Théorie K.A.M paradifférentielle

Sacha Ben-Arous, Mathis Bordet, sous la direction de Thomas Alazard.

Table des matières

I Introduction			2	
Π	Difféomorphismes du cercle			
	II.1	Problè	mes de conjuguaison	2
			es-exemples au théorème de Denjoy	
			Outils	
		II.2.2	Contre-exemple continu	
		II.2.3	Contre-exemple dérivable	
		II.2.4	Régularité hölderienne	
ΙIJ	[Déc	ompos	ition de Littlewood-Paley	7
		-	ations douces et paralinéarisation	12
	III.2 Théorème d'Arnold			
			Description du problème	
			Résolution par la para-linéarisation	17
ΙV	Ann	iexe su	ur le théorème de Nash-Moser	20
	IV.1	Cadre	théorique	
			ème de Nash-Moser	
Ré	Références			

I Introduction

Ayaya

II Difféomorphismes du cercle

Nous allons dans cette section présenter rapidement les homéomorphismes du cercle et énoncer quelques propriétés fondamentales puisque ces objets nous offrent un cadre d'application des techniques de résolution d'équations que nous verrons dans les sections suivantes. On utilise les notations suivantes : On note \mathbb{S}^1 le cercle de dimension $1:\{z\in\mathbb{C}\mid |z|=1\}$.

On note également Π l'application $t \to \exp(2i\pi t)$ (la projection de \mathbb{R} sur \mathbb{S}^1).

II.1 Problèmes de conjuguaison

DÉFINITION II-1. Soit $f: \mathbb{S}^1 \to \mathbb{S}^1$. On appelle relèvement de f, une application $F: \mathbb{R} \to \mathbb{R}$ vérifiant :

$$f\circ\Pi=\Pi\circ F$$

Remarque. Les relèvements permettent de faire le parallèle entre les fonctions du cercle et les fonctions réelles.

Théorème II-1. — Toute application continue du cercle possède un relèvement continu. De plus, tous ses relèvements continus diffèrent d'une constante entière.

Dans la suite, toute propriété qui sera énoncée pour une application continue du cercle concernant ses relèvements, ce dernier sera pris continu.

DÉFINITION II-2. Pour une application continue du cercle f, on définit son degré deg(f) = F(1) - F(0) avec F un relèvement de f.

Remarque. On peut démontrer que ce nombre est un entier relatif et qu'il ne diffère pas selon les relèvements (continus).

DÉFINITION II-3. On dit que f préserve l'orientation si pour tout triangle avec ses sommets sur \mathbb{S}^1 , l'image de ses sommets par f n'inverse pas l'ordre de ses sommets.

Ce qui nous intéressera dans la suite de cette étude sont surtout les homéomorphismes du cercle, qui sont les applications continues, bijectives et de réciproques continues (la dernière propriété est redondante du fait de la compacité de \mathbb{S}^1).

PROPOSITION II-2. — Prenons f un homéomorphisme préservant l'orientation alors, deg(f) = 1 et de plus ses relèvements sont croissants.

PROPOSITION II-3. — Soit f un homéomorphisme préservant l'orientation et F un relèvement de f. Alors le nombre $\rho(F) = \frac{F^n(x)}{n}$ existe et ne dépend pas de x et ne diffère que d'un entier relatif entre chaque relèvement.

DÉFINITION II-4. On définit alors le nombre de rotation de $f \rho_0(f) = \rho(F) \mod [1]$

Ce nombre est primordial puisque celui-ci permet de classifier les homéomorphismes préservant l'orientation puisqu'en effet on a le Théorème de Poincaré :

THÉORÈME II-4 (Poincaré). — Soit f un homéomorphisme préservant l'orientation, si son nombre de rotation est un irrationnel alors f est semi-conjugué à la rotation d'angle $\rho_0(f)$.

On peut même dire un peu plus si on a des informations sur la régularité de f, c'est l'essence du théorème de Denjoy :

THÉORÈME II-5 (Denjoy). — En plus des hypothèses du théorème de Poincaré, si f est C^2 alors il est cette fois-ci conjugué à la rotation d'angle $\rho_0(f)$.

II.2 Contres-exemples au théorème de Denjoy

Cette partie est consacré à l'étude de certains contre-exemples du théorème de Denjoy, qui sont développés par Harold Rosenberg dans [Ros74], et surtout par Michael Herman dans sa thèse [Her79], en particulier au chapitre X.

II.2.1 Outils

On se propose de montrer le théorème suivant :

THÉORÈME II-6 (Denjoy). — Pour tout $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, $\forall \epsilon > 0$, il existe un $C^{2-\epsilon}$ -difféomorphisme f du tore tel que $\rho(f) = \alpha$ et f n'est pas conjugué à la rotation R_{α} .

Remarque. Ici, la régularité non-entière est définie au sens de Hölder, i.e f est \mathcal{C}^1 , de dérivée $1-\epsilon$ -hölderienne.

Pour construire un contre-exemple, on s'inspire de la preuve du théorème dans le cas \mathcal{C}^2 : on sait déjà par le théorème de Poincaré qu'un tel f est semi-conjugué à R_{α} par une fonction continue croissante h du tore. La preuve procède par l'absurde, en montrant que si h n'est pas inversible, alors elle est constante sur un intervalle I non trivial du tore. Les itérés $f^n(I)$ sont alors disjoints (on dit que I est un intervalle errant pour la dynamique de f), et on conclut en montrant que la somme de leurs tailles diverge.

L'idée ici est donc de construire une fonction f qui admet un intervalle errant mais dont la suite des tailles des itérés de cet intervalle est sommable.

On se servira de l'invariant de conjuguaison suivant :

DÉFINITION II-5. Un homéomorphisme du tore f est dit minimal si tout ensemble fermé invariant par f est vide ou égal au tore tout entier.

Proposition II-7. —

- 1. Si f est conjugué à g minimal, alors f est minimal.
- 2. Si $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, alors R_{α} est minimal

Preuve. (1) est immédiat en utilisant la bicontinuité de la conjuguaison.

(2) s'obtient en remarquant que si $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, alors $\alpha \mathbb{Z} + \mathbb{Z}$ est dense dans \mathbb{R} , et donc $\alpha \mathbb{Z}/\mathbb{Z}$ est dense dans le tore \mathbb{R}/\mathbb{Z} .

La proposition suivante sera utile dans la suite :

PROPOSITION II-8. — Soient D_1, D_2 deux ensembles denses dans [0,1], et $f: D_1 \to D_2$ une surjection croissante (resp. strictement croissante), alors f admet un unique prolongement continu, croissant (resp. strictement croissant), de [0,1] dans lui-même.

PREUVE. L'unicité du prolongement est immédiate par densité de D_1 , car deux fonctions continues sur un sous-ensemble dense sont partout égales. Si $x \in [0,1] \setminus D_1$, il existe $(x_n)_{n \in \mathbb{N}}$ dans D_1 qui tend vers x, que l'on peut supposer monotone. La suite $(f(x_n))_{n \in \mathbb{N}}$ est alors monotone bornée, donc converge vers une limite qui définit la valeur de f(x). Cette construction préserve clairement la monotonie (stricte)

de f, et est de plus continue, car l'image monotone non continue d'un intervalle évite un intervalle, or l'image de f est dense.

II.2.2 Contre-exemple continu

On note $(l_n)_{n\in\mathbb{Z}}$ la suite des longueurs des intervalles, qui vérifie les propriétés suivantes :

(a)
$$\sum_{n \in \mathbb{Z}} l_n = 1$$

(b)
$$\lim_{n \to \pm \infty} \frac{l_{n+1}}{l_n} = 1$$

On peut par exemple choisir $l_n = \frac{c}{n^2 + 1}$ où c est une constante bien choisie.

On note alors
$$\alpha_n := \alpha n \mod 1$$
 et on pose $I_n := [b_n, c_n]$ où
$$\begin{cases} b_n := \sum_{\{m, \ \alpha_m < \alpha_n\}} l_m \\ c_n := \sum_{\{m, \ \alpha_m \le \alpha_n\}} l_m = b_n + l_n \end{cases}$$

Lemme II-9. —
$$K:=[0,1]\setminus\bigcup_{n\in\mathbb{Z}}\overset{\circ}{I}_n$$
 est un fermé non trivial.

PREUVE. Cet ensemble est clairement distinct de [0,1], et il est de plus non vide car sinon, par compacité de [0,1], on pourrait en extraire un recouvrement fini, mais alors la mesure de ce recouvrement serait strictement plus petite que 1 au vu de la définition des $(I_n)_{n\in\mathbb{Z}}$, ce qui est absurde.

Remarque. K est en fait un ensemble de Cantor, au sens où il est fermé d'intérieur vide et sans point isolé.

On considère ensuite la fonction h définie par morceaux sur les $(I_n)_{n\in\mathbb{Z}}$, $h:I_n\mapsto\alpha_n$.

LEMME II-10. — Les $(I_n)_{n\in\mathbb{Z}}$ sont ordonnés identiquement aux $(\alpha_n)_{n\in\mathbb{Z}}$. De plus h admet un prolongement continu sur [0,1] qui vérifie $\forall n\in\mathbb{Z},\ h^{-1}(\{\alpha_n\})=I_n$

Preuve.

Soient $n_1, n_2 \in \mathbb{Z}$ tels que $\alpha_{n_1} < \alpha_{n_2}$, alors : $b_{n_2} - c_{n_1} = \sum_{k, \alpha_{n_1} < \alpha_k < \alpha_{n_2}} l_k > 0$, ce qui prouve le premier

point. On en déduit immédiatement que h est croissante, et alors par la Proposition II-8, admet un prolongement continue croissant de [0,1] dans lui-même.

Par définition, on a l'inclusion $I_n \subset h^{-1}(\{\alpha_n\})$. Si par l'absurde il existe x tel que $h(x) = \alpha_n$ et $x \notin I_n$, alors $d(x, I_n) > 0$. On suppose sans perte de généralité que $x < b_n$, alors par densité de $\bigcup_{n \in \mathbb{Z}} I_n$ il existe

 $y \in I_{n'}$ tel que $x \le y < b_n$, et la croissance de h donne $\alpha_n = h(x) \le h(y) \le \alpha_n$, i.e $\alpha_{n'} = \alpha_n$, ce qui est absurde, et donne donc l'égalité voulue.

