1/1 WPAT - ©Thomson Derwent - image

Accession Nbr:

2000-422784 [36]

Related Acc. Nbrs:

2000-422783 2000-422785

Sec. Acc. CPI:

C2005-068739

Title:

New metallocene mono halide derivatives for use in olefin polymerization catalysts have one halogen ligand and another negative ligand such as phenolate attached to the central metal atom

Derwent Classes:

A18 E11 E12

Patent Assignee:

(TARG) TARGOR GMBH

(BASE) BASELL POLYOLEFINE GMBH

Inventor(s):

BINGEL C; BRINTZINGER H; DAMRAU H; MUELLER P; SUHM J; LAUTET BH

Nbr of Patents:

6

Nbr of Countries:

91

Patent Number:

WO200031090 A1 20000602 DW2000-36 C07F-017/00 Ger 56p *

AP: 1999WO-EP08851 19991118

DSNW: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

DSRW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ TZ UG ZW

🖾 AU200012721 A 20000613 DW2000-43

FD: Based on WO200031090 AP: 2000AU-0012721 19991118

BR9906934 A 20001010 DW2000-55 C07F-017/00

FD: Based on WO200031090

THIS PAGE BLANK (USPTO)

AP: 1999BR-0006934 19991118; 1999WO-EP08851 19991118

EP1049705 A1 20001108 DW2000-62 C07F-017/00 Ger

FD: Based on WO200031090

AP: 1999EP-0956012 19991118; 1999WO-EP08851 19991118

DSR: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

©JP2002530415 W 20020917 DW2002-76 C07F-017/00 67p

FD: Based on WO200031090

AP: 1999WO-EP08851 19991118; 2000JP-0583918 19991118

EP1396495 A1 20040310 DW2004-18 C07F-017/00 Ger

FD: Div ex EP1049705

AP: 1999EP-0956012 19991118; 2003EP-0026592 19991118

DSR: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priority Details:

1998DE-1054350 19981125

IPC s:

C07F-007/00 C07F-017/00 C07F-007/08 C08F-004/62 C08F-010/00

Abstract:

WO200031090 A

NOVELTY - New metallocene mono-halides with another negative ligand attached to the central metal atom, e.g. alkoxide or aryloxide.

DETAILED DESCRIPTION - Metallocene compounds of formula (I) are new.

M = a Sub-Group III, IV, V or VI metal;

R1, R2 = Si(R12)3 or a 1-30C hydrocarbon group, or 2 or more groups R1 plus the linking ring atoms may form an optionally substituted 4-24C ring system;

R12 = H or a 1-40C hydrocarbon group;

R3 = a 1-40C hydrocarbon group:

X = halogen;

Y = a Main Group VI element or a fragment of formula CH (sic), C(R3)2, NR3, PR3 or P(O)R3;

n, n' = 1-5 if k = 0, or 0-4 if k = 1;

m = 1-3, preferably 1;

k = 0 or 1 (unbridged or bridged metallocene respectively); and

B = bridging element

INDEPENDENT CLAIMS are also included for:

- (a) a catalyst system containing (I), with a support material and possibly a cocatalyst; and
- (b) a process for the production of polyolefins in presence of this catalyst USE Catalysts containing these compounds are useful for the polymerization of olefins (claimed). Especially useful for the homopolymerization of ethylene or propylene and for the copolymerization

THIS PAGE BLANK (USPTO)

of ethylene with cyclic olefins or dienes.

ADVANTAGE - Soluble metallocene derivatives which, after conversion into the catalytically active species, show a polymerization performance at least equal to that of the sparingly soluble metallocene dihalides from which they are obtained. Catalysts based on these metallocenes enable the production of polyolefins showing a uniform grain morphology with no fines and very high stereo- and regio-specificity (e.g. polypropylene), with no deposits or caking in the reactor. (Dwg.0/0)

Manual Codes:

CPI: A02-A06E A04-G01A E05-E01 E05-E02 E05-L E05-M E05-N

Update Basic:

2000-36

Update Equivalents:

2000-43; 2000-55; 2000-62; 2002-76; 2004-18

Update Equivalents (Monthly):

2002-11; 2004-03

THIS PAGE BLANK (USPTO)

WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationale ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07F 17/00, C08F 10/00

(11) Internationale Veröffentlichungsnummer:

WO 00/31090

(43) Internationales Veröffentlichungsdatum:

2. Juni 2000 (02.06.00)

(21) Internationales Aktenzeichen:

PCT/EP99/08851

(22) Internationales Anmeldedatum:

18. November 1999

(18.11.99)

A1

(30) Prioritätsdaten:

198 54 350.6

25. November 1998 (25.11.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): TARGOR GMBH [DE/DE]; D-55116 Mainz (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): BINGEL, Carsten [DE/DE]; Elsa-Brandström-Strasse 13-15, D-65830 Kriftel (DE). BRINTZINGER, Hans-Herbert [DE/CH]; Unterdorfstrasse 17, CH-8274 Tägerwilen (CH). DAMRAU, Hans-Robert-Hellmuth [DE/DE]; Bodanstrasse D-78462 Konstanz (DE). MÜLLER, Patrik [DE/DE]; Erfurter Strasse 91, D-67663 Kaiserslautern (DE). SUHM, Jürgen [DE/DE]; Friesenstrasse 16, D-67063 Ludwigshafen (DE).
- (74) Anwalt: STARK, Vera; BASF Aktiengesellschaft, D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: METALLOCENE MONOHALOGENIDES
- (54) Bezeichnung: METALLOCENMONOHALOGENIDE
- (57) Abstract

The invention relates to new metallocene monohalogenides, a method for producing same and their use in the polymerisation of olefins.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neuartige Metallocenmonohalogenide, ein Verfahren zu ihrer Herstellung sowie deren Verwendung in der Polymerisation von Olefinen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

ALL Albanien ES Spanien LS Lesotho SI Slowenien AM Armenien FI Finnland LT Litauen SK Slowakei AT Osterreich FR Frankreich LU Luxemburg SN Senegal AU Australien GA Gabun LV Lettland SZ Swasiland ASZ Aserbaidschan GB Vereinigtes Königreich MC Monaco TD Tschad BA Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Togo BB Barbados GH Ghana MG Republik Moldau TG Togo BE Belgien GN Guinea MG Madagaskar TJ Tadschikistan BF Burkina Faso GR Griechenland BF Burkina Faso GR Griechenland BF Burkina Faso GR Griechenland BG Bulgarien HU Ungarn ML Mali TT Trinidad und Tobago BR Brasilien IL Israel MN Mongolei UA Ukraine BB Brasilien IL Israel MR Mauretanien UG Uganda CA Kanada IT Italien MW Malawi US Vereinigte Staaten von CG Kongo KE Kenia NE Niger UZ Usbekistan CG Kongo KE Kenia NL Niederlande VN Vietnam CH Schweiz KG Kirgisistan NL Niederlande VN Vietnam CM Kamerun CM Kamashata Republik LC St. Lucia RU Russische Föderation CM Kuba KR Republik Korea PT Portugal CM Kuba KR Republik LC St. Lucia RU Russische Föderation CM Kuba LK Sri Lanka SE Schweden CM CD Deutschland LJ Liechtenstein SD Sudan CM CD Glanemark LK Sri Lanka SE Schweden CE Estland CE Estland CE Schweice Schweden CE Estland CE Estland CE Estland CE Schweice SC Schweden CE Schweden CE Schweice Estland CE Schweice Schweden CE Schweice Schweden CE Schweice Schw

WO 00/31090 PCT/EP99/08851

Metallocenmonohalogenide

Beschreibung

5

Die vorliegende Erfindung betrifft speziell substituierte Metallocene, ein Verfahren zu ihrer Herstellung sowie deren Verwendung in der Polymerisation von Olefinen.

10 Metallocene können, gegebenenfalls in Kombination mit einem oder mehreren Co-Katalysatoren, als Katalysatorkomponente für die Polymerisation und Copolymerisation von Olefinen verwendet werden. Insbesondere werden als Katalysatorvorstufen halogenhaltige Metallocene eingesetzt, die sich beispielsweise durch ein

15 Aluminoxan in einen polymerisationsaktiven kationischen Metallocenkomplex überführen lassen (EP-A-129368).

Die Herstellung von Metallocenen ist an sich bekannt (US
20 4,752,597; US 5,017,714; EP-A-320762; EP-A-416815; EP-A-537686;
EP-A- 669340; H.H. Brintzinger et al.; Angew. Chem., 107 (1995),
1255; H.H. Brintzinger et al., J. Organomet. Chem. 232 (1982),
233). Dazu können zum Beispiel Cyclopentadienyl-Metall-Verbindungen mit Halogeniden von Übergangsmetallen wie Titan, Zirkonium
25 und Hafnium umgesetzt werden. Die gebildeten Metallocendihalogenide, in der Regel die Metallocendichloride, sind im Falle der technisch interessanten racemischen Ansa-Bis-indenyl-Metallocene, die für die Herstellung von isotaktischem Polypropylen benötigt werden (EP 0485823, EP 0549900, EP 0576970, WO 98/40331), in der
30 Regel schwer lösliche Verbindungen.

Sowohl bei der Darstellung des polymerisationsaktiven kationischen Metallocenkatalysatorsystems in ungeträgerter oder geträgerter Form, als auch für die Aufreinigung des racemischen
35 Metallocenes, also der Katalysatorvorstufe, durch Kristallisationstechniken, wäre eine bessere Löslichkeit der technisch interessanten Metallocene wünschenswert.

Es bestand somit die Aufgabe, gut lösliche Metallocene zu finden, 40 die nach Umwandlung in die polymerisationsaktive Spezie, mindestens die gleiche Polymerisationsperformance zeigen wie die Katalysatorsysteme, die aus den schwer löslichen Metallocendichloriden hergestellt werden.

45 Es wurde nun überraschenderweise gefunden, daß durch speziell substituierte Metallocene, nämlich Metallocenmonohalogenide, die der Erfindung zugrunde liegende Aufgabe gelöst wird.

Gegenstand der vorliegenden Erfindung sind Verbindungen der Formel (I),

5

$$\begin{bmatrix} R^{1} \\ R^{1} \\ K \end{bmatrix} \begin{bmatrix} K \\ K \end{bmatrix} \begin{bmatrix}$$

15

40

10

worin

M ein Metall der III., IV., V. oder VI. Nebengruppe des Perio densystems der Elemente ist, insbesondere Ti, Zr oder Hf, besonders bevorzugt Zirkonium,

gleich oder verschieden sind und Si(R¹²)₃ ist, worin R¹²
gleich oder verschieden ein Wasserstoffatom oder eine
C₁-C₄₀-kohlenstoffhaltige Gruppe, bevorzugt C₁-C₂₀-Alkyl,
C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₁₀-Fluoraryl,
C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Alkylaryl oder C₈-C₄₀-Arylalkenyl,

30 oder R¹ eine C₁-C₃₀ - kohlenstoffhaltige Gruppe, bevorzugt
C₁-C₂₅-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder
Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl,
C₅-C₂₄-Heteroaryl, C₁-C₃₀-Arylalkyl, C₁-C₃₀-Alkylaryl, fluorhaltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges C₁-C₃₀-Arylalkyl, fluorhaltiges C₁-C₃₀-Alkylaryl oder
C₁-C₁₂-Alkoxy ist,

oder zwei oder mehrere Reste R^1 können so miteinander verbunden sein, daß die Reste R^1 und die sie verbindenden Atome des Cyclopentadienylringes ein C_4 - C_{24} -Ringsystem bilden, welches seinerseits substituiert sein kann,

gleich oder verschieden sind und $Si(R^{12})_3$ ist, worin R^{12} gleich oder verschieden ein Wasserstoffatom oder eine C_1-C_{40} -kohlenstoffhaltige Gruppe, bevorzugt C_1-C_{20} -Alkyl, C_1-C_{10} -Fluoralkyl, C_1-C_{10} -Alkoxy, C_6-C_{14} -Aryl, C_6-C_{10} -Fluoraryl,

 $C_6-C_{10}-Aryloxy$, $C_2-C_{10}-Alkenyl$, $C_7-C_{40}-Arylalkyl$, $C_7-C_{40}-Alkyla-ryl$ oder $C_8-C_{40}-Arylalkenyl$,

- oder R² eine C₁-C₃₀ kohlenstoffhaltige Gruppe, bevorzugt

 C₁-C₂₅-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder
 Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl,
 C₅-C₂₄-Heteroaryl, C₇-C₃₀-Arylalkyl, C₇-C₃₀-Alkylaryl, fluorhaltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges C₇-C₃₀-Arylalkyl, fluorhaltiges C₇-C₃₀-Alkylaryl oder

 C₁-C₁₂-Alkoxy ist,
- oder zwei oder mehrere Reste R^2 können so miteinander verbunden sein, daß die Reste R^2 und die sie verbindenden Atome des Cyclopentadienylringes ein C_4 - C_{24} -Ringsystem bilden, wel-
- 15 ches seinerseits substituiert sein kann,
 - \mbox{R}^3 gleich oder verschieden eine $\mbox{C}_1\mbox{-C}_{40}$ kohlenstoffhaltige Gruppe, bevorzugt $\mbox{C}_1\mbox{-C}_{25}\mbox{-Alkyl}$, wie Methyl, Ethyl, tert.- Butyl, Cyclohexyl oder Octyl, $\mbox{C}_2\mbox{-C}_{25}\mbox{-Alkenyl}$, $\mbox{C}_3\mbox{-C}_{15}\mbox{-Alkylal}$ -
- kenyl, $C_6-C_{24}-Aryl$, $C_5-C_{24}-Heteroaryl$ wie Pyridyl, Furyl oder Chinolyl, $C_7-C_{30}-Arylalkyl$, $C_7-C_{30}-Alkylaryl$, fluorhaltiges $C_1-C_{25}-Alkyl$, fluorhaltiges $C_6-C_{24}-Aryl$, fluorhaltiges $C_7-C_{30}-Arylalkyl$ oder fluorhaltiges $C_7-C_{30}-Alkylaryl$ ist,
- 25 X ein Halogenatom, insbesondere Chlor, ist,
 - Y ein Element der 6. Hauptgruppe des Periodensystems der Elemente oder ein Fragment CH_2 , CR^3_2 , NR^3 , PR^3 oder $P(=0)R^3$ ist, insbesondere Sauerstoff, Schwefel oder NR^3 , besonders bevor-
- 30 zugt Sauerstoff,
 - n gleich 1 bis 5 für k = 0, und n gleich 0 bis 4 für k = 1 ist,
- n' gleich 1 bis 5 für k = 0, und n' gleich 0 bis 4 für k = 135 ist,
 - m gleich 1 bis 3 ist, bevorzugt 1,
- k gleich Null oder 1 ist, wobei für k = 0 ein unverbrücktes 40 Metallocen, für k = 1 ein verbrücktes Metallocen vorliegt, wobei k = 1 bevorzugt ist, und
 - B ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet.

