Introduction to Machine Learning

By

Dr. Prashant Singh Rana

Computer Science & Engineering Department,
Thapar Institute of Engineering and Technology,
Patiala, Punjab.

www.psrana.com | psrana@gmail.com

Lets Start

Explore

- Go to google and search for "Teachable Machine" or
- Click on "https://teachablemachine.withgoogle.com"

Basics Idea

Basic Idea for ML

Example1: email classification in Gmail

Example2: suggestion in youtube

Example3: Google News → Search for "Metaverse"

Some more examples

- 1. Classification of e-mail into **SPAM or NON-SPAM**
- 2. Classification of transaction as **FRAUD or GENUINE**
- 3. Patients diagnosed as **DIABETIC** or **NON-DIABETIC**
- 4. Gene Classification into **CODING or NON-CODING**.
- Many more.

- Simple Definition I Branch of Artificial Intelligence that gives computers to learn without being explicitly programmed.
- Simple Definition II Branch of Artificial Intelligence, about to construct a system that <u>learn</u> from data.
- Actual Definition A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Categories of Machine Learning

You have to only deals with

Examples

Regression Problem

- Prediction of wheat production.
- Prediction of rainfall.
- Point prediction of Stock Exchange.

Classification Problems

- Prediction of cancer.
- Win prediction of Sheila Dixit.
- Diabetic Prediction.
- Classification of e-mail.

Examples

- Clustering
 - Grouping of NEWS.
 - Grouping the people on their similar hobbies/interests.
 - Grouping of animals.
 - Grouping of customers based on their performance. E.g. bank customers.
 - Many more.

Data Set format for Machine Learning

Explore

Sample Dataset

Understand the Data.....

Features / Properties

Class / Target

\blacksquare	Α	В	С	D	Е	F	G	Н	I	J	K
1	Code	Clump_Th	Cell_Size	Cell_Shap	Marginal A	Single Epi	Bare Nucl	Bland Chr	Normal N	Mitoses	. Class
2	1000025	5	1	1	1	2	1	3	1	1	2
3	1002945	5	4	4	5	7	10	3	2	1	2
4	1015425	3	1	1	1	2	2	3	1	1	2
5	1016277	6	8	8	1	3	4	3	7	1	2
6	1017023	4	1	1	3	2	1	3	1	1	2
7	1017122	8	10	10	8	7	10	9	7	1	4
8	1018099	1	1	1	1	2	10	3	1	1	2
9	1018561	2	1	2	1	2	1	3	1	1	2
10	1033078	2	1	1	1	2	1	1	1	5	2
11	1033078	4	2	1	1	2	1	2	1	1	2
12	1035283	1	1	1	1	1	1	3	1	1	2
13	1036172	2	1	1	1	2	1	2	1	1	2
14	1041801	5	3	3	3	2	3	4	4	1	4
15	1043999	1	1	1	1	2	3	3	1	1	2
16	1044572	8	7	5	10	7	9	5	5	4	4

Classification & Regression

Classification: Predict discrete valued output.

Regression: Predict real valued output.

Class	F1	F2	F3	F4	F5
5	5769.3	1634.9	0.3	57.0	76946
3	12962.3	3389.2	0.3	141.3	17618
1.3	5960.2	2230.7	0.4	64.3	84555
1.1	9926.8	3276.7	0.3	102.0	13869.
15	6658.5	2590.6	0.4	62.2	95121:
3	12272.7	2836.1	0.2	140.0	16656
2	12579.2	3473.6	0.3	129.4	17371:
19	11969.7	4721.9	0.4	110.1	1.5700:
19	21779.3	8269.9	0.4	250.2	29574
20	9020.8	2509.4	0.3	97.9	12392

Class	F1	F2	F3	F4
4.5	5769.3	1634.9	0.3	57.0
3.0	12962.3	3389.2	0.3	141.3
12.7	5960.2	2230.7	0.4	64.3
11.5	9926.8	3276.7	0.3	102.0
14.9	6658.5	2590.6	0.4	62.2
2.5	12272.7	2836.1	0.2	140.0
2.2	12579.2	3473.6	0.3	129.4
18.8	11969.7	4721.9	0.4	110.1
19.4	21779.3	8269.9	0.4	250.2
19.6	9020.8	2509.4	0.3	97.9

