Sottospazi affini #GAL

Definizione:

sia V uno spazio vettoriale

un sottoinsieme S \in V è detto sottospazio affine se esistono un sottospazio vettoriale H \subseteq V e un vettore $v_0 \in$ V t.c.

$$\mathsf{S} = \mathsf{v}_0 + \mathsf{H} \ \underline{\mathsf{def}} \ \{\mathsf{v}_0 + \underline{\mathsf{w}} : \underline{\mathsf{w}} \in \mathsf{H}\} \subseteq \mathsf{V}$$

Intuitivamente: sottospazio affine = traslazione di un sottospazio vettoriale

Proposizione:

supponiamo
$$\underline{v_1}$$
 + H_1 = $\underline{v_2}$ + H_2 per qualche $\underline{v_1}$, $\underline{v_2}$ \in V e sottospazi H_1 , $H_2 \subseteq$ V => H_1 = H_2

Dimostrazione:

Prendo
$$\underline{w} \in H_1$$
 qualsiasi $\Rightarrow \underline{w} + \underline{v_1} - \underline{v_2} \in H_2$ e $\underline{v_2} - \underline{v_1} \in H_2 \Rightarrow \underline{w} = (\underline{w} + \underline{v_1} - \underline{v_2}) + (\underline{v_2} - \underline{v_1}) \Rightarrow H_1 \subseteq H_2$ e $H_2 \subseteq H_1$

Definizione:

sia $S = v_0 + H \subseteq V$ con H sottospazio (H è unicamente determinato da S, per proposizione)

H si chiama giacitura di S

La dimensione di S è dimv = dimH

in pratica: giaciture = traslazione di S in modo che passi per $\underline{0}$ Osservazione:

 v_0 è un punto particolare di S, non è unicamente determinato

Definizione:

un sottospazio affine di dimensione 1 si chiama retta un sottospazio affine di dimensione 2 si chiama piano

Proposizione:

un sistema lineare $A \in Mat(m,n)$, $\underline{b} \in \mathbb{R}^n$

allora $S = \{\underline{x} \in \mathbb{R}^n : A\underline{x} = \underline{b}\} \subseteq \mathbb{R}^n$ è vuoto oppure è un sottospazio affine

Dimostrazione:

segue dal teorema di struttura dei sistemi lineari

Descrizioni di un sottospazio affine S ⊆V:

- Parametrica (forma esplicita): $S = v_0 + Span(v_1, ..., v_p) = \{v_0 + t_1v_1 + ... + t_iv_p : t_i \in R\}$

 v_0 = punto particolare Span(v_1 , ..., v_p) = generatori della giacitura ("direzione") t_i = parametri liberi

- Cartesiana (forma implicita): $S = \{\underline{x} \in R^n : A\underline{x} = \underline{b}\}$ equazioni lineari Passaggio cartesiana —> parametrica: risolvendo $A\underline{x} = \underline{b}$ Passaggio parametrica —> cartesiana: $S = \underline{v_0} + H$ -> trovo forma cartesiana $H = \ker(A)$ (caso sottospazi vettoriali)

trovo
$$\underline{b} = A\underline{v_0} \rightarrow S = \{\underline{x} \in R^n : A\underline{x} = \underline{b}\}$$

Osservazione:

dati S_1 , S_2 sottospazi affini => $S_1 \cap S_2$ = ø oppure $S_1 \cap S_2$ è un sottospazio affine

$$S_1 = \underline{v_1} + H_1 \quad S_2 = \underline{v_2} + H_2 \implies S_1 \cap S_2 = \underline{v_3} + (H_1 \cap H_2) \quad \text{dove } v_3 \in (S_1 \cap S_2)$$

$$S_2)$$

Per calcolare $S_1 \cap S_2$, usare le forme cartesiane:

$$S_1: A\underline{x} = \underline{b_1} \qquad S_2: A_2\underline{x} = \underline{b_2} \qquad S_1 \cap S_2: (A_1 A_2) (\text{in colonna})\underline{x} = (\underline{b_1} \underline{b_2}) (\text{in colonna})$$

Definizione:

due sottospazi affini $S_1 = \underline{v}_1 + H_1$ $S_2 = \underline{v}_2 + H_2$ si dicono paralleli se

$$- S_1 \cap S_2 = \emptyset$$

-
$$H_1 \subseteq H_2$$
 oppure $H_2 \subseteq H_1$

Posizione reciproca tra spazi affini:

Posizione	$S_1 \cap S_2$	H ₁ , H ₂	dim(H ₁ ∩
			H ₂)
Coincidenti:	≠ Ø	$H_1 = H_2$	dimH ₁ =
$S_1 = S_2$			dimH ₂
Coincidenti:	≠ Ø	$H_1 \subseteq H_2$	<
$S_1 \subseteq S_2$			min(dimH ₁ ,
			dimH ₂)

Incidenti	≠ Ø	H ₁ ⊈H ₂ e H ₂	min(dimH ₁ ,
		⊈H ₁	dimH ₂)
Paralleli	= Ø	$H_1 \subseteq H_2 \circ H_2$	<
			min(dimH ₁ ,
		I	dimH ₂)
Sghembi	= Ø	$H_1 \nsubseteq H_2 \in H_2$	min(dimH ₁ ,
		⊈H ₁	dimH ₂)

Teorema (Algoritmo di estrazione di una base):

Sia A ∈Mat(m,n) e A' una riduzione a scala le colonne di A corrispondenti ai pivot di A' formano una base di col(A) Corollario (Algoritmo di completamento a una base):

dati
$$\underline{v_1}$$
, ..., $\underline{v_n} \in \mathbb{R}^m$ LI Applicando l'algoritmo di estrazione di una base a $\underline{v_1}$, ..., $\underline{v_n}$, $\underline{e_1}$, ..., $\underline{e_m}$ otteniamo una base di \mathbb{R}^m contenente $\underline{v_1}$, ..., $\underline{v_n}$