Analysis I - Vorlesungs-Script

Prof. Alberto Cattaneo

Basisjahr08/09 Semester II

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	Inte	egralrechnung	1
	1.1	Treppenfunktionen	1
	1.2	Regelfunktionen	2
		1.2.1 Zusammenfassung	3
		1.2.2 Vorgehen	4
		1.2.3 Eigenschaften	7
	1.3	Fundamentalsatz der Analysis	g
	1.4	Integrationstechniken	11
		1.4.1 Partielle Integration	12
		1.4.2 Substitutionsregel	12
		1.4.3 Rationale Funktionen	13
	1.5	Reihenintegration	14
	1.6	Reimannsche Summen	15
	1.7	Das uneigentliche Integral	16
	1.8	Majorantenkriterium	17
		• • • • • • • • • • • • • • • • • • • •	
2		rven (Kapitel 12)	18
	2.1	Die Bogenlänge	20
	2.2	Parameterwechsel	22
	2.3	Sektorfläche einer ebenen Kurve	23
9	Т	don [Kon 14]	or
3	3.1	lor [Kap 14] Lokale Extrema	27 30
	$\frac{3.1}{3.2}$	Taylorreihen	31
	ე.∠	Taylorremen	91
4	Ele	mente der Topologie [Band 2, Kap 1]	32
	4.1	Verallgemeinerung: Normierte Räume	36
	4.2	Verallgemeinerung: Metrische Räume	37
	4.3	Teilraumtopologie	38
	4.4	Produkttopologie	38
	4.5	Äquivalenz Metriken und Normen	36
5	Stot	tigkeit	41
J	5.1	Vervollständigung	47
	$5.1 \\ 5.2$	Überdeckung	48
	5.2	Existenz von Maxima und Minima	50
	5.4	Zwischenwertsatz	52
	0.1	Zwischenwer tsauz	02
6	Diff	ferenzierbare Funktionen (Kap 2)	5 5
	6.1	Berechnung von Ableitungen	58
	6.2	Differenzierbarkeitskriterium	60
	6.3	Gradient	61
		6.3.1 Geometrische Bedeutung des Gradienten	61
	6.4	Rechenregeln	62
	6.5	Niveaumengen	63
	6.6	Mittelwertsatz	64
	6.7	Schrankensatz	64
7	Inte	egrale von Differentialformen und Vektorfeldern (Kap 5.2)	66
_	TT•	A11.4	
8		nere Ableitungen	68
	8.1	Berechnen	68
	8.2	Satz von Schwarz	68 71
	8.3	Taylorapproximation	
	0.4	8.3.1 Geometrische Auffassung	72
	8.4	Minima und Maxima	73
	8.5	harmonische Funktionen	75
	8.6	Konvexität von Funktionen	$\frac{76}{76}$
	8.7	rarameteraphangige integrale	- 71

871	Differentiationssatz											7	6

1 Integral rechnung

Ziel mathematisch präzise Formulierung des "Flächeninhalts" unter dem Graphen einer Funktion

Fragen

- Welche Funktionen sind zulässig?
- Wie definiert man das Integra für diese Funktionen?

Idee

- 1. def. Integral für spezielle Funktionen (Treppenfunktionen)
- 2. betrachte Folgen von Treppenfunktionen und führe geeigneten Konvergenzbegriff ein (gleichmässige Konvergenz), \to mögliche Limiten sind Regelfunktionen
- 3. falls $f_n \xrightarrow{n \to \infty} f$ (Folge von Treppenfunktionen), setze $\int_a^b f \, dx := \lim_{n \to \infty} \left(\int_a^b f_n \, dx \right)$

$$f_n \to f \mathrm{folgt}\left(\int_a^b f_n \,\mathrm{d}\,x\right)_{n \in \mathbb{N}} \mathrm{konvergent}$$

$$f_n \& g_n \to f \mathrm{zwei} \ \mathrm{Folgen} \implies \lim_{n \to \infty} \left(\int_a^b f_n \,\mathrm{d}\,x\right) = \lim_{n \to \infty} \left(\int_a^b g_n\right)$$

1.1 Treppenfunktionen

- $a < b, a, b \in \mathbb{R} \{x_0, x_1, \cdots, x_n\}$ Zerlegung von $[a, b] \Leftrightarrow a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$
- $\phi[a,b] \to \mathbb{C}$ Treppenfunktion (auf [a,b]) $\Leftrightarrow \exists$ Zerlegung $\{x_0,x_1,\cdots,x_n\}$ von [a,b] so $\overline{\mathrm{dass}} \ \phi|_{(x_{n-1},x_n)}$ konstant $\forall k=1,\cdots,n$

Bemerkung 1. • keine Aussage über $\phi(x_0), \dots, \phi(x_n)$

- nicht verboten zu feine Zerlegungen zu betrachten
- $\tau([a,b])$ (ein Vektorraum über \mathbb{C}, ϕ, ψ Treppenfunktionen) Menge aller Treppenfunktionen auf [a,b]

Definition 1. Integral von Treppenfunktionen $\phi : [a, b] \to \mathbb{C}$ Teppenfunktion mit Zerlegung $\{x_0, x_1, \dots, x_n\}$

- c_K = Funktionswert von ϕ auf (x_{k-1}, x_k)
- $\bullet \ \Delta x_k = x_k x_{k-1}$

$$\int_{a}^{b} \phi(x) dx = \sum_{k=1}^{n} (c_k \cdot \Delta x_k)$$

Lemma 1. Das Integral einer Treppenfunktion ist unabhängig von der gewählten Zerlegung

Beweis 1.

Frage I(Z) = I(Z')

Zeige $I(Z) = I(Z \cup Z') = I(Z')$

 $Z \cup Z'$ entsteht aus Z durch Hinzufügen von endlich vielen Punkten. Angenommen $Z \cup Z' = Z \cup \{y\}, y \notin Z$. Leicht zu sehen: $I(Z) = I(Z \cup \{y\})$

$$I(Z) = I(Z \cup \{y\}) \stackrel{Ind}{\Longrightarrow} I(Z) = I(Z \cup \{y_1\}) = I(Z \cup \{y_1\} \cup \{y_2\}) = \dots = I(Z \cup Z')$$

Lemma 2.

$$\int_a^b \mathrm{d} x \tau([a,b]) \to \mathbb{C}$$

1. $\int_a^b dx$ ist linear, d.h.

$$\forall \phi, \psi \in \tau([a,b]), \alpha, \beta, \in \mathbb{C}: \int_a^b \alpha \phi + \beta \psi \, \mathrm{d}\, x = \alpha \left(\int_a^b \phi \, \mathrm{d}\, x \right) + \beta \left(\int_a^b \phi \, \mathrm{d}\, x \right)$$

2.

$$\left| f_a^b \phi \, \mathrm{d} \, x \right| \leq \int_a^b \left| \phi \right| \, \mathrm{d} \, x \leq (b-a) \underbrace{\| \phi \|}_{Supremum}$$

3. $f\ddot{u}r \ \phi, \psi : [a,b] \to \mathbb{R} \ mit \ \phi(x) \le \psi(x) \ \forall x \in [a,b] \implies$

$$\int_{a}^{b} \psi \, \mathrm{d} \, x \le \int_{a}^{b} \psi \, \mathrm{d} \, x$$

Beweis 2. ϕ und ψ Treppenfunktionen mit Zerlegung Z bzw. $Z' \implies Z \cup Z'$ Zerlegung für ϕ und ψ

$$\int_{a}^{b} \alpha \phi + \beta \psi \, \mathrm{d} x = (\alpha \phi)|_{(x_{k-1}, x_k)} = \alpha (\phi|_{(x_{k-1}, x_k)})$$

wobei $\Delta x_k = x_k - x_{k-1}$.

Wert von ϕ auf $(x_{k-1}, x_k) =: c_k$, Wert von ψ auf $(x_{k-1}, x_k) =: d_k$

$$\sum_{i=1}^{n} (\alpha c_k + \beta d_k) \Delta x_k = \alpha (\sum_{i=1}^{n}) + \beta (\sum_{i=1}^{n} d_k \Delta x_k) = \alpha \int_a^b \phi dx + \beta \int_a^b \psi dx$$

Bemerkung 2. $\int_a^b \mathrm{d}\,x:\tau([a,b])\to\mathbb{C}$ linear, $\ker(\int_a^b \mathrm{d}\,x)\subset\tau([a,b])$ Untervektorraum

Bemerkung 3. lineares erzeugendes System von $\tau([a,b])$ $A \subset \mathbb{R}$

$$1_A(x) = \begin{cases} 1 & \text{für } x \in A \\ 0 & \text{sonst} \end{cases}$$

 $\{1_{[c,d]} \text{ mit } a < c \le d < b \}$ erzeugendes System

1.2 Regelfunktionen

Definition 2. Regelfunktionen $f:[a,b]\to\mathbb{C}$ Regelfunktionen (auf [a,b]) \Leftrightarrow

$$\begin{aligned} \forall y \in (a,b) : \exists \lim_{x \searrow y} f(x) \ \& \ \lim_{x \nearrow y} f(x) \\ \text{(nicht n\"{o}tig:} \lim_{x \searrow y} f(x) = \lim_{x \nearrow y} f(x)) \end{aligned}$$

$$\exists \lim_{x \searrow y} f(x) \& \exists \lim_{x \searrow y} f(x)$$

Bemerkung 4.

$$\lim_{x \searrow y} f(x) = c : \Leftrightarrow \forall \varepsilon > 0 \exists \rho \ \forall 0 < x - y < \rho : |f(x) - c| < \varepsilon$$

 $\mathcal{R}([a,b])$ Menge aller Regelfunktionen auf [a,b]

$$\mathcal{R}([a,b])$$
 Vektorraum über \mathbb{C}
 $\mathcal{T}([a,b]) \subset \mathcal{R}([a,b])$ Untervektorraum

Frage $\mathcal{R}([a,b])/\mathcal{T}([a,b])$ Vektorraum über \mathbb{C} , Dimension?

Beispiel 1. jede stetige Funktion ist eine Regelfunktion

Beispiel 2. jede monotone Funktion auf [a, b] ist eine Regelfunktion (sehe Seite 78)

Bemerkung 5.

$$f, g \in \mathcal{R}([a, b]) \implies \lambda f_{\lambda \in \mathbb{C}}, f + g, |f|, f \cdot g, \max(f, g), \min(f, g)$$

sind in $\mathcal{R}([a,b])$

Definition 3. gleichmässige Konvergenz $(f_n)_{n\in\mathbb{N}}$ Folge von Funktionen auf $D\subset\mathcal{R}, f$ Funktion auf D.

$$(f_n)_{n\in\mathbb{N}} \text{ konvergiert gleichmässig gegen } f \Leftrightarrow \lim_{n\to\infty} \underbrace{\|f-f_n\|}_{\sup_{x\in D}|f(x)-f_n(x)|} = 0$$

Bemerkung 6. falls $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmässig \Longrightarrow limes ist eindeutig Bemerkung 7. $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmässig gegen $f \Longrightarrow f_n(x) \to f(x) \ \forall x \in D$

$$(|f(x) - f_n(x)| \le \sup_{x \in D} |f(x) - f_n(x)| \to 0)$$

Bemerkung 8. Die Umkehrung gilt NICHT D = (0,1]

$$f = 0, f_n(x) = \begin{cases} 1 - nx & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} \le x \le 1 \end{cases}$$

$$\forall x \in D : f_n(x) \xrightarrow{n \to \infty} 0$$

$$\|f - f_n\| = \sup_{x \in D} |f(x) - f_n(x)| = 1$$

$$\lim_{n \to \infty} \|f - f_n\| = 1$$

1.2.1 Zusammenfassung

- $\tau([a,b]) = \text{Vektorraum der Treppenfunktionen auf } [a,b]$
- $\int : \tau[a;b] \to \mathbb{C}$ lineare Abbildung
- Eigenschaften:
 - lineare Abbildung
 - Monotonie: $f \leq g \implies \int_a^b f \cdot dx \leq \int_a^b g \cdot dx$
 - Beschränktheit: $\left|\int_a^b f\cdot \mathrm{d}\,x\right| \leq \int_b^a |f(x)|\,\mathrm{d}\,x \leq (b-a)\,\|f\| = \sup_{x\in[a;b]} f$
- Regelfunktionen: $\mathcal{R}\left([a,b]\right)$ = Vektor nach der Regel $f\supset\tau\left([a;b]\right)$
- gleichmässige Konvergenz $f_n \to f \stackrel{\text{def}}{\Longleftrightarrow} ||f_n f|| \to 0$

1.2.2 Vorgehen

- 1. Jede Regelfunktion kann man gleichmässig durch Treppenfunktionen approximieren.
- 2. Damit kann man das Integral von Regelfunktionen definieren.
- 3. Regenregeln (insbesondere Hauptsatz)
- 4. Riemannsche Summen

Satz 1. Approximationssatz

$$f \in \mathcal{R}a; b \Leftrightarrow \exists Folge \phi_n \in \tau[a;b] : \phi_n \to fgleichm \ddot{a}ssig$$

ist per Definition äquivalent mit

$$\exists Folge \phi_n \in \tau[a;b] : ||\phi_n - f|| \to 0$$

wobei

$$\|\phi_n - f\| = \sup_{x \in [a;b]} |\phi_n(x) - f(x)|$$

Dieser Grenzwert ist wiederum äquivalent mit

$$\forall \varepsilon > 0 \exists \phi \in \tau[a; b] : ||f - \phi|| \le \varepsilon$$

(eine ε -approximierende Treppenfunktion)

Beweis 3. \Rightarrow d.h. $f \in \mathcal{R} \implies \exists \varepsilon$ -approx. Treppen. Widerspruchsbeweis:

$$f \in \mathcal{R}[a;b]$$

 $\exists \varepsilon > 0 : f besitzt \ keine \varepsilon - approx. \ Treppen funktion$

Wir konstruieren eine Intervallschachtelung $I_n = [a_n; b_n]$ s.d. $\forall_n f|_{I_n}$ besitzt keine ε -approx. Treppenfunktion

$$I_1 = [a; b]$$

rekursiv: $M = \frac{b_n - a_n}{2} + a_n$ Mittelpunkt

 $I_{n+1} := \begin{cases} [a_n; M] & falls f|_{[a_n; M]} keine \varepsilon\text{-}approx. \ \textit{Treppen funktion be stzt} \\ [M, b_n] & and ern falls \end{cases}$

Sei $\xi \in I_n \forall n$

$$c_e := \lim_{x \uparrow \xi} f(x)$$
 $c_r := \lim_{x \downarrow \xi} f(x)$

 \Longrightarrow

$$\exists \delta : |f(x) - c_e| < \varepsilon : \qquad x \in [\xi - \delta; \xi)$$
$$|f(x) - c_r| < \varepsilon : \qquad x \in (\xi; \xi + \delta]$$

Auf $[\xi - \delta; \xi + \delta]$ definieren wir eine Treppenfunktion:

$$\phi(x) := \begin{cases} c_e & \xi - \delta \le x < \xi \\ f(\xi) & x = \xi \\ c_r & \xi + \delta \ge x > \xi \end{cases}$$

Fall $1 \implies \phi$ ist eine ε -approx. Treppenfunktion auf $[\xi - \delta], [\delta + \delta]$. Fall $2 \implies \phi$ ist eine ε -approx. Treppenfunktion auf $[\xi - \delta], [\delta + \delta]$, alle $I_n \subset [\xi + \delta; \xi + \delta]$ Ψ

Beweis 4. $\Leftarrow f$ Regelfunktion $\Leftarrow f$ besitzt ε -approx. Treppenfunktion $\forall \varepsilon > 0$. Sei $x_0 \in [a;b)$. Zu zeigen: $\exists \lim_{x \downarrow x_0} f(x)$.

$$\forall \varepsilon > 0 \ \exists \phi \in \tau[a;b] : ||f - \phi|| < \frac{\varepsilon}{2}$$

Sei $\beta > x_0 : \phi \text{ konstant auf } (x_0, \beta)$

$$\forall x, x' \in (x_0; \beta)$$

$$|f(x) - f(x')| \le |f(x) - \phi(x)| + \left| \phi(x)^{(=\phi(x')} - f(x') \right|$$

$$\le ||f - \phi|| + ||\phi - f|| < \varepsilon$$

 $\forall \varepsilon > 0 \ \exists \beta : Cauchy eigenschaft \ gilt \ auf \ (x_0; \mathcal{R}) \implies \exists \lim_{x \uparrow x_0} f(x). \ \ddot{A}hnlich: \exists \lim_{x \uparrow x_0} f(x) \ \forall x_0 \in (a; b].$

Korollar 1.

$$f \in \mathcal{R}[a;b] \iff \exists Folge \Psi_b \in \tau[a;b] : \sum_{k=1}^{\infty} \phi_k = f$$

konvergiert konstant

Korollar 2. f Regelfunktion auf $I \implies f$ fast überall stetig. $d.h. \exists A \subset I$ s.d.

- $f|_{I\setminus A}$ stetig
- A höchstens abzählbar $x \in [a; b]$

Beweis 5.

$$\Psi_k \in au[I]$$

$$f = \sum \phi_k normal$$

Ist ϕ_k stetig in $x \forall k \implies f$ stetig in x.

Ist x Unstetigkeitsstelle von f, $\exists k : \phi_k$ unstetig in x, höchstens abzählbare viele k.

• Eine Treppenfunktion hat endlich viele Unstetigkeitsstellen

 $\{ Unstetigkeitsstellen \ von \ f \} \subset (h\"{o}chstens \ abz\"{a}hlbare \ Vereinigung \ von \ endlichen \ Mengen) \implies h\"{o}chstens \ abz\"{a}hlbar$

$$I = \overbrace{U_{\alpha}}^{h\"{o}chstens} \overbrace{U_{\alpha}}^{abz\"{a}hlbar} \overbrace{I_{\alpha}}^{kompakt}$$

Satz 2.

$$f \in \mathcal{R}([a:b]) \implies f beschränkt \ auf[a;b]$$

Beweis 6.

$$\begin{split} \varepsilon &= 1 \\ & \underbrace{\exists \overbrace{\phi}} & \in \tau \left([a;b] \right) : \| f - \phi \| \leq 1 \\ \Longrightarrow & \| f \| = \| f - \phi + \phi \| \leq \| f - \phi \| + \| \phi \| = \leq 1 + \| \phi \| \end{split}$$

Definition 4. Integration von Regelfunktionen . . . auch bekannt als "Regelintegral"

Sei $f \in \mathcal{R}[a;b]$

$$\int_a^b f(x)fx : \lim_{n \to \infty} \int_a^b \phi_n(x) \, \mathrm{d} x$$

wobei ϕ_n eine approximierene Folge von Treppenfunktionen ist (d.h. $\|\phi_n - f\| \to 0$)

zu zeigen:

- 1. Die Folge $I_n := \int_a^b \phi_n(x) \, \mathrm{d}\, x$ konvergiert $\forall \, \|\phi_n f\| \to 0$
- 2. Der Grenzwert ist von der Wahl der approximierenden Folge unabhängig

Beweis 7. von 1

$$|I_n - I_m| = \stackrel{Linearit"}{a} \left| \int_a^b (\phi_n(x) - \phi_m(x)) \, \mathrm{d} x \right| \le \stackrel{beschr"}{a} (b - a) \|\phi_n - \phi_m\|$$

$$\|\phi_n - f\| \to 0 \xrightarrow{\underline{Dreiecksungleichung}} \forall \varepsilon > 0 \ \exists N : \|\phi_n - \phi_m\| < \varepsilon \ \forall n, m > N$$

 $\implies I_n \ Cauchy folge \implies I_n \ konvergiert$

Beweis 8. von 2 Seien $\phi_n, \psi_n \in \tau[a;b]$

$$\|\phi_n - f\| \to 0$$
$$\|\psi_n - f\| \to 0$$

$$\{X_n\} = \psi_1, \phi_1, \psi_2, \phi_2, \psi_3, \phi_3, \cdots$$
$$X_n := \begin{cases} \phi_{\frac{n}{2}} & ngerade \\ \psi_{\frac{n+1}{2}} & nungerade \end{cases}$$

 $\implies I_n(\phi) \text{ und } I_n(\psi) \text{ Teilfolgen von } I_n(X)$

$$\implies ||X_n - f|| \to 0$$

$$I_n(x) = \int x_n$$

$$I_n(\phi) = \int \phi_n$$

$$I_n(\psi) = \int \psi_n$$

$$\lim I_n(\phi) = \lim I_n(X) = \lim I_n(\psi)$$

Beispiel 3. Dirichlet eine Funktion, die keine Regelfunktion ist.

$$f: [0; 1] \to \mathbb{R}$$

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

f unstetig $\forall x$ intuitiv: $\int_0^1 f(x) f(x) = 0$

Beispiel 4. Riemann sog. modifizierte Dirichlet-Funktion

$$g:[0;1] \to \mathbb{R}$$

$$g:[0;1]\to\mathbb{R}$$

$$g(x)=\begin{cases} \frac{1}{q} & x=\frac{p}{q}, p, q \text{teiler fremd}, q>0\\ 0 & x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$$

 $g \in \mathcal{R}[0;1]$ und $int_a^b g(x) \, \mathrm{d} \, x = 0$

1.2.3 Eigenschaften

Satz 3.

$$\forall f, g \in \mathcal{R}[a; b] \forall \alpha, \beta \in \mathbb{C}$$
 gelten

Linearität

$$\int_{a}^{b} (\alpha f + \beta g) \, \mathrm{d} \, x = \alpha \int_{a}^{b} f \cdot \mathrm{d} \, x + \beta \int_{a}^{b} g \cdot \mathrm{d} \, x$$

Beschränktheit

$$\left| \int_a^b f(x) \cdot dx \right| \le \int_a^b |f(x)| dx \le (b-a) \|f\|$$

Monotonie

$$f \le g \implies \int_a^b f(x) \, \mathrm{d} \, x \le \int_a^b g(x) \, \mathrm{d} \, x$$

 $(f, g \text{ reellwertig } f(x) \leq g(x) \forall x)$

Satz 4. Additivität Sei $f \in \mathcal{R}[a;b]$ und sei $c \in (a;b)$

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$$

Beweis 9. $f = \phi$ Treppenfunktion trivial

 $f = \lim \phi_n \ gleichmässig$

$$\begin{array}{ll} \phi_n \in \tau[a;c]\phi_n^l := & \phi_n|_{[a;b]} \in \tau[a;b] \\ \phi_n^r := & \phi_n|_{[b:c]} \in \tau[b;c] \end{array}$$

$$\int_{a}^{c} \phi_{n}(x) dx = \int_{a}^{b} \phi_{n}^{l}(x) dx + \int_{b}^{c} \int_{n}^{r} (x) dx$$
$$\|\phi_{n} - f\| \to 0$$
$$\|\phi_{n}^{l} - f\|_{[a;b]} \le \|\phi_{n} - f\| \ge \|\phi_{b}^{+} f\|_{[b;c]}$$

$$\int_{a}^{c} \phi_{n}(x) dx = \int_{a}^{b} \phi_{n}^{l}(x) dx + \int_{b}^{c} \int_{n}^{r} (x) dx$$
$$= \int_{a}^{c} f \cdot dx \qquad = \int_{a}^{b} f(x) \cdot dx \qquad = \int_{b}^{c} f(x) dx$$

 \Longrightarrow

$$\phi_n^l \to f|_{[a;b]}$$
$$\phi_n^r \to f|_{[b;c]}$$

Definition 5. $f \in \mathcal{R}[a;b], b > a$

$$\int_b^a f(x) dx := \int_a^b f(x) dx$$
$$\int_a^a f(x) dx := 0$$

Satz 5. $f \in \mathcal{R}I(): \forall a, b, c \in I$

$$\int_a^c f(x) \,\mathrm{d}\, x = \int_a^b f(x) \,\mathrm{d}\, x + \int_b^c f(x) \,\mathrm{d}\, x$$

Bemerkung 9. Linearität

Beschränktheit:

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \left| \int_{a}^{b} |f(x)| \, \mathrm{d}x \right| \le |b - a| \, ||f||$$

Monotonie

$$f \le g; b > a$$

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

 $\begin{array}{ccc} \textit{Bemerkung 10. f stetig } ([a;b]) \implies \|f\| = \max |f| \\ \text{reellwertig} \stackrel{\text{ZWS}}{\Longrightarrow} f \text{ nimmt alle Werte zwischen 0 und } \max |f| \end{array}$

$$\exists \xi \in [a; b] :$$

$$\int_{a}^{b} f(x) dx = (b - a) f(\xi)$$

Satz 6. Mittelwertsatz Sei $f:[a;b] \to \mathbb{R}$ <u>stetig</u>. Sei $p:[a;b] \to \mathbb{R} \in \mathcal{R}$ mit $p \geq 0$. Dann $\exists \xi \in [a;b]$ s.d.

$$\int_{a}^{b} f(x)p(x) dx = f(\xi) \int_{a}^{b} p(x) dx$$

Falls $\int p \neq 0$

$$\frac{\int f(x)p(x) \, dx}{\int p(x) \, dx} = f(\xi) = \int_a^b f(x)\tilde{p}(x) \, dx$$
$$\tilde{p}(x) = \frac{p(x)}{\int_a^b p(x) \, dx}$$
$$\implies \int_a^b \tilde{p}(x) \, dx = 1$$

Beweis 10. f besitzt ein Maximum M und ein Minimum m

$$m \le f(x) \le M \ \forall x \in [a; b]$$

 $mp(x) \le f(x)p(x) \le Mp(x)$

 $\underline{\underline{Monotonie}}$

$$\begin{split} & \int_a^b mp(x) \, \mathrm{d} \, x \leq \qquad & int_a^b f(x) p(x) \, \mathrm{d} \, x \leq \qquad \qquad \int_a^b Mp(x) \, \mathrm{d} \, x \\ & = m \int_a^b p(x) \, \mathrm{d} \, x \qquad \qquad = M \int_a^b p(x) \, \mathrm{d} \, x \end{split}$$

 $\implies \exists \mu \in [m; M]:$

$$\int_a^b f(x)p(x) \, \mathrm{d} \, x = \mu \int_a^b p(x) \, \mathrm{d} \, x$$

 $ZWS \implies \exists \xi \in [a;b]:$

$$\mu = f(\xi)$$

Satz 7. Sei $f:[a;b] \to \mathbb{R} \in \mathcal{R}$ mit $f \geq 0$ und $\int_a^b f(x) dx = 0$. Dann ist $f(x_0) = 0$ an jeder Stetigkeitsstelle x_0 . Ferner gilt: f = 0 fast überall.

