非平衡电桥实验报告

摘要

非平衡电桥在工业和生产上有广泛的应用。本实验以控制变量法为基础,电阻箱、铜丝、加热台等材料和工具,简单探讨了电阻变化量与物理量之间的变化关系,了解了非平衡电桥的基本性质和铜丝电阻与温度之间的关系,并给出了一些实验结果偏差的讨论.

关键词

非平衡电桥;外接电阻箱法;线性拟合.

1. 引言

直流电桥是一种精密的电阻测量仪器,具有重要的应用价值,按电桥的测量方式可分为平衡电桥和非平衡电桥。平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥(惠斯登电桥)、双臂直流电桥(开尔文电桥),它们只能用于测量具有相对稳定状态的物理量。但在实际工程和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量。

非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行简单的线性运算处理,从而得到电阻的变化量,以及引起电阻变化的其它物理量,如温度、压力、形变等.

2. 实验原理和方法

2.1. 实验仪器

直流稳压电源、电阻箱、Keithy2000(微伏表)、漆包线铜丝、加热台、温度计、导线、烧缸等.

2.2. 实验原理

图 1 非平衡电桥电路图

直流非平衡电桥原理如图 1 所示.

当
$$\frac{R_3}{R_2} = \frac{R_4}{R_1}$$
时,电桥平衡,有 $U_g = 0$.

当用 $R4+\Delta R$ 代替R4时, $\frac{R_3}{R_2}$ 不等于 $\frac{R_4+\Delta R}{R_1}$,此时 U_g 不等于 0,为非平衡状态.

2024 年 12 月 9 日

Ug为高精电压表值,测量 $C \times D$ 二点输出电压(电压表内阻看着无穷大),应用电路分析知识,可算出输出的非平衡电压为:

$$U_g = \frac{R_2 R_4 + R_2 \Delta R - R_1 R_3}{(R_1 + R_4)(R_2 + R_3) + \Delta R(R_2 + R_3)} U_S \quad (1)$$

分析上式,可以得到电桥的三种形式:

- (1) 等臂电桥: $R1 = R2 = R3 = R4 \equiv R0$
- (2) 卧式电桥: R1 = R4, R2 = R3 (关于输出对称电桥)
- (3) 立式电桥: R1 = R2, R3 = R4 (关于电源对称电桥)

将等臂条件代入(1)式经简化得:

$$U_g = \frac{U_s}{4} \delta \frac{1}{1 + \frac{1}{2} \delta}$$
 (2)

其中 $\delta = \frac{\Delta R}{R_0}$ 称为电阻的应变量,或叫"相对改变量"。我们在设计电桥时,令 $\Delta R \ll R0$,则 $\delta \to 0$,于是有:

$$U_g = \frac{U_s}{4} \delta = \frac{U_s}{4R_0} \Delta R \quad (3)$$

这样,非平衡电桥输出电压Ug与桥臂电阻的变化量 ΔR ,成正比,为线性关系。当 ΔR 较大时,(2)式中的 $\delta/2$ 项不能省略,此时Ug与 δ 呈非线性关系。

3. 实验内容和步骤

3.1. 实验一:研究非平衡电桥的输出的线性范围和灵敏度

用外接电阻箱法研究非平衡电桥的 U_g 与 δ 的关系,作出 U_g - δ 曲线,并对此实验曲线与理想直线(式(3))之间进行误差分析,以确定电桥输出的线性范围和灵敏度。

实验步骤如下:

- (1) 调节电源输出电压,同时用万用表直流电压档来校准,使其输出电压为Us = 2.0V。电路如图 1 所示并用导线连接好,用高精度台式万用表(Keithy2000)来测量 U_a 。
- (2) 先取电桥为等臂,即: $R1=R2=R3=R4=R0=1k\Omega$,由于导线存在有一定的电阻,微调R3的值,使 U_a 为零,此时电桥平衡,并记录R3的具体值。
- (3) 改变R4从800至 1200Ω ,每次变化量为 20Ω ,按顺序记下各 U_g 的值,作出 $U_g-\delta$ 曲线。
- (4) 根据公式(3)过原点作一条直线 $U_g^{\overline{x}\dot{w}}-\delta$,并与实际测量的 $U_g^{\underline{x}\dot{w}}-\delta$ 曲线进行比较,得出 $U_g-\delta$ 的线性 关系成立的 δ 取值范围。
- (5) 测算在此桥臂电阻值下,电桥在零点附近的绝对灵敏度。

