Iterative Linear Algebra Methods

The following are outlines of the best-known iterative methods for approximately solving Ax = b, where $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, and $b \in \mathbb{R}^n$.

1. The classical iterative methods: Jacobi, Gauss-Seidel, and SOR.

Notation: In describing the matrix-vector forms of the classical iterative methods, we use the decomposition A=L+D+U, in which L, D, and U are the strict lower-triangular, diagonal, and strict upper-triangular parts of A, respectively. In describing the componentwise forms, we denote the ith components of x and y and the y and y are the strict lower-triangular, diagonal, and strict upper-triangular parts of y and y are the strict lower-triangular, diagonal, and strict upper-triangular parts of y and y and y and y are the strict lower-triangular, diagonal, and strict upper-triangular parts of y and y and y are the strict lower-triangular, diagonal, and strict upper-triangular parts of y and y are the strict lower-triangular, diagonal, and strict upper-triangular parts of y and y are the strict lower-triangular, diagonal, and strict upper-triangular parts of y and y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lower-triangular parts of y and y are the strict lo

JACOBI ITERATION: (matrix-vector form)

Given A, b, and initial x.

Until "stop":

$$\mathsf{Update}\ x \leftarrow D^{-1}\big[b - (L+U)x\big].$$

JACOBI ITERATION: (componentwise form)

Given A, b, and initial x.

Until "stop":

For
$$i = 1, \ldots, n$$
:

Set
$$x_i^+ = (b_i - \sum_{j \neq i} A_{ij} x_j) / A_{ii}$$
.

 $\mathsf{Update}\ x \leftarrow x^+.$

Gauss-Seidel Iteration: (matrix-vector form)

Given A, b, and initial x.

Until "stop":

Update $x \leftarrow (L+D)^{-1}(b-Ux)$.

GAUSS-SEIDEL ITERATION: (componentwise form)

Given A, b, and initial x.

Until "stop":

For
$$i = 1, ..., n$$
:

Update
$$x_i \leftarrow (b_i - \sum_{j \neq i} A_{ij} x_j) / A_{ii}$$
.

SUCCESSIVE OVERRELAXATION (SOR): (matrix-vector form)

Given A, b, initial x, and ω .

Until "stop":

Update
$$x \leftarrow (\omega L + D)^{-1} \{ \omega b + [(1 - \omega)D - \omega U]x \}.$$

SUCCESSIVE OVERRELAXATION (SOR): (componentwise form)

Given A, b, initial x, and ω .

Until "stop":

For
$$i = 1, \ldots, n$$
:

Update
$$x_i \leftarrow (1 - \omega)x_i + \omega \left(b_i - \sum_{j \neq i} A_{ij}x_j\right) / A_{ii}$$
.

2. Krylov subspace methods: GMRES(m), CG, and PCG.

Notation: In GMRES(m), $e_1 = (1, 0, \dots, 0)^T \in \mathbb{R}^{m+1}$ and w_{k+1} is the (k+1)st component of the vector $w \in \mathbb{R}^{m+1}$. Generally, subscripted quantities may denote scalars, vectors, or matrices, depending on the context.

 $\mathrm{GMRES}(m)$: (standard Gram–Schmidt implementation)

Given A, b, x, tol, itmax.

INITIALIZE: Set $r \equiv b - Ax$, $v_1 \equiv r/||r||_2$, $w \equiv ||r||_2 e_1 \in \mathbb{R}^{m+1}$.

ITERATE: For k = 1, ..., m, do:

Initialize $v_{k+1} = Av_k$.

For $i = 1, \ldots, k$, do:

Set $h_{ik} = v_i^T v_{k+1}$.

Update $v_{k+1} \leftarrow v_{k+1} - h_{ik}v_i$.

Set $h_{k+1,k} = ||v_{k+1}||_2$.

If k > 1, apply $J_{k-1} \cdots J_1$ to $(h_{1,k}, \dots, h_{k,k}, h_{k+1,k}, 0, \dots)^T \in \mathbb{R}^{m+1}$.

Determine a Givens rotation J_k such that

$$J_k \cdots J_1 \begin{pmatrix} h_{1,k} \\ \vdots \\ h_{k,k} \\ h_{k+1,k} \\ 0 \\ \vdots \end{pmatrix} \equiv \begin{pmatrix} r_{1,k} \\ \vdots \\ r_{k,k} \\ 0 \\ 0 \\ \vdots \end{pmatrix}.$$

If k=1, form $R_1\equiv (r_{11})$; else form $R_k\equiv \begin{pmatrix} r_{1,k} & r_{1,k} \\ 0\cdots & r_{k,k} \end{pmatrix}$.

Update $w \leftarrow J_k w$. If $|w_{k+1}| \le tol$ or k = m, go to Solve; else update $v_{k+1} \leftarrow v_{k+1}/h_{k+1,k}$.

Solve: Let k be the final iteration number from ITERATE.

Solve $R_k y = \bar{w}$ for y, where $\bar{w} \equiv (w_1, \dots, w_k)^T$.

Update $x \leftarrow x + (v_1, \dots, v_k)y$.

If $|w_{k+1}| \leq tol$, accept x and stop; otherwise, return to Initialize.

CONJUGATE GRADIENT METHOD (CG):

Given A, b, x, and tol.

Set
$$r = b - Ax$$
, $\rho^2 = ||r||_2^2$, $z = 0$, $\beta = 0$.

Until "stop":

If $\rho \leq tol$, update $x \longleftarrow x + z$ and stop.

Update $p \longleftarrow r + \beta p$.

Compute Ap.

Compute $p^T A p$ and $\alpha = \rho^2/p^T A p$.

Update $z \longleftarrow z + \alpha p$ and $r \longleftarrow r - \alpha A p$.

Update $\beta \longleftarrow \|r\|_2^2/\rho^2$ and $\rho^2 \longleftarrow \|r\|_2^2$.

PRECONDITIONED CONJUGATE GRADIENT METHOD (PCG):

Given A, b, x, tol, and a symmetric positive-definite preconditioner M.

Set
$$r = b - Ax$$
, $r = b - Ax$, $w = M^{-1}r$, $\rho^2 = r^T w$, $z = 0$, $\beta = 0$.

Until "stop":

If $\rho \leq tol$, update $x \longleftarrow x + z$ and stop.

Update $p \longleftarrow w + \beta p$.

Compute Ap.

Compute p^TAp and $\alpha = \rho^2/p^TAp$.

Update $z \longleftarrow z + \alpha p$ and $r \longleftarrow r - \alpha A p$.

Update $w=M^{-1}r$, $\beta=r^Tw/\rho^2$, and $\rho^2=r^Tw$.