Beweis 11. (Widerspruchsbeweis) Sei x_0 eine Stetigkeitsstelle mit $f(x_0) > 0$. f stetig in $x_0 \implies \exists x_0 \in [a:b] \subset [a:b]$ s.d.

$$f(x) > \frac{1}{2}f(x_0) \ \forall x \in [\alpha : \beta]$$

Sei

$$\phi(x) := \begin{cases} \frac{1}{2} f(x_0) & x \in [\alpha; \beta] \\ 0 & x \notin [\alpha; \beta] \end{cases}$$

Treppenfunktion, deshalb Regelfunktion

$$\implies f \ge \phi \implies \underbrace{\int_{\alpha}^{\beta} f(x) \, \mathrm{d} x}_{0} \ge \int_{\alpha}^{\beta} \phi(x) \, \mathrm{d} x = \frac{\beta - \alpha}{2} f(x_{0}) > 0$$

Ψ

Satz 8. $f \in \mathcal{R} \implies f$ besitzt höchstens abzählbar viele Unstetigkeitsstellen $\implies f = 0$ fast überall

Korollar 3.
$$f:[a;b] \to \mathbb{R}$$
 stetig, $f \ge 0$, $\int_a^b f(x) dx = 0 \implies f(x) = 0 \ \forall x \in [a;b]$

1.3 Fundamentalsatz der Analysis

Satz 9. Sei $f: I \to \mathbb{C} \in \mathcal{R}$ und sei $a \in I$. Für jedes $x \in I$ definiert man

$$F(x) := \int_{a}^{x} f(t) dt \ F : I \to \mathbb{C}$$

Dann ist F eine Stammfunktion zu f (d.h. F ist stetig und fast überall differenzierbar (und F' = f fast überall)) mit

$$F'_{+}(x_0) = f_{+}(x_0)$$
$$F'_{-}(x_0) = f_{-}(x_0)$$

 $\forall x_0 \in I$

Beweis 12. $\forall x_1, x_2 \in I \ gilt$

$$F(x_2) - F(x_1) = \int_a^{x_2} f(t) dt - int_a^{x_1} f(t) dt =$$
$$= \int_a^{x_2} + \int_{x_1}^a \int_{x_1}^{x_2} f(t) dt$$

Sei $\tau \subset I$ Teilintervall. $\forall x_1, x_2 \in \tau$

$$|f(x_2) - F(x_1)| = \left| \int_{x_1}^{x_2} f(t) dt \right| \le^{Bijektivit \ddot{a}t} |x_2 - x_1| ||f||_{\tau}$$

 $\Longrightarrow F|_{\tau} \ Lipschitz\text{-stetig} \implies F|_{\tau} \ stetig \ \forall \tau \implies F \ stetig \ auf \ I.$ Wir berechnen $F'_{+}(x_0)$. $f \in \mathcal{R} \implies \exists f_{+}(x_0)$. $\forall \varepsilon > 0 \ \exists \delta > 0$

$$|f(x) - f_+(x_0)| < \varepsilon \ \forall x \in (x_0, x_0 + \delta)$$

 $F\ddot{u}r \ x \in (x_0, x_0 + \delta)$

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f_+(x_0) \right| =$$

$$\left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{f_+(x_0)}{x - x_0} \int_{x_0}^x \langle Fehltdanichtwas? \rangle dt \right| =$$

$$\left| \frac{1}{x - x_0} \right| \int_{x_0}^x (f(t) - f_+(x_0)) dt \leq$$

$$\frac{1}{|x - x_0|} |x - x_0| ||f(x) - f_+(x_0)||_{x_0;x} \leq \varepsilon$$

Korollar 4. Sei $f:I\to\mathbb{C}\mathcal{R}$ und sei Φ eine Stammfunktion zu f. Dann $\forall a,b\in I$

$$\int_{a}^{b} f(x) dx = \Phi(b) - \Phi(a)$$

$$=: \Phi_{a}^{b}$$

Beweis 13. Φ und F sind Stammfunktionen zu f, insbesondere $\Phi' = F'$ fast überall. Eindeutigkeitssatz $\implies \exists c \text{ konstant } s.d.$

$$\Phi(x) = F(x) + c \ \forall x \in I$$

$$\int_{a}^{b} f(x) dx = F(b) = F(b) - \underbrace{F(a)}_{=0} =$$

$$= (\Phi(b) - c) - (\Phi(a) - c) = \Phi(b) - \Phi(a)$$

Korollar 5. Jede Regelfunktion beseitzt eine Stammfunktion

Definition 6. Eine Funktion heisst fast überall stetig differenzierbar, wenn sie die Stammfunktion zu einer Regelfunktion ist. (Wo sie nicht stetig differenzierbar ist, besitzt sie linke und Rechte Grenzwerte)

Beispiel 5.

$$f(x) = \begin{cases} 0 & x = 0\\ x^2 \sin\frac{1}{x} & x \neq 0 \end{cases}$$

fist in $\mathbb{R}\setminus\{0\}$ differenzierbar. f' besitzt linke und rechte Grenzwerte, in 0 nicht. Also keine Regelfunktion.

 $Bemerkung\ 11.$ Mit dem Lebesgne-Integral kann man solche Funktionen aus einem Integral erhalten.

Eigenschaften 1. Charakterisierung f fast überall stetig differenzierbar auf $I \implies \exists A \subset I, A$ höchstens abzählbar s.d.

- 1. f ist auf $I \setminus A$ differenzierbar
- 2. f' ist auf $I \setminus A$ stetig
- 3. $\forall x \in A$ existieren $f'_{+}(x)$ und $f'_{-}(x)$

Definition 7. unbestimmtes Integral Das unbestimmte Integral der Regelfunktion f ist die Gesamtheit aller Stammfunktionen zu f.

Notation 1. unbestimmtes Integral

$$\int f(x) \, \mathrm{d} \, x$$

In Tabellen wird oft

$$\int x \, \mathrm{d} \, x = \frac{x^2}{2}$$

geschrieben

Beispiel 6.

$$\int x \, \mathrm{d} \, x = \frac{x^2}{2} + C$$

Eigenschaften 2.

$$\int x^{a} dx = \frac{x^{a+1}}{a+1} a \in \mathbb{C} \setminus \{-1\}$$

$$\int \frac{1}{x} dx = \ln |x|$$

$$\int e^{cx} dx = \frac{1}{c} e^{cx}, c \neq 0$$

$$\int \sin x \cdot dx = -\cos x$$

$$\int \cos x \cdot dx = \sin x$$

Satz 10. Seien f_1 und f_2 Regelfunktionen auf I

$$f_1 = f_2 f \cdot \ddot{u} = \int f_1 \, \mathrm{d} \, x = \int f_2 \, \mathrm{d} \, x$$

Insbesondere $\forall a, b \in I$

$$\int_a^b f(x) \, \mathrm{d} \, x = \int_a^b f_2(x) \, \mathrm{d} \, x$$

Beweis 14. Sei F_1 / F_2 Stammfunktion zu f_1 / f_2

$$\implies F_1' = F_2' \text{ f.ü.}$$

$$\implies F_1 = F_2 + C$$

Bemerkung 12. Anwendung

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q}, p, q \text{teiler fremd} \\ 0 & x \neq \mathbb{Q} \end{cases}$$

$$\int^b f(x) \, \mathrm{d} \, x = 0$$

Definition 8. Sit f eine fast überall differenzierbare Funktion, so bezeichnet f' irgendeine Regelfunktion, die fast überall gleich zur Ableitung von f ist.

 ${f Satz}$ 11. Hauptsatz Sei f eine fast überall stetig differenzierbare Funktion auf I. Dann

$$\int f'(x) dx = f$$

$$\int_a^b f'(x) = f(b) - f(a) \ a, b \in I$$

Notation 2. Leibnitz-Notation

$$f' = \frac{\mathrm{d}f}{\mathrm{d}x}$$

$$\int \frac{\mathrm{d}f}{\mathrm{d}x} \, \mathrm{d}x = f$$

$$\int df = f$$

$$\int_a^b df = \Delta F := f(b) - f(a)$$

1.4 Integrationstechniken

Eigenschaften 3. Integrationstechniken

- 1. Linearität
- 2. Partielle Integration
- 3. Substutionsregel

1.4.1 Partielle Integration

Satz 12. Seien U und V fast überall stetig differenzierbar Funktionen auf I, so ist auch UV fast überall stetig differenzierbar und

$$\int uv' \, dx = uv - \int u'v \, dx$$
$$\int_a^b uv' \, dx = (uv)|_a^b - \int_a^b u'v \, dx$$

Beweis 15. u, v stetig und $u, v \in \mathcal{R} \implies u'v + uv' \in \mathcal{R}$. Fast überall: u'v + uv' = (uv)' Kettenregel.

$$\int (u'v + uv') dx = \int (uv)' dx = uv$$

Beispiel 7.

$$\int \ln x \, \mathrm{d} \, x = \int 1 \cdot \ln x \, \mathrm{d} \, x = \int \frac{\mathrm{d} x}{\mathrm{d} x} \ln x \, \mathrm{d} \, x =$$

$$= x \ln x - \int x \frac{\mathrm{d} \ln x}{\mathrm{d} x} \, \mathrm{d} \, x = x \ln x - \int x \frac{1}{x} \, \mathrm{d} \, x = x \ln x - x$$

Beispiel 8.

$$\int \cos^2 x \, dx = \int \cos x \cdot \cos x \, dx = \int \left(\frac{d}{dx}\sin x\right)\cos x \, dx =$$

$$= \sin x \cos x - \int \sin x \frac{d}{dx}\cos x \, dx = \sin x \cos x + \int \sin^2 x \, dx$$

$$\int (\cos^2 x - \sin^2 x) \, dx = \sin x \cos x$$

$$\int (\cos^2 x + \sin^2 x) \, dx = x$$

$$\int \cos^2 x \, dx = \frac{\sin x \cos x + x}{2}$$

Beispiel 9.

$$\int \sqrt{1+x^2} = \int \frac{\mathrm{d}x}{\mathrm{d}x} \sqrt{1+x^2} \, \mathrm{d}x = x\sqrt{1+x^2} - \int x \frac{2x}{2\sqrt{1+x^2}} \, \mathrm{d}x =$$

$$= x\sqrt{1+x^2} \int \frac{1+x^2}{\sqrt{1+x^2}} \, \mathrm{d}x + \int \frac{1}{\sqrt{1+x^2}} =$$

$$= x\sqrt{1+x^2} - \int \sqrt{1+x^2} \, \mathrm{d}x + \arcsin x$$

$$\int \sqrt{1+x^2} \, \mathrm{d}x = \frac{x\sqrt{1+x^2} + \arcsin x}{2}$$

1.4.2 Substitutionsregel

Satz 13. Substitutions regel Sei $f \in \mathcal{R}$ auf I, F eine Stammfunktion zu f, $t: [a;b] \to I$ stetig differenzierbar und streng monoton. Dann ist $F \circ t$ eine Stammfunktion zu

$$(f \circ t)t'$$
 auf $[a;b]$

und

$$\int_{a}^{b} f(t(x))t'(x) dx = \int_{t(a)}^{t(b)} f(t) dt$$
$$(I = [t(a); t(b)] oder [t(b); t(a))$$

Notation 3.

$$f\frac{\mathrm{d}t}{\mathrm{d}x}\,\mathrm{d}x = \int f\,\mathrm{d}t$$

Beweis 16. Kettenregel:

$$\frac{\mathrm{d}}{\mathrm{d}x}(F \circ t) = (F' \circ t)t' \stackrel{f.u.}{=} (f \circ t)t'$$

$$\int_a^b f(t(x))t'(x) \, \mathrm{d}x = int_a^b \frac{\mathrm{d}}{\mathrm{d}x}(F \circ t) \, \mathrm{d}x = F \circ t|_a^b = F(t(b)) - F(t(a))$$

$$\int_{t(a)}^{t(b)} f(t) \, \mathrm{d}t = F|_{t(a)}^{t(b)} = F(t(b)) - F(t(a))$$

Beispiel 10.

$$\int_{a}^{b} f(x+c) dx \stackrel{t(x)=x+c}{=} \int_{a}^{b} f(x+c)t' dx =$$

$$= \int_{a+c}^{b+c} f(t) dt$$

Beispiel 11.

$$\int_a^b f(cx) \,\mathrm{d}\,x \stackrel{t(x)=cx}{=} \frac{1}{c} \int_a^b f(cx)t' \,\mathrm{d}\,x = \frac{1}{c} \int^{cb} caf(t) \,\mathrm{d}\,t$$

c = -1

$$\int_{a}^{b} f(-x) \, \mathrm{d} x = -\int_{-a}^{-b} f(x) \, \mathrm{d} x = \int_{-b}^{-a} f(x) \, \mathrm{d} x$$

Korollar 6.

$$f(-x) = -f(x)$$
$$\int_{-a}^{a} f(x) = 0$$

Beweis 17.

$$\int_{-a}^{a} f(-x) \, \mathrm{d} x = -\int_{-a}^{a} f(x) \, \mathrm{d} x = \int_{-a}^{a} f(x) \, \mathrm{d} x$$

Beispiel 12.

$$\int \frac{t'(x)}{t(x)} dx \stackrel{f=\frac{1}{t}}{=} \int f(t) dt =$$
$$= \int \frac{1}{t} dt = \ln|t|$$

1.4.3 Rationale Funktionen

 \rightarrow Pratialbruchzerlegung

$$\int \frac{\mathrm{d}x}{x+a} = \ln|x+a|$$

$$\int \frac{Bx+C}{x^2+2bx+c} \,\mathrm{d}x = \cdots$$

Wobei $x^2 + 2bx + c$ keine reelen Lösungen ergeben darf.

Satz 14. Eine rationale Funktion kann man mittels rationaler Funktionen, des Logarithmus sowie des Arcustangens integrieren.

1.5 Reihenintegration

Satz 15. Sei f_n eine Folge Regelfunktionen auf [a;b]. Konvergiert die Reihe $\sum f_n$ normal, so ist

$$f: \sum_{n=1}^{\infty} f_n$$

eine Regelfunktion und

$$\int_{a}^{b} f(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx$$
$$(\int \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx$$

Insbesondere gilt der Satz für Potenzreichen in ihren Konvergenzintervallen.

Beweis 18. $\forall \varepsilon > 0 \exists N$:

$$\sum_{n=N}^{\infty} \|f_n\| < \frac{\varepsilon}{2}$$

 $\forall p \geq N$

$$\left\| f - \sum_{n=1}^{p} f_n \right\| < \frac{\varepsilon}{2}$$

 $f_n \in \mathcal{R} \implies \sum_{n=1}^p f_n \in \mathcal{R} \implies \exists \text{ Treppen funktion } \phi \text{ mit}$

$$\left\| \sum_{n=1}^{p} f_n - \phi \right\| < \frac{\varepsilon}{2}$$

 \Longrightarrow

$$||f - \phi|| \le \left| \left| f - \sum_{n=1}^{p} f_n \right| + \left| \left| \sum_{n=1}^{p} f_n - \phi \right| \right| < \varepsilon$$

 $\implies f \in \mathcal{R}$

$$\left| \int_{a}^{b} f(x) dx - \sum_{n=1}^{p} \int_{a}^{b} f_{n}(x) dx \right| \leq$$

$$\leq \int_{a}^{b} \left| f(x) - \sum_{n=1}^{p} f_{n}(x) \right| dx \leq$$

$$\leq |b - a| \left\| f - \sum_{n=1}^{p} f_{n} \right\| <$$

$$< |b - a| \frac{\varepsilon}{2}$$

Beispiel 13.

$$\arctan x = \int_0^x \frac{1}{1+t^2} \, \mathrm{d} t = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} \, \mathrm{d} t \stackrel{|x|<1}{=} \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}$$

1.6 Reimannsche Summen

- alte Definition des Regelintegrals (äquivalent)
- Approximationstechnik
- Man kann Resultate über Summen erweitern (z.B. Höldersche Ungleichung, Cauchy-Schwarzsche Ungleichung)

Definition 9. Zerlegung [a; b] kompates Intervall

Eine Zerlegung von [a; b] ist die Wahl $x_0, x_1, x_2, \cdots, x_n$ s.d.

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1}x_n = b$$

Notation 4. $Z := \{x_0, x_1, \cdots, x_n\}$

Definition 10. Feinheit der Zerlegung

$$\Delta x_k := x_k - x_{k-1}$$

Die <u>Feinheit</u> der Zerlegung ist $\max\{\Delta x_1, \Delta x_2, \cdots, \Delta x_n\}$

Definition 11. Die Riemannsche Summe von f bezüglich der Zerlegung Z und der Wahl von Stützstellen $\xi =: (\xi_1, \dots, x_n)$

$$\xi_k \in [x_{k-1}; x_k]$$

ist die Summe

$$S(f; Z; \xi) := \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Satz 16. Sei $f:[a;b] \to \mathbb{C}$ eine Regelfunktion. Dann gilt folgendes:

$$\forall \varepsilon > 0 \ \exists \delta > 0$$

sd. für jede Zerlegung Z der Feinheit $\leq \delta$ und für jede Wahl Stützstellen ξ gilt

$$\left| S\left(f;Z;\xi \right) - \int_{a}^{b} f(x) \, \mathrm{d}\,x \right| < \varepsilon$$

Beweis 19. (Idee)

- 1. Satz gilt, falls f eine Treppenfunktion ist. Beweis durch Indunktion nach der Anzahl Sprungstellen
- 2. $\exists \phi$ Treppenfunktion s.d.

$$||f - \phi|| < \frac{\varepsilon}{3(h-a)}$$

 $1) \implies \exists Z, \xi$

$$\left| S\left(\phi; Z; \xi\right) - \int_{a}^{b} \phi(x) \, \mathrm{d}\, x \right| < \frac{\varepsilon}{3}$$

3-Ecks Ungleichung

Korollar 7. Sei $f:[a;b] \to \mathbb{C} \in \mathcal{R}$. Sei Z_1, Z_2, Z_3, \cdots Folge Zerlegungen von [a;b] mit Feinheit $(Z_n) \to 0$. Für jede Wahl Stützstellen ξ_m aus Z_n

$$\lim_{n \to \infty} S(f; Z_n; \xi_m) = \int_a^b f(x) \, \mathrm{d} x$$

Definition 12. p-Norm Sei $f[a;b] \to \mathbb{C} \in \mathcal{R}$. Die p-Norm von f (mit $p \ge 1$)

$$||f||_p := \sqrt[p]{\int_a^b |f(x)|^p dx}$$

Satz 17. Seien $f, g : [a; b] \to \mathbb{C} \in \mathcal{R}$. Seien $p, q \ge 1$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Dann haben wir

$$\int_{a}^{b} |f(x)g(x)| \, \mathrm{d} \, x \le \|f\|_{p} \, \|g\|_{q}$$

Höldersche Ungleichung

Spezialfall: p = q = 2 Cauchy-Schwarzsche Ungleichung

Beweis 20. (Idee)

- 1. Man approximiert die 3 Integrale durch Riemannsche Summen
- 2. Man benützt die Höldersche Ungleichung für Summen
- 3. Man nimmt die Grenzwerte

1.7 Das uneigentliche Integral

Satz 18. Seien $a, b \in \bar{\mathbb{R}}$

$$-\infty \le a < b \le +\infty$$

Sei I ein Intervall mit Randwerten a und b (z.B. I = [a;b], I = [a;b)). Sei f eine Regelfunktion auf I. Wir wollen $\int_a^b f(x) dx$ definieren, wenn möglich.

Fall 0

$$a, b \in \mathbb{R}, \ I = [a; b]$$

$$\int_{a}^{b} f(x) dx Regelintegral$$

Fall 1

$$b \in \overline{\mathbb{R}}, \ I = [a; b)$$
$$\int_a^b f(x) \, \mathrm{d} \, x = \lim_{\beta \uparrow b} \int_a^\beta f(x) \, \mathrm{d} \, x$$

Falls der Grenzwert existiert.

Fall 2

$$a \in \mathbb{R}, b \in \mathbb{R}, b > a, I = (a; b]$$

$$\int_{a}^{b} f(x) dx = \lim_{\alpha \downarrow a} \int_{\alpha}^{b} f(x) dx$$

Falls der Grenzwert existiert.

Fall 3

$$a, b \in \overline{\mathbb{R}}, a < b, I = (a; b)$$

$$\int_{a}^{b} F(x) \, \mathrm{d} \, x := \int_{a}^{c} f(x) \, \mathrm{d} \, x + \int_{c}^{b} f(x) \, \mathrm{d} \, x$$

Sei $c \in (a; b)$ falls beide Integrale auf der rechten Seite existieren!

Definition 13. Wert eines Integrals Existiert das uneigentliche Integral von f, so heisst $\int_a^b f(x) dx$ konvergent so heisst der Grenzwert Wert des Integrals

Definition 14. absolut konvergentes Integral Konvergiert das Integral von |f|, so heisst das Integrals absolut konvergent

Beispiel 14. $I=(0;+\infty)$

$$F_s(x) := \int \frac{1}{x^s} dx = \begin{cases} \ln x & s = 1\\ \frac{x^{1-s}}{1-s} & s \neq 1 \end{cases}$$

$$F_s(x) \xrightarrow{x \to \infty} 0 \Leftrightarrow s > 1, \text{divergiert sonst}$$

$$F_s(x) \xrightarrow{x \to 0} 0 \Leftrightarrow s < 1, \text{divergiert sonst}$$

$$\int_{a}^{+\infty} \frac{1}{x^{s}} \, \mathrm{d}x$$

existiert genau dann, wenn a>0 und s>1 und hat den Wert $\frac{a^{1-s}}{s-1}$

$$\int_0^a \frac{1}{x^s} \, \mathrm{d} x$$

existiert genau dann, wenn s < 1 und hat den Wert $\frac{a^{1-s}}{1-s}$

Beispiel 15. $e^{-x} \in R(\mathbb{R})$

$$\int_0^{+\infty} e^{-x} \, \mathrm{d} \, x = \lim_{a \to +\infty} \int_0^a e^{-x} \, \mathrm{d} \, x =$$

$$= \lim_{a \to +\infty} \left(e^{-x} \right) \big|_0^a = \lim_{a \to +\infty} \left[-e^{-a} + e^0 \right] = 1$$

Beispiel 16. $f(x) = \frac{x}{1+x^2} \in R(\mathbb{R})$

$$\int f(x) \, dx = \frac{1}{2} \ln(1 + x^2)$$

divergiert $x \to \pm \infty$. Deshalb existieren

$$\int_0^{+\infty} f(x) \, \mathrm{d} x \text{ und } \int_{-\infty}^0 f(x) \, \mathrm{d} x$$

nicht. Aber:

$$\int_{-R}^{R} f(x) dx = 0$$

$$\lim_{R \to +\infty} \int_{-R}^{R} f(x) dx = 0$$

Beispiel 17. Sei $F(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Sei $f = F' \in R(\mathbb{R} \setminus \{0\})$ aber keine Regelfunktion auf \mathbb{R} x > 0

$$\int_0^\pi f(x) \, \mathrm{d} \, x = \lim_{\varepsilon \downarrow 0} \int_\varepsilon^x f(x) \, \mathrm{d} \, x =$$

$$= \lim_{\varepsilon \downarrow 0} F(x)|_\varepsilon^x = \lim_{\varepsilon \to 0} \left(F(x) - F(\varepsilon) \right) = F(x)$$

1.8 Majorantenkriterium

Satz 19. Majorantenkriterium Seien f und g Regelfunktionen [a;b) mit $|f| \leq g$. Existiert $\int_a^b g(x) \, \mathrm{d} x$, so existiert auch $\int_a^b f(x) \, \mathrm{d} x$

Beweis 21. Sei

$$F(u) = \int_{a}^{u} f(x) dx$$

$$G(u) = \int_{a}^{u} g(x) dx$$

$$\forall u, v \in [a; b)$$

$$|F(u) - F(v)| = \left| \int_{b}^{u} f(x) dx \right| \le |f_{v}^{u}|f(x)| dx| \le$$

$$\le \left| \int_{v}^{u} g(x) dx \right| = |G(u) - G(v)|$$

G(u) $u \to 0$ existiert \Longrightarrow G erfüllt das Cauchykriterium. \Longrightarrow F erfüöllt das Cauchykriterium $\Longrightarrow \lim_{n \to b} F(u)$ existiert

2 Kurven (Kapitel 12)

$$\gamma: I \to \mathbb{R}^n$$

 $\gamma: t \mapsto (x_1(t), x_2(t), x_3(t), \cdots, x_n(t))$

 $x_i: I \to \mathbb{R}$ Komponentenfunktionen

Definition 15. parametrisierte Kurve Eine parametrisierte Kurve (kurz: Kurve) ist eine Abbildung $\gamma: I \to \mathbb{R}^n$, deren Komponentenfunktionen stetig sind.

Definition 16. differenzierbare Kurve Eine Kurve heisst differenzierbar, wenn jede Komponentenfunktion differenzierbar ist. Analog für stetig differenzierbar.

Definition 17. Spur Das Bild $\gamma(I) \in \mathbb{R}^n$ heisst die Spur von γ .

$$Spur(\gamma)$$

Bemerkung 13. Eine Kurve ist eine Abbildung und ihre Spur ist eine Teilmenge

Beispiel 18. Sei $k \in \mathbb{Z} \setminus \{0\}$

$$\gamma_k : \mathbb{R} \to \mathbb{C} \cong \mathbb{R}^2$$

$$t \mapsto e^{ikt}$$

 $|\gamma(t)|=1 \ \forall t \ \mathrm{Spur} \, \gamma_k=S^1 \ k>0$: Gegenuhrzeigersinn k<0: Uhrzeigersinn

Beispiel 19. Schraubenlinie $\gamma: \mathbb{R} \to \mathbb{R}^3$

$$t \mapsto (r \cos t, r \sin t, ht)$$

Definition 18. Tangentialvektor einer Kurve Sei $\gamma: I \to \mathbb{R}^n$ differenzierbar.

$$\dot{\gamma} := (\dot{x}_1(t), \dot{x}_2(t), \dots)$$

 $\dot{\gamma}$ heisst der Tangentialvektor oder Geschwindigkeitsvektor zur Stelle t.

Definition 19. Geschwindigkeit einer Kurve $\|\dot{\gamma}(t)\|$ heisst Geschwindigkeit. Der Geschwindigkeitsvektor hängt vom Parameter ab, nicht von der Stelle in \mathbb{R}^n .

Definition 20. reguläre Kurve Eine stetig differenzierbare Kurve $\gamma: I \to \mathbb{R}^n$ heisst regulär an der Stelle $t_0 \in I$, wenn $\dot{\gamma}(t_0) \neq 0$. Sie heisst regulär, wenn sie an allen STellen regulär ist.

Beispiel 20. $\gamma(t) = (t^3, t^3), t \in \mathbb{R}$ Spur $\gamma = (y = x) \dot{\gamma}(t) = (3t^2, 3t^2) \dot{\gamma} = (0, 0)$ nicht regulär! Aber der Punkt (0, 0) ist nicht singulär.

Definition 21. Tangentialeinheitsvektor Ist γ an der Stelle t_0 regulär, so definiert man

$$T\gamma(t_0) := \frac{\dot{\gamma}(t_0)}{\|\dot{\gamma}(t_0)\|}$$

als Tangentialeinheitsvektor. $||T_{\gamma}|| = 1$

Definition 22. Parametrisierte Kurve Sei $f: J \to \mathbb{R}$ stetig differenzierbar. Der parametrisierte Graph von f ist die Kurve

$$\gamma_f: J \to \mathbb{R}^2$$

$$t \mapsto (t, f(t))$$

 $\operatorname{Spur}(\gamma_f) = \operatorname{Graph}(f)$

$$\dot{\gamma_f}(t) = (1, f'(t)) \neq 0 \ \forall t$$

Eigenschaften 4. parametrisierter Graph Ein parametrisierter Graph ist regulär

Satz 20. Sei $\gamma: I \to \mathbb{R}^2$, $t \mapsto (x(t), y(t))$ stetig differenzierbar. Wenn $\dot{x}(t)$ keine Nullstennen hat, gibt es eine stetig differenzierbare Funktion

$$f: J \to \mathbb{R}^2$$

wobei

$$J := x(I)$$

s.d.

