Chapitre 8 Notions de fonctions et résolutions graphiques d'(in)équations

Table 8.1 – Objectifs. À fin de ce chapitre 8...

	Pou	r m'entraîne	r <u></u>
Je dois connaître/savoir faire	۵	•	Ö
représentation d'équation à deux variables			
équation d'une courbe, intersection avec les axes du repère	1	2, 3	
définition de fonction, domaine, les zéros			
fonctions définies numériquement, domaine,	4, 5		
fonctions définies par une expression algébrique	6	10	21
fonctions définies par une représentation graphique	11, 12, 14	13	20
exploiter la représentation graphique			
dresser le tableau de signe à partir de la représentation	15, 23, 24	25, 26	
résolution graphique d'équations et d'inéquations	22		
déterminer graphiquement la parité d'une fonction	37		
exploiter l'expression algébrique			
déterminer les zéros connaissant son expression		7, 8	
déterminer le domaine connaissant son expression		9	
calcul d'images, résolution d'équation et représentation graphique	16, 17	18, 19	39
déterminer algébriquement la parité d'une fonction	38		
sens de variation d'une fonction			
vocabulaire et définitions	27, 28		
exploiter et produire des tableaux de variations	29, 30, 31	32 à 36	

8.1 Représentation graphique d'une équation à deux variables

Définition 8.1 Le couple (a, b) est **une solution** d'une équation E d'inconnue (x, y), si l'égalité est vraie si on substitue x par a et y par b. L'ensemble des points dont les coordonnées sont solutions de E est la **représentation graphique** de l'équation.

■ Exemple 8.1

Déterminer si les points A(2; 13) et B(-1; -3) appartiennent à \mathscr{C} : y = 10x - 7.

solution.

 $(13) = 10(2) - 7 \qquad \text{Le couple } (2 \ ; \ 13) \text{ est solution de } y = 10x - 7 \qquad A(2 \ ; \ 13) \in \mathscr{C}$ $(-3) \neq 10(-1) - 7 \quad \text{Le couple } (-1 \ ; \ -3) \text{ n'est pas solution de } y = 10x - 7 \quad B(-1 \ ; \ -3) \notin \mathscr{C}$

■ Exemple 8.2 Tracer les courbes \mathscr{C}_1 : 3x + y = 7, \mathscr{C}_2 : $y + 2 = x^2$ et \mathscr{C}_3 : y = |x - 1|

	$\mathscr{C}_1 \colon 3x + y = 7$	$\mathscr{C}_2 \colon y + 2 = x^2$	$\mathscr{C}_3 \colon y = x - 1 $
Résoudre pour y	y = 7 - 3x	$y = x^2 - 2$	y = x - 1

Déterminer y pour quelques valeurs de x

	x		-1		0		1		2		3		4		5
3	y = 7 - 3x	7 - 3x 10			7	4		1		-2		-5			-8
	(x ; y)	(-	-1 ; 10)		(0; 7)	(1	; 4)	(2	; 1)	(3	; -2)	(4	; -5)	(5 ; -8)
	x		-3		-2		-1		0		1		2		3
į	$y = x^2 - 2$	$x^2 - 2$ 7			2	-1			-2 -1		-1		2		7
	(x ; y)	(-	-3;7)	(-	(-2; 2)		(-1; -1)		(0;	2)	(1; -1)		(2; 2	2)	(3; 7)
	x		-2		-1		0		1		2		3		4
	$y = x - 1 \qquad 3$		3		2		1		0		1		2		3
	(x ; y)		(-2; 3	3)	(-1;	2)	(0;	1)	(1;	0)	(2; 1)	;)	3; 2)	(4	4;3)

Placer les points et les relier harmonieusement

Rajouter des points peut être parfois nécessaire pour un tracé plus précis

8.2 Notion de fonction 3

■ Exemple 8.3 Déterminer les points d'intersection de \mathscr{C} : $y = 16 - 4x^2$ avec les axes du repère.

solution. P(x; y) est une intersection de $\mathscr C$ avec l'axe des ordonnées : x=0 et $y=16-4(0)^2=16$. \therefore Un unique point d'intersection avec l'axe des y:A(0;16).

P(x ; y) est une intersection de $\mathscr C$ avec l'axe des abscisses : y=0 et x vérifie $0=16-4x^2$. D'où $x^2=4$ soit $x=\pm 2$. \therefore Deux points d'intersection avec l'axe des x:C(-2;0) et D(2;0).

8.2 Notion de fonction

Une **relation** est un **ensemble de couples** (x, y), x est l'abscisse, y est l'ordonnée. Pour un couple (x, y) donné, on dira que x et y sont associés.

Définition 8.2 Une fonction f est un ensemble de couples (x,y), tel qu'il n'y ait pas 2 ordonnées différentes associées à une même abscisse x:

$$\operatorname{si}(x, y_1) \in f$$
 et $(x; y_2) \in f$ alors $y_1 = y_2$

L'ensemble D des abscisses de f est le **domaine** de f.

Pour tout $x \in \mathbb{R}$ on a 2 possibilités :

- L'abscisse $x \in D$: il existe **exactement** une ordonnée y associée à x. On écrit y = f(x). On dira que « y est *l'image* de x » ou que « x est un antécédent de y ».
- L'abscisse $x \notin D$: aucune ordonnée y n'est associée à x. L'abscisse x n'a pas d'image.

Définition 8.3 — vieillotte. Soit un ensemble $D \subset \mathbb{R}^{a}$.

Une fonction f définie sur D est une relation qui à tout nombre $x \in D$ associe un unique $y \in \mathbb{R}$. On écrit : $f : D \to \mathbb{R}$

$$x \mapsto f(x)$$

Une fonction peut être définie :

- 1. par une phrase décrivant comment obtenir l'image y à partir d'une abscisse x.
- 2. numériquement par un tableau de valeurs ou une liste de couples (comme l'exemple 8.4).
- 3. algébriquement par une équation à deux variables ou une expression y = f(x) (une règle de calcul) pour calculer l'image f(x) connaissant la valeur de x.
- 4. par sa représentation graphique \mathscr{C}_f : y = f(x).

a. généralement un intervalle ou une réunion d'intervalles

b. lire « fonction f de D dans \mathbb{R} qui à $x \in D$ associe f de x »

■ Exemple 8.4 — déterminer l'image d'une valeur dans le cas d'une fonction définie numériquement.

La relation entre l'heure x et la température y en degrés est donnée par :

$$\{(1;9^{\circ}), (2;13^{\circ}), (3;15^{\circ}), (4;15^{\circ}), (5;12^{\circ}), (6;10^{\circ})\}$$

La température est une fonction du temps :

- a) Aucun temps en abscisse n'est associé à deux températures distinctes en ordonnée.
- b) Le domaine est $D = \dots$
- c) L'abscisse 2 est associée à l'ordonnée 13, on écrit f(...) = ...
- d) L'ordonnée 15 est associée aux abscisses 3 et 4, on écrit : f(...) = ... et f(...) = ...
- Exemple 8.5 déterminer l'image d'une valeur connaissant l'expression algébrique.
- 1. $f: \mathbb{R} \to \mathbb{R}$ est la fontion définie pour tout $x \in \mathbb{R}$ par $f(x) = x^3 3x + 1$.

$$x \mapsto x^3 - 3x + 1$$

- a) L'image de x par f est $f(x) = x^3 3x + 1$.
- b) L'image de 0 par f est $f(0) = (0)^3 3(0) + 1 = 1$
- c) L'image de -5 par f est $f(-5) = (...)^3 3(...) + 1 = ...$
- 2. Soit $g: [0; 4] \to \mathbb{R}$ est une fonction définie pour tout $x \in [0; 4]$ par g(x) = 2x + 3.

$$x \mapsto 2x + 3$$

- a) L'image de 0 par g est $g(0) = \dots$
- b) L'image de x + 2 par g est g(x + 2) = 2(x + 2) + 3 = ...
- c) $-1 \notin [0; 4]$. -1 n'est pas dans le domaine. -1 n'a pas d'image.
- Exemple 8.6 déterminer le domaine. Le domaine d'une fonction peut être donné explicitement, parfois sous-entendu implictement ou simplement suggéré par le contexte.
- 1. f donnée par $\{(-3\ ;\ 0), (-1\ ;\ 4), (0\ ;\ 2), (2\ ;\ 2), (4\ ;\ -1)\}$
- 2. g donnée par $g(x) = \frac{1}{x+5}$
- 3. h donnée par $h(x) = \sqrt{4-x}$.
- 4. aire d'un disque $A(r) = \pi r^2$.

solution.

