Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Load the Dataset

```
In [139... data = pd.read_csv(r"D:\FSDS Material\Dataset\House_data.csv")
In [141... data
```

Out[141	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	•••	grade
	0 7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0		7
	4 (41410010)	20141200700000	F20000 0	2	2.25	2570	72.42	2.0	0	0		_

	Iu	date	price	bearoons	batilioonis	sqrt_living	sqrt_lot	110013	waternont	VICW	•••	grade
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0		7
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0		7
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0		6
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0		7
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0		3
•••		•••	•••			•••	***			•••		
21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131	3.0	0	0		3
21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813	2.0	0	0		3
21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350	2.0	0	0		7
21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388	2.0	0	0		3
21612	1523300157	20141015T000000	325000.0	2	0.75	1020	1076	2.0	0	0		7

21613 rows × 21 columns

Check the columns

```
data.columns
In [144...
Out[144... Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
                  'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',
                  'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
                  'lat', 'long', 'sqft_living15', 'sqft_lot15'],
                 dtype='object')
```

Check the information

In [147...

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):
                   Non-Null Count Dtype
    Column
    _____
     id
                    21613 non-null int64
0
1
                    21613 non-null object
    date
2
                    21613 non-null float64
     price
                    21613 non-null int64
    bedrooms
    bathrooms
                    21613 non-null float64
    sqft living
                    21613 non-null int64
6
    sqft lot
                    21613 non-null int64
7
    floors
                    21613 non-null float64
    waterfront
                    21613 non-null int64
9
    view
                    21613 non-null int64
    condition
                    21613 non-null int64
11 grade
                    21613 non-null int64
12 sqft above
                    21613 non-null int64
13 sqft basement 21613 non-null int64
14 yr built
                    21613 non-null int64
15 yr renovated
                   21613 non-null int64
16 zipcode
                    21613 non-null int64
                    21613 non-null float64
17 lat
18 long
                    21613 non-null float64
19 sqft living15 21613 non-null int64
20 sqft lot15
                   21613 non-null int64
dtypes: float64(5), int64(15), object(1)
memory usage: 3.5+ MB
```

Check the rows & columns

```
      In [150...
      data.shape

      Out[150...
      (21613, 21)

      In [152...
      data.head()
```

\cap	$+\Gamma$	1	5	7	
υu	r l	_	J	_	

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	•••	grade	sq
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0		7	
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	•••	7	
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0	•••	6	
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0	•••	7	
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0		8	

5 rows × 21 columns

←

In [154...

find the number of missing values
data.isnull().sum()

Out[154...

id 0 0 date price 0 bedrooms bathrooms 0 sqft_living 0 sqft_lot floors 0 waterfront 0 0 view condition grade sqft_above 0 sqft_basement 0 yr_built 0 yr_renovated 0 zipcode 0 lat 0 long sqft_living15 0 sqft_lot15 dtype: int64

Split the Data into Training and Testing Sets

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=42)
```

Print each split data

```
In [166... print("x_train:\n", x_train)
    print("\nx_test:\n", x_test)
    print("\ny_train:\n", y_train)
    print("\ny_test:\n", y_test)
```

```
x train:
[[1780]
 [1000]
 [1080]
 . . .
 [2120]
 [ 380]
 [3130]]
x test:
[[2070]
 [2900]
 [3770]
 [2434]
 [2250]
 [2570]]
y train:
 [325000. 257000. 228500. ... 575000. 245000. 315000.]
y_test:
[ 365000. 865000. 1040000. ... 285000. 605000. 356500.]
```

Fitting simple linear regressin to the Train the Model

Prediction of the price

```
In [172... pred = regressor.predict(x_test)
```

Visualizing the train results

```
In [175... plt.scatter(x_train, y_train, color='blue')
    plt.plot(x_train, regressor.predict(x_train), color='green')
    plt.title('House Price Prediction')
    plt.xlabel('Square Footage')
    plt.ylabel('Price')
    plt.show()
```


Visualizing the test result

```
In [178... plt.scatter(x_test, y_test, color = 'blue')
    plt.plot(x_train, regressor.predict(x_train), color = 'green')
    plt.title('House Price Prediction')
    plt.xlabel('Square Footage')
    plt.ylabel('Price')
    plt.show()
```



```
In [182... new_sqft = np.array([[2800]])
    predicted_price = regressor.predict(new_sqft)
```

```
print(f"Predicted price for house with 1076 sq ft: ₹{predicted_price[0]:,.2f}")
Predicted price for house with 1076 sq ft: ₹740,980.25

In [184... print(f'Predicted price for house with 1800 sq ft: ₹{predicted_price[0]:,.2f}')
Predicted price for house with 1800 sq ft: ₹740,980.25

In [188... print(f'Predicted price for flat with 2000 sq ft: ₹{predicted_price[0]:,.2f}')
Predicted price for flat with 2000 sq ft: ₹740,980.25

In []:
```