What sets Bayes apart?

Models for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, and N. Thompson Hobbs

May 29, 2018

What sets Bayes apart?

Models for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, and N. Thompson Hobbs

May 29, 2018

- Introductions
- GitHub for course materials
- ▶ Daily schedule
- Lecture style
- Pulling notes just in time
- Exercises

Reading

Errata:

http://www.stat.colostate.edu/~hooten/papers/pdf/ Hobbs_Hooten_Bayesian_Models_2015_errata.pdf

Today

- A high elevation view of Bayesian modeling
- Goals of course
- Rules of probability
- Probability Distributions
- Moment matching

Exercise

Consider statements made by journalists, lawyers, and scientists. What do they have in common? What sets the statements of scientists apart?

Some notation

- y data
- ightharpoonup heta a parameter or other unknown quantity of interest
- lackbox[y| heta] The probability distribution of y conditional on heta
- $lackbox{ } [heta|y]$ The probability distribution of heta conditional on y
- ▶ $P(y|\theta) = p(y|\theta) = [y|\theta] = f(y|\theta) = f(y,\theta)$, different notation that means the same thing.

Velcome and logistics Stratospheric Bayes Goals

Bayesian models are stochastic.

- A model is a mathematical function that returns a quantity (or quantities) given parameters and inputs.
- A deterministic model returns a scalar (or sometimes a vector or matrix) for any given set of parameters and inputs.
- ▶ A stochastic model returns a *probability distribution* for any given set of parameters and inputs.
- Probability distributions characterize the behavior of random variables.¹.
- In Bayesian analysis, we seek to understand the probability distributions of random variables of interest using data, models, and prior information (including limited prior information).

¹A random variable is a quantity whose behavior is governed by chance.

What do we do in Bayesian modeling?

- ▶ We divide the world into things that are observed (y) and things that unobserved (θ) .
- ▶ The unobserved quantities (θ) are random variables . The data are random variables before they are observed and fixed after they have been observed.
- ▶ We seek to understand the probability distribution of θ using fixed observations, i.e., $[\theta|y]$.
- ▶ Those distributions quantify our uncertainty about θ .

Bayesian modeling is a procedure for updating knowledge.

An unobserved quanity (θ)

Why Bayes? One approach applies to many problems

- A deterministic model of a process
- ▶ A model of the data
- Models of parameters

Why Bayes? You can understand it.

	KEY TO STATISTICAL METHODS			
	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
l variable 1 sample	Examination of a single sample	Procedure for grousing a frequency distribution, Box 2.1; seem and leaf orligibly, Section 2.5; testing for outliers, Section 13.4 Computing median of frequency distribution, Box 4.1 Computing arthritiset mean: unordered sample, Box 4.2; Frequency distribution, Box 4.3 Computing arthritises from the section of the secti		Confidence limits for a percentage, Section 17.1 Reproduction of the Confidence of the Authority of the Confidence of th
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodines of fit tests, parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2 Kolmogoriv-Smitrov test of goodness of fit, Box 17.3 Graphic "Tests" for normality: large sample sizes, Box 6.3; mall sample sizes frankit test), Box 6.4 Test of Sample statistic against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
1 rariable ≥2 amples	Single classification	Single classification annix unique lateral sample sizes, Box 9.4 Planned comparison of means in anova, Box 9.8; Planned comparison of means in anova, Box 9.8; single degree of freedom comparisons of means, Box 14.10 Unplanned comparison of means. Therehod, equal sample sizes, Box 9.9; Ti, GTL, and Tiday-Farmer, uncurate sample sizes, Box 9.9; Ti, GTL, and Tiday-Farmer, uncurate sample sizes, Box 9.10; Sentine Comparison of the size of	Kruskal-Wallis test, Box 13.3 Unphamed comparison so nonparametric STP, Box 17.5	Great for homogeneity of precentages. Boxes 17:3 and 17:8 Comparison of several samples with an expected frequency distribution, Box 17:4, unplanned analysis of regificated tests of goodness of fit, Box 17:5.
	Nested classification	Two-level nested anova: equal sample sizes. Box 10.1; unequal sample sizes, Box 10.4 Three-level nested anova: equal sample sizes. Box 10.3; unequal sample sizes, Box 10.5		
	Two-way or multi-way classification	Two way anova with replication, Box 11.1, swithout replication, Box 11.2; unequal but proportional subcless steen, Box 11.4; with a single missing observation, Box 11.5. Three way anova, Box 12.1 More than three way classification, Section 12.3 and Box 12.2 Test for nonadultivity in a two way anova, Box 13.4	Friedman's method for randomized blocks, Box 13.9	Three-way log linear model, Box 17.9 Randomized blocks for frequency data (repeated testing of the same individuals), Box 17.11

Why Bayes? You can understand it.

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - Factoring joint probabilities
- Distribution theory
- Markov chain Monte Carlo

Goals

- Provide principles based understanding
- Foster collaboration
- Build a foundation for self-teaching
- Enhance intellectual satisfaction

Learning objectives

- Understand basic principles of probability and distribution theory.
- 2. Explain maximum likelihood.
- 3. Explain key principles of Bayesian statistics.
- 4. Be able to diagram, write, and implement hierarchical models.
- 5. Explain the Markov chain Monte Carlo (MCMC) algorithm.
- Use software for implementing MCMC methods (i.e., JAGS, R packages).
- Understand procedures for model checking and model selection in the Bayesian framework
- 8. Be able to apply Bayesian methods to a broad array of analysis problems in ecology and social science research

Cross cutting theme


```
\begin{split} \mu_i &= \frac{m x_i^a}{h^a + x_i^a} \\ \left[a, h, m, \sigma^2 \mid y\right] &\propto \prod_{i=1}^n [y_i | \mu_i, \sigma^2][a][h][m][\sigma^2] \end{split}
```

```
model{
for(i in 1:length(y)){
   mu[i] <- (m*x[i]^a)/(h^a+x[i]^a)
   y[i] ~ dgamma(mu[i]^2/sigma^2,mu[i]/sigma^2)
}
   a ~ dnorm(0,.0001)
   m ~ dgamma(.01,.01)
   h ~ dgamma(.01,.01)
   sigma ~ dunif(0,5)
}</pre>
```

Sequence

Day 1 - 3

Principles

- Rules of probability
- Distribution theory
- Moment matching
- Bayes' theorem
- Writing hierarchical models

Day 4 - 5

Implementation

- Conjugate priors
 - MCMC
- JAGS

Day 6 - 10

Analysis and inference

- Multi-level regression
- Model checking and selection
- Mixture models
- Dynamic models
- Spatial models
- Ordinal regression