ccast and noaa relative fov response

H. E. Motteler, L. L. Strow

UMBC Atmospheric Spectroscopy Lab Joint Center for Earth Systems Technology

December 17, 2014

test methods

- ▶ start with CCAST and NOAA high res data from 6–8 Dec 2014
- take the average and standard deviation of FOR 15 and 16 independently for each FOV, and compare these values with the values for FOV 5
- results shown here are for 32,186 CCAST and 32,120 NOAA descending FORs
- as a precaution, FORs where any LW channel was greater than 320K were discarded
- the intent is to show variation among FOVs, as might arise from varying nonlinearity or artifacts of the self-apodization correction

ccast LW mean

noaa LW mean

ccast LW fov groups

noaa LW fov groups

ccast minus noaa fovs 1, 2, and 5

ccast minus noaa fov groups

ccast minus noaa relative fov groups

LW discussion

- CCAST and NOAA are generally in good agreement
- ▶ in the LW, CCAST is around 0.02K colder than NOAA
- ▶ in the previous slide, "ccast minus noaa relative" is (ccast all FOVs - FOV 5) - (noaa all FOVs - FOV 5)
- the CCAST nonlinearity correction uses the UW a2 values
- the slightly greater difference for the corner FOVs at the low end of the band may be due to different processing filters

ccast MW mean

noaa MW mean

ccast MW fov groups

noaa MW fov groups

ccast minus noaa fovs 1, 2, and 5

ccast minus noaa fov groups

ccast MW standard deviation

MW discussion

- ► FOV 7 is the least linear, and only partially corrected for with the CCAST first order adjustment
- the NOAA variation in FOV response is much greater than CCAST
- this may be due to problems with the nonlinearity correction
- ▶ a normalized frequency domain representation of the numeric filter needs a scaling factor to match the original nonlinearity measurements. We used 1.6047 for LW, 0.9826 for MW, and 0.2046 for SW

ccast SW mean

noaa SW mean

ccast SW fov groups

noaa SW fov groups

ccast minus noaa fovs 1, 2, and 5

ccast minus noaa fov groups

SW discussion

- CCAST and NOAA are generally in good agreement
- residuals are significantly larger than for the LW band
- residuals and NOAA vs CCAST differences are generally greatest for the coldest lines and regions
- ► FOV 7 minus FOV 5 is significantly greater than for other FOVs at 2255 and 2359 cm⁻¹, for both CCAST and NOAA

conclusions

- there is significant convergence in the CCAST and NOAA processing
- variation due to nonlinearity, especially for the MW band, is significantly greater than some of the more subtle effects we have been considering recently
- note again that these results are relative to FOV 5 or are direct NOAA vs CCAST comparisons, and not comparisons with with expected observed radiance from model data or radiance from other sounders
- supplementary slides
 - a comparison of standard deviations
 - CCAST ILS and calibration equations

ccast LW std

noaa LW std

ccast MW std

noaa MW std

ccast SW std

noaa SW std

calibration equation

The CCAST reference calibration equation is

$$r_{\text{OBS}} = F \cdot r_{\text{ICT}} \cdot f \cdot \text{SA}^{-1} \cdot f \cdot \frac{\text{ES} - \text{SP}}{\text{IT} - \text{SP}}$$

- r_{OBS} is calibrated radiance at the user grid
- F is Fourier interpolation from sensor to user grid
- f is a raised-cosine bandpass filter
- ► r_{ICT} is expected ICT radiance at the sensor grid
- ► SA⁻¹ is the inverse of the ILS matrix
- ES is earth-scene count spectra
- ▶ IT is calibration target count spectra
- SP is space-look count spectra

calibration notes

- the IT and SP looks are averaged over several scans
- ▶ the UW nonlinearity correction is applied to count spectra before application of the calibration equation
- ▶ as part of the nonlinearity correction we divide the count spectra by the numeric filter at the sensor grid, but note this cancels out in the ratio (ES SP)/(IT SP)
- ▶ the passband for f is the user grid. The wings are parameters currently set at 15, 20, and 22 cm⁻¹ for the LW, MW, and SW bands
- ▶ $f \cdot SA^{-1} \cdot f$ can be considered as a physically-based smoothing of the rows and columns of SA^{-1}
- F is a zero-filled double Fourier interpolation

ccast ILS

the CrIS ILS for FOV; can be represented as

$$\int_{\text{FOV}_i} w_i(\theta) \operatorname{psinc}(2\pi d(v - v_0 \cos \theta)) d\theta$$

- ▶ d is max OPD
- v is frequency
- v₀ is reference or channel frequency
- ▶ psinc(x) = sin(x)/(n sin(x/n)) for $x \neq 0$, 1 for x = 0, where n is the number of points in the sensor grid
- ▶ psinc($2\pi d(v v_0 \cos \theta)$) gives the ILS for a single ray at off-axis angle θ
- ▶ integration is over the intersection of on-axis arcs with FOV_i, with $w_i(\theta)$ the length of an intersecting arc at off-axis angle θ