01_netwhat

What is Network

두 대 이상의 컴퓨터가 논리적 또는 물리적으로 연결되어 통신이 가능한 상태. 일방적으로 규모에 따른 네트워크 종류는 아래와 같다.

- 1. PAN (Personal Area Network): 가장 작은 규모의 네트워크
- 2. LAN (Local Area Network): 근거리 영역 네트워크 근거리 통신 망을 의미하며 지역적 좁은 범위 내에서 고속 통신이 가능한 통신망.
- 3. Man (Metropolitan Area Network) : 대도시 영역 네트워크
- 4. Wan (Wide Area Network): 광대역 네트워크

Wild Area Network 로써 광대역 통신망으로써 LAN 보다 넓은 지역을 나타내며 지역과 지역, 지방과 지방, 나라와 나라 또는 대륙과 대륙을 연결하는 통신망.

What is an IP address

- IP(Internet Protocol)란 네트워킹이 가능한 장비를 식별하기 위해 부여된 고유 주소이다.
- IPv4
 - IP version 4의 약자로 전 세계적으로 사용된 첫 번째 인터넷 프로토콜이다.
 - 주소는 32bit 방식으로, 8bit씩 4자리로 되어있다.
- IPv6
 - IPv4의 주소체계를 128bit 크기로 확장한 인터넷 프로토콜 주소이다.
 - 주소는 128bit 방식으로, 16bit씩 8자리로 구분한다.

What is a class of IP addresses

• IP class

- Class는 하나의 IP주소에서 네트워크 영역과 호스트 영역을 나누는 방법이자 약속 이다.
- 네트워크 크기에 따른 구분으로 IP주소를 3개의 class로 나눈다.
- 하나의 네트워크에서 몇 개의 호스트 IP를 가질 수 있는지에 따라 class를 나눈다.
- class A
 - 네트워크가 가질 수 있는 호스트의 수가 가장 많다.
 - IP주소를 32자리 2진수로 표현했을 때, 맨 앞자리의 수가 항상 0인 경우.
 - Oxxx xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx 와 같이 되어있다.
 - IP 주소: 0.0.0.0 ~ 127.255.255.255
 - 네트워크 주소의 범위 : 0~127, 128개 중에 0.x.x.x와 127.x.x.x(자기 ip)를 제 외하고 1.0.0.0 ~ 126.0.0.0 범위의 총 126개.
 - 호스트 주소의 범위 : 2^24 2
 - 2 인 이유
 - 모두가 1인 경우 브로드캐스트 주소로 사용.
 - 모두가 0인 경우 네트워크 주소로 사용.
 - default subnet mask: 255.0.0.0
- class B
 - IP주소를 32자리 2진수로 표현했을 때, 맨 앞자리의 수는 항상 10인 경우.
 - 10xx xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx 와 같이 되어 있다.
 - IP 주소: 128.0.0.0 ~ 191.255.255.255
 - 네트워크 주소의 범위: 10xx xxxx. xxxx xxxx 에서 x들이 가질 수 있는 경우
 의 수, 2^14 개
 - 호스트 주소의 범위: xxxx xxxx. xxxx xxxx 에서 x들의 경우의 수인 (2^16)
 2
 - 2 인 이유
 - 모두가 1인 경우 브로드캐스트 주소로 사용.
 - 모두가 0인 경우 네트워크 주소로 사용.
 - default subnet mask: 255.255.0.0
- class C

- IP주소를 32자리 2진수로 표현했을 때, 맨 앞자리의 수는 항상 110인 경우.
- 110x xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx 와 같이 되어 있다.
- IP 주소: 192.0.0.0 ~ 233.255.255.255
- 네트워크 주소의 범위: 110x xxxx. xxxx xxxx. xxxx xxxx 에서 x들이 가질수 있는 경우의 수, 2^21 개
- 호스트 주소의 범위: xxxx xxxx 에서 x들의 경우의 수인 (2^8) 2
 - 2 인 이유
 - 모두가 1인 경우 브로드캐스트 주소로 사용.
 - 모두가 0인 경우 네트워크 주소로 사용.
- default subnet mask: 255.255.255.0

What is a Netmask

- 네트워크 주소 부분의 비트를 1로 치환한 것.
- IP주소와 netmask를 AND연산 하면 네트워크 주소를 얻을 수 있다.

