

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 21 pages. *Hierdie nasienriglyne bestaan uit 21 bladsye.*

SCI

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOMETRY		
S	A mark for a correct statement (A statement mark is independent of a reason.)	
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede.)	
R	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)	
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is.)	
S/R	Award a mark if the statement AND reason are both correct.	
	Ken 'n punt toe as beide die bewering EN rede korrek is.	

110	112	156	164	167	169
171	176	192	228	278	360

1.1.1	Mean/ $Gemiddelde = \frac{2283}{12}$ = 190,25 Mean profit/ $Gemiddelde$ wins = R190250,00 or 190,25 thousand rands	✓ sum/som ✓ answer ✓ answer in thousands of rands (3)
1.1.2	Median = $\frac{169 + 171}{2}$ = 170 thousand rands = R170 000	✓ answer (1)
1.2	110 170 210 360 100 140 160 180 220 260 300 340 380	✓ whiskers ✓ quartiles
1.3	$IQR = Q_3 - Q_1$ = 210 - 160 thousand rands = R50 000	✓ answer
1.4	Skewed to the right or positively skewed.	✓ answer (1)
1.5.1	$\sigma = 67,04118759$ thousand rands = R67 041,19	✓ answer (1)
1.5.2	$\overline{x} - \sigma = 123,21$ thousand rands For 2 months the profit was less than one standard deviation below the mean.	✓ lower limit ✓ answer (2)
		[11]

CHIRPS/ <i>TJIRPGELUIDE</i> PER MINUTE/	AIR TEMPERATURE/ LUGTEMPERATUUR
PER MINUUT	IN °C
32	8
40	10
52	12
76	15
92	17
112	20
128	25
180	28
184	30
200	35

SCE/SSE – Marking Guidelines/Nasienriglyne

2.3	a = 3.97	-	$\checkmark a = 3.97$	
	b = 0.15		✓ b = 0.15	
	$\hat{y} = 3.97 + 0.15x$		✓ equation	
				(3)
2.4	Air temperature $\approx 15,67^{\circ}$ C	(calculator)	✓✓ answer	
				(2)
	OR			
	$\hat{y} \approx 3.97 + 0.15(80)$		✓ substitution	
	≈ 15,97°C		✓ answer	(2)
				(2)
	OR			
	1.00	(1 4 41 4 1500 11700)	✓✓ answer	
	Air temperature $\approx 16^{\circ}$ C	(graph: Accept between 15°C and 17°C)	allswei	(2)
				[9]

		D(8; – 11)
3.1	$m_{\rm AC} = \frac{1 - (-4)}{7 - (-3)} OR \frac{-4 - 1}{-3 - 7}$	✓ substitution
	$=\frac{5}{10}=\frac{1}{2}$	✓answer (2)
3.2.1	$y = \frac{1}{2}x + c$ $y - y_1 = \frac{1}{2}(x - x_1)$	
	$1 = \frac{1}{2}(7) + c y - 1 = \frac{1}{2}(x - 7)$	✓ substitution M and A(7; 1)
	$c = -\frac{5}{2}$ OR/OF $y - 1 = \frac{1}{2}x - \frac{7}{2}$	
	$y = \frac{1}{2}x - 2\frac{1}{2}$ $y = \frac{1}{2}x - 2\frac{1}{2}$	✓equation (2)
	OR/OF	
	$y = \frac{1}{2}x + c$ $y - y_1 = \frac{1}{2}(x - x_1)$	✓ substitution M and $C(-3; -4)$
	$-4 = \frac{1}{2}(-3) + c y - (-4) = \frac{1}{2}(x - (-3))$	
	$c = -\frac{5}{2}$ OR/OF $y + 4 = \frac{1}{2}x + \frac{3}{2}$	
	$y = \frac{1}{2}x - 2\frac{1}{2}$ $y = \frac{1}{2}x - 2\frac{1}{2}$	√equation (2)

