Maximum Flow

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more . . .

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- $_{\Box}$ G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- $_{\circ}$ c(e) = capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \mathop{a}\limits_{e \text{ out of } A} c(e)$

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \mathop{\mathring{a}}_{e \text{ out of } A} c(e)$

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \notin f(e) \notin c(e)$ (capacity)
- For each $v \in V \{s, t\}$: $\underset{e \text{ in to } v}{\text{a}} f(e) = \underset{e \text{ out of } v}{\text{a}} f(e)$ (conservation)

Def. The value of a flow f is: $v(f) = \mathop{\rm arr}_{e \text{ out of } s} f(e)$.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \notin f(e) \notin c(e)$ (capacity)
- For each $v \in V \{s, t\}$: $\underset{e \text{ in to } v}{\text{å }} f(e) = \underset{e \text{ out of } v}{\text{å }} f(e)$ (conservation)

Def. The value of a flow f is: $v(f) = \mathop{\rm ar}_{e \text{ out of } s} f(e)$.

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\mathring{a}f(e) - \mathring{a}f(e) = v(f)$$
 $e \text{ out of } A \qquad e \text{ in to } A$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\mathring{a}f(e) - \mathring{a}f(e) = v(f)$$
 $e \text{ out of } A \qquad e \text{ in to } A$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\mathring{a}f(e) - \mathring{a}f(e) = v(f)$$
 $e \text{ out of } A \qquad e \text{ in to } A$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = $30 \Rightarrow \text{Flow value} \leq 30$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28

Towards a Max Flow Algorithm

Greedy algorithm.

- □ Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- □ Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

\(\) locally optimality \(\neq \) global optimality

Ford-Fulkerson Method

Has different implementations with different running times

Based on 3 main ideas:

- Residual graphs
- Augmenting paths
- Cuts

Residual Graph

Original edge: $e = (u, v) \in E$.

Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- e = (u, v) and $e^{R} = (v, u)$.
- Residual capacity:

$$c_f(e) = \int_{\widehat{I}}^{\widehat{I}} c(e) - f(e) \quad \text{if } e \widehat{I} \quad E$$

$$\int_{\widehat{I}}^{R} f(e^R) \quad \text{if } e^R \widehat{I} \quad E$$

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Augmenting Path Algorithm

```
Ford-Fulkerson(G, s, t, c) {
   for each edge (u,v) \in E
        (u,v).f \leftarrow 0
   G_f \leftarrow residual graph
   while (exists an augumentative path P from s to t in G_f)
    {
       c_f(p) = min \{c_f(u,v) : (u,v) \text{ is in P}\} // \text{ bottleneck}
       for each (u,v) in P {
       if ((u,v) \in E)
    (u,v).f \leftarrow (u,v).f + c_f(p)
                                                // forward edge
       else (v,u).f \leftarrow (v,u).f - c_f(p) // reverse edge
      update Gf
   return f
}
```


Augmenting Path Algorithm - Run time analysis?

```
Ford-Fulkerson(G, s, t, c) {
       for each edge (u,v) \in E
IEI
             (u,v).f \leftarrow 0
       G_f \leftarrow residual graph
       while (exists an augmentative path P from s to t in G<sub>f</sub>)
|f|
          c_f(p) = min \{c_f(u,v) : (u,v) \text{ is in P}\} // \text{ bottleneck}
          for each (u,v) in P {
          if ((u,v) \in E)
                                          // forward edge
         (u,v).f \leftarrow (u,v).f + c_f(p)
           else (v,u).f \leftarrow (v,u).f - c_f(p) // reverse edge
          Update G<sub>f</sub>
        return f
      O(E |f|), considering a polynomial algorithm is used to find the paths
```

7.3 Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Edmonds-Karp

Improves Ford-Fulkerson

- Uses a breadth-first search to find augmentative paths
- Chooses the path with the smallest number of egdes

```
Edmonds-Karp(G, s, t, c) {
    for each edge (u,v) \in E
         (u,v).f \leftarrow 0
    G_f \leftarrow residual graph
    P \leftarrow \text{find smallest augmentative path s-t in } G_f \text{ using BFS}
   -while (P exists)
        c_f(p) = min \{c_f(u,v) : (u,v) \text{ is in P}\} // \text{ bottleneck}
        for each (u,v) in P {
        if ((u,v) \in E)
     (u,v).f \leftarrow (u,v).f + c_f(p)
        else (v,u).f \leftarrow (v,u).f - c_f(p)
        Update G<sub>f</sub> | E
        \mathbf{P} \leftarrow find smallest augmentative path s-t in \mathbf{G}_{\mathbf{f}} using
BFS
    return f
```