Graph
$$f = \operatorname{Spur} \gamma$$

Bemerkung 14. $\dot{y} \neq 0 \rightsquigarrow \text{Graph von } x(y)$

Satz 21. Sei $t_0 \in I$, $x_0 := x(t_0)$

$$f'(x_0) = \frac{y(\dot{t}_0)}{\dot{x}(t_0)}$$

$$y = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

Ist γ w-mal stetig differenzierbar, so ist es f auch und

$$f''\underbrace{(x_0)}_{=x(x_0)} \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\dot{x}^3}$$

Beweis 22. $\dot{x} \neq 0 \implies x(t)$ streng monoton \implies invertierbar. \exists Umkehrab-bildung

$$\tau: J \to I$$
$$\tau(x(t)) = t \ \forall t$$

stetig differenzierbar

$$\tau = \frac{1}{\dot{x}}$$

$$\gamma(t) = (x(t), y(t)) = (x(t), y(\tau(x(t))))$$

$$= (x(t), (y \circ \tau)(x(t)))$$

$$= (x(t), f(x(t))$$

$$f := y \circ \tau$$

$$\gamma_f : x \mapsto (x, f(x))$$

$$\operatorname{Spur} \gamma = \operatorname{Spur} \gamma_f = \operatorname{Graph} f$$

$$f'(x_0) = \dot{y}t(t_0)\tau'(x_0) = \dot{y}(t_0)\frac{1}{\dot{x}(t_0)}$$
$$f'' = \left(\frac{\mathrm{d}}{\mathrm{d}x}\dot{y}\right)\frac{1}{\dot{x}} + \dot{y}\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{\dot{x}}\right) =$$
$$= (\ddot{y}\tau')\frac{1}{\dot{x}} + \dot{y}\left(-\frac{1}{\dot{x}^2}\ddot{x}\tau'\right) =$$
$$= \ddot{y}\frac{1}{\dot{x}}\frac{1}{\dot{x}} - \dot{y}\frac{1}{\dot{x}^2}\ddot{x}\frac{1}{\dot{x}} =$$
$$= \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\dot{x}^3}$$

Eigenschaften 5.

$$\begin{split} \dot{x} \neq 0 \leadsto y = f(x) \\ \dot{y} \neq 0 \leadsto x = g(y) \\ \gamma \text{regul\"{a}r} \implies \forall t \exists \text{Umgebung } I \text{ von } t \text{ s.d.} \\ \dot{x}(\tau) \neq 0 \ \forall \tau \in I \\ \dot{y}(\tau) \neq 0 \ \forall \tau \in I \end{split}$$

2.1 Die Bogenlänge

Definition 23. Sei $\gamma: I \to \mathbb{R}^n$. Sei $Z = (t_0, t_1, \dots, t_n)$ $t_i \in I$ $t_0 < t_1 < \dots < t_n$ Länge des Sehnenpolygons.

$$S(Z) := \sum_{i=1}^{m} \|\gamma(t_i) - \gamma(t_{i-1})\|$$

Gilt $Z^* \supset Z$, dann $S(Z^*) \geq S(Z)$

$$Z_1 \subset Z^*, Z_2 \subset Z^* \implies S(Z^*) \ge \max(S(Z_1), S(Z_2))$$

Idee: $s(\gamma) := \sup_{Z} S(2)$

Definition 24. rektifizierbare Kurve Eine Kurve γ heisst rektifizierbar, wenn die Menge der Längen aller einbeschriebenen Sehnenpolygone beschränkt ist.

Satz 22. Sei $\gamma:[a;b] \to \mathbb{R}^n$ fast überall stetig differenzierbar, (d.h. jede Komponente ist fast überall stetig differenzierbar). Dann ist γ rektifizierbar (1) und

$$s(\gamma) = \int_{a}^{b} \|\dot{\gamma}(t)\| \,\mathrm{d}\, t \ge 0 \tag{2}$$

Bemerkung 15. Ist γ_f der pramametrisierte Graph von f

$$\gamma_f(t) = (t, f(t))$$

so ist

$$\dot{\gamma}_f(t) = (1, f'(t))$$
$$\|\dot{\gamma}_f\| = \sqrt{1 + f'^2}$$
$$s(\gamma_f) = \int_a^b \sqrt{1 + f'(t)} \, \mathrm{d} t$$

Notation 5. Sei $f = (f_1, \dots, f_n)$ ein n-Tupel Funktionen

$$\int f(x) dx := \left(\int f_1 dx, \int f_2 dx, \cdots, \int f_n dx \right)$$

Lemma 3.

$$\left\| \int_a^b f(x) \, \mathrm{d} \, x \right\| \le \int_a^b \|f(x)\| \, \mathrm{d} \, x$$

Beweis

- 1. Lemma gilt für Treppenfunktionen
- 2. Approximationssazu

Beweis 23. Sei $Z = (t_0, \dots, t_m)$ eine Zerlegung von [a; b]

$$\begin{split} S(Z) &= \sum_{i=1}^m \|\gamma(t_i) - \gamma(t_{i-1}\|) \\ &= \sum_i \left\| \int_{t_{i-1}}^{t_i} \dot{\gamma}(t) \, \mathrm{d} \, t \right\| \\ &\leq \sum_{i=1}^m \int_{t_{i-1}}^{t_i} \|\dot{\gamma}\| \, \mathrm{d} \, t \\ &= \int_{-1}^b \|\dot{\gamma}\| \, \mathrm{d} \, t \end{split}$$

 $(\|\dot{\gamma}\| \in \mathcal{R} \ Diese \ Abschätzung \ gilt \ für \ alle \ Zerlegungen. \implies \gamma \ rektifizierbar.$

$$s(\gamma) \le \int_a^b \|\dot{\gamma}\| \,\mathrm{d}\,t$$

$$= f\ddot{u}r(2)$$

$$\forall \varepsilon > 0 \ \exists Z : S(Z) \ge f(\|\dot{\gamma}\| - \varepsilon$$

Treppen funktion en + Approximations satz

Beispiel 21. Länge des Kreisbogens

$$\gamma : [0, \phi] \to \mathbb{R}^2$$

 $t \mapsto (r \cos t, r \sin t) = \gamma(t)$

$$\dot{\gamma}(t) = (-r\sin t, r\cos t)$$
$$\|\dot{\gamma}(t)\|^2 = r^2\sin^2 t + r^2\cos^2 t = r^2$$
$$s(\gamma) = \int_0^\phi r \, \mathrm{d} t = rt|_0^\phi = r\phi$$
$$y = \sqrt{r^2 - x^2}$$

$$\gamma:[a;r] \to \mathbb{R}^2$$

$$x \mapsto \left(x, \sqrt{r^2 - x^2}\right)$$

$$a := r \cos \phi$$

$$\begin{split} s(\gamma) &= \int_a^r \sqrt{1 + f'^2} \, \mathrm{d}\, x \\ \sqrt{1 + f'^2} &= \sqrt{1 + \frac{x^2}{r^2 - x^2}} = \sqrt{\frac{r^2 - x^2 + x^2}{r^2 - x^2}} = = \frac{1}{\sqrt{r^2 - x^2}} = r \int_a^r \frac{\mathrm{d}\, x}{\sqrt{r^2 - x^2}} \\ \xi &= \frac{x}{r} = r \int_{\frac{a}{r}}^1 \frac{r \, \mathrm{d}\, \xi}{\sqrt{r^2 - r^2 \xi^2}} = r \int_{\frac{a}{r}}^1 \frac{\mathrm{d}\, \xi}{\sqrt{1 - \xi^2}} \\ &= -r \arccos \xi |_{\frac{1}{r}}^1 = -r (\arccos 1 - \arccos \cos \phi) = r \phi \end{split}$$

2.2 Parameterwechsel

Definition 25. C^k -Parametertransformation Sei $k = 0, 1, 2, \dots, \infty$. Eine Abbildung $\sigma: I \to J$ heisst C^k -Parametertransformation, wenn

- 1. $\sigma \in C^k(I;J)$
- 2. σ ist umkehrbar
- 3. $\sigma^{-1} \in C^k(J;I)$

Sei

$$\gamma: I \to \mathbb{R}^n$$

$$\underbrace{\beta}_{\gamma \circ \sigma^{-1}}: J \to \mathbb{R}^n$$

Beispiel 22. Gegenbeispiel

$$\sigma: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^3$$

 σ umkehrbar, $\sigma \in C^1$. $\sigma \notin C^1$ σ ist eine C^0 -Parameter transformation, aber keine C^0 -Parameter transformation.

Definition 26. Umparametrisierung Sei

$$\gamma: I \to \mathbb{R}^n$$

$$\underbrace{\beta}_{\gamma \circ \sigma^{-1}}: J \to \mathbb{R}^n$$

Ist γ C^k -Kurve, σ C^k Parameter transformation, dann β C^k -Kurve. β heisst due Umparametrisie rung von γ mittels σ .

Notation 6.

$$\gamma: \underbrace{I}_{t\in} to \underbrace{\Sigma}_{\sigma\in}$$

Beispiel 23.

$$\gamma : [0; \phi] \to \mathbb{R}^2$$

 $t \mapsto (r \cos t, r \sin t)$

$$\sigma: [0; \phi] \to [a; 1]$$
$$t \mapsto r \cos t =: x$$

$$\beta(x) = \left(x; \sqrt{r^2 - x^2}\right)$$

orientierungsumkehrend

Definition 27. orientierungstreu/-umkehrend Eine Parametertransformation $\sigma: I \to J$ heisst orientierungstreu ($\dot{\sigma} > 0$), wenn sie streng monoton wächst oder orientierungsumkehrend,($\dot{\sigma} < 0$) wenn sie streng monoton fällt.

Bemerkung 16. Ist γ reklifizierbar, so ist $\beta = \gamma \circ \sigma^{-1}$ und $S(\gamma) = S(\beta)$

Beweis 24. $S(0) = \sup S(2)$ das hängt von der Parametrisierung nicht ab.

Beweis 25.

$$S(\gamma) \int_{a}^{b} \|\dot{\gamma}\| \, \mathrm{d}t$$

$$\dot{\beta} = \frac{\dot{\gamma}}{\dot{\sigma}}$$

$$\sigma : [a; b] \to [c; d]$$

$$\int_{a}^{b} \|\dot{\gamma}\| \, \mathrm{d}t = \int_{c}^{d} \|\dot{\Gamma}\| \, \frac{\mathrm{d}\sigma}{\dot{\sigma}} =$$

$$\begin{cases} \int_{c}^{d} \|\dot{\beta}\| \, \mathrm{d}\sigma & \dot{\sigma} > 0(c > d) \\ -\int_{c}^{d} \|\dot{\beta}\| \, \mathrm{d}\sigma & \dot{\sigma} < 0(|\dot{\sigma}| = -\dot{\sigma})(d > c) \end{cases}$$

$$\begin{cases} \int_{c}^{d} \|\dot{\beta}\| \, \mathrm{d}\sigma & \dot{\sigma} < 0(|\dot{\sigma}| = -\dot{\sigma})(d > c) \\ \int_{d}^{c} \|\dot{\beta}\| \, \mathrm{d}\sigma & \dot{\sigma} < 0(|\dot{\sigma}| = -\dot{\sigma})(d > c) \end{cases}$$

$$= S(\beta)$$

Definition 28. Umorientierung

$$\sigma: [a;b] \mapsto [-a;-b]$$

$$t \mapsto -t$$

Notation 7.

$$\gamma : [a; b] \to \mathbb{R}^n$$

$$\gamma^- : [-a; -b] \to \mathbb{R}^n$$

$$\gamma^-(t) := \gamma(-t)$$

Definition 29. Umparametrisierung auf Bogenlänge Sei $\gamma:I\to\mathbb{R}^n$ regulär und fast überall stetig differenzierbar. Sei $t_0\in I$

$$S(t) = \int_{t_0}^t \|\dot{\gamma}(\tau)\| \,\mathrm{d}\,\tau, t \in I$$

$$S: I \to J = S(I)$$

$$\dot{S}(T) = \|\dot{\varphi}(t)\| > 0$$

 $\implies s$ orientierungstreu.

$$\beta := \gamma \circ s^{-1}$$
$$\beta'(s) = \dot{\gamma}(t(s)) \frac{1}{\dots (t(s))} = \frac{\dot{\gamma}}{\|\dot{\gamma}\|} (t(s))$$
$$\|\beta'(s)\| = 1 \ \forall s \in J$$

2.3 Sektorfläche einer ebenen Kurve

Definition 30. Sektorfläche $\gamma:I\to\mathbb{R}^2.$ $F_i=$ orientierte Fläche des *i*-ten Dreiecks.

$$F(Z) := \sum_{i} F_{i}$$

Lemma 4. Seien $(0,0),(x,y),(\tilde{x},\tilde{y})$ die Ecken eines Dreiecks in \mathbb{R}^2 . Die orientierte Fläche des Dreiecks ist

$$F = \frac{1}{2} (x\tilde{y} - \tilde{x}y)$$
$$= (x, y) \times (\tilde{x}, \tilde{y})$$
$$= \det \begin{pmatrix} x & \tilde{x} \\ y & \tilde{y} \end{pmatrix} = \det \begin{pmatrix} x & y \\ \tilde{x} & y \end{pmatrix}$$

Beweis 26.

$$\begin{split} \tilde{\rho} &:= \|(\tilde{x},\tilde{y})\| \\ F &= \frac{1}{2}\rho h \\ h &= \tilde{\rho}\sin\psi \\ F &= \frac{1}{\rho}\tilde{\rho}\sin\psi \\ \\ z &= x + iy = \rho e^{i\phi} \\ w &= \tilde{x} + i\tilde{y} = \tilde{\rho}e^{i\tilde{\phi}} \\ \psi &= \tilde{\phi} - \phi \\ \bar{z}w &= \rho\tilde{\rho}e^{i(\tilde{\phi} - \psi)} \\ \mathrm{Im}(\bar{z}w) &= \rho\tilde{\rho}\sin\psi = 2F \\ \bar{z}w &= (x - iy)(\tilde{x} + i\tilde{y}) = \\ &= (x\tilde{x} + < \tilde{y} + i(x\tilde{y} - \tilde{x}y) \\ \mathrm{Im}\,\bar{z}w &= x\tilde{y} - \tilde{x}y \end{split}$$

 $\rho := \|(x, y)\|$

Notation 8.

$$\Delta x := \tilde{x} - x$$
$$\Delta y := \tilde{y} - y$$

$$F = \frac{1}{2} [x(y + \Delta y) - (x + \Delta x)y]$$
$$F = \frac{1}{2} (x\Delta y - y\Delta x)$$

Beweis 27. Sei $\gamma:[a;b] \to \mathbb{R}^2$ Kurve, $Z:=\underbrace{t_0}_{=a} < t_1 < \cdots < \underbrace{t_n}_{=b}$ Zerlegung. $(x;y_i):=\gamma(t_i)$

$$\Delta x_i := x_i - x_{i-1}$$
$$\Delta y_i := y_i - y_{i-1}$$

 \Longrightarrow

$$F_i = \frac{x_{i-1}\Delta y_i - y_{i-1}\Delta x_i}{2}$$

$$F(Z) := \sum_{i=1}^n F_i$$

Definition 31. Der Fahrstrahl an die Kurve γ überstreicht den orientierten Flächeninhalt $F(\gamma)$, wenn

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.d.} \ \forall \text{Zerlegung} Z \text{des Fahrstrahls} \leq \delta$

gilt

$$|F(Z) - F(\delta)| \le \varepsilon$$

Satz 23. Sektorformel von Leibniz Sei $\gamma:[a;b]\to\mathbb{R}^2$ fast überall stetig differenzierbar. Dann

$$F(\gamma) = \frac{1}{2} \int_{a}^{b} (x\dot{y} - \dot{x}y) \,\mathrm{d}\,t$$

Beweis 28.

$$\Delta x_{i} = x(t_{i}) - x(t_{i-1}) = \int_{t_{i-1}}^{t_{i}} \dot{x}(t) \, \mathrm{d} \, t$$

$$\Delta y_{i} = \int_{t_{i-1}}^{t_{i}} \dot{y}(t) \, \mathrm{d} \, t$$

$$2F_{i} = \int_{t_{i-1}}^{t_{i}} (x_{i-1}\dot{y} - y_{i-1}\dot{x}) \, \mathrm{d} \, t$$

$$\left| 2F_{i} - \int_{t_{i-1}}^{t_{i}} (x\dot{y} - \dot{x}y) \, \mathrm{d} \, t \right| =$$

$$= \left| \int_{t_{i-1}}^{t_{i}} [(x_{i-1} - x)\dot{y} - (y_{i-1} - y)\dot{x}] \, \mathrm{d} \, t \right| \le$$

$$\le \left| \int_{t_{i-1}}^{t_{i}} (x_{i-1} - x)\dot{y} \, \mathrm{d} \, t \right| + \left| \int_{t_{i-1}}^{t_{i}} (y_{i} - y)\dot{x} \, \mathrm{d} \, t \right|$$

 $\gamma \ \textit{fast ""uberall stetig differenzierbar"} \implies \gamma \ \textit{stetig und fast ""uberall differenzierbar"} \\ \xrightarrow{verallgemeinerter \ Schrankensatz} \exists L: |\dot{x}| < L, |\dot{y}| < L \ \textit{fast ""uberall und}$

$$|x(t) - x_{i-1}| = |x(t) - x(t_{i-1})| \le L(t - t_{i-1})$$

$$|y(t) - y_{i-1}|| \le L(t - t_{i-1})$$

$$J_i \le 2L^2 \int_{t_{i-1}}^{t_i} (t - t_{i-1}) dt =$$

$$= 2L^2 \frac{1}{2} (t - t_{i-1})^2 |_{t_{i-1}}^{t_i} =$$

$$= L^2 (t_i - t_{i-1})^2$$

Ist die Feinheit $\leq \delta$, so ist $t_i - t_{i-1} \leq \delta$

$$J_i < L^2 \delta(t_i - t_{i-1})$$

$$\left| F(Z) - \frac{1}{2} \int_{a}^{b} (x\dot{y} - \dot{x}y) \, \mathrm{d} \, t \right| =$$

$$= \left| \sum_{i=1}^{n} F_{i}(Z) - \sum_{i=1}^{n} \frac{1}{2} \int_{t_{i-1}}^{t_{i}} (x\dot{y} - \dot{x}y) \, \mathrm{d} \, t \right|$$

$$\leq \frac{1}{2} \sum_{i=1}^{n} J_{i} \leq \frac{1}{2} \sum_{i=1}^{n} L^{2} \delta(t_{i} - t_{i-1}) =$$

$$= \frac{1}{2} L^{2} \delta(t_{1} - t_{0} + t_{2} - t_{1} + \cdots) =$$

$$= \frac{1}{2} L^{2} \delta(b - a) \leq \varepsilon$$

für

$$\delta = \frac{2\varepsilon}{L^2(b-a)}$$

Beispiel 24.

$$\gamma: [0, \phi] \to \mathbb{R}^2$$

$$t \mapsto (r \cos t, r \sin t)$$

$$\dot{\gamma} = (-r\sin t, r\cos t, r\cos t)$$

$$F = \frac{1}{2} \int_0^{\phi} (r^2 \cos^2 t + r^2 \sin^2 t) dt =$$

$$= \frac{r^2}{2} \int_0^{\phi} dt = \frac{r^2 \phi}{2}$$

$$\phi = 2\phi \implies \pi r^2$$

Eigenschaften 6. Sektorformel

1. Additivität: $c \in (a; b)$

$$F(\gamma) = F\left(\gamma_{|[a;c]}\right) + F\left(\gamma_{|[c;b]}\right)$$

2. Orientierungsumkehrung

$$F(\gamma^{-}) = -F(\gamma)$$
$$\gamma(t) := \gamma(-t)$$

3.

$$A: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ex + fy \\ gx + hy \end{pmatrix}$$

$$(A\gamma)(t) = A\gamma(t)$$

$$d(A\gamma) = A\dot{\gamma}$$

$$x\dot{y} - y\dot{x} = \det\left(\gamma \quad | \quad \dot{\gamma}\right) = \det\left(\frac{x}{y} \quad \dot{x}\right)$$

$$F(\gamma) = \frac{1}{2}\det\left(\gamma \quad | \quad \dot{\gamma}\right) dt$$

$$\det\left(A\gamma \quad | \quad A\dot{\gamma}\right) = \det\left(A(\gamma \quad | \quad \dot{\gamma})\right) = \det A \det\left(\gamma \quad | \quad \dot{\gamma}\right)$$

$$F(A\gamma) = \det A \cdot F(\gamma)$$
insbesondere
$$\det A = 1(d.h. \ A \in SL(2; \mathbb{R}))$$

$$F(A\gamma) = F(\gamma)$$

Definition 32. Geschlossene Kurve Eine Kurve $\gamma:[a;b]\to\mathbb{R}^n$ heisst geschlossen, wenn

$$\gamma(a) = \gamma(b)$$

gilt.

Definition 33. umschlossener orienterierter Flächeninhalt Sei $\gamma:[a;b]\to\mathbb{R}^n$ geschlossen und so dass $F(\gamma)$ existiert, so heisst $F(\gamma)$ der umschlossene orienterierte Flächeninhalt.

Bemerkung 17. $\gamma(a) = \gamma(b)$

$$\int_a^b d(xy) dt = (xy)|_a^b = 0$$
$$F(\gamma) = \int_a^b x\dot{y} dt = -\int_a^b \dot{x}y dt$$

(wenn γ geschlossen)

Bemerkung 18. Polarkoordinaten

$$(x,y) \in \mathbb{R}^2$$

$$\rho e^{i\phi} = x + iy =: z \in \mathbb{C}$$

$$\gamma : [a;b] \to \mathbb{R}^2$$

$$\dot{z} = \dot{\rho}e^{i\phi} + i\rho\dot{\phi}e^{i\phi}$$

$$t \mapsto (x(t), y(t))$$

$$t \mapsto z(t)$$

$$t \mapsto \rho(t)e^{i\phi(t)}$$

Man erlaubt $\rho(t) < 0$ Bemerkung 19. Länge

$$\begin{split} L &= \int_a^b \|\dot{\gamma}\| \,\mathrm{d}\,t = \int_a^b \sqrt{z} \dot{z} \,\mathrm{d}\,t \\ \bar{z} &= \rho e^{i-\phi}, \, \dot{\bar{z}} = \dot{\rho} e^{-i\phi} - i\rho \dot{\phi} e^{-i\phi} \\ z &= x + iy, \, \, \bar{z} = x - iy, \\ \dot{z} &= \dot{x} + iy, \, \, \dot{\bar{z}} = \dot{x} - i\dot{y} \\ \bar{z}\dot{z} &= (x\dot{x} + y\dot{y}) + i(x\dot{y} - \dot{x}y) \\ &= \frac{1}{2} \int \mathrm{Im}(\bar{z}\dot{z}) \,\mathrm{d}\,t \\ \bar{z}\dot{z} &= \rho e^{-i\phi} \left(\dot{\rho} e^{i\phi} + \rho \dot{\phi} e^{i\phi}\right) = \rho \dot{\phi} + i\rho^2 \dot{\phi} = \\ &= \frac{1}{2} \int_a^b \rho^2 \dot{\phi} \,\mathrm{d}\,t \end{split}$$

Beispiel 25.

$$y: [0; 2\pi] \mapsto \mathbb{R}^2$$

 $\phi \mapsto a\cos(3\phi)e^{i\phi}$

$$\rho(\phi) = a\cos(3\phi)$$

 ρ kann auch negativ sein

$$F(\gamma) = \frac{3}{2} \int_0^{\frac{\pi}{3}} a^2 \cos^2(3\phi) \, d\phi =$$

$$= \frac{\beta}{2} \int_0^{2\pi} a^2 \cos^2(\phi) \frac{d\phi}{\beta} =$$

$$\frac{a^2}{2} \int_0^{2\pi} \frac{(\cos^2\phi + \sin^2\phi)}{2} \, d\phi = \frac{a^2}{4} 2\pi = \frac{a^2\pi}{2}$$

$$\int_0^{2\pi} \cos^2 \phi = \int_0^{2\pi} \sin^2 \phi$$

3 Taylor [Kap 14]

Wir wollen eine Funktion durch Polynom approximieren.

Definition 34. Sei $f: I \to \mathbb{C}$ *n*-mal differenzierbar. Das *n*-te Taylorpolynom von f im Punkt $a \in I$ ist das Polynom T(x) des Grades $\leq n$ mit

$$T(a) = f(a)$$

$$T'(a) = f'(a)$$

$$T''(a) = f''(a)$$

$$\cdots T^{(n)}(a) = f^{(n)}(a)$$

Notation 9. $I_n f(x; a)$

Beispiel 26. n=1

$$T_1 f(x; a) = f(a) + f'(a)(x - a)$$

Bemerkung 20. Sei $I_n f(x; a)$ das n-te Taylorpolynom von f

$$T(x) = I_n f(x; a) = \sum_{k=0}^{n} a_k (x - a)^k$$

$$f(a)T'(x) = \sum_{k=1}^{n} k a_k (x - a)^{k-1}$$

$$f(a)T''(x) = \sum_{k=2}^{n} k (k - 1) a_k (x - a)^{k-2}$$

$$f(a)T'''(x) = \sum_{k=3}^{n} k (k - 1) (k - 2) a_k (x - a)^{k-3}$$

$$...$$

$$T(a) = a_0$$

$$T'(a) = a_1$$

$$T''(a) = 2a_2$$

Übung $l \le n$ (Induktion)

$$T_{(x)}^{(l)} = \sum_{k=l}^{n} k(k-1)(k-2)\cdots(k-l+1)a_k(x-a)^{k-l}$$
$$T^{(l)}(a) = l!a_l = f^{(l)}(a)$$
$$a_l = \frac{f^{(l)}(a)}{l!}$$

 $T'''(a) = 3 \cdot 2a_3$

Eigenschaften 7.

$$T_n f(x; a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$$

Definition 35. Fehler

$$R_{n+1}(x;a) := f(x) - T_n f(x;a)$$

Lemma 5.

$$\lim_{x \to 0} \frac{R_{n+1}(x;a)}{(x-a)^n} = 0$$

$$R_2 = f(x) - T_1 f(x,a)$$

$$T_1 f(x;a) = f(a) + f'(a)(x-a)$$

$$R_2 = \frac{f(x) - f(a) - f'(a)(x-a)}{x-a} \xrightarrow{f \text{ differenzier bar}} 0$$

Beweis 29. $T = T_n f$

$$\lim_{x \to a} \frac{f(x) - T(x)}{(x - a)^n} =$$

$$(L'Hopital) = \lim_{x \to a} \frac{f'(x) - T'(x)}{n(x - a)^{n - 1}} =$$

$$(L'Hopital) = \lim_{x \to a} \frac{f''(x) - T''(x)}{n(n - 1)(x - a)^{n - 2}} = \cdots$$

$$\cdots = \lim_{x \to a} \frac{f^{(n)}(x) - T^{(n)}(x)}{n!} = 0$$

 $denn \ f^{(n)}(a) = T^{(n)}(a)$

Korollar 8. Qualitative Taylorformel Sei $f: I \to \mathbb{C}$ stetig und n-mal differenzierbar. Dann

$$\exists r; I \to \mathbb{C}$$

stetig mit

$$r(a) = 0$$

s.d.

$$f(x) = I_n f(x; a) + (x - a)^n r(x)$$

Beweis 30.

$$r(x) := \frac{f(x) - I_n f(x; a)}{(x - a)^n}$$

 $x \neq a \text{ stetig auf } I \setminus \{a\}$

$$\lim_{x \to a} r(x)$$

Wir erweiter r auf I mit r(a) = 0

 $Notation\ 10.$ Landan-Symbol Seien f und g komplexe Funktionen in einer punktierten Umgebung von a. Man schreibt

$$f = \circ(g), x \to a$$

falls

$$\lim_{x \to a} \frac{f(a)}{f(x)} = 0$$

Gilt zusätzlich

$$\lim_{x \to a} g(x) = 0$$

so sagt man: f geht für $x \to a$ schneller gegen 0 als g. $f: I \to \mathbb{C}, \ a \in I$ n-mal differenzierbar:

$$f(x) = T_n f(x; a) + o((x - a)^n), x \to a$$

Beispiel 27. $T_4(x; 0)$

$$f(x) = \sin x0$$

$$f'(x) = \cos x1$$

$$f(x) = -\sin x0$$

$$f'(x) = -\cos x - 1$$

$$f(x) = \sin x0$$

$$T_4 f(x; 0) = x - \frac{1}{3!}x^3$$

$$\sin x = x - \frac{x^3}{6} + \circ(x^4)$$

Beispiel 28.

