CSE8803/CX4803 Machine Learning in Computational Biology

Lecture 9: Learning from high-dimensional data: UMAP, clustering

Xiuwei Zhang

School of Computational Science and Engineering

Paper presentation logistics

Presentation dates are fixed for all groups

Now start paper bidding for Phase 1 presentations! Deadline Thursday 11:59pm.

Bidding link:

https://gatech.co1.qualtrics.com/jfe/form/SV_0Vbl3SXv1pCTlk

List of papers:

https://docs.google.com/document/d/1RJDWddTV3hqnc 6YGzSXGpKCIYgjL5k GtLarOU54s/edit Your name Your group ID Your 1st choice paper Number of points for your 1st choice paper

t-SNE

Why its output (the low-dimensional representations of data) is more often used for visualization than for further downstream analysis (clustering, etc)?

- It doesn't learn a function from high-dim data to low-dim, so if new data points come we can't directly convert it to low-dim.
- It doesn't directly preserve distance but rather preserves the neighborhood of every datapoint. So the distance between points in low-dim space can't be interpreted as close representation of the original distance. Distance-based clustering methods should be used with caution to the output of tSNE. In particular, larger distances are not preserved.
- It's output is often good for human eyes (also considering the effect of varying parameters), but not good for automatic clustering methods like k-means.
- Still controversial.

UMAP Uniform Manifold Approximation and Projection

MDS: preserving distance

tSNE: preserving neighborhood

UMAP: preserving graph topology

Compared to t-SNE, UMAP seems to be

- faster
- deterministic

Very similar intuition but different mathematical framework

UMAP Uniform Manifold Approximation and Projection

Hyper-parameters

N neighbors: the number of nearest neighbors to consider

Min dist: minimum distance apart that points are allowed to be in the low dimensional representation

> Two clusters with equal numbers of points, but different variances within the clusters.

UMAP Uniform Manifold Approximation and Projection

Hyper-parameters

N_neighbors: the number of nearest neighbors to consider

Min_dist: minimum distance apart that points are allowed to be in the low dimensional representation

Two clusters with equal numbers of points.

https://pair-code.github.io/understanding-umap/

Clustering algorithms

Clustering - unsupervised learning methods

- Organizing data into clusters such that there is
 - high intra-cluster similarity
 - low inter-cluster similarity
- Informally, finding natural groupings among objects.
- Applications
 - Organizing data into clusters provides information about the internal structure of the data
 - Sometimes the partitioning is the goal
 - Knowledge discovery in data

Clustering algorithms

Clustering - unsupervised learning methods

- K-means (and fuzzy k-means)
- Hierarchical clustering
- Spectral clustering
- Graph-based : Louvain, Leiden clustering

Some biological background: Gene expression analysis

10,000 x 30,000

Given the number of clusters *k* An iterative clustering algorithm.

Initialize:

Pick k random points as cluster centers

Alternate:

- 1. Assign data points to closest cluster center
- 2. Change the cluster centers to the average of its assigned points *Stop:*

Given the number of clusters *k* An iterative clustering algorithm.

Initial locations of centers

Initialize:

Points are assigned to closest centers

Pick k random points as cluster centers *Alternate:*

1. Assign data points to closest cluster center

2. Change the cluster centers to the average of its assigned points

Stop:

Given the number of clusters *k* An iterative clustering algorithm.

Centers updated as the average of all points of that label

Initialize:

Pick k random points as cluster centers

Alternate:

- 1. Assign data points to closest cluster center
- 2. Change the cluster centers to the average of its assigned points *Stop:*

Given the number of clusters *k* An iterative clustering algorithm.

