ECOLE POLYTECHNIQUE ECOLES NORMALES SUPERIEURES

CONCOURS D'ADMISSION 2023

LUNDI 17 AVRIL 2023 08h00 - 12h00

FILIERE MP-MPI - Epreuve n° 1

MATHEMATIQUES A (XLSR)

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve **Notations** On note \mathbb{R} et \mathbb{C} les corps des nombres réels et complexes. Pour $z \in \mathbb{C}$ on note \overline{z} le conjugué complexe de z et |z| le module de z.

Si V est un espace euclidien, on note $\operatorname{End}(V)$ l'espace des applications \mathbb{R} -linéaires de V dans lui-même. On note aussi $\operatorname{GL}(V)$ le groupe des applications \mathbb{R} -linéaires bijectives de V sur lui-même, et on note $\operatorname{O}(V) \subset \operatorname{GL}(V)$ (respectivement $\operatorname{SO}(V) \subset \operatorname{GL}(V)$) le groupe orthogonal (respectivement spécial orthogonal) de V.

Par convention, les \mathbb{R} -algèbres considérées dans ce problème seront non nulles, associatives et unitaires, mais pas forcément commutatives. Deux \mathbb{R} -algèbres A et B sont dites isomorphes s'il existe une bijection \mathbb{R} -linéaire $f:A\to B$ telle que f(xy)=f(x)f(y) pour tous $x,y\in A$.

Soit A une \mathbb{R} -algèbre et soit $e \in A$ l'élément unité de A pour la multiplication. On notera \mathbb{R}_A la sous-algèbre $\{ae \mid a \in \mathbb{R}\}$ de A. Un élément x de A est dit inversible s'il existe $y \in A$ tel que xy = yx = e. On note A^{\times} l'ensemble des éléments inversibles de A. On admet que A^{\times} est un groupe pour la multiplication.

On note $M_2(\mathbb{C})$ la \mathbb{C} -algèbre des matrices de taille 2×2 à coefficients complexes. Pour $z_1, z_2 \in \mathbb{C}$ on note

$$Z(z_1, z_2) = \begin{pmatrix} z_1 & -\overline{z_2} \\ z_2 & \overline{z_1} \end{pmatrix}.$$

Soit $\mathbb{H} = \{Z(z_1, z_2) | z_1, z_2 \in \mathbb{C}\} \subset M_2(\mathbb{C})$. On admet que \mathbb{H} est un sous- \mathbb{R} -espace vectoriel de $M_2(\mathbb{C})$, admettant comme base les matrices

$$E := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ I := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ J := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ K := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$

qui vérifient les relations suivantes dans $M_2(\mathbb{C})$:

$$I^2 = J^2 = K^2 = -E, \ IJ = -JI = K, \ JK = -KJ = I, \ KI = -IK = J.$$

On veillera à ne pas confondre l'élément i de \mathbb{C} et la matrice I de $\mathbb{H} \subset M_2(\mathbb{C})$, ni la matrice I avec la matrice identité E.

On note
$$\mathbb{H}^{\mathrm{im}} = \{xI + yJ + zK \mid (x, y, z) \in \mathbb{R}^3\} \subset \mathbb{H}$$
.
On définit une application $N : \mathbb{H} \to \mathbb{R}$ par $N(Z(z_1, z_2)) := |z_1|^2 + |z_2|^2$.
On note $S = \{U \in \mathbb{H} \mid N(U) = 1\}$.

I Préliminaires

Si $A = (a_{ij}) \in M_2(\mathbb{C})$ on note $A^* = (\overline{a_{ji}})$.

- 1. a) Montrer que \mathbb{H} est une sous- \mathbb{R} -algèbre de $M_2(\mathbb{C})$ stable par $Z \mapsto Z^*$.
 - b) Soit $Z \in \mathbb{H}$. Calculer ZZ^* et en déduire que tout élément non nul de \mathbb{H} est inversible.
 - c) Soit $Z \in \mathbb{H}$. Montrer que $Z \in \mathbb{R}_{\mathbb{H}}$ si et seulement si ZZ' = Z'Z pour tout $Z' \in \mathbb{H}$.
- 2. a) Montrer que l'on a N(ZZ') = N(Z)N(Z') pour tous $Z, Z' \in \mathbb{H}$.
 - b) Montrer que S est un sous-groupe de \mathbb{H}^{\times} et que $\frac{1}{\sqrt{N(Z)}}Z\in S$ pour tout $Z\in\mathbb{H}^{\times}.$
- 3. a) Montrer que pour tous $x, y, z, t \in \mathbb{R}$ on a

