# **Calcul intégral**

## 1. Aire sous une courbe

On considère une courbe de fonction **continue** et positive sur un intervalle [ *a* ; *b* ]



Exemple 1 : Une fonction constante définie par f(x) = k > 0 sur [ a ; b ]

• *f* est bien continue et positive sur [ *a* ; *b* ]



$$Aire = (b-a) \times k = bk - ak$$

Notation = 
$$[kx]_a^b$$

Or en posant f(x) = k et F(x) = kx

on observe que F' = f

et on dira que F est une **primitive** de f

Une fonction a une infinité de primitives

Remarque :  $[kx]_a^b = [F(x)]_a^b = F(b) - F(a)$ 

Exemple 2 : Une fonction affine définie par f(x) = mx + p avec m et p deux constantes sur l'intervalle [ a ; b ]



*Aire* = moyenne des bases × hauteur du trapèze

$$Aire = \frac{ma + p + mb + p}{2} \times (b - a)$$

$$= \left(\frac{1}{2}ma + \frac{1}{2}mb + p\right)(b - a)$$

$$= \frac{1}{2}mab - \frac{1}{2}ma^2 + \frac{1}{2}mb^2 - \frac{1}{2}mba + pb - pa$$

$$= \left(\frac{1}{2}mb^2 + pb\right) - \left(\frac{1}{2}ma^2 + pa\right)$$

$$= \left[\frac{1}{2}mx^2 + px\right]_a^b$$

Soit en posant  $F(x) = \frac{1}{2}mx^2 + px$ 

et 
$$f(x)=mx+p$$

On observe que F'(x) = f(x)

et F est une primitive de f sur [a;b]

$$Aire = [F(x)]_a^b$$

Exemple 3 : Aire sous une hyperbole (fonction inverse)



Invention de Euclide et Archimède:

#### La méthode d'exhaustion

L'aire sous une courbe est partagée en rectangles de largeurs infinitésimales

$$Aire = \int_{1}^{2} f(x) dx$$

Pour un partage en n rectangles on aurait :

$$\frac{1}{n} \left( \frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \frac{1}{1 + \frac{3}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right) < Aire < \frac{1}{n} \left( \frac{1}{1 + \frac{0}{n}} + \frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \dots + \frac{1}{1 + \frac{n-1}{n}} \right)$$

Appelons RS la somme des rectangles supérieurs et RI la somme des rectangles inférieurs.

Incertitude de cet encadrement ? RS - RI

Soit 
$$RS - RI = \frac{1}{n} \left( \frac{1}{1 + \frac{0}{n}} - \frac{1}{1 + \frac{n}{n}} \right)$$

$$RS - RI = \frac{1}{n} \left( 1 - \frac{1}{2} \right)$$

$$RS - RI = \frac{1}{n} \times \frac{1}{2}$$

$$RS - RI = \frac{1}{2n}$$

#### Exemples:

| Pour une incertitude | Il faut        |
|----------------------|----------------|
| 0,1                  | 5 rectangles   |
| 0,01                 | 50 rectangles  |
| 0,001                | 500 rectangles |

### Suite de la démarche :

1. Algorithme de calcul de *RI* et *RS* à partir de la quantité *n* de rectangles

```
2. Programmation de cet algorithme et réponses
```

3. Vérifier que les résultats obtenus correspondent à  $[F(x)]_1^2 = F(2) - F(1)$  avec F une primitive de f sur [1;2] Soit  $F(x) = \ln x$  par exemple... Soit  $Aire = \ln 2 - \ln 1 = \ln 2$  Soit  $Aire \approx 0,6931...$ 

```
Entrer N
RI \leftarrow 0
RS \leftarrow 0
Pour I allant de 0 à N-1
|RI \leftarrow RI + (1/N) \times (1/(1+(1+I)/N))
|RS \leftarrow RS + (1/N) \times (1/(1+(I)/N))
Fin Pour
Afficher RI
Afficher RS
```

2.