Statistical Analysis of Genomics

ECES 490/690

3 credits Mon 6 – 8:50 p.m. Location: Bossone 605

Instructor:

Dr. Gail Rosen gailr@ece.drexel.edu 215-895-0400 Bossone 403 Office hours: Tuesday 4-6

Teaching Assistant:

Stephen Woloszynek sw424@drexel.edu Bossone 325/TBA Office hours: By Appointment

Course Overview:

This course will focus on developing the computational and database navigational skills required to analyze genomic data that have become available with the development of high throughput genomic technologies. Students will learn Python and R to analysis genomics. Many third party packages to analyze genomics such and assess the statistical significance of results will be learned. The goals will be achieved through lecture and lab exercises that focus on genomic databases, programming for importing and preprocessing genomic data, high performance programming for analysis of high-throughput metagenomic analyses, and use of high-performance computing for phylogenetic reconstruction.

Statement of Expected Learning:

- 1. An understanding of genomes, their features, how they vary, and the forces that drive this variation. This will be assessed through class tutorials and the class project.
- To show competency in basic bioinformatics techniques related to genome annotation, sequence alignment, metagenomic analyses, and phylogenetics. The achievement of this objective will be assessed through in class tutorials and project.
- 3. To show a working knowledge of bioinformatics programming through unix scripting and Python and/or R. The achievement of this objective will be assessed through in class tutorials and class project.

Course Reading Materials

None required

Suggested: Python/Bash/R cookbooks and tutorials

Expected letter grade-breakdown

```
A+ = 98% or more; A = 92 - 97.99%; A- = 90 - 91.99% 

B+ = 88-89.99%; B = 82 - 87.99%; B- = 80 - 81.99% 

C+ = 78-79.99%; C = 72 - 77.99%; C- = 70 - 71.99% 

D+ = 68-69.99%; D = 62 - 67.99%;
```

F = 59.99% or less

Grading Policy:

ECES Undergraduates (ECES 490)

Lecture

20 pts Weekly Quizzes and Quiz Questions 30 pts One Tutorial

50 pts Data Analysis Project

ECES Graduates (ECES 690)

Lecture

20 pts Weekly Quizzes and Quiz Questions

30 pts Two Tutorials

50 pts Data Analysis Project

Details on specific assignments:

Please see Project Guidelines Document

General Code of Conduct:

Students are expected to refrain from disruptive activity during class. Cell phones must be turned off or silenced (i.e. on vibrate). Text messaging and phone calls will are not allowed. Use of computers and electronic devices must be limited to note-taking or in-class computational exercises. Students must also refrain from talking out of turn and may asked to leave the class should they fail to abide by these rules.

Attendance Policy

Absences must be excusable, resulting from a circumstance that is beyond the student's control (e.g. illness, family crisis, necessary travel). You must provide us with a written statement (e-mail or note) regarding the reason for your absence. Students missing classes should consult an instructor to inquire about missed assignments (i.e. inclass activities).

Policy on Missed Exams and Deadlines:

Generally speaking, we will not give make-up assignments or exams. As such, **excusable** absences or missed deadlines (see above) will require that we adjust the schedule, but you cannot skip assignments in this course.

All unexcused late assignments (turned in before the answer key is posted) will receive a 10% deduction per day late.

Policy on Academic Dishonesty

For Drexel's policy on academic dishonesty, visit:

http://www.drexel.edu/provost/policies/academic dishonesty.asp

Unless group/team activity is required, it is assumed that ALL work be solely that of the individual student whose name is associated with the work. ANY form of cheating (copying, plagiarizing, using another's work, permitting another student to use your work, falsifying data, etc.) will not be tolerated and can result in immediate disciplinary action, including the possibility of dismissal.

Students who violate these policies (e.g. through cheating or plagiarism) may receive a 0 on the relevant assignment or, in more serious cases, may receive an F for the course. Furthermore, students in violation of these policies may be sent before the Drexel Office of Judicial Affairs:

http://www.drexel.edu/judicial/default.html

Students with Disabilities

Students with disabilities requesting accommodations and services at Drexel University (e.g. extra time for exams), need to present a current accommodation verification letter (AVL) to the professor before accommodations can be made. This will need to be done 2 weeks in advance of the first exam (by Jan. 21). AVL's are issued by

the Office of Disability Services (ODS). For additional information, contact ODS at 3201 Arch St., Street, Suite 210, Philadelphia, PA 19104, 215.895.1401 (V), or 215.895.2299 (TTY). Or visit their website at www.drexel.edu/ods.

COURSE SCHEDULE

Date	Lecture topic	Every week a tutorial assignment must be completed
January 10	Syllabus review Introduction to Metagenomics Introduction to R Bioconductor, Remote BLAST, and Data structures in Phyloseq	List of Tutorials given
January 17	Introduction to Shell scripting and Biopython Shell Scripting and Python for accessing sequences via NCBI Introduction to Proteus Local Standalone BLAST	Choose Tutorial by January 19
January 24	Intro to Microbial Survey Analysis (aka 16S rRNA) More Microbial Survey Analysis (using "meta- packages") Introduction to QIIME Vs. Dada2	Choose Project by January 26
January 31	"Meta-Packages" and their features MG-RAST MEGAN	Tutorials 1 and 2
February 7	Phylogenetics High-Performance Alignment and Tree Construction using CIPRES	Tutorial 3 and 4
February 14	Introduction to Whole Genome Shotgun Analysis Assembly and Binning (MetaIDBA-UD, MetaBat)	Tutorial 5
February 21	Taxonomic Identification from WGS Choice of one "compositional read-by-read" and one abundance-estimation	Tutorials 6 and 7
February 28	Functional annotation of microbial surveys Picrust Tax4fun	Tutorials 8 and 9
March 7	Functional annotation of metagenomes MUSiCC DeSeq vs. EdgeR for differential abundance comparisons	Tutorials 10 and 11
March 14	Functional annotation of metagenomes (protein families and metabolic pathways – overview) Project Presentations	Tutorials 12

Finals Week: More Project Presentations

Commented [GR1]: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045144/