1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

	v 5	
X	$X - \bar{X}$	$ x-\bar{x} $
71	3.2	3.2
63	-4.8	4.8
65	-2.8	2.8
63	-4.8	4.8
77	9.2	9.2
======	======	=======
$\sum x = 339$		$\sum x - \bar{x} = 24.8$
$\bar{x} = 67.8$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{24.8}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
125	-1.5	2.25
125	-1.5	2.25
131	4.5	20.25
125	-1.5	2.25
======	======	=======
$\sum x = 506$ $\bar{x} = 126.5$		$\sum (x - \bar{x})^2 = 27$

We are ready for the formula.

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$