Homework

Условия

Task 1

$$\Delta^{2} = \frac{\mu_{1} - \mu_{2}}{\sigma} = \frac{0.487 - 0.457}{0.0034} = 8.824$$

$$n = \frac{2\left(Z_{1-\frac{\alpha}{2}} + Z_{1-\beta}\right)^{2}}{\Delta^{2}} = \frac{2(1.96 + 0.84)^{2}}{8.824} = 1.777 \approx 2$$

Task 2

Скачаем данные отсюда

Установим все необходимые библиотеки

Code

```
install.packages("BiocManager")
BiocManager::install("ShortRead")
BiocManager::install("Biostrings")
BiocManager::install("phyloseq")
```

Возьмем N = 100 и подготовим файлы для BLAST:

```
Code
N < -100
fastq file1 <- "animal1.01.16S.R1.fastq"
fastq file2 <- "animal1.02.16S.R1.fastq"
fq1 <- readFastq(fastq_file1)
fq2 <- readFastq(fastq file2)
cat("Total reads in file 1:", length(fq1), "\n")
cat("Total reads in file 2:", length(fq2), "\n")
set.seed(123)
sampled fq1 <- fq1[sample(seq along(fq1), min(N, length(fq1)))]
sampled fq2 < -fq2[sample(seq along(fq2), min(N, length(fq2)))]
sampled reads <- c(sread(sampled fq1), sread(sampled fq2))
names(sampled reads) <- c(as.character(id(sampled fq1)), as.character(id(sampled fq2))
fasta filename <- "sampled sequences 2.fasta"
writeXStringSet(sampled reads, filepath = fasta filename)
cat("Sampled sequences written to", fasta filename, "\n")
```

Получим следующий результат

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	Uncultured bacterium clone 19-7 16S ribosomal RNA gene_partial sequence	uncultured bacterium	248	248	100%	1e-61	100.00%	1409	KT029396.1
✓	Uncultured bacterium clone 19-24 16S ribosomal RNA gene, partial sequence	uncultured bacterium	248	248	100%	1e-61	100.00%	1409	KT029388.1
$\overline{\mathbf{v}}$	<u>Uncultured Rhizobiales bacterium clone SHAI009 16S ribosomal RNA gene_partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1446	HM108368.1
$\overline{\mathbf{v}}$	<u>Uncultured Rhizobiales bacterium clone SHAJ045 16S ribosomal RNA gene_partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1446	HM108476.1
✓	<u>Uncultured Rhizobiales bacterium clone SHAJ066 16S ribosomal RNA gene, partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1452	HM108495.1
✓	Bartonella sp. M0280 16S ribosomal RNA gene_partial sequence	Bartonella apihabitans	248	248	100%	1e-61	100.00%	1393	ON614189.1
✓	Bartonella apis strain B2 16S ribosomal RNA gene, partial sequence	Bartonella apis	248	248	100%	1e-61	100.00%	1049	OP359047.1
☑	<u>Uncultured Rhizobiales bacterium clone SHAJ016 16S ribosomal RNA gene_partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1449	HM108453.1
✓	<u>Uncultured Rhizobiales bacterium clone SHAJ071 16S ribosomal RNA gene, partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1450	HM108499.1
✓	Uncultured Rhizobiales bacterium clone SHAJ020 16S ribosomal RNA gene_partial sequence	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1454	HM108457.1
	Bartonella apis strain B10834G6 16S ribosomal RNA gene, partial sequence	Bartonella apis	248	248	100%	1e-61	100.00%	1394	ON564884.1
✓	<u>Uncultured alpha proteobacterium clone HBG_A4R5-2 16S ribosomal RNA gene, partial seq</u>	uncultured Alphaproteobacteria	248	248	100%	1e-61	100.00%	1295	DQ837624.1
	Uncultured Rhizobiales bacterium clone SHAI058 16S ribosomal RNA gene, partial sequence	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1448	HM108414.1
✓	<u>Uncultured Rhizobiales bacterium clone SHAI019 16S ribosomal RNA gene_partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1445	HM108378.1
	Rhizobiales bacterium PEB0181 16S ribosomal RNA gene, partial sequence	Rhizobiales bacterium PEB0181	248	248	100%	1e-61	100.00%	1015	JQ673258.1
✓	Rhizobiales bacterium PEB0161 16S ribosomal RNA gene, partial sequence	Rhizobiales bacterium PEB0161	248	248	100%	1e-61	100.00%	1037	JQ673232.1
$\overline{\mathbf{Z}}$	Uncultured Rhizobiales bacterium clone SHAI017 16S ribosomal RNA gene, partial sequence	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1449	HM108376.1
	Bartonella sp. W8097 16S ribosomal RNA gene, partial sequence	Bartonella apihabitans	248	248	100%	1e-61	100.00%	1396	OK032115.1
	Uncultured Rhizobiales bacterium clone SHAJ078 16S ribosomal RNA gene, partial sequence	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1430	HM108504.1
	<u>Uncultured Rhizobiales bacterium clone SHAI075 16S ribosomal RNA gene, partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1425	HM108430.1
	<u>Uncultured Rhizobiales bacterium clone SHAJ009 16S ribosomal RNA gene, partial sequence</u>	uncultured Hyphomicrobiales b	248	248	100%	1e-61	100.00%	1445	HM108446.1
	Rhizobiales bacterium d3-7 16S ribosomal RNA gene_partial sequence	Rhizobiales bacterium d3-7	248	248	100%	1e-61	100.00%	1041	KM454403.1
	Bartonella apis strain Acm18 16S ribosomal RNA gene, partial sequence	Bartonella apis	248	248	100%	1e-61	100.00%	1337	PQ136526.1
	Uncultured bacterium clone 19-15 16S ribosomal RNA gene, partial sequence	uncultured bacterium	248	248	100%	1e-61	100.00%	1409	KT029379.1
~	Uncultured bacterium clone 19-5 16S ribosomal RNA gene, partial sequence	uncultured bacterium	248	248	100%	1e-61	100.00%	1409	KT029394.1
	Uncultured Bifidobacterium sp. clone Seq4 16S ribosomal RNA gene_partial sequence	uncultured Bifidobacterium sp.	248	248	100%	1e-61	100.00%	404	OQ809349.1
	Bartonella apis strain BBC0108 16S ribosomal RNA gene_partial sequence	Bartonella apis	248	248	100%	1e-61	100.00%	1376	KP987883.1
~	Rhizobiales bacterium PEB0172 16S ribosomal RNA gene, partial sequence	Rhizobiales bacterium PEB0172	248	248	100%	1e-61	100.00%	1042	JQ673247.1

Результаты BLAST показывают, что многие из наиболее совпадающих последовательностей помечены такими названиями, как Bartonella apis (и вариантами, такими как Bartonella apihabitans) и несколькими некультивируемыми бактериями Rhizobiales.

Bartonella apis — это бактерия, известная как часть микробиоты кишечника медоносной пчелы. Аналогично, многие из некультивируемых клонов Rhizobiales, часто появляются в исследованиях микробиома пчел. Таким образом, из файлов FASTQ (animal1.01 и animal1.02) попадания BLAST четко указывают на медоносную пчелу как на организм-хозяина.

Посмотрим на animal2.rds

```
Code

> animal2_data <- readRDS("animal2.rds")

> print(animal2_data)

phyloseq-class experiment-level object

otu_table() OTU Table: [ 1605 taxa and 66 samples ]

sample_data() Sample Data: [ 66 samples by 8 sample variables ]

tax_table() Taxonomy Table: [ 1605 taxa by 7 taxonomic ranks ]

phy_tree() Phylogenetic Tree: [ 1605 tips and 1602 internal nodes ]

> animal2_data@tax_table

Taxonomy Table: [ 1605 taxa by 7 taxonomic ranks]:
```

Gracilibacteria bacterium canine oral taxon 394, и другие таксоны, а также SR1 bacterium

