rakugaki

大上由人

2024年6月29日

Lem:

 $A \subset X$ であるならば、 $X/A \supset A/A$ cofibration

Thm: 等価空間のオイラー数 -

 $\phi \neq A$ \subset X かつ $\mathcal{X}(A), \mathcal{X}(X), \mathcal{X}(X/A)$ のどれか二つが well-defined

Prf

 $X \cup CA = M_{\iota}/A \times \{0\}$

 $X(X \cup CA) = X(D) + X(E) - X(D \cap E)$

右辺第一項は可縮である、第二項は $E\simeq X$ であり、 $D\cap E\equiv A imes (\frac{1}{3},\frac{2}{3})\simeq S$

 $(X \cup CA) \sqcup_p * \cong X/A$

左辺 $\simeq X \cup CA$

よって、求めるものを得る。

 Top_0 起点つき位相空間の圏 (射は連続写像であって、基点を基点に移すもの)

 $X \in Obj(Top_0)$ について、

$$\tilde{X}(X) = X(X) - 1(X(\{*\})) \tag{0.1}$$

と定義する。

Cor

 $A, X \in Obj(Top_0)$ かつ $A \subset X$ について (つまり、X の基点が A の基点に移る)、

$$\tilde{X}(X/A) = \tilde{X}(X) - \tilde{X}(A) \tag{0.2}$$

ただし、3 項のうちどれか二つが well-defined である。

 $A, B \in Obj(Top_0)$ について、

$$A \lor B := A \sqcup B / \{A^* \sim B^*\} \tag{0.3}$$

$$A \wedge B := A \times B / \{A \times \{*_B\} \cup \{*_A\} \times B\} \tag{0.4}$$

と定義する。

$Thm: \tilde{\mathcal{X}}$ の性質 -

すべて基点つき空間で考える。 $A, B \in X$ s.t. $X = A \cup B$ かつ、

$$A \underset{\text{cofibration}}{\supset} A \cap B \tag{0.5}$$

かつ

$$A \cap B \subset_{\text{cofibration}} B$$
 (0.6)

であるとする。このとき、 $\mathcal{X}(A),\mathcal{X}(B),\mathcal{X}(X),\mathcal{X}(A\cap B)$ のうちどれか三つが well-defined であるならヴぁ

$$\tilde{X}(X) = \tilde{X}(A) + \tilde{X}(B) - \tilde{X}(A \cap B) \tag{0.7}$$

が成り立つ。

Prf

仮定より、

$$A \subset X \supset A$$
 (0.8)

$$X/A \cong B/A \cap B \quad X/B \cong A/A \cap B$$
 (0.9)

先のことから、

$$\tilde{\mathcal{X}}(X/A) = \tilde{\mathcal{X}}(X) - \tilde{\mathcal{X}}(A) \tag{0.10}$$

$$\tilde{\mathcal{X}}(X/A) = \tilde{\mathcal{X}}(B/A \cap B) = \tilde{\mathcal{X}}(B) - \tilde{\mathcal{X}}(A \cap B) \tag{0.11}$$

$$\tilde{\mathcal{X}}(X/B) = \tilde{\mathcal{X}}(X) - \tilde{\mathcal{X}}(B) \tag{0.12}$$

$$\tilde{\mathcal{X}}(A/A \cap B) = \tilde{\mathcal{X}}(A) - \tilde{\mathcal{X}}(A \cap B) \tag{0.13}$$

よって、

$$\tilde{\mathcal{X}}(X) - \tilde{\mathcal{X}}(A) = \tilde{\mathcal{X}}(B) - \tilde{\mathcal{X}}(A \cap B)$$
(0.14)

$$\tilde{\mathcal{X}}(X) - \tilde{\mathcal{X}}(B) = \tilde{\mathcal{X}}(A) - \tilde{\mathcal{X}}(A \cap B)$$
(0.15)

であるから、(0.14)-(0.15) を辺々足して 2 で割ることで、求めるものを得る。

Def: 退化 -

 $A \in Obj(Top_0)$ について、A の基点 $\{*_A\} \in A$ が非退化であるとは、(A が well-pointed であるとは)、 $\{*_A\} \in A$ が cofibration であることをいう。

