Formelsammlung Physik 2

Tim Hilt

9. Juli 2018

Inhaltsverzeichnis

I	Allg	gemein		L
	1.1	Umrec	hnungen . ,	Ĺ
		1.1.1	$\frac{g}{cm^3} \to \frac{kg}{m^3} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	1
2	Sch	wingur	ngen 2	2
	2.1		zeichen	2
	2.2	Konsta	anten	2
	2.3	Formel	ln	3
		2.3.1	Allgemein	3
			k_{Ges} , wenn Federn parallel	
			k_{Ges} , wenn Federn seriell	
			Eigenkreisfrequenz	
			Umrechnung $f \ / \ T$	
			Allgemeine Schwingungsdgl	
			Drehmoment	
		2.3.2	Ungedämpfte Systeme	
			Kriterium für harmonische Schwingung:	
			Weg-Zeit-Gesetz	
			Geschwindigkeit-Zeit-Gesetz	3
			Beschleunigung-Zeit-Gesetz	
			Maximale Geschwindigkeit im Schwingvorgang	3
			Amplitude x_m	3
			Kreisfrequenz ungedämpft	1
			Hookesches Gesetz	1
			Hookesches Gesetz bei Drehbewegungen	1
			U-Rohr	1
			Schwingungsdgl am U-Rohr	1
			Fadenpendel	1
			Schwingungsdauer beim Fadenpendel	1
			Winkelgeschwindigkeit	1
			Grad zu Radien	1
			Rückstellkraft F_R beim Fadenpendel	1
			Auslenkungswinkel-Zeit-Gesetz	1
			Winkelgeschwindigkeit-Zeit-Gesetz	1
			Winkelbeschleunigungs-Zeit-Gesetz	1
			$v_{ m max}$ beim Fadenpendel	5
			Anfangsauslenkung $arphi_0$	5
			Federpendel	5
			Schwingungsdauer beim Federpendel	5

			Energie beim Federpendel	5
		2.3.3	Gedämpfte Systeme	5
			·	5
			Abklingfunktion Fadenpendel	5
			Kreisfrequenz gedämpft	5
			Abklingkoeffizient	5
			Dämpfungskonstante	5
			Schwingungszeit gedämpft	5
			Reibkonstante	5
			Logarithmisches Dekrement	6
			Güte	6
			Schwingungsenergie	6
		,	Energieverlust	6
			Aperiodischer Grenzfall	6
		2.3.4 E	Erzwungen schwingende Systeme	6
2	Δ1			7
3		ıstik	• 1	7
	3.1			7
	3.2			7
	3.3	Formeln		7
				7
			1 9	8
			Summe mehrerer gleich lauter Schallpegel	8
			Summe mehrerer unterschiedlich lauter Schallquellen	8
			Schallpegeldifferenz:	8
			Schallintensität	8
			Schallintensität Halbkugel	8
			Schallintensität Kugel	9
			Schallkennimpedanz / Wellenwiderstand	9
			Schalldruckamplitude	9
			Umrechnung vom Effektivwert	9
				9
			• •	9
			<u> </u>	9
				9
			Ab walli Oberschalkhali!	9
4	We	llen	1	LO
_	4.1			10
	4.2	Formeln		10
	4.2	i ormem		LU
5	Ste	hende W	<i>l</i> ellen 1	l 1
J	5.1	Formelze		11
	5.2			11
	5.2	Formeln		
	5.5	romein		11
				11
			, (8	11
			, ,	12
			(6)	12
			Länge einfachster Fall (ungleiche Enden)	12

