KENNETH YANG

s109062136@gmail.com | kennethyang.github.io | +886-939-378-761 | US Citizen

OBJECTIVE

I am seeking research internship opportunities in Computer Vision, 3D Vision, and Machine Learning. With a strong research background in parameter-efficient fine-tuning (PEFT) and 3D vision, I have engaged in several innovative projects that underscore my ability to work independently and lead research initiatives.

EDUCATION

National Tsing Hua University

Bachelor of Computer Science | Last 60 GPA: 4.24/4.30

Hsinchu, Taiwan 2020 - 2024

- Recipient of Dean's List Award (Top 5%) for two times

RESEARCH EXPERIENCE

Vision & Learning Lab, National Taiwan University

Research Assistant with Prof. Yu-Chiang Frank Wang

Taipei, Taiwan Sep. 2024 – Present

- Research Areas: Gaussian Splatting, 3D Vision
 - Ongoing project addressing spatially-varying Gaussian Splatting with extremely large memory consumption.
 - Utilizing semantic cues to group Gaussians and enable shared texture maps, significantly reducing memory consumption without compromising rendering quality.

Multimedia Technologies Lab, Academia Sinica IIS

Summer Research Intern / Research Assistant with Dr. Jen-Chun Lin

Taipei, Taiwan Jul. 2023 – Dec. 2024

- Research Areas: PEFT (Parameter-Efficient Fine-Tuning), Multi-Modality Retrieval
 - [ICASSP'24 Oral] Music-To-Dance Poses: Learning to Retrieve Dance Poses from Music.
 - Developed a pioneering music-to-dance pose retrieval system, predicting and matching 3D human poses and shapes from musical snippets.
 - Proposed the innovative EDSA-Adapter, a novel fine-tuning method that integrates self-attention mechanisms
 with encoder-decoder transformations, achieving significant advancements in cross-modal music-to-dance
 pose retrieval tasks and surpassing existing methods.
 - [NeurIPS'25 Planned] FPS: Feed-Forward Based Parameter Selection for Efficient Fine-Tuning
 - Designing FPS, a novel feed-forward based parameter selection framework that identifies and updates the most impactful parameters during fine-tuning, reducing computational cost without sacrificing model performance.
 - Achieves SOTA performance with only 10% memory usage of prior methods on large benchmarks such as FGVC and VTAB-1k.
 - Investigating the effectiveness of FPS on long-tailed benchmarks, aiming for the method to be the most efficient and robust across various dataset distributions.
 - Manuscript in preparation for submission to NeurIPS 2025.

Vision Science Lab, National Tsing Hua University

Undergraduate Student with Prof. Min Sun

Hsinchu, Taiwan Aug. 2023 – Jun. 2024

- Research Areas: Multi-View Layout Estimation
 - Focused on integrating predictions from various perspectives to enhance the accuracy and reliability of indoor spatial layout estimation.

• Contributing to the preparation of the *First Multi-View Layout Estimation Challenge* at the *Omnidirectional Computer Vision (OmniCV) Workshop*, CVPR 2023, including dataset labeling and codebase implementation.

PUBLICATIONS

[1] FPS: Feed-Forward Based Parameter Selection for Efficient Fine-Tuning.

Manuscript in preparation for submission to NeurIPS, 2025.

Kenneth Yang, Jen-Chun Lin.

[2] Music-To-Dance Poses: Learning to Retrieve Dance Poses from Music.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, Oral Presentation Bo-Wei Tseng, Kenneth Yang, Yu-Hua Hu, Wen-Li Wei, Jen-Chun Lin.

HONORS

Dean's List Award * 2

Guanyin Temple Outstanding Student Scholarship * 2

2023, 2024

MeiChu Hackathon Competition: 3rd Place in ASML group.

2022

• Developed a comprehensive photo processing system featuring image editing, background removal, and automatic detection and deletion of photos with blinking human faces.

NTHU Excellent General Education Work Award

2020

TECHNICAL SKILLS

Programming Languages Python, C/C++, Verilog

Machine Learning Frameworks PyTorch