What is the subnet of an IP with Netmask

Subnet/Subnet mask

- IP주소와 같이 32bit의 2진수의 형태.
 - 형태가 같은 이유는 IP주소와 서브넷 마스크를 AND 연산하기 위함.
 - 8bit 마다 .(dot)으로 구분한다.
- Subnetting을 하기위해 필요하다.
- Subnet mask는 2진수로 표현하였을 때 Network ID 부분은 1이 연속적으로 있어야 하며, Host ID 부분은 0이 연속적으로 있어야 한다

Default Subnet mask

• 별개의 subnet mask를 생성하지 않아도 기본적으로 적용되어 있는 기본 subnet mask.

Class	s A
Subnet	Mask

Netwok	Host	Host	Host
255	0	0	0

Class B Subnet Mask

Netwok	Network	Host	Host
255	255	0	0

Class C Subnet Mask

Netwok	Network	Network	Host
255	255	255	0

Subnetting

- 한 개의 subnet mask를 이용해 여러 개의 subnet으로 분할
 - subnetting을 하는 이유는 네트워크 자원을 효율적으로 사용하기 위해서이다.
 - 너무 큰 broadcast 통신은 성능 저하를 발생시키기 떄문에 네트워크를 쪼개서 통신 성능을 보장하는 것.
- 네트워크 영역과 호스트 영역
 - 서브넷화 하는 경우에는 네트워크 주소 부분의 비트를 연장하고 나머지 호스트 부분이 호스트 식별자가 된다.

• 네트워크 주소부분을 고정하고 호스트 부분을 호스트 부분과 서브넷 부분으로 나누어서 분리한다.

• 자원(IP)의 재사용

• IPv4의 제한성(32bit 사용)때문에 최대한 낭비없이 주소를 사용하기 위해 필요한 네트워크 주소만 호스트 IP로 할당할 수 있게 만든다.

• Subnetting 방법

- 네트워크 ID를 1bit 확장하여 두 개의 subnet으로 나눈다.
- ex)
 - A class의 IP(116.81.97.8)를 두 개의 subnet으로 나누고 싶다.
 - A class의 subnet maks(255.0.0.0)에서의 bit를 하나 더 늘려준다.
 - IP주소 뒤의 표현이 /8이 /9로 바뀌고, subnet mask가 255.0.0.0
 에서 255.128.0.0 으로 변한다.
 - A class의 Network ID가 116.0.0.0인 부분과 116.128.0.0 으로 두 부분으로 나뉘어진다.
- Subnet mask의 Network ID를 확장하여 1bit씩 확보하면 네트워크 할당 가능 수 가 2배로 증가하고 반대로 호스트 할당가능 수가 2배로 줄어든다.

• 특징

- Router가 네트워크 안의 서브넷을 나누는 역할을 한다.
 - 네트워크가 분리되어 서로가 통신하기 위해서는 라우터를 통하여서만 가능하다.
 - 각 네트워크에 속해 있는 호스트들은 같은 영역에 존재하므로 라우터까지 거치지 않고 통신할 수 있다.
- 특정 호스트에서 너무 많은 트래픽을 발생시켜 속도를 저하시키는 문제를 해결 할 수 있다.
 - Subnetting을 통하여 네트워크가 분리되기 때문에 브로드캐스트 도메인 의 크기가 줄어들게 되어 가능.