3.2.2	(2 + 0 - 0 + (11))	
3.2.2	$M\left(\frac{-2+8}{2};\frac{9+(-11)}{2}\right)$	
	M(3;-1)	$\checkmark x$ coordinate $\checkmark y$ coordinate
	Equation of AC: $y = \frac{1}{2}x - 2\frac{1}{2}$ OR/OF $y = \frac{1}{2}x - 2\frac{1}{2}$	
	$y = \frac{1}{2}(3) - 2\frac{1}{2}$ $-1 = \frac{1}{2}x - 2\frac{1}{2}$	✓ substitution of x
		\checkmark conclusion
	y = -1 $x = 3∴ M lies on AC$	(4)
	WI HES OH AC	
	OR/OF	
	$M\left(\frac{-2+8}{2}; \frac{9+(-11)}{2}\right)$	
		$\checkmark x$ coordinate
	M(3;-1)	✓ y coordinate
	$m_{CM} = \frac{-4+1}{-3-3} = \frac{1}{2}$	✓ gradient of CM
	$\therefore m_{CM} = m_{AC} \text{ and C a common point}$	✓ reasoning & conclusion
	∴ M lies on AC	(4)
3.3	$m_{\rm BD} = \frac{9 - (-11)}{-2 - 8}$ OR $\frac{(-11) - 9}{8 - (-2)}$	✓ correct substitution
	2 0 0 (2)	✓ m _{BD}
	= -2 1 .	BD
	$m_{\rm BD} \times m_{\rm AC} = \frac{1}{2} \times -2$	
	=-1	\checkmark product of gradients = -1 (3)
3.4.1	$\therefore BD \perp AC$ $\tan \theta = m = 2$	` ,
3.7.1	$\tan \theta = m_{\rm BD} = -2$ $\therefore \theta = 116,57^{\circ}$	\checkmark tan $θ = m_{BD}$ \checkmark answer
	0 – 110,57	(2)
3.4.2	$\tan \beta = m_{\rm BC}$, ,
	$m_{\rm BC} = \frac{9 - (-4)}{-2 - (-3)} OR \frac{-4 - 9}{-3 - (-2)}$	
	$= 13$ $\beta = 85.6^{\circ}$	$\sqrt{m_{\rm BC}} = 13$
	•	\checkmark value of β
	∴ $\hat{CBD} = 116,57^{\circ} - 85,60^{\circ}$ [ext \angle of \triangle] = 30.97°	✓ answer
	OR/OF	(3)
	$BD = \sqrt{500}$; $BC = \sqrt{170} & CD = \sqrt{170}$	
	$CD^2 = BD^2 + BC^2 - 2BD.BC.cosC\hat{B}D$	
	$170 = 500 + 170 - 2\sqrt{500}.\sqrt{170}.\cos\text{CBD}$	✓ subst into cos rule
	$\cos \hat{CBD} = \frac{\sqrt{500}}{2\sqrt{170}} = 0,85749$	✓ value of cosCBD
	CBD = 30,96°	✓ answer
		(3)

SCE/SSE – Marking Guidelines/Nasienriglyne

3.4.3	$AC = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $= \sqrt{(7 - (-3))^2 + (1 - (-4))^2} OR \sqrt{((-3) - 7)^2 + ((-4) - 1)^2}$ $= \sqrt{100 + 25}$ $= \sqrt{125} = 5\sqrt{5} = 11,58$	✓ correct substitution into distance formula ✓ answer	(2)
3.4.4	BM = $\sqrt{((-2)-3)^2 + (9-(-1)^2)} OR \sqrt{(3-(-2))^2 + ((-1)-9)^2}$ = $\sqrt{125} = 5\sqrt{5}$ Area of $\triangle ABC = \frac{1}{2} base \times \bot height$	✓ correct substitution into distance formula ✓ BM	
	$= \frac{1}{2}(\sqrt{125})(\sqrt{125})$ $= 62,5 \text{ square units}$ Area of ABCD = 2 × 62,5 $= 125 \text{ square units}$	✓ substitution into area formula ✓ 62,5 ✓ 2 × ΔABC	(5)
			[23]

