Mechanism and function of stochastic pulse regulation

Stephanie Unna, Locke Lab.

Gene expression is noisy

even under constant environmental conditions

equilibration

oscillation

stochastic

Noise is functionally important

- Circuit
 - stochastic
 - threshold
 - positive feedback
- Persistence *E. coli*
 - HipBA toxin/antitoxin
 - antibiotic resistance

- Characteristic response
- Circuit:
 - stochastic process
 - threshold
 - fast/slow feedback
- Bacterial competence

A different kind of noise

stochastic pulsing

Bacillus subtilis P_{σB}-yfp energy stress 40μg/L MPA

Locke et al. Science, 2011

What is the role of stochastic pulsing?

Bet-hedging in an uncertain environment

Optimal growth conditions

Catastrophic event

Optimal growth conditions

Modelling a gene regulatory network

Interactions between genes define network

$$N = \{p_1p_2p_3p_4...p_{16}\}$$

For each path, p:

present / absent	{bool.}
• activation / repression	{bool.}
 response curve 	{real}
• lag	{real}

Simulating network interactions

Emulating biological evolution

1. Initiation

generate random networks

4. Reproduction

mutations, recombination and clonal reproduction

2. Simulation

run simulations to get timeseries of gene concentrations

5. Evolve

repeat steps 2 - 4 over many generations

3. Fitness

rank all networks according to fitness of output (choose function)

6. Analysis

look for common themes in evolved networks

Testing for bet-hedging

This is all very slow

For each generation:

This is all very slow

For each generation:

each with a population of K cells

This is all very slow

For each generation:

each with multiple dynamic simulations over a few days

Boolean Approach

0 < lag < 60 minutes

environmental signal and response

Validating the boolean approach

can we evolve a clock?

Troein, Locke et al., 2009

Genetic algorithm

Summary and next steps

Done

- Constructed a generic framework for network evolution
- Established novel boolean network evolution system
- Written GA and fitness functions
- Evolved a clock (sort of)

Doing

- Try starting with networks that are already clocks
- Try starting with networks that evolved in the clock evolution paper

To do

- Change the environmental input pattern
- Look at the interplay between sensory and anticipatory pathways

Acknowledgements

James Locke

Carl Troein

Locke Lab

Thanks for listening

Bet-hedging requires whole colony

Multiple stochastic simulations for every generation (slow)

Pulse modulation

Amplitude modulated (AM)

Bacillus subtilis spo0A

Frequency modulated (FM)

Yeast Crz1

Duration modulated (DM)

?

Approach

inferring networks from data

response curves

Testing for bet-hedging

antibiotic resistance gene

- (a) severe cost for no/low expression during stress
- (b) slight cost for expression otherwise (slowed growth)

Fitness will be proportional to:

(a)
$$\int_{t_A} G_1$$
 (b) $-\int_{t_0} G_1$

Bet-hedging requires stochasticity

Option 1: Discretise and solve piecewise

Option 2: Create an SDDE solver

Option 3: Simulate transcription and translation using SDE solver with no lag.