LISTES

```
typedef struct maille
       elt_t elt;
       struct maille *next;
}maille_t;
maille_t *creer1Maille( elt_t e , maille_t *l){
maille_t* new= (maille_t*)malloc(sizeof(maille_t*));
       assert(new!=NULL);
       new \rightarrow elt =e;
       new-> next=l;
       return new;
}
void inserer1Elt( elt_t e, maille_t **l){
       if VIDE((*l)){
              *l=creer1Maille(e,*l);
              return;
       if(mode==tete)inserer1EltEnTete(e,l);
       else if(mode==queue)inserer1EltEnQueue(e,*l);
       else if(mode==ordo)inserer1EltEnOrdo(e,l);
}
void inserer1EltEnTete(elt_t e, maille_t **l){
       *l=creer1Maille(e,*l);
}
void inserer1EltEnQueue(elt_t e,maille_t *l){
       if(VIDE(SUIVANT(l))){
              SUIVANT(l)=creer1Maille(e,SUIVANT(l));
              return;
       }
       inserer1EltEnQueue(e,SUIVANT(l));
}
```

```
void afficherListe( maille t *l){
       if VIDE(l)return;
       afficherElt(&(l->elt));
       printf("=>");
       afficherListe(SUIVANT(l));
}
int nbElts(maille_t *l){
       if VIDE(l) return 0;
       return nbElts(SUIVANT(l))+1;
}
maille t *dernierEltListe(maille t *l){
       if VIDE(l) return NULL;
       if VIDE(SUIVANT(l)) return l;
       return dernierEltListe(SUIVANT(l));
}
void supprimerPremier( maille_t **l){
       if VIDE(l)return;
       maille_t *temp =*l;
       *l=SUIVANT((*l));
       free(temp);
}
void supprimerDernier(maille_t **l){
       if VIDE((*l))return;
       if(SUIVANT((*l))==NULL){
              maille_t *aux=*l;
              *l=NULL;
              free(aux);
              return;
       supprimerDernier(&SUIVANT((*l)));
}
maille_t *copierListe(maille_t *l){
       if VIDE(l) return NULL;
       return creer1Maille(ELT(l),copierListe(SUIVANT(l)));
}
```

