International Publication No. WO 01/35428 A1

JUN 17 2003

KILYK & BOWERSOX, P.L.L.C.

Job No.: 397-93764 Ref.: 3600-351

Translated from German by the Ralph McElroy Translation Company 910 West Avenue, Austin, Texas 78701 USA

INTERNATIONAL PATENT OFFICE WORLD ORGANIZATION FOR INTELLECTUAL PROPERTY

International patent published on

the basis of the Patent Cooperation Treaty (PCT)
INTERNATIONAL PUBLICATION NO. WO 01/35428 A1

International Patent Classification⁷:

H01G 9/042

9/052

International Filing No.:

PCT/EP00/10622

International Filing Date:

October 27, 2000

International Publication Date:

May 17, 2001

Priority

Date:

November 9, 1999

Country:

No.:

199 53 946.4

DE

Designated States (national):

AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, LZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,

YU, ZA, ZW.

Designated States (regional):

ARIPO Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian Patent (AM, AZ, BY,

KG, KZ, MD, RU, TJ, TM)

European Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

CAPACITOR POWDER

Inventors and Inventors/Applicants (only for US):

Karl-Heinz Reichert [DE/DE]

Am Stadtfeld 43

38304 Wolfenbüttel (DE)

Oliver Thomas [DE/DE]

Feldstr. 7

38667 Bad Harzburg (DE)

Christoph Schnitter [DE/DE]

Soltgrund 3

31188 Holle (DE)

Applicant (for all designated states except US):

H.C. Starck GmbH & Co. KG

[DE/DE]

Im Schleeke 78-91 38642 Goslar (DE)

Agent:

Rüdiger Drope

Bayer Aktiengesellschaft 51368 Leverkusen (DE)

Published with International Search Report.

In order to clarify the two-letter codes and the other abbreviations, refer to the Guidance Notes on Codes and Abbreviations at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: The invention relates to an electrolytic capacitor containing a niobium anode, a niobium oxide depletion layer, a semiconducting cathode and an electrolyte, whereby the niobium oxide depletion layer contains at least one metal selected from the group Al, Si, Ti, Zr, Mo, W, Y and Ta.

The present invention is relative to a powder for producing electrolytic capacitors and in particular to a powder for producing anodes for electrolytic capacitors.

The literature describes in particular the acidic-earth metals niobium and tantalum as initial materials for the production of such capacitors. The production of the capacitors takes place by sintering fine powders for producing a large-surface structure, by oxidation of the surface of the sintered body for producing a non-conductive insulating layer and by applying the counterelectrode in the form of a layer of manganese dioxide or of a conductive polymer. The special suitability of the acidic-earth metallic powders is derived from the great relative dielectric constant of the pentoxides.

Up to the present, only tantalum powders had achieved industrial significance for the production of capacitors. This is based on the one hand on the reproducible ability to produce fine tantalum powder and on the other hand on the fact that the insulating oxide layer of tantalum pentoxide has a particularly pronounced stability. This is possibly based on the fact that tantalum, in contrast to niobium, does not form a stable suboxide.

However, the disadvantages of tantalum are becoming increasingly significant as microelectronics development continues. On the one hand, tantalum has a very high density of 16.6 g/cm³. This limits the tendency to reduce weight, in particular the weight of portable electronic devices like mobile telephones, etc. On account of the density of niobium, which is only half as great as that of tantalum, weight-related specific capacities can be achieved that are approximately twice as high as those achieved with tantalum powders, given the prerequisite of the same geometry and the same properties of the oxide layer. The material properties of the insulating pentoxide layer of niobium on the one hand and of tantalum on the other hand that determine the capacity of a capacitor exert partially opposite influences.

Thus, the greater the relative dielectric constant, the higher the capacity of a capacitor. The greater the thickness of the insulating layer required for the particular specified operating voltage, the lower the capacity is. Thus, the higher, at 41, dielectric constant of niobium pentoxide in comparison to 26 of tantalum pentoxide is compensated by the greater thickness of the pentoxide layer required for niobium in comparison to tantalum. At a given anodizing voltage the increase in thickness of the tantalum pentoxide layer is approximately 2 nm/V and that of the niobium pentoxide layer is approximately 3.7 nm/V. Accordingly, the capacities relative to the surface of the capacitors are comparable.

The use of niobium capacitors was reserved up to the present for low specific capacities with a small specific surface and a rather poor quality.

The present invention has the problem of overcoming the disadvantages of known niobium capacitors. The present invention has the particular problem of improving the niobium pentoxide depletion layer on niobium capacitors in such a manner that greater specific capacities can be realized.

It was found that niobium powders with a surface coating consisting of at least one of the elements Al, Si, Ti, Zr, Mo, W, Y and Ta are superbly suited for the production of niobium capacitors. In particular, it was found that the specific capacity, relative to the surface of the capacitor anode, of such capacitors produced from coated niobium powder is higher than that of pure niobium anodes and that niobium anodes with a low residual current are obtained. Furthermore, first indications exist for a long-time stability comparable to tantalum anodes.

Accordingly, the present invention has as subject matter niobium powder with a surface coating of at least one of the elements Al, Si, Ti, Zr, Mo, W, Y and Ta.

The invention also has as subject matter sintered anodes of niobium for capacitors, which anodes have a surface content of at least one of the elements Al, Si, Ti, Zr, Mo, W, Y and Ta.

Furthermore, the invention also has as subject matter sintered anodes consisting of niobium and provided with a niobium oxide depletion layer that contains at least one of the elements Al, Si, Ti, Zr, Mo, W, Y and Ta.

