How can we start with modeling?

Tomas Helikar

www.cellcollective.org | www.helikarlab.org | @helikarlab | thelikar2@unl.edu

Susan J Rosowski Professor Department of Biochemistry University of Nebraska at Lincoln

1. Define Model Scope

Biological networks can be large and complicated.

Scientists build models to answer biological questions.

Example: Under what conditions does the lac operon function?

genome.jp/kegg/

1. Define Model Scope

Example: Under what conditions does the lac operon function?

Consider the Lac Operon:

- What behavior(s) should the model exhibit?
- What components and relationships are required to elicit that behavior?

1. Define Model Scope

Example: Under what conditions does the lac operon function?

Consider the Lac Operon:

- What behavior(s) should the model exhibit?
- What components and relationships are required to elicit that behavior?

1. Define Model Scope

2. Define Validation Criteria

Validation criteria can be thought of as relationships (qualitative or quantitative) between inputs and outputs.

Table 1. Validation criteria for the modeled lac operon system.

	Glucose	Lactose	lac Operon transcription
Validation Criterion 1	present	absent	OFF
Validation Criterion 2	present	present	OFF
Validation Criterion 3	absent	present	ON
Validation Criterion 4	absent	absent	OFF

3. Select Modeling Approach

Many mathematical and computational frameworks are available:

Examples:

- Logical models
- Kinetic models
- Constraint-based models

3. Select Modeling Approach

Cell Collective

3. Select Modeling Approach

4. Identify Components & Interactions, and Build a Draft Model

Determine the specific components that will be represented in the model and the relationship(s) between them.

Figure 6. Fully connected network diagram of the lac operon model.

4. Identify Components & Interactions, and Build a Draft Model

Determine the specific components that will be represented in the model and the relationship(s) between them.

Possible sources:

- Expert Knowledge
- Static Diagrams
- Published Literature

Cell Collective interprets the diagram so that it functions as a simulatable model.

5. Define and Annotate Regulatory Mechanisms

Well annotated models facilitate transparency and reusability.

Levels of Annotation in Cell Collective:

- Model
- Regulatory Mechanism

5. Define and Annotate Regulatory Mechanisms

Well annotated models facilitate transparency and reusability.

Levels of Annotation in Cell Collective:

- Model
- Regulatory Mechanism

6. In Silico Model Validation and Prediction

Simulate the model to test whether it can reproduce the dynamics and behaviors defined in the validation criteria.

6. In Silico Model Validation and Prediction

Simulate the model to test whether it can reproduce the dynamics and behaviors

defined in the validation criteria.

6. In Silico Model Validation and Prediction

Simulate the model to test whether it can reproduce the dynamics and behaviors defined in the validation criteria.

With a validated model, we can test:

- In silico knock-outs
- Over-expressions
- Combinations of the above
- Dose-response
- Identify optimal intervention points

7. Wet Lab Validation

Hypotheses generated using a model can be validated experimentally.

Benefits of Computational Modeling:

- Identify experiments likely to succeed
- Saves Resources
- Saves Time

8. Possible Needs for Revision

Like the scientific process, modeling is iterative with multiple points that may require revision.

Your Turn!!

