Calculus 2 Final mock exam

Time: 90 minutes

- **Q1.** Find the tangent plane and normal line of the surface $S: x^2 + 3y^2 z^2 = 3$ at the point A(1,1,1).
- **Q2.** Find the point *M* on the curve (P): $y = -2x^2 4x$ such that the curvature of (P) at *M* reaches the maximum value.
- **Q3.** Evaluate $I = \iint_D 4xy dx dy$ where $D = \{(x, y) | -x \le y \le 1 x, x 2 \le y \le x 1\}.$
- **Q4.** Evaluate $I = \iiint_V \frac{x^2}{\sqrt{x^2 + y^2 + z^2}} dx dy dz$, where V is the region bounded by the

sphere $x^2 + y^2 + z^2 = 4$ and the quadratic cone $z = \sqrt{\frac{x^2 + y^2}{3}}$.

- Q5. Evaluate $\int_C y^3 dx + 2x^3 dy$, with C is a part of the circle $x^2 + y^2 = 1$ from $A(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ to $B(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
- **Q6.** Calculate the mass of a wire takes the shape of the curve C, where C is the curve $y = e^{\frac{x}{2}} + e^{-\frac{-x}{2}}$, $0 \le x \le 2$. The mass density is described by the function $\rho(x,y) = \frac{1}{y}$.
- **Q7.** Evaluate $\iint_S (x-z)dS$, where *S* is the surface bounded by $x^2 + y^2 = 4$, z = x 3 and z = x + 2.
- **Q8.** Vector field $\vec{F} = (x^2 y, x + 2y, x + y + z)$. Find the flux of \vec{F} through the surface S: |x y| + |x + 2y| + |x + y + z| = 1 outward.

Q9. Evaluate the flux of $\vec{F} = xz^2\vec{i} + x^2y\vec{j} + y^2(z+2)\vec{k}$ across half of the sphere $S: x^2 + y^2 + z^2 = 1, z \le 0$, oriented downward.

Q10. Evaluate the following line integral:

$$\int_{C} (x^{2} + y^{2} + z^{2} + yz)dx + (x^{2} + y^{2} + z^{2} + xz)dy + (x^{2} + y^{2} + z^{2} + xy)dz$$

where *C* is the intersection of the sphere $x^2 + y^2 + z^2 = 4$ and the surface $z = x^2 + (y - 1)^2$, oriented clockwise viewed from the origin *O*.

CLB HỖ TRỢ HỌC TẬP