

LENDING CLUB LOAN ANALYSIS

Descriptive and Predictive Analytics of Dataset

By

Vedant Kashyap – vkashya2@depaul.edu

Fadairo, Temitope - tfadairo@depaul.edu Dammu, Yasaswini Niharika - ydammu@depaul.edu

LENDING CLUB LOAN ANALYSIS AND RISK ASSESSMENT

Motivation

Lending Club Loan dataset is a big data set with a lot of variables. These variables are, to name a few, annual income, interest rate on loan, term of loan, loan amount, installments paid by customers, loan purpose, individual or joint loan etc. These variables were easy to understand and simple to work with. We were also able to find a file that explained all the variables in brief which motivated us even further to choose this data set.

After checking the data set, we were motivated to find if the data could help us find the mean of annual incomes of customers, maximum interest rates that were given out, why were the loans given out, predicting default rate of a customer and loan performance given by organization.

It helps to determine those people that are likely to default and those that are not. It gives a true picture of their behavioral pattern when they are faced with a test of integrity rather than a security pledge.

It helps to know how alternative loan sources reach the unbanked and contribute to financial inclusion in the economy.

Objective

Lending Club Loan Analysis and Risk Assessment is an interesting topic as it gives insight into how individuals and businesses behave when they get loans.

The questions that need to be answered by the data set can help us and Lending Club to understand what type of customers they currently have, what is the interest rates they are providing and if it is affecting the repayment of loan by customers. Data set will also help us recognize if a customer is loan worthy or no and at what interest rate should they be given loan at.

Some the questions we will get an answer for are –

- 1. What is the maximum annual income of customers?
- 2. What type of customers does Lending Club have currently?
- 3. What is the purpose of loan taken by customers?
- 4. What is the mean of interest rates given out by Lending Club?
- 5. What is the correlation between financial performance variables?
- 6. Is there a difference in the population between the different groups of the independent variables with respect to the dependent variables?
- 7. To Identify the Null Hypothesis and the Alternative hypothesis using data set. Null Hypothesis will be no risk is lending to customers. At different significant levels.
- 8. What is the chance of a customer defaulting on the loan?
- 9. What is the overall performance of the loan portfolio?

Answers

We used a mixture of SAS and R to answer our questions mentioned above.

We used SAS main for descriptive analysis and finding simple regression. R will be used for predictive analysis.

SAS

We used descriptive statistics to get insight into the dataset to determine the pattern, distribution, mean, and variability. We employed procedures in SAS such as **proc mean**, **proc summary**, **proc univariate**, **proc anova**, **proc corr**, **proc reg** and **proc sgplot**.

Using these procedures in SAS, we will be able to identify –

- 1. mean of interest rates,
- 2. maximum annual income of customers,
- 3. Outliers in data if any
- 4. Difference between 2 or more groups.
- 5. Correlation between each variable
- 6. Plot output on histograms and bar charts.
- 7. Find out simple regression between 2 variables.

We used random forest and neuron network model to predict the customers that are likely to default and those that are not.

The result shows that over half of the customers are likely to default; this is further buttressed by the neuron network result. The lending club management should take immediate steps to minimize risk by tightening the lending policy such that high-risk individuals are charged higher interest rates to match the possible loss that may occur if there is default.

They should also diversify risk amongst different loan categories such that there is no concentration risk on a particular loan segment or individual/business.

Data and Empirical methodology

About the data

Lending Club Loan data consists of loan data from 2015. It has 421094 observations spread across 77 variables. These variables range from borrowers' personal information and reason for borrowing along with their past dues or deficiencies.

The data information include:

addr_state	The state provided by the borrower in the loan application
annual_inc	The self-reported annual income provided by the borrower during registration.
annual_inc_joint	The combined self-reported annual income provided by the co-borrowers during registration
	Indicates whether the loan is an individual application or a joint application with two co-borrowers
application_type	The number of 30+ days past-due incidences of delinquency in the
delinq_2yrs	borrower's credit file for the past 2 years
desc	Loan description provided by the borrower
dti	A ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower's self-reported monthly income.
funded_amnt	The total amount committed to that loan at that point in time.
funded_amnt_inv	The total amount committed by investors for that loan at that point in time.
grade	LC assigned loan grade
home_ownership	The home ownership status provided by the borrower during registration. Our values are: RENT, OWN, MORTGAGE, OTHER.
id	A unique LC assigned ID for the loan listing.
initial_list_status	The initial listing status of the loan. Possible values are – W, F
ing_last_6mths	The number of inquiries in past 6 months (excluding auto and mortgage inquiries)
installment	The monthly payment owed by the borrower if the loan originates.
int_rate	Interest Rate on the loan
issue_d	The month which the loan was funded
last_pymnt_amnt	Last total payment amount received
last_pymnt_d	Last month payment was received
	The listed amount of the loan applied for by the borrower. If at some point
	in time, the credit department reduces the loan amount, then it will be
loan_amnt	reflected in this value.
loan_status	Status of the loan
member_id	A unique LC assigned Id for the borrower member.
mths_since_last_delinq	The number of months since the borrower's last delinquency.
mths_since_last_major_derog	Months since most recent 90-day or worse rating
mths_since_last_record	The number of months since the last public record.
next_pymnt_d	Next scheduled payment date

anon acc	The number of open gradit lines in the horrower's gradit file
open_acc	The number of open credit lines in the borrower's credit file.
out_prncp	Remaining outstanding principal for total amount funded Remaining outstanding principal for portion of total amount funded by
out proce inv	,
out_prncp_inv	investors
revol_bal	Total credit revolving balance
	Revolving line utilization rate, or the amount of credit the borrower is using
revol_util	relative to all available revolving credit.
sub_grade	LC assigned loan subgrade
345_B.44C	The number of payments on the loan. Values are in months and can be
term	either 36 or 60.
total_acc	The total number of credit lines currently in the borrower's credit file
total_pymnt	Payments received to date for total amount funded
total_pymnt_inv	Payments received to date for portion of total amount funded by investors
total_rec_int	Interest received to date
total_rec_late_fee	Late fees received to date
total_rec_prncp	Principal received to date
	Indicates if the co-borrowers' joint income was verified by LC, not verified,
verified_status_joint	or if the income source was verified
	The first 3 numbers of the zip code provided by the borrower in the loan
zip_code	application.
open_acc_6m	Number of open trades in last 6 months
open_il_6m	Number of currently active installment trades
open_il_12m	Number of installment accounts opened in past 12 months
open_il_24m	Number of installment accounts opened in past 24 months
mths_since_rcnt_il	Months since most recent installment accounts opened
total_bal_il	Total current balance of all installment accounts
il_util	Ratio of total current balance to high credit/credit limit on all install acct
_	
open_rv_12m	Number of revolving trades opened in past 12 months
· <u> </u>	
open_rv_24m	Number of revolving trades opened in past 24 months
max_bal_bc	Maximum current balance owed on all revolving accounts
all util	Balance to credit limit on all trades
total rev hi lim	Total revolving high credit/credit limit
total_cu_tl	Number of finance trades
inq_last_12m	Number of credit inquiries in past 12 months
acc_now_delinq	The number of accounts on which the borrower is now delinquent.
tot_coll_amt	Total collection amounts ever owed
tot_con_unit	rotar concetion amounts ever owed

While using the data for descriptive and predictive analytics, there was a need to change the variables into different types of variables such as a numeric and categorical variable. Changing these variables helped us correctly finding out the analytics of the data.

Some of the variables that were used were.

Separting numerical value from text

```
e_length = input(compress (emp_length, , 'kd'),?? best32.);
loan_term_months = input(compress (term, , 'kd'),?? best32.);
```

Creating Categorical variables for loan status

```
if loan_status = "Default" then status = 1; else status = 0;
```

<u>Creating categorical variables in R</u>

Creating Factor Variables

```
train1$pred_status <- as.factor(train1$status)
test1$pred_status <- as.factor(test1$status)</pre>
```

Statistics of Data

As mentioned above, we did descriptive analytics using SAS programing language and got some interesting results.

- 1. Using **Proc Means**, we were able to find out that
 - a. Maximum Loan amount given out was \$35000.
 - b. Minimum Interest Rates given out were 5.32%.
 - c. Average annual income of customers is approximately around \$77038.
 - d. Maximum delinquency days in past 2yrs is 30days.

		he SAS S	yotom								
	The MEANS Procedure										
Variable	N	Mean	Std Dev	Minimum	Maximum						
loan_amnt	150000	15252.53	8574.63	1000.00	35000.00						
int_rate	150000	12.5826131	4.3147250	5.3200000	28.9900000						
annual_inc	150000	77038.08	71897.57	1770.00	9500000.00						
annual inc joint	170	105235.88	46174.67	28000.00	270000.00						
dti	150000	19.1331740	9.1554922	0	1092.52						
deling 2yrs	150000	0.3455733	0.9175391	0	30.0000000						
mths since last deling	77404	34.0060979	21.9897723	0	176.0000000						
open acc	150000	11.9513200	5.6334171	1.0000000	74.0000000						

- 2. Using **Proc Summary** and classifying data for Default customers, we were able to find that
 - a. Out of 150000 customer observation we took, 13 customers had defaulted on their loans.
 - b. Annual income means of customers who defaulted on their loans was lower than other loan borrowers.
 - c. This data also shows that customers who are defaulting on their loans have higher mean interest rates compared to others.
 - d. Customers defaulting on loans are mostly individuals since there are no values in annual_inc_join

				The SAS	System								
The SUMMARY Procedure													
status	N Obs	Variable	Mean	Median	Std Dev	Minimum	Maximum	5th Pctl	95th Pctl				
0	149861	annual_inc annual_inc_joint dti funded_amnt int_rate last_pymnt_amnt mths_since_last_delinq	77046.89 105235.88 19.1300153 15252.97 12.5791359 1102.07 34.0035557	65000.00 97425.00 18.5500000 14000.00 12.2900000 392.8100000 30.0000000	71921.09 46174.67 9.1556447 8575.21 4.3133097 3483.66 21.9900153	1770.00 28000.00 0 1000.00 5.3200000 0	9500000.00 270000.00 1092.52 35000.00 28.9900000 36257.59 176.0000000	29000.00 46122.00 5.6400000 4000.00 6.3900000 61.0700000 5.00000000	157000.00 190000.00 34.3100000 33600.00 19.9900000 2700.00 74.0000000				
1	139	annual_inc annual_inc_joint dti funded_amnt int_rate last_pymnt_amnt mths_since_last_delinq	67542.42 22.5387050 14781.65 16.3314388 436.4887770 37.1269841	55000.00 22.6700000 13625.00 16.5500000 406.2300000 35.0000000	37988.10 8.3489476 7941.27 4.2241438 256.2851439 21.6359111	15000.00 3.3800000 1000.00 6.3900000 0 1.0000000	202000.00 39.0600000 35000.00 25.9900000 1835.94 81.0000000	25000.00 8.5200000 3000.00 9.9900000 86.2500000 8.0000000	150000.00 37.3000000 32800.00 24.5000000 886.1100000 72.0000000				

home_ownership	N Obs	Variable	Mean	Median	Std Dev	Minimum	Maximum	5th Pctl	95th Pctl
MORTGAGE	74147	annual inc	87015.35	75000.00	78720.31	1770.00	9500000.00	35000.00	175000.00
		annual_inc_joint	115437.95	104900.00	46453.71	29448.00	270000.00	55000.00	195000.00
		dti	19.0732376	18.5200000	9.4628959	0	1092.52	5.8500000	33.9500000
		funded amnt	16827.63	15000.00	8863.58	1000.00	35000.00	4475.00	35000.00
		int_rate	12.2948149	12.2900000	4.3620393	5.3200000	28.9900000	6.2400000	19.9900000
		last_pymnt_amnt	1237.58	446.3100000	3856.27	0	36257.59	68.9900000	3978.20
		mths_since_last_delinq	33.0582197	29.0000000	22.1720796	0	171.0000000	4.0000000	73.0000000
		delinq_2yrs	0.3889975	0	0.9606193	0	26.0000000	0	2.0000000
OWN	16226	annual_inc	71944.67	60000.00	58364.34	7000.00	2100000.00	24000.00	150000.00
		annual_inc_joint	87017.77	78374.36	32176.58	37000.00	148000.00	37000.00	148000.00
		dti	19.7611580	19.3700000	9.0947448	0	55.1000000	5.3800000	35.2800000
		funded_amnt	14867.21	13000.00	8496.84	1000.00	35000.00	3600.00	32000.00
		int_rate	12.6252841	12.2900000	4.3485494	5.3200000	28.9900000	6.2400000	19.9900000
		last_pymnt_amnt	1137.84	386.7650000	3602.46	0	36058.71	43.6700000	4018.18
		mths_since_last_delinq	33.9143683	30.0000000	22.0555903	0	176.0000000	4.0000000	74.0000000
		delinq_2yrs	0.3332922	0	0.8870079	0	22.0000000	0	2.0000000
RENT	59627	annual_inc	66017.25	55815.00	64179.06	5000.00	8900060.00	25000.00	135000.00
		annual inc joint	85063.65	76900.50	41238.15	28000.00	260000.00	44000.00	155000.00
		dti	19.0368155	18.4100000	8.7686575	0	72.3000000	5.4700000	34.4500000
		funded amnt	13398.73	12000.00	7814.11	1000.00	35000.00	3200.00	30000.00
		int_rate	12.9288822	12.6900000	4.2194587	5.3200000	28.9900000	6.8900000	19.9900000
		last_pymnt_amnt	922.2865148	350.2100000	2902.35	0	35964.28	52.7600000	1347.63
		mths since last deling	35.3612666	32.0000000	21.6416955	0	152.0000000	5.0000000	74.0000000
		deling 2yrs	0.2949167	0	0.8667938	0	30.0000000	0	2.0000000

