Denken wir uns an Stelle der strahlenden Fläche einen kleinen Kugelstrahler mit gleichem $F \cdot w$ gesetzt, so würde dieser im selben Auf-

Abb. 87. Schalldruckkomponenten der strahlenden Kugelkappe ($\gamma_0=30^\circ$) bei kleinem Aufpunktsabstand ($r=2\,r_0,\ k\,r_0=5$).

punkt (d. h. Aufpunktsabstand = r/2) bei Abwesenheit der starren Kugel die Druckamplitude:

$$p_0 = \frac{c \cdot \sigma \cdot F \cdot w}{2r\lambda} \cdot 2$$

hervorrufen.

Der vollständige Verlauf der Druckamplitude im Abstand $r=2\,r_0$ ist in Abb. 88 in Abhängigkeit von γ dargestellt. Die zugehörigen Komponenten sind in der Abb. 87 $[R+iJ=\sum a_n P_n(\cos\gamma)]$ angegeben.

Schließlich wollen wir das Schallfeld eines auf einer starren Kugel befindlichen punkt-

förmigen Strahlers in der Umgebung der Kugel berechnen und durch Kurven konstanter Druckamplitude veranschaulichen. Als Beispiel wählen wir $kr_0 = 1$ und berechnen den Schalldruck für die Aufpunkte, deren Entfernungen r vom Kugelmittelpunkt durch kr = 1,5; 2; 3; 4; 5 bestimmt sind. Dazu berechnen wir zunächst die Ausdrücke:

$$a_n = (2 n + 1) \frac{S_n(kr) + i C_n(kr)}{U_n(1) + i V_n(1)}$$

(Tabelle S. 101) und finden daraus $\sum_1 = \sum a_{2n}$ und $\sum_2 = \sum a_{2n+1}$. Bezeichnen wir die ungestörte (d. h. bei Abwesenheit der starren Kugel vorhandene) Druckamplitude mit $p_0 = \frac{F \cdot wc \cdot \sigma}{2\lambda r}$, so ist die relative Schalldruckamplitude $p/p_0 = |\sum_1 + \sum_2|$. In derselben Weise wurden aus den Größen $\sum a_n P_n$ (cos γ) die relativen Amplituden für $\gamma = 5^\circ$, 10° usw. berechnet.

Tragen wir die so gefundenen Werte zusammen, indem die berechneten Aufpunkte eingetragen und mit dem zugehörigen Schalldruck beziffert werden, so können wir durch Interpolation die Kurve konstanten Schalldruckes einzeichnen. Man erkennt aus dem Ergebnis in Abb. 89, daß das Schallfeld einen wesentlich anderen Charakter durch die Anwesenheit der starren Kugel bekommt, obgleich die Wellenlänge mehr als das Dreifache des Durchmessers beträgt.

Abb. 88. Schalldruckamplitude (p/p_0) der strahlenden Kugelkappe $(\gamma_0 = 30^\circ)$ bei kleinem Aufpunktsabstand $(\tau = 2\tau_0, k\tau_0 = 5)$.

7. Die durch eine starre Kugel verursachte Störung des Schallfeldes.

a) Die Ableitung der allgemeinen Formel.

Der Einfluß, den eine ebene, starre, unendlich ausgedehnte Wand auf das von einem Strahler hervorgerufene Schallfeld ausübt, läßt sich bekanntlich leicht übersehen, indem man einen zweiten Strahler einführt, der in bezug auf den ursprünglichen spiegelbildlich zu der Wand liegt. Das gesuchte (auf der Seite des ursprünglichen Strahlers liegende) Schallfeld ergibt sich dann einfach durch Überlagerung der beiden von den einzelnen Strahlern hervorgerufenen Schallfeldern. Um dies zu beweisen, haben wir zu zeigen, daß für das Schallfeld die Randbedingung an der starren Wand (nämlich, daß die Geschwindigkeitskomponente senkrecht zur Wand gleich Null ist) erfüllt ist. Nun ergibt sich aber ohne weiteres aus der symmetrischen Lage der Strahler, daß der von den beiden Strahlern resultierende Geschwindigkeitsvektor für alle Aufpunkte auf der Wand in der Symmetrieebene liegt, d. h. keine Komponente senkrecht zu der Wand besitzt. Allgemeiner kann man sagen: Wenn in einem beliebigen Schallfeld eine Fläche vorhanden ist, so daß für alle Aufpunkte in dieser Fläche die Geschwindigkeitskomponente senkrecht zu dieser Fläche gleich null ist, so kann diese Fläche durch eine starre, vollständig reflektierende Fläche ersetzt werden, ohne daß an dem Schallfeld etwas geändert wird. Unsere Aufgabe, den Einfluß einer starren Kugel auf ein vorhandenes Schallfeld zu untersuchen, ist dann gleichbedeutend mit der Aufgabe, dem vorhandenen Schallfeld ein zweites so zu überlagern, daß für die Aufpunkte auf einer vorgegebenen Kugelfläche die resultierende Geschwindigkeitskomponente senkrecht zur Kugeloberfläche gleich null ist.

Wir gehen nun aus von dem ungestörten Schallfeld und nehmen an, daß dieses von einem im Punkte A befindlichen punktförmigen Strahler mit der strahlenden Fläche F und (konstanter) Geschwindigkeitsamplitude w erzeugt wird. Dann ist der Schalldruck \mathfrak{p}_1 für den durch die Polarkoordinaten r, γ gegebenen Aufpunkt gegeben durch:

die Polarkoordinaten
$$r$$
, γ gegebenen Aufpunkt gegeben durch:
$$\mathfrak{p}_1 = \frac{c \cdot \sigma \cdot F \cdot w}{2\lambda R} e^{i(\omega t - kR + \pi/2)} e^{ikr\cos\gamma}. \tag{160}$$

Dabei ist der Abstand R des Strahlers in A vom Koordinatenanfang O als groß im Verhältnis zu r vorausgesetzt. Aus (160) ergibt sich mit Hilfe der Beziehung:

$$\mathfrak{v}_{r} = \frac{i}{c \cdot \sigma k} \frac{\partial \mathfrak{p}}{\partial r} \tag{161}$$

die radiale Geschwindigkeitskomponente:

$$\mathfrak{v}_r = -\frac{F \cdot w}{4 \pi R} e^{i(\omega t - kR)} \frac{\partial (e^{ikr\cos y})}{\partial r}.$$

N

Nach dem oben Ausgeführten haben wir nun ein zusätzliches Schallfeld zu überlagern, dessen radiale Geschwindigkeitsamplitude v_r^* auf der Kugel $r=r_0$ entgegengesetzt gleich v_r ist. Die Aufgabe ist damit prinzipiell auf die frühere Berechnung zurückgeführt, wo die Geschwindigkeitsverteilung auf einer Kugel vorgegeben war. Nach dem früher Ausgeführten kann die Lösung sofort angegeben werden, wenn die Geschwindigkeitsverteilung auf der Kugel durch eine Reihe von Kugelfunktionen dargestellt ist. Um dies zu erreichen, gehen wir von der Beziehung aus¹:

$$e^{ikr\cos\gamma} = \sum_{n=0}^{\infty} i^n \frac{S_n(kr)}{kr} (2n+1) P_n(\cos\gamma).$$
 (162)

Dann folgt wegen (161):

$$\mathfrak{v}_r = -\frac{F \cdot w}{4\pi R} e^{i(\omega t - kR)} \cdot k \sum_{n=0}^{\infty} i^n \left(\frac{S_n(kr)}{kr}\right)' (2n+1) P_n(\cos \gamma),$$

und es ist wegen

$$\left(\!\frac{S_{n}(x)}{x}\!\right)' = -\,\frac{U_{n}(x)}{x^{2}}$$

die gesuchte Geschwindigkeit:

$$\mathfrak{v}_{r_0}^* = -\mathfrak{v}_{r_0} = -\frac{F \cdot w}{2 \lambda R} e^{i(\omega t - kR)} \cdot \frac{1}{k^2 r_0^2} \sum_{n=0}^{\infty} (2n+1) i^n U_n(kr_0) P_n(\cos \gamma)$$
 (163)

in der gewünschten Form dargestellt.

