Accelerating Biomolecular Nuclear Magnetic Resonance Assignment with A*

Joel Venzke, Paxten Johnson, Rachel Davis, John Emmons, Katherine Roth, David Mascharka, Leah Robison, Timothy Urness and Adina Kilpatrick

> Department of Mathematics and Computer Science Drake University

> > joel.venzke@drake.edu

April 10,2014

Overview

- Introduction
 - Motivation
 - Nuclear Magnetic Resonance Spectroscopy
- NMR Assignment Background
 - Data Collection and Manual Assignment
- Automation Algorithm
 - Preprocessing
 - Assignment
 - Goal State
- Conclusion
 - Results
 - Outlook

Motivation

Introduction

Motivation

- Nuclear Magnetic Resonance Spectroscopy
 - Gain knowledge about protein structure
 - Study how mutations lead to diseases
- Problems
 - Generates large amounts of data
 - Data analysis is slow and error prone
- Goal
 - Automate the assignment process
 - Decrease human error
 - Increase productivity

Nuclear Magnetic Resonance Spectroscopy

Introduction

.0

Nuclear Magnetic Resonance (NMR)

- Used to obtain structural information
 - Chemical shift values
- HNCACB experiment
 - Generates C_{α} and C_{β} residue i and i-1
- CBCA(CO) NH experiment
 - Generates C_{α} and C_{β} for residue i
 - Confirms residue data

Introduction

0

Chemical Shift Values

HNCACB

Manual Methods

- Most time consuming part
- Missing and ambiguous data forces chunks to be skipped
- Prone to human error

Data Collection and Manual Assignment

Timeline

Automation Algorithm

Automating Assingment

- Initialization
- Generating child nodes
- Goal State
- Solution State

Preprocessing

Initialization

- Expected amino acid sequence
 - Converted to expected chemical shift values
 - Stored as the reference protein chain
- NMR experiment's chemical shift data
 - C_{α} and C_{β} for residue i and i-1
 - Stored in a tile
- Missing data
 - Place holder tile generation
- Grouping

Automation Algorithm 000 0000000 00000

Preprocessing

Grouping

Starting the assignment

Automation Algorithm

OOO

OOOOOO

Starting the assignment

Cost Calculation

- Accuracy matching the protein chain residue
- Accuracy matching the tile above current tile
- Cost of placing all previous tiles

Goal State

Goal State

Goal State

Goal State

00000

00000

Goal State

Goal State

Goal State

Solution State

00000

Goal State

Compared to Naive Approach

14.1% of the possible combinations

Results

Time of Assignment

Results

Child Nodes Generated

Future Goals

- Parallelization
 - Decrease assignment time
 - Allow for larger data sets
- Machine learning
 - Optimize cost calculation
 - Increase accuracy of assignment

Acknowledgments

- Dr. Tim Urness (Mathematics and Computer Science)
- Dr. Adina Kilpatrick (Physics)
- Rachel Davis (research colleague)
- John Emmons (research colleague)
- Katherine Roth (research colleague)
- David Mascharka (research colleague)
- Leah Robison (research colleague)

Bibliography

- Sean Cahill and Mark Girvin. Introduction to 3d triple resonance experiments. 2012.
- Peter Guntert. Automated structure determination from NMR spectra, European Biophysics Journal, 38 (2009), 129–143.
- Flemming M. Poulsen. A brief introduction to nmr spectroscopy of proteins.

Thank You

