Chapter 0. Preparation

0.1 Categories

0.1.1 Definition. A category & consists of:

- 1. $Obj(\mathscr{C})$: the class of the objects (which may not be a set);
- 2. $\operatorname{Mor}(\mathscr{C})$: the class of morphisms. For each morphism $f \in \operatorname{Mor}(\mathscr{C})$, it has a **source** s(f) and a **target** t(f), where both s(f) and t(f) are elements of $\operatorname{Obj}(\mathscr{C})$. Let X be the source of f and Y be the target of f we can denote f as $f: X \to Y$. And we define $\operatorname{Hom}_{\mathscr{C}}(X,Y)$ (also $\operatorname{Hom}(X,Y)$ for short) as the class of morphisms with source X and target Y; that is $\operatorname{Hom}_{\mathscr{C}}(X,Y) := s^{-1}(X) \cap t^{-1}(Y)$.

Additionally, objects and morphisms should satisfy these properties:

1. $\forall X, Y, Z \in \text{Obj}(\mathscr{C})$, there is a **composition** $\circ : \text{Hom}(Y, Z) \times \text{Hom}(X, Y) \to \text{Hom}(X, Z)$, $(g, f) \mapsto g \circ f$. We also abbreviate $g \circ f$ as gf.

And we can use a commutative diagram

$$X \xrightarrow{f} Y$$

$$\downarrow^g$$

$$Z$$

to describe.

2. The composition we defined above satisfies the **associative law**; that is $\forall X, Y, Z, T \in \text{Obj}(\mathscr{C})$ and $f: X \to Y, g: Y \to Z, h: Z \to T$, we have

$$(h \circ g) \circ f = h \circ (g \circ f).$$

And we can also use a commutative diagram

$$X \xrightarrow{f} Y$$

$$g \circ f \downarrow \qquad \qquad \downarrow h \circ g$$

$$Z \xrightarrow{h} T$$

to describe.

3. $\forall X \in \text{Obj}(\mathscr{C})$, there is an **identity** $1_X \in \text{Hom}(X,X)$, such that for all $Y, Z \in \text{Obj}(\mathscr{C})$ and $f: X \to Y, g: Z \to X$, we have

$$f \circ 1_X = f, 1_X \circ g = g.$$

0.1.2 Example.

- 1. Let's begin with a simple example, the category of sets, denoted as **Set**. $Obj(\mathbf{Set})$ is the class of all sets (as we all know, it can't be a set because of the Russell's paradox). $Hom_{\mathbf{Set}}(A, B)$ are all maps from A to B. It's easy to check **Set** satisfies the concept of category.
- 2. The category of topological spaces, denoted as **Top**. The objects of **Top** are all topological spaces, and the morphisms are continuous maps.
- 3. The category of groups, denoted as **Grp**, in which objects are all groups and the morphisms are group homomorphisms; similarly, the category of abelian groups, denoted as **Ab**, in which objects are all abelian groups and the morphisms are group homomorphisms.
- 4. Let k be a field. The category of the vector spaces on k is denoted as \mathbf{Vect}_k , in which objects are all

vector spaces on k and morphisms are linear maps.

- 5. Let R be a ring (which may not be commutative). The category of the left modules on R is denoted as RMod, in which objects are all modules on R and morphisms are R-module homomorphisms. Similarly, we have the category of right modules \mathbf{Mod}_R .
- 6. The category of topological spaces with basepoints, denoted as \mathbf{Top}^* . Objects of \mathbf{Top}^* are like (X, x_0) , where X is a topological space and $x_0 \in X$. A morphism $f: (X, x_0) \to (Y, y_0)$ is a continuous map from X to Y with $f(x_0) = y_0$.
- **0.1.3 Definition.** Let \mathscr{C} be a category, and $f: X \to Y$ a morphism. Then,
 - o call f a monomorphism if $f\alpha_1 = f\alpha_2 \Rightarrow \alpha_1 = \alpha_2$ for all objects Z and morphisms $\alpha_1, \alpha_2 : Z \to X$;
 - \circ call f an **epimorphism** if $\beta_1 f = \beta_2 f \Rightarrow \beta_1 = \beta_2$ for all objects Z and morphisms $\beta_1, \beta_2 : Y \to Z$;
 - \circ call f an **isomorphism** if there is $g: Y \to X$ such that $gf = 1_X$ and $fg = 1_Y$.