The invention also has as subject matter electrolytic capacitors consisting of a niobium anode, a niobium oxide depletion layer, a semiconducting cathode and an electrolyte, which niobium oxide depletion layer comprises at least one of the surface-modification elements.

Preferred contents of the surface modification elements in the depletion layer are below 25 atom % relative to the total metal content of the depletion layer and contents up to 20 atom % are especially preferred. Contents of the surface modification element of 2 to 15 atom % in the oxidic depletion layer are further preferred.

The amount of surface coating relative to the niobium powder is preferably less than 18 atom %, in particular less than 15 atom % and more preferably 1.5 to 12 atom %.

Preferred surface modification elements are Ti, Zr and Ta, and Ta is especially preferred.

It is assumed that the surface modification element of the niobium powder remains substantially on the surface even during the further processing to the capacitor since the temperatures of customarily below 1250°C relative to the melting point of niobium of 2500°C and used during the further processing are relatively low for diffusion in solids.

Accordingly, the present invention makes it possible to produce niobium capacitors that exceed the currently available extremely high-capacitive tantalum capacitors. Such tantalum capacitors have specific capacities of $100,000~\mu\text{FV/g}$ at anodizing voltages of, e.g., 40~V. A niobium capacitor in accordance with the invention with corresponding geometry has specific capacities of above $300,000~\mu\text{FV/g}$. In particular, it is possible to produce chemically modified niobium capacitors with a specific capacity, relative to the capacitor surface, of more than $60,000~\mu\text{FV/m}^2$ and in particular more than $70,000~\mu\text{FV/m}^2$.

The invention also has as subject matter a method for producing the capacitor powder of the invention. The method consists in that a niobium powder is impregnated in the solution of a hydrolyzable or decomposable compound of the surface modification element, the powder is separated from the solution, the compound adhering to the powder is hydrolyzed or decomposed, and the hydrolyzate is subsequently reduced to the metal.

Suitable niobium powders are powders obtained by heating niobium metal ingots melted by an electron beam in an atmosphere of hydrogen, grinding the material rendered brittle by the absorption of hydrogen and by removing the hydrogen by heating in a vacuum. Niobium flakes according to WO 98/19811 are also suitable.

In addition, highly-porous niobium powders are suitable that were obtained according to not previously published suggestions of the applicant in accordance with DE 198 31 280, DE 198 47 012 and PCT 99/09772 by reducing niobium pentoxide in liquid or gaseous magnesium, optionally after a preceding reduction to the suboxide by hydrogen.

Furthermore, niobium powders containing one or more of the elements Al, Ti, Mo, W, Hf, Zr or Ta as alloy component, that is, in uniform distribution in amounts up to 5 wt% are suitable as niobium powders.

The application of the surface modification element is described in the following using the example of tantalum.

Potential decomposable and/or hydrolyzable tantalum compounds are in particular organic tantalum compounds soluble in water or in organic solvents. Tantalum oxalate is suitable as a water-soluble organic tantalum compound. Furthermore, alcohol-soluble tantalum alkoxides with 1 to 8 carbon atoms such as tantalum methoxide, tantalum ethoxide, tantalum propoxide, tantalum butoxide, etc. including tantalum octoates are suitable as well as organometallic compounds of tantalum in accordance with US-A 5,914,417.

In order to produce the thin layers of tantalum on the niobium powder the organic tantalum compounds are preferably used in dilute solutions, even to the extent that they are liquid. Water is a suitable solvent in as far as the tantalum compound is stable in water. The alkoxides are preferably used in absolute alcohol or other organic solvents with so little acidity that no hydrolysis takes place without the admission of water, such as toluene or benzene. The particular corresponding alcohol is preferred for the solution of the alkoxides.

The concentration of the tantalum compound in the particular solvent is preferably 1 to 20 wt%, especially preferably 1 to 10 wt% and even more preferably 1 to 5 wt%.

The niobium powder is suspended in the solution of the organic tantalum compound and allowed to stand for a while in order to assure a good wetting. This can typically take 10 minutes to 1 hour. In order to assure a good penetration of porous niobium powder or agglomerates of niobium powder, it can be advantageous to place the niobium powder in a vacuum container under a vacuum, to wash the container with solvent vapors, if necessary, and subsequently to introduce the treatment solution into the evacuated vessel.

The treated niobium powder can be separated from the solution by filtering, centrifuging or decanting.

If tantalum alkoxides are used, they are carefully hydrolyzed in air without the exclusion of moisture or in moistened air, preferably under gentle heating to 50 to 100°C. If necessary, water vapor can be introduced toward the end of the treatment in order to complete the hydrolysis. If tantalum oxalate is used, the hydrolysis is carried out in an aqueous, alkaline

solution, e.g., an ammonia solution or sodium hydroxide solution. The hydrolysis is carried out with particular preference in an ammonia-containing gas flow.

In order to produce a uniformly adhering coating of tantalum oxide the hydrolysis should take place gradually over several hours.

The immersion and hydrolysis can be multiply repeated. It is preferable if the immersion of the niobium powder is carried out in a low concentration solution and carried out multiply.

After a drying step, which is interposed, if necessary, the niobium powder treated in this manner is preferably reduced with a getter metal with a sufficiently high vapor pressure at 850 to 1000°C. Suitable getter metals are magnesium, calcium, strontium, barium, aluminum and/or lanthanum. It is important that the oxides that form during the reduction can be readily washed out with mineral acids. Magnesium is a particularly preferred reduction agent.

The niobium powders that are reduced in this manner, washed with mineral acids and subsequently washed free of acid with demineralized water and dried are pressed in suitable dies up to a pressing density of 2.5 to 3.5 g/cm³ to pellets and subsequently sintered at 1100 to 1250°C in a known manner. The sintered anodes are contacted with a tantalum wire and/or a niobium wire, preferably by a niobium wire, if the contact wire had not been inserted into the die already during pressing.

