Критерии анализа зависимостей в R

Дисперсия, ковариация, корреляция

```
var(x, y = NULL, na.rm = FALSE, use)
cov(x, y = NULL, use = "everything",
    method = c("pearson", "kendall", "spearman"))

cor(x, y = NULL, use = "everything",
    method = c("pearson", "kendall", "spearman"))
```

Параметры

- х и у -- выборки (вектор, матрица, таблица). Если у = NULL, то x=y;
- na.rm -- удалить ли пропуски;
- method -- метод: корреляции Пирсона, Спирмена, Кендалла.

Примеры:

x2 -1.00000000

x3 0.05076731 -0.05076731 1.00000000

1.00000000 -0.05076731

Критерии, соответствующие коэффициентам корреляции

Параметры

- х и у -- выборки, должны иметь одинаковую длину;
- alternative -- тип альтернативной гипотезы. Двусторонняя гипотеза соответствует высказываю о
 ненулевой корреляции между выборками. Тип greater соответствует альтернативной гипотезе о
 положительной корреляции (при увеличении значений одной выборки значения другой в среднем
 увеличиваются). Тип less соответствует альтернативной гипотезе об отрицательной корреляции;
- method -- метод: корреляции Пирсона, Спирмена, Кендалла;
- exact -- использовать ли точные вычисления или же асимптотические (для Спирмена и Кендалла);
- formula -- формула в виде ~ u + v;
- data -- данные (матрица или таблица);
- na.action -- функция, указывающая что делать с пропусками в данных.

Возвращают:

- statistic -- статистика критерия;
- parameter -- число степеней свободы в случае распределения Стьюдента;

- p.value -- p-value критерия;
- estimate -- коэффициент корреляции.

Примеры:

```
In [3]: 1 x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1, 66.6)
2 y <- c( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8, 5.6)
3 cor.test(x, y, method = "kendall", alternative = "greater")</pre>
```

Kendall's rank correlation tau

data: x and y

T = 35, p-value = 0.0143

alternative hypothesis: true tau is greater than 0

sample estimates:

tau 0.555556

In [4]: 1 cor.test(x, y, method = "kendall", alternative = "less")

Kendall's rank correlation tau

data: x and y

T = 35, p-value = 0.9917

alternative hypothesis: true tau is less than 0

sample estimates:

tau 0.555556

In [5]: 1 | cor.test(x, y, method = "kendall", alternative = "less")\$p.value

0.991666942239859

Датасет mtcars встроен в R

In [6]: 1 head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

В примере ниже вычисляется корреляция Спирмена между признаками hp и drat таблицы mtcars.

```
In [7]: 1 cor.test(formula = ~ hp + drat, data = mtcars, method = "spearman")
```

Warning message in cor.test.default(x = c(110, 110, 93, 110, 175, 105, 245, 62, : "Cannot compute exact p-value with ties"

Spearman's rank correlation rho

data: hp and drat

S = 8293.8, p-value = 0.002278

alternative hypothesis: true rho is not equal to θ

sample estimates:

rho

-0.520125

```
In [8]: 1 cor.test(formula = ~ hp + drat, data = mtcars, method = "spearman")$estimate
```

Warning message in cor.test.default(x = c(110, 110, 93, 110, 175, 105, 245, 62, : "Cannot compute exact p-value with ties"

rho: -0.520124985810847

Критерий хи-квадрат (обычный и для таблиц сопряженности)

Chi-squared test for given probabilities

```
data: x
X-squared = 11.828, df = 9, p-value = 0.2232
```

Параметры

• х -- таблица сопряженности, значение у игнорируется;

или

- х и у категориальные признаки, длинна одинаковая, по ним вычисляется таблица сопряженности; или
- х -- категориальный признак (обычный критерий хи-квадрат);
- р -- вектор вероятностей, соответствующий основной гипотезе (по умолчанию равномерное распределение);
- simulate.p.value -- вычисление p-value методом Монте-Карло;
- В -- количество итераций метода Монте-Карло.

Возвращает:

- statistic -- статистика критерия;
- parameter -- число степеней свободы распределения хи-квадрат (если не используется метод Монте-Карло);
- p.value -- p-value критерия;
- observed -- наблюдаемые значения по корзинкам;
- expected -- ожидаемые значения по корзинкам;
- residuals -- остатки вида (observed expected) / sqrt(expected).

Примеры:

В данном примере три корзинки А, В, С с наблюдаемыми значениями 20, 15, 25 и ожидемыми значениями 1/3, 1/3 (по умолчанию).

```
In [10]: 1 x <- c(A = 20, B = 15, C = 25)
2 chisq.test(x)</pre>
```

Chi-squared test for given probabilities

```
data: x
X-squared = 2.5, df = 2, p-value = 0.2865
```

Создадим таблицу сопряженности

```
party
gender Democrat Independent Republican
F 762 327 468
M 484 239 477
```

Проверка гипотезы о независимости признаков: пол и партия

```
In [12]: 1 chisq.test(M)
```

```
Pearson's Chi-squared test
```

```
data: M
X-squared = 30.07, df = 2, p-value = 2.954e-07
```

Точный тест Фишера

```
fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)
```

Параметры

х -- таблица сопряженности, значение у игнорируется;

или

- хиу категориальные признаки, длинна одинаковая, по ним вычисляется таблица сопряженности;
- alternative -- тип альтернативной гипотезы для таблиц 2x2;
- simulate.p.value -- вычисление p-value методом Монте-Карло для таблиц 2х2;
- В -- количество итераций метода Монте-Карло для таблиц 2х2.

Примеры:

```
In [13]: 1 dat = matrix(c(10, 50, 35, 40), ncol = 2)
2 fisher.test(dat)
```

Fisher's Exact Test for Count Data

```
data: dat
p-value = 0.0002381
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.09056509 0.54780215
sample estimates:
odds ratio
    0.2311144
```

Прикладная статистика и анализ данных, 2019

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)