

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2004-046098
 (43)Date of publication of application : 12.02.2004

(51)Int.Cl.

 G03F 7/038
 C08F 20/22
 G03F 7/039
 H01L 21/027

(21)Application number : 2003-128938

(71)Applicant : INTERNATL BUSINESS MACH CORP <IBM>

(22)Date of filing : 07.05.2003

(72)Inventor : ALLEN ROBERT DAVID
 GREGORY BUREITA
 BROCK PHILLIP
 DIPIETRO RICHARD A
 FENZEL-ALEXANDER DEBRA
 LARSON CARL
 MEDEIROS DAVID
 PFEIFFER DIRK
 SOORIYAKUMARAN RATNAM
 TRUONG HOA D
 WALLRAFF GREGORY M

(30)Priority

Priority number : 2002 159635 Priority date : 31.05.2002 Priority country : US

(54) PHOTORESIST COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a photoresist composition containing a polymer having at least one methacrylate monomer and to provide a method of patterning a substrate using the photoresist composition.

SOLUTION: The photoresist composition contains a methacrylate monomer of formula 1 where R₁ represents hydrogen (H), a linear or branched 1-20C alkyl group or a semi- or perfluorinated linear or branched 1-20C alkyl group; where R₂ represents an unsubstituted aliphatic group or a substituted aliphatic group having zero or one trifluoromethyl (CF₃) group bonded to each carbon of the substituted aliphatic group or a substituted or unsubstituted aromatic group; and where R₃ represents hydrogen (H), methyl (CH₃), trifluoromethyl (CF₃), difluoromethyl (CHF₂) or fluoromethyl (CH₂F).

LEGAL STATUS

[Date of request for examination]

07.05.2003

[Date of sending the examiner's decision of rejection] 31.05.2005
[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number] 3762758
[Date of registration] 20.01.2006
[Number of appeal against examiner's decision of rejection] 2005-16442
[Date of requesting appeal against examiner's decision of rejection] 26.08.2005
[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2004-46098
(P2004-46098A)

(43) 公開日 平成16年2月12日(2004.2.12)

(51) Int.Cl.⁷
G03F 7/038
C08F 20/22
G03F 7/039
H01L 21/027

F1
G03F 7/038 601
C08F 20/22
G03F 7/039 601
H01L 21/30 502R

テーマコード(参考)
2H025
4J100

審査請求 有 請求項の数 71 O.L (全 36 頁)

(21) 出願番号 特願2003-128938 (P2003-128938)
(22) 出願日 平成15年5月7日 (2003.5.7)
(31) 優先権主張番号 10/159635
(32) 優先日 平成14年5月31日 (2002.5.31)
(33) 優先権主張国 米国(US)

(71) 出願人 390009531
インターナショナル・ビジネス・マシンズ・コーポレーション
INTERNATIONAL BUSINESSES MACHINES CORPORATION
アメリカ合衆国10504、ニューヨーク
州 アーモンク ニュー オーチャード
ロード
(74) 代理人 100086243
弁理士 坂口 博
(74) 代理人 100091568
弁理士 市位 嘉宏
(74) 代理人 100108501
弁理士 上野 剛史

最終頁に続く

(54) 【発明の名称】フォトレジスト組成物

(57) 【要約】 (修正有)

【課題】少なくとも1つのメタアクリレートモノマーを有するポリマーを含むフォトレジスト組成物を提供する。また、そのフォトレジスト組成物を用いた基板をパターニングする方法を提供する。

【解決手段】フォトレジスト組成物は、下記構造

10

のメタアクリレートモノマーを含み、R¹は、水素(H)、直鎖または分岐鎖の炭素数1～20のアルキル基、または、セミフルオロ化またはパーフルオロ化された直鎖または分岐鎖の炭素数1～20のアルキル基を表し、R²は、置換脂肪族基の各炭素に結合された0または1つのトリフルオロメチル基(CF₃)を有する非置換脂肪族基または置換脂肪族基、または、置換芳香族基または非置換芳香族基を表し、R³は、水素(H)、メチル基(CH₃)、トリフルオロメチル基(CF₃)、ジフルオロメチル基(CHF₂)、フルオロメチル基(CH₂F)を表す。

20

【特許請求の範囲】

【請求項 1】

ポリマーを含むフォトレジスト組成物であって、前記ポリマーは、下記構造
【化 1】

10

を有する少なくとも 1 つのアクリレートまたはメタクリレート・モノマーを含み、R¹ は、水素 (H)、直鎖または分岐鎖の炭素数 1 ~ 20 のアルキル基、または、セミフルオロ化またはパーフルオロ化された直鎖または分岐鎖の炭素数 1 ~ 20 のアルキル基を表し、R² は、置換脂肪族基の各炭素に結合された 0 または 1 つのトリフルオロメチル基 (CF₃) を有する非置換脂肪族基または置換脂肪族基、または、置換芳香族基または非置換芳香族基を表し、R³ は、水素 (H)、メチル基 (CH₃)、トリフルオロメチル基 (CF₃)、ジフルオロメチル基 (CHF₂)、フルオロメチル基 (CH₂F)、または、セミフルオロ化またはパーフルオロ化された脂肪族基を表し、R⁴ は、トリフルオロメチル基 (CF₃)、ジフルオロメチル基 (CHF₂)、フルオロメチル (CH₂F)、または、セミフルオロ化またはパーフルオロ化された、置換または非置換脂肪族基を表す、フォトレジスト組成物。

20

【請求項 2】

溶媒、光酸発生剤、架橋剤、塩基性化合物、界面活性剤、潜在性の塩基性化合物、光塩基発生剤、溶解抑制剤、溶解促進剤、接着促進物質、消泡剤の少なくとも 1 つをさらに含む、請求項 1 に記載のフォトレジスト組成物。

【請求項 3】

前記 R¹ は、水素、メチル基、またはトリフルオロメチル基を表す、請求項 1 に記載のフォトレジスト組成物。

30

【請求項 4】

前記モノマーのメチレン基は、少なくとも 1 つのハロゲン原子で置換される、請求項 1 に記載のフォトレジスト組成物。

【請求項 5】

前記モノマーは、1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレートまたはその類似のアクリレート、1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレートまたはその類似のアクリレート、および 2-[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ) プロピル] ノルボルニル-メタクリレートまたはその類似のアクリレートからなる群から選択される、請求項 1 に記載のフォトレジスト組成物。

40

【請求項 6】

前記組成物は、ネガ型フォトレジストである、請求項 1 に記載のフォトレジスト組成物。

【請求項 7】

前記組成物は、さらに、架橋剤を含む、請求項 1 に記載のフォトレジスト組成物。

【請求項 8】

前記架橋剤は、前記組成物の形成中に添加される、請求項 7 に記載のフォトレジスト組成物。

【請求項 9】

前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも 1 つを含む、請求項 7 に記載のフォトレジスト組成物。

50

【請求項 10】

前記グリコウリルは、下記構造
【化 2】

10

で表され、R⁵、R⁶、R⁷、R⁸、R⁹およびR¹⁰がそれぞれ、水素、脂肪族基または芳香族基を表す、請求項 9に記載のフォトレジスト組成物。

【請求項 11】

前記組成物は、ポジ型フォトレジストである、請求項 1に記載のフォトレジスト組成物。

【請求項 12】

前記モノマーの少なくとも 1 つのフルオロ・アルコール基の水素が、酸に不安定な基で置換される、請求項 1に記載のフォトレジスト組成物。 20

【請求項 13】

前記酸に不安定な基は、t-アルキル・カーボネート、t-アルキル・エステル、t-アルキル・エーテル、ケタールおよびアセタールの少なくとも 1 つを含む、請求項 12に記載のフォトレジスト組成物。

【請求項 14】

前記組成物は、さらに、少なくとも 1 つのコモノマーを含む、請求項 1 に記載のフォトレジスト組成物。

【請求項 15】

前記コモノマーは、求核分子を含む、請求項 14 に記載のフォトレジスト組成物。 30

【請求項 16】

前記求核分子は、アルコールである、請求項 15 に記載のフォトレジスト組成物。

【請求項 17】

前記組成物は、さらに、架橋剤を含む、請求項 1 4 に記載のフォトレジスト組成物。

【請求項 18】

前記架橋剤は、前記ポリマーに結合される、請求項 1 7 に記載のフォトレジスト組成物。

【請求項 19】

前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも 1 つを含む、請求項 1 7 に記載のフォトレジスト組成物。 40

【請求項 20】

前記少なくとも 1 つのコモノマーは、2-メタクリルオキシ-6-ヒドロキシメチルナフタレン、6-メタクリルオキシメチル-2-ナフトール、2-ヒドロキシエチルメタクリレート、3-ヒドロキシ-1-アダマンチルメタクリレート、3-ヒドロキシ-1-アダマンチルアクリレート、2-メタクリルオキシ-5-ヒドロキシメチルノルボルナン、2-アクリロキシ-5-ヒドロキシメチルノルボルナン、またはこれらの混合物からなる群から選択される、請求項 1 4 に記載のフォトレジスト組成物。

【請求項 21】

前記組成物は、ネガ型フォトレジストである、請求項 1 4 に記載のフォトレジスト組成物。 50

【請求項 22】

前記組成物は、ネガ型フォトレジストであり、前記少なくとも1つのコモノマーは、架橋剤を含む、請求項14に記載のフォトレジスト組成物。

【請求項 23】

前記少なくとも1つのコモノマーは、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、3-フルフリルオキシ-2-ヒドロキシプロップ-1-イル・メタクリレート (3-fur furyl oxy-2-hydroxyprop-1-yl methacrylate)、テトラシクロ [5.2.1.0^{2.7}.0^{4.6}] -5-オキソーウンデカニル-10-メタクリレート、テトラシクロ [5.2.1.0^{2.7}.0^{4.6}] -5-オキソーウンデカニル-10-アクリレート、グリシジルメタクリレート、2-メタクリルオキシ-6-ヒドロキシメチルナフタレン、またはこれらの混合物からなる群から選択される、請求項22に記載のフォトレジスト組成物。
10

【請求項 24】

前記組成物は、ポジ型フォトレジストであり、前記少なくとも1つのコモノマーは、酸に不安定な基を含む、請求項14に記載のフォトレジスト組成物。

【請求項 25】

前記少なくとも1つのコモノマーは、t-ブチルメタクリレート、1-メチルシクロペニルメタクリレート、2-メチル-2-アダマンチルメタクリレート、またはこれらの混合物からなる群から選択される、請求項24に記載のフォトレジスト組成物。
20

【請求項 26】

前記少なくとも1つのコモノマーは、ラクトン、スルホンアミド、無水物、カルボン酸、またはこれらの混合物からなる群から選択される少なくとも1つの極性基を含む、請求項14に記載のフォトレジスト組成物。

【請求項 27】

前記コモノマーは、 α -メタクリロイルオキシ- γ -ブチロラクトンおよび5-メタクリロイルオキシ-2,6-ノルボルナンカルボラクトンの少なくとも1つを含む、請求項26に記載のフォトレジスト組成物。
30

【請求項 28】

前記コモノマーは、放射線源に露光されないフォトレジスト組成物の溶解を促進するよう作用する、請求項26に記載のフォトレジスト組成物。
30

【請求項 29】

前記コモノマーは、カルボン酸を含む、請求項28に記載のフォトレジスト組成物。

【請求項 30】

前記コモノマーは、アクリル酸およびメタクリル酸の少なくとも1つを含む、請求項29に記載のフォトレジスト組成物。

【請求項 31】

1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレートまたはそれに類似のアクリレート、1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレートまたはそれに類似のアクリレート、2-[5-(1',1',1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニル・メタクリレートまたはそれに類似のアクリレートからなる群から選択される重合可能なモノマーを含む、フォトレジスト組成物。
40

【請求項 32】

3-フルフリルオキシ-2-ヒドロキシプロップ-1-イル・メタクリレート (3-fur furyl oxy-2-hydroxyprop-1-yl methacrylate) またはそれに類似のアクリレート、6-メタクリルオキシメチル-2-ナフトールまたはそれに類似のアクリレート、2-メタクリルオキシ-6-ヒドロキシメチルナフタレンまたはそれに類似のアクリレートからなる群から選択される重合可能なモノマーを含む、フォトレジスト組成物。
50

【請求項 3 3】

基板をパターニングする方法であって、前記方法は、
前記基板に、下記構造

【化 3】

10

を有する少なくとも 1 つのアクリレートまたはメタクリレート・モノマーを含み、R¹ は
、水素 (H) 、直鎖または分岐鎖の炭素数 1 ~ 20 のアルキル基、または、セミフルオロ
化またはパーフルオロ化された直鎖または分岐鎖の炭素数 1 ~ 20 のアルキル基を表し、
R² は、置換脂肪族基の各炭素に結合された 0 または 1 つのトリフルオロメチル基 (CF₃) を有する非置換脂肪族基または置換脂肪族基、または、置換芳香族基または非置換芳
香族基を表し、R³ は、水素 (H) 、メチル基 (CH₃) 、トリフルオロメチル基 (CF₃) 、ジフルオロメチル基 (CHF₂) 、フルオロメチル基 (CH₂F) 、または、セミ
フルオロ化またはパーフルオロ化された脂肪族基を表し、R⁴ は、トリフルオロメチル基
(CF₃) 、ジフルオロメチル基 (CHF₂) 、フルオロメチル (CH₂F) 、または、
セミフルオロ化またはパーフルオロ化された、置換または非置換脂肪族基を表すポリマー
を含むフォトレジスト組成物を塗布し、フィルムを形成するステップと、
前記フィルムを像形成放射線源にパターン化するように露光するステップと、
前記フィルムの領域を現像し、パターン化された基板を形成するステップと
を含む方法。

20

【請求項 3 4】

前記フォトレジスト組成物を塗布するステップ後で、かつ前記フィルムを露光するステッ
プ前に、前記フィルムをベーキングするステップをさらに含む、請求項 3 3 に記載の方法
。

30

【請求項 3 5】

前記露光するステップ後で、かつ前記フィルムを現像するステップ前に、前記フィルムを
ベーキングするステップをさらに含む、請求項 3 3 に記載の方法。

【請求項 3 6】

前記パターン化された基板をエッチングするステップをさらに含む、請求項 3 3 に記載の
方法。

【請求項 3 7】

前記エッチングするステップは、イオン・エッチングするステップを含む、請求項 3 6 に
記載の方法。

【請求項 3 8】

前記フィルムは、不溶性であり、前記現像するステップにおいて、前記像形成放射線源に
露光された前記フィルムを可溶性にする、請求項 3 3 に記載の方法。

40

【請求項 3 9】

前記可溶性フィルムを除去するステップをさらに含む、請求項 3 8 に記載の方法。

【請求項 4 0】

前記フィルムは、可溶性であり、前記現像するステップにおいて、前記像形成放射線源に
露光された前記フィルムを不溶性にする、請求項 3 3 に記載の方法。

【請求項 4 1】

前記可溶性フィルムを除去するステップをさらに含む、請求項 4 0 に記載の方法。

【請求項 4 2】

前記フォトレジスト組成物は、溶媒、光酸発生剤、架橋剤、塩基性化合物、界面活性剤、
50

潜在性の塩基性化合物、光塩基発生剤、溶解抑制剤、溶解促進剤、接着促進物質、消泡剤の少なくとも1つをさらに含む、請求項33に記載の方法。

【請求項43】

前記R¹は、水素、メチル基、またはトリフルオロメチル基を表す、請求項33に記載の方法。

【請求項44】

前記モノマーのメチレン基は、少なくとも1つのハロゲン原子で置換される、請求項33に記載の方法。

【請求項45】

前記モノマーは、1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレートまたはそれに類似のアクリレート、1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレートまたはそれに類似のアクリレート、および2-[5-(1',1',1'-トリフルオロ-2'-トリフルオロメチル-2-ヒドロキシ)プロピル]ノルボルニルメタクリレートまたはそれに類似のアクリレートからなる群から選択される、請求項33に記載の方法。

【請求項46】

前記組成物は、ネガ型フォトレジストである、請求項33に記載の方法。

【請求項47】

前記組成物は、さらに、架橋剤を含む、請求項33に記載の方法。

20

【請求項48】

前記架橋剤は、前記組成物の形成中に添加される、請求項47に記載の方法。

【請求項49】

前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも1つを含む、請求項47に記載の方法。

【請求項50】

前記グリコウリルは、下記構造

【化4】

30

で表され、R⁵、R⁶、R⁷、R⁸、R⁹およびR¹⁰がそれぞれ、水素、脂肪族基または芳香族基を表す、請求項49に記載の方法。

【請求項51】

前記組成物は、ポジ型フォトレジストである、請求項33に記載の方法。

【請求項52】

前記モノマーの少なくとも1つのフルオロ・アルコール基の水素が、酸に不安定な基で置換される、請求項33に記載の方法。

【請求項53】

前記酸に不安定な基は、t-アルキル・カーボネート、t-アルキル・エステル、t-アルキル・エーテル、ケタールおよびアセタールの少なくとも1つを含む、請求項52に記載の方法。

50

【請求項 5 4】

前記組成物は、さらに、少なくとも1つのコモノマーを含む、請求項33に記載の方法。

【請求項 5 5】

前記コモノマーは、求核分子を含む、請求項54に記載の方法。

【請求項 5 6】

前記求核分子は、アルコールである、請求項55に記載の方法。

【請求項 5 7】

前記組成物は、さらに、架橋剤を含む、請求項54に記載の方法。

【請求項 5 8】

前記架橋剤は、前記ポリマーに結合される、請求項57に記載の方法。 10

【請求項 5 9】

前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも1つを含む、請求項57に記載の方法。

【請求項 6 0】

前記少なくとも1つのコモノマーは、2-メタクリルオキシ6-ヒドロキシメチルナフタレン、6-メタクリルオキシメチル-2-ナフトール、2-ヒドロキシエチルメタクリレート、3-ヒドロキシ-1-アダマンチルメタクリレート、3-ヒドロキシ-1-アダマンチルアクリレート、2-メタクリルオキシ-5-ヒドロキシメチルノルボルナン、2-アクリルオキシ-5-ヒドロキシメチルノルボルナン、またはこれらの混合物からなる群から選択される、請求項54に記載の方法。 20

【請求項 6 1】

前記組成物は、ネガ型フォトレジストである、請求項54に記載の方法。

【請求項 6 2】

前記組成物は、ネガ型フォトレジストであり、前記少なくとも1つのコモノマーは、架橋剤を含む、請求項54に記載の方法。

【請求項 6 3】

前記少なくとも1つのコモノマーは、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、3-フルフリルオキシ-2-ヒドロキシプロップ-1-イル・メタクリレート (3-fur furyl oxy-2-hydroxy prop-1-yl methacrylate)、テトラシクロ [5.2.1.0^{2.7}.0^{4.6}] -5-オキソーウンデカニル-10-メタクリレート、テトラシクロ [5.2.1.0^{2.7}.0^{4.6}] -5-オキソーウンデカニル-10-アクリレート、グリシジルメタクリレート、2-メタクリルオキシ-6-ヒドロキシメチルナフタレン、またはこれらの混合物からなる群から選択される、請求項62に記載の方法。 30

【請求項 6 4】

前記組成物は、ポジ型フォトレジストであり、前記少なくとも1つのコモノマーは、酸に不安定な基を含む、請求項54に記載の方法。

【請求項 6 5】

前記少なくとも1つのコモノマーは、t-ブチルメタクリレート、1-メチルシクロヘンチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、またはこれらの混合物からなる群から選択される、請求項64に記載の方法。 40

【請求項 6 6】

前記少なくとも1つのコモノマーは、ラクトン、スルホンアミド、無水物、カルボン酸、またはこれらの混合物からなる群から選択される少なくとも1つの極性を有する基を含む、請求項54に記載の方法。

【請求項 6 7】

前記コモノマーは、 α -メタクリロイルオキシ- γ -ブチロラクトンおよび5-メタクリロイルオキシ-2, 6-ノルボルナンカルボラクトンの少なくとも1つを含む、請求項66に記載の方法。

【請求項 6 8】

前記コモノマーは、放射線源に露光されないフォトレジスト組成物の溶解を促進するよう
に作用する、請求項 6 6 に記載の方法。

【請求項 6 9】

前記コモノマーは、カルボン酸を含む、請求項 6 8 に記載の方法。

【請求項 7 0】

前記コモノマーは、アクリル酸およびメタクリル酸の少なくとも 1 つを含む、請求項 6 9
に記載の方法。

【請求項 7 1】

前記基板は、シリコン・ウェハ、フォトグラフ用マスク・ブランクおよび印刷回路ボード
の少なくとも 1 つを含む、請求項 3 3 に記載の方法。

10

【発明の詳細な説明】

【0 0 0 1】

【発明の属する技術分野】

本発明は、フォトレジスト組成物に関し、より詳細には、アクリレートまたはメタクリレート基を含み、さらには少なくとも 1 つのフルオロ・アルコール基を含む少なくとも 1 つのモノマーからなるポリマーを含むフォトレジスト組成物に関する。

【0 0 0 2】

【従来の技術】

光子、電子またはイオン・ビームといった高エネルギー放射線を用いる放射線感受性ポリマー・フィルムのパターニングは、半導体デバイスで見られる高解像度の回路を画定する基本的な方法である。放射線源に関係なくフォトレジストとして多くの場合に参照される放射線感受性フィルムは、シリコン・ウェハといった所望の基板上にスピニーキャストされた多成分から形成される。放射線は、436 nm、365 nm、257 nm、248 nm、193 nm、157 nm の波長を有する最も一般的な紫外線、電子またはイオン・ビーム、極短紫外線 (EUV) または X 線としても参照される「弱い (soft)」X 線である。放射線は、パターン化するように露光され、フィルムがテトラメチルアンモニウム水酸化物水溶液 (TMAH) といった好適な現像液である、一般に希釈した塩基性水溶液で処理される場合に、露光されない範囲とは異なる露光されたフィルム領域を可溶にする化学変化を生じさせるように誘導する。

20

【0 0 0 3】

フォトレジストは概ね、重合性マトリックス、放射線感受性組成物、キャステイング溶媒、その他特性改善のための添加剤が含まれている。放射線に対する感受性および解像度に関して最も高い能力を有するフォトレジストは、「化学的に拡張された」と言われるフォトレジスト群である。化学的に拡張されたフォトレジストは、他のフォトレジストでは得ることができない高解像度、高コントラストおよび高感受性を可能にするものである。これらのフォトレジストは、例えば、ポジ型フォトレジストの場合の未保護反応、または、ネガ型フォトレジストの場合の架橋反応といった化学的イベントの比較的多くが触媒機構に基づいており、触媒、多くの場合には強酸の形成を含む、放射線の比較的低い照射量が適用される。これらフォトレジストの重合性マトリックスを含む官能基の種類は、フォトレジストの型と同様に、最終的な性能特性に影響を与える。

30

【0 0 0 4】

重合性マトリックスの種類は、特定の放射線源を用いる露光に対して、与えられるフォトレジストの安定性にも影響を与える。それは、ポリマーの吸光特性がリソグラフィを適用する材料を設計する場合に充分に考慮されなければならない。このことは、ポリマーが光酸発生剤 (PAGs) といった放射線感受性化合物に対して比較的に透明なマトリックスを与えるために選択される光学リソグラフィに重要となる。吸光特性は、光学リソグラフィで使用される放射線の波長が、フォトレジストにより達成できる最終的な解像度に正比例するので重要である。より高解像度を所望することは、より短い放射線の波長を使用させている。例えば、248 nm の像形成に使用されるフェノール類のポリマーで、ポリ(4-ヒドロキシスチレン) すなわち PHS の誘導体は、193 nm での PHS 材料の不透

40

50

明性により、フォトレジスト・フィルムの厚さを通して好適なイメージ・プロファイルを生成するための充分な照射を可能にしないため、193 nmの放射線で使用するのは好ましくない。このため、使用する光学放射線の各波長に対する材料の選択と生成が必須となる。

【0005】

吸光特性に加え、新規のフォトレジスト材料の設計において考慮するべき他のパラメータとしては、与えられる現像液中の材料の溶解挙動が挙げられる。半導体産業では、フォトレジストに対する現像液として0.263標準規定(N)のTMAHの使用を大きくサポートしている。248 nmの像形成に使用される上述したPHS材料は、独特的の、かつ有益な性質を有しており、これら材料を膨潤させることなく、0.263 NのTMAH中で均一に溶解する傾向を有している。加えて、重合性フィルムが溶解する速度は、例えば、ポジ型フォトレジスト中に保護基および溶解抑制剤の使用により、ネガ型フォトレジスト中において効果的な架橋および他の機能付与により調整される。この均一に溶解する性質は、新規のフォトレジスト材料、特に、193 nmの像形成に対して特異的に設計される材料に添加することを困難にする性質である。アクリル酸誘導体、環状オレフィン、交互環状オレフィン-マレイン酸無水和物ベースの材料といった193 nmの像形成に対して選択される最新のポリマー・プラットフォームは、概ね、非線形溶解のカテゴリに分類される。実際には、これらの材料は、多くの場合において、初期現像段階でわずかに膨潤する。これは、特に、ネガ型形成に対して大変興味深い、これらの材料をベースとしたフォトレジストの現像になる。