Prop:

A, B が well-pointed であるならば、 $A \land B, A \lor B$ も well-pointed である。

\mathbf{Cor}

 $A,B \in Obj(Top_0)$ が well-pointed であるかつ、 $\tilde{\mathcal{X}}(A), \tilde{\mathcal{X}}(B)$ が well-defined であるならば、

$$\tilde{\mathcal{X}}(A \wedge B) = \tilde{\mathcal{X}}(A) + \tilde{\mathcal{X}}(B) - 1 \tag{0.16}$$

$$\tilde{\mathcal{X}}(A \vee B) = \tilde{\mathcal{X}}(A) + \tilde{\mathcal{X}}(B) - 1 \tag{0.17}$$

が成り立つ。

Prf

 $A \subset A \lor B \supset B$ と思う。仮定より、 $A \cap B \in A \lor B = A \cup B$ であり、

$$A \underset{\text{cofibration}}{\subset} A \cap B (= \{ *_A \} = \{ *_B \}) \underset{\text{cofibration}}{\subset} B$$
 (0.18)

$$A \underset{\text{cofibration}}{\subset} A \cup B (\equiv A \vee B) \underset{\text{cofibration}}{\supset} B \tag{0.19}$$

前の定理より、

$$\tilde{\mathcal{X}}(A \vee B) = \tilde{\mathcal{X}}(A) + \tilde{\mathcal{X}}(B) - \tilde{\mathcal{X}}(A \cap B) \tag{0.20}$$

である。いま、第三項が0であることに注意すると、求めるものを得る。 また、

$$A \wedge B = A \times B / \{A \vee B\} \tag{0.21}$$

である、このとき、 $A=A\times \{*_B\}\subset A\times B\supset \{*_A\}\times B=B$ であり、A と B の $A\times B$ における合併は $A\vee B$ と同じ。

A,B が well-pointed であることから、 $A \lor B$ \subset $A \times B$ である。 2 つ前の定理より、

$$\tilde{\mathcal{X}}(A \wedge B) = \tilde{\mathcal{X}}(A \times B) / \tilde{\mathcal{X}}(A \vee B) \tag{0.22}$$

$$= \tilde{\mathcal{X}}(A \times B) - \tilde{\mathcal{X}}(A \vee B) \tag{0.23}$$

$$= (\mathcal{X}(A)\mathcal{X}(B) - 1) - (\mathcal{X}(A) + \mathcal{X}(B) - 2) \tag{0.24}$$

$$= (\mathcal{X}(A) - 1)(\mathcal{X}(B) - 1) \tag{0.25}$$

$$= (\tilde{\mathcal{X}}(A)(\tilde{\mathcal{X}}(B))) \tag{0.26}$$

となる。

ex

 Top_0 における suspension を、 $A \in Obj(Top_0)$ について、

$$SA = S^1 \wedge A \tag{0.27}$$

と定義する。

$$S^{n}A = S(S(\dots S(SA)\dots)) \tag{0.28}$$

と定義する。

このとき、

$$S^n \cong S^n S^0 \tag{0.29}$$

である。

$$\tilde{\mathcal{X}}(S^n) = \tilde{\mathcal{X}}(S^n S^0) \tag{0.30}$$

$$= \tilde{\mathcal{X}}(S^1 \wedge \dots \wedge S^1 \wedge S^0) \tag{0.31}$$

$$= (\tilde{\mathcal{X}}(S^1))^n \tilde{\mathcal{X}}(S^0) \tag{0.32}$$

$$\therefore \qquad (0.33)$$

$$\tilde{\mathcal{X}}(S^0) = \mathcal{X}(S^0) - 1 = 2 - 1 = 1 \tag{0.34}$$

$$\tilde{\mathcal{X}}(S^1) = \mathcal{X}(S^1) - 1 = 0 - 1 = -1 \tag{0.35}$$

$$\tilde{\mathcal{X}}(S^n) = (-1)^n \tag{0.36}$$

- Def: 位相多様体 -

M が位相多様体であるとは、

- 1. *M* は Hausdorff である
- 2. 任意の点 $p \in M$ について、p の近傍 U であって、

$$(U,p) \cong (\mathbb{R}^n, 0) \tag{0.37}$$

または、

$$(U,p) \cong (H_+^n,0)$$
 (0.38)

