Sieci komputerowe – wykład 6

Jarosław Szkoła

Technologie sieci bezprzewodowych WLAN

Wprowadzenie

- Sieci bezprzewodowe są pod względem technologii przesyłu sygnału atrakcyjną alternatywą dla rozwiązań stosowanych dotychczas.
- Sieci bezprzewodowe istniały w świecie komputerów od dawna, ale żadna z technologii nie pasowała do wymagań rynku. Do tych pierwszych należały:
 - Aloha,
 - ARDIS,
 - Ricochet.
- Problem stanowiły przepustowość zazwyczaj w okolicach 1Mb na całą sieć, niewielki zasięg a przede wszystkim wysokie koszty wdrożenia, utrzymania oraz brak jednolitych, ogólnodostępnych standardów.
- Sieci bezprzewodowe często są określana terminem Wi-Fi (ang. Wireless Fidelity). Jest to termin, który odnosi się do kilku standardów utworzonych na potrzeby budowania sieci bez użycia tradycyjnych mediów, tzn. kabli, czy też światłowodów.

Zakresy częstotliwości sieci bezprzewodowych

- Sieci bezprzewodowe działają w oparciu o propagację fal elektromagnetycznych. Z tego względu stanowią jeden ze sposobów przenoszenia informacji w ściśle określonym paśmie częstotliwościowym.
- Na świecie przyjęto trzy ogólnie dostępne pasma komercyjne.
- Pasma te mają oznaczenie ISM (industrial, scientific, and medical):
 - UHF ISM 902-928 MHz
 - S-Band ISM 2,4 do 2,5 GHz
 - C-Band ISM 5.725-5.875 GHz.
- Sieci bezprzewodowe wykorzystują wydzielone pasma zarezerwowane na potrzeby tego rodzaju komunikacji.

Zakresy częstotliwości łączności radiowej - zestawienie

Pasmo	Zakres częstotliwości		
UHF ISM	902 – 928 MHz		
S-Band	2-4 GHz		
S-Band ISM	2.4 – 2.5 GHz		
C-Band	4 – 8 GHz		
C-Band satellite downlink	3.7 – 4.2 GHz		
C-Band Radar (weather)	5.25 – 5.925 GHz		
C-Band ISM	5.725 – 5.875 GHz		
C-Band satellite uplink	5.925 – 6.425 GHz		
X-Band	8 – 12 GHz		
X-Band Radar (police / weather)	8.5 – 10.55 GHz		
Ku-Band	12 – 18 GHz		
Ku-Band Radar (police)	13.4 – 14 GHz 15.7 – 17.7 GHz		

Podstawowe składniki sieci bezprzewodowych

- Sieci bezprzewodowe, ze względu na rodzaj sygnału służącego do transmisji, potrzebują dodatkowych elementów sieciowych, m.in.:
 - Wbudowane bezprzewodowe karty sieciowe są to karty, które mogą być na stałe wbudowane w płytę główną komputera - tak jest w przypadku większości urządzeń mobilnych.
 - Dodatkowe karty sieciowe bezprzewodowe, które mogą być dołączone poprzez złącza typu PCI, PCI-E, NVMe.
 - Zewnętrzne karty sieciowe, która może być dołączona poprzez złącze typu PCMCIA, USB.
 - Punkty dostępowe (ang. Access Point) są to urządzenia, które zwykle są przyłączone do sieci LAN przy pomocy tradycyjnego medium (kabla). Urządzenia mobilne komunikują się z punktem dostępowym drogą radiową. Urządzenia te mają co raz więcej funkcjonalności, np.: zapór ogniowych, DHCP itd.
 - Anteny umożliwiają lepszą propagację sygnału.
 - Kable, złącza, konektory, przejściówki.

Podstawowe składniki sieci bezprzewodowych

Sieci bezprzewodowe - zalety

- Za stosowaniem tej technologii w wybranych obszarach przemawiają następujące zalety:
 - Mobilność bez potrzeby przełączania kabla sieciowego UTP można przemieszczać się z notebookiem lub innym urządzeniem wewnątrz biura, czy też domu.
 - Latwość instalacji gdy potrzeba dodać nowy komputer lub inne urządzenie do sieci to nie trzeba przygotowywać nowego okablowania.
 - Elastyczność podobnie jak w punkcie poprzednim dodanie nowego urządzenia nie wiąże się z dużym nakładem pracy.
 - Zasięg zwykle od kilku do kilkudziesięciu metrów, a nawet w przypadku najnowszych technologii, np. WiMax do kilkudziesięciu kilometrów.
 - Możliwość szybkiej rozbudowy i modyfikacji.

