数据结构 Data Structure

Xia Tian

Email: xiat(at)ruc.edu.cn

Renmin University of China

Graph

Content

- 图的定义
- 图的存储表示
- 图的遍历
- 图的连通性

图 (Graph)

- 图 G = (V, E), V 是顶点 (Vertex) 集合,E 是边/弧 (Edge/Arc) 的 集合.
- 顶点的度、出度和入度

图的相关概念

图的存储

如何表达下图的信息?

有向图:

无向图:

图的存储

如何表达下图的信息?

有向图:

无向图:

• 可用邻接矩阵表达顶点及其关系。

图的存储

	v_1	v_2	v_3	v_4	v_5
\mathbf{v}_1	$\int 0$	1	0	1	0 \
v_2	1	0	1	0	1
v_3	0	1	0	1	1
v_4	$\begin{pmatrix} v_1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	0	1	0	0
V_5	$\int 0$	1	1	0	$_{0}$

• 根据邻接矩阵, 如何判断各顶点的度?

有向图的连续存储方式:邻接矩阵

建立二维数组 A[n][n], n = |V|另需存放 n 个顶点信息

网的邻接矩阵

 $\begin{array}{ccccc} v_1 & v_2 & v_3 & v_4 \\ v_1 & \infty & 8 & 3 & \infty \\ v_2 & \infty & \infty & \infty & \infty \\ v_3 & \infty & \infty & \infty & 1 \\ v_4 & 5 & \infty & \infty & \infty \end{array}$

- 有些图的边带有权重(常用来表示成本、距离、时间等),这样的图称为:网。
- 网的邻接矩阵表达权重,没有边的顶点 之间的权重默认为 ∞
- 邻接矩阵表示方法非常直观、简单,但 是会有什么问题?

网的邻接矩阵

$$\begin{array}{cccccc}
v_1 & v_2 & v_3 & v_4 \\
v_1 & \infty & 8 & 3 & \infty \\
v_2 & \infty & \infty & \infty & \infty \\
v_3 & \infty & \infty & \infty & 1 \\
v_4 & 5 & \infty & \infty & \infty
\end{array}$$

- 有些图的边带有权重(常用来表示成本、距离、时间等),这样的图称为:网。
- 网的邻接矩阵表达权重,没有边的顶点 之间的权重默认为 ∞
- 邻接矩阵表示方法非常直观、简单,但 是会有什么问题?
- 现实中的图经常对应稀疏矩阵, 在这样情形下会有很大空间浪费.

邻接表 (Adjacency List) - 无向图

- 无向图的邻接表: 同一个顶点发出的边链接在同一个边链表中, 便于确定顶点的度
- 需要 n 个头结点, 2e 个表结点

邻接表-有向图

邻接表, 便于确定节点出度

索引 头节点

邻接表-有向图

邻接表,便于确定节点出度

索引 头节点

逆邻接表, 便于确定节点入度

索引 头节点

邻接表-权重处理

练习

- 1. 请写出数组存储和邻接表的类型定义
- 2. 请在如下方面对比数组表示法和邻接表示法
 - ▶ 存储表示是否唯一
 - ▶ 空间复杂度
 - ▶ 操作 a: 求顶点 v_i 的度
 - ▶ 操作 b: 判定 (v_i, v_i) 是否是图的一条边
 - ▶ 操作 c: 通过遍历求边的数目

邻接表表示I


```
class VertexNode {
String data;
EdgeNode firstAdj = null;
 public VertexNode(String data) {
 this.data = data;
class EdgeNode {
int adjVertexNode;
 EdgeNode nextAdj = null;
```

邻接表表示Ⅱ


```
public EdgeNode(int vertexIdx) {
  this.adjVertexNode = vertexIdx;
 public EdgeNode(int vertexIdx, EdgeNode nextAdj) {
  this.adiVertexNode = vertexIdx;
  this.nextAdj = nextAdj;
public class Graph {
 VertexNode[] vertices:
```

