Pràctica U5P1. Resum de missatges

Un "message digest" o resum de missatges (funció hash) és una marca digital d'un bloc de dades. Existeixen un gran nombre d'algorismes disenyats per processar estos message digest, els més coneguts SHA-1,SHA-256 i MD5.

Java té el paquet **security** que ens permet utilitzar la **classe MessageDigest**. Esta classe permet a les aplicacions implementar algorismes de resum de missatges. Disposa d'un constructor protegit, per crear l'objecte MessageDigest utilitzarem el mètode *getInstance* (*String algorithm*)

Alguns mètodes de la classe són:

MÉTODOS	MISIÓN
	Devuelve un objeto MessageDigest que implementa el algoritmo de resumen especificado
public static MessageDigest getInstance(String algoritmo)	En el primer caso, los proveedores de seguridad se buscan según el orden establecido en el fichero java.security . En el segundo caso se busca el proveedor dado. Nombres válidos para el
public static MessageDigest getInstance(String algoritmo,	proveedor de seguridad predeterminado de Sun son SHA, SHA-1 y MD5
String proveedor)	Puede lanzar la excepción NoSuchAlgorithmException si no hay proveedor que implemente el algoritmo dado. Si el nombre de proveedor no se encuentra se produce NoSuchProviderException
void update(byte input)	Realiza el resumen del byte especificado
void update(byte[] input)	Realiza el resumen del array de bytes especificado
byte[] digest()	Completa el cálculo del valor hash, devuelve el resumen obtenido
byte [] digest (byte [] entrada)	Realiza una actualización final sobre el resumen utilizando el array de bytes indicado en el argumento, y luego completa el cálculo de resumen
void reset()	Reinicializa el objeto resumen para un nuevo uso

int getDigestLength()	Devuelve la longitud del resumen en bytes, o 0 si la operación no está soportada por el proveedor
String getAlgorithm()	Devuelve un String que identifica el algoritmo
Provider getProvider()	Devuelve el proveedor del objeto
static boolean isEqual(byte[] digesta, byte[digestb)	Comprueba si dos mensajes resumen son iguales. Devuelve true si son iguales y false en caso contrario

Veiem un exemple en el que es crea un resum d'un text pla, s'utilitza el mètode MessageDigest.getInstance ("SHA") i s'obté instància amb l'algorisme SHA:

```
1 package u5Exemple1_SHA;
 2⊖ import java.security.MessageDigest;
 3 import java.security.Provider;
    public class U5Exemple1_SHA {
 5
 6⊝
        public static void main(String[] args) throws Exception {
            String text = "Sóc el contingut d'un text";
 7
            System.out.println("Text origen per a hash " + text);
 8
 9
10
            // CREE OBJECTE MessageDigest
            MessageDigest md = MessageDigest.getInstance("SHA");
11
12
              // ES POT CREAR EL RESUM AMB CLAU UTILITZANT digest(bytes[])
13
            String clave="ClauXifratge";
15
            byte dataBytes[]=text.getBytes();
16
            md.update(dataBytes);
17
            byte resum_amb_clau[]=md.digest(clave.getBytes());
18
19
            // S'INTRODUEIX EL TEXT EN BYTES A RESUMIR
            md.update(text.getBytes());
20
21
            // ES CALCULA EL RESUM
22
23
            byte resum[] = md.digest();
24
25
            System.out.println("Nonmbre de bytes " + md.getDigestLength());
            System.out.println("Algorisme " + md.getAlgorithm());
26
27
            System.out.println("Missatge resum " + resum_amb_clau + new String(resum));
28
29
            // CONVERTEISC L'ARRAY DE BYTES A HEXADECIMAL
30
            StringBuffer hexString = new StringBuffer();
31
            for (int i = 0; i < resum.length; i++) {
                String hex = Integer.toHexString(0xff & resum[i]);
32
33
                if (hex.length() == 1)
34
                    hexString.append('0');
35
                hexString.append(hex);
36
37
            System.out.println("Missatge en hexadecimal : " + hexString.toString());
38
39
            Provider proveedor = md.getProvider();
40
            System.out.println("Proveidor " + proveedor.toString());
41
        }
42 }
```

L'execució ens oferirà el següent resultat:

Text origen per a hash Sóc el contingut d'un text

Nonmbre de bytes 20

Algorisme SHA

Missatge resum éÅ,ä¦à=)Mœ@ï6ü°,^®é

Missatge en hexadecimal : e9c582c3a4a6e03d294d9c40ef36fcb0825eaee9

Proveidor SUN version 1.8

Es pot crear un resum xifrat **amb clau** utilitzant el mètode digest (bytes[]) on es proporciona la clau en un array en bytes.

