Разнобой

- **1.** Найдите все функции $f: \mathbb{R} \to \mathbb{R}$, которые для всех $x, y, z \in \mathbb{R}$ удовлетворяют неравенству $f(x+y) + f(y+z) + f(z+x) \geqslant 3f(x+2y+3z)$.
- 2. Числа от 1 до 999 999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечетного числа, во вторую числа, для которых ближайшими являются квадраты четных чисел. В какой из групп сумма чисел больше?
- **3.** Пусть 2S суммарный вес некоторого набора гирек. Назовем натуральное число k средним, если в наборе можно выбрать k гирек, суммарный вес которых равен S. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?
- 4. На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков белые, и их количество четно. Разрешается указатьна любые две коробочки и спросить, естьли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какую-нибудь коробочку, в которой лежит белый шарик?
- **5.** Пусть p простое число с десятичной записью $\overline{a_n \dots a_0}, a_n > 1$. Докажите, что многочлен $f(x) = a_n x^n + \dots + a_0$ неприводим над \mathbb{Q} .
- **6.** Окружность ω вписана в треугольник ABC, в котором AB < AC. Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω . Касательные, проведенные из X к ω , пересекают отрезок BC в точках Y и Z. Докажите, что сумма XY + XZ не зависит от выбора точки X.