Métodos de Penalidade Métodos de Penalidade Exata Não Suaves

M. Fernanda P. Costa

Departamento de Matemática Universidade do Minho

Outline

- Métodos de Penalidade
 - Métodos de Penalidade Exata Não Suaves
 - Classe Geral de Métodos de Penalidade Exata Não Suaves

Considere novamente a formulação geral do problema do otimização com restrições:

minimizar
$$F(w)$$

sujeito a $c_n(w) = 0, \quad n \in \mathcal{E}$
 $c_n(w) \ge 0, \quad n \in \mathcal{I}$ (P1)

- $w = (w_1, w_2, \dots, w_I)^T$ é o vetor das variáveis de decisão
- $F: \mathbb{R}^{I} \to \mathbb{R}$ é a função objetivo (medida de desempenho) (loss or cost function in ML)
- $c_n: \mathbb{R}^I \to \mathbb{R}$ com $n \in \mathcal{E}$, são as funções de restrição de igualdade
- $c_n : \mathbb{R}^I \to \mathbb{R}$ com $n \in \mathcal{I}$, são as funções de restrição de desigualdade
- nota: em (P1) as funções de restrição $c_n(w)$, para $n \in \mathcal{E}$ e $n \in \mathcal{I}$, podem ser agrupadas nas funções vetoriais $c_{\mathcal{E}}: \mathbb{R}^{\mathrm{I}} \to \mathbb{R}^{|\mathcal{E}|}$ e $c_{\mathcal{T}}: \mathbb{R}^{\mathrm{I}} \to \mathbb{R}^{|\mathcal{I}|}$:

$$c_{\mathcal{E}}(w) = 0$$

 $c_{\mathcal{I}}(w) \geq 0$

Funções de Penalidade Exatas Não Suaves

- Algumas funções de penalidade $\phi(w;\mu)$ são exatas, isto é, para certas escolhas dos parâmetros de penalidade $(\exists \mu^*>0: \forall \mu>\mu^*)$, qualquer solução local w^* do problema com restrições é um minimizante local da função de penalidade $\phi(w;\mu)$.
- Assim, precisamos de uma única minimização de $\phi(w; \mu)$ para um tal $\mu > \mu^*$, para obter a solução exata do problema com restrições.
- Esta propriedade é desejável, pois faz com que o desempenho dos métodos de penalidade sejam menos dependentes da estratégia de atualização do parâmetro de penalidade.

nota: a função de penalidade quadrática $Q(w; \mu)$ não é exata, por isso precisa $\mu \uparrow \infty$.

Uma função de penalidade exata não suave muito usada para o problema com restrições (P1) é a função de penalidade ℓ_1 , definida por:

$$\phi_1(w;\mu) = \underbrace{F(w)}_{\text{função objetivo}} + \underbrace{\mu \sum_{n \in \mathcal{E}} |c_n(w)| + \mu \sum_{n \in \mathcal{I}} [\max(0,-c_n(w))]}_{}$$

um termo de penalidade por restrição, definido pelo valor absoluto da violação da restrição

- O nome deriva do facto que o termo de penalidade é μ vezes a norma ℓ_1 da violação da restrição.(nota: norma $\|\cdot\|_1$ é também conhecida como norma ℓ_1)
- Notar que $\phi_1(w; \mu)$ não é diferenciável em alguns pontos w, devido à presença das funções |.| e max $(0, -c_{\mathcal{I}}(w))$.

O resultado seguinte estabelece a exatidão da função de penalidade ℓ_1 .

Teorema 1

Suponha que w^* é uma solução local estrita do problema com restrições (P1) para o qual as condições necessárias de $1^{\underline{a}}$ ordem são satisfeitas (condições KKT), com multiplicadores de Lagrange λ_n^* , $n \in \mathcal{E} \cup \mathcal{I}$. Então w^* é um minimizante local de $\phi_1(w;\mu)$ para todo $\mu > \mu^*$, onde

$$\mu^* = \|\lambda^*\|_{\infty} = \max_{n \in \mathcal{E} \cup \mathcal{I}} |\lambda_n^*| \tag{1}$$

Se, adicionalmente, as condições suficientes de $2^{\underline{a}}$ ordem são satisfeitas e $\mu > \mu^*$, então w^* é um minimizante local estrito de $\phi_1(w; \mu)$.

