Algebra Liniowa i Geometria Analityczna zestaw 6

ZADANIE 1 Dla podanej macierzy A wyznacz wartości własne, wektory własne, wektory główne, macierz Jordana J oraz macierz przejścia (macierz P, taką że $A = PJP^{-1}$):

a)
$$\begin{bmatrix} 1 & 5 \\ 0 & 3 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

c)
$$\left[\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array} \right]$$

d)
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & -1 \end{bmatrix}$$

e)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 2 \\ 1 & -2 & -1 \end{bmatrix}$$

$$\begin{array}{cccc}
f) & \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}
\end{array}$$

g)
$$\begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

h)
$$\begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$$

i)
$$\begin{bmatrix} 2 & -1 & -1 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix}$$

$$j) \left[\begin{array}{cccc} 2 & -1 & 2 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & -2 & 3 \end{array} \right]$$

Zwróć szczególną uwagę na przypadki f), g), i), j).

ZADANIE 2 Znajdź wartości i wektory własne:

- a) odbicia symetrycznego względem prostej l przechodzącej przez 0 w \mathbb{R}^2 lub \mathbb{R}^3 ,
- b) przeskalowania o a i b wzdłuż nierównoległych prostych odpowiednio l_1 i l_2 przechodzących przez 0 w \mathbb{R}^2 ,
- c) obrotu o kąt φ wokół $0 \le \mathbb{R}^2$,
- d) obrotu o kąt φ wokół prostej l przechodzącej przez $0 \le \mathbb{R}^3$,
- e) $F: \Pi_3 \ni p(x) \mapsto p'(x)x \in \Pi_3$.

ZADANIE 30 Mówimy, że macierze $A,B\in\mathbb{C}^{n\times n}$ są podobne, jeżeli istnieje nieosobliwa macierz $P\in\mathbb{C}^{n\times n}$, taka że $A=PBP^{-1}$. Udowodnij, że macierze podobne mają równe wielomiany charakterystyczne.

ZADANIE 4 Dane są macierze $A,B,P\in\mathbb{C}^{n\times n}$. Wiedząc, że $A=PBP^{-1}$, udowodnij, że $A^k=PB^kP^{-1}$ dla $k\in\mathbb{N}$.

ZADANIE 5 Dana jest przestrzeń wektorowa V nad ciałem K, odwzorowanie liniowe $F:V\to V$, skalar $\lambda\in K$ oraz zbiór $V_\lambda=\{v\in V:F(v)=\lambda v\}$. Udowodnij, że V_λ jest podprzestrzenią wektorową przestrzeni V oraz $\forall v\in V_\lambda:F(v)\in V_\lambda$.

ZADANIE 6 Dana jest macierz A, skalar λ oraz wektor v spełniające: $Av = \lambda v$. Oblicz $A^k v$.

ZADANIE 70 Wiedząc, że wielomian charakterystyczny macierzy A równy jest $\varphi_A(s) = s^9 - \frac{2}{9}s^8 - s^5 - \frac{2}{9}s^4 + s - \frac{2}{9}$, oblicz wymiar, rząd, wyznacznik i ślad macierzy A.

ZADANIE 80 Wiedząc, że s jest wartością własną macierzy A, a v - odpowiadającym jej wektorem własnym, znajdź wartość własną i wektor własny macierzy:

- a) αA , dla $\alpha \in \mathbb{C}$,
- b) A^k , dla $k \in \mathbb{N}$,
- c) A + tI, dla $t \in \mathbb{C}$,

d)
$$\sum_{i=0}^k \alpha_i A^i$$
, dla $\alpha_i \in \mathbb{C}$, $k \in \mathbb{N}$

e) A^{-k} , dla $k \in \mathbb{N}$ oraz A - nieosobliwej,

ZADANIE 90 Dane są macierze $A, B \in \mathbb{R}^{n \times n}$, przy czym przynajmniej jedna z nich jest nieosobliwa. Udowodnij, że s jest wartością własną macierzy AB wtedy i tylko wtedy, gdy s jest wartością własną macierzy BA.

ZADANIE 10 Dana jest macierz $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Oblicz:

a) o
$$A^{2017}$$

b)*
$$\lim_{k \to \infty} \sum_{i=0}^k \frac{1}{i!} A^i$$
, wiedząc, że dla każdej liczby rzeczywistej t zachodzi: $\lim_{k \to \infty} \sum_{i=0}^k \frac{1}{i!} t^i = e^t$

ZADANIE 11* Dana jest macierz A. Wiedząc, że jej jedyną wartością własną jest 0, udowodnij, że A jest nilpotenta (tj. $\exists k \in \mathbb{N} : A^k = 0$).

ZADANIE 12* Dana jest macierz $A \in \mathbb{C}^{n \times n}$ mająca n różnych wartości własnych $\lambda_1, \lambda_2, \ldots, \lambda_n$. Niech λ_1 będzie wartością własną o największym module, tj. $\forall j \neq 1: \ |\lambda_1| > |\lambda_j|$. Udowodnij, że dla każdego $v \in \mathbb{C}^n$ ciąg $\lambda_1^{-k} A^k v$ jest zbieżny i jego granica u spełnia: $Au = \lambda_1 u$.