CSC520 - Artificial Intelligence Lecture 20

Dr. Scott N. Gerard

North Carolina State University

Mar 27, 2025

Agenda

- Hidden Markov model (HMM)
- HMM filtering
- HMM prediction
- HMM most likely explanation
- Axioms of utility theory
- Decision networks
- Value of perfect information

Hidden Markov Model

Consider this scenario

- You are a graduate student with an office that has no windows
- You never leave your office
- You meet your advisor daily who comes with or without an umbrella
- You want to know whether it is raining

Hidden Markov Model: Example

Hidden Markov Model

- Temporal probabilistic model
- Hidden state variables: X_t at time t
- Evidence variables: Et at time t
- Initial distribution: $P(X_0)$
- First-order Markov assumptions
 - ► Transition Markov assumption $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$
 - Sensor Markov assumption $P(E_t|X_{0:t-1}, E_{0:t-1}) = P(E_t|X_t)$
- Joint distribution

$$p(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1}^{t} P(E_i|X_i) P(X_i|X_{i-1})$$

Dr. Gerard (NCSU)

Hidden Markov Model Example

Hidden Markov Model: Example

Hidden Markov Model: Typical Uses

- Filtering: Estimate the current state of the hidden variable from the sequence of all evidence
- Prediction: Estimate a future state from the current evidence
- Smoothing: Improve our estimate of past states from all evidence
- Most likely explanation: Given a sequence of evidence, estimate the sequence of states that generated the evidence

Forward Message

 Filtering: Estimate the current state of the hidden variable from the sequence of all evidence

$$\begin{split} P(X_{t+1}|\mathbf{e}_{1:t+1}) &= P(X_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1}) & \text{Split evidence} \\ &= \alpha P(\mathbf{e}_{t+1}|X_{t+1}, \mathbf{e}_{1:t}) P(X_{t+1}|\mathbf{e}_{1:t}) & \text{Bayes' rule} \\ &= \alpha P(\mathbf{e}_{t+1}|X_{t+1}) P(X_{t+1}|\mathbf{e}_{1:t}) & \text{Markov Sensors} \\ &= \alpha P(\mathbf{e}_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t, \mathbf{e}_{1:t}) P(x_t|\mathbf{e}_{1:t}) & \text{Condition on } X_t \\ &= \alpha P(\mathbf{e}_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) P(x_t|\mathbf{e}_{1:t}) & \text{Markov Transitions} \\ f_{1:t+1} &= \alpha P(\mathbf{e}_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) f_{1:t} \\ f_{1:t+1} &= \alpha [\text{sensor model}] \sum_{x_t} [\text{transition model}] [\text{recursion}] \end{split}$$

- Where $f_{1:t+1}i = P(X_i|e_{1:i}) = FORWARD(f_{1:t}, e_{t+1})$ is the forward message
- This is a linear computation

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト . 差 . か Q (C)

Forward Message

$$P(X_{0}|e_{1:0}) = P(X_{0})$$

$$P(X_{1}|e_{1:1}) = P(e_{1}|X_{1}) \sum_{x_{1}} P(X_{1}|x_{0})P(x_{0}|e_{1:0})$$

$$P(X_{2}|e_{1:2}) = P(e_{2}|X_{2}) \sum_{x_{2}} P(X_{2}|x_{1})P(x_{1}|e_{1:1})$$

$$P(X_{3}|e_{1:3}) = P(e_{3}|X_{3}) \sum_{x_{3}} P(X_{3}|x_{2})P(x_{2}|e_{1:2})$$

$$P(X_{4}|e_{1:4}) = P(e_{4}|X_{4}) \sum_{x_{4}} P(X_{4}|x_{3})P(x_{3}|e_{1:3})$$

