

METHOD FOR BEAM WELDING OF HARDENABLE STEELS BY MEANS OF SHORT-TIME HEAT TREATMENT

Patent number: EP0925140 (A1)

Publication date: 1999-06-30

Inventor(s): BRENNER BERNDT [DE]; GNANN RUEDIGER ARNOLD [DE]; NAUNAPPER DIETMAR [DE]; DUSCHEK CARSTEN [DE]

Applicant(s): FRAUNHOFER GES FORSCHUNG [DE]; ARNOLD KARL H MASCH [DE]

Classification:

- **international:** B23K15/00; B23K26/00; B23K26/20; B23K26/32; B23K26/42; B23K103/04; B23K15/00; B23K26/00; (IPC1-7): B23K26/00; B23K15/00

- **european:** B23K15/00P; B23K26/42C

Application number: EP19970923829 19970514

Priority number(s): WO1997DE00994 19970514; DE19961037465 19960913

Also published as:

EP0925140 (B1)

DE19637465 (C1)

US6365866 (B1)

KR20000036060 (A)

JP2001500790 (T)

[more >>](#)

Abstract not available for EP 0925140 (A1)

Abstract of correspondent: **DE 19637465 (C1)**

The invention concerns a method for beam welding of hardenable steels using a short-time heat treatment. The invention is specially useful in the automobile and engineering industries. At first a short-time heat treatment as single defined preheating is carried out. The beam welding starts at the latest after a defined cooling time.

Data supplied from the **esp@cenet** database — Worldwide

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 925 140 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
27.08.2003 Patentblatt 2003/35 (51) Int Cl.7: B23K 26/00, B23K 15/00

(21) Anmeldenummer: 97923829.2

(86) Internationale Anmeldenummer:
PCT/DE97/00994

(22) Anmeldetag: 14.05.1997

(87) Internationale Veröffentlichungsnummer:
WO 98/010884 (19.03.1998 Gazette 1998/11)

DZ

(54) VERFAHREN ZUM STRAHL SCHWEISSEN VON HÄRTBAREN STÄHLEN MITTELS KURZZEITWÄRMEBEHANDLUNG

METHOD FOR BEAM WELDING OF HARDENABLE STEELS BY MEANS OF SHORT-TIME HEAT TREATMENT

PROCEDE DE SOUDAGE PAR FAISCEAU D'ACIERS TREMPES PAR TRAITEMENT THERMIQUE DE COURTE DUREE

(84) Benannte Vertragsstaaten:
CH FR GB IT LI SE

(72) Erfinder:

- BRENNER, Berndt
D-01474 Pappritz (DE)
- GNANN, Rüdiger, Arnold
D-88214 Ravensburg (DE)
- NAUNAPPER, Dietmar
D-79206 Oberrimsingen (DE)
- DUSCHEK, Carsten
D-01157 Dresden (DE)

(30) Priorität: 13.09.1996 DE 19637465

(56) Entgegenhaltungen:

EP-A- 0 721 818 DE-A- 2 135 667

(43) Veröffentlichungstag der Anmeldung:
30.06.1999 Patentblatt 1999/26

- J. RUGE: "Handbuch der Schweißtechnik" 1991,
SPRINLER-VERLAG, HEIDELBERG, DE
XP002039427 in der Anmeldung erwähnt Band 1,
"Werkstoffe", 3. Auflage, ISBN-3-540-52697-8
siehe Seite 126

(73) Patentinhaber:

- FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
80636 München (DE)
- KARL H. ARNOLD MASCHINENFABRIK GMBH & CO. KG
88214 Ravensburg (DE)

EP 0 925 140 B1

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingereicht, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Verfahren gemäß dem Oberbegriff des Anspruchs 1. Objekte, bei denen ihre Anwendung möglich und zweckmäßig ist, sind alle durch Strahlschweißverfahren fügbaren, mechanisch, zyklisch oder dynamisch hochbelasteten Bauteile, die wegen einer lokalen Verschleißbelastung zumindest partiell aus härtbaren Stählen bestehen oder die wegen ihrer hohen mechanischen Belastung vergütet sind. Besonders vorteilhaft ist die Erfindung zur Herstellung verschiedenster, insbesondere rotationssymmetrischer Kraftübertragungselemente, druckbeaufschlagter Hohlkörper, Hydraulikkolben, Ventile usw. einsetzbar. Bevorzugtes Einsatzgebiet der Erfindung ist der Fahrzeug- und Maschinenbau, vorrangig der Automobilbau.

[0002] Kohlenstoffstähle mit einem Kohlenstoffgehalt von $C \geq 0,25\%$ und niedriglegierte Stähle mit Kohlenstoffgehalten von $C \geq 0,20\%$ sind nur bedingt konventionell schweißbar. Die Ursache dafür besteht in der durch den Kohlenstoff bewirkten und durch verschiedene Legierungselemente verstärkten Aufhärtung in der Schweiß- und der Wärmeeinflußzone, die zu Rissen führt. Die Aufhärtung und nachfolgende Rißbildung kommt zustande durch die Bildung von nur wenig verformungsfähigem, nicht oder wenig selbstangelaßenen Martensit oder unteren Bainit, die nicht in der Lage sind, die während der Abkühlung auftretenden hohen transienten Spannungen plastisch abzubauen.

