Chapter 1 - Data Acquisition

We downloaded three datasets for our analysis — two of which are spatial transcriptomics of high grade serous ovarian cancer and the other one is single-cell sequence data used as mapping reference.

- 1. Spatial Transcriptomics
 - a. Yeh, C.Y., Aguirre, K., Laveroni, O. et al. Mapping spatial organization and genetic cell-state regulators to target immune evasion in ovarian cancer. Nat Immunol (2024). https://doi.org/10.1038/s41590-024-01943-5 (Denoted as Xenium)
 - b. Denisenko, E., de Kock, L., Tan, A. et al. Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones. *Nat Commun* **15**, 2860 (2024). https://doi.org/10.1038/s41467-024-47271-y (Denoted as Visium)
- 2. Single Cell Transcriptomics
 - vázquez-García I, Uhlitz F, Ceglia N, Lim JLP et al. Ovarian cancer mutational processes drive site-specific immune evasion. *Nature* 2022
 Dec;612(7941):778-786. PMID: 36517593 (Denoted as Chromium)

Xenium Dataset

The Xenium Dataset is derived from a study looking at molecular drivers preventing immune recruitment. They used single-cell spatial and perturbational transcriptomics to elucidate these processes in HGSOC —— profiling more than 2.5 million cells *in situ* in 120 tumours from 94 patients. This dataset can be accessed in Single Cell Portal Study with accession SCP2640 fir Discovery cohort, SCP2641 for Validation 1 Cohort, SCP2650 for Validation 2 cohort, SCP2644 for Test 1 cohort, and SCP2646 for Test 2 cohort. The perturb-seq could be accessed separately from SCP2707. Below is a table summarising the dataset objects available in rds format:

ObjectName	Clas s	Cou nt	Dat a	Sca le Dat a	PC A/U MA P	Clu	Meta data	lma ge	Cell Cou nt	Gen e Cou nt
PerturbSeq_ TYKnu_so.rd s	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	185 85	135 96
ST_Discovery _so.rds	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	491 792	979
ST_Test1_so	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	858 21	619 5
ST_Test2_HG SC1_so	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	542 559	1010
ST_Test2_HG SC113_so	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	984 82	100 0
ST_Test2_HG SC2_so	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	2114 72	1010
ST_Test2_HG SC8_so	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	294 699	1010
ST_Validation 1_so	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	447 874	280
ST_Validation 2_so	Seur at	Yes	Yes	Yes	No	Yes	Yes	No	425 578	140

Briefly speaking, the rds-formatted objects does not contain the image nor reduction needed for a successful spatial transcriptomics analysis using Seurat Pipeline. Instead, the team came up with an independent plotting system using EBI image providing the cell segments — which iteratively colours each part of the plot based on the numbering given to each grid — like making a pixel graph. Relative code can be accessed from their <u>GitHub page</u>. For our analysis purpose, we used the **ST_Test1_so.rds** considering its sufficient gene counts compared to all other cohorts, which consisted of 62 samples and 85821 cells.

Visium Dataset

The Visium dataset were performed on 8 primary tumour samples from HGSOC patients that were collected during interval de-bulking surgery from HGSOC patients who

underwent taxane-and platinum-based neoadjuvant chemotherapy. Patient number 1, 7, 8 has poor chemotherapy response score, patient 2, 3, and 5 has good response and patient 4 and 6 had partial response to the chemotherapy. Raw data can be accessed from GEO database with accession <u>GSE211956</u>. All 8 samples were used in our analysis.

Chromium Dataset

Whole-genome sequencing, single-cell RNA sequencing, digital histopathology and multiplexed immunofluorescence were performed on tissues collected from of 160 tumour sites across 42 treatment-naive patients with HGSOC. Raw data can be accessed from GEO database with accession <u>GSE180661</u>.