

TA-2000F

2776

el : Visite mened levid e de l'el le l'ele : elle l'ele : alle le : elle isopret elle : l'el de : engancement elle : elle

alenderen

e i sandana Arguna. La propinsi (Arguna) industria

and hours were sense of

energene geneum. Gelharen ver even

ersemit restinct Korki izan erebitas eribera

mang Digas and selection of the selectio

g - Neof Fradisme soli memili Hillari

incorporation and a second section and the second second second second section second second

Meditine Linguist

General Export Model

indicatorica inchesas

entered out property (* 1525) 1525 – Dolphel Dieser (* 1525) 1525 – British Marie (* 1525)

THE CONTRACTOR OF THE SECURITY OF THE SECURITY

in the state of th

ing at the set that the strength of the set of the set

CONTRACTOR OF STREET STREET

er 13 maart – 1800 – 1900 2 maart – 1900 – 1900 – 1900 – 1800 2 maart – 1900 – 1900 – 1900 – 1900 – 1900

I i wenge

CHARACHTA TO COLLEGE FICH (C. 4.)

CONTROL PER CONTRACT

A CONTRACTOR OF THE STREET

TABLE OF CONTENTS

Section		Title	Page	Section		<u>Title</u>	Page
SERV	ICING	NOTES	1		3-9.	Noise Level Measurement	19
					3-10.	Tone Control Check	19~20
1.	TECH	NICAL DESCRIPTI	ON		3-11.	Filter Response Check	20
	1-1.	Technical Specifica	tions 2		3-12.	Crosstalk Measurement	20
			nalysis 3~8				
			9	4.	DIAG	RAMS	
			10		4-1.	Mounting Diagram	
		20,000				- "A" PCB: PHONO-1 Ed	ualizer
2.	DISAS	SEMBLY AND RE	PLACEMENT			Amplifier/Head Amplifie	
		EDURES				Board	
	2-1.	Tools Required	11		4-2.	Mounting Diagram	
		_	ation Guide 11			- "B" PCB: MIC Amplifi	er/
		Top Cover and Fro				PHONO-2 Equalizer	,
		-	11			Amplifier Board	24~25
	2-4.	Front Subchassis R	Removal 12		4-3.	Mounting Diagram	
		Level Meter and M				- "C" PCB: Flat Amplific	er-1/
		Replacement	12			Flat Amplifier-2 Board	
	2-6.	-	1 12~13		4-4.	Mounting Diagram	
			al 13			- "D" PCB: Meter Ampli	fier/
	2-8.	Control and Switch	h			HEADPHONE Amplifier	
		Replacement	13~14			Board	28~29
	2-9.	Replacement of Co			4-5.	Mounting Diagram	
		Secured to the				- "E" PCB: Muting/Powe	r.
		by Rivets	14			Supply Board	30~31
	2-10.	Chassis Layout	15		4-6.	Mounting Diagram	
			•			- "F" PCB: REC OUT A	mplifier/
3.	ALIGN	MENT AND ADJ	USTMENT			High and Low Filter Co	om-
	PROC	EDURES				ponent/ Turnover Frequency	ıen <i>c</i> y
	3-1.	Test Equipment Re	equired 16			Changeover Component	
		Power Supply Vol				Board	32~33
			16		4-7.	Mounting Diagram	
	3-3.	Overall Check Prep	paration 17			- "G" PCB: OUTPUT LE	EVEL
	3-4.	Sensitivity Measure	ement 17			Changeover Switch Boa	rd – 34
	3-5.	Level Meter (VU 1	meter)		4-8.	Schematic Diagram	35~36
		Calibration	17~18				
	3-6.	Rated Output Mea	surement 18	5.	REPA	CKING	37
	3-7.	Harmonic-Distortio	on				
		Measurement	18	6.	EXPL	ODED VIEW	38~41
	3-8.	Frequency Respon	se				
		Measurement	18~19	7.	ELEC	CTRICAL PARTS LIST	42~47

SERVICING NOTES

The FET's used in the TA-2000F are selected according to their Idss rank, so use replacement FET's with the exact same Idss rank.

Idss rank is indicated by the identification number, as shown in Fig. A.

On all plug-in type PC boards except the MUTING/POWER SUPPLY board, left- and right-channel conductorside patterns are designed symmetrically. This makes a trouble check possible through interchange of channels by reinserting the boards upside down.

1

SECTION 1 TECHNICAL DESCRIPTION

Technical spec given in Table 1-1	SPECIFICATIONS cifications for the TA-2000F are		(LOW: greater than 50 dB LEVEL) (weighting network B) PHONO 2: greater than 73 dB (weighting
Frequency response:	PHONO-1, 2: RIAA curve ±0.5 MIC : 30 Hz to 30 kHz ±0 dB TUNER, AUX 1, 2, 3 TAPE 1, 2 REC/PB (input)		mic weighting network A) MIC : greater than 50 dB (weighting network B) TUNER, AUX 1, 2, 3 TAPE 1, 2 REC/PB (input) (weighting network A)
Input sensitivity and impedance:	PHONO-1 : 1.2 mV 33k (HIGH LEVEL) 47k 82k (LOW LEVEL) 0.06 mV 10 ohr 30 ohr PHONO-2 : 1.2 mV 47k MIC : 0.5 mV 100k TUNER AUX 1, 2, 3 TAPE 1, 2 REC/PB (input) 110 mV 100k		BAS\$ $\begin{cases} \pm 10 dB \text{ at } 50 Hz \\ (TURNOVER \\ FREQ. 250 Hz) \\ \pm 10 dB \text{ at } 100 Hz \\ (TURNOVER \\ FREQ. 500 Hz) \end{cases}$ $\begin{cases} \pm 10 dB \text{ at } 10 kHz \\ (TURNOVER \\ FREQ. 2.5 kHz) \\ \pm 10 dB \text{ at } 20 kHz \\ (TURNOVER \\ FREQ. 5 kHz) \end{cases}$
Maximum input capability:	PHONO-1 (HIGH LEVEL) : 300 mV (LOW LEVEL) : 15 mV PHONO-2 : 300 mV MIC : 1,200 mV	Filters: Harmonic distortion:	LOW: 12 dB/oct, below 50 Hz HIGH: 12 dB/oct, above 9 kHz Less than 0.03% at rated output, 1 kHz
Signal output level and impedance:	OUTPUT : 1V 3k 1, 2 : 0.3V 6k REC OUT : 100 mV 10k 1, 2 (max 30 V) CENTER : 5V 2.6k HEADPHONE : 0.5 V OUT (8 ohm load) REC/PB : 30 mV 82k (output)	IM distortion: (60 Hz:7 kHz = 4:1) Power consumption: Power requirements: Dimensions:	23 watts 100, 117, 220 or 240 V ac, 50/60 Hz 400 mm (width) × 149 mm (height) × 315 mm (depth)
Signal-to-noise ratio:	PHONO 1 (HIGH : greater than 73 dB LEVEL) (weighting network A)	Net weight: Shipping weight:	153/4" (width) x 513/16" (height) x 127/8" (depth) 9 kg (19 lb 12 oz) 11.2 kg (24 lb 12 oz)

1-2. DETAILED CIRCUIT ANALYSIS

The following text describes the function or operation of all stages and controls. The text sequence follows signal paths. Stages are listed by transistor reference designation at the left margin; major components are also listed in a similar manner. Refer to the block diagram on page 9 and the schematic diagram on pages 35 to 36.

Stage/Control

Function

PHONO-1 Equalizer/Head Amp

Head Amplifier Q101

Amplifies extremely small input signals (as from a moving-coil type cartridge) to the level required at following equalizer amplifier.

A common-gate configuration is suited to this job because it has low input impedance and high voltage gain. Input signal applied to the PHONO-1 terminal is routed to this amplifier only when IMPEDANCE SELECTOR switch S10 is set to the 30 ohm or 10 ohm position.

IMPEDANCE SELECTOR switch S10 S10 changes the PHONO-1 input impedance to meet the cartridge manufacturer's recommended load impedance because of its effect upon frequency response.

Equalizer Amplifier Q102, Q103 Q104, Q105 Q106 This newly developed direct-coupled four stage amplifier amplifies the phono cartridge signals to the level required at the input of the following tone-amplifier. Q102 forms a conventional FET amplifier while Q103 and Q104 act as buffer amplifier which has a high input impedance.

This FET-PNP combination amplifier forms a modified source-follower circuit in which Q104 acts not only as constant-current source, but also as a drive amplifier for the negative-going half cycle. This has the advantage of low harmonic distortion and wide dynamic range. In addition, the FET generates less noise than a conventional silicon transistor.

Stage/Control

Function

The FET's used in TA-2000F are selected according to their Idss rank, and care should be taken to use replacement FET's with the exact same Idss. Idss is indicated by the identification number, as illustrated in Fig. 1-1. Note that Q105 and Q104 are newly developed high-voltage transistors which make the wide linearity (dynamic range) possible. For this purpose, a 150-volt power supply is employed.

Fig. 1-1. Example of Idss rank

Bias circuit

Dc bias voltage for Q102 is determined by the current flow in source resistor R112, and the dc negative feedback voltage applied to the gate of Q102 from the emitter circuit of Q105 through R110, R107 and R109. This dc negative feedback technique provides stable operation. Dc bias voltage of Q103 is determined by the drain voltage of O102 and the current flow in the Q103 (which is restricted by its Idss). Current flow in Q103 also determines the bias voltage applied to the Q104 and Q105 as they are directly coupled.

