By Claris

2016年4月30日

题目名称	二进制的世界	可持久化字符串	反函数
输入文件名	binary.in	string.in	inverse.in
输出文件名	binary.out	string.out	inverse.out
每个测试点时限	1s	1s	1s
测试点数目	10	10	10
每个测试点分值	10	10	10
内存限制	512MB	512MB	512MB
是否有部分分	否	否	否
题目类型	传统	传统	传统

注意: 第三题评测时将开启-O2优化开关。

1 二进制的世界(binary.c/cpp/pas)

1.1 题目描述

在二进制的世界里,只有三种运算:按位与(and)、按位或(or)、按位异或(xor)。在这个世界里,有n个人从左往右排成一排,其中从左往右第i个人手上写着一个数字 a_i 。

每个人都想在他左边找到他的好朋友,第i个人和第j个人之间的友好程度为 a_i opt a_j ,其中opt是三种运算中的一种。

请对于从左往右第2到第1个人,求出他左边和他友好程度最大的人,以及达到最大值的人数。

1.2 输入格式

第一行包含一个正整数n,一个串opt和一个整数type,分别表示人数,运算类型以及数据类型。 第二行包含n个整数,其中第i个数为 a_i ,表示从左往右第i个人手上的数字。

1.3 输出格式

如果type = 0,输出n - 1行,每行一个整数,其中第i行输出和第i + 1个人的友好程度的最大值。如果type = 1,输出n - 1行,每行两个整数,其中第i行先输出和第i + 1个人的友好程度的最大值,再输出达到最大值的人数。

1.4 样例输入

5 and 1

3 5 2 7 1

1.5 样例输出

1 1

2 1

5 1

13

1.6 数据范围与约定

对于100%的数据, $0 \le a_i \le 65535$ 。

测试点编号	n	opt	type
1	= 1000	and	1
2	= 1000	or	1
3	= 100000	xor	1
4	= 100000	xor	1
5	= 100000	and	0
6	= 100000	or	0
7	= 100000	and	1
8	= 100000	and	1
9	= 100000	or	1
10	= 100000	or	1

2 可持久化字符串(string.c/cpp/pas)

2.1 题目描述

一个串T是S的循环节,当且仅当存在正整数k,使得S是 T^k (即T重复k次)的前缀,比如abcd是abcdabcdab的循环节。

维护一个字符串S,一开始是空串,进行m次操作,每次操作包含两个整数 x_i , c_i ,表示这次操作的字符串为在第 x_i 次操作之后的字符串末尾添加一个字符 c_i 所形成的字符串。

请在每次操作完毕之后,求出该次操作得到的字符串最短的循环节的长度。

2.2 输入格式

第一行包含三个整数n, m, type,分别表示操作总数,字符集大小以及数据类型。 接下来n行,第i行包含两个整数 x_i, c_i ,表示一次操作,若 $x_i = 0$ 则表示初始串,即空串。

如果type = 1,说明数据进行了加密,x和c都需要异或上一次的输出,如果是第一次操作,那么视上一次的输出为0。

2.3 输出格式

输出n行,每行一个正整数,表示这次操作得到的字符串最短的循环节的长度。

2.4 样例输入

- 5 3 0
- 0.1
- 1 2
- 2 1
- $3\ 2$
- 0.3

2.5 样例输出

- 1
- 2
- 2
- 2
- 1

2.6 数据范围与约定

对于100%的数据, $0 \le x_i < i$, $1 \le c_i \le m$ 。

测试点编号	n	m	type	其它约定
1	= 100	= 100	1	无
2	= 100	= 100	1	无
3	=300000	=300000	1	$x_i = i - 1$
4	=300000	=300000	1	$x_i = i - 1$
5	=300000	= 10	0	无
6	=300000	= 10	0	无
7	=300000	= 10	0	无
8	=300000	=300000	1	无
9	=300000	=300000	1	无
10	=300000	=300000	1	无

3 反函数(inverse.c/cpp/pas)

3.1 题目描述

- 一个括号串是平衡的当且仅当它是下面几种情况中的一种:
- 1.括号串()是平衡的。
- 2.若A.B均为平衡的括号串,则串AB也是平衡的。
- 3.若A为平衡的括号串,则串(A)也是平衡的。

给定一棵有n个节点的无根树,每个节点要么是(,要么是)。

定义S(x,y)为从x开始沿着最短路走到y,将沿途经过的点上的字符依次连起来得到的字符串。

函数f(x,y)等于对S(x,y)进行划分,使得每一个部分都是平衡的括号串,能得到的最大的段数。比如(())(())的最大段数为3,(()())(())的最大段数为2。

特别地,如果S(x,y)本身就不平衡,那么f(x,y)=0。

对于给定的x, y, f(x, y)的求解是非常容易的,但是输入k, 统计有多少x, y满足 $1 \le x, y \le n$, 且f(x, y) = k却非常棘手。你能写一个程序解决这个问题吗?

3.2 输入格式

第一行包含一个正整数n,表示节点数。

接下来n-1行,每行包含两个正整数x,y,表示x和y之间有一条边。

接下来n行,每行一个字符(或),其中第i行表示i号点的字符。

接下来一行包含一个正整数m,表示询问的个数。

接下来m行,每行一个正整数k,表示一个询问。

3.3 输出格式

输出m行,每行一个整数,表示有多少x,y满足1 < x,y < n,且f(x,y) = k。

3.4 样例输入

6

1 2

2 6

4 2

3 4

1 5

)

(

)

(

3

1

2

3

3.5 样例输出

4

2

0

3.6 数据范围与约定

对于100%的数据, $1 \le x, y \le n$, $1 \le k \le \frac{n}{2}$ 。

测试点编号	n	m
1	= 100	= 50
2	=5000	= 2500
3	=5000	= 2500
4	=50000	= 10
5	=50000	= 10
6	=50000	= 10
7	=50000	= 25000
8	=50000	=25000
9	=50000	= 25000
10	=50000	=25000