Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут ім. І.Сікорського"

Кафедра конструювання ЕОА

Лабораторна робота 4

з курсу «Електронна компонентна база РЕА і ТКС»

на тему «Дослідження стабілітронів і параметричних стабілізаторів напруги»

Виконав: Студент гр. ДК-12

Дем'янчук Т. М.

Керівник: Лисенко О.І.

Захищен	о з оцінкою	
Дата «	>>	2022 p.

Програма виконання

- 1. Зафіксувати умови проведення досліджень. прилади та обладнання (джерело живлення TEC33. вольтметр цифровий B3-21. міліамперметр M105)
- 2. Провести аналіз досліджених характеристик в робочій зоні. Порівняти виміряні дані з паспортними.
- 3. Побудувати вольт-амперні характеристики досліджених компонентів
- 4. За виміряною ВАХ визначити тип невідомого дослідженого стабілітрона.
- 5. Визначити коефіцієнт стабілізації кожного із компонентів
- 6. Зробити висновки.

1. Зафіксуємо умови проведення досліджень. прилади та обладнання (джерело живлення TEC33. вольтметр цифровий B3-21. міліамперметр M105)

Місце проведення досліджень	Лабораторія 329-12
Вологість	45%
Температура	20°C
Н. мм.рт.ст.	743

2. Проведемо аналіз досліджених характеристик в робочій зоні. Порівняти виміряні дані з паспортними.

Досліджувані і	компоненти
----------------	------------

~·····································							
Компонент	Величина	Компонент	Маркування				
R1	67.99 Ом	VD1	Д815Е				
R2	437.99 Ом	VD2	Д814Б				
R3	435.99 Ом	VD3	XXXXXX				
R4	703.99 Ом	VD4	КС210Б				
R5	2.474 кОм	HL1	АЛ307А				
R6	2.46 кОм	VT1	КТ315Г				

					=,,,,			
_	_	., .		_	ДК12.000000.001 Д1			
Змн.	Лист	№ докум.	Підпис	Дата				
Розр	об.	Дем'янчук Т.М.				Літ.	Арк.	Аркушів
Пере	евір.				Дослідження стабілітронів і		1	9
Реце	:нз.				параметричних стабілізаторів			
Н. Ка	онтр.				напруги	НТУУ "КПІ"		СПТ"
Зате	зерд.	Лисенко І.О.			17		991	

Д815Е

Основні технічні параметри стабілізрона Д815Е:

- Розкидання напруги стабілізації: 13,3... 16,4 В при Іст 500 мА;
- Температурний коефіцієнт напруги стабілізації: 0,1%/°С;
- Тимчасова нестабільність напруги стабілізації: ± 4%;
- Постійна пряма напруга: 1,5 В при Іпр 500 мА;
- Диференціальний опір стабілізрона: 2,5 Ом;
- Мінімально допустимий струм стабілізації: 25 мА;
- Максимально допустимий струм стабілізації: 550 мА;
- Максимально допустима розсіювана потужність на стабілізроні: 8 Вт;
- Робочий інтервал температури довкілля: -60... +125 °C

Д814Б										
Тип	Граничні значення параметрів за T = 25 °C		Значення параметрів при T = 25 C						Тк.мах.	
прибор	ор Ист.ном за	за	тном Рмакс. XE	Ист.		R cт.	Аст.	Іст.		
a . B	В	LICTHOM		XB. B	мах. В	Ом	10-2 %/C	Мін. мА	Мах. мА	3
Д814Б	9,0	5,0	340	8,0	9,5	10	8,0	3,0	36	125

КС210Б													
Тип		Ud	т.		αUст. Uпр. (при		Uпр. (при		Ict.			Тк.тах (Тп.)	
стабилитро	мин	ном	макс	Іст.ном.	doci.	Іпр.)	rct.	мин	макс	Pmax	TK.IIIdX (TII.)	Т окр.	
на	В	В	В	мА	%/C	В (мА)	Ом	мА	мА	Вт	°C	°C	
КС210Б	9,3	10	10,7	5	0,07	-	22	3	14	0,15	100	-55 +100	

АЛ307А

АЛ307А

Колір світіння - Червоний

Довжина хвилі - 665 нм.

Сила світла – 0.15 мкд

Постійний прямий струм – 10 мА.

Постійна пряма напруга - 2 В

Постійна зворотна напруга - 2 В

Постійний максимальний прямий струм – 22 мА.

