Description

METHOD OF SPEEDING UP PACKET FILTERING

BACKGROUND OF INVENTION

- [0001] 1. Field of the Invention
- [0002] The present invention relates to a method of speeding up packet filtering, and more particularly, to a method of speeding up packet filtering with a search filter used in a network security apparatus.
- [0003] 2. Description of the Prior Art
- The last development of networking technology facilitates rapid transmission of large amounts of data among different places in the world. How to improve network security becomes an important issue. In an ordinary computer networking system, several networking apparatuses connected to a backbone network, such as a virtual private network (VPN), a gateway, and a router mostly have firewalls disposed therein or the outside thereof. Such firewall

that provides a mechanism of packet filtering implements protection in the IP Layers. The packet filtering principle of the mechanism is to check each out-coming packet passing through the firewall with using a firewall rule predefined by users. However, each firewall rule indicates a cost in searching, which includes time consumption, lsystem loading, and labor power. Excess firewall rules or excess details defined within the rules can result in higher accuracy in searching but higher searching costs. If it spends too much time to process packets, the performance of the whole networking will decrease or the network congestion will occur. This situation is not desirable. On the other hand, only considering the searching cost but neglecting the protection score of a firewall would result in the degradation of the performance of the firewall. Therefore, one thing to consider when designing a firewall is to filter packets accurately with the lowest possible cost.

[0005] A conventional method of packet filtering is to determine if each out-coming packet is in a score defined by the firewall rules. A commonly used one of the methods, called "linear search", is to respectively check the received packets with each firewall rule. In addition, some im-

proved methods apply known searching algorithms on filtering packets that are harmful or suspected. However, most packets that the firewall receives are not included in the score defined by the firewall and thus are unharmful. In other words, most packets can pass the filtering of a firewall. It means that most searching algorithms spend too much searching cost, i.e. time, in filtering packets that need not be filtered.

[0006] To overcome the disadvantages of the prior art, the present invention utilizes a search method of low cost before searching packets to find most well-behaved packets and let them pass the firewall, and leave a small amount of packets having problems checked by the conventional ways so as to lower searching cost without modifying any firewall rule.

The present invention utilizes a search filter to solve the problems described above. "Search filter" is the method of searching words or documents proposed by Severance and Lohman in 1976. The principle of the method is that: selecting a Hash function, such as MD5 first; taking a value to be searched, such as "m", as the "key" of the Hash function, such as f(m) to perform Hush operation and obtain a proper data structure arrangement; and us-

ing the data structure to select the values to be checked. When a key is selected, it is not sure that the key can be fined in a search set according to the property of search filter, because the Hash space that the search filter uses is limited. On the other hand, when a key selected does not belong to a search set, the search filter determines that the key does not belong to the search set.

SUMMARY OF INVENTION

[8000] According to the claim 1, the present invention discloses a method of speeding up packet filtering used in a network security apparatus comprising: generating a first hash space according to at least one rule used to filter the packets received by the network security apparatus, and the first hash space presenting a mask characteristic value set; generating a second hash space according to at least one of the packets received by the network security apparatus, and the second hash space with the same size as the first hash space, presenting a packet characteristic value set; performing a specific Boolean operation with the first hash space and the second hash space; and determining whether the packet characteristic value set is out of the mask characteristic value set, according to the results of said Boolean operation, then it is decided

- whether the packet is allowed to pass through the network security apparatus.
- [0009] These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.

BRIEF DESCRIPTION OF DRAWINGS

- [0010] Fig.1 illustrates a network and firewall according to a preferred embodiment of the present invention.
- [0011] Fig.2 illustrates a flowchart of speeding up packet filtering in the present invention.
- [0012] Fig.3 illustrates a flowchart of generating a packet characteristic value set.
- [0013] Fig.4 illustrates a flowchart of a checking operation.

DETAILED DESCRIPTION

[0014] Please refer to Fig.1. Fig.1 illustrates a network and firewall according to a preferred embodiment of the present invention. The invention is applied to a network security device, such as the firewall 20, and performs packet filtering with a plurality of pre-installed firewall rules 22 in the firewall 20. The firewall 20 can be connected between the

Internet 10 (or other wide-area network) and a local area network (LAN) 30 as shown in Fig.1 to filter all packets from the Internet 10. The packets which are determined to be acceptable after filtering can enter the LAN 30.

- [0015] According to the principles of a search filter described before, method of speeding up packet filtering in the present invention includes:
- [0016] 1. A method of generating a mask characteristic value set:
- [0017] (1) Predetermined conditions:
- [0018] (a) Suppose the firewall 20 in the Fig.1 has N firewall rules $\{1 \le i \le N \mid r_i\}$, wherein each rule consists of five itmes: $\{\text{source network } r_i \text{net}_s, \text{ destination network } r_i \text{net}_d, \text{ source port } r_i \text{port}_s, \text{ destination port } r_i \text{port}_d, \text{ protocol } r_i \text{p}\}$. Each network in the above rules includes the IP addresses that users want to remove.
- [0019] (b) Predetermine K independent hash functions hi {1 ≤ i ≤ K}, (for example, two independent hash functions h1 and h2 do not make ensure that if m≠m', h1(m)‡h2(m')) for generating a hash function space H.
- [0020] (c) Notice that the method of the present invention is limited to the size of the predetermined hash space and the characteristics of the selected hash function. In addition,

functions of the search filter mentioned above can be achieved by hardware or software.

[0021] (2) Method flow:

[0022] As the procedure S400 illustrates in Fig.2, first define the volume of each hash space as the volume of output address space of each hash function h_i = C*K*L, wherein C is a self-defined constant, and L is the number of bits in the IP addresses (take IPV4 for example, L=32).

[0023]As the procedure \$405 shows, the method extracts a source network r_inet_s from each firewall rule. In the procedure \$410, the method converts the source network r net into the binary code (including bit values and addresses). In the procedure \$415, the method searches for a set of M relative addresses b_m ($0 \le b_m \le L-1$, $0 \le m \le L-1$) M-1) which have bit values "1" from the codes of the source network r_i net s. In the procedure S420, the method sets each address having a bit value "1", source port rport and protocol rp, to be the keys of the hash function and substitutes the keys into K specific hash functions h, (such as $h_i(b_m, r_i port_s, r_i p))$ for hash calculation in order to get K*M values k_i between 0 to (C*K*L)-1. These k_i are the relative addresses pointing to a hash space H_{ς} in the source network. As the described in the procedure \$425,

the set of the relative addresses pointing to a hash space H_s can express the characteristic values of the source network r_i net r_i in the hash space H_s . However, the keys of the hash function mentioned before are chosen by the user, but they should be at least one of the address having a bit value "1", source port r_i port r_i and protocol r_i p. For example, the key of the hash function is the address having a bit value "1" in the network.

[0024] Like the filtering procedure of the source network rinet described before, the filtering procedures of the destination network r_inet_d for the same firewall rule r_i are to repeat the procedures \$400 to \$250: by first converting the destination network rinet into the binary code (including bit values and address), then setting W addresses $b_w (0 \le$ $b_{w} \le L-1$, $0 \le w \le w-1$) having bit value "1", destination port r port and protocol r p as the keys of the hash function, and substituting the keys into K specific hash functions h_i (such as h_i (b_w, r_iport_d, r_ip)) for hash calculation in order to get K*M values k_i between 0 to (C*K*L)-1. These k, include the relative addresses pointing to a hash space H_d in the destination network r_i net_d. The set of the relative addresses pointing to a hash space H can express the

characteristic value of the source network rinet in the

hash space H_d. Notice that each hash space uses the same C, K and L, so the size of the hash space H_d mentioned above equals the size of the hash space H_s, and also equals sizes of other hash spaces.

In the procedure S435 and the procedure S440, the method repeats the same calculations for networks of N firewall rules (include source network and destination network) and obtain a plurality of hash spaces H_d and H_s . In the procedure S430, the method collects the sets of the relative addresses of all masks pointing to the hash space H in the N firewall rules. For example, the method totals each bit value of the same addresses of all hash spaces H_d and H_s in N firewall rules so that the characteristic value sum of the masks in N firewall rules is presented in the same hash space H (H= H_d + H_s).

