FRIEDRICH SCHILLER UNIVERSITY JENA Institute of Applied Physics Prof. Dr. Thomas Pertsch

Anastasia Romashkina, Shreyas Ramakrishna, Mostafa Abasifard, Tina (Shiu Hei Lam), Pawan Kumar, Xiao Chen

Series 5 FUNDAMENTALS OF MODERN OPTICS

to be returned on 24.11.2022, at the beginning of the lecture

Task 1: Poynting vector (2+2 points)

a) What is the general connection between the Poynting vector $S(\mathbf{r},t)$ and the optical intensity $I(\mathbf{r})$?

Now consider the electric field $\mathbf{E}(z,t) = \mathbf{E}_0 \exp\left[\mathrm{i}(\alpha z - \omega_0 t)\right] + \mathbf{E}_1 \exp\left[\mathrm{i}(\beta z - \omega_0 t)\right]$, where $\mathbf{E}_0 = A_0 \hat{\mathbf{e}}_x$ and $\mathbf{E}_1 = A_1 \hat{\mathbf{e}}_v$. A_0 , A_1 , α , and β are real valued.

b) Calculate the time-averaged Poynting vector $\langle \mathbf{S}(\mathbf{r},t) \rangle$ and the intensity.

Task 2: Evanescent and propagating waves in diffraction theory (2+2+2 points)

Consider an external source of electric field in vacuum, oscillating with the frequency ω , with a Gaussian amplitude distribution of $u_0(x, y)$ at the z = 0 plane, in Cartesian coordinates (neglect the polarization):

$$u_0(x, y) = A \exp\left[-(x^2 + y^2)/W^2\right]$$
 with $W > 0$.

- a) Compute its spatial frequency spectrum $U_0(k_x, k_y)$.
- b) Consider $U_0(k_x, k_y)$ as a function of $k_r = \sqrt{k_x^2 + k_y^2}$. What is the ratio $U_0(k_r = k_0)/U_0(k_r = 0)$? This should only be a function of W and λ . Now consider the specific case of $W = \lambda/\pi$ and plot $U_0(k_r)/U_0(k_r = 0)$ as a function of k_r . Have your horizontal axis in units of $k_0 = 2\pi/\lambda$, where λ is the vacuum wavelength. What is the value of $U_0(k_r = k_0)/U_0(k_r = 0)$ on this plot?
- c) We know from the diffraction theory that the spatial frequency spectrum at the plane of $z=z_0$ is $U\left(k_x,k_y;z_0\right)=U_0\left(k_x,k_y\right)\exp\left[ik_z\left(k_x,k_y\right)z_0\right]$, with $k_z\left(k_x,k_y\right)=\sqrt{k_0^2-k_x^2-k_y^2}$. Plot the real and imaginary part of $k_z\left(k_x,k_y\right)$ in the same plot as part (b). Specify the $\left(k_x,k_y\right)$ ranges of $U_0\left(k_x,k_y\right)$ that contribute to propagating and evanescent waves along the z-direction.

Task 3: Talbot Effect, with and without the Fresnel approximation (5+2+5+3 * points)

Assume an initial field f(x,z=0) (with full translational symmetry in the y-direction), which is periodic along the x-direction with a period of a, such that f(x+a,z=0)=f(x,z=0). We want to calculate the field f(x,z) after propagation along the z-direction, in vacuum, where the vacuum wavelength of the field is λ . If we treat this diffraction problem in the Fresnel (paraxial) approximation, we will find that after a certain length L_T the initial field reappears except for an extra phase, such that

$$f(x, z = L_T) = f(x, z = 0) \exp(ikL_T + i2\pi m_l)$$
 with $m_l \in \mathbb{Z}$

This is known as the Talbot effect and L_T is known as the Talbot length.

- a) Find the expression for L_T under the assumptions specified above. Hint: You do not need to know the specific expression for the function f(x). Express f(x) as a Fourier series, and then follow through with the standard approach for calculating beam diffraction. Keep in mind that we assume the paraxial approximation to be valid.
- b) Which colour light field should be used to have the Talbot length as 25.71 m, given the period to be a = 3 mm?

The Talbot effect always holds true in the Fresnel approximation. In contrast, if the Fresnel approximation is not valid, for example when the period a is comparable to the wavelength λ , the Talbot effect does not necessarily take place. However, it can still occur for certain field patterns.

c) Show that for an initial field distribution of the form

$$f(x, z = 0) = A\cos(x2\pi/a_1)\cos(x2\pi/a_2)$$

the Talbot effect still takes place outside the paraxial regime and calculate the Talbot length. Find the value of L_T for the wavelength of $\lambda = 800$ nm and periods $a_1 = 4\mu\text{m}$, $a_2 = 5\mu\text{m}$.

d*) Consider now an initial field, which is formed as the superposition of three periodic components

$$f(x,z=0) = A_1 \cos(x2\pi/a_1) + A_2 \cos(x2\pi/a_2) + A_3 \cos(x2\pi/a_3).$$

Show that the Talbot effect in this case will only take place if a certain relation between λ , a_1 , a_2 , a_3 is satisfied and find this relation.