Table 1: Summary of Discrete Distributions

Distribution, notation	Probability Function	Cumulative Distribution	Statistics	Generating Functions
One point $\delta(a)$	p(a) = 1	$F_X(k) = 0, \text{if } a < 0$ $F_X(k) = q, \text{if } a \ge 0$	EX = a $VarX = 0$	$g_X(t) = ta$ $\psi_X(t) = e^{ta}$ $\varphi_X(t) = e^{ita}$
Pretentious to have th Bernoulli $B(p)$ $0 \le p \le 1$ Lorem ipsum	is, i know, but i guess it needs to be complete $p(0)=q, p(1)=p; q=1-p \label{eq:p0}$	or whatevs $F_X(k) = 0, \text{if } k < 0$ $F_X(k) = q, \text{if } 0 \le k < 1$ $F_X(k) = 1, \text{if } k \ge 1$	EX = p $VarX = pq$	$g_X(t) = q + pt$ $\psi_X(t) = q + pe^t$ $\varphi_X(t) = q + pe^{it}$
Symetric Bernouli $B(.5)$	p(0) = .5, p(1) = .5	$F_X(k) = 0$, if $k < 0$ $F_X(k) = .5$, if $0 \le k < 1$ $F_X(k) = 1$, if $k \ge 1$	EX = .5 $VarX = pq$	$g_X(t) = q + pt$ $\psi_X(t) = q + pe^t$ $\varphi_X(t) = q + pe^{it}$
Lorem ipsum Binomial $B(n,p)$ $n=1,2,;0 \le p \le 1$ Lorem ipsum	$p(k) = \binom{n}{k} p^k q^{n-k}; k = 0, 1,n; q = 1 - p$	$I_q(n-\lfloor k \rfloor, 1+\lfloor k \rfloor)$	EX = np $VarX = npq$	$g_X(t) = (q + pt)^n$ $\psi_X(t) = (q + pe^t)^n$ $\varphi_X(t) = (q + pe^{it})^n$
Poisson $Po(\lambda)$ $\lambda > 0$ Lorem ipsum	$p(k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2$	$F_X(x) = 1 - q^{\lfloor x \rfloor + 1}$	$EX = \lambda$ $VarX = \lambda$	$g_X(t) = exp\{t-1\}$ $\psi_X(t) = exp\{e^t - 1\}$ $\varphi_X(t) = exp\{e^{it} - 1\}$
Geometric $G(p)$ $0 \le p \le 1$	$p(k) = pq^k, k = 0, 1, 2; q = 1 - p$	$F_X(x) = 1 - q^{\lfloor x \rfloor + 1}$	$EX = \frac{q}{p}$ $VarX = \frac{q}{p^2}$	$g_X(t) = \frac{p}{1 - qt}$ $\psi_X(t) = \frac{1 - qe^t}{1 - qe^t}$ $\varphi_X(t) = \frac{p}{1 - qe^{it}}$
Lorem ipsum $ \begin{aligned} & \textbf{First success} \\ & F(p) \\ & 0 \leq p \leq 1 \end{aligned} $	$p(k) = pq^{k-1}, k = 1, 2; q = 1 - p$	$F_X(x) = 1 - q^{\lfloor x \rfloor}$	$EX = \frac{1}{p}$ $VarX = \frac{q}{p^2}$	$g_X(t) = \frac{pt}{1 - qt}$ $\psi_X(t) = \frac{pe^t}{1 - qe^t}$ $\varphi_X(t) = \frac{pe^{it}}{1 - qe^{it}}$
Identical to Geometric	, but always 1 larger			

_

Table 2: Summary of Probability Distributions

Distribution, notation	Density Function $f_X(x)$	Cumulative Distribution $F_X(x)$	Statistics	Generating Functions
Normal $\mathcal{N}(\mu, \sigma^2)$ $\sigma > 0$ The Normal distribut	$\frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$ ion is central to the central limit t	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	$EX = \mu$ $VarX = \sigma^2$	$\psi_X(t) = e^{t\mu + \frac{1}{2}\sigma^2 t^2}$ $\varphi_X(t) = e^{it\mu - \frac{1}{2}\sigma^2 t^2}$
Exponential $Exp(\lambda)$ $\lambda > 0$	$rac{1}{\lambda}e^{-x/\lambda}$	$1 - e^{-x/\lambda}$	$EX = \lambda$ $VarX = \lambda^2$	$\psi_X(t) = rac{1}{(1-\lambda t)}$ $arphi_X(t) = rac{1}{(1-\lambda i t)}$
Gamma is crucial in r	modeling waiting times and life da	ta.		
Gamma $\Gamma(p,a)$ $a>0,p>0$	$\frac{1}{\Gamma(p)}x^{p-1}\frac{1}{a^p}e^{-x/a}$	$\frac{1}{\Gamma(p)}\gamma\left(p,\frac{x}{a}\right)$	$EX = pa$ $VarX = pa^2$	$\psi_X(t) = rac{1}{(1-at)^p}$ $\varphi_X(t) = rac{1}{(1-ait)^p}$
Gamma is crucial in r	modeling waiting times and life da	ta.		, ,
$\begin{aligned} & \textbf{Laplace} \\ & L(a) \\ & n = 1, 2, \dots \end{aligned}$	$\frac{1}{2a}e^{- x /a}, -\infty < x < \infty$	$\begin{cases} \frac{1}{2} \exp\left(\frac{x-\mu}{b}\right) & \text{if } x \le \mu \\ 1 - \frac{1}{2} \exp\left(-\frac{x-\mu}{b}\right) & \text{if } x \ge \mu \end{cases}$	$EX = 0$ $VarX = 2a^2$	$\psi_X(t) = \frac{1}{1 - a^2 t^2}, t < 1/a$ $\varphi_X(t) = \frac{1}{1 + a^2 t^2}$
Laplace is kinda cool				(h. 1
Beta $\beta(r,s)$ $r,s>0$	$\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1}, 0 < x$	< 1 No.	$EX = \frac{r}{r+s}$ $VarX = \frac{rs}{(r+s)^2(r+s)^2}$	$\psi_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$ $\varphi_X(t) = \frac{1}{1 + a^2 t^2}$
Laplace is kinda cool (Student's) t $t(n)$ $n = 1, 2,$	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n}\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}$	No.	$EX = 0$ $VarX = \frac{n}{n-2}, n > 2$	$\psi_X(t) = undefined \ arphi_X(t) = No.$

Student t is crucial in modeling waiting times and life data. The inventor worked at Guiness, and published under a pseudonym so that their competitors wouldn't know they were using advanced statistics