S'implementa amb el següent codi:

```
// ES POT CREAR EL RESUM AMB CLAU UTILITZANT digest(bytes[])
String clave="ClauXifratge";
byte dataBytes[]=text.getBytes();
md.update(dataBytes);
byte resum_amb_clau[]=md.digest(clave.getBytes());
```

Veiem un exemple en el que generem hash d'un fitxer:

```
1 package u5Exemple2 SHA;
 2⊖ import java.io.FileInputStream;
 3 import java.security.MessageDigest;
 4 import java.security.Provider;
 6 public class U5Exemple2_SHA {
 7⊝
       public static void main(String[] args) throws Exception {
 8
 9
           // CREE OBJECTE MessageDigest
10
           MessageDigest md = MessageDigest.getInstance("SHA");
           FileInputStream fis = new FileInputStream("fitxer.txt");
11
12
13
           byte [] dataBytes = new byte[1024];
14
           int nread =0;
15
           System.out.println("Contingut del fitxer: ");
16
           while ((nread=fis.read(dataBytes))!=-1 ) {
17
               System.out.println(new String(dataBytes));
               md.update(dataBytes, 0, nread);
18
           }
19
20
21
           byte[] mdbytes=md.digest();
           System.out.println("Nombre de bytes: "+md.getDigestLength());
22
           System.out.println("Algorisme: "+md.getAlgorithm());
23
24
           System.out.println("Missatge resum: "+new String(mdbytes));
25
           // CONVERTEISC EL MISSATGE RESUM DE ARRAY DE BYTES A HEXADECIMAL
26
           StringBuffer hexString = new StringBuffer();
27
28
           for (int i = 0; i < mdbytes.length; i++)</pre>
29
               hexString.append(Integer.toHexString(0xff & mdbytes[i]));
30
           System.out.println("Fitxer en hexadecimal: " + hexString.toString());
31
32
           Provider proveedor = md.getProvider();
           System.out.println("Proveidor " + proveedor.toString());
33
34
35
           fis.close();
36
       }
37 }
L'execució ens oferirà el següent resultat:
Contingut del fitxer:
MISSATGE DINS FITXER
Nombre de bytes: 20
Algorisme: SHA
Missatge resum: •@¼¥-èÔ@¢@q̵dQtpëß
Fitxer en hexadecimal: 951a1ebca5ade8d47a21571ccb564517470ebdf
Proveidor SUN version 1.8
```

Entregable Pràctica U5P1_1

Realitza un programa que genere un resum utilitzant l'algorisme MD5. El programa demanarà el text a l'usuari per teclat. Comprova el nombre de bytes generats.

Entregable Pràctica U5P1_2

Suposem que volem guardar un missatge (objecte String) en un fitxer, però volem estar segurs de que, a l'hora de llegir el fitxer, el contingut no ha estat manipulat.

Per això, a més a més de guardar el missatge en un fitxer («data.dat»), generarem un resum (amb SHA) i el guardarem en un altre fitxer («hash.dat»).

Per a la implementació es requereixen dues classes:

Genera_Resum → Guarda el missatge al fitxer data.dat, genera el resum i el guarda al fitxer hash.dat.

Llig_Verifica → Llig el missatge del fitxer data.dat, obté el resum i el compara amb el resum del fitxer hash.dat. Si són iguals, les dades són vàlides.

Es proporciones les dues classes parcialment desenvolupades i es demana completar-les.

