CLAIMS

1	1.	A handpiece, comprising:
2	a har	adpiece assembly including a handpiece housing; and
3	an in	sert detachably coupled to the handpiece housing, the
4	insert includ	ling an RF electrode with a conductive portion and a
5	dielectric.	
1	2.	The handpiece of claim 1, further comprising:
2	a coo	ling fluidic medium dispensing assembly coupled to the
3	insert and t	ne handpiece housing.
1	3.	The handpiece of claim 1, wherein the cooling fluidic
2	medium dis	pensing assembly includes a fluid delivery member coupled
3	to a cooling	fluidic medium valve member.
1	4.	The handpiece of claim 3, wherein the cooling fluidic
2	medium val	ve member is positioned in the handpiece housing.
1	5.	The handpiece of claim 3, wherein the cooling fluidic
2	medium val	ve member is positioned in the electrode assembly.
1	6.	The handpiece of claim 3, wherein the fluid delivery
2	member is p	positioned in the handpiece housing.
1	7.	The handpiece of claim 3, wherein the fluid delivery

member is positioned in the insert.

2

3

4

1

2

3

4

1

2

3

l	9.	The handpiece of claim 3, wherein the fluid delivery
2	member is	configured to deliver a controllable amount of cooling fluidic
3	medium to	the RF electrode.

- 1 10. The handpiece of claim 3, wherein the fluid delivery 2 member is configured to controllably deliver a cooling fluidic medium to 3 the back surface of the RF electrode.
 - 11. The handpiece of claim 3, wherein the fluid delivery member is configured to controllably deliver fluid to a backside of the RF electrode to evaporatively cool the RF electrode and conductively cool a skin surface in contact with the front side of the RF electrode.
 - 12. The handpiece of claim 3, wherein the fluid delivery member is configured to controllably deliver a cooling fluidic medium to the back surface of the RF electrode at substantially any orientation of the front surface of the RF electrode relative to a direction of gravity.
 - 13. The handpiece of claim 3, wherein the RF electrode is sufficiently sealed to minimize flow of a cooling fluidic medium from the back surface of the RF electrode to a skin surface in contact with the front surface of the RF electrode.
- 1 14. The handpiece of claim 1, wherein the insert includes a 2 vent.
- 15. The handpiece of claim 3, wherein the cooling fluidic
 medium valve member is configured to provide a pulsed delivery of a

2

3

23.

1	16.	The handpiece of claim 3, wherein the cooling fluidic
2	medium valv	e member includes a solenoid valve.
1	17.	The handpiece of claim 1, further comprising:
2	a forc	e sensor coupled to the RF electrode.
1	18.	The handpiece of claim 17, wherein the force sensor is
2	configured to	detect an amount of force applied by the RF electrode
3	against a sur	face.
1	19.	The handpiece of claim 17, wherein the force sensor is
2	configured to	zero out gravity effects of the weight of the electrode
3	assembly.	
1	20.	The handpiece of claim 17, wherein the force sensor is
2	configured to	zero out gravity effects of the weight of the electrode
3	assembly in a	any orientation of a front surface of the RF electrode
4	relative to a	direction of gravity.
1	21.	The handpiece of claim 17, wherein the force sensor is
2	configured to	provide an indication of RF electrode contact with a skin
3	surface.	
1	22.	The handpiece of claim 17, wherein the force sensor is
2	configured to	provide a signal indicating that a force applied by the RF
3	electrode to a	a contacted skin surface is below a minimum threshold.

configured to provide a signal indicating that a force applied by the RF

electrode to a contacted skin surface is above a maximum threshold.

The handpiece of claim 17, wherein the force sensor is

2	a tare button coupled to the force sensor.
1	25. The handpiece of claim 1, wherein the RF electrode
2	includes a flex circuit.
1	26. The handpiece of claim 25, wherein the flex circuit is
2	configured to isolate flow of a cooling fluidic medium from a back
3	surface of the RF electrode to a front surface of the RF electrode.
1	27. The handpiece of claim 25, wherein the flex circuit is
2	configured to create a reservoir for a cooling fluidic medium that
3	gathers at a back surface of the RF electrode.
1	28. The handpiece of claim 17, wherein the RF electrode
2	includes a conductive portion and a dielectric portion.
1	29. The handpiece of claim 17, wherein the RF electrode is
2	configured to be capacitively coupled to a skin surface when at least a
3	portion of the RF electrode is in contact with the skin surface.
1	30. A handpiece, comprising:
2	a handpiece assembly including a handpiece housing;
3	an insert detachably coupled to the handpiece housing; and
4	an RF electrode positioned in the insert, the RF electrode
5	including a flex circuit.
1	31. The handpiece of claim 30, further comprising:
2	a cooling fluidic medium dispensing assembly coupled to the
3	insert and the handpiece housing.