- Suppose we want to calculate $P(H_2|F,B)$
- First we calculate $P(H_1|F)$

$$P(H_1|F) = \alpha * P(F|H_1) * P(H_1)$$

$$P(H_1) = \sum_{h_0} P(H_1|h_0)P(h_0)$$

H_1	$P(H_1)$
0	0.15 + 0.12 + 0 = 0.27
Α	0.12 + 0.20 + 0.12 = 0.44
Ν	0.03 + 0.08 + 0.18 = 0.29

H_0	H_1	$P(H_0,H_1)$	H ₀
0	0	0.15	0
0	Α	0.12	0
0	Ν	0.03	0
Α	0	0.12	Α
Α	Α	0.20	Α
Α	Ν	0.08	Α
Ν	0	0	Ν
Ν	Α	0.12	Ν
Ν	Ν	0.18	Ν

H_0	H_1	$P(H_1 H$
0	0	0.5
0	Α	0.4
0	Ν	0.1
Α	0	0.3
Α	Α	0.5
Α	Ν	0.2
Ν	0	0
Ν	Α	0.4
Ν	Ν	0.6
		

H_0	$P(H_0)$
0	0.3
Α	0.4
Ν	0.3

• Next we calculate $P(H_1|F)$, that is, prediction given the observation

$$P(H_1|F) = \alpha * P(F|H_1) * P(H_1)$$

H_1	$P(H_1 F)$
0	2.87*0.027=0.078
Α	2.87*0.176 = 0.505
Ν	2.87*0.145 = 0.417

H_1	$\alpha P(H_1 F)$
A	0.1*0.27 = 0.027 0.4*0.44 = 0.176 0.5*0.29 = 0.145

$$\begin{array}{cccc}
 & H_1 \ P(F|H_1) \\
\hline
 & O & 0.1 \\
 & A & 0.4 \\
 & N & 0.5
\end{array}$$

$$\alpha = \frac{1}{.027 + .176 + .145}$$

• Now we can continue the process to calculate $P(H_2|F,B)$

$$P(H_2|F,B) = \alpha * P(B|H_2) * P(H_2|F)$$

$$P(H_2|F) = \sum_{H_1} P(H_2|H_1) * P(H_1|F)$$

H_2 $P(H_2 F)$	H_1 H_2	$P(H_2 H_1)*P(H_1 F)$	H_1	<i>H</i> ₂	$P(H_2 H_1)$	H_1	$P(H_1 F)$
O .039+.151+0=.190 A .031+.252+.167=.450	O O	0.5*.078=.039 0.4*.078=.031	0	O A	0.5 0.4	O A	0.078 0.505
N .007+.101+.250=.358	O N	0.1*.078=.007	O	N	0.1	N	0.417
	A O	0.3*.505 = .151	Α	О	0.3		
	A A	0.5*.505 = .252	Α	Α	0.5		
	A N	0.2*.505 = .101	Α	Ν	0.2		
	N O	0*.417=0	Ν	Ο	0		
	N A	0.4*.417 = .167	Ν	Α	0.4		
	N N	0.6*.417 = .250	Ν	Ν	0.6		

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

• Now we can continue the process to calculate $P(H_2|F,B)$

$$P(H_2|F,B) = \alpha * P(B|H_2) * P(H_2|F)$$

H_2	$P(H_2 F,B)$
0	2.65*.019=0.05
Α	2.65*.180=0.48
Ν	2.65*.179=0.47

H_2	$\alpha P(H_2 F,B)$
0	.1*.190=.019
Α	.4*.450 = .18
Ν	.5*.358 = .179

$P(B H_2)$
0.1
0.4
0.5

H_2	$P(H_2 F)$
0	.190
Α	.450
Ν	.358

 $\alpha\approx \text{2.65}$

Matrix Formulation

Transition Model

$$\mathbf{T}_{i,j} = P(X_t = j | X_{t-1} = i) = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$$

Sensor Model

$$\mathbf{O}_1 = P(e_1|X_t = i) = \begin{pmatrix} 0.9 & 0.0 \\ 0.0 & 0.1 \end{pmatrix}; \ \mathbf{O}_2 = \begin{pmatrix} 0.2 & 0.0 \\ 0.0 & 0.8 \end{pmatrix}$$

• Forward Message $\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^T \mathbf{f}_{1:t}$

Prediction

- Estimate a future state from the current evidence
- Filtering without new evidence
- $P(X_{t+k+1}|e_{1:t}) = \sum_{X_{t+k}} P(X_{t+k+1}|x_{t+k}) P(X_{t+k}|e_{1:t})$
- For a large enough k, the prediction converges to a *stationary* distribution

