

แบบฝึกหัดการเขียนโปรแกรม ค่ายติวเข้มผู้แทนศูนย์รุ่น 16 โดยพี่พีท~ ชุดที่ 1 ข้อสอบระดับชาติเก่า จำนวน 21 ข้อ โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

1. โรงแรมในฝัน (Hotel)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 6 ม.เชียงใหม่

โรงแรมแคนทารีฮิลล์เป็นโรงแรมขนาดใหญ่ซึ่งมีจำนวนห้องพักไม่จำกัด โดยมีรายละเอียดประเภทห้องพักและราคาที่พักดัง ตารางต่อไปนี้

ประเภทของห้อง	จำนวนคนที่พักมากที่สุดต่อห้อง	ราคาต่อห้อง (บาท)
ห้องเดี่ยว	1	500
ห้องคู่	2	800
ห้องกลาง	5	1500
ห้องพักรวม	15	3000

จงเขียนโปรแกรมในการคำนวณหาห้องพักให้กับคนที่ต้องการเข้าพักจำนวน n คน โดยให้มีราคารวมของห้องพักต่ำที่สุด

<u>ข้อมูลนำเข้า</u>

บรรทัดเดียว จำนวนเต็มบวก n โดยที่ n ไม่เกิน 1,000,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว จำนวนเต็มบวกที่เป็นราคารวมของห้องพักต่ำที่สุด

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
21	5000
24	6000

____ 2. การต่อโทรศัพท์ (Schedules_TOI6)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 6 ม.เชียงใหม่

บริษัทโทรศัพท์แห่งหนึ่งมีช่องสัญญาณที่สามารถจัดการสื่อสารพร้อมกันได้ครั้งละไม่เกิน k ช่องสัญญาณ เมื่อใช้ช่องสัญ ญาณครบแล้ว (ช่องสัญญาณเต็ม) จะไม่สามารถขอให้ช่องสัญญาณนี้เพิ่มได้อีก ถ้ามีคำขอใช้ช่องสัญญาณเข้ามาในขณะที่ช่องสัญ ญาณเต็ม คำขอนั้นจะถูกปฏิเสธ กำหนดให้มีชุดคำขอใช้ช่องสัญญาณที่ได้รับพร้อมกันอยู่ทั้งหมด n คำขอ ได้แก่ (s₁, f₁), (s₂, f₂), ..., (s_n, f_n) โดยที่ s_i และ f_i คือ จำนวนเต็มบวกที่แสดงถึงเวลาเริ่มต้นและเวลาสิ้นสุดของคำขอที่ i ในการใช้ช่องสัญญาณ กำหนดให้ s_i มีค่าน้อยกว่าหรือเท่ากับ f_i เสมอ และไม่มีคำขอใช้ช่องสัญญาณใดที่เริ่มต้นที่เวลาเดียวกัน เมื่อเวลาในการใช้ช่องสัญญาณของแต่ละ คำขอสิ้นสุดลง คำขอนั้นจะถูกนำออกไปจากช่องสัญญาณ ทำให้ช่องสัญญาณว่างและสามารถรับคำขอใช้ช่องสัญญาณได้ใหม่อีกครั้ง

<u>งานของคูณ</u>

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ให้เขียนโปรแกรมเพื่อตรวจสอบว่าคำขอที่ i ในการใช้ช่องสัญญาณจะถูกตอบรับหรือปฏิเสธโดยที่มีจำนวนคำขอที่ต้องการตรวจสอบ m คำขอ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก เป็นจำนวนเต็มบวกสามจำนวนได้แก่ n, k และ m ตามลำดับคั่นด้วยช่องว่าง โดยที่ 1 <= n <= 500,000; 1 <= k <= n และ 1 <= m <= n

บรรทัดที่สอง เป็นตัวเลขจำนวนเต็มบวกที่แสดงเวลาเริ่มต้นและเวลาสิ้นสุดของคำขอใช้ช่องสัญญาณจำนวน n คำขอ ตัวเลขแต่ละ ตัวคั่นด้วยช่องว่าง ตัวเลขคู่แรกหมายถึง s_1 และ f_1 ตัวเลขคู่ที่สองหมายถึง s_2 และ f_2 ตามลำดับจนกระทั่งถึงตัวเลขคู่สุดท้ายซึ่ง หมายถึง s_n และ f_n โดยที่ $1 <= s_i <= f_i <= 500,000$

บรรทัดที่สาม เป็นตัวเลขจำนวนเต็มบวกที่แสดงถึงหมายเลขคำขอใช้ช่องสัญญาณที่เราต้องการตรวจสอบว่าคำขอจะถูกตอบรับหรือ ปฏิเสธ โดยจะมีคำขอที่ต้องการตรวจสอบจำนวน m คำขอที่แตกต่างกัน

ตัวอย่างเช่น ในตัวอย่างที่ 1 บรรทัดแรกหมายถึง n=6, k=1 และ m=4 บรรทัดที่สองหมายถึง เวลาเริ่มต้นของคำขอที่ 1 ในการใช้ ช่องสัญญาณคือ 3 เวลาสิ้นสุดของคำขอใช้ช่องสัญญาณคือ 7 และ เวลาเริ่มต้นของคำขอที่ 2 ในการใช้ช่องสัญญาณคือ 2 เวลาสิ้น สุดของคำขอใช้ช่องสัญญาณคือ 4 ไปเรื่อยๆจนครบ 6 คำขอ บรรทัดที่สามหมายถึงคำขอใช้สัญญาณที่ 3 5 4 และ 1 ที่ต้องการ ตรวจสอบตามลำดับ

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว เป็นตัวอักษร m ตัวคั่นด้วยช่องว่าง โดยแต่ละตัวแสดงคำตอบของคำขอใช้สัญญาณแต่ละคำขอ ใช้ตัวอักษร Y (ตัวพิมพ์ใหญ่) หมายถึงคำขอใช้สัญญาณถูกปฏิเสธ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 1 4	Y N Y N
3 7 2 4 1 3 7 8 8 10 9 15	
3 5 4 1	

++++++++++++++++

3. ระเบิดมหาประลัย (Bomb)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 7 ม.นเรศวร

ทหารนาวิกโยธินกำลังต้องการที่จะบุกเข้าไปชิงตัวประกันออกมาจากสถานที่ลับแห่งหนึ่ง ในการที่จะบุกเข้าไปในที่แห่งนี้ ทหารนาวิกโยธินจะต้องผ่านเหมืองระเบิด โดยในเหมืองระเบิดนี้จะมีทั้งระเบิดจริงและระเบิดปลอมอยู่ทั้งหมดจำนวน n ตำแหน่งที่ ไม่ซ้ำกัน คือ $\{p_1, p_2, ..., p_n\}$ โดยที่ $p_i = (x_i, y_i)$ เป็นพิกัดของระเบิด หน่วยข่าวกรองของทหารทราบมาว่า ระเบิดจริงจะอยู่ใน ตำแหน่งที่มีลักษณะพิเศษที่เรียกว่าตำแหน่งมหันตภัย ซึ่งมีลักษณะพิเศษดังกล่าวถูกระบุตามเงื่อนไขดังต่อไปนี้

- 1. ศัพท์ทางการทหารกล่าวว่าตำแหน่ง p_1 บดบังตำแหน่ง p_2 ก็ต่อเมื่อ $x_1 > x_2$ และ $y_1 > y_2$
- 2. ตำแหน่งมหันตภัยคือ ตำแหน่งที่ไม่มีตำแหน่งอื่น ๆ บดบัง จงเขียนโปรแกรมที่มีประสิทธิภาพในการระบุตำแหน่งมหันตภัยที่มีระเบิดจริงทั้งหมด

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก เป็นค่าของตัวแปร n โดยที่ 1 <= n <= 1,000,000

บรรทัดที่สองถึง n+1 ระบุตำแหน่งของระเบิดทั้งหมด แต่ละบรรทัดระบุค่าของตำแหน่งเป็นจำนวนเต็มบวกสองตัวคือ \times และ y โดยมีช่องว่างคั่นอยู่ระหว่างตัวเลขทั้งสอง โดยที่ 1 <= \times , y <= 10,000,000

<u>ข้อมูลส่งออก</u>

ให้ระบุตำแหน่งมหันตภัยทั้งหมด โดยให้แต่ละบรรทัดระบุค่าของตำแหน่งจำนวนเต็มบวกสองตัว x และ y โดยมีช่องว่างคั่นอยู่ โดย ตำแหน่งให้ตอบเรียงลำดับน้อยไปมากตามแนวแกน x ก่อน และค่อยตามแนวแกน y

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	5 5
9 1	6 4
8 2	7 3
7 3	8 2
6 4	9 1
5 5	

+++++++++++++++++

4. ลิงไต่ราว (Climbing Monkey)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 10 ม.อุบลราชธานี

ลิงน้อยชื่อ "ต๋อย" อาศัยอยู่ ณ อุทยานแห่งชาติผาแต้มซึ่งเป็นอุทยานที่มีผืนป่าที่อุดมสมบูรณ์ที่สุดผืนหนึ่ง ท่านเทพารักษ์ ประจำอุทยานต้องการทดสอบสติปัญญาของลิงต๋อย จึงสร้างปริศนาที่มีเสาวิเศษ จำนวน n ต้น และเสาแต่ละต้นสูง m เมตร เสา วิเศษทั้งหมดตั้งเรียงกันเป็นแนวเส้นตรง โดยแต่ละต้นมีหมายเลขประจำเสา คือ 1, 2, 3, ..., n - 1, n เขียนกำกับตามลำดับ (ดัง ตัวอย่างในรูปที่ 1) เสาทั้งหมดมีระยะห่างระหว่างต้นเท่ากัน และบนยอดเสาวิเศษแต่ละต้นมีกล้วยทิพย์อยู่จำนวนต่างกัน

รูปที่ 1 แสดงตัวอย่างการตั้งเรียงเสาวิเศษที่ท่านเทพารักษ์สร้าง

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ท่านเทพารักษ์สามารถเสกกิ่งไม้มาเชื่อมระหว่างเสาวิเศษสองต้นที่อยู่ติดกันในแนวนอน (หรือแนวระดับ) เป็นจำนวน k กิ่ง ได้ โดยเสาวิเศษที่อยู่ติดกันหมายถึง เสาวิเศษต้นที่ 1 อยู่ติดกับต้นที่ 2, เสาวิเศษต้นที่ n อยู่ติดกับต้นที่ n-1 และเสาวิเศษต้นที่ i อยู่ ติดกับต้นที่ i-1 และ ต้นที่ i+1 เมื่อ i=2, 3,..., n-1 และตั้งกฎไว้ว่า จะไม่มีกิ่งไม้เชื่อมที่ฐานของเสาวิเศษ (ความสูง 0 เมตร) และที่ ยอดเสาวิเศษ (ความสูง m เมตร) กิ่งไม้เชื่อมที่ระดับความสูงเดียวกันจะไม่อยู่ติดกัน ตัวอย่างเช่น ถ้ามีกิ่งไม้เชื่อมระหว่างเสาวิเศษต้นที่ 2 ที่ระดับความสูง 5 เมตร จะไม่มีกิ่งไม้เชื่อมระหว่างเสาวิเศษต้นที่ 2 กับเสาวิเศษต้นที่ 3 ที่ระดับความสูง 5 เมตร

ทั้งนี้ระหว่างเสาวิเศษที่อยู่ติดกันสองเสาใด ๆ อาจจะมีกิ่งไม้เชื่อมได้ในหลายระดับความสูง หรืออาจจะไม่มีกิ่งไม้เชื่อมเลยก็ ได้ ตัวอย่างดังรูปที่ 2

รูปที่ 2 แสดงตัวอย่างการเชื่อมระหว่างเสาวิเศษด้วยกิ่งไม้เชื่อมในแนวนอน

ท่านเทพารักษ์ตั้งเงื่อนไขให้ลิงต๋อยปีนขึ้นเสาวิเศษต้นที่กำหนด เพื่อเก็บกล้วยทิพย์บนยอดเสา โดยลิงต๋อยสามารถปีนขึ้นได้ เพียงอย่างเดียว ไม่สามารถปีนลงได้ และจะปีนได้เพียงครั้งเดียวเท่านั้น ระหว่างปีนขึ้นถ้าลิงต๋อยพบกิ่งไม้เชื่อมลิงต๋อยจะถูกบังคับ ให้ไต่ตามกิ่งไม้เชื่อมนั้นไปยังเสาวิเศษอีกต้นที่เชื่อมอยู่เสมอ ตัวอย่างดังรูปที่ 3

- รูป (ก) ลิงต๋อยเริ่มปืนเสาวิเศษต้นที่ 1 แล้วเก็บกล้วยทิพย์จากเสาวิเศษต้นที่ 2
- รูป (ข) ลิงต๋อยเริ่มปืนเสาวิเศษต้นที่ 2 แล้วเก็บกล้วยทิพย์จากเสาวิเศษต้นที่ 4
- รูป (ค) ลิงต๋อยเริ่มปืนเสาวิเศษต้นที่ 5 แล้วเก็บกล้วยทิพย์จากเสาวิเศษต้นที่ 5

รูปที่ 3 แสดงภาพเส้นทางในการปืนไปเก็บกล้วยทิพย์ของลิงต๋อย

ยิ่งไปกว่านั้นท่านเทพารักษ์ได้มอบกิ่งไม้วิเศษ<u>หนึ่งอัน</u>แก่ลิงต๋อย สำหรับใช้เชื่อมเสาวิเศษต้นใดก็ได้ที่อยู่ติดกันที่ระดับความ สูงใดก็ได้ตามที่ลิงต๋อยต้องการ เพื่อเป็น**ส่วนหนึ่งของเส้นทาง**ในการปืนไปเก็บกล้วยทิพย์ให้ได้จำนวนมากที่สุด โดย<u>ระดับความสูง</u> ของกิ่งเป็นทศนิยมได้ และการเชื่อมต้องไม่ขัดแย้งกับกฎที่เทพารักษ์กำหนดไว้ก่อนหน้านี้ ทั้งนี้ลิงต๋อยไม่จำเป็นต้องใช้กิ่งไม้วิเศษนี้ก็ ได้ ดังตัวอย่างในรูปที่ 4

- รูป (ก) ลิงต๋อยเริ่มปืนเสาวิเศษต้นที่ 1 และใช้กิ่งไม้วิเศษเชื่อมเสาวิเศษต้นที่ 1 กับเสาวิเศษต้นที่ 2 ที่ระดับความ สูงใดก็ได้ที่<u>มากกว่า</u> 5 เมตร แต<u>้ไม่ถึง</u> 6 เมตร เพื่อที่จะเก็บกล้วยทิพย์จากเสาวิเศษต้นที่ 4 ซึ่งมีจำนวนกล้วยทิพย์มากที่สุด
- รูป (ข) ลิงต๋อยเริ่มปืนเสาวิเศษต้นที่ 2 โดยไม่จำเป็นต้องใช้กิ่งไม้วิเศษ เพื่อที่จะเก็บกล้วยทิพย์จากเสาวิเศษต้นที่ 4 ซึ่งมีจำนวนกล้วยทิพย์มากที่สุด
- รูป (ค) ลิงต๋อยเริ่มปืนเสาวิเศษต้นที่ 5 และใช้กิ่งไม้วิเศษเชื่อมเสาวิเศษต้นที่ 4 กับเสาวิเศษต้นที่ 5 ที่ระดับความ สูงใดก็ได้ที่<u>มากกว่า</u> 13 เมตร แต่<u>ไม่ถึง</u> 20 เมตร เพื่อที่จะเก็บกล้วยทิพย์จากเสาวิเศษต้นที่ 4 ซึ่งมีจำนวนมากที่สุดสำหรับการปืนใน ครั้งนี้

รูปที่ 4 แสดงตัวอย่างการใช้กิ่งไม้วิเศษเพื่อให้สามารถเก็บกล้วยทิพย์ได้จำนวนมากที่สุดที่เป็นไปได้
ด้วยความที่ผู้รู้วัยเยาว์ที่มารวมตัวกันในการแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 10 ณ มหาวิทยาลัยอุบลราชธานี เป็นผู้โอบอ้อมอารีต่อสัตว์โลก ไม่อาจนิ่งดูดายให้ลิงน้อยได้กล้วยทิพย์จำนวนน้อยกว่าที่ควรจะเป็นจึงอยากให้ผู้รู้วัยเยาว์ช่วยเขียน โปรแกรมเพื่อหาว่าเจ้าลิงต๋อยจะสามารถเก็บกล้วยทิพย์ได้จำนวนมากที่สุดที่เป็นไปได้เท่าใด เมื่อท่านเทพารักษ์กำหนดเสาวิเศษที่ จะให้ลิงต๋อยเริ่มปืน และการปืนเป็นไปตามเงื่อนไขข้างต้น

<u>งานของคูณ</u>

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพ เพื่อหาจำนวนกล้วยทิพย์ที่มากที่สุดที่ลิงต๋อยจะสามารถเก็บได้ พร้อมระบุ ว่ามีการใช้กิ่งไม้วิเศษในเส้นทางการปีนไปเก็บกล้วยทิพย์หรือไม่

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ประกอบด้วยจำนวนเต็ม m, n และ k แต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง แสดงความสูงของเสาวิเศษ จำนวนเสาวิเศษ และจำนวนกิ่งไม้ทั้งหมด ตามลำดับ โดย 10 <= m <= 100,000; 3 <= n <= 200,000 และ 0 <= k <= 1,000,000