Beispiele für B sind Gruppen $M^3R^{13}R^{14}$, worin M^3 Kohlenstoff, Silizium, Germanium oder Zinn ist und \mathbb{R}^{13} und \mathbb{R}^{14} gleich oder verschieden eine C_1 - C_{20} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{10} -Alkyl, $C_6-C_{14}-Aryl$ oder Trimethylsilyl bedeuten. Bevorzugt ist B 5 gleich CH_2 , CH_2CH_2 , $CH(CH_3)CH_2$, $CH(C_4H_9)C(CH_3)_2$, $C(CH_3)_2$, $(CH_3)_2Si$, $(CH_3)_2Ge$, $(CH_3)_2Sn$, $(C_6H_5)_2Si$, $(C_6H_5)(CH_3)Si$, $Si(CH_3)(SiR^{20}R^{21}R^{22})$, $(C_6H_5)_2Ge$, $(C_6H_5)_2Sn$, $(CH_2)_4Si$, $CH_2Si(CH_3)_2$, $o-C_6H_4$ oder 2,2'-(C_6H_4)₂. Wobei $R^{20}R^{21}R^{22}$ gleich oder verschieden eine $extsf{C}_1 extsf{-} extsf{C}_{20} extsf{-} extsf{kohlenwasserstoff-haltige}$ Gruppe wie $extsf{C}_1 extsf{-} extsf{C}_{10} extsf{-} extsf{Alkyl}$ oder 10 $C_6-C_{14}-A$ ryl bedeuten. B kann auch mit einem oder mehreren Resten ${\tt R}^1$ und/oder ${\tt R}^2$ ein mono- oder polycyclisches Ringsystem bilden. Bevorzugt sind verbrückte Metallocenverbindungen der Formel (I), insbesondere solche in denen k gleich 1 ist und einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Inde-15 nylring darstellen. Der Indenylring ist bevorzugt substituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2,4,5,6-Stellung, mit C_1 - C_{20} -kohlenstoffhaltigen Gruppen, wie C_1 - C_{18} -Alkyl oder $C_6-C_{18}-Aryl$, wobei auch zwei oder mehrere Substituenten des Indenylrings zusammen ein Ringsystem bilden können. 20

Besonders bevorzugt sind verbrückte Metallocenverbindungen der Formel (II),

worin

45

M gleich Ti, Zr oder Hf ist, besonders bevorzugt Zirkonium,

gleich oder verschieden eine C_1-C_{30} - kohlenstoffhaltige Gruppe, bevorzugt $C_3-C_{10}-Alkyl$, wie iso-Propyl, tert.-Butyl, Cyclohexyl oder Octyl, $C_6-C_{24}-Aryl$, $C_5-C_{24}-Heteroaryl$ wie Pyridyl, Furyl oder Chinolyl, $C_7-C_{30}-Arylalkyl$, $C_7-C_{30}-Alkyla-ryl$, fluorhaltiges $C_6-C_{24}-Aryl$, fluorhaltiges $C_7-C_{30}-Arylalkyl$ oder fluorhaltiges $C_7-C_{30}-Alkylaryl$ ist,

WO 00/31090 PCT/EP99/08851

5

5

35

R⁴, R⁶ gleich oder verschieden sind und ein Wasserstoffatom, eine C_1 - C_{20} - kohlenstoffhaltige Gruppe, bevorzugt C_1 - C_{18} -Alkyl, wie Methyl, Ethyl, n-Butyl, Cyclohexyl oder Octyl, C_2 - C_{10} -Alkenyl, C_3 - C_{15} -Alkylalkenyl, C_6 - C_{18} -Aryl, C_5 - C_{18} -Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C_7 - C_{20} -Arylalkyl, C_7 - C_{20} -Alkylaryl, fluorhaltiges C_1 - C_{12} -Alkyl, fluorhaltiges C_6 - C_{18} -Aryl, fluorhaltiges C_7 - C_{20} -Arylalkyl oder fluorhaltiges C_7 - C_{20} -Alkylaryl ist,

- R8 und R9 gleich oder verschieden sind und ein Wasserstoffatom, Ha-20 logenatom oder eine C₁-C₂₀ - kohlenstoffhaltige Gruppe bedeuteten, bevorzugt eine lineare oder verzweigte C₁-C₁₈-Alkylgruppe, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C10-Alkenyl, C3-C15-Alkylalkenyl, eine C_6-C_{18} -Arylgruppe, die gegebenenfalls substi-25 tuiert sein kann, insbesondere Phenyl, Tolyl, Xylyl, tert.-Butylphenyl, Ethylphenyl, Di-tert.-butylphenyl, Naphthyl, Acenaphthyl, Phenanthrenyl oder Anthracenyl, C5-C18-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C20-Arylalkyl, C7-C20-Alkylaryl, fluorhaltiges 30 $C_1-C_{12}-Alkyl$, fluorhaltiges $C_6-C_{18}-Aryl$, fluorhaltiges C_7-C_{20} -Arylalkyl oder fluorhaltiges C_7-C_{20} -Alkylaryl sind, und zwei Reste \mathbb{R}^8 oder \mathbb{R}^9 ein mono- oder polycyclisches Ringssystem bilden können, das seinerseits gegebenenfalls substituiert sein kann,

X ein Halogenatom, insbesondere Chlor, ist,

- Y ein Element der 6. Hauptgruppe des Periodensystems der Elemente oder ein Fragment CH₂, CR³₂, NR³, PR³ oder P(=0)R³ ist, insbesondere Sauerstoff, Schwefel oder NR³, besonders bevorzugt Sauerstoff ist,
- 1, 1' gleich oder verschieden eine ganze Zahl zwischen Null und 4, bevorzugt 1 oder 2, besonders bevorzugt gleich 1 sind, 45

B ein verbrückendes Strukturelement zwischen den beiden Idenylresten bezeichnet.

Beispiele für B sind Gruppen M³R¹³R¹⁴, worin M³ Kohlenstoff, Sili5 zium, Germanium oder Zinn ist, bevorzugt Kohlenstoff und Silizium, und R¹³ und R¹⁴ gleich oder verschieden Wasserstoff, eine
C¹-C²o-kohlenwasserstoffhaltige Gruppe wie C¹-C¹o-Alkyl,
C6-C¹⁴-Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist B gleich
CH², CH²CH², CH(CH³)CH², CH(C⁴H²)C(CH³)², C(CH³)², (CH³)²Si,

10 $(CH_3)_2Ge$, $(CH_3)_2Sn$, $(C_6H_5)_2C$, $(C_6H_5)_2Si$, $(C_6H_5)_2Si$, $(C_6H_5)_2Si$, $(C_6H_5)_2Si$, $(C_6H_5)_2Si$, $(C_6H_5)_2Sn$, $(CH_2)_4Si$, $CH_2Si(CH_3)_2$, $O-C_6H_4$ oder $2.2'-(C_6H_4)_2$. Wobei $R^{20}R^{21}R^{22}$ gleich oder verschieden eine C_1-C_{20} -kohlenwasserstoffhaltige Gruppe wie C_1-C_{10} -Alkyl oder C_6-C_{14} -Aryl bedeuten.

15

Ganz besonders bevorzugt sind verbrückte Metallocenverbindungen der Formel (II),

worin

20

M gleich Zirkonium ist,

eine C₁-C₃₀ - kohlenstoffhaltige Gruppe, bevorzugt
C₃-C₁₀-Alkyl, wie iso-Propyl, tert.-Butyl, Cyclohexyl
oder Octyl, C₆-C₂₄-Aryl, C₅-C₂₄-Heteroaryl wie Pyridyl,
Furyl oder Chinolyl, C₇-C₃₀-Arylalkyl, C₇-C₃₀-Alkylaryl,
fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges C₇-C₃₀-Arylalkyl
oder fluorhaltiges C₇-C₃₀-Alkylaryl ist,

30 R^4 , R^6 gleich oder verschieden sind und ein Wasserstoffatom oder eine C_1 - C_{12} -Alkylgruppe, bevorzugt eine Alkylgruppe wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, n-Pentyl, n-Hexyl oder Octyl sind, besonders bevorzugt Methyl oder Ethyl ist,

R⁵, R⁷ gleich Wasserstoffatome sind,

R8 und R9 gleich oder verschieden sind und ein Wasserstoffatom,
Halogenatom oder eine C₁-C₂₀ - kohlenstoffhaltige Gruppe
bedeuten, bevorzugt eine lineare oder verzweigte
C₁-C₈-Alkylgruppe, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C₂-C₆-Alkenyl, C₃-C₆-Alkylalkenyl, eine
C₆-C₁₈-Arylgruppe, die gegebenenfalls substituiert sein
kann, insbesondere Phenyl, Tolyl, Xylyl, tert.-Butylphenyl, Ethylphenyl, Di-tert.-butylphenyl, Naphthyl, Acenaphthyl, Phenanthrenyl oder Anthracenyl, C₅-C₁₈-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C₇-C₁₂-Arylalkyl,

 $C_7-C_{12}-Alkylaryl,$ fluorhaltiges $C_1-C_8-Alkyl,$ fluorhaltiges $C_6-C_{18}-Aryl,$ fluorhaltiges $C_7-C_{12}-Arylalkyl$ oder fluorhaltiges $C_7-C_{12}-Alkylaryl$ ist,

X Chlor ist,

5

Y Sauerstoff ist,

1, 1' gleich oder verschieden eine ganze Zahl zwischen Null und
 4, bevorzugt 1 oder 2, besonders bevorzugt gleich 1 ist,

10

15

ein verbrückendes Strukturelement zwischen den beiden Indenylresten bezeichnet, wobei bevorzugt B gleich $(CH_3)_2Si$, $(CH_3)_2Ge$, $(C_6H_5)_2Si$, (C_6H_5) $(CH_3)_3Si$, (CH_2CH_2) , $(CH_3)_3CH_2$, $(CH_3)_3CH_3$, $(CH_3)_3CH_2$, $(CH_3)_3CH_3$,

Die erfindungsgemäßen Metallocene der Formeln I und II zeichnen sich dadurch aus, daß sie im Vergleich zu den entsprechenden Metallocen-Dichloriden (X=Cl und Y-R³ = Cl) eine deutlich bessere Löslichkeit in inerten organischen Lösungsmitteln zeigen. Eine deutliche besser Löslichkeit soll bedeutet, daß sich die molaren Konzentrationen im organischen Lösungsmittel mindestens verdoppeln, bevorzugt mehr als vervierfachen und ganz besonders bevorzugt mehr als verachtfachen. Ein weiterer Vorteil ist darin zu sehen, daß die erfindungsgemäßen Verbindungen ein besseres Kristallisationsverhalten aus inerten organischen Lösungsmittel zeigen, wodurch ihre Aufreinigung erleichtert wird.

Als inerte organische Lösungsmittel für Metallocene werden für 30 gewöhnlich aliphatische oder aromatische Kohlenwasserstoffe, aber auch halogenhaltige, sauerstoffhaltige oder stickstoffhaltige Kohlenwasserstoffe eingesetzt. Nicht einschränkende Beispiele für die einzelnen Lösungsmittelklassen sind Heptan, Toluol, Dichlorbenzol, Methylenchlorid, Tetrahydrofuran oder Triethylamin.

35

Statt der reinen chiralen verbrückten Metallocenverbindungen der Formel (II) (pseudo-rac) können bei der Katalysatorherstellung auch Gemische aus den Metallocenen der Formel (II) und den entsprechenden pseudo-meso Metallocenen der Formel (IIa) zur Kataly-40 satorherstellung eingesetzt werden.

15

Erläuternde, jedoch nicht einschränkende Beispiele für die erfindungsgemäßen Metallocene sind:

Dimethylsilandiylbis(indenyl)-zirkonium-monochloro-mono-(2,4-ditert.-butyl-phenolat)

20 Dimethylsilandiylbis(2-methyl-indenyl)-zirkonium-monochloromono-(2,4-di-tert.-butyl-phenolat)

Methylidenbis(2-methyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Isopropylidenbis(2-methyl-indenyl)-zirkonium-monochloro-

25 mono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(2-methyl-benzo-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(4-naphthyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

30 Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Methylidenbis(2-methyl-4-(1-naphthyl)-indenyl)-zirkońium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Isopropylidenbis(2-methyl-4-(1-naphthyl)-indenyl)-zirkonium-mo-

35 nochloro-mono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

40 Methylidenbis(2-methyl-4-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Isopropylidenbis(2-methyl-4-phenyl-indenyl)-zirkonium-monochloromono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)-zirkonium-mo-

45 nochloro-mono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)-zirkonium-mo-nochloro-mono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

Dimethylsilandiylbis(2,4-dimethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

- 5 Dimethylsilandiylbis(2-ethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)-zirkonium-monoch-
- 10 loro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Methylidenbis(2-methyl-4,5-benzo-indenyl)-zirkonium-monochloro mono-(2,4-di-tert.-butyl-phenolat)
- 15 Isopropylidenbis(2-methyl-4,5-benzo-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)-zirkoniummonochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)-zirkonium-
- 20 monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 25 Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)-zirkonium-mo-
- 30 nochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniummonochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 35 Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)-zirkoniummonochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-inde-
- 40 nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Methyl (phenyl) silandiylbis (2-methyl-4,5-(tetramethylbenzo)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Methyl (phenyl) silandiylbis (2-methyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 45 Methyl (phenyl) silandiylbis (2-methyl-5-isobutyl-indenyl) -zirko-nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

