Mathematics in DL: Jan 23 2018

Lecture 2: Applied Linear Algebra

Lecturer: Juhee Lee Scribes: Juhee Lee

2.1 Review vectors, Matrices, Operations

지난 시간에는 기본적인 용어와 연산에 관하여 살펴보았습니다. 오늘 및 앞으로의 강의에서 사용되는 예제들은 cs231n을 기반으로 구성하였습니다.

vectors

For a vector
$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
,

- vector의 성분은 행렬, 함수 등 같은 형식의 성분이 들어오도록 합니다.
- vector는 기본적으로 크기와 방향을 갖고 있습니다.
- vector의 크기는 1강에서의 ||·|| (norm)에 의해 측정가능 하고 방향은 화살표로 표시합니다.

ex.
$$\mathbf{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, 크기와 방향이 같으면 동일 벡터 i.e., $\mathbf{a} = \mathbf{b}$

- 연산의 정의에 따라 여러가지가 가능합니다
 - 1. $\mathbf{a} + \mathbf{b} = (a_1 + b_1, \cdots, a_n + b_n)$
 - 2. "scalar multiplication"

$$c \in \mathbb{R}, c\mathbf{a} = c(a_1, \cdots, a_n) = (ca_1, \cdots, ca_n)$$

- "scalar multiplication" 의 기하학(geometry)적인 의미 "scaling"
- 3. "dot product (Euclidean inner product)" (cos θ를 이용한 ∠ 각도 도입: 하나의 실수값)

$$\mathbf{a} \cdot \mathbf{b} = (a_1 b_1 + \dots + a_n b_n) = \sum_{i=1}^n a_i b_i$$
$$= \|\mathbf{a}\| \|\mathbf{a}\| \cos \theta \in \mathbb{R}$$

note. $\cos 0^{\circ} = 1$, $\cos 90^{\circ} = 0$ $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{a}\|}$

- If $\mathbf{a} \cdot \mathbf{b} = 0$, \mathbf{a} 와 \mathbf{b} 는 서로 직교(orthogonal)한다.

 $^{^{-1}}$ scalar c 는 벡터공간에 따라 실수 혹은 복소수를 나타낼 수 있습니다. 이는 벡터공간의 정의에 따라 달라집니다. 실수에 대하여 정의된 공간은 실 벡터 공간이라고 부르고 이중 Euclidean space를 다룹니다(가장 익숙하고 쉬운 공간이므로). 복소수를 scalar로 취하는 벡터공간은 Quantum mechanics (양자역학)등에서 자주 다루는 공간입니다.

- $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$ is an **orthogonal set** if

$$\mathbf{a}_i \neq 0$$
 for each i and $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ for all i, j

- $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$ is an **orthonormal set** if it is an orthogonal set consisting of unit vectors²

Theorem 2.1 If a is any vector in an inner produce space³, then

1.
$$\mathbf{a} \cdot \mathbf{a} \ge 0$$
 for all vectors \mathbf{a}
2. $\mathbf{a} \cdot \mathbf{a} = 0$ iff $\mathbf{a} = \mathbf{0}$
3. $\mathbf{0} \cdot \mathbf{a} = \mathbf{0} = \mathbf{0} \cdot \mathbf{a}$

Theorem 2.2 Cauchy-Schwarz Inequality

$$|\boldsymbol{a} \cdot \boldsymbol{b}| < \|\boldsymbol{a}\| \|\boldsymbol{b}\|$$

Theorem 2.3 Triangle Inequality

$$||a + b|| \le ||a|| + ||b||$$

Definition 2.4 For n vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ and n scalars $c_1, \dots, c_n \in \mathbb{R}$,

- $c_1 a_1 + \cdots + c_n a_n$ 을 vectors a_1, a_2, \ldots, a_n 의 일차결합 (linear combination)이라 합니다.
- For $S = \{a_1, a_2, \dots, a_n\}$, $span(S) = c_1 a_1 + \dots + c_n a_n \mid c_1, \dots, c_n \in \mathbb{R}\}$
- $c_1a_1 + \cdots + c_na_n = 0$ 을 만족하는 $c_1 = \cdots = c_n = 0$ 이 유일할 경우, $\{a_1, a_2, \ldots, a_n\}$ 을 일차 독립 (linearly independent)라고 합니다. 그이외의 경우를 일차 종속 (linearly dependent) 라고 합니다.

Quiz. 일차종속 집합의 예를 구하여라.

Note. The rank of a matrix **A** is the maximum number of linearly independent row vectors of **A**.

• n개의 행벡터들로 구성된 matrix \mathbf{A} 의 \mathbf{rank} 가 n이면 n개의 행백터들은 일차 독립입니다. 그러나, matrix \mathbf{A} 의 \mathbf{rank} 가 n 보다 작으면, n개의 행벡터들은 일차 종속입니다.

Matrices

Quiz. 두 행렬
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 와 $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ 의 $\mathbf{A}\mathbf{B}$ 와 $\mathbf{B}\mathbf{A}$ 를 구하여라. Solution. $\mathbf{A}\mathbf{B} = \mathbf{O}, \ \mathbf{B}\mathbf{A} = \mathbf{B}$

Note.
$$AB \neq BA$$
, $AB = O \implies A = O$ or $B = O$

²a vector of norm 1, we can normalize **a** using $\frac{\mathbf{a}}{\|\mathbf{a}\|}$

 $^{^3}$ vector space defined by inner product

Quiz. 행렬
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$$
 와 $\mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -2 & 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} -1 & 0 \\ 3 & 1 \\ 2 & 4 \end{pmatrix}$ 의 \mathbf{ABC} 를 구하여라. Solution. $\mathbf{ABC} = \begin{pmatrix} 17 & 4 \\ 13 & 14 \end{pmatrix}$

Quiz. 행렬
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{pmatrix}$$
 에 대하여 $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ 를 구하여라.

Solution.
$$\mathbf{A}\mathbf{A}^{\mathbf{T}} = \begin{pmatrix} 10 & -6 & -5 \\ -6 & 4 & 2 \\ -5 & 2 & 5 \end{pmatrix}$$
 symmetric matrix

Quiz. 행렬
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{pmatrix}$$
, 행렬 $\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 에 대하여 $\mathbf{A}\mathbf{X}$ 를 구하여라.
Answer. $\mathbf{A}\mathbf{X} = \begin{pmatrix} x_1 + 3x_2 \\ -2x_2 \\ -2x_1 - x_2 \end{pmatrix}$ matrix×matrix / matrix × vector

2.2 Linear Transformation

Definition 2.5 두 벡터공간⁴ \mathbb{R}^n , \mathbb{R}^m 사이에 정의된 함수 $f: \mathbb{R}^n \to \mathbb{R}^m$ 가 다음 성질을 만족할때 선형변환 (linear Transformation) 이라고 합니다.

For all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ and any scalar $c \in \mathbb{R}$, $f(\mathbf{a} + \mathbf{b}) = f(\mathbf{a}) + f(\mathbf{b})$, $f(c\mathbf{a}) = cf(\mathbf{a})$.

- 모든 선형변환은 다음을 만족합니다.
 - 1. $f(\mathbf{0}) = \mathbf{0}$

2.
$$f(c_1\mathbf{a} + c_2\mathbf{b}) = c_1 f(\mathbf{a}) + c_2 f(\mathbf{b})$$
 for $c_1, c_2 \in \mathbb{R}$

• The linear transformation given by a matrix

Let $\mathbf{A} = (a_{ij})_{m \times n}$ be a matrix. The function f defined by $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is a linear transformation from \mathbb{R}^n to \mathbb{R}^m

- ex. Given
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{pmatrix}$$
, we define a function $f : \mathbb{R}^2 \to \mathbb{R}^3$ by $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$.

• $\mathbf{v} = (x, y) = (r \cos \alpha, r \sin \alpha),$

"polar coordinates in \mathbb{R}^2 ", $(r,\alpha) = (\pm \sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x} + n\pi)$

- Examples
 - 1. "Rotation in \mathbb{R}^2 "

$$f(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$$
 for any θ

 $[\]overline{}^4$ vector space is a set that satisfies axioms; addition (closure, commutative and associative property, identity and inverse), scalar multiplication (closure, distributive and associative property and scalar identity) ex. \mathbb{R}^n =set of all n-tuples, $\mathbb{C}(-\infty,\infty)$, $M_{m,n}$ =set of all $m \times n$ matrices

$$f(\mathbf{v}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r\cos \alpha \\ r\sin \alpha \end{pmatrix}$$
$$= \begin{pmatrix} r\cos \alpha \cos \theta - r\sin \alpha \sin \theta \\ r\cos \alpha \sin \theta + r\sin \alpha \cos \theta \end{pmatrix}$$
$$= \begin{pmatrix} r\cos(\theta + \alpha) \\ r\sin(\theta + \alpha) \end{pmatrix}$$

Quiz. "Reflection in \mathbb{R}^2 " f를 구하여라. Solution. f(x,y)=(x,-y)

Quiz. "Projection in \mathbb{R}^2 " f를 구하여라. Solution. f(x,y)=(x,0) or f(x,y)=(0,y)

Quiz. "A linear transformation from $\mathbf{A}_{m \times n}$ to $\mathbf{A}_{n \times m}$ " f 를 구하여라. Solution. $f(\mathbf{A}) = \mathbf{A}^T$

Quiz. "Expansions and Contractions in \mathbb{R}^2 " f를 구하여라. Solution. f(x,y)=(kx,y) or f(x,y)=(x,ky) Contraction(0< k<1), Expansion(k>1)

Composition of linear transformation

"product" (matrix multiplication)

$$\mathbf{AB} = (a_{ij})_{m \times p} (b_{ij})_{p \times n} = (c_{ij})_{m \times n} \text{ where } c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} = a_{i1} b_{1j} + \dots + a_{in} b_{nj} = \mathbf{a}_{i}^{T} \cdot \mathbf{b}_{j}$$

For $f_{\mathbf{A}} : \mathbb{R}^{p} \to \mathbb{R}^{m}, \ f_{\mathbf{B}} : \mathbb{R}^{n} \to \mathbb{R}^{p},$

$$f_{\mathbf{A}} \circ f_{\mathbf{B}} = f_{\mathbf{A}\mathbf{B}} : \mathbb{R}^n \to \mathbb{R}^m, \ f_{\mathbf{A}\mathbf{B}}(\mathbf{x}) = \mathbf{A}\mathbf{B}\mathbf{x}$$

