Задача 11-1. Гидроатмосферный подъемник

1. Введение.

При движении жидкости существенную роль играют силы вязкого трения – силы, возникающие между слоями жидкости, движущимися с разными скоростями, а также силы, действующие между движущейся жидкостью и стенками сосуда.

Пусть жидкость движется по горизонтальной трубе, внутри которой находится неподвижный цилиндрический цилиндр, коаксиальный с трубой (играющий роль препятствия). Радиус цилиндра равен R, длина l, толщина зазора между боковой поверхностью цилиндра и стенками трубы равна h (она значительно меньше радиуса цилиндра h << R)

Если разность давлений жидкости на торцах цилиндра равна ΔP , то расход жидкости q (объем, протекающий в единицу времени) протекающий через зазор определяется формулой:

$$q = \frac{\pi R h^3}{6nl} \Delta P, \tag{1}$$

где η - характеристика протекающей жидкости, которая называется *вязкостью* (в данной задаче рассматривается вода, ее вязкость η и плотность ρ считайте известными).

Пусть расход воды в описанной трубе с цилиндром постоянен и равен q.

1.1	Найдите суммарную силу вязкого трения, действующую на воду в зазоре между	
	цилиндром и трубой $F_{_{\it вязк.}}$	
1.2	Найдите силу вязкого трения, действующую на боковую поверхность цилиндра	
	$F_{\scriptscriptstyle extstyle \delta o \kappa.}$.	
1.3	Найдете отношение силы вязкого трения, действующей на боковую поверхность	
	цилиндра, к разности сил давления F_0 , действующих на торцы цилиндра $\dfrac{F_{\delta o \kappa.}}{F_0}$.	

Часть 2. Описание эффекта (пробирка в пробирке).

Принцип работы рассматриваемого гидроподъемника может быть изучен на простом устройстве, состоящем из двух длинных пробирок. Каждую из них можно считать цилиндрической трубкой, закрытой с одного конца. Диаметры пробирок различаются мало, поэтому меньшая из них входит в большую и может скользить в ней. Обозначим радиус меньшей пробирки R, ее масса m. Толщина зазора между стенками пробирок (когда меньшая находится в большей) мала по сравнению с радиусами пробирок и равна h.

2.1 Большую пробирку располагают вертикально и полностью заполняют водой. После этого в нее аккуратно опускаю меньшую пробирку, и она медленно начинает опускаться.

2.1.1	Найдите, на какую максимальную глубину $z_{\rm max}$ опустится меньшая пробирка.		
2.1.2	Постройте схематический график зависимости скорости пробирки $v(z)$ от		
	глубины погружения z .		
2.1.3	Оцените время погружения пробирки от начального положения $z = 0$ до		
	глубины $0.5z_{ m max}$.		

<u>Математическая подсказка</u>. При движении тела в вязкой среде, на него действуют силы вязкого трения, зависящие от скорости движения тела. Наличие этих сил приводит к тому, что скорость тела изменяется достаточно медленно, поэтому в уравнении второго закона Ньютона та = F(x,v), можно пренебречь слагаемым та. Такое приближение называется квазистационарным. Кстати, оно же используется при описании электрического тока на основании закона Ома.

2.2 Если большую пробирку заполнить водой, погрузить в нее меньшую пробирку и резко перевернуть систему вверх дном, то при некоторой высоте подъема меньшая пробирка начнет медленно подниматься вверх.

2.1.1	Найдите, при какой минимальной высоте подъема z_{\min}	
	меньшая пробирка начнет подниматься вверх.	
2.1.2	Постройте схематический график зависимости скорости	
	пробирки от высоты ее подъема $v(z)$.	
2.1.3	Оцените время подъема пробирки от высоты $1.5z_{\min}$ до высоты	
	$2z_{\min}$.	

Часть 3. Подъемник.

На основании рассмотренного устройства сконструирован гидроатмосферный подъемник, схема которого показана на рисунке.

Пробирка 1 с двумя упорами 2 (точно на середине пробирки) и 3 (в ее нижней части) вставлена вертикально в горлышко бутылки 4 полностью заполненной водой, диаметр горлышка 5 которой незначительно превышает внешний диаметр бутылки. Бутылка соединена трубкой с краном 7 с большим открытым сосудом-накопителем 6 также заполненным водой. Пробирка может двигаться вертикально внутри бутылки, при ее любом положении (в том числе и на упорах) вода может просачиваться в зазоре между горлышком бутылки и пробиркой. В качестве координаты, определяющей положение пробирки используется расстояние от горлышка бутылки до середины пробирки (упора 2).

Длина пробирки l, площадь ее поперечного сечения - S. Пробирка начинает подниматься внутри бутылки, если она погружена в нее на одну четверть своей длины. В бутылку 4 воздух не попадает, высота бутылки больше, чем $\frac{l}{2}$. Плотность воды ρ , ускорение свободного падения - g.

Принцип работы устройства следующий.

1	Пробирка находится в крайнем нижнем положении. Кран закрывают, пробирка начинает подниматься вверх. При этом она подключается к некоторому внешнему устройству, над которым совершается полезная работа.	\vec{F}
2	Когда пробирка достигает крайнего верхнего положения, кран открывают, и вода из сосуда накопителя очень быстро поступает в бутылку. Внешнее устройство отключается, пробирка быстро опускается вниз.	

3.1	Определите массу пробирки.
3.2	Нарисуйте график рассмотренного циклического процесса: зависимость силы
	действующей на пробирку со стороны внешнего устройства F от координаты
	пробирки z . Считайте все процессы квазистационарными (т.е. считайте, что в
	любом положении пробирка находится в состоянии равновесия).
3.3	Рассчитайте, какую максимальную полезную работу может совершить
	подъемник за один цикл.
3.4	Найдите КПД устройства (определение КПД в этом случае сформулируйте
	самостоятельно).