Midterm

1. NFA to DFA

| O 1 |
| (A,C,E) | (A,C,D,F,F) | (B) |
| Answer:
|
$$\{A,C,E\}$ on $Q \rightarrow \{A,C,D,E,F\}$
| $\{A,C,E\}$ on $1 \rightarrow \{B\}$

| Scanned with CamScanner$$$

7. Asymptotic Notation compane loginin and n 3/2

$$\lim_{n \to \infty} \frac{\log(n) n}{n^{3/2}}$$

$$= \lim_{n \to \infty} \frac{1}{\frac{3}{2}n^{2}}$$

=
$$\lim_{n \to \infty} \frac{\log(n)}{\frac{3}{2}n^{\frac{1}{2}}}$$
= $\lim_{n \to \infty} \frac{1}{\frac{1}{\sqrt{n \ln n}}} = gpes + o zeno$

CS Scanned with CamScanner

3. Divide and conquer Algorithim

master theorem

Compane
$$109^2 = n$$
 with n^2 cleanly $n^2 > n$

check regularity

$$n^2 = \Omega(n^{1+0.1})$$
 $\theta = 0.1$

$$T(n) = G(n^2)$$

	φ	A	A-B	A-C	A-D	A-E	A-F	A-G	А-Н	A-I	A-J
0:	0	0	0	0	0	0	0	0	0	0	0
1:	7	0	0	0	0	0	0	0	0	2	2
2:	d	0	0	0	0	0	0	0	4	4	4
3:	0	0	0	0	0	0	6	6	6	6	6 ☑
4:	0	0	0	0	0	7	7	7	7	8	8
5:	0	0	0	10	10	10	10	10	10	10	10
6:	0	0	11	11	11	11	11	11	11	12	12
7:	0	13	13	13	13	13	13	13	14	14	14
8:	0	16	13	13	13	13	16	16	16	16	16
9:	0	13	13	13	13	17	17	17	17	18	18
10:	0	13	13	13	19	19	19	19	20	20	20
11:	0	13	13	21	21	21	21	21	21	22	22
12:	0	13	13	23	23	23	23	23	23	23	23
13:	0	13	24	24	24	24	25	25	25	25	25
14:	0	13	2	24	24	26	27	27	27	27	27
15:	0	13	24	24	24	28	29	29	29	29	29
16:	0	13	24	24	30	30	30	30	31	31	31
17:	0	13	24	24	32	32	32	32	33	33	33
18:	0	13	24	34	34	34	34	34	34	35	35
19:	0	13	24	34	34	34	36	36	36	36	36
20:	0	13	24	34	34	37	38	38	38	38	38
21:	0	13	24	34	34	39	40	40	40	40	40
22:	0	13	24	34	34	41	41	41	42	42	42
23:	0	13	24	34	43	43	43	43	44	44	44
24:	0	13	24	34	43	43	45	45	45	46	46

This corresponds to:

Do not include J Include I Include H Do not include G Include F Do not include E Do not include D Include C Include B Include A

Giving us the set of items: {A,B,C,F,H,I}