Chapitre 10 : Dénombrement

I. Permutations et listes

Pour tout entier naturel n non nul, on pose

$$n! = 1 \times 2 \times \cdots \times n$$
.

On pose également 0! = 1.

Le nombre n! se lit « factorielle n », ou « n factorielle ».

Soit E un ensemble non vide. On appelle permutation de E tout « mélange » des éléments de E (l'opération qui consiste à ne rien faire est considérée comme un mélange).

Remarque.

On donnera une définition plus formelle à la fin de la section 2.

Exemple 1

 $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120.$

Exemple 2

Soit $E = \{1, 2, 3\}$. Les permutations de E sont

1	2	3	1	2	3]	L	2	3	1	2	3	1	2	3	1	2	3
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	ļ	,	\downarrow										
1	2	3	1	3	2	2	2	1	3	2	3	1	3	1	2	3	2	1

Proposition 1

Si *E* a *n* éléments, il y a *n*! permutations possibles des éléments de *E*.

Soit E un ensemble non vide. On appelle k-liste (ou k-uplet) d'éléments de E une liste de k éléments de E, éventuellement répétés.

Exemple 3

On prend $E = \{0; 1; 2\}$. Une 5-liste d'éléments de E est (par exemple)

Exemple 4

On prend $E = \{0, 1\}$. Les 3-listes (ou triplets) d'éléments de E sont

Ces triplets sont représentés par les chemins de l'arbre ci-dessous :

On notera qu'il y a $2^3 = 8$ chemins (ou triplets) possibles.

Proposition 2

Si E a n éléments, il y a n^k k-listes possibles d'éléments de E.

Exemple 5

Quatre amis en vacances choisissent tous les jours au hasard celui des quatre qui fera la vaisselle (une personne donnée peut donc faire la vaisselle plusieurs fois; mais aussi ne jamais la faire). S'ils partent 7 jours, il y a $4^7 = 4\,096$ plannings possibles pour la vaisselle.

On en vient à présent aux listes sans répétition, qu'on appelle arrangements :

Exemple 6

Dans une classe de 30 élèves, le professeur désigne chaque jour un élève différent pour venir au tableau. Si l'on prend 3 cours consécutifs, le nombre de choix d'élèves est

$$30 \times 29 \times 28 = 24360$$
.

On remarque que

$$30 \times 29 \times 28 = \frac{30 \times 29 \times 28 \times 27 \times 26 \times \dots \times 1}{27 \times 26 \times \dots \times 1} = \frac{30!}{27!} = \frac{30!}{(30-3)!}.$$

On dit qu'il y a 24360 arrangements de 3 élèves.

Plus généralement, on a la définition et la proposition :

Soit E un ensemble à n éléments ($n \ge 1$) et soit $1 \le k \le n$. On appelle arrangement de k éléments de E une k-liste d'éléments distincts de E.

Soit E un ensemble à n éléments et soit $1 \le k \le n$. Alors le nombre d'arrangements de k éléments de E est

 $n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}.$

II. Ensembles et cardinaux

Déf. 5

Soit E un ensemble fini. On appelle cardinal de E le nombre d'éléments de E. Le cardinal de E est noté |E| ou Card(E).

Exemple 7

 $E = \{2; 3; 4; 5\}$ est un ensemble de cardinal 4.

Déf. 6

Soient E, F deux ensembles. On dit que E est inclus dans F ou que E est une partie de E si tout élément de E est un élément de E. Dans ce cas on note $E \subset F$.

finition 7

L'ensemble vide, noté \emptyset , est l'ensemble qui ne contient aucun élément.

- ▶ Pour tout ensemble E, $\emptyset \subset E$.
- $|\emptyset| = 0.$

Étant donné un ensemble E et une partie A de E, on appelle complémentaire de A dans E l'ensemble des éléments de E qui n'appartiennent pas à A. Notations : $E \setminus A$, \overline{A} ou A^c .

Définition 8

Proposition 4

Soient E un ensemble fini et A une partie de E. On a alors $|\overline{A}| = |E| - |A|$.

