2021 线性代数考前练习

基本功提要

- 1. 矩阵的秩
 - $r(A) = r \Leftrightarrow A$ 中有 r 阶子式不为 0,每 r+1 阶(如果有) 子式全为 0.
 - $r(A) \geqslant 2 \Leftrightarrow A$ 中有 2 阶子式不为 0.
 - $r(A) < 3 \Leftrightarrow A$ 中每一个 3 阶子式全为 0.
 - r(A) = A 列秩 = A 行秩.

公式: ①
$$r(\mathbf{A}^{\mathsf{T}}) = r(\mathbf{A})$$
; ② $r(k\mathbf{A}) = r(\mathbf{A})$, $k \neq 0$; ③ $r(\mathbf{A} + \mathbf{B}) \leqslant r(\mathbf{A}) + r(\mathbf{B})$;

- $(\Phi r(\mathbf{AB}) \leq \min(r(\mathbf{A}), r(\mathbf{B}))$,特别地,如 A 可逆,则 $r(\mathbf{AB}) = r(\mathbf{B}), r(\mathbf{BA}) = r(\mathbf{B})$;
- ⑤ $r(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = r(\mathbf{A})$;⑥ 若 $\mathbf{A}\mathbf{B} = \mathbf{O}$,则 $r(\mathbf{A}) + r(\mathbf{B}) \leqslant n(n \text{ 是}\mathbf{A})$ 的列);

特别地,如
$$r(\mathbf{A}) = 1$$
,(1) $|\lambda \mathbf{E} - \mathbf{A}| = \lambda^n - \sum_{a_i \lambda^{n-1}} \mathbf{A}^{n-1}$,(2) $\mathbf{A}^2 = \sum_{a_i a} \mathbf{A}$.

- 2. 如何证明向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关.
 - (1) 定义法 对 $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \cdots + k_s \boldsymbol{\alpha}_s = \boldsymbol{0}$ 用乘或重组证出必有 $k_i = 0 (i = 1, 2, \cdots, s)$.
 - (2) 秩 设法证 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_s) = s$.
 - (3) 反证法
- 3. $\mathbf{A}\mathbf{x} = \mathbf{0}$ 有非 0 解 $\Leftrightarrow r(\mathbf{A}) < n($ 未知数的个数).

齐次方程组线性无关解向量的个数:n-r(A).

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 解的结构: $\mathbf{\alpha} + k_1 \mathbf{\eta}_1 + k_2 \mathbf{\eta}_2 + \cdots + k_{n-r} \mathbf{\eta}_{n-r}$.

- 4. 如何求特征值、特征向量.
 - (1) 定义法 $A\alpha = \lambda \alpha, \alpha \neq 0$
 - (2) $|\lambda \mathbf{E} \mathbf{A}| = 0$ ($\mathbf{g} |\mathbf{A} \lambda \mathbf{E}| = 0$), $(\lambda_i \mathbf{E} \mathbf{A}) \mathbf{x} = \mathbf{0}$
 - (3) 若 $P^{-1}AP = B$.

$$\oplus A\alpha = \lambda \alpha \Rightarrow B(P^{-1}\alpha) = \lambda(P^{-1}\alpha); \oplus B\alpha = \lambda \alpha \Rightarrow A(P\alpha) = \lambda(P\alpha).$$

5. $A \sim \Lambda ⇔ A$ 有 n 个线性无关的特征向量

 $\Leftrightarrow k$ 重特征值必有 k 个线性无关的特征向量.

- 6. 实对称矩阵有哪些定理,如何做题?
- 7. 如何用正交变换化二次型为标准形?

1. 已知
$$\mathbf{A}$$
, \mathbf{B} 均为 3 阶矩阵,且 $|\mathbf{A}| = -2$, $|\mathbf{B}| = 3$,则 $\left| \left(\frac{1}{2} \mathbf{A} \mathbf{B} \right)^{-1} + \left(\frac{1}{3} \mathbf{A} \mathbf{B} \right)^{*} \right| = \underline{\qquad}$.

2. 已知 A 是 4 阶实对称矩阵,满足 $A^2 + 3A = O$. 如秩 r(A + 3E) = 1,则 |A + 2E| =.

3. 已知
$$|\mathbf{A}| = \begin{vmatrix} 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \end{vmatrix}$$
,则其所有代数余子式的和 $\sum A_{ij} =$ ______.