Complexity Analysis

Runtime = $|E| \times \text{number of augmentative paths}$

Number of augmentative paths

- An edge (u,v) in a path P in a residual graph G_f is critical if the residual capacity of (u,v) equals the residual capacity of P
- After augmenting P, critical edges disappear from G_f
- If u and v are vertices connected by an edge in E
- Since augmentative paths are shortest paths, when (u,v) is critical $\delta_f(s, v) = \delta_f(s, u) + 1$
- When the flow is updated, (u,v) disappears from $G_{\mathtt{f}}$
- It cannot reappear unless flow from u to v is decreased
 - •Only happens if (v,u) appears in an augmentative path
 - •In this case, $\delta_{f'}(s, u) = \delta_f(s, u) + 2$

Complexity Analysis

- From the time (u,v) becomes critical until the next time it becomes critical, the distance of s to u increases by at least 2
- The intermediate nodes in path (s,u) cannot contain s, u or t
 - To u become unreachable from s, its distance has to be at most |V-2|
- After the first time u becomes critical, it can become critical at most (|v-2|)/2 times
- As there are |E| pairs of vertices, we can have |E|x|V| critical vertices during the execution of the algorithm
- Runtime = $|E| \times \text{number of augmentative paths}$ = $|E| \times |VE| = O(VE^2)$

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

Flow value = 19

Another way to choose paths - Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- $_{ ext{ iny }}$ Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
      foreach e \in E f(e) \leftarrow 0
     \Delta \leftarrow smallest power of 2 greater than or equal to c(s)
     G_f \leftarrow residual graph
    -while (\Delta \geq 1) {
         G_f(\Delta) \leftarrow \Delta-residual graph
   while (there exists augmenting path P in G_f(\Delta)) {
f \leftarrow \text{augment(f, c, P)}
\text{update } G_f(\Delta) \mid E \mid
\delta \leftarrow \Delta \mid \delta \mid \Delta \leftarrow \Delta \mid \delta \mid \delta \mid
      return f
```

The scaling max-flow algorithm finds a max flow in $O(E \log C)$ augmentations. It can be implemented to run in $O(E^2 \log C)$ time.

To find the minimum cut

- 1. Create the maximum flow graph
- 2. Select all the nodes that can be reached from the source by unsaturated edges
- 3. Cut all the edges that connect these nodes to the rest of the nodes in the graph
- 4. This cut will be minimal

Cut capacity = 19

To find the minimum cut

- 1. Create the maximum flow graph
- Select all the nodes that can be reached from the source by unsaturated edges
- 3. Cut all the edges that connect these nodes to the rest of the nodes in the graph
- 4. This cut will be minimal

History of Algorithms

Augmenting Paths based algorithms

- Ford-Fulkerson (1962) O(E C) -> C is the max capacity
- Edmonds-Karp (1969) O(VE²)

Push-Relabel based algorithms

- □ Goldberg (1985) O(V³)
- □ Goldberg and Tarjan (1986) O(VElog(V²/E))
- Ahuja and Orlin O (1989) ($VE + V^2 log(C)$)

Push-relabel algorithms

Augmenting Path Algorithm

Flow into i = Flow out of i

Push flow along a path from s to t

d(j) = distance from j to t in the residual network.

Preflow Algorithm

Flow into $i \ge Flow$ out of i for $i \ne s$.

Push flow in one arc at a time

 $d(j) \le distance from j to t in the residual network$

$$d(t) = 0$$

d(i) ≤ d(j) + 1 for each arc (i, j) ∈ G(x),

From now on, d = h

Preflows

At each intermediate stages we permit more flow arriving at nodes than leaving (except for s)

A *preflow* is a function x: A \square R s.t. 0 δ x δ u and such that

$$e(i) = \sum_{j \in N} x_{ji} - \sum_{j \in N} x_{ij} \ge 0,$$
 for all $i \in N - \{s, t\}$.

i.e., e(i) = excess at i = net excess flow into node i.

The excess is required to be nonnegative.

The <u>excess</u> e(j) at each node $j \neq s$, t is the flow in minus the flow out.

Intuition

- Starting with a preflow, push excess flow closer towards sink
- If excess flow cannot reach sink, push it backwards to source
- Has two main operations:
 - -Push
 - -Relabel

Residual Graph

```
Residual capacity r_f(v, w) of a vertex pair is c(v, w) - f(v, w). If:

v has positive excess and
(v,w) has residual capacity,
can push \delta = \min(e(v), r_f(v, w)) flow from v to w

Edge (v,w) is saturated if r_f(v, w) = 0.

