MAT 2555/255I ANÁLISIS FUNCIONAL TAREA 3

PLAZO: EL 10 DE NOVIEMBRE

Profesor: Nikola Kamburov nikamburov@mat.uc.cl

Ayudante: Matías Díaz midiaz8@uc.cl

El plazo para entregar Tarea 3 es el 10 de noviembre, viernes, antes del inicio de la ayudantía. Note que se corregirá sólo una selección de los ejercicios enunciados.

Reading: Brezis, "Functional Analysis, Sobolev Spaces and PDE," 4.1-4.2 (Teoría de integración y espacios L^p), Stein & Shakarchi Vol. III (Teorema de Radon Nikodym, pp. 290/Theorem 4.3), más apuntes de clase (Teorema de Representación de Riesz de los espacios L^p y Teorema de Hahn-Banach).

Pregunta 1. Sea $(\Omega, \mathcal{M}, \mu)$ un espacio de medida y suponga que $f \in L^{p_0}(\mu) \cap L^{\infty}(\mu)$ para algún $p_0 \in [1, \infty)$. Pruebe que $f \in L^p$ para todo $p \ge p_0$ y que

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

Pregunta 2. Para todo $a \in \mathbb{R}$ construya una función $f_a \in L^{\infty}(\mathbb{R})$ con $||f_a - f_b||_{L^{\infty}(\mathbb{R})} \ge 1$ cuando $a \ne b$. Demuestre que esto implica que $L^{\infty}(\mathbb{R})$ no es separable.

Pregunta 3. [Convergencia débil en L^p] Suponga que el espacio de medida $(\Omega, \mathcal{M}, \mu)$ es σ -finito. Decimos que una sucesión $f_n \in L^p$ converge débilmente a $f \in L^p$ si $l(f_n) \to l(f)$ para todo $l \in (L^p)^*$. Escribimos $f_n \rightharpoonup f$ en L^p .

(a) Demuestre que $f_n \rightharpoonup f$ en L^p , $p \in [1, \infty)$, si y solo si

$$\int f_n g \, d\mu \to \int f g \, d\mu \quad \text{para toda } g \in L^q, \quad 1/p + 1/q = 1.$$

- (b) Pruebe que cuando $f_n \rightharpoonup f$ en L^p , $||f||_p \le \liminf_{n \to \infty} ||f_n||_p$.
- (c) (Compacidad débil de L^p) Sea $p \in (1, \infty)$ y suponga que $L^q(\mu)$ es separable. Pruebe que si sup_n $||f_n||_p < \infty$, entonces existe $f \in L^p(\mu)$ y una subsucesión $\{f_{n_k}\}$, tal que $f_{n_k} \rightharpoonup f$.
- (d) Dé un contraejemplo de la proposición en c) cuando p = 1.

Pregunta 4. Sean $(\Omega_i, \mathcal{M}_i, \mu_i)$, i = 1, 2, dos espacios de medida σ -finita y sea $K : \Omega_1 \times \Omega_2 \to \mathbb{K}$ una función $\mathcal{M}_1 \otimes \mathcal{M}_2$ -medible. Fije $1 \leq q \leq \infty$.

(a) Suponga que $K \geq 0$. Utilice la propiedad isométrica de la correspondencia entre $(L^p)^*$ y L^q para demostrar la Desiqualdad integral de Minkowski:

$$\| \int_{\Omega_2} K(\cdot, y) \, d\mu_2(y) \|_{L^q(\Omega_1, \mu_1)} \le \int_{\Omega_2} \| K(\cdot, y) \|_{L^q(\Omega_1, \mu_1)} \, d\mu_2(y).$$

(b) Pruebe que la desigualdad se cumple también cuando $K(\cdot,y) \in L^q(\mu)$ para todo $y \in \Omega$.

2 TAREA 3

Pregunta 5. Sean μ_i, ν_i medidas σ -finitas en $(\Omega_i, \mathcal{M}_i)$, tales que $\nu_1 \ll \mu_i$, i = 1, 2. Pruebe que la medida producto $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ y que la derivada de Radon-Nikodym

$$\left[\frac{d(\nu_1\times\nu_2)}{d(\mu_1\times\mu_2)}\right](x_1,x_2) = \left[\frac{d\nu_1}{d\mu_1}\right](x_1)\left[\frac{d\nu_2}{d\mu_2}\right](x_2), \qquad (x_1,x_2)\in\Omega_1\times\Omega_2.$$

Pregunta 6. Pruebe que si Y es un espacio vectorial de dimension finita en un espacio normado X, entonces Y tiene un *complemento cerrado*, i.e. existe un subespacio cerrado Z, tal que $X = Y \oplus Z$.

Pregunta 7. Sea $x_0(t) \in X = C([0,1])$ una función continua fija y sea $L = \text{Gen}(x_0)$. Defina en L el funcional lineal

$$f(x) := \lambda \quad \text{si } x = \lambda x_0.$$

- (a) Pruebe que $||f||_{L^*} = 1$.
- (b) De acuerdo con el Teorema de Hahn-Banach, f se puede extender a un funcional $F \in X^*$ con la norma $||F||_{X^*} = 1$. Es la extensión única si
 - $x_0(t) = t$;
 - $x_0(t) = 1 2t$?

Pregunta 8. Suponga que X es un espacio de Banach.

- (a) Pruebe que X es reflexivo si y solo si X^* es reflexivo.
- (b) Demuestre que si X^* es separable, entonces X es separable. (Sugerencia: Para cada $n \in \mathbb{N}$, escoja $x_n \in X$ con $||x_n|| = 1$ y $|f_n(x_n)| \ge 1/2||f_n||$, donde $\{f_n\}_{n \in \mathbb{N}} \subset X^*$ es un subconjunto contable denso, y demuestre (por contradicción) que $\overline{\operatorname{Gen}_{\mathbb{K}_c}(\{x_n\}_{n=1}^{\infty})} = X$, donde $\operatorname{Gen}_{\mathbb{K}_c}(S)$ denota el conjunto de combinaciones lineales finitas de S, con coeficientes en $\mathbb{K}_c := \mathbb{Q}$ cuando $\mathbb{K} = \mathbb{R}$, y $\mathbb{K}_c := \mathbb{Q} + i\mathbb{Q}$ cuando $\mathbb{K} = \mathbb{C}$.

Note que la combinación de esta proposición y la Pregunta 2 muestra que, en general, $(L^{\infty})^* \not\simeq L^1$.