KOSHA GUIDE A - 162 - 2016

> 탄소나노튜브 및 탄소나노섬유(원소탄소분석) 에 대한 작업환경측정·분석 기술지침

> > 2016. 6

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 한국산업안전보건공단 산업안전보건연구원 이나루
- 제·개정 경과
- 2016년 6월 산업위생분야 제정위원회 심의(제정)
- 관련규격 및 자료
- 윤충식. 이승묵, 김부욱, 함승헌, 김송하, 이진호, 박은하, 황규진 [2015]. 탄소나노튜 브 취급 사업장의 탄소나노튜브 노출 특성 및 측정 분석 방법 연구. 한국산업안전 보건공단. 산업안전보건연구원
- NIOSH [2016]. Manual of Analytical Methods(NMAM). Diesel particulate matter (as elemental carbon) Method 5040, 5th Edition, NIOSH, Cincinnati, OH. DHHS (NIOSH) Publication
- NIOSH [2013]. Current intelligence bulletin 65. Occupational exposure to carbon nanotubes and nanofiber, NIOSH, Cincinnati, OH. DHHS (NIOSH) Publication
- 관련법규·규칙·고시 등 해당사항 없음
- 기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

○ 공표일자 : 2016년 6월 30일

○ 제 정 자 : 한국산업안전보건공단 이사장

탄소나노튜브(원소탄소분석)에 대한 작업환경측정·분석 기술지침

1. 목적

이 지침은 탄소나노튜브 및 탄소나노섬유(원소탄소분석)에 대한 측정 및 분석을 수행할 때 정확도 및 정밀도를 유지하기 위하여 필요한 제반 사항에 대하여 규정함을 목적으로 한다.

2. 적용범위

이 지침의 적용대상은 탄소나노튜브 및 탄소나노섬유(원소탄소분석)의 측정, 분석 및 이와 관련된 사항에 한한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음의 각 호와 같다
- (가) "밀폐"라 함은 취급 또는 보관상태에서 고형(固形)의 이물(異物)이 들어가지 않도록 한 상태를 말한다.
- (나) "밀봉"이라 함은 취급 또는 보관상태에서 기체 또는 미생물이 침입할 염려가 없는 상태를 말한다.
- (다) 중량을 "정확하게 단다"라 함은 지시된 수치의 중량을 그 자릿수까지 단다는 것 을 의미한다.
- (라) "약"이란 그 무게 또는 부피에 대하여 ± 10% 이상의 차가 있어서는 안 된다.
- (마) 시험조작 중 "즉시"라는 용어는 30초 이내에 표시된 조작을 하는 것을 말한다.
- (바) 시료의 시험, 바탕시험 및 표준액에 대한 일련의 동일시험을 행할 때 사용하는 시약 또는 시액은 동일 롯트(LOT)로 조제된 것을 사용한다.
- (사) "검출한계"라 함은 주어진 분석절차에 따라 합리적인 확실성을 가지고 검출할 수 있는 가장 적은 농도나 양을 의미한다.
- (아) "정량한계"라 함은 주어진 신뢰수준에서 정량할 수 있는 분석대상물질의 가장 최소의 양으로, 단지 검출이 아니라 정밀도를 가지고 정량할 수 있는 가장 낮은 농도를 말한다. 일반적으로 검출한계의 3배 수준을 의미한다.

KOSHA GUIDE

A - 162 - 2016

- (자) "탈착효율"이란 채취한 유기화합물 등의 분석값을 보정하는데 필요한 것으로, 시료채취 매체와 동일한 흡착관에 첨가된 양과 분석량의 비로 표현된 것을 말 한다.
- (차) "회수율"이라 함은 채취한 금속 등의 분석 값을 보정하는데 필요한 것으로, 시료채취 매체와 동일한 재질의 여과지에 첨가된 양과 분석량의 비로 표현된 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 기준에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 시행규칙, 산업안전보건기준에 관한 규칙 및 작업환경측정 및 지정측정기관 평가 등에 관한 고시(고용노동부고시제2013-39호)에서 정하는 바에 따른다.