บรรทัดที่สอง ประกอบด้วยจำนวนเต็มบวก n จำนวน ระบุจำนวนกล้วยทิพย์ในยอดเสาต้นที่ 1 ถึงต้นที่ n ตามลำดับ และ จำนวนกล้วยทิพย์มีค่าไม่เกิน 100,000,000 แต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง

บรรทัดที่สาม ถึง บรรทัดที่ k+2 แต่ละบรรทัดประกอบด้วยจำนวนเต็มสองจำนวน แต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่ง ช่อง แสดงข้อมูลของกิ่งไม้เชื่อมที่ i ว่าเชื่อมเสาวิเศษหมายเลข p_i กับ p_{i+1} ณ ระดับความสูง h_i โดยจำนวนแรก คือ หมายเลขเสา วิเศษ p_i , จำนวนที่สอง คือ ระดับความสูง h_i ของกิ่งไม้เชื่อมที่ i โดยที่ $1 <= i <= k; 1 <= p_i <= n-1$ และ $0 < h_i < m$

บรรทัดที่ k+3 เป็นจำนวนเต็มหนึ่งตัว ระบุหมายเลขเสาวิเศษที่ท่านเทพารักษ์กำหนดให้ลิงต๋อยเริ่มปืน โดยมีค่าได้ตั้งแต่ 1 ถึง n

<u>ข้อมูลส่งออก</u>

บรรทัดแรก ระบุจำนวนกล้วยทิพย์ที่มากที่สุดที่ลิงต๋อยสามารถเก็บได้

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

บรรทัดที่สอง ระบุ ว่าลิงต๋อย ได้ใช้กิ่งไม้วิเศษหรือไม่ โดยให้ระบุว่า "USE" (อักษรภาษาอังกฤษตัวพิมพ์ใหญ่) ในกรณีที่ใช้ กิ่งไม้วิเศษ และระบุ "NO" (อักษรภาษาอังกฤษตัวพิมพ์ใหญ่) กรณีที่ไม่ได้ใช้กิ่งไม้วิเศษ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
20 5 6	9
7 5 3 9 4	USE
1 5	
1 6	
2 10	
1 12	
3 6	
3 13	
1	

++++++++++++++++

เป็นที่ทราบกันดีว่า การจัดเก็บไฟล์ข้อมูลต่าง ๆ บนเครื่องคอมพิวเตอร์นั้น จะจัดเก็บในรูปรหัสเลขฐานสอง ในต้นปี พ.ศ. 2557 ที่ผ่านมา มีนักทำลายข้อมูลทางคอมพิวเตอร์ ได้สร้างรหัสทำลายไฟล์ข้อมูลขึ้นจำนวนหนึ่ง ให้ชื่อว่า CAT Codes (Computer Access Termination Codes) โดยรหัสทำลายนี้จะทำการปนเปื้อนไฟล์ข้อมูล และทำให้เครื่อง คอมพิวเตอร์ที่มีไฟล์ข้อมูลที่ถูกปนเปื้อนนั้น แสดงหน้าจอเป็นรูปแมวแสนน่ารัก รบกวนการทำงานของผู้ใช้ และไม่สามารถใช้งานได้ ตามปกติ

เนื่องจากรหัสทำลาย CAT Codes ได้แพร่กระจายในกลุ่มผู้ใช้งานทางคอมพิวเตอร์อย่างรวดเร็ว และส่งผลกระทบในวง กว้าง กลุ่มนักวิจัยของศูนย์คอมพิวเตอร์ต๋อย (TOI Computer Center) จึงทำการวิจัยเพื่อศึกษาการทำงานของรหัสทำลาย CAT Codes จนพบลักษณะและการทำงานของรหัสทำลาย ดังนี้

- รหัสทำลาย CAT Codes เป็นรหัสเลขฐานสองที่มีความยาว m หลัก และมีจำนวนรหัสทำลายที่แตกต่างกัน k ชุด
- ไฟล์ข้อมูลที่ถูกปนเปื้อนโดยรหัสทำลาย CAT Codes จะมีรหัสเลขฐานสองของรหัสทำลาย CAT Codes อยู่
 กลุ่มนักวิจัยดังกล่าวต้องการสร้างโปรแกรมสำหรับการตรวจสอบว่าไฟล์ข้อมูลปนเปื้อนรหัสทำลาย
 CAT Codes อยู่หรือไม่ จึงร้องขอมายังผู้รู้วัยเยาว์ที่มารวมตัวกันในการแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 10 ณ
 มหาวิทยาลัยอุบลราชธานี ให้ช่วยเขียนโปรแกรมคอมพิวเตอร์เพื่อตรวจสอบหารหัสทำลายนี้จากไฟล์ต้องสงสัยจำนวนทั้งสิ้น n ไฟล์
 โดยแต่ละไฟล์ข้อมูล อาจปรากฏรหัสทำลาย CAT Codes ตั้งแต่หนึ่งชุดขึ้นไป หรือไม่ปรากฏอยู่เลยก็ได้
 ตัวอย่างไฟล์ข้อมูลที่ถูกปนเปื้อนโดยรหัสทำลาย CAT Codes

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

รหัสทำลาย CAT Codes	ไฟล์ข้อมูลที่ถูกปนเปื้อนโดยรหัสทำลาย CAT Codes
1. 01001	
2. 10110	รหัสทำลาย 3.
3. 11100	1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0
4. 10100	รหัสทำลาย 2. รหัสทำลาย 5.
5. 11111	วทิศทาศาย 2. วิทิศทาศาย 5.

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อตรวจสอบหารหัสทำลาย CAT Codes จากไฟล์ข้อมูลที่กำหนดให้

<u>ข้อมูลนำเข้า</u>

มีจำนวน k + (2 x n) + 2 บรรทัด ดังนี้

บรรทัดแรก ประกอบด้วยจำนวนเต็ม k และ m ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง แสดงจำนวนชุดของ CAT Codes และ ความยาวของ CAT Codes ตามลำดับ เมื่อ 5 <= k <= 100,000 และ 5 <= m <= 30

บรรทัดที่ 2 ถึง k + 1 แต่ละบรรทัดแสดงรหัสเลขฐานสองความยาว m หลัก ของ CAT Codes แต่ละชุด บรรทัดที่ k + 2 มี 1 จำนวน คือ จำนวนเต็ม n แสดงจำนวนไฟล์ที่ต้องการทำการตรวจสอบทั้งหมด เมื่อ 1 <= n <= 100 บรรทัดที่ k + 3 ถึง k + $(2 \times n)$ + 2 แสดงข้อมูลของไฟล์ลำดับที่ j ที่ต้องการตรวจสอบ ข้อมูลละ 2 บรรทัด โดยที่บรรทัด แรก คือ จำนวนเต็ม d_j แสดงความยาวของข้อมูลรหัสเลขฐานสองของไฟล์ และ บรรทัดที่สอง คือ ข้อมูลรหัสเลขฐานสองของไฟล์ ที่มีความยาว d_j หลัก เมื่อ 1 <= j <= n และ $1 <= d_j <= 1,000,000$

<u>ข้อมูลส่งออก</u>

มี n บรรทัด แต่ละบรรทัดระบุผลการตรวจสอบรหัสทำลาย CAT Codes ของไฟล์ลำดับที่ j โดยระบุผลการตรวจสอบ ว่า "OK" (ตัวอักษรภาษาอังกฤษพิมพ์ใหญ่) หากตรวจไม่พบรหัสทำลาย CAT Codes แต่หากตรวจพบรหัสทำลาย CAT Codes ให้ ระบุหมายเลขชุดของรหัสทำลาย CAT Codes แต่ละชุดที่ตรวจพบ หากตรวจพบรหัสทำลายชุดเดียวกันหลายครั้ง ให้ระบุหมายเลข ชุดนั้น<u>เพียงครั้งเดียว</u> โดย<u>เรียงลำดับหมายเลขชุดจากน้อยไปหามาก</u> และแต่ละหมายเลขชุดคั่นด้วยช่องว่างจำนวนหนึ่งช่อง

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 5	OK
01001	2 3 5
10110	
11100	
10100	
11111	
2	
15	
1010101010101	
20	
11110110011111000010	

+++++++++++++++++

6. นักล่าสมบัติ (Raider TOI)

เมื่อชนเผ่าต๋อยได้ประกอบแผนที่ลายแทงสมบัติสมบูรณ์แล้ว จึงได้ว่าจ้าง ดร.เค ซึ่งเป็นอาจารย์ในมหาวิทยาลัยอุบล ราช ธานี ที่มีความสามารถในการถอดรหัสความลับเป็นพิเศษ ทั้งยังเป็นหนึ่งในทีมผู้ประกอบแผนที่ลายแทงสมบัติของชนเผ่าต๋อย และมี งานอดิเรกเป็นนักล่าสมบัติ ให้ไปตามหาสมบัติของชนเผ่า

ดร.เค ได้รับมอบหมายให้เดินทางไปยังถ้ำสมบัติ TOI (Tomb of Informatics) ตามที่ระบุไว้ในแผนที่ลายแทง เมื่อ ดร.เค เดินทางไปถึงถ้ำสมบัติ เขาก็ต้องฉงนงงงวย!!? เมื่อพบว่าวิธีการที่จะไปยังหีบสมบัติซึ่งวางอยู่ด้านในสุดของถ้ำจะต้องเดินผ่านพื้นกลที่ ชนเผ่าต๋อยในอดีตวางไว้เพื่อไม่ให้นำหีบสมบัติออกจากถ้ำไปโดยง่าย

พื้นกล ประกอบด้วยแผ่นหินกลรูปหกเหลี่ยมด้านเท่ามุมเท่า ขนาดเท่ากันทุกแผ่น แผ่นหินกลดังกล่าวถูกปูติดกันพอดี เป็น จำนวน m แถว และในแต่ละแถวจะมีแผ่นหินกล n แผ่น ซึ่งจัดเรียงแผ่นหินกลจากแผ่นที่ 0 ไปยังแผ่นที่ n-1 ในแนวจากปากถ้ำไป ยังหีบสมบัติ และมีการเรียงแถวจากแถวที่ 0 ถึงแถวที่ m-1 จากด้านซ้ายมือไปยังด้านขวามือ อย่างมีเงื่อนไข คือ แผ่นหินกลแผ่นที่ 0 ของแถวที่มีลำดับซึ่งเป็นเลขคู่จะอยู่<u>ไกล</u>จากแนวปากถ้ำกว่าแผ่นหินกลแผ่นที่ 0 ของแถวเลขคี่เสมอ และดร.เค พบอีกว่าปากถ้ำ และหีบสมบัติอยู่ในแนวเดียวกันกับแผ่นหินกลแถวที่ (m-1)/2 ดังตัวอย่างในรูปที่ 1

รูปที่ 1 ตัวอย่างแสดงพื้นกล ตำแหน่งของปากถ้ำ และหีบสมบัติ เมื่อ m = 5 และ n = 4 ดร.เค ต้องการไปยังหีบสมบัติดังกล่าวซึ่งจำเป็นต้องก้าวผ่านพื้นกล โดยมีเงื่อนไขต่อไปนี้

- 🕨 ต้องเริ่มก้าวจากแผ่นหินกลแผ่นที่ 0 ของแถวที่ (m-1)/2 1, (m-1)/2 หรือ (m-1)/2 + 1 เท่านั้น
- > การก้าวลงบนแผ่นหินกลต้องเหยียบลงบนแผ่นหินกลทีละแผ่นเท่านั้น
- 🗲 การก้าวจากแผ่นหินกลแผ่นหนึ่งไปยังอีกแผ่นหนึ่ง ต้องก้าวไปยังแผ่นหินกลที่อยู่ติดกันเท่านั้น โดยไม่อนุญาตให้ย่ำอยู่ที่เดิม
- 🗲 แผ่นหินกลแต่ละแผ่น สามารถถูก ดร.เค ก้าวกลับมาเหยียบได้มากกว่า 1 ครั้ง

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

- แผ่นหินกลแต่ละแผ่นมีหมายเลขปลอดภัยชึ่งเป็นจำนวนเต็มตั้งแต่ 0 ถึง 9 โดยไม่อนุญาตให้ก้าวลงบนแผ่นหินกลที่มี
 หมายเลขปลอดภัยเป็น 0 หรือ เมื่อ ดร.เค ก้าวลงแผ่นหินกลนั้นในการก้าวครั้งที่ yth แล้วหมายเลขปลอดภัย x บนแผ่นหินกล หาร y ไม่ลงตัว (y ถูกหารด้วย x ไม่ลงตัว)
- 🕨 ดร.เค จะสามารถนำหีบสมบัติกลับออกมาจากถ้ำได้ถ้า ก้าวไปถึงแผ่นหินกลที่ n-1 ของแถวที่ (m-1)/2

รูปที่ 2 แสดงตัวอย่าง ลำดับการก้าวไปยังหีบสมบัติของ ดร.เค กรณี m = 5 และ n = 4 ดร.เค สามารถเลือกเดินก้าวแรก เหยียบบนแผ่นหินกลแผ่นที่ 0 แถวที่ 2 หรือ แถวที่ 3 เท่านั้น เนื่องจากแผ่นที่ 0 ของแถวที่ 1 มีหมายเลขปลอดภัยเป็น 0 และ ดร. เค จะสามารถไปยังหีบสมบัติได้เมื่อก้าวเดินไปถึงแผ่นหินกลที่ 3 ของแถวที่ 2

รูปที่ 2 ตัวอย่างการก้าวเดินไปยังหีบสมบัติสองวิธีที่แตกต่างกันตามเงื่อนไขที่กำหนด

จากตัวอย่างรูป 2 (ก) ดร.เค เริ่มก้าวแรกที่แผ่นหินกลที่ 0 แถวที่ 3 ซึ่งสามารถเดิน**ก้าวที่ 2** ต่อไปได้เพียงแผ่นหินกลที่ 0 แถวที่ 2 หรือ แผ่นหินกลที่ 0 แถวที่ 4 เท่านั้น ไม่สามารถก้าวไปยังแผ่นหินกลที่ 1 แถวที่ 3 เนื่องจาก หมายเลขปลอดภัยของแผ่น หินกลดังกล่าวคือ 3 และ จำนวน 2 ไม่สามารถถูกหารด้วย 3 ลงตัว

จากรูปที่ 2 เห็นได้ว่า ถ้า ดร.เค ก้าวเดินตามการก้าวเดินดังรูป 2 (ก) จะมีจำนวนก้าวเดินทั้งหมด 7 ก้าว ขณะที่ รูป 2(ข) แสดงอีกวิธีการก้าวเดินไปยังหีบสมบัติอีกหนึ่งวิธี ซึ่งมีจำนวนก้าวเดินทั้งหมดถึง 21 ก้าว

เพื่อเป็นการประหยัดทั้งเวลาและพลังงานของ ดร.เค จึงขอให้ผู้รู้วัยเยาว์ที่มารวมตัวกันในการแข่งขันคอมพิวเตอร์โอลิมปิก ระดับชาติ ครั้งที่ 10 ณ มหาวิทยาลัยอุบลราชธานี เขียนโปรแกรมคอมพิวเตอร์เพื่อหาจำนวนก้าวที่น้อยที่สุดในการก้าวเดินไปบน พื้นกลเพื่อนำหีบสมบัติมาให้ได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนก้าวที่น้อยที่สุดที่ ดร.เค เดินลงบนพื้นกลที่กำหนดเพื่อนำหีบสมบัติออกมาจากถ้ำ ข้อมูลนำเข้า

มีจำนวน m + 2 บรรทัด ดังนี้

บรรทัดแรก มีหนึ่งจำนวน คือ จำนวนเต็ม m แสดงจำนวนแถวของแผ่นหินกล เมื่อ 5 <= m <= 97 และ m หารด้วย 4 แล้วเหลือเศษ 1 เสมอ

บรรทัดที่ 2 มีหนึ่งจำนวน คือ จำนวนเต็ม n แสดงจำนวนแผ่นหินกลในแต่ละแถว เมื่อ 4 <= n <= 100

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

บรรทัดที่ 3 ถึง บรรทัดที่ m + 2 แต่ละบรรทัดมีจำนวนเต็ม n จำนวน แสดงหมายเลขปลอดภัยของแผ่นหินกลแผ่นที่ 0 ถึง แผ่นที่ n-1 ในแต่ละแถว หมายเลขปลอดภัยแต่ละจำนวน ถูกคั่นด้วยช่องว่างหนึ่งช่อง เรียงจากแถวที่ 0 ไปจนถึงแถวที่ m - 1 ข้อมูลส่งออก

มีเพียงบรรทัดเดียว แสดงจำนวนเต็มบวกหนึ่งจำนวน แทนจำนวนก้าวที่น้อยที่สุดที่เป็นไปได้ในเดินจากปากถ้ำผ่านพื้นกล ไปยังหีบสมบัติ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก					
5	7					
4						
1 1 3 8						
0 1 1 0						
1 6 5 7						
1 3 2 3						
2 5 2 0						

++++++++++++++++

7. ถอดรหัสหีบสมบัติ (Chest Treasure)

หลังจากที่ ดร.เค ได้หีบสมบัติของชนเผ่าต๋อย เขาก็พบว่ากลไกในการเปิดหีบสมบัติจะต้องนำกลุ่มตัวเลขที่ถูกจารึกบนหีบ สมบัติมาใช้ถอดรหัสของแถวลำดับ (array) ของจำนวนเต็มที่มีความยาว n เพื่อใช้ในการเปิดหีบ

