COMP 9322 Software Service Design and Engineering

Lecture 5 ChatBots

Disclaimer

the slides are taken from Cognitive Services
 Engineering presentation by Sci Prof Boualem
 Benatallah and Shayan Zamani

ChatBots Future

 "Gartner estimates that by 2020, chatbots will be handling 85 percent of customer-service interactions; they are already handling about 30 percent of transactions now"

Types of Bots

- Template based (Rule Based)
- Machine Learning Based

Machine Learning-Based Bots

- Need training dataset (user expressions) to train the NLU model
- Need backend-coding (define functions to handle different user intentions)
- Not 100% accurate
- Could be smart enough (amount of training expressions is important)
- Communicates in natural manner (can be controlled/non-controlled natural language)
- For simple/advanced use cases (e.g. order pizza, flight booking, schedule tasks)

Architecture

Architecture

Architecture


```
"text": "I am looking a restaurant in 29432",
"intent": "restaurant_search",
"entities": [
   "start": 29,
    "end": 34,
    "value": "29432",
    "entity": "location"
"text": "I am looking for mexican indian fusion",
"intent": "restaurant_search",
"entities": [
   "start": 17,
    "end": 38,
    "value": "mexican indian fusion",
    "entity": "cuisine"
```

Training data for FindRestaurant intent


```
"text": "I am looking a restaurant in 29432",
expression
                          "intent": "restaurant_search",
                          "entities": [
                              "start": 29,
                              "end": 34,
                              "value": "29432",
                              "entity": "location"
                          "text": "I am looking for mexican indian fusion",
                          "intent": "restaurant_search",
                          "entities": [
                              "start": 17,
                              "end": 38,
                              "value": "mexican indian fusion",
                              "entity": "cuisine"
```

Training data for FindRestaurant intent

```
"text": "I am looking a restaurant in 29432",
expression.
                          "intent": "restaurant_search",
                          "entities": [
intent name
                              "start": 29,
                              "end": 34,
                              "value": "29432",
                              "entity": "location"
                          "text": "I am looking for mexican indian fusion",
                          "intent": "restaurant_search",
                          "entities": [
                              "start": 17,
                              "end": 38,
                              "value": "mexican indian fusion",
                              "entity": "cuisine"
```


Training data for

FindRestaurant intent

```
"text": "I am looking a restaurant in 29432",
     expression
                              "intent": "restaurant_search",
                               "entities": [
    intent name
                                  "start": 29,
                                  "end": 34,
       entities
                                  "value": "29432",
                                  "entity": "location"
(inside the expression)
                              "text": "I am looking for mexican indian fusion"
                              "intent": "restaurant_search",
                              "entities": [
                                  "start": 17,
                                  "end": 38,
                                  "value": "mexican indian fusion",
                                  "entity": "cuisine"
```

Training data for **Greeting** intent

```
"text": "hey",
     expression
                               "intent": "greet",
                               "entities": []
    intent name
       entities
                               "text": "howdy",
                               "intent": "greet",
(inside the expression)
                               "entities": []
                               "text": "hey there",
                               "intent": "greet",
                               "entities": []
                               "text": "hello",
                               "intent": "greet",
                               "entities": []
                               "text": "hi",
                               "intent": "greet",
                               "entities": []
```

Intent Recognizer - A Machine Learning Model

Traditional Software Development

Machine Learning Programming

Machine Learning Methods

- Linear regression based methods
- Neural Network
- Bayesian Network
- Support Vector Machine (SVM)
- Decision Tree based methods
- Nearest Neighbor
- Logistic Regression
- Naive Bayes
- K-Means
- Random Forest
- Dimensionality Reduction methods
- ...

Machine Learning Models

Predictive Modeling					C	omputer Vision	Time Series
Sepal length ¢	Sepal width •	Petal length ¢	Petal width +	Species ¢	airplane	and Mary Sales	SUNSPOT AREA IN EQUAL AREA LATITUDE STRIPS (% OF STRIP AREA) => 0.
5.1	3.5	1.4	0.2	I. setosa	•		
4.9	3.0	1.4	0.2	I. setosa	automobile		S. Aug. Was West Was West Was West Was West Was
4.7	3.2	1.3	0.2	I. setosa	bird		
4.6	3.1	1.5	0.2	I. setosa			305
5.0	3.6	1.4	0.2	I. setosa	cat		905 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 199
5.4	3.9	1.7	0.4	I. setosa	deer	海田子中海 及1000000000000000000000000000000000000	DATE AVERAGE DAILY SUNSPOT AREA (% OF VISIBLE HEMISPHERE)
4.6	3.4	1.4	0.3	I. setosa			0.5 AVERAGE BAILY SUNSPOT AREA (% OF VISIBLE HEMISPHERE)
5.0	3.4	1.5	0.2	I. setosa	dog		24
4.4	2.9	1.4	0.2	I. setosa	frog		97
4.9	3.1	1.5	0.1	I. setosa			
5.4	3.7	1.5	0.2	I. setosa	horse		0.0 1570 1550 1570 1700 1710 1920 1930 1940 1950 1940 1970 1980 197

- **Predictive Modeling**: Predict the output using input values
- Computer Vision: Detect patterns in visual data
- **Time Series**: Detect patterns in in time e.g. financial applications, speech recognition

Intent Recognizer - A Machine Learning Model

- Intent Classification
 - MITIE intent classifier multi class linear SVM, Nearest Neighbors, Neural Embedding intent classifier, Sklearn intent classifier - Linear SVM, Naive Bayes...
- Entity Recognition
 - CRF (conditional random field), Duckling, MITIE, Spacy BILUO transition model,

