In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
dataset = pd.read_csv("C:/Users/BHARATH/Downloads/sample_images/census.csv")
```

In [3]:

```
dataset.head(15)
```

Out[3]:

	House Number	Street	First Name	Surname	Age	Relationship to Head of House	Marital Status	Gender	Occupation	Infirmity	Rel
0	1	Rhubarb Drive	Amy	Hall	41	Head	Single	Female	Drilling engineer	NaN	Са
1	1	Rhubarb Drive	Bruce	Murphy	49	Partner	Single	Male	Scientist, research (physical sciences)	NaN	Са
2	1	Rhubarb Drive	Billy	Hall	17	Son	NaN	Male	Student	NaN	
3	1	Rhubarb Drive	Mary	Hall	15	Daughter	NaN	Female	Student	NaN	
4	1	Rhubarb Drive	Elliott	Hall	13	Son	NaN	Male	Student	NaN	
5	1	Rhubarb Drive	Clifford	Hall	7	Son	NaN	Male	Student	NaN	
6	1	Rhubarb Drive	Kirsty	Hall	6	Daughter	NaN	Female	Student	NaN	
7	1	Rhubarb Drive	Nathan	Hall	5	Son	NaN	Male	Student	NaN	
8	1	Rhubarb Drive	Sophie	Hall	4	Daughter	NaN	Female	Child	NaN	
9	1	Rhubarb Drive	Sarah	Hall	2	Daughter	NaN	Female	Child	NaN	
10	2	Rhubarb Drive	Terry	Doherty	58	Head	Single	Male	Arts administrator	NaN	Chr
11	2	Rhubarb Drive	Raymond	Carter	33	NaN	Single	Male	Electrical engineer	NaN	
12	2	Rhubarb Drive	Ryan	Farrell	26	NaN	Single	Male	Psychologist, occupational	NaN	
13	2	Rhubarb Drive	Bethany	Jones	36	NaN	Single	Female	Surveyor, land/geomatics	NaN	Са
14	2	Rhubarb Drive	Kieran	Wood	47	NaN	Single	Male	Programme researcher, broadcasting/film/video	NaN	Са
4											•

In [4]:

In [5]:

```
#converting columns like House_Number, Age to numeric type from string type
try:
    dataset["Age"] = pd.to_numeric(dataset["Age"])
except:
    print("Some values in Age column can not be converted to numeric values")
    print(dataset.loc[dataset.Age.str.isnumeric() == False, "Age"])
    ind = dataset.loc[dataset.Age.str.isnumeric() == False, "Age"].index

try:
    dataset["House_Number"] = pd.to_numeric(dataset["House_Number"])
except:
    print("some values in House_Number column can not be converted to numeric values")
```

```
Some values in Age column can not be converted to numeric values
        95.20845345950883
2775
        97.20845345950883
2776
        46.9999999999999
4189
        50.68642589738663
4190
        50.68642589738663
4191
                      0.0
4192
                      0.0
        71.70511965460919
5038
5039
        74.70511965460919
5040
                     13.0
         84.3600933267044
5284
6819
8005
        78.78623363918231
8006
                     30.0
8007
                     27.0
8008
                     24.0
9422
Name: Age, dtype: object
```

In [6]:

```
dataset["Age"] = dataset["Age"].astype("int64", errors = 'ignore')
dataset.iloc[ind, : ]
```

Out[6]:

	House_Number	Street	First_Name	Surname	Age	Relationship_to_Head_of_House	Mar
2774	7	Orchard Crescent	Kim	Mitchell	95.20845345950883	Head	
2775	7	Orchard Crescent	Antony	Mitchell	97.20845345950883	Husband	
2776	7	Orchard Crescent	Leigh	Mitchell	46.9999999999999	Son	
4189	26	Kelly Shoals	Claire	Khan	50.68642589738663	Head	
4190	26	Kelly Shoals	Douglas	Khan	50.68642589738663	Husband	
4191	26	Kelly Shoals	Christian	Khan	0.0	Son	
4192	26	Kelly Shoals	Geraldine	Khan	0.0	Daughter	
5038	33	Brightonshot Lane	Emily	Manning	71.70511965460919	Head	
5039	33	Brightonshot Lane	Graham	Manning	74.70511965460919	Husband	
5040	33	Brightonshot Lane	Irene	Manning	13.0	Daughter	
5284	25	Smith Mountain	Janet	Storey	84.3600933267044	Head	
6819	33	Bank Street	Georgia	Poole		Head	
8005	19	St.Luke Locks	Joanne	Price	78.78623363918231	Head	
8006	19	St.Luke Locks	Aimee	Price	30.0	Daughter	
8007	19	St.Luke Locks	Jade	Price	27.0	Daughter	
8008	19	St.Luke Locks	Gregory	Price	24.0	Son	
9422	32	Bank Burg	Mitchell	Jordan		Partner	
4							•

In [7]:

```
for i in ind:
    name = dataset.First_Name[i]
    gender = dataset.Gender[i]
    ocp = dataset.Occupation[i]
    if len(pd.Series.mode(dataset["Age"].loc[(dataset.Occupation == ocp) & (dataset.Gender == gender) & (dataset.at[i, "Age"] = pd.Series.mode(dataset["Age"].loc[(dataset.Occupation == ocp) & (dataset.Gender == gender) & (dataset.at[i, "Age"] = pd.Series.mode(dataset["Age"].loc[(dataset.Occupation == ocp) & (dataset.Gender == gender) & (dataset.Gender == gender) & (dataset.at[i, "Age"] = pd.Series.mode(dataset["Age"].loc[(dataset.Occupation == ocp) & (dataset.Gender == gender) & (dataset.Gender == ocp) & (
```

In [8]:

dataset.iloc[ind, :]

Out[8]:

	House_Number	Street	First_Name	Surname	Age	Relationship_to_Head_	_of_House	Marital_Status	Ge
2774	7	Orchard Crescent	Kim	Mitchell	80		Head	Married	Fe
2775	7	Orchard Crescent	Antony	Mitchell	79		Husband	Married	
2776	7	Orchard Crescent	Leigh	Mitchell	28		Son	Single	
4189	26	Kelly Shoals	Claire	Khan	24		Head	Married	Fe
4190	26	Kelly Shoals	Douglas	Khan	42		Husband	Married	
4191	26	Kelly Shoals	Christian	Khan	3		Son	NaN	
4192	26	Kelly Shoals	Geraldine	Khan	2		Daughter	NaN	Fe
5038	33	Brightonshot Lane	Emily	Manning	80		Head	Married	Fe
5039	33	Brightonshot Lane	Graham	Manning	80		Husband	Married	
5040	33	Brightonshot Lane	Irene	Manning	9		Daughter	NaN	Fe
5284	25	Smith Mountain	Janet	Storey	80		Head	Widowed	Fe
6819	33	Bank Street	Georgia	Poole	80		Head	Married	Fe
8005	19	St.Luke Locks	Joanne	Price	73		Head	Divorced	Fe
8006	19	St.Luke Locks	Aimee	Price	29		Daughter	Single	Fe
8007	19	St.Luke Locks	Jade	Price	31		Daughter	Divorced	Fe
8008	19	St.Luke Locks	Gregory	Price	27		Son	Single	
9422	32	Bank Burg	Mitchell	Jordan	40		Partner	Single	
4									•

In [9]:

```
#getting number of missing data poijnts in each column
dataset.isnull().sum()
```

Out[9]:

0 House_Number Street 0 First_Name 0 Surname 0 0 Age Relationship_to_Head_of_House 722 Marital_Status 2273 Gender 0 **Occupation** 0 Infirmity 9657 Religion 5561 dtype: int64

In [10]:

In [11]:

```
dataset["Relationship_to_Head_of_House"].isnull().sum()
```

Out[11]:

15

In [12]:

```
dataset.isnull().sum()
```

Out[12]:

a House_Number 0 Street 0 First_Name 0 Surname Age 0 Relationship_to_Head_of_House 15 Marital_Status 2273 Gender **Occupation** 0 Infirmity 9657 Religion 5561 dtype: int64

In [13]:

```
dataset.loc[(dataset.Marital_Status.isnull() == True) & (dataset.Age <= 18), "Marital_Status"] = "None"</pre>
```

In [14]:

```
dataset.isnull().sum()
Out[14]:
                                        0
House_Number
Street
                                        0
First_Name
                                        0
Surname
                                        0
Age
                                        0
{\tt Relationship\_to\_Head\_of\_House}
                                       15
Marital_Status
                                        0
Gender
                                        0
Occupation
                                        0
Infirmity
                                    9657
Religion
                                    5561
dtype: int64
```

In [15]:

```
ind = dataset.loc[(dataset.Religion.isnull() == True) & (dataset.Age < 18)].index
for i in ind:
    surn = dataset.Surname[i]
    street = dataset.Street[i]
    hno = dataset.House_Number[i]
    if (len(dataset.loc[(dataset.Age > 18) & (dataset.Surname == surn) & (dataset.Street == street) & (dataset.at[i,"Religion"] = (dataset.loc[(dataset.Age > 18) & (dataset.Surname == surn) & (dataset.Surname == surname == s
```

In [16]:

```
dataset.Religion = dataset.Religion.fillna(value = "None")
```

In [17]:

```
dataset.iloc[ind, : ]
```

Out[17]:

	House_Number	Street	First_Name	Surname	Age	Relationship_to_Head_of_House	Marital_Status	Gende
2	1	Rhubarb Drive	Billy	Hall	17	Son	None	Mal
3	1	Rhubarb Drive	Mary	Hall	15	Daughter	None	Femal
4	1	Rhubarb Drive	Elliott	Hall	13	Son	None	Mal
5	1	Rhubarb Drive	Clifford	Hall	7	Son	None	Mal
6	1	Rhubarb Drive	Kirsty	Hall	6	Daughter	None	Femal
								-
9707	1	Beech Villa	Jacob	King	7	Son	None	Mal
9708	1	Beech Villa	Brenda	Brown- King	5	Daughter	None	Femal
9709	1	Beech Villa	Laura	Brown- King	1	Daughter	None	Femal
9726	1	Taylor Barracks	Rita	Turner- Rose	14	Daughter	None	Femal
9727	1	Taylor Barracks	Terry	Turner- Rose	12	Son	None	Mal

2278 rows × 11 columns

In [18]:

dataset.isnull().sum()

Out[18]:

House_Number	0
Street	0
First_Name	0
Surname	0
Age	0
Relationship_to_Head_of_House	15
Marital_Status	0
Gender	0
Occupation	0
Infirmity	9657
Religion	0
dtype: int64	

In [19]:

```
dataset["Age\_band"] = [str(((age // 5))* 5) + "-" + str(((age // 5) + 1)* 5) for age in dataset["Age"]]
```

In [20]:

```
dataset.head()
```

Out[20]:

	House_Number	Street	First_Name	Surname	Age	Relationship_to_Head_of_House	Marital_Status	Gender	(
0	1	Rhubarb Drive	Amy	Hall	41	Head	Single	Female	
1	1	Rhubarb Drive	Bruce	Murphy	49	Partner	Single	Male	
2	1	Rhubarb Drive	Billy	Hall	17	Son	None	Male	
3	1	Rhubarb Drive	Mary	Hall	15	Daughter	None	Female	
4	1	Rhubarb Drive	Elliott	Hall	13	Son	None	Male	
4								>	

In [21]:

```
cat = ["Student", "Child", "Retired", "Unemployed"]
def categ(val, cat):
    req = "Employed"
    for i in cat:
        if(i in val):
            req = i
    return req
dataset["Employement_Category"] = [categ(i, cat) for i in dataset.Occupation.values]
```

In [22]:

```
dataset.head()
```

Out[22]:

	House_Number	Street	First_Name	Surname	Age	Relationship_t	o_Head_of_House	Marital_Status	Gender	(
0	1	Rhubarb Drive	Amy	Hall	41		Head	Single	Female	_
1	1	Rhubarb Drive	Bruce	Murphy	49		Partner	Single	Male	
2	1	Rhubarb Drive	Billy	Hall	17		Son	None	Male	
3	1	Rhubarb Drive	Mary	Hall	15		Daughter	None	Female	
4	1	Rhubarb Drive	Elliott	Hall	13		Son	None	Male	
4									•	

In [23]:

```
def hhn(i):
    sn = dataset.Surname[i]
    hn = dataset.House_Number[i]
    st = dataset.Street[i]
    return len(dataset.loc[(dataset.House_Number == hn) & (dataset.Surname == sn) & (dataset.Street == st
dataset["Household_Occupancy"] = [hhn(i) for i in range(len(dataset))]
```

In [24]:

dataset.head(20)

Out[24]:

	House_Number	Street	First_Name	Surname	Age	Relationship_to_Head_of_House	Marital_Status	Gende
0	1	Rhubarb Drive	Amy	Hall	41	Head	Single	Female
1	1	Rhubarb Drive	Bruce	Murphy	49	Partner	Single	Male
2	1	Rhubarb Drive	Billy	Hall	17	Son	None	Male
3	1	Rhubarb Drive	Mary	Hall	15	Daughter	None	Female
4	1	Rhubarb Drive	Elliott	Hall	13	Son	None	Male
5	1	Rhubarb Drive	Clifford	Hall	7	Son	None	Male
6	1	Rhubarb Drive	Kirsty	Hall	6	Daughter	None	Female
7	1	Rhubarb Drive	Nathan	Hall	5	Son	None	Male
8	1	Rhubarb Drive	Sophie	Hall	4	Daughter	None	Female
9	1	Rhubarb Drive	Sarah	Hall	2	Daughter	None	Female
10	2	Rhubarb Drive	Terry	Doherty	58	Head	Single	Male
11	2	Rhubarb Drive	Raymond	Carter	33	Head	Single	Male
12	2	Rhubarb Drive	Ryan	Farrell	26	Head	Single	Male
13	2	Rhubarb Drive	Bethany	Jones	36	Head	Single	Female
14	2	Rhubarb Drive	Kieran	Wood	47	Head	Single	Male
15	3	Rhubarb Drive	Holly	Greenwood	47	Head	Married	Female
16	3	Rhubarb Drive	Tom	Greenwood	51	Husband	Married	Male
17	3	Rhubarb Drive	Scott	Greenwood	19	Son	Single	Male
18	3	Rhubarb Drive	Jonathan	Greenwood	17	Son	None	Male
19	3	Rhubarb Drive	Marian	Greenwood	17	Daughter	None	Female
4								>

In [25]:

dataset.loc[dataset.Employement_Category == "Employed"]

Out[25]:

	House_Number	Street	First_Name	Surname	Age	Relationship_to_Head_of_House	Marital_Status	Gend
0	1	Rhubarb Drive	Amy	Hall	41	Head	Single	Fema
1	1	Rhubarb Drive	Bruce	Murphy	49	Partner	Single	Ма
10	2	Rhubarb Drive	Terry	Doherty	58	Head	Single	Ма
11	2	Rhubarb Drive	Raymond	Carter	33	Head	Single	Ма
12	2	Rhubarb Drive	Ryan	Farrell	26	Head	Single	Ма
	***						•••	
9720	1	Stephens Rectory	Angela	Mitchell	39	Daughter	Single	Fema
9721	1	Stephens Rectory	Sharon	Mitchell	39	Daughter	Single	Fema
9722	1	Stephens Rectory	Hollie	Mitchell	36	Daughter	Single	Fema
9723	1	Taylor Barracks	Anne	Turner	42	Head	Married	Fema
9724	1	Taylor Barracks	Graham	Turner- Rose	44	Husband	Married	Ma

5271 rows × 14 columns

In [26]:

dataset.Occupation.value_counts()

Out[26]:

Occupation					
Student	1871				
Unemployed	593				
University Student	571				
Child	537				
PhD Student					
Retired Scientist, water quality	1				
Retired Nurse, learning disability	1				
Retired Energy manager	1				
Retired English as a second language teacher	1				
Retired Research scientist (life sciences)	1				
Name: count, Length: 1113, dtype: int64					

In [27]:

```
dataset.Employement_Category.value_counts()
```

Out[27]:

Employement_Category
Employed 5271
Student 2462
Retired 852
Unemployed 593
Child 550
Name: count, dtype: int64

In [28]:

```
dataset.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9728 entries, 0 to 9727
Data columns (total 14 columns):
```

```
Column
                                    Non-Null Count Dtype
#
---
0
    House Number
                                    9728 non-null
                                                   int64
                                    9728 non-null object
1
    Street
                                    9728 non-null
2
    First Name
                                                   object
3
    Surname
                                    9728 non-null
                                                    object
4
                                    9728 non-null
                                                    int64
5
    Relationship to Head of House 9713 non-null
                                                    object
6
    Marital Status
                                    9728 non-null
                                                    object
7
    Gender
                                    9728 non-null
                                                    object
8
    Occupation
                                    9728 non-null
                                                    object
9
    Infirmity
                                    71 non-null
                                                    object
10 Religion
                                    9728 non-null
                                                    object
                                    9728 non-null
11 Age_band
                                                    object
12 Employement_Category
                                    9728 non-null
                                                    object
13 Household_Occupancy
                                    9728 non-null
                                                    int64
```

dtypes: int64(3), object(11)
memory usage: 1.0+ MB

In [29]:

```
male = dataset.loc[dataset.Gender == "Male"].Age_band.value_counts()
female = dataset.loc[dataset.Gender == "Female"].Age_band.value_counts()
ages = pd.DataFrame()
ages["bands"] = [str((i - 1) * 5) + "-" + str(i * 5) for i in range(1,23)]
ages["Male"] = [male[ages["bands"][i]] for i in range(len(ages))]
ages["Female"] = [female[ages["bands"][i]] for i in range(len(ages))]
ages.head()
```

Out[29]:

	bands	Male	Female
0	0-5	275	262
1	5-10	356	323
2	10-15	360	309
3	15-20	378	343
4	20-25	323	325

In [30]:

len(ages)

Out[30]:

22

In [31]:

```
import plotly.graph_objects as gp
```

In [32]:

```
y_age = ages['bands']
x_M = ages["Male"]
x_F = ages['Female'] * -1
```

In [33]:

```
# Creating instance of the figure
fig = gp.Figure()
# Adding Male data to the figure
fig.add_trace(gp.Bar(y= y_age, x = x_M,
                     name = 'Male',
orientation = 'h'))
# Adding Female data to the figure
fig.add_trace(gp.Bar(y = y_age, x = x_F,
                     name = 'Female', orientation = 'h'))
# Updating the layout for our graph
fig.update_layout(title = 'Population Pyramid',
                 title_font_size = 32, barmode = 'relative',
                 bargap = 0.0, bargroupgap = 0.0,
                 xaxis = dict(tickvals = [-300, -200, -100,
                                           0, 100, 200, 300],
                              ticktext = ['300', '200', '100', '0', '100', '200', '300'],
                              title = 'Population',
                              title_font_size = 24)
                 )
fig.show()
```

Population Pyramid

In [34]:

```
sns.histplot(data = dataset.loc[dataset.Employement_Category == "Unemployed",["Employement_Category", "Ago
```

Out[34]:

<Axes: xlabel='Age', ylabel='Count'>

In [35]:

```
sns.histplot(data = dataset.loc[: ,["Employement_Category", "Age"]], x = "Age", hue = "Employement_Category"
```

Out[35]:

<Axes: xlabel='Age', ylabel='Count'>

In [36]:

```
yc = len(dataset.loc[dataset.Age == 1])
yl = len(dataset.loc[dataset.Age == 6])
current_year_birth_rate = (yc / len(dataset)) * 1000
previous_year_birth_rate = (yl / (len(dataset) - dataset.Age_band.value_counts()["0-5"])) * 1000
print("Current Birth rate : ", current_year_birth_rate, "Birth rate 5 years back: ", previous_year_birth_l = dataset.Age_band.value_counts()
req = [1[str(i * 5) + "-" + str((i + 1) * 5)] - 1[str((i - 1) * 5) + "-" + str((i) * 5)] for i in range(1) req = sum(req) / 5
death_rate = (req/ 9728) * 1000
print("Death rate: ", death_rate)
```

Current Birth rate: 9.457236842105264 Birth rate 5 years back: 15.776302905015777 Death rate: -8.84046052631579

In [37]:

```
#Given the current Birth rate is 9.5 which is decreasing when compared with birth rate 5 years back and an #increase in population of school going children will be close to birth_rate * population / 1000 #in next 5 years no of school going children will be close to 5 * birth_rate * population / 1000 + frequen #current population in school is close to population in within 5 - 20 expected_change_in_students_in_5_years = ((5 *9.5* 9728) / 1000) - 1 * (dataset.Age_band.value_counts()[":expected_change_in_students_in_5_years
```

Out[37]:

278.08

In [38]:

```
current_retired = len(dataset.loc[dataset.Employement_Category == "Retired"])
retired_in_next5yrs = len(dataset.loc[(dataset.Employement_Category == "Employed") & (dataset.Age >= 60)]
dead_in_next5yrs = (8.8 * 9728 * 5) / 1000
expected_change_in_retired = retired_in_next5yrs + current_retired - dead_in_next5yrs
```

In [39]:

```
print(expected_change_in_retired)
```

1019.968

In [40]:

```
print(len(dataset.loc[dataset.Employement_Category == "Unemployed"]))
```

593

In [41]:

```
sns.boxplot(data=dataset, x= "Household_Occupancy")
```

Out[41]:

<Axes: xlabel='Household_Occupancy'>

In [42]:

```
l = ["university", "scientist", "professor", "research", "phd"]
def commuter(row):
    req = "not a commuter"
    for i in 1:
        if i in dataset["Occupation"][row].lower():
            req = "commuter"
            break
    return req
dataset["Commuter"] = [commuter(i) for i in range(len(dataset))]
```

In [43]:

```
sns.histplot(data = dataset, x = "Commuter", hue = "Employement_Category" , multiple = "stack")
```

Out[43]:

<Axes: xlabel='Commuter', ylabel='Count'>

In [44]:

len(dataset.loc[dataset.Commuter == "commuter"])

Out[44]:

1014

In [45]:

```
sns.boxplot(data=dataset, y ="Religion", x="Age")
```

Out[45]:

<Axes: xlabel='Age', ylabel='Religion'>

In [46]:

```
dataset["Religion"] = dataset["Religion"].replace([" ", "Housekeeper"], "None")
```

In [47]:

```
sns.boxplot(data=dataset, y ="Religion", x="Age")
```

Out[47]:

<Axes: xlabel='Age', ylabel='Religion'>

In [48]:

sns.boxplot(data=dataset, y ="Marital_Status", x="Age")

Out[48]:

<Axes: xlabel='Age', ylabel='Marital_Status'>

In [49]:

```
sns.histplot(data = dataset, y = "Relationship_to_Head_of_House")
```

Out[49]:

<Axes: xlabel='Count', ylabel='Relationship_to_Head_of_House'>

In [50]:

dataset.Relationship_to_Head_of_House.value_counts()

Out[50]:

Relationship_to_Head_of_ Head	House 4155
Son	1611
Daughter	1462
Husband	998
Lodger	388
Wife	354
Partner	314
Grandson	123
Granddaughter	109
Sibling	58
Cousin	37
Visitor	26
Adopted Son	25
Neice	14
Step-Son	10
Adopted Daughter	9
Step-Daughter	8
Nephew	7
Adopted Grandson	2
Adopted Granddaughter	2
	1

Name: count, dtype: int64

In [51]:

```
import math
emp_cat = list(dataset.Employement_Category.unique())
l = dataset.Employement_Category.value_counts()
count = [l[i] for i in emp_cat]
per = [round((i / sum(count) * 100), 2) for i in count]
print(per)
```

```
[54.18, 25.31, 5.65, 8.76, 6.1]
```

In [52]:

```
1 = dataset.Employement_Category.value_counts()
```

In [53]:

```
import matplotlib.pyplot as plt
import pandas as pd
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 5))
ds = pd.DataFrame()
ds["emp_cat"] = emp_cat[::-1]
ds["count"] = count[::-1]
ds["perc"] = per[::-1]
table = ds.values.tolist()
ax1.axis('off')
table_obj = ax1.table(cellText=table, cellLoc="right", bbox=[0, 0, 1, 1])
table obj.auto set font size(False)
table obj.set fontsize(12)
ax2.barh(emp_cat, count, height=0.5)
ax2.set xlabel('Category')
ax2.set_title('Employment_category')
ax2.set_yticklabels([]) # Remove y-axis tick labels
# Add percentage labels to the bars
for i, v in enumerate(per):
    ax2.text(v + 0.1, i, f'{v:.1f}%', color='black')
plt.show()
```

Unemployed 593 6.1 Retired 852 8.76 Child 550 5.65 Student 2462 25.31 Employed 5271 54.18

In [54]:

```
dataset["Marital_Status"] = dataset["Marital_Status"].replace([" "], "None")
```

In [55]:

```
mar_cat = list(dataset.Marital_Status.unique())
l = dataset.Marital_Status.value_counts()
count = [l[i] for i in mar_cat]
per = [round((i / sum(count) * 100), 2) for i in count]
print(per)
```

[35.39, 23.38, 27.86, 4.17, 9.2]

In [56]:

```
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 5))
ds = pd.DataFrame()
ds["mar_cat"] = mar_cat[::-1]
ds["count"] = count[::-1]
ds["perc"] = per[::-1]
table = ds.values.tolist()
ax1.axis('off')
table_obj = ax1.table(cellText=table, cellLoc="right", bbox=[0, 0, 1, 1])
table_obj.auto_set_font_size(False)
table_obj.set_fontsize(12)
ax2.barh(emp_cat, count, height=0.5)
ax2.set_xlabel('Category')
ax2.set title('Maritial status')
ax2.set yticklabels([]) # Remove y-axis tick Labels
# Add percentage labels to the bars
for i, v in enumerate(per):
    ax2.text(v + 0.1, i, f'{v:.1f}%', color='black')
plt.show()
```

Divorced 895 9.2 Widowed 406 4.17 Married 2710 27.86 None 2274 23.38 Single 3443 35.39

In [57]:

```
reli_cat = list(dataset.Religion.unique())
l = dataset.Religion.value_counts()
count = [l[i] if(i in l.index) else (4357) for i in reli_cat]
per = [round((i / sum(count) * 100), 2) for i in count]
print(len(reli_cat), len(count), len(per))
```

11 11 11

In [58]:

```
print(reli_cat, count, per)
```

```
['Catholic', 'Christian', 'None', 'Methodist', 'Jewish', 'Muslim', 'Sikh', 'Jedi', 'Bahai', 'Quaker', 'Pagan'] [1431, 2830, 4359, 790, 43, 162, 95, 2, 2, 8, 6] [14.71, 29.09, 44.81, 8.12, 0.44, 1.67, 0.98, 0.02, 0.02, 0.08, 0.06]
```

In [59]:

```
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 5))
ds = pd.DataFrame()
ds["reli_cat"] = reli_cat[::-1]
ds["count"] = count[::-1]
ds["perc"] = per[::-1]
table = ds.values.tolist()
ax1.axis('off')
table_obj = ax1.table(cellText=table, cellLoc="right", bbox=[0, 0, 1, 1])
table_obj.auto_set_font_size(False)
table_obj.set_fontsize(12)
ax2.barh(reli_cat, count, height=0.5)
ax2.set_xlabel('Category')
ax2.set_title('Religion')
ax2.set_yticklabels([]) # Remove y-axis tick labels
# Add percentage labels to the bars
for i, v in enumerate(per):
    ax2.text(v + 0.1, i, f'{v:.1f}%', color='black')
plt.show()
```

Pagan	6	0.06
Quaker	8	0.08
Bahai	2	0.02
Jedi	2	0.02
Sikh	95	0.98
Muslim	162	1.67
Jewish	43	0.44
Methodist	790	8.12
None	4359	44.81
Christian	2830	29.09
Catholic	1431	14.71


```
In [60]:
```

```
dataset.Infirmity = dataset.Infirmity.fillna(value = "None")
```

In [61]:

```
inf_cat = list(dataset.Infirmity.unique())
l = dataset.Infirmity.value_counts()
count = [l[i] for i in inf_cat]
per = [round((i / sum(count) * 100), 2) for i in count]
print(per)
```

[99.27, 0.1, 0.14, 0.16, 0.06, 0.05, 0.12, 0.08]

In [62]:

```
dataset.Infirmity.value_counts()
```

Out[62]:

Infirmity None 9657 Physical Disability 16 Blind 14 Mental Disability 12 Deaf 10 Unknown Infection 8 6 Disabled 5

Name: count, dtype: int64

In [63]:

```
dataset["Infirmity"] = dataset["Infirmity"].replace([""], "Missing")
```

In [64]:

```
dataset["Infirmity"] = dataset["Infirmity"].replace([""], "Missing")
```

In [65]:

```
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 5))
ds = pd.DataFrame()
ds["inf_cat"] = inf_cat[::-1]
ds["count"] = count[::-1]
ds["perc"] = per[::-1]
table = ds.values.tolist()
ax1.axis('off')
table obj = ax1.table(cellText=table, cellLoc="right", bbox=[0, 0, 1, 1])
table_obj.auto_set_font_size(False)
table_obj.set_fontsize(8)
ax2.barh(inf_cat, count, height=0.5)
ax2.set xlabel('Category')
ax2.set_title('Religion')
ax2.set yticklabels([]) # Remove y-axis tick Labels
# Add percentage labels to the bars
for i, v in enumerate(per):
    ax2.text(v + 0.1, i, f'{v:.1f}%', color='black')
plt.show()
```

Unknown Infection	8	0.08
Mental Disability	12	0.12
Disabled	5	0.05
	6	0.06
Physical Disability	16	0.16
Blind	14	0.14
Deaf	10	0.1
None	9657	99.27

In [66]:

```
yc = len(dataset.loc[dataset.Age == 1])
yl = len(dataset.loc[dataset.Age == 6])
current_year_birth_rate = (yc / len(dataset)) * 1000
previous_year_birth_rate = (yl / len(dataset)) * 1000
print("Current Birth rate : ", current_year_birth_rate, "Birth rate 5 years back: ", previous_year_birth_r
l = dataset.Age_band.value_counts()
req = [l[str(i * 5) + "-" + str((i + 1) * 5)] - l[str((i - 1) * 5) + "-" + str((i) * 5)] for i in range(1)
req = sum(req) / 5
death_rate = (req/ 9728) * 1000
print("Death rate: ", death_rate)
```

Current Birth rate: 9.457236842105264 Birth rate 5 years back: 14.905427631578947 Death rate: -8.84046052631579

In [67]:

```
sns.boxplot(data = dataset, x = "Household_Occupancy")
```

Out[67]:

<Axes: xlabel='Household_Occupancy'>

In []: