1 Счетность множества рациональных чисел, несчетность множества действительных чисел

Утверждение. Множество \mathbb{Q} счетно, \mathbb{R} - несчетно.

Доказательство. Докажем, что $\mathbb Q$ счетно. Каждое число из $\mathbb Q$ представимо в виде несократимой десятичной дроби $\frac{p}{q}$, где $p \in \mathbb Z$, а $q \in \mathbb N$. Составим таблицу таких чисел следующим образом:

	0	1	-1	2	-2	
1	$\frac{0}{1}$	$\frac{1}{1}$	$-\frac{1}{1}$	$\frac{2}{1}$	$-\frac{2}{1}$	
2	$\frac{0}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{2}{2}$	$-\frac{2}{2}$	
3	$\frac{0}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	$-\frac{2}{3}$	
						٠

Теперь пойдем снизу вверх по диагоналям и будем присваивать дробям номера по порядку: $\frac{0}{1}$ присваиваем 1, $\frac{1}{1}$ присваиваем 2, $\frac{0}{2}$ - было, значит пропускаем, $-\frac{1}{1}$ - 3 и так далее. Таким образом мы строим биекцию между натуральными и рациональными числами, а значит $\mathbb{Q} \cong \mathbb{N}$, следовательно \mathbb{Q} - счетно.

Теперь докажем несчетность \mathbb{R} от противного. Предположим, что \mathbb{R} счетно, а значит и отрезок $[0,1] \subset \mathbb{R}$. Тогда мы можем выписать все числа из отрезка [0,1] в таблицу и пронумеровать их:

1	$0,\alpha_{1_1}\alpha_{1_2}\alpha_{1_3}\dots$
2	$0,\alpha_{2_1}\alpha_{2_2}\alpha_{2_3}\dots$
3	$0,\alpha_{3_1}\alpha_{3_2}\alpha_{3_3}\dots$

Тогда составим такое число $0, \delta_1 \delta_2 \delta_3 \dots$, что

$$\delta_i = egin{cases} 0, \, ext{если} \, \, lpha_{i_i} = 9 \ lpha_{i_i} + 1, \, ext{иначе} \end{cases}$$

Тогда полученное число будет отличаться от i-того в i-й цифре, поэтому его в таблице не будет. Противоречие. Таким образом $\mathbb R$ несчетно.

2 Теорема о существовании точной верхней (нижней) грани множества

Теорема. Каждое непустое множество $X \subset \mathbb{R}$, ограниченное сверху (снизу) имеет точную верхнюю (нижнюю грань)

Доказательство. Пусть $S \subset \mathbb{R}$ - множество всех верхних граней множества X, тогда

$$\forall x \in X, \ \forall s \in S : x \le s$$

Пользуясь теоремой о полноте действительных чисел, получаем, что

$$\exists c \in \mathbb{R} : \forall x \in X, \ \forall s \in S : x \leq c \leq s$$

Тогда c - искомая mочная верхняя грань. Существование точной нижней грани доказывается аналогично.

CTP. 2

3 Бесконечно малые последовательности их свойства. Арифметические операции со сходящимися последовательностями

Определение. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно малой тогда и только тогда, когда $\lim_{n\to\infty}x_n=0$ (последовательность сходится к нулю)

Теорема. Если $\{x_n\}$ - бесконечно малая последовательность, то последовательность $\{\frac{1}{x_n}\}$ - бесконечно большая.

Доказательство. Пусть $\{x_n\}$ - бесконечно малая последовательность, тогда:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N : |x_n| < \epsilon$$

$$|x_n| < \epsilon \Leftrightarrow |\frac{1}{x_n}| > \frac{1}{\epsilon}$$

Значит

$$\forall \epsilon > 0 \, \exists N \in \mathbb{N} \, \forall n > N : |\frac{1}{x_n}| > \frac{1}{\epsilon} \Leftrightarrow \lim_{n \to \infty} \frac{1}{x_n} = +\infty$$

Из этого следует, что $\{\frac{1}{x_n}\}$ - бесконечно большая.

Теорема. Сумма бесконечно малых последовательностей есть бесконечно малая последовательность.

Доказательство. Пусть $\{x_n\}$ и $\{y_n\}$ - бесконечно малые последовательности. Тогда

$$\forall \epsilon > 0 \,\exists N_1 \in \mathbb{N} \,\forall n > N_1 : |x_n| < \frac{\epsilon}{2}$$

$$\forall \epsilon > 0 \ \exists N_2 \in \mathbb{N} \ \forall n > N_2 : |y_n| < \frac{\epsilon}{2}$$

Тогда

$$\forall \epsilon > 0 \ \exists N = \max(N_1, N_2) \ \forall n > N : |x_n + y_n| \leq_{\text{(неравенство треугольника)}} |x_n| + |y_n| < \epsilon$$

Это означает, что последовательность $\{x_n+y_n\}$ является бесконечно малой

Теорема. Произведение бесконечно малой последовательности на ограниченную есть бесконечно малая последовательность.

Доказательство. Пусть $\{x_n\}$ - бесконечно малая, а $\{y_n\}$ - ограниченная. Тогда

$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N} \ x_n \le M$$

$$\forall \epsilon > 0 \,\exists N_1 \in \mathbb{N} \,\forall n > N_1 : |x_n| < \frac{\epsilon}{M}$$

Тогда

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \forall n > N : |x_n \cdot y_n| = |x_n| \cdot |y_n| < \frac{\epsilon}{M} \cdot M = \epsilon$$

Это означает, что последовательность $\{x_n \cdot y_n\}$ является бесконечно малой

Теорема. (Арифметические свойства сходящихся последовательностей) Пусть $\{x_n\}$ и $\{y_n\}$ сходящиеся последовательности, а $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$, то справедливы следующие равенства:

1.
$$\lim_{n\to\infty}(x_n+y_n)=a+b$$

$$2. \lim_{n\to\infty} (x_n - y_n) = a - b$$

3.
$$\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$$

4.
$$\lim_{n\to\infty}(\frac{x_n}{y_n})=\frac{a}{b}$$
 (только если $\forall n\in\mathbb{N}:y_n\neq 0\land b\neq 0)$

Доказательство.

1) Из условия следует, что

$$\forall \epsilon > 0, \exists N_1 \in \mathbb{N}, \forall n > N_1 : |x_n - a| < \frac{\epsilon}{2}$$
$$\forall \epsilon > 0, \exists N_2 \in \mathbb{N}, \forall n > N_1 : |y_n - b| < \frac{\epsilon}{2}$$

тогда,

$$\forall \epsilon > 0, \exists N = \max(N1, N2) \in \mathbb{N}, \forall n > N : |x_n + y_n - a - b| \le |x_n - a| + |y_n - b| < \epsilon$$

$$\lim_{n \to \infty} (x_n + y_n) = a + b$$

3) Аналогично, переход:

$$|x_n \cdot y_n - a \cdot b| = |x_n \cdot y_n - a \cdot y_n + a \cdot y_n - a \cdot b| \le |y_n| |x_n - a| + |a| |y_n - b|$$
 y_n ограниченна числом $M \Rightarrow |x_n \cdot y_n - a \cdot b| \le |M| |x_n - a| + |a| |y_n - b|$

При $N=max(N_1(rac{\epsilon}{2|M|}),N_2(rac{\epsilon}{2|a|}))$ получаем:

$$|x_n \cdot y_n - a \cdot b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

4 Свойства пределов, связанные с неравенствами

Теорема. (О зажатой последовательности) Если $\{x_n\}, \{y_n\}, \{z_n\}$ - сходящиеся последовательности, причем $\forall n: x_n \leq y_n \leq z_n$ и $\lim_{x \to \infty} x_n = \lim_{x \to \infty} z_n = l$, то $\lim_{x \to \infty} y_n = l$

Доказательство.

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |x_n - l| < \epsilon \Leftrightarrow \epsilon - l < x_n < \epsilon + l$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : |z_n - l| < \epsilon \Leftrightarrow \epsilon - l < z_n < \epsilon + l$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N : \epsilon - l < x_n \le y_n \le z_n < \epsilon + l \Leftrightarrow |y_n - l| < \epsilon$$

Стр. 5