3.2. 实验二:研究桥臂电阻对非平衡电桥的输出的线性范围和灵敏度的影响

保持电源电压Us = 2.0V不变,改变R0的值,研究非平衡电桥的线性范围和灵敏度与 R_0 的关系。

实验步骤如下:

- (1) 电路图仍如图 1 所示,保持电源电压Us=2.0V不变,取电桥为等臂,即R1=R2=R3=R4=R0,R0 改取5000 Ω 和50 Ω ,微调R3的值,使 U_a 为零,此时电桥平衡,并记录R3的具体值。
- (2) 改变R4的阻值,每次改变量为R4/2%。取值范围取(R0 20%R0, R0 + 20%R0)。记录桥路输出电压数据,画图测算线性范围,并计算电桥在零点附近的绝对灵敏度。
- (3) 结合实验一数据,分析Ug与 δ 之间近似满足线性关系时的R4 取值范围,此范围的长度 $\Delta R4$ 与R0大小之间的关系,同时分析实测零点绝对灵敏度大小与R0大小之间的关系。

3.3. 实验三: 使用非平衡电桥测量铜丝的电阻温度系数

利用搭建的直流非平衡电桥,测量并记录铜丝的电阻,以及其电阻随温度的改变值。计算铜丝的电阻温度系数,在 0°C和 20°C时的值和不确定度。

实验步骤如下:

- (1) 由于铜丝电阻较小,取桥臂电阻为 50Ω ,用Keithy2000来测量桥路输出电压 U_g 。保持恒压源输出电压为2.0V,微调R3的值,使 U_g 尽可能的小(< |0.01mV|),并记录对应的 U_{g0min} .
- (2) 把3m长,直径为0.60mm的铜丝(漆包线)串联到R4 所在的桥臂上。把铜丝浸没在陶瓷杯内的水中,用温度计测量水温t,记录水温并测量当前水温下桥路输出电压Ug(t)值,并与没有串联铜丝时 U_{a0min} 比较。
- (3) 用加热台对杯子里水进行加热,铜丝温度缓慢上升。每隔 5℃记录一下对应的Ug(t),直到 85℃为止。
- (4) 根据各个不同温度点下的Ug(t) 值(与没有串联铜丝时 U_{g0min} 比较),利用简单的线性关系(式(3)),计算出铜丝在各个温度点下的电阻值 $R_{Cu}(t)$,并作出 $R_{Cu}(t)$ t的散点图以及拟合直线。求出拟合直线的斜率,并推算 0°C和 20°C时的铜丝电阻。
- (5) 根据电阻温度系数定义式 $\alpha_T=k/R_T$,计算铜丝的在 0°C和 20°C处的电阻温度系数 α_t ,以及在P=95%置信概率下的相对不确定度 u_α/α 和绝对不确定度 u_α (A 类不确定度)。