Equalization circuit

RIAA equalization is achieved by the negative-feedback loop containing R117, R118, R119, C110 and C109. Be sure to use replacement components with the exact same values. The equalizer amplifier's output is fed to the FUNCTION-2 switch through R120 ($1\,\mathrm{k}\Omega$) to prevent interaction between the left and right channels when the MODE switch is set to L + R.

Stage/Control

Function

MIC Amplifier/PHONO-2 Equalizer Amplifier Section

MIC Amplifier Q301, Q302 Q303, Q304 The MIC amplifier consists of two pairs of FET-NPN amplifiers. They amplify the signals provided by the microphones to the level required at the input of the tone-amplifier.

An FET has high input impedance and generates less noise than conventional silicon transistors. Therefore, FET's are employed in the low-level amplifiers. Note the high-voltage transistor Q302 (Q304) employed in the second-stage amplifier. This eliminates distortion due to strong input signal causing saturation in the low-level amplifier.

Bias circuit

Dc bias voltage for Q301 is determined by the current flow in the source resistor R306, and the dc negative feedback voltage applied to the gate of Q301 from the emitter circuit of Q302 through R304 and R302.

MIC amplifier Q303, Q304

Q303 and Q304's operation is the same as described in Q302 and Q303. Note that the last stage (Q304) is a conventional transistor since the high-level input signal is sufficiently attenuated by means of MIC LEVEL control VR6 so as not to saturate Q303 and Q304. The MIC LEVEL control and mixing switch S15 are mechanically connected to perform the mixing operation.

MIC LEVEL control VR6 mixing switch S15

Same as described in PHONO-1 equalizer amplifier section except for reference numbers.

Note that the output of this amplifier can be controlled by means of VR1, LEVEL ADJUST.

Equalizer Amplifier Q305, Q306 Q307, Q308 Q309

PHONO-2

Function switch

Input signals applied to the TAPE-1, TUNER, AUX-1, AUX-2 input terminals are controlled respectively by means of VR5, VR2, VR3 and VR4. All input signals are routed to FUNCTION-1 or FUNCTION-2

Stage/Control

Function

switches. Note that the TAPE-TO-TAPE positions in the FUNC-TION-1 switch are provided for tape duplicating as noted in Table 1-2.

TABLE 1-2.

FUNCTION-1 Position	Tape Recorder-1	Tape Recorder-2
TAPE-TO- TAPE 1-2	Playback	Recording
TAPE-TO- TAPE 2-1	Recording	Playback

REC OUT Buffer Amp Q01, Q51

All input signals are equalized or controlled by means of equalizer or LEVEL ADJUST resistors, and then fed to the FUNCTION switches.

The signals for REC OUT are extracted from the signal path between the FUNCTION switches and MODE switch, and then fed to each set of REC OUT terminals through buffer amplifier (emitter follower) Q01. Q01 eliminates interaction between the tape recorder and the TA-2000F's signal path. Note that Q01's output is routed through muting relay REL-1.

MONITOR switch S3

In the TAPE-1 position, input signals connected to either the TAPE-1 terminal or REC/PB connector is selected. In the TAPE-2 position, the input program connected to the TAPE-2 terminal is selected. In the SOURCE position, all other program sources are selected.

MODE switch

Selects the desired mode of operation. This switch may also be used for test purposes. The relation between the positions of the MODE switch and outputs of the set are summarized in Table 1-3.

BALANCE control VR7

Input signal is routed to the BALANCE control through MODE switch S4. This is done to optimize stereo reproduction. To eliminate insertion loss at

Stage/Control

Function

the mechanical center of movement, a special potentiometer having a conductive coating over half its element length is used.

VOLUME control VR8 The balanced input signals from BALANCE control VR7 is fed to VOLUME control VR8, which regulates the signal applied to the following tone-control circuit or output circuit.

Tone Amplifier Section

Tone Amplifier Q501, Q502 Q503 This three-stage amplifier has basically flat response, and provides 20 dB voltage gain to compensate for tone-control insertion loss. It also isolates the volume-control and tone-control circuits to eliminate mutual interference. The input signals are amplified by Q501 and Q502, and then applied to source follower Q503.

Bias circuit

TONE CANCEL

SW S5

Bias voltage for Q501, Q502 and Q503 is determined by the current flow in their respective source resistors. Negative feedback is applied from the source circuit of Q503 to the source circuit of Q501 through C505, R509, and C506 to obtain a flat and wide response. Toneamplifier-1's output is fed to an RC-type tone-control circuit through TONE CANCEL switch S5 when S5 is set to "ON".

8

Stage/Control

Function

Tone Control Section

All inputs are applied this circuit when TONE CANCEL switch S5 is set at ON. Fig. 1-2 shows the simplified circuit of tone control incorporated with the treble and bass turnover switches.

TREBLE control

S6

Increases or decreases the amount of high-frequency components by switching the resistors connected to S6 in steps.

TREBLE TURN-OVER FREQU-ENCY switch S8 selects the specified turn over frequencies (2.5 kHz or 5 kHz). Refer to Fig. 1-3.

BASS control S7

Increases or decreases the amount of low frequency components by switching the resistors connected to S7 in steps.

Fig. 1-2. Simplified tone control network

TABLE 1-3. OUTPUTS

MODE SWITCH	CENTER HEADPHONE CHANNEL OUT;		RECOUT-1, 2, REC/PB OUT;		OUTPUT		
POSITION	OUT	L-CH	R-CH	L-CH	R-CH	L-CH	R-CH
CHECK L	L + R	L + R		L + R	L + R	L+R	
CHECK R	L + R		L + R	L + R	L + R		L + R
REVERSE	L+R	R	L	L	R	R	L
STEREO	L+R	L	R	L	R	L	R
L + R	L+R	L+R	L + R	L + R	L + R	L + R	L+R
LEFT	L	L	Ļ	L	R	L	L
RIGHT	R	R	R	L	R	R	R

Function Function Stage/Control Stage/Control These unwanted low frequencies BASS TURNOVER S9 selects the specified turnover frequencies (500 Hz or 250 Hz). include rumble created by the **FREQUENCY** switch S9 Refer to the Fig. 1-3 (tone conturntable, record changer, or the trol response). record itself. See Fig. 1-4. When TONE CANCEL switch OFF position All filter circuits are removed S5 is set to CANCEL, the line from signal paths and have no signal is bypassed around the effect upon frequency response. tone-control circuit and is fed HIGH (9 kHz) High-cut filter (L02, C16) cuts directly to the output circuit position out unwanted high-frequency through FILTER switch S11. components from the input sig-Tone-amplifier-2 Same as tone-amplifier-1 except nals (12 dB/oct above 9 kHz). Q504, Q505, Q506 for reference numbers. These unwanted high frequencies include hiss noise created by FILTER switch Selects the desired filtering optape deck or tape itself. See eration. LC filter circuits are S11 Fig. 1-4. employed to eliminate insertion BOTH position Both low- and high-cut filters are effective. See Fig. 1-4. LOW(50 Hz) Low-cut filter (C15, L01) cuts The signal from the FILTER out unwanted low frequency position switch is routed to the OUTPUT components from the input sigjacks through OUTPUT LEVEL nals (12 dB/oct below 50 Hz). switch S13. 12 12 10 10 8 명 .⊆ .⊑ 0 Response Response -2 -6 -10 -12 -1250 100 200 5k 10k 20k 500 1k 2k 10k 20k 20 20 50 100 200 500 1k 2k Frequency in Hz Frequency in Hz TURNOVER FREQuency: BASS 250 Hz TURNOVER FREQuency: BASS 500 Hz TREBLE 5 kHz TREBLE 2.5 kHz Tone control frequency response Fig. 1-3.

VOLUME control: maximum clockwise OFF position FILTER switch: BOTH position -----

TONE CANCEL switch: CANCEL position

Fig. 1-4. Filter response

Stage/Control

OUTPUT LEVEL switch S13

Function

The output voltage can be changed by S11, which has two calibrated positions (0.3 V and 1.0 V), and should be set according to the requirements of the equipment to be connected. Note that the signal supplied to the OUTPUT-2 terminal is routed through the leaf switch in the HEADPHONE jack. As the result, no signal will appear at the OUTPUT-2 terminal during headphone monitoring.

Meter Amplifier/Headphone Amplifier Section

METER LEVEL switch S12

Level meter sensitivity can be varied by switching S12. In 0 dB position, the reading on the meter shows the actual output value. In the -10 (-20) dB position, the sensitivity of the meter increases 10 (20) dB up from the 0 dB position. Output signal is routed to meter amplifier through METER LEVEL switch S12 to permit VU meter monitoring. In the MIC position, only the MIC amplifier's output is fed directly to the meter amplifier.

Meter amplifier Q701, Q702 Q703 This three-stage direct-coupled amplifier increases the extracted output signals to the level required to drive the level meter. The meter amplifier output is rectified and supplied to the VU meter through bridge rectifier diodes $D701 \sim D704$.

Level meter adj. R701

Semifixed resistor R701 in the meter amplifier calibrates the VU meter.

