Faculté des Sciences de Rabat Département de Mathématiques SMPC-S1 M3-E1 : Analyse

Série d'exercices 1

Exercice 1 1. Démontrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $r.x \notin \mathbb{Q}$.

- Montrer que √2 ∉ Q,
- 3. En déduire qu'entre deux nombres rationnels il y a toujours un nombre irrationnel.
- Soient a et b deux rationnels positifs tels que √a et √b soient irrationnels. Montrer que √a + √b est irrationnel.

Exercice 2 Trouver sous la forme $\frac{p}{q}$ des rationnels x dont les dévelopements décimaux périodiques sont donnés par :

$$3,14\widehat{14}...$$
; $0,99\widehat{9}...$; $3,149\widehat{9}...$

Exercice 3 Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté max(x, y). De même on notera min(x, y) le plus petit des deux nombres x, y. Démontrer que :

$$\max(x,y) = \frac{x+y+|x-y|}{2} \quad et \quad \min(x,y) = \frac{x+y-|x-y|}{2}.$$

Trouver une formule pour max(x, y, z).

Exercice 4 Déterminer la borne supérieure et inférieure (si elles existent) de : $A = \{u_n \mid n \in \mathbb{N}\}$ en posant $u_n = 2^n$ si n est pair et $u_n = 2^{-n}$ sinon.

Exercice 5 Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[0,1] \cap \mathbb{Q}$$
, $]0,1[\cap \mathbb{Q}$, \mathbb{N} , $\{(-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^*\}$.

Exercice 6 Si a et b sont des réels positifs ou nuls, montrer que :

$$\sqrt{a} + \sqrt{b} \leqslant 2\sqrt{a + b}$$
.

Exercice 7 Soit $f : \mathbb{R} \to \mathbb{R}$ telle que

$$\forall (x,y) \in \mathbb{R}^2 \quad f(x+y) = f(x) + f(y).$$

Montrer que

- 1. $\forall n \in \mathbb{N}$ $f(n) = n \cdot f(1)$.
- 2. $\forall n \in \mathbb{Z}$ $f(n) = n \cdot f(1)$.
- $3, \forall q \in \mathbb{O}$ $f(q) = q \cdot f(1),$
- 4. $\forall x \in \mathbb{R}$ $f(x) = x \cdot f(1)$ si f est croissante.

Correction 1 1. Soit $r = \frac{p}{q} \in \mathbb{Q}$ et $x \notin \mathbb{Q}$. Par l'absurde supposons que $r + x \in \mathbb{Q}$ alors il existe deux entiers p', q' tels que $r + x = \frac{p'}{q'}$. Donc $x = \frac{p'}{q'} - \frac{p}{q} = \frac{qp' - pq'}{qq'} \in \mathbb{Q}$ ce qui est absurde car $x \notin \mathbb{Q}$.

De la même façon si $r \cdot x \in \mathbb{Q}$ alors $r \cdot x = \frac{p'}{q'}$ Et donc $x = \frac{p'}{q'} \frac{q}{p}$. Ce qui est absurde.

2. Méthode "classique". Supposons, par l'absurde, que √2 ∈ Q alors il existe deux entiers p, q tels que √2 = ^p/_q. De plus nous pouvons supposer que la fraction est irréductible (p et q sont premiers entre eux). En élevant l'égalité au carré nous obtenons q² × 2 = p². Donc p² est un nombre pair, cela implique que p est un nombre pair (si vous n'êtes pas convaineu écrivez la contraposée "p impair ⇒ p² impair"). Donc p = 2 × p' avec p' ∈ N, d'où p² = 4 × p'². Nous obtenons q² = 2 × p'². Nous en déduisons maintenant que q² est pair et comme ci-dessus que q est pair. Nous obtenons ainsi une contradiction car p et q étant tous les deux pairs la fraction ^p/_q n'est pas irréductible et aurait pu être simplifiée. Donc √2 ∉ Q.

Autre méthode. Supposons par l'absurde que $\sqrt{2} \in \mathbb{Q}$. Alors $\sqrt{2} = \frac{p}{q}$ pour deux entiers $p, q \in \mathbb{N}^*$. Alors nous avons $q \cdot \sqrt{2} \in \mathbb{N}$. Considérons l'ensemble suivant :

$$\mathcal{N} = \left\{ n \in \mathbb{N}^* \mid n \cdot \sqrt{2} \in \mathbb{N} \right\}.$$

Cet ensemble N est une partie de \mathbb{N}^* qui est non vide car $q \in \mathcal{N}$. On peut alors prendre le plus petit élément de N: $n_0 = \min \mathcal{N}$. En particulier $n_0 \cdot \sqrt{2} \in \mathbb{N}$. Définissons maintenant n_1 de la façon suivante : $n_1 = n_0 \cdot \sqrt{2} - n_0$. Il se trouve que n_1 appartient aussi à \mathcal{N} car d'une part $n_1 \in \mathbb{N}$ (car n_0 et $n_0 \cdot \sqrt{2}$ sont des entiers) et d'autre part $n_1 \cdot \sqrt{2} = n_0 \cdot 2 - n_0 \cdot \sqrt{2} \in \mathbb{N}$. Montrons maintenant que n_1 est plus petit que n_0 . Comme $0 < \sqrt{2} - 1 < 1$ alors $n_1 = n_0(\sqrt{2} - 1) < n_0$ et est non nul,

Bilan : nous avons trouvé $n_1 \in \mathcal{N}$ strictement plus petit que $n_0 = \min \mathcal{N}$. Ceci fournit une contradiction. Conclusion : $\sqrt{2}$ n'est pas un nombre rationnel.

- Soient r, r' deux rationnels avec r < r'. Notons x = r + √2/2 (r' r). D'une part x ∈]r, r'[(car 0 < √2/2 < 1) et d'après les deux premières questions √2 (r'-r) ∉ Q donc x ∉ Q. Et donc x est un nombre irrationnel compris entre r et r'.
- 4. $a b = (\sqrt{a} \sqrt{b})(\sqrt{a} + \sqrt{b})$

Correction 2 On multiplie avec 10^p avec p bien choisit, puis on fait la differnce pour obtenir un entier.

Correction 3 Explicitons la formule pour $\max(x, y)$. Si $x \ge y$, alors |x - y| = x - y donc $\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y + x - y) = x$. De même si $x \le y$, alors |x - y| = -x + y donc $\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y - x + y) = y$.

Pour trois éléments, nous avons max(x, y, z) = max(max(x, y), z), donc d'après les formules pour deux éléments :

$$\begin{aligned} \max(x, y, z) &= \frac{\max(x, y) + z + |\max(x, y) - z|}{2} \\ &= \frac{\frac{1}{2}(x + y + |x - y|) + z + |\frac{1}{2}(x + y + |x - y|) - z|}{2}. \end{aligned}$$

Correction 4 $(u_{2k})_k$ tend vers $+\infty$ et donc A ne possède pas de majorant, ainsi A n'a pas de borne supérieure (cependant certains écrivent alors $\sup A = +\infty$). D'autre part toutes les valeurs de (u_n) sont positives et $(u_{2k+1})_k$ tend vers 0, donc $\inf A = 0$.

Correction 5 1. [0, 1] ∩ Q. Les majorants : [1, +∞[. Les minorants :] -∞, 0]. La borne supérieure :
 1. La borne inférieure : 0. Le plus grand élément : 1. Le plus petit élément 0.

