Irish Nishnaabemwin Parallels

Dustin Bowers

University of Arizona

November 13, 2019 - Chronologicon Hibernium - Maynooth

• ChronHib-Bowersian commonality: find appropriate representations for language change

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...
 - reflect language at time of composition

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...
 - reflect language at time of composition
 - refracted by orthography, later copying

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...
 - reflect language at time of composition
 - refracted by orthography, later copying
- Parallel language situation in Modern Nishnaabemwin (aka Odawa, Algonquian, Great Lakes)

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...
 - reflect language at time of composition
 - refracted by orthography, later copying
- Parallel language situation in Modern Nishnaabemwin (aka Odawa, Algonquian, Great Lakes)
 - Transitional Odawa: Deletion in alternating σ

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...
 - reflect language at time of composition
 - refracted by orthography, later copying
- Parallel language situation in Modern Nishnaabemwin (aka Odawa, Algonquian, Great Lakes)
 - Transitional Odawa: Deletion in alternating σ
 - New Odawa: prefix changes, paradigm leveling (Bowers 2019)

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...
 - reflect language at time of composition
 - refracted by orthography, later copying
- Parallel language situation in Modern Nishnaabemwin (aka Odawa, Algonquian, Great Lakes)
 - Transitional Odawa: Deletion in alternating σ
 - New Odawa: prefix changes, paradigm leveling (Bowers 2019)
- Goal: explore how Odawa changed

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- ChronHib-Bowersian commonality: find appropriate representations for language change
- ChronHib goal: date texts that ...
 - reflect language at time of composition
 - refracted by orthography, later copying
- Parallel language situation in Modern Nishnaabemwin (aka Odawa, Algonquian, Great Lakes)
 - Transitional Odawa: Deletion in alternating σ
 - New Odawa: prefix changes, paradigm leveling (Bowers 2019)
- Goal: explore how Odawa changed
 - Data available for Odawa may illuminate Old Irish

• Key Irish analogue: prototonic-deuterotonic alternations

'fall' (prototonic)	McCone (1996:202)
:torchartar	Orthography
/X-to-ro-xaratar/	UR
_	$t \rightarrow d$
X-('toro)(ˌxara)(ˌtar)	Stress
X-('tor_)(,xar_)(,tar)	Syncope
X-['tor_,xar_,tar]	SR
	:torchartar /X-to-ro-xaratar/ — X-('toro)(,xara)(,tar) X-('tor_)(,xar_)(,tar)

• Key Irish analogue: prototonic-deuterotonic alternations

```
'fall' (deuterotonic)
                       'fall' (prototonic)
                                               McCone (1996:202)
do:ro-chratar
                       :torchartar
                                               Orthography
/to-ro-xaratar/
                       /X-to-ro-xaratar/
                                               UR
do-ro-xaratar
                                               t \rightarrow d
do-('roxa)(ratar)
                      X-('toro)(xara)(tar)
                                               Stress
do-('rox )(ratar)
                       X-(tor)(xar)(tar)
                                               Syncope
[do-'rox ratar]
                       X-['tor xar tar]
                                               SR
```

• ... and demise of the alternations

• Key Irish analogue: prototonic-deuterotonic alternations

```
'fall' (deuterotonic)
                       'fall' (prototonic)
                                               McCone (1996:202)
do:ro-chratar
                       :torchartar
                                               Orthography
                       /X-to-ro-xaratar/
                                               UR
/to-ro-xaratar/
do-ro-xaratar
                                               t \rightarrow d
do-('roxa)(ratar)
                      X-('toro)(xara)(tar)
                                               Stress
do-('rox )(ratar)
                      X-(tor)(xar)(tar)
                                               Syncope
[do-'rox ratar]
                       X-['tor xar tar]
                                               SR
```

- ... and demise of the alternations
 - :torchartar → :torchratar (Milan 48c28, McCone 1996:202)

• Key Irish analogue: prototonic-deuterotonic alternations

```
'fall' (deuterotonic)
                       'fall' (prototonic)
                                               McCone (1996:202)
do:ro-chratar
                       :torchartar
                                               Orthography
/to-ro-xaratar/
                       /X-to-ro-xaratar/
                                               UR
do-ro-xaratar
                                               t \rightarrow d
do-('roxa)(ratar)
                      X-('toro)(xara)(tar)
                                               Stress
do-('rox )(ratar)
                      X-(tor)(xar)(tar)
                                               Syncope
[do-'rox ratar]
                       X-['tor xar tar]
                                               SR
```

- ... and demise of the alternations
 - :torchartar → :torchratar (Milan 48c28, McCone 1996:202)
 - 'Dummy' prefixes in deuterotonic contexts:

'avoid.2.sg.impv'		/imb-uss-gab-/	
Prototonic	\rightarrow	:('im_)(ˌcaib)	Wurzburg 28c24
Expected deut	$\rightarrow \rightarrow$	*im:('ocaib)	Armstrong 1976:65
Actual	\rightarrow	imma:('n-im_)(ˌcaib)	Wurzburg 30d20

Transitional Odawa

-1930s Adults--Cusp of Syncope-

- Odawa had iambic stress (typical in Ojibwe dialects)
 - Iterative feet from left-right
 - Word-final degenerate foot allowed
 - Only long-vowels count as heavy

- Odawa had iambic stress (typical in Ojibwe dialects)
 - Iterative feet from left-right
 - Word-final degenerate foot allowed
 - Only long-vowels count as heavy
- Bloomfield (1957:5) reports strong reduction in 1938:
 - "The reduced vowels are rapidly spoken and often whispered or entirely omitted".

- Odawa had iambic stress (typical in Ojibwe dialects)
 - Iterative feet from left-right
 - Word-final degenerate foot allowed
 - Only long-vowels count as heavy
- Bloomfield (1957:5) reports strong reduction in 1938:
 - "The reduced vowels are rapidly spoken and often whispered or entirely omitted".
 - $(m \wedge zi)(n \wedge ?i)(g \wedge n) \rightarrow (m^{\vartheta} zi)(n^{\vartheta} ?i)(g \wedge n)$ 'book'

- Odawa had iambic stress (typical in Ojibwe dialects)
 - Iterative feet from left-right
 - Word-final degenerate foot allowed
 - Only long-vowels count as heavy
- Bloomfield (1957:5) reports strong reduction in 1938:
 - "The reduced vowels are rapidly spoken and often whispered or entirely omitted".
 - $(m \wedge zi)(n \wedge ?i)(g \wedge n) \rightarrow (m^{\vartheta} zi)(n^{\vartheta} ?i)(g \wedge n)$ 'book'
- Cusp of rhythmic syncope, will assume perceived as categorically deleted

