Homework 2

Andrew Tindall Algebra II

September 16, 2019

1 Problems

Problem 1. Let R be a commutative ring and let S be an R-algebra. Let M be a left S-module. We know that it follows that any left S-module is also naturally an R module.

- (a) Write doesn the natural R-module structure on M
- (b) Write down the natural R-module structure on S.
- (c) Assume that S is finitely generated as an R-module. Prove that M is a finitely generated left S-module if and only if it is finitely generated as an R-module.

Proof. (a) We define the R-module structure on M:

This is really immediate. An S-module M is a ring homomorphism $S \to \operatorname{End}(M)$, and the structure of S as an R-module is a certain kind of ring homomorphism $R \to S$, so by composing these maps we have an R-module $R \to \operatorname{End}(M)$.

More explicitly, let $\phi: R \to S$ be the map defining S as an R-algebra, and let \cdot_S be the left action of S on M. We define a left action \cdot_R of R on M by $r \cdot_R m = \phi(r) \cdot_S m$. This satisfies the axioms of a left action:

- $(r_1 + r_2) \cdot_R x = r_1 \cdot_R x + r_2 \cdot_R x$: It inherits this distributivity from S through ϕ .
- $r \cdot_R (x + y) = r \cdot_R x + r \cdot_R y$: This, too, is implied by the distributivity of the S-action
- $(r_1r_2) \cdot_R x = r_1 \cdot_R (r_2 \cdot_R x)$: Associativity of the S-action
- $1_R \cdot_R x = x$: Identity property of the S-action, along with the fact that our homomorphisms take units to units.
- (b) We now define the R-module structure on S. Again, this is implied by composition of maps: any ring is a module over itself, so we have a map of rings $S \to \operatorname{End}(S)$. Composition with ϕ gives an R-module structure. In fact, the module axioms are satisfied without use of the R-algebra structure of S; R could simply be a subring not even necessarily a commutative one and S would still be an R-module.

Explicitly, the R-module structure on S is defined by $r \cdot s = rs$, where rs is just multiplication in the ring S. The axioms of an R-module are immediate from the axioms of a ring.

(c) We now assume that S is finitely generated as an R-module, and show that M is finitely generated as an S module is and only if it is finitely generated as an R-module. In one direction, this is immediate. Again, let ϕ be the map taking R into the center of S. If M is finitely generated as an R-module, say by n elements $\{m_i\}_{i=1}^n$, then any element written as a sum $\sum_{i=1}^n r_i m_i$ can also be written as a finite sum $\sum_{i=1}^n \phi(r_i) m_i$ of generators with coefficients in S.

Now, assume that M is finitely generated as an S module by n elements $\{s_i\}_{i=1}^n$, and that S is finitely generated as an R module by m elements, $\{s_j\}_{j=1}^m$. We show that the set $\{s_jm_i\}_{i=1}^n{}^m$ of mn elements of M generates M as an R module.

Let a be an arbitrary element of M. By assumption, a may be written as $a = \sum_{i=1}^{n} s_i m_i$, for some coefficients s_i in S. Now, each s_i may also, by assumption, be written as a sum $s_i = \sum_{j=1}^{m} r_{ij} s_j$, for some coefficients r_{ij} in R. Therefore,

$$a = \sum_{i=1}^{n} s_i m_i$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{m} r_{ij} s_j) m_i$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij} (s_j m_i)$$

Thus our element can be written as a sum of mn generators, times mn elements of R, making M a finitely generated R-module.

Problem 2. Let R be a ring. Let the free object functor $\mathcal{F}: \mathbf{Sets} \to \mathbf{R} - \mathbf{mod}$ be defined on objects by sending a set X to the R-module $R^{\oplus X}$. Let the forgetful functor $\mathcal{G}: \mathbf{R} - \mathbf{mod} \to \mathbf{Sets}$ be defined by sending an R-module to its underlying set.

- (a) Write down what the free object functor \mathcal{F} does to morphisms.
- (b) Write down what the forgetful functor $\mathcal G$ does to morphisms.
- (c) Prove that ${\mathcal F}$ and ${\mathcal G}$ are a pair of adjoint functors.

