55.E8 NPA-GPS

Анализ I&C части диагностики гамма-спектрометрии GPS (Gamma Ray Spectrometer), в составе диагностики (Neutral Particle Analyzers) NPA 55.E8, проект ITER. Задача системы GRS — выдача проверочных для NPA данных: nT/nD топливной смеси, альфа-спектр, распределения быстрых ионов р, D, T, 3He и убегающих электронов. *Часть системы NS/DNPS (Neutral Spectrometer / Diamond Neutral Particle Spectrometer) диагностики размещена на оборудовании GRS.*

Оборудование GRS размещено в конце трубы диагностики, и состоит из:

- нейтронного аттенюатора, установленного в средней секции нейтронной ловушки NPA (Neutron Dump),
- спереди которого на трёхпозиционной линейной подвижке смонтированы два детектора NS:
 - о сцинтилляционный детектор Stilbene PMT
 - о сборка алмазных детекторов,
- сзади на вращающейся двухпозиционной подвижке установлено два детектора диагностики GRS:

о детектор на фотоумножителе (РМТ) с LaBr3 сцинтиллятором и предусилителем.

- 1. NS шаговый двигатель линейной подвижки
- 2. NS концевые датчики положения подвижки, 3шт
- 1. NS соленоид фиксации положения подвижки и его концевой датчик
- 3. GRS шаговый двигатель вращающейся подвижки
- 4. GRS концевые датчики положения подвижки, 2шт
- 5. GRS соленоид фиксации положения подвижки и его концевой датчик
- 6. GRS HPGe детектор в сборе с охладителем, предусилителем-формирователем сигнала, и с кабелями к контроллеру охладителя
- 7. GRS LaBr детектор в сборе с PMT и предусилителелем сигнала с PMT, с подачей HV питания на PMT и низковольтного питания на предусилитель.
- 8. GRS два датчика температуры
- 9. GRS два датчика магнитного поля

Сигнал с алмазного детектора, питание и сигнал с Stilbene PMT - уходят в часть NS

Объекты управления I&C в составе GRS расположенные в диагностической комнате

- 1. ITER оборудование быстрый контроллер, кубикл-мониторинг, роутер
- 2. Крейт NI с платами расширения
- 3. Блоки питания Ortec
- 4. Блок управления охладителем HPGe, анализатор сигнала HPGe
- 5. Драйвера шагового двигателя

Характеристики сигналов

- HPGe ступенчатый импульс со сбросом амплитуды по достижении предельного уровня, max частота импульсов 0.2 MHz, оцифровка 180 MHz 16 bit
- LaBr3 PMT колоколообразный импульс, длительность ~120 нс, max частота импульсов 2 MHz, оцифровка 250 MHz 14 bit
- Оцифровка, обработка и сбор сигналов вся длительность выстрела токамка.
- Выдача данных: сырые данные оцифровщика, спектры с каждого детектора порядка 10 000 отсчётов каждые 100ms, вычисленные значения различных параметров плазмы.

Схема оборудования GRS в диагностической комнате и её соединение с оборудованием в порту показано на схеме в приложении. Анализу подвергается именно эта схема.

N	Оборудование	Назначение	Критика	Возражение
1	Стандартное оборудование ITER: Cube Monitoring, Fast Controller, Network Switch	Мониторинг температуры кубикла, состояния дверей и вентилятора, быстрый контроллер, сетевой роутер	Вопросов не вызывают	-
2	NI PXIe Crate NI PXIe-6683H Time NI PXIe-8398	Плата протокола точного времени РТР, плата соединения с РС	Вопросов не вызывают. Не имеют аналогов в варианте крейта NI.	-
3	NI PXIe-6259 LF ADC (16/31AI, 4AO, 15DI,32DO, 2CNT) NI SMB-2090 rack	GPIO: концевые датчики положения, ADC датчиков температуры и магнитных датчиков, два импульсных сигнала драйверов шагового двигателя PUL/DIR	В концепции ITER для управления GPIO необходим медленный контроллер.* SMB-2090 устарело и сложно к закупке. Сложность импульсного управления шаговыми	Единообразие управления всей диагностикой из одного крейта: удобная многоканальная плата для оцифровки медленных аналоговых сигналов и дискретных сигналов, счётный режим для управления шаговым.
4	NI PXIe-4110 LV supply NI PXIe-4112 LV supply NI PXIe-4110 LV supply NI PXIe-5413 Pulse gen 4110 3ch ±20V,+6V, @1A 4112 2ch +60V @1A	питание магнитных датчиков, соленоиды GRS и NS, управление HV PMT, подсветка-калибровка PMT	В концепции ITER для управления GPIO необходим медленный контроллер.*	Единообразие управления всей диагностикой из одного крейта: выдача силового сигнала на катушку соленоида и управление НV БП РМТ аналоговым сигналом 0-10V. Генератор импульсов на подсветку.
5	Spectr.Instr: M4x.4480-x4 Digitizer 2ch 400 MS/s 14bit M4x.4470-x4 Digitizer 2ch 180 MS/s 16bit	Оцифровка сигналов с датчиков HPGe и LaBr.	Вопросов не вызывают	Разработчикам диагностики платы Spectrum Instruments подошли лучше оригинальных NI: лучше поддержка ПО, например в Linux, дешевле.
6	DM2820 StepDriver	Вращение двигателей	Импульсное Pul/Dir управление можно заменить на протокол, например варианты с RS485 типа Rtelligent NT60.	NI PXIe-6259 в счётном режиме выхода в состоянии обеспечить периодическое управление шаговым.
7	ORTEC 556H ORTEC 4002P LV PS	Фирменное оборудование Ortec для HV питания PMT (регулируемое) и LV питание предусилителя	Специфическое оборудование с функцией обычного блока питания которое можно заменить типовыми БП типа TDK Lambda	Давно сложившаяся схема питания детекторов с гарантированными низкошумовыми параметрами, не вносит большой вклад в общую цену.
8	CP5Plus controller	Фирменное оборудование Canberra для управления охладителем HPGe детектора.	Контроллер охладителя не вызывает вопроса, кроме известной проблемы удлинения кабелей до оборудования в порту.	Кабели – в процессе тестирования.
9	LynxII	HV PSU для HPGе детектора, обработка сигнала для дополнительной проверки своего алгоритма.	LynxII можно исключить из схемы т.к. оцифровка идёт через NI крейт, а HV питание взять любое типа TDK Lambda.	LynxII стандартно используется в связке с CP5PLus как согласованный блок HV питания HPGe, с функцией блокировки inhibit. Также он полезен для проверки правильности собственных вычислений.
1 0	MOXA Nport	Управление CP5Plus контроллером охладителя через RS232.	Можно исключить: Нет необходимости в постоянном управлении CP5Plus. ПО управления только под Windows, не консольное.	Очень желательно понимать что происходит с контроллером охладителя, это единственный вариант. Проблема с ПО Windows, будет решаться реверс-инжинирингом протокола.

^{*} см. развёрнутую критику ниже

55.E8 NPA-GRS I&C Review Igor Bocharov June-2023

Альтернатива NI GPIO

В концепции ITER всё управление дискретными и аналоговыми входами-выходами помещается в медленный контроллер. Ниже таблица альтернатив аппаратной архитектуры диагностики.

N	Предложение	Описание	Возражение
1	Всё GPIO выносится на медленный контроллер Siemens Simatic 1500	В диагностику GRS добавляется свой Slow Controller с дискретными и аналоговыми входами/выходами, например моноблок s7-1501C-1P. Шаговые управляются по RS485.	Нет ресурсов программировать и поддерживать чужеродное аппаратное обеспечение, когда всё можно сделать на оборудовании NI.
2	Всё GPIO выносится на медленный контроллер Siemens Simatic 1500 из состава NPA.	У NPA много Slow Controller, они находятся и в диагностической комнате и в порту рядом с GRS. Нет сложности выделить несколько сигналов на NI. Нет сложности пробросить управление GRS через переменные EPICS из набора NPA, тем более что по PBS это единая диагностика.	Неудобно отдавать часть разработки и поддержки в стороннюю группу. Есть опасение что сложно будет управлять своей частью медленных сигналов диагностики.
3	Всё GPIO выносится на распределённую периферию.	Есть вариант непрограммируемой распределённой периферии, управляемой в режиме RS485 через простые регистры Modbus, например модули IP-DAS. Управление от Fast Controller через RS485. (Будет критика от ITER, что не Siemens Simatic.)	Нет явного желания ради одного ITER изменять архитектуру и внедрять некое пром. оборудование, которое надо ещё программировать. И наверняка это не понравится ITER, т.к. перекрывается по функциональности с Siemens Simatic.
4	Вся оцифровка переносится на внешние оцифровщики типа Caen.	Вкупе с п.1-3 позволяет полностью избавиться от крейта NI.	ПО GRS длительное время разрабатывается под оцифровщики NS, и только ради ITER переделывать долго. Также, вариант NS используется при научной работе и в других проектах. Также CAEN не предоставляет возможности записи в Raw data mode, и для сегментной сегментной моды при большой загрузке детектора не хватит буфера

Критика оборудования NI как такового

Предложенная схема GRS на оборудовании NI имеет следующие минусы, в порядке важности:

- 1. NI был разработан для постановки часто изменяемого научного эксперимента. ITER постоянно работающая в одном режиме промышленная установка.
- 2. Нет уверенности что NI сможет работать в промышленном режиме 24*7*365
- 3. Нет уверенности что NI потянет длинные линии, пром гальваноразвязку, помехи и статику.
- 4. NI может снимать позиции с производства, например SMB-2090
- 5. NI сейчас тяжело купить, и дорого
- 6. Часть управления входами-выходами *обычно* делают на другом оборудовании промышленной распределённой периферии.

Ко всему оборудованию надо будет уточнять:

- покупаемость в России и в Европе, поддержка, срок жизни, сертификат СЕ
- драйвера, программируемость, поддержка от производителя
- МТГВ (наработка на отказ)
- работа IO на длинную линию
- режимы дистанционного включения, инициализации, сброса, индикация аварии

Приложения:

- блок-схема аппаратной архитектуры GRS, включая часть NS
- схематическое изображение портового оборудования GRS
- отрисовка стойки оборудования GRS в диагностической комнате, 3 вида

55.E8 NPA-GRS I&C Review Igor Bocharov June-2023

55.E8 NPA-GRS I&C Review Igor Bocharov June-2023

Rear