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\frac{-x^3}{6} + \circ(x^4)}{x^3} =$$

$$= -\frac{1}{6} \lim_{x \to 0} \frac{x^3}{x^3} + \lim_{x \to 0} \frac{x \circ (x^4)}{x^4} =$$

$$= -\frac{1}{6} + 0 \cdot 0 = -\frac{1}{6}$$

Satz 24. Integral form von R_{n+1} Sei $f \in \Phi^{n+1}(I, \mathbb{C})$ (Φ differnzierbare Funktion). Dann

$$R_{n+1}(x) = \frac{1}{n!} \int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt$$

Beweis 31. Durch Induktion

$$n = 0$$

$$R_1(x) = f(x) - T_0 f(x; a)$$

$$T_0 f(x; a) = f(a)$$

$$R_1(x) = f(x) - f(a)$$

$$\frac{1}{1!} \int_a^x f'(t) dt = f(x) - f(a)$$

$$n+1$$

$$f - T_{n-1}f = R_n = \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} f^{(n)}(t) dt$$

$$= \frac{1}{(n-1)!} \int \frac{d}{dt} \frac{(x-t)^n}{-n} f^{(n)}(t) dt$$

$$= -\frac{1}{n!} \left[(x-1)^n f^{(n)}(t) \right] \Big|_a^x + \frac{1}{n!} \int (x-t)^n f^{(n+1)}(t) dt$$

$$= \frac{1}{n!} (x-a)^n f^{(n)}(a) + \frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt$$

$$\implies f - T_n f = \frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt$$

Korollar 9. Lagrange-Form für R_{n+1} Sei $f \in \Phi^{n+1}(I; \mathbb{R})$ $a \in I$.

$$\forall x \in I \ \exists \xi \in I : R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

Beispiel 29.

$$f = \sin x$$

$$T_n f(x;0) = x - \frac{x^3}{6}$$

$$f^{(5)}(x) = \cos x$$

$$\exists \xi : \sin x = x - \frac{x^3}{6} + \frac{1}{5!} \cos \xi x^5$$

Beweis 32. $f \in \mathbb{R}^{n+1}(I : \mathbb{C})$

$$R_{n+1} = \frac{1}{n!} \int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt = \sigma \int_{a}^{x} p(t) f^{(n+1)}(t) dt = \cdots$$

$$(t) := \frac{|x-t|^{n}}{n!} \ge 0$$

$$\sigma = \begin{cases} 1 & a < x \\ (-1)^{n} & a > x \end{cases}$$

$$\cdots \stackrel{MWS}{=} \sigma f^{(n+1)}(\xi) \int_{a}^{x} p(t) dt$$

$$\int_{a}^{x} p(t) dt = \sigma \frac{1}{n!} \int_{a}^{x} (x-t)^{n} dt = \sigma \frac{1}{(n+1)!} (x-t)|_{a}^{x} = \sigma \frac{(x-a)^{n-1}}{(n+1)!}$$

$$R_{n+1} \underbrace{\sigma^{2}}_{-1} f^{(n+1)}(\xi) \frac{(x-a)^{n+1}}{(n+1)!}$$

3.1 Lokale Extrema

Satz 25. Sei $f \in \mathbb{R}^{n+1}(I, \mathbb{R})$. Sei $a \in I$ und es gelte

$$f'(a) = f''(a) = \dots = f^{(n)}(a) = 0$$

 $f^{(n+1)}(a) \neq 0$

Dann

- 1. $n \ gerade \implies f \ hat \ in \ a \ kein \ Extrema$
- 2. n ungerade, $f^{(n+1)}(a) > 0 \implies f$ hat in a ein strenges lokale Minimumm
- 3. n ungerade, $f^{(n+1)}(a) < 0 \implies f$ hat in a ein strenges lokale Maximum

 $Hint: Beweis \ anschauen > auswendig \ lernen$

Beweis 33. $T_n f(x; a) = f(a)$

$$f(x) = T_n f(x; a) + R_{n+1}(x)$$
$$= f(a) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

$$f^{(n+1)}stetig \implies \exists Umgebung \ von \ af^{(n+1)} \neq 0$$

 $f^{(n+1)}(a) \neq 0$

 $Man\ ersetze \neq durch < und >$.

 $n \ gerade \implies (n+1) \ ungerade.$ Das Vorzeichen $(x-a)^{n+1}$ verändert ishe $n \ ungerade \implies (n+1) \ gerade \ (x-a)^{n+1} \ positiv$

3.2 Taylorreihen

Definition 36. Taylorreihe Sei $f \in \mathcal{R}^{\infty}(I, \mathbb{C})$. Man definiert

$$Tf(x;a) := \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Taylorreihe von f im Punkt a

Bemerkung 21. 1. Es kann passieren, dass die Reihe nicht konvergiert

2. Es kann auch passieren, dass die Reihe in einer Umgebung von a konvegiert, aber nicht gegen f!

Beispiel 30.

$$f(x) = \begin{cases} 0 & x \le 0\\ e^{-\frac{1}{x}} & x > 0 \end{cases}$$

$$f^{(k)}(0) = 0 \ \forall k$$

$$\implies T f(x; 0) = 0 \neq f(x)$$

Definition 37. Konvergiert Tf gegen f in einer Umgebung U von a, so sagt man:

f besitzt in U eine Taylorentwicklung mit a als Entwicklungspunkt.

oder

$$\underline{f}$$
 ist reell analytisch in \underline{U}

Beweis 34. Ist $f = \sum_{k=0}^{\infty} a_k (x-a)^k$ mit |x-a| < R (Konvergenzradius)

$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{k} = \sum_{k} \frac{\mathrm{d}}{\mathrm{d}x}$$
$$f^{(k)}(a) = k! a_{k}$$
$$\implies Tf = \sum_{k} a_{k} (x - a)^{k}$$

Definition 38. Sei $f: U \to \mathbb{C}$ Sei $a \in U$. Man sagt, f ist analytisch in $a \in U$ wenn $\exists r > 0$ mit $K_r(a) \subset U$ und \exists Potenzreihe $\sum a_k z^k$ mit Konvergenradius > r s.d.

$$f(z) = \sum a_k (z - a)^k \ \forall z \in K_r(a)$$

Struktur	Definitionsbereich	Zielmenge					
stetige Funktionen	$U \subset \mathbb{R}, \mathbb{C}$	\mathbb{R},\mathbb{C}					
differenzierbare Funktionen	$I \in \mathbb{R}$	\mathbb{R},\mathbb{C}					
itengierbare Funktionen	$I \in \mathbb{R}$	\mathbb{R},\mathbb{C}					
Kurven	$I \in \mathbb{R}$	\mathbb{R}^n					
stetige Abbildungen	$U \in \mathbb{R}^m, \mathbb{C}^m$	$\mathbb{R}^n, \mathbb{C}^n$					
		Grenzwerte in \mathbb{R}^m					
differenzierbare Funktionen	$U \in \mathbb{R}^n$	\mathbb{R},\mathbb{C}					
		partielle Ableitung					
differenzierbare Abbildungen	$U \in \mathbb{R}^n$	$\mathbb{R}^n, \mathbb{C}^n$					
integrierbare Abbildungen	$U \in \mathbb{R}^n$	$\mathbb{R}^n, \mathbb{C}^n$					

Tabelle 1: Übersicht über Funktionen / Abbildungen

4 Elemente der Topologie [Band 2, Kap 1]

Konvergenz, Abgeschlossenheit, Stetigkeit, Häufungspunkte

Definition 39. euklidische Norm Die euklidische Norm auf \mathbb{R}^n ist

$$||x|| := \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Eigenschaften 8.

$$||x|| > 0 \ \forall x \neq 0, \ ||0|| = 0 \tag{1}$$

$$\|\lambda x\| = |\lambda| \|x\| \ \forall x \in \mathbb{R}^n, \ \lambda \in \mathbb{R}$$
 (2)

$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{R}^n$$
 (3)

Definition 40. euklidischer Abstand Der euklidische Abstand zweier Punkte $a,b\in\mathbb{R}^n$ ist

$$d(a,b) = ||b - a||$$

Definition 41. offene Kugel Die offene Kugel in \mathbb{R}^n mit Mittelpunkt a und Radius r > 0 ist die Menge

$$K_r(a) := \{ x \in \mathbb{R} : d(x, a) \le r \}$$

Definition 42. Konvergenz Eine Folge (x_k) in \mathbb{R}^n heisst konvergent, wenn $\exists a \in \mathbb{R}^n$

$$\lim_{k \to \infty} d(x_k, a) = 0$$

$$x_k \in \mathbb{R}^n \ \forall k$$

$$x_k = (x_{k1}, x_{k2}, \dots, x_{kn})$$

$$x_{ki} \in \mathbb{R}$$

Ist das der Fall, so schreibt man

$$\lim_{k \to \infty} x_k = a$$

Bemerkung 22. (geometrisch)

$$x_k \to a \iff \forall \varepsilon > 0$$

 $k_{\varepsilon}(a)$ fast alle Folgenglieder enthält

Lemma 6.

$$x_k \to a \in \mathbb{R}^n \iff x_{ki} \to a_i \ \forall i = (a_1, \cdots, a_n)$$

Konvergenz komponentenweise Konvergenz

Beweis 35. \Rightarrow

$$\forall i \ |x_{ki} - a_i| \le ||x_k - a|| \to 0$$
$$\implies x_{ki} \to a_i \ \forall i$$

 \Leftarrow

$$||x_k - a|| \le \sum_{i=1}^n |x_{ki} - a_i| \to 0$$
$$\implies ||x_k - a|| \to 0$$

Definition 43. Eine Folge $(x_k) \in \mathbb{R}^n$ heisst:

beschränkt wenn $\exists r > 0 \text{ mit } x_k \in K_r(0) \ \forall k$

Cauchyfolge wenn $\forall \varepsilon > 0 \ \exists N$

$$||x_k - x_l|| < \varepsilon \ \forall k, l > N$$

Satz 26. Bolzano-Weierstrass

- 1. Jede beschränkte Folge besitz eine konvergente Teilfolge
- 2. Jede Cauchyfolge konvergiert

Beweis 36. 1. durch Indunktion nach n

n=1 Beweis in \mathbb{R}

Annahme: Beweis gilt in \mathbb{R}^n (x_k) beschränkt in \mathbb{R}^{n+1}

$$\implies (x_{k1}, \cdots, x_{kn}) \text{ beschränkt in } \mathbb{R}$$

$$\implies \exists l_k : (x_{k_l1}, \cdots, x_{k_ln}) \text{ konvergiert}$$

$$x_{k_ln+1} \text{ beschränkt in } \mathbb{R}$$

$$\implies \exists l_m : x_{k_{l_m}n+1} \text{ konvergiert}$$

$$\implies (x_{k_{l_m}}) \text{ konvergiert}$$

2.

$$|x_{ki} - x_{li}| \le ||x_k - x_l|| \ \forall i$$

 (x_k) Cauchy $\Longrightarrow x_{ki}$ Cauchy $\forall i \Longrightarrow x_{ki}$ konvergiert $\Longrightarrow x_k$ konvergiert

Definition 44. Umgebungen

- Die offene Kugel $K_{\varepsilon}(a), \varepsilon > 0$ heisst ε -Umgebung von $a \in \mathbb{R}^n$
- Eine Menge $U \subset \mathbb{R}$ heisst Umgebung von $a \in \mathbb{R}^n$, wenn sie eine ε -Umgebung enthält.

Eigenschaften 9. Umgebungen

- 1. Seien U, V Umgebungen von $a \implies U \cap V$ und $U \cup V$ sind Umgebungen von a
- 2. U Umgebung von a; $V \subset U \implies V$ Umgebung von a
- 3. Hausdorffsche Trennungseigenschaft: $\forall a \neq b \ \exists U$ von a und $\exists V$ von b mit $U \cap V = \varnothing$

Beispiel 31. $U = K_{\varepsilon}(a), V = K_{\varepsilon}(b) \varepsilon = \frac{1}{3} ||b - a||$ Zu beweisen mit der Dreiecksungleichung

Definition 45. offene Menge Eine Menge $U \subset \mathbb{R}^n$ heisst hoffen, wenn sie eine Umgebung von $\forall x \in U$ ist. D.h.

$$\forall x < inU \ \exists \varepsilon > 0 : \ K_{\varepsilon}(x) \subset U$$

Beispiel 32. 1. \mathbb{R}^n ist offen

- 2. $\emptyset \in \mathbb{R}^n$ ist offen
- 3. $K_r(a)$ $(r > 0, a \in \mathbb{R}^n)$ ist offen

Bemerkung 23. Rechenregeln

- 1. Der Durchschnitt endlich vieler offener Menge ist offen.
- 2. Die Vereinigung beliebig vieler offener Menge ist offen.

Definition 46. abgeschlossene Menge Eine Menge $A \subset \mathbb{R}^n$ heisst abgeschlossen, wenn ihr Komplement offen ist.

Beispiel 33.

 \bullet \mathbb{R}^n

$$\overline{K_r(a)} := \{x \in \mathbb{R}^n : ||x - a|| \le r\}$$
$$K_r(a) := \{||x - a|| > r\} \text{ offen}$$

Eigenschaften 10. • Die Vereinigung endlich vieler abgeschlossener Mengen ist abgeschlossen.

• Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlos-

Beispiel 34. Gegenbeispiel (wichtig!) in $\mathbb{R}\left(-\frac{1}{n},\frac{1}{n}\right)$ offen

$$\cap_n \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$$
 abgeschlossen

Dabei erinnert man sich: \cap endlich offen = offen

Satz 27. $A \subset \mathbb{R}^n$

A abgeschlossen $\Leftrightarrow \forall$ konvergente Folge (a_k) mit $a_k \in A \ \forall k$ konvergiert gegen $a \in A$

Beweis 37. \Rightarrow *Widerspruchsbeweis*

Annahme: A abgeschlossen, (a_k) , $a_k \subset A \ \forall k, \ a_k \to a, \ a \notin A$

 $\begin{array}{ccc} A & abgeschlossen & \Longrightarrow & A^C = \mathbb{R}^b \setminus A & offen \\ a \not\in A & \Longrightarrow & a \in A^C \end{array}$

 $\stackrel{'}{\Longrightarrow} A^C$ ist eine Umgebung von $a \implies X^C$ enthält unendlich viele a_k Widerspruch, denn $a_k \notin A^{\hat{C}} \ \forall k$

 $\Leftarrow Kontrapositionsbeweis$

Sei A nicht abgeschlossen, dann ist A^C nicht offen.

$$\implies a \in A^C : \ \forall \varepsilon > 0$$
$$K_{\varepsilon}(a) \not\subset A^C$$

$$K_{\varepsilon}(a) \not\subset A^{\mathcal{C}}$$

insbesondere $\varepsilon = \frac{1}{k} \ k \in \mathbb{N}$ Sei

$$a_k \in K_{\frac{1}{k}}(a), \ a_k \not\in A^C$$

- 1. $a_k \in A \ \forall k$
- 2. $a_k \to a \ (da \ ||a_k a|| < \frac{1}{k})$
- 3. $a \notin A$

Definition 47. Randpunkt von M Sei $M \subset \mathbb{R}^n, x \in \mathbb{R}^n$ x heisst Randpunkt von M, wenn jede Umgebung von x Punkte aus M und aus M^C enthält.

Notation 11. Randpunkte von M

 ∂M : {Randpunkte von M}

Bemerkung 24.

$$\partial(M^C) = \partial M$$

Beispiel 35.

$$\partial K_r(a) = S_r(a) := \{ x \in \mathbb{R}^n : ||x - a|| = r \} = \partial \overline{K_r(a)}$$

Übung: zeigen Sie das. Tipp: $x \in S_r(a)$ $K_{\varepsilon}(x), \varepsilon < r$

Beispiel 36. $\mathbb{Q} \subset \mathbb{R}$

$$\partial \mathbb{O} = \mathbb{R}$$

Satz 28. $Sei M \in \mathbb{R}^n$

- 1. (a) $U \subset M$, U offen $\Longrightarrow U \subset M \setminus \partial M$
 - (b) $M \setminus \partial M$ ist offen
- 2. (a) $A \supset M$, A angeschlossen $\implies A \supset M \cup \partial M$
 - (b) $M \cup \partial M$ abgeschlossen
- 3. (a) ∂M abgeschlossen

Beweis 38. 1. (a) zu zeigen: $\partial M \cap U = \varnothing$. Widerspruchsbeweis: Sei $\partial M \cap U \neq \varnothing$ Sei $x \in \partial M \cap U \implies U$ Umgebung von x und $x \in \partial M \implies U$ enthält aus M^C Widerspruch, denn $U \subset M$

- (b) Sei $a \in M \setminus \partial M$. Dann gibt es eine Umgebung U von a mit $U \subset M$ sonst wäre $a \in \partial M$ $1a \implies U \subset M \setminus \partial M$
- 2. (a) Komplement
 - (b) Komplement
- 3. (a) Durchschnitt zweier abgeschlossener Mengen

$$\partial M = (M \cup \partial M) \cap (M^C \cup \partial M^C)$$

Korollar 10.

U abgeschlossen \Leftrightarrow U alle ihre Randpunkte enthält

Notation 12. offener Kern/Innere, abgeschlossene Hülle $M^0:=M\setminus \partial M$ der offene Kern von M oder das Innere von M. Die grösste offene Menge, die in M liegt.

 $\overline{M}:=M\cup\partial M$ die abgeschlossene Hülle von M. Die kleinste abgeschlossene Menge, die M umfasst.

Definition 48. Häufungspunkt Sei $M \subset \mathbb{R}^n$, $x \in \mathbb{R}^n$ x heisst Häufungspunkt von M wenn jede Umgebung von x ein $y \in M$ enthält mit $y \neq x$. äquivalent: Jede punktierte Umgebung von x enthält Punkte aus M

$$\mathcal{H}(M) := \{ \text{H\"{a}ufungspunkte} \}$$

$$\mathcal{H}(Kr(a)) = \mathcal{H}(\overline{Kr(a)}) = S_r(a) = \partial K_r(a)$$

im Allgemeinen: $\partial M \neq \mathcal{H}(M)$

Beispiel 37. $M = \mathbb{R} \in \mathbb{R}$

$$\mathcal{H}(\mathbb{R}) = \mathbb{R}$$
 $\partial \mathbb{R} = \emptyset$

Beispiel 38. $M = \{a\} \subset \mathbb{R}$

$$\mathcal{H}(\{a\}) = \varnothing \qquad \qquad \partial\{a\} = a$$

Lemma 7. Sei $M \subset \mathbb{R}^n$

$$M \cup \mathcal{H}(M) = M \cup \partial M = \overline{M}$$

Beweis 39. zu zeigen:

- 1. $\mathcal{H} \setminus M \subset \partial M$
- 2. $\partial M \setminus M \subset \mathcal{H}(M)$
- 1. Sei $x \in \mathcal{H} \setminus M \implies$ Jede Umgebung von x enthält ein y mit $y \in M$, $x \neq y$

$$U\ni x\in M^C$$

 \implies Jede Umgebung von xenthält Punkte in M und aus $M^C \implies x \in \partial M$

2. $x \in \partial M \setminus M$. Jede Umgebung von x enthält ein $y \in M$

$$x \in M^C \implies y \neq x \implies x \in \mathcal{H}(M)$$

Korollar 11. A abgeschlossen \Leftrightarrow A enthält alle ihre Häufungspunkte.

4.1 Verallgemeinerung: Normierte Räume

Definition 49. Norm Sei $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} als Körper. Sei V ein Vektorraum über \mathbb{K} Eine Norm auf V ist eine Abbildung

$$\|\ \|:V\to \mathbb{R}$$

s.d.

1.

$$||0|| = 0, ||x|| > 0, \forall x \in V \setminus \{0\}$$

2.

$$\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{K} \ \forall x \in V$$

3.

$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in V$$

Definition 50. normierter Raum Das Paar (V, || ||) heisst normierter Raum.

Beispiel 39. \mathbb{R}^n mit der euklidischen Norm

Beispiel 40. p-Norm \mathbb{K}^n mit der p-Norm $p \geq 1$

$$||x||_p := \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$

(p=2 euklidisch)

Beispiel 41. Maximumsnorm \mathbb{K}^n mit der Maximumnorm

$$||x||_{\infty} := \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Lemma:

$$\|x\|_{\infty} = \lim_{p \to \infty} \|x\|_p$$

Beispiel 42. L^p -Norm $C^0([a;b],\mathbb{K})$ mit der L^p – Norm, $p \geq 1$

$$||f||_p = \sqrt[p]{\int_a^b |f(x)|^p dx}$$

p=2 ist für die Quantenmechanik interessant

Beispiel 43. Supremumsnorm $\mathcal{C}([a;b],\mathbb{K})$ mit der Supremumsnorm

$$||f||_{\infty} := \sup \{|f(x)|, x \in [a; b]\}$$

Beispiel 44. Sei \langle , \rangle ein Skalarprodukt auf V. Dann ist

$$||x|| = \sqrt{\langle x, x \rangle}$$

eine Norm.

Bemerkung 25. Alles was wir bisher bewiesen haben, gilt auf beliebigen normierte Räumen.

4.2 Verallgemeinerung: Metrische Räume

Definition 51. Abstand, metrischer Raum Sei X eine Menge. Eine Metrik auf X ist eine Abbildung

$$d: X \times X \to \mathbb{R}$$

s.d.

- 1. $d(x, x) = 0, d(x, y) > 0 \ \forall x, y \in x \text{ mit } x \neq y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) < d(x,z) + d(z,y) \ \forall x,y,z \in x$
- Die Zahl d(x, y) heisst Abstand der Punkte x und y.
- Das Paar (X, d) heisst metrischer Raum.

Beispiel 45. (V, || ||) normierter Raum

$$d(x,y) := ||x - y||$$

Beispiel 46. M nicht leere Menge

$$d(x,y) := \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Beispiel 47. Sei $\gamma:I\to\mathbb{R}^n$ fast überall differenzierbar und regulär

$$M = I, \ d(x,y) := \left| \int_x^y \|\dot{\gamma}(t)\| \,\mathrm{d}\,t \right|$$

Länge zwischen $\gamma(x)$ und $\gamma(y)$.

Definition 52.

$$K_r(a) := \{ x \in M : d(x, a) < r \}$$

offene Kugel

- $K_{\varepsilon}(a)$ ε -Umgebungen von a
- Umgebungen
- ...

Bemerkung 26. Es gelten die gleichen Rechenregeln für offene Mengen

Definition 53. Durch d erzeugte Topologie $U \subset X$ heisst offen, wenn U eine Umgebung von jedem $x \in U$ ist.

$$\mathcal{O}(d) := \{ \text{offene Mengen von } X \text{ bez. } d \} \subset P(x)$$

die durch d erzeugte Topologie.

Definition 54. A ist abgeschlossen, wenn A^C offen ist.

Definition 55. Eine Folge (x_k) in (X,d) heisst konvergent, wenn $\exists x \in X$ mit

$$\lim_{k \to \infty} d(x_k, x) = 0$$

Lemma 8. Eine Folge besitzt höchstens einen Grenzwert.

Beweis 40. Seien $x, x' \in X$

$$\lim d(x, x_k) = 0$$

$$\lim d(x', x_k) = 0$$

$$0 \le d(x, x') \le d(x, x_k) + d(x_k, x')$$

$$\implies x = x'$$

Satz 29. $A \subset X, d$

A abgeschlossen $\Leftrightarrow \forall$ konvergente Folge (x_k) mit $x_k \in A \forall k$ gegen ein Element von A konvergiert

4.3 Teilraumtopologie

Definition 56. induzierte Metrix / Spurmetrik Sei (X,d) metrischer Raum. Sei $X_0 \subset X$. Man definiert

$$d_0 := X_0 \times X_0 \to \mathbb{R}$$
$$d_0 := d|_{X_0 \times X_0}$$

 $\forall x, y \in X_0$

$$d_0(x,y) = d(x,y)$$

Lemma 9. d_0 ist eine Metrik.

Definition 57. Spurtopologie $a \in X_0$

$$K_r^{d_0}(a) := \{ x \in X_0 : d_0(x, a) < r \}$$

 $K_r^{d_0}(a) := K_r(a) \cap X_0$

 \Longrightarrow

$$\mathcal{O}d_0 = \{U \cap X_0, U \in \mathcal{O}(d)\}$$

Notation 13. X_0 -offen bedeutet X_0 bezüglich der Spurtopologie Bemerkung 27. X_0 -offen \Longrightarrow offen in X

Beispiel 48. $X = \mathbb{R}$ (euklidisch) $X_0 = \mathbb{Q}$. $\mathbb{Q} \subset X_0$ ist X_0 -offen. \mathbb{Q} ist \mathbb{Q} -offen, aber nicht offen in \mathbb{R} .

Lemma 10. $U \subset X_0$ Ist X_0 offen in X, dann U ist X_0 -offen $\Leftrightarrow U$ offen in X

Beweis 41. $U X_0$ offen $\Longrightarrow \exists V \subset X$, offen s.d. $U = V \cap X_0 \Longrightarrow U$ offen

4.4 Produkttopologie

Definition 58. Produkttopologie (X, d_x) , (Y, d_y) metrische Räume. Man definiert d auf $X \times Y$

$$d: (X \times Y) \times (X \times Y)$$
$$d((x_1, y_1), (x_2, y_2)) := \max \{d_x(x_1, x_2), d_y(y_1, y_2)\}$$

 $x_1, x_2 \in X \ y_1, y_2 \in Y$

Lemma 11. d ist eine Metrik auf $X \times Y$

Bemerkung 28. offene Kugeln

$$\begin{split} K_r^d\left((x,y)\right) &:= \left\{ (\tilde{x},\tilde{y}) \in X \times Y : \max\left\{d_x(\tilde{x},x),d_y(\tilde{y},y)\right\} \right\} < r \\ &= \left\{ (\tilde{x},\tilde{y}) \in X \times Y : d_y(\tilde{y},y) < r \right\} \\ K_r^d\left((x,y)\right) &= K_r^{d_x}(x) \times K_r^{d_y} \end{split}$$

 \Longrightarrow

$$W \subset X \times Y$$
 offen $\Leftrightarrow \forall (x, y) \in W \exists$

Umgebung U von x in X und Umgebung V von y in Y s.d

$$W \subset U \times V$$

Beispiel 49. Sind $U \subset X$ und $V \subset Y$ offen, dann ist $U \times V$ offen in $X \times Y$

4.5 Äquivalenz Metriken und Normen

Definition 59. äquivalente Metriken Seien d und d^* Metriken auf X. Sie heissen äquivalent, wenn

$$\mathcal{O}(d) = \mathcal{O}(d^*)$$

Lemma 12. Zwei Metriken d und d* sind genau dann äquivalent, wenn jede d-Kugel eine d*-Kugel enthält mit demselben Mittelpunkt und umgekehrt.