Étant donné un ensemble E et deux parties A et B de E :

- ▶ la réunion de A et B, notée $A \cup B$, est l'ensemble des éléments qui appartiennent à A ou à B.
- ▶ l'intersection de A et B, notée $A \cap B$, est l'ensemble des éléments qui appartiennent à A et à B.

Proposition 5

Définition

Soient E un ensemble fini et A, B deux parties de E. On a alors

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

On dit que deux ensembles A, B sont disjoints si $A \cap B = \emptyset$. Dans ce cas, leur réunion est notée $A \sqcup B$.

Remarque.

Si A et B sont disjoints, la formule de la proposition 5 devient

$$|A \sqcup B| = |A| + |B|$$
.

Exemple 8

Soit E = [1;100]. On considère deux sous-ensembles de E: l'ensemble A des multiples de 2 et l'ensemble *B* des multiples de 5. On a ainsi :

•
$$A = \{2; 4; 6; ...; 100\}, \qquad |A| = \frac{100}{2} = 50;$$

•
$$A = \{2; 4; 6; ...; 100\},$$
 $|A| = \frac{100}{2} = 50;$
• $B = \{5; 10; 15; ...; 100\},$ $|B| = \frac{100}{5} = 20.$

Par conséquent :

• $A \cap B$ est l'ensemble des nombres qui sont à la fois multiples de 2 et de 5; autrement dit l'ensemble des multiples de 10:

$$A \cap B = \{10; 20; 30; ...; 100\}, \qquad |A \cap B| = \frac{100}{10} = 10;$$

- $A \cup B$ est l'ensemble des nombres qui sont multiples de 2 ou de 5 (éventuellement des deux à la fois). Les éléments de $A \cup B$ sont moins évidents à décrire, mais on sait que $|A \cup B| =$ $|A| + |B| - |A \cap B| = 50 + 20 - 10 = 60.$
- Notons enfin C l'ensemble des nombres qui ne sont multiples ni de 2, ni de 5. C est le complémentaire de $A \cup B$, donc

$$|C| = |E| - |A \cup B| = 100 - 60 = 40.$$

Conclusion: il y a 40 nombres entre 1 et 100 qui ne sont multiples ni de 2, ni de 5.

Si A et B sont deux ensembles, le produit cartésien de A et B, noté $A \times B$, est l'ensemble des couples (a, b), avec $a \in A$ et $b \in B$:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Exemple 9

L'urne A contient trois boules numérotées 1, 2, 3, l'urne B contient deux boules numérotées 1 et 2. On tire une boule dans chaque urne.

On note $A = \{1; 2; 3\}$ et $B = \{1; 2\}$.

L'ensemble des tirages possibles est

$$A \times B = \{(1,1); (1,2); (2,1); (2,2); (3,1); (3,2)\}.$$

Ces tirages correspondent aux cases du tableau ci-dessous:

A B	1	2	3
1			
2			

Si A et B sont deux ensembles non vides finis, $|A \times B| = |A| \times |B|$.

Exemple 10

On revient sur l'exemple 9. On a bien

$$|A \times B| = 6 = 3 \times 2 = |A| \times |B|$$
.

Remarque.

Dans le cas où A = B, on note aussi $A^2 = A \times A$. En particulier, $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ désigne l'ensemble des couples de réels. Ainsi il est équivalent d'écrire

$$\forall a \in \mathbb{R}, \ \forall b \in \mathbb{R}, \ (a+b)^2 = a^2 + 2ab + b^2$$

ou

$$\forall (a, b) \in \mathbb{R}^2, (a + b)^2 = a^2 + 2ab + b^2.$$

éfinition 12

Soient E et F deux ensembles. Une application (ou fonction) de E dans F (notation: $f: E \to F$) associe, à tout élément x dans E, un unique élément f(x) dans F.

Remarque.

Dans un cours de $1^{\rm re}$ année, on emploie généralement le mot « fonction » lorsque E et F sont deux parties de $\mathbb R$.