[0003] Ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 (vgl. mit folgender Literaturstelle) zur Verhinderung einer unzulässigen Aufhärtung und damit auch der Rißbildung besteht bei konventionellen Schweißverfahren in der durchgreifenden Vorwärmung der Bauteile. Als Vorwärmtemperaturen werden für Kohlenstoffstähle mit Kohlenstoffgehalten C von $0,3\% \leq C \leq 0,45\%$ $150\ldots275\text{ }^{\circ}\text{C}$ empfohlen [z. B.: J. Ruge »Handbuch der Schweißtechnik«, Band 1 »Werkstoffe«, 3. Auflage, Springer-Verlag, Heidelberg 1991, ISBN-3-540-52697-8, S. 125-127, S. 144]. Für niedriglegierte Stähle kann sich die notwendige Vorwärmtemperatur auf Temperaturen bis zu $400\text{ }^{\circ}\text{C}$ erhöhen [z. B. Qualitäts- und Edelstähle der DDR, Leipzig, 1972 Band 1].

[0004] Für viele Bauteile, insbesondere Massenbauteile weisen konventionelle Schweißverfahren jedoch Nachteile hinsichtlich Schweißgeschwindigkeit, Bauteilverzug, Stückkosten und Nachbearbeitungsaufwand auf. Die Ursache dieser Mängel besteht in den relativ niedrigen anwendbaren Leistungsdichten, die zu relativ kleinen Erwärmungsgeschwindigkeiten, größerer Wärmeeinbringung und großen Schweißnahtvolumina führen.

[0005] Strahlschweißverfahren wie das Laser- oder Elektronenstrahlschweißen vermeiden diese Nachteile durch die Anwendung von bis zu einigen Größenordnungen höheren Leistungsdichten. Ein wesentlicher

Mangel dieser Schweißverfahren besteht jedoch darin, daß sie zu einer höheren Aufhärtung der Schmelzzone und der Wärmeeinflußzone und damit auch zu einer höheren Rißanfälligkeit der Schweißnähte führen. Dieser

5 Mangel schränkt die Palette der strahlschweißbaren Stähle empfindlich ein, da die Grenze der rißfrei beherrschbaren Kohlenstoff- und Legierungselementgehalte sinkt

[0006] Die Auswirkungen dieses Mangels werden dadurch verstärkt, daß konventionelle Verfahren zur durchgreifenden Vorwärmung nur schlecht in automatisierte Strahlschweißanlagen zu integrieren sind, wegen der kurzen Taktzeiten zu aufwendig sind und durch die Oxidation der Fügestelle zu einer Verschlechterung der Schweißnahtqualität führen.

[0007] Die Ursache dieses Mangels besteht in der extrem hohen Abschreckgeschwindigkeit, die die $t_{8/5}$ -Zeiten deutlich unterschreitet.

[0008] Nach PS J-1-40194 [»Laser Beam Welding method for joining material«] ist ein Verfahren zum Laserschweißen von nicht härtbaren dünnen Blechen bekannt, um die Abschreckgeschwindigkeit beim Laserschweißen durch eine prozeßintegrierte Nachwärmung abzusenken. Dazu wird ein - sich in Bezug zur Vorschubgeschwindigkeit hinter dem Laserschweißkopf befindlicher und mit ihm fest verbundener - Hochfrequenzinduktor mit der Laserschweißgeschwindigkeit in einem durch den Fokusabstand des Laserstrahles und die geometrische Anordnung festgelegten Abstand zur

20 Oberfläche geführt. Durch die Einkopplung der Hochfrequenz wird ein schmaler Streifen beidseitig der I-Schweißnaht des verschweißten Bleches erwärmt und somit die Abschreckgeschwindigkeit verringert. Ziel des Verfahrens ist eine Zähigkeitserhöhung und Verbesserung der Umformbarkeit der Bleche.

[0009] Die Bleche werden dazu auf etwa $1\,000\text{ }^{\circ}\text{C}$ erwärmt. Durch die Nutzung von Hochfrequenz ist das Verfahren in seiner Anwendung auf dünne Bleche beschränkt. Durch die Veränderung der Vorschubgeschwindigkeit des Induktors, die jedoch nur im gleichen Maße wie die nach anderen Kriterien festzulegende Laserschweißgeschwindigkeit variiert werden kann, der Spitzentemperatur sowie der Induktchlänge und -breite läßt sich die Abkühlgeschwindigkeit in einem relativ engen Rahmen ändern.

