Teoria współbieżności

Sieci Petri

Mateusz Łopaciński

Zadanie 1

Wymyślić własną maszynę stanów, zasymulować przykład i dokonać analizy grafu osiągalności oraz niezmienników.

1. Maszyna stanów

Rys. 1.1.1. Sieć Petriego reprezentująca maszynę stanów

2. Symulacja przykładu

Rys. 1.2.1. Symulacja - krok 1.

Rys. 1.2.2. Symulacja – krok 2.

Rys. 1.2.3. Symulacja – krok 3.

Rys. 1.2.4. Symulacja – krok 4.

Rys. 1.2.5. Symulacja – krok 5.

Rys. 1.2.6. Symulacja – krok 6. (po tym powtarzają się kroki od 3. kroku)

3. Graf osiągalności

Rys. 1.3.1. Graf osiągalności

4. Analiza niezmienników

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) + M(P3) + M(P4) + M(P5) + M(P6) = 1$$

Analysis time: 0.0s

Rys. 1.4.1. Niezmienniki

Pozytywne niezmienniki występują przy przejściach T4, T5, T6 oraz T7, dlatego że te 4 tranzycje tworzą cykl.

Sieć jest pokryta pozytywnymi niezmiennikami miejsc, a więc wnioskujemy, że jest ograniczona (a dokładniej 1-ograniczona, ponieważ w każdym miejscu może występować w danym momencie tylko 1 znacznik).

Zadanie 2

Zasymulować sieć jak na Rys. 5.

Rys. 2.1.1. Sieć Periego z rys. 5.

Dokonać analizy niezmienników przejść. Jaki wniosek można wyciągnąć o odwracalności sieci? Wygenerować graf osiągalności. Proszę wywnioskować z grafu, czy siec jest żywa. Proszę wywnioskować czy jest ograniczona. Objaśnić wniosek.

1. Obserwacje

Wykonując symulację sieci, możemy zaobserwować, że w miejscu P3 zwiększa się liczba znaczników po każdej wykonanej tranzycji T2. Widzimy więc, że sieć reprezentuje zliczanie, ile razy wykonał się cykl kolejnych tranzycji (T0, T2, T1).

2. Analiza niezmienników przejść

Petri net invariant analysis results

T-Invariants

T0 T1 T2

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

P0 P1 P2 P3

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

M(P0) + M(P1) + M(P2) = 1

Analysis time: 0.0s

Rys. 2.2.1. Niezmienniki przejść dla sieci z rys. 2.1.1.

Ponieważ sieć nie jest pokryta pozytywnymi niezmiennikami przejść, nie wiemy, czy jest ograniczona oraz żywa.

Gdyby sieć była odwracalna, niezmienniki przejść wskazywałyby liczbę przejść, jakie należy wykonać, w celu osiągnięcia początkowego znakowania (początkowego rozmieszczenia znaczników). W przypadku sieci z rys. 2.1.1., nie jest możliwe osiągnięcie takiego stanu, ponieważ wykonanie pełnego cyklu tranzycji, powoduje zwiększenie liczby znaczników w miejscu P3, a więc nigdy nie otrzymamy stanu początkowego.

3. Graf osiggalności sieci

Rys. 2.3.1. Graf osiągalności dla sieci z rys. 2.1.1.

Sieć nie jest ograniczona, ponieważ liczba znaczników może rosnąć do nieskończoności w miejscu P3, podczas wykonywania kolejnych cykli tranzycji.

Sieć jest żywa, ponieważ zawsze istnieje przynajmniej jedna tranzycja, którą da się wykonać (nie ma deadlocka).

Zadanie 3

Zasymulować wzajemne wykluczanie dwóch procesów na wspólnym zasobie. Dokonać analizy niezmienników miejsc oraz wyjaśnić znaczenie równań (P-invariant equations). Które równanie pokazuje działanie ochrony sekcji krytycznej?

Rys. 3.1.1. Sieć Petriego, reprezentująca wzajemne wykluczanie się 2 procesów

Petri net invariant analysis results

T-Invariants

T0	T1	T2	Т3	T4	T 5
1	1	1	0	0	0
Ω	0	0	1	1	1

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	Р3	P4	P5	P6
1	1	1	0	0	0	0
0	0	1	1	1	0	0
0	0	0	0	1	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P2) + M(P3) + M(P4) = 1$
 $M(P4) + M(P5) + M(P6) = 1$

Analysis time: 0.001s

Rys. 3.1.2. Analiza niezmienników miejsc dla sieci z rys. 3.1.1.

Analizując równania P-niezmienników, możemy zaobserwować, że pierwsze równanie odpowiada pracy 1. procesu, 2. równanie opisuje ochronę zasobu (sekcji krytycznej), natomiast 3. równanie odpowiada pracy 2. procesu.

Sumaryczna liczba znaczników nie ulega zmianie i jest stale równa 1 dla każdego podzbioru (P0, P1, P2 – proces 1), (P2, P3, P4 – bufor), (P4, P5, P6 – proces 2). Oznacza to, że zasób w danym momencie może posiadać tylko jeden z procesów, uniemożliwiając tym samym dostęp do zasobu innemu procesowi.

Zadanie 4

Uruchomić problem producenta i konsumenta z ograniczonym buforem (można posłużyć się przykładem, menu: file, examples). Dokonać analizy niezmienników. Czy siec jest zachowawcza? Które równanie mówi nam o rozmiarze bufora?

