2015 TSTST #2

Tristan Shin

17 Apr 2018

Let ABC be a scalene triangle. Let K_a , L_a and M_a be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of AK_aL_a intersects AM_a a second time at point X_a different from A. Define X_b and X_c analogously. Prove that the circumcenter of $X_aX_bX_c$ lies on the Euler line of ABC.

(The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter of ABC.)

Let O, H, G be the circumcenter, orthocenter, centroid of $\triangle ABC$.

Claim: X_a is the foot of H onto AM_a .

Proof: Perform \sqrt{bc} inversion. (AK_aL_a) is the A-Apollonian circle of $\triangle ABC$, so it maps to the perpendicular bisector of BC. AM_a maps to the A-symmedian, so X_a maps to T_a , the intersection of the tangents to (ABC) at B, C. Now, $\frac{bc}{AO} = \frac{bc}{R} = \frac{4K}{a} = 2h_a$, where R is the circumradius of $\triangle ABC$, K is the area of $\triangle ABC$, and h_a is the distance from A to BC. Since AO and AH are isogonal, O maps to the reflection of A over BC, which lies on (BHC). So (BOC) and (BHC) map to each other, whence H maps to the second intersection of AO with (BOC), say Y_a . But clearly $T_a \in (BOC)$ and furthermore OT_A is a diameter of (BOC), so $\angle AY_aT_a = \angle OY_aT_a = 90^\circ$. So T_a lies on the line through Y_a perpendicular to AO. Inverting back, X_a lies on the circle with diameter AH, so the claim is true. \square

Now the conclusion is obvious, as $\angle HX_aG = 90^\circ$ and hence $(X_aX_bX_c)$ is centered at the midpoint of HG.