Chapitre 6 - Forces et intéractions

N. Bancel

Janvier 2025

Effet d'une action sur le mouvement d'un corps

- Une action s'exerçant sur un corps entraîne une modification de son mouvement ou une mise en mouvement
- Deux corps sont en interaction si le mouvement de l'un dépend de la présence de l'autre.
- Une action de contact ne peut exister qu'entre deux corps en contact l'un avec l'autre.
- Une action entre deux corps est une action à distance lorsqu'il n'y pas de contact entre eux.

Classification

Placer dans le tableau les actions listées ci-dessous :

- 1. Force gravitationnelle exercée par la Terre sur un objet (appelée Poids)
- 2. Tenir un livre dans la main
- 3. Force d'attraction d'un aimant
- 4. Action exercée par une règle en plastique sur des morceaux de papier (après avoir été frottée avec un tissu sec)
- 5. Punaise enfoncée dans une planche

- 6. Action du vent sur la voile d'un bateau
- 7. Poussée d'un moteur sur un avion

Action de contact	Action à distance (Répartie ? Ponctuelle ?)	

Diagramme objet intéractions

Méthode

- Identifier le système étudié. Le placer au centre du diagramme
- Identifier les objets susceptibles d'interagir avec lui. Les placer autour du système
- Représenter les interactions

Exemple

Figure 1: Athlète

Représenter le diagramme objet-intéraction de l'athlète

Exercices

Exercice 1

Figure 2: Pomme

Dessiner les diagrammes objet-intéractions des 2 autres situations

Exercice 2

Dessiner le diagramme objet-intéractions d'une bille en acier qui roule sur le sol et qui est attirée par un aimant ?

Modélisation d'une intéraction par une force

Méthode

Une intéraction est modélisée par une force représentée à l'aide d'une flèche dont la longueur est proportionnelle à la valeur de la force.

Une force est définie par

- •
- •
- •
- .

L'unité d'une force est le Newton et est notée N

Figure 3: Intéraction entre un handballeur et son ballon

- Direction:
- Sens:
- Point d'application :
- Valeur: 100 Newtons

Exercices

- **1.** Pour chacune des situations, identifier les actions qui s'exercent sur le corps étudié indiqué par la flèche.
- 2. Modéliser ces actions en les représentant par des flèches et en précisant pour chacune la direction, le sens et le point d'application.
- 3. Que représentent les flèches ainsi modélisées ?

Figure 4: Exercice 1 - Forces

Forces	Direction	Sens	Point d'application	Valeur et échelle
F ₁	Verticale	Vers le bas	Au centre d'un disque	20 N (1 cm ⇔ 5 N
F ₂	Horizontale	Vers la droite	Bord haut à gauche d'un cube	7 N (1 cm ⇔ 1 N
F ₃	Oblique	Vers le haut	Bord d'un ballon	50 N (1 cm ⇔ 10 N

Figure 5: Exercice 2 - Forces

Le principe d'inertie

Principe d'inertie

Définition préalable : On dit que deux forces (représentées par des vecteurs) se compensent si elles ont la même direction, des sens opposés, et la même valeur.

Principe d'inertie : Si les forces qui s'exercent sur un système se compensent, ce système est soit immobile, soit en mouvement rectiligne uniforme. La réciproque est vraie : Si un système est immobile ou en mouvement rectiligne uniforme, alors les forces qui s'exercent sur lui se compensent.

Contraposée du principe d'inertie : Si un système n'est ni immobile ni en mouvement rectiligne unifore, alors les forces qui s'exercent sur lui ne se compensent pas La réciproque est vraie.

Exemples:

- Mouvement d'un palet de air hockey ?
- Mouvement des planètes dans le référentiel héliocentrique ?

Figure 6: Exercice 3 - Forces

Figure 7: Exercice 4 - Forces