T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MATLAB GEREÇLERİ İLE GÖRÜNTÜ İŞLEME UYGULAMALARI

Önder DEMİR (Teknik Öğretmen)

YÜKSEK LİSANS TEZİ ELEKTRONİK BİLGİSAYAR EĞİTİMİ ANABİLİM DALI BİLGİSAYAR VE KONTROL EĞİTİMİ PROGRAMI

DANIŞMAN Yrd. Doç. Dr. Hasan Hüseyin ÇELİK

T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MATLAB GEREÇLERİ İLE GÖRÜNTÜ İŞLEME UYGULAMALARI

Önder DEMİR

(Bilgisayar Teknik Öğretmeni) (141100420020031)

YÜKSEKLİSANS TEZİ ELEKTRONİK BİLGİSAYAR EĞİTİMİ ANABİLİM DALI BİLGİSAYAR VE KONTROL EĞİTİMİ PROGRAMI

DANIŞMAN Yrd. Doç. Dr. Hasan Hüseyin ÇELİK

ÖNSÖZ VE TEŞEKKÜR

Tez çalışması boyunca bana sabır gösteren, çalışmalarıma yön veren tez danışmanım Yrd.Doç.Dr. Hasan Hüseyin ÇELİK'E, göreve başladığımdan beri bana daima yol gösteren ve tahammül eden Arş.Gör. Buket DOĞAN'a, tez çalışmalarımız boyunca sorunları paylaştığımız Arş.Gör. Ulvi BAŞPINAR'a, çalışmalarımı kolaylaştırmak için yardımlarını esirgemeyen Arş.Gör.Dr. Ali BULDU, Arş.Gör. Mehmet ÖZBEK, Arş.Gör. Abdulkerim ÖNCÜ'ye, manevi desteğini her zaman hissettiren Zeynep YILDIRIM'a, arkadaşlarıma ve sabırlarını, güvenlerini esirgemeyen aileme teşekkürü borç bilirim.

Ocak, 2006 Önder Demir

İÇİNDEKİLER

		SAYFA
ÖNSÖZ VI	E TEŞEKKÜR	I
	LER	
ÖZET		V
ABSTRAC	T	VI
SEMBOL 1	LİSTESİ	VII
KISALTM	ALAR	VIII
ŞEKİL LİS	STESİ	IX
TABLO Li	STESİ	XI
BÖLÜM I	GİRİŞ VE TEZİN AMACI	1
I.1 I.2	GİRİŞ TEZ ÇALIŞMASININ DÜZENİ	1 2
BÖLÜM II	MATLAB UYGULAMA GELİŞTİRME ORTAM	11 . 3
II.1	MATLAB II.1.1 MATLAB 'ın Üstünlükleri	3
	II.1.2 MATLAB Ana Ekranı II.1.3 MATLAB Kod Yazma Ortamı (.m File Editor) II.1.4 MATLAB Görsel Ara Yüz Geliştirme	
	Aracı (GUIDE)	5

	II.1.5		Görüntü İşleme Gereçleri	
		(Image Pr	ocessing Toolbox)	6
	II.2	LITERAT	TÜR İNCELEMESİ	8
			İŞLEME EĞİTİMİ İÇİN GÖRSEL LİŞTİRİLMESİ	10
			,	
	GİRİŞ			10
III.2			EME EĞİTİMİ İÇİ TASARLANAN	
			ÜZ	
	111.2.1		şleme Araç Kutusu	
			Oosya İşlemleri	
			Görüntü Üzerinde Yapılan Uzamsal İşlemler	14
			araç İle Yapılan Görüntü İyileştirme	
		V	e Geliştirme İşlemleri	15
	Ш22	Görüntü /	Analizi ve İstatistik Penceresi	19
	111,2,2		listogram Çıkartmak	
			Contur Çıkartmak	
			ınır Eğrisi Çıkarmak	
			statistik Değerlerin Hesaplanması	
111.3	GÖRÍ		EME KAYIT DOSYASI	
BÖLÜM IV	/. DO	KU SINI	FLANDIRMA UYGULAMASI	25
IV.1	GİRİŞ	5		25
IV.2	DOK	J HESAPL	AMALARI	26
			ece Doku Hesaplamaları	
			vi Oluşum Matrisi	
			ri Düzeyi Oluşum Matrisi Oluşturulması	
		IV.2.2.2 G	ri Düzeyi Oluşum Matrisini Okumak	29
		IV.2.2.3 G	ri Düzeyi Oluşum Matrisini Düzenlemek	29
			ormalize, Dikey GDOM Oluşturulması	
	IV.2.3	GDOM İle	Yapılan Doku Hesaplamaları	31
		IV.2.3.1 D	oku Görüntüsünden GDOM	
			Elde Edilmesi Yöntemleri	31
		IV.2.3.2 K	Contrast Grubu Doku Hesaplamaları	34
			V.2.3.2.1 Kontrast	
		Γ	V.2.3.2.2 Benzemezlik (Dissimilarity)	35
		Γ	V.2.3.2.3 Homojenlik (Homogenity)	37
		IV.2.3.3 S	ıralama İle İlgili Doku Hesaplamaları	38
		Γ	V.2.3.3.1 Maksimum Olasılık (Max)	38
			V.2.3.3.2 Açısal İkinci Moment ve Enerji	38
			V.2.3.3.3 Entropi	39
		IV.2.3.4 C	GDOM Doku Ölçümlerinin	
		Τ	anımlayıcı İstatistikleri	39
			V.2.3.4.1 GDOM Ortalaması (GDOM Mean)	40
			V.2.3.4.2 Varyans ve Standart Sapma	40
		Γ	V.2.3.4.3 Korelasyon	41

