ES2-S2

2016-2017

- Correction - Analyse -

Exercice 1

1. Le polynôme caractéristique de A est :

$$\chi_A(\lambda) = \lambda^2 - 2x\lambda - (y-4)$$

Le discriminant de χ_A vaut $4(x^2+y-4)$. S'il est strictement négatif, A n'a pas de valeur propre réelle et n'est pas \mathbb{R} -diagonalisable. S'il est nul, A a une unique valeur propre réelle et comme A n'est pas multiple de I_2 , elle n'est pas diagonalisable. S'il est > 0, A possède deux valeurs propres réelles distinctes et est diagonalisable avec deux sous-espaces propres qui sont des droites. Conclusion:

A est diagonalisable si, et seulement si, $x^2 + y - 4 > 0$

- **2.** L'application $u \in E_2 \mapsto u^2$ a une image incluse dans \mathbb{N} et est injective (car $x \mapsto x^2$ l'est sur \mathbb{R}_+). E_2 est ainsi en bijection avec une partie de N (son image). C'est donc une partie finie ou dénombrable. Comme E_2 est infini (E_2 contient tous les entiers), E_2 est finalement dénombrable.
- 3. L'ensemble des u tels que $f(u) \neq 0$ est l'ensemble dénombrable E_2 . Or f est la loi d'une variable aléatoire si elle est à valeurs positives et si $\sum_{u \in E_2} f(u)$ existe et vaut 1. On a $E_2 = \{\sqrt{n} / n \in \mathbb{N}\}$ et la condition

précédente s'écrit $\sum_{n\in\mathbb{N}} (\lambda/2^n)$ est convergente de somme 1. Comme $\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$, la condition devient $\lambda = \frac{1}{2}$. Pour cette valeur, $\overset{n\in\mathbb{N}}{f}$ vérifie les deux conditions voulues.

Finalement, f est la loi d'une variable alétoire X si, et seulement, si $\lambda = \frac{1}{2}$. On a alors $X(\Omega) = E_2$.

4. $X^2(\Omega)$ est l'ensemble des carrés des valeurs prises par X et donc :

$$X^2(\Omega) = \mathbb{N}.$$

Pour tout réel positif $u, x^2 = u$ équivaut à $x = \sqrt{u}$ et donc :

$$\forall n \in \mathbb{N}, \ \mathbb{P}(X^2 = n) = \mathbb{P}(X = \sqrt{n}) = \frac{1}{2^{n+1}}.$$

5. Comme $\frac{n}{2^{n+1}}$ est le terme général d'une série absolument convergente, X^2 admet une espérance qui

$$\mathbb{E}(X^2) = \sum_{n \in \mathbb{N}} n \mathbb{P}(X^2 = n) = \sum_{n=1}^{+\infty} \frac{n}{2^{n+1}}.$$

On sait d'après le cours sur les séries entières que :

$$\forall x \in]-1,1[, \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}$$

Avec $x = \frac{1}{2}$, il vient :

$$\mathbb{E}(X^2) = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{n}{2^{n-1}} = 1.$$

Spé PT Page 1 sur ?? **6.** La fonction génératrice de X^2 est la fonction F telle que :

$$\forall x \in [-1,1], \ F(x) = \sum_{n=0}^{\infty} \mathbb{P}(X^2 = n) x^n = \sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}} = \frac{1}{2} \frac{1}{1 - x/2} = \frac{1}{2 - x}.$$

F est dérivable en 1 et X^2 admet donc une espérance qui est égale à :

$$F'(1) = \frac{1}{(2-1)^2} = 1.$$

7. La fonction génératrice G de Z est définie par :

$$\forall t \in [-1, 1], \ G(t) = \mathbb{E}(t^Z) = \mathbb{E}(t^{X^2}t^Y)$$

Comme X et Y sont indépendantes, t^{X^2} et t^Y le sont. On a donc :

$$\forall t \in [-1, 1], \ G(t) = F(t)\mathbb{E}(t^Y)$$

Mais comme X^2 et Y suivant la même loi, elles ont la même fonction génératrice et ainsi :

$$\forall t \in [-1, 1], \ G(t) = F(t)^2 = \frac{1}{(2-t)^2}.$$

Avec les formules sur les séries entières rappelées plus haut, on obtient que :

$$\forall t \in [-1, 1], \ G(t) = \frac{1}{4} \frac{1}{(1 - t/2)^2} = \frac{1}{4} \sum_{n=1}^{\infty} n \left(\frac{t}{2}\right)^{n-1} = \sum_{n=0}^{\infty} \frac{n+1}{2^{n+2}} t^n,$$

et ainsi:

$$\forall n \in \mathbb{N}, \ \mathbb{P}(Z=n) = \frac{n+1}{2^{n+2}}.$$

8. La probabilité que A soit diagonalisable est celle de l'événement $(X^2+Y>4)=(Z\geq 5)$. Cette probabilité vaut donc (après calcul au brouillon):

$$\mathbb{P}(Z \ge 5) = 1 - \sum_{k=0}^{4} \mathbb{P}(Z = k) = \frac{7}{64}.$$

Exercice 2

1. Soit $x \in \mathbb{R}$. f_x : $t \mapsto \frac{1}{t^x \sqrt{1-t^2}}$ est continue sur $]1,+\infty[$. On a des problèmes d'intégrabilité aux voisinages de 1 et de $+\infty$.

