ANÁLISIS DE SENTIMIENTO EN REDES SOCIALES CON SPARK NLP

Minería de opinión en tiempo real usando Big Data y Deep Learning sobre Twitter

ORIGEN E IMPORTANCIA DEL PROYECTO

Redes Sociales como Fuente de Opinion Pública

El desafio empresarial: comprender al cliente

Solución humana y tecnológica: análisis de sentimiento

Convertir millones de opiniones digitales en decisiones humanas y empáticas

Empresa seleccionada para la prueba de concepto: NVIDIA

Elegimos NVIDIA por su relevancia global y la alta cantidad de interacciones generadas en Twitter durante eventos clave recientes, garantizando datos ricos y representativos para el análisis de sentimiento.

Descripción del Proyecto - Visión General

PLATAFORMA DE ANÁLISIS DE SENTIMIENTO EN TWITTER

Decisiones empaticas con !A

DESCRIPCIÓN TÉCNICA DEL PROYECTO

PROCESAMIENTO MASIVO DE TEXTO escalable CON SPARK NLP Y DEEP LEARNING

Optimización por lotes

Twitter Sentiment Analysis

Fase 1: BERT + TF-IDF (con PCA)

- BERT: Representación semántica profunda.
- TF-IDF: Peso estadistico de têrminos relevan-
- PCA: Reducción de TF-IDF de 5000 a 3000 dimensiones

Esta configuracion fue efectiva en etapas tempranas de validación y sirvio como referencia para pruebas posteriores.

Fase 2: BERT + TF-IDF + Word2Ved

Se añadió WordVec (300 dimensiones, entrenado con Spark NI.P) para enriquecer la representación. Sin embatgo, el costo computacional superó los beneficios en rendimiento. lo que llevó a reconsiderar está estrategia.

Fase 3: BERT + Word2Vec

Se eliminó TF-IDF, manteniendo BERT y Word-2Vec. Esta configuración redujo la complejiddad dimensional, manteniendo profundidad semántice y contexto distribuido. Junto a mejoras estructurales del modelo y un dataset balancéado de 400.000 registros, se lograron mejores resultados

HYPERPARAMETER OPTIMIZATION

USING OPTUNA

LEARNING RATE 0.000124

WEIGHT DECAY 6.7e-06

DROPOUT 0.417

ACTIVATION FUNCTION Mish

OPTIMIZER AdamW

TRAINING LOSS

0.3818

MODEL NAME	F1-SCORE	ACCURACY	RECALL CLA	ASS 0 LASL 1	STRUCTURE
best_model_0.417099468279443_	pth 0,8029	0,8029	0,7869	0,8195	Sentiment
best_model_0.417053810332437_	pth 0,8029	0,8029	0,7873	0,8246	Sentiment
best_model_0.417973405104036_	pth 0,8024	0,8028	0,7807	0,8245	Sentiment
best_model_0.419087691088377_	pth 0,8024	0,8028	0,7802	0,8706	Sentiment
best_model_0.417270347679399_	pth 0,8023	0,8028	0,7818	0,8244	Sentiment
best_model_0.416872384039581_	pth 0,8023	0,8028	0,7804	0,8235	Sentiment
best_model_0.419353783763525_	pth 0,8023	0,8028	0,7810	0,8710	Sentiment
best_model_0.417076307020645_	pth 0,8022	0,8023	0,7902	0,8233	Sentiment

Q

Loss 0.4269

Accuracy 0.8029

F1-score 0.8029

CONFUSION MATRIX

O 1
Vernal
36,156 163,656

MODEL STACKING

FOR SENTIMENT CLASSIFICATION

INDIVIDUAL DEEP LEARNING MODELS

LOGISTIC REGRESSION (STACKING)

F1-score: 0,8025 Accuracy: 0,8025

Confusion matrix

Actual 0 121,173 28,827 Actual 1 30,403 119,456

XGBOOST (STACKING)

F1-score: 0,8043 Accuracy: 0,8043

BEST PERFORMANCE DUE TO NON-LINEAR INTERACTION CAPTURE AND FLEXIBLE WEIGHTING

SHAP analysis for model interpretability (XGBoost stacking)

INTERPRETABILIDAD DEL MODELO: ANÁLISIS CON SHAP (XGBOOST STACKING)

SELECCIÓN OPTIMIZADA DE EXPERTOS CON ESTRATEGIA GREEDY

RESULTADOS FINALES: COMPARATIVA DE META-MODELOS

REGRESIÓN LOGÍSTICA META-MODELO

F1-score: 0.8055 Accuracy 0.8055

MATRIZ DE CONFUSION

[162526	37474]
40284	159528]

MODELO INTERPRETABLE
Y COMPUTACIONALMENTE EFICIENTE

XGBOOST - META-MODELO

F1-score: 0.8062 Accuracy 0.8063

MATRIZ DE CONFUSIÓN

[162333	37667
39796	160016

MEJOR RENDIMIENTO GENERAL, CAPTURA INTERACCIONES NÓ LINEALES

AMBOS MODELOS MUESTRAN RENDIMIENTO COMPETITIVO. XGBOÓST ES LIGERAMENTE SUPERIOR, PERO LA REGRESION LOGISTICA ES MAS INTERPRETABLE Y ADECUADA EN ESCENARIOS CON RECURSOS LIMITADOS

CONCLUSIONES Y FUTURAS MEJORAS

CONCLUSIONES

Big Data

Machine

Cloud Learning Computing

Twitter

- Solución escalable, eficiente y en tiempo real
- XGBoost + embeddings (TF-IDF) garantizaron calidad y relevancía del análisis

FUTURAS MEJORAS

Incluir análisis de sentimiento neutral

Explorar nuevos modelos expertos

Optimizar hiperparámetros de XGBoost

Probar reducción de dimensionalidad (t-SNE + TF-IDF)

Aňadir métricas avanzadas (RCC-AUC, Precision-Recall)

Análisis de palabras frecuentes en clases positivas/negativas

Este proyecto no solo es un logro técnico, sino también una demostración clara del poder transformador de la Intelgencia Artificial y el Machine Learning en ámbitos empresariales y sociales, acercando cada vez más la tecnología al servicio humano y empàtico con las personas.

GRACIAS POR VUESTRA ATENCIÓN

? Q&A