Note A mono and epi morphism may not be an isomorphism.

- **0.1.4 Definition.** Let \mathscr{C} be a category. Define a category \mathscr{C}^{op} as follows:
 - \circ Obj(\mathscr{C}^{op}) = Obj(\mathscr{C});
 - $\circ \operatorname{Hom}_{\mathscr{C}^{\mathrm{op}}}(X,Y) = \operatorname{Hom}_{\mathscr{C}}(Y,X).$
 - $\circ f \circ^{\mathrm{op}} g = g \circ f, \forall g \in \mathrm{Hom}_{\mathscr{C}^{\mathrm{op}}}(X, Y), f \in \mathrm{Hom}_{\mathscr{C}^{\mathrm{op}}}(Y, Z).$

The category is called **opposite category** of \mathscr{C} .

- **0.1.5 Definition.** Let \mathscr{C} , \mathscr{D} be two categories. A (covariant) functor $F:\mathscr{C}\to\mathscr{D}$ is a map satisfying
 - 1. $\forall X \in \mathrm{Obj}(\mathscr{C}), F(X) \in \mathrm{Obj}(\mathscr{D});$
 - 2. $\forall f \in \text{Hom}_{\mathscr{C}}(X,Y), F(f) \in \text{Hom}_{\mathscr{D}}(F(X),F(Y));$
 - 3. $F(g \circ f) = F(g) \circ F(f)$;
 - 4. $F(1_X) = 1_{F(X)}$.

It can be considered that this functor preserves commutative diagrams.

$$X \xrightarrow{f} Y \qquad FX \xrightarrow{F(f)} FY \qquad \downarrow^{F(g)} \qquad \downarrow^{F$$

A contravariant functor $G: \mathscr{C} \to \mathscr{D}$ is a map satisfying

- 1. $\forall X \in \mathrm{Obj}(\mathscr{C}), G(X) \in \mathrm{Obj}(\mathscr{D});$
- 2. $\forall f \in \operatorname{Hom}_{\mathscr{C}}(X,Y), G(f) \in \operatorname{Hom}_{\mathscr{D}}(G(Y),G(X));$
- 3. $G(g \circ f) = G(f) \circ G(g)$;
- 4. $G(1_X) = 1_{G(X)}$.

It can also be regarded as a covariant functor from \mathscr{C}^{op} to \mathscr{D}

0.1.6 Example.

- The forgetful functor F: Top → Set assigns to each topological space its underlying set and to each continuous map itself("forgetting" its continuity). Similarly, there are forgetful functors Grp → Set, Ab → Grp, Ab → Set, and so on.
- 2. The functor $\pi_1 : \mathbf{Top}^* \to \mathbf{Grp}$ assigns to each topological space its fundamental group at the basepoint and to each continuous map to its induced homomorphism between fundamental groups.

- **0.1.7 Definition.** Let $F: \mathscr{C} \to \mathscr{D}$ be a functor. Then,
 - o say F is faithful if $F : \operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is injective for all objects X,Y in \mathscr{C} ;
 - o say F is fully faithful if $F : \operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is bijective for all objects X,Y in \mathscr{C} ;
 - o say F is essentially surjective if for each $Z \in \mathrm{Obj}(\mathcal{D})$, there is $X \in \mathrm{Obj}(\mathscr{C})$ such that $FX \cong Z$.

0.2 Rings and Ideals

Unless explicitly noted otherwise, all rings considered in this seminar are commutative rings with a unit. Note that the trivial ring 0 is within our consideration.

0.2.1 Proposition. Let A, B be rings. The polynomial ring $A[X_1, \ldots, X_n]$ has a universal property: for all ring homomorphism $\varphi: A \to B$ and a map $f: \{X_1, \ldots, X_n\} \to B$, there is a unique ring homomorphism $\psi: A[X_1, \ldots, X_n]$ such that the following diagram

commutes.