Wir können nach (149) das von $\mathfrak{v}_{r_0}^*$ hervorgerufene Schallfeld sofort angeben. Es ist der Schalldruck \mathfrak{p}_2 im Aufpunkt r, γ gegeben durch:

$$\mathfrak{p}_{2} = -\frac{c \cdot \sigma \cdot F \cdot w}{2\lambda R} e^{i(\omega t - kR + \pi/2)} \cdot \frac{1}{kr} \sum_{n=0}^{\infty} \frac{(2n+1)i^{n} U_{n}(kr_{0}) \cdot P_{n}(\cos \gamma)}{U_{n}(kr_{0}) + i V_{n}(kr_{0})} [S_{n}(kr) + i C_{n}(kr)].$$
 (164)

Eine kleine Rechnung ergibt dann das vollständige in der Umgebung der Kugel vorhandene Schallfeld in der Form:

$$\mathfrak{p}_{1} + \mathfrak{p}_{2} = \frac{c \cdot \sigma \cdot F \cdot w}{2\lambda R} e^{i(\omega t - kR + \pi/2)} \cdot \frac{1}{kr} \sum_{n=0}^{\infty} \frac{(2n+1)i^{n+1}P_{n}(\cos\gamma)}{U_{n}(kr_{0}) + iV_{n}(kr_{0})} [S_{n}(kr)V_{n}(kr_{0}) - C_{n}(kr)U_{n}(kr_{0})].$$
(165)

b) Die Schallreflexion an einer starren Kugel.

Als einfachsten Fall untersuchen wir zunächst die im Aufpunkt A (d. h. in dem Ort der Schallquelle selbst) durch die Reflexion an der

¹ RAYLEIGH, Theory of sound, § 334.

Kugel hervorgerufene Schalldruckamplitude. Und zwar wollen wir diese vergleichen mit der Schalldruckamplitude, die senkrecht von einer starren Wand im gleichen Abstand (wie von der Kugel) reflektiert wird. Führen wir den Reflexionsfaktor $Z = |\mathfrak{Z}|$ durch die Beziehung ein:

$$\beta = \frac{1}{kr_0} \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)U_n(kr_0)}{U_n(kr_0) + iV_n(kr_0)},$$
 (166)

Abb. 90. Reflexionsfaktor Z einer starren Kugel und seine Komponenten (R, J).

so folgt, da wegen $kr \gg 1$, $S_n(kr) + i C_n(kr)$ in $i^{n+1} \cdot e^{-ikr}$ übergeht und $\cos \gamma = 1$ ist, aus (164) für die von der Kugel herrührende Reflexionsamplitude p_r :

 $p_{\tau} = \frac{c \sigma F \cdot w}{2 \lambda R^2} r_0 Z,$

während die von der starren Wand herrührende Reflexionsamplitude durch:

 $p_r^* = \frac{c \cdot \sigma \cdot F \cdot w}{4 \lambda R} \tag{168}$

(167)

gegeben ist.

Daher ist: $\frac{p_r}{p_r^*} = \frac{2r_0}{R} Z. \tag{169}$

Nun ergibt sich für den Reflexionsfaktor ein sehr einfaches Verhalten. Mit wachsendem kr_0 nähert sich Z immer mehr der Größe $\frac{1}{2}$, so daß man mit guter Annäherung für größere kr_0 den Reflexionsfaktor konstant gleich $\frac{1}{2}$ setzen kann. Dann besagt also (169):

Die von einer starren Kugel mit dem Radius r_0 in großem Abstand R reflektierte Schalldruckamplitude ist (für größere $k r_0$) durch r_0/R gegeben, wenn die von einer im selben Abstand R befindlichen unendlichen Wand reflektierte Schalldruckamplitude gleich eins gesetzt wird.

Für die Darstellung des Reflexionsfaktors sind die beiden Komponenten R und J gesondert berechnet und graphisch aufgetragen. Die dazu notwendigen Funktionen $U_n(kr)$ und $V_n(kr)$ sind mit Hilfe der Tabellen für $S_n(x)$ und C(x) nach (147) leicht zu finden. Das Ergebnis der Rechnung ist in Abb. 90 dargestellt.

Trägt man ferner R+iJ als Vektor in den komplexen Zahlenebene auf, so erkennt man daraus den Phasengang $\chi(\operatorname{tg}\chi=J/R)$ in Abhängigkeit von kr_0 . Es zeigt sich, daß die Phase praktisch konstant bleibt, solange der Reflexionsfaktor stark anwächst $(kr_0 \le 1,2)$ und später

Abb. 91. Die Abhängigkeit der Phase (χ) des Reflektionsfaktors von kr_0 .

gleichmäßig zunimmt, wenn der Reflexionsfaktor konstant bleibt (Abb. 91). Für den allgemeinen Fall ($\gamma \neq 0$) definieren wir den Störfaktor $|\Im(kr_0, \gamma)|$ durch:

$$\Re(kr_0, \gamma) = \frac{1}{kr_0} \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)U_n(kr_0)}{U_n(kr_0) + iV_n(kr_0)} P_n(\cos\gamma)$$
 (170)

und berechnen für $kr_0 = 1, 2, \ldots 10$ die entsprechenden Komponenten, und können dann für jedes kr_0 den vollständigen Verlauf des Störfaktors in Abhängigkeit von γ darstellen (Abb. 92—99). Dabei ergibt sich, daß für $\gamma = 180^{\circ}$ (d. h. die von der Schallquelle abgewandte Richtung) |3| mit kr_0 immer mehr wächst und für größere kr_0 sehr angenähert durch $\frac{1}{2}$ kr_0 bestimmt ist. Im übrigen bleibt aber auch im abgewandten Aufpunkt die Störamplitude klein gegenüber der des ungestörten Feldes.

Abb. 92—97. Der Störfaktor für $kr_0 = 1$ bis $kr_0 = 6$.

c) Das Schallfeld in der Umgebung der Kugel.

In unmittelbarer Umgebung der Kugel werden wir eine wesentliche Verzerrung des ungestörten Feldes zu erwarten haben. Fragen wir zunächst nach dem Verlauf der Druckamplitude in der Verbindungslinie Strahler—Kugelmittelpunkt auf der dem Strahler zugewandten Seite, so werden hier, ähnlich wie vor einer starren ebenen Wand, Maxima und Minima eintreten. Als Beispiel wollen wir den Fall $kr_0 = 2$ untersuchen. Und zwar wollen wir den Schalldruck für die durch $kr = 2, 3, \ldots 10$ definierten Aufpunkte berechnen. Setzen wir in (165) $kr = kr_0$ ein, so folgt wegen der Beziehung [nach (129) und (147)]:

$$S_n(kr_0) V_n(kr_0) - C_n(kr_0) U_n(kr_0) = kr_0,$$

$$\mathfrak{p} = \frac{c \cdot \sigma}{2R\lambda} F \cdot w e^{i(\omega t - kR + \pi/2)} \sum_{n=0}^{\infty} (2n+1) \frac{i^{n+1} P_n(\cos \gamma)}{U_n(kr_0) + i V_n(kr_0)}. \quad (171)$$

Dies steht entsprechend dem Reziprozitätsgesetz in Übereinstimmung mit dem früher besprochenen Fall, wo der Strahler auf der Kugelfläche und der Aufpunkt in großem Abstand angenommen war (156).

Abb. 100. Reflexion an einer starren Kugel ($kr_0 = 2$).

Aus Konvergenzgründen empfiehlt es sich, das aus dem ursprünglichen (ungestörten) und dem Störfeld zusammengesetzte Feld $\mathfrak{p}=\mathfrak{p}_1+\mathfrak{p}_2$ nicht nach (165) zu berechnen, sondern zunächst das gestörte Feld \mathfrak{p}_2 nach (164) und zu berechnen, und das ungestörte Feld \mathfrak{p}_1 nach (160) hinzuzufügen.

