Expouent Growth	ond Decay			
'.				
dr: ky where	k is the	velative gro	wth constan	+
Solve for y				
½ dy = kdf				
707 - 107				
Stdy = Skd+				
1707 1101				
In (1 y1) = let:	+C			
e c c c c				
h.t.				
$Y = e^{kt}e^{c}$				
Y- C kt				
$\gamma = Ce^{kt}$				
To but Card	lition y(o) =			
4 Nitia / Conci	7(0) 5	Ž o		
YHT Ackt when	1 A is some	mustaut		
		(0), 7, 0, 4,		
Yo = Aek.0				
Yo = A e°				
Y0 = A				

$\gamma(t) = \gamma_0 e^{kt}$ $\frac{dt}{dt} = \gamma t$	
Example: A bacteria culture initially contains 100 cells and grows	at
a vale perperhenal la its size. Atter an har the population has increased to 420 cells.	
$(c_0, (c_0))$	
y= 70 ekt	
y = 100 e kf	
(1, 470)	
$420 = 100e^{k(1)}$	
4.2=e ^k	
In (4.7)=In(e*)	
$k = l_{\nu}(4.2)$	
Final Equation	
y=100 e 10(4.2) t	
$y = 100 e^{\ln(4.2^{t})}$	

Y=100 (4.2) ^t $\frac{dy}{dt} = \ln(4.2)y$ Find the number of bacteria at lev 3 havs: Y=100 (4.2) ³ = 7408.8 $\frac{horterion}{hav}$ Find the varie or grewth arter 3 herrs $\frac{dy}{dt} = \ln(4.2)y$
Y=100(4.2)3 =7408.8 hordering how
= 7408.8 horierion hav
Find the vate or growth arter 3 hours
$\frac{dx}{dt} = \ln(4.2)y$
= (0632.25
When will the pepulation reach (0,000?
Y= 100(4.2) ^t
10,000 = 100 (4.2) t
100 = (4.2) +
$(4.2)^{3.209} = (4.2)^{4}$
t=3.209 hours

Example: Radium d	ecays expense	tially and	has a	half	life
cf 1600 years. Find o Vernaining from SO m left?	a formula tev g cutter t rea	is. When	nt ct l	radium eve he	20 mg
Y=Yoekt					
(0,50)					
Y=50e ^{kt}					
(1600, 29)					
25=50ek(1600)					
$\frac{1}{2} = e^{k(1600)}$					
In(2) = In(ek(16	00))				
In (+)= k (1600))				
$k = \frac{\ln(\frac{1}{2})}{1600}$					
Final Equation					
$\gamma = SO e^{\frac{ n(\frac{r}{2}) }{ bco }t}$					

Selve for Z	C mg lort		
	$\ln(\frac{1}{2})$		
20 = 50 e	1600 t		
3 1 <u>nl</u> 2) <u>L</u>		
$\frac{2}{5} = e^{\frac{\ln \ell_2}{1600}}$	>		
1 /22	$(n\ell_2)$		
(n(3)=	In(e1000t)		
	10/2) 1		
n(2/s)=	1600 t		
1 1/2	0 600		
+= In(3)	(4)		
1 21/0	0.0		
t=211>.	08 hours		