# COMP20230: Data Structures & Algorithms Lecture 6: More Recursion

Dr Andrew Hines

Office: E3.13 Science East School of Computer Science University College Dublin



## Outline

- Recursive vs Iterative Functions
- Tail Recursion
- Turning a recursive algorithm into an iterative one
- Complexity of recursive functions

## Take home message

 $Runningtime = operation \times activations$ 

Tail recursion helps to turn recursive functions into iterative ones

## Recursive vs. Iterative

It is often possible to write the same algorithm using recursive or iterative functions.

## Algorithm Iterative implementation of factorial

1: factorial\_iterative(n):

Input: n a natural number

Output: the n-th factorial number

- 2: fact  $\leftarrow$  n
- 3: while n > 1 do
- 4:  $n \leftarrow n-1$
- 5: fact  $\leftarrow$  fact \* n
- 6: endwhile
- 7: return fact

## How to choose: Recursive vs. Iterative

#### Naturally Recursive?

Some data structures are naturally recursive, i.e., it's much easier to write recursive algorithms for them than iterative ones.



(2018-19)

# Recursion is not always best

- Recursive functions are sometimes slower: operation calls are expensive in practice (see lab for examples)
- (Bad) recursive algorithms can generate a large number of calls
- They can sometimes be difficult to understand elegant but illusive
- (Well written) iterative programs can be easier to follow

## Tail Recursion

- A function call is said to be tail recursive if there is nothing to do after the function returns except return its value
- A function is non tail recursive if there is some processing done after the function returns.

## Examples?

Let's look at yesterday's factorial as a **tail recursive** and **non-tail recursive** algorithm

## Tail Recursion

## Example 1: non tail recursion

This is how we implemented factorial yesterday

```
Algorithm factorial_non_tail(n)
```

```
Input: n, a natural number
```

Output: the n<sup>th</sup> factorial number

```
1: if n = 1 then
```

2: **return** 1

3: **else** 

4: **return** n\* factorial\_non\_tail(n-1) # note n\*rec. call

5: endif

We are multiplying the return value by n

## Example 1: Non-tail Recursion



## Tail Recursion

## Example 2: Tail Recursion

Note the differences in the base call and recursion call

```
Algorithm factorial_tail(n, accumulator)
```

Input: n and accumulator, two natural numbers

Output: the n<sup>th</sup> factorial number

- 1: if n = 1 then
- 2: **return** accumulator # Note: new accumulator variable
- 3: **else**
- 4: **return** factorial\_tail(n-1, n\*accumulator) # Note n \* gone
- 5: endif

We are using an accumulator for the total and finish at the tail

## **Example 2: Tail Recursion**

```
factorial_tail(3,1)
        if 3=1 then
                 return 1
        else
                 return factorial_tail(2,3*1)
        endif
                  factorial tail(2,3)
                           if 2=1 then
                                   return 3
                           else
                                   return factorial tail(1,3*2)
                           endif
                                       factorial tail(1,6)
                                                 if 1=1 then
                                                         return 6
                                                else...
```

# Why use Tail Recursion

- Tail recursion is usually more efficient (although more difficult to write) than non tail recursion
- The recursive calls do not need to be added to the call stack: there is only one, the current call, in the stack
- It is possible to turn tail recursions into iterative algorithms

## Tail Recursion: General Form

- ret: the returned type
- param: list of parameters
- cond: base case condition
- state0, state1, state2: statements
- fun: function transforming the parameters

## **Algorithm** generic\_recursion(param)

**Input:** a set of parameters, param

Output: ret, the return type

- 1: state0
- 2: if cond then
- 3: state1
- 4: **else**
- 5: state2
- 6: generic\_recursion(fun(para))
- 7: endif

# Transforming: Recursive to Iterative

## Algorithm

generic\_recursion(param)

**Input:** a set of parameters, param **Output:** ret, the return type

- 1: state0
- 2: if cond then
- 3: state1
- 4: else
- 5: state2
- 6: generic\_recursion(fun(para))
- 7: endif

## Algorithm

generic\_iterative(param)

Input: a set of parameters, paramOutput: ret, the return type

- 1: state0
- 2: while non cond do
- 3: state2
- 4: para ← fun(para)
- 5: state0
- 6: endwhile
- 7: state1

