DIGITAL SIGNAL PROCESSING

TASK 1

Submitted by:

Anupam Kshetri 33471

Submitted to:

Prof. Vivien Glönkler

Task 1:

The task was done to create an exercise using the MATLAB commands Logarithm of base 10, Cosine, ceil, and create a custom function.

Questions:

In my free time, I like planting trees in my garden. I brought two mango seeds and decided to plant it in two different ways. One by using fertilizers and one without using fertilizers. After six months, there was a huge difference in the height between both trees.

- 1. Consider the initial starting height of 1 cm.
- 2. Describe the growth of the plant as a logarithmic function(log base 10) with respect to time and sketch the graph for time period of 10 years with interval of a year.
- 3. Calculate the rate of increase in height per year of the plant and plot it.(rate is calculated by subtracting the initial value by the following value divided by the time.)
- 4. Calculate the average rate of increase in height. Use the ceiling value.
- 5. The rate if increase in height is observed in different seasons for both trees starting from summer and found to be a cosine function. If initial rate of change was 2 cm/year, sketch the graph.

Sample Code:

```
clc;clear;
n = 1 : 1 : 10; %number of years
N = 10; %number of elements
g = log10(n); %logarithmic function
rt = rate(g(:,1), g(:,2),n); % function call
R = 2 * cos(pi*2 * n/N); %cosine function
a = ceil(average(rt)); %function call
subplot(2, 2, 1), stem(n, g); hold on %plotting
xlabel("Number of years");
ylabel("Height of plant");
title ("Growth graph");
subplot(2, 2, 2), stem(n, rt); hold on
xlabel("Number of years");
ylabel("Rate of increase in height");
title("Growth rate graph");
subplot(2,2,3), stem(n, R); hold on
xlabel("Number of years");
ylabel("Change of rate in two plants");
function [av] = average(s) %creating function
1 = length(s); %total number of elements
av = sum(s) / l; %mean calculation
end
function r = rate(a,b,n)
    r = [];
    for i = 1: length(n)
       r = [r (b - a) / n(i)];
    end
end
```


The graph from the sample solution.

Reference:

<u>Linear and exponential growth models. Table Growth of a plant population.</u> | Math Lounge (mathelounge.de)