0.2.2 Definition. Let A be a ring, and $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ a family of ideals. Define the **sum** of $\{I_{\lambda}\}$ by

$$\sum_{\lambda \in \Lambda} I_{\lambda} := \{ \sum_{\lambda \in \Lambda} a_{\lambda} x_{\lambda} \mid a_{\lambda} \in A, x_{\lambda} \in I_{\lambda}, \text{and there is finite } a_{\lambda} \neq 0 \}.$$

And if Λ is finite, define their **product** by

$$\prod_{\lambda \in \Lambda} I_{\lambda} := \{ \prod_{\lambda \in \Lambda} x_{\lambda} \mid x_{\lambda} \in I_{\lambda} \}.$$

It's trivial to check their sum and product are both ideals. Let I, J be two ideals. Then we have

$$IJ \subset I \cap J \subset I + J$$
.

- **0.2.3 Proposition.** Let A be a ring, and I be an ideal of A. Then we have
 - \circ A/I is an integral domain if and only if I is a prime ideal;
 - \circ A/I is a field if and only if I is a maximal ideal.
- **0.2.4 Proposition.** Let $f: A \to B$ be a ring homomorphism, \mathfrak{p} a ideal in B, and $\mathfrak{q} = f^{-1}(\mathfrak{p})$. Then, if \mathfrak{p} is prime, \mathfrak{q} is prime; the converse holds if f is surjective.
- **0.2.5 Proposition-Definition.** A ring A is said to be **Noetherian** if it satisfies the following three equivalent properties:
 - 1. Any ideal in A is finitely generated.
 - 2. Any increasing sequence of ideals in A is eventually stable.
 - 3. Any non-empty set of ideals in A has a maximal element for the inclusion relation.
- **0.2.6 Theorem.** (Hilbert Basis) If A is a Noetherian ring, then the polynomial ring A[X] is a Noetherian ring.

Proof.

Let I be an ideal in A[X]. We need to prove I is finitely generated.

If $F = a_0 + a_1 X + \cdots + a_n X^n \in A[X]$ with $a_n \neq 0$, we call a_n the leading coefficient of F.

Let J be the set of leading coefficients of all polynomials in I. It's easy to check that J is an ideal in A.

Since A is Noetherian, there are polynomials $F_1, \ldots, F_r \in I$ whose leading coefficients generate J.

Take an integer N larger than the degree of each F_i . For each $m \leq N$, let J_m be the ideal in A consisting of all leading coefficients of all polynomials $F \in I$ such that $\deg F \leq m$. Let $\{F_{mj}\}$ be a finite set of polynomials in I of degree $\leq m$ whose leading coefficients generate J_m .

Let I' be the ideal generated by F_i 's and all the F_{mj} 's. It suffices to show that I = I'.

Suppose I' were smaller than I; let G be an element of I of lowest degree that is not in I'.

If $\deg G > N$ we can find polynomials Q_i such that $\sum Q_i F_i$ and G have the same leading term. But then $\deg(G - \sum Q_i F_i) < \deg G$, so $G - \sum Q_i F_i \in I'$; and hence $G \in I'$, contradicts.

Similarly, if $\deg G = m \leq N$, we can lower the degree by subtracting off $\sum Q_j F_{mj}$ for some Q_j , which will also make a contradiction.

Therefore, I' = I.

0.2.7 Definition. Let A be a ring. An A-algebra is a ring equipped with a homomorphism $f: A \to B$ (which is often but not always injective). It is said to be of **finite-type** if it is generated as an algebra by a finite number of elements x_1, \ldots, x_n of B, i.e., if every element of B is a polynomial function of the elements x_i with coefficients in A.

0.2.8 Definition. Let $f: A \to B$ be an A-algebra and consider $x \in B$. We say that x is **integral** over A if it satisfies a unitary equation

$$x^{n} + f(a_{n-1})x^{n-1} + \dots + f(a_{0}) = 0,$$

where $a_i \in A$. (If f is the inclusion of A in B, we omit f.)

If b is integral over A for all $b \in B$, we say B is **integral** over A.

0.2.9 Definition. Let A be a ring. Its **Jacobson radical** rad(A) is defined to be the intersection of all its maximal ideals.

0.2.10 Proposition. Let A be a ring, I an ideal, $x \in A$, and $u \in A^{\times}$. Then $x \in rad(A)$ if and only if $u - xy \in A^{\times}$ for all $y \in A$. In particular, the sum of an element of rad(A) and a unit is a unit, and $I \subset rad(A)$ if $1 - I \subset A^{\times}$.

