- Inspeção de grandes áreas
 - Tarefas de segurança pública
 - Gestão de riscos naturais
 - Aplicações militares
 - Agricultura de precisão
- É mais vantajoso utilizar um VANT do que um VTNT

Definições

 Aeronave, PVTOL (Planar Vertical Take-off and Landing) e UAV/VANT (Unmanned Aerial Vehicle/Veículo Aéreo Não Tripulado)

Classificação dos VANTs

Desenvolvimento

- Por país
- Por categoria
- Por fuselagem

P. van Blyenburgh. UAS: The Global Perspective 2011/2012. 9a Ed. Blyenburgh & CO, 2011.

100

Comparação entre três tipos clássicos de VANTs

I. Tjernber, J. Lindberg, K. Hansson. Cooperative Networked control of unmanned air vehicles. Technical Report, 2011.

Nota: 3 é excelente e 1 é ruim	Aviões	Veículos de Asas Rotativas	Dirigíveis
Consumo de energia	2	1	3
Controlabilidade	2	3	1
Voo estacionário	1	3	3
Voo a baixas velocidades	1	3	3
Voo a altas velocidades	3	2	1
Miniaturização	2	3	1
Decolagem Vertical	1	3	3
Utilização Indoor	1	3	2
Total	12	21	17

- Do ponto de vista físico, os VANTs de pás rotativas são muito complexos, embora apresentem grande manobrabilidade
- Do ponto de vista de controle, eles são sistemas inerentemente instáveis, não lineares, multivariáveis, subatuados, de dinâmica complexa e altamente acoplada

MODELAGEM

- Navegação autônoma de um VANT
 - Conjunção de sua modelagem e um controlador capaz de guiá-lo
- Abordagens de modelagem
 - Baseada nas equações físicas do sistema
 - Baseada em técnicas de identificação de sistemas
- Modelagem matemática
 - Descrição através das equações de Euler-Lagrange

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{F}(\dot{\mathbf{q}}) + \mathbf{G}(\mathbf{q}) = \boldsymbol{\tau} + \mathbf{D}$$

Descrição através das equações de Newton-Euler

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{u}, t)$$

Princípio de Funcionamento

- Um quadrirrotor é um veículo aéreo de quatro rotores, responsáveis pela estabilização, controle e navegação
 - S. Bouabdallah, M. Becker, V. de Perrot, R. Siewart. Toward Obstacle Avoidance on Quadrotors. Proc. of the DINAME, 2007.

(a) Guinada sentido anti-horário (b) Guinada sentido horário (c) Rolagem positiva (d) Rolagem negativa (e) Decolagem (f) Aterrissagem (g) Arfagem positiva (h) Arfagem negativa

Estrutura de um Quadrimotor

Sinal enviado por um joystick ou um sistema computacional

Quadrimotor Comandos desde um joystick Controlador Interno de Baixo Nível Modelo de um motor CC Modelo de Propulsão Modelo de Corpo Rígido

$$\begin{bmatrix} \phi_r & \theta_r & \dot{\psi}_r & \dot{z}_r \end{bmatrix}^T = \begin{bmatrix} \phi_{\text{máx}} S_{lat} & \theta_{\text{máx}} S_{long} & \dot{\psi}_{\text{máx}} S_{yaw} & \dot{z}_{max} S_{col} \end{bmatrix}^T$$

Quadrimotor

Quadrimotor

Quadrimotor

Sistema de Referência

- (g) Referencial Inercial
- (s) Referencial Espacial
- (b) Referencial do veículo

$$\xi = [x \ y \ z]^T \in \mathbb{R}^3$$
$$\eta = [\phi \ \theta \ \psi]^T \in \mathbb{R}^3$$

R. Pettersen, E. Mustafic, M. Fogh. *Nonlinear control approach to helicopter autonomy*. Master Thesis. Aalborg University, 2005.

