Understanding IPv4 Addressing

What is an IPv4 Address?

An IPv4 address is a 32-bit numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication. It's written in decimal format as four octets separated by periods, for example: 192.168.1.1.

Structure of IPv4 Addresses

Each IPv4 address consists of four octets (8 bits each), making up 32 bits in total. Each octet can range from 0 to 255. The format is known as 'dotted decimal notation', e.g., 192.0.2.1.

Classes of IPv4 Addresses

IPv4 addresses are divided into five classes:

- Class A: 0.0.0.0 to 127.255.255.255 (Large networks)
- Class B: 128.0.0.0 to 191.255.255.255 (Medium-sized networks)
- Class C: 192.0.0.0 to 223.255.255.255 (Small networks)
- Class D: 224.0.0.0 to 239.255.255.255 (Multicast)
- Class E: 240.0.0.0 to 255.255.255.255 (Experimental)

Private IP Address Ranges

Private addresses are reserved for use within private networks and are not routable on the internet:

- Class A: 10.0.0.0 to 10.255.255.255
- Class B: 172.16.0.0 to 172.31.255.255
- Class C: 192.168.0.0 to 192.168.255.255

Subnetting and CIDR Notation

CIDR (Classless Inter-Domain Routing) notation is used to define subnet masks, e.g., 192.168.1.0/24. The '/24' means the first 24 bits are the network part. Subnetting helps in efficient IP address allocation.

IPv4 Limitations

Understanding IPv4 Addressing

IPv4 can support about 4.3 billion addresses,	many of which	are reserved or u	unusable. This	limitation is one
of the reasons for the development of IPv6.				