4차 산업혁명 시대의 로봇 기술

2020 / 08 / 11

제2신속대응사단 창설추진단

강사 : 이 재 수 (ljs9643@gmail.com)

주관 : (사) 한국공개소프트웨어협회

- 1. 로봇의 과거와 현재
- 2. 민수용 로봇
- 3. 군수용 로봇
- 4. 공개 SW와 로봇

▷ 로봇의 과거와 현재 - 로봇이란?

■ 로봇의 어원

- "Robota": 강제노동, 체코슬로바키아어
- 1921년 극작가 카렐 차펙이 희곡 "R.U.R. (Rossum's Universal Robots, 로섬의 만능로봇)"에서 처음 사용

■ 로봇의 정의

- 고전적 정의
 - 지령에 의해 수동적, 반복적 작업을 수행하는 기계
- 현대적 정의

구분		용도
제조용 로봇		제조 현장에서 생산, 출하 등의 작업 수행 - 정밀도 향상, 표준화를 통한 작업시간 단축 - 산업의 고부가가치화, 생산성 향상에 기여
비제조용 로봇	전문서비스용	비제조 산업(배송 등), 국방, 의료 등에서 전문적인 작업 수행
(서비스로봇)	개인서비스용	가사, 헬스케어, 교육, 레저 등 개인 활동 지원

* 출처 : 로봇의 정의 (위키피디아)

▷ 로봇의 과거와 현재 – 로봇의 역사

^{*} 출처 : 로봇의 현재와 미래, 순천향대 김학용

▷ 로봇의 과거와 현재 - 제조용 로봇

* 출처 : 로봇공항, 한국항공대학 권상주

▷ 로봇의 과거와 현재 - 서비스 로봇

분야		주요 제품	
국방			
<u></u>	군사용 무인비행로봇 Northrop Grumman社(미국) "Triton"	지뢰제거로봇 MineWolf(스위스) "MW240"	군사용 무인지상로봇 iRobot(미국) "Packbot"
필드 (축산 등)			LA G
129	착유/목축로봇 Lely(네덜란드) "Lely Vector"	착유/목축로봇 GEA Farm Technologies (독일) "Mlone"	농업로봇 Bosch Deepfield Robotics(독일) "BoniRob"
의료			
	수술보조/치료로봇 Intuitive Surgical(미국) "DaVinci"	인공관절수술로봇 큐렉소(한국) "robodoc"	로봇기반 진단시스템 KUKA(독일) "Angiography"
물류		· installation	
	창고용 물류로봇 Amazon(미국)	제조업용 물류로봇 KUKA(독일) "omniRob"	일반용 물류로봇 Yaskawa Electric(일본)

가정용 청소로봇 잔디깍기로봇 청소로봇 iRobot社(미국) "Roomba" 삼성전자(한국) "파워봇" MTD Products(미국) "RG3" 엔터테인 먼트 (교육용) 장난감/취미로봇 Sony(일본) "AIBO" 멀티미디어로봇 교육용 로봇 NEC(일본) "PaPeRo" 레고(덴마크) "Mindstorms" 재활보조 휠체어 로봇 감성치료 보조로봇 AIST(일본) "PARO" 로봇팔 Matia Robotics(미국) DEKA(미국) "Luke Arm" "Tek Robotic Mobilization Device"

^{*} 출처 : KIET 산업별 기초분석 – 로봇 –산업연구원 (2020.02)

▷ 로봇의 과거와 현재 - 로봇 시장 규모

<세계 로봇시장 매출액(단위: 백만달러)>

구분	2013년	2014년	2015년	2016년	2017년	2018년	비중
 전 체	14,873	16,371	17,988	19,476	26,474	29,384	100.0%
제조용 로봇	9,507	10,196	11,162	13,125	16,306	16,502	56.2%
서비스용 로봇	5,366	6,175	6,826	6,351	10,168	12,882	43.8%

* 출처 : World Robotics 2019('19.10월, IFR)

< 국내 로봇시장 매출액(단위 : 억원) >

연도	2013년	2014년	2015년	2016년	2017년	2018년	비중
전체	24,193	28,540	42,169	45,972	55,255	58,019	100.0%
제조용 로봇	17,863	21,013	25,831	27,009	34,017	34,202	58.9%
서비스용 로봇	3,331	3,565	6,277	7,464	6,459	6,650	11.5%
로봇부품	2,999	3,962	10,061	11,499	14,779	17,167	29.6%

