SST1 Übungsstunde 8

Matteo Dietz

November 2024

Themenüberblick

Abtasttheorem:

Digitale Systeme
Abgetastete Systeme im Frequenzbereich
Aliasing, Interpolation, Kritische Abtastung
Interpretation als Entwicklung in ein Orthonormalsystem

Aufgaben für diese Woche

78, **79**, **80**, 81, **82**, 83, 84, **85**, 86, **87**, 88, **89**, **90**, 91, **92**, **93**, **94**, 95, **96**

Die **fettgedruckten** Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

Digitale Systeme

Abgetastete Signale im Frequenzbereich

1. Abtastung wird modelliert als Multiplikation mit einem Deltakamm:

$$x_{abg.}(t) = x(t)\delta_{T}(t) = x(t)\sum_{k=-\infty}^{\infty} \delta(t-kT)$$

$$= \sum_{k=-\infty}^{\infty} x(t)\delta(t-kT) = \sum_{k=-\infty}^{\infty} x(kT)\delta(t-kT)$$

$$= \sum_{k=-\infty}^{\infty} x(t)\delta(t-kT) = \sum_{k=-\infty}^{\infty} x(kT)\delta(t-kT)$$

Abgetastete Signale im Frequenzbereich

2. Wir fouriertransformieren das abgetastete Signal $x_{abg}(t)$.

$$\hat{x}_{abg.}(f) = \mathcal{F}\{x \cdot \delta_T\}(f) = \left(\hat{x} * \hat{\delta}_T\right)(f)$$

$$\stackrel{20.}{=} \left(\hat{x} * \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(\cdot - \frac{k}{T}\right)\right)(f)$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} \left(\hat{x} * \delta\left(\cdot - \frac{k}{T}\right)\right)(f)$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} \hat{x} \left(f - \frac{k}{T}\right)$$

Abgetastete Signale im Frequenzbereich

Bemerkungen

Die Abtastung im Zeitbereich entspricht einer Periodisierung im Frequenzbereich.

- f_g ist die Bandbreite von x(t)
- $f_s := \frac{1}{T}$ ist die Abtastfrequenz (sampling frequeny)
- Die Kopien von $\hat{x}(f)$ sind mit Faktor $\frac{1}{T}$ skaliert.

Rekonstruktion

 Wie gewinnen wir das analoge Signal ohne Informationsverlust aus den Abtastwerten zurück?

$$\mathbf{x}_{abg}(\mathbf{t}) \xrightarrow{\mathsf{Th}_{id}(\mathbf{f})} \mathbf{x}(\mathbf{t}) \qquad \mathbf{x}(\mathbf{t})$$

$$\hat{h}_{id}(f) = \begin{cases} 1, & |f| \leq W \\ 0, & |f| > W \end{cases} \quad \text{idealer Tiefpassfilter mit Breite } W$$

$$\mathsf{Zur Erinnerung: } \hat{x}_{abg.} = \frac{1}{T} \sum_{k=-\infty}^{\infty} \hat{x} \left(f - \frac{k}{T} \right)$$

Matteo Dietz

SST1 Übungsstunde 8

Rekonstruktion

Der Term $\cdot T$ beim idealen Tiefpassfilter steht für die Skalierung, da wir ohne diesen Term $\frac{1}{T}x(t)$ anstatt x(t) erhalten würden.

Bemerkung: Die Wahl von W ist entscheidend und in einigen Fällen ist es gar nicht möglich, das Signal zu rekonstruieren.

1. Kritische Abtastung: $f_s = 2f_g$

 \implies Wir können das Signal mit einem idealen Tiefpassfilter der Breite $W=f_g$ rekonstruieren

2. Überabtastung: $f_s > 2f_g$

Vorteile an Überabtastung:

- Wir können einen stabilen Tiefpassfilter verwenden.
- Überabtastung verringert die Empfindlichkeit auf Rauschen.

3. Unterabtastung: $f_s < 2f_g$

Es gibt **Aliasing**. Mit Hilfe eines Tiefpassfilters erhalten wir keine perfekte Version von $\hat{x}(f)$.

