A Multiplication Layer for Sequence Data

©Joonho Lee, Hideaki Hayashi, Seiichi Uchida

Kyushu University

START

Introduction

Assigning labels to each observed time series

Objective **CYLINDER**

Application EEG analysis **Emotional analysis** Heart rate analysis Disease detection

http://www.zib.de/features/similarity-search-and-insect-classification

Problem

Where is the best feature to classify?

Did you notice these places, right?

Many studies have been conducted to classify the labels

How to classify? Hand crafted Feature extraction Classifier Autocorrelation **SVM** Monthemanymore Input data https://medium.com/deep-math-machine-learning-ai/chapter Neural Networks model Deep learning **LSTM** RNN Www.mannyman There is no layer for autocorrelation in NN model Input data https://qhta.com/KojiOhki/items/89cd7b69a8a6239d67ca

P6

Let me propose multiplication layer!

Possible to multiply only the part where w_{pm} is non-zero

Possible to discriminatively extract high-order autocorrelation features

discriminatively

P8 What it means?

High-order autocorrelation

Lth-order autocorrelation

$$R(\tau_1, \tau_2, ..., \tau_L)$$

$$= \sum_{D} f[t]f[t + \tau_1]f[t + \tau_2] \cdots f[t + \tau_L]$$

$$D = \{t|t + \tau_l \in D, \forall l \in \{1, 2, ..., L\}\}$$

Key point: we can extract autocorrelation features in any situation.

high-order autocorrelation

discriminatively

What it means?

Key point: The features can be extracted discriminatively.

Constraint 3 ✓ Let w have values between zero and one + Comparison ✓ Compare with each other class extracted features

Experiment

Let's check how effective the proposed layer is!

- ✓ Combining the Multi. with the head of NN model
- Comparing when Multi. is absent and Conv. is combined instead of Multi.

Result

Combining the proposed layer with NN models and comparing accuracies

Comparison of classification accuracies

Model	CBF	CricketY	Earthquakes
RNNs	0.331	0.07	0.748
LSTMs	0.939	0.144	0.784
GRUs	0.522	0.151	0.763
RNNs + Conv.	0.997	0.164	0.712
LSTMs + Conv.	0.982	0.09	0.683
GRUs + Conv.	0.983	0.09	0.698
LENET + Multi.	0.976	0_6	0.748
Deep CNN + Multi.	Big	0. 1	0.748
RNNs + Multi.	difference	0. 1	0.748
LSTMs + Multi.	0.970	0.	0.748
GRUs + Multi. (1)	0.971	0.636	0.741
GRUs + Multi. (2)	0.932	0.07	0.799

Differences in parameters

Discussion (CricketY)

Comparing extracted features of Multi. with those of Conv.

Visualization of extracted features

Big difference

Class 10

Class 11

Discussion (CricketY)

Comparing filter weights of Multi. with those of Conv.

Visualization of filter weights

Big difference

Future work

P14 I'll do this!

Thank you for your attention!

? Any question~?