4.1	$M\left(\frac{0+4}{2}; \frac{0+(-6)}{2}\right)$ $\therefore M(2; -3)$	√ 2 √ − 3 (2)
4.2.1	$x^{2} + y^{2} = 4^{2} + (-6)^{2}$ $= 52$ $\therefore x^{2} + y^{2} = 52$	✓ substitution ✓ equation (2)
4.2.2	$(x-2)^{2} + (y+3)^{2} = \left(\frac{\sqrt{52}}{2}\right)^{2} = 13$ $x^{2} - 4x + 4 + y^{2} + 6y + 9 - 13 = 0$ $x^{2} + y^{2} - 4x + 6y = 0$	✓ substitution of M ✓ substitution of radius = $\frac{\sqrt{52}}{2}$ ✓ answer (3)
4.2.3	$m_{\text{OP}} = \frac{-6}{4} = -\frac{3}{2}$ $m_{\text{RS}} \times m_{\text{OP}} = -1$ [radius \(\perp \) tangent / raaklyn] $\therefore m_{\text{RS}} = \frac{2}{3}$ $\therefore y = \frac{2}{3}x$	$\checkmark m_{OP}$ $\checkmark m_{RS}$ \checkmark equation (3)

10 SCE/SSE – Marking Guidelines/Nasienriglyne

4.3	$x^2 + y^2 = 52$ and $y = \frac{2}{3}x$	
	$x^2 + \left(\frac{2}{3}x\right)^2 = 52$	✓ substitution
	$x^2 + \frac{4}{9}x^2 = 52$	
	$1\frac{4}{9}x^2 = 52$	
	$x^2 = 36$	✓ simplification
	x = 6 $\therefore R(6; 4) \text{ and } N(-6; 4)$	\checkmark value of x
	$\therefore N(0, 4) \text{ and } N(-0, 4)$ $\therefore NR = 12 \text{ units}$	✓ length of NR (4)
4.4	Let $T(x; 0)$ be the other x intercept of the small circle Then OT is the common chord $\therefore (x-2)^2 + (0+3)^2 = 13$ $(x-2)^2 = 13 - 9 = 4$ $x^2 - 4x + 4 + 9 = 13$ $x - 2 = \pm 2$ OR $x^2 - 4x = 0$	$\checkmark y = 0$
	$x = 2 \pm 2$ OR $x(x-4) = 0$	✓ x-values
	x = 4 or 0 $x = 0$ or $x = 4∴ length of common chord = OT = 4 units$	✓ answer (3)