ช่วงแรกการถอดรหัสจะต้องมีการ<u>คำนวณ m รอบ</u>โดยใช้กลุ่มตัวเลขบนหีบสมบัติ ซึ่งมีลักษณะเป็นตารางที่มี 4 คอลัมน์ (ดังตัวอย่างในตารางที่ 1)

- 🗲 คอลัมน์ที่ 1 เป็นลำดับขั้นในการคำนวณการถอดรหัสรอบที่ i เมื่อ 1 <= i <= m
- ightharpoonup คอลัมน์ที่ 2 เป็นจำนวนเต็ม x_i เมื่อ 2 <= x_i <= 10 ทั้งนี้ x_i เป็นค่าตัวคูณ ที่ต้องใช้ในการถอดรหัสรอบที่ i
- คอลัมน์ที่ 3 และ 4 เป็นจำนวนเต็ม s_i และ t_i ตามลำดับเมื่อ 0 <= s_i <= t_i <= n 1
 ขั้นตอนการถอดรหัสในช่วงแรกจะต้องนำ x_i มาคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ s_i ไปจนถึงตำแหน่งที่ t_i ของ
 แถวลำดับในรอบที่ i 1 และค่าในแถวลำดับรอบที่ 0 เป็น 1 ทุกตำแหน่ง

ช่วงที่สองของการถอดรหัส สำหรับแต่ละตำแหน่งที่ j ของแถวลำดับในรอบสุดท้ายที่ได้จากการคำนวณในช่วงแรก เมื่อ 0 <= j <= n - 1 ให้ทำการคำนวณหา c_i ซึ่งเป็นจำนวนตัวประกอบทั้งหมด ของค่าที่ปรากฏอยู่ในแถวลำดับตำแหน่งนั้น

สำหรับรหัสที่ใช้ในการเปิดหีบสมบัติจะเป็นตัวเลข 2 จำนวน คือ ค่า c_j ที่มากที่สุด และจำนวนตำแหน่งของแถวลำดับที่มี จำนวนตัวประกอบเท่ากับค่า c_i นั้น

ตัวอย่างเช่น กำหนดให้ n มีค่าเป็น 10 และ กลุ่มตัวเลขที่ถูกจารึกบนหีบสมบัติเป็นดังตารางที่ 1 ตารางที่ 1 แสดงตัวอย่างกลุ่มตัวเลขที่ใช้ในการคำนวณ m=5 เพื่อถอดรหัสช่วงแรก

i	Xi	Si	t _i
1	3	0	4

2	2	2	3
3	5	4	7
4	6	7	9
5	2	3	3

_____ ตารางที่ 2 แสดงการถอดรหัสช่วงแรก

รอบ	ค่า	ที่ปร	ากมู	ฏในแ	ถวลำ	ดับ	ณต	กำแห	น่ง j	Ŋ.	ที่ — คำอธิบาย				
ที่	0	1	2	3	4	5	6	7	8	9	พ เอง เช				
0	1	1	1	1	1	1	1	1	1	1	เริ่มต้น				
1	3	3	3	3	3	1	1	1	1	1	นำ 3 ไปคูณค่าที่ปรากฏในแถวลำดับตั้งแต่ตำแหน่งที่ 0 ถึงตำแหน่งที่ 4				
2	3	3	6	6	3	1	1	1	1	1	นำ 2 ไปคูณค่าที่ปรากฏในแถวลำดับตั้งแต่ตำแหน่งที่ 2 ถึงตำแหน่งที่ 3				
3	3	3	6	6	15	5	5	5	1	1	ข ผ				
4	3	3	6	6	15	5	5	30	6	6	นำ 6 ไปคูณค่าที่ปรากฏในแถวลำดับตั้งแต่ตำแหน่งที่ 7 ถึงตำแหน่งที่ 9				
5	3	3	6	12	15	5	5	30	6	6	นำ 2 ไปคูณค่าที่ปรากฏในแถวลำดับตั้งแต่ตำแหน่งที่ 3 ถึงตำแหน่งที่ 3				

ตาราง 3 แสดงการถอดรหัสช่วงที่สอง

ตำแหน่ง j ที่	0	1	2	3	4	5	6	7	8	9
ค่าในแถวลำดับรอบที่ m=5	3	3	6	12	15	5	5	30	6	6
	1	1	1	1	1	1	1	1	1	1
	3	3	2	2	3	5	5	2	2	2
· ·			3	3	5			3	3	3
ตัวประกอบทั้งหมดของค่า			6	4	15			5	6	6
ในแถวลำดับตำแหน่งที่ j				6				6		
				12				10		
								15		
								30		
จำนวนตัวประกอบ	2	2	4	6	4	2	2	8	4	4

จากตารางที่ 3 จะได้ ค่า c₇=8 ซึ่งเป็นจำนวนที่มากที่สุด ซึ่งปรากฏเพียงตำแหน่งเดียว ดังนั้นรหัสที่จะใช้ในการเปิดหีบ สมบัติ จึงเป็น "8 1"

เพื่อเป็นการประหยัดทั้งเวลาและพลังงานของ ดร.เค จึงขอให้ผู้รู้วัยเยาว์ที่มารวมตัวกันในการแข่งขันคอมพิวเตอร์โอลิมปิก ระดับชาติ ครั้งที่ 10 ณ มหาวิทยาลัยอุบลราชธานี เขียนโปรแกรมคอมพิวเตอร์เพื่อหารหัสในการเปิดหีบสมบัตินี้

<u>งานของคุณ</u>

จงเขียนโปรแกรมหารหัสในการเปิดหีบสมบัตินี้

<u>ข้อมูลนำเข้า</u>

มีจำนวน m + 1 บรรทัด ดังนี้

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

บรรทัดแรก ประกอบด้วยจำนวนเต็ม m และ n ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง แสดงจำนวนรอบในการ คำนวณเพื่อถอดรหัสในช่วงแรก และ ความยาวของแถวลำดับ ตามลำดับ เมื่อ 2 <= m <= 200,000 และ 10 <= n <= 200,000,000

บรรทัดที่ 2 ถึง บรรทัดที่ m + 1 แสดงข้อมูลจากกลุ่มตัวเลขบนหีบสมบัติรอบที่ i เมื่อ 1 <= i <= m โดยแต่ละบรรทัด ประกอบด้วยจำนวนเต็มบวก 3 จำนวน ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างจำนวนหนึ่งช่อง โดย จำนวนแรก แทน x_i , จำนวนที่สอง แทน s_i และ จำนวนที่สาม แทน t_i ตามลำดับ โดยที่ $2 <= x_i <= 10$ และ $0 <= s_i <= t_i <= n-1$

<u>ข้อมลส่งออก</u>

บรรทัดเดียว ซึ่งประกอบด้วยจำนวนเต็มสองจำนวน และแต่ละจำนวนจะถูกคั่นด้วยช่องว่างจำนวนหนึ่งช่อง ได้แก่ ค่า c_j ที่มากที่สุด และจำนวนตำแหน่งของแถวลำดับที่มีจำนวนตัวประกอบเท่ากับค่า c_j นั้น ตามลำดับ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 10	8 1
3 0 4	
2 2 3	
5 4 7	
6 7 9	
2 3 3	
8 10	16 5
4 0 3	
3 3 6	
5 4 6	
2 4 6	
10 0 1	
9 5 6	
7 0 3	
2 3 4	

+++++++++++++++++

8. การดำเนินการซือกีตีกา (Segi Tiga Operation)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 11 ม.สงขลานครินทร์ วิทยาเขตตรัง

โหราศาสตร์ลึกลับแห่งบุหงาตันหยงนคร มีวิธีการทำนายภัยพิบัติที่จะเกิดขึ้นกับบ้านเมืองโดยการเสี่ยงทาย ด้วยการเขย่า กระบอกที่มีแท่งไม้จำนวนมากบรรจุอยู่ และแท่งไม้แต่ละแท่งมีตัวเลข 0 1 หรือ 2 ตัวใดตัวหนึ่ง สลักไว้ การเสี่ยงทายแต่ละรอบจะ มีการเขย่ากระบอกทั้งหมด N ครั้ง เพื่อให้แท่งไม้หลุดออกมาครั้งละหนึ่งแท่ง แล้วบันทึกผลที่ได้จากการเสี่ยงทายแต่ละรอบไว้เป็น สตริงซือกีตีกา (Segi Tiga String) ซึ่งประกอบ ไปด้วยตัวเลขบนแท่งไม้ที่ได้จากการเขย่าแต่ละครั้ง แต่ละค่าตัวเลขจะถูกคั่นด้วย สัญลักษณ์ Δ หนึ่งตัว

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

วิธีการทำนายสตริงซื้อกี่ตีกาถูกบันทึกไว้ในตำราเก่าแก่บูกูกุโน โดยใช้การดำเนินการทางคณิตศาสตร์ที่ประกอบไปด้วยตัว ดำเนินการซือกี่ตีกา (Segi Tiga operator) ซึ่งแทนด้วยสัญลักษณ์ △ และตัวถูกดำเนินการ ซือกี่ตีกา (Segi Tiga operand) ซึ่งเป็น สมาชิกของเซต {0, 1, 2} เท่านั้น การดำเนินการของตัวดำเนินการซือกี่ตีกาหนึ่งตัวจะต้องมีตัวถูกดำเนินการซือกี่ตีกาสองตัวเสมอ และผลลัพธ์ที่ได้ก็เป็นสมาชิกของเซต {0, 1, 2} ด้วย โดยผลลัพธ์ของสตริงซือกี่ตีกาที่มีตัวดำเนินการหนึ่งตัวแสดงในตารางที่ 1

สตริงซื้อกี้ตีกา	ผลลัพธ์ของสตริงซือกีตีกา
0 Δ 0	2
0 Δ 1	1
0 Δ 2	0
1 Δ 0	2
1 A 1	1

สตริงซื้อกี้ตีกา	ผลลัพธ์ของสตริงซื้อกีตีกา
1 Δ 2	1
2 Δ 0	1
2 Δ 1	2
2 Δ 2	1

______ ตารางที่ 1 ผลลัพธ์ของสตริงซือกีตีกา ที่มีตัวดำเนินการ 1 ตัว

ผลที่ได้จากการเสี่ยงทายแต่ละรอบจะเป็นสตริงซือกีตีกา ประกอบไปด้วยตัวดำเนินการซือกีตีกาอย่างน้อยหนึ่งตัว และตัว ถูกดำเนินการซือกีตีกาอย่างน้อยสองตัว เช่น หากผลที่ได้จากรอบการเสี่ยงทายที่มีการเขย่า กระบอกสี่ครั้งเป็น 0 △ 2 △ 2 △ 1 จะ ได้สตริงซือกีตีกา ที่มีตัวดำเนินการซือกีตีกาสามตัว และตัวถูกดำเนินการซือกีตีกาสี่ตัว

ผลลัพธ์ของสตริงซือกีตีกาขึ้นอยู่กับลำดับการทำงานของตัวดำเนินการ โดยสตริงซือกีตีกาที่อยู่ในวงเล็บในสุด ต้อง ดำเนินการก่อน ตัวอย่างเช่น

- * ((0 \triangle 2) \triangle (2 \triangle 1)) ได้ผลลัพธ์เป็น 0
- * ((0 △ (2 △ 2)) △ 1) ได้ผลลัพธ์เป็น 1

โหรใหญ่ประจำบุหงาตันหยงนครเป็นผู้ศึกษาและใช้ตำราบูกูกุโนอย่างลึกซึ้งทำให้ทราบดีว่าการทำนายด้วยผลลัพธ์ของ สตริงซื้อกีตีกาเป็นสิ่งที่แม่นยำ และทุกคนในนครต่างรอคอย หากผลลัพธ์ของสตริงซื้อกีตีกาที่ได้มาด้วยลำดับการทำงานลำดับใด ลำดับหนึ่งเป็น 0 ทำนายได้ว่าจะมีภัยพิบัติเกิดขึ้น จำเป็นต้องมีการเตรียมป้องกันเมืองให้รอดพ้นจากหายนะที่จะตามมา ขอให้ นักเรียนเขียนโปรแกรมเพื่อช่วยตรวจสอบว่าผลลัพธ์ของสตริงซือกีตีกามีโอกาสเป็น 0 หรือไม่

<u>งานของคุณ</u>

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพ เพื่อหาว่ามีลำดับการทำงานของตัวดำเนินการซือกีตีกาอย่างน้อยหนึ่ง ลำดับที่ทำให้ผลลัพธ์ของสตริงซือกีตีกาเป็น 0 หรือไม่?

<u>ข้อมูลนำเข้า</u>

มีจำนวน 20 บรรทัด ดังนี้

แต่ละบรรทัดประกอบด้วยจำนวนเต็ม n_i และสตริง s_i ซึ่งถูกคั่นด้วยช่องว่างหนึ่งช่องว่าง โดย n_i แสดงจำนวนครั้งที่เขย่าใน แต่ละรอบของการเสี่ยงทายที่ i กำหนดให้ 1 <= i <= 20 และ $2 <= n_i <= 255$ สำหรับ s_i แสดงชุดของตัวถูกดำเนินการที่มีความ ยาว n_i ประกอบด้วยจำนวนเต็ม 0 หรือ 1 หรือ 2 เท่านั้น เช่น s_i เท่ากับ 111102 แทนสตริงชื่อกีตีกา $1 \triangle 1 \triangle 1 \triangle 0 \triangle 2$

30% ของชุดข้อมูลทดสอบจะมี n_i ไม่เกิน 10

<u>ข้อมูลส่งออก</u>

มี 20 บรรทัด โดยที่บรรทัดที่ 1 <= i <= 20 แสดงข้อความ "yes" ถ้ามีลำดับการทำงานของตัวดำเนินการที่ทำให้ผลลัพธ์

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ของสตริงซือกีตีกาที่แทนด้วยสตริงมีค่าเป็น 0 หรือ ข้อความ "no" ถ้าไม่มีลำดับ การทำงานของตัวดำเนินการใด ๆ ทำให้ผลลัพธ์ ของสตริงซือกีตีกาที่แทนด้วยสตริง มีค่าเป็น 0

ตัวอย่าง

ข้อ	มูลนำเข้า	ข้อมูลส่งออก
4	0201	yes
5	10212	no
6	002000	yes
5	01010	yes
5	02112	yes
5	11020	no
5	10112	no
5	02000	yes
5	12122	no
5	12201	no
5	02200	yes
5	01200	yes
5	10102	no
5	10210	no
5	12110	no
5	12112	no
5	20122	no
5	01022	yes
2	00	no
2	02	yes

++++++++++++++++

9. หอดูดาว (Observatory)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 11 ม.สงขลานครินทร์ วิทยาเขตตรัง

ในรัชสมัยรายาบุหรงเป็นเจ้าครองบุหงาตันหยงนครต่อจากพระมารดารายาบุหลัน ดาราศาสตร์เป็นศาสตร์ที่ กำลัง แพร่หลายและเป็นที่นิยมศึกษาในหมู่ผู้มีความรู้ รายาบุหรงเป็นผู้หนึ่งที่โปรดความเจริญก้าวหน้าทางวิทยาการ จึงดำริให้มุขมนตรี จัดหาช่างผู้มีฝีมือสร้างหอดูดาวประจำเมืองเพื่อใช้เป็นสถานที่ในการศึกษาดวงดาว

หัวหน้าช่างได้ออกแบบหอดูดาวที่มีฐานเป็นรูปสามเหลี่ยมมุมฉากซึ่งมีด้านประกอบมุมฉากมีขนาดเท่ากันยาว ด้านละ K หน่วย รายาบุหรงมีความพอพระทัยในแบบของหอดูดาวเป็นอันมาก จึงได้ดำริมอบหมายให้มุขมนตรีหาที่ตั้งในการสร้างหอดูดาวที่มี ฐานเป็นรูปร่างดังกล่าว ในบริเวณที่ว่างบนเนินเขาที่มีขนาดพื้นที่ M x N ตารางหน่วย ทางมุขมนตรีจึงมอบหมายให้หัวหน้าช่างไป ศึกษาข้อมูลความสูงของที่ว่างบนเนินเขาแห่งนี้ ผลปรากฏว่าแต่ละตารางหน่วยของที่ว่างมีความสูงแตกต่างกันออกไป โดยหัวหน้า ช่างได้บันทึกความสูงของพื้นที่แต่ละตารางหน่วยเป็นจำนวนเต็มบวกในกรณีที่ตารางหน่วยนั้นสูงกว่าระดับน้ำทะเล และเป็นจำนวน

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

เต็มลบในกรณีที่ตารางหน่วยนั้นต่ำกว่าระดับน้ำทะเล ส่วนกรณีที่ความสูงเท่ากับระดับน้ำทะเลพอดีจะถูกบันทึกเป็นจำนวนเต็มศูนย์ เพื่อให้หอดูดาวเป็นไปตามแบบที่ต้องการ จึงมีการกำหนดเงื่อนไขสำคัญสองข้อคือ

1. ด้านประกอบมุมฉากของสามเหลี่ยมทั้งสองด้านซึ่งยาว K หน่วย และด้านทั้งสองจะต้องขนานกับด้าน M และ N ของพื้นที่ว่าง ในลักษณะตามรูปแบบสองรูปแบบต่อไปนี้อย่างใดอย่างหนึ่งเท่านั้น

2. หอดูดาวนี้ต้องตั้งอยู่บนพื้นที่ที่มีความสูงรวมมากที่สุด (ผลรวมของความสูงจากระดับน้ำทะเลของทุกตารางหน่วยที่ใช้มีค่ามาก ที่สุด) โดยความสูงของตารางหน่วยที่ใช้ไม่มีการตัดแบ่ง

