

UMD 96, UMD 97, UMD 98, UMD 807, UMD 913, MMB 700, MMU 3, MMI 12, UMD 701, UMD 704, UMD 705, UMD 706, UMD 707, UMD 709, UMD 710, UMC 26

Multifunctional Panel Meters & Power Quality Analyzers & Power Factor
Controllers
Protocol description for Modbus TCP and Modbus RTU protocol

For device firmware version 3.0.x+

PRELIMINARY TEXT

PQ Plus GmbH Hagenauer Str. 6 91094 Langensendelbach Tel.: 09133-60640-0 Fax.: 09133-60640-100 E-Mail: <u>info@pq-plus.de</u> Internet: <u>www.pq-plus.de</u>

Inhaltsverzeichnis

1.	Communication Options 4
2.	Description of Modbus Implementation 4
2.1	Supported Functions4
2.2	Modbus Quantity Encoding4
2.3	Adressing4
2.4	Example 4
2.4.1	Modbus TCP Examples5
2.4.2	Modbus RTU Examples5
2.4.3	Other examples5
2.5	Modbus RTU encapsulated over Ethernet5
2.6	Modbus TCP and Modbus RTU over ES module 6
3.	Modbus Register Map 6
3.1	0x0200 Device Identification
3.2	0x0300 Archive Control Block7
3.3	0x0700 Configurable Settings 8
3.4	0x0800 Read-only Settings
3.5	0x1000 Actual Data
3.5.1	0x1000 Shared Actual Data9
3.5.2	0x1100 Actual Voltage Readings10
3.5.3	0x1200 Actual Current Readings11
3.5.4	0x1300 Actual Power Readings11
3.5.5	0x1400 Voltage and Current Harmonics (magnitudes, angles)12
3.6	0x2000 Electricity Meter Readings
3.6.1	Three-phase and Single-phase Counters
3.7	0x4000 Aggregated Values
3.7.1	0x4200-0x42FF time stamps of maximal value block
3.7.2	0x4600-0x44FF time stamps of minimal value block
3.7.3	0x4600-0x46FF Maximum since reset data 18
3.7.4	0x4800-0x48FF Minimum since reset data
3.7.5	0x4A00-0x4AFF Actual data (19000 dec)19
3.8	0x4D00 Residual Current Monitor (RCM)21

3.9	0x4E00 Demand and Max Demand Values	22
3.9.1	0x4E00 Last, actual and estimated demand values	22
3.9.2	0x4E30 Maximum recorded demand values since manual reset	22
3.9.3	0x4E50 Maximum demand values in the last observed interval	23
3.9.4	0x4E90 Maximum demand values in the currently observed interval	24
3.10	0x5000 Power Quality Values (opt. PQ modules)	25
3.10.1	0x5100 Actual Flicker Severity Index Values (PQ module)	25
3.10.2	0x5200 Last PQ interval values (PQ module)	26
3.10.3	0x5400 Voltage Events - Table - Swells (PQ module)	27
3.10.4	0x540C Voltage Events - Table - Dips (PQ module)	27
3.10.5	0x5500 Voltage Events - Last Event (PQ module)	28
3.11	0x5300 Ripple Control Signal (RCS module)	28
3.12	0x6000 Modbus Master (opt. MM module)	29
3.13	0x6200 Actual Data for DC and AC/DC	29
3.14	0x9000 Input and Output Values	30
3.14.1	0x9000 Input Values	30
3.14.2	0x9300 Output Values	31
3.14.3	0x9700 Hour Meter	32
3.15	0xA000 PFC Actual Data & Status (UMC 2xxx. fw. 2.1+)	33

1. Communication Options

Each device is equipped with RS485 or USB local port and various other remote communication ports. The USB port can be used for data acquisition, configuration and status checks using the proprietary protocol supported by the ENVIS software suite. With the remote serial communication ModBus RTU or TCP is supported respectively to provide easy and open access to all actual measured values.

With serial lines the protocol is recognised automatically between proprietary KMB messages and the standard ModBus RTU. For this option the device address, baud rate and parity bit must be specified (see user manual for details). A gap between bytes corresponding to maximum 1.5 characters (bytes) is allowed while receiving a command or transmitting a reply.

With Ethernet option different application access different protocols on its designated addresses. ModBus TCP, KMB proprietary protocol and web server is supported at the moment. For Modbus TCP the listening port can be configured together with other TCP/IP settings (default port: 502). The instrument sends back a reply within 200 ms time frame after receiving each command. Up to three requests from different masters can be processed concurrently by each device. Between each master and the instrument the communication must follow the single request-reply. Master should wait for each reply before submitting new request.

2. Description of Modbus Implementation

2.1 Supported Functions

- 3 (0x03) read holding registers
- 4 (0x04) read input registers
- 16 (0x10) write multiple registers The "broadcast" mode is not supported

2.2 Modbus Quantity Encoding

Access to data structure components is provided using read/write from/to relevant registers as shown in the chart in the following subsections. Modbus protocol is based on variable mappings into 16 bit registers. Single-byte quantities are stored in such a register in the format of 0x00nn where nn is a single-byte parameter. For multi-byte quantities the byte ordering is a big endian. 32-bit and 64-bit integers and floats are ordered in consequent 16-bit registers from MSB to LSB serially. Floats are encoded using the IEEE 754 float number format. You can see example below, encoded number in example is 0.1875.

bit	31	30	29	28	27	26	25	24	23	22	22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5						4 3	3 2	1 0									
meaning	sign		ехр	one	nt (8	3 bit	s)										fra	ctio	n (2	3 bi	ts)							•
example	0	0	1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0 0	0 0	0 0

Double precision number format has 64 bits and is coded same as float with exponent 11 bits and 52 bit fraction. Date and time is stored in 64-bit KMBTime format means number of seconds since 1.1.2000 00:00. ANSI C, C++ and .NET functions(sample code) for can be provided upon request.

Each logical block of values is stored within the array of registers starting at the base address and with a given offset. Instrument status information is stored in Modbus holding registers. Actual readings (data, measurements) are available in the input registers.

2.3 Adressing

The "broadcast" mode is not supported. Instead, with Modbus Master module, the address 0 in its configuration represents data from the master itself. Standard modbus addressing applies for all three phase single feeder analysers.

Instruments with multiple feeders and some multi-channel single phase instruments do limit the allowable base address range for an instrument between 1 - 20. The rest of modbus address ranges 21-240 is reserved to mirror the register map for quantities from feeders (channels) 2 to 12. Correct modbus address for channel X is determined by this formula: ModbusAddressX = $(X - 1) \times 20 + ModbusAddressBase$

2.4 Example

Modpoll is a free open source tool for Windows, Linux and Solaris available free of charge for download. We promote this 3rd-party tool for reference testing of our Modbus implementation. The following examples can be used as a starting point for developing of a custom support implementation and for debugging other issues.

2.4.1 Modbus TCP Examples

```
Code to display device number with:
```

```
modpoll -m tcp -a 1 -r 528 -t 3:int -i -c 1-1-p 502 IP
```

Default value for port number (parameter -p) is 502 and isn't necessary to explicitly specify it. Default value for slave address (-a) is 1. Shorter version with same meaning:

```
modpoll -r 528 -t 3:int -i -c 1 -1 IP
```

Command -1 means only one iteration and -c 1 is number of retrieved values. Used data type is specified with parameter -t: -t 3 = 16 bit integer, -t 3:hex = 16 bit hexadecimal value, -t 3:int = 32 bit integer, -t 3:float = 32-bit float. Similar output with number 4. Parameter -r is base address.

2.4.2 Modbus RTU Examples

RTU variant is similar:

```
modpoll -m rtu -d 8 -s 1 -p none -s 1 -a 1 -r 528 -t 3: int -c 1 -i -b -1 19200 COM Default values data bits -d is 8, stop bits -s is 1, parity -p is even, but default values for KMB devices is none, therefore it is usually necessary to set it. Default baud rate -b is 19200. Usual command is simple: modpoll -m rtu -p none -r 528 -c 1 -t 3: int -i -1 COM Full help is available with command: modpoll -m help
```

2.4.3 Other examples

Read all Voltage values - example of float values (full output):

\$ modpoll -m tcp -r 4352 -c 4 -t 3:float -f -1 -0 IP modpoll 3.4 - Field Talk (tm) Modbus(R) Master Simulator Copyright (c) 2002 -2013 proconX Pty Ltd Visit http://www.modbusdriver.com for Modbus libraries and tools.

```
Protocol configuration.: MODBUS/TCP
```

```
Slave configuration...: address = 1, start reference = 4352 (PDU), count = 4
Communication.....: 147.230.72.5, port 502, t/o 1.00 s, poll rate 1000
```

ms

Data type 32-bit float, input register table

Word swapping : Slave configured as big-endian float machine

-- Polling slave...

```
[4352]: 236.074005
[4354]: 236.056198
[4356]: 236.089401
[4358]: 236.033752
```

Read Device number and software, hardware and bootloader versions - example of integer values (shortened output):

2.5 Modbus RTU encapsulated over Ethernet

Since the fw. 3.0 the conversion between RTU and TCP will automatically hapen on the modbus Ethernet port. So if a Modbus TCP request arrives over Ethernet it is treated as Modbus TCP. If a correct Modbus RTU packet data arrives on the Modbus port over Ethernet, the answer is also encoded as Modbus RTU.

2.6 Modbus TCP and Modbus RTU over ES module

Ethernet-to-serial (ES) module converts communication between Ethernet and serial interface. It can often be intended to read out Modbus RTU data from slaves connected on the local serial line. Instrument configuration offers two distinct options:

Without RTU <-> TCP conversion:

```
RTU - request 01 04 12 00 00 02 74 B3 TCP - request 00 00 00 00 06 01 04 12 00 00 02 With RTU <-> TCP conversion: RTU - request 01 04 12 00 00 02 74 B3 TCP - request 01 04 12 00 00 02 74 B3
```

RTU request remains same as received no matter if the RTU<->TCP conversion is turned on or off. TCP request is converted to RTU if the RTU-TCP conversion is turned on. The reply is also translated accordingly.

3. Modbus Register Map

blocks in registers	base	address	typo
blocks in registers	DEC	HEX	type
Identification	512	0x200	input register
Configurable Settings	1792	0x700	holding register
Inconfigurable Settings	2048	0x800	input register
Actual Data	4096	0x1000	input register
Electricity Meter	8192	0x2000	input register
Power Quality Indices	20480	0x5000	input register
Ripple Control Signals	21248	0x5300	input register
Modbus Master	24576	0x6000	input register
Inputs & Outputs	36864	0x9000	input register
Actual Data of PFC	40960	0xA000	input register

IR and HR have separated address spaces. For simplicity those are now taken together so it is possible to map HR in IR space and read them also with function 0x04.

3.1 0x0200 Device Identification

mapped data	base a	address HEX	size/type
Run Time	512	0x200	64b
GMT Time	516	0x204	64b
PROPS_TYPE	520	0x208	16b
DEVICE_TYPE	521	0x209	16b
SUBDEVICE TYPE 1	522	0x20A	16b
SUBDEVICE TYPE 2	523	0x20B	16b
SUBDEVICE TYPE 3	524	0x20C	16b
SUBDEVICE TYPE 4	525	0x20D	16b
SUBDEVICE TYPE 5	526	0x20E	16b
SUBDEVICE TYPE 6	527	0x20F	16b
DEVICE_NUMBER	528	0x210	32b
HW BUILD_VERSION	530	0x212	16b
BOOT BUILD_VERSION	531	0x213	16b
SW build version	532	0x214	16b

Active FW modules	533	0x215	16b
HW version	534	0x216	64b
BOOT version	536	0x218	64b
SW version	538	0x21A	64b

HW, FW and BOOT version:

a is a generation number,

b is incremented with every major update and

c is incremented with every release.

3.2 0x0300 Archive Control Block

Functions to read out historical values from archive files in the instrument are described in the following section. Basic functionality is available since fw 3.0.8 and is a subject to further modifications. The functionality in 3.0.8 is available in UMD 709 and UMD 710 with the UP module enabled in firmware. Availability of the data is controlled via the following registers:

Anabiya Tyma	Implemented	base	address
Archive Type	implemented	DEC	HEX
Main archive	YES	768	0x0300
A_MSS	x	784	0x0310
A_MSM	X	800	0x0320
Log archive	x	816	0x0330
PQ Main	X	832	0x0340
PQ Events	x	848	0x0350
Electricity Meter	YES	864	0x0360
General Oscillograms	x	880	0x0370
Modbus Master	x	896	0x0380
Histogram	X	912	0x0390
UNB	X	928	0x03A0
Event Log	x	944	0x03B0
Trends	x	960	0x03C0

For each archive the control registers are as follows. Modbus function 4 is supported to read the value, and modbus function 16 to write the value.

Archive Type	base	address	Size	Type	Fn. 16			
Main archive	DEC	HEX	Size	Туре	value	action		
					0x1	go to the next record		
Record time	768	0x0300	u64	KMB time	0x2	go to the previous record		
Record time	100	0X0300	u04		0x3-0xFF()FE	find the nearest record after given time		
					0xFF()FF	go to the newest record		
First time	772	0x304	u64	KMB time		N/A		
Last time	776	0x308	u64	KMB time		N/A		
Number of records	780	0x30C	u32		0xFF()FF clear archive			
Record interval	782	0x30E	u32	ms	N/A			

Reading out archive values is performed with a custom modbus function 100 over the same set of registers as for actual data (modbus fn. 4). If a value for an inspected quantity is not available in archive or it is not defined at all, the (float or double) not-a-number value is returned in the respective register. Supported values are implemented on respective register blocks starting at • 0x1000, 0x1100, 0x1200 and 0x1300 for main archive, • 0x2000, 0x2400, 0x2800, 0x2800 for electricity meter archive.

3.3 0x0700 Configurable Settings

The configurable settings as provided in the following table can be modified by the Modbus function 0x16 - Write Multiple Registrers. When device receives a message with such function, all related registers are stored. If nessecary the soft erase action is performed prior to sending an answer to the request. The need for this action is implied by the change to certain registers - see column "Soft Erase". The change is than also written to the device log for further reference. Nominal current Inom is available since fw. 2.1.11.

mapped data	base a	address HEX	size/type	Soft Erase
Connection Type	1792	0x700	16b	Yes
Connection Mode	1793	0x701	32b	Yes
Nominal Frequency Nominal Voltage Nominal Power	1795	0x703	32b, float	Yes
	1797	0x705	32b, float	Yes
	1799	0x707	32b, float	Yes
Primary VT Secondary VT Multiplier VT	1801	0x709	16b	Yes
	1802	0x70A	16b	Yes
	1803	0x70B	32b, float	Yes
Primary VTN	1805	0x70D	16b	Yes
Secondary VTN Multiplier VTN	1806	0x70E	16b	Yes
	1807	0x70F	32b, float	Yes
· ·				
Multiplier VTN Primary CT Secondary CT	1807	0x70F	32b, float	Yes
	1809	0x711	16b	Yes
	1810	0x712	16b	Yes

3.4 0x0800 Read-only Settings

If device doesn't have certain interface, appropriate addresses will be inaccessible.

3.4.1 0x0800 COM1 This interface is on all devices.

COM Modbus Master indicates which port is used for Modbus Master module if is used. Indexed from zero, COM1 = 0, COM2 = 1.

- Device address: configurable address of the slave unit. 0 and 249..255 are reserved addresses.
- Device address: configurable address of the slave unit. 0 and 249..255 are reserved addresses.
- Baud rate: speed of communicationi in bauds
- Parity: 0 = none, 1 = even, 2 = odd

- Data bit + parity: 0 = 8 data bits + no parity, 1 = 8 data bits + 1 parity bit (odd or even)
- Stop Bit: 0 = One stop bit, 1 = Two stop bits

mapped data	base a	address HEX	size/type
COM Modbus Master	2048	0x800	16b
Device Address	2049	0x801	16b
Baud Rate	2050	0x803	32b, uint
Parity	2052	0x804	16b
Data Bits + Parity	2053	0x805	16b
Stop Bit	2054	0x806	16b

3.4.2 0x0820 COM2

mapped data	base a	nddress HEX	size/type
Device Address	2080	0x820	16b
Remote Baud Rate	2081	0x821	32b
Parity	2083	0x823	16b
Data Bit	2084	0x824	16b
Stop Bit	2085	0x825	16b

3.4.3 0x0840 ETH1

mapped data	base	address	size/type	
mapped data	DEC	HEX	size/type	
DHCP	2112	0x840	16b	
IP Address	2113	0x841	32b	
Netmask	2115	0x843	32b	
Gateway	2117	0x845	32b	
KMB Port	2119	0x847	16b	
Modbus Port	2120	0x848	16b	
Webserver Port	2121	0x849	16b	
MAC	2122	0x84A	64b	

3.5 0x1000 Actual Data

3.5.1 0x1000 Shared Actual Data

Config Change counts number of configuration changes and thus can be used to detect any change in instrument configuration.

Error code - 32 bits indicating actual status of the instrument operation - value 0 of a given bit indicates correct operation, value 1 indicates a possible problem.

0x01 RAM error

0x02 instrument configuration error

0x04 instrument callibration error

0x08 remote communication module error (Wifi/Zigbee)

0x10 clock error (RTC) 0x80 instrument archive error

0x100 flash memory error

0x200 display error

Phase order flag is set if detected phase order corresponds to the 1-3-2 instead of the correct 1-2-3 order.

Sample overflow/underflow flags are seti if one oro more voltage or current channels measures signal which is out of the channels linearity range. in such case precision is influenced and the measured quantity must be used with extra consideration.

0x01, 0x02, 0x04, 0x08 - sampled voltage value in channel 1,2..4 out of range

0x10, 0x20, 0x40, 0x80 - sampled current value in channel 1,2..4 out of range

Flags - marks if and which actual data measuremnt is influenced by voltage events

0x01, 0x02, 0x04, 0x08 - voltage, current and powers in channel 1,2..4

 $0x10,\,0x20,\,0x40,\,0x80\,$ - short time flicker in channel 1,2..4 0x100,

0x200, 0x400, 0x800 - long time flicker in channel 1,2..4

0x1000 - frequency

0x2000 - automatic current probe range switchover

mapped data	base	address	size/type
mapped data	DEC	HEX	size/type
Config Change counter	4096	0x1000	16b
Error Code	4097	0x1001	32b
Phase order	4099	0x1003	16b
Actual frequency	4100	0x1004	32b, float
10-second frequency	4102	0x1006	32b, float
Sample Overflow/Underflow Flags	4104	0x1008	16b
Flags	4105	0x1009	32b

3.5.2 0x1100 Actual Voltage Readings

 $THD\ U_{1-N}$ = harmonic distortion, $TID\ U_{1-N}$ = interharmonic distortion, CF_{U1-N} = Crest factor

mapped data	base address		size/type
mapped data	DEC	HEX	size/type
U_{LN1}	4352	0x1100	32b, float
U_{LN2}	4354	0x1102	32b, float
U_{LN3}	4356	0x1104	32b, float
U_N	4358	0x1106	32b, float
U_{LL1}	4360	0x1108	32b, float
U_{LL2}	4362	0x110A	32b, float
U_{LL3}	4364	0x110C	32b, float
$THDU_1$	4366	0x110E	32b, float
$THDU_2$	4368	0x1110	32b, float
$THDU_3$	4370	0x1112	32b, float
$THD \ U_N$	4372	0x1114	32b, float
$TIDU_1$	4374	0x1116	32b, float
$TIDU_2$	4376	0x1118	32b, float
$TIDU_3$	4378	0x111A	32b, float
$TID \ U_N$	4380	0x111C	32b, float
CF_{U1}	4382	0x111E	32b, float
CF_{U2}	4384	0x1120	32b, float
CF_{U3}	4386	0x1122	32b, float
CF_{UN}	4388	0x1124	32b, float
Ufh_1	4390	0x1126	32b, float

Ufh_2	4392	0x1128	32b, float
Ufh ₃	4394	0x112A	32b, float
Ufh_N	4396	0x112C	32b, float
ϕu_1	4398	0x112E	32b, float
ϕu_2	4400	0x1130	32b, float
ϕu_3	4402	0x1132	32b, float
ϕu_N	4404	0x1134	32b, float
unbU	4406	0x1136	32b, float
positive sequence	4408	0x1138	32b, float
negative sequence	4410	0x113A	32b, float
zero sequence	4412	0x113C	32b, float

3.5.3 0x1200 Actual Current Readings

mannad data	base	address	sizo/typo
mapped data	DEC	HEX	size/type
I_1	4608	0x1200	32b, float
I_2	4610	0x1202	32b, float
I_3	4612	0x1204	32b, float
I_4	4614	0x1206	32b, float
(I_1, I_2, I_3)	4616	0x1208	32b, float
(I_1, I_2, I_3, I_4)	4618	0x120A	32b, float
$THDI_1$	4620	0x120C	32b, float
$THDI_2$	4622	0x120E	32b, float
$THDI_3$	4624	0x1210	32b, float
$THDI_{N}$	4626	0x1212	32b, float
$TIDI_1$	4628	0x1214	32b, float
$TIDI_2$	4630	0x1216	32b, float
$TIDI_3$	4632	0x1218	32b, float
$TIDI_N$	4634	0x121A	32b, float
CF_{I1}	4636	0x121C	32b, float
CF_{I2}	4638	0x121E	32b, float
CF_{I3}	4640	0x1220	32b, float
CF_{IN}	4642	0x1222	32b, float
Ifh_1	4644	0x1224	32b, float
Ifh_2	4646	0x1226	32b, float
Ifh_3	4648	0x1228	32b, float
Ifh_N	4650	0x122A	32b, float
ϕi_1	4652	0x122C	32b, float
ϕi_2	4654	0x122E	32b, float
ϕi_3	4656	0x1230	32b, float
ϕi_N	4658	0x1232	32b, float
unbI	4660	0x1234	32b, float
positive sequence	4662	0x1236	32b, float
negative sequence	4664	0x1238	32b, float
zero sequence	4666	0x123A	32b, float

3.5.4 **0x1300 Actual Power Readings**

Power factor and $\cos(\phi)$:

	hogo	address		
mapped data			size/type	
mapped data	DEC	HEX	SIZE, type	
3PF	4864	0x1300	32b, float	
$3cos(\phi)$	4866	0x1302	32b, float	
PF_1	4868	0x1304	32b, float	
PF_2	4870	0x1306	32b, float	
PF_3	4872	0x1308	32b, float	
PF_N	4874	0x130A	32b, float	
$cos(\phi)_1$	4876	0x130C	32b, float	
$cos(\phi)_2$	4878	0x130E	32b, float	
$cos(\phi)_3$	4880	0x1310	32b, float	
$cos(\phi)_N$	4882	0x1312	32b, float	

Active, reactive, apparent and distortion power

mannad data	base	address	sign /trypo	
mapped data	DEC	HEX	size/type	
3 <i>P</i>	4884	0x1314	32b, float	
3 <i>Q</i>	4886	0x1316	32b, float	
3S	4888	0x1318	32b, float	
$3P_{fh}$	4890	0x131A	32b, float	
$3Q_{fh}$	4892	0x131C	32b, float	
3 <i>D</i>	4894	0x131E	32b, float	
P_1	4896	0x1320	32b, float	
P_2	4898	0x1322	32b, float	
P_3	4900	0x1324	32b, float	
P_N	4902	0x1326	32b, float	
Q_1	4904	0x1328	32b, float	
Q_2	4906	0x132A	32b, float	
Q_3	4908	0x132C	32b, float	
Q_N	4910	0x132E	32b, float	
S_1	4912	0x1330	32b, float	
S_2	4914	0x1332	32b, float	
S_3	4916	0x1334	32b, float	
S_N	4918	0x1336	32b, float	
P_{fh1}	4920	0x1338	32b, float	
P_{fh2}	4922	0x133A	32b, float	
P_{fh3}	4924	0x133C	32b, float	
P_{fhN}	4926	0x133E	32b, float	
Q_{fh1}	4928	0x1340	32b, float	
Q_{fh2}	4930	0x1342	32b, float	
Q_{fh3}	4932	0x1344	32b, float	
Q_{fhN}	4934	0x1346	32b, float	
D_1	4936	0x1348	32b, float	
D_2	4938	0x134A	32b, float	
D_3	4940	0x134C	32b, float	
D_N	4942	0x134E	32b, float	

3.5.5 0x1400 Voltage and Current Harmonics (magnitudes, angles)

mapped data	base address DEC HEX		size/type
mapped data			size/type
U_{1h1h50}	51205218	0x14000x1462	32b, float
U_{2h1h50}	52205318	0x14640x14C6	32b, float
U_{3h1h50}	53205418	0x14C80x152A	32b, float

mapped data	base address			
mapped data	DEC	HEX	size/type	
U_{Nh1h50}	54205518	0x152C0x158E	32b, float	
ϕU_{1h1h50}	55205618	0x15900x15F2	32b, float	
ϕU_{2h1h50}	56205718	0x15F40×1656	32b, float	
ϕU_{3h1h50}	57205818	0x16BC0x171E	32b, float	
ϕU_{Nh1h50}	58205918	0x17200x1782	32b, float	
I_{1h1h50}	59206018	0x17840x17E6	32b, float	
I_{2h1h50}	60206118	0x17E80x184A	32b, float	
I_{3h1h50}	61206218	0x184C0x18AE	32b, float	
I_{Nh1h50}	62206318	0x18B00x1912	32b, float	
$\Delta \phi I_{1h1h50}$	63206418	0x19780x19DA	32b, float	
$\Delta \phi I_{2h1h50}$	64206518	0x19DC0x1A3E	32b, float	
$\Delta \phi I_{3h1h50}$	65206618	0x1A400x1AA2	32b, float	
$\Delta \phi I_{Nh1h50}$	66206718	0x1AA40x1B00	32b, float	

ox1B00 Interharmonics (with active PQ module)

mapped data	bas	size/type	
mapped data	DEC	DEC HEX	
$U_{1ih1ih50}$	68126910	0x1B000x1B62	32b, float
$U_{2ih1ih50}$	69127010	0x1B640x1BC6	32b, float
$U_{3ih1ih50}$	70127110	0x1BC80x1C2A	32b, float
$U_{Nih1ih50}$	71127210	0x1C2C0x1C8E	32b, float
$I_{1ih1ih50}$	72127310	0x1C900x1CF2	32b, float
$I_{2ih1ih50}$	73127410	0x1CF40x1D56	32b, float
$I_{3ih1ih50}$	74127510	0x1D580x1DBA	32b, float
$I_{Nih1ih50}$	75127610	0x1DBC0x1E1E	32b, float

3.6 0x2000 Electricity Meter Readings

3.6.1 Three-phase and Single-phase Counters

0x2000 Four-quadrant (4Q) threee phase summary these summary energies are most often required in all three phase systems.

Energy	Direction/Character	Mapped Data	base address		size/type
Energy Direction/Characte	Direction/Character	Wapped Data	DEC	HEX	size/type
3-phase active	imported	3EP+	8192	0x2000	64b, double
5-phase active	exported	3EP-	8196	0x2004	64b, double
3 phase reactive	inductive	3EQL	8200	0x2008	64b, double
3-phase reactive	capacitive	3EQC	8204	0x200C	64b, double

Four-quadrant (4Q) single phase values for detailed overview of energy flow we provide also registers for each phase.

Energy	Direction/Character	Mapped Data	base	address	size/type	
Lifergy	Direction/Character	Mapped Data	DEC	HEX	Size/type	
		EP1+	8208	0x2010	64b, double	
active	imported	EP2+	8212	0x2014	64b, double	
active	imported	EP3+	8216	0x2018	64b, double	
		EP4+	8220	0x201C	64b, double	
		EP1-	8224	0x2020	64b, double	
active	exported	EP2-	8228	0x2024	64b, double	
active	caported	EP3-	8232	0x2028	64b, double	
		EP4-	8236	0x202C	64b, double	
		EQL1	8240	0x2030	64b, double	
reactive	inductive	EQL2	8244	0x2034	64b, double	
reactive	maactive	EQL3	8248	0x2038	64b, double	
		EQL4	8252	0x203C	64b, double	
		EQC1	8256	0x2040	64b, double	
reactive	capacitive	EQC2	8260	0x2044	64b, double	
reactive	capacitive	EQC3	8264	0x2048	64b, double	
		EQC4	8268	0x204C	64b, double	

0x2400 Six-quadrant (6Q) three phase summary

imported and exported active energy in 6Q is the same as for four quadrant meter in tables above.

Energy Direction & Quadr	Direction & Quadrant	Mapped Data	base address		size/type	
	Direction & Quadrant	(N-th feeder)	DEC	HEX	size/type	
	imported inductive	3EQL+	9216	0x2400	64b, double	
3-phase reactive	exported inductive	3EQL-	9220	0x2404	64b, double	
3-phase reactive	imported capacitive	3EQC+	9224	0x2408	64b, double	
	exported capacitive	3EQC-	9228	0x240C	64b, double	

0x2400 Six-quadrant (6Q) single phase values For detailed overview of reactive energy flow we provide also registers for each phase separated by the direction of flow of active power in each phase.

Energy Direction & Quadrant		Mapped Data	base address		size/type	
Lifergy	Direction & Quadrant	(N-th feeder)	DEC	HEX	SIZE/type	
		EQL1+	9232	0x2410	64b, double	
reactive	imported inductive	EQL2+	9236	0x2414	64b, double	
Teactive	imported inductive	EQL3+	9240	0x2418	64b, double	
		EQL4+	9244	0x241C	64b, double	
	active armouted industive	EQL1-	9248	0x2420	64b, double	
reactive		EQL2-	9252	0x2424	64b, double	
reactive	exported inductive	EQL3-	9256	0x2428	64b, double	
		EQL4-	9260	0x242C	64b, double	
		EQC1+	9264	0x2430	64b, double	
reactive	imported capacitive	EQC2+	9268	0x2434	64b, double	
reactive	imported capacitive	EQC3+	9272	0x2438	64b, double	
		EQC4+	9276	0x243C	64b, double	
		EQC1-	9280	0x2440	64b, double	
reactive	exported capacitive	EQC2-	9284	0x2444	64b, double	
reactive	exported capacitive	EQC3-	9288	0x2448	64b, double	
		EQC4-	9292	0x244C	64b, double	

3.6.2 Tariff Values (up to 6 tariffs)

Tarif (TOU) represents and interval of time during day with a special energy rate. number of such registers is given by configuration. Given number of tarifs can be configured between 1 and 6 (T1,T2,...T6).

0x2800 Four-quadrant (4Q, three phase) In polyphase instruments these tariff summary registers only count energy consumption in phase 1, 2 and 3.

