Trevioudy. - Reductions (Tgamihire) NPC - NP-Complete - Cook-Lersh Theorem CNF (SAT) $((C_1)\wedge C_2)\wedge$ (... / (cm) C; = (2, V 7x4 V x5 V 7x6) CNF is NP-Complete.

T.S.T. YLENP, non-det poly din TM (1) stant contis. every consecution + [contis are obtainable by S-transitions Reduehon ((y)) Construct a CNF formular P P=P X P A P Cod

is a matrix of size nxnk Tableau with entries in QUT ¥ i, j∈ d1. n² d, s∈ QU∏) C.. cell [isj] = S x1; = 1 $\# variables = O(n^{2k})$ (4.) Hisj of oxijs in 1 Exactly one (Les se QUT) $f: \{0, 13^{(pvT)}\}$ Pcell =

 $\varphi_{skant} = \chi_{11D} \wedge \chi_{112,t} \wedge \chi_{12b_{t}}$ ··· A Imy 1 × Intlyn Pacc = 11800 V 2/12900 -. V OL In 2 2 acc Prove: every now is a contis that yields a contig on the next now by 8 transition $\begin{array}{lll}
\text{Prove} &= & & & & & & \\
\text{Prove} &= & & & & & \\
\text{Prove} &= & \\
\text{Prove} &= & & \\
\text{Prove} &= & & \\
\text{Prove} &= & & \\
\text{Pr$ Clain! LEL <=> Pre in parishable.

More Reductions. Vendenc Cover: G(V,E)

a verdex cover in a set $S \leq V s$. t.

Vevery edge $e \in E_J$ has one endpoint in S.

VERTEX-COVER = { < C, k > : G has a V.C.

of size \le k }

Claim' VERTEX-COVER & NP-Complete

Rot'

TEV

 $\frac{R - t}{T}$ V(Ca, h), CT) $- Chech if <math>\forall e \in E, ch, v$ $u \in T \text{ on } v \in T$

J-Chech 1715 k

2) L = VC

L -> CNF -> INDSET

VERTEX COVER

INDSET

(a, k)

here in SSV

151>k, s.+

all edses are

out side S

VERTEXIOUER

 $\angle H_0 k'$

here in S & VCH)

1514k', s.t.

s toucher all

edsen

| H = G| k' = n - k

· Complement of an 1.5.

is a Verden Cover.

INTEGER - PROGRAMMING.

$$\begin{bmatrix}
 u_1 + 4 u_2 + 5 u_3 & = 25 \\
 u_2 - 3 u_4 + u_1 & = 5
 \end{bmatrix}$$

Find integer u. .. un that sahrstier the m inequalities.

LINEAR-PROGRAMMING EP U. Un E R (Kannanker)

INT. PROG ENP-COMPLETE

3 CNF = INT. PROG.

$$\phi = C, \Lambda \cdots \Lambda Cm$$

$$C_i = (x_1^i \vee x_2^i \vee x_3^i)$$

n-variables and mithegraditien.

$$x_i \longrightarrow v_i$$

$$7x_i \rightarrow (1-v_i)$$

$$(x, \forall x_2 \forall 7x_3)$$

(1) Reduction in polytime (det)

HAM-PATH
<a>Ca> has a HAM - how.
3CNF — HAMPATH G P=C, N NCm
Goal: To combonet a sit,
Pin Datishable Ham-town.
1) Each xi
2.) Vstant -no in comins.