CS311 Computer Organization (Spring 2022)

Course: CS311 Computer Organization

Instructor: Jongse Park

E3-1 4403

Phone: 350-3580

jspark@casys.kaist.ac.kr

Teaching Dohee Kim (dhkim@casys.kaist.ac.kr) **Assistants** Minsu Kim (mskim@casys.kaist.ac.kr)

Jungwoo Kim (jwkim@casys.kaist.ac.kr) Guseul Heo (gsheo@casys.kaist.ac.kr)

Sanghoon Lee (sanghlee@casys.kaist.ac.kr) TTh 14:30-15:45pm

Textbook Computer Organization and Design RISC-V Edition: The Hardware Software

Interface, David A. Patterson and John L Hennessy

Course Objectives In this course, you will learn how computer systems are organized from hardw

> are logics. This course will teach you to understand 1) how software communic ates with hardware systems by machine instructions, 2) how computer systems are designed with the basic building blocks of logic and memory elements, and 3) what techniques microprocessors use to improve the performance. As multip rocessors are widely adopted in computer systems, the course will also address

the basic concept of parallel programming and architecture.

Prerequisites Familiarity with C/C++ in Linux, or you should be able to learn C/C++ progra

mming in Linux within the first two weeks of the semester.

Projects 4 implementation assignments (in C/C++).

Homework Assign

ments

Class Meetings

There will be 4 written homework assignments. Each student must work on the

assignments individually.

Evaluation Homework, project, and attendance: 40%

Mid-term and Final: 60%

Late submission p

olicy

30% loss of grade for the first late day, and after that, submission will not b e accepted.

Academic conduct

You are encouraged to discuss course material with your classmates. Howe ver, collaboration on assignments is prohibited. Academic misconduct will have a heavy penalty.

- Possession and/or use of another group's code is strictly prohibited. It is al so the student's responsibility to protect his or her work from unauthorized
- We will be using a multitude of sophisticated automated plagiarism checke

r programs to correlate projects to find copied codes.

Spring 2022 Tentative Schedule

Lec.	Торіс
1	Introduction
2	Performance
3	CMOS technology and digital logics
4	Instruction set architecture (ISA) I
5	Instruction set architecture II
6	Processor I: data path
7	Processor II: basic pipelining
8	Processor III: pipeline implementation
9	Processor IV: control hazards
10	Processor V: other issues in processor designs
11	Memory hierarchy
12	Cache I: improving cache performance
13	Cache II: more topics on cache
	Midterm exam week
	Midterm exam week
14	Virtual Memory
15	Instruction level parallelism I: Basics
16	ILP II: superscalar and out-of-order execution
17	ILP III: speculation
18	Parallel programming models
19	Multiprocessor I: overview
20	Multiprocessor II: cache coherence
21	Multi-core architecture
22	GPUs and stream computing I
23	GPUs and stream computing II
24	I/O systems
25	Reserved
	Final exam week
	Final exam week