CSE 311: Foundations of Computing

Lecture 4: Boolean Algebra, Circuits, Canonical Forms

0 H 2:30 foday CIE (368

9

Last Time: Boolean Algebra

- Usual notation used in circuit design
- **Boolean algebra**
 - a set of elements B containing (0, 1)

 - binary operations { + , }.and a unary operation { ' }
 - such that the following axioms hold:


```
For any a, b, c in B:
```

- 1. closure:
- 2. commutativity:
- 3. associativity:
- 4. distributivity:
- 5. identity:
- 6. complementarity:
- Z nall?
- 8 idempetency:
- 9. involution:

- a + b is in B
- a + b = b + a
- a + (b + c) = (a + b) + c
- $a + (b \cdot c) = (a + b) \cdot (a + c)$
- a + 0 = a
- a + a' = 1
- a + 1 = 1
- a + a = a
- (a')' = a

$$a \cdot b = b \cdot a$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

$$a \cdot a' = 0$$

$$a \cdot 0 = 0$$

$$a \cdot a = a$$

Warm-up Exercise

• Create a Boolean Algebra expression for $\mathcal C$ below in terms of the variables $\boldsymbol a$ and $\boldsymbol b$

Warm-up Exercise

• Create a Boolean Algebra expression for "c" below in terms of the variables a and b

$$c = ab' + a'b$$

Draw this as a circuit (using AND, OR, NOT)

Last Time: Combinational Logic

Encoding:

Binary number for weekday (Binary encoding)

One bit for each possible output ("1-Hot" encoding)

Last Time: Truth Table to Logic

	$d_2d_1d_0$	L	C ₀	c ₁	c ₂	C ₃ _
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

Last Time: Truth Table to Logic

$$\begin{split} c_0 &= d_2 \cdot d_1' \cdot d_0 \cdot L' + d_2 \cdot d_1 \cdot d_0' + d_2 \cdot d_1 \cdot d_0 \\ c_1 &= d_2' \cdot d_1' \cdot d_0' \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L' + d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0' \cdot L \\ c_2 &= d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L \\ c_3 &= d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L \end{split}$$

Here's c₃ as a circuit:

Simplifying using Boolean Algebra

```
c3 = d2' \cdot d1' \cdot d0' \cdot L + d2' \cdot d1' \cdot d0 \cdot L
    = d2' \cdot d1' \cdot (d0' + d0) \cdot L
    = d2' • d1' • 1 • L
    = d2' • d1' • L
                                                        AND
               d1
```

Important Corollaries of this Construction

- ¬, ∧, ∨ can implement any Boolean function
 we didn't need any others to do this
- Actually, just ¬, ∧ (or ¬, ∨) are enough
 follows by De Morgan's laws
- Actually, just NAND (or NOR)

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)
 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)
S $1 + 0 = 1$ (with $C_{OUT} = 0$)
 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)
 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)
S $1 + 0 = 1$ (with $C_{OUT} = 0$)
 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

Idea: chain these together to add larger numbers

Recall from elementary school:

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)
 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)
S $1 + 0 = 1$ (with $C_{OUT} = 0$)
 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

Idea: These are chained together with a carry-in

• Inputs: A, B, Carry-in

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	Р
1	1	1	1	1

• Inputs: A, B, Carry-in

Α	В	C _{IN}	C _{OUT}	S	Derive an expression for S
0	0	0	0	0	
0	q	1	0	1	A' • B' • C _{IN}
0	1	0	0	1	A' • B • C _{IN} '
0	1	1	1	0	$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' +$
1	0	0	0	1	$A \cdot B' \cdot C_{IN}'$ $A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$
1	0	1	1	0	A B SIN A B SIN
1	1	0	1	0	
1	1	1	1	1	A • B • C _{IN}

• Inputs: A, B, Carry-in

Α	В	C _{IN}	C _{OUT}	S	
0	0	0	0	0	
0	0	1	0	1	Derive an expression for C _{out}
0	1	0	0	1	
0	1	1	1	0	A' • B • C _{IN}
1	0	0	0	1	$\mathbf{C}_{OUT} = \mathbf{A}' \cdot \mathbf{B} \cdot \mathbf{C}_{IN} + \mathbf{A} \cdot \mathbf{B}' \cdot \mathbf{C}_{IN} +$
1	0	1	1	0	$A \cdot B \cdot C_{IN}' + A \cdot B \cdot C_{IN}$
1	1	0	1	0	A · B · C _{IN} '
1	1	1	1	1	A · B · C _{IN}

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

• Inputs: A, B, Carry-in

C_{OUT} C_{IN}								
	A B	A B	А	A	A			
	В	B	В	В	В			
	S	S	S	S	S	_		

Α	В	C _{IN}	C _{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

$$C_{OUT} = A' \cdot B \cdot C_{IN} + A \cdot B' \cdot C_{IN} + A \cdot B \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

 e.g., full adder's carry-out function $\alpha = \alpha + \alpha$ = A' B Cin + A B' Cin + A B Cin' + A B Cin Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin'= (1) B Cin + A B' Cin + A B Cin' + A B Cin = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin = B Cin + A B Cin + A B Cin + A B Cin' + A B Cin = B Cin + A (B' + B) Cin + A B Cin' + A B Cin = B Cin + A (1) Cin + A B Cin + A B Cin Larraugh Mar! = B Cin + A Cin + A B (Cin' + Cin) = B Cin + A Cin + A B (1) = B Cin + A Cin + A B

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

e.g., full adder's carry-out function

```
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin'
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
                                                   adding extra terms
        = B Cin + A Cin + A B
                                                 creates new factoring
                                                     opportunities
```

A 2-bit Ripple-Carry Adder

Mapping Truth Tables to Logic Gates

Canonical Forms

Truth table is the unique signature of a 0/1 function

- The same truth table can have many gate realizations
 - We've seen this already
 - Depends on how good we are at Boolean simplification
- Canonical forms
 - Standard forms for a Boolean expression
 - We all produce the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Add the minterms together

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	minterms
0	0	0	A'B'C'
0	0	1	A'B'C
0	1	0	A'BC'
0	1	1	A'BC
1	0	0	AB'C'
1	0	1	AB'C
1	1	0	ABC'
1	1	1	ABC

F in canonical form:

$$F(A, B, C) = A'B'C + A'BC + ABC' + ABC'$$

canonical form ≠ minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$
= $ABC' + C$

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms together

F =

Product-of-Sums Canonical Form

AKA Conjunctive Normal Form (CNF)

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

Α	В	С	F	4	
0	0	0	0	1	F' = A'B'C' + A'BC' + AB'C'
0	0	1	1		
0	1	0	oJ	1	
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F' = A'B'C' + A'BC' + AB'C'$$

$$F = (A'B'C')' (A'BC')' (AB'C')'$$

$$F = (A + B + C)(A + B' + C)(A' + B + C)$$

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	maxterms	F in canonical form:
0	0	0	A+B+C	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
0	0	1	A+B+C'	
0	1	0	A+B'+C	canonical form ≠ minimal form
0	1	1	A+B'+C'	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	= (A + B + C) (A + B' + C)
1	0	1	A'+B+C'	(A + B + C) (A' + B + C)
1	1	0	A'+B'+C	= (A + C) (B + C)
1	1	1	A'+B'+C'	$(\mathcal{L}_{\mathcal{L}}, \mathcal{L}_{\mathcal{L}})$