Wir berechnen also zunächst den Störfaktor nach (164), indem wir $P_n(\cos \gamma) = 1$ setzen. Dann ist:

$$3(kr_{0}, kr, 0) = \frac{1}{kr} \sum_{n=0}^{\infty} \frac{(2n+1)i^{n}U_{n}(kr_{0})}{U_{n}(kr_{0}) + iV_{n}(kr_{0})} [S_{n}(kr) + iC_{n}(kr)]$$

$$= \sum A_{n}(kr) + iB_{n}(kr).$$

$$S_{n}(x) = \sqrt{\frac{1}{2}} x \int_{n+\frac{1}{2}} (x) \qquad U_{n} = xS_{n+1} - nS_{n}$$

$$A_n(kr) + iB_n(kr) = \frac{(2n+1)i^n U_n(2)}{U_n(2) + i V_n(2)} \frac{S_n(kr) + iC_n(kr)}{kr}.$$

n	kr=2	kr = 3	kr=4	kr = 5
0 2 4 6	$ \begin{vmatrix} +0.1742 - 0.3483 \ i \\ +0.6193 - 0.2959 \ i \\ -0.1060 + 0.0007 \ i \\ +0.0047 \end{vmatrix} $	+0,1884-0,3087 i	-0,0581-0,2438 i	-0,0885+0,1281 i -0,1684-0,0927 i -0,0044+0,0045 i
\sum_1	+0,6916-0,6435 i	+0,0339-0,5304 i	-0,2569-0,2475 i	-0,2613+0,0399 i
1 3 5 7	$\begin{array}{c} -0.0462 - 0.0347 \ i \\ +0.0270 + 0.3571 \ i \\ -0.0246 \ i \\ +0.0008 \ i \end{array}$	+0,0408+0,1211 i		+0,0105+0,0183 i +0,0555+0,0018 i -0,0001-0,0004 i
\sum_{2}	-0,0192+0,2986 i	+0,0053+0,1259 i	$+0,0458+0,0741 \ i$	+0,0659+0,0197 i
$\sum_{1+\sum_{2}\\-e^{-ikr}}$	$\begin{vmatrix} +0,6724 - 0,3449 \ i \\ +0,4162 - 0,9093 \ i \end{vmatrix}$	$^{+0,0392}_{-0,4045\ i}_{+0,9900-0,1411\ i}$	$\begin{array}{c} -0,2111-0,1734\ i \\ +0,6536+0,7568\ i \end{array}$	+0,1954+0,0596 i $-0,2837+0,9589 i$
$\frac{\sum_{1} + \sum_{2} - e^{-ikr}}{ \sum_{1} + \sum_{2} - e^{-ikr} }$	$\begin{vmatrix} +1,0886-1,2542 \ i \\ +1,660 \end{vmatrix}$	+1,0292-0,5456 i +1,165	$+0,4425+0,5834 \ i +0,732$	-0,4791+1,0185 i +1,125

Die Größen A_n+iB_n sind für $kr_0=2$ und $kr=2, 3, \ldots 10$ in der Tabelle zusammengestellt. Zur Erleichterung der späteren Berech-

Abb. 101. Die Komponenten R für kr = 2, 4, 6, 8, 10.

nung werden die Summen \sum_1 für gerades n und \sum_2 für ungerades n getrennt berechnet.

$$A_n(kr) + iB_n(kr) = \frac{(2n+1)i^n U_n(2)}{U_n(2) + i V_n(2)} \frac{S_n(kr) + i C_n(kr)}{kr}.$$

kr=6	kr = 7	k r=8	kr=9	kr = 10
+0,0499+0,1198 i $-0,1448+0,0608 i$ $-0,0007+0,0047 i$	$\begin{array}{c} +0,1096+0,0195\ i \\ -0,0322+0,1291\ i \\ +0,0022+0,0032\ i \end{array}$	+0,0661-0,0714 i +0,0747+0,0882 i +0,0032+0,0005 i	$\begin{array}{c} -0,0217 - 0,0838 \ i \\ +0,1018 - 0,0092 \ i \\ +0,0022 - 0,0018 \ i \end{array}$	$\begin{array}{c} -0,0740-0,0243\ i \\ +0,0451-0,0798\ i \\ -0,0025\ i \end{array}$
-0,0956+0,1853 i	+0,0796+0,1518 i	+0,1440+0,0173 i	+0,0823-0,0948 i	-0,0289-0,1066 i
+0.0174+0.0015 i +0.0319-0.0305 i -0.0002-0.0002 i	+0,0093-0,0116 i $-0,0017-0,0368 i$ $-0,0002$	$-0,0039-0,0124 i \ -0,0255-0,0188 i \ -0,0062+0,0001 i$	$\begin{array}{c} -0,0111 - 0,0032 \ i \\ -0,0268 + 0,0077 \ i \\ +0,0002 \ i \end{array}$	-0,0079+0,0068 i -0,0087+0,0233 i +0,0001+0,0001 i
+0,0491-0,0292 i	+0,0074-0,0484 i	$ -0,0296-0,0311 \ i$	-0.0379+0.0047 i	-0,0165+0,0302 i
-0,0465+0,1561 i -0,9602+0,2794 i	$\left \begin{array}{c} +0,0870+0,1034 \ i \\ -0,7539-0,6570 \ i \end{array} \right $, , -	-0,0454-0,0764 i +0,8391+0,5440 i
$\begin{array}{c} -1,0067 + 0,4355 \ i \\ +1,098 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+0,2599-1,0032 i +1,036	$^{+0,9555-0,5022}_{+1,079}$	+0,7937+0,4676 i +0,926

Die Werte $p=|\sum_1+\sum_2-e^{-ikr}|$ geben dann die Druckamplituden vor der starren Kugel in Richtung auf den Strahler an. Dabei ist die

Abb. 102. Die Komponenten R für kr=3, 5, 7, 9.

ungestörte Druckamplitude des Strahlers gleich eins gesetzt. Wir sehen, daß die Druckamplituden vor der starren Kugel in ähnlicher Weise

Abb. 103. Die Komponenten J für kr=2, 4, 6, 8, 10.

Abb. 104. Die Komponenten J für $k\tau=3$, 5, 7, 9.

wie bei der Reflexion an einer ebenen Wand schwanken; nur nehmen hier die Schwankungen mit größer werdendem Abstand von der Kugel sehr schnell ab (s. Abb. 100).

Die vollständige Berechnung des gestörten Schallfeldes ergibt sich dann mit Hilfe der Tabellen für die Kugelfunktionen aus:

$$\mathfrak{Z}(kr_0,\,kr,\,\gamma)-e^{-i\,k\,r\cos\gamma}=\sum\left(A_n+i\,B_n\right)P_n(\cos\gamma)=R+iJ\,.$$

Zunächst sind die Komponenten R und J für $kr = 2, 3, 4, \ldots 10$ in Abhängigkeit von y berechnet und in der Abb. 101 bis 104

Abb. 105. Die Abweichung der gestörten Druckamplitude in der Umgebung der Kugel (Radius r_0) von der ungestörten Amplitude für Aufpunkte (r, γ) . $kr_0 = 2$; $kr = 2, 3, 4 \dots 10$.

gezeichnet. Daraus sind die Größen $\sqrt{R^2+J^2}$ gefunden und die Schwankungen dieser um den ungestörten Wert 1 in Abb. 105 dargestellt. Man erkennt daraus, daß die Größe der Schwankungen mit wachsendem kr abnimmt, während die Zahl der Schwankungen zunimmt. Beziffert man die durch $kr = 2, 3, 4, \ldots 10$ gegebenen Aufpunkte entsprechend den Werten der Abb. 105, so kann man durch Interpolation die Kurven konstanten Schalldruckes in der Umgebung der Kugel einzeichnen. Das Ergebnis ist in Abb. 106 dargestellt. Der größte Wert (1,66) liegt auf der Oberfläche der Kugel gegenüber der Schallquelle ($\gamma = 0$). Der kleinste Wert (0,66) liegt ebenfalls auf der Kugel ($\gamma = 135^{\circ}$). Für Aufpunkte in einem Abstand $r > 5 r_0$ bleibt der Unterschied zwischen gestörter und ungestörter Amplitude unter 10%.

