

Université Abdelhamid MEHRI - Constantine 2 -

Cours ALGEBRE 1

2020/2021

Chapitre 1 : Logique et raisonnements

1. Logique

- 1.1 Définitions et préliminaires
- 1.2 Connecteurs logiques
- 1.3 Quantificateurs

2. Raisonnements

- 2.1 Raisonnement direct
- 2.2 Raisonnement par le contraposition
- 2.3 Raisonnement par l'absurde
- 2.4 Raisonnement par contre-exemple
- 2.5 Raisonnement par récurrence

1. Logique

1.1 Définitions:

Proposition: (Assertion)

Une proposition est un énoncé pouvant être vrai ou faux. Elle ne peut pas être à la fois vraie et fausse.

Exemples:

- 1- "Constantine est la capitale de l'Algérie"
- 2-"Soit x un nombre réel alors : $-1 \le \sin x \le +1$ ".

Prédicat:

Un prédicat est un énoncé contenant une ou plusieurs variables. Si on remplace chacune de ses variables par un élément d'un ensemble donné, on obtient une proposition.

Exemple:

"n est un diviseur de 100" est un prédicat défini sur \mathbb{N} . Si on donne une valeur pour n par exemple n=10, on obtient la proposition "10 est un diviseur de 100"

Axiome:

Une axiome est une proposition qui déclarée vraie à priori.

Exemple:

5eme postulat d'Euclide :"Sur un plan, il existe une seule droite qui passe par un point connu et est parallèle avec une droite connue".

Dans la suite, les lettres majuscules P, Q, R, \dots désigneront des propositions.

Remarque:

Pour chaque proposition P, on lui donne une valeur de vérité :

```
\begin{cases} 1 & (ou\ V) & \text{si } P \text{ est vraie.} \\ 0 & (ou\ F) & \text{si } P \text{ est fausse.} \end{cases}
```

1.2 Connecteurs logiques:

Soient P et Q deux propositions logiques.

1.2.1 La négation :"non"

La négation d'une proposition P qui notée "nonP" ou " \overline{P} " est une proposition vraie si P est fausse et fausse sinon.

Table de vérité:

P	$ar{P}$	
1	0	
0	1	

Exemples:

1. Soit la proposition P: "Tout les étudiant de l'NTIC sont des garçons" Alors \bar{P} : "Les étudiant de l'NTIC ne sont pas tous des garçons"

2. Soit la proposition $P: 2 + 1 \neq 3$ alors $\bar{P}: 2 + 1 = 3$

1.2.2 La conjonction :"et"

La conjonction de deux propositions P et Q est la proposition P et Q notée $P \land Q$ qu'elle est vraie si et seulement si les deux propositions P et Q sont vraies.

Table de vérité:

Р	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Exemples:

1. Soient les deux propositions : P: "1 + 1 = 2" et Q: "4 > 3" On voit que $P \land Q$ est vraie car P est vraie et Q est vraie.

2. Soient les deux propositions : P: " $1 + 1 \neq 2$ " et Q: "4 > 3" On voit que $P \land Q$ est fausse parce que P est fausse.

3. Soient les deux propositions : $P: "1 + 1 \neq 2"$ et $Q: "4 \leq 3"$ On voit que $P \land Q$ est fausse parce que P et Q sont fausses.

1.2.3 La disjonction :"ou"

La disjonction de deux propositions P et Q est la proposition "P ou Q" notée " $P \lor Q$ " qu'elle est fausse si et seulement si les deux propositions P et Q sont fausses.

Table de vérité:

P	Q	$P \lor Q$
1	1 1 1	
1	0	1
0	1	1
0	0	0

Exemples:

- 1. Soient les deux propositions : P: 24 est un multiple de 3" et Q: 1 + 2 = 3" On voit que $P \lor Q$ est vraie car P est vraie et Q est vraie.
- 2. Soient les deux propositions : P: "11 est un multiple de 3" et Q: "1 + 2 = 3" On voit que $P \lor Q$ est vraie car Q est vraie.
- 3. Soient les deux propositions : P: "11 est un multiple de 3" et Q: "1 + 2 \neq 3" On voit que $P \lor Q$ est fausse parce que P et Q sont fausses.

Définition:

Une tautologie est une proposition toujours vraie (Elle ne prend que la valeur 1).

Exemple:

La proposition " $P \lor \overline{P}$ " est toujours vraie donc est une tautologie.

Table de vérité:

P	$ar{P}$	$P \vee \overline{P}$
1	0	1
0	1	1

1.2.4 L'implication : "⇒"

La proposition "P implique Q" notée "P \implies Q" est définit par la proposition " $\bar{P} \vee Q$ ".

Table de vérité:

P	Q	P	$\bar{P} \vee Q$	$P \Longrightarrow Q$
1	1	0	1	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

Remarque:

La définition précédente nous permettons d'écrire la proposition

" $1 > 2 \implies 2 > 3$ " et nous lui donnons la valeur vraie sans doute.

La réciproque d'une implication:

La réciproque de l'implication " $P \implies Q$ " est définit par l'implication " $Q \implies P$ ".

Table de vérité:

P	Q	$Q \Longrightarrow P$	$P \Longrightarrow Q$
1	1	1	1
1	0	1	0
0	1	0	1
0	0	1	1

On voit qu'il n'existe aucune relation entre une implication et sa réciproque.

1.2.5 L'équivalence :

La proposition "P équivalente à Q" notée "P \Leftrightarrow Q" est définit par la conjonction de l'implication "P \Rightarrow Q" et sa réciproque.

Table de vérité:

P	Q	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$P \Longrightarrow Q \land Q \Longrightarrow P$	$P \Leftrightarrow Q$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1

On voit que l'équivalence " $P \Leftrightarrow Q$ " est vraie si les deux propositions P et Q prennent la même valeur de vérité.

1.2.6 Propriétés des connecteurs logiques :

Soient P, Q et R trois propositions logiques, alors:

$$1/\bar{\bar{P}} \iff P$$

2/ La conjonction A et la disjonction V sont commutatives, c'est-à-dire :

$$P \wedge Q \Leftrightarrow Q \wedge P$$
 et $P \vee Q \Leftrightarrow Q \vee P$

3/ La conjonction A et la disjonction V sont associatives, c'est-à-dire:

$$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$$
 et $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$

4/ La conjonction \wedge est distributive par rapport à la disjonction \vee , c'est-à-dire :

$$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$$

La disjonction \vee est distributive par rapport à la conjonction \wedge , c'est-à-dire :

$$P \lor (O \land R) \Leftrightarrow (P \lor O) \land (P \lor R)$$

5/ L'implication est transitive, c'est-à-dire :

$$(P \Longrightarrow Q) \land (Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R)$$

Lois de Morgan:

Soient P et Q deux propositions logiques, alors :

$$(\overline{P \wedge Q}) \Leftrightarrow \overline{P} \vee \overline{Q}$$
$$(\overline{P \vee Q}) \Leftrightarrow \overline{P} \wedge \overline{Q}$$

Négation d'une implication:

La négation de l'implication "P $\Longrightarrow Q$ " est définit par la négation de " $\overline{P} \lor Q$ " .

C'est-à-dire :
$$\overline{P \Longrightarrow Q} \iff \overline{\overline{P} \lor Q}$$

alors :
$$\overline{P \Longrightarrow Q} \iff \overline{\overline{P}} \ \overline{\nabla} \ \overline{Q}$$
 finalement on obtient : $\overline{P \Longrightarrow Q} \iff P \land \overline{Q}$

- On remarque que la négation d'une implication n'est pas une implication.

Le contraposé d'une implication:

On définit le contraposé de l'implication " $P \Rightarrow Q$ " par l'implication " $\bar{Q} \Rightarrow \bar{P}$ ". Une implication et sa contraposé sont équivalentes, c'est-à-dire :

"
$$P \Rightarrow Q$$
" \Leftrightarrow " $\bar{Q} \Rightarrow \bar{P}$ " est une tautologie.