-]0,1[∩Q. Les majorants : [1,+∞[. Les minorants :] − ∞,0]. La borne supérieure : 1, La borne inférieure : 0. Il nexiste pas de plus grand élément ni de plus petit élément.
- N. Pas de majorants, pas de borne supérieure, ni de plus grand élément. Les minorants :] −∞, 0].
 La borne inférieure : 0. Le plus petit élément : 0.
- {(-1)ⁿ+¹/_{n²} | n ∈ N*}. Les majorants : [⁵/₄, +∞[. Les minorants :]-∞, -1]. La borne supérieure : ⁵/₄. La borne inférieure : -1. Le plus grand élément : ⁵/₄. Pas de plus petit élément.

Correction 6

$$\sqrt{a} + \sqrt{b} \leq 2\sqrt{a+b} \Leftrightarrow (\sqrt{a} + \sqrt{b})^2 \leq 2(a+b)$$

car les termes sont positifs, et la fonction $x \mapsto x^2$ est croissante sur \mathbb{R}_+ . Évaluons la différence $2(a+b) - (\sqrt{a} + \sqrt{b})^2$:

$$2(a+b) - (\sqrt{a} + \sqrt{b})^2 = a + b - 2\sqrt{a}\sqrt{b} = (\sqrt{a} - \sqrt{b})^2 \ge 0.$$

Donc par l'équivalence, nous obtenons l'inégalité recherchée.

- Correction 7 1. Calculous d'abord f(0). Nous savons f(1) = f(1+0) = f(1) + f(0), donc f(0) = 0. Montrons le résultat demandé par récurrence : pour n = 1, nous avons bien $f(1) = 1 \times f(1)$. Si f(n) = nf(1) alors f(n+1) = f(n) + f(1) = nf(1) + f(1) = (n+1)f(1).
 - 2. 0 = f(0) = f(-1 + 1) = f(-1) + f(1). Donc f(-1) = -f(1). Puis comme ci-dessus f(-n) = nf(-1) = -nf(1).
 - Soit q = ^a/_b. Alors f(a) = f(^a/_b + ^a/_b + ··· + ^a/_b) = f(^a/_b) + ··· + f(^a/_b) (b termes dans ces sommes).
 Done f(a) = bf(^a/_b). Soit af(1) = bf(^a/_b). Ce qui s'écrit aussi f(^a/_b) = ^a/_bf(1).
 - Fixons x ∈ ℝ. Soit (α_i) une suite croissante de rationnels qui tend vers x. Soit (β_i) une suite décroissante de rationnels qui tend vers x :

$$\alpha_1 \leq \alpha_2 \leq \alpha_3 \leq \ldots \leq x \leq \cdots \leq \beta_2 \leq \beta_1$$
.

Alors comme $\alpha_i \leqslant x \leqslant \beta_i$ et que f est croissante nous avons $f(\alpha_i) \leqslant f(x) \leqslant f(\beta_i)$. D'après la question précédent cette inéquation devient : $\alpha_i f(1) \leqslant f(x) \leqslant \beta_i f(1)$. Comme (α_i) et (β_i) tendent vers x. Par le "théorème des gendarmes" nous obtenons en passant à la limite : $xf(1) \leqslant f(x) \leqslant xf(1)$. Soit f(x) = xf(1).

SMPC-S1

Série d'exercices 2

Exercice 1 Les suites suivantes sont-elle majorées, minorées? monotones? :

1.
$$u_n = \frac{n^2 - 25}{2n^2 + 1}$$
, $u_n = (-1)^n$

2.
$$u_n = \cos \frac{n\pi}{6}$$
, $u_n = \sin \frac{1}{\sqrt{n}}$

2.
$$u_n = \cos \frac{n\pi}{6}$$
, $u_n = \sin \frac{1}{\sqrt{n}}$
3. $u_n = n^2 + 1$, $u_n = \frac{1}{n^2 + (-1)^n(n+1)}$

Exercice 2 On considère la suite (u_n) définie par $u_n = \sum_{k=1}^n \frac{1}{n^2+k^2}$.

En utilisant le fait que $\frac{1}{n^2+n^2} \leqslant \frac{1}{n^2+k^2} \leqslant \frac{1}{n^2}$ pour tout $0 \leqslant k \leqslant n$, donner un encadrement de u_n . Que peut-on en déduire?

Exercice 3 Soit (u_n) la suite réelle définie par récurrence en posant $u_0 = 1$ et $u_{n+1} = \sqrt{1 + u_n}$ si $n \in \mathbb{N}^*$.

- Montrer que (u_n) est croissante et majorée.
- Montrer que (u_n) converge vers le nombre réel positif ℓ qui vérifie $\ell^2 - \ell - 1 = 0$ et calculer ℓ .
- 3. On suppose maintenant $v_0 = 1$ et $v_{n+1} = \sqrt{1 + v_n^2}$ si $n \in \mathbb{N}^*$. Montrer que v_n est croissante non bornée.

Exercice 4 Etudier la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{2}u_n(u_n^2 - 3u_n + 5) \forall n \ge 0$. Montrer que u_n diverge, (On montrera que $u_{n+1} \ge ku_n$ pour un certain k > 1.

Exercice 5 Les énoncés suivants sont-ils vrais ou faux?

- Une suite à termes positifs qui tend vers 0 est décroissante à partir d'un certain rang.
- 2. Si une suite a une limite strictement positive, tous ses termes sont strictement positifs à partir d'un certain rang. Réciproque?
- La somme de deux suites converge si et seulement si les deux suites convergent.

Exercice 6 Une méthode ancienne (attribuée à Platon) permettait d'extraire la racine carrée d'un nombre par un procédé itératif. Pour calculer la racine carrée d'un nombre k construit la suite réccurente $u_0 = 1$ et $u_{n+1} = \frac{u_n + k}{u_n + 1}$. On suppose dans notre cas k = 2.

- 1. Montrer que $1 \le u_n \le 2$ pour tout n
- 2. Vérifier que $V_n = u_{2n}$ et $W_n = u_{2n+1}$ monotone
- En déduire que v_n et w_n convergent toute les deux vers √2
- donner √2 a 4 chiffre après la virgule.

Exercice 7 Dans l'exercice préc" dent on au vu calculer $\sqrt{2}$; On donne deux autre suites récurrente dont on admet la convergence $v_0 = 1$, $v_{n+1} = \frac{v_n}{2} + \frac{1}{v_n}$ et $w_0 = 1$, $x_{n+1} = x_n \frac{(x_n^2 + 6)}{3x_n^2 + 2}$

- 1. Montrer que v_n et x_n converge vers $\sqrt{2}$
- en calculant v2 et x2 laquelle des deux suites vous semble la plus efficace.

Correction 1 1. $u_n = \frac{n^2 - 25}{2n^2 + 1}$ croissante bornée

- 2. $u_n = (-1)^n$ bornée non monotone
- 3. $u_n = \cos \frac{n\pi}{6}$, u_n altèrne un nombre fini de valeurs : bornée non monotone
- 4. $u_n = \sin \frac{1}{\sqrt{n}}$ bornée decroissante
- 5. $u_n = n^2 + 1$, croissante non bornée
- $6. \ u_n = \frac{1}{n^2 + (-1)^n (n+1)} \ born\acute{e} \ non \ monotone \ (elle \ est \ toutefois \ decroissante \ a \ partir \ de \ n = 2)$ $u_{n+1} u_n = \frac{1}{(n+1)^2 (-1)^n (n+2)} \frac{1}{n^2 + (-1)^n (n+1)} = \frac{n^2 + (-1)^n (n+1) ((n+1)^2 (-1)^n (n+2))}{((n+1)^2 (-1)^n (n+2))(n^2 + (-1)^n (n+1))}$ $= \frac{n^2 (n+1)^2 (-1)^n}{((n+1)^2 (-1)^n (n+2))(n^2 + (-1)^n (n+1))} \leqslant 0 \ pour \ n \geqslant 2$

Correction 2 $\frac{1}{2n} \leqslant u_n \leqslant \frac{1}{n}$ pour $n \geqslant 2$. Donc u_n converge vers zêro.