10

20

【0006】

フルオロアルコールをベースとした他の材料が、塩基性水溶液への溶解を与える手段として従来において提案されている。例えば、H. Itoらの「Polymer Design for 157 nm Chemically Amplified Resists」, Proc. SPIE, 4345:273-284 (2001)、R. R. Kunzらの「Experimental VUV Absorbance Study of Fluorine-Functionalized Polystyrenes」, Proc. SPIE, 4345:285-295 (2001)、Y. C. Baeらの「Rejuvenivation of 248 nm Resist Backbones for 157 nm Lithography」, J. Photopolym. Sci. Tech., 14: 613-620 (2001)を参照することができる。上述した材料の例としては、ノルボルネン・ヘキサフルオロアルコール、スチレン・ヘキサフルオロアルコール、シクロヘキシルドデシルフルオロアルコールをベースとしたポリマーを挙げることができる。これらのプラットフォームの各々は、塩基に可溶な材料を与えるものの、商用の高解像度フォトレジストに適用するには欠点を有している。ノルボルネン・ヘキサフルオロアルコール・モノマーは、開環重合、遷移金属触媒による付加重合、または無水マレイン酸といったコモノマーを用いる交互フリー・ラジカル重合といった特定の重合条件を必要とする。このため、このモノマーは、多数の好適なコモノマーには適合せず、組成物中で大きな変化を可能にする所望の性質、それによる材料の性質に適合しない。スチレン・ヘキサフルオロアルコールをベースとしたポリマーは、PHSといった他のスチレン材料のように、193 nmの放射線を用いる像形成に対して、この波長で不透明であるため、好ましくはない。シクロヘキシル・ドデシルフルオロアルコール・アセテートは、合成が非常に複雑であることが問題となっており、その結果、著しく製造コストが高くなっている。

30

40

【0007】

【発明の解決しようとする課題】

したがって、高解像度フォトレジストに適用するための所望の特性を与える、新規で、実用的な組成物が必要とされている。

【0008】

【課題を解決するための手段】

50

本発明の第1の態様では、フォトレジスト組成物が提供される。その組成物は、式5で表される構造を有する少なくとも1つのモノマーを有するポリマーを含む。

【0009】

【化5】

10

【0010】

ここで、R¹は、水素(H)、直鎖または分岐鎖の炭素数1～20のアルキル基、またはセミフルオロ化またはパーフルオロ化した直鎖または分岐鎖の炭素数1～20のアルキル基を表し、R²は、非置換脂肪族基、または、置換脂肪族基の各炭素に結合された0または1のトリフルオロメチル(CF₃)基を有する置換脂肪族基を表し、R³は、水素(H)、メチル(CH₃)、トリフルオロメチル(CF₃)、ジフルオロメチル(CHF₂)、フルオロメチル(CH₂F)、または、セミフルオロ化またはパーフルオロ化した脂肪族基を表し、R⁴は、トリフルオロメチル(CF₃)、ジフルオロメチル(CHF₂)、フルオロメチル(CH₂F)、または、セミフルオロ化またはパーフルオロ化した置換または非置換脂肪族基を表す。
20

【0011】

本発明の組成物は、さらに、溶媒、光酸発生剤、架橋剤、塩基性化合物、潜在性の塩基性化合物、光塩基発生剤、溶解抑制剤、溶解促進剤、接着促進物質、消泡剤の少なくとも1つを含む。所望の性質を与えるため、これらの添加材料を含むことができる。例えば、ネガ型フォトレジスト中に架橋剤を含むことができ、または、例えば、ポジ型フォトレジスト中に酸に不安定な基を含む物質を含むことができる。

【0012】

本発明のフォトレジストは、上記式5の範囲には含まれないコモノマーも含むことができる。本発明のフォトレジスト組成物に望まれる性質に基づいてコモノマーを選択することができる。例えば、あるコモノマーは、ネガ型フォトレジストに望まれる架橋基を与えることができる。他のコモノマーは、ポジ型フォトレジストに望まれる性質を与えることができる。さらに、他のコモノマーは、溶解特性、熱的性質、エッチ抵抗の調節といったポジ型フォトレジストまたはネガ型フォトレジストのいずれかに望まれる性質を与えることができる。
30

【0013】

本発明の他の態様では、新規な組成物が提供される。その組成物は、1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチルメタクリレート、1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチルメタクリレート、2-[5-(1',1',1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニルメタクリレート、またはこれらに類似のアクリレート・モノマーからなる群から選択される重合可能なモノマーを含む。組成物は、3-フルフリルオキシ-2-ヒドロシキプロップ-1-イル・メタクリレート、6-メタクリルオキシメチル-2-ナフトール、2-メタクリルオキシ-6-ヒドロキシメチルナフタレン、またはこれらに類似のアクリレート・モノマーからなる群から選択される重合可能なモノマーを含むものも提供される。
40

【0014】

本発明の他の態様では、基板をパターニングする方法が提供される。本発明の方法は、上述したフォトレジスト組成物を塗布し、フィルムを形成するステップと、上記フィルムを像形成放射線源にパターン化するように露光するステップと、上記放射線源に露光された
50

上記組成物の領域を現像するステップとを含む。本発明の方法は、例えば、イオン・エッチングを使用して、前記パターン化された基板をエッチングするステップをさらに含む。

【0015】

リソグラフィによるフォトレジスト形成に使用される他のものの上の上述したアクリレートおよびメタクリレート材料の特徴は、塩基可溶性の基としてフッ化アルコールを結合していることである。これらの材料は、上述したフェノール類の材料 (pK_a が 9 ~ 11) の pK_a と同様の pK_a をもつことができ、これにより、TMAH 内で同様の溶解特性を示すことができる。これは、わずかに強い酸 (pK_a が 3 ~ 6) であり、このように独特的の溶解特性を有し、酸官能基のアルカリ溶解度に依存する、多くの場合に現在使用されているアクリル酸またはカルボン酸誘導体とは対照的である。

10

【0016】

本発明のアクリレート・ベースまたはメタクリレート・ベースの組成物は、従来の材料を超えるいくつかの独特の利点を与える。第1に、多くの合成バリエーションにより、エステル官能基の修飾を通して容易に実現することができる。第2に、これらのモノマーは、急速にフリー・ラジカル重合し、他のコポリマーとのフリー・ラジカル共重合の影響を受けやすくする。フリー・ラジカル重合は、この重合方法の官能基の許容範囲を広くし、分子量および多分散制御を容易にするので好ましい。第3に、アクリレートまたはメタクリレート・モノマーから誘導されるポリマーは、概ね、従来のキャスティング溶媒に非常によく溶け、高品質で、従来の基板上にキャストする場合に均一のフィルムを形成する。

20

【0017】

本発明のフォトレジスト組成物は、フルオロ・アルコールによって与えられる優れた溶解特性を有するアクリレートまたはメタクリレートによって提供される合成のバリエーションおよび重合を容易にするものである。本願で説明される様々な材料は、ポジ型およびネガ型フォトレジストに含めることができ、193 nm の光学的放射により高解像度のパターニングを可能にする。さらには、レジスト形成において他の同様の、または同様ではないポリマーを有するフルオロ・アルコール・アクリレート・ポリマーを混合することを含むことにより、上述したレジストの能力を向上させることができる。

【0018】

【発明の実施の形態】

本願では、アクリレートおよびメタクリレートをベースとしたフォトレジスト組成物の新規なファミリーが提供される。本発明のフォトレジスト組成物は、重合可能なアクリレートまたはメタクリレート基を有するモノマーを含むポリマーを含む。本願では、特定のメタクリレートとして説明するが、モノマーは、それに類似のアクリレートの化学式を含むように定義され、また、反対も同様であることを理解するべきである。

30

【0019】

フォトレジスト組成物中のポリマーは、多数のモノマーの反応生成物である。従来の方法によりモノマーを重合し、ポリマーを形成することができる。ポリマーは、典型的には、約 500 ~ 約 500,000 ドルトンの分子量を有し、好ましくは、約 1,000 ~ 約 100,000 ドルトンであり、より好ましくは、約 5,000 ~ 約 50,000 である。

40

【0020】

例えば、環流で、モノマーの官能基中に副作用を誘発することのない、選択されたイニシエータの活性のための好適な所定温度に保持した媒体を与える好適な溶媒中で、所望のモノマーを溶解することができる。例えば、30 質量 % の比較的高濃度のモノマーを与えるように、溶液を調製することができる。その後、選択されたイニシエータが添加され、溶液は、乾燥窒素によりバブリングして脱気される。その後、反応フラスコは、予熱されたオイル・バス中に浸漬され、数時間環流される。室温まで溶液を冷却した後、ポリマーは、例えば 20 倍の、過剰で、好適な非溶媒中に沈殿することにより分離される。ポリマーは、ろ過することにより分離され、非溶媒で洗浄され、真空下で所定の質量になるまで乾燥される。

【0021】

50

本発明のフォトレジスト組成物は、当業者に知られた従来方法を使用し、成分（例えば、ポリマー、架橋剤、溶媒、酸発生剤、塩基、および／または補助成分）を含めることにより調製されてもよい。次のもに限られるものではないが、例えば、光酸発生剤、架橋剤、塩基性化合物、界面活性剤、潜在性の塩基性化合物、光塩基発生剤、溶解抑制剤、溶解促進剤、接着促進物質または消泡剤といった特性改善のための添加剤とともに、ポリマー材料を好適なキャスティング溶媒中に溶解することができる。これら以外の成分は概ね、使用される場合に、好ましくは約10質量%未満のフォトレジスト組成物を含み、さらに好ましくは、約1質量%未満のフォトレジスト組成物を含む。すべての成分が溶解され、溶液中に分散されれば、溶液は、ろ過され、例えば、イオン交換媒体を用いて状況に応じて処理され、微量の酸、塩基または金属といった好ましくない成分が除去される。10

【0022】

アクリレートまたはメタクリレート・モノマーは、以下の一般式で表すことができる。

【0023】

【化6】

20

【0024】

ここで、R¹は、水素(H)、メチル(CH₃)といった直鎖または分岐鎖の炭素数1～20のアルキル基、トリフルオロメチル(CF₃)、塩素(Cl)、フッ素(F)といったセミフルオロ化またはパーフルオロ化した直鎖または分岐鎖の炭素数1～20のアルキル基、またはカルボニトリル(CN)を表す。R²は、1つのトリフルオロメチル基(CF₃)を有する非置換脂肪族基または置換脂肪族基で、もしあるとすれば、置換脂肪族基、より好ましくはプロピルまたはイソプロピルといった炭素数1～30の脂肪族基の各炭素に1つのトリフルオロメチル基(CF₃)が結合されたもの、または、置換または非置換の芳香族基で、好ましくはフェニルまたはナフチルといった炭素数5～20のものを表し、R³は、水素(H)、メチル(CH₃)、トリフルオロメチル(CF₃)、ジフルオロメチル(CHF₂)、フルオロメチル(CH₂F)、または、セミフルオロ化またはパーフルオロ化した脂肪族基で、好ましくは炭素数2～20であり、R⁴は、トリフルオロメチル(CF₃)、ジフルオロメチル(CHF₂)、フルオロメチル(CH₂F)、または、セミフルオロ化またはパーフルオロ化した脂肪族基で、好ましくは炭素数2～20であり、R³とR⁴とは同じものであってもよく、異なっていてもよい。30

【0025】

本願では、脂肪族基は、置換または非置換の脂環基を含むように定義される。例えば、R²に対して好適な脂環基は、ノルボルニルメチル、ノルボルニル、アダマンチルおよびシクロヘキシリルといった炭素数3～30のものである。同様に、本願では、R³およびR⁴の脂肪族基は、脂環基を含むように定義される。40

【0026】

本願で定義されるようにモノマーは、上述したものの誘導体を含むことを意図している。例えば、アクリレートまたはメタクリレート基のメチレン基は、F、ClまたはBrといった1以上のハロゲンで光学的に置換することができる。加えて、上記のように、脂肪族基、脂環基、芳香族基は、F、Cl、Brまたはヒドロキシリル(-OH)、オキソ(=O)またはニトリル(-CN)といった他の官能基で光学的に置換されてもよい。

【0027】

好ましい実施の形態では、モノマーは、次の新規のモノマーである、1,1,1-トリフルオロオロ-2-ヒドロキシ-5-ペンチル・メタクリレート(式7)、1,1,1-トリフル