Forming is subsequently carried out in a known manner in 0.1 % phosphoric acid up to the desired forming voltage.

In addition to oxalates and alkoxides, aqueous solutions of ammonium paratungstate are suitable and preferred for the production of tungsten coatings, and aqueous solutions of ammonium heptamolybdate that can be thermally decomposed are suitable and preferred for the production of molybdenum coatings.

In order to produce titanium coatings an aqueous solution of TiOSO₄ is suitable that is hydrolyzed by an aqueous base, e.g., ammonia, or pure TiCl₄ is suitable that is subsequently hydrolyzed with water vapor.

Examples 1 to 7

A high-purity niobium powder is used that was obtained by magnesium vapor reduction of niobium suboxide NbO₂ according to DE-A 19 831 280. The powder has a specific surface according to BET of 3.02 m²/g. Various specimen amounts are immersed in an ethanol solution containing the amounts of tantalum ethoxide indicated in Table 1. A reference specimen is treated in pure ethanol solution. After 30 min the specimen amounts are separated from the particular solution by filtration and allowed to stand 15 min in the ambient air.

The specimens are subsequently dried for 45 min at 95°C, washed with 80°C demineralized water and re-dried.

Then the specimens are reduced under an atmosphere of argon with magnesium vapor at 850°C to 950°C (temperature gradient in the oven).

Figure 1 shows a scanning electron microscope photograph in differing enlargements of specimen 1 according to Table 1.

The analysis values for Ta, C, H and O as well as the specific surface of the specimens are indicated in Table 1.

The specimens are pressed in a customary manner around a niobium wire at a pressing density of 3.14 g/cm³ to anode pellets and sintered 20 min at 1150°C. The sintered anodes are formed in 0.1% phosphoric acid up to a forming voltage of 40 V.

The capacitor properties are determined in 30% sulfuric acid as catholyte at a bias voltage of 1.5 V.

Table 1 shows the results.

		2			-	Γable 1 [*]				
	Probe	Tauchung		(3) Pulve	r	-,	(4)	Kondensator	
	①	in Ethanol Gew% Ta (OEt)5	Ta ppm	C ppm	H ppm	O ppm	S.A. ¹⁾ m ² /g	CV/g μFV/g	CV/m ² μ-FV/m ²	Ļ/CV nA/μFV
(5	Vergleich	0	21	98	68	4 100	1,03	63 240	61 400	0,95
(Bsp.1	1	1 640	103	67	3 900	0,93	69 200	74 400	1,08
	Bsp. 2	5	2 490	143	69	4 200	1,00	73 700	73 700	0,58
	Bsp. 3	10	13 900	224	78	5 209	1,15	81 100	70 500	0,77
⊚ {	Bsp. 4	5(3-fach)(7)	14 700	196	84	5 180	1,1	82 200	74 700	0,61
	Bsp. 5	20	27 200	275	112	5 528	1,55	91 700	59 200	0,67
	Bsp. 6	5(6-fach)	29 600	267	108	4 800	1,05	84 300	80 300	0,76
(Bsp. 7	5(8-fach)	42 300	248	121	4 430	0,98	83 900	85 600	0,69

Key:	1	Specimen
rzcy.	1	Specimen

- 2 Immersion in ethanol wt% Ta (OEt)₅
- 3 Powder
- 4 Capacitor
- 5 Reference
- 6 Example ___
- 7 __ times

^{* [}In the table, commas in numbers represent decimal points.]

Claims

- 1. An electrolytic capacitor containing a niobium anode, a niobium oxide depletion layer, a semiconducting cathode and an electrolyte, which niobium oxide depletion layer contains at least one metal from the group Al, Si, Ti, Zr, Mo, W, Y and Ta.
 - 2. The capacitor according to Claim 1 in which the metal is tantalum.
- 3. A capacitor anode consisting of sintered niobium powder with a depletion layer produced by anodic oxidation which depletion layer contains at least one of the elements Al, Si, Ti, Zr, Mo, W, Y and/or Ta.
- 4. A capacitor powder consisting substantially of niobium with a surface coating of at least one of the elements Al, Si, Ti, Zr, Mo, W, Y and/or Ta.
- 5. A method of producing a capacitor powder according to Claim 4 by immersing an optionally alloyed niobium powder in a solution of a hydrolyzable or decomposable compound of at least one of the elements Al, Si, Ti, Zr, Mo, W, Y and/or Ta, separating the powder from the solution, hydrolyzing or decomposing the adhering compound and if necessary reducing the hydrolyzate to the metal.

(T) ERSATZBLATT (REGEL 26)

Key: 1 REPLACEMENT PAGE (REGULATION 26)

