Optimization in Machine Learning

Nelder-Mead method

Learning goals

- General idea
- Reflection, expansion, contraction
- Advantages & disadvantages
- Examples

Nelder-Mead is a robust procedure, which also works without derivatives.

Generalization of bisection in *d*-dimensional space.

Instead of an interval, a simplex is used, a geometric figure defined by d+1 points:

- d = 1 interval
- d = 2 triangle
- d = 3 tetrahedron ...

A version of the **Nelder-Mead** method:

Initialization: Choose d+1 random, linearly independent points \mathbf{v}_i (\mathbf{v}_i are vertices: corner points of the simplex/polytope):

Order: Order points according to ascending function values

$$f(\mathbf{v}_1) \leq f(\mathbf{v}_2) \leq \ldots \leq f(\mathbf{v}_d) \leq f(\mathbf{v}_{d+1}).$$

with \mathbf{v}_1 best point, \mathbf{v}_{d+1} worst point.

Calculate centroid without worst point

$$\bar{\mathbf{v}} = \frac{1}{d} \sum_{i=1}^{d} \mathbf{v}_{i}.$$

Reflection: calculate reflection point

$$\mathbf{v}_r = \mathbf{\bar{v}} + \rho(\mathbf{\bar{v}} - \mathbf{v}_{d+1}),$$

with $\rho > 0$. Calculate $f(\mathbf{v}_r)$.

Note: the standard value for the reflection coefficient is $\rho =$ 1.

We now distinguish three cases:

- Case 1: $f(\mathbf{v}_1) \leq f(\mathbf{v}_r) < f(\mathbf{v}_d)$ If the reflection point is better than the second worst corner, but not better than the best corner, we accept \mathbf{v}_r and discard \mathbf{v}_{d+1} .
- Case 2: f(v_r) < f(v₁)
 If the reflection point is better than the best corner so far, we "expand" the current point (Expansion) to find out if we could get even better in the direction of v_r:

point (**Expansion**) to find out if d get even better in the n of
$$\mathbf{v}_r$$
:

 $\mathbf{v}_e = \mathbf{\bar{v}} + \chi(\mathbf{v}_r - \mathbf{\bar{v}}), \quad \chi > 1.$

We discard \mathbf{v}_{d+1} in favor of the better of the two corners \mathbf{v}_r , \mathbf{v}_e .

This is **case 2**: The reflection point \mathbf{v}_r is better than the best point \mathbf{v}_1 . If the **expansion** does not return a better point than \mathbf{v}_r , accept \mathbf{v}_r and reject \mathbf{v}_3 .

Note: the standard value for the expansion coefficient is $\chi = 2$.

• Case 3: $f(\mathbf{v}_r) \ge f(\mathbf{v}_d)$ we find that running toward \mathbf{v}_r was not purposeful. We calculate a **contraction** point:

$$\mathbf{v}_c = \mathbf{\bar{v}} + \gamma (\mathbf{v}_{d+1} - \mathbf{\bar{v}})$$

with 0 < γ < 0.5.

- If \mathbf{v}_c is better than the worst point, we accept \mathbf{v}_c .
- Otherwise, we shrink the entire Simplex (Shrinking):

$$\mathbf{v}_i = \mathbf{v}_1 + \sigma(\mathbf{v}_i - \mathbf{v}_1)$$
 for all i

In each of the three cases, we then continue with step 1 until a termination criterion is met.

Note: standard values for the contraction and shrinkage coefficient are $\gamma=$ 0.5 and $\sigma=$ 0.5.

NELDER-MEAD

Advantages:

- Nelder-Mead only needs function values (no gradients).
- Very robust, often works well for non-differentiable functions.

Drawbacks:

- · Relatively slow.
- Not every step leads to an improvement of the solution, only the mean over the points in the simplex is reduced.
- No guarantee for convergence in local optimum.

Visualization:

a good illustration of the Nelder-Mead algorithm for one- and higher-dimensional optimization problems can be found at the following link: http://www.benfrederickson.com/numerical-optimization/

Attention: Nelder-Mead is default method of **R** function **optim()**. If gradient is easy to calculate, BFGS is preferred.

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

$$\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_1$$

NELDER-MEAD VS. GD

NM for multidim. scaling. Convert a matrix of distances to 2D coords, so the distances approximately stay. For >10 cities, GD (top) converges well for an appropriate learning rate. NM (bottom) completely fails to converge, even after many iterations.

NELDER-MEAD VS. GD

Even for only 5 cities, NM (bottom) struggles. GD (top) again works well.