超音波照射された擬塑性流体中の落下球実験

丹羽 英人

1. 緒言

擬塑性流体は、せん断速度が大きくなるほど粘度が低くなる、非 Newton 流体である. 代表例として、泥や血液、ポリマーなどが挙げられる. ポリマーの流動を決める物性は粘性だけでなく弾性も存在する. この様な複雑な物性値を持つ流体を工業的に扱うには、流体中を運動する気泡や剛体に対する周囲流体の粘度分布、流動構造から影響を明らかにする必要がある. 擬塑性流体中における物体の運動に関して、重力、浮力によって沈降、浮上する運動が系統的に調査されている[1-3]. また、擬塑性を用いて気泡の膨張収縮による上昇速度の高速化や、粒子の機械振動による沈降速度の高速化が調査された[4-5]. さらに、岩室[6]は擬塑性流体中を重力落下する球に超音波を照射し、流体物性、物体形状、超音波強度および周波数を変化させることにより、高速化のメカニズムを調査した. しかし、調査された流体物性は限定的であり、粘性だけでなく弾性を有する試験流体において、弾性により高速化が抑制されることが示唆されていた. そこで本研究は、超音波照射による高速化における、粘弾性による影響を明らかにするため、流体物性、落下物体の密度をより大きく変化させた実験を行った. その結果、超音波照射により高速化が顕在化する条件が得られた.

2. 実験方法および流体粘度測定

実験装置の概略図を Fig.1 に示す. 装置は主に矩形アクリル水槽,吸引パッド,真空ポンプ,超音波振動子にて構成される. 擬塑性流体として異なる質量濃度のPAA 溶液を用いた. 溶液の粘度特性を計測するため,粘度計を用いてせん断粘度特性を得た結果を Fig.2 に示す. 試験溶液はせん断速度が増加すると粘度が低下する擬塑性を示す. Power Law モデル[7] $\mu=k\dot{\gamma}^{n-1}$ を用いて,係数k, nを得た. 溶液の粘弾性特徴を得るため,レオメータを用いて応力と貯蔵弾性率 G',損失弾性率 G"の関係性を計測した. それぞれの弾性率の大小関係が変化する応力を τ_0 とした. ハイドロフォンを用いて超音波照射時の溶液中における圧力場振幅を計測し,平均圧力振幅 $\overline{\Delta P}$ を得た. 擬塑性流体中の落下球

Fig.1 Experimental setup.

Fig.2 Viscosity versus shear rate.

に対する超音波照射による影響を調べるため、球落下実験を 10 分ごとに行った。また、超音波照射なし、超音波照射ありを交互に行い、落下速度に対する超音波照射の影響を明らかにした。先行研究[6]より、超音波照射による落下球の高速化に対して、音響境界層内の粘度低下、音響境界層厚さが支配的であることが示唆された。先行研究を拡張し、落下球の終端速度 $U_{\rm T}$ 、音響境界層における代表粘度 $\mu_{\rm ABL}$ 、落下球による球周囲の粘度 $\mu_{\rm U}$ 、音響境界層を、流体速度u、落下球の半径a、音速c、流体密度 $\rho_{\rm S}$ を用いて次式で表す。

$$U_{\mathrm{T}} \sim \left(\frac{\Delta \rho g}{3k}\right)^{\frac{1}{n}} \frac{n}{2-n} a^{\frac{n+1}{n}}, \quad \mu_{\mathrm{ABL}} \sim k \left(\frac{u}{\delta}\right)^{n-1}, \quad \mu_{\mathrm{U}} \sim k \left(\frac{U_{\mathrm{T}}}{a}\right)^{n-1}, \quad \delta \sim \left(\frac{kc^{1-n}}{\pi \rho_{\mathrm{S}}^{n} f \overline{\Delta P^{1-n}}}\right)^{\frac{1}{1+n}}.$$

3. 実験結果および考察

Fig.3(a)に実験結果を粘度比,音響境界層を用いて整理した結果を示す.挿入図は PAA 濃度と終端速度 U_T の関係性を表し,PAA 濃度が高いほど,終端速度が遅くなった.このとき,粘度が非常に小さい PAA 0.2wt.%以下では超音波照射による高速化は見られなかった.PAA 濃度が上昇すると粘性が増加し,擬塑性がより強くなるため高速化が顕著にみられたと考えられる.一方で,高速化の度合いに関して横軸 0.1 前後で 2 つのグループに分類することができる.ある一定の濃度を超えると超音波照射による高速化が抑制された後,濃度の上昇に伴ってまた高速化がみられた.高速化が抑制される要因として,粘性だけでなく,弾性による影響を受けるためだと考えられる.弾性による影響を評価するため,球の落下による応力 $\tau_U \sim k (U_T/a)^n$ と τ_0 の比と高速化の関係性を Fig.3(b)に示す.挿入図は PAA 濃度と τ_0 の関係性を表す.応力比 $\tau_U/\tau_0 \sim 1$ で高速化が顕著にみられ,それより小さくなると高速化が抑制されることが分かった.これらの実験結果を整理するため,図中の点の分布より横軸を粘度比,縦軸を応力比に取り,濃淡で高速化度合いを示した図を Fig.3(c)に示す.粘度比が増加すると応力比が小さくなる傾向があることが分かる.色の濃淡より,横軸 0.1 付近で高速化が顕在化していることから,横軸 <0.1 では高速化と横軸は相関していると言える.この時の応力比は $\tau_U/\tau_0 \sim 1$ である.横軸 が 0.1 より大きくなると高速化がみられなくなるが,横軸 1 付近で再度高速化が顕在化した.

Fig.3 Relation between (a) viscosity ratio and speed ratio, (b) stress ratio and speed ratio, (c) viscosity ratio, stress ratio and speed ratio, where inset of (a) shows PAA concentration and terminal speed, and (b) shows PAA concentration and τ_0 .

参考文献

- [1] Ohta et al., J. Non-newton. Fluid Mech. 132, 100–107 (2005).
- [2] Zhang et al., J. Non-newton. Fluid Mech. 165, 555–567 (2010).
- [3] Arigo and Gareth, Rheologica Acta **37.4**, 307-327, (1998).
- [4] Iwata et al., J. Non-newton. Fluid Mech. 151, 30-37, (2008).
- [5] Wildenberg et al., Sci. Rep. 9.1, 1-8 (2019).
- [6] 岩室秀, 修士論文, 大阪大学, 2020.
- [7] R.P.Chhabra. Bubbles, Drops, and Particles in Non-Newtonian Fluids, 14–22, 61–72. CRC press, (2006).