Python Hw1

Total 50 points, each 5 points

1. Write a python function dayOfWeek(m,d,y) that computes the day of week by using the following formula

$$N = d + 2m + [3(m+1)/5] + y + [y/4] - [y/100] + [y/400] + 2$$

Where d is day, m is month, y is year and N%7 will give you the day of the week.

For example, if d =16, m=6, y=2014 then N%7 is 2 so it is Monday. Note first day of the week is Sunday

- 2. Write a python function kthDigit(x, k) that will compute the kth digit of an integer x. For example the 5th digit of 123456 is 1, while 1st digit of 123456 is 5, and 0th digit of 123456 is 6. I.e., count from right to left and the rightmost digit is 0th digit. If value k is greater than or equal to the number of digits of the integer x than return 0. Note parameter k must be a positive integer. If either input parameter is not an integer than return "unknown".
- 3. Write a function is Even, which can check if an integer is even.
- 4. Write a function call it is Even Positive Int which takes an integer x and return true if x is positive and also even. Note is instance(x, int) will return True if x is an integer So

>>> isinstance (23, int)

True

>>> isinstance (12.34, int)

False

>>> isinstance (12.34, float)

True

Write a function and call it isPerfectCube(x)

Given an integer value x, returns True if it is a perfect cube and False otherwise. That is, return True if there is another integer y such that $x = y^3$. Thus, isPerfectCube(27) returns True, but isPerfectCube(16) returns False

6. Write a function call it f(x)

Given a numerical value x, it will return $x^2 - x$ for example f(3) = 6, f(1) = 0. Note ^ means raise to the power of.

7. Write a function call it g(x)

Given a numerical value x, it will return $3x^2 - 4.5x$. For example, g(3) = 13.5, g(1.5) = 0

8. Write a function call it h(x)

Given a numerical value x, it will return sin(x) + cos(x). For example, h (0) = 1, h(2*pi) - 1.0 < 0.00000001. The reason is due to approximation of pi

- 9. Write a function call it bisection (f, low, hi, tol) which will return a root (zero) of function f. where f(low) and f(hi) have opposite sign. I.e., one is positive and the other negative. The tol is tolerance (epsilon).
- 10. Write a function call it harmonicNumber (n) which will find the sum of harmonic series. harmonicNumber(n) will return 1/1 + 1/2 + 1/3 + ... + 1/n.

What to submit:

Make sure to name your homework as yourLastNameYourFirstNamePY-Hw1.py

Where YourFirstName is your real first name and yourLastName is your real last name

Your yourLastNameYourFirstNamepPY-Hw1.py shall look like the following

```
from math import *
def isEven(x):
  return something
def isEvenPositiveInt(x):
  return something
def dayOfWeek(m,d,y):
  return something
def kthDigit(x, k):
  return something
def isPerfectCube(x):
  return something
def f(x):
  return something
def g(x):
  return something
def h(x):
  return something
def bisection (f, low, hi, tol):
  return something
def harmonicNumber(n):
  return something
# make sure you do more tests
# we reserve the right to test more cases
print("Test hw 1...")
assert (isEven(246810) == True)
assert (isEven(19) == False)
assert (isEvenPositiveInt(231) == False)
assert (isEvenPositiveInt(400) == True)
assert (dayOfWeek(4,1,2020) == 4)
```

```
assert (dayOfWeek(3,26,2015) == 5)
assert (kthDigit (1234,3) == 1)
assert (kthDigit (-1234, 3) == 1)
assert (kthDigit(12, 0) == 2)
assert (kthDigit (123456, 10) == 0)
assert (kthDigit (123456, 8.5) == 'unknown')
assert (kthDigit (123456, -8) == 'unknown')
assert (kthDigit (123.456, 10) == 'unknown')
assert (kthDigit ('hello', 10) == 'unknown')
assert (isPerfectCube(27) == True)
assert (isPerfectCube(16) == False)
assert (isPerfectCube(-729) == True)
assert (f(3) == 6)
assert (f(4.5) == 15.75)
assert (f(-21) == 462)
assert (g(1) == -1.5)
assert (isclose(g(3.2), 16.32, abs_tol=1e-6))
assert (isclose(h(0), 1.0, abs_tol=1e-6))
assert (isclose(bisection (f, 0.1, 10.0, 0.00000001), 1.0, abs tol=1e-6))
assert (isclose(bisection (g, 0.01, 10.0, 0.00000001), 1.5, abs_tol=1e-6))
assert(isclose(bisection (h, 1.01, 3.02, 0.00000001), (3 * pi/4), abs tol=0.00000001))
assert(isclose (bisection (h, 6.0, 10.0, 0.00000001), (11 * pi/4), abs tol=1e-6))
assert(isclose (harmonicNumber (0),0.0, abs_tol=1e-6))
assert(isclose (harmonicNumber (1),1/1.0,abs tol=1e-6 ))
assert(isclose (harmonicNumber (2),1/1.0+1/2.0, abs tol=1e-6 ))
assert(isclose (harmonicNumber (3),1/1.0 + 1/2.0 + 1/3.0, abs tol=1e-6))
print ("Pass all tests")
```

Note: isclose is a function of math module, so you have to import math module.

```
>>> isclose (3.14159, pi, abs_tol=1e-5)
True
>>> isclose (3.14159, pi, abs_tol=1e-6)
False
>>> print (pi)
3.141592653589793
```

When to submit

2/6/2020

Where to submit

Blackboard

References

1. Python document

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

2. Passing function as argument

 $\underline{https://stackoverflow.com/questions/1349332/python-passing-a-function-into-another-\underline{function}}$

3. First class object

https://www.geeksforgeeks.org/first-class-functions-python/

4. Python handouts on Blackboard