Лабораторная работа №5

Построение графиков

Тазаева Анастасия Анатольевна

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы 3.1 Примеры из раздела 5.2	8 35
4	Выводы	45

Список иллюстраций

3.1	Установка пакетов для julia	8
3.2	Примеры. Основные пакеты для работы с графиками в Julia. ч.1	8
3.3	Примеры. Основные пакеты для работы с графиками в Julia. ч.2	9
3.4	Примеры. Основные пакеты для работы с графиками в Julia. ч.3	9
3.5	Примеры. Основные пакеты для работы с графиками в Julia. ч.4	10
3.6	Примеры. Основные пакеты для работы с графиками в Julia. ч.5	10
3.7	Примеры. Опции при построении графика. ч.1	11
3.8	Примеры. Опции при построении графика. ч.2	12
3.9	Примеры. Опции при построении графика. ч.3	13
3.10	Примеры. Простой точечный график	14
3.11	Примеры. Точечный график с кодированием значения размером	
	точки	14
3.12	Примеры. 3-мерный точечный график с кодированием значения	
	размером точки	15
3.13	Примеры. Аппроксимация данных.	16
3.14	Примеры. Две оси ординат	17
3.15	Примеры. Полярные координаты	17
3.16	Примеры. Параметрический график кривой на плоскости и в	
	пространстве	18
	Примеры. График поверхности. ч.1	19
	Примеры. График поверхности. ч.2	20
	Примеры. Линии уровня. ч.1	21
	Примеры. Линии уровня. ч.2	22
	Примеры. Векторные поля	23
	Примеры. Gif-анимация	24
3.23	Примеры. Гипоциклоида	25
	Примеры. Errorbars. ч.1	26
	Примеры. Errorbars. ч.2	27
3.26	Примеры. Errorbars. ч.3	28
3.27	Примеры. Errorbars. ч.4	29
3.28	Примеры. Использование пакета Distributions. ч.1	29
3.29	Примеры. Использование пакета Distributions. ч.2	30
3.30	Примеры. Использование пакета Distributions. ч.3	31
3.31	Примеры. Подграфики. ч.1	32
3.32	Примеры. Подграфики. ч.2	33
3.33	Примеры. Подграфики. ч.3	34
3 34	Примеры Полграфики и Л	2/

3.35 Задание 1 .				•							•			•	•		•			35
3.36 Задание 2.																				36
3.37 Задание 3.																				37
3.38 Задание 4.																				38
3.39 Задание 5.																				38
3.40 Задание 6.																				39
3.41 Задание 7 .																				40
3.42 Задание 8 .																				41
3.43 Задание 9 .																				42
3.44 Задание 10																				43
3.45 Задание 11																				44

Список таблиц

1 Цель работы

Основная цель работы — освоить синтаксис языка Julia для построения графиков.

- 1. Используя Jupyter Lab, повторите примеры из раздела 5.2.
- 2. Выполните задания для самостоятельной работы (раздел 5.4).

3 Выполнение лабораторной работы

3.1 Примеры из раздела 5.2

Примеры представлены на рис. 3.1 - 3.34. Сохраненные файлы по заданиям располагаются в смежном каталоге lab5+samost/examples

```
(@v1.10) pkg> add Plots.jl
  Resolving package versions...
No Changes to `C:\Users\noname\.julia\environments\v1.10\Project.toml`
No Changes to `C:\Users\noname\.julia\environments\v1.10\Manifest.toml`
Precompiling project...
29 dependencies successfully precompiled in 16 seconds. 162 already precompiled.
```

Рис. 3.1: Установка пакетов для julia

Рис. 3.2: Примеры. Основные пакеты для работы с графиками в Julia. ч.1

```
# указывается, что для построения графика используется gr():
gr()
# задание опций при построении графика
# (название кривой, подписи по осям, цвет графика):
plot(x,y,
    title="A simple curve f(x)=(3x^2+6x-9)e^(-0.3x) ",
    xlabel="Variable x",
    ylabel="Variable y",
    color="blue")

A simple curve f(x)=(3x^2+6x-9)e^(-0.3x)
```


Рис. 3.3: Примеры. Основные пакеты для работы с графиками в Julia. ч.2

Рис. 3.4: Примеры. Основные пакеты для работы с графиками в Julia. ч.3

Рис. 3.5: Примеры. Основные пакеты для работы с графиками в Julia. ч.4

Рис. 3.6: Примеры. Основные пакеты для работы с графиками в Julia. ч.5

Опции при построении графика

Далее на примере графика функции $\sin(x)$ и графика разложения этой функции в ряд Тейлора:

$$sin(x) = x - rac{x^3}{3!} + rac{x^5}{5!} - \ldots = \sum_{n=0}^{\infty} (-1)^n * rac{x^{2n+1}}{(2n+1)!}, x \in C$$

```
# указывается, что для построения графика используется pyplot():

pyplot()

# задание функции sin(x):

sin_theor(x) = sin(x)

# построение графика функции sin(x):

plot(sin_theor,

title="График функции sin(x)",

xlabel="Переменная x",

color="orange")
```


