General Comments:

• THE ORDER OF QUANTIFIERS MATTERS

A lot of you, when supposing convergence of $\{a_n\}_{n=1}^{\infty}$ to A would state, "There exists $N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - A| < \epsilon$ for all $\epsilon > 0$." This, in general is not true.

Consider the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$, which we have shown converges to 0 (page 34 of the text at the end of the paragraph following the definition of convergence).

- "There exists $N \in \mathbb{N}$ "
 - Say N = 100.
- "such that if $n \ge N$ then $\left| \frac{1}{n} 0 \right| < \epsilon$ for all $\epsilon > 0$."
- using N=100 we see that if $n \ge N$, then $\frac{1}{n} \le \frac{1}{N} \not< \frac{1}{101}$...so N=100 does not work FOR ALL ϵ We could keep on choosing bigger and bigger N, but no N will work FOR ALL ϵ . The order of
- quantifiers is wrong. The "magical" N we find depends on ϵ , so ϵ must be given first.

 The general format for proving convergence of a sequence $\{a_n\}_{n=1}^{\infty}$ to A using the definition of
 - "Let $\epsilon > 0$ be given. Choose N = (something that you have done some scratch work to figureout what N works). It follows that if $n \geq N$, then
 - $|a_n A| \leq (some more scratch work you have had to do to eventually show) < \epsilon.$
 - Hence, by definition, $\{a_n\}_{n=1}^{\infty}$ converges to A as was to be shown."
- This is a very "bland" format, but it is precise and once you get more comfortable with the process, you can perhaps color it up a little bit, if you so choose.

NOTATION

- $\{a_n\}_{n=1}^{\infty}$ denotes a sequence.
- $-\langle a_n \rangle$ does not denote a sequence. (It often denotes other things like a group generated by the single element a_n , for example.)
- $-[a_n],[a_n]_{n=1}^{\infty}$ do not denote sequences. I can't think off the top of my head what this notation might mean, but it probably already means something else.
- $-\{a_n\}$ does not denote a sequence. This denotes the set containing the single element a_n (which is even different from $\{a_n, a_n\}$, the set containing two copies of the single element a_n .

• KNOW YOUR DEFINITIONS

- My undergrad analysis professor would say, "Recite to yourself in the mirror ten times a day:

For every $\epsilon > 0$ there exists $n \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - L| < \epsilon$.

Note the "change" from A to L. It still just denotes the real number that the sequence converges

- That is the definition of a sequence $\{a_n\}_{n=1}^{\infty}$ converging to $L \in \mathbb{R}$. You also have the definition of a Cauchy sequence:

For every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n, m \geq N$, then $|a_n - a_m| < \epsilon$.

- Know both definitions inside and out. Know the differences and similarities. Try to visualize or otherwise internalize what each definition is saying.

SOLUTIONS MATH 331 HMWK 2 2

1. (Chapter 1, exercise 7)

Show that $\{a_n\}_{n=1}^{\infty}$ converges to A iff $\{a_n - A\}_{n=1}^{\infty}$ converges to 0.

Proof. First, we recall the definition of convergence of the indicated sequences:

The sequence $\{a_n\}_{n=1}^{\infty}$ converges to A iff for each $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that for all $n \geq N$ we have $|a_n - A| < \epsilon$. Similarly, the sequence $\{a_n - A\}_{n=1}^{\infty}$ converges to 0 iff for each $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that for all $n \geq N$ we have $|(a_n - A) - 0| < \epsilon$. Since $|a_n - A| = |(a_n - A) - 0|$, the desired result immediately follows. Note, given $\epsilon > 0$, the same $N \in \mathbb{N}$ will work for both sequences.

2. (Chapter 1, exercise 10)

Prove that, if $\{a_n\}_{n=1}^{\infty}$ converges to A, then $\{|a_n|\}_{n=1}^{\infty}$ converges to |A|. Is the converse true? Justify your conclusion.

Proof. Let $\epsilon > 0$ be given. Since $\{a_n\}_{n=1}^{\infty}$ converges to A, there is an $N \in \mathbb{N}$ such that for all $n \geq N$ we have $|a_n - A| < \epsilon$. By part (iv) of Theorem 0.25, we have that $||a_n| - |A|| \leq |a_n - A|$. Hence, if $n \geq N$,

$$||a_n| - |A|| \le |a_n - A| < \epsilon,$$

showing that $\{ |a_n| \}_{n+1}^{\infty}$ converges to |A|.