Sieci bezprzewodowe - wady

- W przypadku stosowania tej technologii można wyróżnić następujące wady tego rozwiązania:
 - Potencjalne ryzyko przejęcia komunikacji z uwagi na zastosowane medium transmisyjne,
 - Ograniczona przepustowość / zasięg w niektórych miejscach, szczególnie w budynkach z dużą ilością elementów metalowych (efekt klatki Faradaya),
 - Mniejsza responsywność w porównaniu do połączeń kablowych, światłowodowych,
 - Spadek wydajności przy dużej ilości połączeń na danej jednostce powierzchni, z uwagi na małą liczbę dostępnych kanałów

Sieci bezprzewodowe – standardy komunikacji 802.11

- 802.11 przyjęty został w roku 1997. Zakładał przesyłanie informacji z prędkościami 1-2 Mb, przy użyciu fal radiowych o częstotliwości 2.4 GHz oraz promieniowania podczerwonego.
- Standardy ten opisuje budowę pierwszej oraz części drugiej warstwy modelu OSI. Część standardu dotycząca użycia promieniowania podczerwonego się nie przyjęła w związku z konkurencją standardu IrDA. Sam standard 802.11 w celu odróżnieniu go od grupy standardów bywa oznaczany jako 802.1y
- Standardy 802.11 budują grupę trzech niezależnych protokołów (a,b,g). Standardy określone pozostałymi literami: c-f, h-j, n dotyczą rozszerzenia usług i poprawek innych standardów.

802.11a

- 802.11a działa przesyłając dane z szybkością 54 Mb/s, wykorzystując częstotliwość 5 GHz.
- 802.11a używa techniki kodowania OFDM. W porównaniu ze standardem 802.11b, ma dwie podstawowe zalety:
 - szybkość i liczba nie zachodzących na siebie kanałów (osiem).
 - W przypadku częstotliwości 2.4 GHz są to tylko trzy kanały.
 - Również ogólna szerokość pasma jest większa niż przy 2.4 GHz.
 - W przypadku częstotliwości 2.4GHz jest to 83.5 MHz, zaś przy 5 GHz 300 MHz.
 - Oba standardy pracują na innych częstotliwościach i nie są one zgodne ze sobą.
 - Zatem punkt dostępu 2.4 GHz nie może współpracować z karta sieciową 5 GHz.
 - Oba standardy mogą być stosowane w tym samym systemie informatycznym.
 - Użytkownicy 802.11a i b mogą korzystać z różnych punktów dostępowych, które są podłączone do tej samej sieci LAN.
 - 802.11a używa wyższej częstotliwości dlatego ma mniejszy zasięg.
 - Z tego względu konieczne jest stosowanie większej ilości punktów dostępu niż w przypadku standardu 802.11b.
 - Urządzenia te pracują ok. trzy razy wydajniej, ale też są o ok. 30% droższe od 802.11b.

802.11a

- Standard ten jest rzadziej stosowany niż standard 802.11b/g, chociaż istnieją urządzenia zapewniające równoległą pracę w tych standardach.
- Standard zatwierdzono w 1999 roku jednak pierwsze urządzenia spełniające wymogi tego standardu weszły do produkcji w 2001 roku.

802.11b

- 802.11b przesyła dane w paśmie 2.4GHz z prędkościami do 11 Mbps jednak w praktyce ze względu na sprawność protokołu praktyczne pasmo wynosi połowę, czyli do 5,5 Mb/s.
- Zasięg określany jest na 46 m w pomieszczeniach zamkniętych i 96 w przestrzeni otwartej.
- Zasięg powiększa się poprzez zastosowanie anten ze wzmacniaczami.
- Spektrum kanału 2.4 GHz podzielono na 14 kanałów, z których każdy ma szerokość 22 MHz, w praktyce oznacza to, że zakres częstotliwości wykorzystywanych przez ten standard mieści się w przedziale 2,4 GHz do 2,494 GHz

