Generator

基本概念

Generator 函数是 ES6 提供的一种异步编程解决方案,语法行为与传统函数完全不同。

Generator函数有多种理解角度。语法上,首先可以把它理解成,Generator函数是一个状态机,封装了多个内部状态。

执行 Generator 函数会返回一个遍历器对象,也就是说,Generator 函数除了状态机,还是一个遍历器对象生成函数。返回的遍历器对象,可以依次遍历 Generator 函数内部的每一个状态。

形式上,Generator 函数是一个普通函数,但是有两个特征。一是, function 关键字与函数名之间有一个星号;二是,函数体内部使用 yield 表达式,定义不同的内部状态(yield 在英语里的意思就是"产出")。

```
function* helloWorldGenerator() {
  yield 'hello';
  yield 'world';
  return 'ending';
}

var hw = helloWorldGenerator();
```

Generator 函数的调用方法与普通函数一样,也是在函数名后面加上一对圆括号。不同的是,调用 Generator 函数后,该函数并不执行,返回的也不是函数运行结果,而是一个指向内部状态的指针对象, 也就是遍历器对象(Iterator Object)

下一步,必须调用遍历器对象的 next 方法,使得指针移向下一个状态。也就是说,每次调用 next 方法,内部指针就从函数头部或上一次停下来的地方开始执行,直到遇到下一个 yield 表达式 (或 return 语句)为止。换言之,Generator 函数是分段执行的, yield 表达式是暂停执行的标记,而 next 方法可以恢复执行。

```
hw.next()
// { value: 'hello', done: false }
hw.next()
```

http://localhost:8080/#/ 1/35

```
// { value: 'world', done: false }
hw.next()
// { value: 'ending', done: true }
hw.next()
// { value: undefined, done: true }
```

总结:调用 Generator 函数,返回一个遍历器对象,代表 Generator 函数的内部指针。以后,每次调用遍历器对象的 next 方法,就会返回一个有着 value 和 done 两个属性的对象。 value 属性表示当前的内部状态的值,是 yield 表达式后面那个表达式的值; done 属性是一个布尔值,表示是否遍历结束。

ES6 没有规定,function 关键字与函数名之间的星号,写在哪个位置。这导致下面的写法都能通过。

```
function * foo(x, y) { \cdots }
function *foo(x, y) { \cdots }
function* foo(x, y) { \cdots }
function*foo(x, y) { \cdots }
```

yield 表达式

由于 Generator 函数返回的遍历器对象,只有调用 next 方法才会遍历下一个内部状态,所以其实提供了一种可以暂停执行的函数。 yield 表达式就是暂停标志。

遍历器对象的 next 方法的运行逻辑如下。

- 1. 遇到 yield 表达式,就暂停执行后面的操作,并将紧跟在 yield 后面的那个表达式的值,作为返回的对象的 value 属性值。
- 2. 下一次调用 next 方法时,再继续往下执行,直到遇到下一个 yield 表达式。
- 3. 如果没有再遇到新的 yield 表达式,就一直运行到函数结束,直到 return 语句为止,并将 return 语句后面的表达式的值,作为返回的对象的 value 属性值。
- 4. 如果该函数没有 return 语句,则返回的对象的 value 属性值为 undefined 。

需要注意的是, yield 表达式后面的表达式,只有当调用 next 方法、内部指针指向该语句时才会执行,因此等于为 JavaScript 提供了手动的"惰性求值" (Lazy Evaluation) 的语法功能。

http://localhost:8080/#/ 2/35

```
function* gen() {
  yield 123 + 456;
}
```

上面代码中, yield 后面的表达式 123 + 456 , 不会立即求值, 只会在 next 方法将指针移到这一句时, 才会求值。

yield 表达式与 return 语句既有相似之处,也有区别。相似之处在于,都能返回紧跟在语句后面的那个表达式的值。区别在于每次遇到 yield ,函数暂停执行,下一次再从该位置继续向后执行,而 return 语句不具备位置记忆的功能。一个函数里面,只能执行一次(或者说一个) return 语句,但是可以执行多次(或者说多个) yield 表达式。正常函数只能返回一个值,因为只能执行一次 return ;Generator 函数可以返回一系列的值,因为可以有任意多个 yield 。从另一个角度看,也可以说 Generator 生成了一系列的值,这也就是它的名称的来历(英语中,generator 这个词是"生成器"的意思)。

Generator 函数可以不用 yield 表达式,这时就变成了一个单纯的暂缓执行函数。

```
function* f() {
  console.log('执行了!')
}

var generator = f();

setTimeout(function () {
  generator.next()
}, 2000);
```

yield 表达式只能用在 Generator 函数里面,用在其他地方都会报错。

```
(function (){
  yield 1;
})()
// SyntaxError: Unexpected number
```

http://localhost:8080/#/ 3/35

```
var arr = [1, [[2, 3], 4], [5, 6]];

var flat = function* (a) {
    a.forEach(function (item) {
        if (typeof item !== 'number') {
            yield* flat(item);
        } else {
            yield item;
        }
        });
    };

for (var f of flat(arr)){
        console.log(f);
    }
```

上面代码也会产生句法错误,因为 for Each 方法的参数是一个普通函数,但是在里面使用了 yield 表达式。一种修改方法是改用 for 循环。

```
var arr = [1, [[2, 3], 4], [5, 6]];

var flat = function* (a) {
   var length = a.length;
   for (var i = 0; i < length; i++) {
      var item = a[i];
      if (typeof item !== 'number') {
            yield* flat(item);
      } else {
            yield item;
      }
   }
};

for (var f of flat(arr)) {
      console.log(f);
}</pre>
```

http://localhost:8080/#/ 4/35

```
打印
```

yield 表达式如果用在另一个表达式之中,必须放在圆括号里面。

```
function* demo() {
  console.log('Hello' + yield); // SyntaxError
  console.log('Hello' + yield 123); // SyntaxError

  console.log('Hello' + (yield)); // OK
  console.log('Hello' + (yield 123)); // OK
}
```

yield 表达式用作函数参数或放在赋值表达式的右边,可以不加括号。

```
function* demo() {
  foo(yield 'a', yield 'b'); // OK
  let input = yield; // OK
}
```

与 Iterator 接口的关系

任意一个对象的 Symbol.iterator 方法,等于该对象的遍历器生成函数,调用该函数会返回该对象的一个遍历器对象。

由于 Generator 函数就是遍历器生成函数,因此可以把 Generator 赋值给对象的 Symbol.iterator 属性,从而使得该对象具有 Iterator 接口。

```
var myIterable = {};
myIterable[Symbol.iterator] = function* () {
  yield 1;
  yield 2;
  yield 3;
};
[...myIterable]
```

http://localhost:8080/#/ 5/35

```
打印
```

上面代码中,Generator 函数赋值给 Symbol.iterator 属性,从而使得 myIterable 对象具有了 lterator 接口,可以被 ... 运算符遍历了。

Generator 函数执行后,返回一个遍历器对象。该对象本身也具有 Symbol.iterator 属性,执行后返回 自身。

```
function* gen(){
  // some code
}

var g = gen();

g[Symbol.iterator]() === g
```

打印

上面代码中, gen 是一个 Generator 函数,调用它会生成一个遍历器对象 g 。它的 Symbol.iterator 属性,也是一个遍历器对象生成函数,执行后返回它自己。

next 方法的参数

yield 表达式本身没有返回值,或者说总是返回 undefined 。 next 方法可以带一个参数,该参数就会被当作上一个 yield 表达式的返回值。

```
function* f() {
  for(var i = 0; true; i++) {
    var reset = yield i;
    if(reset) { i = -1; }
  }
}

var g = f();

g.next() // { value: 0, done: false }
```

http://localhost:8080/#/ 6/35

```
g.next() // { value: 1, done: false }
g.next(true) // { value: 0, done: false }
```

上面代码先定义了一个可以无限运行的 Generator 函数 f ,如果 next 方法没有参数 ,每次运行到 yield 表达式 ,变量 reset 的值总是 undefined 。当 next 方法带一个参数 true 时 ,变量 reset 就被重置为这个参数 (即 true) ,因此 i 会等于 -1 ,下一轮循环就会从 -1 开始递增。

这个功能有很重要的语法意义。Generator 函数从暂停状态到恢复运行,它的上下文状态(context)是不变的。通过 next 方法的参数,就有办法在 Generator 函数开始运行之后,继续向函数体内部注入值。也就是说,可以在 Generator 函数运行的不同阶段,从外部向内部注入不同的值,从而调整函数行为。

```
function* foo(x) {
    var y = 2 * (yield (x + 1));
    var z = yield (y / 3);
    return (x + y + z);
}

var a = foo(5);
a.next()
a.next()
a.next()

var b = foo(5);
b.next()
b.next(12)
b.next(11)
```

注意,由于 next 方法的参数表示上一个 yield 表达式的返回值,所以在第一次使用 next 方法时,传递参数是无效的。V8 引擎直接忽略第一次使用 next 方法时的参数,只有从第二次使用 next 方法开始,参数才是有效的。从语义上讲,第一个 next 方法用来启动遍历器对象,所以不用带有参数。

再看一个通过 next 方法的参数,向 Generator 函数内部输入值的例子。

```
function* dataConsumer() {
  console.log('Started');
  console.log(`1. ${yield}`);
```

http://localhost:8080/#/ 7/35

```
console.log(`2. ${yield}`);
  return 'result';
}

let genObj = dataConsumer();
genObj.next();
genObj.next('a')
genObj.next('b')
```

