EECS 376: Foundations of Computer Science

Ali Movaghar Lecture 22

Agenda

- * Last week: Quicksort, Skip Lists
 - * Randomized algorithms that perform well in expectation
 - * But what's the <u>probability</u> of getting a good result?
- * Today: Concentration Bounds
 - Variance and Chebyshev's inequality
 - Chernoff-Hoeffding bounds
 - * Examples: Flipping coins and Polling

several randomized algorithm analyses use Chernoff bound + Union bound **EECS 572: Randomness and Computation** for a "real" application

How many heads?

- * We want to determine if a coin is fair or not.
- * Q: How <u>suspicious</u> would we be if we flip it n times and see k heads, for the following values of n and k?

*
$$n = 100, k = 51$$

*
$$n = 10,000, k = 5,100$$

*
$$n = 1,000,000, k = 510,000$$

* Need to estimate $\Pr[X \ge k]$, where X is the number of heads after flipping a fair coin n times!

Law of Large Numbers

- * (Informal) If $X_1, X_2, ...$ are independent, identically distributed (i.i.d.) RVs w/ expectation μ , then $\frac{1}{n}\sum_{i=1}^{n}X_i$ converges to μ (a constant) as $n \to \infty$.
- * Example: The fraction of heads obtained when flipping a fair coin n times converges to 1/2 as $n \to \infty$.

The graphs plot $\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}=a\right]$; bars are for possible values of a.

Limitations of LLN

(Informal) If $X_1, X_2, ...$ are independent, identically distributed (i.i.d.) RVs w/ expectation μ , then $\frac{1}{n}\sum_{i=1}^{n}X_i$ converges to μ (a constant) as $n \to \infty$.

- * LLN says distribution of sum is "concentrated" around its expectation as $n \to \infty$. (However, it doesn't say how quickly it happens or what the distribution looks like.)
- * **Example:** The probability of seeing at least 0.51-fraction of heads when flipping a <u>fair</u> coin n times goes to <u>zero</u> as $n \to \infty$. How fast? Not clear.

Variance

- * The **variance** of a random variable X is the average <u>squared-distance</u> of X from its mean, i.e., $\mathbf{Var}(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- * The **standard deviation** is $SD(X) = \sqrt{Var(X)}$ (it's an <u>upper</u> bound on the average distance of X from $\mathbb{E}[X]$).

Example

 $\mathbf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

- * You have a <u>biased</u> coin that has probability p of heads, 1-p of tails. For a single flip of the coin:
- * Let $X_i = \begin{cases} 1 & \text{if flip } i \text{ is Heads} \\ 0 & \text{if flip } i \text{ is Tails} \end{cases}$
- * Then $\mathbb{E}[X_i] = \Pr[X_i = 1] = p$;
- * $\mathbb{E}[X_i^2] = 0 \cdot \Pr[X_i^2 = 0] + 1 \cdot \Pr[X_i^2 = 1] = p$
- * $\operatorname{Var}(X_i) = \mathbb{E}[X_i^2] \mathbb{E}[X_i]^2 = p p^2 = p(1 p)$
- * What about for *n* flips?

Variance of Sum of Independent RVs

$$\mathbf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

- * Fact: For a sum of <u>independent</u> RVs $X = X_1 + \cdots + X_n$, we have $Var(X) = Var(\sum X_i) = \sum Var(X_i)$.
- * For one flip of a coin with probability *p* of heads, we saw that:
 - * $\mathbb{E}[X_i] = p$
 - * $Var(X_i) = p(1-p)$
- * For n flips, we have:
 - * $\mathbb{E}[X] = \sum \mathbb{E}[X_i] = np$
 - * $Var(X) = \sum Var(X_i) = np(1-p)$

Chebyshev's Inequality

$$\mathbf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

* (Recall) Markov's Inequality: For a <u>non-negative</u> RV X and a > 0:

$$\Pr[X \ge a] \le \mathbb{E}[X]/a$$

* Chebyshev's Inequality: For <u>any</u> RV X and a > 0: $\Pr[|X - \mathbb{E}[X]| \ge a] \le \operatorname{Var}(X)/a^2$

* Proof: square both sides and apply Markov's ineq.

*
$$\Pr[|X - \mathbb{E}[X]| \ge a] = \Pr[(X - \mathbb{E}[X])^2 \ge a^2]$$
 (sq. both sides)
$$\leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{a^2}$$
 (apply Markov)
$$\leq \frac{\mathbf{Var}(X)}{a^2}$$
 (defn. of Variance)

Chebyshev's Inequality

 $\mathbf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

- * Chebyshev's Inequality: For <u>any</u> RV X and a > 0: $\Pr[|X - \mathbb{E}[X]| \ge a] \le \text{Var}(X)/a^2$
- * Example: What's the probability of getting $\leq 49\%$ or $\geq 51\%$ heads in n tosses of a <u>fair</u> coin?

