BDTM: Big Data Tools for Managers 2nd Internal Question Paper [Set-A]

Q1. Demonstrate UPDATE & DELETE statements in MySQL.

Table: **EMPLOYEE**

ID	NAME	CITY	STATE	COUNTRY
1	AAA	PUNE	MAH	INDIA
2	BBB	MUMBAI		
3	CCC	TUMKUR	KAR	
4	DDD	BANGALORE		
5	EEE	GANDHINAGAR		

A. Update STATE as MAH for city MUMBAI

UPDATE EMPLOYEE SET STATE=`MAH` WHERE CITY = `MUMBAI`;

B. Update value <u>IN</u> for Country for all the records, after updating Country should contains 'IN' values for entire table.

UPDATE EMPLOYEE SET COUNTRY='IN';

C. DELETE the records where NAME is EEE

DELETE FROM EMPLOYEE WHERE NAME = `EEE`;

D. DELETE the records where STATE is MAH

DELETE FROM EMPLOYEE WHERE STATE = `MAH`;

E. Display all available records in EMPLOYEE table

SELECT * FROM EMPLOYEE;

[10]

Table: Orders

OrderID	CustomerID	OrderDate	
10308	2	2022-08-15	
10309	1	2022-08-26	
10310	2	2022-09-01	

Table: **Customers**

CustomerID	CustomerName	Country
1	John Todd	Germany
2	Dominic Dom	Mexico
3	Paul S	Mexico

A. Perform Inner Join with Orders & Customer Table

SELECT Orders.*, Customers.* FROM Orders
INNER JOIN Customers
ON Orders.CustomerID = Customers.CustomerID;

B. Create a MySQL View for left join with Orders & Customer Table

CREATE VIEW my_view AS
SELECT Orders.*, Customers.* FROM Orders
LEFT JOIN Customers
ON Orders.CustomerID = Customers.CustomerID;

C. Use a View which created in Q2[B] to display data for left join queries SELECT * FROM my_view;

D. Delete a MySQL View which created in Q2[B] DROP VIEW my_view;

Tables: CUSTOMERS_1, CUSTOMERS_2

A. Display all the records including duplicate records from CUSTOMER_1 and CUSTOMER_2 using MySQL SET operators.

```
SELECT * FROM CUSTOMER_1
UNION ALL
SELECT * FROM CUSTOMER_2;
```

B. Display common records from CUSTOMER_1 and CUSTOMER_2 tables.

```
SELECT * FROM CUSTOMER_1
INTERSECT
SELECT * FROM CUSTOMER_2;
```

Q4. [A] Perform basic operations on R Vector

[5]

[5]

- Create R vector for given elements (99, 86, 63, 81, 48)
 my_vector <- c(99, 86, 63, 81, 48)
- Display the vector elements print(my_vector)
- 3. Display the length of R vector

```
print(my_vector)
or
length(my_vector)
```

4. Sort vector elements in ascending order

```
sort(my_vector)
```

Q4. [B] Create and Display R Matrix for below given elements

```
      8
      4
      3

      -5
      6
      -2

      7
      9
      -8
```

1. Create Matrix with given elements

```
my_matrix <- matrix(c(8, 4, 3, -5, 6, -2, 7, 9, -8), nrow = 3, byrow = TRUE)
```

Display Matrix elements in R print(my_matrix) **Q5.** Read Vehicle Park dataset and write R code for following statements.

About Dataset:

- Vehicle Park data contains the no of vehicles are present on road or market in India from Year 2000 to 2022
- · Columns:
 - YEAR: Vehicle Sales Year
 - VEHICLE_TYPE: Type of vehicle sold to the market (Truck, Bus, Four & Two-wheeler, Others)
 - BRAND: Vehicle brand & Manufacturer
 - VEHICLE_COUNT: No of vehicle sold in market for a year
 - AGE GROUP: Age group of the vehicle
 - AGE: Vehicle age represent how old vehicle
 - RTO_REGISTRATION_YEAR: Year of vehicle registration

Write R Code for following statements:

```
A. Read (VEHICLE_PARK.csv) CSV file vehicle_park <- read.csv("VEHICLE_PARK.csv")
```

B. Display top 20 and bottom 55 records using head and tail command head(vehicle_park,20)tail(vehicle_park, 55)

C. Display quick summary of all the columns. summary(vehicle_park)

- D. Display all the vehicles which have been registered on Year 2010 vehicle_park[vehicle_park\$RTO_REGISTRATION_YEAR == 2010,]
- E. Display AGE_GROUP single columns from Vehicle Park data. age_group <- vehicle_park\$AGE_GROUP