如果想要第一次调用 next 方法时,就能够输入值,可以在 Generator 函数外面再包一层。

```
function wrapper(generatorFunction) {
  return function (...args) {
    let generatorObject = generatorFunction(...args);
    generatorObject.next();
    return generatorObject;
  };
}

const wrapped = wrapper(function* () {
  console.log(`First input: ${yield}`);
  return 'DONE';
});

wrapped().next('hello!')
```

打印

for...of 循环

for...of 循环可以自动遍历 Generator 函数时生成的 Iterator 对象,且此时不再需要调用 next 方法。

```
function *foo() {
  yield 1;
  yield 2;
```

http://localhost:8080/#/ 8/35

```
yield 3;
yield 4;
yield 5;
return 6;
}

for (let v of foo()) {
  console.log(v);
}
```

打印

注意,一旦 next 方法的返回对象的 done 属性为 true , for...of 循环就会中止,且不包含该返回对象。

利用 for...of 循环,可以写出遍历任意对象(object)的方法。原生的 JavaScript 对象没有遍历接口,无法使用 for...of 循环,通过 Generator 函数为它加上这个接口,就可以用了。

```
function* objectEntries(obj) {
  let propKeys = Reflect.ownKeys(obj);

  for (let propKey of propKeys) {
    yield [propKey, obj[propKey]];
  }
}

let jane = { first: 'Jane', last: 'Doe' };

for (let [key, value] of objectEntries(jane)) {
    console.log(`${key}: ${value}`);
}
```

上面代码中,对象 jane 原生不具备 Iterator 接口,无法用 for...of 遍历。这时,我们通过 Generator 函数 objectEntries 为它加上遍历器接口,就可以用 for...of 遍历了。加上遍历器接口的另一种写法是,将 Generator 函数加到对象的 Symbol.iterator 属性上面。

http://localhost:8080/#/ 9/35

```
function* objectEntries() {
  let propKeys = Object.keys(this);

  for (let propKey of propKeys) {
    yield [propKey, this[propKey]];
  }
}

let jane = { first: 'Jane', last: 'Doe' };

jane[Symbol.iterator] = objectEntries;

for (let [key, value] of jane) {
    console.log(`${key}: ${value}`);
  }

// first: Jane
// last: Doe
```

除了 for...of 循环以外,扩展运算符(...)、解构赋值和 Array.from 方法内部调用的,都是遍历器接口。这意味着,它们都可以将 Generator 函数返回的 Iterator 对象,作为参数。

```
function* numbers () {
  yield 1
  yield 2
  return 3
  yield 4
}

// 扩展运算符
[...numbers()] // [1, 2]

// Array.from 方法
Array.from(numbers()) // [1, 2]

// 解构赋值
let [x, y] = numbers();
```

http://localhost:8080/#/ 10/35

```
x // 1
y // 2

// for...of 循环
for (let n of numbers()) {
   console.log(n)
}
// 1
// 2
```

Generator.prototype.throw()

Generator 函数返回的遍历器对象,都有一个 throw 方法,可以在函数体外抛出错误,然后在 Generator 函数体内捕获。

```
var g = function* () {
   try {
     yield;
   } catch (e) {
     console.log('内部捕获', e);
   }
};

var i = g();
i.next();

try {
   i.throw('a');
   i.throw('b');
} catch (e) {
   console.log('外部捕获', e);
}
```

打印

http://localhost:8080/#/ 11/35

上面代码中,遍历器对象 i 连续抛出两个错误。第一个错误被 Generator 函数体内的 catch 语句捕获。 i 第二次抛出错误,由于 Generator 函数内部的 catch 语句已经执行过了,不会再捕捉到这个错误了,所以这个错误就被抛出了 Generator 函数体,被函数体外的 catch 语句捕获。

throw 方法可以接受一个参数,该参数会被 catch 语句接收,建议抛出 Error 对象的实例。

```
var g = function* () {
   try {
     yield;
   } catch (e) {
     console.log(e);
   }
};

var i = g();
i.next();
i.throw(new Error('出错了!'));
```

打印

注意,不要混淆遍历器对象的 throw 方法和全局的 throw 命令。上面代码的错误,是用遍历器对象的 throw 方法抛出的,而不是用 throw 命令抛出的。后者只能被函数体外的 catch 语句捕获。

```
var g = function* () {
    while (true) {
        try {
            yield;
        } catch (e) {
            if (e != 'a') throw e;
            console.log('内部捕获', e);
        }
    }
}
var i = g();
i.next();
```

http://localhost:8080/#/ 12/35

```
try {
  throw new Error('a');
  throw new Error('b');
} catch (e) {
  console.log('外部捕获', e);
}
```

