NUME:	
NOME:	
PRENUME:	
GRUPA:	

INSTRUCŢIUNI

- 1. Toate problemele sunt obligatorii.
- 2. Problemele vor fi rezolvate pe coli de hârtie numerotate corespunzător, menţionându-se explicit numărul problemei şi subpunctul acesteia.
- 3. Pe prima pagină a rezolvării fiecarei probleme, vor fi scrise **cu litere de tipar** numele şi prenumele studentului, precum şi grupa acestuia.
- 4. Fiecare problemă trebuie să aibă cel puţin o pagină alocată rezolvării sale chiar dacă respectiva problemă nu se poate rezolva.
- 5. TIMP DE LUCRU: 150 minute, i.e. 16:00-18:30.
- 6. Rezolvările problemelor corespunzătoare acestui examen vor fi trimise prin email:
 - ca fișier PDF, împreună cu fișierul cu subiectele examenului;
 - atât titularului de curs (Prof. dr. Liviu MARIN: liviu.marin@fmi.unibuc.ro), cât şi titularului de laborator (Drd. Andreea GRECU: andreea.grecu@my.fmi.unibuc.ro);
 - vor avea următoarea linie de subiect:
 Restanţă AnNumMetNum Nume si prenume student, Grupa 3XX
- 7. Termenul limită de trimitere prin email a rezolvărilor problemelor: miercuri, 13 mai 2020, orele 19:00.

Analiză Numerică & Metode Numerice Restanță – Anul III – Subiectul#13

I. (a) Arătați că șirul $\{x_n\}_{n>0} \subset \mathbb{R}$ definit prin

$$\begin{cases} x_0 > \sqrt{2} \\ x_n = \frac{1}{2} x_{n-1} + \frac{1}{x_{n-1}}, & n \ge 1 \end{cases}$$

converge către $\sqrt{2}$.

- (b) Arătaţi că dacă $0 < x_0 < \sqrt{2}$, atunci $x_1 > \sqrt{2}$.
- (c) Folosiţi (a) şi (b) pentru a arăta că

$$\lim_{n \to \infty} x_n = \sqrt{2} \,, \quad \forall \ x_0 > 0.$$

II. Fie nodurile de interpolare $x_j = j, j = \overline{0,3}$. Dacă

$$P_{0,1}(x) = x + 1$$
, $P_{1,2}(x) = 3x - 1$, $P_{1,2,3}(1,5) = 4$, (1)

să se determine $P_{0,1,2,3}(1,5)$.

- III. O formulă de cuadratură pentru funcțiile integrabile $f: [-1,1] \longrightarrow \mathbb{R}$, notată cu $\widetilde{I}(f)$, folosește nodurile $x_0 = -\alpha$ și $x_1 = \alpha$, unde $\alpha \in (0,1]$, și ponderile $w_0, w_1 \in \mathbb{R}$.
 - (a) Determinați $w_0, w_1 \in \mathbb{R}$ și $\alpha \in (0,1]$ pentru care formula de cuadratură $\widetilde{I}(f)$ este exactă pentru orice $f \in \mathbb{P}_1$.
 - (b) Determinați $w_0, w_1 \in \mathbb{R}$ și $\alpha \in (0,1]$ pentru care formula de cuadratură $\widetilde{I}(f)$ este exactă pentru orice $f \in \mathbb{P}_2$.
 - (c) Arătați că pentru valoarea lui $\alpha \in (0,1]$ determinată la punctul (b), formula de cuadratură I(f) este exactă pentru orice $f \in \mathbb{P}_3$.
- IV. Fie funcția pondere $w:(0,\infty)\longrightarrow \mathbb{R}, \ w(x)=\mathrm{e}^{-x}.$

Folosind procedeul Gram-Schmidt, determinați polinoamele ortogonale în raport cu produsul scalar din $L^2_w(0,\infty), \{\widetilde{L}_0,\widetilde{L}_1,\widetilde{L}_2\} \subset \mathbb{P}_2$ (polinoamele Laguerre).