Connect all the

https://flipdot.org/wiki/Projekte/IoT

Wo?

• flipdot hackerspace kassel

Anforderungen ans System

- Sensoren: Fenster, Türen, Oberlichter, Herd, ...
- Zwischenebene zur logischen und zeitlichen Verknüpfung
- Meldung an
 - Space API
 - Grafana für Statistiken
 - Tableau an der Ausgangstür
- Aktoren: Heizungsthermostaten, Licht, Audio, ...

Anforderungen an die Sensoren

- Billig
- Batterieversorgt, Lebensdauer > 1 a
- WLAN
- Erfassung von Transition und neuem Status
- Kein Feature Creep zulassen

Erster Versuch mit ESP8266 im Deep Sleep

Erster Versuch mit ESP8266 im Deep Sleep

Entladeversuch 3 x Eneloop + Schottky-Diode. Entladeschlußspannung = 1000 mV

Erster Versuch mit ESP8266

- Verbrauch im Deep Sleep ca. 300 μA
- Prozessor aktiv ca.
 70 mA
- Spitzen durch Radio ca. 270 mA

1 Ohm Shunt, 50 mV entspricht 50 mA.

Erweiterung um zusätzlichen Attiny

- ESP in Ruhe komplett stromlos
- Attiny benötigt nur 0,12 μA statt der 300 μA des ESP
- Attiny kann mit Interrupt on Port Change geweckt werden

Finaler Aufbau

Finaler Aufbau

Finaler Aufbau

Stromversorgung

- 3 x ENELOOP Akku, Kapazität 2500 mAh, Nennspannung 1,2 V
 - Mit Schottky-Diode in Reihe sinkt die Betriebsspannung im System auf 3,3 V und die Specs des ESP werden eingehalten
- Alternativ 2 x Alkaline Primärzellen, Nennspannung 1,5 V Einspeisung nach der Schottky Diode

Verworfene Alternative: Abschaltbarer Low Drop Regler: 2 x Alkaline unmöglich, zusätzlicher Ruhestromverbrauch.

- Sensor: Umschalter statt Öffner mit Pullup kein Ruhestrom
 - Port liegt stets auf definiertem Pegel
 - Geringes EMV Risiko
 - Um Spannung in dem kurzen
 Zeitraum des Umschaltens
 zu halten: 100 nF Kerko am
 Portpin

- Keramikkondensatoren für Vcc Stützung
 - Geringe Induktivität, geringer ESR (Equivalent Series Resistance)
 - Im Vergleich zu Elkos deutlich geringerer Leckstrom
 - Große Temperatur- und Spannungsabhängigkeit der Kapazität hier kein Problem

- P-Kanal MOSFET AO 3413:
 - ID: -3 A, RDS(ON): 100 mOhm, UGS: -0,65 V

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$		-20			V	
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =-20V, V_{GS} =0V				-1		
			T _J =55℃			-5	μΑ	
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm8V$				±100	nA	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$		-0.4	-0.65	-1	V	
I _{D(ON)}	On state drain current	V_{GS} =-4.5V, V_{DS} =-5V		-15			Α	
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-4.5V, I_{D} =-3A			56	80	mo	
			T _J =125℃		80	115	mΩ	
		V_{GS} =-2.5V, I_{D} =-2.6A			70	100	mΩ	
		V_{GS} =-1.8V, I_{D} =-1A			85	130	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-3A			12		S	
V _{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.7	-1	V	
Is	Maximum Body-Diode Continuous Curre	ent				-1.4	Α	

- ATTINY 25V-10 SU:
 - 0 4 MHz @ **1,8** 5,5V
 - Power-down Mode: 0,1 μA @ 1,8V

Geringer Strombedarf nur wenn

- Nicht benutzte Peripheriekomponenten abgeschaltet sind, z.B. AD Wandler:
 ADCSRA &= ~(1 << ADEN); // Spart ca. 230 μA
 Comparator ist automatisch disabled im Deep Sleep.
- Brown Out Detection abgeschaltet ist
- Eingänge keinen Pullup und Schließer, sondern Wechsler bekommen
- Unbenutze Eingänge Pullups gegen Floating bekommen

- ESP8266-01: Billigste Variante
 - Die Onboard LEDs k\u00f6nnen noch entfernt werden, verringert zus\u00e4tzlich die Stromaufnahme

Software

- MQTT lib für ESP: https://github.com/knolleary/pubsubclient
- MQTT lib für Python: https://pypi.python.org/pypi/paho-mqtt/1.1
- Attiny Code: https://github.com/8n1/ESP8266-Tiny-Door-and-Window-Sensor

Separates Wlan für die IoD Devices, ToDo: Definition von sicheren Schnittstellen.

Bis auf Weiteres nur Traffic im internen Netz, Meldung an LED Tableau an der Ausgangstür, Alarm, wenn beim Verlassen des Space z.B. Oberlichter geöffnet sind.

Lessons Learned

- Stützkondensator am Attiny (Vcc und Reset) ist nötig
- Der Kerko am Sensoranschluß beeinträchtigt das Programmieren via ISP, (= MOSI) niedrige Bitrate geht aber
- ESP Stützkondensator nach dem MOSFET führt zu Instabilitäten
- Verbindungsaufbau mit fester IP statt DHCP ist doppelt so schnell (Wenn ESP nicht komplett abgeschaltet wird sondern im Deep Sleep ist, spart man eine weitere Sekunde, aber: mehr Stromverbrauch)

Weiterentwicklung

- Projekt mit ca. 15 Waagen zur Getränkestands-Erfassung und automatischen Bestellung https://github.com/flipdot/drinks-storage-state
- Serielle Schnittstelle zu Thermostaten
- Temperatursensoren mit selbständigem zyklischen Wakeup
- Wassersensor
- Stromverbrauch / Aktivität von 230 V Verbrauchern erfassen (Möglichst ohne eigene Stromversorgung)
- Klopapier-Level-Sensor etc.
- Taster an der Sammelstelle für dreckige Handtücher (wascht uns!)

kthxbye.

https://flipdot.org/wiki/Projekte/IoT
typ_o
com@flipdot.org