Headphone amplifier Q704, Q705 Q706, Q707 HEADPHONE LEVEL VR9 Supplies enough power to drive the headphone used for monitoring. The output signal is controlled by means of HEAD-PHONE LEVEL control VR9. Q704 is a preamplifier which increases the input signal to the level required at the following driver stage. Stage/Control

Function

Driver Q705

Though this stage is a conventional flat amplifier, it determines the output voltage swings because the following stage is basically in the emitter-follower configuration. The ac load resistor for this stage is R718 in the collector circuit.

Power amplifiers (complementary stage) Q706, Q707 These transistors operate as emitter-followers to provide the current swings required and also perform the necessary phase inversion to drive the load in push-pull.

Phase inversion is performed by using PNP and NPN type transistors. Q706 supplies power during the positive-going half cycle, while Q707 supplies power during the negative-going half cycle. The output is fed to the HEAD-PHONE jack through coupling capacitor C711.

CENTER CHANNEL OUTPUT jack It also supplied to the CENTER CHANNEL output jack through R729 for use in center-woofer systems. Note that the left- and right-channel signals are mixed at this jack.

Muting circuit Q907, Q908 Q909, Q910 This muting circuit prevents the loud "pop" (due to initial current flow) or click noises from occurring just after turning the power switch to ON. These transients might damage a delicate high-fidelity speaker system. The base of O909 (O910) is connected to the collector circuit of Q908 through R914 (R913), while the base of Q908 is connected to an RC network (R910, C902) having a long time constant. Negative bias voltage is produced by D907 and C903, and then fed to the base circuit of Q909 (Q910) through R912. This effectively mutes the input signals up to 20 V peak-to-peak. When you first turn ON the power switch, O908 remains off due to the long time constant of the asStage/Control

Function

sociated bias circuit, while Q909 (Q910) is forward biased by R911. As a result, Q909 (Q910) is ON, shorting the output circuit to ground, and effectively muting the output signals.

As O908 is gradually turned ON due to the slowly-increasing base current flow, Q908 conducts and cuts off Q909 (Q910), removing the muting. O907 is employed to discharge C902 quickly when power switch is turned off, preparing it for the next muting operation.

REC OUT Muting circuit Q911, Q912

This circuit is employed to mute the REC OUT signals by means of relay REL-1, preventing the loud "pop" or click noises just after turning the power switch to ON. The base of Q911 is connected to the collector circuit of Q912, while the base of O912 is connected to an RC network (R903, C901) having a long time constant. When you first turn ON the power switch, O912 remains off due to the long time constant of the associated bias circuit. This keeps open the muting relay, disconnecting the buffer amplifier's (Q01) output from the REC OUT signal path. As O912 is gradually turned ON due to the slowly-increasing base current flow, Q912 conducts and turns on Q911, energizing the muting relay to deliver the buffer amplifier's output to the REC OUT terminal.

Power Supply Section

Two independent regulated pow-

Stage/Control

Function

er supplies are employed to obtain stable operation. One is a low-voltage supply delivering 37 volts dc, and the other is a high voltage supply delivering 150 volts dc. As both power supplies have the same configuration, only the low-voltage regulator circuit is described here. The high-voltage supply is identical except for reference numbers.

Voltage regulator (Q904, Q905, Q906)

Dc output from bridge rectifier Q901, Q902, Q903 D901 and D902 (D903 and D904) is filtered by C18 (C17) and applied to series regulator Q901 and Q902 (Q904 and 0905).

> Q903 (Q906) compares a sample of the output voltage picked off across power supply adjust control R926 (R920), with reference voltage supplied by zener diode D905 (D906).

A change in the output voltage is detected at the base of Q903 (Q906) and therefore alters its collector voltage. Since the collector of O903 is directly coupled to the base of Q902 (Q905), the change in output voltage alters the conduction of Q901 and Q902 (Q904 and Q905) by the amount necessary to maintain the output voltage constant.

An increase in output voltage causes an increase in the impedance (decrease in conduction) of O901 and O902 (Q904 and Q905), and vice-versa. The dc output voltage supplied to the preamplifier section is therefore extremely stable.

1-3. BLOCK DIAGRAM

Note: (1) . . . (12) signal levels as indicated in level diagram.

A-2000F

1-4. LEVEL DIAGRAM

SECTION 2 DISASSEMBLY AND REPLACEMENT PROCEDURES

WARNING

Unplug the ac power cord before starting any disassembly or replacement procedures.

2-1. TOOLS REQUIRED

The following tools are required to perform disassembly and replacement procedures on the TA-2000F.

- 1. Screwdriver, Phillips-head
- 2. Screwdriver, 3 mm (1/8") blade
- 3. Pliers, long-nose
- 4. Diagonal cutters
- 5. Wrench, adjustable
- 6. Tweezers
- 7. Soldering iron, 40 to 50 watts
- 8. Soldering iron, solder-sucker tip
- 9. Solder, rosin core

2-2. HARDWARE IDENTIFICATION GUIDE

The following chart will help you to decipher the hardware codes given in this service manual.

> Note: All screws in this set are manufactured to the specifications of the International Organization for Standardization (ISO). This means that the new and old screws are not interchangeable because ISO screws have a different number of threads per mm compared to the old ones. The ISO screws have an identification mark on their heads as shown in Fig. 2-1.

ISO screw Fig. 2-1.

_				
Р –	Pan Head Screw			
PS -	Pan Head Screw with Spring Washer			
K -	Flat Countersunk Head Screw 🔷 🗀			
В -	Binding Head Screw			
RK-	Oval Countersunk Head Screw 🔷 📗			
T -	Truss Head Screw			
R -	Round Head Screw 🗇 🗀			
F -	Flat Fillister Head Screw			
SC -	Set Screw 🖨 互			
E -	Retaining Ring (E Washer)			
	W — Washer SW — Spring Washer LW — Lock Washer N — Nut			
- Example -				
Type of Slot P 3×10				
	Length in mm (L) Diameter in mm (D) Type of Head			

Hardware Nomenclature —

2-3. TOP COVER AND FRONT PANEL **REMOVAL**

1. Remove the two machine screws at each side of the case and lift off the top cover.

- Remove all control knobs and levers. The knobs can be removed by loosening the slotted set screws and pulling the knobs straight out. The levers are simply pulled off.
- 3. Remove the four self-tapping screws (⊕ B 3×6) securing the front subchassis's top cover and lift off it. See Fig. 2-2.
- 4. Remove the three screws (⊕PS 4x5) behind the top edge of the front subchassis as shown in Fig. 2-3.
- 5. Remove the three self-tapping screws (# B 3x6) at the front bottom of the chassis as shown in Fig. 2-4. This frees the front panel.

TA-2000F

Fig. 2-2. Front subchassis's top cover removal

Fig. 2-3. Front panel and PCB bracket removal

2-4. FRONT SUBCHASSIS REMOVAL

The front subchassis is the vertical member on which the controls, switches, and the pilot lamps are attached.

1. Remove the top cover and front panel as described in Procedure 2-3.

2. Remove the two self-tapping screws (⊕ B 3x6) at each side of the chassis (see Fig. 2-5) and two self-tapping screws (⊕ B 3x6) at the front bottom of the chassis as shown in Fig. 2-4. This frees front subchassis.

Fig. 2-5. Front subchassis and rear panel removal

2-5. LEVEL METER AND METER LAMP REPLACEMENT

- Remove the front subchassis as described in Procedure 2-4.
- Remove the four screws (#PS 3x6) securing the meter bracket to the front subchassis as shown in Fig. 2-6. This frees the meter bracket.
- 3. Remove the defective level meter or meter lamp by loosening the hex nut or prying out the defective lamp, and then install the new one.

2-6. PC BOARD REMOVAL

Prepare for removing or replacing any of the PC boards by removing the top cover as described in Procedure 2-3.

Fig. 2-6. Meter bracket removal

PHONO-1 Equalizer Amplifier/Head Amplifier Board

- Remove the IMPEDANCE SELECTOR knob by loosening the set screw.
- Remove the hex nut securing the IMPEDANCE SELECTOR switch to the rear panel.
- 3. Remove the three screws (#PS 3×6) securing the PCB bracket to the rear panel cover. This frees the PCB.

Plug-in Type PCB

- 1. Remove the two screws (#PS 3x6) securing the PCB bracket to the PCB mounting bracket as shown in Fig. 2-3.
- 2. Remove the two screws (#PS 3x6) securing the PCB mounting bracket to the chassis from the bottom as shown in Fig. 2-4.

 This frees the bracket, and now the PCB's can be simply pulled out.

REC OUT Buffer/High and Low Filter Component/ Turnover Frequency Changeover Component Board

- Remove the front subchassis as described in Procedure 2-4.
- 2. Remove the two screws (@ PSW 3x6) securing the PCB to the front subchassis as shown in Fig. 2-7.

OUTPUT LEVEL Changeover Switch Board

- Remove the rear panel as described in Procedure 2-7.
- 2. Remove the two screws (*B 2.6x4) securing the OUTPUT LEVEL changeover switch to the rear panel as shown in Fig. 2-8.

Note: This board is directly soldered to the OUTPUT LEVEL changeover switch.

Fig. 2-7. PC board removal

2-7. REAR PANEL REMOVAL

- Remove the PHONO-1 Equalizer Amplifier/ Head Amplifier Board as described in Procedure 2-6
- Remove the two self-tapping screws (⊕ B 3x6) at each side of the rear panel as shown in Fig. 2-5.
- 3. Remove the two self-tapping screws (# B 3x6) at rear edge of the bottom as shown in Fig. 2-4. This frees the rear panel.

2-8. CONTROL AND SWITCH REPLACEMENT

Prepare for replacing any of the controls or switches by removing the front panel and front subchassis or rear panel as described in Procedures 2-4 and 2-7.

POWER, FUNCTION-2, MONITOR, TURNOVER FREQ. and TONE CANCEL Switches

- 1. Remove the two screws securing switches to the front subchassis as shown in Fig. 2-9.
- Unsolder the lead wires from the defective switch, and then install the replacement switch. Note that the PCB mounted at the back of the front subchassis should be removed when replacing the TURNOVER FREQ. or TONE CANCEL switch.

Fig. 2-8. Rear view

FUNCTION-1, MODE, FILTER, METER LEVEL Switches and VOLUME, HEADPHONE LEVEL, BALANCE, BASS, TREBLE and MIC LEVEL Controls

- 1. Remove the hex nut that secures the defective switch or control to the front subchassis as shown in Fig. 2-9.
- 2. Unsolder the lead wires from the defective switch or control and then install the new one.

TA-2000F

HEADPHONE, AUX-3 jacks

- 1. Remove the two screws (# PS 3x6) securing the jack escutcheon to the front subchassis.
- 2. Unsolder the lead wires from the defective jack, and then install the new one.

LEVEL ADJUST Controls and MIC Jack

- Remove the ornamental nut securing the controls or jack to the rear panel. Use pliers covered with a soft cloth. Take care not to mar the rear panel.
- 2. Unsolder the lead wires from the defective control or jack, and then install the new one.

IMPEDANCE SELECTOR Switch

 Remove the PHONO-1 Equalizer Amplifier/ Head Amplifier Board as described in Procedure 2-6.

Fig. 2-10. IMPEDANCE selector switch removal

- 2. With a soldering-iron having a solder-sucking tip, clean the solder from each lug of the defective switch and the printed board as shown in Fig. 2-10. This frees the switch.
- 3. Install the replacement switch.

2-9. REPLACEMENT OF COMPONENTS SECURED TO THE REAR PANEL BY RIVETS

- Remove the rear panel as described in Procedure 2-7.
- 2. Bore out the rivets using a drill bit slightly larger in diameter than the rivet. See Fig. 2-11.
- Punch out the remainder of the rivet with a nail set or prick punch.
- 4. Remove the defective component, and then install a new one.
- 5. Secure the new component with a suitable screw and nut, or a repair rivet screw (part number 3-701-402).

Fig. 2-11. Rivet replacement

Fig. 2-9. Control and switch replacement

2-10. CHASSIS LAYOUT

Note:

"A" PCB: PHONO-1 Equalizer Amplifier/Head Amplifier Circuit Board

"B" PCB: MIC Amplifier/PHONO-2 Equalizer Amplifier Circuit Board

"C" PCB: Flat Amplifier-1/Flat Amplifier-2 Circuit Board

"D" PCB: Meter Amplifier/Headphone Amplifier Circuit

Board

"E" PCB: Muting/Power Supply Circuit Board

"F" PCB: REC OUT Buffer/High and Low Filter Component/Turnover Frequency Changeover Component Circuit Board

"G" PCB: OUTPUT LEVEL Changeover Switch Circuit

Board

SECTION 3 ALIGNMENT AND ADJUSTMENT PROCEDURES

3-1. TEST EQUIPMENT REQUIRED

1. Audio Oscillator

2. Distortion Meter

Capable of measuring of 0.015% distortion or less at 1kHz

3. Ac VTVM

Capable of measuring rms voltage of $100\,\text{mV}$ or less with a frequency range from $10\,\text{Hz}$ to $100\,\text{kHz}$.

Input impedance 500k ohms or more

4. Attenuator

Capable of attenuating signals $60\,dB$ or more. Characteristic

impedance 600 ohms unbalanced

5. Oscilloscope

Bandwidth 1 MHz or more

6. Dc Voltmeter

Capable of measuring dc voltage of 150V and 50V or less.

7. Resistors 600 ohm (1/4 W) 3 ohm (1/4 W)

Note: 1. When measuring the sensitivity of the PHONO-1 LOW LEVEL input, insert a 46 dB pad (shown in Fig. 3-1.) between the attenuator and input terminal. The input sensitivity may be regarded as the reading on the attenuator plus the pad loss.

2. $0 \, dB = 0.775 \, V \, (r.m.s.)$

Fig. 3-1. 46 dB pad

3-2. POWER SUPPLY VOLTAGE ADJUSTMENT

Check the power supply voltages before starting any measurements and readjust them if necessary.

Preparation

1. Remove the top cover as described in Procedure 2-3 and connect the dc voltmeter to the test points as shown in Fig. 3-2.

Procedure

- 1. Set the variable transformer for minimum output.
- 2. Turn the POWER switch to ON, and then increase the line voltage up to the rated value.
- Adjust semifixed resistor R920 (high-voltage regulator) and R926 (low-voltage regulator) to obtain 150V and 37V readings respectively on the meter.

Fig. 3-2. Dc voltmeter connections

Fig. 3-3. Parts location

33. OVERALL CHECK PREPARATION

Unless otherwise specified, set all controls and switches as follows to prepare for the following checks:

i i	
VOLUME control	maximum position
MODE switch	STEREO
MONITOR switch	SOURCE
MIC LEVEL control	MIXING OFF
FILTER switch	OFF
TREBLE control	0 (dB)
BASS control	0 (dB)
TONE switch	CANCEL
TREBLE TURNOVER	
FREQ. switch	2.5 kHz
BASS TURNOVER	
FREQ. switch	500 Hz
METER LEVEL switch	
HEADPHONE LEVEL	
control	minimum level
BALANCE control	mid position
LEVEL ADJUST control	maximum level
(rear panel)	
OUTPUT LEVEL switch	1 V
(rear panel)	
IMPEDANCE	
SELECTOR switch:	47 k
(rear panel)	

34. SENSITIVITY MEASUREMENT

Preparation

- 1. Set all the controls as described in Procedure 3-3
- Set the FUNCTION-1, IMPEDANCE SELEC-TOR, and FUNCTION-2 switches to the position where the measurement should be performed.

3. Set the BALANCE control to fully counterclockwise (left-channel measurement) or fully clockwise (right-channel measurement) position.

Procedure - Perform this for each input

- 1. With the equipment connected as shown in Fig. 3-4, feed a 1 kHz signal to the input jack. Adjust the attenuator to obtain a 1 volt reading on the ac VTVM. Note that the audio oscillator's output should always be kept at 0.775 volts (0 dB).
- 2. The reading of the attenuator represents the input sensitivity and should within the limits given in Table 3-1.

TABLE 3-1. INPUT SENSITIVITY

INPUTS	SPECIFIED SENSITIVITY AT 1kHz
PHONO-1 (HIGH LEVEL) *(LOW LEVEL)	-57 ±1 dB -82.2 ±1.5 dB
PHONO-2	-57 ±1 dB
MIC	-63.7 ±1.5 dB
TUNER, AUX-1, -2, -3	-17.5 ±0.5 dB

^{*} The PHONO-1 IMPEDANCE SELECTOR switch should be set to $30\,\Omega$ and an additional attenuator pad (See Fig. 3-1.) used between the main attenuator and input jack.

3-5. LEVEL METER (VU meter) CALIBRATION

Preparation

- 1. Set the FUNCTION-2 switch to TUNER.
- 2. Set the BALANCE control fully counterclockwise (left-channel calibration) or fully clockwise (right-channel calibration).
- 3. Set the METER LEVEL switch to 0 dB.

Fig. 3-4. Level check test setup

Procedure

- With the equipment connected as shown in Fig. 3-4, feed a 1 kHz to the TUNER input jack. Adjust the attenuator to obtain a 1 volt reading on the ac VTVM.
- Turn the semifixed resistor R701 (R801), see Fig. 3-3, mounted on the Meter Amplifier/ Headphone Amplifier board to obtain a 0 reading on the level meter.
- Decrease the input signal level 10 dB (20 dB), and then set the METER LEVEL switch to -10 dB (-20 dB) position.
- 4. Confirm that the reading on the level meter is $0 \pm 0.5 \text{ VU}$.
- 5. Confirm that the reading of the meter changes with variations in attenuator settings.

3-6. RATED OUTPUT MEASUREMENT

Preparation

- 1. Set the FUNCTION-2 switch to TUNER.
- Set the BALANCE control fully counterclockwise (left-channel calibration) or fully clockwise (right-channel calibration).
- 3. Set the OUTPUT LEVEL switch to 1 V.
- Set the HEADPHONE LEVEL control to maximum level position.

Procedure

- With the equipment connected as shown in Fig. 3-4, feed a 1 kHz to the TUNER input jack. Adjust the attenuator to obtain a 1 volt reading on the ac VTVM.
- 2. Each output level should be within the limits given in Table 3-2.