Correction 3 $u_0 = 1$ et $u_{n+1} = \sqrt{1 + u_n}$ si $n \in \mathbb{N}^*$.

- 1. Par récurrence $0 \le u_n \le 2$, et on a $u_0 = 1 \le u_1 = \sqrt{2}$ et par induction si $u_{n-1} \le u_n$ on $aurau_n = \sqrt{1 + u_{n-1}} \le \sqrt{1 + u_n} = u_{n+1}$, donc (u_n) est croissante et majorée.
- (u_n) est croissante et majorée, donc que (u_n) converge vers le nombre réel positif ℓ qui vérifie l = √1 + l et par suite ℓ² − ℓ − 1 = 0. On résoud l'équation pour avoir l = ^{1+√5}/₂
- La croissance s obtient de la même manière, par contre si on suppose qu elle est majorée, on aura croissante majorée, donc convergente vers l satisfaisant l = √1 + l² et donc l² − l + 1 = 0 impossible.

Correction 4 On a
$$u_{n+1} = \frac{1}{2}u_n(u_n^2 - 3u_n + 5) = \frac{1}{2}u_n(u_n - \frac{3}{2})^2 + \frac{11}{4}) \ge \frac{11}{8}u_n$$

Correction 5 1. Une suite à termes positifs qui tend vers θ est décroissante à partir d'un certain rang. Faux $u_n = \frac{exp(-1)^n}{n}$

- Si une suite a une limite strictement positive, tous ses termes sont strictement positifs à partir d'un certain rang. Vrais (cours) Réciproque Faux u_n = ¹/_n
- 3. La somme de deux suites converge si et seulement si les deux suites convergent. Faux $u_n = n$ et $v_n = \frac{1}{n} n$

Correction 6 On pose $f(x) = \frac{x+2}{x+1}$, alors f est décroissante, on exrit $f(x) = 1 + \frac{1}{x+1}$ si on veut eviter la dérivée.

- 1. par induction $1 \le u_n \le 2$ on aura $f(2) \le f(u_n) \le f(1)$ ce qui donne $1 \le u_{n+1} \le 2$
- 2. v_n et w_n verifient $v_{n+1} = fof(v_n)$ et $w_{n+1} = fof(w_n)$ et comme fof croissante, implique que u_{2n} et u_{2n+1} sont monotones
- les deux suiteS sont monotones bornées, donc convergente vers l₁ et l₂ respectivement. On résoud l₁ = f(l₂ et l₂ = f(l₁ pour trouver l₁ = l₂ = √2.

Correction 7 1. On passe a la limite dans la formule de x_n et de v_n pour montrer que $l = \sqrt{2}$

2. par la calculatrice $\sqrt{2} = 1$, 4142135623730950488016887242096980. On a $v_1 = 1.5$, $v_2 = 1.41$, $v_2 = 1$, 41421 et $x_1 = 1.41x_2 = 1$, 414213, $x_3 = 1$, 414213562373095048

2

Série d'exercices 3

Exercice 1 Calculer lorsqu'elles existent les limites suivantes

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$

b)
$$\lim_{x\to-\infty} \frac{x^2+2|x|}{x}$$

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$
 b) $\lim_{x\to -\infty} \frac{x^2+2|x|}{x}$ c) $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$

d)
$$\lim_{x\to\pi} \frac{\sin^2 x}{1+\cos x}$$

e)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$$

d)
$$\lim_{x\to\pi} \frac{\sin^2 x}{1+\cos x}$$
 e) $\lim_{x\to0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$ f) $\lim_{x\to+\infty} \sqrt{x+5}-\sqrt{x-3}$

g)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
 h) $\lim_{x\to 1} \frac{x-1}{x^n-1}$

$$h$$
) $\lim_{x\to 1} \frac{x-1}{x^n-1}$

Exercice 2 1. Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = 1$.

- 2. Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m-\sqrt{1-x^m}}}{x^n}$.
- 3. Démontrer que $\lim_{x\to 0} \frac{1}{x} (\sqrt{1+x+x^2}-1) = \frac{1}{2}$.

1. Montrer que toute fonction périodique et non constante n'admet pas de limite en Exercice 3 $+\infty$.

Montrer que toute fonction croissante et majorée admet une limite finie en +∞.

Exercice 4 Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

a)
$$f(x) = \sin x \cdot \sin \frac{1}{x}$$
; $\int h(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$.

Exercice 5 Soit f une fonction de [a, b] dans [a, b] telle que pour tout x et x' $(x \neq x')$ de [a, b] on ait : |f(x) - f(x')| < |x - x'|.

- Montrer que f est continue sur [a, b].
- Montrer que l'équation f(x) = x admet une et une seule solution dans [a, b]. (On pourra introduire la fonction : $x \mapsto g(x) = f(x) - x$).

Exercise 6 Soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction continue telle que f(a) = f(b). Montrer que la fonction $g(t) = f(t + \frac{b-a}{2}) - f(t)$ s'annule en au moins un point de $[a, \frac{a+b}{2}]$.

Application : une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 mn pendant lequel elle parcourt exactement 2 km.

Exercice 7 Soit $f : \mathbb{R} \to \mathbb{R}$ continue telle que $\lim_{t \to \infty} f = -\infty$ et $\lim_{t \to \infty} f = +\infty$. Montrer que f s'annule. Appliquer ceci aux polynômes de degré impair.

Exercice 8 Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue, telle que pour chaque $x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

Correction 1 1. $\frac{x^2+2|x|}{x} = x + 2\frac{|x|}{x}$. Si x > 0 cette expression vaut x + 2 donc la limite à droite en x = 0 est +2. Si x < 0 l'expression vaut -2 donc la limite à gauche en x = 0 est -2. Les limites à droite et à gauche sont différentes donc il n'y a pas de limite en x = 0.

$$2. \ \ \frac{x^2+2|x|}{x}=x+2\frac{|x|}{x}=x-2 \ pour \ x<0. \ Donc \ la \ limite \ quand \ x\to -\infty \ est \ -\infty.$$

3.
$$\frac{x^2-4}{x^2-3\,x+2} = \frac{(x-2)(x+2)}{(x-2)(x-1)} = \frac{x+2}{x-1}$$
, lorsque $x \to 2$ cette expression tend vers 4.

4.
$$\frac{\sin^2 x}{1+\cos x} = \frac{1-\cos^2 x}{1+\cos x} = \frac{(1-\cos x)(1+\cos x)}{1+\cos x} = 1-\cos x. \ Lorsque \ x \rightarrow \pi \ la \ limite \ est \ donc \ 2.$$

5.
$$\frac{\sqrt{1+x}-\sqrt{1+x^2}}{x} = \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x} \times \frac{\sqrt{1+x}+\sqrt{1+x^2}}{\sqrt{1+x}+\sqrt{1+x^2}} = \frac{1+x-(1+x^2)}{x(\sqrt{1+x}+\sqrt{1+x^2})} = \frac{x-x^2}{x(\sqrt{1+x}+\sqrt{1+x^2})} = \frac{1-x}{\sqrt{1+x}+\sqrt{1+x^2}}.$$

$$Lorsque \ x \to 0 \ la \ limite \ vaut \ \frac{1}{2}.$$

6.
$$\sqrt{x+5} - \sqrt{x-3} = (\sqrt{x+5} - \sqrt{x-3}) \times \frac{\sqrt{x+5} + \sqrt{x-3}}{\sqrt{x+5} + \sqrt{x-3}} = \frac{x+5-(x-3)}{\sqrt{x+5} + \sqrt{x-3}} = \frac{8}{\sqrt{x+5} + \sqrt{x-3}}$$
. Lorsque $x \to +\infty$, la limite vaut 0.