1	2	-1	-4	-20
-8	-3	4	2	1
3	8	10	1	3
-4	-1	1	7	-6

ตัวอย่างที่ 1 พื้นที่ที่ถูกเลือกเพื่อสร้างหอดูดาวที่มี K = 3 อยู่ในบริเวณที่แรเงา

จากตัวอย่างที่ 1 ที่ว่างบนเนินเขาขนาด 4 x 5 ตารางหน่วย แต่ละตารางหน่วยมีความสูงเทียบกับระดับน้ำทะเลตามตัวเลข ที่ระบุไว้ในแต่ละตารางหน่วย พื้นที่ที่ถูกเลือกตามข้อกำหนดเพื่อสร้างหอดูดาวที่มีฐานรูปสามเหลี่ยมซึ่งมีความยาวด้านประกอบมุม ฉากยาว 3 หน่วย คือตารางหน่วยที่ถูกแรเงาดังรูป ในตัวอย่างนี้ความสูงรวมมากที่สุดของพื้นที่หอดูดาวเท่ากับ 22 หน่วยจาก ระดับน้ำทะเล

-99	-99	-99	-99	-99	-99	-99
-99	-5	-99	-99	-99	-99	-99
-99	-5	-5	-99	-99	-99	-4
-99	-5	-5	-5	-99	-5	-6
-99	-5	-5	-5	-2	-5	-6

ตัวอย่างที่ 2 พื้นที่ที่ถูกเลือกเพื่อสร้างหอดูดาวที่มี K = 4 อยู่ในบริเวณที่แรเงา (เป็นไปได้ 2 รูปแบบ)

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

จากตัวอย่างที่ 2 ที่ว่างบนเนินเขาขนาด 6 x 7 ตารางหน่วย แต่ละตารางหน่วยมีความสูงเทียบกับ ระดับน้ำทะเลตาม ตัวเลขที่ระบุไว้ในแต่ตารางหน่วย พื้นที่ที่ถูกเลือกตามข้อกำหนดเพื่อสร้างหอดูดาวที่มีฐานรูปสามเหลี่ยมซึ่งมีความยาวด้านประกอบ มุมฉากยาว 4 หน่วย คือตารางหน่วยที่ถูกแรเงาดังรูป ซึ่งในตัวอย่างนี้มีพื้นที่สองพื้นที่มีความสูงรวมมากที่สุดเท่ากัน คือ -47 หน่วย จากระดับน้ำทะเล

<u>งานของคูณ</u>

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพเพื่อคำนวณหาค่าความสูงรวมมากที่สุดของพื้นที่หอดูดาว ตามพระประสงค์ ของรายาบุหรง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มสามจำนวน M N และ K แต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่องว่าง โดยที่ M แสดงความกว้าง N แสดงความยาวของด้านประกอบมุมฉากของฐานของหอดูดาว กำหนดให้ 2 <= M, N <= 2,000 และ 1 <= K <= 1,000 โดยที่ K < M และ K < N

บรรทัดที่ 2 ถึง M+1 แต่ละบรรทัดประกอบด้วยจำนวนเต็ม N จำนวน แต่ละจำนวนแสดงค่า h_i ซึ่งแสดงระดับความสูง จากระดับน้ำทะเลของที่ดินในตารางหน่วยที่ i ของแถว และแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง กำหนดให้ -500 <= h_i <= 500 และ 1 <= i <= N

<u>ข้อมูลส่งออก</u>

มีหนึ่งบรรทัด ระบุค่าความสูงรวมมากที่สุดของพื้นที่ของหอดูดาวตามพระประสงค์ของราชาบุหรง

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5 3	22
1 2 -1 -4 -20	
-8 -3 4 2 1	
3 8 10 1 3	
-4 -1 1 7 -6	

+++++++++++++++++

10. ปืนใหญ่แห่งป้อมปราการ (Cannons at the Fort)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 11 ม.สงขลานครินทร์ วิทยาเขตตรัง

ชายแดนฝั่งตะวันออกของบุหงาตันหยงนครติดกับชายทะเล ดังนั้นเพื่อป้องกันการรุกรานจากข้าศึกท่านแม่ทัพประจำ กองทัพทหารปืนใหญ่แห่งบุหงาตันหยงนครจึงวางแผนจัดกำลังพลทหารปืนใหญ่ประจำบนป้อมปราการ และนำปืนใหญ่จำนวน N กระบอก (1 <= N <= 1,000,000) มาติดตั้งในร่องกำแพงของป้อมปราการ ซึ่งมีจำนวนทั้งหมด 10,000,000 ร่อง แต่ละร่องห่างกัน 1 เมตร เรียงลำดับในแนวเส้นตรง และสามารถติดตั้งปืนใหญ่ได้มากที่สุดหนึ่งกระบอกต่อหนึ่งร่องกำแพงเท่านั้น เรียกแทนตำแหน่ง ร่องกำแพงว่าร่องกำแพงที่ 0 1 2 ... 9,999,999 ตามลำดับ

นอกจากนี้ เพื่อเป็นการอำนวยความสะดวกให้พลทหารในการขนถ่ายกระสุนปืนใหญ่ไปยังปืนใหญ่แต่ละกระบอก ท่านแม่ ทัพจึงวางแผนติดตั้งจุดลำเลียงกระสุนปืนใหญ่อีก M จุด (1 <= M <= 1,000) ตรงกับตำแหน่งของร่องกำแพงด้วย และแต่ละร่อง

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

กำแพงสามารถติดตั้งจุดลำเลียงกระสุนปืนใหญ่ได้มากที่สุดหนึ่งจุดเท่านั้น ทั้งนี้มีความเป็นได้ที่จะติดตั้งปืนใหญ่และจุดลำเลียง กระสุนปืนใหญ่ที่ตำแหน่งร่องกำแพงเดียวกันจากจุดลำเลียงกระสุนปืนใหญ่แต่ละจุดจะมีรางลำเลียงกระสุนความยาว L * 2 เมตร เพื่อใช้ลำเลียงกระสุนปืนใหญ่ไปทางซ้ายและขวาด้านละ L เมตร (1 <= L <= 500,000) ดังนั้นหากมีจุดลำเลียงกระสุนปืนใหญ่ที่ ร่องกำแพงที่ m จะสามารถลำเลียงกระสุนปืนใหญ่ไปยังปืนใหญ่ไปยังปืนใหญ่ทั้งหมดที่ถูกติดตั้งในตำแหน่งร่องกำแพงที่ m – L ถึง ตำแหน่งร่องกำแพงที่ m + L และอาจจะมีปืนใหญ่บางกระบอกที่มีรางลำเลียงกระสุนปืนใหญ่ผ่านมากกว่าหนึ่งราง

ท่านแม่ทัพได้ตัดสินใจจัดวางปืนใหญ่ N กระบอก และวางแผนการจัดวางจุดลำเลียงกระสุนปืนใหญ่ไว้ K รูปแบบ (1 <= K <= 400) ในแต่ละรูปแบบมีจุดลำเลียงกระสุนปืนใหญ่ M จุดที่แตกต่างกันไป จากตัวอย่างที่ 1 ปืนใหญ่จำนวนสามกระบอกถูกติดตั้ง บนร่องกำแพงของป้อมปราการ และจุดลำเลียงกระสุนปืนใหญ่อยู่ที่ร่องกำแพงตำแหน่งที่สอง โดยรางลำเลียงกระสุนปืนใหญ่ใน ตัวอย่างในตัวอย่างนี้จะผ่านปืนใหญ่ทั้งหมดจำนวนสองกระบอก ดังรูป

ตัวอย่างที่ 1 ตัวอย่างการติดตั้งปืนใหญ่สามกระบอก (N = 3) จุดลำเลียงกระสุนปืนใหญ่หนึ่งจุด (M = 1) และรางลำเลียง กระสุนปืนใหญ่ความยาวสี่เมตร (L * 2 = 4) โดยมีแผนการจัดวางจุดลำเลียงกระสุนปืนใหญ่รูปแบบเดียว (K = 1)

ท่านแม่ทัพต้องการทราบว่าจำนวนปืนใหญ่ทั้งหมดที่รางลำเลียงกระสุนปืนใหญ่ผ่าน สำหรับแผนการจัดวางแต่ละรูปแบบ มี จำนวนเท่าไร

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพ เพื่อหาจำนวนปืนใหญ่ทั้งหมดที่มีรางลำเลียงกระสุนปืนใหญ่ผ่าน สำหรับ แผนการจัดวางแต่ละรูปแบบ

<u>ข้อมูลนำเข้า</u>

มีจำนวน K + 2 บรรทัด

บรรทัดแรก มีจำนวนเต็มสี่จำนวน ประกอบด้วย N ระบุจำนวนปืนใหญ่ที่ถูกติดตั้ง M ระบุจำนวนจุดลำเลียงกระสุนปืน ใหญ่ K ระบุจำนวนรูปแบบของแผนการจัดวางจุดลำเลียงกระสุนปืนใหญ่ และ L ระบุความยาวครึ่งหนึ่งของรางลำเลียงกระสุนปืน ใหญ่ในหน่วยเมตร โดยแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง กำหนดให้ 1 <= N <= 1,000,000 และ 1 <= M <= 1,000 และ 1 <= L <= 500,000

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

บรรทัดที่ 2 มีจำนวนเต็ม N จำนวน แต่ละจำนวน คือ ni ซึ่งระบุตำแหน่งติดตั้งปืนใหญ่กระบอกที่ i เรียงลำดับตำแหน่ง จากน้อยไปมาก กำหนดให้ 0 <= ni <= 9,999,999 และ 1 <= i <= N

บรรทัดที่ 3 ถึง K + 2 แต่ละบรรทัดมีจำนวนเต็ม M จำนวน แต่ละจำนวน คือ mj ซึ่งระบุตำแหน่งจัดวางจุดลำเลียงกระสุน ปืนใหญ่ที่ j ในแผนการจัดวางแต่ละรูปแบบ เรียงลำดับตำแหน่งจากน้อยไปมาก กำหนดให้ 0 <= mj <= 9,999,999 และ 1 <= M

<u>ข้อมูลส่งออก</u>

มี K บรรทัด แต่ละบรรทัดแสดงจำนวนปืนใหญ่ทั้งหมดที่มีรางลำเลียงกระสุนปืนใหญ่ผ่าน สำหรับแผนการจัดวางแต่ละ รูปแบบ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2 4 100	2
100 300 500	1
200 1000	3
199 1000	0
200 600	
1000 1001	

+++++++++++++++++

11. กุญแจลับสมบัติเก้าเส้ง (Key TOI12)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 12 ม.สงขลานครินทร์ วิทยาเขตหาดใหญ่

เขาเก้าเส้งเป็นสถานที่สำคัญริมทะเลจังหวัดสงขลา ภูมิทัศน์เป็นเขาหินมีต้นไม้ขึ้นเล็กน้อย และมีก้อนหินใหญ่ตั้งเด่นที่ ปลายสุดเป็นลักษณะสำคัญ จากตำนานเล่าว่ามีเจ้าเมืองหนึ่งซึ่งเป็นเมืองขึ้นของนครศรีธรรมราช ชื่อว่า นายแรง ได้ขนเงินทองเป็น จำนวนมากเดินทางด้วยเรือสำเภาไปงานเฉลิมฉลองการบรรจุพระบรมสารีริกธาตุในเจดีย์ ขณะกำลังเดินทางเรือถูกคลื่นลมชำรุด ต้องแวะพักที่ชายฝั่งเพื่อช่อมแชมเรือ เมื่อรู้ว่าไปไม่ทันงานบรรจุพระบรมสารีริกธาตุดังที่ตนตั้งใจ ก็เสียใจมาก สั่งให้ไพร่พลฝังเงิน ทองทั้งหมดไว้บนยอดเขา แล้วตัดหัวตัวเองวางไว้บนยอดเขาเป็นปู่โสมเฝ้าทรัพย์จนทุกวันนี้ ภายหลังเรียกว่าเขาเก้าแสน และเพี้ยน เป็นเขาเก้าเส้งอย่างในปัจจุบัน

น้องสิงหลาและน้องสิงขรได้ไปผจญภัยในเก้าเส้งแล้วค้นพบหีบสมบัติ ซึ่งหีบสมบัตินี้จะเปิดได้ก็ต่อเมื่อมีกุญแจที่เกิดจาก การนำรหัสลับส่วนตัวของน้องสิงหลาและน้องสิงขรมาสร้างเป็นกุญแจใหม่ที่สร้างจากเครื่องสร้างกุญแจที่ใช้ได้เพียงครั้งเดียว (One Time Key : OTK) ทั้งสองคนมีรหัสลับเป็นของตนเองในรูปแบบของตัวอักษรภาษาอังกฤษพิมพ์ใหญ่ A และ B เรียงต่อกัน โดยรหัส ลับของน้องสิงหลาเป็น $x_1x_2...x_m$ เมื่อ $x_i \in \{A, B\}$ และ i=1,2,...,m และรหัสลับของน้องสิงขรเป็น $y_1y_2...y_n$ เมื่อ $y_j \in \{A, B\}$ และ j=1,2,...,m

หลังจากเครื่องสร้างกุญแจได้รับรหัสลับมา เครื่องจะทำการสร้างกุญแจใหม่ที่เกิดจากการนำตัวอักษรของแต่ละคนมาผสม กัน **โดยยังคงรักษาลำดับตำแหน่งของตัวอักษรในรหัสลับของแต่ละคนไว้** ซึ่งกุญแจสามารถมีได้หลายรูปแบบ เช่น หากรหัสลับ

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ของน้องสิงหลา คือ $x_1x_2x_3$ = BAB และรหัสลับของน้องสิงขร คือ y_1y_2 = AB จะสามารถสร้างกุญแจที่จะเปิดหีบสมบัติได้ ดัง ตัวอย่างบางส่วนต่อไปนี้

BAABB ซึ่งเกิดจาก $x_1x_2y_1x_3y_2$ หรือ

BABAB ซึ่งเกิดจาก $x_1x_2x_3y_1y_2$ หรือ

ABBAB ซึ่งเกิดจาก y₁y₂x₁x₂x₃

ในขณะที่ BBABA ไม่ใช่กุญแจที่จะเปิดหีบสมบัติได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อตรวจสอบว่ากุญแจที่กำหนดให้เป็นกุญแจที่จะเปิดหีบสมบัติได้หรือไม่

<u>ข้อมูลนำเข้า</u>

มีจำนวน 3+k บรรทัด ดังนี้

บรรทัดที่ 1 สายอักขระความยาว m แสดงรหัสลับของน้องสิงหลา กำหนดให้ 1 <= m <= 1,000

บรรทัดที่ 2 สายอักขระความยาว n แสดงรหัสลับของน้องสิงขร กำหนดให้ 1 <= n <= 1,000

บรรทัดที่ 3 จำนวนเต็ม k ระบุจำนวนกุญแจที่ต้องการตรวจสอบ กำหนดให้ 1 <= k <= 100

บรรทัดที่ 4 ถึง 3+k แต่ละบรรทัดมีสายอักขระความยาว m+n แทนกุญแจลำดับที่ i (1 <= i <= k) ที่ต้องการตรวจสอบ

<u>ข้อมูลส่งออก</u>

มีจำนวน k บรรทัด ดังนี้

บรรทัดที่ i (1 <= i <= k) แสดงข้อความ Yes ใน กรณีกุญแจลำดับที่ i เป็นกุญแจที่จะเปิดหีบสมบัติได้ หรือ แสดง ข้อความ No กรณีที่ไม่ใช่

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
BAB	Yes
AB	Yes
4	Yes
BAABB	No
BABAB	
ABBAB	
BBABA	

++++++++++++++++

12. เขื่อนกันคลื่น (Barrier TOI12)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 12 ม.สงขลานครินทร์ วิทยาเขตหาดใหญ่

หาดสมิหลา เป็นสถานที่ท่องเที่ยวที่มีชื่อเสียงของจังหวัดสงขลา มีหาดทรายขาวละเอียดมากที่เรียกว่า "ทรายแก้ว" มีป่าสน ร่มรื่น จากหาดสมิหลาสามารถมองเห็นทิวทัศน์อันงดงามของเกาะหนู เกาะแมว มีสัญลักษณ์ที่มีชื่อเสียงเป็นรูปปั้นนางเงือกทอง มี บริเวณพักผ่อนชมวิวซึ่งมีชายหาดยาวต่อเนื่องที่เรียกกันว่า แหลมสนอ่อน

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ใกล้กับบริเวณชายหาดแหลมสนอ่อน มีร้านค้าและบ้านเรือนประชาชนอาศัยอยู่หลายหลังคาเรือนตามแนวชายหาดมาช้า นาน บ้านแต่ละหลังได้รับการจัดสรรพื้นที่และสร้างบ้านแบบเดียวกันหมด ในปัจจุบันเริ่มเกิดปัญหาการกัดเซาะชายฝั่งทะเลจาก คลื่นมรสุมที่พัดเข้ามาบริเวณชายหาดมีกำลังแรงมากขึ้น จนทำให้บ้านเรือนที่อยู่บริเวณชายหาดได้รับความเสียหาย ทางการได้ ทำงานวิจัยและพบว่าการสร้างเขื่อนกันคลื่นตามแนวชายหาดจะช่วยแก้ปัญหาดังกล่าวได้อย่างยั่งยืน แต่ด้วยงบประมาณที่ได้รับ จัดสรรมามีจำกัด จึงไม่สามารถสร้างเขื่อนกันคลื่นให้มีความยาวครอบคลุมบ้านเรือนประชาชนทุกหลังได้ งบประมาณนี้สามารถ นำมาสร้างเขื่อนได้เพียงเขื่อนเดียวเท่านั้นและต้องมีรูปแบบความยาวเขื่อนกันคลื่นต่อเนื่องกันครอบคลุมบ้านได้ไม่เกิน w หลัง

