4. Divide-and-Conquer

Chun-Chao Yeh

Acknowledgment

Prof. Lih-Hsing Hsu of NCTU slides for his Algorithm course.

Divide-and-Conquer

- The strategy
- Example
- How to analyze the complexity
 - Solving the recurrence function

Divide-and-Conquer

Source: http://freshread.files.wordpress.com/2009/07/ants-3.jpg

Chapter 4 P.3

Examples:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n), & \text{if } n = 1. \end{cases}$$

Merge-sort Find-max
$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n), & \text{if } n = 1, \\ T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(1), & \text{if } n = 1, \end{cases}$$

$$T(n) = T(\left\lceil n/2\right\rceil) + T(\left\lfloor n/2\right\rfloor) + \Theta(n)$$

rewrite $T(n) = 2T(n/2) + \Theta(n)$ (for simplicity, igore n/2^k could be an odd number)

P.4 Chapter 4

4.1 the maximum-subarray problem

• Problem:

 Given an array A[1:n], find a subarray A[i:j] such that summation of all elements in the subarray A[i:j]=A[i]+A[i+1]+...+A[j] is maximal, among all possible subarray.

• Example:

- A=13,-3,-25,20,-3,-16,-23, 18,20,-7,12, -5,-22,15,-4,7
- Max=18,20,-7,12

Chapter 4 P.5

maximum-subarray:Algo(1)

• Algo:

- Find-max-subarray(A,low,high)
 - Mid=(low+high)/2
 - Find-max-subArray(A,low,mid)
 - Find-max-subArray(A,mid+1,high)
 - Find-max-crossing-subarray(A,low,mid,high)

maximum-subarray:Algo(2)

- Find-max-crossing-subarray(A,low,mid,high)
 - lefSum=-inf; sum=0
 - For i=mid downto low
 - Sum+=A[i]
 - If (sum> leftSum) {leftSum=sum; maxLeft=i}
 - rightSum=-inf; sum=0
 - For j=mid+1 to hight
 - Sum+=A[j]
 - If (sum> rightSum) {rightSum; maxRight=j}
 - Return(maxLeft, maxRight, leftSum+rightSum)

Chapter 4 P.7

Correctness and complexity

- Correctness: trivial
- Complexity
 - $-T(n)=2T(n/2)+\theta(n)$
 - $\rightarrow T(n) = \theta(n \lg n)$

4.2 Strassen's algorithm for matrix multiplication

$$A = (a_{ij})_{nxn}, B = (b_{ij})_{nxn}$$

$$C = A \cdot B = (c_{ij})_{nxn}, \quad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \qquad complexity = \Theta(n^3)$$

A simple dvide-and conquer algorithm

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \ B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \ C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \qquad T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T(n/2) + \Theta(n^2), & \text{if } n > 1 \end{cases}$$

$$\Rightarrow T(n) = \Theta(n^3) \Rightarrow \text{no faster!!}$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{12} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

$$\Rightarrow T(n) = \Theta(n^{1g7}) \Rightarrow \text{faster!!}$$

Chapter 4 P.9

Strassen's algorithm for matrix multiplication

- Details
 - Skips
 - Please refer to the context

4.3 The substitution method: Mathematical induction

Recurrences --
$$T(n) = aT(n/b) + f(n)$$

- Substitution method
- Recursion-tree method
- Master method

Chapter 4 P.11

Technicalities

 We neglect certain technical details when we state and solve recurrences. A good example of a detail that is often glossed over is the assumption of integer arguments to functions. Boundary conditions is ignored. Omit floors, ceilings.

4.3 The substitution method: Mathematical induction

- The substitution method for solving recurrence entails two steps:
 - 1. Guess the form of the solution.
 - 2. Use mathematical induction to find the constants and show that the solution works.

Chapter 4 P.13

Example

$$\begin{cases}
T(n) = 2T(\lfloor n/2 \rfloor) + n \\
T(1) = 1
\end{cases}$$

(We may omit the initial condition later.)

Guess
$$T(n) = O(n \log n)$$

Assume $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \log \lfloor n/2 \rfloor$

$$T(n) \le 2(c \lfloor n/2 \rfloor \log \lfloor n/2 \rfloor) + n \le cn \log \frac{n}{2} + n$$
$$= cn \log n - cn \log 2 + n \le cn \log n \quad \text{(if } c \ge 1.\text{)}$$

Initial condition
$$1 = T(1) < cn \log 1 = 0 (\rightarrow \leftarrow)$$

However,
$$4 = T(2) < cn \log 2$$
 (if $c \ge 4$)

Chapter 4 P.15

Making a good guess

We guess =
$$2T(\lfloor n/2 \rfloor + 17) + n$$

 $T(n) = O(n \log n)$

Making guess provides loose upper bound and lower bound. Then improve the gap.

Subtleties

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

- Guess T(n) = O(n)
- 1. Example: Find max./min.
- show: ceil(n/2) + floor(n/2) = n
 - proof: both cases are ok n=2k(even) or 2k+1 (odd)

• Assume
$$T(n) \le cn$$

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1 \le cn + 1 \le cn$$

However, assume $T(n) \le cn - b$

$$T(n) \le (c \lfloor n/2 \rfloor - b) + (c \lceil n/2 \rceil - b) + 1$$

$$\le cn - 2b + 1 \le cn - b \quad \text{(Choose } b \ge 1\text{)}$$

Chapter 4 P.17

Show that the solution to $T(n) = 2T(\lfloor \frac{n}{2} \rfloor + 17) + n$ is $O(n \lg n)$

Solution:

assume
$$a>0,\,b>0,\,c>0$$
 and $T(n)\ \leq\!an\;lg\;n-blg\;n$ - c

$$T(n) \leq 2[(\frac{n}{2} + 17)lg(\frac{n}{2} + 17) - blg(\frac{n}{2} + 17) - c] + n$$

$$\leq (an + 34a)lg(\frac{n}{2} + 17) - 2blg(\frac{n}{2} + 17) - 2c + n$$

$$\leq anlg(\frac{n}{2} + 17) + anlg(\frac{n}{2} + 17) - 2c$$

$$\leq anlg(n) 2^{1/a} + (34a - 2b)lg(n) - 2c$$

$$anlg(n) 2^{1/a} + (34a-2b)lg(n) - 2c$$

$$\rightarrow$$
n $\geq \frac{n}{2}$ +17, n \geq 34

$$ightharpoonup$$
 $n \geq (\frac{n}{2}$ +17) $2^{1/a}$, $\because 2^{1/2} \leq 1.5 \therefore n \geq 12$

$$\rightarrow 34a-2b \leq -b$$
, $b \geq 34a$

$$\Rightarrow$$
c > 0 , -c > -2c

$$\rightarrow$$
 T(n) \leq anlgn - blgn - c , T(n) \leq anlgn

$$\rightarrow$$
 T(n) = O(nlgn)

Chapter 4 P.19

Avoiding pitfalls

$$\begin{cases}
T(n) = 2T(\lfloor n/2 \rfloor) + n \\
T(1) = 1
\end{cases}$$

- Assume $T(n) \le O(n)$
- Hence $T(n) \le cn$ $T(n) \le 2(c\lfloor n/2 \rfloor) + n \le cn + n = O(n)$ (Since c is a constant)
- (WRONG!) You cannot find such a c.

Changing variables

$$T(n) = 2T(\sqrt{n}) + \lg n$$

Let
$$m = \lg n$$
.

$$T(2^m) = 2T(2^{m/2}) + m$$

Then
$$S(m) = 2S(m/2) + m$$
.

$$\Rightarrow S(m) = O(m \lg m)$$

$$\Rightarrow T(n) = T(2^m) = S(m) = O(m \lg m)$$
$$= O(\lg n \lg \lg n)$$

Chapter 4 P.21

4.4 the Recursion-tree method

$$T(n) = 3T(|n/4|) + \Theta(n^2)$$

 cn^2

 cn^2 T(n) $T\left(\frac{n}{4}\right)$ $T\left(\frac{n}{4}\right)$ $T\left(\frac{n}{4}\right)$

 $c\left(\frac{n}{4}\right)^2$

 $c\left(\frac{n}{4}\right)^2$ $c\left(\frac{n}{4}\right)^2$ $T\left(\frac{n}{16}\right) \quad T\left(\frac{n}{16}\right) \quad T\left(\frac{n}{16}\right)$

(a)

(b)

The cost of the entire tree

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1}cn^{2} + \Theta(n^{\log_{4}3}).$$

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right)$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right)$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta\left(n^{\log_4 3}\right)$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2)$$

Chapter 4 P.25

substitution method

We want to Show that $T(n) \le dn^2$ for some constant d > 0. using the same constant c > 0 as $b \in \mathcal{F}(n) = n$

$$\leq 3d \lfloor n/4 \rfloor^2 + cn^2$$

$$\leq 3d (n/4)^2 + cn^2$$

$$= \frac{3}{16}dn^2 + cn^2$$

$$\leq dn^2.$$

Where the last step holds as long as $d \ge (16/13)c$.

$$T(n) = T(n/3) + T(2n/3) + cn$$

Chapter 4 P.27

substitution method

$$T(n) \le T(n/3) + T(2n/3) + cn$$

$$\le d(n/3)\lg(n/3) + d(2n/3)\lg(2n/3) + cn$$

$$= (d(n/3)\lg n - d(n/3)\lg 3) + (d(2n/3)\lg n - d(2n/3)\lg(3/2)) + cn$$

$$= dn\lg n - d((n/3)\lg 3 + (2n/3)\lg(3/2)) + cn$$

$$= dn\lg n - d((n/3)\lg 3 + (2n/3)\lg 3 - (2n/3)\lg 2 + cn$$

$$= dn\lg n - dn(\lg 3 - 2/3) + cn$$

$$\le dn\lg n,$$

As long as $d \ge c/\lg 3 - (2/3)$.

4.5 The master method

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ and if af(n/b) = cf(n) for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Proof. (In section 4.4 by recursive tree)

Chapter 4 P.29

•
$$T(n) = 9T(n/3) + n$$

$$a = 9, b = 3, f(n) = n$$

 $n^{\log_3 9} = n^2, \quad f(n) = O(n^{\log_3 9 - 1})$

Case
$$1 \Rightarrow T(n) = \Theta(n^2)$$

• T(n) = T(2n/3) + 1

$$a = 1, b = 3/2, f(n) = 1$$

 $n^{\log_{3/2} 1} = n^0 = 1 = f(n),$

Case
$$2 \Rightarrow T(n) = \Theta(\log n)$$

$$T(n) = 3T(n/4) + n \log n$$

$$a = 3, b = 4, f(n) = n \log n$$

 $n^{\log_4 3} = n^{0.793}, \quad f(n) = O(n^{\log_4 3 + \varepsilon})$

Case 3

Check

$$af(n/b) = 3(\frac{n}{4})\log(\frac{n}{4}) \le \frac{3n}{4}\log n = cf(n)$$

for $c = \frac{3}{4}$, and sufficiently large n

$$\Rightarrow T(n) = \Theta(n \log n)$$

Chapter 4 P.31

User of master theorem--NOTE!!!! (1)

1.if $(n) = O(n^{\log_b a - \varepsilon})$ for some const. $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$, In the first case,

not only must f(n) be smaller than $n^{\log_b a}$, it must be *polynomially* smaller. That is, f(n) must be asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ε} .

3.if
$$(n) = \Omega(n^{\log_b a + \varepsilon})$$
 for some const. $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some const. $c > 1$ and sufficiently large n, then $T(n) = \Theta(f(n))$.

In the third case,

Not only must f(n) be larger than $n^{\log_b a}$, it must be *polynomially* larger. And satisfy the "regularity" condition that af(n/b) <= cf(n).

User of master theorem--NOTE!!!! (2)

Note that the three cases do not cover all the possiblities for f(n). There is a gap between cases 1 and 2 when f(n) is smaller than $n^{\log_b a}$ But not polynomially smaller. Similarly,

there is a gap between cases 2 and 3 when f(n) is larger than $n^{\log_b a}$ But not polynomially larger.

If the function f(n) falls into one of these gaps, or if the regularity Condition in case 3 fails to hold, you cannot use the master method.

Chapter 4 P.33

User of master theorem--NOTE!!!! (3)

Example:

The master method does not apply to the recurrence

$$T(n) = 2T(n/2) + n \lg n,$$

even though it has the proper form:

$$a = 2, b = 2, f(n) = n \lg n, n^{\log_b a} = n.$$

It might seem that case 3 should apply, since

 $f(n) = n \lg n$ is asymptotically larger than $n^{\log_b a} = n$

The problem is that it is not polynomially larger

(by a factor of n^{ε}). The ratio $f(n)/n^{\log_b a} = n \lg n / n = \lg n$ is asymptotically

less than n^{ε} for any positive constant ε .

Consequently, the recurrence falls into the gap

between case 2 and case 3.