Prediction

• Suppose we want to predict $P(H_4|F,B)$

$$P(H_4|F,B) = \sum_{H_3} P(H_4|H_3)P(H_3|F,B)$$

$$P(H_3|F,B) = \sum_{H_2} P(H_3|H_2)P(H_2|F,B)$$

H_3 $P(H_3 F,B)$	H ₂ H	$P(H_3 H_2)P(H_2 F,B)$	H ₂	Н3	$P(H_3 H_2)$	<i>H</i> ₂	$P(H_2 F,B)$
O 0.025+.144=.169 A 0.02+.24+.188=.448 N .005+.096+.282=.383	O C O A O N A C A A A N N C N A N N N N	.4*.05=.020 .1*.05=.005 .3*.48=.144 .5*.48=.240 .2*.48=.096	O O O A A A N N N	O A N O A N O A N	0.5 0.4 0.1 0.3 0.5 0.2 0 0.4 0.6	O A N	0.05 0.48 0.47

Prediction

• Suppose we want to predict $P(H_4|F,B)$

$$P(H_4|F,B) = \sum_{H_3} P(H_4|H_3)P(H_3|F,B)$$

$$P(H_3|F,B) = \sum_{H_2} P(H_3|H_2)P(H_2|F,B)$$

H_4 $P(H_4 F,B)$	H ₃ H ₄ F	$P(H_4 H_3)P(H_3 F,B)$	H ₃ H ₄	$P(H_4 H_3)$	H ₃ F	$P(H_3 F,B)$
O .085+.134=.219 A .068+.224+.153=.445 N .017+.090+.230=.337	O O O O A O N A O A A A N N O N A N N	.5*.169=.085 .4*.169=.068 .1*.169=.017 .3*.448=.134 .5*.448=.224 .2*.448=.090 0*.383=0 .4*.383=.153 .6*.383=.230	O O O O O O O O O O O O O O O O O O O	0.5 0.4 0.1 0.3 0.5 0.2 0 0.4	O A N	.169 .448 .383

 Estimate the sequence of states that generated a given sequence of evidence

- Estimate the sequence of states that generated a given sequence of evidence
- Compute recursively since most likely path to X_{t+1} is recursively linked to the path to X_t

$$\begin{split} m_{1:t} &= \max_{X_{1:t-1}} P(x_{1:t-1}, X_t, e_{1:t}) \\ m_{1:t+1} &= \max_{X_{1:t}} P(x_{1:t}, X_{t+1}, e_{1:t+1}) \\ &= \max_{X_{1:t}} P(x_{1:t}, X_{t+1}, e_{1:t}, e_{t+1}) \\ &= \max_{X_{1:t}} P(x_{1:t}, X_{t+1}, e_{1:t}, e_{t+1}) \\ &= \max_{X_{1:t}} P(e_{t+1}|x_{1:t}, X_{t+1}, e_{1:t}) P(x_{1:t}, X_{t+1}, e_{1:t}) \\ &= P(e_{t+1}|X_{t+1}) \max_{X_{1:t}} P(X_{t+1}|x_t) P(x_{1:t}, e_{1:t}) \\ &= P(e_{t+1}|X_{t+1}) \max_{X_t} P(X_{t+1}|x_t) \max_{X_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t}) \end{split}$$

 Suppose we want to find the most likely sequence of states that generated the sequence F, B

$$\begin{split} m_{1:t+1} &= P(e_{t+1}|H_{t+1}) \max_{h_t} P(H_{t+1}|h_t) m_{1:t} \\ m_{1:1} &= P(F|H_1) \max_{h_0} P(H_1|h_0) m_{1:0} \end{split}$$

H_1	$m_{1:1}$
0	.15*.1=.015
Α	.20*.4=.080
Ν	.18*.5=.090
_	

H_1	$P(F H_1)$
0	0.1
Α	0.4
Ν	0.5

H_0	H_1	$P(H_1 H_0)m_{1:0}$
0	0	0.15
Ο	Α	0.12
Ο	Ν	0.03
Α	0	0.12
Α	Α	0.20
Α	Ν	0.08
Ν	0	0
Ν	Α	0.12
Ν	Ν	0.18

H_0	H_1	$P(H_1 H_0$
0	0	0.5
0	Α	0.4
0	Ν	0.1
Α	0	0.3
Α	Α	0.5
Α	Ν	0.2
Ν	0	0
Ν	Α	0.4
Ν	Ν	0.6

<i>H</i> ₀	$m_{1:0}$
0	0.3
Α	0.4
Ν	0.3

• Now we continue the process to calculate $m_{1:2}$

$$m_{1:2} = P(B|H_2) \max_{h_1} P(H_2|h_1) m_{1:1}$$

H_2	$m_{1:2}$	H_2 I	$P(B H_2)$
0	.024*.1=.0024	0	0.1
Α	.04*.4=.016	Α	0.4
Ν	.054*.5=.027	N	0.5

H_1	<i>H</i> ₂	$P(H_2 H_1)m_{1:1}$
0	0	0.0075
О	Α	0.0060
O	Ν	0.0015
Α	0	0.0240
Α	Α	0.0400
Α	Ν	0.0160
Ν	0	0
Ν	Α	0.0360
N	N	0.0540

