Note: Partial credit can not be awarded unless there is legible work to assess.

1. Find the general solution of the following system.

$$\frac{dx}{dt} = 3x$$
$$\frac{dy}{dt} = x + y$$

You may report your answer in vector notation $\mathbf{Y}(t)$ or as two functions x(t) and y(t).

Solution: This is a partially decoupled system. Hence, we solve first for x(t) and then use this to solve for y(t). We see $x(t) = k_1 e^{3t}$ for some constant k_1 by applying separation of variables to dx/dt = 3x. Thus, substituting x(t) into the second differential equation yields

$$\frac{dy}{dt} = k_1 e^{3t} + y,$$

a non-homogeneous linear differential equation. To solve this, we can apply the method of undetermined coefficients or use an integrating factor. Let's do both:

Int. factor: Here a(t) = 1, so g(t) = -1 and $b(t) = k_1 e^{3t}$. Since g(t) = -1, our integrating factor is $\mu(t) = e^{\int -1 dt} = e^{-t}$. Thus

$$y(t) = \frac{1}{\mu(t)} \int \mu(t)b(t) dt = e^t \int k_1 e^{2t} dt = e^t \left(\frac{k_1}{2}e^{2t} + k_2\right) = k_2 e^t + \frac{k_1}{2}e^{3t}$$

where k_2 is a new arbitrary constant introduced by integration.

Undet. coeff.: To solve

$$\frac{dy}{dt} = k_1 e^{3t} + y$$

by undetermined coefficients we first observe that a solution to the associated homogeneous equation is $y_h(t) = e^t$. Next, we seek a function $y_p(t)$ such that

$$\frac{dy_p}{dt} - y_p = k_1 e^{3t}.$$

That is, we seek a particular solution y_p to the differential equation. To that end, try $y_p(t) = ae^{3t}$ for some undetermined coefficient a. Note y_p is a particular solution if

$$\frac{dy_p}{dt} - y_p = 3ae^{3t} - ae^{3t} = 2ae^{3t} = k_1e^{3t}.$$

That is, if $a = k_1/2$. Hence $y_p(t) = (k_1/2)e^{3t}$ is our particular solution. Thus, the general solution to the differential equation is

$$y(t) = k_2 y_h(t) + y_p(t) = k_2 e^t + \frac{k_1}{2} e^{3t}$$

for an arbitrary constant k_2 .

In either case we see that $y(t) = k_2 e^t + (k_1/2)e^{3t}$. Reporting our solution as two functions, we have

$$x(t) = k_1 e^{3t}$$

$$y(t) = k_2 e^t + (k_1/2)e^{3t}$$

form the general solution of the system. Reporting our solution in vector notation, we have

$$\mathbf{Y}(t) = \begin{pmatrix} k_1 e^{3t} \\ k_2 e^t + \frac{k_1}{2} e^{3t} \end{pmatrix}$$

is the general solution to the system.

2. Considering the following second-order differential equation.

$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} - 7x = 0\tag{1}$$

- (i) Convert (1) into a system of first-order differential equations by letting $\frac{dx}{dt} = y$.
- (ii) Give two solutions to (1).

Solution: To solve (i), if dx/dt = y, then

$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} - 7x = \frac{dy}{dt} + 6y - 7x = 0.$$

Thus, solving for dy/dt yields the following first-order system:

$$\frac{dx}{dt} = y$$

$$\frac{dy}{dt} = 7x - 6y$$

To solve (ii), we use "the method of the lucky guess" by finding values of s such that $x(t) = e^{st}$ solves (1). Note e^{st} is a solution if

$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} - 7x = \frac{d^2}{dt^2}e^{st} + 6\frac{d}{dt}e^{st} - 7e^{st}$$
$$= s^2e^{st} + 6se^{st} - 7e^{st}$$
$$= (s^2 + 6s - 7)e^{st}$$
$$= (s - 1)(s + 7)e^{st} = 0.$$

And as $e^{st} > 0$ for all s and t, this implies (s-1)(s+7) = 0. Thus if s=1 or s=-7, then e^{st} is a solution. We conclude $x_1(t) = e^t$ and $x_2(t) = e^{-7t}$ are two solutions to (1).