Métodos Numéricos Práctica 3: Interpolación

Prof. Susana Serna, Curso 2015-2016

14 de Abril 2016

Problema 1

Estudiar la interpolación polinómica en la base de Newton con diferencias divididas para la función

$$f(x) = \frac{1}{1 + 25x^2}; \qquad x \in [-1, 1]$$

usando nodos equidistantes x_j ,

$$x_j = -1 + j\frac{2}{n} \qquad j = 0, \cdots, n$$

y nodos de Chebyshev x_i ,

$$x_j = \cos\left(\frac{2j+1}{n+1}\frac{\pi}{2}\right) \qquad j = 0, \dots, n$$

para n = 4, 8, 16, 32, 64.

- (a) Estudiar el error máximo que se comete a medida que se aumenta el número de nodos de interpolación. Sugerencia: calcular (y dibujar) $|f(x_k) p(x_k)|$ en cada uno de los casos para los valores $x_k = -0.989 + k \cdot 0.011, k = 0, \cdots, 180$ (abcisas en [-1, 1] que no coinciden con los nodos de interpolación).
- (b) Comentar las diferencias en la interpolación.

Problema 2

Considerar la tabla de valores que corresponden a la función de Bessel de primera especie de orden cero, $J_0(x)$,

x	1.9	2.0	2.1	2.2
$J_0(x)$	0.281818559374385	0.223890779141236	0.166606980331990	0.110362266922174
\overline{x}	2.3	2.4	2.5	2.6
$J_0(x)$	0.055539784445602	0.002507683297244	-0.048383776468198	-0.096804954397038
\overline{x}	2.7	2.8	2.9	3.0
$J_0(x)$	-0.142449370046012	-0.185036033364387	-0.224311545791968	-0.260051954901934

Estimar el valor de la abcisa x^* tal que $J_0(x^*) = 0$ mediante interpolación inversa de grados 1, 3 y 5 utilizando en polinomios interpoladores en la forma de Newton para cada uno de los siguientes casos:

- (a) interpolando valores positivos de $J_0(x)$ más próximos al cambio de signo de la función.
- (b) interpolando valores negativos de $J_0(x)$ más próximos al cambio de signo de la función.
- (c) interpolando valores de $J_0(x)$ simétricos alrededor del cambio de signo de la función.

Sabiendo que la funcion $J_0(x)$ es estrictamente monótona y derivable, ¿qué resultado está más próximo a la raiz de la función? Comprobar que el razonamiento es consistente evaluando la función $J_0(x)$ en cada uno de los valores obtenidos para la aproximación de la raiz.

Problema 3

Estudiar la interpolación con polinomios de grado menor o igual que n para n=2:2:16 para la función

$$f(x) = \frac{1}{3+x},$$
 $x \in [-1,1]$

utilizando interpolación de Lagrange con

- nodos equidistantes $x_j=-1+j\frac{2}{n}$ $j=0,\cdots,n$ nodos de Chebyshev $x_j=\cos\left(\frac{2j+1}{n+1}\frac{\pi}{2}\right)$ $j=0,\cdots,n$
- (a) Dibujar la curva del error $(x, \log(|f(x) p(x)|))$ (escala semilogaritmica) en cada uno de los casos para los valores $x_k = -0.989 + k \cdot 0.011, k = 0, \cdots, 180$
- (b) Para valores grandes de n ($n \ge 18$) realizar pruebas para estudiar los efectos de perturbaciones introducidas en los valores de la función f(x) mediante la sinusoidal

$$\tilde{f}(x_i) = f(x_i) + 0.05\sin(2\pi nx_i)$$

evaluada en los nodos de interpolación.

Dibujar la curva del error $(x, \log(|f(x) - p(x)|))$ para distintos n (grandes).

Discutir los resultados obtenidos.

Problema Opcional

Utilizar interpolación polinómica a trozos para interpolar la función del Problema 1. Comparar numericamente el error máximo de Chebyshev con los nuevos resultados.