	Given: $\sin M = \frac{15}{17}$ $MN^2 = 17^2 - 15^2$ $8a$ 17a	✓ sketch or Pyth
	= 64 $MN = 8$ OR $N = 15a P$	✓ MN = 8
	$\therefore \tan M = \frac{15}{8}$	✓answer (3)
5.1.2	$\sin M = \frac{NP}{MP}$	
	$\frac{NP}{51} = \frac{15a}{17a}$ $\therefore NP = 45$	✓ equating trig ratios ✓ answer
		(2)
	$\cos(x - 360^{\circ}) \cdot \sin(90^{\circ} + x) + \cos^{2}(-x) - 1$ $= \cos x \cdot \cos x + \cos^{2} x - 1$	$\sqrt{\cos x} \sqrt{\cos x}$
	$= \cos^2 x + \cos^2 x - 1$	$\sqrt{\cos^2 x}$
	$= 2\cos^2 x - 1$	
	$=\cos 2x$	✓ identity
5.3.1	$\sin(2x+40^{\circ})\cos(x+30^{\circ}) - \cos(2x+40^{\circ})\sin(x+30^{\circ})$	(4)
	$\sin(2x + 40^{\circ})\cos(x + 30^{\circ}) - \cos(2x + 40^{\circ})\sin(x + 30^{\circ})$ $= \sin[(2x + 40^{\circ}) - (x + 30^{\circ})]$	✓ reduction
	$=\sin(x+10^{\circ})$	√ answer
		(2)
	$\sin(2x + 40^\circ)\cos(x + 30^\circ) - \cos(2x + 40^\circ)\sin(x + 30^\circ) = \cos(2x - 20^\circ)$	
	$\therefore \cos(2x - 20^\circ) = \sin(x + 10^\circ)$	✓ equating
	$\cos(2x - 20^\circ) = \cos[90^\circ - (x + 10^\circ)]$	✓ co ratio
	$2x - 20^{\circ} = 80^{\circ} - x + k.360^{\circ}$ or $2x - 20^{\circ} = 360^{\circ} - (80^{\circ} - x) + k.360^{\circ}$	$\sqrt{80^{\circ} - x}$ $\sqrt{280^{\circ} + x}$
	$3x = 100^{\circ} + k.360^{\circ}$ or $2x - 20^{\circ} = 280^{\circ} + x + k.360^{\circ}$ $x = 33,33^{\circ} + k.120^{\circ}$ or $x = 300^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$	✓ simplification/vereenv ✓ $x = 33,33^{\circ} + k.120^{\circ}$
	$\lambda = 33,33 + 0.120$ Of $\lambda = 300 + 0.300$, $\lambda \in \mathbb{Z}$	$\sqrt{x} = 300^{\circ} + k.360^{\circ}$;
	OR/OF	$k \in \mathbb{Z}$
	(2 200) : (100)	(7)
	$\cos(2x - 20^{\circ}) = \sin(x + 10^{\circ})$	✓ equating
	$\sin[90^{\circ} - (2x - 20^{\circ})] = \sin(x + 10^{\circ})$	✓ co ratio
	$110^{\circ} - 2x = x + 10^{\circ} + k.360^{\circ} \text{ or } 110^{\circ} - 2x = 180^{\circ} - (x + 10^{\circ}) + k.360^{\circ}$ $3x = 100^{\circ} - k.360^{\circ} \text{ or } 110^{\circ} - 2x = 170^{\circ} - x + k.360^{\circ}$	$\sqrt{x+10^{\circ}} \sqrt{170^{\circ}-x}$ $\sqrt{\text{simplification/} vereenv}$
	$3x = 100^{\circ} - k.360^{\circ}$ of $110^{\circ} - 2x = 170^{\circ} - x + k.360^{\circ}$ $x = 33,33^{\circ} - k.120^{\circ}$ or $x = -60^{\circ} - k.360^{\circ}$; $k \in \mathbb{Z}$	$\checkmark simplification / vereenv$ $\checkmark x = 33,33^{\circ} - k.120^{\circ}$
		$\checkmark x = -60^{\circ} - k.360^{\circ} ;$ $k \in \mathbb{Z}$
		(7)
		[18]