802.11g

- 802.11g to projekt, którego celem miało być rozszerzenie standardu 802.11b.
- Głównym problemem, jaki napotykali użytkownicy była zbyt mała prędkość transmisji.
- W 2003 zaproponowano nowe podejście do zagadnienia.
- Podjęto próbę zastosowania techniki OFDM znanej z 802.11a do transmisji danych w paśmie 2.4GHz.
- Ponieważ założono wsteczną kompatybilność z 802.11b nowe karty musiały obsługiwać zarówno poprzednie – (DSSS, HR/DSSS) jak i nowe metody modulacji.
- Jeżeli w sieci znajdują się karty starszej generacji, transmisja odbywa się z mniejszą prędkością.
- Przy zastosowaniu kilku kanałów jednocześnie można uzyskać jeszcze większe prędkości do 108 Mbit/s.

802.11n

- 802.11n jest standardem przygotowanym przez dwa zespoły projektowe (zatwierdzony w 2009).
- Pierwszy pochodzi od zespołu TGnSync w skład, którego wchodzą Atheros, Agere, Marvell, oraz Intel.
- WWiSE (World-Wide Spectrum Efficiency) to drugi zespół składający się z Airgo, Broadcom, Conexant i Texas Instruments.
- Założenia obu grup są podobne.
- Do transmisji i odbioru sygnałów używanych jest wiele anten.
- Dwie anteny w znaczący sposób poprawiają jakość odbieranego oraz wysyłanego sygnału, co pozwala osiągnąć transmisję rzędu 108Mbps.

Standardy 802.11 - zestawienie

Nazwa	Prędkość transmisji [Mb/s]	Pasmo częstotliwości [GHz]	Typ sygnału	Uwagi
802.11	1-2	2,4	FHSS, DSSS, IR	Określany jako 802.1y, 1997
802.11a	6, 9, 12, 18, 24, 36, 48, 54	5,0	OFDM	1999
802.11b	1,2,5,11	2,4	DSSS, HR-DSSS	1999
802.11g	1,2,5,6,9,11,12, 18,24,36,48,54	2,4	DSSS,HR-DSSS, OFDM	
802.11n	100,250,540	2,4		

FHSS - Frequency-Hopping Spread Spectrum

DSSS - Direct Sequence Spread Spectrum

HR-DSSS – Hight Rate Direct Sequence Spread Spectrum

OFDM - Orthogonal Frequency-Division Multiplexing

Pozostałe standardy 802.11

- Oprócz standardów wymienionych wcześniej występują również inne regulujące działanie sieci bezprzewodowych:
 - IEEE 802.11c opisuje sposób działania bezprzewodowych mostów pomiędzy sieciami.
 - IEEE 802.11d opisuje sposób implementacji łączności bezprzewodowej w poszczególnych krajach.
 - IEEE 802.11e wprowadzenie QoS oraz inteligentnego zarządzania pakietami (ang. packet bursting) w transmisji strumieniowej standardów 802.11a.
 - 802.11g i 802.11h IEEE 802.11f definicja roamingu w sieciach 802.11a.
 - 802.11g i 802.11h przy zastosowaniu protokołu IAPP IEE.
 - 802.11h odpowiednik standardu 802.11a przeznaczony dla urządzeń pracujących w paśmie 5 GHz, z użyciem (DCS/DFS) oraz TPC w Europie.

Pozostałe standardy 802.11

- Oprócz standardów wymienionych wcześniej występują również inne regulujące działanie sieci bezprzewodowych:
 - IEEE 802.11i standard WPA2 definiujący bezpieczeństwo sieci bezprzewodowych przy wykorzystaniu protokołów EAP, Radius, Kerberos, Rijandel AES, 802.1x.
 - IEEE 802.11j odpowiednik standardu 802.11a przeznaczony dla urządzeń pracujących w Japonii. Zawiera specyfikacje kanałów powyżej 4,9GHz.
 - IEEE 802.11k opisuje protokół wymiany informacji pomiędzy klientami a punktami dostępowymi.
 - IEEE 802.11xx opisuje inteligentne zarządzanie pakietami XXJE2R.

