FBD will come

Free Fall

Free Fall:

- is the motion of an object where gravity is the only force acting upon it.
- The value of $g(upward direction) = -9.8 \text{ m/s}^2$

Formulas:

$$\Delta x = v_i t + \frac{1}{2}at^2$$

$$v_f = v_i + at$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

• This lesson will mostly be in the MCQ

Friction

Friction: *it's dependent on the normal force acting on the object

- It is a force that opposes that relative motion or tendency of such motion of 2 surfaces in-contact.

3 Types of Friction:

- 1. Static Friction
- 2. Kinetic Friction
- 3. Rolling Friction

Factors that affect Friction:

- 1. Surface roughness:-
- rougher surfaces tend to have higher friction due to more interlocking features.
- 2. Normal Force:-
- the force pressing 2 surfaces together; greater normal force typically results in higher friction.
- Equal in magnitude (to the weight.

3. Material Properties:-

- different materials exhibit different coefficients of friction, which quantifies the frictional force relative to the normal.

• FBD will come

Static Force/Friction:

- Opposes the initiation of motion
- Magnitude: Varies up to a maximum value, where if exceeded kinetic force will take turn and the object starts moving.

Kinetic Force/Friction:

- Opposes the motion of an object already in motion.
- Magnitude: generally constant for a given situation.

Similarities:-

- Nature of Force : Both types of forces oppose relative motion.
- Dependent on Surface: Both types of friction depend on the surface.

Formula:

 F_n is the normal force.

•
$$F_f = \mu_s \cdot F_n$$

$$F_f = \mu_k \cdot F_n$$

 F_f is the maximum static frictional force,

 F_f is the kinetic frictional force,

Unbalanced Friction Forces

- No problem solving questions for this lesson.
- In short, it's when the forces acting on the object are unbalanced(not equal in magnitude to one another.)

Unbalanced friction forces:

- They occur when forces are not equal in magnitude, leading to an acceleration or deceleration of an object.

Formulas:

$$F_{net} = \mu_k . F_N$$
 $F_{net} = F_A - F_f$
 $F_{net} = ma$ $F_f = \mu_k mg$

• FBD will come

Friction on Inclined Planes

• No problem solving for this lesson, only theoretical questions will be coming

Inclined Plane:

- It is a flat surface that is tilted at an angle to the horizontal.

Component Formulas: * not given

$$F_{9x} = F_{9} \cdot \sin\theta \longrightarrow Horizontal$$

$$F_{9y} = F_{9} \cdot \cos\theta \longrightarrow Vortical$$

Tips/To take note of:

- F_N is perpendicular(straight) to the object -> straight to the (y-component)
- Angles should/must be the sum of $90^* \Rightarrow$ because of course it's a right angle

FBD will come

Projectile Motion

Projectile Motion: *The object is called a projectile.

 It is a form of motion in which an object is thrown near the earth's surface, and it moves along a curved path under the action of gravity only.

Projectile Motion determining factors:

- Mass, angle of projection, maximum height, initial velocity, and range.
- Horizontal and vertical components $\Rightarrow V_x \& V_y$

The projectile motion drawing/diagram:

FORMULAS: TO COMPLETE

To take note of:

- Horizontal Component does not change (during projectile).
- Vertical component increases until it reaches 0m/s(max velocity), and then it starts decreasing(it's actually increasing in negative values)
- The path of the projectile is called a **trajectory**.
- Gravity is the only force that affects it.
- The projectile makes a parabola when in motion, and follows a parabolic path
 - ⇒ Parabolic projectile

Analysis:

- 45°, always gives the maximum range(no matter what).
- Range does not depend on the angle of projection, only the max height depends on the angle of projection.
- Angles can have the same range but not max height. -> it's because each angle will
 have a different angle which results in different heights.

* When two angles are complementary (= 90)

 $60^{\circ} + 30^{\circ} = 90$

 $\wedge \wedge \Rightarrow$ Both will have the same range.

FBD will come

Periodic Motion

Periodic Motion:

- a motion that repeats itself after a certain equal interval of time.
- Ex: a water wave, rocking chair, a tuning farh, a bouncing hall, a swing in motion, a rolling ball, and etc.

Simple Harmonic Motion (SHM):

- Equilibrium position \rightarrow x = 0, it's when the block/object is at rest.
- if the force is always directed towards the equilibrium position, the motion is called SHM.
- Ex: Clock, Musical instruments, Spring, and etc.
- If the block was to be displaced to the left(from the right) \rightarrow negative position.

Hooke's Law:-

- The force "F" exerted by a spring is directly proportional to the displacement "x" from its equilibrium position provided the elastic limit is not exceeded.
- If it exceeds the limit, then this will not obey *Hooke's Law*(from this moment).

Formula:

Where.

F: Spring force

:: Displacement

k: Spring constant

Pendulum

Pendulum:

- is a body suspended from a fixed point so that it can swing back and forth under the influence of gravity.

Time Period of a Pendulum:

- the time a pendulum takes to complete 1 cyde.
- In a pendulum, the value of $g = 9.8 \text{ m/s}^2$

Formula:

