Interval Graph Coloring related to Optical Network Planning

www.huawei.com

June 15, 2019,
Huawei,
Mathematical Modeling and Optimization Algorithm
Competence Center,
Moscow Research Center

Mikhail Kharitonov

WDM: Wavelength Division Multiplexing

WDM multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) to increase capacity. WDM uses a multiplexer (MUX) to combine several signals together, and a demultiplexer (DEMUX) at the receiver to split them apart.

Optical fiber link

Total frequency bandwidth is then divided into slots

DEMUX

Optimization Problem

Input:

Network G=(V,E)

Commodities $D=\{D_i, i=1,..K\}$, a single path P_i for each commodity Resource of each edge is the spectrum interval, say, $[0,W)\subseteq N$ Spectrum needed for each commodity w:D->N

Decision variables:

 $\forall d \in D$, a spectrum interval $[I_d, r_d) \subseteq [0, W)$, such that $r_d - I_d = w(d)$ and $[I_d, r_d) \cap [I_e, r_e] = \emptyset$ if $P_d \cap P_e \neq \emptyset$ (intervals are disjoint)

Objective:

- (A) Fix W, and find a feasible subset $F \subseteq D$ with maximal |F| or $\sum_{d \in F} w(d)$
- (B) Find the minimal W such that a feasible solution for the whole D exists

Graph Interval Coloring Approach

commodities >> nodes, paths intersection >> edges , bandwidth >> weight of the node

Particular case: string graph A_n

Consider a string graph • — • — • — • … — • All paths are substrings

Assume all commodities have the same weight.

A greedy algorithm of $O(n \ln(n))$ working time yields the optimum for (B)

- 1. Sort all commodities by their left end in increasing order $d_1, d_2, ..., d_K$.
- 2. W := 0
- 3. For j=1 to K do
 - 1. If d_j spectrum can be allocated into [0, W):
 - 1. allocate it into [0, W)
 - 2. Else:
 - 1. assign d_i spectrum as [W,W+1)
 - 2. W=W+1

Gene

Difference compared with A_n :

- "Bricks" are not connected anymore
- Commodities have different weights

Max-coloring approach

An interesting model reduces Interval coloring to a specific usual coloring problem: Take a coloring $c: V \to \{1,...,M\}$ such that no edge has endpoints of the same color. Let $v_i \in V(i) = c^{-1}(i)$ be the node with maximal weight: $v_i = argmax_{v \in V(i)}(w(v))$, i = 1,...,M

Let $W_i = \sum_{j=1,...i-1} w(v_j)$

Then the solution $Int(v)=[W_{i},W_{i}+w(v))$ is feasible. H_{4}

So an optimization arises, to find a coloring with H_3 in an **arbitrary** number M of colors with minimal possible $T = \sum_{i=1,...,M} w(v_i)$

The minimal M will not necessarily yield the minimum of T

Complexity

- Both problems (A), feasibility, and (B) optimality are NP hard
- We need a time efficient method able to work with
 - 10-500 nodes
 - Up to 10000 demands
- For small cases (about 10 nodes) the model should be at 10% from the global optimum (provided e.g. by ILP solvers)
- Please send your solution to mikhail.kharitonov1@huawei.com

THANK YOU