## Question

You have collected the following data:

| x   | y    |
|-----|------|
| 7.9 | 1.3  |
| 8.3 | 1.2  |
| 3   | 0.96 |
| 8.4 | 1.4  |
| 6.6 | 1.2  |
| 9.2 | 1.6  |
| 9.1 | 1.4  |
| 6.5 | 1.4  |
| 7.5 | 1.2  |
| 1.5 | 1    |

Please plot the data and a corresponding regression line.



## Solution

Remember the formula for the correlation coefficient.

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

We calculate the necessary values.

| x               | y                 | xy                     |
|-----------------|-------------------|------------------------|
| 7.9             | 1.3               | 10.27                  |
| 8.3             | 1.2               | 9.96                   |
| 3               | 0.96              | 2.88                   |
| 8.4             | 1.4               | 11.76                  |
| 6.6             | 1.2               | 7.92                   |
| 9.2             | 1.6               | 14.72                  |
| 9.1             | 1.4               | 12.74                  |
| 6.5             | 1.4               | 9.1                    |
| 7.5             | 1.2               | 9                      |
| 1.5             | 1                 | 1.5                    |
| $\sum x = 68$   | $\sum y = 12.66$  | $\sum x_i y_i = 89.85$ |
| $\bar{x} = 6.8$ | $\bar{y} = 1.266$ |                        |
| $s_x = 2.59$    | $s_y = 0.196$     |                        |

The regression line has the form

$$y = a + bx$$

So, a is the y-intercept and b is the slope. We have formulas to determine them:

$$b = r \frac{s_y}{s_x} = 0.827 \cdot \frac{0.196}{2.59} = 0.0626$$

$$a = \bar{y} - b\bar{x} = 1.266 - 0.0626 \cdot 6.8 = 0.84$$

Our regression line:

$$y = 0.84 + 0.0626x$$

Make a plot.

## **Meta-information**

extype: num exsolution: 7.9, 8.3, 3, 8.4, 6.6, 9.2, 9.1, 6.5, 7.5, 1.5 exname: binomial exact extol: 0.01