

चला, शिकूया.

- समांतर रेषा व छेदिका यांमुळे होणाऱ्या कोनांचे गुणधर्म
- रेषांच्या समांतरतेच्या कसोट्या
- समांतर रेषांच्या गुणधर्मांचा उपयोग

जरा आठवूया.

समांतर रेषा : ज्या रेषा एकाच प्रतलात असतात परंतु एकमेकींना छेदत नाहीत त्या रेषांना समांतर रेषा असे म्हणतात.

शेजारील चित्रात दाखवल्या प्रमाणे खिडकीच्या आडव्या समांतर गजांवर एखादी काठी तिरकी धरून पाहा. किती कोन झालेले दिसतात ?

 दोन रेषा व त्यांची छेदिका यांच्यामुळे होणाऱ्या कोनांच्या जोड्या आठवतात का ?
आकृती 2.1 मध्ये रेषा l व रेषा m यांची रेषा n ही छेदिका आहे. येथे एकूण आठ कोन तयार झाले आहेत. त्यांच्यातील कोनांच्या जोड्या पुढीलप्रमाणे आहेत.

संगत कोनांच्या जोड्या

- (i) ∠d, <u>∠h</u>
- (ii) ∠a, ____
- (iii) ∠c, □
- (iv) ∠b, ____

आंतरव्युत्क्रम कोनांच्या जोड्या

- (i) ∠c, ∠e
- (ii) ∠b, ∠h

बाह्यव्युत्क्रम कोनांच्या जोड्या

- (i) ∠d, ∠*f*
- (ii) $\angle a$, $\angle g$

छेदिकेच्या एका बाजूच्या आंतरकोनांच्या जोड्या

- (i) ∠c, ∠h
- (ii) ∠b, ∠e

महत्त्वाचे काही गुणधर्म :

- (1) दोन रेषा एकमेकींना छेदल्यावर होणारे विरुद्ध कोन समान मापाचे असतात.
- (2) रेषीय जोडीतील कोन परस्परांचे पूरक असतात.

- (3) जेव्हा संगतकोनांची एक जोडी एकरूप असते तेव्हा संगत कोनांच्या उरलेल्या सर्व जोड्या एकरूप असतात.
- (4) जेव्हा व्युत्क्रम कोनांची एक जोडी एकरूप असते तेव्हा व्युत्क्रम कोनांच्या इतर सर्व जोड्या एकरूप असतात.
- (5) जेव्हा छेदिकेच्या एकाच बाजूच्या आंतरकोनांची बेरीज 180° होते तेव्हा आंतरकोनांच्या दुसऱ्या जोडीतील कोनांची बेरीजही 180° होते.

समांतर रेषांचे गुणधर्म (Properties of parallel lines)

कृती :

दोन समांतर रेषा व त्यांची छेदिका यांच्यामुळे तयार झालेल्या कोनांच्या गुणधर्मांचा पडताळा घेणे.

जाड रंगीत कागदाचा एक तुकडा घ्या. त्यावर दोन समांतर रेषा काढून एक छेदिका काढा. या तिन्ही रेषांवर सरळ काड्या डिंकाने चिकटवा. येथे तयार झालेल्या आठ कोनांपैकी कोन 1 व कोन 2 च्या कोनांच्या मापांएवढे रंगीत पत्रिकेचे तुकडे कापा. (खालील आकृतीत दाखवल्याप्रमाणे) हे तुकडे

संबंधित संगतकोन, व्युत्क्रमकोन व आंतरकोनांजवळ ठेवून गुणधर्मांचा पडताळा घ्या.

दोन समांतर रेषांच्या छेदिकेमुळे होणाऱ्या कोनांचे, कृतीने पडताळलेले गुणधर्म आता सिद्ध करू. हे गुणधर्म सिद्ध करण्यासाठी आपण युक्लिडचे पुढे दिलेले प्रसिद्ध गृहीतक वापरणार आहोत.