Proof.

- (⇒). Suppose there were y such that u xy is not a unit. Then we have (u xy) is a proper ideal. Hence, there is maximal ideal $\mathfrak{m} \supset (u xy)$. Since $x \in \operatorname{rad}(A) \subset \mathfrak{m}$, we have $u \in \mathfrak{m}$, contradicts.
- (\Leftarrow). Suppose there were a maximal ideal \mathfrak{m} such that $x \notin \mathfrak{m}$. Then we have $(x) + \mathfrak{m} = A$, that is $\exists y \in A, m \in \mathfrak{m}$ such that xy + m = u. Consequently, m = u xy is a unit, contradicts.
- **0.2.11 Definition.** Let A be a ring, and I an ideal. Define the **radical** of I by

$$\sqrt{I} := \{ f \in A \mid f^n \in I \text{ for some } n \}.$$

And we call $\sqrt{(0)}$ the **nilradical**, and denote it by nil(A).

0.3 Modules

- **0.3.1 Definition.** Let A be a ring. An A-module M is an Abelian group, written additively, with a **scalar** multiplication, $A \times M \to M$, $(a, m) \mapsto am$, which satisfies $(a, b \in A \text{ and } m, n \in M)$
 - 1. a(m+n) = am + an;
 - 2. (a+b)m = am + bm;

- 3. a(bm) = (ab)m;
- 4. $1 \cdot m = m$.

A **submodule** N of M is a subgroup that is closed under scalar multiplication.

0.3.2 Definition. Let A be a ring and M, N A-modules. A (A-module) homomorphism (or A-linear map) $f: M \to N$ is a homomorphism between abelian group which satisfies $f(am) = af(m), \forall a \in A, m \in M$. Similar to abelian groups, we have the fundamental homomorphism theorem,

$$M/\ker f \cong \operatorname{im} f$$
.

0.3.3 Definition. A (finite or infinite) sequence of module homomorphisms

$$\cdots \to M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \to \cdots$$

is said to be **exact at** M_i if ker $f_i = \operatorname{im} f_{i-1}$. The sequence is said to be **exact** if it is exact at every M_i , except an initial source or final target.

- **0.3.4 Proposition.**
 - The sequence $0 \to L \xrightarrow{f} M$ is exact if and only if f is injective.
 - The sequence $L \xrightarrow{f} M \to 0$ is exact if and only if f is surjective.
- **0.3.5 Proposition-Definition.** Let $f: M' \to M, g: M \to M''$ be module homomorphisms.

We call f a **retraction** if there is a homomorphism $\alpha: M \to M'$ such that $\alpha f = 1_{M'}$.

We call g a section if there is a homomorphism $\beta: M'' \to M$ such that $g\beta = 1_{M''}$.

If there is an exact sequence

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0,$$

the following three propositions are equivalent:

- 1. f is a retraction;
- 2. g is a section;
- 3. There is an isomorphism $\varphi: M \xrightarrow{\sim} M' \oplus M''$ such that φf is the inclusion and $g\varphi^{-1}$ is the projection. Under these conditions, we say the sequence **splits**.
- **0.3.6 Definition.** Let A be a ring, M, N, P modules. We call a map $f: M \times N \to P$ A-bilinear if it is linear in each variable; that is, given $m \in M$ and $n \in N$, the maps

$$m' \mapsto f(m', n), n' \mapsto f(m, n'),$$

are both A-linear.

0.3.7 Definition. Let A be a ring, M, N modules. The **tensor product** $M \otimes_A N$ (or simply, $M \otimes N$) of M and N is a module equipped with a A-bilinear map $-\otimes -: M \times N \to M \otimes N, (m,n) \mapsto m \otimes n$, and it satisfies, for all A-bilinear map $f: M \times N \to P$, there is a unique A-linear map $\varphi: M \otimes N \to P$ such that the diagram

$$M \times N$$

$$- \otimes - \bigvee_{\exists |\varphi} f$$

$$M \otimes N \xrightarrow{\exists |\varphi} P$$

commutes.