打印

上面代码之所以只捕获了 a ,是因为函数体外的 catch 语句块,捕获了抛出的 a 错误以后,就不会再继续 try 代码块里面剩余的语句了。

如果 Generator 函数内部没有部署 try...catch 代码块,那么 throw 方法抛出的错误,将被外部 try...catch 代码块捕获。

```
var g = function* () {
    while (true) {
        yield;
        console.log('内部捕获', e);
    }
};

var i = g();
i.next();

try {
    i.throw('a');
    i.throw('b');
} catch (e) {
    console.log('外部捕获', e);
}
```

打印

如果 Generator 函数内部和外部,都没有部署 try...catch 代码块,那么程序将报错,直接中断执行。

http://localhost:8080/#/ 13/35

```
var gen = function* gen(){
   yield console.log('hello');
   yield console.log('world');
}

var g = gen();
g.next();
g.throw();
```

打印

throw 方法被捕获以后,会附带执行下一条 yield 表达式。也就是说,会附带执行一次 next 方法。

```
var gen = function* gen(){
   try {
     yield console.log('a');
   } catch (e) {
     // ...
   }
   yield console.log('b');
   yield console.log('c');
}

var g = gen();
g.next()
g.throw()
g.next()
```

上面代码中, g.throw 方法被捕获以后,自动执行了一次 next 方法,所以会打印 b 。另外,也可以看到,只要 Generator 函数内部部署了 try...catch 代码块,那么遍历器的 throw 方法抛出的错误,不影响下一次遍历。

throw 命令与 g.throw 方法是无关的,两者互不影响。

http://localhost:8080/#/ 14/35

```
var gen = function* gen(){
   yield console.log('hello');
   yield console.log('world');
}

var g = gen();
g.next();

try {
   throw new Error();
} catch (e) {
   g.next();
}
```

打印

上面代码中, throw 命令抛出的错误不会影响到遍历器的状态,所以两次执行 next 方法,都进行了正确的操作。

这种函数体内捕获错误的机制,大大方便了对错误的处理。多个 yield 表达式,可以只用一个 try...catch 代码块来捕获错误。如果使用回调函数的写法,想要捕获多个错误,就不得不为每个函数内部写一个错误处理语句,现在只在 Generator 函数内部写一次 catch 语句就可以了。

Generator 函数体外抛出的错误,可以在函数体内捕获;反过来,Generator 函数体内抛出的错误,也可以被函数体外的 catch 捕获。

```
function* foo() {
  var x = yield 3;
  var y = x.toUpperCase();
  yield y;
}

var it = foo();

it.next(); // { value:3, done:false }

try {
```

http://localhost:8080/#/ 15/35

```
it.next(42);
} catch (err) {
  console.log(err);
}
```

打印

上面代码中,第二个 next 方法向函数体内传入一个参数 42,数值是没有 toUpperCase 方法的,所以会抛出一个 TypeError 错误,被函数体外的 catch 捕获。

一旦 Generator 执行过程中抛出错误,且没有被内部捕获,就不会再执行下去了。如果此后还调用 next 方法,将返回一个 value 属性等于 undefined 、 done 属性等于 true 的对象,即 JavaScript 引擎 认为这个 Generator 已经运行结束了。

```
function* g() {
 yield 1;
 console.log('throwing an exception');
 throw new Error('generator broke!');
 yield 2;
 yield 3;
}
function log(generator) {
   var v;
   v = generator.next();
   console.log('第一次运行next方法', v);
   try {
       v = generator.next();
       console.log('第二次运行next方法', v);
   } catch (err) {
       console.log('捕捉错误', v);
   }
   v = generator.next();
   console.log('第三次运行next方法', v);
```

http://localhost:8080/#/ 16/35

```
log(g());
```

打印

Generator.prototype.return()

Generator 函数返回的遍历器对象,还有一个 return 方法,可以返回给定的值,并且终结遍历 Generator 函数。

```
function* gen() {
   yield 1;
   yield 2;
   yield 3;
}

var g = gen();

g.next()
g.return('foo')
g.next()
```

上面代码中,遍历器对象 g 调用 return 方法后,返回值的 value 属性就是 return 方法的参数 foo 。并且,Generator 函数的遍历就终止了,返回值的 done 属性为 true ,以后再调用 next 方法, done 属性总是返回 true 。

如果 return 方法调用时,不提供参数,则返回值的 value 属性为 undefined 。

如果 Generator 函数内部有 try...finally 代码块,那么 return 方法会推迟到 finally 代码块执行完再执行。

```
function* numbers () {
  yield 1;
  try {
    yield 2;
    yield 3;
```

http://localhost:8080/#/ 17/35

```
} finally {
    yield 4;
    yield 5;
}

yield 6;
}

var g = numbers();
g.next()
g.next()
g.return(7)
g.next()
g.next()
g.next()
```