Beweis 42. $\Rightarrow trivial$

 \Leftarrow Eine d-Umgebung U enthält eine d-Kugel, deshalb enthält sie eine d*-Kugel, deshalb ist sie eine d*-Umgebung

Definition 60. äquivalente Normen Zwei Normen $\| \|$ und $\| \|^*$ auf V heissen äquivalent, wenn sie äquivalente Metriken erzeugen.

Lemma 13. $\| \| und \| \|^*$ sind genau dann äquivalent, wenn

$$\exists c>0\ und\ C>0\ s.d.\ \forall x\in V$$

$$c \|x\| \le \|x\|^* \le C \|x\|$$

Notation 14. K offene Kugel bezüglich $\| \| K^*$ offene Kugel bezüglich $\| \|^*$

Beweis 43. $\Rightarrow \| \|$ und $\| \|^*$ äquivalent. Lemma 12 $\implies K_1(0)$ enthält eine Kugel $K_r^*(0), r > 0$

$$x = 0$$

$$x \neq 0, y := \frac{rx}{2 \|x\|^*}$$

$$\|y\|^* = \frac{r}{2} < r$$

$$\implies y \in K_r^*(0) \implies y \in K_1(0) \implies \|y\| < 1$$

$$\|y\| = \frac{r}{2} \frac{\|x\|}{\|x\|^*}$$

$$\|x\|^* > \frac{r}{2} \|x\|$$

$$c := \frac{r}{2}$$

 \Leftarrow

$$K_{cr}^*(a) \subset K_r(a) \subset K_{Cr}^*(a)$$

⇒ Metriken sind äquivalent.

Satz 30. Je zwei Normen auf einem endlichdimensionalen K-Vektorraum sind äquivalent.

Beweis 44. Sei $V = \mathbb{R}^n$ mit Norm $\| \|$. wir zeigen, $\| \| \|$ äquivalent zu $\| \| \|_2$ euklidisch.

1.

$$\exists C > 0 : ||x|| \le C ||x||_2$$

Sei $\{e_y\}_{\nu=1,\dots,n}$ Standardbasis von \mathbb{R}^n

$$x \in V : x = \sum_{\nu=1}^{n} x_{\nu} e_{\nu}, \ x_{\nu} \in \mathbb{R}$$

$$||x|| \le \sum_{\nu=1}^{n} |x_{\nu}| ||e_{\nu}||$$

$$|x_{\nu}| \le ||x||_2$$

 \longrightarrow

$$||x|| \le ||x_2|| \sum_{\nu=1}^n ||e_{\nu}||$$

2.

$$\exists c > 0 : -c \|x\|_2 \le \|x\|$$

Sei $S := \{x \in \mathbb{R}^n : ||x||_2 = 1\}$ (euklidische Einheitssphäre)

$$c := \inf \left\{ \|x\| : x \in S \right\}$$

$$x \neq 0, \ y := \frac{x}{\|x\|_2} \implies y \in S$$

$$\implies c \leq \|y\| = \frac{\|x\|}{\|x\|_2}$$

$$\implies c \|x\|_2 \le \|x\|$$

 $zu \ zeigen: c > 0$

Lemma 14. c > 0

Beweis 45. Widerspruchsbeweis Annahme c = 0

$$\implies \exists (x_k), \ x_k \in S < ||x_k|| \xrightarrow{k \to \infty} 0$$

 (x_k) beschränkt bezüglich $\| \|_2$ BW $\Longrightarrow \exists$ bez. $\| \|_2$ konvergente Teilfolge x_{k_l} d.h. $\exists a \in \mathbb{R}^n$

$$\lim_{l \to \infty} \|x_{k_l} - a\|_2 = 0$$

$$\implies a_{\nu} = \lim_{l \to \infty} x_{k_l, \nu}$$

 $Konvergenz\ bez.\ \|\ \|_2 \Leftrightarrow komponentenweise\ Konvergenz$

$$||a||_2^2 \sum_{\nu} a_{\nu}^2 = \lim_{l \to \infty} \sum_{\nu} (x_{k_l,\nu})^2 = 1$$

$$\implies a \in S$$

$$||a|| \le ||a - x_{k_l}|| + ||x_{k_l}||$$

$$\stackrel{a}{\leq} \underbrace{C \|a - x_{k_l}\|_2}_{\rightarrow 0} + \underbrace{\|x_{k_l}\|}_{\rightarrow 0}$$

$$\implies ||a|| = 0 \implies a = 0$$

Widerspruch, denn $0 \notin S$

Beweis 46. Sei $(V, \| \ \|)$ normierter endlichdimensionaler Vektorraum dim V=n

$$\exists \phi : \mathbb{R}^n \to V \ Isomorpisnus$$

$$||x||_{\phi} := ||\phi(x)||$$

 $\| \|^*$ eine zweite Norm auf V

$$||x||_{\phi}^* := ||\phi(x)||^*$$

Korollar 12. Für jede $\| \|$ auf \mathbb{R}^n

$$||x_k - a|| \to 0 \iff x_{k,\nu} \to a_{\nu} \forall \nu$$

5 Stetigkeit

Definition 61. setig Seien (X, d_x) und (Y, d_y) metrische Räume. Eine Abbildung $f: X \to Y$ heisst stetig im Punkt $a \in X$, wenn

$$\forall \varepsilon > 0 \exists \delta > 0 : d_y(f(x), f(a)) < \varepsilon \ \forall x \in X \ \text{mit} \ d_x(x, a) < \delta$$

Notation 15. Sind $X\subset\mathbb{R}$ und $Y\subset\mathbb{R}$ dann sind die durch irgend eine Norm erzeugten Symmetriken zu nehmen.

Definition 62. Lipschitz-Stetigkeit $f: X \to Y$ heisst Lipschitz-stetig, wenn

$$\exists L \ge 0 : \forall x, x' \in X : d_u(f(x), f(x)) \le L d_x(x, x')$$

Lemma 15. Lipschitz-stetig \implies stetig.

Beispiel 50. Folgende Abbildungen sind Lipschitz-stetig und deshalb stetig.

- 1. $f: V \to W$ V, W normierte Vektorräume, f linear und V endlich dimensional
- $2. \parallel \parallel : V \to \mathbb{R}$
- 3. Abstandfunktion: Sei (x, d) metrischer Raum $\emptyset \neq A \subset A, x \in X$ Abstand zwischen x und A:

$$d_A(x) := \inf \{ d(x, a) : a \in A \}$$

 $d_A: x \to \mathbb{R}$ ist Lipschitz-stetig.

1. Sei $\{e_1, \dots, e_n\}$ eine Basis von V, seien $x, y \in V$

$$x = \sum_{i=0}^{n} x_i e_i, \ y = \sum_{i=0}^{n} y_i e_i,$$

$$f(x) - f(y) \stackrel{\text{linear}}{=} f(x - y) = \sum_{i=1}^{n} (x_i - y_i) f(e_i)$$

$$\|f(x) - f(y)\|_W \le \sum_{i=0}^{n} |x_i - y_i| \|f(e_i)\|_W$$

$$M := \max \{ \|f(e_i)\|_W, \cdots, \|f(e_n)\| \}$$

$$\|f(x) - f(y)\|_W \le M \sum_{i=1}^{n} |x_i - y_i|$$

$$\|y\|_V^* := \sum_{i=1}^{n} |y_i| \text{ eine Norm auf } V$$

$$\|f(x) - f(y)\|_W \le M \|x - y\|_V^*$$

Je zwei Normen auf einem endlich dimensionalen Vektorraum sind äquivalent.

$$\implies \exists C > 0: \|y\|_v^* \le C \|y\|_V$$

$$\implies \|f(x) - f(y)\|_W \le L \|x - y\|_V$$

$$L = MC$$

Definition 63. Folgenstetigkeit $f:X\to Y$ metrischer Räume heisst folgenstetig in $x\in X,$ wenn

$$x_k \to x \implies f(x_k) \to f(x)$$

Lemma 16. f stetig \Leftrightarrow f folgenstetig.

Beispiel 51. Gegenbeispiel Sei $V = \mathcal{C}^1([a;b],\mathbb{R}), W = \mathbb{R}, a < 0 < b$

$$D: V \to W$$
$$f \mapsto f'(0)$$

D ist linear, aber nicht stetig. eigentlich D nicht folgenstetig. Sei

$$f_n = \frac{1}{n}\sin(nx) \in V \ \forall n$$
$$||f_n|| = \sup|f_n| \le \frac{1}{n} \to 0$$
$$\implies f_n \to 0$$
$$Df_n = \cos(nx)|_{x=0} = 1$$
$$Df_n \neq D0 = 0$$

Satz 31. (Königsberger, 1.3.V) Seien V,W normierte Vektorräume, $f:V \to W$ linear

$$f \ stetig \Leftrightarrow \exists C : ||f(x)||_W \le C ||x||_V \ \forall x \in V$$

f heisst beschränkt.

Bemerkung 29. Ist V endlichdimensional, dann ist f automatisch beschränkt.

$$||f(x)||_W = ||f(\sum x_i e_i)|| \le \sum |x_i| ||f(e_i)||_W \le M \sum |x_i| = M ||x_i||_V^* \le MC ||x||_V$$

Beweis 47. $\Rightarrow f \ stetig \implies f \ stetig \ in \ 0$

$$\forall \varepsilon > 0 \exists \delta > 0 : ||f(\xi) - f(0)|| \le \varepsilon$$
$$||\xi - 0||_W < 1$$

insbesondere

$$\varepsilon = 1 \,\, \exists \delta : \|f(\xi)\|_W < 1 \,\, \forall \xi \, \|\xi\| \le \delta$$

Sei $x \in V \setminus \{0\}, \ y := \delta \frac{x}{\|x\|_V}$

$$\begin{split} \|y\|_V &= \delta \implies \|f(y)\|_W \le 1 \\ \|f(y)\|_W &= \left\|\frac{\delta}{x}f(x)\right\|_W = \frac{\delta}{\|x\|_V} \left\|f(x)\right\|_W \\ &\implies \|f(x)\|_W \le \frac{1}{\delta} \left\|x\right\|_V, \ C = \frac{1}{\delta} \end{split}$$

 \Leftarrow

$$\|f(x)-f(y)\|_{W} = \|f(x-y)\|_{W} \leq C \, \|x-y\|_{V} \implies f \, \operatorname{Lipschitzstetig} \implies f \, \operatorname{stetig}$$

Bemerkung 30. Rechenregel I Seien $f_1, f_2 : a \in X \to W$ X metrischer Raum und W normierter Vektorraum. Sind f_1 und f_2 stetig in a, so ist $f_1 + f_2$ stetig in a.

- 1. Ist zusätzlich $W = \mathbb{R}$, f_1, f_2 stetig in $a \implies f_1 \cdot f_2$ stetig in a.
- 2. Ist zusätzlich $f_2(a) \neq 0$, dann $\frac{f_1}{f_2}$ stetig in a

Definition 64. Polynomfunktion Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ heisst Polynomfunktion, wenn sie durch endliche Addition und Multiplikation der Koordinaten erzeugt wird. Eine Polynomfunktion ist immer stetig.

Definition 65. rationale Funktion $f: \mathbb{K}_{\mathbb{C}\mathbb{R}^n} \to \mathbb{R}$ heisst rational, wenn sie als Quotient von Polynomfunktionen geschrieben werden kann.

Korollar 13. Jede rationale Funktion ist ihrem Definitionsbereich stetig.

Bemerkung 31. Rechenregel II Seien $f: X \to Y$ und $g: Y \to Z$ Sei f stetig in $a \in X$ und g stetig in $f(a) \in Y$, dann ist $g \circ f$ stetig in g

Bemerkung 32. Rechenregel III Seien $f_1:X\to Y_1$ und $f_2:X\to Y_2$ und X,Y_1,Y_2 metrische Räume. Man definiert

$$f := f_1 \times f_2 : X \to Y_1 \times Y_2$$
$$x \mapsto (f_1(x), f_2(x))$$

f stetig in $a \in X \Leftrightarrow f_1$ und f_2 stetig in $a \in X$

Korollar 14. $f: X \to \mathbb{R}^n$ stetig in $a \Leftrightarrow Alle$ Komponentenfunktionen f_1, \dots, f_n stetig in a

Beispiel 52. Kurven $I \to \mathbb{R}^n$

Bemerkung 33. (wichtig!) Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ Die Stetigkeit aller Einschränkung von f auf den Koordinatenachsen impliziert die Stetigkeit von f nicht

Beispiel 53. $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = 0 \end{cases}$$

f ist nicht stetig in 0

$$f(t,t) = \frac{2t^2}{t^2 + t^2} = 1$$

 $t \neq 0, x = y = t$

$$||f(t,t) - f(0,0)|| = 1 \ \forall t \neq 0$$

Sei

$$\left(\frac{1}{k},\frac{1}{k}\right) \to 0 \ \neq \ f\left(\frac{1}{k},\frac{1}{k}\right) \to 1$$

 $\implies f$ nicht stetig.

 $f(x,0) = 0 \forall x, f(y,0) = 0 \forall y \text{ sind stetig } c \in \mathbb{R}$

$$f_c(x) := f(x, c)$$

$$\tilde{f}_c(y) := f(c, y)$$

 $\forall c \ f_c, \tilde{f}_c : \mathbb{R} \to \mathbb{R} \text{ stetig } \forall c$

Beispiel 54.

$$x = r \cos \phi, \ y = r \sin \phi$$

$$f(x, y) = \frac{2r^2 \sin \phi \cos \phi}{r^2}$$

$$f(x, y) = \sin 2\phi, \ (x, y) \neq 0$$

In jeder Umgebung von 0 nimmt die Funktion all seine Werte an.

Satz 32. Seien X, Y metriche Räume $f: X \to Y$, f stetig in $a \Leftrightarrow \forall$ Umgebung V von $f(a) \exists$ Umgebung U von a mit $f(U) \subset V$

Korollar 15. $f: X \to Y$ metrische Räume. Dann sind folgende Aussagen äquivalent:

- 1. f ist stetig auf X
- 2. das Urbild jeder offenen Menge aus Y ist offen in X
- 3. das Urbild jeder abgeschlossenen Menge aus Y ist abgeschlossen in X

Korollar 16. $f: x \to \mathbb{R}$ stetig, sei $c \in \mathbb{R}$

$$U := \{x \in y : f(x) < c\}$$
 ist offen

$$A := \{x \in y : f(x) \le c\}$$
 ist abgeschlossen

Bemerkung 34. Das Bild einer offenen Menge kann nicht offen sein.

Beispiel 55.
$$\sin(0; 2\pi) \to \mathbb{R} \sin(0; 2\pi) = [-1; 1]$$

Bemerkung 35. Die Umkehrung einer stetigen Funktion ist im Allgemeinen nicht stetig.

Beispiel 56.

$$f:[0;2\pi)\to S^1$$

$$x\mapsto e^{ix}$$

bijektiv und stetig.

$$g: S^1 \to [0; 2\pi)$$

ist nicht stetig.

$$g(e^{ix}) = x e^{ix} \neq 1 \ g(1) = 0$$
$$x_k = e^{\left(2\pi - \frac{1}{k}\right)i}$$
$$x_k \to 1 \in S^1$$
$$g(x_k) = 2\pi - \frac{1}{k}$$
$$g(x_k) \neq 0 = g(1)$$

Definition 66. Homöomorphismus $f: X \to Y$ heisst

- 1. f stetig
- 2. f ist umkehrbar
- 3. $f^{-1}Y \to X$ stetig

Eigenschaften 11. Homöomorphismus In diesem Falle sind auch die Bilder offener Mengen offen.

Beispiel 57. V,W endlich dimensionale Vektorräume, $f:V\to W$ linear umkehrbar $\implies f$ Homöomorphismus

Definition 67. homöomorphe Räume Zwei metrische Räume X, Y heissen homöomorph, wenn es einen Homöomorphismus $X \to Y$ gibt.

Bemerkung36. $\phi:X\to Y$ und $\psi:Y\to Z$ Homö
omorphismus $\psi\circ\phi$ Homö
omorphismus.

Beispiel 58. Zwei endlich dimensionale Vektorräume der gleichen Dimension sind homöomorph.

Bemerkung 37. Man kann zeigen: Zwei endlich dimensionale Vektorräume sind genau dann homöomorph, wenn sie die gleiche Dimension haben. Im Allgemeinen \mathbb{Z} Homöomorphismus $\mathbb{R}^m \to \mathbb{R}^n$ $m \neq n$

Beispiel 59. $K_1(0) \in \mathbb{R}^n$ sind Homöomorph.

$$f: K_1(0) \to \mathbb{R}^n$$

$$x \mapsto \frac{x}{1 - \|x\|}$$

$$g: \mathbb{R}^n \to K_1(0)$$

$$y \mapsto \frac{y}{1 + \|y\|}$$

Bemerkung 38. Polarkoordinaten

$$\mathbb{R}^2 \to \mathbb{R}^2$$
$$(r, \phi) \mapsto (r \cos \phi, r \sin \phi)$$

stetig, nicht bijektiv

$$r > 0, \ \phi \in (-\pi, \pi), \ \text{Bild: } \mathbb{R}^2 \setminus S, \ S = \{(x, 0) \in \mathbb{R}^2, x \le 0\}$$

$$P_2: \mathbb{R}^+_* \times (-\pi, \pi) \to \mathbb{R}^2 \setminus S$$

 $(r, \phi) \mapsto (r \cos \phi, r \sin \phi)$

Homöomorphismus

Umkehrabbildung:
$$r = \sqrt{x^2 + y^2}$$
, $\phi \operatorname{sign}(y) \arccos \frac{x}{\sqrt{x^2 + y^2}}$

Bemerkung 39. 3d

$$\begin{cases} x_1 = r \cos \phi_1 \cos \phi_2 \\ x_2 = r \sin \phi_1 \cos \phi_2 \\ x_3 = r \sin \phi_2 \end{cases}$$
$$r > 0$$
$$\phi_1 \in (-\pi, \pi)$$
$$\phi_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Bild $\mathbb{R}^3 \setminus (S \times \mathbb{R})$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} r\cos\phi_1 \\ r\sin\phi_1 \end{pmatrix}\cos\phi_2 = P_2(r,\phi_1)\cos\phi_2$$

Im allgemeinen definiert man Polarkoordinaten rekursiv

$$P_n: \mathbb{R}_*^+ \times \prod_{n-1} \to \mathbb{R}^n \setminus (S \times \mathbb{R}^{n-2})$$
$$\prod_{n-1} = (-\pi, \pi) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{n-2}$$

$$P_n(r, \phi_1, \phi_2, \cdots, \phi_{n-1}) = \begin{pmatrix} P_{n-1}(r, \phi_1, \cdots, \phi_{n-2}) \cos \phi_{n-1} \\ r \sin \phi_{n-1} \end{pmatrix}$$

Definition 68. stetige Erweiterung/Grenzwert Seien X,Y metrische Räume, $D \in X, f: D \to Y, a \in X$ Häufungspunkt $D, b \in Y$. Man definiert

$$F: D \cup \{a\} \to Y$$

$$F(x) := \begin{cases} f(x) & x \in D \setminus \{a\} \\ b & x = a \end{cases}$$

- \bullet F heisst die stetige Erweiterung von f in Punkt a wenn F stetig in a ist.
- ullet In diesem Falle heisst b die Grenzwert von f in Punkt a

Notation 16.

$$b = \lim_{x \to a} f(x)$$

Bemerkung 40. • Die stetige Erweiterung ist eindeutig bestimmt, wenn sie exisitiert.

• Der Grenzwert ist eindeutig bestimmt, wenn er existiert.

Lemma 17.

$$\lim_{x \to a} f(x) = b \iff \forall \varepsilon > 0 \ \exists \delta > 0 : d_y(f(x), b) < \varepsilon \ \forall x \in D \setminus \{a\}, d_x(x, a) < \delta$$

Definition 69. Sei x ein metrischer Raum, (x_k) Folge in x. (x_k) heisst Cauchyfolge wenn

$$\forall \varepsilon > 0 \ \exists N : d_x(x_k, x_l) < \varepsilon \ \forall x, l \ge N$$

Definition 70. vollständiger Raum Ein metrischer Raum X heisst vollständig, wenn jede Cauchyfolge in X konvergiert.

Beispiel 60. \mathbb{R}^n mit einer Norm vollständig

Bemerkung 41. • Wir haben die Aussage für die euklidische Norm bewiesen

• Aber je zwei Normen auf \mathbb{R}^n sind äquivalent

Beispiel 61. Jeder endlich dimensionaler, normierter Raum ist vollständig.

Lemma 18. Sei (X,d) vollständig, $M \subset X$

 $M \ vollständig \Leftrightarrow M \ abgeschlossen$

(bezüglich der Spurmetrik)

Beispiel 62. $[a;b] \subset \mathbb{R}$ ist vollständig

Beweis 48. \Rightarrow Sei M vollständig. Sei (x_k) konvergente Folge in X mit $x_k \in M \forall k$. (a_k) konvergiert $\Longrightarrow (x_k)$ Cauchy $\xrightarrow{M \text{ vollständig}} x_k \to x \in M \implies M$ abgeschlossen.

 \Leftarrow Sei M abgeschlossen. Sei (x_k) eine Cauchyfolge in $M \Longrightarrow (x_k)$ eine Cauchyfolge in $X \xrightarrow{X \text{ vollständig}} x_k \to x \in X$. $x_k \in M, (x_n)$ konvergiert $\Longrightarrow x \in M$ $\Longrightarrow M$ vollständig.

Korollar 17. Jede abgeschlossene Teilmenge von \mathbb{R}^b ist vollständig.

Bemerkung 42. Vereinbarung \mathbb{R}^n ist für nur innen als normierter Raum betrachtet.

Definition 71. Barnachraum Ein normierter K-Vektorraum heisst Barnachraum, wenn er vollständig ist.

Beispiel 63. Jeder endlich dimensionaler Vektorraum ist ein Barnachraum.

Bemerkung 43. Nicht jeder unendlich dimensionaler Vektorraum ist ein Barnachraum.

Beispiel 64. Sei $V = \mathcal{C}^0([a;b],\mathbb{R})$ mit L^1 -Norm: $||f|| = \int_a^b |f| \, \mathrm{d} x \, V$ ist nicht vollständig.

Beispiel 65. a = 0, b = 2

$$f_n(x) := \begin{cases} x^n & 0 \le x < 1\\ 1 & 1 \le x \le 2 \end{cases}$$

 f_n stetig $\forall n, (f_n)$ Folge in $V, (f_n)$ Cauchy n > m

$$||f_m - f_n|| = \int_0^1 (x^m - x^n) dx = \frac{1}{n+1} - \frac{1}{n+1} < \frac{1}{m+1}$$

 f_n konvergiert in V nicht

$$f_n(x) \to f(x) = \begin{cases} 0 & 0 \le x < 1\\ 1 & 1 \le x \le 2 \end{cases}$$

 $f \not\in V$

Beispiel 66. $C^0([a;b];\mathbb{R})$ mit Supremum-Norm ist vollständig.

5.1 Vervollständigung

Satz 33. Jeder normierte Vektorraum $(V, \| \|_V)$ kann vervollstänigt werden. D.h.

$$\begin{split} \exists Barnachraum(W, \|\ \|_W) \\ i: V \hookrightarrow W \ \ lineare \ \ Inklusion \\ \|i(v)\|_W = \|v\|_V \ \ \forall v \in V \ \ s.d. \ \overline{i(V)} = W \end{split}$$

Beweis 49. (Konstruktion)

$$W := \{ Cauchy folgen \ in \ V \} \setminus \{ Null folgen \ in \ V \}$$

$$\| [(x_k)] \|_W := \lim_{k \to \infty} \| x_k \|_V$$

$$i: V \hookrightarrow W$$

 $v \mapsto [konstante\ Folge\ x_k = v\ \forall k]$

Definition 72. Hilbertraum Ein Vektorraum mit einem Skalarprodukt der bezüglich der induzierten Norm vollständig ist, heisst Hilbertraum.

Beispiel 67.

$$l^2 := \left\{ (x_k) \text{ in } \mathbb{C} : \sum |x_k|^2 < \infty \right\}$$

$$(x, y) := \sum \overline{x_k} y_k$$

Beispiel 68.

$$\mathcal{C}^0\left([a;b],\mathbb{C}\right),L^2 \text{ Norm}$$

$$\langle f,g\rangle = \int_a^b \bar{f}(x)g(x)\,\mathrm{d}\,x$$

nicht vollständig

Vervollständigung: $L^2([a;b])$ für die Quantenmechanik

Definition 73. folgenkompakt Ein metrischer Raum X heisst folgenkompakt, wenn jede Folge in X eine konvergente Teilfolge besitzt. [Bolzano-Weierstrass-Eigenschaft]

Definition 74. Eine Teilmenge eines metrischen Raumes heisst folgenkompakt, wenn sie bezüglich der Spurmetrik folgenkompakt ist.

Beispiel 69. \mathbb{R} ist nicht folgenkompakt (Folgen, die gegen ∞ konvergieren)

Beispiel 70. [a;b] ist folgenkompakt (Satz von Bolzano-Weierstrass)

5.2 Überdeckung

Definition 75. Überdeckung Sei X ein Menge, sei I eine Indexmenge und sei $\{U_i\}_{i\in I}$ Familie von Teilmengen von X. $\{U_i\}_{i\in I}$ heisst Überdeckung von X, wenn $X = \bigcup_{i\in I} U_i$ d.h.

$$\forall x \in X \ \exists i \in I : x \in U_i$$

Sei X ein metrischer Raum. Dann heisst eine Überdeckung $\{U_i\}_{i\in I}$ offen, wenn U_i offen $\forall i$ ist.

Beispiel 71. x = [0; 1]

$$\left\{ \left[0;\frac{2}{3}\right), \left(\frac{1}{3};1\right] \right\} \ \ddot{\mathbf{U}}\mathbf{berdeckung}$$

offen bezüglich der Spurtopologie

Beispiel 72. x = (0; 1)

$$\left\{ \left(\frac{1}{n};1\right) \right\}_{n\in\mathbb{N}_{\pi}}$$
 offen Überdeckt

Beispiel 73. x = [0; 1]

$$U_n := \left(\frac{1}{n}; 1\right]$$

$$U_0 := \left[0; \frac{1}{2}\right]$$

$$n > 0$$

 $\{U_n\}_{n>0}$ offene Überdeckung von X

Definition 76. endliche Überdeckung eine Überdeckung $\{U_i\}_{i\in I}$ heisst endlich, wenn I eine endliche Menge ist.

Definition 77. kompakter metrischer Raum Ein metrischer Raum X heisst kompakt , wenn aus <u>jeder</u> offenen Überdeckung von X eine endliche Überdeckung ausgewählt werden kann. d.h.

$$\forall \left\{ U_i \right\}_{i \in I} \ x = \bigcup_{i \in I} U_i \text{ offen}$$

$$\exists n \in \mathbb{N} \text{ und } \exists i_1, i_2, \cdots, i_n \in I$$
 s.d.
$$X = U_{i_1} \cup U_{i_2} \cup \cdots \cup U_{i_n} = \cup_{j=1} U_{i_j}$$

Definition 78. kompakte Teilmenge Eine Teilmenge eines metrischen Raumes heisst kompakt, wenn sie bezüglich der Spurmetrik so ist.

Satz 34.

 $X \ kompakt \Leftrightarrow X \ folgenkompakt$

Beweis 50. \Rightarrow Sei (a_k) Folge in X. Zu zeigen: (a_k) besitzt eine konvergente Teilfolge.

$$A := \{a_k, k \in \mathbb{N}\}$$

Fall 1 A ist endlich \implies (a_k) besitzt eine konstante Teilfolge.

