Análise de Componentes Principais

Jhessica Letícia Kirch Universidade de São Paulo

Simpósio de Microbiologia Agrícola 11 de abril de 2023

- ■Descrita por Karl Pearson (1901);
- •É um dos métodos multivariados mais utilizados;
- •Objetivo: Tomar p variáveis $X_1, X_2, ..., X_p$ e encontrar combinações lineares destas para produzir índices $Z_1, Z_2, ..., Z_p$ que sejam não correlacionados na ordem de sua importância e que descreva toda a variação dos dados;
- A falta de correlação significa que os índices estão medindo diferentes dimensões dos dados.

- ■A ordem é tal que $Var(Z_1) \ge Var(Z_2) \ge \cdots \ge Var(Z_p)$;
- ■Os índices Z_i são também variáveis e são os Componentes Principais (CP);
- ■Na ACP, espera-se que a maioria das últimas variâncias sejam baixas, de modo que grande parte da explicação de variabilidade das variáveis originais se concentre em poucos componentes Z_i , resumindo assim o espaço dimensão variável.

Desvantagens:

- Ao reduzir o número de variáveis, há perda da informação de variabilidade das variáveis originais.
- A ACP nem sempre funciona! (às vezes mesmo com a redução ainda continua grande). É o caso de variáveis originais pouco correlacionadas.

OBJETIVO: redução dimensional.

Seja X uma matriz de n observações e p variáveis. O primeiro componente principal é uma combinação linear tal que:

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

em que a_{ij} é o coeficiente associado à importância da j-ésima variável resposta em Z_i .

 A determinação desses coeficientes é feita por meio da técnica de autovalores e autovetores da matriz de covariância C ou correlação R.

- A decomposição espectral, técnica matemática que consiste na determinação de autovalores e autovetores, ocupa um lugar central na análise multivariada.
- •Considere a matriz quadrada A ($p \times p$). Se existe um escalar λ e um vetor v não nulo tal que

$$Av = \lambda v$$

então o λ é denominado autovalor e \boldsymbol{v} é seu autovetor associado.

■O autovalor é obtido por meio de:

$$\det(A - \lambda I)$$

• O autovetor associado é obtido por meio de:

$$(A - \lambda_i I)x = 0$$

Exemplo:

$$A = \begin{bmatrix} 1 & -1 \\ -4 & 1 \end{bmatrix}$$

Primeiro autovalor e autovetor associado:

$$\lambda = 3$$
 e $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

• Verificando que $Av = \lambda v$

• Verificando que $Av = \lambda v$

$$A = \begin{bmatrix} 1 & -1 \\ -4 & 1 \end{bmatrix}$$
, $\lambda = 3$ e $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$\mathbf{A}\mathbf{v} = \begin{bmatrix} 1 & -1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \end{bmatrix}$$

$$\lambda \mathbf{v} = 3 \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \end{bmatrix}$$

Segundo autovalor e autovetor associado:

$$\lambda = -1$$
 e $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

• Verificando que $Av = \lambda v$

$$\mathbf{A}\boldsymbol{v} = \begin{bmatrix} 1 & -1 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

$$\lambda \boldsymbol{v} = -1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

AUTOVALORES E AUTOVETORES NA ACP

 As variâncias dos componentes principais são os autovalores da matriz C.

• Isto é
$$Var(Z_i) = \lambda_i$$

•Os coeficientes $a_{i1},\ a_{i2},...,\ a_{ip}$ são os elementos do autovetor associado a λ_i , escalonados de forma que

$$a_{i1}^2 + a_{i2}^2 + \dots + a_{ip}^2 = 1$$

Exemplo: Pardais sobreviventes da tempestade

Tabela 1. Correlações entre as cinco medidas do corpo das pardocas.

	<i>X</i> ₁	X_2	X_3	X_4	X_5
$\overline{X_1}$	1,000				
X_2	0,735	1,000			
X_3	0,662	0,674	1,000		
X_4	0,645	0,769	0,763	1,000	
X_5	0,605	0,529	0,526	0,607	1,000

- • X_1 = comprimento total;
 - • X_2 = extensão alar;
- • X_3 = comprimento do bico e cabeça;
 - X_4 = comprimento do úmero;
- • X_5 = comprimento da quilha do esterno.

