1 Úvod

Poznámka (Co je diskrétní matematika)

Protipól matematiky spojité. Souhrnný název pro matematické disciplíny, zabývající se diskrétními objekty.

Poznámka (Co je potřeba)

Cvičení + zkouška z věcí z přednášky.

Poznámka (literatura)

Kapitoly z diskrétní matematiky od Matouška.

Definice 1.1 (Důkaz (neformální))

Rozebírání tvrzení na tvrzení, která už jsou zřejmá.

Definice 1.2 (Definice (neformální))

Definujeme objekty pomocí jednodušších a jednodušších, až axiomů.

Definice 1.3 (Důkaz sporem)

Dokážeme φ tím, že vyvrátíme φ

Definice 1.4 (Důkaz matematickou indukcí)

Dokážeme $\varphi(n), \forall n \in \mathbb{N}$ tak, že dokážeme $\varphi(0) \land (\forall n \in \mathbb{N})(\varphi(n) \implies \varphi(n+1))$

Definice 1.5 (Dolní a horní celá část)

 $\lceil x \rceil$ je nejbližší nižší celé číslo kx

 $\lfloor x \rfloor$ je nejbližší vyšší celé číslo kx

Definice 1.6 (Sčítání mnoha čísel)

 $\sum_{i=13}^n x_i = x_{13} + x_{14} + \ldots + x_n =$ Sčítání xod indexu 13 do indexu n

$$\sum_{\emptyset} = 0$$

Definice 1.7 (Sčítání mnoha čísel)

 $\prod_{i=13}^{n} x_i = x_{13} \cdot x_{14} \cdot \ldots \cdot x_n = \text{Násobení } x \text{ od indexu } 13 \text{ do indexu } n$

$$\prod_{\emptyset} = 1$$

Poznámka (Klasické množiny)

 $\mathbb{N} \mathbb{Z} \mathbb{Q} \mathbb{R} \mathbb{C}$

Poznámka (Klasické množinové operace)

$$x \in \mathbb{A}$$

$$\mathbb{A}\subseteq\mathbb{B}$$

$$\mathbb{A} \cap \mathbb{B}$$

$$\mathbb{A} \cup \mathbb{B}$$

$$\mathbb{A} \setminus \mathbb{B}$$

$$\mathbb{A} \triangle \mathbb{B} = (\mathbb{A} \setminus \mathbb{B}) \cup (\mathbb{B} \setminus \mathbb{A}) = \text{disperze}$$

$$2^{\mathbb{A}} = \mathcal{P}(\mathbb{A})$$

Definice 1.8 (Uspořádaná dvojice)

Uspořádaná dvojice je (x, y) nebo $\{\{x\}, \{x, y\}\}.$

Vytváří se např. kartézským součinem $\mathbb{A} \times \mathbb{B} := \{(a,b) | a \in \mathbb{A}, b \in \mathbb{B}\}.$

Uspořádaná trojice je (x, y, z) = ((x, y), z) = (x, (y, z)). Atd. pro n-tice.

Definice 1.9 (Relace)

 $\mathbb A \;$ je relace (binární) mezi množinami $\mathbb X \;$ a $\mathbb Y \; \equiv \mathbb A \subseteq \mathbb X \times \mathbb Y.$

 $\mathbb A\;$ je relace (binární) na množině $\mathbb X\;\equiv\;\mathrm{mezi}\;\mathbb X\;$ a $\mathbb X\;.$

Inverze je relace mezi \mathbb{Y} a \mathbb{X} : $R^{-1} := \{(y, x) | (x, y) \in R\}$.

Skládání $T = R \circ S = \{(x,z) | \exists y : xRy \wedge ySz\}$

Diagonála = diagonální relace: $\triangle x := \{(x, x) \in \mathbb{X}\}$

Definice 1.10 (Funkce = zobrazení)

Funkce z množiny $\mathbb X\,$ do množiny $\mathbb Y\,$ je relace Amezi $\mathbb X\,$ a $\mathbb Y\,$ taková, že $\forall x\in \mathbb X\exists !y\in \mathbb Y:xAy$

Definice 1.11 (Vlastnosti funkcí)

Funkce $f: \mathbb{X} \to \mathbb{Y}$ je:

- prostá (injektivní) $\equiv \exists x, x' \in \mathbb{X} : x \neq x' \land f(x) = f(x')$
- na \mathbb{Y} (surjektivní) $\equiv \forall y \in \mathbb{Y} \exists x \in \mathbb{X} : f(x) = y$
- vzájemně jednoznačná (bijektivní, 1-1 (jedna ku jedné)) $\forall y \in \mathbb{Y} \exists ! x \in \mathbb{X} : f(x) = y$

Definice 1.12 (Vlastnoti relací)

Relace R na \mathbb{X} je:

- reflexivní $\equiv \forall x \in \mathbb{X} : xRx$
- symetrická $\equiv \forall x, y \in \mathbb{X} : xRy \implies yRx (\Leftrightarrow R = R^{-1})$
- antisymetrická $\equiv \forall x, y \in \mathbb{X} : xRy \land yRx \implies x = y$
- tranzitivní $\equiv \forall x, y, z \in \mathbb{X} : xRy \land yRz \implies xRz$

Definice 1.13 (Ekvivalence)

Relace se nazývá ekvivalence, pokud je tranzitivní, reflexivní a symetrická.

Definice 1.14 (Ekvivalenční třídy)

$$R[x] = \{y \in \mathbb{X} | xRy\}$$

Věta 1.1

$$1)\forall x \in \mathbb{X}R[x] \neq \emptyset$$

$$2) \forall x,y \in \mathbb{X} : R[x] = R[Y]XORR[x] \cap R[y] = \emptyset$$

3) $\{R[x]|x \in \mathbb{X}\}$ určuje ekvivalenci R jednoznačně

 $D\mathring{u}kaz$

- 1) triviální
 - 2) Dokážeme: pokud $R[x] \cap R[y] \neq \emptyset$, pak R[x] = R[y]. (Tranzitivita).
 - 3)

Definice 1.15 (Rozklad množiny)

Množinový systém $\mathcal{S} \subseteq 2^{\mathbb{X}}$ je rozklad množiny \mathbb{X} tehdy, když (R1) $\forall \mathbb{A} \in \mathcal{S} : \mathbb{A} \neq \emptyset$, (R2) $\forall \mathbb{A}, \mathbb{B} \in \mathcal{S} : \mathbb{A} \neq \mathbb{B} \implies \mathbb{A} \cap \mathbb{B} = \emptyset$, (R3) $\bigcup_{\mathbb{A} \in \mathcal{S}} = \mathbb{X}$.