Lecture Four

Section 4.1 – Matrix Transformations from \mathbb{R}^n to \mathbb{R}^m

Definition

If V and W are vector spaces, and if f is a function with domain V and codomain W, then we say that f is a transformation from V to W or that f maps V to W, which we denote by writing

$$f: V \to W$$

In the special case where V = W, the transformation is also called an operator on V.

Matrix Transformation

$$w_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$w_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

Which we can write in matrix formation

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ a_{m1} & a_{m2} & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\vec{w} = A\vec{x}$$

Although we could view this as a linear system, we will view it instead as a transformation that maps the column vector \vec{x} in \mathbb{R}^n into the column vector \vec{w} in \mathbb{R}^m by multiplying \vec{x} on the left by A. We call this a *matrix transformation* or *function* or *mapping T* from \mathbb{R}^n to \mathbb{R}^m (or *matrix operator* if m = n) and we denote it by

$$T_A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

 \mathbb{R}^n is called the domain of T

 \mathbb{R}^m is called the codomain of T

For \vec{x} in \mathbb{R}^n , the vector $T(\vec{x})$ in \mathbb{R}^m is called the image of \vec{x} (under the action of T)

The set of all images $T(\vec{x})$ is called the range of T.

Reflection about the y-axis $T(x,y) = (-x,y)$	$(-x, y) \qquad x \qquad x$	$T(e_1) = T(1,0) = (-1,0)$ $T(e_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the x-axis $T(x,y) = (x,-y)$	$T(x) = \begin{pmatrix} x \\ x \\ x \\ (x, y) \end{pmatrix}$	$T(e_1) = T(1,0) = (1,0)$ $T(e_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the line $y = x$ T(x,y) = (x,-y)	$\mathbf{T}(x) \xrightarrow{(y, x)} \mathbf{y} = \mathbf{x}$ $\mathbf{x} \xrightarrow{(x, y)}$	$T(e_1) = T(1,0) = (0,1)$ $T(e_2) = T(0,1) = (1,0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Reflection about the xy-plane $T(x,y,z) = (x,y,-z)$	x $T(x)$ (x,y,z) $(x,y,-z)$	$T(e_1) = T(1,0,0) = (1,0,0)$ $T(e_2) = T(0,1,0) = (0,1,0)$ $T(e_3) = T(0,0,1) = (0,0,-1)$	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} $

Reflection about the xy-plane $T(x,y,z) = (x,-y,z)$	(x,-y,z) x x y	$T(e_1) = T(1,0,0) = (1,0,0)$ $T(e_2) = T(0,1,0) = (0,-1,0)$ $T(e_3) = T(0,0,1) = (0,0,1)$	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
Reflection about the yz-plane $T(x,y,z) = (-x,y,z)$	$ \begin{array}{c} z \\ (-x,y,z) \\ \hline x \\ (x,y,z) \\ y \end{array} $	$T(e_1) = T(1,0,0) = (-1,0,0)$ $T(e_2) = T(0,1,0) = (0,1,0)$ $T(e_3) = T(0,0,1) = (0,0,1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection on the <i>x</i> -axis $T(x,y) = (x,0)$	$ \begin{array}{c} \mathbf{y} \\ (x, y) \\ (x,0) \\ \mathbf{x} \end{array} $	$T(e_1) = T(1,0) = (1,0)$ $T(e_2) = T(0,1) = (0,0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection on the <i>y</i> -axis $T(x,y) = (0,y)$	(0,y) $T(x)$ x x	$T(e_1) = T(1,0) = (0,0)$ $T(e_2) = T(0,1) = (0,1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
Orthogonal projection on the <i>xy</i> -Plane $T(x,y,z) = (x,y,0)$	x (x,y,z) y $(x,y,0)$	T(1,0,0) = (1,0,0) $T(0,1,0) = (0,1,0)$ $T(0,0,1) = (0,0,0)$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} $

Orthogonal projection on the <i>xz</i> -Plane $T(x,y,z) = (x,0,z)$	(x,0,z) $T(x)$ x y	T(1,0,0) = (1,0,0) $T(0,1,0) = (0,0,0)$ $T(0,0,1) = (0,0,1)$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Orthogonal projection on the yz-Plane $T(x,y,z) = (0,y,z)$	z $(0,y,z)$ (x,y,z) x y	T(1,0,0) = (0,0,0) $T(0,1,0) = (0,1,0)$ $T(0,0,1) = (0,0,1)$	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $

Rotation Operators			
Rotation through an angle θ	y (w_1, w_2) w (x, y) x	$w_1 = x\cos\theta - y\sin\theta$ $w_2 = x\sin\theta + y\cos\theta$	$ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} $
Counterclockwise rotation about the positive x -axis through an angle θ	x y x y	$w_1 = x$ $w_2 = y\cos\theta - z\sin\theta$ $w_3 = y\sin\theta + z\cos\theta$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} $
Counterclockwise rotation about the positive <i>y</i> -axis through an angle θ	x y	$w_{1} = x \cos \theta + z \sin \theta$ $w_{2} = y$ $w_{3} = -x \sin \theta + z \cos \theta$	$ \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $
Counterclockwise rotation about the positive z -axis through an angle θ	x y y	$w_1 = x\cos\theta - y\sin\theta$ $w_2 = x\sin\theta + y\cos\theta$ $w_3 = z$	$ \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} $

Contractions and Dilations

Expansion or Compression

Shear

Shear of \mathbb{R}^2 in the x -direction with factor k $T(x, y) = (x + ky, y)$	(0,1)	(k,1) $(1,0)$ $(k>0)$	(k,1) $(1,0)$ $(k < 0)$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
Shear of \mathbb{R}^2 in the y-direction with factor k $T(x, y) = (x, y + kx)$	(0,1) $(1,0)$	(0,1) $(1,k)$ $(k>0)$	(0,1) $(1,k)$ $(k < 0)$	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Orthogonal Projections on Lines through the Origin

$$T(e_1) = \begin{bmatrix} \cos^2 \theta \\ \sin \theta \cos \theta \end{bmatrix} \quad T(e_2) = \begin{bmatrix} \sin \theta \cos \theta \\ \sin^2 \theta \end{bmatrix}$$

$$P_0 = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Example

Find the orthogonal projection of the vector $\vec{x} = (1, 5)$ on the line through the origin that makes an angle of $\frac{\pi}{6}$ (= 30°) with the x-axis

Solution

$$\begin{split} P_0 &= \begin{pmatrix} \cos^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^2\theta \end{pmatrix} \\ &= \begin{pmatrix} \cos^2\left(\frac{\pi}{6}\right) & \sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) \\ \sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) & \sin^2\left(\frac{\pi}{6}\right) \end{pmatrix} \\ &= \begin{pmatrix} \left(\frac{\sqrt{3}}{2}\right)^2 & \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) \\ \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) & \left(\frac{1}{2}\right)^2 \end{pmatrix} \\ &= \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \\ P_0\vec{x} &= \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix} \\ &= \begin{pmatrix} \frac{3+5\sqrt{3}}{4} \\ \frac{\sqrt{3}+5}{4} \end{pmatrix} \\ &\approx \begin{pmatrix} 2.91 \\ 1.68 \end{pmatrix} \end{split}$$

Example

Define a linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by

$$T(\vec{x}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$

Find the images under T of $\vec{u} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\vec{u} + \vec{v} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$

Solution

$$T(\vec{u}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

$$T(\vec{v}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$T(\vec{u} + \vec{v}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} -4 \\ 6 \end{pmatrix}$$

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

$$\begin{pmatrix} -4 \\ 6 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \end{pmatrix} + \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

Four Fundamental Subspaces

- **1.** The *row space* is $C(A^T)$, a subspace of \mathbb{R}^n .
- **2.** The *column space* is C(A), a subspace of \mathbb{R}^m .
- **3.** The *nullspace* is N(A), a subspace of \mathbb{R}^n .
- **4.** The *left nullspace* is $N(A^T)$, a subspace of \mathbb{R}^m .

The Four Subspaces for R

Consider the matrix 3 by 5:

$$\begin{bmatrix} 1 & 3 & 5 & 0 & 9 \\ 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{l} m=3 \\ n=5 \\ r=2 \end{array} \quad \begin{array}{l} pivot \ rows \ 1 \ and \ 2 \\ pivot \ columns \ 1 \ and \ 4 \\ \end{array}$$

1. Rows 1 and 2 are a basis. The row space contains combination of all 3 rows.

The *row space* of \mathbb{R} has dimension 2 (= *rank*).

The dimension of the row space is r. The nonzero rows of R form a basis.

2. The *column space* of R has dimension r = 2.

The pivot columns 1 and 4 form a basis. They are independent because they start with the r by r identity matrix.

There are 3 special solutions:

$$C_2 = 3C_1$$
 The special solution is $(-3, 1, 0, 0, 0)$
 $C_3 = 5C_1$ The special solution is $(-5, 0, 1, 0, 0)$
 $C_5 = 9C_1 + 8C_2$ The special solution is $(-9, 0, 0, -8, 1)$

The dimension of the column space is r. The pivot columns form a basis.

