Baseball Data Analysis

Exploratory analysis of the data

The data set contains baseball player data from 1980 to 2010. Records are maintained on each player, for each year, team, league, stint, and fielding position they played. Overall, 4055 unique players are recorded in the data set, covering 20524 man years.

```
ggplot(by_year, aes(x = as.factor(yearID), y = players)) +
geom_bar(stat = "identity", fill = "Blue") +
xlab("Year") +
ggtitle("Players per Year") +
theme(axis.text.x = element_text(angle = -60, hjust = -0))
```


Batting Data Exploration

Batting data was recorded including:

- b_G -
- b_G_batting
- b_AB At Bats
- b R Runs
- $b_H Hits$
- b_2B Doubls

- b 3B Tripples
- b HR Home Runs
- b_RBI Runs Batted In
- b SB Stolen Bases
- b_CS Caught Stealing
- b_BB Bases on Balls (Walks)
- $b_SO Strikeouts$
- b_IBB Intentional Bases on Balls (Walks)
- b HBP Hit By Pitch
- b SH Sacrifice Hits (Bunts)
- b_SF Sacrifice Flies
- b GIDP
- b G old

In addition to the baseball statistics provided, several additional ratios were computed to normalise the data:

- b_hits_per_AB Hits per At Bat
- b_runs_per_AB Runs per At Bat
- b runs per H Runs per Hit
- b_home_runs_per_AB Home Runs per At Bat
- b_balls_per_AB Balls per At Bat
- b_RBI_per_H Runs Batted In per Hit
- b_HBP_per_AB Hit By Pitch per At Bat

Finaly, award data was considered:

```
ggplot(filter(award_winners, !is.na(awardID)), aes(x = as.factor(awardID), y = players)) +
  geom_bar(stat = "identity", fill = "Blue") +
  xlab("Award") +
  ggtitle("Unique Players") +
  theme(axis.text.x = element_text(angle = -60, hjust = -0))
```


As we can see, the silver slugger award has the most winners contained in the data set. As a result of this, it was chosen as the dependent variable.

The dataset also contained team, league, & fielding data that was not considered.

Model selection

To model the likelyhood that a player would recived the Silver Slugger Award a Logistic Regression was performed. Since the Silver Slugger is a batting award recognising players of high offensive value, the batting data set was used. According to wikipedia, the baseball coaches vote for players on other teams to win based on several batting ratios that we were able to derive from our raw count data.

The full model contained:

```
 \begin{array}{l} win\_silver\_slug = salary + b\_G + b\_G\_batting + b\_AB + b\_R + b\_H + b\_2B + b\_3B \\ + b\_HR + b\_RBI + b\_SB + b\_CS + b\_BB + b\_SO + b\_IBB + b\_HBP + b\_SH + b\_SF + b\_GIDP + b\_G\_old + b\_hits\_per\_AB + b\_runs\_per\_AB + b\_runs\_per\_H + b\_home\_runs\_per\_H + b\_balls\_per\_AB + b\_RBI\_per\_H + b\_HBP\_per\_AB \\ \end{array}
```

Model Selection

After backward selection the model that was chosen was: $\log(\text{odds(win_silver_slug)}) = -5.10697989512792 + -0.0437813071772097 * b_G + 0.0298363646334512 * b_H + 0.0353237814406278 * b_HR + 0.0235952761309906 * b_RBI + 0.03690307794777 * b_CS + 0.0283786990755013 * b_BB + -0.00719867486183699 * b_SO + 0.115025302963441 * b_HBP + 1.90522965303078 * b_hits_per_AB + 2.46316604034702 * b_home_runs_per_H + -10.2429175488287 * b_balls_per_AB + -46.0399398528793 * b_HBP_per_AB$

Check Fit

batting_data[which(colnames(batting_data) %in% c("win_silver_slug", names(model_backwards_selection\$coeplot_all_box(which(colnames(.) == "win_silver_slug"), .)

win_silver_slug

win_silver_slug

win_silver_slug vs b_hits_per_AB

b_hits_per_AB 9.0 0.0 **FALSE TRUE**

win_silver_slug

win_silver_slug vs b_balls_per_AB

win_silver_slug

o_balls_per_AB 9.0 0.0 **FALSE TRUE** win_silver_slug

win_silver_slug vs b_HBP_per_AB

vif(model_backwards_selection)

##	b_G	b_H	b_HR	b_RBI
##	11.457211	11.286429	7.332786	10.183930
##	b_CS	b_BB	b_SO	b_HBP
##	1.370876	17.147657	2.581509	19.221669
##	b_hits_per_AB	b_home_runs_per_H	b_balls_per_AB	b_HBP_per_AB
##	1.164119	1.841251	12.686127	17.834542

lm.beta(model_backwards_selection)

```
##
   glm(formula = win_silver_slug ~ b_G + b_H + b_HR + b_RBI + b_CS +
##
       b_BB + b_SO + b_HBP + b_hits_per_AB + b_home_runs_per_H +
##
       b_balls_per_AB + b_HBP_per_AB, family = binomial(), data = batting_data)
##
   Standardized Coefficients::
##
##
         (Intercept)
                                    b_G
                                                       b_H
                                                                         b_HR
           0.0000000
                            -14.7591199
                                                12.2880563
                                                                    2.3867899
##
##
               b_RBI
                                   b_CS
                                                      b_BB
                                                                         b_SO
##
           5.3694099
                              0.8367252
                                                 5.0736515
                                                                   -1.8274445
##
               b_HBP
                          b_hits_per_AB b_home_runs_per_H
                                                               b_balls_per_AB
##
           2.5745607
                              1.2437720
                                                 1.6719370
                                                                   -4.4004964
##
        b_HBP_per_AB
##
          -4.6642504
```

Finding a Optimal Cut Off

plot_of_cut_offs

After searching for a good cut off value, 0.13 was chosen.

best_cut_off