Aircraft Design and Constraint Analysis for Carrier Operations

AMY DWYER FRANK O'BRIMSKI CONCEPTUAL DESIGN DIVISION NAVAIR SYSCOM

Dr. Dimitri N. Mavris, Director ASDL School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

PURPOSE

Provide an OVERVIEW of how operating on and around the carrier constrains the aircraft design.

OPERATIONAL EFFECTIVENESS

Achieving Favorable Match-ups Against LAND-BASED Adversaries When Considering:

AND

INDIVIDUAL AIRCRAFT

- RADIUS
- COMBAT AGILITY
- WEAPONRY
- SENSORS
- SURVIVABILITY

AIRWING ATTRIBUTES

- NIGHT Ops
- ADVERSE WEATHER Ops
- SORTIE GENERATION
- RESPONSE TIMES
- NUMBER OF AIRCRAFT

AND BEING CARRIER SUITABLE

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

ENHANCE SORTIE GENERATION RATE

CARRIER EQUIPMENT

- Multiple Catapults
- Multiple Elevators
- Jet Blast Deflectors
- Tractors & Dollies

AIRCRAFT DESIGN

- Geometric Compatibility
 With Carrier Equipment
- On Deck Maneuverability
- Nose Tow Launch With Autonomous Hook Up
- Fold & Unfold Under Own (Idle) Power
- Unassisted Cable Release / Hook Retraction

OPERATING CONDITIONS

- SPACE COMPRESSION
 - Confined Area to Conduct Ops
 - Thermal and Acoustic Hazards
- MARITIME ENVIRONMENT
 - High Winds
 - Moving Deck
 - Moisture on Deck
- DENSE ELECTROMAGNETIC ENVIRONMENT

AIRCRAFT CARRIER DESIGN TRENDS

Dr. Dimitri N. Mavris, Director ASD School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

AIRCRAFT LAUNCH AND RECOVERY EQUIPMENT

CATAPULT PERFORMANCE

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri mavris@ae.gatech.edu

ARRESTING GEAR PERFORMANCE

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri mavris@ae.gatech.edu

CV AIRCRAFT DESIGN CRITERIA

FOUR PRIMARY CRITERIA

- Geometric compatibility
- Adequate structural design for catapulting & arresting at critical loadings
- Lift, thrust and flying qualities for safe launch and approach
- Materials and design practices which can tolerate a hostile environment

GEOMETRIC COMPATIBILITY

r ASDL ering logy 0 edu

GEOMETRIC COMPATIBILITY

DRIVEN BY:

- Very limited space to conduct operations (While maintaining safety and tempo)
- Interfaces with CV equipment (Esp. catapults and arresting gear)
- Deck motions
 (Aggravate most of the design challenges that exist for conventional A/C)

A Picture is Worth a Thousand Words

Comparative Scaling

USS Nimitz (CVN-68)
Overlaid on Typical Navy Airfield Runway (8000 Ft X 150 Ft)

CVN 68 NIMITZ

Planview of Flight Deck

ring ogy du

CRITICAL DIMENSIONS CVN 68 NIMITZ

Flight Deck Length	1077 Ft
Flight Deck Width	251 Ft
Angle Deck Length	786 Ft
Catapult Stroke	302 Ft
Arresting Wire Span	120 Ft
Arresting Wire Runout	340 Ft
Barricade Runout	388 Ft
Hangar Deck Length	684 Ft
Hangar Deck Width	108 Ft
Hangar Deck Height	25 Ft
Door Width	76 Ft

Elevators (130 KLb Capacity) 52 Ft X 85 Ft

PRE-LAUNCH

Dr. Dimitri N. Mavris, Director ASDL School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

DESIGN FOR CONFINED SPACE

- Reduced Airspeed Operations for Ship Launch/Recovery
- No Flare Landings
 - Control Power
 - Strength
- Ship Catapult Interface
- Ship Arresting Gear Interface
- Tip Back/Roll Over Limits
- Elevator/Hangar Deck Limitations
- WEIGHT

- Aircraft Dimensions Length, Span, Height
- Folding Surfaces
- Accessibility
 - Servicing
 - Maintenance
 - Weapon Loading
- Maintenance in Shadow e.g. Engine Change
- On Deck Maneuverability and Visibility

WING FOLD PENALTY

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

SPOTTING FACTOR

- Measure of deck space occupied by aircraft
- Complex Function of:
 - Size
 - Geometry
 - Overhang Etc.
- Empirically determined
- Current baseline F/A-18C = 1.0
- · "Integer effects"

To add <u>one</u> aircraft of 1.5 spot factor could require that <u>two</u> aircraft of 1.2 spot factor be taken out of the air wing

MAXIMUM DENSITY SPOTTING

Flight Deck 56 A/C Hangar Deck 35 A/C Total 91 A/C

r. Dimitri N. Mavris, Director ASDL School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

HANGAR BAY HEIGHT CLEARANCES

MAXIMUM HANGAR HEIGHT

Mavris, Director ASDL rospace Engineering stitute of Technology GA 30332-0150 vris@ae.gatech.edu

ELEVATOR SIZING

Dr. Dimitri N. Mavris, Director ASDI. School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

GEOMETRIC COMPATIBILITY FOR LAUNCH

Clearances Required for Launching

- Aircraft and stores must clear deck obstructions (6" clearance, flat tire, rolled attitude)
- Able to spread wings of both aircraft on adjacent bow catapults
- Adequate distance from exhaust nozzle(s) to JBD

WINGTIP CLEARANCE

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

JET BLAST DEFLECTOR (JBD) CLEARANCE

Aircraft Launch Bar to Tail Distance Constrained By JBD Clearance to 45'40"
 Typical Aircraft: F-14A- 45.9'

F/A-18A-38.6' F/A-18E-41.7'

LAUNCH WIND OVER DECK

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri mavris@ae.eatech.edu

LAUNCH WIND OVER DECK

 Wind Over Deck Defined on Previous Chart Applies to: Engineering Design Contractual Guarantees

Flight Testing

The Fleet Adds 15 Knots to This Value for Operational Factors:

Gusts
Ship Motion
Equipment Variations

Etc.

 Most Fleet Personnel Talk in Terms of the Operational WOD Not Design WOD

LAUNCH FLIGHT PATH

Dr. Dimitri N. Mavris, Director ASDL School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

CATAPULT SPEED CRITERIA

- Longitudinal acceleration of at least 1.24 kts/sec
- Center of gravity sink not to exceed 10 feet
- Nose up pitch rate not to exceed 12 deg/sec,
- Nose down pitch rate not to exceed 2.5 deg/sec (automatic flight control system)
- Rotation not to exceed 0.9 maximum lift
- Minimum control speed with one engine failed
- Rate of climb with one engine failed

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ac.gatech.edu

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

Or. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

RECOVERY

RECOVERY WIND OVER DECK (Recovery Headwind)

Dr. Dimitri N. Mavris, Director ASD School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

APPROACH SPEED CRITERIA

- LONGITUDINAL ACCELERATION (WAVEOFF)
 - 3 KNOTS PER SECOND IN 2.5 SECONDS
- STALL MARGIN
 - APPROACH SPEED AT LEAST 10% ABOVE STALL SPEED
- VISIBILITY
 - SEE STERN WATERLINE WHEN INTERCEPTING 4° GLIDESLOPE AT 600' ALTITUDE
- SATISFY STABILITY AND CONTROL REQUIREMENTS (MIL-STD-1797)
- GLIDEPATH CORRECTION MANEUVER
 - ACHIEVE 50' HIGHER GLIDEPATH IN 5 SECONDS WITHOUT USING THRUST AND USING ½ OF ADDITIONAL AVAILABLE LIFT
- ENGINE RESPONSE
 - FOR STEP THROTTLE COMMANDS FOR \pm 2.3 KNOTS/SECONDS ACHIEVE 90% IN 1.2 SECONDS

GLIDE SLOPE / LINE-UP CONTROL

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

CVN 68 MK7 MOD3 ARRESTING GEAR(345 FT TO TAIL HOOK) CONVENTIONAL 4 WIRE SYSTEM

Dr. Dimitri N. Mavris, Director ASDI School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

CARRIER APPROACH VISION

Dr. Dimitri N. Mavris, Director ASDI. School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

HOOK-TO-EYE GEOMETRY

Dr. Dimitri N. Mavris, Director ASDL School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ae.gatech.edu

Dr. Dimitri N. Mavris, Director ASDL School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 dimitri.mavris@ac.gatech.edu

