

Sistemas Operacionais

Simulador de Memória Virtual e Física

Abrahão Picanço e Andreza Gonçalves

- Programas e sistemas modernos exigem mais memória do que os computadores fisicamente possuem.
- A Questão Central: Como podemos executar aplicações complexas em um hardware com recursos limitados?
- A Resposta: A Memória Virtual, uma das abstrações mais importantes da computação.
- Foco de hoje é entender o que é, como funciona, e como nós simulamos seu comportamento para analisar seu desempenho na prática.

O que é a Memória Virtual?

- É uma **técnica de gerenciamento de memória** implementada pelo Sistema Operacional.
- Cria a ilusão de que o sistema tem muito mais memória RAM do que realmente existe.
- Como? Usa o armazenamento secundário (HD ou SSD) como uma extensão da RAM.

Como Funciona na Prática? O Ciclo de Acesso

1. Processo solicita um dado: A CPU pede um endereço de memória.

2. Verificação na RAM:

- Se a página está na RAM (HIT): Ótimo! O acesso é rápido e o programa continua.
- Se a página NÃO está na RAM (MISS): Ocorre um PAGE FAULT.

3. Ação do Sistema Operacional:

- O SO assume o controle.
- Busca a página necessária no disco.
- Se a RAM estiver cheia, um algoritmo de substituição (FIFO, LRU, Random) escolhe qual página antiga deve sair.

Nosso simulador modela exatamente este fluxo para contar os page faults.

Simulador de Memória Virtual

Testes realizados

Algoritmo de substituição fifo (first-in, first-out):

```
PS C:\Users\andre\Downloads\memory_test> ./simvirtual fifo simulador.log 10 500

Executando o simulador...
Arquivo de entrada: simulador.log
Tamanho da memoria: 500 KB
Tamanho das paginas: 10 KB
Tecnica de reposicao: fifo
Total de acessos a memoria: 10000000
Paginas lidas: 57690
Paginas escritas: 13333
```

Simulador de Memória Virtual

Testes realizados

Algoritmo de substituição Iru (least recently used):

```
PS C:\Users\andre\Documents\simulador_memoria> ./simvirtual lru simulador.log 10 500

Executando o simulador...
Arquivo de entrada: simulador.log
Tamanho da memoria: 500 KB
Tamanho das paginas: 10 KB
Tecnica de reposicao: lru
Total de acessos a memoria: 1000000

Paginas lidas: 47057

Paginas escritas: 9972
```

Simulador de Memória Virtual

Testes realizados

Algoritmo de substituição random:

```
• PS C:\Users\andre\Documents\simulador_memoria> ./simvirtual random simulador.log 10 500
Executando o simulador...
Arquivo de entrada: simulador.log
Tamanho da memoria: 500 KB
Tamanho das paginas: 10 KB
Tecnica de reposicao: random
Total de acessos a memoria: 1000000
Paginas lidas: 56413
Paginas escritas: 13851
```


Resultados dos testes realizados

- O tamanho da memória física é tão importante quanto a política de substituição. Mais RAM significa menos faults em geral. Conforme analisamos os resultados descritos acima, constatamos que:
- LRU é robusto em cenários onde o padrão de acesso tem "localidade temporal" (as mesmas páginas são acessadas repetidamente).
- FIFO pode ser competitivo quando há memória suficiente e não há forte localidade
 temporal.
- RANDOM costuma ser o pior em fault rate, mas requer zero manutenção de contadores ou listas.

- Execução de Programas Maiores que a RAM: O benefício mais óbvio.
- Aumento da Multiprogramação: Mais processos podem ser mantidos na memória simultaneamente, pois apenas partes deles precisam estar lá.
- **Proteção e Isolamento**: Cada processo tem seu próprio espaço de endereço virtual, impedindo que um programa interfira no outro.
- Compartilhamento de Código: Múltiplos processos podem compartilhar a mesma cópia de uma biblioteca na memória, economizando espaço.

Desafios e Cuidados

- O Custo do Page Fault: Acessar o disco é milhares de vezes mais lento que acessar a RAM. Muitos page faults degradam severamente o desempenho.
- O Perigo do Thrashing (Tranco): É o colapso do sistema quando ele passa mais tempo trocando páginas entre a RAM e o disco do que executando trabalho útil. Ocorre quando não há memória física suficiente para os processos ativos.
- A Escolha do Algoritmo é Crucial: Um bom algoritmo de substituição (como o LRU) é fundamental para minimizar os page faults e evitar o thrashing.
- O Custo da Página Suja: Se a página removida foi modificada ('W'), ela precisa ser salva no disco, duplicando o tempo de acesso e a lentidão

Aplicações Reais

- Sistemas Operacionais Modernos: Windows, macOS,
 Linux, Android e iOS dependem totalmente da memória virtual.
- Aplicações do Dia a Dia: Permite rodar jogos pesados, editores de vídeo, softwares de engenharia e ter dezenas de abas abertas no navegador.
- Tecnologias de Servidores: Essencial para virtualização (VMware, VirtualBox) e contêineres (Docker).

Conclusão

O gerenciamento de memória virtual é um pilar da computação moderna, e a eficiência dos algoritmos de substituição é um fator determinante para o desempenho de todo o sistema.