(solution. see exercise 4.6 - 2)

Exercises: 4.5-5

Exercises: 4.5-5

consider the regularity condition $af(n/b) \le cf(n)$ for some constant c > 1, which is part of case 3 of the master theorem. Give an example of constant $a \ge 1$ and b > 1 and a function f(n) that satisfies all the conditions in case 3 of the master theorem except the gegularity condition.

$$af(n/b) \le cf(n) \land f(n) = \Omega(n^{\log_b a + \varepsilon})$$
let $f(n) = n^{\log_b a + \varepsilon}$, we want
$$no c < 1 \text{ satisfies } af(n/b) \le cf(n)$$

$$af(n/b) = a(n/b)^{\log_b a + \varepsilon} = an^{\log_b a + \varepsilon} / b^{\log_b a + \varepsilon} = an^{\log_b a + \varepsilon} / ab^{\varepsilon} = n^{\log_b a + \varepsilon} / b^{\varepsilon}$$

$$= f(n)/b^{\varepsilon} = c' f(n)$$
Wrong, no such b

so, if $c'=1/b^{\varepsilon} \ge 1$, then we cannot find c < 1, $af(n/b) \le cf(n)$

P.35

Exercises: 4.6-2

Exercises: 4.6 - 2

show that if $f(n) = \Theta(n^{\log_b a} \lg^k n)$, where $k \ge 0$, then the master recurrence has solution $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$. (for simplicity, confine your analysis to exact powers of b.)

$$T(n) = \Theta(n^{\log_b^a}) + \sum_{j=0}^{\log_b^n - 1} a^j f(n/b^j)$$
 (from Lemma 4.2)

$$let g(n) = \sum_{j=0}^{\log_{b}^{n}-1} a^{j} f(n/b^{j}) = \Theta(\sum_{j=0}^{\log_{b}^{n}-1} a^{j} (n/b^{j})^{\log_{b} a} \lg^{k} (n/b^{j}))$$

$$= \Theta(\sum_{j=0}^{\log_{b}^{n}-1} a^{j} (n^{\log_{b} a} / (b^{j})^{\log_{b} a}) \lg^{k} (n/b^{j}))$$

$$= \Theta(n^{\log_{b} a} \sum_{j=0}^{\log_{b}^{n}-1} a^{j} (1/a^{j}) \lg^{k} (n/b^{j})) = \Theta(n^{\log_{b} a} \sum_{j=0}^{\log_{b}^{n}-1} \lg^{k} (n/b^{j}))$$
assume $n = b^{i}$

$$\Rightarrow g(n) = \Theta(n^{\log_{b} a} \sum_{j=0}^{\log_{b}^{n}-1} \lg^{k} (b^{i} / b^{j})) = \Theta(n^{\log_{b} a} \sum_{j=0}^{i-1} \lg^{k} b^{i-j}))$$

$$= \Theta(n^{\log_{b} a} \sum_{j=1}^{i} \lg^{k} b^{j})) = \Theta(n^{\log_{b} a} \sum_{j=1}^{i} (j \lg b)^{k})$$

$$= \Theta(n^{\log_{b} a} \log^{k} b \sum_{j=1}^{i} j^{k})$$

$$let h(i, k) = \sum_{j=1}^{i} j^{k} = 1^{k} + 2^{k} + \dots + i^{k} < i^{k} + i^{k} + \dots + i^{k} = ii^{k} = i^{k+1} = (\log_{b} n)^{k+1}$$
show that $h(i, k) > (i/2)^{k+1} (\because (x^{k} + y^{k}) \ge (\frac{x + y}{2})^{k})$

Exercises: 4.6-3

Exercises: 4.6-3

show that case 3 of the master theorem is overstated., in the sense that the regularity condition $af(n/b) \le cf(n)$ for some constant c < 1 implies that there exists a constant $\varepsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \varepsilon})$.

idea:
let
$$n = \Theta(b^k), k = \Theta(\log_b n)$$

 $af(n/b) \le cf(n) \Rightarrow f(n) \ge (a/c)f(n/b) \ge (a/c)^2 f(n/b^2)$
.... $\ge (a/c)^k f(n/b^k) = (a/c)^{\Theta(\log_b n)} f(\Theta(1))$
 $= \Theta(n^{\log_b a} n^{-\log_b c}) f(\Theta(1)) = \Theta(n^{\log_b a} n^{-\log_b c}) \text{ (since } f(\Theta(1)) = \Theta(1))$
 $\because c \text{ is some constant } < 1, 1/c > 1, \log_b (1/c) > 0,$
 $\exists a \text{ constant } \varepsilon > 0 \text{ such that } \varepsilon > \log_b (1/c) > 0$
 $\Rightarrow f(n) \ge \Theta(n^{\log_b a} n^{-\log_b c}) \ge \Theta(n^{\log_b a} n^{\varepsilon}) = \Theta(n^{\log_b a + \varepsilon})$
 $\Rightarrow f(n) = \Omega(n^{\log_b a + \varepsilon})$

4.6 proof of the master theorem

Lemma 4.2:

Let a ≥ 1 and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. Define T(n) on exact powers of b by the recurrence

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ aT(n/b) + f(n), & n = b^i \end{cases}$$

where i is a positive integer. Then

$$T(n) = \Theta(n^{\log_b^a}) + \sum_{j=0}^{\log_b^n - 1} a^j f(n/b^j).$$

P.39 Chapter 4

Proof: Lemma 4.2

$$T(n) = aT(n/b) + f(n), \quad n = b^{i} \quad i = \log_{b}{^{n}}$$
By definition
$$T(b^{i}) = aT(b^{i}/b) + f(b^{i}) = aT(b^{i-1}) + f(b^{i})$$

$$S(0) = T(b^{0}) = T(1) = C \text{ (constant)}$$

$$T(b^{i}) = aT(b^{i}/b) + f(b^{i}) = a(aS(i-2) + f(b^{i-1})) + f(b^{i})$$

$$= a^{2}S(i-1) + f(b^{i}) = a(aS(i-2) + f(b^{i-1})) + f(b^{i})$$

$$= a^{2}(aS(i-3) + f(b^{i-2})) + af(b^{i-1}) + f(b^{i})$$

$$= a^{3}S(i-3) + a^{2}f(b^{i-2})) + af(b^{i-1}) + f(b^{i})$$

$$= ...$$

$$= a^{i}S(0) + (a^{i-1}f(b^{1}) + ... + af(b^{i-1}) + f(b^{i})) \Rightarrow T(n) = T(1)(n^{\log_{b}{^{a}}}) + \sum_{j=0}^{\log_{b}{^{n}-1}} a^{j}f(n/b^{j}).$$
Chapter 4

Chapter 4

4.6 proof of the master theorem (2)

• Lemma 4.3:

 Let a ≥ 1 and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. A function g(n) defined over exact powers of by

$$g(n) = \sum_{i=0}^{\log_b^n - 1} a^j f(n/b^j)$$

has the following asymptotic bounds for exact powers of b:

$$g(n) = \begin{cases} O(n^{\log_b^a}), & \text{if } f(n) = O(n^{\log_b^a - \varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b^a} \lg n), & \text{if } f(n) = \Theta(n^{\log_b^a}) \\ \Theta(f(n)), & \text{if } af(n/b) \le cf(n) \text{ for some constant } c < 1 \\ & \text{and for all sufficiently large } n \end{cases}$$

