

Hello

Torben Reetz 7th Semester SSD

A Recommender Framework for Skills Management

@SinnerSchrader

Agenda

Motivation

Context SinnerSchrader

- Hamburg based
- Full service web agency
- 459 full-time employees
- Revenue > 51M Euro (15/16)

- Domain specific teams
- Project teams
- **Definitions:**
 - Project Manager → Project team
 - Supervisor → Domain specific team

- Employees leave their teams
- Workload changes
- Shift in disciplines

Project managers frequently look for new team members.

- Different experience and knowledge
- Different disciplines
- Different project setups

Employees search for people that can help to solve a specific problem.

- People search for other people that have specific skills
- Create a central source of information
- Focus: Motivation and Cooperation
- This thesis: Backend only
 - Visual concept / Frontend: Strecker

Concept

Walkthrough

- Person Search
- Recommending skills to search
- Recommending similar profiles

Person Search

- Skill: ability of a specific person
- Levels
 - Skill level: knowledge
 - Will level: motivation
 - Four Step Scale (0-3)
- Fitness: Measurement of how well a person fits into a searched skill set

	Skill Level	Will Level
0	Novice	Uninterested
1	Basic Knowledge	Indifferent
2	Advanced Knowledge	Somewhat Interested
3	Expert	Highly Interested

	Skill Level	Will Level
0	Novice	Uninterested
1	Basic Knowledge	Indifferent
2	Advanced Knowledge	Somewhat Interested
3	Expert	Highly Interested

- Skill Level = $0 \rightarrow Person has little knowledge$
- No knowledge → Skill not present

Definitions

- User enters skills to look for
- Systems presents list of results
 - People that have all skills
 - Best match on first Position
- IR System

- Google
- Facebook Graph Search
- Siri/Alexa
- grep
- ...

"Information retrieval (IR) is finding material [...] that satisfies an information need from within large collections."

Employees

"Information retrieval (IR) is finding material [...] that satisfies an information need from within large collections."

Employees g material [...] that

"Information retrieval (IR) is finding material [...] that satisfies an information need from within large collections."

Search Query

Boolean IR systems

- Boolean operators
- Example: Jira Query Language
 - "priority in (Blocker, Critical) AND project in (ProjA, ProjB, ProjC)"

Ranked IR systems

- Items ranked → Best match first
- Example: Google

Person Search in Talent Management (engage!)

Person Search in Talent Management (engage!)

- Boolean Systems
- Complex queries
- Bloated interfaces
- No ranking

- Ranked IR system
- No complex queries
- Best match first
 - Fitness Score

FAKULTÄT

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

- Adaption of Spoonamore et al.
- Weighted mean of factors
 - Average skill level in searched skills
 - Average will level in searched skills
 - Specialization (skill levels)
 - Specialization (will levels)
- Weighting parameters configurable

- $W_{as} = W_{aw} = W_{ss} = W_{sw} = 0.25$
- Notation: skill level|will level
- Java and Ruby
- In Hamburg

Person	Location	Java	Ruby	C++
Alice	Hamburg	2 1	2 2	3 3
Bob	Hamburg	2 3	0 3	0 1
Charlie	Hamburg	3 3	2 1	1 2
Donald	Hamburg	3 3	-	2 2
Erika	Frankfurt	1 1	2 3	3 1

Person	Location	Java	Ruby	C++
Alice	Hamburg	2 1	2 2	3 3
Bob	Hamburg	2 3	0 3	0 1
Charlie	Hamburg	3 3	2 1	1 2
Donald	Hamburg	3 3	-	2 2
Erika	Frankfurt	1 1	2 3	3 1

Person	Location	Java	Ruby	C++
Alice	Hamburg	2 1	2 2	3 3
Bob	Hamburg	2 3	0 3	0 1
Charlie	Hamburg	3 3	2 1	1 2
Donald	Hamburg	3 3	-	2 2
Erika	Frankfurt	1 1	2 3	3 1

Person	Location	Java	Ruby	C++
Alice	Hamburg	2 1	2 2	3 3
Bob	Hamburg	2 3	0 3	0 1
Charlie	Hamburg	3 3	2 1	1 2
Donald	Hamburg	3 3	-	2 2
Erika	Frankfurt	1 1	2 3	3 1

Person	Location	Java	Ruby	C++
Alice	Hamburg	2 1	2 2	3 3
Bob	Hamburg	2 3	0 3	0 1
Charlie	Hamburg	3 3	2 1	1 2
Donald	Hamburg	3 3	-	2 2
Erika	Frankfurt	1 1	2 3	3 1