4. 일반사항

- (1) 이 시험법에 필요한 어원, 분자식 및 화학명 등은 특별한 언급이 없는 한 () 내에 기재한다.
- (2) 원자량은 국제순수 및 응용화학협회(IUPAC)에서 제정한 원자량 표에 따른다. 분자량은 소수점 이하 제 2단위까지 하고 제 3단위에서 반올림한다.
- (3) 이 시험법에 규정한 방법이 분석 화학적으로 반드시 최고의 정밀도와 정확도 를 갖는다고는 할 수 없으며 이 시험방법 이외의 방법이라도 동등이상의 정확도와 정밀도가 있다고 인정될 때에는 그 방법을 사용할 수 있다.
- (4) 이 시험방법에 표시한 사항 중 회수율, 검출한계 등은 각조의 조건으로 시험하였을 때 얻을 수 있는 값을 참고하도록 표시한 것이므로 실제로는 그 값이 분석조건에 따라 달라질 수 있다.
- (5) 이 시험법에 사용하는 수치의 맺음법은 따로 규정이 없는 한 한국산업규격 KS Q 5002(데이터의 통계적 해석방법)에 따른다.
- (6) 이 시험법에 규정하지 않는 사항에 대해서는 일반적인 화학적 상식에 따르되 이 시험법에 기재한 방법 중 세부조작은 시험의 본질에 영향을 미치지 않는 범위 내에서 시험자가 적당히 변경 조절할 수 있다.
- (7) 단위 및 기호 : 길이, 넓이, 부피, 농도, 압력 또는 무게를 나타내는 단위 및 기호 는 아래 표에 따른다. 여기에 표시되어 있지 않은 단위는 KS A ISO 80000-1(양 및 단위-제1부: 일반사항)에 따른다.

종류	단위	기호	종류	단위	기호
	미터	m		몰농도	M
길이	센티미터	cm		노르말농도	N
	밀리미터	mm	농도	밀리그램/리터	mg/L
	마이크로미터	<i>µ</i> m		마이크로그램/밀리리터	μg/mL
	나노미터	nm		퍼센트	%
압력	기압	atm		세제곱미터	m³
	수은주밀리미터	mmHg	부피	세제곱센티미터	Cm³
	수주밀리미터	mmH ₂ O		세제곱밀리미터	mm³
	ᆌ고미디	제곱미터 m²		킬로그램	kg
ואַ אַן		m² cm² 무게	그램	g	
넓이	제곱센티미터		十	밀리그램	mg
	제곱밀리미터	mm²		마이크로그램	$\mu\mathrm{g}$
용	리터	L			
	밀리리터	mL			
	마이크로리터	μL			

(8) 온도

- (가) 온도의 표시는 셀시우스(Celsius) 법에 따라 아라비아숫자 오른쪽에 ℃를 붙인다. 절대온도는 K로 표시하고 절대온도 0 K는 -273℃로 한다.
- (나) 상온은 15~25℃, 실온은 1~35℃, 미온은 30~40℃로 한다. 냉소는 따로 규정 이 없는 한 15℃이하의 곳을 뜻한다.

(9) 농도

- (가) 액체 단위부피중의 성분질량 또는 기체 단위부피중의 성분질량을 표시할 때에는 중량/부피(w/v)%의 기호를 사용한다. 액체 단위부피중의 성분용량, 기체 단위 부피중의 성분용량을 표시할 때에는 부피/부피(v/v)%의 기호를 사용한다. 백만분의 용량비를 표시할 때는 ppm(part per million)의 기호를 사용한다.
- (나) 공기 중의 농도를 mg/m³으로 표시했을 때의 m³은 정상상태(NTP, Normal Temperature and Pressure : 25 ℃, 1기압)의 기체용적을 뜻한다. 따라서 노출 기준과 비교 시는 작업환경 측정 시의 온도와 압력을 실측하여 정상상태의 농도로 환산하여야 한다.

