CS109 – Data Science SVM, Performance evaluation

Hanspeter Pfister, Mark Glickman, Verena Kaynig-Fittkau

Announcements

- Midterm 1 grading under way
- HW3 grading next week
- HW4 released tomorrow, due next Wed

Classification vs. Regression

- What is the difference between classification and regression?
- Would you make a regression problem a classification problem?
- Would you make a classification problem a regression problem?

Some classifiers from last semester

- KNN
- Decision tree
- Random Forest
- Logistic regression
- Boosting?

Linear SVM

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector

$$w^T x = 0$$

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector
- b: bias

$$w^T x + b = 0$$

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector
- b: bias

Solution depends only on the support vectors!

Support Vector Machine

 Widely used for all sorts of classification problems

- Some people say it is the best of the shelf classifier out there
- (But it is not that much of the shelf as we would like)

margin:

$$x_{\perp}^{(i)} = x^{(i)} - \gamma^{(i)} \cdot \frac{w}{||w||}$$
$$w^{T} x_{\perp}^{(i)} + b = 0$$

$$\gamma^{(i)} = y^{(i)} \left(\frac{w^T x^{(i)} + b}{||w||} \right)$$

geometrical margin

$$\hat{\gamma}^{(i)} = y^{(i)}(w^T x + b)$$

functional margin

$$\max_{\gamma,w,b}$$
 γ minimal geometrical margin

s.t.
$$y^{(i)}(w^T x^{(i)} + b) \ge \gamma$$
, $i = 1, ..., m$

$$||w|| = 1.$$
 non-convex

$$\max_{\gamma,w,b} \frac{\hat{\gamma}}{||w||}$$

s.t. $y^{(i)}(w^Tx^{(i)} + b) \ge \hat{\gamma}, \quad i = 1, \dots, m$

$$\max_{\gamma,w,b} \quad \gamma \qquad \text{minimal geometrical margin} \\ \text{s.t.} \quad y^{(i)}(w^Tx^{(i)}+b) \geq \gamma, \quad i=1,\ldots,m \\ ||w||=1. \qquad \text{non-convex}$$

$$\max_{\gamma, w, b} \frac{\hat{\gamma}}{||w||}$$

s.t.
$$y^{(i)}(w^T x^{(i)} + b) \ge \hat{\gamma}, \quad i = 1, \dots, m$$

functional margin is not normalized – can be arbitrarily scaled

$$\min_{\gamma, w, b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1, \quad i = 1, \dots, m$

Two Very Similar Problems

What about outliers?

ξ_i : slack variables

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2$$

subject to:

$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$

 $(i = 1, \dots, n)$

x1

Two Very Similar Problems

Two Very Similar Problems

Hard Margin (C = Infinity)

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

Soft Margin (C = 10)

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

The XOR Problem

The XOR Problem

XOR problem revised

Did we add information to make the problem separable?

Non-Linear Decision Boundary

Input Space

Feature Space

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

Quadratic Kernel

$$x = (x_1, x_2)$$

$$\Phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\Phi(x) \cdot \Phi(z) = 1 + 2x_1 z_1 + 2x_2 z_2 + 2x_1 z_1 x_2 z_2 + x_1^2 z_1^2 + x_1^2 z_1^2 + x_2^2 z_2^2$$

$$= (1 + x \cdot z)^2$$

Kernel Functions

$$K(x,z) = \Phi(x) \cdot \Phi(z)$$

Polynomial:

$$K(x,z) = (1 + x \cdot z)^s$$

Radial basis function (RBF):

$$K(x,z) = \exp(-\gamma ||x - z||^2)$$

RBF Kernel

So what is the excitement?

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j} x^{(i)^{T}} x^{(j)}$$
s.t. $\alpha_{i} \geq 0, i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y^{(i)} = 0$$

 $\arg\min_{w,b} \frac{1}{2} ||w||^2$

s.t. $y^{(i)}(w^T x^{(i)} + b) \ge 1$

So what is the excitement?

So what is the excitement?

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_i x^{(i)^T} x^{(j)}$$

s.t. $\alpha_i \ge 0, i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

$$K(x^{(i)}, x^{(j)})$$

 $\arg\min_{w,b} \frac{1}{2} ||w||^2$

s.t.
$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$

Prediction

$$w^T x + b = \sum_{i=1}^m \alpha_i y^{(i)} \langle x^{(i)}, x \rangle + b.$$

- Again we can use the kernel trick!
- Prediction speed depends on number of support vectors

The Miracle Explained

Andrew Ng does this really well

- http://cs229.stanford.edu/notes/cs229notes3.pdf
- Course is also on Youtube, ItunesU, etc.

Kernel Trick for SVMs

- Arbitrary many dimensions
- Little computational cost
- Maximal margin helps with curse of dimensionality

http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

Logistic Regression Recap

KLR vs SVM

- The classification performance is very similar.
- Has limiting optimal margin properties
- Provides estimates of the class probabilities.
- Generalizes naturally to multiclass problems

KLR vs SVM

- KLR is computationally more expensive $O(N^3)$ versus $O(N^2m)$, where m is the number of support points.
- In noisy problems, m can be large, approx N/2.
- SVMs are hot right now, while logistic regression is a traditional statistical tool.

Tips and Tricks

- SVMs are not scale invariant
- Check if your library normalizes by default
- Normalize your data
 - mean: 0 , std: 1
 - map to [0,1] or [-1,1]
- Normalize test set in same way!

Tips and Tricks

- RBF kernel is a good default
- For parameters try exponential sequences
- Read:

Chih-Wei Hsu et al., "A Practical Guide to Support Vector Classification", Bioinformatics (2010)