AITL戦略提言書 v4.2 完成版

AITL戦略提言書 v4.2 完成版

AITL Strategy Proposal v4.2 Final Edition {#top}

目次 / Table of Contents {#toc}

- 0. 概要 / Overview
- 1. 統合制御の価値 / Value of Feedback-Transition Integration
- 2. LLM融合によるAITLの価値 / Value of AITL with LLM
- 3. PoC具体例 / Real-World PoC Examples
- 4. AITL実装とSystemDKの必要性 / Need for SystemDK in AITL Implementation
 - 。 4.1 技術的課題とリスク / Technical Challenges and Risks
- 5. 政策提言 / Policy Recommendations
 - 。 5.1 導入効果試算 / Expected Benefits (Model Case)
 - 。 5.2 政策ロードマップ / Policy Roadmap
 - 。 5.3 学術化と人材育成 / Academic Systematization & HR Development
 - 。 5.4 産業化モデル / Industrialization Model
- 6. おわりに / Conclusion
- 戻る / Back

0. 概要 / Overview {#overview}

本提案は、**状態フィードバック制御と状態遷移制御**を統合し、 さらに **LLM(大規模言語モデル)** および **SystemDK(System Design Kit)** を 組み合わせることで、

リアルタイム〜準リアルタイムにおける **仕様変更対応・故障時再設計・物理制 約を考慮した設計** を可能とする

「AITL戦略 (AI-Integrated Transition & Loop)」を提示するものである。

This proposal presents the AITL Strategy (AI-Integrated Transition & Loop), which integrates state feedback control and state transition control, further enhanced by LLMs (Large Language Models) and SystemDK (System Design Kit).

This integration enables real-time to quasi-real-time **design modification**, **f** ault-time redesign,

and constraint-aware implementation.

従来、**制御・解析・物理実装**はそれぞれ **独立したプロセス** として扱われてきた。

しかし、先端ノード半導体や次世代自律システムの分野では、

これらを単一の設計基盤上で統合的に運用することが国際競争力確保の必須条件 となっている。

本提案はそのための **具体的枠組み** を提示する。

Traditionally, **control, analysis, and physical implementation** have been managed as **independent processes**.

However, in advanced-node semiconductor design and next-generation autonomous systems,

operating them within a unified design framework has become indispensable for maintaining international competitiveness.

This proposal outlines a **practical framework** to achieve that goal.

本提案が統合する技術群は、

- ・制御(状態フィードバック+状態遷移)
- 解析・設計(LLM)
- 物理実装最適化(SystemDK)

である。これらは成果物と制約条件を直接共有できる相補的要素であり、 部分的改善では到達できない、**リアルタイムかつ物理制約を考慮した統合的最適 化**を実現する。 The technologies integrated in this proposal—

- control (state feedback + state transition)
- design & analysis (LLMs)
- physical implementation optimization (SystemDK)

are complementary elements that can directly share results and constraints. Together, they enable a level of **real-time**, **constraint-aware holistic optimization**

that cannot be achieved through partial improvements alone.

さらに、世界の半導体市場と制御系産業はいま急速な変革期にある。 これら3つの技術を **今** 統合しなければ、EUV世代の半導体設計や 産業用自律システム制御といった分野で国家的な技術競争において 致命的な遅れを招く可能性が高い。

特に、SystemDKはAITLの専用技術にとどまらず、 **あらゆる先端ノード半導体設計に不可欠な基盤** である。

Moreover, the global semiconductor and control industries are undergoing rapid transformation.

Without integrating these three technologies now, nations risk falling fatally behind in areas such as

EUV-generation semiconductor design and industrial autonomous systems.

In particular, SystemDK is not limited to AITL-specific applications—it is an **essential foundation for all advanced-node semiconductor design**.

1. 統合制御の価値 / Value of Feedback-Transition Integration {#feedback-transition}

統合制御は、従来型制御の課題(局所最適化・仕様変更耐性不足・故障時脆弱性)を解消し、

安定性・柔軟性・冗長性を兼ね備えた次世代制御基盤を実現する。

Integrated control resolves the limitations of conventional methods (local optimization, poor tolerance to specification changes, and fragility under faults),

and enables a **next-generation control framework** with stability, flexibility, and redundancy.

統合制御がもたらす効果 / Effects of Integrated Control

項目 / Item	効果 / Effect
安定性 / Stability	異なるモード間でも連続的で安定した動作を維持 Maintains continuous and stable operation even across different modes
柔軟性 / Flexibility	設計時点および運用中の要求変更に柔軟対応 Adapts flexibly to design-time and runtime requirement changes
冗長性 / Redundancy	一部機能喪失時にも安全かつ効率的に動作継続 Continues safe and efficient operation even when some functions fail

統合制御の模式図 / Conceptual Diagram

flowchart TB

A[状態フィードバック制御
br/>State Feedback Control] --> C[統合制御コア
br/>Integrated Control Core]

B[状態遷移制御
State Transition Control] --> C

C --> D[安定性 + 柔軟性 + 冗長性
Stability + Flexibility + Redundancy]

2. LLM融合によるAITLの価値 / Value of AITL with LLM {#aitl-llm-value}

AITLは **統合制御** に **LLM(大規模言語モデル)** を加えることで、 従来の制御・設計の枠を超えた新しい価値を創出する。

By incorporating **LLMs** (Large Language Models) into integrated control, AITL creates **new value** that goes beyond conventional control and design paradigms.

LLMがもたらす新しい価値 / New Value of LLM Integration

LLM活用領域 / LLM Role	新しい価値 / New Value
状況解析 / Situation Analysis	ログやセンサーデータから異常検知・原因推定を 自動化 Automates anomaly detection and root-cause estimation from logs and sensor data
準リアルタイム設計 / Quasi- Real-Time Design	数分単位で仕様変更に対応し、制御アルゴリズム やFSM構造を再設計 Adapts to specification changes within minutes, redesigning control algorithms and FSM structures
統合アーキ設計 / Integrated Architecture Design	仕様書から直接、統合制御を含む全体設計図を生成 Generates complete system architectures, including integrated control, directly from specifications
故障時再設計 / Fault-Time Redesign	残存機能を活用して動作モードを再構築 Reconstructs operation modes by leveraging remaining functional modules during faults
SystemDK連携 / SystemDK Collaboration	物理制約・ノード特性を設計初期から反映し、最適な実装形態を選択 Integrates physical constraints and node characteristics from the early design stage to select the optimal implementation form