Incipient Alternations

• Person prefixes shifted foot boundaries

Incipient Alternations

- Person prefixes shifted foot boundaries
 - This introduced active alternations
 - Reminiscent of prototonic-deuterotonic alternations in Irish

'book'	'my book'	
/mazina?igan/	/nɪ-mʌzɪnʌʔɪgʌn/	UR
(mʌzí)(nʌʔí)(gʎn)	(nīmλ)(zīnλ)(?īgλn)	Stress
$(m^{9}zi)(n^{9}?i)(gin)$	$(n^{\theta}m\lambda)(z^{\theta}n\lambda)(?^{\theta}g\lambda n)$	Reduction
[m ^ə zín ^ə ʔígʎn]	[n ^ə máz ^ə ná?gán]	SR

Incipient Alternations

- Person prefixes shifted foot boundaries
 - This introduced active alternations
 - Reminiscent of prototonic-deuterotonic alternations in Irish

'book'	'my book'	
/mazina?igan/	/nɪ-mʌzɪnʌʔɪgʌn/	UR
$(m\lambda zi)(n\lambda ?i)(g\lambda n)$	$(nim \acute{\Lambda})(zin \acute{\Lambda})(2ig \acute{\Lambda}n)$	Stress
$(m^{9}zi)(n^{9}?i)(gin)$	$(n^{\theta}m\acute{\Lambda})(z^{\theta}n\acute{\Lambda})(?^{\theta}g\acute{\Lambda}n)$	Reduction
[m ^ə zín ^ə ʔígán]	[n ^ə máz ^ə ná?gán]	SR

- Robust lexical evidence for alternations:
 - ~40% of stems began with at least 1 light σ
 - ~25% began with more than 1 light σ

Local Summary

• Vowels "are never silent" (Baraga 1878:4, emph. orig.).

Local Summary

- Vowels "are never silent" (Baraga 1878:4, emph. orig.).
- "The reduced vowels are rapidly spoken and often whispered or entirely omitted" (Bloomfield 1957:5).

Local Summary

- Vowels "are never silent" (Baraga 1878:4, emph. orig.).
- "The reduced vowels are rapidly spoken and often whispered or entirely omitted" (Bloomfield 1957:5).
- Language at cusp of rhythmic syncope
- Children just need to turn gradient reduction to full deletion

New Odawa

-1930s Children-

- "Odawa has added a rule fairly recently, which deletes unstressed vowels... It would be interesting to speculate about the ultimate impact of this rule on Odawa phonology"
 - Kaye (1974b:148-9)

- "Odawa has added a rule fairly recently, which deletes unstressed vowels ... It would be interesting to speculate about the ultimate impact of this rule on Odawa phonology"
 - Kaye (1974b:148-9)
- "The grammar of older speakers has undergone (or, rather, is undergoing) considerable modification in the grammar of speakers who are in the mid-thirties and under."
 - Piggott (1974 [1980]:2)

- "Odawa has added a rule fairly recently, which deletes unstressed vowels ... It would be interesting to speculate about the ultimate impact of this rule on Odawa phonology"
 - Kaye (1974b:148-9)
- "The grammar of older speakers has undergone (or, rather, is undergoing) considerable modification in the grammar of speakers who are in the mid-thirties and under."
 - Piggott (1974 [1980]:2)
- Missing vowels "easily resupplied" by older speakers, not by younger speakers
 - Rhodes (1975:130):, see also Rhodes (1976:5-6)
 - i.e. The vowels are gone for younger speakers

- "Odawa has added a rule fairly recently, which deletes unstressed vowels...It would be interesting to speculate about the ultimate impact of this rule on Odawa phonology"
 - Kaye (1974b:148-9)
- "The grammar of older speakers has undergone (or, rather, is undergoing) considerable modification in the grammar of speakers who are in the mid-thirties and under."
 - Piggott (1974 [1980]:2)
- Missing vowels "easily resupplied" by older speakers, not by younger speakers
 - Rhodes (1975:130):, see also Rhodes (1976:5-6)
 - i.e. The vowels are gone for younger speakers
- Kaye and Piggott gathered most of their data in 1968-70
- Early childhood of mid-30's consultants coincides with Bloomfield.

Prefix Restructuring

- Rhodes (1985) identifies a major change in person prefixes
 - See also Kaye (1974a)
- Expected person prefixes:

Pre-	Cons	onantal	Pre-V	<i>l</i> ocalic		
1	2	3	1	2	3	
nı-	gı-	υ-	nıd-	gıd-	υd-	Old Odawa
n-	g-	Ø	nd-	gd-	d-	New Odawa

Prefix Restructuring

- Rhodes (1985) identifies a major change in person prefixes
 - See also Kaye (1974a)
- Expected person prefixes:

Pre-	Cons	onantai	Pre- \	ocalic/		
1	2	3	1	2	3	
nı-	gı-	υ-	nıd-	gıd-	υd-	Old Odawa
n-	q-	Ø	nd-	qd-	d-	New Odawa

• Innovative prefixes became productive

1	2	3	(New Odawa)
nd^-	gda-	dΛ-	
ndı-	gdı-	dı-	
ndo:-	do:-	do:-	

New Prefixes Spread

• New prefixes displace old prefixation pattern across lexicon

']	He has a close call'	'I have a close call'	(T. Odawa)
/ }	ь л зіпе:/	/nɪ-bʌʒɪneː/	UR
(1	bʌʒí)(néː)	(nɪbλ)(ʒɪnéː)	Stress
(1	b ^ə ʒí)(néː)	$(n^{9}b\Lambda)(3^{9}n\acute{e})$	Reduction
[1	b ^ə ʒínéː]	[n ^ə báʒ ^ə néː]	SR
[1	bʒínéː]	[nbáʒnéː]	Likely Percept

New Prefixes Spread

• New prefixes displace old prefixation pattern across lexicon

•	He has a close call'	'I have a close call'	(T. Odawa)
/	baʒmeː/	/nɪ-bʌʒɪneː/	UR
(bʌʒí)(néː)	(nɪbλ)(ʒɪnéː)	Stress
(b ^ə ʒí)(néː)	(n ^ə bλ)(ʒ ^ə néː)	Reduction
[b ^ə ʒínéː]	[n ^ə báʒ ^ə néː]	SR
[bʒínéː]	[nbáʒnéː]	Likely Percept

• New Odawa: [bʒɪneː], [ndʌ-bʒɪneː]

New Prefixes Spread

• New prefixes displace old prefixation pattern across lexicon

'He has a close call'	'I have a close call'	(T. Odawa)
/bʌʒɪneː/	/nɪ-bʌʒɪneː/	UR
(bʌʒí)(néː)	(nɪbʎ)(ʒɪnéː)	Stress
(b ^ə ʒí)(néː)	$(n^{9}b\acute{\Lambda})(3^{9}n\acute{e})$	Reduction
[b ^ə ʒínéː]	[n ^ə báʒ ^ə néː]	SR
[bʒínéː]	[nbáʒnéː]	Likely Percept

- New Odawa: [bʒɪneː], [ndʌ-bʒɪneː]
- Note: stem alternations are gone too!