On prolonge maintenant h sur \mathbb{R} par la relation, pour $x \in [0,1]$ et $p \in \mathbb{Z}$, h(x+p) = h(x) + p, et on note $I_{n,p} := h^{-1}(\alpha_n + p) = I_n + p$. Alors $U := \bigcup_{n,p \in \mathbb{Z}} \mathring{I}_{n,p}$ est un ouvert dense de \mathbb{R} , et $\mathbb{R} \setminus U$ est encore un ensemble de Cantor.

 $\forall n \in \mathbb{Z}$, on choisit un homéomorphisme croissant g_n de I_n sur I_{n+1} , par exemple la transformation affine : $g_n(x) := \frac{l_n+1}{l_n}x + b_{n+1} - b_n\frac{l_{n+1}}{l_n}$, qui vérifie bien $g_n(b_n) = b_{n+1}$ et $g_n(c_n) = c_{n+1}$. Cela définit

alors une application g de $\bigcup_{n\in\mathbb{Z}}I_n$ dans lui-même, strictement croissante, que l'on prolonge sur \mathbb{R} entier de la même manière que h. Par la Proposition II-8, g se prolonge en un homéomorphisme de \mathbb{R} dans lui-même. On a alors par construction $h\circ g=R_\alpha\circ h$ sur $\bigcup_{n,p\in\mathbb{Z}}\mathring{I}_{n,p}$, mais cet ensemble est dense dans \mathbb{R} et les fonctions en jeu sont continues, donc l'égalité a lieu sur tout \mathbb{R} . Par 1-périodicité de ces fonctions, elles descendent en applications du tore, et on a la propriété suivante :

Théorème II-11. — L'homéomorphisme du cercle g construit précédemment vérifie $\rho(g) = \alpha$, mais g n'est pas conjugué à R_{α} .

PREUVE. $\rho(g) = \alpha$ est immédiat car la semi-conjuguaison préserve le nombre de rotation (cf. [GV19]). Ensuite, $K = [0,1] \setminus \bigcup_{n \in \mathbb{Z}} \mathring{I}_n$ est invariant par g par construction de ce dernier, mais cet ensemble est fermé non trivial d'après le Lemme II-9, donc g n'est pas minimal, et alors la Proposition II-7 permet de conclure que g n'est pas conjugué à R_{α} .

FIGURE 1 – [Her79] Schéma de la construction où $f = R_{\alpha}$

II.2.3 Contre-exemple dérivable

On considère toujours un homéomorphisme croissant g_n de I_n sur I_{n+1} , prolongé en $g_{n,p} = g_n + p$ sur $I_{n,p}$. On va de plus imposer que g_n soit un difféomorphisme de classe \mathcal{C}^1 , vérifiant :

(*)
$$\begin{cases} g'_n(x) = 1 & \text{si } x \in \partial I_n \\ \lim_{n \to \pm \infty} \sup_{x \in I_n} |g'_n(x) - 1| = 0 \end{cases}$$

On considèrera enfin les fonctions g'_n prolongées continuement sur tout l'intervalle [0,1], en les prenant constantes égales à 1 sur le complémentaire de I_n

LEMME II-12. —
$$g_n : x \mapsto b_{n+1} + \int_{b_n}^x 1 + \frac{6}{l_n^2} (\frac{l_{n+1}}{l_n} - 1)(t - b_n)(c_n - t) dt$$
 vérifie la condition (*).

Preuve. g_n est un \mathcal{C}^1 difféomorphisme car sa dérivée est strictement positive. De plus, on a :

$$\int_{b_n}^{c_n} 1 + \frac{6}{l_n^2} (\frac{l_{n+1}}{l_n} - 1)(t - b_n)(c_n - t) dt = l_n + \frac{6}{l_n^2} (\frac{l_{n+1}}{l_n} - 1) \int_{b_n}^{c_n} (t - b_n)(c_n - t) dt$$

$$= l_n + \frac{6}{l_n^2} (\frac{l_{n+1}}{l_n} - 1) \left[\frac{u^2}{2} l_n - \frac{u^3}{3} \right]_0^{l_n}$$

$$= l_n + \frac{6}{l_n^2} (\frac{l_{n+1}}{l_n} - 1) \frac{l_n^3}{6} = l_{n+1}$$

Donc g_n envoie bien I_n sur I_{n+1} . La première condition de (*) est immédiate, la seconde découle du fait que pour $x \in I_n : |g_n'(x) - 1| \le 6(\frac{l_{n+1}}{l_n} - 1) \to 0$ quand $n \to \pm \infty$ par hypothèse.

Lemme II-13. — La fonction η qui coïncide avec g'_n sur I_n et qui vaut 1 ailleurs est continue et vérifie $\eta = 1 + \sum_{n \in \mathbb{Z}} (g'_n - 1)$

PREUVE. En différenciant les cas $x \in I_n$, et $x \in [0,1] \setminus \bigcup I_n$, l'égalité ponctuelle est immédiate.

On va de plus montrer que la convergence est uniforme, ce qui donnera la continuité de η .

Soit
$$N \in \mathbb{N}$$
, et $x \in [0,1]$, on a:
$$\sum_{|k| \ge N} (g'_n(x) - 1) = \begin{cases} g'_n(x) - 1 & \text{si il existe } n \text{ tel que } x \in I_n \text{ et } |n| \ge N \\ 0 \end{cases}$$

Dans tous les cas, $\sup_{x \in [0,1]} \left| \sum_{|k| \geq N} (g'_n(x) - 1) \right| \leq \sup_{|n| \geq N} |g'_n(x) - 1|$. Or par hypothèse sur les dérivées, ce

La fonction g admet comme dans la partie précédente un prolongement en homéomorphisme de [0,1] mais on a cette fois le résultat plus fort suivant :

Théorème II-14. — g est un difféomorphisme de classe \mathcal{C}^1 qui vérifie $\rho(g)=\alpha$ mais n'est pas conjugué à R_{α} .

Preuve. Le seul point qui ne découle pas du Théorème II-11 est que g est un \mathcal{C}^1 -difféomorphisme. Pour montrer cela, on commence par remarquer que g est d'une part continue, et que d'autre part gest un \mathcal{C}^1 -difféomorphisme sur $U := \bigcup_{n,p \in \mathbb{Z}} I_{n,p}$ qui est de mesure pleine dans \mathbb{R} .

Alors, si A est un borélien de mesure de Lebesgue nulle, on a $\lambda(g(A)) \leq \lambda(g(A \cap (\mathbb{R} \setminus U))) + \lambda(g(A \cap U))$. Or le premier terme est nul car $\mathbb{R} \setminus U$ est stable par g et de mesure nulle, et le second terme est nul par théorème de changement de variable, g étant un \mathcal{C}^1 -difféomorphisme sur U, et A de mesure nulle.

On en déduit que la mesure de Stieltjes associée à g est absolument continue par rapport à la mesure de Lebesgue. Ainsi g admet une dérivée de Radon-Nikodym $\mu \in \mathcal{L}^1(\mathbb{R})$, telle que g(x) $g(0) + \int_0^x \mu(t) dt$. Mais alors μ est presque partout égale à g'_n sur les $(I_{n,p})_{p \in \mathbb{Z}}$ d'après la théorie des points de Lebesgue, i.e presque partout égale à η car U est de mesure pleine, et on a finalement : $g(x) = g(0) + \int_0^x \eta(t) dt.$

On en déduit que g est un homéomorphisme \mathcal{C}^1 de \mathbb{R} à dérivée non nulle, et donc un \mathcal{C}^1 -difféomorphisme.

II.2.4 Régularité hölderienne

Soit $w:[0,1]\mapsto [0,1]$ un module de continuité, on considère l'ensemble des fonctions continue pour ce module, $\mathcal{C}^w(\mathbb{T}):=\left\{\varphi\in\mathcal{C}^0(\mathbb{T})\ \left|\ \sup_{0<|x-y|\leq 1}\frac{|\varphi(x)-\varphi(y)|}{w(|x-y|)}<+\infty\right.\right\}$

En considérant la fonction g construite dans la partie précédente, on a le lemme :

LEMME II-15. —
$$\sup_{n\in\mathbb{Z}} \left| \frac{l_{n+1}}{l_n} - 1 \right| \frac{1}{w(l_n)} < +\infty \Rightarrow g' \in \mathcal{C}^w(\mathbb{T})$$

Preuve. On suppose sans perte de généralité que w(x)/x est décroissante. En reprenant le g'_n de la construction précédente, on constate que :

 \Box

$$|g_n''(t)| = \frac{6}{l_n^2} (\frac{l_{n+1}}{l_n} - 1) |(c_n - t + b_n - t)| \le \frac{3}{l_n} (\frac{l_{n+1}}{l_n} - 1)$$

L'inégalité des accroissements finis donne donc :

$$\sup_{0 < x - y \le 1} \left| \frac{g_n'(x) - g_n'(y)}{w(x - y)} \right| \le \left| \frac{l_{n+1}}{l_n} - 1 \right| \frac{3}{w(l_n)} < +\infty, \text{ et on en déduit que } g' \in \mathcal{C}^w(\mathbb{T}) \text{ car } g' - 1 \text{ est}$$

limite uniforme de $\sum_{k=-n}^{n} (g'_k - 1)$, et les fonctions dans la somme ayant des supports disjoints 2 à 2, on a :

$$\left| \sum_{k=-n}^{n} (g'_k - 1) \right|_{\mathcal{C}^w} \le 2 \sup_{n \in \mathbb{Z}} |g'_n - 1|_{\mathcal{C}^w} \le \frac{6}{l_n} (\frac{l_{n+1}}{l_n} - 1) < +\infty$$

La suite $l_n := \frac{c}{(|n|+k)(\log(|n|+k)^{1+\epsilon})}$ vérifie le critère du Lemme II-15 pour le module $w(x) = O(x^{1-\epsilon'})$, pour tout $\epsilon' > \epsilon$, ce qui permet de conclure la preuve du Théorème II-6

III Décomposition de Littlewood-Paley

Cette partie a pour objectif d'exposer les principaux théorèmes de paralinéarisation, avec pour point de départ la décomposition de Littlewood-Paley. On s'appuiera sur [Mé08], [GV19], et [AG91] comme références, en particulier les chapitres 4 et 5 du livre de Métivier. Nous allons dans cette section présenter la décomposition de Littlewood-Paley. C'est une décomposition de fonction dans laquelle chaque terme a un spectre borné. Nous allons également présenter des propriétés sur cette décomposition.

DÉFINITION III-1 (Transformée de Fourier). On note $\mathcal{F}: L^1(\mathbb{R}^d) \to C_0^0(\mathbb{R}^d), \ \mathcal{F}f(\xi) := \int_{\mathbb{R}^d} e^{-2i\pi\xi \cdot x} f(\xi) dx$, et on pourra utiliser la notation \hat{f} pour désigner $\mathcal{F}f$. On manipulera de plus le prolongement usuel de \mathcal{F} à l'espace des distributions tempérées $\mathcal{S}'(\mathbb{R}^d)$.

