Redes de Filas

Redes de Sistemas de Filas

- Muitos problemas reais são compostos de mais de um sistema de fila.
- ✓ Para modelar estes problemas, vários sistemas de fila (também chamados de nós) devem ser conectados.
- ✓ Exemplos de redes de filas são: redes de telecomunicações, sistemas de computação e sistemas de transito.

Redes de Sistemas de Filas

- ✓ Existem basicamente três tipos de redes de filas:
 - Redes Abertas

Redes Abertas com Realimentação

Redes Fechadas

Possui número de elementos constante.

✓ Redes Abertas Sem Realimentação

- Teorema de Burke (1956)
 - O processo de saída de uma rede de sistemas M/M/m é um processo Poissoniano estatisticamente independente do processo de entrada.

✓ Redes Abertas Sem Realimentação

- Conseqüências do Teorema de Burke
 - Cada nó da rede é considerado independente dos demais.
 - O número médio de elementos e o atraso em cada nó também é independente dos demais.
 - O número médio de elementos na rede é igual a soma do número médio de elementos em cada nó.
 - O tempo médio de permanência dos elementos na rede é igual a soma do tempo médio de permanência dos elementos em cada nó.

Exemplo 34:

✓ Redes Abertas Com Realimentação

- Teorema de Jackson (1957)
 - Considere uma rede de filas aberta com M nós que satisfaz as seguintes condições:
 - a) Cada nó i é um sistema de filas M/M/m.
 - b) O nó i tem n_i servidores e tempo médio de serviço $\sqrt[l]{\mu_i}$ para todos os servidores.
 - c) Elementos chegam de "fora" do sistema para o nó i de acordo com um processo Markoviano de intensidade média γ_i .
 - d) Um elemento servido no nó i vai instantaneamente ao nó j (j = 1,2,...,M) com probabilidade r_{ij} ou deixa a rede com probabilidade:

$$1 - \sum_{j=1}^{M} r_{ij}$$

✓ Redes Abertas Com Realimentação

- Teorema de Jackson (cont.)
 - = Para cada nó i (i = 1,2,...,M), a taxa média de chegada $\hat{\lambda}_i$ é dada por:

$$\lambda_i = \gamma_i + \sum_{j=1}^{M} r_{ji} \lambda_j$$

Seja $p(q_1,q_2,q_3,...,q_M)$ a probabilidade de que haja q_i elementos no nó i, então Jackson afirma que:

$$p(q_1, q_2, q_3, ..., q_M) = p(q_1)p(q_2)p(q_3)...p(q_M)$$

$$p(q_1, q_2, q_3, ..., q_M) = \prod_{i=1}^{M} p(q_i)$$

Exemplo 35:

$$\lambda_{i} = \gamma_{i} + \sum_{j=1}^{M} r_{ji} \lambda_{j} \qquad \lambda_{1} = \gamma_{1} + r_{11} \lambda_{1} = \gamma_{1} + (1 - p) \lambda_{1}$$

$$\lambda_{1} = \gamma_{1} + \lambda_{1} - p \lambda_{1} \qquad \lambda_{1} - \lambda_{1} = \gamma_{1} - p \lambda_{1} \qquad \lambda_{1} = \frac{\gamma_{1}}{p}$$

Exemplo 36:

Considere a rede de sistemas de filas da figura abaixo. A chegada de pacotes na rede obedece um processo Markoviano de taxa $\gamma=0,075$ pacotes/segundo. A taxa de atendimento μ é de 1 pacote/segundo (exponencial negativa). Sabendo que p = 0.9, calcule:

- a) O número médio de pacotes na rede de sistema de filas.
- O tempo médio de permanência dos pacotes em cada sistema de fila.

= N1 + 2 Niv 2; 25 = N3 + N2 2 + N2 1 + N2 1

 $P_1 - P_{1} = 0$ $P_1 = V_1 \quad f_1 = V_1$

عال ريد

Exemplo 37: Um nó de comutação de pacotes é modelado por uma rede de sistemas de filas tal qual mostrado a seguir. Após uma verificação inicial dos cabeçalhos no nó a esquerda, uma parte p dos pacotes não tem erro e é enviada para emissão na taxa 4μ , seguindo adiante na rede. Na outra parte do tráfego é feita uma correção de erro no sistema a direita abaixo. Pacotes cujo erro foi possível corrigir (1-p) passam por uma nova verificação de cabeçalho no sistema a esquerda. Pacotes com erro impossível de corrigir são descartados com probabilidade p no sistema a direita abaixo. A chegada de pacotes na rede obedece um processo Markoviano de taxa $\gamma=1$ pacote/segundo. A taxa de atendimento μ é igual a 2 pacotes/segundo (exponencial negativa). Sabendo que p = 0,7, calcule:

