CS-201Computational Physics

Lab-3 14 . 02 . 2020

3 Growth and it's Saturation

3.1 $f(x) = 4.332*10^{-4} - 0.0315 * x$; x(0) = 0; $0 \le t \le 1000$, $\Delta t = 1$ $r = 4.332*10^{-4}$, $\lambda = 0.0315$

Analytical solution : $x(t) = 0.01375*(1 - e^{-0.0315*t})$

3.2 f(v) = 8.6189 - 349.038 * x ; v(0)=0 ; $0 \le t \le 0.01$, $\Delta t = 2 * 10^{-4}$ **A** = 8.6189 , **B**=349.038

Analytical Solution : $v(t) = 2.469 * 10^{-2} * e^{-349.038*t}$

3.3 $f(x) = 0.03 * x - 3 * 10^{-12} * x^2$; $x(1961) = 3 * 10^9$; $1961 \le t \le 2500$, $\Delta t = 1$

Analytical Solution : $x(t) = (3.07 * 10^9 * e^{0.03 * (t-1961)}) / (1 + 0.307 * (e^{0.03 * (t-1961)} - 1))$

Limiting Population = 10^{10} Current Population (Via Analytical Equation) = $7.1623 * 10^9$ Current Population (Via Euler Approximation) = $7.1636 * 10^9$ Current Population (Via Taylor 2^{nd} Order Approximation) = $7.1625 * 10^9$ Current Population (Via Taylor 3^{rd} Order Approximation) = $7.1623 * 10^9$ Current Population (Actual) = $7.7642 * 10^9$