邻接表表示Ⅲ


```
public void init() {
 this.vertices = new VertexNode[]{
  new VertexNode("v1"),
  new VertexNode("v2").
  new VertexNode("v3"),
  new VertexNode("v4"),
  new VertexNode("v5"),
  new VertexNode("v6"),
  new VertexNode("v7"),
  new VertexNode("v8")
}:
vertices[0].firstAdi = new EdgeNode(1, new EdgeNode(2));
```

邻接表表示 IV

```
vertices[1].firstAdj = new EdgeNode(0, new EdgeNode(3, new Edge)
vertices[2].firstAdj = new EdgeNode(0, new EdgeNode(5, new Edge)
vertices[3].firstAdj = new EdgeNode(1, new EdgeNode(7));
vertices[4].firstAdj = new EdgeNode(1, new EdgeNode(7));
vertices[5].firstAdj = new EdgeNode(2, new EdgeNode(6));
vertices[6].firstAdj = new EdgeNode(2, new EdgeNode(5));
vertices[7].firstAdj = new EdgeNode(3, new EdgeNode(4));
```

比较

	数组表示法	邻接表法
表示结果	唯一	不唯一
空间复杂度	O(n²) (适用于稠密图)	O(n + e) (适用于稀疏图)
无向图求顶	第 i 行 (或第 i 列) 上非零	第 i 个边表中的结点个数
点 v _i 的度	元素的个数	
有向图求顶	第 i 行上非零元素的个数	第 i 个边表上的结点个数,
点 v _i 的度	是 v _i 出度, 第 i 列上非零	求入度还需遍历各顶点的
	元素的个数是 v _i 的入度	边表。逆邻接表则相反
判定 (v _i ,v _j)	看矩阵中的 i 行 j 列是否	扫描第 i 个边表
是否是图的	为 0	
一条边		
求边的数目	检测整个矩阵中的非零元	对每个边表的结点个数计
	所耗费的时间是 $O(N^2)$	数所耗费的时间是 O(e+
		n)

思考

怎么把邻接表和逆邻接表相结合,同时表示出来?

有向图的十字链表 (Orthogonal List)

将邻接表、逆邻接表结合起来.

• hlink: 指向弧头相同的下一条弧

• tlink: 指向弧尾相同的下一条弧

有向图的十字链表


```
class VertexNode {
 String data;
 ArcBox firstIn;
 ArcBox firstOut:
class ArcBox {
 int headVertex, tailVertex;
 ArcBox hlink;
 ArcBox tlink;
 String data:
```

```
class OLGraph {
  List<VertexNode> xlist;
  int vertexNum, arcNum;
}
```

无向图的多重邻接表

- 无向图的应用中,关注的重点是顶点,那么邻接 表是不错的选择
- 如更关注边的操作,比如对已访问过的边做标记, 删除某一条边等操作,就意味着需要找到这条边 的两个边表结点进行操作。

ivex ilink	jvex	jlink
------------	------	-------

• ivex, jvex: 某条边依附的两个顶点

• ilink: 指向依附顶点 ivex 的下一条边

• jlink: 指向依附顶点 jvex 的下一条边

无向图的多重邻接表

- 无向图的应用中,关注的重点是顶点,那么邻接 表是不错的选择
- 如更关注边的操作,比如对已访问过的边做标记, 删除某一条边等操作,就意味着需要找到这条边 的两个边表结点进行操作。

图的遍历

图的遍历

图的遍历: 从图的某顶点出发, 访问所有顶点, 且每个顶点仅被访问一次。

无论是无向图还是有向图,都有两种遍历方式:

- 深度优先 (类似于树的先根遍历)
- 广度优先 (类似于树的层次遍历)

深度优先搜索 - Depth First Search

以 v1 开始为例:

$$v_1 o v_2 o v_4 o v_8 o v_5 o \cdots$$
 $v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$
visited 1 1 0 1 1 0 0 1
stack $v_1 v_2 v_4 v_8 v_5$

v_1	$\rightarrow v_2 \rightarrow v_3$
v_2	\rightarrow v ₁ \rightarrow v ₄ \rightarrow v ₅
v_3	$\rightarrow v_1 \rightarrow v_6 \rightarrow v_7$
v_4	$\rightarrow v_2 \rightarrow v_8$
v_5	\rightarrow v ₂ \rightarrow v ₈
v_6	\rightarrow v ₃ \rightarrow v ₇
V7	\rightarrow v ₃ \rightarrow v ₆
v ₈	\rightarrow v ₄ \rightarrow v ₅