[0010] Der Mangel dieses Verfahrens besteht darin, daß es nur für dünne Bleche und nur sehr beschränkt für härtbare Stähle und damit kaum für Kraftübertragungselemente oder mechanische Funktionsbauteile einsetzbar ist.

[0011] Die Ursache für diesen Mangel besteht darin, daß der überlagerte Temperatur-Zeit-Zyklus der induktiven Nachwärmung nicht oder zumindest nicht für alle Tiefenbereiche innerhalb der Schweißnaht auf die Anforderungen zur Vermeidung der Aufhärtung beim Strahlschweißen von härtbaren Stählen einstellbar ist. Im einzelnen führt das daher, daß die Erwärmungstiefe nicht an die erforderliche Schweißnahttiefe anpaßbar

ist, die Abkühlgeschwindigkeiten nicht oder zumindest nicht für die gesamte Schweißnahttiefe ausreichend klein gewählt werden können und die hohe Spitzentemperatur des Nachwärmzyklus das eingestellte normalisierte oder vergütete Gefüge zerstört. Dadurch, daß die Erwärmungstiefe durch die induktive Energieeinbringung mit Hochfrequenz zu gering ist, die Wärmeenergie erst nach Beendigung des Schweißprozesses eingebracht wird und die Wärmeeindringgeschwindigkeit in das Bauteil vergleichsweise klein gegenüber der Laserschweißgeschwindigkeit ist, erreicht die Grenzisotherme ausreichend hoher Anlaßtemperaturen die tieferen Bereiche der Schweißnaht erst nach Zeitspannen, in denen hier schon die M_s -Temperatur unterschritten ist und deshalb Aufhärtung einsetzt. Die hohe Spitzenttemperatur von etwa 1000°C, die oberhalb der Austenitisierungstemperatur liegt und die sich aus der bezüglich der Bauteildicke geringen relativen Einwärmtiefe sowie der hohen Vorschubgeschwindigkeit ergebende relativ große Abschreckgeschwindigkeiten führen zudem in Gebieten auch außerhalb der WEZ der Schweißzone zur Gefahr von Neuhärtungen.

[0012] Das Ziel der Erfindung ist es, ein Verfahren anzugeben, mit dem sich härtbare Stähle mittels Strahlschweißen effektiv und ohne störende Aufhärtung rißfrei schweißen lassen.

[0013] Der Erfindung liegt die Aufgabe zu Grunde, ein instationäres Temperaturfeld und ein Verfahren zu seiner Erzeugung anzugeben, das gut prozeßintegrierbar ist und das auch für härtbare Stähle mit relativ großen kritischen Abkühlzeiten und relativ tiefen Schweißnähten so einstellbar ist, daß die gesamte Schweißnaht eine ausreichend geringe Abkühlgeschwindigkeit aufweist und das normalisierte oder vergütete Grundgefüge des Ausgangszustandes außerhalb der Schweißzone und der Wärmeeinflußzone nicht geschädigt wird.

[0014] Erfindungsgemäß wird diese Aufgabe mit einem Verfahren zum rißfreien Strahlschweißen von härtbaren Stählen mittels einer Kurzzeitwärmebehandlung wie im Anspruch 1 dargestellt gelöst.

[0015] Vorteilhafte Ausgestaltungen sind in den Ansprüchen 2 - 13 dargestellt.

[0016] Die Kurzzeitwärmebehandlung wird als alleiniges Vorwärmern durchgeführt. Das wird möglich, wenn die Erwärmungstiefe, die Aufheizdauer, die Spitzenttemperatur des Temperatur-Zeit-Zyklus und die Abschreckgeschwindigkeit wie in Anspruch 1 angegeben, gewählt werden. Die Erwärmungstiefe vor Beginn des Strahlschweißens t_{l2} wird dabei so gewählt, daß sie das 1,0 bis 5,0 fache der Schweißnahttiefe erreicht. Als freie Parameter zur Einstellung der Erwärmungstiefe t_{l2} dienen die Energieeinwirkungsdauer selbst, die Induktionsfrequenz und in geringem Maße die Spitzenttemperatur T_{max} des Vorwärmzyklus.

[0017] Die Spitzenttemperatur wird in einem Temperaturbereich von $620\text{ K} < T_{max} \leq T_z - 30\text{ K}$ gewählt, wobei die Temperatur T_z abhängt vom Ausgangsgefüge der zu verbindenden Werkstoffe. Im perlitzischen Zustand

entspricht T_z der Temperatur bei der innerhalb einer Zeit von 1 s bis 100 s eine merkliche Zementiteinformierung einsetzt. Im vergüteten Ausgangszustand entspricht sie der Temperatur der vorhergehenden Anlaßbehandlung.

5 5 Die Wahl dieser Temperatur garantiert die besten Bedingungen für den nachfolgenden Abkühlzyklus ohne das Gefüge zu schädigen.

