



# Nptel Online Certification Course Indian Institute of Technology Kharagpur Computer Vision Assignment - Week 1

| Number of questions: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total marks: 10x2=20               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| QUESTION 1:<br>Consider the Direct Linear Transform (DLT) algorithm for a which involves the following equation using homogeneous points $x'_i$ and $x_i$ in the transformed and original 2-D projecti transformation.<br>$x' \sim Hx$<br>Choose the correct option from the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | coordinate representation of       |
| a) Vectors $x'$ and $Hx$ may have similar magnitude but differential $Hx$ and $Hx$ may have similar magnitude but differential $Hx$ may have similar magnitude $Hx$ may have similar magnitu | rent direction.                    |
| b) Vectors $x'$ and $Hx$ may not be equal. They have similar of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | direction but different magnitude. |
| c) Vectors $x'$ and $Hx$ may be equal. They have similar direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ction and magnitude.               |
| d) Cross product of $x'$ and $Hx$ is a zero vector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| Correct Answer: b), c), d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |

### FOR QUESTIONS 2 AND 3

Consider a 3-bit grey scale image with dimension  $256 \times 32$ .

**QUESTION 2:** Type: Comprehensive

What will be the range of values in its X-axis?

- a) 0 to 255
- b) 1 to 256
- c) 0 to 15
- d) 0 to 7

**Correct Answer:** d) **Detailed Solution:** 

For a 3-bit image, there are  $2^3$  intensities. The intensities start from 0. So, range is 0 to 7.

\_\_\_\_\_

## **QUESTION 3:**

**Type: Comprehensive** 

What will be the minimum and maximum range of values in its Y-axis?

- a) 32 and 512
- b) 1024 and 8192
- c) 0 and 16
- d) 32 and 128

**Correct Answer:** b) **Detailed Solution:** 

There are total 256  $\times$  32 = 8192 pixels. If all pixels have same color, then maximum height of histogram will be 8192. If all colors are uniformly distributed, then maximum height of histogram will be  $\frac{\#\ pixels}{\#\ colors}$  = 1024

\_\_\_\_\_

QUESTION 4: Type: MCQ

An image taken using a camera can be enhanced different techniques. Suppose, a software is developed which can detect if an image has been enhanced or not with 95% accuracy. A survey is done and it is found that 80% of all images are enhanced. If the software predicts that an image is enhanced, what is the probability that the image is actually enhanced.

- a) 0.95
- b) 0.987
- c) 0.2
- d) 0.77

**Correct Answer:** b)

#### **Detailed Solution:**

Let A be the event that an image is actually enhanced. Let B be the event that an image is predicted as enhanced by the software.

$$P(A) = 0.8$$

$$P(\overline{A}) = 0.2$$

$$P(B|A) = 0.95$$

$$P(B) = P(A) \times P(B|A) + P(\overline{A}) \times P(\overline{B|A}) = 0.8 \times 0.95 + 0.2 \times 0.05 = 0.77$$
  
 $P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} = \frac{0.95 \times 0.8}{0.77} = 0.987$ 

Type: MCQ

Consider two images  $I_1$  and  $I_2$  with dimensions  $16 \times 2$  and  $4 \times 16$  respectively.  $I_1$  consists of 16 background pixels and I<sub>2</sub> consists of 4 background pixels. Rest pixels are foreground pixels. Suppose, a pixel is selected at random and is found to be background pixel. What is the probability that the selected pixel is from image  $I_2$ ?

a) 0.125

**QUESTION 5:** 

- b) 0.2
- c) 0.6
- d) 0.33

## **Correct Answer:** b)

### **Detailed Solution:**

# of background pixels = 16 + 4 = 20

# of pixels in image  $I_1 = 16 \times 2 = 32$ 

# of pixels in image  $I_2 = 4 \times 16 = 64$ 

Let A be the event that a selected pixel is from image  $I_2$ .

Let B be the event that a selected pixel is background pixel.

$$P(A) = \frac{64}{64 + 32}$$

$$P(B) = \frac{20}{64 + 32}$$

$$P(B|A) = \frac{4}{64}$$

$$P(B) = \frac{64 + 32}{64 + 32}$$

$$P(B|A) = \frac{4}{64}$$

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} = \frac{\frac{4}{64} \times \frac{64}{64 + 32}}{\frac{20}{64 + 32}} = 0.2$$

5

**QUESTION 6:** Type: MCQ

Consider the following 3-bit grey scale image

| 0 | 1 | 2 | 3 |
|---|---|---|---|
| 4 | 5 | 6 | 7 |
| 0 | 1 | 2 | 5 |
| 4 | 1 | 5 | 6 |

What of the following can be the value when vertical Prewitt operator and horizontal Prewitt operator are applied on the orange colored pixel?

- a) 0 and 2
- b) 0 and 10
- c) 8 and -2
- d) 2 and 10

**Correct Answer:** c)

**QUESTION 7:** Type: MCQ

Consider the following 3-bit grey scale image

| 0 | 1 | 2 | 3 |
|---|---|---|---|
| 4 | 5 | 6 | 7 |
| 0 | 1 | 2 | 5 |
| 4 | 1 | 5 | 6 |

What of the following can be the value when vertical Snobel operator and horizontal Snobel operator are applied on the orange colored pixel?

- a) 0 and 2
- b) 7 and 9
- c) -5 and 5
- d) 5 and 5

**Correct Answer:** b)

\_\_\_\_\_\_

**QUESTION 8:** Type: MCQ

Consider the following 3-bit grey scale image

| 3 | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 7 | 6 | 4 |
| 2 | 1 | 7 | 5 |
| 0 | 1 | 5 | 6 |

When contrast enhancement using histogram equalization is used, to which intensity is the intensity 5 mapped to?

- a) 6
- b) 5
- c) 4
- d) 3

**Correct Answer:** b)

QUESTION 9: Type: MCQ

Consider the following 3-bit grey scale image

| 3 | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 7 | 6 | 4 |
| 2 | 1 | 7 | 5 |
| 0 | 1 | 5 | 6 |

When contrast enhancement using histogram equalization is used, to which intensity is the intensity 3 mapped to?

- a) 6
- b) 5
- c) 4
- d) 3

**Correct Answer:** c)

QUESTION 10: Type:MSQ

A continuous time signal is given by  $x(t) = e^{-2t}u(t)$ , its fourier transform  $X(j\omega)$  is given by

- a)  $1/(2 + j\omega)$
- b)  $1/(3 + j\omega)$
- c)  $1/(1 + j\omega)$
- d)  $1/(4 + j\omega)$

**Correct Answer:** a)

10