Abb. 106. Die Kurven konstanten Schalldruckes in der Nähe einer starren Kugel mit dem Radius r_0 . wenn die Schallquelle in großer Entfernung liegt und $kr_0=2$ ist.

$$\sigma_{2n}(x) = (-1)^n \int_0^x S_{2n}(x) dx$$

•		0		•
x	$\sigma_{\phi}(x)$	$\sigma_{1}(x)$	$\sigma_{4}(x)$	$\sigma_{i}(x)$
1.	$4,5970 \cdot 10^{-1}$	$-1,5889 \cdot 10^{-2}$	$1,7045 \cdot 10^{-4}$	$-9,0064 \cdot 10^{-7}$
1,25	$6,8468 \cdot 10^{-1}$	$-3,776 \cdot 10^{-2}$	$6,3780 \cdot 10^{-4}$	$-5,2881 \cdot 10^{-6}$
1,5	$9,2926 \cdot 10^{-1}$	$-7,575 \cdot 10^{-2}$	$1,8601 \cdot 10^{-3}$	$-2,2323 \cdot 10^{-5}$
1,75	1,1782	$-1,3492 \cdot 10^{-1}$	$4,5611 \cdot 10^{-3}$	$-7,4965 \cdot 10^{-5}$
2	1,4161	$-2,1991\cdot 10^{-1}$	$9,8396 \cdot 10^{-3}$	$-2,1274\cdot 10^{-4}$
2,25	1,6282	$-3,3440\cdot 10^{-1}$	$1,9227 \cdot 10^{-2}$	$-5,3045 \cdot 10^{-4}$
2,5	1,8011	$-4,8070\cdot 10^{-1}$	$3,4718 \cdot 10^{-2}$	$-1,1934 \cdot 10^{-3}$
2,75	1,9243	$-6,5934\cdot 10^{-1}$	$5,8749 \cdot 10^{-2}$	$-2,4688 \cdot 10^{-3}$
3	1,9900	$-8,6889 \cdot 10^{-1}$	$9,4155 \cdot 10^{-2}$	$-4,7627 \cdot 10^{-3}$
3,25	1,9941	-1,1057	$1,4412 \cdot 10^{-1}$	$-8,6589 \cdot 10^{-3}$
3,5	1,9365	-1,3642	$2,1165\cdot 10^{-1}$	$-1,4959 \cdot 10^{-3}$
3,75	1,8206	-1,6367	$3,0013 \cdot 10^{-1}$	$-2,4716\cdot 10^{-2}$
4	1,6536	-1,9140	$4,1236 \cdot 10^{-1}$	$-3,9266 \cdot 10^{-2}$
4,25	1,4461	-2,1857	$5,5056 \cdot 10^{-1}$	$-6,0232\cdot 10^{-2}$
4,5	1,2108	-2,4409	$7,1629 \cdot 10^{-1}$	$-8,9529 \cdot 10^{-2}$
4,75	$9,6240 \cdot 10^{-1}$	-2,6687	$9,0998 \cdot 10^{-1}$	$-1,2933 \cdot 10^{-1}$
5	$7,1634 \cdot 10^{-1}$	-2,8590	1,1331	$-1,8231 \cdot 10^{-1}$
5,25	$4,8791 \cdot 10^{-1}$	-3,0029	1,3765	$-2,5010\cdot 10^{-1}$
5,5	$2,9133 \cdot 10^{-1}$	-3,0935	1,6444	$-3,3609 \cdot 10^{-1}$
5,75	1,3881 · 10-1	-3,1264	1,9267	$-4,4243 \cdot 10^{-1}$
6	$3,9829 \cdot 10^{-2}$	-3,0999	2,2196	$-5,7126 \cdot 10^{-1}$
6,25	$0.0506 \cdot 10^{-2}$	-3,0154	2,5144	$-7,2433 \cdot 10^{-1}$
6,5	$2,3414 \cdot 10^{-2}$	-2,8873	2,8026	$-9,0268 \cdot 10^{-1}$
6,75	$1,0700 \cdot 10^{-1}$	-2,6930	3,0750	−1,1068
. 7	$2,4608 \cdot 10^{-1}$	-2,4580	3,3228	-1,3360
7,25	$4,3208 \cdot 10^{-1}$	-2,2273	3,5368	-1,5888
7,5	$6,5337 \cdot 10^{-1}$	-1,9714	3,7089	-1,8622
7,75	$8,9621 \cdot 10^{-1}$	-1,7188	3,8322	-2,1526
8	1,1455	-1,4835	3,9019	-2,4548
8,2 5	1,3858	-1,2788	3,9154	-2,7624
8,5	1,6020	-1,1162	3,8731	-3,0696
8,75	1,7808	-1,0050	3,7732	-3,3678
• 9	1,9111	$-9,5150 \cdot 10^{-1}$	3,6256	-3,6483
$9,\!25$	1,9848	$-9,5884 \cdot 10^{-1}$	3,4323	-3,9043
9,5	1,9972	-1,0255	3,2048	-4,1282
9,75	1,9476	-1,1507	2,9517	-4,3118
10	1,8391	-1,3241	2,6878	-4,4467