ก. กรณีที่ n = 7 และ w = 4

ข. กรณีที่ n = 7 และ w = 3

กำหนดให้มีบ้านเรือนอยู่ทั้งหมด n หลัง บ้านหลังที่ i (1 <= i <= n) มีค่าความคุ้มค่าในการสร้างเชื่อนครอบ คลุมบ้านหลัง นั้นเป็นจำนวนเต็ม แทนด้วย v_i ซึ่งพิจารณาจากมูลค่าทรัพย์สินรวมของบ้านและค่าการก่อสร้างส่วนของเชื่อน ณ ตำแหน่งของบ้าน หลังนั้น ทั้งนี้ค่าความคุ้มค่าอาจมีค่าเป็นลบได้ในกรณีที่ค่าการก่อสร้างส่วนของเชื่อน ณ ตำแหน่งของบ้านสูงกว่ามูลค่าทรัพย์สินรวม ของบ้าน

ทั้งนี้เพื่อให้เกิดประโยชน์สูงสุด ทางการกำหนดเงื่อนไขเพื่อพิจารณาสร้างเชื่อนกันคลื่น ดังนี้ รูปแบบการสร้างเชื่อนจะต้อง ครอบคลุมบ้านไม่เกิน w หลัง ผลรวมของค่าความคุ้มค่าในการสร้างเชื่อนครอบคลุมบ้านเหล่านั้นต้องมีค่าเป็นบวกเท่านั้น และ ผลรวมนั้นต้องมีค่าสูงสุดเท่าที่จะเป็นไปได้ หากพบว่ามีมากกว่าหนึ่งรูปแบบตามเงื่อนไขที่ได้กล่าวมา ทางการจะพิจารณาเลือกสร้าง เชื่อนกันคลื่นในรูปแบบที่มีความยาวสั้นที่สุดเท่านั้น แต่หากไม่มีรูปแบบที่ตรงตามเงื่อนไขทั้งหมดนี้เลย ทางการจะตัดสินใจไม่สร้าง เชื่อนกันคลื่น

จากรูปข้างต้น มีบ้านอยู่ 7 หลัง (n=7) โดยค่าความคุ้มค่าในการสร้างเชื่อนครอบคลุมบ้านหลังแรก (ซ้ายมือสุด) ถึงหลัง สุดท้าย (ขวามือสุด) คือ 3, 2, 5, 1, 4, -7 และ 10 ตามลำดับ ถ้าทางการจะต้องสร้างเชื่อนกันคลื่นมีความยาวครอบคลุมบ้านได้ไม่ เกิน 4 หลัง (w=4) จะได้ว่ารูปแบบเชื่อนกันคลื่นที่ทางการจะพิจารณาสร้างต้องครอบคลุมบ้านหลังที่ 2 ถึงหลังที่ 5 โดยในกรณีนี้จะ มีผลรวมค่าความคุ้มค่าในการสร้างเชื่อนเป็น 2 + 5 + 1 + 4 = 12 ซึ่งเป็นผลรวมที่มากที่สุดที่เป็นไปได้ (ดังรูป ก.) แต่ถ้ากำหนดให้ เชื่อนกันคลื่นมีความยาวครอบคลุมบ้านได้ไม่เกิน 3 หลัง จะได้ว่าผลรวมค่าความคุ้มค่าสูงสุดในการสร้างเชื่อนตามเงื่อนไขดังกล่าวมี ค่าเท่ากับ 10 โดยมีรูปแบบที่ทางการสามารถเลือกเพื่อพิจารณาสร้างเชื่อนได้ทั้งสิ้น 3 รูปแบบ ดังนี้ รูปแบบที่ 1 คือ เชื่อนกันคลื่น ครอบคลุมบ้านหลังที่ 1 ถึงหลังที่ 3 รูปแบบที่ 2 คือ เชื่อนกัน คลื่นครอบคลุมบ้านหลังที่ 7 เพียงหลังเดียว ดังนั้น ในกรณีนี้ทางการจะพิจารณาสร้างเชื่อนกันคลื่นตามรูปแบบที่ 3 (ดังรูป ข.) งานของคุณ

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาผลรวมของค่าความคุ้มค่าของรูปแบบการสร้างเขื่อนกันคลื่นที่ทางการจะ พิจารณาสร้างตามเงื่อนไขข้างต้น และความยาวที่น้อยที่สุดของเขื่อนในรูปแบบนั้น

<u>ข้อมูลนำเข้า</u>

มีจำนวน n+1 บรรทัด ดังนี้

บรรทัดที่ 1 มีจำนวนเต็มสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ n แทนจำนวนบ้านเรือน และ จำนวนที่สอง คือ w ระบุว่าสามารถสร้างเขื่อนกันคลื่นให้มีความยาวต่อเนื่องครอบคลุมบ้านได้ไม่เกิน w หลัง กำหนดให้ 1 <= n <= 6,000,000 และ 1 <= w <= 100,000

บรรทัดที่ 2 ถึง n+1 แต่ละบรรทัด มีจำนวนเต็มหนึ่งจำนวน แสดงค่าความคุ้มค่า v_i ในการสร้างเขื่อนกันคลื่นครอบคลุม บ้านหลังที่ i กำหนดให้ -500,000 <= v_i <= 500,000 และ 1 <= i

<u>ข้อมูลส่งออก</u>

มีจำนวน 2 บรรทัด ดังนี้

บรรทัดที่ 1 จำนวนเต็มหนึ่งจำนวน ซึ่งในกรณีที่มีรูปแบบตามเงื่อนไขของทางการในการพิจารณาสร้างเขื่อนกันคลื่น ให้ แสดงผลรวมค่าความคุ้มค่าที่มากที่สุด แต่ในกรณีที่ทางการไม่สร้างเขื่อนกันคลื่น ให้แสดงเป็น 0

บรรทัดที่ 2 จำนวนเต็มหนึ่งจำนวน ซึ่งในกรณีที่มีรูปแบบตามเงื่อนไขของทางการในการพิจารณาสร้างเขื่อนกันคลื่น ให้ แสดงความยาวที่น้อยที่สุดของเขื่อนในรูปแบบนั้น แต่ในกรณีที่ทางการไม่สร้างเขื่อนกันคลื่น ให้แสดงเป็น 0

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
7 4	12
3	4
2	
5	
1	
4	
-7	
10	

++++++++++++++++

13. ท่อน้ำ (Pipe TOI12)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 12 ม.สงขลานครินทร์ วิทยาเขตหาดใหญ่

ช่วงฤดูร้อนที่ผ่านมามีสภาวะอากาศแปรปรวนทั่วโลก และทำให้เกิดความแห้งแล้งปกคลุมไปทั่วประเทศไทย จังหวัดสงขลา เกิดภัยพิบัติขาดแคลนน้ำกินน้ำใช้อย่างหนัก ทางการต้องการบรรเทาความทุกข์ร้อนของประชาชน จึงได้ทำการสำรวจจนพบว่า ยังคงมีแหล่งน้ำที่อุดมสมบูรณ์อยู่ในพื้นที่ดังกล่าวได้แก่ น้ำตกโตนงาช้าง ซึ่งเป็นน้ำตก 7 ชั้นที่สวยงามและมีชื่อเสียง โดยชั้นที่มี ชื่อเสียงที่สุดคือ ชั้นที่ 3 มีชื่อเดียวกับชื่อน้ำตกว่า โตนงาช้าง มีลักษณะเป็นสายน้ำตกแยกออกเป็นสองสายคล้ายงาช้าง

ทางการจึงได้วางแผนในการสร้างจุดจ่ายน้ำจากน้ำตกดังกล่าวไปยังบ้านเรือนประชาชน n หลัง ซึ่งมีที่ตั้งระบุเป็นพิกัดตาม แนวแกนนอนและแนวแกนตั้ง โดยไม่มีบ้านหลังใดตั้งอยู่บนพิกัดเดียวกัน ด้วยข้อจำกัดทางภูมิศาสตร์จึงทำให้สร้างจุดจ่ายน้ำได้เพียง

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

k จุด และแต่ละจุดจะต้องสร้างอยู่ที่บ้านหลังใดหลังหนึ่งเท่านั้น และ**บ้านแต่ละหลังไม่สามารถมีจุดจ่ายน้ำมากกว่าหนึ่งจุดได้** ทางการสามารถส่งน้ำจากจุดจ่ายน้ำไปยังบ้านหลังอื่นผ่านทางท่อน้ำซึ่งถูกออกแบบให้วางขนานไปกับแกนนอนหรือแกนตั้ง และท่อ น้ำจะเลี้ยวเป็นมุมฉาก (90 องศา) ได้เท่านั้น ท่อน้ำที่ต่อจากบ้านหลังหนึ่งไปยังอีกหลังหนึ่งจะเป็นท่อน้ำยาวต่อเนื่อง เป็นเนื้อ เดียวกัน และไม่มีการเชื่อมต่อไปยังบ้านหลังอื่น

โดยเราสามารถต่อท่อน้ำจากบ้านหลังหนึ่งไปยังบ้านหลังอื่น ๆ ได้อย่างไม่จำกัด แต่ไม่สามารถต่อเชื่อมท่อน้ำ ณ จุดอื่นที่ ไม่ใช่บ้านได้ บ้านที่มีท่อน้ำต่อถึงกันจะได้รับน้ำจากจุดจ่ายน้ำเดียวกัน และบ้านแต่ละหลังรับน้ำจากจุดจ่ายน้ำได้เพียงหนึ่งจุดเท่านั้น ทั้งนี้เพื่อให้ประหยัดค่าใช้จ่าย ทางการจะต้องออกแบบให้ความยาวรวมของท่อน้ำที่ใช้ทั้งหมดมีค่าน้อยที่สุด

รูปข้างบนแสดงตัวอย่างเส้นทางการต่อท่อน้ำเมื่อกำหนดให้มีบ้านอยู่ 5 หลัง ซึ่งตั้งอยู่ที่พิกัด (2,9), (9,7), (12,9), (14,2) และ (16,4) และให้สร้างจุดจ่ายน้ำ 2 จุด จากรูป พิกัดตามแกนนอนเริ่มจาก 0 ที่ด้านซ้ายสุด และพิกัดตามแกนตั้งเริ่มจาก 0 ที่ด้าน ล่างสุด การต่อท่อน้ำดังรูป ก. และรูป ข. มีความยาวรวมเท่ากัน คือ 18 หน่วย ซึ่งเป็นตัวอย่างของการต่อท่อน้ำที่ทำให้ความยาว รวมของท่อน้ำที่ใช้ทั้งหมดมีค่าน้อยที่สุด

<u>งานของคูณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาความยาวรวมน้อยที่สุดของท่อน้ำที่ทำให้สามารถจ่ายน้ำไปยังบ้านได้ครบทุกหลัง ตามเงื่อนไขและจำนวนจุดจ่ายน้ำที่กำหนด

<u>ข้อมูลนำเข้า</u>

มีจำนวน n+1 บรรทัด ดังนี้

บรรทัดแรก จำนวนเต็มบวกสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ n ระบุจำนวนบ้าน และ จำนวนที่สอง คือ k ระบุจำนวนจุดจ่ายน้ำ กำหนดให้ 3 <= n <= 15,000, 1 <= k <= 1,000 และ k < n

บรรทัดที่ 2 ถึง n+1 ในแต่ละบรรทัด มีจำนวนเต็มบวกสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ x_i แทนพิกัดตามแกนนอน และ จำนวนที่สอง คือ y_i แทนพิกัดตามแกนตั้งของบ้านหลังที่ i กำหนดให้ $0 <= x_i <= 50,000$ และ $0 <= y_i <= 50,000$ และ 1 <= i <= n

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนเต็มหนึ่งจำนวน ระบุความยาวรวมน้อยที่สุดของท่อน้ำที่ทำให้สามารถจ่ายน้ำไปยังบ้านได้ครบ ทุกหลัง

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 2	18
2 9	
9 7	
14 2	
12 9	
16 4	

++++++++++++++++

14. กำจัดจุดอ่อน (Weak Point TOI12)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 12 ม.สงขลานครินทร์ วิทยาเขตหาดใหญ่

ในการพัฒนาประเทศให้ก้าวสู่ยุค Thailand 4.0 นโยบายของรัฐบาลคือการพัฒนาเมืองที่มีศักยภาพให้เป็นสมาร์ทซิตี้ (Smart City) แต่เนื่องด้วยปริมาณข้อมูลที่จะเกิดจากระบบและประชาชนในสมาร์ทซิตี้อาจมีปริมาณมหาศาล เช่น ข้อมูลจาก โซเชียลเน็ตเวิร์ค และข้อมูลจากเซ็นเซอร์ต่าง ๆ เพื่อเป็นการสนับสนุนการพัฒนาดังกล่าว จึงต้องมีการสร้างแหล่งสำรองข้อมูล ขนาดใหญ่ (Big Data) ไว้ยังจุดยุทธศาสตร์ต่าง ๆ ทั่วประเทศ

กำหนดให้มีแหล่งสำรองข้อมูลทั้งหมด N จุดในระบบสนับสนุนสมาร์ทซิตี้ดังกล่าว แต่ละแหล่งสำรองข้อมูลมีหมายเลข กำกับตั้งแต่ 1 ถึง N หนึ่งในแหล่งสำรองข้อมูลเหล่านี้จะถูกเลือกเป็นแหล่งสำรองข้อมูลหลัก ซึ่งจะเป็นจุดเริ่มต้นการกระจายการ อัพเดต (Update) ข้อมูลไปยังแหล่งสำรองข้อมูลอื่น ๆ ที่อยู่ติดกันทางลิงค์เครือข่าย (Network Link) และแหล่งสำรองข้อมูล เหล่านั้นก็จะกระจายการอัพเดตข้อมูลต่อไปยังแหล่งสำรองข้อมูลอื่น ๆ ที่อยู่ติดกันไปเป็นทอด ๆ ทั้งนี้ระบบถูกออกแบบให้มีจำนวน ลิงค์เครือข่ายเท่ากับจำนวนแหล่งสำรองข้อมูล และการอัพเดตข้อมูลจากแหล่งสำรองข้อมูลหลักสามารถส่งไปถึงทุกแหล่งสำรอง ข้อมูลอื่น ๆ ได้ นอกจากนี้ไม่มีลิงค์เครือข่ายระหว่างคู่ของแหล่งสำรองข้อมูลคู่เดียวกันมากกว่า 1 ลิงค์

แหล่งสำรองข้อมูลใด ๆ ยกเว้นแหล่งสำรองข้อมูลหลักมีโอกาสชำรุด และอาจสุ่มเสี่ยงต่อความเสียหายของระบบ รัฐบาลจึง ว่าจ้างไวท์แฮทแฮคเกอร์ (White Hat Hacker) มาตรวจสอบหาจุดอ่อนของระบบเพื่อยกระดับความปลอดภัย นิยามให้ "แหล่ง สำรองข้อมูลสุ่มเสี่ยง" คือ แหล่งสำรองข้อมูลซึ่งเมื่อชำรุดแล้วจะทำให้แหล่งสำรองข้อมูลหลักกระจายการอัพเดตไปยังแหล่งสำรอง ข้อมูลอื่น ๆ ได้น้อยจุดที่สุด โดยแหล่งสำรองข้อมูลสุ่มเสี่ยงอาจมีหลายจุด จากการตรวจสอบพบว่า "จุดอ่อนของระบบ" คือแหล่ง สำรองข้อมูลสุ่มเสี่ยง ซึ่งมีหมายเลขกำกับที่มีค่าน้อยที่สุด

รูปข้างบนแสดงตัวอย่างโครงสร้างลิงค์เครือข่ายไปยังแหล่งสำรองข้อมูลจำนวน 12 จุด หากกำหนดให้แหล่งสำรองข้อมูล หลักอยู่ที่แหล่งสำรองข้อมูลหมายเลข 1 แล้วไวท์แฮทแฮคเกอร์พบว่าแหล่งสำรองข้อมูลสุ่มเสี่ยงที่มีโอกาสเป็นจุดอ่อน ได้แก่ แหล่ง สำรองข้อมูลหมายเลข 2 และ 6 ทั้งนี้จะถือว่าแหล่งข้อมูลสำรองหมายเลข 2 เป็นจุดอ่อนของระบบเนื่องจากเป็นแหล่งข้อมูลสุ่ม เสี่ยงซึ่งมีหมายเลขกำกับที่มีค่าน้อยที่สุด และมีจำนวนแหล่งสำรองข้อมูลซึ่งจะไม่ได้รับการอัพเดตข้อมูล 2 จุด ในกรณีที่จุดอ่อน ชำรุด

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาจุดอ่อนของระบบ และจำนวนแหล่งสำรองข้อมูลซึ่งจะไม่ได้รับการอัพเดตข้อมูล ในกรณีที่แหล่งสำรองข้อมูลที่เป็นจุดอ่อนชำรุด

<u>ข้อมูลนำเข้า</u>

มีจำนวน N+1 บรรทัด ดังนี้

บรรทัดที่ 1 จำนวนเต็มบวกสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ N ระบุจำนวนแหล่งสำรอง ข้อมูลทั้งหมด และ จำนวนที่สอง คือ M ระบุหมายเลขกำกับของแหล่งสำรองข้อมูลหลัก กำหนดให้