- For $f_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n, \ f_{\mathbf{B}}: \mathbb{R}^n \to \mathbb{R}^n,$

$$f_{\mathbf{A}} \circ f_{\mathbf{B}}(\mathbf{x}) = f_{\mathbf{A}}(f_{\mathbf{B}}(\mathbf{x})) = \mathbf{x} \text{ and } f_{\mathbf{B}} \circ f_{\mathbf{A}}(\mathbf{x}) = f_{\mathbf{B}}(f_{\mathbf{A}}(\mathbf{x})) = \mathbf{x}$$

Then $f_{\mathbf{B}}(f_{\mathbf{A}})$ is the inverse of $f_{\mathbf{A}}(f_{\mathbf{B}})$

2.3 Application of Identity matrix and Inverse matrix

Review of Identity matrix and Inverse matrix

 \mathbf{I}_n is the identity matrix of n

$$\mathbf{I}_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

The matrix inverse of **A** is denoted as \mathbf{A}^{-1} and is defined as the matrix such as

$$\mathbf{AB} = \mathbf{I}_n = \mathbf{BA}, \ \mathbf{B} = \mathbf{A}^{-1}$$

*역행렬은 존재하면 유일!

Inverse matrix 활용

• For two linear transformations $f_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n, f_{\mathbf{B}}: \mathbb{R}^n \to \mathbb{R}^n$,

$$f_{\mathbf{A}} \circ f_{\mathbf{B}}(\mathbf{x}) = f_{\mathbf{A}}(f_{\mathbf{B}}(\mathbf{x})) = \mathbf{x} \text{ and } f_{\mathbf{B}} \circ f_{\mathbf{A}}(\mathbf{x}) = f_{\mathbf{B}}(f_{\mathbf{A}}(\mathbf{x})) = \mathbf{x}$$

Then $f_{\mathbf{B}}(f_{\mathbf{A}})$ is the inverse of $f_{\mathbf{A}}(f_{\mathbf{B}}) \implies \mathbf{A}\mathbf{B} = \mathbf{I}_n = \mathbf{B}\mathbf{A}, \ \mathbf{B} = \mathbf{A}^{-1}$

- Example. f(x, y, z) = (2x + 3y + z, 3x + 3y + z, 2x + 4y + z)

The matrix
$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix}$$
 for $f \implies \exists \mathbf{A}^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{pmatrix}$,

f is invertible and $f^{-1}(x, y, z) = (-x + y, -x + z, 6x - 2y - 3z)$

• For
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{2n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn-1} & a_{mn} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

linear system $\mathbf{A}\mathbf{x} = \mathbf{b}^5$ 의 해⁶를 구하는 방법!

If m = n and \mathbf{A}^{-1} 가 존재하면, 해는 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Quiz.

$$x - 2y + 3z = 9$$

 $-1 + 3y = -4$
 $2x - 5y + 5z = 17$

Solution. x = 1, y = -1, z = 2

If not, \mathbf{A}^{-1} 를 구할 수 없는 rectangular $\mathrm{matrix}(m \neq n)$ 에서, $\mathbf{A}\mathbf{x} = \mathbf{b}$ 의 least square problem (find a vector \mathbf{x} that minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$) 은 normal equation 을 이용해서 해결합니다.

- "Linear regression: Finding the line that best fits a set of data points" Example. 세 점(1,2),(2,1),(3,3)을 지나는 선형방정식 (y=mx+b)을 찾는 문제.(Curve fitting)

$$m+b=2, \ 2m+b=1, \ 3m+b=3 \ \text{i.e.}^7, \ \mathbf{A}=\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}, \ \mathbf{x}=\begin{pmatrix} m \\ b \end{pmatrix}, \ \mathbf{b}=\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

 $^{{}^{5}}f_{\mathbf{A}}:\overline{\mathbb{R}^{n}\to\mathbb{R}^{m},\ \text{Domain of }f_{\mathbf{A}}\text{ is }\mathbb{R}^{n},\ \text{Range }R(f_{\mathbf{A}})=\{\mathbf{Ax}\mid\mathbf{x}\in\mathbb{R}^{n}\},\ \text{kernel or null space }N(f_{\mathbf{A}})=\{\mathbf{x}\in\mathbb{R}^{n}\mid\mathbf{Ax}=\mathbf{0}\}.$

⁷id est 라틴어 약자, 영어로는 that is, 즉

"least square problem: Find a vector \mathbf{x} that minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ "

Note. A vector $\hat{\mathbf{x}}$ is a solution to the normal equation $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ if and only if it is a least square solution to $\mathbf{A} \mathbf{x} = \mathbf{b}$

Solution.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} 14 & 6 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 13 \\ 6 \end{pmatrix}$$
$$\begin{pmatrix} m \\ b \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 3 & -6 \\ -6 & 14 \end{pmatrix} \begin{pmatrix} 13 \\ 6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$$

• For
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, $x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$ 으로도 표현될 수 있다.