- 1. Le domaine de f est la liste des abscisses des couples de f: $D_f = \{-3; -1; 0; 2; 4\}$.
- 2. $\frac{1}{x+5}$ n'est pas définie si $x+5=0 \iff x=-5$. $D_g=\mathbb{R}\setminus\{-5\}$
- 3. h(x) est défini pour $4 x \ge 0 \iff 4 \ge x$. $D_h =]-\infty; 4]$.
- 4. Le rayon d'un cercle $r\geqslant 0$. L'aire A(r) est définie sur $[0;+\infty[$.

8.2 Notion de fonction 5

Définition 8.4 La représentation graphique d'une fonction f dans le plan muni d'un repère est la courbe \mathscr{C}_f : y = f(x).

Figure 8.1 – La représentation graphique d'une fonction \mathscr{C}_f : y=f(x) vérifie la règle de la *droite verticale* : \mathscr{C}_f ne peut pas avoir deux points ayant même abscisse et des ordonnées différentes.

■ Exemple 8.7 — déterminer le domaine et les images de valeurs à partir de la représentation graphique.

■ Exemple 8.8 — dresser le tableau de signe à partir de la représentation graphique.

Le signe de la fonction f de l'exemple 8.7 est décrit dans le tableau :

x	-5	-5 < x < -1	-1	-1 < x < 4	4	4 < x < 5	5
signe de $f(x)$	_	_	0	+	0	_	

Il est d'usage de synthétiser les informations dans un tableau de signe :

x	-5	-1	4	5
signe de $f(x)$		- 0	+ 0 -	_

8.3 Sens de variation et extremums

Définition 8.5 Soit une fonction f définie sur un **intervalle** I = [a; b].

- 1. f est **strictement croissante** sur I si « pour tous réels $a \le x < x' \le b$ on a f(x) < f(x') » \iff « pour tous réels $x, x' \in I$, f(x) et f(x') sont rangés dans le même ordre de x et x' »
- 2. f est **strictement décroissante** sur I si « pour tous réels $a \le x < x' \le b$ on a f(x) > f(x') » \iff « pour tous réels $x, x' \in I$, f(x) et f(x') sont rangés dans l'ordre contraire de x et x' »
- 3. f est **monotone** sur I, si elle est soit croissante sur I soit décroissante sur I.

Figure 8.2 – (à gauche) Fonction croissante qui préserve l'ordre et décroissante qui renverse l'ordre. (à droite) f est croissante sur [-1;0] et décroissante sur [1;2]. m=3 est le minimum de f sur [1;6], atteint pour $x_0=3$. $M\approx 3{,}37$ est le maximum de f sur [-1;3], atteint pour $x_0\approx 0{,}4$

■ Exemple 8.9 — tableau de variation. Un tableau de variation peu synthétiser les informations sur le sens de variation d'une fonction.

x	-5 -4	2	5
f(x)	-1 -2	6	-3

-3

Un tableau de variation peut être enrichi :

Définition 8.6 — extremums. Soit une fonction f définie sur un **intervalle** I=[a;b].

- 1. m est le **minimum** de f sur I atteint en x_0 si « pour tout $x \in I$, $f(x) \geqslant f(x_0) = m$. »
- 2. M est le **maximum** de f sur I atteint en x_0 si « pour tout $x \in I$, $f(x) \leqslant f(x_0) = M$. »

 \mathscr{C}_f

8.4 Fonctions paires et impaires

Définition 8.7 — Parité d'une fonction. Soit f une fonction définie sur un domaine D symétrique par rapport à 0. La fonction f est :

- paire si « pour tout $x \in D$: f(-x) = f(x) »
- impaire si « pour tout $x \in D$: f(-x) = -f(x) »

Figure 8.3 – Pour une fonction f impaire (à gauche), \mathscr{C}_f admet l'origine O(0;0) comme centre de symétrie. Pour une fonction f paire (à droite), \mathscr{C}_f est symétrique par rapport à l'axe des ordonnées.

8.5 Étudier une fonction

- 1. Savoir déterminer l'image/l'ordonnée y=f(x) pour une abscisse donnée (graphiquement ou algébriquement).
- 2. Savoir tracer sa représentation graphique \mathscr{C}_f : y = f(x) et en connaître ses propriétés.
- 3. Connaître le sens de variation de f et dresser son tableau de variation.
- 4. Pour tout $k \in \mathbb{R}$:
 - a) Identifier le nombre de solutions de l'équation f(x) = k, inconnue x.
 - b) Résoudre une équation de la forme f(x) = k inconnue x (antécédents de k).
 - c) Résoudre les inéquations de la forme $f(x) \ge k$ inconnue x.

Ceci peut être fait graphiquement ou algébriquement selon la situation. En particulier :

- a) Déterminer l'existence ou l'absence de zéros de la fonction solution de f(x) = 0.
- b) Déterminer les zéros de la fonction solutions de f(x) = 0.
- c) Dresser le tableau de signe de f.
- 5. Problèmes inverses : retrouver l'expression à partir d'informations (graphiquement notamment).

8.6 Activité Sudomaths : maitriser le vocabulaire des fonctions

Une fonction a typiquement 3 présentations : numérique par un tableau de valeurs, algébrique avec un domaine et une expression, et/ou graphique avec une courbe $\mathscr C$ regroupant tous les points dont les coordonnées (x ; y) vérifient l'équation à deux inconnues y = f(x).

■ Exemple 8.10 Soit la fonction f définie par \mathbb{R} par $f(x) = \frac{1}{10}(3x+4)(x-5)$. Elle est représentée ci-dessous par la courbe \mathscr{C}_f d'équation $y = \frac{1}{10}(3x+4)(x-5)$.

- y=f(0) est l'ordonnée du point de \mathscr{C}_f d'abscisse 0 (point d'intersection avec l'axe des ordonnées).
- Les zéros de f, sont les solutions de l'équation f(x) = 0. Graphiquement, c'est les *abscisses* des points d'intersection de \mathcal{C}_f avec l'axe des abscisses.

	approche algébrique	approche numérique
questions se ramenant à une	recherche d'image $(x ; y =$	= f(x) =?)
déterminer l'image de 4 par la fonction f	L'abscisse $x = 4$,	Lire l'ordonnée du
calculer $f(4)$	évaluer l'image	point de \mathscr{C}_f dont
déterminer l'ordonnée du point de la		point de θ_f dont
courbe \mathscr{C}_f d'abscisse 4	$y = \frac{1}{10}(3x+4)(x-5)$	l'abscisse est $x = 4$
le point $A(4; -1)$ appartient-il à \mathscr{C}_f ?		
questions se ramenant à une re-	cherche d'antécédent $(x =$?; y = f(x))
déterminer le(s) antécédent(s) de 3 par f	L'ordonnée $y = 3$,	Lire l'abscisse de(s)
résoudre l'équatiion $f(x) = 3$	résoudre l'équation	point(s) de \mathscr{C}_f dont
déterminer l'abscisse de(s) point(s) de la	$3 = \frac{1}{10}(3x+4)(x-5)$	l'ordonnée est $y = 3$.
courbe \mathscr{C}_f d'ordonnée 3	$0 - \frac{10}{10}(9x + 4)(x - 9)$	10100111100 CSt y = 3.

Confusions et difficultées rencontrées

- 1. Le fait d'écrire « f(x)=3 »ne signifie que « pour tout x on a f(x)=3. ». La partie « pour tout x »est importante.
 - Dans la question 1.c) On propose de résoudre l'équation f(x)=3 d'inconnue x. Donc de trouver les valeurs de x pour lesquelles f(x)=3. Ici, la fonction f est toujours définie par « pour tout x on a f(x)=x-3 » du début de la question 1.
- 2. Bien comprendre comment déterminer graphiquement le domaine dans la question 2.a).
- 3. Faire lire les questions (nombre de solutions vs solution de)
- 4. Dans la question 3., ne pas mélanger les lectures d'images et d'antécédent dans le cas d'une fonction définie numériquement.

Figure 8.4 - Carte mentale

8.7 Exercices

8.7.1 Exercices : représentation graphique d'une équation à deux variables

Exercice 1 — équation et courbe.

Déterminer si les points A et B donnés appartiennent à la courbe $\mathscr C$ décrite par son équation.

1.
$$\mathscr{C}_1$$
: $y = \sqrt{x+4}$ avec $A(0; 2)$ et $B(5; 3)$

1.
$$\mathscr{C}_1: y = \sqrt{x+4}$$
 avec $A(0; 2)$ et $B(5; 3)$ | 3. $\mathscr{C}_3: y = 4 - |x-2|$ avec $A(1; 5)$ et $B(6; 0)$

2.
$$\mathscr{C}_2$$
: $y = x^2 - 3x + 2$ avec $A(2; 0)$ et $B(-2; 8) \mid 4$. \mathscr{C}_4 : $y = \frac{1}{3}x^3 - 2x^2$ avec $A(2; \frac{-16}{3})$ et $B(-3; 9)$

4.
$$\mathscr{C}_4$$
: $y = \frac{1}{3}x^3 - 2x^2$ avec $A\left(2; \frac{-16}{3}\right)$ et $B(-3; 9)$

Exercice 2

Dans chaque cas, compléter le tableau puis utiliser les points obtenus pour tracer la représentation graphique de la courbe donnée.

1.
$$\mathscr{C}_1$$
: $y = -2x + 5$

2.
$$\mathscr{C}_2$$
: $3x = 4y + 4$

1.
$$\mathscr{C}_1: y = -2x + 5$$
 | 2. $\mathscr{C}_2: 3x = 4y + 4$ | 3. $\mathscr{C}_3: y = x^2 - 3x$ | 4. $\mathscr{C}_4: y = 5 - x^2$

4.
$$\mathscr{C}_4$$
: $y = 5 - x^3$

x	-1	0	1	2	$\frac{5}{2}$	x	-2	0	1	$\frac{4}{3}$	2
y = -2x + 5						$y = \dots x + \dots$					
$P(x ; y) \in \mathscr{C}_1$						$P(x ; y) \in \mathscr{C}_2$					

x	-1	0	1	2	3	x	-2	-1	0	1	2
$y = \dots$						$y = \dots$					
$P(x ; y) \in \mathscr{C}_3$						$P(x ; y) \in \mathscr{C}_4$					

Exercice 3

Déterminer les coordonnées des points d'intersection des courbes avec les axes du repère.

1.
$$\mathscr{C}_1$$
: $y = 5x - 6$

2.
$$\mathscr{C}_2$$
: $y = \sqrt{2x-1}$

1.
$$\mathscr{C}_1: y = 5x - 6$$
 | 2. $\mathscr{C}_2: y = \sqrt{2x - 1}$ | 3. $\mathscr{C}_3: y = |3x - 7|$ | 4. $\mathscr{C}_4: y^2 = x + 1$

4.
$$\mathscr{C}_4$$
: $y^2 = x + 1$

8.7.2 Exercices : fonctions, expressions algébriques et représentations graphiques

Exercice 4 Déterminer si le tableau donné représente une fonction, et préciser son domaine.

1.	x	6	-7	0	6	4
1.	y	10	3	4	-4	5
2.	x	-1	0	2	3	4
۷.	y	0	-3	-3	0	5

3.	x	10	7	4	7	10
Ο.	y	3	6	9	12	15
4.	x	0	3	9	12	15
4.	y	3	3	3	3	3

Exercice 5 Entourez les fonctions dont le domaine est $D = \{0; 1; 2; 3\}$

1.
$$\{(0; 1), (1; -2), (2; 0), (3; 2)\}$$

3.
$$\{(0; 0), (1; 0), (2; 0), (3; 0)\}$$

2.
$$\{(0; -1), (2; 2), (1; -2), (3; 0), (1; 1)\}$$
 4. $\{(0; 2), (3; 0), (1; 1)\}$

Exercice 6 Déterminer les images demandées à l'aide des expressions algébriques.

1.
$$f$$
 définie sur \mathbb{R} par $f(x) = 2x - 3$.

a)
$$f(1)$$
 b) $f(-3)$ c) $f(x-1)$

2.
$$g$$
 définie sur \mathbb{R} par $g(t) = 7 - 3t$.

a)
$$g(0)$$
 b) $g(\frac{7}{3})$ c) $g(s+2)$

c)
$$g(s+2)$$

3.
$$V$$
 définie sur $[0; +\infty[$ par $V(r) = \frac{4}{3}\pi r^3$.

a)
$$V(3)$$

b)
$$V(\frac{3}{2})$$

a)
$$V(3)$$
 b) $V(\frac{3}{2})$ c) $V(2r)$

4.
$$h$$
 définie sur \mathbb{R} par $h(t) = t^2 - t$.

a)
$$h(2)$$

b)
$$h(\frac{3}{2})$$

a)
$$h(2)$$
 b) $h(\frac{3}{2})$ c) $h(x+2)$

5.
$$f$$
 définie sur $[0; +\infty[$ par $f(x) = 3 - \sqrt{x}$.

a)
$$f(4)$$

b)
$$f(\frac{-1}{4})$$

c)
$$f(4x^2)$$

5.
$$f$$
 définie sur $[0; +\infty[$ par $f(x) = 3 - \sqrt{x}$. a) $f(4)$ b) $f(\frac{-1}{4})$ c) $f(4x^2)$
6. f définie sur \mathbb{R} par $f(x) = \begin{cases} 2x + 1 & \text{si } x < 0 \\ 2x + 2 & \text{si } x \geqslant 0 \end{cases}$ a) $f(-1)$ b) $f(0)$ c) $f(2)$

a)
$$f(-1)$$

b)
$$f(0)$$

c)
$$f(2)$$

Exercice 7 Déterminer dans chaque cas, les valeurs de x pour lesquelles f(x) = 0.

1.
$$f$$
 définie sur \mathbb{R} par $f(x) = 15 - 3x$.

1.
$$f$$
 définie sur \mathbb{R} par $f(x) = 15 - 3x$.

2. f définie sur \mathbb{N} par $f(x) = 5x + 1$.

3. f définie sur $[-2;4]$ par $f(x) = 12 - x^2$.

4. f définie sur \mathbb{N} par $f(x) = x^2 - 9$

2.
$$f$$
 définie sur \mathbb{N} par $f(x) = 5x + 1$.

