

TRANSLATOR'S CERTIFICATE

I, Andrew Wilford, a citizen of the United States of America, residing in Yonkers, New York, state that:

I am familiar with the English and German languages;

I have read a copy of the German-language documents PCT application PCT/DE2003/002290 published 22 January 2004 as WO/2004/007705 and the hereto attached certified copy of German patent application 102 31 297.4;

The German-language texts of both documents are identical.

The English-language text filed 7 January 2005 is an accurate translation of these German-language documents.

Andrew Wilford

IN THE U.S. PATENT AND TRADEMARK OFFICE

I hereby certify that I have deposited this correspondence with the US Postal Service as first-class or, if a mailing-tabel number is given below, as express mail addressed to Comm. of Patents, Box 1450, Alexandria, VA 22313-1450 on the below-given date.

Inventor

Lothar EGGELING et al

Patent App.

10/520,999

Filed

6 January 2006

Conf. No. 2791

For

NUCLEOTIDE SEQUENCES THAT ENCODE DEREGULATED

PHOSPHOGLYCER

Art Unit

1656

Examiner Gebreyesus, K

Hon. Commissioner of Patents Box 1450 Alexandria, VA 22313-1450

TRANSMITTAL OF PRIORITY PAPERS

In support of the claim for priority under 35 USC 119, which is hereby reiterated, Applicant herewith encloses a certified copy of each application listed below:

Number

Filing date

Country

10231297.4

10 July 2002

Germany.

Please acknowledge receipt of the above-listed documents.

K.F. Ross P.C.

by: Jønathan Myers, 26,963

Attorney for Applicant

er

30 July 2008

5683 Riverdale Avenue Box 900

Bronx, NY 10471-0900

Cust. No.: 535

Tel: 718 884-6600

Fax: 718 601-1099

Email: email@kfrpc.com

Enclosure: Cert. Prior. Doc.

L BUNDESREPUBLIK DEUTSCHLAND

23155

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 31 297.4

Anmeldetag:

10. Juli 2002

Anmelder/Inhaber:

Forschungszentrum Jülich GmbH, 52428 Jülich/DE;

Amino GmbH, 38373 Frellstedt/DE.

Erstanmelder: Forschungszentrum Jülich GmbH,

52428 Jülich/DE

Bezeichnung:

Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin

ABC.

C 12 N, C 07 H, C 12 P

Die angehefteten Stücke so richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser in stanmeldung.

München, den 8. Juni 2005

Deutsches Patent- und Markenamt

Der Präsident

lm-Auftrag

A 9161 03/00 EDV-L

Western

Beschreibung

Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin

Die Erfindung betrifft Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin.

5

10

Die Aminosäure L-Serin findet in der Nahrungsmittel-, Futtermittel- und Pharmaindustrie, sowie in der Humanmedizin Anwendung. Darüber hinaus dient sie als Baustein für die Synthese weiterer industriell verwertbarer Produkte, wie z. B. L-Tryptophan aus Indol und L-Serin.

Es ist bekannt, dass L-Serin durch Fermentation von

15

20

Stämmen coryneformer Bakterien hergestellt werden kann. So ist z. B. ein Stamm von Corynebacterium glycinophilum in der Lage, L-Serin aus Glycin und Kohlenhydraten
zu bilden (Kubota K, Kageyama K, Shiro T und Okumura S
(1971) Journal of General Applications in Microbiology,
17: 167-168; Kubota K, Kageyama K, Maeyashiki I, Yamada
K und Okumura S (1972) Journal of General Applications
in Microbiology 18: 365). An der Umsetzung von Glycin
zu L-Serin ist hier das Enzym L-Serin-Hydroxymethyltransferase beteiligt (Kubota K und Yokozeki K (1989)
Journal of Fermentation and Bioengeneering, 67(6):387390). Die verwendeten Stämme weisen darüber hinaus einen verminderten L-Serin-Abbau auf, der auf eine Ver-

15

20

25

30

ringerung der Aktivität des Enzyms L-Serin-Dehydratase zurückzuführen ist (Kubota K, Kageyama K, Shiro T und Okumura S (1971) Journal of General Applications in Microbiology, 17: 167-168; Kubota K (1985) Agricultural Biological Chemistry, 49:7-12).

Weiterhin wird L-Serin fermentativ aus Methanol und Glycin unter Zuhilfenahme methylotropher Bakterien, wie z. B. Hyphomicrobium Stämmen, produziert (Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shiamo M, Miyata A und Tanabe T (1993) Applied Microbiology and Biotechnology, 39: 427-432). In beiden Fällen muss die Aminosaure Glycin als Vorstufe für die Bildung der Aminosäure L-Serin eingesetzt werden.

Ferner sind coryneforme Bakterien bekannt, die L-Serin direkt aus Kohlenhydraten, ohne zusätzliche Beigabe weiterer Vorstufen produzieren können. Diese Stämme, die zu der Gattung Corynebacterium glutamicum gehören, weisen sich dadurch aus, dass sie z. B. resistent gegen die L-Serin-Analoga Serin-Hydroxamat und ß-Chloroalanin sind und durch ungerichtete Mutagenese erhalten wurden (Yoshida H und Nakayama K (1974) Nihon-Nogei-Kagakukaishi 48: 201-208).

Darüber hinaus sind Brevibacterium flavum Stämme bekannt, die durch ungerichtete Mutagenese Defekte im L-Serin-Abbau aufweisen, eine erhöhte Aktivität der durch serA kodierten 3-Phosphoglycerat-Dehydrogenase besitzen, und die aus Escherichia coli stammenden Gene serB und serC überexprimieren (EP0931833A2). Das hierbei verwendete deregulierte serA-Gen wurde durch ungerichtete Mutagenese gewonnen und unterscheidet sich vom Wild Typ Gen nur durch einen einzigen Basenaustausch. Die Expression dieses Gens beinhaltet den Nachteil,

dass es leicht zu einer Reveritierung und damit zur Zurückführung in den regulierten Zustand kommen kann.

Ein Nachteil bisher bekannter 3-Phosphoglycerat-

Dehydrogenasen liegt in ihrer Feedback Inhibition durch L-Serin, wodurch beispielsweise die Produktivität der mikrobiellen Herstellung von L-Serin verringert wird. Die Region, die für diese Regulation durch L-Serin verantwortlich ist, ist der C-Terminus des Proteins. Aus WO 93/12235 ist eine DNA bekannt, die für eine 10 3-Phosphoglycerat-Dhydrogenase aus E. coli codiert, deren C-Terminus zu 25% verändert, komplett deletiert oder in den in einem bestimmten Bereich eine Insertion durchgeführt wurde, so dass eine geringere Inhibition durch L-Serin zu verzeichnen war. Diese 3-Phospho-15 glycerat-Dehydrogenase wies jedoch nur noch eine geringe Aktivität auf. Eine verbesserte L-Serinproduktion wurde mit der deregulierten 3-Phosphoglycerat-

Die Wild Typ serA Sequenz ist allgemein bekannt und kann den dem Fachmann bekannten Datenbanken oder dem beigefügten Sequenzprotokoll gemäß SEQ ID No. 6 entnommen werden.

Dehydrogenase nicht nachgewiesen.

Es ist daher Aufgabe der Erfindung, Maßnahmen zur Verfügung zu stellen, mit denen die zuvor genannten
Nachteile beseitigt werden können und die zu einer verbesserten Produktion von L-Serin oder davon ableitbaren
Stoffwechselprodukten wie z. B. Tryptophan führen. Es
ist somit Aufgabe der Erfindung Nukleinsäuren, codierend für eine 3-Phosphoglycerat-Dehydrogenase, bereitzustellen, die gegenüber natürlich vorkommenden
3-Phosphoglycerat-Dehydrogenasen eine verringerte Feed-

10

15

20

25

back Inhibition durch L-Serin unter Erhalt der Aktivität aufweist. In diesem Zusammenhang ist es weiterhin Aufgabe der Erfindung eine 3-Phosphoglycerat-Dehydrogenase sowie Mikroorganismen bereitzustellen, die gegenüber natürlich vorkommenden 3-Phosphoglycerat-Dehydrogenasen bzw. Mikroorganismen mit einer 3-Phosphoglycerat-Dehydrogenase, eine verringerte Feedback Inhibition durch L-Serin unter Erhalt der Aktivität aufweisen. Weiterhin ist es Aufgabe der Erfindung, ein verbessertes Verfahren zur mikrobiellen Herstellung von L-Serin bereitzustellen.

