컴퓨터 네트워크

ABORATORY

목차

3.1 전화의 역사

3.2 전화망의 구성

3.3 전화망의 동작과 신호방식

3.1 전화의 역사 (1/4)

Telegraph

- ✓ 현대적 전기 통신의 시초
- ✓ 1837년 Samuel F.B. Morse에 의해 발명
- ✓ 타 지역으로 정보를 전달하기 위한 최초의 장치

Morse Code

- ✓ 1844년에 개발된 상업용의 전신 시스템에 사용한 부호
- ✓ 전압에 의해 짧고,긴 코드 패턴 작성
 - ➤ 최초의 전신 메시지는 볼티모어(Baltimore)에서 워싱턴 (Washington)까지 전달되었으며 그 내용은 "What hath God wrought!" (놀라운 하나님의 작품!)이었다

이탈리아의 발명가

- ✓ 1854년 전화기 발명
- ✓ 2002년6월11일 : 전화기의 최초 발명자(미의회 결의)

우리나라 전화 체계 발달사

최초의 전화통화: 1896년 궁내부에 자석식 교환기가 설치

1902년 3월 20일에 서울과 인천 간 전화가 개통

1945년 광복 이후 : 한. 미 간 최초 국제직통무선전화가 개통

1952년 국제전기통신연합(ITU)에 가입

1970년대에는 위성통신지구국 운영을 시작

1971년 3월 : 서울 부산 간 장거리자동전화(DDD)가 개통

1975년 11월 : 가입전화 시설이 100만 회선

1983년 8월 : 미국, 일본 등 24개국 27개 지역에 국제자동전화가 개

통

우리나라 전화 체계 발달사

1987년 : 전국전화 광역자동화가 완성

- ✓ 1993년 : 가입전화시설 2,000만 회선
 - > 2007년 : 2,313만명,
 - > 2010년 12월 : 1,927만명,
 - > 2012년 1,845만명
 - 2016년 10월 국내 이동통신가입자수 : 6,000만명(유선 전화 : 1680만명, 인구 5,092만명)
 - > 2021년 현재 :
 - 이동전화 가입자 수는 7,285만명
 - 유선 전화 가입 가구수 : 1,221만명(총 가구수 2017만)

3.1 전화의 역사 (2/4)

초기의 전화망 형태

- ✓ 교환기 없이 전화와 전화 사이를 직접 전선으로 연결
- ✓ 사용자가 n명이면, n(n-1)/2개의 회선이 필요

3.1 전화의 역사 (3/4)

최초의 교환기 등장

- ✓ 메쉬형구조는 연결 비용이 많이 들고, 관리가 어려움
- ✓ 1878년 1월 최초의 교환기 설치: 미국의 코네티컷주 뉴해븐(New Heaven)시에 설치
- ✓ 최초에는 하나의 수동 교환기에 모든 전화기가 연결 자동식 교환기 등장
 - ✓ 교환수에 의한 수동 교환방식의 한계 인식(알몬 스토로저)

3.1 전화의 역사 (4/4)

초기의 전화망 형태

- ✔ 전화기의 증가로 많은 교환기 필요
- ✓ 교환기를 계층적으로 구성
- ✓ 다단계 형태로 발전
- ✓ 북미에서는 5단계를 제안했으나 교환기 시스템 통합으로 3~4단계 계위로 구성

북미의 5단계 구조

3.1 전화의 역사 (4/4)

- ◆ 1960년대 초반, AT&T사는 늘어나는 가입자 수용과 효과적인 제공을 위해 디지털 전송망의 필요성을 느끼기 시작
- ◆ 이에 따라 1940년대에 발표된 ______기술을 실용화하여 T1방식의 디지털 전송기술을 개발
- ◆ 이후 디지털 교환기가 개발되어 현재와 같은 형태의 전화망이 구축

3.2 전화망의 구성 (1/11)