7. Nous avons l'égalité $a^3 - 1 = (a-1)(1+a+a^2)$. Pour $a = \sqrt[3]{1+x^2}$ cela donne :

$$\frac{a-1}{x^2} = \frac{a^3 - 1}{x^2(1+a+a^2)} = \frac{1+x^2 - 1}{x^2(1+a+a^2)} = \frac{1}{1+a+a^2}.$$

Lors que $x \to 0$, alors $a \to 1$ et la limite cherchée est $\frac{1}{3}$.

Autre méthode : si l'on sait que la limite d'un taux d'accroissement correspond à la dérivée nous avons une méthode moins astucieuse. Rappel (ou anticipation sur un prochain chapitre) : pour une fonction f dérivable en a alors

$$\lim_{x\to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Pour la fonction $f(x) = \sqrt[3]{1+x} = (1+x)^{\frac{1}{3}}$ ayant $f'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}$ cela donne en a = 0:

$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2} = \lim_{x\to 0} \frac{\sqrt[3]{1+x}-1}{x} = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = f'(0) = \frac{1}{3}.$$

8. $\frac{x^n-1}{x-1} = 1 + x + x^2 + \cdots + x^n$. Donc si $x \to 1$ la limite de $\frac{x^n-1}{x-1}$ est n. Donc la limite de $\frac{x-1}{x^n-1}$ en 1 est $\frac{1}{n}$.

La méthode avec le taux d'accroissement fonctionne aussi très bien ici. Soit $f(x) = x^n$, $f'(x) = nx^{n-1}$ et a = 1. Alors $\frac{x^n-1}{x-1} = \frac{f(x)-f(1)}{x-1}$ tend vers f'(1) = n.

Correction 2 Généralement pour calculer des limites faisant intervenir des sommes de racines carrées, il est utile de faire intervenir "l'expression conjuguée" :

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Les racines au numérateur ont "disparu" en utilisant l'identité $(x - y)(x + y) = x^2 - y^2$. Appliquons ceci sur un exemple :

$$\begin{split} f(x) &= \frac{\sqrt{1+x^m} - \sqrt{1-x^m}}{x^n} \\ &= \frac{(\sqrt{1+x^m} - \sqrt{1-x^m})(\sqrt{1+x^m} + \sqrt{1-x^m})}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{1+x^m - (1-x^m)}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{2x^m}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{2x^{m-n}}{\sqrt{1+x^m} + \sqrt{1-x^m}} \end{split}$$

Et nous avons

$$\lim_{x \to 0} \frac{2}{\sqrt{1 + x^m} + \sqrt{1 - x^m}} = 1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$.

Distinguous plusieurs cas pour la limite de f en 0.

- Si m > n alors x^{m-n}, et donc f(x), tendent vers 0.
- Si m = n alors x^{m-n} et f(x) tendent vers 1.
- Si m < n alors x^{m-n} = 1/x^{n-m} = 1/x^k avec k = n − m un exposant positif. Si k est pair alors les limites à droite et à gauche de 1/x^k sont +∞. Pour k impair la limite à droite vaut +∞ et la limite à gauche vaut −∞. Conclusion pour k = n − m > 0 pair, la limite de f en 0 vaut +∞ et pour k = n − m > 0 impair f n'n pas de limite en 0 car les limites à droite et à gauche ne sont pas égales.

Correction 3 1. Soit p > 0 la période : pour tout $x \in \mathbb{R}$, f(x + p) = f(x). Par une récurrence facile on montre :

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \quad f(x+np) = f(x).$$

Comme f n'est pas constante il existe $a, b \in \mathbb{R}$ tels que $f(a) \neq f(b)$. Notons $x_n = a + np$ et $y_n = b + np$. Supposons, par l'absurde, que f a une limite ℓ en $+\infty$. Comme $x_n \to +\infty$ alors $f(x_n) \to \ell$. Mais $f(x_n) = f(a + np) = f(a)$, donc $\ell = f(a)$. De même avec la suite (y_n) : $y_n \to +\infty$ donc $f(y_n) \to \ell$ et $f(y_n) = f(b + np) = f(b)$, donc $\ell = f(b)$. Comme $f(a) \neq f(b)$ nous obtenons une contradiction.

Soit f: R → R une fonction croissante et majorée par M ∈ R. Notons

$$F = f(\mathbb{R}) = \{f(x) \mid x \in \mathbb{R}\}.$$

F est un ensemble (non vide) de \mathbb{R} , notons $\ell = \sup F$. Comme $M \in \mathbb{R}$ est un majorant de F, alors $\ell < +\infty$. Soit $\varepsilon > 0$, par les propriétés du sup il existe $y_0 \in F$ tel que $\ell - \varepsilon \leq y_0 \leq \ell$. Comme $y_0 \in F$, il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = y_0$. Comme f est croissante alors :

$$\forall x \ge x_0$$
 $f(x) \ge f(x_0) = y_0 \ge \ell - \varepsilon$.

De plus par la définition de l :

$$\forall x \in \mathbb{R} \ f(x) \leq \ell$$
.

Les deux propriétés précédentes s'écrivent :

$$\forall x \ge x_0$$
 $\ell - \varepsilon \le f(x) \le \ell$.

Ce qui exprime bien que la limite de f en $+\infty$ est ℓ .

Correction 4 1. La fonction est définie sur \mathbb{R}^* t elle est continue sur \mathbb{R}^* . Il faut déterminer un éventuel prolongement par continuité en x = 0, c'est-à-dire savoir si f a une limite en 0.

$$|f(x)| = |\sin x| |\sin 1/x| \leqslant |\sin x|.$$

Donc f a une limite en 0 qui vaut 0. Donc en posant f(0) = 0, nous obtenons une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ qui est continue.

h est définie et continue sur R \ {−1, 1}.

$$h(x) = \frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1+x-2}{(1-x)(1+x)} = \frac{-1+x}{(1-x)(1+x)} = \frac{-1}{(1+x)}.$$

Donc h a pour limite $-\frac{1}{2}$ quand x tend vers 1. Et donc en posant $h(1) = -\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R} \setminus \{-1\}$. En -1 la fonction h ne peut être prolongée continuement, car en -1, h n'admet de limite finie.

- Correction 5 1. Pour toute suite x_n qui tend vers x, on $a | |f(x_n) f(x)| < |x_n x'| \to 0$.
 - On utilise le théorème des valeurs intermidiaires pour la fonction : x → g(x) = f(x) − x).
- Correction 6 I. $g(a) = f(\frac{a+b}{2}) f(a)$ et $g(\frac{a+b}{2}) = f(b) f(\frac{a+b}{2})$. Comme f(a) = f(b) alors nous obtenons que $g(a) = -g(\frac{a+b}{2})$. Donc ou bien $g(a) \le 0$ et $g(\frac{a+b}{2}) \ge 0$ ou bien $g(a) \ge 0$ et $g(\frac{a+b}{2}) \le 0$. D'après le théorème des valeurs intermédiaires, g(a) = g(a) s'annule en g(a) = g(a) et $g(\frac{a+b}{2}) = g(a)$.
 - 2. Notons t le temps (en heure) et d(t) la distance parcourue (en km) entre les instants 0 et t. Nous supposons que la fonction t → d(t) est continue. Soit f(t) = d(t) 4t. Alors f(0) = 0 et par hypothèse f(1) = 0. Appliquons la question précédente avec a = 0, b = 1. Il existe c ∈ [0, ½] tel que g(c) = 0, c'est-à-dire f(c+½) = f(c). Donc d(c+½) d(c) = 4(c+½) 4c = 2. Donc entre c et c + ½, (soit 1/2 heure), la personne parcourt exactement 2 km.