上面代码中,调用 return 方法后,就开始执行 finally 代码块,然后等到 finally 代码块执行 完,再执行 return 方法。

next()、throw()、return()的共同点

next() 、 throw() 、 return() 这三个方法本质上是同一件事,可以放在一起理解。它们的作用都是让 Generator 函数恢复执行,并且使用不同的语句替换 yield 表达式。

next() 是将 yield 表达式替换成一个值。

```
const g = function* (x, y) {
  let result = yield x + y;
  return result;
};

const gen = g(1, 2);
gen.next(); // Object {value: 3, done: false}

gen.next(1); // Object {value: 1, done: true}
// 相当于将 let result = yield x + y
// 替换成 let result = 1;
```

http://localhost:8080/#/ 18/35

上面代码中,第二个 next(1) 方法就相当于将 yield 表达式替换成一个值 1 。如果 next 方法没有参数,就相当于替换成 undefined 。

```
throw() 是将 yield 表达式替换成一个 throw 语句。
```

```
gen.throw(new Error('出错了')); // Uncaught Error: 出错了
// 相当于将 let result = yield x + y
// 替换成 let result = throw(new Error('出错了'));
```

return() 是将 yield 表达式替换成一个 return 语句。

```
gen.throw(new Error('出错了')); // Uncaught Error: 出错了
// 相当于将 let result = yield x + y
// 替换成 let result = throw(new Error('出错了'));
```

return() 是将 yield 表达式替换成一个 return 语句。

```
gen.return(2); // Object {value: 2, done: true}
// 相当于将 let result = yield x + y
// 替换成 let result = return 2;
```

yield* 表达式

如果在 Generator 函数内部,调用另一个 Generator 函数,默认情况下是没有效果的。

```
function* foo() {
   yield 'a';
   yield 'b';
}

function* bar() {
   yield 'x';
   foo();
   yield 'y';
}
```

http://localhost:8080/#/ 19/35

```
for (let v of bar()){
  console.log(v);
}
```

打印

上面代码中,foo 和 bar 都是 Generator 函数,在 bar 里面调用 foo ,是不会有效果的。

这个就需要用到 yield* 表达式,用来在一个 Generator 函数里面执行另一个 Generator 函数。

```
function* bar() {
 yield 'x';
 yield* foo();
 yield 'y';
}
// 等同于
function* bar() {
 yield 'x';
 yield 'a';
 yield 'b';
 yield 'y';
}
// 等同于
function* bar() {
 yield 'x';
 for (let v of foo()) {
   yield v;
 yield 'y';
for (let v of bar()){
```

http://localhost:8080/#/ 20/35

```
console.log(v);
}
```

打印

```
function* inner() {
 yield 'hello!';
}
function* outer1() {
 yield 'open';
 yield inner();
 yield 'close';
}
var gen = outer1()
gen.next().value
gen.next().value
gen.next().value
function* outer2() {
 yield 'open'
 yield* inner()
 yield 'close'
}
var gen = outer2()
gen.next().value
gen.next().value
gen.next().value
```

上面例子中 , outer2 使用了 yield* , outer1 没使用。结果就是 , outer1 返回一个遍历器对象 , outer2 返回该遍历器对象的内部值。

从语法角度看,如果 yield 表达式后面跟的是一个遍历器对象,需要在 yield 表达式后面加上星号,表明它返回的是一个遍历器对象。这被称为 yield* 表达式。

http://localhost:8080/#/ 21/35

yield* 后面的 Generator 函数(没有 return 语句时),等同于在 Generator 函数内部,部署一个 for...of 循环。

```
function* concat(iter1, iter2) {
  yield* iter1;
  yield* iter2;
}

// 等同于

function* concat(iter1, iter2) {
  for (var value of iter1) {
    yield value;
  }
  for (var value of iter2) {
    yield value;
  }
}
```

上面代码说明, yield* 后面的 Generator 函数(没有 return 语句时),不过是 for...of 的一种简写形式,完全可以用后者替代前者。反之,在有 return 语句时,则需要用 var value = yield* iterator 的形式获取 return 语句的值。

如果 yield* 后面跟着一个数组,由于数组原生支持遍历器,因此就会遍历数组成员。

```
function* gen(){
  yield* ["a", "b", "c"];
}
gen().next()
```

打印

上面代码中, yield 命令后面如果不加星号,返回的是整个数组,加了星号就表示返回的是数组的遍历器对象。

http://localhost:8080/#/ 22/35

如果被代理的 Generator 函数有 return 语句,那么就可以向代理它的 Generator 函数返回数据。

```
function *foo() {
    yield 2;
    yield 3;
    return "foo";
}

function *bar() {
    yield 1;
    var v = yield *foo();
    console.log( "v: " + v );
    yield 4;
}

var it = bar();

for (var value of it) {
        console.log(value);
}
```