50

ルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレート(式8)、2-[5-(1',1',1'-トリフルオロ-2',-トリフルオロメチル-2',-ヒドロキシ)プロピル]ノルボルニルメタクリレート(式9)またはこれらに類似のアクリレート・モノマーの1つである。これらの新規のモノマーは、本願では個別の実施の形態として説明する。

【0028】

【化7】

10

【0029】

【化8】

20

【0030】

【化9】

30

【0031】

上記モノマーは、従来の技術を使用して製造することができる。例えば、テトラヒドロフランといった極性非プロトン溶媒中に、-15℃といった下げる温度でn-ブチルリチウムといった2当量の好適な強塩基を反応させることにより、対応するジオールのジアニオンを生成することができる。この溶液に、親ジオールに対して、例えば、10℃の下げる温度で滴下することにより添加される塩化メタクリロイル(または塩化アクリロイルまたは類似のそれらの誘導体)1当量が添加される。室温までゆっくり加熱し、ジエチル・エーテルといった水に混和しない溶媒を用いて希釈した後、その有機溶液は、飽和塩化アンモニウムで2回洗浄され、ブラインで2回洗浄された後、硫酸マグネシウム上で乾燥される。ろ過することにより乾燥剤を除去した後、溶媒は、ロータリ・エバポレーションにより除去され、フェノチアジンといった少量の抑制剤が添加され、所望の生成物が減圧下で蒸留される。

40

【0032】

使用できないのであれば、上記のジオールを、例えば、ハイドロボレーションし、続いて塩基および過酸化水素により酸化し、さらに続けて中和反応することにより、類似のオレフィン・フルオロカルビノールから生成することができる。

【0033】

また、対応するアクリル酸またはメタクリル酸のカルボキシレート・アニオンを用いて置

50

換することによって生じる臭化水素酸を使用して、臭化水素といった部位選択ハロゲン化水素により親オレフィン・フルオロアルコールからメタクリレートまたはアクリレート・モノマーを得ることができる。そのカルボキシレート・アニオンは、1, 8-ジアザビシクロ[5. 4. 0] -7-ウンデシン(DBU) またはトリエチルアミンといった好適な強い阻害塩基を用いて酸から生成することができる。

【0034】

また、メタクリル酸またはアクリル酸または類似のそれらの誘導体を、従来の無機酸を使用する触媒酸条件下でオレフィン・フルオロカルビノールに直接添加することができる。例えば、ジエチル・エーテルといった極性非プロトン溶媒中にオレフィン・フルオロカルビノールおよび過剰のメタクリル酸を溶解することができ、硫酸といった、10分の1当量の濃縮された強酸が滴下することにより添加される。その後、溶液は、数時間環流するために加熱され、室温まで冷却され、テトラヒドロフラン(THF)で希釈される。その後、溶液は、1Mの炭酸ソーダ溶液に慎重に添加され、攪拌される。有機相は、ジエチルエーテルで抽出され、飽和炭酸ソーダで洗浄され、続いてブラインで洗浄された後、硫酸マグネシウム上で乾燥される。ろ過することにより乾燥剤を除去した後、溶媒は、ロータリ・エバポレーションにより除去され、フェノチアジンといった少量の抑制剤が添加され、所望の生成物が減圧下で蒸留される。10

【0035】

モノマーを製造する他の方法では、メタクリル酸またはアクリル酸または類似のそれらの誘導体を、ヘテロポリ酸またはヘテロポリ酸水和物を用いる酸触媒条件下でオレフィン・フルオロカルビノールに直接添加することができる。例えば、各々1当量のオレフィン・フルオロカルビノールおよびメタクリル酸が、メチル・エチル・ケトンといった極性非プロトン溶媒に溶解され、100分の1当量のリンタンクスステン酸水和物といったヘテロポリ酸が、滴下することにより添加される。溶液は、例えば、60°Cで、数時間加熱され、室温まで冷却され、ジエチルエーテルで希釈される。その後、溶液は、10質量%の重炭酸ナトリウムに慎重に添加され、攪拌される。相が分離され、有機相は、ブラインにより洗浄され、その後、硫酸ナトリウム上で乾燥される。ろ過することにより乾燥剤を除去した後、溶液は、活性炭を有する室温で攪拌される。ろ過助剤を通してろ過することにより活性炭を除去した後、溶媒がロータリ・エバポレーションにより除去され、フェノチアジンといった少量の反応抑制剤が添加され、所望の生成物が減圧下で蒸留される。20

【0036】

本発明のフォトレジスト組成物は、ネガ型フォトレジストとして使用することができる。ネガ型フォトレジストの場合、パターン化されたフィルムの露光された領域が現像液、典型的にはアルカリ水溶液の現像液中で露光された範囲より可溶でなくなるようにされる。このため、ネガ型フォトレジスト形成の重合性マトリクスは、触媒機構、多くの場合には放射線を発生させる強酸を含むことによって不溶性材料に変化される本質的には可溶である材料を含む。30

【0037】

この触媒機構の特性には、不溶性ネットワークに親フォトレジストの任意のポリマー鎖を変更させる架橋反応を含むことができる。この機構は、現像溶液中ではもはや有効に溶解しない箇所で、フォトレジストのポリマー鎖の分子質量を少なくとも増加する触媒機構を含んでいる。また、その機構は、不溶性官能基に親フォトレジスト・ポリマーの可溶性基が化学変化することを含んでいてもよい。40

【0038】

フォトレジスト組成物がネガ型フォトレジストとして使用される場合、架橋剤が、例えば、レジスト形成中に添加されてもよい。上述した架橋剤の例としては、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリル、ビニル・エーテルおよびこれらの混合物を挙げることができるが、これらに限られるものではない。グリコウリルの好ましい例としては、次式を有するグリコウリルを挙げることができる。

【0039】

【化10】

10

【0040】

ここで、R⁵、R⁶、R⁷、R⁸、R⁹およびR¹⁰の各々は、水素(H)、脂肪族基または芳香族基を表す。上述した脂肪族基の例としては、メチル基、エチル基、プロピル基またはイソプロピル基を挙げることができる。上述した芳香族基の例としては、フェニル基を挙げることができる。好適なグリコウリルの1つの特定の例としては、Cytec (West Paterson, NJ) から提供されるPOWDERLINK (登録商標) 1174を挙げることができる。

20

【0041】

本発明のフォトレジスト組成物は、ポジ型フォトレジストとしても使用することができる。典型的なポジ型フォトレジストは、現像液に本質的に可溶であるが、ブロック基または保護基により不溶になる本質的な保護構造材料である重合性マトリクスを含んでいる。これらの基は、触媒反応により酸に不安定となる官能基とすることができます。例えば、本発明のフォトレジスト組成物では、モノマーのフルオロ・アルコール基が、t-アルキル・カーポネート、t-アルキル・エステル、t-アルキル・エーテル、ケタールおよびアセタールといった酸に不安定な基をもつ少なくとも1つのフルオロ・アルコール基の水素置換によって保護されていてもよい。また、モノマーを含むフルオロ・アルコールは、酸に不安定な基を含む他のモノマーで共重合することができる。

30

【0042】

強酸の形成により現像液可溶材料を生成するため、保護基を除去することができる。好適な放射線に、像形成するように露光し、それに続いてフォトレジスト形成の放射線感受性成分、例えば、好適な放射への露光において強酸を形成するために分解するように特別に設計される光酸発生剤(PAG)により酸を発生させることによりこれを実現してもよい。保護の度合いは、材料の露光されないキャスト・フィルムが不溶であり、露光された範囲が上述した酸に不安定な基の未保護により可溶となるように、アルカリ水溶液の現像液中で材料の溶解特性を最も有効に変化させるように選択される。

40

【0043】

露光後、保護基の充分な未保護を与えるため、熱処理を適用することができる。現像液による処理において、フォトレジストの露光されない範囲のパターン化されたフィルムを残して、可溶となる露光された領域を溶解することができる。

40

【0044】

他の実施の形態では、本発明のフォトレジスト組成物中のポリマーは、式5のアクリレートまたはメタクリレート・モノマーで表されない他のモノマーを含むことができる。これらの他のモノマーは、本願では、「コモノマー」として参照される。式5のモノマーおよび式5で表されないコモノマーは、従来の方法を使用して共重合することができる。加えて、式5のモノマーを含むポリマーおよび式5で表されないコモノマーを含むポリマーは、例えば、フォトレジスト形成中に既知の方法を使用して「混合」し、本発明のフォトレジスト組成物を形成することができる。

【0045】

50

コモノマーは、フォトレジスト組成物に望まれる性質に基づいて選択することができる。例えば、モノマーおよびコモノマーは、本発明のネガ型フォトレジスト組成物に使用するポリマーを形成するために重合される場合、コモノマーの部分として架橋基を含むことができる。本願で定義されるように架橋基は、官能基を含み、触媒による処理において、その後の固有のポリマー求核分子との反応を可能にする求電子中心を露光する。この反応は、塩基性現像液中では不溶性となる与えられたポリマー鎖間に可溶性への変化を生じさせる。上述したコモノマーの例としては、次式のものが挙げられる。

【0046】

【化11】

10

【0047】

【化12】

20

【0048】

【化13】

30

【0049】

【化14】

40

【0050】

【化15】

50

【0051】
【化16】

【0052】
【化17】

10

【0053】

上記式11は、フルフリルメタクリレートであり、上記式12は、テトラヒドロフルフリルメタクリレートであり、上記式13は、3-フルフリルオキシ-2-ヒドロキシプロップ-1-イル・メタクリレートであり、上記式14は、テトラシクロ[5.2.1.0^{2·7·0^{4·6}}] -5-オキソ-ウンデカニル-10-メタクリレートであり、上記式15は、テトラシクロ[5.2.1.0^{2·7·0^{4·6}}] -5-オキソ-ウンデカニル-10-アクリレートであり、上記式16は、グリシジルメタクリレートであり、上記式17は、2-メタクリルオキシ-6-ヒドロキシメチルナフタレンである。上記式13の3-フルフリルオキシ-2-ヒドロキシプロップ-1-イル・メタクリレート・コモノマーおよび3-フルフリルオキシ-2-ヒドロキシプロップ-1-イル・アクリレート・コモノマーは、新規のモノマーであり、本願では、個別の実施の形態として説明される。

20

【0054】

加えて、ネガ型フォトレジスト組成物では、アルコールといった求核分子のサイトを含むコモノマーによりモノマーを重合することができる。上述したケースにおいては、個々の架橋剤をフォトレジスト形成中に添加することができる。上述した架橋剤は、処理中に求核分子を介してレジスト組成物のポリマーに結合することが好ましい。上述したように、上述した架橋剤の例としては、グリコウリル、メラミン、エポキシド、ビニル・エーテルおよびこれらの混合物を挙げることができるが、これらに限られるものではない。上述した求核分子のコモノマーの例としては、次式のものを挙げることができる。

30

【0055】
【化18】

40

【0056】
【化19】

【0057】
【化20】

10

【0058】
【化21】

20

30

【0059】
【化22】

40

【0060】
【化23】

【0061】
【化24】

10

20

【0062】

上記式18は、2-メタクリルオキシ-6-ヒドロキシメチルナフタレンであり、上記式19は、6-メタクリルオキシメチル-2-ナフトールであり、上記式20は、2-ヒドロキシエチルメタクリレートであり、上記式21は、3-ヒドロキシ-1-アダマンチルメタクリレートであり、上記式22は、3-ヒドロキシ-1-アダマンチルアクリレートであり、上記式23は、2-メタクリルオキシ-5-ヒドロキシメチルノルボルナンであり、上記式24は、2-アクリルオキシ-5-ヒドロキシメチルノルボルナンである。上記式18の2-メタクリルオキシ-6-ヒドロキシメチルナフタレンおよび上記式19の6-メタクリルオキシメチル-2-ナフトールのコモノマーは、新規なモノマーであり、本願では、個別の実施の形態として説明される。

30

【0063】

同様に、ポジ型フォトレジストで使用するために特定のコモノマーを選択することができる。上述したモノマーは、ターシャリ・アルキル・カーボネート、ターシャリ・アルキル・エステル、ターシャリ・アルキル・エーテル、アセタールまたはケタールといった酸に不安定な基を含むモノマーの基から選択することができる。上述したコモノマーの例としては、次式のものを挙げることができる。

【0064】
【化25】

40

【0065】
【化26】

【0066】
【化27】

10

【0067】

上記式25は、*t*-ブチルメタクリレートであり、上記式26は、1-メチルシクロペ
ンチルメタクリレートであり、上記式27は、2-メチル-2-アダマンチルメタクリレ
ートである。