Correction 7 Il existe x < 0 tel que f(x) < 0 et y > 0 tel que f(y) > 0, d'après le théorème des valeurs intermédiaires, il existe $z \in]x,y[$ tel que f(z) = 0. Donc f s'annule. Les polynômes de degré impair vérifient les propriétés des limites, donc s'annulent. Ceci est faux, en général, pour les polynômes de degré pair, par exemple regardez $f(x) = x^2 + 1$.

Correction 8 Comme $f(x)^2 = 1$ alors $f(x) = \pm 1$. Attention! Cela ne veut pas dire que la fonction est constante égale à 1 ou -1. Supposons, par exemple, qu'il existe x tel que f(x) = +1. Montrons que f est constante égale à +1. S'il existe $y \neq x$ tel que f(y) = -1 alors f est positive en x, négative en y et continue sur f(x) de la théorème des valeurs intermédiaires, il existe x entre x et y tel que f(x) = 0, ce qui contredit $f(x)^2 = 1$. Donc f est constante égale à f(x) existe f(x) entre f(x) existe f(x) existe

Série d'exercices 4

SMPC-S

M3-E1 : Analys

Exercice 1 Étudier la dérivabilité des fonctions suivantes :

$$f_1(x) = x^2 \cos \frac{1}{x}$$
, $si \ x \neq 0$; $f_1(0) = 0$;

$$f_2(x) = \sin x \cdot \sin \frac{1}{x}$$
, $\sin x \neq 0$; $f_2(0) = 0$;

$$f_3(x) = \frac{|x|\sqrt{x^2 - 2x + 1}}{x - 1}$$
, $si \ x \neq 1$; $f_3(1) = 1$.

Exercice 2 Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 $si \ 0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ $si \ x > 1$

soit dérivable sur R₊.

Exercice 3 Calculer la fonction dérivée d'ordre n des fonctions f, g, h définies par :

$$f(x) = \sin x$$
; $g(x) = \sin^2 x$; $h(x) = \sin^3 x + \cos^3 x$.

Exercise 4 Montrer que pour tout $x \in \mathbb{R}$, $|e^x - 1 - x| \leq \frac{x^2}{2}e^{|x|}$.

Exercice 5 Par application du théorème des accroissements finis à $f(x) = \ln x$ sur [n, n+1] montre que

$$S_n = \sum_{k=1}^{n} \frac{1}{k}$$

tend vers l'infini quand n tend vers l'infini.

Exercice 6 Soient x et y réels avec 0 < x < y.

1. Montrer que

$$x < \frac{y-x}{\ln y - \ln x} < y$$
.

2. On considère la fonction f définie sur [0,1] par

$$\alpha \mapsto f(\alpha) = \ln(\alpha x + (1 - \alpha)y) - \alpha \ln x - (1 - \alpha) \ln y.$$

De l'étude de f déduire que pour tout \(\alpha \) de [0,1]

$$\alpha \ln x + (1 - \alpha) \ln y < \ln(\alpha x + (1 - \alpha)y).$$

Interprétation géométrique ?

Exercise 7 Soit f_1 , f_2 et f_2 les applications de \mathbb{R} dans \mathbb{R} définies par $f_1(x) = \frac{x}{1+x}$, $f_2(x) = \frac{x}{1-x}$ et $f_2(x) = \frac{x}{1-x^2}$

Calculer f₁⁽ⁿ⁾(0) et f₂⁽ⁿ⁾(0) pour tout n ∈ N et en déduire les formules de taylor de f₁ et de f₂ l'ordre 6.

Déduire la formule de Taylor de f₃ a l'ordre 6.

Exercice 8 En appliquant la regle de l Hospital plusieurs fois, déterminer la limite en 0 de

$$\frac{\arctan x - \sin x}{\tan x - \arcsin x}$$

Exercice 9 1. Développement limité en zéro de $\ln(\cos(x))$ (à l'ordre 6).

- Développement limité en zéro de cos x. ln(1+x) à l'ordre 4.
- 3. Développement limité en 1 à l'ordre 3 de $f(x) = \sqrt{x}$.
- Développement limité en 1 à l'ordre 3 de g(x) = e^{√x}.
- 5. Développement limité à l'ordre 3 en $\frac{\pi}{3}$ de $h(x) = \ln(\sin x)$.

Exercice 10 Donner un développement limité à l'ordre 2 de $f(x) = \frac{\sqrt{1+x^2}}{1+x+\sqrt{1+x^2}}$ en 0. En déduire un développement à l'ordre 2 en $+\infty$. Calculer un développement à l'ordre 1 en $-\infty$.

Exercice 11 Calculer les limites suivantes

$$\lim_{x\to 0}\frac{e^{x^2}-\cos x}{x^2} \qquad \lim_{x\to 0}\frac{\ln(1+x)-\sin x}{x} \qquad \lim_{x\to 0}\frac{\cos x-\sqrt{1-x^2}}{x^4}$$

Exercice 12 Étudier la position du graphe de l'application $x \mapsto \ln(1 + x + x^2)$ par rapport à sa tangente en 0 et 1.

Correction 1 1. La fonction f₁ est dérivable en dehors de x = 0. En effet x → ½ est dérivable sur R* et x → cos x est dérivable sur R, donc par composition x → cos ½ est dérivable sur R*. Puis par multiplication par la fonction dérivable x → x², la fonction f₁ est dérivable sur R*. Par la suite on omet souvent ce genre de discussion ou on l'abrège sous la forme "f est dérivable sur I comme somme, produit, composition de fonctions dérivables sur I".

Pour savoir si f₁ est dérivable en 0 regardons le taux d'accroissement :

$$\frac{f_1(x) - f_1(0)}{x - 0} = x \cos \frac{1}{x}.$$

Mais $x \cos(1/x)$ tend vers 0 (si $x \to 0$) car $|\cos(1/x)| \le 1$. Donc le taux d'accroissement tend vers 0. Donc f_1 est dérivable en 0 et $f'_1(0) = 0$.

Encore une fois f₂ est dérivable en dehors de 0. Le taux d'accroissement en x = 0 est :

$$\frac{f_2(x) - f_2(0)}{x - 0} = \frac{\sin x}{x} \sin \frac{1}{x}$$

Nous savons que $\frac{\sin x}{x} \to 1$ et que $\sin 1/x$ n'a pas de limite quand $x \to 0$. Donc le taux d'accroissement n'a pas de limite, donc f_2 n'est pas dérivable en 0.

3. La fonction f3 s'écrit :

$$f_3(x) = \frac{|x||x-1|}{x-1}$$
,

- Donc pour $x \ge 1$ on a $f_3(x) = x$; pour $0 \le x < 1$ on a $f_3(x) = -x$; pour x < 0 on a $f_3(x) = x$.
- La fonction f₃ est définie, continue et dérivable sur R\{0,1\}. Attention! La fonction x → |x| n'est pas dérivable en 0.
- La fonction f₃ n'est pas continue en 1, en effet lim_{x→1+} f₃(x) = +1 et lim_{x→1-} f₃(x) = -1.
 Donc la fonction n'est pas dérivable en 1.
- La fonction f₃ est continue en 0. Le taux d'accroissement pour x > 0 est

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{-x}{x} = -1$$

et pour x < 0,

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{x}{x} = +1.$$

Donc le taux d'accroissement n'a pas de limite en 0 et donc f_3 n'est pas dérivable en 0.

