2013-2014学年第二学期 大学物理 I 期末试卷A题

信二学生会学习部整理

填空题	选择题	计算1	计算2	计算3	计算 4	计算 5	总分

可	能	用	到	的	数据:
	HL	/ 13	and the	LHI	XX 1/1 .

长度 $1 \text{ m} = 10^6 \text{ } \mu\text{m} = 10^9 \text{ nm}$, 大气压 1atm = 1.013×10⁵ Pa,

体积 1 L = 10-3 m3 万有引力常量 $G = 6.67 \times 10^{-11} \text{ N·m}^2 \cdot \text{kg}^{-2}$ 普适气体常量 $R = 8.31 \text{ J·mol}^{-1} \cdot \text{K}^{-1}$, 玻耳兹曼常量 $k = 1.38 \times 10^{-23} \text{ J·K}^{-1}$

- 一、填空题(共38分,请将答案写在卷面指定的横线上):
- 1. (3分) 一质点沿x 轴做直线运动,它的运动函数为 $x = t^3 3t^2 + 2t + 3$ (m),则
 - (1) 质点在 t=0 时刻的速度 $\vec{v}_0 =$ ______;
 - (2) 加速度为零时,该质点的速度 v=
- 2. (3分) 质点沿圆心为 C, 半径为 5m 的圆轨道运动。计时开始时, 质点做顺时针运动,加速度的大小为a=30m/s²,方向如图所示。若 质点在运动过程中切向加速度始终保持不变,则 t=0.5s 时质点的速率

- 为____。信息与电子工学部学生会
- 3. (3分) 两个均匀刚性小球 A 和 B, 半径均为 r, 质量分别为 m 和 2m, 球心距离为 d。 若每个小球只受到对方的万有引力作用,无其它力的作用,那么让两者同时由静止释放,

它们将互相靠近,最后碰撞。碰撞时小球 A 的速率为

4. (3 分) 如图, 两滑轮的半径分别为 R_1 和 R_2 , 质量分别为 M_1 和 M2, 可视为均匀圆盘且同轴固定在一起。通过两滑轮边缘环绕 的细绳向下拉动滑轮(拉力分别为 T_1 和 T_2),使滑轮顺时针旋转,

那么滑轮的角加速度 β =

5. (3分) 在容积为 0.01 m3 的容器中, 装有质量为 100 g 的气体。 若气体分子的方均根速率为 200 m/s,则气体的压强为

- 二、选择题 (每题 3 分, 共 15 分, 请将答案写在卷面指定的方括号内):
- 1. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为:

- 2. 按照麦克斯韦速率分布律, 温度为 T 时, 氢、氮两种理想气体在各自方均根速率 $v_{ms} \pm 2m/s$ 的速率区间内,分子数占总分子数的比例的大小关系为
 - (A) $(\Delta N/N)_{H_2} > (\Delta N/N)_{N_2}$
 - (B) $(\Delta N/N)_{H_2} = (\Delta N/N)_{N_2}$
 - (C) $(\Delta N/N)_{H_2} < (\Delta N/N)_{N_2}$
 - (D) 温度较低时 $(\Delta N/N)_{H_2} > (\Delta N/N)_{N_2}$, 温度较高时 $(\Delta N/N)_{H_2} < (\Delta N/N)_{N_3}$

一列简谐波沿 -x 方向运动, 在坐标原点引起的简谐振动为 $y = A\cos(\omega t + \pi/2)$, 那么 该简谐波在 $x = \frac{5}{12} \lambda$ 处(其中 λ 为波长)引起的简谐振动所对应的的旋转矢量图为

- 4. 当平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?
 - (A) 媒质质元的振动动能增大时, 其弹性势能减小, 总机械能守恒。
 - (B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同。
 - (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同, 但二者数值不相等。
 - (D) 媒质质元在其平衡位置处弹性势能最大。

- 5. 在双缝干涉实验中, 用单色自然光, 在屏上形成干涉条纹。若在两缝后放一个偏振片, 则
 - (A) 干涉条纹的间距不变, 但明纹的亮度加强。
 - (B) 干涉条纹的间距不变, 但明纹的亮度减弱。
 - (C) 干涉条纹的间距变窄, 但明纹的亮度减弱。
 - (D) 无干涉条纹。