KOSHA GUIDE

A - 162 - 2016

(10) 시약, 표준물질

- (가) 분석에 사용되는 시약은 따로 규정이 없는 한 화학용 시약에 규정된 일급이상의 것을 사용하여야 한다. 분석에 사용하는 시약은 제조회사에서 표시하는 농도 함량을 따른다.
- (나) 광도법, 전기화학적분석법, 크로마토그래피법, 고성능액체크로마토그래피법에 쓰이는 시약은 특히 순도에 주의해야 하고, 분석에 영향을 미치는 불순물을 함유할 염려가 있을 때는 미리 검정하여야 한다.
- (다) 분석에 사용하는 지시약은 특이한 것을 제외하고는 KS M 0015(화학 분석용 지시약 조제방법)에 규정된 지시약을 사용한다.
- (라) 시험에 사용하는 표준품은 원칙적으로 특급시약을 사용하며, 표준용액을 조제하기위한 표준용 시약은 따로 규정이 없는 한 적절히 보관되어 오염 및 변질이 안 된 상태로 보존된 것을 사용한다.
- (11) 측정·분석 방법에 사용하는 초순수는 따로 규정이 없는 한 정제증류수 또는 이온교환수지로 정제한 탈염수(脫鹽水)를 말한다.

(12) 기구

- (가) 계량기구중 측정값을 분석결과의 계산에 사용할 목적으로 사용되는 것은 모두 보정하는 것을 원칙으로 한다.
- (나) 중량분석 용 저울은 적어도 10^{-5} g(0.01 mg)까지 달수 있어야 하며, 화학분석용 저울은 적어도 10^{-4} g(0.1 mg)까지 달 수 있어야 하며, 국가검정을 필한 제 품 또는 이에 준하는 검정을 필한 제품이어야 한다.
- (다) 이 시험법에서 사용하는 모든 유리 기구는 KS L 2302(이화학용 유리기구의 모양 및 치수)에 적합한 것 또는 이와 동등이상의 규격에 적합한 것으로 국가 에서 지정한 기관에서 검정을 필한 것을 사용하여야 한다.
- (라) 여과용 기구 및 기기는 특별한 언급이 없이 "여과한다"라고 하는 것은 KS M 7602(거름종이(화학 분석용)) 거름종이 5종 또는 이와 동등한 여과지를 사용하여 여과함을 말한다.

5. 시료채취 및 분석 시 고려사항

(1) 시료채취 기구 및 측정방법의 선택 시료채취의 목적과 시료채취시간, 방해인자, 예상되는 오염농도 및 실험실에서 보

KOSHA GUIDE

A - 162 - 2016

유하고 있는 분석장비의 능력 등을 종합적으로 고려하여 최적의 시료채취기구 및 분석방법을 선택한다.

- (2) 검량선 작성을 위한 표준용액 제조
 - (가) 열광학적 분석기기를 이용하여 원소탄소를 분석할 때 원소탄소 농도는 헬륨 가스에 혼합된 5% 메탄 가스를 기준으로 계산되어진다. 760 torr, 298K에서 헬륨 속 5% 메탄 혼합물은 毗당 24,54 μg의 탄소를 포함하고 있다. 메탄/헬륨 혼합 가스는 분석 과정에서 자동으로 주입된다.
 - (나) 검정용 외부 표준액 제조
 - ① 열광학적 분석기기가 올바르게 작동하고 있는지 분석자가 확인하기 위해 수크로스용액을 이용한다. 수크로스 4.207 μgC/μℓ 용액을 제조한 후에 매 분석마다 이 용액을 분석하여 농도 결과로 열광학적 분석기기의 적절한 작동 여부를 판단한다.
 - ② 수크로스 용액은 99.9% 이상의 순도를 가진 수크로스(sucrose) 10.00 ± 0.01 g을 칭량하여 1 리터의 증류수로 희석하면 4.207 μgC/μ 용액이 된다. 이 용액은 6개월 정도 보관이 가능하다.
 - ③ 석영 필터 1.5 ㎡를 펀치하여 제조한 수크로스 용액을 시린지로 주입한다.
 - 표준탄소 저장액 10 μℓ를 주입하면 42.07 μgC/μℓ 이 됨
 - ④ 원소 탄소 농도가 저 농도일 경우, 저농도용 표준 저장액을 만든다
 - 표준탄소 저장액을 증류수로 10배 희석하면 0.4207 $\mu g C/\mu l$ 이 됨
 - 저농도용 표준 저장액 10 μl를 필터에 주입하면 4.207 μgC/μl 이 됨
 - ⑤ 분석 전에 30분 동안 필터를 건조시킨다.

