

Agenda

Acercamiento intuitivo

Descripción matemática

Aplicación

Estimación de parámetros

Lecturas complementarias

Práctica en Google Colab

¡Comprueba tu conocimiento!

01

Acercamiento intuitivo

Regresión lineal simple, multivariada, polinomial y métricas

¿Qué es la Regresión?

Objetivo: Ajustar modelos para predecir valores continuos de la variable objetivo (**target**) con respecto a una o varias variables independientes (**predictores**).

Métodos:

Regresión lineal (simple y múltiple).

Regresión polinomial.

KNN.

Árboles de regresión.

Línea base (baseline): evaluación dada por un modelo que predice una medida de tendencia central (e.g.: el promedio).

¿Qué es la Regresión?

Construye una línea o curva que pasa a través de todos los puntos de datos en el gráfico de predicción objetivo de tal manera que la distancia vertical entre los puntos de datos y la curva de regresión es mínima.

Tipos de modelos de Regresión

En el gráfico de la derecha se presenta una relación no lineal entre la variable dependiente y la independiente. Por lo tanto, la **línea de regresión no pasa a través de los puntos** de manera significativa.

Dado que esto no es posible, el modelo de regresión no puede interpretar significativamente los coeficientes o podría haber errores en la predicción.

02

Descripción matemática

Regresión lineal y Residuo Métricas

Regresión lineal Simple

$$h(x) = \theta_0 + \theta_1 \cdot x + \epsilon$$

Error aleatorio

Variable Independiente (Explicatoria)

Regresión lineal Simple

ICESI | AOTRO | VIRTUAL

Residuo

- La distancia entre los datos y la curva construida.
- Indica si el modelo ha capturado la relación entre los predictores y la variable objetivo.

Residuo (e) = valor observado de salida - valor predicho

$$e = y - \hat{y}$$

Los modelos de regresión buscan minimizar el valor de **e** para el conjunto de predictores de entrenamiento.

Residuo

La gráfica de los residuos puede ayudar a identificar si el modelo de regresión ha capturado la relación entre la variable objetivo y los predictores.

Dado un conjunto de datos con m ejemplos:

$$\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})\}$$

donde:

- ullet $x^{(i)}$ representa la variable de entrada del **i-ésimo** ejemplo,
- $y^{(i)}$ es la salida real (valor esperado),
- $h_{ heta}(x^{(i)})$ es la predicción del modelo para el ejemplo i.

$$h_{ heta}(x^{(i)}) = heta_0 + heta_1 x^{(i)}$$

$$h_{ heta}(x^{(i)}) = heta_0 + heta_1 x^{(i)}$$

Para cada punto $(x^{(i)}, y^{(i)})$, la diferencia entre la predicción $h_{\theta}(x^{(i)})$ y el valor real $y^{(i)}$ es el **error** residual:

$$e^{(i)} = h_{ heta}(x^{(i)}) - y^{(i)}$$

Si queremos medir el **error total** en todos los datos, sumamos estos errores para todos los ejemplos:

$$\sum_{i=1}^m e^{(i)} = \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})$$

¿Podemos usar la suma directa de los errores?

$$\sum_{i=1}^m e^{(i)} = \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})$$

Elevar al cuadrado los errores:

$$\sum_{i=1}^m (e^{(i)})^2$$

Esto garantiza que todos los errores sean positivos y penaliza mas los errores grandes.

La función de costo $J(\theta_0, \theta_1)$ mide el error cuadrático medio entre las predicciones del modelo h(x) y los valores observados y.

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left(h(x^{(i)}) - y^{(i)}
ight)^2$$

- ¿Por qué dividir por 2m?
- El término $\frac{1}{m}$ obtiene el **promedio** del error cuadrático.
- El $\frac{1}{2}$ se usa para simplificar la derivada en **gradiente descendente**.

