```
In [124]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [125]: df=pd.read_csv("D:\\Dataset\\IRIS.csv")
 df

Out[125]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica

150 rows × 5 columns

5.9

149

```
In [126]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df['species']=le.fit_transform(df['species'])
df
```

3.0

5.1

1.8 Iris-virginica

	٠	4	г.	4	1	-	п.	
•	ш	ΙТ.			•	h		•

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

```
In [127]: x=df.drop('species',axis=1)
x
```

	X				
Out[127]:		sepal_length	sepal_width	petal_length	n petal_width
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	3 0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	145	6.7	3.0	5.2	2 2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2 2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8
	150 rc	ows × 4 colu	mns		
In [128]:	y1=df y1	['species']		
Out[128]:	0	0			
	1	0			
	2	0			
	3 4	0 0			
	4	••			
	145	2			
	146	2			
	147	2			
	148	2			
	149	2	Longth, 150) d+v====	in+22
	ivallie:	species,	Length: 150	, utype: .	LIICOZ

```
In [129]: y2=np.array(y1)
```

y2

```
In [130]: |y3=y2.reshape(-1,1)
          у3
Out[130]: array([[0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
                  [0],
In [131]: | from sklearn.preprocessing import OneHotEncoder
          encoder=OneHotEncoder(sparse=False)
          y=encoder.fit_transform(y3)
          У
          C:\Users\Hp\anaconda3\Lib\site-packages\sklearn\preprocessing\_encoder
          s.py:868: FutureWarning: `sparse` was renamed to `sparse_output` in ver
          sion 1.2 and will be removed in 1.4. `sparse_output` is ignored unless
          you leave `sparse` to its default value.
            warnings.warn(
Out[131]: array([[1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1., 0., 0.],
                  [1 a a ]
```

```
In [200]:
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
          print(x_train.shape)
          print(y_train.shape)
          print(x_test.shape)
          print(y_test.shape)
          (120, 4)
          (120, 3)
          (30, 4)
          (30, 3)
In [201]: import tensorflow as tf
          from keras.models import Sequential
          from keras.layers import Dense,Dropout
          from keras.optimizers import Adam
In [202]:
         model=Sequential()
          model.add(Dense(10,activation='relu',input_shape=(4,)))
          model.add(Dense(10,activation='relu'))
          model.add(Dense(3,activation='softmax'))
In [203]: |model.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['ac
In [204]: | tf_callbacks=tf.keras.callbacks.TensorBoard(log_dir='logs/fit',histogram_fr
```

In [205]: history=model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=50

```
Epoch 1/50
4/4 [========== - 1s 95ms/step - loss: 1.3466 - accur
acy: 0.3500 - val_loss: 1.5129 - val_accuracy: 0.2667
Epoch 2/50
acy: 0.3500 - val_loss: 1.4444 - val_accuracy: 0.2667
Epoch 3/50
4/4 [==========] - 0s 38ms/step - loss: 1.2386 - accur
acy: 0.3500 - val_loss: 1.3789 - val_accuracy: 0.2667
Epoch 4/50
acy: 0.3500 - val_loss: 1.3183 - val_accuracy: 0.2667
acy: 0.3500 - val_loss: 1.2612 - val_accuracy: 0.2667
Epoch 6/50
acy: 0.3500 - val_loss: 1.2104 - val_accuracy: 0.2667
Epoch 7/50
acy: 0.3667 - val_loss: 1.1628 - val_accuracy: 0.2667
acy: 0.4417 - val_loss: 1.1199 - val_accuracy: 0.4000
Epoch 9/50
acy: 0.5667 - val_loss: 1.0814 - val_accuracy: 0.5333
Epoch 10/50
acy: 0.6833 - val_loss: 1.0501 - val_accuracy: 0.5667
Epoch 11/50
acy: 0.6917 - val_loss: 1.0251 - val_accuracy: 0.5667
Epoch 12/50
acy: 0.6917 - val_loss: 1.0022 - val_accuracy: 0.5667
Epoch 13/50
acy: 0.6917 - val_loss: 0.9804 - val_accuracy: 0.5667
Epoch 14/50
acy: 0.6917 - val_loss: 0.9597 - val_accuracy: 0.5667
acy: 0.6917 - val_loss: 0.9408 - val_accuracy: 0.5667
Epoch 16/50
acy: 0.6917 - val_loss: 0.9223 - val_accuracy: 0.5667
Epoch 17/50
acy: 0.6917 - val_loss: 0.9033 - val_accuracy: 0.5667
Epoch 18/50
acy: 0.6917 - val_loss: 0.8856 - val_accuracy: 0.5667
Epoch 19/50
4/4 [============ ] - 0s 38ms/step - loss: 0.8346 - accur
acy: 0.6917 - val_loss: 0.8690 - val_accuracy: 0.5667
Epoch 20/50
acy: 0.6917 - val_loss: 0.8521 - val_accuracy: 0.5667
Epoch 21/50
```