$$\sigma_{2n}(x) = (-1)^n \int_{0}^{x} S_{2n}(x) dx$$

x	$\sigma_{\mathbf{g}}(x)$	$\sigma_{10}(x)$	$\sigma_{12}(x)$	$\sigma_{14}(x)$
1	$2,8390 \cdot 10^{-9}$	$-5,9490\cdot 10^{-12}$	$8,8897 \cdot 10^{-15}$	$-9,9527 \cdot 10^{-18}$
1,25	$2,6112 \cdot 10^{-8}$	$-8,5647 \cdot 10^{-11}$	$2,0025 \cdot 10^{-13}$	$-3,5068 \cdot 10^{-16}$
1,5	$1,5927 \cdot 10^{-7}$	$-7,5405 \cdot 10^{-10}$	$2,5431 \cdot 10^{-12}$	$-6,4210\cdot 10^{-15}$
1,75	$7,3086 \cdot 10^{-7}$	$-4,7224 \cdot 10^{-9}$	$2,1722 \cdot 10^{-11}$	$-7,4763 \cdot 10^{-14}$
2	$2,7213 \cdot 10^{-6}$	$-2,3039 \cdot 10^{-8}$	$1,3872 \cdot 10^{-10}$	$-6,2475 \cdot 10^{-13}$
2,25	$8,6320 \cdot 10^{-6}$	$-9,2821 \cdot 10^{-8}$	$7,0921 \cdot 10^{-10}$	$-4,0506 \cdot 10^{-12}$
2,5	$2,4115 \cdot 10^{-5}$	$-3,2141 \cdot 10^{-7}$	$3,0408 \cdot 10^{-9}$	$-2,1489 \cdot 10^{-11}$
2,75	$6,0754 \cdot 10^{-5}$	$-9,8416 \cdot 10^{-7}$	$1,1303 \cdot 10^{-8}$	$-9,6890 \cdot 10^{-11}$
3	$1,4047 \cdot 10^{-4}$	$-2,7214\cdot 10^{-6}$	$3,7328 \cdot 10^{-8}$	$-3,8185 \cdot 10^{-10}$
3,25	$3,0207 \cdot 10^{-4}$	$-6,9047 \cdot 10^{-6}$	$1,1159 \cdot 10^{-7}$	$-1,3437 \cdot 10^{-9}$
3,5	$6,1037 \cdot 10^{-4}$	$-1,6275 \cdot 10^{-5}$	$3,0635\cdot 10^{-7}$	$-4,2920 \cdot 10^{-9}$
3,75	$1,1684 \cdot 10^{-3}$	$-3,5991 \cdot 10^{-5}$	$7,8125 \cdot 10^{-7}$	$-1,2609 \cdot 10^{-8}$
4	$2,1331 \cdot 10^{-3}$	$-7,5265 \cdot 10^{-5}$	$1,8679 \cdot 10^{-6}$	$-3,4430 \cdot 10^{-8}$
4,25	$3,7335 \cdot 10^{-3}$	1,4980 · 10-4	$4,2194 \cdot 10^{-6}$	$-8,8147 \cdot 10^{-8}$
4,5	$6,2934 \cdot 10^{-3}$	$-2,8521 \cdot 10^{-4}$	$9,0598 \cdot 10^{-6}$	$-2,1309 \cdot 10^{-7}$
4,75	$1,0254 \cdot 10^{-2}$	$-5,2225\cdot 10^{-4}$	$1,8589 \cdot 10^{-5}$	$-4,8938 \cdot 10^{-7}$
5	$1,6171 \cdot 10^{-2}$	$-9,2237 \cdot 10^{-4}$	$3,6609 \cdot 10^{-5}$	$-1,0731 \cdot 10^{-6}$
$5,\!25$	$2,4890 \cdot 10^{-2}$	$-1,5769 \cdot 10^{-3}$	$6,9466 \cdot 10^{-5}$	$-2,2563\cdot 10^{-6}$
5,5	$3,7260 \cdot 10^{-2}$	$-2,6166\cdot 10^{-3}$	$1,2741\cdot 10^{-4}$	$-4,5663 \cdot 10^{-6}$
5,75	$5,4464 \cdot 10^{-2}$	$-4,2244\cdot 10^{-3}$	$2,2652 \cdot 10^{-4}$	$-8,9231 \cdot 10^{-6}$
6	$7,7869 \cdot 10^{-2}$	$-6,6497\cdot 10^{-3}$	$3,9134 \cdot 10^{-4}$	$-1,6886 \cdot 10^{-5}$
6,25	$1,0906 \cdot 10^{-1}$	$-1,0224 \cdot 10^{-2}$	$6,5836 \cdot 10^{-4}$	$-3,1017 \cdot 10 = 5$
6,5	$1,4981 \cdot 10^{-1}$	$-1,5379 \cdot 10^{-2}$	$1,0805 \cdot 10^{-3}$	$-5.5423 \cdot 10^{-5}$
6,75	$2,0209 \cdot 10^{-1}$	$-2,2666\cdot 10^{-2}$	$1,7332 \cdot 10^{-3}$	$-9,6522 \cdot 10^{-5}$
7	$2,6797 \cdot 10^{-1}$	$-3,2769 \cdot 10^{-2}$	$2,7207 \cdot 10^{-3}$	$-1,6413 \cdot 10^{-4}$
7,25	$3,4960 \cdot 10^{-1}$	$-4,6527 \cdot 10^{-2}$	$4,1857 \cdot 10^{-3}$	$-2,7290 \cdot 10^{-4}$
7,5	$4,4908 \cdot 10^{-1}$	$-6,4934\cdot 10^{-2}$	$6,3180\cdot 10^{-3}$	$-4,4431 \cdot 10^{-4}$
7,75	5,6843 · 10-1	$-8,9182 \cdot 10^{-2}$	$9,3671 \cdot 10^{-3}$	$-7,0914 \cdot 10^{-4}$
. 8	$7,0942 \cdot 10^{-1}$	$-1,2077 \cdot 10^{-1}$	$1,3656 \cdot 10^{-2}$	$-1,1109 \cdot 10^{-3}$
$8,\!25$	8,7332 · 10-1	$-1,6073 \cdot 10^{-1}$	$1,9587 \cdot 10^{-2}$	$-1,7098 \cdot 10^{-3}$
8,5	1,0613	$-2,1123\cdot 10^{-1}$	$2,7667 \cdot 10^{-2}$	$-2,5879 \cdot 10^{-3}$
8,75	1,2735	$-2,7391 \cdot 10^{-1}$	$3,8516 \cdot 10^{-2}$	$-3,8543 \cdot 10^{-3}$
9	1,5095	$-3,5062 \cdot 10^{-1}$	$5,2873\cdot 10^{-2}$	$-5,6537 \cdot 10^{-3}$
9,25	1,7680	$-4,4325 \cdot 10^{-1}$	$7,1618 \cdot 10^{-2}$	$-8,1741\cdot 10^{-3}$
9,5	2,0467	$-5,5367 \cdot 10^{-1}$	$9,5779 \cdot 10^{-2}$	$-1,1658 \cdot 10^{-2}$
9,75	2,3427	$-6,8329 \cdot 10^{-1}$	$1,2649 \cdot 10^{-1}$	$-1,6405 \cdot 10^{-2}$
10	2,6520	$-8.3321 \cdot 10^{-1}$	$1.6514 \cdot 10^{-1}$	$-2.2792 \cdot 10^{-2}$

 $\sigma_{2n}(x) = (-1)^n \int_0^x S_{2n}(x) dx$

•		ý	
x	$\sigma_{16}(x)$	$\sigma_{18}\left(x ight)$	$\sigma_{20}(x)$
1	$8,6608 \cdot 10^{-21}$	$-6,0262\cdot 10^{-24}$	$3,4296 \cdot 10^{-27}$
1,25	$4,7721 \cdot 10^{-19}$	$-5,1906 \cdot 10^{-22}$	$4,6183 \cdot 10^{-25}$
1,5	$1,2596 \cdot 10^{-17}$	$-1,9749 \cdot 10^{-20}$	$2,5326 \cdot 10^{-23}$
1,75	$1,9986 \cdot 10^{-16}$	$-4,2694\cdot 10^{-19}$	$7,4565 \cdot 10^{-22}$
2^{-}	$2,1844 \cdot 10^{-15}$	$-6,1016\cdot 10^{-18}$	$1,3932 \cdot 10^{-20}$
$2,\!25$	$1,7952 \cdot 10^{-14}$	$-6,3555 \cdot 10^{-17}$	$1,8384 \cdot 10^{-19}$
2,5	$1,1779\cdot 10^{-13}$	$-5,1564\cdot 10^{-16}$	$1,8433 \cdot 10^{-18}$
2,75	$6,4390 \cdot 10^{-13}$	$-3,4152\cdot 10^{-15}$	$1,4795 \cdot 10^{-17}$
3	$3,0264 \cdot 10^{-12}$	$-1,9138 \cdot 10^{-14}$	$9,8812 \cdot 10^{-17}$
$3,\!25$	$1,2528 \cdot 10^{-11}$	$-9,3150\cdot 10^{-14}$	$5,6536 \cdot 10^{-16}$
3,5	$4,6530 \cdot 10^{-11}$	$-4,0206\cdot 10^{-13}$	$2,8348 \cdot 10^{-15}$
3,75	$1,5735 \cdot 10^{-10}$	$-1,5643\cdot 10^{-12}$	$1,2685 \cdot 10^{-14}$
4	$4,9031\cdot 10^{-10}$	$-5,5593 \cdot 10^{-12}$	$5,1385 \cdot 10^{-14}$
4,25	$1,4215\cdot 10^{-9}$	$-1,8242\cdot 10^{-11}$	$1,9075 \cdot 10^{-13}$
4,5	$3,8658\cdot 10^{-9}$	$-5,5765\cdot 10^{-11}$	$6,5529 \cdot 10^{-13}$
4,75	$9,9271\cdot 10^{-9}$	$-1,6002 \cdot 10^{-10}$	$2,1000 \cdot 10^{-12}$
5 .	$2,4210\cdot 10^{-8}$	$-4,3374 \cdot 10^{-10}$	$6,3229 \cdot 10^{-12}$
5,25	$5,6349 \cdot 10^{-8}$	$-1,1165\cdot 10^{-9}$	$1,7992 \cdot 10^{-11}$
5,5	$1,2568\cdot 10^{-7}$	$-2,7423\cdot 10^{-9}$	$4,8637 \cdot 10^{-11}$
5,75	$2,5943 \cdot 10^{-7}$	$-6,4534 \cdot 10^{-9}$	$1,2545 \cdot 10^{-10}$
6	$5,5812 \cdot 10^{-7}$	$-1,4601 \cdot 10^{-8}$	$3,2001 \cdot 10^{-10}$
6,25	$1,1178 \cdot 10^{-6}$	$-3,1849 \cdot 10^{-8}$	$7,3612 \cdot 10^{-10}$
6,5	$2,\!1713\cdot 10^{-6}$	$-6,7192 \cdot 10^{-8}$	$1,6853 \cdot 10^{-9}$
6,75	$4,1000 \cdot 10^{-6}$	$-1,3741\cdot 10^{-7}$	$3,7296 \cdot 10^{-9}$
7	$7,5395 \cdot 10^{-6}$	$-2,7294\cdot 10^{-7}$	$7,9970 \cdot 10^{-9}$
7,25	$1,3526 \cdot 10^{-5}$	$-5,2771\cdot 10^{-7}$	$1,6648 \cdot 10^{-8}$
7,5	$2,3708 \cdot 10^{-5}$	$-9,9447 \cdot 10^{-7}$	$3,3716 \cdot 10^{-8}$
7,75	$4,0662 \cdot 10^{-5}$	$-1,8308 \cdot 10^{-6}$	$6,6530 \cdot 10^{-8}$
8 .	$6,8327 \cdot 10^{-5}$	$-3,2951\cdot 10^{-6}$	$1,2814 \cdot 10^{-7}$
8,25	$1,1260\cdot 10^{-4}$	$-5,8063\cdot 10^{-6}$	$2,4118 \cdot 10^{-7}$
8,5	$1,8218 \cdot 10^{-4}$	$-1,0029 \cdot 10^{-5}$	$4,4424 \cdot 10^{-7}$
8,75	$2,8969 \cdot 10^{-4}$	$-1,6998 \cdot 10^{-5}$	$8,0174 \cdot 10^{-7}$
9	$4,5303 \cdot 10^{-4}$	$-2,8298 \cdot 10^{-5}$	1,4188 · 10-6
9,25	$6,9741 \cdot 10^{-4}$	$-4,6307 \cdot 10^{-5}$	$2,4653 \cdot 10^{-6}$
9,5	$1,0577 \cdot 10^{-3}$	$-7,4567 \cdot 10^{-5}$	$4,2097 \cdot 10^{-6}$
9,75	$1,5810 \cdot 10^{-3}$	$-1,1825 \cdot 10^{-4}$	$7,0671 \cdot 10^{-6}$
10	$2,3316 \cdot 10^{-3}$	$-1,8457 \cdot 10^{-4}$	$1,1674 \cdot 10^{-5}$