ABR

```
typedef struct noeudABR noeudABR t; //définition du type nœud
struct noeudABR // définition du type arbre
  elt_t elt;
  struct noeudABR * gauche;
  struct noeudABR * droite;
};
void displayABRCroissant( noeudABR t * a)
 if VIDE(a) return;
 displayABR(GAUCHE(a));
 afficherElt(&(a->elt));
 printf("=>");
 displayABR(DROIT(a));
noeudABR_t * insererABR(elt_t e, noeudABR_t * a)
  if VIDE(a) return creer1Noeud(e,NULL,NULL);
  if(a->elt >e) GAUCHE(a)=insererABR(e,GAUCHE(a));
  else DROIT(a)=insererABR(e,DROIT(a));
  return a:
}
noeudABR t*estDansABR (elt te, noeudABR t*a)
  if VIDE(a) return NULL;
  if(a->elt==e) return a;
  if(a->elt >e) return estDansABR(e,GAUCHE(a));
  else return estDansABR(e,DROIT(a));
}
int hauteurABR(const noeudABR_t * a)
  if VIDE(a) return -1;
  return 1+MAX(hauteurABR(GAUCHE(a)),hauteurABR(DROIT(a)));
}
int hauteurABR(const noeudABR_t * a)
{
      if (a == NULL) return -1;
      if (hauteurABR(a->gauche) > hauteurABR(a->droite))
      return 1+hauteurABR(a->gauche);
      else
      return 1+hauteurABR(a->droite);
}
```

```
int nbNoeudsABR(const noeudABR_t * a)
{
  if VIDE(a) return 0;
  return 1+nbNoeudsABR(DROIT(a)) + nbNoeudsABR(GAUCHE(a));
}
noeudABR_t * supprimerABR(noeudABR_t * a)
{
  if VIDE(a) return NULL;
  supprimerABR(GAUCHE(a));
  supprimerABR(DROIT(a));
  free(a);
  return NULL;
}
noeudABR_t * copierABR (const noeudABR_t * a)
{
if(VIDE(a)) return NULL;
return creer1Noeud(a \rightarrow elt, copierABR(GAUCHE(a)), copierABR(DROIT(a)));
}
int egalABR (const noeudABR_t * a1, const noeudABR_t * a2)
{
  if(VIDE(a1) && VIDE(a2)) return 1;
if(VIDE(a1) && PAS_VIDE(a2) || VIDE(a2) && PAS_VIDE(a1)) return 0;
      if (a1->elt == a2->elt){
      if(egalABR(GAUCHE(a1), GAUCHE(a2))==1 && egalABR(DROIT(a1),
DROIT(a2))==1)return 1;
      else return 0;
      }else return 0;
}
noeudABR_t * creer1Noeud(elt_t e, noeudABR_t * g, noeudABR_t * d)
  noeudABR_t * p;
  p = (noeudABR_t *)malloc(sizeof(noeudABR_t));
  if (p != NULL)
    p->elt=e;
    p->gauche = g;
    p->droite = d;
  }
```

```
return p;
}
                                         AVL
typedef struct noeudAVL noeudAVL_t;
struct noeudAVL
  elt_t elt;
  int bal;
  struct noeudAVL * gauche;
  struct noeudAVL * droite;
};
noeudAVL_t * rotG(noeudAVL_t *A){
 noeudAVL t * B=DROIT(A);
 DROIT(A)=GAUCHE(B);
 GAUCHE(B)=A;
 BAL(A)+=1-MIN(0,BAL(B));
 BAL(B)+=1+MAX(BAL(A),0);
 return B;
}
noeudAVL_t * rotD(noeudAVL_t *A){
 noeudAVL_t * B=GAUCHE(A);
 GAUCHE(A)=DROIT(B);
 DROIT(B)=A;
 BAL(A) += -1 - MAX(BAL(B), 0);
 BAL(B)+=-1-MIN(0,BAL(A));
 return B;
}
noeudAVL_t * Equilibrer(noeudAVL_t *A){
      if(A->bal ==2){
            if(GAUCHE(A)->bal==-1) GAUCHE(A)=rotG(GAUCHE(A));
            A = rotD(A);
      if(A->bal ==-2){
            if(DROIT(A)->bal==1) DROIT(A)=rotD(DROIT(A));
            A = rotG(A);
      }
      return A;
```

```
void majBal (noeudAVL_t *A){

BAL(A)=hauteurAVL(GAUCHE(A))-hauteurAVL(DROIT(A));

T_noeudAVL * miniAVL (T_noeudAVL * a){
   if (a == NULL || a->gauche==NULL) return a;
   return miniAVL (a->gauche);
}

T_noeudAVL * maxiAVL (T_noeudAVL * a){
   while (a->droite!= NULL){
      a=a->droite;
   }
   Return a;
}
```

MINIMIER

on utilise le Heapsort, le principe consiste à organiser l'ensemble à trier en tas. Complexité de $O(n \log(n))$