*
$$\Pr\left[\left|X - \frac{n}{2}\right| \ge 0.01n\right] \le \frac{\operatorname{Var}(X)}{(0.01n)^2} = 10,000 \cdot \frac{n \cdot 1/4}{n^2} = \frac{2,500}{n}$$

- * $n = 10,000 \Rightarrow \Pr[\text{deviating by } 1\%] \le 1/4$
- * $n = 1,000,000 \implies \Pr[\text{deviating by } 1\%] \le 1/400$

Chebyshev's Inequality

For any RV X and a > 0: $\Pr[|X - \mathbb{E}[X]| \ge a] \le \mathbf{Var}(X)/a^2$

$$\mathbf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

- * For a sum of *i.i.d.* RVs $X = X_1 + \cdots + X_n$, we are often interested in $\frac{1}{n}X$ rather than X itself, since $\mathbb{E}\left[\frac{1}{n}X\right] = \mathbb{E}[X_i]$ does not depend on n (unlike $\mathbb{E}[X] = n\mathbb{E}[X_i]$).
- * Fact: For a constant c, $Var(cX) = c^2Var(X)$.
- * Chebyshev (Alternative): For a sum of i.i.d. $X = X_1 + \cdots + X_n$:

$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le \frac{\mathbf{Var}(X_i)}{\varepsilon^2 n}$$

* Example: What's the probability of getting $\leq 49\%$ or $\geq 51\%$ heads in n tosses of a fair coin?

*
$$\Pr\left[\left|\frac{1}{n}X - \frac{1}{2}\right| \ge 0.01\right] \le \frac{\operatorname{Var}(X_i)}{0.01^2 n} = 10,000 \frac{1/4}{n} = \frac{2,500}{n}$$

Normal Distribution

- * A **normal distribution** has a *bell-curve* shape and is characterized by two parameters, mean and standard deviation.
 - * Examples: Height, exam scores, measurement error, are "normal-like"...
- * 66-95-99.7 rule: \approx 66 / 95 / 99.7% of the area under the curve (i.e., probability) is within 1 / 2 / 3 SD from the mean, respectively

Note: Distribution is from $-\infty$ to ∞ and nothing's 0 here.

Central Limit Theorem

- * (Informal) For large n, the sum $X = X_1 + \cdots + X_n$ of n i.i.d. RVs is "close" to a normal distribution with mean = $\mathbb{E}[X]$ and SD = SD(X)
- * Example: The number of heads after flipping a fair coin n times, is "close" to a normal distribution with mean n/2 and standard deviation $\sqrt{n}/2$.
- * Q: How suspicious are we if see 510,000 heads after 1,000,000 tosses?

ECE

mean 500, SD 15.8

Chernoff-Hoeffding Bounds

Usually tighter than Chebyshev)

* If $X = X_1 + X_2 + \cdots + X_n$ is the sum of n *i.i.d.* RVs with each $X_i \in [0, 1]$, then, for any $\varepsilon > 0$:

Example: If we flip a fair coin n = 1,000,000 times, the probability we see $\geq (50 + 1)\%$ heads is at most $e^{-2(0.01)^2 \cdot 1,000,000} = e^{-200}$!

Chernoff-Hoeffding Bounds Proof Sketch

* $X = \sum_{i=1}^{n} X_i$ is the sum of n independent indicators with $E[X_i] = p$.

*
$$\Pr(X - \mathbb{E}(X) \ge t) = \Pr(e^{s(X - \mathbb{E}(X))} \ge e^{st})$$
 for any $s > 0$ we wish.

$$\leq \frac{\mathbb{E}(e^{S(X-\mathbb{E}(X))})}{e^{St}}$$
 (Markov)

$$= \frac{\mathbb{E}\left(e^{s(X_1 + \dots + X_n - \mathbb{E}(X_1) - \dots - \mathbb{E}(X_n))}\right)}{e^{st}} \qquad \text{(Defn of } X\text{)}$$

$$= \frac{\mathbb{E}\left(\prod_{i=1}^n e^{s(X_i - \mathbb{E}(X_i))}\right)}{e^{st}} \begin{bmatrix} \text{"Hoeffding's Lemma"} \\ \end{bmatrix}$$

$$= \frac{\prod_{i=1}^{n} \mathbb{E}\left(e^{s(X_i - \mathbb{E}(X_i))}\right)}{e^{st}} \le \frac{\left(\frac{s^2}{8}\right)^n}{e^{st}} = \exp(-st + s^2n/8)$$
$$= \exp(-2t^2/n). \quad \text{(Choose } s = 4t/n.)$$

Hoeffding's Lemma

Let X be a real random variable such that $X \in [0, 1]$ almost surely. Then for any real number of s, we have:

$$\mathsf{E}[e^{s(X-E[X])}] \le \exp(\frac{1}{8}s^2)$$

The above inequality is proved using the convexity of exponential functions and the arithmetic and geometric means (AM-GM) inequality.

Some Useful Inequalities

- * Let X be a random variable. Then:
 - * $Pr[X \ge a] \ge Pr[X > a]$ and $Pr[X \le a] \ge Pr[X < a]$
 - * Why? $Pr[X \ge a] = Pr[X > a] + Pr[X = a]$
 - * $\Pr[X \ge a] = 1 \Pr[X < a] \ge 1 \Pr[X \le a]$
 - * $\Pr[X \le a] = 1 \Pr[X > a] \ge 1 \Pr[X \ge a]$
- * Let $a \leq b$. Then:
 - * $Pr[X \ge a] \ge Pr[X \ge b]$ and $Pr[X \le a] \le Pr[X \le b]$

 \boldsymbol{a}

b

* Why? $Pr[X \ge a] = Pr[X \ge b] + Pr[b > X \ge a]$

Union Bound

$$\Pr\left[\frac{1}{n}X \leq \mathbb{E}[X_i] - \boldsymbol{\varepsilon}\right] \leq e^{-2\boldsymbol{\varepsilon}^2 n}$$
 (lower tail bound)

$$\Pr\left[\frac{1}{n}X \ge \mathbb{E}[X_i] + \boldsymbol{\varepsilon}\right] \le e^{-2\boldsymbol{\varepsilon}^2 n}$$
 (upper tail bound)

- * For any two events A, B:
 - $*[Pr[A \cup B] \le Pr[A] + Pr[B]$

* This also implies:

*
$$Pr[A \cap B] \ge 1 - (Pr[\overline{A}] + Pr[\overline{B}])$$

* Example:/Combined Chernoff-Hoefding bound:

*
$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$$

Since
$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] = \Pr\left[\left(\frac{1}{n}X \le \mathbb{E}[X_i] - \varepsilon\right) \cup \left(\frac{1}{n}X \ge \mathbb{E}[X_i] + \varepsilon\right)\right]$$

Polling

- * There are *m* candidates for president. How can we estimate their relative support <u>without</u> asking the entire population?
- * A: Sample people at random and compute the relative frequencies.
- * Two types of "accuracy":
 - 1. The probability that we indeed obtain a "good" estimate
 - 2. The extent to which our estimate approximates reality
- * Fine print: "This poll has been conducted with a confidence level of 95% and statistical error of ±2%"

Polling

- Algorithm for one candidate (approval rating):
 - * Sample at random n people (ask: "Do you support?" Yes/No)
 - * Let X be the number of supporters
 - * Return X/n as an estimate
- * Let $0 \le p \le 1$ be the true level of support. How large does n have to be so that we get good "accuracy" with high "confidence"?
- * Fine print: "This poll has been conducted with a confidence level of 95% and statistical error of $\pm 2\%$ "
- * Thus, we want $\Pr\left[\left|\frac{1}{n}X p\right| \le 0.02\right] \ge 0.95$.

Combined Chernoff-Hoeffding Bound

Combined Chernoff-Hoeffding:

$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$$

Compare to Chebyshev:

$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le \frac{\mathbf{Var}(X_i)}{\varepsilon^2 n}$$

- * Goal: Find n such that $\Pr\left[\left|\frac{1}{n}X-p\right| \le 0.02\right] \ge 0.95$.
- * Define indicators for i = 1..n:

$$X_i = \begin{cases} 1, & \text{person } i \text{ supports the candidate} \\ 0, & \text{otherwise} \end{cases}$$

- * Then $\mathbb{E}[X_i] = \Pr[X_i = 1] = p$ and $X = X_1 + X_2 + \dots + X_n$.
- * \mathbf{Q} : What should the value of n be to satisfy the fine print?
- * Equivalently: We want $\Pr\left[\left|\frac{1}{n}X p\right| > 0.02\right] \le 0.05$.
- * By the combined CH bound:

$$\Pr\left[\left|\frac{1}{n}X - p\right| > 0.02\right] \le \Pr\left[\left|\frac{1}{n}X - p\right| \ge 0.02\right] \le 2e^{-2 \cdot 0.02^2 n}$$

Polling Analysis

Combined Chernoff-Hoeffding:

$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$$

* By the combined CH bound:

$$\Pr\left[\left|\frac{1}{n}X - p\right| > 0.02\right] \le \Pr\left[\left|\frac{1}{n}X - p\right| \ge 0.02\right] \le 2e^{-2 \cdot 0.02^2 n}$$

* Therefore, we need $2e^{-2\cdot 0.02^2n} \le 0.05$

$$\Rightarrow 40 \le e^{2 \cdot 0.02^2 n} \Rightarrow \ln 40 \le 2 \cdot 0.02^2 n \Rightarrow n \ge 4612$$

- * Remark: n does not depend on the population size!
- * **Q:** How large should n be if we want error ε with probability $\leq \delta$?

*
$$2e^{-2\varepsilon^2 n} \le \delta \Leftrightarrow n \ge \frac{\ln(2/\delta)}{2\varepsilon^2}$$
.

Polling General Case

- * Algorithm for *m* candidates:
 - * Sample at random *n* people (ask: "Who do you support?")
 - * Let $X^{(j)}$ be the number of supporters of candidate j
 - * For each j: Return $X^{(j)}/n$
- * Fine print: "This poll has been conducted with a confidence level of $1-\delta$ and statistical error of $\pm\epsilon$ "
- * Formally: Let $p_1, ..., p_m$ be the support levels of the candidates.
- * We want: $\Pr\left[\text{for every } j=1..m: \left|\frac{1}{n}X^{(j)}-p_j\right| \leq \varepsilon\right] \geq 1-\delta.$

Polling General Case

- * We want: $\Pr\left[\text{for every } j = 1..m: \left|\frac{1}{n}X^{(j)} p_j\right| \le \varepsilon\right] \ge 1 \delta.$
- * How many samples do we need now?
- * When m=1, we need $n \geq \frac{1}{2\varepsilon^2} \ln \left(\frac{2}{\delta}\right)$
- * Wrong answer: for m candidates we need $n \ge m \cdot \frac{1}{2\varepsilon^2} \ln \left(\frac{2}{\delta}\right)$
- * Sampling Theorem: If $n \ge \frac{1}{2\varepsilon^2} \ln \left(\frac{2m}{\delta} \right)$ then we can assert that our estimates satisfy the fine print. (proof via union bound)
- * Conclusion: The dependence on m is logarithmic!

Distinguishing Biased Coins

- * You're given a coin that is ε -biased to either heads or tails.
 - * i.e., $\Pr[H] = \frac{1}{2} + \varepsilon$ and $\Pr[T] = \frac{1}{2} \varepsilon$ or $\Pr[H] = \frac{1}{2} \varepsilon$ and $\Pr[T] = \frac{1}{2} + \varepsilon$
- * To determine if it's biased towards heads, you flip the coin n times.
 - * If you see at least $\frac{1}{2}n$ heads, you guess "yes"
 - * Otherwise, you guess "no".

Note: We have two-sided error; false positives and false negatives are possible!

Q: How large should n be to guarantee an error probability of δ ?

Probability of False Negatives

If $X = X_1 + X_2 + \cdots + X_n$ is the sum of n *i.i.d.* RVs with **each** $X_i \in [0, 1]$, then, for any $\varepsilon > 0$:

$$\Pr\left[\frac{1}{n}X \leq \mathbb{E}[X_i] - \varepsilon\right] \leq e^{-2\varepsilon^2 n}$$
(lower tail bound)

- * Let X_i be the indicator RV for whether i'th coin flip was H.
- * Suppose the coin we had was ε -biased towards **heads**.

* Then
$$\mathbb{E}[X_i] = \frac{1}{2} + \varepsilon$$
.

* Q: When do we get an error (false negative) in this case?

* **A:** When
$$\frac{1}{n}X < \frac{1}{2} = \mathbb{E}[X_i] - \varepsilon$$

* Therefore:

Pr[error|*H* bias]

$$= \Pr\left[\frac{1}{n}X < \mathbb{E}[X_i] - \varepsilon\right] \le e^{-2\varepsilon^2 n}$$

To determine if it's biased towards heads, you flip the coin n times.

If you see at least $\frac{1}{2}n$ heads, you guess "yes" 6, Otherwise, you guess "no".