WO 00/31090 PCT/EP99/08851

- 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 5 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 - 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 - 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)-zirkonium-mono-
- 10 chloro-mono-(2,4-di-tert.-butyl-phenolat)
 - 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)-zirkonium-mono-chloro-mono-(2,4-di-tert.-butyl-phenolat)
 - 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 15 1,2-Ethandiylbis(2-methyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 - 1,4-Butandiylbis(2-methyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 - [4- $(\eta^5$ -Cyclopentadieny1)-4,6,6-trimethy1- $(\eta^5$ -4,5-tetrahydropenta-
- 20 len)]- zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) [$4-(\eta^5-3'$ -Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl- $(\eta^5-4,5$ -tetrahydropentalen)]-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 - [4- $(\eta^5-3'-1)$ sopropyl-cyclopentadienyl)-4,6,6-trimethyl-(5-4,5-1)
- 25 tetrahydropentalen)]- zirkonium-monochloro-mono-(2,4-di-tert.butyl-phenolat)
 - $\begin{array}{l} [4-(\eta^5-\text{Cyclopentadienyl})-4,7,7-\text{trimethyl-}(\eta^5-4,5,6,7-\text{tetrahydroin-denyl})]-\text{zirkonium-monochloro-mono-}(2,4-\text{di-tert.-butyl-phenolat})\\ [4-(\eta^5-3'-\text{tert.Butyl-cyclopentadienyl})-4,7,7-\text{trimethyl-} \end{array}$
- 30 (η⁵-4,5,6,7-tetrahydroindenyl)]- zirkonium-monochloro-mono (2,4-di-tert.-butyl-phenolat)
 4-(η⁵-3'-Methylcyclopentadienyl)-4,7,7-trimethyl-(5-4,5,6,7-tetra-hydroindenyl)]- zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 35 4-(η⁵-3'-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl4,7,7-trimethyl-(η⁵-4,5,6,7-tetrahydroindenyl)]- zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Bis-(1,3-dimethylcyclopentadienyl)-zirkonium-monochloromono-(2,4-di-tert.-butyl-phenolat)
- 40 Dimethylsilandiylbis(tetrahydroindenyl)-zirkonium-monochloromono-(2,4-di-tert.-butyl-phenolat)
 Isopropyliden-bisindenyl-zirkonium-monochloro-mono-(2,4-di-tert.butyl-phenolat)
- Isopropyliden-cyclopentadienyl-9-fluorenyl-zirkonium-monochloro45 mono-(2,4-di-tert.-butyl-phenolat)
 Isopropyliden-cyclopentadienyl-indenyl-zirkonium-monochloromono-(2,4-di-tert.-butyl-phenolat)

Diphenylmethyliden-(cyclopentadienyl)-(9-fluorenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
Diphenylmethyliden-(3-methyl-cyclopentadienyl)-(9-fluorenyl)-

zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

- 5 Diphenylmethyliden-(3-isopropyl-cyclopentadienyl)-(9-fluorenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Diphenylmethyliden-(3-tert.-butyl-cyclopentadienyl)-(9-fluorenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiyl-cyclopentadienyl-9-fluorenyl-zirkonium-monoch-
- 10 loro-mono-(2,4-di-tert.-butyl-phenolat)
 Diphenylsilandiyl-cyclopentadienyl-9-fluorenyl-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(tert-butyl-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- Dimethylsilandiylbis(2-methyl-4-(4-methyl-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(4-ethyl-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(4-trifluormethyl-phenyl-inde-
- 20 nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(4-methoxy-phenyl-indenyl)-zirko nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-ethyl-4-(4-tert-butyl-phenyl-indenyl)-zir konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 25 Dimethylsilandiylbis(2-ethyl-4-(4-ethyl-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-ethyl-4-(4-trifluormethyl-phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-ethyl-4-(4-methoxy-phenyl-indenyl)-zirko-
- 30 nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(3',5'-di-tert.-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 35 Methylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Isopropylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl)-indenyl)-zir-
- 40 konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl)-indenyl)-zirko nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-inde nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
- 45 Dimethylsilandiylbis(2-methyl-4-(4'-iso-propyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

PCT/EP99/08851 12

```
Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)-zir-
          konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
         Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)-zirko-
         nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
      5 Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-inde-
         nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
         Dimethylsilandiylbis(2-ethyl-4-phenyl)-indenyl)-zirkonium-monoch-
         loro-mono-(2,4-di-tert.-butyl-phenolat)
         Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl)-indenyl)-zirko-
    10 nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
        Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl)-indenyl)-zirko-
        nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
        Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)-zir-
        konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
   15 Dimethylsilandiylbis(2-ethyl-4-(4'-iso-propyl-phenyl)-inde-
        nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
        Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)-zir-
        konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
        Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)-zirko-
  20 nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
        Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)-zirko-
        nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
       Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-inde-
       nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
  25 Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-inde-
       ny1)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
       Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-inde-
       ny1)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
       Dimethylsilandiylbis(2-ethyl-4-(3',5'-di-tert.-butyl-phenyl)-in-
 30 denyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
      Methylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirko-
      nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
      Isopropylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zir-
      konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 35 Dimethylsilandiylbis(2-n-propy1-4-phenyl)-indenyl)-zirkonium-mo-
      nochloro-mono-(2,4-di-tert.-butyl-phenolat)
      Dimethylsilandiylbis(2-n-propyl-4-(4'-methyl-phenyl)-inde-
      nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     Dimethylsilandiylbis(2-n-propyl-4-(4'-ethyl-phenyl)-indenyl)-zir-
40 konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     nyl) -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     \label{limits} \mbox{Dimethylsilandiylbis} \mbox{(2-n-propyl-4-(4'-iso-propyl-phenyl)-indefined} \mbox{\cite{thylsilandiylbis}} \mbox{(2-n-propyl-4-(4'-iso-propyl-phenyl)-indefined} \mbox{\cite{thylsilandiylbis}} \m
     nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
45 Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-inde-
     nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
```

Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-propyl-4-(4'-cyclohexyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) 5 Dimethylsilandiylbis(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-propyl-4-(3',5'-di-tert.-butyl-phe-10 nyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Methylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Isopropylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-inde-15 nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) 20 Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-inde-25 nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indeny1)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) 30 Dimethylsilandiylbis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-inde-35 nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-hexyl-4-phenyl)-indenyl)zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) 40 Dimethylsilandiylbis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-hexyl-4-(4'-iso-propyl-phenyl)-inde-45 nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) Dimethylsilandiylbis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)-zir-

konium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

WO 00/31090 PCT/EP99/08851

```
Dimethylsilandiylbis(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)-zirko-
     nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     Dimethylsilandiylbis(2-hexyl-4-(4'-cyclohexyl-phenyl)-inde-
     nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
   5 Dimethylsilandiylbis(2-hexyl-4-(4'-sec-butyl-phenyl)-inde-
     nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     Dimethylsilandiylbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-inde-
     nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-inde-
  10 nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-inde-
     nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
     Ethylidenbis(2-ethyl-4-phenyl)-indenyl)-zirkonium-monochloro-
     mono-(2,4-di-tert.-butyl-phenolat)
  15 Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirko-
    nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
    Ethylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirko-
    nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
    Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirko-
 20 nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
    Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-inde-
    ny1)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
    Dimethylsilandiy1(2-methylazapentalen)(2-methyl-indenyl)-zirko-
    nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 25 Dimethylsilandiyl(2-methylazapentalen)(2-methyl-4-phenyl-indenyl)
    -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
    Dimethylsilandiy1(2-methylazapentalen)(2-methyl-4,5-benzo-in-
    denyl)
    -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
 30 Dimethylsilandiyl(2-methylazapentalen)(2-ethyl-4-(4'-tert-butyl-
   phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-
   phenolat)
   Dimethylsilandiyl(2-methylazapentalen)(2-methyl-4-(4'-tert.-bu-
   tyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-bu-
35 tyl-phenolat)
   Dimethylsilandiyl(2-methylazapentalen)(2-n-propyl-4-(4'-tert.-bu-
   tyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-bu-
   tyl-phenolat)
   Dimethylsilandiyl(2-ethylazapentalen)(2-methyl-4-phenyl-indenyl)
40 -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
   Dimethylsilandiyl(2-ethylazapentalen)(2-methyl-4-phenyl-inde-
   nyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)Dime-
   thylsilandiy1(2-ethylazapentalen)(2-methyl-4,5-benzo-indenyl)
   -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
45 Dimethylsilandiyl(2-ethylazapentalen)(2-ethyl-4-(4'-tert-butyl-
  phenyl-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-
   phenolat)
```

WO 00/31090 PCT/EP99/08851

```
Dimethylsilandiyl(2-ethylazapentalen)(2-methyl-4-(4'-tert.-butyl-
   phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-
   phenolat)
   Dimethylsilandiyl(2-ethylazapentalen)(2-n-propyl-4-(4'-tert.-bu-
 5 tyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-bu-
   tyl-phenolat)
   Dimethylsilandiyl(2-methylthiapentalen)(2-methyl-indenyl)-zirko-
   nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
   Dimethylsilandiyl(2-methylthiapentalen)(2-methyl-4-phenyl-inde-
10 nyl)
   -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
   Dimethylsilandiyl(2-methylthiapentalen)(2-methyl-4,5-benzo-inde-
   nyl)
   -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
15 Dimethylsilandiyl(2-methylthiapentalen)(2-ethyl-4-(4'-tert.-bu-
   tyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-bu-
   tyl-phenolat)
   Dimethylsilandiyl(2-methylthiapentalen)(2-n-propyl-4-(4'-tert.-
   butyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-
20 butyl-phenolat)
   Dimethylsilandiyl(2-ethylthiapentalen)(2-methyl-indenyl)-zirko-
   nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
   Dimethylsilandiyl(2-ethylthiapentalen)(2-methyl-4-phenyl-indenyl)
   -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
25 Dimethylsilandiyl(2-ethylthiapentalen)(2-methyl-4,5-benzo-in-
   denyl)
   -zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)
   Dimethylsilandiyl(2-ethylthiapentalen)(2-ethyl-4-(4'-tert.-butyl-
   phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-
30 phenolat)
   Dimethylsilandiyl(2-ethylthiapentalen)(2-n-propyl-4-(4'-tert.-bu-
   tyl-phenyl)-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-bu-
   tyl-phenolat)
   Des weiteren sind die Metallocene, bei denen das Zirkoniumfrag-
35 ment "-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)"
   die Bedeutungen
   Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-phenolat)
   Zirkonium-monochloro-mono-(3,5-di-tert.-butyl-phenolat)
   Zirkonium-monochloro-mono-(2,6-di-sec.-butyl-phenolat)
40 Zirkonium-monochloro-mono-(2,4-di-methylphenolat)
   Zirkonium-monochloro-mono-(2,3-di-methylphenolat)
   Zirkonium-monochloro-mono-(2,5-di-methylphenolat)
   Zirkonium-monochloro-mono-(2,6-di-methylphenolat)
   Zirkonium-monochloro-mono-(3,4-di-methylphenolat)
45 Zirkonium-monochloro-mono-(3,5-di-methylphenolat)
   Zirkonium-monochloro-monophenolat
  Zirkonium-monochloro-mono-(2-methylphenolat)
```

WO 00/31090

Zirkonium-monochloro-mono-(3-methylphenolat) Zirkonium-monochloro-mono-(4-methylphenolat) Zirkonium-monochloro-mono-(2-ethylphenolat) Zirkonium-monochloro-mono-(3-ethylphenolat) 5 Zirkonium-monochloro-mono-(4-ethylphenolat) Zirkonium-monochloro-mono-(2-sec.-butylphenolat) Zirkonium-monochloro-mono-(2-tert.-butylphenolat) Zirkonium-monochloro-mono-(3-tert.-butylphenolat) Zirkonium-monochloro-mono-(4-sec.-butylphenolat) 10 Zirkonium-monochloro-mono-(4-tert.-butylphenolat) Zirkonium-monochloro-mono-(2-isopropyl-5-methylphenolat) Zirkonium-monochloro-mono-(4-isopropyl-3-methylphenolat) Zirkonium-monochloro-mono-(5-isopropyl-2-methylphenolat) Zirkonium-monochloro-mono-(5-isopropyl-3-methylphenolat) 15 Zirkonium-monochloro-mono-(2,4-bis-(2-methyl-2-butyl)-phenolat) Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-4-methyl-phenolat) Zirkonium-monochloro-mono-(4-nonylphenolat) Zirkonium-monochloro-mono-(isopropylphenolat) Zirkonium-monochloro-mono-(propylphenolat) 20 Zirkonium-monochloro-mono-(trimethylphenolat) Zirkonium-monochloro-mono-(tert.-butyl-methylphenolat) Zirkonium-monochloro-mono-(2-tert.-butyl-4-ethylphenolat) Zirkonium-monochloro-mono-(2,6-diisopropylphenolat) Zirkonium-monochloro-mono-(4-octylphenolat) 25 Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-4-ethylphenolat) Zirkonium-monochloro-mono-(1-naphtholat) Zirkonium-monochloro-mono-(2-naphtholat) Zirkonium-monochloro-mono-(2-phenylphenolat) Zirkonium-monochloro-mono-(tert. butoxid) 30 Zirkonium-monochloro-mono-(N-methylanilid) Zirkonium-monochloro-mono-(2-tert.-butylanilid) Zirkonium-monochloro-mono-(tert.-butylamid) Zirkonium-monochloro-mono-(di-iso.-propylamid) Zirkonium-monochloro-mono-methyl 35 Zirkonium-monochloro-mono-benzyl Zirkonium-monochloro-mono-neopentyl, hat, Beispiele für die erfindungsgemäßen Metallocene. Weiterer Gegenstand der vorliegenden Erfindung ist ein technisch 40 durchführbares Verfahren zur Herstellung der Verbindungen der Formeln (I) und (II). In der Literatur ist die Synthese von Dicyclopentadienyl-zirkonium-(2,6-di-tert.-butyl-phenoxy)-mono-chlorid und Dicyclopenta-45 dienyl-zirkonium-(2,6-di-isopropyl-phenoxy)-mono-chlorid be-

schrieben (T. Repo et al., J. Organomet. Chem. 541 (1997), 363):

17

Bei dem beschriebenen Verfahren wird bei tiefen Temperaturen (-78°C) gearbeitet, was im technischen Maßstab aufwendig und 15 kostenintensiv ist, und außerdem ist die isolierte Ausbeute nur befriedigend.

Überraschenderweise wurde nun gefunden, daß die Herstellung der Metallocene der Formeln (I) und (II) mit guten Ausbeuten durchge20 führt werden kann, wobei Metallocenhalogenide mit Salzen der Formel M¹-Y-R3 in einen inerten Lösungsmittel oder Lösungsmittelgemisch im Temperaturbereich von 0°C bis 200°C, bevorzugt 60°C bis 110°C, umgesetzt werden:

25
$$B_{K} = \begin{bmatrix} A^{1} & A^{1} &$$

35

40
$$R^5$$
 R^8 X M^1-Y-R^8 M^1 M^2 M^3 M^4 M^4

pseudo-rac

WO 00/31090 PCT/EP99/08851 18

Dabei ist M^1 gleich einem Kation oder Kationfragment wie beispielsweise Li, Na, K, MgCl, MgBr, MgI und die übrigen Reste sind wie oben definiert.

