Formas Normales en Bases de Datos - Resumen Completo

© ¿Qué es la Normalización?

La normalización es un proceso de diseño de bases de datos que tiene como objetivos:

- **Eliminar redundancias** de datos
- **Evitar anomalías** en inserción, actualización y eliminación
- Simplificar reglas de integridad
- **Crear un modelo que repres**ente el mundo real

Conceptos Previos Importantes

Dependencia Funcional

X → **Y** significa que para cada valor de X, existe un único valor de Y.

Ejemplo:

- (DNI → Nombre) (un DNI determina un único nombre)
- (Legajo → Apellido) (un legajo determina un único apellido)

Determinante

Atributo del cual depende funcionalmente otro atributo.

🚺 PRIMERA FORMA NORMAL (1FN)

Definición

Una tabla está en **1FN** si:

- Todos los dominios contienen valores atómicos (indivisibles)
- Cada celda contiene exactamente un valor

X Ejemplo INCORRECTO (Viola 1FN)

EMPLEADOS

Problema: Los campos (DniHijos) y (NombreHijos) contienen múltiples valores.

🔽 Solución (1FN Correcta)

EMPLEADOS

HIJOS

Z SEGUNDA FORMA NORMAL (2FN)

Definición

Una tabla está en 2FN si:

- Está en 1FN
- Todos los atributos no clave dependen **COMPLETAMENTE** de la clave primaria

X Ejemplo INCORRECTO (Viola 2FN)

FACTURAS

Clave primaria: (NroFactura, Renglon) **Problema:** (FechaEmision) y (CuitCliente) solo dependen de (NroFactura), no del (Renglon).

🔽 Solución (2FN Correcta)

FACTURAS

ITEMS_FACTURA

TERCERA FORMA NORMAL (3FN)

Definición

Una tabla está en 3FN si:

- Está en 2FN
- Todos los atributos no clave dependen de manera NO TRANSITIVA de la clave primaria

Dependencia transitiva: Si $A \rightarrow B$ y $B \rightarrow C$, entonces $A \rightarrow C$

X Ejemplo INCORRECTO (Viola 3FN)

EMPLEADOS

Dependencia transitiva: (Legajo → Depto → DeptoDesc) **Problema:** (DeptoDesc) depende de (Depto), no directamente de (Legajo).

Solución (3FN Correcta)

EMPLEADOS

DEPARTAMENTOS

FORMA NORMAL BOYCE-CODD (BCNF)

Definición

Una tabla está en **BCNF** si:

- Todo determinante es clave candidata
- **X** Ejemplo INCORRECTO (Viola BCNF)

HORARIOS

Clave candidata: (Profesor, Materia) Dependencias funcionales:

- (Profesor, Materia) → Aula
- (Aula → Materia) (cada aula está dedicada a una materia específica)

Problema: (Aula) es determinante pero NO es clave candidata.

🔽 Solución (BCNF Correcta)

PROFESOR_MATERIA

```
| Profesor | Materia |
| Carlos | Física |
| Carlos | Música |
| Juan | Biología |
| Ana | Física |
| Pedro | Física |
```

AULA_MATERIA

CUARTA FORMA NORMAL (4FN)

Definición

Una tabla está en 4FN si:

- Está en **BCNF**
- No contiene dependencias multivaluadas

Dependencia Multivaluada: A ->> B significa que para un valor de A, puede haber múltiples valores de B independientes de otros atributos.

X Ejemplo INCORRECTO (Viola 4FN)

Problema: Las materias que enseña un profesor son independientes de los idiomas que habla.

Solución (4FN Correcta)

PROFESOR_MATERIA

PROFESOR_IDIOMA

QUINTA FORMA NORMAL (5FN)

Definición

Una tabla está en **5FN** si:

- Está en 4FN
- No existen dependencias de join que no se generen desde las claves

X Ejemplo INCORRECTO (Viola 5FN)

PROFESOR_MATERIA_LIBRO

Restricción: Si un profesor dicta una materia y esa materia utiliza un libro, entonces ese profesor debe usar ese libro.

Solución (5FN Correcta)

PROFESOR_MATERIA

MATERIA_LIBRO

LIBRO_PROFESOR

Resumen de Formas Normales

Forma Normal	Requisito Principal	Elimina
1FN	Valores atómicos	Grupos repetitivos
2FN	1FN + Dependencia completa de clave	Dependencias parciales
3FN	2FN + Sin dependencias transitivas	Dependencias transitivas
BCNF	Todo determinante es clave candidata	Anomalías de actualización
4FN	BCNF + Sin dependencias multivaluadas	Dependencias multivaluadas
5FN	4FN + Sin dependencias de join	Dependencias de join
▶		

- 1. La mayoría de bases de datos se diseñan hasta 3FN es el equilibrio perfecto entre normalización y rendimiento.
- 2. **BCNF es necesaria** cuando hay determinantes que no son claves candidatas.
- 3. **4FN y 5FN** son menos comunes en aplicaciones comerciales típicas.
- 4. **Desnormalización controlada** a veces es necesaria por rendimiento, pero siempre documentar las razones.