Engray	Direction/Quadrant	Mapped Data	base	address	size/type
Energy	Direction/Quadrant	Mapped Data	DEC	HEX	
		T1.3EP+	10240	0x2800	64b, double
		T2.3EP+	10244	0x2804	64b, double
.•		T3.3EP+	10248	0x2808	64b, double
active	import	T4.3EP+	10252	0x280C	64b, double
		T5.3EP+	10256	0x2810	64b, double
		T6.3EP+	10260	0x2814	64b, double
		T1.3EP-	10264	0x2818	64b, double
		T2.3EP-	10268	0x281C	64b, double
		T3.3EP-	10272	0x2820	64b, double
active	export	T4.3EP-	10276	0x2824	64b, double
		T5.3EP-	10280	0x2828	64b, double
		T6.3EP-	10284	0x282C	64b, double
		T1.3EQL	10288	0x2830	64b, double
		T2.3EQL	10292	0x2834	64b, double
.•	inductive	T3.3EQL	10296	0x2838	64b, double
reactive		T4.3EQL	10300	0x283C	64b, double
		T5.3EQL	10304	0x2840	64b, double
		T6.3EQL	10308	0x2844	64b, double
		T1.3EQC	10312	0x2848	64b, double
		T2.3EQC	10316	0x284C	64b, double
		T3.3EQC	10320	0x2850	64b, double
reactive	capacitive	T4.3EQC	10324	0x2854	64b, double
		T5.3EQC	10328	0x2858	64b, double
		T6.3EQC	10332	0x285C	64b, double

ox2Boo Six-quadrant (6Q, three phase) In polyphase instruments these tariff summary registers only count energy consumption in phase 1, 2 and 3.

Energy	Direction & Quadrant	Mapped Data	base address		size/type
Lifergy	Direction & Quadrant	Wapped Data	DEC	HEX	SIZE/type
		T1.3EQL+	11008	0x2B00	64b, double
		T2.3EQL+	11012	0x2B04	64b, double
		T3.3EQL+	11016	0x2B08	64b, double
reactive	inductive import	T4.3EQL+	11020	0x2B0C	64b, double
		T5.3EQL+	11024	0x2B10	64b, double
		T6.3EQL+	11028	0x2B14	64b, double
		T1.3EQL-	11032	0x2B18	64b, double
		T2.3EQL-	11036	0x2B1C	64b, double
		T3.3EQL-	11040	0x2B20	64b, double
reactive	inductive export	T4.3EQL-	11044	0x2B24	64b, double
		T5.3EQL-	11048	0x2B28	64b, double
		T6.3EQL-	11052	0x2B2C	64b, double
		T1.3EQC+	11056	0x2B30	64b, double
		T2.3EQC+	11060	0x2B34	64b, double
,.	.,	T3.3EQC+	11064	0x2B38	64b, double
reactive	capacitive import	T4.3EQC+	11068	0x2B3C	64b, double
		T5.3EQC+	11072	0x2B40	64b, double

		T6.3EQC+	11076	0x2B44	64b, double
	active capacitive export	T1.3EQC-	11080	0x2B48	64b, double
reactive		T2.3EQC-	11084	0x2B4C	64b, double
		T3.3EQC-	11088	0x2B50	64b, double
		T4.3EQC-	11092	0x2B54	64b, double
		T5.3EQC-	11096	0x2B58	64b, double
		T6.3EQC-	11100	0x2B5C	64b, double

3.7 0x4000 Aggregated Values

This block contains several register blocks, which holds minimum, maximum, average and actual values for most often required quantities. Sections 3.7.1, 3.7.2, 3.7.3 and 3.7.4 are only available in some instruments.

3.7.1 0x4200-0x42FF time stamps of maximal value block

This block offers time of occurences (time stamps for maximum average values since reset (ch. 3.7.3).

Mannad Data	base address		Cino/tumo	oncoding	
Mapped Data	DEC	HEX	Size/type	encoding	
time of max. U1	16952	4238	32-bit	KMB time	
time of max. U2	16954	423A	32-bit	KMB time	
time of max. U3	16956	423C	32-bit	KMB time	
time of max. U12	16958	423E	32-bit	KMB time	
time of max. U23	16960	4240	32-bit	KMB time	
time of max. U31	16962	4242	32-bit	KMB time	
time of max. I1	16964	4244	32-bit	KMB time	
time of max. I2	16966	4246	32-bit	KMB time	
time of max. 13	16968	4248	32-bit	KMB time	
time of max. IN	16970	424A	32-bit	KMB time	
time of max. P1	16972	424C	32-bit	KMB time	
time of max. P2	16974	424E	32-bit	KMB time	
time of max. P3	16976	4250	32-bit	KMB time	
time of max. 3P	16978	4252	32-bit	KMB time	
time of max. S1	16980	4254	32-bit	KMB time	
time of max. S2	16982	4256	32-bit	KMB time	
time of max. S3	16984	4258	32-bit	KMB time	
time of max. 3S	16986	425A	32-bit	KMB time	
time of max. Q1	16988	425C	32-bit	KMB time	
time of max. Q2	16990	425E	32-bit	KMB time	
time of max. Q3	16992	4260	32-bit	KMB time	
time of max.3Q	16994	4262	32-bit	KMB time	
time of max. CosPhi 1	16996	4264	32-bit	KMB time	
time of max. CosPhi 2	16998	4266	32-bit	KMB time	
time of max. CosPhi 3	17000	4268	32-bit	KMB time	
time of max. frequency	17002	426A	32-bit	KMB time	

Reserved						
time of max. THD U1	17062	42A6	32-bit	KMB time		
time of max. THD U2	17064	42A8	32-bit	KMB time		
time of max. THD U3	17066	42AA	32-bit	KMB time		
time of max. THD U12	17068	42AC	32-bit	KMB time		
time of max. THD U23	17070	42AE	32-bit	KMB time		
time of max. THD U31	17072	42B0	32-bit	KMB time		

3.7.2 0x4600-0x44FF time stamps of minimal value block

This block offers time of occurences (time stamps for minimum average values since reset (ch. 3.6.4).

Mapped Data	base address		Size/type	encoding			
імаррец Баса	DEC	HEX	Size/type	encoung			
time of max. U1	17464	4438	32-bit	KMB time			
time of max. U2	17466	443A	32-bit	KMB time			
time of max. U3	17468	443C	32-bit	KMB time			
time of max. U12	17470	443E	32-bit	KMB time			
time of max. U23	17472	4440	32-bit	KMB time			
time of max. U31	17474	4442	32-bit	KMB time			
time of max. I1	17476	4444	32-bit	KMB time			
time of max. I2	17478	4446	32-bit	KMB time			
time of max. I3	17480	4448	32-bit	KMB time			
time of max. IN	17482	444A	32-bit	KMB time			
time of max. P1	17484	444C	32-bit	KMB time			
time of max. P2	17486	444E	32-bit	KMB time			
time of max. P3	17488	4450	32-bit	KMB time			
time of max. 3P	17490	4452	32-bit	KMB time			
time of max. S1	17492	4454	32-bit	KMB time			
time of max. S2	17494	4456	32-bit	KMB time			
time of max. S3	17496	4458	32-bit	KMB time			
time of max. 3S	17498	445A	32-bit	KMB time			
time of max. Q1	17500	445C	32-bit	KMB time			
time of max. Q2	17502	445E	32-bit	KMB time			
time of max. Q3	17504	4460	32-bit	KMB time			
time of max.3Q	17506	4462	32-bit	KMB time			
time of max. CosPhi 1	17508	4464	32-bit	KMB time			
time of max. CosPhi 2	17510	4466	32-bit	KMB time			
time of max. CosPhi 3	17512	4468	32-bit	KMB time			
time of max. frequency	17514	446A	32-bit	KMB time			
	Reserved						

Mapped Data	base address	S	Cino/tuno	oncodina
	DEC	HEX	Size/type	encoding

time of max. THD U1	17574	44A6	32-bit	KMB time
time of max. THD U2	17576	44A8	32-bit	KMB time
time of max. THD U3	17578	44AA	32-bit	KMB time
time of max. THD U12	17580	44AC	32-bit	KMB time
time of max. THD U23	17582	44AE	32-bit	KMB time
time of max. THD U31	17584	44B0	32-bit	KMB time

3.7.3 0x4600-0x46FF Maximum since reset data

Mannad Data	Base adres	S	ai a /tu ua a	
Mapped Data	DEC	HEX	size/type	encoding
U1	17976	4638	32-bit, float	V
U2	17978	463A	32-bit, float	V
U3	17980	463C	32-bit, float	V
U12	17982	463E	32-bit, float	V
U23	17984	4640	32-bit, float	V
U31	17986	4642	32-bit, float	V
l1	17988	4644	32-bit, float	Α
12	17990	4646	32-bit, float	Α
13	17992	4648	32-bit, float	Α
IN=I1+I2+I3	17994	464A	32-bit, float	Α
P1	17996	464C	32-bit, float	W
P2	17998	464E	32-bit, float	W
P3	18000	4650	32-bit, float	W
3P	18002	4652	32-bit, float	W
S1	18004	4654	32-bit, float	VA
S2	18006	4656	32-bit, float	VA
S3	18008	4658	32-bit, float	VA
3S	18010	465A	32-bit, float	VA
Q1	18012	465C	32-bit, float	var
Q2	18014	465E	32-bit, float	var
Q3	18016	4660	32-bit, float	var
3Q	18018	4662	32-bit, float	var
CosPhi1	18020	4664	32-bit, float	-
CosPhi2	18022	4666	32-bit, float	-
CosPhi3	18024	4668	32-bit, float	-
frequency	18026	466A	32-bit, float	Hz
RESERVED				
THD U1	18086	46A6	32-bit, float	percent
THD U2	18088	46A8	32-bit, float	percent
THD U3	18090	46AA	32-bit, float	percent
THD I1	18092	46AC	32-bit, float	percent
THD I2	18094	46AE	32-bit, float	percent
THD I3	18096	46B0	32-bit, float	percent

3.7.4 0x4800-0x48FF Minimum since reset data

	Base ad	ress		1.	
Mapped Data	DEC	HEX	size/type	encoding	
U1	18488	4838	32-bit, float	V	
U2	18490	483A	32-bit, float	V	
U3	18492	483C	32-bit, float	V	
U12	18494	483E	32-bit, float	V	
U23	18496	4840	32-bit, float	V	
U31	18498	4842	32-bit, float	V	
l1	18500	4844	32-bit, float	Α	
12	18502	4846	32-bit, float	Α	
13	18504	4848	32-bit, float	Α	
IN=I1+I2+I3	18506	484A	32-bit, float	Α	
P1	18508	484C	32-bit, float	W	
P2	18510	484E	32-bit, float	W	
P3	18512	4850	32-bit, float	W	
3P	18514	4852	32-bit, float	W	
S1	18516	4854	32-bit, float	VA	
S2	18518	4856	32-bit, float	VA	
S3	18520	4858	32-bit, float	VA	
3S	18522	485A	32-bit, float	VA	
Q1	18524	485C	32-bit, float	var	
Q2	18526	485E	32-bit, float	var	
Q3	18528	4860	32-bit, float	var	
3Q	18530	4862	32-bit, float	var	
CosPhi1	18532	4864	32-bit, float	-	
CosPhi2	18534	4866	32-bit, float	-	
CosPhi3	18536	4868	32-bit, float	-	
frequency	18538	486A	32-bit, float	Hz	
RESERVED					
THD U1	18598	48A6	32-bit, float	percent	
THD U2	18600	48A8	32-bit, float	percent	
THD U3	18602	48AA	32-bit, float	percent	
THD I1	18604	48AC	32-bit, float	percent	
THD I2	18606	48AE	32-bit, float	percent	
THD I3	18608	48B0	32-bit, float	percent	

3.7.5 0x4A00-0x4AFF Actual data (19000 dec)

This block of data provides simple acquisition method for the most commonly used actual and average values in one simple block-read request.

- Modbus function 03 Read Holding Registers returns average values for normal quantities.
- Modbus function 04 Read Input Registers returns actual 200ms values for normal quantities.
- For energy registers booth functions offer the total kWh/kVarh counts.

	Base ac	Iress		
Mapped Data	DEC	HEX	size/type	encoding
U1	19000	4A38	32-bit, float	V
U2	19002	4A3A	32-bit, float	V
U3	19004	4A3C	32-bit, float	V
U12	19006	4A3E	32-bit, float	V
U23	19008	4A40	32-bit, float	V
U31	19010	4A42	32-bit, float	V
I1	19012	4A44	32-bit, float	Α
12	19014	4A46	32-bit, float	Α
13	19016	4A48	32-bit, float	Α
IN=I1+I2+I3	19018	4A4A	32-bit, float	Α
P1	19020	4A4C	32-bit, float	W
P2	19022	4A4E	32-bit, float	W
P3	19024	4A50	32-bit, float	W
3P	19026	4A52	32-bit, float	W
S1	19028	4A54	32-bit, float	VA
S2	19030	4A56	32-bit, float	VA
S3	19032	4A58	32-bit, float	VA
3S	19034	4A5A	32-bit, float	VA
Q1	19036	4A5C	32-bit, float	var
Q2	19038	4A5E	32-bit, float	var
Q3	19040	4A60	32-bit, float	var
3Q	19042	4A62	32-bit, float	var
CosPhi1	19044	4A64	32-bit, float	-
CosPhi2	19046	4A66	32-bit, float	-
CosPhi3	19048	4A68	32-bit, float	-
frequency	19050	4A6A	32-bit, float	Hz
phase order	19052	4A6C	32-bit, float	-
EP1 total	19054	4A6E	32-bit, float	Wh
EP2 total	19056	4A70	32-bit, float	Wh
EP3 total	19058	4A72	32-bit, float	Wh
3EP total	19060	4A74	32-bit, float	Wh
EP1 consumed	19062	4A76	32-bit, float	Wh
EP2 consumed	19064	4A78	32-bit, float	Wh
EP3 consumed	19066	4A7A	32-bit, float	Wh
3EP consumed	19068	4A7C	32-bit, float	Wh
EP1 delivered	19070	4A7E	32-bit, float	Wh
EP2 delivered	19072	4A80	32-bit, float	Wh
EP3 delivered	19074	4A82	32-bit, float	Wh
3EP delivered	19076	4A84	32-bit, float	Wh
ES1	19078	4A86	32-bit, float	VAh
ES2	19080	4A88	32-bit, float	VAh
ES3	19082	4A8A	32-bit, float	VAh
3ES	19084	4A8C	32-bit, float	VAh
EQ1	19086	4A8E	32-bit, float	varh
EQ2	19088	4A90	32-bit, float	varh
EQ3	19090	4A92	32-bit, float	varh
3EQ	19092	4A94	32-bit, float	varh
EQL1	19094	4A96	32-bit, float	varh
EQL2	19096	4A98	32-bit, float	varh
EQL3	19098	4A9A	32-bit, float	varh
3EQL	19100	4A9C	32-bit, float	varh
EQC1	19102	4A9E	32-bit, float	varh
EQC2	19104	4AA0	32-bit, float	varh

EQC3	19106	4AA2	32-bit, float	varh
3EQC	19108	4AA4	32-bit, float	varh
THD U1	19110	4AA6	32-bit, float	percent
THD U2	19112	4AA8	32-bit, float	percent
THD U3	19114	4AAA	32-bit, float	percent
THD I1	19116	4AAC	32-bit, float	percent
THD I2	19118	4AAE	32-bit, float	percent
THD I3	19120	4AB0	32-bit, float	percent

3.8 0x4D00 Residual Current Monitor (RCM)

This block of data has been added in firmware 2.1.25 for instruments with one or more RCM inputs. It contains several register blocks, which holds minimum, maximum, average and actual values for the RCM values. Modbus function 3 registers offer aggregated average values (avg, min of avg, max of avg) while function 4 registers offer aggregated actual values (act, min of act, max of act).

Mapped Data	base	address	size/type	encoding
Mapped Data	DEC	HEX	SIZE/type	chedding
RCM min,avg,max reset date/time	19726	0x4D0E	32b, KMBTime	S
time of the last IΔ.1 maximum	19728	0x4D10	32b, KMBTime	S
time of the last IΔ.2 maximum	19730	0x4D12	32b, KMBTime	S
time of the last IΔ.3 maximum	19732	0x4D14	32b, KMBTime	S
time of the last IΔ.4 maximum	19734	0x4D16	32b, KMBTime	S
time of the last IΔ.5 maximum	19736	0x4D18	32b, KMBTime	S
time of the last IΔ.6 maximum	19738	0x4D1A	32b, KMBTime	S
time of the last IΔ.7 maximum	19740	0x4D1C	32b, KMBTime	S
time of the last IΔ.8 maximum	19742	0x4D1E	32b, KMBTime	s
time of the last IΔ.1 minimum	19744	0x4D20	32b, KMBTime	S
time of the last IΔ.2 minimum	19746	0x4D22	32b, KMBTime	S
time of the last IΔ.3 minimum	19748	0x4D24	32b, KMBTime	S
time of the last IΔ.4 minimum	19750	0x4D26	32b, KMBTime	S
time of the last IΔ.5 minimum	19752	0x4D28	32b, KMBTime	S
time of the last IΔ.6 minimum	19754	0x4D2A	32b, KMBTime	S
time of the last IΔ.7 minimum	19756	0x4D2C	32b, KMBTime	S
time of the last IΔ.8 minimum	19758	0x4D2E	32b, KMBTime	S

Mapped Data	base	address	size/type	
Mapped Data	DEC	HEX	size/type	
last IΔ.1 maximum	19760	0x4D30	32b, float	Α
last IΔ.2 maximum	19762	0x4D32	32b, float	Α
last IΔ.3 maximum	19764	0x4D34	32b, float	Α
last I∆.4 maximum	19766	0x4D36	32b, float	Α
last I∆.5 maximum	19768	0x4D38	32b, float	Α
last I∆.6 maximum	19770	0x4D3A	32b, float	Α
last I∆.7 maximum	19770	0x4D3C	32b, float	Α
last IΔ.8 maximum	19772	0x4D3E	32b, float	Α
last IΔ.1 minimum	19776	0x4D40	32b, float	Α
last IΔ.2 minimum	19778	0x4D42	32b, float	Α
last IΔ.3 minimum	19780	0x4D44	32b, float	Α
last I∆.4 minimum	19782	0x4D46	32b, float	Α
last IΔ.5 minimum	19784	0x4D48	32b, float	Α

last I∆.6 minimum	19786	0x4D4A	32b, float	A
last IΔ.8 minimum	19788	0x4D4C	32b, float	A
last IΔ.7 minimum	19790	0x4D4E	32b, float	Α
ΙΔ.1	19792	0x4D50	32b, float	A
ΙΔ.2	19794	0x4D52	32b, float	Α
ΙΔ.3	19796	0x4D54	32b, float	Α
ΙΔ.4	19798	0x4D56	32b, float	Α
ΙΔ.5	19800	0x4D58	32b, float	Α
ΙΔ.6	19802	0x4D5A	32b, float	Α
ΙΔ.7	19804	0x4D5C	32b, float	Α
ΙΔ.8	19806	0x4D5E	32b, float	A

3.9 0x4E00 Demand and Max Demand Values

Demand in an evaluation period, and max demand over interval or since reset are provided in the following registers. It used to be reffered also as PAvgMax, PAvgMax(E), monitoring of quarter-hour maximum or EMAX in other literature. Behavior of this function is related to the actual instrument configuration - namely the parameters in 'Maximum demand' panel in 'Aggregation' tab of the instrument configuration.

3.9.1 0x4E00 Last, actual and estimated demand values

Mapped Data	base a	ddress	size/type	encoding	
Wapped Data	DEC	HEX	size/type	chedding	
last avg reset date/time	19968	4E00	u32	KMBTime	
last average demand 3P	19970	4E02	32-bit, float	W	
last average demand P1	19972	4E04	32-bit, float	W	
last average demand P2	19974	4E06	32-bit, float	W	
last average demand P3	19976	4E08	32-bit, float	W	
last average demand P4	19978	4E0A	32-bit, float	W	
interval since last avg started	19980	4E0C	u32	S	
actual average demand 3P	19982	4E0E	32-bit, float	W	
actual average demand P1	19984	4E10	32-bit, float	W	
actual average demand P2	19986	4E12	32-bit, float	W	
actual average demand P3	19988	4E14	32-bit, float	W	
actual average demand P4	19990	4E16	32-bit, float	W	
next avg reset date/time	19992	4E18	u32	KMBTime	
next average demand 3P	19994	4E1A	32-bit, float	W	
next average demand P1	19996	4E1C	32-bit, float	W	
next average demand P2	19998	4E1E	32-bit, float	W	
next average demand P3	20000	4E20	32-bit, float	W	
next average demand P4	20002	4E22	32-bit, float	W	

3.9.2 0x4E30 Maximum recorded demand values since manual reset

^{*/} Emphasized quantities are planned to be implemented in a future release. In firmware version 3.0 only the values with addrees filled are available and all the rest is a reserved register. It is possible to be read out with block read and its value is NaN.

Mapped Data	base address		size/type	encoding
Mapped Data	DEC	HEX	size/type	encouning
max 3P demand date/time	20016	4E30	32-bit, float	W
maximal demand 3P	20018	4E32	32-bit, float	W
related demand P1	20020	4E34		NaN
related demand P2	20022	4E36		NaN
related demand P3	20024	4E38		NaN
related demand P4	20026	4E3A		NaN
max P1 demand date/time	20028	4E3C	32-bit, float	W
related demand 3P	20030	4E3E		NaN
max demand P1	20032	4E30	32-bit, float	W
related demand P2	20034	4E32		NaN
related demand P3	20036	4E34		NaN
related demand P4	20038	4E36		NaN
max P2 demand date/time	20040	4E38	32-bit, float	W
related demand 3P	20042	4E3A		NaN
max demand P1	20044	4E3C		NaN
related demand P2	20046	4E3E	32-bit, float	W
related demand P3	20048	4E40		NaN
related demand P4	20050	4E42		NaN
max P3 demand date/time	20052	4E44	32-bit, float	W
related demand 3P	20054	4E46		NaN
max demand P1	20056	4E48		NaN
related demand P2	20058	4E4A		NaN
related demand P3	20060	4E4C	32-bit, float	W
related demand P4	20062	4E4E		NaN
max P4 demand date/time	20064	4E40	32-bit, float	W
related demand 3P	20066	4E42		NaN
max demand P1	20068	4E44		NaN
related demand P2	20070	4E46		NaN
related demand P3	20072	4E48		NaN
related demand P4	20074	4E4A	32-bit, float	W

3.9.3 0x4E50 Maximum demand values in the last observed interval

*/ Emphasized quantities are planned to be implemented in a future release. In firmware version 3.0 only the following values with type and encoding are available and all the rest is a reserved register. It is possible to be read out with block read and its value is NaN. Evaluation interval is a part of configuration and can be selected as day, week, month, quartal or year.

Mapped Data	base address		size/type	encoding
Wapped Data	DEC	HEX	Size/type	cheoding
last max 3P demand date/time	20048	4E50	32-bit, float	W
last maximal demand 3P	20050	4E52	32-bit, float	W
last related demand P1	20052	4E54		NaN
last related demand P2	20054	4E56		NaN
last related demand P3	20056	4E58		NaN
last related demand P4	20058	4E5A		NaN
last max P1 demand date/time	20060	4E5C	32-bit, float	W
last related demand 3P	20062	4E5E		NaN
last max demand P1	20064	4E60	32-bit, float	W
last related demand P2	20066	4E62		NaN
last related demand P3	20068	4E64		NaN

last related demand P4	20070	4E66		NaN
last max P2 demand date/time	20072	4E68	32-bit, float	W
last related demand 3P	20074	4E6A		NaN
last max demand P1	20076	4E6C		NaN
last related demand P2	20078	4E6E	32-bit, float	W
last related demand P3	20080	4E670		NaN
last related demand P4	20082	4E72		NaN
last max P3 demand date/time	20084	4E74	32-bit, float	W
last related demand 3P	20086	4E76		NaN
last max demand P1	20088	4E78		NaN
last related demand P2	20090	4E7A		NaN
last related demand P3	20092	4E7C	32-bit, float	W
last related demand P4	20094	4E7E		NaN
last max P4 demand date/time	20096	4E80	32-bit, float	W
last related demand 3P	20098	4E82		NaN
last max demand P1	20100	4E84		NaN
last related demand P2	20102	4E86		NaN
last related demand P3	20104	4E88		NaN
last related demand P4	20106	4E8A	32-bit, float	W

3.9.4 0x4E90 Maximum demand values in the currently observed interval

*/ Emphasized quantities are planned to be implemented in a future release. In firmware version 3.0 only the following values with type and encoding are available and all the rest is a reserved register. It is possible to be read out with block read and its value is NaN. Evaluation interval is a part of configuration and can be selected as day, week, month, quartal or year.

Mapped Data	base address		sizo/typo	encoding
Wapped Data	DEC	HEX	size/type	cheoding
this max 3P demand date/time	20112	4E90	32-bit, float	W
this maximal demand 3P	20114	4E92	32-bit, float	W
this related demand P1	20116	4E94		NaN
this related demand P2	20118	4E96		NaN
this related demand P3	20120	4E98		NaN
this related demand P4	20122	4E9A		NaN
this max P1 demand date/time	20124	4E9C	32-bit, float	W
this related demand 3P	20126	4E9E		NaN
this max demand P1	20128	4EA0	32-bit, float	W
this related demand P2	20130	4EA2		NaN
this related demand P3	20132	4EA4		NaN
this related demand P4	20134	4EA6		NaN
this max P2 demand date/time	20136	4EA8	32-bit, float	W
this related demand 3P	20138	4EAA		NaN
this max demand P1	20140	4EAC		NaN
this related demand P2	20142	4EAE	32-bit, float	W
this related demand P3	20146	4E6B0		NaN
this related demand P4	20148	4EB2		NaN
this max P3 demand date/time	20150	4EB4	32-bit, float	W
this related demand 3P	20152	4EB6		NaN
this max demand P1	20154	4EB8		NaN
this related demand P2	20156	4EBA		NaN
this related demand P3	20158	4EBC	32-bit, float	W

this related demand P4	20160	4EBE		NaN
this max P4 demand date/time	20162	4EC0	32-bit, float	W
this related demand 3P	20164	4EC2		NaN
this max demand P1	20166	4EC4		NaN
this related demand P2	20168	4EC6		NaN
this related demand P3	20170	4EC8		NaN
this related demand P4	20172	4ECA	32-bit, float	W

3.10 0x5000 Power Quality Values (opt. PQ modules)

These registers provide valid readings only with PQ firmware module enabled.

Mapped Data	base address DEC	HEX	size/type	encoding
time of last PQ eval.	20480	0x5000	64b	actual reading
last PQ evaluation	20484	0x5004	32b	0x1 100%, 0x2 95%
time of last failed 100%	20486	0x5006	64b	seconds since y. 2000
last failed 100% crit.	20490	0x500A	32b	binary encoded indices
time of last failed 95%	20492	0x500C	32b	seconds since y. 2000
last failed 95% crit.	20496	0x500E	32b	binary encoded indices
act. record in PQ buffer	20498	0x5012	32b	index to the buffer below
buffer for PQ intervals	2050020625	0x50140x5091	32b	array : 63-times 32b

Encoding of binary indices:
$$0$$
 – all correct, $0x0001$ – frequery, $0x0002$ – $U1$, $0x0004$ – $U2$, $0x0008$ – $U3$, $0x0020$ – THDU 1, $0x0040$ – THDU 2, $0x0080$ – THDU 3, $0x0200$ – UNBU, $0x0400$ – PST 1, $0x0800$ – PST 2, $0x1000$ – PST 3, $0x2000$ – U_{HARM1} , $0x4000$ – U_{HARM2} , $0x8000$ – U_{HARM3}

Encoding of interval evaluation buffer: bitwise true/false value for the last 32x63 PQ evaluation intervals. Updated in the round manner. Typically for a 10-minute interval which is by default set in the instruments this buffer is sufficient for last two weeks of data. This can be modified in the instrument configuration.

3.10.1 0x5100 Actual Flicker Severity Index Values (PQ module)

These registers provide valid readings only with PQ firmware module enabled.

 P_{st1-4} are Short Term Flicker values - 10 minutes

 $P_{\mbox{\scriptsize lt}1\mbox{\scriptsize -4}}$ ale Long Term Flicker values - floating

average of P_{st1-4}

P_{inst1-4} Instant Flicker value

Mapped Data	b	size/type	
Mapped Data	DEC	HEX	size/type
P_{st1}	20736	0x5100, 0x5101	32b, float
P_{st2}	20738	0x5102, 0x5103	32b, float
P_{st3}	20740	0x5104, 0x5105	32b, float
P_{st4}	20742	0x5106, 0x5107	32b, float
P_{lt1}	20744	0x5108, 0x5109	32b, float
P_{lt2}	20746	0x510A, 0x510B	32b, float
P_{lt3}	20748	0x510C, 0x510D	32b, float

P_{lt4}	20750	0x510E, 0x510F	32b, float
P_{inst1}	20752	0x5110, 0x5111	32b, float
P_{inst2}	20754	0x5112, 0x5113	32b, float
P_{inst3}	20756	0x5114, 0x5115	32b, float
P_{inst4}	20758	0x5116, 0x5117	32b, float

3.10.2 0x5200 Last PQ interval values (PQ module)

These registers provide valid readings only with PQ firmware module enabled.

Values in this table are computed in 10 minute intervals (length of this interval can be set). f_{avg} is average frequency during interval.

fmostly , falways, fbelow , fabove are counters. Every $10\ s$ value is taken and appropriate counter or counters are incremented.

 U_{1-4} and THD_{1-4} are average values for 10 minute interval.

Uharm1-4are encoded harmonic values. There is 1 bit for each harmonic 0 = OK, 1 = this harmonic is out of defined range.

PST₁₋₄ are flicker values.

 UNB_U is average value of Voltage unbalance in %.

RCS_{Count} is number of 3s measurements

 RCS_{L1-3} are numbers of measurements out of toleration.

Mapped Data	base	address	size/type
Mapped Data	DEC	HEX	size/type
f_{avg}	20992	0x5200	32b, float
f_{mostly}	20994	0x5202	16b
f_{always}	20995	0x5203	16b
f_{below}	20996	0x5204	16b
f_{above}	20997	0x5205	16b
U_1	20998	0x5206	32b, float
U_2	21000	0x5208	32b, float
U_3	21002	0x520A	32b, float
U_4	21004	0x520C	32b, float
$THD_{U\ 1}$	21006	0x520E	32b, float
$THD_{U 2}$	21008	0x5210	32b, float
$THD_{U 3}$	21010	0x5212	32b, float
$THD_{U \ 4}$	21012	0x5214	32b, float
U_{harm1}	21014	0x5216	64b
U_{harm2}	21018	0x521A	64b
U_{harm3}	21022	0x521E	64b
U_{harm4}	21026	0x5222	64b
P_{ST1}	21030	0x5226	32b, float
P_{ST2}	21032	0x5228	32b, float
P_{ST3}	21034	0x522A	32b, float
P_{ST4}	21036	0x522C	32b, float
UNB_U	21038	0x522E	32b, float
RCS_{count}	21040	0x522F	16 bit,
RCS_{L1}	21041	0x5230	16 bit,
RCS_{L2}	21042	0x5231	16 bit,
RCS_{L3}	21043	0x5232	16 bit,

3.10.3 0x5400 Voltage Events - Table - Swells (PQ module)

mapped data	base	base address		Desc	ription
mapped data	DEC	HEX	size/type	Overvoltage [%]	Duration [ms]
<i>S</i> 1	21504	0x5400	32b, int	<i>u</i> ≥ 120	10 ≤ t ≤ 200
<i>T</i> 1	21506	0x5402	32b, int	120 > u > 110	10 = 1 = 200
S2	21508	0x5404	32b, int	<i>u</i> ≥ 120	500 < t ≤ 5000
T2	21510	0x5406	32b, int	120 > u > 110	300 < t = 3000
<i>S</i> 3	21512	0x5408	32b, int	<i>u</i> ≥ 120	5000 < t ≤ 60000
<i>T</i> 3	21514	0x540A	32b, int	120 > u > 110	3000 < i = 00000

3.10.4 0x540C Voltage Events - Table - Dips (PQ module)

mapped data	base	address	size/type	Descrip	tion
mapped data	DEC	HEX	size/type	Residual voltage u %	Duration [ms]
A1	21516	0x540C	32b, int	90 > <i>u</i> ≥ 80	
<i>B</i> 1	21518	0x540E	32b, int	80 > <i>u</i> ≥ 70	
<i>C</i> 1	21520	0x5410	32b, int	70 > <i>u</i> ≥ 40	$10 \le t \le 200$
<i>D</i> 1	21522	0x5412	32b, int	40 > <i>u</i> ≥ 5	
<i>X</i> 1	21524	0x5414	32b, int	5 > <i>u</i>	
A2	21526	0x5416	32b, int	90 > <i>u</i> ≥ 80	
B2	21528	0x5418	32b, int	80 > <i>u</i> ≥ 70	
C2	21530	0x541A	32b, int	70 > <i>u</i> ≥ 40	$200 < t \le 500$
D 2	21532	0x541C	32b, int	40 > <i>u</i> ≥ 5	
X2	21534	0x541E	32b, int	5 > <i>u</i>	
A3	21536	0x5420	32b, int	90 > <i>u</i> ≥ 80	
<i>B</i> 3	21538	0x5422	32b, int	80 > <i>u</i> ≥ 70	F00< 1000
C3	21540	0x5424	32b, int	70 > <i>u</i> ≥ 40	500< <i>t</i> ≤1000
D3	21542	0x5426	32b, int	40 > <i>u</i> ≥ 5	
X3	21544	0x5428	32b, int	5 > <i>u</i>	
A4	21546	0x542A	32b, int	90 > <i>u</i> ≥ 80	
B4	21548	0x542C	32b, int	80 > <i>u</i> ≥ 70	
C4	21550	0x542E	32b, int	70 > <i>u</i> ≥ 40	1000 < <i>t</i> ≤ 5000
D4	21552	0x5430	32b, int	40 > <i>u</i> ≥ 5	
<i>X</i> 4	21554	0x5432	32b, int	5 > <i>u</i>	
A5	21556	0x5434	32b, int	90 > <i>u</i> ≥ 80	
<i>B</i> 5	21558	0x5436	32b, int	80 > <i>u</i> ≥ 70	
C 5	21560	0x5438	32b, int	70 > <i>u</i> ≥ 40	$5000 < t \le 60000$
D 5	21562	0x543A	32b, int	40 > <i>u</i> ≥ 5	
<i>X</i> 5	21564	0x543C	32b, int	5 > <i>u</i>	_
Last Erase Time	21566	0x543E	32b, int	Last erase time in s	from 1.1.2000

3.10.5 0x5500 Voltage Events - Last Event (PQ module)

mapped data	base address		size/type	Description
mapped data	DEC	HEX	size/type	Description
P hase	21760	0x5500	16b, int	see note bellow*.
Event Type	21761	0x5501	16b, int	1 = Swell, $2 = $ Dip,
				3 = Interruption, $4 = Power$
				Failure
Event Time	21762	0x5502	64b, int	Time of the event in ms from
				1.1.2000
Duration	21766	0x5506	32b, int	Duration of event in ms
Value	21768	0x5508	32b, float	Maximal/Minimal measured
				voltage

^{*} $3\times1p$ measurement: 0 = L1, 1 = L2, 2 = L3, 3 = L4

3.11 0x5300 Ripple Control Signal (RCS module)

These registers provide valid readings of ripple control signal levels only with RCS firmware module enabled.

RCS L1 – 3T time is a time and date of the last received RCS telegram in KMBTime - seconds since 1.1.2000.

RCS L1-3{AV G|MIN |MAX} are minimum, maximum and average values of signal in V for all true bits (value=1) in the last received telegram.

mapped data	base	address	size/type
mapped data	DEC	HEX	size/type
$Urc1_{Time}$	21248	0x5300	64b
$Urc1_{AVG}$	21252	0x5304	32b, float
$Urc1_{MIN}$	21254	0x5306	32b, float
$Urc1_{MAX}$	21256	0x5308	32b, float
$Urc2_{Time}$	21258	0x530A	64b
$Urc2_{AVG}$	21262	0x530E	32b, float
$Urc2_{MIN}$	21264	0x5310	32b, float
$Urc2_{MAX}$	21266	0x5312	32b, float
$Urc3_{Time}$	21268	0x5314	64b
$Urc3_{AVG}$	21272	0x5318	32b, float
Urc3 _{MIN}	21274	0x531A	32b, float
$Urc3_{MAX}$	21276	0x531C	32b, float

RCS Message start-bit 1 and 2 (RMS value, fw 2.0.45+)

mapped data	base address		size/type
mapped data	DEC	HEX	size/type
<i>Urc</i> 1 <i>b</i> 1	21280	0x5320	32b, float
Urc1b2	21282	0x5322	32b, float

³p measurement: 0x80|0x01 = L1, 0x80|0x02 = L2, 0x80|0x04 = L3

Urc2b1	21284	0x5324	32b, float
Urc2b2	21286	0x5326	32b, float
Urc3b1	21288	0x5328	32b, float
Urc3b2	21290	0x532A	32b, float

3.12 0x6000 Modbus Master (opt. MM module)

Modbus master reads configured input data from itself or from other instruments (slaves) connected to its serial line. It converts all the input data to a block of unified values (float type) starting on register 0x6000. Mapping of the data source is made in an instument configuration (ENVIS.daq). Modbus master result values are provided in actual data, on the web site and in the register map of a master instument. MM data is ordered in up to 16 sets (in fw. 2.0). One set can hold up to 100 float results, all 16 sets together can handle 300 results. Each set represents only one slave address. More than one MM set can be used to process data from a given slave instrument. In the following map we use addressing of the Modbus RTU protocol to select distinct sets - modbus TCP addres 1 provides data from set 1, address 2 from set 2 etc (X in table marks set nr.).

Read out is performed automatically by the master in a predefined period and under normal conditions it could only be interrupted with an ES gateway module connection to the same master, the incomming ES connections have priority over the MM to access the slave bus to allow any 3rd party protocol to reach the given slave as well. Such connection can be used to configure, upgrade or occasionally read out proprietary values from slave units.

mapped data	base	address	size/type
mapped data	DEC	HEX	size/type
First MM value for set X	24576	0x6000	32b, float
up to 98× per set	•••	•••	•••
Last MM value for set X	24776	0x60C8	32b, float

3.13 0x6200 Actual Data for DC and AC/DC

Starting with firmware v. 3.0 instruments provide voltage and current average value readings over the aggregation interval - the DC component. Under special configuration option this even allows to use fixed sampling and to calculate f, U, I, P and ~Q in time domain for signals with power frequency of 0 or 5 Hz up to 500 Hz. Lower limit is different for instrument with different current sensors. This feature allows to correctly evaluate special quaintities for DC grids such as photovoltaics, UPS and baterry backups, transportation etc, or to monitor appliances supplied by a variable speed drive.

- avg ... mean value of the sampled volatge of curent signal of the respective channel, also the DC component of such.
- min, max ... extreme value of the sampled volatge of current signal of the respective channel
- instruments with more than 4 current inputs do use address multiplexing (todo doplnit kapitolu) for the quantities derived from I5 and above channels.

mapped data	base	address	size/type
mapped data	DEC	HEX	size/type
$Uavg_{L1}$	25088	0x6200	32b, float
$Uavg_{L2}$	25090	0x6202	32b, float
$Uavg_{L3}$	25092	0x6204	32b, float
$Uavg_{L4}$	25094	0x6206	32b, float

$Umin_{L1}$	25096	0x6208	32b, float
$Umin_{L2}$	25098	0x620A	32b, float
$Umin_{L3}$	25100	0x620C	32b, float
$Umin_{L4}$	25102	0x621E	32b, float
$Umax_{L1}$	25104	0x6210	32b, float
$Umax_{L2}$	25106	0x6212	32b, float
$Umax_{L3}$	25108	0x6214	32b, float
$Umax_{L4}$	25110	0x6216	32b, float

	1		1
mapped data	base	address	size/type
mapped data	DEC	HEX	size/type
$Iavg_{L1}$	25112	0x6218	32b, float
$Iavg_{L2}$	25114	0x621A	32b, float
$Iavg_{L3}$	25116	0x621C	32b, float
$Iavg_{L4}$	25118	0x621E	32b, float
$Imin_{L1}$	25120	0x6220	32b, float
$Imin_{L2}$	25122	0x6222	32b, float
$Imin_{L3}$	25124	0x6224	32b, float
$Imin_{L4}$	25126	0x6226	32b, float
$Imax_{L1}$	25128	0x6228	32b, float
$Imax_{L2}$	25130	0x622A	32b, float
$Imax_{L3}$	25132	0x622C	32b, float
$Imax_{L4}$	25134	0x622E	32b, float

3.14 0x9000 Input and Output Values

3.14.1 0x9000 Input Values

manned data	base	address	sign /trypo
mapped data	DEC	HEX	size/type
Digital Inputs (1-16)	36864	0x9000	16b
Digital Inputs (17-32)	36865	0x9001	16b
Frequency Counter 1 (FC1)	36866	0x9002	32b, float
Frequency Counter 2 (FC2)	36868	0x9004	32b, float
Frequency Counter 3 (FC3)	36870	0x9006	32b, float
Frequency Counter 4 (FC4)	36872	0x9008	32b, float
Frequency Counter 5 (FC5)	36874	0x900A	32b, float
Frequency Counter 6 (FC6)	36876	0x900C	32b, float
Frequency Counter 7 (FC7)	36878	0x900D	32b, float
Frequency Counter 8 (FC8)	36880	0x900F	32b, float
Pulse Counter 1 (PC1)	36882	0x9012	32b, float
Pulse Counter 2 (PC2)	36884	0x9016	32b, float
Pulse Counter 3 (PC3)	36886	0x901A	32b, float
Pulse Counter 4 (PC4)	36888	0x901E	32b, float
Pulse Counter 5 (PC5)	36890	0x9022	32b, float
Pulse Counter 6 (PC6)	36892	0x9026	32b, float
Pulse Counter 7 (PC7)	36894	0x902A	32b, float
Pulse Counter 8 (PC8)	36896	0x902E	32b, float
Clear Time of PC1	36914	0x9032	64b, KMBtime
Clear Time of PC2	36918	0x9036	64b, KMBtime

Clear Time of PC3	36922	0x903A	64b, KMBtime
Clear Time of PC4	36926	0x903E	64b, KMBtime
Clear Time of PC5	36930	0x9042	64b, KMBtime
Clear Time of PC6	36934	0x9046	64b, KMBtime
Clear Time of PC7	36938	0x904A	64b, KMBtime
Clear Time of PC8	36942	0x904E	64b, KMBtime

mapped data	base	address	size/type	
mapped data	DEC	HEX	Size/type	
Analog Input 1	36994	0x9082	32b, float	
Analog Input 2	36996	0x9084	32b, float	
Analog Input 3	36998	0x9086	32b, float	
Analog Input 4	37000	0x9088	32b, float	
Temperature 1 - Internal (Ti)	37056	0x90C0	32b, float	
Temperature 2 - External (Te)	37058	0x90C2	32b, float	
Temperature 3	37060	0x90C4	32b, float	
Temperature 4	37062	0x90C6	32b, float	

3.14.2 0x9300 Output Values

It is possible to control real as well as virtual outputs and alarms. If an output is used in configuration of the I/O management it is blocked in modbus and can not be controlled remotely. Value of the controlled output(s) can be set to 0 or 1. Selection of outputs to be assigned is controlled by mask (high byte of the register). Controlled outputs have the corresponding mask bit set to 1. Rest of the mask bits are set to 0.

mapped data	base a	address	size/type	encoding
mapped data	DEC	HEX	size/type	cheoding
Digital Outputs (1-8)	37632	0x9300	16b	high byte mask, low byte status
Digital Outputs (9-16)	37633	0x9301	16b	high byte mask, low byte status
Digital Outputs (17-24)	37634	0x9302	16b	high byte mask, low byte status
Digital Outputs (25-32)	37635	0x9303	16b	high byte mask, low byte status
I/O Variables 1-8	37636	0x9304	16b	high byte mask, low byte status
I/O Variables 9-16	37638	0x9305	16b	high byte mask, low byte status
Analog Output 1	37696	0x9340	32b, float	
Analog Output 2	37698	0x9342	32b, float	
Analog Output 3	37700	0x9344	32b, float	
Analog Output 4	37702	0x9346	32b, float	

Example of Digital Output encoding:

Reading	M	SB	16b register value								LS	SB				
rtodding		Mask of the output					Status of the outp					utp	ut			
Output nr.	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
Retrived value	0	1	0	0	1	1	1	1	0	0	0	0	0	0	1	0
Description	0	=	ou	tput	is n	ot a	vaila	able	0	=	ou	tput	is n	ot a	ctiv	e
Description	=	available for control				1	=	ou	tput	is a	ctiv	e				

Writing	M	SB	16b register value								LS	SB				
vviitiing		M	ask	of t	he o	utpu	ıt		Status of the outp							
Output nr.	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
Written value	0	0	1	0	1	1	0	1	0	0	1	0	1	0	0	1
Description	0	=	ou	tput	WOI	n't c	han	ge	0	=	de	activ	ate	outp	ut	
Description	1	=	ou	tput	wil	l cha	ange		1	=	ac	tivat	e ou	tput		
Result									X	X	1	X	1	0	X	1

While writing the value & operator is applied to mask and status (mask & status) before applying the changes to the outputs.

3.14.3 0x9700 Hour Meter

Instruments with more than 4 channels (as UMD 701, UMD 709 und 710 or UMD 807) might offer more than 4 hour meters configured in the I/O configuration. In such case the HMs above 4 are available in a virtual instrument space, which modbus address is the actual instrument address incremented by 20. The following HM block has been modified in firmware 2.1.25.

mapped data	base	address	size/type
mapped data	DEC	HEX	size/type
Hour Meter 1 Active (HM1)	38656	0x9700	64b, int
Hour Meter 1 Passive	38660	0x9704	64b, int
Hour Meter 2 Active	38664	0x9708	64b, int
Hour Meter 2 Passive	38668	0x970C	64b, int
Hour Meter 3 Active	38672	0x9710	64b, int
Hour Meter 3 Passive	38676	0x9714	64b, int
Hour Meter 4 Active	38680	0x9718	64b, int
Hour Meter 4 Passive	38684	0x971C	64b, int
Hour meter 1 counter	38688	0x9720	32b, int
Hour meter 2 counter	38690	0x9722	32b, int
Hour meter 3 counter	38692	0x9724	32b, int
Hour meter 4 counter	38694	0x9726	32b, int
Clear Time of HM1	38696	0x9728	64b, KMBtime
Clear Time of HM2	38698	0x972A	64b, KMBtime
Clear Time of HM3	38700	0x972C	64b, KMBtime
Clear Time of HM4	38702	0x972E	64b, KMBtime
First ON time - HM1	38704	0x9730	32b, KMBtime
First ON time - HM2	38706	0x9732	32b, KMBtime
First ON time - HM3	38708	0x9734	32b, KMBtime
First ON time - HM4	38710	0x9736	32b, KMBtime
Last ON time - HM1	38712	0x9738	32b, KMBtime

Last ON time - HM2	38714	0x973A	32b, KMBtime
Last ON time - HM3	38716	0x973C	32b, KMBtime
Last ON time - HM4	38718	0x973E	32b, KMBtime
Last OFF time - HM1	38720	0x9740	32b, KMBtime
Last OFF time - HM2	38722	0x9742	32b, KMBtime
Last OFF time - HM3	38724	0x9744	32b, KMBtime
Last OFF time - HM4	38726	0x9746	32b, KMBtime

3.15 0xA000 PFC Actual Data & Status (UMC 2xxx, fw. 2.1+)

mannad data		base	siza/tyma	
mapped data	unit	DEC	HEX	size/type
3RC(3p cap. compensation reserve power)	var	40960	0xA000	32b, float
3RL(3p ind. comp. reserve power)	var	40962	0xA002	32b, float
RC1(cap. comp. reserve power - 1. ph)	var	40964	0xA004	32b, float
RC2(cap. comp.n reserve power - 2. ph)	var	40966	0xA006	32b, float
RC3(cap. comp. reserve power - 3. ph)	var	40968	0xA008	32b, float
RL1(ind. comp. reserve power - 1. ph)	var	40970	0xA00A	32b, float
RL2(ind. comp. reserve power - 2. ph)	var	40972	0xA00C	32b, float
RL3(ind. comp. reserve power - 3. ph)	var	40974	0xA00E	32b, float
CHL1(capacitors harmonic load - 1. ph)	%	40976	0xA010	32b, float
CHL2(capacitors harmonic load - 2. ph)	%	40978	0xA012	32b, float
CHL3(capacitors harmonic load - 3. ph)	%	40980	0xA014	32b, float
reserve		40982	0xA016	32b
$3\Delta Qfh(3p control deviation)$	var	40984	0xA018	32b, float
$\Delta Qfh1$ (control deviation - 1. ph)	var	40986	0xA01A	32b, float
$\Delta Qfh2$ (control deviation - 2. ph)	var	40988	0xA01C	32b, float
$\Delta Qfh3$ (control deviation - 3. ph)	var	40990	0xA01E	32b, float
reserve		40992	0xA020	32b
PFC state		40994	0xA022	32b
Output & Input state		40996	0xA024	32b
Alarm State		40998	0xA026	32b
Control time - 3p	S	41000	0xA028	16b
Control time - 1. ph	S	41001	0xA029	16b
Control time - 2. ph	S	41002	0xA02A	16b
Control time - 3. ph	S	41003	0xA02B	16b
reserve		41004	0xA02C	32b
PFC Output - Type & Condition - 1.1÷2.9		41006 - 41023	0xA02E - 0xA03F	16b
3p Output Power - 1.1÷2.9	var	41024 - 41059	0xA040 - 0xA063	32b, float
reserve		41060	0xA065	32b
# of switching per output - 1.1 ÷ 2.9		41062 - 41097	0xA067 - 0xA089	32b
Switch-on time per output - 1.1÷2.9	h	41098 - 41133	0xA08A - 0xA0AD	32b, float

Encoding of PFC state

PFC state	40994 (0xA022)
	0 = Standby (valid for control state only)
	1 = AOR Process in progress (automatic output recognition)
bits $0 \div 3$	2 = PFC Control in progress (valid for control state only)
	3 = Temporary Standby (valid for control state only)
	4 = CT test
	5 = ACD Process in progress (automatic connection detection)
bit 4	'0' = manual state
011 4	'1' = control state
bit 5	PFC - tariff actual state
bit 6	'0' = alarm is not active
on o	'1' = alarm is active
bit 7	'0' = export is not present (consumption)
OIL /	'1' = export is present (generation)

Encoding of Output and Input state

Output & Input state	40996 (0xA024)
	output 1.1 ÷ 1.9
bits $0 \div 8$	'0' - disengaged
	'1' - engaged
	output 2.1 ÷ 2.9
bits 9 ÷ 17	'0' - disengaged
	'1' - engaged
bit 31	'0' - digital input not active
bit 31	'1' - digital input active

Encoding of Alarm state

Alaı	m state		40998 (0xA026)						
'0' - a	'0' - alarm is not active (no indication, no actuation)								
'1' - a	larm is acti	ve (indic	ation or actuation or both)						
bit 0	U<<	bit 9	PF><						
bit 1	U<	bit 10	NS>						
bit 2	U>	bit 11	OE						
bit 3	I<	bit 12	T1><						
bit 4	I>	bit 13	T2><						
bit 5	CHL>	bit 14	EXT						
bit 6	THDU>	bit 15	OoC						
bit 7	THDI>	bit 16	RCF						
bit 8	P<								

Encoding of PFC Output - Type & Condition

PFC Output - Type & Condition	41006 - 41023		
	Output type		
bits 0 ÷ 5	0 = 0	7 = C123	14 = L123
	1 = C1	8 = L1	15 = Z
	2 = C2	9 = L2	16 = Alarm
	3 = C3	10 = L3	17 = Fan
	4 = C12	11 = L12	18 = Heater
	5 = C23	12 = L23	
	6 = C31	13 = L31	
bit 6 ÷ 7	'00' $(0) = control$		
	'01' (1) = fixed on		
	'10' $(2) = $ fixed off		
bit 8	'0' = step is OK		
	'1' = step is faulty		

PQ Plus GmbH Hagenauer Str. 6 91094 Langensendelbach

Tel.: 09133-60640-0 Fax.: 09133-60640-100 E-Mail: <u>info@pq-plus.de</u> Internet: <u>www.pq-plus.de</u>