

Mutex Based Potential Heuristics

Salome Müller <salo.mueller@unibas.ch>

Department of Mathematics and Computer Science, University of Basel

20.11.2020

Classical Planning

- States $s \in \mathcal{S}$
- > Facts $f=\langle V,v
 angle$, $f\in\mathcal{F}$
- \triangleright Operators $o \in \mathcal{O}$
 - > cost(*o*)
 - \Rightarrow pre $(o) \subset \mathcal{F}$
 - $ightarrow \operatorname{eff}(o) \subset \mathcal{F}$
- > Path π

15-Puzzle

Initial State

Goal State

Mutex Based Potential Heuristics

¹Image from Lecture Introduction to Artificial Intelligence (FS 2020)

Potential Heuristics

Definition (General Heuristic)

$$h: \mathcal{R} \to \mathbb{R} \cup \{\infty\}$$

Definition (Potential Heuristic)

$$h^{\mathtt{P}}(s) = \sum_{f \in s} P(f)$$

Linear Program

- > Optimization Functions
 - > Linear combination of potentials
 - > Different optimization functions yield different heuristics
- Constraints
 - > Inequalities
 - Assure admissibility

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

 $dom(C) = \{1, 2, 3\}$

Mutex Set:
$$\{ \{ \langle A, 1 \rangle, \langle B, 1 \rangle \}, \}$$

$$\{\langle B, 2 \rangle, \langle C, 3 \rangle\},\$$

 $\{\langle B, 3 \rangle, \langle C, 3 \rangle\}\}$

Disambiguation Set:
$$\{\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle\}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

$$\mathsf{dom}(\mathit{C}) = \{1, 2, 3\}$$

Mutex Set:
$$\{ \{\langle A, 1 \rangle, \langle B, 1 \rangle \}, \\ \{\langle B, 2 \rangle, \langle C, 3 \rangle \}, \\ \{\langle B, 3 \rangle, \langle C, 3 \rangle \}, \}$$

Disambiguation Set:
$$\{\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle\}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

$$\mathsf{dom}(\mathcal{C}) = \{1,2,3\}$$

Mutex Set:
$$\{ \{ \langle A, 1 \rangle, \langle B, 1 \rangle \}, \\ \{ \langle B, 2 \rangle, \langle C, 3 \rangle \}, \\ \{ \langle B, 3 \rangle, \langle C, 3 \rangle \}, \}$$

Disambiguation Set:
$$\{\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle\}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

$$\mathsf{dom}(\mathit{C}) = \{1, 2, 3\}$$

Mutex Set:
$$\{ \{ \langle A, 1 \rangle, \langle B, 1 \rangle \}, \\ \{ \langle B, 2 \rangle, \langle C, 3 \rangle \}, \\ \{ \langle B, 3 \rangle, \langle C, 3 \rangle \}, \}$$

Disambiguation Set:
$$\{\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle\}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

$$\mathsf{dom}(\mathit{C}) = \{1, 2, 3\}$$

Mutex Set:
$$\{ \{ \langle A, 1 \rangle, \langle B, 1 \rangle \}, \\ \{ \langle B, 2 \rangle, \langle C, 3 \rangle \}, \\ \{ \langle B, 3 \rangle, \langle C, 3 \rangle \}, \}$$

Disambiguation Set:
$$\{\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle\}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

 $dom(C) = \{1, 2, 3\}$

Mutex Set:
$$\{ \{ \langle A, 1 \rangle, \langle B, 1 \rangle \}, \{ \langle B, 2 \rangle, \langle C, 3 \rangle \}, \}$$

$$\{\langle B, 2 \rangle, \langle C, 3 \rangle\},$$

$$\{\langle B, 3 \rangle, \langle C, 3 \rangle\},$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

 $dom(C) = \{1, 2, 3\}$

Mutex Set:
$$\{ \{ \langle A, 1 \rangle, \langle B, 1 \rangle \}, \{ \langle B, 2 \rangle, \langle C, 3 \rangle \}, \}$$

$$\{\langle B, 2 \rangle, \langle C, 3 \rangle \}, \\ \{\langle B, 3 \rangle, \langle C, 3 \rangle \} \ \}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

