SECOND DECLARATION OF PAUL POLAKIS, Ph.D.

- I, Paul Polakis, Ph.D., declare and say as follows:
- I am currently employed by Genentech, Inc. where my job title is Staff Scientist.
- Since joining Genentech in 1999, one of my primary responsibilities has been leading Genentech's Tumor Antigen Project, which is a large research project with a primary focus on identifying tumor cell markers that find use as targets for both the diagnosis and treatment of cancer in humans.
- 3. As I stated in my previous Declaration dated May 7, 2004 (attached as Exhibit A), my laboratory has been employing a variety of techniques, including microarray analysis, to identify genes which are differentially expressed in human tumor tissue relative to normal human tissue. The primary purpose of this research is to identify proteins that are abundantly expressed on certain human tumor tissue(s) and that are either (i) not expressed, or (ii) expressed at detectably lower levels, on normal tissue(s).
- 4. In the course of our research using microarray analysis, we have identified approximately 200 gene transcripts that are present in human tumor tissue at significantly higher levels than in normal human tissue. To date, we have successfully generated antibodies that bind to 31 of the tumor antigen proteins expressed from these differentially expressed gene transcripts and have used these antibodies to quantitatively determine the level of production of these tumor antigen proteins in both human tumor tissue and normal tissue. We have then quantitatively compared the levels of mRNA and protein in both the tumor and normal tissues analyzed. The results of these analyses are attached herewith as Exhibit B. In Exhibit B, "+" means that the mRNA or protein was detectably overexpressed in the tumor tissue relative to normal tissue and "-" means that no detectable overexpression was observed in the tumor tissue relative to normal tissue.
- 5. As shown in Exhibit B, of the 31 genes identified as being detectably overexpressed in human tumor tissue as compared to normal human tissue at the mRNA level, 28 of them (i.e., greater than 90%) are also detectably overexpressed in human tumor tissue as compared to normal human tissue at the protein level. As such, in the cases where we have been able to quantitatively measure both (i) mRNA and (ii) protein levels in both (i) tumor tissue and (ii) normal tissue, we have observed that in the vast majority of cases, there is a very strong correlation between increases in mRNA expression and increases in the level of protein encoded by that mRNA.

- 6. Based upon my own experience accumulated in more than 20 years of research, including the data discussed in paragraphs 4-5 above and my knowledge of the relevant scientific literature, it is my considered scientific opinion that for human genes, an increased level of mRNA in a tumor tissue relative to a normal tissue more often than not correlates to a similar increase in abundance of the encoded protein in the tumor tissue relative to the normal tissue. In fact, it remains a generally accepted working assumption in molecular biology that increased mRNA levels are more often than not predictive of elevated levels of the encoded protein. In fact, an entire industry focusing on the research and development of therapeutic antibodies to treat a variety of human diseases, such as cancer, operates on this working assumption.
- 7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

Dated: 3-29-06

Paul Polakis, Ph.D.

DECLARATION OF PAUL POLAKIS, Ph.D.