On s'intéresse dans un premier temps à l'existence et, plus précisément, à la construction de fonctions $C^{\infty}(\mathbb{R}^d)$ avec un support au voisinage de 0 mais également constantes au voisinage de 0.

Considérons le cas d=1 et notons $g:\mathbb{R}^+\to\mathbb{R}$

$$g(x) = \begin{cases} 1 & \text{si } 0 \le x \le \frac{1}{2} \\ \exp\left(-\frac{1}{\frac{1}{4} - |x - \frac{1}{2}|^2}\right) & \text{si } \frac{1}{2} \le x \le 1 \\ 0 & \text{sinon} \end{cases}$$

On a alors que g appartient à $C^{\infty}(\mathbb{R})$ puisqu'on peut montrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \left[\frac{1}{2}, 1\right], \ g^{(n)}(x) = xQ_n(|x|) \exp\left(-\frac{1}{\frac{1}{4} - |x - \frac{1}{2}|^2}\right)$$
 (3.1)

avec Q_n une fraction rationnelle dont le pôle se situe en 1 , ce qui montre la continuité des $(g^{(n)})_{n\in\mathbb{N}}$ par croissances comparées. On étend alors cette construction à \mathbb{R}^d en notant $\psi(x)=g(|x|)$, qui est une fonction $C^{\infty}(\mathbb{R}^d)$ avec $\operatorname{supp}(\psi)\subset B(0,1)$ et est égale à 1 sur $B(0,\frac{1}{2})$.

fonction $C^{\infty}(\mathbb{R}^d)$ avec $\operatorname{supp}(\psi) \subset B(0,1)$ et est égale à 1 sur $B(0,\frac{1}{2})$. En posant $\chi(x) = \psi(x) - \psi\left(\frac{x}{2}\right)$, on a ainsi $\operatorname{supp}(\chi(2^{-k}\cdot)) \subset B(0,2^{k+1}) \setminus B(0,2^{k-1})$, et par téléscopage on obtient l'égalité :

$$\forall \xi \in \mathbb{R}^d, \ 1 = \psi(\xi) + \sum_{k=0}^{\infty} \chi(2^{-k}\xi)$$

LEMME III-1. — Pour tout $u \in \mathcal{S}$ on a :

$$\hat{u} = \psi \hat{u} + \sum_{k=0}^{\infty} \chi(2^{-k} \cdot) \hat{u}$$

et la série converge dans l'espace de Schwartz.

PREUVE. Soit $u \in \mathcal{S}$, montrons que pout tout α et $\beta \in \mathbb{N} \times \mathbb{N}^d$, $\|x^{\alpha}\partial^{\beta}(u - \psi(2^{-k}x)u)\|_{\infty} \to_{k\to\infty} 0$ On considère pour cela :

$$\begin{aligned} \left\| x^{\alpha} \partial^{\beta} (g - \psi(2^{-k}x)g) \right\|_{\infty} &= \left\| x^{\alpha} \partial^{\beta} (g - \psi(2^{-k}x)g) \right\|_{\infty, [2^{k-1}; 2^{k+1}]} \\ &\leq \left\| x^{\alpha} \partial^{\beta} g \right\|_{\infty, [2^{k}; 2^{k+1}]} + \left\| x^{\alpha} \partial^{\beta} g (1 - \psi(2^{-k}x)) \right\|_{\infty, [2^{k-1}; 2^{k}]} \end{aligned}$$

Comme $g \in \mathcal{S}$, on a $\|x^{\alpha}\partial^{\beta}g\|_{\infty,[2^k;2^{k+1}]}$ qui tend bien vers 0 lorsque p tend vers $+\infty$. En utilisant la formule de derivation de Leibniz sachant que $\partial^j \psi = O(x^j)$ (en utilisant (3.1)) on a que $\|x^{\alpha}\partial^{\beta}g\|_{[2^k;2^{k+1}]}$ tend bien vers 0 lorsque p tend vers $+\infty$. On utilise ensuite la continuité de la transformé de Fourier et de la transformé de Fourier inverse sur \mathcal{S} .

DÉFINITION III-2. On définit les opérateurs de la décomposition de Littlewood-Paley de la manière suivante :

Pour
$$u \in \mathcal{S}'$$
, $\widehat{\Delta_{-1}u} := \psi \cdot \hat{u}$, $\widehat{\Delta_k u} := \chi(2^{-k} \cdot) \cdot \hat{u}$ si $k \ge 0$

Proposition III-2. — Soit $u \in \mathcal{S}'$, en posant :

$$S_n u := \sum_{k=-1}^{n-1} \Delta_k u$$

On a que:

$$\lim_{n \to \infty} S_n u = u$$

REMARQUE. Dans la suite, pour simplifier les calculs, il nous arrivera d'écrire S_{-k} pour $k \geq 0$, et dans ce cas on prend comme définition $S_{-k} := S_0 = \Delta_{-1}$.

PREUVE. Prenons $u \in \mathcal{S}'$ et $v \in \mathcal{S}$.

$$\langle \mathcal{F}(S_n u), v \rangle = \langle \psi(2^{-n}\xi)\mathcal{F}(u), v \rangle = \langle \mathcal{F}(u), \psi(2^{-n}\xi)v \rangle$$

Or, $\lim_{n\to+\infty} \psi(2^{-n}\xi)v = v$ dans $\mathcal{S}(\mathbb{R}^d)$ par le Lemme III-1. On obtient donc :

$$\mathcal{F}(S_n u) \to \mathcal{F}(u)$$
 dans \mathcal{S}

Par continuité de \mathcal{F}^{-1} , on a finalement $S_n u \to u$ quand $n \to +\infty$.

DÉFINITION III-3 (Espaces de Sobolev). Pour tout $s \in \mathbb{R}^+$, on définit

$$H^{s}(\mathbb{R}^{d}) := \left\{ u \in L^{2}(\mathbb{R}^{d}), \xi \mapsto (1 + |\xi|^{2})^{\frac{s}{2}} \hat{u}(\xi) \in L^{2}(\mathbb{R}^{d}) \right\}$$

et on admet que c'est un espace de Hilbert muni de la norme $||u||_{H^s} := \left(\int_{\mathbb{R}^d} (1+|\xi|^2)^s \hat{u}(\xi)^2 d\xi\right)^{\frac{1}{2}}$

DÉFINITION III-4 (Espaces de Zygmund). Pour tout $\alpha > 0$, on définit

$$C_*^{\alpha}(\mathbb{R}^d) := \left\{ u \in L^2(\mathbb{R}^d), \sup_{k \ge -1} 2^{k\alpha} \|\Delta_k u\|_{L^{\infty}} < +\infty \right\}$$

et on admet que c'est un espace de Hilbert muni de la norme $\|u\|_{C^{\alpha}_*} := \sup_{k \ge -1} 2^{k\alpha} \|\Delta_k u\|_{L^{\infty}}$

LEMME III-3 (Inégalité de Bernstein). — Soit B une boule, $1 \le p \le q \le +\infty$, $k \in \mathbb{N}$, et $\lambda > 0$. Si $u \in L^p$ est tel que $supp(\hat{u}) \subset \lambda B$, alors

$$\max_{|\alpha|=k} \|\partial^{\alpha} u\|_{L^{q}} \lesssim_{k} \lambda^{|\alpha|+d\left(\frac{1}{p}-\frac{1}{q}\right)} \|u\|_{L^{p}} \tag{3.2}$$

PREUVE. On commence par justifier que $u \in \mathcal{S}$. En effet, u ayant un spectre borné, sa transformée de Fourier est dans l'espace de Schwartz, et l'opérateur transformée de Fourier étant un automorphisme de \mathcal{S} dans lui-même, on en déduit que $u \in \mathcal{S}$.

Soit $\varphi \in C_c^{\infty}(\mathbb{R}^d)$ qui vaut 1 sur un voisinage de B, on a $\hat{u}(\xi) = \varphi(\lambda^{-1}\xi)\hat{u}(\xi)$, donc $u = \lambda^d u * g$, avec $g := \mathcal{F}^{-1}(\varphi)(\lambda \cdot)$, et donc $\partial^{\alpha} u = \lambda^d u * \partial^{\alpha} g$. L'inégalité de Young donne de plus que : $||f * g||_{L^q} \le ||f||_{L^p}||g||_{L^r}$, où $1 \le p, r \le q \le +\infty$, et $\frac{1}{p} + \frac{1}{r} = 1 + \frac{1}{q}$. Or :

$$\|\partial^{\alpha} g\|_{L^{r}}^{r} = \int_{\mathbb{R}^{d}} \left| \partial^{\alpha} \left(\mathcal{F}^{-1} \varphi(\lambda x) \right) \right|^{r} dx = \lambda^{|\alpha|r} \int_{\mathbb{R}^{d}} \left| \partial^{\alpha} \left(\mathcal{F}^{-1} (\varphi) \right) (\lambda x) \right|^{r} dx$$

$$\leq \lambda^{|\alpha|r-d} \|\partial^{\alpha} \mathcal{F}^{-1} \varphi\|_{L^{r}}^{r}$$

Ce qui donne bien:

$$\|\partial^{\alpha} u\|_{L^{q}} \leq \lambda^{|\alpha| + d(1 - \frac{1}{r})} \|\partial^{\alpha} \mathcal{F}^{-1} \varphi\|_{L^{r}} \|u\|_{L^{p}} = C_{k} \lambda^{|\alpha| + d(\frac{1}{p} - \frac{1}{q})} \|u\|_{L^{p}}$$

LEMME III-4. — Il existe C > 0 tel que pour tout $1 \le p \le +\infty$, $u \in L^p(\mathbb{R}^d)$,

$$\sup_{n \ge -1} \|S_n u\|_{L^p} \le C \|u\|_{L^p} \qquad \sup_{k \ge -1} \|\Delta_k u\|_{L^p} \le C \|u\|_{L^p}$$

PREUVE. On écrit $S_n u = 2^{nd} \mathcal{F}^{-1}(\psi(2^n \cdot)) * u$. Par inégalité de Young on obtient :

$$||S_n u||_{L^p} \le ||u||_{L^p} ||2^{nd} \mathcal{F}^{-1}(\psi(2^n \cdot))||_{L^1}$$

On procède de même pour $\|\Delta_k u\|_{L^p}$.

