a)

i. Οι ασύμπτωτες της υπερβολής είναι η $y = \frac{\beta}{\alpha} x$ και $y = -\frac{\beta}{\alpha} x$. Εφόσον η $y = \frac{3}{4} x$ είναι ασύμπτωτη και $\alpha, \beta > 0$, έχουμε ότι $\frac{\beta}{\alpha} = \frac{3}{4} \delta \eta \lambda \alpha \delta \dot{\eta} \ 4\beta = 3\alpha \ \dot{\eta} \ \beta = \frac{3}{4} \alpha$. (1) Η απόσταση των κορυφών της ΑΑ΄ είναι ίση με 2α, οπότε 2α = 8, άρα α = 4. (2) Από (1) και (2) έχουμε ότι $\beta = \frac{3}{4} \cdot 4 = 3$.

Επομένως η εξίσωση της υπερβολής $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$ γίνεται $\frac{x^2}{4^2} - \frac{y^2}{3^2} = 1$ ή $\frac{x^2}{16} - \frac{y^2}{9} = 1$.

ii. $\alpha^2 + \beta^2 = \gamma^2$ και από το αi) ερώτημα έχουμε ότι α = 4 και β = 3. Επομένως $4^2 + 3^2 = \gamma^2$ ή $\gamma^2 = 25$ ή $\gamma = 5$.

Οι εστίες είναι της μορφής $E(\gamma,0)$ και $E'(-\gamma,0)$, επομένως E(5,0) και E'(-5,0).

β) Η εφαπτόμενη της υπερβολής $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2}$ = 1 στο σημείο της (x_1, y_1) δίνεται από τον τύπο