Instruções Paralelismo Unidade de Controle Exercícios

Arquitetura e Organização de Computadores Unidade Central de Processamento - Parte 2

Prof. Alexandre Tannus

- Instruções
- Paralelismo
- 3 Unidade de Controle
- 4 Exercícios

Conjunto de Instruções

- ► Interface entre o programador e a máquina
- Cada instrução realiza uma tarefa simples
- Operações complexas podem ser construídas a partir de operações simples

Formato das instruções

- Execução sequencial
- Exceções
 - Instruções de salto
 - Instruções de desvio

Tipos de instruções

Tipo	Formato (bits)													
R	opcode (6)	rs(5)	rt(5)	rd(5)	shamt(5)	function(6)								
1	opcode (6)	rs(5)	rs(5) $rt(5)$ imediato(16)											
J	opcode(6)	endereço(26)												

Instruções Aritméticas e Lógicas Básicas

Operação	Comando	Sintaxe	Função
Adição	add	add \$t0,\$s0,\$s1	32
Subtração	sub	sub \$t0,\$s0,\$s1	34
Lógica AND	and	and \$t0,\$s0,\$s1	36
Lógica OR	or	or \$t0,\$s0,\$s1	37
Lógica XOR	xor	<i>xor</i> \$ <i>t</i> 0,\$ <i>s</i> 0,\$ <i>s</i> 1	38
Lógica NOR	nor	nor \$t0,\$s0,\$s1	39
Adição imediata	addi	addi \$t0,\$s0, constante	8
Lógica AND imediata	andi	andi \$t0,\$s0, constante	12
Lógica OR imediata	ori	ori \$t0,\$s0, constante	13
Lógica XOR imediata	xori	xori \$t0,\$s0, constante	14

Instruções de Carga (Load)e Armazenamento (Store)

- ► Transferência de 32 bits entre memória e registradores
- Instrução tipo I
- Regsitrador rt destino (load) ou origem (store)
- Endereço de memória Constante de deslocamento + valor do registrador rs

Instruções de Salto (Jump) e Desvio (Branch)

- ► Alteram o fluxo de execução sequencial
- Salto
 - ▶ Instrução j ou jr
- Desvio
 - ▶ bne diferente de
 - ▶ bltz menor que
 - ▶ beq igual a

Modos de endereçamento

- Implícito
- ► Imediato
- ► Por registrador
- Base
- ► Relativo ao PC
- Pseudodireto

Ciclo de Instrução

- Busca
 - Leitura da próxima instrução da memória
- Execução
 - Interpretação e efetuação da operação indicada
- Interrupção
 - Verificação de ocorrência de interrupção

Ciclo de instrução

Arquitetura CISC

- ► Anos 80 computadores mais complexos
- ► CISC Complex Instruction Set Computer
- Conjuntos de instruções cada vez mais complexas e maiores
 - Pode afetar o desempenho
 - Maior dificuldade de implementação de outras funções

Arquitetura RISC

- ► RISC Reduced Instruction Set Computer
- Diminuição do número de instruções disponíveis
- ► Padronização do tamanho das instruções
- Introdução do pipeline

Arquitetura RISC

- ► Controle via *hardware*
- ► Maior número de registradores
- ► Modos de endereçamento limitados

Paralelismo

- ► Realizar várias coisas ao mesmo tempo
- Dois níveis
 - Instrução
 - ▶ Processador

Paralelismo de instrução

- Executar mais instruções em um determinado tempo
- Dois modelos
 - Pipelines
 - Superescalares

Pipeline

- Dividir uma instrução em vários estágios
- Dedicar uma parte do hardware para cada estágio
- Executar paralelamente vários estágios

Pipeline de 6 estágios

Pipeline de 6 estágios

- Buscar Instrução (Fetch Instruction)
 - Leitura da próxima instrução
- Decodificar Instrução
- Calcular operandos
 - Cálculo do endereço efetivo de cada operando