Une application $f: E \to F$ est :

- injective si tout $y \in F$ admet au plus un antécédent dans E;
- ▶ surjective si tout $y \in F$ admet **au moins un** antécédent dans E;
- ▶ bijective si tout $y \in F$ admet **exactement un** antécédent dans E.

Exemples 11

1. $f: \mathbb{N} \to \mathbb{N}$, $n \mapsto n+1$ est injective, mais elle n'est pas surjective (0 n'a pas d'antécédent).

Définition 13

2. $f: \mathbb{Z} \to \mathbb{Z}$, $n \mapsto n+1$ est bijective.

3. $f: \mathbb{Z} \to \mathbb{N}$, $n \mapsto |n|$ est surjective, mais elle n'est pas injective (tout entier ≥ 1 a deux antécédents).

Si E et F sont de même cardinal fini et si f: $E \rightarrow F$, alors

f injective \iff f surjective \iff f bijective.

Pour conclure cette section, on revient vers la notion de permutation, avec une définition plus rigoureuse :

Soit E un ensemble fini. On appelle permutation de E toute application bijective $f: E \rightarrow E$.

III. Combinaisons

éfinition 15

- Soient $1 \le k \le n$ deux entiers. Le nombre $\binom{n}{k}$ est le nombre de façons que l'on a de choisir k éléments dans un ensemble à n éléments, l'ordre dans lequel le choix a été fait n'ayant pas d'importance.
- ▶ Par convention $\binom{n}{0} = 1$.
- $\binom{n}{k}$ se lit « k parmi n ». On dit aussi que $\binom{n}{k}$ est le nombre de combinaisons de k éléments d'un ensemble à n éléments.

Exemple 12

Par exemple $\binom{4}{2}$ = 6, puisque les choix possibles de 2 éléments parmi 4 éléments A, B, C, D sont :

$$AB - AC - AD - BC - BD - CD$$

Remarque.

La différence avec les arrangements, c'est qu'on ne distingue pas les listes même si l'ordre est différent. Par exemple, lorsqu'on calcule $\binom{4}{2} = 6$, les deux listes AB et BA comptent pour une seule.

Exemple 13

Un sachet contient 5 lettres A, B, C, D, E. On tire 3 lettres du sachet, on compte le nombre de tirages possibles a.

Si l'ordre de sortie avait de l'importance, cela reviendrait à compter le nombre d'arrangements de 3 éléments : il y en aurait $\frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \times 4 \times 3 = 60$.

Mais l'ordre de sortie n'a pas d'importance, donc chaque tirage de 3 lettres est compté $3! = 3 \times 2 \times 1 = 6$ fois.

Par exemple, les tirages

ne doivent compter que pour un seul. Finalement, il n'y a que $\frac{60}{6} = 10$ tirages possibles. On peut d'ailleurs les énumérer :

Notons pour finir que $10 = \frac{60}{6} = \frac{\frac{5!}{2!}}{3!} = \frac{5!}{3! \times 2!}$, ce que généralise la proposition suivante.

a. On décide que l'ordre dans lequel les lettres sortent n'a pas d'importance.

Soient $0 \le k \le n$ deux entiers. On a

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}.$$

Exemple 14

On tire au sort 4 personnes dans un groupe de 12 pour partir en voyage. Il y a

$$\binom{12}{4} = \frac{12!}{4! \times (12-4)!} = \frac{12!}{4! \times 8!} = 495$$

quatuors possibles.

Remarque.

La proposition 8 fonctionne encore quand k = 0:

$$\frac{n!}{0! \times (n-0)!} = \frac{n!}{1 \times n!} = 1 = \binom{n}{0},$$

conformément à la définition 15.

Pour obtenir les $\binom{n}{k}$, on utilise :

- soit le triangle de Pascal, pour les petites valeurs de n; 1
- soit la calculatrice, pour les grandes valeurs de *n*.

Exemple 15

 $\binom{4}{2}$ = 6 avec le triangle de Pascal :

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	2	1	0	0	0
3	1	3	3	1	0	0
4	1	4	6	4	1	0
5	1	5	10	10	5	1

Exemple 16

 $\binom{12}{4}$ = 495 avec la calculatrice

$\binom{4}{4} = 495$ avec la calcula	atrice:		
Calculatrices collège	NUMWORKS	TI graphiques	CASIO graphiques
Il faut écrire le calcul (le symbole! est sur le clavier) : $\frac{12!}{4! \times 8!}$	 Calculs EXE puis (boîte à outils) choisir Probabilités, puis Dénombrement choisir binomial(n,k) EXE compléter (12/4) EXE 	• math puis PROB • 3:Combinaison EXE • 12C4 EXE	• MENU puis RUN EXE • 12 OPTN ▷ • F3 (on choisit donc PROB) • F3 (on choisit donc nCr) • 4 EXE (on affiche 12C4 à l'écran avant d'exécuter)

1. Le lien entre les $\binom{n}{k}$ et le triangle de Pascal est expliqué en exercices.

Les résultats de la proposition suivante sont justifiés en exercice :

Proposition 9

1. Si
$$n \ge 1$$
: $\binom{n}{1} = \binom{n}{n-1} = n$.

2. Si
$$n \ge 2$$
: $\binom{n}{2} = \frac{n(n-1)}{2}$.

1. Si
$$n \ge 1$$
: $\binom{n}{1} = \binom{n}{n-1} = n$. **2.** Si $n \ge 2$: $\binom{n}{2} = \frac{n(n-1)}{2}$. **3.** Si $0 \le k \le n$: $\binom{n}{k} = \binom{n}{n-k}$.

Exemple 17

On choisit 5 cartes dans un jeu de 32.

- Il y a $\binom{32}{5}$ tirages (ou mains) possibles.
- On compte le nombre de mains contenant une paire de rois : il y a (4) façons possibles de choisir les rois, puis $\binom{28}{3}$ façons de choisir trois autres cartes parmi les 28 « non-rois », donc au total $\binom{4}{2} \times \binom{28}{3}$ mains contenant 2 rois ^a.

a. Il faut bien multiplier. En effet, si A désigne l'ensemble des couples de rois possibles (il y en a donc $\binom{4}{2} = 6$: cœur-carreau, cœur-pique, cœur-trèfle, carreau-pique, carreau-trèfle, pique-trèfle), et B l'ensemble des triplets de cartes possibles à choisir parmi les 28 non-rois (il y en $\binom{28}{3}$ = 3276), alors l'ensemble des mains contenant 2 rois s'identifie à $A \times B$: on écrit successivement les deux rois, puis les trois autres cartes – une main est de la forme Roi–Roi – Non-roi–Non-roi, comme par exemple R♦–R♣–V♠–10♥–V♣

3 276 possibilités

Exemple 18 (récapitulatif)

Un sachet contient 5 jetons marqués A, B, C, D, E. Dans les exemples ci-dessous, on examine les trois situations standards.

On tire 3 jetons avec remise. On tient compte de l'ordre du tirage. On parle de 3-liste d'un ensemble à 5 éléments.

Exemples de tirages: ABE - BEA - DCA - BBD

Il y a $5^3 = 125$ tirages possibles.

• On tire 3 jetons sans remise. On tient compte de l'ordre du tirage. On parle d'arrangement de 3 éléments d'un ensemble à 5 éléments.

Exemples de tirages: ABE – BEA – DCA – BBD

Il y a $\frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \times 4 \times 3 = 60$ tirages possibles.

• On tire 3 jetons sans remise. On ne tient pas compte de l'ordre du tirage. On parle de combinaison de 3 éléments d'un ensemble à 5 éléments.

8

Exemples de tirages: ABE - BEA - DCA - BBD

Il y a $\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = 10$ tirages possibles.