Review of determinant of a square $(n \times n)$ matrix $\mathbf{A} = (a_{ij})_{n \times n}$

is defined as

$$\det(\mathbf{A}) = |A| = \sum_{j=1}^{n} \mathbf{a}_{1j} \mathbf{C}_{1j} = \mathbf{a}_{11} \mathbf{C}_{11} + \mathbf{a}_{22} \mathbf{C}_{22} + \dots + \mathbf{a}_{nn} \mathbf{C}_{nn}$$

where the minor \mathbf{M}_{ij} of the element \mathbf{a}_{ij} is the determinant of the matrix obtained by deleting the ith row and jth column of \mathbf{A} . The cofactor \mathbf{C}_{ij} is given by $\mathbf{C}_{ij} = (-1)^{i+j} \mathbf{M}_{ij}$

2.4 Application of Norm

Review of Norm

$$f(x) = 0 \Rightarrow x = 0, \ f(x+y) \le f(x) + f(y), \ f(ax) = |a|x$$

• vector

$$\|\mathbf{a}\|_{1} = \sum_{i=1}^{n} |a_{i}|$$

$$\|\mathbf{a}\|_{\infty} = \max_{1 \le i \le n} |a_{i}|$$

$$\|\mathbf{a}\|_{2} = \left(\sum_{i=1}^{n} |a_{i}|^{2}\right)^{1/2}$$

• matrix $\mathbf{A}_{m \times n}$

$$\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$
 maximum column norm $\|\mathbf{A}\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$ maximum row norm

$$\|\mathbf{A}\|_{2} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2} = (trace(A^{*}A))^{1/2}$$
 where A^{*} =conjugate transpose, **Frobenius norm** $\|\mathbf{A}\|_{2} = \|\mathbf{A}\|_{F}$

 $\|\mathbf{A}\|_{2^*} = \sqrt{\lambda_{\max}(A^T A)}$ spectral norm (where $\lambda_{\max}(A^T A)$ is the largest eigenvalue⁸ of $A^T A$)

ex.
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -6 \\ -2 & 4 & 2 \\ 2 & 1 & -1 \end{pmatrix}$$

$$\|\mathbf{A}\|_1 = \max(5, 8, 9) = 9$$

$$\|\mathbf{A}\|_{\infty} = \max(10, 8, 4) = 10$$

$$\|\mathbf{A}\|_2 = \sqrt{76} \approx 8.718$$

$$\|\mathbf{A}\|_{2^*} = \sqrt{\max\{3.07, 23.86, 49.06\}} \approx 7.0045$$

행렬의 norm은 행렬에서의 작은 변화에 대한 선형시스템의 민감도를 추정하는데 사용될수 있다.

Example. Sensitivity of linear equations to data error

• Error analysis: Original linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{b} \in \mathbb{R}^n$$

1. linear system with $\Delta \mathbf{A} \in \mathbb{R}^{n \times n}$, $\Delta \mathbf{b} \in \mathbb{R}^n$,

$$(\mathbf{A} + \Delta \mathbf{A})\tilde{\mathbf{x}} = \mathbf{b} + \Delta \mathbf{b}$$

then the error is $\Delta \mathbf{x} = \tilde{\mathbf{x}} - \mathbf{x}$ i.e., $\tilde{\mathbf{x}} = \mathbf{x} + \Delta \mathbf{x}$

2. linear system with $\Delta \mathbf{b} \in \mathbb{R}^n$,

$$\mathbf{A}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{b} + \Delta \mathbf{b}$$

- subtracting we have $\mathbf{A}\Delta\mathbf{x} = \Delta\mathbf{b}$, or $\Delta\mathbf{x} = \mathbf{A}^{-1}\Delta\mathbf{b}$
- take norms: $\|\Delta \mathbf{x}\| = \|\mathbf{A}^{-1}\Delta \mathbf{b}\| \le \|\mathbf{A}^{-1}\| \|\Delta \mathbf{b}\|$
- to estimate relative error, $\|\mathbf{b}\| = \|\mathbf{A}\mathbf{x}\| \le \|\mathbf{A}\| \|\mathbf{x}\| \implies \frac{1}{\|\mathbf{x}\|} \le \|\mathbf{A}\| \frac{1}{\|\mathbf{b}\|}$
- we have $\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} = \kappa(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$
- $\kappa(\mathbf{A})$ is the condition number of a matrix(\mathbf{A})
- If $\kappa(\mathbf{A})$ is small, the linear system is well conditioned. Otherwise, it is ill conditioned

$$-\kappa_{\infty}(\mathbf{A}) = \|\mathbf{A}\|_{\infty} \|\mathbf{A}^{-1}\|_{\infty} = \left\| \begin{pmatrix} 1 & 3 & -6 \\ -2 & 4 & 2 \\ 2 & 1 & -1 \end{pmatrix} \right\|_{\infty} \left\| \begin{pmatrix} -1/10 & -1/20 & 1/2 \\ 1/30 & 11/60 & 1/6 \\ -1/6 & 1/12 & 1/6 \end{pmatrix} \right\|_{\infty} = 10 \cdot 39/60 \approx 6.5$$

ex.
$$\mathbf{A} = \begin{pmatrix} 1.01 & 0.99 \\ 0.99 & 1.01 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$-\kappa_{\infty}(\mathbf{A}) = \|\mathbf{A}\|_{\infty} \|\mathbf{A}^{-1}\|_{\infty} = \left\| \begin{pmatrix} 1.01 & 0.99 \\ 0.99 & 1.01 \end{pmatrix} \right\|_{\infty} \left\| \begin{pmatrix} 25.25 & -24.75 \\ -24.75 & 25.25 \end{pmatrix} \right\|_{\infty} = 2 \cdot 50 = 100$$

- The matrix ${\bf A}$ has a large condition number

In fact, the solution
$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, we take $\hat{\mathbf{b}} = \mathbf{b} + \Delta \mathbf{b} = \begin{pmatrix} 2.02 \\ 1.98 \end{pmatrix}$ then the solution $\hat{\mathbf{x}} = \mathbf{x} + \Delta \mathbf{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$. A small change in \mathbf{b} has caused a large change in the solution vector.

