BADANIE DRGAŃ UKŁADU DWÓCH SPRZĘŻONYCH WAHADEŁ

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

Stanowisko A

Stanowisko B

2. Opis układu pomiarowego

W skład układu służącego do badania zjawiska drgań sprzężonych dwóch wahadeł wchodzą:

- dwa wahadła fizyczne, z których
 - na **stanowisku** A każde złożone jest z walca o masie $m_w = 2,33\pm0,01$ kg i długości $l_w = 0,11\pm0,01$ m oraz przytwierdzonego do niego i zaopatrzonego w podziałkę milimetrową pręta o masie $m_p = 0,404\pm0,01$ kg i długości $l_p = 0,82\pm0,01$ m (w górnej części pręt posiada zawieszenie zrealizowane za pomocą metalowej krawędzi pryzmatycznej).
 - na **stanowisku B** każde złożone jest z walca o masie m_w =0,17±0,01 kg i długości l_w =0,30±0,01m oraz przytwierdzonego do niego pręta o masie m_p =0,101±0,01 kg i długości l_p =0,82±0,01m (w górnej części pręt posiada zawieszenie).
- sprężyna sprzęgająca wahadła z możliwością zmiany jej punktu zamocowania.
 Na stanowisku B rolę elementu sprzęgającego odgrywa lina z ciężarkiem;
- stoper do pomiaru czasu określonej liczby wahnięć.

3. Przebieg ćwiczenia

- 1. Zmierzyć czas 10 okresów drgań pojedynczego wahadła bez sprzężenia. Pomiarów dokonać dla obu wahadeł.
- 2. **Dokonać sprzeżenia wahadeł** za pomocą sprężyny w odległości np. d = 75 cm od osi obrotu wahadeł.
- 3. Zmierzyć czas *10 okresów drgań jednego z wahadel*, gdy układ wykonuje pierwsze drgania normalne (zgodnie w fazie).
- 4. Zmierzyć czas 10 okresów drgań jednego z wahadeł, gdy układ wykonuje drugie drganie normalne (przeciwnie w fazie).
- 5. Zmierzyć czas *2 okresów dudnień*, gdy układ jest sprzężony jak poprzednio zaś pobudzony do drgań przez wychylenie tylko jednego z wahadeł.
- 6. Pomiary według punktów 3-5 przeprowadzić dla minimum 7 *punktów zamocowań* sprężyny *d* od np. 20 cm do 70 cm co 10 cm.
- 7. Zapisać wartości i niepewności parametrów stanowiska oraz oszacować niepewności narzędzi pomiarowych.

4. Opracowanie wyników pomiarów

Wyznaczanie okresów drgań wahadeł

- 1. Obliczyć *T*₀ okres drgań własnych (bez sprzężenia) dla obu wahadeł. Zdecydować czy *do dalszych analiz przyjąć średnią z obu pomiarów, czy jeden z nich odrzucić*. *Decyzję uzasadnić*.
 - Określić niepewność pomiarową czasu $u(T_o)$.
- 2. Obliczyć okresy dla pierwszego T_{faza} i drugiego T_{p-faza} drgania normalnego oraz okresy dudnień T_d dla wszystkich stosowanych sprzężeń. Przeliczyć je na częstości $\omega = 2\pi/T$ i zestawić np. w tabeli o nagłówku:

d	ω_{faza}	ω_{p-faza}	ω_d	$(\omega_{p-faza} - \omega_{faza})/\omega_d$

3. Jako jedną niepewność częstości przyjąć największą z wartości $u(\omega) = \frac{2\pi}{T^2} \cdot u(T)$, czyli dla najmniejszej wartości T.

Potwierdzenie relacji między rodzajami drgań

- 4. Sprawdzić, czy ω_{faza} zależy od miejsca sprzężenia oraz jaka jest jego wartości względem ω_0 . Wyciągnąć wnioski (1).
- 5. Sprawdzić słuszność relacji teoretycznej $\omega_d = \omega_{p-faza} \omega_{faza}$.

 Wyciągnąć wnioski (2).

Wyznaczenie parametrów wahadła matematycznego i ich niepewności

6. Obliczyć parametry wahadła matematycznego (masę i długość zredukowaną):

$$m = m_p + m_w, l = \frac{0.5 l_p \cdot m_p + 0.5 l_w \cdot m_w + l_p \cdot m_w}{m} = \frac{l_w \cdot m_w - l_p \cdot m_p}{2m} + l_p.$$

7. Obliczyć ich niepewności standardowe złożone: $u_c(m) = \sqrt{\left(u(m_p)\right)^2 + \left(u(m_w)\right)^2}$.

$$u_{c}(l) = \sqrt{\left(\frac{-m_{w}(l_{w} + l_{p})}{2m^{2}}u(m_{p})\right)^{2} + \left(\frac{-m_{p}(l_{w} + l_{p})}{2m^{2}}u(m_{w})\right)^{2} + \left(\left(1 - \frac{m_{p}}{2m}\right)u(l_{p})\right)^{2} + \left(\frac{m_{w}}{2m}u(l_{w})\right)^{2}}$$

- 8. Wyznaczyć niepewności złożone względne $u_{c,r}(y) = \frac{u_c(y)}{y}$ dla wielkości m, l.
- 9. Wyznaczyć niepewności rozszerzone $U(y) = 2 \cdot u_c(y)$ dla wielkości m, l.

