ISYS3401 Information Technology Evaluation

Tutorial Week 5

Helen Wang Vincent Pang

Linear Regression

- Model the relationship between a dependent variable and one or more independent / explanatory variables by using linear functions where parameters are estimated from the data.
- A simple example:

$$y = \alpha + \beta x$$

- α:intercept
- β :slope

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	31.91255948	2.803609497	11.3826692	3.92706E-08	25.85572941	37.96938955
Χ	-0.015073871	0.00298682	-5.046796127	0.000223707	-0.021526503	-0.008621239

Assumptions

- 1. Linearity: $E(y) = \alpha + \beta x$
 - Relationship between the independent and dependent variables to be linear
 - The expected value of y is best represented by a line as the scatter plot distributes around the line evenly
- 2. Constant variance
 - For all values of x, SD(y) is the same
- 3. Normality
 - For a given x, y is Normally distributed

Residuals

- $E(y) = \alpha + \beta x$ the actual 'unobserved' association in realworld
- y = a + bx what we modelled / estimated
 - a and b are the least squares estimates of α and β

$$b = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x} y_i}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}$$
$$a = \overline{y} - b\overline{x}$$

- Observed error / residuals:
 - difference between your observation and the actual association
 - Given pair (xi, yi)

•
$$e_i = E(y) - y = yi - (a + bx_i)$$

ANOVA analysis

- Coefficient of Determination (R²)
 - $R^2 = SS_R / SS_T = (SS_T SS_E) / SS_T = 1 SS_E / SS_T$
 - The percentage of the dependent variable (y) variation that is explained by a linear model
 - **•** [0,1]
- Sample correlation coefficient (r)
 - [-1,1]
 - r = 1 => perfect positive correlation
 - r = -1 => perfect negative correlation
 - r = 0 => no correlation

		Co	rrelatio	n Coeff	icient =	-1	
	140						
riable	120-		٠٠.				
er va	100-			****			
Some other variable	80-				78.		
Som	60-					••	
	40-	Ц					
		60	80	100	120	140	160
				Some v	ariable		

ANOVA (continued)

- Mean square: represent an estimate of population variance
 - MS = SS/df
- Error Mean Square: variance around the fitted regression line.
 - $MS_E = SS_E/(n-2)$
- F-Statistics: ratio of two variances; overall evaluation of the model

$$F = \frac{MS_R}{MS_E} \quad with \quad 1 \quad and \quad n-2 \quad df$$

- F = 1, no association between x and y
- F > 1, association
- Useful reading: http://blog.minitab.com/blog/adventures-in-statistics-2/understanding-analysis-of-variance-anova-and-the-f-test

Total SS		Residual SS	Reg	Regression SS			
		or					
		Error SS					
SS_T	=	SS_E	+	SS_R			
n-1	=	n-2	+	1			

Source	SS	df
Regression	$\sum (\hat{y} - \bar{y})^2$	p
Residual	$\sum (y_i - \hat{y})^2$	N - (p + 1)
Total	$\sum (y_i - \bar{y})^2$	N-1

P=#variables

Question 1a

Univariate Regression

Two variables: study factor (independent variables) X and outcome factor (dependent variable) Y.

- a) Using EXCEL, plot these data PI as the outcome variable, and Trust as the predictor variable.
- b) Using EXCEL Data Analysis Tool, carry out a simple linear regression using these data.
- c) Write a brief report summarising your results and conclusions.

Solution 1a

Summary report

- The plot of y against x shows an linear relationship with Y increases as X increases.
- The R-Square is 0.2676 or 26.76%
- The Correlation Coefficient r is 0.5173
- The linear relationship is estimated to be: y = 0.8135 + 0.7453 x.

Question 1b

Multivariate Regression

- More than one independent variables
- $y = a + b_1x_1 + b_2x_2 + \dots + bkxk + e$
 - $b_1...b_k$: partial regression coefficients
- Using EXCEL, plot these data Trust as the outcome variable, and SAT and PEoU as the predictor variables
- b) Using EXCEL Data Analysis Tool, carry out a simple linear regression using these data.
- c) Write a brief report summarising your results and conclusions.

Solution 1b

SUMMARY OUTPUT						8.00 ¬
						7.00
Regression S	Statistics					6.00 -
Multiple R	0.413388561					5 .00 −
R Square	0.170890103					4.00
Adjusted R Square	0.154790881					2.00
Standard Error	0.853900394					1.00
Observations	106					-
ANOVA						-
	df	SS	MS	F	Significance F	
Regression	2	15.47948344	7.739741721	10.61480548	6.43462E-05	
Residual	103	75.10202599	0.729145883			
Total	105	90.58150943				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	3.724898982	0.591322079	6.299272621	7.47297E-09	2.552151105	4.89764686
SAT	-0.052247778	0.083371926	-0.626683114	0.532253517	-0.217596331	0.113100774
PEoU	0.387425808	0.084489269	4.585503165	1.27807E-05	0.219861271	0.554990345

SAT Line Fit Plot

Summary report

- The R-Square is 0.1709 or 17.09%
- The Correlation Coefficient r is 0.4133
- The linear relationship is estimated to be: $y = 3.724 0.0052 x_1 + 0.3874 x_2$
- Looking at SAT plot chart, and the p-value, they do not look that great the p-value for SAT is 0.5322.

Solution 1c

As we only have two dependent variables, you can choose any of the selection technique; say, we use Stepwise selection technique in our example.

SUMMARY OUTPUT		SAT						
Pagrassian	Ctatistics		As an individu	al construct it	sooms CAT can			
Regression Statistics				al construct, it				
Multiple R	0.040400905		only explain 0.16% (R-Sqaure) of the					
R Square	0.001632233		relationship between Sat and Trust					
Adjusted R Square	-0.007967457							
Standard Error	0.932499017							
Observations	106							

SUMMARY OUTPUT			PEoU					
Regression Statistics			•		an explain 16.77	` '		
Multiple R	0.409547024		of the relationship between PEoU and Trust. Thus, it see SAT does not explain much.					
R Square	0.167728765	4		SAT does not	explain much.			
Adjusted R Square	0.159726157							
Standard Error	0.851403732							
Observations	106							

As R-Square for SAT is only 0.16%, and PEoU is 16.77%, and if combined together, the R-Square is 17.09%. Thus, you can be brave and delete the SAT construct from the model because it does not really explain anything in the relationship.

Next, in part (d), you want to investigate further by breaking the data down to Store A and Store B, i.e. you analyse data from Store A and then Store B.

Tutorial Q2 - Multivariate Regression

Salary Data tab provides salary and age data for 35 employees, along with an indicator of whether or not the employees have an MBA (Yes and No). The MBA indicator variable is categorical. Since regression analysis requires numerical data, we could include them by coding the variables. For example, coding "No" as 0 and "Yes" as 1.

- a) Convert variable MBA to binary values (No \rightarrow 0 and Yes \rightarrow 1)
- b) Perform two separate simple linear regressions for (i) Age and Salary and (ii) MBA and salary. Write a brief report summarising your results (including the regression models and hypotheses).
- c) Perform multivariate regression for Age and MBA on Salary. Write a briefreport summarising your results (including regression model and the hypotheses).
- d) Compare and discuss the R-Square and coefficient estimate between Age and MBA.
- e) What will be the best regression model?

Solution 2b

SUMMARY OUTPUT								Age	e Line	e Fit	Plot	:
Regression S	Statistics					100	0000					
Multiple R	0.881370267					<u>></u>						
R Square	0.776813547					Salary 20	0000 -	4				◆ Salary
Adjusted R Square	0.770050322						0					■ Predicted Salary
Standard Error	6300.056543						0	20	40	60	80	,
Observations	35								Age			
ANOVA												
	df	SS	MS	F	Signific	ance F						
Regression	1	4558813188	4558813188	114.8584368	2.778	15E-12						
Residual	33	1309793511	39690712.45									
Total	34	5868606699										
	Coefficients	Standard Error	t Stat	P-value	Lower	95%	Uppe	r 95%]			
Intercept	7441.698957	3690.421971	2.016489988	0.051947154	-66.520	099832	14949	.91891				
Age	944.0174762	88.08431545	10.71720285	2.77815E-12	764.80	085889	1123.	226363				