Podział sieci bezprzewodowych

- Jednym z możliwych podziałów sieci bezprzewodowych, zależnym od topologii oraz logiki zawartej w urządzeniach dostępowych, jest podział na sieci:
 - autonomiczne,
 - scentralizowane.

Zabezpieczenia sieci bezprzewodowych

- Sieci bezprzewodowe z racji swojej zasady działania są sieciami ze współdzielonym medium transmisyjnym.
- Zatem wszelkie problemy związane z taką transmisją sygnału również tutaj występują.
- Ze względu na powszechne użytkowanie urządzeń działających korzystających z sieci bezprzewodowych wprowadzono różne rodzaje zabezpieczeń, m.in.:
 - WEP
 - TKIP
 - WPA
 - 802.1X
 - VPN
 - NAC

- Pierwszą wprowadzoną metodą szyfrowania informacji w sieciach bezprzewodowych był WEP.
- Akronim pochodzi od słów: Wired Equivalent Privacy.
- Ponieważ implementacja jest stosunkowo prosta, a proces szyfrowania nie wymaga dużej mocy obliczeniowej procesora, metoda zyskała dużą popularność.
- WEP skonstruowany został w oparciu o algorytm RC4.
- Jak każda metoda symetryczna wymaga, żeby obie strony używały takich samych kluczy do szyfrowania i deszyfrowania przesyłanych informacji.
- Początkowo zakładano, że WEP będzie spełniał jednocześnie funkcje szyfrowania danych oraz autentykacji. Sądzono, że osoba uprawniona do udziału w transmisji będzie posiadać odpowiedni klucz.

- Sam WEP, a także 802.11 nie definiuje w jaki sposób użytkownik powinien wejść w posiadanie klucza.
- Najbardziej popularną metodą dystrybucji kluczy jest wpisywanie ich do każdego z odbiorników manualnie.
- Proces ten jest bardzo czasochłonny i coraz bardziej skomplikowany ze wzrostem ilości hostów, dlatego negatywnie wpływa na możliwość przyszłego rozwoju sieci.
- Powyżej kilkunastu klientów architektura przestaje być skalowalna.
- Samo założenie, że w posiadaniu klucza znajdują się wyłącznie osoby uprawnione również jest błędne.
- Pomimo tych wad WEP zyskał sobie olbrzymią popularność i nadal jest używany.
- Jeśli WEP stosowany jest w sieciach autonomicznych klucz należy uaktualnić w każdym z punktów dostępowych oddzielnie.
- W sieciach scentralizowanych zmiana wprowadzana jest w jednym miejscu ze skutkiem natychmiastowym.

- Szyfrowanie za pomocą metody WEP odbywa się w następujący sposób.
 - Pomiędzy każdym bitem danych oraz bitem ciągu klucza generowana jest operacja XOR.
 - Wynikowy łańcuch przesyłany jest do publicznej sieci.
 - W następnym kroku druga strona ponownie wykonuje operację XOR na otrzymanych danych oraz kluczu, w rezultacie ujawniając oryginalną wiadomość.
 - WEP występuje w dwóch postaciach: dynamicznej oraz statycznej.
 - Postać statyczna zakłada używanie tego samego klucza przez cały czas funkcjonowania klienta w sieci.
 - Wersja dynamiczna ogranicza używanie zestawu kluczy do z góry określonego czasu.
 - Ponieważ sam WEP nie definiuje sposobu propagacji kluczy funkcje te przejęte zostały m.in. przez metody uwierzytelniania z rodziny 802.1X

- W metodzie WEP stosuje się dwa rodzaje kluczy.
- Pierwszy z nich to unicast key. Klucz używany do zabezpieczania informacji w transmisji punkt - punkt.
- Drugi rodzaj klucza to broadcast key. Szyfrowane tym kluczem informacje zrozumiałe są dla wszystkich użytkowników sieci.
- Jeśli punkt dostępowy skonfigurowany jest do używania dwóch rodzajów kluczy każdy z klientów posiada swój własny unikalny unicast key.
- Wszyscy posiadają ten sam broadcast key.
- Najczęściej stosowane rozwiązanie jest najprostszym z możliwych i wymaga na użytkownikach stosowania tylko jednego klucza do wszystkich rodzajów komunikacji.

