Калькулятор для расчёта напряжений в системе энергоснабжения
Описание программы

Новосибирский государственный технический университет

Содержание

Аннотация	3
1. Общие сведения	
2. Функциональное назначение	
3. Описание использованных моделей	
4. Описание логической структуры	
** **	
5. Вызов и загрузка	
6. Входные данные	1∠

Аннотация

В данном программном документе содержится описание калькулятора для расчёта напряжений в системе энергоснабжения.

Настоящее описание разработано в соответствии с ГОСТ 19.402-78.

1. Общие сведения

1.1. Наименование и обозначение

Наименование (полное): Калькулятор для расчёта напряжений в энергосистеме

Наименование (краткое): Калькулятор для расчёта напряжений

Обозначение: Калькулятор

1.2. Версия, сборка, язык программирования

Версия: 10.0.22621

Сборка: 22621

Язык программирования: Python 3.12.0

1.3. Условия выполнения

Условия выполнения (технические средства и программное обеспечение, необходимые для функционирования):

- IBM РС-совместимый персональный компьютер в составе:
 - о процессор 1 ГГц или выше,
 - о оперативная память 1 Гб или выше,
 - \circ видеоадаптер и монитор SVGA 1920 \times 1080 или выше,
 - о свободное место на жёстком диске (после установки рекомендованных программных средств) 50 Мб или больше,
 - о устройства взаимодействия с пользователем клавиатура и мышь,
- операционная система Windows XP/Vista/7/8/10/11,
- программа для работы с электронными таблицами Excell 2010/2013/2016/2019,
- файловый менеджер проводник (или аналогичный).

2. Функциональное назначение

2.1. Назначение

Калькулятор предназначен для расчёта значений напряжений в энергосистеме при изменении положения выключателей и записи этих значений в таблицу формата xlsx.

2.2. Функции

Основные функции:

- инициализация входных данных,
- расчёт электрического режима работы энергосистемы,
- моделирование режима управления энергосистемой (ручного),
- отображение:
 - о схемы коммутации,
 - о органов управления положением выключателей,
 - о полей вывода значений
 - проводимостей,
 - ЭДС источников напряжения,
 - потенциалов всей энергосистемы,
 - узловых потенциалов,
- запись значений узловых потенциалов во внешний файл.

3. Описание использованных моделей

3.1. Базовая схема выдачи мощности

Базовая схема электрической сети энергосистемы приведена на рисунке 3.4.1.

Рисунок 3.1.1 – Базовая схема электрической сети энергосистемы для расчёта электрического режима

3.2. Схема замещения электрической сети энергосистемы для расчёта режима

Схема замещения электрической сети энергосистемы приведена на рисунке 3.2.1.

Рисунок 3.2.1 – Схема замещения электрической сети энергосистемы для расчёта электрического режима

Соотношение между элементами схемы системы энергоснабжения и схемы замещения её электрической сети дано в таблице 3.2.1.

Таблица 3.2.1 — Соотношение между элементами схемы системы энергоснабжения и схемы замещения её электрической сети

Схема системы энергоснабжения		Схема замещения	
Обозначение	Тип элемента	Обозначение	Тип элемента
Γ1 – Γ4	Генератор	E1 – E4	Источник ЭДС
			Проводимость,
			соответствующая
11-14	тенератор	Y1, Y2, Y17, Y18	продольному
			сопротивлению
			генератора
B1 – B8 B10 – B11 B21 – B24	Выключатель	Y5, Y6, Y9, Y10, Y13, Y14, Y15, Y16, Y30, Y29, Y7, Y8, Y21, Y22	Проводимость выключателя
Отсутствует	Нагрузка	Y3, Y4, Y11, Y12, Y19, Y20, Y23, Y24	Проводимость, соответствующая комплексному сопротивлению линии

3.3. Математическая модель режима электрической сети

Математической моделью режима электрической сети является система линейных алгебраических уравнений (СЛАУ) узловых потенциалов. Решение СЛАУ осуществляется методом Гаусса.

3.4. Режимы управления

Моделируется только ручной режим управления.

4. Описание логической структуры

4.1. Алгоритм программы

Алгоритм программы представлен на рисунке 4.1.1. После запуска и загрузки исходных данных программы пользователю предлагается выбрать положение выключателей, запустить расчёт значений напряжений и сохранение этих значений во внешний файл.

4.2. Используемые методы

Используемые методы перечислены в таблице 4.2.1.

Таблица 4.2.1 – Используемые методы

Наименование	Описание		
Процедурное программирование	Программирование на императивном языке, при котором		
	последовательно выполняемые операторы объединены в		
программирование	подпрограммы.		
	Парадигма программирования, в основе которой лежит		
	представление программы в виде иерархической структуры		
	блоков. Программа состоит из трёх базовых управляющих		
Структурное	конструкций:		
программирование	1. последовательность,		
	2. ветвление,		
	3. цикл.		
	Используются подпрограммы.		
Метод Гаусса	Метод расчёта системы линейных алгебраических уравнений		
	режима электрической сети.		
Метод комплексных	Метод представления синусоидальных функций функциями с		
чисел	комплексными числами.		

4.3. Структура программы с описанием функций составных частей и связи между ними

Калькулятор является модульной программой, связанной с рядом файлов, содержащих исходные и выходные данные:

- 1. исполняемые файлы:
 - .ехе исполняемый файл,
- 2. файлы исходных данных:
 - .png изображение схемы энергосистемы,
 - .xlsx инициализационные файлы элементов энергосистемы,
- 3. файлы выходных данных:
 - .xlsx рассчитанные программой значения.

4.4. Связи программы с другими программами

Связи программы с другими программами отсутствуют.

Рисунок 4.1.1 – Алгоритм программы

5. Вызов и загрузка

5.1. Способы вызова программы с носителя данных

Калькулятор запускается на компьютере в совместимой операционной системе (Windows) с помощью встроенного файлового менеджера (Проводник) выполнением двойного щелчка мыши на исполняемом файле программы (.exe), расположенном в корневом каталоге программы.

5.2. Объём программы

Объём программы составляет 40 Мб.

6. Входные данные

Входными данными для Программы являются:

- матрица соединений,
- матрица проводимостей,
- матрица источников тока,
- матрица источников ЭДС.

Входные данные оформлены в виде Excell таблицы с расширениями .xlsx. Просмотр и редактирование этих файлов возможно с помощью программы Microsoft Excel.

7. Выходные данные

Выходными данными Программы являются:

• значения узловых напряжений.

Значения узловых напряжений записываются в Excell таблицу формата .xlsx.

8. Видеокадры

Главное окно Калькулятора содержит один видеокадр (рис. 8.1).

Изменение положений выключателей осуществляется кнопками в правом верхнем углу.

При нажатии на кнопку «Рассчитать и сохранить» в правом нижнем углу выводятся рассчитанные значения напряжений во всей сети U и узловых напряжений X, а также значения узловых напряжений записываются в файл X.xlsx.

Если конфигурация положений выключателей приводит к неопределённости решения, то программа выводит оповещение об ошибке (рис. 8.2).

Рисунок 8.1 – Главное окно программы

Рисунок 8.2 – Оповещение об ошибке