TD n°17

Modèle scalaire des ondes lumineuses

Exercice 1 : Accord de phase sur un dioptre

Une onde plane monochromatique émise par une source S arrive sur un dioptre plan séparant le milieu d'indice n_1 (contenant la source) et le milieu d'indice n_2 . On note θ_1 l'angle d'incidence sur le dioptre et θ_2 l'angle de réfraction. L'image de S et notée S'.

- 1. En faisant apparaître le point H situé sur le rayon passant par B tel que (SA) = (SH), trouver une expression de (SB) (SA) en fonction de n_1 , $\ell = AB$ et θ_1 .
- 2. Trouver de même une expression de (AS') (BS') en fonction de n_2 , ℓ et θ_2 .
- **3.** En déduire une relation entre θ_1 et θ_2 (mystère...).

Exercice 2 : Défaut sur une lame de verre

Une lame de verre, parfaitement transparente, à faces parallèles, d'indice de réfraction n et de faible épaisseur e_0 présente un petit défaut ou l'épaisseur devient e. Cette lame est éclairée par un faisceau de lumière parallèle issu d'une source monochromatique de longueur d'onde dans le vide λ_0 .

- 1. Déterminer le déphasage introduit entre les rayons 1 et 2 par la traversée de la lame.
- 2. Représenter sur la figure une surface d'onde avant la traversée de la lame et une surface d'onde après la traversée de la lame.

Exercice 3: Raie quasi-monochromatique

Une raie spectrale d'une lampe au cadmium a pour caractéristiques : longueur d'onde moyenne $\lambda_{0m} = 643.8 \,\mathrm{nm}$ et largeur en longueur d'onde $\Delta\lambda = 1.3 \,\mathrm{pm}$.

- 1. Quelle est sa couleur?
- 2. Calculer la longueur de cohérence ℓ_c , le temps de cohérence τ_c ainsi que le nombre moyen d'oscillations par train d'onde.

Exercice 4 : Lame à faces parallèles

Une lame de verre à faces parallèles, d'épaisseur e et d'indice n est interposée entre une source S située à l'infini dans l'air d'indice n_{air} et un point A situé aussi dans l'air.

- 1. Tracer soigneusement sur la figure précédente :
 - le rayon lumineux issu de S et qui arriverait sur A en absence de la lame;
 - le rayon lumineux issu de S et qui arrive sur A en présence de la lame.

On s'intéresse à la grandeur $\delta_l = (SA)_{avec} - (SA)_{sans}$, différence des chemins optiques entre S et A en présence et en absence de la lame.

- 2. Montrer que $\delta_l = e(n\cos r n_{air}\cos i)$ avec i et r respectivement les angles d'incidence et de réfraction des rayons lumineux sur la lame.
- 3. Vérifier le résultat dans le cas où i=0 et donner une expression approchée de δ_l au deuxième ordre lorsque i est très petit.

Exercice 5: Fibre optique à saut d'indice

Une fibre optique est modélisée par une lame de verre d'épaisseur d et d'indice n_1 placée entre deux couches de verre d'indice $n_2 < n_1$. Les rayons lumineux suivent des trajets compris dans un plan perpendiculaire à la lame, du type de celui représenté sur la figure ci-dessous. La longueur d'onde des rayons lumineux est notée λ_0 .

- 1. Sous quelle condition portant sur l'angle θ , le rayon est-il confiné dans la lame d'indice n_1 ?
- 2. Pour qu'il y ait propagation de l'énergie, l'onde doit être en phase aux points A et H de la figure. En déduire une nouvelle condition portant sur l'angle θ .
- 3. Chaque valeur de θ correspond à un mode de propagation. Calculer le nombre de modes possibles si $d = 50 \, \mu \text{m}$, $\lambda_0 = 0.5 \, \mu \text{m}$, $n_1 = 1.5 \, \text{et} \, n_2 = 1.4$.