Homework 4 – Jeremy Tandjung

Q1. (10pts) Cache and Memory mapping

Suppose a byte-addressable memory has 2M byte capacity and cache consists of 64 blocks, where each block contains 32 bytes.

Main memory =
$$2MB = 2 \cdot 2^{20} = 2^{21}$$

Cach e (# blocks) = 64 blocks = 2^{6}
block size = $32B = 2^{5}$
Cache size = $2^{1} \cdot 2^{5} = 2^{11}$

1. Direct Mapping

a) tag: Main numry =
$$\frac{2^{21}}{2^{11}} = 2^{10}$$
 -> 10 bits

block: 6 bits; offset: 5 bits

10 to 5
tag block offset

b) \$123 A63

1 0010 0011 1010 0110 0011

fag block offset

2 4 7 13

tag: \$247
block/line: \$13

offset: \$03

2. Fully Associative Mapping

tag : If

offset; 5

\$123A63

tag: \$9103

offset:\$03

3. 4 – way set associative mapping

$$n = 4$$

$$N = 2$$

Offset = 2^{5} ; block = 2^{6}

Set = 2^{6} = 2^{1}

tag: \$ 910; sed: \$3; offer \$03

Q2. (10 pts) Cache hit and miss

Main memory: 256 B = 2^8 Cache size: 16 B = 2^4 Block size: 4 B = 2^2 # blocks: 2^4/2^2 = 2^2

Direct Mapping (8 bits)

4	2	2
Tag	block	offset

Address	Binary	Tag	Block	Hit/Miss
\$91	1001 0001	1001	00	Miss
\$A8	1010 1000	1010	10	Miss
\$A9	1010 1001	1010	10	Hit
\$AB	1010 1011	1010	10	Hit
\$AD	1010 1101	1010	11	Miss
\$93	1001 0011	1001	00	Hit
\$6E	0110 1110	0110	11	Miss
\$B9	1011 1001	1011	10	Miss
\$17	0001 0111	0001	01	Hit
\$E2	1110 0010	1110	00	Miss
\$4E	0100 1110	0100	11	Miss
\$4F	0100 1111	0100	11	Hit
\$50	0101 0000	0101	00	Miss
\$A4	1010 0100	1010	01	Miss

1. Hit ratio = # hits / # address = 5 / 14

= ~35.714%

2. Updated cache table

Tag	Block #	Offset 0	Offset 1	Offset 2	Offset 3
0101	0	50	51	52	53
1010	1	A4	A5	A6	A7
1011	2	B8	B9	BA	BB
0100	3	4C	4D	4E	4F

Q3. (10pts) Virtual memory and cache

1)
$$VM = 256 k = 2^{18}$$

 $PM = (28k = 2^{17})$
 $four = 32k = 2^{15}$

2) Tag =
$$\frac{17}{2!}$$
 = $\frac{16}{2}$ = $\frac{2}{2}$ = $\frac{2}{2}$

Mem LRU

6	
0	
5	
4	

Page table

Page	Frame
0	2
4	0
5	3
6	1

TLB

6	1	1
0	2	1

TLB LRU

	 _
6	
0	

Page (6; 3 bits) -> Frame(1; 2 bits) **PM -> \$0A764**

Cache

Line #	Tag	Data
0	10	*
1	0A	*
2	3C	*
3	14	*
4	28	*
5	04	*
6	37	*
7	14	*

Extra question (5 pts) Circuit and memory

1) Suppose you want to write a data 1 0 1 to the word 3 (address 3). How you will set the values in each case?

RESET	S 1	S0	Bit2	Bit1	Bit0	~WE
0	1	1	1	0	1	1

2) Suppose you want to read a data from the address 1. Give the correct values in each case. If some bits do not affect, then mark as X (don't care).

RESET	S 1	S0	Bit2	Bit1	Bit0	~WE
0	0	1	х	X	X	0