Week 7: Matrix Algebra Linear Transformations State Transition Networks

MSIN00180 Quantitative Methods for Business

• Initialisation code (please ignore)

!n[*]:= \$Post:=If[MatrixQ[#]||VectorQ[#],MatrixForm[#],#]&;
 (*\$Post:=If[MatrixQ[#],MatrixForm[#],#]&;*)

Vector and Matrix Variables

Vector notation: \vec{x}

For increased clarity I am going to start using the standard overbar arrow to indicate vectors.

For Matrix variables use capital letters: A, B, ...

e.g.

$$A\overrightarrow{x} = \overrightarrow{b}$$

where
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$

Sum of Matrices

If A, B are two equal sized matrices then there sum is defined as:

$$A + B = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1m} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nm} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1m} + b_{1m} \\ \vdots & & \vdots \\ a_{n1} + b_{n1} & \dots & a_{nm} + b_{nm} \end{pmatrix}$$

Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 4 \\ 5 & 7 & 9 \end{pmatrix}$$

Scalar Multiples of Matrices

If A is an $n \times m$ matrix and k is a scalar then the scalar product is defined as:

$$kA = k \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} = \begin{pmatrix} k a_{11} & \dots & k a_{1m} \\ \vdots & & \vdots \\ k a_{n1} & \dots & k a_{nm} \end{pmatrix}$$

Example

$$3\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{pmatrix}$$

Product $A \hat{x}$

To formalise what we saw last week:

$$A \overrightarrow{X} = \begin{pmatrix} - \overrightarrow{w}_1 - \\ \vdots \\ - \overrightarrow{w}_n - \end{pmatrix} \overrightarrow{X} = \begin{pmatrix} \overrightarrow{w}_1 . \overrightarrow{X} \\ \vdots \\ \overrightarrow{w}_n . \overrightarrow{X} \end{pmatrix}$$

Where A is an $n \times m$ matrix with row vectors $\vec{w}_1, ..., \vec{w}_n$, and \vec{x} is a vector in \mathbb{R}^m .

The number of columns of the matrix A must match the number of components of the vector \vec{x} for the product $A\vec{x}$ to be defined.

Product $A\vec{x}$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (1 & 2 & 3) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ (4 & 5 & 6) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \end{pmatrix}$$

Product $A \vec{x}$ expressed in terms of Column Vectors

We can also express the product $A\vec{x}$ in terms as a **linear combination** of the **column vectors** of A:

$$A \overrightarrow{X} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \overrightarrow{V}_1 & \cdots & \overrightarrow{V}_m \end{pmatrix} \overrightarrow{X} =$$

$$x_1 \overrightarrow{V}_1 + \ldots + x_m \overrightarrow{V}_m$$

Where A is an $n \times m$ matrix with column vectors $\vec{v}_1, ..., \vec{v}_m$, and \vec{x} is the vector $(x_1 ... x_m)$ in \mathbb{R}^m .

Product $A \overrightarrow{x}$: Column-based Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 4 \end{pmatrix} + y \begin{pmatrix} 2 \\ 5 \end{pmatrix} + z \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$= \left(\begin{array}{c} 1 \ x \\ 4 \ x \end{array}\right) \ + \ \left(\begin{array}{c} 2 \ y \\ 5 \ y \end{array}\right) \ + \ \left(\begin{array}{c} 3 \ z \\ 6 \ z \end{array}\right)$$

$$= \left(\begin{array}{c} x + 2 y + 3 z \\ 4 x + 5 y + 6 z \end{array} \right)$$

