# Методы оптимизации. Семинар 8. Сопряжённые функции

#### Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

31 октября 2019 г.

### Напоминание

- Субградиент и субдифференциал
- Условный субдифференциал
- Способы вычисления субдифференциалов

### Определение

#### Снова сопряжённое?

- Ранее были рассмотрены сопряжённые (двойственные) множества и, в частности, конусы
- Сейчас будут рассмотрены сопряжённые (двойственные) функции
- Далее будет введена двойственная оптимизационная задача

#### Определение

Пусть  $f: \mathbb{R}^n \to \mathbb{R}$ . Функция  $f^*: \mathbb{R}^n \to \mathbb{R}$  называется сопряжённой функцией к функции f и определена как  $f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathrm{dom}\ f} (\mathbf{y}^\mathsf{T} \mathbf{x} - f(\mathbf{x})).$ 

Область определения  $f^*$  — это множество таких  $\mathbf{y}$ , что супремум конечен.

### Свойства

- Сопряжённая функция  $f^*$  всегда выпукла как супремум линейных функций независимо от выпуклости f
- Неравенство Юнга-Фенхеля:  $\mathbf{y}^\mathsf{T}\mathbf{x} \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая:  $\mathbf{y}^\mathsf{T}\mathbf{x} \leq \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{x} + \frac{1}{2}\mathbf{y}^\mathsf{T}\mathbf{y}$
- Если f дифференцируема, то  $f^*(\mathbf{y}) = \langle \nabla f(\mathbf{x}^*), \mathbf{x}^* \rangle f(\mathbf{x}^*)$ , где  $\mathbf{x}^*$  даёт супремум.
- ullet Если f выпукла и замкнута, то  $f^{**}=f$

#### Определение

Выпуклая функция называется замкнутой, если множество её подуровней замкнутое множество.

Пример:  $f(x) = x \log x$  при  $\mathrm{dom}\ f = \mathbb{R}_{++}$  — незамкнутая



### Геометрический смысл



## Примеры

- 1. Линейная функция:  $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} \mathbf{x} + b$
- 2. Отрицательная энтропия:  $f(x) = x \log x$
- 3. Индикаторная функция множества  $S\colon I_S(x)=0$  iff  $x\in S$
- 4. Норма: f(x) = ||x||.
- 5. Квадрат нормы:  $f(x) = \frac{1}{2} ||x||^2$

# Операции с сопряжёнными функциями

- ullet Разделение переменных:  $f(x_1,x_2)=g(x_1)+h(x_2)$  и  $f^*(y_1,y_2)=g^*(y_1)+h^*(y_2)$
- ullet Сдвиг аргумента:  $f({\sf x}) = g({\sf x} {\sf a})$  и  $f^*({\sf y}) = {\sf a}^{\sf T}{\sf y} + g^*({\sf y})$
- ullet Суперпозиция с обратимым линейным преобразованием:  $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$  и  $f^*(\mathbf{y}) = g^*(\mathbf{A}^{-\mathsf{T}}\mathbf{y})$
- Инфимальная конволюция (свёртка инфимумом):  $f(x) = (h\Box g)(x) = \inf_{u+v=x} (h(u) + g(v))$  и  $f^*(y) = h^*(y) + g^*(y)$

# Moreau-Yosida envelope

- f(x) выпуклая, но *негладкая*
- Moreau-Yosida envelope  $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2) = \left( f \Box \frac{1}{2\lambda} \|\cdot\|_2^2 \right) (\mathbf{x})$$

- Функция Хьюбера  $M_{\lambda f}$  для модуля
  - f(x) = |x|
  - $M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| \lambda/2 & |x| \ge \lambda \end{cases}$

#### Упражнение

- Нарисуйте на одном графике f(x) и  $M_{\lambda f}(x)$
- ullet Получите выражение  $M_{\lambda f}$  для  $f(\mathbf{x}) = \|\mathbf{x}\|_1$



# Почему получилась гладкая функция?

- $M_{\lambda f}({\bf x})$  выпукла
- $M^*_{\lambda f}(\mathbf{y}) = f^*(\mathbf{y}) + rac{\lambda}{2} \|\mathbf{y}\|_2^2$  сильно выпукла с параметром  $\lambda$
- $M_{\lambda f} = M_{\lambda f}^{**} = (f^* + \frac{\lambda}{2} || \cdot ||_2^2)^*$
- Сопряжённая функция к сильно выпуклой функции является гладкой  $\Rightarrow M_{\lambda f}$  гладкая функция и

$$M'_{\lambda f}(\mathbf{x}) = \frac{1}{\lambda}(\mathbf{x} - \mathbf{u}^*), \quad \mathbf{u}^* = \operatorname*{arg\,min}_{\mathbf{u}} \left( f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2 \right)$$

#### Важное свойство

Множество точек минимума f и  $M_{\lambda f}$  совпадает.



### Резюме

- Сопряжённые функции
- Неравенство Юнга-Фенхеля и другие свойства
- Сглаживание негладких функций
- Примеры