深度优先搜索 - Depth First Search

以 v1 开始为例:

 $v_1 \rightarrow v_2 \rightarrow v_4 \rightarrow v_8 \rightarrow v_5 \rightarrow v_3 \rightarrow v_6 \rightarrow v_7$

v_1	$\rightarrow v_2 \rightarrow v_3$
v_2	\rightarrow v ₁ \rightarrow v ₄ \rightarrow v ₅
v_3	\rightarrow v ₁ \rightarrow v ₆ \rightarrow v ₇
v_4	$\rightarrow v_2 \rightarrow v_8$
v_5	\rightarrow v ₂ \rightarrow v ₈
v_6	\rightarrow v ₃ \rightarrow v ₇
V7	\rightarrow v ₃ \rightarrow v ₆
v ₈	\rightarrow v ₄ \rightarrow v ₅

```
class VertexNode {
 String data;
 EdgeNode firstAdj = null;
 public VertexNode(String data) {
  this.data = data;
class EdgeNode {
 int adiVertexNode:
 EdgeNode nextAdj = null;
 public EdgeNode(int vertexIdx) {
  this.adjVertexNode = vertexIdx;
```

```
public EdgeNode(int vertexIdx, EdgeNode nextAdi) {
 this.adjVertexNode = vertexIdx;
 this.nextAdj = nextAdi:
public class Graph {
VertexNode[] vertices:
public void init() {
 this.vertices = new VertexNode[]{
   new VertexNode("v1"),
   new VertexNode("v2"),
   new VertexNode("v3"),
   new VertexNode("v4"),
   new VertexNode("v5"),
```

```
new VertexNode("v7"),
  new VertexNode("v8")
};
vertices[0].firstAdj = new EdgeNode(1, new EdgeNode(2));
vertices[1].firstAdj = new EdgeNode(0, new EdgeNode(3, new EdgeNode(4
vertices[2].firstAdj = new EdgeNode(0, new EdgeNode(5, new EdgeNode(6
vertices[3].firstAdj = new EdgeNode(1, new EdgeNode(7));
vertices[4].firstAdj = new EdgeNode(1, new EdgeNode(7));
vertices[5].firstAdj = new EdgeNode(2, new EdgeNode(6));
vertices[6].firstAdj = new EdgeNode(2, new EdgeNode(5));
vertices[7].firstAdj = new EdgeNode(3, new EdgeNode(4));
void dfsTraverse() {
boolean[] visited = new boolean[vertices.length];
//for (int i = 0; i < visited.length; i++) visited[i] = false;
```

new VertexNode("v6").

```
void dfs(int v, boolean[] visited) {
 visited[v] = true:
 VertexNode vertex = vertices[v]:
 System.out.print(vertex.data + " ");
 for (EdgeNode w = vertex.firstAdj; w != null; w = w.nextAdj) {
  if (!visited[w.adjVertexNode])
  dfs(w.adjVertexNode, visited);
public static void main(String[] args) {
```

for (int v = 0; v < vertices.length; v++) { //why for?

if (!visited[v]) dfs(v, visited);

```
Graph g = new Graph();
g.init();
g.dfsTraverse();
}
```

图不一定连通,需要遍历每一个节点

DFS 算法分析

- 比较两种存储结构下的算法 (设 n 个顶点, e 条边)
 - ▶ 数组表示: 查找每个顶点的邻接点要遍历每一行, 遍历的时间复杂度为 O(n²)
 - ▶ 邻接表表示: 虽然有 2e 个表结点, 但只需扫描 e 个结点即可完成遍历, 加上访问 n 个头结点的时间, 遍历的时间复杂度为 O(n+e)
- 结论:
 - ▶ 稠密图适于在邻接矩阵上进行深度遍历;
 - ▶ 稀疏图适于在邻接表上进行深度遍历。

广度优先搜索 - Breadth First Search

v_1	$\rightarrow v_2 \rightarrow v_3$
v_2	$\rightarrow v_1 \rightarrow v_4 \rightarrow v_5$
v_3	$\rightarrow v_1 \rightarrow v_6 \rightarrow v_7$
v_4	\rightarrow v ₂ \rightarrow v ₈
v_5	$\rightarrow v_2 \rightarrow v_8$
v_6	\rightarrow v ₃ \rightarrow v ₇
V7	\rightarrow v ₃ \rightarrow v ₆
v ₈	$\rightarrow v_4 \rightarrow v_5$

广度优先搜索 - Breadth First Search

v_1	$\rightarrow v_2 \rightarrow v_3$
v_2	$\rightarrow v_1 \rightarrow v_4 \rightarrow v_5$
v_3	\rightarrow v ₁ \rightarrow v ₆ \rightarrow v ₇
v_4	\rightarrow v ₂ \rightarrow v ₈
v_5	\rightarrow v ₂ \rightarrow v ₈
v ₆	\rightarrow v ₃ \rightarrow v ₇
V7	\rightarrow v ₃ \rightarrow v ₆
v ₈	\rightarrow v ₄ \rightarrow v ₅

BFSI


```
void bfs() {
 boolean[] visited = new boolean[vertices.length];
//for (int i = 0; i < visited.length; i++) visited[i] = false;
 Queue<Integer> Q = new LinkedList<>();
 for (int v = 0; v < vertices.length; <math>v++) {
  if (!visited[v]) {
   visited[v] = true;
   System.out.print(vertices[v].data + " ");
   Q.add(v);
   while (!Q.isEmpty()) {
    int u = Q.poll();
```

BFS II

```
for (EdgeNode w = vertices[u].firstAdj; w != null; w = w.nextAdj)
 if (!visited[w.adjVertexNode]) {
  visited[w.adjVertexNode] = true;
  System.out.print(vertices[w.adjVertexNode].data + " ");
  Q.add(w.adjVertexNode);
```

分析以下代码的输出结果I


```
void bfs() {
  boolean[] visited = new boolean[vertices.length];
  //for (int i = 0; i < visited.length; i++) visited[i] = false;
  Queue<Integer> Q = new LinkedList<>();
  for (int v = 0; v < vertices.length; <math>v++) {
    if (!visited[v]) {
      O.add(v):
    while (!Q.isEmpty()) {
      int u = Q.poll();
      visited[u] = true;
```

分析以下代码的输出结果॥

System.out.print(vertices[u].data + " ");

```
for (EdgeNode w = vertices[u].firstAdj; w != null; w = w.nextAdj) {
    if (!visited[w.adjVertexNode]) {
        Q.add(w.adjVertexNode);
    }
}
```

BFS 算法分析

- 数组表示:BFS 对于每一个被访问到的顶点, 都要循环检测矩阵中的整整一行 $(n \land n)$, 总的时间代价为 $O(n^2)$
- 邻接表表示: 时间复杂度 O(n+e)

作业练习

- 1. 请写出如下有向图的邻接矩阵, 基于该矩阵进行图的深度优先遍历;
- 2. 建立如下有向图的邻接表, 进行图的广度优先遍历.

图的连通性

图的连通性在计算机网、通信网和电力网等方面有着重要的应用。

生成树 (Spanning tree)

广度优先生成树:

连通图的生成树是它的极小连通子图, 有 n 个顶点和 n-1 条边。

非连通图的连通分量

对于非连通图则遍历生成森林,下图是深度优先遍历生成森林

最小生成树

- 很多现实问题可以抽象成网。比如, 在 n 个城市之间建立通信网, 要求总成本最低。
- 上述问题是求连通网的最小生成树问题, 即挑选 n-1 条不产生回路的最短边, 则总成本 (生成树的各边的权重之和) 达到最低。

总成本为 16

总成本为 23

本章作业

- 1. 最小生成树的 Prim, Kruscal 算法
- 2. 最短路径的 Dijstra, Floyd 算法
- 编程实现上述算法 (务必认真写注释),
- 要求显示某图的最小生成树/某两点之间的最短路径;
- 基本要求: Prim, Kruscal 可以二选一, Dijstra, Floyd 可以二选一
- 优秀要求: 四种算法都实现