Das Audiometer

Gliederung

- Grundlegende Physik des Hörens
- Technische Grundlagen des Audiogramms
- Das erstellte System

Grundlegende Physik des Hörens

Schallwellen:

- mechanische Welle, die durch Druckschwankungen in der Luft entsteht.
- Frequenz (Hertz, Hz) beschreibt die Tonhöhe
- Amplitude die Lautstärke (Schalldruckpegel).

• Wahrnehmungsbereich des menschlichen Ohrs:

- Frequenzen zwischen ca. 20 Hz bis 20 kHz.
- Mit zunehmendem Alter nimmt die Hörfähigkeit ab

Grundlegende Physik des Hörens

Schalldruckpegel (dB-Skala):

- Eine logarithmische Skala wird verwendet, da das menschliche Ohr große Unterschiede in der Lautstärke wahrnimmt.
- Beispiele: Flüstern bei 20 dB, normales Gespräch bei 60 dB, laute Musik über 85 dB (potenziell hörschädigend).

Dezibel-Tabelle

Schallpegel bekannter Umgebungsgeräusche

	180	
Spielzeugpistole am Ohrabgefeuert	170	
	160	Ohrfeige aufs Ohr Silvesterböller nahe am Ohr
Airbag-Entfaltung in unmittelbarer Nähe	150	
	140	
	130	
	120	Düsenflugzeug
Wasserfall	110	
	100	Kreissäge Discothek
Presslufthammer in 10 Meter Entlemung	90	
	80	Vorbeifahrender Zug Gewitter, Rasenmäher
Motorrad	70	
	60	Normaler Straßenverkehr
Normales Gespräch Quakende Frösche	50	
	40	Leichter Regen Kühlschrank aus 1 Meter Entfernu
Geringer Straßenverkehr hinter Doppelglasfenstern	30	
	20	Flüstern
Ticken einer Uhr Rascheln von Laub Fallen einer Feder	10	Atemgeräusche
	0	Lüftergeräusch Computer Mücke
	0dB	

https://sonova-retail-media-prd.azureedge.net/media/ml/sonova.geers-de/geers/infothek/20150208-dezibeltabelle.jpg

Technische Grundlagen des Audiogramms

• Audiometer:

- Ein Gerät zur genauen Messung von Hörschwellen über Luft- und Knochenleitung.
- **Bestandteile**: Kopfhörer (Luftleitung), Knochenleitungshörer (Knochenleitung) und Tonausgabe.

Audiogrammarten:

- Luftleitung: Über Kopfhörer zur Messung des Gesamthörvermögens.
- Knochenleitung: Über Knochenleitungshörer zur Messung des Innenohrvermögens.

Technische Grundlagen des Audiogramms

Testablauf:

Ein Audiologe spielt Töne in verschiedenen Frequenzen und Lautstärken ab und bestimmt die niedrigste Lautstärke, bei der der Patient die Töne hören kann.

https://doofe-ohren.de/wp-content/uploads/2020/08/2019-12-05.terzo .audiogramm-1024x560.png

- Knöpfe zum Verstellen der Lautstärke
- Knopf zur Erhöhung der Frequenz
- LCD-Bildschirm zur Ausgabe der Werte

Update:

- → Lautstärkenerhöhung selbstständig
- → Ausgabe der Werte über Serial Print
- → Anleitung welches Ohr gerade getestet wird
- → Bibliotheken und deren Versionen wurden erfasst
- → Code in Github hochgeladen https://github.com/bonsaibauer/arduino hearing test

→ Lautstärkenerhöhung selbstständig

```
void loop() {
58
         unsigned long currentTime = millis();
59
60
         // Automatische Lautstärkeerhöhung alle 800 ms
         if (currentTime - lastVolumeIncreaseTime >= 800 && currentVolume < 30) {</pre>
62
           lastVolumeIncreaseTime = currentTime; // Zeitstempel aktualisieren
63
           currentVolume++; // Lautstärke erhöhen
64
65
            myDFPlayer.volume(currentVolume); // Lautstärke einstellen
           updateDisplay(); // Anzeige aktualisieren
66
```

→ Ausgabe der Werte in Serial Printer

```
134 +
135
      + void sendToSerial(int frequencyIndex, int volume) {
         // Werte über serielle Verbindung im CSV-Format ausgeben
136
          Serial.print(frequencies[frequencyIndex - 1]);
137
         Serial.print(",");
138
139
         Serial.print(volume);
     +
         Serial.print(",");
140 +
141
          Serial.println(isLeftEar ? "L" : "R"); // L oder R für das Ohr
142 + }
```

→ Anleitung welches Ohr gerade getestet wird

```
+ // "Rechtes Ohr" anzeigen, bevor der rechte Ohrtest startet

+ showEarIndicator("Rechtes Ohr");

+ delay(1000); // Anzeige für eine Sekunde

+ // Start des Lautstärkentests
```

```
// Falls alle Frequenzen für das rechte Ohr durchlaufen sind, zum linken Ohr wechseln
if (currentFrequencyIndex >= sizeof(frequencies) / sizeof(frequencies[0])) {
   if (!isLeftEar) {
      showEarIndicator("Linkes Ohr"); // Linkes Ohr anzeigen
      delay(1000); // Anzeige für eine Sekunde
      isLeftEar = true; // Wechselt zum linken Ohr
      currentFrequencyIndex = 1; // Frequenzindex auf Anfang setzen
```

→ Bibliotheken und deren Versionen wurden erfasst

Code in Github hochgeladen https://github.com/bonsaibauer/arduino_hearing_test

Quellen

- Audiometer Wikipedia
- Hörtest Teil 1: Audiogramm und Hörschwellenmessung | Doofe Ohren
- https://sonova-retail-media-prd.azureedge.net/media/ml/sonova.geers-de
- <u>Tonaudiogramm Wikipedia</u>
- Dieter Mrowinski; Thomas Steffens; Günter Scholz: *Audiometrie*. 5. Auflage. Thieme, Stuttgart 2017, <u>ISBN 978-3-13-240107-5</u>.