

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/644,110	08/20/2003	Peter Hans Redweik	11202	6514
26890	7590	08/04/2009	EXAMINER	
JAMES M. STOVER TERADATA CORPORATION 2835 MIAMI VILLAGE DRIVE MIAMISBURG, OH 45342			LEMIEUX, JESSICA	
ART UNIT	PAPER NUMBER			
	3693			
MAIL DATE	DELIVERY MODE			
08/04/2009	PAPER			

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/644,110	Applicant(s) REDWEIK, PETER HANS
	Examiner JESSICA L. LEMIEUX	Art Unit 3693

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 18 May 2009.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1,3-9,11-21,23-29,31-41,43-49 and 51-60 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1,3-9,11-21,23-29,31-41,43-49 and 51-60 is/are rejected.
- 7) Claim(s) 10,30 and 50 is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No./Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No./Mail Date _____
- 5) Notice of Informal Patent Application
- 6) Other: _____

DETAILED ACTION

1. This Non-Final Office action is in response to the application filed on August 20th, 2003 and in response to the applicant's arguments/amendments filed on May 18th, 2009. Claims 1,3-9,11-21,23-29,31-41,43-49 and 51-60 are pending.

Continued Examination Under 37 CFR 1.114

2. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on May 18th, 2009 has been entered.

Response to Arguments

3. Applicant states that the prior art "doesn't teach or suggest all of the various elements of Applicant's amended independent claims." Examiner notes that these arguments are made with respect to the amended claims. Examiner disagrees with the applicant's conclusion that the pending claims as amended are in condition for allowance, as the amended claims have been considered but are moot in view of the new ground(s) of rejection.

Claim Objections

4. Claims 10, 30 and 50 are objected to under 37 CFR 1.75(c), as being of improper dependent form for failing to further limit the subject matter of a previous claim.

Applicant is required to cancel the claim(s), or amend the claim(s) to place the claim(s) in proper dependent form, or rewrite the claim(s) in independent form.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

5. Claims 1, 3-5, 7-16, 20-23, 27-36, 40-43, 47-56 and 60 are rejected under 35 U.S.C. 103(a) as being unpatentable over US Patent Number 7,082,411 to Johnson et al (hereinafter Johnson) in view of US Patent Number 5,812,988 to Sandretto (hereinafter Sandretto) in view of the Fundamentals of Financial Management by Kuhlemeyer (hereinafter Kuhlemeyer) further in view of US Patent Number 7,447,652 to Keyes et al. (hereinafter Keyes).

As per claims 1, 21 and 41

Johnson discloses selecting accounts, amounts and rates (asset data and discount factor) from account data stored in a database using selection criteria specified by one or more rules (column 4, lines 10-19) and performing one or more Net Present Value (NPV) calculations on the selected accounts by applying one or more NPV forecast rules (discount factor) to the selected accounts using the selected amounts and rates, wherein the NPV calculations determine a net present value of an expected profitability value (score) of the selected accounts (column 9, lines 3-26).

Examiner notes that Johnson teaches a discount factor. One skilled in the art at the time the invention was made would understand that a discount factor is a rate used for forecasting either by increasing or decreasing future cash flows to obtain a net present value (NPV). Examiner also notes that the act of "retrieving data" based on "given criteria" is in it of itself selection criteria. The rules by which this data is retrieved can be anything such as a rule to only access the required information instead of always retrieving everything and anything possible in the database. Examiner asserts that there must be some set of rules/guidelines to select information, otherwise the correct/required information wouldn't be accessed. Also, Johnson teaches a discount

Art Unit: 3693

factor (column 9, lines 3-26), which would have inherently needed to be accessed from a database to use in the determination of NPV. One skilled in the art at the time of the invention was made would understand that a discount factor is a rate used to discount or decrease future cash flows to obtain a net present value.

Johnson further discloses matching the NPV forecast rule against the selected accounts (column 4, lines 10-15 and column 9, lines 3-11), calculating amounts for each forecast period using the NPV forecast rule (column 9, lines 3-11) and storing the amounts (Figure 14, column 4, lines 10-19, column 5, line 37-column 6, line 2 and column 10, lines 30-60). Examiner notes that Johnson further discloses assessing asset and respective data using an iterative and adaptive process (column 4, lines 10-13).

Johnson does not specifically teach applying NPV forecast rules to the selected accounts and applying the NPV attrition rules to results of the forecast rules.

Sandretto teaches applying NPV forecast rules to the selected accounts and applying the NPV attrition rules to results of the forecast rules and determining the net present value of the selected accounts from results of the NPV attrition calculations (column 8, line 60- column 9, line 9).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to apply NPV forecast rules to the selected accounts and applying the NPV attrition rules to results of the forecast rules as taught by Sandretto to account for both the increases and decreases of value needed to more accurately estimate future value.