2

1

2

1

2

1	32.	The handpiece of claim 30, wherein the cooling fluidic
2	medium disp	pensing assembly includes a fluid delivery member coupled
3	to a cooling	fluidic medium valve member.

- 33. The handpiece of claim 32, wherein the cooling fluidic medium valve member is positioned in the handpiece housing.
- 1 34. The handpiece of claim 32, wherein the cooling fluidic 2 medium valve member is positioned in the electrode assembly.
- 1 35. The handpiece of claim 32, wherein the fluid delivery member is positioned in the handpiece housing.
 - 36. The handpiece of claim 32, wherein the fluid delivery member is positioned in the insert.
 - 37. The handpiece of claim 32, wherein the fluid delivery member includes a nozzle.
- 1 38. The handpiece of claim 32, wherein the fluid delivery 2 member is configured to deliver a controllable amount of cooling fluidic 3 medium to the RF electrode.
- 1 39. The handpiece of claim 32, wherein the fluid delivery 2 member is configured to controllably deliver a cooling fluidic medium to 3 the back surface of the RF electrode.
- 1 40. The handpiece of claim 32, wherein the fluid delivery 2 member is configured to controllably deliver fluid to a backside of the 3 RF electrode to evaporatively cool the RF electrode and conductively

a clair curface in contact with the front cide of the DE electrode

member is configured to controllably deliver a cooling and a substantially any orientation of the back surface of the RF electrode relative to a direction of gravity.	4 the front surface of the Kirched odd relative	3	41. The handpiece of claim 32, wherein the fluid delivery member is configured to controllably deliver a cooling fluidic medium to the back surface of the RF electrode at substantially any orientation of the front surface of the RF electrode relative to a direction of gravity.
--	---	---	---

- The handpiece of claim 32, wherein the RF electrode is 42. 1 sufficiently sealed to minimize flow of a cooling fluidic medium from 2 the back surface of the RF electrode to a skin surface in contact with 3 the front surface of the RF electrode. 4
- The handpiece of claim 30, wherein the insert includes a 43. 1 2 vent.
- The handpiece of claim 32, wherein the cooling fluidic 44. medium valve member is configured to provide a pulsed delivery of a 2 cooling fluidic medium. 3
- The handpiece of claim 32, wherein the cooling fluidic 45. 1 medium valve member includes a solenoid valve. 2
- The handpiece of claim 30, further comprising: 46. 1
- a force sensor coupled to the RF electrode. 2
- The handpiece of claim 46, wherein the force sensor is 47. 1 configured to detect an amount of force applied by the RF electrode 2 against a surface. 3
- The handpiece of claim 46, wherein the force sensor is 48. 1

2

3

1

2

3

1

2

Ĺ	49. The handpiece of claim 46, wherein the force sensor is
2	configured to zero out gravity effects of the weight of the electrode
3	assembly in any orientation of a front surface of the RF electrode
1	relative to a direction of gravity.

- 50. The handpiece of claim 46, wherein the force sensor is configured to provide an indication of RF electrode contact with a skin surface.
 - 51. The handpiece of claim 46, wherein the force sensor is configured to provide a signal indicating that a force applied by the RF electrode to a contacted skin surface is below a minimum threshold.
 - 52. The handpiece of claim 46, wherein the force sensor is configured to provide a signal indicating that a force applied by the RF electrode to a contacted skin surface is above a maximum threshold.
- 53. The handpiece of claim 46, further comprising:
 a tare button coupled to the force sensor.
 - 54. The handpiece of claim 30, wherein the flex circuit is configured to isolate flow of a cooling fluidic medium from a back surface of the RF electrode to a front surface of the RF electrode.
- 1 55. The handpiece of claim 30, wherein the flex circuit is 2 configured to create a reservoir for a cooling fluidic medium that 3 gathers at a back surface of the RF electrode.
- 1 56. The handpiece of claim 30, wherein the RF electrode