TABLE 3-2. OUTPUT LEVEL

Triples of 2: Octive RE (22			
Outputs	Output Level		
CENTER OUTPUT	16.0 ±1 dB		
HEADPHONE OUT (open)	16.0 ±1 dB		
REC OUT	-17.5 ±1 dB		
REC/PB OUT 1 or 4 to ground see Fig. 3-5.	-32 ±3 dB		

3-7. HARMONIC-DISTORTION MEASUREMENT

Preparation

Same as described in Procedure 3-3, except the TONE switch should be set to ON.

Procedure

- With the equipment connected as shown in Fig. 3-4, feed in the signal specified in Table 3-3 and then adjust the VOLUME control to obtain a 1 volt (r.m.s.) output.
- Measure the harmonic distortion. The harmonic distortion should be within the limits given in Table 3-3.

TABLE 3-3. HARMONIC DISTORTION

Inputs	Input Signal Level and Freq.	Harmonic Distortion
PHONO-1 (HIGH LEVEL) or PHONO-2	-18 dB, 1 kHz -8 dB, 1 kHz	0.05% or less 0.1% or less (at 3 vols output)
*MIC	3 dB, 1 kHz	0.7% or less (at 3 vols output)
TUNER, AUX-1, 2, 3	-17.5 ±0.5 dB, 1 kHz	0.03% or less

*Note: In this measurement, adjust the output level by means of the MIC LEVEL control.

3-8. FREQUENCY RESPONSE MEASUREMENT

Preparation

Same as Procedure 3-4.

Procedure - Perform this for each input.

- With the equipment connected as shown in Fig. 3-4, feed a 1 kHz signal to the input jack. Vary the attenuator to obtain a 1 volt reading on the ac VTVM.
- Check the frequency response by varying the input signal frequency while keeping the oscillator's output constant. Frequency response should be within the limits as given in Table 3-4.

Fig. 3-5. REC/PB (DIN) connector

TABLE 3-4. FREQUENCY RESPONSE

Inputs	*Specified Frequency Response
TUNER	$\pm {}^{0}_{2}$ dB at 10 Hz $\pm {}^{0}_{2}$ dB at 100 kHz
PHONO-1 (HIGH LEVEL) (47 k)	13.1 ±0.5 dB at 100 Hz
or (LOW LEVEL) (30 ohm)	-13.7 ±0.5 dB at 10 kHz
MIC (MIC LEVEL control: maximum)	$\pm \frac{0}{2}$ dB at 30 Hz $\pm \frac{0}{2}$ dB at 30 kHz
TUNER	CENTER OUTPUT \pm^{0}_{2} dB at 20 Hz \pm^{0}_{2} dB at 20 kHz

^{*} referred to 1 kHz 1 volt output

3-9. NOISE LEVEL MEASUREMENT

Preparation

- Same as described in Procedure 3-3 except set the FILTER switch to LOW and the TONE switch to ON.
- 2. Turn the VOLUME control fully clockwise.

Procedure

 With the equipment connected as shown in Fig. 3-6, measure the output noise level at each FUNCTION switch position, with the corresponding input terminals shorted.

TABLE 3-5. NOISE LEVEL SPECIFICATIONS

Inputs	Noise Level
TUNER	-70 dB or less
PHONO-1 (HIGH LEVEL) (47k ohm)	-57 dB or less
PHONO-1 (LOW LEVEL) (30 ohm)	-40 dB or less
PHONO-2	-57 dB or less
MIC	-35 dB or less

Note: The difference between left and right channel noise levels should be 4 dB or less. The average noise levels are given in Table 3-5.

3-10. TONE CONTROL CHECK

Preparation

- 1. Set all controls as described in Procedure 3-3, except set the TONE switch to ON.
- 2. Set the FUNCTION-2 switch to TUNER.

Procedure

- 1. With the equipment connected as shown in Fig. 3-4, feed a 1 kHz signal to the TUNER input jack. Vary the attenuator to obtain a 1 volt reading on the ac VTVM.
- 2. Check the frequency response by varying the BASS, TREBLE controls and the input signal frequency while keeping the oscillator's output constant. TONE control response should be as given in Table 3-6.

Fig. 3-6. Noise level check test setup

TABLE 3-6. TONE CONTROL CHECK

Inputs	Controls	Specified Frequency Response	
	BASS (Turnover Freq. 500 Hz)	±10 dB* maximum, 2 dB step at 100 Hz	
TUNER	TREBLE (Turnover Freq. 2.5 kHz)	±10 dB* maximum, 2 dB step at 10 kHz	
Same as	BASS (Turnover Freq. 250 Hz)	±10 dB* maximum, 2 dB step at 50 Hz	
above	TREBLE (Turnover Freq. 5 kHz)	±10 dB* maximum, 2 dB step at 20kHz	

^{*} referred to 1 volt at 1 kHz.

3-11. FILTER RESPONSE CHECK

Preparation

- 1. Set all controls as described in Procedure 3-3.
- 2. Set the FUNCTION-2 switch to TUNER.

Procedure

- With the equipment connected as shown in Fig. 3-3, feed a 1 kHz signal to the TUNER input jack. Vary the attenuator to obtain a 1 volt reading on the ac VTVM.
- 2. Check the frequency response by operating the FILTER switch and varying the input signal frequency. Keep the oscillator's output constant. Filter response should be within the limits given in Table 3-7.

TABLE 3-7. FILTER RESPONSE CHECK

FILTER SW Position	Specified Frequency Response
LOW or BOTH	* -3 ± 1.5 dB at 50 Hz
HIGH or BOTH	* -3 ± 1 dB at 9 kHz

^{*} referred to 1 kHz 1 volt output.

3-12. CROSSTALK MEASUREMENT

Preparation

- Set all the controls as described in Procedure 3-3, except set the TONE switch to ON position.
- 2. Set the FUNCTION-2 switch to TUNER.

Procedure

- 1. With equipment connected as shown in Fig. 3-3, feed a 1 kHz signal to the TUNER input jack (left channel). Vary the attenuator to obtain a 1 volt reading on the ac VTVM.
- 2. Switch the signal to the right-channel input jack while shorting the left-channel input.
- 3. Read the residual signal level in the left-channel output. The 1 volt output-level to residual-level ratio represents the channel crosstalk. The left-to-right and right-to-left crosstalk should be 60 dB or more.

MEMO	
······································	
	•
· · · · · · · · · · · · · · · · · · ·	

SECTIONS 4 DIAGRAMS

4-1. MOUNTING DIAGRAM — "A" PCB: PHONO-1 Equalizer Amplifier/Head Amplifier Board — Conductor Side —

- Component Side -

A-2000F

4-2. MOUNTING DIAGRAM - "B" PCB: MIC Amplifier/PHONO-2 Equalizer Amplifier Board

- Conductor Side -

- Component Side -

A-2000F

4-3. MOUNTING DIAGRAM - "C" PCB: Flat Amplifier-1/Flat Amplifier-2 Board

- Conductor Side -

- Component Side -

TA-2000F

4-4. MOUNTING DIAGRAM - "D" PCB: Meter Amplifier/Headphone Amplifier Board

- Conductor Side -

Component Side –

TA-2000F

4-5. MOUNTING DIAGRAM - "E" PCB: Muting/Power Supply Board

Conductor Side –

- Conponent Side -

4-6. MOUNTING DIAGRAM — "F" PCB: REC OUT Amplifier/High and Low Filter Component/Turnover Frequency Changeover Component Board

- Conductor Side -

- Component Side -

4-7. MOUNTING DIAGRAM - "G" PCB: OUTPUT LEVEL Changeover Switch Board

- Conductor Side -

- Component Side -

TA-2000F TA-2000F

6 0

- 36 -

- 35 -

SECTION 5 REPACKING

The TA-2000F's original shipping carton and packing materials are the ideal container for shipping the unit. However to secure the maximum protec-

tion, the TA-2000F must be repacked in these materials precisely as before. The proper repacking procedures are shown in Fig. 5-1.