			8 8/	12
			Grundschwingung ungleiche Enden	12
			Frequenzverhältnis	12
			Wellenzahl	12
			Wellengeschwindigkeit	12
6	Opt	tik		13
	6.1		lzeichen	13
	6.2		anten	13
	6.3	Formel	ln	14
			Zusammenhang Frequenz / Ausbreitungsgeschwindigkeit	14
			Abstand berechnen (Radarpistole u.Ä.)	14
			Frequenzverschiebung	14
			Geschwindigkeit Zielfahrzeug	14
		Freque	nzverschiebung beim Dopplereffekt	14
		•	Optischer Dopplereffekt	14
			Violett- / Rotverschiebung	14
			Reflexionsgrad R	14
			Transmissionsgrad T	14
			Transmissionsgrad durch Medium	14
		6.3.1	Entspiegelung	15
			Brechungsindex von Entspiegelungsschicht	15
			Gangunterschied zwischen den beiden Schichten	15
			Schichtdicke d	15
		6.3.2	Brechung	15
			Umrechnungen	15
			Ausbreitungsgeschwindigkeit im Medium	15
			Grenzwinkel der Totalreflexion	16
			Brewsterwinkel	16
		6.3.3	Beugung	16
			Einzelspalt	16
			Doppelspalt	16
			Intensitätsmaxima	16
			Intensitätsminima	16
			Gitter	16
			Intensitätsmaxima	16
			Schirmposition x_k der Maxima	16
			Spektralüberlappungen ab dem k -ten Maximum am Schirm	16
			Spectralaberrappungen ab dem // ten maximum am Semim	Ŧ 0

Abbildungsverzeichnis

6.1	Farbspektrum																	13
6.2	Entspiegelung																	15

1 Allgemeines

1.1 Umrechnungen

$$1.1.1~\frac{g}{cm^3} \rightarrow \frac{kg}{m^3}$$

Beispiel:

$$7.87 \frac{g}{cm^3} = 7870 \frac{kg}{m^3}$$

$$\frac{g}{cm^3} = \frac{1*10^{-3}kg}{1*10^{-6}m^3}$$

2 Schwingungen

2.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
f	Frequenz	Hz
T	Schwingungsdauer	s
ω_0	Winkelgeschwindigkeit (ungedämpftes System)	s^{-1}
ω_d	Winkelgeschwindigkeit (gedämpftes System)	s^{-1}
\overline{k}	Federkonstante	$\frac{N}{m}$
\overline{x}	Auslenkung	m
l	Länge Fadenpendel	m
D	Dämpfungskonstante	(Einheitenlos)
δ	Abklingkoeffizient	s^{-1}
b	Reibkonstante	$\frac{kg}{s}$
F_E	Anregende Kraft	N
\overline{E}	Energie	J
E_v/E_n	Energie davor / Energie danach	
\overline{J}	Massenträgheitsmoment	$kg*m^2$
φ	Drehwinkel	Bogenmaß
M	Drehmoment	Nm

2.2 Konstanten

 $\bullet \ \ {\rm Gravitationskonstante} \ g = 9.81 \frac{m}{s^2}$

2.3 Formeln

2.3.1 Allgemein

 $m{k_{Ges}}$, wenn Federn seriell $\ldots \ldots \ldots \ldots \dfrac{1}{k_{Ges}} = \dfrac{1}{k_1} + \dfrac{1}{k_2} + \dfrac{1}{k_3} + \cdots + \dfrac{1}{k_n}$

Eigenkreisfrequenz $\omega = 2\pi * f = \frac{2\pi}{T}$

2.3.2 Ungedämpfte Systeme

Kriterium für harmonische Schwingung: $\frac{x}{F}$, bzw. $\frac{\varphi}{M}$ muss linear sein!

 $\mbox{Weg-Zeit-Gesetz} \qquad \qquad \qquad x(t) = x_0 * \cos(\omega_0 t + \varphi_0)$

 $\mathsf{Geschwindigkeit}\text{-}\mathsf{Zeit}\text{-}\mathsf{Gesetz} \qquad \ldots \qquad v(t) = -x_0*\omega_0*\sin(\omega_0 t + \varphi_0)$

Maximale Geschwindigkeit im Schwingvorgang v_{\min} ist immer $v_{\min} = v_{\min} = 0!$

Amplitude ${m x_m}$ $x_m = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_0} \right)^2}$