Probability of False Positives

If $X = X_1 + X_2 + \cdots + X_n$ is the sum of n *i.i.d.* RVs with **each** $X_i \in [0, 1]$, then, for any $\varepsilon > 0$:

$$\Pr\left[\frac{1}{n}X \ge \mathbb{E}[X_i] + \varepsilon\right] \le e^{-2\varepsilon^2 n}$$
(lower tail bound)

- * Let X_i be the indicator RV for whether i'th coin flip was H.
- * Suppose the coin we had was ε -biased towards **tails**.
 - * Then $\mathbb{E}[X_i] = \frac{1}{2} \varepsilon$.
- * Q: When do we get an error (false positive) in this case?
- * **A:** When $\frac{1}{n}X \ge \frac{1}{2} = \mathbb{E}[X_i] + \varepsilon$
- * Therefore:

Pr[error|*T* bias]

$$= \Pr\left[\frac{1}{n}X \ge \mathbb{E}[X_i] + \varepsilon\right] \le e^{-2\varepsilon^2 n}$$

To determine if it's biased towards heads, you flip the coin n times.

If you see at least $\frac{1}{2}n$ heads, you guess "yes" 6, Otherwise, you guess "no".

How large should *n* be?

- * By previous analysis, $\Pr[\text{error}] \leq e^{-2\varepsilon^2 n}$.
 - * We saw the error in either case is at most this.
- * How large should n be if we want error to be $\leq \delta$?

*
$$e^{-2\varepsilon^2 n} \le \delta \Leftrightarrow n \ge \frac{\ln(1/\delta)}{2\varepsilon^2}$$
.

* **Example:** If $\varepsilon = 0.01$ and $\delta = 0.0001$ (correct 99.99%), then we need $n \ge \frac{\ln(0.0001^{-1})}{2 \cdot 0.01^2} \approx 46,052$ flips.

Extra Practice

Decreasing Error

- * A low-quality COVID test has two-sided error:
 - * If a person has COVID, it says "yes" w.p. 2/3.
 - * Otherwise, it says "no" w.p. 2/3.
 - * Different runs are independent.
- * You decide to buy and run the test *n* times and take the majority answer you get.
- * Q: How large should n be to guarantee that the answer is correct w.p. 1δ ?
 - * Same as distinguishing ε -biased coins with $\varepsilon = 1/6!$

Note: false positives and false negatives are possible!

Estimating π

- Suppose there is a 2x2 square with a unit circle inside
- * Q: If we toss a dart uniformly at random towards the square, what's the probability that we hit the circle?
 - * (area of circle)/(area of board) = $\pi/4$
- * We toss n darts uniformly at random towards the square
 - * X_i = indicator o/1 RVs for whether we hit circle on i'th toss
 - * **Q:** What is $\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$?
- * Q: How might we estimate π by tossing darts?
 - * It's roughly 4*fraction of times we hit circle; CH to bound error.

$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$$
(combined bound)

Math

We toss n darts uniformly at random towards the square Let X_i = indicator RV (o/1) for whether we hit circle on i'th toss

(to show that this is a bad idea)

 $\pi \approx 4*$ fraction of times we hit the circle

- * Let $X = X_1 + \cdots + X_n$ be the number of times we hit the circle.
- * $\mathbb{E}[X_i] = \frac{\pi}{4} \operatorname{so} \left| \frac{1}{n} X \frac{\pi}{4} \right| < \varepsilon$ with probability $\geq 1 2e^{-2\varepsilon^2 n}$
- * To estimate π within γ , i.e. $\left|\frac{4}{n}X \pi\right| < \gamma$, set $\varepsilon = \frac{\gamma}{4}$.
 - * $\left| \frac{4}{n}X \pi \right| < \gamma \Leftrightarrow \left| \frac{1}{n}X \frac{\pi}{4} \right| < \frac{\gamma}{4} = \varepsilon$ (with probability $\geq 1 2e^{-2\varepsilon^2 n} = 1 2e^{-\gamma^2 n/8}$)
- * For probability $\geq 1 \delta$, set $n = 8 \ln(2/\delta) / \gamma^2$.
 - * $1 2e^{-\gamma^2 n/8} \ge 1 \delta \Leftrightarrow \delta \ge 2e^{-\gamma^2 n/8} \Leftrightarrow \ln \delta/2 \ge -\gamma^2 n/8 \Leftrightarrow n \ge 8\ln(2/\delta)/\gamma^2$

Example: To get our estimate between 3.140 and 3.142 ($\gamma=0.001$) 99.99% of the time ($\delta=0.0001$), we should toss $n\approx79,227,901$ darts