- Sam klucz składa się z dwóch części:
 - Pierwszej podawanej przez użytkownika.
 - Drugiej (IV Initialization Vector) wektora wprowadzającego zmienny element.
- Przykładowa sesja szyfrowania / deszyfrowania:

- Sposób szyfrowania jest następujący:
 - Wektor Inicjujący dołączany jest w postaci jawnej do treści przesyłanych pakietów, aby możliwa była deszyfracja.
 - Najczęściej stosowaną długością klucza jest 128 bitów.
 104 bity podawane są przez użytkownika.
 - Pozostałe 24 bity to IV.
 - Oznacza to, że istnieje tylko około 16.5 mln. unikatowych kluczy.
 - Gdy wektory wykorzystywane są wiele razy istnieje możliwość odgadnięcia klucza użytego przez nadajnik.

Algorytm szyfrowania z wykorzystaniem protokołu WEP

Zabezpieczenie WEP - bezpieczeństwo

- Scott Fluhrer, Itsik Mantin, oraz Adi Shamir w roku 2001 przedstawili hipotetyczny sposób łamania kluczy WEP.
- Od nazwisk twórców atak ten nazwany został FMS.
- Implementacja po raz pierwszy wykonana została w laboratoriach AT&T.
- Jeżeli zgromadzona zostanie odpowiednio duża liczba pakietów, niektóre IV pozwalają ujawnić poszczególne bity klucza.
- Takie wektory nazywane są słabymi.
- Szacuje się, że wystarczy około 60 słabych wektorów do rozpracowania klucza.
- Jeśli wziąć pod uwagę, że 5% ze wszystkich używanych IV jest słabymi, stosowanie WEP przestaje być bezpieczne.

Zabezpieczenie WEP - bezpieczeństwo

- Stosowane dziś karty sieciowe nie używają słabych IV do kodowania informacji.
- Dodatkowym sposobem zabezpieczenia się przed atakiem jest odpowiednio częste zmienianie kluczy.
- Problemem nadal pozostaje ręczny sposób dystrybucji kluczy.
- Użytkownicy stosujący WEP jako podstawowy sposób szyfrowania informacji ciągle jeszcze nie są rzadkością.
- Wiele urządzeń nie posiada na tyle dużej mocy obliczeniowej, aby zastosować bardziej skomplikowany algorytm szyfrowania.
- W celu poprawienia sposobu szyfrowania przy jednoczesnym wykorzystaniu dotychczas wykorzystywanego sprzętu, opracowano protokół TKIP.
- Jest to część wprowadzonego w czerwcu 2004 roku standardu 802.11i

- TKIP pochodzi od słów Temporal Key Integrity Protocol.
- Zasada działania opiera się na takich samych zasadach jak WEP, ponieważ używany jest ten sam sprzęt przy odpowiednich zmianach oprogramowania i firmware'u.
- Zadaniem TKIP jest wzmocnienie WEP tam, gdzie dostrzeżono jego najsłabsze strony.
- Klucze używane do transmisji tworzone są przy udziale klucza głównego.
- Standard 802.1i opisuje również sposób zarządzania kluczami, dzięki czemu mogą one być odświeżone w dowolnym momencie.
- Do szyfrowania informacji w dalszym ciągu używany jest RC4, ale każda ramka szyfrowana jest za pomocą nowego klucza WEP.

- Klucze do transmisji danych tworzone są z jednego klucza głównego, a proces ten nosi nazwę mieszania kluczy – key mixing.
- Dzięki temu nie jest możliwe złamanie klucza metodą FMS ponieważ za każdym razem jest on inny.
- Dużą uwagę poświęcono także na wychwytywanie zmian w transmisji.
- Każda ramka posiada unikalny numer sekwencji.
- Jeśli numeracja przestaje być spójna oznacza to próbę podłożenia fałszywych danych przez osobę trzecią.
- Nowy algorytm MIC Michael wykonuje algorytm hashujący, aby wykryć modyfikacje informacji w przesyłanych ramkach.