Ausgehend vom Oberbegriff des Anspruchs 1, 2, 3, 4 oder 5 wird die Aufgabe erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 1, 2, 3, 4 oder 5 angegebenen Merkmalen. Weiterhin wird die Aufgabe ausgehend vom Oberbegriff des Anspruchs 9 erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 9 angegebenen Merkmalen. Die Aufgabe wird außerdem ausgehend vom Oberbegriff des Anspruchs 10 erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 10 angegebenen Merkmalen. Die Aufgabe wird ebenso ausgehend vom Oberbegriff des Anspruchs 11 erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 11 angegebenen Merkmalen. Die Aufgabe wird weiterhin ausgehend vom Oberbegriff des Anspruchs 20 erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 20 angegebenen Merkmalen. Ausgehend vom Oberbegriff des Anspruchs 26 wird die Aufgabe ebenfalls erfindungsgemäß gelöst, durch die im kennzeichnenden Teil des Anspruchs 26 angegebenen Merkmale. Weiterhin wird die Aufgabe ausgehend vom Oberbegriff des Anspruchs 27

erfindungsgemäß gelöst, durch die im kennzeichnenden Teil des Anspruchs 27 angegebenen Merkmale.

Mit den erfindungsgemäßen Nukleinsäuren sowie Polypeptiden ist es nurmehr möglich, eine 3-Phosphoglycerat-Dehydrognase bereitzustellen, die gegenüber natürlich vorkommenden oder gentechnisch nicht veränderten Nukleinsäuren bzw. Enzymen keine bzw. eine verringerte L-Serin Feedback Inhibierung unter Erhalt der 3-Phosphoglycerat-Dehydrogenase Aktivität aufweist.

Diese Eigenschaft wird im Folgenden unter der Bezeichnung "dereguliert" zusammengefasst. Weiterhin ist es möglich Mikroorganismen und Verfahren bereitzustellen, mit denen eine L-Serinproduktion mit gegenüber bisher bekannten mikrobiellen Verfahren höheren Ausbeuten mög-

15 lich ist.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.

Gegenstand der Erfindung ist die Bereitstellung von Nukleinsäuren codierend für eine deregulierte 3-Phosphoglycerat-Dehydrogenase, im Folgenden mit PGD bezeichnet, enthaltend eine Gensequenz serA gemäß SEQ ID No 1, 2, 3, 4 oder 5 oder ein Allel, Homolog oder

Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen. Die Nukleinsäure gemäß SEQ ID No 1, die für eine PGD mit einer Deletion von 197 Aminosäuren im C-Terminus codiert, hat sich als besonders vorteilhaft erwiesen.

Die erfindungsgemäßen Nukleinsäuren zeichnen sich dadurch aus, daß sie aus coryneformen Bakterien, bevor-

25

30

zugt der Gattung Corynebacterium oder Brevibacterium besonders bevorzugt aus Corynebacterium glutamicum isoliert werden. Beispiele für in Stammkulturen hinterlegte Wild Typen coryneformer Bakterien sind, Corynebacterium glutamicum ATCC 13032 sowie Corynebacterium acetoglutamicum ATCC 15806 oder auch Brevibacterium flavum ATCC 14067. Beispiele für zur Herstellung von L-Serin geeignete Mutanten oder Produktionsstämme sind, Organismen aus der Gruppe Arthrobacter, Pseudomonas, Nocardia, Methylobacterium, Hyphomycrobium, Alcaligenes oder Klebsiella. Die vorliegende Erfindung wird durch die Angabe der zuvor genannten Bakterienstämme näher charakterisiert, die jedoch nicht limitierend wirkt.

15 Unter einer Nukleinsäure oder einem Nukleinsäurefragment ist erfindungsgemäß ein Polymer aus RNA oder DNA
zu verstehen, das einzel- oder doppelsträngig sein kann
und optional natürliche, chemisch synthetisierte, modifizierte oder artifizielle Nukleotide enthalten kann.

Der Begriff DNA-Polymer schließt hierbei auch genomische DNA, cDNA oder Mischungen davon ein.

Unter Allelen sind erfindungsgemäß funktionell Äquivalente, d. h. im wesentlichen gleichwirkende Nukleotidsequenzen zu verstehen. Funktionell äquivalente Sequenzen sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz, beispielsweise durch die Degenerierung des genetischen Codes bedingt noch die gewünschten Funktionen besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z. B. durch chemische Synthese erhaltene und gegebenenfalls an den

10

25

Kodongebrauch des Wirtsorganismus angepasste Nukleotidsequenzen.

Unter einem funktionellen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten Sequenz, welche weiterhin die gewünschte Funktion zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste.

Inbegriffen sind hier auch sogenannte Sinnmutationen, die auf Proteinebene beispielsweise zum Austausch konservierter Aminosäuren führen können, welche aber zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen und somit funktionsneutral sind. Dies beinhaltet auch Veränderungen der Nukleotidsequenz, die auf Proteinebene den N-Terminus eines Proteins betreffen, ohne jedoch die Funktion des Proteins wesentlich zu beeinträchtigen.

Durch die vorliegende Erfindung werden auch solche Nukleotidsequenzen umfasst, welche man durch Modifikation der Nukleotidsequenz, resultierend in entsprechenden Derivaten, erhält. Ziel einer solchen Modifikation kann z. B. die weitere Eingrenzung der darin enthaltenen codierenden Sequenz oder z. B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein.

Außerdem sind artifizielle DNA-Sequenzen Gegenstand der vorliegenden Erfindung, solange sie, wie oben beschrieben, die gewünschten Eigenschaften vermitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung von mittels computergestützten Programmen (molecular modelling) erstellten Proteinen oder

durch in-vitro-Selektion ermittelt werden. Besonders geeignet sind codierende DNA-Sequenzen, die durch Rück-übersetzung einer Polypeptidsequenz gemäß der für den Wirtsorganismus spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit molekulargenetischen Methoden vertrauter Fachmann durch Computerauswertung anderer, bereits bekannter Gene des zu transformierenden Organismus leicht ermitteln.

Unter homologen Sequenzen sind erfindungsgemäß solche zu verstehen, die zu den erfindungsgemäßen Nukleotidsequenzen komplementär sind und/oder mit diesen hybridisieren. Der Begriff hybridisierende Sequenzen schließt erfindungsgemäß substanziell ähnliche Nukleotidsequenzen aus der Gruppe von DNA oder RNA ein, die unter an sich bekannten stringenten Bedingungen eine spezifische Wechselwirkung (Bindung) mit den zuvor genannten Nukleotidsequenzen eingehen. Hierzu zählen auch kurze Nukleotidsequenzen mit einer Länge von beispielsweise 10 bis 30, bevorzugt 12 bis 15 Nukleotiden. Dies umfaßt erfindungsgemäß u.a. auch sogenannte Primer oder Sonden.

Erfindungsgemäß sind auch die den codierenden Bereichen (Strukturgenen) vorausgehenden (5`-oder upstream) und/oder nachfolgenden (3'-oder downstream) Sequenzbereiche eingeschlossen. Insbesondere sind hierin Sequenzbereiche mit regulatorischer Funktion inbegriffen. Sie können die Transkription, die RNA-Stabilität oder die RNA Prozessierung sowie die Translation beeinflussen. Beispiele für regulatorische Sequenzen sind u.a. Promotoren, Enhancer, Operatoren, Terminatoren oder Translationsverstärker.

10

15

20

25

Gegenstand der Erfindung ist ferner eine Genstruktur enthaltend wenigstens eine der zuvor beschriebenen Nukleotidsequenzen codierend für eine deregulierte PDG sowie mit diesen operativ verknüpfte regulatorische Sequenzen, welche die Expression der codierenden Sequenzen in der Wirtszelle steuern.

Darüber hinaus betrifft die vorliegende Erfindung einen Vektor enthaltend eine Nukleotidsequenz der zuvor beschriebenen Art codierend für eine deregulierte PDG, mit diesen operativ verknüpfte regulative Nukleotidsequenzen sowie zusätzliche Nukleotidsequenzen zur Selektion transformierter Wirtszellen, für die Replikation innerhalb der Wirtszelle oder zur Integration in das entsprechende Wirtszell-Genom. Ferner kann der erfindungsgemäße Vektor eine Genstruktur der vorgenannten Art enthalten.

