

Navigation and Ancillary Information Facility

Instrument Kernel IK

June 2019 (Class version)

Purpose

Navigation and Ancillary Information Facility

- The Instrument Kernel serves as a repository for instrument-specific geometry information useful within the SPICE context.
 - Always included:
 - » If an instrument has a field-of-view (FOV), specifications for an instrument's size, shape, and orientation
 - Other possibilities:
 - » Timing parameters
 - » Optical parameters
 - » Detector geometric parameters
 - » Optical distortion parameters
- An antenna or solar array or other structure for which pointing is important can also use the IK
- Note: instrument mounting alignment data are specified in a mission's Frames Kernel (FK)

I-Kernel Structure

Navigation and Ancillary Information Facility

• An I-Kernel is a SPICE text kernel. The format and structure of a typical I-Kernel is shown below.

```
KPL/IK
   Comments describing the keywords and values
   to follow, as well as any other pertinent
   information.
      \begindata
         Keyword = Value(s) Assignment
         Keyword = Value(s) Assignment
      \begintext
   More descriptive comments.
      \begindata
         Keyword = Value(s) Assignment
      \begintext
```

More descriptive comments. etc...

I-Kernel Contents (1)

Navigation and Ancillary Information Facility

Examples of IK keywords, with descriptions:

INS-94031_FOCAL_LENGTH
 MGS MOC NA focal length

INS-41220_IFOV
 MEX HRSC SRC pixel angular size

INS-41130_NUMBER_OF_SECTORS
 MEX ASPERA NPI number of sectors

- In general SPICE does not require any specific keywords to be present in an IK
 - One exception is a set of keywords defining an instrument's FOV, if the SPICE Toolkit's GETFOV routine is planned to be used to retrieve the FOV attributes
- The requirements on keywords in an IK are the following:
 - Keywords must begin with INS[#], where [#] is replaced with the NAIF instrument ID code (which is a negative number)
 - The total length of the keyword must be less than or equal to 32 characters

Keywords are case-sensitive (Keyword != KEYWORD)

I-Kernel Contents (2)

Navigation and Ancillary Information Facility

- IKs should contain extensive comments regarding:
 - Instrument overview
 - Reference source(s) for the data included in the IK
 - Names/IDs assigned to the instrument and its parts
 - Explanation of each keyword included in the file
 - Description of the FOV and detector layout
 - Where appropriate, descriptions of the algorithms in which parameters provided in the IK are used, and even fragments of source code implementing these algorithms
 - » For example optical distortion models or timing algorithms
- These comments exist primarily to assist users in integrating I-Kernel data into their applications
 - One needs to know the keyword name to get its value(s) from the IK data
 - One needs to know what each value means in order to use it properly

I-Kernel Interface Routines

Navigation and Ancillary Information Facility

As with any SPICE kernel, an IK is loaded using FURNSH

```
CALL FURNSH ( 'ik_file_name.ti' ) { Better yet, use a FURNSH kernel }
```

 By knowing the name and type (DP, integer, or character) of a keyword of interest, the value(s) associated with that keyword can be retrieved using G*POOL routines

```
CALL GDPOOL ( NAME, START, ROOM, <u>N, VALUES, FOUND</u> ) for DP values

CALL GIPOOL ( NAME, START, ROOM, <u>N, VALUES, FOUND</u> ) for integer values

CALL GCPOOL ( NAME, START, ROOM, <u>N, VALUES, FOUND</u> ) for character string values
```

 When an instrument's FOV is defined in the IK using a special set of keywords discussed later in this tutorial, the FOV shape, reference frame, boresight vector, and boundary vectors can be retrieved by calling the GETFOV routine

```
CALL GETFOV ( INSTID, ROOM, SHAPE, FRAME, BSIGHT, N, BOUNDS)
```

FORTRAN examples are shown

FOV Definition Keywords (1)

Navigation and Ancillary Information Facility

- The following keywords defining FOV attributes for the instrument with NAIF ID (#) must be present in the IK if the SPICE Toolkit's GETFOV module will be used
 - Keyword defining shape of the FOV

 Keyword specifying the reference frame in which the boresight vector and FOV boundary vectors are specified

```
INS#_FOV_FRAME = 'frame name'
```

Keyword defining the boresight vector

$$INS\#_BORESIGHT = (X, Y, Z)$$

FOV Definition Keywords (2)

Navigation and Ancillary Information Facility

- Keyword(s) defining FOV boundary vectors are provided in either of two ways
 - 1) By specifying boundary vectors explicitly

where the FOV_BOUNDARY_CORNERS keyword provides an array of vectors that point to the "corners" of the instrument field of view.

Note: Use of the INS#_FOV_CLASS_SPEC keyword is optional when explicit boundary vectors are provided.

FOV Definition Keywords (3)

Navigation and Ancillary Information Facility

2) By providing half angular extents of the FOV (possible only for circular, elliptical or rectangular FOVs)

where the FOV_REF_VECTOR keyword specifies a reference vector that, together with the boresight vector, define the plane in which the half angle given in the FOV_REF_ANGLE keyword is measured. The other half angle given in the FOV_CROSS_ANGLE keyword is measured in the plane normal to this plane and containing the boresight vector.

FOV Definition Keywords (4)

Navigation and Ancillary Information Facility

- When explicit boundary vectors are provided, they must be listed in either clockwise or counter-clockwise order, not randomly
- Neither the boresight nor reference vector has to be co-aligned with one of the FOV frame's axes
 - But for convenience, each is frequently defined to be along one of the FOV axes
- None of the boresight, corner or reference vector has to be a unit vector
 - But these frequently are defined as unit vectors
- When a FOV is specified using the half angular extents method, the boresight and reference vectors have to be linearly independent but they don't have to be perpendicular
 - But for convenience the reference vector is usually picked to be normal to the boresight vector
- Half angular extents for a rectangular FOV specify the angles between the boresight and the FOV sides, i.e. they are for the middle of the FOV
- The next two pages show an example for a rectangular field of view; see the on-line version of this tutorial for examples of the other three FOV shapes: circle, ellipse and polygon

Rectangular Field of View Example

Navigation and Ancillary Information Facility

Consider an instrument with a rectangular field of view.

Rectangular FOV Definition

Navigation and Ancillary Information Facility

The following sets of keywords and values describe this rectangular field of view:

Specifying boundary vectors explicitly:

Specifying half angular extents of the FOV: