SUPPLEMENTARY MATERIAL FOR: "Nitrogen demand, supply, and acquisition strategy control plant responses to elevated CO₂ at different scales"

Results (cont.)

χ

An interaction between CO₂ and nitrogen fertilization (p<0.001; Table S3) indicated that the negative effect of increasing nitrogen fertilization on χ (p<0.001; Table S3) was stronger under elevated CO₂ than ambient CO₂ (Tukey test comparing the nitrogen fertilization- χ slope between CO₂ treatments: p<0.05; Fig. S3), resulting in a stronger downregulation of χ under elevated CO₂ with increasing fertilization. A three-way interaction (p<0.001; Table S3) indicated that interactions between CO₂ and nitrogen fertilization were driven by inoculated plants (Tukey test comparing the nitrogen fertilization- χ slope between inoculated plants grown under ambient CO₂ and inoculated plants grown under elevated CO₂: p<0.001), as there was no difference in the effect of nitrogen fertilization on χ between CO₂ treatments in uninoculated plants (Tukey test comparing the nitrogen fertilization- χ slope between uninoculated plants grown under ambient CO₂ and uninoculated plants grown under elevated CO₂: p>0.05). An interaction between CO₂ and inoculation (p<0.001; Table S3) indicated that elevated CO₂ decreased χ in uninoculated plants (Tukey test of the CO₂ effect in uninoculated plants: p<0.001) and increased χ in inoculated plants (Tukey test of the CO₂ effect in inoculated plants: p<0.001).

Components of carbon costs to acquire nitrogen

Elevated CO₂ increased C_{bg} by 100% (p<0.001; Table S4), a pattern that was not modified by nitrogen fertilization (CO₂-by-nitrogen fertilization interaction: p>0.05; Table S4). An interaction between CO₂ and inoculation (p<0.05; Table S4) indicated that the positive effect of inoculation on C_{bg} (p<0.001; Table S4) was only apparent under ambient CO₂ (Tukey test of the inoculation effect under ambient CO₂: p<0.001; Fig. S4), as there was no effect of inoculation on C_{bg} under elevated CO₂ (Tukey test of the inoculation effect under elevated CO₂: p>0.05). An interaction between nitrogen fertilization and inoculation (p<0.001; Table S3) indicated that the positive effect of increasing nitrogen fertilization on C_{bg} (p<0.001; Table S3) was stronger in uninoculated plants than inoculated plants (Tukey test comparing the fertilization- C_{bg} slope between inoculation treatments: p<0.001).

Elevated CO₂ increased $N_{\rm wp}$ by 27% (p<0.001; Table S4), a pattern that was enhanced with increasing nitrogen fertilization (CO₂-by-fertilization interaction: p<0.05; Table S4), but was not modified by inoculation (CO₂-by-inoculation interaction: p>0.05; Table S4). An interaction between nitrogen fertilization and inoculation (p<0.001; Table S4) indicated that the positive effect of increasing nitrogen fertilization on $N_{\rm wp}$ (p<0.001; Table S4) was stronger in uninoculated plants than inoculated plants (Tukey test comparing the fertilization- $N_{\rm wp}$ slope between inoculation treatments: p<0.001).

Nitrogen fixation

Nodule biomass increased by 30% under elevated CO_2 (p<0.001; Table S5), a pattern that was not modified by nitrogen fertilization (CO_2 -by-fertilization interaction: p>0.05; Table S5) or inoculation (CO_2 -by-inoculation interaction: p>0.05; Table S5; Fig. S5). An interaction between nitrogen fertilization and inoculation (p<0.001; Table S5) indicated that negative effects of increasing nitrogen fertilization on nodule biomass (p<0.001; Table S5) were driven by inoculated plants (Tukey test comparing the fertilization-nodule biomass slope in inoculated plants: p<0.001), as there was no effect of nitrogen fertilization on nodule biomass in uninoculated plants (Tukey test comparing the fertilization-nodule biomass slope in uninoculated plants: p<0.05; Fig. S5).

There was no effect of CO_2 treatment on nodule: root biomass (p>0.05; Table S5), a pattern that was not modified by nitrogen fertilization (CO_2 -by-fertilization interaction: p>0.05; Table S5). However, an interaction between CO_2 and inoculation (p<0.001; Table S5) indicated that the positive effect of inoculation on nodule: root biomass (p<0.001; Table S5) was stronger under ambient CO_2 (3129% increase; Tukey test comparing the inoculation effect under ambient CO_2 : p<0.001) than elevated CO_2 (379% increase; Tukey test comparing the inoculation effect under elevated CO_2 : p<0.001). An interaction between nitrogen fertilization and inoculation (p<0.001; Table S5) indicated that the negative effect of increasing nitrogen fertilization on nodule: root biomass (p<0.001; Table S5) was stronger in inoculated pots than uninoculated plants (Tukey test comparing the fertilization-nodule: root biomass slope between inoculation treatments: p<0.001; Fig. S5).