Wyznaczenie współczynnika sprężystości sprężyny lub linki sprzegającej

- 10. Wykorzystując uzyskane parametry wyznaczyć stałą sprężyny (linki) $k = \frac{\omega_{p-faza}^2 \omega_{faza}^2}{2d^2}$ ($m l^2$).
- 11. Wyznaczyć jej niepewność standardową złożoną:

$$u_{c}(k) = \sqrt{\left(\frac{ml^{2}\omega_{faza}}{d^{2}}u(\omega_{faza})\right)^{2} + \left(\frac{ml^{2}\omega_{p-faza}}{d^{2}}u(\omega_{p-faza})\right)^{2} + \left(\frac{l^{2}(\omega_{p-faza}^{2} - \omega_{faza}^{2})}{2d^{2}}u(m)\right)^{2} + \left(\frac{ml(\omega_{p-faza}^{2} - \omega_{faza}^{2})}{d^{2}}u(l)\right)^{2}}$$

- 12. Wyznaczyć niepewność złożoną względną $u_{c,r}(k) = \frac{u_c(k)}{k}$.
- 13. Wyznaczyć niepewność rozszerzoną $U(k) = 2 \cdot u_c(k)$.

5. Podsumowanie

- 1. Zestawić wyznaczone wielkości $(\bar{x}, u(\bar{x}), U(\bar{x}), u_{c,r}(\bar{x}))$ wyznaczone z całości pomiarów dla: masy zredukowanej wahadła, długości zredukowanej wahadła, współczynnika sprężystości sprężyny zgodnie z regułami ich prezentacji.
- **2.** *Przeanalizować uzyskane rezultaty*, pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych:
 - a) która z niepewności pomiarowych wnosi największy wkład do niepewności złożonej $u(\bar{x})$;
 - b) czy spełniona jest relacja $u_{c,r}(\bar{x}) < 0.1$;
- **3.** Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych i ich przyczyn. Uwzględnić tu wnioski (1), (2).

Wyjaśnić czy cele ćwiczenia zostały osiągnięte.

6. Przykładowe pytania

www.wtc.wat.edu.pl w dziale DYDAKTYKA -> FIZYKA -> ĆWICZENIA LABORATORYJNE.

- 1. Zdefiniować i podać przykład inercjalnego oraz nieinercjalnego układów odniesienia.
- 2. Zdefiniować rodzaje wahadeł: fizyczne, matematyczne, sprzężone.
- 3. Jakie są rodzaje drgań? Co to są drgania normalne?
- 4. Co nazywamy dudnieniem?
- 5. Co to jest rezonans?

ĆWICZENIE 5

	Mechanika, Drgania i Fale
Kartę Pomiarów proszę drukować dwustronnie	
Zespół w składzie	
Cele ćwiczenia:	
 wyznaczenie masy zredukowanej wahadła fizycznego; wyznaczenie długości zredukowanej wahadła fizycznego; 	
 wyznaczenie współczynnika sprężystości sprężyny; 	
 potwierdzenie zależności teoretycznych wiążących częstości: pierwszego drugiego drgania normalnego (przeciwfaza) i dudnienia. 	lrgania normalnego (faza),
1. Wartości teoretyczne wielkości wyznaczanych lub określanych:	
relacja ω_d , ω_2 , ω_1 :	
$m_w = 2{,}33\pm0{,}01~kg;\ l_w = 0{,}114\pm0{,}001~m;\ m_p = 0{,}404\pm0{,}001~kg,\ l_p = 0{,}820\pm0{,}001$ Należy potwierdzić wartości parametrów i ich niepewności na stanowisku!	
3. Pomiary i uwagi do ich wykonania Niepewność pomiaru położenia	
Niepewność pomiaru czasu	

Mechanika,	Drgania	i	Fal	ϵ

Czas wykonania 10..... drgań przez wahadło prawe

Czas wykonania 10..... drgań przez wahadło lewe

L.p.	Punkt zamocowania sprężyny [mm]	Czas wykonania 10 drgań sprzężonych w fazie []	Czas wykonania 10 drgań sprzężonych w przeciwfazie []	Czas wykonania 2 drgań sprzężonych dudniących []
1	750			
2	700			
3	650			
4	600			
5	550			
7	500			
8	450			
9	400			
10	350			
11	300			
12	250			
13	200			

Δt , [s] 0,2	0,2	1,0
----------------------	-----	-----

Data i podpis osoby prowadzącej