Labels for each point updated

Initialize:

Pick k random points as cluster centers

Alternate:

- 1. Assign data points to closest cluster center
- 2. Change the cluster centers to the average of its assigned point

Stop:

K-means as an "expectation maximization" process

Re-assign each point x_i

to nearest center k

 \rightarrow Minimize distance from \mathbf{x}_i to $\mathbf{\mu}_k$:

$$d_{i,k} = \left(\mathbf{x}_i - \mathbf{\mu}_k\right)^2$$

Update center μ_k to the mean of the points assigned to it:

$$\mu_{k} = \sum_{\mathbf{x}_{i} \text{ with label j}} \frac{\mathbf{X}_{i}}{\left|\mathbf{X}^{k}\right|}$$

where:
$$|\mathbf{x}^k| = \#\mathbf{x}_i$$
 with label k

K-means as an "expectation maximization" process

$$COST(x_1,x_2,x_3,...,x_n) = \sum_{\mu_k} \sum_{\mathbf{x}_i \text{ with label } \mathbf{k}} (\mathbf{x}_i - \boldsymbol{\mu}_k)^2$$

The M step:

With the current the cluster assignment (labels) of points

$$\sum_{\text{xi with label k}} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{2} = \sum_{\text{xi with label k}} (\mathbf{x}_{i}^{2} - 2\mathbf{x}_{i} \boldsymbol{\mu}_{k} + \boldsymbol{\mu}_{k}^{2})$$

$$= \sum_{\text{xi with label k}} \mathbf{x}_{i}^{2} - 2\boldsymbol{\mu}_{k} \sum_{\text{xi with label k}} \mathbf{x}_{i} + n_{k} \boldsymbol{\mu}_{k}^{2}$$

Take derivative on μ :

$$2 \sum_{\text{xi with label k}} \mathbf{x}_{i} = 2 n_{k} \mu_{k}$$

$$\mu_k = 1/n_k \sum_{\text{xi with label } k} \mathbf{x}_i$$

Fuzzy k-means

What if some points are half-way between two cluster centers?

Assign partial weights.

Re-assign each point x_i

to all centers, weighted by distance

 μ_k

→ For each point calculate the probability of membership for each category K:

P(label $K | \mathbf{x}_i, \boldsymbol{\mu}_k$)

Update center μ_k to the **weighted** mean of the points assigned to it:

$$= \sum_{\mathbf{x}_{i} \text{ with label j}} \mathbf{x}_{i} \ \mathbf{P}(\mathbf{\mu}_{k} \mid \mathbf{x}_{i})^{b} \bigg/ \sum_{\mathbf{x}_{i} \text{ with label j}} \mathbf{P}(\mathbf{\mu}_{k} \mid \mathbf{x}_{i})^{b}$$

Regular K-Means is a special case of fuzzy k-means where: $P(label\ K\mid x_{i},\mu_{k}) = \begin{cases} 1 & \text{if } x_{i} \text{ is closest to } \mu_{k} \\ 0 & \text{otherwise} \end{cases}$

Consider that each point is generated from a Gaussian distribution with unit variance.

$$P(x_i|\mu_k) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x_i - \mu_k)^2}{2}\right\}$$

Problem: find cluster centers and labels for data points such that the total likelihood is maximized Solution is the same as the k-means solution! (equivalence)

Problem: find cluster centers and labels for data points such that the total likelihood is maximized

E step: If centers are known → Estimate memberships M step: If assignments known → Compute centroids

$$\underbrace{\arg\max_{\mu}} \left\{ \log \prod_{i} P\left(\mathbf{x}_{i} \mid \mu\right) \right\} = \arg\max_{\mu} \sum_{i} \left\{ -\frac{1}{2} \left(\mathbf{x}_{i} - \mu\right)^{2} + \log \left(\frac{1}{\sqrt{2\pi}}\right) \right\}$$