TKIP - Transmisja

TKIP - Odbiór

- W przeciwieństwie do TKIP, CCMP (Counter Mode with CBC-MAC Protocol) powstawał niezależnie.
- WPA to nazwa standardu marketingowego wprowadzonego przez WiFi Alliance.
- WPA 1 opiera się na drafcie 802.11i z roku 2003 i używa wspomnianego wcześniej TKIP.
- WPA 2 powstało po zatwierdzeniu wersji końcowej przez IEEE w roku 2004.
- Zaletą protokołu jest zastosowanie silnego algorytmu szyfrowania blokowego AES (Advanced Encryption Standard) dla wersji WPA2.
- WPA występuje w dwóch wersjach:
 - WPA Personal.
 - WPA Enterprise.
- Pierwsza działa na zasadzie rozpowszechnianego klucza, druga używa metod autentykacji z rodziny 802.1X.

- CCMP używa tego samego klucza do szyfrowania oraz do zapewnienia integralności przesyłanych danych.
- Tak jak w TKIP klucz używany do szyfrowania generowany jest na podstawie klucza głównego.
- Gwarantuje to nowy klucz tymczasowy dla każdej nowej ramki.
- Dodatkowo w procesie biorą udział numer ramki, adres nadawcy oraz informacje dotyczące QoS.
- Protokół WPA uważany jest za względnie bezpieczny, jednak według NSA (U.S. National Security Agency) do szyfrowania nadzwyczaj poufnych informacji powinien zostać użyty klucz o długości 192 lub 256 bitów zamiast standardowych 128.
- Z uwagi na zastosowany algorytm AES (WPA2) karty bezprzewodowe wykorzystywane do transmisji wymagają dużo większej mocy obliczeniowej.

Zabezpieczenie 802.1X

- Stosowanie protokołów szyfrowania takich jak WEP, Dynamic WEP, TKIP, WPA1 oraz WPA2 wymaga zastosowania metod uwierzytelniania.
- Na początku o dostępie do sieci decydowała znajomość klucza szyfrującego.
- Klucze wpisywane były ręcznie, a za każdym razem, kiedy pracownik znający klucz odchodził z firmy, należało zmienić tajne hasło.
- Przy kilkudziesięciu stanowiskach pracy metoda jest zbyt czasochłonna.
- Rozwiązanie problemu stanowi protokół 802.1X.

Zabezpieczenie 802.1X

- Protokół jest adaptacją EAP (Extensible Authentication Protocol)
 ratyfikowanego przez IEEE i stanowi zbiór zasad oraz reguł, jakimi
 należy się posługiwać przy uwierzytelnianiu użytkowników.EAP jako
 jeden protokół funkcjonuje zarówno na platformie 802.3 oraz
 802.11 i umożliwia stosowanie jednocześnie różnych metod
 autentykacji.
- W procesie biorą udział:
 - EAP authenticator strona uwierzytelniająca;
 - EAP Authentication Server baza danych użytkowników,
 - EAP supplicant strona uwierzytelniana.
- Wymiana danych pomiędzy suplikantem, a stroną uwierzytelniającą odbywa się za pomocą protokołu EAPoL (EAP over Lan).
- Do czasu uwierzytelnienia suplikant nie ma dostępu do zasobów sieci poza niezbędnymi (przekazanie danych uwierzytelniających).

Zabezpieczenie 802.1X

- Sprawdzenie czy użytkownik ma prawo uzyskać dostęp do sieci odbywa się podczas wymiany danych pomiędzy serwerem a stroną uwierzytelniającą.
- Jeśli proces zakończy się powodzeniem użytkownik uzyskuje dostęp do sieci na określony czas.
- Jeżeli autentykacja zakończy się niepowodzeniem użytkownik może zostać zablokowany lub otrzymać ograniczone uprawnienia.
- Uprawnienia nadawane są na zasadzie Access List ACL.
- Zawierają one zbiory dostępnych oraz zablokowanych dla użytkownika adresów.
- Wynikiem poprawnego uwierzytelnienia w sieci może być np. ustalenie wspólnego klucza używanego później do szyfrowania danych.
- 802.1X pozwala co pewien czas odświeżyć klucz lub zażądać ponownego uwierzytelnienia.

