EE150 - Homework 6

Problem 1

(20 points)

(a) (10 points) Given a band-limited input x(t), and the frequency response of two ideal low-pass filters $H_1(j\omega)$ (zero-phase) and $H_2(j\omega)$ with cut-off frequency ω_c , plot the output signal $y_1(t)$ and $y_2(t)$ filtered by $H_1(j\omega)$ and $H_2(j\omega)$, respectively. Note that the maximum frequency of x(t) is lower than ω_c .

Figure 1: $\mathbf{x(t)}$, $H_1(jw)$ and $H_2(jw)$

(b) (10 points) For the continuous ideal low-pass filter, with the following frequency response, calculate the impulse response h(t). When the ω_c increases, is the main lobe of the impulse response more narrow or wider? When $\omega_c \to \infty$, what function will h(t) be approximating to?

$$H(j\omega) = \begin{cases} 1 & |\omega| \le \omega_c \\ 0 & \omega_c < |\omega| < \pi \end{cases}$$

Solution

(a) (5*2 points)

 $y_1(t)$ and $y_2(t)$

 $\angle H_2(j\omega)=2\omega$ and assume that $|H_2(j\omega)|=2$, then $H_2(j\omega)=2e^{j\omega 2}$ whose output $y_1(t)=2x(t),\ y_2(t)=2x(t+2)$

(b)

$$h(t) = \frac{\sin \omega_c t}{\pi t}$$

(4 points)

Figure 1: h[n] of ideal low-pass filter

 ω_c increases, $\frac{\pi}{\omega_c}$ decreases which is more closer to the (0,0), main lobe of the impulse response will be more narrow. (3 points) When $\omega_c \to \infty$, $h(t) \to \delta(t)$. (3 points)

(20 points) Figure 2 shows the frequency response $H(j\omega)$ of a continuous-time filter referred to as a lowpass differentiator. For the input signal $x(t) = \cos(\pi t + \phi) + \sin(2\pi t + \phi) + \sin(4\pi t + \phi)$, determine the filtered output signal y(t).

Figure 2: The magnitude and phase spectrum of H(jw)

Solution

We know that (3 points)

$$H(j\omega) = \begin{cases} \frac{2j\omega}{3\pi}, & 1.5\pi \le |\omega| \le 3\pi, \\ e^{-j\omega}, & 0 < |\omega| < 1.5\pi, \\ 0, & \text{otherwise} \end{cases}$$

The input signal is:

$$x(t) = \cos(\pi t + \phi) + \sin(2\pi t + \phi) + \sin(4\pi t + \phi)$$

1. **First Component**: $\cos(\pi t + \phi)$ (5 points)

$$Y_1(j\omega) = H(j\omega)X_1(j\omega) = e^{-j\omega} \cdot X_1(j\omega)$$

Substituting $\omega = \pm \pi$:

$$Y_1(j\omega) = e^{-j\omega} \cdot [\pi e^{i\phi} \delta(\pi - \omega) + \pi e^{-i\phi} \delta(\pi + \omega)]$$
$$= \pi e^{-j\pi} e^{i\phi} \delta(\pi - \omega) + \pi e^{j\pi} e^{-i\phi} \delta(\pi + \omega)$$
$$= -[\pi e^{i\phi} \delta(\pi - \omega) + \pi e^{-i\phi} \delta(\pi + \omega)] = \mathcal{F}\{-\cos(\pi t + \phi)\}$$

Inverse Fourier Transform:

$$y_1(t) = -\cos(\pi t + \phi)$$

2. **Second Component**: $\sin(2\pi t + \phi)$ (5 points) Substituting $\omega = \pm 2\pi$

$$Y_2(j\omega) = H(j\omega)X_2(j\omega) = \frac{2j\omega}{3\pi} \cdot X_2(j\omega)$$