IV.3 DOKU SINIFLANDIRMA ARACI	43
IV.3.1 Doku Sınıflandırma Aracının Kullanımı	45
IV.4 DENEYSEL ÇALIŞMALAR	49
IV.4.1 Deneylerde Kullanılan Dokular	
IV.4.2 Deneylerden Alınan Sonuçlar	
IV.5 SINIFLANDIRMA ARACI KAYIT DOSYASI	66
BÖLÜM V. DOKU EŞLEME UYGULAMASI	68
V.1 GİRİŞ	68
V.2 DOKU TANIMA ARACI	69
V.3 DOKU TANIMA ARACI İLE YAPILAN DENEYLER	71
V.3.1 Deneylerde Kullanılan Dokular	72
V.3.2 Deneylerin Gerçekleştirilmesi	72
V.3.3 Deneylerde Alınan Sonuçlar	
V.4 EŞLEME ARACI KAYIT DOSYASI	79
BÖLÜM VI. SONUÇ	81
KAYNAKLAR	84
EK A – Sınıfları Oluşturan Dokuların RVT'ye Kaydedilen Değerleri	88
EK B – D = 2, D = 3 İçin Sınıflandırma Sonuçları	99
EK C – D = 2, D = 3 İçin Eşleme Deneyleri Sonuçları	105
ÖZGEÇMİŞ	109

ÖZET

MATLAB GEREÇLERİ İLE GÖRÜNTÜ İŞLEME UYGULAMALARI

MATLAB hazır fonksiyonlar ve programlama yoluyla birçok alandaki yoğun matematiksel algoritma ve işlemlerin gerçekleştirilmesini sağlayan bir matematiksel çözüm platformudur.

Bu çalışmada, MATLAB geliştirme ortamının sağladığı özellikler kullanılarak görüntü işlemeye yönelik uygulama arayüzleri gerçekleştirilmiştir. Arayüzler MATLAB görsel arayüz tasarlama aracı olan "GUIDE" özellikleri ile oluşturulmuştur. Oldukça yüksek sayıda uygulama alanı bulunan görüntü işleme konuları içerisinde doku analizi önemli bir yer tutar. Geliştirilen bir uygulamada bu işlem öncesi gerekli temel fonksiyonların oluşturulması amaçlanmıştır. Bu amaçla oluşturulan arayüz uygulama doğrultusunda MATLAB gereçlerini birleştirmekte ve hazır sonuçlar üretmektedir. Böylelikle doku analizi üzerine yapılacak çalışmalar için temel bir uygulama alt yapısı sağlanmaktadır. Ayrıca tasarlanan arayüzler ile doku sınıflandırma ve doku tanıma üzerine deneysel çalışmalar gerçekleştirilmiştir.

Oluşturulan arayüzler ayrıca eğitim materyali olarak kullanılabilecek şekilde tasarlanmıştır.

Ocak, 2006 Önder Demir

ABSTRACT

IMAGE PROCESSING APPLICATIONS WITH MATLAB TOOLS

Matlab is a mathematical platform that provide solutions for complex mathematical algorithms and calculations with its programming commands and functions.

In this study, three application interfaces have been implemented for the image processing using by MATLAB development tool. The interfaces is designed by the help of MATLAB's visual design tool "GUIDE". Image processing has wide range of application area such as texture analysis. In this study, An texture classification and texture recognition tools are designed. Designed tools have pre-processing functions for texture analysis. Moreover, interfaces can be used as educational materials.

The designed interfaces provide an application base for the texture analysis. Texture classification and recognition experiments is realized by these interfaces. Results of experiments discussed in thesis.