6.1	Period = 720°	✓ answer
		(1)
6.2	$y \in [-2; 2]$	√√ answer
		(2)
	OR/OF	√√ answer
	$-2 \le y \le 2$	(2)
6.3	$f(-120^{\circ}) - g(-120^{\circ})$	$\checkmark x = -120^{\circ}$
	$= -3\sin\left(-\frac{120^{\circ}}{2}\right) - 2\cos(-120^{\circ} - 60^{\circ})$	✓ substitution
	$4 + 3\sqrt{3}$	√ answer
	$=\frac{4+3\sqrt{3}}{2}$ or 4,60 (4,5980)	(3)
6.4.1	x-intercepts of g at $-90^{\circ} + 60^{\circ} = -30^{\circ}$	✓ value
	and $90^{\circ} + 60^{\circ} = 150^{\circ}$	✓ value
	$x \in (-30^{\circ}; 150^{\circ})$	✓ answer
	OR/OF	(3)
	x-intercepts of g at $-90^{\circ} + 60^{\circ} = -30^{\circ}$	✓ value ✓ value
	and $90^{\circ} + 60^{\circ} = 150^{\circ}$	✓ value ✓ answer
	$-30^{\circ} < x < 150^{\circ}$	
6.4.2	$x \in [-180^{\circ}; -120^{\circ}) \cup (-30^{\circ}; 60^{\circ}) \cup (150^{\circ}; 180^{\circ}]$	(3) √ [-180°; -120°)
0.1.2	x C[100 , 120) G(30 ,00) G(130 ,100]	√ (-30°; 60°)
		✓ (150°; 180°]
		✓ notation for inclusive in the
	OR/OF	first/last interval
	1000 1000 1000 1000 1000	(4)
	$-180^{\circ} \le x < -120^{\circ} \text{ or } -30^{\circ} < x < 60^{\circ} \text{ or } 150^{\circ} < x \le 180^{\circ}$	$\checkmark -180^{\circ} \le x < -120^{\circ}$
		$\checkmark -30^{\circ} < x < 60^{\circ}$
		$\sqrt{150^{\circ}}$ < x ≤ 180° 1 mark: each
		interval ✓ notation for inclusive in the
		first/last interval
		(4)
		[13]

7.1	In PMQ: $\tan \theta = \frac{x}{QM}$	✓ trig ratio
	$\therefore QM = \frac{x}{\tan \theta}$	✓ answer
	OR/OF	(2)
	$\frac{x}{\sin \theta} = \frac{MQ}{\sin P}$	✓ sine rule
	$MQ = \frac{x \sin P}{\sin \theta}$	
	$=\frac{x\cos\theta}{\sin\theta}$	✓ answer
	$=\frac{x}{\tan\theta}$	(2)
	an heta	
7.2	In PMR: $\tan \theta = \frac{x}{MR}$ OR PMQ = PMR [AAS/HHS]	
	$\therefore MR = \frac{x}{\tan \theta} = QM$	✓ MR = QM
	$Q\hat{M}R = 180^{\circ} - 2\beta$	✓ correct
	$\frac{\sin \beta}{MR} = \frac{\sin Q\hat{M}R}{12x}$	substitution into the
	$\frac{1}{MR} - \frac{1}{12x}$	sine rule in ΔQMR
	$\sin \beta \times \frac{\tan \theta}{x} = \frac{\sin(180^\circ - 2\beta)}{12x}$	
	$\tan \theta = \frac{\sin 2\beta}{12x} \times \frac{x}{\sin \beta}$	✓ reduction
	$\tan \theta = \frac{2\sin \beta \cos \beta}{12x} \times \frac{x}{\sin \beta}$	✓ double angle
	$\tan \theta = \frac{\cos \beta}{6}$	asasie ungie
		(4)
	OR	