1 Classification Data

2 Regression Data

Clustering Data

Features / Properties

	_									
	Α	В	С	D	Е	F	G	Н	1	J
1	Code	Clump_Th	Cell_Size	Cell_Shap	Marginal A	Single Epi	Bare Nucl	Bland Chr	Normal N	Mitoses
2	1000025	5	1	1	1	2	1	3	1	1
3	1002945	5	4	4	5	7	10	3	2	1
4	1015425	3	1	1	1	2	2	3	1	1
5	1016277	6	8	8	1	3	4	3	7	1
6	1017023	4	1	1	3	2	1	3	1	1
7	1017122	8	10	10	8	7	10	9	7	1
8	1018099	1	1	1	1	2	10	3	1	1
9	1018561	2	1	2	1	2	1	3	1	1
10	1033078	2	1	1	1	2	1	1	1	5
11	1033078	4	2	1	1	2	1	2	1	1
12	1035283	1	1	1	1	1	1	3	1	1
13	1036172	2	1	1	1	2	1	2	1	1
14	1041801	5	3	3	3	2	3	4	4	1
15	1043999	1	1	1	1	2	3	3	1	1
16	1044572	8	7	5	10	7	9	5	5	4

Only Features; No class/target/label

Basics Idea

Basic Idea for ML

Example 1: Applying Liner Model

1. Experimental Dataset

X 1	X2	X 3	X4	Output
5	1	1	3	25
1	5	5	1	20
2	3	1	3	27
4	2	5	4	29
1	4	5	5	30
4	5	3	2	21
5	5	1	1	30
3	2	1	4	29

Example 1: Applying Liner Model

2. Build ML Model

Linear Model

$$Y = w1 x1 + w2x2 + w3x3 + w4x4$$

Output =
$$9x1 + 6x2 - 10x3 + 5x4$$

Example 1: Applying Liner Model

3. Make Prediction on new Input/Dataset

new Input →

X1	X2	X3	X4	Output
3	4	2	2	?

Apply Linear Model

Output =
$$9x1 + 6x2 - 10x3 + 5x4$$

= $9*3 + 6*4 - 10*2 + 5*2$
= 41

Example 2: Applying Decision Tree

1. Experimental Dataset

X 1	X2	X 3	Output
5	1	1	0
1	5	5	0
2	3	1	1
4	2	5	0
1	4	5	1
4	5	3	1
5	5	1	0
3	2	1	1

Example 2: Applying Decision Tree

Example2: Applying Decision Tree

3. Make Prediction on new Input/Dataset

new Input →

X1	X2	X3	Output
3	4	2	?

Apply Decision Tree

Output = 0

Machine Learning models

Most Common models

- Decision tree model
- Random forest
- •SVM (Support Vector Machine)
- Linear Model
- Neural Network

Machine Learning models

S.No	Model Name	Model Type	Method	Package	Tuning Parameter(s)
1	ada	Classification	ada	ada	maxdepth, iter, nu
2	avNNet	Dual Use	avNNet	caret	decay, size, bag
3	bag	Dual Use	bag	caret	vars
4	bdk	Dual Use	bdk	kohonen	xweight,topo,xdim,ydim
5	blackboost	Dual Use	blackboost	mboost	maxdepth, mstop
6	Boruta	Dual Use	Boruta	Boruta	mtry
7	bstTree	Dual Use	bstTree	bst	maxdepth, nu, mstop
8	C5.0	Classification	C5.0	C50	winnow, trials, model
9	cforest	Dual Use	cforest	party	mtry
10	ctree	Dual Use	ctree	party	mincriterion
11	cubist	Regression	cubist	Cubist	committees, neighbors
12	enet	Regression	enet	elasticnet	lambda, fraction
13	foba	Regression	foba	foba	lambda, k
14	GAMens	Classification	GAMens	GAMens	fusion, iter, rsm_size
15	gamLoess	Dual Use	gamLoess	gam	degree,span
16	gbm	Dual Use	gbm	gbm	trees, shrinkage,depth
17	gcvEarth	Dual Use	gcvEarth	earth	degree
18	glm	Dual Use	glm	stats	None
19	icr	Regression	icr	caret	n.comp
20	J48	Classification	J48	RWeka	C

Machine Learning models

Already 500+ ML models are available for prediction

- Go for New Model Building
- Applied Modelling (Use existing models and solve real-world problem)

Books

Best Book for ML

Types of Models

Linear Model

$$Y = w1 x1 + w2x2 + w3x3 + w4x4 + w5x5$$

Tree Based model

Types of Models.....

Resources?

1. www.psrana.com → Resource

2. leadingindia.ai \rightarrow Resources

Image Colorization

More Examples.....

More Examples.....