Demonstração: (ver [1], Teorema 4.4)

• Em geral, numa solução w^* do problema com restrições (P1), qualquer movimento para a região não admissível é penalizado de forma suficientemente acentuada produzindo um aumento no valor da função de penalidade superior ao valor de $\phi_1(w^*;\mu) = F(w^*)$, forçando assim o minimizante de $\phi_1(w;\mu)$ a ficar em w^* .

Exercício1: Considere o problema

$$\underset{w \in \mathbb{R}}{\mathsf{minimizar}} \quad F(w) = w \; \mathsf{sujeito} \; \mathsf{a} \; w \geq 1$$

cuja solução é $w^*=1$. Indique para que valores de μ , a solução $w^*=1$ é um minimizante da função de penalidade ℓ_1 .

Solução: A função de penalidade ℓ_1 é

$$\phi_1(w; \mu) = w + \mu \max(0, -(w-1)) = \begin{cases} (1-\mu)w + \mu & \text{se } w < 1 \\ w & \text{se } w \ge 1 \end{cases}$$

- se $1 \mu < 0 \Leftrightarrow \mu > 1$, então ϕ_1 é monótona decrescente para w < 1; e crescente para $w \ge 1$, pelo que ϕ_1 tem um minimizante em $w^* = 1$.
- se $1-\mu>0 \Leftrightarrow \mu<1$, então ϕ_1 é monótona crescente para todo $w\in\mathbb{R}.$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへで

Fig.3 função de penalidade ϕ_1 com $\mu>1$ (esq.) e $\mu<1$ (dir.)

- Como os métodos de penalidade visam minimizar a função de penalidade, é necessário caraterizar os pontos estacionários desta função. Apesar de ϕ_1 não ser diferenciável, tem derivada direcional ao longo de qualquer direção s, denotada por $\mathcal{D}(\phi_1(w;\mu);s)$
- lacktriangle Definição: A derivada direcional de uma função $F:\mathbb{R}^{\mathrm{I}} o\mathbb{R}$ na direção de s é dada por:

$$\mathcal{D}(F(w);s) = \lim_{\varepsilon \to \mathbf{0}} \frac{F(w + \varepsilon s) - F(w)}{\varepsilon}.$$

Notar que, a $\mathcal{D}(F(w); s)$ pode estar bem definida mesmo quando F não é continuamente diferenciável. Quando F é de facto continuamente diferenciável numa vizinha de w, tem-se: $\mathcal{D}(F(w); s) = \nabla F(w)^T s$.

Definição: Um ponto $\hat{w} \in \mathbb{R}^{I}$ é um ponto estacionário para a função de penalidade $\phi_{1}(w;\mu)$ se

$$\mathcal{D}(\phi_1(\hat{w};\mu);s) \geq 0, \;\; ext{para todo } s \in \mathbb{R}^{\mathrm{I}}$$

Do mesmo modo, ŵ é um ponto estacionário da medida de não admissibilidade

$$h(w) = \sum_{n \in \mathcal{E}} |c_n(w)| + \sum_{n \in \mathcal{I}} [\max(0, -c_n(w))]$$
 (medida de violação)

se $D(h(\hat{w});s) \geq 0$ para todo $s \in \mathbb{R}^{I}$. Se um ponto é não admissível para o problema (P1) mas estacionário em relação à medida de não admisibilidade h, dizemos que é um ponto estacionário não admissível.

Exercício2: Considere novamente o problema

$$\mathop{\mathsf{minimizar}}_{w \in \mathbb{R}} \quad F(w) = w \; \mathsf{sujeito} \; \mathsf{a} \; w \geq 1$$

cuja solução é $w^*=1$. Calcule a derivada direcional da função $\phi_1(w;\mu)$ no ponto $w^*=1$.

Solução: Sabemos que

$$\phi_1(w;\mu) = w + \mu \max(0,-(w-1)) = \left\{ egin{array}{ll} (1-\mu)w + \mu & ext{se } w < 1 \\ w & ext{se } w \geq 1 \end{array}
ight.$$

