Методические рекомендации по выполнению лабораторной работы №3 дисциплины ТПР

Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab

Установка MatLab

Для студентов установка пакета предусмотрена на один месяц с возможностью пролонгации.

При установке MatLab требуется установить дополнительные расширения:

Neural network Toolbox

Deep Learning Toolbox

Optimization Toolbox

Neural network toolbox в среде Matlab

"Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab" на YouTube

https://youtu.be/2afTCq1IWNc

Все большее значение приобретают методы машинного обучения нейронных сетей

Знакомство с НС

Знакомство с Neural Network Toolbox

Matlab® and Simulink®

Формирование обучающей выборки

С помощью программы Excel создать обучающую выборку, которая представляет базу знаний нейросетевой ЭС и сохранить ее в формате *.xls.

Для этой цели запустить не менее 21 раза программу ANIES и сформировать не менее 21 примера обучающей выборки, разделив столбцы на входные и выходные.

Как формировать обучающую выборку?

Входной вектородна строка обучающей выборки

Выходной вектор- одна строка обучающей выборки

Запускается ANIES не менее 21 раза (три запуска для идентификации одной из 7 гипотез).

Иллюстрация обучающей выборки

Входной вектор- одна строка обучающей выборки

Выходной вектор- одна строка обучающей выборки

In1	In2	In3	•••	in32	out1	out2	out3	•••	out7
0,55	0,63	0,25		0,80	0,9	0,1	0,12	•••	-0,21
-0,35	0,63	0,25		0,20	-0,19	0,1	0,79	•••	-0,11
0,45	-0,63	-0,25		-0,60	0,01	0,85	0,12	•••	-0,12
0,35	0,46	0,55		0,75	0,11	0,1	0,12	•••	-0,13
-0,65	0,63	0,25		0,20	-0,19	0,1	0,79	•••	-0,11
0,75	-0,63	-0,25		-0,60	0,01	0,85	0,12	•••	-0,12
0,85	0,46	0,55		0,75	0,81	0,1	0,12	•••	-0,13

Множество примеров выборки можно разбить на 3 подмножества

Множество примеров выборки можно разбить на 3 подмножества:

- 1. Подмножество для обучения HC (Training)
- 2. Подмножество для проверки обобщающей способности НС (Validation)

3. Подмножество для тестирования (Testing)

Подмножество для проверки обобщающей способности HC (Validation)

Одно из важнейших свойств нейронных сетей — это способность к обобщению полученных знаний.

Сеть, натренированная на обучающей выборке, генерирует ожидаемые результаты при подаче на ее вход данных, *которые не участвовали в обучении*. Все множество данных можно разделить на обучающее и тестовое подмножества

Иллюстрация результатов обучения НС

2 способа моделирования НС в среде MatLab

1 Способ. Использование встроенных средств. Для чего набрать команду nnstart, выбрать входные и выходные столбцы обучающей выборки, провести обучение НС (train) и получить результаты

2 Способ. *Написать script*

Порядок реализации 1 способа

Запускается среда MatLab и вводится команда >>nnstart

Вводятся данные входного и выходного векторов

После активации входных и выходных данных вводим команду nnstart

Активируем 1 строку

Запускаем процесс обучения НС

Запускаем процесс обучения НС

Результаты обучения HC (mse)

Характеристика mse

Mse – это среднеквадратичная ошибка обучения HC

N

$$Mse=\sum_{i=1}^{n}(yi-di)^{2}$$

Выполнить 5-7 экспериментов

- 1. Поменять количество нейронов НС с одним скрытым слоем (трехслойная сеть)
- 2. Поменять количество примеров в подмножестве для проверки обобщающей способности HC (Validation)
- 3. Поменять количество примеров в подмножество для тестирования (**Testing**)

Изменения количества примеров в подмножестве(Validation) и примеров в подмножестве (Testing)

Результат обучения НС

Точность обучения

Качество аппроксимации

Оценка качества обучения нейронных сетей

- 1. Оценка качества обучения нейронных сетей основана на функциях оценки качества, выбираемых из списка {mae | mse | sse}.
- 2. mse функция производительности сети. Это определяет эксплуатационные качества сети согласно среднему значению ошибок в квадрате.
- 3. mae функция производительности сети. Это определяет эксплуатационные качества сети согласно среднему значению абсолютных ошибок.

Получение результатов в ответ на входной вектор

>> net([6; 1; 0; 1; 1; 1; 0; 1; 2;0; 2])

Получить ответ сети и сравнить с тем, что было в ANIES

Литература

1. Ростовцев В.С. Искусственные нейронные сети: учебник / В.С.

7."MATLAB 05 Фундаментальные классы (типы данных)" на YouTube

https://youtu.be/Xriwl2jbwjU

Ростовцев. – Киров: Изд-во ВятГУ, 2014. – 208 с. Э4743

8.''МАТLAВ 06 Структуры и массивы ячеек"

2."Лекция «Введение в MatLAB»" на YouTube на YouTube

https://youtu.be/v1hiVfvVKgQ

https://youtu.be/8TUxIRpMj7E

3. "MATLAB 01 Начало работы" на YouTube

https://youtu.be/fcrhXFxCbD8

9."MATLAB 07 Интерактивное построение графиков" на YouTube

4."MATLAB 02 Среда разработки" на YouTube

https://youtu.be/J_hGJ7wYCr4

https://youtu.be/Y2eTIYtGkXk

10."Обучение и использование нейронной сети при помощи Neural network toolbox в среде Matlab" на YouTube

5."MATLAB 03 Написание программ" на YouTube

https://youtu.be/2afTCq1IWNc

https://youtu.be/_6dmJulZVkg

https://youtu.be/3eM6hRlqcwE

6.''MATLAB 04 Массивы и матрицы'' на YouTube

12. "Практическое применение нейронных сетей" на YouTube

11. "Что умеют делать нейросети" на YouTube

https://youtu.be/7AsTymGlWo4

https://youtu.be/8q15K8ym_n0