Can you think any APPLICATION that can be developed using Image Colorization??

Convert Black & White movies to Colored.

Methodology/Approach??

Approach

1. Take any Colored Movie

2. Extract Frames

3. Convert Frames to B&W

4. Train GAN on Colored and B&W images

GAN -> Generative Adversarial Networks

(invented by Ian Goodfellow in 2014 in Beer Bar)

Approach.....

5. Take any new B&W Movie

6. Extract Frames

7. Apply GAN on B&W Frames

8. Merge all the frames into a single movie

Outcome

Product (Web Service)

Example: Online Doc to PDF Converter

Web Interface

File Name

Browse File....

psrana@gmail.com

Submit

Product (Web Service)

B&W to Colour

Web Interface

File Name

Email Id

Browse B&W movie file....

psrana@gmail.com

Submit

How to create Web Applications??

- Django
- •Flask

Hottest Topics ???

Hottest Topics Research / Projects

- 1. Deep Learning
- 2. Machine Learning
- 3. Transfer Learning
- 4. Reinforcement Learning
- 5. IoT
- 6. Big Data Analytics
- 7. Virtual Reality
- 8. Block Chain
- 9. NLP (Natural Language Processing)
- 10.Image Processing or Computer Vision
- 11.....many many more

How to get the ideas for Project/Research

(A Million Dollar Question)

For Project Idea: Explore

It is not a job of single day.

For Project Idea: Explore

It is not a job of single day.

- 1. Explore
 - Hackathons, Funding agency site, Project calls, etc
- 2. Study
 - Case study, Funding stories (YourStory.com)
- 3. Discuss
 - With Friend, Faculty, Teacher, Mentor, Students
- 4. Build Team and Implement
- 5. Present

For Project Idea: Note it down

For any new idea just prepare 1-2 page writeup

- 1. Title
- 2. Methodology
- 3. Expected Outcome
- 4. Requirement (equipment)

1. Leading India AI www.LeadingIndia.ai

1. Leading India AI

- www.LeadingIndia.ai (AI/ML based problems)
- Lead by Prof. Deepak Garg
- Ready made AI/ML based problem statement.

Explore: Projects, Resources, Research Projects

Project Idea: LeadingIndia.ai

Go to → leadingindia.ai → Projects

Project Idea: LeadingIndia.ai

Go to → leadingindia.ai → Research Projects

- 2. Tumor detection from Brain MRI images
- Detection and Classification of cancer cells in MRI Images.
- 4. Organ Segmentation and Labelling in MRI Images
- 5. Cancer cell detection and segmentation
- Blood flow detection and monitoring using Sensory data
- 7. Diabetic Retinopathy Detection and Segmentation from MRI Images
- 8. Personalized Treatment based on Patient History
- 9. Al System for Prediction and Recommendation of Diabetes
- 10. Recommendation of doctors and medicines using review mining
- 11. Disease Prediction using patient treatment history and health data
- 12. Real-time health monitoring using wearable devices
- 13. Prediction of epidemic outbreaks using Social Media Data

Project Idea: LeadingIndia.ai

Go to → leadingindia.ai → Resources

For Project Idea: SIH

2. Smart India Hackathon (SIH) www.sih.gov.in

For Project Idea: SIH

- Winner in Smart India Hackathon (SIH) from Thapar
- •2017 \rightarrow 01 Team (3rd position)
- •2018 \rightarrow 01 Team (2nd position)
- •2019 \rightarrow 05 Teams (1st Position (04) and 2nd (01))
- •2020 \rightarrow 02 Teams (1st Position (02))

For Project Idea: SIH

2. Smart India Hackathon (SIH)

- www.sih.gov.in (Best resource for project idea)
- Explore problem statements of current and previous years.

 353 problems in 2020 from different agencies and ministries.

3. Innocentive www.innocentive.com

3. Innocentive

- www.innocentive.com (Real life problems)
- Go to Challenge Center → Challenges
- Ready made Problem statement, Literature, Expected outcome and price money.

4. Kaggle www.kaggle.com

4. Kaggle

- www.kaggle.com (Data Science problems) → Compete
- Ready made Problem statement, Literature, Expected outcome and price money.

What is Structured, Semi-Structured and Unstructured Data??