Kreisfrequenz ungedämpft $\ldots \ldots \omega_0 = \sqrt{\frac{k}{m}}$ Und bei Drehbewegungen: $\omega_0 = \sqrt{\frac{k}{J}}$
Hookesches Gesetz $F_R = k * x$
Hookesches Gesetz bei Drehbewegungen $\dots M = k * \varphi$
U-Rohr
Schwingungsdgl am U-Rohr $\underbrace{\rho*A*l}_{m}*\ddot{x}+b*\dot{x}+\underbrace{\rho*A*g*2}_{k}x=F_{E}$ $(x=x_0*\cos(\omega_0*t))$
Fadenpendel
Schwingungsdauer beim Fadenpendel $T=2\pi\sqrt{\frac{l}{g}}$
Winkelgeschwindigkeit $\omega = \sqrt{\frac{l}{g}}$
Grad zu Radien $ \varphi \to \frac{\varphi \ \pi}{180} $
Rückstellkraft F_R beim Fadenpendel $\dots F_R = m * g * \sin(\varphi) = F_G * \sin(\varphi)$
Auslenkungswinkel-Zeit-Gesetz $\dots \qquad $
Wobei α_0 die anfängliche Phasenverschiebung beschreibt, diese gilt nur bei angeregten Schwingungen
Winkelgeschwindigkeit-Zeit-Gesetz $\ldots \ldots \omega(t) = -\varphi_0 * \omega_0 * \sin(\omega_0 \ t + \alpha_0)$
Winkelbeschleunigungs-Zeit-Gesetz $\alpha(t) = -\varphi_0 * \omega_0^2 * \cos(\omega_0 \ t + \alpha_0)$

 v_{\max} beim Fadenpendel $v_{\max} = \sqrt{2*g*h} = \frac{\varphi_0\pi}{180}*\omega_0*l$ Wobei h der Wert ist, um den sich das Pendel anhebt l = Länge d. Pendels Anfangsauslenkung $arphi_0$ $arphi_0 = \sqrt{\frac{2h}{I}}$ **Federpendel** 2.3.3 Gedämpfte Systeme Abklingfunktion Federpendel $x_m = x_0 * e^{-\delta * n * T_0}$ Abklingfunktion Fadenpendel $\varphi_m = \varphi_0 * e^{-\delta * n * T_0}$ $n \in {1,2,3,\ldots}$ Anzahl Schwingungen $/ n \cdot T_0$: Dauer des Schwingungsvorgangs Kreisfrequenz gedämpft $\ldots \ldots \omega_d = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \sqrt{1 - D^2}$ Abklingkoeffizient $\delta = \frac{b}{2m} = D * \omega_0$

Logarithmisches Dekrement	$\ldots \Lambda = \delta * T_0$
Güte	$\dots Q = \frac{\pi}{\delta * T} = \frac{1}{2D}$
Schwingungsenergie	$\dots E = \frac{1}{2} * c * x^2$
Energieverlust $ \frac{\Delta E}{E} =$	-
Kann noch gekürzt werden!	$\dots \dots 1 - \frac{x_1^2}{x_0^2}$

Aperiodischer Grenzfall

$$D = 1$$

$$\delta = \omega_0$$

$$b = 2m * \omega_0$$

2.3.4 Erzwungen schwingende Systeme

3 Akustik

3.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
\overline{f}	Frequenz	Hz
L	Schallpegel	dB
C	Ausbreitungsgeschwindigkeit	$\frac{m}{s}$
λ	Wellenlänge	m
I	Schallintensität	$\frac{W}{m^2}$
\overline{P}	Schallleistung	\overline{W}
\overline{A}	Oberfläche (Kugelwelle)	m^2
\overline{Z}	Wellenwiderstand/Schallkennimpedanz	$\frac{kg}{m^2s}$
ρ	Dichte	$\frac{kg}{m^3}$
p	Schalldruckamplitude	Pa
Ma	Machzahl	Einheitenlos

3.2 Konstanten

•
$$I_0 = 10^{-12} \ \frac{W}{m^2}$$

3.3 Formeln

 ${\sf Schallgeschwindigkeit} \qquad \qquad c = \lambda * f$

Wichtigste Formel für Rechnung mit Schallwellen!

