Iteração de Ponto-fixo

Ponto fixo

Def.: Um número p é um ponto fixo de uma função g se g(p)=p.

Dado um problema de encontrar raiz f(p)=0, podemos definir funções g com um ponto fixo p. Exemplo:

$$g(x) = x - f(x)$$

$$g(x) = x + 3f(x)$$

Se uma função g tem um ponto fixo em p, então

$$f(x) = x - g(x)$$

tem um zero em p.

Determine os pontos fixos da função $g(x) = x^2 - 2$.

$$p = g(p) = p^2 - 2$$

 $0 = p^2 - p - 2 = (p+1)(p-2).$

Um ponto fixo acontece na intersecção entre o gráfico de y=g(x) e y=x.

Teorema

Se $g \in C[a,b]$ e $g(x) \in [a,b]$ para todo $x \in [a,b]$, então g tem pelo menos um ponto fixo em [a,b].

Se além disso, g'(x) existe em (a,b) e uma constante positiva k < 1 existe com

$$|g'(x)| \le k$$
, para todo $x \in (a, b)$,

então existe exatamente um ponto fixo em [a, b].

Se $g \in C[a,b]$ e $g(x) \in [a,b]$ para todo $x \in [a,b]$, então g tem pelo menos um ponto fixo em [a,b].

Prova: Se g(a)=a ou g(b)=b, então acabou.

Senão, g(a) > a e g(b) < b.

A função h(x)=g(x)-x é contínua em [a,b], e:

$$h(a) = g(a) - a > 0$$

$$h(b) = g(b) - b < 0.$$

O TVI garante que existe $p \in (a, b)$ tal que h(p) = 0.

$$0 = h(p) = g(p) - p$$
$$g(p) = p$$

Se além disso, g'(x) existe em (a,b) e uma constante positiva k < 1 existe com

$$|g'(x)| \le k$$
, para todo $x \in (a, b)$,

então existe exatamente um ponto fixo em [a, b].

Prova: Suponha, por absurdo, que $|g'(x)| \le k < 1$ e p e q são pontos fixos em [a,b].

Pelo Teorema do Valor Médio, existe ξ entre p e q tal que

$$\frac{g(p)-g(q)}{p-q}=g'(\xi).$$

Daí:
$$|p-q| = |g(p)-g(q)| = |g'(\xi)||p-q| \le k|p-q| < |p-q||$$

Absurdo! Logo, não podem haver dois pontos fixos.

Mostre que $g(x) = (x^2 - 1)/3$ tem um único ponto fixo em [-1, 1].

Os valores máximos de g(x) estão nas extremidades do intervalo ou nos pontos críticos:

$$x = -1, x = 0 \text{ ou } x = 1.$$

$$g(-1) = g(1) = 0 e g(0) = -1/3.$$

Logo,
$$-1/3 \le g(x) \le 0$$
 para $x \in [-1, 1]$.

Daí garantimos que g tem pelo menos um ponto fixo.

Além disso:

$$|g'(x)| = \left|\frac{2x}{3}\right| \le \frac{2}{3}$$
, para $x \in [-1, 1]$.

Logo, g possui exatamente um ponto fixo.

Mostre que $g(x) = (x^2 - 1)/3$ tem um único ponto fixo em [-1, 1].

Podemos encontrar os pontos fixos algebricamente neste caso:

$$p=g(p)=\frac{p^2-1}{3},$$

$$p^2 - 3p - 1 = 0$$

$$p = \frac{1}{2}(3 - \sqrt{13})$$
 ou $p = \frac{1}{2}(3 + \sqrt{13})$

Iteração de ponto-fixo

Seja $g(x) = 3^{-x}$. Não é possível determinar algebricamente seu ponto fixo p.

Vamos considerar o seguinte procedimento iterativo para aproximar p:

- 1 Escolha uma aproximação inicial p_{θ} ;
- 2 Gere a sequência $p_n = g(p_{n-1})$ para n>0.

Se a sequência converge para p e g é contínua, então

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p)$$

Iteração de ponto-fixo

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While $i \le N_0$ do Steps 3-6.