In PMR: $\tan \theta = \frac{x}{MR}$ OR $PMQ = PMR [AAS/HHS]$ $MR^2 = QM^2 + QR^2 - 2QM.QR \cos \beta$ $MR^2 = \left(\frac{x}{\tan \theta}\right)^2 + (12x)^2 - 2\left(\frac{x}{\tan \theta}\right)(12x)(\cos \beta)$ $\frac{x^2}{\tan^2 \theta} = \frac{x^2}{\tan^2 \theta} + 144x^2 - 24\left(\frac{x^2}{\tan \theta}\right)(\cos \beta)$ $24\left(\frac{x^2}{\tan \theta}\right)(\cos \beta) = 144x^2$ $\cos \beta = 6 \tan \theta$ $\tan \theta = \frac{\cos \beta}{6}$ $\tan \theta = \frac{\cos \beta}{6}$ [both equal $\tan \theta$] $x = \frac{60 \cos 40}{6}$ $x = 7,66$ The height of the lighthouse is 8 metres [3]		SCE/SSE – Marking Guidelines/Nasienriglyne	,
7.3 $\frac{x}{QM} = \frac{\cos \beta}{6}$ [both equal $\tan \theta$] \checkmark equating $x = \frac{60 \cos 40}{6}$ \checkmark subst. QM = 60 and $\beta = 40^{\circ}$ \checkmark answer		$MR^{2} = QM^{2} + QR^{2} - 2QM.QR\cos\beta$ $MR^{2} = \left(\frac{x}{\tan\theta}\right)^{2} + (12x)^{2} - 2\left(\frac{x}{\tan\theta}\right)(12x)(\cos\beta)$ $\frac{x^{2}}{\tan^{2}\theta} = \frac{x^{2}}{\tan^{2}\theta} + 144x^{2} - 24\left(\frac{x^{2}}{\tan\theta}\right)(\cos\beta)$ $24\left(\frac{x^{2}}{\tan\theta}\right)(\cos\beta) = 144x^{2}$ $\cos\beta = 6\tan\theta$	substitution into the cosine rule in ∆QMR ✓ substitution ✓ MR = QM
$x = \frac{60 \cos 40}{6}$ $x = 7,66$ The height of the lighthouse is 8 metres $x = \frac{60 \cos 40}{6}$ and $\beta = 40^{\circ}$ $\sqrt{2} = 40^{\circ}$	7.3	$x = \cos \beta$	(4)
$x = 7,66$ The height of the lighthouse is 8 metres $x = 7,66$ $\sqrt{\text{answer}}$		$\frac{n}{QM} = \frac{33 p}{6}$ [both equal tan θ]	✓ equating
			~
[9]		The height of the lighthouse is 8 metres	
			[9]

8.1

8.1.1	$\hat{G} = x$ [\angle centre = 2× circumference / midpts \angle = 2× o	omtreks∠] ✓S ✓R
	$\hat{H}_1 = x$ [alt $\angle s / verwiss \angle e$; KH GJ]	✓S
	$\widehat{GJH} = x$ [tan chord theorem / raaklyn koordstelling]	✓S ✓R
		(5)
8.1.2	$\hat{J}_1 + \hat{H}_3 = 180^\circ - 2x$ [sum of \angle s in Δ / som van \angle e in Δ	Δ]
	$\therefore \hat{J}_1 = \hat{H}_3 = 90^\circ - x$ [\(\angle \text{s opp equal sides}\) \(\angle \text{e teenoor}\)	gelyke sye] ✓S
	$\hat{x} + \hat{H}_2 = 90^{\circ}$ OR [tan \perp radius / raaklyn \perp radius]	✓S ✓R
	$\hat{H}_2 = 90^{\circ} - x$	
	$\therefore \hat{\mathbf{H}}_2 = \hat{\mathbf{H}}_3$	(3

8.2

8.2.1	$\hat{N}_2 = y$	$[\angle s \text{ in the same seg} / \angle e \text{ in dieselfde segment}]$	✓S ✓R	
				(2)
8.2.2(a)	$2y + y + 87^{\circ} = 180^{\circ}$	[opp ∠s of cyclic quad / teenoorst ∠e v kvh]	✓S ✓R	
	3 <i>y</i> = 93°	[opp ∠s of cyclic quad / teenoorst ∠e v kvh]	✓S	
	y = 31°		V 5	(3)
8.2.2(b)	TPL = 62°	[ext. \angle of cyclic quad / buite \angle v kvh]	✓S ✓R	()
				(2)
				[15]

9.1

9.1 Constr: Join KZ and LY and draw h_1 from K \perp XL and h_2 ✓ constr / konstr from $L \perp XK$ *Konstr:* Verbind KZ en LY en trek h_1 vanaf K \perp XL en h_2 $vanaf L \perp XK$ Proof / Bewys: area ΔLYK area $\Delta XKL = area \Delta XKL$ [common / gemeenskaplik] But area Δ LYK = area Δ KLZ [same base & height; LK || YZ / $\checkmark S \checkmark R$ *dies basis & hoogte ;* LK || YZ] area ΔXKL _ area ΔXKL area ∆LYK area ΔKLZ $\checkmark S$ $\frac{XK}{} = \frac{XL}{}$ (5) 9.2

9.2.1	$\frac{RF}{FS} = \frac{RH}{HT}$ [line one side of \triangle OR prop theorem; FH ST]	✓S/R
	[Lyn een sy van $\Delta \mathbf{OF}$ eweredigh. st; FH ST]	
	$\frac{2x-10}{9} = \frac{4}{x-2}$	✓ substitution
	$(2x - 10)(x - 2) = 4 \times 9$	
	$2x^2 - 14x - 16 = 0$	✓ standard form
	$x^{2} - 7x - 8 = 0$ $(x - 8)(x + 1) = 0$	✓ factors
	$\therefore x = 8 \ (x \neq -1)$	✓ answer with rejection
	OR/OF	(5)
	RF RH [line one side of A OR prop theorem: FH ST]	
	RS $= \frac{1}{RT}$ [Lyn een sy van $\triangle OF$ eweredigh. st; FH ST]	✓S/R
	$\frac{2x-10}{2x-1} = \frac{4}{x+2}$	
	2x-1 x+2 (2x-10)(x+2) = 4(2x-1)	✓ substitution
	$2x^2 - 14x - 16 = 0$	
	$x^2 - 7x - 8 = 0$	✓ standard form ✓ factors
	$(x-8)(x+1) = 0$ $\therefore x = 8 \ (x \neq -1)$	✓answer with
	0 (x + 1)	rejection (5)
9.2.2	$\frac{\text{area }\Delta RFH}{\text{area }\Delta RST} = \frac{\frac{1}{2}RF \times RH \sin \hat{R}}{\frac{1}{2}RS \times RT \sin \hat{R}}$	✓ numerator/teller ✓ denominator/noemer
	$= \frac{\frac{1}{2} \times 6 \times 4 \times \sin \hat{R}}{\frac{1}{2} \times 15 \times 10 \times \sin \hat{R}}$	✓ substitution
	$=\frac{24}{150}=\frac{4}{25}$	✓answer
		(4) [14]

10.1.1	$\hat{C}_1 = 90^{\circ}$ [\angle in semi	i circle / ∠in halfsirkel]	✓ S ✓ R	
	$\hat{D}_1 = 90^{\circ}$ [line from	centre to midpt of chord / lyn vanaf midpt van koord]	✓ S ✓ R	
	$\therefore \hat{\mathbf{C}}_1 = \hat{\mathbf{D}}_1$			
	\therefore FC OD [corresp \angle	$(s = / ooreenkomstige \angle e =]$	✓ R	(5)
	OR/OF			(5)
	FO = OE [radii] CD = DE [given / ges	anal	✓ S ✓ R	
	1000	theorem / middelpuntstelling]	✓ S ✓ ✓ R	
	_			(5)
10.1.2		[corresp \angle s =; FC OD]	✓ S ✓ R	
	_	∠s in the same seg]	✓ S ✓ R	
	$\therefore D\hat{O}E = B\hat{A}E$			(4)
10.1.3	In ΔABE and ΔFCE:			
	Ê is common		✓ S	
	$\hat{BAE} = \hat{F}$	[proved in 10.1.2]	✓ S	
	$\therefore \mathbf{A}\hat{\mathbf{B}}\mathbf{E} = \hat{\mathbf{C}}_1$	[sum of \angle s in Δ]		
	∴ ΔABE ΔFCE		✓ R	
	$\frac{AB}{FC} = \frac{AE}{FE}$	$[\Delta s]$	✓ S	
	$AB \times FE = AE \times FC$		✓ S	
	But $FE = 2 OF$	[d=2r]		
	And FC =2 OD	[midpoint theorem]	✓ S/R	
	$AB \times 2OF = AE \times 2OD$		✓ S	
	$\therefore AB \times OF = AE \times OD$			(7)

