

PROBLEM STATEMENT

- Influenza outbreak
- Vaccines for 20% of population
- Model impact of measures
 - Vaccinations
 - Closing of schools
- Based on data from previous pandemic

Model

- β contact matrix, describing interactions between and within the age group
- γ parameter connected with latency period length
- α parameter connected with infectious period length

CONTACT MATRICES/PARAMETERS

	Matrix 1	Matrix 2	Matrix 3
β ₁	0.12·10 ⁻⁴	0.13·10 ⁻⁴	0.53·10-4
β ₂	0.44·10-4	0.47·10-4	0.46·10 ⁻⁴
β ₃	5.68·10 ⁻⁴	0.08·10-4	6.68·10-4
β4	1.63·10 ⁻⁴	0.03·10 ⁻⁴	1.90·10-4

ASSUMPTIONS

- Based on the scarcity of data
 - The GP data reflects well the age distribution and number of infections in each age group
- Based on expert knowledge
 - Latent and infectious period length
 - Similarity to other flu outbreaks
- Based on short period of time considered
 - Contact matrix does not change in time
 - No immunity loss and reinfections
 - No change in population size and age structure

FITTING

	Matrix 1	Matrix 2	Matrix 3
Fit Error	72.8699	80.3447	85.5511
(RMSE)	/2.0077	00.3447	05.5511

VACCINES DISTRIBUTION

Different vaccine distribution strategies

EFFECTIVENESS OF THE VACCINE

CLOSING SCHOOLS

The schools close when the number of infections surpasses a threshold

CLOSING SCHOOLS FOR SIX WEEKS

The schools close for six weeks when the number of infections surpasses a threshold

COMBINING STRATEGIES

Combining vaccinations and closure of schools when the number of infections surpasses a threshold

KEY CONCLUSIONS

- Uniform distribution of vaccines → not enough vaccines (required 57-59% coverage)
- Closing nurseries and schools too late → little change
- Optimal distribution of the vaccine depends on its effectiveness
- Vaccination of the 5-14 age group → most effective
- Threshold for school closure → 2%

RECOMMENDATIONS

- Continue data collection
 - Contact
 - Recovery and deaths
- Recovered → susceptible
- Moment of vaccination
 - Additional compartment
- Refine age groups

DURATION OF PANDEMIC

Duration [weeks]	No closing	0.5%	1%	2%	3%
Threshold	9.82	21.0	16.2	13.0	11.5
Threshold + vaccination	10.9	22.5	15.9	12.4	11.2
6 consecutive weeks	9.82	15.1	18.3	11.6	10.1
Peak size [10 ⁵]					
Threshold	10.3	2.93	3.84	5.41	7.15
Threshold + vaccination	6.36	1.47	2.46	4.38	6.06
6 consecutive weeks	3.43	4.12	4.98	7.15	9.60
Total no. of infections [10 ⁶]					
Threshold	4.60	3.86	4.03	4.19	4.30
Threshold + vaccination	3.41	2.84	3.02	3.22	3.35
6 consecutive weeks	3.96	3.81	3.69	3.74	4.08

MODEL EQUATIONS

$$S' = -\beta SI$$

•
$$E' = \beta SI - \gamma E$$

$$I' = \gamma E - \alpha I$$

 $\mathbf{R}' = \alpha \mathbf{I}$

Where,

S = Number of Susceptible people

E = Number of Exposed people

I = Number of Infectious people

R = Number of Recovered people

 $\beta = \mbox{Contact}$ matrix, describing interactions between and within the age group

 γ = parameter connected with latency period length

 α = parameter connected with infectious period length