Pour conclure ce chapitre, on se donne deux complexes a, b et on s'intéresse au développement de $(a + b)^2$, $(a + b)^3$, $(a + b)^4$, etc. On peut obtenir une formule générale par une méthode de dénombrement (voir exercices pour l'explication):

Théorème 1 (formule du binôme de Newton)

Pour tous complexes a, b, pour tout entier $n \ge 1$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Exemple 19

Pour tous complexes a, b:

$$(a+b)^3 = \sum_{k=0}^{3} {3 \choose k} a^k b^{3-k} = {3 \choose 0} a^0 b^{3-0} + {3 \choose 1} a^1 b^{3-1} + {3 \choose 2} a^2 b^{3-2} + {3 \choose 3} a^3 b^{3-3} = b^3 + 3ab^2 + 3a^2b + a^3.$$

Si A est un ensemble, on note $\mathcal{P}(A)$ l'ensemble des parties de A.

Remarque.

Les $\binom{n}{k}$ sont aussi appelés coefficients binomiaux, en référence à la formule du binôme de Newton.

Remarque.

 $\mathcal{P}(A)$ est donc une famille d'ensembles – un ensemble d'ensembles!

Exemple 20

Si $A = \{0, 1, 2\}$, l'ensemble $\mathcal{P}(A)$ est formé de :

$$\emptyset$$
, $\{0\}$, $\{1\}$, $\{2\}$, $\{0;1\}$, $\{0;2\}$, $\{1;2\}$, $\{0;1;2\}$.

Il contient 8 éléments, ce qui était prévisible : pour chacun des éléments 0, 1, 2, soit on choisit de le prendre, soit on choisit de le mettre de côté. Chaque partie E de A correspond donc à un chemin de l'arbre ci-dessous:

Proposition 10

Si l'ensemble A contient n éléments, alors $\mathscr{P}(A)$ en contient 2^n .

Il y a un lien avec la formule du binôme de Newton (voir exercices).

IV. Exercices

Exercice 1 ($\hat{\mathbf{m}}$).

Un clavier de 12 touches comportant les chiffres de 1 à 9 et les lettres A, B, C se trouve à l'entrée d'un immeuble. Pour accéder à cet immeuble, il faut composer un code à 4 symboles.

- 1. Combien y a-t-il de codes d'entrée possibles?
- **2.** Combien y a-t-il de codes d'entrée ne comportant pas la lettre A?
- **3.** Combien y a-t-il de codes d'entrée formés de 4 symboles différents?

Exercice 2 $(\hat{\mathbf{m}})$.

- 1. Combien le mot VOYAGE a-t-il d'anagrammes (ayant un sens ou non)?
- 2. Même question avec le mot ANTILLES.

Exercice 3 $(\hat{\mathbf{1}})$.

Dans un test d'aptitude, on pose 10 questions à un candidat auxquelles il doit répondre par « Vrai » ou « Faux ».

De combien de façons différentes peut-il remplir ce questionnaire?

Exercice 4 (11).

On interroge successivement les 30 élèves d'une classe et on leur demande de choisir chacun un nombre entre 1 et 200.

- 1. Combien y a-t-il de listes possibles?
- **2.** Combien y a-t-il de listes formées de 200 nombres différents?

Exercice 5 $(\hat{\mathbf{m}})$.

Lorsqu'on actionne la manette d'une machine à sous, on fait apparaître sur l'écran trois symboles choisis au hasard parmi ♡ (cœur), ♦ (carreau), ♠ (pique) et ♣ (trèfle). On appelle « apparition » la liste des trois symboles qui apparaissent sur l'écran.

Combien y a-t-il d'apparitions :

- 1. Formées de trois symboles différents?
- 2. Contenant au moins un cœur?

Exercice 6 (11).

Lors de la finale des mondiaux d'athlétisme huit coureurs s'élancent. Trois de ces coureurs sont Américains.

- 1. Combien de podiums possibles y a-t-il (en distinguant le 1^{er}, le 2^e et le 3^e de la course)?
- **2.** Combien de podiums y a-t-il comportant au moins un Américain?