INTERNATIONAL SEARCH REPORT

Intern. Jonal Application No

		PCT/EP	00/10622
A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER H01G9/042 H01G9/052		
According to	International Patent Classification (IPC) or to both national classificat	on and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	cumentation searched (classification system followed by classification $H016$	symbols)	
Documentat	ion searched other than minimum documentation to the extent that suc	ch documents are included in the fiel	ds searched
	ala base consulted during the international search (name of data base ternal, WPI Data, PAJ	and, where practical, search terms	used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant	vant passages	Relevant to claim No.
X	EP 0 582 844 A (ROEDERSTEIN KONDER 16 February 1994 (1994-02-16) claims 1,3,5,6	NSATOREN)	1
X	US 3 867 129 A (RONNEAU GERARD S 18 February 1975 (1975-02-18) column 1, line 30 - line 40 column 1, line 50 - line 67	ET AL)	4,5
A	US 3 849 124 A (VILLANI 6) 19 November 1974 (1974-11-19) column 1, line 11 -column 2, line claim 1	6	3,4
A A	GB 2 106 938 A (STANDARD TELEPHON LTD) 20 April 1983 (1983-04-20) & US 5 914 417 A 22 June 1999 (19 cited in the application		
Furl	ther documents are fisled in the continuation of box C.	X Patent tamily members are	listed in annex.
"A" docum consi "E" earlier filing "L" docum which citatic "O" docum other	ategories of cited documents; sent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the priority date claimed	"T" later document published after the or priority date and not in conflicted to understand the principal invention." "C" document of particular relevance cannot be considered novel or involve an inventive step when "Y" document of particular relevance cannot be considered to involve document is combined with on ments, such combination being in the art. "8" document member of the same	at with the application but a continent underlying the act theory underlying the act theory underlying the act theory underlying the cannot be considered to the document is taken atone; the claimed invention a can inventive step when the cor more other such docu-
L	actual completion of the international search	Date of mailing of the internation	· · · · · · · · · · · · · · · · · · ·
	10 January 2001	17/01/2001	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Goossens, A	

INTERNATIONAL SEARCH REPORT

information on patent family members

Inten.. onal Application No PCT/EP 00/10622

Patent document cited in search report	t	Publication date	Patent family member(s)	Publication date
EP 0582844	A	16-02-1994	DE 4225920 A	10-02-1994
US 3867129	A	18-02-1975	NONE	
US 3849124	Α	19-11-1974	US 3597664 A	03-08-1971
GB 2106938	A	20-04-1983	NONE	

Form PCT/ISA/210 (patent family annex) (July 1992)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 17. Mai 2001 (17.05.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/35428 A1

(51) Internationale Patentklassifikation7: 9/052

H01G 9/042,

(74) Anwalt: DROPE, Rüdiger; Bayer Aktiengesellschaft, 51368 Leverkusen (DE).

(21) Internationales Aktenzeichen:

PCT/EP00/10622

(22) Internationales Anmeldedatum:

27. Oktober 2000 (27.10.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 199 53 946.4 9. November 1999 (09.11.1999)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): H.C. STARCK GMBH & CO. KG [DE/DE]; Im Schleeke 78-91, 38642 Goslar (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): REICHERT, Karlheinz [DE/DE]; Am Stadtfeld 43, 38304 Wolfenbüttel (DE). THOMAS, Oliver [DE/DE]; Feldstr. 7, 38667 Bad Harzburg (DE). SCHNITTER, Christoph [DE/DE]; Soltgrund 3, 31188 Holle (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: CAPACITOR POWDER

(54) Bezeichnung: KONDENSATORPULVEK

(57) Abstract: The invention relates to an electrolytic capacitor containing a niobium anode, a niobium oxide depletion layer, a cathode and an electrolyte, whereby the niobium oxide depletion layer contains at least one metal selected from the

(57) Zusammenfassung: Es wird ein Elektrolytkondensator, enthaltend eine Niobanode, eine Niobaxid-Sperrschicht, eine halbleitende Kathode und einen Elektrolyten, beschrieben, wobei die Nioboxid-Sperrschicht mindestens ein Metall aus der Gruppe Al, Si, Ti, Zr, Mo, W, Y und Ta enthält.

Kondensatorpulver

Die vorliegende Erfindung betrifft ein Pulver zur Herstellung von Elektrolytkondensatoren, speziell ein Pulver zur Herstellung von Anoden für Elektrolytkondensatoren.

In der Literatur sind insbesondere die Erdsäuremetalle Niob und Tantal als Ausgangsmaterialien für die Herstellung derartiger Kondensatoren beschrieben. Die Herstellung der Kondensatoren erfolgt durch Versinterung der feinteiligen Pulver zur Erzeugung einer Struktur mit großer Oberfläche, Oxidation der Oberfläche des Sinterkörpers zur Erzeugung einer nicht leitenden Isolierschicht und Aufbringen der Gegenelektrode in Form einer Schicht aus Mangandioxid oder eines leitfähigen Polymeren. Die besondere Eignung der Erdsäuremetallpulver leitet sich aus der großen relativen Dielektrizitätskonstanten der Pentoxide ab.

15

20

25

30

10

Technische Bedeutung für die Kondensatorherstellung hat bisher lediglich Tantalpulver erlangt. Dies beruht einerseits auf der reproduzierbaren Herstellbarkeit von
feinteiligem Tantalpulver und andererseits darauf, dass die isolierende Oxidschicht
aus Tantalpentoxid eine besonders ausgeprägte Stabilität besitzt. Dies beruht möglicherweise darauf, dass das Tantal im Gegensatz zu Niob kein stabiles Suboxid
ausbildet.

Im Zuge der Entwicklung der Mikroelektronik gewinnen allerdings auch zunehmend Nachteile des Tantals an Bedeutung. Tantal besitzt einerseits eine sehr hohe Dichte von 16,6 g/cm³. Hierdurch wird die Tendenz zur Gewichtsreduktion insbesondere tragbarer elektronischer Geräte, wie Mobiltelefone usw., begrenzt. Aufgrund der nur halb so großen Dichte des Niobs im Vergleich zum Tantal können unter der Voraussetzung gleicher Geometrie und gleicher Eigenschaften der Oxidschicht etwa doppelt so hohe gewichtsbezogene spezifische Kapazitäten erzielt werden wie mit Tantalpulvern. Die die Kapazität eines Kondensators bestimmenden Materialeigenschaften

10

15

20

25

30

der isolierenden Pentoxidschicht beim Niob einerseits und beim Tantal andererseits haben zum Teil gegenläufige Einflüsse.

