Отчет по лабораторной работе №1: "Основы вакуумной техники"

Никитин Илья

21 декабря 2020 г.

Содержание

1	Задачи	1
2	Оборудование	2
3	Теория 3.1 Линии откачки	2 2
4	Описание установки	3
5	Предельное давление и скорость откачки 5.1 Ход работы	3 3
6	Скорость натекания 6.1 Ход работы	5 5
7	Пропускная способность капилляра 7.1 Ход работы	7 7
8	Выводы	10

1 Задачи

Познакомиться с работой вакуумного оборудования, методами измерения и контроля вакуума.

2 Оборудование

- Arduino Uno
- Манометр Pfeiffer TPR281
- Вакууметр Мерадат-ВИТ
- Термопарный и ионизационный манометрические преобразователи ПМТ-2 ПМИ-2
- Манометр Thyracont
- Ёмкостный датчик Thyracont
- Откачной пост Pfeiffer Vacuum HiCube 80 Eco
- Вакуумная арматура

3 Теория

Обычно выделяют несколько диапазонов давления, отличающихся режимами молекулярно-кинетических явлений в вакуумной системе:

- Низкий вакуум 1000 1 мбар
- \bullet Средний вакуум $1 10^{-3}$ мбар
- \bullet Высокий вакуум $10^{-3} 10^{-7}$ мбар
- Ультравысокий вакуум 10^{-7} 10^{-14} мбар

3.1 Линии откачки

Важнейшей характеристикой линии откачки является ее пропускная способность, которая определяется так:

$$C = \frac{q_{pV}}{\Delta p},$$

где q_{pV} – поток газа через линию в единицах pV, а Δp – разность давлений на ее концах. В вязком режиме для линии круглого сечения длиной l проводимость равна $C=\pi r^4(p_1+p_2)/(16\eta l)$, где η - вязкость газа.

Важнейшей характеристикой насоса является его быстрота действия, которая определяется как объем газа, проходящий в единицу времени через входной патрубок насоса:

 $|S| = \frac{dV}{dt}$

Из предположения, что $\frac{dN}{dt} \sim Sp$, получим, что:

$$Sp = \frac{dpV}{dt} = V\frac{dp}{dt}$$

То есть:

$$S = \frac{V}{p} \frac{dp}{dt}$$

4 Описание установки

В экспериментах использовался откачной пост, на который с помощью вакуумной арматуры присоединялось всё необходимое оборудование. Достаточно низкие давления (порядка 1 Па и ниже), измеряемые с помощью манометрических преобразователей снимались на вакууметре, а давления порядка 1 Па - 10⁵ Па измерялось на манометре Pfeiffer TPR281 и оцифровывалось с помощью датчика Arduino, кроме того, в одном эксперименте был использован манометр Thyracont, который в первую минуту эксперимента (пока давление не снизилось достаточно, чтобы лампы заработали) снимался на камеру, а затем был отключен, данные с него так же были вручную оцифрованы.

5 Предельное давление и скорость откачки

5.1 Ход работы

Для того чтобы измерить необходимые параметры, мы подключили к насосу датчики давления, включили насос и ждали, пока насос не выйдет на предельное давление. После 30 минут эксперимента, его решено было прекратить, так как насос откачивал воздух весьма медленно, что свидетельствовало о достижении предельного (в разумных пределах) давления.

5.2 Обработка данных

По полученным данным были построены графики.

Рис. 1: График зависимости давления от времени в камере

Как можно видеть, предельное давление этого насоса оказалось порядка $5\cdot 10^{-4}~\Pi a.$

Рис. 2: Производительность насоса

Производительность насоса, как и ожидалось, тем меньше, чем меньше давление в камере. Производительность в ходе эксперимента меняется от 1 л/с до $7\cdot 10^{-5}$ л/с

6 Скорость натекания

6.1 Ход работы

К установке в данном эксперименте добавилась камера, соединенная с насосом через сильфонный шланг. Измерить в такой системе предлагалось скорость натекания в камеру. Само натекание проходило достаточно медленно, поэтому было решено закончить измерения через 15-20 минут после эксперимента.

6.2 Обработка данных

Были построены графики зависимости давления от времени и скорости натекания от давления.

Рис. 3: Изменение давления вследствие натекания в логарифмических координатах

Рис. 4: Изменение давления вследствие натекания

Зависимость давления от времени неплохо описывается прямой. На графике изображено давление сразу после выключения насоса. Начальное давление порядка $10^{-2}~\Pi a$

Рис. 5: График скорости натекания

Далее была найдена скорость натекания, она тоже зависит меняется с увеличением давления. Крайние значения получились следующими: $7\cdot 10^{-2}$ и $3\cdot 10^{-4}$ л/с.

7 Пропускная способность капилляра

7.1 Ход работы

В ходе данного эксперимента мы соединили две камеры капилляром и измеряли его пропускную способность. Измерялось давление в обеих камерах. На камере с насосом использовались ламповые датчики, на второй же камере использовался цифровой датчик, так как давления выходили из диапазона его работы.

7.2 Обработка данных

Сначала изобразим графики давления от времени для обеих камер.

Рис. 6: Давление в камере с насосом

График немного сдвинут по времени из-за того, что манометрические преобразователи $\Pi M U$ и $\Pi M T$ начинают работу несколько позже из-за своего диапазона измеряемых давлений

Рис. 7: Давление во второй камере

В какой-то момент, судя по всему, произошло разъединение контактов манометра, отсюда и небольшие артефакты на графике около нуля.

Рис. 8: Пропускная способность капилляра

Пропускная способность капилляра, полученная экспериментально, стоит отметить что данные обладают большим количеством шумов. Сравним с теорией

Рис. 9: Теоретическая зависимость пропускной способности капилляра

Теоретическая зависимость, построенная по формуле $C = \pi r^4 (p_1 + p_2)/(16\eta l)$ по порядкам лежит близко к полученным данным, однако оценить точность такого метода тяжело из-за шумов на экспериментальных данных.

8 Выводы

- Полученные нами результаты довольно сильно расходятся с паспортными данными для данного откачного поста
- Теоретическая зависимость пропускной способности капилляра в целом по порядку близко к экспериментальному значению, но из-за неточности наших данных нельзя сказать большего.
- Все соединения были выполнены довольно добротно, так как натекание воздуха происходило весьма медленно