New Prefix Origins

 New prefixes arose via reanalysis of Transitional Odawa short vowel-initial words:

'He hangs'	'I hang'	(T. Odawa)
/ʌgoːd͡ʒɪn/	/nɪ-ʌgoːd͡ʒɪn/	UR
_	nɪ[d]ʌgoːd͡ʒɪn	Hiatus Resolution
(ʌgóː)(d͡ʒín)	$(\operatorname{nid} \acute{\mathbf{\Lambda}})(g\acute{\mathbf{o}} \mathbf{r})(\widehat{\mathbf{d}} \mathbf{\bar{g}} \acute{\mathbf{n}})$	Stress
(⁹ góː)(d͡ʒín)	$(\hat{\text{n}} \hat{\text{d}} \hat{\text{d}})(\hat{\text{g}} \hat{\text{o}})(\hat{\text{d}} \hat{\text{g}} \hat{\text{m}})$	Reduction
[^ə góːd͡ʒín]	[n³dʎgóːd͡ʒín]	SR
[góːd͡ʒín]	[ndágóːd͡ʒín]	Likely Percept

New Prefix Origins

 New prefixes arose via reanalysis of Transitional Odawa short vowel-initial words:

```
'He hangs' 'I hang' (T. Odawa)

/Ago:d\widehat{\mathfrak{I}} /nr-Ago:d\widehat{\mathfrak{I}} UR

— nr[d]Ago:d\widehat{\mathfrak{I}} Hiatus Resolution

(Agó:)(d\widehat{\mathfrak{I}} (nrd\widehat{\mathfrak{I}})(gó:)(d\widehat{\mathfrak{I}} Stress

(*gó:)(d\widehat{\mathfrak{I}} (n*d\widehat{\mathfrak{I}})(gó:)(d\widehat{\mathfrak{I}} Reduction

[*gó:d\widehat{\mathfrak{I}} [n*d\widehat{\mathfrak{I}} SR

[gó:d\widehat{\mathfrak{I}} [nd\widehat{\mathfrak{I}} [nd\widehat{\mathfrak{I}} Likely Percept
```

• A plausible mis-analysis (repeatable for [1, σ], see Bowers 2019):

```
go:d3m 'He hangs'
ndA go:d3m 'I hang'
```

Perhaps Attrition?

- There may be conservatively syncopating 'younger' speakers
 - i.e. maintain stem alternations, prefer original prefixes
 - Valentine (1994; 2001, p.c.)

Perhaps Attrition?

- There may be conservatively syncopating 'younger' speakers
 - i.e. maintain stem alternations, prefer original prefixes
 - Valentine (1994; 2001, p.c.)
- Perhaps New Odawa is just something brought about by attrition

Perhaps Attrition?

- There may be conservatively syncopating 'younger' speakers
 - i.e. maintain stem alternations, prefer original prefixes
 - Valentine (1994; 2001, p.c.)
- Perhaps New Odawa is just something brought about by attrition
- To find out: surveyed 20 speakers on Manitoulin Island and Walpole Island

Surveys -1930s Children (now elders)-

Participants

- 20 first-language speakers
 - (8 males, 12 females)
 - All born during heyday of strong reduction
 - 61-87 years old
 - mean: 71.6, sd: 7.3
 - Includes highly competent translators, instructors, activists

- 1 Prefix choice (no stem-internal alternations)
 - a Which prefix do you prefer? (multi-level forced choice)
 - b How much do you like each prefix ? (7-point Likert scale)
- 2 Leveling: Do you prefer [ndo:-]+leveled or [n-]+alternating?
 - Binary forced choice
- 3 Alternations: Can you find the conservative prefixed stem allomorph?
 - Binary forced choice

- 1 Prefix choice (no stem-internal alternations)
 - a Which prefix do you prefer? (multi-level forced choice)
 - b How much do you like each prefix ? (7-point Likert scale)
- 2 Leveling: Do you prefer [ndo:-]+leveled or [n-]+alternating?
 - Binary forced choice
- 3 Alternations: Can you find the conservative prefixed stem allomorph?
 - Binary forced choice
- 30 mostly random words per speaker, per survey
 - 10 'core words' re-used for each participant

- 1 Prefix choice (no stem-internal alternations)
 - a Which prefix do you prefer? (multi-level forced choice)
 - b How much do you like each prefix ? (7-point Likert scale)
- 2 Leveling: Do you prefer [ndo:-]+leveled or [n-]+alternating?
 - Binary forced choice
- 3 Alternations: Can you find the conservative prefixed stem allomorph?
 - Binary forced choice
- 30 mostly random words per speaker, per survey
 - 10 'core words' re-used for each participant
 - Plus: random words

- 1 Prefix choice (no stem-internal alternations)
 - a Which prefix do you prefer? (multi-level forced choice)
 - b How much do you like each prefix ? (7-point Likert scale)
- 2 Leveling: Do you prefer [ndo:-]+leveled or [n-]+alternating?
 - Binary forced choice
- 3 Alternations: Can you find the conservative prefixed stem allomorph?
 - Binary forced choice
- 30 mostly random words per speaker, per survey
 - 10 'core words' re-used for each participant
 - Plus: random words
 - Kept drawing until 20 were recognized

- 1 Prefix choice (no stem-internal alternations)
 - a Which prefix do you prefer? (multi-level forced choice)
 - b How much do you like each prefix ? (7-point Likert scale)
- 2 Leveling: Do you prefer [ndo:-]+leveled or [n-]+alternating?
 - Binary forced choice
- 3 Alternations: Can you find the conservative prefixed stem allomorph?
 - Binary forced choice
- 30 mostly random words per speaker, per survey
 - 10 'core words' re-used for each participant
 - Plus: random words
 - Kept drawing until 20 were recognized
 - 1441 words sampled (1030 sampled 1x, 376 2-10x, 35 > 10x)

