

Harbin Institute of Technology

数据库系统

万晓珑 博士 大数据计算研究中心

wxl@hit.edu.cn

第一篇 基础篇

- ❖数据库系统的基本概念和基础知识
 - 第1章 绪论
 - 第2章 关系模型
 - 第3章 关系数据库标准语言SQL
 - 第4章 数据库安全性
 - 第5章 数据库完整性

第二篇 设计与应用开发篇

- ❖基于某个数据库管理系统设计数据库,如何基于数据库系统编程
 - 第6章 关系数据理论
 - 第7章 数据库设计
 - 第8章 数据库编程(自行阅读)

Harbin Institute of Technology

数据库系统

第六章 关系数据理论

第六章 关系数据理论

- 6.1 问题的提出
- 6.2 规范化
- 6.3 数据依赖的公理系统
- *6.4 模式的分解
- 6.5 小结

6.1 问题的提出

关系数据库逻辑设计

- 针对具体问题,如何构造一个适合于它的数据 模式
- 数据库逻辑设计的工具——关系数据库的规范化 理论

❖关系模式由五部分组成,是一个五元组:

R(U, D, DOM, F)

- R为关系名
- U为一组属性
- D为U中的属性所来自的域
- DOM为属性到域的映射
- F为属性间的一组数据依赖

❖例子R(U, D, DOM, F):

STUDENT(U,D,DOM,F)

U: {sno, name, age} //关系的属性集合

D: {char(9), char(20), int} // 属性类型集合

DOM: {dom(sno) = char(9), dom(name) =

char(20), dom(age)=int} // 指定每个属性取值范围

F: {sno→name, sno→age} // 属性间依赖关系

- 由于D、DOM与模式设计关系不大,因此在本章中把关系模式看作一个三元组: R<U, F>
- 作为二维表,关系要符合一个最基本的条件:每个 分量必须是不可分的数据项。
- 满足这个条件的关系模式就属于第一范式 (1NF: First Normal Form)

❖数据依赖

- 一个关系内部属性与属性间的一种约束关系,通 过属性间值的相等与否体现出的数据间相互联系
- 现实世界属性间的相互联系的抽象

- ❖数据依赖的主要类型
 - ■函数依赖(Functional Dependency, 简记为FD)
 - 多值依赖(Multi-Valued Dependency,简记为MVD)

- ❖函数依赖普遍存在于现实生活中
 - 描述一个学生关系,可以有学号、姓名、系名等属性
 - 一个学号只对应一个学生,一个学生只在一个系中学习。学号值确定后,学生的姓名及所在系的值就被唯一确定。
 - 属性间这种依赖关系类似于数学中函数的概念
 - y=f(x): y是x的函数,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b=f(a)。
 - 也可以表示为f: x→y。

- ❖函数依赖普遍存在于现实生活中
 - 描述一个学生关系,可以有学号、姓名、系名等属性
 - 一个学号只对应一个学生,一个学生只在一个系中学习。学号值确定后,学生的姓名及所在系的值就被唯一确定。
 - Sname=f(Sno), Sdept=f(Sno)
 - Sno函数决定Sname
 - Sno函数决定Sdept
 - 记作: Sno→Sname, Sno→Sdept

- ❖[例6.1] 建立一个描述学校教务的数据库,涉及的对象包括:
 - 学生的学号(Sno)
 - 所在系(Sdept)
 - 系主任姓名(Mname)
 - 课程号(Cno)
 - 成绩(Grade)

- 假设学校教务的数据库模式用一个单一的关系模式 Student来表示,则该关系模式的属性集合为:
 - U = {Sno, Sdept, Mname, Cno, Grade}
- 现实世界的已知事实(语义):
 - 一个系有若干学生,但一个学生只属于一个系;
 - •一个系只有一名负责人;
 - 一个学生可以选修多门课程,每门课程有若干学生 选修;
 - 每个学生学习每一门课程有一个成绩。

■ 由此可得到属性组U上的一组函数依赖F:

F={Sno→Sdept, Sdept→ Mname, (Sno, Cno)→ Grade}

关系模式Student<U, F>中存在的问题:

- (1) 数据冗余
 - 浪费大量的存储空间
 - 每一个系主任的姓名重复出现,重复次数与该系所有学生的所有课程成绩出现次数相同。

- (2) 更新异常(Update Anomalies)
 - 因冗余问题 ,更新数据时维护数据完整性代价大
 - 某系更换系主任后,必须修改与该系学生有关的每一个元组。
- (3) 插入异常 (Insertion Anomalies)
 - 如果一个系刚成立,尚无学生,则无法把这个系 及其系主任的信息存入数据库。

- (4) 删除异常 (Deletion Anomalies)
 - 如果某个系的学生全部毕业了,则在删除该系学生信息的同时,把这个系及其系主任的信息也丢掉了。

- ❖结论
 - Student关系模式不是一个好的模式。
 - 一个"好"的模式应当不会发生<mark>插入异常</mark>、删除 异常和更新异常,数据冗余应尽可能少。
- ❖原因:由存在于模式中的某些数据依赖引起的,存 在一些不好的性质。
- ❖解决方法: 用规范化理论改造关系模式来消除其中不合适的数据依赖

- ❖把这个单一的模式分成三个关系模式:
 - S(Sno, Sdept, Sno → Sdept);
 - SC(Sno, Cno, Grade, (Sno,Cno) → Grade);
 - DEPT(Sdept, Mname, Sdept → Mname);
- ❖系主任更换、新成立的系主任、所有学生毕业、系 主任重复存储
- ❖这三个模式都不会发生<mark>更新异常</mark>、插入异常、删除 异常问题,<mark>数据的冗余</mark>也得到了控制。

第六章 关系数据理论

- 6.1 问题的提出
- 6.2 规范化
- 6.3 数据依赖的公理系统
- *6.4 模式的分解
- 6.5 小结

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.1 函数依赖

- ❖1. 函数依赖
- ❖2. 平凡函数依赖与非平凡函数依赖
- ❖3. 完全函数依赖与部分函数依赖
- ❖4. 传递函数依赖

1. 函数依赖

❖ 定义6.1 设R(U)是一个属性集U上的关系模式,X和 Y是U的子集。

对于R(U)的任意一个可能关系r,r中不可能存在:

两个元组在X上属性值相等,而在Y上属性值不等;

换句话说,如果两个元组在X上属性值相等,而在Y

上属性值也相等,

称 "X函数确定Y"或 "Y函数依赖于X",记作 $X \rightarrow Y$

函数依赖(续)

❖[例] Student(Sno, Sname, Ssex, Sage, Sdept),

假设不允许重名(没有学生同名),则有:

Sno \rightarrow Ssex, Sno \rightarrow Sage

Sno \rightarrow Sdept, Sno $\leftarrow \rightarrow$ Sname

Sname → Ssex, Sname → Sage

Sname → Sdept

但Ssex →Sage, Ssex→ Sdept

一个错误的Student表

Sno	Sname	Ssex	Sage	Sdept
S1	张三	男	20	计算机系
S1	李四	女	21	自动化系
S3	王五	男	20	计算机系
S4	赵六	男	21	计算机系
S5	田七		20	计算机系
•	•		•	•

违背了Sno → Sname

函数依赖(续)

❖由下面的关系表,能否得出Sname → Sage

Sno	Sname	Ssex	Sage	Sdept
S1	张三	男	20	计算机系
S2	李四	女	21	自动化系
S 3	王五	男	20	计算机系
S4	赵六	男	21	计算机系
S5	田七	男	20	计算机系
•	•	:	:	:
•	•	•	•	•

函数依赖不是指关系模式R的某个或某些关系实例满足的约束条件,而是指R的所有关系实例均要满足的约束条件。

函数依赖(续)

- ❖函数依赖是语义范畴的概念,只能根据数据的语义 来确定一个函数依赖。
 - 例如"姓名→年龄"这个函数依赖只有在不允许 有同名的条件下成立

2. 平凡函数依赖与非平凡函数依赖

- ❖ X → Y, $Y \subseteq X$, 则称X → Y是平凡的函数依赖。
- ❖ X → Y, Y⊈X,则称X → Y是非平凡的函数依赖。

对于任一关系模式,平凡函数依赖都是必然成立的,它不反映新的语义。

若不特别声明, 我们总是讨论非平凡函数依赖。

平凡函数依赖与非平凡函数依赖(续)

- ❖若X→Y, X称为这个函数依赖的决定因素。
- ❖若X→Y, Y→X, 则记作X← \to Y。
- ❖若Y不函数依赖于X,则记作X→Y。

3. 完全函数依赖与部分函数依赖

- ❖定义6.2 在R(U)中,如果 $X \rightarrow Y$,并且对于X的任何一个真子集X',都有 $X' \rightarrow Y$,称Y对X完全函数依赖,记作 $X \xrightarrow{F} Y$ 。
- * 若 $X \rightarrow Y$,但Y不完全函数依赖于X,则称Y对X部分函数依赖,记作 $X \xrightarrow{P} Y$

完全函数依赖与部分函数依赖(续)

- ❖[例] 在关系SC(Sno, Cno, Grade)中,有:
 - 由于: Sno →Grade, Cno → Grade,

因此: (Sno, Cno) \xrightarrow{F} Grade

 $(Sno, Cno) \stackrel{P}{\rightarrow} Sno$

(Sno, Cno) $\stackrel{P}{\rightarrow}$ Cno

4. 传递函数依赖

- ❖ 定义6.3 在R(U)中,如果 $X \rightarrow Y(Y \not\subseteq X)$, $Y \nrightarrow X$, $Y \rightarrow Z$, $Z \not\subseteq Y$,则称 $Z \not\supset X$ 传递函数依赖。记为: $X \stackrel{\text{fid}}{\rightarrow} Z$ 。
 - 注: 如果 $Y \rightarrow X$, 即 $X \leftarrow \rightarrow Y$,则 Z直接依赖于 X,而不是传递函数依赖。
 - [例] 在关系Std(Sno, Sdept, Mname)中,有: Sno → Sdept, Sdept → Mname,

Mname传递函数依赖于Sno

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.2 码

- ❖定义6.4 设K为R<U,F>中的属性或属性组合。如果 $K \xrightarrow{F} U$, K称为R的一个候选码(Candidate Key)。
 - 如果U函数依赖于K,即 $K \rightarrow U$,则K称为超码(Surpkey)。
 - 候选码是最小的超码,即 K的任意一个真子集都不是候选码。
- ❖若关系模式*R*有多个候选码,则选定其中的一个做为主码(Primary key)。

码(续)

- ❖主属性与非主属性
 - 包含在任何一个候选码中的属性,称为主属性 (Prime attribute)
 - 不包含在任何候选码中的属性,称为非主属性 (Nonprime attribute)或非码属性(Non-key attribute)
- ❖全码:整个属性组是码,称为全码(All-key)
- ❖主码或者候选码都简称为码

码(续)

[例6.2]S(Sno, Sdept, Sage),单个属性Sno是主码 SC(Sno, Cno, Grade)中,(Sno, Cno)是主码 [例6.3] R(P,W,A)

P: 演奏者 W: 作品 A: 听众 一个演奏者可以演奏多个作品 某一作品可被多个演奏者演奏 听众可以欣赏不同演奏者的不同作品 主码为(P,W,A),即All-Key

码(续)

- ❖定义6.5 关系模式R中属性或属性组X,并非R的码,但X是另一个关系模式的码,则称X是R的外码(Foreign key)。
 - SC(Sno, Cno, Grade)中,Sno不是码
 - Sno是S(Sno, Sdept, Sage)的码,则Sno是SC的 外码
- ❖主码与外码一起提供了表示关系间联系的手段

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.3 范式

- ❖范式是符合某一种级别的关系模式的集合。
- ❖关系数据库中的关系必须满足一定的要求。
- ❖满足不同程度要求的为不同范式。
- ❖范式的种类:

第一范式(1NF)

第二范式(2NF)

第三范式(3NF)

BC范式(BCNF)

第四范式(4NF)

第五范式(5NF)

6.2.3 范式

- ❖ 1NF: E. F. Codd, Normalized Data Base Structure: A Brief Tutorial, SIGMOD 1971.
- ❖ 2NF, 3NF: E. F. Codd, Further Normalization of the Data Base Relational Model, Data Base Systems, Prentice-Hall, 1972.
- ❖ BCNF: E. F. Codd, Recent Investigations into Relational Data Base, Proc. Congress, 1974. (Co-work with R. F. Boyce)
- ❖ 4NF: R. Fagin, Multivalued Dependencies and a New Normal Form for Relational Databases, TODS, 1977.
- ❖ 5NF: R. Fagin, Normal Forms and Relational Database Operators, SIGMOD 1979.

范式(续)

- ❖各种范式之间存在联系:
 - 第几范式表示符合某一种级别的关系模式的集合
 - $1NF \supset 2NF \supset 3NF \supset BCNF \supset 4NF \supset 5NF$
 - 某一关系模式R为第n范式,可简记为R∈nNF
- ❖一个低一级范式的关系模式,通过模式分解(schema decomposition)可以转换为若干个高一级范式的关系模式的集合,这种过程就叫规范化(normalization)。

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.4 2NF

- ❖每个分量是不可分的数据项,满足这个条件的关系模式就属于第一范式 (1NF)
- ❖定义6.6 若关系模式R∈1NF,并且每一个非主属性都完全函数依赖于任何一个候选码,则R∈2NF

6.2.4 2NF

- ❖ [例6.4] S-L-C(Sno, Sdept, Sloc, Cno, Grade), Sloc 为学生的住处,并且每个系的学生住在同一个地方。 S-L-C的码为(Sno,Cno)。 函数依赖有:
 - (Sno,Cno) → Grade
 - Sno→Sdept, (Sno,Cno)→PSdept
 - Sno→Sloc, (Sno,Cno)→PSloc
 - Sdept→Sloc

- ■非主属性Sdept、Sloc并不完全依赖于码
- ■关系模式S-L-C不属于2NF

- ❖一个关系模式不属于2NF,例如S-L-C(Sno, Sdept, Sloc, Cno, Grade),会产生以下问题:
 - 插入异常:如果插入一个新学生,但该生未选课且无 Cno,由于插入元组必须给定码,因此插入失败。
 - 删除异常:如果S4只选了一门课C3,现在他不再选 这门课,删除C3后,整个元组的其他信息也被删除。
 - 修改复杂:如果一个学生选了多门课,则Sdept, Sloc被存储了多次。如果该生转系,则需要修改所有 相关的Sdept和Sloc,造成修改的复杂化。

- ❖出现这种问题的原因
 - 例子中有两类非主属性:
 - •一类如Grade,它对码完全函数依赖
 - 一类如Sdept、Sloc,它们对码部分函数依赖
- ❖解决方法:
 - 投影分解把关系模式S-L-C分解成两个关系模式
 - SC(Sno,Cno,Grade)
 - S-L(Sno,Sdept,Sloc)

图6.4 SC中的函数依赖

图6.5 S-L中的函数依赖

■ SC的码为(Sno,Cno), S-L的码为Sno,非主属性对码都是完全函数依赖了

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.5 3NF

❖ 定义6.7 设关系模式 $R < U, F > \in 1$ NF, 若R中不存在这样的码X、属性组Y及非主属性Z(Y ⊉ Z),

使得 $X \rightarrow Y$, $Y \rightarrow Z$, $Y \nrightarrow X$,

则称 $R<U,F>\subseteq 3NF$ 。

属于3NF的关系模式,每一个非主属性既不传递依赖于码,也不部分依赖于码。

6.2.5 3NF

- ❖ SC(Sno,Cno,Grade)和S-L(Sno,Sdept,Sloc)
 - SC没有传递依赖, 因此SC ∈ 3NF
 - S-L中Sno → Sdept(Sdept → Sno), Sdept→Sloc,可 得Sno ^{传递} → Sloc。
 - 插入异常。新专业入住某宿舍,无学生信息无法插入。
 - 删除异常。删除某个专业所有学生,专业和宿舍信息丢失。
 - 修改复杂。某专业从A宿舍换到B宿舍,需要修改所有 学生的宿舍信息。

6.2.5 3NF

- ❖ SC(Sno,Cno,Grade)和S-L(Sno,Sdept,Sloc)
 - SC没有传递依赖, 因此SC ∈ 3NF
 - S-L中Sno → Sdept(Sdept → Sno), Sdept→Sloc,可得Sno ^{传递} → Sloc。
 - 解决的办法是将S-L分解成
 - S-D(Sno,Sdept) ∈ 3NF
 - D-L(Sdept,Sloc) ∈ 3NF

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.6 BCNF

- ❖BCNF (Boyce Codd Normal Form) 由Boyce和Codd提出,比3NF更进一步。通常认为BCNF是修正的第三范式,有时也称为扩充的第三范式。
- ❖定义6.8 设关系模式 $R < U, F > \in 1$ NF,若 $X \rightarrow Y$ 且 $Y \nsubseteq X$ 时,X必含有码,则 $R < U, F > \in B$ CNF。
- ❖换言之,在关系模式R<U,F>中,如果每一个决定属性集都包含码,则R∈BCNF。

6.2.6 BCNF

- ❖BCNF 关系模式所具有的性质
 - ❖所有非主属性均完全函数依赖于每个候选码
 - ❖所有主属性均完全函数依赖于不包含它的候选码
 - ❖没有任何属性完全函数依赖于非码的任何一组属性
 - ❖BCNF⊆3NF,BCNF排除对码的部分和传递函数依赖,任意关系模式属于BCNF范式,必然属于3NF范式
 - * 定义6.4 设K为R<U,F>中的属性或属性组合。如果 $K \to U$,K称为R的一个候选码(Candidate Key)。

- ❖[例6.5]考察关系模式C(Cno,Cname, Pcno),课程号、课程名和先序课程号
 - 它只有一个码Cno,没有任何属性对Cno部分依赖或 传递依赖,所以C∈3NF。
 - 同时C中Cno是唯一的决定因素,所以C∈BCNF。
 - 对于关系模式SC(Sno,Cno,Grade)可作同样分析。

- ❖[例6.6] 关系模式S(Sno, Sname, Sdept, Sage),
 - 假定Sname也具有唯一性,那么S就有两个码,这两个码都由单个属性组成,彼此不相交。
 - 其他属性不存在对码的传递依赖与部分依赖,所以 S∈3NF。
 - 同时S中除Sno,Sname外没有其他决定因素,所以 S也属于BCNF。

- ❖[例6.7] 关系模式SJP(S,J,P)中,S是学生,J表示课程,P表示名次。每一个学生选修每门课程的成绩有一定的名次,每门课程中每一名次只有一个学生(无并列)
 - 由语义可得到函数依赖: (S,J)→P; (J,P)→S
 - (S,J)与(J,P)都可以作为候选码。
 - 关系模式中没有非主属性对码传递依赖或部分依赖, 所以SJP∈3NF。
 - 除(S,J)与(J,P)以外没有其他决定因素,SJP∈BCNF

❖[例6.8] 关系模式STJ(S,T,J), S表示学生, T表示教师, J表示课程。每一教师只教一门课。每门课有若干教师, 某一学生选定某门课, 就对应一个固定的教师。

- 由语义可得到函数依赖: (S,J)→T; (S,T)→J; T→J
- 没有任何非主属性对码传递依赖或部分依赖,STJ ∈ 3NF。
- 因为T是决定因素,T不包含码,STJ ∉ BCNF

图6.6 STJ中的函数依赖

- ❖对于不是BCNF的关系模式,仍存在不合适的地方
- ❖非BCNF的关系模式也可以通过分解成为BCNF。例如STJ可分解为ST(S,T)与TJ(T,J),它们都是BCNF

- ❖3NF和BCNF是在函数依赖的条件下对模式分解所能 达到的分离程度的测度。
 - 一个模式中的关系模式如果都属于BCNF,那么在函数依赖范畴内,它已实现了彻底的分离,已消除了插入和删除的异常。
 - 3NF的"不彻底"性表现在可能存在主属性对码的部分依赖和传递依赖。

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.7 多值依赖

例[6.9]设学校中某一门课程由多个教师讲授,他们使用相同的一套参考书。每个教师可以讲授多门课程,每种参考书可以供多门课程使用

用关系模式Teaching(C,T,B)来表示课程C、教师T和参考书B之间的关系。

表6.3 非规范化关系示例

课程 C	教员 T	参考书 B
物理	[李勇] [王军]	普通物理学 光学原理 物理习题集
数学	[李勇] [张平]	数学分析 微分方程 高等代数
计算数学	 	数学分析
•••	•••	•••

表6.4 规范化的二维表 Teaching

	_
教员 T	参考书 B
李 勇	普通物理学
李勇	光学原理
李 勇	物理习题集
王军	普通物理学
王军	光学原理
王军	物理习题集
李 勇	数学分析
李 勇	微分方程
李 勇	高等代数
张平	数学分析
张平	偏分方程
张平	高等代数
	李李李王王王李李李张张

- ❖Teaching具有唯一候选码(C,T,B), 即全码。
- **❖** Teaching ∈ BCNF

	课程C	教员 T	参考书 B
	物理	李勇	普通物理学
	物理	李勇	光学原理
	物理	李 勇	物理习题集
	物理	王军	普通物理学
	物理	王军	光学原理
	物理	王军	物理习题集
	数学	李勇	数学分析
	数学	李勇	微分方程
	数学	李 勇	高等代数
(4)修改操作复杂: 某	<u></u> 张平	数学分析
`	T)廖以珠叶及亦:朱 T课要修改一本参考·		偏分·方程
该课程有多少名教师, 就必须修改多少个元组。			高等代数
		组。	

- (1)数据冗余度大:有多 少名任课教师,参考书 就要存储多少次。
 - (2)增加操作复杂: 当 某一课程增加一名任 课教师时,该课程有 多少本参照书,就必 须插入多少个元组。
- (3)删除操作复杂:某一 门课要去掉一本参考书, 该课程有多少名教师, 就必须删除多少个元组。

课程C	教员 T	参考书 B
物理	李勇	普通物理学
物理	李勇	光学原理
物理	李勇	物理习题集
物理	王军	普通物理学
物理	王军	光学原理
物理	王军	物理习题集
数学	李勇	数学分析
数学	李勇	微分方程
数学	李勇	高等代数
数学	张平	数学分析
数学	张平	偏分方程
数学	张平	高等代数
2024/10/9		

产生原因: 多值依赖

❖定义6.9 设R(U)是属性集U上的一个关系模式。

X, Y, Z是U的子集,并且Z=U-X-Y。

关系模式R(U)中多值依赖 $X \to Y$ 成立,当且仅当对R(U)的任一关系r,给定的一对(x,z)值,有一组Y的值,这组值仅仅决定于x值而与z值无关。

❖例 Teaching (C, T, B)

对于C的每一个值,T有一组值与之对应,而不论 B取何值。因此T多值依赖于C,即C→→T。

❖多值依赖的另一个等价的定义

在R(U)的任一关系r中,如果存在元组t,s使得 t[X]=s[X],那么就必然存在元组w,v∈r(w)可以与s,t相同), 使得w[X]=v[X]=t[X],而 w[Y]=t[Y], w[Z]=s[Z], v[Y]=s[Y], v[Z]=t[Z],即交换s,t元组的Y值所得的两个新元组必在r中 ,则Y多值依赖于X,记为 $X \rightarrow Y$ 。这里X,Y是 U的子集,Z = U - X - Y。

- ❖平凡多值依赖和非平凡的多值依赖
 - 若 $X \rightarrow Y$,而 $Z = \Phi$,即Z为空,则称 $X \rightarrow Y$ 为平凡的多值依赖。
 - 否则称X→→Y为非平凡的多值依赖。

2024/10/9

73

[例6.10]关系模式WSC(W,S,C)中,W表示仓库,S表示保管员,C表示商品。假设每个仓库有若干个保管员,有若干种商品。每个保管员保管所在仓库的所有商品,每种商品被所在仓库所有保管员保管。

W	S	С
W1	S1	C1
W1	S1	C2
W1	S1	C3
W1	S2	C1
W1	S2	C2
W1	S2	C3
W2	S3	C4
W2	S3	C5
W2	S4	C4
W2	S4	C5

- ❖ 按照语义对于W的每一个值 W_i ,S有一个完整的集合与之对应而不问C取何值。所以 $W\to\to S$ 。
- ❖如图6.7所示
 - 对应W的某一个值W_i的全部S值记作{S}_{Wi}(表示此仓库工作的全部保管员),全部C值记作{C}_{Wi}(表示此仓库中存放的所有商品)
 - 应当有{S}_{wi}中每一个S值和{C}_{wi}中每一个C值对应
 - 于是 $\{S\}_{Wi}$ 与 $\{C\}_{Wi}$ 之间正好形成一个完全二分图,因而 $W\to\to S$ 。

❖由于C与S的完全对称性,必然有W→→C成立。

图6.7 W $\rightarrow\rightarrow$ S月W $\rightarrow\rightarrow$ C

❖ 多值依赖的性质

(1) 多值依赖具有对称性。

即若 $X \rightarrow Y$,则 $X \rightarrow Z$,其中Z = U - X - Y

- 多值依赖的对称性可以用完全二分图直观地表 示出来。
- ●从[例6.10] 容易看出,因为每个保管员保管所有商品,同时每种商品被所有保管员保管,显然若 $W\to\to S$,必然有 $W\to\to C$ 。

(2) 多值依赖具有传递性。即若 $X \rightarrow Y$, $Y \rightarrow Z$,则 $X \rightarrow Z - Y$ 。

	X	Y-Z	Z-Y	$Y \cap Z$	В
t	t[X]	t[Y-Z]	t[Z-Y]	$t[Y \cap Z]$	t[B]
S	s[X]	s[Y-Z]	s[Z-Y]	$s[Y \cap Z]$	s[B]

由于 $X \rightarrow Y$,下列两个元组肯定也在r中

	X	Y-Z	Z-Y	$Y \cap Z$	В
t1	t[X]	s[Y-Z]	t[Z-Y]	$s[Y \cap Z]$	t[B]
s1	s[X]	t[Y-Z]	s[Z-Y]	$t[Y \cap Z]$	s[B]

考虑t和s1:

	X	Y-Z	Z-Y	$Y \cap Z$	В
t	t[X]	t[Y-Z]	t[Z-Y]	$t[Y \cap Z]$	t[B]
s1	s[X]	t[Y-Z]	s[Z-Y]	$t[Y \cap Z]$	s[B]

由于Y→→Z,下列两个元组肯定也在r中

X	Y-Z	Z-Y	$Y \cap Z$	В
t[X]	t[Y-Z]	s[Z-Y]	$t[Y \cap Z]$	t[B]
s[X]	t[Y-Z]	t[Z-Y]	$t[Y \cap Z]$	s[B]

考虑s和t1:

	X	Y-Z	Z-Y	$Y \cap Z$	В
S	s[X]	s[Y-Z]	s[Z-Y]	$s[Y \cap Z]$	s[B]
t1	t[X]	s[Y-Z]	t[Z-Y]	$s[Y \cap Z]$	t[B]

由于Y→→Z,下列两个元组肯定也在r中。

X	Y-Z	Z-Y	$Y \cap Z$	В
s[X]	s[Y-Z]	t[Z-Y]	s[Y ∩ Z]	s[B]
t[X]	s[Y-Z]	s[Z-Y]	$s[Y \cap Z]$	t[B]

X	Y-Z	Z-Y	$Y \cap Z$	В
t[X]	t[Y-Z]	s[Z-Y]	$t[Y\cap Z]$	t[B]

X	Y-Z	Z-Y	$Y \cap Z$	В
s[X]	s[Y-Z]	t[Z-Y]	s[Y ∩ Z]	s[B]

考察以上黑体元组,可以看到,交换元组t和s的Z-Y属性所得的两个新元组也在r中,可证 $X \rightarrow Z-Y$ 。

- (2) 多值依赖具有传递性。即若 $X \rightarrow Y$, $Y \rightarrow Z$,则 $X \rightarrow Z Y$ 。
- (3) 函数依赖是多值依赖的特殊情况。即若 $X \rightarrow Y$,则 $X \rightarrow Y$ 。
- (4) 若 $X \rightarrow Y$, $X \rightarrow Z$, 则 $X \rightarrow YZ$ 。
- (5) 若 $X \rightarrow Y$, $X \rightarrow Z$, 则 $X \rightarrow Y \cap Z$ 。

- ❖ 多值依赖与函数依赖的区别
 - (1) 多值依赖的有效性与属性集的范围有关
 - ●若 $X \rightarrow Y$ 在U上成立,则在W($XY \subseteq W \subseteq U$)上一定成立,反之不然,即 $X \rightarrow Y$ 在W($W \subset U$)上成立,在U上并不一定成立。
 - ●原因:多值依赖的定义中不仅涉及属性组*X*和 Y, 而且涉及*U*中其余属性 Z。
 - ●一般地,在R(U)上若有 $X \rightarrow Y$ 在 $W(W \subset U)$ 上成立,则称 $X \rightarrow Y$ 为R(U)的嵌入型多值依赖。

- 多值依赖的有效性与属性集的范围有关(续)
 - ●函数依赖 $X \rightarrow Y$ 的有效性仅决定于X、Y这两个属性 集的值
 - ●只要在R(U)的任何一个关系r中,元组在X和 Y上的值满足定义6.1,则函数依赖 $X \rightarrow Y$ 在任何属性集 $W(XY \subseteq W \subseteq U)$ 上成立。