[0026] In the procedure S445, the method sets the bit values which are out of the value "0" in the hash space H of the characteristic value sum to be "1". Otherwise, the method keeps the bit values "0" as "0". Finally in the procedure S450, the method obtains a mask characteristic value set of N firewall rules in the same hash space H.

[0027] 2. A method of generating a packet characteristic value set:

[0028] (1) Predetermined conditions:

Suppose that each packet p to be checked includes: $\{source\ IP\ pip_s,\ destination\ IP\ pip_d,\ source\ port\ pport_s,\ destination\ port\ pport_d,\ protocol\ pp\ \},\ and\ the\ method\ of\ processing\ packets\ is\ similar\ to\ the\ method\ of\ processing\ networks\ mentioned\ before. The\ present\ invention\ defines the\ volume\ of\ another\ hash\ space\ H'=\ the\ volume\ of\ previous\ hash\ space\ H=\ the\ volume\ C*K*L,\ and\ resets\ each\ bit\ to\ "0",\ and\ uses\ the\ same\ K\ hash\ functions\ h_i\ \{1\le i\le K\}.$

[0030] (2) Method flow:

[0031] Firstly in the procedure S550, the method receives a packet p to be checked. In the procedure S505, the method extracts a source IP pip_s from the packet. In the procedure S510, the method converts the source IP pip_s of the packet into binary code. In the procedure S505, the method searches for a set of M' relative addresses b_m (0 \leq b_m ' \leq L-1,01 \leq m \leq M-1) which have bit values "1" from the code of the source IP pip_s. In the procedure S520, the method sets each address having a bit value "1", source port pport_s and protocol pp, as the keys of the hash function, and substitutes the keys into K hash functions h_i

(such as h_i (b"_m, pport_s, pp)) for hash calculation in order to obtain K*M values k_j between 0 to (C*K*L)-1. These k_j include the relative addresses pointing to a hash space H's in the source IP pip_s. As the described in the procedure S525, the setting of the relative addresses pointing to a hash space H's can present the characteristics of the source IP pip_s in the hash space H'_s.

[0032] According to the same principles, if setting the destination IP pip_d, the destination port pport_d, and the protocol pp as the keys of the hash function to perform calculations of K hash functions, one converts destination IP pip_d of the packet into a set of relative addresses pointing to a hash space H'_s. Thus, the mask characteristic values of the destination IP pip_d of the packet are presented in the hash space H'_d.

In the procedure S535, the method repeats the same calculations for other IP addresses in one packet. In the procedure S530, the method collects the sets of the relative addresses of all IP addresses pointing to the hash space H's of the packet. For example, the method totals the bit values belonging to the same address of all hash spaces H'd and H's and shows the packet characteristic value sum in a hash space H' (H'= H'd + H's). In the procedure S540, the

method sets the bit values which are out of the value "0" in the hash space H' to be "1", $0 \le j \le (K*M')-1$. Finally, in the procedure S545, the method obtains a packet characteristic value set in the hash space H'.

- [0034] Then, in the procedure S550, the method performs a Boolean operation checking. For the same hash space, the method checks the packet characteristic value set by the mask characteristic value set described above to determine if the packet characteristic value set is covered in the mask characteristic value set.
- [0035] 3. Method of operation checking:
- [0036] First in the procedures S600 and S605, the method obtains a hash space H having a mask characteristic value set and a hash space H having a packet characteristic value set. In the procedure S610 and S615, the method performs the following Boolean operation:
- [0037] (H OR H') XOR H
- [0038] In the procedure S620, the method determines the result of the above Boolean operation. If all the bits are "0", the method performs the procedure S640; the IP address of the packet p could be included in the mask characteristic value set of the N firewall rules. Then, as shown in the

procedure S645, the method confirms the firewall rule or filters the packet in coordination with a further searching mechanism (with higher cost). Otherwise, if the results of the procedure S620 have at least one bit that is out of the value "0", it means, as shown in the procedure S625, the IP address of the packet p must not be included in the mask characteristic value set of the N firewall rules. Then, the method performs the procedure S630, allowing the packet to pass the firewall.

Notice that if there is any other additional/reduced fire—wall rule, the mask characteristic value H_c in the hash space of the rule should be found, and then the hash function having the mask characteristic value sum is H=H-H_c or H=H+H_c, the method calculating the new mask characteristic value set. If the firewall rules need modifying, repeat the method described above and remove the old rules and add the new rules to obtain a new mask characteristic value set.