4. 设 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 都是 n 维非零列向量, 矩阵 $\boldsymbol{A} = \boldsymbol{E} + 2\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}$, 若 $\boldsymbol{A}^2 + 2\boldsymbol{A} - 3\boldsymbol{E} = \boldsymbol{O}$, 则 $\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{\beta} = \underline{}$.

5.3 阶矩阵 A 可逆,把矩阵 A 的第 2 行与第 3 行互换得矩阵 B,把矩阵 B 的第 1 列的 - 2 倍加到第 3 列得到单位矩阵 E,则 $A^* = ______$.

6. 设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}$$
,则 $\mathbf{A}^n \mathbf{x} = \mathbf{0}$ 的通解______.

7. 设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & a & 4-a \end{bmatrix}$$
且秩 $r(\mathbf{A}) = 2$, \mathbf{A}^* 是 \mathbf{A} 的伴随矩阵,则齐次方程组 \mathbf{A}^* $\mathbf{x} = \mathbf{0}$ 的通解______.

8. 已知 α_1 , α_2 , α_3 是非齐次线性方程组 Ax = b 的三个解, 秩 r(A) = 3, 若 $\alpha_1 + \alpha_2 = (1,2,3,4)^{\mathrm{T}}$, $\alpha_2 + 2\alpha_3 = (2,3,4,5)^{\mathrm{T}}$,则方程组 Ax = b 的通解

(A)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + k \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$
. (B) $\frac{1}{3} \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} + k \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. (C) $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + k \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$. (D) $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} + k \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.

9. 已知 α_1 , α_2 , α_3 是齐次方程组 Ax = 0 的基础解系, 那么 Ax = 0 的基础解系还可以是

$$(A)\boldsymbol{\alpha}_1 + 5\boldsymbol{\alpha}_3, 3\boldsymbol{\alpha}_1 - 7\boldsymbol{\alpha}_3, 5\boldsymbol{\alpha}_1 + 4\boldsymbol{\alpha}_3.$$

(B)
$$\alpha_1 + 2\alpha_2 - 3\alpha_3$$
, $3\alpha_1 + 4\alpha_2 + 9\alpha_3$.

(C)
$$\alpha_1 + 2\alpha_3$$
, $3\alpha_2 + 5\alpha_3 + \alpha_1$, $\alpha_3 + 2\alpha_1 + \alpha_2$.

(D)
$$\alpha_1 + 2\alpha_2 - \alpha_3$$
, $3\alpha_2 + 2\alpha_3$, $4\alpha_3 - 2\alpha_1 - \alpha_2$.

10. 设 α_1 , α_2 , α_3 均为 3 维向量,则对任意常数 k,l,向量组 $\alpha_1 + k\alpha_3$, $\alpha_2 + l\alpha_3$ 线性无关是向量组 α_1 , α_2 , α_3 线性无关的

(A) 必要非充分条件.

(B) 充分非必要条件.

(C) 充分必要条件.

(D) 既非充分也非必要条件.

11. 解方程组
$$\begin{cases} (1+a)x_1 & +x_2 & +x_3 = 0 \\ x_1 + (1+a)x_2 & +x_3 = a \\ x_1 & +x_2 + (1+a)x_3 = a^2 \end{cases}$$

当 a 为何值时,方程组无解?当 a 为何值时,方程组有解,并在有解时求其所有的解.

12. 设 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$ 是 4 阶矩阵,方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的通解是 $(1, -2, 1, -1)^{\mathrm{T}} + k (1, 3, 2, 0)^{\mathrm{T}}$,设 $\mathbf{B} = (\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1, \boldsymbol{\beta} + \boldsymbol{\alpha}_4), \boldsymbol{\gamma} = \boldsymbol{\alpha}_1 - 3\boldsymbol{\alpha}_2 + 5\boldsymbol{\alpha}_3$.

- (I)判断 α_1 能否由 α_2 , α_3 线性表出, 说明理由.
- (Ⅱ)判断 **α**₄ 能否由 **α**₁,**α**₂,**α**₃ 线性表出,说明理由.
- (Ⅲ) 求方程组 $Bx = \gamma$ 的通解.

- 13. 已知 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$ 是 4×3 矩阵, $\boldsymbol{\beta}$ 是齐次方程组 $\mathbf{A}^T \mathbf{x} = \mathbf{0}$ 的基础解系.
- (I)证明任一个 4 维列向量 γ 一定能由 α_1 , α_2 , α_3 , β 线性表出.
- (\mathbf{I}) 如 $\boldsymbol{\beta} = (1, -1, 2, -3)^{\mathrm{T}}$ 是 $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{x} = \boldsymbol{0}$ 的基础解系,求矩阵 \boldsymbol{A} .

