Lab and Team Project Development for Engineering Problem Solving using MATLAB, with Emphasis on Solar Power and Engineering for Sustainability

Paper ID# 6114

Stanley Hsu, Rajeevan Amirtharajah, André Knoesen

Electrical & Computer Engineering Department, University of California, Davis

- Introduction
- Course Flow and Lab Topics
- Arduino Solar Module
- Individual and Team Project
- Assessment Results
- Summary

Introduction

- Goal: Update Existing Curriculum
 - Sustainability focused
 - Hands-on experience
 - Project-based learning

UC Davis Robert Mondavi Institute Teaching Winery

- Course Structure
 - Size: Fall, 175+; Winter, 250+; Spring, 150+
 - <u>Demographics</u>: multiple engineering disciplines, mostly freshmen and sophomores but all classes represented
 - Objective: engineering problem solving using programming
- Course Components
 - <u>Lecture</u>: twice a week, 90 minutes each
 - <u>Lab</u>: weekly timed programming exercises, 50 minutes
 - Projects: one individual and one team
 - Homework: weekly

- Introduction
- Course Flow and Lab Topics
- Arduino Solar Module
- Individual and Team Project
- Assessment Results
- Summary

Course Flow and Lab Topics

Quarter Starts

Fundamentals

- 1D and 2D Array
- Flow Control
- Looping Constructs
- 2D and 3D Plotting
- Text and File I/O
- Interpolation and Numerical Integration

Advanced

- Monte Carlo Technique
- String Manipulation
- Graphical User Interface
- Object-Oriented Programming
- Regular Expressions

Lecture	Sustainability-related Lab Topics
Topic	•
1D arrays	Solve for average temperature given degree-
	day data, for multiple cities.
2D arrays	Modeling a solar panel using rows and
	columns of photodiodes.
Flow control,	Total cost of a solar panel array including
loops, logical	volume discount. Solar energy investment
operators	and analysis.
Custom	Write a function that computes the output
functions	power of an N by N solar panel array.
Numerical	Newton's method for solving a nonlinear
computing	equation such as the I-V equation of a
	photodiode.
Curve fitting	Compare performance between fixed and
	tracking solar panel by curve fitting I-V data.
GUI and	Gather luminance data using the Arduino
OOP	Solar Module.
File I/O	Importing weather database from Excel.

Weekly Lab Exercises

- Problem 0: Challenge Problem
 - Single part problem based on previous homework and lab
 - Minimal instruction given
 - Expected completion time: 10-20 minutes
- Problem 1: Skill Building Problem
 - Multi-part problem based on newly introduced concept
 - Step by step instructions given
 - Expected completion time: 30-40 minutes

- Introduction
- Course Flow and Lab Topics
- Arduino Solar Module
- Individual and Team Project
- Assessment Results
- Summary

Arduino Solar Module

- Hands-on Experience
 - Improve student engagement in engineering
 - Increase student interest in electronics
- Hardware Module
 - Based on Arduino UNO
 - Solar cell to measure light
 - Programmable via MATLAB

Arduino Solar Module BOM

Variable Resistor

Solar Cell Connector

Bill of Materials

	Unit Cost				
Arduino UNO	\$26.96				
USB Cable	\$1.67				
DS1803	\$3.22				
Potentiometer					
Solar Cell	\$3.15				
Connector	\$0.15 + \$0.09				
Receptacle,	+ \$0.06				
Header, and					
Crimp					
Arduino Proto	\$11.00				
Shield					
Jumper	\$0.08				
Cost of One	\$46.38				
Unit					
•					

Arduino Solar Module Schematic

Arduino Solar Module Software

MATLAB script written by students

USB port

"adiosrv.ino"

Pre-programmed C code running on the UNO

```
void setup() {
// setup pin mode
// setup wire interface
void loop() {
cmd = serial.read();
switch(cmd) {
  case 30: Read analog input pin
  case 50: Set potentiometer
```

(digital potentiometer)

analog input pin (solar cell)

Arduino Solar Module Output

IV Curve

Flashing Lights

- Introduction
- Course Flow and Lab Topics
- Arduino Solar Module
- Individual and Team Project
- Course Assessment
- Summary

Individual Term Project

- Time: 2 weeks
- Topic: Analysis of weather data of 53 cities across 12 months
 - Data given
 - Precipitation
 - Solar radiation
 - Wind speed
 - Land area
 - Population
 - Compute solar and wind power available
 - Estimate available rainwater for collection
 - Comparison between types of renewable energy

