SOMMAIRE

- Informations pratiques
- Introduction
- Notions Algorithmiques
- Méthodes Algorithmiques pour la géométrie
- Modéliser le monde
- Méthodes géométriques
 - Notions de base en géométrie
 - Méthodes applicables aux modèles discrets
 - Méthodes applicables aux modèles continus

SOMMAIRE

- Informations pratiques
- Introduction
- Notions Algorithmiques
- Méthodes Algorithmiques pour la géométrie
- Modéliser le monde
- Méthodes géométriques
 - Notions de base en géométrie
 - Méthodes applicables aux modèles discrets
 - Méthodes applicables aux modèles continus

Droites et segments dans le plan

- Dans un repère du plan, toute droite est caractérisée par une relation algébrique entre l'abscisse et l'ordonnée de ses points (y =f(x))
 - reference de la droite de la droite

Droites dans le plan

- Représentation explicite
 - y = f(x)
 - y explicité de façon unique en fonction de x
- Représentation implicite
 - f(x,y)=0 => ax + by + c = 0
 - Ni x ni y ne sont explicités l'un en fonction de l'autre

- Droite et segments dans le plan
 - Représentation paramétrique

•
$$x=f(t) => x = P_x + t d$$

•
$$y=g(t) => y = P_y + t d$$

- Droites et segments dans le plan
 - Passage représentation implicite / paramétrique

•
$$ax + by + c = 0 \Leftrightarrow P(-ac/(a^2+b^2), -bc/(a^2+b^2))$$

 $d = [-b \ a]$

Passage représentation paramétrique / implicite

Pente d'une droite

• le taux d'accroissement des ordonnées par unité d'abscisse

Equation de d passant par 2 pts A et B f(x,y) = 0 avec $f(x,y) = dy (x - x_A) - dx (y - y_A)$ $f(x_A, y_A) = dy (x_A - x_A) - dx (y_A - y_A) = 0$ $f(x_B, y_B) = dy (x_B - x_A) - dx (y_B - y_A) = dy dx - dx dy = 0$

- Différentes Métriques
 - Distance euclidienne : la plus courante

$$d_1(p,q) = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2} \ avec \ \ p(x_1, x_2, \dots x_n) \ et \ q(y_1, y_2, \dots y_n)$$

Distance de Manhattan

$$d_2(p,q) = \sum_{i=1}^{d} |x_i - y_i|$$

Distance pt/pt

$$d_1(A,B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Distance pt/droite

 P_M appartient à la droite D donc vérifie l'équation $f(x,y) = dy (x - x_A) - dx (y - y_A) = 0$ D'où $f(x_{P_M}, y_{P_M}) = (y_B - y_A) (x_{P_M} - x_A) - (x_B - x_A) (y_{P_M} - y_A) = 0$

Et
$$d(M,(AB)) = d(M, P_M)$$

$$f(x_M, y_M) = (y_B - y_A)(x_M - x_A) - (x_B - x_A)(y_M - y_A) => puissance de M$$

Position d'1 pt/segment (ou droite)

- •Si $f(x_M, y_M) > 0$ alors M est à gauche de AB ou de la droite D
- •Si $f(x_M, y_M) = 0$ alors M est sur la droite D
- •Si $f(x_M, y_M) < 0$ alors M est à droite du segment AB ou de la droite D

- Intersection entre 2 segments
 - Supposons

```
Segment S_0 défini par P_0 + s d_0 avec s \in [0,1]
S_1 défini par P_1 + t d_1 avec t \in [0,1]
```


• S₀ et S₁ s'intersectent ⇔ trouver le point I qui vérifient les 2 équations

$$\Leftrightarrow$$
 P₀ I et d₀ sont colinéaires => déterminant(P₀ I, d₀) = 0

$$\Leftrightarrow$$
P₁ I et d₁ sont colinéaires => déterminant(P₁ I, d₁) = 0

Intersection entre 2 segments

- Pour diminuer le nb d'opérations
 - Rq : [AB] et [CD] se coupent en I , ssi A,B sont situés de part et d'autre de la droite C,D (et inversement)

(cas particulier : 1 pt extrémité = pt d'intersection)

$$\mu$$
= CC' / (CC'+ DD') = $|p_C|/(|p_C| + |p_D|)$ avec p_C = puissance de C = $(y_C - y_A) * (x_B - x_A) - (x_C - x_A) * (y_B - y_A)$

μ permet de localiser I sur CD

Angles

- Pour des raisons de performances il faut éviter l'utilisation des fonctions trigonométriques
- Sauf si la valeur exacte de l'angle est nécessaire, on utilisera d'autres techniques
 - Il est souvent nécessaire de ne connaître que la position d'un élément par rapport à un autre (ex: Tri polaire)

Tri polaire

 Pour le tri polaire d'un ensemble de points par rapport à une origine w, il suffit de diviser l'ensemble des points dans chaque cadran et de trier les points en fonction de leur pente dy/dx (puis dy en cas d'égalité)

- Notion de planarité (1)
 - Un graphe est planaire si aucune de ses arêtes n'en coupe une autre sauf en exactement un sommet déclaré comme tel.