Conversión de la Función de Costo OLS a Notación Matricial

En regresión lineal simple, el modelo se define como:

$$h_{ heta}(x) = heta_0 + heta_1 x$$

Para representar esta ecuación en forma matricial, escribimos:

$$h_{ heta}(X) = X heta$$

Extendemos la matriz de características a la siguiente forma

Matriz de características X de dimensión $(m \times 2)$ incluye el término de sesgo (1) y la única variable x:

$$X = egin{bmatrix} 1 & x^{(1)} \ 1 & x^{(2)} \ dots & dots \ 1 & x^{(m)} \end{bmatrix}$$

Expresamos el vector de parámetros de la siguiente forma

heta de dimensión (2 imes 1)

$$heta = egin{bmatrix} heta_0 \ heta_1 \end{bmatrix}$$

Expresamos la salida o variable objetivo de la siguiente forma:

Vector de valores reales y de dimensión $(m \times 1)$:

$$y = egin{bmatrix} y^{(1)} \ y^{(2)} \ dots \ y^{(m)} \end{bmatrix}$$

Entonces el vector de predicciones para todos los ejemplos es:

$$h_{ heta}(X) = X heta = egin{bmatrix} 1 & x^{(1)} \ 1 & x^{(2)} \ dots & dots \ 1 & x^{(m)} \end{bmatrix} egin{bmatrix} heta_0 \ heta_1 \end{bmatrix} = egin{bmatrix} heta_0 + heta_1 x^{(1)} \ heta_0 + heta_1 x^{(2)} \ dots \ heta_0 + heta_1 x^{(m)} \end{bmatrix}$$

La función de costo en su forma escalar es:

$$J(heta) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2$$

Podemos escribir esta suma como un producto de matrices:

$$J(heta) = rac{1}{2m} (X heta - y)^T (X heta - y)$$

Métricas de evaluación

En regresión lineal, los residuales son las diferencias entre los valores observados de la variable dependiente y y los valores predichos por el modelo h(x). Se calculan de la siguiente manera:

Residual =
$$y - h(x)$$

- y: Valor observado de la variable dependiente.
- h(x): Valor predicho por el modelo, calculado como:

$$h(x) = heta_0 + heta_1 \cdot x_1 + heta_2 \cdot x_2 + \dots + heta_n \cdot x_n$$

• y-h(x): El residual, que mide el error de predicción para cada observación.

Métricas más utilizadas

MSE

RMSE

R^2 (coeficiente de determinación)

$$\frac{1}{m} \sum_{j=1}^{m} \left[\left(y^{(j)} - h_{\theta} \left(x^{(j)} \right) \right)^{2} \right]$$

$$\sqrt{\frac{1}{m} \sum_{j=1}^{m} \left[\left(y^{(j)} - h_{\theta} \left(x^{(j)} \right) \right)^{2} \right]}$$

$$1 - \frac{\sum_{j=1}^{m} \left[\left(y^{(j)} - h_{\theta} \left(x^{(j)} \right) \right)^{2} \right]}{\sum_{j=1}^{m} \left[\left(y^{(j)} - \overline{y} \right)^{2} \right]}$$

Aplicación

Dataset para predecir las ventas del siguiente año de 200 tiendas

Predicción de ventas

Una reconocida app lo ha contratado para que los ayude a predecir las ventas del año siguiente de 200 tiendas en toda España.

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	2210.0
1	44.5	39.3	45.1	1040.0
2	17.2	45.9	69.3	930.0
3	151.5	41.3	58.5	1850.0
4	180.8	10.8	58.4	1290.0
195	38.2	3.7	13.8	760.0
196	94.2	4.9	8.1	970.0
197	177.0	9.3	6.4	1280.0

Predicción de ventas

Predicción de ventas

Coefficient

TV 4.604620

Radio 18.615614

Newspaper 0.087046

- Por cada euro que invertimos en
 Televisión suben 4.6€ las ventas.
- Por cada euro que invertimos en radio, suben 18,6€ las ventas.
- Por cada euro que invertimos en prensa, suben 0.08€ las ventas.

Ventas reales y las predicciones realizadas

01

Estimación de parámetros

Algoritmo OLS y Gradient descent

WICESI WE VIRTUAL Actualización de parámetros

El algoritmo de **gradiente descendente** ajusta los parámetros heta de una función de costo J(heta)

utilizando la regla de actualización:

$$heta = heta - lpha rac{\partial J}{\partial heta}$$

Donde:

- α es la tasa de aprendizaje,
- $\frac{\partial J}{\partial \theta}$ es el **gradiente de la función de costo** respecto a los parámetros.