Pipeline de 6 estágios

- Obter operandos (Fetch Operands)
 - Obtenção dos operandos da memória
- Executar Instrução
 - ▶ Realização da operação e armazenamento do resultado no registrador
- ► Escrever operandos (*Write Operands*)
 - Cálculo do endereço efetivo de cada operando

Executando instruções

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Instrução 1	FI	BI	CO	FO	ΕI	W0												
Instrução 2							FI	BI	CO	FO	EI	WO						
Instrução 3													FI	BI	CO	FO	ΕI	WO

Executando instruções

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Instrução 1	FI	ВІ	CO	FO	EI	W0												
Instrução 2		FI	BI	CO	FO	EI	WO											
Instrução 3			FI	BI	CO	FO	EI	WO										

Superescalares

► Execução de vários *pipelines* simultaneamente

Paralelismo de processador

- ▶ Projeto de computadores com várias CPUs
- Modelos
 - Computadores paralelos
 - Multiprocessadores
 - Multicomputadores

CPU - Unidade de Controle

- ► Controla toda a operação do microprocessador
- Constituída por
 - Circuito de temporização
 - Controle e decodificação
 - Decodificador de instruções

Dentro do conceito de organização de computadores, a UCP (Unidade Central de Processamento) desempenha um papel fundamental, sendo composta por diversas partes. Em particular, a Unidade de Controle é a parte da UCP responsável por

- a armazenar resultados temporários.
- b indicar a próxima instrução a ser buscada na memória, para execução.
- c buscar instruções na memória principal e determinar o tipo dessas instruções.
- d armazenar o código da instrução que está sendo correntemente executado.
- e realizar operações como adição e subtração sobre os valores presentes nas suas entradas.

Verdadeiro ou Falso

Os chips da arquitetura RISC são mais simples e bem mais baratos que os chips da arquitetura CISC pelo fato de executarem várias centenas de instruções complexas.

Atente para as seguintes afirmações sobre arquitetura de processadores CISC e RISC:

- I A arquitetura RISC usa um número menor de registradores do que a arquitetura CISC.
- Il Na arquitetura RISC o conjunto de instruções é menor do que na arquitetura CISC.
- III Na arquitetura RISC as instruções têm tamanho variável enquanto na arquitetura CISC as instruções têm tamanho fixo.

A arquitetura de um computador X está baseada em um microprocessador concebido sob a filosofia da arquitetura CISC. Assinale a alternativa que apresenta uma das características típicas de um processador CISC.

- a Apresenta muitos registradores.
- b Possui somente instruções, sem nenhum operando na memória.
- c Suas instruções são limitadas a dois operandos, ambos sempre presentes em registradores de máquina.
- d Contém instruções de tamanho variável, conforme o modo de endereçamento utilizado.
- e Todas as suas instruções são realizadas em um único ciclo de clock.

Instruções de máquina utilizam várias técnicas de endereçamento da memória. Na técnica de endereçamento imediato, o

- a valor do operando é especificado diretamente na instrução.
- b endereço do operando é obtido diretamente do campo de endereço da instrução.
- c endereço do operando é obtido diretamente do topo da pilha do sistema.
- d endereço do operando encontra-se em um registrador predeterminado da CPU.
- e campo de endereço da instrução contém um endereço de memória onde se encontra o endereço do operando.

Uma instrução que usa o modo de endereçamento direto é mais veloz que a mesma instrução executada usando-se o modo de endereçamento imediato.

PORQUE

O modo de endereçamento direto dispensa a decodificação do valor colocado na instrução e faz apenas um acesso à memória, enquanto que o número de acessos feitos à memória, no modo imediato, depende da instrução e pode ser grande. Analisando-se as afirmações acima, conclui-se que

Diversas arquiteturas modernas de computadores, como as do tipo IBM-PC, apresentam processadores que i mplementam o conceito de pipeline. Esse conceito está relacionado com

- a a apresentação de informações visuais com maior realismo.
- b a percepção, por parte do usuário, de memória da máquina acima da memória realmente existente.
- c a segurança no acesso a informações em disco
- d o número de portas de Entrada e Saída destinadas à comunicação com equipamentos periféricos.
- e o paralelismo na execução de instruções de máquina