```
acy: 0.6917 - val_loss: 0.8363 - val_accuracy: 0.5667
Epoch 22/50
acy: 0.6917 - val_loss: 0.8207 - val_accuracy: 0.5667
Epoch 23/50
acy: 0.6917 - val_loss: 0.8060 - val_accuracy: 0.5667
Epoch 24/50
acy: 0.6917 - val_loss: 0.7925 - val_accuracy: 0.5667
Epoch 25/50
acy: 0.6917 - val_loss: 0.7775 - val_accuracy: 0.5667
Epoch 26/50
acy: 0.6917 - val_loss: 0.7625 - val_accuracy: 0.5667
Epoch 27/50
acy: 0.6917 - val_loss: 0.7481 - val_accuracy: 0.5667
Epoch 28/50
acy: 0.6917 - val_loss: 0.7345 - val_accuracy: 0.6000
acy: 0.6917 - val_loss: 0.7211 - val_accuracy: 0.6667
Epoch 30/50
acy: 0.7250 - val_loss: 0.7068 - val_accuracy: 0.8000
Epoch 31/50
acy: 0.7833 - val_loss: 0.6944 - val_accuracy: 0.8333
acy: 0.8083 - val_loss: 0.6836 - val_accuracy: 0.8333
Epoch 33/50
acy: 0.8333 - val_loss: 0.6726 - val_accuracy: 0.9000
Epoch 34/50
acy: 0.8667 - val_loss: 0.6617 - val_accuracy: 0.8667
Epoch 35/50
acy: 0.9000 - val_loss: 0.6508 - val_accuracy: 0.9333
Epoch 36/50
4/4 [================= ] - 0s 38ms/step - loss: 0.6414 - accur
acy: 0.9000 - val_loss: 0.6415 - val_accuracy: 0.9333
Epoch 37/50
4/4 [============== ] - 0s 43ms/step - loss: 0.6333 - accur
acy: 0.8917 - val_loss: 0.6314 - val_accuracy: 0.9333
Epoch 38/50
acy: 0.9000 - val loss: 0.6219 - val accuracy: 0.9333
4/4 [===========] - 0s 36ms/step - loss: 0.6166 - accur
acy: 0.9000 - val_loss: 0.6142 - val_accuracy: 0.9333
Epoch 40/50
acy: 0.9000 - val_loss: 0.6050 - val_accuracy: 0.9333
Epoch 41/50
```

```
acy: 0.9083 - val_loss: 0.5969 - val_accuracy: 0.9333
Epoch 42/50
acy: 0.9083 - val_loss: 0.5895 - val_accuracy: 0.9333
Epoch 43/50
4/4 [========== ] - 0s 31ms/step - loss: 0.5856 - accur
acy: 0.9083 - val_loss: 0.5821 - val_accuracy: 0.9333
Epoch 44/50
acy: 0.9167 - val_loss: 0.5750 - val_accuracy: 0.9333
Epoch 45/50
acy: 0.9167 - val_loss: 0.5676 - val_accuracy: 0.9333
Epoch 46/50
acy: 0.9167 - val_loss: 0.5598 - val_accuracy: 0.9333
Epoch 47/50
4/4 [==========] - 0s 49ms/step - loss: 0.5575 - accur
acy: 0.9083 - val_loss: 0.5517 - val_accuracy: 0.9333
Epoch 48/50
acy: 0.9083 - val_loss: 0.5450 - val_accuracy: 0.9333
Epoch 49/50
4/4 [========= ] - 0s 44ms/step - loss: 0.5443 - accur
acy: 0.9083 - val_loss: 0.5384 - val_accuracy: 0.9333
Epoch 50/50
acy: 0.9167 - val_loss: 0.5325 - val_accuracy: 0.9667
```

In [123]: %reload_ext tensorboard

In [37]: tensorboard --logdir logs/fit

Reusing TensorBoard on port 6006 (pid 13432), started 21 days, 21:13:43 ag o. (Use '!kill 13432' to kill it.)

```
In [206]: plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.title('Model Accuracy')
    plt.xlabel('accuracy')
    plt.ylabel('epochs')
    plt.legend(['train','test'],loc='upper left')
    plt.show()
```



```
In [199]: plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    plt.title('Model loss')
    plt.xlabel('loss')
    plt.ylabel('epochs')
    plt.legend(['train','test'],loc='upper left')
    plt.show()
```

Model loss

In []: