Automatic discovery of fair paths in infinite-state transition systems

Alessandro Cimatti, Alberto Griggio, Enrico Magnago

Fondazione Bruno Kessler

Context

Problem

Does a transition system admit at least one fair path? (Counterexample to liveness property).

- Undecidable in infinite-state systems.
- Techniques to prove the language empty (property holds) and techniques to prove the existence of a fair path (witness).
- Witnesses are often limited to lasso-shaped paths.
- Not sufficient in infinite-state, need to look for witnesses with different shapes.

How can we represent them?

Assume we want to prove the existence of an infinite run for the code below in which c=0 infinitely often.

- 0: int c, n;
- 1: while \top do
- 2: while c < n do
- $c \leftarrow c + 1$
- 4: end while
- 5: $c \leftarrow nondet()$
- 6: $n \leftarrow n+1$
- 7: end while

```
VAR c: integer; n: integer;

TRANS
    (c < n \lambda next(c)=c + 1 \lambda next(n)=n) \lambda
    (c \ge n \lambda next(n)=n + 1);

FAIRNESS c = 0:</pre>
```

Funnel-loop: reachable, non-empty underapproximation with only fair paths.

Assume we want to prove the existence of an infinite run for the code below in which c=0 infinitely often.

```
Funnel-loop: reachable, non-empty
 0: int c, n;
 1: while \top do Source region with ranking function Rf, th only fair
         while c < ensures termination of inner loop.
                                                                                                       Rf = n - c
 3:
            c \leftarrow c + 1
                                                            c ≤ n
                                                            n > 0
 4: end while
                                                                                 Rf = 0
 5: c \leftarrow nondet()
 6: n \leftarrow n+1
 7: end while
                                                                                      n' = n + 1
                                                                                      c' = 0
VAR c: integer; n: integer;
TRANS
  \begin{array}{l} (c < n \ \land \ \underset{next}{next}(c) = c + 1 \ \land \ \underset{next}{next}(n) = n) \ \lor \\ (c \ge n \ \land \ \underset{next}{next}(n) = n + 1); \end{array}
                                                                                   c = 0
FAIRNESS c = 0:
```

Assume we want to prove the existence of an infinite run for the code below in which c=0 infinitely often.

Assume we want to prove the existence of an infinite run for the code below in which c=0 infinitely often.

- 0: int c, n; 1: while \top do
- 2: while c < n do
- 3: $c \leftarrow c + 1$
- 4: end while
- 5: $c \leftarrow nondet()$
- 6: $n \leftarrow n+1$
- 7: end while

Funnel-loop: reachable, non-empty underapproximation with only fair paths.

Rf = n - c

VAR c: integer; n: intege

TRANS

 $\begin{array}{l} (\texttt{c} \; < \; \texttt{n} \; \land \; \underset{\mathsf{next}}{\mathsf{next}}(\texttt{c}) = \texttt{c} \; + \; 1 \; \land \; \underset{\mathsf{next}}{\mathsf{next}}(\texttt{n}) = \texttt{n}) \; \lor \\ (\texttt{c} \; \geq \; \texttt{n} \; \land \; \underset{\mathsf{next}}{\mathsf{next}}(\texttt{n}) = \texttt{n} \; + \; 1); \end{array}$

FAIRNESS c = 0;

Assume we want to prove the existence of an infinite run for the code below in which c=0 infinitely often.

Segmentation: funnels

Funnels

Segment infinite paths into sequence of finite paths.

 $fnl \doteq \langle S, T, D, RF \rangle$

- T left-total w.r.t. S;
- RF > $0 \land S \land T \rightarrow S' \land RF' < RF$;
- RF = $0 \land S \land T \rightarrow D'$.

Funnel-loop

Funnel-loop: concatenation of n funnels $fnl_i = \langle S_i, T_i, D_i, R_{F_i} \rangle$

- ullet Regions reachable by transition system M.
- Funnels are correctly concatenated: $D_i \to S_{i+1\%n}$.
- Last destination region underapproximates the fair states: $D_{n-1} \to Fair.$

Funnel-loop search procedure overview

Enumerate paths that could correspond to an iteration over some funnel-loop.

Funnel-loop search procedure overview

Consider sequence of states that correspond to a fair loop in some abstract space.

Funnel-loop search procedure overview

Define funnel-loop as strengthening of regions and transitions.

10: return unknown

```
Algorithm SEARCH-FUNNEL-LOOP(M)
 1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRACT-LOOPS}(M) do
       for fnl\_template \in \text{GENERATE-TEMPLATES}(v_0, abst\_s, abst\_t) do
 2:
 3:
          ef\_constrs \leftarrow fnl\_template.ef\_constraints()
          \langle found, model \rangle \leftarrow \text{SEACH-PARAMETER-ASSIGNMENT}(ef\_constrs)
 4:
          if found == \top then
 5:
 6:
             return \langle model, fnl\_template \rangle
          end if
 7:
       end for
 8.
 9: end for
```

```
Given a fair transition
Algorithm SEARCH-FUNNEL-LOOP(M)
 1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRAC} system M
       for fnl\_template \in GENERATE-TEMPLATES(v_0, abst\_s, abst\_t) do
 2:
 3:
          ef\_constrs \leftarrow fnl\_template.ef\_constraints()
          \langle found, model \rangle \leftarrow \text{SEACH-PARAMETER-ASSIGNMENT}(ef\_constrs)
 4:
 5:
          if found == \top then
 6:
             return \langle model, fnl\_template \rangle
 7:
          end if
       end for
 9: end for
10: return unknown
```

9: end for

10: **return** unknown

```
Algorithm SEARCH-FUNNEL-LOOP(M)
 1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRACT-LOOPS}(M) do
       for fnl\_template \in GENERATE-TEMP ATES(v_0, abst\_s, abst\_t) do
 2:
         ef\_constrs \leftarrow fnl\_template.ef\_constraints()
3:
4:
          \langle found, model \rangle \leftarrow \text{SEACH-PARAM}
                                               Enumerate underapproxima-
         if found == \top then
5:
            return \langle model, fnl\_template \rangle tions of M that represent fair
6:
                                               loops over some predicates.
7:
         end if
      end for
```

```
Algorithm SEARCH-FUNNEL-LOOP(M)

1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRACT-LOOPS}(M) do

2: for fnl\_template \in \text{GENERATE-TEMPLATES}(v_0, abst\_s, abst\_t) do

3: ef\_constrs \leftarrow fnl\_template.ef\_constraints()

4: abst\_s is a sequence of regions, abst\_t is a sequence of transitions, v_0 is a reachable state in the first regions.

9: end for

10: return unknown
```

10: **return** unknown

```
Algorithm SEARCH-FUNNEL-LOOP(M)
 1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRACT-LOOPS}(M) do
       for fnl\_template \in \text{GENERATE-TEMPLATES}(v_0, abst\_s, abst\_t) do
 2:
         ef\_constrs \leftarrow fnl\_template.ef\_constraints()
3:
          \langle found, model \rangle \leftarrow \text{SEACH-PARAMETER-ASSIGNMENT}(ef\_constrs)
4:
         if found == \top then
5:
            return \langle model, fnl\_templ\rangle Generate funnel-loop templates by
6:
7:
         end if
                                           strengthening abst\_s and abst\_t
       end for
                                           with parametric predicates.
9: end for
```

end for

10: return unknown

9: end for

```
Algorithm SEARCH-FUNNEL-LOOP(M)

1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRACT-LOOPS}(M) do

2: for fnl\_template \in \text{GENERATE-TEMPLATES}(v_0, abst\_s, abst\_t) do

3: ef\_constrs \leftarrow fnl\_template.ef\_constraints()

4: \langle found, model \rangle \leftarrow \text{SEACH-PARAMETER-ASSIGNMENT}(ef\_constrs)

5: if found == \top then

6: return \langle model, fnl\_

6: return \langle model, fnl\_

7: end if assignment to parameters such that
```

loop.

template corresponds to funnel-

```
Algorithm SEARCH-FUNNEL-LOOP(M)
 1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRACT-LOOPS}(M) do
       for fnl\_template \in GENERATE-TEMPLATES(v_0, abst\_s, abst\_t) do
 2:
 3:
          ef\_constrs \leftarrow fnl\_template.ef\_constraints()
          \langle found, model \rangle \leftarrow \text{SEACH-PARAMETER-ASSIGNMENT}(ef\_constrs)
 4:
          if found == \top then
 5:
             return \langle model, fnl\_template \rangle
 6:
 7:
          end if
                                     Solve \exists \forall problem: find assignment
       end for
 9: end for
                                     for parameters
10: return unknown
```

```
Algorithm SEARCH-FUNNEL-LOOP(M)
 1: for \langle v_0, abst\_s, abst\_t \rangle \in \text{GENERATE-ABSTRACT-LOOPS}(M) do
       for fnl\_template \in GENERATE-TEMPLATES(v_0, abst\_s, abst\_t) do
 2:
3:
         ef\_constrs \leftarrow fnl\_template.ef\_constraints()
         \langle found, model \rangle \leftarrow \text{SEACH-PARAMETER-ASSIGNMENT}(ef\_constrs)
4:
         if found == \top then
5:
6:
            return \langle model, fnl\_template \rangle
7:
         end if
       end for
                  If successful return funnel-loop,
9: end for
10: return unk otherwise analyse next template or
```

candidate loop

Algorithm GENERATE-ABSTRACT-LOOPS(M)

```
1: \langle V, I, T, bad \rangle \leftarrow \text{ENCODE-BMC-FAIR-ABSTRACT-LOOP}(M)
 2: for k \in [0, 1, 2, ...] do
         query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k)
 3:
 4:
        \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
 5:
         refs \leftarrow []
         while sat do
 6:
 7:
              \langle abst\_s, abst\_t \rangle \leftarrow \text{GET-IMPLICANT}(model, query)
 8:
              \langle is\_ranked, rf \rangle \leftarrow \text{RANK-LOOP}(abst\_s, abst\_t)
 9:
              if is ranked then
10:
                   \langle V, I, T, bad \rangle \leftarrow \text{REMOVE-RANKED-LOOPS}(V, I, T, bad, rf)
11:
              else
12:
                  v_0 \leftarrow \text{GET-LOOPBACK-STATE}(model)
13:
                  yield \langle v_0, abst\_s, abst\_t \rangle
                  refs.append(\neg(\bigwedge_{s \in abst} s \land \bigwedge_{t \in abst} t))
14:
15:
              end if
              query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k) \land \bigwedge_{ref \in refs} ref
16:
17:
               \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
          end while
18:
19: end for
```

```
Algorithm GENERATE-ABSTRACT-LOOPS(M)
 1: \langle V, I, T, bad \rangle \leftarrow \text{ENCODE-BMC-FAIR-ABSTRACT-LOOP}(M)
        query \leftarrow I(V_0) \land \bigwedge_{i=1}^{k-1} T(V_i, V_{i+1}) \land bad(V_i)
 2: for k \in [0, 1, 2, \ldots] do
 3:
     \langle sat, model \rangle \leftarrow \text{SM}^{2} L2S encoding for the search of fair loops.
 4:
 5:
       refs \leftarrow []
                                     The loop-back is identified in the abstract
        while sat do
 6:
                                      space identified by a set of predicates.
             \langle abst\_s, abst\_t \rangle \leftarrow \texttt{GEI-INITECANT}(model, query)
 7:
 8:
             \langle is\_ranked, rf \rangle \leftarrow \text{RANK-LOOP}(abst\_s, abst\_t)
 9:
            if is ranked then
10:
                 \langle V, I, T, bad \rangle \leftarrow \text{REMOVE-RANKED-LOOPS}(V, I, T, bad, rf)
11:
             else
12:
                v_0 \leftarrow \text{GET-LOOPBACK-STATE}(model)
13:
                yield \langle v_0, abst\_s, abst\_t \rangle
                refs.append(\neg(\bigwedge_{s \in abst\ s} s \land \bigwedge_{t \in abst\ t} t))
14:
15:
             end if
             query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k) \land \bigwedge_{ref \in refs} ref
16:
17:
             \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
         end while
18:
19: end for
```

```
Algorithm GENERATE-ABSTRACT-LOOPS(M)
 1: \langle V, I, T, bad \rangle \leftarrow \text{ENCODE-BMC-FAIR-ABSTRACT-LOOP}(M)
 2: for k \in [0, 1, 2, ...] do
        query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k) \longleftarrow BMC unrolling.
 3:
 4:
       \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
 5:
        refs \leftarrow []
        while sat do
 6:
              \langle abst\_s, abst\_t \rangle \leftarrow \text{GET-IMPLICANT}(model, query)
 7:
              \langle is\_ranked, rf \rangle \leftarrow \text{RANK-LOOP}(abst\_s, abst \cancel{t})
 8:
 9:
             if is ranked then
                  \langle V, I, T, bad \rangle \leftarrow \text{REMOVE-RANKED-LOOPS}(V, I, T, bad, rf)
10:
11:
              else
12:
                 v_0 \leftarrow \text{GET-LOOPBACK-STATE}(model)
                  yield \langle v_0, abst\_s, abst\_t \rangle
13:
                 refs.append(\neg(\bigwedge_{s \in abst\_s} s \land \bigwedge_{t \in abst\_t} t))
14:
15:
              end if
             query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k) \land \bigwedge_{ref \in refs} ref
16:
17:
              \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
          end while
18:
19: end for
```

```
Algorithm GENERATE-ABSTRACT-LOOPS(M)
 1: \langle V, I, T, bad \rangle \leftarrow \text{ENCODE-BMC-FAIR-ABSTRACT-LOOP}(M)
 2: for k \in [0, 1, 2, ...] do
        query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k)
 3:
 4:
        \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
 5:
        refs \leftarrow []
         while sat do \leftarrow Iterate over candidate loops of length k.
 6:
             \langle abst\_s, abst\_t \rangle \leftarrow \text{GET-IMPLICANT}(model, query)
 7:
             \langle is\_ranked, rf \rangle \leftarrow \text{RANK-LOOP}(abst\_s, abst\_t)
 8:
 9:
             if is ranked then
10:
                 \langle V, I, T, bad \rangle \leftarrow \text{REMOVE-RANKED-LOOPS}(V, I, T, bad, rf)
11:
             else
                 v_0 \leftarrow \text{GET-LOOPBA}(K-\text{STATE}(model))
12:
13:
                 yield \langle v_0, abst\_s, abst\_t \rangle
                 refs.append(\neg(\bigwedge_{s \in abst} s \land \bigwedge_{t \in abst} t))
14:
15:
             end if
             query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k) \land \bigwedge_{ref \in refs} ref
16:
17:
              \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
         end while
18:
19: end for
```

Algorithm GENERATE-ABSTRACT-LOOPS(M)1: $\langle V, I, T, bad \rangle \leftarrow \text{ENCODE-BMC-FAIR-ABSTRACT-LOOP}(M)$ 2: for $k \in [0, 1, 2, ...]$ do $query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k)$ 3: 4: $\langle sat, model \rangle \leftarrow \text{SMT-solve}(query)$ 5. $refs \leftarrow []$ while sat do 6: $\langle abst_s, abst_t \rangle \leftarrow \text{GET-IMPLICANT}(model, query)$ 7: $\langle is_ranked, rf \rangle \leftarrow \texttt{RANK} LOOP(abst_s, abst_t)$ 8: if is_ranked then $\langle V, I, T, bad \rangle \leftarrow$ Compute underapproximation of M corre-9: 10: sponding to the loop described by model. 11: else 12: $v_0 \leftarrow \text{GET-LOOPBACK-STATE}(model)$ 13: yield $\langle v_0, abst_s, abst_t \rangle$ $refs.append(\neg(\bigwedge_{s \in abst} s \land \bigwedge_{t \in abst} t))$ 14: 15: end if $query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k) \land \bigwedge_{ref \in refs} ref$ 16: 17: $\langle sat, model \rangle \leftarrow \text{SMT-solve}(query)$ end while 18: 19: end for

```
Algorithm GENERATE-ABSTRACT-LOOPS(M)
 1: \langle V, I, T, bad \rangle \leftarrow \text{ENCODE-BMC-FAIR-ABSTRACT-LOOP}(M)
 2: for k \in [0, 1, 2, ...] do
        query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k)
 3:
       \langle sat, model \rangle \leftarrow \text{SMT-SOLVE}(query)
 4:
 5:
        refs \leftarrow []
        while sat do
 6:
 7:
             \langle abst\_s, abst\_t \rangle \leftarrow \text{GET-IMPLICANT}(model, query)
 8:
             \langle is\_ranked, rf \rangle \leftarrow \text{RANK-LOOP}(abst\_s, abst\_t)
            if is ranked then
 9:
10:
                 \langle V, I, T, bad \rangle \leftarrow \text{REMOVE-RANKED-LOOPS}(V, I, T, bad, rf)
11:
             else
12:
                v_0 \leftarrow {}_{\mathrm{GET-LOO}} Try synthesise ranking function for candi-
                yield \langle v_0, abst \rangle_{refs.append(-)} date, in case of success remove all loops
13:
14:
                                      ranked by the identified function.
15:
             end if
             query \leftarrow I(V_0) \land \bigwedge_{i=0}^{\kappa-1} T(V_i, V_{i+1}) \land bad(V_k) \land \bigwedge_{ref \in refs} ref
16:
              \langle sat, model \rangle \leftarrow \text{SMT-solve}(query)
17:
         end while
18:
19: end for
```

Algorithm GENERATE-ABSTRACT-LOOPS(M)1: $\langle V, I, T, bad \rangle \leftarrow \text{ENCODE-BMC-FAIR-ABSTRACT-LOOP}(M)$ 2: for $k \in [0, 1, 2, ...]$ do $query \leftarrow I(V_0) \land \bigwedge_{i=0}^{k-1} T(V_i, V_{i+1}) \land bad(V_k)$ 3: $\langle sat, model \rangle \leftarrow \text{SMT-SOLVE}(query)$ 4: 5: $refs \leftarrow []$ while sat do 6: 7: $\langle abst_s, abst_t \rangle \leftarrow \text{GET-IMPLICANT}(model, query)$ 8. $\langle is_ranked, rf \rangle \leftarrow \text{RANK-LOOP}(abst_s, abst_t)$ if is ranked then 9: 10: $\langle V, I, T, bad \rangle \leftarrow \text{REMOVE-RANKED-LOOPS}(V, I, T, bad, rf)$ 11: else 12: $v_0 \leftarrow \text{GET-LOOPBACK-STATE}(model)$ 13: 14: Get reachability witness from model and 15: end if $query \leftarrow I(V_0) \land return current candidate.$ 16: $\langle sat, model \rangle \leftarrow \text{SMT-solve}(query)$ 17: end while 18: 19: end for

Algorithm GENERATE-TEMPLATES $(v_0, abst_s, abst_t)$

```
1: ineqs \leftarrow \text{HEURISTIC-PICK-NUM-INEQS}(abst\_s, abst\_t)
 2: for ineq \in ineqs do
 3: n \leftarrow len(abst\_s)
 4: funnels \leftarrow []
 5: for i \in [0..n-2] do
           src \leftarrow abst\_s[i] \land \bigwedge_{i=0}^{ineq-1} \text{NEW-PARAMETRIC-EXPR}(V) \ge 0
 6:
 7:
           rf \leftarrow \text{NEW-PARAMETRIC-EXPR}(V)
           t \leftarrow \top
 8:
 9:
           for v_{i+1} \in V_{i+1} do
               if v_{i+1} = f(V_i) \in abst\_t[i] for some function f then
10:
                  t \leftarrow t \wedge v_{i+1} = f(V_i)
11:
12:
               else
13:
                   t \leftarrow t \land v_{i+1} = \text{NEW-PARAMETRIC-EXPR}(V_i)
14:
               end if
15:
           end for
16:
            dst(V) \leftarrow \exists V_0 : src(V_0) \wedge rf(V_0) = \mathbf{0} \wedge t(V_0, S)
            funnels.append(Funnel(src, t, rf, dst))
17:
        end for
18:
        yield Funnels, v_0)
19:
20: end for
```

28 / 38

```
Algorithm GENERATE-TEMPLATES (v_0, abst\_s, abst\_t)
```

```
1: ineqs \leftarrow \text{HEURISTIC-PICK-NUM-INEQS}(abst\_s, abst\_t)
 2: for ineq \in ineqs do
      n \leftarrow len(abst\_s) \leftarrow Create a funnel template for every region
 3:
4: funnels \leftarrow []
5: for i \in [0..n-2] do in the candidate loop.
           src \leftarrow abst\_s[i] \land \bigwedge_{i=0}^{ineq-1} \text{NEW-PARAMETRIC-EXPR}(V) \ge 0
 6:
           rf \leftarrow \text{NEW-PARAMETRIC-EXPR}(V)
 7:
           t \leftarrow \top
 8:
 9:
           for v_{i+1} \in V_{i+1} do
10:
               if v_{i+1} = f(V_i) \in abst\_t[i] for some function f then
11:
                  t \leftarrow t \wedge v_{i+1} = f(V_i)
12:
               else
13:
                   t \leftarrow t \land v_{i+1} = \text{NEW-PARAMETRIC-EXPR}(V_i)
14:
               end if
15:
            end for
16:
            dst(V) \leftarrow \exists V_0 : src(V_0) \wedge rf(V_0) = \mathbf{0} \wedge t(V_0, S)
            funnels.append(Funnel(src, t, rf, dst))
17:
        end for
18:
19:
        vield Funnels-loop (funnels, v_0)
20: end for
                                                                                                 29/38
```

Algorithm GENERATE-TEMPLATES $(v_0, abst_s, abst_t)$

```
1: ineqs \leftarrow \text{HEURISTIC-PICK-NUM-INEQS}(abst\_s, abst\_t)
 2: for ineq \in ineqs do
 3: n \leftarrow len(abst\_s)
 4: funnels \leftarrow []
 5: for i \in [0..n-2] do
           src \leftarrow abst\_s[i] \land \bigwedge_{i=0}^{ineq-1} \text{NEW-PARAMETRIC-EXPR}(V) \ge 0
 6:
           rf \leftarrow \text{NEW-PARAMETRIC-EXPR}(V)
 7:
 8.
           t \leftarrow \top
                                  Strengthen region with ineq new parametric
           for v_{i+1} \in V_{i+1} c
 9:
               if v_{i+1} = f(V_i) predicates, e.g. linear combinations \sum_{v \in V_i} \lambda_v v.
10:
11:
                  t \leftarrow t \wedge v_{i+1} = f(V_i)
12:
               else
13:
                   t \leftarrow t \land v_{i+1} = \text{NEW-PARAMETRIC-EXPR}(V_i)
14:
               end if
15:
            end for
16:
            dst(V) \leftarrow \exists V_0 : src(V_0) \wedge rf(V_0) = \mathbf{0} \wedge t(V_0, S)
            funnels.append(Funnel(src, t, rf, dst))
17:
        end for
18:
19:
        vield Funnels-loop (funnels, v_0)
20: end for
                                                                                                30 / 38
```

Algorithm GENERATE-TEMPLATES $(v_0, abst_s, abst_t)$

```
1: ineqs \leftarrow \text{HEURISTIC-PICK-NUM-INEQS}(abst\_s, abst\_t)
 2: for ineq \in ineqs do
 3:
      n \leftarrow len(abst\_s)
 4: funnels \leftarrow []
                                     Next assignments are function of current
 5: for i \in [0..n-2] do
                                     assignments: transition relation left-total
           src \leftarrow abst\_s[i] \land \bigwedge
 6:
           rf \leftarrow \text{NEW-PARAME} by construction.
 7:
 8:
 9:
           for v_{i+1} \in V_{i+1} do
10:
               if v_{i+1} = f(V_i) \in abst_{-}t[i] for some function f then
11:
                  t \leftarrow t \wedge v_{i+1} = f(V_i)
12:
              else
13:
                  t \leftarrow t \land v_{i+1} = \text{NEW-PARAMETRIC-EXPR}(V_i)
14:
               end if
15:
           end for
16:
           dst(V) \leftarrow \exists V_0 : src(V_0) \wedge rf(V_0) = \mathbf{0} \wedge t(V_0, S)
           funnels.append(Funnel(src, t, rf, dst))
17:
        end for
18:
19:
        vield Funnels-loop (funnels, v_0)
20: end for
                                                                                             31/38
```

Algorithm GENERATE-TEMPLATES $(v_0, abst_s, abst_t)$

```
1: ineqs \leftarrow \text{HEURISTIC-PICK-NUM-INEQS}(abst\_s, abst\_t)
 2: for ineq \in ineqs do
 3: n \leftarrow len(abst\_s)
 4: funnels \leftarrow []
 5: for i \in [0..n-2] do
            src \leftarrow abst\_s[i] \land \bigwedge_{i=0}^{ineq-1} \text{NEW-PARAMETRIC-EXPR}(V) \ge 0
 6:
           rf \leftarrow \text{NEW-PARAMETRIC-EXPR}(V)
 7:
 8:
           t \leftarrow \top
 9:
            for v_{i+1} \in V_{i+1} do
               if v_{i+1} = f(V_i) \in abst_{-}t[i] for some function f then
10:
                   t \leftarrow t \wedge v_{i+1} = f(V_i)
11:
12:
               else
                   t \leftarrow t \wedge v_{i+1} = {\scriptscriptstyle \mathrm{NF}} Destination region implicitly defined.
13:
               end if
14:
15:
            end for
            dst(V) \leftarrow \exists V_0 : src(V_0) \wedge rf(V_0) = \mathbf{0} \wedge t(V_0, S)
16:
            funnels.append(Funnel(src, t, rf, dst))
17:
        end for
18:
19:
         vield Funnels, v_0)
20: end for
                                                                                                  32/38
```

Funnel-loop template example

Assume $abst_s \doteq [\{k > 0\}, \{k < 0\}]$ and $abst_t \doteq [\{k' = k - n\}, \{k' = k + n\}].$

For ineq equal to 1 we generate a funnel-loop described by the following components:

- $S_0 \doteq k > 0 \land \lambda_0 k + \lambda_1 n + \lambda_2 \ge 0$;
- $t_0 \doteq k' = k n \wedge n' = \lambda_3 k + \lambda_4 n + \lambda_5$;
- $\operatorname{RF}_0 \doteq \lambda_6 n + \lambda_7 k + \lambda_8$;
- $S_1 = k < 0 \land \lambda_9 k + \lambda_{10} n + \lambda_{11} \ge 0$;
- $t_1 = k' = k + n \wedge n' = \lambda_{12}k + \lambda_{13}n + \lambda_{14};$
- RF₁ $\doteq \lambda_{15}n + \lambda_{16}k + \lambda_{17}$;

Objective: find assignment to the $\{\lambda_i\}_{i=0}^{17}$.

Funnel-loop template example

Assume $abst_s = [\{k > 0\}, \{k < 0\}]$ and $abst_{-}t \doteq [\{k' = k - n\}, \{k' = k + n\}].$

For *ineq* equal to 1 we generate a funnel-loop described by the following components:

•
$$S_0 \doteq k > 0 \wedge \lambda_0 k + \lambda_0 k$$

•
$$t_0 \doteq k' = k - n \wedge n' =$$

•
$$RF_0 \doteq \lambda_6 n + \lambda_7 k + \lambda$$

•
$$S_1 \doteq k < 0 \land \lambda_9 k + \lambda$$

•
$$t_1 \doteq k' = k + n \wedge n'$$

•
$$RF_1 = \lambda_{15}n + \lambda_{16}k +$$
 • $RF_1 = 0$

Objective: find assignment to the
$$\{\lambda_i\}_{i=0}^{17}$$
.

Solution:

•
$$S_0 = k > 0 \land n \ge k + 1$$
;

•
$$t_0 = k' = k - n \wedge n' = n + 1$$
;

•
$$RF_0 = 0$$

•
$$S_1 = k < 0 \land n \ge -k + 1$$
;

•
$$t_1 = k' = k + n \wedge n' = t_1 = k' = k + n \wedge n' = n + 1;$$

•
$$RF_1 = 0$$

Funnel-loop synthesis problem

For a funnel-loop template of length n, search for an assignment to the parameters P such that the following hold:

• v_0 is in the first region (i.e. funnel-loop is reachable):

$$\exists P : S_0(\boldsymbol{v}_0, P)$$

Remain in the same region as long as the ranking function is positive:

$$\exists P \forall V, V' : S_i(V, P) \land \operatorname{RF}_i(V, P) > \mathbf{0} \land T_i(V, V', P) \rightarrow$$
$$S_i(V', P) \land \operatorname{RF}_i(V', P) < \operatorname{RF}_i(V, P)$$

• Reach next region when ranking function is 0:

$$\exists P \forall V, V' : S_i(V, P) \land \operatorname{Rf}_i(V, P) = \mathbf{0} \land T_i(V, V', P) \rightarrow S_{i+1\%n}(V', P)$$

ullet Every step underapproximates the transition relation of M:

$$\exists P \forall V, V' : S(V, P) \land T(V, V', P) \rightarrow T_M(V, V')$$

Prototype implementation

F3 implements the search procedure on top of ${\tt PYSMT}$ using ${\tt MATHSAT5}$ and Z3.

Supports LTL via the tableau construction and timed systems by removing zeno-paths and ensuring the divergence of *time*.

We considered benchmarks from the following categories:

LS: linear software,

NS: nonlinear software,

 ${f ITS}$: ${
m LTL}$ on infinite state transition systems,

TA : LTL on timed automata,

TTS: LTL on timed transition systems,

 ${f HS}$: LTL on hybrid systems.

Experimental evaluation

Table reports number of solved instances per benchmark family. F3 can only identify counterexamples, most of the other tools can also prove properties.

Benchmark family	F3	Anant	AProVe	DiVinE3	MITLBMC	nuXmv	T2	Ultimate	Uppaal
LS (52)	52	38	43	_	_	28	38	49	_
NS (30)	29	25	5	_	_	14	2	_	_
ITS (70)	57	_	_	_	_	4	_	8	_
TA (174)	137	_	_	43	151	90	_	0	103*
TTS (120)	55	_	-	_	-	8	_	1	-
HS (9)	0	_	_	_	_	0	_	_	_
Total (455)	330	63	48	43	151	144	40	58	103

^{*} UPPAAL does not handle full LTL: ran only on 116 instances.

Entries marked with "-" denote that the tool cannot handle the given benchmarks.

Conclusions

Summary

- representation of fair paths via funnel-loops;
- automated search of funnel-loop via reduction to SMT;
- appears to be effective on a wide range of benchmark categories.

Future work

- integration with techniques to prove LTL properties;
- define more incremental procedure, possibly exploiting a decomposition of the system.

The End

Thank you for your attention, questions?

"Funnel" also called Inductive Reachability Witness in "Polynomial Reachability Witnesses via Stellensätze", Asadi et al., PLDI-2021