<u>Selected Review Problems</u> (pp. 113, 187, 357-358, 378-379)

1. Prove that given a nonnegative integer n, there is a unique nonnegative integer m such that $m^2 \le n < (m+1)^2$.

2. Disprove the statement that every positive integer is the sum of the cubes of eight nonnegative integers.

3.	Let A be the set of English words that contain the letter x , and let B be the set of English words that contain the letter q . Express each of these sets as a combination of A and B .				
	(a) The set of English words that do not contain the letter x .				
	(b) The set of English words that contain both an x and a q .				
	(c) The set of English words that contain a x but not a q.				
	(d) The set of English words that do not contain either an x or a q .				
	(e) The set of English words that contain an x or a q , but not both.				
4.	Show that if A is a subset of B , then the power set of A is a subset of the power set of B .				

5.	Suppose that A, B, ar	nd C are sets.	Prove or dist	prove that (A	(A-B)	-C = ((A-C)	-B.

6. Show that if A and B are finite sets, then $|A \cap B| \le |A \cup B|$. Determine when this relationship is an equality.

- 7. (a) For which positive integers n is $11n + 17 \le 2^n$?
 - (b) Prove the conjecture you made in part (a) using mathematical induction.

8. Use mathematical induction to show that $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^n} = 1 - \frac{1}{3^n}$ whenever *n* is a positive integer.

9. Show that $\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$ whenever n is a positive integer.

10. Use mathematical induction to prove that 9 divides $n^3 + (n+1)^3 + (n+2)^3$ whenever n is a nonnegative integer.

- 11. (a) Which amounts of postage can be formed using only 5-cent and 9-cent stamps?
 - (b) Prove the conjecture you made using strong mathematical induction.

12. Find f(2), f(3), f(4), and f(5) if f is recursively defined by f(0) = -1, f(1) = 2, and for n = 1, 2, ...(a) f(n+1) = f(n) + 3f(n-1).

(a)
$$f(n+1) = f(n) + 3f(n-1)$$
.

(b)
$$f(n+1) = f(n)^2 f(n-1)$$
.

(c)
$$f(n+1) = 3f(n)^2 - 4f(n-1)^2$$
.

(d)
$$f(n+1) = \frac{f(n-1)}{f(n)}$$
.

- 13. Give a recursive definition of
 - (a) The set of odd positive integers.

(b) The set of positive integer powers of 3.	
(c) The set of polynomials with integer coefficients.	