Modelo cinemático

$${}^b\dot{\mathbf{q}} = J(\eta)^g\dot{\mathbf{q}}$$

$$J(\eta) = \begin{bmatrix} \mathcal{R} & \mathbf{0} \\ \mathbf{0} & W_{\eta} \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

$$\mathcal{R} = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\phi & -\sin\theta \\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta \\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\psi \end{bmatrix}$$

$$\Omega = W_{\eta}\dot{\eta} = \begin{bmatrix} 1 & 0 & -\sin\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 0 & -\sin\phi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$

Modelo dinâmico segundo Euler-Lagrange

$$L = K - U = \frac{1}{2} m \dot{\xi}^T \dot{\xi} + \frac{1}{2} \Omega^T \mathbf{I} \Omega - mgz \qquad \qquad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial L}{\partial \mathbf{q}} = \begin{bmatrix} {}^g \mathbf{f} \\ {}^g \boldsymbol{\tau} \end{bmatrix}$$

$$\begin{bmatrix} mI_3 & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_r(\eta) \end{bmatrix} \begin{bmatrix} \ddot{\xi} \\ \ddot{\eta} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_r(\eta, \dot{\eta}) \end{bmatrix} \begin{bmatrix} \dot{\xi} \\ \dot{\eta} \end{bmatrix} + \begin{bmatrix} \mathbf{G}(g) \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{bmatrix} - \begin{bmatrix} \mathbf{D}_t \\ \mathbf{D}_r \end{bmatrix}$$

$$\mathbf{f} = \begin{bmatrix} f_x & f_y & f_z \end{bmatrix}^T = \mathcal{R} \mathcal{A}_t \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T \qquad \boldsymbol{\tau} = \begin{bmatrix} \tau_\phi & \tau_\theta & \tau_\psi \end{bmatrix}^T = \mathcal{A}_r \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T$$

$$oldsymbol{ au} = egin{bmatrix} au_{\phi} & au_{ heta} & au_{\psi} \end{bmatrix}^T = \mathcal{A}_r egin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T$$

$$\mathcal{A}_t = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & 1 & 0 \end{bmatrix} \hspace{1cm} \mathcal{A}_r = egin{bmatrix} 0 & -H_{mz} & -H_{my} & L_{tz} \ H_{mz} & 0 & H_{mx} & 0 \ H_{my} & -H_{mx} & 0 & -L_{tx} \end{bmatrix} \hspace{1cm} \stackrel{f_1}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_3}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_3}{\underset{b_x}{\longleftarrow}} \stackrel{f_4}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_3}{\underset{b_x}{\longleftarrow}} \stackrel{f_4}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_3}{\underset{b_x}{\longleftarrow}} \stackrel{f_4}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_3}{\underset{b_x}{\longleftarrow}} \stackrel{f_4}{\underset{b_x}{\longleftarrow}} \stackrel{f_4}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_3}{\underset{b_x}{\longleftarrow}} \stackrel{f_4}{\underset{b_x}{\longleftarrow}} \stackrel{f_2}{\underset{b_x}{\longleftarrow}} \stackrel{f_4}{\underset{b_x}{\longleftarrow}} \stackrel{f_4$$

Modelo dinâmico segundo Euler-Lagrange

$$L = K - U = \frac{1}{2}m\dot{\xi}^T\dot{\xi} + \frac{1}{2}\Omega^T\mathbf{I}\Omega - mgz$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial L}{\partial \mathbf{q}} = \begin{bmatrix} {}^{g}\mathbf{f} \\ {}^{g}\boldsymbol{\tau} \end{bmatrix}$$

$$\begin{bmatrix} mI_3 & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_r(\eta) \end{bmatrix} \begin{bmatrix} \ddot{\xi} \\ \ddot{\eta} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_r(\eta, \dot{\eta}) \end{bmatrix} \begin{bmatrix} \dot{\xi} \\ \dot{\eta} \end{bmatrix} + \begin{bmatrix} \mathbf{G}(g) \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{bmatrix} - \begin{bmatrix} \mathbf{D}_t \\ \mathbf{D}_r \end{bmatrix}$$

$$\mathbf{f} = \begin{bmatrix} f_x & f_y & f_z \end{bmatrix}^T = \mathcal{R} \mathcal{A}_t \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T \qquad \boldsymbol{\tau} = \begin{bmatrix} \tau_\phi & \tau_\theta & \tau_\psi \end{bmatrix}^T = \mathcal{A}_r \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T$$