Exemplo da Tabela 1 em p=5 medidas altamente correlacionadas do corpo de n=49 pardocas temos:

$$var(Z_1) = 3,62$$

$$[var(Z_2) = 0.53, var(Z_3) = 0.39, var(Z_4) = 0.30, var(Z_5) = 0.16]$$

O primeiro componente é visivelmente o mais importante para representar a variação total das 49 pardocas!

Com as variáveis X_i padronizadas, temos:

$$Z_1 = 0.45X_1 + 0.46X_2 + 0.45X_3 + 0.47X_4 + 0.40X_5$$

expressando um índice de tamanho! (Z_1 consiste em uma média das medidas).

- X_1 = comprimento total;
 - X_2 = extensão alar;
- X_3 = comprimento do bico e cabeça;
 - X_4 = comprimento do úmero;
- X_5 = comprimento da quilha do esterno.

1. Parte-se de um conjunto de *n* indivíduos e *p* variáveis.

2. O primeiro CP é:

$$Z_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

sob à condição:

$$a_{11}^2 + a_{12}^2 + \dots + a_{1p}^2 = 1$$

3. O segundo CP é:

$$Z_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

sob à condição:

$$a_{21}^2 + a_{22}^2 + \dots + a_{2p}^2 = 1$$

com a condição de que a correlação entre Z_1 e Z_2 seja zero!

4. O terceiro CP é:

$$Z_3 = a_{31}X_1 + a_{32}X_2 + \dots + a_{3p}X_p$$

sob à condição:

$$a_{31}^2 + a_{32}^2 + \dots + a_{3p}^2 = 1$$

com a condição de que a correlação entre $(Z_1 \in Z_3)$ e $(Z_2 \in Z_3)$ sejam nulas!

E assim por diante até o máximo de p componentes.

Procedimento de cálculo:

- 1. Parte-se da matriz de covariâncias *C* ou *R*.
- 2. Calcula-se os p autovalores $(\lambda_1, \lambda_2, ..., \lambda_p)$ e os p autovetores $(\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_p)$ de \boldsymbol{C} ou \boldsymbol{R} .
- 3. Tem-se então que

$$Z_1 = Xa_1$$

são os valores (escores) do primeiro componente.

4. Descarte os componentes que expliquem pouco da variação total dos dados.

Dizemos que a ACP é bem sucedida quando há uma significativa redução dimensional com o mínimo de perda de informação.

CRITÉRIOS

- Percentual de explicação maior que 80% (sugestão);
- Número de autovalores maiores que 1.

INTERPRETAÇÃO:

- A interpretação dos componentes deve ser feita em termos das magnitudes dos coeficientes associados às variáveis originais
- Portanto, os coeficientes indicam um "peso" da variável original.

Medidas do corpo de pardocas

Interpretação dos CP:

- CP1, (Z₁): índice dos tamanhos das pardocas e explica 72% da variância total.
- ■CP2, (Z₂): representa uma diferença de forma entre as pardocas e explica 10,6% da variância total.

Figura 1 Representação de 49 pardocas contra valores para os dois primeiros componentes principais, CP1 e CP2.

Obs.:

- Nota-se que os pássaros com valores extremos para o 1º CP não sobreviveram. Isso é sugestivo também para o 2º CP.
- Os valores dos autovetores podem sair com sinais trocados em alguns pacotes computacionais. Isso não é um erro! Ele continua medindo exatamente o mesmo aspecto dos dados, mas na direção oposta. Continua sendo uma base do espaço de vetores.

Emprego nos países europeus

Interpretação dos CP:

 Z_1 é um contraste entre os números engajados em AGR (agricultura, florestal e pesca) MIN (mineração e exploração de pedreiras) versus os números engajados em outras ocupações.

 Z_2 é o contraste entre os números para MAN (fabricação) e TC (transporte e comunicação) com os números em CON (construção), SER (indústrias e serviços) e FIN (finança)

Figura 2 Países europeus representados contra os primeiros dois componentes principais para variáveis de emprego.

ACP COM ANÁLISE DE AGRUPAMENTOS

- Alguns algoritmos de análise de agrupamentos começam fazendo uma ACP para reduzir o número de variáveis originais.
- Pode mudar drasticamente os resultados obtidos.
- •É uma opção de melhorar a representação gráfica quando os dois primeiros CP's contam por uma alta porcentagem de variação dos dados.