Таблица 1: Taxonomic Classification

ID	Domain	Phylum	Class	Order
6c3b47bbac4c7af75368b9aa77620a3a e9351dc418b0f459ed95e8a2e8a62e6b e705fdb7baa2313231f39c7b006fe37a dd935cf52df4bb39465baf1dcd5213ab 1f2a4e9732fdce6657fefbb0cc33a65d a361007be7cd7ff8604a1199c813406b 4af2a3b45dc62bbe3d96a1c0c9500190 50c2209b3c3737fa82aad044728dd787 209d2a7b32e4fd9500896c1910760c01 c4a45ece61cfd37714f3fa0cb99a08e2 a49f96fc5533b4f6050b9457c2ba00b2 a633f75d17e763b5e3063f169d35092b 4820c403cbb92d1f4cf2036b524965d0 ab90adba6e6d0d459f42f5a363e62f9b 6e03661027b3ad3d45bcb252b8002317 0355e1414645c8f8e4312f796e1a5e8c 3c90991156b7aeeeac6053c02cd95991 c3049f7dcdde87039ee2a533790f34a2 0bd202c297ac9312c3391422f172eb47 695a500552c94eca85fa2e887f8a40b4	Bacteria	Proteobacteria Patescibacteria Dependentiae Dependentiae Dependentiae Dependentiae Dependentiae Proteobacteria Acidobacteria Acidobacteria Acidobacteria Acidobacteria Patescibacteria	Phylum_Proteobacteria ABY1 Babeliae Babeliae Babeliae Babeliae Babeliae Babeliae Gammaproteobacteria Acidobacteriia Acidobacteriia Acidobacteriia Acidobacteriia Gracilibacteria	Phylum_Proteobacteria Class_ABY1 Babeliales Babeliales Babeliales Babeliales Babeliales Babeliales Babeliales Enterobacteriales Solibacterales Solibacterales Solibacterales Candidatus Falkowbacteria Class_Parcubacteria Class_Parcubacteria Gracilibacteria bacterium oral taxon 873 Gracilibacteria bacterium canine oral taxo Gracilibacteria bacterium canine oral taxo JGI 0000069-P22 JGI 0000069-P22
aa41cbc5cc7db4ac206c34c7aa776d82 9e26d3b75fa2e1b0b1b081f748597307	Bacteria Bacteria	Tenericutes Patescibacteria	Mollicutes CPR2	Mycoplasmatales uncultured Firmicutes bacterium

canine oral, Prevotella sp. canine oral встречаются в полости рта собак, также часть встречается и у кошек. Следовательно это собака или кошка.

По запросам на мультик с пчелой и собакой/кошкой выдается Bee and PuppyCat

Task 3

Скачаем данные отсюда

Установим все:

Code

import pandas as pd import numpy as np

from sklearn.model selection import StratifiedKFold

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

Подготовим данные

Code

df = pd.read_csv('task_3.csv', index_col=0)
samples df = df.iloc[:, :59].T

labels = samples df.index.str.split(' ').str[0] # NG, NZ, XZ

Инициализируем K-fold

Code n_splits = 5 skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42) accuracy_scores = [] class_reports = []

Обучение

```
for train_idx, test_idx in skf.split(samples_df, labels):
    X_train, X_test = samples_df.iloc[train_idx], samples_df.iloc[test_idx]
    y_train, y_test = labels[train_idx], labels[test_idx]

scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)

model = RandomForestClassifier(n_estimators=100, random_state=42)
    model.fit(X_train_scaled, y_train)

y_pred = model.predict(X_test_scaled)
    accuracy = accuracy_score(y_test, y_pred)
    report = classification_report(y_test, y_pred, output_dict=True)

accuracy_scores.append(accuracy)
    class_reports.append(report)
```

Теперь можно посмотреть на точность

```
Code

mean_accuracy = np.mean(accuracy_scores)

std_accuracy = np.std(accuracy_scores)

print(f"Mean Accuracy: {mean_accuracy:.3f} ± {std_accuracy:.3f}\n")
```

Получим следующее: Mean Accuracy: 0.983 ± 0.033

```
code
avg_precision = np.mean([r['macro avg']['precision'] for r in class_reports])
avg_recall = np.mean([r['macro avg']['recall'] for r in class_reports])
avg_f1 = np.mean([r['macro avg']['f1-score'] for r in class_reports])
print(f"Macro-Averaged Metrics:")
print(f"Precision: {avg_precision:.3f}, Recall: {avg_recall:.3f}, F1-Score: {avg_f1:.3f}")
print("\nClassification Report (Last Fold):")
print(classification_report(y_test, y_pred))
```

Таблица 2: Classification Metrics

Metric	Precision	Recall	F1-Score	Support				
Macro-Averaged	0.989	0.967 0.972		-				
Classification Report (Last Fold)								
Class	Precision	Recall	F1-Score	Support				
NG	1.00	1.00	1.00	1				
NZ	1.00	1.00	1.00	5				
XZ	1.00	1.00	1.00	5				
Accuracy	-	-	-	1.00				
Macro Average	1.00	1.00	1.00	11				
Weighted Average	1.00	1.00	1.00	11				

весь код также можно посмотреть в Google Colab