

Classification Model	Pros	Cons
Logistic Regression	Probabilistic approach, gives informations about statistical significance of features	The Logistic Regression Assumptions
NN-X	Simple to understand, fast and efficient	Need to choose the number of neighbours k
SVM	Performant, not biased by outliers, not sensitive to overfitting	Not appropriate for non linear problems, not the best choice for large number of features
Kernel SVM	High performance on nonlinear problems, not biased by outliers, not sensitive to overfitting	Not the best choice for large number of features, more complex
Naive Bayes	Efficient, not biased by outliers, works on nonlinear problems, probabilistic approach	Based on the assumption that features have same statistical relevance
Decision Tree Classification	Interpretability, no need for feature scaling, works on both linear / nonlinear problems	Poor results on too small datasets, overfitting can easily occur
Random Forest Classification	Powerful and accurate, good performance on many problems, including non linear	No interpretability, overfitting can easily occur, need to choose the number of trees

Machine Learning A-Z

© SuperDataScience