4.
$$f$$
 définie sur \mathbb{N} par $f(x) = x^2 - 9$

Exercice 8 Déterminer dans chaque cas, les valeurs de x pour lesquelles f(x) = g(x).

1. f et g définies sur \mathbb{R} par f(x) = 3x - 2 et g(x) = -4x + 2.

2. f et g définies sur $[-\infty; 0[$ par $f(x) = x^2 + 2x - 5$ et g(x) = 2x + 1.

Exercice 9 Déterminer pour chaque cas s'il existe des valeurs x pour lesquelles l'expression n'est pas définie et en déduire le domaine de définition le plus large possible pour f

1.
$$f(x) = 5x^2 + 2x - 1$$

3.
$$f(x) = \frac{4}{x}$$

5.
$$f(x) = \frac{4}{x^2 + 1}$$

7.
$$f(x) = \frac{1}{x} - \frac{3}{x - 2}$$

2.
$$f(x) = 1 - 2x^2$$

4.
$$f(x) = \frac{x}{x+5}$$

6.
$$f(x) = \sqrt{x - 10}$$

1.
$$f(x) = 5x^2 + 2x - 1$$
 | 3. $f(x) = \frac{4}{x}$ | 5. $f(x) = \frac{4}{x^2 + 3}$ | 6. $f(x) = \sqrt{x - 10}$ | 7. $f(x) = \frac{1}{x} - \frac{3}{x - 2}$ | 8. $f(x) = \frac{\sqrt{x - 1}}{x - 4}$

Exercice 10 Soit la famille de fonction f définie pour tout $x \in \mathbb{R}$ par $f_m(x) = mx + 3m - 2$.

- 1. Pour m=2, déterminer f(0) et f(-5).
- 2. Sachant que f(2) = 0, trouvez m.

Exercice 11 Complétez les pointillés

Domaine : $D = \dots$

Image de -1: $f(\ldots) = \ldots$

Image de 3: $f(\ldots) = \ldots$

Antécédent(s) de 3: f(...) = ...; f(...) = ...

Antécédent(s) de 2: f(...) = ...; f(...) = ...

Antécédent(s) de -1: $f(\ldots) = \ldots$; $f(\ldots) = \ldots$

Image de 0: $f(\ldots) = \ldots$

Antécédent(s) de 0: f(...) = ...; f(...) = ...

Domaine : $D = \dots$

Image de -2: $f(\ldots) = \ldots$

Image de 1,5: $f(\ldots) = \ldots$

Antécédent(s) de 3: f(...) = ...; f(...) = ...

Antécédent(s) de 1: f(...) = ...; f(...) = ...

Antécédent(s) de -3: $f(\ldots) = \ldots$; $f(\ldots) = \ldots$

Image de 0: $f(\ldots) = \ldots$

Antécédent(s) de 0: $f(\ldots) = \ldots$; $f(\ldots) = \ldots$

Domaine $D = \dots$

L'image de 2 : $f(\ldots) = \ldots$

L'image de 0: $f(\ldots) = \ldots$

Antécédent(s) de -1: f(...) = ...; f(...) = ...

Le nombre d'antécédents de 0 est

Le nombre d'antécédents de -2 est

(f(-2) = -f(2)) est (A) Vrai (B) Faux

« f(-1) = f(1) » est (A) Vrai (B) Faux

« f(2) = 2f(1) » est (A) Vrai (B) Faux

« f(3) > 4 » est (A) Vrai (B) Faux

« f(-1) > 0 » est (A) Vrai (B) Faux

8.7 Exercices

Exercice 12 Pour chaque représentation graphique cochez les bonnes réponses.

	Vrai	Faux
1/ Domaine est [0; 3]		
2/ L'image de 0 est −3		
3/ $f(3) = 0$		
4/ $f(-2) = f(2)$		
5/ $f(1+2) = 3$		
6/ $f(1) > 2$		
7/ 2 admet deux antécédents		
8/ 3 admet deux antécédents		
9/ –2 admet un antécédent		

	Vrai	Faux
1/ Domaine est [-3; 3]		
2/ $f(1,5) = 2$		
3/ $f(0) = 0$		
4/ $f(-2) = f(2)$		
5/ $f(1+2) = 2.5$		
6/ $f(1) > 0$		
7/ 1 admet deux antécédents		
8/ –1 admet deux antécédents		
9/ L'image de l'image de -3 est -1		
10/ $f(f(2)) = 0$		

Exercice 13 Représente dans le repère ci-contre une fonction f tel que :

- Domaine de f est [-2; 3]
- L'image de -2 est 3
- A(-1,1) est un point de \mathscr{C}_f .
- f(0) < 0.
- Si $x \in [0; 1]$ alors f(x) > -1.
- B(2;1) est en dessous de \mathscr{C}_f .
- f(3) = -2.

- 1. Parmi ces graphiques, lesquels correspondent à la représentation graphique d'une fonction?
- 2. Pour chaque fonction donnez leur domaine et l'image de 2.
- 3. Pour chaque fonction donnez le nombre d'antécédents de 1.

Exercice 15 Compléter leur tableau de signe à l'aide de la représentation graphique.

8.7 Exercices 15

Exercice 16 Soit la fonction f définie sur [-3; 2] par f(x) = 4x + 1

1. Compléter le tableau de valeurs suivant :

x	-3	-2	-1	0	1	2
f(x)						

- 2. Déterminer algébriquement le(s) zéros de f.
- 3. \mathscr{C}_f est la représentation graphique de la fonction f.
 - a) Déterminer les valeurs extrêmes x_{\min} et x_{\max} des abscisses.
 - b) Déterminer les valeurs extrêmes y_{\min} et y_{\max} des ordonnées.
 - c) Tracer sur votre cahier un repère contenant la fenêtre $[x_{\min}; x_{\max}] \times [y_{\min}; y_{\max}]$. Utiliser l'echelle 1cm pour 1 unité en abscisse, et 1cm pour 4 unités pour les ordonnées.
 - d) Représenter \mathscr{C}_f .
- 4. Dresser le tableau de signe de la fonction f.

Exercice 17

Soit la fonction f définie sur [-1;4] par f(x) = -3x + 5

1. Compléter le tableau de valeurs suivant :

x	-1	0	1	2	3	4
f(x)						

- 2. Déterminer algébriquement le(s) zéros de f.
- 3. Tracer la représentation graphique \mathscr{C}_f de la fonction f dans un repère adapté.
- 4. Dresser le tableau de signe de la fonction f.

Exercice 18

Soit la fonction f définie sur [-1;3] par $f(x) = 3 - (x-1)^2$

1. Compléter le tableau de valeurs suivant :

x	-1	0	1	2	3
f(x)					

- 2. Déterminer algébriquement le(s) zéros de \overline{f} .
- 3. Tracer la représentation graphique \mathscr{C}_f de la fonction f dans un repère adapté.
- 4. Dresser le tableau de signe de la fonction f.

