Public Key Verschlüsselung

Inhalt

- Allgemeines Konzept
- Diskreter Logarithmus Begriff und Berechnung
- Diffie Hellman Schlüssel-Austausch

Public Key Verschlüsselung – Terminologie

symmetrische vs asymmetrische Systeme

symmetrisches Krypto-System:
 "gleicher" Schlüssel für Verschlüsselung/Entschlüsselung
 (Bsp: One Time Pad, Cäsar-Verschlüsselung)

asymmetrisches Krypto-System:

verschiedene Schlüssel:

e: public key (für Verschlüsselung)

d: private key (für Entschlüsselung)

(Bsp: RSA)

Public Key Verschlüsselung – Terminologie

Definition:

Ein **Public Key Krypto-System** besteht aus 3 (effizienten) Algorithmen:

- Schlüsselgenerator: erzeugt Schlüsselpaar (e, d)
- Verschlüsselungs-Algorithmus
- Entschlüsselungs-Algorithmus

Anforderungen ans Krypto-System:

- Entzifferbarkeit
- Sicherheit: Ohne Kenntnis des geheimen Schlüssels ist es nicht möglich, die Nachricht mit vernünftigem Aufwand zu entschlüsseln.

Verwendung von Public Key Krypto-Systemen

Public Key Krypto-Systeme ...

- sind in der Regel langsamer als symmetrische Verfahren.
- werden vor allem benutzt zum sicheren Schlüsselaustausch (danach: meist Anwendung von symmetrischen Verfahren).

Diskreter Logarithmus

Zentrale Annahme für die Sicherheit von vielen Kryptosystemen:
 Diskreter Logarithmus ist schwierig zu bestimmen.

5/10

Diskreter Logarithmus – Definition

• Recap - reelle Zahlen:

 $\log_a(z)$ bezeichnet die Lösung der Gleichung $a^x = z$. (Bsp: $\log_2(1024) = 10$, da $2^{10} = 1024$)

Definition

Wir betrachten die Gruppe \mathbb{Z}_n^* . Für gegebene $a, z \in \mathbb{Z}_n^*$ bezeichnet

$$\log_a(z)$$

die Lösung der Gleichung $a^x = z \pmod{n}$

1 Bemerkung: Der obige Ausdruck heisst **diskreter** Logarithmus.

Beispiele: Wir setzen n = 11. (D.h. wir betrachten \mathbb{Z}_{11}^* .)

• $\log_6(9) = ?, \log_7(5) = ?$

Diskreter Logarithmus – Beispiel

• **Aufgabe:** Vervollständigen Sie die untenstehenden Tabellen, welche die 2-er und 3-Logarithmen in \mathbb{Z}_{11}^* beinhalten:

a=	1	2	3	4	5	6	7	8	9	10
$\log_2(a)$										

a=	1	2	3	4	5	6	7	8	9	10
$\log_3(a)$										

Empfehlung: Arbeiten Sie hier nur mit der Exponentialfunktion.

Diskreter Logarithmus – Eigenschaften

Bemerkungen

- Es gibt Konstellationen, in denen der diskrete Logarithmus nicht existiert (s. vorherige Tabelle).
- Ist die Basis ein erzeugendes Element, so existieren alle zugehörigen diskreten Logarithmen (s. Tabelle mit log₂(a)).
- zugehöriger Befehl in PARI/GP: znlog
 (Beispiel-Eingabe für die Berechnung von log₂(5):
 a = Mod(2, 11), b = Mod(5, 11), znlog(b, a)

Diffie Hellman Schlüssel-Austausch

Alice

gemeinsame Wahl von p und Erzeugendes $g \in \mathbb{Z}_p^*$

Bob

1. wähle geheim $a \in \mathbb{Z}_p^*$

wähle geheim $b \in \mathbb{Z}_p^*$

 $2. A := g^a \pmod{p}$

$$A \longrightarrow B$$

3. $\text{key} = B^a$

3. key = A^b

 $B := q^b \pmod{p}$

Bem:

•
$$B^a = (g^b)^a = g^{ab}$$

$$\bullet \ \mathbf{A}^b = (g^a)^b = g^{ab}$$

Diffie Hellman Schlüssel-Austausch

Aufgabe: Spielen Sie den Diffie Hellman Austausch durch für p = 11, g = 2, a = 5 und b = 7.