Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture

Mahmoud Assran^{1,2,3*} Quentin Duval¹ Ishan Misra¹ Piotr Bojanowski¹ Pascal Vincent¹ Michael Rabbat^{1,3} Yann LeCun^{1,4} Nicolas Ballas¹

¹Meta AI (FAIR) ²McGill University ³ Mila, Quebec AI Institute ⁴New York University

I-JEPA

Interpreted by: John Tan Chong Min

Do you need to predict everything?

• Some things in input space are not important to understand for your goals

Transformers: Representation via Prediction

Figure 1: The Transformer - model architecture.

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Taken from: Attention is all you need. Vaswani et al. 2017

Prediction in Latent Space is powerful

e.g. Contrastive Language-Image Pretraining (CLIP)

Audio and text embeddings

e.g. Generation of images in pixel space with masked patches

Generation of next token in Transformers

e.g. Predicting patches in latent space

Downstream:
Classification Tasks
Decision making with agents

Preliminaries

Latent Space

Stable Diffusion: Noise Removal in Latent Space!

https://jalammar.github.io/illustrated-stable-diffusion/

Stable Diffusion: Noise Removal in Latent Space!

- Text gets mapped to same latent space as image
- Image is recursively refined in latent space by removing noise based on text prompt

High-Resolution Image Synthesis with Latent Diffusion Models. Rombach et al. 2022.

Vision Models

Vision Transformers (ViT)

Swin Transformers

Do these look the same to you?

Vision Transformers

- Loosely inspired by Transformers
- · Split image into patches
- Patches are arbitrarily cut off and linearly embedded!
- Patches are flattened!
- Loss function is not next-token prediction!
 - Uses a lot of data to learn compared to CNN
- Why are people still using this?

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

Dosovitskiy et al. 2021

Swin Transformers vs ViT

Swin Transformers: Shifted windows to view different combination of patches

Swin Transformers: Patch Masking

- Shifting windows help model to pay attention over different combinations of patches
- Patches which don't belong in original positions are masked

ViT's positional encoding may not be good!

	ImageNet		COCO		ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

- Swin Transformer has shown that positional embeddings in ViT can largely be ignored and get almost the same results!
- Inductive biases of translational invariance not present as compared to CNNs

I-JEPA

I-JEPA: Predicting Image Patches in Latent Space

- Simple idea:
 - Mask out some parts of an image
 - Use non-masked parts as context
 - Predict the masked components in latent space!
- Pretty similar to masked token prediction in BERT!
- Self-supervised Learning
 - Can learn from unlabelled data

Use context to predict missing details

- Area outside blue box is context and fed as input
- Predict latent space representation of blue box
- Generative model trained to provide sketches of latent space

JEPA - Only use whatever is necessary to predict

- Prediction is done in latent space
- I-JEPA does not use information content losses

A Path towards Autonomous Machine Intelligence. Yann LeCun. 2022.

Loss Function

Loss. The loss is simply the average L_2 distance between the predicted patch-level representations $\hat{s}_y(i)$ and the target patch-level representation $s_y(i)$; i.e.,

$$rac{1}{M} \sum_{i=1}^{M} D\left(\hat{m{s}}_y(i), m{s}_y(i)
ight) = rac{1}{M} \sum_{i=1}^{M} \sum_{j \in B_i} \lVert \hat{m{s}}_{y_j} - m{s}_{y_j}
Vert_2^2.$$

The parameters of the predictor, ϕ , and context encoder, θ , are learned through gradient-based optimization, while the parameters of the target encoder $\bar{\theta}$ are updated via an exponential moving average of the context-encoder parameters.

I-JEPA Pre-training is computationally efficient?

ImageNet-1K linear evaluation

- It is, when compared to ViT
- Not when you compare with CNN-based architectures which can train on ImageNet within a day
- No need data augmentations unlike contrastive methods like BYOL, VICReg

Comparison: EfficientNet V2

	EfficientNet (2019)	ResNet-RS (2021)	DeiT/ViT (2021)	EfficientNetV2 (ours)
Top-1 Acc.	84.3%	84.0%	83.1%	83.9%
Parameters	43M	164M	86M	24M

Table 4. EfficientNetV2-S architecture – MBConv and Fused-MBConv blocks are described in Figure 2.

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	256	15
7	Conv1x1 & Pooling & FC	-	1280	1

EfficientNetV2: Smaller Models and Faster Training. Tan and Le. 2021.

Thoughts

Information Pipeline – Bias for Representation

Hierarchical Prediction is the future

- Hierarchical prediction of more than just next token, but broader prediction at higher levels
- Higher level prediction can be more abstract and less detailed than lower levels

Evidence of a predictive coding hierarchy in the human brain listening to speech.
Caucheteux. 2022. Nature Human Behaviour.

How to represent part-whole hierarchies in a neural network. Hinton, 2021.

Better Grounding

- Perhaps we do in-filling by grounding our generation with some context high to low level context conditioning at various scales
- Innate Biases We have certain fixed priors which we use to predict the world
 - Extend lines in a straight way
 - Extrapolate patterns
- Memory We could use memory of objects/similar scenes in latent space form or text for context to ground the generation of latent representations
- Memory could be the Key, Value for the Transformer architecture, while the present state/latent space is the Query.

Hierarchical Prediction - Feature Pyramid Network

- Hierarchical prediction from coarse-grained image to fine-grained image
- My view: can perhaps use text/latent space in memory for grounding various scales
- My view: Condition finer grained prediction on the upper layers of the hierarchy

Feature Pyramid Networks for Object Detection. Lin et al. 2017.

Hierarchical JEPA

• Hierarchical prediction of actions from the highest level action to the lowest level action

A Path towards Autonomous Machine Intelligence. Yann LeCun. 2022.

Questions to Ponder

- Are Vision Transformers (ViT) an effective way to learn? How can we make it better and incorporate the inductive biases of space like in CNNs?
- Is prediction in latent space good? Why can't we do it in pixel space?
- Is there a way to do self-supervised learning for images better?
- How can we incorporate hierarchy into I-JEPA?
- How can memory be used for prediction?