 $dom(C) = \{1, 2, 3\}$

$$\operatorname{dom}(\mathcal{C}) = \{1, 2, 3\}$$

Mutex Set:
$$\{ \{\langle A, 1 \rangle, \langle B, 1 \rangle \}, \{\langle B, 2 \rangle, \langle C, 3 \rangle \}, \{\langle B, 3 \rangle, \langle C, 3 \rangle \} \}$$

Disambiguation Set:
$$\{\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle\}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

 $dom(C) = \{1, 2, 3\}$

$$dom(C) = \{1, 2, 3\}$$

Mutex Set:
$$\{ \{\langle A, 1 \rangle, \langle B, 1 \rangle \}, \\ \{\langle B, 2 \rangle, \langle C, 3 \rangle \}, \\ \{\langle B, 3 \rangle, \langle C, 3 \rangle \} \}$$

Disambiguation Set:
$$\{\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle\}$$

Domain:
$$dom(A) = \{1, 2, 3\}$$

$$dom(B) = \{1, 2, 3\}$$

 $dom(C) = \{1, 2, 3\}$

$$\mathsf{dom}(\mathit{C}) = \{1, 2, 3\}$$

Mutex Set:
$$\{ \{\langle A, 1 \rangle, \langle B, 1 \rangle \}, \\ \{\langle B, 2 \rangle, \langle C, 3 \rangle \}, \\ \{\langle B, 3 \rangle, \langle C, 3 \rangle \} \}$$

Disambiguation Set:{
$$\langle B, 2 \rangle, \langle B, 3 \rangle, \langle C, 1 \rangle, \langle C, 2 \rangle$$
 }

Strengthen LP Constraints

Definition (Constraint for Goal-Awareness)

$$\sum_{f \in G} P(f) + \sum_{V \in \mathcal{V} \setminus \text{vars}(G)} \max_{f \in \mathcal{F}_V} P(f) \leq 0$$

Strengthen LP Constraints: Results

Mutex Based Optimization Functions

Definition (Mutex Based Optimization Function)

$$\operatorname{opt}_{\mathcal{M}}^{k} = \sum_{f = \langle V, v \rangle \in \mathcal{F}} \frac{\mathcal{C}_{f}^{k}(\mathcal{M})}{\sum_{f' \in \mathcal{F}_{V}} \mathcal{C}_{f'}^{k}(\mathcal{M})} P(f)$$

Definition (Mutex Based Ensemble Optimization Function)

$$\operatorname{opt}_{\mathcal{M}}^{t,k} = \sum_{f = \langle V, v \rangle \in \mathcal{F}} \frac{\mathcal{K}_f^k(\mathcal{M}, t)}{\sum_{f' \in \mathcal{F}_V} \mathcal{K}_f^k(\mathcal{M}, t)} P(f)$$

Mutex Based Optimization Functions: Results

	all-N	M ₁ -D	J ₁ ¹⁰ -D
Coverage	929	900	922
Expansions	10244	8297	6197
Total Time	0.29	0.59	1.02
Search Time	0.23	0.20	0.89

Additional Constraints

Definition (Additional Constraint)

$$\sum_{f \in s} P(f) = h^{P}(s)$$

Additional Constraints: Results

Conclusion

- > Too computationally expensive
- > Additional constraints good

Questions?
salo.mueller@unibas.ch

Max(all, init)

	all-N	all-N-I	all-N-I-WP	max-N	max-N-WP	max-N-I
Coverage	929	965	965	948	957	958
Expansions	53184	49875	40519	38914	36556	35804
Total Time	1.12	0.98	1.00	1.13	1.13	1.10
Search Time	0.90	0.75	0.77	0.85	1.11	0.83
Out of Memory	870	837	835	854	843	843
Out of Time	11	8	10	8	10	9

Standard Potential Heuristics

	lmc	all-N	init-N	max-N	div-N	$S_1^{100}-N$	S ₁₀₀₀ -N
Coverage	958	929	891	948	963	945	961
Expansions	1287	10244	22415	8270	6904	7181	9238
Total Time	0.57	0.29	0.54	0.33	0.74	0.94	0.33
Search Time	0.52	0.23	0.43	0.24	0.74	0.94	0.22
Out of Memory	0	870	911	854	623	170	844
Out of Time	852	11	8	8	224	695	5