Chapter 4 P.41

Proof: Lemma 4.3

given
$$n = b^{i}$$

$$g(n) = \sum_{j=0}^{\log_{b}^{n} - 1} a^{j} f(n/b^{j})$$

$$g(n) = a^{k-1} f(b^{1}) + ... + af(b^{k-1}) + f(b^{k})$$

$$1. g(n) = O(n^{\log_{b}^{a}}), \text{ if } f(n) = O(n^{\log_{b}^{a} - \varepsilon}) \text{ for some constant } \varepsilon > 0$$

$$2. g(n) = \Theta(n^{\log_{b}^{a}} \lg n), \text{ if } f(n) = \Theta(n^{\log_{b}^{a}})$$

$$3. g(n) = \Theta(f(n)), \text{ if } af(n/b) \le cf(n) \text{ for some constant } c < 1$$

and for all sufficiently large n

Proof: Lemma 4.3(2)

1.
$$g(n) = O(n^{\log_b^a})$$
, if $f(n) = O(n^{\log_b^a - \varepsilon})$ for some constant $\varepsilon > 0$
if $f(n) = O(n^{\log_b^a - \varepsilon})$ given $n = b^{\varepsilon}$

$$\Rightarrow g(n) = \sum_{j=0}^{\log_b^n - 1} a^j f(n/b^j) = O(\sum_{j=0}^{\log_b^n - 1} a^j (n/b^j)^{\log_b^a - \varepsilon})$$

$$\sum_{j=0}^{\log_b^n - 1} a^j (n/b^j)^{\log_b^a - \varepsilon} = n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} a^j (b^{-j})^{\log_b^a - \varepsilon})$$

$$= n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} a^j (b^{-j\log_b^a})(b^{j\varepsilon})) = n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} a^j (a^{-j})(b^{j\varepsilon}))$$

$$= n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} b^{j\varepsilon}) = n^{\log_b^a - \varepsilon} (\frac{(b^{\varepsilon})^{\log_b^n} - 1}{b^{\varepsilon} - 1}) = n^{\log_b^a - \varepsilon} (\frac{n^{\varepsilon} - 1}{b^{\varepsilon} - 1}) < n^{\log_b^a}$$

Proof: Lemma 4.3(3)

P.43

Chapter 4

given
$$n = b^k$$

$$g(n) = \Theta(n^{\log_b^a} \log n), \text{ if } f(n) = \Theta(n^{\log_b^a})$$

$$g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j)$$

$$g(n) = a^{k-1} f(b^1) + \dots + a f(b^{k-1}) + f(b^k)$$

$$g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) = \Theta(\sum_{j=0}^{\log_b^{n-1}} a^j (n/b^j)^{\log_b^a})$$

$$\sum_{j=0}^{\log_b^{n-1}} a^j (n/b^j)^{\log_b^a} = n^{\log_b^a} (\sum_{j=0}^{\log_b^{n-1}} a^j (b^{-j})^{\log_b^a})$$

$$= n^{\log_b^a} (\sum_{j=0}^{\log_b^{n-1}} a^j (b^{-j\log_b^a})) = n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^{n-1}} a^j (a^{-j}))$$

$$= n^{\log_b^a} (\sum_{j=0}^{\log_b^{n-1}} 1) = (n^{\log_b^a}) (\log_b^n)$$

Proof: Lemma 4.3(4)

3. $g(n) = \Theta(f(n))$, if $af(n/b) \le cf(n)$ for some constant c < 1

and for all sufficiently large n

4.6 proof of the master theorem

- Lemma 4.4:
 - Let a ≥ 1 and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. Define T(b) on exact powers of b by the recurrence

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ aT(n/b) + f(n), & n = b^i \end{cases}$$

where i is a positive integer. Then T(n) has the following asymptotic bounds for exact powers of b:

$$T(n) = \begin{cases} \Theta(n^{\log_b^a}), & \text{if } f(n) = O(n^{\log_b^a - \varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b^a} \lg n), & \text{if } f(n) = \Theta(n^{\log_b^a}) \\ \Theta(f(n)), & \text{if } f(n) = \Omega(n^{\log_b^a + \varepsilon}) \text{ for some constant } \varepsilon > 0, \\ & \text{and if } af(n/b) \le cf(n) \text{ for some constant } c < 1 \\ & \text{and for all sufficiently large } n \end{cases}$$

Proof: Lemma 4.4

From lemma 4.2

$$T(n) = aT(n/b) + \int_{\log_b^a - 1} f(n), \quad n = b^i$$

$$T(n) = C(n^{\log_b^a}) + \sum_{j=0}^{\log_b^a - 1} a^i f(n/b^j).$$

From lemma 4.3

$$=\Theta(\mathsf{n}^{\log_{\mathsf{b}}^{a}})+g(n)$$

$$g(n) = \begin{cases} O(n^{\log_b{a}}), & \text{if } f(n) = O(n^{\log_b{a}-\varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b{a}} \lg n), & \text{if } f(n) = \Theta(n^{\log_b{a}}) \\ \Theta(f(n)), & \text{if } af(n/b) \le cf(n) \text{ for some constant } c < 1 \\ & \text{and for all sufficiently large } n \end{cases}$$

$$T(n) = \begin{cases} \Theta(n^{\log_b{a}}) + O(n^{\log_b{a}}) = \Theta(n^{\log_b{a}}), & \text{if } f(n) = O(n^{\log_b{a}-\varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b{a}}) + \Theta(n^{\log_b{a}} \lg n) = \Theta(n^{\log_b{a}} \lg n), & \text{if } f(n) = \Theta(n^{\log_b{a}}) \\ \Theta(n^{\log_b{a}}) + \Theta(f(n)) = \Theta(f(n)), & \text{if } f(n) = \Omega(n^{\log_b{a}+\varepsilon}) \text{ for some constant } \varepsilon > 0, \\ & \text{and if } af(n/b) \le cf(n) \text{ for some constant } c < 1 \end{cases}$$

Chapter 4

Are we done?

- What if n is not exact powers of b?
- What if we have ceilings/floors?

What if n is not exact powers of b?

$$T(n) = \begin{cases} \Theta(1), & n = 1 \\ aT(n/b) + f(n), & n > 1, a \ge 1, b > 1 \end{cases}$$

$$T(n) = \begin{cases} \Theta(n^{\log_b^a}), & \text{if } f(n) = O(n^{\log_b^a - \varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b^a} \lg n), & \text{if } f(n) = \Theta(n^{\log_b^a}) \end{cases}$$

$$\Theta(f(n)), & \text{if } f(n) = \Omega(n^{\log_b^a + \varepsilon}) \text{ for some constant } \varepsilon > 0,$$

$$\text{and if } af(n/b) \le cf(n) \text{ for some constant } c < 1$$

$$\text{and for all sufficiently large } n$$

Note that:

$$T(n) = aT(n/b) + f(n), \quad n = b^{i}$$

$$T(n) = C(n^{\log_{b}^{a}}) + \sum_{j=0}^{\log_{b}^{a}-1} a^{i} f(n/b^{j}).$$
let $b^{k} \le n < b^{k+1}$, for some $k \ge 1$

$$T(b^{k}) \le T(n) \le T(b^{k+1})$$
(assume $T(n)$ is non - decreasing func.)