$$N(xE + yI + zJ + tK) = x^{2} + y^{2} + z^{2} + t^{2}.$$

b) Montrer que pour tout $U \in \mathbb{H}^{\text{im}}$ on a $U^2 = -N(U)E$ et que

$$\mathbb{H}^{\mathrm{im}} = \left\{ U \in \mathbb{H} \mid U^2 \in \left] - \infty, 0 \right] E \right\}.$$

La question 3a) montre que l'on définit un produit scalaire \langle , \rangle sur $\mathbb H$ en posant, pour $Z, Z' \in \mathbb H$

$$\langle Z, Z' \rangle = \frac{N(Z+Z') - N(Z) - N(Z')}{2},$$

et que l'on dispose d'une isométrie

$$\psi: \mathbb{R}^4 \to \mathbb{H}, \ \psi(x,y,z,t) := xE + yI + zJ + tK$$

de \mathbb{R}^4 muni du produit scalaire usuel sur \mathbb{H} . On munit par la suite \mathbb{H} de sa structure d'espace euclidien induite par le produit scalaire \langle , \rangle . Ainsi (E, I, J, K) est une base orthonormée de \mathbb{H} .

- 4. Montrer que S est une partie fermée et connexe par arcs de \mathbb{H} .
- 5. Soient $U, V \in \mathbb{H}^{\mathrm{im}}$.
 - a) Montrer que U et V sont orthogonaux si et seulement si UV + VU = 0. Dans ce cas montrer que $UV \in \mathbb{H}^{\text{im}}$ et que le déterminant de la famille (U, V, UV) dans la base (I, J, K) de \mathbb{H}^{im} est positif ou nul.
 - b) Montrer que si (U, V) est une famille orthonormale dans \mathbb{H}^{im} , alors (U, V, UV) est une base orthonormée directe de \mathbb{H}^{im} .

II Automorphismes de \mathbb{H} et rotations

On munit $S \times S$ de la loi de composition \times donnée par $(u_1, u_2) \times (v_1, v_2) = (u_1v_1, u_2v_2)$ et on admet qu'elle munit $S \times S$ d'une structure de groupe. On considère l'application

$$\alpha: S \times S \longrightarrow \mathrm{GL}(\mathbb{H})$$

$$(u, v) \longmapsto (Z \mapsto uZv^{-1})$$

en admettant que $\alpha(u,v)$ est bien dans $GL(\mathbb{H})$. Pour $u \in S$, on admet que l'endomorphisme $\alpha(u,u)$ de \mathbb{H} laisse stable le sous-espace \mathbb{H}^{im} de \mathbb{H} , et on note $C_u \in \text{End}(\mathbb{H}^{\text{im}})$ l'endomorphisme induit. On a donc $C_u(Z) = uZu^{-1}$ pour $Z \in \mathbb{H}^{\text{im}}$.

- 6. Montrer que α est un morphisme de groupes et décrire son noyau.
- 7. Montrer que α est continu et que l'image de α est contenue dans $SO(\mathbb{H})$. On pourra commencer par montrer que $\alpha(u,v) \in O(\mathbb{H})$ pour $(u,v) \in S \times S$.
- 8. Soient $\theta \in \mathbb{R}$ et $v \in \mathbb{H}^{\text{im}} \cap S$, et soit $u = (\cos \theta)E + (\sin \theta)v$.
 - a) Montrer que $u \in S$ et que $u^{-1} = (\cos \theta)E (\sin \theta)v$.
 - b) Soit $w \in \mathbb{H}^{\text{im}} \cap S$ un vecteur orthogonal à v. Décrire la matrice de C_u dans la base orthonormée directe (v, w, vw) de \mathbb{H}^{im} .
- 9. Montrer que l'application $u \mapsto C_u$ induit un morphisme surjectif de groupes $S \to SO(\mathbb{H}^{im})$ et décrire son noyau.
- 10. a) En déduire que $\alpha(S \times S) = SO(\mathbb{H})$.
 - b) Montrer que $N := \alpha(S \times \{1\})$ est un sous-groupe de $SO(\mathbb{H})$, puis que $gng^{-1} \in N$ pour tous $n \in N$ et $g \in SO(\mathbb{H})$ et que $\{\pm id\} \subseteq N \subseteq SO(\mathbb{H})$.