0.4 Localization

0.4.1 Definition. Let S be a subset of ring A. S is said to be **multiplicative** if $1 \in S$ and $xy \in S$, $\forall x, y \in S$. And if $xy \in S \Rightarrow x \in S$ and $y \in S$, we call S is **saturated**. Let T be a subset of A. We call $\{x \in A \mid \exists y \in A, xy \in T\}$ the **saturation** of T. It's easy to check the saturation of T is a saturated multiplicative set.

0.4.2 Example. Let A be a ring.

- For some $f \in A$, $S_f := \{f^n \mid n \in \mathbb{Z}_{>0}\}$ is a multiplicative subset.
- For some prime ideal $\mathfrak{p} \subset A$, the complement set $A \setminus \mathfrak{p}$ is a multiplicative subset.

0.4.3 Definition. Let S be a multiplicative subset of ring A. Define a relation on $R \times S$ by $(x,s) \sim (y,t)$ if there is $u \in S$ such that u(xt - ys) = 0. We can find that this relation is an equivalence relation. Denote by $S^{-1}A$ or A_S the set of equivalence classes, and by x/s the class of (x,s).

Define $x/s \cdot y/t := (xy)/(st)$ and x/s + y/t = (tx + st)/(st). It's easy to check these sum and product are well-defined, and under them, $S^{-1}A$ forms a ring. It is called the **ring of fractions** with respect to S or the **localization** at S.

There is a natural homomorphism $i: A \to S^{-1}A, a \mapsto a/1$, and the image under i of an element in S is invertible.

Note i is not guaranteed to be injective or surjective.

We can find $S^{-1}A$ has a universal property: for all ring homomorphism $f:A\to B$ where elements in f(S) are all invertible, there is a unique ring homomorphism $\varphi:S^{-1}A\to B$ such that the diagram

$$A \downarrow \qquad f \downarrow \qquad f \downarrow \qquad S^{-1}A \xrightarrow{\exists |\varphi|} B$$

commutes.

0.4.4 Definition. Let A be a ring, $f \in A$, and \mathfrak{p} a prime ideal. We always denote $S_f^{-1}A$ by A_f and $(A \setminus \mathfrak{p})^{-1}A$ by $A_{\mathfrak{p}}$.

0.4.5 Proposition. Let S be a multiplicative subset of A, and S' be the saturation of S. Then we have $S^{-1}A$ and $S'^{-1}A$ are canonical isomorphism.

0.4.6 Proposition. Let A be a Noetherian ring, and S a multiplicative subset of A. Then we have $S^{-1}A$ is Noetherian.

Proof.

Let $i:A\to S^{-1}A$ be the natural homomorphism. It's sufficient to prove if ideals $I_1,I_2(I_1\subseteq I_2)$ in $S^{-1}A$ with $i^{-1}(I_1)=i^{-1}(I_2)$, then we have $I_1=I_2$. Let $a/s\in I_2$. We have $a/1=(s/1)(a/s)\in I_2$; and hence $a\in i^{-1}(I_2)=i^{-1}(I_1)$. Therefore, $a/1\in I_1$ and then $a/s=(1/s)(a/1)\in I_1$.

0.4.7 Proposition. Let S be a multiplicative subset of A. Then $S^{-1}A = 0$ if and only if $0 \in S$.

0.4.8 Theorem. (Scheinnullstellensatz) Let A be a ring, I an ideal. Then we have

$$\sqrt{I} = \bigcap_{\mathfrak{p}\supset I \text{ is prime ideal}} \mathfrak{p}.$$

Proof.

For all $f \in \sqrt{I}$, we have $f^n \in I$ for some n; and hence, for any prime ideal $\mathfrak{p} \supset I$, $f^n \in \mathfrak{p} \Rightarrow f \in \mathfrak{p}$. Thus, $\sqrt{I} \subset \bigcap_{\mathfrak{p} \supset I} \mathfrak{p}$.

Next, it's sufficient to show for all $f \in A \setminus I$, there is a prime ideal $\mathfrak{p} \supset I$ such that $f \notin \mathfrak{p}$.

Consider the natural maps

$$A \xrightarrow{i_1} A/\sqrt{I} \xrightarrow{i_2} (A/\sqrt{I})_{\bar{f}},$$

where \bar{f} is the class of f in A/\sqrt{I} .

