Decodification cost in CEO problem: test_ber_vs_hbu0omega.m

Fernando Pujaico Rivera

August 8, 2015

Abstract

test_ber_vs_hbu0omega compare the relation between $P(\hat{U}_0 \neq U_0)$ and $H(U_0|\Omega_M)$ in the model system.

1 Introduction

test_ber_vs_hbu0omega

In the Figure 1 the source U_0 , $P(U_0=1)=0.5$, trough across M BSC channels, with error probability P_s , generating the sources U_m , $\forall m \in S = \{1, 2, ..., M\}$. In this context we said $\Omega_M = \{U_m \in S\}$. In the Figure 2 also can be seen that $\Omega_M = g(U_0)$. Known Ω_M , this values are decoded for to get \hat{U}_0 , a approximate

Figure 1: System Model (In extend).

version of U_0 , so that $\hat{U}_0 = f(\Omega_M)$.

$$H(U_0|f(\Omega_m)) = H(U_0|\hat{U}_0) = h_b(P(\hat{U}_0 \neq U_0))$$
(1)

Figure 2: System Model (short).

thereby

$$h_b(P(\hat{U}_0 \neq U_0)) \ge H(U_0|\Omega_M) \tag{2}$$

or if we consider $P(\hat{U_0} \neq U_0) < 0.5$

$$P(\hat{U_0} \neq U_0) \ge h_b^{-1}(H(U_0|\Omega_M))$$
 (3)

1.1 Working with the probability $P(\hat{U_0} \neq U_0)$

In [1, 2] is considered a maximum a posteriori (MAP) fusion rule $f(\Omega_M)$, where the output value \hat{u}_0 of \hat{U}_0 is obtained as

$$\hat{u}_0 = \arg_{u_0} \max P(U_0 | \Omega_M)
\equiv \arg_{u_0} \max P(\Omega_M | U_0)$$
(4)

Thus, considering that m_0 is the number of zeros in Ω_M , the decision is simplify to

$$\hat{u}_0 = 1
m_0 \geq \lfloor \frac{M}{2} \rfloor
\hat{u}_0 = 0$$
(5)

In this expression is considered that if M is even and $m_0 = M/2$, the decision is arbitrarily assume that $\hat{u}_0 = 1$, so that $P(\hat{U}_0 \neq U_0)$ is $P_e = 0.5$ $[P(\hat{u}_0 = 0|u_0 = 1) + P(\hat{u}_0 = 1|u_0 = 0)]$,

$$P_e = 0.5 \sum_{k=0}^{\lfloor \frac{M}{2} \rfloor - 1} {M \choose k} (1 - P_s)^k P_s^{M-k} + 0.5 \sum_{k=\lfloor \frac{M}{2} \rfloor}^{M} {M \choose k} (1 - P_s)^{M-k} P_s^{k}$$
 (6)

where, $\lfloor . \rfloor$ is the floor function and the value P_e only is valid for values of $P_s \leq 1/2^{-1}$. The Equation (6) can be sort as

$$P_{e} = \begin{cases} \sum_{k=\lfloor \frac{M}{2} \rfloor + 1}^{M} {M \choose k} (1 - P_{s})^{M-k} P_{s}^{k} & \text{if } M \text{ odd} \\ \\ \sum_{k=\lfloor \frac{M}{2} \rfloor + 1}^{M} {M \choose k} (1 - P_{s})^{M-k} P_{s}^{k} & \text{if } M \text{ even} \\ \\ + 0.5 {M \choose \frac{M}{2}} (1 - P_{s})^{\frac{M}{2}} P_{s}^{\frac{M}{2}} \end{cases}$$
 (7)

This form is the form showed in [?].

There is important note that in [1, 2] your value ρ is equal to $1-P_s$ here, and your result is for $\rho > 0.5$

1.2 Working with the probability $H(U_0|\Omega_M)$

$$H(U_0|\Omega_M) = \sum_{k=0}^{M} {M \choose k} p_s^k (1 - p_s)^{M-k} log_2 \left(1 + \frac{p_s}{(1 - p_s)} \right)^{M-2k}$$
 (8)

References

- [1] Abrardo, A.; Ferrari, G.; Martalò, M.; Perna, F. Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding. Sensors 2009, 9, 8776-8809. doi:10.3390/s91108776
- [2] Ferrari, G.; Martalo, M.; Abrardo, A.; Raheli, R., "Orthogonal multiple access and information fusion: How many observations are needed?," Information Theory and Applications Workshop (ITA), 2012, vol., no., pp.311,320, 5-10 Feb. 2012. doi: 10.1109/ITA.2012.6181783