3. The *nullspace* has dimension n - r = 5 - 2 = 3 (free variables). Here x_2 , x_3 , x_5 are free (no pivots in those columns). They yield the three special solutions to $R\vec{x} = 0$. Set a free variable to 1, and solve for x_1 and x_4 .

$$s_{2} = \begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix} \quad s_{3} = \begin{bmatrix} -5\\0\\1\\0\\0 \end{bmatrix} \quad s_{5} = \begin{bmatrix} -9\\0\\0\\-8\\1 \end{bmatrix}$$

Rx = 0 has the complete solution: $x = x_2 s_2 + x_3 s_3 + x_5 s_5$

The nullspace has dimension n-r. The special solutions form a basis.

4. The *nullspace* of R^T has dimension m - r = 3 - 2 = 1

The equation
$$R^{T}y = 0$$
:
$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 1 & 0 \\ 9 & 8 & 0 \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} y_{1} = 0 \\ y_{2} = 0 \\ y_{3} \text{ anything} \end{cases}$$

The nullspace of R^T contains all vectors $y = (0, 0, y_3)$ and it is the line of the basis vector (0, 0, 1).

The left nullspace has dimension m-r. The solutions are $y = (0,..., y_{r+1},..., y_m)$

- \blacksquare In \mathbb{R}^n the row space and nullspace have dimensions r and n-r (adding to n)
- \blacksquare In \mathbb{R}^m the column space and left nullspace have dimensions r and m-r (total m)

The Four Subspaces for A

The subspace dimensions for A are the same as for R.

These matrices are connected by an invertible matrix E. EA = R and $A = E^{-1}R$

- 1. A has the same row space as R. Same dimension r and same basis Every row of A is a combination of the rows of R. Also every row of R is a combination of the rows of A.
- **2.** The column space of A has dimension r. The number of independent columns equals the number of independent rows.
- 3. A has the same nullspace as R. Dimension n r and same basis. (dimension of column space) + (dimension of nullspace) = dimension of R^n
- **4.** The left nullspace A (the nullspace of A^T) has dimension m-r.

Fundamental Theorem of Linear Algebra, (Part 1)

The column space and row space both have dimension r.

The nullspaces have dimensions n - r and m - r.

Example

Consider $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

A has m = 1, n = 3, and rank: r = 1.

The row space is a line in \mathbb{R}^3 .

The nullspace is the plane $Ax = x_1 + 2x_2 + 3x_3 = 0$. This plane has dimension 2 (which is 3 – 1).

The columns of this is 1 by 3 matrix are in \mathbb{R}^1 . The column space is all of \mathbb{R}^1 .

The left nullspace contains only the zero vector.

The only solution to $A^T y = 0$ is y = 0, the only combination of the row that gives the zero row.

Thus, $N(A^T)$ is \mathbb{Z} , the zero space with dimension 0 (m-r). In \mathbb{R}^m the dimensions (1+0)=1.

Example

Consider
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

A has m = 2, n = 3, and rank: r = 1.

The row space is a line in \mathbb{R}^3 .

The nullspace is the plane $x_1 + 2x_2 + 3x_3 = 0$. This plane has dimension 3 (1 + 2).

The columns are multiples of the first column (1, 1).

The left nullspace contains more than one zero vector. The solution to $A^T \vec{y} = 0$ has the solution y = (1, -1).

The column space and nullspace are perpendicular lines in \mathbb{R}^2 . Their dimensions are 1 and 1 = 2.

Column space = line through $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Left nullspace = line through $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

1. Find the standard matrix for the transformation defined by the equations

a)
$$\begin{cases} w_1 = 2x_1 - 3x_2 + 4x_4 \\ w_2 = 3x_1 + 5x_2 - x_4 \end{cases}$$

$$b) \begin{cases} w_1 = 7x_1 + 2x_2 - 8x_3 \\ w_2 = -x_2 + 5x_3 \\ w_3 = 4x_1 + 7x_2 - x_3 \end{cases}$$

c)
$$\begin{cases} w_1 = x_1 \\ w_2 = x_1 + x_2 \\ w_3 = x_1 + x_2 + x_3 \\ w_4 = x_1 + x_2 + x_3 + x_4 \end{cases}$$

(2-8) Find the standard matrix for the operator T defined by the formula

2.
$$T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$$

3.
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 + 5x_2, x_3)$$

4.
$$T(x_1, x_2, x_3) = (4x_1, 7x_2, -8x_3)$$

5.
$$T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$$

6.
$$T(x_1, x_2, x_3) = (0, 0, 0, 0, 0)$$

7.
$$T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_3, x_2, x_1 - x_3)$$

8.
$$T(x_1, x_2, x_3, x_4) = (7x_1 + 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$$

(9 – 8) Plot
$$\vec{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ and their images under the given transformation T

$$\mathbf{9.} \qquad T(\vec{x}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\mathbf{10.} \quad T(\vec{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- $\mathbf{11.} \quad T(\vec{x}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- $12. \quad T(\vec{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- 13. $T(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$