

Les sources de problèmes et de distorsions du signal

Réflexion du signal Adaptation d'impédances

Schéma équivalent électrique d'une paire torsadée cuivre : les paramètres primaires

 ${\sf R}$: Résistance par unité de longueur (*Résistance linéique*) $\Omega/{\sf m}$

L: Inductance par unité de longueur (Inductance linéique) H/m

C: Capacité par unité de longueur (Capacité linéique) F/m

Ri : Résistance d'isolement par unité de longueur (Conductance linéique) Ω/m

Schéma	Nom	Unité	Valeur typique
	Résistance	Ohm (Ω)	Ø 0,4 => 275 Ω/m Ø 0,6 => 122 Ω/m Ø 0,8 => 69 Ω/m
9	Inductance	Henry (H)	0,65 mH/m
$\neg \vdash$	Capacité	Farad (F)	50 nF/Km
	Résistance d'isolement	Ohm (Ω)	100 ΜΩ

les paramètres primaires

La mesure de ces paramètres permet un premier diagnostique en cas de panne.

Schéma	Nom	Unité	Valeur typique	Si différent des valeurs typiques
	Résistance	Ω	Ø 0,4 => 275 Ω/m Ø 0,6 => 122 Ω/m Ø 0,8 => 69 Ω/m	Fil A et/ou B coupé, court-circuit, défaut de symétrie si R mesuré entre Aet B différent de R mesuré entre B et A.
m	Inductance	Н	0,65 mH/m	défaut de symétrie si L mesuré entre A et B différent de L mesuré entre B et A.
\dashv \vdash	Capacité	F	50 nF/Km	Défaut d'isolement (court circuit).
	Résistance d'isolement	Ω	100 ΜΩ	Défaut d'isolement (court circuit).

Exemple de deux mesures de capacité C inter-conducteur

La ligne fait 532 mètres
Toutes les mesures sont ok
La « balance » représente la
symétrie électrique entre le fil A et
le fil B. (défaut si < 60 dB)

La ligne fait toujours 532 mètres
Un défaut de capacité est observé donc entre A
et B. La capacité AE est aussi différentes que la
capacité BE donc présence d'un défaut de
symétrie.

télécoms Les sources de problèmes et distorsions du signal

Affaiblissement du signal

Affaiblissement en dB

Fréquence

Calibre du câble	4/10	5/10	6/10	8/10
Fréquence	dB / km	dB/km	dB/km	dB/km
0,8 kHz	1,61	1,26	1,06	0,81
3,4 kHz	3,25	2,50	2,06	1,5
28,8 kHz	7,6	5,45	4,3	2,79
64 kHz	9,7	6,9	5,5	3,9
128 kHz	11,8	8,7	7,3	5,4
256 kHz	14.5	11.2	9.8	7.6
300 kHz	15	12,4	10,3	7,9
512 kHz	20,6	17,9	14,1	12

L'affaiblissement n'est, en soi, pas un défaut car il ne peut pas être corrigé. Nous verrons plus tard ses conséquences sur le débit binaire supportable par la paire torsadée.

télécoms Les sources de problèmes et distorsions du signal

La diaphonie

Télédiaphonie:
$$Fext_{(dB)} = 10Log \left[\frac{P_u}{P_o} \right]$$

Norme générale : à 800Hz

Next doit être > 76 dB

Fext doit être > 65 dB

Reflexion du signal (Echo)

Réflexion du signal

les paramètres secondaires

L'impédance caractéristique

Impédance vue par l'onde incidente = **Zc**

Impédance caractéristique:

$$Zc = \sqrt{\frac{R + jL\omega}{G + jC\omega}}$$

Fréquence	Impédance caractéristique
800 Hz	600 Ω
40 KHz	100 Ω
150 KHz	135 Ω
2 MHz	120 Ω

Réflexion du signal (Return Loss)

$$\frac{\text{P r\'efl\'echie (Pr)}}{\text{P incidente (Pi)}} = \left[\frac{\underline{Zl} - \underline{Zc}}{\underline{Zl} + \underline{Zc}}\right]^{2}$$

Réflexion du signal (Return Loss)

$$\frac{\text{P r\'efl\'echie (Pr)}}{\text{P incidente (Pi)}} = \left[\frac{\underline{Zl} - \underline{Zc}}{\underline{Zl} + \underline{Zc}}\right]^{2}$$

Problème de réflexion Echo sur la ligne si rupture d'impédance caractéristique.

Pas de réflexion si Zl=Zc Adaptation d'impédance.

$$\frac{\text{P r\'efl\'echie (Pr)}}{\text{P incidente (Pi)}} = \left[\frac{\underline{Zc} - \underline{Zc}}{\underline{Zc} + \underline{Zc}}\right]^2 = 1$$

Ce phénomène de « réflexion » du signal peut etre utilisé pour diagnostiquer des problèmes sur la ligne

iut Colmar

ſĖS₽∂UX informatiques

Distance entre le TDR et la fin de la ligne : d = Vp.tr

iut Colmar

rėseaux

La vitesse de propagation **Vp** dépend du câble et varie entre 53% et 88% de la vitesse de la lumière (typiquement 67%).

Mesures de réflexion du signal TDR = Time Domain Reflectometer (Echometre)

Robot de mesures automatiques de la boucle locale cuivre

Ligne bonne aux essais (LBE)

- Tension continue < 4v sur fil A et B
- Tension alternative < 4v sur fil A et B
- Isolement du fil A par rapport à la terre > 1 M Ω
- Isolement du fil B par rapport à la terre $> 1 \text{ M}\Omega$
- Isolement entre A et B > 1 M Ω
- Déséquilibre capacitif (balance) < 2% (différence entre capacité AE et BE)

Les outils du technicien d'intervention sur la boucle Locale cuivre

Traceur de câble pour localiser et tracer des paires de cuivre dans un répartiteur

Multimètre
Ohmmètre /Voltmètre

Testeur polyvalent
Paramètres électriques
Signal Dsl
connectivité

Echomètre Détection des défauts par réflèctomètrie

Être technicien d'intervention boucle locale, chez <u>@Orange</u>: https://www.youtube.com/watch?reload=9&v=Yls4PaKTAxA

https://www.youtube.com/watch?v=gCsAwRoEEew