Delns Let X be a top sp A loop int is a continuous map and S to X To say Jisa Jordan curve in X means Jis the image of A 5,mple (1-1) loop in X.

Jordan Curve Theorem.

Jet J be a Jordan Curve in C. Them:

- a) () has exactly two components, one bambed & one can bounded
- b) I is the boundary of each component of (1).

Theorem Let Y be a simple loop in C and let J be the range of Y. For even a in the bounded component of () The winding number of of wrt a is 1 or -1 (and is the same for all such a).

Theorem Let J be a Jordan wive in C. Than even point of Jis accessible from even component of CIJ (minning if a E J, b E CIJ, Thun JY: To, 13 - 0 st. 1(0)=a, 1/t) = (1) ++70, and 1(1) = b).

The Schoenflies Exstansion Theorem

Let Y be a simple closed loop in to. Then there is a horumapphism from (mto (whose restriction to 5' is 8.

Schoenflies's Conwise to the Jordan Curve theorem

Let J be a cpt EC s. t. (1) has exactly two components (one bod, one whol) and even point of j is accessible from each component of ().

then I is a Jordan curve.

Thin (Brown, 1911)

Let J be the range of a H cts map $f: S^{n-1} \to \mathbb{R}^n$. Thun $\mathbb{R}^n \setminus J$ has exactly two components (one bod, one unbil), and each point of J: S accessible from each component of $\mathbb{R}^n \setminus J$. furthermore, $\forall a \in the bod component or <math>\mathbb{R}^n \setminus J$, the nump $f_a: S^{n-1} \to S^{n-1}$ by $f(x) = \frac{f(x)-a}{\|f(t)-a\|}$ has digree equal to $I: S^{n-1} \to S^{n-1}$ the same viscona).

Delns Let X and Y be top. sps. Let $f_0, f_1: X \longrightarrow Y$ be continuous

a) to say H is a homotopy in Y from f_0 to f_1 means H is a cts map from $X \times [0,1]$ to Y such that $Y \times (X, Y) = f_1(X)$

b) To say for is homotopic to for in y mens Ja how topy in y from for to for in y

Y= (18. Y. is set homotopic to Y.

 $N(\pm 1) = 0$ but not homopoisto O

Theorem fet X and Y be top. sp. Then on the set C(X,Y) of all continuous maps $X \to Y$, the relation of being homotopic in Y is an equivalence relation.

Notation IT (X, Y) is the set of homotopy classes in C(X, Y)

- The Compositions of homotopic maps are homotopic. Specifically, let X, Y, Z be top specifically let $f, f: X \rightarrow Y$ which are homotopic in Y, let $g...g.: Y \rightarrow Z$ which are homotopic in Y, let $g...g.: Y \rightarrow Z$ which are homotopic in X. $((f_{\circ} = f_{\circ}, g_{\circ} = g_{\circ}) \longrightarrow h_{\circ} \cong h_{\circ})$
- Proof let $F: X \times (0,13 \longrightarrow Y)$ be a how-topy from f. to f_1 in Y, let $G: Y \times (0,13 \longrightarrow Z)$ be a homo-topy from g. to g_1 in Z. Let $H: X \times (0,13 \longrightarrow Z)$ be a element by H(x,t) = G(F(x,t),t). Then H(x) = H(x) = H(x) from H(x) =