Johnson does not specifically teach obtaining an amount to be forecast from the matched accounts using forecast amount selection criteria specified in the NPV forecast rule, obtaining account level information needed from the matched account data, obtaining an Assumed Cash Flow for the matched accounts, obtaining a Contractual Cash Flow from matched accounts and mapping remaining terms of the matched accounts to forecast periods.

Sandretto teaches obtaining an amount to be forecast from the matched accounts using forecast amount selection criteria specified in the NPV forecast rule, obtaining account level information needed from the matched account data (an initial set of cash flows), obtaining an Assumed Cash Flow and a Contractual Cash Flow from matched accounts (additional estimated cash flows based upon different estimates for one or more economic variables) and mapping remaining terms of the matched accounts to forecast periods (initial input risk measure, inflation rate, initial discount rate) (column 8, line 53- column 9, line 19 and column 14, lines 20-61).

Therefore it would have been obvious to one skilled in the art at the time of invention to modify the NPV of Johnson to include obtaining an amount to be forecast from the matched accounts using forecast amount selection criteria specified in the NPV forecast rule, obtaining account level information needed from the matched account data, obtaining an Assumed Cash Flow for the matched accounts, obtaining a Contractual Cash Flow from matched accounts and mapping remaining terms of the matched accounts to forecast periods as taught by Sandretto to increase the accuracy of the NPV calculation.

Art Unit: 3693

Johnson discloses calculating the time value of money (column 12, lines 34-36). Johnson and Sandretto does not specifically teach where the NPV forecast rule is selected from a plurality of methods comprising Constant (no compounding), Constant (with compounding), Additive (no compounding), Additive (with compounding), Manual (no compounding), Manual (with compounding), Declining balance, Interest-Unpaid Principal, Interest-Paid Principal, and Constant methods.

Kuhlemeyer teaches the NPV forecast rule is selected from a plurality of methods comprising Constant (no compounding), Constant (with compounding), Additive (no compounding), Additive (with compounding), Manual (no compounding), Manual (with compounding), Declining balance, Interest-Unpaid Principal, Interest-Paid Principal, and Constant methods.

Keys discloses selecting in one or more computers accounts, amounts and rates from account data and generating cash flow and net present value based on received cash flow information, expenses and timings (Figures 6, 9 &11). Keys also teaches providing different scenarios based on a variety of assumptions taking into account a variety of foreseeable risks (columns 2-3).

Therefore it would have been obvious to one skilled in the art at the time of invention to modify Johnson and Sandretto to include the NPV forecast rule is selected from a plurality of methods comprising Constant (no compounding), Constant (with compounding), Additive (no compounding), Additive (with compounding), Manual (no compounding), Manual (with compounding), Declining balance, Interest-Unpaid Principal, Interest-Paid Principal, and Constant methods as taught by Kuhlemeyer and Keys to allow for different calculations of the future value of present money.

As per claims 3, 23 and 43

Johnson discloses the NPV is a net present profitability value (column 9, lines 1-2).

As per claims 4, 24 and 44

Johnson discloses the selected accounts contain current profitability values (current appraisal amount) (column 18, lines 8-20). Examiner notes that C_0 is the investment at time 0 and therefore it would have been obvious to one skilled in the art at the time the invention was made that a current profitability value would be the value at the present time, time 0.

As per claims 5, 25 and 45

Johnson discloses the current profitability data is aggregated to provide an initial amount for the NPV calculations (C_0) (column 9, lines 6 and 9).

As per claims 7, 27 and 47

Johnson discloses the selected rates are NPV forecast rates (discount factor) (column 9, lines 3-10).

As per claims 8, 28 and 48

Art Unit: 3693

Johnson does not specifically teach a user specifies one or more forecast periods over which the NPV calculations are performed.

Kuhlemeyer teaches a user specifies one or more forecast periods over which the NPV calculations are performed (slides 5, 10 and 11).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to permit a user to specify one or more forecast periods over which the NPV calculations are performed as taught by Kuhlemeyer to allow comparisons of future values at different time periods. It is required to recognize a range of situations including the worst case in order to make a business judgment considering a measure for risk management.

As per claims 9, 29 and 49

Johnson does not specifically teach a user specifies one or more rates for the forecast periods.

Kuhlemeyer teaches a user specifies one or more rates for the forecast periods (slides 5, 10 and 11).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to permit a user to specify one or more rates for the forecast periods as taught by Kuhlemeyer to allow comparisons of future values at different time periods using specific rates. It is required to recognize a range of situations including the worst case in order to make a business judgment considering a measure for risk management.

