

Universidad de Concepción Facultad de Ingeniería Departamento de Ingeniería Metalúrgica

Control de Procesos – Ayudantía 00c Extra de Matlab (Problemas Resueltos)

Ejercicio R1. El juego del caos. Asumamos que tenemos tres puntos en los vértices de un triángulo equilátero, $P_1 = (0, 0)$, $P_2 = (0.5, \sqrt{2}/2)$, $P_3 = (1, 0)$. Generar otro conjunto de puntos $p_i = (x_i, y_i)$ tal que $p_1 = (0, 0)$ y p_{i+1} es el punto medio entre p_i y P_1 con un 33% de probabilidad, o el punto medio entre p_i y P_2 con un 33% de probabilidad, o el punto medio entre p_i y P_3 con un 33% de probabilidad. Escribir un programa que genere los puntos p_i para i = 1, ..., n. Por ejemplo, se ilustran gráficos generados para n = 100 y n = 10000. (Tip: la función rand puede ayudar)

Figura 1. Triángulo de Sierpinski generado con puntos aleatorios para a) n = 100 puntos, b) n = 10000.

Nota: Más sobre el triángulo de Sierpinski en wiki.

Solución:

Este problema involucra conceptos de probabilidad y geometría. Para programar esta visualización deberemos seguir los siguientes pasos:

- Declarar los puntos iniciales.
- Crear un ciclo donde se vayan generando los siguientes puntos.
- Los puntos se generan con distancias medias entre el punto de la iteración anterior (o inicial *p*₁) y alguno de los que definen el triángulo equilátero inicial, ¿cuál? Elegir según las probabilidades dadas. Aquí será necesario el uso de condicionales if-else para realizar las comparaciones.
- Finalmente, podemos desplegar cada punto en cada iteración, o almacenarlos en un arreglo y desplegarlos al terminar el ciclo, lo primero tomará más tiempo, pero podremos seguir la actualización del fractal, esto es lo que haremos en este ejemplo.

Universidad de Concepción Facultad de Ingeniería Departamento de Ingeniería Metalúrgica

Veamos la solución:

```
clear; clc; close
% El juego del caos, el triángulo de Sierpinski
clear; clc; close all;
% Primeros puntos que definen el triángulo equilátero
    = [0 0.5 1]; % Coordenadas x
       = [0 \text{ sqrt}(2)/2 0]; % Coordenadas y
figure
plot(Px, Py, '.b', 'MarkerSize', 3);
axis off; % borramos los ejes para visualizar solamente el fractal
set(gcf,'color','w'); % cambiamos el color de fondo de la figura actual
Npoints = 10000; % número de puntos a dibujar
      = [0 0]; % punto inicial pi = (xi,yi)
hold on % escribir este comando acá, hará que toda gráfica dentro del
       % ciclo se guarde en la misma figura
for k = 1:Npoints
    prob = rand;% números aleatorios entre 0 y 1 con distribución normal
    % Actualización de los puntos según las probabilidades dadas
    if prob < 0.33
      p(1) = (Px(1)+p(1))/2;
       p(2) = (Py(1)+p(2))/2;
    elseif prob < 0.66</pre>
       p(1) = (Px(2)+p(1))/2;
       p(2) = (Py(2)+p(2))/2;
    else
       p(1) = (Px(3)+p(1))/2;
       p(2) = (Py(3)+p(2))/2;
    end
    plot(p(1),p(2),'.b','MarkerSize',3);
    drawnow
end
```