

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 76700 N
                                                                 M_{\star}
                                                                            = 3940000 Nmm
T_y M_t
                                                                            = 210 \text{ N/mm}^2
          = 49200 N
                                                                            = 200000 \text{ N/mm}^2
          = 127000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 81500 N
                                                                         M_{\star}
                                                                                    = 4050000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 52200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 91000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 94500 N
                                                                        M_{\star}
                                                                                    = 4990000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 39600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 106000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 67100 N
                                                                        M_{\star}
                                                                                    = 5030000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 42900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 113000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 139000 N
                                                                       M_{\star}
                                                                                   = 13600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 101000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 258000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 13900000 Nmm
Ν
           = 147000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 108000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 183000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 17200000 Nmm
Ν
           = 171000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 81900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 216000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 17400000 Nmm
Ν
           = 121000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 88900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 230000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 102000 N
                                                                   M_{\star}
                                                                               = 4260000 Nmm
T<sub>y</sub>
M₊
                                                                               = 210 \text{ N/mm}^2
           = 47900 N
                                                                              = 200000 \text{ N/mm}^2
          = 218000 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                       \sigma_{\text{IId}}
                                                                                                                                       \sigma_{tresca} =
                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                                                       \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 111000 N	M,	= 159000 Nmm		= 210 N/mm ²	G	= 75000 N/mm ²
T_{y}	= 51200 N	M_x	= 4600000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}		$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_l =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	* (* yc)	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	-	
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                    = 5210000 Nmm
Ν
           = 124000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 38400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 181000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                           = 5490000 Nmm
Ν
          = 90400 N
                                                                M_{\star}
          = 41900 N
                                                                           = 210 \text{ N/mm}^2
M,₊
                                                                           = 200000 \text{ N/mm}^2
          = 197000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 205000 N
                                                                       M_{\star}
                                                                                   = 23500000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 139000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 471000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 24600000 Nmm
Ν
           = 219000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 149000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 337000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 253000 N
                                                                       M_{\star}
                                                                                   = 29400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 112000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 394000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 180000 N
                                                                       M_{\star}
                                                                                   = 30200000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 122000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 422000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 88800 N
                                                                        M_{\star}
                                                                                    = 4870000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 58400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 167000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 94500 N
                                                                        M_{\star}
                                                                                    = 5010000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 62000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 119000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 109000 N
                                                                        M_{\star}
                                                                                    = 6160000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 47100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 139000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 77800 N
                                                                        M_{\star}
                                                                                    = 6220000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 51000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 149000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 157000 N
                                                                       M_{\star}
                                                                                   = 15900000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 115000 N
                                                                                  = 200000 \text{ N/mm}^2
           = 327000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 167000 N	M _t	= 233000 Nmm		= 210 N/mm ²	G	= 75000 N/mm ²
T_v	= 123000 N	M_x	= 16300000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_i =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}		$\tau(T_{yb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
		,					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 194000 N
                                                                       M_{\star}
                                                                                   = 20200000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 93500 N
                                                                                   = 200000 \text{ N/mm}^2
           = 274000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 20400000 Nmm
Ν
           = 137000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 101000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 292000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 115000 N
                                                                        M_{\star}
                                                                                    = 5250000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 56900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 272000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                    = 5670000 Nmm
Ν
           = 125000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 60900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 198000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                    = 6430000 Nmm
Ν
           = 140000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 45700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 225000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                              = 6800000 Nmm
Ν
           = 102000 N
                                                                   M_{\star}
T<sub>y</sub>
M₊
                                                                              = 210 \text{ N/mm}^2
           = 49900 N
                                                                              = 200000 \text{ N/mm}^2
          = 245000 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                       \sigma_{\text{IId}}
                                                                                                                                       \sigma_{tresca} =
                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                                                       \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 26800000 Nmm
Ν
           = 228000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 156000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 574000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 28200000 Nmm
Ν
           = 244000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 166000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 411000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 280000 N