- The R-Square is 0.7768 or 77.68%
- The Correlation Coefficient r is 0.8814
- The linear relationship is estimated to be: y = 7442 + 944Age

Solution 2b

- The R-Square is 0.04742 or 4.74%
- The Correlation Coefficient r is 0.2178
- The linear relationship is estimated to be: y = 44028 + 7482MBAFlag
- Note: P-value is greater than 0.05

Solution 2c

SUMMARY OUTPUT						
Regression :	Statistics					
Multiple R	0.976118476					
R Square	0.952807278					
Adjusted R Square	0.949857733					
Standard Error	2941.914352					
Observations	35					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	5591651177	2795825589	323.0353318	6.05341E-22	
Residual	32	276955521.7	8654860.054			
Total	34	5868606699				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	893.5875971	1824.575283	0.489751015	0.627650922	-2822.950634	4610.125828
Age	1044.146043	42.14128238	24.77727265	1.8878E-22	958.3070599	1129.985026
MBAFlag	14767.23159	1351.801764	10.92411031	2.49752E-12	12013.7015	17520.76168

- The R-Square is 0.9528 or 95.28%
- The Correlation Coefficient r is 0.9761
- The linear relationship is estimated to be: y = 893 + 1044Age + 14767MBAFlag
- It is significance as both Age and MBAFlag are both < 0.05 when both variables are used together

Solution 2d:

- Coefficient of AGE changed from 944.017 to 1044.146
- Coefficient of MBA changed from 7482.213 to 14767.23
- These LARGE changes in coefficients indicate possible dependence between the two explanatory variables.
- A different regression may be needed. Example an interaction model may be MORE appropriate – by adding an extra term (Age*MBAFlag) in the regression model.

Solution 2d Model

Salary = 893.59 + 1044.15 Age + 14767.23 MBA

No MBA: Salary = 893.59 + 1044.15 Age MBA: Salary = 15660.82 + 1044.15 Age

The models suggest that the rate of salary increase for age is the same for both groups. However, individuals with MBAs might earn relatively higher salaries as they get older. In other words, the slope of *Age* depends on the value of *MBA*, or you can think of MBA is acting like a moderator. Such a dependence is called an interaction.

Employee	Salary	Age	MBAFlag	MBAFlag*Age
1	28260	25	0	0
2	43392	28	1	28
3	56322	37	1	37
4	26086	23	0	0
5	36807	32	0	0
6	57119	57	0	0
7	48907	45	0	0
8	34301	32	0	0
9	31104	25	0	0
10	60054	57	0	0
11	41420	42	0	0
12	36508	25	1	25
مد	40045			^

For Interaction, you need to multiply Columns Age and MBA together to create a new column called "Age * MBAFlag". Run again with the new column, then you will have the best Regression Model.

Solution 2e Model

SUMMARY OUTPUT						
Regression S	Statistics					
Multiple R	0.989321416					
R Square	0.978756863					
Adjusted R Square	0.976701076					
Standard Error	2005.37675					
Observations	35					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	5743939086	1914646362	476.098288	5.31397E-26	
Residual	31	124667613.2	4021535.91			
Total	34	5868606699				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	3902.509386	1336.39766	2.920170772	0.006467654	1176.908389	6628.110383
Age	971.3090382	31.06887722	31.26308786	5.23658E-25	907.9436454	1034.674431
MBAFlag	-2971.080074	3026.24236	-0.98177202	0.333812767	-9143.142058	3200.981911
MBAFlag*Age	501.8483604	81.55221742	6.153705887	7.9295E-07	335.5215164	668.1752044

- The R-Square is 0.9798 or 97.98%
- The Correlation Coefficient r is 0.9893
- The linear relationship is estimated to be: y = 3902 + 971Age 2971MBAFlag + 502(MBAFlag *Age)