Projeto de Pesquisa para o Programa Unificado de Bolsas de Estudo

T 7	•
Vertente:	pesquisa

Tendências e modas: a abordagem de modelos baseados em agentes

José Fernando Fontanari

Universidade de São Paulo Instituto de Física de São Carlos Departamento de Física e Ciência Interdisciplinar Caixa Postal 369 13560-970 São Carlos, SP

1. Título

Tendências e modas: a abordagem de modelos baseados em agentes.

2. Resumo

A dinâmica das tendências e modas trata dos processos e mecanismos que governam a emergência, difusão e eventual declínio de preferências e estilos populares dentro de uma determinada sociedade. Essa dinâmica envolve interações complexas entre indivíduos, redes sociais, influências culturais e forcas de mercado. Tendências e modas têm um impacto profundo em vários aspectos da sociedade, incluindo comportamento do consumidor, cultura e economia. Nosso principal objetivo é investigar o ciclo de vida das tendências e modas, com ênfase na caracterização dos processos que levam a emergência e eventual declínio ou substituição de uma tendência. Em tempo, modas são tendências de curta duração. Fatores como saturação, fadiga, mudança de valores culturais e surgimento de novas preferências podem contribuir para o declínio de uma tendência. Nesse projeto vamos focar em duas pressões antagônicas: o conformismo e a singularidade que são suficientes para produzir os ciclos de formação e declínio das tendências. Utilizaremos simulação baseada em agentes, onde cada agente é programado com um conjunto de regras e comportamentos que ditam como eles agem e reagem ao seu ambiente e a outros agentes, de forma a implementar os desejos de se encaixar como parte de um grupo social (conformismo) e o de ser diferente (singularidade). particular interesse é o entendimento de como a topologia da rede de influência mútua entre os agentes (rede social) afeta a dinâmica das tendências e modas.

3. Justificativa

O filósofo Eric Hoffer (1955) afirmou: "Quando as pessoas são livres para fazer o que quiserem, elas geralmente imitam umas às outras. . . Uma sociedade que dá liberdade ilimitada ao indivíduo, na maioria das vezes atinge uma mesmice desconcertante". O papel da imitação como amálgama de grupos de animais sociais é claramente expresso por Bloom (2001) "A aprendizagem imitativa age como uma sinapse, permitindo que a informação pule a lacuna de uma criatura para outra". Essa metáfora do cérebro coletivo vem sendo utilizada com sucesso em implementações *in silico* de heurísticas para solução de problemas combinatoriais complexos (Kennedy, 1999; Fontanari, 2014).

Entre os humanos, a tendência natural a imitar é amplificada pela pressão social para se conformar. Desde o trabalho pioneiro de Asch (1955), psicólogos e sociólogos reconhecem a notável força da conformidade, decorrente da necessidade fundamental das pessoas de se encaixar como parte de um grupo social. De fato, as pessoas tendem a se sentir desconfortáveis em considerar, manter e expressar crenças que entram em conflito com as visões predominantes ao seu redor, bem como em se comportar de maneira distinta, de maneiras que possam expô-las como estranhas ao grupo. Um conceito importante ligado ao conformismo é o da cascata informacional que ocorre quando é

ótimo para um indivíduo, tendo observado as ações dos que estão à sua frente, imitar o comportamento do indivíduo precedente sem levar em consideração suas próprias informações (Bikhchandani et al., 1992, Bikhchandani et al., 1998). O conformismo leva ao pensamento de grupo, que ocorre quando todos em um grupo começam a pensar igual, resultando usualmente em consequências desastrosas (Janis, 1982).

Entretanto, se a única pressão sobre as pessoas fosse o conformismo teríamos uma situação similar ao celebrado concurso de beleza keynesiano (Keynes, 1936), no qual o que é `legal' é exatamente o que todo mundo acredita ser `legal'. O fato dessa afirmação explicar muito do que observamos na sociedade (por exemplo, pessoas famosas por nenhuma outra razão além de serem famosas) confirma a importância do conformismo. Nesse caso deveríamos esperar observar a convergência para um equilíbrio caracterizado por uma sociedade monolítica. Mas, em vez disso, observamos uma diversidade persistente.

Uma explicação interessante para a diversidade observada é que membros da classe alta tentam se distinguir da plebe, enquanto a plebe tenta imitá-los. A dinâmica resultante de imitação e diferenciação (ou "perseguir e fugir") pode levar a ciclos de modas (Simmel, 1957). Sem dúvida, existem contextos em que as elites iniciam modas e todos os demais se esforçam para imitá-las, mas em muitos outros contextos, grupos com status inferior ou igual também se esforçam para se diferenciar (Berger & Heath, 2008).

De fato, juntamente com a tendência à conformidade há uma necessidade humana igualmente universal de singularidade (Leibenstein, 1950). Preferências por padrões comportamentais idiossincráticos podem preservar a diversidade. Nesse projeto de pesquisa vamos investigar como a tensão entre conformidade e singularidade pode levar a uma situação de mudança constante nas preferências das pessoas (Golman et al., 2022). Para realizar esse estudo, vamos tomar emprestado o modelo baseado em agentes proposto por Bettencourt (2002), que tem uma forte conexão com conceitos fundamentais da física contemporânea, como a criticalidade auto-organizada (Back, 1996) e a teoria da percolação (Stauffer & Aharony, 1992).

Vale lembrar que as simulações baseadas em agentes são modelos computacionais que simulam o comportamento e as interações de entidades autônomas conhecidas como agentes. Em uma simulação baseada em agentes, cada agente é programado com um conjunto de regras e comportamentos que ditam como eles agem e reagem ao seu ambiente e a outros agentes. Esses agentes podem exibir uma variedade de características, como habilidades de tomada de decisão, memória, capacidade de aprendizado e interações sociais. A simulação permite que observemos e analisemos como as ações e interações desses agentes influenciam o comportamento e a dinâmica do sistema como um todo. Trata-se mais de uma mentalidade do que de uma tecnologia: a mentalidade das simulações baseadas em agentes consiste em descrever um sistema da perspectiva de suas unidades constituintes (Bonabeau, 2002).

4. Resultados Anteriores

Não se aplica.

5. Objetivos

Implementar simulações baseadas em agentes para descrever a dinâmica de tendências seguindo o modelo proposto por Bettencourt (2002). Nesse modelo (veja mais detalhes na seção seguinte), um determinado agente pode ser influenciado (ou influenciar) qualquer outro agente na população. Vamos considerar que o círculo social de cada agente pode ser limitado a subconjuntos da população, como acontece na realidade nas redes sociais (Strogatz, 2001; Albert & Barabási, 2002). Essas restrições condicionam efetivamente o fluxo de informações e tornam as escolhas de alguns indivíduos mais influentes do que as de outros. Assim, nosso objetivo é verificar como a topologia da rede de influência mútua entre os agentes afeta a dinâmica de formação e colapso das tendências e modas. Nesse aspecto, vamos considerar tanto redes regulares quanto redes complexas (Albert & Barabási, 2002).

6. Métodos

Trata-se do estudo computacional de um sistema de Nagentes capaz de exibir propriedades emergentes ou coletivas (modas, no caso). Cada agente é caracterizado por um única preferência em um determinado momento. Essa preferência pode ser alterada pela interação entre os agentes. Por exemplo, se o agente *i* interage com o agente *j* cuja preferência está com uma tendência de alta maior que a dele, o agente *i* muda de preferência e adota a preferência mais promissora do agente *j*. Esse processo de imitação corresponde a pressão do conformismo. Por outro lado, se a preferência do agente *i* é a mesma dos agentes com quem ele interage e sua taxa de aumento na população é menor que um certo limiar (esse é o caso de uma moda que tomou conta da maior parte da população), então o agente *i* muda para uma preferência nova, que ninguém exibe na população no momento. Esse processo corresponde a pressão por singularidade.

O painel da esquerda ilustra a dominação de apenas uma preferência (moda) seguida pela deserção de alguns dissidentes (painel central) que leva ao colapso da moda e a competição entre várias preferências (painel da direita). Eventualmente apenas uma dessas preferências dominará a população repetindo o ciclo. Extraído e adaptado de Bettencourt (2002).

As simulações baseadas em agentes serão realizadas inicialmente utilizando-se a linguagem Python, mas eventualmente será necessário migrar para linguagens de programação mais eficientes como Julia ou C a fim de descrevermos populações grandes (as simulações ilustradas na figura são para $N=10^5$ indivíduos). A vantagem da linguagem Python é a existência de diversas bibliotecas para gerar (e principalmente visualizar) as redes complexas que determinam as redes sociais dos agentes. Um desafio interessante será a caracterização dos ciclos de formação e colapso das modas, utilizando conceitos de Mecânica Estatística como a entropia de Shannon e percolação.

7. Detalhamento das atividades a serem desenvolvidas pelo bolsista

O projeto é pensado para ser desenvolvido pelo bolsista num período de 12 meses. Inicialmente, o estudante deverá se familiarizar com a teoria econômica das tendências e modas pela leitura dos artigos clássicos Bikhchandani et al. (1992) e Bikhchandani et al. (1998). Entendido o problema a ser estudado no seu contexto sócio-econômico, o estudante deverá então reproduzir os resultados do modelo baseado em agentes proposto por Bettencourt (2002), desenvolvendo códigos na linguagem Python. Na sequência, o estudante deverá se familiarizar com a literatura de redes complexas e introduzir esse elemento no modelo de Bettencourt (2002). Esse é ingrediente original do projeto de pesquisa. No cronograma de execução, as atividades a serem desenvolvidas pelo estudante são apresentadas de forma muito mais detalhada.