Correction 2 La fonction f est continue et dérivable sur]0,1[et sur $]1,+\infty[$. Le seul problème est en x=1.

Il faut d'abord que la fonction soit continue en x = 1. La limite à gauche est $\lim_{x\to 1^-} \sqrt{x} = +1$ et à droite $\lim_{x\to 1^+} ax^2 + bx + 1 = a + b + 1$. Donc a + b + 1 = 1. Autrement dit b = -a.

Il faut maintenant que les dérivées à droite et à gauche soient égales. Comme la fonction f restreinte à]0,1] est définie par $x\mapsto \sqrt{x}$ alors elle est dérivable à gauche et la dérivée à gauche s'obtient en évaluant la fonction dérivée $x\mapsto \frac{1}{2\sqrt{x}}$ en x=1. Donc $f'_g(1)=\frac{1}{2}$.

Pour la dérivée à droite il s'agit de calculer la limite du taux d'accroissement $\frac{f(x)-f(1)}{x-1}$, lorsque $x \to 1$ avec x > 1. Or

$$\frac{f(x)-f(1)}{x-1} = \frac{ax^2+bx+1-1}{x-1} = \frac{ax^2-ax}{x-1} = \frac{ax(x-1)}{x-1} = ax.$$

Donc f est dérivable à droite et $f'_d(1) = a$. Afin que f soit dérivable, il faut et il suffit que les dérivées à droite et à gauche existent et soient égales, donc ici la condition est $a = \frac{1}{2}$.

Le seul couple (a, b) que rend f dérivable sur $]0, +\infty[$ est $(a = \frac{1}{2}, b = -\frac{1}{2}).$

- Correction 3 1. Selon que $n \equiv 0 \pmod{4}$, $1 \pmod{4}$, $2 \pmod{4}$, $3 \pmod{4}$ alors $f^{(n)}(x)$ vaut respectivement $\sin x$, $\cos x$, $-\sin x$, $-\cos x$.
 - La dérivée de sin² x est 2 sin x cos x = sin 2x. Et donc les dérivées suivantes seront : 2 cos 2x, -4 sin
 Et selon que n ≡ 1 (mod 4), 2 (mod 4), 3 (mod 4), 0 (mod 4), alors g⁽ⁿ⁾(x) vaut respectivement
 2ⁿ⁻¹ sin 2x, 2ⁿ⁻¹ cos 2x, -2ⁿ⁻¹ sin 2x, -2ⁿ⁻¹ cos 2x.
 - 3. $\sin(x)^3 + \cos(x)^3 = -\frac{1}{4}\sin(3x) + \frac{3}{4}\sin(x) + \frac{1}{4}\cos(3x) + \frac{3}{4}\cos(x)$ et on dérive...

Correction 4 Pour simplifier nous supposons x > 0.

- Appliquer le théorème des accroissements finis ne va pas être suffisant. En effet, soit f(x) = e^x 1 x. Alors il existe c ∈]0, x[tel que f(x) f(0) = f'(c)(x 0). Soit f(x) = (e^c 1)x. Soit maintenant g(x) = e^x 1 alors, par le théorème des accroissements finis sur [0, c] il existe d ∈]0, c[tel que g(c) g(0) = g'(d)(c 0), soit e^c 1 = e^dc. Donc e^x 1 x = f(x) = (e^c 1)x = e^dcx. Comme d ≤ c ≤ x, alors e^x 1 x ≤ e^xx².
 - Cela donne une inégalité, mais il manque un facteur 1/2.
- 2. Nous allons obtenir l'inégalité par application du théorème de Rolle. Soit maintenant f(t) = e^t 1 t k²/₂. Nous avons f(0) = 0, x > 0 étant fixé, nous choisissons k tel que f(x) = 0, (un tel k existe car e^x 1 x > 0 et x² > 0). Comme f(0) = 0 = f(x) alors par Rolle il existe c ∈]0, x[tel que f'(c) = 0. Mais f'(t) = e^t t kt, donc f'(0) = 0. Maintenant f'(0) = 0 = f'(c) donc il existe (par Rolle toujours!) d ∈]0, c[tel que f''(d) = 0. Or f''(t) = e^t k, donc f''(d) = 0 donne k = e^d. Ainsi f(x) = 0 devient e^x 1 x = e^d x²/₂. Comme d ≤ x alors e^x 1 x ≤ e^x x²/₂.

Correction 5 Le théorème des accroissements finis donne : $\ln(n+1) - \ln(n) = \frac{1}{c_n}(n+1-n) = \frac{1}{c_n}$, avec $c_n \in [n, n+1]$. Or $c_n \ge n$ donc $\frac{1}{n} \ge \frac{1}{c_n}$. Donc :

$$S_n = \sum_{k=1}^n \frac{1}{k} \geqslant \sum_{k=1}^n \frac{1}{c_k} = \sum_{k=1}^n \ln(k+1) - \ln(k) = \ln(n+1).$$

La dernière égalité s'obtient car la somme est téléscopique et $\ln 1 = 0$. Donc $S_n \ge \ln(n+1)$, donc $S_n \to +\infty$.

- Correction 6 1. Soit $g(t) = \ln t$. Appliquons le théorème des accroissements finis sur [x, y]. Il existe $c \in]x, y[$, g(y) g(x) = g'(c)(y x). Soit $\ln y \ln x = \frac{1}{c}(y x)$. Donc $\frac{\ln y \ln x}{y x} = \frac{1}{c}$. Or x < c < y donc $\frac{1}{y} < \frac{1}{c} < \frac{1}{x}$. Ce qui donne les inégalités recherchées.
 - f'(α) = x-y / (αx+(1-α)y) ln x + ln y. Et f''(α) = -(x-y)² / (αx+(1-α)y)². Comme f'' est négative alors f' est décroissante sur [0,1]. Or f'(0) = x-y-y(ln x-ln y) > 0 d'après la première question et de même f'(1) < 0. Par le théorème des valeurs intermédiaires, il existe c ∈ [x, y] tel que f'(c) = 0. Maintenant f' est positive sur [0, c] et négative sur [c, 1]. Donc f est croissante sur [0, c] et décroissante sur [c, 1]. Or f(0) = 0 et f(1) = 0 donc pour tout x ∈ [0, 1], f(x) ≥ 0. Cela prouve l'inégalité demandée.
 - Géométriquement nous avons prouvé que la fonction ln est concave, c'est-à-dire que la corde (le segment qui va de (x, f(x)) à (y, f(y)) est sous la courbe d'équation y = f(x).

Correction 7 Soit f_1 , f_2 et f_2 les applications de \mathbb{R} dans \mathbb{R} définie par $f_1(x) = \frac{x}{1-x}$, $f_2(x) = \frac{x}{1+x}$ et $f_2(x) = \frac{x}{1-x^2}$

1. On a $f_1(x) = -1 + \frac{1}{1-x}$ et par conséquent : $f_1^{(n)}(x) = \frac{n!}{1-x}^{-n-1}$ ce qui donne

$$f_1(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^6o(x)$$

On obtient de meme $f_2(x) = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 + x^6 o(x)$

2. $f_3(x) = \frac{1}{2}(f_1 + f_2)$ et la formule de Taylor en découle

Correction 8 En appliquant la regle de l Hospital 3 fois, on trouve

$$\lim x \to 0 \frac{\arctan x - \sin x}{\tan x - \arcsin x} = \lim x \to 0 \frac{\frac{1}{1+x^2} - \cos x}{1 + \tan^2 x - \frac{1}{\sqrt{1-x^2}}} = \dots = -1.$$

Correction 9 1.

