Math remark fondation for analysis and probability

X

ElegantIATEX Program

Update: February 6, 2025

Contents

1	Genenralisation of several inequalities		3
	1.1	Jense, Hölder, Minkeoski's inequalities	3
	1.2	Markov, Tchebychev, Cantelli's inequalities	8

1 Genenralisation of several inequalities

1.1 Jense, Hölder, Minkeoski's inequalities

The description of the Jense inequality depends on the properties of the convex function, it is a strong inequalities which can be applied in many places. We should pay a little attention to the outline of the section:

Theorem 1.1 (Jense)

Suppose $\varphi: I \to \mathbb{R}$ is a convex function defined on an interval, (X, \mathcal{E}, μ) is a probability space and $f \in L^1(X)$ with $imf \subset I$, then $\int_X f d\mu \in I$ and $\varphi \circ f$ is integrable such that

$$\varphi(\int_X f d\mu) \le \int_X \varphi \circ f d\mu$$

The equality holds iff f is constant almost everywhere.

Proof.

Remark There are many other forms of the Jense's inequality, we take some exemples.

• **Finite forms**: the motivation of the inequality comes from the definition of the convex function, i.e. the real-valued function satisfies

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

for any defined x, y and $t \in [0, 1]$, here a question about the distribution of the weights appears, which is the core of the convex function. we can generalize the inequalities by appling the weights to the n different points in interval such that $\sum_i w_i = 1$, then we can conclude the inequality:

$$f(\sum_{i} w_i x_i) \le \sum_{i} w_i f(x_i)$$

notice that the defined domaine usually is a convex set, which ensures the effectivity of $f(\sum_i w_i x_i)$.

• **Expectation:** By a simple change of the notation, the Jense inequality in a probability space can be written as the form:

$$\varphi(E[X]) \le E[\varphi(X)]$$

Applying a classic convex function $t\mapsto t^2$ we can get the important inequality in probability:

$$E^2[X] \le E[X^2]$$

• Concave: some function like $t \mapsto lnt$ is a concave function, the Jense's inequality can be just changed the order of the inequality. The reason is simple, if f is a concave function , then -f will be a convex function.

The classic proof of the Hölder's inquality covers the inequality of Young:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

for any $a, b \ge 0$ and p, q > 1 such that 1/p + 1/q = 1. The complete proof can be found in [Rudin 1 Ex 6.10]. I don't choose the proof here for a comparison of strength of the different inequality. Here the proof is elegant and given by Mon.Mardare in TD, and a similar proof via Jense can be found in [SU TD1 EX15-16].

Theorem 1.2 (Hölder)

Suppose that p,q>1 and 1/p+1/q=1, for any two mesurable functions $f,g:(X,\mathcal{E},\mu)\to\mathbb{C}$, we have

$$\int_{X} |fg| d\mu \le (\int_{X} |f|^{p} d\mu)^{1/p} (\int_{X} |g|^{q} d\mu)^{1/q}$$

the equality holds iff |f| = c|g| almost everywhere (u-p.p) for some constant c.

Proof. Let $u = \frac{|f|}{\|f\|_p}$ and $v = \frac{|g|}{\|g\|_q}$, then notice that $\|u\|_p = \|v\|_q = 1$. We know $t \mapsto lnt$ is a concave function on $(0, +\infty)$, so we can estimate by Jense's inequality

$$ln(uv) = ln(u+v) = \frac{1}{p}lnu^p + \frac{1}{q}lnv^q$$
$$\leq ln(\frac{1}{p}u^p + \frac{1}{q}v^q)$$

by the monotone of the function, we have $uv \leq \frac{1}{p}u^p + \frac{1}{q}v^q$, hence we can conclude

$$\frac{\int_{X} |fg| d\mu}{(\int_{X} |f|^{p} d\mu)^{1/p} (\int_{X} |g|^{q} d\mu)^{1/q}} = \int_{X} uv d\mu$$

$$\leq \frac{1}{p} \int_{X} u^{p} d\mu + \frac{1}{q} \int_{X} v^{q} d\mu$$

$$= \frac{1}{p} ||u||_{p}^{p} + \frac{1}{q} ||v||_{q}^{q} = 1$$

finally, we discuss the equality. By Jense, we know the equality holds iff u=v. Notice that if u=0 or v=0 almost everywhere, then the inequality can be reduced to $0 \le 0$, it holds, otherwise we can get that $|f| = \frac{\|f\|_p}{\|g\|_q} |g|$, so we finish the proof.

Corollary (Cauchy-Schwartz)

For any two square integrable function $f, g \in L^2_{\mathbb{C}}(\mathbb{R}^n)$, we have

$$\left| \int_{\mathbb{R}^n} f\overline{g}dl \right|^2 \le \int_{\mathbb{R}^n} |f|dl \cdot \int_{\mathbb{R}^n} |g|dl$$

The equality holds iff |f| = c|g| almost everywhere (u-p.p) for some constant c.

Proof. Although it is the special case of Hölder when p=q=2, but usually in a Hilbert space we have the beautiful form as following

$$|< u, v>| \le ||u|| ||v||$$

the inequality has a good geometric intuition, and the proof of it is very beautiful and elementry. Notice $< u, v > \in \mathbb{C}$, so there exists $z \in \mathbb{C}$ such that |z| = 1 and z < u, v > = | < u, v > |, and we let p(t) = < tzu + v, tzu + v > defined on \mathbb{R} , then

$$p(t) = t^{2}z\overline{z} < u, u > +tz < u, v > +t\overline{z} < v, u > + < v, v >$$

$$= t^{2}z\overline{z} < u, u > +tz < u, v > +t\overline{z} < u, v > + < v, v >$$

$$= t^{2}||u||^{2} + 2| < u, v > |t + ||v||^{2}$$

so p(t) can be arranged to be a quadratic polynomial with respect to real value t, and $p(t) = ||tzu + v||^2 \ge 0$, so we have suiffsant and necessary condition that

$$\Delta = 4|< u, v>|^2 - 4||u||^2||v||^2 \ge 0$$

which is the inequality we hope to get, and $\Delta = 0$ happens iff the polynomial satisfies $p(t) = (t||u|| + ||v||)^2 = 0$.

Theorem 1.3 (Minkeoski)

For any $p \ge 1$, suppose that $f, g: (X, \mathcal{E}, \mu) \to \mathbb{C}$ are two mesurable functions, then we have

$$\int_X |f+g|^p d\mu \le \int_X |f|^p d\mu + \int_X |g|^p d\mu$$

The equality holds iff |f| = c|g| almost everywhere (u-p.p) for some constant c.

Proof. If

Review some basic inequalities (discrete)...

1.2 Markov, Tchebychev, Cantelli's inequalities

This section covers some basic inequalities in properties, They are always very useful when estimation. And in this section ,we always use (Ω, \mathcal{T}, P) to denote a probability space

Theorem 1.4 (Markov)