- 1 Prefix choice (no stem-internal alternations)
 - a Which prefix do you prefer? (multi-level forced choice)
 - b How much do you like each prefix ? (7-point Likert scale)
- 2 Leveling: Do you prefer [ndo:-]+leveled or [n-]+alternating?
 - Binary forced choice
- 3 Alternations: Can you find the conservative prefixed stem allomorph?
 - Binary forced choice
- 30 mostly random words per speaker, per survey
 - 10 'core words' re-used for each participant
 - Plus: random words
 - Kept drawing until 20 were recognized
 - 1441 words sampled (1030 sampled 1x, 376 2-10x, 35 > 10x)

- 1 Prefix choice (no stem-internal alternations)
 - a Which prefix do you prefer? (multi-level forced choice)
 - b How much do you like each prefix ? (7-point Likert scale)
- 2 Leveling: Do you prefer [ndo:-]+leveled or [n-]+alternating?
 - Binary forced choice
- 3 Alternations: Can you find the conservative prefixed stem allomorph?
 - Binary forced choice
- 30 mostly random words per speaker, per survey
 - 10 'core words' re-used for each participant
 - Plus: random words
 - Kept drawing until 20 were recognized
 - 1441 words sampled (1030 sampled 1x, 376 2-10x, 35 > 10x)
- Items presented using standard romanization

• Linear mixed effects models constructed

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test
 - For inter-survey comparability, maximal models shown

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test
 - For inter-survey comparability, maximal models shown
 - Factors excluded in 'best' model italicized

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test
 - For inter-survey comparability, maximal models shown
 - Factors excluded in 'best' model italicized
- Word frequency and speaker fluency are common variables of interest

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test
 - For inter-survey comparability, maximal models shown
 - Factors excluded in 'best' model italicized
- Word frequency and speaker fluency are common variables of interest
- Neither can be assessed in Odawa (no corpora, no standardized tests)

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test
 - For inter-survey comparability, maximal models shown
 - Factors excluded in 'best' model italicized
- Word frequency and speaker fluency are common variables of interest
- Neither can be assessed in Odawa (no corpora, no standardized tests)
- Calculated proxies:

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test
 - For inter-survey comparability, maximal models shown
 - Factors excluded in 'best' model italicized
- Word frequency and speaker fluency are common variables of interest
- Neither can be assessed in Odawa (no corpora, no standardized tests)
- Calculated proxies:
 - Word familiarity: # speakers who recognized w # speakers who were shown w+2

- Linear mixed effects models constructed
 - Generalized linear mixed effects models for binary data
 - Random effect for participant
- Models compared on AIC, likelihood ratio test
 - For inter-survey comparability, maximal models shown
 - Factors excluded in 'best' model italicized
- Word frequency and speaker fluency are common variables of interest
- Neither can be assessed in Odawa (no corpora, no standardized tests)
- Calculated proxies:
 - Word familiarity: # speakers who recognized w # speakers who were shown w+2
 - Speaker proficiency: #words recognized by s

- Target question 1: which prefix do you prefer?
 - ndλ-, ndo:-, ndι-, n- + daːbaːn 'my car'

- Target question 1: which prefix do you prefer?
 - ndλ-, ndo:-, ndi-, n- + da:ba:n 'my car'
 - plus nd- for vowel-initial words

- Target question 1: which prefix do you prefer?
 - ndλ-, ndo:-, ndi-, n- + da:ba:n 'my car'
 - plus nd- for vowel-initial words
- Target question 2: rate each prefix on 7 point Likert scale

- Target question 1: which prefix do you prefer?
 - ndλ-, ndo:-, ndi-, n- + da:ba:n 'my car'
 - plus nd- for vowel-initial words
- Target question 2: rate each prefix on 7 point Likert scale
- All words underlyingly began with $((\Lambda,I,\upsilon)C)VV$
 - → Long vowel stopped alternations in T. Odawa
- Equal numbers of ΛC, IC ..., words were drawn

Fransitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

No Historical Preference, but Awareness

Prefix Survey: Forced Choice Results

• Target question 1: which prefix do you prefer?

	C	лC	υC	ıС	VV
n-	27	8	15	8	3
nd^-	33	49	16	29	34
ndo:-	23	25	53	21	32
ndı-	17	17	15	42	4
nd-			_	_	27

- nda-, ndo:- usually favorites
 - Always combine to $\geq 50\%$ in column

Prefix Survey: Forced Choice Results

• Target question 1: which prefix do you prefer?

	C	ΛС	υC	ıС	VV
n-	27	8	15	8	3
nd^-	33	49	16	29	34
ndo:-	23	25	53	21	32
ndı-	17	17	15	42	4
nd-					27

- nda-, ndo:- usually favorites
 - Always combine to $\geq 50\%$ in column
- Conservative prefixes (n-, nd-) never even a plurality
- But, historically attested always largest in row

Prefix Survey: Rating Imer Fixed Effects

• Better ratings for [nda-/ndo:-] than historical

Prefix Survey: Rating Imer Fixed Effects

• Better ratings for [nd\(\Lambda\)-/ndo:-] than historical

	Estimate	Std. Error	t value
(Intercept)	4.20441	0.30002	14.014
nd-	0.41458	0.38069	1.089
ndı-	0.39661	0.22952	1.728
nd^-	1.41182	0.26511	5.325
ndo:-	1.62259	0.30751	5.277
historical	0.58740	0.09727	6.039
historical:proficiency	0.18881	0.08867	2.129
historical:familiar	0.40207	0.09592	4.192
proficiency(z-scored)	0.36704	0.14480	2.535
familiar(z-scored)	-0.25793	0.04588	-5.622
age(z-scored)	0.27938	0.14540	1.921
historical:age	0.01290	0.08972	0.144

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

Prefix Summary

- Speakers tend to choose $nd\Lambda$ -/ndo:- and rate them highly
- Historical forms have improved ratings, chances of being chosen
 - Word familiarity gives particular boost to historical rating
 - But historical forms not on same level with $nd\Lambda$ -/ndoz-

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

Prefix Summary

- Speakers tend to choose $nd\Lambda$ -/ndo:- and rate them highly
- Historical forms have improved ratings, chances of being chosen
 - Word familiarity gives particular boost to historical rating
 - But historical forms not on same level with $nd\Lambda$ -/ndoz-
- Modern language has embraced innovative prefixes
- Historical forms looking a bit like memorized irregulars

Leveling Survey Task

- Target question: do you prefer [ndo:-] or [n-]?
 - n-makzin vs ndo:-mkizin 'my book'

Leveling Survey Task

- Target question: do you prefer [ndoː-] or [n-]?
 - n-makzin vs ndo:-mkizin 'my book'
- Included up to 5 fake conservative forms (To keep participants alert)
 - *n-mukzin vs ndo:-mkizin 'my book'

Leveling Survey Task

- Target question: do you prefer [ndo:-] or [n-]?
 - n-makzin vs ndo:-mkizin 'my book'
- Included up to 5 fake conservative forms (To keep participants alert)
 - *n-mokzin vs ndo:-mkizin 'my book'
- Words varied in number of alternating syllables (1-5)
 - n-m [ji:mm 'my apple' (1)
 - n-m Λ k Ø zin 'my shoe' (2)
 - n-b Λ d Ø k Λ sk Ø ? I gAn 'my pitchfork' (5)

Preference for Non-Alternation

Leveling Survey: glmer Fixed Effects

• General preference for [ndoː]

Leveling Survey: glmer Fixed Effects

- General preference for [ndoː]
- Dependent variable: [n-] picked vs [ndo:-] picked
 - Positive coefficients favor [n-]

Leveling Survey: glmer Fixed Effects

- General preference for [ndo:]
- Dependent variable: [n-] picked vs [ndo:-] picked
 - Positive coefficients favor [n-]

Estimate	Std. Error	z value	$\Pr(> z)$	
-0.946649	0.261456	-3.621	0.000294	***
-0.808641	0.198504	-4.074	4.63e-05	***
-0.511188	0.145574	-3.512	0.000446	***
0.019439	0.008228	2.363	0.018145	*
0.881623	0.311641	2.829	0.004670	**
-0.747303	0.489440	-1.527	0.126798	
0.035012	0.095443	0.367	0.713741	
0.175473	0.179200	0.979	0.327478	
	-0.946649 -0.808641 -0.511188 0.019439 0.881623 -0.747303 0.035012	-0.946649 0.261456 -0.808641 0.198504 -0.511188 0.145574 0.019439 0.008228 0.881623 0.311641 -0.747303 0.489440 0.035012 0.095443	-0.9466490.261456-3.621-0.8086410.198504-4.074-0.5111880.145574-3.5120.0194390.0082282.3630.8816230.3116412.829-0.7473030.489440-1.5270.0350120.0954430.367	-0.946649 0.261456 -3.621 0.000294 -0.808641 0.198504 -4.074 4.63e-05 -0.511188 0.145574 -3.512 0.000446 0.019439 0.008228 2.363 0.018145 0.881623 0.311641 2.829 0.004670 -0.747303 0.489440 -1.527 0.126798 0.035012 0.095443 0.367 0.713741

- Might have expected the opposite results!
 - Binary choice between clearly conservative vs innovative

- Might have expected the opposite results!
 - Binary choice between clearly conservative vs innovative
- Highly proficient speakers not more likely to choose conservative

- Might have expected the opposite results!
 - Binary choice between clearly conservative vs innovative
- Highly proficient speakers not more likely to choose conservative
- Real shock: speakers dislike lots of alternating vowels
 - n-mı∫i:mın (1) > n-mʌkzın (2), n-bʌdkʌ∫kʔıgʌn (5)
 - The big alternations are the hallmarks of rhythmic syncope!

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- Might have expected the opposite results!
 - Binary choice between clearly conservative vs innovative
- Highly proficient speakers not more likely to choose conservative
- Real shock: speakers dislike lots of alternating vowels
 - n-mɪʃiːmɪn (1) > n-mʌkzɪn (2), n-bʌdkʌʃkʔɪgʌn (5)
 - The big alternations are the hallmarks of rhythmic syncope!
- Younger speakers more likely to choose conservative!
 - Even though probably have less experience with them
 - Perhaps they were compensating

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- Might have expected the opposite results!
 - Binary choice between clearly conservative vs innovative
- Highly proficient speakers not more likely to choose conservative
- Real shock: speakers dislike lots of alternating vowels
 - n-mɪʃi:min (1) > n-mʌkzin (2), n-bʌdkʌʃkʔigʌn (5)
 - The big alternations are the hallmarks of rhythmic syncope!
- Younger speakers more likely to choose conservative!
 - Even though probably have less experience with them
 - Perhaps they were compensating
- If fooled by foils, modest boost to conservative forms

- Might have expected the opposite results!
 - Binary choice between clearly conservative vs innovative
- Highly proficient speakers not more likely to choose conservative
- Real shock: speakers dislike lots of alternating vowels
 - n-mɪʃiːmɪn (1) > n-mʌkzɪn (2), n-bʌdkʌʃkʔɪgʌn (5)
 - The big alternations are the hallmarks of rhythmic syncope!
- Younger speakers more likely to choose conservative!
 - Even though probably have less experience with them
 - Perhaps they were compensating
- If fooled by foils, modest boost to conservative forms
- Maybe they just aren't very familiar with conservative forms ...

Alternation Survey Task

- Target question: Can you pick the right prefixed stem allomorph?
 - **n-makzin** vs *n-mikzin 'my shoe'

Alternation Survey Task

- Target question: Can you pick the right prefixed stem allomorph?
 - n-makzin vs *n-mikzin 'my shoe'
- Otherwise same design as leveling survey
- No participant was shown same word twice

Preference for Correct Historical Form

Alternation Survey glmer Fixed Effects

• General preference for [n-makzin]

Alternation Survey glmer Fixed Effects

- General preference for [n-mʌkzin]
- Dependent variable: [n-mʌkzɪn] picked vs *[n-mʊkzɪn] picked
 - Positive coefficients favor [n-mʌkzin]

Alternation Survey glmer Fixed Effects

- General preference for [n-makzin]
- Dependent variable: [n-mʌkzɪn] picked vs *[n-mʊkzɪn] picked
 - Positive coefficients favor [n-makzin]

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	0.759674	0.140853	5.393	6.91e-08	**
familiarity(z-scored)	0.296874	0.106567	2.786	0.005340	**
#AltVowels > 1	0.664969	0.193227	3.441	0.000579	**
n-ga	-0.007046	0.313011	-0.023	0.982040	
age(z-scored)	0.129810	0.096367	1.347	0.177971	
proficiency(z-scored)	0.171463	0.101866	1.683	0.092333	

Alternation Survey Summary

• Motivating concern: speakers just pick innovative because conservative is unfamiliar

Alternation Survey Summary

- Motivating concern: speakers just pick innovative because conservative is unfamiliar
- Speakers substantially above chance when conservative vs foil
- Most words had conservative form selected

Local summary

• New Odawa has been embraced across community

Local summary

- New Odawa has been embraced across community
- Speakers prefer new prefixes (survey 1)
- Speakers prefer new prefixes + leveled paradigm (survey 2)
- Do so despite familiarity with conservative forms (survey 3)

Local summary

- New Odawa has been embraced across community
- Speakers prefer new prefixes (survey 1)
- Speakers prefer new prefixes + leveled paradigm (survey 2)
- Do so despite familiarity with conservative forms (survey 3)
- → They know the conservative forms, but converged on innovation
 - All in the space of a generation

Comparison to Irish

Or Something Else?