[0018] Entscheidend für das Schweißergebnis und besonders vorteilhaft für die Prozeßgestaltung ist es, daß die Abschreckzeit τ_k durch die Nutzung des natürlichen Abkühlvermögens des Bauteiles eingestellt wird. Als freie Parameter zur Einstellung des konkreten Wertes τ_k dienen die relative Tiefe und die Breite der Vorwärmzone.

10 15 [0019] Eine besonders vorteilhafte Ausgestaltung des Verfahrens sieht entsprechend Anspruch 2 vor, daß das Strahlschweißen mit Laser und das Vorwärmen induktiv erfolgt.

[0020] 20 Vorteilhaft bei der Verfahrensausgestaltung nach Anspruch 5 ist, daß die Erwärmungstiefe t_{l1} nach Ende des Energieeinwirkungszyklus durch die Frequenz des Induktionsgenerators eingestellt wird. Dadurch kann die Energieeinwirkungsdauer τ_S und die Abkühlzeit τ_A verringert werden. Außerdem werden zusätzliche Freiheitsgrade für die Anpassung der Dauer der Energieeinwirkung τ_S an die Schweißzeit τ_L entsprechend Anspruch 8 gewonnen, die für eine Taktzeit-optimierung wesentlich ist.

[0021] Durch die Wahl der erfundungsgemäßen Energieeinwirkungsdauern τ_S , Maximaltemperaturen T_{max} , Abkühlzeiten τ_A und geometrischen Größen der Vorwärmzone b_{l1} und t_{l1} wird es möglich, den Vorwärmzyklus wie in Anspruch 6 angeführt, vollständig vor dem Schweißzyklus abzuschließen. Das gestattet mehr Freiräume bei der Auslegung von entsprechenden Schweißmaschinenkonzepten.

[0022] Eine besondere Ausgestaltung der Erfindung sieht nach Anspruch 9 vor; die Maxima des Temperaturfeldes der Vorwärmung in Entfernung von dem ein- bis dreifachen der Wandstärke des Bauteiles zu legen. Damit wird bei kritischen Werkstoffen mit besonders großen $t_{8/5}$ -Zeiten bei konstanter Maximaltemperatur des Vorwärmzyklus eine besonders kleine Abkühlgeschwindigkeit an der Fügestelle erreicht.

[0023] 40 45 Der Vorteil der Verfahrensgestaltung gemäß Anspruch 10 besteht darin, daß damit ein Austritt der durch die Vorwärmung unter erhöhtem Druck stehenden Luft innerhalb geschlossener Hohlkörper durch den Fügespalt verhindert werden kann. Dadurch kann auch ohne zusätzliche Entlüftungsbohrungen, die oft unerwünscht sind und eines zusätzlichen Fertigungsaufwandes bedürfen, eine sehr gute Schweißnahtqualität erreicht und bis an die Schweißnahtoberfläche reichende Schlauchporen vermieden werden.

[0024] 50 55 Vorteilhaft bei der Verfahrensgestaltung nach Anspruch 11 ist, daß eventuell im Anschluß an die Schweißoperation notwendige Härtungs- oder Vergütungsbehandlungen prozeßtechnisch einfach und ener-

getisch optimal in den Wärmebehandlungszyklus des Schweißens integriert werden können.

[0025] Bei der Verfahrensausgestaltung gemäß den Anspüchen 12 und 13 wird vorteilhafterweise von der Tatsache Gebrauch gemacht, daß aus fertigungstechnischen Gründen die zu fügenden Einzelteile einfacher zu härteln sind als komplette Schweißkonstruktionen.

[0026] Die Erfindung wird am nachfolgenden Ausführungsbeispiel näher erläutert.

[0027] In der dazugehörigen Zeichnung (Figur 1) ist eine schematische Darstellung eines geschweißten Bauteiles dargestellt.

Beispiel 1:

[0028] Zwei Teile 1 und 2 sollen gemäß Figur 1 mit einer Axialrundnaht verschweißt werden. Der Außen-durchmesser beider Teile beträgt 45 mm. Der Innen-durchmesser von Teil 2 beträgt 35 mm. Teil 1 ist mit einer Nahtstütze 3 versehen, die 3 mm dick ist. Die Teile werden mit einem Übermaß von 0,05 bis 0,13 mm gefügt. Beide Teile bestehen aus C45 und liegen im normalisierten Zustand vor. Ihre Härte beträgt 225 HV_{0,05}.

[0029] Als Vorwärmverfahren wird eine induktive Energiedeinbringung gewählt. Die Induktionsfrequenz beträgt 10 kHz. Der Induktor 4 ist ein zweiwindiger Halbschaleninduktor. Die Ausführung als Halbschaleninduktor gestattet eine einfache automatisierte Zuführung und Entnahme der gefügten Teile 1 und 2 zur bzw. aus der Erwärmungsstation. Der Induktor 4 trägt auf der dem Teil 1 gegenüberstehenden Windung Feldverstärkungsbleche 5, die trotz der größeren Wandstärke des Teiles 1 eine größere mittlere Temperatur \bar{T}_1 innerhalb der induktiven Erwärmungszone 6 als in der induktiven Erwärmungszone 7 mit der mittleren Temperatur \bar{T}_2 gewährleisten. Der Kopplungsabstand a beträgt a = 5 mm. Der Induktor ist insgesamt $I_g = I_1 + c + I_2 = 30$ mm breit. Die Wahl der Gesamtbreite $I_g = 30$ mm erlaubt ausreichend große Abkühlzeiten, während ein gleichfalls erprobter Induktor mit $I_g = 16$ mm geringere Abkühlzeiten nach sich zieht, die bei gleichen Maximaltemperaturen T_{max} zu einer höheren, aber auch noch tolerierbaren Härte führen. Der Abstand c zwischen beiden Induktorwindungen beträgt 4 mm. Durch die Wahl dieses relativ großen Windungsabstandes gegenüber der Fügestelle wird einer Kantenüberhitzung vorgebeugt. Gleichzeitig bilden sich die beiden Temperaturmaxima des induktiven Vorwärmens in je etwa 7 mm Entfernung von der Fügestelle. In der Abkühlzeit τ_A zwischen dem Ende der Energiedeinbringungsdauer und dem Start des Schweißens fließt auch zusätzliche Wärme zur Fügestelle, so daß die Temperatur bis zum Start des Schweißens hier besonders langsam abfällt und die nötige Maximaltemperatur T_{max} niedriger gewählt werden kann.

[0030] Als Schweißverfahren wird das Laserschweißen gewählt. Zum Schweißen dient ein 5,0 kW-CO₂-Laser, die Laserschweißgeschwindigkeit beträgt 1,7 m/min. Der Fokus des Laserstrahles 11 wird 1,0 mm unter

die Bauteilloberfläche gelegt.

[0031] Nach dem Einspannen der gefügten Teile 1 und 2 werden sie in eine Umdrehungsgeschwindigkeit von 300 U/min versetzt. Der Induktionsgenerator wird auf eine Leistung von 62 kW eingestellt. Nach dem Ende der Energiedeinbringungsdauer von $\tau_S = 7,0$ s weist das Teil 1 eine Maximaltemperatur T_{max1} von $T_{max1} = 655$ °C und Teil 2 eine Maximaltemperatur $T_{max2} = 610$ °C auf. Die Erwärmungstiefe t_{H1} beträgt etwa $t_{H1} \sim 4,5$ mm und die Erwärmungsbreite b_{H1} etwa $b_{H1} \sim 34$ mm. Nach einer Abkühlzeit von $\tau_A = 8,0$ s wird mit dem Laserschweißen begonnen. Die Oberflächentemperaturen betragen zu diesem Zeitpunkt etwa $T_{O1} = 590$ °C bzw. $T_{O2} = 570$ °C. Die mittlere Temperatur in Teil 1 ist noch 15 geringfügig höher als in Teil 2. Die Erwärmungszone hat sich auf die Größen $t_{H2} = 5,0$ mm, $t_{B2} = 8,0$ mm, $b_{H2} = 42$ mm ausgedehnt. Der Temperaturunterschied zwischen dem Außendurchmesser 8 und dem Innendurchmesser 9 ist sehr gering und beträgt maximal 20 K.

[0032] Geschweißt wird mit einer Laserleistung von 4,0 kW. Einschließlich des Schweißens des Überlappungsbereiches dauert das Laserschweißen $\tau_L = 5,4$ s. Die Einschweißtiefe der Laserschweißnaht 10 erreicht etwa 6,0 mm, die Zeit $t_{B/5} \geq t_k$ in der Schweißzone und 25 der Wärmeeinflußzone beträgt etwa 19 s und ist damit deutlich größer als die kritische Abkühlzeit zur Martensitbildung, die für C45 bei etwa 2 s liegt.

[0033] Die Laserschweißnaht 10 weist eine mittlere Härte von 280 HV_{0,05} auf, ist völlig rißfrei und besteht fast 30 völlig aus Ferrit und Perlit. Wird dagegen ohne Vorwärmung geschweißt, beträgt die mittlere Härte in der Schweißzone 665 HV_{0,05}. Sowohl Schweißzone als auch die innere Berandung der Wärmeeinflußzone sind voll martensitisch und weisen im Mittel 9 Risse auf.