[0040] 4.Examples

[0041] Suppose that a firewall has two firewall rules (N=2), as follows:

Sequence	Source	Source	Destination	Destination	Protocol	Action
	Network	Port	Network	Port		
1	12.0.0.0/24	0	202.1 237 21/32	80	1	Accept
2	12.0.0.0/24	0	172.17.23.152/29	23	1	Accept

[0042] (wherein "0" in the communication port represents any port)

[0043] Additionally, suppose another constant C=2, the size of each IP address L=32, and two independent hash functions are $\{1 \le i \le 2 \mid h_i\}$ (K=2), so the size of each hash function H = the size of each output addressing space = C*K*L = 2*2*32 = 128 bits. The method resets each bit to "0" and the hash function H becomes

[0044]

Address	0				o and	nonnonne en en en	riomonomine andress e		8					A 10-10-10-10-10-10-10-10-10-10-10-10-10-1								TTT-FTTS-AAA-CTTTS-CTT &			5 15 - 0 15	127
Bit	0	0	0	0	0	0	0	0	0	•	•••	••••	 ••••	••••	 ••••	 ••••	 	 •••		0	0	0	0	0	0	0

[0045] The method extracts a source network r_1 net r_2 (12.0.0.0/24) from the first firewall rule and converts the source network into binary code, as follows:

Addres	s 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit	0	0	0	0	1	1	0	II I	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0.	1	1	1	1	1	1	1	1

[0046] The method searches for a set of M relative addresses having bit value "1" from the binary code of the above.

Therefore, we know: M=10, and the set of the relative addresses = $\{b0, b1, b2, b3, b4, b5, b6, b7, b8, b9\}$ = $\{0,1,2,3,4,5,6,7,26,27\}$

- The method sets the relative addresses mentioned above in which the binary bit values are "1", source port r_1 port r_1 (0) and protocol r_1 p(1), as the keys of the hash function, and substitutes the keys into two hash functions r_1 to obtain the following 20 M x K address sets pointing to a hash function r_1 :
- [0048] h1(0,0,1)=41, h1(1,0,1)=111, h1(2,0,1)=41, h1(3,0,1)=39,
- [0049] h1(4,0,1)=100, h1(5,0,1)=42, h1(6,0,1)=1, h1(7,0,1)=21,
- [0050] h1(26,0,1)=92, h1(27,0,1)=4
- [0051] h2(0,0,1)=21, h2(1,0,1)=41, h2(2,0,1)=40, h2(3,0,1)=1,
- [0052] h2(4,0,1)=98, h2(5,0,1)=120, h2(6,0,1)=12, h2(7,0,1)=88,
- [0053] h2(26,0,1)=76, h2(27,0,1)=110
- [0054] According to the address sets pointing to a hash function H_{1s} , the following shows the source mask characteristic value which presents the first firewall rule in the hash space H_{1s} :

Address	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Address	32	3.3	32	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Address	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	Ó	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Bit	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

[0056] The method extracts a destination network r_1 net (202.1.237.21/32) from the first firewall rule, and converts the destination network r_1 net (202.1.237.21/32) to binary code:

Addre	ss 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	1 3	32	1	0
Bit	1	1	0	0	1	0	1	0.	0	0	0	0	0	0	0	1.	1	1	1	0	1	1	0	1.	0	0	0	1 0)	0	1

- [0057] The method searches for sets of W relative addresses having bit value "1" from the binary code of the destination network r_1 net described above. Therefore, W=14, the sets of W relative addresses = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13} = {0,2,4,8,10,11,13,14,15,16,25,27,30,31}
- [0058] The method sets the relative addresses in which each bit value of the binary codes is "1" described above $\{0,2,4,8,10,11,13,14,15,16,25,27,30,31\}$, destination port $r_1 port_d(80)$ and protocol $r_1 p(1)$, as the keys of the hash

function, and substitutes the keys into two hash functions h_i to obtain the following 28 (K x W) subsets of addresses that point to a hash space H_{1d} :