Dans son état initial le premier élément forme un tas, ensuite on insère la seconde valeur puis on effectue des permutations jusqu'à ce que la condition maximière est validée

```
int est1Minimier(T_Elt T[], int n)
{
    int i = n;
    if(i == 0) return 1;
    while(i--)
        if(T[Pere(i)] > T[i])
            return 0;
    return 1;
}
void remonterMinimier(T_Elt t[], int k)
{
    if(existePere(k) && t[k]<t[Pere(k)]) {</pre>
        permuter(t, k, Pere(k));
        remonterMinimier(t, Pere(k));
    }
}
```

```
void permuter(T_Elt t[], int a, int b) {
    T_Elt aux = t[a];
    t[a] = t[b];
    t[b] = aux;
}
void
       descendreMinimier(T_Elt t[], int iDebut, int iFin)
{
   int j, Fini = est1Feuille(iDebut, iFin);
   resultat.nbAffectations++;
   while(!Fini) {
        j = FilsG(iDebut);
        if(existeFilsD(iDebut, iFin) && t[j] > t[FilsD(iDebut)]) {
                j=FilsD(iDebut);
        if(t[iDebut] <= t[j]) {
            Fini = 1;
        } else {
            permuter(t, iDebut, j);
            iDebut = j;
                Fini = est1Feuille(iDebut, iFin);
        }
   }
}
void transfEnMinimier_v2(T_Elt t[], int n)
    int i;
    for (i = (n/2)-1; i \ge 0; i--) {
        descendreMinimier(t, i, n);
}
void transfEnMinimier(T_Elt t[], int n)
    int i;
    for(i=1;i<n;i++) {
        remonterMinimier(t, i);
    }
}
void triArbre(T_Elt t[], int n){
      while (n>0){
      n--;
      permuter(t,0,n);
      descendreMinimier(table,0,n);
      }
```

HUFFMAN

Principe:

La 1° étape, comptabilise le nombre d'occurrences de chaque caractère du document à traiter.

La 2° étape, construit l'arbre de codage de Huffman :

- On part des feuilles (associées aux caractères) et qui portent comme information leur nombre d'occurrences.
- On associe ensuite deux nœuds ayant le nombre d'occurrences le plus faible, pour former un nouveau nœud interne dont la valeur est la somme des valeurs de ses fils.
- On réitère ce processus avec les feuilles et les nœuds internes restants jusqu'à ne plus en avoir qu'un seul, la racine.
- La 3° étape, détermine le codage de chaque caractère en parcourant l'arbre de codage depuis les feuilles. En effet, le chemin de la feuille à la racine, détermine le code du caractère :
- À la branche de gauche, on associe un bit à 1, et à l'autre un bit à 0 (ou inversement, car peu importe).
- -Enfin, on utilise le codage ainsi obtenu pour coder chaque caractère du document à traiter.

C'est un code préfixe, en effet chaque code d'un caractère ne peut en aucun cas être le préfixe du code d'un autre caractère. Ainsi, la propriété « préfixe » garantit que le message pourra être décodé sans difficulté et sans ambiguïté.

Utilisation d'un minimier indirect car :

Condition minimière : la clé (valeur) de chaque nœud est inférieure ou égale à celle de ses deux fils s'ils existent. Indirect :

les nœuds du minimier ne contiennent pas directement la clé définissant l'ordre de priorité des nœuds, ! la clé d'un nœud du minimier est en fait un indice donnant accès à sa valeur présente dans un (autre) tableau.

Notation de Landau

23(m)

- si
$$d < log_b a = cas 1$$

 $T(m) = O(m log_b a)$

- si
$$d = \log_b a = 7 \cos 2$$

 $T(m) = O(m \log_b^a \log_m)$

Méthode itérative

$$\begin{split} T(n) &= 2 \times T(n/2) + cn \\ T(n) &= 2 \times (2 \times T(n/4) + cn/2) + cn = 4 \times T(n/4) + 2cn \\ T(n) &= 4 \times (2 \times T(n/8) + cn/4) + 2cn = 2^3 \times T(n/2^3) + 3cn \\ T(n) &= 2^i \times T(n/2^i) + i \times cn \\ \end{split}$$
 on cherche quand n/2i =1 ou 0 i = $\lfloor \log 2n \rfloor$

$$T(n) = n \times T(1) + \lfloor \log_2 n \rfloor \times cn = \lfloor \log_2 n \rfloor \times cn$$