35

Patentansprüche

1. Verfahren zum rissfreien Strahlschweißen von härtbaren Stählen mittels Kurzzeitwärmebehandlung, dadurch gekennzeichnet, dass
 - a. die Kurzzeitwärmebehandlung als alleiniges Vorwärmens durchgeführt wird
 - b. die Erwärmungstiefe (t_{H1}) nach Ende einer Energiedeinbringungsdauer τ_S so gewählt wird, dass sie das 0,3- bis 5-fache der Schweißnahttiefe (t_s) erreicht
 - c. der Temperatur-Zeit-Zyklus des Vorwärmens so geführt wird, dass am Ende einer Energiedeinbringungsdauer τ_S von $0,3 \leq \tau_S \leq 20$ s eine Spitzentemperatur T_{max} von $620 \text{ K} \leq T_{max} \leq T_z - 30 \text{ K}$ erreicht wird, wobei im vergüteten Ausgangszustand die Temperatur T_z der Temperatur der vorhergehenden Anlassbehandlung entspricht und im ferritisch-perlitischen Ausgangszustand die Temperatur T_z der Temperatur entspricht, bei der bei dem betreffenden

- Stahl die Zementiteinförmung innerhalb von 1 s bis 100 s merklich einsetzt
d. das Strahlschweißen spätestens nach einer Abkühlzeit τ_A von $0.01 \text{ s} \leq \tau_A \leq 30 \text{ s}$ beginnt und die Einwärmtiefe (t_{12}) zu diesem Zeitpunkt eine Tiefe $1,0 \text{ t}_s \leq t_{12} \leq 5 \text{ t}_s$ erreicht hat
e. die Abschreckzeit in der Schweißzone und der Wärmeinflußzone $t_{8/5}$ auf einen Wert $t_{8/5} \geq \tau_K$ eingestellt wird, wobei der Wert τ_K einer Abschreckzeit entspricht, bei der der Anteil von Ferrit, Perlit und Zwischenstufe in der Schweiß- und Wärmeinflußzone mindestens 70 % beträgt oder die Härte in der Schweiß- und Wärmeinflußzone kleiner als $350 \text{ HV}_{0,05}$ ist
f. zur Einstellung des Wertes τ_K die Breite (b_{11}) der Vorwärmzone und ihre relative Tiefe t_{11}/d in Bezug zur Wandstärke d des Bauteiles soweit vergrößert werden, bis die Abkühlung so langsam verläuft, daß der Wert τ_K erreicht oder überschritten wird

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Strahlschweißen mittels Laser vorgenommen wird und das Vorwärmen induktiv erfolgt.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Strahlschweißen mittels Elektronenstrahl vorgenommen wird und das Vorwärmen induktiv oder direkt durch den Elektronenstrahl selbst erfolgt.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Strahlschweißen mittels Laser vorgenommen wird und das Vorwärmen mittels eines oder mehrerer geeignet angeordneter Hochleistungsdiode-laserstacks erfolgt.

5. Verfahren nach Anspruch 1 und 2 oder 3, dadurch gekennzeichnet, dass die Erwärmungstiefe (t_{11}) nach Ende des Energieeinwirkungszyklus durch die Frequenz des Induktorgenerators eingestellt wird.

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Vorwärmen vollständig vor Beginn des Strahlschweißens abgeschlossen ist.

7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Vorwärmen simultan im Vorlauf der Schweißzone und mit gleicher Vorschubgeschwindigkeit erfolgt.

8. Verfahren nach Anspruch 1 und 6, dadurch gekennzeichnet, dass die Energieeinwirkungsdauer τ_s etwa gleichlang wie die Schweißzeit τ_L eingestellt wird.

9. Verfahren nach Anspruch 1 und 6, dadurch gekennzeichnet, dass das Temperaturfeld des Vorwärmzyklus so ausgebildet wird, dass die Temperaturmaxima des Vorwärmzyklus etwa in einer Entfernung von dem 1- bis 3-fachen der Bauteilwandstärke d entstehen.

10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass beim Verschweißen von geschlossenen Hohlkörpern die Fügestelle (10) mit einer Nahtstütze (3) ausgeführt wird, die beiden zu verschweißenden Teile (1) und (2) mit einer Presspassung ausgeführt werden und die Presspassung während des Vorwärmens und bis zum Ende des Schweißvorganges dadurch aufrechterhalten wird, dass die mittlere Temperatur T_1 in dem mit einer Nahtstütze (3) versehenen Teiles (1) während des Vorwärmens und des Schweißens ständig größer gehalten wird als die im Teil (2) sich ausbildende mittlere Temperatur T_2 .

11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass unmittelbar im Anschluss an das Strahlschweißen die miteinander verschweißten Teile oder Bereiche von ihnen einer durchgreifenden oder Randschichtvergütung unterworfen werden.

12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass auf einem oder beiden zu verschweißenden Bauteilen vor dem Vorwärmern durchgehärtete, randschichtgehärtete oder einsatzgehärtete Bereiche erzeugt werden und ihr Anlassen unmittelbar nach dem Schweißen mit der Restwärme des Vorwärmens erfolgt.

13. Verfahren nach Anspruch 1 und 12, dadurch gekennzeichnet, dass bei verschleißbeanspruchten Bauteilen die Anlaßtemperatur durch eine lokale Flüssigkeits- oder Gaskühlung eingestellt wird.

