電力工学

問題 A.

- (1) 水力発電用のある水管中を水が定常的に流れている. 上流で高さ $20\,\mathrm{m}$ の A 点では、水管の断面積が $2.0\,\mathrm{m}^2$ 、流速が $6.0\,\mathrm{m/s}$,圧力が $33\,\mathrm{kPa}$ である. 下流で高さ $5.0\,\mathrm{m}$ の B 点では、水管の断面積が $3.0\,\mathrm{m}^2$ である. B 点における流速と圧力とをそれぞれ求め、導出過程とともに解答しなさい、ただし、損失は無視できるものとし、重力加速度は $9.8\,\mathrm{m/s}^2$ 、水の比重は 1.0 とする.
- (2) カルノーサイクルの 4 過程は、「等温膨張」、「断熱膨張」、「等温圧縮」、「断熱圧縮」の名称で表される。これらにならって、火力発電において、a) 蒸気がタービンに仕事をする過程と、b) 仕事を終えた蒸気を水に戻す過程とについて、それぞれ名称を答えなさい。また、それぞれの過程の条件での熱力学第一法則を、言葉もしくは数式で表現しなさい。ただし数式では、内部エネルギーの変化は dU、与える熱量は d'Q、外部への仕事は d'W として、これら以外の物理量は自ら定義しなさい。
 - (3) 一般的な原子力発電では、核分裂の連鎖反応を実現するために、反応で発生した中性子を減速する.減速を必要とする理由を説明しなさい.

問題 B.

図 1 は,三相同期発電機の 1 相分の等価回路の動作を,フェーザ図で表したものである.E は誘導起電力(大きさ E),V は出力電圧(大きさ V),I は出力電流(大きさ I),r は巻線抵抗,x は同期リアクタンス, $\cos \phi$ は負荷の力率, δ は相差角である.下の文章の a \sim e に入れるべき数式を E, V, I, r, x, ϕ , δ を用いて答えなさい.

同期発電機への入力電力は, $\begin{bmatrix} a \end{bmatrix}$ と表される.一方,フェーザ図から, $E\cos(\phi+\delta)=\overline{OP}+\overline{PQ}$ である. \overline{OP} は $\begin{bmatrix} b \end{bmatrix}$, \overline{PQ} は $\begin{bmatrix} c \end{bmatrix}$ なので, $\begin{bmatrix} a \end{bmatrix}=\begin{bmatrix} d \end{bmatrix}+\begin{bmatrix} e \end{bmatrix}$ と変形できる. $\begin{bmatrix} d \end{bmatrix}$ は発電機の出力電力である.また, $\begin{bmatrix} e \end{bmatrix}$ は巻線抵抗による損失電力である.つまり,発電機への入力は,出力と巻線抵抗による損失との和である.

 $\begin{array}{c|c}
\delta & \dot{E} \\
\hline
\dot{V} & r\dot{I}
\end{array}$ $\begin{array}{c}
\tilde{V} & r\dot{I}
\end{array}$

(次ページへ続く)

2021 年度神戸大学大学院工学研究科博士課程前期課程入学試験

問題 C.

太陽電池を用いて 1.0 MW の出力を得るのに必要な太陽電池の面積を,導出過程とともに解答しなさい.ただし,太陽電池の変換効率は 12%,太陽光の照射強度は 0.90 kW/m² とする.

問題 D.

燃料電池の原理についての以下の一連の文章で、 a ~ d に入れるべき数式を答えなさい. 物理量を表す記号は、この問題中で共通で、文中に現れるもののみを用いなさい.

- 燃料電池で得られる電気エネルギーは、ギブスの自由エネルギーで考える。ギブスの自由エネルギーGは、G=H-TSで定義される。ここで、Hはエンタルピーで、内部エネルギーU、圧力P、体積Vを用いて、H= a と表される。また、TとSは、それぞれ温度とエントロピーである。等温・等圧の条件でGの変化 dGを考えれば、U、V、S のそれぞれの変化を dU、dV 、dS として、dG= b \cdots (*)となる。
- (**) 式を用いると、(*) 式は $dG + d'W_e = \boxed{d}$ となる。熱力学第二法則から、 $\boxed{d} \le 0$ なので、 $d'W_e \le -dG$ となり、外部へ電気的仕事を取り出すには、それより大きな -dG、つまり G の減少が必要である。よって、燃料電池の最大出力は、ギブスの自由エネルギーの減少分である。

問題 E.

次のそれぞれのエネルギー貯蔵装置について,貯蔵されるエネルギー形態を含めて,貯蔵方法の概要を説明 しなさい.

- (1) フライホイール
- (2) SMES

以上