(1번~20번)

(7급)

1. 다음 그림의 단자 a, b 사이에 연결된 저항들의 등가저항 R_{ab} 는?

2. 다음 그림에서 전류 1의 크기는?

3. 다음 그림에서 마디 A의 전압 V 및 전류 I의 값은?

4. 다음 회로에서 $V_{\text{in}}=1[V]$, $G_m=1[\text{mA/V}]$ 일 때 I_{out} 은?

5. 다음의 이상적인 연산증폭기를 사용한 회로에서 $V_{\rm in}$ =10[V] 일 때, V_{out} 은?

- ① 10[V]
- ③ 40[V]
- ④ 50[V]

6. 다음의 왼쪽 회로를 테브냉(Thevenin) 등가 회로로 나타 내면 오른쪽 회로와 같다. V_{oc} 와 R_{i} 는?

- ① 12[V], $6[\Omega]$
- ② $12[V], 3[\Omega]$
- ③ 15[V], $6[\Omega]$
- 4 15[V], 3[Ω]
- 7. 다음 회로에서 부하 $R_{\rm L}$ 에 최대 전력이 전달되도록 하는 $R_{\rm L}$ 과 최대 전력 $P_{\rm L}$ 은?

- ① $1[\Omega]$, 1[W]
- ② $1[\Omega]$, 0.5[W]
- ③ $2[\Omega]$, 1[W]
- (4) 2[Ω], 0.5[W]
- 8. 다음 그림에서 $V_{\rm R}(t)=10\sin(100t)$ [V]이다. 이때 $V_{\rm C}(t)$ 가 될 수 있는 것은?

- ① $-100\cos(100t)$ [V]
- ② $100\cos(100t)$ [V]
- $\Im -\sin(100t)$ [V]
- $4 \sin(100t)$ [V]
- 9. 다음 회로에서 t < 0에서 $V_{\text{out}} = 5[V]$ 라고 하자. 이 회로의 스위치(SW)가 0<t<1[ms] 동안만 닫히고 나머지 시간 동 안 열려 있다고 할 때, t=2[ms]에서의 V_{out} 의 값으로 가장 가까운 것은? (단, 스위치는 이상적이고, $e^{-1} \simeq 0.4$ 이다.)

- ① 3.2[V]
- ③ 6.0[V]
- 4 8.0[V]
- 10. 다음 회로에서 스위치(SW)는 t<0에서 오랫동안 닫혀 있었다. t=0일 때 스위치를 열 경우, $t \ge 0$ 에서 v(t)는?

- ① $10e^{-t/0.20}$ [V]
- ② $10e^{-t/0.22}$ [V]
- $3 10e^{-t/0.24} [V]$
- $4 10e^{-t/0.26}$ [V]

- 11. 부하에 흐르는 전류는 $i(t) = 4\cos(100\pi t + 10^{\circ})$ [A]이고 부하 양단 간의 전압이 $v(t)=120\cos(100\pi t-20^{\circ})$ [V] 일 때, 부하의 역률(power factor)은?
 - ① $\cos(-10^{\circ})$
- ② $\cos(-20^{\circ})$
- ③ $\cos(-30^{\circ})$
- $\textcircled{4} \cos(-40^{\circ})$
- 12. 다음 이상 변압기를 사용하는 회로에서, $R_{
 m S}$ =2[Ω]이고 $R_{
 m L}$ 이 부하에 최대 전력을 전달할 수 있는 값으로 결정되 었을 때, 정상상태 전압 V(ω)는?

- ① $-5 \angle 45^{\circ}[V]$
- ② $-2.5 \angle 45^{\circ}[V]$
- $3 \le 45^{\circ}[V]$
- $4 2.5 \angle 45^{\circ}[V]$
- 13. AM 라디오의 튜너(tuner)회로는 다음과 같다. $L=1[\mu H]$ 이고 AM 주파수 범위가 1000[kHz]-1200[kHz]일 때, C로 가능한 값은? (단, $\pi = 3.14$ 로 계산하라.)

- ① 100[nF]
- ② 70[nF]
- 3 40[nF]
- 4 20[nF]
- 14. $F(s) = \frac{4}{(s+3)(s+5)}$ 의 역라플라스 변환은?
 - ① $2(e^{-3t}-e^{-5t})$
- $3 2(e^{3t} + e^{-5t})$
- 15. 다음 그림과 같은 R-L-C 회로망에서 입력을 v_i , 출력을 v_O 로 할 때, 전달함수는?

16. 다음 회로의 모든 초기조건을 0으로 가정하였을 때, $2[\Omega]$ 에 흐르는 전류 $i_{O}(t)$ 의 계단응답(step response)은?

- ① $1 e^{-(1/3)^t} u(t)$ [A]
- ② $(1/3) \cdot (1 e^{-(1/3)^t}) u(t)$ [A]
- ③ $1 e^{-3t}u(t)$ [A]
- $(4) 3 \cdot (1 e^{-3t})u(t) [A]$
- 17. 다음 회로의 전달함수에서 영점(zero)은? (단, 입력은 i_s 이고, 출력은 v_O 임)

18. 다음 그림의 회로에서 R_1 =1[kΩ], R_2 =2[kΩ], R_3 =5[kΩ], A_0 =10이다. 이때 Y_{21} 을 구하시오.

- ① -1[mS]
- ② -1.33 [mS]
- 3 1.67 [mS]
- (4) -2.22[mS]
- 19. 다음 2-포트 회로망의 h-파라미터에서 h_{11} 은?

- ③ $20+j20[\Omega]$
- Φ 5+i20[Ω]
- 20. 다음 왼쪽 회로에서 출력전압 V_{out} 은 입력전압 V_{in} 의 10%이다. A_1 과 A_2 사이를 끊고, 오른쪽 회로를 삽입하여 V_{out} 이 V_{in} 의 100%에 가까워지도록 하는 R_1 과 R_2 의 조건은?

- ① $9[\Omega] > R_1 > R_2 > 1[\Omega]$
- ② $9[\Omega] > R_2 > R_1 > 1[\Omega]$