14. Method for crack-free beam welding of hardenable steels by means of short-time heat treatment, characterized in that

 - a. the short-time heat treatment is carried out as the only preheating step,
 - b. the heating depth (t_{11}) after the end of a duration of energy action τ_s is selected in such a way as to reach 0.3 to 5 times the weld seam depth (t_s),
 - c. the temperature-time cycle of the preheating is such that, at the end of a duration of energy action τ_s of $0.3 \text{ s} \leq \tau_s \leq 20 \text{ s}$, a peak temperature T_{\max} of $620 \text{ K} \leq T_{\max} \leq T_z - 30 \text{ K}$ is reached, and in the quenched and tempered starting state

Claims

1. Method for crack-free beam welding of hardenable steels by means of short-time heat treatment, characterized in that
 - a. the short-time heat treatment is carried out as the only preheating step,
 - b. the heating depth (t_{H1}) after the end of a duration of energy action τ_s is selected in such a way as to reach 0.3 to 5 times the weld seam depth (t_s),
 - c. the temperature-time cycle of the preheating is such that, at the end of a duration of energy action τ_s of $0.3 \text{ s} \leq \tau_s \leq 20 \text{ s}$, a peak temperature T_{\max} of $620 \text{ K} \leq T_{\max} \leq T_z - 30 \text{ K}$ is reached, and in the quenched and tempered starting state

- the temperature T_z corresponds to the temperature of the preceding tempering treatment and in the ferritic-pearlitic starting state the temperature T_z corresponds to the temperature at which, in the steel in question, cementite spheroidization commences to a significant degree within 1 s to 100 s,
- d. the beam welding commences at the latest after a cooling time τ_A of $0.01 \text{ s} \leq \tau_A \leq 30 \text{ s}$, and the heat penetration depth (t_{12}) at this time has reached a depth of $1.0 t_s \leq t_{12} \leq 5 t_s$,
- e. the quenching time in the welding zone and the heat-affected zone $t_{8/5}$ is set to a value $t_{8/5} \geq \tau_K$, the value τ_K corresponding to a quenching time at which the proportion of ferrite, pearlite and bainite in the welding zone and heat-affected zone amounts to at least 70% or the hardness in the welding and heat-affected zone is less than $350 \text{ HV}_{0.05}$,
- f. to set the value τ_K , the width (b_{11}) of the pre-heating zone and its relative depth T_{11}/d in relation to the wall thickness d of the component are increased until the cooling takes place so slowly that the value τ_K is reached or exceeded.
2. Method according to Claim 1, characterized in that the beam welding is carried out by means of laser and the preheating takes place by induction.
3. Method according to Claim 1, characterized in that the beam welding is carried out by means of electron beam and the preheating takes place by induction or directly by means of the electron beam itself.
4. Method according to Claim 1, characterized in that the beam welding is carried out by means of laser and the preheating takes place by means of one or more suitably arranged high-power diode laser stacks.
5. Method according to Claim 1 and 2 or 3, characterized in that the heating depth (t_{11}) after the cycle of energy action has ended is set by means of the frequency of the inductor generator.
6. Method according to Claim 1, characterized in that the preheating has completely concluded before the beam welding commences.
7. Method according to Claim 1, characterized in that the preheating takes place simultaneously ahead of the welding zone and at the same rate of advance.
8. Method according to Claims 1 and 6, characterized in that the duration of energy action τ_s is set to last approximately the same time as the welding time τ_L .
9. Method according to Claims 1 and 6, characterized in that the temperature field of the preheating cycle is formed in such a way that the temperature maximums of the preheating cycle occur approximately at an interval of 1 to 3 times the component wall thickness d .
10. Method according to Claim 1, characterized in that, to weld closed hollow bodies, the joining location (10) is designed with a seam support (3), the two parts (1) and (2) which are to be welded are designed with a press fit and the press fit is maintained during the preheating and through to the end of the welding operation by the mean temperature T_1 in the part (1) which is provided with a seam support (3) being kept higher than the mean temperature T_2 which forms in the part (2) throughout the preheating and the welding.
11. Method according to Claim 1, characterized in that, immediately after the beam welding, those parts or regions thereof which have been welded to one another are subjected to continuous or surface quenching and tempering.
12. Method according to Claim 1, characterized in that, prior to the preheating, fully hardened, surface-hardened or case-hardened regions are produced on one or both of the components to be welded, and these components are tempered immediately after the welding using the residual heat of the preheating.
13. Method according to Claims 1 and 12, characterized in that, in the case of components which are subject to wear, the tempering temperature is set by means of local liquid or gas cooling.

