Started on	Wednesday, 8 May 2024, 10:22 PM
State	Finished
Completed on	Wednesday, 8 May 2024, 10:39 PM
Time taken	16 mins 37 secs
Grade	8.00 out of 9.00 (88.89%)
Question 1	
Correct	
Mark 1.00 out of 1.00	

What do you mean by generalization error in terms of the SVM?

- igcup a. How far the hyperplane is from the support vectors
- ob. The threshold amount of error in an SVM
- ullet c. How accurately the SVM can predict outcomes for unseen data \checkmark

The correct answer is: How accurately the SVM can predict outcomes for unseen data

Question 2

Correct

Mark 1.00 out of 1.00

A network is created when we multiple neurons stack together. Let us take an example of a neural network simulating an XNOR function.

You can see that the last neuron takes input from two neurons before it. The activation function for all the neurons is given by:

$$f(x) = \begin{cases} 0, & for \ x < 0 \\ 1, & for \ x \ge 0 \end{cases}$$

Suppose X1 is 0 and X2 is 1, what will be the output for the above neural network?

- a. 1
- b. o

 ✓

The correct answer is: 0

Question 3

Incorrect

Mark 0.00 out of 1.00

What is the sequence of the following tasks in a perceptron?

- 1. Initialize weights of perceptron randomly
- 2. Go to the next batch of dataset
- 3. If the prediction does not match the output, change the weights
- 4. For a sample input, compute an output
- a. 1,4,3,2
- b. 4, 3, 2, 1
- C. 3,1,2,4
- d. 1, 2, 3, 4 ×

The correct answer is: 1, 4, 3, 2

Question 4

Correct

Mark 1.00 out of 1.00

Which of the following is true about training and testing error in such case?

Suppose you want to apply AdaBoost algorithm on Data D which has T observations. You set half the data for training and half for testing initially. Now you want to increase the number of data points for training T1, T2 ... Tn where T1 < T2.... Tn.

- $\, \bigcirc \,$ a. $\,$ The difference between training error and test error will not change
- b. The difference between training error and test error increases as number of observations increases
- \odot c. The difference between training error and test error decreases as number of observations increases \checkmark
- d. None of These

The correct answer is: The difference between training error and test error decreases as number of observations increases

Question 5

Correct

Mark 1.00 out of 1.00

In the image below, which would be the best value for k assuming that the algorithm you are using is k-Nearest Neighbor.

- a. 10 ✓
- ob. 50
- C. 20
- Od. 3

The correct answer is: 10

Question 6	
Correct	
Mark 1.00 out of 1.00	
nation of the	
Which of the follo	owing will be Euclidean Distance between the two data point A(1,3) and B(2,3)
○ a. 4	
O b. 2	
© c. 1 ✓	
O d. 8	
The correct answer is: 1	
Question 7	
Correct	
Mark 1.00 out of 1.00	

O a.	Size does not matter
O b.	Medium-sized datasets
C.	Large datasets 🗸
O d.	Small datasets

The correct answer is: Large datasets

Question 8	
Correct	
Mark1.00 out of 1.00	

Which of the following statement(s) correctly represents a real neuron?

- a. A neuron has a single input but multiple outputs
- ob. A neuron has multiple inputs but a single output only
- o. A neuron has multiple inputs and multiple outputs
- od. A neuron has a single input and a single output only
- e. All of the above statements are valid ✓

The correct answer is: All of the above statements are valid

Question 9
Correct

Mark 1.00 out of 1.00

Let us assume we implement an AND function to a single neuron. Below is a tabular representation of an AND function:

X1	X2	X1 AND X2
o	О	0
o	1	0
1	o	0
1	1	1

The activation function of our neuron is denoted as:

$$f(x) = \begin{cases} 0, & for \ x < 0 \\ 1, & for \ x \ge 0 \end{cases}$$

What would be the weights and bias?

(Hint: For which values of w1, w2 and b does our neuron implement an AND function?)

- \bigcirc a. Bias = 1, w1 = 1.5, w2 = 1.5
- b. None of these
- © c. Bias = -1.5, w1 = 1, w2 = 1 ✓

The correct answer is: Bias = -1.5, w1 = 1, w2 = 1