This proc summary data tells us about the type of home ownership the customer had when he applied for a loan.

Lo	west	Highest				
Value	Obs	Value	Obs			
1000	149904	35000	149893			
1000	149774	35000	149903			
1000	149468	35000	149922			
1000	149411	35000	149948			
1000	149344	35000	149962			

This explains the Proc Univariate for loan amount. Here, in the output we can see key features such as mean, standard deviation, variance, standard error, coefficient of variance, quantile values at different levels of data.

			Covariance	Variances and Row Var Varia					
	annual_inc	annual_inc_joint	dti	funded_amnt	Int_rate	last_pymnt_amnt	mths_since_last_deling	delinq_2yrs	installment
annual_inc	5169261007	879042013	-115072	191944437	-29349	15296593	-69664	2542	5328704
	5169261007	1054392389	5169261007	5169261007	5169261007	5169261007	4639583670	5169261007	5169261007
	5169261007	2132099956	84	73524356	19	12125116	484	1	60173
	149999	169	149999	149999	149999	149999	77403	149999	149999
annual_inc_joint	879042013	2132099956	68580	194456644	-9666	1151130	-103119	1093	4651505
	2132099956	2132099956	2132099956	2132099956	2132099966	2132099956	1947459411	2132099956	2132099956
	1054392389	2132099956	7658	79733493	17	97453	455	1	65826
	169	169	169	169	169	169	92	169	169
dti	-115072	68580	84	1423	8	-958	2	-0	14
	84	7658	84	84	84	84	90	84	84
	5169261007	2132099956	84	73524356	19	12125116	484	1	60173
	149999	169	149999	149999	149999	149999	77403	149999	149999
funded_amnt	191944437	194456644	1423	73524356	5069	5001765	-6177	-80	1979998
	73524356	79733493	73524356	73524356	73524356	73524356	71675133	73524356	73624356
	5169261007	2132099956	84	73524356	19	12125116	484	1	60173
	149999	169	149999	149999	149999	149999	77403	149999	149999
int_rate	-29349	-9666	8	5069	19	1156	-1	0	127
	19	17	19	19	19	19	18	19	19
	5169261007	2132099956	84	73524356	19	12125116	484	1	60173
	149999	169	149999	149999	149999	149999	77403	149999	149999
last_pymnt_amnt	15296593	1151130	-958	5001765	1156	12125116	462	-38	148832
	12125116	97453	12125116	12125116	12125116	12125116	11475175	12125116	12125116
	5169261007	2132099956	84	73524356	19	12125116	484	1	60173
	149999	169	149999	149999	149999	149999	77403	149999	149999
mths_since_last_deling	-69664	-103119	2	-6177	-1	462	484	-14	-195
	484	455	484	484	484	484	484	484	484
	4639583670	1947459411	90	71675133	18	11475175	484	1	59782
	77403	92	77403	77403	77403	77403	77403	77403	77403
delinq_2yrs	2542	1093	-0	-80	0	-38	-14	1	-0
	1	1	1	1	1	1	1	1	1
	5169261007	2132099956	84	73524356	19	12125116	484	1	60173
	149999	169	149999	149999	149999	149999	77403	149999	149999
installment	5328704	4651505	14	1979998	127	148832	-195	-0	60173
	60173	65826	60173	60173	60173	60173	59782	60173	60173
	5169261007	2132099956	84	73524356	19	12125116	484	1	60173
	149999	169	149999	149999	149999	149999	77403	149999	149999

This table shows the relationship between variance and covariance of different variables used in descriptive analysis.