- [0059] h1(0,80,1)=50, h1(2,80,1)=76, h1(4,80,1)=43, h1(8,80,1)=66,
- [0060] h1(10,80,1)=9, h1(11,80,1)=12, h1(13,80,1)=21, h1(14,80,1)=36,
- [0061] h1(15,80,1)=61, h1(16,80,1)=58, h1(25,80,1)=81, h1(27,80,1)=108,
- [0062] h1(30,80,1)=52, h1(31,80,1)=12
- [0063] h2(0,80,1)=20, h2(2,80,1)=67, h2(4,80,1)=7, h2(8,80,1)=96,
- [0064] h2(10,80,1)=12, h2(11,80,1)=84, h2(13,80,1)=61, h2(14,80,1)=29,
- [0065] h2(15,80,1)=17, h2(16,80,1)=77, h2(25,80,1)=20, h2(27,80,1)=99,
- [0066] h2(30,80,1)=121, h2(31,80,1)=41
- [0067] According to 28 sets of addresses that point to a hash space H_{1d}, the destination mask characteristic value of the first firewall rule is presented in the hash space H_{1d}, and the method collects all sets of addresses in which all networks pointing to a hash space H of the first firewall rule.

In other words, the method totals the bits belonging to the same address in two hash spaces H_{1d} and H_{1s} in order to present the mask characteristic value sum of the first firewall rule in the hash space H (H= H_{1s} + H_{1d}):

[0068]

Address	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	0	1	0	0	1	0	0	1	0	1	0	0	4	0	0	0	0	1	0	0	2	2	0	0	0	0	0	0	0	1	0	0
Address	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	0	0	0	1	0	0	1	1	2	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	2	0	0
Address	64	ණ	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	0	1	1	0	0	0	0	0	0	0	0	2	1	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Bit	1	0	1	1	1	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	o	0	0	0	1	1	o	0	o	0	0	0

[0069] The method extracts a source network r_2 net r_2 (12.0.0.0/24) from the second firewall rule. However, the source network r_2 net r_2 is the same as source network r_1 net r_2 , so the operation procedure of the hash function is omitted. The hash function r_2 is added directly in the above hash space H to total the bits. Thus, the hash function r_2 is the mask characteristic value sum, as follows:

Address	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	0	2	0	0	2	0	0	1	0	1	0	0	5	0	0	0	0	1	0	0	2	3	0	0	0	0	0	0	0	1	0	0
Address	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	0	0	0	1	0	0	2	2	3	2	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	2	0	0
Address	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	0	1	1	0	0	0	0	0	0	0	0	3	1	0	0	0	1	0	0	1	0	0	0	2	0	0	0	2	0	0	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Bit	1	0	2	1	2	0	0	0	0	0	0	0	1	0	2	2	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0

[0070] Next the method extracts a destination network r_2 net_d (172.17.23.152/29) from the second firewall rule and converts the destination network r_2 net_d into the binary code, as follows:

Address	31		29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	1 3	2	1	0
Bit	1	0	1	0	1	1	0	0.	0	0	0	1	0	0	0	1.	0	0	0	1	0	1	1	1.	1	0	0 1	1 1	1	1	1

- [0071] The method searches for sets of W relative addresses having bit value "1" from the binary code of the destination network r_2 net described above. Therefore, W=16, the sets of W relative addresses = { b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b14, b14, b15 } = {0,1,2,3,4,7,8,9,10,12,16,20,26,27,29,31}
- [0072] The method sets the relative addresses in which each bit value of the binary code is "1" described above {0,2,4,8,10,11,13,14,15,16,25,27,30,31}, destination port

 r_2 port_d (80) and protocol r_2 p(1), as the keys of the hash function, and substitutes the keys into two hash functions h_i to obtain the following 32 (K x W) sets of addresses that points to a hash space H_{2d} :

