

THyMe⁺: Temporal Hypergraph Motifs and Fast Algorithms for Exact Counting

Geon Lee

Kijung Shin

Hypergraphs are Everywhere

- Hypergraphs consist of nodes and hyperedges.
- Each hyperedge is a subset of any number of nodes.

Collaborations of Researchers

Co-purchases of Items

Joint Interactions of Proteins

Hypergraphs Evolve Over Time

- In many real-world scenarios, hypergraphs evolve over time.
- Temporal hypergraphs consist of temporal hyperedges.

Introduction Backgrounds Concepts Observations Algorithms Conclusion

Our Question

What are local structural & temporal properties of real-world hypergraphs?

How do three hyperedges overlap each other?

Roadmap

1. Backgrounds

- 2. Concepts
- 3. Observations
- 4. Algorithms
- 5. Conclusion

Hypergraph Motifs

- Hypergraph motifs (h-motifs) describe connectivity patterns of three connected hyperedges in <u>static hypergraphs</u>.
- H-motifs describe the connectivity pattern of hyperedges e_i , e_j , and e_k by the emptiness of seven subsets.

(1)
$$e_i \setminus e_i \setminus e_k$$

$$(3) e_k \setminus e_i \setminus e_j$$

(4)
$$e_i \cap e_j \setminus e_k$$

(6)
$$e_k \cap e_i \setminus e_i$$

$$(7) e_i \cap e_j \cap e_k$$

Hypergraph Motifs (cont.)

- While there can exist 2⁷ h-motifs, **26** h-motifs remain once we exclude:
 - 1. symmetric ones
 - 2. those with duplicated hyperedges
 - 3. those cannot be obtained from connected hyperedges

Hypergraph Motifs (cont.)

- Hypergraph motifs describe connectivity patterns of three connected hyperedges.
- For example:

Roadmap

- 1. Backgrounds
- 2. Concepts
- 3. Observations
- 4. Algorithms
- 5. Conclusion

Temporal Hypergraph Motifs

- How can we define motifs in temporal hypergraph?
- We define temporal hypergraph motifs (TH-motifs) that describe structural and temporal patterns in sequences of three connected temporal hyperedges.

- Q1. How can we capture **structural properties** of hypergraphs?
- **A1.** We consider the **emptiness of seven subsets** of three temporal hyperedges.

Q2. How can we capture **temporal properties** of hypergraphs?

$$e_1 = (\tilde{e}_1, t_1 = 7)$$

A2-1. The three temporal hyperedges should arrive within δ time.

$$\max(t_1, t_2, t_3) - \min(t_1, t_2, t_3) \le \delta$$

A2-2. The order of the three temporal hyperedges is considered.

$$e_1 \rightarrow e_2 \rightarrow e_3$$

$$e_2 = (\tilde{e}_2, t_2=10)$$
 $e_3 = (\tilde{e}_3, t_3=11)$

• For example, let $\delta = 3$.

• We define 96 temporal hypergraph motifs (TH-motifs).

Roadmap

- 1. Backgrounds
- 2. Concepts
- 3. Observations
- 4. Algorithms
- 5. Conclusion

Observations: Real Hypergraphs are Not Random

Obs1. Real hypergraphs are clearly distinguished from randomized hypergraphs.

Observations: TH-motifs Distinguish Domains

Obs2. TH-motifs play a key role in capturing structural & temporal patterns.

<u>Characteristic Profile (CP):</u> Relative significance of each TH-motif.

$$CP_t \coloneqq \frac{\Delta_t}{\sqrt{\sum_{t=1}^{96} \Delta_t^2}}$$
 where $\Delta_t \coloneqq \frac{M[t] - M_{rand}[t]}{M[t] + M_{rand}[t] + \epsilon}$

Threads domain

Observations: TH-motifs Distinguish Domains (cont.)

Obs2. TH-motifs play a key role in capturing structural & temporal patterns.

• Within-domain: 0.900 Gap: **0.759**

Between-domain: 0.141 Times: 6.38X

Static Hypergraph Motif

• Within-domain: 0.951 **Gap:** 0.517

Between-domain: 0.434 Times: 2.19X

Observations: TH-motifs Help Predict Future Hyperedges

Obs3. TH-motifs can be used as powerful features for predicting future hyperedges.

of each **TH-motifs**' instances # of each **static h-motifs**' instances that each hyperedge is contained.

Roadmap

- 1. Backgrounds
- 2. Concepts
- 3. Observations
- 4. Algorithms
- 5. Conclusion

Introduction Backgrounds Concepts Observations Algorithms Conclusion

DP: Naïve Approach Using Dynamic Programming

• DP enumerates the instances of static h-motifs in the induced static hypergraph.