So using the property $j\omega X(j\omega) = \frac{dx(t)}{dt}$

$$y_2(t) = \frac{2}{3\pi} \frac{dx_2(t)}{dt}$$

Inverse Fourier Transform:

$$y_2(t) = \frac{4}{3}\cos(2\pi t + \phi)$$

3. **Third Component**: $\sin(4\pi t + \phi)$ (5 points) Since $H(j\omega)=0$ for $|\omega|>3\pi,$ it follows that:

$$Y_3(j\omega) = H(j\omega)X_3(j\omega) = 0$$

Thus:

$$y_3(t) = 0.$$

The total output signal is:

$$y(t) = y_1(t) + y_2(t) + y_3(t)$$

Substituting the components: (2 points)

$$y(t) = -\cos(\pi t + \phi) + \frac{4}{3}\cos(2\pi t + \phi)$$

(20 points) Given the following properties of a causal LTI system of first-order:

A.If the input signal is $x(t) = a[e^{-(\omega_0 - 1)t}u(t) - e^{-(\omega_0 + 1)t}u(t)]$, the output will be $y(t) = be^{-(\omega_0 - 1)t}u(t) - e^{-(\omega_0)t}u(t) + be^{-(\omega_0 + 1)t}u(t)$, where $a, b, \omega_0 \neq 0$, and they are real numbers.

B.The group delay imposed by the system to the input signal is $\tau(\omega) = \frac{5}{25+\omega^2}$. (Hint: $\frac{\text{darctan}x}{\text{d}x} = \frac{1}{1+x^2}$) C.The total energy of the input signal x(t) specified in property(A) is $E_x = \frac{1}{1+x^2}$

C. The total energy of the input signal x(t) specified in property(A) is $E_x = \frac{1}{120}$.

please answer the following questions:

1. Find the value of a, b, ω_0 .

2. Write out the differential equation of the system in terms of y(t), x(t). And find the frequency response $H(j\omega)$, sketch its Bode plot (use the asymptotic approximation). Note: the lateral axis of the Bode plot should be $\log_{10}(\omega)$.

Solution

1. Firstly, we have the Fourier Transform of y(t), x(t) are

$$Y(j\omega) = \frac{b}{\omega_0 - 1 + j\omega} - \frac{1}{\omega_0 + j\omega} + \frac{b}{\omega_0 + 1 + j\omega}$$

$$= \frac{b(\omega_0 + j\omega)(\omega_0 + 1 + j\omega) - (\omega_0 - 1 + j\omega)(\omega_0 + 1 + j\omega) + b(\omega_0 - 1 + j\omega)(\omega_0 + j\omega)}{(\omega_0 - 1 + j\omega)(\omega_0 + j\omega)(\omega_0 + 1 + j\omega)}$$

$$X(j\omega) = a(\frac{1}{\omega_0 - 1 + j\omega} - \frac{1}{\omega_0 + 1 + j\omega})$$

$$= a \cdot \frac{2}{(\omega_0 - 1 + j\omega)(\omega_0 + 1 + j\omega)}$$

Because this system is LTI, so

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

$$=\frac{b(\omega_0+j\omega)(\omega_0+1+j\omega)-(\omega_0-1+j\omega)(\omega_0+1+j\omega)+b(\omega_0-1+j\omega)(\omega_0+j\omega)}{2a(\omega_0+j\omega)}$$

And we know this LTI system is first-order, so we can get:

$$2b - 1 = 0 \rightarrow b = \frac{1}{2}$$

So we get

$$H(j\omega) = \frac{1}{2a(\omega_0 + j\omega)}$$

Because the group delay is
$$\tau(\omega) = -\frac{d \angle H(j\omega)}{d\omega} = -\frac{\mathbf{d}[-arctan(\frac{\omega}{\omega_0})]}{\mathbf{d}\omega} = \frac{5}{25+\omega^2}$$
, so the $\omega_0 = 5$

Now for a, because of the condition(C)

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

$$E_x = \int_0^{\infty} |a(e^{-(\omega_0 - 1)t} - e^{-(\omega_0 + 1)t})|^2 dt$$

$$E_x = a^2 \int_0^{\infty} (e^{-2(\omega_0 - 1)t} - 2e^{-2\omega_0 t} + e^{-2(\omega_0 + 1)t}) dt$$

$$E_x = a^2 \left(\frac{1}{2(\omega_0 - 1)} - \frac{1}{\omega_0} + \frac{1}{2(\omega_0 + 1)}\right) = \frac{1}{120}$$

So a = 1.In summary, $a = 1, \omega_0 = 5, b = 0.5$.