Ocak, 2006 Önder Demir

SEMBOL LISTESİ

V : GDOM elemanı

i : Satır indisi

j : Sütun İndisi

P : Normalize GDOM elemanı.

N : Matris eleman sayısı

D: Mesafe Vektörü

KISALTMALAR

MATLAB : Matrix Laboratory

GUIDE : Graphical User Interface Design

GDOM : Gri Düzeyi Oluşum Matrisi

GLCM : Gray Level Cooccurence Matrix

ASM : Angular Second Moment

AİM : Açısal İkinci Moment

(0, D) : Satır numarası aynı, sütun numarası D kadar farklı yönde

hesaplanan matris

(D, 0) : Sütun numarası aynı, satır numarası D kadar farklı yönde

hesaplanan matris

(**D**, **D**) : Satır numarası ve sütun numarası D kadar farklı olan yönde

hesaplanan matris

(D, -D) : Satır numarası ve sütun numarası -D kadar farklı olan yönde

hesaplanan matris

(Av, Av) : Diğer yönlerde hesaplanan matrislerin ortalamasıyla elde

edilen matris

RVT : Referans Veri Tabanı

ŞEKİL LİSTESİ

	SAYF	A NO
Şekil II.1	MATLAB Ana Penceresi	4
Şekil II.2	MATLAB Kod Yazma Aracı	5
Şekil II.3	MATLAB Görsel Ara Yüz Tasarım Aracı	6
Şekil III.1	Görüntü İşleme Araç Kutusu Ana Modülü	12
Şekil III.2	Görüntü Dosyasının Seçilip Yüklenmesi	13
Şekil III.3	Dosya İşlemlerini İçeren Örnek MATLAB Kodları	13
Şekil III.4	Boyutlandırma Ve Döndürme İle İlgili Örnek MATLAB Kodlar	
Şekil III.5	Boyutlandırılmış Ve Döndürülmüş Görüntüler	
Şekil III.6	Filtre İşlemlerini İçeren Örnek MATLAB Kodları	16
Şekil III.7	Filtrelenmiş Görüntüler	
Şekil III.8	Gürültü Eklenmiş Görüntüler	17
Şekil III.9	Parlaklığı Ayarlanmış Görüntüler	
Şekil III.10	Parlaklık Ayarlaması İle İlgili Örnek MATLAB Kodları	
Şekil III.11	Piksel Değerlerinin Görüntülenmesi	19
Şekil III.12	Görüntü Analizi Ve İstatistik Penceresi	
Şekil III.13	Görüntü Histogramı	20
Şekil III.14	Kontur Çıkarımı	
Şekil III.15	Histogram, Kontur, Sınır ile ilgili Örnek MATLAB Kodları	
Şekil III.16	Sınır Eğrileri	
Şekil III.17	Hesaplanan İstatistiksel Değerler	
Şekil III.18	İstatistiksel Hesaplar İçin Örnek MATLAB Kodları	
Şekil III.19	Örnek Kayıt Dosyası	
Şekil IV.1	Referans Piksele Göre Hedef Piksel Gösterimleri	
Şekil IV.2	Pencere Pozisyonundan Sonuç Matrisine Değer Aktarılması	
Şekil IV.3	Uydudan Çekilmiş Bir Görüntü	
Şekil IV.4	GDOM Hesaplamalarını Gerçekleştiren MATLAB Kodları	
Şekil IV.5	Sınıflandırma İşlemi Blok Diyagramı	
Şekil IV.6	Doku Sınıflandırma Aracı	
Şekil IV.7	Sınıflandırma Aracı Akış Diyagramı	45
Şekil IV.8	A. Hesaplanan Matris Ve Değerleri	
	B. Sınıflandırma Bölümü Ve Sonuç	46
Şekil IV.9	a. Dikey Sınır b. Yatay Sınır c. Orijinal Görüntü	
	d. Sınır Çıkartma Bölümü	47
Şekil IV.10	a. Asıl doku görüntüsü b. Asıl doku görüntüsüne ait histogram	
	c. Filtrelenmiş görüntü d. Filtrelenmiş görüntüye ait histogram.	48

Şekil IV.11	Yapay Bozucu Eklenmesi Ve Görüntülerin Kaydedilmesi İle İlgili	
	MATLAB Kodları	49
Şekil IV.12	Örnek Kayıt Dosyası	67
Şekil V.1	Doku Eşleme Blok Diyagramı	
Şekil V.2	Doku Eşleme Aracı Akış Diyagramı	
Şekil V.3	Doku Eşleme Aracı Kullanıcı Arayüzü	
Sekil V.4	Örnek Kavıt Dosvası	