A derivada direcional de $\phi_1(w; \mu)$ no ponto $w^* = 1$ é:

$$\begin{split} &D(\phi_1(1;\mu);s) = \lim_{\varepsilon \to 0} \frac{\phi_1(1+\varepsilon s;\mu) - \phi_1(1;\mu)}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left\{ \begin{array}{ll} \frac{1+\varepsilon s - 1}{\varepsilon} & \text{se } s \geq 0 \\ \frac{(1-\mu)(1+\varepsilon s) + \mu - 1}{\varepsilon} & \text{se } s < 0 \end{array} \right. \\ &= \lim_{\varepsilon \to 0} \left\{ \begin{array}{ll} s & \text{se } s \geq 0 \\ \frac{(1-\mu)\varepsilon s}{\varepsilon} & \text{se } s < 0 \end{array} \right. = \left\{ \begin{array}{ll} s & \text{se } s \geq 0 \\ (1-\mu)s & \text{se } s < 0 \end{array} \right. \end{split}$$

donde se conclui que quando $1 - \mu < 0 \Leftrightarrow \mu > 1$, $D(\phi_1(w^*; \mu); s) \ge 0$ para todo $s \in \mathbb{R}$. Portanto, $w^* = 1$ é um ponto estacionário da função $\phi_1(w; \mu)$ com $\mu > 1$

• O resultado seguinte complementa o Teorema 1, mostrando que os pontos estacionários de $\phi_1(w; \mu)$ correspondem a pontos KKT do problema com restrições (P1) sob certos pressupostos.

Teorema 2

Suponha que \hat{w} é um ponto estacionário da função de penalidade $\phi_1(w;\mu)$ para todo μ maior que um certo valor limiar $\hat{\mu}>0$. Se \hat{w} é ponto admissível para o problema com restrições (P1), então satisfaz as condições de KKT para (P1). Se \hat{w} não é admissível para (P1), é um ponto estacionário não admissível.

Demonstração: (ver [2], Teorema 17.4)

Exercício3: Considere novamente o problema

minimizar
$$F(w)=w_1+w_2$$
 sujeito a $w_1^2+w_2^2-2=0$

cuja solução é $w^* = (-1, -1)^T$. Indique para que valores de μ , a solução w^* é um minimizante da função de penalidade ℓ_1 .

Solução: A função de penalidade ℓ_1 do problema é

$$\phi_1(w; \mu) = w_1 + w_2 + \mu |w_1^2 + w_2^2 - 2|.$$

Pelo Teorema 1 temos que para todo $\mu > |\lambda^*| = 0.5$, o minimizante de $\phi_1(w;\mu)$ coincide com w^* . A Fig.4 mostra os contornos de $\phi_1(w;\mu)$ para $\mu=2$. Os cantos pontiagudos nos contornos indicam a não de suavidade da função $\phi_1(w;2)$ ao longo da fronteira do círculo definido por $w_1^2 + w_2^2 = 2$.

Fig.4 função de penalidade ℓ_1 para $\mu=2$

Algoritmo2: Método de Penalidade ℓ_1

- Dar: μ_0 , tolerância au, um ponto inicial $w_s^{(0)}$
- Para k = 0, 1, ...
- Encontrar um minimizante (aproximado) $w^{(k)}$ de $\phi_1(w; \mu_k)$, iniciando em $w_s^{(k)}$
- Se $h(w^{(k)}) \le \tau$ Parar com a solução aproximada $w^{(k)}$ fim se
- **3** Escolher novo parâmetro de penalidade $\mu_{k+1} > \mu_k$
- 4 Escolher novo ponto inicial $w_s^{(k+1)}$

Notas:

- A minimização de $\phi_1(w; \mu_k)$ é dificultada pela não suavidade da função.
 - ⇒ usar métodos de otimização livres de derivadas; ₀ч
 - \Rightarrow construir um modelo suave de $\phi_1(w; \mu_k)$ e minimizar este modelo, de um modo análogo ao que se faz nos métodos Programação Quadrática Sequencial (ver [2]).
- Escolha de μ_k : a fórmula de atualização mais simples é aumentar μ num valor constante a: $\mu_{k+1} = a\mu_k$ (por ex. a=5 ou 10)
 - Em geral, esta fórmula de atualização funciona bem na prática mas também pode ser ineficiente:
 - \Rightarrow se o valor de μ_0 for demasiado pequeno, podem ser necessários muitos ciclos do Algoritmo2 para se encontrar uma solução (aproximada);
 - \Rightarrow se, por outro lado, μ_k é excessivamente grande, a função de penalidade será difícil de minimização, exigindo possivelmente um grande número de iterações.

