NMIT1 Numerik 1	Serie 11	Zürcher Hochschule für Angewandte Wissenschaften
Autor	Rémi Georgiou	School of
Datum	20. Mai 2015	Engineering
		avv

MMITA - Serie 11

Aufiquibe 2

a)
$$f_1(x_1x_2) = 5x_1x_2$$
, $f_2(x_1x_2) = x_1^2x_2^2 + x_1 + 2x_2$, $\binom{x_1}{x_2} = \binom{1}{2}$
 $\frac{\partial f_1}{\partial x_1} = x_2 \cdot \frac{d(Sx_1)}{dx_2} = 5x_1$
 $\frac{\partial f_2}{\partial x_1} = 5x_1 \cdot \frac{d(x_1)}{dx_2} = 5x_1$
 $\frac{\partial f_2}{\partial x_1} = x_2^2 \cdot \frac{d(x_1)}{dx_2} + \frac{d(x_1)}{dx_2} + \frac{d(2x_1)}{dx_1} = 2x_1x_2^2 + 1$
 $\frac{\partial f_2}{\partial x_2} = x_1^2 \cdot \frac{d(x_1)}{dx_1} + \frac{d(x_1)}{dx_2} + \frac{d(2x_1)}{dx_2} = 2x_1x_2^2 + 2$
 $\frac{\partial f_2}{\partial x_2} = x_1^2 \cdot \frac{d(x_1)}{dx_1} + \frac{d(x_1)}{dx_2} + \frac{d(2x_1)}{dx_2} = 2x_1x_2^2 + 2$
 $\frac{\partial f_2}{\partial x_2} = x_1^2 \cdot \frac{d(x_1)}{dx_1} + \frac{d(x_1)}{dx_2} + \frac{d(2x_1)}{dx_2} = 2x_1x_2^2 + 2$
 $\frac{\partial f_2}{\partial x_1} = x_1^2 \cdot \frac{d(x_1)}{dx_1} + \frac{d(x_1)}{dx_2} + \frac{d(x_1)}{dx_2} = 2x_1^2x_2 + 2$
 $\frac{\partial f_2}{\partial x_1} = x_1^2 \cdot \frac{d(x_1)}{dx_1} + \frac{d(x_1)}{dx_2} + \frac{d(x_$

NMIT1 Numerik 1	Serie 11	Zürcher Hochschule für Angewandte Wissenschaften
Autor	Rémi Georgiou	School of
Datum	20. Mai 2015	Engineering
		avv