## Example: Factorial Recursive

```
Algorithm factorial\_tail(n, accumulator)

Input: n and accumulator, two natural numbers

Output: the n<sup>th</sup> factorial number

1: if n = 1 then # cond

2: return accumulator # state1

3: else

4: return factorial\_tail(n - 1, n * accumulator) # fun(para)

5: endif
```

## Example: Factorial Iterative

```
Algorithm factorial_iterative(n, result)

Input: n and result, two natural numbers

Output: the n<sup>th</sup> factorial number

1: while n > 1 do #non cond

2: result \leftarrow n * result # fun(para)

3: n \leftarrow n - 1 # fun(para)

4: endwhile

5: return\ result # state1
```

# Recursion $\rightarrow$ Iterative Algorithm

- When you want to write iteratively a recursive function, the first technique is to come up with a tail recursion and then use the solution presented in previous slides
- Otherwise you need to store context of the calls (in a way, re-doing the call stack in the program)
  - use extra structures (e.g., arrays) to store the intermediary results.
  - This is an example of what is called dynamic programming

# Example: Recursion → Dynamic Iterative Algorithm

## **Algorithm** $factorial\_dynamic(n)$

Input: n, a natural number

**Output:** the n<sup>th</sup> factorial number

- 1:  $array \leftarrow array of size n$
- 2:  $array[0] \leftarrow 1$
- 3: for i from 2 till n do
- 4:  $array[i-1] \leftarrow array[i-2] * i$
- 5: endfor
- 6: **return** array[n-1]

# Recursive Complexity

Cannot apply the same mechanism used for iterative algorithms Just counting the number of basic operations and loops will not work

## Assess Two Things

- Number of basic operations in each activation of the recursion (this is easy – same as for iterative)
- Number of activations (this is a little more difficult)

# Factorial Non-tail Recursion Complexity

```
Algorithm factorial\_non\_tail(n)

Input: n, a natural number

Output: the n^{th} factorial number

1: if n = 1 then # 1 operation

2: return 1 # 1 operation

3: else

4: return n * factorial\_non\_tail(n-1) # 3 operations

5: endif
```

### Computing Complexity

5 operations per activation.

How many activations?

# Counting Activiations



# Complexity

- number of activations:  $\mathcal{O}(n)$  (3 for n=3)
- number of operations: 2 for base case, 4 otherwise (constant running time anyway)  $\to \mathcal{O}(4) = \mathcal{O}(1)$
- Total:  $\mathcal{O}(n)$ , or T(n) = 4n,  $\mathcal{O}(4n) = \mathcal{O}(n)$

# Proof using Induction

#### General Case

$$T(n) \sim 4n$$

#### Case n=1

$$T(1) = 2$$

#### Case n=2

$$T(2) = 6$$

$$T(2) = T(1) + 4 = 6 \sim 4(2)$$
 (i.e. the general case)

#### Case n

$$T(n) = T(n-1) + 4$$

$$T(n) \sim 4(n-1)+4$$

$$T(n) \sim 4n$$

# Writing your own recursive algorithms

- Test for base cases. Test for one or more base cases: every possible chain of recursive calls should eventually reach a base case that doesn't need recursion.
- Q Recur. Perform one or more recursive calls. Recursive calls should make progress towards a base case.
- Sub-problems. They should the same general structure as the original problem. Use concrete examples to help define.
- Parameters. What you pass in helps define the problem. Sometimes the main problem will have obvious parameters but the sub-problem will be easier to define with additional parameters. You can keep the interface clean by overloading or having non-public methods to handle the messy parameters, e.g.
  - binary\_search(data, target) and
    search(data, target, low, high)

## What is missing?

- Here we have only one sort of analysis: complexity analysis
- We have not analysed for:
  - correctness: the algorithm does what it claims
  - termination: the algorithm terminates

## Conclusions

### Concepts Today

- tail recursion: a recursion which does not process further the result of the recursive calls
- to get a tail recursion we use an accumulator
- turning a tail recursion into an iterative function is easy
- complexity of recursive functions requires you to estimate the number of activations and the number of basic operations in each call