2.5 Application of Matrix decomposition

Let $\mathbf{A}_{m \times n}$ be a matrix.

A linear system $\mathbf{A}\mathbf{x} = \mathbf{b}^9$ has no solutions, one solution, or infinitely many solutions.

- If **A** is invertible, then the matrix equation has a unique solution given by $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
- If ${\bf A}$ is invertible, then the only solution to the homogeneous equation ${\bf A}{\bf x}={\bf 0}$ is the trivial solution ${\bf A}{\bf x}={\bf b}$
- If \mathbf{u}, \mathbf{v} are solutions to $\mathbf{A}\mathbf{x} = \mathbf{0}$, then the $\mathbf{u} + c\mathbf{v}$ is another solution for every scalar c.

Theorem 2.6 Elementary row operations

- 1. Interchange two rows
- 2. Multiply a row by a nonzero constant
- 3. Add a multiple of a row to another row

LU Decomposition

•
$$\mathbf{A}_{n \times n} = \mathbf{L}\mathbf{U}^{10} = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$$

The most efficient algorithm for solving linear systems $\mathbf{A}\mathbf{x} = \mathbf{b}$

Example.
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -6 \\ -2 & 4 & 2 \\ 2 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & -6 \\ 0 & 10 & -10 \\ 0 & 0 & 6 \end{pmatrix}$$

step 1.
$$R_2 + 2R_1 \to R_2$$
, $\mathbf{E_1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

step 2.
$$R_3 - 2R_1 \to R_2$$
, $\mathbf{E_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$

⁹A system of the form $\mathbf{A}\mathbf{x} = \mathbf{0}$

 $^{^{10}\}mathbf{L}=:$ lower triangular matrix, $\mathbf{U}=:$ upper triangular matrix

step 3.
$$R_3 + 1/2R_2 \to R_2$$
, $\mathbf{E_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{pmatrix}$

then

$$(E_{3}\mathbf{E_{2}E_{1}})\mathbf{A} = \mathbf{U} \quad \Leftrightarrow \quad \mathbf{A} = (\mathbf{E_{3}E_{2}E_{1}})^{-1}\mathbf{U}$$

$$\Leftrightarrow \quad \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & -6 \\ 0 & 10 & -10 \\ 0 & 0 & 6 \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & -6 \\ 0 & 10 & -10 \\ 0 & 0 & 6 \end{pmatrix}$$

$$\Leftrightarrow \quad \mathbf{A} = \mathbf{L}\mathbf{U}$$

• i.e.,

• let $\mathbf{U}\mathbf{x} = \mathbf{y}$ and then solve $\mathbf{L}\mathbf{y} = \mathbf{b}$

$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 10 \end{pmatrix} \Leftrightarrow \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 12 \\ 6 \end{pmatrix}$$

• solve $\mathbf{U}\mathbf{x} = \mathbf{y}$

$$\begin{pmatrix} 1 & 3 & -6 \\ 0 & 10 & -10 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 12 \\ 6 \end{pmatrix} \iff \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 22/5 \\ 11/5 \\ 1 \end{pmatrix}$$

Quiz.
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} m \\ b \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ LU 분해를 이용하여 \mathbf{x} 의 추정치를 구하여라..

- Solution.

$$(E_{3}\mathbf{E_{2}}\mathbf{E_{1}})\mathbf{A} = \mathbf{U} \quad \Leftrightarrow \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$$

$$\Leftrightarrow \quad \mathbf{A} = \mathbf{L}\mathbf{U}$$

_

$$\mathbf{L}\mathbf{U}\hat{\mathbf{x}} = \mathbf{b} \quad \Rightarrow \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

• let $\mathbf{U}\mathbf{x} = \mathbf{y}$ and then solve $\mathbf{L}\mathbf{y} = \mathbf{b}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \quad \Leftrightarrow \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -6 \end{pmatrix}$$

• solve $\mathbf{U}\mathbf{x} = \mathbf{y}$

$$\begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -6 \end{pmatrix} \iff \mathbf{x} = \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

QR Decomposition

• $\mathbf{A}_{n \times n} = \mathbf{Q} \mathbf{R}^{11}$

Example.
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -6 \\ -2 & 4 & 2 \\ 2 & 1 & -1 \end{pmatrix} \approx \begin{pmatrix} 0.33 & 0.67 & -0.67 \\ -0.67 & 0.67 & 0.33 \\ 0.67 & 0.33 & 0.67 \end{pmatrix} \begin{pmatrix} 3 & -1 & -4 \\ 0 & 5 & -3 \\ 0 & 0 & 4 \end{pmatrix}$$

