1.1

Fonction polynôme du second degré

Spé Maths 1ère - JB Duthoit

1.1.1 Définitions et vocabulaire

-\(\frac{1}{2}\)-Approche

Un fermier possède un terrain carré. Il désire poser une clôture à $1 \in \mathbb{R}$ le mètre linéaire et souhaite également amender son terrain avec un engrais qui lui revient à $1 \in \mathbb{R}$ mètre carré. \mathbb{R} Quel est la taille du terrain sachant qu'il dépense $140 \in \mathbb{R}$?

Définition

Une **fonction polynôme de degré 2** est une fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où a, b et c sont des réels, avec a non nul.

Vocabulaire

- Les réels a, b et c sont appelés **coefficients** de la fonction f.
- Une fonction polynôme du second degré est aussi appelé fonction *trinôme du se-cond degré*.
- Les solutions (si elles existent) de $ax^2+bx+c=0$ sont appelées **racines** de ax^2+bx+c

Remarque

Une équation de parabole est donc du type $y = ax^2 + bx + c$ où a, b et c sont des réels, avec a non nul.

Exemples

- La fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 2x \sqrt{7}$ est-elle une fonction polynôme du second degré? Si oui, donner les coefficients.
- La fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 2x$ est-elle une fonction polynôme du second degré? Si oui, donner les coefficients.
- La fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 1$ est-elle une fonction polynôme du second degré? Si oui, donner les coefficients.

Savoir-Faire 1.1

SAVOIR DÉTERMINER SI UNE FONCTION EST UNE FONCTION TRINÔME DU SECOND DEGRÉ

La fonction f définie sur \mathbb{R} par f(x) = 2(x-2)(x+3) est-elle une fonction du second degré?

Exercices

exercice 12 page 50

1.1.2 La forme canonique

Vocabulaire

- f(x) = 2(x+1)(x-3) est une écriture sous forme factorisée de la fonction f.
- $f(x) = 2x^2 4x 6$ est une écriture sous forme développée de la fonction f.

On cherche à déterminer une autre forme d'écriture, où la variable x n'apparaîtrait qu'une seule fois...

Propriété (admise)

Pour toute fonction polynôme du second degré de la forme $f(x) = ax^2 + bx + c$, avec a non nul, on peut trouver des réels α et β , tels que pour tout réel $x: f(x) = a(x-\alpha)^2 + \beta$. L'écriture $a(x-\alpha)^2 + \beta$ est *la forme canonique* du trinôme $ax^2 + bx + c$. On a $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$.

Remarque

Ce n'est pas une formule à connaître par cœur, il faut savoir déterminer la forme canonique sans la formule

Exercices

20 page 51

79 page 53

Savoir-Faire 1.2

SAVOIR DÉTERMINER LA FORME CANONIQUE D'UNE EXPRESSION DU SECOND DEGRÉ.

- $x^2 + 4x 1$

- $-x^2 + 2x + 5$ $f(x) = 25x^2 150x + 209$
- $3x^2 x + 1$

Exercices

48, 49, 50 page 52