4. 实验结果和分析

4.1. 实验一: 研究非平衡电桥的输出的线性范围和灵敏度

4.1.1. 测算线性关系成立范围

表 1: $R0 = 1k\Omega$ 时,桥路二端点C、D输出电压差与桥臂电阻改变量 ΔR 的关系 $(R3 = 999.6\Omega)$

$R4(\Omega)$	800	820	840	860	880	900	920	940	960	980	1000
ΔR=R4-R0 (Ω)	-200	-180	-160	-140	-120	-100	-80	-60	-40	-20	0
 Ug实测(mV)	-111.1282	-98.9175	-86.973	-75.2835	-63.8448	-52.6433	-41.6708	-30.9325	-20.4115	-10.1048	0
Ug线性(mV)	-100.0000	-90.0000	-80.0000	-70.0000	-60.0000	-50.0000	-40.0000	-30.0000	-20.0000	-10.0000	0
(<i>Ug</i> 线性- <i>Ug</i> 实测)/ <i>Ug</i> 线性	0.1113	0.0991	0.0872	0.0755	0.0641	0.0529	0.0418	0.0311	0.0206	0.0105	0
R4(Ω)	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	
ΔR=R4-R0 (Ω)	20	40	60	80	100	120	140	160	180	200	
 Ug实测(mV)	9.8966	19.604	29.124	38.4589	47.6195	56.6046	65.4225	74.0765	82.5721	90.9124	
Ug线性(mV)	10.0000	20.0000	30.0000	40.0000	50.0000	60.0000	70.0000	80.0000	90.0000	100.0000	
(<i>Ug</i> 线性- <i>Ug</i> 实测)/ <i>Ug</i> 线性	0.0103	0.0198	0.0292	0.0385	0.0476	0.0566	0.0654	0.0740	0.0825	0.0909	

如图 4.1.1、图 4.1.2 所示, $Ug-\Delta R$ 线性关系成立的 ΔR 取值范围为 $-80<\Delta R<100$, $U_g-\delta$ 线性关系成立的 δ 取值范围为 $-0.08<\delta<0.10$,与理论值误差均小于5%,误差在合理范围内。

此时R4取值范围为 $920\Omega < R4 < 1100\Omega$ 。

4.1.2. 测算电桥在零点附近的绝对灵敏度

在
$$\delta = 0$$
处,绝对灵敏度 $S = \frac{U_S}{4R_0} = \frac{2}{4 \times 1000} = 0.0005$.

4.2. 实验二: 研究桥臂电阻对非平衡电桥的输出的线性范围和灵敏度的影响

4.2.1. 当 $R0 = 5000\Omega$ 时

实验数据如下表:

表 2: R0=5k Ω 时, 桥路二端点 C、D 输出电压差与桥臂电阻改变量 ΔR 的关系(R3=4999.5 Ω)

R4(Ω)	4000	4100	4200	4300	4400	4500	4600	4700	4800	4900	5000
ΔR=R4-R0 (Ω)	-1000	-900	-800	-700	-600	-500	-400	-300	-200	-100	0
Ug实测(mV)	-111.1482	-98.9356	-86.9878	-75.2965	-63.8528	-52.6508	-41.6832	-30.9412	-20.4189	-10.1072	0
Ug线性(mV)	-100.0000	-90.0000	-80.0000	-70.0000	-60.0000	-50.0000	-40.0000	-30.0000	-20.0000	-10.0000	0
(<i>Ug</i> 线性- <i>Ug</i> 实测)/ <i>Ug</i> 线性	0.1115	0.0993	0.0873	0.0757	0.0642	0.0530	0.0421	0.0314	0.0209	0.0107	0
R4(Ω)	5100	5200	5300	5400	5500	5600	5700	5800	5900	6000	
ΔR=R4-R0 (Ω)	100	200	300	400	500	600	700	800	900	1000	
Ug实测(mV)	9.9032	19.6125	29.1342	38.4716	47.6343	56.6219	65.4408	74.0965	82.5952	90.9365	
Ug线性(mV)	10.0000	20.0000	30.0000	40.0000	50.0000	60.0000	70.0000	80.0000	90.0000	100.0000	
(Ua线性-Ua实测)/Ua线性	0.0097	0.0194	0.0289	0.0382	0.0473	0.0563	0.0651	0.0738	0.0823	0.0906	

根据此表做出 U_g $-\Delta R$ 拟合曲线。根据公式(3)过原点做一条直线 $U_g^{{\tt Tilde}}=500\delta$,令 $U_\delta=\frac{|U_g^{{\tt Tilde}}-U_g^{{\tt Tilde}}|}{|U^{{\tt Tilde}}|}$,并做出 U_δ $-\Delta R$ 关系图,当 $U_\delta<0.05$ 时,即认为 U_g $-\Delta R$ 线性关系成立。