Рис. 3.7: Примеры. Опции при построении графика. ч.1

Рис. 3.8: Примеры. Опции при построении графика. ч.2

```
plot(
# функция sin(x):
sin_taylor,
# nodnucь 6 легенде, цбет и тип линии:
label = "sin(x), разложение в ряд Тейлора",
line=(:blue, 0.3, 6, :solid),
# размер графика:
size=(880, 500),
# параметы опображения значений по осям
           m параметры отпоражения значении по осям

xticks = (-5:0.5:5),

yticks = (-1:0.1:1),

xtickfont = font(12, "Times New Roman"),

ytickfont = font(12, "Times New Roman"),

m подписи по осям:
            ylabel = "y",
xlabel = "x",
           xlabel = "x",

# назбание графика:
title = "Разложение в ряд Тейлора",

# поборот значений, заданный по оси х:
xrotation = rad2deg(pi/4),
# залижка области графика цбетом:
fillrange = 0,
fillalpha = 0.5,
fillcolor = :lightgoldenrod,
# задание цбета фона:
hackground color = :ivpry
            background_color = :ivory
  plot!(
           ti(
# функция sin_theor:
sin_theor,
# nodnucь б легенде, цбет и тип линии:
label = "sin(x), теоретическое значение",
line=(:black, 1.0, 2, :dash))
                                                                                                        Разложение в ряд Тейлора
              1.0
                                                                                                                                                                                                         sin(x), разложение в ряд Тейлора
-- sin(x), теоретическое значение
             0.9
              0.7
             0.6
              0.4
             0.3
              0.1
        0.0
-0.1
-0.2
        -0.2
-0.3
-0.4
-0.5
-0.6
-0.7
         -0.8
         -0.9
         -1.0
                           -5.0-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
```

Рис. 3.9: Примеры. Опции при построении графика. ч.3

Рис. 3.10: Примеры. Простой точечный график.

Рис. 3.11: Примеры. Точечный график с кодированием значения размером точки.

3-мерный точечный график с кодированием значения размером точки # параметры распределения точек в пространстве: n = 50 x = rand(n) y = rand(n) z = rand(n) ms = rand(50) * 30 # параметры построения графика: scatter(x, y, z, markersize=ms) O yl 1.00 0.75 0.25 1.00 0.75 0.00 0.25 0.50 0.75 1.00 0.00

Рис. 3.12: Примеры. 3-мерный точечный график с кодированием значения размером точки.

аппроксимация данных # массив данных от 0 до 10 с шагом 0.01: x = collect(0:0.01:9.99) # экспоненциальная функция со случайным сдвигом значений: y = exp.(ones(1000)+x) + 4000*randn(1000)# построение графика: scatter(x,y,markersize=3,alpha=.8,legend=false) 6.0×10⁴ 4.0×10⁴ 2.0×10⁴ 10.0 7.5 # определение массива для нахождения коэффициентов полинома: $A = [ones(1000) \times x.^2 \times .^3 \times .^4 \times .^5]$ # решение матричного уравнения: $g = c[1]*ones(1000) + c[2]*x + c[3]*x.^2 + c[4]*x.^3 + c[5]*x.^4 + c[6]*x.^5$ # построение графика аппроксимирующей функции: plot!(x,g,linewidth=3, color=:red) 6.0×10⁴ 4.0×10⁴ 2.0×10⁴

Рис. 3.13: Примеры. Аппроксимация данных.

Рис. 3.14: Примеры. Две оси ординат.

Рис. 3.15: Примеры. Полярные координаты.

Параметрическое урабнение: x_f(t) = sin(t) y_f(t) = sin(2t) # построение графика: plot(x_f, y_f, θ, 2π, leg=false, fill=(θ,:orange)) 1.0 0.5 -1.0 -1.0 -0.5 0.0 0.5 1.0

Параметрический график кривой в пространстве

```
# параметрическое уравнение
t = range(0, stop=10, length=1000)
x = cos.(t)
y = sin.(t)
z = sin.(5t)
# построение графика:
plot(x, y, z)
```


Рис. 3.16: Примеры. Параметрический график кривой на плоскости и в пространстве

График поверхности # построение графика поверхности: $f(x,y) = x^2 + y^2$ x = -10:10 y = x surface(x, y, f) 200 150 100 100 50 50 -10 -5 10 -10 # построение графика поверхности: $f(x,y) = x^2 + y^2$ x = -10:10 y = x plot(x, y, f, linetype=:wireframe 200 150 100 50 0 10 -10 0 -5 0

Рис. 3.17: Примеры. График поверхности. ч.1

Рис. 3.18: Примеры. График поверхности. ч.2

Линии уровня

Рис. 3.19: Примеры. Линии уровня. ч.1

Рис. 3.20: Примеры. Линии уровня. ч.2

Векторные поля

Рис. 3.21: Примеры. Векторные поля

Gif-анимация

Рис. 3.22: Примеры. Gif-анимация

Гипоциклоида

```
# paduyc малой окружности:
rr = 1
# κοσφφυμυεμπ для построения большой окружности:
k = 3
# число отсчётов:
n = 100
# массив значений угла θ:
# theta from θ to 2pi ( + a Little extra)
θ = collect(θ:2*π/100:2*π+2*π/100)
# массив значений координат:
X = rr*k*cs.(θ)
# забаём оси координат:
plt=plot(5,xlim=(-4,4),ylim=(-4,4), c=:red, aspect_ratio=1, legend=false, framestyle=:origin)
# δοπьшая окружность:
plot!(plt, X,Y, c=:blue, legend=false)
i = 50
t = θ[1:i]
# гипоциклоида:
x = rr*(k-1)*cos.(t) + rr*cos.((k-1)*t)
y = rr*(k-1)*sin.(t) - rr*sin.((k-1)*t)
plot!(x,y, c=:red)
# малал окружность:
xc = rr*(k-1)*cos(t[end]) .+ rr*cos.(θ)
yc = rr*(k-1)*sin(t[end]) .+ rr*sin.(θ)
plot!(xc,yc,c=:black)
# paduyc малой окружности:
xl = transpose([rr*(k-1)*cos(t[end]) x[end]])
yl = transpose([rr*(k-1)*sin(t[end]) y[end]])
plot!(xl,yl,markershape=:circle,markerstrokecolor=:red)
```


Рис. 3.23: Примеры. Гипоциклоида

Errorbars

```
# подключение пакета Statistics:
import Pkg
Pkg.add("Statistics")
using Statistics
  Resolving package versions...
  No Changes to `C:\Users\noname\.julia\environments\v1.10\Project.toml`
No Changes to `C:\Users\noname\.julia\environments\v1.10\Manifest.toml`
#Зададим массив значений:
sds = [1, 1/2, 1/4, 1/8, 1/16, 1/32]
#Затем сгенерируем массив ошибок (отклонений от исходных значений):
n = 10
y = [mean(sd*randn(n)) for sd in sds]
errs = 1.96 * sds / sqrt(n)
#Построим график исходных значений
plot(y,
   ylims = (-1,1),
 1.0
                                                                                 __ y1
 0.5
-0.5
-1.0
```

Рис. 3.24: Примеры. Errorbars. ч.1

Рис. 3.25: Примеры. Errorbars. ч.2

Рис. 3.26: Примеры. Errorbars. ч.3

Рис. 3.27: Примеры. Errorbars. ч.4

Использование пакета Distributions

Рис. 3.28: Примеры. Использование пакета Distributions. ч.1

Рис. 3.29: Примеры. Использование пакета Distributions. ч.2

```
plotly()
    d1=Normal(10.0,5.0);
    d2=Normal(35.0,10.0);
    d3=Normal(60.0,5.0);
    N=1000;
    ages = (Float64)[];
    ages = append!(ages,rand(d1,Int64(ceil(N/2))));
    ages = append!(ages,rand(d2,N));
    ages = append!(ages,rand(d3,Int64(ceil(N/3))));
    histogram(
        ages,
        bins=50,
        label="Распределение по возрастам (года)",
        xlabel = "Возраст (лет)",
        ylabel= "Количество",
        title = "Распределение по возрастам (года)"
)
```


Рис. 3.30: Примеры. Использование пакета Distributions. ч.3

Рис. 3.31: Примеры. Подграфики. ч.1

Рис. 3.32: Примеры. Подграфики. ч.2

Рис. 3.33: Примеры. Подграфики. ч.3

Рис. 3.34: Примеры. Подграфики. ч.4

3.2 Самостоятельная работа

Примеры представлены на рис. 3.35 - 3.45. Сохраненные файлы по заданиям располагаются в смежном каталоге lab5+samost/samost.

