# Amazon Web Services – RIs vs. Savings Plans

- Reserved Instances (RIs)
  - What are they?
  - Benefits / Drawbacks
- Savings Plans
  - What are they?
  - Benefits / Drawbacks
  - No-brainer? 99% of the time, invest in Compute Savings Plans! but not so fast!

#### Reserved Instances

- What are they?
  - Discounted pricing (compared to On-Demand) in exchange for commitment to a utilization level for 1 or 3 year
  - Two types: Standard & Convertible
    - 1-yr, No Upfront, Standard, t3.medium, Linux, regional scope, us-east-1, shared tenancy @ \$0.0261/hr (37% discount)
    - 3-yr, All Upfront, Convertible, m5.xlarge, Windows, zonal scope, us-east-1a, shared tenancy @ \$0.272/hr (28% discount)

| Features                                                                                               | Limitations                                                                                                                    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Get up to 72% discount pricing from OnDemand                                                           | Pay for RIs even if they are underutilized                                                                                     |  |  |  |  |
| Reserve capacity with Zonal RIs (AZ)                                                                   | Restricted to AZ; no instance size flexibility                                                                                 |  |  |  |  |
| <ul> <li>Regional RIs (AZ) &amp; instance size flexibility for<br/>systems running Linux OS</li> </ul> | <ul> <li>Constrained to reduce costs even if instances<br/>are oversized (e.g. wrong family, too much<br/>resource)</li> </ul> |  |  |  |  |
| Standard RIs can be sold in AWS marketplace                                                            | <ul> <li>Governed by market prices; sold at less than purchase value</li> </ul>                                                |  |  |  |  |
| <ul> <li>Convertible RIs offer more flexibility (Instance family, OS, tenancy)</li> </ul>              | Not automated; manage exchange process & interpret complex exchange rules     Minimize true up costs during exchange           |  |  |  |  |



### **Savings Plans**

- What are they?
  - AWS Introduced Savings Plans in Fall 2019 to simplify long-term purchase commitments
  - Discounted pricing (compared to On-Demand) in exchange for commitment to a dollar spend for 1 or 3 year
  - Two types: EC2 Savings Plan & Compute Savings Plan
    - 1-yr, No Upfront, EC2 SP, us-east-1, t3 @ \$0.50/hr
    - . 3-yr, All Upfront, Compute SP @ \$10/hr

### Comparing Reserved Instances & Savings Plans

#### Standard RI

AZ, size (Linux), capacity reservation Discount up to 72%

#### Convertible RI

AZ, size, family, OS, tenancy Discount up to 66%

#### EC2 Savings Plan

AZ, size, OS, tenancy Discount up to 72%

#### Compute Savings Plan

AZ, size, family, OS, tenancy, region, service Discount up to 66%

### Comparing Reserved Instances & Savings Plans

- Advantages of Savings Plans over Reserved Instances
  - Discounts are automatically applied. No management overhead
  - Regional Flexibility Compute SPs can be applied to any region
  - Service Flexibility Compute SPs can be shared amongst all compute services EC2, EKS, Fargate, Lambda etc...
- Advantages of Reserved Instances over Savings Plans
  - Standard RIs can be sold in marketplace
  - RIs can be purchased for RDS, Redshift, Elasticache
  - Capacity reservations can be made with Zonal RIs
  - For SUSE EC2 instances, much higher discounts are available via RIs vs. SPs
- It seems like a no-brainer to move to Compute Savings Plans for 99%, right? but not so fast!

### Key Considerations when purchasing Savings Plans

- Centralized Purchasing vs. "Departmental" based decision making
- Are your instances and Auto Scaling Groups optimized / right-sized?
  - Purchase Savings Plans based on estimated "Right-sized" cost, not current state
- Do you have underutilized Convertible Reserved Instances?
  - If you have RIs that are convertible but are not fully utilized, you should convert to instances that provide better coverage
  - Purchase Savings Plans based on fully utilized RIs
- Cloud provider / bill reader recommendations Beware!
  - "Buy this much" but are they optimized?
  - "Free tools / assessments" limitations

# Example 1 – Increasing Savings Plan Coverage



### Example 2 - Convertible Ris with Savings Plans



# **Optimizing Purchases with Densify**

- Constantly leverage the right RI portfolio
- Minimize true up costs
- Manage out of existing RI's where optimal
- Savings plan selection and optimal commits



