

Polar Codes for Software Radio

Vortrag zur Masterarbeit Johannes Demel | 9.12.2015

COMMUNICATIONS ENGINEERING LAB (CEL)

Motivation

- Polar Codes sind eine neue Familie von Codes zur Kanalkodierung
- Konkurrenz zu LDPC Codes
- Warum neue Codes für die Kanalkodierung?
 - Shannon Kapazität erreichen
 - Höhere Datenrate
 - Durchsatz steigern

Johannes Demel - Polar Codes for Software Radio

- Welche Plattform wird wichtig sein?
 - Basisstation Virtualisierung
 - Software Radio
 - GNU Radio

Inhalt

- Theorie
 - Grundlagen
 - Encoder & Decoder
 - Kanalpolarisierungseffekt

- Implementierung
 - Systemkomponenten
 - Polar Code Performance
- Zusammenfassung

Grundlagen

- Kanalmodell f
 ür Polar Codes
- binärer symmetrischer DMC

Was sind Polar Codes?

Erdal Arikan 2009

Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels

Eigenschaften

- Blockcode
- nutzen Kanalpolarisierungseffekt
- asymptotisch gut
- erreichen Kanalkapazität

Beschreibung

- Blockgröße ($N=2^m$)
- Anzahl Informationsbits (k)
- Frozen Bit Werte $(u_{\mathcal{A}^C})$
- Positionen der Frozen Bits (\mathcal{A}^C)

Polar Encoder

Grundlegende Operation

- $\begin{tabular}{ll} & \textbf{Kanalkonstruktion} \\ & \textbf{Bestimme Frozen Bit Positionen } \mathcal{A}^{\mathcal{C}} \\ \end{tabular}$
- Frozen Bits und Informationsbits bilden Sourcewort

Beispiel N = 8, k = 4, R = 0.5

Kanalkonstruktion

lacktriangle Rekursiver Baum zur Kanalkonstruktion für synthetische Kanäle $u_i
ightarrow \hat{u}_i$

$$W_{2N}^{(2i)}(y^{2N}, u^{2i}|u_{2i}) = \frac{1}{2} \sum_{u_{2i+1} \in \mathcal{X}} W_{N}^{(i)}(y_{0}^{N}, u_{0,e}^{2i} + u_{0,o}^{2i}|u_{2i} + u_{2i+1})$$

$$\cdot W_{N}^{(i)}(y_{N}^{2N}, u_{0,o}^{2i}|u_{2i+1})$$
(1)

$$W_{2N}^{(2i+1)}(y^{2N}, u^{2i+1}|u_{2i+1}) = \frac{1}{2}W_N^{(i)}(y_0^N, u_{0,e}^{2i} + u_{0,o}^{2i}|u_{2i} + u_{2i+1})$$

$$W_N^{(i)}(x^{2N}, x^{2i}|x, y^{2i}|x, y^{2i}|x$$

Kanalpolarisierungseffekt

Kapazitäten der synthetischen Kanäle

BEC mit $N = 2^9 = 512$

- BEC mit Kanalkapazität 0.5
- mittlerer Abstand der Kapazität vom angenommenen Kanal
- Standardabweichung

9.12.2015

Polar Decoder

Successive Cancellation (SC) Algorithmus

Gleichung für durchgezogene Linie

$$f(l_a, l_b) = \operatorname{sign}(l_a)\operatorname{sign}(l_b)\min(|l_a|, |l_b|)$$

Gleichung für gestrichelte Linie

$$g(l_a, l_b, \hat{u}) = (-1)^{\hat{u}} l_a + l_b$$

Inhalt

- Theorie
 - Grundlagen
 - Encoder & Decoder
 - Kanalpolarisierungseffekt

- Implementierung
 - Systemkomponenten
 - Polar Code Performance
- 3 Zusammenfassung

Systemkomponenten

In GNU Radio implementierte Komponenten

Übersicht

GNU Radio Flowgraph für BER Simulationen

Polar Code Performance

■ Fehlerkorrekturfähigkeit und Durchsatz

- Coderate R = 0.5
- Polar Code N = 2048
- LDPC WiMAX Code N = 2302

	$R_{T/P,code}$
Encoder	550.4
SC Decoder	7.18
LDPC m.i. 10	0.2354
LDPC m.i. 50	0.0496

Tabelle 1: Durchsatz in Mbit/s

Vergleich verschiedener Codes

BER Performance verschiedener Codes

- Coderate R=0.5
- Polar Codes N = 2048
- Listengröße L=16
- LDPC WiMAX Code N=2302

Zusammenfassung

Weiterführend

- Encoder & Decoder
 - systematisch
 - SC List
- Kanalkonstruktion
 - effizienter Algorithmus
 - Bhattacharyya Schranke
- Simulationen
 - Vergleich aller Parameter
 - Testinfrastruktur entwickelt

Einführung in Polar Codes

- Grundlagen
- Encoder & Decoder
- Polarisierungseffekt

GNU Radio Implementierung

- C++ Code optimiert auf Durchsatz
- Fehlerkorrekturfähigkeit analysiert

Polar Codes vereinen gute Fehlerkorrekturfähigkeit und hohen Durchsatz

Ende

Danke für Ihre Aufmerksamkeit!

BSC Beispiel

Polar Encoder Matrix

$$\mathsf{Kernel}\,F = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$F^{\otimes 2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$G_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$u^2 \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = x^2$$

Allgemein $u^N G_N = u^N B_N F^{\otimes m} = x^N$

$$1_d = 01_b \to 10_b = 2_d
2_d = 10_b \to 01_b = 1_d$$