1.3 Les Quantificateurs:

1.3.1 Le quantificateur universel :"∀"

La proposition " $\forall x \in E, P(x)$ " est vraie si le prédicat P(x) est vraie pour tout les éléments de l'ensemble E.

" $\forall x \in E$ " se lit pour tout x de l'ensemble E ou quelque soit x appartient à E.

Exemples:

 $1/"\forall x \in \mathbb{R}, -1 \le \sin x \le 1"$

2/ " $\forall n \in \mathbb{N}, n > 0$ ".

1.3.2 Le quantificateur existentiel :"∃"

La proposition " $\exists x \in E, P(x)$ " est vraie si on trouve un seul ou plusieurs éléments de l'ensemble E tels que P(x) est vrai.

" $\exists x \in E$ " se lit il existe x appartient à E.

Exemples:

$$1/$$
 " $\exists x \in \mathbb{R}$, $x^2 = -1$ "

$$2/"\exists n \in \mathbb{N}, n^2 - 1 = 0"$$

Remarques:

1/ Le quantificateur "∃! " se lit il existe un seul.

2/ Il faut respecter l'ordre des quantificateurs dans une proposition pour garder le sens, si on inverse l'ordre de deux quantificateurs différents le sens sa va changer.

Exemples:

Soit le prédicat : P(x, y): " $x \cdot y = 1$ ".

La proposition " $\forall x \in \mathbb{R}^*, \exists y \in \mathbb{R}, P(x,y)$ " est vraie.

Il suffit de prendre $y = \frac{1}{x}$ et on obtient la proposition " $x \cdot \frac{1}{x} = 1$ " qu'elle est vraie toujours.

La proposition " $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, P(x, y)$ " est fausse.

Parce qu'il n'existe pas un nombre réel x tels que la multiplication x. y = 1 avec y un nombre réel quelconque.

1.3.3 La négation de quantificateurs :

La négation de la proposition " $\forall x \in E, P(x)$ " est la proposition " $\exists x \in E, \overline{P(x)}$ ". La négation de la proposition " $\exists x \in E, P(x)$ " est la proposition " $\forall x \in E, \overline{P(x)}$ ".

Exemples:

1/ soit la proposition $P: \forall x \in \mathbb{R}, x^2 \ge 0$ ".

Donc sa négation est \bar{P} : $\exists x \in \mathbb{R}, x^2 < 0$.

2/ soit la proposition $P: \exists n \in \mathbb{N}, n+1 \ge 10''$.

Donc sa négation est \bar{P} : $\forall n \in \mathbb{N}, n+1 < 10$."

2. Raisonnements

Les types de raisonnements sont des méthodes mathématiques utilisables pour démontrer qu'une proposition est vraie ou fausse.

Dans la suite on mentionne quelques types de raisonnement.

2.1 Raisonnement directe.

Pour prouver que la proposition $P \Rightarrow Q$ est vraie, on suppose que P est vraie et on montre qu'alors Q est vraie. C'est la méthode à laquelle vous êtes la plus habitué.

Exemple 1:

Soit x un nombre réel. Démontrer la proposition $P: |x| < 1 \implies 0 < x^2 + 5 < 6''$.

Solution:

On a : |x| < 1 alors : -1 < x < 1

 $Donc: 0 \le x^2 < 1$

Finalement on obtient : $5 \le x^2 + 5 < 6$

On déduit que $P'' |x| < 1 \implies 0 < x^2 + 5 < 6''$ est vraie.

2.2 Raisonnement par l'absurde :

Le principe du raisonnement par l'absurde est le suivant : pour démontrer qu'une proposition P est vraie, on suppose que la proposition $(non\ P)$ est vraie. C'est-à-dire que la proposition P est fausse, et on montre alors que cette hypothèse conduit à une contradiction.