* 출처 : 2018 로봇산업실태조사('20.1월, 한국로봇산업진흥원)

* 출처 : 2020년 지능형 로봇 실행계획 – 산업부 (2020.04)

▷ 로봇의 과거와 현재 - 국내 로봇 R&D 현황(2019 착수 과제)

【 '19년 신규착수 주요 기술개발 과제 】

분야	주요내용	개발기간	'19예산
돌봄	돌봄로봇 4종(이승·식사·배설 보조, 욕창예방) 개발	'19~'21	40억원
	하반신 완전마비 장애인용 외골격로봇	'19~'21	11억원
웨어러블	건설현장 근로자용 상지 외골격로봇	'19~'21	5억원
	100m를 7초에 주파 가능한 로봇슈트	'19~'20	10억원
01 =	뇌질환 치료용 마이크로로봇	'19~'22	8억원
의료	임플란트 수술 로봇	'19~'21	10억원
물류	실내외자율주행 배송로봇	'19~'21	15억원
查开	사람 추종형 로봇	'19~'21	7억원

【 부처별 '19년 추진 주요내용 】

부처	주요내용	'19년예산
	붕괴지역 매몰자 탐색로봇 개발착수	6억원
ALO H	시설원예 농작업 로봇 개발착수	11억원
산업부	양식장 관리 로봇 개발착수	11억원
	태양광 발전설비 유지보수 로봇 개발착수	11억원
행안부	재난로봇 사용자 훈련시스템 초동품 개발	6억원
해수부	수중건설로봇 해저 상수도관 설치공사 투입, 기술이전	19억 원
농림부	밭농업 로봇 표준플랫폼 개념설계 및 기본설계	9억원
887	고흥지역 생산농가(만감류) 대상 무인 운송 실증	4억 원
방사청	무인수상정 시험평가, 해군 대상 성과 시연	27억원
81/18	착용형 근력증강로봇 시제품 보행시험 및 보완	40억 원
	스마트팜 인공지능기반 병해판별 및 생육계측 기술개발	12억원
농진청	무인트랙터 자율주행 농기계활용 기반기술 연구	3억원
	과수형상 분석 등 스마트 방제기 시제품 제작	2억원

^{*} 출처 : 2020년 지능형 로봇 실행계획 – 산업부 (2020.04)

▷ 로봇의 과거와 현재 - 국내 로봇 R&D 현황 (2020 착수 과제)

【 '20년 신규착수 주요 기술개발 과제 】

분야	주요내용	개발기간	'20예산
웨어러블	소프트 센서 내장형 옷감형 구동기 및 의복형 로봇 기술 개발	'20~'23	5억원
의료	이글 인공지능 기반 척추 경조직 수술로봇 시스템 개발		12억원
기표	일반 외과 수술 중 작업 보조 위한 수술보조로봇 개발	'20~'23	9억원
	주차로봇 시스템 개발	'20~'22	12억원
물류	엘리베이터 자율 승하차 및 실내 배송이 기능한 로봇 시스템 개발	'20~'22	9억원
	로봇활용 간선화물 물류운송차량 하차 작업 시스템 개발	'20~'24	12억원

【 부처별 '20년 추진 주요내용 】

부처	주요내용	'20년 예 산
	붕괴지역 매몰자 탐색로봇	9억원
	위험물 저장탱크 비파괴 검사 로봇시스템 개발 착수	9억원
산업부	시설원예 농작업 로봇	13억원
	양식장 관리 로봇	13억원
	태양광 발전설비 유지보수 로봇	14억 원
행안부	재난로봇 사용자 훈련 시스템 시나리오 확정	8억원
해수부	수중건설로봇 선상지원시스템 개발, 실해역 실험	50억원
농림부	밭농업로봇 플랫폼 기본 메커니즘 설계 및 시제품 개발	9억원
중입구	무인자동화 농업생산 시범단지 실시 설계	6억원
바시쳐	착용형 근력증강 로봇 성능시헙, 시범운용	39억원
방사청	인체-기계 고속동기화 제어기술 개발	1억원
	스마트팜 인공지능 의사결정 플랫폼 구축, 딥러닝 기술	12억원
농진청	무인트랙터현장적용시험을 통한 시스템 개선	4억원
	자율주행 플랫폼과 스마트방제기 통합	2억원
경찰청	기체센서·포집장치를 탑재한 이동형 로봇 개발착수(산업부협조)	2억원