- I, Paul Polakis, Ph.D., declare and say as follows:
- 1. I was awarded a Ph.D. by the Department of Biochemistry of the Michigan State University in 1984. My scientific Curriculum Vitae is attached to and forms part of this Declaration (Exhibit A).
- 2. I am currently employed by Genentech, Inc. where my job title is Staff Scientist. Since joining Genentech in 1999, one of my primary responsibilities has been leading Genentech's Tumor Antigen Project, which is a large research project with a primary focus on identifying tumor cell markers that find use as targets for both the diagnosis and treatment of cancer in humans.
- 3. As part of the Tumor Antigen Project, my laboratory has been analyzing differential expression of various genes in tumor cells relative to normal cells. The purpose of this research is to identify proteins that are abundantly expressed on certain tumor cells and that are either (i) not expressed, or (ii) expressed at lower levels, on corresponding normal cells. We call such differentially expressed proteins "tumor antigen proteins". When such a tumor antigen protein is identified, one can produce an antibody that recognizes and binds to that protein. Such an antibody finds use in the diagnosis of human cancer and may ultimately serve as an effective therapeutic in the treatment of human cancer.
- In the course of the research conducted by Genentech's Tumor Antigen 4. Project, we have employed a variety of scientific techniques for detecting and studying differential gene expression in human tumor cells relative to normal cells, at genomic DNA, mRNA and protein levels. An important example of one such technique is the well known and widely used technique of microarray analysis which has proven to be extremely useful for the identification of mRNA molecules that are differentially expressed in one tissue or cell type relative to another. In the course of our research using microarray analysis, we have identified approximately 200 gene transcripts that are present in human tumor cells at significantly higher levels than in corresponding normal human cells. To date, we have generated antibodies that bind to about 30 of the tumor antigen proteins expressed from these differentially expressed gene transcripts and have used these antibodies to quantitatively determine the level of production of these tumor antigen proteins in both human cancer cells and corresponding normal cells. We have then compared the levels of mRNA and protein in both the tumor and normal cells analyzed.
- 5. From the mRNA and protein expression analyses described in paragraph 4 above, we have observed that there is a strong correlation between changes in the level of mRNA present in any particular cell type and the level of protein

expressed from that mRNA in that cell type. In approximately 80% of our observations we have found that increases in the level of a particular mRNA correlates with changes in the level of protein expressed from that mRNA when human tumor cells are compared with their corresponding normal cells.

- 6. Based upon my own experience accumulated in more than 20 years of research, including the data discussed in paragraphs 4 and 5 above and my knowledge of the relevant scientific literature, it is my considered scientific opinion that for human genes, an increased level of mRNA in a tumor cell relative to a normal cell typically correlates to a similar increase in abundance of the encoded protein in the tumor cell relative to the normal cell. In fact, it remains a central dogma in molecular biology that increased mRNA levels are predictive of corresponding increased levels of the encoded protein. While there have been published reports of genes for which such a correlation does not exist, it is my opinion that such reports are exceptions to the commonly understood general rule that increased mRNA levels are predictive of corresponding increased levels of the encoded protein.
- 7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

Dated: 5/07/04

I CULTURE TURE

Paul Polakis, Ph.D.

SV 2031808 vl

CURRICULUM VITAE

PAUL G. POLAKIS Staff Scientist Genentech, Inc 1 DNA Way, MS#40 S. San Francisco, CA 94080

EDUCATION:

Ph.D., Biochemistry, Department of Biochemistry, Michigan State University (1984)

B.S., Biology. College of Natural Science, Michigan State University (1977)

PROFESSIONAL EXPERIENCE:

PROFESSIONAL EXPERIENCE:	
2002-present	Staff Scientist, Genentech, Inc S. San Francisco, CA
1999- 2002	Senior Scientist, Genentech, Inc., S. San Francisco, CA
1997 -1999	Research Director Onyx Pharmaceuticals, Richmond, CA
1992- 1996	Senior Scientist, Project Leader, Onyx Pharmaceuticals, Richmond, CA
1991-1992	Senior Scientist, Chiron Corporation, Emeryville, CA.
1989-1991	Scientist, Cetus Corporation, Emeryville CA.
1987-1989	Postdoctoral Research Associate, Genentech, Inc., South SanFrancisco, CA.
1985-1987	Postdoctoral Research Associate, Department

Durham, NC

of Medicine, Duke University Medical Center.

