Exact-Approximate Bayesian Inference for Gaussian Processes

Maurizio Filippone

School of Computing Science University of Glasgow maurizio.filippone@glasgow.ac.uk

> January 31st, 2014 Università di Torino

Motivating Application

HC - Healthy control

MSA - Multiple system atrophy

PSP - Progressive Supranuclear Palsy

IDP - Idiopathic Parkinson's disease

Relevance of the problem

Measuring Uncertainty

Data viewed as random variables

• Probabilities as degrees of belief

Models

Mapping input to labels

label = function(input, par, noise)

Models

Mapping input to labels

$$label = function(input, par, noise)$$

function can describe a physical system

$$\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix} + \begin{bmatrix} \cos(\operatorname{par}_1 x) \\ \sin(\operatorname{par}_2 y) \end{bmatrix} - \operatorname{par}_3 \begin{bmatrix} x \\ y \end{bmatrix}$$

Models

Mapping input to labels

$$label = function(input, par, noise)$$

• We may have no clue so we need assumptions on function

Gaussian Processes

• Gaussians with distance dependent covariance

Gaussian Processes

• Gaussians with distance dependent covariance

Gaussian Processes

• Gaussians with distance dependent covariance

Gaussian Process Models

Class of hierarchical models

$$p(\text{data}|\text{latent})$$
 $p(\text{latent}|\text{par})$ $p(\text{par})$

• p(latent|par) = Gaussian Process

Gaussian Process Models - Classification example

Gaussian Process Models - Count data example

Bayesian Inference

• Inference using Bayes theorem:

$$p(\operatorname{par}|\operatorname{data}) = \frac{p(\operatorname{data}|\operatorname{par})p(\operatorname{par})}{\int p(\operatorname{data}|\operatorname{par})p(\operatorname{par})d\operatorname{par}}$$

Bayesian Inference - Prior

Bayesian Inference - Data

Bayesian Inference - Posterior

Bayesian Inference and Predictions

Bayesian Inference and Predictions

Predictions for new data

$$p(\text{label}_*|\text{label}) = \int p(\text{label}_*|\text{par})p(\text{par}|\text{label}) d\text{par}$$

Monte Carlo integration:

$$\int p(|\mathrm{label}_*|\mathrm{par})p(\mathrm{par}|\mathrm{label})\,d\mathrm{par} \simeq \frac{1}{N}\sum_{i=1}^N p(|\mathrm{label}_*|\mathrm{par}_i)$$

with par; drawn from p(par|data)

Bayesian Inference vs Parameter Optimization

Bayesian Inference and Predictions

• Draw samples according to the posterior density

Bayesian inference

$$p(\operatorname{par}|\operatorname{data}) = \frac{p(\operatorname{data}|\operatorname{par})p(\operatorname{par})}{\int p(\operatorname{data}|\operatorname{par})p(\operatorname{par})d\operatorname{par}}$$

Random walk sampler - accept a proposal with probability

$$\min\left(1, \frac{p(\operatorname{par}'|\operatorname{data})}{p(\operatorname{par}|\operatorname{data})}\right)$$

Challenges in MCMC for GPMs - Structure

Obvious iterative scheme (aka Sufficient Augmentation (SA) scheme). Alternate between:

- Drawing from p(|atent|par, data)
- Drawing from p(par|latent) (bad idea see figure)

Challenges in MCMC for GPMs - Cost & exploration

- No exact Gibbs steps need to employ Metropolis within Gibbs steps - waste of computations when rejecting
- Updates of par cost $O(n^3)$
- par can be large dimensional (e.g., Automatic Relevance Determination (ARD) covariance function)
- There are n latent variables (as many as the number of observations)

Mitigating coupling effect through reparameterization

Ancillary Augmentation (AA) scheme - reparametrization:

$$K = LL^{\mathrm{T}}$$
 ancillary $= L^{-1}$ latent

• Replace sampling of par with p(par|ancillary, data)

Exact-Approximate MCMC

• Replace posterior by unbiased estimate

$$\min\left(1, \frac{\tilde{p}(\operatorname{par}'|\operatorname{data})}{\tilde{p}(\operatorname{par}|\operatorname{data})}\right)$$

• Achieved by using an unbiased estimate of $\tilde{p}(\text{data}|\text{par})$

Importance Sampling estimator

- Approximate posterior over latent variables
- $\tilde{p}(data|par)$ based on the approximation