2.
$$\ln(\cos x) = -\frac{1}{2}x^2 - \frac{1}{12}x^4 - \frac{1}{45}x^6 + o(x^6)$$
.

- 3. Simple produit de DL cosx et DL(ln(1+x)
- Première méthode. On applique la formule de Taylor (autour du point x = 1)

$$f(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3 + o((x-1)^3)$$

Comme $f(x) = \sqrt{x} = x^{\frac{1}{2}}$ alors $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$ et donc $f'(1) = \frac{1}{2}$. Ensuite on calcule f''(x) (puis f''(1)), f'''(x) (et enfin f'''(1)).

On trouve le dl de $f(x) = \sqrt{x}$ au voisinage de x = 1:

$$\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 + o((x-1)^3)$$

Deuxième méthode. Posons h = x - 1 (et donc x = h + 1). On applique la formule du dl de $\sqrt{1 + h}$ autour de h = 0.

$$\begin{split} f(x) &= \sqrt{x} = \sqrt{1+h} \\ &= 1 + \frac{1}{2}h - \frac{1}{8}h^2 + \frac{1}{16}h^3 + o(h^3) \quad e'est\ la\ formule\ du\ dl\ de\ \sqrt{1+h} \\ &= 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 + o((x-1)^3) \end{split}$$

La première méthode consiste à calculer g'(x) = 1/2√x exp√x, g''(x), g'''(x) puis g(1), g'(1), g''(1), g'''(1) pour pouvoir appliquer la formule de Taylor conduisant à :

$$\exp(\sqrt{x}) = e + \frac{e}{2}(x-1) + \frac{e}{48}(x-1)^3 + o((x-1)^3)$$

(avec $e = \exp(1)$).

Autre méthode. Commencer par calculer le dl de $k(x) = \exp x$ en x = 1 ce qui est très facile car pour tout n, $k^{(n)}(x) = \exp x$ et donc $k^{(n)}(1) = e$:

$$\exp x = e + e(x-1) + \frac{e}{2!}(x-1)^2 + \frac{e}{3!}(x-1)^3 + o((x-1)^3).$$

Pour obtenir le dl $g(x) = h(\sqrt{x})$ en x = 1 on écrit d'abord :

$$\exp(\sqrt{x}) = e + e(\sqrt{x} - 1) + \frac{e}{2!}(\sqrt{x} - 1)^2 + \frac{e}{3!}(\sqrt{x} - 1)^3 + o((\sqrt{x} - 1)^3).$$

5

Il reste alors à substituer \sqrt{x} par son dl obtenu dans la première question.

6. Posons $u = x - \frac{\pi}{3}$ (et donc $x = \frac{\pi}{3} + u$). Alors

$$\sin(x) = \sin(\frac{\pi}{3} + u) = \sin(\frac{\pi}{3})\cos(u) + \sin(u)\cos(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}\cos u + \frac{1}{2}\sin u$$

On connaît les dl de $\sin u$ et $\cos u$ autour de u = 0 (car on cherche un dl autour de $x = \frac{\pi}{3}$) donc

$$\begin{split} \sin x &= \frac{\sqrt{3}}{2}\cos u + \frac{1}{2}\sin u \\ &= \frac{\sqrt{3}}{2}\left(1 - \frac{1}{2!}u^2 + o(u^3)\right) + \frac{1}{2}\left(u - \frac{1}{3!}u^3 + o(u^3)\right) \\ &= \frac{\sqrt{3}}{2} + \frac{1}{2}u - \frac{\sqrt{3}}{4}u^2 - \frac{1}{12}u^3 + o(u^3) \\ &= \frac{\sqrt{3}}{2} + \frac{1}{2}(x - \frac{\pi}{3}) - \frac{\sqrt{3}}{4}(x - \frac{\pi}{3})^2 - \frac{1}{12}(x - \frac{\pi}{3})^3 + o((x - \frac{\pi}{3})^3) \end{split}$$

Maintenant pour le dl de la forme $\ln(a+v)$ en v=0 on se ramène au dl de $\ln(1+v)$ ainsi :

$$\ln(a+v) = \ln\left(a(1+\frac{v}{a})\right) = \ln a + \ln(1+\frac{v}{a}) = \ln a + \frac{v}{a} - \frac{1}{2}\frac{v^2}{a^2} + \frac{1}{3}\frac{v^3}{a^3} + o(v^3)$$

On applique ceci à $h(x) = \ln(\sin x)$ en posant toujours $u = x - \frac{\pi}{3}$:

$$\begin{split} h(x) &= \ln(\sin x) = \ln\left(\frac{\sqrt{3}}{2} + \frac{1}{2}u - \frac{\sqrt{3}}{4}u^2 - \frac{1}{12}u^3 + o(u^3)\right) \\ &= \ln\left(\frac{\sqrt{3}}{2}\right) + \ln\left(1 + \frac{2}{\sqrt{3}}\left(\frac{1}{2}u - \frac{\sqrt{3}}{4}u^2 - \frac{1}{12}u^3 + o(u^3)\right)\right) \\ &= \cdots \qquad on \ effectue \ le \ dl \ du \ \ln \ et \ on \ regroupe \ les \ termes \\ &= \ln\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{\sqrt{3}}u - \frac{2}{3}u^2 + \frac{4}{9\sqrt{3}}u^3 + o(u^3) \\ &= \ln\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{\sqrt{3}}(x - \frac{\pi}{3}) - \frac{2}{3}(x - \frac{\pi}{3})^2 + \frac{4}{9\sqrt{3}}(x - \frac{\pi}{3})^3 + o((x - \frac{\pi}{3})^3) \end{split}$$

On trouve donc:

$$\ln(\sin x) = \ln\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{\sqrt{3}}(x - \frac{\pi}{3}) - \frac{2}{3}(x - \frac{\pi}{3})^2 + \frac{4}{9\sqrt{3}}(x - \frac{\pi}{3})^3 + o((x - \frac{\pi}{3})^3)$$

Bien sûr une autre méthode consiste à calculer h(1), h'(1), h''(1) et h'''(1).

Correction 10 1. Dl de f(x) à l'ordre 2 en 0.

$$\begin{split} f(x) &= \frac{\sqrt{1+x^2}}{1+x+\sqrt{1+x^2}} \\ &= \frac{1+\frac{x^2}{2}+o(x^2)}{1+x+1+\frac{x^2}{2}+o(x^2)} \quad car \, \sqrt{1+x^2} = 1+\frac{1}{2}x^2+o(x^2) \\ &= \left(1+\frac{x^2}{2}+o(x^2)\right) \times \frac{1}{2}\frac{1}{1+\frac{x}{2}+\frac{x^2}{4}+o(x^4)} \quad on \, pose \, u = \frac{x}{2}+\frac{x^2}{4}+o(x^4) \\ &= \frac{1}{2}\left(1+\frac{x^2}{2}+o(x^2)\right) \times \frac{1}{1+u} \\ &= \frac{1}{2}\left(1+\frac{x^2}{2}+o(x^2)\right) \times \left(1-u+u^2+o(u^2)\right) \\ &= \frac{1}{2}\left(1+\frac{x^2}{2}+o(x^2)\right) \times \left(1-\left(\frac{x}{2}+\frac{x^2}{4}\right)+\left(\frac{x}{2}+\frac{x^2}{4}\right)^2+o(x^2)\right) \\ &= \frac{1}{2}\left(1+\frac{x^2}{2}+o(x^2)\right) \times \left(1-\frac{x}{2}+o(x^2)\right) \\ &= \frac{1}{2}\left(1-\frac{x}{2}+\frac{x^2}{2}+o(x^2)\right) \\ &= \frac{1}{2}\left(1-\frac{x}{2}+\frac{x^2}{2}+o(x^2)\right) \\ &= \frac{1}{2}-\frac{x}{4}+\frac{x^2}{4}+o(x^2) \end{split}$$