1984-1985

Assistant Professor, Department of Chemistry, Oberlin College, Oberlin, Ohio

1980-1984

Graduate Research Assistant, Department of Biochemistry, Michigan State University East Lansing, Michigan

PUBLICATIONS:

- 1. Polakis, P G. and Wilson, J. E. 1982 Purification of a Highly Bindable Rat Brain Hexokinase by High Performance Liquid Chromatography. Biochem. Biophys. Res. Commun. 107, 937-943.
- **2.** Polakis, P.G. and Wilson, J. E. 1984 Proteolytic Dissection of Rat Brain Hexokinase: Determination of the Cleavage Pattern during Limited Digestion with Trypsin. Arch. Biochem. Biophys. 234, 341-352.
- 3. Polakis, P. G. and Wilson, J. E. 1985 An Intact Hydrophobic N-Terminal Sequence is Required for the Binding Rat Brain Hexokinase to Mitochondria. Arch. Biochem. Biophys. 236, 328-337.
- 4. Uhing, R.J., Polakis, P.G. and Snyderman, R. 1987 Isolaton of GTP-binding Proteins from Myeloid HL60 Cells. J. Biol. Chem. 262, 15575-15579.
- **5. Polakis, P.G.**, Uhing, R.J. and Snyderman, R. 1988 The Formylpeptide Chemoattractant Receptor Copunities with a GTP-binding Protein Containing a Distinct 40 kDa Pertussis Toxin Substrate. **J. Biol. Chem.** 263, 4969-4979.
- 6. Uhing, R. J., Dillon, S., Polakis, P. G., Truett, A. P. and Snyderman, R. 1988 Chemoattractant Receptors and Signal Transduction Processes in Cellular and Molecular Aspects of Inflammation (Poste, G. and Crooke, S. T. eds.) pp 335-379.
- 7. Polakis, P.G., Evans, T. and Snyderman 1989 Multiple Chromatographic Forms of the Formylpeptide Chemoattractant Receptor and their Relationship to GTP-binding Proteins. Biochem. Biophys. Res. Commun. 161, 276-283.
- 8. Polakis, P. G., Snyderman, R. and Evans, T. 1989 Characterization of G25K, a GTP-binding Protein Containing a Novel Putative Nucleotide Binding Domain. Biochem. Biophys. Res. Comun. 160, 25-32.
- 9. Polakis, P., Weber, R.F., Nevins, B., Didsbury, J. Evans, T. and Snyderman, R. 1989 Identification of the ral and rac1 Gene Products, Low Molecular Mass GTP-binding Proteins from Human Platelets. J. Biol. Chem. 264, 16383-16389.
- 10. Snyderman, R., Perianin, A., Evans, T., Polakis, P. and Didsbury, J. 1989 G Proteins and Neutrophil Function. In ADP-Ribosylating Toxins and G Proteins: Insights into Signal Transduction. (J. Moss and M. Vaughn, eds.) Amer. Soc. Microbiol. pp. 295-323.

- 11. Hart, M.J., Polakis, P.G., Evans, T. and Cerrione, R.A. 1990 The Identification and Charaterization of an Epidermal Growth Factor-Stimulated Phosphorylation of a Specific Low Molecular Mass GTP-binding Protein in a Reconstituted Phospholipid Vesicle System. J. Biol. Chem. 265, 5990-6001.
- **12.** Yatani, A., Okabe, K., **Polakis, P.** Halenbeck, R. McCormick, F. and Brown, A. M. 1990 ras p21 and GAP Inhibit Coupling of Muscannic Receptors to Atrial K⁺ Channels. **Cell.** 61, 769-776.
- 13. Munemitsu, S., Innis, M.A., Clark, R., McCormick, F., Ullrich, A. and Polakis, P.G. 1990 Molecular Cloning and Expression of a G25K cDNA, the Human Homolog of the Yeast Cell Cycle Gene CDC42. Mol. Cell. Biol. 10, 5977-5982.
- 14. Polakis, P.G. Rubinfeld, B. Evans, T. and McCormick, F. 1991 Purification of Plasma Membrane-Associated GTPase Activating Protein (GAP) Specific for rap-1/krev-1 from HL60 Cells. Proc. Natl. Acad. Sci. USA 88, 239-243.
- **15.** Moran, M. F., **Polakis**, P., McCormick, F., Pawson, T. and Ellis, C. 1991 Protein Tyrosine Kinases Regulate the Phosphorylation, Protein Interactions, Subcellular Distribution, and Activity of p21ras GTPase Activating Protein. **Mol. Cell. Biol.** 11, 1804-1812
- **16.** Rubinfeld, B., Wong, G., Bekesi, E. Wood, A. McCormick, F. and **Polakis, P. G.** 1991 A Synthetic Peptide Corresponding to a Sequence in the GTPase Activating Protein Inhibits p21^{ras} Stimulation and Promotes Guanine Nucleotide Exchange. Internatl. J. Peptide and Prot. Res. 38, 47-53.
- 17. Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W., McCormick, F., and **Polakis**, P. 1991 Molecular Cloning of a GTPase Activating Protein Specific for the Krev-1 Protein p21^{rap1}. **Cell** 65, 1033-1042.
- 18. Zhang, K. Papageorge, A., G., Martin, P., Vass, W. C., Olah, Z., Polakis, P., McCormick, F. and Lowy, D, R. 1991 Heterogenous Amino Acids in RAS and Rap1A Specifying Sensitivity to GAP Proteins. Science 254, 1630-1634.
- 19. Martin, G., Yatani, A., Clark, R., Polakis, P., Brown, A. M. and McCormick, F. 1992 GAP Domains Responsible for p21^{ras}-dependent Inhibition of Muscannic Atrial K⁺ Channel Currents. **Science** 255, 192-194.
- 20. McCormick, F., Martin, G. A., Clark, R., Bollag, G. and Polakis, P. 1992
 Regulation of p21ras by GTPase Activating Proteins. Cold Spring Harbor Symposia on Quantitative Biology. Vol. 56, 237-241.
- **21.** Pronk, G. B., Polakis, P., Wong, G., deVries-Smits, A. M., Bos J. L. and McCormick, F. 1992 p60^{v-src} Can Associate with and Phosphorylate the p21^{ras} GTPase Activating Protein. **Oncogene** 7,389-394.
- 22. Polakis P. and McCormick, F. 1992 Interactions Between p21^{ras} Proteins and Their GTPase Activating Proteins. In <u>Cancer Surveys</u> (Franks, L. M., ed.) 12, 25-42.

