

Algoritmid ja andmestruktuurid

- Jaga ja Valitse algoritmide disaini paradigma
- Sorteerimisalgoritmid
- Rekursiivsete algoritmide keerukuse analüüs

Jaga ja Valitse strateegia

Divide et Impera

Napoleom

Jaga ja Valitse strateegia

- Jaga
 - Jaga ülesanne lihtsamateks alamülesanneteks
- Valitse
 - Lahenda alamülesanded
- Ühenda
 - Leia lahendus alamülesannete lahenduste kaudu
- Kõige loomulikum on seda strateegiat realiseerida rekursiivsete algoritmidega
 - alamülesanne lahendatakse sama algoritmi järgi lihtsamate sisendandmetega

Rekursiivse Jaga ja Valitse algoritmi loomine

- Leia kuidas ülesannet lihtsamateks alamülesanneteks jagada
- Leia kuidas alamülesannete lahendustest käesoleva ülesande lahendus tuletada
- Leia lõpetamistingimus mille poole jagamine viib
- Määra lahendus kui lõpetamistingimus on täidetud

Binaarne otsing

- Saab kasutada otsimiseks sorteeritud andmetest
 - Jaga

Jagame andmed pooleks

Valitse

Otsime ainult sellest poolest, kuhu otsitav peaks jääma

- Ühenda

Vastuseks on alamülesande vastus

Rekursiooni lõpetamistingimus

Jah kui andmete keskmine element vastab küsitule

Ei kui andete maht on 0

Binaarne otsing rekursiivselt

```
binary_search(x,L)
 n = length of L;
 mid = n/2;
  if (n == 0)
    return no match
  else if (L[mid] matches x)
    return L[mid]
  else if (L[mid] > x)
    binary_search(x,L[1..mid-1])
  else
    binary_search(x,L[mid+1..n])
```


Binaarse otsingu (rekursiivne) analüüs

 Rekursiivsete algoritmide keerukus avaldub rekurrentse avaldisena

$$W(n) = W(n/2) + 3$$

$$W(0) = 1$$
Rekursiooni
lõpp

 Otsime lahendust W(n) = ?, mis poleks rekurrentne Funtsiooni kehas on 3 võrdlust

Rekursiivne väljakutse 1/2 suurusega ülesandele

Merge sort

- Jagame massiivi pooleks
 Sorteerime mõlemad väiksemad massiivid
- Ühendame sorteeritud massiivid üheks sorteeritud massiiviks võrreldes omavahel mõlema massiivi väiksemaid elemente
- Jagamise lõpetamistingimuseks on 1 elemendiga massiiv
- Ühe elemendiga massiivi võib lugeda sorteerituks, tagastame sellesama massiivi

Mergesort

```
mergesort (int n, keytype S[]) {
  if (n>1) {
                                                         W(n)=W(n/2)+W(n/2)+(n/2+n/2)
    int h=[n/2], m = n - h;
                                                                sort(U) sort(V) merge()
    keytype U[1 ..h], V[1 ..m];
                                                         W(n) = 2W(n/2) + n, kui n = 2^k
    copy S[1] through S[h] to U[1] through U[h];
                                                         W(n) = W(\lfloor n/2 \rfloor) + W(\lceil n/2 \rceil) + n,
    copy S[h+1] through S[n] to V[1] through V[m];
                                                                            kui n \neq 2^k
    mergesort(h, U);
                                                         W(n) \in O(?)
    mergesort(m, V);
    merge (h, m, U, V, S);
}}
```

```
merge (int h, int m, keytype U[], keytype V[], keytype S[]) {
  index i, j, k;
  i = 1; j = 1; k = 1;
  while (i <= h && j <= m) {
    if (U[i] < V[j]) { S[k] = U[i]; i++; }
    else { S[k] = V[j]; j++; }
    k++; }
  if (i>h) copy V[j] through V[m] to S[k] through S[h+m];
  else copy U[i] through U[h] to S[k] through S[h+m]; }
```


Quicksort

- Valime ühe elemendi teljeks (pivot)
 - Sorteerime kõik teljest väiksemad temast vasakule ja suuremad paremale
 - Sorteerime teljest paremale ja vasakule jääva massiivi
- Ühendame vasaku massiivi, telje ja parema massiivi üksteise järgi
- Jagamise lõpetamistingimuseks on 1 elemendiga massiiv Ühe elemendiga massiivi võib lugeda sorteerituks, tagastame sellesama massiivi