Fall 2 A unendlich

Lemma 19. A besitzt einen Häufungspunkt. A besitzt keinen Häufungspunkt.

 $\forall x \in X \ \exists U(x) \ Umgebung \ von \ x$

s.d.

$$U(x) \cap A = \begin{cases} \varnothing & x \notin A \\ \{x\} & x \in A \end{cases}$$

Zudem:

$$\forall x \in U(x) \ \bigcup_{x \in A} U(x) = X$$

 $\{U(x)\}_{x\in X} \ \ \textit{ist eine offene \"{U}berdeckung von } X$

$$\exists n: \exists x_1, \cdots, x_n \in X \text{ s.d. } X = U(x_1) \cup \cdots \cup U(x_n)$$

$$A = X \cap A = (U(x_1) \cup \cdots \cup U(x_n)) \cap A = \{x_i : x_i \in A\} \subset \{x_i\}$$

$$\implies A \text{ endlich} \implies \text{Widerspruch!}$$

 $Sei \ a \ H\ddot{a}ufungspunkt \ von \ A \implies$

$$\forall \mu \in \mathbb{N} : K_{\frac{1}{\mu}}(a) \ni a_{k_{\mu}} \in A \setminus \{a\}$$

$$(a_{k_{\mu}}) \ \textit{Teilfolge}, (a_{k_{\mu}}) \in K \implies \lim_{\mu \to \infty} a_{k_{\mu}} = a$$

Definition 79. beschränkt Sei X ein metrischer Raum, $\mathbb{K} \subset X$. \mathbb{K} heisst beschränkt, wenn

$$\exists x \in X \ \exists r > 0 : \mathbb{K} \subset K_r(x)$$

Lemma 20. Sei X ein metrischer Raum, $\mathbb{K} \subset X$

 \mathbb{K} folgenkompakt $\Longrightarrow \mathbb{K}$ beschränkt und abgeschlossen

Beweis 51. Sei K nicht beschränkt oder nicht abgeschlossen.

Fall 1 \mathbb{K} nicht beschränkt Sei $x \in \mathbb{K}$. Da \mathbb{K} nicht beschränkt

$$\forall k \exists x_k \in \mathbb{K} : d(x_k, x) > k$$

(sonst wäre $\mathbb{K} \subset K_k(x)$) (x_k) besitzt keine konvergente Teilfolge. Sonst:

$$x_{k_i} \xrightarrow{i \to \infty} x \implies d(x_k, x) \to 0$$

(was aber nicht möglich ist, da der Abstand immer grösser wird)

Fall 2 \mathbb{K} nicht abgeschlossen

$$\exists (x_k), x_k \in \mathbb{K} \forall k \ und \ x_k \in x \notin X$$

 \implies jede Teilfolge von (x_k) konvergiert gegen $x \in X$.

Bemerkung44. \mathbb{K} folgenkompakt $\implies \mathbb{K}$ abgeschlossen und beschränkt. Im allgemeinen $\not=$

Beispiel 74. $X = \mathcal{C}([0; \pi], \mathbb{C})$ mit Supremumsnorm

$$\mathbb{K} = K_1(0) = \left\{ f \in X : \underbrace{\|f\|}_{\text{sup}|f|} \le 1 \right\}$$

K ist abgeschlossen

$$\overline{K_1(0)} \subset K_2(0)$$

... und beschränkt.

$$e_k(x) := e^{ikx}$$

$$e_k \in \mathbb{K} \ \forall k$$

$$\|e_k - e_l\| = 2 \ \forall k, l$$

Beweis 52.

$$|e_k(x) - e_l(x)|^2 = (e^{-ikx} - e^{ilx})(e^{ikx} - e^{ilx}) =$$

= $1 - e^{i(l-k)x} - e^{i(k-l)x} + 1 = 2(1 - \cos(k-l))$

Maximum 4 wenn $\cos = -1$, $\sup |e_k - e_l| = 2 \implies jede Teilfolge e_k$

$$||e_{ki} - e_{kj}|| = 2 \ \forall i, j$$

keine Cauchyfolge. Keine Teilfolge ist Cauchy. \implies keine Teilfolge konvergiert

Satz 35. Sei V ein <u>endlichdimensionaler</u> normierter Vektorraum, sei $\mathbb{K} \subset V$. Dann sind folgende Aussagen equivalent:

- 1. K ist beschränkt und abgeschlossen
- 2. K kompakt
- 3. K ist folgenkompakt

 $zu\ zeigen: 1. \implies 2.$

Satz 36. Sei X kompakt und $A \subset X$ abgeschlossen. Dann ist A kompakt.

Beweis 53. Sei $\{U_i\}_{i\in I}$ offene Überdeckung von A.

$$\begin{array}{c} U_i \ \ o\hspace{-.1cm}\textit{offen in } A \implies \exists V_i \subset X \ text o\hspace{-.1cm}\textit{f fen, mit } U_i = A \cap U_i \\ & \bigcup_{i \in I} U_i = A \implies \bigcup_{i \in A} V_i \supset A \\ & X = X \setminus A \cup \bigcup_{i \in I} V_i \\ & X \setminus A, V_i \ \ \ddot{\textit{Uberdeckung von }} X \\ & A \ \ abgeschlossen \implies X \setminus A \ \ o\hspace{-.1cm}\textit{offen} \\ & X \setminus A, V_i \ \ \ o\hspace{-.1cm}\textit{ffene } \ddot{\textit{Uberdeckung}} \\ & X \ \ kompakt \implies \exists n: i_1, \cdots, i_n: X = X \setminus A \cup V_{i_1} \cup V_{i_1} \cup \cdots \cup V_{i_n} \\ & \implies U_{i_1}, \cdots, U_{i_m} \ \ddot{\textit{Uberdeckung von }} A \end{array}$$

5.3 Existenz von Maxima und Minima

Satz 37. Sei $f: X \to Y$ stetig $(X, Y \text{ metrische } R \ddot{a} ume)$

$$X \ kompakt \implies f(x) \ kompakt$$

Beweis 54. Sei $\{U_i\}_{i\in I}$ eine offene Überdeckung von f(x) $V_i := f^{-1}(U_i) \implies \{V_i\}_{i\in I}$ offene Überdeckung von X.

$$\implies \exists n: i_1, \cdots, i_n \in I \ X = v_{i_1} \cup \cdots \cup V_{i_n} \implies f(x) = U_{i_1} \cup \cdots \cup U_{i_n}$$

Satz 38. von Maxima und Minima Sei $f: x \to \mathbb{R}$ stetig und X kompakt. Dann nimmt f ein Maximum und ein Minimum an.

Beweis 55. f stetig und X kompakt $\implies f(x) \subset \mathbb{R}$ kompakt. $\implies f(x)$ beschränkt und abgeschlossen.

 $beschränkt \implies f(x)$ besitzt ein Supremum und ein Infimum abgeschlossen \implies sup, inf $f \in f(x)$

Definition 80. gleichmässig stetig $f: X \to Y, (X, Y \text{ metrische Räume})$ heisst gleichmässig stetig, wenn

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x_1, x_2 \subset X \; \text{mit} \; d_x(x_1, x_2) < \delta$$

gilt

$$d_{u}\left(f(x_{1}),f(x_{2})\right)<\varepsilon$$

Bemerkung 45. f gleichmässig stetig $\implies f$ stetig

Satz 39. Sei $f: X \to Y \ X \ kompakt$

$$f \ stetig \implies f \ gleichmässig \ stetig$$

Beweis 56. Wie im Falle $X \subset \mathbb{R}$

Lemma 21. Tubenlemma Sei X ein metrischer Raum, \mathbb{K} ein kompakter Raum, $x_0 \in X$, $W \subset X \times \mathbb{K}$ offen mit $\{x_0\} \times \mathbb{K} \subset W$. Dann \exists Umgebung von x_0 in X s.d.

$$U \times \mathbb{K} \subset W$$

Beweis 57. W offen in der Produkttopologie.

$$\forall y, x \in \mathbb{K}, (x_0, y) \in W$$

 $\exists \ Umgebung \ von \ U_y \ von \ x_0 \ in \ \mathbb{K} \ mit \ U_y \times V_y \subset W$

$$\bigcup_{y \in \mathbb{K}} V_j = \mathbb{K}$$

$$y \in V_y \ \forall y$$

$$\left\{ V_y \right\}_{y \in \mathbb{K}} \ offene \ \ddot{U}berdecktung \ von \ \mathbb{K} \ \mathbb{K} \ kompakt$$

$$\implies \forall n, u_1, \cdots, u_n \in \mathbb{K}, \ \mathbb{K} = V_{y_1} \cup \cdots \cup V_{y_n}$$

$$U := U_{y_1} \cap U_{y_2} \cap \cdots \cap U_{y_n}$$

$$U \ni x_0$$

$$U \times \mathbb{K} \subset W$$

$$U \ offen$$

Korollar 18. \mathbb{K} kompakt und L kompakt $\Longrightarrow \mathbb{K} \times L$ kompakt

Bemerkung 46. $\mathbb{K} = [a; b]$

$$f: X \times [a; b] \to \mathbb{C}$$

 $(x, y) \mapsto f(x, y)$

$$\forall x \in X : f_x : [a; b] \to \mathbb{C}$$

 $y \mapsto f(x, y)$

stetig $\implies \mathcal{R}$ auf [a;b] $f_x = f \circ i_x$

$$i_x:\{x\}\times[a;b]\to X\times[a;b]$$

$$F(x) := \int_a^b f(x,t) \, \mathrm{d}\, t F : X \to \mathbb{C}$$

Satz 40. F stetig

Beweis 58. $\forall x_0 \in X \text{ ist } F \text{ stetig in } x_0. \text{ Sei } x_0 \in X$

$$\phi(x,t) := f(x,t) - f(x_0,t)$$

stetig. Sei $\varepsilon > 0$

$$W:=\left\{(x,t)\in X\times [a;b]: |\phi(x,t)<\frac{\varepsilon}{b-a}\right\}$$

 $\phi \ stetig \implies W \ offen$

$$\phi(x_0, t) = 0 \ \forall t \implies \{x_0\} \times [a; b] \subset W$$

 $\implies \exists Umgebung U von x_0 in X mit$

$$U \times [a;b] \subset W$$

 $\forall x \in U \ gilt$

$$|F(x) - F(x_0)| = \left| \int_a^b \phi(x, t) \, \mathrm{d} \, t \right| \le \int_A^b |\phi(x, t)| \, \mathrm{d} \, t < \int_a^b \frac{\varepsilon}{b - a} \, \mathrm{d} \, t = \varepsilon$$

Spezialfall X = [c; d]

$$f:[c;d]\times[a;b]\to\mathbb{C}$$

stetig

$$F: [c;d] \to \mathbb{C} \ stetig$$

 \implies Regelfunktion

$$\int_{c}^{d} F(x) dx = \underbrace{\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dy \right) dx}_{interiertes\ Integral}$$

Notation 17. interiertes Integral

$$\int_{[c;d]\times[a;b]} f(x,y) \,\mathrm{d}\,x \,\mathrm{d}\,y := \int_c^d F(x) \,\mathrm{d}\,x$$

5.4 Zwischenwertsatz

Definition 81. zusammenhängender metrischer Raum Ein metrischer Raum X heisst zusammenhängend, wenn es keine Zerlegung $X = U \cup V$ gibt, mit

- 1. U, V disjunkt (d.h. $U \cap V = \emptyset$)
- 2. U, V offen
- 3. U, V nicht leer

Definition 82. Eine Teilmenge eines metrischern Raumes heisst zusammenhängend, wenn sie bezüglich der Spurtopologie so ist.

Beispiel 75. \varnothing ist zusammenhängend

Beispiel 76. $\{x\} \subset \mathbb{R}$ zusammenhängend

Beispiel 77. $\mathbb{Q} \in \mathbb{R}$ nicht zusammenhängend

$$U = \left\{ x \in \mathbb{Q} : x \le 0 \text{ oder } x^2 < 2 \right\} = \mathbb{Q} \cap \left(-\infty, \sqrt{2} \right)$$
$$V = \left\{ x \in \mathbb{Q} : x > 0 \text{ oder } x^2 > 2 \right\} = \mathbb{Q} \cap \left(\sqrt{2}, +\infty \right)$$

offen

Satz 41. Sei $X \subset \mathbb{R}$ und besitze X mindestens zwei verschiedene Punkte

X zusammenhängend \Leftrightarrow X Intervall

Beweis 59. \Rightarrow Kontrapositionsbeweis: Sei X kein Intervall

$$\implies \exists u < s < v \ mitu, v \in X \ s \notin X$$

$$U := X \cap (-\infty; s), \ V = X \cap (s; +\infty)$$

 $\implies X$ nicht zusammenhängend

 \Leftarrow Widerspruchbeweis: Sei X <u>nicht</u> zusammenhängendes Intervall

$$\exists U, V \ offen \ in \ I$$

$$\begin{array}{ccc} U,V\neq\varnothing & \Longrightarrow \exists u\in U,v\in V\\ U\cap V=\varnothing & \Longrightarrow u\neq v\\ U\cup V=X \end{array}$$

Annahme u < v:

$$X \ Intervall \implies [u;v] \subset X$$

Sei

$$s = \sup([u; v] \cap U)$$

 $beschr\"{a}nkt \subset [u,v]$

$$\implies s \in [u; v] \ s \le v$$

V offen

$$\begin{array}{c} U = X \setminus V \\ \Longrightarrow \ U \ abgeschlossen \implies s \in U \\ U \cap V = \varnothing \implies s < v \end{array}$$

 $Sei \ x \in X \ mit \ x > s \ und \ x \le v$

$$\stackrel{s\sup}{\Longrightarrow} \ x \in V \implies (s;v] \in V$$

$$U \text{ offen} \implies \exists \varepsilon > 0 \text{ } mid(s - \varepsilon, s + \varepsilon) \cap X \in U$$

 $X \ Intervall \ v \in X, \ s < v$

$$\implies \lambda \in [s; s+\varepsilon) \cap X \in U \text{ mit } \lambda \leq v \implies \lambda \in U$$

 $(s;v] \subset V \implies \lambda \in V \text{ Widerspruch, da } U \cap V = \emptyset$

Satz 42. Sei $f: X \to Y$ stetig

X zusammenhängend $\Longrightarrow Y$ zusammenhängend

 $\implies Y = U \cup V$

Beweis 60. Kontrapositionsbeweis: Sei Y nicht zusammenhängend

$$U,V\neq\varnothing$$

$$U\cap V=\varnothing$$

$$U,V\ o\!f\!f\!e\!n$$

$$\tilde{U}:=f^{-1}(U),\tilde{V}:=f^{-1}(V)$$

$$X=\tilde{U}\cup\tilde{V}$$

$$\tilde{U},\tilde{V}\neq\varnothing$$

$$\tilde{U}\cap\tilde{V}=\varnothing$$

Satz 43. Zwischenwertsatz Sei X zusammenhängend

$$f: X \to \mathbb{R} \ stetig$$

 \tilde{U}, \tilde{V} offen

Für je zwei Punkte a und $b \in X$ nimmt f alle Werte zwischen f(a) und f(b) an.

Beweis 61. Fall 1: f(a) = f(b) nichts zu zeigen Fall 2: $f(a) \neq f(b)$ und f(x) zusammenhängend

$$\implies f(x) Intervall$$

 $\implies f(x)$ enthält alle Punkte zwischen f(a) und f(b)

Definition 83. wegzusammenhängend Ein metrischer Raum X heisst wegzusammenhängend, wenn es $\forall a, b \in X$ eine stetige Kurve

$$\gamma: [\alpha;\beta] \to X$$

gibt mit $\gamma(\alpha) = a$ und $\gamma(\beta) = b$. Man sagt, γ verbinde a und b.

Beispiel 78. $\mathbb{R}\setminus\{0\}$ ist nicht wegzusammenhängend. Beweis: Zwischenwertsatz.

Definition 84. konvex Sei V Vektorraum, $X \subset V$ heisst konvex, wenn $\forall a,b \in X$

$${a + t(b - a) : t \in [0; 1]} \subset X$$

(Strecke, die a und b verbindet)

Lemma 22. Sei V ein normierter Vektorraum, $X \subset V$

 $X \text{ konvex} \Longrightarrow X \text{ wegzusammenhängend}$

Beweis 62. Die Strecke ist eine stetige Kurve.

Satz 44. $\mathbb{R} \setminus \{0\}$ und S^{n-1} sind für $n \geq 2$ wegzusammenhängend.

Lemma 23.

X wegzusammenhängend $\implies X$ zusammenhängend

Beweis 63. Widerspruchsbeweis: Sei X wegzusammenhängend, nicht zusammenhängend.

$$X = U \cup V$$

$$U, V \text{ offen} \qquad \exists u \in U, v \in V$$

$$U, V \neq \varnothing \qquad \qquad u \neq v$$

$$U \cap V = \varnothing$$

X wegzusammenhängend

$$\implies \gamma : [\alpha; \beta] \to X$$

$$\gamma(\alpha) = u, \ \gamma(\beta) = v$$

$$\tilde{U} = \gamma^{-1}(U), \ \tilde{V} = \gamma^{-1}(V)$$

$$\begin{split} [\alpha;\beta] &= \tilde{U} \cup \tilde{V} \\ \tilde{U}, \tilde{V} \ \textit{offen} \\ \tilde{U}, \tilde{V} &\neq \varnothing \\ \tilde{U} \cap \tilde{V} &= \varnothing \end{split}$$

 $[\alpha; \beta]$ nicht zusammenhängend

Korollar 19. $\mathbb{R} \setminus \{0\}$ und S^{n-1} sind für $n \geq 2$ zusammenhängend.

Beweis 64. $\mathbb{R} \setminus \{0\}$ nicht zusammenhängend

Satz 45. Sei V ein normierter Vektorraum, $X \subset V$ offen

X zusammenhängend $\Longrightarrow X$ wegzusammenhängend

Zusätzlich können je zwei Punkte in X durch einen Streckenzug verbunden werden.

Bemerkung 47. Sei

$$X:=\left\{\left(x,\sin\frac{1}{x}\right),x>0\right\}\cup\left\{(0,y),y\in[-1;1]\right\}\subset\mathbb{R}$$

- X ist nicht offen
- X zusammenhängend
- X nicht wegzusammenhängend

Definition 85. Gebiet Eine zusammenhängende offene Teilmenge normierten Vektorraumes heisst Gebiet.

Satz 46.

$$GL(n; \mathbb{R} = \{A \in M(n \times n, \mathbb{R}), \det A \neq 0\}$$

ist nicht zusammenhängend.

$$GL^+(n; \mathbb{R} = \{A \in M(n \times n, \mathbb{R}), \det A > 0\}$$

ist zusammenhängend.

Beweis 65.

$$\det: GL(n,\mathbb{R}) \to \mathbb{R} \setminus \{0\} \ stetig$$

Wäre GL zusammenhängend, dann wäre auch $\mathbb{R} \setminus \{0\}$ zusammenhängend.

Satz 47. Seien X und Y homöomorph. Dann

X zusammenhängend \Leftrightarrow Y zusammenhängend

Korollar 20. \mathbb{R}^n , n > 1 ist nicht homöomorph zu \mathbb{R}

Beweis 66. $n > 1 \mathbb{R}^n \setminus \{0\}$ zusammenhängend. Widerspruchbeweis:

 $\exists f: \mathbb{R}^n \to \mathbb{R} \ \textit{Hom\"{o}omorphismus}$

$$f|_{\mathbb{R}^n\backslash\{0\}}:\underbrace{\mathbb{R}^n\backslash\{0\}}_{zusammenh\ddot{a}ngend} \to \underbrace{\mathbb{R}\backslash f(0)}_{nicht\ zusammenh\ddot{a}ngend}$$

6 Differenzierbare Funktionen (Kap 2)

Bemerkung 48. Sei $F: \underbrace{U}_{\subset \mathbb{R}^n} \to \mathbb{C}$ oder \mathbb{R} . U offen. Die lineare Approximation von f im Punkt $a \in U$ ist eine Funktion der Form

$$Tf(x;a) := f(a) + L(x - a)$$

wobei $L: \mathbb{R}^n \to \mathbb{R}$ linear s.d. der Rest $(x = a + h \in U)$

$$R(\underbrace{h}_{\mathbb{R}^n}) := f(a+h) - Tf(a+h;a)$$

erfüllt

$$\lim_{h\to 0}\frac{R(h)}{\|h\|}=0$$

(wobei $\| \|$ irgendeine Norm auf \mathbb{R}^n ist)

U offen $\Longrightarrow \exists \varepsilon > 0$ s.d.

$$K_{\varepsilon}(a) \subset U$$

$$\implies a + h \in U \ \forall h : ||h|| < \varepsilon$$

Definition 86. differenzierbar in a $f: U \to \mathbb{C}$, U offen in \mathbb{R} heisst differenzierbar in a, wenn es eine lineare Abbildung $L: \mathbb{R}^n \to \mathbb{C}$ gibt s.d.

$$\lim \frac{R(h)}{\|h\|} = 0$$

d.h.

$$\lim_{h\to 0}\frac{f(a+h)-f(a)-Lh}{\|h\|}=0$$

Definition 87. Tangentialhyperebene Der Graph von Tf

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{C} : y = Tf(x;a)\}$$

heisst die Tangentialhyperebene von f in (a, f(a))

Bemerkung 49. h = 1: euklidische Definition

Bemerkung 50. Wichtig: U offen!

Bemerkung 51. Es spielt keine Rolle, welche Norm verwendet wird.

Bemerkung 52. $L: \mathbb{R}^n \to \mathbb{R}$ oder $L: \mathbb{R}^n \to \mathbb{C}$, L linear, d.h.

$$L \in \mathrm{Hom}\,(\mathbb{R}^n,\mathbb{C})$$

C wird als reeller Vektorraum betrachtet.

$$L \in \mathrm{Hom}\,(\mathbb{R}^n,\mathbb{R}) =: \mathbb{R}^{h*}$$

d.h. Linearform

Definition 88. Linearisierung Die lineare Abbildung L heisst Linearisierung von f im Punkt a.

Lemma 24. Ist f differenzierbar in a, so ist ihre Linearisierung eindeutig bestimmt.

Beweis 67. Seien L und L^* Linearisierungen von f in a.

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - Lh}{\|h\|} = 0$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - L^*h}{\|h\|} = 0$$

Differenz:

$$\lim_{h \to 0} \frac{(L^* - L)(h)}{\|h\|} = 0$$

 $h = tv, v \in \mathbb{R}^n, t \in \mathbb{R}$

$$\lim_{t \to 0} \frac{(L^* - L)(tv)}{|t| \|v\|} = 0$$

 $L^* - L \ linear \xrightarrow{endlichdim} L^* - L \ stetig$

$$(L^* - L) \left(\lim_{t \to 0} \frac{fv}{f} \right) = (L^* - L) (v)$$

$$(L^* - L)(v) = 0 \ \forall v \in \mathbb{R}^n, \ ||v|| = 1$$
$$\forall h \in \mathbb{R}^n : h = tv, \ ||v|| = 1$$
$$\Longrightarrow (L^* - L)(h) = 0 \ \forall h \in \mathbb{R}^n \implies L^* = L$$

Definition 89. Differenzial Die Linearisierung L von f im Punkt a bezeichnet man auch mit

$$d f_a$$
 oder $d f(a)$

Differenzial von f im Punkt a

$$T f(x; a) = f(a) + d f_a(x-a) + R(x-a), \operatorname{Hom}(\mathbb{R}^n, \mathbb{C})$$

Bemerkung 53. Sei $\{e_1, \dots, e_n\}$ die Standardbasis von \mathbb{R}^n . $\forall h \in \mathbb{R}$ Sei

$$f'(a) := (d f_a e_1, d f_a e_2, \cdots, d f_a e_n) \in M (n \times 1, \mathbb{C})$$

Dann

$$d f_a h := f'(a) \cdot \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{pmatrix}$$

$$h = \sum_{i=1}^{n} h_i e_i, \ h \in \mathbb{R}^n$$

Bemerkung 54. n=1 $f'(a) \in \mathbb{C}$ übliche Ableitung

Satz 48. Ist f differenzierbar im Punkt a, so ist f stetig im Punkt a.

Beweis 68.

$$f(a+b) - f(a) = Lh + R(h)$$

$$\lim_{h \to 0} \frac{R(h)}{\|h\|} = 0$$

$$\implies \lim_{h \to 0} R(h) = 0$$

$$L \ linear \ n\infty \implies L \ stetig$$

$$\implies \lim_{h \to 0} Lh = 0$$

$$\implies \lim_{h \to 0} (f(a+h) - f(a)) = 0$$

$$\implies f \ stetig \ in \ a$$

Definition 90. differenzierbar auf U $f: U \to \mathbb{C}$, U offen in \mathbb{R}^n heisst differenzierbar auf U, wenn Sie $\forall a \in U$ differenzierbar ist. In diesem Falle:

$$d f: U \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{C})$$

$$a \mapsto d f_a$$

Beispiel 79. Sei $A \in M(n \times 1, \mathbb{R})$, sei $b \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$

$$f(\underbrace{x}_{\in\mathbb{R}^n}) := Ax + b$$

f ist auf ganz \mathbb{R} differenzierbar und

$$f'(a) = A \ \forall a \in \mathbb{R}^n f(a+h) - f(a) = A(x+h) - Ax = ah$$

$$\lim_{h \to 0} \frac{f(a+h9 - f(a) - Ah}{\|h\|} = 0$$

$$L(h) = Ah$$

Beispiel 80. Sei $A \in M(n \times n, \mathbb{R}), f : \mathbb{R}^n \to \mathbb{R}$

$$f(x) := x^T A x$$

$$f(x+h) - f(x) = (x+h)^T A(x+h) - x^T Ax = x^T Ax + x^T Ah + h^A x + h^T Ah - x^T Ax = \underbrace{x^T Ah + h^A x}_{\text{linear in } h} + \underbrace{h^T Ah}_{R(h)}$$
$$L(h) = x^t Ah + h^T Ax$$

Zu zeigen

$$\lim \frac{R(n)}{\|h\|} = 0$$

Sei $\sigma = \max_{i,j} |a_{ij}|$

$$\begin{aligned} \left| h^T A h \right| &= \left| \sum_{i,j} h_i a_{ij} h_j \right| \leq \sum_{ij} \left| h_i \right| \left| a_i j \right| \left| h_j \right| \leq \\ &\leq \sigma \sum_i \left| h_i \right| \sum_j \left| h_j \right| = \sigma \left\| h \right\|_1^2 \\ &\qquad \frac{\left| R(h) \right|}{\left\| h \right\|_1} \leq \sigma \ \left\| h \right\|_1 \to 0 \end{aligned}$$

 $\implies f$ differenzierbar

$$L(h) = x^{T}Ah + x^{T}A^{T}h = x^{T}(A + A^{T})h$$
$$\implies f'(x) = x^{T}(A + A^{T})$$

Ist A symmetrisch (d.h. $A^T = A$), so

$$f'(x) = 2x^T A$$

6.1 Berechnung von Ableitungen

Definition 91. differenzierbar in Richtung eines Vektors Sei $f: U \to \mathbb{C}$, U offen in \mathbb{R}^n , (f nicht notwendigerweise differenzierbar), sei $h \in \mathbb{R}^n$. f heisst differenzierbar im Punkt a in Richtung des Vektors h wenn der Grenzwert

$$\lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$

existiert.

Definition 92. Ableitung in Richtung eines Vektors In diesem Falle heisst dieser Grenzwert die Ableitung von f im Punkt a in Richtung des Vektors h

Notation 18. Richtungsableitnug $\partial_h f(a)$

Notation 19. partielle Ableitung Standardbasis $\{e_1, \dots, e_n\}$

$$\frac{\partial f}{\partial x_i}(a) = \partial_i f(a) := \partial_{e_i} f(a)$$

Bemerkung 55. $\frac{\partial f}{\partial x}$ berechnen: x_i als Variable, x_j , $j \neq i$ als Konstanten

Beispiel 81. $f(x,y) = y^2 \sin(x+y)$

$$\frac{\partial f}{\partial x} = y^2 \cos(x+y)$$
$$\frac{\partial f}{\partial y} = 2y \sin(x+y) + y^2 \cos(x+y)$$

Definition 93. partiell differenzierbar f heisst partiell differenzierbar im Punkt a, wenn alle partielle Ableitungen $\partial_1 f(a), \dots, \partial_n f(a)$ existieren.

Satz 49. Sei f differenzierbar im Punkt a. Dann

1. f besitzt alle Richtungsableitungen in a

$$\partial_h f(a) = \mathrm{d} f_a(h), \ \forall h \in \mathbb{R}^n$$

2. f ist partiell differenzierbar in a

3.

$$f'(a) = (\partial_1 f(a), \cdots, \partial_n f(a))$$

Beweis 69.

$$f(a+th) = f(a) + d f_a(th) + R(th)$$

Lemma 25.

$$\lim_{t\to 0}\frac{R(th)}{t}=0$$

Beweis 70.

$$\lim_{h \to \infty} \frac{R(n)}{\|h\|} = 0 \implies R(0) = 0$$

 $h \neq 0, v = tk$

$$\lim \frac{R(v)}{\|v\|} = 0$$

$$\lim_{t \to 0} \frac{R(th)}{|t| \|h\|} = 0$$

$$\frac{1}{\|h\|} \lim_{t \to 0} \frac{R(th)}{|t|} = 0$$

$$\partial_n f(a) = \lim_{t \to 0} \frac{f(a+th) - f(a)}{t} = \lim_{t \to 0} \frac{\mathrm{d} f_a(th) + R(th)}{t} = \lim_{t \to 0} \frac{\mathrm{d} f_a(th)}{t} = \lim_{t \to 0} \frac{f \, \mathrm{d} f_a(h)}{t} = \mathrm{d} f_a(h)$$

$$1 \implies 2$$

$$\partial_i f(a) = \partial_e f(a) = \operatorname{d} f_a(e_i) = f(a) \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = (f'(a))_i$$

Bemerkung 56. differenzierbar \Longrightarrow partiell differenzierbar, im Allgemeinen gilt die Umkehrung nicht! Aber die partielle Differenzierbarkeit ist eine notwendige Bedingung für die Differenzierbarkeit.

Bemerkung 57. $Lh = (\partial_1 f_1, \dots, \partial_n f) h$ ist der einzige Kandidat für die Linearisierung.

Beispiel 82. von partiell differenzierbaren Funktionen, die $\underline{\text{nicht}}$ differenzierbar sind

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = 0 \end{cases}$$

fnicht stetig in $(0,0) \implies f$ nicht differenzierbar in (0,0)

$$\partial_x f(0) = \lim_{t \to 0} \underbrace{\frac{f(t,0) - f(0,0)}{f(0,0)}}_{=0} = 0$$
$$\partial_y f(0) = 0$$

f partiell differenzier bar in (0,0)

 $\partial_n f(0)$ existiert nicht für $h \neq \begin{pmatrix} 1 \\ 0 \end{pmatrix}, h \neq \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Beispiel 83.
$$h = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \in \mathbb{R}^2$$

$$\partial_n f(0,0) = \lim_{t \to 0} \frac{(th_1, th_2) - f(0,0)}{t}$$
$$= \lim_{t \to 0} \frac{1}{t} \frac{t^3 h_1^2 h_2}{t^2 (h_1^2 + h_2^2)} = f(h_1, h_2)$$

$$\partial_x f(0,0) = f(1,0) = 0$$

 $\partial_a f(0,0) = f(0,1) = 0$

$$\lim_{n \to 0} \frac{f(h_1, h_2) - f(0, 0) - (L) \cdot f}{\|h\|} = 0 ?$$

Nein. z.Z.: $h_1 = h_2 =: k$

$$f(k,k) = \frac{k^3}{2k^2} = \frac{k}{2}$$
$$\left\| \binom{k}{k} \right\|_{\infty} = |k|$$
$$\frac{f(k,k)}{\left\| \binom{k}{k} \right\|_{\infty}} = \pm \frac{1}{2} \neq 0$$

 $\implies f$ nicht differenzierbar in (0,0)

6.2 Differenzierbarkeitskriterium

Satz 50. Differenzierbarkeitskriterium Sei $f: D \to \mathbb{C}$ und sei $a \in D$.

- 1. Es gibt eine Umgebung von $a, s.d. \forall x \in U$ ist f in x partiell differenzierbar.
- 2. Alle partiellen Ableitungen sind im Punkt a stetig
- \implies f ist in a differenzierbar

Beweis 71. Idee

$$\frac{f(a+h) - f(a) - Lb}{\|h\|} \to 0$$

$$f(a+h) - f(a) = [f(a+h) - f(a+h_1)] + [f(a+h_1) + f(a)]$$

Mithilfe des Mittelwertsatzes kann dieser Betrag abgeschätzt werden.

Definition 94. Sei $f: \underbrace{U}_{\subset \mathbb{R}^n} \to \mathbb{C}$, differenzierbar auf U

$$d f: U \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{C})$$

 $x \mapsto d f_x$

f heisst stetig differenzierbar auf U falls d $f:U\to \operatorname{Hom}(\mathbb{R}^n,\mathbb{C})$ stetig ist.

$$\xrightarrow{\sim} M(n \times 1, \mathbb{C}) \xrightarrow{\sim} \mathbb{C}^n$$

$$\mapsto (\partial_1 f(x), \cdots, \partial_n f(x))$$

$$\implies \mathrm{d}\, f: U \to \mathrm{Hom}(\mathbb{R}^n,\mathbb{C}) \; \mathrm{stetig} \iff f': U \to M(n \times 1,\mathbb{C}) \iff \partial_i f \; \mathrm{stetig} \forall i$$

Korollar 21.

f stetig diff \iff Alle partiellen Ableitungen sind stetig

Korollar 22. Sei
$$f: \underbrace{U}_{\subset \mathbb{R}^n} \to \mathbb{C}$$

f stetig differenzierbar auf $U \iff Alle$ partiellen Ableitungen in U existieren und sind stetig **Definition 95.**

$$C^1(U) := \{ \text{stetig differenzierbar Funktionen auf } U \}$$

Vektorraum. genauer:

$$C^1(U,\mathbb{R}) = \{\text{reellwertig stetig differenzierbar } f \text{ auf } U\}$$

$$\mathcal{C}^1(U,\mathbb{C}) = \{\text{komplex wertig stetig differenzier } f \text{ auf } U\}$$

Bemerkung 58. Sei $f: \underbrace{U}_{\subset \mathbb{R}^n} \to \mathbb{R}$, differenzierbar in $a \in U$

$$d f(a) \in Hom(\mathbb{R}^n, \mathbb{R}) = \mathbb{R}^{n*}$$

Bemerkung 59. Sei \langle , \rangle ein Skalarprodukt

$$\begin{array}{c} \phi\langle,\rangle:\mathbb{R}^n\to\mathbb{R}^{n*} & \text{linear}\\ v\mapsto\phi_{\langle,\rangle}(v) & \text{Isomorphimsus} \\ \phi_{\langle,\rangle}(v)(w):=\langle v,w\rangle \end{array}$$

6.3 Gradient

Definition 96. Gradient Der Gradient von f in a bezüglich \langle , \rangle ist

$$\phi_{\langle,\rangle}^{-1}(\mathrm{d}\,f_a) =: \mathrm{grad}(f)(a)$$

$$\operatorname{grad}(f)(a) \in \mathbb{R}^n$$

Bemerkung 60.

$$\langle \operatorname{grad}(f)(a), w \rangle = \phi \left(\operatorname{grad}(f)(a) \right) (w) = \operatorname{d} f_a(w) = \partial_w f(a)$$

Bemerkung 61.

$$\partial_w f(a) = \langle \operatorname{grad}(f)(a), w \rangle \ \forall w \in \mathbb{R}^n$$

Bemerkung 62. Spezialfall Standardskalarprodukt $\langle x,y\rangle=\sum x_iy_i$

$$\phi_{\langle , \rangle} : \mathbb{R}^n \to \mathbb{R}^{n*}$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to (x_1, \dots, x_n)$$

Notation 20. Gradient Der Gradient bez. $\langle,\rangle_{\mathrm{Stand.}}$ bezeichnet man als ∇f

$$\nabla f(a) = \begin{pmatrix} \partial_1 f(a) \\ \vdots \\ \partial_n f(a) \end{pmatrix}$$

Bemerkung 63. Zusammenfassung

$$\mathrm{d}\,f_1\in\mathbb{R}^{n*}$$

$$\operatorname{grad}(f)(a) \in \mathbb{R}^n$$

 $Standardbasis \mapsto Standardskalarodukt$

f'(a) n-Zeilenvektor $\nabla f(a)$ n-Spaltenvektor

6.3.1 Geometrische Bedeutung des Gradienten

Bemerkung 64. Sei $h \in \mathbb{R}^n$

$$\partial_n f(a) = \langle \operatorname{grad}(f)(a), h \rangle$$

Cauchy-Schwarz

$$|\partial_n f(a)| \le \|\operatorname{grad}(f)(a)\| \|h\|$$

 $\|w\| := \sqrt{\langle w, w \rangle}$

die durch \langle,\rangle induzierte Norm

$$- \left\| \operatorname{grad}(f) \right\| \|a\| \le \partial_n f \le \left\| \operatorname{grad}(f) \right\| \|h\|$$

$$\partial_n f = \|\operatorname{grad}(f)\| \|h\| \xi \xi \in [-1; 1]$$

$$\exists \phi : \xi = \cos \phi$$

$$\partial_n f(a) = \|\operatorname{grad}(f)(a)\| \|h\| \cos \phi$$

Bemerkung 65. Sei h: ||h|| = 1

$$\partial_n f(a) = \|\operatorname{grad}(f)(a)\| \cos \phi$$

$$\implies \|\operatorname{grad}(f)(a)\| = \max \left\{ \partial_n f(a), \underbrace{\|h\|}_{\operatorname{h\"{a}ngt\ von}\ \langle,\,\rangle\ \operatorname{ab}} = 1 \right\}$$

Sei grad $(f)(a) \neq 0 \ (\iff d f_a \neq 0)$

$$\implies \exists ! h \text{mit } ||h|| = 1 \text{und } || \text{grad}(f)(a) || = \partial_n f(a)$$

Nämlich

$$h = \frac{\operatorname{grad}(f)(a)}{\|\operatorname{grad}(f)(a)\|}$$

d.h. grad(f)(a) zeigt die Richunt des stärksten Anstiegs von f in Punkt a.

6.4 Rechenregeln

Bemerkung 66. Rechenregeln Sei $f,g:\underbrace{U}_{\subset \mathbb{R}^n} \to \mathbb{C}$, differenzierbar in $a\in U$.

Dann

1. f + g und fg sind differenzierbar in a und

$$d(f+g)_a = d f_a + d g_a$$

$$d(fg)_a = f(a) d g_a + g(a) d f_a$$

2. Sei zusätzlich $f(a) \neq 0$. Dann ist $\frac{1}{f}$ in a differenzierbar und

$$d\left(\frac{1}{f_a}\right) = -\frac{d f_a}{f(a)^2}$$

Bemerkung 67. Folgerung Jede rationale Funktion ist in ihrem Definitionsbereich stetig differenzierbar.

Satz 51. Kettenregel Sei $U \subset \mathbb{R}$ offen. Seien

$$\gamma: I \to U$$
 differenzierbar in $t_0 \in I$
 $f: U \to \mathbb{C}$ differenzierbar in $a:=f(t_0)$

Dann ist $f \circ \gamma : I \to \mathbb{C}$ differenzierbar in t_0 und

$$\frac{\mathrm{d}(f \circ \gamma)}{\mathrm{d}t} = \mathrm{d}f_a \dot{\gamma}(t_0) = \sum_{i=1}^n \partial_i f(a) \dot{\gamma}_i(t_0)$$

 $Ist \langle , \rangle \ vorhanden$

$$\frac{\mathrm{d}(f \circ \gamma)}{\mathrm{d}\,t}(t_0) = \langle \mathrm{grad}(f)(a), \dot{\gamma}(t_0) \rangle$$

Bemerkung 68. Kettenregel für partielle Ableitung. Seien

$$\begin{split} f: U \to \mathbb{C} & \qquad U \subset \mathbb{R}^n \\ g: V \to UV \subset \mathbb{R}^m & \qquad \end{split}$$

$$F := f \circ g : V \to \mathbb{C}$$

 (x_1,\cdots,x_n) Basen auf U und (y_1,\cdots,y_m) Basen auf V. Wir wollen $\frac{\partial F}{\partial y_i}$. Seien y_j mit $j\neq i$ festgelegt. Sei

$$g_{(i)}: y_i \mapsto g(y_1, \cdots, y_n) = (g_+(y \cdots), \cdots, g_m(\cdots))$$

$$g_{(i)j}: y_i \to g_j(y \cdots y)$$

$$\frac{\mathrm{d}\,g_{(i)j}}{\mathrm{d}\,y_i} = \frac{\partial g_j}{\partial y_i}$$

$$\frac{\partial F}{\partial y_i} = \frac{\mathrm{d}}{\mathrm{d}\,y_i} \left(f \circ g_{(i)} \right) = \sum_{j=1}^n \frac{\partial f}{\partial x_j} \frac{\mathrm{d}\,g_{(i)j}}{\mathrm{d}\,y_i} = \sum_{j=1}^n \frac{\partial f}{\partial x_j} \frac{\partial g_j}{y_i}$$

 $F = f \circ g$

$$\frac{\partial F}{\partial y_i}(y) = \sum_{j=1}^n \frac{\partial f}{\partial x_j} (g(y)) \frac{\partial g_j}{\partial y_i}(y)$$

Beispiel 84. Polarkoordinaten Sei $f: \mathbb{R}^2 \to \mathbb{C}$

$$P_2(r,\phi) = \begin{pmatrix} r\cos\phi\\r\sin\phi \end{pmatrix}$$

 $F = f \circ P_2$

$$\frac{\partial F}{\partial r} \partial_x f \cos \phi + \partial_y f \sin \phi$$
$$\frac{\partial F}{\partial \phi} - \partial_x f + \sin \phi + \partial_y f + \cos \phi$$

Beispiel 85. Sei $F: \mathbb{R}^+_* \to \mathbb{C}$ und $f: \mathbb{R}^n \to \mathbb{C}$ differenzierbare Funktionen

$$f(x) := F(||x||)$$

$$\frac{\partial f}{\partial x_i} = F \frac{\partial \|x\|}{\partial x_i}$$

$$\frac{\partial}{\partial x_i} \|x\| = \frac{\partial}{\partial x_i} \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \frac{1}{2\sqrt{x_1^2 + \dots + x_n^2}} \not 2x_i$$

$$\frac{\partial \|x\|}{\partial x_i} = \frac{x_i}{\|x\|}$$

$$\frac{\partial f}{\partial x_i} = F' \frac{x_i}{\|x\|}$$

6.5 Niveaumengen

Definition 97. Niveaumengen Sei $f: U \to \mathbb{R} \ni c$. Die Fasern $f^{-1}(c)$ heissen Niveaumengen von f.

Satz 52.

$$\gamma(I) \subset f^{-1}(c)$$

 $Sei \langle , \rangle$ Skalarprodukt. Dann

$$\operatorname{grad}(f)(\gamma(t)) \perp \dot{\gamma}(t) \qquad \forall t \in I$$

Beweis 72. $f \circ \gamma = c \ konstant$

$$\underbrace{\frac{\partial (f \circ \gamma)}{\partial t}}_{=0} = \langle \operatorname{grad}(f), \dot{\gamma} \rangle$$

Der Gradient steht senkrecht auf den Höhenlinien und zeigt in die Richtung des stärksten Anstiegs.

6.6 Mittelwertsatz

Satz 53. Mittelwertsatz Sei $f: \underbrace{U}_{\subseteq \mathbb{R}} \to \mathbb{R}$ differenzierbar auf U. Seien $a, b \in U$, die durch eine Strecke verbindbar sind. Dann $\exists \xi \in [a;b]$

$$f(b) - f(a) = d f_{\varepsilon}(b - a)$$

Beweis 73. Sei

$$\begin{split} \gamma: [0;1] &\to U \\ t &\mapsto a + t(b-a) \end{split}$$

$$\begin{split} \gamma\left([0;1]\right) &= [a;b] \\ \dot{\gamma}(t) &= b-a \ \forall t \end{split}$$

$$F: f \circ \gamma: [0;1] \to \mathbb{R}$$

 $Kettenregel \implies F \ differenzierbar \ \xi := \gamma(\tau)$

$$\xrightarrow{MWS \ auf \ [0;1]} \exists \tau \in [0;1] : F(1) - F(0) = \dot{F}(\tau) \ (1-0)$$
$$F(1) - F(0) = f(\gamma(1)) - f(\gamma(0)) = f(b) - f(a)$$
$$\dot{F}(\tau) \stackrel{KR}{=} \mathrm{d} f_{\gamma(\tau)} \dot{\gamma}(\tau) = \mathrm{d} f_{\gamma(\tau)}(b-a)$$

Korollar 23. Sei U zusammenhängend und offen. Sei $f: \underbrace{U}_{\subset \mathbb{R}} \to \mathbb{C}$ differenzierbar auf U. Dann

$$df = 0 \ \ddot{u}berall \iff f \ konstant$$

Beweis 74. \Leftarrow trival

Fall 1 f reellwertig

U zusammenhängend $\implies \forall a, b \in U \exists Streckenzug, der sie verbindet$

$$f(b) - f(a) = f(a_1) - f(a) + f(a_2) - f(a_1) + f(a_3) - f(a_2) + \cdots$$

$$f(a_{i+1} - f(a_i)) = d f_{\xi_i}(a_{i+1} - a_i) = 0 \quad \xi_i \in [a_i, a_{i+1}]$$

$$\implies f(b) - f(a) \qquad \forall a, b \in U$$

Fall 2
$$f: U \to \mathbb{C}$$

$$\operatorname{Re} f, \operatorname{Im} f: U \to \mathbb{R}$$

 ${\it differenzierbar}$

$$df = 0 \implies d \operatorname{Re} f = 0, d \operatorname{Im} f = 0$$

6.7 Schrankensatz

Satz 54. Schrankensatz Sei $f: \underbrace{U}_{\subset \mathbb{R}} \to \mathbb{C}$ differenzierbar auf U. Sei $K \subset U$ kompakt und konvex. Dann ist $f|_{K}$ Lipschitz-stetig

$$|f(y) - f(x)| \le L \|y - x\|_{\infty}$$

$$L = \|f'\|_{K} := \max_{\xi \in K} \|f'(\xi)\|_{1}$$

$$\|f'(\xi)\|_{1} = |\partial_{1}f(\xi)| + |\partial_{2}f(\xi)| + \dots + |\partial_{n}f(\xi)|$$

Beweis 75. K konvex $\implies \exists$ Strecke, die x und y verbindet

$$\gamma: [0;1] \to K$$

$$t \mapsto x + t(y-x)$$

 $Sei\ F = f \circ \gamma.\ Kettenregel \implies F\ ist\ stetig\ differenzierbar.$

$$\frac{Schranke \ auf \ [0;1]}{\|\dot{F}\|} |f(y) - f(x)| = |F(1) - F(0)| \le \|\cdot F\| \\
\|\dot{F}\| = \sup_{t \in [0;1]} |\dot{F}(t)| \\
Kettenregel: |\dot{F}(t)| = \left| \sum_{i} \partial_{i} f\left(\gamma(t)\right) (y_{i} - x_{i}) \right| \le \sum_{i} |\partial_{i} f\left(\gamma(t)\right)| |y_{i} - x_{i}| \\
\|\dot{F}\| \le \underbrace{\|f'\|_{K}}_{<\infty, \ da \ K \ kompakt} \|y - x\|_{\infty}$$

Satz 55. Integraldarstellung des Funktionzuwachses Sei $f: U \to \mathbb{C}$ stetig differenzierbar und sei $\gamma: [\alpha; \beta] \to U$ stetig differenzierbar Kurve. $a:=\gamma(\alpha)$, $b:=\gamma(\beta)$. Dann

$$f(b) - f(a) = \int_{\alpha}^{\beta} df_{\gamma(t)} \dot{\gamma}(t) dt = \sum_{i} \int_{\alpha}^{\beta} \partial_{i} f(\gamma(t)) \dot{\gamma}_{i}(t) dt$$

Wenn ein Skalarprodukt vorhanden ist

$$= \int_{\alpha}^{\beta} \left\langle \operatorname{grad}(f) \left(\gamma(t) \right), \gamma(t) \right\rangle dt$$

Beweis 76. Sei $F = f \circ \gamma$

$$f(b) - f(a) = F(\beta) - F(\alpha) = \int_{\alpha}^{\beta} \dot{F}(t) dt$$

+ Kettenregel

Korollar 24. Sei $f: \underbrace{U}_{\subset \mathbb{R}, offen} \to \mathbb{C}$ stetig differenzierbar. Sei $K_r(a) \subset U$, a < U, r > 0. Dann gibt es $q_1, \dots, q_n : K_r(a) \to \mathbb{C}$ stetige Funktionen, s.d.

$$\forall x \in K_r(0) \ f(x) - f(a) = \sum_{i=1}^n q_i(x)(x_i)(x_a - a_i)$$

und

$$q_i(a) = \partial_i f(a), \ \forall i$$

Beweis 77.

$$\gamma(t) = a + t(x - a), \ t \in [0; 1]$$

$$\dot{\gamma}(t) = x - a \ \forall t$$

$$f(x) - f(a) = \int_0^1 \sum_i \partial_i f(\gamma(t)) (x - a) \, \mathrm{d} \, t = \sum_{i=1}^n \left(\int \partial_i f(\gamma(t)) \, \mathrm{d} \, t \right) (x_i - a)$$

$$q_i(x) := \int_0^1 \partial_i f(a + t(x - a)) \, \mathrm{d} \, t$$

 $\partial_i f \ stetig, \ [0;1] \ kompakt \implies q_i \ stetig$

$$\partial_i f(a) = \lim_{t \to 0} \frac{f(a + te_j - f(a))}{t}$$

$$x = a + te_j x_i = \begin{cases} a_i & i \neq j \\ a_i + t & i = j \end{cases}$$

$$x_i - a_i = \begin{cases} 0 & i \neq j \\ t & i = j \end{cases}$$

$$f(a + te_j) - f(a) = \phi_j (a + te_j) t$$

$$\partial_j f(a) = \lim_{t \to \infty} \phi_j (a + te_j) \stackrel{\text{getting}}{=} q_j$$

7 Integrale von Differentialformen und Vektorfeldern (Kap 5.2)

Definition 98. 1-Differential form Sei $U \subset \mathbb{R}^{n*}$ offen. Eine (stetige) Abbildung $U \to \mathbb{R}^{n*}$ heisst (stetige) 1-Differential form.

Definition 99. Vektorfeld Sei $U \subset \mathbb{R}^{n*}$ offen. Eine (stetige) Abbildung $U \to \mathbb{R}^n$ heisst Vektorfeld

Beispiel 86. f stetig differenzierbar $U \to \mathbb{R}$

$$\operatorname{d} f: U \to \mathbb{R}^{n*}$$
 stetige Differential
form
$$\operatorname{grad}(f): U \to \mathbb{R}^n$$
 stetige Differential
form

Notation 21. Sei

$$\omega: U \to \mathbb{R}^{n*}$$

 $x \mapsto (\omega_1(x), \cdots, \omega_n(x))$

Man schreibt

$$\omega = \sum_{i=1}^{n} \omega_i \, \mathrm{d} \, x_i$$

Idee: $\{dx_i\}$ bezeichnet die Basis von \mathbb{R}^{n*} Dualbasis zu $\{x_1, \dots, x_n\}$

$$\mathrm{d} f = \sum_{i} \partial_{i} f \, \mathrm{d} x_{i}$$

$$X: U \to \mathbb{R}^n$$

$$x \mapsto \begin{pmatrix} x_1(x) \\ \vdots \\ x_n(x) \end{pmatrix} = \vec{x}(x)$$

$$\left[x(x) = \sum_{i=1}^n x_i(x) \frac{\partial}{\partial x_i} \right]$$

Definition 100. Sei $\gamma:[a;b]\to U$ stetig differenzierbar. Sei ω eine stetige Differentialform auf U:

$$\int_{\gamma} \omega := \int_{a}^{b} \sum_{i=1}^{n} \omega_{i} (\gamma(t)) \dot{\gamma}_{i}(t) dt$$

Beispiel 87.

$$\int_{\gamma} df = \int_{a}^{b} \sum_{i} \partial_{i} f \gamma_{i} dt$$

Notation 22.

$$dx_i = \frac{dx_i}{dt} dt = \dot{\gamma}_i dt$$

Definition 101. Sei X eine stetiges Vektorfeld auf U

$$\int_{\gamma} \vec{x} d\vec{x} = \int_{\gamma} \langle x, dx \rangle := \int \sum_{i=1}^{n} X_i(t) \dot{\gamma}_i(t) dt$$

Beispiel 88.

$$\int_{\gamma} \langle \operatorname{grad}(f), \operatorname{d} x \rangle$$

("Werk")

Bemerkung 69. Integraldarstellung f stetig differenzierbar

$$f(b) - f(a) = \int_{\gamma} df = \int_{\gamma} \langle \operatorname{grad}(f), dx \rangle$$

Beispiel 89.

$$\omega: \mathbb{R}^2 \to \mathbb{R}^{2*}$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto (-y, x)$$

$$\omega = -y \, \mathrm{d} \, x + x \, \mathrm{d} \, y$$

$$\int_{\gamma} \omega = \int_{a}^{b} \left(x(t) \dot{y}(t) - y(t) \dot{x}(t) \right) \mathrm{d} \, t = F(\gamma)$$

Sektorfläche

Lemma 26. Sei $\beta: I \to J$ eine \mathcal{C}^1 -Parametermetrisierung. Dann

$$\int_{\gamma \circ \beta} \omega = \pm I \int_{\gamma} \omega$$

$$\int_{\gamma \circ \beta} \langle x, dx \rangle = \pm I \int_{\gamma} \langle x, dx \rangle$$

$$+ : \beta \ orientierungstreu$$

$$- : \beta \ orientierungsumkehrend$$

Definition 102. stückweise stetig differenzierbar Sei $\gamma_i:[a_i;b_i]\to U$ stetig differenzierbar mit $a_{i+1}=b_i,\ i=1,\cdots,r$ Sei $\gamma:[a_1,b_\gamma]\to U$ Vereinigung d.h.

$$\gamma(t) = \gamma_i(t)$$
 falls $t \in [a_i; b_i]$

Dann heisst γ stückweise stetig differenzierbar

$$\int_{\gamma} := \sum_{j=1}^{r} \int_{\gamma_{j}}$$

Bemerkung70. γ stetig differenzierbar

$$\gamma = \gamma_1 \cup \gamma_2$$

$$\int_{\gamma} = \int_{\gamma_1} + \int_{\gamma_2}$$

8 Höhere Ableitungen

Definition 103. Sei $f: U \to \mathbb{C}$ differenzierbar in der Richtung e_i

$$\partial_i f: U \to \mathbb{C}$$

Ist $\partial_i f$ in der Richtung e_i differenzierbar, so schreib wir

$$\partial_i \partial_i f := \partial_i (\partial_i f)$$

$$\partial_j \partial_i f(x) = \lim_{t \to 0} \frac{\partial_i f(x + te_j) - \partial_i f(x)}{t} = \lim_{t \to 0} \lim_{s \to 0} \frac{f(x + te_j + se_i) - f(x + te_j) - f(x + se_i) + f(x)}{ts}$$