Als Vektoren eignen sich solche, die in coryneformen Bakterien repliziert werden wie z. B. pZ1 (Menkel E, Thierbach G, Eggeling L, Sahm H., 1989, Appl Environ Microbiol 55(3): 684-688), pEKEx2 (Eikmanns et al., Gene 102: 93-98 (1991), pVWEx oder pXMJ19. Andere Plasmidvektoren können in gleicher Weise verwendet werden. Diese Aufzählung ist für die vorliegende Erfindung jedoch nicht limitierend.

Unter Ausnutzung der erfindungsgemäßen Nukleinsäuresequenzen können entsprechende Sonden oder auch Primer
synthetisiert und dazu verwendet werden, beispielsweise
mit Hilfe der PCR-Technik analoge Gene aus anderen Mikroorganismen, bevorzugt coryneformen Bakterien zu
amplifizieren und isolieren.

15

Gegenstand der vorliegenden Erfindung ist somit auch eine Sonde zur Identifizierung und/oder Isolierung von Genen codierend für an der Biosynthese von L-Serin beteiligte Proteine, wobei diese Sonde ausgehend von den erfindungsgemäßen Nukleinsäuresequenzen der zuvor beschriebenen Art hergestellt wird und eine zur Detektion geeignete Markierung enthält. Bei der Sonde kann es sich um einen Teilausschnitt der erfindungsgemäßen Sequenz, beispielsweise aus einem konservierten Bereich handeln, der z. B. eine Länge von 10 bis 30 oder bevorzugt 12 bis 15 Nukleotiden aufweist und unter stringenten Bedingungen spezifisch mit homologen Nukleotidsequenzen hybridisieren kann. Geeignete Markierungen sind aus der Literatur zahlreich bekannt. Anleitungen hierzu findet der Fachmann unter anderem beispielsweise im Handbuch von Gait: Oligonukleotide synthesis: a practical approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994) oder beispielsweise im 20 Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Roche Diagnostics (Mannheim, Deutschland) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260).

25 Gegenstand der vorliegenden Erfindung ist ferner eine deregulierte PGD oder ein Teil davon, kodiert durch eine erfindungsgemäße Nukleinsäuresequenz gemäß SEQ ID No 1, 2, 3, 4 oder 5 oder deren Variationen der zuvor beschriebenen Art. Die vorliegende Erfindung betrifft ebenso eine deregulierte PGD mit einer Aminosäuresequenz gemäß der SEQ ID No 7, 8, 9, 10 oder 11 oder einer modifizierten Form dieser Polypeptidsequenzen oder Isoformen davon oder Mischungen daraus. Als besonders ge-

eignet hat sich eine 3-Phosphoglycerat-Dehydrogenase mit einer Aminosäuresequenz gemäß SEQ ID No 7 erwiesen.

Unter Isoformen sind Enzyme mit gleicher oder vergleichbarer Substrat- und Wirkungsspezifität zu verstehen, die jedoch eine unterschiedliche Primärstruktur aufweisen.

Unter modifizierten Formen sind erfindungsgemäß Enzyme

zu verstehen, bei denen Änderungen in der Sequenz, beispielsweise am N-Terminus des Polypeptids oder im Bereich konservierter Aminosäuren vorliegen, ohne jedoch
die Funktion des Enzyms zu beeinträchtigen. Diese Veränderungen können in Form von Aminosäureaustauschen

nach an sich bekannten Methoden vorgenommen werden.

Gegenstand der vorliegenden Erfindung sind Polypeptide mit der Funktion einer deregulierten PGD, die in ihrer Aminosäuresequenz derart verändert sind, dass sie gegenüber regulatorisch wirkenden Verbindungen, beispielsweise die sie in ihrer Aktivität regulierenden Stoffwechsel-Endprodukte (L-Serin) desensitiv sind (feedback-desensitiv).

Die erfindungsgemäßen Polypeptide zeichnen sich dadurch aus, daß sie aus coryneformen Bakterien, bevorzugt der Gattung Corynebacterium oder Brevibacterium, besonders bevorzugt der Art Corynebacterium glutamicum oder Brevibacterium besonders bevorzugt aus Corynebacterium glutamicum stammen. Beispiele für in Stammkulturen hinterlegte Wild Typen coryneformer Bakterien sind Corynebacterium glutamicum glutamicum ATCC 13032, sowie Corynebacterium acetoglutamicum ATCC 15806 oder auch Brevibacterium

flavum ATCC 14067. Beispiele für zur Herstellung von L-Serin geeignete Mutanten oder Produktionsstämme sind Organismen aus der Gruppe Arthrobacter, Pseudomonas, Nocardia, Methylobacterium, Hyphomycrobium, Alcaligenes oder Klebsiella. Die vorliegende Erfindung wird durch die Angabe der zuvor genannten Bakterienstämme näher charakterisiert, die jedoch nicht limitierend wirkt.

Gegenstand der vorliegenden Erfindung ist ferner die Übertragung wenigstens einer der erfindungsgemäßen Nukleinsäuresequenzen oder eines Teils davon codierend für eine deregulierte PGD, ein Allel, Homolog oder Derivat davon in ein Wirtssystem. Dies schließt auch die Übertragung eines erfindungsgemäßen Genkonstrukts oder Vektors in ein Wirtssystem ein. Diese Übertragung von DNA in eine Wirtszelle erfolgt nach gentechnischen Methoden. Als bevorzugtes Verfahren sei hier die Transformation und besonders bevorzugt die Übertragung von DNA durch Elektroporation genannt.

20

25

30

10

15

Als besonders geeignet hat sich ein homologes Wirtssystem erwiesen. Unter einem homologen Wirtssystem sind Mikroorganismen zu verstehen, die alle einer verwandten Familie angehören. Erfindungsgemäß sind hierunter coryneforme Bakterien zu verstehen, in die die erfindungsgemäß aus coryneformen Bakterien isolierten Nukleinsäuren eingebracht werden. Ein aus einer erfolgreich durchgeführten Nukleinsäureübertragung resultierender transformierter Mikroorganismus unterscheidet sich somit von dem entsprechend nicht transformierten Mikroorganismus dadurch, dass er zusätzliche Nukleinsäuren der erfindungsgemäßen Art enthält und entsprechend zur Ausprägung bringen kann. Stellvertretend für ein geeigne-

15

25

30

tes homologes Wirtssystem sei das Bakterium Corynebacterium glutamicum und bevorzugt der Stamm ATCC 13032 genannt. Als Kulturmedium ist je nach Anforderungen ein Komplexmedium wie z . B. LB Medium (T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Clonin : A Laborato-

ry Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1989)) oder auch ein Mineralsalzmedium, wie z. B. CGXII-Medium (Keilhauer, C. et al 1993, J. Bacteriol., 175:5593-5603) geeignet. Nach entsprechender

10 Kultivierung kann die Bakteriensuspension geerntet und zur weiteren Untersuchung, beispielsweise zur Transformation oder zur Isolierung von Nukleinsäuren nach gängigen Methoden eingesetzt werden. Diese Vorgehensweise kann analog auch auf andere coryneforme Bakterienstämme

angewendet werden. Dabei werden als Wirtssysteme Bakterien der Gattung Corynebacterium oder Brevibacterium bevorzugt. Innerhalb der Gattung Corynebacterium wird besonders die Art Corynebacterium glutamicum und innerhalb der Gattung Brevibacterium besonders die Art Bre-

vibacterium flavum bevorzugt. Zu den Vertretern dieser Gattungen zählen zum einen Stämme, die in ihren Eigenschaften als Wild Typ charakterisiert sind. Hier sind beispielsweise Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 14752, Corynebacterium

acetoglutamicum ATCC 15806, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM BP-1539, Brevibacterium flavum ATCC 14067, Brevibacterium lactofermentum ATCC 13869 und Brevibacterium divaricatum ATCC 14020 zu nennen.