ただし、

$$H_{+}^{n} = \{ x \in \mathbb{R}^{n} | x_{n} \ge 0 \} \tag{0.39}$$

となるものをいう。このとき、(0.37) と(0.38) は排反事象である。

- Def: -

位相多様体が閉であるとは、

- 1. *M* はコンパクト
- 2. $\partial M = \emptyset$

となるものをいう。

 $\partial M = M$ の境界点 とおき、これを M の境界という。

ex

 \mathbb{R}^n , H^n_+ はそれぞれ n 次元多様体であり、

$$\partial \mathbb{R}^n = \varnothing, \quad \partial H^n_+ = \mathbb{R}^{n-1}$$
 (0.40)

である。

 $\mathbf{e}\mathbf{x}$

 S^n は閉多様体

 $\mathbf{e}\mathbf{x}$

A, B が多様体ならば、 $A \times B$ も閉多様体である。

1 実験 6.2 の計算

今、RC ローパスフィルター 1 段での入力 (v_1,i_1) と出力 (v_2,i_2) の関係は F 行列を用いて、

$$\begin{pmatrix} v_1 \\ i_1 \end{pmatrix} = \begin{pmatrix} 1 + i\omega RC & R \\ i\omega C & 1 \end{pmatrix} \begin{pmatrix} v_2 \\ i_2 \end{pmatrix}$$
 (1.1)

と表される。

これを 3 段噛ませたものが、位相 π だけ反転してくれればよい。今、3 段噛ませる前後での関係は、F 行列を用いて、

$$\begin{pmatrix} v_1 \\ i_1 \end{pmatrix} = \begin{pmatrix} 1 + i\omega RC & R \\ i\omega C & 1 \end{pmatrix}^3 \begin{pmatrix} v_2 \\ 0 \end{pmatrix}$$
 (1.2)

と表される。ここで、計算の便宜のために、 $t = 1 + i\omega RC = 1 + is$ とおくと、

$$F^{3} = \begin{pmatrix} t^{3} + 2t^{2} - t & O \\ O & O \end{pmatrix} \tag{1.3}$$

となる。ただし、Оは適当な数である。したがって、

$$\begin{pmatrix} v_1 \\ i_1 \end{pmatrix} = \begin{pmatrix} t^3 + 2t^2 - t & O \\ O & O \end{pmatrix} \begin{pmatrix} v_2 \\ 0 \end{pmatrix}$$
 (1.4)

となる。電圧について計算することにより、

$$v_1 = (t^3 + 2t^2 - t)v_2 (1.5)$$

となる。ここで、位相差が π であるためには、

$$Im(t^3 + 2t^2 - t) = 0 (1.6)$$

である必要がある。

$$\operatorname{Im}(t^{3} + 2t^{2} - t) = \operatorname{Im}((1+is)^{3} + 2(1+is)^{2} - (1+is))$$
(1.7)

$$= -s^3 + 6s = 0 (1.8)$$

よって、 $s = \sqrt{6}$ である。いま、 $s = \omega RC$ であるから、

$$\omega = \frac{\sqrt{6}}{RC} \tag{1.9}$$

である。

2 実験 6.3 の計算

今、正入力と出力の関係は、

$$V_{+} = \frac{Z_{1}}{Z_{1} + Z_{2}} V_{\text{out}} \tag{2.1}$$

である。ここで、

$$Z_1 = R_1 + \frac{1}{i\omega C_1} \tag{2.2}$$

$$Z_2 = R_2 + \frac{1}{i\omega C_2} \tag{2.3}$$

カノニカル分布の裏づけ

注目する部分系Sと熱浴Bが弱く相互作用しているとする。全系のハミルトニアンは

$$\mathcal{H} = \mathcal{H}_S + \mathcal{H}_B + \mathcal{H}_{int}. \tag{2.4}$$

ここで、相互作用のオーダーは、 $o(V^{\frac{2}{3}})$ なので、無視できるとする。全系の状態は S の状態を表す Hilbert 空間と B の状態を表す Hilbert 空間の直積で表され

$$\mathcal{H} |\Psi_k\rangle = (\mathcal{H}_S + \mathcal{H}_B) |\psi_i\rangle |\phi_j\rangle = E_k |\Psi_k\rangle \tag{2.5}$$

