	_			10
SOLUTION	70	上大.	5,	13.

We know that f_{λ} minimizes $\sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$

If we add the foint (xo, f, (xo)), then we are to minimize

(fx(xo) f(xo))2+ \(\frac{\text{V}}{(=1)}\)2+ \(\frac{\text

N+1 terms now!

Now the old for (xs) numinizes both the first tem, (for (xs)) and the second term \(\tilde{\chi}\) (y: \(\forall (x:))^2 + \(\chi \) \(\forall ('(4))^2 \) Lt. But then it of course minimizes the sum in (a).

The goal is now to show that (see (5.26), (5.22)) $y_i - \int_{\lambda}^{(-i)} (x_i) = \frac{y_i - \int_{\lambda}^{(i)} (x_i)}{1 - \int_{\lambda}^{(i)} (i,i)} for a dataset$ $1 - \int_{\lambda}^{(i)} (i,i) (y_i \times i) = \int_{\lambda}^{(i)} (y_i \times$

To prove this we will instead assume that the data including to is the full data sel, while the data without the to corresponds to the "(-i)" case (so we can write "(-0)").

het now S(1) be the (NH)x(NH) smoothing matrix which includes the data point with xs.

Let also for (xo) have the meaning of the fint part of the exercise. Then (**) \(\int_{\lambda}(\chi_0) = \sum_{j=1}^{\chi_0} (\lambda) \(y_j + \sum_0 (\lambda) \) \(\frac{1}{2} (\chi_0) \) " Since Phis's the To for the observation at to that was assumed in the beginning of the (**) is simply the first element of (5.14), \$ = 5, y Suppose now instead that the observed inskead of fixed as in the beginning of the exercise. This would not have changed the matrix S(D) [N+Ox (N+1) matrix] since this depends only on the x-values But then the the facts) in Can be interpreted as $\int_{\lambda}^{(-0)} (x_0)$ in the full (N+1) x (N+1) case, and hence (M) implies (1-0)(x0) = \$ Soj(L) y; + Soo(L) (x0) = 5 So, (2) y; - Soo (2) yo + Soo (2) (1-0) (x) = fr (x0) - Soo(x) yo + Soo(x) fr (-0) (x0)

vi the (NH) point model

yo- fx (xo) = yo- fx (xo) + Soo(x)(yo-fx (xo)) yo- fx(-0)(xs) = yo- fx(xs) 1-500(2) which is what is needed for (5.27).