दोन रेषा व त्यांची एक छेदिका काढली असता एका बाजूला तयार झालेल्या आंतरकोनांची बेरीज दोन काटकोनांपेक्षा कमी असेल तर त्या सरळ रेषा त्याच दिशेने वाढवल्यावर एकमेकींना छेदतात.

आंतरकोनांचे प्रमेय (Interior angle theorem)

प्रमेय : दोन समांतर रेषांना एका छेदिकेने छेदल्यावर छेदिकेच्या कोणत्याही एका बाजूला असणारे आंतरकोन एकमेकांचे पूरककोन असतात.

पक्ष : रेषा l ॥ रेषा m आणि रेषा n ही छेदिका आहे. त्यामुळे आकृतीत दाखवल्याप्रमाणे $\angle a$, \angle b व \angle c, \angle d हे आंतरकोन झाले आहेत.

साध्य : $\angle a + \angle b = 180^{\circ}$ $\angle d + \angle c = 180^{\circ}$

आकृती 2.2

सिद्धता : $\angle a$ व $\angle b$ यांच्या मापांच्या बेरजेबाबत तीन शक्यता आहेत.

(i)
$$\angle a + \angle b < 180^{\circ}$$
 (ii) $\angle a + \angle b > 180^{\circ}$ (iii) $\angle a + \angle b = 180^{\circ}$ यांपैकी (i) $\angle a + \angle b < 180^{\circ}$ सत्य मानू.

रेषा l व रेषा m या $\angle a$ आणि \angle b छेदिकेच्या ज्या बाजूला आहेत त्या दिशेने वाढवल्यास एकमेकींना छेदतील....(युक्लिडच्या गृहीतकानुसार)

परंतु रेषा l आणि रेषा m या समांतर रेषा आहेत.पक्ष

$$\therefore \angle a + \angle b < 180^{\circ}$$
 हे अशक्य आहे. (I)

आता $\angle a + \angle b > 180^\circ$ ही शक्यता सत्य मानू.

$$\therefore \angle a + \angle b > 180^{\circ}$$

परंतु
$$\angle a + \angle d = 180^{\circ}$$

आणि
$$\angle c + \angle b = 180^{\circ} \dots$$
 रेषीय जोडीतील कोन

$$\therefore \angle a + \angle d + \angle b + \angle c = 180^{\circ} + 180^{\circ} = 360^{\circ}$$

$$\therefore$$
 \angle c + \angle d = 360° - (\angle a + \angle b)

जर
$$\angle a$$
 + \angle b >180° असेल तर [360° - ($\angle a$ + \angle b)] < 180°

$$\therefore$$
 \angle c + \angle d < 180°

 \therefore तसे असल्यास $\angle c$ आणि $\angle d$ छेदिकेच्या ज्या बाजूला आहेत त्या दिशेने वाढवल्यास रेषा l आणि रेषा m एकमेकींना छेदतील.

म्हणजेच
$$\angle a + \angle b > 180$$
° हे अशक्य. (II)

$$\therefore$$
 $\angle a + \angle b = 180$ ° ही एकच शक्यता उरते.(I) व (II) वरून

$$\therefore \angle a + \angle b = 180^{\circ}$$
 तसेच $\angle c + \angle d = 180^{\circ}$

लक्षात घ्या की, या सिद्धतेमध्ये आपण $\angle a + \angle b > 180^\circ$, $\angle a + \angle b < 180^\circ$ या दोन्ही शक्यता विसंगतीमुळे नाकारल्या म्हणजे ही एक अप्रत्यक्ष सिद्धता आहे.

संगत कोनांचे व व्युत्क्रम कोनांचे गुणधर्म (Corresponding angle and alternate angle theorem)

प्रमेय : दोन समांतर रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या संगत कोनांच्या जोडीतील कोनांची मापे समान असतात.

पक्ष : रेषा
$$l \parallel$$
 रेषा m रेषा n ही छेदिका आहे.

