

Machine Learning Course

Introduction to Deep Learning

Neychev Radoslav

ML Instructor, BigData Team Research Scientist, MIPT

03.09.2018, Moscow, Russia

Outline

- 1. Neural Networks in different areas. Historical overview.
- 2. Neural Networks basis. Backpropagation, chain rule.
- 3. Layers, activations, optimizers.
- 4. More layers and intuition.
- 5. Embeddings
- 6. Recurrent Neural Networks for signal and text processing.
- 7. RNNs in the wild (names generation from scratch).

Materials: http://bit.ly/ml4megafon august18 public

Deep Learning Timeline

Made by Favio Vázquez

Audio Features

Real world problems

MFCC

- Action classification
- Image captioning

"man in black shirt is playing guitar."

Logistic regression

$$P(y|x) = \sigma(w \cdot x + b)$$

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Problem: nonlinear dependencies

Logistic regression (generally, linear model) need feature engineering to show good results.

And feature engineering is an *art*.

Classic pipeline

Handcrafted features, generated by experts.

NN pipeline

Automatically extracted features.

NN pipeline: example

Actually, it's a neural network.

XOR problem

This 2-layer NN (on the left) implements XOR with only x1 and x2 features.

1-layer NN also can succeed, but only with extra feature x1*x2.

Practice time: interactive playground

Once more: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Some generally accepted terms

- Layer a building block for NNs :
 - ▷ Dense layer: f(x) = Wx+b
 - \triangleright Nonlinearity layer: f(x) = σ(x)
 - Input layer, output layer
 - ▶ A few more we gonna cover later
- Activation layer output
 - ▶ i.e. some intermediate signal in the NN
- ► Backpropagation a fancy word for "chain rule"

"Train it via backprop!"

Actually, it can be deeper

Much deeper...

Backpropagation and chain rule

Chain rule is just simple math:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

Optimizers

Stochastic gradient descent is used to optimize NN parameters.

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$

There are much more optimizers:

- Momentum
- Adagrad
- Adadelta
- RMSprop
- Adam
- ...
- even other NNs

Optimizers comparison

Time to take a break

Leave your feedback, please:

Comes next:

- More layers
 - **a.** Convolutional layer
 - **b.** Pooling layer
 - c. Dropout layer
 - **d.** Batchnorm layer (batch normalization)
 - e. Embeddings (aka word2vec, GloVe)
 - **f.** Recurrent layer neural networks
- More practice
 - **a.** Names can't wait to be generated by YOU

Convolution layer

Vital for Computer Vision and Time Series Analysis problems

Convolution layer

5x5

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Intuition: how *cat-like* is this square?

Pooling layer

- Reduces layer size by a factor
- Makes NN less sensitive to small image shifts

- Widely used:
 - max pooling
 - mean pooling

Dropout layer

Some neurons are "dropped" during training.

Prevents overfitting.

Actually, a form of regularization.

(a) Standard Neural Net

(b) After applying dropout.

Batch normalization

Problem:

- Consider a neuron in any layer beyond first
- At each iteration we tune it's weights towards better loss function
- But we also tune it's inputs. Some of them become larger, some smaller
- Now the neuron needs to be re-tuned for it's new inputs

Batch normalization

TL; DR:

It's usually a good idea to normalize linear model inputs

(c) Every machine learning lecturer, ever

Batch normalization

 Normalize activation of a hidden layer (zero mean unit variance)

$$h_i = \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}}$$

• Update μ_i , σ_i^2 with moving average while training

$$\mu_{i} := \alpha \cdot mean_{batch} + (1 - \alpha) \cdot \mu_{i}$$

$$\sigma_{i}^{2} := \alpha \cdot variance_{batch} + (1 - \alpha) \cdot \sigma_{i}^{2}$$

But what about NLP?

- Bag of words
- TF-IDF
- Ensembles
- ..

RNNs generating...

Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Algebraic Geometry (Latex)

```
Proof. Omitted.
Lemma 0.1. Let C be a set of the construction.
   Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that
                                     \mathcal{O}_{\mathcal{O}_{+}} = \mathcal{O}_{X}(\mathcal{L})
Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on X_{Oute} we
                           \mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}
where G defines an isomorphism F \to F of O-modules.
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U \subset X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
                      b: X \rightarrow Y' \rightarrow Y \rightarrow Y \rightarrow Y' \times_X Y \rightarrow X.
be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of O_X-modules. The following are equivalent

 F is an algebraic space over S.

    (2) If X is an affine open covering.
Consider a common structure on X and X the functor O_X(U) which is locally of
finite type.
```

Linux kernel (source code)

```
* If this error is set, we will need anything right after that BSD.
static void action new function(struct s stat info *wb)
 unsigned long flags;
 int lel idx bit = e->edd, *sys & -((unsigned long) *FIRST COMPAT);
 buf[0] = 0xFFFFFFFF & (bit << 4);
 min(inc, slist->bytes);
 printk(KERN WARNING "Memory allocated %02x/%02x, "
   "original MLL instead\n"),
   min(min(multi run - s->len, max) * num data in),
   frame pos, sz + first seg);
 div u64 w(val, inb p);
 spin unlock(&disk->queue lock);
 mutex unlock(&s->sock->mutex);
 mutex unlock(&func->mutex);
 return disassemble(info->pending bh);
```


Embeddings: intuition

Embeddings: intuition

Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \longrightarrow	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

Output Layer Softmax Classifier

- Word vectors with 300 components
- Vocabulary of 10,000 words.
- Weight matrix with 300 x 10,000 = 3 million weights each!

Training is too long and computationally expensive

How to fix this?

Basic approaches:

- 1. Treating common word pairs or phrases as single "words" in their model.
- 2. Subsampling frequent words to decrease the number of training examples.
- 3. Modifying the optimization objective with a technique they called "Negative Sampling", which causes each training sample to update only a small percentage of the model's weights.

Subsampling frequent words.

 w_i is the word, $z(w_i)$ is the fraction of this word in the whole text,

Graph for (sqrt(x/0.001)+1)*0.001/x

 $P(w_i)$ is the probability of *keeping* the word:

$$P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)}$$

37

Negative Sampling idea: only few words error is computed. All other words has zero error, so no updates by the backprop mechanism.

We use same weight matrices for all steps

Now with formulas

 $P(x_{i+1}) = \operatorname{softmax}(\langle W_{\text{out}}, h_i \rangle + b_{\text{out}})$

$$h_{0} = \bar{0}$$

$$h_{1} = \sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b)$$

$$h_{2} = \sigma(\langle W_{\text{hid}}[h_{1}, x_{1}] \rangle + b) = \sigma(\langle W_{\text{hid}}[\sigma(\langle W_{\text{hid}}[h_{0}, x_{0}] \rangle + b, x_{1}] \rangle + b)$$

$$h_{i+1} = \sigma(\langle W_{\text{hid}}[h_{i}, x_{i}] \rangle + b)$$

That's all, RNNs, we're coming

But first, feedback, please:

http://bit.ly/ml4megafon_august18_lecture8_feedback