- 5 Bevorzugt werden bei dem Verfahren als Metallocene Metallocendichlorid der Formel III eingesetzt, wie sie in folgenden Schriften genannt werden: (EP 0485823, EP 0549900, EP 0576970, WO 98/22486, WO 98/40331).
- 10 Die Verbindung M^1-Y-R^3 läßt sich durch Deprotonierung der Verbindung $H-Y-R^3$ mit einer geeigneten Base, wie zum Beispiel Butyllithium, Methyllithium, Natriumhydrid, Kaliumhydrid, Natrium, Kalium oder Grignardverbindungen in einem inerten Lösungsmittel oder Lösungsmittelgemisch herstellen.

15

- Nichteinschränkende Beispiele für geeignete Lösungsmittel sind Kohlenwasserstoffe, die halogeniert sein können, wie Benzol, Toluol, Xylol, Mesitylen, Ethylbenzol, Chlorbenzol, Dichlorbenzol, Fluorbenzol, Dekalin, Tetralin, Pentan, Hexan, Cyclohexan,
- 20 Ether wie Diethylether, Di-n-Butylether, MTBE, THF, DME, Anisol, Triglyme, Dioxan, Amide wie DMF, Dimethylacetamid, NMP, Sulfoxide wie DMSO, Phosphoramide wie Hexamethylphosphorsäuretriamid, Harnstoff-Derivate wie DMPU, Ketone wie Aceton, Ethylmethylketon, Ester wie Essigsäureethylester, Nitrile wie Acetonitril sowie be-
- 25 liebige Gemische aus jenen Stoffen. Bevorzugt werden Lösungsmittel oder Lösungsmittelgemische in denen ebenfalls direkt die anschließende Umsetzung mit dem Metallocendichlorid durchgeführt werden kann. Nichteinschränkende Beispiele hierfür sind Toluol, Hexan, Heptan, Xylol, Tetrahydrofuran (THF), Dimethoxyethan
- 30 (DME), Toluol/THF, Heptan/DME oder Toluol/DME.

Bei den Verbindungen des Typs $H-Y-R^3$ handelt es sich bevorzugt um die Stoffklassen der Alkohole, der Phenol, der primären und sekundären Amine sowie der primären und sekundären Aniline. Be-35 vorzugt enthalten Verbindungen des Typs $H-Y-R^3$ nur eine funktionelle Gruppe H-Y und der Rest \mathbb{R}^3 ist wie oben beschrieben definiert.

Erläuternde, jedoch nicht einschränkende Beispiele für die erfin-40 dungsgemäß einsetzbaren Verbindungen der Formel $H-Y-R^3$ sind:

2,4-Di-tert.-butyl-phenol; 2,6-Di-tert.-butyl-phenol; 3,5-Ditert.-butyl-phenol; 2,6-Di-sec.-butyl-phenol; 2,4-Dimethylphenol; 2,3-Dimethylphenol; 2,5-Dimethylphenol; 2,6-Dimethylphenol;

45 3,4-Dimethylphenol; 3,5-Dimethylphenol; Phenol; 2-Methylphenol; 3-Methylphenol; 4-Methylphenol; 2-Ethylphenol; 3-Ethylphenol; 4-Ethylphenol; 2-sec.-Butylphenol; 2-tert.-Butylphenol; 3-tert.- WO 00/31090 PCT/EP99/08851

Butylphenol; 4-sec.-Butylphenol; 4-tert.-Butylphenol; 2-Isopropyl-5-methylphenol; 4-Isopropyl-3-methylphenol; 5-Isopropyl-2-methylphenol; 5-Isopropyl-3-methylphenol; 2,4-Bis-(2-methyl-2-butyl)-phenol; 2,6-Di-tert.-butyl-4-methylphenol; 4-Nonylphenol;
5 2-Isopropylphenol; 3-Isopropylphenol; 4-Isopropylphenol; 2-Propylphenol; 4-Propylphenol; 2,3,5-Trimethylphenol; 2,3,6-Trimethylphenol; 2,4,6-Trimethylphenol; 3,4,5-Trimethylphenol;
2-tert.-Butyl-4-methylphenol; 2-tert.-Butyl-5-methylphenol;
2-tert.-Butyl-6-methylphenol; 4-(2-Methyl-2-butyl)-phenol;
10 2-tert.-Butyl-4-ethylphenol; 2,6-Diisopropylphenol; 4-Octylphenol; 4-(1,1,3,3-Tetramethylbutyl)-phenol; 2,6-Di-tert.-butyl-4-ethylphenol; 4-sec.-Butyl-2,6-di-tert.-butylphenol; 4-Dodecylphenol; 2,4,6-Tri-tert.-butylphenol; 3-(Pentadecyl)-phenol;
2-Methyl-1-naphthol;

15

1-Naphthol; 2-Naphthol; 1-Acenaphthenol; 2-Hydroxybiphenyl; 3-Hydroxybiphenyl; 4-Hydroxybiphenyl; Hydroxypyridine; Hydroxychinoline; 2-Hydroxycarbazol; Hydroxychinaldine; 8-Hydroxychinazolin; 2-Hydroxychinoxalin; 2-Hydroxydibenzofuran; 2-Hydroxydiphenylme-

- 20 than, 1-Hydroxyisochinoline, 5,6,7,8-Tetrahydro-1-naphthol; Methanol; Ethanol; Propanol; Isopropanol; Butanol; tert-Butanol; Isobutanol; 2-Butanol; Hexanol; Cyclohexanol; Octadecanol; Benzylalkohol; 2-Methylbenzylalkohol; 3-Methylbenzylalkohol; 4-Methylbenzylalkohol; Anilin; N-Methylanilin; o-Toluidin; 2,3-Dimethyla-
- 25 nilin; 2,4-Dimethylanilin; 2,5-Dimethylanilin; 2,6-Dimethylanilin; N-Ethylanilin; N-Ethylanilin; N-Ethylanilin; N-Ethylanilin; N-Ethylanilin; N-Ethylanilin; 2-Isopropylanilin; 2-Propylanilin; 2,4,6-Trimethylanilin; 2-tert.-Butylanilin; 2,3-Dimethyl-N-ethylanilin; Isopropylamin; tert.-Butylamin; Diethylamin; N-Methylisopropylamin;
- 30 N-Ethylisopropylamin; Diisopropylamin; N-Methyl-tert.-butyl-amin; N-Benzylmethylamin; 2-Methylbenzylamin; 3-Methylbenzylamin; 4-Methylbenzylamin; 1-Phenylethylamin und 2-Phenylethylamin.

Das erfindungsgemäße Verfahren wird im allgemeinen in einem 35 Temperaturbereich von 0°C bis +200°C durchgeführt, bevorzugt in einem Temperaturbereich von 40°C bis 140°C, besonders bevorzugt bei einer Temperatur zwischen 60°C und 110°C.

Das molare Verhältnis von Reagenz M¹-Y-R³ zum Metallocenhalogenid, 40 insbesondere zum Metallocendichlorid (z. B. der Formel III) liegt im allgemeinen zwischen 5 : 1 bis 0.8 : 1 bevorzugt zwischen 2 : 1 bis 0.9 : 1.

Die Konzentration an Metallocendichlorid (z. B. der Formel III) 45 bzw. an Reagenz M^1-Y-R^3 in der Reaktionsmischung liegt im allgemeinen im Bereich zwischen 0,001 mol/l und 8 mol/l, bevorzugt im

WO 00/31090 PCT/EP99/08851 20

Bereich zwischen 0,01 und 3 mol/1, besonders bevorzugt im Bereich zwischen 0,05 mol/1 und 2 mol/1.

Die Dauer der Umsetzung von Metallocendichlorid (z. B. der Formel 5 III) mit Reagenz M^1-Y-R^3 liegt im allgemeinen im Bereich zwischen 5 Minuten und 1 Woche, bevorzugt im Bereich zwischen 15 Minuten und 48 Stunden.

Darüber hinaus lassen sich insbesondere Monoaryloxymonochlorozir-10 konocene der Formel (II) auch gemäß dem in der deutschen Patentanmeldung 199 12576.7 vom 19.03.99 beschriebenen Verfahren herstellen, deren Offenbarung ebenfalls Gegenstand der vorliegenden Beschreibung ist.

15 Die erfindungsgemäßen Metallocene der Formeln I und II sind hochaktive Katalysatorkomponenten für die Olefinpolymerisation. Je nach Substitutionsmuster der Liganden können die Metallocene als Isomerengemisch anfallen. Die Metallocene werden für die Polymerisation bevorzugt isomerenrein eingesetzt.

20

Bevorzugt werden die pseudo-rac isomeren Metallocene der Formel II eingesetzt.

Die erfindungsgemäßen Metallocene der Formeln I und II eignen 25 sich insbesondere als Bestandteil von Katalysatorsystemen zur Herstellung von Polyolefinen durch Polymerisation von mindestens einem Olefin in Gegenwart eines Katalysators, der mindestens einen Cokatalysator und mindestens ein Metallocen enthält. Unter dem Begriff Polymerisation wird eine Homopolymerisation wie auch 30 eine Copolymerisation verstanden.

Die erfindungsgemäßen Metallocene der Formeln I und II, insbesondere der Formel II, können zur Polymerisation eines oder mehrerer Olefine der Formel $R^{\alpha}\text{-CH=CH-}R^{\beta}$ verwendet werden, worin R^{α} und R^{β}

- 35 gleich oder verschieden sind und ein Wasserstoffatom oder einen Kohlenwasserstoff mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen, bedeuten, und R^{α} und R^{β} zusammen mit den sie verbindenden Atomen einen oder mehrere Ringe bilden können. Beispiele für solche Olefine sind 1-Olefine mit 2 - 40, vorzugsweise 2 bis 10
- 40 C-Atomen, wie Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 4-Methyl-1-penten oder 1-Octen, Styrol, Diene wie 1,3-Butadien, 1,4-Hexadien, Vinylnorbornen, Norbornadien, Ethylnorbornadien und cyclische Olefine wie Norbornen, Tetracyclododecen oder Methylnorbornen. Bevorzugt werden Ethylen oder Propylen homopolymeri-
- 45 siert, oder Ethylen mit einem oder mehreren cyclischen Olefinen, wie Norbornen , und/oder einem oder mehreren Dienen mit 4 bis 20 C-Atomen, wie 1,3-Butadien oder 1,4-Hexadien, copolymerisiert.

Beispiele solcher Copolymere sind Ethylen/Norbornen-Copolymere, Ethylen/Propylen-Copolymere und Ethylen/Propylen/1,4-Hexadien-Copolymere.

- 5 Die Polymerisation wird bei einer Temperatur von 60 bis 300 °C , bevorzugt 50 bis 200 °C, ganz besonders bevorzugt 50 80 °C durchgeführt. Der Druck beträgt 0,5 bis 2000 bar, bevorzugt 5 bis 64 bar.
- 10 Die Polymerisation kann in Lösung, in Masse, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig durchgeführt werden. Eine bevorzugte Ausführungform ist die Gasphasen- und Massepolymerisation.
- 15 Bevorzugt enthält der eingesetzte Katalysator eine der erfindungsgemäßen Metallocenverbindungen. Es können auch Mischungen zweier oder mehrerer Metallocenverbindungen eingesetzt werden, z. B. zur Herstellung von Polyolefinen mit breiter oder multimodaler Molmassenverteilung.

Der Cokatalysator, der zusammen mit einem erfindungsgemäßen Metallocene der Formeln I und II das Katalysatorsystem bildet, enthält mindestens eine Verbindung vom Typ eines Aluminoxans oder einer Lewis-Säure oder einer ionischen Verbindung, die durch 25 Reaktion mit einem Metallocen dieses in eine kationische Verbindung überführt.

Als Aluminoxan wird bevorzugt eine Verbindung der allgemeinen Formel (VII)

30

 $(R AlO)_n$ (VII)

verwendet.

35 Weitere geeignete Aluminoxane können z.B. cyclisch wie in Formel (VI)

(VI)

oder linear wie in Formel (IV)

45

10 oder vom Cluster-Typ wie in Formel (V)

sein. Derartige Aluminoxane werden beispielsweise in JACS 25 117 (1995), 6465-74, Organometallics 13 (1994), 2957-2969, beschrieben.

Die Reste R in den Formeln (IV), (V), (VI) und (VII) können gleich oder verschieden sein und eine C_1 - C_{20} -Kohlenwasserstoff-30 gruppe wie eine C_1 - C_6 -Alkylgruppe, eine C_6 - C_{18} -Arylgruppe, Benzyl oder Wasserstoff bedeuten, und p eine ganze Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeuten.

Bevorzugt sind die Reste R gleich und bedeuten Methyl, Isobutyl, 35 n-Butyl, Phenyl oder Benzyl, besonders bevorzugt Methyl. Sind die Reste R unterschiedlich, so sind sie bevorzugt Methyl und Wasserstoff, Methyl und Isobutyl oder Methyl und n-Butyl, wobei Wasserstoff bzw. Isobutyl oder n-Butyl bevorzugt zu 0,01 - 40 % (Zahl der Reste R) enthalten sind.

Das Aluminoxan kann auf verschiedene Arten nach bekannten Verfahren hergestellt werden. Eine der Methoden ist beispielsweise, daß eine Aluminium-kohlenwasserstoffverbindung und/oder eine Hydridoaluminium-kohlenwasserstoffverbindung mit Wasser (gasförmig,

45 fest, flüssig oder gebunden - beispielsweise als Kristallwasser) in einem inerten Lösungsmittel (wie z. B. Toluol) umgesetzt wird.

WO 00/31090

Zur Herstellung eines Aluminoxans mit verschiedenen Alkylgruppen R werden entsprechend der gewünschten Zusammensetzung und Reaktivität zwei verschiedene Aluminiumtrialkyle (AIR₃ + AIR'₃) mit Wasser umgesetzt (vgl. S. Pasynkiewicz, Polyhedron 9 (1990) 429 und EP-A-0,302,424).

Unabhängig von der Art der Herstellung ist allen Aluminoxanlösungen ein wechselnder Gehalt an nicht umgesetzter Aluminiumausgangsverbindung, die in freier Form oder als Addukt vorliegt, 10 gemeinsam.

Als Lewis-Säure werden bevorzugt mindestens eine bor- oder aluminiumorganische Verbindung eingesetzt, die C_1 - C_{20} -kohlenstoffhaltige Gruppen enthalten, wie verzweigte oder unverzweigte Alkyl-

15 oder Halogenalkyl, wie z.B. Methyl, Propyl, Isopropyl, Isobutyl, Trifluormethyl, ungesättigte Gruppen, wie Aryl oder Halogenaryl, wie Phenyl, Tolyl, Benzylgruppen, p-Fluorophenyl, 3,5-Difluorophenyl, Pentachlorophenyl, Pentafluorophenyl, 3,4,5 Trifluorophenyl und 3,5 Di(trifluoromethyl)phenyl.

20

Beispiele für Lewis-Säuren sind Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Tributylaluminium, Trifluoroboran, Triphenylboran,

Tris(4-fluorophenyl)boran, Tris(3,5-difluorophenyl)boran,
25 Tris(4-fluoromethylphenyl)boran, Tris(pentafluorophenyl)boran,
Tris(tolyl)boran, Tris(3,5-dimethylphenyl)boran, Tris(3,5-difluorophenyl)boran, [(C₆F₅)₂BO]₂Al-Me, [(C₆F₅)₂BO]₃Al und/oder
Tris(3,4,5-trifluorophenyl)boran. Insbesondere bevorzugt ist

30

Als ionische Cokatalysatoren werden bevorzugt Verbindungen eingesetzt, die ein nicht koordinierendes Anion enthalten, wie beispielsweise Tetrakis (pentafluorophenyl) borate, Tetraphenylborate, SbF_6^- , $CF_3SO_3^-$ oder ClO_4^- .

35

Als kationisches Gegenion werden protonierte Lewis-Basen wie z.B. Methylamin, Anilin, Dimethylamin, Diethylamin, N-Methylanilin, Diphenylamin, N,N-Dimethylanilin, Trimethylamin, Triethylamin, Tri-n-butylamin, Methyldiphenylamin, Pyridin, p-Bromo-N,N-dime-

40 thylanilin, p-Nitro-N, N-dimethylanilin, Triethylphosphin, Triphenylphosphin, Diphenylphosphin, Tetrahydrothiophen oder das Triphenylcarbenium-Kation eingesetzt.

Beispiele für solche ionische Verbindungen sind 45 Triethylammoniumtetra(phenyl)borat,
Tributylammoniumtetra(phenyl)borat,
Trimethylammoniumtetra(tolyl)borat,

Tris (pentafluorophenyl)boran.

24 Tributylammoniumtetra(tolyl)borat, Tributylammoniumtetra(pentafluorophenyl)borat, Tributylammoniumtetra(pentafluorophenyl)aluminat, Tripropylammoniumtetra(dimethylphenyl)borat, 5 Tributylammoniumtetra(trifluoromethylphenyl)borat, Tributylammoniumtetra(4-fluorophenyl)borat, N, N-Dimethylaniliniumtetra(phenyl)borat, N, N-Diethylaniliniumtetra(phenyl)borat, N, N-Dimethylaniliniumtetrakis (pentafluorophenyl) borate, 10 N, N-Dimethylaniliniumtetrakis(pentafluorophenyl)aluminat, Di (propyl) ammoniumtetrakis (pentafluorophenyl) borat, Di(cyclohexyl)ammoniumtetrakis(pentafluorophenyl)borat, Triphenylphosphoniumtetrakis(phenyl)borat, Triethylphosphoniumtetrakis(phenyl)borat, 15 Diphenylphosphoniumtetrakis(phenyl)borat, Tri(methylphenyl)phosphoniumtetrakis(phenyl)borat, Tri(dimethylphenyl)phosphoniumtetrakis(phenyl)borat, Triphenylcarbeniumtetrakis(pentafluorophenyl)borat, Triphenylcarbeniumtetrakis(pentafluorophenyl)aluminat, 20 Triphenylcarbeniumtetrakis(phenyl)aluminat, Ferroceniumtetrakis(pentafluorophenyl)borat und/oder Ferroceniumtetrakis (pentafluorophenyl) aluminat. Bevorzugt sind Triphenylcarbeniumtetrakis(pentafluorophenyl)borat und/oder 25 N, N-Dimethylaniliniumtetrakis(pentafluorophenyl)borat. Es können auch Gemische mindestens einer Lewis-Säure und mindestens einer ionischen Verbindung eingesetzt werden. Als Cokatalysatorkomponenten sind ebenfalls Boran- oder Carboran-Verbindungen wie z.B. 30 7,8-Dicarbaundecaboran(13), Undecahydrid-7,8-dimethy1-7,8-dicarbaundecaboran, Dodecahydrid-1-phenyl-1,3-dicarbanonaboran, Tri(buty1) ammoniumundecahydrid-8-ethy1-7,9-dicarbaundecaborat, 4-Carbanonaboran(14)Bis(tri(butyl)ammonium)nonaborat, 35 Bis(tri(butyl)ammonium)undecaborat, Bis(tri(butyl)ammonium)dodecaborat, Bis(tri(butyl)ammonium)decachlorodecaborat, Tri(butyl)ammonium-1-carbadecaborate, Tri(buty1)ammonium-1-carbadodecaborate, 40 Tri(butyl)ammonium-1-trimethylsilyl-1-carbadecaborate, Tri(butyl)ammoniumbis(nonahydrid-1,3-dicarbonnonaborat)cobal-

Tri(butyl)ammoniumbis(undecahydrid-7,8-dicarbaundecaborat)fer-

45 von Bedeutung.

rat(III)

tate(III),

Als weitere Cokatalysatoren, die ungeträgert oder geträgert vorliegen können, sind die in EP-A-0924223, DE -A-19622207, EP-A-0601830, EP-A-0824112, EP-A-0824113, WO 99/06414, EP-A-0811627 und DE-A-19804970 genannten Verbindungen zu verwenden.

5

Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems kann ein beliebiger organischer oder anorganischer, inerter Feststoff sein, insbesondere ein poröser Träger wie Talk, anorganische Oxide und feinteilige Polymerpulver (z.B. Polyolefine).

10

Geeignete anorganische Oxide finden sich in den Gruppen 2,3,4,5,13,14,15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide umfassen Siliciumdioxid, Aluminiumoxid, sowie Mischoxide der beiden Elemente und entsprechende Oxid-Mischungen. Andere anorganische Oxide, die allein

- 15 chende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten oxiden Trägern eingesetzt werden können, sind z.B. MgO, ZrO_2 , TiO_2 oder B_2O_3 , um nur einige zu nennen.
- 20 Die verwendeten Trägermaterialien weisen eine spezifische Oberfläche im Bereich von 10 bis 1000 m²/g, ein Porenvolumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis 500 μ m auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 bis 500 m²/g , einem Porenvolumen im
- 25 Bereich zwischen 0,5 und 3,5 ml/g und einer mittleren Partikelgröße im Bereich von 5 bis 350 μm. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 200 bis 400 m²/g, einem Porenvolumen im Bereich zwischen 0,8 bis 3,0 ml/g und einer mittleren Partikelgröße von 10 bis 200 μm.

30

Wenn das verwendete Trägermaterial von Natur aus einen geringen Feuchtigkeitsgehalt oder Restlösemittelgehalt aufweist, kann eine Dehydratisierung oder Trocknung vor der Verwendung unterbleiben. Ist dies nicht der Fall, wie bei dem Einsatz von Silicagel als

- 35 Trägermaterial, ist eine Dehydratisierung oder Trocknung empfehlenswert. Die thermische Dehydratisierung oder Trocknung des Trägermaterials kann unter Vakuum und gleichzeitiger Inertgasüberlagerung (z.B. Stickstoff) erfolgen. Die Trocknungstemperatur liegt im Bereich zwischen 100 und 1000 °C, vorzugsweise zwischen 200 und
- 40 800 °C. Der Parameter Druck ist in diesem Fall nicht entscheidend. Die Dauer des Trocknungsprozesses kann zwischen 1 und 24 Stunden betragen. Kürzere oder längere Trocknungsdauern sind möglich, vorausgesetzt, daß unter den gewählten Bedingungen die Gleichgewichtseinstellung mit den Hydroxylgruppen auf der Trägerober-
- 45 fläche erfolgen kann, was normalerweise zwischen 4 und 8 Stunden erfordert.

WO 00/31090 PCT/EP99/08851

26 Eine Dehydratisierung oder Trocknung des Trägermaterials ist auch auf chemischem Wege möglich, indem das adsorbierte Wasser und die Hydroxylgruppen auf der Oberfläche mit geeigneten Inertisierungsmitteln zur Reaktion gebracht werden. Durch die Umsetzung mit dem 5 Inertisierungsreagenz können die Hydroxylgruppen vollständig oder auch teilweise in eine Form überführt werden, die zu keiner negativen Wechselwirkung mit den katalytisch aktiven Zentren führen. Geeignete Inertisierungsmittel sind beispielsweise Siliciumhalogenide und Silane, wie Siliciumtetrachlorid, Chlortrimethylsilan, 10 Dimethylaminotrichlorsilan oder metallorganische Verbindungen von Aluminium, Bor und Magnesium wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Triethylboran, Dibutylmagnesium. Die chemische Dehydratisierung oder Inertisierung des Trägermaterials erfolgt beispielsweise dadurch, daß man 15 unter Luft- und Feuchtigkeitsausschluß eine Suspension des Trägermaterials in einem geeigneten Lösungsmittel mit dem Inertisierungsreagenz in reiner Form oder gelöst in einem geeigneten Lösungsmittel zur Reaktion bringt. Geeignete Lösungsmittel sind z.B. aliphatische oder aromatische Kohlenwasserstoffe wie Pentan, 20 Hexan, Heptan, Toluol oder Xylol. Die Inertisierung erfolgt bei Temperaturen zwischen 25 °C und 120 °C, bevorzugt zwischen 50 und 70 °C. Höhere und niedrigere Temperaturen sind möglich. Die Dauer der Reaktion beträgt zwischen 30 Minuten und 20 Stunden, bevorzugt 1 bis 5 Stunden. Nach dem vollständigen Ablauf der chemi-25 schen Dehydratisierung wird das Trägermaterial durch Filtration unter Inertbedingungen isoliert, ein- oder mehrmals mit geeigneten inerten Lösungsmitteln wie sie bereits zuvor beschrieben worden sind gewaschen und anschließend im Inertgasstrom oder im Vakuum getrocknet.

Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösungsmittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen befreit werden.

Das Katalysatorsystem wird erfindungsgemäß hergestellt, indem mindestens ein erfindungsgemäßes Metallocen, mindestens ein Coka40 talysator und mindestens ein inertisierter Träger gemischt wer-

Zur Darstellung des geträgerten Katalysatorsystems wird mindestens eine der oben beschriebenen Metallocen-Komponenten in einem 45 geeigneten Lösungsmittel mit mindestens einer Cokatalysatorkomponente in Kontakt gebracht, wobei bevorzugt ein lösliches Reaktionsprodukt, ein Addukt oder ein Gemisch erhalten wird. Die so erhaltene Zubereitung wird dann mit dem dehydratisierten oder inertisierten Trägermaterial vermischt, das Lösungsmittel entfernt
und das resultierende geträgerte Metallocen-Katalysatorsystem getrocknet, um sicherzustellen, daß das Lösungsmittel vollständig
5 oder zum größten Teil aus den Poren des Trägermaterials entfernt
wird. Der geträgerte Katalysator wird als frei fließendes Pulver
erhalten.

Ein Verfahren zur Darstellung eines frei fließenden und gegebe-10 nenfalls vorpolymerisierten geträgerten Katalysatorsystems umfaßt die folgenden Schritte:

- a) Herstellung einer Metallocen/Cokatalysator-Mischung in einem geeigneten Lösungs- oder Suspensionsmittel, wobei die Metallocen-Komponente eine der zuvor beschriebenen Strukturen besitzt.
 - b) Aufbringen der Metallocen/Cokatalysatormischung auf einen porösen, bevorzugt anorganischen dehydratisierten Träger.

20 c) Entfernen des Hauptanteils an Lösungsmittel von der resultierenden Mischung.

d) Isolierung des geträgerten Katalysatorsystems.

25

e) Gegebenenfalls eine Vorpolymerisation des erhaltenen geträgerten Katalysatorsystems mit einem oder mehreren olefinischen Monomer(en), um ein vorpolymerisiertes geträgertes Katalysatorsystem zu erhalten.

30

Bevorzugte Lösungsmittel für die Herstellung der Metallocen/Cokatalysator-Mischung sind Kohlenwasserstoffe und Kohlenwasserstoffgemische, die bei der gewählten Reaktionstemperatur flüssig sind und in denen sich die Einzelkomponenten bevorzugt lösen. Die Löslichkeit der Einzelkomponenten ist aber keine Voraussetzung, wenn sichergestellt ist, daß das Reaktionsprodukt aus Metallocen- und Cokatalysatorkomponenten in dem gewählten Lösungsmittel löslich ist. Beispiele für geeignete Lösungsmittel umfassen Alkane wie Pentan, Isopentan, Hexan, Heptan, Octan, und Nonan; Cycloalkane 40 wie Cyclopentan und Cyclohexan; und Aromaten wie Benzol, Toluol. Ethylbenzol und Diethylbenzol. Ganz besonders bevorzugt ist Toluol.

Die bei der Präparation des geträgerten Katalysatorsystems einge-45 setzten Mengen an Aluminoxan und Metallocen können über einen weiten Bereich variiert werden. Bevorzugt wird ein molares Verhältnis von Aluminium zum Übergangsmetall im Metallocen von 28

10 : 1 bis 1000 : 1 eingestellt, ganz besonders bevorzugt ein Verhältnis von 50 : 1 bis 500 : 1.

Im Fall von Methylaluminoxan werden bevorzugt 30 % ige toluoli-5 sche Lösungen eingesetzt; die Verwendung von 10 %igen Lösungen ist aber auch möglich.

Zur Voraktivierung wird das Metallocen in Form eines Feststoffes in einer Lösung des Aluminoxans in einem geeigneten Lösungsmittel aufgelöst. Es ist auch möglich, das Metallocen getrennt in einem geeigneten Lösungsmittel aufzulösen und diese Lösung anschließend mit der Aluminoxan-Lösung zu vereinigen. Bevorzugt wird Toluol verwendet.