Quicksort

```
quicksort (index low, index high)
  index pivot
  if (high > low)
    pivot = partition(low, high)
    quicksort(low, pivot - 1)
    quicksort(pivot + 1, high)
```

```
partition(int low, int high)
  pivotitem = S[low]
  p = low    //pivot location
  for (i=low+1; i<=high; i++)
    if (S[i] < pivotitem){
       p++
       exchange S[i] and S[p]
    exchange S[low] and S[p]
  return p</pre>
```

Halvima juhu keerukus

$$W(n) = W(0) + W(n - 1) + (n - 1)$$

$$W(n) = W(n - 1) + (n - 1)$$

$$\mathbf{W}(\mathbf{0}) = \mathbf{0}$$

Keskmise juhu keerukus

Leia suurusel k- s element

- Lihtne algoritm
 - leia *k* korda suurim ülejäänutest
 - keerukus O(kn)
 - mediaanelemendi (k=(n+1)/2) leidmisel O(n^2)
 - kas saaks paremini?
- Sorteerime andmed
 - mediaanelemendi saab keerukusega O(n lg n)
 - meil pole vaja sorteeritud andmeid, kas saaks paremini?
- Quicksort telje asukoht (rank) on peale partition tegemist teada!
 - tegeleme edasi ainult poolega, kuhu jääb k
 - jaga ja valitse!

k-select algoritm

```
partition(index low, index high)
  pivotitem = S[low]
  p = low    //pivot location
  for (i=low+1; i<=high; i++)
    if (S[i] < pivotitem){
        p++
        exchange S[i] and S[p]
    exchange S[low] and S[p]
  return p</pre>
```


k-select analüüs

- Parimal juhulO(n)
- Halvimal juhul $O(n^2)$
- Keskmiselt andmete ühtlase jaotuse korral
 3n võrdlust O(n)
- kavalam telje valik aitab saavutada keskmist keerukust
 - mediaanvalik
 - juhuslik valik

Rekurrentsete võrrandite lahendamine

http://www.geekarmy.com/cool/703/miniglobe-and-recursive-photography/

Rekurrentsed võrrandid

Näiteks

$$T(n) = T(n-1) + (n-1)$$

 $T(n) = 2T(n/2) + (n-1)$

- Lahendusmeetodid
 - Üldmeetod: äraarvamine + induktiivne tõestus
 - Iterratsioonimeetod
 - Domeeni (muutujate) vahetus
 - Rekursioonipuu meetod
 - Spetsiaalmeetodid erikujulistele võrranditele

Lineaarsed võrrandid: $\sum_{i} (a_i T(n - i)) = f(n)$

Murruga võrrandid: T(n) = aT(n/b) + f(n)

Üldmeetod

- Lahendite arvutamine mitme n väärtuse jaoks
- Lahendi hüpoteesi püstitamine
- Hüpoteesi tõestamine induktsiooni abil
- Sobib kui suudame püstitada mõistliku hüpoteesi lahendi kohta (keerukusfunktsiooni)
 - analoogia mõne teadaoleva võrrandiga
 - rekursioonipuu analüüsist

Matemaatiline induktsioon

 Induktsiooni kasutatakse teoreemide tõestamiseks lõpmatutel loenduvatel hulkadel, näiteks

$$\sum_{i=1}^{n} i = n(n + 1) / 2$$

- Induktsiooni baas tõestus, et väide kehtib baasjuhul (n=1)
- Induktsiooni hüpotees
 eeldus, et väide kehtib suvalise n≥ 1 korral
- Induktsiooni samm
 tõestus, et kui eeldus kehtib n korral, siis kehtib ka n+1 korral

Iterratsioonimeetod

- Võib sobida võrranditele kujul T(n) = T(n-a) + f(n)
- On olemas üldisem meetod lineaarsete rekurrentsete võrrandite lahendamiseks (õpik lisa B)

$$T(n) = T(n-1) + (n-1)$$

$$T(0) = 0$$

$$T(n) = T(n-2) + (n-2) + (n-1)$$

$$T(n) = T(n-3) + (n-3) + (n-2) + (n-1)$$

$$T(n) = 0 + 0 + 1 + \dots + (n-2) + (n-1)$$

$$T(n) = \sum_{n-1}^{n-1} i = (n-1) n/2$$

Muutujate vahetuse meetod

Binaarse otsingu keerukus

$$W(n) = W(n/2) + 3$$

 $W(1) = 1$

 Lahendades avaldise kui vahetuse n = 2^k (ehk k = lg n) korral saame W(2^k) = W(2^{k-1}) + 3

kui w(k) = W(2^k), siis w(k) = w(k-1) + 3 ja w(0) = 1
w(k) =
$$3k + 1$$
 ehk W(2^k) = $3k + 1$
W(n) = $3 \lg n + 1 \in O(\log n)$

