Retrieval-Modelle zum Filtern, Ranken und Zusammenfassen von Web-Kommentaren

Vortrag zur Bachelorarbeit von Fabian Loose Steffen Becker

Bauhaus-Universität Weimar

Überblick

- 1. Einleitung
 - 1.1 Kommentar-Retrieval
 - 1.2 Retrieval-Aufgaben
- 2. Retrieval-Modelle
 - 2.1 Kommentarqualität
 - 2.2 Thematische Relevanz
 - 2.3 Meinungsanalyse
- 3. Zusammenfassung/Diskussion

1.1 Kommentar-Retrieval

- Kommentare = Benutzergenerierte Inhalte zu einem geg. Thema
- Probleme bei hunderten bis tausenden Kommentaren:
 - Alle zu lesen sehr zeitaufwendig bzw. unmöglich
 - Nicht alle Kommentare lesenswert
 - Inhaltliche Wiederholungen
- Information-Retrieval:
 - Große Zahl von Kommentaren vs. Informationsbedürfnis
 - Retrieval-Modell:
 - formale Repräsentation der Kommentare
 - Bewertungsfunktion bezüglich Relevanz

1.2 Retrieval-Aufgaben

Filtern:

- Entfernen unerwünschter Kommentare
- Relevanzkriterium: Kommentarqualität

Ranken:

- Sortierung der Kommentare nach Relevanz zum geg. Thema
- Relevanzkriterium: Thematische Nähe

Zusammenfassen:

- Kommentare mit gleicher Aussage zusammenfassen
- Übersicht über Gesamtheit schaffen
- Relevanzkriterium: Meinungsausdruck

2.1 Kommentarqualität

- Retrieval-Aufgabe: Filtern unerwünschter Kommentare
- Retrieval-Modell:
 - Darstellung als Vektor von Merkmalen
 - Bewertungsfunktion: binärer Klassifikator (erwünscht/unerwünscht)
- Merkmale:
 - Linguistische Stilmerkmale
 - Vandalismusmerkmale

2.1 Kommentarqualität – Merkmale

- Beispiel für Stilmerkmale:
 - Dale-Chall Reading Grade Score
 - Anzahl der Terme

- Beispiel für Vandalismusmerkmale:
 - Anteil vulgärer Wörter an allen Wörtern
 - Komprimierbarkeit eines Textes

2.1 Kommentarqualität – Slashdot Korpus

- Slashdot: Nachrichtenplattform im Web
- Viel genutzte Kommentarfunktion
- Moderation durch Benutzer
- Zuordnung von Kommentaren zu 8 möglichen Kategorien
- Punktesystem: -1 bis 5 Punkte (Scores)
- ► Korpus: alle Artikel und Kommentare der letzten 2,5 Jahren

2.1 Kommentarqualität – Ergebnisse

Experiment:

- Trainierter Naive Bayes Klassifikator
- Zwei Klassen: (Positiv) und (Negativ + "Funny")
- Stil- und Vandalismusmerkmale
- Art der Evaluierung: 10-fold cross-validation

	Precision	Recall	F-Measure
Positiv	0.823	0.810	0.817
Negativ + "Funny"	0.614	0.633	0.623

2.2 Thematische Nähe – Ähnlichkeitsmodelle

- Retrieval-Aufgabe: Ranken
- Retrieval-Modell: Klassische Modelle des Text-Retrieval
 - Darstellung als Vektor von Termen/Konzepten
 - Bewertungsfunktion: Ähnlichkeitsberechnung

- Getestete Modelle:
 - Vektorraummodell (VSM)
 - Latent Semantic Indexing (LSI)
 - Explicit Semantic Analysis (ESA)

2.2 Thematische Nähe – Vektorraummodell

- Repräsentation eines Dokumentes:
 - Vektor von Termgewichten
 - Jede Dimension steht für einen Term
 - Termgewicht typischerweise Häufigkeit (allg. Wichtigkeit) eines Terms

- Ähnlichkeitsberechnung :
 - Kosinus des Winkels zweier Dokumentvektoren.