What is the broadcast address of a subnet

- Subnet을 통해 broadcast 주소는 255보다 작은 수를 가질 수 있게 된다.
 - broadcast 주소가 너무 많은 호스트를 갖는 것을 방지할 수 있기 때문에 트래픽 문제를 해결할 수 있다.
- Network/Broadcast address
 - Network address
 - 하나의 네트워크를 가르키기 위한 주소이다.
 - 해당 네트워크의 첫번째 IP address.
 - IP address 와 subnet mask의 AND연산을 통해 얻을 수 있다.
 - Broadcast address
 - 특정 네트워크에 속하는 모든 호스트가 가지게 되는 주소.
 - 네트워크에 있는 클라이언트 모두에게 보내기 위해 사용.
 - 해당 네트워크에 속하는 모든 IP주소 가운데 맨 마지막 IP address.
 - subnet mask의 '0'을 모두 '1'로 바꾸면 계산할 수 있다.
 - ex)
 - C class

• IP address: 192.168.16.1/24

• Subnet mask: 255.255.255.0

network address: 192.168.16.0

broadcast address: 192.168.16.255

- 1은 네트워크 영역, 0은 호스트 영역을 의미한다.
 - 0이 있는 부분의 경우의 수를 구하면 네트워크 부분을 제외한 모든 호스트 영역의 IP주소를 구할 수 있다.
 - 호스트 영역이 전부 0이면 network address, 모두 1이면 broadcast address.

What are the different ways to represent an IP address with the Netmask

- CIDR(Classless Inter-Domain Routing)
 - 접두사에 서브넷 마스크 정보를 붙이는 것.
 - class로만 구분된 네트워크의 한계를 극복하기 위한 수단으로 개발.
 - ex)

• IP address: 192.168.0.1

subnet mask: 255.255.255.0

• CIDR: 192.168.0.1/24

What are the differences between public and private IPs

- 공인 IP와 사설 IP
 - 공인 IP
 - 인터넷 사용자의 로컬 네트워크를 식별하기 위해 ISP(인터넷 서비스 공급자)가 제공하는 IP 주소.
 - 공용 IP주소라고도 하며 외부에 공개되어 있는 IP 주소.
 - 공인 IP는 전세계에서 유일한 IP 주소를 갖는다.
 - 0.0.0.0~127.255.255.255
 - 128.0.0.0~191.255.255.255
 - 192.0.0.0~233.255.255.255

- 224.0.0.0~239.255.255.255
- 240.0.0.0~255.255.255.255
- 사설 IP
 - 일반 가정이나 회사 내에 할당된 네트워크의 IP주소.
 - 로컬 IP, 가상 IP라고도 한다.
 - IPv4의 주소부족으로 인해 서브넷팅된 IP이기 때문에 라우터에 의해 로컬 네트워크상의 PC나 장치에 할당된다.
 - 10.0.0.0~10.255.255.255
 - 172.16.0.0~172.31.255.255
 - 192.168.0.0~192.168.255.255
- Loopback or Localhost
 - 0.0.0.0~0.255.255.255(0.0.0.0/8)까지 Default Route(Default Gateway IP)
 - IPv4 및 IPv6에서, **자기 자신을 가리키기 위한 목적으로 쓰기 위해** 예약된 IP 주소이다.
 - IPv4의 경우 127.0.0.0~127.255.255.255(127.0.0.0/8) 까지 있으며, 보통 127.0.0.1을 사용한다.
 - IPv6의 경우 넓은 대역을 할당하기에는 아까웠는지 IPv6은 ::1/128, 딱 한 개의 주소만 사용한다.

What is TCP/UDP

- TCP/UDP 모두 패킷을 한 컴퓨터에서 다른 컴퓨터로 전달해주는 IP 프로토콜을 기반으로 구현되어 있지만, 서로 다른 특징을 가지고 있다.
- TCP: Transmission Control Protocol
 - 연결형 서비스
 - 3-way handshaking 을 통해 연결 설정.
 - 4-way handshaking 을 통해 연결 해제.
 - 흐름제어
 - 데이터 처리속도를 조절하여 수신자의 버퍼 오버플로우 방지.

- 송신자가 많은 데이터를 빠르게 보낼 경우 수신자에서 데이터를 감당할 수 없을 때 발생하는 문제를 막는다.
- 수신자가 원도우크기(window size)값을 통해 수신량을 정할 수 있다.
- 혼잡제어(Congestion control)
 - 네트워크 내의 패킷 수가 증가하여 넘치지 않게 방지.
 - 정보의 소통량이 과다하면 패킷을 조금만 전송하여 혼잡 붕괴 현상이 일어나는 것을 막는다.
- 신뢰성이 높은 전송(Reliable transmission)
 - Dup ack-based retransmission
 - 정상적인 상황에서는 ACK 값이 연속적으로 전송.
 - ACK값이 중복으로 올 경우 패킷 이상을 감지하고 재전송을 요청.
 - Timeout-based retransmission
 - 일정시간동안 ACK 값이 수신을 못할 경우 재전송을 요청.
- 전이중, 점대점 방식
 - 전이중 (Full-Duplex): 전송이 양방향으로 동시에 일어날 수 있다.
 - 점대점 (Point to Point): 각 연결이 정확히 2개의 종단점을 가지고 있다.

• 특징

- 정확도와 보안을 중요하게 생각하는 대신 속도가 느리다.
- 신뢰성이 요구되는 어플리케이션에서 사용.
 - 장치들 사이에 논리적인 접속을 성립하기 위해 연결을 설정하여 신뢰성을 보장.
- 네트워크 계층 중 전송 계층에서 사용하는 프로토콜.
- 네트워크에 연결된 컴퓨터에서 실행되는 프로그램 간에 일련의 옥텟(데이터, 메세지, 세그먼트라는 블록 단위)를 안정적으로, 순서대로, 에러없이 교환할 수 있게 한다.
- UDP: User Datagram Protocol

Client Server

- TCP와 달리 매우간단한 request를 보내면 response로 응답이 오는 매우 간단한 구조.
- 특징
 - 정확도나 보안을 포기하는 대신 속도가 굉장히 빠르다.
 - 메세지 수신의 신뢰성을 보장할 수 없다.
 - 간단한 데이터를 빠른 속도롤 전송하고자 하는 어플리케이션에서 사용.

Client Server request response response request response

• TCP vs UDP

	TCP	UDP
연결 방식	연결형 프로토콜 연결 후 통신 1:1 통신 방식	비연결형 프로토콜 연결 없이 통신 1:1, 1:N, N:N 통신 방식
특징	 데이터의 경계를 구분 안함 신뢰성 있는 데이터 전송 데이터의 전송 순서 보장 데이터의 수신 여부 확인 패킷을 관리할 필요 없음 UDP보다 전송속도가 느림 	- 데이터의 경계를 구분함 - 신뢰성 없는 데이터 전송 - 데이터의 전송 순서가 바뀔 수 있음 - 데이터의 수신 여부를 확인 안함 - 패킷을 관리해야함 - TCP보다 전송속도가 빠름
관련 클래스	.Socket .ServerSocket	.DatagramSocket .DatagramPacket .MulticastSocet

Transmission control protocol (TCP)	User datagram protocol (UDP)
TCP is a connection-oriented protocol. Connection- orientation means that the communicating devices should establish a connection before transmitting data and should close the connection after transmitting the data.	UDP is the Datagram oriented protocol. This is because there is no overhead for opening a connection, maintaining a connection, and terminating a connection. UDP is efficient for broadcast and multicast type of network transmission.
TCP is reliable as it guarantees delivery of data to the destination router.	The delivery of data to the destination cannot be guaranteed in UDP.
TCP provides extensive error checking mechanisms. It is because it provides flow control and acknowledgment of data.	UDP has only the basic error checking mechanism using checksums.
Sequencing of data is a feature of Transmission Control Protocol (TCP). this means that packets arrive in-order at the receiver.	There is no sequencing of data in UDP. If ordering is required, it has to be managed by the application layer.
TCP is comparatively slower than UDP.	UDP is faster, simpler and more efficient than TCP.
Retransmission of lost packets is possible in TCP, but not in UDP.	There is no retransmission of lost packets in User Datagram Protocol (UDP).
TCP has a (20-80) bytes variable length header.	UDP has a 8 bytes fixed length header.
TCP is heavy-weight.	UDP is lightweight.
TCP doesn't supports Broadcasting.	UDP supports Broadcasting.
TCP is used by HTTP, HTTPs, FTP, SMTP and Telnet.	UDP is used by DNS, DHCP, TFTP, SNMP, RIP, and VoIP.

What are the network layers

• 컴퓨터 과학에서 복잡한 네트워크 상호 작용을 이해하는 데 도움이 되는 프레임워크.