Exercice 7 $(\hat{\mathbf{m}})$.

Un candidat à un examen connaît trois questions d'histoire sur les six possibles et deux questions de géographie sur les cinq possibles. Un examinateur lui pose une question d'histoire et une question de géographie.

- 1. Combien y a-t-il de tirages possibles?
- 2. Combien y a-t-il de tirages où le candidat connaît les deux questions? Au moins l'une des deux questions?

Exercice 8 (11).

On lance 3 dés à 6 faces : un bleu, un rouge, un vert. On note le résultat des lancers sous la forme d'un triplet

(n° du dé bleu, n° du dé rouge, n° du dé vert).

- 1. Combien y a-t-il de tirages possibles?
- **2.** Combien y a-t-il de tirages où on obtient 421? (Cela signifie que l'un des dés tombe sur 4, un autre sur 2, le dernier sur 1.)

Exercice 9 $(\hat{\mathbf{m}})$.

Dans chaque cas, on définit une application $f: E \to F$ par son tableau de valeurs. Dire si elle est injective, surjective, bijective.

I	х	1	2	3
	f(x)	4	2	1

1. $E = \{1; 2; 3\}, F = \{1; 2; 3; 4\}.$ **2.** $E = \{1; 2; 3; 4\}, F = \{1; 2; 3\}.$

x	1	2	3	4
f(x)	3	2	1	3

3. $E = \{1; 2; 3; 4\}$, $F = \{1; 2; 3; 4\}$.

х	1	2	3	4
f(x)	3	2	1	4

Exercice 10 $(\hat{\mathbf{m}})$.

On reprend l'exercice précédent, mais cette fois les éléments de E et F sont symbolisés par des croix et l'image d'un élément de *E* est indiquée par une flèche.

1.

2.

3.

Exercice 11 $(\hat{\mathbf{m}})$.

Dans chaque cas, dire si l'application f est injective, surjective, bijective.

1.
$$f:[-1;1] \to [-1;1], x \mapsto x^2$$
. **2.** $f:[-1;1] \to [0;1], x \mapsto x^2$. **3.** $f:[0;1] \to [0;1], x \mapsto x^2$.

2.
$$f: [-1;1] \to [0;1], x \mapsto x^2$$
.

3.
$$f:[0;1] \to [0;1], x \mapsto x^2$$
.

Exercice 12 $(\hat{\mathbf{m}})$.

1. Donner les valeurs explicites de

$$A = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad B = \begin{pmatrix} 6 \\ 3 \end{pmatrix}, \quad C = \begin{pmatrix} 50 \\ 1 \end{pmatrix}, \quad D = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.$$
 2. Soit *n* un entier supérieur ou égal à 2. Démontrer que

2. Comparer les nombres $\binom{10}{3}$ et $\binom{10}{7}$, puis les nombres $\binom{100}{60}$ et $\binom{100}{40}$. Généraliser.

Exercice 13 $(\hat{\mathbf{m}})$.

On coche trois numéros grilles possibles? sur une grille de neuf cases numérotées de 1 à 9. Combien y a-t-il de

Exercice 14 $(\hat{\mathbf{m}})$.

On prend 5 cartes dans un jeu de 32. Combien y at-il de mains possibles?

Exercice 15 $(\hat{\mathbf{m}})$.

Combien de poignées de mains sont-elles échangées lorsque les 24 élèves d'une classe se serrent tous la main le matin?

Exercice 16 (6).

- 1. Soit p un entier supérieur ou égal à 1. Que vaut

$$\binom{n}{2} = \frac{n^2 - n}{2}.$$

3. Soient $1 \le k \le n$ deux entiers naturels. Démontrer la formule du pion :

$$n \times \binom{n-1}{k-1} = k \times \binom{n}{k}.$$

- **4.** Pour tout $k \in \mathbb{N}$, on pose $a_k = \frac{1}{k!}$.
 - a. Prouver que

$$\forall k \in \mathbb{N}, \ a_k - a_{k+1} = \frac{k}{(k+1)!}.$$

b. En déduire, pour $n \in \mathbb{N}$, la valeur de

$$S_n = \sum_{k=0}^n \frac{k}{(k+1)!}.$$

5. Soit $n \in \mathbb{N}^*$. Calculer $\prod_{k=1}^n \frac{k+1}{k}$.

Exercice 17 (6 - formule de Pascal).