Choose a maximal ideal \mathfrak{m} in $(A/\sqrt{I})_{\bar{f}}$ (For $f \notin \sqrt{I}$, we have \bar{f} is not nilpotent; that is $0 \notin S_{\bar{f}}$. Thus, we have $(A/\sqrt{I})_{\bar{f}} \neq 0$. The maximal ideal exists.) And let's show $i_1^{-1}i_2^{-1}(\mathfrak{m})$ is a prime ideal with $f \notin i_1^{-1}i_2^{-1}(\mathfrak{m})$.

Since \mathfrak{m} is prime, we have $i_1^{-1}i_2^{-1}(\mathfrak{m})$ is prime. For $\mathfrak{m} \neq (A/\sqrt{I})_{\bar{f}}$, we have $\bar{f}/1 \notin \mathfrak{m}$ and then $\bar{f} \notin i_2^{-1}(\mathfrak{m})$.

0.4.9 Definition. Let A be a ring, S a multiplicative subset, and M a module. Define a relation on $M \times S$ by $(m,s) \sim (n,t)$ if there is $u \in S$ such that u(tm-sn)=0. It's easy to check this is a equivalence relation.

Denote by $S^{-1}M$ or M_S the set of equivalence classes, and by m/s the class of (m, s). Then $S^{-1}M$ is an $S^{-1}A$ module with addition given by m/s + n/t := (tm + sn)/st and scalar multiplication by $a/s \cdot m/t = (am)/(st)$. We call $S^{-1}M$ the **localization of** M at S.

It also has a universal property: Let $i: M \to S^{-1}M, m \mapsto m/1$, N a $S^{-1}A$ - module. For all A-linear map $f: M \to N$, there is a unique $S^{-1}A$ -linear map $\varphi: S^{-1}M \to N$ such that the diagram

commutes.

0.4.10 Definition. Let A be a ring, M a module, $f \in A$, and \mathfrak{p} a prime ideal. We always denote $S_f^{-1}M$ by M_f and $(A \setminus \mathfrak{p})^{-1}M$ by $M_{\mathfrak{p}}$.

0.4.11 Proposition. Let A be a ring, S a multiplicative subset, and M a module. Define a scalar multiplication

$$S^{-1}A \times (S^{-1}A \otimes_A M) \to S^{-1}A \otimes_A M,$$

 $(a, b \otimes m) \mapsto (ab) \otimes m,$

and then $S^{-1}A \otimes_A M$ can be also seen as an $S^{-1}A$ -module. As $S^{-1}A$ -modules, $S^{-1}M$ and $S^{-1}A \otimes_A M$ are canonical isomorphism.

0.5 Transcendence Bases and Krull Dimension

0.5.1 Definition. Let $K \subset L$ be a field extension. A subset B in L is said to be **algebraically free** over K (we also say that its elements are **algebraically independent**) if for any finite subset $\{x_1, \ldots, x_n\} \subset B$ and any polynomial $P \in K[X_1, \ldots, X_n]$, the equality $P(x_1, \ldots, x_n)$ implies P = 0. Otherwise, we say that the elements of B are **algebraically dependent**.

0.5.2 Definition. Let $K \subset L$ be a field extension. A subset B in L is said to be an **algebraic generating set** over K if L is algebraic over the subfield K(B) generated by B.

0.5.3 Definition. Let $K \subset L$ be a field extension. A subset B in L is a **transcendence basis** for L over K if it both algebraically free and an algebraic generating set.

By Zorn's lemma, a transcendence basis always exists. These bases all have the same cardinality, called transcendence degree of L over K. We denote it by $\partial_K(L)$.

0.5.4 Definition. Let X be a set. A **chain** of subsets of X is a sequence $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n$. Such a chain is said to be of **length** n.

0.5.5 Definition. The **Krull dimension** of A is the maximum of the lengths of chains of prime ideals of A. We denote it by $\dim_K A$.

0.5.6 Theorem. Let A be an integral domain which is a k-algebra of finite type. The Krull dimension of A is equal to the transcendence degree of Fr(A) over k:

$$\dim_K A = \partial_k \operatorname{Fr}(A).$$

(Fr(A) means the ring of fractions from A.)