

Lógica para Programação

Solução do Primeiro Teste

26 de Abril de 2008

11:00-12:30

Nome:	Número:
None:	1\different different

- 1. **(4.0)** Escolha a *única* resposta *incorrecta* para as seguintes questões. Cada resposta certa vale 1 valor e *cada resposta errada desconta 0.5 valores*.
 - (a) Os seguintes argumentos são válidos:
 - A. ({todos os alunos estudam, o João é um aluno}, o João estuda).
 - B. ({quando está a chover o Pedro usa guarda-chuva, não está a chover}, o Pedro não está a usar guarda-chuva).
 - C. ({todas as pessoas são inteligentes, quem é inteligente faz contas de cabeça}, todas as pessoas fazem contas de cabeça).
 - D. ({quando faz sol a Maria anda na sombra, está sol}, a Maria está a andar na sombra).

Resposta: B

- (b) As seguintes frases de Lógica Proposicional estão na forma conjuntiva normal:
 - A. $P \wedge Q$
 - B. $P \vee Q$
 - C. $(\neg P \lor Q) \land R$
 - D. $P \vee (Q \wedge \neg R)$

Resposta: D

- (c) Em relação aos BDDs pode dizer-se que:
 - A. Qualquer fbf em Lógica Proposicional pode ser representada por um BDD.
 - B. As tautologias em Lógica Proposicional são representadas por um BDD que é constituído por uma única folha correspondente ao valor lógico verdadeiro.
 - C. Um BDD é um grafo dirigido acíclico.
 - D. Duas *fbfs* equivalentes são necessariamente representadas por BDDs com uma estrutura equivalente.

Resposta: D

- (d) Considerando o sistema semântico da Lógica Proposicional:
 - A. Uma fórmula satisfazível é uma fórmula tautológica.
 - B. Uma fórmula contraditória é uma fórmula falsificável.
 - C. Uma fórmula falsificável não é satisfeita por uma interpretação.
 - D. Uma fórmula satisfazível é satisfeita por uma interpretação.

Resposta: A

Número: _____ Pág. 2 de 6

2. **(2.0)** Escolha a *única* resposta *correcta* para as seguintes questões. Cada resposta certa vale 1 valor e *cada resposta errada desconta 0.5 valores*.

- (a) Tendo em conta o processo de composição de substituições, é verdade que na substituição $s=s_1\circ s_2$ que resulta da composição das substituições $s_1=\{t_1/x_1,...,t_n/x_n\}$ e $s_2=\{u_1/y_1,...,u_m/y_m\}$:
 - A. Não existe nenhum elemento u_i/y_i tal que $y_i \in \{x_1,...,x_n\}$.
 - B. Encontram-se todos os u_i/y_i tais que $y_i \in \{x_1, ..., x_n\}$.
 - C. Encontram-se os elementos resultantes da aplicação de s_1 aos termos de s_2 .
 - D. Encontram-se os elementos que verificam $(t_i \circ s_2)/x_i$ tais que $t_i \circ s_2 = x_i$. Resposta: A
- (b) Na conversão para a forma clausal de uma fórmula da Lógica de Primeira Ordem:
 - A. A eliminação dos quantificadores existenciais depende dos quantificadores existenciais e universais dentro de cujo domínio se encontram.
 - B. A eliminação dos quantificadores existenciais depende dos outros quantificadores existenciais dentro de cujo domínio se encontram.
 - C. A eliminação dos quantificadores existenciais depende dos quantificadores universais dentro de cujo domínio se encontram.
 - D. A eliminação dos quantificadores existencias não depende de outros quantificadores e é feita substituíndo as variáveis quantificadas existencialmente por constantes que nunca apareceram antes.

Resposta: C

- 3. Forneça definições para os seguintes conceitos:
 - (a) (0.5) Princípio da forma.

Resposta:

Se dois argumentos têm a mesma forma então estes são ambos válidos ou ambos inválidos.

(b) (0.5) Cláusula unitária.

Resposta:

Uma claúsula que é constituída apenas por um literal.

(c) (0.5) Fórmula satisfazível.

Resposta:

Uma fórmula diz-se *satisfazível* se e só se existe uma interpretação na qual a fórmula é verdadeira.

