Practical no. 4

AIM: Perform the data classification algorithm using any Classification algorithm

CLASSIFICATION ALGORITHM -- DECISION TREE CLASSIFIER

Importing Librabries

```
In [1]:  import numpy as np
  import pandas as pd
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import accuracy_score, precision_score, recall_scor
  from sklearn.tree import DecisionTreeClassifier
  from sklearn import datasets
```

Loading Dataset

```
In [2]: # import the iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
```

Converting Dataset to Dataframe

1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [5]: ▶	df.ta:	il()			
Out[5]:	:	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8
In [6]: ▶	df.sha	ape			
Out[6]:	(150,	4)			
In [7]: ▶	df.is	null().sum()			
Out[7]:	sepal petal petal	length (cm) width (cm) length (cm) width (cm) : int64	0 0 0 0		
In [8]: ▶	df.des	scribe()			
Out[8]:		sepal length (cm)	sepal width (cm) petal length (cm) petal width (cm)
	count	150.000000	150.00000	150.00000	150.000000
	mean	5.843333	3.05733	3.75800	1.199333
	std	0.828066	0.43586	1.76529	0.762238
	min	4.300000	2.00000	1.00000	0.100000
	25%	5.100000	2.80000	1.60000	0.300000
	50%	5.800000	3.00000	4.35000	1.300000
	75%	6.400000	3.30000	5.10000	1.800000

Train Test Split

```
In [9]: 
# splitting X and y into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
```

Model Building

Model Evaluation