TABLO LİSTESİ

	SAYFA	
Tablo IV.1	Örnek Referans – Hedef Piksel İlişkileri	28
Tablo IV.2	Açıklamalarda Kullanılacak Örnek Matris	
Tablo IV.3	İskelet GDOM	
Tablo IV.4	Test Matrisine Ait GDOM	28
Tablo IV.5	Test Matrisine Ait GDOM 'Nin Tranzpozu	29
Tablo IV.6	Simetrik matris (Yatay GDOM)	29
Tablo IV.7	Görüntü Matrisi	30
Tablo IV.8	İskelet Matris	30
Tablo IV.9	Dikey Simetrik GDOM' nin oluşturulması	30
Tablo IV.10	Normalize Dikey Simetrik Matris	
Tablo IV.11	Çerçeve Yöntemiyle Hesaplanan Kontrast Değerleri	33
Tablo IV.12	Çerçeve Yöntemiyle Hesaplanan Entropi Değerleri	33
Tablo IV.13	Normalize Edilmiş GDOM	
Tablo IV.14	Yatay GDOM İçin Kontrastın Hesaplaması	
Tablo IV.15	Dikey GDOM İçin Kontrastın Hesaplaması	
Tablo IV.16	Yatay GDOM İçin Benzemezlik Hesaplaması	
Tablo IV.17	Dikey GDOM İçin Benzemezlik Hesaplaması	
Tablo IV.18	Yatay GDOM İçin Homojenlik Hesaplaması	
Tablo IV.19	Dikey GDOM İçin Homojenlik Hesaplaması	
Tablo IV.20	Düzgün Sıralı Matris	
Tablo IV.21	Düzgün Sıralı Olmayan Matris	
Tablo IV.22	Yatay GDOM İçin Entropi Hesaplanması	
Tablo IV.23	Yatay Gdom İÇİN ORTALAMA HESAPLANMASI	
Tablo IV.24	Dikey GDOM İçin Ortalama Hesaplanması	
Tablo IV.25	Kadife Sınıflarını Oluşturan Görüntüler	
Tablo IV.26	Pamuklu Sınıflarını Oluşturan Görüntüler	
Tablo IV.27	Keten Sınıflarını Oluşturan Görüntüler	
Tablo IV.28	Parlaklığı %10 Arttırılmış Kadife Doku Görüntüleri	
Tablo IV.29	Parlaklığı %10 Arttırılmış Pamuklu Doku Görüntüleri	
Tablo IV.30	Parlaklığı %10 Arttırılmış Keten Doku Görüntüleri	
Tablo IV.31	%10 Koyulaştırılmış Kadife Doku Görüntüleri	
Tablo IV.32	%10 Koyulaştırılmış Pamuklu Doku Görüntüleri	
Tablo IV.33	%10 Koyulaştırılmış Keten Doku Görüntüleri	54
Tablo IV.34	%5 Oranında Tuz-Biber Gürültüsü Eklenmiş	55
	K GAITA LIAKU LAATIMIIIATI	77

Tablo IV.35	%5 Oranında Tuz-Biber Gürültüsü Eklenmiş	
	Pamuklu Doku Görüntüleri	55
Tablo IV.36	%5 Oranında Tuz-Biber Gürültüsü Eklenmiş	
	Keten Doku Görüntüleri	56
Tablo IV.37	Kadife Dokularının (D=1) İçin Özellik Vektörleri	57
Tablo IV.38	Pamuklu Dokularının (D=1) İçin Özellik Vektörleri	
Tablo IV.39	Keten Dokularının (D=1) İçin Özellik Vektörleri	59
Tablo IV.40	Parlaklığı %10 Arttırılmış Kadife Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	60
Tablo IV.41	Parlaklığı %10 Arttırılmış Pamuklu Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	61
Tablo IV.42	Parlaklığı %10 Arttırılmış Keten Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	61
Tablo IV.43	Parlaklığı %10 Azaltılmış Kadife Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	61
Tablo IV.44	Parlaklığı %10 Azaltılmış Pamuklu Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	62
Tablo IV.45	Parlaklığı %10 Azaltılmış Keten Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	62
Tablo IV.46	Tuz-Biber Gürültüsü Eklenmiş Kadife Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	62
Tablo IV.47	Tuz-Biber Gürültüsü Eklenmiş Pamuklu Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	63
Tablo IV.48	Tuz-Biber Gürültüsü Eklenmiş Keten Dokularının	
	Yönlere Göre Sınıflandırma Sonuçları (D = 1)	63
Tablo IV.49	Parlaklığı Arttırılmış Resimlerin Sınıflandırma Sonuçları İçin	
	Özet Tablo	64
Tablo IV.50	Koyulaştırılmış Resimlerin Sınıflandırma Sonuçları İçin Özet	
	Tablo	64
Tablo IV.51	Tuz-Biber Gürültülü Resimlerin Sınıflandırma Sonuçları İçin	<i>.</i> 1
T. 11 TY 52	Özet Tablo	64
	Kadife Dokularının En İyi Sınıflandırma Parametreleri	65
Tablo IV.53 Tablo IV.54		65
Tablo IV.54 Tablo IV.55	Keten Dokularının En İyi Sınıflandırma Parametreleri	
Tablo V.1	Görüntülerin Sınıflara Göre Sınıflandırma Sonuçları	
Tablo V.1	Deneylerde kullanılan doku Görüntüleri	75
Tablo V.2 Tablo V.3	Eşleme Deneyleri Sonuçları (D = 1)	76
Tablo V.3	Eşleme Oranları ($D = 2$)	77
Tablo V.4 Tablo V.5	Eşleme Oranları ($D=2$)	78
Tablo V.5	Birörnek Olmayan Dokuların Eşleme Sonuçları (D = 1)	78
Tablo V.0	Birörnek Olmayan Dokuların Eşleme Sonuçları ($D=1$)	79
Tablo V.7	Birörnek Olmayan Dokuların Eşleme Sonuçları (D = 2)	
Lauiu V.O	Diffusion Chilayan Dokularin Estelle Sullucian (D = 3 1	17