- 네트워크 프로토콜 디자인과 통신을 계층으로 나누어 설명한 것.
- 대표적으로 OSI 7 Layer와 TCP/IP 4 Layer.

What is the OSI model

- OSI(Open Systems Interconnection)
 - 국제표준화기구인 ISO에서 개발한 것으로 컴퓨터 네트워크 프로토콜 디자인과 통신을 7개의 계층으로 나누어 정의한 것.
 - 각 프로토콜을 기능별로 구분하여 각 계층은 서로 독립적이며 하위 계층의 기능만을 사용할 수 있다.
 - 복잡한 문제를 나누어 생각할 수 있게 하여 문제를 해결하는 분할 정복이 가능.
- OSI model
 - 1계층 : 물리계층 (Physical Layer)
 - OSI 모델의 최하위 계층.
 - 상위 계층에서 전송된 데이터를 물리 매체(허브, 라우터, 케이블 등)를 통해 다른 시스템에 전기적 신호를 전송하는 역할을 한다.
 - 데이터를 전달하기만 할 뿐이며, 전송하는 데이터를 식별하고 에러에 대해 신경쓰지 않는다.
 - 기계어를 전기적 신호로 바꿔서 와이어에 실어주는 것.
 - PDU: 비트(Bit)
 - 프로토콜 : Modem, Cable, Fiber, RS-232C
 - 장비: 허브, 리피터
 - 2계층 : 링크계층 (Link Layer)
 - 네트워크 기기들 사이의 데이터 전송을 하는 역할.
 - 송수신 되는 정보의 오류와 흐름을 관리.
 - 시스템 간의 오류 없는 데이터 전송을 위해 패킷을 프레임으로 구성하여 물리 계층으로 전송한다.
 - 통신오류를 찾아 재전송하는 기능을 가짐.
 - 3계층에서 정보를 받아 MAC주소와 제어정보를 헤더와 테일에 추가한다.

• PDU : 프레임(Frame)

• 프로토콜: 이더넷, MAC, PPP, ATM, LAN, Wifi

• 장비: 브릿지, 스위치

- 3계층 : 네트워크계층 (Network Layer)
 - 기기에서 데이터그램(Datagram)이 가는 경로를 설정해주는 역할.
 - 라우팅 알고리즘을 사용하여 최적의 경로를 선택하고 송신측으로부터 수신측 으로 전송한다.
 - Routing : 데이터를 목적지까지 가장 안전하고 빠르게 전달하는 기능.
 - 전송되는 데이터는 패킷 단위로 분할하여 전송한 후 다시 합쳐진다.
 - 2계층이 노드 대 노드 전달을 감독한다면, 3계층은 각 패킷이 목적지까지 성공적이고 효과적으로 전달되도록 한다.

• PDU : 패킷(Packet)

• 프로토콜 : IP, ICMP 등

• 장비: 라우터, L3 스위치

- 4계층 : 전송계층 (Transport Layer)
 - 발신지에서 목적지(End-to-End) 간 제어와 에러를 관리하는 역할.
 - 패킷의 전송이 유효한지 확인하고 전송에 실패된 패킷을 다시 보내는 것과 같은 신뢰성있는 통신을 보장하며, 헤더에는 세그먼트가 포함된다.
 - 주소 설정, 오류 및 흐름 제어, 다중화를 수행.

• PDU : 세그먼트(Segment)

• 프로토콜: TCP, UDP, ARP, RTP

• 장비:게이트웨이, L4 스위치

- 5계층 : 세션계층 (Session Layer)
 - 통신 세션을 구성하는 계층으로, 포트번호를 기반으로 연결.
 - 데이터가 통신을 하기위해 필요한 논리적인 연결을 의미.
 - 통신을 하기위한 통로, 대문이라 생각하자.
 - 통신장치 간의 상호작용을 설정하고 유지하며 동기화한다.
 - TCP/IP 세션 설정, 유지, 종료, 전송 중단시 복구 등의 기능을 한다.
 - 동시송수신(Duplex), 반이중(Half-Duplex), 전이중(Full-Duplex) 방식의 통신과 함께 체크 포인팅과 유후, 종료, 다시 시작 과정 등을 수행.

