\mathbb{U}_p , \mathbb{U}_{p^k} , and \mathbb{U}_{2p^k} are cyclic

Matthew Li and Zack Yu

July 2023

Table of Contents

- Introduction
- \mathbb{U}_p
- Ψ_{2p^k}

Definitions

Set of Generators

A set of generators (g_1, \ldots, g_n) is a set of elements of a group G such that performing the group operation on themselves and on each other is capable of producing all the elements in the group.

Definitions

Set of Generators

A set of generators (g_1, \ldots, g_n) is a set of elements of a group G such that performing the group operation on themselves and on each other is capable of producing all the elements in the group.

Cyclic Group

A cyclic group is a group that is generated by a single generator.

Motivating Example

Let us observe an example of \mathbb{U}_p . We will try to see if it is cyclic.

Motivating Example

Let us observe an example of \mathbb{U}_p . We will try to see if it is cyclic.

Example

Consider \mathbb{U}_5 . The elements of \mathbb{U}_5 are 1, 2, 3, and 4. One can see that 2 is a generator of \mathbb{U}_5 because

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 3$$

$$2^4 = 1$$

Thus, \mathbb{U}_5 is cyclic.

Another Example

Not convinced? Let's consider a bigger p.

Not convinced? Let's consider a bigger p.

Example

Consider \mathbb{U}_{13} . We claim that 2 is a generator of \mathbb{U}_{13} .

$$2^{1} = 2$$
 $2^{4} = 3$ $2^{7} = 11$ $2^{10} = 10$
 $2^{2} = 4$ $2^{5} = 6$ $2^{8} = 9$ $2^{11} = 7$
 $2^{3} = 8$ $2^{6} = 12$ $2^{9} = 5$ $2^{12} = 1$

\mathbb{U}_{l}

Proof Sketch of \mathbb{U}_p Cyclic

We need a couple of important results before starting.

We need a couple of important results before starting.

Lagrange's Theorem

For a degree n polynomial mod p, it has at most n roots.

We need a couple of important results before starting.

Lagrange's Theorem

For a degree n polynomial mod p, it has at most n roots.

Lemma 1

If $u \in \mathbb{U}_p$ has order d, then there exists $x \in \mathbb{U}_p$ such that $\operatorname{ord}_p(x) = k$, where k is a divisor of d.

We need a couple of important results before starting.

Lagrange's Theorem

For a degree n polynomial mod p, it has at most n roots.

Lemma 1

If $u \in \mathbb{U}_p$ has order d, then there exists $x \in \mathbb{U}_p$ such that $\operatorname{ord}_p(x) = k$, where k is a divisor of d.

Lemma 2

If $\operatorname{ord}_p(a) = r$, $\operatorname{ord}_p(b) = s$, and $\gcd(r, s) = 1$, then $\operatorname{ord}_p(ab) = rs$.

• We wish to show there is $u \in \mathbb{U}_p$ of order p-1.

- We wish to show there is $u \in \mathbb{U}_p$ of order p-1.
- $\bullet p-1=q_1^{e_1}\cdots q_k^{e_k}$

- We wish to show there is $u \in \mathbb{U}_p$ of order p-1.
- $\bullet \ p-1=q_1^{e_1}\cdots q_k^{e_k}$
- ullet There is $w\in \mathbb{U}_p$ such that $w^{rac{p-1}{q_j}}
 eq 1$ in \mathbb{U}_p .

- We wish to show there is $u \in \mathbb{U}_p$ of order p-1.
- $\bullet p-1=q_1^{e_1}\cdots q_k^{e_k}$
- ullet There is $w\in \mathbb{U}_p$ such that $w^{rac{p-1}{q_i}}
 eq 1$ in \mathbb{U}_p .
- For sake of contradiction, assume all $w \in \mathbb{U}_p$ satisfy above. Then, we get contradiction from Lagrange.

- We wish to show there is $u \in \mathbb{U}_p$ of order p-1.
- $\bullet \ p-1=q_1^{\mathsf{e}_1}\cdots q_k^{\mathsf{e}_k}$
- ullet There is $w\in \mathbb{U}_p$ such that $w^{rac{p-1}{q_i}}
 eq 1$ in \mathbb{U}_p .
- For sake of contradiction, assume all $w \in \mathbb{U}_p$ satisfy above. Then, we get contradiction from Lagrange.
- So order of w should not divide $\frac{p-1}{q_i}$. Thus, all orders must be divisible by $q_i^{e_i}$.

- We wish to show there is $u \in \mathbb{U}_p$ of order p-1.
- $\bullet \ p-1=q_1^{\mathsf{e}_1}\cdots q_k^{\mathsf{e}_k}$
- ullet There is $w\in \mathbb{U}_p$ such that $w^{rac{p-1}{q_i}}
 eq 1$ in \mathbb{U}_p .
- For sake of contradiction, assume all $w \in \mathbb{U}_p$ satisfy above. Then, we get contradiction from Lagrange.
- So order of w should not divide $\frac{p-1}{q_i}$. Thus, all orders must be divisible by $q_i^{e_i}$.
- Thus, there is $x \in \mathbb{U}_p$ of order $q_i^{e_i}$ by Lemma 1.

- We wish to show there is $u \in \mathbb{U}_p$ of order p-1.
- $\bullet \ p-1=q_1^{\mathsf{e}_1}\cdots q_k^{\mathsf{e}_k}$
- ullet There is $w\in \mathbb{U}_p$ such that $w^{rac{p-1}{q_i}}
 eq 1$ in \mathbb{U}_p .
- For sake of contradiction, assume all $w \in \mathbb{U}_p$ satisfy above. Then, we get contradiction from Lagrange.
- So order of w should not divide $\frac{p-1}{q_i}$. Thus, all orders must be divisible by $q_i^{e_i}$.
- Thus, there is $x \in \mathbb{U}_p$ of order $q_i^{e_i}$ by Lemma 1.
- We repeat this process for all i so $\operatorname{ord}_p(w_i) = q_i^{e_i}$ for all i.

- We wish to show there is $u \in \mathbb{U}_p$ of order p-1.
- $p-1=q_1^{e_1}\cdots q_k^{e_k}$
- ullet There is $w\in \mathbb{U}_p$ such that $w^{rac{p-1}{q_i}}
 eq 1$ in \mathbb{U}_p .
- For sake of contradiction, assume all $w \in \mathbb{U}_p$ satisfy above. Then, we get contradiction from Lagrange.
- So order of w should not divide $\frac{p-1}{q_i}$. Thus, all orders must be divisible by $q_i^{e_i}$.
- Thus, there is $x \in \mathbb{U}_p$ of order $q_i^{e_i}$ by Lemma 1.
- We repeat this process for all i so $\operatorname{ord}_p(w_i) = q_i^{e_i}$ for all i.
- Then, by Lemma 2, $\operatorname{ord}_p(w_1 \cdots w_i) = p 1$, as desired.

- Introduction
- \mathbb{U}_p
- \bigoplus_{2p^k}

It is not immediately obvious that \mathbb{U}_{p^k} is cyclic for all odd primes p.

It is not immediately obvious that \mathbb{U}_{p^k} is cyclic for all odd primes p.

Example

Consider \mathbb{U}_{3^2} . The elements of \mathbb{U}_9 are 1, 2, 4, 5, 7, and 8. We claim that 5 is a generator.

$$5^1 = 5$$
 $5^4 = 4$

$$5^2 = 7$$
 $5^5 = 2$

$$5^3 = 8$$
 $5^6 = 1$

Consider \mathbb{U}_{3^3} . Through some tedious computation we can show 5 is also a generator of \mathbb{U}_{3^3} .

Consider \mathbb{U}_{3^3} . Through some tedious computation we can show 5 is also a generator of \mathbb{U}_{3^3} .

Example

$$\begin{array}{lll} 5^1 = 5 & 5^{10} = 22 \\ 5^2 = 25 & 5^{11} = 2 \\ 5^3 = 17 & 5^{12} = 10 \\ 5^4 = 4 & 5^{13} = 23 \\ 5^5 = 20 & 5^{14} = 7 \\ 5^6 = 19 & 5^{15} = 8 \\ 5^7 = 14 & 5^{16} = 13 \\ 5^8 = 16 & 5^{17} = 11 \\ 5^9 = 26 & 5^{18} = 1 \end{array}$$

• One idea is to try the same approach we used in \mathbb{U}_p . What's wrong with this?

Proof Attempt

- One idea is to try the same approach we used in \mathbb{U}_p . What's wrong with this?
- Notice that in proving Lagrange's Theorem, we required the property in \mathbb{Z}_p that if ab = 0, then a = 0 or b = 0.

Motivating the Proof

ullet We know that $|\mathbb{U}_{p^k}|=arphi(p^k)=p^{k-1}(p-1)$

Motivating the Proof

- ullet We know that $|\mathbb{U}_{p^k}|=arphi(p^k)=p^{k-1}(p-1)$
- We want to find a generator or an element of order $p^{k-1}(p-1)$

Motivating the Proof

- We know that $|\mathbb{U}_{p^k}| = \varphi(p^k) = p^{k-1}(p-1)$
- ullet We want to find a generator or an element of order $p^{k-1}(p-1)$
- Since $gcd(p^{k-1}, p-1) = 1$, if we can find find elements of order p^{k-1} and order p-1, their product should have order $p^{k-1}(p-1)$

Motivating Example

Example

Consider 4 and $2 \in \mathbb{U}_9$.

$$4^{1} = 4$$
 $2^{1} = 2$
 $4^{2} = 7$ $2^{2} = 4$
 $4^{3} = 1$ $2^{3} = 8$
 $2^{4} = 7$
 $2^{5} = 5$
 $2^{6} = 1$

Therefore $\operatorname{ord}_9(4)=3=3^{2-1}$ and $\operatorname{ord}_9(8)=2=(3-1)$. Then, the product 5 should have order $3^{2-1}(3-1)=6$ and should be a generator of \mathbb{U}_{p^2} . We have already showed this.

U

Proving \mathbb{U}_{p^k} is Cyclic

ullet We will first find an element of order p-1

\mathbb{U}_{p^k}

- We will first find an element of order p-1
- Consider a generator g of \mathbb{U}_p

- We will first find an element of order p-1
- ullet Consider a generator g of \mathbb{U}_p
- Let us say $\operatorname{ord}_{p^k}(g) = d$

- We will first find an element of order p-1
- ullet Consider a generator g of \mathbb{U}_p
- Let us say $\operatorname{ord}_{p^k}(g) = d$
- Since we know $g^d \equiv 1 \mod p^k$, we know $g^d \equiv 1 \mod p$, so $p-1 \mid d$

- We will first find an element of order p-1
- ullet Consider a generator g of \mathbb{U}_p
- Let us say $\operatorname{ord}_{p^k}(g) = d$
- Since we know $g^d \equiv 1 \mod p^k$, we know $g^d \equiv 1 \mod p$, so $p-1 \mid d$
- \bullet Then, by one of our earlier lemma's, we know there must exist an element with order p-1

• Now, let us find an element of order p^{k-1}

- Now, let us find an element of order p^{k-1}
- ullet For some motivation, first consider \mathbb{U}_{p^2}

- Now, let us find an element of order p^{k-1}
- ullet For some motivation, first consider \mathbb{U}_{p^2}
- Assume x is the order of p+1 in \mathbb{U}_{p^2} , then $(p+1)^x \equiv 1 \mod p^2$

- Now, let us find an element of order p^{k-1}
- ullet For some motivation, first consider \mathbb{U}_{p^2}
- Assume x is the order of p+1 in \mathbb{U}_{p^2} , then $(p+1)^x \equiv 1 \mod p^2$
- By expanding $(p+1)^x$ with binomial theorem, we get

$$(p+1)^x = {x \choose 0} p^x + {x \choose 1} p^{x-1} + \cdots + {x \choose x-1} p + {x \choose x} 1$$

- Now, let us find an element of order p^{k-1}
- ullet For some motivation, first consider \mathbb{U}_{p^2}
- Assume x is the order of p+1 in \mathbb{U}_{p^2} , then $(p+1)^x \equiv 1 \mod p^2$
- By expanding $(p+1)^x$ with binomial theorem, we get

$$(p+1)^{x}=inom{x}{0}p^{x}+inom{x}{1}p^{x-1}+\cdots+inom{x}{x-1}p+inom{x}{x}1$$

ullet Thus, we have $(p+1)^{x}\equiv px+1\mod p^2$ since all terms with p^2 disappear