图 $4.2.2 R_0 = 5000\Omega$ 时 $U_{\delta} - \delta$ 关系图

如图 4. 2. 1,图 4. 2. 2 所示, $Ug-\Delta R$ 线性关系成立的 ΔR 取值范围为 $-400<\Delta R<500$, $U_g-\delta$ 线性关系成立的 δ 取值范围为 $-0.08<\delta<0.10$,与理论值误差均小于5%,误差在合理范围内。此时 R4 取值范围为 $4600\Omega<R4<5500\Omega$ 。

同实验一方法,在 $\delta = 0$ 处,绝对灵敏度 $S = \frac{U_S}{4R_0} = \frac{2}{4 \times 5000} = 0.0001$.

4. 2. 2. 当 $R0 = 50\Omega$ 时

实验数据如下表:

表 3: $R0=50\Omega$ 时,桥路二端点C、D输出电压差与桥臂电阻改变量 ΔR 的关系 ($R3=49.91\Omega$)

R4(Ω)	40	41	42	43	44	45	46	47	48	49	50
ΔR=R4-R0 (Ω)	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
Ug实测(mV)	-110.8512	-98.6402	-86.692	-75.0223	-63.5978	-52.4206	-41.4682	-30.7362	-20.2296	-9.9364	0
Ug线性(mV)	-100.0000	-90.0000	-80.0000	-70.0000	-60.0000	-50.0000	-40.0000	-30.0000	-20.0000	-10.0000	0
(<i>Ug</i> 线性- <i>Ug</i> 实测)/ <i>Ug</i> 线性	0.1085	0.0960	0.0836	0.0717	0.0600	0.0484	0.0367	0.0245	0.0115	-0.0064	0
R4(Ω)	51	52	53	54	55	56	57	58	59	60	
ΔR=R4-R0 (Ω)	1	2	3	4	5	6	7	8	9	10	
Ug实测(mV)	9.985	19.6985	29.2048	38.5309	47.6742	56.651	65.4641	74.1108	82.5966	90.8876	
Ug线性(mV)	10.0000	20.0000	30.0000	40.0000	50.0000	60.0000	70.0000	80.0000	90.0000	100.0000	
(<i>Ug</i> 线性- <i>Ug</i> 实测)/ <i>Ug</i> 线性	0.0015	0.0151	0.0265	0.0367	0.0465	0.0558	0.0648	0.0736	0.0823	0.0911	

根据此表做出 U_g – ΔR 拟合曲线。根据公式(3)过原点做一条直线 $U_g^{\text{理论}}=500\delta$,令 $U_\delta=\frac{\left|U_g^{\text{x}}\right|-U_g^{\text{理论}}}{\left|U_g^{\text{U}}\right|}$,并做出 U_δ – ΔR 关系图,当 $U_\delta<0.05$ 时,即认为 U_g – ΔR 线性关系成立。

图 $4.3.2 R_0 = 50\Omega$ 时 $U_\delta - \delta$ 关系图

如图 4.3.1,图 4.3.2 所示, $Ug-\Delta R$ 线性关系成立的 ΔR 取值范围为 $-5<\Delta R<6$, $U_g-\delta$ 线性关系成立的 δ 取值范围为 $-0.1<\delta<0.12$,与理论值误差均小于5%,误差在合理范围内。此时R4取值范围为 $45\Omega<R4<56\Omega$ 。

同实验一方法,在 $\delta=0$ 处,绝对灵敏度 $S=\frac{U_S}{4R_0}=\frac{2}{4\times 50}=0.01$.