Residual graph G_f = (V, E_f) where

E_f is the set of residual edges (v,w) with r_f(v, w) > 0.
```

Generic Push-Relabel Algorithm

Starting from an initial preflow

While there is an active vertex

Chose an active vertex v

Apply Push(v,w) for some w or Relabel(v)

Labeling

A valid *labeling* is a function d from vertices to nonnegative integers

- h(s) = |V|
- h(t) = 0
- $h(v) \le h(w) + 1$ for every residual edge

If h(v) < n, h(v) is a lower bound on distance to sink If h(v) >= n, h(v) - n is a lower bound on distance to source

Push and Relabel Operations

```
Push(v,w)
Precondition: v is active (e(v) > 0)
                  r_f(v,w) > 0
                  v.h = w.h + 1
Action: Push \delta = \min(e(v), r_f(w, v)) from u to v
            f(v,w) = f(v,w) + \delta;
            f(w,v) = f(w,v) - \delta;
            e(v) = e(v) - \delta;
            e(w) = e(w) + \delta;
Relabel(v)
Precondition: v is active (e(v) > 0)
                  r_f(v, w) > 0 implies v.h \le w.h
Action: v.h = 1 + \min\{w.h \mid (v,w) \in E_f\}
```

Initialize_Preflow

5

Initialize_Preflow

5

$\begin{aligned} Push(v,w) \\ v \text{ is active if } & (e(v) > 0) \\ & r_f(v,w) > 0 \\ & v.h = w.h + 1 \end{aligned}$

```
Example  \begin{aligned} & \text{Relabel(v)} \\ & \text{v is active } (e(v) > 0) \\ & \text{r_f(v,w)} > 0 \text{ implies v.h} <= \text{w.h} \end{aligned}
```


Select an active vertex

Relabel active vertex

```
\begin{aligned} Push(v,w) \\ v \text{ is active if } & (e(v) > 0) \\ & r_f(v,w) > 0 \\ & v.d = w.d + 1 \end{aligned}
```

```
Example  \begin{aligned} & \text{Relabel(v)} \\ & \text{v is active } (e(v) > 0) \\ & r_f(v, w) > 0 \text{ implies } v.h <= w.h \end{aligned}
```


Select an active vertex

Push excess from active vertex

$\begin{aligned} Push(v,w) \\ v \text{ is active if } & (e(v) > 0) \\ & r_f(v,w) > 0 \\ & v.d = w.d + 1 \end{aligned}$

```
\begin{aligned} & \text{Relabel(v)} \\ & \text{v is active } (e(v) > 0) \\ & \text{r}_f(v, w) > 0 \text{ implies v.h} <= w.h \end{aligned}
```


Select an active vertex

Relabel active vertex

Select an active vertex

Push excess from active vertex

Select an active vertex

Relabel active vertex

Select an active vertex

Push excess from vertex

Maximum flow

Research notes on preflow push

- Pushing from the active node with the largest distance label leads to O(n² m.5) nonsaturation pushes.
- A very efficient data structure called dynamic trees reduces the running time to O(nm log n²/m). Goldberg-Tarjan (1986)
- The "excess scaling technique" of Ahuja and Orlin (1989) reduced the running time to O(nm + n² log U).
- Ahuja, Orlin, and Tarjan (1989): further very small improvements.
- Goldberg and Rao (1998). An even more efficient algorithm for max flows.

Summary

Augmenting Paths based algorithms

- □ Ford-Fulkerson (1962) O(E C) -> C is the max capacity
- Edmonds-Karp (1969) O(VE²)

Push-Relabel based algorithms

- □ Goldberg (1985) O(V³)
- □ Goldberg and Tarjan (1986) O(VElog(V²/E))
- \Box Ahuja and Orlin O(VE + V²log(C))