Rozwiązania 2021

Dominik Bysiewicz

Zestaw próbny do Olimpiady Matematycznej

Zadanie 1

Znajdź wszystkie funkcje $f: \mathbb{N} \to \mathbb{N}$ spełniające:

$$f(f(n)) = n + 2$$

dla wszystkich liczb naturalnych n.

Rozwiązanie:

Zauważmy, że funkcja f jest injekcją: jeśli f(a) = f(b), to:

$$a + 2 = f(f(a)) = f(f(b)) = b + 2 \implies a = b.$$

Teraz, podstawmy f(n), dostajemy:

$$f(n+2) = f(f(f(n))) = f(n) + 2$$

czyli w ogólności:

$$f(2k) = f(0) + 2k,$$
 $f(2k+1) = f(1) + 2k,$ $\forall k \in \mathbb{N}$

Widzimy, że ustalając wartości f(0) i f(1) dostajemy jednoznacznie całą funkcję. Ponadto dla argumentów parzystych funkcja ściśle rosnąca i dla nieparzystych również. Jeżeli $2 \mid f(0)$, to mamy dwa przypadki:

- 1) f(0) = 0, wtedy $f(f(0)) = 0 \neq 2$ sprzeczność;
- 2) $f(0) \ge 2$, wtedy $f(f(0)) \ge 2 \cdot f(0) \ge 4 > 2$ sprzeczność.

Zatem dostajemy przypadek $2 \nmid f(0)$, analogicznie jak wyżej jeśli f(0) > 2, to sprzeczność, zatem f(0) = 1. Wtedy $f(2k) = 2k + 1 \ \forall k \in \mathbb{N}$. Ponieważ funkcja jest injekcją, zatem f(1) musi być parzyste (inaczej pewne wartości by się pokrywały). Wtedy, mamy: f(f(1)) = 3 = f(2), co z injektywności daje f(1) = 2 i $f(2k + 1) = 2k + 2 \ \forall k \in \mathbb{N}$, czyli jedyną funkcją sełniającą warunki zadania jest funkcja f(x) = x + 1 (po sprawdzeniu faktycznie działa).

Zadanie 2

Na płaszczyźnie dane są punkty A i B. Funkcja f przypisuje każdemu punktowi C (poza prostą AB) wartość $\not AE_CB$, gdzie E_C to środek CH_C , a H_C to ortocentrum trójkąta ABC. Znajdź maksimum, jakie może przyjąć funkcja i opisz zbiór punktów, dla których maksimum jest osiągane.

Rozwiązanie:

Ustalmy C w dowolnym punkcie. Punkt E_C jest punktem Eulera dla wierzchołka C, zatem wiemy, że leży na jednym okręgu ze środkami boków i spodkami wysokości ΔABC . Ponadto, $\not \in E_CH_CM = 90^\circ$, gdzie H_C to spodek wysokości z C, a M to środek boku AB, czyli E_CM jest średnicą okręgu Eulera.

Ponieważ NL (N i L to środki BC i AC) jest cięciwą tego okręgu, więc $NL \leqslant E_CM$. Wynika stąd, że E_C leży poza okręgiem o średnicy AB, lub na nim, czyli $\not AE_CB \leqslant 90^\circ$.

Pozostaje sprawdzić, dla jakich punktów ten kąt jest prosty, czyli kiedy NL jest średnicą okręgu Eulera. W tym przypadku $\not ACB = \not NML$ (trójkąt środkowy), ale $\not NML = 90^\circ$, czyli $\triangle ABC$ jest prostokątny - zbiór tych punktów, to okrąg o średnicy AB.

Zadanie 3 IMO Shortlist, 2002

Święty Mikołaj gra z Elfem w następującą grę. Mikołaj wybiera trójkę (x, y, z) liczb całkowitych, gdzie $0 \le x, y, z \le 9$. Elf musi odgadnąć trójkę Mikołaja w jak najmniejszej liczbie ruchów. Każdy ruch wygląda następująco:

- 1. Elf podaje trójkę (a, b, c) jak wyżej.
- 2. Mikołaj przekazuje wartość liczby:

$$|x + y - a - b| + |y + z - b - c| + |z + x - c - a|$$
.

Znajdź najmniejszą liczbę ruchów, jakie musi wykonać Elf, aby być pewnym trójki Mikołaja.

Rozwiązanie:

Zacznijmy od tego, że dwa ruchy nie zawsze wystarczą do odgadnięcia trójki Mikołaja, ponieważ wartość liczby podanej przez Mikołaja jest liczbą parzystą pomiędzy 0 i 54, czyli mamy 28 możliwych odpowiedzi w każdym ruchu. Wszystkich możliwych trójek jest $1000 > 28^2$, czyli więcej niż par odpowiedzi - za dużo.

Udowodnimy teraz, że 3 ruchy zawsze wystarczą:

Pierwszym ruchem powinno być (0,0,0), w odpowiedzi dostaniemy 2(x+y+z), czyli poznamy sumę s=x+y+z liczb Mikołaja, załóżmy, że $s \le 13$ (dla pozostałych postępujemy analogicznie, ale zamiast pytać o (a,b,c) pytamy o (9-a,9-b,9-c)).

Przypadek 1) $s \leq 9$.

Ten jest prosty, wystarczy spytać w drugim ruchu o (9,0,0), a potem (0,9,0) dostaniemy odpowiednio 18-2x i 18-2y, co z s=x+y+z da nam trójke Mikołaja.

Przypadek 2) $9 < s \le 13$.

Teraz powinniśmy spytać o (9, s-9, 0), dostaniemy z + |9-x-z| + |9-x| = 2k, gdzie k = z (jesli $x + z \ge 9$) lub k' = 9 - x (jeśli x + z < 9). W obu przypadkach dostajemy $z \le k \le s$.