Using Gram-Schmidt Orthogonalization

step 1.
$$\mathbf{A} \stackrel{\text{GSO}}{\longrightarrow} \mathbf{U}$$

step 2.
$$\mathbf{U} \stackrel{\text{normalize}}{\longrightarrow} \mathbf{Q}$$

step 3.
$$\mathbf{Q}^T \mathbf{A} = \mathbf{Q}^T (\mathbf{Q} \mathbf{R}) = \mathbf{R}$$

- $\mathbf{A}\mathbf{x} = \mathbf{b} \, | \mathbf{a}$ least square problem (find a vector \mathbf{x} that minimize $||\mathbf{A}\mathbf{x} \mathbf{b}||$)
- Using "QR decomposition"

$$-\begin{pmatrix} 1 & 3 & -6 \\ -2 & 4 & 2 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 10 \end{pmatrix} \implies \hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} \stackrel{QR}{\Longrightarrow} \hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}$$

$$\mathbf{R}\hat{\mathbf{x}} = \mathbf{Q}^{T}\mathbf{b} \quad \Rightarrow \quad \begin{pmatrix} 3 & -1 & -4 \\ 0 & 5 & -3 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 0.33 & -0.67 & 0.67 \\ 0.67 & 0.67 & 0.33 \\ -0.67 & 0.33 & 0.67 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \\ 10 \end{pmatrix} = \begin{pmatrix} 7.0100 \\ 7.9900 \\ 4.0100 \end{pmatrix}$$

$$\Rightarrow \quad \begin{pmatrix} 3x_{1} - x_{2} - 4x_{3} \\ 5x_{2} - 3x_{3} \\ 4x_{3} \end{pmatrix} \approx \begin{pmatrix} 7 \\ 8 \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \approx \begin{pmatrix} 22/5 \\ 11/5 \\ 1 \end{pmatrix}$$

Quiz.
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} m \\ b \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ **QR** 분해를 이용하여 \mathbf{x} 의 추정치를 구하시오.

¹¹**Q**: orthogonal matrix($\mathbf{Q}^{-1} = \mathbf{Q}^T$), **R**: upper triangular matrix

- Solution.

$$\mathbf{R}\hat{\mathbf{x}} = \mathbf{Q}^T \mathbf{b} \quad \Rightarrow \quad \begin{pmatrix} -3.7417 & -1.6036 \\ 0 & 0.6547 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} -0.2673 & -0.5345 & -0.8018 \\ 0.8729 & 0.2182 & -0.4364 \\ 0.0482 & -0.8165 & 0.4082 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
$$\Rightarrow \quad \begin{pmatrix} -3.7417 & m - 1.6036 & b \\ 0.6547 & b \\ 0 \end{pmatrix} = \begin{pmatrix} -3.4745 \\ 0.6548 \\ 1.2245 \end{pmatrix} \Rightarrow \begin{pmatrix} m \\ b \end{pmatrix} \approx \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}$$

- 실제 QR기법에서는 GSO에 의한 분해 보다는 닮음변환 (Hessenberg 행렬) 과 하우스홀더 법 (Householder 거울변환)을 이용하여 실행한다.
- eigen value 추정

Eigendecomposition (Spectral decomposition)

•
$$\mathbf{A}_{n \times n} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1} = \begin{pmatrix} \mathbf{v}_1(\lambda_1) & \mathbf{v}_2(\lambda_2) & \mathbf{v}_3(\lambda_3) \end{pmatrix} \begin{pmatrix} \sigma_1^{12} & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1(\lambda_1) & \mathbf{v}_2(\lambda_2) & \mathbf{v}_3(\lambda_3) \end{pmatrix}^{-1}$$

 λ_i =eigen value, $\sigma_i = \sqrt{\lambda_i}$

Definition 2.7

- 1. If **A** and **B** are $n \times n$ matrices, then **A** is **similar** to **B** if \exists an invertible matrix **P** such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{AP}$
- 2. If B is a diagonal matrix, then the matrix A is diagonalizable if either $D = P^{-1}AP^{-13}$ or $A = PDP^{-1}$
- 3. A number λ is called an **eigenvalue** of \mathbf{A} if \exists a nonzero vector \mathbf{v} in \mathbb{R}^n such that $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ The **spectrum** of \mathbf{A} is a set of eigenvalues of \mathbf{A} .
- 4. Every nonzero vector satisfying above equation is called an **eigenvector** of A corresponding to the eigenvalue λ

Example. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\lambda_1 = 1 \to \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \lambda_2 = -1 \to \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Theorem 2.8 An $n \times n$ matrix **A** is diagonalizable iff **A** has n linearly independent eigenvectors. Moreover, if $\mathbf{D} = \mathbf{P}^{-1}\mathbf{AP}$ with **D** a diagonal matrix, then the diagonal entries of **D** are the eigenvalues of **A** and the column vectors of **P** are the corresponding eigenvectors.

