データ解析

目標:7日間でゼロから多変量解析の勘所をマスター!

夏ターム・木曜2限・3限 (10:30-12:00,13:00-14:30)

教室: A33

担当教員:瀧川一学(たきがわ・いちがく)

情報理工学コース・大規模知識処理研究室

http://art.ist.hokudai.ac.jp/~takigawa/

連絡先:takigawa@ist.hokudai.ac.jp

情報科学研究科棟6F 6-16室

教科書

ライブラリ新数学大系 **E20**

多変量解析法入門

永田 靖·棟近雅彦 共著

サイエンス社

授業計画

Prologue: データを読み解くとは何なのか

(多変量解析とデータサイエンスと統計学とパターン認識と機械学習とデータマイニング)

DAY-1 6/16 (01)(02) **単回帰: 点群への直線当てはめを"真剣に"考える** (見えない世界へようこそ)

DAY-2 6/23 (03)(04) 重回帰と線形代数: 回帰の行列計算とその意味 (データの計算とデータの解釈)

DAY-3 6/30 (05)(06) **重回帰と確率統計: なぜ回帰に確率が必要?** (推測統計入門:データの向こう側について語るための代償)

DAY-4 7/07 (07)(08) **多変量正規分布: 多次元の正規分布と線形代数** (ゼロから理解する正規分布)

DAY-5 7/14 (09)(10) マハラノビス距離と判別分析: 線形代数を使う1 (最適な判別とは)

DAY-6 7/28 (11)(12) 固有値分解と主成分分析:線形代数を使う2 (高次元データがかかえる大問題)

DAY-7 8/04 (13)(14) **特異値分解と数量化: 線形代数を使う3** (数値じゃない対象に統計を効かすには)

Epilogue: 基礎の上に在る世界(話したことと話さなかったこと)

この講義で主として扱うこと

線形代数を使った多次元の変量(多変量)の統計学 基礎となる3つの勘所:回帰分析、判別分析、主成分分析

副次的に学べること

線形代数

線形写像の像と核, 列空間と行空間, 転置行列の線形写像としての意味, ベクトル空間の直交直和分解, 射影行列, 2次形式, 固有値・固有ベクトル, 直交行列による対角化, etc.

確率統計

推定・検定, 偏回帰係数の有意性検定, 重相関と決定係数, 数量化I類-III類, etc.

この内容は以下の基礎になっています

統計学(推測統計学/数理統計学)、多変量解析、統計的信号処理、パターン認識、 機械学習、統計的データ分析、データサイエンス、データマイニング、人工知能

多変量解析の主題

回帰分析

⇒ 4,5章

数量化I類

⇒ 6章

判別分析

⇒ 7章

数量化II類

⇒ 8章

主成分分析

⇒ 9章

数量化III類

⇒ 10章

多次元尺度構成法(12章)、クラスター分析(11章)、 因子分析・パス分析・グラフィカルモデル(13章)、 正準相関分析(13章)、多段層別分析(13章)

線形代数の技術

射影行列 線形写像の像と核 直交直和分解 (線形代数学の基本定理)

2次形式 基底変換 固有値・固有べん

固有値・固有ベクトル 直交行列による対角化

多变量正規分布

標準化、マハラノビス距離

多変量データの具体例

体重wおよび身長hをn人に調査

集まったデータ
$$\rightarrow {w_1, w_2, w_3, \dots, w_n \atop h_1, h_2, h_3, \dots, h_n}$$

これを各々個人ごとに (w,h) という対データを得る と見て、2変量のベクトル値データとみなす

$$\begin{pmatrix} w_1 \\ h_1 \end{pmatrix}, \begin{pmatrix} w_2 \\ h_2 \end{pmatrix}, \begin{pmatrix} w_3 \\ h_3 \end{pmatrix}, \cdots, \begin{pmatrix} w_n \\ h_n \end{pmatrix} \in \mathbb{R}^2$$

多変量のデータのイメージ (2変量の例)

