

DISPONIBILITE ET SECURISATION DES DONNEES DANS UN SYSTEME DE CLOUD COMPUTING

Présenté par KEMKA TAKENGNY Ulrich

Plan de la Presentation

ANALYSE DE SOLUTION

Cette partie constituera le "COMMENT?".

PROBLÉMATIQUE

Cet exposé visera à montrer le "POURQUOI?"

CONTEXTE

Il s'agit pour nous ici de parler du "QUOI?".

REALISATION

Enfin, nous répondrons au "ON OBTIENT QUOI?".

SIMULATION

Démo

1 GESTION DES PROCEDURES AU MANUEL

DEPLOIEMENT DES SERVEURS EN ENTREPRISE

3 LENTEUR DES PROCEDURES DANS LES ENTREPRISES

PROBLÉMATIQUE

- 1. Indisponibilité des données dû à l'arrêt régulier sur serveur physique.
- 2. Accès facile au serveur physique en présentiel ou à distance, ce qui favorise les risques d'attaques.
- 3. Ralentissement des ventes et augmentation de la file d'attente devant les caisses.
- 4. Perte de près de 25% en moyenne sur les périodes d'arrêt du système.

OBJECTIF

EXTERNALISER LES SERVEUR DANS UN SYSTEME DE CLOUD COMPUTING POUR ASSURER :

- La disponibilité des serveurs
- Un gain enorme de coûts
- Optimisation de la gestion en entreprise

Analyse de la Solution

Le cloud computing est un concept qui représente l'accès à des informations et services, situés sur un serveur distant.

LE CLOUD COMPUTING

PROCESSUS DE DEVELOPPEMENT

Processus unifiés

méthode de prise en charge du cycle de vie d'un logiciel et donc du développement, pour les logiciels orientés objets..

D

Solutions du Cloud existantes.

	OpenStack	Eucalyptus	OpenNubela
Source Code	Entièrement open-	Entièrement open-	Entièrement open-
	source, apache v2.0	source, GPL v3.0	source, apache v2.0
Produit par	Rackspace, NASA,		L'union Européenne
	Dell, Citrix, Cisco,	l'université Santa Bar-	
	Canonical et plus que		
	50 autres organisa-		
	tions	-Eucalyptus System	
		Company	
But	Créer et ouvrir des	Une réponse open	Un Cloud privé pur
	fonctionnalités de	source pour le Cloud	
	Cloud Computing en	commerciale EC2	
	utilisant un logiciel		
	open-source fonction-		
	nant sur du matériel		
	standard		
Domaine d'utilisation	Les sociétés, les four-	Les entreprises	Les chercheurs dans
	nisseurs de services,		le domaine du Cloud
	les chercheurs et		Computing et de la
	les centres de don-		virtualization
	nées mondiaux qui		
	cherchent à déployer à grande échelle		
	leurs Cloud privés ou publiques		
	publiques		

CHOIX DE LA SOLUTION

L'Architecture d'OpenStack

OUTILS

Pour l'élaboration de la solution ,les outils suivant nous ont aidé dans le processus de développement

Phases du Projet

Démarche	Branches	Durée
Etat de L'art de cloud Computing	Branche fonctionnelle	6 jours
Étude Comparative et choix de la solution	Branche fonctionnelle	14 jours
Analyse et Spécification des besoins	Branche fonctionnelle	30 jours
Spécifications techniques	Branche technique	24 jours
Conception	Branche réalisation	17 jours
Implémentation	Branche réalisation	25 jours
Tests	Branche réalisation	18 jours

Planification

ETUDE DU SYSTEME AVEC UML

Diagramme de cas d'utilisation: Gérer la listes des instances

Diagramme de cas d'utilisation: Consulter la liste des services

Diagrammes de séquences Globales

Diagrammes de séquences d'authentification

Diagramme de déploiement du système

DEMONSTRATION

