Khái niệm về đồ thị

Nội dung

Khái niệm về đồ thị (Graphs and terminology)

• Tìm kiếm theo chiều sâu (Depth-first search)

Tìm kiếm theo chiều rộng (Breadth-first search)

Sử dụng một phần tài liệu bài giảng CS161 Stanford University

Phần 1: Khái niệm về đồ thị

Citation graph of literary theory academic papers

Theoretical Computer Science academic communities

Communities within the co-authors of Christos H. Papadimitriou

The Godfather Characters Interaction Network

debian dependency (sub)graph

Đồ thị vô hướng Undirected Graphs

- Có đỉnh và cạnh
 - V is the set of vertices
 - E is the set of edges
 - Formally, a graph is G = (V,E)
- Ví dụ
 - $V = \{1,2,3,4\}$
 - $E = \{ \{1,3\}, \{2,4\}, \{3,4\}, \{2,3\} \}$

- The degree of vertex 4 is 2.
 - There are 2 edges coming out.
- Vertex 4's neighbors are 2 and 3

Đồ thị có hướng Directed Graphs

- Có đỉnh và cạnh
 - V is the set of vertices
 - E is the set of **DIRECTED** edges
 - Formally, a graph is G = (V,E)
- Ví dụ
 - $V = \{1,2,3,4\}$
 - $E = \{ (1,3), (2,4), (3,4), (4,3), (3,2) \}$

- The in-degree of vertex 4 is 2.
- The out-degree of vertex 4 is 1.
- Vertex 4's incoming neighbors are 2,3
- Vertex 4's outgoing neighbor is 3.

Biểu diễn đồ thị như thế nào?

Option 1: adjacency matrix

Biểu diễn đồ thị như thế nào?

• Option 1: adjacency matrix

How do we represent graphs?

Option 1: adjacency matrix

How do we represent graphs?

Option 2: adjacency lists.

Tính chất chung

- Đỉnh có thể chứa các thông tin
 - Thuộc tính (name, IP address, ...)
 - Thông tin bổ trợ cho thuật toán đồ thị (v.d: số đỉnh liền kề,...)
- Có thể thực hiện các thao tác
 - Edge Membership: Is edge e in E?
 - Neighbor Query: What are the neighbors of vertex v?

So sánh

Generally better for **sparse** graphs (where $m \ll n^2$)

Giả	Sử	có	n	đỉ	nh
và r	n c	ạnh	1		

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Is
$$e = \{v, w\}$$
 in E ?

Neighbor query

Give me a list of v's neighbors.

Space requirements

$$O(n^2)$$

$$O(n + m)$$

We'll assume this representation for the rest of the class

Phần 2: Depth-first search

Khám phá đồ thị như thế nào?

How do we explore a graph?

- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

Exploring a labyrinth with chalk and a piece of string

- Not been there yet
- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

Labyrinth: explored!

- Each vertex keeps track of whether it is:
 - Unvisited
 - In progres
 - All done

- Mark w as in progress.
- for v in w.neighbors:
 - if v is unvisited: DFS(v)
- Mark w as all done

DFS finds all the nodes reachable from the starting point

To explore the whole graph

Do it repeatedly!

Why is it called depth-first?

We are implicitly building a tree:

• First, we go as deep as we can.

Running time

To explore just the connected component we started in

- We look at each edge at most twice.
 - Once from each of its endpoints
- And basically, we don't do anything else.
- So...

O(m)

Running time

To explore just the connected component we started in

- Assume we are using the linked-list format for G.
- Say C = (V', E') is a connected component.
- We visit each vertex in V' exactly once.
 - Here, "visit" means "call DFS on"

- Do some book-keeping: O(1)
- Loop over w's neighbors and check if they are visited (and then potentially make a recursive call): O(1) per neighbor or O(deg(w)) total.

Total time:

```
• \sum_{w \in V'} (O(\deg(w)) + O(1))
```

$$\bullet = O(|E'| + |V'|)$$

 $\bullet = O(|E'|)$

In a connected graph, $|V'| \le |E'| + 1$.

Running time

To explore the whole graph

- Explore the connected components one-by-one.
- This takes time O(n + m)
 - Same computation as before:

$$\sum_{w \in V} (O(\deg(w)) + O(1)) = O(|E| + |V|) = O(n + m)$$

Here the running time is O(m) like before

You check:

DFS works fine on directed graphs too!

Only walk to C, not to B.

Ví dụ DFS: sắp xếp topo (topological sorting)

- Tìm thứ tự các đỉnh đảm bảo thỏa mãn quan hệ phụ thuộc.
 - Aka, if v comes before w in the ordering, there is not an edge from w to v.

Ví dụ DFS: duyệt cây nhị phân

Duyệt cây nhị phân theo chiều sâu (in-order)

Phần 3: Breadth-first search

How do we explore a graph?

Exploring the world with pseudocode

- Set L_i = [] for i=1,...,n
- $L_0 = [w]$, where w is the start node
- Mark w as visited
- For i = 0, ..., n-1:
 - For u in L_i:
 - For each v which is a neighbor of u:
 - If v isn't yet visited:
 - mark v as visited, and put it in L_{i+1}

Go through all the nodes in L_i and add their unvisited neighbors to L_{i+1}

L_i is the set of nodes we can reach in i steps from w

BFS also finds all the nodes reachable from the starting point

Running time and extension to directed graphs

- To explore the whole graph, explore the connected components one-by-one.
 - Same argument as DFS: BFS running time is O(n + m)
- Like DFS, BFS also works fine on directed graphs.

Verify these!

Why is it called breadth-first?

• We are implicitly building a tree:

Call this the "BFS tree"

First we go as broadly as we can.

Application of BFS: shortest path

How long is the shortest path between w and v?

Application of BFS: shortest path

How long is the shortest path between w and v?

To find the distance between ward all other vertices v

Call this the

"BFS tree"

- Do a BFS starting at w
- For all v in L_i
 - The shortest path between w and v has length i.
 - A shortest path between w and v is given by the path in the BFS tree.
- If we never found v, the distance is infinite.

The **distance** between two vertices is the number of edges in the shortest path between them.

What have we learned?

- The BFS tree is useful for computing distances between pairs of vertices.
- We can find the shortest path between u and v in time O(m).

Another application of BFS

 Kiểm tra tính chất lưỡng phân của đồ thị (Testing bipartite-ness)

Đồ thị lưỡng phân Bipartite graphs

A bipartite graph looks like this:

Can color the vertices red and orange so that there are no edges between any same-colored vertices

Example:

- are in tank A
- are in tank B
- if the fish fight

Example:

- are students
 - are classes
- enrolled in the class

How about this one?

How about this one?

Application of BFS:

Testing Bipartiteness

- Color the levels of the BFS tree in alternating colors.
- If you never color two connected nodes the same color, then it is bipartite.
- Otherwise, it's not.

Tổng kết

- Depth-first search
 - Sắp xếp topo (topological sorting)
 - Duyệt cây nhị phân (in-order)
- Breadth-first search
 - Tìm đường đi ngắn nhất trên đồ thị không trọng số
 - Kiểm tra đồ thị lưỡng phân
- Both DFS, BFS:
 - Khám phá đồ thị, tìm thành phần liên thông,...

Next time: strongly connected components (SCCs)

Definition by definition: The SCCs are the equivalence classes under the "are mutually reachable" equivalence relation.