 $\zeta_{2n}(x) = (-1)^n \int_{2n}^x C_{2n}(x) dx$

	-		3 .0.0 /	
x	$\zeta_{ullet}(x)$	$\zeta_{s}(x)$	ζ ₄ (x)	$\zeta_{\bullet}(x)$
1	$+8,4147 \cdot 10^{-1}$	+2,4624	$-4,2118 \cdot 10^{+1}$	$+2,2493 \cdot 10^{+3}$
1,25	$+9,4899 \cdot 10^{-1}$	+1,5168	$-2,3436\cdot 10^{+1}$	$+7,7199 \cdot 10^{+2}$
1,5	$+9,9750 \cdot 10^{-1}$	+1,1390	$-1,4781\cdot 10^{+1}$	$+3,2872 \cdot 10^{+2}$
1,75	$+9,8399 \cdot 10^{-1}$	$+6,7842 \cdot 10^{-1}$	$-1,0116 \cdot 10^{+1}$	$+1,6310 \cdot 10^{+2}$
2	$+9,0930 \cdot 10^{-1}$	$+2,8508\cdot 10^{-1}$	-7,3071	$+9,0571\cdot 10^{+1}$
2,25	$+7,7807 \cdot 10^{-1}$	$-5,9492 \cdot 10^{-2}$	-5,4629	$+5,4977\cdot 10^{+1}$
2,5	$+5,9847\cdot 10^{-1}$	$-3,6290\cdot 10^{-1}$	-4,1630	$+3,5791 \cdot 10^{+1}$
2,75 ·	$+3,8166\cdot 10^{-1}$	$-6,2667 \cdot 10^{-1}$	-3,1903	$+2,4641\cdot 10^{+1}$
3	$+1,4112 \cdot 10^{-1}$	$-8,4887 \cdot 10^{-1}$	-2,4243	$+1,7740 \cdot 10^{+1}$
3,25	$-1,0820 \cdot 10^{-1}$	-1,0259	-1,7950	$+1,3230\cdot 10^{+1}$
3,5	$-3,5078 \cdot 10^{-1}$	-1,1535	-1,2597	$+1,0140\cdot 10^{+1}$
3,75	$-5,7156\cdot 10^{-1}$	-1,2280	$-7,9256\cdot 10^{-1}$	+7,9299
4	$-7,5680 \cdot 10^{-1}$	-1,2470	$-3,7794\cdot 10^{-1}$	+6,2863
4,25	$-8,9499 \cdot 10^{-1}$	-1,2099	$-6,99 \cdot 10^{-3}$	+5,0190
4,5	$-9,7753 \cdot 10^{-1}$	-1,0181	$+3,2456\cdot 10^{-1}$	+4,0091
4,75	$-9,9929 \cdot 10^{-1}$	$-9,7554\cdot 10^{-1}$	$+6,1775\cdot 10^{-1}$	+3,1796
5	$-9,5892 \cdot 10^{-1}$	$-7,8873 \cdot 10^{-1}$	$+8,7147\cdot 10^{-1}$	+2,4794
5,2 5	$-8,5893 \cdot 10^{-1}$	$-5,6631 \cdot 10^{-1}$	+1,0833	+1,8743
5,5	$-7,0554 \cdot 10^{-1}$	$-3,1899 \cdot 10^{-1}$	+1,2502	+1,3414
5,75	$-5,0828 \cdot 10^{-1}$	$-1,5896 \cdot 10^{-1}$	+1,3690	$+8,6521 \cdot 10^{-1}$
6	$[-2,7941\cdot 10^{-1}]$	$+2,0067\cdot 10^{-1}$	+1,4369	$+4,3590 \cdot 10^{-1}$
6,25	$ -3,3177\cdot 10^{-2} $	$+4,4655\cdot 10^{-1}$	+1,4524	$+4,7489 \cdot 10^{-2}$
6,5	$ +2,1512\cdot 10^{-1} $	$+6,6586\cdot 10^{-1}$	+1,4149	$-3,0500 \cdot 10^{-1}$
6,75	$+4,5005 \cdot 10^{-1}$	$+8,4694\cdot 10^{-1}$	+1,3257	$-6,1638 \cdot 10^{-1}$
7	$+6,5699 \cdot 10^{-1}$	$+9,8009 \cdot 10^{-1}$	+1,1878	$-8,9189 \cdot 10^{-1}$
7,25	$+8,2308 \cdot 10^{-1}$	+1,0581	+1,0062	-1,1276
7,5	$+9,3798 \cdot 10^{-1}$	+1,0766	$+7,8777\cdot 10^{-1}$	-1,3211
7,75	$+9,9465 \cdot 10^{-1}$	+1,0348	$+5,4163\cdot 10^{-1}$	-1,4697
8	$+9,8936 \cdot 10^{-1}$	$+9,3482\cdot 10^{-1}$	$+2,7643\cdot 10^{-1}$	-1,5707
8,25	$+9,2260\cdot 10^{-1}$	$+7,8233\cdot 10^{-1}$	$+4.64 \cdot 10^{-3}$	-1,6223
8,5	$ +7,9849\cdot 10^{-1} $	$+5,8601 \cdot 10^{-1}$	$-2,6226\cdot 10^{-1}$	-1,6232
8,75	$+6,2472\cdot 10^{-1}$	$+3,5701\cdot 10^{-1}$	$-5,1247\cdot 10^{-1}$	-1,5735
9	$+4,1212 \cdot 10^{-1}$	$+1,0841 \cdot 10^{-1}$	$-7,3459 \cdot 10^{-1}$	-1,4746
9,25	$+1,7390 \cdot 10^{-1}$	$-1,4549 \cdot 10^{-1}$	$-9,1830 \cdot 10^{-1}$	-1,3293
9,5	$-7,5151 \cdot 10^{-2}$	$-3,9003 \cdot 10^{-1}$	-1,0550	-1,1422
9,75	$-3,1952 \cdot 10^{-1}$	$-6,1109\cdot 10^{-1}$	-1,1380	$-9,1915 \cdot 10^{-1}$
10	$-5,4402 \cdot 10^{-1}$	$-7,9575 \cdot 10^{-1}$	-1,1633	$-6,6835 \cdot 10^{-1}$