Darüber hinaus schließt die vorliegende Erfindung auch Bakterienstämme als Wirtssystem ein, die sich als L-Serin produzierende Mutanten oder Aminosäureprodukti-

onsstämme auszeichnen. Diese können z. B. ausgehend von Wildtypstämmen durch klassische (chemische oder physikalische) oder gentechnische Methoden hergestellt werden. Beispiele für erfindungsgemäß geeignete Stämme sind u. a. Corynebacterium glutamicum ATCC 21586, Corynebacterium glutamicum KY 10150, Corynebacterium glutamicum ATCC 13032ApanBC und Brevibacterium ketoglutamicum ATCC 21222. Ferner sind erfindungsgemäß auch diejenigen Produktionsstämme geeignet, die dem Fachmann aus mikrobiellen Herstellungsverfahren bekannt sind, wie z. B. Enterobacterien, Bacillaceen oder Hefe-Arten. Die vorliegende Erfindung wird durch die ausgewählten Beispiele an Mikroorganismen näher charakterisiert, jedoch nicht limitiert.

15

20

10

Die vorliegende Erfindung betrifft ferner einen genetisch veränderten Mikroorganismus enthaltend in replizierbarer Form eine erfindungsgemäße Nukleinsäure der zuvor beschriebenen Art, welche im Vergleich zu dem entsprechend nicht genetisch veränderten Mikroorganismus verstärkt exprimiert wird und/oder deren Kopienzahl erhöht ist.

action of the

Ebenso umfasst die vorliegende Erfindung einen genetisch veränderten Mikroorganismus enthaltend in replizierbarer Form eine Genstruktur oder einen Vektor der
zuvor beschriebenen Art.

30

Gegenstand der vorliegenden Erfindung ist darüber hinaus auch ein genetisch veränderter Mikroorganismus enthaltend ein erfindungsgemäßes Polypeptid mit der Funktion einer deregulierten PGD der zuvor beschriebenen Art, welches eine im Vergleich zu dem entsprechend nicht genetisch veränderten Mikroorganismus eine verringerte bzw. keine feedback Inhibierung durch L-Serin unter Erhalt der PGD-Aktivität aufweist. Ein erfindungsgemäß genetisch veränderter Mikroorganismus zeichnet sich ferner dadurch aus, daß er ein coryneformes Bakterium, bevorzugt der Gattung Corynebacterium oder Brevibacterium, besonders bevorzugt der Spezies Corynebacterium glutamicum oder Brevibacterium flavum ist.

Prinzipiell können Gene durch an sich bekannte Methoden, wie beispielsweise die Polymerase-Ketten-Reaktion (PCR) mit Hilfe von kurzen, synthetischen Nukleotidsequenzen (Primern) amplifiziert und anschließend isoliert werden. Die Herstellung der verwendeten Primer erfolgt im Allgemeinen anhand bekannter Gensequenzen aufgrund bestehender Homologien in konservierten Bereichen der Gene und/oder unter Berücksichtigung des GC-Gehalts der DNA des zu untersuchenden Mikroorganismus.

Eine weitere Vorgehensweise zur Isolierung von codierenden Nukleotidsequenzen ist die Komplementation von
sogenannten Defekt-Mutanten des zu untersuchenden Organismusses, die zumindest phänotypisch einen Funktionsverlust in der Aktivität des zu untersuchenden Gens
oder entsprechenden Proteins aufweisen. Unter einer
Komplementation ist die Aufhebung des Gendefektes der
Mutante und weitgehende Wiederherstellung des ursprünglichen Erscheinungsbildes vor der Mutagenese zu verstehen, die durch die Einbringung funktioneller Gene oder
Genfragmente aus dem zu untersuchenden Mikroorganismus
erreicht wird.

20

25

30

Ein klassisches Mutagenese-Verfahren zur Herstellung von Defektmutanten ist beispielsweise die Behandlung der Bakterienzellen mit Chemikalien wie z.B.
N-Methyl-N-Nitro-N-Nitrosoguanidin oder UV-Bestrahlung.

Derartige Verfahren zur Mutationsauslösung sind allgemein bekannt und können unter anderem bei Miller
(A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992)) oder
im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington
D.C., USA, 1981) nachgelesen werden.

Die vorliegende Erfindung betrifft darüber hinaus ein Verfahren zur mikrobiellen Herstellung von L-Serin, wobei wenigstens eine der erfindungsgemäßen Nukleinsäuren, isoliert aus einem coryneformen Bakterium, in einen Wirtsorganismus übertragen und dort exprimiert werden, wobei die Genexpression und/oder die Aktivität des entsprechend kodierten Polypeptids gegenüber dem entsprechend nicht genetisch veränderten Mikroorganismus erhöht ist, dieser genetisch veränderte Mikroorganismus zur mikrobiellen Herstellung von L-Serin eingesetzt wird und das entsprechend gebildete L-Serin aus dem Kulturmedium isoliert wird.

Zur Erzielung einer erhöhten Genexpression (Überexpression) kann die Kopienzahl der entsprechenden Gene erhöht werden. Ferner kann die Promotor- und/oder Regulationsregion und/oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, entsprechend so verändert werden, dass die Expression mit erhöhter Rate erfolgt. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens einge-

15

20

25

30

Molekularbiologie.

baut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Serin Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der mRNA wird ebenfalls die Expression verbessert. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Weiterhin kann auch die Aktivität des Enzyms selbst erhöht sein oder durch die Verhinderung des Abbaus des Enzymproteins verstärkt werden. Alternativ kann ferner eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden. Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (BioRechnology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift EPS 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und

Die erfindungsgemäß hergestellten genetisch veränderten

Mikroorganismen können kontinuierlich oder diskontinu-

20

25

ierlich im batch-Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Serin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

10

Das zu verwendende Kulturmedium muss in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlenhydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Soja-Öl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische stickstoffhaltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure,

15

20

25

Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muss weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzu gegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden. Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten werden Sauerstoff oder sauerstoffhaltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird so lange fortgesetzt, bis sich ein Maximum an L-Serin gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die Analyse der L-Serin-Bildung kann durch Anionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben,

15

30

oder sie kann durch reversed Phase HPLC erfolgen so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

5 Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Serin aus Glucose, Saccharose, Lactose, Mannose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um die zuvor bereits näher beschriebenen Vertreter coryneformer Bakterien handeln. Eine Auswahl an Ergebnissen der Fermentation ist in Tabelle 6 dargestellt. Hierbei zeichnen sich die erfindungsgemäß genetisch veränderten Mikroorganismen durch eine wesentlich verbesserte L-Serin-Produktion gegenüber den entsprechend nicht transformierten Mikroorganismen (Wild Typen) oder den Mikroorganismen aus, die lediglich den Vektor ohne Gen-Insert enthalten. In einer besonderen Ausführungsvariante der vorliegenden Erfindung ist gezeigt, dass die Überexpression des homologen C-terminal verkürzten serA-Gens in C. glutamicum ATCC 13032DpanBCpZ1serA∆197 zu einer wenigstens 40%igen Steigerung der L-Serin Akkumulation im Medium im Vergleich zu den Kontrollstämmen führt (Tab. 6). Durch die gemeinsame Überexpression weiterer Gene, die positiv auf den L-Serinbiosyntheseweg wirken, ist eine noch weitere Steigerung der L-Serin-Produktion zu erwarten.

Unter Aminosäure-Produktionsstämmen sind im Sinne der vorliegenden Erfindung Corynebacterium glutamicum-Stämme oder homologe Mikroorganismen zu verstehen, die durch klassische und/oder molekulargenetische Methoden derart verändert sind, dass ihr Stoffwechselfluss verstärkt in die Richtung der Biosynthese von Aminosäuren

10

oder deren Abkömmlingen verläuft (metabolic engineering). Beispielsweise sind bei diesen Aminosäure-Produktionsstämmen ein oder mehrere Gen(e) und/oder die korrespondierenden Enzyme, die an entscheidenden und entsprechend komplex regulierten Schlüsselpositionen des Stoffwechselweges (Flaschenhals) stehen in ihrer Regulation verändert oder sogar dereguliert. Die vorliegende Erfindung umfasst hierbei sämtliche bereits bekannte Aminosäure-Produktionsstämme, bevorzugt der Gattung Corynebacterium oder homologer Organismen. Ferner sind erfindungsgemäß auch diejenigen Produktionsstämme umfaßt, die der Fachmann in Analogie zu Erkenntnissen aus anderen Mikroorganismen, beispielsweise Enterobacterien, Bacillaceen oder Hefe-Arten nach gängigen Methoden herstellen kann.