$$\boldsymbol{\tau} = \begin{bmatrix} \tau_{\phi} & \tau_{\theta} & \tau_{\psi} \end{bmatrix}^T = \mathcal{A}_r \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T$$

$$\mathcal{A}_t = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathcal{A}_{r_q} = egin{bmatrix} k_1 & k_1 & -k_1 & -k_1 \ 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 1 \end{bmatrix}$$
 $\mathcal{A}_{r_q} = egin{bmatrix} k_1 & k_1 & -k_1 & -k_1 \ -k_1 & k_1 & k_1 & -k_1 \ k_2 & -k_2 & k_2 & -k_2 \end{bmatrix}$

Modelo dinâmico segundo a forma subatuada

$$\begin{bmatrix} \mathbf{M}_{pp} & \mathbf{M}_{pa} \\ \mathbf{M}_{ap} & \mathbf{M}_{aa} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}}_p \\ \ddot{\mathbf{q}}_a \end{bmatrix} + \begin{bmatrix} \mathbf{E}_p \\ \mathbf{E}_a \end{bmatrix} = \begin{bmatrix} \mathbf{0}_p \\ \mathbf{f}_a \end{bmatrix} \quad \text{com} \quad \begin{bmatrix} \mathbf{E}_p \\ \mathbf{E}_a \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{pp} & \mathbf{C}_{pa} \\ \mathbf{C}_{ap} & \mathbf{C}_{aa} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{q}}_p \\ \dot{\mathbf{q}}_a \end{bmatrix} + \begin{bmatrix} \mathbf{G}_p \\ \mathbf{G}_a \end{bmatrix}$$

$$\mathbf{f}_a = \mathcal{A}^\# egin{bmatrix} \mathbf{f} \\ m{ au} \end{bmatrix}, ext{ onde } \quad \mathcal{A} = egin{bmatrix} \mathcal{R} \mathcal{A}_t \\ \mathcal{A}_r \end{bmatrix} \in \mathbb{R}^{6 imes 4}$$

Ativa

$$\mathbf{M}_{ap}\ddot{\mathbf{q}}_p + \mathbf{M}_{aa}\ddot{\mathbf{q}}_a + \mathbf{E}_a = \mathbf{f}_a \in \mathbb{R}^4$$

Passiva

$$\mathbf{M}_{pa}\ddot{\mathbf{q}}_a + \mathbf{M}_{pp}\ddot{\mathbf{q}}_p + \mathbf{E}_p = \mathbf{0}_p \in \mathbb{R}^2$$

I. Fantoni and R. Lozano, *Non-linear control for underactuated mechanical systems*. GB: Springer, 2002.

Restrição de segunda ordem para um helicóptero

$$\mathbf{M}_{pa}\ddot{\mathbf{q}}_a + \mathbf{M}_{pp}\ddot{\mathbf{q}}_p + \mathbf{E}_p = \mathbf{0}_p \in \mathbb{R}^2$$

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} \mathcal{R}_x \mathbf{f} \\ \mathcal{R}_y \mathbf{f} + f_4 \\ \mathcal{R}_z \mathbf{f} \end{bmatrix}$$

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} \mathcal{R}_x \mathbf{f} \\ \mathcal{R}_y \mathbf{f} + f_4 \\ \mathcal{R}_z \mathbf{f} \end{bmatrix} \qquad \begin{bmatrix} \tau_\phi \\ \tau_\theta \\ \tau_\psi \end{bmatrix} = \begin{bmatrix} -H_{mz} f_2 - H_{my} f_3 + L_{tz} f_4 \\ H_{mz} f_1 + H_{mx} f_3 \\ H_{my} f_1 - H_{mx} f_2 + L_{tx} f_4 \end{bmatrix}$$

$$0 = \tau_{\phi} + \frac{(L_{tz} - H_{mz})}{(L_{tx} - H_{mx})} \tau_{\psi} + \left[H_{mz} \mathcal{R}_{y} + H_{my} \mathcal{R}_{z} - \frac{(L_{tz} - H_{mz})}{(L_{tx} - H_{mx})} (H_{mx} \mathcal{R}_{y} - H_{my} \mathcal{R}_{x}) \right] \mathbf{f}$$
$$= \tau_{\phi} + \alpha_{1} \tau_{\psi} + \beta_{1} \mathbf{f},$$

$$0 = \tau_{\theta} - (H_{mz}\mathcal{R}_x + H_{mx}\mathcal{R}_z)\mathbf{f}$$

= $\tau_{\theta} + \beta_2\mathbf{f}$,

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} m\beta_2 & \mathbf{M}_{r_{\theta}} \\ m\beta_1 & \mathbf{M}_{r_{\phi}} + \alpha_1 \mathbf{M}_{r_{\psi}} \end{bmatrix} \begin{bmatrix} \ddot{\xi}_h \\ \ddot{\eta}_h \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{C}_{r_{\theta}} \\ \mathbf{0} & \mathbf{C}_{r_{\phi}} + \alpha_1 \mathbf{C}_{r_{\psi}} \end{bmatrix} \begin{bmatrix} \dot{\xi}_h \\ \dot{\eta}_h \end{bmatrix} + \begin{bmatrix} \beta_2 \mathbf{G} \\ \beta_1 \mathbf{G} \end{bmatrix} + \begin{bmatrix} \mathbf{D}_{r_{\theta}} + \beta_2 \mathbf{D}_t \\ \mathbf{D}_{r_{\phi}} + \alpha_1 \mathbf{D}_{r_{\psi}} + \beta_1 \mathbf{D}_t \end{bmatrix}$$

Restrição de segunda ordem para um quadrimotor

$$\mathbf{M}_{pa}\ddot{\mathbf{q}}_a + \mathbf{M}_{pp}\ddot{\mathbf{q}}_p + \mathbf{E}_p = \mathbf{0}_p \in \mathbb{R}^2$$

$$\mathcal{R}^T \mathbf{f} = \begin{bmatrix} 0 & 0 & \sum_{i=1}^4 f_i \end{bmatrix}^T$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} m\mathcal{R}_x & \mathbf{0} \\ m\mathcal{R}_y & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\xi}_h \\ \ddot{\eta}_h \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\xi}_h \\ \dot{\eta}_h \end{bmatrix} + \begin{bmatrix} -mgs_{\theta_h} \\ mgc_{\theta_h}s_{\phi_h} \end{bmatrix} + \begin{bmatrix} \mathcal{R}_x \mathbf{D}_t \\ \mathcal{R}_y \mathbf{D}_t \end{bmatrix}$$

CONTROLE

Controle de Movimento

- Posicionamento
 - Um robô deve alcançar uma postura predefinida no espaço de trabalho e lá permanecer até que uma nova referência lhe seja dada
- Seguimento de Caminhos
 - Um robô deve realizar uma tarefa de posicionamento para uma curva predefinida sem restrição temporal
- Rastreamento de Trajetórias
 - A navegação apresenta restrição temporal durante a tarefa de posicionamento sobre uma curva dada

Estratégias de Controle

- Estratégias de controle
 - Laços internos e externos

Controle acoplado

- Controle inteligente
- □ Estruturas de controle
 - Linearização de modelo
 - Modelo completo

Controladores de Voo

- Controladores com restrições de movimento
 - Controle de altitude e guinada
 - Controle PVTOL (Planar Vertical Taking-off and Landing)
- Controlador sem restrições de movimento (navegação 3D)
 - Controle baseado na dinâmica inversa
- Controle comutado

Controle de Altitude e Guinada

Considerações

$$\dot{\phi}(t) = \dot{\theta}(t) = 0 \qquad \qquad \phi(t) = \theta(t) = 0 \ \forall \ t \ge 0$$

Modelo simplificado

$$u = m\ddot{z} + mg$$
, com $u = \sum_{i=1}^{4} f_i$
 $\tau_{\psi} = I_{zz}\ddot{\psi}$, com $\tau_{\psi} = K_2(f_1 - f_2 + f_3 - f_4)$