SECTION 6 EXPLODED VIEW

SECTION 7 ELECTRICAL PARTS LIST

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
	MOUNTED CI	RCUIT BOARDS	Q501 (Q601)		FET, 2SK35-11 or -21
	8-982-512-05	flat amplifier 1/flat amplifier 2	Q502 (Q602)		FET, 2SK35-11 or -21
		circuit board	Q503 (Q603)		FET, 2SK23-34, -35, -36 or -37
	8-982-512-45	muting/power supply circuit board	Q504 (Q604)		FET, 2SK35-11 or -21
	8-982-512-46	OUTPUT LEVEL changeover switch	Q505 (Q605)		FET, 2SK35-11 or -21
		circuit board	Q506 (Q606)		FET, 2SK23-34, -35, -36 or -37
	8-982-512-61	PHONO-1 equalizer amplifier/head			
		amplifier circuit board	Q701 (Q801)		transistor, 2SC631A
	8-982-512-62	MIC amplifier/PHQNO-2 equalizer	Q702 (Q802)		transistor, 2SC632A
		amplifier circuit board	Q703 (Q803)		transistor, 2SC632A
	8-982-512-63	meter amplifier/HEADPHONE	Q704 (Q804)		transistor, 2SC631A
		amplifier circuit board	Q705 (Q805)		transistor, 2SC632A
	8-982-512-78	REC OUT buffer/high and low filter	Q706 (Q806)		transistor, 2SC1124
		component/turnover frequency	Q707 (Q807)		transistor, 2SA546
		changeover component circuit board			
			Q901		transistor, 2SD28
			Q902		transistor, 2SC634
•	SEMICO	NDUCTORS	Q903		transistor, 2SC926A
			Q904		transistor, 2SC807
D701 (D801)		diode, 1T22A	Q905		transistor, 2SC634
D702 (D802)		diode, 1T22A	Q906		transistor, 2SC926A
D703 (D803)		diode, 1T22A	Q907		transistor, 2SC634
D704 (D804)		diode, 1T22A	Q908		transistor, 2SC634
			Q909		transistor, 2SC634
D901		diode, CDR-2	Q910		transistor, 2SC634
D902		diode, CD-2	Q911		transistor, 2SC634
D903		diode, CDR-4	Q912		transistor, 2SA611
D904		diode, CD-4	001 (051)		transistor, 2SC926A
D905		diode, 1T243M	Q01 (Q51)		transistor, 2SC926A
D906		diode, 1T243M			
D907		diode, 10D-2			
0101 (0001)		FET, 2SK35-13 or -23		TRANSFORM	IERS AND COILS
Q101 (Q201)			L01 (L51)	1-427-231-11	coil, filter; 1H
Q1 02 (Q2 02)		FET, 2SK35-11 or -21 FET, 2SK23-32	L02 (L52)	1-407-408-11	coil, choke; 22 mH
Q103 (Q203)		transistor, 2SA611	T .	1-441-704	transformer, power
Q104 (Q204)		transistor, 2SC926A		1	,
Q105 (Q205) Q106 (Q206)		transistor, 2SC926A			
Q100 (Q200)	•	Handiston, asception		CAR	ACITORS
Q301 (Q401)	1	FET, 2SK23-22		CAP	ACITORS
Q302 (Q402)		transistor, 2SC926A	All come	oitanaa valuar or	e in μF except as indicated
Q303 (Q403)		FET, 2SK35-13 or -23		which means $\mu\mu$	
Q3 04 (Q4 04)		transistor, 2SC632A	1,		
Q305 (Q405)		FET, 2SK35-11 or -21	C101 (C201)	1-105-687-12	0.15 ±10% 50V mylar
Q306 (Q406)		FET, 2SK23-32	C102 (C202)	1-101-882	51p ±5% 50V ceramic
Q307 (Q407)		transistor, 2SA611	C103 (C203)	1-101-916	200p ±5% 50V ceramic
Q308 (Q408		transistor, 2SC926A	C104 (C204)	1-105-821-12	0.001 ±20% 50V mylar
Q309 (Q409		transistor, 2SC926A	C105 (C205)	1-107-169	100p ±5% 500V silvered mica

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
0104 (0204)	1 107 160	100p ±5% 500V silvered mica	C505 (C605)	1-105-691-12	0.33 ±10% 50V mylar
C106 (C206)	1-107-169 1-121-415	100 ± 100 % 16V electrolytic	C506 (C606)	1-101-861	15p ±5% 50V ceramic
C107 (C207)	1-121-415	- deleted -	C507 (C607)	1-105-691-12	$0.33 \pm 10\%$ 50V mylar
C108 (C208)	1-105-503-12	0.0015 ±5% 50V mylar	C508 (C608)	1-121-344	3.3 $\pm_{10}^{150}\%$ 25 V electrolytic
C110 (C210)	1-105-510-12	0.0056 ±20% 50V mylar	C509 (C609)	1-121-344	3.3 $\pm {}^{150}_{10}\%$ 25V electrolytic
C110 (C210)	1-103-310-12	$\pm \frac{150}{10}\%$ 150V electrolytic	C510 (C610)	1-105-685-12	0.1 ±10% 50V mylar
C111 (C211)	1-121-767	100p ±5% 500V silvered mica	C511 (C611)	1-105-685-12	0.1 ±10% 50V mylar
C112 (C212)		0.0047 ±20% 200V mylar	C512 (C612)	1-105-821-12	0.001 ±20% 50V mylar
C113 (C213)	1-105-909-12 1-121-741	150 ±20% 3.15V electrolytic	C513 (C613)	1-105-673-12	0.01 ±10% 50V mylar
C114 (C214)		0.001 ±20% 50V mylar	C514 (C614)	1-121-403	$\pm \frac{100}{10}\%$ 16V electrolytic
C115 (C215)	1-105-821-12	$0.301 \pm 20\% \ 50 \text{V mylar}$ $0.22 \pm 10\% \ 50 \text{V mylar}$	C515 (C615)	1-105-691-12	0.33 ±10% 50V mylar
C116 (C216)	1-105-689-12	100	C516 (C616)	1-101-861	15p ±5% 50V ceramic
C117 (C217)	1-121-748	10 ± 10 % 25 V electrolytic	C517 (C617)	1-105-691-12	$0.33 \pm 10\%$ 50V mylar
G201 (G401)	1 105 (07 12	0.15 ±10% 50V mylar	C518 (C618)	1-121-344	3.3 $\pm ^{150}_{10}\%$ 25 V electrolytic
C301 (C401)	1-105-687-12		C519 (C619)	1-121-344	3.3 $\pm {}^{150}_{10}\%$ 25 V electrolytic
C302 (C402)	1-105-821-12		C317 (C017)	1121344	
C303 (C403)	1-101-864		C701 (C801)	1-105-685-12	0.1 ±10% 50V mylar
C304 (C404)	1-101-864	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C702 (C802)	1-101-896	100p ±5% 50V ceramic
C305 (C405)	1-121-707	100	C702 (C802)	1-121-347	$\pm \frac{100}{10}\%$ 16 V electrolytic
C306 (C406)	1-121-415	150	C704 (C804)	1-121-344	3.3 $\pm {}^{150}_{10}\%$ 25 V electrolytic
C307 (C407)	1-121-707		C705 (C805)	1-105-685-12	$0.1 \pm 10\%$ 50V mylar
C308 (C408)	1-105-685-12	0.1 ±10% 50V mylar 0.001 ±20% 50V mylar	C705 (C805)	1-105-679-12	$0.033 \pm 10\%$ 50V mylar
C309 (C409)	1-105-821-12		C707 (C807)	1-101-896	100p ±5% 50V ceramic
C310 (C410)	1-101-959	150	C708 (C808)	1-121-413	$\pm 100 \pm 100 \%$ 6.3V electrolytic
C311 (C411)	1-121-396	100	C709 (C809)	1-121-413	$\pm \frac{100}{10}\%$ 6.3 V electrolytic
C312 (C412)	1-121-413	100	C710 (C810)	1-121-283	$\pm \frac{100}{10}\%$ 25 V electrolytic
C313 (C413)	1-121-344	400	C711 (C811)	1-121-733	470 $\pm \frac{100}{10}\%$ 25 V electrolytic
C314 (C414)	1-121-417		C713 (C813)	1-121-348	$\pm \frac{100}{10}\%$ 50V electrolytic
C315 (C415)	1-105-687-12	0.15 ±10% 50V mylar 0.001 ±20% 50V mylar	C/13 (C013)	1-121-540	
C316 (C416)	1-105-821-12		C901	1-121-741	150 ±20%3.15V electrolytic
C317 (C417)	1-101-882		C902	1-121-741	150 ±20%3.15V electrolytic
C318 (C418)	1-101-916		C903	1-121-245	$1,000 \pm {}^{100}_{10}\%$ 16V electrolytic
C319 (C419)	1-101-819	120p ±5% 50V ceramic 120p ±5% 50V ceramic	C904	1-105-909-12	0.0047 ±20% 200V mylar
C320 (C420)	1-101-819	$100 \pm \frac{100}{10}\% 16V electrolytic$	C905	1-105-909-12	0.0047 ±20% 200V mylar
C321 (C421)	1-121-415	- deleted -	C906	1-105-909-12	0.0047 ±20% 200V mylar
C322 (C422)	1 107 005 13	0.0015 ±5% 50V mylar	C907	1-105-909-12	0.0047 ±20% 200V mylar
C323 (C423)	1-106-005-12	$0.0013 \pm 5\% \text{ 50V mylar}$	C908	1-119-313	$\pm \frac{100}{10}\%$ 200V electrolytic
C324 (C424)	1-106-019-12		C908	1-115-515	0.022 ±20% 200V mylar
C325 (C425)	1-106-019-12		C910	1-105-917-12	$0.022 \pm 20\% \ 200 \text{V mylar}$
C326 (C426)	1-106-019-12		C911	1-119-314	$\pm \frac{100}{10}\%$ 160V electrolytic
C327 (C427)	1-106-019-12		C912	1-105-917-12	0.022 ±20% 200V mylar
C328 (C428)	1-101-896	100p ±5% 50V ceramic 0.0047 ±20% 200V mylar	C913	1-105-909-12	0.0047 ±20% 200 V mylar
C329 (C429)	1-105-909-12	$\frac{150\%}{10\%}$ 150V electrolytic	C914	1-105-909-12	0.0047 ±20% 200 V mylar
C330 (C430)	1-121-707	3 ± 10 % 130 v electrony ne	C915	1-105-909-12	$0.0047 \pm 20\% \ 200 \text{V mylar}$
C501 (C(01)	1-105-685-12	0.1 ±10% 50V mylar	C916	1-105-909-12	0.0047 ±20% 200V mylar
C501 (C601)		0.001 ±20% 50V mylar	C917	1-121-417	$\pm \frac{100}{10}\%$ 50V electrolytic
C502 (C602)	1-105-821-12 1-105-673-12	$0.001 \pm 20\% 50 \text{V mylar}$	C918	1-105-685-12	0.1 ±10% 50V mylar
C503 (C603)		33 $\pm \frac{100}{10}\%$ 16V electrolytic	C919	1-121-398	$\pm \frac{100}{10}\%$ 25 V electrolytic
C504 (C604)	1-121-403	22 = 10 % 10 4 executory are	0,1,	1 141 470	==

