09 novembre 2019

4h

. . .

Préliminaires

Soient $a \in \mathbb{R}$, $b \in]a; +\infty[\cup \{+\infty\}]$ et f, g deux applications continues par morceaux sur [a, b[à valeurs strictement positives.

1. On suppose que g est intégrable sur [a, b[.

- a) Montrer que, en b, la relation $f = \circ(g)$ entraı̂ne $\int_x^b f = \circ \left(\int_x^b g\right)$. On n'hésitera pas à raisonner en utilisant des ε .
- **b)** Montrer que, en b, la relation $f \sim g$ entraı̂ne $\int_x^b f \sim \left(\int_x^b g\right)$. On justifiera l'intégrabilité de f sur les intervalles [x,b] considérés.

2. On suppose que g n'est pas intégrable sur [a, b]

- a) Montrer que, en b, la relation $f = \circ(g)$ entraı̂ne $\int_a^x f(t) dt = \circ \left(\int_a^x g(t) dt \right)$. Montrer à l'aide d'exemples que l'on ne peut rien dire de l'intégrabilité de f sur [a, b].
- **b)** Montrer que, en b, la relation $f\sim g$ entraı̂ne $\int_a^x f(t)\,\mathrm{d}t\sim \int_a^x g(t)\,\mathrm{d}t.$ Que peut-on dire de l'intégrabilité de f sur $[a,b[\,?$

Partie I:

- **3. a)** Déterminer un équivalent simple de $\int_x^1 \frac{e^t}{\arcsin(t)} dt$ en 0^+ .
 - **b)** En déduire un équivalent simple de $\int_{x^3}^{x^2} \frac{e^t}{\arcsin(t)} dt$ en 0^+ .
- **4. a)** À l'aide d'une intégration par parties, montrer que, en $+\infty$, on a $\int_2^x \frac{\mathrm{d}t}{\ln(t)} \sim \frac{x}{\ln(x)}$.
- **b**) Plus généralement, si n est un entier naturel, établir le développement asymptotique suivant en $+\infty$:

$$\int_2^x \frac{\mathrm{d}t}{\ln(t)} = \sum_{k=0}^n \frac{k!x}{\ln^{k+1}(x)} + o\left(\frac{x}{\ln^{n+1}(x)}\right).$$

5. Justifier le développement asymptotique suivant en $+\infty$:

$$\int_{1}^{x} \frac{e^{t}}{t^{2}+1} dt = \frac{e^{x}}{x^{2}} + \frac{2e^{x}}{x^{3}} + o\left(\frac{e^{x}}{x^{3}}\right).$$

Partie II:

Soit a un nombre réel et f une application de classe \mathscr{C}^1 sur $[a, +\infty[$ à valeurs strictement positives. On suppose que le quotient $\frac{xf'(x)}{f(x)}$ tend vers une limite finie α en $+\infty$.

6. Montrer, à l'aide des préliminaires que, en $+\infty$, $\frac{\ln(f(x))}{\ln(x)}$ tend vers α .

On peut distinguer le cas $\alpha = 0$.

- 7. On suppose dans cette question $\alpha < -1$.
 - a) Montrer que f est intégrable sur $[a, +\infty[$.
 - **b)** Montrer que, en $+\infty$, on a $\int_x^{+\infty} f(t) dt \sim -\frac{xf(x)}{\alpha+1}$.

On pourrra considérer $\frac{xf(x)}{\alpha+1}$ et utiliser les préliminaires.

- **8.** On suppose dans cette question $\alpha > -1$.
 - a) Étudier l'intégrabilité de f sur $[a, +\infty[$.
 - **b)** Montrer que, en $+\infty$, on a $\int_a^x f(t) dt \sim \frac{xf(x)}{\alpha+1}$.
- c) Donner un exemple d'application f de classe \mathscr{C}^1 sur $[a, +\infty[$ à valeurs positives telle qu'en $+\infty$ le quotient $\frac{\ln(f(x))}{\ln(x)}$ tend vers $\alpha > -1$, mais telle que l'on n'ait pas $\int_a^x f(t) dt \sim \frac{xf(x)}{\alpha + 1}$.
- **9. a)** Étudier l'intégrabilité sur $[2, +\infty[$ des applications $x \mapsto \frac{1}{x(\ln x)^{\beta}}$ selon les valeurs du réel β .
- b) Étudier, à l'aide des questions précédentes, l'intégrabilité sur $[2, +\infty[$ des applications $x\mapsto \frac{1}{x^{\gamma}(\ln x)^{\beta}}$, selon les valeurs des réels β et γ .
 - c) Que conclure quant à l'intégrabilité de f sur $[a, +\infty[$ dans le cas $\alpha = -1$?