```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [2]:
df=pd.read csv('Employee-Attrition.csv')
In [3]:
df.head()
Out[3]:
   Age Attrition
                                         Department DistanceFromHome Education EducationField EmployeeCount
                 BusinessTravel DailyRate
    41
                                                                   1
                                                                                                       1
0
                  Travel_Rarely
                                   1102
                                                                            2
                                                                                Life Sciences
           Yes
                                              Sales
                                         Research &
    49
           No Travel_Frequently
                                                                   8
                                                                                Life Sciences
                                                                                                        1
                                        Development
                                         Research &
                                   1373
    37
           Yes
                   Travel_Rarely
                                                                   2
                                                                            2
                                                                                      Other
                                                                                                        1
2
                                        Development
                                         Research &
           No Travel_Frequently
                                   1392
                                                                   3
                                                                                Life Sciences
                                                                                                        1
3
    33
                                        Development
                                         Research &
    27
           No
                   Travel_Rarely
                                   591
                                                                            1
                                                                                    Medical
                                        Development
5 rows x 35 columns
DATA PRE-PROCESSING
In [4]:
df.isnull().sum()
Out[4]:
                                 0
Age
                                 0
Attrition
BusinessTravel
                                 0
DailyRate
                                 0
Department
                                 0
DistanceFromHome
                                 0
Education
                                 0
EducationField
                                 0
                                 0
EmployeeCount
EmployeeNumber
                                 0
EnvironmentSatisfaction
                                 0
Gender
                                 0
HourlyRate
                                 0
                                 0
JobInvolvement
                                 0
JobLevel
JobRole
                                 0
JobSatisfaction
                                 0
                                 0
MaritalStatus
                                 0
MonthlyIncome
                                 0
MonthlyRate
                                 0
NumCompaniesWorked
Over18
                                 0
```

OverTime

PercentSalaryHike

PerformanceRating

0

0

0

```
RelationshipSatisfaction
                            0
StandardHours
                            0
StockOptionLevel
                            0
TotalWorkingYears
                            0
TrainingTimesLastYear
                            0
WorkLifeBalance
                            0
YearsAtCompany
                            0
                            0
YearsInCurrentRole
YearsSinceLastPromotion
                            0
YearsWithCurrManager
dtype: int64
```

No Null values detected

```
In [5]:
    df.shape
Out[5]:
    (1470, 35)
In [6]:
    df.describe()
Out[6]:
```

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.00000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.72176
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.09308
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.00000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.00000
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.00000
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.00000
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.00000

8 rows × 26 columns

In [7]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
		4.450	
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	.TohRole	1470 non-null	ohiect

	0001010	, _	11011 11011							
16	JobSatisfaction	1470	non-null	int64						
17	MaritalStatus	1470	non-null	object						
18	MonthlyIncome	1470	non-null	int64						
19	MonthlyRate	1470	non-null	int64						
20	NumCompaniesWorked	1470	non-null	int64						
21	Over18	1470	non-null	object						
22	OverTime	1470	non-null	object						
23	PercentSalaryHike	1470	non-null	int64						
24	PerformanceRating	1470	non-null	int64						
25	RelationshipSatisfaction	1470	non-null	int64						
26	StandardHours	1470	non-null	int64						
27	StockOptionLevel	1470	non-null	int64						
28	TotalWorkingYears	1470	non-null	int64						
29	TrainingTimesLastYear	1470	non-null	int64						
30	WorkLifeBalance	1470	non-null	int64						
31	YearsAtCompany	1470	non-null	int64						
32	YearsInCurrentRole	1470	non-null	int64						
33	YearsSinceLastPromotion	1470	non-null	int64						
34	YearsWithCurrManager	1470	non-null	int64						
dtyp	dtypes: int64(26), object(9)									
memo	memory usage: 402.1+ KB									

DATA VISUALISATION

```
In [8]:
```

corr=df.corr()

In [9]:

sns.heatmap(corr)

Out[9]:

<AxesSubplot:>

In [10]:

sns.distplot(df.Age)

C:\Users\kommi\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:
 `distplot` is a deprecated function and will be removed in a future version. Please adapt
 your code to use either `displot` (a figure-level function with similar flexibility) or `
 histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [11]:

```
sns.boxplot(df.Age)
plt.figure(figsize=(10, 6))
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[11]:

<Figure size 720x432 with 0 Axes>

<Figure size 720x432 with 0 Axes>

In [12]:

sns.boxplot(df.DailyRate)

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[12]:

<AxesSubplot:xlabel='DailyRate'>

In [13]:

sns.boxplot(df['DistanceFromHome'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[13]:

<AxesSubplot:xlabel='DistanceFromHome'>

In [14]:

sns.boxplot(df['HourlyRate'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[14]:

<AxesSubplot:xlabel='HourlyRate'>

In [15]:

sns.boxplot(df['NumCompaniesWorked'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass
the following variable as a keyword arg: x. From version 0.12, the only valid positional
argument will be `data`, and passing other arguments without an explicit keyword will res
ult in an error or misinterpretation.
 warnings.warn(

Out[15]:

<AxesSubplot:xlabel='NumCompaniesWorked'>

In [16]:

sns.boxplot(df['PercentSalaryHike'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[16]:

<AxesSubplot:xlabel='PercentSalaryHike'>

In [17]:

sns.boxplot(df['MonthlyIncome'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[17]:

<AxesSubplot:xlabel='MonthlyIncome'>

In [18]:

sns.boxplot(df['TotalWorkingYears'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[18]:

<AxesSubplot:xlabel='TotalWorkingYears'>

In [19]:

sns.boxplot(df['TrainingTimesLastYear'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[19]:

<AxesSubplot:xlabel='TrainingTimesLastYear'>

In [20]:

sns.boxplot(df['YearsAtCompany'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[20]:

<AxesSubplot:xlabel='YearsAtCompany'>

In [21]:

sns.boxplot(df['YearsInCurrentRole'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[21]:

<AxesSubplot:xlabel='YearsInCurrentRole'>

In [22]:

sns.boxplot(df['YearsSinceLastPromotion'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[22]:

<AxesSubplot:xlabel='YearsSinceLastPromotion'>

In [23]:

sns.boxplot(df['YearsWithCurrManager'])

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[23]:

<AxesSubplot:xlabel='YearsWithCurrManager'>

In [24]:

sns.boxplot(df.StockOptionLevel)

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[24]:

<AxesSubplot:xlabel='StockOptionLevel'>

Outliers detected in Following attributes

- * YearsWithCurrManager
- * YearsSinceLastPromotion
- * YearsInCurrentRole
- * YearsAtCompany
- * TrainingTimesLastYear
- * TotalWorkingYears
- * NumCompaniesWorked
- * StockOptionlevel
- * Monthly income

Now Outlier removal

In [25]:

```
#YearsWithCurrManager
q1=df.YearsWithCurrManager.quantile(0.25)
q3=df.YearsWithCurrManager.quantile(0.75)
IQR=q3-q1
IQR
```

Out[25]:

5.0

In [26]:

```
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['YearsWithCurrManager'] < upper_limit ) ]
sns.boxplot(df['YearsWithCurrManager'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[26]:

<AxesSubplot:xlabel='YearsWithCurrManager'>

In [27]:

#YearsSinceLastPromotion

```
q1=df.YearsSinceLastPromotion.quantile(0.25)
q3=df.YearsSinceLastPromotion.quantile(0.75)
IQR=q3-q1
IQR
```

Out[27]:

2.0

In [28]:

```
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['YearsSinceLastPromotion'] < upper_limit ) ]
sns.boxplot(df['YearsSinceLastPromotion'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[28]:

<AxesSubplot:xlabel='YearsSinceLastPromotion'>

In [29]:

```
#YearsWithCurrManager
q1=df.YearsInCurrentRole.quantile(0.25)
q3=df.YearsInCurrentRole.quantile(0.75)
IQR=q3-q1
IQR
```

Out[29]:

3.0

In [30]:

```
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['YearsInCurrentRole'] < upper_limit ) ]
sns.boxplot(df['YearsInCurrentRole'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[30]:

<AxesSubplot:xlabel='YearsInCurrentRole'>

In [31]:

```
#YearsWithCurrManager
q1=df.YearsAtCompany.quantile(0.25)
q3=df.YearsAtCompany.quantile(0.75)
IQR=q3-q1
IQR
```

Out[31]:

5.0

In [32]:

```
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['YearsAtCompany'] < upper_limit ) ]
sns.boxplot(df['YearsAtCompany'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[32]:

<AxesSubplot:xlabel='YearsAtCompany'>

In [33]:

```
#YearsWithCurrManager
q1=df.TrainingTimesLastYear.quantile(0.25)
q3=df.TrainingTimesLastYear.quantile(0.75)
IQR=q3-q1
IQR
```

Out[33]:

1.0

In [34]:

```
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['TrainingTimesLastYear'] < upper_limit ) | (df['TrainingTimesLastYear'] > lower_limit)]
sns.boxplot(df['TrainingTimesLastYear'])
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[34]:

<AxesSubplot:xlabel='TrainingTimesLastYear'>

In [35]:

```
#YearsWithCurrManager
q1=df.TotalWorkingYears.quantile(0.25)
q3=df.TotalWorkingYears.quantile(0.75)
IQR=q3-q1
IQR
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['TotalWorkingYears']<upper_limit )]
sns.boxplot(df['TotalWorkingYears'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[35]:

<AxesSubplot:xlabel='TotalWorkingYears'>

In [36]:

```
#rearswithcurrmanager
q1=df.NumCompaniesWorked.quantile(0.25)
q3=df.NumCompaniesWorked.quantile(0.75)
IQR=q3-q1
IQR
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['NumCompaniesWorked']<upper_limit )]
sns.boxplot(df['NumCompaniesWorked'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[36]:

<AxesSubplot:xlabel='NumCompaniesWorked'>

In [37]:

```
#YearsWithCurrManager
q1=df.StockOptionLevel.quantile(0.25)
q3=df.StockOptionLevel.quantile(0.75)
IQR=q3-q1
IQR
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['StockOptionLevel'] < upper_limit )]
sns.boxplot(df['StockOptionLevel'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[37]:

<AxesSubplot:xlabel='StockOptionLevel'>

In [38]:

```
#MonthlyIncome
q1=df.MonthlyIncome.quantile(0.25)
q3=df.MonthlyIncome.quantile(0.75)
IQR=q3-q1
IQR
upper_limit=q3+1.5*IQR
lower_limit=q1-1.5*IQR
df=df[ (df['MonthlyIncome'] < upper_limit )]
sns.boxplot(df['MonthlyIncome'])</pre>
```

C:\Users\kommi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[38]:

<AxesSubplot:xlabel='MonthlyIncome'>

In [39]:

df.describe()

Out[39]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction
count	902.000000	902.000000	902.000000	902.000000	902.0	902.000000	902.000000
mean	34.211752	799.273836	9.182927	2.827051	1.0	1027.853659	2.715078
std	8.298172	399.839801	7.925066	1.026302	0.0	613.052180	1.095736
min	18.000000	103.000000	1.000000	1.000000	1.0	1.000000	1.000000
25%	28.000000	465.500000	2.000000	2.000000	1.0	484.250000	2.000000
50%	33.000000	805.000000	7.000000	3.000000	1.0	1010.500000	3.000000
75%	39.000000	1153.000000	14.000000	4.000000	1.0	1576.250000	4.000000
max	60.000000	1498.000000	29.000000	5.000000	1.0	2068.000000	4.000000

8 rows × 26 columns

1

We can observe many mean values has changed due to removal of outliers

In [40]:

df.shape

Out[40]:

SEPARATING DEPENDENT AND INDEPENDENT VARIABLES

```
In [41]:
x d=df.iloc[:,:]
X=x_d.drop(columns=["Attrition", "EmployeeCount", "StandardHours", "Over18"], axis=1)
In [42]:
X.head()
Out[42]:
   Age
          BusinessTravel DailyRate
                                  Department DistanceFromHome Education EducationField EmployeeNumber Environ
           Travel_Rarely
                            1102
                                        Sales
                                                                           Life Sciences
                                                                                                     1
    41
                                   Research &
1
    49 Travel_Frequently
                             279
                                                                           Life Sciences
                                                                                                     2
                                 Development
                                   Research &
    37
           Travel_Rarely
                            1373
                                                             2
                                                                       2
                                                                                 Other
2
                                 Development
                                   Research &
3
    33 Travel_Frequently
                            1392
                                                                          Life Sciences
                                                                                                     5
                                 Development
                                   Research &
    32 Travel_Frequently
                            1005
                                                             2
                                                                       2
                                                                          Life Sciences
                                                                                                     8
5
                                 Development
5 rows × 31 columns
In [43]:
y=df["Attrition"]
In [44]:
y.head()
Out[44]:
0
     Yes
1
      No
2
      Yes
3
      No
5
       No
Name: Attrition, dtype: object
In [45]:
l=df.iloc[:,19:]
l.head()
Out[45]:
```

	MonthlyRate	NumCompaniesWorked	Over18	OverTime	PercentSalaryHike	PerformanceRating	RelationshipSatisfaction	S
0	19479	8	Υ	Yes	11	3	1	
1	24907	1	Y	No	23	4	4	
2	2396	6	Y	Yes	15	3	2	
3	23159	1	Y	Yes	11	3	3	
5	11864	0	Y	No	13	3	3	
4			18					F

In [46]:

df.head()

Out[46]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1
5	32	No	Travel_Frequently	1005	Research & Development	2	2	Life Sciences	1

5 rows × 35 columns

· ·

ENCODING

In [47]:

x_encoded=pd.get_dummies(X,columns=["Department","BusinessTravel","EducationField","Gend
er","OverTime","JobRole","MaritalStatus"])

In [48]:

x encoded

Out[48]:

1102	1	2	1	2	94	3
279	8	1	2	3	61	2
1373	2	2	4	4	92	2
1392	3	4	5	4	56	3
1005	2	2	8	4	79	3
884	23	2	2061	3	41	4
613	6	1	2062	4	42	2
155	4	3	2064	2	87	4
1023	2	3	2065	4	63	2
628	8	3	2068	2	82	4
	1373 1392 1005 884 613 155	279 8 1373 2 1392 3 1005 2 884 23 613 6 155 4 1023 2	279 8 1 1373 2 2 1392 3 4 1005 2 2 884 23 2 613 6 1 155 4 3 1023 2 3	279 8 1 2 1373 2 2 4 1392 3 4 5 1005 2 2 8 884 23 2 2061 613 6 1 2062 155 4 3 2064 1023 2 3 2065	279 8 1 2 3 1373 2 2 4 4 1392 3 4 5 4 1005 2 2 8 4 884 23 2 2061 3 613 6 1 2062 4 155 4 3 2064 2 1023 2 3 2065 4	279 8 1 2 3 61 1373 2 2 4 4 92 1392 3 4 5 4 56 1005 2 2 8 4 79 884 23 2 2061 3 41 613 6 1 2062 4 42 155 4 3 2064 2 87 1023 2 3 2065 4 63

902 rows × 50 columns

In [49]:

y_encoded=pd.get_dummies(y,drop_first=True)

In [50]:

y_encoded.head()

Out[50]:

```
Yes Yes

0 1

1 0

2 1

3 0

5 0
```

FEATURE SCALING

```
In [51]:
```

```
from sklearn.preprocessing import MinMaxScaler
```

In [52]:

```
ms=MinMaxScaler()
```

In [53]:

```
X_Scaled=pd.DataFrame(ms.fit_transform(x_encoded),columns=x_encoded.columns)
```

In [54]:

```
X_Scaled.head()
```

Out[54]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	Jobinvolvemer
0	0.547619	0.716129	0.000000	0.25	0.000000	0.333333	0.914286	0.66666
1	0.738095	0.126165	0.250000	0.00	0.000484	0.666667	0.442857	0.33333
2	0.452381	0.910394	0.035714	0.25	0.001451	1.000000	0.885714	0.33333
3	0.357143	0.924014	0.071429	0.75	0.001935	1.000000	0.371429	0.66666
4	0.333333	0.646595	0.035714	0.25	0.003387	1.000000	0.700000	0.66666

5 rows × 50 columns

o rows x ou columns

Splitting Dataset into Train and Test

```
In [55]:
```

```
from sklearn.model_selection import train_test_split
```

In [56]:

```
X_train, X_test, y_train, y_test=train_test_split(X_Scaled, y_encoded, test_size=0.2, random_st
ate=0)
```

In [57]:

```
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

Out[57]:

```
((721, 50), (181, 50), (721, 1), (181, 1))
```

Model Building

```
In [58]:
```

```
from sklearn.linear model import LogisticRegression
model=LogisticRegression()
In [59]:
model.fit(X_train,y_train)
C:\Users\kommi\anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataConversio
nWarning: A column-vector y was passed when a 1d array was expected. Please change the sh
ape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
Out[59]:
LogisticRegression()
In [60]:
predict=model.predict(X test)
In [61]:
predict
Out[61]:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
     0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
     1, 0, 0, 0, 0], dtype=uint8)
In [62]:
y test
Out[62]:
    Yes
 399
     0
1182
     0
 583
     0
1290
     1
1061
     0
  2
 643
     0
1292
     0
1383
     0
 845
     0
181 rows × 1 columns
In [63]:
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,roc_auc
_score, roc_curve
```

In [64]:

```
Out[64]:
0.8342541436464088
In [65]:
confusion matrix(y test, predict)
Out[65]:
array([[133,
             7],
      [ 23, 18]], dtype=int64)
In [66]:
print(classification_report(y_test, predict))
             precision recall f1-score
                                           support
          0
                  0.85
                          0.95
                                    0.90
                                               140
          1
                 0.72
                           0.44
                                    0.55
                                                41
                                     0.83
                                               181
   accuracy
                                    0.72
                 0.79
                           0.69
                                               181
  macro avg
                 0.82
                           0.83
                                    0.82
                                               181
weighted avg
Decision Tree
In [67]:
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
In [68]:
dtc.fit(X train, y train)
Out[68]:
DecisionTreeClassifier()
In [69]:
Predict=dtc.predict(X test)
In [70]:
Predict
Out[70]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,
      0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
      0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1,
      0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,
      1, 0, 0, 0, 0], dtype=uint8)
In [71]:
accuracy score(y test, Predict)
Out[71]:
0.7016574585635359
```