20

【0068】

同様に、ネガまたはポジ型フォトレジストのいずれかで使用するために特定のコモノマー
を選択することができる。例えば、上述したコモノマーは、ラクトン、スルホンアミド、
無水物、カルボン酸といった少なくとも1つの極性基を含むことができる。上述した基は
、例えば、溶解特性、熱的性質およびエッチ抵抗の調節を可能にする。例えば、コモノマー
は、アクリル酸および/またはメタクリル酸を含み、露光されないレジストの溶解を促進
させることができる。少なくとも1つの極性基を含むコモノマーとしては、次式のものを
挙げることができる。

30

【0069】

【化28】

40

【0070】
【化29】

【0071】

上記式28は、 α -メタクリロイルオキシーアップチロラクトンであり、上記式29は、5-メタクリロイルオキシー-2, 6-ノルボルナンカルボラクトンである。

【0072】

コモノマーは、式5のアクリレートまたはメタクリレート・フルオロ・アルコール・モノマーを有するため、従来の方法により製造することができる。例えば、コモノマーの親アルコールは、アルコールのアニオンを形成した後、または、親アルコールが、それぞれ1または2当量の好適な強塩基を使用するジオールである場合、式5のモノマーの製造に関して上述したように、対応するジアニオンを形成した後、塩化メタクリロイルまたは塩化アクリロイルまたはそれらの誘導体と反応させることができる。生成物のワーク・アップおよび分離は、類似の方法により処理することができる。官能基に許容範囲がないことにより、この処理を不可能にする場合、好適な保護-未保護スキームの使用が、副反応を回避するために必要とされてもよい。

【0073】

本発明のフォトレジスト組成物は、電子部品、特に半導体デバイスの製造に、光学、電子ビーム、イオン・ビームまたはX線を使用するフォトリソグラフ用マスクの製造に使用される放射線感受性フォトレジストとして特に有用である。さらに、本発明の組成物は、パターニングした印刷回路ボードまたはフォトリソグラフ用マスク（例えば、フォトマスク）、マイクロ・マシーニング、マイクロ流体セル、または高解像度パターンの画定を必要とする他の関係ある方法に使用されてもよい。

【0074】

本発明は、例えば、シリコン・ウェハ、クロム・オン・ガラス・マスク・ブランク、または印刷回路ボードといった所望の基板をパターニングする方法を包含する。本発明の方法は、上述したように、式5のアクリレートまたはメタクリレート・モノマーを有するポリマーを含むフォトレジスト組成物の被膜を基板に塗布してフィルムを形成するステップを含む。スピニ・キャスティングといった知られた方法によりフォトレジスト材料を塗布することができる。

【0075】

本発明の方法は、193 nmまたは157 nmの紫外線といった像形成放射線源にフォトレジスト組成物をパターン化するように露光するステップを含む。その後、放射線源に露光されたフォトレジストの範囲は、例えば、パドル現像、または当業者によく知られた他の方法により現像される。現像溶液としては、例えば、希釀したアルカリ水溶液を挙げることができ、前記水溶液は、界面活性剤を含んでいてもよく、含まなくてもよい。

【0076】

ポジ型フォトレジストの場合には、フィルムの露光された範囲が、現像液中で可溶性となり、露光されない範囲のパターンを残して洗浄除去することができる。ネガ型フォトレジストの場合には、フィルムの露光された範囲が不溶性となり、露光されない範囲を現像した後、そのまま残るであろう。その後、現像された像を水でリーンスし、過剰な現像液を除去し、乾燥させることができる。その後、パターン化されたフォトレジスト・イメージを、下部の基板へのその後のイメージ転写に用いるエッチ・マスクとして使用することができる。

10

20

30

40

50

【0077】

従来から知られているように、本発明の特性および利点を少なくとも部分的に改善するために、例えば、反射防止膜、基板プライミング、ベーキング、フラッド・イクスピージャ、または蒸気処理といったプレ塗布、ポスト塗布、ポスト・イクスピージャ、ポスト現像プロセスを本発明の方法に含んでいてもよい。特に、フォトレジスト・フィルムの残留キヤスティング溶媒を除去するポスト塗布ベーク(PAB)を含むことは、非常に好ましい。PABプロセスは、約80℃～約120℃の温度で、約10秒～約120秒間、所望の基板(例えば、ウェハ)をベーキングするステップを含む。好ましいPABは、110℃で60秒間である。

【0078】

また、上述したPAB法と合わせて、方法中にポスト・イクスピージャ・ベーク(PEB)を含むことが好ましい。PEBは、多くの低活性化エネルギーの化学的に拡張されたフォトレジストの特性に対しては必要とされないものの、リソグラフの像形成の品質を改善するために含まれていてもよいものである。PEBプロセスは、約80℃～約120℃の温度で、約10秒～約120秒間、ウェハまたは基板をベーキングするステップを含んでいてもよい。好ましいPEBは、110℃で60秒間である。PABプロセスとPEBプロセスとの両方が、例えば、接触ホット・プレート・ベーキング、オープン・ベーキング、近接性ベーキングなどといった、当業者により理解される従来方法を使用して行われてもよいことを理解するべきである。これに限られるものではないが、例えば、当業者に知られた技術によるヘキサメチルジシラザンおよび/または近縁種といった従来のシリル化剤を含む界面プライミング剤により基板を事前処理するステップを含むことが好ましい。本発明で使用する好適な例示する技術としては、蒸気プライミングおよび液泡塗布を挙げることができるが、これに限られるものではない。

【0079】

本発明の方法は、従来のエッチング・プロセスを使用してパターン化された基板をエッチングするステップをさらに含み、このエッチング・プロセスとしては、反応性イオン・エッチングを挙げることができるが、これに限られるものではない。加えて、いかなる残留フォトレジスト組成物も、例えば、ストリッピング剤を使用して基板から除去することができる。

【0080】

本発明の例示する実施の形態を以下に開示するが、本発明は、これらの明示した実施の形態に限られるものではなく、その他の様々な変更および修正が、本発明の目的または精神から逸脱することなく当業者によりなし得るものであることを理解するべきである。次の実施例は、本発明の目的および精神を例示するために提供されるものである。これらの実施例は、例示した目的のみに対して与えられているため、本願で開示される発明は、当然にそれらに限定されるべきものではない。

【0081】**【実施例】****(実施例1)**

(1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレートおよび1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレート(式7および式8)の合成)

(1, 1, 1-トリフルオロー-2-トリフルオロメチル-2, 5-ペンタンジオールおよび1, 1, 1-トリフルオロー-2-トリフルオロメチル-2, 4-ペンタンジオールの調製)

オーバーヘッド・スターラ、デジタル・サーモメータおよび窒素注入口を有する1Lの定圧添加ファンネルを備えた3口の、3L丸底フラスコに、974mL(1.95mol)のポランジメチルスルフィド錯体(THF中に2.0M)を添加した。400mLの無水THF中に353g(1.7mol)の1, 1, 1-トリフルオロー-2-トリフルオロメチル-4-ペンタン-2-オールを溶解して添加ファンネルを満たした。フラスコを冷

10

20

30

40

50

却し、15℃未満の温度で保持するとともに攪拌しながらゆっくりオレフィンを添加した。再冷却した後、2日間室温で混合物を攪拌し、慎重に750mL(2.25mol)の3M NaOH水溶液を添加した。ロータリ・エバボレータ上の反応混合物を減量させ、続いて2×500mLのジエチルエーテルを用いて共沸させた。生じた重油を、300mLのTHF中に溶解し、その溶液を、250mLの添加ファンネル、デジタル・サーモメータおよびマグネットィック・スター・バーを備えた1Lの3口丸底フラスコに移した。250mLの30%過酸化水素で添加ファンネルを満たした。フラスコを冷却し、攪拌しながらゆっくり過酸化水素を添加した。室温で夜通し攪拌を続けた後、1Lのジエチルエーテルにより溶液を希釈し、5% HClを用いてpH6(リトマス液)に調製した。エーテル相を分離し、水溶液相を2つの500mLエーテルで抽出した。2つの500mLの飽和塩化アンモニウムとブライントを用いて、結合された有機相を洗浄し、MgSO₄上で乾燥および蒸発させて、2つのタイトル・アルコールの45:55(2°:1°)混合物である379gの粗生成物を得た。¹⁰ 12', Vigueuxを通して蒸留することにより、ジオールを1.0mmHgでbp47℃のもの(2°アルコール)および1.0mmHgでbp55℃のもの(1°アルコール)に分離した。2°アルコールは、低融点固体であり、1°アルコールは、粘性オイルである。

【0082】

(1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレート(式7)の調製)
オーバーヘッド・スターラ、デジタル・サーモメータおよび窒素注入口を有する1Lの定圧添加ファンネルを備えた3口の、2L丸底フラスコに、590mL(0.944mol)²⁰のn-ブチルリチウム(ヘキサン中に1.6M)を添加した。300mLの無水THF中に107g(0.47mol)の1, 1, 1-トリフルオロー-2-トリフルオロメチル-2, 5-ペンタンジオールで添加ファンネルを満たした。フラスコを冷却し、15℃未満の温度に保持するとともに、攪拌しながらジオールを滴下することにより添加した。生じた黄-オレンジ溶液を、200mLの無水THFに54.5g(0.52mol)の塩化メタクリロイルを溶解するのに10℃で1時間を超えて滴下することにより添加される時間である追加の2時間攪拌した。反応混合物を500mLのジエチルエーテルで希釈した後、夜間ににおいて室温に到達させ、2×500mL飽和塩化アンモニウムとブライントにより洗浄し、MgSO₄上で乾燥させ、1.0mmHg、74℃で蒸留し(0.5gのフェノチアジンを蒸留より先にポットに添加した。)、109gのタイトル化合物(収率79%)を得た。³⁰

【0083】

(1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレート(式8)の調製)
142g(0.63mol)⁴⁰の1, 1, 1-トリフルオロー-2-トリフルオロメチル-2, 4-ペンタンジオールと、793mL(1.27mol)のn-ブチルリチウム(ヘキサン中に1.6M)と、73g(0.69mol)の塩化メタクリロイルを使用して、上述したメタクリレートと同様の方法で、タイトル化合物を調製し、1.0mmHg、67℃で蒸留後、透明で、無色のオイルとして142g(76%)の2°メタクリレートを得た。

【0084】

(実施例2)

(2-1[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニル)メタクリレート(式9)の合成)
(2-ヒドロキシ-5-[1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルナンの調製)
コンデンサ(窒素注入口)、デジタル・サーモメータおよびマグネットィック・スター・バーを備えた3口の、500mL丸底フラスコに、173.2g(0.63mol)⁵⁰の5-[1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)

プロピル] - 2-ノルボルネンと、100 g (1. 9 mol) のギ酸 (88%) とを加え、夜通し窒素下で100℃に混合物を加熱した。生じた黄色の溶液を、濃い黄色のオイルを残してロータリ・エバポレータ上で蒸発させ、120 mLの濃縮された水酸化アンモニウム (28%) を添加し、夜通し攪拌しながら60℃に混合物を加熱した。冷却後、層を分離し、下層を、500 mLのジエチルエーテルで希釈し、5% (v/v) HCl (2×250 mL)、水 (2×200 mL) およびブラインで続けて洗浄した。MgSO₄上でエーテル溶液を乾燥させ、0.8 mmHg、92℃で蒸発および蒸留して、透明で、無色のオイルとして156 gのタイトル化合物 (84%)を得た。

【0085】

(2- { [5- (1', 1', 1' - トリフォルオロ-2' - トリフォルオロメチル-2' - ヒドロキシ) プロピル] ノルボルニル] メタクリレート (式9) の調製) オーバーヘッド・スターラ、デジタル・サーモメータおよび窒素注入口を有する1 Lの定圧添加ファンネルを備えた3口の、3 L丸底フラスコに、147.0 g (0.5 mol) の2-ヒドロキシ-5- [5- (1', 1', 1' - トリフォルオロ-2' - トリフォルオロメチル-2' - ヒドロキシ) プロピル] ノルボルナンと、1000 mLの無水THFとを加えた。ヘキサン中に660 mL (1.05 mol) のn-ブチルリチウムの1.6 M溶液で添加ファンネルを満たした。フラスコを5℃まで冷却し、ブチルリチウム溶液を、15℃未満の温度に保持するとともに、攪拌しながら滴下することにより添加した。生じた懸濁液を、5℃まで再冷却する約6時間で室温まで到達させ、200 mLの無水THF中に57.8 g (0.55 mol) の塩化メタクリロイルの溶液を、10℃未満の温度を保持するとともに、ゆっくり滴下することにより添加した。混合物は、急速に均一になり、夜通し攪拌しながら室温まで到達させた。その後、リトマス液により外見上5~6のpHとなるように、希釈したHCl (5% v/v) を添加し、ロータリ・エバポレータ上の容量を減量し、2 Lのジエチルエーテルで希釈した。エーテル溶液を水およびブラインで洗浄し、MgSO₄上で乾燥させ、0.6 mmHg、120℃で蒸発および蒸留し (およそ1.0 gのフェノチアジンを蒸留より先にポットに添加した。) 、透明で、無色のオイルとして130 gのタイトル化合物 (72%)を得た。