Ref. No.	Part No.	Description	Ref. No. Part No.	Description
C920	1-121-738	$\pm \frac{100}{10}\%$ 50V electrolytic	R117 (R217) 1-242-713 471	te.
C921	1-121-417	$100 \pm \frac{100}{10}\% 50 \text{V electrolytic}$	R118 (R218) 1-242-739-09 560	
C922	1-105-685-12	0.1 ±10% 50V mylar	R119 (R219) 1-242-662 360	
C923	1-121-395	4.7 $\pm ^{150}_{10}\%$ 25 V electrolytic	R120 (R220) 1-244-673-09 1 k	
C924	1-121-738	$\pm \frac{100}{10}\%$ 50V electrolytic	R121 (R221) 1-244-721-09 100) k
			R122 (R222) 1-242-673-09 1 k	45.
C02 (C52)	1-105-729-12	0.22 ±10% 100V mylar	R123 (R223) 1-242-664 330	
C04 (C54)	1-121-707	3 $\pm ^{150}_{10}\%$ 150V electrolytic	R124 (R224) 1-242-625 10	
C05 (C55)	1-106-013-12	0.0033 ±5% 50V mylar	R125 (R225) 1-244-705-09 221	<
C06 (C56)	1-106-025-12	0.01 ±5% 50V mylar	R126 (R226) 1-242-689 4.7	
C07 (C57)	1-106-025-12	0.01 ±5% 50V mylar	R127 (R227) 1-242-725-09 150	
C08 (C58)	1-106-037-12	0.033 ±5% 50V mylar	R128 (R228) 1-244-625 10	
C09 (C59)	1-106-049-12	0.1 ±5% 50V mylar		
C10 (C60)	1-106-049-12	0.1 ±5% 50V mylar	R301 (R401) 1-244-681-09 2.2	k
C11 (C61)	1-106-013-12	0.0033 ±5% 50V mylar	R302 (R402) 1-244-721-09 100	
C12 (C62)	1-106-013-12	0.0033 ±5% 50V mylar	R303 (R403) 1-244-714-09 51 k	
C13 (C63)	1-106-037-12	$0.033 \pm 5\% 50 \text{V mylar}$	R304 (R404) 1-244-721-09 100	
C14 (C64)	1-106-037-12	0.033 ±5% 50V mylar	R305 (R405) 1-244-717-09 68 k	•
C15 (C65)	1-105-691-12	0.33 ±5% 50V mylar	R306 (R406) 1-244-691 5.6	k
C16 (C66)	1-106-033-12	$0.022 \pm 5\% 50 \text{V mylar}$	R307 (R407) 1-211-922 75 k	±1%
C17	1-121-898	330 250V electrolytic	R308 (R408) 1-244-708-09 30 k	:
C18	1-121-300	$2,200 \pm \frac{100}{10}\%$ 70V electrolytic	R309 (R409) 1-244-675-09 1.21	k
C19 (C69)	1-106-047-12	0.082 ±5% 50V mylar	R310 (R410) 1-244-675-09 1.21	K
			R311 (R411) 1-244-681-09 2.21	k
			R312 (R412) 1-244-745 1M	
			R313 (R413) 1-244-711-09 39 k	
	RESI	STORS	R314 (R414) 1-210-505 4.71	k ±1%
			R315 (R415) 1-211-925-09 150	k ±1%
	sistance values are type unless othe	e in ohms, ±5%, ¼ watts and	R316 (R416) 1-244-745 1 M	
		"09" in the Parts Numbers	R317 (R417) 1-244-691-09 5.61	\$
	es noiseless type.		R318 (R418) 1-244-667 560	
			R319 (R419) 1-244-674-09 1.11	ζ
R101 (R201)	1-242-719-09	82 k	R320 (R420) 1-244-674 1.11	ς
R102 (R202)	1-242-713	47 k	R321 (R421) 1-244-733 330	k
R103 (R203)	1-242-709-09	33 k	R322 (R422) 1-244-713 47 k	
R104 (R204)	1-242-636	30	R323 (R423) 1-244-745 1M	
R105 (R205)	1-242-625	10	R324 (R424) 1-244-701 15 k	
R106 (R206)	1-242-745-09	1 M	R325 (R425) 1-244-681 2.21	ξ
R107 (R207)	1-242-745-09	1 M	R326 (R426) 1-244-721 100	k
R108 (R208)	1-242-701-09	15 k	R327 (R427) 1-244-712-09 43 k	
	1-242-681-09	2.2 k	R328 (R428) 1-244-668 620	
	1-242-721-09	100 k	R329 (R429) 1-244-643 56	
	1-242-712-09	43 k	R330 (R430) 1-244-728-09 200	k
R112 (R212)		620 ±1%	R331 (R431) 1-244-694-09 7.5 k	:
R113 (R213)		56	R332 (R432) 1-244-708-09 30 k	
	1-242-728-09	200 k	R333 (R433) 1-244-713 47 k	
	1-244-694-09	7.5 k	R334 (R434) 1-244-739-09 560	ķ
R116 (R216)	1-244-708-09	30 k	R335 (R435) 1-244-662 360	

Ref. No.	Part No.	Description	Ref. No.	Part No.		Desc	ripti	on
R336 (R436)	1-244-673-09	1 k	R718 (R818)	1-244-702-09	16 k			
R337 (R437)	1-244-721-09	100 k	R719 (R819)	1-244-675-09	1.2 k			
R337 (R437)	1-244-625	10	R720 (R820)	1-244-677-09	1.5 k			
1050 (1050)	1 2 1 1 0 20		R721 (R821)	1-202-563	390	±10% 3	⁄2W	composition
R501 (R601)	1-244-745-09	1 M	R722 (R822)	1-244-625	10			
R502 (R602)	1-244-683-09	2.7 k	R723 (R823)	1-244-625	10			
R503 (R603)	1-244-742-09	750 k	R724 (R824)	1-202-563	390	±10% 1	⁄2W	composition
R504 (R604)	1-211-916	7.5 k ±1%	R725 (R825)	1-211-919	20 k	±1%		
R505 (R605)	1-244-697-09	10 k	R726 (R826)	1-244-617	4.7			
R506 (R606)	1-244-737-09	470 k	R728 (R828)	1-244-673-09	1 k			
R507 (R607)	1-244-716-09	62k	R729 (R829)	1-244-690-09	5.1 k			
R508 (R608)	1-244-674-09	1.1 k	R730 (R830)	1-244-625	10			
R509 (R609)	1-211-923	91 k ±1%	R731 (R831)	1-244-697-09	10 k			
R510 (R610)	1-244-686-09	3.6 k						
R511 (R611)	1-244-673-09	1 k	R901	1-244-705	22 k			
R512 (R612)	1-244-709-09	33 k	R902	1-244-681	2.2 k			
R513 (R613)	1-244-721-09	100 k	R903	1-244-725	150 k			
R514 (R614)	1-244-745-09	1 M	R904	1-244-687	3.9 k			
R515 (R615)	1-244-683-09	2.7 k	R905	1-244-689	4.7 k			
R516 (R616)	1-244-742-09	750 k	R906	1-244-673	1 k			
R517 (R617)	1-211-916	$7.5 k \pm 1\%$	R907	1-244-683	2.7 k			
R518 (R618)	1-244-697-09	10k	R908	1-244-717	68 k			
R519 (R619)	1-244-737-09	470 k	R909	1-244-687	3.9 k			
R520 (R620)	1-244-716-09	62k	R910	1-244-719	82 k			
R521 (R621)	1-244-674-09	1.1 k	R911	1-244-697	10 k			
R522 (R622)	1-211-923	91 k ±1%	R912	1-244-697	10 k			
R523 (R623)	1-244-686-09	3.6 k	R913	1-244-690	5.1 k			
R524 (R624)	1-244-673-09	1 k	R914	1-244-690	5.1 k			
R525 (R625)	1-244-709-09	33 k	R915	1-244-709	33 k			
R526 (R626)	1-244-721-09	100 k	R916	1-244-709	33 k			
			R917	1-244-673	1 k			
R701 (R801)	1-222-987	100 k (B), semi-fixed	R918	1-244-745	1M			
R702 (R802)	1-244-729-09	220 k	R919	1-244-694	7.5 k	61		
R703 (R803)	1-244-739-09	560 k	R920	1-221-967	10 k (B),			composition
R704 (R804)	1-244-721-09	100 k	R921	1-202-623	120 k		72 VV	Composition
R705 (R805)	1-244-665	470	R922	1-244-701	15 k			
R706 (R806)	1-211-911	510 ±1%	R923	1-244-701	15 k			
R707 (R807)	1-244-703-09	18k	R924	1-244-712	43 k			
R708 (R808)	1-244-680-09	2 k	R925	1-244-677	1.5 k	61	4	
R709 (R809)	1-211-920	24 k ±1%	R926	1-221-967		semi-fi	xeu	
R710 (R810)	1-244-690-09	5.1 k	R927	1-244-711	39 k		2 11/	wire-wound
R711 (R811)		8.2 k ±1%	R928	1-217-008	1.2		2 W	WITC-MORITO
•	1-244-721-09	100 k	R929	1-244-625	10			
	1-244-713-09	47 k	DOI (0.51)	1 244 521 02	1001-			
	1-244-681-09	2.2 k	R01 (R51)	1-244-721-09	100 k			
	1-244-721-09	100 k	R02 (R52)	1-244-714-09	51 k 1 M			
R716 (R816)		1.1 k ±1%	R03 (R53)	1-244-725-09	2.2 k			
R717 (R817)	1-244-735-09	390 k	R04 (R54)	1-244-681-09	2.2 R			

