

Academic Seminar – 3.11.2020

Agenda

- 1. Background (revisit)
- 2. Initial Situation
 - Current State
 - Transition State
 - Observations
- 3. Research Methodology
 - Multivocal Literature Review
 - Research Model
 - Contribution
- 4. System Architecture
 - Baseline Architecture
 - System Design
- 5. Proof of Concept
 - Channel lifecycle
 - Simple payment transfer (off-chain)
 - Simple payment transfer (on-chain)

Baseline State

Refer to "Incorporating Blockchain into RDF Store" [20]

Open
Distributed
Sytems

Image [27]

Transition State

Refer to "Incorporating Blockchain into RDF Store" [27] and Enhancement HSG88 [17].

System Architecture

1. Front End

2. Channel Service Layer

Channels are only a delivery layer, containing those functions necessary to manage delivery, while providing an appropriate client experience,

All processing components should be available as services from underlying systems.

3. Mediator Component

Expose 2 core Services as APIs allowing multiple Front End to consume the same set of business services that covers enquiries, configuration and transaction services for Semantic and HSG88.

- 4. Semantic2019 (without Blockchain)
- 5. HSG88 (enhance component)

System Design - Component Diagram

System Design - Interaction Diagram

Open Channel – initial commitment

Transaction Flow: simple transaction – happy path (off-chain)

Sequence interaction: simple transaction – happy path (off-chain)

Creating a new commitment and reversal (on-chain)

Sequence interaction: new commitment and reversal (on-chain)

System Design – Data Structures

Raw message are used to convert existing field into persistence approach.

From On-chain Transaction → Converter → TrxRepository object

```
event ChannelOpened(
    uint256 indexed channel_identifier,
    address indexed participant1,
    address indexed participant2,
    uint256 settle_timeout
);

event ChannelNewDeposit(
    uint256 indexed channel_identifier,
    address indexed participant,
    uint256 total_deposit
);
```

```
function getChannelInfo(
    uint256 channel_identifier,
    address participant1,
    address participant2
)
    view
    external
    returns (uint256 settle_block_number, ChannelState st
```

• • • Distributed

```
"chain_id": "337",
"channel identifier": "1338",
"initiator": "0x540b51edc5900b8012091cc7c83caf2cb243aa86",
"lock": {
   "amount": "10",
   "expiration": "1",
   "secrethash": "0x59cad5948673622c1d64e2322488bf01619f7ff45789741b15a9f782ce9290a8"
},
"locked_amount": "10",
"locksroot": "0x607e890c54e5ba67cd483bedae3ba9da9bf2ef2fbf237b9fb39a723b2296077b",
"message_identifier": "123456",
"metadata": {
   "routes": [
            "route": [
               "0x2a915fda69746f515b46c520ed511401d5ccd5e2",
               "0x811957b07304d335b271feebf46754696694b09e"
},
"nonce": "1",
"payment_identifier": "1",
"recipient": "0x2a915fda69746f515b46c520ed511401d5ccd5e2",
"signature": "0xa4beb47c2067e196de4cd9d5643d1c7af37caf4ac87de346e10ac27351505d405272f3d6896032
"target": "0x811957b07304d335b271feebf46754696694b09e".
"token": "0xc778417e063141139fce010982780140aa0cd5ab",
"token_network_address": "0xe82ae5475589b828d3644e1b56546f93cd27d1a4",
"transferred_amount": "0",
"type": "LockedTransfer"
```

PoC – Technical Demo

- I. System Requirement
- 1. Oracle JDK or IBM JDK
- 2. Ethereum Test Network (e.g., AVA, Go-Perun, K-Channel, Raiden)
- 3. Minimum effort Ganache local setup
- 4. Redis
- 5. IPFS
- II. PoC Scenario
- 1. Channel lifecycle
 - open, establish, closed cooperatively
- 2. Simple payment transfer (off-chain)
 - Data transaction with local data store and Semantic2019
- 3. Simple payment transfer (on-chain)
 - Data transaction connected to Ethereum network test

Adds-on

S2 - DEVELOPMENT IN PROGRESS

Transaction Flow: simple transaction – unhappy path (on-chain) New commitment transaction and reversal

Creating a new commitment multi channel

Creating a new multi channel commitment with dishonest from one participants

System Design – Data Structures

JSON Message are used to convert existing field into persistence approach.

Field Name	Field Type
signature_prefix	string
message_length	string
token_network_address	address
chain_id	uint256
message_type_id	uint256
channel_identifier	uint256
participant1_address	address
participant1_balance	uint256
participant2_address	address
participant2_balance	uint256
participant1_signature	bytes
participant2_signature	bytes

Field Name	Field Type
expiration	uint256
locked_amount	uint256
secrethash	bytes32

System Design – ERD

Database – initial proposal

ODS