Algebraic Rules for $A \vec{x}$

If A is an $n \times m$ matrix, \vec{x} and \vec{y} are vectors in \mathbb{R}^m , and k is a scalar then

$$A (\overrightarrow{x} + \overrightarrow{y}) = A \overrightarrow{x} + A \overrightarrow{y}$$

and

$$A(k\vec{x}) = k(A\vec{x})$$

Example Problem

Consider the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Find a 2 × 2 matrix C such that

$$A(B\overrightarrow{x}) = C\overrightarrow{x}$$

for all vectors \overrightarrow{x} in \mathbb{R}^2

Solution

As
$$\vec{x}$$
 in \mathbb{R}^2 let $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$B \ X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$

$$A (B x) = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} -x_2 \\ 2 & x_1 - x_2 \end{pmatrix}$$

by adding 0 and 1 coefficients we can re – express this result thus

$$\begin{pmatrix} -x_2 \\ 2 x_1 - x_2 \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 x_1 - 1 x_2 \\ 2 x_1 - 1 x_2 \end{pmatrix}$$

and we can express this as a matrix product thus

$$\left(\begin{smallmatrix} 0 & x_1 - 1 & x_2 \\ 2 & x_1 - 1 & x_2 \end{smallmatrix} \right) \Longrightarrow \left(\begin{smallmatrix} 0 & -1 \\ 2 & -1 \end{smallmatrix} \right) \; \left(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix} \right)$$

so
$$C = \begin{pmatrix} 0 & -1 \\ 2 & -1 \end{pmatrix}$$

Linear Transformation

Consider the following problem ...

You have x_1 2p coins and x_2 5p coins

From the number of coins $(x_1 \text{ and } x_2)$ it is possible to easily calculate both the total value of the coins (y_1) and the total number of coins (y_2) .

Question

What is the matrix A that performs this calculation when expressed thus?

$$A \overrightarrow{x} = \overrightarrow{y}$$
 where $\overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $\overrightarrow{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$

Linear Transformation

The equations for calculating y_1 (value of coins) and y_2 (number of coins) are:

$$2 x_1 + 5 x_2 = y_1$$

 $x_1 + x_2 = y_2$

In matrix form this can be represented as

$$\begin{pmatrix} 2 & 5 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

so
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 1 \end{pmatrix}$$

For reasons that we will explore shortly this is an example of a linear transformation.

Multiplying the vector \vec{x} by the matrix $A = \begin{pmatrix} 2 & 5 \\ 1 & 1 \end{pmatrix}$ is said to **transform** the vector \vec{x} into a vector \vec{y} .

Reversing a Linear Transformation

If you know the total value of the coins (y_1) and the total number of coins (y_2) can you uniquely determine the number of 2p and 5p coins $(x_1 \text{ and } x_2)$?

Another way of asking this question is can we find a matrix B such that

$$B \vec{y} = \vec{x}$$
 given $A \vec{x} = \vec{y}$

How might we find B?

Reversing a Linear Transformation

It is possible to solve for \vec{x} in terms of \vec{y} (and thus B) using **Gauss-Jordan elimination**:

$$A\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
 where $A = \begin{pmatrix} 2 & 5 \\ 1 & 1 \end{pmatrix}$

First form the augmented matrix

$$\begin{array}{ll} & in[\,\circ\,] := & \mathbf{m} = \left(\begin{array}{ccc} \mathbf{2} & \mathbf{5} & \mathbf{y_1} \\ \mathbf{1} & \mathbf{1} & \mathbf{y_2} \end{array} \right) \\ & Out[\,\circ\,] / / MatrixForm = \\ & \left(\begin{array}{ccc} \mathbf{2} & \mathbf{5} & \mathbf{y_1} \\ \mathbf{1} & \mathbf{1} & \mathbf{y_2} \end{array} \right) \end{array}$$

Then apply Gauss-Jordan elimination ...