	ODIOE	T
	OR/OF	
	In $\triangle ODE$ and $\triangle ABE$	/ 0
	1. Ê is common	✓ S ✓ S
	2. $\widehat{DOE} = \widehat{EAB}$ (proved in 10.1.2)	v 5
	3. $\widehat{D}_1 = \widehat{ABE}$ ($\angle \operatorname{sum} \Delta$)	
	ΔODE ΔABE (∠∠∠)	✓ R
	EO OD ED	✓ K
	$\frac{EO}{EA} = \frac{OD}{AB} = \frac{ED}{EB} \qquad (\Delta s)$	· 5
	EA AD ED	✓ S
	\therefore AB.EO = OD.EA	
	but $OE = FO$ (radii)	✓ S ✓ R
	$\therefore AB \times OF = OD \times EA$	(7)
	IBAGI GBALII	
10.2	AT AC 3 III II CA OD II FOLLODI	✓ S ✓ R
	$\frac{AT}{TO} = \frac{AC}{CD} = \frac{3}{1}$ [line one side of \triangle OR prop theorem; FC OD]	V S V K
	But CD = DE	
		✓ S
	$\frac{AE}{CE} = \frac{5}{2}$:: $AE = \frac{5}{2}CE$	
		✓ S
	$\frac{BE}{CE} = \frac{AE}{FE} \qquad [\Delta s]$. 5
	$\boxed{\frac{5}{2}CE}$	✓substitute
	$\frac{BE}{CE} = \frac{2}{FE}$	
		$AE = \frac{5}{2}CE$
	$BE \times FE = \frac{5}{2}CE^2$	
	_	
	$\therefore 5CE^2 = 2BE.FE$	(5)
		(5)
		[21]

TOTAL/TOTAAL: 150

MATHEMATICS P2: JUNE 2018 MARKING GUIDELINES NOTES

QUESTION 1

1.1.1	If left as 190, 25 then penalise 1 mark.
1.1.2	If the position is used:
	$\left[\frac{1}{4}(n+1) + \frac{3}{4}(n+1)\right] \div 2$
	_ 158 + 219
	=
	_ 377
	$-{2}$
	=188,5

QUESTION 2

2.4 Do not accept estimation from the table.

QUESTION 3

3.1	No ca if $\frac{x_2 - x_1}{y_2 - y_1}$	
3.3		
	$MD^2 + AM^2$	
	$= \left[(3-8)^2 + (-1+11)^2 \right] + \left[(3-7)^2 + (-1-1)^2 \right]$	
	=125+20	\checkmark AM ² + MD ²
	=145	
	AD^2	
	$= (7-8)^2 + (1+11)^2$	\checkmark AD ²
	=145	
	$MD^2 + AM^2 = AD^2$	$\checkmark MD^2 + AM^2 = AD^2 $ (3)

QUESTION 4

Candidates can use the rotation of P through 90° to get to R(6; 4)

If the candidate assumes that R(4; 6): 1/4 marks

QUESTION 6

6.2	$y \in (-2; 2)$	1/2 marks
	-2 < y < 2	1/2 marks

QUESTION 7

7.3	There is NO penalty for incorrect rounding.
-----	---

QUESTION 9

9.2.2 Join FT.

$$area \Delta RFH = \frac{4}{10} \times (area \Delta RFT)$$
But area $\Delta RFT = \frac{6}{15} \times (area \Delta RST)$ (common vertex; = heights)

$$area \Delta RFH = \frac{4}{10} \times \frac{6}{15} \times (area \Delta RST)$$

$$\frac{area\Delta RFH}{area\Delta RST} = \frac{4}{25}$$