			P	Prob > r und Number of C	er H0: Rho	p=0			
	annual_inc	annual_inc_joint	dti	funded_amnt	int_rate	last_pymnt_amnt	mths_since_last_deling	delinq_2yrs	installmen
annual_inc	1.00000	0.58628 <.0001 170	-0.17481 <.0001 150000	0.31135 <.0001 150000	-0.09461 <.0001 150000	0.06110 <.0001 150000	-0.04651 <.0001 77404	0.03854 <.0001 150000	0.30214 <.000 150000
annual_inc_joint	0.58628 <.0001 170	1.00000	0.01697 0.8261 170	0.47163 <.0001 170	-0.05029 0.5148 170	0.07986 0.3006 170	-0.10949 0.2961 93	0.02973 0.7004 170	0.3926 <.000 170
ži)	-0.17481 <.0001 150000	0.01697 0.8261 170	1.00000	0.01813 <.0001 150000	0.19704 <.0001 150000	-0.03005 <.0001 150000	0.00784 0.0292 77404	-0.02077 <.0001 150000	0.00619 0.016 150000
funded_amnt	0.31135	0.47163	0.01813	1.00000	0.13700	0.16752	-0.03318	-0.01015	0.9413
	<.0001 150000	<.0001 170	<.0001 150000	150000	<.0001 150000	<.0001 150000	<.0001 77404	<.0001 150000	<.0001 150000
int_rate	-0.09461 <.0001 150000	-0.05029 0.5148 170	0.19704 <.0001 150000	0.13700 <.0001 150000	1.00000	0.07695 <.0001 150000	-0.01531 <.0001 77404	0.04317 <.0001 150000	0.12043 <.0001 150000
last_pymnt_amnt	0.06110 <.0001 150000	0.07986 0.3006 170	-0.03005 <.0001 150000	0.16752 <.0001 150000	0.07695 <.0001 150000	1.00000	0.00620 0.0847 77404	-0.01194 <.0001 150000	0.17424 <.0001 150000
mths_since_last_deling	-0.04651 <.0001 77404	-0.10949 0.2961 93	0.00784 0.0292 77404	-0.03318 <.0001 77404	-0.01531 <.0001 77404	0.00620 0.0847 77404	1.00000 77404	-0.55800 <.0001 77404	-0.03633 <.0001 77404
delinq_2yrs	0.03854 <.0001 150000	0.02973 0.7004 170	-0.02077 <.0001 150000	-0.01015 <.0001 150000	0.04317 <.0001 150000	-0.01194 <.0001 150000	-0.55800 <.0001 77404	1.00000	-0.00213 0.4089 150000
installment	0.30214 <.0001 150000	<.0001	0.00619 0.0164 150000	0.94135 <.0001 150000	0.12043 <.0001 150000	0.17424 <.0001 150000	-0.03633 <.0001 77404	-0.00213 0.4089 150000	1.00000

The table represents the relationship between correlation coefficients between the variables we have used to define our outputs. In this table, values close to 1 have a positive correlation with the corresponding variables. If values is close to 0, then they have a negative correlation with the corresponding variable.

Using proc fastclus, we clustered out data and found out that optimal number of clusters was 3. We used Non-Hierarchical K-Means method, since we have a very last data set and we took 150,000 observations for our analysis. K-Means is best suited for very large data sets.

Using Proc Anova analysis, we were able to compare the means of interest rates and status of a loan. We were able to find the F-values and P values of the 2 variables.

Estimation Equations

The estimating equation represents the relationship between the status of a loan application (whether it defaulted or not) and various predictor variables such as annual income, debt-to-income ratio, employment length, loan amount, loan grade, number of inquiries in the last 6 months, total number of credit accounts, number of public records, revolving line utilization rate, and number of delinquencies in the past 2 years.

For simple regression we use regression equation

$$E(y/x) = \theta_0 + \theta_1 x$$

- E(y|x) = expected value of y for a given value of x
- $\theta_0 = y$ -intercept of the regression line
- $\theta_1 = \text{slope}$
- The graph of the simple linear regression equation is a straight line.

