AI1103-Assignment 5

W Vaishnavi AI20BTECH11025

Download all latex-tikz codes from

https://github.com/vaishnavi-w/AI1103/blob/main/ Assignment5/latex5.tex

OUESTION

Let X_1 and X_2 be i.i.d. with probability mass function $f_{\theta}(x) = \theta^{x} (1 - \theta)^{1-x}$; x = 0, 1 where $\theta \in (0, 1)$. Which of the following statements are true?

- 1) $X_1 + 2X_2$ is a sufficient statistic
- 2) $X_1 X_2$ is a sufficient statistic
- 3) $X_1^2 + X_2^2$ is a sufficient statistic 4) $X_1^2 + X_2$ is a sufficient statistic

Solution

Given that, X_1 and X_2 are i.i.d. with probability mass function

$$f(x) = \begin{cases} (1 - \theta) & x = 0\\ \theta & x = 1 \end{cases}$$
 (0.0.1)

A statistic t = T(X) is sufficient for a parameter θ if the conditional probability distribution of the data, given the statistic t = T(X) does not depend on the parameter θ . i.e,

$$P_{\theta}(X_1 = x_1, X_2 = x_2 | T = t) \tag{0.0.2}$$

is independent of θ for all x_1, x_2 and t

1) Let $T = X_1 + 2X_2$

Consider a case where $x_1 = 0$, $x_2 = 0$ and t = 0

$$Pr(T = 0) = Pr(X_1 + 2X_2 = 0)$$
 (0.0.3)

$$= \Pr(X_1 = 0, X_2 = 0) \qquad (0.0.4)$$

As X_1 and X_2 are independent

$$Pr(T = 0) = Pr(X_1 = 0) Pr(X_2 = 0)$$

= $(1 - \theta)^2$ (0.0.5)

The conditional probability,

$$\Pr(X_1 = 0, X_2 = 0 | T = 0)$$

$$= \frac{\Pr((X_1 = 0, X_2 = 0) \cap (T = 0))}{\Pr(T = 0)} \quad (0.0.6)$$

From (0.0.4), $(X_1 = 0, X_2 = 0) \subseteq (T = 0)$

$$= \frac{\Pr(X_1 = 0, X_2 = 0)}{\Pr(T = 0)} = \frac{(1 - \theta)^2}{(1 - \theta)^2} = 1 \quad (0.0.7)$$

Similarly, conditional probabilities for other values of x_1, x_2 and t are given in table 1

x_1	x_2	t	Conditional probability
		$t = X_1 + 2X_2$	$P_{\theta}(X_1 = x_1, X_2 = x_2 T = t)$
0	0	0	1
		otherwise	0
1	0	1	1
		otherwise	0
0	1	2	1
		otherwise	0
1	1	3	1
		otherwise	0

TABLE 1: Conditional Probabilities

From table 1, all the conditional probabilities are independent of θ

 $\therefore X_1 + 2X_2$ is a sufficient statistic.

2) Let $T = X_1 - X_2$

Consider a case where $x_1 = 0$, $x_2 = 0$ and t = 0

$$Pr(T = 0) = Pr(X_1 - X_2 = 0)$$

$$= Pr(X_1 = 0, X_2 = 0) + Pr(X_1 = 1, X_2 = 1)$$
(0.0.8)

As X_1 and X_2 are independent

=
$$\Pr(X_1 = 0) \Pr(X_2 = 0)$$

+ $\Pr(X_1 = 1) \Pr(X_2 = 1) = (1 - \theta)^2 + \theta^2$
(0.0.9)

The conditional probability,

$$\Pr(X_1 = 0, X_2 = 0 | T = 0)$$

$$= \frac{\Pr((X_1 = 0, X_2 = 0) \cap (T = 0))}{\Pr(T = 0)} \quad (0.0.10)$$

From (0.0.8),
$$(X_1 = 0, X_2 = 0) \subseteq (T = 0)$$

$$= \frac{\Pr(X_1 = 0, X_2 = 0)}{\Pr(T = 0)} = \frac{(1 - \theta)^2}{(1 - \theta)^2 + \theta^2}$$
(0.0.11)

depends on θ .

 $\therefore X_1 - X_2$ is not a sufficient statistic.

3) Let $T = X_1^2 + X_2^2$

Consider a case where $x_1 = 1, x_2 = 0$ and t = 1

$$Pr(T = 1) = Pr(X_1^2 + X_2^2 = 1)$$

$$= Pr(X_1 = 1, X_2 = 0) + Pr(X_1 = 0, X_2 = 1)$$

$$= \theta(1 - \theta) + (1 - \theta)\theta = 2\theta(1 - \theta) \quad (0.0.12)$$

The conditional probability,

$$\Pr(X_1 = 1, X_2 = 0 | T = 1)$$

$$= \frac{\Pr((X_1 = 1, X_2 = 0) \cap (T = 0))}{\Pr(T = 1)} \quad (0.0.13)$$

From (0.0.12),
$$(X_1 = 1, X_2 = 0) \subseteq (T = 1)$$

$$= \frac{\Pr(X_1 = 1, X_2 = 0)}{\Pr(T = 1)} = \frac{\theta(1 - \theta)}{2\theta(1 - \theta)} = \frac{1}{2}$$
(0.0.14)

Similarly, conditional probabilities for other values of x_1, x_2 and t are given in table 3

x_1	x_2	t $t = X_1^2 + X_2^2$	Conditional probability $P_{\theta}(X_1 = x_1, X_2 = x_2 T = t)$
0	0	0 otherwise	1 0
1	0	1 otherwise	$\frac{1}{2}$
0	1	1 otherwise	$\frac{1}{2}$
1	1	2 otherwise	1 0

TABLE 3: Conditional Probabilities

From table 3, all the conditional probabilities are independent of θ

 $\therefore X_1^2 + X_2^2 \text{ is a sufficient statistic.}$ 4) Let $T = X_1^2 + X_2$

4) Let
$$T = X_1^2 + X_2$$

Consider a case where $x_1 = 1$, $x_2 = 0$ and t = 1

$$Pr(T = 1) = Pr(X_1^2 + X_2 = 1)$$

$$= Pr(X_1 = 1, X_2 = 0) + Pr(X_1 = 0, X_2 = 1)$$

$$= \theta(1 - \theta) + (1 - \theta)\theta = 2\theta(1 - \theta) \quad (0.0.15)$$

The conditional probability,

$$Pr(X_1 = 1, X_2 = 0 | T = 1)$$

$$= \frac{Pr((X_1 = 1, X_2 = 0) \cap (T = 0))}{Pr(T = 1)} \quad (0.0.16)$$

From (0.0.15), $(X_1 = 1, X_2 = 0) \subseteq (T = 1)$

$$= \frac{\Pr(X_1 = 1, X_2 = 0)}{\Pr(T = 1)} = \frac{\theta(1 - \theta)}{2\theta(1 - \theta)} = \frac{1}{2}$$
(0.0.17)

Similarly, conditional probabilities for other values of x_1, x_2 and t are given in table 4

x_1	x_2	t	Conditional probability
		$t = X_1^2 + X_2$	$P_{\theta}(X_1 = x_1, X_2 = x_2 T = t)$
0	0	0	1
		otherwise	0
1	0	1	$\frac{1}{2}$
		otherwise	Õ
0	1	1	$\frac{1}{2}$
		otherwise	Õ
1	1	2	1
		otherwise	0

TABLE 4: Conditional Probabilities

From table 4, all the conditional probabilities are independent of θ

 $\therefore X_1^2 + X_2$ is a sufficient statistic.

Answer: Options 1,3,4