Seeking the max likelihood estimate of the cluster mean

EM solution

 $= \underset{\mu}{arg \; min}$ Equivalent

 $\sum_{i} \left(\mathbf{x}_{i} - \mathbf{u} \right)^{2}$

Solution is the centroid of the

K-means solution

maximizes likelihood of point

nearest center

Comparison between methods

	K-means		Fuzzy K-means	
	algorithmic formulation	probabilistic interpretation	algorithmic formulation	probabilistic interpretation
Initialization	Initialize K centers µ _k	Initialize model parameters	Initialize K centers µ _k	Initialize model parameters
E-step: Estimate prob of hidden labels (point assignments to classes)	Assign \mathbf{x}_i label of nearest center distance $d_{i,k} = (\mathbf{x}_i - \mathbf{\mu}_k)^2$	Estimate most likely missing label given previous parameters	Calculate probability of membership for each point to each class $P(label K x_i, \mu_k)$	Estimate probability over missing labels given previous parameters
M-step: Update params to max likelihood estimates given assignments	Move μ_k to centroid of all points with that label	Choose new max likelihood params given points in label	Move μ_k to weighted centroid of all points, each weighted by P(label)	Choose new params to maximize expected likelihood given label estimates
Iteration	Iterate	Iterate	Iterate	Iterate

Slide credit: Manolis Kellis

Characteristics of k-means

K-means partitions the points into Voronoi cells

Does it converge?

Yes.

No. (Initialization matters)

Prior dimension reduction helpful

Disadvantages:

- Needs k as input
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

Hierarchical clustering

Idea: agglomerative clustering

- First merge very similar instances
- Incrementally build larger clusters out of smaller clusters

Algorithm: Maintain a set of clusters

- Initially, each instance in its own cluster
- Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left

Output:

Produces not one clustering, but a family of clusterings represented by a dendrogram

How to define?

Hierarchical clustering: define "closest" for clusters

Closest pair (single-link)

 $CD(X,Y)=min_{x \in X, y \in Y} D(x,y)$

Furthest pair (complete-link)

 $CD(X,Y)=max_{x \in X, y \in Y} D(x,y)$

average-link

 $CD(X,Y)=avg_{x \in X, y \in Y}D(x,y)$

centroids method

CD(X,Y)=D(avg(X),avg(Y))

Hierarchical clustering: define "closest" for clusters

Cluster distance affects both results and runtime

Closest pair (single-link clustering)

Potentially long and skinny clusters

Farthest pair (complete-link clustering)

tight clusters

Hierarchical clustering: define "closest" for clusters

Hierarchical clustering: distance measures

Table 1 Gene expression similarity measures			
Manhattan distance (city-block distance, L1 norm)	$d_{fg} = \sum_{c} \left e_{fc} - e_{gc} \right $		
Euclidean distance (L2 norm)	$d_{fg} = \sqrt{\sum_{c} \left(e_{fc} - e_{gc}\right)^2}$		
Mahalanobis distance	$d_{fg} = (e_f - e_g)' \Sigma^{-1} (e_f - e_g)$, where Σ is the (full or within-cluster) covariance matrix of the data		
Pearson correlation (centered correlation)	$d_{fg} = 1 - r_{fg}$, with $r_{fg} = \frac{\sum_{c} (e_{fc} - \bar{e}_f)(e_{gc} - \bar{e}_g)}{\sqrt{\sum_{c} (e_{fc} - \bar{e}_f)^2 \sum_{c} (e_{gc} - \bar{e}_g)^2}}$		
Uncentered correlation (angular separation, cosine angle)	$d_{fg} = 1 - r_{fg}$, with $r_{fg} = \frac{\sum_{c} e_{fc} e_{gc}}{\sqrt{\sum_{c} e_{fc}^2 \sum_{c} e_{gc}^2}}$		
Spellman rank correlation	As Pearson correlation, but replace e_{gc} with the rank of e_{gc} within the expression values of gene g across all conditions $c=1C$		
Absolute or squared correlation	$d_{fg} = 1 - r_{fg} \text{ or } d_{fg} = 1 - r_{fg}^2$		
d_{fg} , distance between expression patterns for genes f and g . e_{gc} , expression level of gene g under condition c .			

Hierarchical clustering: obtaining the clusters

Hierarchical clustering: Summary

- No need to specify the number of clusters in advance.
- Hierarchical structure maps nicely onto human intuition for some domains
- They do not scale well: where n is the number of total objects.
- Like any heuristic search algorithms, local optima are a problem.
- Interpretation of results can be subjective