Введение в регрессионный анализ

Гарик Мороз

5 августа 2022, ДокМед ЛШ

План

Обо мне

Основы регрессии

Усложнение регрессионой модели

На какие вопросы отвечает регрессия

Ограничения на применение регрессии

Картинка из [Farazmand 2017: 24]

- теоретический и может быть даже компьютерный лингвист
- занимаюсь анализом данных, записал для лингвистов онлайн-курс, много лет веду курсы анализа данных в НИУ ВШЭ
- вел продвинутые треки мастерской АнДан на ЛШ

- теоретический и может быть даже компьютерный лингвист
- занимаюсь анализом данных, записал для лингвистов онлайн-курс, много лет веду курсы анализа данных в НИУ ВШЭ
- вел продвинутые треки мастерской АнДан на ЛШ
- специально подготовился к вашей лекции и полистал статью и книгу с назвнанием Regression analysis in medical research
 - [Faguet and Davis 1984]
 - [Cleophas and Zwinderman 2021]

План

Обо мне

Основы регрессии

Усложнение регрессионой модели

На какие вопросы отвечает регрессия

Ограничения на применение регрессии

Основы регрессии

Суть регрессионного анализа в моделировании связи между двумя и более переменными при помощи прямой на плоскости. Формула прямой зависит от двух параметров: свободного члена (intercept) и углового коэффициента (slope).

$$y = \beta_0 + \beta_1 \times x$$

- β_0 свободный член (intercept)
- β_1 угловой коэффициента (slope)

У нас есть вот такие данные

Первый подход

Представим, что мы пытаемся научиться предсказывать данные переменной Y, не используя других переменных. Какую меру можно выбрать?

$$y_i = \hat{\beta}_0 + \epsilon_i$$

Представим, что мы пытаемся научиться предсказывать данные переменной Y, не используя других переменных. Тогда мы будем использовать формулу в заголовке

- y_i i-ый элемент вектора значений Y (предсказываемая переменная);
- $\hat{\beta}_0$ оценка случайного члена (intercept);
- ϵ_i i-ый остаток, разница между оценкой модели $(\hat{\beta}_0)$ и реальным значением y_i ; весь вектор остатков иногда называют случайным шумом (на графике выделены красным);
- *i* номер наблюдения.

$y_i = \hat{\beta}_0 + \epsilon_i$

Все, теперь вы знаете основу регрессионного анализа.

 $y_i = \hat{\beta}_0 + \epsilon_i$

Все, теперь вы знаете основу регрессионного анализа. Почти.

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 \times x_i + \epsilon_i$$

Когда мы пытаемся научиться предсказывать данные одной переменной Y при помощи другой переменной X, мы получаем формулу в заголовке, где

- x_i i-ый элемент вектора значений X (предиктор);
- y_i i-ый элемент вектора значений Y (предсказываемая переменная);
- \hat{eta}_0 оценка случайного члена (intercept);
- $\hat{\beta}_1$ оценка углового коэффициента (slope);
- ϵ_i i-ый остаток, разница между оценкой модели $(\hat{eta}_0 + \hat{eta}_1 imes x_i)$ и реальным значением y_i ; весь вектор остатков иногда называют случайным шумом (на графике выделены красным);
- i номер наблюдения.

$y_i = \hat{\beta}_0 + \hat{\beta}_1 \times x_i + \epsilon_i$

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 \times x_i + \epsilon_i$$

Таким образом, задача регрессии — оценить параметры $\hat{\beta}_0$ и $\hat{\beta}_1$, если нам известны все значения x_i и y_i и мы пытаемся минимизировать значния ϵ_i . В данном конкретном случае, задачу можно решить аналитически и получить следующие формулы:

$$\hat{\beta}_1 = \frac{(\sum_{i=1}^n x_i \times y_i) - n \times \bar{x} \times \bar{y}}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \times \bar{x}$$

Не волнуйтесь, софт посчитает все за вас.

Не волнуйтесь, софт посчитает все за вас.

Картинка из [Farazmand 2017: 48]

Проба руки

Вот данные:

x: 21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2 y: 2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44, 3.44, 4.07, 3.73, 3.78

Попробуйте посчитать коэффициенты регрессии вот здесь.

Проба руки

Вот те же данные, но предиктор и предсказываемая переменная поменяны местами:

```
x: 2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44, 3.44, 4.07, 3.73, 3.78
y: 21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2
```

Попробуйте посчитать коэффициенты регрессии вот здесь.

