Attack and Defense

Motivation

- We seek to deploy machine learning classifiers not only in the labs, but also in real world.
- The classifiers that are robust to noises and work "most of the time" is not sufficient. 光是強還不夠
- We want the classifiers that are robust the inputs that are built to fool the classifier.
 應付來自人類的惡意
- Especially useful for spam classification, malware detection, network intrusion detection, etc.

What do we want do?

Attack 要做的事就是把找到原图 x^0 对应的x'

Original Image

Loss Function for Attack

Training: network 训练得出的结果 y^0 必须和 y^{true} 越接近越好,此时的 loss function 为 $L_{train}(\theta) = C(y^0, y^{true})$,输入的x是固定的,需要不断调整 θ 的值,使得 $L_{train}(\theta)$ 取得最小值;

Non-targeted Attack: 如果我们需要 attack 一个 network,此时 network 的输出y'和 y^{true} 应该越大越好,此时的 loss function 为 $L(x') = -C(y', y^{true})$,前面多一个负号。此时的 network 中的参数 θ 是固定的,需要不断调整输入 x',使 network 的输出y'和 y^{true} 的差距尽量远;

Targeted Attack: 如果我们不仅想要y', y^{true} 之间的距离尽量远,还想使y', y^{false} 之间的距离尽量近,就需要使用 targeted attack; 此时的 loss function 为 $L(x') = -C(y',y^{true}) + C(y',y^{false})$

- **Training:** $L_{train}(\theta) = C(y^0, y^{true})$ **x** fixed
- Non-targeted Attack: $L(x') = -C(y', y^{true})$ θ fixed
- Targeted Attack:

$$L(x') = -C(y', y^{true}) + C(y', y^{false})$$

• Constraint: $d(x^0, x') \le \varepsilon$ 不要被發現

不仅需要限制输出之间的差异,还需要限制输入 x^0 ,x'之间的差异,只有这输入之间的差异d小于 ϵ ,我们才可以认为x'是与 x^0 相似的,才达到了 attack 一个 network 的目的,即使输入尽可能具有迷惑性,从而使网络输出的错误的结果

Constraint

那么我们怎么计算d呢?

有以下两种主要的方法:

- L2-norm, 为 x^0 , x'之间每个像素差异的平方和;
- L-infinity,为 x^0, x' 之间每个像素差异的最大值;

如果我们改变图中的每个 pixel,另外一幅图只改变其中一个 pixel,使得这两者之间的 L2-norm 是一样的,但第二种方式得出的 L-infinity 更大

How to Attack

就像我们训练一个 Neural network 一样,但需要训练的参数是x',此时就需要找到一个参数 x^* ,来最小化L(x'),限制条件是 $d(x^0,x') \leq \epsilon$

 $x^* = \arg\min L(x')$

这里我们也使用了 gradient descent 算法,只是此时需要调整的参数变成了 x^t

Gradient Descent

Start from original image
$$x^0$$

For $t = 1$ to T
$$x^t \leftarrow x^{t-1} - \eta \nabla L(x^{t-1})$$
If $d(x^0, x^t) > \varepsilon$

$$x^t \leftarrow fix(x^t)$$

$$\nabla L(x) = \begin{bmatrix} \partial L(x)/\partial x_1 \\ \partial L(x)/\partial x_2 \\ \partial L(x)/\partial x_3 \\ \vdots \end{bmatrix}$$

当 $d(x^0, x^t) > \epsilon$ 时,就需要更新这个参数了,使用 $fix(x^t)$ 来更新

更新的参数需要满足一定的条件,

- 如果使用 L2-norm,必须选择差值在半径以内的参数,超过了这个半径,就设为 ϵ ;
- 如果使用 L-infinity,现在超过了这个方形的区域,就必须想办法把它拉回来,在y轴方向超过了 ϵ ,就把值设为 ϵ ,在x轴方向超过了 ϵ ,就把值设为 ϵ

Example

如果我们现在要 attack 一个 network,其真实类别为 Tiger cat,但 attack 之后的 network 认为这是 star fish

$$L(x') = -C(y', y^{true}) + C(y', y^{false})$$

Example

True = Tiger cat False = Star Fish f =ResNet-50

由于这两者之间的差异很小,很难识别,这里我们将差值*50来进行展示

可能猫和猫之间是比较类似的,这里我们将 attack 的 target 设置为 keyboard,该 network 认为是 keyboard 的概率为 0.98

Example $L(x') = -C(y', y^{true}) + C(y', y^{false})$ Frue = Tiger cat
False = Keyboard f =ResNet-50

如果我们再对图片加入噪声,network 认为这是 Persian cat,再继续加入噪声,我们都快分辨不出这张图是一只猫了,network 就认为这是 fire screen

我们假设 x_0 是在高维平面上的一个点,沿着任意方向随机移动,我们可以看到在接近 x^0 的时候,是 tiger cat(正确分类)的可能性是很高的,但如果再移动多一点,是 Persian cat 和 Egyptian cat 的可能性是很高的上述说的是随机方向进行移动,如果图片是 225*225pixel 的,那么就是 5 万个高维的方向,现在我们选取其中几个特定的方向,在这几个特定的方向中, x^0 可变化的范围就变得非常狭窄, x^0 稍微变化一下,network 输出为另一个类别(keyboard)的可能性就很高

What happened?

