PRÁCTICO 8

Coordenadas - Matriz de cambio de base Álgebra II - Año 2024/1 - FAMAF

Objetivos.

- Aprender a determinar las coordenadas de un vector en una base ordenada de un espacio vectorial.
- Aprender a calcular la matriz de una transformación respecto a las bases canónicas.
- Dadas dos bases ordenadas, aprender a operar con la matriz de cambio de base.

Ejercicios.

- (1) Dar las coordenadas del polinomio $2x^2 + 10x 1 \in \mathbb{K}_3[x]$ en la base ordenada $\mathcal{B} = \{1, x+1, x^2 + x + 1\}.$
- (2) Dar las coordenadas de la matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ en la base ordenada

$$\mathcal{B} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

Más generalmente, dar las coordenadas de cualquier matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ en la base \mathcal{B} .

- (3) a) Dar una base del subespacio $W = \{(x, y, z) \in \mathbb{K}^3 \mid x y + 2z = 0\}.$
 - b) Dar las coordenadas de w = (1, -1, -1) en la base que haya dado en el item anterior.
 - c) Dado $(x, y, z) \in W$, dar las coordenadas de (x, y, z) en la base que haya calculado en el item anterior.
- (4) Escribir las matrices de las siguientes transformaciones lineales respecto de las bases canónicas de los espacios involucrados.

33

- a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x, y) = (x y, x + y, 2x + 3y).
- b) $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, S(x, y, z) = (x y + z, 2x y + 2z).
- c) $D: P_4 \longrightarrow P_4$, D(p(x)) = p'(x).

d)
$$T: \mathcal{M}_{2\times 2}(\mathbb{K}) \longrightarrow \mathbb{K}$$
, $T(A) = \operatorname{tr}(A)$.

e)
$$L: P_3 \longrightarrow M_{2\times 2}(\mathbb{R}), L(ax^2 + bx + c) = \begin{bmatrix} a & b+c \\ b+c & a \end{bmatrix}.$$

f) $Q: P_3 \longrightarrow P_4, Q(p(x)) = (x+1)p(x).$

- (5) Sea \mathcal{C} la base canónica de \mathbb{K}^2 y $\mathcal{B} = \{(1,0), (1,1)\}$ otra base de \mathbb{R}^2 .
 - a) Encontrar la matriz de cambio de base $P_{\mathcal{C},\mathcal{B}}$ de \mathcal{C} a \mathcal{B} .
 - b) Encontrar la matriz de cambio de base $P_{\mathcal{B},\mathcal{C}}$ de \mathcal{B} a \mathcal{C} .
 - c) ¿Qué relación hay entre $P_{\mathcal{C},\mathcal{B}}$ y $P_{\mathcal{B},\mathcal{C}}$?
 - d) Encontrar $(x, y), (z, w) \in \mathbb{K}^2$ tal que $[(x, y)]_{\mathcal{B}} = (1, 4)$ y $[(z, w)]_{\mathcal{B}} = (1, -1)$.
 - e) Determinar las coordenadas de (2,3) y (0,1) en las bases \mathcal{B}_2 .

(6) Sea
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \end{bmatrix} \in \mathbb{K}^{3 \times 3}$$
.

- a) Calcular la inversa de P.
- b) ⓐ Dar una base ordenada \mathcal{B} de \mathbb{K}^3 tal que P es la matriz de cambio de coordenadas de la base canónica de \mathbb{K}^3 a la base \mathcal{B} .
- c) Encontrar $(x, y, z) \in \mathbb{K}^3$ tal que su vector de coordenadas con respecto a \mathcal{B} es

$$[(x, y, z)]_{\mathcal{B}} = (2, -1, -1).$$

- (7) Sean C_n , n=2,3, las bases canónica de \mathbb{R}^2 y \mathbb{R}^3 respectivamente. Sean $\mathcal{B}_2=\{(1,0),(1,1)\}$ y $\mathcal{B}_3=\{(1,0,0),(1,1,0),(1,1,1)\}$ bases de \mathbb{R}^2 , \mathbb{R}^3 , respectivamente.
 - a) Escribir la matriz de cambio de base $P_{\mathcal{C}_n,\mathcal{B}_n}$ de \mathcal{C}_n a \mathcal{B}_n , n=2,3.
 - b) Escribir la matriz de cambio de base $P_{\mathcal{B}_n,\mathcal{C}_n}$ de \mathcal{B}_n a \mathcal{C}_n , n=2,3.
- (8) Sean C_n , B_n como en el ejercicio (7) y sean las siguientes transformaciones lineales:
 - $\circ T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T(x, y) = (x y, x + y, 2x + 3y).$
 - $\circ \ S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, \ S(x,y,z) = (x-y+z,2x-y+2z).$

Entonces, para cada una de las transformaciones lineales anteriores,

- a) Dar las matrices respecto a las bases \mathcal{B}_n y \mathcal{C}_n .
- b) Dar las matrices respecto a las bases C_n y \mathcal{B}_n .
- c) Dar las matrices respecto a las bases \mathcal{B}_n y \mathcal{B}_n .
- (9) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y, x - z).$$

Sean \mathcal{C} la base canónica de \mathbb{R}^3 y $\mathcal{B}' = \{(1,1), (1,-1)\}$ base de \mathbb{R}^2 .