2. $En +\infty$ on va poser $h = \frac{1}{x}$ et se ramener à un dl en h = 0.

$$f(x) = \frac{\sqrt{1+x^2}}{1+x+\sqrt{1+x^2}} = \frac{x\sqrt{\frac{1}{x^2}+1}}{x\left(\frac{1}{x}+1+\sqrt{\frac{1}{x^2}+1}\right)} = \frac{\sqrt{1+h^2}}{1+h+\sqrt{1+h^2}} = f(h).$$

lci -miraculeusement- on retrouve exactement l'expression de f dont on a déjà calculé le dl en h=0; $f(h)=\frac{1}{2}-\frac{h}{4}+\frac{h^2}{4}+o(h^2)$. Ainsi

$$f(x) = f(h) = \frac{1}{2} - \frac{1}{4x} + \frac{1}{4x^2} + o(\frac{1}{x^2})$$

Attention cela ne fonctionne plus du tout en −∞. Dans le calcul de la deuxième question on était on voisinage de +∞ et nous avons considéré que x était positif. En −∞ il faut faire attention au signe, par exemple √1+x² = |x|√(1/x²) + 1 = -x√(1/x²) + 1.

Ainsi toujours en posant $h = \frac{1}{x}$.

$$f(x) = \frac{\sqrt{1+x^2}}{x+1+\sqrt{1+x^2}}$$

$$= \frac{-x\sqrt{\frac{1}{x^2}+1}}{x\left(1+\frac{1}{x}-\sqrt{\frac{1}{x^2}+1}\right)}$$

$$= -\frac{\sqrt{1+h^2}}{1+h-\sqrt{1+h^2}}$$

$$= -\frac{1+\frac{1}{2}h^2+o(h^2)}{1+h-\left(1+\frac{1}{2}h^2+o(h^2)\right)}$$

$$= -\frac{1+\frac{1}{2}h^2+o(h^2)}{h-\frac{1}{2}h^2+o(h^2)}$$

$$= -\frac{1}{h}\frac{1+\frac{1}{2}h^2+o(h^2)}{1-\frac{1}{2}h+o(h)}$$

$$= -\frac{1}{h}\left(1+\frac{1}{2}h^2+o(h^2)\right)\times\left(1+\frac{1}{2}h+\frac{1}{4}h^2+o(h^2)\right)$$

$$= -\frac{1}{h}\left(1+\frac{1}{2}h+\frac{3}{4}h^2+o(h^2)\right)$$

$$= -\frac{1}{h}\frac{1}{2}-\frac{3}{4}h+o(h)$$

$$= -x-\frac{1}{2}-\frac{3}{4}\frac{1}{x}+o(\frac{1}{x})$$

Ainsi un développement (asymptotique) de f en $-\infty$ est

$$f(x) = -x - \frac{1}{2} - \frac{3}{4} \frac{1}{x} + o(\frac{1}{x})$$

On en déduit par exemple que f(x) se comporte essentiellement comme la fonction -x en $-\infty$ et en particulier $\lim_{x\to-\infty} f = +\infty$.

Correction 11 1. On a

$$e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + o(x^4)$$
 et $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$

On s'aperçoit qu'en fait un dl à l'ordre 2 suffit :

$$e^{x^2} - \cos x = (1 + x^2 + o(x^2)) - (1 - \frac{x^2}{2} + o(x^2)) = \frac{3}{2}x^2 + o(x^2)$$

Ainsi $\frac{e^{x^2}-\cos x}{x^2}=\frac{3}{2}+o(1)$ (où o(1) désigne une fonction qui tend vers 0) et donc

$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2} = \frac{3}{2}$$

2. On sait que

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$
 et $\sin x = x - \frac{x^3}{3!} + o(x^3)$.

Les dl sont distincts dès le terme de degré 2 donc un dl à l'ordre 2 suffit :

$$\ln(1+x) - \sin x = \left(x - \frac{x^2}{2} + o(x^2)\right) - \left(x + o(x^2)\right) = -\frac{x^2}{2} + o(x^2)$$

donc

 $\frac{\ln(1+x) - \sin x}{x} = -\frac{x}{2} + o(x)$

et ainsi

 $\lim_{x \to 0} \frac{\ln(1+x) - \sin x}{x} = 0.$

3. Sachant

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

et

$$\sqrt{1-x^2} = 1 - \frac{1}{2}x^2 - \frac{1}{8}x^4 + o(x^4)$$

alors

$$\frac{\cos x - \sqrt{1 - x^2}}{x^4} = \frac{\left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right) - \left(1 - \frac{1}{2}x^2 - \frac{1}{8}x^4 + o(x^4)\right)}{x^4}$$

$$= \frac{\frac{1}{6}x^4 + o(x^4)}{x^4}$$

$$= \frac{1}{6} + o(1)$$

Ainsi

$$\lim_{x\to 0} \frac{\cos x - \sqrt{1-x^2}}{x^4} = \frac{1}{6}$$

Correction 12 Commençons en x = 0, le dl de $f(x) = \ln(1 + x + x^2)$ à l'ordre 2 est

$$\ln(1+x+x^2) = (x+x^2) - \frac{(x+x^2)^2}{2} + o(x^2) = x + \frac{1}{2}x^2 + o(x^2)$$

Par identification avec $f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + o(x^2)$ cela entraı̂ne donc f(0) = 0, f'(0) = 1 (et f''(0) = 1). L'équation de la tangente est donc y = f'(0)(x - 0) + f(0) donc y = x.

La position par rapport à la tangente correspond à l'étude du signe de f(x) - y(x) où y(x) est 'équation de la tangente.

$$f(x) - y(x) = x + \frac{1}{2}x^2 + o(x^2) - x = \frac{1}{2}x^2 + o(x^2).$$

Ainsi pour x suffisamment proche de 0, f(x) - y(x) est du signe de $\frac{1}{2}x^2$ et est donc positif. Ainsi lans un voisinage de 0 la courbe de f est au-dessus de la tangente en 0.

 $M\hat{e}me\ \hat{e}tude\ en\ x=1.$

Il s'agit donc de faire le dl de f(x) en x = 1. On pose x = 1 + h (de sorte que h = x - 1 est proche

(c 0) :

$$f(x) = \ln(1+x+x^2) = \ln\left(1+(1+h)+(1+h)^2\right)$$

$$= \ln\left(3+3h+h^2\right)$$

$$= \ln\left(3\left(1+h+\frac{h^2}{3}\right)\right)$$

$$= \ln 3 + \ln\left(1+h+\frac{h^2}{3}\right)$$

$$= \ln 3 + \left(h+\frac{h^2}{3}\right) - \frac{\left(h+\frac{h^2}{3}\right)^2}{2} + o\left((h+\frac{h^2}{3})^2\right)$$

$$= \ln 3 + h + \frac{h^2}{3} - \frac{h^2}{2} + o(h^2)$$

$$= \ln 3 + h - \frac{1}{6}h^2 + o(h^2)$$

$$= \ln 3 + (x-1) - \frac{1}{6}(x-1)^2 + o((x-1)^2)$$

La tangente en x = 1 est d'équation y = f'(1)(x - 1) + f(1) et est donc donnée par le dl à l'ordre : c'est $y = (x-1) + \ln 3$. Et la différence $f(x) - (\ln 3 + (x-1)) = -\frac{1}{6}(x-1)^2 + o((x-1)^2)$ est négative our x proche de 1. Donc, dans un voisinage de 1, le graphe de f est en-dessous de la tangente en := 1.