Rys. 4.1.1. Sieć Petriego, reprezentująca problem producenta-konsumenta z ograniczonym buforem

Petri net invariant analysis results

T-Invariants T0 T1 T2 T3 T4 T5 1 1 1 1 1 1 1

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	Р3	P4	Р5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Analysis time: 0.001s

Rys. 4.1.2. Analiza niezmienników dla sieci z rys. 4.1.1

Sieć jest zachowawcza, ponieważ w każdym oznakowaniu, suma liczb znaczników w sieci nie ulega zmianie. Opisują to równania P-niezmienników. Miejsca P0, P1 oraz P2 odpowiadają producentowi (producent ma zawsze 1 znacznik), miejsca P3, P4 oraz P5 odpowiadają konsumentowi (też ma zawsze 1 znacznik), natomiast miejsca P6 i P7 odpowiadają buforowi (odpowiednio, P6 – zajęte miejsca w buforze, P7 – wolne miejsca w buforze).

O rozmiarze bufora mówi 3. równanie. Rozmiar bufora wynosi 3.

Zadanie 5

Stworzyć symulacje problemu producenta i konsumenta z nieograniczonym buforem. Dokonać analizy niezmienników. Zaobserwować brak pełnego pokrycia miejsc.

Rys. 5.1.1. Sieć Petriego dla problemu producenta-konsumenta z nieograniczonym buforem

Petri net invariant analysis results

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariant equations M(P0) + M(P1) + M(P5) = 1

M(P3) + M(P4) + M(P6) = 1

Analysis time: 0.0s

Rys. 5.1.2. Analiza niezmienników dla sieci z rys. 5.1.1.

Ponieważ sieć jest pokryta przez pozytywne T-niezmienniki, może być ograniczona oraz żywa. Dzięki temu, że niezmienniki przejść wskazują konkretną liczbę przejść, jakie należy wykonać, możliwe jest dojście do stanu znakowania, a więc sieć jest odwracalna.

Równania P-niezmienników pokazują, że liczba znaczników u producenta oraz liczba znaczników u konsumenta jest stała i wynosi 1. Nie ma żadnej informacji o miejscu P7, ponieważ jest to miejsce reprezentujące nieograniczony bufor, a więc liczba znaczników w nim może być dowolna.

Widzimy, że miejsce P7 nie jest pokryte niezmiennikami miejsc, ponieważ w tym miejscu może występować dowolna liczba znaczników.

Zadanie 6

Zasymulować przykład (problem zastoju meksykańskiego, Rys.6) ilustrujący zakleszczenie. Wygenerować graf osiągalności i zaobserwować znakowania, z których nie można wykonać przejść. Zaobserwować właściwości sieci w "State Space Analysis".

Rys. 6.0.1. Problem zastoju meksykańskiego

1. Graf osiągalności

Rys. 6.1.1. Problem zastoju meksykańskiego

2. Znakowania, w których nie można wykonać przejść

Na grafie osiągalności możemy zaobserwować, że do stanów S5 oraz S8 prowadzą jedynie przejścia dochodzące, a więc nie ma możliwości wyjścia z tych stanów. Po dojściu do jednego z tych stanów, wystąpi zakleszczenie.

Zakleszczenie wystąpi dla znakowania $S5 = \{0,0,1,0,1,0\}$ (znaczniki są w miejscach P2 i P4) lub dla znakowania $S8 = \{1,0,0,0,0,1\}$ (znaczniki są w miejscach P0 i P5).

3. "State Space Analysis"

Petri net state space analysis results

Bounded true
Safe true
Deadlock true

Shortest path to deadlock: T2 T3

Rys. 6.3.1. Analiza "State Space Analysis"

Analiza "State Space Analysis" potwierdza, że istnieje możliwość zakleszczenia. Widzimy również, że najszybciej zakleszczenie otrzymamy, wykonując tranzycje T2 i T3.

Zadanie 7

Wymyślić własny przykład sieci, w której możliwe jest zakleszczenie i zweryfikować za pomocą grafu osiągalności oraz właściwości sieci w "State Space Analysis".

Rys. 7.0.1. Sieć Petriego, w której możliwe jest zakleszczenie

1. Graf osiągalności

Rys. 7.1.1. Graf osiągalności dla sieci z rys. 7.0.1.

Widzimy, że po osiągnięciu stanu S3, nie jest możliwe wykonanie żadnej tranzycji, więc wystąpi zakleszczenie.

2. Analiza "State Space Analysis"

Petri net state space analysis results

Bounded true
Safe true
Deadlock true

Shortest path to deadlock: T1 T0 T3

Rys. 7.2.1. Analiza "State Space Analysis"

Analiza "State Space Analysis" również potwierdza, że istnieje możliwość wystąpienia deadlocka w sieci.

Zadanie 8

Uruchom i przeanalizuj problem pięciu filozofów zamodelowany za pomocą sieci Petri. Menu: File -> Examples -> DiningPhilosophers.

Rys. 8.0.1. Sieć Petriego dla problemu pięciu filozofów

1. Analiza niezmienników

Petri net invariant analysis results

T-Invariants

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 1 1 0 1 1 0 <td

The net is covered by positive T-Invariants, therefore it might be bounded and live.

Rys. 8.1.1. Analiza T-niezmienników

P-Invariants

P0	P1	P10	P11	P12	P13	P14	P2	P3	P4	P5	P6	P7	P8	P9
1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	1	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	1	0	0	0	0	0	0	0	0	0	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

Analysis time: 0.001s

Rys. 8.1.2. Analiza P-niezmienników

Analizując równania P-niezmienników, widzimy, że kolejne pary równań opisują odpowiednich filozofów.

2. Graf osiągalności

Rys. 8.2.1. Graf osiągalności dla sieci z problemu 5 filozofów

3. Analiza "State Space Analysis"

Petri net state space analysis results

Bounded true
Safe true
Deadlock false

Rys. 8.3.1. Analiza "State Space Analysis"

Możemy wywnioskować, że sieć jest ograniczona, zachowawcza i bezpieczna. Widzimy również, że nie występują w niej zakleszczenia.