I ty możesz zostać magistrem

7 stycznia 2018

Spis treści

1	Baza Bernsteina		
	1.1	Algorytm de Casteljau	2
	1.2	Twierdzenie Weierstrassa	2
	1.3	Baza Hermite'a	2
	1.4	Baza Lagrange'a	2
	1.5	Węzły Czebyszewa	2
		cewise polynomials Baza B-Spline	2 2
37	Pow	vierzchnie obciętę i standard IGES	3

1 Baza Bernsteina

Baza Bernsteina ze względu na świetne właściwości numeryczne i geometryczne jest szeroko stosowana w systemach CAD/CAM pomimo faktu, że nie jest trójkątna (traingular ???) i nie jest najszybsza w obliczeniach.

Ważne właściwości Bazy Bernsteina:

- Formują bazę w n+1 wymiarowej przestrzeni w^n wszystkich wielomianów stopnia nie większego niż n.
- Sumują się do 1 dla każdego $t \in R$
- Są nienegatywne w przedziałe [0,1] i dodatnie w (0,1).

• Sa symetryczne, tzn. $B_{i=0...n}^n(t) = B_{n-1}^n(1-t)$

1.1 Algorytm de Casteljau

Algorytm de Casteljau służy do obliczania wartości wielomianów w Bazie Bernsteina. Jest stabilny numerycznie. Niewielkim kosztem możemy uzyskąć nie tylko wartość, ale i pochodną w punkcie. Należy odczytać obie wartości algorytmu dla n-1 odjąć je i pomnożyć przez n.

1.2 Twierdzenie Weierstrassa

Każdą funkcję ciągłą o wartościach rzeczywistych na przedziale domkniętym [a,b] można przybliżyć jednostajnie z dowolną dokładnością wielomianami.

1.3 Baza Hermite'a

Jeżeli znamy wartości na krańcach przedziału i znamy wartości pochodnych w tych punktach, to podstawiamy do wzoru i mamy aproksymację funkcji na przedziale.

1.4 Baza Lagrange'a

Baza nie jest triangularna (???). Można w niej interpolować.

1.5 Węzły Czebyszewa

Interpolacja w węzłach Czebyszewa jest prawie najlepsza (znika efekt Rungego).

2 Piecewise polynomials

2.1 Baza B-Spline

They are much more complex. There are two interesting properties that are not part of the Bézier basis functions, namely: (1) the domain is subdivided by knots, and (2) basis functions are not non-zero on the entire interval. In fact, each B-spline basis function is non-zero on a few adjacent subintervals and, as a result, B-spline basis functions are quite local.

36 Powierzchnie obciętę i standard IGES

Standard IGES jest standardem międzynarodowym dotyczącym danych topologicznych, geometrycznych i niegeometrzyczne (np. materiały, cechy użytkowe). Na podstawie tego standardu powstał również format pliku o tej samej nazwie pozwalający na zapisanie ponad 150 różnych typów obiektów, np. powierzchni trymowanych.

Powierzchnie obcięte składają się z dwóch części: powierzchni bazowej oraz krzywych trymowania, które wyznaczają obszary trymowania.

37 Struktury danych reprezentacji B-rep