Revendications

1. Procédé pour le soudage au faisceau, sans fissures, d'acières trempants par traitement thermique de courte durée, caractérisé en ce que
 - a) le traitement thermique de courte durée est uniquement un préchauffage,
 - b) la profondeur de chauffage (t_{11}) à la fin d'une durée d'action de l'énergie τ_s est choisie de façon à atteindre 0,3 à 5 fois la profondeur du cordon de soudure (t_s),
 - c) le cycle température-temps du préchauffage est conduit de telle façon qu'à la fin d'une durée d'action de l'énergie τ_s de $0,3 \text{ s} \leq \tau_s \leq 20 \text{ s}$, on atteigne un pic de température T_{\max} de $620 \text{ K} \leq T_{\max} \leq T_z - 30 \text{ K}$, dans lequel, à l'état initial traité et revenu, la température T_z correspond à la température du traitement de revenu pré-

- lable et, à l'état initial ferritique-perlitique, la température T_z correspond à la température, à laquelle la formation de cémentite se produit de façon perceptible dans une plage de 1 s à 100 s pour l'acier considéré,
- d) le soudage au faisceau commence au plus tard après un temps de refroidissement τ_A de $0,01 \text{ s} \leq \tau_A \leq 30 \text{ s}$ et la profondeur de chauffage (t_{12}) à cet instant a atteint une profondeur $1,0 t_s \leq t_{12} \leq 5 t_s$,
- e) la durée de trempe dans la zone de soudage et dans la zone influencée thermiquement $t_{8/5}$ est réglée à une valeur $t_{8/5} \geq \tau_K$, dans lequel la valeur τ_K correspond à une durée de trempe, pour laquelle la fraction de ferrite, de perlite et de structure intermédiaire dans la zone de soudage et la zone influencée thermiquement vaut au moins 70 % ou la dureté dans la zone de soudage et la zone influencée thermiquement est inférieure à $350 \text{ HV}_{0,05}$,
- f) pour le réglage de la valeur τ_K , la largeur (b_{11}) de la zone de préchauffage et sa profondeur relative t_{11}/d par rapport à l'épaisseur de paroi d de la pièce sont augmentées jusqu'à ce que le refroidissement se déroule suffisamment lentement pour que la valeur τ_K soit atteinte ou dépassée.
2. Procédé selon la revendication 1, caractérisé en ce que le soudage au faisceau est effectué au moyen d'un laser et le préchauffage est effectué par induction.
3. Procédé selon la revendication 1, caractérisé en ce que le soudage au faisceau est effectué au moyen d'un faisceau d'électrons et le préchauffage est effectué par induction ou directement par le faisceau d'électrons lui-même.
4. Procédé selon la revendication 1, caractérisé en ce que le soudage au faisceau est effectué au moyen d'un laser et le préchauffage est effectué au moyen d'une ou de plusieurs piles de laser à diodes à haute puissance disposées de façon appropriée.
5. Procédé selon la revendication 1 et 2 ou 3, caractérisé en ce que la profondeur de chauffage (t_{11}) à la fin du cycle d'action de l'énergie est réglée par la fréquence du générateur d'induction.
6. Procédé selon la revendication 1, caractérisé en ce que le préchauffage est complètement terminé avant le début du soudage au faisceau.
7. Procédé selon la revendication 1, caractérisé en ce que le préchauffage est effectué simultanément en avant de la zone de soudage et avec la même vitesse d'avance.
8. Procédé selon la revendication 1 et 6, caractérisé en ce que la durée d'action de l'énergie τ_s est réglée à une valeur sensiblement égale à la durée de soudage τ_L .
9. Procédé selon la revendication 1 et 6, caractérisé en ce que le champ de température du cycle de préchauffage est configuré de telle façon que les maxima de température du cycle de préchauffage apparaissent environ à une distance égale à 1 à 3 fois l'épaisseur de paroi de la pièce.
10. Procédé selon la revendication 1, caractérisé en ce que lors du soudage de corps creux fermés, le joint (10) est formé avec un soutien de cordon (3), les deux pièces à souder (1) et (2) sont réalisées avec un ajustage serré et l'ajustage serré est maintenu pendant le préchauffage et jusqu'à la fin de l'opération de soudage, par le fait que la température moyenne T_1 dans la pièce (1) pourvue d'un soutien de cordon (3) est constamment maintenue plus haute que la température moyenne T_2 s'établissant dans la pièce (2) pendant le préchauffage et le soudage.
11. Procédé selon la revendication 1, caractérisé en ce que immédiatement à la suite du soudage au faisceau, les pièces ou les régions de celles-ci soudées l'une à l'autre sont soumises à un traitement thermique à cœur ou dans la couche superficielle.
12. Procédé selon la revendication 1, caractérisé en ce que l'on produit sur une ou sur les deux pièces à souder, avant le préchauffage, des régions trempées à cœur, trempées en surface ou cémentées et en ce que l'on effectue leur revenu immédiatement après le soudage avec la chaleur résiduelle du préchauffage.
13. Procédé selon la revendication 1 et 12, caractérisé en ce que dans le cas de pièces soumises à l'usure, la température de revenu est fixée par un refroidissement local par un liquide ou un gaz.

Figur 1