전화망의 발전 과정

- ✓ 어느 지역에 산재하는 가입자를 하나의 교환기에 수용(A)
- ✓ 가입자 수가 일정 수준에 이르면 (B)와 같이 분국 생성
- ✓ 분국 생성 후 일부 가입자를 새 로운 교환기에 옮김
- ✓ 여러 지역에 같은 형태의 교환국 이 설치되면 (C)와 같이 교환기 상호간을 중계선으로 연결
- ✓ 이후 각 기능이 독립되어 (D)와 같이 중계교환기 구성
- ✓ 중계 교환기가 증가되면 (E)와 같이 중계교환기 상호간을 중계 선으로 연결

: 가입자 교환기(LS)

---- : 중계선

: 가입회선

중계 교환기(TS)

3.2 전화망의 구성 (2/11)

전화망에 사용되는 통신 매체

- ✓ 가입자 회선 : 트위스티드 페어
- ✓ 교환기 상호간 : <u>동축케이블</u>, <u>마이크로웨이브</u>, <u>광섬유</u>
- ✓ 교환기 상호간은 <u>디지털 통신</u>

3.2 전화망의 구성

- □ 디지털 신호의 필요성
 - 가입자 선로를 제외하고는 거의 모두 디지털 신호를 사용
 - 디지털 신호는 오직 두 가지의 전압만을 사용하기 때문에 본래의 신호로 복구하기 위해 회선 중간에 디지털 재생기를 삽입하는 것이 가능
 - ▶ 디지털 신호는 다수의 재생기를 거쳐 전송될 수 있고 정보의 손실 없이 먼 거리까지 전파가 가능(반면 아날로그 신호는 증폭이 되면 어느 정도의 손실이 있게 마련이고 손실은 누적된다)
 - ▶ 디지털 전송의 에러율이 더 낮음

3.2 전화망의 구성

□ 디지털 신호의 필요성

- 음성, 일반자료, 음악, 그리고 영상 등의 데이터를 함께 다중화 시킬수 있기 때문에 회로 및 장비를 보다 효율적으로 사용하고 더많은 데이터를 전송할 수 있음
- 디지털 전송은 아날로그 전송에 비해 비용이 적게 소요
- 아날로그 전송에서는 대륙 간의 전송에 있어 수백 개가 될 수도 있는 증폭기를 거치면서 생기게 되는 손실을 재생해 주어야 한다. 반면 디지털 전송에 있어서는 0과 1만 인식이 가능하면 충분하기 때문에 아날로그 방식에서와 같이 많은 증폭은 필요하지 않다.

3.2 전화망의 구성 (3/11)

전화망에 사용되는 시설

- ✓ 전화망의 시설은 ____ 과 ___ 나눔
- ✓ 전송시설은 , 시설로 구분
- ✓ 교환시설은 ______로 구분

3.2 전화망의 구성 (4/11)

전송시설

- ✓ 가입자 선로
 - > 가입자 전화기를 시내 교환국에 연결시키는 전송설비
 - 대부분의 경우 한 쌍의 케이블을 이용하지만 가입자 선로 집선 장치나 원격 교환장치 등과 같은 시스템을 적용하는 경우도 있음

✓ 시내 중계선

- 시내 교환국 상호간, 시내 교환국과 해당 지역의 시외 교환국 사이를 연결시키는 전송 설비
- ▶ 케이블, 중계기, 아날로그 및 디지털 반송장치로 구성
- 동축케이블, 무선, 광섬유 케이블 등을 이용한 대용량 전송장치로 구성되는 경우도 있음

3.2 전화망의 구성 (5/11)

교환시설

- ✓ 시내 교환기
 - 가입자 선로를 통해 가입자 단말기를 수용하며 동일 교환기에 속한 가입자를 상호 연결하거나 내부 가입자를 중계선을 통해 다른 교환기로 교환
- ✓ 시외 교환기
 - 가입자 단말기를 수용하지 않고 입력 중계선과 출력 중계선 사이를 연결시켜 주는 중계선 교환기능을 가짐
- ✓ 시내 중계교환기
 - 중계선 교환기능을 갖는 교환기의 특수한 형태로서 중계선 사이에서 교환기능을 수행하는 것은 시외 교환기와 동일하지만, 연결 구역이 시내지역으로 제한됨

