CAPSTONE PROJECT

STUDENT PERFORMANCE PREDICTION USING MACHINE LEARNING

PRESENTED BY

STUDENT NAME: PAL SATYAM G

COLLEGE NAME: ADITYA SILVER OAK INSTITUTE OF

TECHNOLOGY

DEPARTMENT: B.TECH (INFORMATION TECHNOLOGY)

EMAIL ID: satyampal200431@gmail.com

AICTE STUDENT ID: STU666efaad6524b1718549165

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

- Educational institutions collect a large amount of student data, but they often fail to use it effectively to identify students who may underperform.
- Key indicators such as classroom participation (e.g., raised hands, resource usage), discussions, and absenteeism are not properly analyzed in traditional systems.
- As a result, teachers lack tools to predict which students need academic support early.
- This project aims to solve this problem by applying machine learning algorithms to predict student performance — categorized as Low (L), Medium (M), or High (H) — based on behavioral and academic data from a classroom setting.

PROPOSED SOLUTION

- ☐ The proposed system is a **machine learning-based prediction model** that analyzes student classroom behavior and participation to classify their academic performance into three levels:

 High (H), Medium (M), and Low (L).
- This system is trained using a dataset containing various student attributes such as:
- Number of times they raised hands
- Number of resources accessed
- Participation in discussions
- Number of absence days
- Background details (grade, section, gender, nationality, etc.)
- ☐ The system follows these steps:
- 1. Data Preprocessing Remove irrelevant columns and encode categorical data
- 2. Model Training Train 5 different machine learning models
- 3. Model Evaluation Compare models based on accuracy and classification reports
- **4. Prediction** Predict performance class (L, M, H) for new inputs.
- The system helps educators take early action for students likely to underperform.

SYSTEM APPROACH

□ Technology Stack:

- Programming Language: Python
- Development Environment: Google Colab and Github

☐ Libraries Used:

- Pandas and NumPy for data handling
- Matplotlib and Seaborn for visualization
- Scikit-learn for machine learning models and evaluation

□ Dataset Overview:

- File Name: AI-Data.csv
- Contains academic and behavioral records of students from different backgrounds
- Target Output: Class (L for Low, M for Medium, H for High)

☐ Features Used:

- Gender, Nationality, Stage, Grade, Section
- Raised Hands, Visited Resources, Announcements Viewed, Discussions Participated
- Student Absence Days

SYSTEM APPROACH

□ Preprocessing Steps:

- Removed unnecessary columns like Place of Birth, Relation, Parent Satisfaction
- Converted text-based data into numeric format using label encoding

☐ Selected main features:

Raised Hands, Visited Resources, Discussions, Absences

☐ Train-Test Split:

- Data divided into 70 percent training and 30 percent testing
- Training data used to build models
- Testing data used to evaluate accuracy

Figure 1. The flowchart of the prediction model.

ALGORITHM & DEPLOYMENT

□ Algorithms Implemented

- Decision Tree Classifier
- Random Forest Classifier
- Perceptron (Linear Model)
- Logistic Regression
- Multi-Layer Perceptron (Neural Network)

☐ Training Process

- Data was loaded from AI-Data.csv
- Unnecessary columns were dropped such as gender, Stage ID, Grade ID, Nationality, Section, etc.
- Remaining categorical columns were label encoded into numerical form
- Selected input features:
- Raised Hands
- Visited Resources
- Discussion Participation
- Student Absence Days

ALGORITHM & DEPLOYMENT

☐ The dataset was shuffled and then split into:

- 70% for training
- 30% for testing
- Each model was trained using the training features and labels

☐ Prediction and Evaluation:

- Each model predicted the student performance class on test data
- Prediction results were compared with actual values
- Accuracy was calculated manually by counting correct predictions
- Classification reports were printed showing precision, recall, and F1-score
- Random Forest achieved the highest accuracy

□ Deployment Functionality:

- The program allows the user to manually enter input values like raised hands, resource usage, etc.
- All five models return a predicted class: Low, Medium, or High
- The system prints model-wise predictions for comparison and decision support

RESULT

Accuracy	measures	using De	cision T	ree:	
	pre	cision	recall	f1-score	support
	0	0.60	0.65	0.62	52
	1	0.88	0.82	0.85	28
	2	0.62	0.59	0.60	63
accui	racy			0.66	143
macro	avg	0.70	0.69	0.69	143
weighted	avg	0.66	0.66	0.66	143
Accuracy	using De	cision Tr	'ee: 0.6	57	
Accuracy	Measures	for Rand	dom Fores	t Classifie	er:
	pr	ecision	recall	f1-score	support
	0	0.66	0.73	0.69	52
	1	0.93	0.93	0.93	28
	2	0.72	0.65	0.68	63
accui	racy			0.73	143
macro	avg	0.77	0.77	0.77	143
weighted	avg	0.74	0.73	0.73	143
Accuracy	using Ra	ndom Fore	est: 0.7	34	

				1		
Accuracy	Accuracy measures using Linear Model Perceptron:					
		precision	recall .	f1-score	support	
			4 00	0.57	50	
	0	0.40	1.00	0.57	52	
	1	1.00	0.14	0.25	28	
	2	0.00	0.00	0.00	63	
accui	-			0.39	143	
macro	_	0.47	0.38	0.27	143	
weighted	avg	0.34	0.39	0.26	143	
Accuracy	using	Linear Mode	l Percept	ron: 0.392		
Accuracy		res using Li			Regression:	
		precision	recall ·	f1-score	support	
	0	0.67	0.85	0.75	52	
	1	0.93	0.89	0.91	28	
	2	0.78	0.62	0.69	63	
accui	acy			0.76	143	
macro	avg	0.79	0.79	0.78	143	
weighted	avg	0.77	0.76	0.75	143	
	_					
Accuracy	using	Linear Mode	l Logisti	c Regressio	n: 0.392	

Figure 2. Accuracy measures using Decision tree and Random Forest Classifier

Figure 3. Accuracy measures using Linear Model Perception & Logistic Regression

RESULT

Accuracy measures using MLP Classifier:					
	precision	recall	f1-score	support	
0	0.64	0.83	0.72	52	
1	0.89	0.86	0.87	28	
2	0.73	0.57	0.64	63	
accuracy			0.72	143	
macro avg	0.76	0.75	0.75	143	
weighted avg	0.73	0.72	0.72	143	
Accuracy using Neural Network MLP Classifier: 0.72					

Figure 4. Accuracy measures using MLP Classifier

Figure 5. User input interface for generating student performance graphs.

	2.Marks Class Semester-wise Graph
3.Marks Class Gender-wise Graph	4.Marks Class Nationality-wise Graph
	6.Marks Class Section-wise Graph
7.Marks Class Topic-wise Graph	8.Marks Class Stage-wise Graph
9.Marks Class Absent Days-wise	10.No Graph
Enter Choice:	

Sr. No.	Accuracy measures model	Accuracy
1	Decision Tree	0.675
2	Random Forest Classifier	0.734
3	Linear Model Perception	0.392
4	Logistic Regression	0.392
5	MLP Classifier	0.72

Table 1. Accuracy measures result

Note: All models were trained, tested, and evaluated on Google Colab.

RESULT

• These visualizations show the distribution of students across different performance classes (Low, Medium, High) based on grade, total count, and semester.

- The graphs help identify patterns and trends useful for early academic intervention.
- These visuals help teacher to understand student performance.

CONCLUSION

- The project aimed to develop a machine learning-based system to predict student performance levels categorized as Low, Medium, or High. The analysis was performed using a real-world dataset consisting of various academic and behavioral features such as raised hands, visited resources, discussions participated, and student absence days.
- After cleaning and preprocessing the dataset, five machine learning algorithms were implemented: **Decision Tree, Random Forest, Perceptron, Logistic Regression**, and **MLP Classifier**.
- Each model was trained on 70% of the dataset and evaluated on the remaining 30%. Evaluation metrics such as accuracy, precision, recall, and F1-score were used to compare model performance. The Random Forest Classifier achieved the highest accuracy, followed by the MLP Classifier, indicating strong performance in classification tasks with imbalanced class distributions.
- The system also includes a user-input option to predict the class of a new student based on real-time input features. This functionality demonstrates the practical applicability of the model in academic settings.
- Overall, the system can help educational institutions identify at-risk students early and support datadriven decision-making to improve academic performance and learning outcomes.

FUTURE SCOPE

• This project lays the foundation for predictive analytics in the education sector. Several future improvements and enhancements can be made:

Feature Expansion:

Include more attributes such as exam scores, assignment submissions, attendance logs, and psychological factors (motivation, stress levels) to improve prediction accuracy.

Real-Time Integration:

Deploy the system with real-time data collection from smart classrooms, learning management systems, or school ERP software.

Improved Accuracy with Deep Learning:

Implement deep learning models like LSTM or CNN to learn complex patterns and improve performance for larger datasets.

Interactive Dashboard:

Develop a web-based dashboard where teachers and administrators can view predictions, trends, and at-risk students in real-time.

Early Intervention System:

Integrate with counseling or mentoring programs to automatically notify educators when a student is predicted to underperform.

REFERENCES

- Github Link (STUDENT PERFORMANCE PREDICTION USING MACHINE LEARNING): https://github.com/Satyam-pal31/StudentPerformancePredictionUsingMachineLearning.git
- Student Performance Analysis and Prediction(Research Paper): https://www.analyticsvidhya.com/blog/2023/04/student-performance-analysis-and-prediction/
- Machine Learning Project on Student grade Prediction | Great Learning(Video): https://www.youtube.com/live/Y3y8v9PrMMY?si=mK_BgvCvgGvFN-53
- A Systematic Literature Review of Student' Performance Prediction using ML: https://www.mdpi.com/2227-7102/11/9/552

Thank you