Example. For
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
,
$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \Leftrightarrow \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

Note. If **A** is symmetric then $\mathbf{A} = \mathbf{Q}^{14}\mathbf{D}\mathbf{Q}^T$

 $^{^{13}\}mathbf{P}$: matrix formed from eigenvector of A, \mathbf{D} : diagonal matrix with eigenvalue

¹⁴orthogonal marix

Singular Value Decomposition(SVD)

- $\mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \sum_{m \times n} \mathbf{V}_{n \times n}^T$
 - $-\mathbf{A}_{m\times n}^T\mathbf{A}_{m\times n} = \mathbf{V}_{n\times n} \sum_{m\times n}^T \mathbf{U}_{m\times m}^T \mathbf{U}_{m\times m} \sum_{m\times n} \mathbf{V}_{n\times n}^T = \mathbf{V}_{n\times n} \mathbf{D}_1 \mathbf{V}_{n\times n}^T$
 - The **singular value** σ_i of **A** for $1 \leq i \leq n$, are the positive square roots of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of $\mathbf{A}\mathbf{A}^T$

$$- \mathbf{A}_{m \times n} \mathbf{A}_{m \times n}^T = \mathbf{U}_{m \times m} \sum_{m \times n} \mathbf{V}_{n \times n}^T \mathbf{V}_{n \times n} \sum_{m \times n}^T \mathbf{U}_{m \times m}^T = \mathbf{U}_{m \times m} \mathbf{D}_2 \mathbf{U}_{m \times m}^T$$

ex.
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} \approx \begin{pmatrix} \frac{-10+\sqrt{265}}{15} & 1 & -\frac{10+\sqrt{265}}{15} \\ \frac{5+\sqrt{265}}{30} & -2 & -\frac{-5+\sqrt{265}}{30} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{-11-\sqrt{265}}{12} & 1 \\ \frac{11-\sqrt{265}}{12} & 1 \end{pmatrix}$$

step 1.
$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 14 & 6 \\ 6 & 3 \end{pmatrix}$$
, $\sigma_1 = \sqrt{\lambda_1} \ \sigma_2 = \sqrt{\lambda_2}$ where λ_1, λ_2 such that $\det(\mathbf{A}^T \mathbf{A} - \lambda I) = 0$

$$\lambda_1 = \frac{17 + \sqrt{265}}{2}, \ \lambda_2 = \frac{17 - \sqrt{265}}{2} \text{ such that } \lambda^2 - 17\lambda + 6 = 0, \ \sigma_1 \ge \sigma_2$$

step 2. Find $\mathbf{v}_1(\lambda_1), \mathbf{v}_2(\lambda_2)$ such that $(\mathbf{A}^T \mathbf{A} - \lambda I)(\mathbf{v}) = \mathbf{0}$

$$\begin{aligned} \mathbf{v}_1 &= \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) \quad \text{s.t.} \quad \left(\begin{array}{c} 14 & 6 \\ 6 & 3 \end{array} \right) - \frac{17 + \sqrt{265}}{2} \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \Rightarrow \quad \left(\begin{array}{c} \frac{11 - \sqrt{265}}{12} & 6 \\ 6 & \frac{-11 - \sqrt{265}}{12} \end{array} \right) \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ & \Rightarrow \quad v_1 = \frac{-11 - \sqrt{265}}{12} v_2 \\ & \Rightarrow \quad \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) = \left(\begin{array}{c} \frac{-11 - \sqrt{265}}{12} \\ 1 \end{array} \right) y, \text{ for any } y \neq 0 \end{aligned}$$

$$\mathbf{v}_{2} = \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} \quad \text{s.t.} \quad \begin{pmatrix} 14 & 6 \\ 6 & 3 \end{pmatrix} - \frac{17 - \sqrt{265}}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \quad \begin{pmatrix} \frac{11 + \sqrt{265}}{12} & 6 \\ 6 & \frac{-11 + \sqrt{265}}{12} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \quad v_{1} = \frac{11 - \sqrt{265}}{12} v_{2}$$

$$\Rightarrow \quad \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} \frac{11 - \sqrt{265}}{12} \\ 1 \end{pmatrix} y, \text{ for any } y \neq 0$$

step 3.
$$\mathbf{A}\mathbf{A}^T = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 5 & 7 \\ 4 & 7 & 10 \end{pmatrix}$$
, $\lambda_1, \lambda_2, \lambda_3$ such that $\det(\mathbf{A}\mathbf{A}^T - \lambda I) = 0$

step 4. Find
$$\mathbf{u}_{1}(\lambda_{1}), \mathbf{u}_{2}(\lambda_{2}), \mathbf{u}_{3}(\lambda_{3})$$
 such that $(\mathbf{A}^{T}\mathbf{A} - \lambda I)(\mathbf{u}) = \mathbf{0}$
 $\lambda_{1} = \frac{17 + \sqrt{265}}{2}, \ \lambda_{2} = 0, \ \lambda_{3} = \frac{17 - \sqrt{265}}{2}$ such that $-\lambda^{3} + 17\lambda^{2} - 6\lambda = 0$

$$\mathbf{u}_{1} = \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} = \begin{pmatrix} \frac{-10 + \sqrt{265}}{15} \\ \frac{5 + \sqrt{265}}{30} \\ 1 \end{pmatrix} y, \text{ for any } y \neq 0$$

$$\mathbf{u}_2 = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} y, \text{ for any } y \neq 0$$

$$\mathbf{u}_{3} = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{pmatrix} -\frac{10 + \sqrt{265}}{15} \\ -\frac{5 + \sqrt{265}}{30} \\ 1 \end{pmatrix} y, \text{ for any } y \neq 0$$

• "inverse" for $A_{m \times n}$: pseudo-inverse (Moore-Penrose inverse)

$$\mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \sum_{m \times n} \mathbf{V}_{n \times n}^{T} = \mathbf{U}_{m \times m} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \mathbf{V}_{n \times n}^{T}$$
$$\mathbf{A}_{m \times n}^{-1} = \mathbf{V}_{n \times n} \sum_{m \times n}^{-1} \mathbf{U}_{m \times m}^{T} = \mathbf{V}_{n \times n} \begin{pmatrix} D^{-1} & 0 \\ 0 & 0 \end{pmatrix}^{T} \mathbf{U}_{m \times m}^{T}$$

Quiz.
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} m \\ b \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ SVD를 이용하여 \mathbf{x} 의 추정치를 구하시오.