Рис. 3.35: Задание 1

```
titles = ["dot" "dashdot" "dash" "solid"]

p1=plot(x,f, linestyle=:dot)
p2=plot(x,f, linestyle=:dashdot)
p3=plot(x,f, linestyle=:dash)
p4=plot(x,f, linestyle=:solid)
plot(p1,p2,p3,p4,
    title = titles,
    layout=(2,2)
    )
```


Рис. 3.36: Задание 2

Рис. 3.37: Задание 3

"C:\\Users\\noname\\figure_tazaeva.png"

Рис. 3.38: Задание 4

Рис. 3.39: Задание 5

```
sds = [1, 1/2, 1/4, 1/8, 1/16, 1/32]
n = 10
y = [mean(sd*randn(n)) for sd in sds]
errs = 2.45 * sds / n*0.01
plot(y,
         ylims = (-1,1),
)
plot(y,
ylims = (-1,1),
err = errs
)
```


Рис. 3.40: Задание 6

```
n = 50
x = rand(1:20, 20)
y = rand(1:20, 20)
scatter(x,y,
    legend=true,
    label = "точки",
    xlabel="x",
    ylabel="y",
    title="Задание 7. Точечный график случайных чисел")
```

Задание 7. Точечный график случайных чисел 17.5 15.0 10.0 7.5 5.0 5 10 15 20

Рис. 3.41: Задание 7

```
n = 50
x = rand(1:20, 20)
y = rand(1:20, 20)
z = rand(1:20, 20)
scatter(x,y,z,
legend=true,
label = "точки",
xlabel="x",
ylabel="y",
title="Задание 8. 3D - Точечный график случайных чисел")
```

Задание 8. 3D - Точечный график случайных чисел

Рис. 3.42: Задание 8

```
n=1000
n=1000
f(x)=sin(x)
c = collect(range(-10*pi, 10*pi, n))
a=@animate for i in 1:n
plot(xlim=(-10*pi,10*pi), ylim=(-1,1))
x=c[1:i]
     y=map(f,x)
plot!(x,y)
 end
gif(a, "task9.gif")
     -30
                           -20
                                               -10
  1.0 F
                                                                                                                      __ y1
  0.5
  0.0
-0.5
-1.0 L
                                             -10
                                                                                     10
                          -20
```

Рис. 3.43: Задание 9

```
# μοδυγς Μαπού οκργχενοςπυ:

rr = 0.5

# κουφφυμμενε δης ποςπροενιας δοποιού οκργχενοςπυ:

k = 3

# ναςπο οποςθεποδ:

n = 100

# μαςσαθ значений γεπα δ:

# theta from θ to 2pi ( + a little extra)

θ = collect(θ:2*π/100:2*πε2*π/100)

# μαςσαθ значений κουρθυναπ:

X = rr*k*cos.(θ)

Y = rr*k*sin.(θ)

a=@animate for i in 1:n

# σαδαδε ουυ κουρθυναπ:

plt=plot(5,Xlim-(-4,4),ylim=(-4,4), c=:red, aspect_ratio=1, legend=false, framestyle=:origin)

# δοποιωσα οκργχενοςπο:

plot!(plt, X,y, c=:blue, legend=false)

i = 50

t = θ[1:i]

# ευπουμεκπουθα:

x = rr*(k-1)*cos.(t) + rr*cos.((k-1)*t)

y = rr*(k-1)*sin.(t) - rr*sin.((k-1)*t)

plot!(χ,y, c=:red)

# μαπας οκργχενοςπω:

x = rr*(k-1)*cos(t[end]) .+ rr*cos.(θ)

yc = rr*(k-1)*cos(t[end]) .+ rr*sin.(θ)

plot!(xc,yc,c=:black)

# μοδυγς μαποίο οκργχενοςπω:

x1 = transpose([rr*(k-1)*cos(t[end]) y[end]])

yl = transpose([rr*(k-1)*sin(t[end]) y[end]])

plot!(xl,yl,markershape=:circle,markersize=4,c=:black)

scatter!([x[end]],[y[end]],c=:red, markerstrokecolor=:red)

end

gif(a,"task10.gif")
```


Рис. 3.44: Задание 10

```
3aganue 11

: # poduyc mando окружности:
    rr = 1

# xonoфициент для построения большой окружности:
    k = 5

# число отсчётоб:
    n = 100

# лассий значений угла д:

# collect(e:2*n/180:2*n*2*n/180)

# accute значений угла д:

# raccute значений

# saccute знач
                            end
gif(a,"task11.gif")
```


Рис. 3.45: Задание 11

4 Выводы

В ходе лабораторной работы мною был освоен синтаксис языка Julia для построения графиков.