打印

yield* 命令可以很方便地取出嵌套数组的所有成员。

```
function* iterTree(tree) {
   if (Array.isArray(tree)) {
     for(let i=0; i < tree.length; i++) {
        yield* iterTree(tree[i]);
     }
   } else {
      yield tree;
   }
}
const tree = [ 'a', ['b', 'c'], ['d', 'e'] ];</pre>
```

http://localhost:8080/#/ 23/35

```
for(let x of iterTree(tree)) {
  console.log(x);
}
```

打印

作为对象属性的 Generator 函数

如果一个对象的属性是 Generator 函数,可以简写成下面的形式。

```
let obj = {
    * myGeneratorMethod() {
        ...
    }
};
```

上面代码中, myGeneratorMethod 属性前面有一个星号,表示这个属性是一个 Generator 函数。

它的完整形式如下,与上面的写法是等价的。

```
let obj = {
  myGeneratorMethod: function* () {
    // ...
  }
};
```

Generator 函数的this

Generator 函数总是返回一个遍历器,ES6 规定这个遍历器是 Generator 函数的实例,也继承了 Generator 函数的 prototype 对象上的方法。

```
function* g() {}
g.prototype.hello = function () {
```

http://localhost:8080/#/ 24/35

```
return 'hi!';
};

let obj = g();

obj instanceof g
obj.hello()
```

打印

上面代码表明, Generator 函数 g 返回的遍历器 obj , 是 g 的实例,而且继承了 g.prototype 。但是,如果把 g 当作普通的构造函数,并不会生效,因为 g 返回的总是遍历器对象,而不是 this 对象。

```
function* g() {
   this.a = 11;
}
let obj = g();
obj.a
```

打印

上面代码中,Generator 函数 g 在 this 对象上面添加了一个属性 a ,但是 obj 对象拿不到这个属性。

Generator 函数也不能跟 new 命令一起用,会报错。

```
function* F() {
  yield this.x = 2;
  yield this.y = 3;
}
```

上面代码中, new 命令跟构造函数 F 一起使用,结果报错,因为 F 不是构造函数。

http://localhost:8080/#/ 25/35

那么,有没有办法让 Generator 函数返回一个正常的对象实例,既可以用 next 方法,又可以获得正常的 this ?

```
function* F() {
   this.a = 1;
   yield this.b = 2;
   yield this.c = 3;
}
var f = F.call(F.prototype);

f.next();
f.next();
f.next();
f.next();
```

再将 F 改成构造函数,就可以对它执行 new 命令了。

```
function* gen() {
  this.a = 1;
  yield this.b = 2;
  yield this.c = 3;
}

function F() {
  return gen.call(gen.prototype);
}

var f = new F();

f.next();
f.next();
f.next();
```

http://localhost:8080/#/ 26/35

```
f.a
f.b
f.c
```

Generator 与状态机

Generator 是实现状态机的最佳结构。比如,下面的 toggle 函数就是一个状态机。

```
var visible = true;
var toggle = function() {
  if (visible)
    console.log('show!');
  else
    console.log('hide!');
  visible = !visible;
}
```

打印

上面代码的 toggle 函数一共有两种状态(show 和 hide),每运行一次,就改变一次状态。这个函数如果用 Generator 实现,就是下面这样。

```
var toggle = function* () {
  while (true) {
    console.log('show!');
    yield;
    console.log('hide!');
    yield;
  }
};
```

上面的 Generator 实现与 ES5 实现对比,可以看到少了用来保存状态的外部变量 visible ,这样就更简洁,更安全(状态不会被非法篡改)、更符合函数式编程的思想,在写法上也更优雅。Generator 之所以可以不用外部变量保存状态,是因为它本身就包含了一个状态信息,即目前是否处于暂停态。

http://localhost:8080/#/ 27/35

Generator 与协程

协程(coroutine)是一种程序运行的方式,可以理解成"协作的线程"或"协作的函数"。协程既可以用单线程实现,也可以用多线程实现。前者是一种特殊的子例程,后者是一种特殊的线程。

(1) 协程与子例程的差异

传统的"子例程"(subroutine)采用堆栈式"后进先出"的执行方式,只有当调用的子函数完全执行完毕,才会结束执行父函数。协程与其不同,多个线程(单线程情况下,即多个函数)可以并行执行,但是只有一个线程(或函数)处于正在运行的状态,其他线程(或函数)都处于暂停态(suspended),线程(或函数)之间可以交换执行权。也就是说,一个线程(或函数)执行到一半,可以暂停执行,将执行权交给另一个线程(或函数),等到稍后收回执行权的时候,再恢复执行。这种可以并行执行、交换执行权的线程(或函数),就称为协程。