Exemple:

Soient a et b deux nombres réels tels que $a \ge 0$ et $b \ge 0$. Démontrer la proposition

$$P: "\frac{a}{1+b} = \frac{b}{1+a} \Longrightarrow a = b"$$

Solution:

On suppose que P est fausse, c'est-à-dire \bar{P} est vraie.

On a:

$$\bar{P}$$
: " $\frac{a}{1+b} = \frac{b}{1+a}$ et $a \neq b$ "

On a:

$$\frac{a}{a+b} = \frac{b}{a+a} \Longrightarrow a(1+a) = b(1+b) \Longrightarrow a + a^2 = b + b^2$$
$$\Longrightarrow a^2 - b^2 = b - a \Longrightarrow (a-b)(a+b) = -(a-b)$$

Et comme $a \neq b$ alors $a - b \neq 0$.

Donc:

$$a + b = \frac{-(a - b)}{a - b} = -1$$
 "Contradiction"

" car $a \ge 0$ et $b \ge 0$ (La somme de deux nombres positifs est positive)"

Alors \bar{P} est fausse, donc on conclut que P est vraie.

2.3 Raisonnement par le contraposition :

On sait déjà que : " $P\Longrightarrow Q"\Longleftrightarrow "ar Q\Longrightarrow ar P"$. Le principe de raisonnement par

contraposition est s'appuie sur cette tautologie. On applique ce type de raisonnement si la proposition " $\bar{Q} \Rightarrow \bar{P}$ " est plus facile a démontrer.

Exemple:

Soit $n \in \mathbb{N}$, démontrer que : n^2 est pair \Rightarrow n est pair

Solution:

Soient P et Q deux propositions logiques. On sait que :" $P \Rightarrow Q" \Leftrightarrow "\bar{Q} \Rightarrow \bar{P}"$.

Donc: " n^2 est pair \Rightarrow n est pair" \Leftrightarrow "n est impair \Rightarrow n^2 est impair".

On voit que la proposition "n est impair \implies n^2 est impair "est plus facile à démontrer.

n est impair alors $\exists k \in \mathbb{N}$ tels que n = 2k + 1.

Donc
$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1$$

= $2(2k^2 + 2k) + 1$

Il suffit de prendre $k' = 2k^2 + 2k \in \mathbb{N}$ et on obtient $n^2 = 2k' + 1$.

Donc n^2 est impair.

Comme la proposition "n est impair \Rightarrow n^2 est impair" est vraie, alors on conclut que " n^2 est $pair \Rightarrow n$ est pair" est vraie aussi.

2.4 Raisonnement par contre exemple :

Ce type de raisonnement est utile très souvent pour démontrer qu'une proposition $\forall x \in E, P(x)$ " est fausse.

Exemple:

Soit la proposition $P: \forall n \in \mathbb{N}, 2n = 2^n$

La proposition P est elle vraie?

Solution:

La proposition $P: \forall n \in \mathbb{N}, 2n = 2^n$ est fausse.

Il suffit de prendre n=3 et on obtient la proposition " $2\times 3=2^3$ " qu'elle est fausse.

2.5 Raisonnement par récurrence :

Soit le prédicat P(n) désigne une certaine propriété définit sur l'ensemble des nombres naturels \mathbb{Z} , et soit n_0 désigne un entier naturel donné. On veut démontrer que pour tout entier naturel $n \geq n_0$, la propriété P(n) est vraie. Pour cela, on

procède en trois étapes:

Etape 1.

On vérifie que $P(n_0)$ est vraie.

Etape 2.

On se donne un entier $n \ge n_0$ quelconque. On suppose que pour cet entier n la propriété P(n) est vraie (c'est l'hypothèse de récurrence). Ensuit on montre que sous cette hypothèse la propriété P(n+1) est vraie.

Exemple:

Démontrer que :

$$\forall n \in \mathbb{N}^*, 1+2+3+\dots+n = \frac{n(n+1)}{2}$$

Solution:

Laisser aux étudiants.