साध्य :
$$/a = /b$$

सिद्धता :
$$\angle a + \angle c = 180^{\circ} \dots$$
 (I) रेषीय जोडीतील कोन

$$\angle b + \angle c = 180^{\circ} \dots (II)$$
 समांतर रेषांचा आंतरकोनांचा गुणधर्म

$$\angle a$$
 + $\angle c$ = $\angle b$ + $\angle c$. . . विधान (I) व (II) वरून

प्रमेय : दोन समांतर रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या व्युत्क्रम कोनांच्या जोडीतील कोनांची मापे समान असतात.

पक्ष : रेषा
$$l \parallel$$
 रेषा m रेषा n ही छेदिका आहे.

साध्य : $\angle d = \angle b$

सिद्धता : $\angle d$ + $\angle c$ = 180° (I) रेषीय जोडीतील कोन

$$\angle c + \angle b = 180^{\circ} \dots \dots \dots (II)$$
 समांतर रेषांचा आंतरकोनांचा गुणधर्म

$$\angle d$$
 + $\angle c$ = $\angle c$ + $\angle b$ विधान (I) व (II) वरून

आकृती 2.3

सरावसंच 2.1

- आकृती 2.5 मध्ये रेषा RP || रेषा MS व रेषा DK ही त्यांची छेदिका आहे. ∠DHP = 85° तर खालील कोनांची मापे काढा.
 - (i) ∠RHD
- (ii) ∠PHG
- (iii) ∠HGS
- (iv) ∠MGK

आकृती 2.5

2. आकृती 2.6 पाहा. रेषा $p \parallel$ रेषा q आणि रेषा l व रेषा m या छेदिका आहेत. काही कोनांची मापे दाखवली आहेत. यावरून $\angle a$, \angle b, \angle c, \angle d यांची मापे काढा.

- 3. आकृती 2.7 मध्ये रेषा $l \parallel$ रेषा m व रेषा $n \parallel$ रेषा p आहे. एका कोनाच्या दिलेल्या मापावरून $\angle a$, $\angle b$, $\angle c$ ची मापे काढा.
- **4***. आकृती 2.8 मध्ये, \angle PQR आणि \angle XYZ यांच्या भुजा परस्परांना समांतर आहेत. तर सिद्ध करा, की \angle PQR \cong \angle XYZ

आकृती 2.8

- 5. आकृती 2.9 मध्ये, रेषा AB | रेषा CD आणि रेषा PQ ही छेदिका आहे तर आकृतीत दाखवलेल्या कोनांच्या मापांवरून पुढील कोनांची मापे काढा.
 - (i) ∠ART
- (ii) ∠CTQ
- (iii) ∠DTQ
- (iv) ∠PRB

आकृती 2.9

समांतर रेषांच्या गुणधर्मांचा उपयोग

समांतर रेषा व त्यांची छेदिका यांच्यामुळे होणाऱ्या कोनांच्या गुणधर्मांचा उपयोग करून त्रिकोणाचा एक गुणधर्म सिद्ध करु.

प्रमेय: कोणत्याही त्रिकोणाच्या सर्व कोनांच्या मापांची बेरीज 180° असते.

पक्ष : Δ ABC हा कोणताही एक त्रिकोण आहे.

साध्य : $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$

रचना : A बिंदूतून रेख BC ला समांतर रेषा *l* काढा. त्यावर P व Q बिंदु असेही घ्या की, P-A-Q

सिद्धता : रेषा PQ || रेख BC व रेख AB ही छेदिका.

$$\therefore$$
 \angle ACB = \angle QAC......(व्युत्क्रम कोन)..... \parallel विधान \parallel व \parallel यावरून,

$$\angle$$
ABC + \angle ACB = \angle PAB + \angle QAC . . . III
समीकरण III च्या दोन्ही बाजूंत \angle BAC मिळवू.

$$\angle$$
ABC + \angle ACB + \angle BAC = \angle PAB + \angle QAC + \angle BAC = \angle PAB + \angle BAC + \angle QAC = \angle PAC + \angle QAC ...(\because \angle PAB + \angle BAC = \angle PAC) = 180° ...(रेषीय जोडीतील कोन)

म्हणजेच त्रिकोणाच्या तीनही कोनांच्या मापांची बेरीज 180° असते.

