## Diffusion Models: DALL-E

### Deep Learning and Neural Networks: Advanced Topics

Fabio Brau March 1, 2023

Scuola Superiore Sant'Anna, Pisa.





Introduction

Diffusion Models

**Broader Impacts** 



## Introduction



## **Diffusion Models**



#### Overview

Diffusion models are generative models that aim at denoising data





#### **Timeline**

2015) ...Non-equilibrium Thermodynamics. Sohl-Dickstein et al. ICML

**2020)** Denoising Diffusion Probabilistic Models. Ho et al. NeurIPS.

2021) Score-Based Generative Modelina Through SDE. Song et al. ICLR.



## Deep Unsupervised Learning using Non-Equilibrium Thermodynamics



Diffusion process as a Markov Chain with Continuous State Space and Discrete Time.<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Sohl-Dickstein et al., "Deep Unsupervised Learning using Nonequilibrium Thermodynamics".

#### Reminder: Markov Chains with Discrete Time

#### Informal Definition

A sequence of random variables  $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(t)}, \cdots$ , such that:

- $\mathbf{x}^{(t)} \in S$ , where S State Space
- The future  $\mathbf{x}^{(t+1)}$  depends on the present  $\mathbf{x}^{(t)}$  but not on the past  $\mathbf{x}^{(t-1)}$

#### **Discrete State Space** S



# Continuous State Space S Transactions of distributions state space



## Reminder: MCDT with Discrete State Space

#### Definition

A sequence  $\{\mathbf{x}^{(t)}\}_{t\in\mathbb{N}}\subseteq S$ , a matrix  $P=(p_{ij})$ .

• Discrete state space:  $S = \{s_0, \dots, s_n, \dots\}$ 

• Markov Property:  $\mathbf{x}^{(t+1)}$  not dep.  $\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t-1)}$ .

• Transaction Matrix:  $\mathbb{P}\left(\mathbf{x}^{(t+1)} = s_i | \mathbf{x}^{(t)} = s_i\right) = p_{ii}$ 



## Reminder: MCDT with Discrete State Space

#### Definition

A sequence  $\{\mathbf{x}^{(t)}\}_{t\in\mathbb{N}}\subseteq S$ , a matrix  $P=(p_{ij})$ .

• Discrete state space:  $S = \{s_0, \dots, s_n, \dots\}$ 

• Markov Property:  $\mathbf{x}^{(t+1)}$  not dep.  $\mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t-1)}$ .

• Transaction Matrix:  $\mathbb{P}\left(\mathbf{x}^{(t+1)} = s_i | \mathbf{x}^{(t)} = s_i\right) = p_{ii}$ 

#### P is a stochastic matrix!

$$\forall i, \quad \sum_{j \in \mathbb{N}} p_{ij} = 1$$

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \qquad 1 \stackrel{\alpha}{\longleftrightarrow} 2$$







## Reminder: DTMC with Continuous State Space

Let assume  $\mathbf{x}, \mathbf{y} \in S$  where S continuous state space (e.g.  $S = \mathbb{R}^d$ ). Joint Distribution  $p(\mathbf{x}, \mathbf{y})$ 

$$\mathbb{P}\left(\mathbf{x} \in A \mid \mathbf{y} \in B\right) = \int_{A} \int_{B} p\left(\mathbf{x}, \mathbf{y}\right) \, d\mathbf{x} \, d\mathbf{y}$$

Transactional Kernel  $p(\mathbf{x} \mid \mathbf{y})$ 

$$p\left(\mathbf{x},\mathbf{y}\right) = p(\mathbf{x} \,|\, \mathbf{y}) \, p\left(\mathbf{y}\right)$$

Marginal Distribution  $p(\mathbf{x})$ 

$$p(\mathbf{x}) = \int_{S} p(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \int_{S} p(\mathbf{x} | \mathbf{y}) p(\mathbf{y}) d\mathbf{y}$$



#### Markov Chains with Discrete Time

#### Definition

A sequence of random variables  $\{\mathbf{x}^{(t)}\}_{t\in\mathcal{T}}\subseteq S$ , such that the future  $\mathbf{x}^{(t+1)}$  depends on the present  $\mathbf{x}^{(t)}$  but not on the past  $\mathbf{x}^{(t-1)}$ .

- · Discrete Time Property
  - $\mathbf{x}^{(0)},\,\mathbf{x}^{(1)},\cdots,\mathbf{x}^{(t)},\cdots$
- Markov Property

$$\mathbb{P}\left(\mathbf{x}^{(t+1)} \in A \,|\, \mathbf{x}^{(0)}, \dots, \mathbf{x}^{(t)}\right) = \mathbb{P}\left(\mathbf{x}^{(t+1)} \in A \,|\, \mathbf{x}^{(t)}\right)$$

**Discrete State Space** S

Continuous State Space S



## **Broader Impacts**



#### **CLIP Model**

"We also found discrepancies across gender and race for people categorized into the 'crime' and 'non-human' categories..."<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Radford et al., "Learning Transferable Visual Models From Natural Language Supervision".

# Thanks for the attention

#### Fabio Brau

- **m** Scuola Superiore Sant'Anna, Pisa
- fabio.brau@santannapisa.it
- in linkedin.com/in/fabio-brau





