# Poročilo pri fizikalnem praktikumu vaja 32 - Sklopljeno nihalo

Kristofer Čepon Povšič

2021/2022

## $\mathbf{U}\mathbf{vod}$

Nihalo, ki je sestavljeno iz dveh enakih težnih nihal in povezano z vzmetjo, se imenuje sklopljeno nihalo. Brez vzmeti, nihali nihata neodvisna drug od drugega, z vzmetjo pa nihali postaneta odvisna drug od drugega. Nihanje sklopljenega nihala lahko opišemo z dvema lastnima nihanjema.

Prvo lastno nihanje je nihanje nihal, ki sta bili pognani v isti smeri z enakima sunkoma. Nihali nihata kot, da sta neodvisna drug od drugega in vzmet ne vpliva na nihanje. Frekvenca, ki je enaka neodvisnima nihaloma, se imenuje prva lastna frekvenca.

Drugo lastno nihanje je nihanje nihal, ki sta bili pognani v nasprotnih smereh z enakima sunkoma. Nihali nihata z enako amplitudo in vzmet se krči in razteguje. Zaradi tega nastane navor, ki je odvisen od koeficienta vzmeti in prijemališča vzmeti. Nihali nihata hitreje. Nihanje se imenuje drugo lastno nihanje, frekvenca pa druga lastna frekvenca.

Če eno nihalo odklonimo za določeno amplitudo, medtem ko je drugo v ravnovesni legi, in prvega spustimo, nihali začneta utripato. Do tega pride, ker se energija iz nihajočega nihala prenese na nenihajoče nihalo in vlogi se zamenjata. Nihali nihata z nihajnim časom t' in frekvenco  $\omega'$ . Čas T je čas med dvema mirovanjima istega nihala in iz časa T dobimo frekvenco utripanje  $\omega_u$ .

# Naloga

Opazuj sklopljeno nihanje dveh enakih fizičnih nihal! Izmeri in izračunaj lastni krožni frekvenci  $\omega_0$  in  $\omega_1$  ter še  $\omega'$  in  $\omega_u$ ! Določi koeficient vzmeti, izračunaj D' in faktor sklopitve K = D'/(D+D')!

## Potrebščine

- Nihali na stojalu;
- vzmeti za sklopitev;
- merilo za določevanje koeficienta vzmeti;
- centimetrsko merilo, kljunasto merilo;
- tehtnica
- uteži 10g, 20g, 50g, 100g, 200g
- štoparica

## Navodila

- 1. Za vsako nihalo izmeri nihajni čas za 30 nihajev ter izračunaj nihajni čas in frekvenco.
- 2. Nihali spni z vzmetjo.
  - Odkloni nihaku v isti smeri za enako amplitudi in ju hkrati spusti. Izmeri čas 35 nihajev in izračunaj nihajni čas  $t_0$  in lastno frekvenco  $\omega_o$ . Napravi 5 meritev.
  - Odkloni nihali v nasprotnih smereh in izračunaj  $t_1$  in  $\omega_1$
  - Eno nihalo zadrži v ravnovesni legi, drugo pa odmakni za amplitudo A ter obe nihali spusti hkrati. Izmeri čas 15 nihajev posameznega nihala in meritve za obe nihali ponovi dvakrat. Izračunaj nihajni čas t' in lastno frekvenco  $\omega'$ . Opazuj 3 mirovanja posameznega nihala in izračunaj čas T in frekvenco utripanja  $\omega_u$
- 3. Izmeri nihali in izračunaj vztrajnostni moment nihala J in koeficient navora  $D=mgd_0$ , kjer je m masa nihala in  $d_0$  razdalja od težišča do osi. Izračunaj volumen uteži in s pomočjo gostote medenine in aluminija izračunaj maso. Na vzmet obesi uteži z znano težo in izmeri raztezek. Določi koeficient k iz grafa, kjer je na abcisni osi raztezek, na ordinatni osi pa sila. Izmeri še razdaljo d od prijemališča vzmeti in osi nihala in izračunaj:

$$D' = kd^2$$

Izračunaj  $t_0, t_1, t'$  in T in jih primerjaj z izmerjenimi. Vrednosti vnesi v tabelo.

4. Izračunaj faktor sklopitve z izmerjenimi  $\omega_0$  in  $\omega_1$ , nato pa še z izračunanima D in D' in primerjaj rezultata.

$$K = \frac{D'}{D + D'} = \frac{1 - (\frac{\omega_0}{\omega_1})^2}{1 + (\frac{\omega_0}{\omega_1})^2}$$

# Nihajni čas in frekvenca neodvisnih nihal

Izmerjen čas 30 nihajev  $t_{30}$  delimo s številom nihajev N in rezultat je nihajni čas  $t_0$  enega nihaja. Lastno frekvenco  $\omega_0$  se izračuna po formuli  $\omega_0=\frac{2\pi}{t_0}$ 