accuracy_score(y_test,predict)

```
In [72]:
 confusion matrix(y test, Predict)
Out [72]:
array([[111, 29],
                         [ 25, 16]], dtype=int64)
In [73]:
print(classification_report(y_test,Predict))
                                                   precision
                                                                                                 recall f1-score
                                                                                                                                                                        support
                                         0
                                                                     0.82
                                                                                                          0.79
                                                                                                                                              0.80
                                                                                                                                                                                      140
                                        1
                                                                     0.36
                                                                                                          0.39
                                                                                                                                              0.37
                                                                                                                                                                                          41
                                                                                                                                              0.70
                                                                                                                                                                                      181
              accuracy
                                                                     0.59
                                                                                                         0.59
                                                                                                                                              0.59
                                                                                                                                                                                      181
          macro avg
                                                                                                                                                                                      181
weighted avg
                                                                     0.71
                                                                                                         0.70
                                                                                                                                              0.71
In [74]:
 y test=y test['Yes']
In [75]:
pd.crosstab(y test, Predict)
Out[75]:
  col_0
                         0 1
     Yes
           0 111 29
           1 25 16
In [76]:
 from sklearn import tree
plt.figure(figsize=(25,15))
 tree.plot tree(dtc, filled=True)
Out[76]:
 [\text{Text}(0.434375, 0.96875, 'X[39] \le 0.5 \text{ ngini} = 0.294 \text{ nsamples} = 721 \text{ nvalue} = [592, 129]')
   Text(0.19638157894736843, 0.90625, 'X[17] \le 0.079 \text{ ngini} = 0.2 \text{ nsamples} = 525 \text{ nvalue} = [
466, 59]'),
   Text(0.06842105263157895, 0.84375, 'X[44] \le 0.5 \le 0.48 \le 45 \le 45 \le 27
, 18]'),
   Text(0.042105263157894736, 0.78125, 'X[6] <= 0.407 \\ ngini = 0.495 \\ nsamples = 31 \\ nvalue = 0.495 \\ nsamples = 0.495 \\ ns
 [14, 17]'),
   Text(0.021052631578947368, 0.71875, 'X[23] \le 0.042 \neq 0.165 = 11 \neq 0.165 = 11
 [1, 10]'),
   Text(0.010526315789473684, 0.65625, 'gini = 0.0 \nsamples = 10 \nvalue = [0, 10]'),
   Text(0.031578947368421054, 0.65625, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
   Text(0.06315789473684211, 0.71875, 'X[9] \le 0.167 \cdot gini = 0.455 \cdot nsamples = 20 \cdot nvalue = [
13, 7]'),
   Text(0.05263157894736842, 0.65625, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 3]'),
    \label{eq:text} \texttt{Text(0.07368421052631578, 0.65625, 'X[13] <= 0.179 \\ \texttt{ngini = 0.36 } \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = [ 1.000 \\ \texttt{nsamples = 17} \\ \texttt{nvalue = 10.000 } \\ \texttt{nvalue = 10.000 \\ \texttt{nvalue = 10.000 } \\ \texttt{nvalue = 10.0000 } \\ \texttt{nv
13, 4]'),
   Text(0.06315789473684211, 0.59375, 'X[6] \le 0.686 \cdot gini = 0.5 \cdot gini = 8 \cdot gini = [4, 6]
4]'),
   Text(0.05263157894736842, 0.53125, 'gini = 0.0 \nsamples = 3 \nvalue = [3, 0]'),
   Text(0.07368421052631578, 0.53125, 'X[6] \le 0.971  | mgini = 0.32 | nsamples = 5 | nvalue = [1, 1]
4]'),
   Text(0.06315789473684211, 0.46875, 'gini = 0.0 \nsamples = 4 \nvalue = [0, 4]'),
   Text(0.08421052631578947, 0.46875, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
```

```
Text(0.08421052631578947, 0.59375, 'gini = 0.0 \nsamples = 9 \nvalue = [9, 0]'),
     Text(0.09473684210526316, 0.78125, 'X[3] \le 0.125 \cdot gini = 0.133 \cdot gini = 14 
13, 1]'),
    Text(0.08421052631578947, 0.71875, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
     Text(0.10526315789473684, 0.71875, 'gini = 0.0 \nsamples = 13 \nvalue = [13, 0]'),
    Text(0.3243421052631579, 0.84375, 'X[12] \le 0.562 \le 0.156 \le 480 \le 480 \le 10.156 \le 10
 [439, 41]'),
     Text(0.22763157894736843, 0.78125, 'X[1] \le 0.005 \cdot gini = 0.119 \cdot gamples = 393 \cdot gamples = 
 [368, 25]'),
     Text(0.21710526315789475, 0.71875, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
     Text(0.2381578947368421, 0.71875, 'X[46] \le 0.5 \le 0.115 \le 392 \le 392 \le [3]
68, 24]'),
    [346, 19]'),
     [17, 4]'),
     Text(0.09473684210526316, 0.53125, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
     Text(0.11578947368421053, 0.53125, 'X[20] <= 0.679 \\ ngini = 0.188 \\ nsamples = 19 \\ nvalue = 0.188 \\ nsamples = 0.188 \\ nsamp
 [17, 2]'),
     Text(0.10526315789473684, 0.46875, 'gini = 0.0\nsamples = 16\nvalue = [16, 0]'),
     , 2]'),
     Text(0.11578947368421053, 0.40625, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
    Text(0.1368421052631579, 0.40625, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
    Text(0.21578947368421053, 0.59375, 'X[2] \le 0.982 \cdot gini = 0.083 \cdot gini = 344 \cdot gi
 [329, 15]'),
