Gloval data flow analyses

for a global optimization a program is represented in the torm of program flow graph. The programs flow graph is a graphical representation in which ead note represents the basic block ledges represented the fow of control from one block to another

- the global data thow analysis is a process of strength the information about extrict programs of dielsebuted this information to each block in the flow graph.
 - -> the gathered conformation helps to achieve a number of optimization.
- " Use definition (Ud-) chaining".
 - of wein that the udentifier A is used at a point p. at what point could the value of A used at p have been defined.
- Reaching Definition! The Reaching definition implies the determination of definitions that apply at a point p in flow graph.

Date from a the given steps

O Accign a distinct number to each definition as di, d2, d3, --, dn

- in entire program where it is used.
- 3 for each basic block B, compute the following
- (à) GENEBJ:- The set GENEBJ consists of all the definitions generated in block B.
- b) KILLEBJ: The set of all the definitions outside
 Block B that defines the same variables
 thaving definitions in Block B also.

Tot all the basic block B, compute the following.

- (a) IN[B]: The set of all the definition reaching the point just before the slatement of block B.
- (b) OUT[B]: The set of all the definitions reaching the point just after the east statement of basic block B.

- flow Equations . - There are two set of equations called data . frow equations

rather than the same work days

0

6 consider the flow graph

(i) GEN and KILL for each block.

(2) IN and OUT for reaching definition

0.07	neraliah il	-the pro	0	L		, ° °
			1	KILL(B)	bid vec	10
cW	Block B	Gentas	but vector dy ds		00	3/1
g" -			11000	[03,04,05]		100 m
77	B,	[4,10]		CaD	10	0 0 6
ge	B2	[d3]	(O (O)	[d2, d5]	010	
#	83	Cayl	00010	1	l - 1	0 1 0
80			00001	(á2, d4)	0	
K	Вц	[05]		\ b	00	0 0 0
) &	BS	1 4	00000	J. T	0 0	000
,	_	1 7				

Block	LBJ NI	COJTUO		
8,	0 0000	1 1000		
В	60000	00100		
Bz	66060	00010		
B.,	00000	00001		
B-	00000	0 0000		

```
0 - 0 - 11000 U 00000
       = 11000
0
  OUT [B2] = IN[B2] N(-KILL(B))UGEN (B2]
        = 11000 N (-10000)U00100
       = 11000 N (01111) U 00100
       - 01100
IN[B3] = OUT[B3]
       - 01100
 OUT [B3] = IN[B3] NEKILL(B3]U GEN (B3)
   = 00110
                     research the Matter of
INCBy] = OUT (B3)
          = 00110
   OVTCBY) = INCBY) N.C-KILLEBY) UGENEBY]
            = 00110 N(-01010) U(00001)
           = 00110 N(10101) U(00001)
          = 00100 U 0000 |
           - 00101
 INCO = OUT[By] U OUT[B3]
           01100 U 10100
          INCOS) N(-KILLCB5-I) U GENCBS]
                  = 00111
```

o our (B) U OUT [BS]

	Block	Pax-	1 007(8]	Pass-2 IN(B]	OUTCB]	Fax3 [8] HI	OUTCET	Pasy
10	€,	0 0100	11000	01100	1 000	onli	11000	
-	82'	11000	01100	un	01111	1101	0111)	Same
2	В3	01100	00110	0 1111	0 0110	01111	ODIIO	Pans;
£	вч	00110	0000	00110	00101	00110	00101	so we step
,	B5	00[1]	0 0111	00111	0 0111	00111	00111	
				. J	i/ Phry	II THE	1 1 :	-

Similarly calculate the Pass-2, Pass 3 & Pass 4. We receive
the same visual via Pass 3 & Pass 4, So we will.

Harbart (1. dens) month

Code Generation! - et is the final activity of compiler. code generation is the process of executing Assembly machine language. There are some properties of Code generation.

High Buality! - It should produce a correct code ldo not source code i

Efficient use of sesource of target machine. While generating

burck code generation the code it is necessary to know — the target machine on which it is going to get generaled