- a) Calcular la matriz $[T]_{CB'}$, es decir la matriz de T respecto de las bases C y B'.
- b) Sea $(x, y, z) \in \mathbb{R}^3$. Dar las coordenadas de T(x, y, z) respecto de la base \mathcal{B}' .

c) Sea $S:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ una transformación lineal tal que su matriz respecto a las bases \mathcal{B}' y \mathcal{C} es

$$[S]_{\mathcal{B}'\mathcal{C}} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}.$$

Calcular la matriz de la composición $T \circ S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con respecto a la base \mathcal{B}' .

(10) Sea A la matriz del ejercicio (1)a) del práctico 5 y $T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la transformación lineal dada por $T_A(v) = Av$. Hallar los autovalores de T_A , y para cada uno de ellos, dar una base de autovectores del correspondiente autoespacio. Decidir si T_A es o no diagonalizable. En caso de serlo dar una matriz invertible P tal que $P^{-1}AP$ es diagonal.

Repetir esto para cada una de las matrices de dicho ejercicio.

- (11) Repetir el ejercicio anterior para cada matriz del ejercicio (1) del práctico 5 pero ahora consideradando a la transformación como una transformación lineal entre los \mathbb{C} -espacios vectoriales \mathbb{C}^n .
- (12) Sea $T: V \longrightarrow V$ una transformación lineal y $v \in V$ un autovector de autovalor λ . Probar las siguientes afirmaciones.
 - a) Si $\lambda = 0$, entonces $v \in Nu(T)$.
 - *b*) Si $\lambda \neq 0$, entonces $v \in \text{Im}(T)$.
 - c) Si $T^2 = 0$, entonces T Id es un isomorfismo.
- (13) ⓐ Sea V un espacio vectorial de dimensión 3 y $T:V\longrightarrow V$ una transformación lineal. Supongamos que existe $v\in V$ tal que $T^3(v)=0$ pero $T^2(v)\neq 0$.
 - a) ⓐ Probar que $\mathcal{B} = \{v, T(v), T^2(v)\}$ es una base de V.
 - b) Calcular la matriz de T respecto de la base \mathcal{B} .
 - c) Calcular los autovalores de T y sus correspondientes autoespacios. Decidir si T es diagonalizable.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- (14) Repetir el ejercicio (5) con la base canónica de \mathbb{R}^3 y la base $\mathcal{B}_3 = \{(1,0,0),(1,1,0),(1,1,1)\}$. Considerar las 3-upla (1,2,3) y (0,1,2) para los últimos dos items.
- (15) Repetir los últimos items del ejercicio (9) con la transformación lineal $S \circ T$ y la base del ejercicio anterior.

(16) ⓐ Sea V un espacio vectorial con base $\mathcal{B} = \{v_1, ..., v_n\}$ y $A = (a_{ij}) \in \mathbb{K}^{n \times n}$ una matriz. Sea $\mathcal{B}' = \{v_1', ..., v_n'\}$ donde

$$v'_j = \sum_{i=1}^n a_{ij} v_i$$
 para todo $1 \le j \le n$.

Probar que \mathcal{B}' es una base de V si y sólo si A es inversible. En tal caso determinar la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} y viceversa.

- (17) Para cada una de las siguientes transformaciones lineales, hallar sus autovalores, y para cada uno de ellos, dar una base de autovectores del espacio propio asociado. Luego, decir si la transformación considerada es o no diagonalizable.
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (y, 0).
 - b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + 2z, -x y + z, x + 2y + z).
 - c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (4x + y + 5z, 4x y + 3z, -12x + y 11z).
 - d) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
- (18) Repetir el ejercicio (13) pero para cualquier $n \in \mathbb{N}$ en vez de 3.
- (19) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\langle (1,2,3), (2,1,-1) \rangle$ es el autoespacio asociado a 0 y $\langle (3,1,1), (1,1,3) \rangle$ es el autoespacio asociado a 5.
 - b) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\langle (1,2,3) \rangle$ es el autoespacio asociado a 0 y $\langle (3,1,1) \rangle$ es el autoespacio asociado a 5.
 - c) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\{(1,0,1),(0,1,0)\}$ es una base de Nu(T) y $\{(1,0,-1),(0,1,0)\}$ es una base de la Im(T).
 - d) Existe una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\{(1,0,1)\}$ es una base de Nu(T) y $\{(1,0,-1),(0,1,0)\}$ es una base de la Im(T).

Ayudas.

- (6)b) Usar que $P_{\mathcal{C},\mathcal{B}}=P_{\mathcal{B},\mathcal{C}}^{-1}$ y recordar como se define $P_{\mathcal{B},\mathcal{C}}$.
- (13)*a*) Es suficiente probar que $\mathcal{B} = \{v, T(v), T^2(v)\}$ es LI. Sean a, b, c escalares tales que $av + bT(v) + cT^2(v) = 0$. Si aplicamos T^2 en ambos lados deducimos que $aT^2(v) = 0$ dado que $T^3(v) = 0$. Entonces a = 0 porque (completar argumento). Con un razonamiento similar deducir que a = b = c = 0.
- (16) Es suficiente probar que \mathcal{B}' es LI si y sólo si A es invertible. Usar una estrategia similar a la demostración del Teorema 3.3.1 para probar esta equivalencia.