Praca domowa 4

Fizyka, semestr zimowy 2020/21

- 1) (2p.) Wyznacz przyspieszenie naszej galaktyki, Drogi Mlecznej, wynikające z obecności najbliższej nam galaktyki o podobnych rozmiarach, galaktyki Andromedy. Przybliżona masa każdej z galaktyk wynosi 800 miliardów mas Słońca (M_S = 2·10³⁰kg), a odległość między nimi wynosi 2,5 miliona lat świetlnych. Każda z tych galaktyk ma średnicę wynoszącą w przybliżeniu 100 000 lat świetlnych (1 rok świetlny = 9,5·10¹⁵m).
- 2) (1.5p.) Ile wynosi wartość g na wysokości 400 km ponad powierzchnią Ziemi (Mz = 5.96·10²⁴kg, Rz = 6,37·10⁶m), na której orbituje Międzynarodowa Stacja Kosmiczna?
- 3) (3.5p.) Statek kosmiczny o masie 50 t po wyłączeniu silników przeleciał w pobliżu Marsa. W pewnej chwili t₀ statek przelatywał na wysokości 500 km nad powierzchnią planety. Masa Marsa wynosi 6.4*10²³ kg, a jego promień 3.4*10⁶ m.
 - a. Oblicz wartość przyspieszenia swobodnego spadku na powierzchni Marsa.
 - b. Oblicz prędkość ucieczki statku (minimalną prędkość początkową, jaką statek musiałby uzyskać na podanej wysokości 500 km, aby oddalić się z wyłączonymi silnikami na dowolnie dużą odległość od Marsa).
 - c. Oblicz prędkość ruchu statku po orbicie kołowej na tej wysokości. Jeśli początkowa prędkość statku miała wartość $v_0 = 4*10^3$ m/s i była skierowana poziomo (prostopadle do prostej poprowadzonej do środka Marsa), to czy w miarę upływu czasu ($t > t_0$) odległość statku od planety będzie: pozostawała stała, malała, stale rosła, czy rosła, a potem malała? Wybierz właściwą spośród czterech powyższych możliwości i uzasadnij swój wybór.

4) (3p.) W tabeli zamieszczono dane dotyczące planet Układu Słonecznego.

Planeta	Masa	Pomień	Długość	Długość roku	Odległość
	$[\cdot 10^{24} \text{kg}]$	$[\cdot 10^{3} \text{m}]$	doby	[lata	od Słońca
				ziemskie]	$[\cdot 10^{9} \text{m}]$
Merkury	0.33	2437	58 dni	0.24	57.9
Wenus	4.87	6052	243 dni	0.62	108.2
Ziemia	5.97	6378	24 h	1	149.6
Mars	0.64	3397	24.5 h	1.88	227.9
Jowisz	1899.00	71398	10 h	11.86	778.3
Saturn	568.00	60330	10.5 h	29.46	1427
Uran	86.80	25559	17 h	84.01	2871
Neptun	102.00	24767	16 h	164.79	4499

- a) Oblicz wartość przyspieszenia grawitacyjnego na Wenus.
- b) Uszereguj planety względem szybkości obrotu wokół własnej osi planety od najszybszej do najwolniejszej.
- c) Na podstawie danych dla dwóch wybranych planet sprawdź słuszność III prawa Keplera.