- solution.
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{-10+\sqrt{265}}{15} & 1 & -\frac{10+\sqrt{265}}{15} \\ \frac{5+\sqrt{265}}{30} & -2 & -\frac{-5+\sqrt{265}}{30} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{-11-\sqrt{265}}{12} & 1 \\ \frac{11-\sqrt{265}}{12} & 1 \end{pmatrix}$$

$$\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b}^{15}$$

$$\Rightarrow \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} \frac{-11 - \sqrt{265}}{12} & \frac{11 - \sqrt{265}}{12} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sigma_1} & 0 & 0 \\ 0 & \frac{1}{\sigma_2} & 0 \end{pmatrix} \begin{pmatrix} \frac{-10 + \sqrt{265}}{15} & \frac{5 + \sqrt{265}}{30} & 1 \\ 1 & -2 & 1 \\ -\frac{10 + \sqrt{265}}{15} & -\frac{-5 + \sqrt{265}}{30} & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} m \\ b \end{pmatrix} \approx \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}$$

Principal component analysis (PCA)

- feature extraction method, dimensionality reduction(cf. CNN pooling)
- 주성분 분석은 고차원 데이터를 저차원 데이터로로 변환해서 보는 기법이다. 추출한 데이터에서 데이터의 구조(길이나 각도)는 유지한채 적은 수의 특징만으로 특정 현상을 설명하고자 하는 거이 모저이다
- 입력값보다 적은 출력값을 내는 함수의 정의 $f: \mathbb{R}^m \to \mathbb{R}^n \ (n \leq m)$
- 분산이 큰 방향의 벡터(주성분)에 데이터 정사영한다.

Example. 3-variate dataset with 10 observations.

step 1.

$$\mathbf{X} = \begin{pmatrix} 7 & 4 & 6 & 8 & 8 & 7 & 5 & 9 & 7 & 8 \\ 4 & 1 & 3 & 6 & 5 & 2 & 3 & 5 & 4 & 2 \\ 3 & 8 & 5 & 1 & 7 & 9 & 3 & 8 & 5 & 2 \end{pmatrix}$$
 compute the correlation matrix
$$\sum = \begin{pmatrix} 1 & 0.67 & -0.10 \\ 0.67 & 1 & -0.29 \\ -0.10 & -0.29 & 1.00 \end{pmatrix}$$

step 2. Matrix \sum decomposition $\Rightarrow \lambda_1 = 1.7969, \lambda_2 = 0.927, \lambda_3 = 0.304$

• Quiz. PCA 구하기 3 variable dataset

$$\mathbf{X} = \begin{pmatrix} 62 & 8 & 1 & 2 \\ 1 & 4 & 4 & 8 \\ 3 & 7 & 4 & 2 \end{pmatrix}$$

Solution. step1. Cov(X) 행렬 구하기.

$$Cov(X,Y) = (\sum (x - \mu)(y - \nu))/(n - 1)$$

$$\mathbf{Cov}(\mathbf{X}) = \begin{pmatrix} Cov(x_1, x_1) & Cov(x_1, x_2) & Cov(x_1, x_3) \\ Cov(x_2, x_1) & Cov(x_2, x_2) & Cov(x_2, x_3) \\ Cov(x_3, x_1) & Cov(x_3, x_2) & Cov(x_3, x_3) \end{pmatrix}$$

$$= \begin{pmatrix} 10.25 & -0.41666667 & 6 \\ -0.41666667 & 8.25 & -1.66666667 \\ 6 & -1.66666667 & 4.66666667 \end{pmatrix}$$

step 2. eigenvectors 구하기.

 $\lambda_2=14.33608183\geq\lambda_3=8.17645574\geq\lambda_1=0.6541291$ 이고 $\frac{\lambda_2+\lambda_3}{\lambda_1+\lambda_2+\lambda_3}\approx0.97$ 이므로 97% 변화량 반영하면서 3차원을 2차원으로 축소가능

$$\mathbf{X}' = \begin{pmatrix} 1 & 4 & 4 & 8 \\ 3 & 7 & 4 & 2 \end{pmatrix}$$

References

- [1] http://cs229.stanford.edu/section/cs229-linalg.pdf
- [2] Advanced Engineering Mathematics ch7-8, Erwin Kreyszig, Wiely
- [3] Elementary Linear Algebra, 7th ed., Ron Larson
- [4] Deep Learning ch2, Ian Goodfellow and Yoshua Bengio and Aaron Courville, The MIT Press
- [5] https://en.wikipedia.org