Summe mehrerer unterschiedlich lauter Schallquellen $10*\log(10^{L_1/10}+10^{L_2/10}+10^{L_3/10}+\cdots+10^{L_n/10})$

Beispiel:

$$L_1 = 90dB, L_2 = 80dB, L_3 = 65dB$$

$$L_{\Sigma} = 10 * \log(10^9 + 10^8 + 10^{6.5})$$

$$L_{\Sigma} = 90.426dB$$

Schallpegeldifferenz:

$$\Delta L = L_2 - L_1$$
$$= 10 \log \left(\frac{I_2}{I_1}\right)$$

Und bei unterschiedlichem Radius/Abstand:

$$=20\log\left(\frac{r1}{r2}\right)$$

wobei L_2 der größere beider Werte ist

Schallintensität $I = \frac{P}{A} = \frac{\rho * x^2 * \omega^2 * c}{2}$

Bei allen fahrenden / mit der Erde verbundenen Schallquellen gilt $A=2\pi r^2$. Dies entspricht der Oberfläche einer Halbkugel. Dementsprechend gilt für alle fliegenden oder in der Luft aufgehängten Schallquellen $A=4\pi r^2$

Schallintensität Halbkugel $I = \frac{P}{2\pi * r^2}$

 ${\sf Schallkennimpedanz} \ / \ {\sf Wellenwiderstand} \qquad \ldots \qquad Z = \rho * c$

 ${\sf Schalldruckamplitude} \qquad \qquad p = Z*\omega*x$

Dopplereffekt

Ruhender Empfänger, bewegter Sender: $f_E = f_S rac{1}{1 \mp rac{v_S}{c}}$

Runder Sender, bewegter Empfänger: $f_E = f_S \left(1 \pm \frac{v_E}{c} \right)$

Bewegter Sender, bewegter Empfänger: $f_E = f_S \frac{c \pm v_E}{c \mp v_S}$

Oberes Zeichen: Annäherung; Unteres Zeichen: Entfernung

Machscher Kegel

Machzahl $Ma = \frac{v_S}{c}$

4 Wellen

4.1 Formelzeichen

$\lambda = \dots $			Wellenlänge
Umrechung von Bogensekunden in Grad:	$0^{\circ}0^{\circ}$ Wert	Danach ist	. Wert für weitere
Berechnungen nutzbar			

4.2 Formeln

5 Stehende Wellen

5.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit			
λ	Wellenlänge	m			
ρ	Dichte	$\frac{kg}{m^3}$			
f	Frequenz	Hz			
l	Länge	m			
k	Anzahl d. Wellenbäuche	Wellen/m			
\overline{p}	Luftdruck	Pa			
κ	Isentropenexponent; $\frac{c_p}{c_v}$	Einheitenlos			

5.2 Konstanten

• Menschlicher Hörbereich: 16 - 20000Hz

5.3 Formeln

$$\text{Schallgeschwindigkeit} \qquad \ldots \\ c = \sqrt{\frac{\kappa*p}{\rho_T}} = 331 \frac{m}{s} * \sqrt{\frac{273K + \cdots \circ C}{273K}}$$

Länge der Saite/des Rohres (gleiche Enden)
$$l=(k+1)*\frac{\lambda}{2}=(k+1)*\frac{c}{2f}$$
 $k\in 0,1,2,\ldots$

Länge der Saite/ des Rohres (ungleiche Enden) $l = (2k+1) * \frac{\lambda}{4} = (2k+1) * \frac{c}{4}$ $k \in [0, 1, 2, \dots]$ Achtung: n entspricht k + 1! " 1. Harmonische" \equiv " Grundschwingung " \equiv " 0. Oberschwingung" Gilt nur für Grundschwingung! Gilt nur für Grundschwingung! Grundschwingung/Wellenlänge gleiche Enden $\dots f = \frac{c}{4*l}; \lambda = 4*l$, Wenn nicht die gesamte, sondern die Geschwindigkeit an einer bestimmten Stelle gesucht ist

