Geometry of Space, Time and Other Things The Mathematics of Fiber Bundles

Linas Vepstas

May 2019

Introduction

Fiber Bundles

- Central to physics: classical mechanics, electrodynamics, quantum field theory, gravitation, superconductivity.
- It was not always that way!
- Unified (pseudo-)Riemannian Geometry (i.e. Gravitation) with Symplectic Geometry (classical mechanics) with Electrodynamcis with Yang-Mills theory with Superconductivity with Fermions (QFT)
- A single, unified framework for (almost) all of the fundamental theories of physics.
- And that is the topic today.

Forumlas and Intuition

Zen Koans

- There will will be a lot of equations today
- Several semesters worth ...
- Get familiar with commonly used widespread notation
- What does those formulas MEAN? Intuitively ??
- Interpretation of poetry, jokes of Zen koans
- Inutition alone is FAULTY. Formulas are PRECISE!
- Equations are tie-breakers for intuitive ideas
- Creativity and imagination are KEY

Tee-shirt Equations

Before fiber bundles, it was a hot mess:

Classical mechanics was Hamilton's equations

$$\dot{p} = -\frac{dH}{dq}$$
 $\dot{q} = \frac{dH}{dp}$

Electrodynamics was Maxwell's equations

$$\vec{\nabla} \cdot \vec{E} = 4\pi \rho \quad \vec{\nabla} \times \vec{B} = 4\pi \vec{j} \quad \vec{\nabla} \cdot \vec{B} = 0 \quad \vec{\nabla} \times \vec{E} = 0$$

Gravitation was Einstein's equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu}$$

Superconductivity was the Ginzberg-Landau equations

$$\mathscr{L} = \alpha \left| \phi \right|^2 + \beta \left| \phi \right|^4 + \frac{1}{2m} \left| \left(-i\hbar \vec{\nabla} - 2e\vec{A} \right) \phi \right|^2 + \frac{\left| \vec{B} \right|^2}{2}$$

Standard Model = Yang-Mills + Higgs + Fermions

Intuitive Modern Geometry

Outline

- Manifold M as gluing of \mathbb{R}^n coordinate charts
- (Integrable) vector fields as hair/fur that can be combed
- Tangent vector space T_pM
- Back to basics: Vector spaces; notation: en as basis vector
- A frame field as $e_n(p)$ varying from point to point p.
- Frame fields can twist around, rotate, swirl.
- The rotation matrix A. The connection $A_i = \Gamma_{ij}^{\ \ \ \ \ \ \ }$ aka Christoffel symbol
- Rotations & rotation matrices in 3D
- Curvature as total rotation after walking a loop.
- Parallel transport
- Geodesics

Charts and Manifolds

An atlas is:

- A collection of regions U_{α}
- A collection of charts $\varphi_{\alpha}:U_{\alpha}\to\mathbb{R}^n$
- A collection of "transition functions" $\varphi_{lphaeta}=\varphi_{eta}\circ \varphi_{lpha}^{-1}$

Vector Fields

A vector field is:

- A collection of vectors \vec{v}_p
- One for each point $p \in U_{\alpha}$
- Smooth, differentiable, integrable

Tangent vector spaces

The tangent vector space T_pM is:

- A point $p \in U_{\alpha}$ (that is, a point in $p \in M$)
- The collection of ALL possible vectors $\vec{v}_p \in T_p M$

Tangent bundles - Fiber bundles

- The tangent bundle TM is the set of all T_pM for all $p \in M$
- The sphere bundle SM is a set of spheres S_pM , one for each $p \in M$
- The circle bundle is a set of circles, one for one for each $p \in M$
- The fiber bundle E is a set of fibers F, one for one for each p∈ M

Fiber Bundles

Properties of Fiber bundles

- Locally, they are trivial products $U_{\alpha} \times F$ of a chart U_{α} and a fiber F
- Neighboring fibers need to be glued (soldered) together; the connection!
- Works best when fibers have some natural symmetry
- A group G that move you up and down a fiber F

Curva

Sooo

Vectors and Bases

A Vector $\vec{v} \in \mathbb{R}^n$ in *n*-dimensional space is:

- A collection of n real numbers: $\vec{v} = (v_1, v_2, v_3, \dots, v_n)$ A vector space basis for \mathbb{R}^n is a collection of n vectors $\{\vec{e}_k\}$:
 - Where $e_1 = (1,0,0,\cdots,0)$ and $e_2 = (0,1,0,\cdots,0)$ and $e_3 = (0,0,1,0,\cdots,0)$ and ...

Frame fields

A frame field is:

- A collection of basis vectors $\{\vec{e}_k(p)\}$
- One for each point $p \in U_{\alpha}$

Maaadf

Maaadf

Geometry with Formulas

The hardest part with formulas is (1) there are so many (2) there are many different ways of writing down the *same* equations, using wildly different notation.

- Introduce Lie derivative L_Xf
- introduce covariant derivative D = d+A rosetta stone of different notations
- geodesics as solutions of Hamilton's equations i.e. as linear, first-order diffeq NOT second order!

$$\dot{p} = -\frac{dH}{dq}$$
 $\dot{q} = \frac{dH}{dp}$

where *H*=squared-length-of-curve

- exp as the map that moves along geodesics
- geodesic completeness
- introduce metric as inner product of frame fields $g_{\mu\nu}=e_{\mu}\cdot e_{\nu}=e_{\mu}^{~a}e_{\nu}^{~b}\eta_{ab}$
- point out that metric was NOT needed to define curvature, geodesics, parallel transport

- (metric is almost kind-of useless except that its a standard touch-stone for GR)
- Repeat Einstein egns.
- replace frame field by generic fiber bundle
- e.g. U(1) for electromagnetism, SU(n) for yang-mills
- Maxwell's equations are nothing more than Hamilton's egns on U(1) + Bianchi identites

$$F = dA$$
 $d * F = 0$

- Maxwell's eqn's have singularities called "electric charges" and geodesics go "splat" on an electric charge
- Swarzschild BH's are just like electric charges: geodesics go splat when they get there.
- Yang-Mills/Einstein

$$F = dA + A \wedge A$$
 $D * F = 0$

is the same as

$$R(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X + (X,Y)$$

provide a rosetta-stone correspondance