[METHOD FOR GENERATING 2D OVSF CODES IN MULTICARRIER DS-CDMA SYSTEMS]

Abstract of Disclosure

A code tree of two-dimensional orthogonal variable spreading factor (2D-OVSF) code matrices for a multicarrier direct-sequence code-division multiple-access (MC-DS/CDMA) communications system is generated by providing two sets of 2×2

orthogonal matrices {A (2) A (2) } and {B (2) } B (2) }. The first set of 2 \times 2 matrices is used to generate a pair of sibling nodes in the code tree that respectively represent matrices $\mathbf{A}^{(1)}_{(2\times 2^5)}$ and $\mathbf{A}^{(2)}_{(2\times 2^5)}$ by iterating the relationship:

 $\mathbf{A}^{(1)}_{(2\times 2^{1+\beta})} = [\mathbf{A}^{(1)}_{(2\times 2^{\beta})} \quad \mathbf{A}^{(2)}_{(2\times 2^{\beta})}],$ The matrices $\mathbf{A}^{(1)}_{(2\times 2^{\alpha})}$ and $\mathbf{A}^{(2)}_{(2\times 2^{\alpha})}$ are $\mathbf{A}^{(2)}_{(2\times 2^{1+\beta})} = [\mathbf{A}^{(1)}_{(2\times 2^{\beta})} \quad -\mathbf{A}^{(2)}_{(2\times 2^{\beta})}].$

used to generate a child node of one of the sibling nodes. The child node contains an $M \times N$ matrix, which is found by iterating the relationship:

 ${\tt A}^{(i-1)}_{\{0 \times {\tt P}\}} = {\tt [B^{(1)}_{\{2 \times 2\}} \otimes {\tt A}^{(i/2)}_{\{0/2 \times {\tt P}/2\}}]}$ where \otimes indicates a Kronecker product. ${\tt A}^{(i)}_{\{0 \times {\tt P}\}} = {\tt [B^{(2)}_{\{2 \times 2\}} \otimes {\tt A}^{(i/2)}_{\{0/2 \times {\tt P}/2\}}]},$