Question 1

b.

c.

d.

Base: Let $y = \epsilon$ then |y| = 0

$$\begin{split} \hat{\delta}(\hat{\delta}(q,x),y) & \text{(assumption)} \\ &= \hat{\delta}(\hat{\delta}(q,x),\epsilon) & \text{(definition)} \\ &= \hat{\delta}(q,x) & \text{(definition)} \\ &= \hat{\delta}(q,x\epsilon) & \text{(definition)} \\ &= \hat{\delta}(q,xy) & \text{(assumption)} \\ Q.E.D. \end{split}$$

IH: if |y| = n then $\hat{\delta}(q, x) = \hat{\delta}(\hat{\delta}(q, x), y)$

IS: Assume the hypothesis is true for n. We will show that it is true for n+1 Let y=|za| where z is a string such that $|z| \ge 0$ and a is a character in Σ

$$\begin{split} \hat{\delta}(\hat{\delta}(q,x),y) & \text{(assumption } y=za) \\ &= \hat{\delta}(\hat{\delta}(q,x),za) & \text{(assumption)} \\ &= \delta(\hat{\delta}(\hat{\delta}(q,x),y),a) & \text{(definition } \hat{\delta}) \\ &= \delta(\hat{\delta}(q,xz),a) & \text{(IH)} \\ &= \hat{\delta}(q,xza) & \text{(definition } \hat{\delta}) \\ &= \hat{\delta}(q,xy) & \text{(assumption } y=za) \\ Q.E.D \end{split}$$

	0	1
\rightarrow p	$\{q,s\}$	Ø
q	{r}	$\{s\}$
r	Ø	$\{s\}$
*s	Ø	Ø