Au voisinage de $+\infty$, $f_x(t) \sim \frac{1}{t^{x+1}}$ et il y a intégrabilité ssi x > 0 (fonctions de Riemann).

Au voisinage de 1⁺, $f_x(t) \sim \frac{t^{\nu+1}}{\sqrt{2}\sqrt{t-1}}$ est intégrable. f_x étant positive, l'existence de l'intégrable équivaut à l'intégrabilité et donc :

$$I = \mathbb{R}^{+*}$$

Spé PT Page 2 sur ?? 2. $x \mapsto \frac{1}{e^x + e^{-x}}$ est continue sur \mathbb{R}^+ et équivalente en $+\infty$ à e^{-x} et donc intégrable au voisinage de $+\infty$. L'intégrale proposée existe donc. On a :

$$\int_0^{+\infty} \frac{dx}{e^x + e^{-x}} = \int_0^{+\infty} \frac{e^x}{e^{2x} + 1} dx = \left[\arctan(e^x)\right]_0^{+\infty} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

3. $u \mapsto \operatorname{ch}(u)$ est de classe C^1 sur \mathbb{R}^{+*} et sa dérivée ne s'annule pas. Il est donc licite de poser $t = \operatorname{ch}(u)$ dans l'intégrale qui définit f(1). On obtient :

$$f(1) = \int_0^\infty \frac{\sinh(u)}{\cosh(u)\sqrt{\cosh^2(u) - 1}} \ du = \int_0^\infty \frac{2du}{e^u + e^{-u}} = \frac{\pi}{2}$$

4. Le même changement de variable donne :

$$f(2) = \int_0^{+\infty} \frac{du}{\operatorname{ch}^2(u)} = \left[\frac{\operatorname{sh}(u)}{\operatorname{ch}(u)}\right]_0^{+\infty} = 1$$

On a utilisé $\operatorname{ch}(u) \sim e^u/2 \sim \operatorname{sh}(u)$ au voisinage de $+\infty$.

5. f(x) est l'intégrale d'une fonction positive entre deux bornes "dans le bon sens". Ainsi :

$$\forall x > 0, \ f(x) \ge 0$$

Comme la fonction intégrée est continue, positive et non nulle, on peut même dire que :

$$\forall x > 0, \ f(x) > 0$$

- 6. Si $x \leq y$ alors pour tout t > 1 on a $f_x(t) \geq f_y(t)$ (avec les notations utilisées en 1). On en déduit en intégrant que $f(x) \geq f(y)$. Ceci montre que f est croissante sur I. Comme ci-dessus, on pourrait même montrer une stricte monotonie.
- 7. Il s'agit d'utiliser le théorème de dérivation des intégrales à paramètres.
 - $\forall x \in I, \ t \mapsto f_x(t)$ est intégrable sur $]1, +\infty[$.
 - $\forall t > 1, \ x \mapsto f_x(t)$ est de classe C^1 sur I de dérivée $x \mapsto -\frac{\ln(t)}{t^x \sqrt{t^2 1}}$.
 - $\forall x \in I, \ t \mapsto -\frac{\ln(t)}{t^x \sqrt{t^2 1}}$ est continue sur $]1, +\infty[$.
 - $\forall [a,b] \subset I$, $\forall t > 1$, $\left| -\frac{\ln(t)}{t^x \sqrt{t^2 1}} \right| \le \frac{\ln(t)}{t^a \sqrt{t^2 1}}$. Le majorant est continu sur $]1, +\infty[$, équivalent au voisinage de 1^+ à $\frac{\sqrt{t-1}}{\sqrt{2}}$ et donc prolongeable par continuité en 1 (valeur 0), équivalent à $\frac{\ln(t)}{t^{x+1}}$ au

voisinage de $+\infty$ et donc négligeable devant $\frac{1}{t^{1+x/2}}$ (croissances comparées puissance-logarithme).

Comme 1 + x/2 > 0, il y a aussi intégrabilité du majorant au voisinage de $+\infty$ et donc sur \mathbb{R} . Le théorème s'applique et indique que $f \in C^1(I)$ avec :

$$\forall x > 0, \ f'(x) = -\int_{t}^{+\infty} \frac{\ln(t)}{t^{x} \sqrt{t^{2}-1}} \ dt$$

La fonction intégrée ci-dessus est positive et on a donc $f'(x) \leq 0$ ce qui montre à nouveau la décroissance de f sur I.