Here, out simple regression equation, the one that we are using for regression is

<u>Yhat(annual_income) = 96874 + (-1576.45)*(interest rate)</u>

For multiple regression, we use regression equation

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_a x_a + \varepsilon$$

- y = dependent variable
- x_1, x_2, \ldots, x_q = independent variables
- β_0 , β_1 , β_2 , ..., β_q = parameters
- ε = error term (accounts for the variability in y that cannot be explained by the linear effect of the q independent variables.)

```
status = -0.0010205090310417*(Intercept) + 6.98671033345974e-09*annual_inc + -
1.24068870190142e-07*dti + -0.00237330559019757*emp_length< 1 year +
0.00195975599225035*emp_length1 year + -0.000414507932757675*emp_length10+ years + -
0.00231477108931*emp_length2 years + -0.00220330612953037*emp_length3 years +
0.000230303574054304*emp_length4 years + 0.000211050676656935*emp_length5 years + -
0.00247457118482226*emp_length6 years + -0.00220999027802783*emp_length7 years + -
0.00232737310962239*emp_length8 years + 0.0012382618184884*emp_length9 years + -
9.48604039470427e-08*loan_amnt + 0.00234093101681438*grade_i + -
0.000508773676386702*inq_last_6mths + -3.37835479909979e-06*total_acc + -
0.000378869452968356*pub_rec + 1.56793765161329e-05*revol_util + -
0.000148618786954317*delinq_2yrs
```

Each coefficient represents the impact of 1its corresponding predictor variable on the target variable "status". For example, a positive coefficient indicates that an increase in the predictor variable will lead to an increase in the predicted status, while a negative coefficient indicates the opposite. The magnitude of the coefficient represents the strength of this relationship.

Coefficients:

annual_inc: This coefficient indicates the change in the status of the loan for a one-unit increase in the annual income of the borrower.

loan_amnt: This coefficient, which is like annual income, shows how the loan status changes when a borrower increases the loan amount by one unit.

inq_last_6mths, total_acc, pub_rec, revol_util, delinq_2yrs: Each of these coefficients represents the change in loan status for a one-unit increase in the respective variable.

Based on the values of predictor variables, the regression model may be applied to predict the outcome of future loan applications. Making informed decisions and evaluating the risk involved with new loan applications could both benefit from this.

Descriptive Analysis Results

1. Using **Proc sgplot,** we were able to plot histograms showing different results of descriptive analysis of the data set.

This histogram shows us that lending club's loan default amount by customers is mostly left skewed with maximum number of customers borrowing amount between \$8000-15000

This graph shows us different types of homeowners and their funded amount and how many days of delinquency have they had in last 2years

From this graph we can see that maximum percentage of loan given out were for wedding(personal loan) and it has the highest interest rate.

K-Means cluster analysis of Annual Income VS Interest rates for default status.

K-Means cluster analysis of Annual Income VS Loan Amount for loan grade type(A>B>C>D...)

K-Means cluster analysis of Loan Amount VS Interest Rates for different home ownerships

Model 1: Simple Regression Analysis

```
Residual standard error: 0.4967 on 66498 degrees of freedom Multiple R-squared: 0.004834, Adjusted R-squared: 0.00482 F-statistic: 323 on 1 and 66498 DF, p-value: < 2.2e-16
```

Model 1 RMSE: 1.614606e-17

RMSE measures the average magnitude of the errors or residuals between predicted values and actual observed values.

From the above output of simple regression analysis, we find out that our multiple R-squared value: 0.004834 and Adjusted R-squared value: 0.00482 are not significant. It shows a relatively low Adjusted R-squared value (0.00482), indicating limited prediction value.

Model 2: Multiple Regression Analysis

```
Residual standard error: 0.4705 on 66480 degrees of freedom
Multiple R-squared: 0.1073, Adjusted R-squared: 0.107
F-statistic: 420.6 on 19 and 66480 DF, p-value: < 2.2e-16
```

Model 2 RMSE: 3.916554e-18

Model 2, which has multiple predictors, demonstrates a higher Adjusted R-squared value (0.107), suggesting improved explanatory power compared to Model 1. However, the model's performance might still be limited, as indicated by the modest Adjusted R-squared value.