บรรทัดที่ 2 ถึง N+1 แต่ละบรรทัด มีจำนวนเต็มบวกสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ได้แก่ a_i และ b_i ระบุหมายเลขกำกับแหล่งสำรองข้อมูลสองจุดที่มีลิงค์เครือข่ายเชื่อมติดกัน โดยที่ a_i ไม่เท่ากับ b_i กำหนดให้ $1 <= a_i <= N$ และ $1 <= b_i <= N$ และ 1 <= i <= N

<u>ข้อมูลส่งออก</u>

มีจำนวน 2 บรรทัด คือ

บรรทัดที่ 1 จำนวนเต็มหนึ่งจำนวน ระบุหมายเลขกำกับแหล่งสำรองข้อมูลที่เป็นจุดอ่อน

บรรทัดที่ 2 จำนวนเต็มหนึ่งจำนวน ระบุจำนวนแหล่งสำรองข้อมูลซึ่งจะไม่ได้รับการอัพเดตข้อมูลในกรณีที่แหล่งสำรอง ข้อมูลที่เป็นจุดอ่อนชำรุด (ไม่รวมแหล่งสำรองข้อมูลที่ชำรุด)

<u>ตัวอย่าง</u>

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ข้อมูลนำเข้า	ข้อมูลส่งออก
12 1	2
1 2	2
1 6	
1 7	
1 12	
6 8	
6 9	
2 3	
2 10	
10 11	
3 4	
4 5	
5 12	

+++++++++++++++++

____ 15. กล้วยไม้ (Orchid TOI13)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 13 ณ ศูนย์ สอวน. โรงเรียนมหิดลวิทยานุสรณ์

นครปฐมเป็นจังหวัดที่มีการเพาะปลูกกล้วยไม้มากที่สุดในประเทศไทย ทางจังหวัดจึงมีโครงการจัดงานแสดงกล้วยไม้นานา พันธุ์ขึ้นที่อำเภอพุทธมณฑล จังหวัดนครปฐม ซึ่งจะจัดแสดงต้นกล้วยไม้เป็นแถวยาวเรียงต่อกันเป็นจำนวน N ต้น ต้นกล้วยไม้ที่ นำมาจัดแสดงนั้นถูกนำมาจากสวนกล้วยไม้ศาลายาและต้นกล้วยไม้แต่ละต้นอาจมีความสูงเท่ากันหรือต่างกันก็ได้ ความสูงของต้น กล้วยไม้เป็นจำนวนเต็ม โดยมีความสูงตั้งแต่ 1 หน่วยเป็นต้นไป สำหรับการจัดแสดงในตอนแรกนั้นพนักงานจัดแสดงต้นกล้วยไม้ แบบสุ่ม คือ จัดวางต้นกล้วยไม้แบบไม่มีการเรียงลำดับสูงต่ำจากทางซ้ายมือไปขวามือ ตัวอย่างการจัดแสดงในตอนแรกเป็นดังรูปที่

ต่อมาทางผู้จัดงานต้องการให้ต้นกล้วยไม้ที่จัดแสดงนั้นมีการเรียงลำดับความสูงของต้นกล้วยไม้จากต่ำไปสูง นั่นคือ ต้น กล้วยไม้ที่อยู่ทางซ้ายมือจะต้องมีความสูง**ต่ำกว่าหรือเท่ากับ**ต้นกล้วยไม้ทางขวามือ ทั้งนี้ ในการเรียงลำดับความสูงของต้นกล้วยไม้ จากต่ำไปสูงนั้น จะใช้วิธีการนำต้น**กล้วยไม้ต้นใหม่**ที่มีความสูงเหมาะสมไปเปลี่ยนแทนที่ต้นกล้วยไม้ต้นเดิมเพื่อทำให้การจัดแสดง ต้นกล้วยไม้นั้นเป็นการเรียงลำดับความสูงของต้นกล้วยไม้จากต่ำไปสูงตามที่ผู้จัดงานต้องการ นอกจากนี้ เพื่อให้การจัดเตรียมงาน

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

จัดแสดงกล้วยไม้นานาพันธุ์สำเร็จเสร็จสิ้นโดยเร็ว จึงจำเป็นที่จะต้องนำต้นกล้วยไม้ต้นใหม่ที่มีความสูงเหมาะสมไป**เปลี่ยนแทนที่ต้น** กล้วยไม้ต้นเดิมเป็น<u>จำนวนน้อยต้นที่สุด</u> ในที่นี้ให้ถือว่าทางผู้จัดงานมีจำนวนต้นกล้วยไม้ต้นใหม่ที่มีความสูงหลากหลายสำหรับ เปลี่ยนแทนที่ต้นกล้วยไม้ต้นเดิมมีอยู่จำนวนไม่จำกัด

รูปที่ 2 และรูปที่ 3 เป็นตัวอย่างของการนำต้นกล้วยไม้ต้นใหม่ที่มีความสูงเหมาะสม**จำนวนน้อยต้นที่สุด**ไปเปลี่ยนแทนที่ ต้นกล้วยไม้ต้นเดิมที่ถูกจัดแสดงในรูปที่ 1 แล้วทำให้การจัดแสดงต้นกล้วยไม้นั้นเป็นการเรียงลำดับความสูงของต้นกล้วยไม้จากต่ำ ไปสูง ซึ่งในที่นี้รูปที่ 2 จะเป็นการเปลี่ยนแทนที่ต้นกล้วยไม้ต้นที่ 1 และต้นที่ 3 เดิม ด้วยต้นกล้วยไม้ต้นใหม่ที่มีความสูงเหมาะสม จำนวน 2 ต้น

สำหรับรูปที่ 3 เป็นการนำต้นกล้วยไม้ต้นใหม่ที่มีความสูงเหมาะสมไปเปลี่ยนแทนที่ต้นกล้วยไม้ต้นเดิมเป็นจำนวน 2 ต้น เช่นกัน โดยเปลี่ยนแทนที่ต้นกล้วยไม้ต้นที่ 1 และต้นที่ 2

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาจำนวนของต้นกล้วยไม้ต้นใหม่ที่มีความสูงเหมาะสมไปเปลี่ยนแทนที่ต้นกล้วยไม้ ต้นเดิมให้มี**จำนวนน้อยที่สุด** แล้วทำให้การจัดแสดงต้นกล้วยไม้นั้นเป็นการเรียงลำดับความสูงของต้นกล้วยไม้จากต่ำไปสูง <u>ข้อมูลนำเข้า</u>

มีจำนวน N+1 บรรทัด ดังนี้ บรรทัดที่ 1 จำนวนเต็ม N ระบุจำนวนต้นกล้วยไม้ที่จัดแสดง กำหนดให้ 3 <= N <=1,000,000

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

N บรรทัดต่อมา แต่ละบรรทัด มีจำนวนเต็มหนึ่งจำนวน ระบุความสูงของต้นกล้วยไม้ h_i กำหนดให้ $1 <= h_i <= 1,000,000$ และ 1 <= i <= N

<u>ข้อมูลส่งออก</u>

มีจำนวน 1 บรรทัด คือ

บรรทัดที่ 1 แสดงจำนวนเต็มหนึ่งจำนวน ระบุจำนวนต้นกล้วยไม้ต้นใหม่ที่น้อยที่สุดที่นำไปเปลี่ยนแทนที่ต้นกล้วยไม้ต้นเดิม แล้วทำให้การจัดแสดงต้นกล้วยไม้เป็นการเรียงลำดับความสูงของต้นกล้วยไม้จากต่ำไปสูง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	2
5	
4	
3	
6	

++++++++++++++++

16. สวิตช์เวลา (Timer Switch TOI13)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 13 ณ ศูนย์ สอวน. โรงเรียนมหิดลวิทยานุสรณ์

สวิตช์เวลามีลักษณะเป็นวงกลม โดยที่ รอบ ๆ สวิตช์เวลาดังกล่าว มีสวิตช์ย่อย (sub-switch) เพื่อใช้ในการเปิดปิดอุปกรณ์ หลักการทำงานของสวิตช์เวลาคือ ถ้ามีการทำงานแล้วตัวสวิตช์เวลาจะ<u>หมุนทวนเข็มนาหิกา</u>ไปเรื่อย ๆ ตามหน่วยเวลา เมื่อเวลาผ่าน ไป 1 หน่วยเวลา ตำแหน่งบนสุดของสวิตช์เวลาจะชี้ไปยังสวิตช์ย่อยถัดไป และเมื่อตำแหน่งบนสุดของสวิตช์เวลาเจอสวิตช์ย่อยเปิด (ON) จะ<u>อนุญาต</u>ให้อุปกรณ์ที่เชื่อมต่อกับสวิตช์เวลาทำงาน แต่ถ้าเจอสวิตช์ย่อยปิด (OFF) จะ<u>ไม่อนุญาต</u>ให้อุปกรณ์ที่เชื่อมต่อทำงาน เพื่อความสะดวกในการอธิบายรูปแบบของสวิตช์เวลา จะใช้สายอักขระบิตแทนสวิตช์เวลาโดยให้บิตแรกแทนสวิตช์ย่อยของสวิตช์ เวลาที่อยู่ตำแหน่งบนสุด และบิตที่สองแทนสวิตช์ย่อยของสวิตช์เวลาที่อยู่ตำแหน่งถัดไป<u>นับตามเข็มนาหิกา</u> และบิตอื่น ๆ แทน สวิตช์ย่อยของเวลาไปเรื่อย ๆ นับตามเข็มนาหิกาจนถึงสวิตช์ย่อยสุดท้ายซึ่งเป็นสวิตช์ย่อยที่อยู่ติดกับสวิตช์ย่อยแรก สำหรับสวิตช์ ย่อยที่มีสถานะเปิด (ON) จะแสดงโดยใช้บิต "1" และสวิตช์ย่อยที่มีสถานะปิด (OFF) จะแสดงโดยใช้บิต "0"

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

(ก) สวิตช์เวลาตั้งต้นซึ่งมีสวิตช์ย่อยทั้งหมด 7 ตัว และจากรูปดังกล่าวจะแทนด้วยสายอักขระบิต 1010111 (ข) สวิตช์เวลาเมื่อเวลาผ่านไป 1 หน่วย และจากรูปดังกล่าวจะแทนด้วยสายอักขระบิต 0101111 จากตัวอย่างข้างต้นพบว่าเมื่อเวลาผ่านไป 7 หน่วย สวิตช์เวลาจะกลับมามีรูปแบบเหมือนสวิตช์เวลาตั้งต้น

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาจำนวนหน่วยเวลาที่น้อยที่สุด เมื่อปล่อยให้สวิตช์เวลาทำงานแล้วสวิตช์เวลาจะ กลับมามีรูปแบบเหมือนสวิตช์เวลาตั้งต้น

<u>ข้อมูลนำเข้า</u>

มีจำนวน 2 บรรทัด ดังนี้

บรรทัดที่ 1 จำนวนเต็มบวกหนึ่งจำนวน คือ N ระบุขนาดของสายอักขระบิต กำหนดให้ 2 <= N <= 5,000,000

บรรทัดที่ 2 สายอักขระบิตขนาด N ตัวอักขระ ในที่นี้ สายอักขระบิต คือ สายอักขระที่ประกอบด้วยตัวอักขระ '0' หรือ '1' เท่านั้น

<u>ข้อมูลส่งออก</u>

มีจำนวน 1 บรรทัด คือ

บรรทัดที่ 1 แสดงจำนวนเต็มบวกหนึ่งจำนวน ระบุหน่วยเวลาที่น้อยที่สุด เมื่อปล่อยให้สวิตช์เวลาทำงาน แล้วสวิตช์เวลาจะ กลับมามีรูปแบบเหมือนสวิตช์เวลาตั้งต้น

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
10	2
1010101010	
10	10
100000010	

++++++++++++++++

17. การเดินทางโดยประหยัด (Budget Travelling TOI13)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 13 ณ ศูนย์ สอวน. โรงเรียนมหิดลวิทยานุสรณ์

อาณาจักรปฐมนครประกอบด้วย N เขตปกครอง แต่ละเขตปกครองกำกับด้วยหมายเลข 0 ถึง N – 1 ซึ่งแต่ละเขตปกครอง สามารถเดินทางถึงกันด้วยรถไฟฟ้าความเร็วสูง โดยอาณาจักรปฐมนครได้สร้างเส้นทางรถไฟฟ้าความเร็วสูงจำนวน M เส้นทาง เพื่อ ให้บริการตามข้อกำหนดดังนี้

- -ทุก ๆ เขตการปกครองมีรถไฟฟ้าความเร็วสูงเข้าถึงเสมอ
- -หากมีเส้นทางรถไฟฟ้าความเร็วสูงจากเขตการปกครองหมายเลข i เชื่อมต่อโดยตรงไปยังเขตการปกครองหมายเลข j โดย ไม่ผ่านเขตการปกครองอื่น จะมีเส้นทางรถไฟฟ้าความเร็วสูงไม่เกิน 1 เส้นทางเท่านั้น
 - -การเดินทางจากเขตการปกครองหนึ่งไปยังอีกเขตการปกครองหนึ่งได้จะต้องเดินทางโดยรถไฟฟ้าความเร็วสูงเท่านั้น
- -จะสามารถเดินทางทั้งไปและกลับได้ โดยใช้เส้นทางรถไฟฟ้าความเร็วสูงที่เชื่อมต่อโดยตรงระหว่างเขตการปกครอง หมายเลข i และเขตการปกครองหมายเลข j ระหว่างทั้งสองเขตการปกครองได้เสมอ

-ระยะทางของเส้นทางรถไฟฟ้าความเร็วสูงเป็นจำนวนเต็มเสมอ มีหน่วยเป็นกิโลเมตร

นักวิจัยคนหนึ่งทำงานอยู่ที่อุทยานธรรมชาติวิทยาสิรีรุกขชาติ ต้องการเดินทางจากเขตการปกครองต้นทาง X ไปยังเขตการ ปกครองปลายทาง Y เพื่อศึกษาพันธุ์พืชหายาก แต่ด้วยงบประมาณในการเดินทางมีอยู่อย่างจำกัด ทำให้นักวิจัยสามารถเดินทางได้ ไม่เกิน Z กิโลเมตรเท่านั้น เขาจึงต้องวางแผนการเดินทางให้มีระยะทางน้อยสุดหากมีงบประมาณในการเดินทางเพียงพอ แต่หากมี งบประมาณในการเดินทางไม่เพียงพอ นักวิจัยก็จำเป็นจะต้องเดินทางไม่เกินงบประมาณที่ได้รับ (อาจจะไม่เป็นการใช้งบประมาณ น้อยสุดก็ได้) ไปยังเขตการปกครองที่อยู่ใกล้กับเขตการปกครองปลายทาง Y มากที่สุด แล้วติดต่อให้เขตการปกครอง Y มารับ ทั้งนี้ ถ้ามีเขตการปกครองที่อยู่ใกล้กับเขตการปกครองปลายทาง Y มากที่สุดเป็นระยะทางที่เท่ากันหลายเขตการปกครอง นักวิจัยจะ เลือกเดินทางไปยังเขตการปกครองที่มีหมายเลขกำกับน้อยที่สุด

รูปประกอบตัวอย่างที่หนึ่งและสอง โดยมี 8 เขตการปกครอง (N=8) 11 เส้นทาง (M=11)

ตัวอย่างที่หนึ่ง นักวิจัยต้องการเดินทางจากเขตการปกครองหมายเลข 0 ไปยังเขตการปกครองหมายเลข 5 โดยมี งบประมาณในการเดินทางไปยังเขตการปกครองปลายทางไม่เกิน 200 กิโลเมตร นั่นคือ เขตการปกครองต้นทางคือเขตการปกครอง หมายเลข 0 และเขตการปกครองปลายทางคือเขตการปกครองหมายเลข 5 เมื่อพิจารณาตามข้อกำหนดต่าง ๆ นักวิจัยสามารถวาง แผนการเดินทางเพื่อให้ใช้งบประมาณน้อยสุดได้ดังรูป

จากรูป จะได้ว่า นักวิจัยสามารถเดินทางไปยังเขตการปกครองหมายเลข 5 ด้วยเส้นทางจากเขตการปกครองหมายเลข 0 - > 1 -> 3 -> 5 (เส้นทางสีน้ำเงิน) ซึ่งมีระยะทางรวมทั้งสิ้น 10+10+30 = 50 กิโลเมตร อยู่ภายใต้เงื่อนไขงบประมาณที่ได้รับ ทำให้ เขตการปกครองปลายทางไม่ต้องมารับนักวิจัย ระยะทางที่เขตการปกครองปลายทางต้องใช้ในการเดินทางมารับจึงมีค่าเท่ากับ 0

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ตัวอย่างที่สอง นักวิจัยต้องการเดินทางจากเขตการปกครองหมายเลข 0 ไปยังเขตการปกครองหมายเลข 5 ซึ่งในการ เดินทางนักวิจัยมีงบประมาณในการเดินทางไปยังเขตการปกครองปลายทางได้ไม่เกิน 40 กิโลเมตร เมื่อพิจารณาตามข้อกำหนดต่าง ๆ นักวิจัยสามารถวางแผนการเดินทางได้ดังรูป