Proof. (a) Let the basis elements of the free R-module $R^{\oplus X}$ be written e_x , indexed over X, where e_x is the element with a 1 in the x-th place and 0s elsewhere.

Let ϕ be a morphism $X \to Y$ in **Sets**. We define a morphism $\mathcal{F}(\phi)$ by taking an element $\sum_X r_x e_x$ of $R^{\oplus X}$ to the element $\sum_X r_x e_{\phi(x)}$ of $R^{\oplus Y}$. This is a valid morphism, since composition with another morphism $\mathcal{F}(\psi)$ gives $\sum_X r_x e_{(\psi \circ \phi)(x)}$.

- (b) Let ϕ be a morphism in $\mathbf{R} \mathbf{mod}$. Then the forgetful functor \mathcal{G} takes ϕ to the underlying set-map, which is the same function element-wise but has "forgotten" the fact that it is a homomorphism of R-modules.
- (c) In order to show that $\mathcal{F} \vdash \mathcal{G}$, we form the unit and counit natural transformations $\varepsilon : \mathcal{F}\mathcal{G} \Rightarrow 1$ and $\eta : 1 \Rightarrow \mathcal{G}\mathcal{F}$.

let X be an object of $\mathbf{R} - \mathbf{mod}$, and let $\mathcal{FG}(X)$ be the free R-module generated by the set of elements of X. An element a of $\mathcal{FG}(X)$ is a finite sum of basis elements:

$$a = \sum_{\mathcal{G}(X)} r_x e_x$$

Now, for each $x \in \mathcal{G}(X)$, there is an overlying $x \in X$, which is the "same" element, but as an element of the R-module X. Therefore, the sum

$$\varepsilon_X(a) = \sum_X r_x \cdot x$$

is a valid element of X, and we may define the maps ε_X by taking elements of $\mathcal{FG}(X)$ to the corresponding elements of X. These maps assemble into a natural transformation $\varepsilon: \mathcal{FG} \Rightarrow 1$, as they act reasonably on morphisms- the following square commutes:

$$\mathcal{FG}(X) \xrightarrow{\varepsilon_X} X$$

$$\downarrow^{\mathcal{FG}(\phi)} \qquad \downarrow^{\phi}$$

$$\mathcal{FG}(\mathcal{Y}) \xrightarrow{\varepsilon_Y} Y$$

This is because the sum of elements $\sum r_x \phi(x)$ is equal to $\phi(\sum r_x x)$, by the fact that ϕ is a module morphism.

In the opposite direction, let A be an arbitrary set, and let $\mathcal{GF}(A)$ be the underlying set of the free R-module on A. For any element $a \in A$, there is a unique element $1_R \cdot a$ in the free module; we let $\eta_A(a) = 1_R \cdot a$, taken as an element of the underlying set of the free R-module. These maps η_A also assemble into a natural transformation, as we see that the following square commutes:

$$A \xrightarrow{\eta_A} \mathcal{GF}(A)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\mathcal{GF}(\psi)}$$

$$B \xrightarrow{\eta_B} \mathcal{GF}(B)$$

The commutativity comes from the fact that the element $1 \cdot_R a$ is taken to $1 \cdot_R \psi(a)$ along the right side, and that the element $\psi(a)$ is taken to $1 \cdot_R \psi(a)$ along the bottom.

Therefore there is a unit-counit pair of natural transformations $\mathcal{FG} \Rightarrow 1$ and $1 \Rightarrow \mathcal{GF}$. We finally need to see that the compositions

$$\mathcal{F} \stackrel{\mathcal{F}\eta}{\longrightarrow} \mathcal{F}\mathcal{G}\mathcal{F} \stackrel{arepsilon\mathcal{F}}{\longrightarrow} \mathcal{F}$$

$$\mathcal{G} \stackrel{\eta\mathcal{G}}{\longrightarrow} \mathcal{GFG} \stackrel{\mathcal{G}arepsilon}{\longrightarrow} \mathcal{G}$$

Are both the identity functors on \mathcal{F} and \mathcal{G} . They are, and in fact I wrote a proof of it, but at this point this solution is getting kind of hairy and categorical and I regret not just using the $\operatorname{Hom}(\mathcal{F}(X),Y) \simeq \operatorname{Hom}(X,\mathcal{G}(Y))$ definition of adjunction (although there is still a naturality proof involved).