Üldkujul

$$W(n) = 3 \lfloor \lg n \rfloor + 1 \in O(\log n)$$

Rekursioonipuu meetod

Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

Quicksort keerukus

Halvima juhu keerukus

$$W(n) = W(0) + W(n - 1) + (n - 1)$$

$$W(n) = W(n - 1) + (n - 1)$$

$$W(0) = 0$$

$$W(n) = n(n - 1) / 2 \in O(n^{2})$$

Keskmise juhu keerukus

$$\begin{array}{ll}
n \\
A(n) = & \sum \frac{1}{n} A(p-1) + A(n-p) + (n-1) \\
p=1
\end{array}$$

 $A(n) \approx (n+1) 2 \ln n \approx 1.38(n+1) \lg n \in O(n \lg n)$

Keerukuse põhiteoreem

Põhiteoreemist (*Master Theorem*) võib järeldada, et kui keerukuse võrrand on kujul

$$T(n) = aT(n/b) + c n^k$$

a - alamülesannete arv

b - alamülesande kahanemise kordaja

n^k - funktsiooni keha keerukusaste

siis on keerukus

 $T(n) \in O(n \lg n)$

$$T(n) \in \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \lg n) & \text{if } a = b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases}$$

$$T(n) = 2T(n/2) + (n-1)$$

Intuitsioon

Võrreldakse keerukust, mis tuleb rekursioonist $O(n^{\log_b a})$ ja mis tuleb rekursiivse funktsiooni kehast f(n)

1. kui $O(n^{\log_b a})$ domineerib, on keerukus

$$T(n) = \Theta\left(n^{\log_b a}\right)$$

2. kui f(n) domineerib, on keerukus $T(n) = \Theta(f(n))$

3. kui nad on võrreldavad, siis tuleneb lg n lisakeerukus $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(f(n) \log n)$

Merge sort keerukus

$$W(n) = W(n/2) + W(n/2) + (n/2 + n/2)$$

$$msort(left) \quad msort(right) \quad merge(left,right)$$

$$W(n) = 2W(n/2) + n \quad kui \quad n = 2^k$$

$$W(n) = W(\lfloor n/2 \rfloor) + W(\lceil n/2 \rceil) + n \quad kui \quad n \neq 2^k$$

$$W(n) \in O(n \mid g \mid n)$$

Sorteerimisalgoritmide võrdlus

	Halvimal	Keskmisel
	juhul	juhul
Bubble sort	$O(n^2)$	$O(n^2)$
Merge sort	$O(n \log n)$	$O(n \log n)$
Quicksort	$O(n^2)$	$O(n \log n)$

http://www.cs.ubc.ca/spider/harrison/Java/

http://www.cs.rit.edu/~atk/Java/Sorting/sorting.html

Suurte täisarvude aritmeetika

 Täpseteks arvutusteks suurte täisarvudega, mis ületavad riistvaralised piirid (2-8 baiti)

Näiteks RSA krüptoalgoritm

RSA võti: $1024 \text{ bitti} = 128 \text{ baiti} > 10^{300}$

- Arvude lihtne esitus:
 numbri kaupa massiivis, madalamad järgud eespool
 658791 = [1][9][7][8][5][6]
- Lihtsad tehted O(n), kus n on järkude arv
 u + v u v u * 10^m u DIV 10^m u REM 10^m

Jaga ja valitse: Suurte täisarvude korrutamine

Jagame arvu kaheks osaks

$$u = a * 10^{m} + b$$
 $u = [1][9][7][8][5][6]$
 $v = c * 10^{m} + d$ b a

$$658791 = 658 * 10^{3} + 791$$

Korrutamiseks kasutame rekursiivselt sama algoritmi

$$uv = (a * 10^m + b)(c * 10^m + d)$$

 $uv = ac * 10^{2m} + (ad + bc) * 10^m + bd$

- B Rekursiooni lõpetamistingimuseks on tegurite mahtumine olemaolevasse täisarvu andmetüüpi
- 4 rakendame riistvaralist (kompilaatori) korrutamist