What if n is not exact powers of b?(2)

let
$$b^k \le n < b^{k+1}$$
, for some $k \ge 1$

$$T(b^k) \le T(n) \le T(b^{k+1})$$

$$T(n) = \Theta(n^{\log_b^a}), \text{ if } f(n) = O(n^{\log_b^a - \varepsilon}) \text{ for some constant } \varepsilon > 0$$

$$T(n) = \Theta(n^{\log_b^a} \lg n), \text{ if } f(n) = \Theta(n^{\log_b^a})$$

$$T(n) = \Theta(f(n)), \text{ if } f(n) = \Omega(n^{\log_b^a + \varepsilon}) \text{ for some constant } \varepsilon > 0,$$
and if $af(n/b) \le cf(n)$ for some constant $c < 1$
and for all sufficiently large n

P.50 Chapter 4

What if n is not exact powers of b?(3)

• Proof: let
$$b^k \le n < b^{k+1}$$
, for some $k \ge 1$
 $T(b^k) \le T(n) \le T(b^{k+1})$

1.
$$T(n) = \Theta(n^{\log_b^a})$$
, if $f(n) = O(n^{\log_b^a - \varepsilon})$ for some constant $\varepsilon > 0$

$$T(n) \leq T(b^{k+1}) = \Theta((b^{(k+1)\log_b^a})) = \Theta(a^{k+1}) \leq c_1 a^{k+1} = c_1 a a^k \leq c_1 a a^{\log_b^n} = c_1 a n^{\log_b^a} \ (\because b^k \leq n)$$

$$\Rightarrow T(n) = O(n^{\log_b^a}) \dots (1)$$

$$T(n) \geq T(b^k) = \Theta((b^{(k)\log_b^a})) = \Theta(a^k) \geq c_2 a^k = c_2 a^{-1} a^{k+1} \geq c_2 a^{-1} a^{\log_b^n} = c_2 a^{-1} n^{\log_b^a} \ (\because b^{k+1} > n)$$

$$\Rightarrow T(n) = \Omega(n^{\log_b^a}) \dots (2)$$

$$(1), (2) \Rightarrow T(n) = \Theta(n^{\log_b^a})$$

Chapter 4 P.51

What if n is not exact powers of b?(4)

• Proof: let
$$b^k \le n < b^{k+1}$$
, for some $k \ge 1$
 $T(b^k) \le T(n) \le T(b^{k+1})$

2.
$$T(n) = \Theta(n^{\log_b^a} \lg n)$$
, if $f(n) = \Theta(n^{\log_b^a})$

$$T(n) \leq T(b^{k+1}) = \Theta((b^{(k+1)\log_b^a})) = \Theta(a^{k+1}) \leq c_1 a^{k+1} = c_1 a a^k \leq c_1 a a^{\log_b^n} = c_1 a n^{\log_b^a} \ (\because b^k \leq n)$$

$$\Rightarrow T(n) = O(n^{\log_b^a}) \dots (1)$$

$$T(n) \geq T(b^k) = \Theta((b^{(k)\log_b^a})) = \Theta(a^k) \geq c_2 a^k = c_2 a^{-1} a^{k+1} \geq c_2 a^{-1} a^{\log_b^n} = c_2 a^{-1} n^{\log_b^a} \ (\because b^{k+1} > n)$$

$$\Rightarrow T(n) = \Omega(n^{\log_b^a}) \dots (2)$$

$$(1), (2) \Rightarrow T(n) = \Theta(n^{\log_b^a})$$

What if n is not exact powers of b?(5)

• Proof: let
$$b^k \le n < b^{k+1}$$
, for some $k \ge 1$ $T(b^k) \le T(n) \le T(b^{k+1})$ 3. $T(n) = \Theta(f(n))$, if $f(n) = \Omega(n^{\log_b^a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant $c < 1$ and for all sufficiently large n

```
\begin{aligned} &1.T(n) = \mathrm{O}(f(n)) \\ &T(n) = aT(n/b) + f(n) \leq adf(n/b) + f(n) \\ &\leq dcf(n) + f(n)(\because af(n/b) \leq cf(n)) \\ &= df(n) - (d(1-c)f(n) - f(n)) \\ &\leq df(n)(\text{if } d(1-c)f(n) \geq f(n) \end{aligned} \qquad \begin{aligned} &2.T(n) = \Omega(f(n)) \\ &\leq df(n)(\text{if } d(1-c)f(n) \geq f(n) \end{aligned} \qquad \text{trivial : by definition }, \\ &=> d(1-c) \geq 1 \Rightarrow d \geq \frac{1}{1-c}) \end{aligned} \qquad \begin{aligned} &\Omega(g(n)) = \{f(n) \mid \exists c, n_0 \text{ s.t. } 0 \leq cg(n) \leq f(n) \ \forall \ n \geq n_0\} \Rightarrow f(n) = \Omega(g(n)) \\ &\text{so, we can easily find} \\ &c = 1, \ n_0 = b, \ 0 \leq cg(n) = f(n) \leq aT(n/b) + f(n), \ \forall \ n \geq n_0 \end{aligned}
```

Chapter 4 P.53

4.6.2 floors and ceilings

Some what complicate, refer to the textbook

Lower bound on
$$T(n) = aT(\lceil n/b \rceil) + f(n),$$

Upper bound on

$$T(n) = aT(\lfloor n/b \rfloor) + f(n),$$

$$n/b \le \lceil n/b \rceil < n/b + 1,$$

$$\Rightarrow T(n/b) \le T(\lceil n/b \rceil) \le T(n/b + 1)$$

$$n/b - 1 < \lfloor n/b \rfloor \le n/b,$$

$$\Rightarrow T(n/b - 1) \le T(\lfloor n/b \rfloor) \le T(n/b)$$

idea:

$$\exists k, m/b = b^{k-1} \le \lceil n/b \rceil < b^{k}, (b > 1, k > 1)$$

$$\Rightarrow m/b = b^{k-1} \le n/b \le \lceil n/b \rceil < n/b + 1 < b^{k}, (b > 1, k > 1)$$

$$\Rightarrow m = b^{k} \le n < b^{k+1} = bm$$

$$T(b^{k-1}) \le T(\lceil n/b \rceil) \le T(b^{k}),$$
we want: $\Omega(g(m)) \le T(\lceil n/b \rceil) \le O(g(m))$

$$\Rightarrow T(\lceil n/b \rceil) = \Theta(g(m))$$

$$\therefore \Theta(g(m)) = \Theta(g(bm)) \land m \le n < bm$$

$$\Rightarrow \Theta(g(m)) = \Theta(g(bm)) = \Theta(g(n))$$

floors and ceilings (2)

$$T(n) = \begin{cases} \Theta(1), & n = 1 \\ aT(n/b) + f(n), & n > 1, a \ge 1, b > 1 \end{cases}$$

$$T(n) = \begin{cases} \Theta(n^{\log_b^a}), & \text{if } f(n) = O(n^{\log_b^a - \varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b^a} \lg n), & \text{if } f(n) = \Theta(n^{\log_b^a}) \end{cases}$$

$$\Theta(f(n)), & \text{if } f(n) = \Omega(n^{\log_b^a + \varepsilon}) \text{ for some constant } \varepsilon > 0,$$

$$\text{and if } af(n/b) \le cf(n) \text{ for some constant } c < 1$$

$$\text{and for all sufficiently large } n$$

P.55

Note that:
$$n/b \le \lceil n/b \rceil < n/b + 1$$
,
 $\Rightarrow T(n/b) \le T(\lceil n/b \rceil) \le T(n/b + 1)$
 $n/b - 1 < \lfloor n/b \rfloor \le n/b$,
Chapter 4 $\Rightarrow T(n/b - 1) \le T(\lceil n/b \rceil) \le T(n/b)$

T(n)=aT(n/b+c)+f(n)?