จากรูป จะได้ว่านักวิจัยไม่สามารถเดินทางไปยังเขตการปกครองหมายเลข 5 ได้ด้วยงบประมาณจำกัดที่ 40 กิโลเมตรที่ ได้รับมา ดังนั้นจึงต้องเดินทางไปยังเขตการปกครองที่อยู่ใกล้กับเขตการปกครองปลายทางหมายเลข 5 มากที่สุด ได้แก่ เขตการ ปกครองหมายเลข 4 และเขตการปกครองหมายเลข 7 ซึ่งเป็นสองเส้นทางที่เขตการปกครองปลายทางหมายเลข 5 เดินทางมารับ เป็นระยะทางน้อยที่สุด 20 กิโลเมตร (เส้นทางสีแดง) เท่ากัน แต่เนื่องจากเขตการปกครองที่มีหมายเลขกำกับน้อยที่สุดคือเขตการ ปกครองหมายเลข 4 ดังนั้นจึงเลือกเส้นทาง 0 -> 2 -> 4 (เส้นทางสีน้ำเงิน)

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาระยะทางที่นักวิจัยจะเดินทางจากเขตการปกครองต้นทางไปยังเขตการปกครอง ปลายทางแล้วใช้งบประมาณน้อยที่สุด ในกรณีที่ไม่สามารถเดินทางจากเขตการปกครองต้นทางไปยังเขตการปกครองปลายทางได้ ให้หาระยะทางจากเขตการปกครองต้นทางไปยังเขตการปกครองที่อยู่ใกล้กับเขตการปกครองปลายทางมากที่สุด

<u>ข้อมูลนำเข้า</u>

มีจำนวน M + 2 บรรทัด ดังนี้

บรรทัดที่ 1 มีจำนวนเต็มสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ N ระบุจำนวนเขตการปกครอง และ จำนวนที่สอง คือ M ระบุจำนวนเส้นทางรถไฟฟ้า กำหนดให้ 2 <= N <= 10,000 และ 1 <= M <= 100,000

บรรทัดที่ 2 มีจำนวนเต็มสามจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ X ระบุหมายเลขของเขตการ ปกครองต้นทาง และ จำนวนที่สอง คือ Y ระบุหมายเลขของเขตการปกครองปลายทาง และ จำนวนที่สาม คือ Z ระบุระยะทางที่ นักวิจัยสามารถเดินทางได้จากต้นทางตามงบประมาณที่ได้รับ กำหนดให้ 0 <= X < N, 0 <= Y < N, X \neq Y และ 1 <= Z <= 1,000,000,000

M บรรทัดต่อมา แต่ละบรรทัด มีจำนวนเต็มบวกสามจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง สองจำนวนแรกคือ u_i และ v_i โดยที่ $u_i \neq v_i$ ระบุหมายเลขของเขตการปกครองสองเขตการปกครองที่มีเส้นทางรถไฟฟ้าความเร็วสูงเชื่อมถึงกัน จำนวนที่ สามคือ d_i ระบุระยะทางระหว่างเขตการปกครอง u_i และ v_i กำหนดให้ $0 <= u_i < N$, $0 <= v_i < N$, $1 <= d_i <= 10,000$ และ 1 <= i <= M

<u>ข้อมูลส่งออก</u>

มีจำนวน 1 บรรทัด คือ

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

บรรทัดที่ 1 จำนวนเต็มสามจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง โดย จำนวนแรก คือ หมายเลขของเขตการ ปกครองปลายทาง หรือ หมายเลขของเขตการปกครองที่อยู่ใกล้กับเขตการปกครองปลายทางมากที่สุดตามเงื่อนไขที่กำหนด จำนวนที่สอง คือ ระยะทาง D จากเขตการปกครองต้นทาง X ไปยังเขตการปกครองปลายทาง Y หรือในกรณีที่ไม่สามารถเดินทาง จากเขตการปกครองต้นทางไปยังเขตการปกครองปลายทางได้ ให้แสดงระยะทางจากเขตการปกครองต้นทางไปยังเขตการปกครอง ที่อยู่ใกล้กับเขตการปกครองปลายทางมากที่สุด จำนวนที่สาม คือ ระยะทางที่เขตการปกครองปลายทางต้องใช้ในการเดินทางมารับ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
8 11	5 50 0
0 5 200	
0 1 10	
0 2 10	
1 3 10	
1 5 70	
2 3 10	
2 4 30	
2 6 10	
3 5 30	
4 5 20	
6 7 15	
7 5 20	

+++++++++++++++++

18. ศิลปะโครมาโทกราฟี (Chromatography Art TOI13)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 13 ณ ศูนย์ สอวน. โรงเรียนมหิดลวิทยานุสรณ์

โครมาโทกราฟี เป็นเทคนิคหนึ่งในการแยกของผสม โดยการให้สารละลายของของผสมดังกล่าวเคลื่อนที่ผ่านวัสดุดูดซับ เช่น ชอล์ก หรือ กระดาษ เนื่องด้วยของผสมจะมีความสามารถในการเคลื่อนที่ผ่านตัวดูดซับที่ต่างกัน ทำให้เราสามารถแยกของผสม ได้ ซึ่งการทดลองอย่างง่ายมักจะใช้เทคนิคดังกล่าวในการแสดงให้เห็นว่าสีที่เราใช้ในการเขียนบางครั้งเกิดจากของผสมซึ่งมาจากสี อื่น ๆ หลากหลายสี การทดลองก็จะใช้วิธีจุดสีที่เราสนใจบนกระดาษ แล้วนำกระดาษนั้นไปจุ่มในสารละลายดังตัวอย่างในรูป (ก) เมื่อกระดาษดูดซับสารละลายแล้ว สารละลายจะเคลื่อนที่จากด้านล่างขึ้นไปด้านบน โดยละลายสีที่ได้จุดไว้ แล้วแยกให้เห็นว่า สีบาง สีเกิดจากการผสมกันของสารสีอื่น ๆ และในบางครั้งเราก็จะใช้เทคนิคดังกล่าวในการสร้างงานศิลปะดังตัวอย่างในรูป (ข) อีกด้วย

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

(ก) ภาพการแยกของผสมด้วยเทคนิคโครมาโทกราฟี (ภาพจาก http://cdn.c.photoshelter.com/img-get/I0000sh_zMxvJiEc/s/860/860/Fphoto-68228903A-6CC.jpg)

(ข) ภาพศิลปะจากการใช้เทคนิคโครมาโทกราฟี (ภาพจาก https://www.pinterest.com/jazdyp/chromatography-art/) เพื่อเป็นการสร้างสรรค์งานศิลปะแบบการผสมผสานระหว่างการใช้เทคนิคโครมาโทรกราฟี และการเขียนโปรแกรม คอมพิวเตอร์ จึงมีการออกแบบแขนกลเพื่อทำการลงจุดสีในช่องแถวล่างสุดของตาราง โดยตารางมีขนาดกว้าง 4,000,000 หน่วย และสูง 1,000,000 หน่วย และเมื่อสีที่ได้ลงจุดไว้โดนทำละลายจะมีความสามารถในการเคลื่อนที่ผ่านตัวดูดซับขึ้นไปยังส่วนบนของ ตารางที่แตกต่างกัน โดยจะพิจารณาว่าเมื่อลงจุดสีตามข้อกำหนดแล้ว จะได้ภาพออกมาเป็นลักษณะใด

กำหนดให้มีการลงจุดสีจำนวน N ครั้ง การลงจุดสีครั้งที่ i (1 <= i <= N) จะถูกแทนด้วยชุดจำนวนเต็ม 4 จำนวน ได้แก่ (s_i , h_i , w_i , o_i) โดยที่ การลงจุดสีแต่ละครั้ง จะลงจุดสีได้ที่แถวล่างสุดของตารางเท่านั้น

- -s_i หมายถึง ตำแหน่งด้านซ้ายสุดของการลงจุดสีครั้งที่ i
- -h_i หมายถึง ความสามารถของสีที่เมื่อละลายแล้วเคลื่อนที่จากตำแหน่งที่ได้ลงจุดสีไว้ สูงขึ้นไปเป็น h_i ช่อง
- -w; หมายถึง จำนวนช่องที่ติดกันของการลงจุดสีครั้งที่ i โดยมีช่องแรกที่ตำแหน่ง \mathbf{s}_i แล้วนับต่อไปทางขวามือ
- -o_i หมายถึง ค่าสีในการลงจุดสีครั้งที่ i

กล่าวได้ว่า การลงจุดสีแต่ละครั้งจะเริ่มต้นที่แถวล่างสุดของตารางที่ตำแหน่ง s_i ด้วยค่าสี o_i แล้วลงจุดสีต่อไปทางขวามือ ตามตารางจนครบ w_i เมื่อมีการทำศิลปะโครมาโทกราฟิก็จะทำให้เกิดรูปแบบเป็นสี่เหลี่ยมผืนผ้าขนาดกว้าง w_i สูง h_i และมีค่าสีแต่ ละช่องเท่ากับ o_i ในกรณีที่มีสีซ้อนทับกันในแต่ละช่อง ค่าสีที่เกิดขึ้นจะมีค่าเท่ากับผลรวมของค่าสีในช่องนั้น

ตัวอย่างเช่น ถ้ามีการลงจุดสีจำนวน 3 ครั้ง ดังนี้

การลงจุดสีครั้งที่หนึ่ง กำหนดให้เป็นแบบ (1, 1, 4, 1) ซึ่งหมายถึง จะเริ่มลงจุดสีที่แถวล่างสุดตำแหน่งด้านซ้ายสุดอยู่ช่องที่ 1 สีสามารถเคลื่อนตัวไปสูงขึ้นไปได้เท่ากับ 1 ช่อง จะลงจุดสีด้วยจำนวนเท่ากับ 4 ช่องต่อกัน และมีค่าสีแต่ละช่องเท่ากับ 1 ดังรูปที่ .

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

การลงจุดสีครั้งที่สอง กำหนดให้เป็นแบบ (2, 2, 2, 2) ซึ่งหมายถึง จะเริ่มลงจุดสีที่แถวล่างสุดตำแหน่งด้านซ้ายสุดอยู่ช่องที่ 2 สีสามารถเคลื่อนตัวไปสูงขึ้นไปได้เท่ากับ 2 ช่อง จะลงจุดสีด้วยจำนวนเท่ากับ 2 ช่องต่อกัน และมีค่าสีแต่ละช่องเท่ากับ 2 ดังรูปที่ 2

การลงจุดสีครั้งที่สาม กำหนดให้เป็นแบบ (3, 3, 1, 3) ซึ่งหมายถึง จะเริ่มลงจุดสีที่แถวล่างสุดตำแหน่งด้านซ้ายสุดอยู่ช่องที่ 3 สีสามารถเคลื่อนตัวไปสูงขึ้นไปได้เท่ากับ 3 ช่อง จะลงจุดสีด้วยจำนวนเท่ากับ 1 ช่องเท่านั้น และมีค่าสีแต่ละช่องเท่ากับ 3 ดังรูปที่ 3

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ดังนั้น เมื่อลงจุดสี 3 ครั้งต่อกันบริเวณที่ลงจุดสีซ้อนทับกันก็จะกลายเป็นผลรวมของค่าสี และภาพศิลปะโครมาโทกราฟี ก็ จะแสดงดังรูปที่ 4

เมื่อพิจารณาภาพศิลปะโครมาโทกราฟีดังกล่าวพบว่า

- -บริเวณที่มีค่าสีเท่ากับ 1 มีพื้นที่รวม 2 หน่วย
- -บริเวณที่มีค่าสีเท่ากับ 2 มีพื้นที่รวม 1 หน่วย
- -บริเวณที่มีค่าสีเท่ากับ 3 มีพื้นที่รวม 2 หน่วย
- -บริเวณที่มีค่าสีเท่ากับ 5 มีพื้นที่รวม 1 หน่วย
- -บริเวณที่มีค่าสีเท่ากับ 6 มีพื้นที่รวม 1 หน่วย

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาพื้นที่รวมของบริเวณที่มีค่าสีที่สนใจ จากภาพศิลปะโครมาโทกราฟีที่มีการลงจุดสี ตามที่กำหนด

<u>ข้อมูลนำเข้า</u>

มีจำนวน N + 1 บรรทัด ดังนี้

บรรทัดที่ 1 มีจำนวนเต็มสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ N ระบุจำนวนครั้งของการลง จุดสี และ จำนวนที่สอง คือ T ระบุค่าสีที่สนใจ กำหนดให้ 1 <= N <= 100,000 และ 1 <= T <= 10,000,000

N บรรทัดต่อมา แต่ละบรรทัด มีจำนวนเต็มบวกสี่จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ s_i ตำแหน่งด้านซ้ายสุดของการลงจุดสีครั้งที่ i และ จำนวนที่สอง คือ h_i ความสามารถของสีที่จะละลายโดยตัวทำละลายแล้วเคลื่อนที่ ได้สูงขึ้นไป h_i ช่อง และ จำนวนที่สาม คือ w_i จำนวนช่องที่ติดกันของการลงจุดสีครั้งที่ i โดยมีช่องแรกที่ตำแหน่ง s_i แล้วนับต่อไป ทางขวามือ และ จำนวนที่สี่ คือ o_i ค่าสีในการลงจุดสีครั้งที่ i กำหนดให้ $1 <= s_i <= 3,000,000, <math>1 <= h_i <= 1,000,000, 1 <= 0$ (i <= 1,000,000, 1 <= 0) และ i <= 1,000,000, 1 <= 0

<u>ข้อมูลส่งออก</u>

มีจำนวน 1 บรรทัด คือ

บรรทัดที่ 1 แสดงจำนวนเต็มหนึ่งจำนวน ระบุพื้นที่รวมของบริเวณที่มีค่าสีที่สนใจ

ตัวอย่าง

ข้	อมูลนำเข้า	ข้อมูลส่งออก	

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

3	3	2
1	1 4 1	
2	2 2 2	
3	3 1 3	

++++++++++++++++

19. สวนต้นไม้ (Plantation TOI14)

บริษัทจัดสวนต้นไม้เทคโนโลยีแห่ง NBK ต้องการออกแบบสวนเพื่อการปลูกต้นไม้จำนวนมาก โดยต้นไม้ทุกต้นในแปลง เดียวกันต้องมีรัศมีของพุ่มของต้นไม้จะแผ่ออกมาเป็นวงกลมรัศมี R หน่วย สวนต้นไม้เทคโนโลยีแห่งนี้ยังใส่ใจเรื่องการจัดสวนที่ดี และถูกหลักมาตรฐานด้วย โดยผู้ออกแบบสวนต้องการปลูกต้นไม้ให้มีระยะห่างที่เหมาะสม เพื่อให้ต้นไม้มีพื้นที่หาอาหาร น้ำ และ ได้รับแสงแดดเพียงพอ เพื่อบรรลุวัตถุประสงค์ดังกล่าวจึงมีข้อกำหนดตามมาตรฐานไว้ว่า ระยะห่างระหว่างปลายกิ่งของต้นไม้สอง ต้นจะต้องอยู่ห่างจากกันไม่น้อยกว่า D หน่วย

ตัวอย่างที่ 1 ต้องการปลูกต้นไม้จำนวน 2 ต้น ที่มีรัศมีของพุ่มเท่ากับ 1 หน่วย และกำหนดให้ระยะห่างระหว่างปลายกิ่งแต่ละต้น เพื่อให้มีแสงสว่างส่องถึงพื้นดินไม่น้อยกว่า 1 หน่วย ถ้าปลูกที่ตำแหน่ง (0, 0) และ (4, 0) พบว่าเป็นการออกแบบที่เป็นไปตาม มาตรฐาน เนื่องจากระยะห่างระหว่างปลายกิ่งเท่ากับ 2 หน่วย

รูปที่ 1 รูปประกอบตัวอย่างที่ 1

ตัวอย่างที่ 2 ต้องการปลูกต้นไม้จำนวน 2 ต้น ที่มีรัศมีของพุ่มเท่ากับ 1 หน่วย และกำหนดให้ระยะห่างระหว่างปลายกิ่งแต่ละต้น เพื่อให้มีแสงสว่างส่องถึงพื้นดินไม่น้อยกว่า 1 หน่วย ถ้าปลูกที่ตำแหน่ง (0, 0) และ (2,0) พบว่าเป็นการออกแบบที่<u>ไม่</u>เป็นไปตาม มาตรฐาน เนื่องจากระยะห่างระหว่างปลายกิ่งน้อยกว่า 1 หน่วย (ระยะห่างเท่ากับ 0 หน่วย)

รูปที่ 2 รูปประกอบตัวอย่างที่ 2

ตัวอย่างที่ 3 ต้องการปลูกต้นไม้จำนวน 3 ต้น ที่มีรัศมีของพุ่มเท่ากับ 1 หน่วย และกำหนดให้ระยะห่างระหว่างปลายกิ่งแต่ละต้น เพื่อให้มีแสงสว่างส่องถึงพื้นดินไม่น้อยกว่า 2 หน่วย ถ้าปลูกที่ตำแหน่ง (0, 0), (-2,2) และ (2, 1) พบว่าเป็นการออกแบบที่**ไม่**เป็นไป ตามมาตรฐาน เนื่องจากระยะห่างระหว่างปลายกิ่งของต้นไม้บางคู่น้อยกว่า 2 หน่วย

รูปที่ 3 รูปประกอบตัวอย่างที่ 3

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อตรวจสอบว่า การออกแบบสวนต้นไม้ของบริษัทจัดสวนต้นไม้เทคโนโลยีแห่ง NBK แต่ละ แปลงนั้นได้มาตรฐานหรือไม่