散布図

表形式データ

	身長 h	体重
1	174.0	64.1
2	169.6	65.4
3	168.4	67.4
4	171.7	63.4
5	172.1	72.3
6	167.0	63.4
7	167.0	62.5
:		:
999	172.7	64.9
1000	167.3	61.97

データ(表形式)

データの散布図

X	У
0.954347545048222	5.05622523205918
0.999102738685906	5.36031043090979
0.0344490522984415	3.98743160130578
0.35056076082401	4.27713727492932
0.585548606002703	4.7572216692572
0.631030546268448	4.73894391078217
0.592243858613074	4.56811837127514
0.168670440558344	4.32047600620958
0.515009876806289	4.59182198538531
0.922892721602693	5.10791569839468

予測に使う

回帰直線

x=0.85のとき、yの予測値は いくらくらいだろうか?

ギモン

- (1)データ点から傾きと切片を どうやって計算するの?
- (2)良し悪しをどう考えれば良いのだろう?

单回帰分析 (最小二乗推定)

予測したい

説明変数 目的変数

	x	y
$\overline{p_1}$	x_1	y_1
p_2	x_2	y_2
p_3	x_3	y_3
p_4	x_4	y_4
p_5	x_5	y_5
p_6	x_6	y_6

二乗誤差を最小にする直線当てはめ

$$\varepsilon_i = y_i - (ax_i + b)$$

$$\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2 + \varepsilon_5^2 + \varepsilon_6^2 \to \min$$

最小二乗推定の計算法(関数の極値問題に)

二乗誤差を最小にする直線当てはめ

$$\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2 + \varepsilon_5^2 + \varepsilon_6^2 \to \min$$

$$\varepsilon = y_i - (ax_i + b)$$

$$f(\mathbf{a}, \mathbf{b}) := \sum_{i=1}^{6} \varepsilon^2 = \sum_{i=1}^{6} (y_i - (\mathbf{a}x_i + \mathbf{b}))^2$$

展開すればとにかくaとbの2次関数に!

項の数が多いが、原理上は がんばれば高校数学で解ける!

大学の微積分を使うなら 偏微分=0の連立方程式を解く。 有名 問題

2変数2次関数の 最大・最小 サクシード 数学 I **p**.50 重要例題**78** 改題 参考:チャートW 数学 I **p**.119 重要例題**78**

x, y が互いに関係なく変化するとき、

$$P=x^2-4xy+5y^2-6y+10$$
 の最小値と、そのときの x , y の値を求めよ。

《解答》

$$P = x^{2} - 4y \cdot x + 5y^{2} - 6y + 10 = (x - 2y)^{2} - (2y)^{2} + 5y^{2} - 6y + 10$$

$$= (x - 2y)^{2} + y^{2} - 6y + 10 = (x - 2y)^{2} + (y - 3)^{2} - 3^{2} + 10$$

$$= (x - 2y)^{2} + (y - 3)^{2} + 1$$

よって、Pの最小値は1

そのときの
$$x$$
, y の値は、 $x-2y=y-3=0$ より、 $x=6$, $y=3$

《別法》

$$P = 5y^{2} - 2(2x+3)y + x^{2} + 10 = 5\left\{y^{2} - \frac{2(2x+3)}{5}y\right\} + x^{2} + 10$$

$$= 5\left\{\left[y - \frac{2x+3}{5}\right]^{2} - \left(\frac{2x+3}{5}\right)^{2}\right\} + x^{2} + 10 = 5\left[y - \frac{2x+3}{5}\right]^{2} + \frac{x^{2} - 12x + 41}{5}$$

$$= 5\left[y - \frac{2x+3}{5}\right]^{2} + \frac{(x-6)^{2}}{5} + 1$$

よって、Pの最小値は1

そのときの
$$x$$
, y の値は、 $y-\frac{2x+3}{5}=x-6=0$ より、 $x=6$, $y=3$

偏微分で解く場合

$$\frac{\partial P}{\partial y} = -6 - 4x + 10y = 0$$

$$\frac{\partial P}{\partial x} = 2x - 4y = 0$$