Im Allgemeinen

$$\partial_i \partial_i f \neq \partial_i \partial_j f$$

Beispiel 90.

$$f(x,y) := \begin{cases} \frac{x^3y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = 0 \end{cases}$$
$$\partial_x \partial_y f(0,0) = 0$$
$$\partial_y \partial_x f(0,0) = 1$$

8.1 Berechnen

Beispiel 91.

$$f(x,y) = \sin(x^2y)$$

$$\partial_x f = 2xy \cos(x^2y)$$

$$\partial_y f = x^2 \cos x^2y$$

$$\partial_x^2 f := \partial_x \partial_x f = 2y \cos(x^2y) - 4x^2y^2 \sin(x^2y)$$

$$\partial_y \partial_x f = \partial_y (2xy \cos(x^2)) = 2x \cos x^2y - 2x^3y \sin(x^2y)$$

$$\partial_x \partial_y f = \partial_x (x^2 \cos x^2y) = 2x \cos x^2y - 2x^3y \sin x^2y$$

In diesem Beispiel

$$\partial_x \partial_u f = \partial_u \partial_x f$$

8.2 Satz von Schwarz

Satz 56. Sei
$$f: \underbrace{U}_{\ni a} \to \mathbb{C}$$

- 1. Es gibt eine Umgebung von a, wo $\partial_i f, \partial_i f$ und $\partial_i \partial_i f$ existieren.
- 2. $\partial_i \partial_j f$ ist stetig im Punkt a. Dann existiert $\partial_i \partial_j f(a)$ und

$$\partial_i \partial_i f(a) = \partial_i \partial_i f(a)$$

Lemma 27. Sei $Q:=(a;a+b)\times(b;b+b+k),\ n,k>0$ ein Rechteck. Sei $\phi:Q\to\mathbb{R}$

$$D_O \phi := \phi(a+h, b+k) - \phi(a, b+k) - \phi(a+b, b) - \phi(a, b)$$

Besitzt ϕ auf Q die Ableitungen $\partial_1 \phi$ und $\partial_2 \partial_1 \phi$. Dann

$$\exists (\xi, \eta) \in Q \text{ s.d. } D_Q \phi = hk \partial_2 \partial_1 \phi(\xi, \eta)$$

Beweis 78. Interierter Mittelwertsatz

Beweis 79. Fall 1:f reellwertig

Sei

$$\phi(x,y) := f(a + xe_i + ye_i)$$

1. $\implies \exists \ Umgebung \ V \ von \ (0,0) \in \mathbb{R}^2$, wo folgende partielle Ableitungen existieren:

$$\partial_x \phi = \partial_i f$$
$$\partial_y \phi = \partial_j f$$
$$\partial_x \partial_y = \partial_j \partial_i f$$

2. $\Longrightarrow \partial_y \partial_x \phi \text{ ist stetig in } (0,0)$

Zu zeigen:

$$\underbrace{\partial_x \partial_y \phi(0)}_{=\partial_i \partial_j f(a)} = \underbrace{\partial_y \partial_x \phi(0)}_{=\partial_j \partial_i f(a)}$$

 $\forall \varepsilon > 0 \exists Umgebung V' von (0,0) mit V' \subset V$

$$|\partial_y \partial_x \phi(x, y) - \partial_y \partial_x \phi(0, 0)| < \varepsilon$$
 $\forall (x, y) \in V'$

 $Sei \ Q := (0; h) \times (0; k) \ wobei \ h, k > 0 \ so \ dass \ Q \subset V$

Lemma 28. $\exists (\xi, \eta) \in Q$

$$\frac{D_Q \phi}{hk} = \partial_y \partial_x \phi(\xi, \eta)$$

(Mittelwertsatz)

$$Q \subset V' \implies \left| \frac{D_Q \phi}{hk} - \partial_i \partial_x \phi(0, 0) \right| < \varepsilon$$

$$\frac{D_Q \phi}{hk} := \frac{\phi(h,k) - \phi(h,0) - \phi(0,k) + \phi(0,0)}{hk} = \frac{1}{h} \left(\frac{\phi(h,k) + \phi(0,0)}{k} - \frac{\phi(h,0) - \phi(0,k)}{k} \right)$$

$$\lim_{k \to 0} \frac{D_Q \phi}{hk} = \frac{\partial_y \phi(h,0) - \partial_y \phi(0,0)}{h}$$

$$| | < \varepsilon \implies \lim_{k \to 0} | | = \left| \lim_{k \to 0} \right| \le \varepsilon$$

$$\left| \frac{\partial_y \phi(h,0) - \partial_y \phi(0,0)}{h} - \partial_y \partial_x \phi(0,0) \right| \le \varepsilon$$

 $d.h. \ \forall \varepsilon > 0 \ \exists \delta > 0 \ s.d. \ \forall h: |h| < \partial \ gilt \ die \ Ungleichung. \ D.h.$

$$\lim_{h \to 0} \frac{\partial_y \phi(h,0) - \partial_y \phi(0,0)}{h} = \partial_y \partial_x \phi(0,0) = \partial_x \partial_y \phi(0,0)$$

Fall2: f komplexwertig

Re f, Im f erfüllen die Voraussetzung von Fall 1.

Definition 104. k-mal stetig differenzierbar Sei $f: \underbrace{U}_{\subset \mathbb{R}} \to \mathbb{C}$ f heisst k-mal stetig differenzierbar $(k \ge 1)$ wenn <u>alle</u> partiellen Ableitungen k-ter Ordnung

$$\left(\partial_{i_1}\partial_{i_2}\cdots\partial_{i_k}f,\forall\,(i_1,\cdots,i_k)\in\left\{1,\cdots,n\right\}^k\right)$$

auf U existieren und stetig sind.

Definition 105.

 $C^k(U) = \{k\text{-mal stetig differenzierbare Funktionen auf } U\}$

Bemerkung 71. • \mathcal{C} Vektorraum

•
$$C^{k+l} \in C \ \forall l > 0$$

Definition 106.

$$\mathcal{C}^{\infty}(U) = \bigcap_{k=1}^{\infty} \mathcal{C}^k(U)$$

beliebig of stetig differenzierbare Funktionen auf U (auch ein Vektorraum)

Notation 23. Genauere Bezeichnungen:

- $C^k(U, \mathbb{R})$ reellwertig
- $\mathcal{C}^k(U,\mathbb{C})$ komplexwertig

Definition 107. Zweite Ableitung Sei $f \in \mathcal{C}^2(U), U \subset \mathbb{R}^n$ Seien $u, v \in \mathbb{R}^n$, $a \in U$

$$d^2 f_a(u,v) := \partial_u \partial_v f(a)$$

Bemerkung 72.

$$\partial_v f(a) = \sum_{i=1}^n \partial_i f(a) v_i$$

$$\partial_u (\partial_v f(a)) = \sum_{i=1}^n \partial_u (\partial_v f(a)) v_i$$

$$= d^{(2)} f_a(u, v) = \sum_{j=1}^n \sum_{i=1}^n \partial_j \partial_i f(a) v_i u_j$$

$$d^{(2)} f_a : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$$

ist bilinear.

Bemerkung 73. Schwarz:

$$f \in \mathcal{C}^2 \implies \partial_i \partial_j f(a) = \partial_j \partial_i f(a)$$
 \forall

$$\implies \mathbf{d}^{(2)} f_a \text{ symmetrisch}$$

$$d^{(2)} f_a(u, v) = d^{(2)} = d^{(2)} f_a(v, u)$$
 $\forall u, v$

Bemerkung 74. Die darstellende Matrix von d $^{(2)}$ f_a ist

$$f''(a) := (\partial_i \partial_j f(a))$$

2. Ableitung von f im Punkt a. Andere Bezeichnung:

$$H_f(a) := f''(a)$$

Hesse-Matrix von f im Punkt a.

Bemerkung 75. Sei $f \in \mathcal{C}^2(U), a \in U$

$$H_f(a) := (\partial_i \partial_j f(a)j)$$

• $H_f(a)$ symmetrische Matrix

$$d^{(2)} f(a) (u, v) = u^t H_f(a) v = \sum_{i, i=1}^n f_{ij}''(a) u_i v_j$$

Bemerkung 76. Die Spur der Hesse-Matrix von f:

$$\Delta f(a) := \operatorname{Spur} H_f(a) = \sum_{i=1}^n \partial_i^2 f(a)$$

$$\Delta := \sum_{i=1}^{n} \partial_i^2$$

 Δ Laplace-Operator

Lemma 29. Für jede Orthonormalbasis (v_1, \dots, v_n) von \mathbb{R}^n gilt

$$\Delta f = \sum_{i=1}^{n} \partial_{v_i}^2 f$$

Definition 108. Differential p-ter Ordnung Sei $f \subset \mathcal{C}^p(U), U \subset \mathbb{R}^n$. Sei $a \in U$. Seien $v^1, v^2, \dots, v^p \in \mathbb{R}^n$

$$d^{(p)} f_a(v^1, \dots, b^p) := \partial_{v^1} \partial_{v^2} \dots \partial_{v^p} f(a)$$
$$d^{(p)} f_a(v^1, \dots, b^p) := \sum_{i_1 = 1}^n \dots \sum_{i_p = 1}^n \partial_{i_1} \partial_{i_2} \dots \partial_{i_p} f(a) v_{i_1} v_{i_2}^2 \dots v_{i_p}^p$$

 $f \in \phi^p$ und Schwarz \Longrightarrow

$$\partial_{i_1} \cdots \partial_{i_p} f(a) = \partial_{i_{\sigma(1)}} \cdots \partial_{i_{\sigma(p)}} f(a) \ \forall \sigma : \{1, \cdots, p\} \to \{1, \cdots, p\}$$
$$\mathbf{d}^{(p)} f_a(v^1, \cdots, v^p) = \mathbf{d}^{(p)} f_a(v^{\sigma(1)}, \cdots, v^{\sigma(p)})$$

8.3 Taylorapproximation

Bemerkung 77. Sei $f \in \mathcal{C}^{p+1}(U,\mathbb{R}), U \subset \mathbb{R}^n$. Seien $a, x \in U$ s.d.

$$[a;x]\subset U:=\{a+t(x-a),t\in[0;1]\}$$

$$F: [0;1] \to \mathbb{R}$$

$$t \mapsto f(a+th) \qquad \qquad h := x - \epsilon$$

• F p + 1-mal stetig differenzierbar (Kettenregel)

$$F'(t) = \sum_{i=1}^{n} \partial_i f(a+th) h_i = d f_{a_{i_h}}$$

$$F''(t) = \sum_{i,j=1}^{n} \partial_j \partial_i f(a+h) h_i h_j \qquad = d^{(2)} f_a(h,h)$$

$$F^{(k)}(t) = \sum_{i_1, \dots, i_k=1}^{n} \partial_{i_1} \dots \partial_{i_k} f(a+h) h_{i_1} \dots h_{i_k} = d^{(k)} f_a(h, \dots, h)$$

Abkürzung: $V \in \mathbb{R}^n$

$$d^{(k)} f(a)v^k := d^{(k)} f(a)(v, \dots, v)$$

1. F reellwertig und p+1 stetig differenzierbar

2.
$$F^{(k)}(t) = d^{(k)} f(a+h)h^k$$

$$1) \implies$$

$$F(1) = T_p F(1;0) + R_{p+1}$$

$$T_p F(1;0) = \sum_{k=0}^{p} \frac{1}{k!} F^{(k)}(0) 1^k$$

$$R_{p+1} = \frac{1}{(p+1)!} F^{(p+1)}(\tau), \tau \in [0;1]$$

$$F(1) = f(a+h) = f(x)$$

$$T_p F(1;0) = \sum_{k=0}^{p} \frac{1}{k!} d^{(k)} f_a h^k =: T_p f(x,y)$$

Taylorapproximation der Ordnung p von f im Punkt a

• $x = a + \tau h$

$$\exists \xi \in [a; x] : T_{p+1} = \frac{1}{(p+1)!} d^{(p+1)} f(\xi) h^{p+1} =: R(x; a; \xi)$$

Rest

Definition 109. Taylorsatz mit Rest Sei $f \in \mathcal{C}^{p+1}(U,\mathbb{R})$. Seien $a,x \in U$ mit $[a;x] \subset U$. Dann $\exists \xi \in [a;x]$:

$$f(x) = T_p f(x; a) + R_{p+1}(x; a; \xi)$$

wobei

$$T_p f(x; a) = \sum_{k=0}^{p} \frac{1}{k!} d^{(k)} f(a) (x - a)^k$$
$$R_{p+1} f(x; a; \xi) = \frac{1}{(p+1)!} d^{(p+1)} f(a) (x - a)^{\phi+1}$$

Korollar 25. Qualitative Taylorformel Sei $f \in C^p(U)$ (möglicherweise komplexwewrtig). Dann $\forall a \in U$

$$f(x) = T_p f(x, a) + 0 (||x - a||^p), x \to a$$

d.h.

$$\lim_{x \to a} \frac{f(x) - T_p f(x; a)}{\|x - a\|^p} = 0$$

Definition 110. Taylorreihe von f im Punkt a Sei $f \in \mathcal{C}^{\infty}(U), a \in U$

$$Tf(x;a) := \sum_{k=0}^{\infty} \frac{1}{k!} d^{(k)} f(a)(x-a)^k$$

Definition 111. reell-analytisch Besitzt jeder Punkt von U eine Umgebung, wo die Taylorreihe von f gegen f konvergiert, so heisst f reell-analytisch.

Lemma 30. Sei $f \in C^{\infty}(U)$, $a \in U$, r > 0 $K_r(a) \subset U \ \forall k \ sei \ P_k \ homogenes$ Polynom von Grad $k \ s.d.$

$$f(x) = \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} P_k(x-a) \qquad \forall x \in K_r(a)$$

dann ist

$$Tf(x;a) = \sum P_k(x-a)$$

8.3.1 Geometrische Auffassung

Definition 112. Tangential hyperebene Sei $f: \underbrace{U}_{\subset \mathbb{R}} \to \mathbb{C}$ und $f \in \mathcal{C}^1$. Der

Graph des Taylorpolynomes 1. Ordnung

$$\{(x,z) \in \mathbb{R}^{n+1} : z = T_1 f(x,a) := f(a) + d f_a(x) \}$$

heisst Tangentialhyperebene von f im Punkt a.

Definition 113. Schmiegquadrik Sei $f \in \mathcal{C}^2(U)$. Der Graph des Taylorpolynomes 2. Ordnung

$$\{(x, z) \in \mathbb{R}^{n+1} : z = T_2 f(x; a) \}$$

heisst Schmiegquadrik an den Graphen von f in (a, f(a))

$$z = f(a) + f'(a)(x - a) + \frac{1}{2}(x - a)^t f''(a)(x - a)$$

$$\tilde{z} := x - a$$

$$\tilde{z} := z - f(a) - f'(a)(x - a)$$

$$\tilde{z} = frac12\tilde{x}^t f''(a)\tilde{x}$$

Graph eine quadratische Funktion =: Quadrik

Beispiel 92.

Funktion	Name	(0,0)
$z = x^2 + y^2$	elliptisches Paraboloid	Minimum
$z = -(x^2 + y^2)$		Maximum
$z = x^2 - y^2$	hyperbolisches Paraboloid	Sattelpunkt
$z = x^2$	parabolischer Zylinder	Minimum

Tabelle 2: n=2

8.4 Minima und Maxima

Bemerkung 78. Sei $A n \times n$ symmetrische Matrix. Sei

$$Q(x) := \frac{1}{2} x^t A x, x \in \mathbb{R}^n$$

Q definit, wenn Q > 0 oder Q < 0

Name	Bedingung	Bezeichnung	Eigenwerte	(0,0)
positiv definit	$Q(x) > 0 \ \forall x \neq 0$	Q > 0	alle > 0	isoliertes Minimum
negativ definit	$Q(x) < 0 \ \forall x \neq 0$	Q < 0	alle < 0	isoliertes Maximum
positiv semidefinit	$Q(x) \ge 0 \ \forall x$	$Q \ge 0$	alle ≥ 0	Minimum
negativ semidefinit	$Q(x) \le 0 \ \forall x$	$Q \leq 0$	alle ≤ 0	Maximum
indefinit	$\exists x : Q(x) > 0 \ \exists <: Q(x) < 0$	$Q \geqslant 0$	$\exists \lambda > 0 \; \exists \mu < 0$	kein Extremum

n=2

$$\begin{aligned} Q>0 &\iff \det A>0 \text{ und } a>0 \\ Q<0 &\iff \det A<0 \text{ und } a>0 \\ Q\geq 0 \text{oder } Q\leq 0 &\iff \det A\geq 0 \\ Q\geqslant 0 &\iff \det A<0 \end{aligned}$$

Beweis 80.

$$A \sim \begin{pmatrix} \lambda_1 0 \\ 0 & \lambda_2 \end{pmatrix}$$
$$\det A = \lambda_1 \lambda_2$$
$$\operatorname{Spur} A := a + c = \lambda_1 \lambda_2$$
$$\det A = ac - b^2$$
$$\det A > 0 \implies ac > 0$$

Definition 114. Sei $f \in \mathcal{C}^2(U,\mathbb{R})$, sei A = f''(a) und $Q(x) = \frac{1}{2} d^{(2)} f(a) x^2$

Definition 115. Sei $f: \underbrace{U}_{\subset \mathbb{R}} \to \mathbb{R}$. f hat in $a \in X$ ein

lokales Maximum wenn es eine Umgebung V von a gibt, so dass $f(x) \leq f(a)$ $\forall x \in V$

lokales Minimum wenn es eine Umgebung V von a gibt, so dass $f(x) \geq f(a)$ $\forall x \in V$

isoliertes lokales Maximum wenn es eine Umgebung V von a gibt, so dass $f(x) < f(a) \ \forall x \in V \setminus \{a\}$

isoliertes lokales Minimum wenn es eine Umgebung V von a gibt, so dass $f(x) > f(a) \ \forall x \in V \setminus \{a\}$

Satz 57. Notwendiges Kriterium Sei $f: \underbrace{U}_{\subset \mathbb{R}} \to \mathbb{R}$. Ist $a \in U$ ein lokales

Extremum von f und ist f partiell differenzierbar in a, so gilt

$$\partial_1 f(a) = \partial_2 f(a) = \dots = \partial_n f(a) = 0$$

Bemerkung 79. Ist f differenzierbar in a, dann gilt d $f_a = 0$

Beweis 81. $k \in \{1, \dots, n\}$. Sei $F(t) = f(a + te_k)$. a lokales Extremum von $f \implies t = 0$ lokales Extremum von F f partiell differenzierbar in $a \implies F$ differenzierbar in $0 \implies F'(0) = 0$ Kettenregel $F'(0) = \partial_k f(a)$

Definition 116. stationäre Stelle Sei f differenzierbar in a und es gelte d f_a =. Dann heisst f stationär in a und a heisst stationäre Stelle in f oder kritischer Punkt.

Satz 58. hinreichendes Kriterium Sei $f \in C^2(U, \mathbb{R})$, sei d $f_a = 0$ Dann

- 1. $d^2 f_a > 0 \implies f$ hat in a ein isoliertes lokales Maximum
- 2. $d^2 f_a < 0 \implies f$ hat in a ein isoliertes lokales Minimum
- 3. $d^2 f_a \ge 0 \implies f \text{ hat in a kein Extremum}$

Beispiel 93. $f(x,y) = x^4 + y^4$ (0,0) ist ein isoliertes lokales Minimum

$$d f_{(0,0)} = 0$$
$$d^2 f_{(0,0)} = 0$$

Beweis 82.

$$d f_a = 0 \implies T_2 f(x; a) = f(a) + \frac{1}{2} d^2 f(a) (x - a)^2$$
$$f(a + h) = f(a) + \frac{1}{2} d^2 f(a) h^2 + R_2(h)$$
$$\frac{R_2(h)}{\|h\|^2} \to 0$$

1. $d^2 f_a > 0$ Sei

$$\phi: S^{n-1} \to \mathbb{R}$$
$$h \mapsto d^2 f(a)h^2$$

 $S^{n-1} \ kompakt \implies \phi \ nimmt \ ein \ Minimum \ m. \ \phi > 0 \implies m > 0$

$$d^{2} f_{a}(h)^{2} = d^{2} f_{a} \left(\|h\| \frac{h}{\|h\|} \right)^{2} = \|h\|^{2} \phi \left(\frac{h}{\|h\|} \right) \ge \|h\|^{2} m \quad \forall h \in \mathbb{R}^{h} \setminus \{0\}$$

Sei $\delta > 0$:

(a) $K_{\delta}(a) \subset U$

(b)
$$|R_2(h)| \le \frac{1}{4}m \|h\|^2 \ \forall h : \|h\| < \delta$$

Für $h: ||h|| < \delta$

$$f(a+h) = f(a) + \underbrace{\frac{1}{2} d^{2} f_{a} h^{2}}_{\geq \frac{m}{2} ||h||} + R_{2}(h) \geq f(a) + \frac{m}{4} ||h||^{2}$$

$$\xrightarrow{m>0} f(a+h) > f(a) \ \forall h \in K_{\delta}(a) \setminus \{0\}$$

a ist ein isoliertes lokales Minimum

- 2. $d^2 f_a < 0$ Sei $\phi := -f$. $d^2 g > 0 \implies g$ heisst in a ein isoliertes lokales Minimum $\implies f$ ist in a in isoliertes lokales Maximum
- 3. Sei $d^2 f_a \ge 0$. D.h. $\exists d^2 f_a v^2 > 0$ und $\exists d^2 f_a w^2 < 0$ Sei $F_v(t) := f(a + tv)$ und $F_w(t) := f(a + tw)$

$$\dot{F}_v(0) = \dot{F}_w(0) = 0$$

 $F_v''(0) = d^2 f(a)v^2 > 0$

 $\implies F_v$ nimmt in t = 0 ein Minimum an

$$F_w''(0) = d^2 f(a)w^2 < 0$$

 $\implies F_v$ nimmt in t=0 ein Maximum an. Deshalb nimmt f in a kein Extremum an.

Satz 59. Sei $f \in C^2(U, \mathbb{R}), a \in U$.

a lokales Maximum
$$\implies d^2 f \le 0$$

 $a\ lokales\ Minimum \implies d^2 f \ge 0$

Bemerkung 80. Methode Sei $f:U\to\mathbb{R}\left(\mathcal{C}^2\right)$ und U offen. Wir wollen alle Extrema finden

1. Man findet alle stationären Stellen d.h.

$$a \in U : \mathrm{d} f_a = 0$$

- 2. Man studiert $d^2 f_a$ für a stationär.
- 3. beten (z.B. Taylor weiterentwickeln)

Ist f auf \bar{U} definiert, so muss man Extrema auf \bar{U} finden

- 1. Man sucht nach Extrema auf $f|_{\partial U}$
- 2. Man verifiziert, ob solche Extrema eigentliche Extrema von f auf \bar{U} sind.

8.5 harmonische Funktionen

Definition 117. harmonische Funktionen Sei $f \in \mathcal{C}^2(U)$ f heisst harmonisch, falls

$$\Delta f(x) = 0 \qquad \forall x \in U$$

Satz 60. Schwaches Maximums-Prinzip für harmonische Funktionen Sei $U \subset \mathbb{R}^n$ offen und beschränkt und sei $f: \bar{U} \to \mathbb{R}^n$ stetig s.d. $f|_U$ harmonisch ist. Dann nimmt f ihr Maximum und ihr Minimum auf ∂U an.

Beweis 83. Widerspruchsbeweis Wir nehmen an:

- $f|_U$ harmonisch
- f nimmt ihr Maximum nicht auf ∂U an.

Seien $M := \max_{x \in U} f(x) < \infty$ und $\mu := \max_{x \in \partial x} f(x) < \infty$ denn f ist stetig und U beschränkt. Aus der 2. Annahme folgt, dass $\mu < M$

$$\lambda := \max_{x \in \partial U} \left(x_1^2 + x_2^2 + \dots + x_n^2 \right) < \infty$$

Sei $\varepsilon > 0$: $\mu + \varepsilon \lambda < M$. Sei $f_{\varepsilon}(x) := f(x) + \varepsilon (x_1^2 + \cdots + x_n^2)$.

$$\begin{split} M_{\varepsilon} &:= \max_{x \in \bar{U}} f_{\varepsilon}(x), \mu_{\varepsilon} := \max_{x \in \partial U} f_{\varepsilon}(x) \\ f_{\varepsilon}(x) &> f(x) \ \forall x \\ M_{\varepsilon} &\geq M \\ \mu_{\varepsilon} &\leq \mu + \varepsilon \lambda < M \\ \Longrightarrow \mu_{\varepsilon} &< M_{\varepsilon} \end{split}$$

 $\implies f_{\varepsilon}$ hat ein Maximum M_{ε} an einem Punkt $a \in U$

$$\implies$$
 d² $f_{\varepsilon} \le 0$

$$\Delta f_{\varepsilon}(a) = \operatorname{Spur} f_{\varepsilon}''(a) \le 0$$

Aber

$$\Delta f_{\varepsilon}(a) = \underbrace{\Delta f(a)}_{=0} + \underbrace{\varepsilon \Delta \left(x_1^2 + \dots + x_n^2\right)}_{2n\varepsilon > 0}$$

 $\implies \Delta f_{\varepsilon}(a)$. Dies ist ein Widerspruch zu $\Delta f_{\varepsilon}(a) \leq 0$.

8.6 Konvexität von Funktionen

Definition 118. Sei $F:U\to\mathbb{R},\ U\subset\mathbb{R}^n$ f heisst konvex, wenn $\forall a,b\in U$ $\forall t\in(0;1)$

$$f((1-t)a+tb) < (1-t)f(a)+tf(b)$$

- konvex: \leq
- konkav: \geq
- streng konvex <
- streng konkav >

Satz 61. Sei $f \in C^2(U, \mathbb{R})$, U konvex und offen

$$f \text{ konvex} \iff d^2 f_a \ge 0$$
 $\forall a \in U$
 $d^2 f_a > 0 \implies f \text{ streng konvex}$ $\forall a \in U$

Beweis 84.

$$F(t) = f((1-t)a + tb)$$

1-dimensional

8.7 Parameterabhängige Integrale

Definition 119. Sei $U \subset \mathbb{R}^n$ und sei $f: U \times [a; b] \to \mathbb{C}$ s.d. $\forall x \in U: t \mapsto f(x, t)$ stetig auf $[a; b] \implies$ Regelfunktion

$$F(x) := \int_a^b f(x,t) \, \mathrm{d} \, t$$

 $f \text{ stetig} \implies F \text{ stetig}$

8.7.1 Differentiationssatz

Satz 62. Es gelte zusätzlich

- $\forall t \in [a; b]$ ist f nach x_i differenzierbar
- $\partial_i f: U \times [a;b] \to \mathbb{C}$ stetig

Dann ist F nach x_i differenzierbar und

$$\partial_i F(x) = \int_a^b \partial_i f(x, t) \, \mathrm{d} \, t$$

d.h.

$$\partial \int = \int \partial$$

Bemerkung81. Mit den Lebesgne-Integralen gilt das unter viel schwächeren Bedingungen.