Die Figuren zeigen beispielhaft verwendete Plasmide sowie einen Vergleich der Primärstruktur der PGD und mittels PCR konstruierter Allele von serA.

20

25

15

Es zeigt:

Fig. 1: Vergleich der Primärstruktur der 3-Phosphoglycerat-Dehydrogenase (PGD) aus verschiedenen Organismen; Skalierung entspricht der Anzahl an Aminosäuren der corynebakteriellen PGD; N = Aminoterminus; C = Carboxyterminus; der mit einer hell grauen Fläche markierte Bereich A stellt die Nukleotid-Bindungsstelle dar; der mit einer dunkel grauen Fläche markierte Bereich B stellt die Substrat-Bindungsstelle dar; der schwarz markierte Bereich C stellt die Inhibitor-Bindungsstelle dar.

Darüber hinaus gibt es zwei weitere Gruppen von 3-Phosphoglycerat-Dehydrogenasen, die exemplarisch durch E. coli (Tobey K.L. und Grant G.A., 1986, J. Biol. Chem., 261: 12179-12183) bzw. Thermotoga maritima (GenBank-Accession-Nummer AE000512) vertreten sind. Hierbei ist das Protein des hyperthermophilen Bakteriums T. maritima mit einer Länge von 327 Aminosäuren am kürzesten, während die 3-Phosphoglycerat-Dehydrogenase aus E. coli mit 410 Aminosäuren eine intermediäre Länge aufweist.

Fig. 2: Übersicht über die mittels PCR konstruierten Allele von serA, die für die deregulierte, C-terminal verkürzte PGD codieren. Gezeigt ist der serA-Genbereich des Wild Typs (oben) und die erfindungsgemäßen Deletionskonstrukte. Die hell, dunkel und schwarz markierten Bereiche entsprechen der Definition wie in Fig. 1.

Fig. 3: Plasmidvektor pZlserA

20 Fig. 4: Plasmidvektor pZ1serAΔ79

Fig. 5: Plasmidvektor pZ1serAΔ188

Fig. 6: Plasmidvektor pZlserA∆197

Fig. 7: Plasmidvektor pZlserAΔ205

Fig. 8: Plasmidvektor pZlserAΔ211

25

10

Ausführungsbeispiele:

- Gezielte Deregulation der 3-Phosphoglycerat-Dehydrogenase aus C. glutamicum
- a) Computergestützter Aminosäuresequenz-Vergleich der
 3-Phosphoglycerat-Dehydrogenase aus Corynebacterium

15

20

25

30

glutamicum mit 3-Phosphoglycerat-Dehydrogenasen anderer Organismen

Es wurde zunächst eine Strategie zur Konstruktion einer deregulierten 3-Phosphoglycerat-Dehydrogenase entwickelt. Es wurde die Sequenz des serA-Gens, das für die 3-Phosphoglycerat-Dehydrogenase von C. glutamicum kodiert, aus der Patent-Datenbank verwendet (Nakagawa, S., Mizoguchi, H., Ando, S., Hayashi, M., Ochiai, K., Yokoi, H., Tateishi, N., Senoh, A., Ikeda, M. and Ozaki, A. Patent: EP 1108790-A 7064 20-JUN-2001; KYOWA HAKKO KOGYO CO., LTD. (JP); Pompejus, M., Kroeger, B., Schroeder, H., Zelder, O. and Haberhauer, G. Patent: WO 0100843-A 167 04-JAN-2001; BASF AKTIENGESELLSCHAFT (DE)). Die vom serA-Gen (SEQ-ID-No. 12) von Corynebacterium glutamicum abgeleitete Polypeptidkette wurde dann mit entsprechenden 3-Phosphoglycerat-Dehydrogenasen aus der Datenbank (GenBank) verglichen. Es zeigte sich, dass die 3-Phosphoglycerat-Dehydrogenase aus C. glutamicum wie die aus Mycobacterium tuberculosis (GenBank-Accession-Nummer AL123456) und einigen anderen Bakterien wie Bacillus subtilis (Sorokin, A., Azevedo, V., Zumstein, E., Galleron, N., Ehrlich, S.D. und Serror, P. Microbiology 142 (Pt 8), 2005-2016 (1996)) und Aquifex aeolicus (GenBank-Accession-Nummer AE000657) mit 530 Aminosäuren ausserordentlich lang ist. Zu dieser Gruppe von Enzymen zählen auch die 3-Phosphoglycerat-Dehydrogenasen aus Tieren wie Ratte (Achouri Y., Rider M.H., Van Schaftingen E. und Robbi M., 1997, Biochem. J., 323:365-370) und Mensch (Cho HM, Jun DY, Bae MA, Ahn JD, Kim YH., 2000, Gene 245(1):193-201) sowie Pflanzen (z. B. Arabidopsis thaliana; Ho CL, Saito K., 2001, Amino Acids. 20(3):243-59). Die Analyse der Röntgenstruktur des E.

25

30

coli-Enzyms ergab, dass es aus drei funktionellen Domänen besteht: einer Nukleotidbindedomäne (Aminosäure 108 bis 294) für die Bindung von NAD/H, einer zweigeteilten Substratbindedomäne (Aminosäure 7-107 und 295-336), an der das 3-Phosphoglycerat bindet, sowie einer C-terminalen regulatorischen Domäne (Aminosäure 337-410), die für die allosterische Bindung des L-Serin verantwortlich ist (Schuller DJ, Grant GA, Banaszak LJ., 1995, Nature Struct. Biol. Vol 2 1:69-76). Der Aminosäuresequenzvergleich der drei 3-Phosphoglycerat-Dehydrogenase-Typen ergab, dass sie sich im Wesentlichen in der Länge der C-terminalen regulatorischen Domäne unterscheiden (Abb. 1).

Eine Clusteranalyse der 3-Phosphoglycerat-Dehydrogenasen, die aus vollständig sequenzierten Genomen bekannt sind, ergab, dass trotz der Unterschiede im C-Terminus alle diese Proteine zu einer Familie von Orthologen zählen, d. h. sie besitzen einen gemeinsamen evolutiven Ursprung, haben sich aber in den verschiedenen Spezies unterschiedlich entwickelt.

b) Konstruktion von Allelen des serA-Gens von C. glutamicum mittels PCR die für C-terminal verkürzte 3-Phosphoglycerat-Dehydrogenase Proteine codieren

Es wurden fünf verschiedene Muteine der 3-Phosphoglycerat-Dehydrogenase von *C. glutamicum* erzeugt, die am C-Terminus unterschiedlich lange Deletionen aufwiesen (Abb. 2). Die Konstruktion der Deletionsmutanten erfolgte ebenso wie die Isolierung des Wild Typ serA-Gens mittels PCR. Hierzu wurde ein PCR-Primer (serA-f: 5'-TCTAGAGCCGGAGACGTGAATAAAAT-3') erzeugt, der homolog

10

15

20

25

٠. .

zu einer Region 240 bp vor dem Start-Codon des Gens war, um so den gesamten Promotorbereich zu erfassen. Dieser Primer wurde für alle Konstrukte gleichermaßen verwendet und trägt am 3'-Ende eine Schnittstelle für das Restriktionsenzym XbaI. Zur Amplifikation des vollständigen serA-Gens wurde ein zweiter, revers-komplementärer Primer ausgewählt, der 199 bp hinter dem Stop-Codon laq und eine BamHI-Restriktionsschnittstelle trägt (serA-r: 5'-GGATCCGACTGGTGAGGGTCAAGTCC-3'). Das erwartete PCR-Produkt hat eine Länge von 2040 bp. Zur Erzeugung der Deletionen wurden revers-komplementäre Primer ausgewählt, die im Genbereich liegen, und alle ebenfalls eine Schnittstelle für BamHI tragen. Der Primer serAΔ211-r (5'-GGATCCTTAACCGGAAACGTTCACAGC3') liegt 956 bp hinter dem Start-Codon, so dass ein 1196 bp langes PCR-Produkt entsteht. Hierdurch werden die letzten 211 Aminosäuren der 3-Phosphoglycerat-Dehydrogenase abgeschnitten. Die Deletion liegt etwa im Bereich des vermutlichen Übergangs von Substratbinde- zu regulatorischer Domäne (vergl. Abb. 1 und Abb. 2). Der Primer serAA205-r (5'-GGATCCTTACTCTTCGCCCACGCGACC3') liegt 974 bp hinter dem Start-Codon und das zu erwartende PCR-Produkt hat eine Länge von 1214 bp. Die C-terminale Deletion beträgt in diesem Fall 205 Aminosäuren und das Protein endet hinter der Aminosäure Glutamat an Position 325. Der ungerichtet erzeugte Austausch dieser Aminosaure zu Lysin führt in C. glutamicum zu einer Deregulation der 3-Phosphoglycerat-Dehydrogenase (EP 0 931 833). Beide Deletionen liegen in einem Bereich, in dem auch die Deletion (Δ209 Aminosäuren) des Proteins aus Ratte erzeugt wurde (Achouri Y., Rider M.H., Van Schaftingen E. und Robbi M., 1997, Biochem. J., 323:365-