(d) (0.5) Fórmula fechada.

Resposta:

Uma fórmula sem variáveis livres.

4. Usando as regras do sistema de dedução natural, demonstre os seguintes teoremas:

(a) (1.5)
$$\neg(P \lor Q) \rightarrow (\neg P \land \neg Q)$$

Resposta:

1

$$\neg (P \lor Q)$$
 Hyp

 2
 P
 Hyp

 3
 $P \lor Q$
 $\lor I, 2$

 4
 $\neg (P \lor Q)$
 Rei, 1

 5
 $\neg P$
 $\neg I, (2, (3, 4))$

 6
 Q
 Hyp

 7
 $P \lor Q$
 $\lor I, 6$

 8
 $\neg (P \lor Q)$
 Rei, 1

 9
 $\neg Q$
 $\neg I, (6, (7, 8))$

 10
 $\neg P \land \neg Q$
 $\land I, (5, 9)$

 11
 $\neg (P \lor Q) \to (\neg P \land \neg Q)$
 $\rightarrow I, (1, 10)$

(b) (1.5)
$$\forall x [P(x) \lor \neg P(x)]$$

Resposta:

1
$$x_0$$
 $\neg (P(x_0) \lor \neg P(x_0))$ Hyp
2 $P(x_0)$ $P(x_0)$

5. Transforme as seguintes fórmulas para a forma clausal. Indique todos os passos realizados.

(a) (1.0)
$$A \to (\neg(\neg B \lor C) \lor (C \to D))$$
 Resposta:

i. Eliminação do símbolo
$$\rightarrow$$
: $\neg A \lor (\neg (\neg B \lor C) \lor (\neg C \lor D))$

ii. Redução do domínio do símbolo
$$\neg$$
: $\neg A \lor ((\neg \neg B \land \neg C) \lor (\neg C \lor D))$ $\neg A \lor ((B \land \neg C) \lor (\neg C \lor D))$

iii. Obtenção da forma conjuntiva normal:

$$\neg A \lor ((B \lor (\neg C \lor D)) \land (\neg C \lor (\neg C \lor D))) \\ (\neg A \lor (B \lor (\neg C \lor D))) \land (\neg A \lor (\neg C \lor (\neg C \lor D))) \\ (\neg A \lor B \lor \neg C \lor D) \land (\neg A \lor \neg C \lor D)$$

- iv. Eliminação do símbolo \land : $\{\neg A \lor B \lor \neg C \lor D, \neg A \lor \neg C \lor D\}$
- v. Eliminação do símbolo \vee : $\{\{\neg A, B, \neg C, D\}, \{\neg A, \neg C, D\}\}$
- (b) (1.0) $\exists x[A(x)] \land \forall x[B(x) \rightarrow (\exists y[C(x,y)] \lor \exists y[D(y)])]$

Resposta:

- i. Eliminação do símbolo \rightarrow : $\exists x[A(x)] \land \forall x[\neg B(x) \lor (\exists y[C(x,y)] \lor \exists y[D(y)])]$
- ii. Redução do domínio do símbolo ¬: já está.
- iii. Normalização de variáveis: $\exists w[A(w)] \land \forall x [\neg B(x) \lor (\exists y [C(x,y)] \lor \exists z [D(z)])]$
- iv. Eliminação do símbolo \exists : $A(sk_1) \land \forall x [\neg B(x) \lor C(x, skf_1(x)) \lor D(skf_2(x))]$
- v. Obtenção da forma "Prenex" normal: $\forall x [A(sk_1) \wedge (\neg B(x) \vee C(x, skf_1(x)) \vee D(skf_2(x)))]$
- vi. Eliminação do símbolo \forall : $A(sk_1) \wedge (\neg B(x) \vee C(x, skf_1(x)) \vee D(skf_2(x)))$
- vii. Obtenção da forma conjuntiva normal: já está.
- viii. Eliminação do símbolo \land : $\{A(sk_1), \neg B(x) \lor C(x, skf_1(x)) \lor D(skf_2(x))\}$
 - ix. Eliminação do símbolo \vee : $\{\{A(sk_1)\}, \{\neg B(x), C(x, skf_1(x)), D(skf_2(x))\}\}$
- 6. **(1.0)** Usando uma estratégia de resolução linear, apresente uma prova por refutação para A a partir do seguinte conjunto de cláusulas:

$$\{\{A, B, \neg C\}, \{\neg D, A\}, \{\neg B\}, \{C\}\}.$$

Resposta:

Adicionamos a cláusula $\{\neg A\}$ ao conjunto de premissas.

7. (a) (0.5) Sendo Δ um conjunto de *fbfs* e α uma *fbf*, diga qual o significado de $\Delta \models \alpha$. Resposta:

Todos os modelos de Δ são modelos de α .

Número: _____ Pág. 5 de 6

(b) **(1.0)** Diga como pode usar o OBDD de uma *fbf* para determinar os modelos dessa *fbf*.

Resposta:

Os modelos podem ser extraídos dos caminhos que começam na raiz e terminam em folhas \overline{V} . Se ao passar por uma letra de predicado P o caminho seguir pelo ramo a cheio, isso significa que nesse modelo o valor dessa letra de predicado é V; em caso contrário o valor é F. Se o caminho não passar por alguma letra de predicado, isso significa que o seu valor não é relevante, isto é, que existirá um modelo em que é V e outro em que é F.

(c) (1.0) Aplique a resposta da alínea b) ao seguinte OBDD:

Resposta:

Os três modelos possíveis são caracterizados pelas seguintes interpretações:

R	Q
V	V
V	F
F	V

(d) (1.5) Usando OBDDs, mostre que $\{P,P\to Q\}\models Q$. SUGESTÃO: Utilizando o algoritmo aplica, construa o OBDD para a conjunção das premissas e veja o que pode concluir em relação à conclusão do argumento.

Resposta:

Atendendo às respostas às alíneas anteriores, todos os caminhos do OBDD da $\mathit{fbf}\,P \land (P \to Q)$ que terminem em V, depois de passar por qualquer nó de rótulo Q, terão de seguir pelo ramo a cheio.

- 8. Represente em lógica de primeira ordem cada uma das seguintes frases. Tenha o cuidado de explicitar o significado informal dos seus predicados.
 - (a) (0.5) Existe um cão de quem todos os gatos gostam.

(Todos os gatos gostam do mesmo cão.)

Resposta:

Significado informal dos predicados:

- $C\tilde{a}o(x) = x$ é um cão
- Gato(x) = x 'e um gato
- Gosta(x, y) = x gosta de y

$$\exists x [C\tilde{a}o(x) \land \forall y [Gato(y) \rightarrow Gosta(y, x)]]$$

(b) **(0.5)** Todos os gatos gostam de algum cão. (Pode ser um cão diferente para cada gato.)

Resposta:

$$\forall x [Gato(x) \to \exists y [C\tilde{a}o(y) \land Gosta(x,y)]]$$

9. **(1.0)** Usando o algoritmo de unificação estudado nas aulas, calcule o unificador mais geral para o conjunto que se segue, indicando os conjuntos de desacordo calculados em cada etapa. NOTA: As variáveis são x, y, u, w, r.

$$\Delta = \{ P(245, x, f(y)), P(u, a, w), P(245, r, f(b)) \}.$$

Resposta:

Conjunto	Conjunto de desacordo	Substituição
$\{P(245, x, f(y)), P(u, a, w), P(245, r, f(b))\}$	$\{245, u\}$	$\{245/u\}$
$\{P(245, x, f(y)), P(245, a, w), P(245, r, f(b))\}$	$\{x,a,r\}$	$\{a/x\}$
$\{P(245, a, f(y)), P(u, a, w), P(245, r, f(b))\}$	$\{a,r\}$	$\{a/r\}$
$\{P(245, a, f(y)), P(u, a, w), P(245, a, f(b))\}$	$\{f(y), w, f(b)\}$	$\{f(y)/w\}$
$\{P(245, a, f(y)), P(245, a, f(b))\}$	$\{y,b\}$	$\{b/y\}$
$P(245, a, f(b))\}$		

O unificador mais geral é $\{245/u, a/x, a/r, f(b)/w, b/y\}$.