- **23.** Wong, G., Muller, O., Clark, R., Conroy, L., Moran, M., **Polakis,P.** and McCormick, F. 1992 Molecular coloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. **Cell** 69, 551-558.
- **24. Polakis, P.,** Rubinfeld, B. and McCormick, F. 1992 Phosphorylation of rap1GAP in vivo and by cAMP-dependent Kinase and the Cell Cycle p34^{cdc2} Kinase in vitro. **J. Biol. Chem.** 267, 10780-10785.
- **25.** McCabe, P.C., Haubrauck, H., Polakis, P., McCormick, F., and Innis, M. A. 1992 Functional Interactions Between p21^{rap1A} and Components of the Budding pathway of *Saccharomyces cerevisiae*. **Mol. Cell. Biol.** 12, 4084-4092.
- **26.** Rubinfeld, B., Crosier, W.J., Albert, I., Conroy,L., Clark, R., McCormick, F. and **Polakis**, P. 1992 Localization of the rap1GAP Catalytic Domain and Sites of Phosphorylation by Mutational Analysis. **Mol. Cell. Biol.** 12, 4634-4642.
- 27. Ando, S., Kaibuchi, K., Sasaki, K., Hiraoka, T., Nishiyama, T., Mizuno, T., Asada, M., Nunoi, H., Matsuda, I., Matsuura, Y., Polakis, P., McCormick, F. and Takai, Y. 1992 Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J. Biol. Chem. 267, 25709-25713.
- 28. Janoueix-Lerosey, I., Polakis, P., Tavitian, A. and deGunzberg, J. 1992 Regulation of the GTPase activity of the ras-related rap2 protein. Biochem. Biophys. Res. Commun. 189, 455-464.
- **29.** Polakis, P. 1993 GAPs Specific for the rap1/Krev-1 Protein. in <u>GTP-binding</u> Proteins: the *ras*-superfamily. (J.C. LaCale and F. McCormick, eds.) 445-452.
- **30.** Polakis, P. and McCormick, F. 1993 Structural requirements for the interaction of p21^{ras} with GAP, exchange factors, and its bological effector target. J. Biol Chem. 268, 9157-9160.
- **31.** Rubinfeld, B., Souza, B. Albert, I., Muller, O., Chamberlain, S., Masiarz, F., Munemitsu, S. and Polakis, P. 1993 Association of the APC gene product with beta-catenin. **Science** 262, 1731-1734.
- **32.** Weiss, J., Rubinfeld, B., Polakis, P., McCormick, F. Cavenee, W. A. and Arden, K. 1993 The gene for human rap1-GTPase activating protein (rap1GAP) maps to chromosome 1p35-1p36.1. Cytogenet. Cell Genet. 66, 18-21.
- 33. Sato, K. Y., Polakis, P., Haubruck, H., Fasching, C. L., McCormick, F. and Stanbridge, E. J. 1994 Analysis of the tumor suppressor acitvity of the K-rev gene in human tumor cell lines. Cancer Res. 54, 552-559.
- **34.** Janoueix-Lerosey, I., Fontenay, M., Tobelem, G., Tavitian, A., **Polakis, P.** and DeGunzburg, J. 1994 Phosphorylation of rap1GAP during the cell cycle. **Biochem. Biophys. Res. Commun.** 202, 967-975
- 35. Munemitsu, S., Souza, B., Mueller, O., Albert, I., Rubinfeld, B., and **Polakis, P.** 1994 The APC gene product associates with microtubules in vivo and affects their assembly in vitro. **Cancer Res.** 54, 3676-3681.

- **36.** Rubinfeld, B. and Polakis, P. 1995 Purification of baculovirus produced rap1GAP. **Methods Enz.** 255,31
- 37. Polakis, P. 1995 Mutations in the APC gene and their implications for protein structure and function. Current Opinions in Genetics and Development 5, 66-71
- 38. Rubinfeld, B., Souza, B., Albert, I., Munemitsu, S. and Polakis P. 1995 The APC protein and E-cadherin form similar but independent complexes with α -catenin, β -catenin and Plakoglobin. J. Biol. Chem. 270, 5549-5555
- **39.** Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., and **Polakis**, **P.** 1995 Regulation of intracellular β-catenin levels by the APC tumor suppressor gene. **Proc. Natl. Acad. Sci.** 92, 3046-3050.
- **40.** Lock, P., Fumagalli, S., Polakis, P. McCormick, F. and Courtneidge, S. A. 1996 The human p62 cDNA encodes Sam68 and not the rasGAP-associated p62 protein. **Cell** 84, 23-24.
- 41. Papkoff, J., Rubinfeld, B., Schryver, B. and Polakis, P. 1996 Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol. Cell. Biol. 16, 2128-2134.
- **42.** Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S. and Polakis, P. 1996 Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. **Science** 272, 1023-1026.
- **43.** Munemitsu, S., Albert, I., Rubinfeld, B. and Polakis, P. 1996 Deletion of aminoterminal structure stabilizes β-catenin in vivo and promotes the hyperphosphorylation of the APC tumor suppressor protein. **Mol. Cell. Biol.**16, 4088-4094.
- 44. Hart, M. J., Callow, M. G., Sousa, B. and Polakis P. 1996 IQGAP1, a calmodulin binding protein witha rasGAP related domain, is a potential effector for cdc42Hs. EMBO J. 15, 2997-3005.
- **45.** Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. and Nelson, W. J. 1996 The adenomatous polyposis coli (APC) tumor suppressor protein is localized to plasma membrane sites involved in active epithelial cell migration. **J. Cell. Biol.** 134, 165-180.
- **46.** Hart, M. J., Sharma, S., elMasry, N., Qui, R-G., McCabe, P., **Polakis, P.** and Bollag, G. 1996 Identification of a novel guanine nucleotide exchange factor for the rho GTPase. **J. Biol. Chem.** 271, 25452.
- **47**. Thomas JE, Smith M, Rubinfeld B, Gutowski M, Beckmann RP, and **Polakis P**. 1996 Subcellular localization and analysis of apparent 180-kDa and 220-kDa proteins of the breast cancer susceptibility gene, BRCA1. **J. Biol. Chem**. 1996 271, 28630-28635
- 48. Hayashi, S., Rubinfeld, B., Souza, B., Polakis, P., Wieschaus, E., and Levine, A. 1997 A Drosophila homolog of the tumor suppressor adenomatous polyposis coli

