In [1]:

```
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
executed in 14.6s, finished 18:48:46 2022-01-05
```

In [2]:

```
bank_data=pd.read_csv('bank-full.csv',sep=';')
bank_data.head()
executed in 309ms, finished 18:49:11 2022-01-05
```

Out[2]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month
0	58	management	married	tertiary	no	2143	yes	no	unknown	5	may
1	44	technician	single	secondary	no	29	yes	no	unknown	5	may
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	may
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	may
4	33	unknown	single	unknown	no	1	no	no	unknown	5	may
4											•

Initial investigation

In [3]:

bank_data.shape

Out[3]:

(45211, 17)

In [4]:

bank_data.dtypes

Out[4]:

int64 age object job marital object education object default object balance int64 housing object loan object contact object int64 day month object int64 duration int64 campaign int64 pdays previous int64 object poutcome object dtype: object

In [5]:

```
bank_data.isnull().sum()
```

0

Out[5]:

age job 0 marital 0 education 0 default 0 balance 0 housing 0 loan 0 contact 0 day 0 0 month duration 0 campaign 0 pdays 0 0 previous poutcome 0 dtype: int64

In [6]:

```
pd.set_option('max_column',None)
```

In [7]:

banl	pank_data.head(20)											
Out	Out[7]:											
	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration
0	58	management	married	tertiary	no	2143	yes	no	unknown	5	may	261
1	44	technician	single	secondary	no	29	yes	no	unknown	5	may	151
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	may	76
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	may	92
4	33	unknown	single	unknown	no	1	no	no	unknown	5	may	198
5	35	management	married	tertiary	no	231	yes	no	unknown	5	may	139
6	28	management	single	tertiary	no	447	yes	yes	unknown	5	may	217
7	42	entrepreneur	divorced	tertiary	yes	2	yes	no	unknown	5	may	380
8	58	retired	married	primary	no	121	yes	no	unknown	5	may	50
9	43	technician	single	secondary	no	593	yes	no	unknown	5	may	55

Number of features and records in the given data set is 17 and 45211 respesctively

There is no null values in the data set

The categorical data can be converted into numeric data type by using encoder so that the model can learn the things more easily

Data preparation

In [8]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
```

In [9]:

```
bank_data['job'].value_counts()
```

Out[9]:

blue-collar	9732
management	9458
technician	7597
admin.	5171
services	4154
retired	2264
self-employed	1579
entrepreneur	1487
unemployed	1303
housemaid	1240
student	938
unknown	288
Name: job, dtype:	int64

```
In [10]:
bank_data['marital'].value_counts()
Out[10]:
married
            27214
single
            12790
divorced
             5207
Name: marital, dtype: int64
In [11]:
bank_data['education'].value_counts()
Out[11]:
secondary
             23202
tertiary
             13301
primary
              6851
              1857
unknown
Name: education, dtype: int64
In [12]:
bank_data['default'].nunique(),bank_data['housing'].nunique(),bank_data['loan'].nunique()
Out[12]:
(2, 2, 2)
In [13]:
bank data['contact'].unique()
Out[13]:
array(['unknown', 'cellular', 'telephone'], dtype=object)
In [14]:
bank_data['poutcome'].unique()
Out[14]:
array(['unknown', 'failure', 'other', 'success'], dtype=object)
```

In [15]:

```
bank_data[['job']]=le.fit_transform(bank_data[['job']])
bank_data[['marital']]=le.fit_transform(bank_data[['marital']])
bank_data[['education']]=le.fit_transform(bank_data[['education']])
bank_data[['default']]=le.fit_transform(bank_data[['default']])
bank_data[['contact']]=le.fit_transform(bank_data[['contact']])
bank_data[['poutcome']]=le.fit_transform(bank_data[['poutcome']])
bank_data[['y']]=le.fit_transform(bank_data[['y']])
```

Out[15]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	dur
0	58	4	1	2	0	2143	yes	no	2	5	may	
1	44	9	2	1	0	29	yes	no	2	5	may	
2	33	2	1	1	0	2	yes	yes	2	5	may	
3	47	1	1	3	0	1506	yes	no	2	5	may	
4	33	11	2	3	0	1	no	no	2	5	may	
45206	51	9	1	2	0	825	no	no	0	17	nov	
45207	71	5	0	0	0	1729	no	no	0	17	nov	
45208	72	5	1	1	0	5715	no	no	0	17	nov	
45209	57	1	1	1	0	668	no	no	1	17	nov	
45210	37	2	1	1	0	2971	no	no	0	17	nov	

45211 rows × 17 columns

In [16]:

```
bank_data['housing']=le.fit_transform(bank_data['housing'])
bank_data['loan']=le.fit_transform(bank_data['loan'])
bank_data['month']=le.fit_transform(bank_data['month'])
bank_data
```

Out[16]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	dur
0	58	4	1	2	0	2143	1	0	2	5	8	
1	44	9	2	1	0	29	1	0	2	5	8	
2	33	2	1	1	0	2	1	1	2	5	8	
3	47	1	1	3	0	1506	1	0	2	5	8	
4	33	11	2	3	0	1	0	0	2	5	8	
45206	51	9	1	2	0	825	0	0	0	17	9	
45207	71	5	0	0	0	1729	0	0	0	17	9	
45208	72	5	1	1	0	5715	0	0	0	17	9	
45209	57	1	1	1	0	668	0	0	1	17	9	
45210	37	2	1	1	0	2971	0	0	0	17	9	

45211 rows × 17 columns

In [17]:

bank_data.dtypes

Out[17]:

age	int64					
job	int32					
marital	int32					
education	int32					
default	int32					
balance	int64					
housing	int32					
loan	int32					
contact	int32					
day	int64					
month	int32					
duration	int64					
campaign	int64					
pdays	int64					
previous	int64					
poutcome	int32					
у	int32					
dtype: object						

Model building

```
In [18]:
```

```
x=bank_data.iloc[:,:16]
y=bank_data['y']
```

In [19]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

In [20]:

```
x_train.shape,x_test.shape,y_train.shape,y_test.shape
```

Out[20]:

```
((36168, 16), (9043, 16), (36168,), (9043,))
```

Model training

In [21]:

```
from sklearn.linear_model import LogisticRegression
log_model=LogisticRegression()
log_model.fit(x_train,y_train)
```

Out[21]:

LogisticRegression()

Model testing

In [22]:

```
y_pred_train=log_model.predict(x_train)
y_pred_test=log_model.predict(x_test)
```

Model Evaluation

In [23]:

```
from sklearn.metrics import classification_report,confusion_matrix,roc_auc_score,auc
```

In [24]:

```
print(classification_report(y_pred_train,y_train))
```

support	f1-score	recall	precision	
34782	0.94	0.90	0.98	0
1386	0.27	0.55	0.18	1
36168	0.89			accuracy
36168	0.60	0.72	0.58	macro avg
36168	0.91	0.89	0.95	weighted avg

In [25]:

```
print(classification_report(y_pred_test,y_test))
              precision
                            recall f1-score
                                                support
           0
                   0.98
                              0.90
                                        0.94
                                                   8696
           1
                   0.19
                              0.59
                                        0.29
                                                    347
                                        0.89
    accuracy
                                                   9043
                   0.59
                              0.74
                                        0.61
                                                   9043
   macro avg
weighted avg
                   0.95
                              0.89
                                        0.92
                                                   9043
In [34]:
confusion_matrix_train=confusion_matrix(y_train,y_pred_train)
confusion_matrix_train
```

Out[34]:

```
array([[31310, 630], [3472, 756]], dtype=int64)
```

In [35]:

```
print(confusion_matrix(y_test,y_pred_test))
```

```
[[7839 143]
[857 204]]
```

In [36]:

```
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

fpr, tpr, thresholds = roc_curve(y, log_model.predict_proba (x)[:,1])

auc = roc_auc_score(y_test, y_pred_test)
print(auc)

import matplotlib.pyplot as plt
plt.plot(fpr, tpr, color='red', label='logit model ( area = %0.2f)'%auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
plt.ylabel('True Positive Rate')
```

0.5871780662947806

Out[36]:

Text(0, 0.5, 'True Positive Rate')

Imbalaced data

In [37]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [38]:
```

```
sns.countplot(bank_data['y'])
```

Out[38]:

<AxesSubplot:xlabel='y', ylabel='count'>

In [23]:

```
bank_data['y'].value_counts()
```

Out[23]:

0 399221 5289

Name: y, dtype: int64

The No of data available for the 'yes' category, is comparitively low than than 'No' category, this may affect the accuracy of the model because there is no balance of data between those categories

Hence there is a need of balancing the data.

Under sampling

Data preparation

In [44]:

```
count_0=bank_data[bank_data['y']==0]
count_1=bank_data[bank_data['y']==1]
```

```
In [45]:
```

```
count_0.shape,count_1.shape
```

Out[45]:

((39922, 17), (5289, 17))

In [46]:

under_count_0=count_0.sample(5289)

In [47]:

```
under_count_0.shape,count_1.shape
```

Out[47]:

((5289, 17), (5289, 17))

In [48]:

```
under_sample=pd.concat([under_count_0,count_1],axis=0)
under_sample
```