- [0073] h1(0,23,1)=3, h1(1,23,1)=69, h1(2,23,1)=30, h1(3,23,1)=0,
- [0074] h1(4,23,1)=56, h1(7,23,1)=59, h1(8,23,1)=83, h1(9,23,1)=46,
- [0075] h1(10,23,1)=31, h1(12,23,1)=47, h1(16,23,1)=61, h1(20,23,1)=79,
- [0076] h1(26,23,1)=13, h1(27,23,1)=17, h1(29,23,1)=28, h1(31,23,1)=82
- [0077] h2(0,23,1)=13, h2(1,23,1)=9, h2(2,23,1)=82, h2(3,23,1)=10,
- [0078] h2(4,23,1)=109, h2(7,23,1)=34, h2(8,23,1)=79, h2(9,23,1)=22,
- [0079] h2(10,23,1)=59, h2(12,23,1)=111, h2(16,23,1)=12, h2(20,23,1)=7,
- [0080] h2(26,23,1)=109, h2(27,23,1)=107, h2(29,23,1)=3, h2(31,23,1)=55
- [0081] According to the 32 sets of addresses that point to a hash space H_{2d}, the method presents the destination mask characteristic value of the second firewall rule in the hash

space H_{2d} , and adds the hash space H_{2d} into the previous hash space H. Thus, the method totals the bit values belonging to the same address and presents the mask characteristic value sum of the whole firewall rules in the hash space H (H=H+ H_{2d}).

[0082]

Address	0.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	1	2	0	2	2	0	0	2	0	2	1	0	6	2	0	0	0	2	0	0	2	3	1	0	0	0	0	0	1	1	1	i
Address	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	0	1	0	1	0	0	2	2	3	2	1	o	0	1	1	0	0	1	0	1	0	0	1	1	0	1	2	0	3	0	0
Address	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	0	1	1	0	1	0	0	0	0	0	0	3	1	0	2	0	1	2	1	1	0	0	0	2	0	0	0	2	0	0	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	12
Bit	1	0	2	1	2	0	0	0	0	0	0	1	1	2	2	3	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0

[0083] The method set the bit values which are out of the value "0" in the above mask characteristic value sum to "1" so as to present mask characteristic value sets of all firewall rules in the hash space H.

[0084]

Address	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	1	1	0	1	1	0	0	1	0	1	1	0	1	1	0	0	0	1	0	0	1	1	1	0	0	0	0	0	1	1	1	1
Address	32	33	34	35	36	37	38	39	40	41	42	43	44	4 5	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	0	1	0	1	0	0	1	1	1	1	1	0	0	1	1	0	0	1	0	1	0	0	1	1	0	1	1	0	1	0	0
Address	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	0	1	1	0	1	0	0	0	0	0	0	1	1	0	1	0	1	1	1	1	0	0	0	1	0	0	0	1	0	o	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Bit	1	0	1	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0

[0085] As long as the firewall receives a packet p that tries to pass the firewall (pip_s, pport_s, pip_d, pport_d, pp)=(12.0.0.4, 1067, 172.17.23.153, 80, 1), the method of processing the packet is similar to the method of processing the firewall rules, which utilizes two equivalent (K=2) hash functions $h_i \{1 \le i \le 2\}$ to define a hash space H'=C*K*L=128 bit of the same size, and each bit value is reset to "0" as follows:

[0086] Hash space H'

Address	0	TOTAL DESCRIPTION OF THE PARTY				THE PARTY PROPERTY OF THE PARTY	00000000000000000000000000000000000000		8	**************************************												THE REAL PROPERTY AND THE PARTY AND THE PART			127
Bit	0	0	0	0	0	0	0	0	0		•••	 	 	 	 ••••	 ••••	•		0	0	0	0	0	0	0

[0087] The method extracts a source IP pip_s (12.0.0.4) from the packet and convert the source IP into the binary code, as follows:

Addres	s 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	O
Bit	0	0	0	0	1	1	0	0.	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0.	0	0	0	0	0	1	0	0

- [8800] The method searches for sets of M' relative addresses having bit values of "1" from the binary code of the source IP pip_s described above. Therefore, M'=3, the sets of M' relative addresses $\{b0, b1, b2\} = \{2,26,27\}.$
- [0089] Subsequently, the method sets the relative addresses in which each bit value of the binary code is "1" described above $\{2,26,27\}$, source port pport_s (1067) and protocol pp (1), as the keys of the hash function, and substitutes the keys into two hash functions h, to obtain the following 6 (K x M) sets of addresses that points to a hash space H':

[0090] h1(2,1067,1)=61, h1(26,1067,1)=10, h1(27,1067,1)=111

[0091] h2(2,1067,1)=39, h2(26,1067,1)=46, h2(27,1067,1)=12

[0092] According to 6 sets of addresses that point to a hash space H', the following presents the source packet characteristic value:

[0093]

Address	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Address	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Address	64	රෙ	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Bit	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	0

[0094] The method extracts a destination IP pip_d (172.17.23.153) from the same packet and converts the destination IP pip_d into binary code, as follows:

Address	31	30	29	28		26	1		23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3 2	2 1	0
Bit	1	0	1	0	1	1	0	0.	0	0	0	1	0	0	0	1.	0	0	0	1	0	1	1	1.	1	0	0	1	1 0	0	T ₁

[0095] The method searches for sets of M' relative addresses having bit values of "1" from the binary code of the destination IP pip_d described above. Therefore, W=14, the sets of the relative addresses = $\{b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13\} = \{0,3,4,7,8,9,10,12,16,20,26,27,29,31\}.$

[0096] The method sets the relative addresses in which each bit value of the binary codes is "1" described above {0,3,4,7,8,9,10,12,16,20,26,27,29,31}, destination port pport (80) and protocol pp (1), as the keys of the hash

function, and substitutes the keys into two hash functions h_i to obtain the following 28 (K x W') sets of addresses that point to a hash space H'_d :

- [0097] h1(0,80,1)=60, h1(3,80,1)=1, h1(4,80,1)=107, h1(7,80,1)=8, h1(8,80,1)=39,
- [0098] h1(9,80,1)=61, h1(10,80,1)=40, h1(12,80,1)=55, h1(16,80,1)=83,
- [0099] h1(20,80,1)=97, h1(26,80,1)=24, h1(27,80,1)=66, h1(29,80,1)=70,
- [0100] h1(31,80,1)=24
- [0101] h2(0,80,1)=25, h2(3,80,1)=33, h2(4,80,1)=1, h2(7,80,1)=66, h2(8,80,1)=51,
- [0102] h2(9,80,1)=43, h2(10,80,1)=37, h2(12,80,1)=13, h2(16,80,1)=90,
- [0103] h2(20,80,1)=69, h2(26,80,1)=22, h2(27,80,1)=91, h2(29,80,1)=111,
- [0104] h2(31,80,1)=121
- [0105] According to the 28 sets of addresses that point to the hash space H'_d, the method presents the destination packet characteristic value in the hash space H'_d. Then, the method collects all sets of the addresses that point to the hash space H' and adds the hash space H'_d into the

previous hash space H'_s . For example, the method totals the bit values belonging to the same address to generate a hash space $H'=H'_s+H'_d$. The following presents the packet characteristic value sum.

[0106]

Address	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	0	2	0	0	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0	0	0	1	0	2	1	0	0	0	0	0	0
Address	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	1	0	0	0	1	0	2	1	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	2	0	0
Address	64	රෙ	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	0	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	i	0	0	0	0	0	0	1	1	0	0	0	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	12
Bit	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

[0107] The method sets the bit values which are out of the value "0" in the above mask characteristic value sum to "1" so as to present the packet characteristic value sets in the hash space H'.

[0108]

Address	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bit	0	1	0	0	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0
Address	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Bit	0	1	0	0	0	1	0	1	1	0	0	1	0	0	i	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0
Address	64	රෙ	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Bit	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0
Address	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Bit	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

- [0109] The method performs operation checking: (H OR H) XOR H. Then, we find that at least one bit value is out of the value "0", so the packet characteristic value set is not included in the mask characteristic value set. That means the packet p does not satisfy any firewall rule previously described, and so is allowed to pass the firewall.
- [0110] The method of speeding up packet filtering in the present invention utilizes a search filter to determine if one packet is covered by the range of the firewall rules in a fixed period of time and lets a large amount of packets be out of the range, considered as acceptable packets, rapidly pass the firewall so as to prevent excessive traffic in the network. On the other hand, a small amount of packets inside the range possibly having problems can be further filtered with other packet filters of higher searching cost. Therefore, the present invention can reduce the searching time and improve searching efficiency, which cannot be achieved by the prior art.
- [0111] Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.