LEMME III-5 (Presque-orthogonalité). — Pour tout $u \in L^2(\mathbb{R}^d)$,

$$\sum_{k \ge -1} \|\Delta_k u\|_{L^2}^2 \le \|u\|_{L^2}^2 \le 2 \sum_{k \ge -1} \|\Delta_k u\|_{L^2}^2 \tag{3.3}$$

PREUVE. On part de $1 = \psi(\xi) + \sum_{p=0}^{\infty} \chi(2^{-p}\xi)$. Seule deux de ces fonctions ont une intersection de support non vide. On utilise alors : $a^2 + b^2 \le (a+b)^2 \le 2(a^2+b^2)$ et on obtient :

$$\frac{1}{2} \le \psi(\xi)^2 + \sum_{p=0}^{\infty} \chi(2^{-p}\xi)^2 \le 1$$

La seconde inégalité de (3.3) s'en déduit en multipliant l'inégalité ci-dessus par \hat{u} et en utilisant l'identité de Plancherel.

PROPOSITION III-6 (Caractérisation des espaces de Sobolev). — $Si \ s \in \mathbb{R}^+, \ u \in L^2(\mathbb{R}^d), \ on \ a$ alors $u \in H^s(\mathbb{R}^d) \Leftrightarrow \sum_{k \geq -1} 2^{2ps} \|\Delta_k u\|_{L^2}^2 < +\infty$. De plus, il existe C > 0 tel que :

$$\frac{1}{C} \sum_{k>-1} 2^{2ks} \|\Delta_k u\|_{L^2}^2 \le \|u\|_{H^s}^2 \le C \sum_{k>-1} 2^{2ks} \|\Delta_k u\|_{L^2}^2$$
(3.4)

PREUVE. En notant $\langle \xi \rangle = \sqrt{1 + |\xi|^2}$, on a $||u||_{H^s} = ||\langle D \rangle^s u||_{L^2}$, et le Lemme III-5 donne

$$\sum_{k \ge -1} \|\Delta_k \langle D \rangle^s u\|_{L^2}^2 \le \|u\|_{H^s}^2 \le 2 \sum_{k \ge -1} \|\Delta_k \langle D \rangle^s u\|_{L^2}^2$$

La formule de Plancherel et la définition de Δ_k , on obtient l'existence de C>0 tel que $\forall k\geq -1$

$$\frac{1}{C} 2^{ps} \|\Delta_k u\|_{L^2} \le \|\Delta_k \langle D \rangle^s u\|_{L^2} \le C 2^{ps} \|\Delta_k u\|_{L^2}$$

et donc il existe \tilde{C} tel que :

$$\frac{1}{\tilde{C}} \sum_{k \ge -1} 2^{2ks} \|\Delta_k u\|_{L^2}^2 \le \|u\|_{H^s}^2 \le \tilde{C} \sum_{k \ge -1} 2^{2ks} \|\Delta_k u\|_{L^2}^2$$

ce qui donne l'équivalence des normes voulue.

LEMME III-7 (Injection de Sobolev). — Soit $s > \frac{d}{2}$, si $u \in H^s(\mathbb{R}^d)$ alors $u \in C^{s-\frac{d}{2}}_*(\mathbb{R}^d)$, en particulier $u \in L^{\infty}(\mathbb{R}^d)$, et pour tout $k \in \mathbb{N}$:

$$\|\Delta_k u\|_{L^{\infty}} \lesssim 2^{k(\frac{d}{2}-s)} \|u\|_{H^s}$$

PREUVE. Soit $u \in H^s(\mathbb{R}^d)$, d'après le résultat précédent on sait que pour tout $k \in \mathbb{N}$, $\Delta_k u \in L^2(\mathbb{R}^d)$, donc sa transformée de Fourier y est de même, et comme elle est à support compact, elle est dans $L^1(\mathbb{R}^d)$. D'après la formule d'inversion, on a ainsi :

$$\Delta_k u(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \widehat{\Delta_k u}(\xi) d\xi$$

Alors, l'inégalité de Cauchy-Schwarz donne :

$$\|\Delta_k u\|_{L^{\infty}} \leq \|\Delta_k u\|_{L^2} \left| B(0, C2^k) \right|^{\frac{1}{2}} \lesssim 2^{k(\frac{d}{2}-s)} 2^{ks} \|\Delta_k u\|_{L^2} \leq 2^{k(\frac{d}{2}-s)} (\sum_{k \geq -1} 2^{ks} \|\Delta_k u\|_{L^2}^2)^{\frac{1}{2}} \leq 2^{k(\frac{d}{2}-s)} \|u\|_{H^s}$$

Ce qui consitue l'inégalité voulue. On en déduit immédiatement que $\sup_{k\geq -1} 2^{k(s-\frac{d}{2})} \|u\|_{L^{\infty}} \leq \|u\|_{H^s}$, et donc $u\in C^{s-\frac{d}{2}}_*$. De plus, on en déduit que la série de terme général $(\Delta_k u)_{k\in\mathbb{N}}$ est absolument convergente dans L^{∞} , donc par complétude elle converge simplement vers un \tilde{u} . On a déjà vu que cette série converge dans \mathcal{S}' vers u, donc $u=\tilde{u}\in L^{\infty}(\mathbb{R}^d)$.

PROPOSITION III-8. — Soit $(u_k)_{k\geq -1}$ tel que $\exists R>0, \forall k\geq -1, supp\ \hat{u}_k\subset B(0,R2^k)$.

• Soit $\alpha > 0$, si $\sup 2^{k\alpha} ||u_k||_{L^{\infty}} < +\infty$, alors $u = \sum u_k \in C^{\alpha}_*(\mathbb{R}^d)$, et

$$||u||_{C_*^{\alpha}} \le C \sup_k 2^{k\alpha} ||u_k||_{L^{\infty}}$$

• Soit s > 0, si $\sum 2^{2ks} \|u_k\|_{L^2}^2 < +\infty$, alors $u = \sum u_k \in H^s(\mathbb{R}^d)$, et

$$||u||_{H^s}^2 \le C \sum_k 2^{2ks} ||u_k||_{L^2}^2$$

PREUVE. Par hypothèse sur le support des $(u_k)_{k\geq -1}$, pour tout $q\geq -1$, en notant $N:=\lfloor \log_2(R)\rfloor+1$ 1, on a:

$$\Delta_q u = \sum_{k \ge q - N} \Delta_q u_k$$

On en déduit :

$$2^{q\alpha} \|\Delta_q u\|_{L^{\infty}} \leq 2^{q\alpha} \sum_{k \geq q-N} \|\Delta_q u_k\|_{L^{\infty}} \leq 2^{q\alpha} \sum_{k \geq q-N} \|u_k\|_{L^{\infty}} \leq \sum_{k \geq q-N} 2^{k\alpha} \|u_k\|_{L^{\infty}} 2^{(q-k)\alpha} \leq \sum_{k \in \mathbb{Z}} a_k b_{q-k} \|u_k\|_{L^{\infty}} 2^{(q-k)\alpha} \leq \sum_{k \leq q-N} a_k b_{q-k} \|u_k\|_{L^{\infty}} 2^{(q-k)\alpha} \leq \sum_{k \leq q-N} a_k b_{q-k} \|u_k\|_{L^{\infty}} 2^{(q-k)\alpha} \leq \sum_{k \leq q-N} a_k \|u_k\|_{L^{\infty}} 2^{(q-k)\alpha} 2^{(q-k)\alpha} \leq \sum_{k \leq q-N} a_k \|u_k\|_{L^{\infty}} 2^{(q-k)\alpha} 2^{(q-k)$$

où:

- $a_k = 2^{k\alpha} ||u_k||_{L^{\infty}}$ si $k \ge -1$, $a_k = 0$ sinon. $b_r = 2^{r\alpha}$ si $r \le N$, $b_r = 0$ sinon.

Comme $\alpha > 0$, $(b_r)_{r \in \mathbb{Z}}$ est sommable, et l'inégalité de Young discrète donne :

$$||2^{k\alpha}||\Delta_k u||_{L^{\infty}}||_{\ell^{\infty}} \le ||a_q||_{\ell^{\infty}}||b_r||_{\ell^1}$$

i.e:

$$||u||_{C^{\alpha}_{*}} = \sup_{k} 2^{k\alpha} ||\Delta_{k}u||_{L^{\infty}} \le C \sup_{k} 2^{k\alpha} ||u_{k}||_{L^{\infty}}$$

On conclut alors par définition des espaces de Zygmund. La preuve dans le second cas est parfaitement analogue, en remplaçant α par s, et l'espace L^{∞} par L^{2} .

PROPOSITION III-9. — Soit s>0, $n\in\mathbb{N}$, n>s. Il existe C tel que pour toute famille $(u_k)_{k\in\mathbb{N}}$ dans $H^n(\mathbb{R}^d)$, si pour tout $\alpha \in \mathbb{N}^d$, avec $|\alpha| \leq n$:

$$\|\partial^{\alpha} u_k\|_{L^2} \le 2^{k(|\alpha|-s)} \varepsilon_k$$

 $où (\varepsilon_k)_{k\in\mathbb{N}} \in \ell^2(\mathbb{N}), \ alors \ la \ somme \ u := \sum_k u_k \in H^s(\mathbb{R}^d), \ et \ \|u\|_{H^s}^2 \leq C \sum_k \varepsilon_k^2.$

Preuve. On remarque que la série de terme général u_k est absolument convergente dans L^2 , donc par complétude elle converge simplement, et u est bien définit. Ensuite :

$$2^{js} \|\Delta_j u\|_{L^2} \le \sum_{k>j} 2^{js} \|\Delta_j u_k\|_{L^2} + \sum_{k< j} 2^{js} \|\Delta_j u_k\|_{L^2}$$

Par hypothèse, et en utilisant le Lemme III-4, on a d'une part

$$\|\Delta_j u_k\|_{L^2} \le C\|u_k\|_{L^2} \le C2^{-ks}\varepsilon_k$$

D'autre part, en utilisant l'inégalité de Bernstein (3.2), on obtient pour tout $j \ge 0$:

$$\|\Delta_{j}u_{k}\|_{L^{2}} \leq C2^{-nj} \sum_{|\alpha|=n} \|\partial^{\alpha}\Delta_{j}u_{k}\|_{L^{2}} \leq C2^{-nj} \|u_{k}\|_{H^{n}} \leq C2^{-(j-k)n} 2^{-ks} \varepsilon_{k}$$

Alors:

$$2^{js} \|\Delta_j u\|_{L^2} \le C \sum_{k \ge j} 2^{(j-k)s} \varepsilon_k + C \sum_{k < j} 2^{(j-k)(s-n)} \varepsilon_k = C(a \star \varepsilon)_j$$

où le dernier membre est une convolution discrète entre $\varepsilon = (\varepsilon_k)_{k \in \mathbb{Z}}$ et $a = (a)_{k \in \mathbb{Z}}$ avec

$$a_k = 2^{ks}$$
 si $k \le 0$, $a_k = 2^{k(s-n)}$ sinon.

Comme $a \in \ell^1(\mathbb{Z})$, l'inégalité de Young discrète donne que $(2^{js} \|\Delta_j u\|_{L^2})_{j \in \mathbb{N}}$ est de carré sommable, ce qui donne le résultat voulu d'après la caractérisation de la Proposition III-6.

COROLLAIRE III-10 (Multiplicateurs de Meyer). — Soient r, s > 0, $n \in \mathbb{N}$ tel que n > s. Si $(m_k)_{k \geq -1}$ est une suite de $L^{\infty}(\mathbb{R}^d)$ telle que pour tout multi-indice α avec $|\alpha| \leq n$, on ait :

$$\|\partial^{\alpha} m_k\|_{L^{\infty}} \le M_{\alpha} 2^{k(|\alpha|-r)},$$

alors l'opérateur

$$f \mapsto \sum_{k \ge -1} m_k \Delta_k f$$

est continu de $H^s(\mathbb{R}^d)$ dans $H^{s+r}(\mathbb{R}^d)$, et sa norme est bornée par $C_s \sum_{|\beta| \leq n} M_{\beta}$.

PREUVE. Pour tout $|\alpha| \leq n$, on a

$$\begin{split} \|\partial^{\alpha}(m_{k}\Delta_{k}f)\|_{L^{2}} &\leq C_{\alpha} \sum_{\beta \leq \alpha} \|\partial^{\beta}m_{k}\|_{L^{\infty}} \|\partial^{\alpha-\beta}\Delta_{k}f\|_{L^{2}} \\ &\leq C_{\alpha} 2^{k(|\alpha|-r-s)} \left(\sum_{\beta \leq \alpha} M_{\beta}\right) 2^{ks} \|\Delta_{k}f\|_{L^{2}}. \end{split}$$

Alors, la Proposition III-9 permet d'aboutir au résultat voulu.

III.1 Estimations douces et paralinéarisation

On va maintenant se servir de la décomposition de Littlewood-Paley pour étudier des produit dans les espaces fonctionnels précédemment utilisés. On remarque que l'on peut écrire, pour $u, v \in \mathcal{S}'(\mathbb{R}^d)$:

$$uv = \sum_{k,j} \Delta_k u \Delta_j v = \sum_{k=-1}^{+\infty} \sum_{j=-1}^{p} \Delta_k u \Delta_j v + \sum_{k=-1}^{+\infty} \sum_{j=k+1}^{+\infty} \Delta_k u \Delta_j v$$

$$= \sum_{k=-1}^{+\infty} \Delta_k u S_{k+1} v + \sum_{j=0}^{+\infty} \sum_{k=-1}^{j-1} \Delta_k u \Delta_j v = \sum_{k=-1}^{+\infty} \Delta_k u S_{k+1} v + \sum_{j=-1}^{+\infty} \Delta_j v S_j u$$

$$= \sum_{k=-1}^{+\infty} \Delta_k u S_{k-2} v + \sum_{k=-1}^{+\infty} \Delta_k v S_{k-2} u + \sum_{|k-j| \le 2} \Delta_k u \Delta_j u$$

$$= T_v u + T_u v + R(u, v)$$

Ici, T_vu (resp. T_uv) décrit la partie des interactions pour lesquelles la fréquence de v (resp. u) est nettement plus faible que celle de u (resp. v), tandis que R(u,v) représente la partie où les fréquences sont du même ordre. Le terme T_vu est appelé paraproduit de u par v.

Proposition III-11 (Estimations douces pour les paraproduits et leur restes). —

•
$$\forall s \in \mathbb{R}^+, u \in L^{\infty}, v \in H^s,$$

$$||T_u v||_{H^s} \le C_s ||u||_{L^{\infty}} ||v||_{H^s}$$
(3.5)

•
$$\forall \alpha \in \mathbb{R}^+, u \in L^{\infty}, v \in C_*^{\alpha},$$

$$||T_u v||_{C^{\alpha}} \le C_{\alpha} ||u||_{L^{\infty}} ||v||_{C^{\alpha}}$$
(3.6)

• $\forall r, s \in \mathbb{R}^+$ tels que $r + s > 0, u \in C^r_*, v \in H^s$,

$$||R(u,v)||_{H^{r+s}} \le C_{r,s} ||u||_{C_*^r} ||v||_{H^s}$$
(3.7)

• $\forall \alpha, \beta \in \mathbb{R}^+$ tels que $\alpha + \beta > 0, u \in C^{\alpha}_*, v \in C^{\beta}_*$,

$$||R(u,v)||_{C_*^{\alpha+\beta}} \le C_{\alpha,\beta} ||u||_{C_*^{\alpha}} ||v||_{C_*^{\beta}}$$
(3.8)

PREUVE. On remarque que T_uv a une décomposition qui vérifie les hypothèses de la Proposition III-8. En effet, $T_uv = \sum_{p=-1}^{+\infty} S_{p-2}u\Delta_pv$, et le spectre de $S_{p-2}u\Delta_pv$ est inclus dans $B(0, 2^{p-2}) + B(0, 2^{p+1}) \subset B(0, 4 \times 2^p)$. Alors, le Lemme III-4 et la Proposition III-6 donnent :

$$\sum_{k} 2^{2ks} \|\Delta_{k} v S_{k-2} u\|_{L^{2}}^{2} \leq \sum_{k} 2^{2ks} \|\Delta_{k} v\|_{L^{2}}^{2} \|S_{k-2} u\|_{L^{\infty}} \leq C \|u\|_{L^{\infty}}^{2} \sum_{k} 2^{2ks} \|\Delta_{k} v\|_{L^{2}}^{2}$$
$$\leq C' \|u\|_{L^{\infty}}^{2} \|v\|_{H^{s}}^{2}$$

On conclut alors que $||T_u v||_{H^s} \le C_s ||u||_{L^{\infty}} ||v||_{H^s}$ à l'aide de la Proposition III-8. Les inégalités suivantes se montrent de manière parfaitement analogue.

THÉORÈME III-12 (Paralinéarisation). — Soit F une fonction C^{∞} de \mathbb{R} telle que F(0)=0. Si $u\in H^s(\mathbb{R}^d)$, avec $\rho:=s-\frac{d}{2}>0$, alors

$$F(u) - T_{F'(u)}u \in H^{s+\rho}(\mathbb{R}^d). \tag{3.9}$$

Pour prouver ce théorème, on commence par montrer le lemme suivant :

LEMME III-13. — Soit F une fonction C^{∞} de \mathbb{R} telle que F(0) = 0. Si $u \in H^s(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$, avec $s \geq 0$, alors $F(u) \in H^s(\mathbb{R}^d)$ et

$$||F(u)||_{H^s} \le C_s ||u||_{L^{\infty}} ||u||_{H^s}$$
(3.10)

PREUVE. Si s=0, le résultat se déduit de l'existence d'une fonction G continue telle que F(u)=uG(u). Alors, comme $u\in L^2$ et $G(u)\in L^\infty$ car u est bornée, on obtient bien $F\in L^2$. Quand s>0, on remarque qu'il existe C_α indépendant de u et k telle que :

$$\|\partial^{\alpha} \Delta_k u\|_{L^2} \le C_{\alpha} 2^{(|\alpha| - s)k} \varepsilon_k \tag{3.11}$$

avec $\sum \varepsilon_k^2 = ||u||_{H^s}^2$. En effet, l'inégalité de Bernstein (3.2) puis la caractérisation des espaces de Sobolev (3.4) donnent le résultat voulu. On a de plus,

$$\|\partial^{\alpha} \Delta_k u\|_{L^{\infty}} \le C_{\alpha} 2^{|\alpha|k} \|u\|_{L^{\infty}} \tag{3.12}$$

toujours par l'inégalité de Bernstein. Le lemme de presque-orthogonalité (3.3) donnant que $(\Delta_k u)_{k\in\mathbb{N}}$ est terme général d'une série absolument convergente, la complétude de L^2 fournit alors la convergence simple de cette série, i.e. $S_n u \to u$ dans L^2 . De plus, d'après le Lemme III-4, $||S_p u||_{L^{\infty}} \le C||u||_{L^{\infty}}$. On en déduit que $F(S_n u) \to F(u)$ dans L^2 car :

$$||F(S_n u) - F(u)||_{L^2} \le C \sup_{t \in [0,1]} ||F'(tS_n u - (1-t)u||_{L^\infty} ||S_n u - u||_{L^2} \to 0$$

Un argument télescopique donne alors :

$$F(u) = F(S_0 u) + \sum_{k=0}^{+\infty} F(S_{k+1} u) - F(S_k u) = F(S_0 u) + \sum_{k=0}^{+\infty} m_k \Delta_k u$$
 (3.13)

οù

$$m_k := \int_0^1 F'(S_k u + t\Delta_k u) dt$$

Alors, on obtient dans un premier temps que :

$$\|\partial^{\alpha} F'(S_k u + t\Delta_k u)\|_{L^{\infty}} \le C_{\alpha,F} 2^{|\alpha|k} \|u\|_{L^{\infty}}$$

Pour cela on utilise la règle de la chaine (plus précisement la formule de Faà di Bruno), on majore uniformément les termes en F' avec le Lemme III-4 et on utilise (3.12) pour les termes en u. En intégrant, on obtient alors :

$$\|\partial^{\alpha} m_k\|_{L^{\infty}} \le C_{\alpha,F} 2^{|\alpha|k} \|u\|_{L^{\infty}} \tag{3.14}$$

Donc par la formule de Leibniz et l'inégalité (3.11), on obtient :

$$\|\partial^{\alpha}(m_k\Delta_k u)\|_{L^2} \le C_{\alpha,F} 2^{(|\alpha|-s)k} \|u\|_{L^{\infty}} \varepsilon_k$$

On peut donc conclure par la Proposition III-9.

Preuve du Théorème III-12. On commence par remarquer que quitte à soustraire un terme linéaire au à F(u), on peut supposer que F'(0) = 0. Cela ne change rien à la preuve car :

$$F(u) + au - T_{F'(u)+a}u = F(u) + au - T_{F'(u)}u - T_au = F(u) + au - T_{F'(u)}u - au = F(u) - T_{F'(u)}u$$

Ensuite, comme $\rho > 0$, le Lemme III-7 donne $u \in L^{\infty}(\mathbb{R}^d)$. Par définition, on a

$$T_{F'(u)}u = S_{-3}F'(u) \cdot u_0 + \sum_{k=0}^{\infty} S_{k-2}F'(u) \cdot \Delta_k u$$

En utilisant (3.13), comme $F(S_0u)$ et $S_{-3}F'(u) \cdot u_0$ sont dans H^{∞} , il suffit de prouver que :

$$\sum_{k=0}^{\infty} (m_k - S_{k-2}g) \Delta_k u \in H^{s+\rho}$$

Cela découle de la Proposition III-9, que l'on peut appliquer d'une part grâce à (3.11), et d'autre part car on a l'inégalité :

$$\|\partial^{\alpha}(m_k - S_{k-2}F'(u))\|_{L^{\infty}} \le C_{\alpha}2^{(|\alpha|-\rho)k}$$

Pour obtenir cette dernière, on va montrer séparément :

$$\|\partial^{\alpha}(m_k - F'(S_{k-2}u))\|_{L^{\infty}} \le C_{\alpha} 2^{(|\alpha| - \rho)k}$$
(3.15)

$$\|\partial^{\alpha}(F'(S_k u) - S_k F'(u))\|_{L^{\infty}} \le C_{\alpha} 2^{(|\alpha| - \rho)k}$$
(3.16)

On commence par écrire la formule de Taylor avec reste intégral, qui donne

$$F'(S_k u + t\Delta_k u) - F'(S_{k-2}u) = \mu_k w_k$$

avec

$$w_k = (\Delta_{k-2}u + \Delta_{k-1}u + t\Delta_k u)$$
 et $\mu_k = \int_0^1 F''(S_{k-2}u + \tau w_k) d\tau$.

De manière analogue à (3.14), on a

$$\|\partial^{\alpha}\mu_k\|_{L^{\infty}} \le C_{\alpha,F} 2^{|\alpha|k} \|u\|_{L^{\infty}}$$

Tandis que w_k vérifie

$$\|\partial^{\alpha} w_k\|_{L^{\infty}} \le C_{\alpha} 2^{\frac{d}{2}k} \|\partial^{\alpha} w_k\|_{L^2} \le C_{\alpha} 2^{\frac{d}{2}k} 2^{(|\alpha|-s)k} \varepsilon_k \le \tilde{C}_{\alpha} 2^{(|\alpha|-\rho)k}$$

où l'on a utilisé l'inégalité de Bernstein (3.2), puis (3.11). On en déduit donc que

$$\|\partial^{\alpha}(\mu_k w_k)\|_{L^{\infty}} \le C_{\alpha} 2^{(|\alpha|-\rho)k}$$

Or

$$m_k - F'(S_{k-2}u) = \int_0^1 \mu_k w_k \mathrm{d}t$$

Ce qui donne (3.15). Pour montrer la seconde inégalité, on commence par décomposer en deux membres le terme à majorer :

$$[F'(S_k u) - S_k F'(S_k u)] + [S_k F'(S_k u) - S_k F'(u)] = (I) + (II)$$

L'inégalité de Bernstein (3.2) donne alors

$$\|\partial^{\alpha} S_k(F'(u) - F'(S_k u))\|_{L^{\infty}} \lesssim_{\alpha} 2^{(|\alpha| + \frac{d}{2})k} \|S_k(F'(u) - F'(S_k u))\|_{L^2}.$$

De plus:

$$||S_k(F'(u) - F'(S_k u))||_{L^2} \lesssim ||F'(u) - F'(S_k u))||_{L^2} \lesssim ||u - S_k u||_{L^2} \lesssim 2^{-ks} ||u||_{H^s}$$

grâce au Lemme III-4, puis aux accroissements finis, et finalement avec une majoration du reste géométrique dans la caractérisation des espaces de Sobolev (3.4). Ainsi (II) vérifie l'inégalité (3.16). Il reste maintenant à étudier (I). Pour cela, on remarque que $S_k u \in H^{\infty}$ car sa transformée de Fourier est à support compact. Alors, d'une part $S_k u \in L^{\infty}$ par le Lemme III-4 car $u \in L^{\infty}$, et sa norme est bornée indépendamment de k. D'autre part, en écrivant la norme usuelle de Sobolev et en utilisant l'inégalité de Bernstein, on a que pour tout $N \in \mathbb{N}$:

$$||S_k u||_{H^{s+N}} \le C||S_k u||_{H^s} + C \sum_{|\alpha|=s+N} ||\partial^{\alpha} S_k u||_{L^2}$$

$$\le ||S_k u||_{H^s} + C_{\alpha,N} 2^{kN} ||S_k u||_{H^s}$$

$$\le C_{\alpha,N} 2^{kN} ||u||_{H^s}.$$

où l'on a observé que $||S_k u||_{H^s} \le ||u||_{H^s}$ à partir de l'écriture utilisant les multiplicateurs de Fourier, et avec la norme de Sobolev adaptée. Alors, le Lemme III-13 donne que $F'(S_k u) \in H^{s+N}$, et

$$||F'(S_k u)||_{H^{s+N}} \le C_{\alpha,N} 2^{kN} ||u||_{H^s} ||u||_{L^{\infty}}$$
(3.17)

En utilisant l'inégalité de Bernstein puis le Lemme III-7, on remarque que pour $\sigma > |\alpha| + \frac{d}{2}$ et $a \in H^{\sigma}(\mathbb{R}^d)$,

$$\|\partial^{\alpha} \Delta_j a\|_{L^{\infty}} \le C 2^{j(\frac{d}{2} - \sigma + |\alpha|)} \|a\|_{H^{\sigma}}$$

Et alors, comme $a - S_k a = \sum_{j \ge k} \Delta_j a$, par majoration d'un reste géométrique, on a :

$$\|\partial^{\alpha}(a - S_k a)\|_{L^{\infty}} \le C 2^{k(\frac{d}{2} - \sigma + |\alpha|)} \|a\|_{H^{\sigma}} \tag{3.18}$$

En appliquant (3.18) avec $a = F'(S_k u)$ et $\sigma = s + N$ où N est suffisamment grand pour que $s + N > \frac{d}{2} + |\alpha|$, on a

$$\|\partial^{\alpha}(F'(S_{k}u) - S_{k}F'(S_{k}u))\|_{L^{\infty}} \leq C2^{k(\frac{d}{2}-s-N+|\alpha|)} \|F'(S_{k}u)\|_{H^{s+N}}$$
$$\leq C_{\alpha,N}2^{k(\frac{d}{2}-s+|\alpha|)} \|u\|_{H^{s}}$$

où l'on a utilisé (3.17), ce qui donne finalement la majoration attendue pour (I), conclut la preuve de l'inégalité (3.16) et achève donc la preuve du Théorème III-12.

THÉORÈME III-14 (Paralinéarisation des produits). — Soit s, r > 0, et $a, b \in C^r_*(\mathbb{R}^d)$. Alors

$$R_{CM}(a,b) := T_a \circ T_b - T_{ab}$$

est un opérateur continu de $H^s(\mathbb{R}^d)$ dans $H^{s+r}(\mathbb{R}^d)$, et on a :

$$||R_{CM}(a,b)||_{\mathcal{L}(H^s,H^{s+r})} \le C_{s,r} ||a||_{C_*^r} ||b||_{C_*^r}$$

PREUVE. Soit $u \in H^s(\mathbb{R}^d)$, on note $v := T_b u$ et $v_k := S_{k-2} b \cdot \Delta_k u$. On observe que :

$$R_1 v := T_a v - \sum_k S_{k-4} a \cdot \Delta_k v = \sum_k (\Delta_{k-3} a + \Delta_{k-4} a) \Delta_k v$$
 (3.19)

Or comme $(\Delta_{k-3}a + \Delta_{k-4}a)$ a un spectre inclus dans $B(0,2^k)$, l'inégalité de Bernstein (3.2) et la définition des espaces de Zygmund donnent que pour tout $\alpha \in \mathbb{N}^d$, $|\alpha| \leq r$:

$$\|\partial^{\alpha}(\Delta_{k-3}a + \Delta_{k-4}a)\|_{L^{\infty}} \le C_{\alpha}2^{k|\alpha|} \|\Delta_{k}a\|_{L^{\infty}} \le C_{\alpha}2^{k(|\alpha|-r)} \|a\|_{C_{*}^{r}}$$

Alors, le Corollaire III-10 et l'inégalité (3.5) donnent que

$$||R_1v||_{H^{s+r}} \le C_{s,r}||a||_{C^r_*}||v||_{H^s} \le C_{s,r}||a||_{C^r_*}||b||_{C^r_*}||u||_{H^s}$$

De plus, en injectant (3.19), on remarque que :

$$T_a T_b u - \sum_j \sum_{k \le j-3} \Delta_k a \cdot v_j = R_1 T_b u + \sum_j S_{j-2} a \cdot \Delta_j v - \sum_j \sum_{k \le j-3} \Delta_k a \cdot v_j$$

$$= R_1 T_b u + \sum_j \sum_{k \le j-3} \Delta_k a \cdot (\Delta_j v - v_j)$$

$$= R_1 T_b u + \sum_k \Delta_k a \sum_{k+3 \le j \le k+5} (\Delta_j v - v_j)$$

pas compris pour quoi on coupe. En développant la défintion de v_j , et en ré-utilisant le Corollaire III-10, on a :

$$\left\| T_a T_b u - \sum_j \sum_{k_1 \le j-3} \sum_{k_2 \le j-3} \Delta_{k_1} a \cdot \Delta_{k_2} b \cdot \Delta_j u \right\|_{H^{s+r}} \le C_{s,r} \|a\|_{C_*^r} \|b\|_{C_*^r} \|u\|_{H^s}$$
(3.20)

III.2 Théorème d'Arnold

On s'intéresse dans cette section au cas suivant : g difféomorphisme du cercle régulier (au moins C^2), préservant les angles et ayant un angle de rotation α irrationnel. On a automatiquement par le Théorème II-5 qu'il est conjugué à la rotation d'angle α . Le théorème d'Arnold s'intéresse à la régularité de la conjugaison lorsque g est "très proche" de la rotation r_{α} .

III.2.1 Description du problème

On choisit de réécrire g comme une perturbation de la rotation soit : $g = f + r_{\alpha}$ avec f "assez petit" (nous définirons ce que cela veut dire dans la suite). On cherche alors naturellement la conjugaison que l'on note η sous la forme d'une perturbation de l'identité soit $\eta = id + u$. L'équation à résoudre est alors :

$$\eta(x+\alpha) = \eta(x) + \alpha + f \cdot \eta(x) \tag{3.21}$$

Pour plus de généralité on introduit ici un paramètre réel λ et en utilisant les notations de η avec u, l'équation (3.21) devient :

$$\Delta_{\alpha} u = f \cdot (id + u) - \lambda \text{ avec } \Delta_{\alpha} u(x) = u(x + \alpha) - u(x)$$
(3.22)

d'inconnue u.

Pour illustrer le problème de régularité que va poser ce type d'équation, intéressons-nous d'abord à l'équation (3.22) linéarisée :

$$\mu + \Delta_{\alpha} v = h \tag{3.23}$$

avec $\mu = \text{Avg } h$.

En utilisant les séries de Fourier, on obtient la solution suivante :

$$\hat{v}(k) = \frac{\hat{h}(k)}{exp(ik\alpha) - 1}$$

Cependant, le facteur $exp(ik\alpha) - 1$ peut gêner la convergence de la série de Fourier puisque celui-ci peut arbitrairement s'approcher de zéro en fonction des k du fait que α soit irrationnel.

On doit alors ici préciser la nature de notre irrationnel α . On supposera en effet dans toute la suite de notre développement que α vérifie la condition diophantienne suivante :

 $\exists \gamma > 0, \sigma > 1 \text{ telle que } \forall p, q \in \mathbb{Z}^2 :$

$$\left|\frac{q\alpha}{\pi} - p\right| \ge \frac{1}{\gamma q^{\sigma}} \tag{3.24}$$

Ce qui induit en notant la solution v de 3.22 que si $f \in H^{s+\sigma}$ alors $\Delta_{\alpha}^{-1}h \in H^s$. Plus précisément, que l'opération Δ_{α}^{-1} induit une perte de régularité de l'ordre de σ et que :

$$\|\Delta_{\alpha}^{-1}h\|_{H^s} \le C_{\gamma}\|f\|_{H^{s+\sigma}} \tag{3.25}$$

Ce problème de perte de régularité nous empêche d'utiliser les théorèmes de point fixe ou les méthodes itératives traditionnelles pour résoudre cette équation. Face à cela, deux approches s'offrent à nous. La première est l'utilisation d'un schéma de Nash-Moser dont le fonctionnement est détaillé en annexe. La deuxième, que l'on va développer dans la suite consiste à utiliser les théorèmes de paralinéarisation pour régulariser cette équation (3.22).

III.2.2 Résolution par la para-linéarisation

On choisit les notations suivantes:

$$\mathbf{F}(f, U) = \Delta_{\alpha} u - f \cdot (id + u) + \lambda$$

On s'intéresse alors à :

$$\mathbf{F}(f, U) = 0 \tag{3.26}$$

avec $U=(u,\lambda)$. On suppose que $f\in H^{s+\sigma+\epsilon}\cap C^{N_s}$ avec $s>\sigma+1.5+\epsilon$. On cherche a priori u dans H^s (et par injection de Sobolev dans C^r_* où r=s-0.5>1).

En utilisant la propriété ("de paralinéarisation") :

$$\mathbf{F}(f,U) = \Delta_{\alpha} u - f - T_{f'(id+u)} u + R_{pl}(f(x+\cdot), u) + \lambda \tag{3.27}$$

Or on a l'égalité suivante :

$$f'(id+u) = \frac{\Delta_{\alpha}u}{1+u'} - \frac{\mathbf{F}(f,U)'}{1+u'}$$

En réinjectant dans 3.27 on obtient :

$$\mathbf{F}(f,U) = \Delta_{\alpha} u - f - T_{\frac{\Delta_{\alpha} u}{1+u'}} u - T_{\frac{\mathbf{F}(f,U)'}{1+u'}} u + R_{pl}(f(x+\cdot), u) + \lambda$$
(3.28)

De plus en utilisant l'identité suivante :

$$\begin{split} \Delta_{\alpha} u - T_{\frac{\Delta_{\alpha} u}{1 + u'}} u &= u \cdot \tau_{\alpha} + T_{\frac{1 + u'}{1 + u'}} u - T_{\frac{\Delta_{\alpha} u}{1 + u'}} u \\ &= u \cdot \tau_{\alpha} - T_{\frac{1 + u' \cdot \tau_{\alpha}}{1 + u'}} u \\ &= u \cdot \tau_{\alpha} - T_{1 + u' \cdot \tau_{\alpha}} T_{\frac{1}{1 + u'}} u + R_{1} (1 + u' \cdot \tau_{\alpha}, \frac{1}{1 + u'}) \end{split}$$

en utilisant le Théorème III-14

$$= T_{1+u'\cdot\tau_{\alpha}} \left(T_{\frac{1}{1+u'\cdot\tau_{\alpha}}} u \cdot \tau_{\alpha} - T_{\frac{1}{1+u'}} u \right) + R_{1} \left(1 + u' \cdot \tau_{\alpha}, \frac{1}{1+u'} \right) + R'_{1} \left(1 + u' \cdot \tau_{\alpha}, \frac{1}{1+u'\cdot\tau_{\alpha}} \right)$$

toujours avec le Théorème III-14

$$= T_{1+u'\cdot\tau_{\alpha}} \Delta_{\alpha} T_{\frac{1}{1+u'}} u + \tilde{R}$$

En réinjectant cela, on obtient finalement :

$$\mathbf{F}(f,U) = T_{1+u'\cdot\tau_{\alpha}} \Delta_{\alpha} T_{\frac{1}{1+u'}} u + \tilde{R} - f - T_{\frac{\mathbf{F}(f,U)'}{1+u'}} u + R_{pl}(f(x+\cdot), u) + \lambda$$
 (3.29)

LEMME III-15. — Il existe $\delta > 0$ tel que si $||u'||_{L^{\infty}} \leq \delta$ alors les opérateurs $T_{\frac{1}{1+u'}}$ et $T_{1+u'\cdot\tau_{\alpha}}$ sont inversibles de H^s dans lui-même (ou de $H^{s+\sigma+\epsilon}$).

PREUVE. Par le Théorème III-14, on a que pour $a:=\frac{1}{1+u'}$:

$$T_a \cdot T_{a^{-1}} - T_1 = R(a, a^{-1})$$

avec $||R(a, a^{-1})||_{\mathbb{L}(H^s, H^{s+r})} \leq_{s,r} ||a||_{C_*^r} ||a^{-1}||_{C_*^r}$. On a que R est continu et donc avec R(1, 1) = 0. On a que $\lim_{u' \to 0} R(a, a^{-1}) = 0$.

Donc on peut choisir $||u'||_{L^{\infty}} \leq \delta$ pour que $||R(a, a^{-1})||_{\mathbb{L}(H^s, H^{s+r})} < 1$ et utiliser une série de Neumann pour avoir l'inversibilité de T_a .

La preuve est identique pour $T_{1+u'\cdot\tau_{\alpha}}$ et pour $H^{s+\sigma+\epsilon}$

REMARQUE. Par injection de Sobolev et par le fait que $u \in C_*^r$ où r = s - 0.5 > 1 on peut choisir $u \in H^s$ tel que $||u||_{H^s}$ soit assez petit pour que la condition $||u'||_{L^{\infty}} \le \delta$ soit satisfaite. On cherchera dans la suite un u avec une telle norme.

On cherche à résoudre pour le moment une version modifiée de l'équation (3.26) :

$$\mathbf{F}(f,U) - T_{\frac{\mathbf{F}(f,U)'}{1+u'}} u = 0 \tag{3.30}$$

Équation qu'on peut réécrire avec le Lemme III-15 et l'expression (3.29) :

$$u = T_{1+u'\cdot\tau_{\alpha}}^{-1} \Delta_{\alpha}^{-1} T_{\frac{1}{1+u'}}^{-1} (\tilde{R} - f + R_{\text{pl}}(f(x+\cdot), u) + \lambda)$$
(3.31)

La valeur de λ est alors déterminée dans cette équation puisqu'elle est réglée pour pouvoir appliquer Δ_{α}^{-1} (voir condition (3.23)). Considérons le membre de gauche comme une fonction de u et montrons qu'elle envoie H^s dans lui-même. En effet d'une part avec $\tilde{R} = R_1(1+u'\cdot\tau_{\alpha},\frac{1}{1+u'})u+R'_1(1+u'\cdot\tau_{\alpha},\frac{1}{1+u'\cdot\tau_{\alpha}})u$ avec les notations du Théorème III-14. On a que $\tilde{R}(u):H^s\to H^{s+r-1}\subset H^{s+\sigma+\epsilon}$. De plus par le Théorème III-12, $R_{\rm pl}(f(x+\cdot),u):H^s\to H^{s+r}\subset H^{s+\sigma+\epsilon}$.

Malgré la perte de régularité imposée par Δ_{α}^{-1} , le membre de gauche de (3.31) envoie donc H^s dans lui-même (de manière continue).

D'autre part, avec le Théorème III-12, on a le contrôle suivant sur les normes :

$$||R_{\rm pl}(f(x+\cdot),u)||_{H^s} \le C_s ||f||_{C_s^r} (1+||u||_{H^s})$$

De plus l'une des conséquences de la preuve du Lemme III-15 est que $\tilde{R}(u)$ converge quadratiquement vers 0 lorsque u tend vers 0 dans H^s . En prenant donc $||u||_{H^s} \leq \rho$ on a que la norme H^s du membre de gauche (3.30) est majorée par :

$$C(s,\sigma)(\|f\|_{H^{s+\sigma+\epsilon}} + \|f\|_{C_s^r}(1+\rho) + \rho^2)$$
 (3.32)

Puisqu'on peut prendre $||f||_{H^{s+\sigma+\epsilon}}$ et $||f||_{C_*^r}$ aussi petits qu'on veut, il existe un ρ tel que le membre de gauche 3.31 envoie B_{ρ} dans elle-même. En utilisant le point fixe de Schauder on a que l'équation 3.31 a une solution u dans H^s dans $B_{\rho'}$ pour tout $\rho' \leq \rho$.

Enfin pour résoudre l'équation (3.30), on remarque par l'inégalite (3.5) de la Proposition III-11:

$$||T_{\frac{\mathbf{F}(f,U)'}{1+u'}}u||_{H^s} \le ||\mathbf{F}(f,U)||_{C^1}||u||_{H^s}$$
(3.33)

En utilisant une nouvelle fois l'argument de la série de Neumann on a bien que u est également solution de :

$$\mathbf{F}(f, U) = 0 \tag{3.34}$$

IV Annexe sur le théorème de Nash-Moser

IV.1 Cadre théorique

Espace: On considère ici deux suites d'espaces de Banach E_{σ} , $\|\cdot\|_{\sigma}$ et F_{σ} , $\|\cdot\|_{\sigma}$. De telle sorte qu'il existe une fonction régularisante S telle que

$$\forall \theta \in \mathbb{R}, \quad S: E_0 \to E_{\infty}$$

$$||S_{\theta}u||_b \le C||u||_a \text{,si } b \le a \tag{4.1}$$

$$||S_{\theta}u||_b \le C\theta^{b-a}||u||_a , \text{si } a < b \tag{4.2}$$

$$||u - S_{\theta}u||_{b} \le C\theta^{b-a}||u||_{a} , \text{si } a > b$$
 (4.3)

$$\left\| \frac{d}{d\theta} S_{\theta} u \right\|_{b} \le C \theta^{b-a-1} \|u\|_{a} \tag{4.4}$$

Outil: On prend θ_j une suite d'indices divergents et on définit $\Delta_j = \theta_{j+1} - \theta_j$ et $R_j u = \left(S_{\theta_{j+1}} u - S_{\theta_j} u\right)/\Delta_j$ si j > 0, $R_0 u = S_{\theta_1} u/\Delta_0$.

On obtient alors:

$$u = \sum_{j=0}^{\infty} \Delta_j R_j u$$

Convergente dans E_a si $u \in E_b$ et a < b.

Avec de plus :

$$||R_j u||_b \le C_{a,b} \theta_j^{b-a-1} ||u||_a \quad \text{(en utilisant (4.4))}$$

Espace faible : On généralise l'approche ci-dessus en définissant l'ensemble E_b' : l'ensemble des sommes $\sum \Delta_j u_j$ convergentes dans E_b et satisfaisant

$$\|u_j\|_b \le M\theta_j^{b-a-1} \quad \forall a \in [0, b]$$

On munit cet espace de la norme $\|.\|_b'$ l'infimum des constantes M respectant l'inégalité précédente. On a de manière immédiate que $\|.\|_a' > \|.\|_b$ si b < a et par (4.2) on a que $\|.\|_a' \le C \|.\|_a$.

IV.2 Théorème de Nash-Moser

Énoncé : Soit $a_2 \in \mathbb{R}$ et soit $\alpha, \beta \in [0, a_2]$. De plus, considérons une application $\Phi : E_{\alpha} \to F_{\beta} C^2$ vérifiant :

$$\|\Phi''(u)(v,w)\|_{\beta+\delta} \le C(1+\|u\|_{\alpha})\|w\|_{\alpha-\frac{\epsilon}{2}} \cdot \|v\|_{\alpha-\frac{\epsilon}{2}}$$
(4.6)

On a de plus l'existence d'une inverse à droite pour Φ' , c'est-à-dire :

$$\forall v \in E_{\infty}, \quad \Psi(v) : F_{\infty} \to E_{a_2}$$

avec

$$\|\Psi(v)g\|_{a} \le C \|g\|_{\beta+a-\alpha} + \|g\|_{0} \|v\|_{\alpha+\beta} \tag{4.7}$$

Alors, $\exists \eta > 0$ telle que $\forall f \in F'_{\beta}$ vérifiant $||f||_{\beta} \leq \eta$, il existe $u \in E'_{\alpha}$ vérifiant $\Phi(u) - \Phi(0) = f$.

Démonstration : Cette démonstration s'appuie sur un schéma de Newton légèrement altéré pour prendre en compte le manque de 'régularité' de l'inverse de la dérivée. En effet, ce schéma calcule uniquement une solution approchée de l'équation :

$$\Phi'(u_n)(u_{n+1} - u_n) + \Phi(u_n) = 0$$

et compte sur la vitesse du schéma de Newton pour combler l'erreur commise.

Prenons $g \in F'_{\beta}$

$$g = \sum \Delta_j g_j$$

On a avec (4.5)

$$||g_j||_b \le C_b \theta_j^{b-\beta-1} ||g||_\beta' \tag{4.8}$$

On construit la suite u_i par récurrence de la manière suivante :

$$u_{j+1} = u_j + \Delta_j \dot{u}_j, \quad \dot{u}_j = \Psi(v_j) g_j, \quad v_j = S_{\theta_j} u_j$$

On prendra $u_0 = 0$ et $\theta_i = 2^i$.

Récurrence Nous allons démontrer par récurrence les trois inégalités suivantes :

$$\|\dot{u}_j\|_a \le C_1 \theta_j^{a-\alpha-1} \|g\|_{\beta}', \ a \le a_2$$
 (4.9)

$$\|v_j\|_a \le C_2 \theta_j^{a-\alpha-} \|g\|'_{\beta} , \ \alpha < a \le a_2$$
 (4.10)

$$\|u_j - v_j\|_a \le C_3 \theta_j^{a - \alpha - \|g\|'_{\beta}}, \ \alpha < a \le a_2$$
 (4.11)

L'initialisation est trivialement vérifiée.

On suppose maintenant les inégalités (4.9), (4.11) au rang j-1 et l'inégalité (4.11) au rang j.

$$\begin{split} \|\dot{u}_{j}\|_{a} &= \|\Psi(v_{j})g_{j}\|_{a} \leq C(\|g_{j}\|_{\beta+a-\alpha} + \|g_{j}\|_{0} \|v_{j}\|_{\beta+a}) \text{ en utilisant 4.7} \\ &\leq C(C_{b} \|g\|_{\beta}' \, \theta_{j}^{a-\alpha-1} + \theta_{j}^{-\beta-1} \theta_{j}^{\beta+a-1} \|g\|_{\beta}'^{2} \text{ en utilisant l'inégalité } \quad (4.8) \text{ et } (4.9) \text{ au rang j}) \\ &\leq C(C_{b} + \|g\|_{\beta}' \, C_{2}) \theta_{j}^{a-\alpha-1} \|g\|_{\beta}' \end{split}$$

Si on prend $C_1 > C(C_b + ||g||_{\beta}' C_2)$ on a (4.9) au rang j. On va montrer 4.10 et 4.11, pour cela intéressons-nous à la quantité u_{j+1} :

$$\begin{split} \|u_{j+1}\|_a &\leq \sum_{i=1}^j \|\Delta_i \dot{u}_i\|_a \\ &\leq \sum_{i=1}^j |\Delta_i| C_1 \, \|g\|_\beta' \, \theta_i^{a-\alpha-1} \text{ en utilisant (4.9) jusqu'au rang j} \\ &\leq C \, \|g\|_\beta' \, \theta_i^{a-\alpha} \text{ pour } a \geq \alpha \end{split}$$

On obtient donc avec (4.1), (4.10) et (4.11).

Convergence 1) Convergence de u_j On a avec 4.9 que $u = \sum \Delta_j u_j$ appartient à E'_{α} et que $||u||'_{\alpha} \leq C ||g||'_{\beta}$

2) Limite de $\Phi(u_j)$ Par continuité on a que

$$\Phi(u) - \Phi(0) = \sum_{j=0}^{+\infty} (\Phi(u_{j+1}) - \Phi(u_j))$$

$$\Phi(u_{j+1}) - \Phi(u_j) = (\Phi(u_j + \Delta_j \dot{u}_j) - \Phi(u_j) - \Phi'(u_j) \Delta_j \dot{u}_j) + (\Phi'(u_j) - \Phi'(u_j)) \Delta_j \dot{u}_j + \Delta_j g_j$$

= $\Delta_j e_j + \Delta_j e'_j + \Delta_j g_j$

Par inégalité de Taylor-Lagrange et en utilisant (4.6)

$$\begin{split} \|e_j\|_{\beta+\delta} &\leq C\Delta_j \|\dot{u}_j\|_{\alpha-\frac{\epsilon}{2}}^2 \\ &\leq C \|g\|_{\beta}^{\prime 2} \, \Delta_j \theta_j^{-\epsilon-2} \text{ (en utilisant (4.9))} \\ &\leq C \, \|g\|_{\beta}^{\prime 2} \, \theta_j^{-\epsilon-1} \end{split}$$

$$e_{j} = \int_{0}^{1} \Phi''(v_{j} + t(u_{j} - v_{j}))(\dot{u}_{j}, u_{j} - v_{j}) dt$$

$$\|e'_{j}\|_{\beta + \delta} \leq C(1 + \|v_{j} + t(u_{j} - v_{j})\|_{\alpha}) \|\dot{u}_{j}\|_{\alpha - \frac{\epsilon}{2}} \cdot \|u_{j} - v_{j}\|_{\alpha - \frac{\epsilon}{2}}$$

$$\leq C' \|\dot{u}_{j}\|_{\alpha - \frac{\epsilon}{2}} \cdot \|u_{j} - v_{j}\|_{\alpha - \frac{\epsilon}{2}}$$

$$\leq \|g\|'_{\beta} \theta_{j}^{-\frac{\epsilon}{2} - 1} \|u_{j} - v_{j}\|_{\alpha - \frac{\epsilon}{2}} \text{ (en utilisant) } 4.9$$

On peut utiliser (4.11) pour $||u_j - v_j||_{\alpha + \eta}$ avec $\eta < \frac{\epsilon}{2}$.

On obtient donc

$$\sum \Delta_j \|e_j'\|_{\beta}' \le C \|g\|_{\beta}'^2$$

Conclusion En notant $T(g) = \sum \Delta_j e_j + \Delta_j e'_j$ et avec $||T(g)||'_{\beta} \leq C ||g||'^2_{\beta}$, on peut utiliser le théorème de point fixe de Schauder (pour T(g) + y avec $y \in F'_{\beta}$) pour montrer la local surjectivité de T(g) + g. Puis :

$$\Phi(u) - \Phi(0) = T(g) + g$$

on conclut bien.

Références

- [Ros74] Harold ROSENBERG. "Un contre-exemple à la conjecture de Seifert". In : Séminaire N. Bourbaki 434 (1974), p. 294-306.
- [Her79] Michael HERMAN. "Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations". In : *Publications mathématiques de l'I.H.É.S.* 49 (1979), p. 5-233.
- [AG91] Serge Alinhac et Patrick Gérard. Opérateurs pseudo-différentiels et théorème de Nash-Moser. Éditions du CNRS, 1991.
- [Mé08] Guy Métivier. Para-differential Calculus and Applications to the Cauchy Problem for Non-linear Systems. 2008.
- [GV19] David Gérard-Varet. Around the Nash-Moser theorem. 2019.