Person	Location	Java	Ruby	C++	f
Alice	Hamburg	2 1	2 2	3 3	0.44
Bob	Hamburg	2 3	0 3	0 1	0.71
Charlie	Hamburg	3 3	2 1	1 2	0.69
Donald	Hamburg	3 3	-	2 2	
Erika	Frankfurt	1 1	2 3	3 1	

#	Person	Location	Java	Ruby	C++	f
3	Alice	Hamburg	2 1	2 2	3 3	0.44
1	Bob	Hamburg	2 3	0 3	0 1	0.71
2	Charlie	Hamburg	3 3	2 1	1 2	0.69
	Donald	Hamburg	3 3	-	2 2	
	Erika	Frankfurt	1 1	2 3	3 1	

#	Person	Location	Java	Ruby	C++	f
1	Bob	Hamburg	2 3	0 3	0 1	0.71
2	Charlie	Hamburg	3 3	2 1	1 2	0.69
3	Alice	Hamburg	2 1	2 2	3 3	0.44

Recommending Similar Users

Recap: Walkthrough

- Recommender System
 - Content-based filtering
- User = Set of Skills
- Jaccard Similarity Coefficient (JSC)

- Size of intersection: 3
- Size of union: 8
- JSE: 3 / 8 (37.5%)

Recommending Skills to Search

Recap: Walkthrough

- Skills: name and icon
- No user context
- Item-based (collaborative) filtering
 - Examine what skills other users' searched for
 - Recommend those skills

- Markov Chain
- Model to predict transitions between states
- Only the current state determines the next state

- States: Single Skills
- Transitions: Count of joint searches
- Generate Recommendations:
 - Get all suggestions from entered items
 - Aggregate suggestions (add counts)
 - Remove entered items
 - Sort by search count
 - Return first n items

Implementation

- Serve static files
- Forward API calls
- SSL endpoint

- Graphical Interface
- HTML, CSS, JS, Assets
- Executes API calls (AJAX)

- Main Application
- REST API

- Personal Data
- Authentication
- Used for most internal services

Application Structure

- Application dataNoSQL

- Controllers
- Services
- Repositories
- Jobs
- Helpers
- Data Types

- Listen to API endpoints
- Use services to
 - Get data
 - Send data
 - Send commands
- Convert Objects to JSON

- Get, filter, transform, edit data
- Use repository objects to
 - Retrieve data from external sources
 - Write data to external sources
- Contain business logic

- Spring Data repository objects
- Provide Methods for CRUD operations
- Wrappers to simplify storage access

Backend Structure

- MongoDB
- Skills
- Persons
- Sessions

Evaluation

- Scalability
- Response times (1s)
- Search algorithm
 - Are results distributed uniformly?
 - Do algorithm's and managers' ratings correlate?

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

- Scalability
- Response times (1s) ()
- Search algorithm
 - Are results distributed uniformly?
 - Do algorithm's and managers' ratings correlate?

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

- Scalability
- Response times (1s) ()
- Search algorithm
 - Are results distributed uniformly? 🗸
 - Do algorithm's and managers' ratings correlate?

- Online Survey (Google Forms)
- 41 participants (8% of the staff)
- 9 Questions

Evaluation (Survey)

- Two-tailed heteroscedastic T-Test
- $p \ge 0.1 \rightarrow No significant deviation$
- $p \ge 0.05 \rightarrow Two data rows deviate significantly$

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

- Scalability
- Response times (1s) ()
- Search algorithm
 - Are results distributed uniformly? 🗸
 - Do algorithm's and managers' ratings correlate?

- Scalability
- Response times (1s) ()
- Search algorithm
 - Are results distributed uniformly? 🗸
 - Do algorithm's and managers' ratings correlate? <

That's it

Demo

Demo

https://demo.torben.xyz

Thanks

github.com/t0rbn/BSc github.com/sinnerschrader*

Contact

Github: @t0rbn

Mail: 3reetz@informatik.uni-hamburg.de

More: http://torben.xyz

Image Sources

Thinkpad X1: https://www.bhphotovideo.com

Google Now on Nexus 5: ttps://www.androidcentral.com/google-now

Screenshot engage!: https://www.infoniga.com/hr-software/talent-management

Application Architectures created with https://cloudcraft.co/

Octocat: https://github.com/logo

Java Logo: https://upload.wikimedia.org/wikipedia/en/thumb/3/30/Java_programming_language_logo.svg/412px-Java_programming_language_logo.svg.png

OpenJDK Logo: https://upload.wikimedia.org/wikipedia/commons/thumb/1/18/OpenJDK_logo.svg/2000px-OpenJDK_logo.svg.png

