ГАЗОФАЗНАЯ ФУНКЦИОНАЛИЗАЦИЯ ПОВЕРХНОСТИ УГЛЕРОДНЫХ НАНОТРУБОК ОЗОНОМ

Королева Елизавета Алексеевна,

Д. В. Красников, А. Г. Насибулин

Сколковский институт науки и технологий, Москва, Россия

Актуальность

Преимущества

- Низкая плотность
- Высокая подвижность носителей заряда
- Механическая прочность, эластичность и теплопроводность
- Большая площадь поверхности

Ограничения

- Отсутствие функциональных групп на поверхности
- Химическая инертность
- Гидрофобность

Низкие межфазные связи и дисперсность

Сложно интегрировать в существующие производственные процессы

Методы окисления

Skoltech

Kausar, A., (2016). *Polymer-Plastics Technology and Engineering*, *55*(11), 1167-1191. Morales-Lara, (2013). *The Journal of Physical Chemistry C*, *117*(22), 11647-11655.

Схема установки

Обработка тонких пленок ОУНТ

Отжиг: 155°С, 25 min.

Параметры озонирования: скорость потока~400 sccm, выход озона 100% от макс. мощности

Образец	Abs 550 нм	R _s , Ом/□	R ₉₀ , Ом/□	ΔR ₉₀ , Ом/□
5 мин	0.18	487	1883	474±114
7 мин	0.19	364	1480	1064±19
10 мин	0.19	945	4036	-1203±350
20 мин	0.16	2825	9887	-7329±150

 R_{90} - поверхностное сопротивление, которое было бы у такой плёнки, если бы её пропускание при 550 нм было 90% рассчитывается по формуле:

$$R_{90} = R_S \frac{A_{550}}{A_{550}(90\%)} = R_S \frac{A_{550}}{\log 10/9};$$

где $R_{\scriptscriptstyle S}$ - удельное поверхностное сопротивление;

 $A_{550}\,$ - поглощение тонкой пленки при пропускании 550 нм

озонирования 7 мин.

КР-спектроскопия

Исследование спектроскопии ОУНТ

УФ/ВИД/БИК

Уменьшение специфических пиков M_{11} , S_{22} , S_{11} определяется легированием озоном

ИК

Наличие групп ОН, С-О и С=О предполагает появление карбоксильных групп, а также гидроксильных, хинонных или карбонильных фрагментов на ОУНТ

Оптимальные параметры озонирования тонких пленок ОУНТ (70%):

7 мин, 100% выход, 400 см³/мин

Гидрофильные свойства

Исходные ОУНТ

136.8⁰ 19.7 мДж/м² **Skoltech**

Озонированные ОУНТ

7 мин

61.3⁰ 107.3 мДж/м² Работа адгезии на границе жидкость-твердое тело рассчитывалась по формуле:

 $W = \delta*(1+cos\theta),$ где δ - поверхностное натяжение воды при 22°C (δ = 72.44 мДж/м 2)

Малый контактный угол свидетельствует о наличии окисленных групп на поверхности ОУНТ и, следовательно, о более высокой гидрофильности.

Обработка порошков МУНТ

Отжиг: вакуумная сушка 50°С, 8 часов

Параметры озонирования в реакторе кипящего слоя: поток сухого воздуха, выход озона 100% от макс. мощности, при прерывании потока 1сек/1сек ON/OFF

Skoltech

Заключение

- Была продемонстрирована эффективная методика сухой функционализации тонких пленок ОУНТ и порошков МУНТ с использованием озона
- Оптимальные оптоэлектрические свойства тонких пленок ОУНТ (пропускание 70%)
 были достигнуты при 7-минутной обработке озоном со 100% мощностью его выхода при пропускании 300 см³/мин
- Обработка озоном тонких пленок ОУНТ снижает контактный угол от 136.8° до 61.3° и увеличивает проводимость порядка 10 раз

Работа выполнена при финансовой поддержке РНФ (грант № 22-13-00436 (П))

Дальнейшие планы

- Количественная оценка функциональных групп на поверхности УНТ
- Синтез полимерных композитов на основе полученных функционализированных материалов и их характеризация
- Внедрение в качестве материала для улавливания и детекции газообразных аналитов (летучие органические соединения)

Спасибо за внимание!

Взаимодействие озона с УНТ

CVD Синтез ОУНТ

Реакция Будуара

2CO=CO₂+C_{solid}

Исследование спектроскопии МУНТ

Типы О-содержащих групп на поверхности УНТ

Presumably, carboxyl, carbonyl, ether and quinone groups were formed

Оптический спектр поглощения разных типов УНТ

optimum fluidization velocity determination

Ergun equation describes the drag force in a layer of particles and takes into the consideration the laminar and

turbulent regimes:

$$\frac{150(1-\varepsilon)^2*\mu*u}{\varepsilon^3d^2} + \frac{1.75(1-\varepsilon)*\rho_g*u^2}{\varepsilon^3d} = g(\rho_{bulk} - \rho_g),$$

Where $\rho_{bulk}=0.097~\frac{g}{cm^3}-$ is SWCNT bulk density

 $ho_g=1.275~rac{kg}{m^3}$ – is air density at 20°C

 $\varepsilon = 1 - \frac{\rho_{bulk}}{\rho_{SWCNT}} = 1 - \frac{0.097 \frac{g}{cm^3}}{\sim 1.8 \frac{g}{cm^3}} \sim 0.95 - 0.92 - \text{is SWCNT porosity}$

 $\mu = 1.74 * 10^{-5} Pa * s - \text{is air viscosity at } 20^{\circ}\text{C}$

d – is particle diameter

 $g = 9.8 \, m/s^2$

u – fluidization velocity [m/s]

Let's derive u from d

$$\mathbf{A} * u + \mathbf{B} * u^2 = \mathbf{C},$$

where B=
$$\frac{1.75(1-\varepsilon)*\rho_g}{\varepsilon^3 d} = \frac{0.13}{d};$$

$$A = \frac{150(1-\varepsilon)^2 * \mu}{\varepsilon^3 d^2} = \frac{7.61 * 10^{-6}}{d^2};$$

$$C = g(\rho_s - \rho_g) = 939.06$$

Then
$$u = \frac{-A + \sqrt{A^2 + 4BC}}{2B}$$

optimum fluidization velocity determination

The linear fluidization velocity \boldsymbol{u} was recalculated in the gas flow in the tube with diameter 25mm

Nomogram of particle fluidization velocity

