Non-Monotonic Reasoning

Complexity Results for Non-Monotonic Logics

XX

Goal

What are we doing here?

Showing tight complexity bounds for a set of nonmonotonic logics

Table of contents

1. Introduction

Core Concepts

Overview

2. Default Logic

Definitions

Main Result

Auxiliary Results

3. Autoepistemic Logic

Definitions

Main Result

Auxiliary Results

Introduction

Core Concepts

Definition: Fixed Point

For a set Σ of premisses, $\Delta \subseteq \Sigma$ is stable under the operator Γ iff

$$\Gamma(\Delta) = \Delta$$

Definition: Consequence

For $\Delta \subseteq \mathcal{L}$ we have

$$cons(\Delta) \coloneqq \{\phi \mid \Delta \vDash \phi\}$$

Definition: Notation

For $\Delta \subseteq \mathcal{L}$ and and an unary operator Θ :

$$\Theta(\Delta) := \{\Theta\phi \mid \phi \in \Delta\}$$

$$\overline{\Delta} \coloneqq \mathcal{L} \smallsetminus \Delta$$

Complexity Concepts: Definitions

Definition: Oracle

Let ϕ be an oracle (program) that solves all problems in Φ in unit-time. Then $p \in \Theta^{\phi}$ is a problem solvable in Θ given the oracle ϕ .

Definition: Polynomial Hierarchy

For k = 0:

$$\Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

For k > 0:

$$\Delta_{k+1}^P = P^{\Sigma_k^P}, \quad \Sigma_{k+1}^P = NP^{\Sigma_k^P}, \quad \Pi_{k+1}^P = co\Sigma_{k+1}^P = coNP^{\Sigma_k^P}$$

Examples: $SAT \in \Sigma_1^P$, $QBF_{2,\exists} \in \Sigma_2^P$

Complexity Concepts: Polynomial Hierarchy

Complexity Concepts: $QBF_{2,\exists}$

Definition: $QBF_{2,\exists}$

For $Q \in QBF_{2,\exists}$ (QBF := Quantified Boolean Formulas)

$$Q := \exists p_1 \dots p_n \forall q_1 \dots \forall q_m E$$

where E is a propositional formula, $I := \{1, \dots, n\}$ and $(p_i)_{i \in I}, (q_i)_{i \in I}$ are families of mutually distinct propositional variables, i.e. $\nu(x)^{\mathcal{I}} \in \{ \mathbf{True}, \mathbf{False} \}$ for x propositional variable.

Definition: $QBF_{2,\exists}$ - Validity

 $Q \in QBF_{2,\exists}$ is valid $\iff \exists$ variable assignment ν fixing $(p_i)_{i \in I} \ \forall \sigma \supset \nu \ E$ is true.

Questions

Logics

- Default Logic (Reiter),
- Autoepistemic Logic (Moore),
- nonmonotonic logic N (Marek and Truszczyński) and
- nonmonotonic logic (McDermott and Doyle).

Definition: Three decision Problems

Let ϕ be a formula and Σ a set of premisses

existence: $\exists \Delta \supseteq \Sigma : \Delta$ is a fixed-point

 $\mathbf{brave/credulous\ reasoning:}\ \exists \Delta\ \mathit{stable-extension}: \phi \in \Delta$

cautious/sceptical reasoning: $\forall \Delta$ stable-extension : $\phi \in \Delta$

Questions

Logics

- Default Logic (Reiter),
- Autoepistemic Logic (Moore),
- nonmonotonic logic N (Marek and Truszczyński) and
- nonmonotonic logic (McDermott and Doyle).

Definition: Three decision Problems

Let ϕ be a formula and Σ a set of premisses

existence: $\exists \Delta \supseteq \Sigma : \Delta$ is a fixed-point

brave/credulous reasoning: $\exists \Delta \ stable$ -extension : $\phi \in \Delta$

cautious/sceptical reasoning: $\forall \Delta$ stable-extension : $\phi \in \Delta$

Spoilers

Complexity Results	existence	brave	cautious
Default Logic	Σ_2^P	Σ_2^P	Π_2^P
Autoepistemic Logic	Σ_2^P	Σ_2^P	Π_2^P
nonmonotonic logic N	?	?	?
nonmonotonic logic	Σ_2^P	Σ_2^P	Π_2^P

Spoilers

Complexity Results	existence	brave	cautious
Default Logic	Σ_2^P -comp.	Σ_2^P -comp.	Π_2^P -comp.
Autoepistemic Logic	Σ_2^P -comp.	Σ_2^P -comp.	Π_2^P -comp.
nonmonotonic logic N	Σ_2^P -comp.	Σ_2^P -comp.	Π_2^P -comp.
nonmonotonic logic	Σ_2^P -comp.	Σ_2^P -comp.	Π_2^P -comp.

