RAFFLES INSTITUTION H2 Mathematics (9758) 2016 Year 5

Tutorial 4A: Complex Numbers I

Section A (Basic Questions)

Do these questions without a GC first, then verify your answers using a GC wherever possible.

Express the following complex numbers in the form x+iy, where $x, y \in \mathbb{R}$:

(a)
$$(4-i)-(3+3i)$$

(b)
$$(2+i)(3-4i)$$

(c)
$$(1+i)^2$$

(d)
$$\frac{3+i}{4-3i}$$

(e)
$$\frac{-8+5i}{-2-4i} - \frac{3+8i}{1+2i}$$

(e)
$$\frac{-8+5i}{-2-4i} - \frac{3+8i}{1+2i}$$

[a) $1-4i$ b) $10-5i$ c) $-2+2i$ d) $\frac{9}{25} + \frac{13}{25}i$ e) $-4-\frac{5}{2}i$]

Find $x, y \in \mathbb{R}$ such that

(a)
$$2x + 3iy = -x - 6i$$

(b)
$$(x+iy)(2-i) = 8+i$$

(c)
$$(x+2i)(2+3i) = iy$$

[a)
$$x = 0$$
, $y = -2$ b) $x = 3$, $y = 2$ c) $x = 3$, $y = 13$]

Solve the equations (a) $z^2 = 3 - 4i$,

(a)
$$z^2 = 3 - 4i$$

(b)
$$z^2 + 2z + 10 = 0$$
, **(c)** $z^3 - 2z - 4 = 0$.

(c)
$$z^3 - 2z - 4 = 0$$
.

[a)
$$\pm (2-i)$$
 b) $-1 \pm 3i$ c) 2, $-1 \pm i$]

Find $a, b \in \mathbb{R}$ if

(a) 3+i is a root of the equation $z^2 + az + b = 0$,

(b) a+ia is a root of the equation $z^2+4z+b=0$.

[a)
$$a = -6$$
, $b = 10$ b) $a = -2$, $b = 8$ or $a = 0$, $b = 0$]

For each of the following complex number, represent it on an Argand diagram. Find also its modulus and argument.

(a)
$$\sqrt{3} + i$$

(b)
$$-1+i\sqrt{3}$$

(c)
$$i^2(1+i)$$

(d)
$$-i(1+i)$$

(e)
$$\sin \theta + i \cos \theta$$
, where $0 < \theta < \frac{\pi}{2}$

[a) 2,
$$\frac{\pi}{6}$$
 b) 2, $\frac{2\pi}{3}$ c) $\sqrt{2}$, $-\frac{3\pi}{4}$ d) $\sqrt{2}$, $-\frac{\pi}{4}$ e) 1, $\frac{\pi}{2}$ $-\theta$]

Section B (Standard Questions)

Given that $arg(a+ib) = \theta$, where a > 0, b > 0, find, in terms of θ and π , the values of

(a)
$$arg(-a+ib)$$
,

(b)
$$arg(-a-ib)$$
,

(c)
$$arg(b+ia)$$
.

[i)
$$\pi - \theta$$
 ii) $\theta - \pi$ iii) $\frac{\pi}{2} - \theta$]

It is given that $w = \frac{z-1}{z^*+1}$, where z = a + ib, $a, b \in \mathbb{R}$.

By expressing w in the form u+iv, u, $v \in \mathbb{R}$, find the conditions under which

- (a) w is real,
- **(b)** w is purely imaginary.
- (a) ab = 0 b) $a^2 b^2 = 11$

compare coefficients

8(a) Solve for λ , $\mu \in \mathbb{R}$ if $(4-i)^2 + (8\lambda + i)(3\mu - i) + 8i = 43$.

(b) Solve for z = a + ib, $a, b \in \mathbb{R}$ if $(z + i)^* = 2iz + i$.

[a)
$$\lambda = \frac{3\sqrt{3}}{8}$$
, $\mu = \sqrt{3}$ or $\lambda = -\frac{3\sqrt{3}}{8}$, $\mu = -\sqrt{3}$ b) $-\frac{4}{3} + \frac{2}{3}i$]

Solve the following simultaneous equations:

$$w+z=6+2i$$
, $w-3z=\frac{20}{2-i}$; **(b)** $z=w+3i+2$, $z^2-iw+5-2i=0$.

[a)
$$w = \frac{13}{2} + \frac{5}{2}i$$
, $z = -\frac{1}{2} - \frac{1}{2}i$ b) $w = -2 - i$, $z = 2i$ or $w = -2 - 4i$, $z = -i$]

[9740/2007/01/Q3]

The complex number w is such that $ww^*+2w=3+4i$, where w^* is the complex conjugate of w. Find w in the form a + ib, where a and b are real.

$$[w = -1 + 2i]$$

It is given that -1+2i satisfies the equation $2z^3+3z^2+az+b=0$, where $a,b\in\mathbb{R}$. Find a and show that b = -5. Hence obtain the exact values of all the roots of the equation.

$$[a=8; \frac{1}{2}, -1\pm 2i]$$

[9740/2010/02/Q1]

- Solve the equation $x^2 6x + 34 = 0$. (i)
- One root of the equation $x^4 + 4x^3 + x^2 + ax + b = 0$, where a and b are real, is (ii) x = -2 + i. Find the values of a and b, and the other roots.

[(i)
$$3 \pm 5i$$
 (ii) $a = -16, b = -20$ roots are: $-2 \pm i, -2, 2$]

[9740/2013/01/Q4]

The complex number w is given by 1+2i.

- Find w^3 in the form x+iy, showing your working. (i)
- Given that w is a root of the equation $az^3 + 5z^2 + 17z + b = 0$, find the values of the (ii) real numbers a and b.
- Using these values of a and b, find all the roots of this equation in exact form. (iii)

[(i)
$$w^3 = -11 - 2i$$
 (ii) $a = 27$, $b = 295$ (iii) $z = -\frac{59}{27}$, $1 \pm 2i$]