Temporal hypergraph

Induced static hypergraph

Instances of static h-motifs (≤ 3 hyperedges)

Introduction Backgrounds Concepts Observations Algorithms Conclusion

DP: Naïve Approach Using Dynamic Programming (cont.)

 DP counts the instances of TH-motifs from instances of static h-motifs using dynamic programming.

Instances of static h-motifs (≤ 3 hyperedges)

Instances of temporal h-motifs $(\delta = 5)$

DP: Naïve Approach Using Dynamic Programming (cont.)

- DP enumerates all the instances of static h-motifs in the induced static hypergraph.
- However, only a small fraction of them are induced by any valid instance of TH-motifs.

THyMe: Preliminary Version of Counting TH-Motifs

- ThyMe exhaustively enumerates the instances of TH-motifs.
- ThyMe incrementally maintains the projected graph $P = (V_P, E_P)$ where each temporal hyperedge is represented as a node.

Projected graph P

THyMe: Preliminary Version of Counting TH-Motifs (cont.)

• THyMe incrementally maintains the projected graph $P=(V_P,E_P)$ (e.g., $\delta=4$).

$$e_1 = (\tilde{e}_1 = \{1,4,5\}, t_1 = 7)$$

$$e_2 = (\tilde{e}_2 = \{2,3,4\}, t_2 = 10)$$

$$e_3 = (\tilde{e}_3 = \{4,5,6\}, t_3 = 11)$$

 $e_4 = (\tilde{e}_4 = \{6,7,8\}, t_4 = 12)$

 $e_5 = (\tilde{e}_5 = \{6,7,8\}, t_5 = 14)$

 $e_6 = (\tilde{e}_6 = \{4,5,6\}, t_5 = 17)$

e₁ is added

e₂ is added

e₃ is added

 e_1 is expired e_4 is added

e₅ is added

 e_2 , e_3 are expired e_6 is added

THyMe: Preliminary Version of Counting TH-Motifs (cont.)

Obs4. Duplicated temporal hyperedges are common.

 \rightarrow There can exist multiple *identical* nodes in the projected graph P.

The number of repetitions follow a near power-law distribution.

THyMe: Preliminary Version of Counting TH-Motifs (cont.)

Obs5. Future temporal hyperedges are more likely to repeat recent hyperedges.

 \rightarrow Identical nodes are more likely to exist within the window in the projected graph P.

THyMe⁺: Advanced Version of Counting TH-Motifs

• THyMe⁺ incrementally maintains the projected graph $Q = (V_Q, E_Q, t_Q)$ where each induced static hyperedge is represented as a node.

Projected graph Q

THyMe⁺: Advanced Version of Counting TH-Motifs (cont.)

• THyMe⁺ incrementally maintains the projected $Q = (V_Q, E_Q, t_Q)$ (e.g., $\delta = 4$).

$$e_1 = (\tilde{e}_1 = \{1,4,5\}, t_1 = 7)$$

$$e_2 = (\tilde{e}_2 = \{2,3,4\}, t_2 = 10)$$

$$e_3 = (\tilde{e}_3 = \{4,5,6\}, t_3 = 11)$$

 $e_4 = (\tilde{e}_4 = \{6,7,8\}, t_4 = 12)$

$$e_5 = (\tilde{e}_5 = \{6,7,8\}, t_5 = 14)$$

$$e_6 = (\tilde{e}_6 = \{4,5,6\}, t_5 = 17)$$

{1,4,5} is added

{2,3,4} is added

{4,5,6} is added

{1,4,5} is expired {6,7,8} is added

no changes

{2,3,4} is expired

THyMe⁺: Advanced Version of Counting TH-Motifs (cont.)

• THyMe⁺ avoids the exhaustive enumeration of instances of TH-motifs by counting them based on the timestamps of the nodes V_Q of Q.

Projected graph Q

Introduction Backgrounds Concepts Observations Algorithms Conclusion

Speed and Efficiency of THyMe⁺

THyMe⁺ is faster and more space efficient than DP and THyMe.

Roadmap

- 1. Backgrounds
- 2. Concepts
- 3. Observations
- 4. Algorithms
- 5. Conclusion

Introduction Backgrounds Concepts Observations Algorithms Conclusion

Conclusion

 We propose temporal hypergraph motifs (TH-motifs) for describing structural and temporal patterns of real-world temporal hypergraphs.

Our contributions are:

- ✓ New Concept: We define 96 temporal hypergraph motifs.
- ✓ Fast & Exact Algorithm: We develop THyMe⁺ for counting instances of TH-motifs.
- ✓ Empirical Discoveries: TH-motifs reveal interesting structural & temporal patterns.

Code & datasets: https://github.com/geonlee0325/THyMe

THyMe⁺: Temporal Hypergraph Motifs and Fast Algorithms for Exact Counting

Geon Lee

Kijung Shin