Санкт-Петербургский Политехнический Университет Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

> Отчёт Лавораторная работа №1 по дисциплине "Математическая статистика"

Выполнил студент: Салихов С.Р. группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николавич

Содержание

		Стр.
1.	Постановка задачи	. 5
2.	Теория	. 5
	2.1. Распределения	. 5
	2.2. Гистограмма	. 5
	2.2.1 Определение	. 5
	2.2.2 Описание	. 5
	2.2.3 Использование	. 6
3.	Реализация	. 6
4.	Результаты	. 7
	4.1. Боксплот Тьюки	. 7
5.	Обсуждение	. 13
	5.1. Анализ данных	. 13
	5.2. Сравнение с теоретическими значениями	. 13
6.	Литература	. 13
7.	Приложения	. 13

Список иллюстраций

1	Нормальное распределение	7
2	Распределение Коши	8
3	Распределение Лапласа	9
4	Распределение Пуассона	10
5	Равномерное распределение	11

Список таблиц

1 Постановка задачи

Для 5-ти рапределений:

Нормальное распределение N(x,0,1)

Распределение Коши C(x,0,1)

Распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$

Распределение Пуассона P(k,10)

Равномерное Распределение $U(x, -\sqrt{3}, \sqrt{3})$

Стенерировать выборки размером 20, и 100 элементов.

Построить для них боксплот Тьюки.

Для каждого распределения определить долю выбросов эксперементально (сгенерировав выборку, соответствующую распределению 1000 раз и вычислив среднюю долю выбросов) и сравнить с результатами полученными теоретически.

2 Теория

2.1 Распределения

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{1}$$

$$C(x,0,1) = \frac{1}{\pi(1+x^2)} \tag{2}$$

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}\tag{3}$$

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (5)

2.2 Гистограмма

2.2.1 Определение

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей.

2.2.2 Описание

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы.

2.2.3 Использование

Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длину «усов» определяют разность первого квартиля и полутора межквартильных расстояний и сумма третьего квартиля и полутора межквартильных расстояний. Формула имеет вид:

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$

Где X_1 - нижняя граница уса, X_2 - верхняя граица уса, Q_1 - первый квартиль, Q_3 - третий квартиль.

Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков.

3 Реализация

Для генерации выборки был использован *Python* 3.7: модуль *random* библиотеки *питру* для генерации случайных чисел с различными распределениями. Боксплот Тьюки был построен средствами *matplotlib*.

4 Результаты

4.1 Боксплот Тьюки

Ввелём на оси у следующие обозначения:

- 1 соответствует выборке из 20-ти элементов
- 2 соответствует выборке из 100 элементов

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

Таблица 1: Выбросы различных распределений в зависимости от выборки

Выборка	Процент выбросов
Нормальное	
n = 20	2
n = 100	1
Коши	
n = 20	15
n = 100	15
Лапласа	
n = 20	7
n = 100	6
Пуассона	
n = 20	3
n = 100	1
Равномерное	
n = 20	0
n = 100	0

5 Обсуждение

5.1 Анализ данных

Из экспериментально полученных данных можно вывести соотношение между процентами выбросов:

равномерное распределение < нормальное распределение < распределение Пуассона < распределение Коши

5.2 Сравнение с теоретическими значениями

Полученные экспериментально данные близки к теоретическим и видно, что наименьший процент выбросов у равномерного распределения ,а наибольший у распределения Коши

6 Литература

Модуль numpy matplotlib boxplot Боксплот Тьюки

7 Приложения

Код лаборатрной Код отчёта