Out[48]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	dur
10753	58	4	1	0	0	1136	0	0	2	17	6	
8036	45	7	1	1	0	759	1	0	2	2	6	
2920	34	1	1	0	0	357	1	0	2	14	8	
28537	30	4	1	2	0	350	0	0	0	29	4	
18729	57	9	0	2	0	0	1	0	0	31	5	
45204	73	5	1	1	0	2850	0	0	0	17	9	
45205	25	9	2	1	0	505	0	1	0	17	9	
45206	51	9	1	2	0	825	0	0	0	17	9	
45207	71	5	0	0	0	1729	0	0	0	17	9	
45208	72	5	1	1	0	5715	0	0	0	17	9	
10578 (10578 rows x 17 columns											

10578 rows × 17 columns

Model building|training|testing|evaluation for undersampled data

In [49]:

```
under_x=under_sample.iloc[:,:16]
under_y=under_sample['y']
```

In [50]:

```
x_untrain,x_untest,y_untrain,y_untest=train_test_split(under_x,under_y,test_size=0.2)
```

```
In [51]:
```

```
under_model=LogisticRegression().fit(x_untrain,y_untrain)
```

```
In [52]:
```

```
y_pred_untrain=under_model.predict(x_untrain)
y_pred_untest=under_model.predict(x_untest)
```

In [53]:

```
print(confusion_matrix(y_untrain,y_pred_untrain))
```

```
[[3360 889]
[1127 3086]]
```

In [55]:

```
print(confusion_matrix(y_untest,y_pred_untest))
```

```
[[817 223]
[268 808]]
```

In [56]:

print(classification_report(y_untest,y_pred_untest))

	precision	recall	f1-score	support
0	0.75	0.79	0.77	1040
1	0.78	0.75	0.77	1076
accuracy			0.77	2116
macro avg	0.77	0.77	0.77	2116
weighted avg	0.77	0.77	0.77	2116

In [57]:

```
fpr, tpr, thresholds = roc_curve(under_y, log_model.predict_proba (under_x)[:,1])
auc = roc_auc_score(y_untest, y_pred_untest)
print(auc)

import matplotlib.pyplot as plt
plt.plot(fpr, tpr, color='red', label='logit model ( area = %0.2f)'%auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
plt.ylabel('True Positive Rate')
```

0.7682531455533315

Out[57]:

Text(0, 0.5, 'True Positive Rate')

Oversampling - SMOTE

In [58]:

```
!pip install imblearn
```

Requirement already satisfied: imblearn in c:\users\rooba\anaconda3\lib\site -packages (0.0)

Requirement already satisfied: imbalanced-learn in c:\users\rooba\anaconda3 \lib\site-packages (from imblearn) (0.8.0)

Requirement already satisfied: numpy>=1.13.3 in c:\users\rooba\anaconda3\lib\site-packages (from imbalanced-learn->imblearn) (1.20.1)

Requirement already satisfied: scikit-learn>=0.24 in c:\users\rooba\anaconda 3\lib\site-packages (from imbalanced-learn->imblearn) (0.24.1)

Requirement already satisfied: scipy>=0.19.1 in c:\users\rooba\anaconda3\lib\site-packages (from imbalanced-learn->imblearn) (1.6.2)

Requirement already satisfied: joblib>=0.11 in c:\users\rooba\anaconda3\lib \site-packages (from imbalanced-learn->imblearn) (1.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\rooba\anacon da3\lib\site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)

Data preparation

```
In [60]:
```

```
from imblearn.over_sampling import SMOTE
```

```
In [61]:
```

```
smote=SMOTE(sampling_strategy='minority')
```

In [62]:

```
x_sm,y_sm=smote.fit_resample(x,y)
```

In [63]:

```
x_sm.shape,y_sm.shape
```

Out[63]:

```
((79844, 16), (79844,))
```

Model building|training|testing|evaluation for oversampled data

In [64]:

```
x_train_sm,x_test_sm,y_train_sm,y_test_sm=train_test_split(x_sm,y_sm,test_size=0.2,stratify
```

In [65]:

```
smote_model=LogisticRegression()
smote_model.fit(x_train_sm,y_train_sm)
```

Out[65]:

LogisticRegression()

In [66]:

```
y_pred_sm=smote_model.predict(x_test_sm)
```

In [67]:

```
print(classification_report(y_test_sm,y_pred_sm))
```

	precision	recall	f1-score	support
0 1	0.78 0.82	0.83 0.76	0.81 0.79	7985 7984
accuracy macro avg weighted avg	0.80 0.80	0.80 0.80	0.80 0.80 0.80	15969 15969 15969

In [68]:

```
fpr, tpr, thresholds = roc_curve(y_sm, log_model.predict_proba (x_sm)[:,1])
auc = roc_auc_score(y_test_sm, y_pred_sm)
print(auc)

import matplotlib.pyplot as plt
plt.plot(fpr, tpr, color='red', label='logit model ( area = %0.2f)'%auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
plt.ylabel('True Positive Rate')
```

0.799296471778874

Out[68]:

Text(0, 0.5, 'True Positive Rate')

