2023~2024 学年福建百校联考高三正月开学考•数学

参考答案、提示及评分细则

题号	1	2	3	4	5	6	7	8
答案	D	A	В	В	С	С	A	D
题号	9	10	11	12				
答案	BC	BC	AC	ABD				

一、单项选择题: 本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 【答案】D

【解析】由 $A = \{x \in \mathbb{Z} | -3 < x < 5\} = \{-2, -1, 0, 1, 2, 3, 4\}$, $B = \{x | x > 1\}$, 可得 $A \cap B = \{2, 3, 4\}$, 故选 D.

2. 【答案】A

【解析】由
$$z = \frac{-1+3i}{1+3i} = -\frac{1-3i}{1+3i} = -\frac{\left(1-3i\right)^2}{\left(1+3i\right)\left(1-3i\right)} = -\frac{-8-6i}{10} = \frac{4}{5} + \frac{3}{5}i$$
,可得复数 z 在复平面内所对应的点

所在的象限为第一象限, 故选 A.

3.【答案】B

【解析】由点 P 在圆 C 上,又由直线 PC 的斜率为 $\frac{0-(-1)}{1-3}=-\frac{1}{2}$,可得直线 l 的斜率为 2,则直线 l 的方程为 v=2x-2 . 故选 B.

4. 【答案】B

【解析】由
$$\tan(\alpha+\beta) = \frac{2\tan\frac{\alpha+\beta}{2}}{1-\tan^2\frac{\alpha+\beta}{2}} = \frac{4}{1-4} = -\frac{4}{3}$$
,有

$$\tan\beta = \tan\left[\left(\alpha + \beta\right) - \alpha\right] = \frac{\tan\left(\alpha + \beta\right) - \tan\alpha}{1 + \tan\left(\alpha + \beta\right)\tan\alpha} = \frac{-\frac{4}{3} - 3}{1 + \left(-\frac{4}{3}\right) \times 3} = \frac{13}{9}. \text{ bigs.}$$

5. 【答案】C

【解析】高
$$OP = x$$
, $OQ = y$,有 $AP = \sqrt{x^2 + 1}$, $AQ = \sqrt{y^2 + 1}$,由 $AP \perp AQ$,有 $AP^2 + AQ^2 = PQ^2$,可得 $x^2 + 1 + y^2 + 1 = (x + y)^2$,可得 $xy = 1$,又由上下圆锥侧面积之比为 $2:1$,可得 $x = 2QA$,有
$$\sqrt{x^2 + 1} = 2\sqrt{y^2 + 1}$$
,有 $x^2 = 4y^2 + 3$,代入 $y = \frac{1}{x}$ 整理为 $x^4 - 3x^2 - 4 = 0$,解得 $x = 2$,可得 $y = \frac{1}{2}$,

$$OP = 2 + \frac{1}{2} = \frac{5}{2}$$
. 故选 C.

6. 【答案】C

【解析】设 $\overrightarrow{BE} = \lambda \overrightarrow{BC} (0 < \lambda < 1)$,可得 $\overrightarrow{DF} = \lambda \overrightarrow{DC}$,有 $\overrightarrow{AE} = \overrightarrow{AB} + \lambda \overrightarrow{BC} = \overrightarrow{AB} + \lambda \overrightarrow{AD}$,

$$\overrightarrow{AF} = \overrightarrow{AD} + \lambda \overrightarrow{DC} = \overrightarrow{AD} + \lambda \overrightarrow{AB}$$
, \overrightarrow{AB}

$$\overrightarrow{AE} \cdot \overrightarrow{AF} = \left(\overrightarrow{AB} + \lambda \overrightarrow{AD} \right) \cdot \left(\lambda \overrightarrow{AB} + \overrightarrow{AD} \right)$$

$$= \lambda \left| \overrightarrow{AB} \right|^2 + (\lambda^2 + 1) \overrightarrow{AB} \cdot \overrightarrow{AD} + \lambda \left| \overrightarrow{AD} \right|^2 = 4\lambda + 2(\lambda^2 + 1) + 4\lambda = 2\lambda^2 + 8\lambda + 2 , \quad \text{又由 } \overrightarrow{AE} \cdot \overrightarrow{AF} = \frac{13}{2}, \quad \text{有}$$
 $2\lambda^2 + 8\lambda + 2 = \frac{13}{2}, \quad \text{解得 } \lambda = \frac{1}{2}, \quad \lambda = -\frac{9}{2} \quad (\text{舍}), \quad \text{可得 } EF = 1. \quad \text{故选 C}.$

7. 【答案】A

【解析】由 $f'(x) = 3x^2 - 6x = 3x(x-2)$. 可得函数的单调增区间为 $(-\infty,0)$, $(2,+\infty)$. 减区间(0,2),

8. 【答案】D

【解析】由题意有 $a = \sqrt{2}$,b = 1 ,c = 1 ,设直线 x = 2 与 x 轴的交点为 Q ,设 $\left| PQ \right| = t$,有 $\tan \angle PF_1Q = \frac{\left| PQ \right|}{\left| F_1Q \right|} = \frac{t}{3}$,

$$\tan \angle PF_2Q = \frac{|PQ|}{|F_2Q|} = t$$
,可得 $\tan \angle F_1PF_2 = \tan\left(\angle PF_2Q - \angle PF_1Q\right) = \frac{t - \frac{t}{3}}{1 + \frac{t^2}{3}} = \frac{2t}{t^2 + 3} \le \frac{2t}{2\sqrt{3}t} = \frac{\sqrt{3}}{3}$,当且仅

当 $t = \sqrt{3}$ 时取等号,可得 $\angle F_1 P F_2$ 的最大值为 $\frac{\pi}{6}$,故选 D.

二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.

9. 【答案】BC

【解析】对于 A 选项,由 2023 年 1~8 月份,社会消费品零售总额为 302281 亿元,可得社会消费品零售总额 的月平均值约为 $\frac{302281}{8} \approx 37785.1$ 亿元,故 A 选项错误;

对于 B 选项,由 2023 年 8 月份. 社会消费品零售总额为 37933 亿元. 同比增长 4.6%,可得 2022 年 8 月份,社会消费品零售总额约为 $\frac{37933}{1-4.6\%} \approx 36264.8$ 亿元. 故 B 选项正确;

对于 C 选项,由图表可知去掉 -5.9,18.4 数据更集中,标准差相对于原数据来说变小了,故 C 选项正确;对于 D 选项,极差为 18.4% -(-5.9%) = 24.3%,中位数为 $\frac{3.1\%+3.5\%}{2}$ = 3.3%,可得 3.3% × 8 = 26.4%,

24.3% < 26.4%, 故 D 选项错误. 故选 BC.

10. 【答案】BC

【解析】设等比数列 $\left\{a_{n}\right\}$ 的公比为q,由 $a_{1}a_{4}=8$,有 $a_{2}a_{3}=8$,联立方程 $\left\{a_{2}a_{3}=8,\atop a_{3}=a_{2}+2,\atop a_{3}=4\right\}$ 解得 $\left\{a_{2}=2,\atop a_{3}=4\right\}$

$$\begin{cases} a_2 = -4, \\ a_3 = -2 \end{cases} \text{ (\pm5), } \ \ \ \, \bar{q} \ q = \frac{a_3}{a_2} = 2 \text{ , } \ \ \ \, \bar{\eta} \ \ \, \bar{q} \ a_n = a_2 q^{n-2} = 2 \times 2^{n-2} = 2^{n-1} \, .$$

对于 A 选项,由 $a_5 = 2^5 = 32$, $a_5 = 2^4 = 16$,有 $a_6 - 4a_5 = 32 - 64 = -32$,故 A 选项错误;

对于 B 选项, $S_7 = \frac{1-2^7}{1-2} = 127$, 故 B 选项正确;

对于 C 选项, 由 $S_n = \frac{1-2^n}{1-2} = 2^n - 1$, 有 $S_n = 2a_n - 1$, 故 C 选项正确;

对于 D 选项,由
$$\frac{\log_2 a_n}{S_n+1} = \frac{\log_2 2^{n-1}}{\left(2^n-1\right)+1} = \frac{n-1}{2^n}$$
,令 $f(n) = \frac{n-1}{2^n}$,有 $f(n+1)-f(n) = \frac{n}{2^{n+1}} - \frac{n-1}{2^n} = \frac{2-n}{2^{n+1}}$,

可得 $f(1) < f(2) = f(3) > f(4) > \cdots$ 有 $f(n)_{\min} = f(2) = f(3) = \frac{1}{4}$,可得数列 $\{b_n\}$ 中的最大项为 b_2 或 b_3 ,故 D 选项错误,故选 BC.

11.【答案】AC

【解析】对于 A 选项,正方体外接球的半径为 $\frac{\sqrt{3}}{2}$,内切球的半径为 $\frac{1}{2}$,可得正方体的外接球的表面积是正

方体内切球的表面积的
$$\frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{2}\right)^2} = 3$$
 倍,故 A 选项正确;

对于 B 选项,由点 A_1 和点 B 到平面 AEB_1 的距离相等,若点 A_1 和点 C 到平面 AEB_1 的距离相等,必有 BC // 平面 AEB_1 , 又由 BC // AD . 可得 AD // 平面 AEB_1 ,与 AD 介 平面 AEB_1 。 故 B 选项错误; 对于 C 选项,如图,在 C_1D_1 上取一点 F,使得 EF // C_1D ,连接 B_1F ,设 $D_1E=a$ (0 < a < 1),由 EF // C_1D // AB_1 ,可得平面 AB_1FE 为过 A , B_1 ,E 三点的截面,在梯形 AB_1FE 中, $AB_1=\sqrt{2}$, $EF=\sqrt{2}a$, $AE=\sqrt{1^2+(1-a)^2}=\sqrt{a^2-2a+2}$, $B_1F=\sqrt{1^2+(1-a)^2}=\sqrt{a^2-2a+2}$, 梯形 AB_1FE 的高为 $\sqrt{a^2-2a+2}-\left(\frac{\sqrt{2}-\sqrt{2}a}{2}\right)^2=\sqrt{\frac{1}{2}a^2-a+\frac{3}{2}}$, 梯形 AB_1FE 的面积为

$$\frac{1}{2} \times \left(\sqrt{2} + \sqrt{2}a\right) \times \sqrt{\frac{1}{2}a^2 - a + \frac{3}{2}} = \frac{1}{2}(a+1)\sqrt{a^2 - 2a + 3} = \frac{1}{2}\sqrt{(a+1)^2(a^2 - 2a + 3)}, \Leftrightarrow$$

$$f(a) = (a+1)^2 (a^2-2a+3)(0 < a < 1)$$
, $f(a) = (a+1)^2 (a^2-2a+3)(0 < a < 1)$

$$f'(a) = 2(a+1)(a^2-2a+3) + (a+1)^2(2a-2) = 4(a+1)(a^2-a+1) = 4(a+1)\left[\left(a-\frac{1}{2}\right)^2 + \frac{3}{4}\right] > 0 . \quad \exists \exists a \in \mathbb{N}$$

函数 f(a) 单调递增. 可得正方体被平面 AEB_1 所截得的截面面积随着 D_1E 的增大而增大. 故 C 选项正确;

对于 D 选项,
$$V_{E-AA_1B_1} = \frac{1}{3} \times \frac{1}{2} \times 1 \times 1 \times 1 = \frac{1}{6}$$
 , $V_{E-A_1B_1FD_1} = \frac{1}{3} \times a \times \left[1 \times 1 - \frac{1}{2} \times 1 \times \left(1 - a\right)\right] = \frac{1}{6}\left(a^2 + a\right)$, 被平面

 AEB_1 所截得的上部分的几何体的体积为 $\frac{1}{6}(a^2+a)+\frac{1}{6}=\frac{1}{3}$,整理为 $a^2+a-1=0$,解得 $a=\frac{\sqrt{5}-1}{2}$,故 D 选项错误.故选 AC.

12. 【答案】ABD

【解析】对于 A 选项. 由 $a = \sqrt{3}$, b = 1 , c = 2 ,可得双曲线 C 的离心率为 $e = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$,故 A 选项正确;

对于 B 选项,双曲线 C 的渐近线方程为 $y=\pm \frac{\sqrt{3}}{3}x$. 由对称性,不妨设直线 l 与渐近线 $y=-\frac{\sqrt{3}}{3}x$ 重合,点

P位于第四象限,记直线 l 与 x 轴的交点为 T,由直线 $y = -\frac{\sqrt{3}}{3}x$ 的倾斜角为 $\frac{5\pi}{6}$,有 $\angle POT = \frac{\pi}{6}$,又由

 $|OP| = \sqrt{3}$, 可得 |OT| = 2 . 又由 |OF| = 2 , 故直线 l 过双曲线 C 的一个焦点,故 B 选项正确;

对于 C 选项,当直线 l 与双曲线 C 的一条渐近线平行时,由对称性,不妨设直线 l 的方程为 $y = \frac{\sqrt{3}}{3}x + m$ (其

中
$$m < 0$$
),有 $\frac{|m|}{\sqrt{1+\frac{1}{3}}} = \sqrt{3}$,可得 $m = -2$,直线 l 的方程为 $y = \frac{\sqrt{3}}{3}x - 2$,联立方程
$$\begin{cases} \frac{x}{3} - y^2 = 1, \\ y = \frac{\sqrt{3}}{3}x - 2, \end{cases}$$
 解方程

组可得点 Q 的坐标为 $\left(\frac{5\sqrt{3}}{4}, -\frac{3}{4}\right)$. 可得 $\left|OQ\right| = \sqrt{\frac{75}{16} + \frac{9}{16}} = \frac{\sqrt{21}}{2}$, 故 C 选项错误;

对于 D 选项, 设点 P 的坐标为 $\left(s,t\right)$, 可得直线 l 的方程为 sx+ty=3 . 其中 $s^2+t^2=3$. 联立方程 $\begin{cases} y=\frac{\sqrt{3}}{3}x,\\ sx+ty=3, \end{cases}$

解得
$$x = \frac{3\sqrt{3}}{\sqrt{3}s+t}$$
, 联立方程
$$\begin{cases} y = -\frac{\sqrt{3}}{3}x, & \text{解得 } x = \frac{3\sqrt{3}}{\sqrt{3}s-t}, & \text{可得线段 DE } \text{的中点的横坐标为} \\ sx + ty = 3. \end{cases}$$

$$\frac{1}{2} \left(\frac{3\sqrt{3}}{\sqrt{3}s+t} + \frac{3\sqrt{3}}{\sqrt{3}s-t} \right) = \frac{9s}{3s^2-t^2}, \quad 联立方程 \begin{cases} \frac{x^2}{3} - y^2 = 1, \\ sx+ty = 3, \end{cases}$$

 $(3s^2-t^2)x^2-18sx+(3t^2+27)=0$,可得线段 MN 的中点的横坐标为 $\frac{1}{2}\times\frac{18s}{3s^2-t^2}=\frac{9s}{3s^2-t}$,可得线段 DE 和 MN 的中点相同,故有 |DM|=|EN|,故 D 选项正确.故选 ABD.

三、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

13.【答案】 $\frac{1}{6}$

【解析】由
$$P(A|B) = \frac{P(AB)}{P(B)}$$
,有 $P(AB) = P(A|B)P(B) = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$,又由

$$P(A+B) = P(A) + P(B) - P(AB)$$
, $find F(A) + \frac{3}{4} - \frac{1}{4} = \frac{2}{3}$, $find F(A) = \frac{1}{6}$.

14. 【答案】±2

【解析】
$$\left(ax + \frac{1}{x}\right)^6$$
的展开式中无含 x^3 项,含 x^2 的项为 $C_6^2\left(ax\right)^4\left(\frac{1}{x}\right)^2 = 15a^4x^2$,: $(1+x)\left(ax + \frac{1}{x}\right)^6$ 中含 x^3 的项为 $15a^4x^3$,则 $15a^4 = 240$.解得 $a = \pm 2$.

15.【答案】[-1,0)

【解析】①当 $a \ge 0$ 时,若x < a,可得 $f(x) \ge -1$,若 $x \ge a$, $f(x) \ge -2$,函数f(x)的值域不可能为 \mathbf{R} ;②当a < 0时,函数f(x)在 $(-\infty,a)$, $[a,+\infty)$ 上单调递增,若函数f(x)的值域为 \mathbf{R} . 只需 $|a|-2 \le -1$,可得 $-1 \le a < 0$. 由上知,实数a的取值范围为[-1,0).

16.【答案】
$$\frac{811\pi}{3}$$

【解析】方程 $\cos 2x = 3\cos x - 2$ 可化为 $2\cos^2 x - 3\cos x + 1 = 0$,因式分解为 $(\cos x - 1)$. $\left(\cos x - \frac{1}{2}\right) = 0$,解

得 $\cos x = 1$ 或 $\cos x = \frac{1}{2}$,方程的最小的 29 个非负实数解中有 10 个是以 0 为首项, 2π 为公差的等差数列. 其

和为 $10\times0+\frac{10\times9}{2}\times2\pi=90\pi$;有 10 个是以 $\frac{\pi}{3}$ 为首项, 2π 为公差的等差数列,其和为

$$10 \times \frac{\pi}{3} + \frac{10 \times 9}{2} \times 2\pi = \frac{280\pi}{3}$$
; 有 9 个是以 $\frac{5\pi}{3}$ 为首项, 2π 为公差的等差数列,其和为

$$9 \times \frac{5\pi}{3} + \frac{8 \times 9}{2} \times 2\pi = 87\pi$$
. 可得方程的最小的 29 个非负实数解之和为 $90\pi + \frac{280\pi}{3} + 87\pi = \frac{811\pi}{3}$

四、解答题: 本题共6小题, 共70分. 解答应写出必要的文字说明、证明过程及演算步骤.

17. 【答案】(1)
$$a_n = n^2$$
 (2) $\{n \in \mathbb{N}^* | 1 \le n \le 8\}$

【解析】(1) 由
$$a_{n+1} = a_n + 2\sqrt{a_n} + 1$$
, 有 $a_{n+1} = (\sqrt{a_n} + 1)$,

有
$$\sqrt{a_{n+1}} = \sqrt{a_n} + 1$$
,有 $\sqrt{a_{n+1}} - \sqrt{a_n} = 1$,

可得数列 $\left\{\sqrt{a_n}\right\}$ 是公美为 1 的等差数列,

有
$$\sqrt{a_n} = \sqrt{a_1} + n - 1 = n$$
 ,

可得数列 $\{a_n\}$ 的通项公式为 $a_n = n^2$;

有
$$S_n = \left(1 - \frac{1}{2^2}\right) + \left(\frac{1}{2^2} - \frac{1}{3^2}\right) + \dots + \left\lceil \frac{1}{n^2} - \frac{1}{(n+1)^2} \right\rceil = 1 - \frac{1}{(n+1)^2}$$
,

不等式
$$S_n < \frac{99}{100}$$
可化为 $1 - \frac{1}{(n+1)^2} < \frac{99}{100}$,解得 $0 < n < 9$,

可得满足 $S_n < \frac{99}{100}$ 的正整数 n 的集合为 $\left\{ n \in \mathbb{N}^* \left| 1 \le n \le 8 \right\} \right.$

18. 【答案】(1)
$$A = \frac{\pi}{3}$$
 (2) $3 + 3\sqrt{3}$

【解析】(1) 由正弦定理有 $bc(5\cos A - \cos 2A) = 3bc$.

两边除以bc,有 $5\cos A - \cos 2A = 3$,

由二倍角公式,有 $5\cos A - (2\cos^2 A - 1) = 3$,

整理为 $2\cos^2 A - 5\cos A + 2 = 0$,

上式因式分解为 $(2\cos A-1)(\cos A-2)=0$,

解得 $\cos A = \frac{1}{2}$ 或 $\cos A = 2$ (舍去),

又由 $0 < A < \pi$, 可得 $A = \frac{\pi}{3}$;

(2) 由 $AB \perp AD$. 有 $\angle CAD = \frac{\pi}{6}$,

又由 BC = 3CD,可得 $S_{\triangle ABC} = 3S_{\triangle ACD}$,有 $\frac{1}{2}AB \times AC\sin\frac{\pi}{3} = 3 \times \frac{1}{2}AD \times AC\sin\frac{\pi}{6}$,可得 $AB = \sqrt{3}AD$,又 由 $\triangle ABD$ 的面积为 $2\sqrt{3}$ 及 $\angle BAD = \frac{\pi}{2}$,有 $\frac{1}{2}AB \times AD = 2\sqrt{3}$,

代入 $AB = \sqrt{3}AD$,可得 AD = 2 , $AB = 2\sqrt{3}$,

又由
$$S_{\triangle ABC} = \frac{3}{4} S_{\triangle ABD}$$
,有 $\frac{1}{2} AB \times AC \sin \frac{\pi}{3} = \frac{3}{4} \times 2\sqrt{3}$,代入 $AB = 2\sqrt{3}$,可得 $AC = \sqrt{3}$,

在 $\triangle ABC$ 中,由余弦定理,有 $BC = \sqrt{AB^2 + AC^2 - AB \times AC} = \sqrt{12 + 3 - 2\sqrt{3} \times \sqrt{3}} = 3$,

有 $\triangle ABC$ 的周长为 $2\sqrt{3}+\sqrt{3}+3=3+3\sqrt{3}$.

19.【答案】(1) 略 (2) $AB = \sqrt{2}$

【解析】(1)证明:如图,连接BD与AC相交于点O,连接OE.

$$\therefore BC // AD$$
, $AD = 2BC$, $\therefore OD = 2OB$,

$$\therefore OD = 2OB$$
, $DE = 2PE$. $\therefore OE // BP$,

:: OE // BP ,OE ⊂ 平面 ACE ,BP ⊄ 平面 ACE . :: BP // 平面 ACE

(2) 在
$$\triangle PAD$$
 中, $\cos \angle PAD = \frac{AP^2 + AD^2 - DP^2}{2AP \cdot AD} = \frac{\left(\sqrt{2}\right)^2 + 2^2 - \left(\sqrt{10}\right)^2}{2 \times 2 \times \sqrt{2}} = -\frac{\sqrt{2}}{2}$,可得 $\angle PAD = \frac{3\pi}{4}$,

由 $AB \perp AD$,平面 $PAD \perp$ 底面 ABCD ,过点 A 作底面 ABCD 的垂线 l ,垂线在平面 PAD 内,以 A 为坐标原点, AB , AD ,直线 l 分别为 x , y , z 轴建立如图所示的空间直角坐标系,

有A(0,0,0), D(0,2,0).

又由
$$AP = \sqrt{2}$$
 , $\angle PAD = \frac{3\pi}{4}$, 可得点 P 的坐标为 $(0,-1,1)$

设 AB = a(a > 0), 可得点 B 的坐标为(a,0,0), 点 C 的坐标为(a,1,0),

设平面 PAC 的法向量为 $\overrightarrow{m} = (x, y, z)$. 由 $\overrightarrow{AC} = (a, 1, 0)$, $\overrightarrow{AP} = (0, -1, 1)$,

有
$$\left\{ \overrightarrow{AC} \cdot \overrightarrow{m} = ax + y = 0, \atop \overrightarrow{AP} \cdot \overrightarrow{m} = -y + z = 0, \right.$$
 取 $x = -1$, $y = a$, 可得平面 PAC 的一个法向量为 $\overrightarrow{m} = \left(-1, a, a\right)$,

设平面
$$EAC$$
 的法向量为 $\vec{n} = (p,q,r)$,由 $\overrightarrow{AC} = (a,1,0)$, $\overrightarrow{AE} = \left(0.0,\frac{2}{3}\right)$,

有
$$\left\{ \overrightarrow{AC} \cdot \overrightarrow{n} = ap + q = 0, \atop \overrightarrow{AE} \cdot \overrightarrow{n} = \frac{2}{3}r = 0, \right.$$
 取 $p = 1$, $q = -a$, $r = 0$, 可得平面 ACE 的一个法向量为 $\overrightarrow{n} = \left(1, -a, 0\right)$.

$$\pm \vec{m} \cdot \vec{n} = -a^2 - 1 \; , \quad |\vec{m}| = \sqrt{2a^2 + 1} \; , \quad |\vec{n}| = \sqrt{a^2 + 1} \; , \quad |\vec{n}| =$$

又由平面 PAC 与平面 EAC 的夹角的余弦值为 $\frac{\sqrt{15}}{5}$. 有 $\frac{\left|a^2+1\right|}{\sqrt{\left(a^2+1\right)\left(2a^2+1\right)}} = \frac{\sqrt{15}}{5}$,

化简为 $5a^2 + 5 = 6a^2 + 3$,解得 $a = \sqrt{2}$ 或 $a = -\sqrt{2}$ (舍).

由上知 $AB = \sqrt{2}$.

20. 【答案】(1) 分布列见解析,
$$E(X) = \frac{12}{5}$$
, $D(X) = \frac{24}{25}$

(2) 这 4 名学员至少要增加 6 天的学习,才能保证这 4 名学员都能通过考试并领取驾驶证

【解析】(1) 1 名学员通过考试并领取驾驶证的概率为 $\frac{15}{16} \times \frac{4}{5} \times \frac{4}{5} = \frac{3}{5}$,根据题意可知 $X \sim B\left(4, \frac{3}{5}\right)$,

X的取值分别为 0, 1, 2, 3, 4,

$$P(X=0) = C_4^0 \times \left(1 - \frac{3}{5}\right)^4 = \frac{16}{625}$$

$$P(X=1) = C_4^1 \times \frac{3}{5} \times \left(1 - \frac{3}{5}\right)^3 = \frac{96}{625}$$

$$P(X=2) = C_4^2 \times \left(\frac{3}{5}\right)^2 \times \left(1 - \frac{3}{5}\right)^2 = \frac{216}{625}$$

$$P(X=3) = C_4^3 \times \left(\frac{3}{5}\right)^3 \times \left(1 - \frac{3}{5}\right) = \frac{216}{625},$$

$$P(X=4) = C_4^4 \times \left(\frac{3}{5}\right)^4 \times \left(1 - \frac{3}{5}\right)^0 = \frac{81}{625}$$

故 X 的分布列为:

X	0	1	2	3	4
P	<u>16</u>	96	216	216	81
	625	625	625	625	625

$$E(X) = 4 \times \frac{3}{5} = \frac{12}{5}, \quad D(X) = 4 \times \frac{3}{5} \times \left(1 - \frac{3}{5}\right) = \frac{24}{25};$$

(2) 增加
$$k(k)$$
 为正整数)天学习后,每位学员通过考试拿到驾驶证的概率为 $1-\left(1-\frac{3}{5}\right)^k \times \frac{2}{5} = 1-\left(\frac{2}{5}\right)^{k+1}$,

若这 4 名学员都能通过考试并领取驾驶证,有 $\left[1-\left(\frac{2}{5}\right)^{k+1}\right]^4 > 0.99$,

有
$$1 - \left(\frac{2}{5}\right)^{k+1} > 0.9975$$
,有 $\left(\frac{2}{5}\right)^{k+1} < 0.0025$,有 $k > \log_{0.4} 0.0025 - 1$,

$$\mathbb{X} \pm \log_{0.4} 0.0025 = \frac{\lg 0.0025}{\lg 0.4} = \frac{\lg 25 - 4}{\lg 4 - 1} = \frac{2 - \lg 4 - 4}{\lg 4 - 1} = \frac{2 + 2\lg 2}{1 - 2\lg 2} \approx \frac{2 + 2 \times 0.3010}{1 - 2 \times 0.3010} \approx 6.54 \ .$$

可得k > 5.54,

故这4名学员至少要增加6天的学习,才能保证这4名学员都能通过考试并领取驾驶证.

21. 【答案】(1) $y^2 = 4x$ (2) 略

【解析】设M, N的坐标分别为 (x_1,y_1) , (x_2,y_2) ,

(1) 由抛物线的定义有 $|MF| = x_1 + \frac{p}{2} = 2$, $|NF| = x_2 + \frac{p}{2} = 5$,可得 $x_1 = 2 - \frac{p}{2}$, $x_2 = 5 - \frac{p}{2}$,

联立方程 $\begin{cases} y^2 = 2px, \\ y = -2x + 4, \end{cases}$ 消去 y 后整理为 $2x^2 - (p+8)x + 8 = 0$, 有 $x_1x_2 = 4$,

有 $\left(2-\frac{p}{2}\right)\left(5-\frac{p}{2}\right)=4$,整理为 $p^2-14p+24=0$,解得p=2或p=12 (舍去),

故抛物线 C 的标准方程为 $y^2 = 4x$;

(2) 证明: 直线
$$l$$
 的斜率为 $\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{\frac{y_2^2}{4} - \frac{y_1^2}{4}} = \frac{4}{y_2 + y_1}$,

直线 l 的方程为 $y-y_1=\frac{4}{y_2+y_1}(x-x_1)$,代入 $x_1=\frac{y_1}{4}$ 后整理为 $4x-(y_1+y_2)y+y_1y_2=0$,

令
$$x = -1$$
, 得 $y = \frac{y_1 y_2 - 4}{y_1 - y_2}$. 可得点 P 的坐标为 $\left(-1, \frac{y_1 y_2 - 4}{y_1 + y_2}\right)$,

焦点 F 的坐标为(1,0), 直线 MF 的方程为 $(x_1-1)y=y_1(x-1)$, 整理为 $y_1x-(x_1-1)y-y_1=0$,

点 P 到直线 MF 的距离为
$$d_1 = \frac{\left| -y_1 - \frac{(y_1 y_2 - 4)(x_1 - 1)}{y_1 + y_2} - y_1 \right|}{\sqrt{(x_1 - 1)^2 + y_1^2}} = \frac{\left| 2y_1 + \frac{(y_1 y_2 - 4)\left(\frac{y_1^2}{4} - 1\right)}{y_1 + y_2} \right|}{\sqrt{(x_1 - 1)^2 + 4x_1}}$$

$$=\frac{\left|4y_{1}^{2}+4y_{1}y_{2}+y_{1}^{3}y_{2}+16\right|}{4\sqrt{\left(x_{1}+1\right)^{2}}\left|y_{1}+y_{2}\right|}=\frac{\left|4\left(y_{1}^{2}+4\right)+y_{1}y_{2}\left(y_{1}^{2}+4\right)\right|}{\left|\left(y_{1}+y_{2}\right)\left(4x_{1}+4\right)\right|}=\frac{\left|\left(y_{1}^{2}+4\right)\left(y_{1}y_{2}+4\right)\right|}{\left|\left(y_{1}+y_{2}\right)\left(y_{1}^{2}+4\right)\right|}=\frac{\left|y_{1}y_{2}+4\right|}{\left|y_{1}+y_{2}\right|},$$

同理点 P 到直线 NF 的距离为 $d_2 = \frac{|y_1y_2 + 4|}{|y_1 + y_2|}$,

由 $d_1 = d_2$ 及直线 l 与抛物线 C 的位置关系,可得直线 PF 是 $\angle MFN$ 的外角平分线.

22. 【答案】(1) 详解见解析 (2) 略 (3)
$$\left(-e^{\frac{3}{2}}, -\frac{1}{4}\right)$$

【解析】(1) 函数 f(x) 的定义域为 $(0,+\infty)$,

$$f'(x) = \frac{1}{2} \left[2x \left(\ln x - \frac{1}{2} \right) + x \right] + a \left(\ln x - 1 + 1 \right) = x \ln x + a \ln x = (x + a) \ln x$$
,

①当a>0时,解不等式f'(x)>0. 有x>1,函数f(x)的减区间为(0,1),增区间为 $(1,+\infty)$;

②当a=-1时. $f'(x)=(x-1)\ln x$,若x>1,x-1>0, $\ln x>0$,可得f'(x)>0;若x<1,x-1<0,

 $\ln x < 0$,可得 f'(x) > 0;若 x = 1,可得 f'(x) = 0.故有 $f'(x) \ge 0$,函数 f(x) 单调递增,增区间为 $(0, +\infty)$,没有减区间;

③当-1 < a < 0时,解不等式 f'(x) > 0,有 x > 1或 0 < x < -a,故函数 f(x) 的增区间为(0,-a), $(1,+\infty)$,减区间为(-a,1);

④当a<-1时,解不等式f'(x)>0. 有x>-a或0< x<1,故函数f(x)的增区间为(0,1), $(-a,+\infty)$,减区间为(1,-a);

(2) 证明: 若 a > 0,函数 f(x) 的减区间为(0,1),增区间为 $(1,+\infty)$, $f(1) = -\frac{1}{4} - a < 0$.

当
$$0 < x < 1$$
 时,由 $\ln x < 0$,有 $f(x) = x \left[\frac{1}{2} x \left(\ln x - \frac{1}{2} \right) + a \left(\ln x - 1 \right) \right] < 0$, $f(e) = \frac{1}{4} e^2 > 0$,

由上知,函数f(x)有唯一的零点;

(3) 由 (2) 知. 若
$$f(x) > 0$$
, 必有 $a < 0$. 又由 $f(1) = -a - \frac{1}{4} > 0$, 可得 $a < -\frac{1}{4}$.

又由
$$x > 0$$
,不等式 $f(x) > 0$ 可化为 $\frac{1}{2}x\left(\ln x - \frac{1}{2}\right) + a\left(\ln x - 1\right) > 0$,

设
$$g(x) = \frac{1}{2}x\left(\ln x - \frac{1}{2}\right) + a\left(\ln x - 1\right)$$
,

有
$$g'(x) = \frac{1}{2} \left(\ln x + \frac{1}{2} \right) + \frac{a}{x} = \frac{1}{2} \ln x + \frac{a}{x} + \frac{1}{4} = \frac{2x \ln x + x + 4a}{4x}$$

当0 < x < 1且0 < x < -4a时, $\ln x < 0$,x + 4a < 0,可得g'(x) < 0,

当x > 1且x > -4a时, $\ln x > 0$,x + 4a > 0,可得g'(x) > 0,

当 a < 0 时,函数 $y = \frac{1}{2} \ln x + \frac{a}{x} + \frac{1}{4}$ 单调递增,故存在正数 m 使得 $2m \ln m + m + 4a = 0$.

若 $0 < m \le 1$,有 $\ln m \le 0$, 4a < -1,有 $2m \ln m + m + 4a < m - 1 < 0$,与 $2m \ln m + m + 4a = 0$ 矛盾,可得 m > 1,

当x > m时,g'(x) > 0;当x < m时,g'(x) < 0,可得函数g(x)的减区间为(0,m),增区间为 $(m,+\infty)$,

若
$$g(x) > 0$$
 , 必有 $g(m) = \frac{1}{2}m\left(\ln m - \frac{1}{2}\right) + a\left(\ln m - 1\right) > 0$, 有 $2m\ln m - m + 4a\ln m - 4a > 0$,

又由 $2m\ln m + m + 4a = 0$,有 $2m\ln m - m + 4a\ln m - 4a + (2m\ln m + m + 4a) > 0$,

有 $m \ln m + a \ln m > 0$, 有 $(m+a) \ln m > 0$.

又由m>1,有m>-a,可得a>-m,

有 $2m\ln m + m + 4a = 0 > 2m\ln m + m - 4m = 2m\ln m - 3m$, 可得 $1 < m < e^{\frac{3}{2}}$,

由
$$a = -\frac{1}{4}(2m\ln m + m)$$
,及 $1 < 2m\ln m + m < 4e^{\frac{2}{2}}$,可得 $-e^{\frac{3}{2}} < a < -\frac{1}{4}$,

若
$$f(x) > 0$$
. 则实数 a 的取值范围为 $\left(-e^{\frac{3}{2}}, -\frac{1}{4}\right)$.