As per claims 10, 30 and 50

Johnson discloses matching the NPV forecast rule against the selected accounts (column 4, lines 10-15 and column 9, lines 3-11), calculating amounts for each forecast period using the NPV forecast rule (column 9, lines 3-11) and storing the amounts (Figure 14, column 4, lines 10-19, column 5, line 37-column 6, line 2 and column 10, lines 30-60). Examiner notes that Johnson further discloses assessing asset and respective data using an iterative and adaptive process (column 4, lines 10-13).

Johnson does not specifically teach obtaining an amount to be forecast from the matched accounts using forecast amount selection criteria specified in the NPV forecast rule, obtaining account level information needed from the matched account data, obtaining an Assumed Cash Flow for the matched accounts, obtaining a Contractual Cash Flow from matched accounts and mapping remaining terms of the matched accounts to forecast periods.

Sandretto teaches obtaining an amount to be forecast from the matched accounts using forecast amount selection criteria specified in the NPV forecast rule, obtaining account level information needed from the matched account data (an initial set of cash flows), obtaining an Assumed Cash Flow and a Contractual Cash Flow from matched accounts (additional estimated cash flows based upon different estimates for one or more economic variables) and mapping remaining terms of the matched accounts to forecast periods (initial input risk measure, inflation rate, initial discount rate) (column 8, line 53- column 9, line 19 and column 14, lines 20-61).

Therefore it would have been obvious to one skilled in the art at the time of invention to modify the NPV of Johnson to include obtaining an amount to be forecast from the matched accounts using forecast amount selection criteria specified in the NPV forecast rule, obtaining account level information needed from the matched account data, obtaining an Assumed Cash Flow for the matched accounts, obtaining a Contractual Cash Flow from matched accounts and mapping remaining terms of the matched accounts to forecast periods as taught by Sandretto to increase the accuracy of the NPV calculation.

Art Unit: 3693

As per claims 11, 31 and 51

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Johnson does not specifically teach the NPV forecast rule comprises a Constant (no compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + R_0) * ((k-j+1)/12)$ where Amount_i is the calculated amount by forecast period, Amount_0 is the initial amount, R_0 is the initial rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches teach the NPV forecast rule comprises a Constant (no compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + R_0) * ((k-j+1)/12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_0 is the initial amount (PV), R_0 is the initial rate (i), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 6, 8, & 11). Examiner notes that although Kuhlemeyer does not specifically teach $((k-j+1)/12)$ it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use $((k-j+1)/12)$ to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the NPV forecast rule comprises a Constant (no compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + R_0) * ((k-j+1)/12)$ where Amount_i is the calculated amount by forecast period, Amount_0 is the initial amount, R_0 is the initial rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific time value of money equation as taught by Kuhlemeyer to allow for a calculation of the future value of present money without compounding.

As per claims 12, 32 and 52

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Johnson does not specifically teach the NPV forecast rule comprises a Constant (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + R_m)^i * ((k-j+1) / 12)$ where Amount_i is the calculated amount by forecast period, Amount_0 is the initial amount, R_m is the monthly rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches the NPV forecast rule comprises a Constant (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + R_m)^i * ((k-j+1) / 12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_0 is the initial amount (PV), R_m is the monthly rate (i), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 8, 11 & 24). Examiner notes that although Kuhlemeyer does not specifically teach $((k-j+1)/12)$ it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the

Art Unit: 3693

invention was made to use $((k-j+1)/12)$ to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the NPV forecast rule comprises a Constant (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_o * (1 + R_m)^i * ((k-j+1) / 12)$ where Amount_i is the calculated amount by forecast period, Amount_o is the initial amount, R_m is the monthly rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific time value of money equation as taught by Kuhlemeyer to allow for a calculation of the future value of present money with compounding.

As per claims 13, 33 and 53

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Johnson does not specifically teach the NPV forecast rule comprises an Additive (no compounding) method according to:

$\text{Amount}_i = \text{Amount}_o * (1 + i * (R_o / 12)) * ((k-j+1) / 12)$ where Amount_i is the calculated amount by forecast period, Amount_o is the initial amount, R_o is the initial rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches the NPV forecast rule comprises an Additive (no compounding) method according to:

$\text{Amount}_i = \text{Amount}_o * (1 + i * (R_o / 12)) * ((k-j+1) / 12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_o is the initial amount (PV), R_o is the initial rate (i), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 8, 11 & 24). Examiner notes that $(i * (R_o / 12))$ can be rearranged to its equivalent $(R_o * (i / 12))$. Therefore, although Kuhlemeyer does not specifically teach $(i/12)$ it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use $(i/12)$ to denote a rate proportionate to the duration of time year to enable use of the same equation for shorter periods of time. Examiner further notes that although Kuhlemeyer does not specifically teach $((k-j+1)/12)$ it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use $((k-j+1)/12)$ to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the NPV forecast rule comprises an Additive (no compounding) method according to:

$\text{Amount}_i = \text{Amount}_o * (1 + i * (R_o / 12)) * ((k-j+1) / 12)$ where Amount_i is the calculated amount by forecast period, Amount_o is the initial amount, R_o is the initial rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific value of money equation as taught by Kuhlemeyer to allow for an additive calculation of the future value of present money without compounding.

Art Unit: 3693

As per claims 14, 34 and 54

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Johnson does not specifically teach the NPV forecast rule comprises an Additive (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + \text{Compounded_Rate}) * ((k-j+1)/12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_0 is the initial amount (PV), i is the forecast period (n), j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is $\text{Rate}_1 * \text{Rate}_2 * \dots * \text{Rate}_i$.

Kuhlemeyer teaches the NPV attrition rule comprises an Additive (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + \text{Compounded_Rate}) * ((k-j+1)/12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_0 is the initial amount (PV), i is the forecast period, j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is $\text{Rate}_1 * \text{Rate}_2 * \dots * \text{Rate}_i$ (slides 8, 11 & 24). Examiner notes that a compounded rate to one skilled in the art at the time the invention was made would be found by $(1+\text{Rate}_1)*(1+\text{Rate}_2)*\dots*(\text{Rate}_i)$, whereby when the rates are equivalent would be the equivalent of $(1+\text{Rate})^j$ which the reference clearly shows in slides 8 and 11. However, as written examiner notes that Compounded_Rate is $\text{Rate}_1 * \text{Rate}_2 * \dots * \text{Rate}_i$ whereby when the rates are equivalent could be rewritten as Rate^j . Rate^j is in essence another value or rate that the reference teaches in slides 8 and 11. Examiner further notes that although Kuhlemeyer does not specifically teach $((k-j+1)/12)$ it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use $((k-j+1)/12)$ to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the NPV forecast rule comprises an Additive (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + \text{Compounded_Rate}) * ((k-j+1)/12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_0 is the initial amount (PV), i is the forecast period (n), j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is $\text{Rate}_1 * \text{Rate}_2 * \dots * \text{Rate}_i$ (i) as taught by Kuhlemeyer to allow for an additive calculation of the future value of present money with compounding.

As per claims 15, 35 and 55

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Johnson does not specifically teach the NPV forecast rule comprises a Manual (no compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + R_{\text{man}}) * ((k-j+1) / 12)$ where Amount_i is the calculated amount by forecast period, Amount_0 is the initial amount, R_{man} is the manual rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period.

Kuhlemeyer teaches the NPV forecast rule comprises a Manual (no compounding) method according to:

Art Unit: 3693

$\text{Amount}_i = \text{Amount}_0 * (1 + R_{\text{man}}) * ((k - j + 1) / 12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_0 is the initial amount (PV), R_{man} is the manual rate (i), i is the forecast period (n), j is the first month in a forecast period, and k is the last month in a forecast period (slides 8, 11 & 24). Examiner notes that although Kuhlemeyer does not specifically teach $((k-j+1)/12)$ it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use $((k-j+1)/12)$ to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the NPV forecast rule comprises a Constant (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + R_m)^i * ((k - j + 1) / 12)$ where Amount_i is the calculated amount by forecast period, Amount_0 is the initial amount, R_m is the monthly rate, i is the forecast period, j is the first month in a forecast period, and k is the last month in a forecast period as a specific time value of money equation as taught by Kuhlemeyer to allow for a manual calculation of the future value of present money without compounding.

As per claims 16, 36 and 56

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Johnson does not specifically teach the NPV forecast rule comprises a Manual (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + \text{Compounded_Rate}) * ((k - j + 1) / 12)$ where Amount_i is the calculated amount by forecast period, Amount_0 is the initial amount, i is the forecast period, j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is Rate₁ * Rate₂ * ... * Rate_i.