从实现上看,在内存中,子例程只使用一个栈(stack),而协程是同时存在多个栈,但只有一个栈是在运行状态,也就是说,协程是以多占用内存为代价,实现多任务的并行。

(2) 协程与普通线程的差异

不难看出,协程适合用于多任务运行的环境。在这个意义上,它与普通的线程很相似,都有自己的执行上下文、可以分享全局变量。它们的不同之处在于,同一时间可以有多个线程处于运行状态,但是运行的协程只能有一个,其他协程都处于暂停状态。此外,普通的线程是抢先式的,到底哪个线程优先得到资源,必须由运行环境决定,但是协程是合作式的,执行权由协程自己分配。

由于 JavaScript 是单线程语言,只能保持一个调用栈。引入协程以后,每个任务可以保持自己的调用栈。 这样做的最大好处,就是抛出错误的时候,可以找到原始的调用栈。不至于像异步操作的回调函数那样, 一旦出错,原始的调用栈早就结束。

Generator 函数是 ES6 对协程的实现,但属于不完全实现。Generator 函数被称为"半协程"(semicoroutine),意思是只有 Generator 函数的调用者,才能将程序的执行权还给 Generator 函数。如果是完全执行的协程,任何函数都可以让暂停的协程继续执行。

如果将 Generator 函数当作协程,完全可以将多个需要互相协作的任务写成 Generator 函数,它们之间使用 yield 表示式交换控制权。

Generator 与上下文

JavaScript 代码运行时,会产生一个全局的上下文环境(context,又称运行环境),包含了当前所有的变量和对象。然后,执行函数(或块级代码)的时候,又会在当前上下文环境的上层,产生一个函数运行的上下文,变成当前(active)的上下文,由此形成一个上下文环境的堆栈(context stack)。

http://localhost:8080/#/ 28/35

这个堆栈是"后进先出"的数据结构,最后产生的上下文环境首先执行完成,退出堆栈,然后再执行完成它下层的上下文,直至所有代码执行完成,堆栈清空。

Generator 函数不是这样,它执行产生的上下文环境,一旦遇到 yield 命令,就会暂时退出堆栈,但是并不消失,里面的所有变量和对象会冻结在当前状态。等到对它执行 next 命令时,这个上下文环境又会重新加入调用栈,冻结的变量和对象恢复执行。

```
function *gen() {
    yield 1;
    return 2;
}

let g = gen();

console.log(
    g.next().value,
    g.next().value,
);
```

上面代码中,第一次执行 g.next() 时,Generator 函数 gen 的上下文会加入堆栈,即开始运行 gen 内部的代码。等遇到 yield 1 时, gen 上下文退出堆栈,内部状态冻结。第二次执行 g.next() 时, gen 上下文重新加入堆栈,变成当前的上下文,重新恢复执行。

应用

Generator 可以暂停函数执行,返回任意表达式的值。这种特点使得 Generator 有多种应用场景。

异步操作的同步化表达

Generator 函数的暂停执行的效果,意味着可以把异步操作写在 yield 表达式里面,等到调用 next 方法时再往后执行。这实际上等同于不需要写回调函数了,因为异步操作的后续操作可以放在 yield 表达式下面,反正要等到调用 next 方法时再执行。所以,Generator 函数的一个重要实际意义就是用来处理异步操作,改写回调函数。

```
function* loadUI() {
   showLoadingScreen();
   yield loadUIDataAsynchronously();
```

http://localhost:8080/#/ 29/35

```
hideLoadingScreen();
}
var loader = loadUI();
// 加载UI
loader.next()

// 卸载UI
loader.next()
```

Ajax 是典型的异步操作,通过 Generator 函数部署 Ajax 操作,可以用同步的方式表达。

```
function* main() {
   var result = yield request("http://some.url");
   var resp = JSON.parse(result);
    console.log(resp.value);
}

function request(url) {
   makeAjaxCall(url, function(response){
      it.next(response);
   });
}

var it = main();
it.next();
```

上面代码的 main 函数,就是通过 Ajax 操作获取数据。可以看到,除了多了一个 yield ,它几乎与同步操作的写法完全一样。注意, makeAjaxCall 函数中的 next 方法,必须加上 response 参数,因为 yield 表达式,本身是没有值的,总是等于 undefined 。

下面是另一个例子,通过 Generator 函数逐行读取文本文件。

http://localhost:8080/#/ 30/35

```
function* numbers() {
  let file = new FileReader("numbers.txt");
  try {
    while(!file.eof) {
      yield parseInt(file.readLine(), 10);
    }
  } finally {
    file.close();
  }
}
```

