

Abstract

The invention concerns a method for regulating an electromechanically power-splitting hybrid drive system (2) of a motor vehicle, having an internal combustion engine (VM) and two electric motors (E1, E2) that are coupled by way of a transmission (P1, P2, 4), as well as an electromechanically power-splitting hybrid drive system (2) for a motor vehicle. It is proposed that, based on coupling conditions of the transmission (P1, P2, 4), respective target rotation speeds (n_{VM} setpoint, n_{E1} setpoint, n_{E2} setpoint) and target torques (M_{VM} setpoint, M_{E1} setpoint, M_{E2} setpoint) be calculated for the internal combustion engine (VM) and the two electric motors (E1, E2); that the respective target rotation speeds (n_{VM} setpoint, n_{E1} setpoint, n_{E2} setpoint) be compared with corresponding actual rotation speeds (n_{VM} actual, n_{E1} actual, n_{E2} actual) of the internal combustion engine (VM) and of the electric motors (E1, E2); and that in the case of a system deviation (e_{VM} , e_{E1} , e_{E2}) between one of the actual rotation speeds (n_{VM} actual, n_{E1} actual, n_{E2} actual) and the corresponding target rotation speed (n_{VM} setpoint, n_{E1} setpoint, n_{E2} setpoint), one or more additional torques (M_{VM} add, M_{E1} add, M_{E2} add) be calculated on the basis of the system deviation (e_{VM} , e_{E1} , e_{E2}) and be taken into account, in addition to the target torque or torques (M_{VM} setpoint, M_{E1} setpoint, M_{E2} setpoint) calculated by the control system (10), in controlling the torque of the internal combustion engine (VM) and of the two electric motors (E1, E2).