탄소나노튜브 및 탄소나노섬유 (원소탄소분석) (Carbon nanotubes or carbon nanofibers as Elemental Carbon)

분자식:		구조식:	원자량:	CAS No.: 없음	
녹는점:		끓는점:	비 중:	용 해 도:	
특징 및 발생원:		탄소나노튜브는 3차원 중 한 단면의 크기가 100 mm이하이며, 탄소로 구성된 원통형			
		모양을 띰. 가로 대 세로의 비(aspect ratio)가 매우 큼. 탄소나노섬유 역시 탄소로			
		구성되어 있으며 찻종 모양이나 그래핀이 쌓여 있는 구조를 가지고 있음.			
	고용노동부		OSHA		
노출기준	$(\mu \mathrm{g/m}^3)$	_	$(\mu \mathrm{g/m^3})$		
工艺기正	ACGIH	_	NIOSH 1	g/m³ (원소 탄소)	
	$(\mu \mathrm{g/m}^{\scriptscriptstyle 3})$		$(\mu \text{g/m}^3)$	g/II (번호 번호) 	

동의어: carbon nanotube, carbon nanofiber, multiwalled carbon nanotubes, singlewalled carbon nanotubes

분석원리 및 적용성: 탄소나노튜브 혹은 탄소나노섬유를 취급하는 작업환경에서 대상 입자상물 질을 전처리한 석영필터에 포집하여 첫 단계에서는 헬륨가스를 이용하여 중기화시킨 후 유기탄소를 분석하고, 두 번째 단계에서는 헬륨/산소 복합 가스를 이용하여 원소탄소를 태워 메탄가스로 전환시킨 후, 불꽃이온화검출기(FID)로 메탄을 정량한다.

로 전환시킨 후, 불꽃이온화검출기(FID)로 메탄을 정량한다.				
시료채취 개요	분석 개요			
 시료채취매체: 25-mm 혹은 37-mm 전처리한 석영필터; 전도성 카세트 혹은 IOM 카세트 추천 (개방형) 유량: 2-4 L/min 공기량 최소: 검출한계를 고려하면, 1 μg/㎡의 농도를 검출하기 위해 최소 1038 L 필요 최대: 필터 당 90μg/c㎡까지 운반: 일반적인 방법 시료의 안정성: 안정함 공시료: 시료세트 당 2-10개의 현장 공시료 	 분석기기: 열광학적 분석기기; 불꽃이온화검출기 (Thermal-optical analysis; Flame ionization detector(FID)) 분석대상물질: 원소탄소(총 탄소량이 측정되나 원소탄소를 측정지표로 제안함) 여과지펀치크기: 1.5 cm²(혹은 [1]참조) 보정(Calibration): 메탄 주입 범위: 필터 당 1-105 μg([1]참조) 			
정확도	 검출한계: 필터 당 0.3 μg 정밀도(S_x): 1 μg C에서 0.19 , 			
 연구범위: 자료 없음 편향: 자료 없음 총 정밀도(Ŝ_{rT}): 자료 없음 정확도: 자료없음 	10-72 μg C에서 0.01			

