PROBLEM SET #4 (The last one for the semester! @)

Due 11:59 P.M., December 10, 2019

Problem 1

A rather common problem that appears regularly in signal processing is that of estimating the total phase $\varphi_k = 2\pi f t_k + \theta$. The frequency of the signal f is known and, thus, the dynamic model is $\dot{\varphi} = 2\pi f$. The measurement model relates a measurement of its amplitude y_k to φ_k as follows:

$$y_k = \sin \varphi_k + v_k = \widehat{y}_k + v_k,$$
 $v_k \sim N(0, R_k)$

This is a nonlinear measurement model. What we want to show in this problem is how a nonlinear measurement model results in a predicted measurement \hat{y}_k with a distribution that is very different from that of a priori one or that of the measurement y. For what follows, ignore the measurement noise and just focus on the random variable φ_k .

- a) Derive an analytical expression for $f_{\widehat{Y}}(y)$ when $\varphi \sim U(0,\pi)$?
- b) Using the pdf you derived in (a), determine $E(\widehat{Y})$ and $\sigma_{\widehat{Y}}^2$ when $\varphi \sim U(0,\pi)$.
- c) Using MATLAB draw 10,000 samples of φ and run a simple Monte Carlo experiment to generate samples of \hat{y} . Using the generated data approximate $E(\widehat{Y})$ and $\sigma_{\widehat{Y}}^2$ (you can use the MATLAB commands mean and var). Also plot a histogram-based approximation of $f_Y(y)$. To do this, use the histogram command in MATLAB (use at least 50 bins with histogram and the option 'Normalization' set to 'pdf'). How well do the Monte Carlo results for $E(\widehat{Y})$, $\sigma_{\widehat{Y}}^2$ and $f_{\widehat{Y}}(y)$ agree to the analytical results?
- d) Use the analytical approach or a Monte Carlo simulation (your choice) to determine $E(\widehat{Y})$, $\sigma_{\widehat{Y}}^2$ and $f_{\widehat{Y}}(y)$ when $\varphi \sim N(0,1)$. Which approach did you use (analytical or Monte Carlo)? Why?

Problem 2

Do Problem 13.3 in your text.

Problem 3

Do Problem 14.4 in your text.

Problem 4

Do Problem 15.2 in your text.

Problem 5

Do Problem 15.1 in your text.

Problem 6

Do 15.15 in your text.