शेजारील प्रतलात रेषा l व रेषा m या एकमेकींना समांतर आहेत का हे कसे ठरवाल ?

आकृती 2.12

रेषांच्या समांतरतेच्या कसोट्या (Tests for parallel lines)

दोन रेषा व त्यांची छेदिका त्यांच्यामुळे होणारे कोन तपासून आपण त्या दोन रेषा समांतर आहेत का ते ठरवू शकतो.

- (1) छेदिकेच्या एका बाजूच्या आंतरकोनांची जोडी पूरक कोनांची असेल तर त्या रेषा समांतर असतात.
- (2) व्युत्क्रम कोनांची एक जोडी समान असेल तर त्या रेषा समांतर असतात.
- (3) संगत कोनांची एक जोडी समान असेल तर त्या रेषा समांतर असतात.

समांतर रेषांची आंतरकोन कसोटी (Interior angles test)

: दोन भिन्न रेषांना एका छेदिकेने छेदले असता छेदिकेच्या एका बाजूच्या आंतरकोनांची बेरीज 180° प्रमेय

असेल तर त्या रेषा समांतर असतात.

: रेषा AB व रेषा CD यांची रेषा XY ही छेदिका आहे. पक्ष

 $\angle BPQ + \angle PQD = 180^{\circ}$

: रेषा AB || रेषाCD साध्य

सिद्धता : ही कसोटी आपण अप्रत्यक्ष पद्धतीने सिद्ध करणार आहोत.

साध्यातील विधान चूक आहे असे मानू.

∴ रेषा AB व रेषा CD समांतर नाहीत

हे विधान सत्य मानू.

समजा, रेषा AB व रेषा CD या T बिंद्त छेदतात.

त्यामुळे Δ PQT तयार झाला.

आकृती 2.14

 $\angle TPQ + \angle PQT + \angle PTQ = 180^{\circ} \dots$ त्रिकोणाच्या कोनांची बेरीज

परंतु \angle TPQ + \angle PQT = 180 $^{\circ}$ दिले आहे. पक्ष

यामुळे त्रिकोणाच्या दोन कोनांची बेरीजच 180° आहे.

पण त्रिकोणाच्या तीन कोनांची बेरीज 180° असते.

 \therefore $\angle PTQ = 0^{\circ}$ मिळतो.

.. PT व QT या रेषा म्हणजेच रेषा AB आणि रेषा CD या भिन्न राहणार नाहीत. आपल्याला रेषा AB व रेषा CD या भिन्न रेषा आहेत असे दिले आहे. म्हणजे पक्षाशी विसंगती मिळते.

.. आपण गृहीत धरलेले विधान चूक आहे. म्हणजे रेषा AB व रेषा CD समांतर आहेत. यावरून दोन रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या एका बाजूच्या आंतरकोनांची जोडी पूरक असेल तर त्या रेषा समांतर असतात, हे सिद्ध होते. या गुणधर्माला समांतर रेषांची आंतरकोन कसोटी म्हणतात. ही कसोटी गृहीत धरून इतर दोन कसोट्या सिद्ध करू.

व्युत्क्रम कोन कसोटी (Alternate angles test)

प्रमेय : दोन रेषांना एका छेदिकेने छेदले असता होणाऱ्या व्युत्क्रम कोनांची एक जोडी एकरूप असेल तर त्या रेषा समांतर असतात.