So ist die Kapazität eines Kondensators um so höher, je höher die relative Dielektrizitätkonstante der Isolatorschicht ist. Sie ist um so niedriger, je dicker die für die jeweils bestimmungsgemäße Betriebsspannung erforderliche Dicke der Isolatorschicht ist. So wird die mit 41 höhere Dielektrizitätskonstante des Niobpentoxides im Vergleich zu 26 des Tantalpentoxides durch die größere erforderliche Dicke der Pentoxidschicht beim Niob im Vergleich zum Tantal kompensiert. Bei vorgegebener Anodisierspannung liegt das Dickenwachstum der Tantalpentoxidschicht bei etwa 2 nm/V und das der Niobpentoxidschicht bei etwa 3,7 nm/V. Die auf die Oberfläche der Kondensatoren bezogenen Kapazitäten sind demgemäß vergleichbar.

Der Einsatz von Niobkondensatoren ist bisher dem Bereich niedriger spezifischer Kapazitäten mit kleiner spezifischer Oberfläche und geringerer Qualität vorbehalten geblieben.

Aufgabe der vorliegenden Erfindung ist-es, die Nachteile der bekannten Niobkondensatoren zu überwinden. Insbesondere ist es Aufgabe der vorliegenden Erfindung, die Niobpentoxid-Sperrschicht an Niobkondensatoren derart zu verbessern, dass höhere spezifische Kapazitäten realisierbar sind.

Es wurde gefunden, dass Niobpulver mit einer Oberflächenbeschichtung aus mindestens einem der Elemente Al, Si, Ti, Zr, Mo, W, Y und Ta in hervorragender Weise für die Herstellung von Niobkondensatoren geeignet sind. Insbesondere wurde gefunden, dass die spezifische Kapazität, bezogen auf die Oberfläche der Kondensatoranode, derartiger aus beschichtetem Niobpulver hergestellter Kondensatoren höher liegt als die von reinen Niobanoden und dass Niobanoden mit geringem Reststrom erhalten werden. Ferner liegen erste Anzeichen für eine mit Tantalanoden vergleichbare Langzeitstabilität vor.

Gegenstand der vorliegenden Erfindung sind demgemäss Niobpulver mit einer Oberflächenbeschichtung mindestens eines der Elemente Al, Si, Ti, Zr, Mo, W, Y und Ta.

Gegenstand der Erfindung sind auch aus Niob bestehende Sinteranoden für Kondensatoren, wobei die Anoden oberflächlich einen Gehalt von mindestens einem der Elemente Al, Si, Ti, Zr, Mo, W, Y und Ta aufweisen.

Gegenstand der Erfindung sind ferner mit einer Nioboxid-Sperrschicht versehene

Sinteranoden aus Niob, wobei die Sperrschicht einen Gehalt von mindestens einem der Elemente Al, Si, Ti, Zr, Mo, W, Y und Ta aufweist.

Gegenstand der Erfindung sind weiterhin Elektrolytkondensatoren, die aus einer Niobanode, einer Niobanid-Sperrschicht, einer halbleitenden Kathode und einem Elektrolyten bestehen, wobei die Niobanid-Sperrschicht mindestens eines der Oberflächenmodifizierungselemente aufweist.

Bevorzugte Gehalte der Oberflächenmodifzierungselemente in der Sperrschicht liegen unterhalb 25 Atom-%, bezogen auf den Gesamt-Metallgehalt der Sperrschicht, insbesondere bevorzugt sind Gehalte von bis zu 20 Atom-%. Weiter bevorzugt sind Gehalte des Oberflächenmodifizierungselementes von 2 bis 15 Atom-% in der Oxid-Sperrschicht.

Bezogen auf das Niobpulver beträgt die Menge der Oberflächenbeschichtung vorzugsweise weniger als 18 Atom-%, insbesondere weniger als 15 Atom-%, weiter bevorzugt 1,5 bis 12 Atom-%.

Bevorzugte Oberflächenmodifizierungselemente sind Ti, Zr und Ta, insbesondere bevorzugt ist Ta.

BNSDOCID: <WO 0135428A1 I >

15

20

10

15

20

25

Es wird angenommen, dass das Oberflächenmodifizierungselement des Niobpulvers auch bei der weiteren Verarbeitung zum Kondensator im wesentlichen auf der Oberfläche verbleibt, da die während der Weiterverarbeitung angewendeten Temperaturen von üblicherweise unterhalb 1250°C in Bezug auf den Schmelzpunkt von Niob von 2500°C für Festkörper-Diffusionen relativ niedrig sind.

Aufgrund der vorliegenden Erfindung wird es demgemäß ermöglicht, Niobkondensatoren herzustellen, die die zur Zeit höchstkapazitiven verfügbaren Tantalkondensatoren übertrifft. Derartige Tantalkondensatoren weisen spezifische Kapazitäten von $100~000~\mu FV/g$ bei Anodisierspannungen von beispielsweise 40~V auf. Ein erfindungsgemäßer Niobkondensator mit entsprechender Geometrie weist spezifische Kapazitäten von oberhalb $300~000~\mu FV/g$ auf. Insbesondere gelingt es, chemisch modifizierte Niobkondensatoren herzustellen, die eine auf die Kondensatorfläche bezogene spezifische Kapazität von mehr als $60~000~\mu FV/m^2$, insbesondere mehr als $70~000~\mu FV/m^2$, aufweisen.