Default Logic

Default Logic: Definitions

Definition: Default

A default is

$$\frac{\alpha:\beta_1,\beta_2,\ldots,\beta_n}{\omega}$$

(with $\alpha, \beta_1, \beta_2, \dots, \beta_n, \omega$ propositional sentences) is satisfied by a deductively closed set of sentences Φ , if

$$\alpha \in \Phi \land \beta_1, \beta_2, \dots, \beta_n$$
 consistent with $\Phi \implies \omega \in \Phi$

A default is called

- normal : $\iff \frac{\alpha:\omega}{\omega}$;
- $\ \mathsf{semi-normal} : \iff \frac{\alpha {:} (\gamma {\land} \omega)}{\omega}.$

Definition: Propositional Default Theory

A propositional default theory is a pair (W, D) where W is a finite set of propositional sentences and D a set of defaults.

Default Logic: Definitions

Definition: Extension

Let (W,D) be a default theory, let S be a set of propositional formulas. Then $\Gamma(S)$ is the smallest set satisfying:

- $W \subseteq \Gamma(S)$,
- Γ(S) deductively closed,

•

$$\frac{\alpha:\beta_1,\beta_2,\ldots,\beta_n}{\omega} \wedge \alpha \in \Gamma(S) \wedge \neg \beta_1, \neg \beta_2,\ldots, \neg \beta_n \notin S \implies \omega \in \Gamma(S)$$

Informally: A default extension of $\langle W, D \rangle$ is a grounded minimal deductively closed set of propositional formulas containing W and satisfying all defaults in D.

Default Logic: Finite Characterisation

Definition: Generating Defaults

Let E be an extension of the propositional default theory \mathcal{T} = $\langle W, D \rangle$. The set of generating defaults for E respect to \mathcal{T} is

$$GD(E,\mathcal{T}) := \left\{ \frac{\alpha : \beta_1, \beta_2, \dots, \beta_n}{\omega} \in D \,\middle|\, \alpha \in E \land \neg \beta_1, \neg \beta_2, \dots, \neg \beta_n \notin E \right\}$$

Definition: Consequence

Let D be a set of default then

$$CONSEQUENTS(D) \coloneqq \left\{ \omega \ \middle| \ \frac{\alpha: \beta_1, \beta_2, \dots, \beta_n}{\omega} \in D \right\}$$

Proposition: Finite Characterisation of Extension

Let E be an extension of a default theory $\mathcal{T} = \langle W, D \rangle$. Then

$$E = cons(W \cup CONSEQUENTS(GD(E, T)))$$

Default Logic: Main Result

Theorem: Existence

Deciding whether a propositional default theory $\langle W,D\rangle$ has an extension is Σ_2^P -complete. (Note: the problem remains Σ_2^P -complete even if restricted to semi-normal default theories.)

Proof of Σ_2^P :

It can be shown that **existence** in default logic can be reduced to a Σ_2^P problem in nonmonotonic logic N

Proof of Σ_2^P -hard:

Proof by reduction to from $\textit{QBF}_{2,\exists}$ to existence in default logic.

Let $Q:=\exists p_1\dots p_n \forall q_1\dots \forall q_m\ E$ be transformed in polynomial time into the default theory (W,D) where $W:=\varnothing$

$$D := \left\{ \frac{\top : p_1}{p_1}, \frac{\top : \neg p_1}{\neg p_1}, \dots, \frac{\top : p_n}{p_n}, \frac{\top : \neg p_n}{\neg p_n}, \frac{\top : \neg E}{\bot} \right\}$$

Show

$$Q$$
 valid $\iff \langle W, D \rangle$ has an extension

Default Logic: Main Result - Proof "←="

Assume $\langle W, D \rangle$ has an extension Δ .

- $\forall i \in I$ either $p_i \in \Delta$ or $\neg p_i \in \Delta$
- Show $\Delta \models E$.
 - W is consistent
 - thus, Δ must be consistent as

$$>$$
 from $\Delta = \mathcal{L}$

> we obtain
$$\Gamma(\Delta) = \Gamma(\mathcal{L}) = cons(W) \neq \Delta$$
.

- Since $\bot \notin \Delta$ and $\frac{T:\neg E}{\bot} \in D$ it must be that $\neg(\neg E) \in \Delta$.
- By combining $\Delta = cons(\{p_i \mid p_i \in \Delta\} \cup \{\neg p_i \mid \neg p_i \in \Delta\})$
- with $\Delta \models E$
- we obtain $\{p_i \mid p_i \in \Delta\} \cup \{\neg p_i \mid \neg p_i \in \Delta\} \models E$.
- Hence, Q is valid.

Default Logic: Main Result - Proof "⇒"

Assume Q is valid.

- \exists variable assignment ν fixing $(p_i)_{i \in I}$ s.t. $\forall \sigma \supset \nu$ E is true.
- Let $\Delta = cons(\{p_i \mid \nu(p_i) = \mathsf{True}\} \cup \{\neg p_i \mid \nu(p_i)) = \mathsf{False}\})$
- Hence, $\Delta \models E$,
- from which $E \in cons(\Delta)$ follows.
- $\Gamma(\Delta) \subseteq \Delta$ since
 - $-\varnothing\subseteq\Delta$.
 - $-\Delta$ is deductively closed and
 - \forall *d* ∈ *D* : *d* satisfied implies ω ∈ Δ .
- $\Delta \subseteq \Gamma(\Delta)$ since
 - $-p_i \in \Delta \iff p_i \in \Gamma(\Delta)$ and
 - $-\neg p_i \in \Delta \iff \neg p_i \in \Gamma(\Delta).$
- $\bullet \ \ \text{Obviously} \ \ \Gamma(\Delta) \subseteq \Delta \ \ \text{and} \ \ \Delta \subseteq \Gamma(\Delta) \ \ \text{implies} \ \ \Delta = \Gamma(\Delta).$
- Therefore, Δ extension of $\langle W, D \rangle$.

Default Logic: Auxiliary Results - Brave Reasoning

Theorem: Brave Reasoning

Deciding whether a formula ϕ is an element of some extension of a propositional default theory $\langle W, D \rangle$ is Σ_2^P -complete (even for normal default theory)

Proof (Idea) of Σ_2^P -hard:

Let $Q:=\exists p_1\dots p_n\forall q_1\dots\forall q_m$ E be transformed in polynomial time into a default theory (W,D) such that $W:=\varnothing$

$$D \coloneqq \left\{ \frac{\top : p_1}{p_1}, \frac{\top : \neg p_1}{\neg p_1}, \dots, \frac{\top : p_n}{p_n}, \frac{\top : \neg p_n}{\neg p_n} \right\}$$

- \exists bijective mapping $f : \{\text{truth value assignments}\} \rightarrow \{\text{extensions of } \langle \emptyset, D \rangle \}$
- Hence, Q valid $\iff \exists$ extension Δ of $\langle \emptyset, D \rangle$ such that $E \in \Delta$

Default Logic: Auxiliary Results - Cautious Reasoning

Theorem: Cautious Reasoning

Deciding whether a formula ϕ is an element of all extensions of a propositional default theory $\langle W,D\rangle$ is Π_2^P -complete (even for normal default theory)

Proof (Idea) of Π_2^P -hard:

Let $Q:=\exists p_1\dots p_n\forall q_1\dots \forall q_m$ E be transformed in polynomial time into a default theory (W,D) such that $W:=\varnothing$

$$D := \left\{ \frac{\top : p_1}{p_1}, \frac{\top : \neg p_1}{\neg p_1}, \dots, \frac{\top : p_n}{p_n}, \frac{\top : \neg p_n}{\neg p_n}, \frac{\top : \neg E}{\neg E} \right\}$$

• Q not valid $\iff \neg E$ belongs to each extension of $\langle \varnothing, D \rangle$.

Default Logic: Auxiliary Results - nonmonotonic logic N

Corollary: Reasoning in nonmonotonic logic N

Given a set of premisses Σ and $\phi \in \mathcal{L}$ (language of auto-epistemic logic)

- existence is Σ_2^P -hard (Σ_2^P -complete)
- brave reasoning for ϕ is Σ_2^P -hard (Σ_2^P -complete)
- cautious reasoning for ϕ is Π_2^P -hard (Π_2^P -complete)

Proof (Idea):

It can be shown that **existence** in default logic can be reduced to a Σ_2^P problem in nonmonotonic logic N. Hence, it is a fragment of nonmonotonic logic N, i.e. hardness carries over.

Autoepistemic Logic: Definitions

Definition: Language \mathcal{L}_{ae}

The language of autoepistemic logic \mathcal{L}_{ae} consists of the language of the classic propositional calculus \mathcal{L} with the syntactic operators $\neg, \land, \lor, \rightarrow, \leftrightarrow, \downarrow, \top$ augmented with the "introspective" operator L (i.e. intuitively $L\phi$ means ϕ is believed).

Definition: Semantics

A propositional interpretation is extended by regarding $L\phi$ as atomic formula. Every non-atomic formula obtains its truth value by classic truth recursion.

The classical consequence relation on \mathcal{L} is extended to \mathcal{L}_{ae} , such that for $\Sigma \subseteq \mathcal{L}_{ae}$ and $\phi \in \mathcal{L}_{ae}$

$$\Sigma \vDash \phi \iff \forall \mathcal{I} : \mathcal{I} \vDash \Sigma \Rightarrow \mathcal{I} \vDash \phi$$

Definition: Stable Expansion

 Δ is a stable expansion of $\Sigma \iff \Delta = cons(\Sigma \cup L(\Delta) \cup \neg L(\overline{\Delta}))$

Autoepistemic Logic: Finite Characterisation

Definition: Lbase

An Lbase is the set $Lbase(\Sigma) \coloneqq Sf^L(\Sigma) \cup \neg Sf^L(\Sigma)$ where $Sf^L(\Sigma)$ is the set of sub-formulas of each formula $\phi \in \Sigma$ of the form $L\phi$, i.e. $Sf^L(\Sigma) \coloneqq \{L\phi \in Sf(\Sigma)\}$.

Definition: Σ-full

For a set of premises Σ a set $\Lambda \subseteq Lbase(\Sigma)$ is Σ -full iff $\forall L\phi \in Sf^L(\Sigma)$:

$$\Sigma \cup \Lambda \vDash \phi \iff L\phi \in \Lambda \quad \land \quad \Sigma \cup \Lambda \not\vDash \phi \iff \neg L\phi \in \Lambda$$

Proposition: Correspondence

For each set of premises Σ there is a one-to-one correspondence between the stable expansions of Σ and the Σ -full sets.

Autoepistemic Logic: Finite Characterisation

Definition: Kernel

For the expansion $E = SE_{\Sigma}(\Lambda)$, with E corresponding the Σ -full set Λ we have

$$\Lambda = Lbase(\Sigma) \cap (\{L\phi \in E\} \cup \{\neg L\phi \notin E\})$$

With Λ being the kernel of $SE_{\Sigma}(\Lambda)$

Proposition: Membership

Let Σ be a set of premises, Λ is a Σ -full set and $\phi \in \mathcal{L}_{ae}$. Then $\phi \in SE_{\Sigma}(\Lambda) \iff \Theta \vDash \phi$ where

$$\Theta \coloneqq \Sigma \cup \Lambda \cup \{L\psi \mid L\psi \in Sf^q(\phi) \land \psi \in SE_{\Sigma}(\Lambda)\} \cup \{\neg L\psi \mid L\psi \in Sf^q(\phi) \land \psi \notin SE_{\Sigma}(\Lambda)\}$$

and Sf^q are all subformulas except that formulas of the form $L\phi$ do not have further subformulas.

Autoepistemic Logic: Main Result

Theorem: Existence

Deciding whether a set of premises Σ has a stable expansion is Σ_2^{P} complete.

Proof of Σ_2^P :

Was previously shown.

Proof of Σ_2^P -hard:

Proof by reduction to from $QBF_{2,\exists}$ to existence in autoepistemic logic.

Let $Q:=\exists p_1\dots p_n \forall q_1\dots \forall q_m\ E$ be transformed in polynomial time into a set of autoepistemic formulas

$$\Sigma \coloneqq \left\{ p_1 \leftrightarrow Lp_1, \dots, p_n \leftrightarrow Lp_n, LE \right\}$$

Show

Q valid $\iff \Sigma$ has a stable expansion

Autoepistemic Logic: Main Result - Proof "←"

Assume Δ is a stable expansion of Σ .

- Firstly, check that Δ is consistent, i.e. $\Delta \neq \mathcal{L}_{ae}$.
 - Assume $\Delta = \mathcal{L}_{ae}$
 - thus, $\overline{\Delta} = \emptyset$
 - leading to $cons(\Sigma \cup L(\Delta) \cup \neg L(\emptyset)) = cons(\Sigma \cup L(\Delta))$
 - Consider \mathcal{I} such that $\forall x \in atoms(\mathcal{L}_{ae}) : \nu^{\mathcal{I}}(x) = True$
 - $> \Sigma$ is consistent,
 - $> L(\Delta)$ is consistent, leading to
 - $> \Sigma \cup L(\Delta)$ is consistent
 - Now since by definition $cons(\Sigma \cup L(\Delta)) = \{\phi \mid \Sigma \cup L(\Delta) \vDash \phi\}$ and $\Sigma \cup L(\Delta)$ it follows that
 - $cons(\Sigma \cup L(\Delta))$ is consistent.
 - 4

Autoepistemic Logic: Main Result - Proof "←="

Assume Δ is a stable expansion of Σ .

- $\bullet \ \ \text{We have} \ \Sigma \subset \Delta$
- and $p_i \in \Delta$ or $\neg p_i \in \Delta$
 - we know either Lp_i ∈ Δ or $\neg Lp_i$ ∈ Δ
 - by $p_i \leftrightarrow Lp_i \in \Sigma \subset \Delta$ and by closure under consequence
 - $-p_i \in \Delta \text{ or } \neg p_i \in \Delta.$
- We know $\Lambda = \{Lp_i \mid Lp_i \in \Delta\} \cup \{\neg Lp_i \mid \neg Lp_i \in \Delta\} \cup \{LE\}$
- From $LE \in \Delta$ we get $E \in \Delta$
- By Proposition "Membership" we get $\Sigma \cup \Lambda \models E$
- $q_i \notin \Sigma \cup \Lambda$
- Hence, truth value of Q sole depends on p_i 's
- Therefore, Q is valid.

Autoepistemic Logic: Main Result - Proof "⇒"

Assume Q is valid.

- \exists variable assignment ν fixing $(p_i)_{i \in I}$ s.t. $\forall \sigma \supset \nu$ E is true.
- Consider $\Lambda = \{Lp_i \mid \nu(p_i) = \mathsf{True}\} \cup \{\neg Lp_i \mid \nu(p_i) = \mathsf{False}\} \cup \{LE\}$
- Claim Λ is Σ-full

$$- Sf^{L}(\Sigma) = \{ Lp_{i} \mid \forall i \in I \} \cup \{ LE \}$$

$$\forall i \in I p_i \leftrightarrow Lp_i$$
 implies

$$> Lp_i \in \Lambda \iff \Sigma \cup \Lambda \models p_i$$

 $> \neg Lp_i \in \Lambda \iff \Sigma \cup \Lambda \not\models p_i$

- notice $\Sigma \cup \Lambda \models E$
- thus, Λ is Σ -full.
- We have at least one Σ -full set.
- There must be at least one stable expansion of Σ .

Autoepistemic Logic: Auxiliary Results - Brave Reasoning

Theorem: Brave Reasoning

The problem of deciding whether a formula ϕ belongs to at least one stable expansion of a set of premises Σ is Σ_2^P -complete.

Proof (Idea) of Σ_2^P -hard:

- Any stable expansion Δ is closed under logical inference.
- Hence, $\top \in \Delta$
- Therefore, Σ has a stable expansion $\iff \exists \Delta$ stable expansion of $\Sigma \top \in \Delta$
- Thus Σ has a stable expansion ≤_P brave reasoning
- We obtain, Brave reasoning is Σ_2^P -hard

Autoepistemic Logic: Auxiliary Results - Cautious Reasoning

Theorem: Cautious Reasoning

The problem of deciding whether a formula ϕ belongs to at all stable expansion of a set of premises Σ is Π_2^P -complete.

Proof (Idea) for Π_2^P -hard:

- Σ has a stable expansion $\iff \exists \Delta$ stable expansion of $\Sigma \top \in \Delta$
- Σ has a no stable expansion $\iff \forall \Delta$ stable expansion of $\Sigma \perp \in \Delta$
- Σ has a no stable expansion \leq_P cautious reasoning
- Σ has a no stable expansion in Π_2^P -complete (complement)
- cautious reasoning in Π_2^P -hard

Autoepistemic Logic: Auxiliary Results - Consistency

Corollary: Consistent Stable Expansion

Deciding whether a set of premises Σ has a consistent stable expansion is $\Sigma_2^P\text{-complete}$.

Proof (Idea):

We made sure that $\Delta \neq \mathcal{L}_{ae}$

Theorem: Consistent Brave Reasoning

The problem of deciding whether a formula ϕ belongs to at least one consistent stable expansion of a set of premises Σ is Σ_2^P -complete.

Bye! Have a good night!

Thank you for your attention!