□ Sinais de controle

$$u = m \left(\ddot{z}_d + k_{dz_1} \tanh k_{dz_2} \dot{\tilde{z}} + k_{pz_1} \tanh k_{pz_2} \tilde{z} + g \right)$$

$$\tau_{\psi} = I_{zz} \left(\ddot{\psi}_d + k_{d\psi_1} \tanh k_{d\psi_2} \dot{\tilde{\psi}} + k_{p\psi_1} \tanh k_{p\psi_2} \tilde{\psi} \right)$$

Em malha fechada

$$\ddot{\tilde{z}} + k_{dz_1} \tanh k_{dz_2} \dot{\tilde{z}} + k_{pz_1} \tanh k_{pz_2} \tilde{z} = 0,$$

$$\ddot{\tilde{\psi}} + k_{d\psi_1} \tanh k_{d\psi_2} \dot{\tilde{\psi}} + k_{p\psi_1} \tanh k_{p\psi_2} \tilde{\psi} = 0.$$

Controle PVTOL no Plano XZ

Considerações

$$\phi(t) = \psi(t) = 0 \ \forall t \ge 0$$

$$\dot{\phi} = \dot{\psi} = 0 \ \forall t \ge 0$$

Modelo simplificado

$$u \operatorname{sen} \theta = m\ddot{x}$$

$$u\cos\theta = m\ddot{z} + mg$$

$$\tau_{\theta} = I_{yy}\ddot{\theta},$$

$$u = \sum_{i=1}^{4} f_i$$

$$\tau_{\theta} = k_1(-f_1 + f_2 + f_3 - f_4)$$

$$y = yy$$
,

Sinais de controle

$$u = \frac{m}{\cos \theta} (\eta_z + g)$$

$$\tau_{\theta} = I_{yy}\eta_{\theta}$$

$$\eta_z = \ddot{z}_d + K_{z1} \tanh(K_{z1} K_{z2}^{-1} \dot{\tilde{z}}) + K_{z3} \tanh(K_{z3} K_{z4}^{-1} \tilde{z})$$

$$\eta_{\theta} = \ddot{\theta}_d + K_{\theta 1} \tanh(K_{\theta 1} K_{\theta 2}^{-1} \tilde{\theta}) + K_{\theta 3} \tanh(K_{\theta 3} K_{\theta 4}^{-1} \tilde{\theta})$$

Em malha fechada

$$\ddot{\tilde{z}} + K_{z1} \tanh(K_{z1} K_{z2}^{-1} \dot{\tilde{z}}) + K_{z3} \tanh(K_{z3} K_{z4}^{-1} \tilde{z}) = 0$$

$$\ddot{\tilde{\theta}} + K_{\theta 1} \tanh(K_{\theta 1} K_{\theta 2}^{-1} \dot{\tilde{\theta}}) + K_{\theta 3} \tanh(K_{\theta 3} K_{\theta 4}^{-1} \tilde{\theta}) = 0$$

Controle PVTOL no Plano XZ

Considerações

$$\phi(t) = \psi(t) = 0 \ \forall t \ge 0$$

$$\dot{\phi} = \dot{\psi} = 0 \ \forall t \ge 0$$

Modelo simplificado

$$u \operatorname{sen} \theta = m\ddot{x}$$

$$u \operatorname{cos} \theta = m\ddot{z} + mg$$

$$\tau_{\theta} = I_{yy}\ddot{\theta},$$

$$u = \sum_{i=1}^{4} f_i$$

$$\tau_{\theta} = k_1(-f_1 + f_2 + f_3 - f_4)$$

Sinais de controle (dinâmica acoplada do sistema)

$$\ddot{x} = (\eta_z + g) \tan(\theta_d - \tilde{\theta})$$

$$\ddot{x} - (\eta_z + g) \tan \theta_d = -(\eta_z + g + \ddot{x} \tan \theta_d) \tan \tilde{\theta}$$

$$\theta_d = \tan^{-1} \left(\frac{\eta_x}{\eta_z + g} \right)$$

$$\eta_x = \ddot{x}_d + K_{x1} \tanh(K_{x2}\dot{\tilde{x}}) + K_{x3} \tanh(K_{x2}\dot{\tilde{x}} + K_{x4}\tilde{x})$$

□ Em malha fechada

$$\ddot{\tilde{x}} + K_{x1} \tanh(K_{x2}\dot{\tilde{x}}) + K_{x3} \tanh(K_{x2}\dot{\tilde{x}} + K_{x4}\tilde{x}) = \delta$$

$$\delta = (\eta_z + g + \ddot{x} \tan \theta_d) \tan \tilde{\theta}$$

Resultados de Simulação

Plano Inclinado 3D

Resultados de Simulação

Espiral Crescente Desired Desired 1.5 0.5 z [m] [m] z -0.5 0.5 -1.5 1.5 ϕ [degrees] -10 10 14 16 2 10 12 20 14 16 18 θ [degrees] 10 12 12 ψ [degrees] 10 Time [s] 10 Time [s] 12 14 16 18 12 14 16 18

Seguimento de Caminhos

Controlador de seguimento de caminhos utilizando um controlador cinemático associado a um controlador dinâmico

Seguimento de Caminhos

- Proposta de um modelo cinemático composto por quatro velocidades lineares e uma angular no referencial espacial
 - Objetivo de controle: gerar referências de postura ao controlador dinâmico

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 & 0 \\ \sin \psi & \cos \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \\ \omega \end{bmatrix} \longrightarrow \dot{\mathbf{x}} = f(\mathbf{x})\mathbf{u}$$

Sinal de controle

$$\mathbf{u} = f(\mathbf{x})^{-1}(\dot{\mathbf{x}}_{ref} + \boldsymbol{\kappa}_1 \tanh \boldsymbol{\kappa}_2 \tilde{\mathbf{x}})$$
$$\dot{\tilde{\mathbf{x}}} = \dot{\mathbf{x}}_{ref} - \dot{\mathbf{x}}$$

Sistema em malha fechada

$$\dot{\tilde{\mathbf{x}}} + \boldsymbol{\kappa}_1 \tanh(\boldsymbol{\kappa}_2 \tilde{\mathbf{x}}) = \Upsilon$$

Resultado Experimental Quadrimotor: Seguimento Caminho 3D

Controlador Comutado

Controlador

Modelo PVTOL

$$\begin{bmatrix} m\ddot{x} \\ 0 \\ m(\ddot{z}+g) \end{bmatrix} = \begin{bmatrix} u\sin\theta \\ 0 \\ u\cos\theta \end{bmatrix}$$

$$\begin{bmatrix} \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = \begin{bmatrix} 0 \\ I_{yy} \ddot{\theta} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ m\ddot{y} \\ m(\ddot{z}+g) \end{bmatrix} = \begin{bmatrix} 0 \\ -u\sin\phi \\ u\cos\phi \end{bmatrix}$$

$$egin{bmatrix} au_{\phi} \ au_{ heta} \ au_{\psi} \end{bmatrix} = egin{bmatrix} I_{xx} \ddot{\phi} \ 0 \ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ m(\ddot{z} + g) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ u \end{bmatrix}$$

$$egin{bmatrix} au_\phi \ au_ heta \ au_\psi \end{bmatrix} = egin{bmatrix} 0 \ 0 \ I_{zz}\ddot{\psi} \end{bmatrix}$$

J. Hauser, S. Sastry and G. Meyer. "Nonlinear control design for slightly non-minimum phase systems: Application to v/stol aircraft", *Automatica*, vol. 28, pp. 665-679, 1992

Estratégia de Controle Comutado

- Ações definidas pelo sinal de comutação σ
 - $f \sigma_1$: Mover longitudinalmente para a posição desejada, executando o controlador PVTOL no plano XZ
 - σ_2 : Reduzir o erro de deslocamento lateral, executando o controlador PVTOL no plano YZ
 - σ_3 : Reduzir o erro de orientação de guinada, executando controlador PVTOL no eixo Z
- Condições analisadas pelo Supervisor
 - Se o erro de orientação e o de deslocamento lateral é menor que um dado valor, então σ_1 é ativado
 - Se o erro de orientação é menor que um dado valor, mas o deslocamento lateral é mais que um dado valor, então σ_2 é ativado
 - Se a posição desejada muda ou o erro de orientação é maior que um dado valor, então a orientação corrente deve ser corrigida usando σ_3

Resultado Experimental Quadrimotor: Posicionamento 3D