Recall Lemma 4.2!!

- Lemma 4.2:
 - Let a ≥ 1 and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. Define T(n) on exact powers of b by the recurrence

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ aT(n/b) + f(n), & n = b^i \end{cases}$$

where i is a positive integer. Then

$$T(n) = \Theta(n^{\log_b^a}) + \sum_{j=0}^{\log_b^n - 1} a^j f(n/b^j).$$
P.56

T(n)=aT(n/b+c)+f(n)?(2)

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ aT(n/b+c) + f(n), & n = b^i \end{cases}$$

where i is a positive integer. Then

$$T(n) = \Theta(n^{\log_b^a}) + \sum_{i=0}^{\log_b^n - 1} a^j f(n/b^j).$$

Chapter 4 P.57

T(n)=aT(n/b+c)+f(n)? (3)

$$T(n) = aT(n/b+c) + f(n), \quad n = b^{i}$$

$$find \text{ d, such that}$$

$$T(n+d) = aT(n/b+d) + f(n+d), \quad n = b^{i}$$

$$i = \log_{b}^{n}$$

$$a^{\log_{b}^{n}} = n^{\log_{b}^{n}},$$

$$T(b^{i}+d) = aT(b^{i}/b+d) + f(b^{i}+d) = aT(b^{i-1}+d) + f(b^{i}+d)$$

$$let \quad S(i) = T(b^{i}+d)$$

$$variables$$

$$\Rightarrow S(i) = aS(i-1) + f(b^{i}+d) = a(aS(i-2) + f(b^{i-1}+d)) + f(b^{i}+d)$$

$$= a^{2}S(i-2) + af(b^{i-1}+d) + f(b^{i}+d)$$

$$= a^{2}(aS(i-3) + f(b^{i-2}+d)) + af(b^{i-1}+d) + f(b^{i}+d)$$

$$= a^{3}S(i-3) + a^{2}f(b^{i-2}+d) + af(b^{i-1}+d) + f(b^{i}+d)$$

$$= ...$$

$$= a^{i}S(0) + (a^{i-1}f(b^{1}+d) + ... + af(b^{i-1}+d) + f(b^{i}+d))$$

$$\Rightarrow T(n+d) = T(1)(n^{\log_{b}^{n}}) + \sum_{\substack{i=0 \ \log_{b}^{n}-1 \ \log_{b}^{n}-1}} a^{j}f(n/b^{j}+d) = \Theta(n^{\log_{b}^{n}}) + \sum_{j=0}^{\log_{b}^{n}-1} a^{j}f(n/b^{j}+d).$$
Chapter
$$\Rightarrow T(n) = \Theta((n-d)^{\log_{b}^{n}}) + \sum_{j=0}^{n-1} a^{j}f((n-d)/b^{j}+d). (a, b, d \text{ some constant})$$
P.58

T(n)=aT(n/b+c)+f(n)? (4)

Recall Lemma 4.3!!

$$\Rightarrow T(n) = \Theta((n-d)^{\log_b^a}) + \sum_{j=0}^{\log_b^n - 1} a^j f((n-d)/b^j + d). (a, b, d \text{ some constant})$$

how about
$$g(n; d) = \sum_{i=0}^{\log_b^n - 1} a^j f((n-d)/b^j + d)$$
?

- Lemma 4.3:
 - Let a ≥ 1 and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. A function g(n) defined over exact powers of by

$$g(n) = \sum_{i=0}^{\log_b^n - 1} a^j f(n/b^j)$$

has the following asymptotic bounds for exact powers of b:

$$g(n) = \begin{cases} O(n^{\log_b^a}), & \text{if } f(n) = O(n^{\log_b^a - \varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b^a} \lg n), & \text{if } f(n) = \Theta(n^{\log_b^a}) \\ \Theta(f(n)), & \text{if } af(n/b) \le cf(n) \text{ for some constant } c < 1 \\ & \text{and for all sufficiently large } n \end{cases}$$

Chapter 4

T(n)=aT(n/b+c)+f(n)? (5)

- Can we have a lemma 4.3.b
- Lemma 4.3.b:
 - Let a ≥ 1 and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b (nd=b^k). A function g(n) defined over exact powers of by

$$g(n;d) = \sum_{i=0}^{\log_b^n - 1} a^j f((n-d)/b^j + d)$$

has the following asymptotic bounds for exact powers of b: ??????? (we not prove yet)

$$g(n;d) = \begin{cases} O(n^{\log_b^a}), & \text{if } f(n) = O(n^{\log_b^a - \varepsilon}) \text{ for some constant } \varepsilon > 0 \\ \Theta(n^{\log_b^a} \lg n), & \text{if } f(n) = \Theta(n^{\log_b^a}) \\ \Theta(f(n)), & \text{if } af(n/b) \le cf(n) \text{ for some constant } c < 1 \\ & \text{and for all sufficiently large } n \end{cases}$$

Chapter 4

P.59

Proof: Lemma 4.3b

given
$$n - d = b^k$$

$$g(n;d) = \sum_{j=0}^{\log_b^n - 1} a^j f((n-d)/b^j + d)$$

$$g(n;d) = a^{k-1} f(b^1 + d) + \dots + af(b^{k-1} + d) + f(b^k + d)$$

- 1. $g(n;d) = O(n^{\log_b^a})$, if $f(n) = O(n^{\log_b^a \varepsilon})$ for some constant $\varepsilon > 0$
- $2. g(n;d) = \Theta(n^{\log_b^a} \lg n), \text{ if } f(n) = \Theta(n^{\log_b^a})$
- 3. $g(n;d) = \Theta(f(n))$, if $af(n/b+d) \le cf(n+d)$ for some constant c < 1 and for all sufficiently large n

Chapter 4 P.61

Proof: Lemma 4.3b(2)