 $\zeta_{2n}(x) = (-1)^n \int_{-\infty}^{x} C_{2n}(x) dx$

537(2) (-) J -27(2) 20				
x	$\zeta_{8}(x)$	$\zeta_{10}(x)$	$\zeta_{12}(x)$	$\zeta_{14}(x)$
1	$-3,0354 \cdot 10^{+5}$	$+7,5261 \cdot 10^{+7}$	$-2,9522\cdot 10^{+10}$	$+1,6784 \cdot 10^{+13}$
1,25	$-6,5399 \cdot 10+4$	$+1,0297\cdot 10^{+7}$	$-2,5745\cdot 10^{+9}$	$+9,3415 \cdot 10^{+11}$
1,5	$-1,8869 \cdot 10^{+4}$	$+2,0434\cdot 10^{+6}$	$-3,5286\cdot 10^{+8}$	$+8,8621 \cdot 10^{+10}$
1,75	$-6,6759 \cdot 10^{+3}$	$+5,2483 \cdot 10^{+5}$	$-6,6184 \cdot 10^{+7}$	$+1,2165\cdot 10^{+10}$
2	$-2,7480\cdot 10^{+3}$	$+1,6303 \cdot 10^{+5}$	$-1,5625 \cdot 10^{+7}$	$+2,1887\cdot 10^{+9}$
2,25	$-1,2724\cdot 10^{+3}$	$+5,8628 \cdot 10^{+4}$	$-4,4020 \cdot 10^{+6}$	$+4,8465 \cdot 10^{+8}$
2,5	$-6,4771\cdot 10^{+2}$	$+2,3692 \cdot 10^{+4}$	$-1,4268\cdot 10^{+6}$	$+1,2649 \cdot 10^{+8}$
2,75	$-3,5659 \cdot 10^{+2}$	$+1,0534 \cdot 10^{+4}$	$-5,1846\cdot 10^{+5}$	$+3,7726 \cdot 10^{+7}$
3	$-2,0976\cdot 10^{+2}$	$+5,0730 \cdot 10^{+3}$	$-2,0711\cdot 10^{+5}$	$+1,2571 \cdot 10^{+7}$
$3,\!25$	$-1,3062 \cdot 10^{+2}$	$+2,6156\cdot 10^{+3}$	$-8,9675 \cdot 10^{+4}$	$+4,5995 \cdot 10^{+6}$
3,5	$-8,5442\cdot 10^{+1}$	$+1,4308 \cdot 10^{+3}$	$-4,1608\cdot 10^{+4}$	$+1,8233\cdot 10^{+6}$
3,75	$-5,8347 \cdot 10^{+1}$	$+8,2447 \cdot 10^{+2}$	$-2,0506 \cdot 10^{+4}$	$+7,7485 \cdot 10^{+5}$
4	$-4,1365 \cdot 10^{+1}$	$+4,9763 \cdot 10^{+2}$	$-1,0657 \cdot 10^{+4}$	$+3,4999 \cdot 10+5$
4,25	$-3,0295 \cdot 10^{+1}$	$+3,1312\cdot 10^{+2}$	$-5,8075 \cdot 10^{+3}$	$+1,6687 \cdot 10^{+5}$
4,5	$-2,2817 \cdot 10^{+1}$	$+2,0460\cdot 10^{+2}$	$-3,3024 \cdot 10^{+3}$	$+8,3497 \cdot 10^{+4}$
4,75	$-1,7597 \cdot 10^{+1}$	$+1,3836 \cdot 10^{+2}$	$-1,9518 \cdot 10^{+3}$	$+4,3637\cdot 10^{+4}$
5	$-1,3841 \cdot 10^{+1}$	$+9,6546\cdot 10^{+1}$	$-1,1954 \cdot 10^{+3}$	$+2,3724\cdot 10^{+4}$
$5,\!25$	$-1,1061 \cdot 10^{+1}$	$+6,9320\cdot 10^{+1}$	$-7,5630\cdot 10^{+3}$	$+1,3371 \cdot 10^{+4}$
5,5	-8,9456	$+5,1082\cdot 10^{+1}$	$-4,9318 \cdot 10^{+2}$	$+7,7908 \cdot 10^{+3}$
5,75	-7,2947	$+3,8536\cdot 10^{+1}$	$-3,3080 \cdot 10^{+2}$	$+4,6806 \cdot 10^{+3}$
6	-5,9738	$+2,9689\cdot 10^{+1}$	$-2,2759\cdot 10^{+2}$	$+2,8934\cdot 10^{+3}$
$6,\!25$	-4,8918	$+2,3299\cdot 10^{+1}$	$-1,6079 \cdot 10^{+2}$	$+1,8370 \cdot 10^{+3}$
6,5	3,9857	$+1,8588 \cdot 10^{+1}$	$-1,1615 \cdot 10^{+2}$	$+1,1959 \cdot 10^{+3}$
6,75	-3,2109	$+1,5031 \cdot 10^{+1}$	$-8,5730 \cdot 10^{+1}$	$+7,9717 \cdot 10^{+2}$
7	-2,5361	$+1,2294\cdot 10^{+1}$	$-6,4568 \cdot 10^{+1}$	$+5,4343\cdot 10^{+2}$
7,25	-1,9390	$+1,0143\cdot 10^{+1}$	$-4,9548 \cdot 10^{+1}$	$+3,7843\cdot 10^{+2}$
7,5	-1,4037	+8,4194	$-3,8699 \cdot 10^{+1}$	$+2,6893 \cdot 10^{+2}$
7,75	$-9,1932 \cdot 10^{-1}$	+7,0128	$-3,0674 \cdot 10^{+1}$	$+1,9485 \cdot 10^{+2}$
8	$-4,7857 \cdot 10^{-1}$	+5,8421	$-2,4661 \cdot 10^{+1}$	$+1,4376 \cdot 10^{+2}$
8,25	$-7,665 \cdot 10^{-2}$	+4,8507	$-2,0087 \cdot 10^{+1}$	$+1,0799 \cdot 10^{+2}$
8,5	$+2,8840 \cdot 10^{-1}$	+3,9971	$-1,6529 \cdot 10^{+1}$	$+8,2461 \cdot 10^{+1}$
8,75	$+6,1739 \cdot 10^{-1}$	+3,2503	$-1,3726 \cdot 10^{+1}$	+6,3961 · 10+1
9	$+9,0970\cdot 10^{-1}$	+2,5877	$-1,1479 \cdot 10^{+1}$	$+5,0346 \cdot 10^{+1}$
9,25	+1,1638	+1,9934	9,6504	$+4,0173 \cdot 10^{+1}$
9,5	+1,3776	+1,4545	-8,1358	$+3,2463 \cdot 10^{+1}$
9,75	+1,5487	$+9,6266\cdot 10^{-1}$	-6,8648	$+2,6533\cdot 10^{+1}$
10	+1,6747	$+5,1225\cdot 10^{-1}$	5,7808	$+2,1910\cdot 10^{+1}$

 $\zeta_{2n}(x) = (-1)^n \int_{-\infty}^{x} C_{2n}(x) dx$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	$\zeta_{2n}(x) = 0$	-1/ j O2n(w) ww	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	æ	ζ ₁₆ (x)	$\zeta_{18}(x)$	$\zeta_{20}(x)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7	$-1.3034 \cdot 10^{+16}$	$+1,3251\cdot 10^{+19}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T I	$-4.6343 \cdot 10^{+14}$	$+3.0111 \cdot 10^{+17}$	$-2,4809 \cdot 10^{+20}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-3.0468 \cdot 10^{+13}$	$+1,3722\cdot 10^{+16}$	$-7,8401 \cdot 10^{+18}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-3.0636 \cdot 10^{+12}$	$+1,0119 \cdot 10^{+15}$	$-4,2417\cdot 10^{+17}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-4.2070 \cdot 10^{+11}$	$+1,0614\cdot 10^{+14}$	$-3,4005\cdot 10^{+16}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-7.3339 \cdot 10^{+10}$	$+1.4582\cdot 10^{+13}$	$-3,6836\cdot 10^{+15}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-1.5441 \cdot 10^{+10}$	$+2,4794\cdot10^{+12}$	$-5,0619 \cdot 10^{+14}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-3.7891 \cdot 10^{+9}$	$+5,0118\cdot 10^{+11}$	$-8,4349 \cdot 10^{+13}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-1.0556 \cdot 10^{+9}$	$+1,1690\cdot 10^{+11}$	$-1,6486\cdot 10^{+13}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	$-3.2729 \cdot 10^{+8}$	$+3,0759\cdot10^{+10}$	$-3,6852\cdot 10^{+12}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-1.1120 \cdot 10^{+8}$	$+8,9712\cdot 10^{+9}$	$-9,2379\cdot 10^{+11}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$+2,8608\cdot 10^{+9}$	$-2,\!5568\cdot 10^{+11}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$+9,8604\cdot 10^{+8}$	$-7,7161\cdot 10^{+10}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·	$-6.7547 \cdot 10^{+6}$	$+3,6404\cdot 10^{+8}$	$-2,5132\cdot 10^{+10}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-2.9895 \cdot 10^{+6}$	$+1,4287 \cdot 10^{+8}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-1.3895 \cdot 10^{+6}$	$+5,9224\cdot 10^{+7}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-6.7511 \cdot 10^{+5}$	$+2,5794\cdot 10^{+7}$	$-1,2685\cdot 10^{+9}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Į.	$-3.4148 \cdot 10^{+5}$	$+1,1749\cdot 10^{+7}$	$-5,2131\cdot 10^{+8}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-1.7919 \cdot 10^{+5}$	$+5,5745\cdot 10^{+6}$	$-2,2411\cdot 10^{+8}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$+2,7460\cdot 10^{+6}$	$-1,0041 \cdot 10^{+8}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· '		$+1,4002 \cdot 10^{+6}$	$-4,6724 \cdot 10^{+7}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-3.1415\cdot 10^{+4}$	$+7,3712 \cdot 10^{+5}$	$-2,2519 \cdot 10^{13}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-1.8611 \cdot 10^{+4}$	$+3,9972\cdot 10^{+5}$	$-1,1211 \cdot 10^{+7}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-1.1309 \cdot 10^{+4}$	$+2,2283\cdot 10^{+5}$	$-5,7521 \cdot 10^{+6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-7.0377\cdot 10^{+3}$	$+1,2748\cdot 10^{+5}$	$-3,0360 \cdot 10^{+6}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-4.4794\cdot 10^{+3}$	$+7,4719 \cdot 10^{+4}$	$-1,6449 \cdot 10^{+6}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-2.9127 \cdot 10^{+3}$	$+4,4808 \cdot 10^{+4}$	$-9,1369 \cdot 10^{+5}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-1.9327 \cdot 10^{+3}$	$+2,7457\cdot 10^{+4}$	$-5,1947 \cdot 10^{+5}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-1.3073 \cdot 10^{+3}$	$+1,7173\cdot 10^{+4}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-9.0122 \cdot 10^{+2}$	$+1,0952 \cdot 10^{+4}$	$-1,7917 \cdot 10^{+5}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-6,3233\cdot 10^{+2}$	$+7,1157 \cdot 10^{+3}$	$-1,0844 \cdot 10^{+3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$+4,7059 \cdot 10^{+3}$	$-6,6883 \cdot 10^{+4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-3,2751 \cdot 10^{+2}$	$+3,1657\cdot 10^{+3}$	$-4,1998 \cdot 10^{+4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-2,4147\cdot 10^{+2}$	$+2,1647\cdot 10^{+3}$	$-2,6827 \cdot 10^{+4}$
9.75 $-1.3737 \cdot 10^{+2}$ $+1.0609 \cdot 10^{+3}$ $-1.1487 \cdot 10^{+4}$		$-1.8079 \cdot 10^{+2}$	$+1,5039 \cdot 10^{+3}$	$-1,7421 \cdot 10^{+4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-1,3737 \cdot 10^{+2}$	$+1,0609 \cdot 10^{+3}$	$-1,1487 \cdot 10^{+4}$
	10	$-1,0588 \cdot 10^{+2}$	$+7,5950 \cdot 10^{+2}$	$-7,6970 \cdot 10^{+3}$

Schrifttum.

1. Bücher und zusammenfassende Berichte.

LORD RAYLEIGH: The theory of sound. London 1929.

Hahnemann, W., u. H. Hecht: Schallfelder und Schallantennen I, II. Phys. Z. Bd. 17 (1916) S. 601; Bd. 18 (1917) S. 261.

Hahnemann. W., u. H. Hecht: Schallgeber und Schallempfänger I—IV. Phys. Z. Bd. 20 (1919) S. 104, 245; Bd. 21 (1920) S. 264, 426.

AIGNER, F.: Unterwasserschalltechnik. Berlin 1922.

LAMB, H.: The dynamical theory of sound. London 1925.

CRANDALL, J. B.: Theory of vibrating systems and sound. New York 1926.

Backhaus, H.: Theorie akustischer Schwingungen. Handbuch der Physik von Geiger-Scheel Bd. 8. Berlin 1927.

SCHOTTKY, W.: Elektroakustik. Die wissenschaftlichen Grundlagen des Rundfunkempfangs von K. W. Wagner. Berlin 1927.

KÜPFMÜLLER, K.: Schwachstromtechnik. Handbuch der Experimentalphysik von Wien-Harms Bd. 11, 3. Teil. Leipzig 1931.

TRENDELENBURG, F.: Fortschritte der physikalischen und technischen Akustik. Leipzig 1932.

McLachlan, N. W.: Bessel functions for engineers. Oxford 1934.

HECHT, H., u. F. A. FISCHER: Anwendungen der Ausbreitung des Schalles in freien Medien. Handbuch der Experimentalphysik von WIEN-HARMS Bd. 17. Technische Akustik. Leipzig 1934.

BERGMANN, L.: Der Ultraschall. Berlin 1939.

HIEDEMANN, E.: Grundlagen und Ergebnisse der Ultraschallforschung. Berlin 1939.

2. Einzelveröffentlichungen.

LORD RAYLEIGH: On the acoustic shadow of a sphere. Phil. Trans. roy. Soc. Lond. Bd. 203 A (1904) S. 87.

Nicholson, J. W.: On the diffraction of short waves by a rigid sphere. Phil. Mag. Bd. 11 (1906) S. 193.

STEWART, S. W.: The acoustic shadow of a rigid sphere, with certain applications in architectural acoustics and audition. Phys. Rev. 1911 S. 467.

Backhaus, H., u. F. Trendelenburg: Über die Richtwirkung von Kolbenmembranen. Z. techn. Phys. Bd. 7 (1926) S. 630.

STENZEL, H.: Über die Richtwirkung von Schallstrahlern. Elektr. Nachr.-Techn. Bd. 4 (1927) S. 239.

Ballantine, S.: Effect of diffraction around the microphone in sound measurements. Phys. Rev. 1928 S. 988.

LINDSAY, R. B.; High frequency sound radiation from a diaphragm. Phys. Rev. (2) Bd. 32 (1928) S. 515.

BACKHAUS, H.: Über die Strahlungs- und Richtwirkungseigenschaften von Schallstrahlern. Z. techn. Phys. Bd. 19 (1928) S. 491.