Exercício4: Considere novamente o problema

$$\begin{aligned}
& \underset{w \in \mathbb{R}^2}{\text{minimizar}} \ F(w) = \frac{1}{2}w_1^2 + w_2^2 - w_1w_2 - 2w_1 - 6w_2 \\
& \text{sujeito a } c(w) = \begin{cases}
& -w_1 - w_2 + 2 & \ge 0 \\
& w_1 - 2w_2 + 2 & \ge 0 \\
& -2w_1 - w_2 + 3 & \ge 0 \\
& w_1 & \ge 0 \\
& w_2 & \ge 0
\end{aligned}$$

- a) Utilize o Método de Penalidade ℓ_1 para resolver o problema, com $w^{(0)}=(0,0)^T$ e $\mu_0=1.5$. Faça $\mu_{k+1}=2\mu_k,\ \tau=10^{-6},$ e escolha para ponto inicial $w_s^{(k+1)}$ a solução de $\phi_1(w;\mu_k)$. Use a função fminsearch do MatLab para resolver os problemas sem restrições.
- b) Compare a solução ótima obtida em a) com a solução obtida usando a função fmincon do MatLab.

Exercício5: (HS6) Considere o problema

minimizar
$$F(w)=(1-w_1)^2$$
 sujeito a $10(w_2-w_1^2)=0$

- a) Utilize o Método de Penalidade ℓ_1 para resolver o problema, com $w^{(0)}=(-1.2,1)^T$ e $\mu_0=1$. Faça $\mu_{k+1}=10\mu_k$, $\tau=10^{-6}$, e escolha para ponto inicial $w_s^{(k+1)}$ a solução de $\phi_1(w;\mu_k)$. Use a função fminsearch do MatLab para resolver os problemas sem restrições.
- b) Compare a solução ótima obtida em a) com a solução obtida usando a função fmincon do MatLab.

Exercício6: (HS32) Considere o problema

- a) Utilize o Método de Penalidade ℓ_1 para resolver o problema, com $w^{(0)} = (0.1, 0.7, 0.2)^T$ e $\mu_0 = 1.5$. Faça $\mu_{k+1} = 2\mu_k$, $\tau = 10^{-6}$, e escolha para ponto inicial $w_s^{(k+1)}$ a solução de $\phi_1(w; \mu_k)$. Use a função fminsearch do MatLab para resolver os problemas sem restrições.
- b) Compare a solução ótima obtida em a) com a solução obtida usando a função fmincon do MatLab.

Uma Classe Geral de Métodos de Penalidade Exata Não Suaves

As funções de penalidade exatas não suaves podem ser definidas em termos de outras normas que não a norma ℓ_1 :

$$\phi(w, \mu) = F(w) + \mu \|c_{\mathcal{E}}\| + \mu \|\max(0, -c_{\mathcal{I}})\|$$
 (2)

- ||.|| é uma norma vetorial qualquer;
- todas as funções de restrição de igualdade e desigualdade foram agrupadas nas funções vetoriais $c_{\mathcal{E}}: \mathbb{R}^{\mathrm{I}} \to \mathbb{R}^{|\mathcal{E}|}$ e $c_{\mathcal{I}}: \mathbb{R}^{\mathrm{I}} \to \mathbb{R}^{|\mathcal{I}|}$.
- O Algoritmo2 aplica-se a qualquer uma destas funções $\phi(w; \mu)$ com a medida de não admissibilidade h definida por

$$h(w) = ||c_{\mathcal{E}}|| + ||\max(0, -c_{\mathcal{I}})||.$$

- As normas mais usadas na prática são as normas ℓ_1 , ℓ_∞ e ℓ_2 (não ao quadrado).
- As propriedades teóricas descritas para a função ℓ_1 estendem-se para a classe geral (2). No Teorema 1, substitui-se a igualdade (1) por

$$\mu^* = \|\lambda^*\|_D$$

onde $\|.\|_D$ é a norma dual de $\|.\|$

(nota: qualquer norma $\|.\|_p$ tem uma normal dual definida por $\|x\|_D = \max_{\|y\|_p = 1} x^T y$. As normas ℓ_1 e ℓ_∞ são duais uma da outra; e a norma ℓ_2 é o seu própria dual.)

O Teorema 2 aplica-se sem modificação.

(nota: As funções de penalidade não suaves são também usadas como funções mérito em métodos de otimização que calculam os passos/(direções de procura) por outros mecanismos.)

Exercício7: Resolve os Exercícios 4a), 5a) e 6a) usando a função de penalidade ℓ_{∞} , no Algoritmo2.

Exercício8: Resolve os Exercícios 4a), 5a) e 6a) usando a função de penalidade ℓ_2 , no Algoritmo2.

S. P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear programming. *Mathematical Programming*, *17*, 1979.

J. Nocedal and S. Wright. *Numerical Optimization*. Springer, 2006.