H_1	<i>H</i> ₂	$P(H_2 H_1)$
0	О	0.5
Ο	Α	0.4
0	Ν	0.1
Α	0	0.3
Α	Α	0.5
Α	Ν	0.2
Ν	0	0
Ν	Α	0.4
Ν	Ν	0.6

0	0.015
Α	0.080
Ν	0.090

 $H_1 m_{1:1}$

Decision-making Under Uncertainty

• Decision theory = Probability theory + Utility theory

Decision-making Under Uncertainty

- Decision theory = Probability theory + Utility theory
- Consider an agent in a partially observable environment
 - \triangleright P(s) is the probability distribution over the current state s
- Suppose the action outcomes are also non-deterministic
 - ▶ P(s'|s,a) is the transition model

Axioms of Utility Theory

- Lottery L is possible outcomes S_1, \ldots, S_n with probabilities p_1, \ldots, p_n of an action
 - \triangleright S_i can be a state lottery or another lottery
- Orderability: $A \succ B$, $B \succ A$, or $A \sim B$
- Transitivity: $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$
- Continuity: $A \succ B \succ C$, then $\exists p$ s.t. $L_1 \sim L_2$

Axioms of Utility Theory

• Substitutability: $(A \sim B)$ then $(L_1 \sim L_2)$

• Monotonicity: $A \succ B$, then $(p > q) \Leftrightarrow (L_1 \succ L_2)$

Dr. Gerard (NCSU)

Axioms of Utility Theory

• Decomposability: $L_1 \sim L_2$

Dr. Gerard (NCSU)

Existence of Utility Function

 If an agent's preferences satisfy the axioms, then a utility function exists such that:

$$U(A) > U(B) \Leftrightarrow (A \succ B)$$

 $U(A) = U(B) \Leftrightarrow (A \sim B)$

Utility of a lottery is the expected utility of its outcomes

$$U(L) = pU(A) + (1-p)U(B)$$

Dr. Gerard (NCSU)

Decision Network

- Three type of nodes
 - Chance (oval) nodes like in Bayes Net
 - ► Action (rectangle) nodes
 - Utility (diamond) nodes
- Links like in Bayes Net
- Links connecting action and chance nodes to utility node

Decision Network

U(A, W)
20
70
100
0

	\ 7 		
t	ake 📶	leav	e
W 21 (-	5	(+	W - 70
sun 0.7	rain 0.3	sun 0.7	rain 0.3
20 14	70 21	100 70	0
		<u></u>	

W	P(W)
sun	0.7
rain	0.3

• $MEU(\phi) = \max((.7*20 + .3*70), (.7*100 + .3*0)) = \max(35,70) = 70$

Dr. Gerard (NCSU) Lecture 19 Mar 27, 2025 29 / 31

Decision Network

Α	W	U(A, W)
take	sun	20
take	rain	70
leave	sun	100
leave	rain	0

• $MEU(\phi) = \max((.95 * 20 + .05 * 70), (.95 * 100 + .05 * 0)) = \max(22.5, 95) = 95$

Value of Perfect Information (VPI)

W	P(W F)
sun	0.34
rain	0.66
sun	0.95
rain	0.05
	sun rain

- MEU(U|F = good) = max((.95*20 + .05*70), (.95*100 + .05*0)) = max(22.5, 95) = 95
- MEU(U|F = bad) = max((.34 * 20 + .66 * 70), (.34 * 100 + .66 * 0)) = max(53, 34) = 53
- Suppose the forecast probability is: P(F = good) = 0.59, P(F = bad) = 0.41
- Then expected MEU if forecast is given is: MEU(F) = .59 * 95 + .41 * 53 = 77.8
- The value of knowing F is: $VPI(F) = MEU(F) MEU(\phi) = 77.8 70 = 7.8$

Dr. Gerard (NCSU)