2 Extra Stuff

Problem 2. Give an example of another pair of adjoint functors.

Proof. In the categories $\mathcal{L}(x_1, \dots x_n)$ of formal sentences in a language \mathcal{L} with at most n variables free, we have three functors:

- $\exists : \mathcal{L}(x_1, \dots x_n, y) \to \mathcal{L}(x_1, \dots x_n)$ which takes a sentence with n+1 free variables and "quantifies out" the last variable by adding an $\exists y$ to the beginning of the sentence.
- *: $\mathcal{L}(x_1, \dots x_n) \to \mathcal{L}(x_1, \dots x_n, y)$, the weakening functor, which takes a sentence with at most n variables and simply considers it to have at most n+1 variables.
- $\forall : \mathcal{L}(x_1, \dots x_n, y) \to \mathcal{L}(x_1, \dots x_n)$, which does the same as \exists , except that it adds a $\forall y$ instead of an $\exists y$.

These three functors form two adjunctions, $\exists \vdash * \vdash \forall$. The first adjunction essentially says that if $\exists y.(A) \Rightarrow B$, then it does not matter what y we choose, since it does not show up in B and only its existence is needed in A. Therefore, $A \Rightarrow *(B)$, if we let y be free in both sentences.

the second adjunction says that, if $*(A) \Rightarrow B$, where A is a sentence which does not contain y, and B might contain y, then this implication holds no matter what value y has: $A \Rightarrow \forall y.(B)$.

Problem 3. Think about how the category of k[x, y]-modules is the same as the category of k-vector spaces with *commuting* endomorphisms.

Proof. The reason that commutativity matters is that we want the elements xy and yx to be the same element - considered as endomorphisms, we wans $A \circ B$ to be the same as $B \circ A$, where A corresponds to x and B to y. This commutation is enough to have a k[x,y]-module structure, as any polynomial in A and B with scalars from k is a valid endomorphism of the vector space, and multiplying the polynomials is the same as composing transfmormations. If A and B do not commute, we can work in the sub-category of $k\langle x,y\rangle$ -modules, where $k\langle x,y\rangle$ is the free k-algebra on two variables. In this category, xy and yx are separate elements, so we do not need AB and BA to be the same.

Problem 4. Work out whether injections of R-modules are monomorphisms, and if surjections are epimorphisms.

Proof. Because the morphisms of R-mod have underlying set maps, we can use surjectivity of the maps to right-cancel, and injectivity to left-cancel without any knowledge of the structure of the category; therefore, every surjective map of R-modules is an epimorphism, and every injective map is a monomorphism.

We can also show that epimorphisms and surjective maps are exactly the same in R-mod, and that the same holds for monomorphisms and injective maps. First, let some map $f: X \to Y$ of left R-modules be an epimorphism. Then f is right-cancellable, i.e. for any g_1, g_2 , if $g_1 \circ f = g_2 \circ f$, then $g_1 = g_2$. Now, because Im(f) is a submodule of Y, we may form the quotient module Y/Im(f). Let g_1 be the projection map taking an element of Y to its coset in the quotient, and let g_2 be the zero map from Y to Y/Im(f). Then composing both g_1 and g_2 with f gives zero; by the property of epimorphisms, g_1 and g_2 must both be the zero map. But then Im(f) = Y, making it surjective as a set-map.

Assume now that $h: X \to Y$ is some monomorphism in R-mod. Let x_1, x_2 be elements of X such that $h(x_1) = h(x_2)$. We show that $x_1 = x_2$, and that therefore h is an injective set-map.

Let $g_1: R \to X$ be the map from the free module on one generator, which take 1 to x_1 , and $g_2: R \to X$ be the map taking 1 to x_2 . Then $h \circ g_1$ and $h \circ g_2$ are equal on the generator of R, which by the universal property of the free module means that $h \circ g_1 = h \circ g_2$. By the universal property of monomorphisms, this means that $g_1 = g_2$, in particular that $g_1 = g_2(1) = g_2(1)$