- 14. 设 A 是 3 阶实对称矩阵, $P = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$ 为 3 阶可逆矩阵,且 $P^{-1}AP = \begin{bmatrix} 1 & & & \\ & 2 & & \\ & & 3 \end{bmatrix}$,若 $Q = (\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2, \boldsymbol{\gamma}_3)$
- $\boldsymbol{\gamma}_3$) 是 3 阶正交矩阵,有 $\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$,设 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$,则 $\boldsymbol{\gamma}_2 = \underline{\qquad}$.

15. 不能相似对角化的矩阵是

$$(A) \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(B)
$$\begin{bmatrix} 2 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

(C)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

16. 已知矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 2 & -a & 2 \\ 3 & 0 & 4 \end{bmatrix}$$
可逆, $\mathbf{\alpha} = \begin{bmatrix} 1 \\ a \\ -1 \end{bmatrix}$ 是 \mathbf{A}^* 的特征向量.

- (I) 求 a 的值.
- (\mathbb{I}) 求 A^* 的特征值与特征向量.
- (Ⅲ)判断 A^* 能否相似对角化,如能则求可逆矩阵 P 使 $P^{-1}A^*P = \Lambda$,如不能则说明理由.
- (IV) 如 $\beta = (1,3,5)^{T}$,求 $A^{n}\beta$.

- 17. 已知 A 是 3 阶矩阵, α_1 是 A 关于 $\lambda = 1$ 的特征向量, α_2 是 Ax = 0 的非零解, α_3 满足 $A\alpha_3 = \alpha_1 \alpha_2 + \alpha_3$.
- (**I**) 证明 **α**₁ ,**α**₂ ,**α**₃ 线性无关;
- (Ⅱ) 求矩阵 A 的特征值、特征向量;
- (Ⅲ) 判断矩阵 *A* ~ **Λ**?

- 18. **A** 是 *n* 阶矩阵,满足 $A^2 + 2A = 3E$.
- (I)证明 $r(\mathbf{A} \mathbf{E}) + r(\mathbf{A} + 3\mathbf{E}) = n$.
- (II)证明 A 可相似对角化.
- (III) 如 $r(\mathbf{A} \mathbf{E}) = k$,求行列式 $|\mathbf{A} + \mathbf{E}|$ 的值.

- 19. 已知 \mathbf{A} 是 3 阶实对称矩阵,有 $\mathbf{A}\begin{bmatrix}1 & 1 \\ 1 & 1 \\ 2 & -1\end{bmatrix} = \begin{bmatrix}2 & -1 \\ 2 & -1 \\ 4 & 1\end{bmatrix}$,且 $\mathbf{A} + 2\mathbf{E}$ 不可逆.
- (I) 求 A 的特征值、特征向量.
- (Π) 求正交矩阵 Q 使 $Q^{T}AQ = \Lambda$.
- (III) 若二次型 $\mathbf{x}^{\mathsf{T}}(\mathbf{A}^* + k\mathbf{E})\mathbf{x}$ 的规范形是 $y_1^2 + y_2^2 y_3^2$, 求 k.

20. 已知
$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
,则下列矩阵中和矩阵 \mathbf{A} 合同但不相似的是

$$(A) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} . \qquad (B) \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix} . \qquad (C) \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} . \qquad (D) \begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix} .$$

(B)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$(D) \begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}.$$

21. 二次型 $x_1^2 + 2x_2^2 + 3x_3^2 + 2ax_1x_3 + 4x_2x_3$ 的标准形不能是

$$(A)2v_1^2 + 3v_2^2$$

(B)
$$2v_1^2 - 5v_3^2$$

(C)
$$y_1^2 + y_2^2 + y_3^2$$
.

(A)
$$2y_1^2 + 3y_2^2$$
. (B) $2y_1^2 - 5y_3^2$. (C) $y_1^2 + y_2^2 + y_3^2$. (D) $y_1^2 + y_2^2 - 3y_3^2$.

22. 已知二次型 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = x_1^2 + a x_2^2 + x_3^2 + 2 x_1 x_2 + 2 a x_1 x_3 + 2 x_2 x_3 (a < 0)$. 若矩阵 A 的特征值有重根. (I) 求 a 的值.

(Π)用正交变换 x = Ov 化二次型为标准形,并写出所用坐标变换.

- 23. 已知三元二次型 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ 的秩为 2, $\boldsymbol{\alpha}$ 和 $\boldsymbol{\beta}$ 是线性无关的 3 维列向量,并满足 $\mathbf{A} \boldsymbol{\alpha} = 6 \boldsymbol{\beta}$, $\mathbf{A} \boldsymbol{\beta} = 6 \boldsymbol{\alpha}$.
- (I)写出二次型 $x^{T}Ax$ 在正交变换下的标准形.
- (\parallel) 如 $\boldsymbol{\alpha} = (2, -1, -2)^{\mathrm{T}}, \boldsymbol{\beta} = (0, 3, 0)^{\mathrm{T}}, 求此二次型并求坐标变换 <math>\boldsymbol{x} = C\boldsymbol{y}$ 化二次型为规范形.

- 24. 已知 A 是迹为 1 的 3 阶实对称矩阵,满足 AB = B,其中 $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}$.
- (I) 求 A 的特征值;
- ([])求二次型 $x^{T}Ax$ 表达式;

(III) 判断矩阵
$$\mathbf{A}$$
 和 $\mathbf{A}_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ 是否合同?

参考答案

1.
$$-\frac{32}{81}$$
 2. -2 3. 2 4. -2 5. $\begin{bmatrix} -1 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$ 6. $k_1(0, -1, 1, 0)^{\mathrm{T}} + k_2(-1, 0, 0, 1)^{\mathrm{T}}$

7.
$$k_1(1,0,-1)^{\mathrm{T}} + k_2(5,3,4)^{\mathrm{T}}$$
 8. C 9. C 10. A

11. 当
$$a = 0$$
时, $k_1(-1,1,0)^{\mathrm{T}} + k_2(-1,0,1)^{\mathrm{T}}$;当 $a \neq 0$ 且 $a \neq -3$ 时,唯一解 $\left(-\frac{a+1}{a+3},\frac{2}{a+3},\frac{a^2+2a-1}{a+3}\right)^{\mathrm{T}}$;

当 a = -3 时,方程组无解.

12.
$$(5, -3, 1, 0)^{\mathrm{T}} + k_1 (-1, 2, -1, 1)^{\mathrm{T}} + k_2 (2, 3, 1, 0)^{\mathrm{T}}$$
.

13. 略 14.
$$\frac{1}{\sqrt{3}}$$
(1,1,1)^T 15. D

16. ([)
$$a = -1$$
; ([) $6,3,2;k_1(1,-1,-1)^T,k_2(-2,2,3)^T,k_3(-1,2,3)^T$;

$$() \mathbf{P} = \begin{bmatrix} 1 & -2 & -1 \\ -1 & 2 & 2 \\ -1 & 3 & 3 \end{bmatrix}; \quad () V) \begin{bmatrix} 6^{n} + 4 \cdot 3^{n} - 2^{n+2} \\ -6^{n} - 4 \cdot 3^{n} + 2^{n+3} \\ -6^{n} - 2 \cdot 3^{n+1} + 3 \cdot 2^{n+2} \end{bmatrix}.$$

$$17. \lambda_1 = \lambda_2 = 1, k_1 \alpha_1 (k_1 \neq 0); \lambda_3 = 0, k_2 \alpha_2 (k_2 \neq 0).$$
 不能相似对角化.

18. $(|||) (-1)^k 2^n$.

19.
$$(1)_{2}, k_{1}(1,1,2)^{\mathrm{T}}; -1, k_{2}(1,1,-1); -2, k_{3}(1,-1,0)^{\mathrm{T}}, k_{i} \neq 0.$$

 $(|||)k \in (2,4).$

20. B 21. B

22. ([)
$$a = -\frac{1}{2}$$
 ([]) $\mathbf{Q} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{30}} & -\frac{2}{\sqrt{6}} \\ 0 & -\frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \end{bmatrix}$ ([]) $k > \frac{3}{2}$.

23. ([)6
$$y_1^2 - 6y_3^2$$
 ([]) $f = x_1^2 - 2x_2^2 + x_3^2 + 8x_1x_2 - 2x_1x_3 - 8x_2x_3, y_1^2 - y_2^2$.

24. ([)1,1,-1 ([])
$$x_1^2 - 2x_2x_3$$
 ([]) 合同.