Model 3: Multiple Regression Analysis Using Stepwise Method

```
Residual standard error: 0.4705 on 66480 degrees of freedom Multiple R-squared: 0.1073, Adjusted R-squared: 0.107 F-statistic: 420.6 on 19 and 66480 DF, p-value: < 2.2e-16
```

Model 3 RMSE: 3.916554e-18

Model 3 which is a stepwise regression, selects the most relevant predictors and offers a balance between model complexity and performance. It provides insights into the significant predictors while potentially improving model interpretability and generalization.

Model 4: Linear Probability Model

Model 4, utilizing a linear probability model and evaluating the AUC, focuses on the discriminatory ability of the model. The AUC value of 0.6534 suggests moderate prediction.

Model 5: Linear Probability Model

Model 5, employing logistic regression and associated metrics, provides a comprehensive assessment of classification accuracy and predictive performance. The accuracy rate of 0.805 indicates a reasonable level of

predictive accuracy. From the randomforest results the model has made a total of 6000 predictions. Among these predictions, 5989 were correctly classified as "0", while 11 instances were incorrectly classified as "1".

Accuracy Rate: 0.9937895

Error Rate: 0.006210526

True Positive Rate (TPR): 0.9869717

False Positive Rate (FPR): 0.0005767382

In Logistic regression, we were able to predict and get a good auc value. This means that any new data that needs to be predicted with logistic regression model can be predicted with 99% accuracy with error rate of 0.6%. And True Positive Values of 0.98

Model 6: Random Forest Model

With Random forest model we were able to find a combination which gave us an AUC of maximum of 0.73 or 73% accuracy. Hence, checking for default status using random forest model will give us accuracy upto 73.09%. This result is great since, we only took 20000 observations of the whole data set.

Model 7: Neural Networks Model

With Neural network model we were able to find a combination which gave us an AUC of maximum of 0.5 or 50% accuracy. Hence, checking for default status using neural network model will give us accuracy

upto 50%. This result is great since, we only took 30000 observations of the whole data set. If we take even half of the data set of 400000 observations, out neural networks predictions model will great improve.

Summary

The analysis presented encompasses the evaluation of various predictive models applied to a dataset, aiming to predict default status. The models considered include random forest, linear regression, stepwise regression, linear probability model, logistic regression, and neural networks. Each model's performance is assessed based on metrics such as AUC (Area Under the Curve), accuracy rate, error rate, true positive rate (TPR), and false positive rate (FPR).

Moving on to Model 2, which employs multiple predictors, it exhibits a higher adjusted R-squared value (0.107) compared to Model 1. Although this indicates enhanced explanatory power, the model's performance is still deemed limited due to the modest adjusted R-squared value.

Model 3, employing stepwise regression, selects significant predictors while balancing model complexity and performance. This approach offers insights into relevant predictors and potentially improves model interpretability and generalization.

Model 4 utilizes a linear probability model and evaluates the AUC, focusing on the model's discriminatory ability. The AUC value of 0.6534 suggests moderate prediction capability.

In contrast, Model 5, employing logistic regression, demonstrates a comprehensive assessment of classification accuracy and predictive performance. With an accuracy rate of 0.805, the model achieves a reasonable level of predictive accuracy. The analysis highlights the model's success in correctly classifying instances as "0" with an accuracy rate of 0.9937895, indicating high performance in distinguishing default and non-default instances.

With the random forest model, which achieved an AUC of 0.73, it demonstrates moderate predictive accuracy of 73.09%. Despite using a subset of the dataset (20,000 observations out of a total of 400,000), the model's performance is considered satisfactory. The analysis acknowledges the potential for further improvement if more data were utilized.

The summary also mentions the application of neural network models (Model 6 and Model 7), with Model 6 achieving an AUC of 0.73 similar to the random forest model. However, Model 7, utilizing neural networks, achieves a lower AUC of 0.5 and an accuracy rate of 50%, indicating relatively poorer predictive performance compared to other models.

Overall, the summary provides a comprehensive overview of the predictive models' performance, highlighting strengths and limitations associated with each approach. It emphasizes the importance of selecting appropriate models based on the dataset characteristics and the desired level of predictive accuracy. Additionally, it acknowledges the potential for further improvement in predictive performance through the utilization of larger datasets or optimization of model parameters.

4.5 Bibliography (1 page)

- 1. ChatGPT
- 2. StackOverflow for codes and errors
- 3. Youtube StatsQuest