Swagger Logo: https://avatars2.githubusercontent.com/u/7658037?v=3&s=400

Junit Logo: http://junit.org/junit4/images/junit5-banner.png

Maven Logo: https://maven.apache.org/images/maven-logo-black-on-white.png

Git Logo: https://git-scm.com/images/logos/logomark-orange@2x.png

Gitlab Logo: https://upload.wikimedia.org/wikipedia/commons/thumb/1/18/GitLab_Logo.svg/2000px-GitLab_Logo.svg.png

Flapdoodle Logo: https://avatars0.githubusercontent.com/u/1661811?v=3&s=280

Unboundid Logo: https://media.licdn.com/mpr/mpr/shrink_200_200/AAEAAQAAAAAAUtAAAAJGEyYmI1MDlmLWFkMjktNGU3ZS1hOTk2LWM0MDJjZTQ5MzA2Mw.png

Jacoco Logo: https://cdn.liviutudor.com/wp-content/uploads/2016/02/Jacoco.png

Spring Logo: https://upload.wikimedia.org/wikipedia/en/2/20/Pivotal_Java_Spring_Logo.png

Q&A

Bonus Slides

Requirements

Person search

Enter skills → find best matching person

User profiles

- Skills, personal data, direct contact
- Enter own skills (knowledge, motivation)
- Login

Management of registered Skills

- Pool of predefined skills
- Add new skills
- Rename skills
- Delete skills

Different devices

- Primary: Desktops
- Mobile devices optional

Browser support

- Chrome, Firefox, Safari
- No support for IE/Edge

Response Times (RAIL)

- 100ms to acknowledge input
- 1s to finish rendering results

Scalability

- Increased number of users should not be a problem
- Enlarge storage and computing resources

Realated Work

- Ivanovska et. al: Algorithms for Effective Team Building
- Canós-Darós: An algorithm to identify the most motivated employees
 - General Motivation ↔ Task specific
 - Asking employees to rate their motivation generates suitable data
- Spoonamore et. al: Matching Sailors to Positions Based on Skill

Multiple Factors

- Rating
- Pay grade
- NECs
- Basic priciple: weighted mean of factors
 - \circ S = α ratingscore + β paygradescore + γ NECscore

Fitness Score Algorithm

$$V = \{ x \in \mathbb{N}_0^+ \mid 0 \le x \le 3 \}$$

$$S = \{Java, Ruby, C + +, ...\}$$

$$E = \{x \in S \mid \text{employee has skill } x\}$$

$$Q = \{x \in S \mid \text{user searches for skill } x\}$$

$$v_s: E \mapsto V$$

$$v_{7v}: E \mapsto V$$

$$a_s = \left(\sum_{x \in E \cap Q} v_s(x)\right) \cdot \frac{1}{|E \cap Q|}$$

$$a_w = \left(\sum_{x \in E \cap Q} v_w(x)\right) \cdot \frac{1}{|E \cap Q|}$$

$$s_{s} = \frac{max(V) + a_{s} - \left(\left(\sum_{x \in E \setminus Q} v_{s}(x)\right) \cdot \frac{1}{|E \setminus Q|}\right)}{2max(V)}$$

$$s_{w} = \frac{max(V) + a_{w} - \left(\left(\sum_{x \in E \setminus Q} v_{w}(x)\right) \cdot \frac{1}{|E \setminus Q|}\right)}{2max(V)}$$

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

$$f = \frac{w_{as} \cdot a_s}{max(V)} + \frac{w_{aw} \cdot a_w}{max(V)} + w_{ss} \cdot s_s + w_{sw} \cdot s_w$$

FAKULTÄT
FÜR MATHEMATIK, INFORMATIK
LIND NATURWISSENSCHAFTEN

- Estimated Factors ≅ 0.25
- Setting all to 0.25
 - Simplifies algorithm
 - No drastic effect on accuracy

$$f = \frac{w_{as} \cdot a_s}{max(V)} + \frac{w_{aw} \cdot a_w}{max(V)} + w_{ss} \cdot s_s + w_{sw} \cdot s_w$$

$$\Rightarrow f = \frac{a_s + a_w}{4max(V)} + \frac{s_s + s_w}{4}$$

Recommender Systems

"information filtering systems that deal with the problem of information overload by filtering vital information fragment out of large amount of [...] information [sic]"

- Subset of IR systems
- Both find relevant information
- Recommender Systems → "zero query" IR
 - IR: user actively searches
 - Recommender: system proactively recommends
 - Person search is not a recommender system

- Isinkaye et al.
- Techniques to find the items to suggest
- Hybrid filtering: combine multiple techniques

- Examine content
- Find items that are similar to the ones the user interacted with

- Users behave similarly
- Find "neighbours"
- Recommend items neighbours interacted with
- Subclasses:
 - Model based
 - Memory based
 - Item based
 - User based

UND NATURWISSENSCHAFTEN

Example: Amazon (Collaborative)