3.2 전화망의 구성 (6/11)

전화망의 구성요소와 기능

✓ 전화망을 구성하는 전송분야와 교환분야의 각 구성요소의 기능을 요약하면 다음 표와 같음

종 류	구성 장비		수행 기능
<u>전송시설</u>	가입자 선로		가입자 전화기를 시내 교환기에 연결
	중계선	시내 중계선	시내 교환기 상호간, 시내 교환기와 시외 교환기 사이 를 연결
		시외 중계선	시외 교환기 상호간의 연결
<u>교환시설</u>	시내 교환기		가입자 전화기를 수용하며 동일 시스템 내부 가입자 상 호간이나 내부 가입자를 다른 교환기와 연결되는 중계 선 사이에서 교환
	시외 교환기		시내 교환기의 중계선과 시외 교환기의 중계선 사이에 서 교환기능 수행
	중계 교환기		중계선 사이의 교환기능은 시외 교환기와 동일하나 연 결 구역이 시내지역으로 한정됨

3.2 전화망의 구성 (7/11)

전화망의 계층 구성

- ✓ ____(시외 통화 대역제 [toll call zone system, 市外通話帶域制])
 - ▶ 교환국과 그 교환국이 관할하는 구역을 서로 대응시켜 다단의 계 층적 구조로 망을 구성하는 구성법
 - 교환 접속의 간략화, 통화 손실의 합리적인 배분, 요금의 합리화를 위해 통신망을 경제적 구성 및 운영하는 다단 방사형의 기간 회선 망
- ✓ ____(office rank, 局階位)
 - 대역제의 주어진 위치에 따라 부과되는 기능을 구별하여 교환국의 증별로 주어진 기능을 일컬음
- ✓ 우리나라의 국계위
 - <u>총괄국</u> (Regional Center) : 4개(서울:구로, 대전, 대구, 광주)
 - > 중심국 (Distinct Center) : 중요도시에 20개
 - ▶ 집중국 (Toll Center) : 단국으로부터의 중계선을 집중
 - ▶ <u>단국</u> (End Office) : 360개
 - ▶ <u>가입자</u> (Local Loop)
 - 전자교환기 대량 보급으로 중심국과 집중국 기능 통합(3계위)

3.2 전화망의 구성 (8/11)

우리나라 시외 전화망의 국계위

3.2 전화망의 구성 (9/11)

단국

- ✓ 대역제상 최하위의 국계위로서 가입자와 직접 연결되어 있는 교환 국
- ✓ 가입자 수가 적어 가입자의 수용구역이 한 개의 교환국으로 이루어 진 경우를 단국지(single office area)
- ✓ 여러개의 분국으로 나누어 이루어진 경우를 복국지(mutiple office area)

집중국

✓ 단국 상위의 국계위이며 소속된 단국 상호간의 통화 및 집중국과의 교환 접속을 행함

중심국

✓ 집중국군의 중심이 되며, 소속 집중국간의 통화 및 다른 중심국과의 중계교환을 행함

총괄국

✓ 중심국군의 중심이며 다단중계의 중추역할, 최상위국

3.2 전화망의 구성 (10/11)

전화망의 계층별 연결 회선

- ✓ 기간 회선 (Basic Trunk)
 - 국계위 상에서 직속 상위국과의 사이 및 총괄국 상호간에 연결 된 회선
 - 바이패스 회선을 갖지 않는 국간의 호 접속이나 바이패스 회선 에서 차단되는 호의 접속에 사용
- ✓ 바이패스 회선 (By-pass Trunk)
 - 구역이 다르게 떨어져 있더라도 트래픽이 많은 국간에는 직통회 선을 연결하여 직접 접속
 - 트래픽을 모두 상위국으로 돌려 중계한다면 총괄국과 중심국에 과도한 부하가 부여되어 문제발생 가능성, 그러므로 바이패스 회선으로 트래픽 분산

3.2 전화망의 구성 (11/11)

국계위와 교환계위

✓ 교환의 부과된 역할에 따라 분류한 것을 교환 계위라고 하는데, 다음은 국계위와 교환 계위와의 대칭관계임.

대역제에 따른 국계위	교환 계위명
총괄국 (RC)	시외 중계교환기
중심국 (DC)	TTS (Toll Transit Switch)
	시외 발신교환기
집중국 (TC)	TOS (Toll Outgoing Switch) 시외 착신 교환기
	TIS (Toll Incoming Switch)
	시내 중계 교환기
시내 집중국 (LMO)	TS (Tandem Switch)
단국 (EO)	フLOITL コ さしつ!
분국 (LO)	가입자 교환기
종국 (SO)	LS (Local Switch)

3.3 전화망의 동작과 신호방식(1/7)

전화망의 동작

- ✔ 수화기가 후크(hook)를 누르고 있는 온 후크(on-hook) 단계
- ✓ 수화기를 들어 올리는 오프 후크(off-hook) 단계
- ✓ 전화기의 다이얼을 돌리거나 번호를 누르는 다이얼링(dialing) 단계
- ✓ 신호 전달 경로를 결정하는 스위칭(switching) 단계
- ✓ 전화벨을 울리는 전화벨 울리기(ringing) 단계
- ✓ 상대방과 대화를 나누는 말하기(talking) 단계

3.3 전화망의 동작과 신호방식(2/7)

- ✓ 온 후크(on-hook) 단계
 - 사용자가 전화를 걸기 전에 수화기가 후크(hook)를 누르고 있는 상태
 - > 48V DC 회로가 열려 있어 전화기의 비동작 상태를 알려줌

3.3 전화망의 동작과 신호방식(3/7)

✓ 오프 후크(off-hook) 단계

- 사용자가 전화를 걸기 위해 수화기를 전화기로부터 들어 올리는 단계
- ▶ 교환기와 전화기 사이의 루프(loop) 형성
- ▶ 교환기는 이 전류의 흐름을 찾으면 발신음(350와 440Hz 연속 적인 톤(tone))을 전화기에 송신

3.3 전화망의 동작과 신호방식(4/7)

- ✓ <u>다이얼링(dialing)</u> 단계
 - 사용자가 상대방의 전화 번호(주소)를 입력
 - > 펄스를 생성하는 다이얼(Dial)식 전화 또는 음을 생성하는 푸쉬 (push)식 전화 사용

3.3 전화망의 동작과 신호방식(5/7)

✓ 스위칭(switching) 단계

- 교환기는 착신자의 전화번호를 기반으로 착신자의 전화기와 연결되어 있는 교환기까지 비어있는 회선을 선택하여 접속
- ▶ 이때 교환기는 ISUP(ISDN User Part) 메시지인 IAM(Initial Address Message)를 톨 또는 상위 교환기로 전송
- ▶ 상위 교환기는 전화번호를 분석하여 착신교환기를 결정

3.3 전화망의 동작과 신호방식(6/7)

✓ 전화벨 울리기(ringing) 단계

- ▶ 교환기가 신호 호출 라인에 연결
- > 라인에 20Hz의 90V 신호를 보내어 피호출 가입자의 전화를 울 림
- ▶ 피호출 가입자의 전화를 울리는 동안 교환기는 사용자에게 재신 호(Ringback)
- ▶ 피호출 가입자의 전화가 사용 중이면 교환기는 사용자에게 480 와 620Hz 톤(tone)의 신호음 전송

ACM 메시지 전송

3.3 전화망의 동작과 신호방식(7/7)

✓ 말하기(talking) 단계

- ▶ 피호출 가입자가 전화가 울리고 있는 것을 듣고 전화를 받음
- ▶ 피호출 가입자가 전화를 받는 순간 피호출 가입자의 전화기에도 오프 후크(off-hook)이 발생