Зм.	Арк.	№ докум.	Підпис	Дата

Зм.	Арк.	№ докум.	Підпис	Дата

	Таблиця для VD1							
U1 (B)	U2 (B)	I (mA)	U1-U2. B	R1. Ом	P. Bt			
12.6	12.43	2.5	0.17	68	0.000425			
13.63	12.95	10	0.68	68	0.0068			
14.4	13.04	20	1.36	68	0.0272			
14.79	13.09	25	1.7	68	0.0425			
15.17	13.13	30	2.04	68	0.0612			
15.42	13.17	35	2.25	64.28	0.07875			
15.8	13.26	40	2.54	63.5	0.1016			
16.21	13.33	45	2.88	64	0.1296			
16.55	13.39	50	3.16	63.2	0.158			
16.99	13.46	55	3.53	64.18	0.19415			
17.33	13.51	60	3.82	63. 67	0.2292			
17.65	13.55	65	4.1	63.07	0.2665			
18	13.61	70	4.39	62.7	0.3073			

$$R_{dif}=rac{\Delta U}{\Delta I}=rac{13.39-13.33}{0.05-0.045}=12~{
m Om}~$$
 Заявлений $R_{dif}=2.5~{
m Om}$

Розрахуємо коефіцієнт стабілізації

$$K_{st} = \frac{\Delta U_{in}}{\Delta U_{out}} \times \frac{U_{out}}{U_{in}} = \frac{(18 - 14.4)}{(13.61 - 13.04)} \times \frac{13.04}{14.4} \approx 5.7$$

Зм.	Арк.	№ докум.	Підпис	Дата

	Таблиця для VD2							
U1 (B)	U2 (B)	I (mA)	U1-U2. B	R1. Ом	Р. Вт			
7.08	7.07	2	0.01	5	0.00002			
10.6	8.41	5	2.19	438	0.01095			
13.66	8.44	10	5.22	522	0.0522			
14.86	8.46	15	6.4	426.67	0.096			
17.39	8.47	20	8.92	446	0.1784			
19.41	8.5	25	10.91	436.4	0.27275			
21.77	8.53	30	13.24	441.3	0.3972			

$$R_{dif} = rac{\Delta U}{\Delta I} = rac{8.5 - 8.47}{0.025 - 0.02} = 6 \ ext{Om}$$
 Заявлений $R_{dif} = 10 \ ext{Om}$

Розрахуємо коефіцієнт стабілізації

$$K_{st} = \frac{\Delta U_{in}}{\Delta U_{out}} \times \frac{U_{out}}{U_{in}} = \frac{(21.77 - 10.6)}{(8.53 - 8.41)} \times \frac{8.41}{10.6} \approx 73.9$$

Зм.	Арк.	№ докум.	Підпис	Дата

	Таблиця для VD3							
U1 (B)	U2 (B)	I (mA)	U1-U2. B	R1. Ом	Р. Вт			
3.52	3.5	2	0.02	10	0.00004			
9	6.83	5	2.17	434	0.01085			
11.23	6.88	10	4.35	435	0.0435			
13.42	6.88	15	6.54	436	0.0981			
15.61	6.9	20	8.71	435.5	0.1742			
17.82	6.92	25	10.9	436	0.2725			
20.02	6.95	30	13.07	435.67	0.3921			

$$R_{dif} = rac{\Delta U}{\Delta I} = rac{6.95 - 6.92}{0.03 - 0.025} = 6 \ ext{Om}$$
 Заявлений $R_{dif} = 6 \ ext{Om}$

Визначимо тип невідомого стабілітрона відповідно до його диференційного опору. У нашому випадку це буде стабілітрон Д814A або Д814A1

Тип корпуса	Uст, мин, В	Uст, ном, В	Uст, макс, В	Uст, В Іст, мА	alphaUст, %/ °С	deltaUст, % text	Uпр, В (при Іпр, мА)	гст, Ом (при Іст, мА)	Іст, мин, мА	Іст, макс, мА	Рпр, Вт	T, °C	Корпус
Д814А	7	-	8,5	5	0,07	±1	1 (50)	6 (5)	3	40	0,34	-60+125	Д808-Д814
Д814А1	7	-	8,5	-	0,07	-	-	6 (5 MA)	-		-	-	д814-1, д814А-2

Розрахуємо коефіцієнт стабілізації

$$K_{st} = \frac{\Delta U_{in}}{\Delta U_{out}} \times \frac{U_{out}}{U_{in}} = \frac{(20.02 - 9)}{(6.95 - 6.83)} \times \frac{6.83}{9} \approx 69.69$$

Зм.	Арк.	№ докум.	Підпис	Дата

ДК12.000000.001 Д1

<u>Арк.</u> 6

Таблиця для VD4							
U1 (B)	U2 (B)	I (mA)	U1-U2. B	R1. Ом	Р. Вт		
11.47	10.12	2	1.35	675	0.0027		
15.82	10.23	5	5.59	1118	0.02795		
18.15	10.29	10	7.86	786	0.0786		
20.9	10.36	15	10.54	702. 67	0.1581		
24.2	10.42	20	13.78	689	0.2756		

$$R_{dif} = rac{\Delta U}{\Delta I} = rac{10.29 - 10.23}{0.01 - 0.005} = 12 \ ext{Om}$$
 Заявлений $R_{dif} = 22 \ ext{Om}$

Розрахуємо коефіцієнт стабілізації
$$K_{st} = \frac{\Delta U_{in}}{\Delta U_{out}} \times \frac{U_{out}}{U_{in}} = \frac{(24.2 - 11.47)}{(10.42 - 10.12)} \times \frac{10.12}{11.47} \approx 37.44$$

Зм.	Арк.	№ докум.	Підпис	Дата

Таблиця для HL1								
U1 (B)	U2 (B)	I (mA)	U1-U2. B	R1. Ом	Р. Вт			
6.06	1.53	2	4.53	2265	0.00906			
21.43	1.6	7	19.83	2832.8	0.13881			
25.22	1.6	10	23.62	2362	0.2362			
36	1.62	12	34.38	2865	0.41256			
40.75	1.62	15	39.13	2608.67	0.58695			

$$R_{dif} = \frac{\Delta U}{\Delta I} = \frac{1.62 - 1.6}{0.012 - 0.01} = 10 \text{ Om}$$

$$R_{dif} = rac{\Delta U}{\Delta I} = rac{1.62 - 1.6}{0.012 - 0.01} = 10 \ \mathrm{Om}$$

Розрахуемо коефіцієнт стабілізації

 $K_{st} = rac{\Delta U_{in}}{\Delta U_{out}} imes rac{U_{out}}{U_{in}} = rac{(40.75 - 6.06)}{(1.62 - 1.53)} imes rac{1.53}{6.06} pprox 97.32$

Зм.	Арк.	№ докум.	Підпис	Дата

Таблиця для VT1							
U1 (B)	U2 (B)	I (mA)	U1-U2. B	R1. Ом	Р. Вт		
11.69	6.77	2	4.92	2460	0.00984		
19.21	6.91	5	12.3	2460	0.0615		
26.67	6.99	8	19.68	2460	0.15744		
31.66	7.06	10	24.6	2460	0.246		
44.06	7.16	15	36.9	2460	0.5535		
56.46	7.26	20	49.2	2460	0.984		

$$R_{dif} = \frac{\Delta U}{\Delta I} = \frac{7.16 - 7.06}{0.015 - 0.01} = 20 \text{ Om}$$

Розрахуємо коефіцієнт стабілізації

$$K_{st} = \frac{\Delta U_{in}}{\Delta U_{out}} \times \frac{U_{out}}{U_{in}} = \frac{(56.46 - 6.77)}{(7.26 - 1.53)} \times \frac{6.77}{11.69} \approx 5.02$$

ВИСНОВОК

Протягом виконання даної лабораторної роботи було досліджено стабілітрони різних марок, побудовано відповідно до кожного стабілітрона його Вольт-Амперну характеристику після чого також було знайдено диференційний опір та коефіцієнт стабілізації кожного досліджуваного стабілітрона. На основі виконаної роботи можна зробити висновок, що найкраще стабілізують напруги стабілітрони Д814Б та Д814А/ Д814А1 оскільки їхні диференційні опори рівні та найменші з поміж усіх інших досліджуваних стабілітронів, що означає, що при різних вхідних напругах стабілітрон пробиватиметься при більш-менш однакових напругах та на ньому падатиме напруга яка не так сильно відрізнятиметься від тієї напруги, що падає на стабілітроні при іншій вхідній напрузі. Тобто диференційний опір говорить нам про те, наскільки стабільна напруга падатиме на стабілітроні.

Зм.	Арк.	№ докум.	Підпис	Дата