25

30

370). Die beiden Primer serA∆197-r

(5'-GGATCCTTAAGCCAGATCCATCCACACAG3') und serAΔ188-r
(5'-GGATCCTTACTTGCCAGCAAGAAGACC3') liegen 998 bp bzw.
1025 bp hinter dem ATG und befinden sich stromaufwärts
vom Übergang Substratbindedomäne zu regulatorischer Do-

mäne in *E. coli*. Die nach PCR zu erwartenden DNA-Fragmente erzeugen Polypeptidketten die entsprechend um 197 bzw. 188 Aminosäuren kürzer sind als die vollständige 3-Phosphoglycerat-Dehydrogenase. Die kürzeste De-

letion wird durch Primer serAΔ79-r (5'-GGATCCTTAATCCAGGCCACGGCCATT3') erzeugt und schneidet den Bereich von 79 Aminosäuren ab, der die größte Ähnlichkeit zur regulatorischen Domäne von E. coli aufweist (Abb.2). Zusätzlich wurde in allen revers-

15 komplementären Primern, die zu einem verkürzten Protein führen sollen hinter der Schnittstelle das Stop-Codon TAA eingefügt.

Die PCR-Reaktion wurde in 30 Zyklen in Gegenwart von 200 µM Deoxynukleotid-triphosphaten (dATP, dCTP, dGTP, dTTP), je 1 µM des entsprechenden Oligonukleotids, 100 ng chromosomaler DNA von Corynebacterium glutamicum ATCC13032, 1/10 Volumen 10-fach Reaktionspuffer und 2,6 Einheiten einer hitzestabilen Taq-/Pwo-DNA-Polymerase-Mischung (Expand High Fidelity PCR System der Firma Roche Diagnostics, Mannheim, Deutschland) in einem Thermocycler (PTC-100, MJ Research, Inc., Watertown, USA) unter folgenden Bedingungen durchgeführt: 94°C für 60 Sekunden, 50°C für 90 Sekunden und 72°C für 2 Minuten.

Nach der PCR-Reaktion wurden die erhaltenen DNA-Fragmente mit dem QIAExII Gelextraktionskit (Qiagen) nach Angaben des Herstellers aus einem 0,8 %igen Agarose-Gel isoliert, blunt-end mit Hilfe des Sure Clone-Kits (Amersham Pharmacia Biotech) in die SmaI-Schnittstelle des Vektors pUC18 kloniert. Die Plasmide wurden durch Restriktionskartierung auf Richtigkeit überprüft. Diese Klonierung erfolgte in dem Escherichia coli Stamm DH5αmcr (Grant et al., Proceedings of the National Academy of Sciences of the United States of America USA (1990) 87: 4645-4649).

10

15

20

25

Anschließend wurde das serA-Gen und die serA-Deletionskonstrukte in den E. coli/C. glutamicum Pendelvektor pZ1 (Menkel E, Thierbach G, Eggeling L, Sahm H., 1989, Appl Environ Microbiol 55(3): 684-688) kloniert. Der Vektor vermittelt eine Kanamycin-Resistenz. Hierzu wurden die Inserts der Deletionskonstrukte jeweils mit den Restriktionsenzymen EcoRI und BamHI aus dem pUC18-Vektor ausgeschnitten. Die überhängenden DNA-Enden wurden mittels Klenow-Behandlung aufgefüllt und die Fragmente wurden blunt-end in den ScaI-geschnittenen Vektor pZ1 ligiert. Das Wild Typ serA-Gen wurde nach EcoRI-Restriktion ebenfalls Klenow behandelt und blunt-end in den ScaI-geschnittenen Vektor pZ1 ligiert. Die so erhaltenen Konstrukte wurden pZlserA (Abb. 3), pZlserAΔ79 (Abb. 4), pZ1serAΔ188 (Abb. 5), pZ1serAΔ197 (Abb. 6), pZ1serAΔ205 (Abb. 7) und pZ1serAΔ211 (Abb. 8) genannt.

30

2.

Die Plasmide pZlserA, pZlserAA79, pZlserAA188
pZlserAA197 pZlserAA205 und pZlserAA211 wurden durch

verkürzten serA-Allele in C. glutamicum

Überexpression des Wild Typ serA-Gens sowie der

Elektroporation einzeln in C. glutamicum eingebracht. Als Kontrolle wurde das Leerplasmid pZ1 ebenfalls nach C. glutamicum ATCC 13032 elektroporiert. Die so erhaltenen Stämme 13032pZ1, 13032pZ1serA, 13032pZ1serAΔ79, 13032pZ1serAΔ188, 13032pZ1serAΔ197, 13032pZ1serAΔ205 und 13032pZ1serA∆211 wurden dann auf Überexpression der 3-Phosphoglycerat-Dehydrogenase mittels 3-Phosphoglycerat-Dehydrogenase-Enzymtest analysiert. Hierzu wurden die sechs Stämme in Komplexmedium (CgIII = 2,5 g NaCl, 10 g Bacto-Peptone, 10 g Bacto-Yeast Extract, pH 7,4 mit 2 % Glukose) gezüchtet, und das Minimalmedium CGXII jeweils aus den Vorkulturen getrennt beimpft. Das Medium war identisch mit dem bei Keilhauer et al. beschriebenen Medium CGXII (Journal of Bacteriology (1993) 175: 5593-5603), enthielt aber zusätzlich 25 μ g/mL Kanamycin. Die Zusammensetzung des von Keilhauer et al. beschriebenen Mediums ist in Tabelle 1 dargestellt.

15

Tabelle 1: Zusammensetzung des Mediums CGXII

Komponente	Konzentration
(NH ₄) ₂ SO ₄	20 g/L
Harnstoff	5 g/L
KH ₂ PO ₄	1 g/L
K₂HPO₄	1 g/L
$MgSO_4 \times 7 H_2O$	0,25 g/L
3-Morpholinopropansulfonsäure	42 g/L
CaCl ₂	10 mg/L
FeSO ₄ x 7 H ₂ O	10 mg/L
MnSO ₄ × H ₂ O	10 mg/L
ZnSO ₄ × 7H ₂ O	1 mg/L
CuSO ₄	0,2 mg/L
NiCl ₂ x 6 H ₂ O	0,02 mg/L
Biotin	0,2 mg/L
Glukose	40 g/L
Protokatechusäure	30 mg/L

Die Zellen wurden in der exponentiellen Wachstumsphase bei OD600 von 5 bis 8 geerntet und zweimal in 100 mM

Tris-HCl, pH 7,5 gewaschen. Die Zellpellets wurden anschliessend bis zum Aufschluss bei -20°C eingefroren.