Снова рассмотрим наш эксперимент

Снова рассмотрим наш эксперимент

```
Call:
lm(formula = bp ~ age, data = df)
Residuals:
   Min
          10 Median
                      30
                               Max
-23.149 -7.371 1.265 7.229 18.215
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 81.6241 15.0994 5.406 3.89e-05 ***
            age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 11.04 on 18 degrees of freedom
Multiple R-squared: 0.264, Adjusted R-squared: 0.2231
F-statistic: 6.456 on 1 and 18 DF, p-value: 0.02048
```


Снова рассмотрим наш эксперимент

```
Call: код для вызова регрессии
lm(formula = bp ~ age, data = df)
Residuals: распределение остатков (должно быть вокруг нуля)
   Min
            10 Median
                           30
                                  Max
-23.149 -7.371 1.265 7.229 18.215
Coefficients: оценка коэффициентов
           Estimate Std. Error t value Pr(>|t|)
             оценка ст. ошибка t-статистика p-value ст. знач.
(Intercept) 81.6241
                      15.0994
                                     5.406 3.89e-05 ***
             0.5945 0.2340
                                     2.541
                                            0.0205 *
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 11.04 on 18 degrees of freedom
Multiple R-squared: 0.264, Adjusted R-squared: 0.2231
r-квадрат -- коэффициент корреляции Пирсона в квадрате
F-statistic: 6.456 on 1 and 18 DF. p-value: 0.02048
p-value в этом месте совпадает с результатом ANOVA
```


План

Обо мне

Основы регрессии

Усложнение регрессионой модели

На какие вопросы отвечает регрессия

Ограничения на применение регрессии

Множественная регрессионая модель

Вообще-то можно инкорпорировать много предикторов в одну регрессию:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 \times x_i^1 + \hat{\beta}_2 \times x_i^2 ... + \hat{\beta}_k \times x_i^k + \epsilon_i$$

Множественная регрессионая модель

Вообще-то можно инкорпорировать много предикторов в одну регрессию:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 \times x_i^1 + \hat{\beta}_2 \times x_i^2 ... + \hat{\beta}_k \times x_i^k + \epsilon_i$$

В таком случае все предикторы просто становятся весами для нашего углового коэффициента. Т. е. регрессия в каком-то смысле ранжирует предикторы.

$bp_i = 45.0604 + 0.7728 \times age_i + 0.242 \times Na_i + \epsilon_i$

```
Call:
lm(formula = bp ~ age + na_plus, data = .)
Residuals:
   Min
          10 Median 30
                               Max
-32.936 -7.698 2.057 10.129 25.399
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.0604 29.4028 1.533
                                     Ø.133
        age
na_plus 0.2426 0.1839 1.319 0.194
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.27 on 44 degrees of freedom
Multiple R-squared: 0.3083. Adjusted R-squared: 0.2769
F-statistic: 9.805 on 2 and 44 DF. p-value: 0.0003008
```


Категориальная переменная

Когда в данных есть категориальная переменная с n возможных значений, то принято ее превращать в n-1 фиктивную переменную (dummy variable). Например:

цвет глаз	\rightarrow	голубые	карие	серые
голубые	\rightarrow	1	О	0
карие	\rightarrow	0	1	О
серые	\rightarrow	0	О	1
зеленые	\rightarrow	O	Ο	О

Категориальная переменная

Когда в данных есть категориальная переменная с n возможных значений, то принято ее превращать в n-1 фиктивную переменную (dummy variable). Например:

цвет глаз	\rightarrow	голубые	карие	серые
голубые	\rightarrow	1	О	0
карие	\rightarrow	0	1	О
серые	\rightarrow	О	О	1
зеленые	\rightarrow	0	0	0

Какие значения примут переменные в случае карих глаз?

Категориальная переменная

Когда в данных есть категориальная переменная с n возможных значений, то принято ее превращать в n-1 фиктивную переменную (dummy variable). Например:

цвет глаз	\rightarrow	голубые	карие	серые
голубые	\rightarrow	1	О	0
карие	\rightarrow	0	1	0
серые	\rightarrow	О	О	1
зеленые	\rightarrow	О	О	0

Какие значения примут переменные в случае карих глаз? Какие значения примут переменные в случае зеленых глаз?

Категориальная переменная

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 \times \operatorname{dummy treatment}_i + \epsilon_i$$

\rightarrow	dummy treatment
\rightarrow	1
\rightarrow	0
	\rightarrow

Так как dummy_treatment принимает либо значение 1, либо значение 0, то получается, что модель предсказывает лишь два значения:

$$y_i = \left\{ \begin{array}{l} \hat{\beta}_0 + \hat{\beta}_1 \times 1 + \epsilon_i = \hat{\beta}_0 + \hat{\beta}_1 + \epsilon_i \text{, если лекарство} \\ \hat{\beta}_0 + \hat{\beta}_1 \times 0 + \epsilon_i = \hat{\beta}_0 + \epsilon_i \text{, если плацебо} \end{array} \right.$$

$\mathbf{y}_i = \hat{eta}_0 + \hat{eta}_1 imes \mathrm{dummy \, treatment}_i + \epsilon_i$

```
Call:
lm(formula = bp ~ treatment, data = .)
Residuals:
   Min
           10 Median
                      30
                                 Max
-29.231 -10.562 1.270 9.648 25.540
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 133.454 2.714 49.17 <2e-16 ***
treatmentdrug -13.980 4.161 -3.36 0.0016 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.1 on 45 degrees of freedom
Multiple R-squared: 0.2006, Adjusted R-squared: 0.1828
F-statistic: 11.29 on 1 and 45 DF, p-value: 0.001597
```


Да, мы запустили регрессию, чтобы посчитать два средних

А насколько мы уверены в наших линиях?