The Inverse Linear Transformation

In[
$$\circ$$
]:= $m = \begin{pmatrix} 2 & 5 & y_1 \\ 1 & 1 & y_2 \end{pmatrix}$;
 $m[1] = m[1] / 2$; m

$$\begin{array}{c|c} \text{Out[*]//MatrixForm=} \\ \left(\begin{array}{ccc} 1 & \frac{5}{2} & \frac{y_1}{2} \\ 1 & 1 & y_2 \end{array} \right) \end{array}$$

Out[•]//MatrixForm=

$$\begin{pmatrix} 1 & \frac{5}{2} & \frac{y_1}{2} \\ 0 & -\frac{3}{2} & -\frac{y_1}{2} + y_2 \end{pmatrix}$$

$$ln[*]:=$$
 $m[2] = \frac{-2}{3}m[2];$ m

Out[•]//MatrixForm=

$$\begin{pmatrix} 1 & \frac{5}{2} & \frac{y_1}{2} \\ 0 & 1 & -\frac{2}{3} & \left(-\frac{y_1}{2} + y_2 \right) \end{pmatrix}$$

$$ln[\cdot]:=$$
 $m[1]=m[1]-\frac{5}{2}m[2];$ m

Out[•]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & \frac{y_1}{2} + \frac{5}{3} & \left(-\frac{y_1}{2} + y_2 \right) \\ 0 & 1 & -\frac{2}{3} & \left(-\frac{y_1}{2} + y_2 \right) \end{pmatrix}$$

Out[•]//MatrixForm=

$$\left(\begin{array}{cccc} 1 & 0 & \frac{1}{3} & (-y_1 + 5 \ y_2) \\ 0 & 1 & \frac{1}{3} & (y_1 - 2 \ y_2) \end{array} \right)$$

The Inverse Linear Transformation

Converting this augmented form back to normal matrix form gives:

$$\left(\begin{array}{cc} \textbf{1} & \textbf{0} \\ \textbf{0} & \textbf{1} \end{array} \right) \ \left(\begin{array}{c} \textbf{x}_1 \\ \textbf{x}_2 \end{array} \right) \ = \ \left(\begin{array}{cc} -\frac{y_1}{3} \ + \frac{5}{3} \frac{y_2}{3} \\ \frac{y_1}{3} \ - \frac{2}{3} \frac{y_2}{3} \end{array} \right)$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & \frac{5}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

We have therefore found B such that $B \vec{y} = \vec{x}$

$$B = \begin{pmatrix} -\frac{1}{3} & \frac{5}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

Confirm B reverses the transformation ...

First transform \vec{x} to \vec{y} using matrix A

Let: number of 2p coins = 5 coins number of 5p coins = 10 coins

$$\vec{y} = A \vec{x} = \begin{pmatrix} 2 & 5 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 10 \end{pmatrix} = \begin{pmatrix} 10 + 50 \\ 5 + 10 \end{pmatrix} = \begin{pmatrix} 60 \\ 15 \end{pmatrix}$$

Then transform \vec{y} to \vec{x} using matrix B

$$\vec{x} = B \vec{y} = \begin{pmatrix} -\frac{1}{3} & \frac{5}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 60 \\ 15 \end{pmatrix} = \begin{pmatrix} -20 + 25 \\ 20 - 10 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

B has indeed reversed the process!

We say that the matrix *B* is the **inverse** of *A*.

Linear Transformations are functions expressed as a matrix multiplication

A function T from \mathbb{R}^m to \mathbb{R}^n is called a linear transformation if there exists an $n \times m$ matrix A such that

$$T(\overrightarrow{x}) = A \overrightarrow{x}$$

for all \vec{x} in the vector space \mathbb{R}^m .

Example

Given
$$T(\overrightarrow{x}) = A \overrightarrow{x}$$
 where $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

$$T\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}, \begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\4\\7\end{pmatrix}$$

for simplicity we write
$$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 instead of $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ i.e. $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}$

Without calculating the result what do you think $T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ will be?

Inverse Matrices

The matrix that reverses the **transformation** A is called the **inverse** of A and is represented as A^{-1} .

From the previous example:

$$A = \begin{pmatrix} 2 & 5 \\ 1 & 1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{5}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$

Inverse Matrices

Inverse matrices have the property:

$$A^{-1}(A \overrightarrow{X}) = \overrightarrow{X}$$

Inverse function in Mathematica

Mathematica provides a function to calculate the inverse of a matrix, if it exists.