Przypadek 2a) $s - k \leq 9$.

Trzecim ruchem powinno być (s - k, 0, k). Dostaniemy y + |k - y - z| + |z - k|, ale $k \le y + z$, więc dostajemy 2y. Znamy y oraz x + z, więc wiemy, czy k = z, czy k = 9 - x, co daje trójkę.

Przypadek 2b) s - k > 9.

Trzecim ruchem powinno być (9, s - k - 9, k). Dostaniemy 18 + 2k - 2(x + z), więc znamy x + z i wiemy, czy k = z, czy k = 9 - x, co ponownie daje trójkę liczb Mikołaja.

Zadanie 4

Udowodnij, że zbiór $\{1, ..., 1989\}$ może być przedstawiony w postaci sumy parami rozłącznych zbiorów A_i (dla $i \in \{1, ..., 117\}$) tak, że:

- każdy zbiór A_i posiada 17 elementów;
- \bullet suma elementów każdego A_i jest taka sama.

Rozwiązanie:

Zacznijmy od dodania skrajnych liczb według algorytmu: $1,1989 \in A_1, 2,1988 \in A_2, \ldots, 118,1872 \in A_1, \ldots, 936,1054 \in A_{17}$. W tym momencie każdy zbiór A_1, \ldots, A_{17} zawiera 16 liczb o sumie $8 \cdot 1990$. Pozostały do rozdzielenia liczby $937, \ldots 1053$, czyli:

$$995 - 58$$
, $995 - 57$, ..., 995 , ..., $995 + 57$, $995 + 58$.

Teraz w postępujemy następująco: zamieniamy $1 \in A_1$ z $59 \in A_{59}$ oraz dodajemy: $(995 - 58) \rightarrow A_1$ i $(995 + 58) \rightarrow A_{59}$. Otrzymaliśmy równe sumy w A_1 i A_{59} , analogicznie postępujemy z pozostałymi parami: $(A_2, A_{58}), \ldots, (A_{29}, A_{31})$ oraz $(A_{60}, A_{117}), \ldots, (A_{88}, A_{89})$, natomiast do A_{30} dodajemy 995.

Zadanie 5 IMO, 1989

Dany jest trójkąt ostrokątny ABC, gdzie BE i CF to wysokości oraz M to środek BC. Niech ω to okrąg opisany na BCEF oraz P to przecięcie AM i EF. Dla dowolnego punktu X leżącego na krótszym łuku EF niech Y to drugie przecięcie prostej XP i ω . Udowodnij, że $\not \subset XAY = \not \subset XYM$.

Rozwiazanie:

Wystarczy wykazać, że MY jest styczne do okręgu opisanego na AXKY.

Rozważmy okrąg ω opisany na AEF, niech przecina AM w K. Wtedy z kryterium współokręgowości A,~X,~K i Y są współokręgowe, ponieważ $XP\cdot PY\stackrel{\omega}{=}EP\cdot PF\stackrel{\omega}{=}AP\cdot PK$.

Zauważmy, że $\not\prec MEA = 180^\circ - \not\prec MEC = 180^\circ - \not\prec MCE = 180^\circ - \not\prec EFA$, czyli ME jest styczne do ω . Zatem wiemy, że $R_\omega^2 = ME^2 = MK \cdot MA$, czyli $MY^2 = R_\omega^2 = MK \cdot MA$, zatem MY styczne do okręgu opisanego na AXKY, co daje tezę.

Zadanie 6

IMO Shortlist, 2003

Znajdź wszystkie takie pary (a, b) dodatnich liczb całkowitych, że liczba:

$$\frac{a^2}{2ab^2 - b^3 + 1}$$

jest dodatnia liczba całkowita.

Rozwiązanie:

Niech (a,b) to para spełniająca warunki zadania. Ponieważ $k=a^2/(2ab^2-b^3+1)>0$, więc dostajemy $2ab^2-b^3+1>0$, $a>b/2-1/2b^2$, stąd $a\geqslant b/2$. Dalej, wiemy, że $k\geqslant 1$, zatem $a^2>b^2(2a-b)\geqslant 0$, stąd:

$$a > b$$
 or $2a = b$.

Rozważmy teraz rozwiązania a_1 , a_2 równania:

$$a^2 - 2kb^2a + k(b^3 - 1) = 0$$

dla ustalonych k i b. Przypuśćmy, że jedno z nich jest całkowite, wtedy także drugie musi być całkowite, ponieważ $a_1 + a_2 = 2kb^2 \in \mathbb{Z}$. Możemy przyjąć, że $a_1 \geqslant a_2$, wtedy $a_1 \geqslant kb^2 > 0$. Ponadto, ponieważ $a_1a_2 = k(b^3 - 1)$, dostajemy:

$$0 \leqslant a_2 = \frac{k(b^3 - 1)}{a_1} \leqslant \frac{k(b^3 - 1)}{kb^2} < b.$$

Wiemy, że a > b lub 2a = b, więc dostajemy $a_2 = 0$ lub $a_2 = b/2$:

Jeżeli $a_2 = 0$, to $b^3 - 1 = 0$ czyli $a_1 = 2k$, b = 1.

Jeżeli $a_2 = b/2$, to $k = b^2/4$ i $a_1 = b^4/2 - b/2$.

Podsumowując, jedyne możliwe wyniki to:

$$(a,b) = (2l,1)$$
 lub $(l,2l)$ lub $(8l^4 - l,2l)$

dla pewnego dodatniego, całkowitego l. Po sprawdzeniu, wszystkie te pary spełniają warunki zadania.