1.
$$g(n;d) = O(n^{\log_b^a})$$
, if $f(n) = O(n^{\log_b^a - \varepsilon})$ for some constant $\varepsilon > 0$
if $f(n) = O(n^{\log_b^a - \varepsilon}) \Rightarrow f(n+d) = O(n^{\log_b^a - \varepsilon})$ if n is sufficiently large
$$\Rightarrow g(n;d) = \sum_{j=0}^{\log_b^n - 1} a^j f((n-d)/b^j + d) = O(\sum_{j=0}^{\log_b^n - 1} a^j (n/b^j)^{\log_b^a - \varepsilon})$$
given $n - d = b^k$

$$\sum_{j=0}^{\log_b^n - 1} a^j (n/b^j)^{\log_b^a - \varepsilon} = n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} a^j (b^{-j})^{\log_b^a - \varepsilon})$$
 $g(n;d) = \sum_{j=0}^{\log_b^n - 1} a^j f((n-d)/b^j + d)$

$$g(n;d) = a^{\log_b^n - 1} f(b^1 + d) + \dots + af(b^{k-1} + d) + f(b^k + d)$$

$$= n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} a^j (b^{-j\log_b^a})(b^{j\varepsilon})) = n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} a^j (a^{-j})(b^{j\varepsilon}))$$

$$= n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} b^{j\varepsilon}) = n^{\log_b^a - \varepsilon} (\frac{(b^\varepsilon)^{\log_b^n} - 1}{b^\varepsilon - 1}) = n^{\log_b^a - \varepsilon} (\frac{n^\varepsilon - 1}{b^\varepsilon - 1}) < n^{\log_b^a}$$

P.62

Chapter 4

Proof: Lemma 4.3b(3)

$$2. g(n;d) = \Theta(n^{\log_b^a} \log n), \text{ if } f(n) = \Theta(n^{\log_b^a})$$
if $f(n) = \Theta(n^{\log_b^a}) \Rightarrow f(n+d) = \Theta(n^{\log_b^a})$ if n is sufficiently large
$$\Rightarrow g(n;d) = \sum_{j=0}^{\log_b^n - 1} a^j f((n-d)/b^j + d) = \Theta(\sum_{j=0}^{\log_b^n - 1} a^j (n/b^j)^{\log_b^a})$$
given $n - d = b^k$

$$\sum_{j=0}^{\log_b^n - 1} a^j (n/b^j)^{\log_b^a} = n^{\log_b^a} (\sum_{j=0}^{\log_b^n - 1} a^j (b^{-j})^{\log_b^a})$$

$$= n^{\log_b^a} (\sum_{j=0}^{\log_b^n - 1} a^j (b^{-j\log_b^a})) = n^{\log_b^a - \varepsilon} (\sum_{j=0}^{\log_b^n - 1} a^j (a^{-j}))$$

$$= n^{\log_b^a} (\sum_{j=0}^{\log_b^n - 1} a^j (b^{-j\log_b^a})) (\log_b^n)$$

Proof: Lemma 4.3b(4)

Chapter 4

 $= O(f_4(n))$

$$3. g(n; d) = \Theta(f(n)), \text{ if } af(n/b) \leq cf(n) \text{ for some constant } c < 1$$

$$\text{and for all sufficiently large } n$$

$$\text{if } af(n/b+d) \leq cf(n+d)$$

$$\Rightarrow g(n; d) = \sum_{j=0}^{\log_{h}^{n}-1} a^{j} f((n-d)/b^{j}+d) \leq \sum_{j=0}^{\log_{h}^{n}-1} a^{j-1} (cf((n-d)/b^{j-1}+d))$$

$$\text{given } n-d=b^{k}$$

$$g(n; d) = \sum_{j=0}^{\log_{h}^{n}-1} a^{j} f((n-d)/b^{j}+d)$$

$$\dots$$

$$g(n; d) = a^{k-1} f(b^{1}+d) + \dots + af(b^{k-1}+d) + f(b^{k}+d)$$

$$\leq \sum_{j=0}^{\log_{h}^{n}-1} a^{j-j} (c^{j} f((n-d)/b^{j-j}+d)) \leq \sum_{j=0}^{\log_{h}^{n}-1} c^{j} f((n-d)+d) = f(n) \sum_{j=0}^{\log_{h}^{n}-1} c^{j} \leq f(n) \sum_{j=0}^{\infty} c^{j}$$

$$\leq f(n) (\frac{1}{1-c}) \text{ (since } c < 1)$$

P.64

P.63

Drill

Problems 4-1

$$a. T(n) = 2T(n/2) + n^{4}.$$

$$b. T(n) = T(7n/10) + n.$$

$$c. T(n) = 16T(n/4) + n^{2}.$$

$$d. T(n) = 7T(n/3) + n^{2}.$$

$$e. T(n) = 7T(n/2) + n^{2}.$$

$$f. T(n) = 2T(n/4) + n^{1/2}.$$

$$g. T(n) = T(n-2) + n^{2}.$$

Chapter 4 P.65

T(n)=4T(n/2+2)+n?

Cannot apply master method!!

Do transformation! We would like to find From $T(n)=aT(n/b+d)+f(n) \rightarrow T(n+c)=aT(n/b+c)+f(n+c)$

$$(n+c)/b+d=n/b+c \rightarrow c/b+d=c \rightarrow c=d/(1-1/b)$$

e.g. $b=d=2$, $\rightarrow c=2/(1-1/2)=4$

$$T(n) = aT(\frac{n}{2} + 2) + f(n)$$

$$\Rightarrow T(n+4) = aT(\frac{n}{2} + 4) + f(n+4)$$

Instead of find the answer for T(n), we try to solve T(n+4) Once we find T(n+4), we change the variable back

$T(n)=n^{(1/2)}T(n^{(1/2)}+n$

Cannot apply master method!!

$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$

$$= n^{1/2}T(n^{1/2}) + n = n^{1/2}(n^{1/4}T(n^{1/4}) + n^{1/2}) + n$$

$$= n^{1/2+1/4}T(n^{1/4}) + n + n = n^{1/2+1/4}(n^{1/8}T(n^{1/8}) + n^{1/4}) + n + n$$

$$= n^{1/2+1/4+1/8}T(n^{1/8}) + n + (n + n)$$

$$= \dots$$

$$= n^{1/2+1/4+1/8+...+1/2^k}T(n^{1/2^k}) + kn = n^{1-1/2^k}T(n^{1/2^k}) + kn$$

Chapter 4 P.67

T(n)=T(n/2)+T(n/4)+T(n/8)+n

Cannot apply master method!!