Attack Approaches

- FGSM (https://arxiv.org/abs/1412.6572)
- Basic iterative method (https://arxiv.org/abs/1607.02533)
- L-BFGS (https://arxiv.org/abs/1312.6199)
- Deepfool (https://arxiv.org/abs/1511.04599)
- JSMA (https://arxiv.org/abs/1511.07528)
- C&W (https://arxiv.org/abs/1608.04644)
- Elastic net attack (https://arxiv.org/abs/1709.04114)
- Spatially Transformed (https://arxiv.org/abs/1801.02612)
- One Pixel Attack (https://arxiv.org/abs/1710.08864)
- · only list a few

虽然有很多方法都可以用来 attack network,但这些方法的主要区别在于使用了不同的 constrains,或者使用了不同的 optimization methods

$$x^* = arg \underbrace{\lim_{\underline{d(x^0,x') \leq \varepsilon}} \text{ Different optimization methods}}_{\text{Different constraints}}$$

我们先介绍一下 FGSM,对于第一堆,如果 $\frac{\partial L}{\partial x_1}$ 是大于 0 的值,那么 $\Delta x_1 = sign\left(\frac{\partial L}{\partial x_1}\right) = +1$;如果对于第二堆,如果 $\frac{\partial L}{\partial x_2}$ 小于 0 的值,不管值多大,都得出 $\Delta x_2 = sign\left(\frac{\partial L}{\partial x_2}\right) = -1$;即对于 x^0 的所有维,要么 $+\epsilon$,要么 $-\epsilon$,即可得到最好的结果 x^*

• Fast Gradient Sign Method (FGSM)

FGSM 使用 L-infinity 作为 distance constrain,如果 gradient 指向左下角,那么 x^1 就在方框的右上角,如果 gradient 指向左上角,那么 x^1 就在方框的右下角,因此,在 FGSM 里面,我们只在意 gradient 的方向,不在意器 具体的大小

那么 FGSM 到底是怎么运作的呢?

我们可以看作 FGSM 是使用了非常大的一个 learning rate,使x飞出了方形区域,由于 L-infinity 的限制,输出会被限制到方形区域内部,即 x^* 在方形区域的右上角

• Fast Gradient Sign Method (FGSM)

White Box vs Black Box

在之前的 attack 中,我们假设已经知道了 network 的参数 θ ,目标是找到最优化的x',这种 attack 就称为 White Box

但在大多数的情况下,我们都不知道 network 的参数,但也需要去 attack 这个 network,这就是 Black Box Black Box Attack

如果我们现在已经知道了 black network 的 training data,那么我们就可以用同样的 training data 来训练一个 proxy network,再生成 attacked object,如果能过成功 attack 新的 proxy network,那么我们就可以把这个 object 也作为 black network 的输入,也可以 attack 成功

如果不能得到相应的 training data, network 如果是越过在线版本,我们可以输入大量的图片,得出相对应的分类结果,从而可以组合成相应的训练材料,来得出 proxy network

→ If you have the training data of the target network

Train a proxy network yourself

Using the proxy network to generate attacked objects

Otherwise, obtaining input-output pairs from target network

也有一些实验数据证明黑箱攻击是有可能成功的,现在假设 Black Box 有五种,现在我们来训练 proxy network,我们用 ResNet-152 生成的图片,如果 black box 的 network 也是 ResNet-152,那么 attack 成功的几率就会非常高,表格中的 4%表示系统辨识的准确率

→ If you have the training data of the target network

Train a proxy network yourself

Using the proxy network to generate attacked objects

Otherwise, obtaining input-output pairs from target network

		Black				
[ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
Proxy	ResNet-152	4%	13%	13%	20%	12%
	ResNet-101	19%	4%	11%	23%	13%
	ResNet-50	25%	19%	5%	25%	14%
	VGG-16	20%	16%	15%	1%	7%
	GoogLeNet	25%	25%	17%	19%	1%

https://arxiv.org/pdf/1611.02770.pdf

Attack in the Real World

- 1. An attacker would need to find perturbations that generalize beyond a single image.
- 2. Extreme differences between adjacent pixels in the perturbation are unlikely to be accurately captured by cameras.
- 3. It is desirable to craft perturbations that are comprised mostly of colors reproducible by the printer.

Defense

- Adversarial Attack cannot be defended by weight regularization, dropout and model ensemble.
- Two types of defense:
 - Passive defense: Finding the attached image without modifying the model
 - Special case of Anomaly Detection
 - <u>Proactive defense</u>: Training a model that is robust to adversarial attack

Passive defense

这个 filter 可以是 smoothing,对于原来输入的 attack 图片 network 认为其是 keyboard,经过 smoothing 之后, network 就认为是 tiger cat 了,是正确的分类结果

Q: 那么为什么 smoothing 可以达到这种效果呢?

A: 只有某几种方向上的信号可以是 attack 成功,如果使用了 smoothing 这种 filter,就把这几种信号改变了,那 么 attack 就失效了; 加上 smoothing 并不会伤害原来的图片,所以 network 仍然可以得出正确的结果

根据这种思想,有学者就提出了 feature squeeze

对于同一个 input,我们先得出 model 的输出结果 $Prediction_0$,再根据 $Squeeze_1$, $Squeeze_2$ 得出结果 $Prediction_1$, $Prediction_2$, 如果 $Prediction_0$ 和 $Prediction_1$, $Prediction_2$ 之间的差值d很大,那么我们就可以认为 input 是来 attack 的

• Feature Squeeze

https://arxiv.org/abs/1704.01155

还有另一种方法

Randomization at Inference Phase

https://arxiv.org/abs/1711.01991

Proactive defense

首先我们通过某种算法找出漏洞,找到相应的 adversarial input,再把这些 input 和之前的 training data 一起作为新的 input data,输入 network,相当于进行了 data augmentation,这个过程进行 T 次,每次的 input data 都是不一样的

如果 attack 知道了我们是使用算法 A 进行模拟,那么 attack 可以使用算法 B 来进行 attack,那么我们的 network 并不能抵御这种 attack