Example: Heise (Content Based)

- Entered: Java, PHP
- Number to recommend (n): 1

	Java	PHP	CSS	COBOL
Java	-	7	3	1
PHP	7	-	9	5
CSS	3	9	-	8
COBOL	1	5	8	-

- PHP (7)
- CSS (3)
- COBOL (1)
- Java (7)
- CSS (9)
- COBOL (5)

	Java	PHP	CSS	COBOL
Java	-	7	3	1
PHP	7	-	9	5
CSS	3	9	-	8
COBOL	1	5	8	-

API Endpoints

URL	Method	Feature
/login	POST	User Login
/logout	POST	User Logout

- Login to edit user's skills
- No login needed to search

URL	Method	Feature
/users	GET	Main person search function
/users/{user}	GET	Get specific user's details
/users/{user}/skills	POST	Add/Update user's skills
/users/{user}/skills	DELETE	Remove skill from user's profile
/users/{user}/similar	GET	Recommend similar users

- New users added on their first login
- No removing of users

URL	Method	Feature
/skills	GET	Get all skills/text autocomplete
/skills	POST	Create new Skill
/skills/next	GET	Recommend next skill to enter
skills/{skill}	PUT	Edit skill (rename)
skills/{skill}	DELETE	Delete skill

Concept: Collaborative Filtering Techniques

- Isinkaye et al.
- Techniques to find the items to suggest
- Hybrid filtering: combine multiple techniques

- People behave similarly
- Find neighbours

- Subset of collaborative filtering
- Operates directly on saved interaction history

- Subset of memory based filtering
- Save interaction history per user
- Find groups of users that have similar interaction histories

- Subset of memory based filtering
- Save interaction history per item
- Find items that are similar to each other

- Subset of collaborative filtering
- Model used to create suggestions
- Interactions to learn the model

Example: API Call

- Search for Java and Ruby in HH
- Browser Calls API
 - api.some.tld/users?skills=Java,Ruby&location=Hamburg

- Recognize API Call (Domain)
- Forward to Backend Server

UND NATURWISSENSCHAFTEN

- Waits for HTTP Requests
- Dispatching to Controller

- Call method based on request URL and Parameters
 - /users/
 - ?skills=Java,Ruby&location=Hamburg
- Request matching persons from UserService

Request needed users from Repository

- Get data from MongoDB
- Return user objects to UserService

- Process retrieved user objects
- Apply search and fitness score algorithms

- Convert found user objects to JSON
- Return HTTP Response
 - In case of error, return corresponding HTTP Code

API Call Cycle (Search for Java and Ruby in HH)

Forward JSON response to client

UND NATURWISSENSCHAFTEN

- Parse JSON response
- Render result list

Evaluation: Scalability

MongoDB

Designed and shown to be sc

LDAP

- Six servers
- Cluster is transparent to appl

Frontend

CDN

Backend

- **Stateless Application**
- Reverse proxy as load balancer
- **Tested**

MongoDB

Designed and shown to be so

LDAP

- Six servers
- Cluster is transparent to app

Frontend

CDN

Backend

- **Stateless Application**
- Reverse proxy as load balancer
- **Tested**

SINNERSCHRADER AG UND ACCENTURE
VEREINBAREN ZUSAMMENSCHLUSS; ACCENTURE
KÜNDIGT FREIWILLIGES ÖFFENTLICHES
ÜBERNAHMEANGEBOT FÜR SÄMTLICHE AKTIEN
DER SINNERSCHRADER AG AN

AD-HOC NEWS

20. Februar 2017, 7:21

Die SinnerSchrader Aktiengesellschaft ("SinnerSchrader") hat heute nach entsprechenden Beschlüssen von Aufsichtsrat und Vorstand mit der Accenture Digital Holdings GmbH, einer 100-prozentigen… weiter lesen

Evaluation: Response Times

Goal: 1s max to finish rendering

UND NATURWISSENSCHAFTEN

- Goal: 1s max to finish rendering
- HTTP Response: 33ms/44ms (40 samples)

- Goal: 1s max to finish rendering
- HTTP Response: 33ms/44ms (40 samples)
- + Rendering: 90ms/106ms (16 samples)

Evaluation: Uniform Distribution of Fitness Scores

- 100 users
- ≤ 17 skills per users
- Random levels
- Fitness of employees distributed uniformly
- Are fitness scores distributed uniformly?

UND NATURWISSENSCHAFTEN

Fitness Score

Evaluation (Distribution of Fitness Scores)

Position in Search Result List

UND NATURWISSENSCHAFTEN

- Universität Hamburg
 - Average Deviation: 6%
 - Maximum Deviation: 27%

Position in Search Result List