Definition 14.1 (Ideal). A subring A of a ring R is called a (two-sided) ideal of R if for every $r \in R$, and every $a \in A$, both ra and ar are in A.

Theorem 14.1 (Ideal Test). A non-empty subset A of a ring R is an ideal of R, if:

- $a b \in A$ for all $a \ b \in A$.
- $ar \in A$ and $ra \in A$ for all $a \in A$ and $r \in R$.

Proof. Since $A \subseteq R$, we know $ab \in A$ for all $ab \in A$ from the second property. Therefore, A is a subring of R, and then it is an ideal of R by the second property.

Example (Trivial Ideal). For any ring R, $\{0\}$ is an ideal of R, which is called the trivial ideal.

Theorem 14.2 (Factor Ring). Let R a ring and A a subring of R. The set of coset $\{r + A \mid r \in R\}$ is a ring under:

- addition: (s + A) + (t + A) = (s + t) + A
- multiplication: (s+A)(t+A) = (st) + A

iff A is an ideal of R.

Proof. Newline please!!

• (\Rightarrow) For any $r \in R$ and $a \in A$,

$$0 + A$$

$$= (r + A)(0 + A)$$

$$= (r + A)(a + A) \text{ (since } a \in A)$$

$$= ra + A$$

Then 0 + A = ra + A, and then $ra \in A$ (Recall that a + A means a coset of A). Similarly, $ar \in A$.

- (\Leftarrow) For any $s \ t \in R$,
 - Addition: (s+A)+(t+A)=s+t+A+A=(s+t)+A by (R,+) is Abelian group.

- Multiplication:

$$(s+A)(t+A)$$

= $(s+A)t + (s+A)A$
= $st + At + sA + AA$
= $st + A + A + A'$ (since A is an ideal) where $A' \subseteq A$
= $st + A$ (since A is a group under addition)

- Assosiative and Distributive: Trivial by R is a ring.

Theorem 14.3. Let R a commutative ring with unity and A an ideal of R. Prove that R/A is an integral domain iff A is a prime ideal. Proof.

- (\Rightarrow) For any $a \ b \in R$ and $ab \in A$, we have ab + A = 0 + A and (a + A)(b + A) = ab + A, since R/A is integral domain, we know either a + A or b + A is zero, in the other word, $a \in A$ or $b \in A$.
- (\Leftarrow) For any $a \ b \in A$, if (a + A)(b + A) = 0 + A, then ab + A = 0 + A which means $ab \in A$. We know a = 0 or b = 0 by A is a prime ideal, therefore a + A = 0 + A or b + A = 0 + A, and R/A is an integral domain.

Theorem 14.4. Let R a commutative ring with unity and A an ideal of R. Prove that R/A is a field iff A is a maximum ideal.

Proof.

• (\Rightarrow) Let B an ideal of R and $A \subseteq B \subseteq R$. Let $b \in B$ but $b \notin A$, if we can't found such element, then B = A. Note that $b \neq 0$, so that $(b+A)^{-1}$ exists. For any $r \in R$, we have:

$$r + A$$

$$= (r + A)(b + A)(b + A)^{-1}$$

$$= (rb + A)(b' + A) \quad (b' \text{ is not necessary in B})$$

$$= (rbb' + A)$$

where $rbb' \in B$, since B is an ideal. Therefore $(-rbb') + r \in B$ since $A \subseteq B$ and $r \in B$ since addition is closed. Now, $B \subseteq R$ and $R \subseteq B$, then B = R.

• (\Leftarrow) The following proof come from textbook.

Let $b \in R$ but $b \notin A$, consider the set $B = \{br + a \mid r \in R, a \in A\}$. It is eazy to show that B is an ideal of R. Since B properly contains A, B must be R, so $1 \in B$. Then 1 = br + a and 1 + A = (br + a) + A = br + A = (b + A)(r + A), so r + A is the inverse of b + A, now every non-zero element in R/A has an inverse. We must show that R/A is integral domain. For any a + A and b + A, if $ab \in A$, and $a \notin A$, then $0 + A = (a + A)^{-1}(ab + A) = (a + A)^{-1}(a + A)(b + A) = b + A$, we know $b \in A$, and R/A is an integral domain.

Note that the magic construction $B = \{ br + a \mid r \in R, a \in A \}$ is the minimal ideal that contains b and A.

Corollary 14.1. Let R a commutative ring with unity and A a maximal ideal of R, then A is also a prime ideal.