Prof. Aurélio Hoppe

TRABALHO 01 – CONCEITOS BÁSICOS, REPRESENTAÇÃO E BUSCA EM GRAFOS

QUESTÃO 1 (1,0 ponto)

Explique rapidamente cada uma das estratégias abaixo, destacando a escolha do vértice da fronteira, como ela se comporta e qual é o desempenho do algoritmo ao realizar a busca por um objetivo:

- a. Busca em profundidade
- b. Busca em largura (ou extensão)
- c. Busca por custo uniforme (menor primeiro)
- d. Busca em aprofundamento iterativo
- e. Busca heurística gulosa (pelo melhor primeiro)
- f. Busca A*

QUESTÃO 2 (5,0 pontos)

Segue abaixo as funcionalidades que precisam ser implementadas neste trabalho. Ele trabalhará apenas com grafos não-dirigidos

ENTRADA:

Sua implementação deve ser capaz de ler um grafo de um arquivo texto. O formato do grafo no arquivo será o seguinte. A primeira linha informa o número de vértices do grafo. Cada linha subsequente informa as arestas. Um exemplo de um grafo e seu respectivo arquivo texto pode ser visto acima.

SAÍDA:

- a. Sua implementação deve ser capaz de gerar um arquivo texto com as seguintes informações sobre o grafo: número de vértices, número de arestas e sequência de grau.
- b. Representação de grafos. Sua implementação deve ser capaz de representar grafos utilizando tanto uma matriz de adjacência, quanto uma lista ou vetor de adjacência. O usuário poderá escolher a representação a ser utilizada.
- c. Busca em grafos: largura e profundidade. Sua implementação deve ser capaz de percorrer o grafo utilizando busca em largura e busca em profundidade. O vértice inicial será dado pelo usuário. A respectiva árvore de busca deve ser gerada assim como o nível de cada vértice na árvore (nível da raiz é zero). Estas informações devem ser armazenadas em um arquivo. Para descrever a árvore gerada, basta informar o pai de cada vértice e seu nível no arquivo de saída.

Considerando cada um dos grafos de entrada, responda às perguntas abaixo:

- 1. Compare o desempenho em termos de memória utilizada pelas duas representações do grafo. Ou seja, determine a quantidade de memória (em MB) utilizada pelo seu programa quando você representa o grafo utilizando uma matriz e lista de adjacência.
- 2. Compare o desempenho em termos de tempo de execução das duas representações do grafo. Ou seja, determine o tempo necessário para executar dez buscas em largura em cada um dos casos (utilize diferentes vértices como ponto de partida da busca). Dica: obtenha o tempo do relógio da máquina no seu código antes de iniciar e depois de terminar a BFS.
- 3. Você deve preparar uma (ou duas) tabela com os resultados obtidos onde as colunas representam as características e as linhas representam os diferentes grafos analisados.

	Memória matriz	Memória lista	T1	T2	Т3	T4	T5	T6	T7	Т8	Т9	T10	Média
Arquivo 1													

QUESTÃO 3 (4,0 pontos)

Considere o seguinte mapa.

Distância entre cada cidade	Distância em linha reta				
A R	А	230			
A B 73	В	182			
A C 64 A D 89	С	179			
A E 104					
B K 83	D	165			
C I 64	E	166			
D N 89	F	160			
E J 40	G	155			
F I 31	_				
F N 84	Н	137			
G J 35	I	117			
G Q 113	J	115			
Н К 35 Н L 36	K	113			
I L 28	17				
I M 20	L	100			
J N 53	М	97			
J Q 80	N	73			
L P 63 M O 50	0	70			
O P 41	P	61			
O R 72	_				
P R 65	Q	61			
Q R 65	R	0			

Usando o algoritmo A^* determine uma rota de A até R, usando as seguintes funções de custo g(n) = a distância entre cada cidade e h(n) = a distância em linha reta entre duas Cidades.

Em sua resposta forneça o seguinte:

- 1. Mostre a ordem em que os vértices serão expandidos/explorados.
- 2. Mostre a árvore de busca que será produzida, mostrando a função de custo em cada vértice.
- 3. Mostre o caminho/rota que será tomada e o custo total.

Observações:

- 1. o trabalho pode ser feito em dupla. A interpretação do enunciado faz parte da avaliação;
- 2. a avaliação será feita sobre os programas-fonte entregues ao professor;
- 3. os programas-fontes devem ser feitos em Java, C/C++ e Python;
- 4. serão consideradas a racionalidade e lógica da solução;
- 5. coloque seu nome como comentário no início de cada programa-fonte;
- 6. os programas-fonte devem ser postados no AVA até o dia 13/05/2020.