पक्ष : रेषा l व रेषा m यांची रेषा n ही छेदिका. $\angle a$ व $\angle b$ ही व्युत्क्रम कोनांची एक जोडी एकरूप आहे.

$$\therefore \angle a = \angle b$$

साध्य : रेषा $l \parallel$ रेषा m

सिद्धता : $\angle a + \angle c = 180^{\circ}$ रेषीय जोडीतील कोन

$$\angle a = \angle b \dots$$
 पक्ष

$$\therefore \angle b + \angle c = 180^{\circ}$$

परंतु $\angle b$ व $\angle c$ हे छेदिकेच्या एका बाजूचे आंतरकोन आहेत.

 \therefore रेषा $l \parallel$ रेषा $m \ldots \ldots$ आंतरकोन कसोटीवरून.

या गुणधर्माला समांतर रेषांची व्युत्क्रम कोन कसोटी म्हणतात.

आकृती 2.15

संगतकोन कसोटी (Corresponding angles Test)

प्रमेय : दोन रेषांना एका छेदिकेने छेदले असता होणाऱ्या संगत कोनांची एक जोडी एकरूप असेल तर त्या रेषा समांतर असतात.

पक्ष : रेषा l व रेषा m यांची रेषा n ही छेदिका $\angle a$ व $\angle b$ ही संगत कोनांची जोडी आहे.

$$\therefore \angle a = \angle b$$

साध्य : रेषा $l \parallel$ रेषा m

सिद्धता : $\angle a + \angle c = 180^{\circ} \dots$ रेषीय जोडीतील कोन

$$\angle a = \angle b \dots$$
 पक्ष

$$\therefore \angle b + \angle c = 180^{\circ}$$

म्हणजेच छेदिकेच्या एका बाजूचे आंतरकोन पूरक कोन आहेत.

$$\therefore$$
 रेषा $l \parallel$ रेषा $m \dots \dots$ आंतरकोनांची कसोटी

या गुणधर्माला समांतर रेषांची संगतकोन कसोटी म्हणतात.

आकृती 2.16

उपप्रमेय I जर एक रेषा त्याच प्रतलातील दोन रेषांना लंब असेल तर त्या दोन रेषा परस्परांना समांतर असतात.

पक्ष : रेषा $n \perp$ रेषा l आणि रेषा $n \perp$ रेषा m

साध्य : रेषा $l \parallel$ रेषा m

सिद्धता : रेषा $n \perp$ रेषा l व रेषा $n \perp$ रेषा m हे दिले आहे.

$$\therefore \angle a = \angle c = 90^{\circ}$$

 $\angle a$ व $\angle c$ हे रेषा l व रेषा m यांच्या

रेषा n या छेदिकेमुळे झालेले संगतकोन आहेत.

 \therefore रेषा $l \parallel$ रेषा $m = \ldots$ रेषांच्या समांतरतेची संगतकोन कसोटी

उपप्रमेय II जर एका प्रतलातील दोन रेषा त्याच प्रतलातील तिसऱ्या रेषेला समांतर असतील तर त्या रेषा परस्परांना समांतर असतात हे सिद्ध करा.

सरावसंच 2.2

1. आकृती 2.18 मध्ये $y = 108^{\circ}$ आणि $x = 71^{\circ}$ तर रेषा m व रेषा n समांतर होतील का ? कारण लिहा.

आकृती 2.19

3. आकृती 2.20 मध्ये जर $\angle a\cong \angle b$ आणि $\angle x\cong \angle y$ तर सिद्ध करा की रेषा $l\parallel$ रेषा n

आकृती 2.21

2. आकृती 2.19 मध्ये जर $\angle a\cong \angle b$ तर सिद्ध करा रेषा $l\parallel$ रेषा m

आकृती 2.20

4. आकृती 2.21 मध्ये जर किरण BA \parallel किरण DE, $\angle C = 50^{\circ}$ आणि $\angle D = 100^{\circ}$, तर $\angle ABC$ चे माप काढा.

(सूचना : बिंदू C मधून रेषा AB ला समांतर रेषा काढा.)

