Lecture-1 Course logistics & Introduction & Asymptotic Run Time

CS325

Course Logistics

- Instructor:
 - Prof. Xiaoli Fern (Kelley 3073)

xfern@eecs.oregonstate.edu

Office hour: Tuesday Thursday after class (3:20-4)

- TAs:
 - Juneki Hong (.49TA)
 - Hamed Shahbazi (.24TA)
 - Souti Chattopadhyay (.24TA)
 - Juan Liu (.24TA)
 - Office hours will be available on Canvas

Assessments

- 5 in-class quizzes 25%
- 3 implementation (group) assignments 25%
- Midterm 25%
- Final 25%
- Dates posted on class calendar be aware of these dates, schedule your things around them
- There will be practice questions for you to use as study guide for the quizzes, and exams

What you will learn in this class

- Asymptotic runtime analysis of algorithms
 - Big-Oh notation
 - Analyzing iterative and recursive algorithms (recurrence relation)
 - Solving recurrence relations
- Prove the correctness of algorithms
 - Some basic proof techniques: proof by induction, proof by contradiction
- Design efficient algorithms
 - Divide and conquer
 - Dynamic programming
 - Greedy algorithms
 - Linear programming
- Limits of computation:
 - Concept of reduction
 - P vs. NP

What is algorithm?

Algorithm

- A term coined to honor Al Khwarizmi, a Persian mathematician who wrote the first foundational book on algebra
- In his book, he moved from solving specific problems to a more general way of solving problems
- Introduced precise, unambiguous, mechanical, and correct procedures for solving general problems – algorithms

Why studying algorithms

- Important for all branches of computer science (and other as well)
 - Computer Networking heavily rely on graph algorithms
 - Bioinformatics builds on dynamic programming algorithms
 - Cryptography number theoretic algorithms
 - **–**
- And it is extremely fun, challenging but fun! And it will help you for your job interview!!!
- Two fundamental and vital questions
 - Is the algorithm correct?
 - Is the algorithm efficient? Or, can we do better?

Efficiency: Run time analysis

- How long will an algorithm take to run may depend on a lot of things
 - Processor
 - Language
 - Implementation ...
- We will abstract away from these details and study the run time at the asymptotic level

Consider the following segment of pseudo-code (given input n):

What does it compute?

Assuming basic operations like addition, multiplication takes unit time, what is the run time of the above code?

Another example: Insertion sort

 Given an array A of n numbers, build the sorted array one element at a time (similar to how we organize a hand of cards)

```
1. for i \leftarrow 1 to n

2. x \leftarrow A[i]

3. j \leftarrow i - 1

4. while j > 0 and A[j] > x

5. A[j + 1] \leftarrow A[j]

6. j \leftarrow j - 1

7. end while

8. A[j + 1] \leftarrow x

9. end for
```

6 5 3 1 8 7 2 4

By Swfung8 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/ind ex.php?curid=14961606

Runtime of insertion sort

```
1. for i \leftarrow 1 to n

2. x \leftarrow A[i]

3. j \leftarrow i - 1

4. while j > 0 and A[j] > x

5. A[j + 1] \leftarrow A[j]

6. j \leftarrow j - 1

7. end while

8. A[j + 1] \leftarrow x
```

end for

9.

Line 4-7

- Best case (already sorted): 1
- Worst case (reverse order): i 1 for A[i]

Runtime depends on input

- In this class, we focus on the worst-case analysis: gives us a running time bound that holds for every possible input.
- Particularly appropriate for general purpose analysis
- "Average-case" analysis?
 - Require more heavy machinery much harder
 - Requires a good understanding of the domain what would average input look like?
- "best-case" analysis? Sorry, that is just wishful thinking ...

Constants and lower order terms don't matter

Constant factors

Lower order terms

$$2n^2 + 2n \text{ vs. } 3n^2$$

Asymptotic analysis: focus on running time for very large input size \boldsymbol{n}

Why: with large n, we start to see the difference between computationally feasible vs. not feasible

Asymptotic growth

• Example:

$$6n\log_2 n + 6n$$

Merge sort

versus

$$\frac{1}{2}n^2$$
Insertion sort

Asymptotic Analysis: Big-Oh notation

English definition:

Let f(n) and g(n) be two functions

We say that f(n) = O(g(n)) if eventually (**for** all sufficiently large n), f(n) is bounded above by a constant multiple of g(n)

Intuitive Meaning: f(n) grows no faster (asymptotically no worse) than g(n)