• Classe Genera_Resum.

```
1⊕ import java.io.FileNotFoundException;
 8 public class Genera_Resum {
         public static void main(String args[]) {
 90
             try {
    // CREE OBJECTE MessageDigest
10
11
12
                  MessageDigest md = MessageDigest.getInstance("SHA");
13
                  String missatge = "Con diez cañones por banda," + " viento en popa, a toda vela,"
                           + " no corta el mar, sino vuela" + " un velero bergantín." + " Bajel pirata que llaman,"
+ " por su bravura, el Temido," + " en todo mar conocido" + " del uno al otro confín.";
17
18
19
                  // S'INTRODUEIX EL TEXT EN BYTES A RESUMIR
20
                  // ...
21
                  // ES CALCULA EL RESUM
                  // ...
22
                  System.out.println("Missatge resum " + new String(resum));
23
24
25
                  // ESCRIC MISSATGE COM A OBJECTE AL FITXER data.dat
26
                  FileOutputStream fosDatos = new FileOutputStream("data.dat");
27
                  ObjectOutputStream oosDatos = new ObjectOutputStream(fosDatos);
28
29
30
                  // DESPRÉS ESCRIC EL RESUM COM A OBJECTE AL FITXER hash.dat
                  FileOutputStream fosHash = new FileOutputStream("hash.dat");
                  ObjectOutputStream oosHash = new ObjectOutputStream(fosHash);
33
                  // ...
35
                  oosDatos.close(); // TANQUE FLUX
                  fosDatos.close(); // TANQUE FITXER
oosHash.close(); // TANQUE FLUX
fosHash.close(); // TANQUE FITXER
36
37
38
39
40
              } catch (IOException | NoSuchAlgorithmException e) {
41
                  // TODO Auto-generated catch block
42
                  e.printStackTrace();
43
44
         }
45 }
```

Classe Llig Verifica

```
1⊕ import java.io.FileInputStream;
 9 public class Llig Verifica {
10⊝
        public static void main(String args[]) {
11
                // PRIMER LLIG OBJECTE MISSATGE DE TIPUS string DEL FITXER data.dat
                InputStream fisDades = new FileInputStream("data.dat");
13
                ObjectInputStream oisDades = new ObjectInputStream(fisDades);
14
                Object o = oisDades.readObject();
15
                String dades = (String) o;
                System.out.println("Dade llegides " + dades);
17
18
19
                // DESPRÉS LLIG OBJECTE resum DE TIPUS string DEL FITXER hash.dat
                InputStream fisHash = new FileInputStream("hash.dat");
20
21
                ObjectInputStream oisHash = new ObjectInputStream(fisHash);
                o = oisHash.readObject();
23
                byte resum original[] = (byte[]) o;
                System.out.println("Missatge resum original " + new String(resum_original));
24
25
26
                // GENERE RESUM DEL MISSATGE
                // ...
27
                // ...
28
                // ...
30
                System.out.println("Missatge resum actual " + new String(resum_actual));
31
                // COMPARE ELS DOS RESUMS
32
33
                if (MessageDigest.isEqual(resum_actual, resum_original))
34
                    System.out.println("Dades vàlides");
35
                else
                    System.out.println("Dades no vàlides ");
37
38
                oisDades.close(); // TANQUE FLUX
39
                fisDades.close(); // TANQUE FITXER
                oisHash.close(); // TANQUE FLUX
40
                fisHash.close(); // TANQUE FITXER
41
42
43
            } catch (Exception e) {
44
                // TODO Auto-generated catch block
45
                e.printStackTrace();
46
            }
47
        }
48 }
```

Per a comprovar-ho:

Dades vàlides: executem primer Genera_Resum i després Llig_Verifica

```
<terminated> Llig_Verifica [Java Application] C:\Program Files\Java\jre1.8.0_241\bin\javaw.exe Dade llegides Con diez cañones por banda, viento en popa, a toda vela, ι Missatge resum original kÆÒ!Ãø›Åí奇É‹ó‰ZfμÞ Missatge resum actual kÆÒ!Ãø›Åí奇É‹ó‰ZfμÞ Dades vàlides
```

- Dades no vàlides:
 - Executem Genera Resum
 - Canviem el nom del fitxer hash.dat per hash10.dat (explorador d'arxius)
 - Canviem el missatge de la classe Genera_Resum (per exemple, canviar diez por ONCE).
 - Tornem a executar Genera Resum.
 - Eliminem l'arxiu hash.dat i renombrar l'arxiu hash10.dat per hash.dat
 - Executem Llig_Verifica

<terminated> Llig_Verifica [Java Application] C:\Program Files\Java\jre1.8.0_241\bin\javaw.exe
Dade llegides Con ONCE cañones por banda, viento en popa, a toda vela,
Missatge resum original k&ò!Ãø>Åí奇É<ó‰ZfµÞ
Missatge resum actual Ì-âuñZ®Ôfïšñ<ý?âô®ðø
Dades no vàlides</pre>