Analysis on Manifolds and Differential Geometry

Lecture Notes

Adriel Ong

April 7, 2021

Sylvester II Institute

Contents

1	Algebra and Topology of $\mathbb R$	1
	1.1 Linear Algebra	1

1.0 Algebra and Topology of $\mathbb R$

1.1 Linear Algebra

Suppose a set V of *vectors*. We define two operations. The first, called *vector addition*, denotes the sum of vectors \mathbf{x} and \mathbf{y} as $\mathbf{x} + \mathbf{y}$. The second, called *scalar multiplication*, denotes the product of a scalar $c \in \mathbb{R}$ and a vector \mathbf{x} as $c\mathbf{x}$ as $c\mathbf{x}$.

Definition 1.1. If the following properties hold for all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ and scalars c, d, then we call the set V with these operations a *vector space*.

- 1. x + y = y + x (Additive commutativity)
- 2. x + (y + z) = (x + y) + z
- 3. $\exists ! \mathbf{0}(\mathbf{x} + \mathbf{0} = \mathbf{x} \forall \mathbf{x})$
- 4. $\mathbf{x} + (-1)\mathbf{x} = 0$