

North America 2021

North America 2021

RESILIENCE REALIZED

How to Improve Your K8s Experience with MLOps

Maksim Chudnovskii & Igor Gustomyasov, Sber

About Speakers

North America 2021

Igor Gustomyasov SberHead of Integration Department

Russia

https://sberbank.ru/en/

Contact Me

in on LinkedIn

Igor holds the position of Managing Director responsible for Synapse - service mesh-based target integration platform for Sberank and its

growing ecosystem. Before this Igor was leading Center of Competence for integration solutions at Sberbank-Technology. During his career Igor was responsible for execution of large IT projects in financial sector, oil&gas industry, telco, government.

Maksim Chudnovskii

Sber

Chief Software Development Manager Moscow, Russia

https://sberbank.ru/en/

Contact Me

y on Twitter

in on LinkedIn

10 years of experience in software development and architecture, including 5 years in the banking industry as a developer, product

manager, solution architect, and system architect. Key areas of the experience: High load integration solutions, Distributed platform solutions based on cloud-native technologies, CI/CD solutions for monolithic and microservice architectures, Al&ML solutions.

About Sber

Best client experience

In financial services

98+ mn retail clients

2.7 mn corporates

The leader in digital services and sales

Technological leadership

New IT Platform

Reliability 99.99%

0 loses, 0 downtime

Al Platform launched and gives significant additional revenues and cost savings

In non-financial services by 2023

10+ mn SherPrime subscribers

~500+ bn RUB e-commerce GMV

Why AI?

- Many workloads have been migrated to K8s and Service Mesh and a huge amount of app telemetry has been collected
- Monitoring issues due to large & complex IT-systems landscape in a private cloud (alerts & metrics hell, unclear microservices topology and dependencies, etc.)
- > Elasticity issues (inefficient HPA due to high apps startup time)
- Product issues (high overall latency due to network communication)

High Level Concept

- North America 2021

Assumption

We can reduce network resource consumption as well as optimize overall latency by combining workloads in the "schedule groups"

Metrics list

- istio_requests_total
- > istio request duration seconds bucket
- istio request duration seconds count
- istio_request_duration_seconds_sum

North America 2021

Bookinfo Application

- North America 2021

Nº	Source Destination		Cost		
1	s4	s4 s5 40			
2	s3	s5	33		
3	s1	s6	20		
4	s1	s4	17		
5	s1	s3	15		
6	s1	s2	12		

Nº	Source	Destination	Cost		
1	s4	s5	40		
2	s3	s5	33		
3	s1	s6	20		
4	s1	s4	17		
5	s1	s3	15		
6	s1	s2	12		

Group	Services		
1	s4 s5		

Nº	Source	Destination	Cost
1	s4	s5	40
2	s3	s5	33
3	s1	s6	20
4	s1	s4	17
5	s1	s3	15
6	s1	s2	12

Group	Services
1	s4 s5 s3

Nº	Source	Destination	Cost
1	s4	s5	40
2	s3	s5	33
3	s1	s6	20
4	s1	s4	17
5	s1	s3	15
6	s1	s2	12

Group	Services
1	s4 s5 s3
2	s1 s6

Nº	Source	Destination	Cost		
1	s4	s5	40		
2	2 s3 s5		33		
3	s1	s6	20		
4	s1	s4	17		
5	s1	s3	15		
6	s1	s2	12		

Group	Services
1	s4 s5 s3
2	s1 s6 s2

North America 2021

Group	Services
1	s4 s5 s3
2	s1 s6 s2

How to use it:

- Node Selectors
- Affinity Rules (pods & nodes)
- Topology Spread

What we do

Latency & Network Consumption Optimization

Assumption

We can recognize abnormal values of a system and determine the root cause of these anomalies through the correlation of network and system metrics

Metrics list

- container sockets
- container fs inodes total
- container_memory_cache
- container_memory_failcnt
- container network receive errors total
- > container network transmit errors total
- container_network_transmit_packets_total
- > container fs io current
- > container fs io time seconds total
- container_fs_io_time_weighted_seconds_total
- > container fs read seconds total
- container_fs_reads_merged_total
- container_spec_memory_swap_limit_bytes
- > istio tcp sent bytes total

- container_cpu_usage_seconds_total
- container_memory_usage_bytes
- container_network_receive_bytes_total
- container_network_transmit_bytes_total
- > container memory max usage bytes
- container_memory_failures_total
- container_memory_working_set_bytes
- container_memory_rss
- container_fs_usage_bytes
- container_cpu_system_seconds_total
- container_cpu_user_seconds_total
- container fs reads total
- istio_request_duration_seconds_bucket

North America 2021

Bookinfo Application

North America 2021

North America 2021

Bookinfo Application

North America 2021

Services

Anomalies

Model Parameters

 $w_{ij} = correlation(rt_{(i, j)}, rt_a(j))$

 $AS_i = avg(w_i) * max_correlation(metric, rt_a(i))$

Fault localization: Personalized PageRank

Root cause:

```
[('reviews-v2', 0.392),
('productpage-v1', 0.333),
('ratings-v1', 0.163),
('ratings-v2', 0.096),
('reviews-v3', 0.014)]
```

Max correlated metric

rate_container_memory_working_set_bytes

How to use it:

- > Alerts
- Dynamic Thresholds
- Canaries Automation

What we do:

Chaos Engineering

North America 2021

Assumption

We can predict the load on the application in advance and trigger automatic horizontal scaling

Metrics list

- container sockets
- container fs inodes total
- container_memory_cache
- container_memory_failcnt
- container network receive errors total
- > container network transmit errors total
- > container network transmit packets total
- > container fs io current
- > container fs io time seconds total
- container_fs_io_time_weighted_seconds_total
- > container fs read seconds total
- > container fs reads merged total
- container spec memory swap limit bytes
- > istio tcp sent bytes total

- > container cpu usage seconds total
- container_memory_usage_bytes
- container_network_receive_bytes_total
- container_network_transmit_bytes_total
- > container memory max usage bytes
- container_memory_failures_total
- container_memory_working_set_bytes
- container_memory_rss
- container_fs_usage_bytes
- container_cpu_system_seconds_total
- container_cpu_user_seconds_total
- container fs reads total
- istio_request_duration_seconds_bucket

hour_0	•••	hour_24	lag_1	lag_2	lag_3	•••	lag_12
1		0	None	None	None	•••	None
1		0	0	None	None	•••	None
1		0	10	0	None		None
1		0	20	10	0		None
1		0	30	20	10		None

— North America 2021

CBM

- North America 2021

- North America 2021

What's Next

- Migration from Recommendations to Operations
- Continuous Performance Monitoring
- Continuous Delivery for Models Lifecycle

North America 2021

Thank you!