    Text(0.18947368421052632, 0.53125, 'X[0] \le 0.881 \cdot gini = 0.074 \cdot gini = 338 \cdot gi
 [325, 13]'),
     Text(0.16842105263157894, 0.46875, 'X[6] \le 0.479 = 0.064 = 331 = 331 = 0.064
 [320, 11]'),
     Text(0.15789473684210525, 0.40625, 'gini = 0.0 \nsamples = 161 \nvalue = [161, 0]'),
     Text(0.17894736842105263, 0.40625, 'X[10] <= 0.681\ngini = 0.121\nsamples = 170\nvalue =
 [159, 11]'),
     Text(0.15263157894736842, 0.34375, 'X[13] \le 0.107 = 0.077 = 0.077 = 150 = 150
 [144, 6]'),
     Text(0.13157894736842105, 0.28125, 'X[21] \le 0.278 / ngini = 0.176 / nsamples = 41 / nvalue = 0.176 / nsamples = 0
 [37, 4]'),
    Text(0.12105263157894737, 0.21875, 'X[1] \le 0.601 = 0.308 = 21 = [
17, 4]'),
    Text(0.11052631578947368, 0.15625, 'X[1] \le 0.352  rgini = 0.494 \ nsamples = 9 \ nvalue = [5]
    Text(0.1, 0.09375, 'gini = 0.0\nsamples = 4\nvalue = [4, 0]'),
    Text(0.12105263157894737, 0.09375, 'X[15] \le 0.833 \neq 0.32 \le 5 \Rightarrow 0.833 = 0.32 \le 0.833 
     Text(0.11052631578947368, 0.03125, 'gini = 0.0 \nsamples = 4 \nvalue = [0, 4]'),
     Text(0.13157894736842105, 0.03125, 'qini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
     Text (0.13157894736842105, 0.15625, 'gini = 0.0 \nsamples = 12 \nvalue = [12, 0]'),
     Text(0.14210526315789473, 0.21875, 'gini = 0.0\nsamples = 20\nvalue = [20, 0]'),
     Text(0.1736842105263158, 0.28125, 'X[15] \le 0.167 \cdot gini = 0.036 \cdot gini = 109 \cdot gi
 [107, 2]'),
     Text(0.1631578947368421, 0.21875, 'X[11] \le 0.791 \text{ ngini} = 0.198 \text{ nsamples} = 18 \text{ nvalue} = [
16, 2]'),
     Text(0.15263157894736842, 0.15625, 'gini = 0.0 \nsamples = 15 \nvalue = [15, 0]'),
    Text(0.1736842105263158, 0.15625, 'X[4] \le 0.587 \cdot in = 0.444 \cdot in = 
2]'),
    Text(0.1631578947368421, 0.09375, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
     Text(0.18421052631578946, 0.09375, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
    Text(0.18421052631578946, 0.21875, 'gini = 0.0 \nsamples = 91 \nvalue = [91, 0]'),
    Text(0.20526315789473684, 0.34375, 'X[6] \le 0.521 = 0.375 = 0.375 = 20 = [
15, 5]'),
    Text(0.19473684210526315, 0.28125, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 3]'),
    Text(0.21578947368421053, 0.28125, 'X[6] \le 0.979  ngini = 0.208 \ nsamples = 17 \ nvalue = [
15, 2]'),
    Text(0.20526315789473684, 0.21875, 'X[33] \le 0.5 = 0.117 = 0.117 = 16 = 16
5, 1]'),
    Text(0.19473684210526315, 0.15625, 'gini = 0.0 \nsamples = 14 \nvalue = [14, 0]'),
    Text (0.21578947368421053, 0.15625, 'X[22] \le 0.125 \setminus gini = 0.5 \setminus gini = 2 \setminus gini = 1,
1]'),
    Text(0.20526315789473684, 0.09375, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
     Text (0.22631578947368422, 0.09375, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
    Text(0.22631578947368422, 0.21875, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
     Text(0.21052631578947367, 0.46875, 'X[49] \le 0.5 = 0.408 = 7 = 5,
```

```
2]'),
   Text(0.2, 0.40625, 'gini = 0.0\nsamples = 5\nvalue = [5, 0]'),
   Text(0.22105263157894736, 0.40625, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
   Text(0.24210526315789474, 0.53125, 'X[4] \le 0.544  ngini = 0.444 \ nsamples = 6 \ nvalue = [4]
   Text(0.23157894736842105, 0.46875, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
   Text(0.25263157894736843, 0.46875, 'gini = 0.0\nsamples = 4\nvalue = [4, 0]'),
   Text(0.3157894736842105, 0.65625, 'X[19] \le 0.833  ngini = 0.302 \ nsamples = 27 \ nvalue = [
22, 5]'),
   Text(0.30526315789473685, 0.59375, 'X[7] \le 0.167 \cdot i = 0.211 \cdot i = 25 \cdot i = 10.211 \cdot i = 10.21
22, 3]'),
   Text(0.28421052631578947, 0.53125, 'X[22] <= 0.625 \cdot ngini = 0.444 \cdot nsamples = 3 \cdot nvalue = [
1, 2]'),
   Text(0.3263157894736842, 0.53125, 'X[1] \le 0.938 \cdot ngini = 0.087 \cdot nsamples = 22 \cdot nvalue = [2]
1, 1]'),
   Text(0.3157894736842105, 0.46875, 'gini = 0.0 \nsamples = 21 \nvalue = [21, 0]'),
   Text(0.3368421052631579, 0.46875, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
   Text(0.3263157894736842, 0.59375, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
   Text(0.42105263157894735, 0.78125, 'X[0] \le 0.369  ngini = 0.3 \nsamples = 87 \nvalue = [71]
, 16]'),
   2, 11]'),
   Text(0.35789473684210527, 0.65625, 'X[29] \le 0.5 = 0.278 = 0.278 = 6 = [1, 0.35789473684210527, 0.65625, 'X[29] = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 = 0.5 =
5]'),
   Text(0.3473684210526316, 0.59375, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
   Text(0.3684210526315789, 0.59375, 'gini = 0.0\nsamples = 5\nvalue = [0, 5]'),
   , 6]'),
   Text(0.37894736842105264, 0.53125, 'gini = 0.0 \nsamples = 5 \nvalue = [0, 5]'),
   Text(0.4, 0.53125, 'X[13] \le 0.107 \text{ ngini} = 0.219 \text{ nsamples} = 8 \text{ nvalue} = [7, 1]'),
   Text(0.3894736842105263, 0.46875, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
   Text(0.4105263157894737, 0.46875, 'gini = 0.0\nsamples = 7\nvalue = [7, 0]'), Text(0.4105263157894737, 0.59375, 'gini = 0.0\nsamples = 14\nvalue = [14, 0]'),
   Text(0.4631578947368421, 0.71875, 'X[13] \le 0.821 = 0.168 = 54 = [
49, 5]'),
   Text(0.45263157894736844, 0.65625, 'X[10] \le 0.123 = 0.14 = 0.14 \le 53 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125 = 0.125
49, 4]'),
   Text(0.4421052631578947, 0.59375, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
   Text(0.4631578947368421, 0.59375, 'X[10] \le 0.954  rgini = 0.109 \nsamples = 52 \nvalue = [
49, 3]'),
   Text(0.45263157894736844, 0.53125, 'X[4] \le 0.981 = 0.075 = 51 = [
49, 2]'),
   Text(0.43157894736842106, 0.46875, 'X[34] <= 0.5 \neq 0.04 = 0.04 = 49 = 49 = 48
   Text(0.42105263157894735, 0.40625, 'gini = 0.0 \nsamples = 47 \nvalue = [47, 0]'),
   Text(0.4421052631578947, 0.40625, 'X[28] \le 0.5 \le 0.5 \le 2 \le 2 \le 2 \le 15
   Text(0.43157894736842106, 0.34375, 'qini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
   Text(0.45263157894736844, 0.34375, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
   Text(0.47368421052631576, 0.46875, 'X[49] \le 0.5 \le 0.5 \le 2 \le 2 \le 10.5 \le
]'),
   Text(0.4631578947368421, 0.40625, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
   Text(0.4842105263157895, 0.40625, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
   Text(0.47368421052631576, 0.53125, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
   Text(0.47368421052631576, 0.65625, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
   Text(0.6723684210526316, 0.90625, 'X[10] \le 0.162 \le 0.459 \le 196 \le
 [126, 70]'),
   Text(0.5473684210526316, 0.84375, 'X[3] \le 0.625 \cdot i = 0.411 \cdot i = 45 \cdot i = 10.411 \cdot i = 10.411
3, 32]'),
   Text(0.5263157894736842, 0.78125, 'X[21] \le 0.167 \cdot ngini = 0.332 \cdot nsamples = 38 \cdot nvalue = [
8, 30]'),
   Text(0.5157894736842106, 0.71875, 'qini = 0.0 \nsamples = 17 \nvalue = [0, 17]'),
   Text(0.5368421052631579, 0.71875, 'X[11] \leq 0.815\ngini = 0.472\nsamples = 21\nvalue = [
8, 13]'),
   Text(0.5157894736842106, 0.65625, 'X[4] \le 0.846 \cdot ngini = 0.32 \cdot nsamples = 15 \cdot nvalue = [3, 1]
12]'),
   12]'),
   Text(0.49473684210526314, 0.53125, 'gini = 0.0 \nsamples = 12 \nvalue = [0, 12]'),
```

```
Text(0.5157894736842106, 0.53125, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
  Text(0.5263157894736842, 0.59375, 'gini = 0.0 \nsamples = 2 \nvalue = [2, 0]'),
  Text(0.5578947368421052, 0.65625, 'X[6] \le 0.893  | o.278 | nsamples = 6 | nvalue = [5, 10.5578947368421052, 0.65625, 'X[6] | o.893 | ngini = 0.278 | nsamples = 6 | nvalue = [5, 10.5578947368421052, 0.65625, 'X[6] | o.893 | ngini = 0.278 | nsamples = 6 | nvalue = [5, 10.5578947368421052, 0.65625, 'X[6] | o.893 | ngini = 0.278 | nsamples = 6 | nvalue = [5, 10.5578947368421052, 0.65625, 'X[6] | o.893 | ngini = 0.278 | nsamples = 6 | nvalue = [5, 10.5578947368421052, 0.65625, 'X[6] | o.893 | ngini = 0.278 | nsamples = 6 | nvalue = [5, 10.5578947368421052, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 0.65625, 
  Text(0.5473684210526316, 0.59375, 'gini = 0.0 \nsamples = 5 \nvalue = [5, 0]'),
  Text(0.5684210526315789, 0.59375, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
  Text(0.5684210526315789, 0.78125, 'X[10] \le 0.119  gini = 0.408 \( nsamples = 7 \) \( nvalue = [5] \)
, 2]'),
  Text(0.5578947368421052, 0.71875, 'qini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
  Text(0.5789473684210527, 0.71875, 'gini = 0.0\nsamples = 5\nvalue = [5, 0]'),
  Text(0.7973684210526316, 0.84375, 'X[16] <= 0.25  | o.377 | o.377 | nsamples = 151 | nvalue = [
113, 38]'),
  Text(0.6868421052631579, 0.78125, 'X[20] \le 0.179 \cdot init = 0.484 \cdot insamples = 68 \cdot insamp
40, 28]'),
  Text(0.6210526315789474, 0.71875, 'X[17] \le 0.921 = 0.401 = 0.401 = [
5, 13]'),
  Text(0.6105263157894737, 0.65625, 'X[1] \le 0.147 = 0.305 = 16 = 16 = 16
, 13]'),
  Text(0.5894736842105263, 0.59375, 'X[20] \le 0.036  q in i = 0.444  nsamples = 3  nvalue = [2]
, 1]'),
  Text(0.5789473684210527, 0.53125, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(0.6, 0.53125, 'gini = 0.0\nsamples = 2\nvalue = [2, 0]'),
  Text(0.631578947368421, 0.59375, 'X[13] \le 0.893 = 0.142 = 0.142 = 13 = 13
, 12]'),
  Text(0.6210526315789474, 0.53125, 'gini = 0.0 \nsamples = 11 \nvalue = [0, 11]'),
  Text(0.6421052631578947, 0.53125, 'X[2] \le 0.446 = 0.5 = 2 = 2 = 1, 1
]'),
  Text(0.631578947368421, 0.46875, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
  Text(0.6526315789473685, 0.46875, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  15]'),
  91'),
  Text(0.6947368421052632, 0.59375, 'X[0] \le 0.202 = 0.32 = 0.32 = 10 = [2, 0.59375]
8]'),
  Text(0.6842105263157895, 0.53125, 'X[18] \le 0.583  ngini = 0.444 \(\)nsamples = 3 \(\)nvalue = [2]
, 1]'),
  Text(0.6736842105263158, 0.46875, 'gini = 0.0 \nsamples = 2 \nvalue = [2, 0]'),
  Text(0.6947368421052632, 0.46875, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
  Text(0.7052631578947368, 0.53125, 'gini = 0.0 \nsamples = 7 \nvalue = [0, 7]'),
  Text(0.7368421052631579, 0.59375, 'X[2] \le 0.518 \cdot gini = 0.278 \cdot gini = 6 \cdot gini = 5,
1]'),
  Text(0.7263157894736842, 0.53125, 'gini = 0.0 \nsamples = 5 \nvalue = [5, 0]'),
  Text(0.7473684210526316, 0.53125, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
  Text (0.7894736842105263, 0.65625, 'X[42] \le 0.5 \neq 0.291 = 34 \neq 0.291 = 28
, 6]'),
  Text(0.7789473684210526, 0.59375, 'X[10] \le 0.843  ngini = 0.219 \nsamples = 32 \nvalue = [
28, 4]'),
  Text(0.7684210526315789, 0.53125, 'X[11] \le 0.973  ngini = 0.124 \ nsamples = 30 \ nvalue = [
28, 2]'),
  Text(0.7578947368421053, 0.46875, 'X[35] \le 0.5 \le 0.067 \le 29 \le 29 \le [28]
, 1]'),
  Text(0.7473684210526316, 0.40625, 'gini = 0.0 \nsamples = 27 \nvalue = [27, 0]'),
  Text(0.7684210526315789, 0.40625, 'X[11] \le 0.134 / gini = 0.5 / gini = 2 / gini = [1, 0.7684210526315789, 0.40625, 'X[11] / gini = [1, 0.768421052631578]
1]'),
  Text(0.7578947368421053, 0.34375, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'),
  Text(0.7789473684210526, 0.34375, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(0.7789473684210526, 0.46875, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(0.7894736842105263, 0.53125, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
  Text(0.8, 0.59375, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'),
  Text(0.9078947368421053, 0.78125, 'X[11] \le 0.789  ngini = 0.212 \nsamples = 83 \nvalue = [
73, 10]'),
  Text(0.8578947368421053, 0.71875, 'X[19] \le 0.167 = 0.116 = 65 = 65 = [
61, 4]'),
  Text(0.8315789473684211, 0.65625, 'X[42] \le 0.5 \le 0.5 \le 0.48 \le 5 \le 0.5 \le 0.48 
]'),
  Text(0.8210526315789474, 0.59375, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
  Text (0.8421052631578947, 0.59375, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2]'),
  Text(0.8842105263157894, 0.65625, 'X[18] <= 0.917\ngini = 0.064\nsamples = 60\nvalue = [
58, 21'),
```

```
6, 1]'),
  Text(0.8526315789473684, 0.53125, 'X[31] \le 0.5 \le 0.32 \le 5 \le 5 \le 10.32 \le 10.3
  Text(0.8421052631578947, 0.46875, 'gini = 0.0 \nsamples = 4 \nvalue = [4, 0]'),
  Text(0.8631578947368421, 0.46875, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
  Text(0.8736842105263158, 0.53125, 'gini = 0.0 \nsamples = 52 \nvalue = [52, 0]'),
  Text(0.9052631578947369, 0.59375, 'X[23] \le 0.083  ngini = 0.444 \(\text{nsamples} = 3 \) nvalue = [2]
, 1]'),
  Text(0.8947368421052632, 0.53125, 'qini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(0.9157894736842105, 0.53125, 'gini = 0.0\nsamples = 2\nvalue = [2, 0]'),
  Text(0.9578947368421052, 0.71875, 'X[25] <= 0.5\ngini = 0.444\nsamples = 18\nvalue = [12]
  Text(0.9368421052631579, 0.65625, 'X[5] \le 0.5 \le 0.408 \le 7 \le 7 \le 1.50
  Text(0.9263157894736842, 0.59375, 'qini = 0.0 \nsamples = 4 \nvalue = [0, 4]'),
  Text(0.9473684210526315, 0.59375, 'X[13] \le 0.464 \cdot ngini = 0.444 \cdot nsamples = 3 \cdot nvalue = [2]
, 1]'),
  Text(0.9368421052631579, 0.53125, 'gini = 0.0\nsamples = 2\nvalue = [2, 0]'),
  Text(0.9578947368421052, 0.53125, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(0.9789473684210527, 0.65625, 'X[12] \le 0.062 \cdot gini = 0.165 \cdot nsamples = 11 \cdot nvalue = [
10, 1]'),
  Text(0.968421052631579, 0.59375, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(0.9894736842105263, 0.59375, 'gini = 0.0 \nsamples = 10 \nvalue = [10, 0]')
```


In [77]:

```
from sklearn.model_selection import GridSearchCV
parameter={
  'criterion':['gini','entropy'],
   'splitter':['best'],
   'max_depth':[1,2,3,4,5],
   'max_features':['auto', 'sqrt', 'log2']
}
```

In [78]:

```
grid search=GridSearchCV(estimator=dtc,param grid=parameter,cv=5,scoring="accuracy")
```

In [79]:

```
grid_search.fit(X_train,y_train)
```

```
Juc[ / 2] .
GridSearchCV(cv=5, estimator=DecisionTreeClassifier(),
             param grid={'criterion': ['gini', 'entropy'],
                         'max_depth': [1, 2, 3, 4, 5],
                          'max features': ['auto', 'sqrt', 'log2'],
                         'splitter': ['best']},
             scoring='accuracy')
In [80]:
grid search.best params
Out[80]:
{'criterion': 'entropy',
 'max depth': 3,
 'max features': 'log2',
 'splitter': 'best'}
In [81]:
dtc_cv=DecisionTreeClassifier(criterion= 'entropy',
\max depth=3,
max features='sqrt',
 splitter='best')
dtc_cv.fit(X_train,y_train)
Out[81]:
DecisionTreeClassifier(criterion='entropy', max depth=3, max features='sqrt')
In [82]:
predict=dtc_cv.predict(X_test)
In [83]:
print(classification_report(y_test,predict))
              precision
                          recall f1-score
                                               support
                   0.78
                             0.99
                                       0.87
                                                   140
           0
                   0.50
                             0.05
                                       0.09
                                                   41
                                       0.77
                                                   181
   accuracy
                            0.52
                                       0.48
                   0.64
                                                   181
  macro avg
                   0.72
                            0.77
                                       0.69
                                                   181
weighted avg
In [85]:
accuracy_score(y_test,predict)
Out[85]:
0.7734806629834254
Random Forest
In [86]:
from sklearn.ensemble import RandomForestClassifier
In [87]:
random forest = RandomForestClassifier(n estimators=100, random state=42)
In [88]:
random forest.fit(X train, y train)
```

```
C:\Users\kommi\AppData\Local\Temp\ipykernel_3576\2566748861.py:1: DataConversionWarning:
A column-vector y was passed when a 1d array was expected. Please change the shape of y t
o (n_samples,), for example using ravel().
  random_forest.fit(X_train, y_train)
```

Out[88]:

RandomForestClassifier(random state=42)

In [89]:

```
y_pred = random_forest.predict(X_test)
```

In [90]:

y pred

Out[90]:

In [91]:

```
accuracy = accuracy_score(y_test, y_pred)
print(accuracy)
```

0.8066298342541437

In [92]:

```
class_report = classification_report(y_test, y_pred)
print(class report)
```

	precision	recall	f1-score	support
0 1	0.81 0.80	0.99	0.89 0.31	140 41
accuracy macro avg weighted avg	0.80 0.81	0.59 0.81	0.81 0.60 0.76	181 181 181