4.2.3. 总结

综合在 $R0=1000\Omega$, $R0=5000\Omega$, $R0=50\Omega$ 下的三组数据,发现R0越大, $U_g-\delta$ 线性关系成立的 δ 取值范围越大,零点绝对灵敏度越小。

4.3. 实验三: 使用非平衡电桥测量铜丝的电阻温度系数

测量结果如下表所示。

T(°C)	25	30	35	40	45	50	55	60	65	70	75	80	85	90
Ug/mV	2.6041	2.6348	2.6650	2.6967	2.7336	2.7730	2.8152	2.8625	2.9000	2.9372	2.9762	3.0140	3.0584	3.0685
R/mO	251 41	254 48	257 50	260.67	264.36	268 30	272 52	277 25	281.00	284 72	288 62	292.40	296.84	297.85

其中
$$R = 4 \frac{U_g - U_{gmin}}{U_S}$$
, $U_{gmin} = 0.09 mV$.

由此可绘制出 R_{cu} – t拟合曲线如下图:

图 4.3 温度与铜丝电阻的关系

如图 4.3 所示, $R_{Cu}=0.769t+230.77(m\Omega)$ 。由此计算出在 0° C和 20° C时铜丝电阻的拟合值分别为 $230.77m\Omega$ 和 $246.15m\Omega$ 。根据电阻温度系数定义公式 $\alpha_T=k/R_T$,铜丝在 0° C和 20° C时电阻温度系数为 $0.00333(^{\circ}\text{C})^{-1}$ 和 $0.00312(^{\circ}\text{C})^{-1}$.

由图,相关系数r = 0.99855

斜率 k 的标准不确定度
$$u_k = k\sqrt{\frac{\frac{1}{r^2}-1}{12-2}} = 1.312 \times 10^{-2}$$

截距 b 的标准不确定度 $u_b = \sqrt{\overline{x^2}}u_k = 0.9459$

设斜率与截距的相关系数为 0,则相对不确定度
$$\frac{u_{\alpha}}{\alpha} = \sqrt{(\frac{u_{b}}{k})^{2} + (\frac{u_{b}}{b})^{2}} = 1.755 \times 10^{-2}$$

20°C时绝对不确定度
$$u_{\alpha_{20}} = \frac{u_{\alpha}}{\alpha} \times R_{20°C} = 4.320 \times 10^{-3}$$

根据铜丝参数 $\rho=0.0175\Omega imesrac{mm^2}{m};l=3m; \Phi=0.60mm$,得出 20° C下,铜丝电阻为 0.1857Ω 。

与实验结果的误差达到了30.58%,猜测可能是因为铜丝漆包线破损导致漏电使得电阻变大。

5. 思考题

5.1. 简述直流非平衡电桥与直流平衡电桥的关系

直流平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值。非平衡 电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行简单的线性运算处理, 从而得到电阻的变化量。

因此,直流非平衡电桥可以看作是直流平衡电桥的一种扩展应用形式,用于测量无法通过平衡条件精确测量的连续变化的物理量。

5.2. 为什么在实验内容 1 中, ΔR_4 的绝对值相同时, R_4 小于 $1000\,\Omega$ 时的 U_g 值比 R_4 大于 $1000\,\Omega$ 时的 U_g 值,绝对值大?

因为:

$$U_g = \frac{U_s}{4} \delta \frac{1}{1 + \frac{1}{2} \delta} \quad (2)$$

对(2)式求导得:

$$U_g' = \frac{U_s}{4} \frac{4}{(2+\delta)^2}$$

故当 δ < 0时的 U_g 大于 δ > 0时的 U_g , R_4 小于1000 Ω 时的 U_g 变化率更大,故在 ΔR_4 的绝对值相同时, U_g 的绝对值更大。此点在图 4. 1. 3,图 4. 2. 3,图 4. 3. 3 中也有体现。

5. 3. 假设用非平衡电桥来测量一个热敏电阻的电阻值随温度的变化, $U_S = 2.0V$,毫伏表最小刻度为1mV,在室温(35° C)到 85° C度范围内,热敏电阻的电阻值改变 50Ω 。取等臂电桥,为了保证测量的灵敏度(即:每隔 5° C读一次输出电压值,变化量不小于1mV)并且保持(与理论线性之间的)误差小于5% 的线性范围,请问 R_0 取多少比较合适?(指取值范围的上、下限。)