• Usual question: did Irish change too fast?

- Usual question: did Irish change too fast?
- In light of Odawa: did Irish change fast enough?

- Usual question: did Irish change too fast?
- In light of Odawa: did Irish change fast enough?
- Goal: reconcile Irish timeline with Odawa rapidity

- Usual question: did Irish change too fast?
- In light of Odawa: did Irish change fast enough?
- Goal: reconcile Irish timeline with Odawa rapidity
 - Presumed timeline: mid-6th century onset, early 8th century obsolescence

- Usual question: did Irish change too fast?
- In light of Odawa: did Irish change fast enough?
- Goal: reconcile Irish timeline with Odawa rapidity
 - Presumed timeline: mid-6th century onset, early 8th century obsolescence
 - (McManus 1983; 1991, Armstrong 1976, McCone 1985)

6th Century Start

• Claim: first omissions reflected strong reduction, not full deletion

6th Century Start

- Claim: first omissions reflected strong reduction, not full deletion
- Phonetic reduction is a low-level, variable process
 1912 Sapir recorded varying degrees of reduction, including full vowels

6th Century Start

- Claim: first omissions reflected strong reduction, not full deletion
- Phonetic reduction is a low-level, variable process
 1912 Sapir recorded varying degrees of reduction, including full vowels
 6th c Ogam stones have inconsistent omission too (McManus 1991:96)

Odawa	Irish
n <mark>ı</mark> nd-aːd ∅ soːkaːn	CAT <mark>Ø</mark> VVIRR MAQI LUG <mark>U</mark> VVEC
gi:-d <mark> 1 </mark> ŋgɪ∫k <mark>∅</mark> wa:n	VER GOSO MACI LLOM I NACCA
gi:-boːkwaːk <mark>ɪˈ</mark> gʌmeː∫k <mark>∅</mark> waːd	LUG <mark>U</mark> AEDON MACCI MEN Ø VEH

• Key claim for reduction: vowels are not really gone

- Key claim for reduction: vowels are not really gone
- 1975 "Among older speakers [...] the deletion seems to be a [...] casual speech phenomenon, and the vowels can be easily resupplied ...
- 1975 "...For younger speakers [...] the vowels deleted are totally abstract. They cannot resupply the vowels" (Rhodes 1975:130)

- Key claim for reduction: vowels are not really gone
- 1975 "Among older speakers [...] the deletion seems to be a [...] casual speech phenomenon, and the vowels can be easily resupplied ...
- 1975 "...For younger speakers [...] the vowels deleted are totally abstract. They cannot resupply the vowels" (Rhodes 1975:130)
- 7th c Poets treat missing vowels opportunistically (Carney 1971, Sims-Williams 2016)
 - $|\sigma_1\sigma_2\sigma_3| \rightarrow [\sigma_1 \quad \sigma_2] = 3$
 - $/\sigma_1\sigma_2\sigma_3\sigma_4/\rightarrow [\sigma_1_\sigma_2\sigma_3] = 3$
 - $/\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5/\rightarrow [\sigma_1 \quad \sigma_2 \quad \sigma_3] = 3$
 - Even $/\sigma_1 CC\sigma_2/\rightarrow [\sigma_1\sigma_2] = 3!$

- Key claim for reduction: vowels are not really gone
- 1975 "Among older speakers [...] the deletion seems to be a [...] casual speech phenomenon, and the vowels can be easily resupplied ...
- 1975 "...For younger speakers [...] the vowels deleted are totally abstract. They cannot resupply the vowels" (Rhodes 1975:130)
- 7th c Poets treat missing vowels opportunistically (Carney 1971, Sims-Williams 2016)
 - $/\sigma_1\sigma_2\sigma_3/\rightarrow [\sigma_1_\sigma_2] = 3$
 - $/\sigma_1\sigma_2\sigma_3\sigma_4/\rightarrow [\sigma_1 \quad \sigma_2\sigma_3] = 3$
 - $/\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5/\rightarrow [\sigma_1 \quad \sigma_2 \quad \sigma_3] = 3$
 - Even $/\sigma_1 CC\sigma_2/\rightarrow [\sigma_1\sigma_2] = 3!$
 - → Speakers were still aware of 'missing' vowels

Intuited Presence

- Key claim for reduction: vowels are not really gone
- 1975 "Among older speakers [...] the deletion seems to be a [...] casual speech phenomenon, and the vowels can be easily resupplied ...
- 1975 "...For younger speakers [...] the vowels deleted are totally abstract. They cannot resupply the vowels" (Rhodes 1975:130)
- 7th c Poets treat missing vowels opportunistically (Carney 1971, Sims-Williams 2016)
 - $/\sigma_1\sigma_2\sigma_3/\rightarrow [\sigma_1_\sigma_2] = 3$
 - $/\sigma_1\sigma_2\sigma_3\sigma_4/\rightarrow [\sigma_1_\sigma_2\sigma_3] = 3$
 - $/\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5/\rightarrow [\sigma_1_\sigma_2_\sigma_3] = 3$
 - Even $/\sigma_1 CC\sigma_2/\rightarrow [\sigma_1\sigma_2] = 3!$
 - → Speakers were still aware of 'missing' vowels
 - Many possible interpretations, but early reduction is plausible

• NB: reduction can persist for >50 years before triggering restructuring

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)
 - 1912 Sapir records pervasive, but variable, reduction (see Rhodes 2008a)

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)
 - 1912 Sapir records pervasive, but variable, reduction (see Rhodes 2008a)
 - 1938 Bloomfield documented extreme reduction in 1938

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)
 - 1912 Sapir records pervasive, but variable, reduction (see Rhodes 2008a)
 - 1938 Bloomfield documented extreme reduction in 1938
 - Generational divide starts around here (Rhodes 1975, Piggott 1980)

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)
 - 1912 Sapir records pervasive, but variable, reduction (see Rhodes 2008a)
 - 1938 Bloomfield documented extreme reduction in 1938
 - Generational divide starts around here (Rhodes 1975, Piggott 1980)
 - Reduction may not be extinguished for ~ 100 years

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)
 - 1912 Sapir records pervasive, but variable, reduction (see Rhodes 2008a)
 - 1938 Bloomfield documented extreme reduction in 1938
 - Generational divide starts around here (Rhodes 1975, Piggott 1980)
 - Reduction may not be extinguished for ~ 100 years
 - Pre-tipping point speakers were >40 in 1970's (Rhodes 1975, Piggott 1980)

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)
 - 1912 Sapir records pervasive, but variable, reduction (see Rhodes 2008a)
 - 1938 Bloomfield documented extreme reduction in 1938
 - Generational divide starts around here (Rhodes 1975, Piggott 1980)
 - Reduction may not be extinguished for ~ 100 years
 - Pre-tipping point speakers were >40 in 1970's (Rhodes 1975, Piggott 1980)
 - Presumably continued to live for some time after.

- NB: reduction can persist for >50 years before triggering restructuring
- ←1887 "I once met an [Odawa] Indian who called himself a 'Taw-wah' [...] I had him repeat the word several times, and at length discovered an almost silent vowel before the T" (Wilson 1887).
 - Contemporary publications do not omit vowels (Baraga 1878, Blackbird 1887)
 - 1912 Sapir records pervasive, but variable, reduction (see Rhodes 2008a)
 - 1938 Bloomfield documented extreme reduction in 1938
 - Generational divide starts around here (Rhodes 1975, Piggott 1980)
 - Reduction may not be extinguished for ~ 100 years
 - Pre-tipping point speakers were >40 in 1970's (Rhodes 1975, Piggott 1980)
 - Presumably continued to live for some time after.
 - → Irish reduction could have snowballed well into 7th century before triggering restructuring

• Given Odawa, expect to see restructuring around 7th/8th century

- Given Odawa, expect to see restructuring around 7th/8th century
- Wurzburg, Milan, St. Gall have similarities to Odawa
 - (Thurneysen 1946:68-69, Armstrong 1976, McCone 1985)

- Given Odawa, expect to see restructuring around 7th/8th century
- Wurzburg, Milan, St. Gall have similarities to Odawa
 - (Thurneysen 1946:68-69, Armstrong 1976, McCone 1985)
- But there are further similarities: haywire deletions

- Given Odawa, expect to see restructuring around 7th/8th century
- Wurzburg, Milan, St. Gall have similarities to Odawa
 - (Thurneysen 1946:68-69, Armstrong 1976, McCone 1985)
- But there are further similarities: haywire deletions
- New Odawa alternations → derived by phonotactically conditioned deletion
 - 'Delete so long as resulting cluster is acceptable'
 - \checkmark /mkizin- \land n/ → [mkiz_n \land n] 'shoes'
 - X /mnupguzid/ \rightarrow [mnupguzid] 'If he tastes good'

Phonotactic deletion

• Phonotactic deletion does not obey rhythmic pattern

Phonotactic deletion

- Phonotactic deletion does not obey rhythmic pattern
- → Double syncope (Thurneysen 1946:69, Reta Sands, p.c.) Expected Observed

Irish

$$:(tar_{1})(ti_{2}sset)$$
 $:tar_{1}t_{2}sat$

 Odawa
 $(mo:)(n_{1})(k_{3})(k_{3})(me:)$
 $mo:n_{1}2\int k_{3}we:$

Phonotactic deletion

- Phonotactic deletion does not obey rhythmic pattern
- → Double syncope (Thurneysen 1946:69, Reta Sands, p.c.) Expected Observed

```
      Irish
      :(tar_{1})(ti_{2}sset)
      :tar_{1}t_{2}sat

      Odawa
      ('mo:)(n_{1}'?\Lambda_{2}\int)(k_{3}'k_{14})(we:)
      mo:n_{1}_{2}\int k_{3}we:
```

→ Vacillation in syncope sites

```
Odawa (Field Notes) Irish (Wurzburg)

/da:\eta_n-id | z \upsilon -win/ /:tom o n i tis/

[...-id | z -win] \sim [...-id z \upsilon -win] :tom o n tis \sim :tom n i tis
```

• Wurzburg, Milan and St. Gall glosses are generally conservative

- Wurzburg, Milan and St. Gall glosses are generally conservative
- In Odawa, despite preference for leveling, conservative forms can appear

- Wurzburg, Milan and St. Gall glosses are generally conservative
- In Odawa, despite preference for leveling, conservative forms can appear
- E.g. 6 syllable stems had large alternations 'If he plays a game' 'We play a game' /dʌnʌkʌmɪgɪzɪ-d/ /nı-dʌnʌkʌmɪgızı-mɪn UR $(d\Lambda'n\Lambda)(k\Lambda'mI)(qI'zId)$ $(ni'd\Lambda)(n\Lambda'k\Lambda)(mi'gi)(zi'min)$ Stress $(d_{n\Lambda})(k_{mI})(q_{zId})$ $(n_{d\Lambda})(n_{k\Lambda})(m_{gI})(z_{min})$ Syncope $(n 'd\Lambda)(n 'k\Lambda)(m 'qI)(z 'mI)$ Other [dnakmiqzi-d] [n-dankamqız-mi] SR

- Wurzburg, Milan and St. Gall glosses are generally conservative
- In Odawa, despite preference for leveling, conservative forms can appear
- E.g. 6 syllable stems had large alternations 'If he plays a game' 'We play a game' /dʌnʌkʌmɪgɪzɪ-d/ /nı-dʌnʌkʌmɪgızı-mɪn UR $(d\Lambda'n\Lambda)(k\Lambda'mI)(gI'zId)$ $(ni'd\Lambda)(n\Lambda'k\Lambda)(mi'qi)(zi'min)$ Stress $(d_{n\Lambda})(k_{mI})(q_{zId})$ $(n_{d\Lambda})(n_{k\Lambda})(m_{gI})(z_{min})$ Syncope $(n 'd\Lambda)(n 'k\Lambda)(m 'qI)(z 'mI)$ Other [dnʌkmɪgzɪ-d] [n-dʌnkʌmqɪz-mɪ] SR
- 'Too much syncope' (Mary Ann Corbiere, p.c.)