6 Optik

6.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
\overline{c}	Lichtgeschwindigkeit	$\frac{m}{s}$
\overline{f}	Frequenz	Hz
\overline{R}	Reflexionsgrad	Gibt reflektierten Anteil
\overline{T}	Transmissionsgrad	Gibt transmittierten Anteil
\overline{g}	Gitterkonstante / Abstand der Spaltmitten	m
α_k	Ablemkungswinkel am k-ten Maximum	rad

6.2 Konstanten

- Lichtgeschwindigkeit $c_0 = 3*10^8 \frac{m}{s}$
- \bullet Wellenlängenempfindlichkeit des Auges: $400-750\ nm$

Abbildung 6.1: Farbspektrum und menschlicher Sehbereich

6.3 Formeln

Zusammenhang Frequenz / Ausbreitungsgeschwindigkeit $c = f * \lambda$

Abstand berechnen (Radarpistole u.Ä.) $s = \frac{c*t}{2}$ Aus Formel der Kinetik $v = \frac{s}{t}$

Frequenzverschiebung $\Delta f = \frac{2*f_s*v}{c} = \frac{2*v}{\lambda_s}$

Frequenzverschiebung beim Dopplereffekt

Annäherung ightarrow höhere Frequenz / kleinere Wellenlänge ightarrow Violett-Verschiebung

 ${\sf Entfernung} \quad \to \quad {\sf niedrigere} \,\, {\sf Frequenz} \,\, / \,\, {\sf gr\"{o}Bere} \,\, {\sf Wellenl\"{a}nge} \quad \to \quad {\sf Rot-Verschiebung}$

Reflexionsgrad ${m R}$ $R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$

Gibt jeweils nur **einen** Übergang an!

Falls Medium nicht transparent gilt mit dieser Formel der Absorptionsgrad

6.3.1 Entspiegelung

Hierbei sei n_1/λ_1 die Wellenlänge und Brechzahl in Luft, n_2/λ_2 die Brechzahl und Wellenlänge in der Entspiegelungsschicht der Dicke d und n_3/λ_3 die Wellenlänge und Brechzahl des Brillenglases.

Bei perfekt entspiegelten Oberflächen beträgt der Gangunterschied an der Oberfläche immer $\frac{\lambda_1}{2}$

Abbildung 6.2: Grafik zur Veranschaulichung der Entspiegelung

Brechungsindex von Entspiegelungsschicht $n_2 = \sqrt{n_1*n_3}$ Gangunterschied zwischen den beiden Schichten $\Delta x = 2*n_2*d$ Schichtdicke d $d = \frac{\lambda_1}{4n_2}$

6.3.2 Brechung

Umrechnungen $\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2}$

Von dünn nach dicht o zum Lot hin; von dicht nach dünn o vom Lot weg

Grenzwinkel der Totalreflexion $\sin \alpha = \frac{n_1}{n_2}$ Von dichtem nach dünnem Medium Brewsterwinkel $\tan \alpha = \frac{n_2}{n_1}$ Gilt jeweils, wenn vollständig polarisierter Winkel gefragt ist 90° zwischen reflektiertem und gebrochenem Strahl Der reflektierte Strahl ist vollständig linear polarisiert, der transmittierte Anteil wird vorwiegend parallel polarisiert. 6.3.3 Beugung **Einzelspalt Doppelspalt** Intensitätsmaxima $g\sin(\alpha_k) = k\lambda = \Delta s$ Intensitätsminima $\ldots g \sin(\alpha_k) = \left(k + \frac{1}{2}\right)\lambda$ $k \in \mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$ **Gitter** Intensitätsmaxima $g\sin(\alpha_k) = k\lambda = \Delta s$ $k \in {0,1,2,\ldots}$ α kann maximal 90° sein arcsin muss zwischen -1 und 1 liegen! L ist Abstand des Gitters zum Schirm