The ratio of total biomass to pot volume

Total biomass:pot volume increased with elevated CO_2 , inoculation, and nitrogen fertilization (p<0.001 in all cases; Table S6). The positive effect of increasing nitrogen fertilization on biomass: pot volume was stronger in uninoculated plants than inoculated plants (Tukey test comparing the nitrogen fertilization-biomass:pot volume slope between inoculation treatments: p<0.05; Fig. S6), and when plants were grown under elevated CO_2 compared to ambient CO_2 (Tukey test comparing the nitrogen fertilization-biomass:pot volume slope between CO_2 treatments: p<0.001; Fig. S6).

Table S1 Summary table containing volumes of compounds used to create modified Hoagland's solutions for each soil nitrogen fertilization treatment. All volumes are expressed as milliliters per liter (mL/L)

Compound	0 ppm N (0 mM N)	35 ppm N (2.5 mM N)	70 ppm N (5 mM N)	105 ppm N (7.5 mM N)	140 ppm N (10 mM N)
$1\ M\ NH_4H_2PO_4$	0	0.165	0.33	0.5	0.67
2 M KNO ₃	0	0.335	0.67	1	1.33
2 M Ca(NO ₃) ₂	0	0.335	0.67	1	1.33
1 M NH ₄ NO ₃	0	0.165	0.33	0.5	0.67
8 M NH ₄ NO ₃	0	0	0	0	0
1 M KH ₂ PO ₄	1	0.85	0.67	0.5	0.33
1 M KCl	3	2.45	2	1.5	1
1 M CaCO ₃	4	3.33	2.67	2	1.33
2 M MgSO ₄	1	1	1	1	1
10% Fe-EDTA	1	1	1	1	1
Trace elements	1	1	1	1	1

Compound	210 ppm N (15 mM N)	280 ppm N (20 mM N)	350 ppm N (25 mM N)	630 ppm N (45 mM N)
1 M NH ₄ H ₂ PO ₄	1	1	1	1
2 M KNO ₃	2	2	2	2
2 M Ca(NO ₃) ₂	2	2	2	2
1 M NH ₄ NO ₃	1	3.5	0	0
8 M NH ₄ NO ₃	0	0	0.75	2
1 M KH ₂ PO ₄	0	0	0	0
1 M KCl	0	0	0	0
1 M CaCO ₃	0	0	0	0
2 M MgSO ₄	1	1	1	1
10% Fe-EDTA	1	1	1	1
Trace elements	1	1	1	1

Table S2 Summary of the daily growth chamber growing condition program

Time	Air temperature (°C)	PAR ± SD (μmol m ⁻² s ⁻¹)		
09:00	21	278±2		
09:45	21	557±4		
10:30	25	797±4		
11:15	23	1230±12		
22:45	21	797±4		
23:30	21	557±4		
00:15	17	278±2		
01:00	1 /	0±0		

Table S3 Effects of soil nitrogen fertilization, inoculation, and CO₂ on χ^*

	df	χ^2	p
CO ₂	1	6.809	0.009
Inoculation (I)	1	5.827	0.016
N fertilization (N)	1	109.544	< 0.001
CO ₂ *I	1	20.644	< 0.001
CO_2*N	1	11.839	< 0.001
I*N	1	0.013	0.909
CO_2*I*N	1	16.901	< 0.001

^{*}Significance determined using Type II Wald χ^2 tests (α =0.05). *P*-values less than 0.05 are in bold. Key: df=degrees of freedom, χ^2 =Wald chi-square test statistic, χ =isotope-based ratio of intercellular CO₂ to extracellular CO₂, inversely related to water-use efficiency

Table S4 Effects of nitrogen fertilization, inoculation, and CO₂ on components of the carbon cost to acquire nitrogen*

		Belowground		Total nitrogen		
		carbon	biomass ^a	biomass ^b		
	df	χ^2	р	χ^2	p	
CO_2	1	84.134	< 0.001	23.890	< 0.001	
Inoculation (I)	1	41.030	< 0.001	134.460	< 0.001	
N fertilization (N)	1	152.248	< 0.001	529.021	< 0.001	
CO_2*I	1	8.965	0.003	1.190	0.275	
CO_2*N	1	1.188	0.276	5.915	0.015	
I*N	1	22.648	< 0.001	55.562	< 0.001	
CO_2*I*N	1	1.109	0.292	0.620	0.431	

^{*}Significance determined using Type II Wald χ^2 tests (α =0.05). A superscript "a" is included after trait labels to indicate if models were fit with natural-log transformed response variables, while a superscript "b" is included if models were fit with square-root transformed response variables. *P*-values less than 0.05 are in bold. Key: df=degrees of freedom.

Table S5 Effects of soil nitrogen fertilization, inoculation, and CO₂ on root nodule biomass, root biomass, and the root nodule biomass: root biomass ratio*

	Root nodule			Root	Root nodule: root		
		biomass ^b			biomass	$biomass^b$	
	df	χ^2	р	χ^2	р	χ^2	p
(Intercept)	-	-	-			-	-
CO_2	1	19.258	< 0.001	73.865	< 0.001	0.010	0.921
Inoculation (I)	1	755.02	< 0.001	1.704	0.192	902.063	< 0.001
N fertilization (N)	1	84.376	< 0.001	160.802	< 0.001	254.741	< 0.001
CO_2*I	1	0.950	0.330	2.430	0.119	21.632	< 0.001
CO_2*N	1	2.106	0.147	25.401	< 0.001	1.590	0.207
I*N	1	44.622	< 0.001	5.133	0.023	132.463	< 0.001
CO ₂ *I*N	1	0.196	0.658	1.152	0.283	2.481	0.115

^{*}Significance determined using Type II Wald χ^2 tests (α =0.05). A superscript "b" is included after trait labels to indicate if models were fit with square-root transformed response variables. *P*-values less than 0.05 are in bold. Key: df=degrees of freedom.