Intent Recognizer - Acquisition

- Experts
 - Expensive/Quality is <u>high</u>
- Crowds
 - Cheaper/Quality is less than expert training
- Algorithms
 - Automatic Generating/Quality <u>depends on algorithm</u>
 - Examples: Chatito, Tracy

Intent Recognizer (DialogFlow)

Intent Recognizer (LUIS)

Intent Recognizer (LEX)

Intent Recognizer Examples

SnatchBot

Architecture

- Each intent (e.g. Get Weather) is a state machine
- Conversation Manager moves between states (to fill missing information)

Architecture

User Utterances | Intents | APIs Integration

User Utterances | Intents | APIs Integration

Architecture

Answer Generator

Template

```
"coord": {
    "lon": 126.62,
   "lat": 45.77
"weather": [
        "id": 800,
        "main": "Clear",
        "description": "clear sky",
        "icon": "01d"
"base": "stations",
"main": {
    "temp": 302.15,
   "pressure": 1007,
   "humidity": 58,
    "temp_min": 302.15,
   "temp_max": 302.15
"visibility": 10000,
"wind": {
    "speed": 2,
   "deg": 130
"clouds": {
    "all": 0
"dt": 1531303200,
"sys": {
    "type": 1,
    "id": 7469,
```

Dump output (e.g. JSON)

Widgets

DevOps bot - Intents

DevOps bot - Entities

DevOps bot - Training

DevOps bot - Conversation Manager

```
// This function run the specified instance with the specified parameters
var runInstance = function(senderId, agentName, generalContext){
    var ec2 = authParameterAWS EC2();
    var imageId = generalContext.parameters.image id;
    var maxCount = generalContext.parameters.max_count;
   var minCount = generalContext.parameters.min_count;
    var keyName = generalContext.parameters.key_pair_name;
    var instanceType = generalContext.parameters.instance type;
   var zone = generalContext.parameters.zone;
    if (!minCount) {
        generalContext.parameters.request_parameter = 'min_count';
        generalContext.parameters.next_function = 'run_instance';
       var quickReplies = quickRepliesNumbers('payloadMinCount', 'number');
       var message = {
            'text': 'Give me the minimum number of instances, please.\nIf you need a different number, please specify only the number.',
            'quick_replies': quickReplies
       };
        sendTextToMessenger(senderId, message, agentName);
        saveContext(senderId, agentName, generalContext);
   } else if (!maxCount) {
        generalContext.parameters.request_parameter = 'max_count';
        generalContext.parameters.next_function = 'run_instance';
       var quickReplies = quickRepliesNumbers('payloadMaxCount', 'number');
```

DevOps bot - Conversation Manager

```
// This function terminate the specified instance with the specified parameters
var terminateInstance = function(senderId, agentName, generalContext){
   var ec2 = authParameterAWS_EC2();
   var instances = generalContext.parameters.instance_ids;
   if (typeof instances !== 'undefined' && instances.length > 0) {
        var params = {
           InstanceIds: instances,
       };
        ec2.terminateInstances(params, function(err, data) {
            if (err){
                var message = {
                    'text': err.message
                };
                console.log(err, err.stack); // an error occurred
                sendTextToMessenger(senderId, message, agentName);
            else {
                generalContext.parameters.request_parameter = '';
                generalContext.parameters.next_function = '';
                generalContext.parameters.instance_ids = [];
                var terminateInstances = data.TerminatingInstances;
```

DevOps bot - Answer Generator

Building Bot | API Integration - DevOps bot – API Endpoints

Machine Learning-Based Bots

Machine Learning-Based Bots

APIs

 APIs | Composition constructs are not meant to be intuitive (variables, control flow, symbols)

APIs

- APIs | Composition constructs are not meant to be intuitive (variables, control flow, symbols)
- Low-level API description models (mostly XML, code snippets)

APIs

- APIs | Composition constructs are not meant to be intuitive (variables, control flow, symbols)
- Low-level API description models (mostly XML, code snippets)

Bots

User Expressions are <u>fuzzy</u>
 (Natural Language - NL)

APIs

- APIs | Composition constructs are not meant to be intuitive (variables, control flow, symbols)
- Low-level API description models (mostly XML, code snippets)

Bots

- User Expressions are <u>fuzzy</u>
 (Natural Language NL)
- API description: limited knowledge, short NL description, low-level interfaces

APIs

- APIs | Composition constructs are not meant to be intuitive (variables, control flow, symbols)
- Low-level API description models (mostly XML, code snippets)

Bots

- User Expressions are <u>fuzzy</u>
 (Natural Language NL)
- API description: limited knowledge, short NL description, low-level interfaces

"Mapping Intents to APIs requires more knowledge than API descriptions"

Where we are now

- SOA
- Web Services and Web APIs
- Microservices
- Cloud Services
- Cognitive Services

How do they affect Organizations?

IT Architecture

- An IT architecture provides the necessary technical foundation for an effective IT strategy, which is the core of any successful modern business strategy
- Specifically, an IT architecture defines the <u>components or building</u>
 <u>blocks</u> that make up the overall information system. It provides a
 plan from which products can be procured, and systems developed
 that will work together to implement the overall system. It thus
 enables you to manage your IT investment in a way that meets the
 needs of your business.

So How is this Relevant to What We have Learned

- Understanding software development styles and technologies, their benefits, opportunities and limitations can help in:
 - Defining the principles that guide technology decisions for the enterprise
 - Analysis of the current IT ecosystem to detect critical deficiencies and recommend solutions for improvement
 - Development of technology infrastructure that can be highly leveraged across multiple enterprise solutions
 - And more...

Questions?