Soit $\operatorname{Aut}(\mathbb{H})$ l'ensemble des automorphismes de la \mathbb{R} -algèbre \mathbb{H} . Un élément de $\operatorname{Aut}(\mathbb{H})$ est donc une application \mathbb{R} -linéaire bijective $f: \mathbb{H} \to \mathbb{H}$ satisfaisant $f|_{\mathbb{R}_{\mathbb{H}}} = \operatorname{id}_{\mathbb{R}_{\mathbb{H}}}$ et f(uv) = f(u)f(v) pour tout $(u, v) \in \mathbb{H}^2$.

- 11. Montrer que Aut(\mathbb{H}) est un sous-groupe de $GL(\mathbb{H})$, contenant $\alpha(u, u)$ pour tout $u \in S$.
- 12. Montrer que (f(I), f(J), f(K)) est une base orthonormée directe de \mathbb{H}^{im} pour tout $f \in \text{Aut}(\mathbb{H})$.

13. a) Montrer que l'application de restriction à \mathbb{H}^{im} induit un isomorphisme de groupes

$$\operatorname{Aut}(\mathbb{H}) \simeq \operatorname{SO}(\mathbb{H}^{\operatorname{im}}).$$

b) Montrer que

$$\operatorname{Aut}(\mathbb{H}) = \{ \alpha(u, u) | u \in S \}.$$

III Normes euclidiennes sur \mathbb{R}^2

Le but de cette partie est la preuve du résultat suivant, qui sera utilisé dans la partie IV.

Théorème A. Soit $||\cdot||$ une norme sur le \mathbb{R} -espace vectoriel \mathbb{R}^2 . Si

$$||x+y||^2 + ||x-y||^2 \ge 4$$

pour tous $x, y \in \mathbb{R}^2$ vérifiant ||x|| = ||y|| = 1, alors $||\cdot||$ provient d'un produit scalaire sur \mathbb{R}^2 .

On note $||\cdot||_2$ la norme euclidienne canonique sur \mathbb{R}^2 et on note

$$\mathcal{C} := \{ x \in \mathbb{R}^2 | \ ||x||_2 = 1 \}.$$

On fixe une norme $quelconque \mid \mid \cdot \mid \mid$ sur \mathbb{R}^2 et on note

$$\mathcal{K} = \{ A \in M_2(\mathbb{R}) | \forall x \in \mathbb{R}^2 ||x||_2 \ge ||Ax|| \}.$$

- 14. a) Montrer que K est une partie compacte et convexe de $M_2(\mathbb{R})$.
 - b) Montrer qu'il existe $A \in \mathcal{K}$ tel que $\det A = \sup_{B \in \mathcal{K}} \det B$.

On fixe par la suite un élément A de K tel que $\det A = \sup_{B \in \mathcal{K}} \det B$.

- 15. Montrer que $\det A > 0$ et qu'il existe $x \in \mathcal{C}$ tel que ||Ax|| = 1. On fixe par la suite $x \in \mathcal{C}$ tel que ||Ax|| = 1.
- 16. Soit $B \in SO(\mathbb{R}^2)$ une matrice telle que $x = B \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
 - a) Montrer que pour tout $r \in]0,1[$ il existe $x_r \in \mathcal{C}$ tel que

$$||AB\begin{pmatrix} r & 0\\ 0 & \frac{1}{r} \end{pmatrix} x_r|| > 1.$$

- b) Montrer que si $x_r = \begin{pmatrix} y_r \\ z_r \end{pmatrix}$, alors $z_r^2 > \frac{r^2}{1+r^2}$.
- 17. En utilisant ce qui précède, montrer qu'il existe une base (e_1, e_2) de \mathbb{R}^2 telle que $||Ax|| = ||x||_2$ pour $x \in \{e_1, e_2\}$.
- 18. Soit T une partie fermée de \mathcal{C} , telle qu'il existe $x,y\in T$ avec $y\notin \{-x,x\}$. On suppose que pour tous $a,b\in T$ avec $b\notin \{-a,a\}$, on a que $\frac{b-a}{||b-a||_2}$ et $\frac{b+a}{||b+a||_2}$ appartiennent à T. Montrer que $T=\mathcal{C}$.
- 19. Montrer le théorème A.

