

Who are we?

Vibot and MAIA students:

Why is this project important?

- Improve the home-made acquisition and processing software of previous works
- Learn and apply diffent C++ tools
- Make research on different academic topics (as the Registration problem)
- Propose different approaches for a problem, as the OpenCV approach over last year used algorithms

Background and Challenges

Main features of last year projects:

- · Group 1
- Group 3

Challenges:

- Program and libraries installation
- Understanding their methods
- Propose new approaches
- Acquisition issues

Project Management

Task Distribution

Project meetings

- Weekly meeting
- Project meeting

Tools

Success

Group Members	Leadership and Task Division
BATERIWALA Malav	Supervising overall Project Organization of code
VAISHNAV Mohit	Research Acquisition
OCHOA Eduardo	GUI Feature Matching
VALENCIA Liliana	Overall Management ICP

Overlook

- Developed by Intel
- For both academic and commercial use
- Has C++, C, Python and Java interfaces and supports Windows, Linux, Mac OS, iOS and Android
- Library of programming functions written in optimized C/C+
 +, the library can take advantage of multi-core processing.
- Adopted all around the world

Advantages over PCL

- Advantage over the feature detection algorithms proposed
- Possible to get the images from the Kinect and the using libraries and functions that work in image space.
- Better features for the registration process
- Improvements in speed in the algorithm and software
- Matching two frames of the body in image space
- Possible to make pre-processing in the data

Data and the Kinect

- Microsoft API's implementation for the grabber
- Obtained Depht Image
- Obtained Color Image
- Acquisition of Kinect Coordinate system
- Possibility to have multiple captures

METHODS

ColorFrameSource

DepthFrameSource

CoordinateMapper

Feature Matching

- Different kind of algorithms
- SIFT algoritm used
- Better features identified
- Matches according to the keypoints found between two images
- Robust match of the first eight best matches

OpenCV SIFT Funcionalities

sift.detect()

sift.compute()

sift.detectAndCompute()

cv2.drawKeyPoints()

Cv2.FlannBasedMatcher()

Registering Point Cloud data

- Faster and more stable than Stantdard ICP
- Usage of ICP Normal, point to plane distance instead of Point to point
- Better results with initialized features
- Transformation matrix between images with OpenCV functions

Improvements

