6/08/20

Agenda for Math 5710 ♬ Meeting #25 �� 7/28/20 (8:00 a.m. – 9:10 a.m.)

1. Hello:

Brigham City: Adam Blakeslee Ryan Johnson Tyson Mortensen David Allen Natalie Anderson Logan: Kameron Baird Stephen Brezinski Zachary Ellis Adam Flanders Brock Francom Xiang Gao Ryan Goodman Hadley Hamar Phillip Leifer Janette Goodridge Shelby Simpson **Brittney Miller** Jonathan Mousley Erika Mueller Steven Summers Matthew White Zhang Xiaomeng

2. Note the syllabus' activity list for today:

25:	1.	Deepen our application-level understanding of continuous random variables and their
T/7/28		associate probability functions.
	2.	Take advantage of Quiz 25

- 3. Briefly raise issues and questions prompted by the following homework assignment:
 - A. Study our notes from Meeting #24.
 - B. Comprehend Jim's sample responses to Quiz 24's prompts.
 - C. From the Video Page of *Canvas*, view with comprehension the videos named "mmContinuous Random Variables Mean Variance" and "mmContinuous Random Variables cum distr functions."
 - D. Comprehend the 047A-C from our glossary.
- 4. Solve the following problem for our friend Dori:

Dori is a real estate broker who is in the process of determining how much she should bid on a tract of land. She receives a believable tip that a competitor for the property is planning to bid up to 3 million dollars. A bid is modeled as continuous random variable *X* with the following density function:

$$f: \mathbb{R} \to \mathbb{R} \ni p(a \le X \le b) \ni f(x) = c(9 - x^2) \text{ for } 0 \le x \le 3 \land f(x) = 0 \text{ for } x \in \mathbb{R} - (0, 3).$$

Dori does not know the competitor's bid but she wants to make a bid that is slightly greater than the competitor's bid. Please answer following questions to help Dori in her endeavor:

1. What is the value of c to assure that f is a legitimate density function?

- 2. What is the cumulative distribution function F and what are the probabilities of Dori losing the competition by making bids of either 1 million dollars or 2 million dollars?
- 3. What is the expected value and the standard deviation of the competitor's bid?
- 4. How much should Dori bid so she has a 90% chance of winning?
- 5. Take advantage of Quiz 25.
- 6. Complete the following assignments prior to Meeting #26:
 - A. Study our notes from Meeting #25.
 - B. Comprehend the sample responses to Quiz 25's prompts
 - C. From the Video Page of *Canvas*, view with comprehension the video named "law of large numbers."

7. And from *XKCD*:

WRONG TIMES TABLE													
THE INCORRECT ANSWERS THAT FEEL MOST RIGHT TO ME													
	1	2	3	4	5	6	7	8	9	10			
1	0	1/2	4	5	6	7	8	9	OI	9			
2	1/2	8	5	6	12	14	12	18	19	22			
3	4	5	10	16	13	12	24	32	21	33			
4	5	6	16	32	25	25	29	36	28	48			
5	6	12	13	25	50	24	40	45	40	60			
6	7	14	12	25	24	32	48	50	72	72			
7	8	12	24	29	40	48	42	54	60	84			
8	9	18	32	36	45	50	54	48	74	56			
9	10	19	21	28	40	72	60	74	72	81			
10	9	22	33	48	60	72	84	56	81	110			