#### Levo nihalo

Izmerjen čas  $t_{30L}=55,32s\pm0,01s$ Nihajni čas  $t_{0L}$ :

$$t_{0L} = \frac{t_{30L}}{N} = \frac{55,32s}{30} = 1,84s(1 \pm 0,0002)$$

Lastna frekvenca  $\omega_{0L}$ :

$$\omega_{0L} = \frac{2\pi}{t_0} = \frac{2\pi}{1,844s} = 3,41s^{-1}(1\pm 0,0002)$$

## Desno nihalo

Izmerjen čas  $t_{30D} = 55,49s \pm 0,01s$ Nihajni čas  $t_{0D}$ :

$$t_{0L} = \frac{t_{30D}}{N} = \frac{55,49s}{30} = 1,85(1 \pm 0,0002)$$

Lastna frekvenca  $\omega_{0D}$ :

$$\omega_{0D} = \frac{2\pi}{t_0} = \frac{2\pi}{1,850s} = 3,40s^{-1}(1\pm0,0002)$$

# Prvo lastno nihanje

Meritve časa 35 nihajev sklopljenih nihal z odmikom v isto smer z enako amplitudo:

| Poskus | $t_{35}$ |
|--------|----------|
| 1      | 64,81s   |
| 2      | 64,81s   |
| 3      | 64,58s   |
| 4      | 64,78s   |
| 5      | 64,84s   |

Povprečen čas  $\bar{t} = 64,76s$ 

Odstopanje  $\Delta t = 0, 18s$ 

Relativna napaka  $\delta_{t0} = 0,003$ 

Nihajni čas  $t_0$ :

$$t_0 = \frac{64,76s}{35} = 1,85s(1 \pm 0,003)$$

Lastna frekvenca  $\omega_0$ :

$$\omega_0 = \frac{2\pi}{1,850s} = 3,40s^{-1}(1 \pm 0,003)$$

# Drugo lastno nihanje

Meritve časa 35 nihajev sklopljenih nihal z odmikom v nasprotno smer z enako amplitudo:

| Poskus | $t_{35}$ |
|--------|----------|
| 1      | 59,34s   |
| 2      | 59,86s   |
| 3      | 59,37s   |
| 4      | 59,35s   |
| 5      | 58,84s   |

Povprečen čas  $\bar{t} = 59,35s$ 

Odstopanje  $\Delta t = 0,51s$ 

Relativna napaka  $\delta_{t1} = 0,009$ 

Nihajni čas  $t_1$ :

$$t_1 = \frac{59,35s}{35} = 1,70s(1 \pm 0,009)$$

Lastna frekvenca  $\omega_1$ :

$$\omega_1 = \frac{2\pi}{1,696s} = 3,71s^{-1}(1 \pm 0,009)$$

# Utripanje

Meritve časa 15 nihajev posameznega nihala, kjer je eno odmakneno iz ravnovesne lege za določeno amplitudo, in drugo nihalo, ki ostane v ravnovesni legi. Čas T je čas med dvema utripoma nihala,  $\omega_u$  pa frekvenca tega utripanja.

## Desno nihalo

| Poskus | $t_{15}$ |
|--------|----------|
| 1      | 27,40s   |
| 2      | 27,35s   |
| 3      | 27,61s   |

Povprečen čas  $\bar{t}=27,45s$ Odstopanje  $\Delta t=0,16s$ Relativna napaka  $\delta_{t_D'}=0,006$ Nihajni čas  $t_D'$ :

$$t_D' = \frac{27,45s}{15} = 1,83s(1 \pm 0,006)$$

Lastna frekvenca  $\omega_D'$ :

$$\omega_D' = \frac{2\pi}{1.830s} = 3,86s^{-1}(1 \pm 0,006)$$

## Levo nihalo

| Poskus | $t_{15}$ |
|--------|----------|
| 1      | 27,84s   |
| 2      | 27,43s   |
| 3      | 28,54s   |

Povprečen čas  $\overline{t}=27,91s$ Odstopanje  $\Delta t=0,6s$ Relativna napaka  $\delta_{t'_L}=0,02$ Nihajni čas  $t'_L$ :

$$t_L' = \frac{27,91s}{15} = 1,86s(1 \pm 0,02)$$

Lastna frekvenca  $\omega'_L$ :

$$\omega_L' = \frac{2\pi}{1.863s} = 3,37s^{-1}(1\pm 0,02)$$

## Povprečje levega in desnega nihala

Čas  $t'=1,85s(1\pm0.01)$ Lastna frekvenca  $\omega'=3,40(1\pm0,01)$ 

## Utripi - izmerjeni podatki

Desno nihalo:

| Poskus | $\operatorname{\check{C}as} T$ |
|--------|--------------------------------|
| 1      | 16,03s                         |
| 2      | 16,61s                         |
| 3      | 16,21s                         |

Levo nihalo

| Poskus | $\check{\text{Cas }}T$ |
|--------|------------------------|
| 1      | 16,89s                 |
| 2      | 16,58s                 |
| 3      | 17,52s                 |

Povprečen čas  $\overline{T}=16,64s$ Odstopanje  $\Delta t=0,88s$ Relativna napaka  $\delta t=0,05s$ Čas med dvema utripoma  $T=16,64s(1\pm0,05)$ Frekvenca utripanja  $\omega_u=0,38s^{-1}(1\pm0,05)$ 