Kuhlemeyer teaches the NPV forecast rule comprises a Manual (with compounding) method according to:

$\text{Amount}_i = \text{Amount}_0 * (1 + \text{Compounded_Rate}) * ((k-j+1)/12)$ where Amount_i is the calculated amount by forecast period (FV), Amount_0 is the initial amount (PV), i is the forecast period, j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is Rate₁ * Rate₂ * ... * Rate_i. Examiner notes that a compounded rate to one skilled in the art at the time the invention was made would be found by $(1+Rate_1)*(1+Rate_2)*...*(Rate_i)$, whereby when the rates are equivalent would be the equivalent of $(1+Rate)^i$ which the reference clearly shows in slides 8 and 11. However, as written examiner notes that Compounded_Rate is Rate₁ * Rate₂ * ... * Rate_i whereby when the rates are equivalent could be rewritten as Rateⁱ. Rateⁱ is in essence another value or rate that the reference teaches in slides 8 and 11. Examiner further notes that although Kuhlemeyer does not specifically teach $((k-j+1)/12)$ it uses a forecast period measured by years and it would have been obvious to one skilled in the art at the time the invention was made to use $((k-j+1)/12)$ to denote a proportion of a year to enable use of the same equation for shorter periods of time.

Art Unit: 3693

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the NPV forecast rule comprises a Manual (with compounding) method according to:

Amount_i = Amount₀ * (1 + Compounded_Rate) * ((k-j + 1)/12) where Amount_i is the calculated amount by forecast period (FV), Amount₀ is the initial amount (PV), i is the forecast period (n), j is the first month in a forecast period, k is the last month in a forecast period, and Compounded_Rate is Rate₁ * Rate₂ * ... * Rate_i (i) as taught by Kuhlemeyer to allow for an additive calculation of the future value of present money with compounding.

As per claims 20, 40 and 60

Johnson discloses calculating the time value of money (column 12, lines 34-36).

Johnson does not specifically teach the NPV forecast rule comprises a Constant method according to:

Amount_i = Amount₀, where Amount_i is the calculated amount by forecast period, Amount₀ is the initial amount.

Kuhlemeyer teaches the NPV forecast comprises a Constant method according to:

Amount_i = Amount₀, where Amount_i is the calculated amount by forecast period (FV), Amount₀ is the initial amount (PV) (slide 3).

Therefore it would have been obvious to one skilled in the art at the time the invention was made to incorporate the NPV forecast rule comprises a Constant method according to:

Amount_i = Amount₀, where Amount_i is the calculated amount by forecast period, Amount₀ is the initial amount, and i is the forecast period as taught by Kuhlemeyer to allow for a constant calculation of the future value of present money.

6. Claims 6, 26 and 46 are rejected under 35 U.S.C. 103(a) as being unpatentable over US Patent Number 7,082,411 to Johnson et al (hereinafter Johnson) in view of US Patent Number 5,812,988 to Sandretto (hereinafter Sandretto) in view of the Fundamentals of Financial Management by Kuhlemeyer (hereinafter Kuhlemeyer) in view of US Patent Number 7,447,652 to Keyes et al. (hereinafter Keyes) further in view of US Patent Number 5,852,811 to Atkins (hereinafter Atkins).

As per claims 6, 26 and 46

Johnson does not specifically teach the selected amounts are forecast amounts.

Atkins discloses the selected amounts are forecast amounts (projected future value of the asset) (column 25, lines 39-45 & 59-65).

Therefore it would have been obvious to one skilled in the art at the time the invention was made that the selected amounts are forecast amounts as taught by Atkins as a type of selected amount found in the database to select in order to determine values and rates regarding the asset utilizing the time value money equations.

Allowable Subject Matter

7. Claims 17, 19, 37, 39, 57 and 59 objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.
8. Claims 18, 38 and 58 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims and if rewritten to overcome the rejection(s) under 35 U.S.C. 112, 2nd paragraph, set forth in this Office action and to include all of the limitations of the base claim and any intervening claims pending results of 27 CFR 1.105.

Conclusion

9. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. US Patent Number 6,901,406 to Nabe et al. discloses models used to determine profitability analysis, and probability scores in relation to response, attrition and risk. US Patent Number 7,249,138 to Wasserman discloses performing financial processing by selecting accounts from a database and performing profitability calculations on the accounts selected from the database. US Patent Application Number US2002/0174049 to Kitahara discloses an analysis processor of profit models. WIPO Publication Number WO03/067395 to Breeden et al. discloses a modeling engine to determine forecasts from a portfolio database.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JESSICA L. LEMIEUX whose telephone number is (571)270-3445. The examiner can normally be reached on Monday-Thursday 8AM-5PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, James Kramer can be reached on 571-272-6783. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/James A. Kramer/
Supervisory Patent Examiner, Art Unit 3693

Jessica L Lemieux
Examiner
Art Unit 3693

/J. L. L./
Examiner, Art Unit 3693
July 2009