- 프로토콜 : NetBIOS, SSH, TLS
- 6계층: 표현계층 (Presentation Layer)
 - 송신측과 수신측 사이에서 데이터 형식(png, jpg, jpeg...)을 지정한다.
 - 받은 데이터를 코드 변환, 구문 검색, 암호화, 압축의 과정을 통해 올바른 표준 방식으로 변환해준다.
 - 데이터 표현이 상이한 응용 프로세스의 독립성을 제공.
 - 프로토콜: JPG, MPEG, SMB, AFP
- 7계층 : 응용계층 (Application Layer)
 - 사용자와 바로 연결되어 있으며 응용 SW를 도와주는 역할.
 - 사용자로부터 정보를 입력받아 하위 계층으로 전달하고 하위 계층에서 전송한 데이터를 사용자에게 전달한다.
 - 파일 전송, DB, 메일 전송 등 여러가지 응용 서비스를 네트워크에 연결해주는 역할을 한다.
 - 프로토콜 : DHCP, DNS, FTP, HTTP

TCP/IP model

- OSI 참조 모델은 참조 모델일 뿐 실제 사용되는 인터넷 프로토콜은 7계층 구조를 완전히 따르지 않는다.
- 인터넷 프로토콜 스택(Internet Protocol Stack)은 현재 대부분 TCP/IP를 따른다.
- 인터넷 프로토콜 중 가장 중요한 역할을 하는 TCP와 IP의 합성어.
- 데이터의 흐름관리, 정확성 확인, 패킷의 목적지 보장을 담당한다.
 - TCP: 데이터의 정확성 확인을 담당.
 - IP: 패킷을 목적지까지 전송하는 일을 담당

What is a DHCP server and the DHCP protocol

- DHCP(Dynamic Host Configuration Protocol)
 - 동적 호스트 구성 프로토콜로 호스트 IP 구성 관리를 단순화 하는 IP 표준.
 - DHCP 서버를 사용하여 IP 주소 및 관련된 기타 구성 세부 정보를 네트워크의 DHCP 사용 클라이언트에게 동적으로 할당하는 방법을 제공.
 - IP 주소, 서브넷 마스크, 기본 게이트웨이 및 DNS 정보를 포함하여 IP 구성을 자동 화하는 메커니즘을 구현하려고 할 떄 사용하는 프로토콜.
 - DHCP는 IPv4를 사용하다가 IPv6도 사용하게 되었다.
 - DHCP는 UDP 프로토콜을 기반으로 작동한다.
 - DHCP 서버에서는 UDP를 사용하여 IP 임대를 위한 정보들을 주고 받는다. 추가로 IPv4뿐만 아니라, IPv6의 할당 또한 DHCPv6의 형태로 지원을 한다.
 - UDP의 특징
 - 다음 두가지 특성으로 인해 UDP가 TCP보다 성능이 좋다.
 - 단말 간 연결을 수립하지 않는다.
 - 신뢰성을 보장하지 않는다.
 - 동작 원리
 - DHCP Server Discovery (DHCP 서버 발견)

- 호스트는 자신이 접속할 DHCP 서버의 주소를 알지 못하기 대문에 DHCP 서버 발견 메시지를 서브넷 상의 모든 노드로 브로드캐스팅한다.
- DHCP Server Offer (DHCP 서버 제공)
 - DHCP 발견 메시지를 받으면 서버 제공 메시지를 보낸다. 서버 제공 메시지에는 클라이언트의 IP 주소, 도메인 이름, IP 주소 임대 기간(유효 시간) 등의 설정 파라미터가 포함된다.
 - DHCP Server Offer도 송신 호스트를 모르기 때문에 1번에서처럼 서브 넷 상의 모든 노드로 브로드캐스팅한다.
- DHCP Request (DHCP 요청)
 - 호스트는 서브넷 상의 모든 노드로 DHCP 서버 발견 메시지를 보냈기 때문에 하나 이상의 서버 제공 메시지를 받게 된다. 그 중 최적의 서버를 선택한 후 서버로 DHCP 요청 메시지를 보낸다.
- DHCP ACK(Acknowledgement)
 - 서버는 DHCP 요청 메시지에 대해 확정한다는 의미로 ACK 메시지를 보 낸다.