【0086】

(2- { [5- (1', 1', 1' - トリフォルオロ-2' - トリフォルオロメチル-2' - ヒドロキシ) プロピル] ノルボルニル] メタクリレート (式9) の別の調製) 3- (5-ビシクロ- [2, 2, 1] ヘプテン-2-イル) -1, 1, 1-トリフォルオロ-2- (トリフルオロメチル) -2-プロパノール (NBHFA) (54.8 g, 0.20 mol) と、メタクリル酸 (51.65 g, 0.60 mol) と、50 mLのエーテルとを、コンデンサ、マグネットイック・スターラおよび窒素注入口を備えた丸底フラスコ内に配置した。攪拌中、98%の濃硫酸 (6.08 g, 3.25 mL, 0.06 mol) を、目盛り付きピペットにより室温で滴下することにより添加した。穏やかな発熱反応が生じた。18時間環流するために混合物を加熱した。その後、50 mLのテトラヒドロフラン (THF) で希釈し、炭酸ソーダ溶液 (50 g, 600 mL) のDI水中に0.60 mol中に慎重に注ぎ、2時間攪拌した。その後、2×150 mLエーテルで混合物を抽出した。結合された有機抽出物を、150 mLの飽和炭酸ソーダ溶液で洗浄し、それに続いて150 mLのブラインで洗浄し、無水硫酸マグネシウム上で乾燥させた。溶液を真空中で濃縮した。減圧下で機能性蒸留により2 mmHg、140℃で32.44 gの所望の生成物を得た。

【0087】

(2- { [5- (1', 1', 1' - トリフォルオロ-2' - トリフォルオロメチル-2' - ヒドロキシ) プロピル] ノルボルニル] メタクリレート (式9) の第2の別の調製) 3- (5-ビシクロ- [2, 2, 1] ヘプテン-2-イル) -1, 1, 1-トリフォルオロ-2- (トリフルオロメチル) -2-プロパノール (NBHFA) (4.0 g, 14.6 mmol) と、メタクリル酸 (1.26 g, 14.6 mmol) と、t-ブチルカテコール (25 mg) とを、20 mLのメチルエチル・ケトン (MEK) に溶解した。リンタン

10

20

30

40

50

グステン酸 ($H_3 PW_{1.2} O_4$) (0.42 g、0.146 mmol) を添加し、溶液を3時間で60℃に加熱した。室温まで冷却した後、50 mLのジエチル・エーテルを用いて希釈した。その後続いて、3つの20 mLの10% (w/v) 炭酸ソーダ水溶液およびブラインで洗浄した。有機溶媒を無水硫酸ナトリウム上で乾燥させ、ろ過した。その後、室温で5分間活性炭を用いて溶液を攪拌し、セライトろ過助剤上でろ過した。ロータリ・エバポレーションし、溶媒を除去した後、生じた黄色のオイルから所望の化合物を真空蒸留 (750 mTorr で 115℃～119℃) し、無色の液体 (3.58 g、68%)を得た。

【0088】

(実施例3)

(6-メタクリルオキシメチル-2-ナフトール (式19) の合成)

(メチル-6-ヒドロキシ-2-ナフトエートの調製)

窒素注入口とマグネティック・スター・バーとを備えた1 L丸底フラスコに、50 g (0.27 mol) の6-ヒドロキシ-2-ナフトエ酸と、400 mLのメタノールとを加えた。1 mLの濃硫酸で懸濁液をゆっくり処理し、夜通し室温で攪拌した。生じた溶液を、蒸発させ、500 mLのエチル・アセテートを用いて溶解し、3×300 mLの飽和 $Na HCO_3$ 、2×300 mLの水およびブラインで引き続き洗浄した。薄い黄色の溶液を、 $Mg SO_4$ 上で乾燥させ、約100 mLまで減量し、ヘキサンを用いてゆっくり処理した。生じた透明な沈殿物を集め、窒素ストリーム下で乾燥させ、良好な、白いプレート状で、mp 196℃のものとして52 gのタイトル化合物 (95%)を得た。

10

20

【0089】

(6-ヒドロキシメチル-2-ナフトールの調製)

オーバーヘッド・スターラ、デジタル・サーモメータおよび窒素注入口を有する500 mLの定圧添加ファンネルを備えた3口の、1 L丸底フラスコに、11 g (0.29 mol) のリチウム・アルミニウム水素化物と、200 mLの無水THFとを添加した。添加ファンネルを、40 g (0.2 mol) のメチル-6-ヒドロキシ-2-ナフトエートとで満たした。フラスコを氷または水で冷却し、ナフトエートを、1時間を超える時間でゆっくり添加した。夜通し懸濁液を攪拌し、再冷却し、慎重に100 mLの水で処理した。5% (v/v) HCl 中に白色の懸濁液を注ぎ、エチル・アセテートを用いて数時間抽出した。結合された抽出物を水で洗浄し、乾燥および蒸発させ、ヘキサンまたはエチル・アセテート中の残留物を再結晶させて、ベージュのプレート状で、mp 179～181℃のものとして3つのクロップ内に合計30 gのタイトル化合物 (87%)を得た。

30

【0090】

(6-メタクリルオキシメチル-2-ナフトール (式19) の合成)

オーバーヘッド・スターラ、デジタル・サーモメータおよび窒素注入口を有する250 mLの定圧添加ファンネルを備えた3口の、500 mL丸底フラスコに、25 g (0.14 mol) の6-ヒドロキシメチル-2-ナフトールと、100 mLの無水THFとを加えた。190 mL (0.3 mol) のn-ブチルリチウム (ヘキサン中に1.6 M) で添加ファンネルを満たした。5℃までフラスコを冷却し、15℃未満の温度で保持しながら、ゆっくりブチルリチウムを添加した。100 mLの無水THF中に14.9 g (0.15 mol) の塩化メタクリロイルの溶液を10℃未満の温度を保持しながらゆっくり添加する時間である1時間、生じた懸濁液を攪拌した。反応混合物を、強制的な攪拌を伴う300 mLの飽和塩化アンモニウム中へ注ぐ時間である6時間、冷却しながら攪拌を続けた。有機層を分離し、水層を、エチル・アセテートを用いて抽出した。結合された有機相を水およびブラインで洗浄し、乾燥および蒸発させた。生じた残留物を、ヘキサン中の35% エチル・アセテートを用いてシリカゲル上でクロマトグラフを行った。純粋な生成物を含む少量を結合させ、蒸発させてオフホワイトの固体として19 gのタイトル化合物 (56%)を得た。

40

【0091】

(実施例4)

50

(2-メタクリルオキシ6-ヒドロキシメチルナフタレン(式18)の合成)
 デジタル・サーモメータ、窒素注入口とマグネティック・バーとを有する50mLの定圧添加ファンネルを備えた3口で、500mL丸底フラスコに、25g(0.14mol)の6-ヒドロキシメチル-2-ナフトールと、200mLのジクロロメタンと、14.5g(0.14mol)のトリエチルアミンとを加えた。30mLのジクロロメタン中に14.9g(0.15mol)の塩化メタクリロイルの溶液で添加ファンネルを満たした。5℃にフラスコを冷却し、10℃未満の温度を保持しながら塩酸をゆっくり滴下することにより添加した。夜通し室温で反応混合物を攪拌し、その後、水およびブラインで洗浄し、MgSO₄上で乾燥および蒸発させ、残留物をヘキサン中の35%エチル・アセテートを用いたシリカゲル上でクロマトグラフを行った。純粋な生成物を含む一部分を結合させ、蒸発させて、オフホワイトの固体として22gのタイトル化合物(65%)を得た。約8gの開始剤を流動相中のエチル・アセテートの割合を増加させることによりカラムから回収することができる。
 10

【0092】

(実施例5)

(3-フルフリロキシ-2-ヒドロキシプロップー1-イル・メタクリレート(式13)の合成)

メタクリル酸(10g)と、フルフリル・グリシル・エーテル(15g)と、トリエチルアミン(0.3g)との混合物を2時間で100℃まで加熱し、その後、追加の2時間で105℃まで加熱した。GC分析では、96%の転化率を表した。エーテルで混合物を満たし、水で洗浄し、続いて飽和炭酸ソーダで洗浄し、MgSO₄を用いて乾燥させ、ろ過し、ロータリ・エバボレートして、23.7gのかすかに黄色のオイル(94.8%)を得た。
 20

【0093】

(実施例6)

(193nmポジ型フォトレジストに使用するポリマー(式9と式7と式27の共重合体)の合成)

2-[5-(1',1',1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニルメタクリレート(式9)(5.04g、0.014mol)と、1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチルメタクリレート(式7)(2.06g、0.007mol)と、2-メチルアダマンチルメタクリレート(式27)(3.51g、0.014mol)と、32gのテトラヒドロフラン(THF)とを、コンデンサと窒素注入口とを備える丸底フラスコ内に収容した。2,2'-アゾビシソブチロニトリル(AIBN)(0.23g、0.0014mol)を、上記溶液に添加し、溶解するまで攪拌した。その後、真空または窒素パージを使用して溶液を4回脱気した。その後、内容物を加熱し、18時間環流した。その後、ヘキサン(700mL)中に上記溶液を滴下することにより添加した。沈殿したポリマーをろ過し、ヘキサン(50mL)を使用して2回洗浄し、60℃の真空中で乾燥させた。
 30

【0094】

(実施例7)

(193nmネガ型フォトレジスト(式7と式19の共重合体)の合成)

1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチルメタクリレート(式7)(5.30g、0.018mol)と、2-メタクリルオキシ-6-ヒドロキシメチルナフタレン(式19)(0.49g、0.002mol)と、18gのTHFとを、コンデンサおよび窒素注入口を備えた丸底フラスコ内に収容した。AIBN(0.13g、0.0018mol)を上記溶液に添加し、溶解するまで攪拌した。その後、真空または窒素パージを使用して溶液を4回脱気した。その後、内容物を加熱し、18時間環流した。その後、ヘキサン(500mL)中へ溶液を滴下することにより添加した。沈殿したポリマーをろ過し、ヘキサン(50mL)を使用して2回洗浄し、60℃の
 40

50

真空中で乾燥させた。

【0095】

(実施例8)

(193 nmネガ型フォトレジスト(式8と式19の共重合体)の合成)
 1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・
 メタクリレート(式8)(5.30 g、0.018 mmol)と、2-メタクリルオキシ-
 6-ヒドロキシメチルナフタレン(式19)(0.49 g、0.002 mmol)を、コン
 デンサおよび窒素注入口とを備えた丸底フラスコ中の18 gのTHFに添加した。AIB
 N(0.13 g、0.80 mmol)を、上記溶液に添加し、溶解するまで攪拌した。
 その後、真空または窒素バージを使用して溶液を4回脱気した。その後、内容物を加熱し、
 18時間環流した。その後、ヘキサン(500 mL)中に溶液を滴下することにより添加
 した。沈澱したポリマーをろ過し、ヘキサン(50 mL)を用いて2回洗浄し、60℃の
 真空中で乾燥させた。
10

【0096】

(実施例9)

(193 nmネガ型フォトレジスト(式8と式9と式20の共重合体)の合成)
 1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリ
 レート(式8)(2.53 g、8.61 mmol)と、2-[5-(1', 1', 1'
 -トリフルオロー-2', -トリフルオロメチル-2', -ヒドロキシ)プロピル]ノルボルニ
 ル・メタクリレート(式9)(1.55 g、4.31 mmol)と、2-ヒドロキシエチ
 ル・メタクリレート(式20)(0.187 g、1.44 mmol)とを、AIBN(2
 3.5 mg、0.144 mmol)を使用してイソプロピル・アルコール(10 g、30
 質量%溶液)中に溶解した。数分間、乾燥窒素をバーリングして溶液から酸素を除去し、
 その後、16時間環流した。室温まで反応混合物を冷却し、強制的に攪拌する400 mL
 のヘキサン中に沈澱させた。生じた白色の固体を、ろ過して集め、少量のヘキサンで数回
 洗浄し、60℃の真空中で20時間乾燥させた。
20

【0097】

(実施例10)

(193 nmネガ型フォトレジストに使用するポリマー(式7と式8と式20の共重合体
)の合成)
 1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・
 メタクリレート(式7)(3.00 g、10.2 mmol)と、1, 1, 1-トリフルオ
 ロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレート(式8)
 (1.05 g、2.92 mmol)と、2-ヒドロキシエチル・メタクリレート(式20
)(0.190 g、1.46 mmol)と、AIBN(10.0 mg、0.0580 mm
 ol)といったモノマーを用い、実施例9と同様の手順で行った。
30

【0098】

(実施例11)

(193 nmネガ型フォトレジストに使用するポリマー(式7と式20の共重合体)の合
 成)
 1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・
 メタクリレート(式7)(3.00 g、10.2 mmol)と、2-ヒドロキシエチル・
 メタクリレート(式20)(0.330 g、2.56 mmol)と、AIBN(8.00
 mg、0.0510 mmol)といったモノマーを用い、実施例9と同様の手順で行った
 。
40

【0099】

(実施例12)

(193 nmネガ型フォトレジストに使用するポリマー(式8と式20の共重合体)の合
 成)
 1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・
50

メタクリレート(式8)(3.00g、10.2mmol)と、2-ヒドロキシエチル・メタクリレート(式20)(0.330g、2.56mmol)と、AIBN(8.00mg、0.0510mmol)といったモノマーを用い、実施例9と同様の手順で行った。

【0100】

(実施例13)

(193nmネガ型フォトレジストに使用するポリマー(式9の重合体)の合成)
2-[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニル・メタクリレート(式9)(5.00g、13.9mmol)と、AIBN(9.00mg、0.0556mmol)といったモノマーを用い¹⁰、実施例9と同様の手順で行った。

【0101】

(実施例14)

(193nmネガ型フォトレジストに使用するポリマー(式8と式9と式14のモノマーと式20のモノマーの共重合体)の合成)

1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレート(式8)(1.75g、5.95mmol)と、2-[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニル・メタクリレート(式9)(0.857g、2.38mmol)と、テトラシクロ[5.2.1.0^{2,7}.0^{4,6}] -5-オキソーウンデカニル-10-メタクリレート(式14)(0.557g、2.38mmol)と、2-ヒドロキシエチル・メタクリレート(式20)(0.155g、1.19mmol)と、AIBN(3.00mg、0.0480mmol)といったモノマーを用い、実施例9と同様の手順で行った。

【0102】

(実施例15)

(193nmネガ型フォトレジストに使用するポリマー(式8の重合体)の合成)
1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレート(式8)(2.00g、6.80mmol)と、AIBN(22.3mg、0.136mmol)といったモノマーを用い、実施例9と同様の手順で行った。

【0103】

(実施例16)

(193nmネガ型フォトレジストに使用するポリマー(式8と式22の共重合体)の合成)

1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレート(式8)(3.00g、10.2mmol)と、4-ヒドロキシ-2-アダマンチル・メタクリレート(式22)(0.566g、2.55mmol)と、AIBN(41.8mg、0.255mmol)といったモノマーを用い、実施例9と同様の手順で行った。

【0104】

(実施例17)

(193nmネガ型フォトレジストに使用するポリマー(式8と式22と式20の共重合体)の合成)

1, 1, 1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレート(式8)(3.00g、10.2mmol)と、4-ヒドロキシ-2-アダマンチル・メタクリレート(式22)(1.13g、5.10mmol)と、2-ヒドロキシエチル・メタクリレート(式20)(0.221g、1.70mmol)と、AIBN(18.6mg、0.113mmol)といったモノマーを用い、上記と同様の手順で行った。

【0105】

(実施例18)

30

40

50

(193 nmポジ型フォトレジストに使用するポリマー(式9と式27の共重合体)の合成)

2-[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニルメタクリレート(式9)(18.05 g、0.05 mol)と、2-メチル-2-アダマンチル・メタクリレート(式27)(8.40 g、0.033 mol)と、79 gのTHFとを、コンデンサおよび窒素注入口を備えた丸底フラスコ内に収容した。AIBN(0.55 g、3.30 mmol)を、上記溶液に添加し、溶解するまで攪拌した。その後、真空または窒素バージを使用して溶液を4回脱気した。その後、内容物を加熱し、18時間環流した。その後、ヘキサン(1.6 L)中に溶液を滴下することにより添加した。沈殿したポリマーをろ過し、ヘキサン(100 mL)で2回洗浄し、60℃の真空下で乾燥させた。
10

【0106】

(実施例19)

(193 nmポジ型フォトレジストに使用するポリマー(式9と式26の共重合体)の合成)

2-[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニルメタクリレート(式9)(8.70 g、0.024 mol)と、1-メチル-1-シクロペンチル・メタクリレート(式26)(2.70 g、0.016 mol)と、AIBN(0.27 g、1.60 mmol)といったモノマーを用い、実施例18と同様の手順で行った。
20

【0107】

(実施例20)

(193 nmポジ型フォトレジストに使用するポリマー(式9と式27と式29のモノマーの共重合体)の合成)

2-[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニルメタクリレート(式9)(5.40 g、0.015 mol)と、2-メチル-2-アダマンチル・メタクリレート(式27)(2.26 g、0.009 mol)と、5-メタクリロイルオキシ-2,6-ノルボルナンカルボラクトン(式29)(1.33 g、0.006 mol)と、AIBN(0.20 g、1.20 mmol)といったモノマーを用い、実施例18と同様の手順で行った。
30

【0108】

(実施例21)

(193 nmネガ型フォトレジストに使用するポリマー(式8と式9と式20の共重合体)の合成)

1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチルメタクリレート(式8)(1.31 g、4.47 mmol)と、2-[5-(1', 1', 1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニルメタクリレート(式9)(0.495 g、1.38 mmol)と、2-ヒドロキシエチル・メタクリレート(式20)(0.0894 g、0.688 mmol)と、メタクリル酸(0.0296 g、0.344 mmol)と、AIBN(11.3 mg、0.0688 mmol)といったモノマーを用い、実施例9と同様の手順で行った。
40

【0109】

(実施例22)

(193 nmネガ型フォトレジストに使用するポリマー(式7と式12の共重合体)の合成)

1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチルメタクリレート(式7)(4.0 g)と、テトラヒドロフルフリルメタクリレート(式12)(1.55 g)と、AIBN(0.18 g)といったモノマーを用い、溶媒としてエチル・アセテートを使用することを除いて、実施例9と同様の手順で行った。

【0110】

(実施例 23)

(193 nm ネガ型フォトレジストに使用するポリマー (式 7 と式 11 の共重合体) の合成)

1, 1, 1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレート (式 7) (4.0 g) と、フルフリルメタクリレート (式 11) (1.0 g) と、AIBN (0.18 g) といったモノマーを用い、実施例 22 と同様の手順で行った。

【0111】

(実施例 24)

(193 nm ネガ型フォトレジストに使用するポリマー (式 7 と式 13 の共重合体) の合成)¹⁰

1, 1, 1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレート (式 7) (4.0 g) と、3-フルフリルオキシ-2-ヒドロキシプロップー-1-イル・メタクリレート (式 13) (1.30 g) と、AIBN (0.18 g) といったモノマーを用い、実施例 22 と同様の手順で行った。

【0112】

以下に、本発明をまとめて開示する。

(1) ポリマーを含むフォトレジスト組成物であって、前記ポリマーは、下記構造

【化 30】

20

を有する少なくとも 1 つのアクリレートまたはメタクリレート・モノマーを含み、R¹ は、水素 (H)、直鎖または分岐鎖の炭素数 1 ~ 20 のアルキル基、または、セミフルオロ化またはパーフルオロ化された直鎖または分岐鎖の炭素数 1 ~ 20 のアルキル基を表し、R² は、置換脂肪族基の各炭素に結合された 0 または 1 つのトリフルオロメチル基 (CF₃) を有する非置換脂肪族基または置換脂肪族基、または、置換芳香族基または非置換芳香族基を表し、R³ は、水素 (H)、メチル基 (CH₃)、トリフルオロメチル基 (CF₃)、ジフルオロメチル基 (CHF₂)、フルオロメチル基 (CH₂F)、または、セミフルオロ化またはパーフルオロ化された脂肪族基を表し、R⁴ は、トリフルオロメチル基 (CF₃)、ジフルオロメチル基 (CHF₂)、フルオロメチル (CH₂F)、または、セミフルオロ化またはパーフルオロ化された、置換または非置換脂肪族基を表す、フォトレジスト組成物。³⁰

(2) 溶媒、光酸発生剤、架橋剤、塩基性化合物、界面活性剤、潜在性の塩基性化合物、光塩基発生剤、溶解抑制剤、溶解促進剤、接着促進物質、消泡剤の少なくとも 1 つをさらに含む、上記 (1) に記載のフォトレジスト組成物。⁴⁰

(3) 前記 R¹ は、水素、メチル基、またはトリフルオロメチル基を示す、上記 (1) に記載のフォトレジスト組成物。

(4) 前記モノマーのメチレン基は、少なくとも 1 つのハロゲン原子で置換される、上記 (1) に記載のフォトレジスト組成物。

(5) 前記モノマーは、1, 1, 1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレートまたはそれに類似のアクリレート、1, 1, 1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレートまたはそれに類似のアクリレート、および 2-[5-(1', 1', 1'-トリフルオロ-2'-トリフルオロメチル-2'-ヒドロキシ) プロピル] ノルボルニルメタクリレートまたはそれに類似のアクリレートからなる群から選択される、上記 (1) に記載

30

40

50

のフォトレジスト組成物。

(6) 前記組成物は、ネガ型フォトレジストである、上記(1)に記載のフォトレジスト組成物。

(7) 前記組成物は、さらに、架橋剤を含む、上記(1)に記載のフォトレジスト組成物。

(8) 前記架橋剤は、前記組成物の形成中に添加される、上記(7)に記載のフォトレジスト組成物。

(9) 前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも1つを含む、上記(7)に記載のフォトレジスト組成物。

10

(10) 前記グリコウリルは、下記構造

【化31】

20

で表され、R⁵、R⁶、R⁷、R⁸、R⁹およびR¹⁰がそれぞれ、水素、脂肪族基または芳香族基を表す、上記(9)に記載のフォトレジスト組成物。

(11) 前記組成物は、ポジ型フォトレジストである、上記(1)に記載のフォトレジスト組成物。

(12) 前記モノマーの少なくとも1つのフルオロ・アルコール基の水素が、酸に不安定な基で置換される、上記(1)に記載のフォトレジスト組成物。

(13) 前記酸に不安定な基は、t-アルキル・カーボネート、t-アルキル・エステル、t-アルキル・エーテル、ケタールおよびアセタールの少なくとも1つを含む、上記(12)に記載のフォトレジスト組成物。

30

(14) 前記組成物は、さらに、少なくとも1つのコモノマーを含む、上記(1)に記載のフォトレジスト組成物。

(15) 前記コモノマーは、求核分子を含む、上記(14)に記載のフォトレジスト組成物。

(16) 前記求核分子は、アルコールである、上記(15)に記載のフォトレジスト組成物。

(17) 前記組成物は、さらに、架橋剤を含む、上記(14)に記載のフォトレジスト組成物。

40

(18) 前記架橋剤は、前記ポリマーに結合される、上記(17)に記載のフォトレジスト組成物。

(19) 前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも1つを含む、上記(17)に記載のフォトレジスト組成物。

(20) 前記少なくとも1つのコモノマーは、2-メタクリルオキシ-6-ヒドロキシメチルナフタレン、6-メタクリルオキシメチル-2-ナフトール、2-ヒドロキシエチルメタクリレート、3-ヒドロキシ-1-アダマンチルメタクリレート、3-ヒドロキシ-1-アダマンチルアクリレート、2-メタクリルオキシ-5-ヒドロキシメチルノルボルナン、2-アクリロキシ-5-ヒドロキシメチルノルボルナン、またはこれらの混合物か

50

らなる群から選択される、上記(14)に記載のフォトレジスト組成物。

(21) 前記組成物は、ネガ型フォトレジストである、上記(14)に記載のフォトレジスト組成物。

(22) 前記組成物は、ネガ型フォトレジストであり、前記少なくとも1つのコモノマーは、架橋剤を含む、上記(14)に記載のフォトレジスト組成物。

(23) 前記少なくとも1つのコモノマーは、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、3-フルフリルオキシー-2-ヒドロキシプロップ-1-イル・メタクリレート($3-fur furyl oxy-2-hydroxyprop-1-yl methacrylate$)、テトラシクロ[5.2.1.0^{2.7}.0^{4.6}]ー5-オキソーウンデカニル-10-アクリレート、グリシジルメタクリレート、テトラシクロ[5.2.1.0^{2.7}.0^{4.6}]ー5-オキソーウンデカニル-10-アクリレート、グリシジルアクリレート、2-メタクリルオキシー-6-ヒドロキシメチルナフタレン、またはこれらの混合物からなる群から選択される、上記(22)に記載のフォトレジスト組成物。
10

(24) 前記組成物は、ポジ型フォトレジストであり、前記少なくとも1つのコモノマーは、酸に不安定な基を含む、上記(14)に記載のフォトレジスト組成物。

(25) 前記少なくとも1つのコモノマーは、t-ブチルメタクリレート、1-メチルシクロペンチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、またはこれらの混合物からなる群から選択される、上記(24)に記載のフォトレジスト組成物
20

(26) 前記少なくとも1つのコモノマーは、ラクトン、スルホンアミド、無水物、カルボン酸、またはこれらの混合物からなる群から選択される少なくとも1つの極性基を含む、上記(14)に記載のフォトレジスト組成物。

(27) 前記コモノマーは、 α -メタクリロイルオキシ- γ -ブチロラクトンおよび5-メタクリロイルオキシー-2,6-ノルボルナンカルボラクトンの少なくとも1つを含む、上記(26)に記載のフォトレジスト組成物。

(28) 前記コモノマーは、放射線源に露光されないフォトレジスト組成物の溶解を促進するように作用する、上記(26)に記載のフォトレジスト組成物。

(29) 前記コモノマーは、カルボン酸を含む、上記(28)に記載のフォトレジスト組成物。
30

(30) 前記コモノマーは、アクリル酸およびメタクリル酸の少なくとも1つを含む、上記(29)に記載のフォトレジスト組成物。

(31) 1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレートまたはそれに類似のアクリレート、1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレートまたはそれに類似のアクリレート、および2-[5-(1',1',1'-トリフルオロー-2'-トリフォルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニルメタクリレートまたはそれに類似のアクリレートからなる群から選択される重合可能なモノマーを含む、フォトレジスト組成物。

(32) 3-フルフリロキシ-2-ヒドロキシプロップ-1-イル・メタクリレート($3-fur furyl oxy-2-hydroxyprop-1-yl methacrylate$)またはそれに類似のアクリレート、6-メタクリルオキシメチル-2-ナフトールまたはそれに類似のアクリレート、2-メタクリルオキシー-6-ヒドロキシメチルナフタレンまたはそれに類似のアクリレートからなる群から選択される重合可能なモノマーを含む、フォトレジスト組成物。
40

(33) 基板をパターニングする方法であって、前記方法は、
前記基板に、下記構造

【化32】

を有する少なくとも1つのアクリレートまたはメタクリレート・モノマーを含み、R¹は水素(H)、直鎖または分岐鎖の炭素数1～20のアルキル基、または、セミフルオロ化またはパーフルオロ化された直鎖または分岐鎖の炭素数1～20のアルキル基を示し、R²は、置換脂肪族基の各炭素に結合された0または1つのトリフルオロメチル基(CF₃)を有する非置換脂肪族基または置換脂肪族基、または、置換芳香族基または非置換芳香族基を示し、R³は、水素(H)、メチル基(CH₃)、トリフルオロメチル基(CF₃)、ジフルオロメチル基(CHF₂)、フルオロメチル基(CH₂F)、または、セミフルオロ化またはパーフルオロ化された脂肪族基を示し、R⁴は、トリフルオロメチル基(CF₃)、ジフルオロメチル基(CHF₂)、フルオロメチル(CH₂F)、または、セミフルオロ化またはパーフルオロ化された、置換または非置換脂肪族基を示すポリマーを含むフォトレジスト組成物を塗布し、フィルムを形成するステップと、前記フィルムを像形成放射線源にパターン化するように露光するステップと、前記フィルムの領域を現像し、パターン化された基板を形成するステップとを含む方法。

(34) 前記フォトレジスト組成物を塗布するステップ後で、かつ前記フィルムを露光するステップ前に、前記フィルムをベーキングするステップをさらに含む、上記(33)に記載の方法。

(35) 前記露光するステップ後で、かつ前記フィルムを現像するステップ前に、前記フィルムをベーキングするステップをさらに含む、上記(33)に記載の方法。

(36) 前記パターン化された基板をエッチングするステップをさらに含む、上記(33)に記載の方法。

(37) 前記エッチングするステップは、イオン・エッチングするステップを含む、上記(36)に記載の方法。

(38) 前記フィルムは、不溶性であり、前記現像するステップにおいて、前記像形成放射線源に露光された前記フィルムを可溶性にする、上記(33)に記載の方法。

(39) 前記可溶性フィルムを除去するステップをさらに含む、上記(38)に記載の方法。

(40) 前記フィルムは、可溶性であり、前記現像するステップにおいて、前記像形成放射線源に露光された前記フィルムを不溶性にする、上記(33)に記載の方法。

(41) 前記可溶性フィルムを除去するステップをさらに含む、上記(40)に記載の方法。

(42) 前記フォトレジスト組成物は、溶媒、光酸発生剤、架橋剤、塩基性化合物、界面活性剤、潜在性の塩基性化合物、光塩基発生剤、溶解抑制剤、溶解促進剤、接着促進物質、消泡剤の少なくとも1つをさらに含む、上記(33)に記載の方法。

(43) 前記R¹は、水素、メチル基、またはトリフルオロメチル基を示す、上記(33)に記載の方法。

(44) 前記モノマーのメチレン基は、少なくとも1つのハロゲン原子で置換される、上記(33)に記載の方法。

(45) 前記モノマーは、1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル・メタクリレートまたはそれに類似のアクリレート、1,1,1-トリフルオロー-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル・メタクリレートまたはそれに類似のアクリレート、および2-[5-(1',1',1'-トリフルオロー-2'-トリフルオロメチル-2'-ヒドロキシ)プロピル]ノルボルニル・メタ

10

20

30

40

50

クリレートまたはそれに類似のアクリレートからなる群から選択される、上記(33)に記載の方法。

- (46) 前記組成物は、ネガ型フォトレジストである、上記(33)に記載の方法。
- (47) 前記組成物は、さらに、架橋剤を含む、上記(33)に記載の方法。
- (48) 前記架橋剤は、前記組成物の形成中に添加される、上記(47)に記載の方法。
- (49) 前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも1つを含む、上記(47)に記載の方法。
- (50) 前記グリコウリルは、下記構造

【化33】

10

で表され、R⁵、R⁶、R⁷、R⁸、R⁹およびR¹⁰がそれぞれ、水素、脂肪族基または芳香族基を表す、上記(49)に記載の方法。

- (51) 前記組成物は、ポジ型フォトレジストである、上記(33)に記載の方法。
- (52) 前記モノマーの少なくとも1つのフルオロ・アルコール基の水素が、酸に不安定な基で置換される、上記(33)に記載の方法。
- (53) 前記酸に不安定な基は、t-アルキル・カーボネート、t-アルキル・エステル、t-アルキル・エーテル、ケタールおよびアセタールの少なくとも1つを含む、上記(52)に記載の方法。
- (54) 前記組成物は、さらに、少なくとも1つのコモノマーを含む、上記(33)に記載の方法。

30

- (55) 前記コモノマーは、求核分子を含む、上記(54)に記載の方法。
- (56) 前記求核分子は、アルコールである、上記(55)に記載の方法。
- (57) 前記組成物は、さらに、架橋剤を含む、上記(54)に記載の方法。
- (58) 前記架橋剤は、前記ポリマーに結合される、上記(57)に記載の方法。
- (59) 前記架橋剤は、グリコウリル、メラミン、エポキシド、フリル、テトラヒドロフリルおよびビニル・エーテルの少なくとも1つを含む、上記(57)に記載の方法。
- (60) 前記少なくとも1つのコモノマーは、2-メタクリルオキシ-6-ヒドロキシメチルナフタレン、6-メタクリルオキシメチル-2-ナフトール、2-ヒドロキシエチルメタクリレート、3-ヒドロキシ-1-アダマンチルメタクリレート、3-ヒドロキシ-1-アダマンチルアクリレート、2-メタクリルオキシ-5-ヒドロキシメチルノルボルナン、2-アクリルオキシ-5-ヒドロキシメチルノルボルナン、またはこれらの混合物からなる群から選択される、上記(54)に記載の方法。

40

- (61) 前記組成物は、ネガ型フォトレジストである、上記(54)に記載の方法。
- (62) 前記組成物は、ネガ型フォトレジストであり、前記少なくとも1つのコモノマーは、架橋剤を含む、上記(54)に記載の方法。

- (63) 前記少なくとも1つのコモノマーは、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、3-フルフリルオキシ-2-ヒドロキシプロップ-1-イル・メタクリレート(3-furfuryloxy-2-hydroxyprop-1-y 1-methacrylate)、テトラシクロ[5.2.1.0^{2.7}.0^{4.6}] -5-オキソ-10-メタクリレート、テトラシクロ[5.2.1.0².0⁴] -

50

[0⁴ · 6] -5-オキソーウンデカニル-10-アクリレート、グリシジルメタクリレート、2-メタクリルオキシー-6-ヒドロキシメチルナフタレン、またはこれらの混合物からなる群から選択される、上記(62)に記載の方法。

(64) 前記組成物は、ポジ型フォトレジストであり、前記少なくとも1つのコモノマーは、酸に不安定な基を含む、上記(54)に記載の方法。

(65) 前記少なくとも1つのコモノマーは、t-ブチルメタクリレート、1-メチルシクロペンチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、またはこれらの混合物からなる群から選択される、上記(64)に記載の方法。

(66) 前記少なくとも1つのコモノマーは、ラクトン、スルホンアミド、無水物、カルボン酸、またはこれらの混合物からなる群から選択される少なくとも1つの極性を有する基を含む、上記(54)に記載の方法。10

(67) 前記コモノマーは、 α -メタクリロイルオキシ- γ -ブチロラクトンおよび5-メタクリロイルオキシー-2,6-ノルボルナンカルボラクトンの少なくとも1つを含む、上記(66)に記載の方法。

(68) 前記コモノマーは、放射線源に露光されないフォトレジスト組成物の溶解を促進するように作用する、上記(66)に記載の方法。

(69) 前記コモノマーは、カルボン酸を含む、上記(68)に記載の方法。

(70) 前記コモノマーは、アクリル酸およびメタクリル酸の少なくとも1つを含む、上記(69)に記載の方法。

(71) 前記基板は、シリコン・ウェハ、フォトグラフ用マスク・ブランクおよび印刷回路ボードの少なくとも1つを含む、上記(33)に記載の方法。20

フロントページの続き

(72)発明者 ロバート・デービッド・アレン
アメリカ合衆国、95120、カリフォルニア州サン・ノゼ、カレ・デル・コネジョ、6186

(72)発明者 グレゴリー・ブレイタ
アメリカ合衆国、95141、カリフォルニア州サン・ノゼ、マッキーン・ロード、23900

(72)発明者 フィリップ・ブロック
アメリカ合衆国、94085、カリフォルニア州サニーベール、カロリーナ・アベニュー、757

(72)発明者 リチャード・エー・ディビエトロ
アメリカ合衆国、95008、カリフォルニア州キャンベル、キャプリ・ドライブ、1181

(72)発明者 デ布拉・フェンゼルーアレクサンダー
アメリカ合衆国、95125、カリフォルニア州サン・ノゼ、マーシャ・ウェイ、2532

(72)発明者 カール・ラーソン
アメリカ合衆国、95123、カリフォルニア州サン・ノゼ、ラブリー・クリーク・コート、65
13

(72)発明者 デービッド・メディロス
アメリカ合衆国、10562、ニューヨーク州キッチャワン、バインズブリッジ・ロード、767

(72)発明者 ダーク・ファイファー
アメリカ合衆国、10522、ニューヨーク州ドップズ・フェリー、アパートメント・3シー、メ
イン・ストリート、24

(72)発明者 ラットマン・スーリヤクマラン
アメリカ合衆国、95120、カリフォルニア州サン・ノゼ、ブライア・ランチ・レーン、71
1

(72)発明者 ホア・ディー・ツルオング
アメリカ合衆国、95133、カリフォルニア州サン・ノゼ、ベンウッド・ストリート、1885

(72)発明者 グレゴリー・エム・ワルラフ
アメリカ合衆国、95037、カリフォルニア州モーガン・ヒル、デル・モンテ・アベニュー・ナ
ンバー142、16925

F ターム(参考) ZH025 AA02 AB16 AC04 AC08 AD01 AD03 BE00 BE10 BG00 CB14
CB41 CB45 CC04 CC17 CC20 FA10 FA17
4J100 AL03Q AL08P AL08Q BA02Q BA03P BA03Q BB17P BC03Q BC08P BC09Q
BC49Q BC53Q BC54Q CA01 CA04 FA03 FA19 JA38

【要約の続き】

【選択図】 なし