WINTER-2013

Q.1 a) Solve:
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
 (6)

b) Solve:
$$(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$$
 (7)

Q.2 a) Solve:
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + y = \frac{\sin(\log x)}{x}$$
 (6)

b) Solve by the method of variation of parameters

$$(D^2 - 1)y = (1 + e^{-x})^2$$
 (7)

UNIT 2

Q.3 a) Evaluate:
$$\int_{0}^{\infty} \frac{\cos 6t - \cos 4t}{t} dt$$
(4)

b) Find f(t) if $\bar{f}(s)$ is given by $\frac{1}{2} \log \left(\frac{S^2 + b^2}{t} \right)$

b) Find f(t) if
$$\bar{f}(s)$$
 is given by $\frac{1}{2} log \left(\frac{S^2 + b^2}{S^2 + a^2} \right)$ (4)

c) Use convolution theorem to evaluate

$$L^{-1} \left\{ \frac{1}{(S+1)(S+9)^2} \right\}$$
 (6)

Q.4 a) Evaluate:
$$\int_{0}^{\infty} e^{-t} \frac{\sin^{2} t}{t} dt$$
 (4)

b) Find: $L^{-1} \frac{1}{\left(S^{2} + a^{2}\right)^{2}}$ (4)

b) Find:
$$L^{-1} \frac{1}{(S^2 + a^2)^2}$$
 (4)

Solve the differential equation by using Laplace transform.

$$\frac{d^2x}{dt^2} + x = 6\cos 2t$$
 with $x = 3$, $\frac{dx}{dt} = 1$, at $t = 0$. (6)

UNIT 3

Q.5 a) Solve the difference equations

i.
$$y_{n+2} - 2y_{n+1} + y_n = n^2 2^n$$
 (4)

ii.
$$y_{n+2} - 5y_{n+1} + 6y_n = 2n^2 + 3$$
 (4)

b) Find inverse Z-transform of
$$\frac{2Z^2 - 10Z + 3}{(Z-3)^2(Z-2)}$$
 (5)

Q.6 a) Solve difference equations

i.
$$y_{n+2} - 4y_{n+1} + 3y_n = 3^n$$
 (4)

ii.
$$u_{n+2} - 16u_n = \cos\frac{n}{2}$$
 (4)

b) Solve by Z-transform
$$y_{n+2} + 5y_{n+1} + 6y_n = 6^n + 3n$$
 (5) UNIT 4

Q.7 a) Solve the following partial differentials equations.

i.
$$x^2p + y^2q = (x + y) z$$
, **ii.** $p^2 + q^2 = x + y$. (8)

b) Find the Fourier transform of

$$f(x) = 1 - x^2$$
 $|x| < 1$
= 0 $|x| > 1$

$$f(x) = 1 - x^{2} |x| < 1$$

$$= 0 |x| > 1$$
Hence evaluate
$$\int_{0}^{\infty} \left(\frac{\sin x - \cos x}{x^{3}}\right) \cos \frac{x}{2} dx$$
 (6)

Q.8 a) Solve the following partial differential equations

i.
$$yzp + xzq + 2xzq + 2xy = 0$$
 (4)

ii.
$$p tan x + q tan y = tan z$$
 (4)

b) Find the Fourier transform of

$$f(x) = 1,$$
 $|x| < 1$
= 0 $|x| > 1$

Hence evaluate
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$
 (6)

UNIT 5

Q.9 a) Show that $u = y^3 - 3x^2y$ is a harmonic function. Find its harmonic conjugate and the corresponding analytic function. **(7)**

b) Find the bilinear transformation which maps the points z = 1, i, -1 onto the points w = i, 0, -i. (6)

Q.10 a) Expand the function $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ in the region.

ii. 2 < |z| < 3 **i.** |z| < 2, by Laurent's series. **(7)**

b) If $u = \lambda(1 + \cos \theta)$, find v so that u + iv is analytic function. (6)

UNIT 6

Q.11 a) Find the directional derivative of

 $\phi = e^{2x} \cos yz$ at (0, 0, 0) in the direction of tangent to the curve x = a sin t, y = a cos t, z = at at t = $\pi/4$. **(7)**

b) Prove that

i.
$$\nabla^2(\phi\psi) = \phi\nabla^2\psi + 2\nabla\phi.\nabla\psi + \psi\nabla^2\phi$$
 (3)

rove that
i.
$$\nabla^2(\phi\psi) = \phi\nabla^2\psi + 2\nabla\phi.\nabla\psi + \psi\nabla^2\phi$$
 (3)
ii. $\nabla.(\mathbf{r}^3\mathbf{r}) = 6\mathbf{r}^3$ (3)

Q.12 a) If r = xi + yj + zk and r = |r| prove that

$$i. \quad \nabla (r^n r) = (n+3)r^n$$
 (3)

$$\mathbf{ii.} \ \nabla \times \left(\mathbf{r}^{n} \mathbf{r}\right) = 0 \tag{3}$$

b) A vector field is given by $\overline{F} = (\sin y)i + x(1 + \cos y)j$

Evaluate the line integral over a circular path given

$$x^2 + y^2 = a^2, z = 0.$$
 (7)