BÖLÜM I

GİRİŞ ve TEZİN AMACI

I.1. GİRİŞ

Görüntü işleme günümüzde bilgisayar bilimlerinin en önemli alanlarından biri olmuştur. Teknolojinin ilerlemesiyle güçlenen bilgisayar donanımları ve yazılımları görüntü ile ilgili yapılan çalışmaları kolaylaştırmış, bu konulara olan ilgiyi arttırmıştır. Bununla birlikte günlük hayatta görüntü işleme tekniklerinden nasıl faydalanılacağı araştırılmaya başlanmıştır. Görüntü işleme teknolojisi tıp, güvenlik, üretim, bilim alanlarında yenilikler ve kolaylıklar sağlamaktadır.

Görüntü işlemenin birçok alanda uygulanabilmesi, büyük yenilikler ve kolaylıklar sağlaması bu alanda çalışan insan sayısını ve yapılan çalışmaları arttırmıştır. Bunun sonucu olarak görüntü işleme alanında yetişmiş eleman açığı ortaya çıkmıştır. Bu yüzden gelişmiş ülkelerdeki üniversitelerde görüntü işlemeye yönelik eğitim programları başlamıştır. Bu dersler lisans veya lisansüstü seviyesinde sürekli olarak önemini korumaktadır. Eğitim programları ilgili bölümün amacına uygun olarak güncellenerek geliştirilmiş, kullanılacak araçlar tespit edilerek gerekli uygulamalara göre yeniden düzenlenmiştir. Ayrıca bilgisayar bilimleri dışındaki bazı bölümlerde de ihtiyaca yönelik olarak, gerekli içerikte eğitim programları oluşturulmuştur.

Görüntü işleme uygulamalarını geliştirmek, gerçekleştirmek, eğitimini vermek klasik programlama dilleri ve teknikleri ile kolay olmamaktadır. Bu nedenle görüntü işleme algoritmalarına yönelik fonksiyon kütüphaneleri bu programlama dillerine

eklenmiş ve hazır araçlar geliştirilmiş, hatta bu işlemlere yönelik özel programlama dilleri geliştirilmiştir.

MATLAB bir teknik programlama dili ve ortamıdır. Kontrol sistemlerinden haberleşmeye, istatistikten finansal analizlere kadar bir çok uygulama alanına yönelik hazır algoritma ve fonksiyona sahip olan MATLAB' in görüntü işlemeye yönelik fonksiyonları ve gereçleri mevcuttur. Bu gereçler sayesinde MATLAB görüntü işleme uygulamaları geliştirilmesinde en çok tercih edilen uygulama ortamlarından biri olmuştur.

Tez çalışmasının amacı MATLAB görüntü işleme araçlarını kullanarak uygulamalar geliştirmek, görüntü işleme eğitiminde kullanılabilecek görsel ara yüzlü yardımcı eğitim materyalleri tasarlanmasıdır.

I.2. TEZ ÇALIŞMASININ DÜZENİ

Bölüm II' de MATLAB programının ana ekranı, özellikleri anlatılmış, MATLAB programlama aracı olan.m dosyası editörü (.m file editör) ile programlama ortamı tanıtılmıştır. Görüntü işleme uygulamalarında kullanılan gereçler, fonksiyonlar açıklanmış, görsel ara yüz hazırlama araçları (GUIDE) tanıtılmıştır.

Bölüm III' de MATLAB görüntü işleme gereçleri, programlama araçları ve görsel ara yüz tasarlama araçlarının bir arada kullanılmasıyla oluşturulan, eğitimde kullanılabilecek görsel ara yüzlü bir araç tanıtılmıştır.

Bölüm IV' de ise doku analizi yöntemleri anlatılmış, bu yöntemler kullanılarak geliştirdiğimiz görsel ara yüze sahip bir doku sınıflandırma aracı tanıtılmıştır.

Bölüm V' de MATLAB gereçleri ile tasarlanan bir doku eşleme aracı tanıtılmıştır. Bölüm VI'da sonuçlar irdelenmiş ve değerlendirme yapılmıştır.

BÖLÜM II

MATLAB UYGULAMA GELİŞTİRME ORTAMI

II.1. MATLAB

MATLAB Mathworks firması tarafından geliştirilen bir uygulama geliştirme ortamıdır. MATLAB MATrix LABoratory kelimelerinin kısaltılmasıdır. MATLAB kod yazılarak programlama yapılabilen uygulama geliştirilebilen bir platformdur [1].

II.1.1. MATLAB' in Üstünlükleri

MATLAB' in diğer uygulama geliştirme platformlarına göre olan üstünlüğü zengin matematiksel işlem yeteneğidir. Başka programlama dilleri ile satırlarca kod yazılarak gerçekleştirilen işlemler MATLAB' in hazır matematiksel algoritmaları ile tek fonksiyon çağırılması ile gerçekleştirilebilir.

MATLAB birçok uygulama alanına göre hazırlanmış fonksiyonlara, algoritmalara ve fonksiyonlara sahiptir. MATLAB görüntü işleme gereçlerinin yanı sıra kontrol sistemleri, haberleşme, yapay sinir ağları, istatistik gibi birçok alanda uygulama geliştirebilecek imkân sağlamaktadır.

MATLAB ile kod yazılarak işlemler gerçekleştirilebildiği gibi simülasyonlar hazırlanarak birçok uygulama test edilebilir. Ayrıca simülasyonların sistemlerle gerekli donanım aracılığı ile bağlantısı sağlanarak gerçek zamanlı uygulamalar gerçekleştirilebilir.

MATLAB işlem yapılan değişkenleri matris olarak tutmaktadır. Bu matrislerin sahip olduğu değerleri istenilen anda görüntüleyip, dış ortamlara aktarma, dış ortamdan veri alma imkânları sağlamaktadır. MATLAB' in önemli özelliklerinden biride üstün grafik yeteneğidir. İşlem sonuçları 2 ve 3 boyutlu grafik türleri ile görüntülenebilir [1-3]

II.1.2. MATLAB Ana Ekranı

MATLAB ana ekranında bulunan kısımların en önemlisi "Command Window" denilen komut ekranıdır. Bu ekrana tek satırlı fonksiyonlar ve komutlar yazılarak işlemler yapılabilir. Ayrıca döngü ve karar yapıları ile çok sayıda fonksiyon ve komut bir arada kullanılabilir.

"Workspace" alanında ise o anda işlem yapılan, yüklenmiş olan tüm değişkenler ve matrisler yer almaktadır. Bunlardan istenilenler "Array Editor" denilen arabirim ile görüntülenir.

"Command History" denilen bölüm ise MATLAB' in son kullanımlarından gerçekleştirilen işlemler ve komutlar tarihleri ile birlikte tutulmaktadır. MATLAB' in menüleri kullanılarak dosya, düzenleme, grafik, program işlemleri, pencere ve yardım işlemleri yapılabilir. Ayrıca sol altta yer alan "Start" düğmesine basılarak MATLAB araç kutularına, simülasyon ve görsel ara yüz tasarlama araçlarına erişilebilir.

Şekil II.1. MATLAB ana penceresi

II.1.3. MATLAB Kod Yazma Ortamı (.m File Editor)