- Wurzburg, Milan and St. Gall glosses are generally conservative
- In Odawa, despite preference for leveling, conservative forms can appear
- E.g. 6 syllable stems had large alternations 'If he plays a game' 'We play a game' /dʌnʌkʌmɪgɪzɪ-d/ /nı-dʌnʌkʌmɪgızı-mɪn UR $(d\Lambda'n\Lambda)(k\Lambda'mI)(qI'zId)$ $(ni'd\Lambda)(n\Lambda'k\Lambda)(mi'qi)(zi'min)$ Stress $(d_{n\Lambda})(k_{mI})(q_{zId})$ $(n_{d\Lambda})(n_{k\Lambda})(m_{qI})(z_{mI})$ Syncope $(n 'd\Lambda)(n 'k\Lambda)(m 'qI)(z 'mI)$ Other [dnakmiqzi-d] [n-dʌnkʌmqɪz-mɪ] SR
- 'Too much syncope' (Mary Ann Corbiere, p.c.)
- Yet, recent text has *ndan'kamgizmi* 'we play a game' (Panamick 2015)

- Miracles happen once, but patterns repeat
- \bullet Immediate, chaotic change in Odawa and Irish \to rhythmic syncope trips up learners

- Miracles happen once, but patterns repeat
- Immediate, chaotic change in Odawa and Irish → rhythmic syncope trips up learners
- Odawa, Irish children thoroughly restructured lexicon and grammar

- Miracles happen once, but patterns repeat
- Immediate, chaotic change in Odawa and Irish → rhythmic syncope trips up learners
- Odawa, Irish children thoroughly restructured lexicon and grammar

```
UR 'shoe' 'my shoe' Irregular

T. Odawa /mʌkɪzm/ [mkɪzm] [nmʌkzm] —

New Odawa /mkɪzm/ [mkɪzm] [ndo:-mkɪzm] [nmʌkzm]
```

- Miracles happen once, but patterns repeat
- Immediate, chaotic change in Odawa and Irish → rhythmic syncope trips up learners
- Odawa, Irish children thoroughly restructured lexicon and grammar

```
UR 'shoe' 'my shoe' Irregular

T. Odawa /mʌkizin/ [mkizin] [nmʌkzin] —

New Odawa /mkizin/ [mkizin] [ndoː-mkizin] [nmʌkzin]
```

- Same story for Irish
 - Restructured Irish URs = prototonic forms
 - Conservative deuterotonics thus irregular, eventually replaced

- Miracles happen once, but patterns repeat
- Immediate, chaotic change in Odawa and Irish → rhythmic syncope trips up learners
- Odawa, Irish children thoroughly restructured lexicon and grammar

```
UR 'shoe' 'my shoe' Irregular

T. Odawa /mʌkizin/ [mkizin] [nmʌkzin] —

New Odawa /mkizin/ [mkizin] [ndoː-mkizin] [nmʌkzin]
```

- Same story for Irish
 - Restructured Irish URs = prototonic forms
 - Conservative deuterotonics thus irregular, eventually replaced
 - Middle Irish by time of Wurzburg and Milan! (McCone 1985)

Future Work

• Enormous prospects for explaining how restructuring unfolded

Future Work

- Enormous prospects for explaining how restructuring unfolded
 - Nature of phonotactic constraints on restructured deletion
 - And interaction with consonant cluster simplification
 - Establish transition between reduction and deletion
 - 'Dummy' prefixes fine, but prefix reduplication!?
 - Explaining various coping mechanisms (McCone 1996 §XII.5.2)
 - 'Extracting new simple stem from prototonic form of compound'
 - Dummy prefixes
 - Denominalized verbs
 - And this just scratches the surface ...
- Thank you!

Transitional Odawa New Odawa Design Prefixes Leveling Alternations Comparison to Irish Conclusion References

References I

- Armstrong, J. (1976). Phonological irregularity in compound verb forms in the Wurzburg glosses. Ériu 27, 46–72.
- Baraga, F. (1850 [1878]). A Theoretical and Practical Grammar of the Otchipwe Language (Second ed.). Beauchemin and Valois.
- Blackbird, A. J. (1887). History of the Ottawa and Chippewa Indians of Michigan; A Grammar of their Language and Personal and Family History of the Author.

 Ypsilantian Job Printing House.
- Bloomfield, L. (1957). <u>Eastern Ojibwa: Grammatical Sketch, Texts and Word List.</u> Ann Arbor: University of Michigan Press.
- Bowers, D. (2019). The Nishnaabemwin restructuring controversy: New empirical evidence. Phonology 36(2), 187–224.
- Carney, J. (1971). Three Old Irish accentual poems. Ériu 22, 23–80.
- Kaye, J. (1974a). Morpheme structure constraints live! In Montreal Working Papers in Linguistics, Volume 3, pp. 55–62. McGill University.
- Kaye, J. (1974b). Opacity and recoverability in phonology. <u>Canadian Journal of Linguistics</u> 19(2), 134–149.

References II

- McCone, K. (1985). The Wurzburg and Milan glosses: Our earliest sources of 'Middle Irish'. Ériu 36, 85–106.
- McCone, K. (1996). Towards a Relative Chronology of Ancient and Medieval Celtic Sound Change. Maynooth: The Cardinal Press.
- McManus, D. (1983). A chronology of the Latin loan-words in Early Irish. <u>Ériu</u> <u>34</u>, 21–71.
- McManus, D. (1991). A Guide to Ogam. An Sagart.
- Panamick, E. (2015). Nishnaabe-tisgan.
- Piggott, G. L. (1974 [1980]). Aspects of Odawa Morphophonemics. Garland.
- Rhodes, R. (1975). A preliminary report on the dialects of Eastern Ojibwa-Odawa. In Proceedings of the Seventh Algonquian Conference.
- Rhodes, R. (1976). <u>The Morphosyntax of the Central Ojibwa Verb</u>. Ph. D. thesis, University of Michigan.
- Rhodes, R. (1985). Lexicography and Ojibwa Vowel Deletion. <u>The Canadian</u> Journal of Linguistics 30(4), 453–471.

References III

- Rhodes, R. (2008a, October). Appendix to Algonquian trade languages. Presented at 40th Algonquian Conference.
- Rhodes, R. (2008b). Ojibwe in the Cree of Métchif. In <u>Proceedings of the Thirty</u> Ninth Algonquian Conference.
- Sims-Williams, P. (2016). Dating the poems of Aneirin and Taliesin. Zeitschrift für celtische Philologie 63(1), 163–234.
- Thurneysen, R. (1946). <u>Grammar of Old Irish</u>. The Dublin Institute for Advanced Studies.
- Valentine, J. R. (1994). Ojibwe Dialect Relations. Ph. D. thesis, University of Texas, Austin.
- Valentine, J. R. (2001). <u>Nishnaabemwin Reference Grammar</u>. Toronto: University of Toronto Press, Inc.
- Wilson, J. D. (1887). Indian names. Science 10(250), 252.