CODING THEORY

Sayan Kar

August 13, 2025

Contents

1	Basics		5
	1.1	Basic Notations and Definitions	5
	1.2	Formalizing Error Correction	6
		Performance of an Error Correcting Code	

Chapter 1

Basics

1.1 Basic Notations and Definitions

Definition 1.1.1: Code

A *code* C is a subset of Σ^n where Σ is an alphabet, where n is the block length of C. We typically use q to denote $|\Sigma|$.

Another way to view the definition of a code to be a map $C : [M] \to \Sigma^n$, where M = |C|.

Definition 1.1.2: Dimension of a code

Dimension of a code C, denoted as k, is defined as the following way,

$$k:=\log_q|C|.$$

Remark. Note that,

- 1. For any $C \subseteq \Sigma^n$, $k \le n$.
- 2. k can be non-integral.

One way to quantify *Redundancy* in a code is via its rate.

Definition 1.1.3: Rate of a Code

Rate of a code *C* of block length *n* and dimension *k*, denoted as *R*, is defined as

$$R:=\frac{k}{n}.$$

Example 1.1.1. *Define a code* $C \subseteq \{0,1\}^5$ *that maps a binary string* (x_1, x_2, x_3, x_4) *to* $(x_1, ..., x_4, x_1 \oplus ... \oplus x_4)$.

1.2 Formalizing Error Correction

Definition 1.2.1: Encoding & Decoding Functions

- Let $C \subseteq \Sigma^n$. An equivalent description of the code C is an injective mapping $E : [|C|] \to \Sigma^n$ called the *encoding function*.
- Let $C \subseteq \Sigma^n$ be a code. A mapping $D : \Sigma^n \to [|C|]$ is called a *decoding function*.

We can refer to the following figure from now on.

Quantifying Error

Definition 1.2.2: Hamming Distance

For any $a, b \in \Sigma^n$, hamming distance of a, b is defined as

$$\Delta(a,b) := \#\{i \in [n] : a_i \neq b_i\}$$

where $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_n)$. We also define *relative hamming distance* as

$$\delta(a,b) := \frac{1}{n} \Delta(a,b).$$

Remark. We can verify easily that this Δ is actually a distance on Σ^n .

Definition 1.2.3: Hamming Weight

We define *hamming weight* of an element $v \in \Sigma^n$ as, $wt(c) := \Delta(0, v)$.

Referring to the above figure, we define the error for that transmitted codeword to be $\Delta(c, y)$.

1.3 Performance of an Error Correcting Code

Definition 1.3.1: t-Error Channel & t-Error Correcting Code

• (t-Error Channel): An *n* symbol *t-Error Channel* is a relation $ch: \Sigma^n \to \Sigma$ such that $\forall c \in \Sigma^n$,

$$\Delta(c, ch(c)) \leq t$$
.

• (t-Error Correcting Code): Let $C \in \Sigma^n$ is a *t-Error Correcting code* if \forall t-Error Channel ch and $\forall m \in [|C|]$,

$$D(ch(E(m))) = m$$
.

Example 1.3.1. $C_{3,rep}$ is a 1-error correcting code.