 $In[\circ] := Inverse \begin{bmatrix} 2 & 5 \\ 1 & 1 \end{bmatrix}$

Out[•]//MatrixForm=

$$\begin{pmatrix}
-\frac{1}{3} & \frac{5}{3} \\
\frac{1}{3} & -\frac{2}{3}
\end{pmatrix}$$

Example

Find the inverse of $A = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$ if it exists.

Solution

Find the inverse of A = $\begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$ if it exists.

$$\begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

First set the augmented matrix with the identity matrix on the right hand side then perform a Gaussian elimination.

$$In[\circ]:= m = \begin{pmatrix} 2 & 3 & y1 \\ 6 & 9 & y2 \end{pmatrix};$$

Out[•]//MatrixForm=

$$\begin{pmatrix}
1 & \frac{3}{2} & \frac{y1}{2} \\
0 & 0 & -3 & y1 + y2
\end{pmatrix}$$

Though we have not finished this Gaussian elimination we can see from the bottom row that it is impossible to form an identity matrix so this matrix is not invertible

Mathematica shows the following warning message when you try to find the inverse of a matrix that is not invertible

```
In[\circ]:= Inverse \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix}
           ••• Inverse: Matrix {{2, 3}, {6, 9}} is singular. ••
Out[ • ]=
          Inverse[{{2,3}, {6,9}}]
```

Example 2

Find the inverse of $A = \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix}$ if it exists.

Solution

Find the inverse of A = $\begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix}$ if it exists.

$$ln[\cdot]:=$$
 $m = \begin{pmatrix} 1 & 2 & y1 \\ 4 & 9 & y2 \end{pmatrix};$
 $m[2]=m[2]-4m[1];$
 m

Out[•]//MatrixForm=

$$\left(\begin{array}{cccc} 1 & 2 & & y1 \\ 0 & 1 & -4 & y1 + y2 \end{array}\right)$$

$$ln[\circ] := m[1] = m[1] - 2m[2]; m$$

Out[•]//MatrixForm=

$$\left(\begin{array}{cccc} 1 & 0 & y1-2 & (-4 & y1+y2) \\ 0 & 1 & -4 & y1+y2 \end{array}\right)$$

In[•]:= m //Simplify

Out[•]//MatrixForm=

$$\left(\begin{array}{cccc} 1 & 0 & 9 \ y1 - 2 \ y2 \\ 0 & 1 & -4 \ y1 + y2 \end{array}\right)$$

This is therefore invertible (we see an identity matrix) and the inverse is $\begin{pmatrix} 9 & -2 \\ -4 & 1 \end{pmatrix}$

Formula for the inverse of 2x2 matrix

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A^{-1} = \frac{1}{a d - b c} \begin{pmatrix} d - b \\ -c a \end{pmatrix}$$

provided ad #bc

Derivation of 2x2 Inverse Formula

We can use Gauss-Jordan elimination to prove the 2x2 inverse formula ...

In[•]:= Clear[a,b,c,d,y1,y2];

$$m = \begin{pmatrix} a & b & y1 \\ c & d & y2 \end{pmatrix}$$
;

Out[•]//MatrixForm

$$\left(\begin{array}{ccc} 1 & \frac{b}{a} & \frac{y1}{a} \\ c & d & y2 \end{array} \right)$$

Out[•]//MatrixForm=

$$\left(\begin{array}{cccc} 1 & \frac{b}{a} & \frac{y1}{a} \\ 0 & -\frac{b\,c}{a} + d & -\frac{c\,y1}{a} + y2 \end{array} \right)$$

$$ln[a]:=$$
 $m[2] = \frac{1}{-\frac{b c}{a} + d} m[2]; m//Simplify$

Out[•]//MatrixForm=

$$\begin{pmatrix} 1 & \frac{b}{a} & \frac{y1}{a} \\ 0 & 1 & \frac{c y1-a y2}{b c-a d} \end{pmatrix}$$