## Utripi - izračunani podatki

Čas T se izračuna po enačbi:

$$\frac{1}{T} = \frac{1}{t_1} - \frac{1}{t_0} = \frac{1}{1,696s} - \frac{1}{1,850s}; T = 20, 4s(1 \pm 0, 1)$$

Lastno frekvenco  $\omega_u$  se izračuna po enačbi:

$$\omega_u = \omega_1 - \omega_0 = 3,705s^{-1} - 3,396s^{-1} = 0,31s^{-1}(1 \pm 0,007)$$

## Računski del

#### D in J

Izračunaj  $D=mgd_0$ , kjer je m masa nihala in  $d_0$  dolžina od težišča do osi.  $d_0=97,5cm\pm0,1cm$ 

#### Masa

#### Aluminij

Dolžina  $l_{Al}=97,5cm\pm0,1cm$ Polmer  $r_{Al}=0,5cm\pm0,1cm$ Gostota  $\rho_{Al}=2700\frac{kg}{m^3}$ (vir: http://www2.arnes.si/oskratl1s/fizika/vsebine%208%20razred/gostota/Tabela%20gostot.htm)

$$m = \rho V = \rho O l = \rho \pi r^2 l = \pi * 2700 \frac{kg}{m^3} * (0,005m)^2 * 0,975m = 0,21kg(1\pm0,4)$$

#### Medenina

Dolžina  $l_M = 8,8cm \pm 0,1cm$ Polmer  $r_{Al} = 2,2cm \pm 0,1cm$ Gostota  $\rho_{Al} = 8600 \frac{kg}{m^3}$ 

(vir: http://www2.arnes.si/oskratl1s/fizika/vsebine%208%20razred/gostota/Tabela%20gostot.htm)

$$m = \rho V = \rho O l = \rho \pi r^2 l = 8600 \frac{kg}{m^3} * ((0,022m)^2 * 0,088m * \pi - (0,005m)^2 * 0,088m * \pi) = 1,06kg(1 \pm 0,1)$$

Skupna masa  $m = 1,27kg(1 \pm 0,1)$ 

$$D = mgd_0 = 1,27kg * 9,81\frac{m}{s^2} * 0,975m = 12,2Nm(1 \pm 0,1)$$
$$J = \frac{D}{\omega_0^2} = \frac{12,15Nm}{3,396ss^{-1}} = 1,05\frac{Nm}{s}(1 \pm 0,1)$$

## D' in k

Tabela sile uteži in raztezka:

| Sila [N]         | raztezek [cm] |
|------------------|---------------|
| $9,81N*10^{-2}$  | 0, 5          |
| $19,6N*10^{-2}$  | 1             |
| $49,1N*10^{-2}$  | 2,7           |
| $78,5N*10^{-2}$  | 3,3           |
| $147N * 10^{-2}$ | 5,6           |
| $196N * 10^{-2}$ | 8,8           |



Koeficient k:

$$k = \frac{F_2 - F_1}{\Delta x_2 - \Delta x_1} = \frac{1,96N - 0,491N}{0,088m - 0,027m} = 40,2Nm(1 \pm 0,02)$$

Razdalja od prijemališča vzmeti do osi  $d=18,1cm(1\pm0,1)$ Koeficient navora D' se izračuna po enačbi:

$$D' = kd^2 = 40,2Nm * (0,181m)^2 = 1,32Nm(1 \pm 0,03)$$

## Izračunani $t_0, t_1, t', T, \omega_0, \omega_1, \omega'$ in $\omega_u$

|            | $t_0$ | $t_1$ | t'    | T      |
|------------|-------|-------|-------|--------|
| izmerjeno  | 1,85s | 1,70s | 1,85s | 16,64s |
| izračunano | 1,85s | 1,76s | 1,80s | 36,20s |

|            | $\omega_0$   | $\omega_1$   | $\omega'$    | $\omega_u$   |
|------------|--------------|--------------|--------------|--------------|
| izmerjeno  | $3,40s^{-1}$ | $3,71s^{-1}$ | $3,40s^{-1}$ | $0,38s^{-1}$ |
| izračunano | $3,40s^{-1}$ | $3,58s^{-1}$ | $3,49s^{-1}$ | $0,18s^{-1}$ |

## Faktor sklopitve

Faktor sklopitve se izračuna po formuli:

$$K = \frac{D'}{D+D'} = \frac{1 - (\frac{\omega_0}{\omega_1})^2}{1 + (\frac{\omega_0}{\omega_1})^2}$$

#### Izmerjeni podatki

$$K = \frac{1 - \left(\frac{\omega_0}{\omega_1}\right)^2}{1 + \left(\frac{\omega_0}{\omega_1}\right)^2} = \frac{1 - \left(\frac{3,396s^{-1}}{3,705s^{-1}}\right)^2}{1 + \left(\frac{3,396s^{-1}}{3,705s^{-1}}\right)^2} = 0,087(1 \pm 0,1)$$

#### Izračunani podatki

$$K = \frac{D'}{D+D'} = \frac{1,32Nm}{12,15Nm+1,32Nm} = 0,098(1\pm0,2)$$