Exercice 19

Soit la fonction f définie sur [-4;2] par $f(x) = \frac{1}{2}(x+2)^2 - 1$

- 2. Déterminer algébriquement le(s) zéros de \overline{f} .
- 3. Tracer la représentation graphique \mathscr{C}_f de la fonction f.
- 4. Dresser le tableau de signe de la fonction f.

```
Exercice 20 — concepts. Complétez. \mathcal{C}_f désigne la courbe représentative de la fonction f.
 1. f(2) = 3, l'image de ..... est ...., et le point A(\ldots) \in \mathscr{C}_f.
 2. f(\ldots) = \ldots, l'image de 3 est -4, et le point A(\ldots) \in \mathscr{C}_f.
3. f(\ldots) = \ldots, l'image de \ldots est \ldots, et le point A(2; -3) \in \mathscr{C}_f.
 4. f(0) = 5, la courbe \mathscr{C}_f coupe l'axe des (abscisses/ordonnées) au point A(\ldots, \ldots).
5. f(\ldots) = \ldots La courbe \mathscr{C}_f coupe l'axe des abscisses au point A(2; \ldots).
 6. f(3) = 5 et f(6) = 2. Le point A(3; 6) est (au-dessus/sur/en dessous) de \mathscr{C}_f
 7. f(2) = 1 et f(1) = 3. Le point A(1; 2) est (au-dessus/sur/en dessous) de \mathscr{C}_f
 8. f(-2) \dots 4, le point A(-2;4) est au dessus de \mathscr{C}_f
9. f(...) ....., la courbe \mathcal{C}_f passe en desssous du point A(-2;3).
10. f(...) ....., la courbe \mathcal{C}_f passe au desssus du point A(3, -2).
 Exercice 21 — concepts. Complétez. \mathcal{C}_f désigne la courbe représentative de la fonction f.
 1. f définie sur \mathbb{R} par f(x) = -5x + 3. f(0) = \dots
2. f définie sur \mathbb{R} par f(x) = 2x^2 - 3x + 5. f(-2) = \dots
3. f définie sur \mathbb{R} par f(x) = 3x - 5. f(-1) = \dots et A(\dots, \dots) \in \mathscr{C}_f.
4. f définie sur \mathbb{R} par f(x) = x^3 - 2x + 1. f(-2) = \dots et A(\dots, \dots) \in \mathscr{C}_f.
 5. f définie sur \mathbb{R} par f(x) = 3x + p. Si f(0) = 4, alors p = \dots
 6. f définie sur \mathbb{R} par f(x) = 2x + p. Si f(-1) = -4, alors p = \dots
 7. f définie sur \mathbb{R} par f(x) = mx - 1. Si f(-2) = 3, alors m = \dots
8. f définie sur \mathbb{R} par f(x) = mx - 4. Si f(2) = 8, alors m = \dots
9. f définie sur \mathbb R par f(x)=x^3-2x-2. Le point A(2;1) est (au dessus/sur/en dessous) \mathscr C_f.
10. f(x) = \frac{1}{x} n'est pas définie lorsque le dénominateur est nul. Son domaine est D = \mathbb{R} \setminus \dots
11. f(x) = \frac{1}{2x-3} n'est pas définie lorsque ...... = 0.....
   Son domaine est D = \mathbb{R} \setminus \dots
Son domaine est D = \dots
Son domaine est D = \dots
14. Si T(x) est la température de la classe à l'heure x de la journée, son domaine est D = \dots
```

Définition 8.8 Résoudre graphiquement l'équation f(x) = k d'inconnue x » c'est trouver les abscisses (dans D_f) des points de \mathscr{C}_f dont l'ordonnée est égale à k.

Définition 8.9 Résoudre graphiquement l'équation $f(x) \leq k$ d'inconnue x » c'est trouver les abscisses (dans D_f) des points de \mathscr{C}_f dont l'ordonnée est inférieure à k

■ Exemple 8.11 — résoudre graphiquement une équation f(x) = k ou inéquation de la forme $f(x) \geqslant k$.

Soit la fonction f de domaine $D_f = [-4; +\infty[$ ci-dessous. La résolution se fait dans D_f :

1. Solution graphique de l'équation f(x) = 2:

$$\mathscr{S} = \{-1 \; ; \; 1 \; ; \; 2\}$$

2. Solution graphique de l'inéquation f(x) > 2:

$$\mathscr{S} = [-4; -1[\ \cup\]1; 2[$$

3. Solution graphique de l'inéquation $f(x) \ge 2$:

$$\mathscr{S} = [-4; -1] \cup [1; 2]$$

4. Solution graphique de l'inéquation f(x) < 2:

$$\mathscr{S} =]-1; 1[\cup]2; +\infty[$$

5. Solution graphique de l'inéquation $f(x) \leqslant 2$:

$$\mathscr{S} = [-1;1] \cup [2;+\infty[$$

Exercice 22 La fonction f est représentée ci-dessous. Résoudre graphiquement avec la précision permise par le graphique les équations et inéquations suivantes.

1. a) (E_1) f(x) = 5: (indication, tracer D: y = 5)

$$\mathscr{S} = \dots$$

b) (I_1) f(x) > 5:

c) $(I_1) f(x) \ge 5$:

$$\mathcal{S} = \dots$$

2. a) (E_1) f(x) = 2: (indication: tracer D: y = 2)

b) (I_1) $f(x) \ge 2$:

c) $(I_1) f(x) > 2$:

3. a) $(E_1) f(x) = -1$:

b) $(I_1) f(x) \leq -1$:

c) $(I_1) f(x) < -1$:

4. a) (E_1) f(x) = -2:

b) $(I_1) f(x) \ge -2$:

c) $(I_1) f(x) > -2$:

5. a) (E_1) f(x) = 0:

b) $(I_1) f(x) < 0$:

c) $(I_1) f(x) \ge 0$:

$$\mathcal{S} = \dots$$

- 6. Compléter :
 - a) Si 0 < k < 5, l'équation f(x) = k admet ... solutions.

b) Si -2 < k < -1, l'équation f(x) = k admet

... solutions.

Exercice 23 La fonction f est représentée ci-dessous :

- 2. Résoudre graphiquement les équations suivantes :
 - a) f(x) = -2 b) f(x) = 4 c) f(x) = 0
- 3. Résoudre graphiquement les inéquations suivantes :
 - a) $f(x) \ge 2$ b) f(x) > 1.5 c) $f(x) \ge 0$
- 4. Compléter:
 - a) Si k < -2, l'équation f(x) = k admet ... solution(s).

b) Si -2 < k < 1, l'équation f(x) = k admet ... solution(s).

Exercice 24 La fonction f est représentée cidessous :

2) Résoudre graphiquement les équations suivantes :

a)
$$f(x) = 0$$

b)
$$f(x) = 4$$

c)
$$f(x) = 2$$

3) Résoudre graphiquement les inéquations suivantes

b)
$$f(x) < 1$$

c)
$$f(x) \ge 2$$

4) Déterminer selon les valeurs de k le nombre de solutions de l'équation f(x) = k, inconnue x.

Exercice 25 — (In)équations de la forme f(x) = g(x) et $f(x) \ge g(x)$. \mathscr{C}_f et \mathscr{C}_g sont les représentation graphiques des fonctions

f et g définies sur \mathbb{R} .

- b) En déduire les solutions de l'équation f(x) = g(x).
- 2. a) Identifier les points de la courbe \mathscr{C}_g au dessus de la courbe \mathscr{C}_f
 - b) Résoudre l'inéquation $g(x) \geqslant f(x)$.
 - c) Résoudre l'inéquation $f(x) \geqslant g(x)$.

Exercice 26

 \mathscr{C}_f et \mathscr{C}_g sont les représentation graphiques des fonctions f et g définies sur \mathbb{R} .

- b) Résoudre l'inéquation f(x) < 3.
- 2. a) Résoudre l'équation f(x) = g(x).
 - b) Résoudre l'inéquation $f(x) \ge g(x)$.

8.7.3 Exercices : sens de variation d'une fonction

Exercice 27 — je vérifie ma compréhension.

