

Machine Learning (IS ZC464) Session 6:

Linear models for Regression

What is Regression?

- The goal of regression is to predict the value of one or more continuous target variables 't' given the value of a D-dimensional vector x of input variables.
- Polynomial curve fitting is an example of regression.

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Slides adapted from Coursera Courseware on Machine Learning course offered by Prof. Andrew Ng.

Training set of housing prices	Size in feet ² (x)	Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178
Notation:	•••	•••

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

How do we represent h? Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $heta_i$'s: Parameters

How to choose $heta_i$'s ?

Linear regression with one variable. Univariate linear regression.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Recall: example to understand **ERROR**

Terminology

- Use parameters θ_0 and θ_1 to represent intercept and slope of line
- Use $J(\theta_0, \theta_1)$ to represent the Error.
- Instead of root Mean Squared (RMS) error, consider Squared error.
- The number of training examples = m
- The ith data is x⁽ⁱ⁾
- The ith target is y⁽ⁱ⁾

Hypothesis

Equation(1):

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta_0 + \theta_1 \mathbf{x}^{(i)}$$

Note: The notations used in <u>Bishop's book</u> are as follows

- 1. In place of parameters θ , The book uses the notion of w (later will be referred to as weights)
- 2. In place of $\langle x^{(i)}, x^{(2)}, x^{(3)}, ..., x^{(m)} \rangle$, the book uses vector x
- 3. In place of $(y^{(i)}, y^{(2)}, y^{(3)}, ..., y^{(m)})$, the book uses vector y.
- 4. In place of $h_{\theta}(x^{(i)})$, the book uses y(x,w) given by $y(x,w) = w_0 + w_1 x$ (which is equivalent to equation (1))

Objective

- To find θ_0 , θ_1 to minimize $J(\theta_0, \theta_1)$
- $J(\theta_0, \theta_1)$ is given by the expression

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Objective Function

$$\underset{\theta_0}{\text{Minimize}} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$h_{\theta}(x) = \theta_1 x$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \qquad J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

 $\underset{\theta_1}{\text{minimize}} J(\theta_1)$

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

Compute $J(\theta_1) = (1/2*3)*\{(0.5-1)^2 + (1-2)^2 + (1.5-3)^2\}$ = (1/6)*(0.25+1+2.25)= (1/6)*3.5 = 0.58

$$J(\theta_1)$$

(function of the parameter θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

Compute
$$J(\theta_1) = (1/2*3)*\{(0-1)^2 + (0-2)^2 + (0-3)^2\}$$

= $(1/6)*(1+4+9)$
= $(1/6)*14 = 2.3$

 $J(\theta_1)$

(function of the parameter θ_1)

$$J(\theta_1)$$

The error curve $J(\theta_1)$ is plotted for varying values of the parameter θ_1

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$h_{\theta}(x) = 50 + 0.06x$$

$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

Surface and Corresponding contour plot

-0.4

-0.5 -1000

-500

500

1000

1500

2000

Training data

3000

Current hypothesis

4000

100

1000

2000

Size (feet²)

$$h_{\theta}(x)$$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters $\, heta_0, heta_1$)

$$h_{\theta}(x)$$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters $\, heta_0, heta_1$)

Have some function $J(\theta_0,\theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing $\, heta_0, heta_1 \,$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

Learning Rate: α

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }
```

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent algorithm

Linear Regression Model

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 1$ and $j = 0$)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters $\, heta_0, heta_1$)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters $\, heta_0, heta_1 \!)$

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters $\, heta_0, heta_1$)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters
$$\, heta_0, heta_1 \!)$$

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters $\, heta_0, heta_1$)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

Single feature (variable): x

Size (feet²)	Price (\$1000)		
x	y		
2104	460		
1416	232		
1534	315 178		
852			
$h_{\theta}(x) = 0$	$\theta_0 + \theta_1 x$		

Multiple features (variables).

Size (feet²)	Number of bedrooms		Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••	•••	•••

Notation:

n = number of features = input (features) of i^{th} training example.

 $x_i^{(i)}$ = value of feature j in i^{th} training example.

$$\chi^{(1)} = \begin{vmatrix} 2104 \\ 5 \\ 1 \\ 45 \end{vmatrix}$$

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now with multiple variables or features

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$
Size (feet²) Number of bedrooms etc.

Or as per Bishop's book notations (page 138, section 3.1)

$$y(x,w) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\left\{ \begin{array}{l} \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \\ \end{array} \right.$$
 (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

}

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update θ_j for $j=0,\ldots,n$

$$j=0,$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

. .

Linear Regression

$$y(x,w) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_D x_D$$

Key Properties of Linear Regression

- y is a linear function of the parameters w₀,w₁,w₂,...w_D
- y is a linear function of the input variables (features)
 x₀,x₁,x₂,...x_D

Generalized Form of Linear Regression

- A notion of class of functions $\phi_i(x)$ is used to represent the regression function
- $y(x,w) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + + w_D x_D$ is represented as

$$y(x,w) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x) + \dots + w_D \phi_D(x)$$

Where $\phi_i(x)=x_i$

φ_i(x) are called as basis functions for i=1,2,3,...D

Basis functions

- Linear basis functions $\phi_i(x)=x$ (Quadratic in x)
- Nonlinear basis functions

$$\phi_i(x)=x^2$$
 (Quadratic in x)
 $\phi_i(x)=x^3$ (Cubic in x)

September 3, 2016 IS ZC464 52

What is linear in linear regression?

The following expression is linear in W

$$y(x,w) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x) + \dots + w_D \phi_D(x)$$

The basis functions may be linear or nonlinear in x