三、计算题 (共47分):

1. (12 分) 质量为 m, 长为 l 的均匀细棒可绕距离棒一端为 l/3 的光滑水平轴在竖直平面内转动,如图所示。细棒在水平位置由静止释放,当其顺时针旋转至竖直位置时,恰好有一质量为 m/6 的子弹向右水平打入细棒的末端而不复出。如果子弹使棒刚好停止旋转,求子弹射入的速度。

- 3. $(10\, f)$ 用波长为 500 nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上。在观察反射光的干涉现象中,距劈尖棱边 $1.56\, cm$ 的 A 处是从棱边算起的第四条暗条纹中心。(1) 求此空气劈尖的劈尖角 θ ; (2) 改用 600 nm 的单色光垂直照射到此劈尖上,仍观察反射光的干涉条纹,那么 A 处是明条纹、暗条纹、还是相邻明条纹暗条纹的过渡区域?
- 4. $(10 \, \text{分})$ 一束波长 $\lambda = 589 \, \text{nm}$ 的平行光垂直照射到宽度 $a = 0.40 \, \text{mm}$ 的单缝上,缝后放一焦距 $f = 1.0 \, \text{m}$ 的凸透镜,在透镜的焦平面处的屏上形成衍射条纹。(1)求第一级明纹离中央明纹中心的距离;(2)对第二级明纹,对该光波,单缝处的波阵面可分成几个半波带?(3)求中央明纹的宽度。
- 5. (5分) 图(a)为凸透镜成像光路图,A和B为物平面和像平面,L为凸透镜,F为焦平面。把一个透射光栅放在A处,保持光栅刻线水平并垂直于透镜主光轴,用平行白光垂直照射光栅。
 - (1)把屏放在F处,能观察到什么现象?把屏移到B处,能观察到什么现象?
- (2)保持屏在 B 处,在 F 处放置如图(b)所示遮挡板,使透镜主光轴垂直于遮挡板并通过遮挡板中心,且遮挡板的透光窄缝平行于光栅刻线。如果光栅常数 $d=12\mu m$,凸透镜焦距 f=30cm,那么在屏上能观察到什么现象?参考下表列出的可见光波长。

颜色	波长 (nm)
红	780~630
橙	630~600
黄	600~570
绿	570~500
青	500~470
蓝	470~420
紫	420~380

答案

学习部

一、填空题 (共38分):

- 1. (3分) 2ī m/s (1分), -ī m/s (2分)
- 2. (3分) 3.9m/s , 7.5 √75 小3
- 3. (3 分) $\sqrt{\frac{8Gm}{3} \left(\frac{1}{2r} \frac{1}{d}\right)}$
- 4. (3 分) $\frac{2(T_2R_2 T_1R_1)}{M_1R_1^2 + M_2R_2^2}$
- 5. (3分) 1.33×10⁵
- 6. (3分) 405.2J, 0, 405.2J (各1分)
- 7. (3分) 0 (1分), $R \ln \frac{V_2}{V_1}$ (2分)
- 8. (3 %) $y = A\cos\left(\omega t \frac{2\pi}{\lambda}x \frac{\pi}{3}\right)$
- 9. (3分) 1.7×10³ Hz
- 10. (3分)第三级
- 11. (4分) $v_1 \frac{r_1}{r_2}$, $v_1 \sqrt{\frac{r_1}{r_2}}$ (各2分)
- 12. $(4 分) \frac{1}{2} mR^2$, $\frac{2\pi^2 f^2 R^2}{g}$ (各 2 分)
- 二、选择题 (每题 3 分, 共 15 分):
- (A) (C) (D) (D) (B)
- 三、计算题

1.
$$v = \sqrt{3gl}$$

- 3. (1) θ =4.8×10⁵rad; (2) A处是暗纹
- 4. (1) x_1 =2.21×10⁻³m; (2) 5 个半波带 (3) 2.945×10⁻³m