1 Глава 3 Уравнения на права и равнина в пространството

1.1 Задача 1.

Да се намери точка M', ортогонално симетрична на точката M(1,1,2) относно равнината ε , определена с точките $M_1(5,10,0),\ M_2(4,0,-7),\ M_3(2,4,-5).$ Да се определят и директорните косинуси в посока от M към M'

Решение:

$$\varepsilon \begin{cases} z \ M_1(5, 10, 0) \\ z \ M_2(4, 0, -7) \\ z \ M_3(2, 4, -5) \end{cases}$$

$$\varepsilon: \begin{vmatrix} x - 5 & y - 10 & z \\ -1 & -10 & -7 \\ -3 & -6 & -5 \end{vmatrix} = 0$$

$$\varepsilon: 50(x-5) + 21(y-10) + 6z - 30z - 42(x-5) - 5(y-10) = 0$$

$$\varepsilon: 8(x-5) + 16(y-10) - 24z = 0 \mid \frac{1}{8}$$

$$\varepsilon: x - 5 + 2(y - 10) - 3z = 0$$

$$\varepsilon: x + 2y - 3z - 25 = 0$$

$$N_{\varepsilon}(1,2,-3) \perp \varepsilon$$

$$g \begin{cases} z \ M(1,1,2) \\ \parallel N_{\varepsilon}(1,2,-3) \end{cases}$$

$$g \begin{cases} x = 1 + \lambda \\ y = 1 + 2\lambda \\ z = 2 - 3\lambda \end{cases}$$

$$g \cap \varepsilon = M_0(x_0, y_0, z_0)$$

$$1 + \lambda_0 + 2 + 4\lambda_0 - 6 + 9\lambda_0 - 25 = 0$$

$$14\lambda_0 = 28 \implies \lambda_0 = 2 \implies M_0(3,5,-4)$$

$$M'(x', y', z')$$

 $M_0(\frac{x_M + x'}{2}, \frac{y_M + y'}{2}, \frac{z_M + z'}{2})$

$$3 = \frac{1+x'}{2} \quad 5 = \frac{1+y'}{2} \quad -4 = \frac{2+z'}{2}$$

$$x' = 5 \quad y' = 9 \quad z = -10$$

$$\implies M'(5, 9, -10)$$

$$\overrightarrow{MM'}(4, 8, -12) \parallel \overrightarrow{q}(1, 2, -3)$$

$$\implies \overrightarrow{n_q} = \frac{\overrightarrow{q}}{|\overrightarrow{q}|}$$

$$|\overrightarrow{q}| = \sqrt{1+4+9} = \sqrt{14}$$

$$\overrightarrow{n_q}(\frac{1}{14}, \frac{2}{14}, -\frac{3}{14})$$

Директроните косинуси съвпадат с кординатите на $\overrightarrow{n_q}$