- 8. $t \mapsto \frac{t}{\sqrt{t^2-1}}$ est continue sur $]1,+\infty[$ et $t\mapsto \sqrt{t^2-1}$ en est une primitive.
 - $t\mapsto \frac{1}{t^{x+1}} \text{ est de classe } C^1 \text{ sur }]1,+\infty[\text{ de dérivée } t\mapsto -\frac{(x+1)}{t^{x+2}}.$
 - $t\mapsto \frac{\sqrt{t^2-1}}{t^{x+1}}$ est de limite nulle en 1 et en $+\infty$.

On peut donc intégrer par parties pour obtenir :

$$\forall x > 0, \ f(x) = (x+1) \int_{1}^{+\infty} \frac{\sqrt{t^2 - 1}}{t^{x+2}} \ dt$$

Spé PT Page 3 sur ??

En écrivant que $\sqrt{t^2-1}=\frac{t^2}{\sqrt{t^2-1}}-\frac{1}{\sqrt{t^2-1}}$ et comme toutes les intégrales existent, on a alors :

$$\forall x > 0, \ f(x) = (x+1)(f(x) - f(x+2))$$

On en déduit que :

$$f(x+2) = \frac{x}{x+1}f(x)$$

9. Montrons par récurrence que :

$$\forall p \in \mathbb{N}^*, \ f(2p) = \frac{4^{p-1}(p!)^2}{(2p-1)!}$$

- Initialisation : le résultat est vrai pour p = 1 car f(2) = 1
- <u>Hérédité</u> : soit $p \ge 2$ tel que le résultat soit vrai jusqu'au rang p-1.

On connaît alors f(2p-2) et la question précédente donne f(2p) en fonction de f(2(p-1)). On obtient le résultat au rang p en combinant les résultats.

10. Soit x > 0. On a :

$$\varphi(x+1) = (x+1)f(x+1)f(x+2) = (x+1)f(x+1)\frac{x}{x+1}f(x) = \varphi(x)$$

11. φ est continue sur \mathbb{R}_+^* , comme f. On a donc, avec la question précédente :

$$\lim_{x \to 0^+} \varphi(x) = \lim_{x \to 0^+} \varphi(x+1) = \varphi(1) = f(1)f(2) = f(1)$$

Or, $\varphi(x) \underset{0^+}{\sim} xf(x)f(1)$ et donc $xf(x) \to 1$ quand $x \to 0^+$. On obtient alors :

$$f(x) \underset{0^+}{\sim} \frac{1}{x}$$

12. Pour tout $n \in \mathbb{N}^*$, $\varphi(n) = \varphi(1) = \frac{\pi}{2}$ (périodocité de φ). Ceci s'écrit :

$$\forall n \in \mathbb{N}^*, \ f(n)f(n+1) = \frac{\pi}{2n}$$

D'après lé décroissance et positivité de f, on a :

$$\forall n \in \mathbb{N}^*, \ f(n+1)^2 \le f(n)f(n+1) \le f(n)^2$$

On en déduit que :

$$\forall n \ge 2, \ \frac{\pi}{2n} \le f(n)^2 \le \frac{\pi}{2(n-1)}$$

Majorant et minorant étant tous deux équivalent à $\pi/2n$ au voisinage de $+\infty$, il en est de même de $f(n)^2$. Comme on peut élever un équivalent à une puissance constante, on a finalement :

$$f(n) \underset{\substack{n \to +\infty \\ n \in \mathbb{N}^*}}{\sim} \sqrt{\frac{\pi}{2n}}$$

13. En notant |x| la partie entière usuelle de x, définie par :

$$\lfloor x \rfloor \in \mathbb{N}$$
 et $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$,

et en notant [x] sa partie entière par excès définie par :

$$\lceil x \rceil \in \mathbb{N}$$
 et $\lceil x \rceil - 1 < x \le \lceil x \rceil$.

la décroissance de f nous donne :

$$\forall x \ge 1, \ f(\lceil x \rceil) \le f(x) \le f(f(\lfloor x \rfloor)).$$

Comme $\lfloor x \rfloor$ et $\lceil x \rceil$ équivalent tout deux à x au voisinage de $+\infty$ (ils différent de x de moins de 1 qui est négligeable devant x) la question précédente donne que le majorant et le minorant sont tous deux équivalents à $\sqrt{\frac{\pi}{2x}}$ et donc :

$$f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}.$$

Spé PT Page 4 sur ??

14. On a montré la décroissance de f. La courbe aux voisinage de 0 et de $+\infty$ est proche de celle des fonctions équivalentes trouvées.

On obtient alors :

15. Avec ce qui précède, φ tend vers $\pi/2$ quand $x \to +\infty$. Or, pour tout x on a :

$$\forall n \in \mathbb{N}, \ \varphi(x) = \varphi(x+n)$$

En faisant tendre n vers $+\infty$, on en déduit alors que :

$$\forall x > 0, \ \varphi(x) = \frac{\pi}{2}.$$

Spé PT Page 5 sur ??