on a donc $T(n) = (n \log n)$

$$\begin{split} T(n) &= 2 \times T(n-1) + 1 \text{ pour } n > 0 \text{ et } T(0) = 0 \\ T(n) &= 2 \times (2 \times T(n-2) + 1) + 1 = 22 \times T(n-2) + 1 + 2 \\ T(n) &= 2^2 \times (2 \times T(n-3) + 1) + 1 + 2 = 2^3 \times T(n-3) + 1 + 2 + 2^2 \\ T(n) &= 2^i \times T(n-i) + 1 + 2 + 2^2 + \dots + 2^{i-1} \\ T(n) &= 2^n \times T(0) + 1 + 2 + 2^2 + \dots + 2^{n-1} \text{ lorsque } i = n \\ T(n) &= 1 + 2 + 2^2 + \dots + 2^{n-1} \\ T(n) &= 2n - 1 \end{split}$$

Effet d'une amélioration (1/2)

Soit N, la taille maximale des données que l'on peut traiter aujourd'hui en 1 heure.

Quelle taille pourra-t-on traiter en 1 heure avec le même programme lorsque les ordinateurs seront 100 et 1000 fois plus rapides ?

Exemple 1: $T(n) = \Theta(n^2)$

Aujourd'hui : $k \times N^2 = 1h$

Demain: $k/100 \times N'^2 = 1 h$

Exemple 2: $T(n) = \Theta(2^n)$

Aujourd'hui : $k \times 2^N = 1h$

Demain : $k/100 \times 2^{N'} = 1h$

 $\rightarrow N' = 10N$

 $\rightarrow N' = N + \log_2 100$

SUIL

N' = N + 6,64

Si on a N2 on aura N=xN

O Samir El Khattalii, Ecole Centrale de Lille, novembre 3, 2020

Si on a 2^n on aura N+logx

Nombre de comparaisons			
Algorithme	Minimum (Ω)	Maximum (O)	Moyenne(Θ)
Tri rapide	n log n	n²	n log n
Tri fusion	n log n	n log n	n log n
Tri par tas	n log n	n log n	n log n
Tri par insertion	n	n²	n²
Tri par selection	n²	n²	n²
tri à bulle	n	n²	n²
Recherche max Arbre Part Ord	1	1	1
Recherche ABR 1000 elt	1	25	1
Exponentiation rapide	log n	log n	log n

En analyse d'algorithme, l'opération de base d'un tri est	La comparaison d'un élément du tableau à un autre élément
Le tri par la méthode du tri par sélection d'une table de 10 éléments nécessite	45 comparaisons dans le cas le plus défavorable Formule (n(n-1)/2) -> comparaison n-1 échanges dans le pire cas
La complexité du tri par sélection est	Θ(n^2) et O(n^2)
Le tri par la méthode du tri par insertion d'une table de 10 éléments nécessite	Cas favorable: il y a n-1 comparaisons et au plus n affectations Cas défavorable: n-/2 affectations et comparaisons 9 comparaisons dans le cas le plus favorable
La complexité du tri par insertion est	O(n^2)
La complexité du tri fusion est	Θ(n log(n))
Une recherche dans un arbre AVL contenant 1000 éléments effectue au plus	10
La recherche de l'élément de valeur maximale dans un arbre partiellement ordonné contenant n éléments est en	O(1)
Un programme dont la complexité est en Θ(2N) résout en 1 h un problème de taille N sur un ordinateur, quelle taille de problème pourra-t-on traiter, avec le même programme exécuté sur un ordinateur, 1000=k	N+10 = N+log2(k)
fois plus rapide	
La complexité du tri par tas d'un tableau n éléments est en	$\Theta(n \log(n))$ et $\Omega(n \log n)$

Soit la déclaration : char *n = n[1] est un caractère qui vaut '2'

La recherche de l'élément de valeur maximale dans un arbre	0(
partiellement ordonné contenant n éléments est en	1)

Un programme dont la complexité est en $\Theta(2N)$ résorproblème de taille N sur un ordinateur, quelle taille d	
pourra-t-on traiter, avec le même programme exécut	
ordinateur, 250 fois plus rapide	
La complexité du tri par tas d'un tableau n éléments	est en $\Theta(n \log(n))$
	et
	Ω(nlogn)