<u>ข้อมูลนำเข้า</u>

มีจำนวน W+1 บรรทัด ดังนี้

บรรทัดที่ 1 จำนวนเต็ม W ระบุจำนวนแปลงต้นไม้ กำหนดให้ 1 <= W <= 10

W บรรทัดต่อมา แต่ละบรรทัด คือข้อมูลของแปลงที่ i เป็นจำนวนเต็ม $3+2N_i$ จำนวน ได้แก่ N_i , R_i , D_i , X_i^1 , Y_i^1 , X_i^2 , Y_i^2 , ..., X_i^N , Y_i^N แต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง โดย N_i ระบุจำนวนต้นไม้ ($2 <= N_i <= 100,000$), R_i ระบุรัศมีของพุ่ม ($1 <= R_i <= 1,000$), D_i ระบุระยะห่างระหว่างปลายกิ่ง ($1 <= D_i <= 200$), X_i^1 , Y_i^1 ระบุตำแหน่งของต้นไม้แต่ละต้น เป็นจำนวนเต็มที่มีค่า สัมบูรณ์ไม่เกิน 10,000,000

<u>ข้อมูลส่งออก</u>

มีจำนวน W บรรทัด แต่ละบรรทัด แสดงผลลัพธ์ของแต่ละแปลงว่าการปลูกต้นไม้แต่ละแปลงเป็นไปตามมาตรฐานหรือไม่ โดยตอบว่า Y เมื่อแปลงต้นไม้นั้น ๆ เป็นไปตามมาตรฐาน และ N เมื่อแปลงต้นไม้นั้น ๆ ไม่เป็นไปตามมาตรฐาน

แบบฝึกหัดสอวน.คอมพิวเตอร์ค่ายติว รุ่น 16 โดย อ.อัครพนธ์ วัชรพลากร Page 37 of 43

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	Y
2 1 1 0 0 4 0	N
2 1 1 0 0 2 0	N
3 1 2 0 0 -2 2 2 1	Y
3 1 2 0 0 4 1 -4 0	N
3 1 2 0 0 3 1 -4 0	

+++++++++++++++++

20. พัฒนาเทคโนโลยี (Technology TOI14)

้ ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 14 ณ ศูนย์ สอวน. ม.เทคโนโลยีพระจอมเกล้าพระนครเหนือ

คุณอยู่ในโลกเสมือนที่คุณกำลังจะออกแบบเอง คุณต้องการสร้างเมืองในโลกเสมือนนั้น โดยเมืองที่สมบูรณ์จะต้องพัฒนา เทคโนโลยีทั้งหมด N เทคโนโลยี ได้แก่ เทคโนโลยีหมายเลขที่ 1 ถึง N เช่น เทคโนโลยีรถยนต์อัตโนมัติ หรือเทคโนโลยีระบบบำบัด น้ำเสีย เทคโนโลยีบางประเภทไม่สามารถสร้างได้ทันที แต่ต้องพัฒนาบางเทคโนโลยีก่อน ที่แม้จะดูเหมือนไม่มีประโยชน์โดยตรง (ที่ มักถูกเรียกว่าเป็นเทคโนโลยีขึ้นหิ้ง) เช่น ก่อนจะพัฒนารถยนต์อัตโนมัติได้ ต้องพัฒนาเทคโนโลยี deep learning ก่อน แต่ก่อนจะ พัฒนาเทคโนโลยี deep learning ต้องพัฒนาเทคโนโลยีปัญญาประดิษฐ์ก่อน การพัฒนาเทคโนโลยีหนึ่ง ๆ ใช้เวลา 1 หน่วย

แต่ละเทคโนโลยีจะถูกจัดระดับ โดยมีระดับของเทคโนโลยีที่เป็นไปได้เท่ากับ K ระดับ โดยระดับของเทคโนโลยีหมายเลขที่ i คือ L_i โดยที่ 1 <= i <= N และ 1 <= K ทั้งนี้<u>รับประกันว่าสำหรับระดับใด ๆ จะมีเทคโนโลยีอย่างน้อยหนึ่งเทคโนโลยีที่มี</u> ระดับดังกล่าวเสมอ แต่ระดับของเทคโนโลยี L_i ไม่มีความสัมพันธ์กับลำดับการพัฒนาเทคโนโลยี

ในการบอกระดับของการพัฒนาเมือง จะกล่าวว่า<u>เมืองดังกล่าวถูกจัดว่าพัฒนาได้ระดับ M</u> เมื่อสามารถ<u>พัฒนาทุกเทคโน</u> โลยีตั้งแต่ระดับที่ 1, 2, ..., M จน<u>ครบทั้งหมด</u> โดยที่ M เป็นระดับของเทคโนโลยีสูงสุดที่เมืองดังกล่าวพัฒนาเรียบร้อยแล้วภายใน เวลา T หน่วย

ตัวอย่างเช่น ถ้าต้องการพัฒนาเมือง NBK ซึ่งมีเทคโนโลยีทั้งหมด 6 เทคโนโลยี ได้แก่ เทคโนโลยีหมายเลขที่ **①** ถึง **⑥** โดยมีระดับของเทคโนโลยีที่เป็นไปได้เท่ากับ 5 ระดับ และมีเวลาในการพัฒนาเมืองเท่ากับ 4 หน่วย รายละเอียดข้อมูลของแต่ละ เทคโนโลยีเป็นดังนี้

เทคโนโลยีหมายเลขที่	ระดับของเทคโนโลยี	หมายเลขของเทคโนโลยีที่ต้องพัฒนาก่อนหน้า
0	1	ไม่มี
2	5	0
€	2	0
4	4	⑤ , ⑤
6 3		6
6	2	0

ระดับของเทคโนโลยี	หมายเลขของเทคโนโลยีที่ต้องพัฒนา
1	0
2	8
۷	6
3	6
4	4
5	2

จากข้อมูลข้างต้น พบว่าในเวลา 4 หน่วย อาจพัฒนาเทคโนโลยีตามลำดับดังนี้ **1** (ระดับ 1), **2** (ระดับ 5), **3** (ระดับ 2), **3** (ระดับ 2) หรือ อาจพัฒนาตามลำดับ **1** (ระดับ 1), **2** (ระดับ 5), **3** (ระดับ 2), **3** (ระดับ 2) ซึ่งพบว่าในการพัฒนา เมืองดังกล่าวมีเทคโนโลยีระดับ 1 และ 2 ครบถ้วน ทั้งนี้ถือว่าไม่สามารถพัฒนาถึงระดับ 3 ได้เนื่องจากต้องใช้เวลาถึง 5 หน่วย หรือ ถ้าจะพัฒนาให้ถึงระดับ 5 ต้องใช้เวลา 6 หน่วย และต้องพัฒนาเทคโนโลยีระดับ 4 ให้ครบอีกด้วย

หรือหากพัฒนาเทคโนโลยีตามลำดับดังนี้ **①**(ระดับ 1), **⑥** (ระดับ 2), **⑤** (ระดับ 3), **②** (ระดับ 5) ก็ถือว่าพัฒนาเมือง ได้เพียงระดับ 1 เท่านั้น เพราะขาดการพัฒนาเทคโนโลยีระดับ 2 บางเทคโนโลยี นั่นคือขาดการพัฒนาเทคโนโลยีหมายเลข **❸**

เมื่อพิจารณาลำดับการพัฒนาเทคโนโลยีทั้งหมดที่เป็นไปได้ พบว่าระดับของเทคโนโลยีสูงสุดที่เมือง NBK ได้พัฒนา เรียบร้อยแล้วภายในเวลา 4 หน่วย คือ ระดับ 2 ดังนั้น เมือง NBK จะถูกจัดว่าพัฒนาได้ระดับ 2

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าเมือง NBK จะสามารถถูกพัฒนาได้ในระดับใด ภายในเวลาที่กำหนด T หน่วย **หมายเหต**ุ มีความเป็นไปได้ที่จะไม่สามารถพัฒนาเมืองให้ไปถึงระดับเทคโนโลยีใดได้เลย (ดูตัวอย่างที่ 3) ในกรณีที่ไม่สามารถพัฒนา
เมืองไปยังระดับใดได้เลย ให้ตอบ -1

<u>ข้อมูลนำเข้า</u>

มีจำนวน N+1 บรรทัด ดังนี้

บรรทัดที่ 1 จำนวนเต็ม 3 จำนวน N, K และ T คั่นด้วยช่องว่างหนึ่งช่อง โดย N ระบุจำนวนเทคโนโลยี กำหนดให้ 1 <= N <= 100,000; K ระบุระดับของเทคโนโลยีสูงสุดที่เป็นไปได้ กำหนดให้ 1 <= K <= 10,000 และ T ระบุระยะเวลาที่ให้เพื่อพัฒนา เมือง กำหนดให้ 1 <= T <= N

บรรทัดที่ 1+i (1 <= i <= N) ระบุข้อมูลของเทคโนโลยีหมายเลขที่ i ดังนี้ แต่ละบรรทัดมีเลขจำนวนเต็ม $2+P_i$ ตัว ได้แก่ L_i , P_i , q_1 , q_2 , ..., q_{P_i} คั่นด้วยช่องว่างหนึ่งช่อง โดย L_i คือระดับของเทคโนโลยีหมายเลข i โดยที่ $1 <= L_i <= K$; P_i คือจำนวนของ เทคโนโลยีที่ต้องพัฒนาก่อนจะพัฒนาเทคโนโลยีลำดับที่ i; q_1 , q_2 , ..., q_{P_i} คือเทคโนโลยีหมายเลขที่ q_i ($1 <= j <= p_i$) ที่ต้องพัฒนาก่อนที่จะพัฒนาเทคโนโลยีหมายเลข i โดย q_i ไม่เท่ากับ i และ q_i จะไม่ซ้ำกัน

<u>ข้อมูลส่งออก</u>

มีจำนวน 1 บรรทัด ได้แก่ ระดับการพัฒนาเทคโนโลยีของเมือง NBK ภายในเวลาที่กำหนด T หน่วย **ตัวอย่าง**

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 5 4	2
1 0	
5 1 1	
2 1 2	
4 2 3 5	
3 1 6	
2 1 1	

++++++++++++++++++

21. บล็อกเชน (Block Chain TOI14)

้ ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 14 ณ ศูนย์ สอวน. ม.เทคโนโลยีพระจอมเกล้าพระนครเหนือ

บล็อกเชน (Blockchain) เป็นรูปแบบหนึ่งของการพิจารณาข้อมูลในรูปแบบของต้นไม้ไม่ระบุทิศทาง (undirected tree) โดยบล็อกเชนนั้นถูกออกแบบมาเพื่อให้ผู้ที่มีส่วนร่วมในฐานข้อมูลบล็อกเชนสามารถตรวจสอบข้อมูลได้ แต่เนื่องด้วยเทคโนโลยี บล็อกเชนที่เปลี่ยนไปและฐานข้อมูลมีขนาดใหญ่ขึ้นทำให้การค้นหาเป็นไปอย่างไม่มีประสิทธิภาพ สำหรับการจัดการปัญหานี้จึงมี การจัดแข่งขันเขียนโปรแกรมเพื่อค้นหาว่าบล็อกเชนที่ต้องการตรวจสอบมีอยู่ในฐานข้อมูลที่กำหนดเป็นจำนวนเท่าใด โดยมี ข้อกำหนดดังนี้

- 1. กราฟ T = (V, E) ประกอบไปด้วยเซตของปม (node) V = $\{v_1, v_2, v_3, ..., v_n\}$ โดยที่ n คือจำนวนปม และเซตของเส้น เชื่อม (edge) E \subseteq V x V โดยที่ |E| = m
- สำหรับกราฟที่พิจารณาต่อไปนี้ เส้นเชื่อม (v_i, v_j) มีความหมายเดียวกันกับ (v_j, v_i) ทั้งนี้เพื่อความสะดวกจะใช้สัญกรณ์ {v_i, v_j} ∈ E แทน ซึ่งหมายถึงกราฟที่พิจารณามีเส้นเชื่อมไม่ระบุทิศทาง (undirected path)
- 3. เส้นทาง (path) P = (v_{i1} , v_{i2} , ..., v_{ik}) คือลำดับของปมใน V โดยที่ v_{ia} \in V, 1 <= a <= k และ $\{v_{ia}, v_{ia+1}\}$ \in E เมื่อ 1 <= a <= k-1 และ k คือจำนวนปมในเส้นทาง P
- 4. กราฟ T = (V, E) เชื่อมต่อกัน (connected) ก็ต่อเมื่อมีเส้นทางระหว่างคู่ปม \vee_i และ \vee_j ใด ๆ ใน V เรียกว่ากราฟ เชื่อมต่อ
 - 5. ต้นไม้ (tree) คือกราฟเชื่อมต่อ และ m = n-1
- 6. ต้นไม้ที่มีฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง (bijective function) L : V \longrightarrow {1, 2, ..., n} โดยที่ L(v_i) = i เรียกว่าต้นไม้ที่มีฉลาก (labeled tree)
 - 7. ต้นไม้ที่มีฉลาก $T_1 = (V_1, E_1)$ และ $T_2 = (V_2, E_2)$ เป็นต้นไม้เดียวกันก็ต่อเมื่อ $V_1 = V_2$ และ $E_1 = E_2$
 - 8. บล็อกเชนเป็นต้นไม้ที่มีฉลาก (labeled tree)

ตัวอย่าง

รูปที่ 1 ตัวอย่างต้นไม้ที่มีฉลาก ซึ่งมี 6 ปม แบบที่ 1

รูปที่ 2 ตัวอย่างต้นไม้ที่มีฉลาก ซึ่งมี 6 ปม แบบที่ 2

ต้นไม้ทางด้านซ้าย (รูปที่ 1) และขวา (รูปที่ 2) เป็นต้นไม้ที่มีฉลากทั้งคู่ แต่ต้นไม้ที่มีฉลากทั้งสองต้นไม่ใช่ต้นเดียวกันเพราะ มีเส้นเชื่อมไม่เหมือนกัน

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อตรวจสอบว่า เมื่อให้ฐานข้อมูลบล็อกเชนมาทั้งหมด t บล็อกเชนและให้บล็อกเชนมาเพื่อตรวจสอบอีก จำนวน q บล็อกเชน ให้ระบุว่าแต่ละบล็อกเชนที่ต้องการตรวจสอบปรากฏอยู่ในฐานข้อมูลบล็อกเชนเป็นจำนวนเท่าใด

<u>ข้อมูลนำเข้า</u>

มีจำนวน $1+n_1+...+n_t+m_1+...+m_q$ บรรทัด ดังนี้

บรรทัดที่ 1 จำนวนเต็ม t q ระบุจำนวนบล็อกเชนในฐานข้อมูลและจำนวนบล็อกเชนที่ต้องการตรวจสอบว่าอยู่ใน ฐานข้อมูลหรือไม่ กำหนดให้ 1 <= t, q <= 1,000 (มีโอกาสที่บล็อกเชนทั้งในฐานข้อมูลและที่ต้องการตรวจสอบซ้ำกันได้)

บรรทัดที่ 2 เลขจำนวนเต็ม n_1 แสดงจำนวนปมของบล็อกเชน T_1 ในฐานข้อมูล

บรรทัดที่ 3 ถึง n_1+1 แต่ละบรรทัดแสดงจำนวนเต็ม 2 จำนวน แทนเส้นเชื่อมแต่ละเส้นของบล็อกเชน T_1

บรรทัดถัดไป เลขจำนวนเต็ม n_k แสดงจำนวนปมของบล็อกเชน T_k ในฐานข้อมูล บรรทัดถัดมาอีก n_{k} -1 บรรทัดเป็นข้อมูล เส้นเชื่อมแต่ละเส้นของบล็อกเชน T_k เมื่อ k=2,...,t และ $1<=n_k<=2^{10}$

บรรทัดที่เหลือ เลขจำนวนเต็ม m_l แสดงจำนวนปมของบล็อกเชน Q_l ที่ต้องการตรวจสอบว่ามีอยู่ในฐานข้อมูลเป็นจำนวน เท่าใด บรรทัดถัดมาอีก m_l -1 บรรทัดเป็นข้อมูลเส้นเชื่อมแต่ละเส้นของบล็อกเชน Q_l เมื่อ l=1,...,q และ $1<=m_l<=2^{10}$

<u>ข้อมูลส่งออก</u>

มีจำนวน q บรรทัด แต่ละบรรทัดแสดงจำนวนบล็อกเชนในฐานข้อมูลที่เป็นบล็อกเชนเดียวกันกับบล็อกเชน Q_l เมื่อ l=1,

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2	0
10	2
1 2	
6 4	
2 5	
3 5	

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

ผ.เอผ.าพิทมาผิรอร์ส 10	 ย.ยทรพนธ รูซรพสากร
8 6	
2 7	
5 8	
8 9	
4 10	
6	
1 4	
2 4	
4 3	
5 4 5 6	
10	
1 2	
2 7	
2 5 3 5	
3 5 8 6	
4 6	
5 8	
8 9	
4 10	
6	
1 4	
2 4	
4 3 5 4 1 6	
5 4	
1 6	
10	
1 2	
2 7	
2 5 3 5	
2 5 3 5 8 6	
8 6 4 6	
4 6 5 8	
8 9	
4 10	
_ _ _ T O	

คำอธิบายตัวอย่างที่ 1

ชุดที่ 1 โจทย์ระดับชาติเก่า อ.อัครพนธ์ วัชรพลากร

บล็อกเชนที่ 2 ในฐานข้อมูล คือบล็อกเชนที่มีโครงสร้างดังต้นไม้ที่มีฉลากรูปที่ 1 ในตัวอย่าง และบล็อกเชนที่ 1 ของบล็อก เชนที่ต้องการตรวจสอบ คือบล็อกเชนที่มีโครงสร้างดังต้นไม้ที่มีฉลากรูปที่ 2 ในตัวอย่าง

+++++++++++++++++