आकृती 2.22

रेषा AB व रेषा CD या रेषांना रेषा EF ही अनुक्रमे P व Q बिंद्ंत छेदते. किरण PR व किरण QS हे समांतर किरण असून अनुक्रमे ∠BPQ व ∠PQC चे द्भाजक आहेत, तर सिद्ध करा रेषा AB || रेषा CD

आकृती 2.22 मध्ये किरण AE || किरण BD किरण AF हा ∠EAB चा आणि किरण BC हा ∠ABD चा दुभाजक आहे, तर सिद्ध करा की, रेषा AF || रेषा BC

आकृती 2.23

- खालील विधानांतील रिकाम्या जागा भरण्यासाठी दिलेल्या पर्यायांपैकी अचूक पर्याय निवडा. 1.
 - (i) दोन समांतर रेषांना एका छेदिकेने छेदले असता छेदिकेच्या एकाच बाजूच्या आंतरकोनांची बेरीज असते.
 - $(A) 0^{\circ}$
- (B) 90°
- (C) 180°
- (D) 360°
- (ii) दोन रेषांना एका छेदिकेने छेदले असता कोन तयार होतात.
 - (A) 2
- (B) 4
- (C) 8
- (D) 16
- (iii) दोन समांतर रेषांना एका छेदिकेने छेदले असता तयार होणाऱ्या कोनांपैकी एका कोनाचे माप 40° असेल तर त्याच्या संगतकोनाचे माप असते.
 - (A) 40°
- (B) 140° (C) 50°
- (D) 180°
- (iv) \triangle ABC मध्ये \angle A = 76°, \angle B = 48°, तर \angle C चे माप आहे.
 - (A) 66°
- (B) 56°
- (C) 124° (D) 28°
- (v) दोन समांतर रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या व्युत्क्रम कोनांच्या जोडीतील एका कोनाचे माप 75° असेल तर दुसऱ्या कोनाचे माप असते.
 - (A) 105°
- (B) 15° (C) 75° (D) 45°
- 2^* . किरण PQ आणि किरण PR परस्परांशी लंब आहेत. बिंदू B हा \angle QPR च्या आंतरभागात व बिंदू A हा ∠RPQ च्या बाह्यभागात आहे. किरण PB आणि किरण PA परस्परांना लंब आहेत. यावरून आकृती काढा व खालील कोनांच्या जोड्या लिहा.
 - (i) कोटिकोन
- (ii) पूरक कोन
- (iii) एकरूप कोन

- 3. जर एखादी रेषा एका प्रतलातील दोन समांतर रेषांपैकी एका रेषेला लंब असेल तर ती दुसऱ्या रेषेलाही ती लंब असते हे सिद्ध करा.
- 4. आकृती 2.24 मध्ये दर्शवलेल्या कोनांच्या मापांवरून $\angle x$ आणि $\angle y$ यांची मापे काढा आणि सिद्ध करा की रेषा $l \parallel$ रेषा m

आकृती 2.25

6. आकृती 2.26 मध्ये जर रेषा $q \parallel$ रेषा r रेषा p ही त्यांची छेदिका असेल आणि $a = 80^\circ$ तर f व g काढा.

आकृती 2.27

8. आकृती 2.28 मध्ये रेषा AB || रेषा CD व रेषा PS ही त्यांची छेदिका आहे. किरण QX, किरण QY, किरण RX, किरण RY हे कोनदुभाजक आहेत, तर ☐ QXRY हा आयत आहे हे दाखवा.

5. रेषा AB || रेषा CD || रेषा EF आणि रेषा QP ही त्यांची छेदिका आहे. जर y:z=3:7 तर x ची किंमत काढा. (आकृती 2.25 पाहा.)

आकृती 2.26

7. आकृती 2.27 मध्ये जर रेषा AB \parallel रेषा CF आणि रेषा BC \parallel रेषा ED तर सिद्ध करा \angle ABC = \angle FDE.

आकृती 2.28