- (2) 若函数依赖 $X \rightarrow Y$ 在R(U)上成立,则对于任何Y'
 - $\subset Y$ 均有 $X \to Y$ ′成立。多值依赖 $X \to \to Y$ 若在R(U)上

成立,不能断言对于任何 $Y' \subset Y \cap X \longrightarrow Y'$ 成立。

例如,关系R(A,B,C,D),A $\rightarrow\rightarrow$ BC成立,当然也有 A $\rightarrow\rightarrow$ D成立。有R的一个关系实例,在此实例上 A $\rightarrow\rightarrow$ B是不成立的。

表6.6 R的一个实例

Α	В	С	D
a ₁	b_1	C ₁	d_1
a ₁	b_1	C ₁	d_2
a ₁	b_2	C ₂	d_1
a ₁	b ₂	C ₂	d_2

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.8 4NF

- ❖定义6.10 关系模式 $R < U, F > \in 1$ NF,如果对于R的每个非平凡多值依赖 $X \rightarrow Y (Y \not\subseteq X)$,X都含有码,则 $R < U, F > \in 4$ NF。
- ❖4NF所允许的非平凡多值依赖实际上是函数依赖。
- ❖4NF限制关系模式的属性之间不允许有非平凡且非 函数依赖的多值依赖。

4NF(续)

- ❖如果一个关系模式是4NF,则必为BCNF。
- ❖在[例6.10]的WSC中,W→→S,W→→C,他们都是 非平凡多值依赖。而W不是码,关系模式WSC的码 是(W,S,C),即All-key,因此WSC ∉ 4NF。
- ❖可以把WSC分解成WS(W,S),WC(W,C), WS∈4NF, WC∈4NF。

6.2 规范化

- 6.2.1 函数依赖
- 6.2.2 码
- 6.2.3 范式
- 6.2.4 2NF
- 6.2.5 3NF
- 6.2.6 BCNF
- 6.2.7 多值依赖
- 6.2.8 4NF
- 6.2.9 规范化小结

6.2.9 规范化小结

- ◆在关系数据库中,对关系模式的基本要求是满足第一范式。
- ❖规范化程度过低的关系不一定能够很好地描述现实 世界
 - 可能存在插入异常、删除异常、修改复杂、数据 冗余等问题
 - 解决方法是对其进行规范化,转换成高级范式。

规范化小结(续)

- ❖一个低一级范式的关系模式,通过模式分解可以转换为若干个高一级范式的关系模式集合,这种过程就叫关系模式的规范化。
- ❖关系数据库的规范化理论是数据库逻辑设计工具。

规范化小结(续)

- ❖规范化的基本思想
 - 是逐步消除数据依赖中不合适的部分,使模式中的各关系模式达到某种程度的"分离"。
 - 即采用"一事一地"的模式设计原则
 - 让一个关系描述一个概念、一个实体或者实体间的一种联系。
 - 若多于一个概念就把它"分离"出去。
 - 因此规范化实质上是概念的单一化。

规范化小结(续)

关系模式规范化的基本步骤

消除决定因素 非码的非平凡 函数依赖

1NF

消除非主属性对码的部分函数依赖

2NF

↓ 消除非主属性对码的传递函数依赖

3NF

↓ 消除主属性对码的部分和传递函数依赖

- -' - BCNF

消除非平凡且非函数依赖的多值依赖

4NF

图6.8 规范化过程

规范化小结 (续)

- ❖不能说规范化程度越高的关系模式就越好。
 - 必须对现实世界的实际情况和用户应用需求作进一步分析,确定一个合适的、能够反映现实世界的模式。
 - ■上面的规范化步骤可以在其中任何一步终止。

第六章 关系数据理论

- 6.1 问题的提出
- 6.2 规范化
- 6.3 数据依赖的公理系统
- *6.4 模式的分解
- 6.5 小结

6.3 数据依赖的公理系统

◇定义6.11 对于满足一组函数依赖F的关系模式 R < U, F >,其任何一个关系r,若函数依赖 $X \rightarrow Y$ 都 成立 (即r中任意两元组t、s,若t[X] = s[X],则 t[Y] = s[Y],则称F逻辑蕴涵 $X \rightarrow Y$ 。

❖Armstrong公理系统

- 一套推理规则,是模式分解算法的理论基础
- ■用途
 - 求给定关系模式的码
 - 从一组函数依赖求得蕴涵的函数依赖

- Armstrong公理系统. 设U为属性集总体,F是U上的一组函数依赖,对关系模式R < U, F >有以下的推理规则:
 - A1. 自反律(reflexivity rule): 若Y⊆X⊆U,则X →Y为F所蕴涵。
 - A2. 增广律(augmentation rule):若 $X \rightarrow Y \rightarrow F$ 所蕴涵,且 $Z \subseteq U$,则 $XZ \rightarrow YZ \rightarrow F$ 所蕴涵。
 - A3. 传递律(transitivity rule):若 $X \rightarrow Y$ 及 $Y \rightarrow Z$ 为F所蕴涵,则 $X \rightarrow Z$ 为F所蕴涵。

- ❖定理6.1 Armstrong推理规则是正确的。
- ❖证明
 - A1 自反律

设 $Y \subset X \subset U$ 。

对R < U, F > 的任一关系r中的任意两个元组t、s:

若t[X]=s[X],由于 $Y \subseteq X$,有t[Y]=s[Y],

所以 $X \rightarrow Y$ 成立,

自反律得证。

■ A2 增广律

设X→Y为F所蕴涵,且Z \subseteq U。

对R < U, F > 的任一关系r中任意的两个元组t、s:

若t[XZ]=s[XZ],则有t[X]=s[X]和t[Z]=s[Z];

由 $X \rightarrow Y$,于是有t[Y] = s[Y],

所以t[YZ]=s[YZ], $XZ \rightarrow YZ$ 为F所蕴涵,

增广律得证。

■ A3 传递律

设 $X \rightarrow Y$ 及 $Y \rightarrow Z$ 为F所蕴涵。

对R < U, F > 的任一关系r中的任意两个元组t、s:

若t[X]=s[X],由于 $X\rightarrow Y$,有t[Y]=s[Y];

再由Y→Z,有t[Z]=s[Z],

所以 $X \rightarrow Z$ 为F所蕴涵,

传递律得证。

- ❖ 根据A1, A2, A3这三条推理规则可以得到下面三条 推理规则:
 - 合并规则(union rule): 由X→Y, X→Z, 有X→YZ。
 - 伪传递规则(pseudo transitivity rule): 由*X*→*Y*, *WY*→*Z*, 有*WX*→*Z*。
 - 分解规则(decomposition rule): 由*X*→*Y*及*Z*<u></u>_*Y*,有*X*→*Z*。

❖根据合并规则和分解规则,可得引理6.1

◇引理6.1 $X \rightarrow A_1 A_2 ... A_k$ 成立的充分必要条件是 $X \rightarrow A_i$ 成立 (i = 1, 2, ..., k)。

- ❖定义6.12 在关系模式R<U,F>中为F所逻辑蕴涵的函数依赖的全体叫作F的闭包,记为F+。
- ❖定义6.13 设F为属性集U上的一组函数依赖,X ⊆U, X_F ⁺={ $A|X \rightarrow A$ 能由F根据Armstrong公理导出}, X_F ⁺称为属性集X关于函数依赖集F的闭包。

- ❖ 引理6.2 设F为属性集U上的一组函数依赖,X、 $Y \subseteq U$, $X \rightarrow Y$ 能由F根据Armstrong公理导出的充分必要条件是 $Y \subseteq X_F$ *。
 - 引理6.2的用途

判定 $X \rightarrow Y$ 是否能由F根据Armstrong公理导出的问题,就转化为求出 X_F +,判定Y是否为 X_F +的子集的问题。

- ❖求闭包的算法
- ❖ 算法6.1 求属性集 $X(X \subseteq U)$ 关于U上的函数依赖集F的闭包 X_F *
 - **■**输入: X, F
 - ■输出: *X_F*+
 - ■步骤:

数据依赖的公司

对X⁰中的每个元素,依次检查相应的函数依赖,将依赖它的属性加入B

- ① $\diamondsuit X^{(0)} = X$, i = 0
- ② 求B,这里 $B = \{ A \mid (\exists V)(\exists W)(V \rightarrow W \in F \land V \subseteq X^{(i)} \land A \in W) \}$ 。
- ③ X⁽ⁱ⁺¹⁾=B∪X⁽ⁱ⁾。 // 给定X → A,如果XA→Y,X→ Y?
- ④ 判断X(i+1)= X(i)。
- ⑤ 若 $X^{(i+1)}$ 与 $X^{(i)}$ 相等或 $X^{(i)}=U$,则 $X^{(i)}$ 就是 X_F^+ ,算法终止。
- ⑥ 若否,则*i=i*+1,返回第②步。

[例6.11] 已知关系模式R<U,F>,其中

$$U=\{A, B, C, D, E\};$$

$$F=\{AB\rightarrow C, B\rightarrow D, C\rightarrow E, EC\rightarrow B, AC\rightarrow B\}$$

求(AB)_F+。

■解: 由算法6.1,设X⁽⁰⁾=AB。

计算 $X^{(1)}$:逐一的扫描F集合中各个函数依赖,找左部为

A、B或AB的函数依赖。得到两个: $AB \rightarrow C$, $B \rightarrow D$ 。于是 $X^{(1)} = AB \cup CD = ABCD$ 。

因为 $X^{(0)} \neq X^{(1)}$,所以再找出左部为ABCD子集的那些函数依赖,又得到 $C \rightarrow E$, $AC \rightarrow B$,于是 $X^{(2)} = X^{(1)} \cup BE = ABCDE$ 。

因为 $X^{(2)}$ 已等于全部属性集合,所以 $(AB)_F^+ = ABCDE$ 。

- **❖ Armstrong**公理系统有效性与完备性的含义
 - ■有效性:由F出发根据Armstrong公理推导出来的每一个函数依赖一定在F+(F所逻辑蕴涵的函数依赖的全体)中
 - ■完备性: F+中的每一个函数依赖,必定可以由F 出发根据Armstrong公理推导出来

- ❖定理6.2 Armstrong公理系统是有效的、完备的。
- ❖证明:
 - 1. 有效性
 - ●由F出发根据Armstrong公理推导出来的每一个函数依赖一定在F+(F所逻辑蕴涵的函数依赖的全体)中
 - ●有效性实际上是"正确性"
 - ●由定理6.1(Armstrong推理规则是正确的)得证

- 2. 完备性(F+中的每一个函数依赖,必定可以由F出发根据Armstrong公理推导出来)
 - ullet 只需证明逆否命题:若函数依赖X
 ightarrow Y不能由F Armstrong公理导出,那么它必然不为F 所蕴涵
 - 分三步证明:

证:因为 $V \subseteq X_F^+$,所以有 $X \to V$ 成立;

因为 $X \rightarrow V$, $V \rightarrow W$, 于是 $X \rightarrow W$ 成立;

所以 $W \subseteq X_F^+$ 。

(2) 构造一张二维表r,它由下列两个元组构成,可以证明r必是 R < U, F > 的一个关系,即F中的全部函数依赖在r上成立。

若r不是R < U, F > 的关系,

则必由于F中有某一个函数依赖 $V \rightarrow W$ 在r上不成立所致。

由r 的构成可知,V 必定是 X_F * 的子集,而 W 不是 X_F * 的子集可是由第(1)步, $W \subseteq X_F$,矛盾。

所以r必是R < U, F >的一个关系。

(3) 若 $X \rightarrow Y$ 不能由F从Armstrong公理导出,则Y不是 X_F *的子集。(引理6.2)

因此必有 Y的子集 Y' 满足 Y' $\subseteq U$ -X_F+,

则 $X \rightarrow Y$ 在r中不成立,

即 $X \rightarrow Y$ 必不为R < U, F > 蕴涵。

引理6.2 设F为属性集U上的一组函数依赖,X、Y $\subseteq U$, $X \rightarrow Y$ 能由F根据Armstrong公理导出的充分必要条件是 $Y \subseteq X_F$ *。

- ❖ Armstrong公理的完备性及有效性说明:
 - ■"导出"与"蕴涵"是两个完全等价的概念
 - F+: 为F所逻辑蕴涵的函数依赖的全体(定义6.12)

■ F: 可以说成由 F出发借助 Armstrong 公理导出的函数依赖的集合

❖定义6.14 给定函数依赖集F和G,如果 $G^{+}=F^{+}$,就说F与G等价。

两个函数依赖集等价是指它们的闭包等价

- ❖ 函数依赖集等价的充要条件
- ❖ 引理6.3 F = G 的充分必要条件是F ⊆ G F 。
 - ■证:必要性显然,只证充分性。
 - (1) 若 $F \subseteq G^+$,则 $X_F^+ \subseteq X_{G^+}^+$ 。
 - (2) 任取 $X \rightarrow Y \in F^+$,则有 $Y \subseteq X_{F^+} \subseteq X_{G^+}^+$ 。 所以 $X \rightarrow Y \in (G^+)^+ = G^+$ 。即 $F^+ \subseteq G^+$ 。
 - **(3)同理可证***G* **+⊆***F***+,所以***F***+=***G***+。**

- ❖ 函数依赖集等价的充要条件
- ❖ 引理6.3 F = G 的充分必要条件是F ⊆ G F 。
 - ■证:必要性显然,只证充分性。
 - (1) 若 $F \subseteq G^+$,则 $X_F^+ \subseteq X_{G^+}^+$ 。

引理**6.3**给出了判断两个函数依赖集等价的可行算法

(3)同理可证*G* **+***⊆F***+,所以***F***+=***G***+。**

如何判定 $F \subseteq G^{\dagger}$? 只需逐一对F中的函数依赖 $X \rightarrow Y$ 考察 Y是否属于 X_{G+}^{\dagger}

- ❖定义6.15 如果函数依赖集F满足下列条件,则称F 为一个极小函数依赖集,亦称为最小依赖集或最小 覆盖。
 - (1) F中任一函数依赖的右部仅含有一个属性。
 - (2) F中不存在这样的函数依赖 $X \rightarrow A$,使得F与F- $\{X \rightarrow A\}$ 等价。F中函数依赖不能由F中其他的函数依赖导出
 - (3) F中不存在这样的函数依赖 $X \rightarrow A$, X有真子集Z,使得 $F \{X \rightarrow A\} \cup \{Z \rightarrow A\} \cup F$ 等价。

F中各函数依赖左部均为最小属 性集(不存在冗余属性)

❖[例6.12] 考察6.1节中的关系模式*S<U,F>*,其中:

U={Sno, Sdept, Mname, Cno, Grade},

- F={Sno→Sdept, Sdept→Mname, (Sno,Cno)→Grade} F是最小覆盖
- F'={Sno→Sdept, Sno→Mname, Sdept→Mname, (Sno,Cno)→Grade, (Sno,Sdept)→Sdept}

 F'不是最小覆盖
 - ■因为: *F* '- {Sno→Mname} 与 *F* '等价
 - F'- {(Sno,Sdept)→Sdept} 也与F'等价

- ❖定理6.3每一个函数依赖集F均等价于一个极小函数依赖集 F_m 。此 F_m 也称为F的最小依赖集。
 - ■证:构造性证明,分三步对 F进行"极小化处理", 找出 F的一个最小依赖集。
 - (1) 逐一检查F中各函数依赖 FD_{i} : $X \rightarrow Y$, 若 $Y = A_{1}A_{2}...A_{k}$, $k \ge 2$, 则用 $\{X \rightarrow A_{j} \mid j = 1, 2, ..., k\}$ 来取代 $X \rightarrow Y$ 。 引理6.1保证了F变换前后的等价性。

(2) 逐一检查F中各函数依赖 FD_i : $X \rightarrow A$, 令 $G = F - \{X \rightarrow A\}$,

若 $A∈X_G$ +,则从F中去掉此函数依赖。

由于F与G等价的充要条件是 $A \in X_G$ ⁺

因此F变换前后是等价的。

由于F与F- $\{X\rightarrow A\}\cup\{Z\rightarrow A\}$ 等价的充要条件是 $A\in Z_F$ +,其中Z=X- B_i ,因此F变换前后是等价的。

最后剩下的F就一定是极小依赖集。因为对F的每一次"改造"都保证了改造前后的两个函数依赖集等价,因此剩下的F与原来的F等价。证毕。

- ❖ 定理6.3的证明过程
 - ■是求F极小依赖集的过程
 - ■也是检验F是否为极小依赖集的一个算法 若改造后的F与原来的F相同,说明F就是一个最 小依赖集

❖[例6.13] $F=\{A\rightarrow B, B\rightarrow A, B\rightarrow C, A\rightarrow C, C\rightarrow A\}$

F的最小依赖集:

$$F_{m1} = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

[例6.13] (续) $F=\{A\rightarrow B,\ B\rightarrow A,\ B\rightarrow C,\ A\rightarrow C,\ C\rightarrow A\}$

$$F_{m1}$$
、 F_{m2} 都是 F 的最小依赖集:
$$F_{m1} = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_{m2} = \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A\}$$

- ❖在R<U,F>中可以用与F等价的依赖集G来取代F
 - ■原因:两个关系模式 $R_1 < U, F>$, $R_2 < U, G>$,如果F = G等价,那么 R_1 的关系一定是 R_2 的关系。反过来, R_2 的关系也一定是 R_1 的关系。

第六章 关系数据理论

- 6.1 问题的提出
- 6.2 规范化
- 6.3 数据依赖的公理系统
- *6.4 模式的分解
- 6.5 小结

6.5 小结

❖关系模式的规范化,其基本思想:

小结(续)

- ❖规范化理论为数据库设计提供理论的指南和工具
 - 仅仅是指南和工具
- ❖并不是规范化程度越高,模式就越好
 - ■必须结合应用环境和现实世界的具体情况合理地 选择数据库模式