Final Team Project

- Time: 4 weeks
- Team of 3 students
- Lecture on design cycle, project planning, team organization
- Teams choose from multiple project options
- Design project
 - GUI flow and design
 - Data organization and structure
- Submit:
 - Preliminary report, final report, code, video presentation

Renewable Energy Planning and Development Tool

Solar Survey

UCDAVIS

Electric Vehicle Transportation Simulator

- Introduction
- Course Flow and Lab Topics
- Arduino Solar Module
- Individual and Team Project
- Assessment Results
- Summary

Assessment Results

- Questionnaire implemented using Google Form
- 403 students from four quarters
- 105 responses were received

Assessment Results

	1 - Much less effective	2 – Less effective	3 - Similar	4 – More effective	5 - Much more effective	
Development of problem solving skills.	8	9	31	34	23	Mean: 3.52 Std. Dev.: 1.15
Ability to design and implement an algorithm to solve a given problem.	12	11	27	35	20	Mean: 3.38 Std. Dev.: 1.23
Ability to define a problem and specification.	9	11	36	29	20	Mean: 3.38 Std. Dev.: 1.16
Engagement in course materials.	11	18	20	46	10	Mean: 3.24 Std. Dev.: 1.16
Hands-on experience with electronic hardware.	9	13	23	24	36	Mean: 3.62 Std. Dev.: 1.3
Comfortable using MATLAB to solve problems.	10	10	28	29	28	Mean: 3.52 Std. Dev.: 1.25

- Introduction
- Course Flow and Lab Topics
- Arduino Solar Module
- Individual and Team Project
- Assessment Results
- Summary

Summary

- Revised curriculum for problem solving class using programming
 - Sustainability theme incorporated in labs and projects
 - Hands-on experience enabled by low-cost custom Arduino Solar Module
 - Project-based learning through individual and team projects

Future Work

- Lower cost and increase functionality
 - MSP430 microcontroller and wireless module

TI MSP430 Launch-pad

Future Work

- Increase MATLAB
 programmability and functionality of module
- Increase hands-on lab exercises
- Multi-sensor interface:

Acknowledgements

- Mathworks for funding and guidance.
 - Dr. Giampiero Campa
- University of California, Davis for implementation and development.
 - Mikaela Huntzinger and Karen Dunn-Haley (assessment)
 - Lance Halsted (Arduino development)
 - Shane Austin (course work and Arduino dev.)
 - Ryan Wilkerson and Alex Chan-Kai (TI wireless module)
 - Alexander McCourt and other ENG6 Teaching Assistants (implementation)
 - Chik Brenneman (RMI teaching winery tour)
 - Prof. Roger Boulton
- Texas Instruments (MSP430 dev. kit donation)

Back up slides

Course Flow and Lab Topics

Challenge Problem

The average cost of solar energy technology steadily <u>decreases</u> at a rate of 6% every 18 months, and the average cost of coal-based electricity steadily <u>increases</u> at a rate of 3% every 18 months. How long (in months) until the average cost of the two technologies becomes equal? The current average cost of solar energy to be \$156.9 per MWh, and the average cost of coal-based electricity to be \$99.6 per MWh.

Solution

```
solar = 156.9;
coal = 99.6;
while solar > coal
    solar = solar - solar*0.06;
    coal = coal + coal*0.03;
    i = i+1;
end
fprintf('In %d months, solar energy becomes cheaper than coal-based electricity.\n', i*18)
fprintf('Solar cost: $%5.2f; Coal-based cost: $%5.2f;\n\n', solar, coal);
```


Course Flow and Lab Topics

Skill Building Problem

Task 1: Write a (stand-alone, not anonymous) function that return the output voltage and current of a solar panel given the number of rows and columns of photodiodes in the solar panel. The equation that gives the output voltage and current of a solar panel is below.

The function header: [Vout Iout] = solar pane(Nrow, Ncol)
Output Voltage (Volts), Vout=Number of rows*0.6 Vols
Output Current (mA), Iout=Number of columns*50 mA
(mA = milli-Amperes = 10^-3 Amperes)

Task 2: (Complete this task in the same script for Problem 1)

The maximum output power of the solar panel is 90% of the product of the output voltage and output current. Using the function you wrote in Task 1, write a script that calls this function to calculate the maximum output power for square solar panels with sides ranging from 10 photodiodes to 100 photodiodes. In a square solar panel, the number of rows is equal to the number of columns.

Task 3: Write code (in the same script as Task 2) to plot the maximum output power for square solar panels versus the total number of photodiodes (for Nrow = Ncol = 10 to 100) in the solar panel. (x-axis is the number of photodiodes and y-axis is the maximum output power) Do not modify the function 'solar panel()'.