Suurte täisarvude korrutamine

```
large_int prod (large_int u, large_int v)
{ large int a, b, c, d;
  int n, m;
 n = max(length(u), length(v))
  if(u==0 | v==0)
    return 0;
  else if ( n < threshold )</pre>
    return (u * v in usual way);
  else
  \{ m = n \text{ div } 2; 
    a = u \, div \, 10^m; b = u \, rem \, 10^m;
    c = v div 10^m; d = v rem 10^m;
    return (prod(a,c)*10^2m +
     (prod(a,d)+prod(b,c))*10^m +
     prod(c,d)); }}
```


Algoritmi keerukus

Põhioperatsioonid

lineaarse keerukusega opertsioonid (+, -, * 10^m) nende summaarse keerukuse tähistame *cn*

Halvima juhu keerukus

$$W(n) = 4W(n/2) + cn$$

Lahendame Põhiteoreemi abil:

$$W(n) \in O(n^{\lg 4}) = O(n^2)$$

Parem korrutamismeetod

Vajasime tulemust avaldisele

(4 korrutamist)

$$uv = ac * 10^{2m} + (ad + bc) * 10^m + bd$$

Avaldist (ad + bc) on võimalik leida teisiti

$$r = (a + b)(c + d) = ac + (ad + bc) + bd$$

 $(ad + bc) = r - ac - bd$
 $(ad + bc) = (a + b)(c + d) - ac - bd$ (3 korrutamist!)

Halvima juhu keerukus

$$W(n) \approx 3W(n/2) + cn$$

$$W(n) \in O(n^{\lg 3}) \approx O(n^{1.58})$$

Mõned järeldused

- Täisarvude korrutamine (ja jagamine) ei ole konstantse, ega isegi lineaarse keerukusega
 - 64-bit korrutamine on keerukam kui 2*32-bit korrutamine
- Jaga ja valitse aga oluline on kuidas jagada!

Lävega (threshold) segameetod

- Mingist n väärtusest (lävest) alates võtab jagamine rohkem resurssi kui annab võitu. Sel puhul võib kasutada mõnda põhimõtteliselt suurema keerukuse, aga väikeste n väärtuste korral kiiremat meetodit
- Sorteerimine
 Merge ja bubble (või insertion) sort
- Suurte täisarvude korrutamine
 Tarkvaraline ja riistvaraline korrutamine
- Parim läve väärtus sõltub mõlema algoritmi konkreetsest realisatsioonist.

Jaga ja valitse

- Jaga
 - Jaga ülesanne lihtsamateks alamülesanneteks
- Valitse
 - Lahenda alamülesanded
- Ühenda
 - Leia lahendus alamülesannete lahenduste kaudu

Millal "jaga ja valitse" ei sobi

- Ülesanne suurusega n jagatakse kaheks või enamaks peaaegu samasuureks ülesandeks (näiteks n-1)
 - fib(n) = fib(n-1) + fib(n-2)
 - Tulemuseks on eksponentsiaalne keerukus
- Ülesanne suurusega n jagatakse peaegu n-ks alamülesandeks suurusega n/c, kus c on konstant
 - $-T(n) = k(n) T(n/e) + f(n), \qquad k(n) = O(n)$
 - Tulemuseks on O(n lg n) algoritm

Rekurrentsed võrrandid ja lahendid, mida võiks teada

•
$$T(n) = T(n - O(1)) + O(1)$$

$$\rightarrow$$
 $O(n)$

•
$$T(n) = T(n - O(1)) + O(n)$$

$$\rightarrow$$
 $O(n^2)$

•
$$T(n) = T(n/2) + O(1)$$

$$\rightarrow$$
 O($lg n$)

•
$$T(n) = 2T(n/2) + O(1)$$

$$\rightarrow$$
 $O(n)$

•
$$T(n) = 2T(n/2) + O(n)$$

$$\rightarrow$$
 $O(n \lg n)$

Kokkuvõtteks

- Jaga ja valitse
 - jagame probleemi järjest väiksemateks tükkideks, kuni oskame lahendada triviaalset probleemi
 - Võit tavaliselt O(n)-st $O(\log n)$ -ks
 - tulemuseks tihti rekursiivne algoritm
- Rekursiivse algoritmi keerukust väljendab rekurentne võrrand
- Rekurrentse võrrandi lahendamise meetodid
 - Iteratsioonimeetod
 - Muutuja asendamine
 - Rekursioonipuu
 - Põhiteoreem