

Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 23 anos, Decreto-Lei n.º 64/2006, de 21 de março

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

Prova de ingresso escrita específica para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de técnico superior profissional,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA ELETROTÉCNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

SOLUÇÃO DA PROVA 2019

Apenas são apresentadas as soluções. Respostas que exijam demonstrações ou desenvolvimento não são apresentadas.

Grupo 1

- 1. (B)
- 2. (B)
- 3. (D)

Grupo 2

a)
$$D = \{x \in \mathbb{R}: 1 - 2x > 0 \land x + 1 \neq 0\} =]-\infty, -1[\cup] - 1, \frac{1}{2}[$$
, pois
$$1 - 2x > 0 \land x + 1 \neq 0 \Leftrightarrow x < \frac{1}{2} \land x \neq -1$$

b)
$$f(0) = 0$$

$$f'(x) = \frac{\frac{1}{1-2x}(-2)(x+1) - \ln(1-2x)}{(x+1)^2}$$
, pelo que $f'(0) = -2$

y = -2x é a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa 0.

Grupo 3

- 1. (E)
- 2. (C)
- 3. (D)

Grupo 4

a)
$$R_{eq} = R_{10} + \frac{R_6 R_6 R_6}{R_6 R_6 + R_6 R_6 + R_6 R_6} + R_8 = 10 + \frac{6 \times 6 \times 6}{6 \times 6 + 6 \times 6 + 6 \times 6} + 8 = 20 \Omega$$

b)
$$I = \frac{\varepsilon}{R_{eq}} = \frac{24}{20} = 1,2 \text{ A}$$

c)

$$V = R_{10}I = 10 \times 1, 2 = 12 \text{ V}$$

d)

$$P = R_{10}I^2 = 10 \times 1, 2^2 = 14,4 \text{ W}$$

Grupo 5

1.

a)
$$R_{1} = \frac{U}{I_{1}} = \frac{12}{2} = 6\Omega$$

$$I_{2} = \frac{U}{R_{2}} = \frac{12}{4} = 3A$$

$$I_{T} = I_{1} + I_{2} = 2 + 3 = 5A$$

b)
$$R_T = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{6 \times 4}{6 + 4} = 2,4\Omega$$

c)
$$P_{R1} = U \times I_1 = 12 \times 2 = 24W$$

$$P_{R2} = U \times I_2 = 12 \times 3 = 36W$$

$$P_T = P_{R1} + P_{R2} = 24 \times 36 = 60W$$

d)

$$W_1 = P_1 \times t = 24 \times 2 = 48$$
Wh
 $W_2 = P_2 \times t = 36 \times 2 = 72$ Wh
 $W_T = W_1 + W_2 = 48 + 72 = 120$ Wh

2.

 a_1

$$R_T = \frac{U}{I_T} = \frac{24}{2} = 12\Omega$$

a₂)

$$R = R_T - R_1 = 12 - 4 = 8\Omega$$

a₃)

$$U_R = R \times I_T = 8 \times 2 = 16V$$

 $U_{R1} = R_1 \times I_T = 4 \times 2 = 8V$

 b_1

$$R_{paralelo} = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{4 \times 6}{4 + 6} = \frac{24}{10} = 2,4\Omega$$

$$R_T = R + R_{paraelo} = 8 + 2,4 = 10,4\Omega$$

 b_2

$$I_{T} = \frac{U}{R_{T}} = \frac{24}{10.4} = 2.3A$$

$$I_{1} = \frac{U_{R1}}{R_{1}} = \frac{8}{4} = 2A$$

$$I_{2} = \frac{U_{R2}}{R_{2}} = \frac{8}{6} = 1.3A$$

$$I_{T} = I_{1} + I_{2} = 2 + 1.33 = 3.3A$$

 b_3)

$$\begin{split} P_R &= U_R \times I_T = 16 \times 2, 3 = 52,8W \\ P_{R1} &= U_{R1} \times I_1 = 8 \times 2 = 16W \\ P_{R2} &= U_{R2} \times I_2 = 8 \times 1, 3 = 10,4W \\ P_T &= U \times I_T = 24 \times 3, 3 = 79,2W \text{ ou } P_T = P_R + P_{R1} + P_{R2} = 52,8 + 16 + 10 = 72,9W \end{split}$$

CC/BI/	Passaporte	N.º	
	rassaporte		

Grupo 6 (Desenvolvimento)