2.2 Thematische Nähe – ESA-Modell

Repräsentation eines Dokumentes:

Vektor von Konzepten

▶ Jede Dimension entspricht Ähnlichkeit zu Wikipedia-Artikel nach VSM

Ähnlichkeitsberechnung:

Kosinus des Winkels zweier Konzeptvektoren

2.2 Thematische Nähe – Kontinuitätsmodell

- ▶ Problem der reinen Ähnlichkeitsberechnung:
 - Artikel selbst wäre der beste Kommentar

- ldee:
 - Entfernen aller Terme des Artikels aus den Kommentaren
 - ▶ Ähnlichkeitsberechnung auf Konzeptebene mit ESA

- Interpretation des Ergebnisses:
 - Wie stark wird das Thema des Artikels durch den Kommentar ergänzt

2.2 Thematische Nähe – Experiment

- 10 Slashdot-Artikel
- Zu jedem Artikel 3 Gruppen von je 4 Kommentaren

2.3 Meinungsanalyse - Einführung

- Information-Retrieval & Computerlinguistik
- Zusammensetzung einer Meinungsäußerung in Text:
 - Meinungsinhaber
 - Meinungsausdruck
 - Meinungsgegenstand
- Aufgabenstellungen:
 - Erkennung der Subjektivität bzw. Objektivität eines Wortes/Textes
 - Erkennung der semantischen Orientierung (positiv/negativ)
 - Erkennung der Stärke der Subjektivität oder semant. Orientierung

2.3 Meinungsanalyse - Ansätze

Lexikalisch

Korpus-basiert

Charakteristik: Wörterbuch

Grammatik. Regeln

Extraktion von Merkmalen

Trainierter Klassifikator

Vorteil:

Universell einsetzbar

Höhere Erkennungsleistung

Nachteil:

Nur bekannte Wörter identifizierbar ▶ Vorklass. Trainingsmenge

Featureauswahl schwierig

2.3 Meinungsanalyse - Wörterbucherstellung

- Ansätze:
 - Thesaurus-basiert
 - Korpus-basiert
- Wörterbuch:
 - The General Inquirer als Gundlage
 - Pointwise Mutual Information (PMI) zum Lernen der Orientierung neuer Wörter:

$$PMI(w_{1}, w_{2}) = \log_{2}\left(\frac{p(w_{1} \cap w_{2})}{p(w_{1}) p(w_{2})}\right) = \log_{2}\left(\frac{\frac{1}{N} hits(w_{1} NEAR w_{2})}{\frac{1}{N} hits(w_{1}) \frac{1}{N} hits(w_{2})}\right)$$

$$O(w) = \sum_{w_{pos} \in Pos} PMI(w, w_{pos}) - \sum_{w_{neg} \in Neg} PMI(w, w_{neg})$$

2.3 Meinungsanalyse - Retrieval-Modell

- Retrieval-Aufgabe: Zusammenfassung gleicher Aussagen
- Retrieval-Modell:
 - Darstellung als Vektorpaar: positiv/negativ
 - Zusammenfassung aller pos./neg. Vektoren
- Besonders geeignet für kurze Kommentare
 - Wenig Fakten/Argumente, häufig pure Meinungsäußerungen
 - Einzelne Meinung wenig informativ
 - Als Zusammenfassung: allgem. Meinungsbild

2.3 Meinungsanalyse – Anwendung auf YouTube

- Annahme bei kurzen Kommentaren:
 - Kommentator = Meinungsinhaber
 - Thema (Video) = Meinungsgegenstand
- Vorgehen:
 - Laden aller Kommentare
 - Preprocessing auf Zeichenebene
 - Preprocessing auf Wortebene
 - Erzeugung der Vektorpaare für alle Kommentare
 - Darstellung als Opinion Cloud

2.3 Meinungsanalyse – Demonstration

3. Zusammenfassung

- 3 Retrieval-Aufgaben
- 3 Relevanzkriterien
- 3 Retrieval-Modelle

- Möglicher Retrieval-Prozess:
 - ▶ 1. Filtern über Kommentarqualität
 - 2. Ranken über Kontinuitätsmodell
 - ▶ 3. Zusammenfassen kurzer Kommentare als Opinion Cloud

3. Zusammenfassung - Ausblick

- Weitere Relevanzkriterien finden
- Vorgestellte Modelle in Anwendung testen
- Umgang mit Diskussionssträngen/Threads
- Untersuchung der Manipulierbarkeit der Modelle
- Umgang mit Rechtschreibfehlern/Tippfehlern