1

1	57. The handpiece of claim 30, wherein the RF electrode is
2	configured to be capacitively coupled to a skin surface when at least a
3	portion of the RF electrode is in contact with the skin surface.
1	58. A handpiece, comprising:
2	a handpiece assembly including a handpiece housing; and
3	an insert detachably coupled to the handpiece housing, the
4	
	insert including a flex circuit and an RF electrode that includes a
5	conductive portion and a dielectric.
1	59. The handpiece of claim 58, further comprising:
2	a cooling fluidic medium dispensing assembly coupled to the
3	insert and the handpiece housing.
1	60. The handpiece of claim 58, wherein the cooling fluidic
2	medium dispensing assembly includes a fluid delivery member coupled
3	to a cooling fluidic medium valve member.
1	61. The handpiece of claim 60, wherein the cooling fluidic
÷ ว	The standards of stating of whorein the cooling haldic
۷.	medium valve member is positioned in the handpiece housing.
1	62. The handpiece of claim 60, wherein the cooling fluidic
2	medium valve member is positioned in the electrode assembly.
1	63. The handpiece of claim 60, wherein the fluid delivery
2	member is positioned in the handpiece housing.
1	64. The handpiece of claim 60, wherein the fluid delivery

The handpiece of claim 60, wherein the fluid delivery

65.

member is positioned in the insert.

66.	The handpiece of claim 60, wherein the fluid delivery
member is c	onfigured to deliver a controllable amount of cooling fluidic
medium to t	he RF electrode.

- 67. The handpiece of claim 60, wherein the fluid delivery member is configured to controllably deliver a cooling fluidic medium to the back surface of the RF electrode.
 - 68. The handpiece of claim 60, wherein the fluid delivery member is configured to controllably deliver fluid to a backside of the RF electrode to evaporatively cool the RF electrode and conductively cool a skin surface in contact with the front side of the RF electrode.
 - 69. The handpiece of claim 60, wherein the fluid delivery member is configured to controllably deliver a cooling fluidic medium to the back surface of the RF electrode at substantially any orientation of the front surface of the RF electrode relative to a direction of gravity.
- 70. The handpiece of claim 60, wherein the RF electrode is sufficiently sealed to minimize flow of a cooling fluidic medium from the back surface of the RF electrode to a skin surface in contact with the front surface of the RF electrode.
- The handpiece of claim 58, wherein the insert includes a vent.
- The handpiece of claim 60, wherein the cooling fluidic medium valve member is configured to provide a pulsed delivery of a cooling fluidic medium.

3

1

- 1 73. The handpiece of claim 60, wherein the cooling fluidic 2 medium valve member includes a solenoid valve. 74. 1 The handpiece of claim 58, further comprising: a force sensor coupled to the RF electrode. 2 1 75. The handpiece of claim 74, wherein the force sensor is 2 configured to detect an amount of force applied by the RF electrode 3 against a surface. 76. 1 The handpiece of claim 74, wherein the force sensor is 2 configured to zero out gravity effects of the weight of the electrode assembly. 3 The handpiece of claim 74, wherein the force sensor is 77. 1 2 configured to zero out gravity effects of the weight of the electrode 3 assembly in any orientation of a front surface of the RF electrode 4 relative to a direction of gravity. 1 78. The handpiece of claim 74, wherein the force sensor is 2 configured to provide an indication of RF electrode contact with a skin 3 surface. 1 79. The handpiece of claim 74, wherein the force sensor is 2 configured to provide a signal indicating that a force applied by the RF 3 electrode to a contacted skin surface is below a minimum threshold. 1 80. The handpiece of claim 74, wherein the force sensor is
 - 81. The handpiece of claim 74, further comprising:

configured to provide a signal indicating that a force applied by the RF

electrode to a contacted skin surface is above a maximum threshold.

2	a tare button coupled to the force sensor.
1	82. The handpiece of claim 58, wherein the flex circuit is
2	configured to isolate flow of a cooling fluidic medium from a back
3	surface of the RF electrode to a front surface of the RF electrode.
1	83. The handpiece of claim 58, wherein the flex circuit is
2	configured to create a reservoir for a cooling fluidic medium that
3	gathers at a back surface of the RF electrode.
1	84. The handpiece of claim 58, wherein the RF electrode is
2	configured to be capacitively coupled to a skin surface when at least a
3	portion of the RF electrode is in contact with the skin surface.