$$H(j\omega) = \frac{1}{2a(\omega_0 + j\omega)} = \frac{1}{2(5 + j\omega)}$$

And the differential equation is

$$y'(t) + 5y(t) = \frac{1}{2}x(t)$$

So we can get

$$|H(j\omega)| = 20 \log_{10} \frac{1}{\sqrt{100(1 + (\frac{\omega}{5})^2)}}$$
$$|H(j\omega)| = -20 - 10 \log_{10} \left(1 + \left(\frac{\omega}{5}\right)^2\right)$$

So we have

$$|H(j\omega)| = \begin{cases} -20, & \omega < 5, \\ -20 - 20 \log_{10} \omega + 20 \log_{10} 5, & \omega > 5, \\ 0, & \text{otherwise} \end{cases}$$

and

$$\angle H(j\omega) = -\tan^{-1}\left(\frac{\omega}{5}\right)$$

$$\angle H(j\omega) = \begin{cases} 0, & \omega < 0.5, \\ -\frac{\pi}{4}(\log_{10}\frac{\omega}{5} + 1), & 0.5 < \omega < 50, \\ -\frac{\pi}{2}, & 50 < \omega \end{cases}$$

The Bode plot is as shown in the Figure below.

Figure 3: The magnitude and phase spectrum of H(jw)

(20 points) In many practical situations a signal is recorded in the presence of an echo, which we would like to remove by appropriate processing. For example, in Figure 4, we illustrate a system in which a receiver simultaneously receives a signal x(t) and an echo represented by an attenuated delayed replication of x(t). Thus, the receiver output is $s(t) = x(t) + \alpha x(t - T_0)$, where $|\alpha| < 1$. This output is to be processed to recover x(t) by first converting to a sequence and then downsampled by N, and then using an appropriate digital filter h[n], as indicated in Figure 4(b).

Assume that x(t) is band limited [i.e., $X(j\omega)=0$ for $|\omega|>\omega_M$] and that $|\alpha|<1$.

- (a) If $T_0 < \frac{\pi}{\omega_M}$, and the sampling period is taken to be equal to T_0 (i.e., $NT = T_0$), determine the difference equation for the digital filter h[n] such that $y_c(t)$ equals x(t). (note: for the filter h[n], $s_2[n]$ is the input, y[n] is the output)
- (b) Now suppose that $\frac{\pi}{\omega_M} < T_0 < \frac{2\pi}{\omega_M}$. Determine a choice for the sampling period T, the lowpass filter gain A, and the frequency response for the digital filter h[n] such that $y_c(t)$ equals x(t).

Figure 4.Problem 4

Solution

(a) By sampling $s_c(t)$, we get

$$s[n] = s_c(nT) = x(nT) + \alpha x(nT - T_0)$$

since $s_2[m] = s[mN]$, so

$$s_2[m] = s[mN] = x(mNT) + \alpha x(mNT - T_0)$$

since $NT = T_0$. Let x[m] = x(mNT). Then

$$s_2[m] = x[m] + \alpha x[m-1]$$

and set n instead of m

$$s_2[n] = x[n] + \alpha x[n-1]$$

Therefore

$$x[n] = -\alpha x[n-1] + s_2[n]$$

This is a first-order difference equation, so given $s_2[n]$, we can find x[n]. Since x(t) is appropriately bandlimited, and $y_c(t) = x(t)$ can be reconstructed from y[n], so we can set

$$y[n] = x[n] = x[nNT]$$

Then we can get

$$y[n] = -\alpha y[n-1] + s_2[n]$$

which will make

$$y_c(t) = \frac{A}{NT}x(t)$$

We see that A = NT will make $y_c(t) = x(t)$.

(b) Since we do not want aliasing, we still need $NT < \frac{\pi}{\omega_M}$. Now

$$s_2(t) = x(t) + \alpha x(t - T_0)$$

Taking the continuous Fourier transform, we see that

$$S_2(j\omega) = X(j\omega) + \alpha e^{-j\omega T_0} X(j\omega)$$

Thus, the continuous-time inverse system has frequency response

$$H_c(j\omega) = \frac{1}{1 + \alpha e^{-j\omega T_0}}$$

We want to implement this in discrete time. Therefore, using the relation, we obtain

$$H(j\Omega) = H_c\left(j\frac{\Omega}{NT}\right) = \frac{1}{1 + \alpha e^{-j\Omega\left(\frac{T_0}{NT}\right)}}, \quad \frac{-\pi}{\omega_M} < \Omega < \frac{\pi}{\omega_M}$$

Again, the filter should be A = NT.

