HISA (HackIllinois Stock Analysis)

```
import hisa
import os

os.environ['ALPHA_VANTAGE_API_KEY'] = 'REUDU2I6LTXIN065'

google = hisa.Share('G00GL', 'google', interval='intraday', minute_interval='60min'
print(google.data.head())

# google.generate_twitter_sentiment('google_tweets.json', start='02/19/2019')
google.plot(column='open')
tweets = pd.read_csv('./hisa/learn/data/google.csv')
stock = pd.read_csv('./hisa/learn/data/hourly_stocks.csv')
f, axarr = plt.subplots(2, sharex=True, figsize=(10,10))
axarr[0].plot(pd.to_datetime(tweets['date']), tweets[['neg','pos']])
axarr[0].set_title('Google Sentiment and Stock price')
axarr[1].plot(pd.to_datetime(stock['date']),stock['google_open'])
# plt.show()
```

	open	high	low	close	volume
date					
2019 -02-19 09:30:00	1117.530	1128.3000	1116.890	1127.9800	215010.0
2019 -02-19 10:30:00	1128.010	1128.0100	1124.540	1124.5400	102533.0
2019 -02-19 11:30:00	1124.469	1127.8600	1124.469	1126.5400	98369.0
2019 -02-19 12:30:00	1126.380	1126.3800	1123.325	1124.5050	73454.0
2019 -02-19 13:30:00	1124.000	1125.9766	1122.700	1125.9766	66033.0

[<matplotlib.lines.Line2D at 0x7ff88b10ce80>]


```
from hisa.learn.models import LinearModel
import matplotlib.pyplot as plt
import pandas as pd

lin_model = LinearModel('./hisa/learn/data/google_feat_vec.csv', './hisa/learn/data
lin_model.train()

df = pd.read_csv('./hisa/learn/data/hourly_stocks.csv')
dates = pd.to_datetime(df['date'])

plt.plot(dates, df['google_open'].values)
plt.plot(dates, lin_model.predict())

print(lin_model.mape())
```



```
from hisa.learn.models import RidgeModel
import matplotlib.pyplot as plt
import pandas as pd

ridge_model = RidgeModel('./hisa/learn/data/google_feat_vec.csv', './hisa/learn/dat
ridge_model.train()

df = pd.read_csv('./hisa/learn/data/hourly_stocks.csv')
dates = pd.to_datetime(df['date'])

plt.plot(dates, df['google_open'].values)
plt.plot(dates, ridge_model.predict())

print(ridge_model.mape())
```

4.736718937278015


```
from hisa.learn.models import MLPModel
import matplotlib.pyplot as plt
import pandas as pd

mlp_model = MLPModel('./hisa/learn/data/google_feat_vec.csv', './hisa/learn/data/ho
mlp_model.train()

df = pd.read_csv('./hisa/learn/data/hourly_stocks.csv')
dates = pd.to_datetime(df['date'])

plt.plot(dates, df['google_open'].values)
plt.plot(dates, mlp_model.predict())

print(mlp_model.mape())
```

7.761485714285714