Out[•]//MatrixForm=

$$\begin{pmatrix}
1 & 0 & \frac{d y1-b y2}{-b c+a d} \\
0 & 1 & \frac{c y1-a y2}{b c-a d}
\end{pmatrix}$$

So
$$\begin{pmatrix} x1\\ x2 \end{pmatrix} = \begin{pmatrix} \frac{dy1-by2}{-bc+ad}\\ \frac{cy1-ay2}{bc-ad} \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} dy1-by2\\ -cy1+ay2 \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} d & -b\\ -c & a \end{pmatrix} \begin{pmatrix} y1\\ y2 \end{pmatrix}$$
 Q.E.D

Determinant of a Matrix

The **determinant** of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is called det (A).

$$det(A) = (ad - bc)$$

A is invertible provided $det(A) \neq 0$.

So when
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
:

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

The Det function in Mathematica

In[
$$\circ$$
]:= $Det\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right]$

Out[•]=

-bc+ad

In[
$$\circ$$
]:= Det $\left[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\right]$

Out[•]=

- 2

Mini-Web Case Study

This case study will be used to introduce a number of new concepts and definitions, including **distribution** vectors, transition matrices, and equilibrium distributions.

Four web pages have links to each other as shown in this diagram.

Out[•]=

Let x_1, x_2, x_3 , and x_4 be the initial proportions of the surfers at each site.

e.g.
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.1 \\ 0.3 \\ 0.2 \end{pmatrix} \leftarrow x_1 = 0.4 \text{ means } 40\% \text{ of the surfers are initially at site 1 etc.}$$

Distribution Vectors

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.1 \\ 0.3 \\ 0.2 \end{pmatrix}$$
 \to Note that the components of \vec{X} add to 1 (=100%).

 \vec{x} is an example of a **distribution vector.**

A vector \vec{x} in \mathbb{R}^n is said to be a **distribution vector** if its components add up to 1 and all the components are positive or zero.

Changing the distribution of web surfer

At a predetermined time each surfer randomly follows one of the links out of the page they are currently on.

e.g. The proportion of surfers following each of the 2 links out of page 1 (to pages 2 and 3) will be $\frac{x_1}{2}$.

Out[•]=

Distribution after a change

Let the vector \vec{y} represent the distribution after the first change.

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} \frac{x_2}{2} \\ \frac{x_1}{2} + x_4 \\ \frac{x_1}{2} + \frac{x_2}{2} \\ x_3 \end{pmatrix}$$

Distribution after a change

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} \frac{x_2}{2} \\ \frac{x_1}{2} + x_4 \\ \frac{x_1}{2} + \frac{x_2}{2} \\ x_3 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

this is the same as

$$\vec{y} = A \vec{x}$$
 where $A = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Transition Matrix

$$\vec{y} = A \vec{x} \qquad \text{where } A = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

This is an example of a **linear transformation**.

Matrix A is referred to as the **transition matrix** of this linear transformation.

What do the column vectors of A indicate?

Transition Matrix

$$A = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The *j*th column of *A* indicate where the surfers go from page *j*.

Each column vector of A is a **distribution vector** as its components are all non-negative and add up to 1.

A square matrix A is said to be a **transition matrix** if all its column vectors are **distribution vectors**.

Equilibrium Distribution

An **equilibrium distribution** is any \vec{x} such that $A \vec{x} = \vec{x}$.

In this case we are interested to see if there is a distribution of people over our mini-Web such that when everyone randomly follows a link to another page the overall distribution remains unchanged.

$$A\overrightarrow{X} = \overrightarrow{X}$$

$$\begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

Equilibrium Distribution

$$\begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \implies \begin{pmatrix} \frac{x_2}{2} \\ \frac{x_1}{2} + x_4 \\ \frac{x_1}{2} + \frac{x_2}{2} \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

Rearrange so each equation = 0.

$$\begin{pmatrix} -x_1 + \frac{x_2}{2} \\ \frac{x_1}{2} - x_2 + x_4 \\ \frac{x_1}{2} + \frac{x_2}{2} - x_3 \\ x_3 - x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} -1 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

What do we do now?