(2)控制流管理

如果有一个多步操作非常耗时,采用回调函数,可能会写成下面这样。

```
step1(function (value1) {
  step2(value1, function(value2) {
    step3(value2, function(value3) {
      step4(value3, function(value4) {
        // Do something with value4
      });
  });
});
});
```

采用 Promise 改写上面的代码。

```
Promise.resolve(step1)
   .then(step2)
   .then(step3)
   .then(step4)
   .then(function (value4) {
      // Do something with value4
   }, function (error) {
      // Handle any error from step1 through step4
```

http://localhost:8080/#/ 31/35

```
})
.done();
```

上面代码已经把回调函数,改成了直线执行的形式,但是加入了大量 Promise 的语法。Generator 函数可以进一步改善代码运行流程。

```
function* longRunningTask(value1) {
  try {
    var value2 = yield step1(value1);
    var value3 = yield step2(value2);
    var value4 = yield step3(value3);
    var value5 = yield step4(value4);
    // Do something with value4
  } catch (e) {
    // Handle any error from step1 through step4
  }
}
```

然后,使用一个函数,按次序自动执行所有步骤。

```
scheduler(longRunningTask(initialValue));

function scheduler(task) {
  var taskObj = task.next(task.value);
  // 如果Generator函数末结束,就继续调用
  if (!taskObj.done) {
    task.value = taskObj.value
    scheduler(task);
  }
}
```

利用 for...of 循环会自动依次执行 yield 命令的特性,提供一种更一般的控制流管理的方法。

```
let steps = [step1Func, step2Func, step3Func];
```

http://localhost:8080/#/ 32/35

```
function *iterateSteps(steps){
  for (var i=0; i< steps.length; i++){
    var step = steps[i];
    yield step();
  }
}</pre>
```

上面代码中,数组 steps 封装了一个任务的多个步骤,Generator 函数 iterateSteps 则是依次为这些步骤加上 yield 命令。

将任务分解成步骤之后,还可以将项目分解成多个依次执行的任务。

```
let jobs = [job1, job2, job3];

function* iterateJobs(jobs){
  for (var i=0; i< jobs.length; i++){
    var job = jobs[i];
    yield* iterateSteps(job.steps);
  }
}</pre>
```

上面代码中,数组 jobs 封装了一个项目的多个任务,Generator 函数 iterateJobs 则是依次为这些任务加上 yield* 命令。

最后,就可以用 for...of 循环一次性依次执行所有任务的所有步骤。

```
for (var step of iterateJobs(jobs)){
  console.log(step.id);
}
```

(3) 部署 Iterator 接口

利用 Generator 函数,可以在任意对象上部署 Iterator 接口。

http://localhost:8080/#/ 33/35

```
function* iterEntries(obj) {
  let keys = Object.keys(obj);
  for (let i=0; i < keys.length; i++) {
    let key = keys[i];
    yield [key, obj[key]];
  }
}
let myObj = { foo: 3, bar: 7 };

for (let [key, value] of iterEntries(myObj)) {
  console.log(key, value);
}</pre>
```

上述代码中, myObj 是一个普通对象,通过 iterEntries 函数,就有了 Iterator 接口。也就是说,可以在任意对象上部署 next 方法。

下面是一个对数组部署 Iterator 接口的例子,尽管数组原生具有这个接口。

```
function* makeSimpleGenerator(array){
  var nextIndex = 0;

  while(nextIndex < array.length){
    yield array[nextIndex++];
  }
}

var gen = makeSimpleGenerator(['yo', 'ya']);

gen.next().value // 'yo'
gen.next().value // 'ya'
gen.next().done // true</pre>
```

(4)作为数据结构

http://localhost:8080/#/ 34/35

Generator 可以看作是数据结构,更确切地说,可以看作是一个数组结构,因为 Generator 函数可以返回一系列的值,这意味着它可以对任意表达式,提供类似数组的接口。

```
function *doStuff() {
  yield fs.readFile.bind(null, 'hello.txt');
  yield fs.readFile.bind(null, 'world.txt');
  yield fs.readFile.bind(null, 'and-such.txt');
}
```

上面代码就是依次返回三个函数,但是由于使用了 Generator 函数,导致可以像处理数组那样,处理这三个返回的函数。

```
for (task of doStuff()) {
    // task是一个函数 , 可以像回调函数那样使用它
}
```

实际上,如果用 ES5 表达,完全可以用数组模拟 Generator 的这种用法。

```
function doStuff() {
  return [
    fs.readFile.bind(null, 'hello.txt'),
    fs.readFile.bind(null, 'world.txt'),
    fs.readFile.bind(null, 'and-such.txt')
];
}
```

http://localhost:8080/#/ 35/35