- Notion de planarité (2)
 - Un graphe planaire permet de définir la notion de faces
 - Une face est une région délimitée par des arêtes et qui ne contient ni sommets ni arêtes en son intérieur
 - Deux faces sont adjacentes si leurs frontières ont au moins une arête en commun

Polygone

- Suite de segments
 - $P = (s_1, s_2,, s_n)$ avec $n \in N^*$
 - Pour i =1 à n $s_i = [P_{i-1}, P_i]$ où P_i est un point du plan pour i=0 à n et $P_0 = P_n$ (courbe fermée)

Auto-intersection = 2 segments non consécutifs s'intersectent

Les polygones

- N-polygone simple = Courbe fermée composée de N sommets dont 2 arêtes ne peuvent avoir un point en commun que si elles sont consécutives sur la frontière.
- → sans points multiples ni auto-intersection
- Il divise l'espace en au moins deux régions dont une est bornée:
 - Int(P) : région intérieur bornée
 - Fr(P): frontière (sommets et arêtes)
 - CE(P): région extérieur

Les polygones (suite)

- Orientation
 - Frontières externes : CCW (Counter ClockWise)
 - Frontières internes : CW (ClockWise)

=> La région intérieur du polygone (Int(P)) est à gauche de chaque arête

Sommet = vertex

Sommets = vertices

Arêtes = edge

Frontière = boundary

Trou = hole

F. Cloppet / M1 Informatique – Vision et Machine Intelligente

• Polygone - Notions de connexité

1 composante connexe

1 composante connexe (en terme de régions) (2 composantes connexes en termes de contours)

2 composantes connexes

Polygone / Dénombrement – Relation d'Euler

Se vérifie pour **un graphe planaire** connecté (au sens contours)

S1

$$s - a + f = 2$$

s: nombre de sommets

a : nombre d'arêtes

Face n° 1

S3

f : nombre de faces (int + ext)

S8

S7

$$s = 3$$
, $a = 2$, $f = 1$
 $3 - 2 + 1 = 2$

Polygone - Notion de convexité

Polygone non convexe

Polygone convexe

- Un polygone est convexe si deux points P et Q quelconques situés à l'intérieur du polygone déterminent un segment entièrement situé dans la région intérieur:
 - Tous les angles sont convexes (vn est à droite de [vn-1, vn+1])
- Rq : Il est souvent important de savoir si un polygone est convexe ou non car la complexité de certains algorithmes sera totalement différente dans les deux cas.

Polygone - Enveloppes convexes

- L'enveloppe convexe S(C) d'un polygone C est le plus petit polygone convexe contenant celui-ci.
 - Par tout point p de la frontière f de S(C), il existe au moins une droite passant par p pour laquelle tous les points de S se situent du même côté.

- Polygones / Rappel: Notion de visibilité
 - Soient un segment [A, B] et deux points p et q du plan.
 - Les points p et q se voient mutuellement par rapport à [A, B] si et seulement si le segment ouvert]p, q[ne coupe pas le segment [A, B].

p et q sont visiblesp et r sont visiblesq et r ne sont pas visibles

- Polygones / Polygones étoilés
 - Soit P un polygone simple et q un point de P (sur la frontière ou à l'intérieur)
 - P est étoilé autour de q si et seulement si tout point de P est visible depuis
 q.

Tout polygone convexe est étoilé par rapport à tous les points de son

intérieur.

- Polygone Polygones étoilés
 - L'ensemble des points q depuis lesquels P est entièrement visible est un polygone convexe.

 C'est l'intersection de tous les demi plans "gauche "définis par les arêtes orientées de la frontière

Polygones/ Polygones étoilés (suite)

• Ce polygone convexe s'appelle le " noyau de visibilité " de P. On le note

K(P) (K pour kernel)

 P est donc un polygone étoilé si et seulement si K(P) ≠ {}.

• K(P) = P si P est convexe

K(p) peut être calculé en O(n)

- Polygone / Polygone de visibilité
 - Le **polygone de visibilité de q dans P** est l'ensemble des points de P visibles depuis q.

Théorème de Jordan

- Soit C, une courbe simple connexe et fermée du plan. Alors, C détermine une subdivision unique du plan en trois régions distinctes:
 - · L'intérieur de C
 - · C
 - L'extérieur de C

 De plus, si p et q sont deux points du plan respectivement à l'intérieur et à l'extérieur de C, alors le segment [p, q] a une intersection non vide avec C.

Application du théorème de Jordan : Position d'un point par rapport

à un polygone

- Position d'un point q par rapport à un polygone P
- => Calculer le nombre d'intersections N entre P et la demi-droite horizontale passant par q.
 - Si N est impair, q est à l'intérieur de P, si N est pair, q est à l'extérieur de P
- Complexité de l'algorithme ?

Application du théorème de Jordan : Position d'un point par rapport

à un polygone

- Cas particuliers: alignements demi-droite/segments, passage par un sommet
- Est-il nécessaire de calculer effectivement les intersections ?
- Quelle peut être la complexité pour:
 - · Un polygone convexe?
 - Un polygone étoilé ?

Application du théorème de Jordan : Position d'un point / à un polygone

• Cas d'un polygone convexe

- Si P est convexe, il est donc étoilé par rapport à n'importe quel point q de la frontière de P.
- On a donc un tableau ordonné d'angles polaires (par définition)
- On peut donc faire une recherche dichotomique pour trouver les 2 sommets u et v dont les angles polaires sont respectivement inférieurs et supérieurs à l'angle polaire du segment pq (~ log N)
- Il suffit ensuite de savoir si p est
 à droite ou à gauche de [u, v]. ~ constant
- L'algorithme est donc en O(log N)

- Application du théorème de Jordan : Position d'un point / à un polygone
 - Cas d'un polygone étoilé
 - Une fois le kernel calculé (O(N)), l'algorithme est donc aussi en O(log N)

