

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Prof. Dr. M. Keyl M. Kech

Mathematik für Physiker 3 (Analysis 2) MA9203

Sommersem. 2016 Probeklausur (4.7.2016)

http://www-

m5.ma.tum.de/Allgemeines/MA9203_2016S

1. Krümmung einer Klothoide

(8 Punkte)

Zeigen Sie, dass die Krümmung $\kappa(t)$ der Kurve

$$\vec{r}(t) = \begin{pmatrix} \int_0^t \cos(u^2/2) \, \mathrm{d}u \\ \int_0^t \sin(u^2/2) \, \mathrm{d}u \end{pmatrix}$$

an der Stelle t > 0 gleich ihrer Länge L(t) ist.

HINWEIS: Die Krümmungsformel lautet $\kappa = |(\dot{x}\ddot{y} - \ddot{x}\dot{y})/(\dot{x}^2 + \dot{y}^2)^{3/2}|$, wobei $\vec{r} = \binom{x}{y}$.

2. Extrema mit Nebenbedingungen

(10 Punkte)

- (a) Bestimmen Sie die Kandidaten für Extremalstellen von $f(x,y) = \ln(x^4y^5)$ für x,y>0 unter der Nebenbedingung $x^2+4y^2=1$. [Ergebnis: $(x_0,y_0)=(\frac{2}{3},\frac{\sqrt{5}}{6})$]
- (b) Bei (x_0, y_0) besitzt f unter obiger Nebenbedingung
 - \square ein lokales Minimum, \square einen Sattelpunkt, \square ein lokales Maximum.
- 3. Inverse Funktionen

(6 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^3 + 2xy + y^2, x^2 + y)$. Zeigen Sie, dass f in einer Umgebung von (1,1) invertierbar ist und bestimmen Sie die Ableitung der lokalen Umkehrfunktion im Punkt f(1,1).

4. Tangentialraum

(4 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x) = x \cdot x$. Dann ist der Graph $G_f := \{(x, f(x)) \mid x \in \mathbb{R}^3\} \subset \mathbb{R}^4$ eine 3-dimensionale C^{∞} -Untermannigfaltigkeit des \mathbb{R}^4 . Geben Sie möglichst explizit eine Basis von T_pG_f an, wobei $p \in G_f$.

5. Differenzierbarkeit

(8 Punkte)

Sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

(a) Für den Punkt a=(0,0) und den Vektor $v=(v_1,v_2)\in\mathbb{R}^2$ mit |v|=1 berechne man [2]

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} =$$

und

[2]

$$\partial_x f(a) =$$

$$\partial_y f(a) =$$

(b) Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist.

[4]

Extrema Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,	(8 Punkte)
$f(u,v) := u^3 + v^3 + u^2 + v^2.$	
und die folgenden Punkte in \mathbb{R}^2 ,	. (0)
$x_1 = (0,0), x_2 = (0,2/3), x_3 = (-2/3,0), x_4 = (-1,0), x_5 = (-2/3,-2)$!/3).
Welche Aussagen sind richtig?	f-1
(a) f besitzt einen kritischen Punkt in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$	[2]
(b) f besitzt eine lokales Maximum in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$	[2]
(c) f besitzt eine lokales Minimum in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$	[2]
(d) f besitzt einen Sattelpunkt in	[2]
$\square x_1 \square x_2 \square x_3 \square x_4 \square x_5$	[]
Gegeben seien die Halbebenen $U = \{\xi = (\xi_1, \xi_2) \in \mathbb{R}^2 \mid \xi_2 > 0\}$ und $V = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid \xi_2 > 0\}$ und $V = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid \xi_2 > 0\}$ und $V = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid \xi_2 > 0\}$ und $V = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid \xi_2 > 0\}$ und $V = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid \xi_2 > 0\}$ und $V = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid \xi_2 > 0\}$ und $V = \{x_1, x_2$	$\frac{1}{2\xi_2} \partial_{\xi_2}$
Taylorpolynom Geben Sie das Taylorpolynom 5. Ordnung von $f(x,y)=\frac{\sin(y)}{\sqrt{1+x^2y^2}}$ um $(0,0)$ an. $T_5f((x,y);(0,0))=$	(8 Punkte)