- Full monitoring of your RI Utilization & Coverage to maximize efficiency
- RI Aware Recommendations
  - Factor in existing standard RIs to ensure they are fully utilized
- Instance Optimization
  - Know your potential monthly savings through predictive rightsizing before oversubscribing
- Granular & fully transparent Convertible RI exchange process to minimize True Up Costs
- Savings Plans recommendations that are aware of your existing Reserved Instances
  - Exchange idle Convertible RIs before oversubscribing Savings Plans
- Managed Service
  - Optimization & Financial Visibility analysis from Densify Cloud Experts



### Agenda

- Examining your AWS Cost and Usage Reports
  - Hidden costs in your CUR files affects your bottom line without you even knowing
- Top 10 Strategies to Controlling your Cloud Costs
- New Cloud Operating Model & Need for Cost Governance (FinOps)
  - What is FinOps?
  - Building a culture of cost awareness across your organization

## **Examining your AWS Cost and Usage Report**

- AWS provides detailed list of items that are attributing to your Costs
  - LineItems, BillingPeriod, Costs/Rate, Amortized Costs, ProductCode etc...
  - Too overwhelming and free tools may not be enough
- Densify Cloud Cost Intelligence makes it simpler to read your Cloud Bill
  - Understand what is making up the "cost" of your service
  - Cloud Experts provide expert guidance



# 1. Select the correct cloud instance type

- Typically EC2 represents a significant portion of cloud bills
- Wide selection of instance families & types targeting different workloads
  - Compute, Memory, General purpose, High Performance Computing, Storage Optimized
  - Chipsets: Intel or AMD or Gravitron
- Example: OnDemand Monthly Prices listed for various instance types in US-East (Ohio) for Linux AMIs

| t3.large | m5.large | c5.large | r5.large | i3.large | z1d.large |
|----------|----------|----------|----------|----------|-----------|
| \$60.74  | \$70.08  | \$62.05  | \$91.98  | \$113.88 | \$135.78  |

Procurement Options: OnDemand, Reserved Instances or Savings Plans



- Hidden items that you are getting charged for: Oversized EC2 instances
  - Challenge: Engineers/Developers unaware of ideal resource selection
- Continuous Rightsizing effort to align workloads to the optimal EC2 instance
  - Identify CPU/Memory/Disk/Network performance & match them to best EC2 instance
  - Do not compromise performance for cost savings, via Policy



### 2 & 3. Selecting lower cost AMI and chip sets

- Hidden items that you are getting charged for:
  - Utilize Free/Open Source AMIs where applicable to lower compute costs
    - Example: c5.xlarge instance in US-East Ohio (OnDemand)

| Linux    | Windows  | RHEL     | SUSE     | Windows SQL<br>Standard | Linux SQL Server<br>Standard | Windows SQL Server<br>Enterprise |
|----------|----------|----------|----------|-------------------------|------------------------------|----------------------------------|
| \$124.10 | \$258.42 | \$167.90 | \$197.10 | \$608.82                | \$474.50                     | \$1,353.42                       |

- Switch to AMD instance types, if you haven't done so already
  - Consider geographic region
  - Example: r5.2xlarge instance with Linux OS (OnDemand)

|             | US-East1<br>(Ohio) | US-West (N.<br>California) | AP<br>(Mumbai) | AP (Tokyo) | EU<br>(London) | EU<br>(Stockholm) | ME<br>(Bahrain) | South<br>America<br>(Sau Paulo) |
|-------------|--------------------|----------------------------|----------------|------------|----------------|-------------------|-----------------|---------------------------------|
| r5.2xlarge  | \$367.92           | \$408.80                   | \$379.60       | \$443.84   | \$432.16       | \$391.28          | \$452.60        | \$586.92                        |
| r5a.2xlarge | \$329.96           | \$367.92                   | \$208.78       | \$400.04   | \$388.36       | n/a               | n/a             | \$528.52                        |

# 4. Make better RIs & Savings Plans commitments

- Understand your current RI/SP utilization & coverage
- Hidden Costs:
  - True up costs for Convertible RIs
  - Manage out of existing RI's where optimal
  - Savings plan selection and optimal commits



#### 5. Release idle Elastic IP addresses

- Elastic IP address is a static IPv4 address associated with an AWS Account
  - Attached to a Network interface
- Hidden items that you are getting charged for:
  - Idle Elastic IP addresses
    - AWS imposes a small hourly charge if an Elastic IP address is not associated with a running instance



# 6. Identify Cost Anomalies & Outliers

- Closely inspect your AWS Cost and Usage Reports regularly to identify any spend anomalies (Outliers)
  - For example: Cloudwatch Log Delivery







- Factors attributing to S3 costs:
  - Storage costs varies by Class
  - Data Access/APIs costs varies by Class
  - Data Transfer costs varies by Region
- Use LifeCycle Manager to manage objects storage based on customizable policies



# Strategies for S3

- Note: Hidden items that you are getting charged for:
  - Incorrect Storage Class Selection
  - Data API costs
  - Data Transfer
- Example: 500TB of storage in N. Virginia
  - 250TB of that is infrequent access
  - 50M PUT, 100M GET requests
  - 2000 TB Data Transfer to Internet

|                            | 53 standard | 53 Intelligent<br>Tiering | S3 Standard – IA | S3 One Zone –<br>IA | S3 Glacier | S3 – Glacier<br>Archive |
|----------------------------|-------------|---------------------------|------------------|---------------------|------------|-------------------------|
| orage cost (FA)            | \$11,050    | \$11,050                  | \$6,250          | \$5,000             | \$2,000    | \$495                   |
| orage cost (IA)"           | \$11,050    | \$8,675                   | \$6,250          | \$5,000             | \$2,000    | \$495                   |
| eta API costs (N.Virginia) | \$290       | \$290                     | \$600            | \$600               | \$2,540    | \$2,540                 |
| ata API costs (S.Paulo)    | \$406       | \$406                     | \$600            | \$600               | \$3,556    | \$5,056                 |
| ata Transfer (Internet)    | \$92,500    | \$92,500                  | \$92,500         | \$92,500            | \$92,500   | \$92,500                |
| ata Transfer (S.Paulo)     | \$40,000    | \$40,000                  | \$40,000         | \$40,000            | \$40,000   | \$40,000                |

#### 9. Pause idle RedShift Clusters

- Redshift Clusters consist of specialized Compute Nodes used for Massively Parallel Processing
- Hidden items that you are getting charged for:
  - Running Redshift cluster nodes during offhours (i.e. weekends)
  - Utilize new "Pause & Resume" feature on Redshift Cluster nodes when not in use





- Automate rightsizing as part of infrastructure provisioning
  - Integrate into the CI/CD framework
- Automate tagging best enforcement



# **Resource Optimization**



# **Cloud & Container Resource Optimization**



### Cloud & Container Resource Optimization



### Vhat this Looks Like in Practice



### Why Don't Engineers take Action?

- The real question: why don't engineers take <u>these</u> actions
- In order to act on a recommendation there are several things that are required:

### Precision



Actions need to be correct

## Transparency



Stakeholders need to be able to understand and approve them

## Integration



They need to go to the right tools and pipelines

# **Optimizing Cloud Resources**



#### Precision = Correct & Actionable







Instance / Database Resource Optimization



- UpsizeModernizeCross-Family
- O Downsize
- Terminate



Scale Group Optimization



- Node Upsize
- Node Downsize
- Modernize
- O Cross-Family
- 3 Scaling Min/Max





Container Resource Optimization



- Requests
- O Cimits
- O Pods & Deployments
- O Clusters & Namespaces
- @ Initial Resource Values



# Communicating with App Owners - Plainly & Clearly



### Automating via Infrastructure as Code



```
provider "aws" {
    region = "${var.aws_region}"
}

resource "aws_instance" "web" {
    name = "Web Server"

instance_type = "m4.large"

ami = "${lookup(var.aws_amis, var.aws_region)}"

}
```

- Hard-Coded
- Rough Estimate
- Huge problem in scale

### Container Optimization – Multi-Step Process



### **Container Optimization – Multi-Step Process**

This saves a ton of money, but is deep into the Engineering realm



**Node Resource** Optimization









- 1. Shell script uses wget to call the Densify Recommendation
- 2. Densify returns optimized container request and limit settings in JSON format
- 3. JSON is parsed Python
- 4. Groovy used to inject new values into container template
- 5. Jenkins pipeline redeploys container with optimized settings.

https://www.densify.com /resources/optimizingopenshift-resources



### The Complete Picture – "Capacity Operations"





Keep It Simple, Stupid!

# TECH STACK LEARNINGS

- Vagrant
- Virtualbox
- Ubuntu OS
- Baselmages
- Docker /Docker Hub
- Application dependency
- OS package manager
- Linux kernel
- NoSQL
- Building/pushing/Running container's
- Servers/VM
- PAAS
- I 2factor apps cloud native
- Much more .....

# FSF, GNU/Linux, Linux Foundation







- https://www.fsf.org/
- https://www.kernel.org/
- https://kernelnewbies.org/
- <a href="https://lwn.net/">https://lwn.net/</a> linux kernel news
- https://www.linuxfoundation.org/



