Factorization Machines

20200045 김건우

Contents

- Introduction
- Prediction Under Sparsity
- Factorization Machines
- Performance of FM
- Code implement

1.Introduction

• Factorization machine = SVM + Factorization model

• Real Value Feature Vector를 이용한 General Predictor

Calculated in Linear time

• Sparse 한 상황에서도 적용가능

2. Prediction Under Sparsity

(User, Item, Date, rating)으로 이루어진 데이터셋

```
S = \{(A, TI, 2010-1, 5), (A, NH, 2010-2, 3), (A, SW, 2010-4, 1), (B, SW, 2009-5, 4), (B, ST, 2009-8, 5), (C, TI, 2009-9, 1), (C, SW, 2009-12, 5)\}
```

2. Prediction Under Sparsity

2. Prediction Under Sparsity

"One-hot encoding"

Model equation

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j \quad (1)$$

Global bias

Linear term

Interaction term

Model parameters

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^n, \quad \mathbf{V} \in \mathbb{R}^{n \times k}$$
 (2)

Weight

Latent vector

3. Factorization Machines (FM) - Expressiveness

- 어떤 positive define matrix W에 대해 W = V*V^t 을 만족하는 V 가 존재함 (k가 sufficiently large할 때)
- ⇒이는 k가 충분히 크다면 FM model이 어떠한 interaction matrix라도 표현할 수 있음을 의미
- ⇒그러나 sparse한 환경에서는 데이터가 충분하지 않다.
- ⇒K 제한>FM의 표현력↑ >sparse한 상황에서 일반화 성능↑

-Parameter Estimation Under Sparsity

A(Alice)와 ST 사이의 interaction? =>데이터가 없음

FM은 interaction parameter를 factorizing함으로써 독립성을 깨뜨림...추정 가능!

$$<$$
 $V_{B'}$ V_{SW} $> \approx <$ $V_{C'}$ V_{SW} $>$ $V_{B} \approx V_{C}$

	Feature vector x															Target y							
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0			5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	А	B Us	C ser		\Box	NH I	SW <u>Movie</u>	ST E		Otl	NH ner M	SW lovie	ST s rate	ed	Time	_	NH ast l	SW Movie	SI e rate	 ed	I		

$$$V_{TI}> \approx / < V_{C'}$ $V_{TI}>$
 $$V_{SW}> \approx / < V_{C'}$ $V_{SW}>$
 $V_{A} \approx / V_{C}$$$$

	Feature vector x															N	Target y						
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0			5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0		$\ $	4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	Α	B Us	C ser		П		SW Movie	ST		TI Otl	NH ner M	SW lovie	ST s rate	 ed	Time	<u> </u>	NH ast l	SW Movie	ST e rate	 ed	儿		

$$<$$
 V_{B} , V_{SW} \approx $<$ V_{B} , V_{ST} $>$ V_{SW} \approx V_{ST}

$$<$$
 $V_{A'}$ V_{ST} $>$ \approx $<$ $V_{A'}$ V_{SW} $>$

3. Factorization Machines (FM) - computation

$$O(kn^{2}) \qquad \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j} - \frac{1}{2} \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle x_{i} x_{i}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{j,f} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{i,f} x_{i} x_{i} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right) \left(\sum_{j=1}^{n} v_{j,f} x_{j} \right) - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

FM can be applied to a variety of prediction tasks. Among them are:

- Regression: $\hat{y}(\mathbf{x})$ can be used directly as the predictor and the optimization criterion is e.g. the minimal least square error on D.
- Binary classification: the sign of $\hat{y}(\mathbf{x})$ is used and the parameters are optimized for hinge loss or logit loss.
- **Ranking**: the vectors \mathbf{x} are ordered by the score of $\hat{y}(\mathbf{x})$ and optimization is done over pairs of instance vectors $(\mathbf{x^{(a)}}, \mathbf{x^{(b)}}) \in D$ with a pairwise classification loss (e.g. like in [5]).

How to learn?

Use SGD!

$$\frac{\partial}{\partial \theta} \hat{y}(\mathbf{x}) = \begin{cases}
1, & \text{if } \theta \text{ is } w_0 \\
x_i, & \text{if } \theta \text{ is } w_i \\
x_i \sum_{j=1}^n v_{j,f} x_j - v_{i,f} x_i^2, & \text{if } \theta \text{ is } v_{i,f}
\end{cases} \tag{4}$$

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \frac{1}{2} \sum_{f=1}^k \left(\left(\sum_{i=1}^n v_{i,f} \, x_i \right)^2 - \sum_{i=1}^n v_{i,f}^2 \, x_i^2 \right)$$

d-way Factorization Machine

$$\hat{y}(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{l=2}^d \sum_{i_1=1}^n \dots \sum_{i_l=i_{l-1}+1}^n \left(\prod_{j=1}^l x_{i_j}\right) \left(\sum_{f=1}^{k_l} \prod_{j=1}^l v_{i_j,f}^{(l)}\right)$$
(5)

(if d=2:
$$\frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

3. Factorization Machine-Summary

- FM: using factorized interactions
- Advantage
 - 1. 높은 sparsity 상에서도 모든 Interaction을 추정할 수 있음.
 - 2. prediction과 learning의 시간과 파라미터의 수가 선형적. (SGD를 이용한 학습이 가능, 다양한 손실 함수에 적용가능)

4. Performance of FM FM vs SVM

- 1. SVM과 달리 FM은 sparse한 상황에 서도 잘 작동함.
- 2. SVM은 dual상에서 학습해야 하지 만 FM은 바로 학습이 가능하다.
- 3. FM의 model equation은 training data와 무관하다.

Netflix: Rating Prediction Error

Fig. 2. FMs succeed in estimating 2-way variable interactions in very sparse problems where SVMs fail (see section III-A3 and IV-B for details.)

4.Performance of FM FM vs OTHER FACTORIZATION MODEL

- 1. PARAFAC or MF와 같은 standard factorization model은 general prediction model이 아님.
- 2. Single task를 위해 많은 proposals(제안)이 필요...FM은 더 쉽게 적용 가능하고 성능은 비슷하다!

Fig. 3. Recommendation quality of a FM compared to the winning PITF model [3] of the ECML/PKDD Discovery Challenge 2009. The quality is plotted against the number of model parameters.

5. Code implement

```
interaction = 0.5 * np.sum(first_term, axis=1)
```