MATLAB ortamında kod ile uygulama gerçekleştirme m dosyası denilen metin dosyaları yazılarak gerçekleştirilir. Bu uygulamalar ".m File Editor" denilen araç kullanılarak yazılır. M file editör ile MATLAB' in standart fonksiyonları ve ilgili gerecin fonksiyonları kullanılarak programlar yazılabilir. Editör gelişmiş birçok programlama editörü gibi kod düzenleme, derleme, test etme araçlarına sahiptir.

```
🛂 Editor - C:\MATLAB7\work\glcmeastprtk.m
  Edit Text Cell Tools Debug Desktop Window Help
[X,map] = imread('C:\classification\ornekler\ornek2.bmp');
2 -
     [Y,newmap] = imapprox(X,map,8);
 3
     % imshow(Y,newmap);
      %Y=[2 3 1 0;0 2 1 2;0 1 0 2;2 2 3 1];
      %Y=ssobel;
      [m n] = size(Y);
     glcm=zeros(8,8);
      for i=0:7
          for j=0:7
             for a=1:m
                 for b=1:n-1
                     if (Y(a,b)==i) & (Y(a,b+1)==j)
13 -
                         glcm(i+1,j+1) = glcm(i+1,j+1)+1;
                     end
15 -
                 end
16 -
             end
          end
18 -
     end
19 -
     glcmtr=glcm';
     sglcm=glcm+glcmtr;
21 -
     top=sum(sum(sqlcm));
     nsglcm=sglcm/top;
 deneme2.m × glcmeastprtk.m ×
                                                             Ln 1
                                                                     Col 1
                                       script
```

Şekil II.2. MATLAB kod yazma aracı

II.1.4. MATLAB Görsel Arayüz Geliştirme Aracı (GUIDE)

MATLAB klasik programlama tekniği olan kod yazarak uygulama geliştirmenin yanı sıra görsel ara yüz geliştirme aracına sahiptir. GUIDE denilen araç (Graphical User Interface DEsign) MATLAB ortamında görsel tasarım yapılabilir [4],[6]. Düğmeler, metin kutuları, radyo düğmeleri, onay kutuları, kaydırma çubukları kullanılarak görsel

tasarım oluşturulur. Bu elemanların arka planına yazılan .m dosyaları ile uygulama tamamlanır.

Şekil II.3. MATLAB görsel ara yüz tasarım aracı

II.1.5. MATLAB Görüntü İşleme Gereçleri (Image Processing

Toolbox)

MATLAB sağladığı görüntü işleme gereçleri ile bu alanda en çok tercih edilen uygulama gelişme aracıdır. MATLAB' in matematiksel gücü, işlem yetenekleri, hazır algoritmaları ve tasarım araçları ile görüntü işleme uygulamalarında ideal bir ortam oluşturmaktadır.

MATLAB ile bir görüntü dosyası matris olarak uygulama ortamına alınır. Bu matris üzerinde yapılan işlemler, uygulanan algoritmalar sonucunda elde edilen matriste bir resim olarak görüntülenebilir.

MATLAB görüntü işleme fonksiyonları işlevlerine göre şu şekilde gruplara ayrılabilir; [5]

- Görüntü yükleme fonksiyonları: Görüntü dosyalarını MATLAB ortamına aktarmak için kullanılırlar.
- Görüntüleme fonksiyonları: Görüntü matrislerini ekranda resim olarak görüntülemek için kullanılırlar.
- Görüntü yazma fonksiyonları: Görüntü matrisini dosya olarak kaydetmek için kullanılırlar.
- Görüntü dönüşüm fonksiyonları: Görüntü türlerini birbirine dönüştürmek için kullanılırlar.
- Uzamsal dönüşüm fonksiyonları: Görüntü üzerine uzamsal işlemler yapmak için kullanılırlar.
- Görüntü analizi ve istatistik fonksiyonları: Görüntü analizi gerçekleştiren ve istatistik değerler çıkaran fonksiyonlardır.
- Görüntü aritmetiği fonksiyonları: Görüntüler için aritmetiksel işlemler yapılmasını sağlarlar.
- Görüntü düzenleme ve iyileştirme fonksiyonları: Görüntüleri iyileştirmek için kullanılırlar.
- Doğrusal filtreleme ve dönüşüm fonksiyonları: Doğrusal filtre oluşturma ve uygulamak için kullanılırlar.
- Biçimsel işlem fonksiyonları: Görüntü türüne göre biçimsel işlemler yapmak için kullanılırlar.
- Alan tabanlı, komşuluk ve blok işlem fonksiyonları: Görüntünün bir bölümü için işlem yapılmasını sağlayan fonksiyonlardır.
- Renk haritası fonksiyonları: Renk haritaları ile ilgili işlemleri gerçekleştiren fonksiyonlardır.

II.2. LİTERATÜR İNCELEMESİ

Literatürde görüntü işleme teknikleri ve görüntü işleme eğitimi üzerine bir çok çalışma bulunmaktadır. Yapılan taramada görüntü işleme eğitimi uygulamalarında kullanılan programlama dilleri, uygulama ortamları araştırılmıştır.

Doku görüntüleri üzerine yapılan çalışmalarda gri düzeyi oluşum matrisi ve matristen çıkarılan özelliklerin önemi, uygulama alanları araştırılmıştır.

- R. Lotufo, A. Silva, R. Machado, A. Saude Python programlama dili kullanarak bir görüntü işleme araç kutusu oluşturmuşlardır [7].
- B.A. Maxwell yaptığı çalışmada görüntü işleme eğitmenleri için internet tabanlı bir bilgi kaynağı tasarlamıştır [8].

K.Sage ve M.Unser yaptıkları çalışmada Java programlama dili görüntü işleme eğitiminin verilmesi üzerine çalışmışlardır [9].

- S. Eddins ve M.Orchard yaptıkları çalışmada MATLAB ve C programlama dili ile görüntü işleme eğitimi için bir laboratuar programı hazırlamışlardır [10].
- G. Bebis, D. Egbert, M. Shah yaptıkları çalışmada görüntü işleme üzerine eğitim programlarını incelemişlerdir [11].

A.Hoover çalışmasında lisans eğitimi programları içerisinde görüntü işleme programlarını programlama açısından incelemiştir [12].

S. Didar ve S.Devgan yaptıkları çalışmada temel görüntü işleme tekniklerinin uygulamalarının öğretilmesi ve anlaşılması üzerine bazı araçları inceleyip, karşılaştırmışlardır [13].

R.Haralick yaptığı çalışmada doku görüntüleri üzerine yapısal ve istatistiksel yaklaşımlar gerçekleştirmiştir [14].

R.Haralick, K.Shanmugan, I.Dinstein görüntü sınıflandırma için doku özelliklerini belirlemişlerdir. Bu özelliklerini çıkarılması yöntemlerinden gri düzeyi oluşum matrisinin tanımı ve hesaplanması yöntemlerini belirlemişlerdir [15].

S. Will, L. Hermes, J. Buchman dokuların sınır eğrileri çıkartılarak sınıflandırılması üzerine çalışma yapmışlardır [16].

- L. Davis, M. Clearman, J. Aggarval yaptıkları çalışmada gri düzeyi oluşum matrislerini kullanarak doku karşılaştırmaları yapmışlardır. [17]
- S. Kiat-Leen ve C. Tsatsoulis aralıkları birleştirilmiş radarlarla elde edilen deniz görüntülerinin analizinde gri düzeyi oluşum matrislerini kullanmışlardır [18].

C.Ünsalan yaptığı tez çalışmasında çelik yüzeylerinin sınıflandırmasında gri düzeyi oluşum matrisi özelliklerini kullanmıştır [19].

M. A. Tahir, A. Bouridune, F. Kurugöllü, ve A. Amira yaptıkları çalışma ile gri düzeyi oluşum matrisinin ve değerlerin hesaplanmasını hızlandıracak bir donanım tasarlamışlardır [20].

A. Monadjemi yaptığı doktora çalışmasında doku sınıflandırma ve normal olmayan doku denetiminde GDOM değerleri ve korelasyon yöntemiyle sınıflandırmadan faydalanmıştır [21] .

Yapılan incelemede görüntü işleme eğitiminde farklı araçların, programlama ortamlarının kullanıldığı, bu konuda çok sayıda çalışma olduğu görülmüştür. Gri düzeyi oluşum matrislerinin doku analizinde kullanılan en önemli istatistiksel yöntemlerden biri olduğu, güncel bir çok uygulamada hala kullanıldığı görülmüştür.

BÖLÜM III

GÖRÜNTÜ İŞLEME EĞİTİMİ İÇİN GÖRSEL BİR ARABİRİM GELİŞTİRİLMESİ

III.1. GİRİŞ

MATLAB ile gerçekleştirilen görüntü işleme uygulamalarında karşılaşılan en önemli sorunlardan biri işlemlerin kod yazarak gerçekleştirilmesinde karşılaşılan zorluklar ve bunun sebep olduğu zaman kaybıdır. Kullanılacak fonksiyonların yazım kurallarının, alacağı parametre seçeneklerinin belirlenip, uygulanması vakit kaybına sebep olmaktadır. Özellikle birden fazla işlem uygulanması gereken işlemleri kod yazarak gerçekleştirmek çok zorlaşmakta, hata yapma ihtimali artmaktadır. Ayrıca istenilen sonucun elde edilememesi durumunda her parametre değişimi ve farklı algoritma seçiminde kodun yeniden düzenlenip, derlenmesi ve sonucun görüntületilmesi gerekmektedir. Bu yüzden meydana gelen zaman kaybı daha fazla uygulama yapılmasını engellemekte, doğru yöntemlerin ve parametrelerin belirlenmesini zorlaştırmaktadır[7,9-10].