- down-regulates β -catenin but its zygotic expression is not essential for the regulation of armadillo. **Proc. Natl. Acad. Sci.** 94, 242-247.
- **49**. Vleminckx, K., Rubinfeld, B., **Polakis, P.** and Gumbiner, B. 1997 The APC tumor suppressor protein induces a new axis in Xenopus embryos. **J. Cell. Biol**. 136, 411-420.
- **50**. Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfin, P. and **Polakis, P.** 1997 Stabilization of β -catenin by genetic defects in melanoma cell lines. **Science** 275, 1790-1792.
- **51.** Polakis, P. The adenomatous polyposis coli (APC) tumor suppressor. 1997 Biochem. Biophys. Acta, 1332, F127-F147.
- **52**. Rubinfeld, B., Albert, I., Porfin, E., Munemitsu, S., and **Polakis**, **P** 1997 Loss of β-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. **Cancer Res**. 57, 4624-4630.
- **53**. Porfiri, E., Rubinfeld, B., Albert, I., Hovanes. K., Waterman, M., and **Polakis**, P. 1997 Induction of a β-catenin-LEF-1 complex by wnt-1 and transforming mutants of β-catenin. **Oncogene** 15, 2833-2839.
- **54.** Thomas JE, Smith M, Tonkinson JL, Rubinfeld B, and **Polakis P.**, 1997 Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. **Cell Growth Differ**. 8, 801-809.
- **55.** Hart, M., de los Santos, R., Albert, I., Rubinfeld, B., and **Polakis P.**, 1998 Down regulation of β-catenin by human Axin and its association with the adenomatous polyposis coli (APC) tumor suppressor, β-catenin and glycogen synthase kinase 3β. **Current Biology 8**, 573-581.
- **56.** Polakis, P. 1998 The oncogenic activation of β-catenin. Current Opinions in Genetics and Development 9, 15-21
- 57. Matt Hart, Jean-Paul Concordet, Irina Lassot, Iris Albert, Rico del los Santos, Herve Durand, Christine Perret, Bonnee Rubinfled, Florence Margottin, Richard Benarous and Paul Polakis. 1999 The F-box protein β–TrCP associates with phosphorylated β–catenin and regulates its activity in the cell. Current Biology 9, 207-10.
- 58. Howard C. Crawford, Barbara M. Fingleton, Bonnee Rubinfeld, Paul Polakis and Lynn M. Matnsian 1999 The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumours. Oncogene 18, 2883-91.
- 59. Meng J, Glick JL, **Polakis P**, Casey PJ. 1999 Functional interaction between Galpha(z) and Rap1GAP suggests a novel form of cellular cross-talk. **J Biol Chem**. 17, 36663-9