Table S6 Effects of soil nitrogen fertilization, inoculation, and CO₂ on the ratio of total biomass to pot volume (6 L)*

	df	χ^2	p
CO ₂	1	146.004	< 0.001
Inoculation (I)	1	19.320	< 0.001
N fertilization (N)	1	279.388	< 0.001
CO ₂ *I	1	0.007	0.934
CO ₂ *N	1	49.725	< 0.001
I*N	1	9.007	0.003
CO_2*I*N	1	0.640	0.434

^{*}Significance determined using Type II Wald χ^2 tests (α =0.05). *P*-values less than 0.05 are in bold. Key: df=degrees of freedom, χ^2 =Wald chi-square test statistic

Figure S1 Effects of CO₂ and fertilization inoculation on area-based leaf nitrogen content (a), mass-based leaf nitrogen content (b), and leaf biomass per unit leaf area (c). Fertilization is represented on the x-axis. Red shaded points and trendlines indicate plants grown under elevated CO₂, while blue shaded points and trendlines indicate plants grown under ambient CO₂. Light blue and red circular points and trendlines indicate measurements collected from uninoculated plants, while dark blue and red triangular points indicate measurements collected from inoculated plants. Solid trendlines indicate regression slopes that are different from zero (p<0.05), while dashed trendlines indicate slopes that are not distinguishable from zero (p>0.05).

Figure S2 Effects of CO₂ and fertilization inoculation on photosynthetic nitrogen-use efficiency. Fertilization is represented on the x-axis. Red shaded points and trendlines indicate plants grown under elevated CO₂, while blue shaded points and trendlines indicate plants grown under ambient CO₂. Light blue and red circular points and trendlines indicate measurements collected from uninoculated plants, while dark blue and red triangular points indicate measurements collected from inoculated plants. Solid trendlines indicate regression slopes that are different from zero (p<0.05), while dashed trendlines indicate slopes that are not distinguishable from zero (p>0.05).

Figure S3 Effects of nitrogen fertilization, inoculation treatment, and CO₂ treatment on χ . Fertilization is represented on the x-axis. Red shaded points and trendlines indicate plants grown under elevated CO₂, while blue shaded points and trendlines indicate plants grown under ambient CO₂. Light blue and red circular points and trendlines indicate measurements collected from uninoculated plants, while dark blue and red triangular points indicate measurements collected from inoculated plants. Solid trendlines indicate regression slopes that are different from zero (p<0.05), while dashed trendlines indicate slopes that are not distinguishable from zero (p>0.05).

Figure S4 Effects of CO₂ and fertilization inoculation on belowground carbon biomass (a) and total nitrogen biomass (b). Belowground carbon biomass is the numerator of N_{cost} , while total nitrogen biomass is the denominator of N_{cost} . Fertilization is represented on the x-axis in all panels. Red shaded points and trendlines indicate plants grown under elevated CO₂, while blue shaded points and trendlines indicate plants grown under ambient CO₂. Light blue and red circular points and trendlines indicate measurements collected from uninoculated plants, while dark blue and red triangular points indicate measurements collected from inoculated plants. Solid trendlines indicate regression slopes that are different from zero (p<0.05), while dashed trendlines indicate slopes that are not distinguishable from zero (p>0.05).

Figure S5 Effects of nitrogen fertilization, inoculation treatment, and CO_2 treatment on nodule biomass (a) and root nodule biomass: root biomass (b). Fertilization is represented on the x-axis. Red shaded points and trendlines indicate plants grown under elevated CO_2 , while blue shaded points and trendlines indicate plants grown under ambient CO_2 . Light blue and red circular points and trendlines indicate measurements collected from uninoculated plants, while dark blue and red triangular points indicate measurements collected from inoculated plants. Solid trendlines indicate regression slopes that are different from zero (p<0.05), while dashed trendlines indicate slopes that are not distinguishable from zero (p>0.05).

Figure S6 Effects of CO₂, fertilization, and inoculation on the ratio of whole plant biomass to pot volume. Fertilization is represented on the x-axis. Red shaded points and trendlines indicate plants grown under elevated CO₂, while blue shaded points and trendlines indicate plants grown under ambient CO₂. Light blue and red circular points and trendlines indicate measurements collected from uninoculated plants, while dark blue and red triangular points indicate measurements collected from inoculated plants. Solid trendlines indicate regression slopes that are different from zero (p<0.05). The dotted horizontal line indicates the point where biomass: pot volume exceeds 1 g L⁻¹, and the dashed line indicates the point where biomass: pot volume exceeds 2 g L⁻¹.