Understanding the Machine Learning Workflow with scikit-learn

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

scikit-learn in the typical ML workflow

Estimators and pipelines

Model evaluation and transformation

Loading, cleaning, transforming, and visualizing datasets

Machine Learning Workflow

Basic Machine Learning Workflow

What Data Do You Have to Work With?

Load and Store Data

Data Preprocessing

Decision Trees, Support Vector Machines?

Training to Find Model Parameters

Evaluate the Model

Score the Model

Different Algorithm, More Data, More Training?

Iterate Till Model Finalized

Model Used for Predictions

Retrained Using New Data

Basic Machine Learning Workflow

scikit-learn has objects and functions for every step in the ML workflow

The Estimator API

scikit-learn - easy-to-use, very comprehensive and efficient Python library for traditional ML models

The Estimator API

Estimator API for consistent interface

Create a model object

Fit to training data

Predict for new data

Pipelines for complex operations

Principles Underlying Estimator APIs

Consistency

Inspection

Limited object hierarchy

Composition

Sensible defaults

Scikit-Learn's Estimator API

The Scikit-Learn API is designed with the following guiding principles in mind, as outlined in the Scikit-Learn API paper:

- Consistency: All objects share a common interface drawn from a limited set of methods, with consistent documentation.
- Inspection: All specified parameter values are exposed as public attributes.
- Limited object hierarchy: Only algorithms are represented by Python classes; datasets are represented in standard formats (NumPy arrays, Pandas DataFrame s, SciPy sparse matrices) and parameter names use standard Python strings.
- Composition: Many machine learning tasks can be expressed as sequences of more fundamental algorithms, and Scikit-Learn makes use of this wherever possible.
- Sensible defaults: When models require user-specified parameters, the library defines an appropriate default value.

In practice, these principles make Scikit-Learn very easy to use, once the basic principles are understood. Every machine learning algorithm in Scikit-Learn is implemented via the Estimator API, which provides a consistent interface for a wide range of machine learning applications.

Basic Machine Learning Workflow

Pandas and NumPy Inter-operability

Standardization, Normalization, Scaling

Missing Values and Outliers

Comprehensive Suite of Algorithms

Find Best Model Parameters

Invoke fit() Or fit_transform()

Trained Model Available

Comprehensive Suite of Cross-validation Tools

Cross-validation, K-fold, Group K-fold

Metrics for Model Evaluation

Rinse and Repeat

Rinse and Repeat

Fitted Model for Production Use

Invoke predict() Method

Invoke predict() Method

scikit-learn Pipeline

Estimator object that sequentially applies several transforms. Pipeline can be evaluated and tuned as a whole.

Pipelines

Pipeline objects are estimators too
Apply transforms sequentially
Return fitted estimator
Final output only implements fit

Pipelines

Intermediate transforms can be cached Easily tune pipeline as a whole

Cross-validation

Switch in or switch out individual steps

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Focus first on defining the right problem to solve, then on choosing the right estimator to solve it

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Demo

Exploring built-in datasets in scikit-learn

Demo

Loading and working with external datasets in scikit-learn

Summary

scikit-learn in the typical ML workflow

Estimators and pipelines

Model evaluation and transformation

Loading, cleaning, transforming, and visualizing datasets