The converse of this statement, however, is not true. To see this, consider the sequence

$$\left\{a_n\right\}_{n=1}^{\infty} = \left\{(-1)^n\right\}_{n=1}^{\infty} = \left\{-1, 1, -1, 1, \dots\right\}.$$

Observe $\{|a_n|\}_{n=1}^{\infty} = \{1\}_{n=1}^{\infty}$. Since this is a constant sequence of ones, it is clear that $\{|a_n|\}_{n=1}^{\infty}$ converges to 1. The sequence $\{a_n\}_{n=1}^{\infty}$, on the contrary, is divergent, as it oscillates between -1 and 1 indefinitely.

EXTRA:

Explicitly, suppose $\{(-1)^n\}_{n=1}^{\infty}$ converges to some real number L. Then it should follow that for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that if $n \geq N$, we have $|(-1)^n - L| < \epsilon$. We first consider the case $L \neq 1, -1$. (These are actually the only reasonable guesses for L, but we are just being thorough here.)

Then |1-|L|| > 0. Take $\epsilon = \frac{|1-|L||}{2}$. It follows from part (iv) of Theorem 0.25 that

$$|(-1)^n - L| \ge ||(-1)^n| - |L|| = |1 - |L|| > \frac{|1 - |L||}{2},$$

showing $\{(-1)^n\}_{n=1}^{\infty}$ cannot converge to L.

Now if L=1, take $\epsilon=\frac{1}{2}$ (or any positive number strictly less than 2). For n=2k-1, where $k\in\mathbb{N}$, we have

$$\left| (-1)^{2k-1} - 1 \right| = \left| -1 - 1 \right| = 2 > \frac{1}{2}$$

Hence every odd term is more than ϵ away from the supposed limit L, showing the sequence cannot converge to 1.

Finally, if L = -1, again take $\epsilon = \frac{1}{2}$ (or any positive number strictly less than 2). For n = 2k, where $k \in \mathbb{N}$, we have

$$\left| (-1)^{2k} - (-1) \right| = \left| 1 + 1 \right| = 2 > \frac{1}{2}.$$

This shows that the sequence cannot converge to -1, as every even term is more than ϵ away from -1. We have thus exhausted all possible cases, and conclude that the sequence $\{(-1)^n\}_{n=1}^{\infty}$ is divergent.

This could also be done the following way:

Note, there is no interval of radius $\epsilon = \frac{1}{2}$ that contains both 1, and -1. Hence, the neighborhood $\left(A - \frac{1}{2}, A + \frac{1}{2}\right)$ cannot contain all but a finite number of terms of the sequence $\left\{(-1)^n\right\}_{n=1}^{\infty}$. (The neighborhood will miss infinitely many 1s, or infinitely many -1s, or both.) Therefore, by the lemma on page 35, the sequence $\left\{(-1)^n\right\}_{n=1}^{\infty}$ does not converge.

3. (Chapter 1, exercise 15) Prove directly (do not use Theorem 1.8) that, if $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are Cauchy, so is $\{a_n + b_n\}_{n=1}^{\infty}$.

Proof. Let $\epsilon>0$ be given, and suppose $\left\{a_n\right\}_{n=1}^\infty$ and $\left\{b_n\right\}_{n=1}^\infty$ are Cauchy sequences. Then there exists $N_1\in\mathbb{N}$ such that for all $n,m\geq N_1$ we have $|a_n-a_m|<\frac{\epsilon}{2},$ and there is an $N_2\in\mathbb{N}$ such that for all $n,m\geq N_2$ we have $|b_n-b_m|<\frac{\epsilon}{2}.$ Set $N=\max\{N_1,N_2\}.$ If $n,m\geq N,$ it follows that

$$|(a_n+b_n)-(a_m+b_m)|=|(a_n-a_m)+(b_n-b_m)|$$
 by rearranging terms,
$$\leq |a_n-a_m|+|b_n-b_m|$$
 by the triangle inequality,
$$< \frac{\epsilon}{2}+\frac{\epsilon}{2}$$
 since $n,m\geq N,$
$$\equiv \epsilon.$$

Hence, $|(a_n + b_n) - (a_m + b_m)| < \epsilon$ and $\{a_n + b_n\}_{n=1}^{\infty}$ is Cauchy by definition.