 $\delta=rac{\Delta R}{R0}$ 的理论范围为 $-rac{10}{105}<\delta<rac{10}{95}$,本实验中要求量程为 50Ω ,初始处于零点位置,同时并不确定热敏电阻是正温度系数还是负温度系数,因此取 δ 小值进行计算。代入 $\Delta R=50\Omega$ 得到 $R_0=525\Omega$ 。故下限为 $R_0=525\Omega$ 。

理论上电桥在零点附近的绝对灵敏度 $S=\lim_{\Delta R\to 0}\frac{\Delta U_g}{\Delta R}=\frac{U_S}{4R_0}$. 本实验中要求电阻改变 5Ω 电压改变不小于 1mV,即在零点附近的绝对灵敏度不小于0.2mV / Ω ,即为 $R_0<2500\Omega$ 。

故 $525\Omega < R_0 < 2500\Omega$ 。

5. 4. 把计算出来的 Cu 丝电阻温度系数($t=20^{\circ}C$)与参考值 $0.00393(^{\circ}C)^{-1}$ 进行比较,并分析测量的精确程度,以及产生误差的可能原因。

测量值为 $0.00393(^{\circ}C)^{-1}$,误差为3.3%。由于实验中测量温度方法较为粗糙,可能存在测量温度不准确;同时不同的Cu 丝可能有微小的差异,导致温度系数不同。因此该误差可以认为在合理范围内。

6. 参考文献

直流非平衡电桥讲义—2024年9月,中科大物理实验教学中心

7. 附录: 原始数据

PB23061234 B.t.

1. (1) (2) 记录得 R3=999.6.Q

(3) 表,R。=1000平的 cn编出电压与桥臂电阻改变量 防关系 (Rz=999.6.0)

Ry(s2)	800	820	840	860	880	900	920	9 40	960	980	
(lg (mV)	-111. 1282	98.9175	-86.9730	75.28S	-63.8448	-52.643	-41.6708	-30,9325	20.4115	-10.1048	
ky (s)	しゅっつ	1020	140	1040	1080	1100	1120	1140	1160	1180	1>00
Ug (mV)	0	9.8966	19.6040	29.1240	38.4589	47.6195	56.6046	65.4225	74.0765	82.5721	90.9124

41

2.17 表2 Ro=5000 OH OD 输出压与桥臂电阻改变量的关系 (R3=4999.5 C2)

R4(12)	4000	4100	4200	4310	4400	4500	4600	4700	4800	4900	
Ug (mV)	-111.1482	-98-9356	-86.9878	-75.465	43.81%	-52.6508	-4/. 6832	-30.94/2	-20.4189	40.1072	
Ry(a)	5000	5100	5200	£3∞	<i>5400</i>	7500	2,900	5700	7600	17900	6000
uglmv)	0	9.9032	19.6125	29.1342	28.471b	47.6343	56-6219	65.4408	74.0965	82.5842	90.9365

B ---

表3 Ro=50 A的 的输出电压与桥臂电阻改变量 的关系(R3=40 g/1)

	-									. /	
Rycar	40	41	42	43	44	45	46	47	48	49	
 Uslmv)	-(10.8512	SOH. 89-	-86.6920	-75.022}	-63.5978	-52.426	44482	-30.7362	-20,2296	-9-9364	
Ryco)	200	51	<u>S</u> t	53	54	22	26	72	42	59	60
Ug (mV)	0	9.9 850	(9.6985	29.2048	38.\$530	47.6742	264510	65.464]	74.1108	825966	90.8876

3-(1) Ugomin = 0.09 mV

(2) 高温水 22.2°C, Ug=2.5742mV

温度("4)	25°C	30	7.5	90	45	20	77	60	73	70	75	80	28	90
Ug (mV)	2.6041	2.6348	2,6650	2,4167	2.7336	2.7730	2_8152	2.8625	2,9000	2. 9 372	2,9762	3.1140	3.0584	3.0685