_		
	적용성	방해작용
	더 낮은 검출한계를 원한다면 25-mm 필터를 사용하여 더 많은 부피의 시료를 포집해야 함. 원소탄소의 부하가 20 µg/cm² 이상일 때 OC/EC 비(split)가 나타나지 않을 수 있음. 일부 원소탄소가 산화되기 전까지 시료의 투과율이 낮게 유지되기 때문에 원소탄소의 측정값이 낮게 나올 수 있음. 이 경우 원소탄소 최고점(EC peak) 전에 OC/EC 비(split)를 재조정해야 함. 원소탄소의 최대 측정량은 800 µg/m²(90µg/cm²)이. 검출한계 근처의 낮은 원소탄소 부하량은 정확성 향상을 위한 매뉴얼 스필릿(manual split)을 필요로 함	 ● 이 방법으로 전체탄소(유기, 무기탄소)를 측정할 수 있으나 유기탄소는 방해 작용 요소가 있기에 원소탄소를 작업환경노출지표로 삼을 것을 권고함 ● 단배연기에는 1%미만의 원소탄소가 포함되어 있기 때문에 담배연기, 카보네이트는 원소탄소측정의 방해요소가 아님
	시약	기구
	순도 99.9% 이상) - 스쿠르스 10.00 ± 0.01 g을 칭량하여 1 리터 증류스로 희석시키면 4.207 μgC/μl 용액을 만들 수 있음. 1차 증류수 이상 용액 헬륨(He)가스(순도 99.9% 이상), 산소를 제거하기 위해 필요한 스크러버수소(H2) 가스(순도 99.9% 이상), 실린더 또는수소 발생장치 적은양의 탄화수소를 포함한 공기(Ultra Zero air) 10% 산소-헬륨 혼합기체 (초고압 가스, 인증된 혼합기체) 5% 메탄-헬륨 혼합기체 (초고압 가스, 인증된 혼합기체)	터 지지체(스테인리스 스크린, 셀룰로오스패드, 지지체로 사용될 추가 석영필터 등)가 있는 카세트 - 고순도, 고효능, 바인더 프리(binder-free) 석 영필터를 사용 - 25 ㎜ 석영필터는 실험실에서 자체 세척해야함. 필터를 머플 퍼니스(muffle furnace) 기준 800-900℃에서 1-2시간, 애쉬(Asher) 기준 저 온에서 2-3시간 동안 세척해야함 ※ 짧은 세척시간이 효과적이며 전처리 후에는 필터의 유기탄소 잔여량을 확인해야함 전 처리 직후 필터의 유기탄소 양은 0.1 μg/c㎡ 이하여야함. 세척된 필터에는 유기탄소가 쉽게 침착함. 밀폐된 저장고에 보관한다하더라도 몇 주 후에는 그 양이 0.5μg/c㎡ 이상이 될 수 있음 ※ 셀룰로오스 지지체는 석영필터나 스크린보다 공시료에서 유기탄소 농도가 더 높음.이 때문에 석영필터로 증기흡수를 하여보정해야함
		용화되고 있음. 예)Pall Gelman science pallflex tissuequarts 2500QAt-UP 유연성 튜브가 부착된 개인시료채취펌프 열광학적 분석기기(Thermal-optical analyzer) 여과지의 직사각형 부분을 떼어내기 위한 금속

펅치

- 시린지 10µL
- 알루미늄호일
- 니듬
- 포셉
- 용량플라스크(A 등급)
- 화학천칭(저울)
- 특별 예방조치: 수소는 가연성 기체이므로 사용자는 가연성, 비가연성 기체를 다루거나 실린더, 제어기 사용에 있어 적절한 방법을 숙지하여야 함. 장비의 레이저는 Class I 으로 정상적 사용에 있어서 방사 노출은 없음. 내부 레이저 광원(the internal laser source)은 ClassⅢb 상품으로 눈에 직접적 혹은 간접반사(완전반사)로 비춰질 경우 유해가능성이 있음. 다만 ClassⅢb 레이저 사용 시 일반적으로 위험한 분산된 반사가 없으나 광학계의 수리나 철거 시에는 전문가가 작업을 해야 함.

I. 시료채취

- 1. 시료채취매체와 연결된 개인 시료채취펌프를 보정한다.
- ※ 개방형 카세트, 밀폐형 카세트 둘 다 사용 가능하나 개방형의 전도성 카세트가 시료채취의 변이를 감소시킴
- 2. 시료채취매체 출구와 개인시료채취 펌프를 유연한 튜브로 연결한다.
- 3. 2-4 L/분의 정확한 유량으로 시료를 채취한다.
- 4. 시료채취가 끝나면 카세트 상단을 교체하거나 제거한 후 밀봉하여 실험실로 운반한다.
- ※ 시료필터는 실험실 환경에서 안정적이며 작업환경에서 적정온도 이상의 온도상승 위험이 없을 때에는 냉장보관 및 운송 할 필요가 없음. 장기보관 시 담배연기와 같이 유기탄소를 포함하는 다른 발생원이 있을 경우에는 유기탄소의 손실이 발생할 수 있음. 많은 원소탄소가 포집된 시료(80%이상)라 할지라도 시료채취 이후 유기탄소입자의 흡착은 발생하지 않음.

