

A Real-Time AI Application for Enhanced Communication

INTRODUCTION & PROBLEM STATEMENT

Why Gesture Recognition?

• Gesture-based interfaces are a crucial part of modern humancomputer interaction, with applications in gaming, touchless control, and assistive technology. 0000

- This project aims to bridge the communication gap by developing a system to accurately recognize Arabic Sign Language hand gestures.
- Our goal is to create a lightweight, accurate, and real-time model that can be used for sign language interpretation from video streams or static images.

THE DATASET

OUR DATA: ARASL DATASET

- We used a publicly available
 Arabic Sign Language
 (ArASL) dataset containing
 54,000 images.
- The dataset is comprised of images of hand gestures representing 32 different Arabic letters.

DATA PREPARATION & AUGMENTATION

Data Preparation

• All images were resized to a consistent 224x224 pixels and then normalized to standardize pixel values.

Data Augmentation

To make our model more robust and prevent overfitting, we used several techniques:

- Random rotations and horizontal flips
- Adjustments to brightness, contrast, and saturation
- Random affine transformations

- We used transfer learning with two powerful pre-trained CNNs:
 MobileNetV2 and EfficientNetB0.
- The core of these models (the backbone) was kept frozen, and we trained a custom classifier head specifically for our 32 gesture classes.
- Our best results came from
 EfficientNetB0, which proved to be both accurate and efficient for our needs.

Transfer Learning

0000

Key Metrics

- Accuracy: 95.73%
- Precision, Recall, Fl-score:
 Our model performed well across all classes, indicating high-quality predictions.

- This is the most engaging part!
 Explain that you'll show the live
 Streamlit app.
- The app uses MediaPipe Hands to detect and crop the hand in the video stream.
- The cropped image is then sent to our trained EfficientNetB0 model for real-time prediction.

0000

0000

0000

0000

CALL TO ACTION: "LET ME WALK YOU THROUGH A LIVE DEMONSTRATION."

DEPLOYMENT & FINAL THOUGHTS

0000

FROM MODEL TO APPLICATION

- The model is deployed via a user-friendly web interface built with Streamlit.
- The application includes a debug mode to visualize the hand bounding box, landmarks, and the top-3 predictions.
- The project successfully demonstrates the feasibility of realtime Arabic Sign Language recognition using computer vision.

Future Work: handling dynamic gestures or optimizing the model for mobile devices

OUR TEAM

Model

Mariam Hassan Mariam Alaa

preprocessing

0000

Nada Maher Botayla Amin

Deployment

Shahd Elsawy Aya Yasser

GTC

THANK YOU

