Write an introduction, as laid out in lecture. This includes:

- 1. An explanation of the problem being investigated.
- 2. A brief explanation of the context of the problem and why it's interesting.
- 3. A description of either:
  - the data generation process and its relationship to the problem (i.e. for domain problems)
  - o the type of data for which the method is appropriate (i.e. for methods problems)
- Basic description of observed data used in the investigation and why it's appropriate for addressing the problem.

This introduction should be turned in as a PDF and conform to standards set in both lecture and your domain.



#### **Code Portion:**

Your code should be turned in via GitHub. It should:

- conform to the template structure discussed in lecture,
- contain a rudimentary data ingestion pipeline,
- include documentation both in your README.md, describing the purpose of the code, its contents, and how to run it.
- be runnable runnable via the command python run.py data. Include a data-params.json file in the config directory, which specifies any data-input locations. If your data-ingestion requires data that is on your local computer, include a copy of the data in your domain's /teams directory on the DSMLP server and include that location in your data-params.json.

Repor

## ligation + library prep

#### Figure 1: Template amplification strategies.

From: Coming of age: ten years of next-generation sequencing technologies



#### Emulsion

Micelle droplets are loaded with primer, template, dNTPs and polymerase

#### On-bead amplification

Templates hybridize to bead-bound primers and are amplified; after amplification, the complement strand disassociates, leaving bead-bound ssDNA templates

#### Final product

100-200 million beads with thousands of bound template



Solid-phase bridge amplification (Illumina)

#### Template binding

Free templates hybridize with slide-bound adapters



#### Bridge amplification

Patterned flow cell

Microwells on flow cell

direct cluster generation,

increasing cluster density

Distal ends of hybridized templates interact with nearby primers where amplification can take place



#### Cluster generation

After several rounds of amplification, 100-200 million clonal clusters are formed



c Solid-phase template walking

(SOLiD Wildfire (Thermo Fisher))

#### Template binding

Free DNA templates hybridize to bound primers and the second strand is amplified



#### Primer walking

dsDNA is partially denatured, allowing the free end to hybridize to a nearby primer



#### Template regeneration

Bound template is amplified to regenerate free DNA templates



#### Cluster generation

After several cycles of amplification, clusters on a patterned flow cell are generated



#### d In-solution DNA nanoball generation (Complete Genomics (BGI))



### Adapter ligation

One set of adapters is ligated to either end of a DNA template, followed by template circularization



## sequence



#### Iterative ligation

Three additional rounds of ligation, circularization and cleavage generate a circular template with four different adapters



#### Rolling circle amplification

Circular templates are amplified to generated long concatamers, called DNA nanoballs; intermolecular interactions keep the nanoballs cohesive and



Nature Reviews | Genetics

patterned flow cell

immobilized on a

BNA. fragmens

or Read length

Mominat Others





# Crummy seg. data + what to do...

| *pre-processing  *no base calls ANANNATEGNANN ~100 bg  read  *RNA fragmentation (bad library prep) <20bp                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * adopter contamination  * GC Blas  (RASTIGC)  fastosty. quality control  * alignment  (where in genome?)  * overlap = ambiguos mapping / remare  sample  (PCA genus  exp) |
| * quantification genes                                                                                                                                                     |
| sample openession                                                                                                                                                          |

## CUtodapt



Figure 1. This illustration shows all possible alignment configurations between the read and adapter sequence. There are two different trimming behaviours, triggered by whether option "-a" or "-b" is used to provide the adapter sequence. Note that the case "Partial adapter in the beginning" is not possible with option "-a", as the alignment algorithm prevents it.

