YEREVAN STATE UNIVERSITY

Department of Mathematics and Mechanics

Fall Semester, 2019

Instructor Victor K. Ohanyan

Multivariate Statistics

Mid-Term Examination-1

November 9, 13:30 - 14:50

Student Name	
Problem 1 (20%)	
Problem 2 (20%)	
Problem 3 (20%)	
Problem 4 (20%)	
Problem 5 (20%)	
Total	

Please write clearly and state any assumptions you make. You can use only ordinary calculators for computation. The use of mobile phones or tablets is strongly prohibited. Please turn off your cell phones.

Multivariate Statistics, Fall Semester, 2019

Mid-Term Examination-1

PROBLEM 1. The following are five measurements on the variables x_1, x_2 and x_3 :

$$\begin{bmatrix} x_1 & 9 & 2 & 6 & 5 & 8 \\ x_2 & 12 & 8 & 6 & 4 & 10 \\ x_3 & 3 & 4 & 0 & 2 & 1 \end{bmatrix}$$

Find the matrices $\overline{\mathbf{x}}, \mathbf{S_n}$, and \mathbf{R} .

Multivariate Statistics, Fall Semester, 2019

Mid-Term Examination-1

PROBLEM 2. Let \mathbf{X} have covariance matrix

$$\Sigma = \begin{bmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{bmatrix}$$

- (a) Find ρ_{13} .
 - (b) Find the correlation between X_1 and $\frac{1}{2}X_2 + \frac{1}{2}X_3$

Multivariate Statistics, Fall Semester, 2019

Mid-Term Examination-1

PROBLEM 3. Let \mathbf{X} have covariance matrix

$$\Sigma = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Find

- (a) Σ^{-1}
- (b) The eigenvalues and eigenvectors of Σ .
- (c) The eigenvalues and eigenvectors of Σ^{-1} .

Student Name
Multivariate Statistics, Fall Semester, 2019
Mid-Term Examination-1

PROBLEM 4. Given the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$

find the eigenvalues λ_1 and λ_2 and the associated normalized eigenvectors \mathbf{e}_1 and \mathbf{e}_2 . Determine the spectral decomposition of \mathbf{A} .

Multivariate Statistics, Fall Semester, 2019

Mid-Term Examination-1

PROBLEM 5.

(a) Evaluate T^2 , for testing $H_0: \mu_0 = [7,11]$, using the data

$$\mathbf{X} = \begin{bmatrix} 2 & 12 \\ 8 & 9 \\ 6 & 9 \\ 8 & 10 \end{bmatrix}$$

- (b) Specify the distribution of T^2 for the situation in (a).
 - (c) Using (a) and (b), test H_0 at the $\alpha = .05$ level. What conclusion do you reach?