- ping : IP network를 통해 특정한 host가 도달할 수 있는지의 여부를 테스트하는 데 쓰이는 computer network 도구 중 하나.
- ICMP(Internet Control Message Protocol, 인터넷 제어 메시지 프로토콜):
 - TCP/IP에서 IP 패킷을 처리할 때 발생되는 문제를 알려주는 프로토콜.
 - IP에는 오로지 패킷을 목적지에 도달시키기 위한 내용들로만 구성되어 있다.
 - 정상적으로 목적지 호스트에 도달하는 경우에는 IP에서 통신이 성공하고 종료 되므로 아무런 문제가 없다.
 - 전달해야 할 호스트가 꺼져 있거나, 선이 단절된 경우와 같은 비정상적인 경우에 이 패킷 전달을 의뢰한 출발지 호스트에 이러한 사실을 알려야하지만, IP에는 그러한 에러에 대한 처리 방법이 명시되어있지 않다.
 - 호스트가 없거나, 해당 포트에 대기중에 서버 프로그램이 없는 등의 에러 상황이 발생할 경우 IP헤더에 기록되어 있는 출발지 호스트로 이러한 에러에 대한 상황을 보내주는 역할을 수행.
 - BootP
 - TCP/IP 상에서 자동 부팅을 위한 최초의 프로토콜
 - ARP(Address Resolution Protocol, 주소 결정 프로토콜)
 - 네트워크 상에서 IP주소를 물리적으로 네트워크 주소로 대응(bind)시키기 위해 사용되는 프로토콜

What is a DNS server and the DNS protocol

- DNS(Domain Name System)
 - 인터넷 전화번호부, 브라우저가 인터넷 자원을 로드할 수 있도록 도메인 이름을 IP 주소로 변환한다. 즉, DNS는 도메인 네임을 IP address로 매핑해주는 서비스.
 - 사람은 <u>nytimes.com</u> 또는 espn.com과 같이 도메인 이름을 통해 온라인으로 정보에 액세스하고 웹 브라우저는 인터넷 프로토콜(IP) 주소를 통해 상호작용한다.
 - 이 때 도메인 이름을 IP 주소로 매핑해주는 것이 DNS.
 - 동작 워리
 - 특정 사이트를 방문하기위해 사용자가 브라우저에 URL을 입력한다.
 - 브라우저는 DNS에 접속하여 입력한 도메인 이름과 관련된 IP 주소를 요청한다.

• 획득한 IP 주소를 사용하여 브라우저는 그 컴퓨터와 통신하고 사용자로부터 요 청된 특정 페이지를 요청할 수 있다.

What are the rules to make 2 devices communicate using IP addresses

• 위에서 공부한 내용을 바탕으로 정리

Two computers belonging to the same IP network are able to communicate

Two computers belonging to different IP networks cannot communicate directly with each other

How does routing work with IP

Router

- 전용회선을 통해 LAN에 연결된 컴퓨터들이 동시에 인터넷을 사용할 수 있게 해주는 장비.
- 데이터를 목적지까지 전달하는 기능을 수행하며, 2개 이상의 서로 다른 네트워크를 접속하고 이들 간에 데이터를 주고받을 수 있도록 중계 기능도 한다.
- IP네트워크, 서브넷을 관리하며 다른 네트워크를 거쳐 패킷을 전송하는 역할을 수 행하는 장비이며 라우팅은 그 패킷을 보낼 경로를 설정하는 과정이다.

• 동작원리

- 라우터는 패킷의 전송경로를 결정하기 위해 랜테이블, 네트워크테이블, 라우팅 테이블을 사용한다.
- 라우터는 위의 3가지 테이블을 관리함으로써 다른 네트워크에 연결된 장치들을 비롯하여 네트워크에 연결된 모든 장치들의 주소를 인식하고 이것을 바탕으로 패킷의 전송경로를 결정한다.
- 동일 네트워크 상에 있는 장치로 패킷을 보낼 때 라우터에서는 아래 순서를 매번 거친다.