                                                                       M_{\star}
                                                                                   = 33600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 125000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 480000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 34700000 Nmm
Ν
           = 200000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 137000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 514000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 79400 N
                                                                        M_{\star}
                                                                                    = 4340000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 52200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 131000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 84500 N
                                                                         M_{\star}
                                                                                    = 4460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 210 \text{ N/mm}^2
            = 55500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 94300 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 97800 N
                                                                        M_{\star}
                                                                                    = 5490000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 42100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 110000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 69600 N
                                                                        M_{\star}
                                                                                    = 5550000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 45600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 118000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 142000 N
                                                                     M_{\star}
                                                                                 = 14300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 104000 N
                                                                                 = 200000 \text{ N/mm}^2
           = 264000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 151000 N	M _t	= 188000 Nmm		= 210 N/mm ²	G	= 75000 N/mm ²
T_y	= 111000 N	M_x	= 14700000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_c$	_i =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}		$\tau(T_{yb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
		•					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 175000 N
                                                                     M_{\star}
                                                                                 = 18200000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 84500 N
                                                                                 = 200000 \text{ N/mm}^2
           = 221000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                 = 18400000 Nmm
Ν
           = 124000 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 91900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 236000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                  = 4770000 Nmm
Ν
           = 105000 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 210 \text{ N/mm}^2
           = 51900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 225000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 114000 N	M _t	= 163000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 55600 N	M_x	= 5160000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 128000 N
                                                                 M_{\star}
                                                                            = 5850000 Nmm
T<sub>y</sub>
M₊
                                                                            = 210 \text{ N/mm}^2
          = 41700 N
                                                                            = 200000 \text{ N/mm}^2
          = 186000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 93200 N
                                                                      M_{\star}
                                                                                  = 6180000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 210 \text{ N/mm}^2
           = 45500 N
                                                                                  = 200000 \text{ N/mm}^2
           = 203000 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 209000 N	M,	= 480000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 143000 N	M_x	= 24600000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{d}$	=	σ_{tresca}	=	·	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 224000 N	M _t	= 344000 Nmm		= 210 N/mm ²	G	= 75000 N/mm ²
T_v	= 153000 N	M_x	= 25900000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}		$\tau(T_{yb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
		•					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 257000 N
                                                               M_{\star}
                                                                         = 30800000 Nmm
T_y M_t
                                                                         = 210 \text{ N/mm}^2
          = 115000 N
                                                                         = 200000 \text{ N/mm}^2
          = 401000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 184000 N
                                                                     M_{\star}
                                                                                 = 31800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 126000 N
                                                                                 = 200000 \text{ N/mm}^2
           = 430000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                     \tau(T_{yc}) =
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 91900 N
                                                                      M_{\star}
                                                                                  = 5320000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 210 \text{ N/mm}^2
           = 61800 N
                                                                                 = 200000 \text{ N/mm}^2
           = 172000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 97900 N
                                                                      M_{\star}
                                                                                  = 5490000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 210 \text{ N/mm}^2
           = 65700 N
                                                                                  = 200000 \text{ N/mm}^2
           = 123000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 113000 N
                                                                     M_{\star}
                                                                                 = 6740000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 49800 N
                                                                                 = 200000 \text{ N/mm}^2
           = 144000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 80500 N
                                                                      M_{\star}
                                                                                 = 6830000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 210 \text{ N/mm}^2
           = 54100 N
                                                                                 = 200000 \text{ N/mm}^2
           = 154000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 161000 N
                                                                     M_{\star}
                                                                                 = 16700000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 119000 N
                                                                                 = 200000 \text{ N/mm}^2
           = 334000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 171000 N	M _t	= 238000 Nmm		= 210 N/mm ²	G	= 75000 N/mm ²
T_v	= 127000 N	M_x	= 17200000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_i =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
		•					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 198000 N
                                                                      M_{\star}
                                                                                 = 21200000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 96400 N
                                                                                 = 200000 \text{ N/mm}^2
           = 280000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 141000 N
                                                                       M_{\star}
                                                                                   = 21500000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 104000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 299000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                 = 5840000 Nmm
Ν
           = 119000 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 61200 N
                                                                                 = 200000 \text{ N/mm}^2
           = 280000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                          = 6310000 Nmm
Ν
          = 129000 N
                                                                M_{\star}
T_y \\ M_t
                                                                          = 210 \text{ N/mm}^2
          = 65700 N
                                                                          = 200000 \text{ N/mm}^2
          = 204000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                          = 7160000 Nmm
Ν
          = 144000 N
                                                               M_{\star}
T_y M_t
                                                                         = 210 \text{ N/mm}^2
          = 49200 N
                                                                         = 200000 \text{ N/mm}^2
          = 232000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 105000 N
                                                                      M_{\star}
                                                                                 = 7580000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 53800 N
                                                                                 = 200000 \text{ N/mm}^2
           = 252000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 232000 N
                                                                     M_{\star}
                                                                                 = 28100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 160000 N
                                                                                 = 200000 \text{ N/mm}^2
           = 585000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 248000 N	M,	= 419000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 171000 N	M_x	= 29600000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	=	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 286000 N
                                                                       M_{\star}
                                                                                   = 35200000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 129000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 489000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 204000 N
                                                                       M_{\star}
                                                                                   = 36300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 141000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 524000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 82200 N
                                                                        M_{\star}
                                                                                    = 4750000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 210 \text{ N/mm}^2
            = 55200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 136000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 87600 N	M _t	= 97600 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 58700 N	M_x	= 4900000 Nmm	Ē	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_I =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 101000 N
                                                                        M_{\star}
                                                                                    = 6010000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 44500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 114000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 72100 N
                                                                        M_{\star}
                                                                                    = 6090000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 48300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 122000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 145000 N
                                                                       M_{\star}
                                                                                   = 15100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 108000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 270000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 154000 N	M,	= 192000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 115000 N	M_x	= 15500000 Nmm	Ē	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 179000 N
                                                                       M_{\star}
                                                                                   = 19200000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 87200 N
                                                                                   = 200000 \text{ N/mm}^2
           = 226000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 19400000 Nmm
Ν
           = 127000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 94800 N
                                                                                   = 200000 \text{ N/mm}^2
           = 241000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                    = 5310000 Nmm
Ν
           = 108000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 55900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 231000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 5740000 Nmm
                                                                                                                                                            = 75000 \text{ N/mm}^2
Ν
           = 118000 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 59900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 168000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                              = 6510000 Nmm
Ν
          = 132000 N
                                                                   M_{\star}
T<sub>y</sub>
M₊
                                                                              = 210 \text{ N/mm}^2
           = 44900 N
                                                                              = 200000 \text{ N/mm}^2
          = 192000 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                                                                                      \sigma_{tresca} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 6890000 Nmm
                                                                                                                                                             = 75000 \text{ N/mm}^2
Ν
           = 96100 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 49100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 209000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 213000 N	M _t	= 489000 Nmm		= 210 N/mm ²	G	= 75000 N/mm ²
T_v	= 147000 N	M_x	= 25800000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_{v})_{d}$	=	σ_{tresca}	=	•	
		•					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 228000 N
                                                                       M_{\star}
                                                                                   = 27100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 157000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 350000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 262000 N
                                                                       M_{\star}
                                                                                   = 32300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 118000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 409000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 187000 N
                                                                       M_{\star}
                                                                                   = 33300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 129000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 438000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 85000 N
                                                                        M_{\star}
                                                                                    = 5170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 58200 N
                                                                                   = 200000 \text{ N/mm}^2
           = 140000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 90700 N
                                                                        M_{\star}
                                                                                    = 5350000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 62000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 100000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 104000 N
                                                                       M_{\star}
                                                                                   = 6550000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 47000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 117000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 74600 N
                                                                        M_{\star}
                                                                                    = 6650000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
            = 51000 N
                                                                                    = 210 \text{ N/mm}^2
                                                                                    = 200000 \text{ N/mm}^2
           = 126000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 149000 N
                                                                       M_{\star}
                                                                                   = 15900000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 111000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 276000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 158000 N	M _t	= 197000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_y	= 118000 N	M_x	= 16400000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_u^*	=	$\tau(T_{yc})$	=	σ_{lls}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
                                                                                   = 20100000 Nmm
Ν
           = 183000 N
                                                                       M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 89800 N
                                                                                   = 200000 \text{ N/mm}^2
           = 231000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 130000 N
                                                                       M_{\star}
                                                                                   = 20400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 210 \text{ N/mm}^2
           = 97700 N
                                                                                   = 200000 \text{ N/mm}^2
           = 246000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	racollalivo. Tappresentai	eranc	damento delle teris, tangenziali.		