- Now, let us find an element of order p^{k-1}
- ullet For some motivation, first consider \mathbb{U}_{p^2}
- Assume x is the order of p+1 in \mathbb{U}_{p^2} , then $(p+1)^x \equiv 1 \mod p^2$
- By expanding $(p+1)^x$ with binomial theorem, we get

$$(p+1)^{x} = {x \choose 0} p^{x} + {x \choose 1} p^{x-1} + \dots + {x \choose x-1} p + {x \choose x} 1$$

- ullet Thus, we have $(p+1)^x \equiv px+1 \mod p^2$ since all terms with p^2 disappear
- Then, we get $x \equiv 0 \mod p$ or $p \mid x$

- Now, let us find an element of order p^{k-1}
- ullet For some motivation, first consider \mathbb{U}_{p^2}
- Assume x is the order of p+1 in \mathbb{U}_{p^2} , then $(p+1)^x \equiv 1 \mod p^2$
- By expanding $(p+1)^x$ with binomial theorem, we get

$$(p+1)^x = {x \choose 0} p^x + {x \choose 1} p^{x-1} + \cdots + {x \choose x-1} p + {x \choose x} 1$$

- ullet Thus, we have $(p+1)^x \equiv px+1 \mod p^2$ since all terms with p^2 disappear
- Then, we get $x \equiv 0 \mod p$ or $p \mid x$
- Since x is the order of p+1 and $p\mid x$, there is another element h with order p

• We construct a set $A=\{k\in\mathbb{Z}^+\mid \text{the order of }p+1\text{ in }\mathbb{U}_{p^k}\text{ is not }np^{k-1}\text{ for an integer }n\}$

- We construct a set $A = \{k \in \mathbb{Z}^+ \mid \text{the order of } p+1 \text{ in } \mathbb{U}_{p^k} \text{ is not } np^{k-1} \text{ for an integer } n\}$
- By WOP, there is a minimum element I of this set

- We construct a set $A = \{k \in \mathbb{Z}^+ \mid \text{the order of } p+1 \text{ in } \mathbb{U}_{p^k} \text{ is not } np^{k-1} \text{ for an integer } n\}$
- By WOP, there is a minimum element I of this set
- Therefore, the order of p+1 in $\mathbb{U}_{p^{l-1}}$ is ap^{l-2} , for some integer a

- We construct a set $A = \{k \in \mathbb{Z}^+ \mid \text{the order of } p+1 \text{ in } \mathbb{U}_{p^k} \text{ is not } np^{k-1} \text{ for an integer } n\}$
- By WOP, there is a minimum element I of this set
- Therefore, the order of p+1 in $\mathbb{U}_{p^{l-1}}$ is ap^{l-2} , for some integer a
- We know if $(p+1)^x \equiv 1 \mod p^l$ then $(p+1)^x \equiv 1 \mod p^{l-1}$

- We construct a set $A = \{k \in \mathbb{Z}^+ \mid \text{the order of } p+1 \text{ in } \mathbb{U}_{p^k} \text{ is not } np^{k-1} \text{ for an integer } n\}$
- By WOP, there is a minimum element I of this set
- Therefore, the order of p+1 in $\mathbb{U}_{p^{l-1}}$ is ap^{l-2} , for some integer a
- We know if $(p+1)^x \equiv 1 \mod p^l$ then $(p+1)^x \equiv 1 \mod p^{l-1}$
- Then $ap^{l-2} \mid x$ or $x = bap^{l-2}$ for some integer b

- We construct a set $A = \{k \in \mathbb{Z}^+ \mid \text{the order of } p+1 \text{ in } \mathbb{U}_{p^k} \text{ is not } np^{k-1} \text{ for an integer } n\}$
- By WOP, there is a minimum element I of this set
- Therefore, the order of p+1 in $\mathbb{U}_{p^{l-1}}$ is ap^{l-2} , for some integer a
- We know if $(p+1)^x \equiv 1 \mod p^l$ then $(p+1)^x \equiv 1 \mod p^{l-1}$
- Then $ap^{l-2} \mid x$ or $x = bap^{l-2}$ for some integer b
- Now, we can expand $(p+1)^x$ and obtain $xp+1\equiv 1(modp^l)$ from binomial theorem

- We construct a set $A = \{k \in \mathbb{Z}^+ \mid \text{the order of } p+1 \text{ in } \mathbb{U}_{p^k} \text{ is not } np^{k-1} \text{ for an integer } n\}$
- By WOP, there is a minimum element I of this set
- Therefore, the order of p+1 in $\mathbb{U}_{p^{l-1}}$ is ap^{l-2} , for some integer a
- We know if $(p+1)^x \equiv 1 \mod p^l$ then $(p+1)^x \equiv 1 \mod p^{l-1}$
- Then $ap^{l-2} \mid x$ or $x = bap^{l-2}$ for some integer b
- Now, we can expand $(p+1)^x$ and obtain $xp+1\equiv 1(modp^l)$ from binomial theorem
- Thus $x = np^{l-1}$, which contradicts $l \in A$

- We construct a set $A = \{k \in \mathbb{Z}^+ \mid \text{the order of } p+1 \text{ in } \mathbb{U}_{p^k} \text{ is not } np^{k-1} \text{ for an integer } n\}$
- By WOP, there is a minimum element I of this set
- Therefore, the order of p+1 in $\mathbb{U}_{p^{l-1}}$ is ap^{l-2} , for some integer a
- We know if $(p+1)^x \equiv 1 \mod p^l$ then $(p+1)^x \equiv 1 \mod p^{l-1}$
- Then $ap^{l-2} \mid x$ or $x = bap^{l-2}$ for some integer b
- Now, we can expand $(p+1)^x$ and obtain $xp+1\equiv 1(modp^l)$ from binomial theorem
- Thus $x = np^{l-1}$, which contradicts $l \in A$
- Then, there is an element with order p^{k-1}

Finishing the Proof

By multiplying the elements of order p^{k-1} and p-1, we obtain an element of order $p^{k-1}(p-1)$, which generates \mathbb{U}_{p^k} , yay!

- Introduction
- \mathbb{U}_p
- \mathfrak{I}_{p^k}

Examples

Let us try to convince ourselves \mathbb{U}_{2p^k} is cyclic for all odd primes p.

Example

Consider $\mathbb{U}_{2\cdot 3}$. We know the elements of \mathbb{U}_6 are 1 and 5. Clearly, the element 5 generates \mathbb{U}_6 .

Consider $\mathbb{U}_{2,3^2}$. Then, we claim 5 is a generator.

$$5^{1} = 5$$
 $5^{4} = 13$
 $5^{2} = 7$ $5^{5} = 11$
 $5^{3} = 17$ $5^{6} = 1$

• \mathbb{U}_{2p^k} is not something we are very familiar with, let's see if we can find an isomorphism to something "simpler" that we can work with

- \mathbb{U}_{2p^k} is not something we are very familiar with, let's see if we can find an isomorphism to something "simpler" that we can work with
- Recall that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$

- \mathbb{U}_{2p^k} is not something we are very familiar with, let's see if we can find an isomorphism to something "simpler" that we can work with
- Recall that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$
- Since $\gcd(2,p^k)=1$, we are motivated to see if there is an isomorphism between $\mathbb{U}_2\times\mathbb{U}_{p^k}$ and \mathbb{U}_{2p^k}

- \mathbb{U}_{2p^k} is not something we are very familiar with, let's see if we can find an isomorphism to something "simpler" that we can work with
- Recall that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$
- Since $\gcd(2, p^k) = 1$, we are motivated to see if there is an isomorphism between $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ and \mathbb{U}_{2p^k}
- Notice that $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ is very nice to work with since the elements are just (1,x) where x is an element of \mathbb{U}_{p^k}

- \mathbb{U}_{2p^k} is not something we are very familiar with, let's see if we can find an isomorphism to something "simpler" that we can work with
- Recall that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$
- Since $\gcd(2, p^k) = 1$, we are motivated to see if there is an isomorphism between $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ and \mathbb{U}_{2p^k}
- Notice that $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ is very nice to work with since the elements are just (1,x) where x is an element of \mathbb{U}_{p^k}
- Thus, $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ is basically identical to \mathbb{U}_{p^k} .

- \mathbb{U}_{2p^k} is not something we are very familiar with, let's see if we can find an isomorphism to something "simpler" that we can work with
- Recall that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$
- Since $\gcd(2, p^k) = 1$, we are motivated to see if there is an isomorphism between $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ and \mathbb{U}_{2p^k}
- Notice that $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ is very nice to work with since the elements are just (1,x) where x is an element of \mathbb{U}_{p^k}
- Thus, $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ is basically identical to \mathbb{U}_{p^k} .
- So, we know $\mathbb{U}_2 \times \mathbb{U}_{p^k}$ is cyclic and if $\mathbb{U}_2 \times \mathbb{U}_{p^k} \cong \mathbb{U}_{2p^k}$, we know \mathbb{U}_{2p^k} is cyclic

ullet First, we show that $\mathbb{U}_{2p^k}\cong \mathbb{U}_2 imes \mathbb{U}_{p^k}$

- ullet First, we show that $\mathbb{U}_{2p^k}\cong \mathbb{U}_2 imes \mathbb{U}_{p^k}$
- We claim the mapping $f: \mathbb{U}_{2p^k} \to \mathbb{U}_2 \times \mathbb{U}_{p^k}$ defined by $[a]_{2p^k} \mapsto ([a]_2, [a]_{p^k})$ is bijective and satisfies f(ab) = f(a)f(b).

- First, we show that $\mathbb{U}_{2p^k} \cong \mathbb{U}_2 \times \mathbb{U}_{p^k}$
- We claim the mapping $f: \mathbb{U}_{2p^k} \to \mathbb{U}_2 \times \mathbb{U}_{p^k}$ defined by $[a]_{2p^k} \mapsto ([a]_2, [a]_{p^k})$ is bijective and satisfies f(ab) = f(a)f(b).
- Note, to prove bijectivity, we only need to prove injectivity because $|\mathbb{U}_{2p^k}| = |\mathbb{U}_2 \times \mathbb{U}_{p^k}|$.

- First, we show that $\mathbb{U}_{2p^k} \cong \mathbb{U}_2 \times \mathbb{U}_{p^k}$
- We claim the mapping $f: \mathbb{U}_{2p^k} \to \mathbb{U}_2 \times \mathbb{U}_{p^k}$ defined by $[a]_{2p^k} \mapsto ([a]_2, [a]_{p^k})$ is bijective and satisfies f(ab) = f(a)f(b).
- Note, to prove bijectivity, we only need to prove injectivity because $|\mathbb{U}_{2p^k}| = |\mathbb{U}_2 \times \mathbb{U}_{p^k}|$.
- Now, we show $\mathbb{U}_2 \times \mathbb{U}_{p^k} \cong \mathbb{U}_{p^k}$.

- First, we show that $\mathbb{U}_{2p^k} \cong \mathbb{U}_2 \times \mathbb{U}_{p^k}$
- We claim the mapping $f: \mathbb{U}_{2p^k} \to \mathbb{U}_2 \times \mathbb{U}_{p^k}$ defined by $[a]_{2p^k} \mapsto ([a]_2, [a]_{p^k})$ is bijective and satisfies f(ab) = f(a)f(b).
- Note, to prove bijectivity, we only need to prove injectivity because $|\mathbb{U}_{2p^k}| = |\mathbb{U}_2 \times \mathbb{U}_{p^k}|$.
- Now, we show $\mathbb{U}_2 \times \mathbb{U}_{p^k} \cong \mathbb{U}_{p^k}$.
- Simply consider the map $f: \mathbb{U}_{p^k} \to \mathbb{U}_2 \times \mathbb{U}_{p^k}$ defined by $x \mapsto (1, x)$

Finishing the Proof

Because $\mathbb{U}_{p^k} \cong \mathbb{U}_2 \times \mathbb{U}_{p^k} \cong \mathbb{U}_{2p^k}$, we know \mathbb{U}_{2p^k} is cyclic, yay!