Now solve this using Gauss-Jordan elimination ...

Out[•]//MatrixForm=

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & -\frac{2}{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\frac{4}{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

What does this result indicate?

What are x_1 , x_2 , x_3 and x_4 ?

Equilibrium Distribution

$$In[=]:= \begin{pmatrix} \mathbf{1} & 0 & 0 & -\frac{2}{3} \\ 0 & \mathbf{1} & 0 & -\frac{4}{3} \\ 0 & 0 & \mathbf{1} & -\mathbf{1} \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x_1} \\ \mathbf{x_2} \\ \mathbf{x_3} \\ \mathbf{x_4} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

The above result indicates infinite solutions with x_4 being a free (non-leading) variable.

With $x_4 = t$ then:

$$\vec{X} = \begin{pmatrix} \frac{2}{3}t \\ \frac{4}{3}t \\ t \\ t \end{pmatrix}$$

Can we find a value for t?

Equilibrium Distribution

$$\vec{X} = \begin{pmatrix} \frac{2}{3}t \\ \frac{4}{3}t \\ t \\ t \end{pmatrix}$$

As \vec{x} is a **distribution vector** then it also follows that $x_1 + x_2 + x_3 + x_4 = 1$

so
$$\frac{2}{3}t + \frac{4}{3}t + t + t = 1$$
 \longrightarrow $t = \frac{1}{4}$

The **equilibrium distribution** is therefore

$$\vec{x} = \begin{pmatrix} \frac{2}{3} t \\ \frac{4}{3} t \\ t \\ t \end{pmatrix} = \begin{pmatrix} \frac{1}{6} \\ \frac{1}{3} \\ \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}$$

Equilibrium Distributions = long-term distribution

Image we repeat the random movement of people along links over and over again.

We call each transition an **iteration**.

Perhaps surprisingly

The equilibrium distribution represents the distribution of surfers in the long run, whatever the initial distribution.

We'll come back to this important property later.

Mini-Web Iterations Demo: Mathematica

This code defines a Mathematica function called **IterateWeb**, that visually shows how the distribution changes step-by-step from some initial distribution. You do not need to understand this code.

```
In[ • ]:=
         IterateWeb[x0_,steps_]:=
         Module
          \{x=x0\},\
          Print[Graph[\{1\rightarrow2,2\rightarrow1,2\rightarrow3,1\rightarrow3,3\rightarrow4,4\rightarrow2\},
         VertexLabels→Table[i→Round[x[i],0.01],{i,4}]]];
          For i=0,i<steps,i++,
                    0.5 0 01
                Print[Graph[\{1\rightarrow2,2\rightarrow1,2\rightarrow3,1\rightarrow3,3\rightarrow4,4\rightarrow2\},
                      VertexLabels→Table[i→Round[x[i],0.01],{i,4}]]]
         ]];
```

Initially, we can just run this to show 1 step change in the distribution:

IterateWeb[x0={1,0,0,0},steps=1] In[•]:=

Let's run this again over a larger number of steps and with different distributions ...

Try running these two examples.

What do you observe about the final outcomes in each case?

IterateWeb[x0={1,0,0,0}, steps=10]

IterateWeb[$x0=\{0.25,0.25,0.25,0.25\}$, steps=5] In[•]:=

Google, PageRank and Equilibrium Distributions

1998 Landmark Paper on Google Prototype

"The Anatomy of a Large-Scale Hypertextual Search Engine" by Sergey Brin and Lawrence Page, Stanford University

PageRank

This paper introduced the **PageRank** measure which measures "link popularity" and is used to provide a quality ranking to search results.

Defines the popularity of a web page as the likelihood that random surfers will eventually find themselves at a given page.

PageRank is the same as a page's component value in the **equilibrium distribution**!

$$\vec{X} = \begin{pmatrix} 0.167 \\ 0.333 \\ 0.25 \\ 0.25 \end{pmatrix}$$

This tells us that page 2 is the most popular page with a PageRank of 0.333.

Matrix Product

Let B be an $n \times p$ matrix and A a $p \times m$ matrix with columns $\vec{v}_1, \vec{v}_2, ..., \vec{v}_m$.

Then the product B A is

$$BA = B \begin{pmatrix} | & | & | \\ \overrightarrow{v}_1 & \overrightarrow{v}_2 & \cdots & \overrightarrow{v}_m \\ | & | & | \end{pmatrix} =$$

$$\begin{pmatrix} | & | & | \\ B \overrightarrow{v}_1 & B \overrightarrow{v}_2 & \cdots & B \overrightarrow{v}_m \\ | & | & | \end{pmatrix}$$

To find B A, we multiply B by the columns of A and combine the resulting vectors.

For a matrix product to be defined the number of columns of the first matrix must equal the number of rows of the second matrix.

Example

What is the product $BA = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$?

Example

$$BA = {6 \ 7 \choose 8 \ 9} {1 \ 2 \choose 3 \ 5}$$

$$= {6 \ 7 \choose 8 \ 9} {1 \choose 3} {6 \ 7 \choose 8 \ 9} {2 \choose 5}$$

$$= {6 \times 1 + 7 \times 3 \choose 8 \times 1 + 9 \times 3} {6 \times 2 + 7 \times 5 \choose 8 \times 2 + 9 \times 5}$$

$$= {27 \ 47 \choose 35 \ 61}$$

Matrix Product in Mathematica

In Mathematica it is essential to **use a dot** between the matrices.

In[
$$\circ$$
]:= $\begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$

Out[•]//MatrixForm=

$$\begin{pmatrix}
27 & 47 \\
35 & 61
\end{pmatrix}$$

In[•]:=

What if we reverse the order of A and B? What is the matrix product A B?

In[•]:=

Matrix products are Noncommutative (generally)

 $AB \neq BA$

$$ln[*]:=$$
 (* B.A = *)
 $\binom{6}{8} \binom{7}{9} \cdot \binom{1}{3} \binom{2}{5}$

Out[•]//MatrixForm=

$$\begin{pmatrix} 27 & 47 \\ 35 & 61 \end{pmatrix}$$

$$ln[\circ]:=$$
 (* A.B = *)
 $\begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix}$

Out[•]//MatrixForm=

$$\left(\begin{array}{cc} 22 & 25 \\ 58 & 66 \end{array}\right)$$

In general $AB \neq BA$.

However, at times it does happen that AB = BA; then we say the matrices **commute**.

Multiplying with the Identity Matrix

For an $n \times m$ matrix

$$AI_m = I_n A = A$$

 I_m is an $m \times m$ square matrix where all the diagonal elements are 1s and all other elements are 0s.

e.g.
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Matrix multiplication is Associative

$$(AB)C = A(BC)$$

We can therefore simply write ABC for the product (AB) C or A(BC).

Distributive property of matrices

If A and B are $n \times p$ matrices, and C and D are $p \times m$ matrices,

$$A(C+D) = AC + AD_{AD, and}$$

$$(A+B)C=AC+BC$$

Powers of Transition Matrices

We return to our mini-Web case study.

Remember that the distribution after 1 iteration is given by

$$\vec{y} = A \vec{x}$$
 where $A = \begin{pmatrix} 0 & 0.5 & 0 & 0 \\ 0.5 & 0 & 0 & 1 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

So after 2 iterations the distribution will be $A(A\vec{x}) = (AA)\vec{x} = A^2\vec{x}$

It follows that after *m* iterations the distribution vector will be $A^m \vec{x}$.

The MatrixPower function in Mathematica

```
(0 0.500)
         0.5 0 0 1 ,
       MatrixPower[A,10] (* = A^{10} *)
Out[ • ]//MatrixForm=
       (0.172852 0.171875 0.171875 0.150391)
       0.34375 0.344727 0.300781 0.34375
       0.24707 0.24707 0.269531 0.236328
       0.236328 0.236328 0.257813 0.269531
       MatrixPower[A,50] (* = A^{50} *)
Out[•]//MatrixForm=
      (0.166667 0.166667 0.166667 0.166667
       0.333333 0.333333 0.333333 0.333333
         0.25 0.25 0.25 0.25
         0.25
                 0.25
                          0.25
                                     0.25
```

What do you observe about the columns of this matrix?

Transition matrices: how A^m behaves as $m \rightarrow \infty$

On the last slide we observed that when A is a **transition matrix** all the columns of A^m as m increases appear to tend towards the equilibrium vector \vec{x}_{equ} for matrix A.

Equilibria for transition matrices

Let A be a **transition matrix** of size $n \times n$ and let \overrightarrow{x}_{equ} be the **equilibrium distribution** of

If \vec{x} is any distribution vector in \mathbb{R}^n then

$$\lim_{m\to\infty} \left(A^m \; \overrightarrow{x} \right) = \overrightarrow{x}_{\text{equ}}$$

$$\lim_{m\to\infty} A^m = \begin{pmatrix} | & | \\ \vec{x}_{\text{equ}} & \cdots & \vec{x}_{\text{equ}} \\ | & | \end{pmatrix}$$

More on Inverse Matrices: Definitions

A square matrix A is said to be **invertible** if the linear transformation $\vec{y} = T(\vec{x}) = A \vec{x}$ is invertible.

In this case the matrix of T^{-1} is denoted by A^{-1} .

If the linear transformation $\vec{y} = T(\vec{x}) = A \vec{x}$ is invertible then its inverse is $\vec{x} = T^{-1}(\vec{y}) = A^{-1} \vec{x}$.

Invertibility

An $n \times n$ matrix A is **invertible** if (and only if)

$$\operatorname{rref}(A) = I_n$$

or, equivalently, if

$$rank(A) = n$$

Multiplying with the inverse

$$A^{-1}A = AA^{-1} = I_n$$

Inverse of the product of matrices

$$(BA)^{-1} = A^{-1}B^{-1}$$

The order matters!

Finding the inverse of a matrix using Gauss-Jordan elimination

To find the inverse of an $n \times n$ matrix A, form the $n \times 2n$ matrix $[A : I_n]$ and compute rref $[A : I_n]$...

lf

$$\operatorname{rref}[A : I_n] = [I_n : B]$$

then A is invertible and $A^{-1} = B$.

Finding the inverse of a matrix using Gauss-Jordan elimination

Find the inverse of A=
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 1 \end{pmatrix}$$

First, form the augmented matrix $[A:I_3] = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0 \\ 7 & 8 & 1 & 0 & 0 & 1 \end{pmatrix}$

Now apply Gauss-Jordan elimination to reduce this to the RREF form:

Out[•]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & -\frac{43}{24} & \frac{11}{12} & -\frac{1}{8} \\ 0 & 1 & 0 & \frac{19}{12} & -\frac{5}{6} & \frac{1}{4} \\ 0 & 0 & 1 & -\frac{1}{8} & \frac{1}{4} & -\frac{1}{8} \end{pmatrix}$$

As this RREF form is of the form $[I_3 : B]$ we know that A is invertible where $A^{-1} = B = \begin{pmatrix} -\frac{43}{24} & \frac{11}{12} & -\frac{1}{8} \\ \frac{19}{12} & -\frac{5}{6} & \frac{1}{4} \\ -\frac{1}{2} & \frac{1}{4} & -\frac{1}{2} \end{pmatrix}$