IV Algèbres valuées

Soit A une \mathbb{R} -algèbre et e son élément neutre. Dans cette partie, on identifiera \mathbb{R}_A avec \mathbb{R} , et on notera (abusivement) a l'élément ae de A pour $a \in \mathbb{R}$. On dit que A est algébrique si pour tout $x \in A$ il existe un entier $n \geq 1$ et $a_0, \ldots, a_{n-1} \in \mathbb{R}$ tels que

$$x^{n} + a_{n-1}x^{n-1} + \ldots + a_{1}x + a_{0} = 0.$$

On dit que A est sans diviseur de zéro si $xy \neq 0$ pour tous $x, y \in A \setminus \{0\}$. Dans cette partie, nous allons montrer le théorème B ci-dessous, puis l'utiliser pour prouver le théorème C plus loin.

Théorème B. Une \mathbb{R} -algèbre algébrique et sans diviseur de zéro est isomorphe à \mathbb{R} , \mathbb{C} ou \mathbb{H} .

Soit A une \mathbb{R} -algèbre algébrique et sans diviseur de zéro.

- 20. a) Montrer que $x^2 \in \mathbb{R} + \mathbb{R}x$ pour tout $x \in A$.
 - b) Montrer que si $x \in A \setminus \mathbb{R}$, alors $\mathbb{R} + \mathbb{R}x$ est une \mathbb{R} -algèbre isomorphe à \mathbb{C} . On suppose que A n'est pas isomorphe à une des algèbres \mathbb{R} ou \mathbb{C} .
- 21. Montrer qu'il existe $i_A \in A$ tel que $i_A^2 = -1$.

On fixe par la suite un élément i_A de A tel que $i_A^2 = -1$. On note $U = \mathbb{R} + \mathbb{R}i_A$ et on définit l'application

$$T: A \to A, \ T(x) = i_A x i_A.$$

On note id : $A \rightarrow A$ l'application identité de A.

- 22. a) Montrer que T(xy) = -T(x)T(y) pour tous $x, y \in A$.
 - b) Calculer $T^2 = T \circ T$ et en déduire que $A = \ker(T \mathrm{id}) \oplus \ker(T + \mathrm{id})$.
- 23. Montrer que $\ker(T + \mathrm{id}) = U$ et en déduire que $\ker(T \mathrm{id}) \neq \{0\}$.
- 24. On fixe $\beta \in \ker(T \mathrm{id}) \setminus \{0\}$.
 - a) Montrer que l'application $x \mapsto \beta x$ envoie $\ker(T \mathrm{id})$ dans $\ker(T + \mathrm{id})$. En déduire que $\beta^2 \in U$ et que $\ker(T - \mathrm{id}) = \beta U$.
 - b) Montrer que $\beta^2 \in]-\infty, 0[$.
 - c) Démontrer le théorème B.

On se propose maintenant de démontrer le résultat suivant:

Théorème C. Soit A une \mathbb{R} -algèbre. S'il existe une norme $||\cdot||$ sur le \mathbb{R} -espace vectoriel A telle que

$$\forall x, y \in A ||xy|| = ||x|| \cdot ||y||,$$

alors A est isomorphe à \mathbb{R} , \mathbb{C} ou \mathbb{H} .

On fixe une R-algèbre comme dans l'énoncé du théorème ci-dessus.

25. Soient $x, y \in A$ tels que xy = yx et tels que $V = \mathbb{R}x + \mathbb{R}y$ soit de dimension 2 sur \mathbb{R} . Montrer que

$$\forall \, u,v \in V \quad ||u+v||^2 + ||u-v||^2 \geq 4||u|| \cdot ||v||$$

et que la restriction de $||\cdot||$ à V provient d'un produit scalaire sur V.

- 26. Montrer que $x^2 \in \mathbb{R} + \mathbb{R}x$ pour tout $x \in A$. On pourra utiliser le résultat de la question 25 avec y = 1.
- 27. Conclure.