TD ELECTROCINETIOUE

Exercice 1 Double pont diviseur de tension

Dans le circuit de la *figure 1*, les valeurs des composants sont : $R_1 = R_2 = 10 \Omega$, $R_3 = R_4 = 20 \Omega$, E = 5 V.

- 1. Calculer la résistance R₂₃₄ équivalente à R₂, R₃ et R₄ entre les points A et B.
- 2. En déduire la tension calculer U_{AB} en appliquant la formule du diviseur de tension.
- 3. En utilisant maintenant la formule du diviseur de tension, au circuit initial, calculer U_{CB}.

Exercice 2

Le dipôle de la *figure 2* est alimenté sous une tension de 120 V. Calculer :

- 1. Sa résistance
- 2. L'intensité du courant qui traverse chaque résistance.

Données: $R_1 = 3 \Omega$, $R_2 = 6 \Omega$, $R_3 = 17 \Omega$, $R_4 = 20 \Omega$, $R_5 = 4 \Omega$, $R_6 = 18 \Omega$, $R_7 = 36 \Omega$

Exercice 3

- 1. En procédant par schémas équivalents, déterminer le générateur de Thévenin équivalent au circuit entre les points **A** et **B** de la *figure 3*.
- 2. On branche une résistance $\mathbf{R} = 4 \mathbf{k} \mathbf{\Omega}$ entre \mathbf{A} et \mathbf{B} . Calculer le courant qui circule dans cette résistance.

Exercice 4 Application des lois de Kirchhoff

- 1. Déterminer les tensions U₁, U₂, U₃, U₄ et U₅ du réseau représenté sur la *figure 4*.
- 2. Déterminer les courants I₁, I₂, I₃, I₄, I₅ et I₆.

Exercice 5

Déterminer l'intensité des courants qui traversent chaque branche de la *figure 5* en utilisant les lois de Kirchhoff.

Données:
$$E_1 = 2V$$
; $E_2 = 8V$; $r_1 = 2\Omega$; $r_2 = 1\Omega$; $R_3 = 15\Omega$; $R_4 = 10\Omega$; $R_5 = 5\Omega$

Exercice 6

Déterminer l'intensité des courants qui traversent chaque branche de la *figure 6* en utilisant les lois de Kirchhoff.

Données: $E_1 = 10 \text{ V}$; $E_2 = 5 \text{ V}$; $E_3 = 15 \text{ V}$; $R_1 = 5 \Omega$; $R_2 = 10 \Omega$ et $R_3 = 15 \Omega$

Exercice 7

On considère:

un **dipôle 1** constitué par la mise en série d'un conducteur ohmique de résistance $R_1 = 100\Omega$ et d'une bobine parfaite d'impédance $L\omega = 75\Omega$.

un **dipôle 2** constitué par la mise en série d'un conducteur ohmique de résistance

- $R_2 = 150\Omega$ et d'un condensateur d'impédance $\frac{1}{C\omega} = 200\Omega$.
 - I. On branche ces deux dipôles en série sous une tension sinusoïdale u(t) de valeur efficace 250V et de fréquence $50H_Z$.
 - I.1 Calculer les impédances complexes \underline{Z}_1 et \underline{Z}_2 de chacun des dipôles 1 et 2.
 - I.2 Calculer l'impédance Z de l'association en série.
 - I.3 Calculer l'intensité complexe <u>I</u> qui traverse l'association des deux dipôles en série.
 - II. On branche ces deux dipôles en dérivation sous une tension sinusoïdale u(t) de valeur efficace 250V et de fréquence 50Hz.
 - II.1 Calculer les intensités complexes \underline{I}_1 et \underline{I}_2 qui traversent respectivement les dipôles 1 et 2.
 - II.2 En déduire l'intensité complexe \underline{I} qui traverse l'association des deux dipôles en dérivation.

Exercice 8

On considère le circuit de la *figure 7* alimenté par une source de tension sinusoïdale de pulsation ω et de valeur efficace U=20V. Sachant que $L\omega=\frac{1}{C\omega}=R=10\Omega$. Calculer :

- 1. Les impédances complexes \underline{Z}_1 , \underline{Z}_2 et \underline{Z}_{eq} .
- 2. Les courants complexes \underline{I} , \underline{I}_1 et \underline{I}_2 .
- 3. Les puissances moyennes P, P_1 et P_2 .

Exercice 9

Un générateur basses fréquences maintient une tension sinusoïdale de valeur maximale U_m et de pulsation ω entre les bornes A et B d'un circuit comprenant en parallèle :

- une résistance R
- une inductance pure L
- un condensateur C
- 1. Calculer les courants complexes \underline{I}_R , \underline{I}_L et \underline{I}_C dans les différentes branches ainsi que le courant principal \underline{I} débité par le générateur en fonction de U_m , R, L, C et ω .
- 2. En déduire le module du courant principal \underline{I} en fonction de $U_{\scriptscriptstyle m}$, R, L, C et ω .
- 3. Exprimer U_m en fonction de $\|\underline{I}\| = I_m$, R, L, C et ω . Calculer les limites de $U_m(\omega)$ lorsque ω tend vers zéro et lorsque ω tend vers l'infini. Conclure.
- 4. Déterminer la pulsation $\omega = \omega_0$ pour laquelle la tension U_m est maximale.

- 5. Quel est le nom du phénomène mis en évidence ?
- 6. Quelle est la nature du circuit pour $\omega = \omega_0$?

