TC₁

$$egin{aligned} \operatorname{Ox} + ne^- &= \operatorname{Red} \ a\operatorname{Ox}_1 + b\operatorname{Red}_2 &= a\operatorname{Red}_1 + b\operatorname{Ox}_2 \end{aligned}$$

Ox subit une Reduction Red subit une Oxydation

Souvent: no(H) = +Ino(O) = -II

/!\ PAS TERMINÉ /!\

TC 2

Couple Acide Base ($AH = A^- + H^+$):

Acide	AH
Base	\mathbf{A}^-
Proton	H^+

$$pH=-log([H_3O^+])$$
 ه $[H_3O^+]=10^{-pH}$

Polyacide: Espèce pouvant perdre plusieurs protons Polybase: Espèce pouvant gagner plusieurs protons

Autoprotolyse de l'eau: $H_2O + H_2O = H_3O^+ + HO^-$

Deux couples de l'eau

Couple	Acide	Base
H_3O^+/H_20	H_3O^+	H_20
H_2O/HO^-	H_20	HO^-

 H_20 est a la fois un acide et une base c'est une espèce amphotère.

Constante d'équilibre :
$$K_e = rac{a(HO^-)a(H_3O^+)}{a(H_2O)^2} = [HO^-][H_3O^+] = 10^{-14}$$

potentiel d'acidité :
$$pK_a = -log(K_a)$$
 & $K_a = 10^{-pK_a}$

Diagramme de prédominance :

Diagramme de distribution :

TC 3

$$C_x A_{y(s)} = x C^{p+}_{(aq)} + y A^{q-}_{(aq)}$$

Exemple:

$$\mathrm{Na_{1}Cl_{1(s)}} = \mathrm{1Na_{(aq)}^{+}} + \mathrm{1Cl_{(aq)}^{-}}$$

Produit de solubilité :
$$K_S = rac{[C^{p+}]^x [A^{q-}]^y}{(C^0)^{x+y}}igg)_{eq}$$

$$K_S \gg 1000 \Rightarrow \text{Totale}$$

$$pK_S = -log(K_S)$$

Condition de formation d'un précipité : $[C^{p+}]_{ini}^x[A^{q-}]_{ini}^y>K_S$

$$[C^{p+}]_{ini}^x [A^{q-}]_{ini}^y > K_S$$