Idea

- The permutation test is a resampling method for testing whether two distributions are the same
- This test is exact: it is not based on large sample approximations
- Let $X_1, X_2, ..., X_n$ be a random sample of size $n, X_1 \sim F_X$
- Let $Y_1, Y_2, ..., Y_m$ be a random sample of size $m, Y_1 \sim F_Y$
- With permutation test we are testing:

$$H_0: F_X = F_Y$$
 against $H_1: F_X \neq F_Y$

- Let $T_N = t(X_1, \dots, X_n, Y_1, \dots, Y_m)$ be some test statistic, where N = n + m
- E.g. $T_n = |\overline{X}_n \overline{Y}_m|$
- We consider all N! permutations of the data $X_1, \dots, X_n, Y_1, \dots, Y_m$
- ullet For each permutation we compute the test statistics T
- We denote these values with $T_1^*, \dots, T_{N!}^*$
- How likely are each of the $T_1^*, \dots, T_{N!}^*$ under the H_0 ?
- Equally likely!
- The distribution P_0 that puts 1/N! mass on each T_j^* is called the **permutation distribution** of T
- ullet Let t_n be the observed value of the test statistic
- Assuming we reject when T is large, the p-value of the permutation test:

$$p-value = P_0(T* > t_N) = \frac{1}{N!} \sum_{i=1}^{N!} I(T_j^* \ge t_N)$$

Usually, it is not practical to evaluate all N! permutations We can approximate the p-value by simulating random permutations The fraction of times $T_j^*>t_N$ among these samples approximate the p-value

Example

toy

Suppose the data are: $(X_1,X_2,Y_1)=(3,9,1)$. Let $T(X_1,X_2,Y_1)=|\overline{X}_n-\overline{Y}_m|$, i.e. $t_N=5$. Compute the p-value of the test statistic T.

Suppose the data are: $(X_1,X_2,Y_1)=(3,9,1)$. Let $T(X_1,X_2,Y_1)=|\overline{X}_n-\overline{Y}_m|$, i.e. $t_N=5$. Compute the p-value of the test statistic T.

	permutation	T^*	$P_0(T^*)$
	(3,9,1)	5	1/6
	(1,3,9)	7	1/6
	(1,9,3)	2	1/6
	(3,1,9)	7	1/6
	(9, 1, 3)	2	1/6
	(9, 3, 1)	5	1/6
p-value: $P(T^* \ge 5) = 0$	4/6		

driving behavior

Suppose we have a list of cities with the car driver velocities on weekdays and weekends. Test if the driving behavior in each city is different on weekdays as compared to weekends.

We take H_0 : no difference in driving behavior and test it against H_1 : driving behavior is different at weekdays and weekends for a given city. We use permutation test for the difference in means.