1. Derivada en funciones compuestas

Si tenemos una función compuesta f(g(x)), su derivada se expresa con la **regla de la cadena**:

$$rac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

$$J(heta) = L(h_{ heta}(x),y)$$

$$rac{\partial J}{\partial heta} = rac{\partial J}{\partial h} \cdot rac{\partial h}{\partial heta}$$

Los parámetros se ajustan iterativamente utilizando las derivadas parciales de la función de costo con respecto a θ_0 y θ_1 .

$$heta_0 := heta_0 - lpha rac{\partial}{\partial heta_0} J(heta_0, heta_1)$$

$$heta_1 := heta_1 - lpha rac{\partial}{\partial heta_1} J(heta_0, heta_1)$$

lpha: Tasa de aprendizaje, que controla el tamaño de los pasos en la actualización de los parámetros.

 $\frac{\partial}{\partial \theta_0}$ y $\frac{\partial}{\partial \theta_1}$: Gradientes de la función de costo respecto a θ_0 y θ_1 .

MICESI NE VIRTUAL Derivación del Gradiente

Derivada respecto a θ_0 :

$$rac{\partial J(heta_0, heta_1)}{\partial heta_0} = rac{\partial}{\partial heta_0} \left(rac{1}{2m} \sum_{i=1}^m \left(h(x^{(i)}) - y^{(i)}
ight)^2
ight)$$

Expandiendo $h(x^{(i)}) = heta_0 + heta_1 \cdot x_1^{(i)}$:

$$rac{\partial J(heta_0, heta_1)}{\partial heta_0} = rac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}) - y^{(i)}
ight)$$

Derivada respecto a θ_1 :

$$rac{\partial J(heta_0, heta_1)}{\partial heta_1} = rac{\partial}{\partial heta_1} \left(rac{1}{2m} \sum_{i=1}^m \left(h(x^{(i)}) - y^{(i)}
ight)^2
ight)$$

Expandiendo $h(x^{(i)}) = heta_0 + heta_1 \cdot x_1^{(i)}$:

$$rac{\partial J(heta_0, heta_1)}{\partial heta_1} = rac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}) - y^{(i)}
ight) \cdot x_1^{(i)}$$

$$heta_j := heta_j - lpha \cdot rac{\partial J(heta_0, heta_1)}{\partial heta_j}$$

• Actualización de θ_0 :

• Actualización de θ_1 :

$$heta_0 := heta_0 - lpha \cdot rac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}) - y^{(i)}
ight)$$

$$heta_1 := heta_1 - lpha \cdot rac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}) - y^{(i)}
ight) \cdot x_1^{(i)}$$

Metodología para entrenar un modelo

Metodología para entrenar un modelo

WICESI WE VIRTUAL Regresión Lineal Múltiple

La regresión lineal múltiple es un modelo estadístico que describe la relación entre una variable dependiente y y múltiples variables independientes x_1, x_2, \ldots, x_n . El modelo se expresa como:

$$h(x) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \cdots + \theta_n \cdot x_n + \epsilon$$

- h(x): Predicción del modelo.
- θ_0 : Término de intersección.
- $heta_1, heta_2, \dots, heta_n$: Coeficientes que indican la influencia de cada variable independiente x_i sobre y .
- ullet ϵ : Término de ruido, que representa la variabilidad no explicada por el modelo.

Regresión Lineal Múltiple

El modelo se puede expresar de la forma

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

Y la función objetivo se expresa de la siguiente forma

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

Regresión Lineal Múltiple

Algoritmo LMS

Queremos elegir θ para minimizar $J(\theta)$.

Específicamente, consideremos el algoritmo de descenso de gradiente, que comienza con un θ inicial y realiza la actualización

repetidamente:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

Regresión Lineal Múltiple

Algoritmo LMS

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} \left(\sum_{i=0}^n \theta_i x_i - y \right)$$

$$= (h_{\theta}(x) - y) x_j$$

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}.$$

Regresión Polinomial

• Regresión polinomial en una variable (predicción):

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$= \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

Regresión Polinomial

• Regresión polinomial en una variable (predicción):

La regresión polinomial es una extensión de la regresión lineal que permite modelar la relación entre una variable dependiente y y una variable independiente x mediante un polinomio de grado n. El modelo se expresa como:

$$h(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2 + \cdots + \theta_n \cdot x^n + \epsilon$$

- h(x): Predicción del modelo.
- θ_0 : Término de intersección.
- $\theta_1, \theta_2, \ldots, \theta_n$: Coeficientes del polinomio que determinan la forma de la curva.

ullet ϵ : Término de ruido, que representa la variabilidad no explicada por el modelo.