- 60. Vijayasunan Easwaran, Virginia Song, Paul Polakis and Steve Byers 1999 The ubiquitin-proteosome pathway and serine kinase activity modulate APC mediated regulation of β-catenin-LEF signaling. J. Biol. Chem. 274(23):16641-5.
- 61 Polakis P, Hart M and Rubinfeld B. 1999 Defects in the regulation of betacatenin

in colorectal cancer. Adv Exp Med Biol. 470, 23-32

- 62 Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF. 1999 Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src. Oncogene. 18, 4647-53
- 64. Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P. 1999 A binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett. 458, 247-51.
- 65. Peifer M, Polakis P. 2000 Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science 287,1606-9.
- 66. Polakis P. 2000 Wnt signaling and cancer. Genes Dev:14, 1837-1851.
- 67. Spink KE, Polakis P, Weis WI 2000 Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J 19, 2270-2279.
- 68. Szeto , W., Jiang, W., Tice, D.A., Rubinfeld, B., Hollingshead, P.G., Fong, S.E., Dugger, D.L., Pham, T., Yansura, D.E., Wong, T.A., Grimaldi, J.C., Corpuz, R.T., Singh J.S., Frantz, G.D., Devaux, B., Crowley, C.W., Schwall, R.H., Eberhard, D.A.,

Rastelli, L., Polakis, P. and Pennica, D. 2001 Overexpression of the Retinoic

Responsive Gene Stra6 in Human Cancers and its Synergistic Induction by Wnt-1 and

Retinoic Acid. Cancer Res 61, 4197-4204.

69. Rubinfeld B, Tice DA, Polakis P. 2001 Axin dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1 epsilon. J Biol Chem

276, 39037-39045.

- 70. Polakis P. 2001 More than one way to skin a catenin. Cell 2001 105, 563-566.
- 71. Tice DA, Soloviev I, Polakis P. 2002 Activation of the Wnt Pathway Interferes withSerum Response Element-driven Transcription of Immediate Early Genes. J Biol.

Chem. 277, 6118-6123.

72. Tice DA, Szeto W, Soloviev I, Rubinfeld B, Fong SE, Dugger DL, Winer J,

- 73. Polakis, P. 2002 Casein kinase I: A wnt'er of disconnect. Curr. Biol. 12, R499.
- 74. Mao, W., Luis, E., Ross, S., Silva, J., Tan, C., Crowley, C., Chui, C., Franz, G., Senter, P., Koeppen, H., Polakis, P. 2004 EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. 64, 781-788.
- 75. Shibamoto, S., Winer, J., Williams, M., Polakis, P. 2003 A Blockade in Wnt signaling is activated following the differentiation of F9 teratocarcinoma cells. Exp. Cell Res. 29211-20.
- 76. Zhang Y, Eberhard DA, Frantz GD, Dowd P, Wu TD, Zhou Y, Watanabe C, Luoh SM, Polakis P, Hillan KJ, Wood WI, Zhang Z. 2004 GEPIS--quantitative gene expression profiling in normal and cancer tissues. Bioinformatics, April 8

EXHIBIT B

	tumor mRNA	tumor IHC
UNQ2525	+	+
UNQ2378	+	+
UNQ972	+	-
UNQ97671	+	+
UNQ2964	+	+
UNQ323	+	T+
UNQ1655	+	+
UNQ2333	+	+
UNQ9638	+	+
UNQ8209	+	+
UNQ6507	+	+
UNQ8196	+	+
UNQ9109	+	+
UNQ100	+	+
UNQ178	+	+
UNQ1477	+	+
UNQ1839	+	+
UNQ2079	+	+
UNQ8782	+	+
UNQ9646	+	-
UNQ111	+	+ .
UNQ3079	+	+ ,
UNQ8175	+	+
UNQ9509	+	+ .
UNQ10978	+	-
UNQ2103	+	+
UNQ1563	+	+
UNQ16188	+	+
UNQ13589	+	+
UNQ1078	+	+
UNQ879	+	+