Problem 4.4: Fibonacci numbers

Generating function

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + \dots$$

a. show that :
$$F(z) = z + zF(z) + z^{2}F(z)$$

$$\begin{cases} 0, & i = 0 \end{cases}$$

a. show that :
$$F(z) = z + zF(z) + z^2F(z)$$
 $\begin{cases} 0, & i = 0 \\ 1, & i = 1 \end{cases}$
b. show that : $F(z) = \frac{z}{1 - z - z^2} = \frac{z}{(1 - \phi z)(1 - \overline{\phi} z)}$ $\begin{cases} F_i = \begin{cases} 0, & i = 0 \\ 1, & i = 1 \end{cases}$

$$= \frac{1}{\sqrt{5}} (\frac{1}{1 - \phi z} - \frac{1}{1 - \overline{\phi} z})$$

d. use part (c) to prove that
$$F_i = \phi^i / \sqrt{5}, i > 0$$
,

where

rounded to the nearest integer.(hint: observe that $|\overline{\phi}| < 1$)

$$\phi = \frac{1 + \sqrt{5}}{2} = 1.61803...$$

$$\overline{\phi} = \frac{1 - \sqrt{5}}{2} = -0.61803...$$

c. show that :
$$F(z) = \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^{i} - \overline{\phi}^{i}) z^{i}$$

Chapter 4 P.69

Problem 4.4: Fibonacci numbers(2)

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + \dots$$
a. show that : $F(z) = z + zF(z) + z^2F(z)$

$$z + zF(z) + z^2F(z) = z + z\sum_{i=0}^{\infty} F_i z^i + z^2\sum_{i=0}^{\infty} F_i z^i$$

$$z + zF(z) + z^{2}F(z) = z + z\sum_{i=0}^{\infty} F_{i}z^{i} + z^{2}\sum_{i=0}^{\infty} F_{i}z^{i}$$

$$= z + \sum_{i=0}^{\infty} F_{i}z^{i+1} + \sum_{i=0}^{\infty} F_{i}z^{i+2} = z + \sum_{i=1}^{\infty} F_{i-1}z^{i} + \sum_{i=2}^{\infty} F_{i-2}z^{i}$$

$$= z + \sum_{i=0}^{\infty} F_{i-1}z^{i} + \sum_{i=0}^{\infty} F_{i-2}z^{i} = z + \sum_{i=1}^{\infty} (F_{i-1} + F_{i-2})z^{i}$$

$$= z + \sum_{i=2}^{\infty} F_i z^i = \sum_{i=1}^{\infty} F_i z^i = \sum_{i=0}^{\infty} F_i z^i$$

Problem 4.4: Fibonacci numbers(3)

b. show that :
$$F(z) = \frac{z}{1-z-z^2} = \frac{z}{(1-\phi z)(1-\overline{\phi}z)}$$

$$= \frac{1}{\sqrt{5}}(\frac{1}{1-\phi z} - \frac{1}{1-\overline{\phi}z})$$
where
$$\phi = \frac{1+\sqrt{5}}{2} = 1.61803...$$

$$\overline{\phi} = \frac{1-\sqrt{5}}{2} = -0.61803...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F_i = \begin{cases} 0, & i = 0 \\ 1, & i = 1 \\ F_{i-1} + F_{i-2}, & i > 1 \end{cases}$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + ...$$

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 1 + z^2 + z^2$$

Problem 4.4: Fibonacci numbers(4)

$$\begin{aligned} & \text{proof: from (b)} \ , F(z) = \frac{1}{\sqrt{5}} (\frac{1}{1 - \phi z} - \frac{1}{1 - \overline{\phi} z}) & F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + \dots \\ & \text{recall } \frac{1}{1 - r} = \sum_{i=0}^{\infty} r^i, \quad |\mathbf{r}| < 1 & F_i = \begin{cases} 0, & \text{i = 0} \\ 1, & \text{i = 1} \\ F_{i-1} + F_{i-2}, & \text{i > 1} \end{cases} \\ & \frac{1}{1 - \overline{\phi} z} = \sum_{i=0}^{\infty} (\overline{\phi} z)^i, \quad \text{assume } |\overline{\phi} z| < 1, \\ & \frac{1}{1 - \overline{\phi} z} = \sum_{i=0}^{\infty} (\overline{\phi} z)^i, \quad \text{assume } |\overline{\phi} z| < 1, \end{cases} \\ & C. \text{ show that } : F(z) = \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \overline{\phi}^i) z^i \\ & F(z) = \frac{1}{\sqrt{5}} (\frac{1}{1 - \phi z} - \frac{1}{1 - \overline{\phi} z}) = \frac{1}{\sqrt{5}} (\sum_{i=0}^{\infty} (\phi z)^i - (\overline{\phi} z)^i) \\ & = \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \overline{\phi}^i) z^i \quad (, \quad \text{assume } |\overline{\phi} z| < 1 \text{ and } |\phi z| < 1) \end{aligned}$$

(note: $given \phi, \overline{\phi}$ such z exists)

Problem 4.4: Fibonacci numbers(5)

$$F(z) = \sum_{i=0}^{\infty} F_i z^i = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + \dots$$
d. use part (c) to prove that $F_i = \phi^i / \sqrt{5}$, $i > 0$,
$$F_i = \begin{cases} 0, & i = 0 \\ 1, & i = 1 \\ F_{i-1} + F_{i-2}, & i > 1 \end{cases}$$
rounded to the nearest integer.(hint : observe that $|\overline{\phi}| < 1$)

proof: from (c), show that:
$$F(z) = \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \overline{\phi}^i) z^i$$

$$\Rightarrow F_i = \frac{1}{\sqrt{5}} (\phi^i - \overline{\phi}^i)$$

$$= \frac{1}{\sqrt{5}} \phi^i \text{ rounded to the nearest integer.} (\text{since } |\overline{\phi}| < 1)$$

Chapter 4 P.73

Appendix:

Review: Asymptotic notation

Chapter 4 P.75

3.1 Asymptotic notation

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2, n_0 \text{ s.t. } 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all $n \ge n_0 \}$

$$f(n) = \Theta(g(n))$$

 \Rightarrow g(n) is an asymptotic tight bound for f(n).

• ``='' abuse

The definition of required every member of be asymptotically nonnegative.

Chapter 3

P.77

Example:

$$\frac{n^2}{14} \le \frac{n^2}{2} - 3n \le \frac{n^2}{2} \text{ if } n > 7.$$

$$6n^3 \ne \Theta(n^2)$$

$$f(n) = an^2 + bn + c, a, b, c \text{ constants, } a > 0.$$

$$\Rightarrow f(n) = \Theta(n^2).$$

• In general,

 $p(n) = \sum_{i=0}^{d} a_i n^i$ where a_i are constant with $a_d > 0$. Then $P(n) = \Theta(n^d)$.

asymptotic upper bound

$$O(g(n)) = \{ f(n) \mid \exists c, n_0 \text{ s.t. } 0 \le f(n) \le cg(n) \ \forall n \ge n_0 \}$$

Chapter 3

P.79

asymptotic lower bound

$$\Omega(g(n)) = \{ f(n) \mid \exists c, n_0 \text{ s.t. } 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

Theorem 3.1.

• For any two functions f(n) and g(n), if and only if and

$$f(n) = \Theta(g(n))$$

$$f(n) = \Omega(g(n))$$

Chapter 3 P.81

•

$$o(g(n)) = \{f(n) | \forall c, \exists n_0 \forall n > n_0, 0 \leq f(n) \neq cg(n)\}$$

$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\omega(g(n)) = \{f(n) | \forall c, \exists n_0 \ \forall n > n_0, 0 \le cg(n) \le f(n) \}$$

$$f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$