	Vrai	Faux
1/ f est strictement croissante sur $[-1;1]$		
2/ f est strictement décroissante sur $[4;5]$		
3/ f est strictement décroissante sur $[-5; -4]$		
4/ f est monotone sur $[3;5]$		
5/ f est monotone sur $[1;3]$		
6/ Le maximum de f sur $[-5;2]$ est atteint en 6		
7/ 6 est le maximum de f sur $[0;4]$		
8/ Le minimum de f sur $[-5;5]$ est atteint en -4		

Exercice 28 — je vérifie ma compréhension.

Compléter en donnant le meilleur encadrement possible :

- 1. f est strictement croissante sur [-3; 5]. Si -3 < x < 1 alors f(...) < f(x) < f(...).
- 2. f est strictement décroissante sur [1; 6]. Si 3 < x < 5 alors f(...) < f(x) < f(...).
- 3. f est strictement décroissante sur [0; 2]. Si 0 < x < 2 alors ... $< f(x) < \dots$
- 4. f est strictement décroissante sur [2;4]. Si 2 < a < b < 4 alors $\dots f(a) \dots f(b) \dots$
- 5. f est strictement croissante sur [-1; 1]. Si -1 < a < 0 < b < 1 alors $\ldots < f(\ldots) < f(\ldots) < f(\ldots)$.
- **6.** f est constante sur [-1; 1]. Si -1 < x < 1 alors f(x)
- 7. f est strictement croissante sur [2;5], et f(3) = 0. Si 2 < x < 3 alors $f(x) \dots 0$.
- 8. f est strictement décroissante sur [1; 4], et f(3) = 0. Si 3 < x < 4 alors $f(x) \dots 0$.
- 9. f est strictement décroissante sur [0;5], et f(2) = 3. Si 1 < x < 2 alorsf(x)......

Exercice 29 Associer chaque courbe au tableau de variation qui lui correspond.

8.7 Exercices 21

1. Quelle représentation graphique correspond à la fonction f dont le tableau de variation est donné ci-dessous?

2. Complétez les tableaux de variations des fonctions restantes.

	precez res casteaan de			
x	$\begin{array}{ c c c c c c } \hline -2 & & 1 & & 2,5 \\ \hline \end{array}$	x	x	
f(x)	$\begin{bmatrix} 1.5 \\ -2.5 \end{bmatrix} -1$			
x		x	x	

Exercice 31 Soit le tableau de variation d'une fonction f.

x	-5	-3	-1	2	4
f(x)	4	2	→ -2	_1	→ 4

- 1. Préciser le domaine de définition de \boldsymbol{f}
- 2. Compléter les pointillés : f(...) = 2 ; f(2) = ...
- 3. Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 4. Donner un encadrement de f(x) pour $x \in [-5; -1]$.

- 5. Même question pour $x \in [2; 4]$.
- 6. Comparer les valeurs suivantes. Préciser si le tableau de variation ne permet pas de conclure.

- 7. Quel est le minimum de la fonction f sur [-5;4]? Pour quelle valeur de x est-il atteint?
- 8. Quel est le nombre de solution de l'équation f(x) = 1? Donner un encadrement le plus précis possible de chaque solution. 1

Exercice 32 Soit le tableau de variation d'une fonction f.

- 1. Préciser le domaine de définition de f
- 2. Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 3. Sur chaque intervalle ou f est monotone, donner un encadrement de f(x).
- 4. Comparer les valeurs. Préciser si le tableau de variation ne permet pas de conclure.

- a) $f(-3) \dots f(-2)$ | c) $f(0) \dots f(0,2)$ | e) $f(0) \dots f(2)$ | g) $f(0) \dots f(3,25)$ | b) $f(3) \dots f(3,25)$ | d) $f(2) \dots f(1,8)$ | f) $f(-3) \dots f(0)$ | h) $f(-3) \dots f(2)$

- 5. Quel est le maximum de la fonction f sur [-4; 3,5]?
- 6. Donner le nombre de solution de l'équation f(x) = -4 et un encadrement le plus précis possible de chacune.

Exercice 33 Soit le tableau de variation d'une fonction f.

- 1. Préciser le domaine de définition de f
- 2. Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 3. Comparer les valeurs. Préciser si le tableau de variation ne permet pas de conclure.

^{1.} Il est sous-entendu en seconde, qu'en l'absence d'indications supplémentaires, les fonctions sont strictement monotones et continues. Par exemple, si x varie de -3 à -1, alors f(x) prend toutes les valeurs entre -2 et 2 (une seule fois). La justification est abordée en terminale.

- a) $f(-2) \dots 1$
- **b)** $f(1) \dots 0$
- c) $f(3) \dots 0$
 - d) $f(-2) \dots f(4,5)$
- 4. Quel est le nombre de solution de l'équation f(x) = 0? Donner un encadrement le plus précis possible pour chacune.

Exercice 34 Soit le tableau de variation d'une fonction f.

- 1. Donner le domaine de la fonction.
- 2. Comparer les valeurs. Préciser si le tableau de variation ne permet pas de conclure.
 - a) $f(4,5) \dots f(5,5)$

- **b)** $f(-1) \dots f(0)$
- 3. Quel est le nombre de solution de l'équation f(x) = -1? Donner un encadrement le plus précis possible pour chacune.
- 4. Dresser le tableau de signe de la fonction f.

Exercice 35 Soit le tableau de variation d'une fonction f.

- 1. Donner le domaine de la fonction.
- 2. Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.
 - a) $f(-1) \dots f(-\frac{2}{3})$
- **b)** $f(2) \dots f(4)$
- | c) $f(-1) \dots f(4)$
- 3. Quel est le nombre de solution de l'équation f(x)=-0.5? Donner un encadrement le plus précis possible pour chacune.
- 4. Dresser le tableau de signe de la fonction f.

Exercice 36 Construire le tableau de variations de la fonction f sachant que :

f est définie sur [-1;6]

l'image de 3 par f est 1

2 est un antécédent de −1

f(-1) = 3

6 est un antécédent de 5

f est décroissante sur [-1; 2]

f est croissante sur [2;6]

x		
f(x)	v)	

8.7.4 Exercices : parité d'une fonction

Exercice 37 — parité de fonctions et représentation graphique.

■ Exemple 8.12 — déterminer la parité algébriquement.

$$f(x) = x^2 + 4$$

$$g(x) = x^3 - 2x$$

$$h(x) = x^2 - 3x + 4$$

$$f(-x) = (-x)^2 + 4$$

$$g(-x) = (-x)^3 - 2(-x)$$

$$h(-x) = (-x^2) - 3(-x) + 4$$

$$f(-x) = x^2 + 4$$

$$g(-x) = -1 \times x^3 + 2x$$

$$h(-x) = x^2 + 3x + 4$$

$$g(-x) = -(x^3 - 2x)$$
pour tout x , $f(-x) = f(x)$
pour tout x , $g(-x) = -g(x)$

f est paire. g est impaire ni paire ni impaire.

Exercice 38 Les fonctions suivantes sont définies sur \mathbb{R} . Déterminer si les fonctions paires, les fonctions impaires et celles qui ne sont ni paire ni impaire.

1)
$$f(x) = 6$$

2) $f(x) = -x$
3) $f(x) = x^3 + x^4$.
4) $f(x) = 0$
5) $f(x) = (x+2)^2 - 9$
6) $f(x) = -x^2 + 10$
7) $f(x) = x^3 - x^2 + 4x + 2$
8) $f(x) = |x| + 4$
9) $f(x) = |x + 4|$

8.7 Exercices 25

Exercice 39 Les points E, F, G et H sont placés respectivement sur les segments [AB], [BC] et [CD] et [AD] de façon à ce que AE = AH = CF = CG = x. On désigne par A(x) l'aire du parallélogramme EFGH.