Ⅱ. 시료 전처리

5. 이소프로필알콜이나 아세톤으로 호일을 세척하고 잔여용액은 휘발시킨 뒤 시료필터를 호일 표면에 놓는다. 침착물이 떨어지지 않도록 조심하며 손이 닿지 않도록 시료필터 일부분을 편칭한다. 니들을 사용하여 편칭된 부분으로부터 남은 필터를 떼어낸다.

Ⅲ. 보정 및 정도관리

- 6. 최소한 하나의 시료에 대해 재분석을 실시해야 한다. 50개의 시료세트까지는 10%, 50개 이상의 시료세트에 대해서는 5%의 시료 재분석을 실시해야 한다. 만약 필터 시료가 고르지 않게 분포되어 있다면 다른 부분을 펀칭하여 재분석 한다.
 - ※ 시료 재분석의 정밀도는 5%이내가 좋으며, 일반적으로 1-3% 정도임.
- 7. 장비보정이 제대로 이루어 졌는지 확인하기 위해 공시료 3개와 분석대상물질을 첨가한 시료 3개를 분석한다. 분석대상물질을 첨가한 시료 준비는 다음과 같다.

- a. 10 μL 시린지로 유기탄소 표준용액의 일부를 전처리된 필터에 주입한다. 결과의 정확성을 높이기 위해서는 전처리된 필터를 용액 주입 전 다시 오븐(oven)에 넣어 세척한다.
- ※ 표준용액을 가장자리 끝부분(그 위치가 레이저 빔 영역 안에 있는지 확인)에 주입하여 고르게 분산시킴.
- b. 물을 증발시키고 공 시료와 분석시료를 분석한다.
 - ※ 분석 첫 번째 단계 온도에서 투과율 감소는 수분 손실을 의미함. 이는 건조시간을 오래 했을 때 발생함. 필요 시 분석대상물질을 첨가한 시료 역시 오븐에 건조시킴. 빠른 건조를 위해서는 '클린오븐(clean oven)' 메뉴를 실행하고 4초 후 정지시킴. 용액이 끓는 것을 방지하기 위해 100 ℃이하의 온도로 유지시키고 건조 기구에 따라서 적정시간을 조절해야함. 이 방법은 간편하며 실험실에서 유기물 증기의 잠재적 흡착을 예방할 수 있음. 일부 프로그램은 이 기능 (clean oven)이 없을 수 있음.
- 8. 각 시료 세트 마다 공 시료를 측정, 분석을 한다.

Ⅲ. 시료분석

- 9. 참고문헌의 정보를 참고 하여 제조사의 운영 매뉴얼을 따른다.
 - ※ 산화시키기 어려운 형태의 탄소는 원소탄소를 제거하기 위해서 장기간 고온의 산화조건을 설정 하여야 함(원소탄소 최고점(EC peak)이 보정 최고점(calibration peak)과 일치 하여서는 안 된 다). 적절한 온도와 시간 조절이 필요하며 940 ℃ 이상의 고온에 노출되어서는 안 됨.
 - ※ 참고로 Sunset Laboratory Inc.의 열광학적 분석기를 이용하여 탄소나노튜브 및 탄소나노섬유의 원소탄소를 분석할 때 추천하는 장비의 분석 조건은 다음과 같음.
 - ※ 오븐 온도가 낮을 경우 국내에서 생산되는 다중벽탄소나노튜브가 완전히 연소되지 않아, 회수율이 낮게 나타난다는 연구 보고가 있음(윤충식 등, 2015). 따라서 다중벽탄소나노튜브의 경우 고 온·장시간의 분석 조건이 필요함.