- 랜테이블 검사를 한다. 이곳에서는 패킷의 목적지가 같은 네트워크에 있는 지 아니면 다른 네트워크에 있는지를 확인한다.
- 네트워크테이블을 검사하여 패킷을 전달할 네트워크 주소를 찾아낸다.
- 라우팅테이블을 검색하여 가장 적합한 경로를 찾아내서 패킷을 보낸다.
 - 랜테이블: 라우터에 연결되어 있는 랜 세그먼트 내 장치의 주소를 관리하고 있으며 필터링작업에 사용.
 - 네트워크테이블 : 네트워크상의 모든 라우터의 주소를 보관하며 패킷의 수신지 라우터를 식별하는데 사용.
 - 라우팅테이블: 각각의 라우터에 구축되어 있으며 각 경로에 대한 정보를 유지하고 있어서 다른 세그먼트로 전송 되는 패킷의 가장 효율적인 경로를 결정하는데 사용.

• 라우팅 알고리즘

- 최적의 경로를 찾는 학습 방법
- Connected (연결)
 - 자신과 물리적으로 직접 연결된 장비의 IP주소를 자동으로 알아온다.
 - 이 IP주소는 네트워크 주소로 라우팅테이블에 저장된다.
- Static (정적)
 - 관리자가 직접 라우팅 경로를 선택해서 보낸다.
 - 현재 네트워크의 변화와 혼잡도를 미리 저장한다.
 - 경로 관리가 효율적이라는 장점과 함께 네트워크 변화에 대한 대처가 느리다는 단점이 있다.

• Dynamic (동적)

- 각 라우터들이 가지고 있는 정보를 서로에게 공유하여 라우팅테이블 에 저장한다.
- 주기적으로 최적 경로를 계산하고 라우팅 테이블의 정보를 유지한다.
- 네트워크 변화에 대한 반응이 빠르다는 장점과 함께 주기적으로 경로 를 계산해야 하므로 CPU 사용량이 많아진다는 단점이 있다.
- Redistribution (재분배)
 - 정보 교환이 이루어지지 않는 장비끼리 관리자가 강제로 교환하는 방식이다.

What is a default gateway for routing

- Default Gateway
- 기본적으로 설정된 라우팅 경로이다.
- 나와 동일 랜에 위치하지 않은 단말과 통신을 하기 위해 거치는(통과하는) 첫번째 라우 터를 의미.
- Default Gateway 주소는 나와 동일 랜에 위치한 주소여야 한다.
- ex)
 - 공유기쪽의 IP주소가 192.168.1.1이라고 가정.
 - 이 공유기와 연결된 모든 장비들은 인터넷에 접속하기 위해 반드시 192.168.1.1을 지나야 한다.
 - 이런 길목 역할을 해주는 192.168.1.1을 Default Gateway(게이트웨이)라고 부른다.

What is a port from an IP point of view and what is it used for when connecting to another device

- Port
 - 인터넷 프로토콜 스위트에서 포트(port)는 운영 체제 통신의 종단점이다.
 - 하드웨어 장치에도 사용되지만, 소프트웨어에서는 네트워크 서비스나 특정 프로세스를 식별하는 논리 단위이다.

- 주로 포트를 사용하는 프로토콜은 전송 계층 프로토콜이라 하며, 예를 들어 전송 제 어 프로토콜(TCP)와 사용자 데이터그램 프로토콜(UDP)가 있다.
- 각 포트는 번호로 구별되며 이 번호를 포트 번호라고 한다. 포트 번호는 IP 주소와 함께 쓰여 해당하는 프로토콜에 의해 사용된다.

answer

출처

- https://velog.io/@hidaehyunlee
- https://velog.io/@seunghwi5545/netwhat#osi-model
- https://www.geeksforgeeks.org/differences-between-tcp-and-udp/
- https://www.tech-fag.com/osi-model.html
- https://dikapedia.com/wiki/OSI_Model_%26_TCP/IP_Model
- https://aws.amazon.com/ko/route53/what-is-dns/
- https://mekhato.com/default-gateway-everything-you-need-to-know/