である。ここで $|\psi_i\rangle |\phi_j\rangle$ は $\mathcal{H}_S |\psi_i\rangle = E_i^S |\psi_i\rangle$ と $\mathcal{H}_B |\phi_j\rangle = E_j^B |\phi_j\rangle$ を満たす系 S と熱浴 B の 固有状態で、 $E_k = E_i^S + E_j^B, \, |\Psi_k\rangle = |\psi_i\rangle |\phi_j\rangle$ である。全系がミクロカノニカル分布で記述されるとすると、

$$\hat{\rho}_{U,\delta U} = \frac{1}{W(U,\delta U)} \sum_{U-\delta U \le E_k \le U} |\Psi_k\rangle \langle \Psi_k|. \qquad (2.6)$$

である。ここで $W(U, \delta U)$ は $[U - \delta U, U]$ にある固有状態数である。熱浴について対角和をとると

$$\hat{\rho}^S = \text{Tr}_B \hat{\rho}_{U,\delta U} \tag{2.7}$$

$$= \frac{1}{W(U, \delta U)} \sum_{U = \delta U \le E_l \le U} \sum_{l} \langle \phi_l | \Psi_k \rangle \langle \Psi_k | \phi_l \rangle \tag{2.8}$$

$$= \frac{1}{W(U, \delta U)} \sum_{U - \delta U - E_i^S \leq E_i^B \leq U - E_i^S} \sum_{l} \sum_{i} \left\langle \phi_l | \phi_j \right\rangle \left| \psi_i \right\rangle \left\langle \psi_i | \left\langle \phi_j | \phi_l \right\rangle \tag{2.9}$$

$$= \frac{1}{W(U, \delta U)} \sum_{i} |\psi_{i}\rangle \langle \psi_{i}| \sum_{i} \sum_{U - \delta U - E_{i}^{S} \leq E_{i}^{B} \leq U - E_{i}^{S}} 1$$

$$(2.10)$$

$$= \frac{1}{W(U, \delta U)} \sum_{i} W^{B}(U - E_{i}^{S}, \delta U) |\psi_{i}\rangle \langle \psi_{i}|. \qquad (2.11)$$

となる。状態数とエントロピーの関係 $S(E) = k_B \ln W(U, \Delta U)$ から

$$W^{B}(U - E_{i}^{S}) = e^{S^{B}(U - E_{i}^{S})/k_{B}}$$
(2.12)

$$\approx \exp\left[\frac{1}{k_B}\left(S^B(U) - \frac{dS^B(U)}{dU}E_i^S\right)\right] \tag{2.13}$$

$$=e^{S^B(U)/k_B-\beta E_i^S} (2.14)$$

$$\propto e^{-\beta E_i^S} \tag{2.15}$$

となる。ただし、 $E_i^S \ll U$ を用いた。したがって、規格化を考慮して、

$$\hat{\rho}^{S} \approx \frac{\sum_{i} e^{-\beta E_{i}^{S}} |\psi_{i}\rangle \langle \psi_{i}|}{\sum_{i} e^{-\beta E_{i}^{S}}}$$
(2.16)

$$=\frac{e^{-\beta\mathcal{H}_S}}{\operatorname{Tr}e^{-\beta\mathcal{H}_S}}\tag{2.17}$$

となる。ここで、

$$\beta = \frac{1}{k_B} \frac{\mathrm{d}S^B}{\mathrm{d}U} = \frac{1}{k_B T} \tag{2.18}$$

である。ただし、T は熱浴の温度である。以上より、系 S はカノニカル分布で記述される。