TA-2000F

Ref. No.	Part No.	Description	Ref. No	o. Part No.	Description	
R05 (R55)	1-244-733-09	330 k	R1002(R	2002) 1-244-685-09	3.3 k	
R06 (R56)	1-244-735-09	390 k	1	2003) 1-244-711	39 k	
R07 (R57)	1-244-714-09	51 k		2004) 1-244-745	1 M	
R08 (R58)	1-244-722-09	110k		2005) 1-244-745	1 M	
R09 (R59)	1-244-725-09	150 k	R1006(R	2006) 1-244-733	330 k	
R10 (R60)	1-244-625-09	10	R1007(R	2007) 1-244-649-09	100	
R11 (R61)	1-210-506	10k ±1%	1	2008) 1-211-913	1 k ±1%	
R12 (R62)	1-244-662	360		2009) 1-211-913	1 k ±1%	
R13 (R63)	1-244-668	620				
R14 (R64)	1-244-672	910	VR1	1-222-461	resistor, variable 100 k (B)/100 k (B)
R15 (R65)	1-244-676-09	1.3 k			(PHONO-2 LE	VEL Adj.)
R16 (R66)	1-244-682-09	2.4 k	VR2	1-222-462	resistor, variable 250 k (B)/250 k (B)
R17 (R67)	1-244-683-09	2.7 k			(TUNER LI	EVEL Adj.)
R18 (R68)	1-244-713-09	47 k	VR3	1-222-462	resistor, variable 250 k (B)/250 k (B)
R19 (R69)	1-244-699-09	12k			(AUX-1 LE	EVEL Adj.)
R20 (R70)	1-244-694-09	7.5 k	VR4	1-222-462	resistor, variable 250 k (B)/250 k (B)
R21 (R71)	1-244-688-09	4.3 k			(AUX-2 LI	EVEL Adj.)
R22 (R72)	1-244-680-09	2 k	VR5	1-222-462	resistor, variable 250 k (B)/250 k (B)
R23 (R73)	1-244-669	680			(TAPE-1 LE	VEL Adj.)
R24 (R74)	1-244-669	680	VR6	1-222-458	resistor, variable 100 k (A	.)/100 k (A)
R25 (R75)	1-244-675-09	1.2 k			(MIC LEVEL control with	switch \$15)
R26 (R76)	1-244-679-09	1.8 k	VR7	1-222-459	resistor, variable 250 k (M	i)/250 k (N)
R27 (R77)	1-244-683-09	2.7 k			(BALAN	CE control)
R28 (R78)	1-244-687-09	3.9 k	VR8	1-221-843	resistor, variable 250 k/25	0 k
R29 (R79)	1-244-696-09	9.1 k			(VOLUM	IE control)
R30 (R80)	1-244-718-09	75 k	VR9	1-222-460	resistor, variable 100 k (B)/100 k (B)
R31 (R81)	1-244-716-09	62 k			(HEADPHONE LEVI	EL control)
R32 (R82)	1-244-712-09	43 k				
R33 (R83)	1-244-708-09	30 k		SWI	TCHES	
R34 (R84)	1-244-703-09	18 k				
R35 (R85)	1-244-698-09	11 k	S1 .	1-514-823	, ,	ICTION 1)
R36 (R86)	1-211-913	1 k ±1%	S2	1-514-824	switch, lever/rotary (FUN	
R37 (R87)	1-210-506	10k	\$3	1-514-825	switch, lever/rotary (MON	
R38 (R88)	1-210-505	4.7 k ±1%	S4	1-514-649	switch, rotary (MOI	•
R39 (R89)	1-210-509	33 k	S5	1-514-647	switch, lever/rotary (TON	
R40 (R90)	1-244-698-09	11 k	S6 .	1-514-826	switch, rotary (TONE con	trol,
R41 (R91)	1-244-689-09	4.7 k	20		TREBLE)	
R42 (R92)	1-210-502	2.2 k	S7	1-514-827	switch, rotary (TONE con	
R43 (R93)	1-210-506	10k ±1%	S8	1-514-647	switch, lever/rotary (TUR	
R44 (R94)	1-210-505	4.7 k	90	1 61 4 6 47	FREQuency, T	
R45 (R95)	1-210-502	2.2 k	\$9	1-514-647	switch, lever/rotary (TUR	
R46 (R96)	1-244-715-09	56 k	610	1 514 020	FREQuency	, DASS)
R47 (R97)	1-244-697-09	10k	\$10	1-514-828	switch, rotary/slide (IMPEDANCE	SELECT)
R48 (R98)	1-244-697-09	10k	S11	1_514_920		
R49 (R99)	1-244-742-09	750 k	S11 S12	1-514-829 1-514-830	switch, rotary (FILTER) switch, rotary (METER I	
R50 (R100)	1-244-719-09	82k	\$12 \$13	1-514-830	switch, rotary (METER I	
D1001/D200	1 244 657	220	S14	1-514-369-13	switch, lever (POWER)	
R1001(R2O01	.) 1-244-657	220	314	1-314-307-13	SWITCH, ICVCI (FOWER)	

TA-2000F

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
	MISCE	LLANEOUS	.	1-509-341	AC socket
CP1	1-101-534	encapsulated component, $120 \Omega + 0.1 \mu F$		1-515-156	relay, REL-1
CP2	1-231-057	encapsulated component, $120\Omega + 0.033 \mu F$		1-518-070	lamp, meter 8V 0.3 A
	1-507-162	phono jack, 10-P		1-524-080	LEVEL meter
	1-507-163	phono jack, 4-P		1-526-165	voltage changeover block
	1-507-170	jack, AUX 3 input		1-532-248	fuse, 1 A
	1-507-176	phono jack, 1-P		1-533-051-13	socket, meter lamp
	1-507-190-12	jack, HEADPHONE		1-534-487	cord, power
	1-507-279	jack, MIC input		1-536-178	terminal strip, 1L(C)
	1-507-338	PCB socket		1-536-182	terminal strip, 2L2(C)
	1-509-029	REC/PB socket		1-536-189	terminal strip, 1L(B)

TA-2000F

SONY CORPORATION

1D0644-1

- 48 -

Printed in Japan

SONY®

TA-2000F

General Export Model

No. 1 July, 1971

SERVICE MANUAL SUPPLEMENT

Subject: Changes on Model TA-2000F and Service Manual Correction

1. INTRODUCTION

SONY has changed the design of knobs equipped in TA-2000F as given in Table below. Note that the new knob is a serrated type as illustrated. In addition, some transistors are changed in the amplifier section. Notice that there is printing error concerning Idss rank illustration in the service manual. To avoid confusion make the following correction.

2. DESCRIPTION OF THE MODIFICATIONS

2-1. NEW KNOB

TABLE 1. PARTS CHANGED

	Parts Number		
Description	Former	New	
VOLUME, TONE(BASS, TREBLE) control knobs, FUNCTION, MODE switch knobs	X-20299-04	X-48049-04	
BALANCE control knob, HEADPHONE, METER, FILTER, MIC LEVEL knobs, IMPEDANCE SELECTOR knob	X-20519-03	X-48066-11	

Applicable Serial Numbers

500,201 and later

Interchangeability

New and old knobs are not interchangeable.

2-2. PARTS CHANGED

Some transistors employed in the amplifier have been changed. Only the new transistors are available for repair work.

Reference Number	Former Type	New Type
Q102(Q202), Q305(Q405), Q501(Q601), Q502(Q602), Q504(Q604), Q505(Q605)		6 8 8 0
·	2SK35-11, -21(FET)	2SK43-1(FET)
Q101(Q201)	PP	
	2SK35-13, -23(FET)	2SK43-1(FET)
Q104(Q204), Q307(Q407)	C C C E	0 B C E
	2SA611	2SA 705
Q303(Q403)	(PPP)	6 s s
	2SK35-13, -23(FET)	2SK43-3(FET)
Q912	© 6 0 C 0 €	0- 8 0- C 0- E
	2SA611	2SA678

Fig. 1. Former and new type transistors

Applicable Serial Numbers

500,301 and later

Interchangeability

New and old type transistors are mutually interchangeable.

3. CORRECTION

Fig. 2. Example of Idss rank

Note: should be corrected.