	단일벽탄소나노튜브 및 탄소나노섬유		다중벽탄소나노튜브	
운반 가스	오븐 온도 (℃)	시간 (초)	오븐 온도 (℃)	시간 (초)
	1	10	1	10
	310	80	310	80
헬륨(He)	475	80	475	80
宣音(116)	615	80	615	80
	870	110	870	110
	550	45	550	45
	550	45	550	90
	625	45	625	90
헬륨/2% 산	700	45	700	90
	775	45	775	90
소 혼합	850	45	850	90
	870	110	870	120
	-	I	930	240
보정 산소	1	120	1	120
총시간		860초(14.3분)	_	1335초 (22.25분)

10. 유기탄소와 원소탄소의 질량(μg)을 측정한다. 분석결과는 μg/cm² C의 단위로 나타낸다. 이 값은 표준 편칭 면적인 1.5 cm²을 기준으로 한 것이며, 다른 면적으로 분석했다면 결과에 1.5만큼 곱한 뒤실제 면적 값으로 나누어야 표준편칭면적과 일치된 값을 얻을 수 있다.

그림 1. 원소탄소가 포함된 필터 시료의 서모그램(Thermogram). 초록색 그래프가 원소탄소 피크임. 이 그림은 실제 단일벽탄소나노튜브 분석에서 얻음

그림 2. 원소탄소가 포함된 필터 시료의 서모그램(Thermogram). 초록 색 그래프가 원소탄소 피크임. 이 그림은 실제 다중벽탄소나노튜브 분석에서 얻음

Ⅳ. 계산

- 11. 각 분석시료 원소탄소(W_{EC})의 총량(μg)을 계산하기 위해 분석된 원소탄소 값(μg/c㎡)과 필터 침착 영역(25-mm 필터인 경우 3.46 c㎡, 37-mm 필터인 경우 8.55 c㎡)을 곱한다. 동일하게 공시료의 원소 탄소 값(μg/c㎡)과 필터 침착영역(25-mm 필터인 경우 3.46 c㎡, 37-mm 필터인 경우 8.55 c㎡)을 곱해 현장 공시료(field blank)의 원소탄소 평균값(W_b)을 구한다. 유기탄소 역시 동일한 방법으로 계산 가능하나 유기탄소의 증기흡착으로 인해 실제 각 공 시료의 유기탄소 값은 과소평가될 수 있다.
- 12. 샘플링 된 공기(V)의 원소탄소 농도 (C_{EC}) 를 계산한다.

$$C_{EC} \; = \; \frac{W_{EC} - W_b}{V} \; , mg/m^3$$

C_{EC} : 원소탄소 농도 (mg/m³)

W_{EC}: 분석시료 원소탄소의 총량 (μg)W_b: 현장 공시료 원소탄소의 총량 (μg)

V : 시료 공기 부피 (L)

V. 비고

- 이 방법은 윤충식 등(2015) 연구 보고서에 기초한다. 다중벽탄소나노튜브에 기인하는 원소탄소를 분석할 때 고온의 오븐온도를 사용하는데, 이 온도는 장비 회사에서 보증하지 않는 고온이므로 사용 시에 주의를 요한다.
- 열광학적 방법은 비휘발성의 탄소(특히 OC, CC ,EC) 분석에 용이하다. 이 방법은 포집의 효율을 위해 흡착제가 필요하기 때문에 휘발성이 조금이라도 있을 경우에는 부적절할 수 있다.

VI. 참고문헌

- 1. 윤충식. 이승묵, 김부욱, 함승헌, 김송하, 이진호, 박은하, 황규진 [2015]. 탄소나노튜브 취급 사업장의 탄소나노튜브 노출 특성 및 측정 분석 방법 연구. 한국산업안전보건공단, 산업안전보건연구원
- 2. NIOSH [2016]. Manual of Analytical Methods(NMAM). Diesel particulate matter (as elemental carbon) Method 5040, 5th Edition, NIOSH, Cincinnati, OH. DHHS (NIOSH) Publication
- 3. NIOSH [2013]. Current intelligence bulletin 65. Occupational exposure to carbon nanotubes and nanofiber, NIOSH, Cincinnati, OH. DHHS (NIOSH) Publication