Step 3 Set $p = g(p_0)$. (Compute p_i .)

Step 4 If $|p-p_0| < TOL$ then OUTPUT (p); (The procedure was successful.) STOP.

Step 5 Set i = i + 1.

Step 6 Set $p_0 = p$. (Update p_0 .)

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

A equação $x^3 + 4x^2 - 10 = 0$ tem uma única raiz em [1, 2]. Podemos alterar a equação para uma forma de ponto-fixo x=g(x) de diversas maneiras:

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

(c)
$$x = g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

(b)
$$x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$$

(d)
$$x = g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$$

Resultado da iteração:

		415			
n	(a)	(b)	(c)	(d)	(e)
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013
5			1.360094193	1.365225594	
6			1.367846968	1.365230576	
7			1.363887004	1.365229942	
8			1.365916734	1.365230022	
9			1.364878217	1.365230012	
10			1.365410062	1.365230014	
15			1.365223680	1.365230013	
20			1.365230236		
25			1.365230006		
30			1.365230013		

Como criar um problema de ponto-fixo que produz uma sequência que convirja rapidamente para p?

Teorema do ponto-fixo

Seja $g \in C[a,b]$ tal que $g(x) \in [a,b]$ para todo $x \in [a,b]$. Suponha que g' exista em (a,b) e que exista a constante 0 < k < 1 tal que

$$|g'(x)| \le k$$
, para todo $x \in (a, b)$.

Então para qualquer número p_0 em [a,b], a sequência

$$p_n=g(p_{n-1}), \quad n\geq 1,$$

converge para o ponto fixo único $p \in [a, b]$.

Prova:

As hipóteses do teorema garantem que existe um único ponto fixo p em [a, b], tal que g(p)=p.

Como $g(x) \in [a,b]$, a sequência $\{p_n\}_{n=0}^{\infty}$ está bem definida e $p_n \in [a,b]$

Aplicando o Teorema do Valor Médio e considerando que $|g'(x)| \le k$

$$|p_n-p|=|g(p_{n-1})-g(p)|=|g'(\xi_n)||p_{n-1}-p|\leq k|p_{n-1}-p|, \quad \xi_n\in(a,b).$$

Teorema do ponto-fixo

$$|p_n-p|=|g(p_{n-1})-g(p)|=|g'(\xi_n)||p_{n-1}-p|\leq k|p_{n-1}-p|, \quad \xi_n\in(a,b).$$

Aplicando a desigualdade acima indutivamente:

$$|p_n-p| \le k|p_{n-1}-p| \le k^2|p_{n-2}-p| \le \cdots \le k^n|p_0-p|.$$

Como 0 < k < 1, temos que $\lim_{n \to \infty} k^n = 0$ e

$$\lim_{n\to\infty}|p_n-p|\leq \lim_{n\to\infty}k^n|p_0-p|=0.$$

Daí $\{p_n\}_{n=0}^{\infty}$ converge para p.

Teorema do ponto-fixo

Corolário: Se g satisfaz as hipóteses do teorema anterior, o erro de aproximação é dado por

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$
 e
$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|, \text{ para todo } n \ge 1.$$

Prova: Exercício.

Estudo de caso

A taxa de convergência depende do fator k^n . Quanto menor k, mais rápida a convergência.

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

(b)
$$x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$$

(c)
$$x = g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$

(d)
$$x = g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

n	(a)	<i>(b)</i>	(c)	(<i>d</i>)	(e)
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013
5			1.360094193	1.365225594	
6			1.367846968	1.365230576	
7			1.363887004	1.365229942	
8			1.365916734	1.365230022	
9			1.364878217	1.365230012	
10			1.365410062	1.365230014	
15			1.365223680	1.365230013	
20			1.365230236		
25			1.365230006		
30			1.365230013		

Discussão

Como criar um problema de ponto-fixo que produz uma sequência que convirja rapidamente para p?

Manipule o problema de achar raiz para encontrar um problema de ponto-fixo que satisfaça as condições do Teorema do Ponto-fixo, e cuja derivada tenha o menor valor possível.