Une association a vendu des calendriers dans le but de financer un voyage. Malheureusement, seuls 12 des 20 membres pourront effectivement partir compte tenu du peu d'argent récolté.

- 1. Quel est le nombre de groupes différents de 12 personnes que l'on peut constituer pour participer au voyage?
- 2. David est un des membres de l'association. Combien y a-t-il:
 - de groupes de 12 personnes contenant
 - de groupes de 12 personnes ne contenant pas David?
- 3. Quelle égalité résulte des questions 1 et 2?
- **4.** Généraliser : si $1 \le k \le n-1$:

$$\binom{n}{k} = \cdots + \cdots$$

5. Redémontrer par le calcul la formule obtenue à la question précédente.

Exercice 18 $(\hat{\mathbf{m}})$.

Un sélectionneur d'une équipe de football dispose de vingt joueurs dont trois gardiens de but.

Combien d'équipes différentes de onze joueurs, dont un gardien, peut-il former?

Exercice 19 (11).

Une colonie de vacances compte 40 enfants et 5 moniteurs. Cette colonie possède un mini-bus de 12 places pour les excursions.

Sachant que deux moniteurs doivent accompagner les excursions, combien y a-t-il de remplissages possibles du mini-bus?

Exercice 20 $(\hat{\mathbf{m}})$.

Un jeu de 32 cartes est formé des cartes 7, 8, 9, 10, valet, dame, roi, as dans chacune des quatre couleurs cœur, carreau, pique, trèfle.

- 1. Combien y a-t-il de mains de 5 cartes possibles?
- 2. De mains contenant trois cœurs et deux carreaux?
- **3.** De mains contenant exactement 3 dames?
- 4. De mains contenant exactement un roi et deux

Exercice 21.

Soient a, b deux complexes.

1. En écrivant $(a + b)^3 = (a + b)(a + b)(a + b)$ et en utilisant un raisonnement de dénombrement, prouver que

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$

2. Déterminer de même une formule pour $(a+b)^4$.

Exercice 22 $(\hat{\mathbf{m}})$.

Soient *a*, *b* deux complexes. En utilisant la formule du binôme de Newton, calculer les sommes :

- 1. $(a+b)^5$.
- **2.** $(2a+1)^3$
- 3. $(a-b)^4$.

Exercice 23 (8).

- 1. Huit candidats se présentent à un concours d'orchestre. Les recruteurs peuvent choisir autant de candidats qu'ils le souhaitent, et même n'en choisir aucun s'ils estiment qu'ils n'ont pas le niveau suffisant.
 - a. Si 3 candidats sont recrutés, montrer qu'il y a 56 façons possibles de les choisir.
 - **b.** Si 7 candidats sont recrutés, de combien de façons différentes peuvent-ils être choisis?
 - c. Combien y a-t-il de recrutements différents possibles? Écrire la réponse sous forme de somme, en utilisant les combinaisons.
 - d. Montrer, par une autre méthode de dénombrement, qu'il y a 256 recrutements différents possibles.
- **2.** Soit $n \in \mathbb{N}$. En vous inspirant de la question précédente, donner la valeur de $\sum\limits_{k=0}^{n} \binom{n}{k}$. Ensuite démontrer rigoureusement le résultat en utilisant la formule du binôme de Newton.

Exercice 24 $(\hat{\mathbf{m}})$.

Soient *n* un entier naturel non nul et *x* un réel. Cal-

- 1. $\sum_{k=0}^{n} {n \choose k} (-1)^k$. 2. $\sum_{k=0}^{n} {n \choose k} e^{kx}$.