15 Die Voraktivierungszeit beträgt 1 Minute bis 200 Stunden.

Die Voraktivierung kann bei Raumtemperatur (25 °C) stattfinden. Die Anwendung höherer Temperaturen kann im Einzelfall die erforderliche Dauer der Voraktivierung verkürzen und eine zusätzliche

20 Aktivitätssteigerung bewirken. Höhere Temperatur bedeutet in diesem Fall ein Bereich zwischen 50 und 100 °C.

Die voraktivierte Lösung bzw. das Metallocen/Cokatalysator-Gemisch wird anschließend mit einem inerten Trägermaterial, übli-

- 25 cherweise Kieselgel, das in Form eines trockenen Pulvers oder als Suspension in einem der oben genannten Lösungsmittel vorliegt, vereinigt. Bevorzugt wird das Trägermaterial als Pulver eingesetzt. Die Reihenfolge der Zugabe ist dabei beliebig. Die voraktivierte Metallocen-Cokatalysator-Lösung bzw. das Metallocen-Co-
- 30 katalysatorgemisch kann zum vorgelegten Trägermaterial dosiert, oder aber das Trägermaterial in die vorgelegte Lösung eingetragen werden.

Das Volumen der voraktivierten Lösung bzw. des Metallocen-Cokata-35 lysator-Gemisches kann 100 % des Gesamtporenvolumens des eingesetzten Trägermaterials überschreiten oder aber bis zu 100 % des Gesamtporenvolumens betragen.

Die Temperatur, bei der die voraktivierte Lösung bzw. das Metal-40 locen-Cokatalysatorgemisch mit dem Trägermaterial in Kontakt gebracht wird, kann im Bereich zwischen 0 und 100 °C variieren. Niedrigere oder höhere Temperaturen sind aber auch möglich.

Anschließend wird das Lösungsmittel vollständig oder zum größten 45 Teil vom geträgerten Katalysatorsystem entfernt, wobei die Mischung gerührt und gegebenenfalls auch erhitzt werden kann. Bevorzugt wird sowohl der sichtbare Anteil des Lösungsmittels als

auch der Anteil in den Poren des Trägermaterials entfernt. Das Entfernen des Lösungsmittels kann in konventioneller Art und Weise unter Anwendung von Vakuum und/oder Spülen mit Inertgas erfolgen. Beim Trocknungsvorgang kann die Mischung erwärmt werden, 5 bis das freie Lösungsmittel entfernt worden ist, was üblicherweise 1 bis 3 Stunden bei einer vorzugsweise gewählten Temperatur

weise 1 bis 3 Stunden bei einer vorzugsweise gewählten Temperaturzwischen 30 und 60 °C erfordert. Das freie Lösungsmittel ist der sichtbare Anteil an Lösungsmittel in der Mischung. Unter Restlösungsmittel versteht man den Anteil, der in den Poren einge-

10 schlossen ist.

Alternativ zu einer vollständigen Entfernung des Lösungsmittels kann das geträgerte Katalysatorsystem auch nur bis zu einem gewissen Restlösungsmittelgehalt getrocknet werden, wobei das freie Lösungsmittel vollständig entfernt worden ist. Anschließend kann das geträgerte Katalysatorsystem mit einem niedrig siedenden Kohlenwasserstoff wie Pentan oder Hexan gewaschen und erneut getrocknet werden.

20 Das dargestellte geträgerte Katalysatorsystem kann entweder direkt zur Polymerisation von Olefinen eingesetzt oder vor seiner Verwendung in einem Polymerisationsprozeß mit einem oder mehreren olefinischen Monomeren vorpolymerisiert werden. Die Ausführung der Vorpolymerisation von geträgerten Katalysatorsystemen ist 25 beispielsweise in WO 94/28034 beschrieben.

Als Additiv kann während oder nach der Herstellung des geträgerten Katalysatorsystems eine geringe Menge eines Olefins, bevorzugt eines α -Olefins (beispielsweise Styrol oder Phenyldimethylvinylsilan) als aktivitätssteigernde Komponente, oder beispielsweise eines Antistatikums zugesetzt werden.

Als Antistatikum wird üblicherweise eine Mischung aus einem Metallsalz der Medialansäure, einem Metallsalz der Anthranilsäure 35 und einem Polyamin eingesetzt. Derartige Antistatika werden beispielsweise in EP-A-0,636,636 beschrieben.

Das molare Verhältnis von Additiv zu Metallocenkomponente Verbindung (I) beträgt dabei bevorzugt zwischen 1 : 1000 bis 1000 : 1, 40 ganz besonders bevorzugt 1 : 20 bis 20 : 1.

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Polyolefins durch Polymerisation eines oder mehrerer Olefine in Gegenwart des Katalysatorsystems, enthaltend 45 mindestens eine Übergangsmetallkomponente der erfindungsgemäßen Metallocene der Formel I oder II. Unter dem Begriff Polymerisaton

wird eine Homopolymerisation wie auch eine Copolymerisation verstanden.

Die erfindungsgemäßen Verbindungen der Formeln (I) und (II) zei5 gen gegenüber den Dihalogen-Verbindungen zumindest gleichwertige,
zum Teil jedoch höhere, Aktivitäten in der Polymerisation von
Olefinen, und die erhaltenen Polyolefine zeigen eine Verminderung
der unerwünschten niedermolekularen extrahierbaren Anteile.

- 10 Das dargestellte Katalysatorsystem kann als einzige Katalysator-komponente für die Polymerisation von Olefinen mit 2 bis 20 C-Atomen eingesetzt werden, oder bevorzugt in Kombination mit mindestens einer Alkylverbindung der Elemente aus der I. bis III. Hauptgruppe des Periodensystems, wie z.B. einem Aluminium-,
- 15 Magnesium- oder Lithiumalkyl oder einem Aluminoxan eingesetzt werden. Die Alkylverbindung wird dem Monomeren oder Suspensionsmittel zugesetzt und dient zur Reinigung der Monomere von Substanzen, die die Katalysatoraktivität beeinträchtigen können. Die Menge der zugesetzten Alkylverbindung hängt von der Qualität der eingesetzten Monomere ab.

Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben.

25 Bei der Polymerisation kann das Antistatikum zusammen mit oder getrennt von dem eingesetzten Katalysatorsystem in das Polymerisationssystem eindosiert werden.

Die mit dem Katalysatorsystem, das mindestens eines der erfin30 dungsgemäßen Metallocene der Formeln (I) und/oder (II) enthält,
dargestellten Polymere, zeigen eine gleichmäßige Kornmorphologie
und weisen keine Feinkornanteile auf. Bei der Polymerisation mit
dem Katalysatorsystem treten keine Beläge oder Verbackungen auf.

35 Mit dem Katalysatorsystem werden Polymere, wie Polypropylen mit außerordentlich hoher Stereo- und Regiospezifität erhalten.

Besonders charakteristisch für die Stereo- und Regiospezifität von Polymeren, insbesondere von Polypropylen, ist die Triaden40 Taktizität (TT) und der Anteil an 2-1-insertierten Propeneinheiten (RI), die sich aus den ¹³C-NMR-Spektren ermitteln lassen.

Die $^{13}\text{C-NMR-}$ Spektren werden in einem Gemisch aus Hexachlorbutadien und Tetrachlorethan- d_2 bei erhöhter Temperatur (365 K) gemessen. Alle $^{13}\text{C-NMR-Spektren}$ der gemessenen Polypropylen-Proben wer-

den auf das Resonanzsignal von Tetrachlorethan- d_2 (δ = 73.81 ppm) geeicht.

Zur Bestimmung der Triaden-Taktizität des Polypropylens werden 5 die Methyl-Resonanzsignale im ¹³C-NMR-Spektrum zwischen 23 und 16 ppm betrachtet; vgl. J. C. Randall, Polymer Sequence Determination: Carbon-13 NMR Method, Academic Press New York 1978; A. Zambelli, P. Locatelli, G. Bajo, F. A. Bovey, Macromolucules 8 (1975), 687-689; H. N. Cheng, J. A. Ewen, Makromol. Chem. 190 10 (1989), 1931-1943. Drei aufeinander folgende 1-2-insertierte Propeneinheiten, deren Methylgruppen in der "Fischer-Projektion" auf der gleichen Seite angeordnet sind, bezeichnet man als mm -Triade (δ = 21.0 ppm bis 22.0 ppm). Zeigt nur die zweite Methylgruppe der drei aufeinander folgenden Propeneinheiten zur anderen 15 Seite, spricht man von einer rr-Triade (δ = 19.5 ppm bis 20.3 ppm) und zeigt nur die dritte Methylgruppe der drei aufeinander folgenden Propeneinheiten zur anderen Seite, von einer mr-Triade (δ = 20.3 ppm bis 21.0 ppm). Die Triaden-Taktizität berechnet man nach folgender Formel:

 $TT (%) = mm / (mm + mr + rr) \cdot 100$

20

Wird eine Propeneinheit invers in die wachsende Polymerkette insertiert, spricht man von einer 2-1-Insertion; vgl. T. Tsutsui, 25 N. Ishimaru, A. Mizuno, A. Toyota, N. Kashiwa, Polymer 30, (1989), 1350-56. Folgende verschiedene strukturelle Anordnungen sind möglich:

32

Der Anteil an 2-1-insertierten Propeneinheiten (RI) kann nach folgender Formel berechnet werden:

RI (%) = 0.5 I α , β (I α , α + I α , β + I α , δ) · 100,

wobei

die Summe der Intensitäten der Resonanzsignale bei δ = Ια, α 41.84, 42.92 und 46.22 ppm,

10

die Summe der Intensitäten der Resonanzsignale bei δ = Iα, β 30.13, 32.12, 35.11 und 35.57 ppm

sowie

15

die Intensität des Resonanzsignals bei δ = 37.08 ppm be-Ια,δ deuten.

Das isotaktische Polypropylen, das mit dem Katalysatorsystem her-20 gestellt worden ist, zeichnet sich durch einen Anteil an 2-1-insertierten Propeneinheiten RI < 0.5% bei einer Triaden-Taktizität TT > 98.0% und einen Schmelzpunkt > 153°C aus, wobei $M_{\rm w}/M_{\rm n}$ des erfindungsgemäßen Polypropylens zwischen 2.5 und 3.5 liegt.

25 Die mit dem Katalysatorsystem herstellbaren Copolymere zeichnen sich durch eine gegenüber dem Stand der Technik deutlich höhere Molmasse aus. Gleichzeitig sind solche Copolymere durch Einsatz des Katalysatorsystems mit hoher Produktivität bei technisch relevanten Prozessparametern ohne Belagsbildung herstellbar.

30

Die nach dem Verfahren hergestellten Polymere sind insbesondere zur Herstellung reißfester, harter und steifer Formkörper wie Fasern, Filamente, Spritzgußteile, Folien, Platten oder Großhohlkörpern (z.B. Rohre) geeignet.

35

Die Erfindung wird durch folgende, die Erfindung jedoch nicht einschränkende Beispiele erläutert.

Allgemeine Angaben: Die Herstellung und Handhabung der organome-40 tallischen Verbindungen erfolgte unter Ausschluß von Luft und Feuchtigkeit unter Argon-Schutzgas (Schlenk-Technik bzw. Glove-Box). Alle benötigten Lösungsmittel wurden vor Gebrauch mit Argon gespült und über Molsieb absolutiert.

Beispiel 1: Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) (1)

- 5 20.6 g (0.1 mol) 2,4-Di-tert.-butylphenol wurden in 200 ml Toluol/20 ml THF bei Raumtemperatur mit 37.2 ml (0.1 mol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 28.8 g (0.05 mol) Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)-zirkoniumdichlo-
- 10 rid als Feststoff zugegeben. Die Suspension wurde 3h bei 100°C gerührt und anschließend heiß über Celite filtriert. Der Filterkuchen wurde noch 3 mal mit je 100 ml Toluol (100°C) extrahiert. Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 31.1 g
- 15 (83 %) Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirko-nium-monochloro-mono-(2,4-di-tert.-butyl-phenolat) (1) erhalten. 1H-NMR (400 MHz, CDCl₃): 8.05 (dd,1H), 7.75 (m, 2H), 7.65 (dd,1H), 7.60 (1H), 7.5 7.15 (m, 6H), 7.1 (m, 1H), 7.0 (m, 1H), 6.85 (s, 1H), 6.8 (d, 1H), 6.65 (m, 1H), 5.45 (d, 1H), 2.82 (s,
- 20 3H), 2. 45 (s, 3H), 1.45 (s, 3H), 1.35 (s, 3H), 1.25 (s, 9H), 0.95 (s, 9H).

Löslichkeitsvergleich:

25 50 mg Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirkoni-umdichlorid lösten sich bei Raumtemperatur vollständig in 240 ml Toluol (Löslichkeit ca. 0.36 mmol/1).

50 mg der Verbindung (1) lösten sich bei Raumtemperatur in < 5 ml 30 Toluol sofort auf (Löslichkeit > 13 mmol/l).

Beispiel 1a: Katalysatordarstellung mit (1) und Polymerisation:

- 35,1 mg (0,047 mmol) (1) wurden in 2,1 ml 30%-iger MAO-Lösung in 35 Toluol (Al/Zr=215) für 60 Minuten bei Raumtemperatur gerührt. Anschließend wurden 2 g SiO₂ (Grace XPO2107, vorbehandelt bei 140°C, 10 mbar, 10 Std.) dazugegeben und weitere 10 Minuten gerührt. Das Lösungsmittel wurde im Ölpumpenvakuum entfernt.
- 40 Ein trockener 21-Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 l flüssigem Propylen befüllt. Dazu wurden 2 ml TEA (20% ig in Varsol) gegeben und 15 Minuten gerührt. Anschließend wurde das oben hergestellte Katalysatorsystem (0,886 g) in 20 ml Heptan resuspendiert eingespritzt und mit 15 ml Heptan nachgespült. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde

polymerisiert. Gestoppt wurde die Polymerisation durch Abgasen

des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet. Es resultierten 470 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität betrug 0,53 kg PP/g Katalysator x h.

Vergleichsbeispiel: Katalysatordarstellung mit Dimethylsilandiyl-bis-(2-methyl-4,5-benzo-indenyl)-zirkoniumdichlorid und Polymerisation

10 27,1 mg (0,047 mmol) Dimethylsilandiyl-bis-(2-methyl-4,5-benzo-indenyl)-zirkoniumdichlorid wurden in 2,1 ml 30%-iger MAO-Lösung in Toluol (Al/Zr=215) für 60 Minuten bei Raumtemperatur gerührt. Anschließend wurden 2 g SiO₂ (Grace XPO2107, vorbehandelt bei 140°C, 10 mbar, 10 Std.) dazugegeben und weitere 10 Minuten gerührt. Das Lösungsmittel wurde im Ölpumpenvakuum entfernt.

5

Ein trockener 21-Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 l flüssigem Propylen befüllt. Dazu wurden 2 ml TEA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wurde das oben bergestellte Katalus

- 20 Minuten gerührt. Anschließend wurde das oben hergestellte Katalysatorsystem (0,897 g) in 20 ml Heptan resuspendiert eingespritzt und mit 15 ml Heptan nachgespült. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wurde die Polymerisation durch Abgasen
- 25 des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet. Es resultierten 410 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität betrug 0,46 kg PP/g Katalysator x h.
- 30 Beispiel 2: Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkonium-mo-nochloro-mono-(2,4-di-tert.-butyl-phenolat) (2)

1.03 g (5 mmol) 2,4-Di-tert.-butylphenol wurden in 10 ml Toluol/1 ml THF bei Raumtemperatur mit 1.85 ml (5 mmol) einer 20%igen Lö-

- 35 sung von Bütyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 1.19 g (2.5 mmol) Dimethylsilandiybis(2-methyl-indenyl)-zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 2h bei 60°C gerührt und anschließend heiß über Celite filtriert. Der Filterkuchen wurde
- 40 noch 3 mal mit je 10 ml Toluol (60°C) extrahiert. Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 0.87 g (53 %) Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkonium-monochloromono-(2,4-di-tert.-butyl-phenolat) (2) erhalten.
- 45 1H-NMR (400 MHz, CDCl₃): 8.03 (dd,1H), 7.6 (dd, 1H), 7.25 7.2 (m, 2H), 7.15 (m, 1H), 7.1-7.0 (m, 2H), 6.9 (m, 1H), 6.8 (s, 1H), 6.75 (m, 1H), 6.7 (m, 1H), 6.3 (s, 1H), 5.55 (d, 1H), 2.65 (s,

35

3H), 2. 3 (s, 3H), 1.3 (s, 3H), 1.25 (s, 9H), 1.22 (s, 3H), 1.15 (s, 9H).

Löslichkeitsvergleich:

5

15

50 mg Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkoniumdichlorid lösten sich bei Raumtemperatur vollständig in 50 ml Toluol (Löslichkeit ca. 2.1 mmol/l).

10 50 mg der Verbindung (2) lösten sich bei Raumtemperatur in < 5 ml Toluol sofort auf (Löslichkeit > 15 mmol/l).

Beispiel 3: Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)zirkonium-monochloro-mono-(2-isopropyl-5-methyl-phenolat) (3)

2.7 g (17.4 mmol) 2-Isopropyl-5-methylphenol wurden in 20 ml Toluol/2 ml THF bei Raumtemperatur mit 6.5 ml (17.4 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h

- 20 bei 60°C nachgerührt. Bei Raumtemperatur wurden 5.0 g (8.7 mmol) Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 4h bei 100°C gerührt und anschließend heiß über Celite filtriert. Der Filterkuchen wurde noch 2 mal mit je 25 ml Toluol (100°C) extrahiert.
- 25 Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 2.5 g (41 %) Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirko-nium-monochloro-mono-(2-isopropyl-5-methyl-phenolat) (3) erhalten.

30

1H-NMR (400 MHz, CDCl₃): 7.9 (dd,1H), 7.81 (m, 1H), 7.74 (m, 1H), 7.54 (m, 2H), 7.45 - 7.08 (m, 8H), 6.65 (d, 1H), 6.55 (s, 1H), 6.35 (m, 1H), 5.56 (d, 1H), 2.58 (s, 3H), 2.35 (s, 3H), 2.3 (m, 1H), 2.1 (s, 3H), 1.37 (s, 3H), 1.27 (s, 3H), 0.75 (d, 3H), 0.62 35 (d, 3H).

Löslichkeitsvergleich:

50 mg Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirkoni-40 umdichlorid lösten sich bei Raumtemperatur vollständig in 240 ml Toluol (Löslichkeit ca. 0.36 mmol/1).

50 mg der Verbindung (3) lösten sich bei Raumtemperatur in 4 ml Toluol auf (Löslichkeit ca. 18 mmol/1).

Beispiel 4: Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkonium-mo-nochloro-mono-(2-isopropyl-5-methyl-phenolat) (4)

- 3.2 g (21 mmol) 2-Isopropyl-5-methylphenol wurden in 20 ml To5 luol/2 ml THF bei Raumtemperatur mit 7.8 ml (21 mmol) einer .
 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h
 bei 60°C nachgerührt. Bei Raumtemperatur wurden 5.0 g (10.5 mmol)
 Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkoniumdichlorid als
 Feststoff zugegeben. Die Suspension wurde 2h bei 100°C gerührt und
- 10 anschließend heiß über Celite filtriert. Der Filterkuchen wurde noch 2 mal mit je 25 ml Toluol (100°C) extrahiert. Nach Einengen des Lösungsmittels wurde der ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 1.36 g (22 %) Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkonium-monochloro-
- 15 mono-(2-isopropyl-5-methyl-phenolat) (4) erhalten. 1H-NMR (400 MHz, CDCl₃): 8.0 (m,1H), 7.81 (m, 1H), 7.3 ~ 6.8 (m, 8H), 6.55 (dm, 1H), 6.1 (s, 1H), 5.9 (d, 1H), 2.7 (hept, 1H), 2.45 (s, 3H), 2. 25 (s, 3H), 2.18 (s, 3H), 1.4 (s, 3H), 1.25 (s, 3H), 1.1 (d, 3H), 0.95 (d, 3H).

Löslichkeitsvergleich:

50 mg Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkoniumdichlorid lösten sich bei Raumtemperatur vollständig in 50 ml Toluol (Lös-25 lichkeit ca. 2.1 mmol/l).

50 mg der Verbindung (4) lösten sich bei Raumtemperatur in 5 ml Toluol auf (Löslichkeit ca. 17 mmol/1).

- 30 Beispiel 5: Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkonium-mo-nochloro-mono-(2,4-di-methyl-phenolat) (5)
- 1.0 g (8.2 mmol) 2,4-Di-methylphenol wurden in 20 ml Toluol/2 ml THF bei Raumtemperatur mit 3.0 ml (8.2 mmol) einer 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 1.9 g (4.0 mmol) Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 8h bei 60°C gerührt und anschließend heiß über Celite filtriert. Nach Einengen des Lösungsmittels auf doca. 7 ml wurde der bei -30°C ausgefallere gelbe Feststoff von der
- 40 ca. 7 ml wurde der bei -30°C ausgefallene gelbe Feststoff abfiltriert und im Vakuum getrocknet. Es wurden 0.65 g (29 %) Dimethylsilandiyl-bis(2-methyl-indenyl)-zirkonium-monochloromono-(2,4-di-methylphenolat) (5) erhalten.
- 1H-NMR (400 MHz, CDC1₃): 7.96 (dd,1H), 7.6 (m, 1H), 7.36 (m, 1H), 45 7.31 (m, 1H), 7.29 (d, 1H), 7.1 (m, 1H), 6.99 (m, 1H), 6.94 (m, 1H), 6.88 (s, 1H), 6.75 (m, 1H), 6.65 (m, 1H), 6.06 (s, 1H),

37

5.93 (d, 1H), 2.4 (s, 3H), 2. 24 (s, 3H), 2.18 (s, 3H), 1.85 (s, 3H), 1.35 (s, 3H), 1.24 (s, 3H).

Beispiel 6: Dimethylsilandiyl-bis(2-methyl-4,5-benzoindenyl)-zirkonium-monochloro-mono-(2,4-ditert.pentyl-phenolat) (6)

0.85 g (3.5 mmol) 2,4-Di-tert.-pentyl-phenol wurden in 10 ml Toluol/1 ml THF bei Raumtemperatur mit 1.3 ml (3.5 mmol) einer 10 20%igen Lösung von Butyllithium in Toluol versetzt. Es wurde 1 h bei 60°C nachgerührt. Bei Raumtemperatur wurden 1.0 (1.74 mmol) Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirkoniumdichlorid als Feststoff zugegeben. Die Suspension wurde 4h bei 100°C gerührt, mit 40 ml Toluol verdünnt und anschließend heiß über 15 Celite filtriert. Der Filterkuchen wurde noch 2 mal mit je 25 ml Toluol (100°C) extrahiert. Nach Einengen des Lösungsmittels auf 10 ml wurde der ausgefallene gelbe Feststoff abfiltriert, mit wenig kaltem Toluol gewaschen und im Vakuum getrocknet. Es wurden 0.85 g (63 %) Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirko-20 nium-monochloro-mono-(2,4-di-tert.pentyl-phenolat) (6) erhalten. 1H-NMR (400 MHz, CDCl₃): 8.00 (d,1H), 7.74 (t, 2H), 7.64-7.57 (m, 2H), 7.45 - 7.27 (m, 5H), 7.14 (s, 1H), 7.10 (m, 1H), 6.98(m, 1H), 6.78 (s, 1H), 6.65 (d, 1H), 6.52 (dd, 1H), 5.38 (d, 1H), 2.78 (s, 3H), 2. 41 (s, 3H), 1.46 (quart., 2H), 1.41 25 (s, 3H), 1.30 (s, 3H), 1.22 (m, 2H), 1.14 (s, 3H), 1.13 (s, 3H), 0.91 (s, 3H), 0.88 (s, 3H), 0.57 (t, 3H), 0.39 (t, 3H).

Löslichkeitsvergleich:

30 50 mg Dimethylsilandiyl-bis(2-methyl-4,5-benzo-indenyl)-zirkoni-umdichlorid lösten sich bei Raumtemperatur vollständig in 240 ml Toluol (Löslichkeit ca. 0.36 mmol/1).

55 mg der Verbindung (6) lösten sich bei Raumtemperatur in 4 ml 35 Toluol auf (Löslichkeit ca. 17.7 mmol/1).

Patentansprüche

1. Verbindungen der Formel (I),

5

10

15

worin

20 M ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist,

gleich oder verschieden sind und Rest Si $(R^{12})_3$ ist, worin R^{12} gleich oder verschieden ein Wasserstoffatom oder eine C_1 - C_{40} -kohlenstoffhaltige Gruppe, oder R^1 eine C_1 - C_{30} - kohlenstoffhaltige Gruppe, ist, oder zwei oder mehrere Reste R^1 können so miteinander verbunden sein, daß die Reste R^1 und die sie verbindenden Atome des Cyclopentadienylringes ein C_4 - C_{24} -Ringsystem bilden, welches seinerseits substituiert sein kann,

R² gleich oder verschieden sind und ein Rest Si(R¹²)₃ ist, worin R¹² gleich oder verschieden ein Wasserstoffatom oder eine C₁-C₄₀-kohlenstoffhaltige Gruppe, oder R² eine C₁-C₃₀ - kohlenstoffhaltige Gruppe ist, oder zwei oder mehrere Reste R² können so miteinander verbunden sein, daß die Reste R² und die sie verbindenden Atome des Cyclopentadienylringes ein C₄-C₂₄-Ringsystem bilden, welches seinerseits substituiert sein kann,

40

45

- ${\ensuremath{\mathsf{R}}}^3$ gleich oder verschieden eine ${\ensuremath{\mathsf{C}}}_1{\ensuremath{\mathsf{C}}}_{40}$ kohlenstoffhaltige Gruppe ist,
- X ein Halogenatom ist,

Y ein Element der 6. Hauptgruppe des Periodensystems der Elemente oder ein Fragment CH, CR^3_2 , NR^3 , PR^3 oder $P(=0)R^3$ ist,

- n gleich 1 bis 5 für k = 0, und n gleich 0 bis 4 für k = 1 ist,
- n' gleich 1 bis 5 für k = 0, und n' gleich 0 bis 4 für k = 1 ist,

- m gleich 1 bis 3 ist, bevorzugt 1,
- k gleich Null oder 1 ist, wobei für k=0 ein unverbrücktes Metallocen, für k=1 ein verbrücktes Metallocen vorliegt, und

- B ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet.
- Verbindungen gemäß Anspruch 1, dadurch gekennzeichnet, daß
 - M Ti, Zr oder Hf,
- R¹ gleich oder verschieden sind und ein Rest Si(R¹²)₃ ist, worin
 R¹² gleich oder verschieden ein Wasserstoffatom, C₁-C₂₀-Alkyl,
 C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₁₀-Fluoraryl,
 C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Alkylaryl oder C₈-C₄₀-Arylalkenyl,
- oder R¹ C₁-C₂5-Alkyl, C₂-C₂5-Alkenyl, C₃-C₁5-Alkylalkenyl,

 C₆-C₂₄-Aryl, C₅-C₂₄-Heteroaryl, Cȝ-C₃₀-Arylalkyl, Cȝ-C₃₀-Alkylaryl, fluorhaltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl,
 fluorhaltiges Cȝ-C₃₀-Arylalkyl, fluorhaltiges Cȝ-C₃₀-Alkylaryl
 oder C₁-C₁₂-Alkoxy ist, oder zwei oder mehrere Reste R¹ können
 so miteinander verbunden sein, daß die Reste R¹ und die sie

 verbindenden Atome des Cyclopentadienylringes ein C₄-C₂₄Ringsystem bilden, welches seinerseits substituiert sein
 kann,
- gleich oder verschieden sind und ein Rest Si $(R^{12})_3$ ist, worin R¹² gleich oder verschieden ein Wasserstoffatom, C_1 - C_{20} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{14} -Aryl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryloxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Alkylaryl oder C_8 - C_{40} -Arylalkenyl,
- oder R² C₁-C₂₅-Alkyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl, C₅-C₂₄-Heteroaryl, C₇-C₃₀-Arylalkyl, C₇-C₃₀-Alkylaryl, fluorhaltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges C₇-C₃₀-Arylalkyl, fluorhaltiges C₇-C₃₀-Alkylaryl oder C₁-C₁₂-Alkoxy ist, oder zwei oder mehrere Reste R² können so miteinander verbunden sein, daß die Reste R² und die sie verbindenden Atome des Cyclopentadienylringes ein

 $\text{C}_4\text{-}\text{C}_{24}\text{-}\text{Ringsystem}$ bilden, welches seinerseits substituiert sein kann,

- gleich oder verschieden $C_1-C_{25}-Alkyl$, $C_2-C_{25}-Alkenyl$, $C_3-C_{15}-Alkylalkenyl$, $C_6-C_{24}-Aryl$, $C_5-C_{24}-Heteroaryl$, $C_7-C_{30}-Arylalkyl$, $C_7-C_{30}-Alkylaryl$, fluorhaltiges $C_1-C_{25}-Alkyl$, fluorhaltiges $C_6-C_{24}-Aryl$, fluorhaltiges $C_7-C_{30}-Arylalkyl$ oder fluorhaltiges $C_7-C_{30}-Alkylaryl$ ist,
- 10 X Chlor, ist,
 - Y Sauerstoff, Schwefel oder NR3 ist,
- n gleich 1 bis 5 für k = 0, und n gleich 0 bis 4 für k = 1 ist,
 - n' gleich 1 bis 5 für k = 0, und n' gleich 0 bis 4 für k = 1 ist
 - m gleich 1 ist, und
- 20 k gleich 1 ist.
 - Verbindungen gemäß Anspruch 1, dadurch gekennzeichnet, daß die Formel (I) für verbrückte Metallocenverbindungen bei denen k gleich 1 ist steht.

25

- Verbindungen gemäß Anspruch 3, dadurch gekennzeichnet, daß die Formel
- (I) der Formel (II)

30

35

40

45 worin

	7
-3	٠.

- M gleich Ti, Zr oder Hf ist,
- R^3 gleich oder verschieden eine $C_1 C_{30}$ kohlenstoffhaltige Gruppe, ist,

- R^4 , R^6 gleich oder verschieden sind und ein Wasserstoffatom, eine $C_1\text{-}C_{20}$ kohlenstoffhaltige Gruppe ist,
- R^5 , R^7 gleich oder verschieden sind und ein Wasserstoffatom, 10 eine C_1 - C_{20} - kohlenstoffhaltige Gruppe ist,
- R^{8,} R⁹ gleich oder verschieden sind und ein Wasserstoffatom, Halogenatom oder eine C₁-C₂₀ kohlenstoffhaltige Gruppe bedeuteten, und zwei Reste R⁸ oder R⁹ ein mono- oder polycyclisches Ringssystem bilden können, das seinerseits gegebenenfalls substituiert sein kann,
 - X ein Halogenatom ist,
- 20 Y ein Element der 6. Hauptgruppe des Periodensystems der Elemente oder ein Fragment CH, CR^3_2 , NR^3 , PR^3 oder $P(=0)R^3$ ist,
- 1, 1' gleich oder verschieden eine ganze Zahl zwischen Null und 25 4 ist
 - B ein verbrückendes Strukturelement zwischen den beiden Indenylresten bezeichnet, entspricht
- 30 5. Verbindungen gemäß Anspruch 5, dadurch gekennzeichnet, daß in der Formel (II)
 - M gleich Zirkonium ist,
- 35 R^3 gleich oder verschieden C_3 - C_{10} -Alkyl, C_6 - C_{24} -Aryl, C_5 - C_{24} -Heteroaryl, C_7 - C_{30} -Arylalkyl, C_7 - C_{30} -Alkylaryl, fluorhaltiges C_6 - C_{24} -Aryl, fluorhaltiges C_7 - C_{30} -Arylalkyl oder fluorhaltiges C_7 - C_{30} -Alkylaryl ist,
- 40 R⁴, R⁶ gleich oder verschieden sind und ein Wasserstoffatom, $C_1-C_{18}-\text{Alkyl}, \ C_2-C_{10}-\text{Alkenyl}, \ C_3-C_{15}-\text{Alkylalkenyl}, \\ C_6-C_{18}-\text{Aryl}, \ C_5-C_{18}-\text{Heteroaryl}, \ C_7-C_{20}-\text{Arylalkyl}, \\ C_7-C_{20}-\text{Alkylaryl}, \ \text{fluorhaltiges} \ C_1-C_{12}-\text{Alkyl}, \ \text{fluorhaltiges} \ C_6-C_{18}-\text{Aryl}, \ \text{fluorhaltiges} \ C_7-C_{20}-\text{Arylalkyl} \ \text{oder fluorhaltiges} \ C_7-C_{20}-\text{Alkylaryl} \ \text{ist},$

- R^5 , R^7 gleich oder verschieden sind und ein Wasserstoffatom, C_1 - C_{18} -Alkyl, C_2 - C_{10} -Alkenyl, C_3 - C_{15} -Alkylalkenyl, C_6 - C_{18} -Aryl, C_5 - C_{18} -Heteroaryl, C_7 - C_{20} -Arylalkyl, C_7 - C_{20} -Alkylaryl, fluorhaltiges C_1 - C_{12} -Alkyl, fluorhaltiges C_6 - C_{18} -Aryl, fluorhaltiges C_7 - C_{20} -Arylalkyl oder fluorhaltiges C_7 - C_{20} -Alkylaryl ist,
- gleich oder verschieden sind und ein Wasserstoffatom, Halogenatom, eine lineare oder verzweigte C₁-C₁₈-Alkylgruppe, C₂-C₁₀-Alkenyl, C₃-C₁₅-Alkylalkenyl, eine C₆-C₁₈-Arylgruppe, die gegebenenfalls substituiert sein kann, C₅-C₁₈-Heteroaryl, C₇-C₂₀-Arylalkyl, C₇-C₂₀-Alkylaryl, fluorhaltiges C₆-C₁₈-Aryl, fluorhaltiges C₁-C₁₂-Alkyl, fluorhaltiges C₆-C₁₈-Aryl, fluorhaltiges C₇-C₂₀-Arylalkyl oder fluorhaltiges C₇-C₂₀-Alkylaryl sind, und zwei Reste R⁸ oder R⁹ ein mono- oder polycyclisches Ringssystem bilden können, das seinerseits gegebenenfalls substituiert sein kann, Chlor, ist,
- 20 Y Sauerstoff, Schwefel oder NR³ ist,
 - 1, 1' gleich oder verschieden eine ganze Zahl 1 oder 2 sind,
- B ein verbrückendes Strukturelement zwischen den beiden 25 Indenylresten bezeichnet.
 - Katalysator enthaltend mindestens eine Verbindung gemäß Anspruch 1 und einen Träger, sowie gegebenenfalls einen Cokatalysator.
 - 7. Verfahren zur Herstellung eines Polyolefins in Gegenwart eines Katalysators gemäß Anspruch 6.
- Verwendung eines Katalysators gemäß Anspruch 6 zur Olefinpo lymerisation.

30

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07F17/00 C08F10/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07F C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
X	REPO, T. ET AL.: "phenoxy substituted zirconocenes in ethylene polymerization" JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 541, 1997, pages 363-366, XP004093735 the whole document	1-8
X	CHEMICAL ABSTRACTS, vol. 127, no. 12, 22 September 1997 (1997-09-22) Columbus, Ohio, US; abstract no. 162245, HINO, T. ET AL.: "metallocene catalyst for olefin polymerization and production of polyolefins" XP002128399 abstract & JP 09 176221 A (SUMITOMO) 8 July 1997 (1997-07-08)	1-8
<u> </u>		

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "A" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
24 January 2000 Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	11/02/2000 Authorized officer Rinkel, L

	lation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category ³	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 110, no. 8, 20 February 1989 (1989-02-20) Columbus, Ohio, US; abstract no. 58292, TSUTSUI, T. ET AL.: "high efficiency catalysts for alpha olefin polymerization" XP002128400 abstract & JP 63 175004 A (MITSUI) 19 July 1988 (1988-07-19)	1-8
x	EP 0 287 666 A (MITSUI) 26 October 1988 (1988-10-26) the whole document	1-8
x	WO 87 03887 A (MITSUI) 2 July 1987 (1987-07-02) the whole document	1-8
	CHEMICAL ABSTRACTS, vol. 126, no. 20, 19 May 1997 (1997-05-19) Columbus, Ohio, US; abstract no. 264146, SCHMIDT, KATRIN ET AL: "Photochemical Isomerization of Me2Si-Bridged Zirconocene Complexes. Application to Stereoselective Syntheses of ansa-Zirconocene Binaphtholat Stereoisomers" XP002128401 abstract & ORGANOMETALLICS (1997), 16(8), 1724-1728	1-5
	CHEMICAL ABSTRACTS, vol. 117, no. 17, 26 October 1992 (1992-10-26) Columbus, Ohio, US; abstract no. 171616, WANG, YING ET AL: "Reactions of sila-bridged biscyclopentadienyl IVB group metal dichlorides" XP002128402 abstract & YOUJI HUAXUE (1992), 12(3), 286-90,	1-5
	DORMOND, A. ET AL: "Dynamic stereochemistry of titanium(III).fwdarw. titanium(IV) transformation for complexes with 2 cyclopentadienyl ligands" J. ORGANOMET. CHEM. (1979), 165(3), 319-27, XP002128396 the whole document	

ational Application No PCT/EP 99/08851

C (Co=+!=	PCT/EP 99/08851	
Category °	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
(_.	DORMOND, ALAIN ET AL: "Aryloxy complexes of dicyclopentadienyltitanium(III) derivatives" J. ORGANOMET. CHEM. (1977), 125(1), 63-9, XP002128397 the whole document	1-5
	DORMOND, A. ET AL: "Pseudotetrahedral complexes of titanium with metal-centered chirality" J. ORGANOMET. CHEM. (1975), 101(1), 71-84, XP002128398 the whole document	1-5
	CHEMICAL ABSTRACTS, vol. 83, no. 1, 7 July 1975 (1975-07-07) Columbus, Ohio, US; abstract no. 10328, DORMOND, ALAIN ET AL: "Diastereoisomerism in the titanocene series. Synthesis of diastereoisomers with a chiral element on the trimethylene group of a bridged structure" XP002128403	1-5
	abstract & C. R. HEBD. SEANCES ACAD. SCI., SER. C (1975), 280(7), 477-9,	

C.(Fortsetz	PCT/EP 99/08851	
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	
	Teile	Betr. Anspruch Nr.
X	CHEMICAL ABSTRACTS, vol. 110, no. 8, 20. Februar 1989 (1989-02-20) Columbus, Ohio, US; abstract no. 58292, TSUTSUI, T. ET AL.: "high efficiency catalysts for alpha olefin polymerization" XP002128400 Zusammenfassung & JP 63 175004 A (MITSUI) 19. Juli 1988 (1988-07-19)	1-8
X	EP 0 287 666 A (MITSUI) 26. Oktober 1988 (1988-10-26) das ganze Dokument	1-8
X	WO 87 03887 A (MITSUI) 2. Juli 1987 (1987-07-02) das ganze Dokument	1-8
X	CHEMICAL ABSTRACTS, vol. 126, no. 20, 19. Mai 1997 (1997-05-19) Columbus, Ohio, US; abstract no. 264146, SCHMIDT, KATRIN ET AL: "Photochemical Isomerization of Me2Si-Bridged Zirconocene Complexes. Application to Stereoselective Syntheses of ansa-Zirconocene Binaphtholat Stereoisomers" XP002128401 Zusammenfassung & ORGANOMETALLICS (1997), 16(8), 1724-1728	1-5
	CHEMICAL ABSTRACTS, vol. 117, no. 17, 26. Oktober 1992 (1992-10-26) Columbus, Ohio, US; abstract no. 171616, WANG, YING ET AL: "Reactions of sila-bridged biscyclopentadienyl IVB group metal dichlorides" XP002128402 Zusammenfassung & YOUJI HUAXUE (1992), 12(3), 286-90,	1-5
	DORMOND, A. ET AL: "Dynamic stereochemistry of titanium(III).fwdarw. titanium(IV) transformation for complexes with 2 cyclopentadienyl ligands" J. ORGANOMET. CHEM. (1979), 165(3), 319-27, XP002128396 das ganze Dokument	1-5
nan PCTASA/9		

		PCI/EP 9	3/00031
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
(ategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.
x .	DORMOND, ALAIN ET AL: "Aryloxy complexes of dicyclopentadienyltitanium(III) derivatives" J. ORGANOMET. CHEM. (1977), 125(1), 63-9, XP002128397 das ganze Dokument		1-5
X	DORMOND, A. ET AL: "Pseudotetrahedral complexes of titanium with metal-centered chirality" J. ORGANOMET. CHEM. (1975), 101(1), 71-84, XP002128398 das ganze Dokument		1-5
X	CHEMICAL ABSTRACTS, vol. 83, no. 1, 7. Juli 1975 (1975-07-07) Columbus, Ohio, US; abstract no. 10328, DORMOND, ALAIN ET AL: "Diastereoisomerism in the titanocene series. Synthesis of diastereoisomers with a chiral element on the trimethylene group of a bridged structure" XP002128403 Zusammenfassung & C. R. HEBD. SEANCES ACAD. SCI., SER. C (1975), 280(7), 477-9,		1-5
		•	

...rernationales Aktenzeichen

PCT/EP 99/08851

Feld I	Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt
Gemäß	Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt: Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2. X	Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
	Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II	Bemerkungen bei mangeinder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die intern	ationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
1 <u>c</u>	Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser nternationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Z	la für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine usätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
	a der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser ternationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die nsprüche Nr.
4. De ch	er Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher- ienbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er- Bt:
Bemerkung	gen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Die Recherche ergab in ihrer Anfangsphase eine sehr große Zahl neuheitsschädlicher Dokumente. Diese Zahl ist so groß, daß sich unmöglich feststellen lässt, für was in der Gesamtheit der Patentansprüche eventuell nach zu Recht Schutz begehrt werden könnte (Art. 6 PCT). Aus diesen Gründen erscheint eine sinnvolle Recherche über den gesamten Bereich der Patentansprüche unmöglich. Die Recherche wurde daher beschränkt auf:

Verbindungen der Formel (I), worin R3 eine Phenylgruppe ist welche gegebenenfalls substituiert oder kondensiert sein kann.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentanprüche vorlegt.

nales Aktenzeichen
PCT/EP 99/08851

im Doot		PCI/EP 99/08851		
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
JP 9176221 A	08-07-1997	KEINE		
JP 63175004 A	19-07-1988	JP 2042369 C JP 7080932 B	09-04-1996 30-08-1995	
EP 287666 A	26-10-1988	JP 7080931 B JP 63089506 A JP 7080937 B JP 63089505 A AT 89836 T AT 114678 T AT 177759 T DE 3750818 D DE 3750818 T DE 3752260 D DE 3752260 T DE 3786013 A EP 0406912 A EP 0406912 A EP 0812862 A WO 8802378 A JP 2610796 B JP 8100020 A JP 2502071 B JP 63178108 A KR 9201352 B US 5700749 A	30-08-1995 20-04-1988 30-08-1995 20-04-1988 15-06-1993 15-12-1994 15-04-1995 20-04-1995 22-04-1999 02-09-1999 01-07-1993 09-01-1991 27-04-1994 17-12-1997 07-04-1988 14-05-1997 16-04-1996 29-05-1996 22-07-1988 11-02-1992 23-12-1997	
WO 8703887 A	02-07-1987	AT 72819 T CN 1036016 A,B DE 3684018 A EP 0250601 A JP 7080930 B JP 62230802 A US 5700750 A US 5807801 A	15-03-1992 04-10-1989 02-04-1992 07-01-1988 30-08-1995 09-10-1987 23-12-1997 15-09-1998	