Gegenstand der Erfindung ist auch das Verfahren zur Herstellung der erfindungsgemäßen Kondensatorpulver. Das Verfahren besteht darin, dass ein Niobpulver in der
Lösung einer hydrolisierbaren oder zersetzbaren Verbindung des Oberflächenmodifizierungselementes getränkt wird, das Pulver von der Lösung abgetrennt wird, die an
dem Pulver anhaftende Verbindung hydrolysiert oder zersetzt wird und anschließend
das Hydrolysat zum Metall reduziert wird.

Als Niobpulver eignen sich Pulver, die durch Erhitzen von mittels Elektronenstrahl geschmolzenen Niobmetallingots in einer Wasserstoffatmosphäre, Mahlung des durch Wasserstoffaufnahme versprödeten Materials und Entfernung des Wasserstoffs durch Erhitzen im Vakuum erhalten wurden. Geeignet sind auch Niob-flakes gemäß WO 98/19811.

Ferner sind hochporöse Niobpulver geeignet, die nach nicht vorveröffentlichten Vorschlägen der Anmelderin gemäß DE 198 31 280, DE 198 47 012 und PCT 99/09772

15

durch Reduktion von Niobpentoxid in flüssigem oder gasförmigem Magnesium, gegebenenfalls nach vorheriger Reduktion zum Suboxid mittels Wasserstoff, erhalten wurden.

Als Niobpulver geeignet sind ferner Niobpulver, die eines oder mehrere der Elemente Al, Ti, Mo, W, Hf, Zr oder Ta als Legierungsbestandteile, d.h. in gleichmäßiger Verteilung in Mengen bis 5 Gew.-%, enthalten.

Die Aufbringung des Oberflächenmodifizierungselementes wird nachfolgend am Beispiel des Tantal beschrieben:

Als zersetzbare bzw. hydrolisierbare Tantalverbindungen kommen insbesondere organische Tantalverbindungen in Frage, die in Wasser oder organischen Lösungsmitteln löslich sind. Als wasserlösliche organische Tantalverbindung ist Tantaloxalat geeignet. Ferner sind die alkohollöslichen Tantalalkoxide mit 1 bis 8 Kohlenstoffatomen wie Tantalmethoxid, Tantalethoxid, Tantalpropoxid, Tantalbutoxid usw. einschließlich Tantaloctoaten geeignet, ferner Organometallverbindungen des Tantals gemäß US-A 5,914,417.

Zur Erzeugung der dünnen Tantalschichten auf dem Niobpulver werden die organischen Tantalverbindungen vorzugsweise in verdünnten Lösungen eingesetzt, auch soweit diese an sich flüssig sind. Als Lösungsmittel geeignet ist Wasser, soweit die Tantalverbindung wasserbeständig ist. Die Alkoxide werden vorzugsweise in absolutem Alkohol oder in anderen organischen Lösungsmitteln mit so geringer Acidität, dass ohne Wasserzutritt keine Hydrolyse stattfindet, wie Toluol oder Benzol, eingesetzt. Bevorzugt zur Lösung der Alkoxide ist der jeweilige entsprechende Alkohol.

Die Konzentration der Tantalverbindung im jeweiligen Lösungsmittel beträgt vorzugsweise 1 bis 20 Gew.-%, insbesondere bevorzugt 1 bis 10 Gew.-% und weiter bevorzugt 1 bis 5 Gew.-%.

Das Niobpulver wird in der Lösung der organischen Tantalverbindung suspendiert und zur Gewährleistung einer guten Benetzung eine Zeit lang stehengelassen. Typischerweise kann dies 10 Minuten bis 1 Stunde betragen. Um eine gute Durchdringung von porösem Niobpulver bzw. Niobpulveragglomeraten zu gewährleisten, kann es zweckmäßig sein, das Niobpulver in einem Vakuumbehälter unter Vakuum zu setzen, den Behälter gegebenenfalls mit Lösungsmitteldämpfen zu spülen und anschließend in das evakuierte Gefäß die Behandlungslösung einzuleiten.

Die Abtrennung des behandelten Niobpulvers von der Lösung kann durch Filtrieren, Zentrifugieren oder Dekantieren erfolgen.

Im Falle des Einsatzes von Tantalalkoxiden werden diese vorsichtig an Luft ohne Feuchtigkeitsausschluss bzw. in angefeuchteter Luft hydrolisiert, vorzugsweise unter leichter Erwärmung auf 50 bis 100°C. Gegebenenfalls kann gegen Ende der Behandlung Wasserdampf zur Vervollständigung der Hydrolyse eingeleitet werden. Im Falle des Einsatzes von Tantaloxalat wird die Hydrolyse in einer wässrigen alkalischen Lösung durchgeführt, beispielsweise einer Ammoniak-Lösung oder Natriumhydroxid-Lösung. Besonders bevorzugt erfolgt die Hydrolyse in einem ammoniakhaltigen Gasstrom.

20

25

30

5

10

15

Zur Erzeugung einer gleichmäßig anhaftenden Tantaloxidbeschichtung soll die Hydrolyse allmählich über mehrere Stunde erfolgen.

Die Tauchung und Hydrolyse kann mehrfach wiederholt werden. Bevorzugt ist es, die Tauchung des Niobpulvers in weniger konzentrierten Lösungen, dafür aber mehrfach vorzunehmen.

Nach einem gegebenenfalls zwischengeschalteten Trocknungsschritt wird das derart behandelte Niobpulver vorzugsweise mit einem Gettermetall mit ausreichendem hohen Dampfdruck bei 850 bis 1000°C reduziert. Als Gettermetall geeignet sind: Magnesium, Calcium, Strontium, Barium, Aluminium und/oder Lanthan. Wesentlich

10

ist, dass sich die bei der Reduktion bildenden Oxide mit Mineralsäuren leicht auswaschen lassen. Besonders bevorzugtes Reduktionsmittel ist Magnesium.

