Inga. Claudia Contreras

HT-4-

HOJA DE TRABAJO 4 POTENCIAL DE DISTRIBUCIONES DE CARGA

Problema 1.

a) Una varilla se dobla en forma de un segmento circular, la cual tiene una carga uniforme de densidad 4.0 nC/m, es colocada a lo largo del segmento circular mostrado, de radio R. Cuál es el potencial eléctrico (en V) en el punto "p" (considere el potencial cero en el infinito) :

Respuesta: 25.13 tolerancia ± 0.03

b) Si en la varilla existiera en el punto "p" una relación de campo eléctrico de E=3 x ² (i) (N/C) donde x esta metros, Si V=0 en X=0, calcular la diferencia de potencial Va-Vb (en V) que existiría entre los puntos Xa=2 m y Xb=3 m

Respuesta: 19.00 tolerancia ± 0.01

Problema 2. Un cascarón esférico conductor de radio R=10~cm posee una carga $Q=+20\mu C$. El valor del potencial eléctrico en el centro del cascarón, en MV está dado por:

a)0.8	b)0.0	c)1.8	d)0.5	e)NEC

Un deuterón ($m=3.34\times 10^{-27}kg~y~q=+1.6\times 10^{-19}C$) posee una energía cinética de 45 KeV cuando se encuentra a una distancia r=0.5m del centro del cascarón y se dirige hacia el cascarón. La distancia mínima a la que se aproxima a la superficie del cascarón, en cm, está dada por:

a)44 b)50	c)24	d)34	e)NEC	
-----------	------	------	-------	--

<u>Problema 3</u>. Un aro circular delgado posee una carga uniformemente distribuida $Q_o=5\mu C$ y su radio es R=10cm. El aro se encuentra en el plano xz con su eje sobre el eje "y". Un punto P se encuentra sobre el eje del aro en y=10cm. El potencial electrostático en el punto P, en kV, está dado por:

a)45.8	b)31.8	c)450	d)318.2	e)NEC

Inga. Claudia Contreras

HT-4-

<u>Problema 4</u>. Una línea de carga de longitud l=0.50m posee una densidad lineal de carga $\lambda=5\mu C/m$. El punto A está localizado a una distancia a=0.2m del extremo derecho y colineales con la línea de carga como se observa en la figura. Calcule el potencial eléctrico en A en kV/m.

Si el punto B está localizado a una distancia 2a del extremo de la varilla, es decir a una distancia a del punto A y se suelta del punto A un protón, su rapidez al pasar por B en $10^6 \frac{m}{c}$ es:

10.47	3.74	2.36	1.95	NEC

Problema 5.

Una esfera conductora posee una carga inicial $q_1=-15\mu C$ y su radio $R_1=5mm$; se encuentra aislada y muy lejos de una segunda esfera conductora que posee una carga inicial de $q_2=+30\mu C$ y que tiene un radio $R_2=10mm$; dichas esferas son conectadas por un cable conductor. ¿Cuál es la carga que posee la esfera de radio R_1 después de conectar el alambre, en μC ?

<u> </u>		± '			
a) 10	b) -5	c) 5	d) -10	e) NEC	

El potencial electrostático de la esfera de radio R_2 , después de conectar el alambre en MV, es

	•	2, ,				
Ī	a) -9	b) 9	c) 4.5	d) -4.5	e) NEC	

Problema 6.

Un punto A se localiza en (4.00,8.00) m y B en (10.0,-6.00) m y están en una región donde el campo eléctrico es uniforme y está dado por $E=15.0\,$ i N/C. ¿Cuál es la diferencia de potencial (en Voltios) $V_A-V_B=?$ Respuesta: 90.0 tolerancia = \pm 0.5

Problema 7.

2.1) El potencial eléctrico V en el espacio entre las placas de cierto tubo al vacío está dado por $V(x, y) = (3x^2 + 2y^2)$, donde $V(x, y) = (3x^2 + 2y^2)$

a) 14 (+ i)

b) 12 (- i)

c) 12 (+ i)

d) 14 (- i)

e) NEC

Problema 8.

El circuito que se muestra en la figura se conecta a una fem ${\cal E}$ Se mide el voltaje en el capacitor de $3\mu F$ y es 2V con la polaridad indicada. Calcular:

a) La energía (en $\mu J)\,$ que almacena el capacitor $2\mu F$

Respuesta: 64.00 tolerancia ± 0.01

b) El valor de fem \mathcal{E} (en V) Respuesta : 10.00 tolerancia ± 0.01