Die eingefrorenen Zellpellets wurden dann auf Eis aufgetaut und mit 2 ml kaltem 100 mM Tris-HCl pH 7,5/10 %

Glycerin resuspendiert und in einem Brenson Sonifier 10 min aufgeschlossen. Anschließend wurden die Zelltrümmer mittels Zentrifugation bei 13000 rpm und 4°C in einer Sigma -202 MK Zentrifuge abgetrennt. Die so erhaltenen Überstände wurden als Rohextrakte zunächst über eine PD-10 Säule nach Angaben des Herstellers (Amersham Pharmacia Biotech) entsalzt und dann sofort in die En-

zymmessung eingesetzt. Der Enzymtest beruht auf dem photometrischen Nachweis der Bildung von NADH in der Reaktion 3-Phosphoglycerat und NAD zu Phosphohydroxypyruvat zu NADH. Der Testansatz ist in Tabelle 2 dargestellt:

Tabelle 2: Komponenten des Testansatzes zur Bestimmung der 3-Phosphoglycerat-Dehydrogenase Aktivität

	Stammlösung	Endkonzentration
Tris-HCl; pH 8.8	500 mM	100 mM
Dithiothreit	100 mM	1 mM
EDTA	500 mM	5 mM
Hydrazin	250 mM	10 mM
NAD	20 mg/ml	2 mg/ml
RE	ca. 2 mg/ml	ca. 200 μg Protein
3-Phosphoglycerat	150 mM	15 mM

10

15

Mit diesem Testansatz konnte für die 3-Phosphoglycerat-Dehydrogenase des Wild Typs eine spezifische Aktivität von ca. 150 mU/mg Protein bestimmt werden. Es zeigte sich, dass die Überexpression des vollständigen serA-Gens eine etwa 16-fache Steigerung der spezifischen 3-Phosphoglycerat-Dehydrogenase-Aktivität ergibt. Das Konstrukt serAΔ197 ermöglichte eine 10-fache Überexpression gegenüber dem Wild Typ-Protein. Die Konstrukte serAΔ188 und serAΔ205 lassen sich 3 bis 3,4-fach überexprimieren, wohingegen für die Konstrukte serAΔ205 und serAΔ79 nur eine 1,2 bis 1,5-fache Überexpression möglich war. Damit ist gezeigt, dass das durch Deletion der C-terminalen 197 Aminosäuren der 3-Phosphoglycerat-Dehydrogenase von C. glutamicum erzeugte Mutein Se-

10

15

rA∆197 funktionell ist, und mehr als 60 % der Wild Typ Aktivität aufweist.

In Tabelle 3 sind die Ergebnisse zusammengefasst.

Tabelle 3: Überexpression des *serA-Gens* sowie der C-terminal verkürzten *serA-*Allele.

Stämme	spez. PGD- Aktivität [U/mg Protein]	Faktor der Über- expression
13032pZ1	130	1.0
13032pZlserA	2140	16.5
13032pZ1 <i>serA</i> Δ79	190	1.5
13032pZ1 <i>serA</i> Δ188	440	3.4
13032pZ1 <i>serA</i> Δ197	1320	10.0
13032pZ1 <i>serA</i> Δ205	390	3.0
13032pZ1serAΔ211	150	1.2

* Die 3-Phosphoglycerat-Dehydrogenase-Aktivität im Stamm 13032pZ1 wurde auf 1,0 normiert

3. Untersuchungen zur Inhibition der Wild Typ 3-Phosphoglycerat-Dehydrogenase aus C. glutamicum und des C-terminal verkürzten Muteins SerAΔ197 durch L-Serin

Im Folgenden wurde getestet, ob das um den C-Terminus verkürzte Mutein $Ser A\Delta 197$ nicht mehr durch L-Serin ge-

hemmt werden kann. Dazu wurde zunächst die Hemmbarkeit der 3-Phosphoglycerat-Dehydrogenase des Wild Typs in zellfreien Extrakten von *C. glutamicum* durch L-Serin anhand des oben beschriebenen Enzymtests untersucht.

Hierzu wurden dem Testansatz zusätzlich 1, 5 und 10 mM L-Serin zugesetzt und 5 Minuten bei 30°C inkubiert. Die Reaktion wurde dann durch Zugabe von 15 mM 3-Phosphoglycerat gestartet. Die Inkubation war notwendig um eine Hemmung nachweisen zu können (Tab. 4). Diese Zeitabhängigkeit der L-Serin-Hemmung, die mehrere Minuten Inkubation benötigt, bevor ein konstanter Level der Inhibition erreicht wird, wurde auch schon für andere 3-Phosphoglycerat-Dehydrogenasen, z. B. für das aufgereinigte Enzym von B. subtilis beschrieben (Saski R. und Pitzer L., 1975, Eur. J. Biochem., 51:415-427).

Tabelle 4: Inhibition der Wild Typ 3-Phosphoglycerat-Dehydrogenase von C. glutamicum durch L-Serin

L-Serin	relative 3-Phosphoglycerat-Dehydrogenase Aktivität [%]	
[mM]	ohne Inkubation	5-minütige Inkuba-
		tion bei 30°C
0	100*	100*
1	106	96
5	112	82
10	104	56

Die Aktivität der 3-Phosphoglycerat-Dehydrogenase ohne Zusatz von L-Serin wurde auf 100% gesetzt.

10

15

Forschungszentrum Jülich GmbH

5

Auf diesem Ergebnis aufbauend wurde die L-Serin-Inhibition der 3-Phopshoglycerat-Dehydrogenase in den Stämmen 13032pZlserA und 13032pZlserAΔ197 untersucht. Es zeigte sich, dass tatsächlich das C-terminal verkürzte 3-Phosphoglycerat-Dehydrogenase-Mutein nicht mehr signifikant durch L-Serin gehemmt werden kann (Tab. 5).

Tabelle 5: Inhibition der überexprimierten 3
10 Phopshoglycerat-Dehydrogenase durch L-Serin in den

Stämmen 13032pZ1serA und 13032pZ1serAΔ197

	relative 3-Phosphoglycerat-Dehydrogenase	
L-Serin	Aktivität [%] **	
[mM]	13032pZlserA	13032pZl <i>serA</i> ∆197
0	100*	100*
10	34	95

- * Die Aktivität der 3-Phosphoglycerat-Dehydrogenase ohne Zusatz von L-Serin wurde auf 100% gesetzt
- 15 ** Bestimmung der Aktivität nach 5-minütiger Inkubation bei 30°C mit und ohne L-Serin

Damit ist es gelungen, durch Deletion des C-Terminus der 3-Phosphoglycerat-Dehydrogenase von *C. glutamicum* gezielt ein dereguliertes 3-Phosphoglycerat-Dehydrogenase-Mutein zu generieren.

Gesteigerte Akkumulation von L-Serin durch Überexpression des Gens für die deregulierte 3Phosphoglycerat-Dehydrogenase ($ser A \Delta 197$)

15

Zur Analyse der L-Serinausscheidung des Stammes mit deregulierter 3-Phosphoglycerat-Dehydrogenase wurden die Plasmide pZ1, pZ1serA und pZ1serA\Delta197 in den Stamm Corynebacterium glutamicum 13032ΔpanBC transformiert (E. Radmacher, A. Vaitsikova, U. Burger, K. Krumbach, H. Sahm, L. Eggeling, 2002, Appl. Environ. Microbiol. (Publikation in Vorbereitung)). Dieser Stamm ist durch die Deletion der Pantothenat-Biosynthese Gene panB und panC Pantothenat-auxotroph, und zeichnet sich dadurch aus, dass er unter Pantothenat-Limitation aufgrund einer verstärkten Akkumulation von Pyruvat ca. 50 mM Alanin und 8 mM Valin ausscheidet. Darüberhinaus bildet der Stamm ca. 100 μM L-Serin und eignet sich somit als Ausgangsstamm für die Konstruktion eines L-Serinproduzenten. Der Stamm mit dem Plasmid pZ1serA transformierte Stamm 13032∆panBCpZ1serA wurde gemäß Budapester Vertrag am 11.04.2002 bei der DSMZ unter der DSM Nr. 14922 hinterlegt.