Annealed Importance Sampling estimator

• Annealing from the prior

Annealed Importance Sampling estimator

Annealing from the prior

Annealing from an approximation

Comparison between AIS with IS

• Analysis of the variance of the AIS and IS estimators

Some Results

Some Results

Isotropic covariance

ſ		Glass		Thyroid		Breast	
		n = 214, d = 9		n = 215, d = 5		n = 682, d = 9	
	N_{imp}	IS	AIS	IS	AIS	IS	AIS
ſ	1	2.8(1.6)	5.2(1.9)	1.1(1.0)	3.2(2.3)	17.9(2.4)	28.0(2.7)
Į	10	10.4(3.1)	11.4(5.3)	4.1(3.8)	6.4(3.9)	30.5(4.1)	36.4(3.5)

Isotropic covariance

	Pima		Banknote		USPS	
	n = 768, d = 8		n = 1372, d = 4		n = 1540, d = 256	
N _{imp}	IS	AIS	IS	AIS	IS	AIS
1	24.8(1.4)	29.3(2.6)	1.1(0.6)	3.2(3.9)	0.6(0.6)	1.1(1.0)
10	30.8(2.6)	30.8(1.7)	4.7(1.0)	12.6(4.1)	0.6(0.5)	2.0(0.4)

Motivating Application

HC - Healthy control

MSA - Multiple system atrophy

PSP - Progressive Supranuclear Palsy

IDP - Idiopathic Parkinson's disease

Multiclass classification with multiple sources

Multiclass classification based on GPs

$$p(\text{disease} = c|\text{sources}) = \text{unknown function}$$

unknown function modeled using GPs

Multiclass classification with multiple sources

ullet Covariance based on source-dependent covariances S_k

$$\sum_{k=1}^{K} w_{ck} S_k(subject_i, subject_j)$$

Parkinson syndromes data - multi source

Method	Accuracy		
GP classifier	0.598		
SimpleMKL	0.418		

Multiclass classification with multiple regions

Analysis of brain regions

- brainstem
- bilateral cerebellum
- bilateral caudate
- bilateral middle occipital gyrus
- bilateral putamen
- all other regions

Multiclass classification with multiple regions

Method	Accuracy		
GP classifier	0.614		
SimpleMKL	0.229		

Reject Option

Brain Maps

 Bayesian inference offers a powerful methodology to accurately quantifying uncertainty

- Bayesian inference offers a powerful methodology to accurately quantifying uncertainty
- Gaussian Processes yield flexible and interpretable nonparametric models

- Bayesian inference offers a powerful methodology to accurately quantifying uncertainty
- Gaussian Processes yield flexible and interpretable nonparametric models
- Challenges in making Bayesian computations for Gaussian Processes scalable

- Bayesian inference offers a powerful methodology to accurately quantifying uncertainty
- Gaussian Processes yield flexible and interpretable nonparametric models
- Challenges in making Bayesian computations for Gaussian Processes scalable
- Research at the interface between Physics, Computing, Statistics and Mathematics

Acknowledgements

- Dr Andre F. Marquand (King's College London)
- Prof Mark Girolami (University of Warwick)
- Dr Guido Sanguinetti (University of Edinburgh)
- Dr Alessandro Vinciarelli (University of Glasgow)
- [1] A. Gelman et al., Bayesian data analysis. Chapman and Hall, 1995.
- [2] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.
- [3] M. Filippone et al. Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. *Annals of Applied Statistics*, 6(4):1883-1905, 2012.
- [4] A. F. Marquand et al. Automated, high accuracy classification of parkinsonian disorders: a pattern recognition approach. *PLoS ONE*, 2013.
- [5] M. Filippone et al. A comparative evaluation of stochastic-based inference methods for Gaussian process models. Machine Learning, 93(1):93-114, 2013.
- [6] M. Filippone and M. Girolami. Exact-approximate Bayesian inference for Gaussian processes, 2013, arXiv:1310.0740.
- [7] M. Filippone. Bayesian inference for Gaussian process classifiers with annealing and exact-approximate MCMC, 2013, arXiv:1311.7320.

Acknowledgements

Flickr images (Creative Commons license)

- "roll those babies!!" by torbakhopper
- "digital-drugs-binaural-beats" by digitalbob8