Die so reduzierten, mit Mineralsäuren gewaschenen und anschließend mit demineralisiertem Wasser säurefrei gewaschenen und getrockneten Niobpulver werden in geeigneten Matritzen bis zu einer Pressdichte von 2,5 bis 3,5 g/cm³ zu Pellets gepresst und anschließend bei 1100 bis 1250°C in an sich bekannter Weise gesintert. Die gesinterten Anoden werden mit einem Tantal- und/oder Niobdraht, vorzugsweise einem Niobdraht, kontaktiert, sofern der Kontaktdraht nicht bereits beim Pressen in die Matrize eingeschoben wurde.

Anschließend wird in an sich bekannter Weise in 0,1 %iger Phosphorsäure bis zu der gewünschten Formierspannung formiert.

- Außer den Oxalaten und Alkoxiden sind für die Herstellung von Wolframbeschichtungen wässrige Lösungen von Ammoniumparawolframat, zur Herstellung von Molybdänbeschichtungen wässrige Lösungen von Ammoniumheptamolybdat, die thermisch zersetzbar sind, geeignet und bevorzugt.
- Zur Herstellung von Titanbeschichtungen ist eine wässrige Lösung von TiOSO₄ geeignet, die mittels einer wässrigen Base, z.B. Ammoniak, hydrolysiert wird, oder reines TiCl₄, welches anschließend mit Wasserdampf hydrolysiert wird.

Beispiele 1 bis 7

Es wird ein hochreines Niobpulver eingesetzt, das durch Magnesiumdampfreduktion von Niobsuboxid NbO₂ nach DE-A 19 831 280 erhalten wurde. Das Pulver hat eine spezifische Oberfläche nach BET von 3,02 m²/g. Verschiedene Probemengen werden in eine Ethanollösung, enthaltend die in Tabelle 1 angegebene Tantalethoxidmenge, getaucht. Eine Vergleichsprobe wird in reiner Ethanollösung behandelt. Nach 30 min werden die Probemengen von der jeweiligen Lösung durch Filtrieren abgetrennt und 15 min an Umgebungsluft stehengelassen.

10

15

25

5

Anschließend werden die Proben 45 min bei 95°C getrocknet, mit 80°C warmen demineralisiertem Wasser nachgewaschen und erneut getrocknet.

Danach werden die Proben unter Argon-Atmosphäre mit Magnesium-Dampf bei 850°C bis 950°C (Temperaturgefälle im Ofen) reduziert.

Fig. 1 zeigt eine REM-Aufnahme in unterschiedlicher Vergrößerung der Probe 1 gemäß Tabelle 1.

Die Analysenwerte für Ta, C, H und O sowie die spezifische Oberfläche der Proben sind in Tabelle 1 angegeben.

Die Proben werden in üblicher Weise um einen Niobdraht bei einer Pressdichte von 3,14 g/cm³ zu Anodenpellets verpresst und 20 min lang bei 1 150°C gesintert. Die gesinterten Anoden werden in 0,1 %iger Phosphorsäure bis zu einer Formierungsspannung von 40 V formiert.

Die Kondensatoreigenschaften werden in 30 %iger Schwefelsäure als Katholyt bei einer Bias-Spannung von 1,5 V bestimmt.

Die Ergebnisse sind in Tabelle 1 angegeben.

Tabelle 1

in Ethanol Ta C H O Gew% ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Probe T	Tauchung			Pulver				Kondensator	
Gew% ppm ppm pp Ta (OEt)5 21 98 68 ich 0 21 98 68 1 1 640 103 67 5 2 490 143 69 10 13 900 224 78 5(3-fach) 14 700 196 84 20 27 200 275 112 5(6-fach) 29 600 267 108 5(8 fach) 42 300 248 121	<u>.::</u>	n Ethanol	Та	C	Н	0	S.A. ¹⁾	CV/g	CV/m²	I/CV
ich 0 21 98 68 1 1640 103 67 5 2490 143 69 10 13900 224 78 5(3-fach) 14700 196 84 20 27200 275 112 5(6-fach) 29600 267 108	<u> </u>	јеw% `a (OEt)5	mdd	mdd	•	mdd	m ² /g	μFV/g	μ-FV/m²	nA/µFV
5 2 490 103 67 · 10 10 10 10 10 10 10 10 10 10 10 10 10	sich	0	21	86	89	4 100	1,03	63 240	61 400	0,95
5 2 490 143 69 10 13 900 224 78 5(3-fach) 14 700 196 84 20 27 200 275 112 5(6-fach) 29 600 267 108			1 640	103		3 900	0,93	69 200	74 400	1,08
5(3-fach) 14 700 196 84 20 27 200 275 112 5(6-fach) 29 600 267 108		5	2 490	143	69	4 200	1,00	73 700	73 700	0,58
5(3-fach) 14 700 196 84 20 27 200 275 112 5(6-fach) 29 600 267 108		10	13 900	224	78	5 209	1,15	81 100	70 500	0,77
20 27 200 275 112 5(6-fach) 29 600 267 108		5(3-fach)	14 700	196	84	5 180	1,1	82 200	74 700	0,61
5(6-fach) 29 600 267 108		20	27 200	275	112	5 528	1,55	91 700	59 200	0,67
570 fach) 77 300 748 171		5(6-fach)	29 600	267	108	4 800	1,05	84 300	80 300	0,76
171 047 006 74		5(8-fach)	42 300	248	121	4 430	86'0	83 900	85 600	69'0

