

Vertex Explainable Al で 脱ブラックボックス

機械学習モデルをより良く理解するには?

葛木 美紀

Google Cloud カスタマー エンジニア

スピーカー自己紹介

Miki Katsuragi Google Cloud カスタマーエンジニア Twitter: myoshimu@

兵庫県出身で二児の母。データベース ベンダーでアナリスト、データ分析基盤の構築や運用を経て、Google で統計や機械学習によるデジタル広告や CM の広告効果測定などの分析業務に従事。現在は Google Cloud でエンジニアとして ML/Al を活用したサービスの開発やデータ分析の提案を担当。GCPUG 女子会オーガナイザー

著書、レビュー、監修

機械学習における説明性とは

AI はブラック ボックス?

企業におけるAIの価値に障害となる要素

わからないことへの不安

79%

出発点がわからない: 63%

間違ったベンダー戦略: 48%

企業での利用が少ない: 40%

さまざまなチームで重要な AI の説明性

データサイエンティスト と ML エンジニア

知りたい こと モデルがうまく 機能しない理由

改善方法

ML システムの エンドユーザー

予測結果はどれくらい 信頼できるか

予測結果をどのように 使用できるか 監督・

コンプライアンス担当

モデルは安全で 目的に適合しているか

規制への準拠

モデルと予測の背後にある「理由」を明らかに

里 堅牢で実用的な説明

特徴アトリビューション:モデル全体および 特定の予測結果について特徴量の重要性を表示

✓ 複数のAIプラットフォームサービスに対応

Vertex Al Prediction, AutoML, Workbench

柔軟、高速、スケーラブル

複数の ML フレームワーク、オンラインおよびバッチ処理のユースケースからの表形式、画像、テキストモデルをサポートフルマネージド、サーバーレスで、高速に処理

さまざまなデータ形式に対応

画像

表形式

Feature name	Feature value
start_hr	18
weekday	1
distance	1395.51
temp	16.168
dew_point	7.83396
wdsp	0
max_temp	20.7239
prcp	0.03
rain_drizzle	0
duration	11

文章

The cake tastes delicious!

ML タスク: 画像分類 分類 / 回帰 テキスト分類

さまざまなデータ形式に対応

わかること

モデルの分類に最も貢献した 画像ピクセルまたは領域

各特徴量が、単一の予測結果または モデル全体にどの程度貢献したか

各単語または文節が、 テキスト分類にどの程度貢献したか

Explainable AI の特徴

1

堅牢性

確立された研究に基づく 3つの説明可能性*

- Sampled Shapley
- Integrated Gradients
- XRAI

データ サイエンティストと エンドユーザーにとって 直感的

*参考 Al Explainability Whitepaper

2

柔軟さ

複数のモデルタイプを サポート

- 表形式の分類、回帰
- 画像分類
- テキスト分類

オンラインとバッチ処理に対応

ML フレームワークに依存しない: カスタムコンテナとしてデ プロイされたすべてのモデルと 互換性があります 3

シームレスな連携

XAI 対応製品:

- AutoML Tables
- Vertex Prediction
- Vertex Notebooks

今後の対応予定

- AutoML Vision
- BQML
- Continuous
 Monitoring
- Others...

4

使いやすさ& スケール

SDK により迅速な セットアップが可能

マネージド・サーバーレスサービス

OSS パッケージよりも 大幅に高速な処理性能

Shapley Value とは

- SHAP(SHapley Additive exPlanations):機械学習モデルの出力を説明するためのゲーム理論的アプローチ

Shapley Value とは

例: 営業チーム全体で \$4 の売上があった場合、各メンバーに どのように報酬を分配するか?

各個人単体のパフォーマンス

チームの一部としての個人パフォーマンス

增分貢献 (Counterfactual Gain)

- A の増分貢献= \$4 \$1 = \$3売上合計から B 個人の達成金額を差し引いた金額
- Bの増分貢献: \$4 \$2 = \$2売上合計から A 単体の 貢献を差し引いた金額

チームの一部としてのパフォーマンスを Matrix に

	Α	В	С	AC	ВС	ВА	ABC
	O	0					
売上合計	\$2	\$1	\$0	\$2	\$1	\$4	\$4
al Gain	\$2	-	-	\$2	_	\$3	\$3
Counterfactual Gain	-	\$ 1	-	_	\$1	\$1	AC から \$2 の増分
Counte	-	-	\$0	\$0	\$ O	-	\$ O

Shapley 値の計算方法

出現順序に貢献度をマッピング

	A の貢献度	Bの貢献度	Cの貢献度	合計
A > B > C	2	2	0	4
A > C > B	2	2	0	4
B > A > C	3	1	0	4
B > C > A	3	1	0	4
C > A > B	2	2	0	4
C > B > A	3	1	0	4
Shapley Value (平均)	2.5	1.5	0	4

Shap vs. Integrated Gradients (統合勾配)

サンプリングされた Shapley

メリット

- 任意の入力で動作可能
- 入力値の貢献度を計算
- 表形式のモデルにフィット

デメリット

- 計算上より高価
- 画像モデルには適していない

統合勾配 + XRAI

メリット

- 計算がより効率的
- 画像モデルでうまく機能
- 視覚化のためのいくつかの拡張機能

デメリット

- 勾配爆発 (勾配が無限値になってしまう)
- 微分不可能なモデルでは勾配が計算できない ので機能しない

表形式データ向け AutoML

ユースケース

AutoML による白内障手術プロセスの改善

AutoMLを使用して、白内障手術に必要な時間の長さを予測するモデル作成

結果

白内障手術時間の予測を33%向上

利点

- スタッフと部屋の可用性を最適化し 手術をより効率的にスケジューリング
- リソースに制約のある環境でコスト削減

ブログ

: https://cloud.google.com/blog/topics/customers/how-moorfields-is-using-automl-to-enable-clinicians-to-develop-machine-learning-solutions

参考資料

Getting started cloud.google.com/explainable-ai **(3) Blog:** Introducing Explainable Al bit.ly/introducing-xai **(3) Docs:** Al Platform bit.ly/xai-docs **(3)** Sample code: Explainable Al notebooks bit.ly/xai-code **(3)** Whitepaper bit.ly/xai-whitepaper **(3) TabNet:** Train interpretable-by-design tabular models bit.ly/tabnet-quickstart **(3)** What-If Tool: Analyze models within a notebook pair-code.github.io/what-if-tool **G**

Thank you.