(20 points)

In Figure 5, we have an input signal $x_c(t) = \frac{\sin(0.5t)}{\pi t} + \sin(0.75t)$, sampling function $p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$, given that $T = \frac{\pi}{2}$. After converting $x_p(t)$ to discrete time,, we obtain the sequence $x_d[n]$. We then down sampling the sequence $x_d[n]$ with M=2 to obtain $x_{d2}[n]$. Please plot the spectrum $X_c(j\omega)$, $X_p(j\omega)$, $X_d(e^{j\Omega})$, $X_d(e^{j\Omega})$, $Y_d(e^{j\Omega})$ and $Y_p(j\omega)$. Then write the expression of $y_c(t)$. $H(e^{j\Omega})$ in one period is given below:

$$H(e^{j\Omega}) = \begin{cases} 1, & -\frac{5\pi}{8} \le \Omega \le \frac{5\pi}{8} \\ 0, & \text{otherwise} \end{cases}$$

Figure 5. Problem 5

Solution

(a) From Fourier transform,

$$X_c(j\omega) = \begin{cases} j\pi, & \omega = -\frac{3}{4}, \\ 1, & -\frac{1}{2} \le \omega \le \frac{1}{2}, \\ -j\pi, & \omega = \frac{3}{4}, \\ 0, & \text{otherwise} \end{cases}$$

After sampling, $x_p(t) = x_c(t)p(t)$, so $X_p(j\omega) = \frac{1}{2\pi}X_c(j\omega) * P(j\omega)$

$$X_p(j\omega) = \frac{1}{2\pi} X_c(j\omega) \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$$

$$= \frac{1}{T} X_c(j\omega) \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\omega - \frac{2\pi k}{T}))$$

The spectrum of $x_d[n]$ can be obtained from by $X_p(j\omega)$ replacing ω with $\frac{\Omega}{T}$.

$$X_d(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\frac{\Omega}{T} - \frac{2\pi k}{T}))$$

For down sampling, $T \to MT$

$$X_d(e^{j\Omega}) = \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c(j\frac{\Omega}{MT} - jr\frac{2\pi}{MT})$$

Let $r = i + kM, \ 0 \le i \le M - 1, \ -\infty \le k \le \infty,$

$$X_{dM}(e^{j\Omega}) = \frac{1}{M} \sum_{i=0}^{M-1} \left\{ \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j\frac{\Omega}{MT} - j(i+kM)\frac{2\pi}{MT}) \right\}$$

$$= \frac{1}{M} \sum_{i=0}^{M-1} \left\{ \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j\frac{\Omega - 2\pi i}{M} \frac{1}{T} - jk\frac{2\pi}{T}) \right\}$$

$$= \frac{1}{M} \sum_{i=0}^{M-1} X_d(e^{j\Omega'}) \quad (\Omega' = \frac{\Omega - 2\pi i}{M})$$

$$= \frac{1}{M} \sum_{i=0}^{M-1} X_d(e^{j(\frac{\Omega}{M} - \frac{2\pi i}{M})})$$

For
$$M=2, X_{d2}(e^{j\Omega}) = \frac{1}{2}X_d(e^{j\frac{\Omega}{2}}) + \frac{1}{2}X_d(e^{j(\frac{\Omega}{2}-\pi)})$$

(a) $X_c(j\omega)$ and (b) $X_p(j\omega)$

(a)
$$X_d(e^{j\Omega})$$
 and (b) $X_{d2}(e^{j\Omega})$

$$Y_d(e^{j\Omega}) = X_{d2}(e^{j\Omega})H(e^{j\Omega})$$

 $Y_p(j\omega)$ can be obtained from $Y_p(e^{j\Omega})$ by replacing Ω with ωT .

So we get $y_c(t) = \frac{\sin(t)}{\pi t}$.