דית ת (1

Patentansprüche

- 1. Elektrolytkondensator, enthaltend eine Niobanode, eine Nioboxid-Sperrschicht, eine halbleitende Kathode und einen Elektrolyten, wobei die Nioboxid-Sperrschicht mindestens ein Metall aus der Gruppe Al, Si, Ti, Zr, Mo, W, Y und Ta enthält.
- 2. Kondensator nach Anspruch 1, wobei das Metall Tantal ist.
- 3. Kondensator-Anode, bestehend aus gesintertem Niobpulver mit einer durch anodische Oxidation erzeugten Sperrschicht, wobei die Sperrschicht mindestens eines der Elemente Al, Si, Ti, Zr, Mo, W, Y und/oder Ta enthält.
- 4. Kondensatorpulver, bestehend im wesentlichen aus Niob mit einer Oberflächenbeschichtung mindestens eines der Elemente Al, Si, Ti, Zr, Mo, W, Y
 und/oder Ta.
- 5. Verfahren zur Herstellung eines Kondensatorpulvers nach Anspruch 4 durch Tränkung eines gegebenenfalls legierten Niobpulvers in einer Lösung einer hydrolysierbaren oder zersetzbaren Verbindung mindestens eines der Elemente Al, Si, Ti, Zr, Mo, W, Y und/oder Ta, Abtrennen des Pulvers von der Lösung, Hydrolysieren oder Zersetzen der anhaftenden Verbindung und gegebenenfalls Reduktion des Hydrolysates zum Metall.

-1/1-

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

Internation No PCT/EP 00/10622

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER H01G9/042 H01G9/052		
According to	o International Patent Classification (IPC) or to both national classifica	ion and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	ocumentation searched (classification system followed by classification $H01G$	n symbols)	
Documental	tion searched other than minimum documentation to the extent that su	ch documents are included in the fields se	earched
l	lata base consulted during the international search (name of data bas	e and, where practical, search terms used	
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
X	EP 0 582 844 A (ROEDERSTEIN KONDE 16 February 1994 (1994-02-16) claims 1,3,5,6	NSATOREN)	1
X	US 3 867 129 A (RONNEAU GERARD S 18 February 1975 (1975-02-18) column 1, line 30 - line 40 column 1, line 50 - line 67	ET AL)	4,5
A	US 3 849 124 A (VILLANI G) 19 November 1974 (1974-11-19) column 1, line 11 -column 2, line claim 1	6	3,4
A	GB 2 106 938 A (STANDARD TELEPHON LTD) 20 April 1983 (1983-04-20) & US 5 914 417 A 22 June 1999 (19 cited in the application ———		
Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	l in annex.
° Special ca	ategories of cited documents:	"T" later document published after the int	emational filing data
consid	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or th invention	n the application but seory underlying the
filing of	date ent which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the de	at be considered to occument is taken alone
citatio *O* docum	on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means	"Y" document of particular relevance; the cannot be considered to involve an in document is combined with one or ments, such combination being obvious.	nventive step when the lore other such docu-
	ent published prior to the international filing date but han the priority dale claimed	in the art. '&' document member of the same paten	t family
Date of the	actual completion of the international search	Date of mailing of the international se	earch report
1	0 January 2001	17/01/2001	
Name and	mailing address of the ISA European Palent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Goossens, A	

INTERNATIONAL SEARCH REPORT

information on patent family members

Inten.. July Application No PCT/EP 00/10622

Patent document cited in search report	t	Publication date	Patent family member(s)	Publication date
EP 0582844	Α	16-02-1994	DE 4225920 A	10-02-1994
US 3867129	Α	18-02-1975	NONE	
US 3849124	Α	19-11-1974	US 3597664 A	03-08-1971
GB 2106938	Α	20-04-1983	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 00/10622

PCT/EP 00/10622 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES H01G9/042 H01G9/052 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 H01G Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. X EP 0 582 844 A (ROEDERSTEIN KONDENSATOREN) 1 16. Februar 1994 (1994-02-16) Ansprüche 1,3,5,6 X US 3 867 129 A (RONNEAU GERARD S ET AL) 4,5 18. Februar 1975 (1975-02-18) Spalte 1, Zeile 30 - Zeile 40 Spalte 1, Zeile 50 - Zeile 67 Α US 3 849 124 A (VILLANI G) 3,4 19. November 1974 (1974-11-19) Spalte 1, Zeile 11 -Spalte 2, Zeile 6 Anspruch 1 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie Besondere Kategorien von angegebenen Veröffentlichungen *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Versländnis des der Editum 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist *E* ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist 'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werde soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist solvouer use aus einem anderem besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
P Veröffentlichung, die vor dem internationalen Ammeidedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 10. Januar 2001 17/01/2001 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Goossens, A Fax: (+31-70) 340-3016

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Internacionales Aktenzeichen PCT/EP 00/10622

C.(Fortsetzi Kategorie°	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommende	n Toile	
	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommende	n Toile	
		ii i elle	Betr. Anspruch Nr.
	GB 2 106 938 A (STANDARD TELEPHONES CABLES LTD) 20. April 1983 (1983-04-20) & US 5 914 417 A 22. Juni 1999 (1999-06-22) in der Anmeldung erwähnt		
			·

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 00/10622

Im Recherchenber angeführtes Patentdol		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0582844	Α	16-02-1994	DE 4225920 A	10-02-1994
US 3867129	A	18-02-1975	KEINE	
US 3849124	A	19-11-1974	US 3597664 A	03-08-1971
GB 2106938	Α	20-04-1983	KEINE	