Zabezpieczenie 802.1X

- Przykładowy proces uwierzytelniania może przebiegać w następujący sposób:
 - Po nawiązaniu połączenia punkt dostępowy wysyła do suplikanta żądanie identyfikacji.
 - Użytkownik zwraca dane w postaci nazwy skróconej lub pełnej razem z nazwą domeny.
 - Na podstawie podanej nazwy użytkownika generowany jest obliczony ciąg MD5 przesyłany do użytkownika.
 - Ponieważ użytkownik nie obsługuje takiej metody autentykacji zwraca do punktu dostępowego odpowiedź negatywną razem z propozycją uwierzytelnienia żetonem.
 - Następnie potwierdzana jest tożsamość użytkownika i proces kończy się sukcesem.
 - Podłączony i uwierzytelniony użytkownik uzyskuje dostęp do sieci.
 - EAP może próbować autentykacji użytkownika wieloma metodami.
 - Jeżeli jedna się nie powiedzie wykorzystana jest następna z dostępnej puli.
 - Dzięki temu różni klienci końcowi mogą używać różnych form uwierzytelnienia.

Porównanie protokołów WEP, WPA, WPA2

	WEP	WPA	WPA2
Algorytm szyfrowania	RC4	RC4	AES
Rotacja klucza	Brak	Klucze dynamiczne sesyjne	Klucze dynamiczne sesyjne
Dystrybucja klucza	Ręczna, wprowadzanie ręczne dla każdego urządzenia	Możliwa automatyczna dystrybucja	Możliwa automatyczna Dystrybucja
Metoda autentykacji	Klucz WEP	802.1x i EAP	802.1x i EAP

Zabezpieczenie NAC

- Omawiając kwestie bezpieczeństwa należy zwrócić również uwagę na pojawienie się zagrożeń ze strony nieświadomych użytkowników korzystających z sieci.
- Jeśli osoba posiada komputer zainfekowany wirusem lub programem takim jak koń trojański po podłączeniu do sieci może zainfekować pozostałe komputery lub umożliwić dostęp osobom z zewnątrz.
- Jeśli poufne dane np. hasła podsłuchiwane będą przez procesy działające w tle, a następnie przesyłane do osób trzecich, wówczas wszelkiego typu szyfrowanie transmisji traci na znaczeniu.
- Aby zabezpieczyć się przed taką sytuacją stosuje się programy antywirusowe, firewalle na stacjach klienckich, programy antyspyware itp.
- Użytkownicy często próbują obejść narzucone im polityki zabezpieczeń wyłączając niewygodne dla nich funkcje.
- Powoduje to, że komputery stają się podatne na wspomniane wcześniej zagrożenia.

Zabezpieczenie NAC

- Jednym z możliwych rozwiązań problemu może być specjalizowane oprogramowanie, np. NAC (Network Admission Control) firmy Cisco Systems, firmy 3Com, czy też innych innych producentów.
- Zwykle wybór rozwiązania zależy od rodzaju użytkowanych urządzeń.
- W przypadku rozwiązań Cisco firma zapewnia, że gwarantuje ono zgodność maszyny, na której pracuje użytkownik z polityką bezpieczeństwa firmy.
- Idea rozwiązania opiera się na audycie stacji końcowych przed przyznaniem im dostępu do sieci.
- Specjalny program CTA (Cisco Trust Agent) monitoruje stan maszyny, zanim dopuści ją do wymiany danych.
- Jeśli odpowiednie funkcje są włączone, a oprogramowanie zaktualizowane użytkownik może uczestniczyć w transferze danych.
- Jeśli stacja nie posiada np. aktualnej bazy w programie antywirusowym lub jego komputer nie został wyposażony w program CTA może zostać odizolowany od sieci lub skierowany do VLAN-u, w którym jedyną dostępną maszyną będzie serwer z potrzebnymi aktualizacjami.
- Akcję taką podejmuje przełącznik sieciowy na podstawie polityki definiowanej w serwerze AAA.

Zabezpieczenie NAC

- Jeśli użytkownik spełni wymagania, pełny dostęp zostaje mu przywrócony.
- Centralną część zarządzającą stanowi serwer AAA.
- Wyposażony jest on w bazy użytkowników, zdefiniowane są na nim wymagania, jakie muszą spełniać stacje klienckie oraz reakcje na zdarzenia.
- Ten sam serwer jest częścią autentykacji 802.1X.
- Do serwera AAA łączą się wszystkie punkty dostępowe oraz przełączniki uczestniczące w procesie autentykacji klientów.
- Dzięki takiemu rozwiązaniu uwierzytelniany jest nie tylko użytkownik, ale również stacja, na której pracuje.
- Jeśli po otrzymaniu dostępu użytkownik wyłączy oprogramowanie chroniące jego maszynę informacja o tym trafi do przełącznika, następstwem czego będzie zmiana poziomu uprawnień.

Analiza zagrożeń - narzędzia

- Jednym z podstawowych problemów związanych z użytkowaniem sieci bezprzewodowych jest kwestia bezpieczeństwa.
- Jest wiele wyspecjalizowanych programów, które mogą być użyte do wykrycia luk w stosowanych systemach.
- Przykładem takich programów są:
 - Ethereal
 - Kismet
 - Airsnarf
 - Airsnort
 - Aircrack
 - Wireshark
- Warto zaznaczyć, że oprócz badania zabezpieczenia sieci programy te mogą być użyte do włamywania się i kradzieży informacji - co oczywiście jest sprzeczne z prawem.

Ethereal

- Ethereal jest to popularny sniffer Ethernetowy.
- Ethereal wprowadza kartę sieciową w tryb, w którym odbiera ona i przekazuje wyżej wszystkie ramki, a nie tak jak normalnie, tylko przeznaczone dla siebie.
- Ponieważ sieć bezprzewodowa udostępnia odbiorcom dostęp do wszystkich ramek
 możliwe jest podsłuchiwanie transmisji innych klientów bez stosowania specjalistycznych technik.
- Etheral udostępnia przyjazny użytkownikowi interfejs graficzny, dzięki czemu możliwe jest śledzenie przychodzących pakietów w czasie rzeczywistym.
- Możliwe jest także definiowanie interesującego ruchu który będzie składowany w zależności od protokołu, adresów lub innych opcji, a także składanie transmisji w całość i przedstawienie użytkownikowi samych danych z ostatniej warstwy – warstwy aplikacji bez zbędnych informacji.
- Dzięki temu można np. odczytać treści strony internetowej, jaką ogląda w danej chwili podsłuchany użytkownik lub ujawnić treść listów, na które odpisuje.

Ethereal

Kismet

- Kismet to program który we współpracy z kartą sieciową potrafi analizować dostępne kanały radiowe, wskazywać jakiego rodzaju ruch odbywa się w okolicy klienta, oraz jakie sieci dostępowe znajdują się w zasięgu.
- Kismet posiada interfejs graficzny jednak działa on głównie w trybie konsolowym.
 Program bardzo dobrze radzi sobie z wykrywaniem sieci bezprzewodowych.

Kismet

Airsnort, Aircrack

- Airsnort, Aircrack programy służące do łamania kluczy WEP w sieciach bezprzewodowych.
- Aircrack jest tak naprawdę zestawem narzędzi do audytu sieci bezprzewodowych.
- Składa się z programu Airodump służącego do zapisywania pakietów na dysk,
- Aireplay programu który wysyła do sieci zapisane wcześniej pakiety,
- Aircrack programu do łamania kluczy WEP oraz WPA-PSK, Airdecap – programu pozwalającego na odszyfrowanie wcześniej zapisanej transmisji.
- Aircrack pozbawiony jest interfejsu graficznego. Wszystkie komendy wydawane są z konsoli, a wizualizacja efektów działania ograniczona jest do minimum.

Airsnort, Aircrack

- Airsnort, Aircrack programy służące do łamania kluczy WEP w sieciach bezprzewodowych.
- Aircrack jest tak naprawdę zestawem narzędzi do audytu sieci bezprzewodowych.
- Składa się z programu Airodump służącego do zapisywania pakietów na dysk,
- Aireplay programu który wysyła do sieci zapisane wcześniej pakiety,
- Aircrack programu do łamania kluczy WEP oraz WPA-PSK, Airdecap – programu pozwalającego na odszyfrowanie wcześniej zapisanej transmisji.
- Aircrack standardowo pozbawiony jest interfejsu graficznego.
 Wszystkie komendy wydawane są z konsoli, a wizualizacja efektów działania ograniczona jest do minimum. Istnieją jednak skompilowane do postaci aplikacji z interfejsem graficznym.

Airsnort

Aircrack

Wireshark

Dziękuję za uwagę