N	= 111000 N	M_{x}	= 5980000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 60900 N	σ_a	$= 210 \text{ N/mm}^2$		
$\dot{M_t}$	= 237000 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	=	σ_{IId}	=
u_o	=	$\tau(T_{yc})$		σ_{tresca}	=
V_{o}		$\tau(T_{yb})_{c}$		σ_{mises}	
A _.	=	$\tau(T_y)_s$		$\sigma_{\text{st.ven}}$	
A S _u	=	$\tau(T_y)_d$	=	θ_{t}	=
C_{w}	=	σ	=	r_{u}	=
J_u	=	$ au_s$	=	r_{v}	=
J_v	=	τ_{d}	=	r_o	=
J_t	=	σ_{ls}	=	J_p	=
σ(N)	=	σ_{IIs}	=	•	
$\sigma(M_{_{X}})$	=	σ_{ld}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 121000 N	M _t	= 174000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_y	= 66100 N	M_x	= 6600000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 134000 N
                                                                      M_{\star}
                                                                                 = 7350000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 49100 N
                                                                                 = 200000 \text{ N/mm}^2
           = 196000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 98700 N
                                                                M_{\star}
                                                                           = 7950000 Nmm
T_y \\ M_t
                                                                           = 210 \text{ N/mm}^2
          = 54400 N
                                                                          = 200000 \text{ N/mm}^2
          = 215000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 217000 N
                                                               M_{\star}
                                                                          = 26900000 Nmm
T_y \\ M_t
                                                                          = 210 \text{ N/mm}^2
          = 151000 N
                                                                         = 200000 \text{ N/mm}^2
          = 498000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 232000 N
                                                                     M_{\star}
                                                                                 = 28400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 210 \text{ N/mm}^2
           = 162000 N
                                                                                 = 200000 \text{ N/mm}^2
           = 357000 Nmm
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                           \sigma_{\text{IId}}
                                                                                                                                           \sigma_{tresca} =
                                                                                                                                           \sigma_{\text{mises}} =
                                                                                                                                           \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 267000 N
                                                               M_{\star}
                                                                          = 33800000 Nmm
T_y \\ M_t
                                                                          = 210 \text{ N/mm}^2
          = 122000 N
                                                                         = 200000 \text{ N/mm}^2
          = 416000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 191000 N
                                                              M_{\star}
                                                                        = 34900000 Nmm
                                                                        = 210 \text{ N/mm}^2
          = 133000 N
                                                                        = 200000 \text{ N/mm}^2
          = 446000 Nmm
                                                              \tau(M_t)_d =
y_{G}
                                                                                                                            \sigma_{\text{IId}}
                                                                                                                            \sigma_{tresca} =
                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                              \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 87800 N
                                                                      M_{\star}
                                                                                  = 5610000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 210 \text{ N/mm}^2
           = 61200 N
                                                                                  = 200000 \text{ N/mm}^2
           = 145000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 93800 N
                                                                        M_{\star}
                                                                                    = 5810000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
           = 65200 N
                                                                                   = 200000 \text{ N/mm}^2
           = 104000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 108000 N
                                                                      M_{\star}
                                                                                  = 7100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 210 \text{ N/mm}^2
           = 49400 N
                                                                                 = 200000 \text{ N/mm}^2
           = 121000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 77100 N
                                                                        M_{\star}
                                                                                    = 7230000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 210 \text{ N/mm}^2
            = 53700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 130000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```