8. Resultados previstos e seus respectivos indicadores de avaliação

O resultado previsto é o desenvolvimento de códigos computacionais que implementem uma simulação baseada em agentes para gerar os ciclos de altos e baixos que caracterizam as tendências e modas na sociedade. O aspecto original do projeto é a introdução de redes sociais mais realísticas no modelo de Bettencourt (2002). A avaliação será realizada pela validação dos códigos computacionais, bem como pela capacidade de apresentar e discutir os resultados obtidos nos relatórios semestrais do Programa de Iniciação Científica da USP e presencialmente no SIICUSP.

9. Cronograma de execução

Como já mencionado, o projeto é pensado para ser desenvolvido por um estudante num período de 12 meses. O cronograma de execução é dividido em bimestres, conforme tabela a seguir.

6	Familiarização com a teoria de tendências e modas sob a perspectiva econômica através da leitura dos artigos clássicos Bikhchandani et al. (1992) e Bikhchandani et al. (1998).

Bimestre 2	Leitura e reprodução do artigo Bettencourt (2002) onde é apresentado o modelo de agentes que reproduz os ciclos de formação e declínio das modas para populações homogêneas (ou seja, não há restrição nas interações entre agentes). Na reprodução dos resultados será usada a linguagem Python.
Bimestre 3	Continuação do item anterior, agora utilizando Julia ou C para simular populações grandes, caso isso seja inviável em Python. Redação do relatório semestral para o programa de IC-USP.
Bimestre 4	Familiarização com a teoria de redes complexas e domínio das técnicas de geração e visualização gráfica dessas redes seguindo Albert & Barabási (2002).
Bimestre 5	Implementação do modelo de Bettencourt (2002) com as interações entre agentes determinadas por redes complexas.
Bimestre 6	Análise dos resultados obtidos com ênfase na influência da topologia da rede de interação nos ciclos de formação e declínio das modas. Redação do relatório anual para o programa de IC-USP e preparação da apresentação para o SIICUSP.

10. Outras informações que sejam relevantes para o processo de avaliação

Trata-se de um projeto original de Iniciação Científica que poderá ser utilizado pelo bolsista como Trabalho de Conclusão de Curso (TCC), caso seja de interesse. Ao fim do projeto, espera-se que o bolsista tenha se familiarizado com os aspectos psicosociológicos dos processos de influência social, contribuindo assim para a sua formação como cidadão crítico e atento aos problemas de nossa sociedade. Além disso, sob uma perspectiva mais técnica, o estudante será exposto a conceitos avançados da programação baseada em agentes e da modelagem de sistemas complexos, incluindo redes complexas. Nesse aspecto, é desejável que o estudante tenha cursado ou curse concomitantemente com o desenvolvimento do projeto a disciplina 7600132 Introdução à Modelagem Matemática em Biologia.

11. Bibliografia

Asch SE (1955) Opinions and Social Pressure. Scientific American 193, 31–35.

Albert R & Barabási A-L (2002) Statistical mechanics of complex networks. *Reviews of Modern Physics* **74**, 47–97.

Bak P (1996) How nature works: the science of self-organized criticality (Copernicus, New York)

Berger J & Heath C (2008) Who drives divergence? Identity signaling, outgroup dissimilarity, and the abandonment of cultural tastes. *Journal of personality and social psychology* **95**, 593-607.

Bettencourt LMA (2002) From boom to bust and back again: the complex dynamics of trends and fashions. *arXiv/cond-mat*: 0212267.

- Bikhchandani S, Hirshleifer D & Welch I (1992) A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades. *Journal of Political Economy* **100**, 992-1026.
- Bikhchandani S, Hirshleifer D & Welch I (1998) Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades. *Journal of Economic Perspectives* **12**, 151-170.
- Bloom H (2001) Global Brain: The Evolution of Mass Mind from the Big Bang to the 21st Century (Wiley, New York)
- Bonabeau E (2002) Agent-based modeling: Methods and techniques for simulating human systems. *Proceedings of the National Academy of Sciences USA* **99**, 7280-7287.
- Fontanari JF (2014) Imitative Learning as a Connector of Collective Brains. *PLoS ONE* **9**, e110517.
- Golman R, Bugbee EH, Jain A & Saraf S. (2022) Hipsters and the cool: A game theoretic analysis of identity expression, trends, and fads. *Psychological Review* **129**, 4–17.
- Hoffer E (1955) *The Passionate State of Mind* (aphorism 33, Harper, New York)
- Janis IL (1982) Groupthink: Psychological Studies of Policy Decisions and Fiascoes (Cengage Learning, New York))
- Kennedy J (1999) Minds and cultures: Particle swarm implications for beings in sociocognitive space. *Adaptive Behavior* 7, 269–288.
- Keynes JM (1936) General theory of employment, interest and money (Harcourt Brace, New York)
- Leibenstein H (1950) Bandwagon, Snob, and Veblen Effects in the Theory of Consumers' Demand. *The Quarterly Journal of Economics* **64**, 183–207.
- Simmel G (1957) Fashion. American Journal of Sociology 62, 541–558.
- Stauffer D & Aharony A (1992) *Introduction to percolation theory* (Taylor & Francis, London).
- Strogatz SH (2001) Exploring complex networks. *Nature* **410**, 268-276.