Big-Oh: formal definition

f(n) = O(g(n)) if and only if there exist constants c, n_0 such that $f(n) \le cg(n)$

for all $n \ge n_0$

Note: c and n_0 cannot depend on n

Example #1

•
$$T(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0 =$$

- Claim: $T(n) = O(n^k)$
- Proof: =

Example #2

- Claim: for every $k \ge 1$, n^k is not $O(n^{k-1})$
- Proof by contradiction:

Big-Omega (Ω) notation

 $f(n) = \Omega(g(n))$ if and only if there exist constants c, n_0 such that

$$f(n) \ge cg(n)$$

for all $n \ge n_0$

Intuitive Meaning: f(n) grows no slower (asymptotically no better) than g(n)

Theta (Θ) notation

$$f(n)=\Thetaig(g(n)ig)$$
 if and only if there exist constants c_1,c_2,n_0 such that $c_1g(n)\leq f(n)\leq c_2g(n)$ for all $n\geq n_0$

Or equivalently f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Intuitive Meaning: f(n) grows the same (asymptotically equivalent) as g(n)

Useful Limits

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & f(n) = O(g(n)) \\ c & f(n) = \Theta(g(n)) \\ \infty & f(n) = \Omega(g(n)) \end{cases}$$

where c is a finite nonzero constant

Note that: if
$$f(n) = \Theta(g(n))$$
, it is also true that $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Example

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$$

$$g_1(n) = n^k, g_2(n) = n^{k-1}$$

$$\lim_{n \to \infty} \frac{f(n)}{g_1(n)} = \lim_{n \to \infty} \left(a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_0}{n^k} \right) = a_k$$

$$f(n) = \Theta(g(n)), f(n) = O(g(n)), f(n) = \Omega(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g_2(n)} = \lim_{n \to \infty} \left(a_k n + a_{k-1} + \dots + \frac{a_0}{n^{k-1}} \right) = \infty$$
$$f(n) = \Omega(g(n))$$

Quick in-class exercise

 $T(n) = 2n^2 + 3n$, which of the following statements are true? (check all that apply)

$$\Box T(n) = O(n)$$

$$\Box T(n) = O(n^3)$$

$$\Box T(n) = \Omega(n)$$

$$\Box T(n) = \Theta(n^2)$$

Quick in-class practice

$$f(n) = 2^{n+10}$$
 $g(n) = 2^n$

Which of the followings are correct?

$$\Box f(n) = O(g(n))$$

$$\Box f(n) = \Theta(g(n))$$

$$\Box f(n) = \Omega(g(n))$$

Question

- We said that in asymptotic analysis we don't care about constants, but not all constants are unimportant
- For example: n^2 vs. n^3 , 2^n vs. 3^n

 Which constants in the following expressions do we care about in asymptotic run time?

$$2(n+1)^3$$
, $\log_4 n$, $\log(n^5)$, $(\log n)^6$, $8^{7(\log_9 n)}$

Useful facts about logs and exponentials

$$a^{x+y} = a^x \cdot a^y$$

$$a^{2x} = (a^x)^2$$

$$\log_2 a^x = x \log_2 a$$

$$\log(a \cdot b) = \log a + \log b$$

$$\log \frac{a}{b} = \log a - \log b$$

$$\log_a x = \log_a b \log_b x$$

Common efficiency class

Class	Name	
1	constant	No reasonable examples, most cases infinite input size requires infinite run time
$\log n$	Logarithmic	Each operation reduces the problem size by half, Must not look at the whole input, or a fraction of the input, otherwise will be linear
n	linear	Algorithms that scans a list of n items (sequential search)
$n \log n$	linearithmic	Many D&C algorithms e.g., merge sort
n^2	quadratic	Double embedded loops, insertion sort
n^3	cubic	Three embedded loops, some linear algebra algo.
2^n	exponential	Typical for algo that generates all subsets of a n element set.
n!	factorial	Typical for algo that generates all permutations of a n-element set

Summary of 1 st lecture

- Run time of an algorithm is a function of the input size
 - Input size: roughly viewed as the number of bits for representing the input
 - Sorting: n = the size of the array
 - Addition: input size = the number of bits for representing the numbers, for large numbers (log n)
- The run time may depend on the input: Best case, worst case and average – worst case is what we care about
- Asymptotic complexity order of growth
- O- upper bound. E.g., insertion sort: $O(n^2)$, $O(n^3)$...
- Ω lower bound. E.g., insertion sort: $\Omega(n^2)$, $\Omega(n)$, $\Omega(\log n)$...
- Θ tight bound. E.g., insertion sort: $\theta(n^2)$, $\theta(n^2+4n)$...