Capturing phenotypic information

(Electronic) Request form genome diagnostics Radboudumc

Clinical Registry tool using HPO

Open source software: phenotype/genotype collection tool

- Intuitive interface for HPO phenotyping
- HPO suggestions for Differential Diagnosis / Deep phenotyping
- HPO-mining of clinical notes by concept recognition algorithms
- Suggestions on matching OMIM disorders
- Operational at CARE for RARE (Canada), Sanford Health (USA)
- Commercial support by

PHENO TIPS ®

ome Playgroun

Down

CURRENT SELECTION

How informative is your phenotypic description:

GROWTH PARAMETERS

Short stature DELETE ADD DETAILS

HPO-mining of clinical notes

SUGGESTIONS FROM CLINICAL NOTES

Y N High forehead 19

...Affected male relatives show characteristic facies, including high forehead, midface hypoplasia, large mouth with long upper middle incisors, thick lips, high-arched palate, large jaw with prominent chin, and large, poorly formed ears....

Incisor macrodontia 6 *

... Affected male relatives show characteristic facies, including high forehead, midface hypoplasia, large mouth with long upper middle incisors, thick lips, high-arched palate, large jaw with prominent chin, and large, poorly formed ears....

Y N Midface retrusion (1)

... Affected male relatives show characteristic facies, including high forehead, midface hypoplasia, large mouth with long upper middle incisors, thick lips, high-arched palate, large jaw with prominent chin, and large, poorly formed ears....

Y N Wide mouth (1)

... Affected male relatives show characteristic facies, including high forehead, midface hypoplasia, large mouth with long upper middle incisors, thick lips, high-arched palate, large jaw with prominent chin, and large, poorly formed ears

CURRENT SELECTION

How informative is your phenotypic description:

GROWTH PARAMETERS

Short stature | DELETE | ADD DETAILS

Clinical Registry using HPO

- Patient Archive (HPO-centric patient phenotyping)
 - Intuitive interface for HPO phenotyping
 - HPO-mining of clinical notes by concept recognition algorithms
 - Operational at
 - UDP, The University of Western Australia (UWA)
 - IRUD, Japan

HPO in Facial Phenotyping

Create a case by uploading an image or photographing your patient.

Review a prioritized list of suggested syndromes.

Phenotypic interpretation of variants

Phenotypic interpretation of variants

Exomiser

Automated phenotypic interpretation of variants in Exomes

Smedley et al., Nat Prot. 2014

Exomiser

Benchmarking of Exomiser on simulated exomes with HGMD* variants

1000 Genomes and ESP frequency data

		1 7		
		Unknown inheritance ^a	Autosomal dominant ^b	Autosomal recessive ^c
Known	Full phenotype	96.8	97.1	97.1
	Imperfect phenotype	94.0	94.3	96.0
Novel	Full phenotype	73.6	78.8	86.6
	Imperfect phenotype	61.4	68.1	78.8

% of exomes with top-ranked variant

*HGMD: Human Gene Mutation Database

ESP: US Exome Sequencing Project collaboration

Genomiser: also non-coding

https://hpo.jax.org/app/tools/genomiser

HPO driven variant interpretation

Integrated in commercial software:

- FDNA: Face2Gene.
- Cartagenia BENCH
- GEPADO Software Solutions for Genetics GmbH
- BioDiscovery's NxClinical
- Diploid: Diagnosing rare diseases: Moon
- Centogene
- SimulConsult
- Fabric Genomics
- Qiagen
- Congenica

Phenotype matching tools

Matching of unrelated cases for rare disorders worldwide

- Disease gene identification
- Disease prognosis

"Fuzzy" Matching of Phenotypic Profiles.

SIGN UP

LOGIN

- PhenomeCentral (phenotype/genotype matching)
 - HPO-based semantic similarity patient phenotypes
 - Genotypic & phenotypic matching of cases
 - Matching with casus from connected databases (Matchmaker Exchange)

Clinical Pheno/Genotype Matching

Summary

Conclusion:

Structured phenotype data of patients and model organisms improves the diagnostic efficiency and prioritization of exome variants associated with known and new disorders

Critical points:

- HPO-annotation updates for disorders/genes
- completeness of coverage phenotypes by HPO-terms
- HPO-translation to other languages for use in hospital patient registries

Outlook

Integration of HPO in hospital clinical registry / diagnostic applications

HPO integrated in genome diagnostics

- HPO-based genepanels
- HPO-based genetic test selection
- HPO-based prioritization of exomic/genomic variants

HPO in genome research

- HPO-based candidate disease gene prioritization
- Cohort selection

Questions?

"MY PARENTS DIED. THEIR PARENTS DIED. THEIR PARENTS DIED ... IT RUNS IN THE FAMILY."

References

HPO project/browser/tools: https://hpo.jax.org/app/

HPO 2018 paper: https://www.ncbi.nlm.nih.gov/pubmed/30476213

HPO-browser (old): http://compbio.charite.de/hpoweb/showterm?id=HP:0000118

Contribute to HPO annotation:

- https://phenotate.org/
- https://hpo.jax.org/app/tools/workbench

Phenotype data integration: https://monarchinitiative.org/