Strengthened Constraints

	all-D	init-D	max-D	div-D	S ₁ ¹⁰⁰ -D	S ₁₀₀₀ -D
Coverage	879	881	932	837	853	952
Expansions	12101	18964	7863	5269	5503	7697
Total Time	0.68	0.90	0.84	4.18	3.29	0.64
Search Time	0.27	0.39	0.24	0.19	0.31	0.19
Out of Memory	824	824	770	560	273	726
Out of Time	75	73	76	381	652	100

Strengthened Optimization Functions

	M ₁ -D	M ₂ -D	K ₁ ¹⁰ -D	K ₂ ¹⁰ -D	L ₁ 0-D	L ₂ ¹⁰ -D	J ₁ ¹⁰ -D	J ₂ ¹⁰ -D
Coverage	900	859	911	831	921	840	922	845
Expansions	8297	8240	6790	6847	6126	6273	6197	6039
Total Time	0.59	1.23	0.89	4.23	0.99	3.93	1.02	3.20
Search Time	0.20	0.20	0.86	4.08	0.86	3.78	0.89	3.04
Out of Memory	802	726	714	608	691	589	677	586
Out of Time	77	203	155	351	169	364	193	364

Additional Constraint on the Initial State

	all-N-I	div-N-I	$S_{1000}^{1}-N-I$	M_1-D-I	M ₂ -D-I
Coverage	965	956	963	950	906
Expansions	8532	7741	9040	6585	6561
Total Time	0.27	0.70	0.33	0.60	1.21
Search Time	0.21	0.70	0.21	0.17	0.17
Out of Memory	837	716	843	729	705
Out of Time	8	127	4	115	183

Additional Constraints on Random States

	all-N-R	init-N-R	div-N-R	M_2 -D-R
Coverage	930	898	905	863
Expansions	11672	16182	11306	9190
Total Time	0.35	0.44	0.76	1.51
Search Time	0.34	0.44	0.76	1.37
Out of Memory	858	899	798	728
Out of Time	16	11	105	205

Mutex Based Optimization Functions

Definition (Mutex Based Optimization Function)

$$\mathcal{C}_f^k(\mathcal{M}) = \sum_{p \in \mathcal{P}_k^{\{f\}}} \prod_{V \in \mathcal{V}} |F_V \setminus \mathcal{M}_p|$$

Definition (Mutex Based Ensemble Optimization Function)

$$\mathcal{K}_f^k(\mathcal{M},t) = \sum_{oldsymbol{p} \in \mathcal{P}_{|t|+k}^{t \cup \{f\}}} \prod_{V \in \mathcal{V}} |\mathcal{F} \setminus \mathcal{M}_{oldsymbol{p}}|$$

LP Constraints

Theorem

Let $\Pi = \langle \mathcal{V}, \mathcal{O}, I, G \rangle$ denote a planning task, P a potential function, and for every operator $o \in \mathcal{O}$, let $\operatorname{pre}^*(o) = \{\langle V, \operatorname{pre}(o)[V] \rangle | V \in \operatorname{vars}(\operatorname{pre}(o)) \cap \operatorname{vars}(\operatorname{eff}(o))\}$ and $\operatorname{vars}^*(o) = \operatorname{vars}(\operatorname{eff}(o)) \setminus \operatorname{vars}(\operatorname{pre}(o))$. If

$$\sum_{f \in G} P(f) + \sum_{V \in \mathcal{V} \setminus \text{vars}(G)} \max_{f \in \mathcal{F}_V} P(f) \le 0$$
 (1)

and for every operator $o \in \mathcal{O}$ it holds that

$$\sum_{f \in \operatorname{pre}^*(o)} P(f) + \sum_{V \in \operatorname{vars}^*(o)} \max_{f \in \mathcal{F}_V} P(f) - \sum_{f \in \operatorname{eff}(o)} P(f) \le c(o)$$
 (2)

then the potential heuristic for P is admissible.