Zur Untersuchung der L-Serinausscheidung wurden die 20 drei Stämme in Komplexmedium (CgIII mit 2% Glukose und mit 50 μ g/l Kanamycin) gezüchtet, und das Fermentationsmedium CGXII (J Bacteriol (1993) 175: 5595-5603) jeweils aus den Vorkulturen beimpft. Das Medium enthielt zusätzlich 50 $\mu g/l$ Kanamycin und 1 μM Pantothenat. Es 25 wurden zwei unabhängige Fermentationen durchgeführt. Nach Kultivierung für 24 bzw. 35 Stunden bei 30°C auf dem Rotationsschüttler bei 120 Upm wurde die in das Medium akkumulierte L-Serinmenge bestimmt. Die Bestimmung der Aminosäurekonzentration erfolgte mittels Hochdruck-30 flüssigkeitchromatographie (J Chromat (1983) 266: 471-482). Das Ergebnis der Fermentation ist in Tabelle 6

dargestellt, und es zeigt sich, daß schon die Überexpression des Wiltyp serA-Gens eine ca. 10%ige Steigerung der L-Serin-Akkumulation im Medium hervorruft. Die
Überexpression der deregulierten 3-PhosphoglyceratDehydrogenase erzielt dagegen sogar eine Steigerung von
bis zu 40% im Vergleich zum Kontrollstamm der nur das
Leerplasmid trägt. Somit stellt die Nutzung des konstruierten und beschriebenen Gens für das deregulierte
L-Serin-Biosynthese Enzym 3-Phosphoglycerat-Dehydrogenase ein Verfahren dar, um die L-Serinbildung entscheidend zu verbessern.

scherde

Tabelle 6:

Akkumulation von L-Serin im Kulturüberstand von *Corynebacterium glutamicum* 13032ΔpanBC nach Expression der Gene *se*-

15

10

rA bzw. serA∆197

Stamm	t	TG	L-	L-
	[h]	[mg/ml]	Serin	Serin/TG
			[μM]	[mg/g]
13032DpanBCpZ1	24	18,3	164	0,9
13032DpanBCpZ1serA	24	14,7	163	1,2
13032DpanBCpZ1serAΔ197	24	16,5	199	1,3

Patentansprüche

- 1. Nukleinsäuren codierend für eine deregulierte
 3-Phosphoglycerat-Dehydrogenase enthaltend ein Gen
 serA gemäß SEQ ID No 1 oder ein Allel, Homolog oder
 Derivat dieser Nukleotidsequenz oder mit dieser
 hybridisierende Nukleotidsequenzen.
- Nukleinsäuren codierend für eine deregulierte 3-Phosphoglycerat-Dehydrogenase enthaltend ein Gen serA gemäß SEQ ID No 2 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder mit dieser hybridisierende Nukleotidsequenzen.
- Nukleinsäuren codierend für eine deregulierte
 3-Phosphoglycerat-Dehydrogenase enthaltend ein Gen serA gemäß SEQ ID No 3 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder mit dieser hybridisierende Nukleotidsequenzen.
 - 4. Nukleinsäuren codierend für eine deregulierte
 3-Phosphoglycerat-Dehydrogenase enthaltend ein Gen
 serA gemäß SEQ ID No 4 oder ein Allel, Homolog oder
 Derivat dieser Nukleotidsequenz oder mit dieser
 hybridisierende Nukleotidsequenzen.
 - 5. Nukleinsäuren codierend für eine deregulierte
 3-Phosphoglycerat-Dehydrogenase enthaltend ein Gen
 serA gemäß SEQ ID No 5 oder ein Allel, Homolog oder
 Derivat dieser Nukleotidsequenz oder mit dieser
 hybridisierende Nukleotidsequenzen.
 - Nukleinsäuren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,

5

10

20

25

dass sie aus coryneformen Bakterien isoliert werden.

- 7. Nukleinsäuren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
- dass sie aus Corynebacterium oder Brevibacterium isoliert werden.
 - 8. Nukleinsäuren nach einem der Ansprüche 1 bis 7,
 dadurch gekennzeichnet,
 dass sie aus Corynebacterium glutamicum oder Brevibacterium flavum isoliert werden.
 - 9. Genstruktur enthaltend wenigstens eine Nukleotidsequenz gemäß den Ansprüchen 1 bis 8 sowie mit diesen operativ verknüpfte regulatorische Sequenzen.
- 10. Vektor enthaltend wenigstens eine Nukleotidsequenz
 gemäß Anspruch 1 bis 8 oder eine Genstruktur gemäß
 Anspruch 9 sowie zusätzliche Nukleotidsequenzen zur
 Selektion, zur Replikation in der Wirtszelle oder
 zur Integration in das Wirtszell-Genom.
- Deregulierte 3-Phosphoglycerat-Dehydrogenase oder
 ein Teil davon, codiert durch eine Nukleinsäuresequenz gemäß einem der Ansprüche 1 bis 8.
 - 12. Deregulierte 3-Phosphoglycerat-Dehydrogenase nach Anspruch 11,
 mit einer Aminosäuresequenz,
 gemäß SEQ ID No 7 oder einer modifizierten Form dieser Polypeptidsequenzen oder Isoformen davon.
 - 13. Deregulierte 3-Phosphoglycerat-Dehydrogenase nach
 Anspruch 11,
 mit einer Aminosäuresequenz,

20

- gemäß SEQ ID No 8 oder einer modifizierten Form dieser Polypeptidsequenz oder Isoform davon.
- 14. Deregulierte 3-Phosphoglycerat-Dehydrogenase nach
 Anspruch 11,*
- 5 mit einer Aminosäuresequenz, gemäß SEQ ID No 9 oder einer modifizierten Form dieser Polypeptidsequenz oder Isoform davon.
 - Anspruch 11,
 mit einer Aminosäuresequenz,
 gemäß SEQ ID No 10 oder einer modifizierten Form
 dieser Polypeptidsequenz oder Isoform davon.

15. Deregulierte 3-Phosphoglycerat-Dehydrogenase nach

- 16. Deregulierte 3-Phosphoglycerat-Dehydrogenase nach
 Anspruch 11,
- mit einer Aminosäuresequenz,
 gemäß SEQ ID No 11 oder einer modifizierten Form
 dieser Polypeptidsequenz oder Isoform davon.
 - 17. Polypeptide nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, daß sie aus coryneformen Bakterien stammen.
 - 18. Polypeptide nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, daß sie aus Corynebacterium oder Brevibacterium stammen.
- 25 19. Polypeptide nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß sie aus Corynebacterium glutamicum oder Brevibacterium flavum stammen.

10

20

terium gehört.

- 20. Mikroorganismus enthaltend wenigstens eine Nukleinsäure gemäß Anspruch 1 bis 8 in replizierbarer Form, welche im Vergleich zum Wild Typ Mikroorganismus verstärkt exprimiert wird und/oder deren Kopienzahl erhöht ist.
- 21. Mikroorganismus gemäß Anspruch 20 enthaltend in replizierbarer Form eine Genstruktur gemäß Anspruch 9 oder einen Vektor gemäß Anspruch 10.
- 22. Mikroorganismus gemäß einem der Ansprüche 20 bis 21 enthaltend wenigstens ein Polypeptid gemäß Anspruch 11 bis 19, welcher eine im Vergleich zu dem entsprechenden Wild Typ Stamm aktive deregulierte 3-Phosphoglycerat-Dehydrogenase aufweist.
- 23. Mikroorganismus gemäß einem der Ansprüche 20 bis
 22, dadurch gekennzeichnet,
 dass er ein coryneformes Bakterium ist.
 - 24. Mikroorganismus gemäß einem der Ansprüche 20 bis23,dadurch gekennzeichnet,dass er zur Gattung Corynebacterium oder Brevibac-
 - 25. Mikroorganismus gemäß einem der Ansprüche 20 bis 24, dadurch gekennzeichnet,
- dass er zu Corynebacterium glutamicum oder Brevibacterium flavum gehört.
 - 26. Sonde zur Identifizierung und /oder Isolierung von Genen codierend für an der Biosynthese von L-Serin beteiligten Proteinen, dadurch gekennzeichnet,

dass sie ausgehend von Nukleinsäuren gemäß einem der Ansprüche 1 bis 8 hergestellt wird und eine zur Detektion geeignete Markierung enthält.

- 27. Verfahren zur mikrobiellen Herstellung von L-Serin, dadurch gekennzeichnet, daß
 - a) wenigstens eine Nukleinsäure gemäß einem der Ansprüche 1 bis 8 isoliert aus einem coryneformen Bakterium in einen Mikroorganismus übertragen wird und dort exprimiert wird, wobei die Genexpression und/oder die Aktivität des entsprechend codierten Polypeptids gegenüber dem entsprechend nicht genetisch veränderten Mikroorganismus erhöht ist,
 - b) dieser genetisch veränderte Mikroorganismus aus Schritt b) zur mikrobiellen Herstellung eingesetzt wird und
 - c) das entsprechend gebildete L-Serin aus dem Kulturmedium isoliert wird.

10

15

Zusammenfassung

Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin

Die Erfindung betrifft Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin.

Durch Deletion von mindestens 79 Aminosäuren im C-Terminus der Wild Typ serA Sequenz konnte eine 3-Phosphoglycerat-Dehydrogenase mit einer gegenüber dem Wild Typ verringerten Feedback Inhibition durch L-Serin erzeugt werden.

Fig. 1

Fig. 3

Fig. 4

Fig. 7

Fig. 8