Intuition

- (I) Genug hohe Abtastrate \implies kein Informationsverlust
- (II) Zu tiefe Abtastrate \implies Informationsverlust

Matteo Dietz SST1 Übungsstunde 8

Abtasttheorem

Ein Signal mit der Bandbreite f_g kann aus seinen Abtastwerten, genommen mit einer Rate von $f_s \geq 2f_g$, eindeutig rekonstruiert werden.

Die kritische Rate $f_s = 2f_g$ wird als **Nyquistrate** bezeichnet.

Interpretation als Interpolation

• Wir betrachten das folgende System:

wobei
$$\hat{h}_{id}(f) = \begin{cases} 1, & |f| \leq W \\ 0, & |f| > W \end{cases}$$
 \bullet \bullet $o h_{id}(t) = \frac{\sin(2\pi Wt)}{\pi t}$

• Damit die perfekte Rekonstruktion möglich ist, muss $W \in [f_g, f_s - f_g]$ und $f_s \ge 2f_g$ gelten.

Matteo Dietz

Interpretation als Interpolation

$$y(t) = \left(\underbrace{(x \cdot \delta_T)}_{x_{abg}} * Th_{id}\right)(t) = T(x_{abg} * h_{id})(t)$$

$$= T \left[\left(\sum_{k=-\infty}^{\infty} x(kT)\delta(\cdot - kT)\right) * h_{id}\right](t)$$

$$= T \left(\sum_{k=-\infty}^{\infty} x(kT)\left(\delta(\cdot - kT)\right) * h_{id}\right)(t)$$

$$= T \sum_{k=-\infty}^{\infty} x(kT)h_{id}(t - kT)$$

Matteo Dietz

SST1 Übungsstunde 8

Rekonstruktionsformel

Also:
$$y(t) = T \sum_{k=-\infty}^{\infty} x(kT) h_{id}(t-kT)$$
, wobei $h_{id} = \frac{\sin(2\pi Wt)}{\pi t}$

Somit erhalten wir die Rekonstruktionsformel:

$$y(t) = T \sum_{k=-\infty}^{\infty} x(kT) \frac{\sin(2\pi W(t-kT))}{\pi(t-kT)}$$

Kritische Abtastung

• Kritische Abtastung: $f_s = 2f_g$, d.h. $f_g = f_s - f_g$ $\implies W = f_g = \frac{f_s}{2} = \frac{1}{2T}$ $\implies y(t) = x(t) = \sum_{k=-\infty}^{\infty} x(kT) \frac{\sin\left(\frac{\pi}{T}(t-kT)\right)}{\frac{\pi}{T}(t-kT)}$

• Allgemeine Rekonstruktion eines Signals aus Abtastwerten:

$$y(t) = T \sum_{k=-\infty}^{\infty} x(kT)h(t-kT)$$

• h(t) ist die Impulsantwort eines Filters.

Abtastung als Entwicklung in ein Orthonormalsystem

Die Rekonstruktionsformel

$$x(t) = \sum_{k=-\infty}^{\infty} x(kT) \frac{\sin\left(\frac{\pi}{T}(t-kT)\right)}{\frac{\pi}{T}(t-kT)}$$

entspricht einer Entwicklung eines bandbegrenzten Signals x(t) in ein Orthonormalsystem.

Abtastung als Entwicklung in ein Orthonormalsystem

Linearer Unterraum X der f_g -bandbegrenzten Signale in $L^2(\mathbb{R})$

$$e_k(t) = rac{1}{\sqrt{T}} rac{\sin\left(rac{\pi}{T}(t-kT)
ight)}{rac{\pi}{T}(t-kT)} = \sqrt{T} rac{\sin\left(rac{\pi}{T}(t-kT)
ight)}{\pi(t-kT)}$$

Diese Funktionen bilden ein Orthonormalsystem in X. Es gilt:

$$x(t) = \sum_{k=-\infty}^{\infty} \sqrt{T} x(kT) \underbrace{\frac{1}{\sqrt{T}} \frac{\sin\left(\frac{\pi}{T}(t-kT)\right)}{\frac{\pi}{T}(t-kT)}}_{e_k} = \sum_{k=-\infty}^{\infty} \langle x, e_k \rangle \cdot e_k$$

Prüfungsaufgabe: Frühjahr 2023, Aufgabe 2