А насколько мы уверены в наших линиях?

Благодаря станадртным ошибкам коэффициентов в выдаче регрессии, можно строить доверительные интервалы:

Я предпочитаю effect plots

А как сравнивать модели?

Есть модели, какая лучше?

- bp ~ age + treatment + Na+
- bp ~ age + treatment
- bp ~ age + Na+
- bp ~ treatment + Na+
- bp ~ age
- bp ~ treatment
- $bp \sim Na+$

А как сравнивать модели?

Есть модели, какая лучше?

- bp ~ age + treatment + Na+
- bp ~ age + treatment
- bp ~ age + Na+
- bp ~ treatment + Na+
- bp ~ age
- bp ~ treatment
- bp ~ Na+

Люди придумали некоторые методы:

- можно сравнивать статистическую значимость предикторов
- можно сравнивать R^2
- чаще всего используют так называемые информационные критерии, самый популярный AIC (Akaike information criterion). Чем меньше значение, тем модель лучше.

План

Обо мне

Основы регрессии

Усложнение регрессионой модели

На какие вопросы отвечает регрессия

Ограничения на применение регрессии

На какие вопросы отвечает регрессия

- оценка коэффициентов
- проверка стат. значимости коэффициентов
- проверка стат. значимости модели
- интерполяция/эктраполяция значений

На какие вопросы отвечает регрессия

- оценка коэффициентов
- проверка стат. значимости коэффициентов
- проверка стат. значимости модели
- интерполяция/эктраполяция значений
- подбор модели, но это, видимо, не для медицины

План

Обо мне

Основы регрессии

Усложнение регрессионой модели

На какие вопросы отвечает регрессия

Ограничения на применение регрессии

- связь между предсказываемой переменной и предикторами должна быть линейной
 - можно как-то трансформировать переменные (корень, логарифм)
 - нелинейные регресии (если связь между переменными нелинейна)

- связь между предсказываемой переменной и предикторами должна быть линейной
 - можно как-то трансформировать переменные (корень, логарифм)
 - нелинейные регресии (если связь между переменными нелинейна)
- остатки должны быть нормально распределены

- связь между предсказываемой переменной и предикторами должна быть линейной
 - можно как-то трансформировать переменные (корень, логарифм)
 - нелинейные регресии (если связь между переменными нелинейна)
- остатки должны быть нормально распределены
- дисперсия остатков вокруг регрессионной линии должно быть постоянно (гомоскидастично)

- связь между предсказываемой переменной и предикторами должна быть линейной
 - можно как-то трансформировать переменные (корень, логарифм)
 - нелинейные регресии (если связь между переменными нелинейна)
- остатки должны быть нормально распределены
- дисперсия остатков вокруг регрессионной линии должно быть постоянно (гомоскидастично)
 - см. этот пост про это и предыдущую проблемы
- предикторы не должны коррелировать друг с другом

- связь между предсказываемой переменной и предикторами должна быть линейной
 - можно как-то трансформировать переменные (корень, логарифм)
 - нелинейные регресии (если связь между переменными нелинейна)
- остатки должны быть нормально распределены
- дисперсия остатков вокруг регрессионной линии должно быть постоянно (гомоскидастично)
 - см. этот пост про это и предыдущую проблемы
- предикторы не должны коррелировать друг с другом
- все наблюдения в регрессии должны быть независимы друг от друга
 - регрессия со смешанными эффектами (если внутри данных есть группировки)

- связь между предсказываемой переменной и предикторами должна быть линейной
 - можно как-то трансформировать переменные (корень, логарифм)
 - нелинейные регресии (если связь между переменными нелинейна)
- остатки должны быть нормально распределены
- дисперсия остатков вокруг регрессионной линии должно быть постоянно (гомоскидастично)
 - см. этот пост про это и предыдущую проблемы
- предикторы не должны коррелировать друг с другом
- все наблюдения в регрессии должны быть независимы друг от друга
 - регрессия со смешанными эффектами (если внутри данных есть группировки)
- предсказываемая переменная должна быть числовой переменной
 - логистическая (два возможных исхода)
 - мультиномиальная (больше двух дискретных исходов)

Список литературы

- Ton J. Cleophas and Aeilko H. Zwinderman. *Regression Analysis In Medical Research: For Starters And 2nd Levelers*. Springer, 2nd ed. edition, 2021. ISBN 3030613933; 9783030613938; 9783030613945; 3030613941.
- G. B. Faguet and H. C. Davis. Regression analysis in medical research. *Southern medical journal*, 77(6):722–5, 1984.
- Reza Farazmand. *Comics for a Strange World: A Book of Poorly Drawn Lines*. Penguin, 2017.