Feature Transform and Kernel Methods

Song Liu (song.liu@bristol.ac.uk)

LS with Feature Transform

$$\begin{aligned} \mathbf{w}_{\mathrm{LS}} &\coloneqq \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in D_0} [y_i - f'(\mathbf{x}_i; \mathbf{w})]^2 \\ f'(\mathbf{x}; \mathbf{w}) &\coloneqq \langle \mathbf{w}_1, \boldsymbol{\phi}(\mathbf{x}) \rangle + w_0, \mathbf{w} \coloneqq [\mathbf{w}_1, w_0]^{\mathsf{T}} \end{aligned}$$

- $\phi(x): R^d \to R^b$, is called a feature transform.
 - $\phi(x) \coloneqq x$, Linear transform.
 - $\phi(x) \coloneqq [x, x^2, x^3, ..., x^b]^T$, Polynomial transform
- $\phi(X) \coloneqq \begin{bmatrix} \phi(x_1), \cdots, \phi(x_n) \\ 1, \cdots, 1 \end{bmatrix} \in R^{(b+1)\times n},$
- Solution: $\mathbf{w}_{\mathrm{LS}} = (\boldsymbol{\phi}(\mathbf{X})\boldsymbol{\phi}(\mathbf{X})^{\mathsf{T}})^{-1}\boldsymbol{\phi}(\mathbf{X})\mathbf{y}^{\mathsf{T}}$

Polynomial Transform b = 1

$$y = g(x) + \epsilon, g(x) = \exp(1.5x - 1), \epsilon \sim N(0, .64)$$

Polynomial Transform b = 2

$$y = g(x) + \epsilon, g(x) = \exp(1.5x - 1), \epsilon \sim N(0, .64)$$

Why it works?

- 1-dimensional intuition: Taylor Series.
- Taylor Series of g(x) at 0:

•
$$g(x) = g(0)(x-0)^0 + g'(0)(x-0)^1 + \frac{g''(0)}{2!}(x-0)^2 + \frac{g'''(0)}{3!}(x-0)^3 + \cdots$$

 You can approximate a smooth function using polynomial terms (at some cost).

Fourier Series

- What are other ways of decomposing a function?
- Suppose we have a periodic signal g(x) over the time domain.
 - e.g. a sound wave or a stock price
 - $g(x) = a_0 + \sum_{i=1}^{\infty} [a_i \sin(ix) + b_i \cos(ix)]$
 - This decomposition is called Fourier Series.

Fourier Series

$$g(x) = \sin(x) + \cos(x) + \sin(2x) + \cos(2x)$$

Trigonometric Transform

- Trigonometric Transform is usually used to approximate g(x) over time domain.
 - $\phi(x) \coloneqq [\sin(x), \cos(x), \sin(2x), \cos(2x)...\sin(bx), \cos(bx)]$
 - $\phi(x) \in R^{2b}$

APPL stock price, Jul-Oct, 2019

- Trigonometric Transform
- b = 2

APPL stock price, Jul-Oct, 2019

- Trigonometric Transform
- b = 4

Linear Expansion of Basis Functions

- Polynomial and Trigonometric transforms based on the idea a function can be approximated by:
 - $g(\mathbf{x}) \approx f(\mathbf{x}; \mathbf{w})$ = $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle = \sum_{i=1}^{n} w^{(i)} \phi^{(i)}(\mathbf{x})$
 - called a **linear basis expansion** of g(x)
 - $\phi^{(i)}$ are called basis function
 - Polynomial basis, Trigonometric basis...

Radial Basis Function (RBF)

 RBF is another widely used basis function for regression tasks.

•
$$\phi^{(i)}(\mathbf{x}) \coloneqq \exp\left(-\frac{||\mathbf{x}-\mathbf{x}_i||^2}{2\sigma^2}\right)$$

- $\sigma > 0$ is called bandwidth
- σ is determined before fitting

Radial Basis Function (RBF)

- x_i are called **RBF** centroids.
- x_i can be **randomly chosen** from the x in your dataset
- $\phi(x) := [\phi^{(1)}(x), \phi^{(2)}(x), ..., \phi^{(b)}(x)]$

Radial Basis Function (RBF)

- $\phi^{(i)}(x)$ are visualized in red at random 7 centroids among 100 uniformly drawn x.
- At each "bump / ",
 - If $w^{(i)} > 0$, basis at $x^{(i)}$ gives f(x; w) a "lift".
 - If $w^{(i)} < 0$, basis at $x^{(i)}$ gives f(x; w) a "push".

RBF Feature Transform, b = 2

RBF Feature Transform

- It is a bit hard to visualize RBF in high dim. space.
- An RBF defines a ball on which your function is supported.
- However, you can imagine a R^d space filled with balls with radius σ , which identifies regions over which f(x; w) will be **supported**.

$$\operatorname{supp}(f) \coloneqq \{ \boldsymbol{x} | f(\boldsymbol{x}; \boldsymbol{w}) \neq 0 \}$$

Packing Number and CoD

- If g(x) has a wide support, f(x; w) must be supported almost everywhere, we need to have many centroids.
- The number of balls needed to cover a space is called "packing number", which grows exponentially with dim.
- $b = O(c^d)$, CoD!!

Feature Space

- $\phi(x)$ transforms input x from R^d to a feature space R^b .
- f(x; w) is an inner product in such a **feature space**.

• By increasing b, we increase the dimensionality of the feature space, thus we increase the flexibility of f.

- Can we have an infinite dimensional feature space?
 - If so, we can greatly enhance the flexibility of f.

Infinite Dim. Feature Space

- Suppose $\phi(x)$ maps x to an infinite dimensional fea. space.
- We will have a w which is also infinitely long as dimension of w and $\phi(x)$ must match in order to do inner product.

- However, recall the regularized LS has solution:
- $\mathbf{w}_{\mathrm{LS-R}} \coloneqq (\boldsymbol{\phi}(\mathbf{X})\boldsymbol{\phi}(\mathbf{X})^{\mathsf{T}} + \lambda \mathbf{I})^{-1}\boldsymbol{\phi}(\mathbf{X})\mathbf{y}^{\mathsf{T}}$
- How to construct a prediction function given $\phi(x)$ is in an infinite dimensional space?

Woodbury Identity

Remarkably,

•
$$w_{\text{LS-R}}$$
: = $(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\mathsf{T}} + \lambda \boldsymbol{I})^{-1}\boldsymbol{\Phi}\boldsymbol{y}^{\mathsf{T}}$
 = $\boldsymbol{\Phi}(\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}^{\mathsf{T}}$

• Φ is short for $\phi(X)$.

• Homework, prove. Hint, Woodbury identity:

$$\bullet (P^{-1} + B^{T}B)^{-1}B^{T} = PB^{T}(BPB^{T} + I)^{-1}$$

Woodbury Identity 2

•
$$w_{LS-R}$$
: = $\Phi(\Phi^{T}\Phi + \lambda I)^{-1}y^{T}$

- Recall $\Phi \coloneqq [\phi(x_1), \cdots, \phi(x_n)] \in \mathbb{R}^{b \times n}$
- Instead of $\Phi\Phi^{\top}$ (which is intractable), we compute $\Phi^{\top}\Phi \in R^{n \times n}$.
- Define $k(x, y) := \langle \phi(x), \phi(y) \rangle$
- Denote K as $\Phi^{\top}\Phi$, $K^{(i,j)} = \langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$,
- i.e., $K^{(i,j)}$ is inner product of two feature transform on x_i , x_j .
 - Verify it!

Prediction Function

•
$$f(x; w_{\rm LS-R}) = \langle w_{\rm LS-R}, \boldsymbol{\phi}(x) \rangle$$

•
$$f(x; w_{LS-R}) = \langle \phi(x), \Phi(K + \lambda I)^{-1} y^{\top} \rangle$$

= $\langle \phi(x)^{\top} \Phi, (K + \lambda I)^{-1} y^{\top} \rangle$

- Denote $\phi(x)^{\top}\Phi$ as $k \in \mathbb{R}^n$ where
- $k^{(i)} = \langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}_i) \rangle = k(\boldsymbol{x}, \boldsymbol{x}_i)$

Evaluating only the Inner Products

- $f(x; w_{LS-R}) \coloneqq k(K + \lambda I)^{-1} y^{\top}$
- Note $\phi(x)$ only appears inside the inner products!
- Design "an inner product function k(x, x')" mimics behaviour of inner product between $\phi(x)$ and $\phi(x')$.
 - We do not have to worry about computing $oldsymbol{\phi}(\cdot)$ explicitly!

Evaluating only the Inner Products

- \bullet Of course, you **cannot** pick inner product function k arbitrarily.
 - Must "behaves like" an inner product.
 - If our design k(x, x') is positive definite, there exists ϕ such that $k(x, x') = \langle \phi(x), \phi(x') \rangle$
- However, there are many **known choices** of k corresponds to inner products of powerful, even infinite dimensional feature transform $\phi(x)$.

Kernel Function

• Our inner product function k(.,.) is called **kernel function** in machine learning literatures.

- If explicit $\phi(x)$ can be derived from k,
 - We say, k induces feature transform $\phi(x)$.

Choices of k

- Linear kernel function:
 - $k(x_i, x_j) = < x_i, x_j > +1$
 - Induced feature transform $\phi(x) = [x, 1]^{T}$.
- Polynomial kernel function with degree b:
 - $k(\mathbf{x}_i, \mathbf{x}_j) \coloneqq (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + 1)^b$
- Homework: Write down induced $\phi(x)$ by polynomial kernels b=2.
- Hint, express $k(x_i, x_j)$ as inner products of $\phi(x_i)$ and $\phi(x_i)$.

Choices of k

RBF (or Gaussian) kernel:

•
$$k(\mathbf{x}_i, \mathbf{x}_j) \coloneqq \exp\left(-\frac{\left||\mathbf{x}_i - \mathbf{x}_j|\right|^2}{2\sigma^2}\right)$$

- $\phi(x)$ induced by k is **infinite dimensional!**
- σ is chosen before fitting.
- σ can be chosen as the median of pairwise distances of all your input x.
- RBF kernel and RBF basis function is not the same thing despite a similar look!

Choices of k

- How do I pick k?
 - Depending on your learning task.
 - e.g., linear/poly kernels are frequently used in natural language processing.
 - Depending on your dataset.
 - e.g., kernels can be defined for structural inputs, such as strings or graphs.
 - Domain knowledge matters!!
- RBF kernel is a good all-rounded choice for $x \in \mathbb{R}^d$.

APPL stock price, Jul-Oct, 2019

• RBF kernel, $\lambda = .01$, $\sigma = 0.2099$.

APPL stock price, Jul-Oct, 2019

• RBF kernel, $\lambda = .01$, $\sigma = 0.1050$.

Implementation Concern of Kernel LS

- Recall: $f(x; w_{LS-R}) \coloneqq k(K + \lambda I)^{-1}y$
- Computational cost
 - $K: O(n^2)$
 - $(K + \lambda I)^{-1}$: Usually $O(n^3)$
 - Kernel methods though flexible, is computationally demanding for large n.

Conclusion

- Beyond Poly. Transform, we introduce
 - Trigonometric Transform
 - RBF Transform

- Kernel methods transform original data point into higher dimensional (potentially infinitely dim.) feature space.
 - We get a super flexible prediction f.

Homework

- Prove w_{LS-R} : = $\Phi(\Phi^T\Phi + \lambda I)^{-1}y^T$ using Woodbury identity.
- Write down induced $\phi(x)$ by poly kernels b=2.