^{*} 출처 : 2020년 지능형 로봇 실행계획 – 산업부 (2020.04)

- 1. 로봇의 과거와 현재
- 2. 민수용 로봇
- 3. 군수용 로봇
- 4. 공개 SW와 로봇

▷ 바리스타 로봇, 서빙로봇, 안드로이드 로봇, 의료로봇, 언택트 감지 로봇

*출처 : 2020-05-14-TJB NEWS-국민 로봇 '휴보'.. 'TJB 앵커 되다' - 로봇들의 대활약 (https://www.youtube.com/watch?v=YOFIs1eX_AM)

▷ 바리스타 로봇, 물류로봇, 서빙로봇, UV 살균 로봇

▷ 재난구조로봇 : DRC-HUBO

* 출처 : 2019-06-03-IEEE Spectrum-Team KAIST's DRC-HUBO Robot Completes Tasks at DARPA Robotics Challenge (https://youtu.be/v6-heLlg850)

▷ 물류로봇

* 출처 : 2020-06-23-산업방송 채널i-기술력 높이고 도입비용 낮춘 '자율주행 물류로봇'(https://youtu.be/Nlb3TjcL0RA)

▷ 웨어러블 로봇

* 출처 : 2020-06-16- KBS대전 -과학을 입다, 웨어러블 로봇(https://youtu.be/jYJZrETrxa0)

- 1. 로봇의 과거와 현재
- 2. 민수용 로봇
- 3. 군수용 로봇
- 4. 공개 SW와 로봇

▷ 밀리테크 4.0 (방위사업청)

* 출처 : 2019-7-18-윤현수 기자의 방위산업보고서: 밀리테크 4.0 시대, 지상 무인로봇 소개 https://www.youtube.com/watch?v=5cFaWC1ndvQ

▷ 밀리테크 4.0 (방위사업청)

- 국방과학연구소 허큘리스
- 최대 120kg의 구조물이나 부상병을 들어서 이동 가능
- 가시광선/적외선카메라/LiDAR 가 장착되어 있음

- LIG넥스원 소형 감시정찰 로봇 PUGV
- 원격운용 기반 감시정찰 및 위험물 제거/조작(EOD) 기능

▷ 보스톤 다이내믹스

* 출처 : 2019-12-12-인터넷에서 가장 사랑받는 로봇 '스팟미니 ' (https://youtu.be/RDrlumhC0WA)

▶ MIT – Mini Cheetah

* 출처 : 2019-2-28-MIT - Backflipping MIT Mini Cheetah (https://youtu.be/xNeZWP5Mx9s)

▷ 4족 로봇 비교

- 스팟 보스톤 다이내믹스
 - 시속 5.4km/h, 90분 작동(배터리 탈착형)
 - 최대 14kg 적재 가능
 - 영하 20도 ~ 영상 45도까지 운용 가능
 - 대당 가격 : 75,000달러 (약 9천만원)
 - 상용화 제품

- 미니치타 MIT 생체모방로봇연구소 (소장 김상배)
 - 시속 21km/h , 무게 9.1kg
 - 연구용 개발품 (스팟의 1/3 크기)
 - 대당 가격 : 약1천만원선
 - 2020년 1월 14일 LG전자와 공동연구 협약 LG전자는 보스턴에 "LG 보스턴 로보틱스랩 " 을 설립하여 협력할 예정

▷ 영상인식 기반 GPS를 이용한 Air-Drop 시스템

* 출처: 2018-09-26- U.S. Army - Joint Precision Aerial Delivery Technologies (https://youtu.be/Q_CFv2MT7gM)

* 참조기사 : 2016-02-03-보급품 • 탄약 수송하는 낙하산 로봇(http://www.irobotnews.com/news/articleView.html?idxno=6771)

⇒ 3D-Lidar (Radar)

* 출처 : Volodyne Lidar – GreenValley International LiBackpack Demo (<u>https://youtu.be/A_mwtKRmrXI</u>)

▷ 군 관련 로봇 R&D

주요 내용				예 산((억원)		
T표 네핑		′19	'20	′21	′22	′23	계
	정부	26.5	_	-	-	-	26.5
복합임무 무인수상정 기술개발 사업	민간	_	_	-	-	-	_
	소계	26.5	_	-	_	_	-
	정부	40.0	39.0	-	-	-	79.0
착용형 근력증강 로봇 기술개발 사업	민간	_	_	_	_	_	_
	소계	40.0	39.0	-	-	-	_
복합신호기반 인체-기계 고속 동기화	정부	_	1.0	10.0	20.0	20.0	51.0
	민간	_	_	_	-	_	_
제어기술	소계	_	1.0	10.0	20.0	20.0	51.0

□ 복합임무 무인수상정 기술개발 사업

구 분	주요 업무 및 역할
	ㅇ 무인수상정 형상설계 기술 개발
방위사업청	ㅇ 무인수상정 원격운용통제 및 자율임무제어 기술 개발
(국방과학연구소)	ㅇ 수중탐색 임무장비 설계/운용 기술 개발
	ㅇ 복합임무 무인수상정 통합 및 시험평가
해양수산부	ㅇ 무인수상정 자율운항 기술 개발
(선박해양플랜트	ㅇ 무인수상정 수상 장애물 탐지 및 회피 기술 개발
연구소)	ㅇ 수상감시정찰 임무장비 설계/운용 기술 개발

* 출처 : 2020년 지능형 로봇 실행계획 – 산업부 (2020.04)

▷ 군 관련 로봇 R&D

□ 착용형 근력증강 로봇 기술개발 사업

구 분	주요 업무 및 역할
방위사업청	ㅇ 고기동 하지근력증강로봇의 고속동기화 제어기술개발
	o 고하중 상·하지 근력증강로봇의 통합운동 제어기술 개발
(국방과학연구소)	o 착용형 상·하지 근력증강로봇용 고밀도 에너지원/최적관리 기술개발
행정안전부	○ 이머그ㅈ요 스바이의 그러지의자녀 케바
(중앙소방학교)	ㅇ 인명구조용 소방대원 근력지원장치 개발

□ 복합신호 기반 인체-기계 고속동기화 제어기술

구 분	주요 업무 및 역할
	ㅇ 병사용 유연착용로봇 시스템 통합 및 성능평가 기술 개발
 방위사업청	ㅇ 착용자 동작인식용 유연센서모듈 및 생체신호 센서 처리모듈 개발
	o 인체공학적 경량 외골격 기구부 및 착용성 증대를 위한 인체 체결부 개발
(국방과학연구소) 	ㅇ 인체공학적 동력전달 메커니즘 및 고반응 유연구동기 제어기술 개발
	ㅇ 고속기동 제어기술 및 복합신호기반 속도적응 보행제어기술 개발
	ㅇ 근로지용 소프트 웨어러블 로봇 시스템 통합 및 보조효과 평가기술 개발
	ㅇ 착용자 동작인식용 대안센서모듈 개발 및 작업력 측정모듈 개발
산업통상자원부	ㅇ 작업복 무게의 의복형 소프트 웨어러블 로봇 개발
	ㅇ 옷감형 구동기 설계기술 개발 및 제어기술 개발
	ㅇ 복합신호기반 근력보조제어기술 개발
과학기술정보통신부	ㅇ 운동의도 인식을 위한 생체신호 유연센서 모듈 개발

* 출처 : 2020년 지능형 로봇 실행계획 – 산업부 (2020.04)

▷ 신속시범획득사업 (2020년 1차)

< 1차 신속시범획득 선정 사업 목록 >

분야	사업명	업체명	시범운용 軍
드론	해안경계용 수직이착륙 드론(회전약)	대한항공	해군, 공군
드론	감시·정찰용 수직이착륙 드론(고정익)	억세스위	육군, 해병대
드론	원거리 정찰용 소형 무인기	성우엔지니어링	육군
안티드론	휴대용 안티드론 건(Anti-drone Gun)	삼정솔루션	해군, 공군, 해병대

https://www.youtube.com/watch?v=Xec1VXHJC3E

신속시범획득 제도란?

민간의 창의적인 신기술이 적용된 제품을 구매 및 軍 시범운용 후, 소요결정과 연결하여 후속물량을 신속히 전력화하는 사업입니다.

4차 산업혁명시대 전쟁의 패러다임 변화

- 전장확대(+우주/사이버), 동시통합戰
- 전투수단 다양화(무인/자율화)
- 전쟁방식 변화(비살상/비대칭戰)

신속시범획득사업 2차 공모

신속시범획득사업은 지난 6월부터 2차 사업 공모를 시작했습니다. 이번 사업 예산은 약 250억 원으로 예산 범위 내에서 시범운용 사업수를 결정할 예정입니다.

20-2차 신속시범획득사업 공모

공모기간 : 2020. 6. 26.(금) ~ 8. 5.(수), 총 40일간 공모방법 : 신속시범획득사업 신청 양식을 작성 후 8. 5.(수) 13:00까지 이메일 제출

4차 산업혁	명 기반 신기술			
① AI/지능화	② 초연결(차세대 통신, 네트워크, IoT 등)	③ Cloud		
④ 가상증강현실	⑤ 개인 전투체계/웨어러블	⑥ CPS/정밀제어		
⑦ 첨단 바이오	⑧ 첨단 사이버/블록체인	⑨ 미래형 방호		
① Big Data ① 자율·무인화/로보틱스 (자율주행, 유무인 복합, 지능형로봇 등)				
② 드론(무인기) ③ 첨단 추진/에너지(신째생 고출력 고위력 레이저 초고속 장사정 장거리 등)				
④ 첨단 소재/센서/가공(스텔스, 지능형센서, 지능형반도체, 양자, 고해상, 3D 프린팅 등)				

▷ 미래도전 국방기술 개발 사업

- 소요가 결정되지 않았거나 예정되지 않은 무기체계에 대해 향후 적용을 목적으로 창의적이고 도전적인 기술을 개발하는 사업

당신의 아이디어를 국방 연구 개발로!

- 공모기간: '20.03.09 ~ '20.05.08. 17:00까지
- 홈페이지: 미래도전국방기술 (www.add.re.kr)
- 공모분야: PM기획, 과제경연
- 제출처 : 국방과학연구소 국방첨단기술연구원 산학회관
- 문의사항: kdarpa@add.re.kr
- 방위사업청 공식 YouTube 채널 참조

https://youtu.be/bUobXiDf 8A (온라인 사업설명회)

* 출처 : 방위사업청 블로그

- AI: Artificial Intelligence
- BT : Bio Technology CT : Cloud Technology
- NT: Nano Technology
- QT: Quantum Technology
- RT: Robot Technology
- ST: Swarm/Space Technology

PM 기획

- PM(Program Manager)이 프로그램과 세부 수행과제들을 직접 기획하고 주관 연구기관 선정. 관리 및 평가를 수행
- 자유공모 지원대상 분야에 대해 PM지원자가 직접 프로그램을 기획하여 제안

과제경연

- · 제안자가 과제를 직접 제안하여 미래도전국방기술에 부합되어 선정된 경우 제안자가 직접 과제를 수행
- · 제안자가 자유로이 선택한 주제에 대해 연구개발 계획서를 제안

방위사업청

국 방 과 학 연 구 소

- 1. 로봇의 과거와 현재
- 2. 민수용 로봇 트렌드
- 3. 군수용 로봇
- 4. 공개 SW와 로봇

▷ 공개SW기반 로봇 플랫폼

■ ROS (Robot Operating System)

- 2007년 시작된 가장 활발한 공개SW 기반 로봇 플랫폼 (Ros.org)
- 메시지 기반 통신을 이용하여 운영
- 하드웨어를 직접 구동하기 보다는 데이터와 알고리즘 처리를 통한 행동 결정이나 제어에 초점을 맞춘 플랫폼

OPRoS (Open Platform for Robotic Service)

- 한국로봇산업협회를 주축으로 개발된 국산 개방형 로봇 SW 플랫폼 (opros.org)
- 로보스타, 퓨처로봇, 유진로봇, 이디에서 사업화 진행

■ YARP (Yet Another Robot Platform)

- 휴머노이드 로봇을 위한 플랫폼 (yarp.it)

MRPT (Mobile Robot Programming Toolkit)

- 자율주행로봇을 위한 SLAM(Simultaneous Localization an Mapping, 동시적 위치 추정 및 지도작성)를 위주로 한 플랫폼(mprt.org)

Gazebo

- 3D Robot Simulator (gazebosim.org)

OROCOS (Open Robot Control Software)

- EU에서 진행된 로봇 플랫폼 (orocos.org)

PyRobot

- ROS 인터페이스로 구성되며, PyTorch를 통한 AI 적용 로봇 플랫폼 (pyrobot.org)
- 페이스북에서 진행

▷ ROS (Robot Operating System)

■ ROS의 특징

- 개발가능 운영체제 : Windows XP이상, Linux, MAC, Android, iOS, Tizen 등
- Node 간 메시지 교환 방식으로 프로그램을 잘게 나누어 공동 개발 가능
- 도구 지원: 명령어 도구, 시각화 도구, GUI 도구, 시뮬레이션 도구
- 로보틱스에서 사용하는 데이터의 규격화
- 모델링, 센싱, 인식, 네비게이션, 매니퓰레이션 기능 지원
- 크게 형성된 생태계

▷ ROS (Robot Operating System)

■ ROS의 생태계

^{*} 출처 : 로봇 운영체제 ROS - 표윤석(로보티즈 Open Source Team) - http://www.oroca.org/

▷ ROS 기반의 자율주행 교육 - 위고코리아

https://www.youtube.com/watch?v=0X5LAdwoEZ0

▶ 2019 물류로봇 대회 - 젤리비 AGV

https://youtu.be/vA-n2qdffi4

▷ 참고 : 육군 과학기술참모 기능 편성 및 운영 계획

■ 전투장비(28명)				
구분	소속 / 직책	구 분	소속 / 직책	
군	육군사관학교 이종우 교수	산	LIG넥스원 유재관 책임연구원	
	육군 3사관학교 차도완 교수		공주대학교 이준호 광학공학과 교수	
	기참부 지상무인체계 기획장교		광운대학교 김진오 로봇학부 교수	
	특전사 전력발전과장	학	GIST 윤정원 지능형 의료로봇 교수	
	기참부 특수전전력기획장교		GIST 이규민 딥러닝과 로봇 교수	
관	기품원김성도전력지원체계개발관리팀장		UNIST(울산) 김건태 에너지공학과 교수	
	산업지원부계중읍 P&D전략기획단장		국방과학연구소 채제욱 책임연구원	
	민군기술협력센터 이정민 수석연구원		국방과학연구소 조장현 책임연구원	
	민군기술협력센터 손승찬 수석연구원		국방과학연구소 최준성 책임연구원	
	기품원 이호진 기반체계팀장		국방과학연구소 허 준 책임연구원	
	기품원 전종욱 현역연구원	연	한국 광기술원 윤선규 수석연구원	
산	동인광학 정 인 대표이사		한국에너지기술연구원박민희기후기술전략센터장	
	이오시스템 김선하 기술 1본부장		국방과학연구소 최유송 책임연구원	
	옵트런택 김재범 대표		KIST관저소재여구다 소지도 여구세터작	

■ 전투물자(27명)

_				
구분	소속 / 직책	구분	소속 / 직책	
	군참부 물자근무계획장교	41	차재혁 동양제강 연구소장	
	교육사 전력지원체계발전팀장	산	이레산업 심정훈 연구소장	
군	군수사 소요계획장교	하	충남대학교 이승구 유기재료공학과 교수	
	전력단 피복/장구류사업관리장교		경북대학교 정의경 섬유시스템공학과 교수	
	전력단 물자기술관리분석장교		건국대학교 박창규 유기나노시스템공학과 교수	
	기품원 임채근 수석연구원		서울대학교 남윤자 의류학과 교수	
관	국방과학연구소 박종규 수석연구원		동서울대학교 최경미 패션디자인과 교수	
	기품원 홍성돈 선임연구원		한국생산기술연구원 박윤철 수석연구원	
	민군기술협력센터 서병일 수석연구원	연	한국섬유개발연구원 송민규 수석연구원	
· 산 ·	코오롱인더스트리 이태상 책임연구원		FITI시험연구원 김종범 본부장	
	코오롱패션머티리얼 김유정 차장			
	고어코리아 김지혜 부장		섬유소재연구원 조성훈 본부장	
	오상엽 삼일방직 이사		한국건설생활환경시험연구원 장연주 파트장	
	성상헌 대한방직 부장		한국과학기술연구원 박상환 수석연구원	

* 출처 :

- 개인전투체계, 미래기술을 만나다
 - : 워리어플랫폼 활성화 방안 마련 전문가 대토론회
- 2019년 1월 30일 14시, 장소: 국회의원회관 대회의실
- 김중로 의원실 발행- 국회도서관 소장자료 (http://dl.nanet.go.kr/law/SearchDetailView.do?cn=PAMP1000059699)

-END-