МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» I семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Воропаев И.К.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью є * 10^k, где є - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное є и обеспечивать корректные размеры генерируемой таблицы.

Вариант задания 2:

Исходная функция: Ряд Тейлора:

$$1n \frac{1+x}{1-x} \qquad 2(\frac{x}{1} + \frac{x^3}{3} + \ldots + \frac{x^{2n+1}}{2n+1})$$

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым, причём почти без погрешности. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемойфункции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон. В нашем же Машинное эпсилон понадобится как критерий точности значения ряда Тейлора и исходной функции. То есть мы будем осуществлять новую итерацию в ряде Тейлора до тех пор, пока разница значения исходной функции и ряда будем меньше, чем машинное эпсилон (или пока число итераций не дойдёт до 100, что следует из условия). В языке Си машинные эпсилон определено для следующих типов: float $-1.19 * 10^{-7}$, double $-2.20 * 10^{-16}$, long double $-1.08 * 10^{-19}$. Мы будем вычислять машинное эпсилон самостоятельно.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать путём деления 1 на 2 до тех пор, пока не будет выполнено $1 + \varepsilon = 1$. Все переменные должны быть одного типа с машинным эпсилон.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$ или пока і <= 100. Для этого просто ищем каждый новый член изформулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной	
n	int	Количество разбиений отрезка	
iterationsCounter	int	Количество итераций при сложении ряда Тейлора	
Taylor	double	Сумма ряда Тейлора	
function	double	Значение функции	
machineEpsilon	double	Значение машинного эпсилон	
left	double	Левая граница отрезка	
right	double	Правая граница отрезка	
X	double	Текущий икс	

Входные данные

Единственное входное число - количество разбиений отрезка.

Выходные данные:

Программа должна вывести значение машинного эпсилон, введёное ранее количество разбиений, а затем N+1 строку.

В каждой строке должно быть значение х, для которого вычисляется функция, значение по формуле Тейлора, значение функции, вычисленное с помощью встроенных функций языка, количество итерация, требуемых для вычисления.

Протокол исполнения и тесты

Тест №1

Ввод:

10

Вывод:

```
mariavoropaeva@MacBook-Pro-Ivan Project 1 % ./kp3.out
Machine epsilon for long double is 5.4210108624275222e-20
Write n: 10
Your n is 10
Table of values for Taylor's Formula and f(x) = ln((1 + x) / (1 - x))
                 Taylor
                                         f(x)
                                                     | iterations
 0.0500 | 0.100083458556982536 | 0.100083458556982537 |
 0.1000 | 0.200670695462151161 | 0.200670695462151161 |
                                                           8
 0.1500 | 0.302280871872933611 | 0.302280871872933611 |
                                                          10
 0.2000 | 0.405465108108164382 | 0.405465108108164382 |
                                                           12
 0.2500 | 0.510825623765990683 | 0.510825623765990683 |
                                                           13
 0.3000 | 0.619039208406223431 | 0.619039208406223431 |
                                                           16
 0.3500 | 0.730887508542792338 | 0.730887508542792338 |
                                                           100
 0.4000 | 0.847297860387203614 | 0.847297860387203614 |
                                                           21
 0.4500 | 0.969400557188103483 | 0.969400557188103483 |
                                                           25
 0.5000 | 1.098612288668109692 | 1.098612288668109692 |
                                                           28
.
mariavoropaeva@MacBook-Pro-Ivan Project 1 % ■
```

Тест №2

Ввод:

5

Вывод:

```
mariavoropaeva@MacBook-Pro-Ivan Project 1 % ./kp3.out
Machine epsilon for long double is 5.4210108624275222e-20
  Write n: 5
  Your n is 5
  Table of values for Taylor's Formula and f(x) = ln((1 + x) / (1 - x))
                   Taylor
                                             f(x)
                                                         | iterations
   0
   0.1000 | 0.200670695462151161 | 0.200670695462151161 |
                                                               8
                                                               12
   0.2000 | 0.405465108108164382 | 0.405465108108164382 |
   0.3000 | 0.619039208406223431 | 0.619039208406223431 |
                                                               16
   0.4000 | 0.847297860387203614 | 0.847297860387203614 |
                                                               21
   0.5000 | 1.098612288668109692 | 1.098612288668109691 |
                                                               100
o mariavoropaeva@MacBook-Pro-Ivan Project 1 % ■
```

Тест №3

Ввод:

20

Вывод:

Machine e Write n: Your n is		double is 5.	4210108624 <u>2</u> 75	222e-20	/ (1 - x))
x	 Taylor		f(x)	ite	 erations
0.0000	 0.000000000000	0000000 0.0	 90000000000000	 0000	 0
0.0250	 0.050010420574		 5001042057466	 1376	 5
0.0500	0.100083458556	982536 0.1	0008345855698	 2537	 6
0.0750	0.150282203049	337979 0.1	5028220304933	 7979	7
0.1000	0.200670695462	2151161 0.20	0067069546215	1161	8
0.1250	0.251314428280	906078 0.2	5131442828090	6078	9
0.1500	0.302280871872	933611 0.3	0228087187293	3611	10
0.1750	0.353640040243	3578351 0. 3	5364004024357	8351	11
0.2000	0.405465108108	164382 0.4	0546510810816	4382	12
0.2250	0.457833093625	480364 0.4	5783309362548	0364	13
0.2500	0.510825623765	990683 0.5		 0683	13
0.2750	0.564529802737	851744 0.5	5452980273785	1745	100
0.3000	0.619039208406	5223431 0. 6		3431	16
0.3250	0.674455047547	792760 0.6	7445504754779	 2760	17
0.3500	0.730887508542	792338 0.7	3088750854279	 2338	18
0.3750	0.788457360364	270169 0.7	3845736036427	0170	100
0.4000	0.847297860387	7203614 0.8	4729786038720	 3614	21
0.4250	0.907557051905	400461 0.9	0755705190540	0461	22
0.4500	0.969400557188	103483 0.9	5940055718810	3483	24
0.4750	1.033015006182	296454 1.0	3301500618229	6454	100
0.5000	1.098612288668	109692 1.09	9861228866810	9692	28
o mariavoro	paeva@MacBook-Pr	o-Ivan Proje	ct 1 % ■		

Вывод

В ходе выполнения КП была проделана теоретическая работа, а также был реализован алгоритм подсчёта функции с помощью Тейлора с предоставленным листингом и тестами. Данный опыт, несомненно, поможет мне в дальнейшей работе по реализации других математических алгоритмов и вычислений. В целом работа мне понравилась.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд_Тейлора