Unstructured Data

- No format is defined
- Example:
 - 1000 movies in a folder
 - 10k docs in a folder
 - 500 images in a folder
 - many more

Structured Data

- Stored in well defined format
- Example: Song

Song ID	Language	Genre	Singers	Likes	Dislikes	•	•
1	En	Rock	2	10k	1k		•
2	En	Jazz	2	11k	1.5k		•
3	Hi	Pop	3	20k	2k		•
4	Hi	Jazz	1	15k	1.2k		
		•		•			

Semi-structured Data

- Little format is defined
- Example:
 - 1000 movies in three folder (12+, 16+, 18+)
 - 10k docs in 4 folder (A, B, C, D)
 - 500 photos in two folder (Male, Female)
 - 10k tweets in two files (-ve, +ve)
 - many more

Data Set format for Machine Learning

Multiple columns and one column is labelled (Strength)

x1	x2	х3	x4	x5	Strength
17	0	-5	0.784245	37	26
12	0	-10	0.587296	25	27
18	0	-7	0.876622	40	25
11	0	-7	0.80826	24	23
18	0	-4	0.83215	37	28
10	1	-9	0.62842	27	28
19	0	7	0.522811	44	30
19	-1	4	0.548609	37	23
15	0	-6	0.177904	46	20

Difference between Machine Learning & Deep Learning ??

Machine Learning

Deep Learning

Additional Resources

•Explore → psrana.com → Resources

UNIT VI: Gold Mine for Researchers (Free Books, Papers, Thesis)

1. For Research Papers

Sci Hub

Search using **DOI** (Digital Object Identifier).

Example (Search for): 10.1016/j.bbapap.2014.07.010

BookSC

Search using title

Example (Search for): "Quality assessment of modeled protein structure using physicochemical properties"

2. For Books

- Library Genesis
- ZLibrary
- 3. For Thesis | ProQuest
- 4. Paper with Code | Click Here | Most Important
- 5. Two Minutes Papers | Click Here
- 6. Explore
 - Google Dataset Search | Click Here
 - Explore Kaggle (Compete, Datasets, Notebooks, Jobs, more) | Click Here
 - UCI dataset for Regression, Classification, Clustering, etc | Click Here

Where to get papers?

Sci Hub

www.sci-hub.tw

* Domain name changes time to time.

Where to get Books?

Library Genesis

http://gen.lib.rus.ec

* Domain name changes time to time.

Best Resource

Papers with Code

www.paperswithcode.com

- Find recent paper in Machine Learning / Deep learning / Computer Vision / Natural Language Processing / etc
- Github code is available with every paper.

Explore Hackathons

Helps in selecting research topics.

www.kaggle.com

www.chalearn.org

www.mlwave.com

www.tunedit.org

www.codalab.org

www.gesture.chalearn.org

www.innocentive.com

www.dreamchallenges.org

www.crowdanalytix.com

www.datahack.analyticsvidhya.com

www.numer.ai

www.genomeinterpretation.org

http://grandchallenges.org/

Join Mailing Groups?

Helps in selecting research topics, recent news and updates

http://bit.ly/MachineLearningBlogAndResource

http://feedburner.google.com/fb/a/mailverify?uri=analyticsvidhya

http://www.innocentive.com/blog

https://www.crowdanalytix.com/blog

http://www.kdnuggets.com/news/subscribe.html

http://www.r-bloggers.com/blogs-list/

Learn Fast

Learn Fast

1. To learn FAST Learn from slides.

2. Learn from Youtube / Videos.

Code Sharing

1. Share your code on GitHub https://github.com

Present your work

1. Given Weekly / Monthly Presentation to you friends, boss, students, kids or to your wife.

2. Record it and improve it.

Tools and Techniques

- Python libraries
 - Numpy & Scipy
- Fundamental Scientific Computing

Pandas

- Data Manipulation and Analysis

Matplotlib

- Plotting and Visualization

• Scikit-learn

- Machine Learning and Data Mining

StatsModels

- Statistical Modelling, Testing, and Analysis

• Seaborn

- For Statistical Data Visualization

Plotly

- For sophisticated graphics

Pydot

- For complex oriented and non-oriented graphs

^{*} Install and explore the above libraries.

Tools and Techniques

- Tool: Anaconda
 - IDLE for Python

- Google Colab
 - Online Jupyter notebook for Python
 - Widely used platform for ML & DL

Data Set

- Google Dataset Search
 - datasetsearch.research.google.com
- Kaggle
 - www.kaggle.com
 - Explore (Compete, Datasets, Notebooks, Jobs, more)
- UCI dataset
 - Google it "UCI Dataset"
 - Dataset available for Regression, Classification, Clustering

Finally

Learning by Doing

Thanks

Q & A

Learning by Doing

Contact
www.psrana.com | psrana@gmail.com