- 1. À quel intervalle appartient x? En déduire le domaine de A.
- **2**. Justifier que $A(x) = 10x 2x^2$.
- 3. Compléter le tableau de valeurs ci-dessous à l'aide de la calculatrice. Donner les résultats à 10^{-2} près.

x	0	0.5	1	1,5	2	2,5	3	3.5	4
A(x)									

- 4. Tracer la représentation graphique de la fonction A.
- 5. a) Déterminer graphiquement la valeur de x pour laquelle aire est égale à 4 cm².
 - b) Résoudre graphiquement l'équation A(x)=8 d'inconnue x.
- 6. a) Résoudre graphiquement l'inéquation $A(x) \ge 12$.
 - b) Pour quelles valeurs de x, l'aire est elle inférieure à $4~{\rm cm}^2.$
 - c) Pour quelle valeur de \boldsymbol{x} l'aire est elle maximale?

8.8 Exercices : solutions et éléments de réponse

solution de l'exercice 1.

solution de l'exercice 16.

x	-3		$\frac{-1}{4}$		2
f(x)		_	0	+	

solution de l'exercice 17.

x	-3		$\frac{5}{3}$		2
f(x)		+	0	_	

solution de l'exercice 18.

x	-1	j	$1-\sqrt{3}$	3	$1+\sqrt{3}$	3	3
f(x)		+	0	_	0	+	

solution de l'exercice 19.

x	-4	-:	$2-\sqrt{2}$	$\sqrt{2}$ –	2 + v	<u>/2</u>	2
f(x)		+	0	_	0	+	

8.9 Les maths sont belles

8.9 Les maths sont belles

Exercice 40 — de Pâques. Voici 12 fonctions et leurs domaines de définitions.

nº	fonctions	Ensemble de définition
1	f(x) = x	[0; 1]
2	g(x) = 0.5x	[2;8]
3	h(x) = 0.25x	[2; 9]
4	i(x) = 1	[0; 1]
5	j(x) = 0.5x - 6	[0; 6]
6	k(x) = -x - 1	[2;8]
7	l(x) = 2.5x - 18	[4;6]
8	m(x) = -0.5x - 6	[0;4]
9	$n(x) = 0.25x^2 - 4$	[0; 4]
10	$p(x) = -0.5x^2 + 8$	[0;4]
11	$q(x) = x^2 - 2x$	[0; 2]
12	$r(x) = -3x^2 + 10x + 8$	[0;4]

- 1. Pour chaque fonction, à l'aide de la calculatrice, établir un tableau de valeurs sur l'ensemble de définition donné.
- 2. Sur la feuille de papier milimétrée A4 dans le sens portrait, tracer les représentations graphiques des douzes fonctions sur leurs ensembles de définitions.
 - Les courbes et le repère seront tracés au crayon 2H
 - le repère d'unité graphique 1 cm devra permettre de voir tous les traçés.
 - Ne notez pas le nom des fonctions sur ce graphique.
- 3. Tracer le cercle de centre B(1,5; 3,5) et de rayon 1.
- 4. Tracer les symétriques de ces courbes par rapport à l'axe des ordonnées.
- 5. Rendre le travail en classe.

8.9 Les maths sont belles 31

8.10 AP Fonctions nº 1: exercices du manuel

reconnaitre le graphe d'une fonction à l'oral 31 et 33 pages 54-55

associer représentation graphique et tableau de variation : 27 page 81

erreurs à éviter : 29 page 81;

produire un tableau de variation à partir d'une représentation graphique : 28 page 81

interprétation de tableau de variation : 30 page 81, puis 22 à 25 page 80 $\,$

résolution graphique équations : 50 et 52 page 59-60 et inéquations 20 et 21 page 79

8.11 AP Fonctions nº 2

Exercice 41 La fonction f est représentée par la courbe \mathscr{C}_f

Desmos

1. Donner le domaine de f.....

2.	Décrire le sens de variation de la fonction	f	en précisant les intervalles ou $\it f$	est monotone.

3. Peut-on dire que f est croissante sur $[-7, -5] \cup [2, 4]$? Justifier.

 \boldsymbol{x} 4. Complétez le tableau de variation de f.

f(x)a) Les extremums de f sur l'intervalle [-7; 4] sont

b) Le minimum de f sur l'intervalle [-3;4] est, et il est atteint pour x=

c) Les extremums f sur l'intervalle [-6; -3] sont

 \boldsymbol{x} signe de f(x) **Exercice 42** Soit le tableau de variation d'une fonction f.

	x	-5	-1	1	5
•	f(x)	5 _	\rightarrow 1	<i>→</i> 2 <i>←</i>	-1

- 1. Préciser le domaine de définition.....
- **2.** Compléter f(5) = ... et f(...) = 5.
- 3. Comparer $f\left(-\frac{5}{3}\right).....f\left(-\frac{3}{2}\right)$
- 4. Peut-on comparer les images de 0 et de 3?Expliquer

.....

- 5. Pour chacune des propositions suivantes, justifier si elle est vraie ou fausse :
 - a) Si a et b sont deux réels tels que $2 \leqslant a < b \leqslant 4$ alors f(a) < f(b).

.....

b) Tous les réels de l'intervalle [-5;0] ont une image supérieure ou égale à 1.

.....

c) Il existe un seul réel de l'intervalle [-5; 5] qui a une image négative.

.....

Exercice 43 Soit la fonction f définie sur l'intervalle [-5, 5]. On donne son tableau de variations :

x	-5 -3	-1	2	5
f(x)	0	-1	_3	2

1. Déterminer (sans justifier) le nombre de solutions de chacune des équations suivantes.

Pour chaque solution donner un encadrement le plus précis possible :

a)
$$f(x) = 3$$
.....

b)
$$f(x) = 1$$
.....

c)
$$f(x) = -\frac{1}{2}$$
.....

e)
$$f(x) = -2$$

2. Justifier chacune des affirmations suivantes :

a)
$$f(-4) \ge f(-3)$$
.....

b)
$$f(3) \leq f(4)$$
.....

c) Pour tout réel
$$x \in [-5, 5]$$
 on a $f(x) \ge -3$

d) Pour tout réel
$$x \in [-5; 2]$$
 on a $f(x) \leq 0$

8.12 Club de Maths : transformation de graphes

Problème 1 — préliminaire.

Soit la fonction f définie sur \mathbb{R} tel que $f: 4 \to 3$, $f: 1 \to 0$ et $f: 6 \to -4$.

1. pour tout $x \in \mathbb{R}$: h(x) = f(x+1)

$$h(3) = f(3+1) = f(4) = 3$$
 $h(...) = f(...+1) = f(1) = 0$
$$f(6) = -4$$

2. pour tout $x \in \mathbb{R}$: h(x) = f(x) - 1

$$h(...) = f(...) - 1 = ...$$
 $h(...) = f(...) - 1 = ...$ $h(...) = f(...) - 1 = ...$

3. pour tout $x \in \mathbb{R}$: h(x) = f(-x)

$$h(\ldots) = f(\ldots) = \ldots$$
 $h(\ldots) = f(\ldots) = \ldots$ $h(\ldots) = f(\ldots) = \ldots$

4. pour tout $x \in \mathbb{R}$: h(x) = -f(x)

$$h(\ldots) = -f(\ldots) = \ldots \qquad h(\ldots) = \ldots \qquad h(\ldots) = \ldots$$

5. pour tout $x \in \mathbb{R}$: h(x) = f(2x)

$$h(\ldots) = \qquad \qquad h(\ldots) =$$

6. pour tout $x \in \mathbb{R}$: h(x) = 3f(x)

$$h(\ldots) = \qquad \qquad h(\ldots) =$$

7. pour tout $x \in \mathbb{R}$: $h(x) = f\left(\frac{x}{4}\right)$

$$h(\ldots) = \qquad \qquad h(\ldots) = \qquad \qquad h(\ldots) =$$

Problème 2

La fonction f est représentée cidessous. Tracer les représentation graphiques des fonctions :

$$g_1(x) = f(x) + 2$$

$$g_2(x) = f(x-2)$$

$$g_3(x) = f(x+3)$$

$$f_1(x) = -f(x)$$

$$f_2(x) = f(-x)$$

$$h_1(x) = 2f(x)$$

$$h_2(x) = f(\frac{1}{2}x)$$

36

Problème 3

La fonction valeur absolue f définie sur $\mathbb R$ par f(x)=|x| est représentée ci-dessous.

Représenter les fonctions ci-dessous pour $c=-1,\,1$ et 3 dans un repère orthonormé.

2.
$$h$$
 définie sur \mathbb{R} : $h(x) = |x + c|$.

3.
$$h$$
 définie sur \mathbb{R} : $h(x) = |x+4| + c$.

Problème 4

La fonction valeur absolue f définie sur $\mathbb R$ par $f(x) = \sqrt{x}$ est représentée ci-dessous.

Représenter les fonctions ci-dessous pour $c=-3,\,-1,\,1$ et 3 dans un repère orthonormé.

1.
$$h$$
 définie sur \mathbb{R} : $h(x) = \sqrt{x} + c$.

2.
$$h$$
 définie sur \mathbb{R} : $h(x) = \sqrt{x-c}$.

3.
$$h$$
 définie sur \mathbb{R} : $h(x) = \sqrt{x-3} + c$.

Problème 5

La fonction f est représentée cicontre. Tracer les représentation graphiques des fonctions :

$$g_1(x) = f(-x)$$

$$g_2(x) = f(x) + 4$$

$$g_3(x) = 2f(x)$$

$$g_4(x) = -f(x-4)$$

$$g_5(x) = f(x) - 3$$

$$g_6(x) = -f(x) - 1$$

$$g_7(x) = f(2x)$$

Problème 6

 \mathscr{C} : $y = x^2$. Donner l'équation des courbes suivantes :

- 1. \mathscr{C}_1 est l'image de \mathscr{C} par la translation de 2 unités vers la droite et de 8 vers le bas.
- 2. \mathscr{C}_2 est l'image de \mathscr{C} par la translation de 3 unités vers la gauche et de 7 vers le haut.

Problème 7

 \mathscr{C} : $y = \sqrt{x}$. Donner l'équation des courbes suivantes :

- 1. \mathscr{C}_1 est l'image de \mathscr{C} par une reflexion par rapport à l'axe des ordonnées puis par rapport à l'axe des abscisses.
- 2. \mathscr{C}_2 est l'image de \mathscr{C} par une translation de 9 unités vers le bas suivie d'une reflextion par rapport à l'axe des abscisses et d'une reflection par rapport à l'axe des ordonnées.

Problème 8

Déterminer l'équation des deux courbes obtenues par transformations de \mathscr{C} : $y=x^2$.

Problème 9

Déterminer l'équation des deux courbes obtenues par transformations de \mathscr{C} : $y=x^3$.

Problème 10

La fonction $f \colon x \mapsto x^2$ est représentée ci-dessous.

Déduire des expressions des fonctions représentées ci-dessous. :

Problème 11 — Activité Marble slide Paraboles.

https://student.desmos.com/join/jeasq6?lang=fr code: JEASQ6

Proposition 8.1 — translations horizontales et verticales. c est une contante positive.

 \mathscr{C}_f : y = f(x) et \mathscr{C}_h : y = h(x) sont les représentations graphiques de f, et h.

Pour tout $x: h(x) = f(x) + c$	\mathscr{C}_h est une translation de \mathscr{C}_f de c unités vers le haut
Pour tout $x : h(x) = f(x) - c$	\mathscr{C}_h est une translation de \mathscr{C}_f de c unités vers le bas
Pour tout $x : h(x) = f(x - c)$	\mathscr{C}_h est une translation de \mathscr{C}_f de c unités vers la droite
Pour tout $x : h(x) = f(x+c)$	\mathscr{C}_h est une translation de \mathscr{C}_f de c unités vers la gauche

■ Exemple 8.13 Soit f la fonction définie sur $\mathbb R$ par $f(x)=x^2$.

La représentation graphique de h définie sur $\mathbb{R} \text{ par } h(x) = x^2 + 2 = f(x) + 2 \text{ est une}$ translation de 2 unités vers le haut de \mathscr{C}_f .

La représentation graphique de g définie sur \mathbb{R} par $g(x)=(x-2)^2=f(x-2)$ est une translation de 2 unités vers la gauche de \mathscr{C}_f .

■ Exemple 8.14 Les translations peuvent être combinées.

Soit f la fonction définie sur \mathbb{R} par $f(x)=x^3$, tracer les fonctions suivantes à partir de la représentation graphique de f.

representation graphique de j.	
$g(x) = x^3 - 1$	$h(x) = (x+2)^3 + 1$
\mathscr{C}_g est une translation de \mathscr{C}_f de 1 unités vers	\mathscr{C}_h est une translation de \mathscr{C}_f de 2 unités vers
le bas.	la gauche et 1 vers le haut.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$h(x) = (x+2)^{3} + 1$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Proposition 8.2 — symétries par rapport aux axes.

 \mathscr{C}_f : y = f(x) et \mathscr{C}_h : y = h(x) sont les représentations graphiques de f, et h.

Pour tout x:h(x)=-f(x) | \mathscr{C}_h la symétrique de \mathscr{C}_f par rapport à l'axe (Ox)Pour tout x:h(x)=f(-x) | \mathscr{C}_h la symétrique de \mathscr{C}_f par rapport à l'axe (Oy)

Exemple 8.15 Soit f la fonction définie sur \mathbb{R} par $f(x) = \sqrt{x}$.

La représentation graphique de h définie sur | La représentation graphique de g définie sur rapport à l'axe (Ox).

 \mathbb{R} par $h(x) = -\sqrt{x}$ symétrique de \mathscr{C}_f par \mathbb{R} par $g(x) = \sqrt{-x}$ est symétrique de \mathscr{C}_f par rapport à l'axe (Oy).

■ Exemple 8.16 — combinaison de transformations.

La représentation graphique de h définie sur \mathbb{R} par $h(x) = -\sqrt{x+2}$ est l'image de $\mathscr{C}_f\colon y=\sqrt{x}$ par une translation de 2 unités vers la gauche puis une symétrie par rapport à l'axe des abscisses.

La représentation graphique de g définie sur \mathbb{R} par $g(x) = 2 - x^3$ est l'image de $\mathscr{C}_f \colon y = x^3$ par une symétrie par rapport à l'axe des abscisses suivie d'une translation de 2 unités vers le haut

■ Exemple 8.17 — transformations non isométriques. Soit f la fonction définie sur \mathbb{R} par f(x) = |x|.

La représentation graphique de h définie sur \mathbb{R} par h(x)=3|x| étirement verticale \mathscr{C}_f .

La représentation graphique de g définie sur $\mathbb{R} \text{ par } g(x) = \frac{1}{3}|x| \text{ est une rétrécissement}$ verticale de \mathscr{C}_f

■ Exemple 8.18 — combinaison de transformations.

La représentation graphique de g définie sur

 \mathbb{R} par $g(x)=2-8x^3$ est un étirement verticale de $\mathscr{C}_f\colon y=2-x^3$

La représentation graphique de g définie sur \mathbb{R} par $g(x)=2-\frac{1}{8}x^3$ est un rétrécissement verticale de $\mathscr{C}_f\colon y=2-x^3$

