

Freight

Baltic Dry Index

CCFI, SCFI

BSI

וכם

BHSI

Global Container Volume

Orderbook-to-fleet-ratio

Key: BDI = Baltic Exchange Dry Index
BSI = Baltic Exchange Supramax Index
BHSI = Baltic Exchange Handysize Index

BDI BSI BHSI

6,000

5,000

4,000

Baltic Indices

		BHSI 38,000 %	Net TC Avg*	BHSI 28,000 Net TC Avg*		BSI %	Net TC Avg*		BDI Difference	%
6-mths	1092	88.8	-	-	2085	70.1	-	2788	1469	52.7
3-mths	1736	18.8	-	-	2871	23.5	-	3199	1058	33.1
1-mth	1925	7.1	-	-	3359	5.6	-	4644	-387	-8.3
1-wk	2023	1.9	-	-	3595	-1.3	-	4732	-475	-10.0
18-Oct-21	2023	-	US\$34,587	US\$32,719	3595	-	US\$37,570	4732	-	-
19-Oct-21	2024	0.0	US\$34,617	US\$32,749	3610	0.4	US\$37,720	4714	-18	-0.4
20-Oct-21	2033	0.4	US\$34,770	US\$32,902	3618	0.2	US\$37,809	4751	37	0.8
21-Oct-21	2045	0.6	US\$34,964	US\$33,096	3624	0.2	US\$37,867	4653	-98	-2.1
22-Oct-21	2057	0.6	US\$35,181	US\$33,314	3584	-1.1	US\$37,450	4410	-243	-5.2
25-Oct-21	2062	0.2	US\$35,254	US\$33,386	3547	-1.0	US\$37,070	4257	-153	-3.5

Source: The Baltic Exchange

^{*} Net TC Average excludes 5% commission

OIL

Rubber

Coal

US - WTI

Tokom

New Castle Coal

World - Brent

Iron Ore

Thai - Dubai

Tianjin Port

Ourions our marks Guoyle 122

Transo dis, 7; 10

Federal Funds [effective] Rate % p.a.

Generalization refers to how well the concepts learned by a machine learning model apply to specific examples not seen by the model when it was learning.

Overfitting refers to a model that models the training data too well.

Underfitting refers to a model that can neither model the training data nor generalize to new data.

Parameters:

penalty: {'l1', 'l2', 'elasticnet', 'none'}, default='l2'

Specify the norm of the penalty:

- 'none': no penalty is added;
- '12': add a L2 penalty term and it is the default choice;
- '11': add a L1 penalty term;
- 'elasticnet': both L1 and L2 penalty terms are added.

Types of Logistic Regression

Types of Logistic Regression:

- Binary Logistic Regression: The target variable has only two possible outcomes such as Spam or Not Spam, Cancer or No Cancer.
- Multinomial Logistic Regression: The target variable has three or more nominal categories such
 as predicting the type of Wine.
- Ordinal Logistic Regression: the target variable has three or more ordinal categories such as restaurant or product rating from 1 to 5.

MODEL Example

https://colab.research.google.com/drive/1Hs5 S9wKDNjG9SPPfN2RaSFH8r2QxmgGq?usp=sha ring

High training error High test error

Low training error Low test error

Low training error High test error

Bias & Variances

How to avoid Overfit

There are two important techniques that you can use when evaluating machine learning algorithms to limit overfitting:

- 1. Use a resampling technique to estimate model accuracy.
- 2. Hold back a validation dataset.

K-Fold Cross Validation

Types of Regularization in ML

L1/L2 Regularization

 L2 adds "squared magnitude" of coefficient as penalty term to the loss function.

$$Loss = Loss + \lambda \sum \beta^2$$

 L1 adds "absolute value of magnitude" of coefficient as penalty term to the loss function.

$$Loss = Loss + \lambda \sum |\beta|$$

Weight Penalties → Smaller Weights → Simpler Model → Less Overfit

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$
 Lasso Regression

L2 Regularization

$$\mathbf{Cost} = \underbrace{\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2}_{\mathbf{Loss \ function}} \qquad \text{Regularization}$$

$$\mathbf{Term}$$

Comparison of L1 and L2 regularization					
L1 regularization	L2 regularization				
Sum of absolute value of weights	Sum of square of weights				
Sparse solution	Non-sparse solution				
Multiple solutions	One solution				
Built-in feature selection	No feature selection				
Robust to outliers	Not robust to outliers (due to the square term)				

L1 loss function
Robust
Unstable solution
Possibly multiple solutions

L2 loss function
Not very robust
Stable solution
Always one solution

Regularization – ML201

The main idea behind Ridge Regression is to find a New Line that doesn't fit the

In other words, by starting with a slightly worse fit, Ridge Regression can provide better long term predictions.

Regularization – ML201

Regularization for OLS: Ridge regression (L2 Norm)

Regularization – ML201

The result of the Lasso Regression is very similar to the Result given by the Ridge Regression. Both can be used in Logistic Regression, Regression with discrete values and Regression with interaction. The big difference between Rdge and Lassp start to be clear when we Increase the value on Lambda.

In fact, **Ridge** can only shrink the slope **asynmtotically** close to **zero**, while **Lasso** can shrink the slope **all the way to zero**. The advantage of this is clear when we have lots of parameters in the model. In **Ridge**, when we increase the value of Lambda, the most important parameters might shrink a little bit and the less important parameter stay at high value.

In contrast, with **Lasso** when we increase the value of Lambda the most important parameters shrink a little bit and the less important parameters goes closed to zero. So, Lasso is able to exclude silly parameters from the model.

.fit_regularized():

For LogisticRegression

solver: {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, default='lbfgs'

Algorithm to use in the optimization problem. Default is 'lbfgs'. To choose a solver, you might want to consider the following aspects:

- For small datasets, 'liblinear' is a good choice, whereas 'sag' and 'saga' are faster for large ones;
- · For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs' handle multinomial loss;
- 'liblinear' is limited to one-versus-rest schemes.

Warning: The choice of the algorithm depends on the penalty chosen: Supported penalties by solver:

- 'newton-cg' ['l2', 'none']
- 'lbfgs' ['l2', 'none']
- 'liblinear' ['l1', 'l2']
- 'sag' ['l2', 'none']
- 'saga' ['elasticnet', 'l1', 'l2', 'none']

Explainable "Coincidence" X,y

"Leading Indicator"

