0.1 Cluster algebra

ZP is a UFD

Lemma 0.1.1. \mathbb{P} is a torsion free abelian group written multiplicatively, then the group ring \mathbb{ZP} is a UFD

Proof. Finitely generated torsion free abelian groups are free

Definition 0.1.2 (Exchange pattern). $I = \{1, \dots, n\}$, \mathbb{T}_n is the regular n tree, the coefficient group \mathbb{P} is a torsion free abelian group under multiplication, thus the group ring \mathbb{ZP} is a domain.

Cluster variables are $\mathbf{x}(t) = \{x_i(t)\}_{i \in I}$ for $t \in \mathbb{T}_n$ such that for $\neq j$ and t - t'

$$x_i(t) = x_i(t')$$

 $\mathcal{M} = \{M_i(t)\}$ are monomials such that

$$M_j(t)(\mathbf{x}) = p_j(t) \prod_i x_i^{b_i}, p_j(t) \in \mathbb{P}, b_i \geq 0$$

$$x_j(t)x_j(t') = M_j(t)(\mathbf{x}(t)) + M_j(t')(\mathbf{x}(t'))$$

satisfying exchange pattern

(E1) $x_j \nmid M_j(t)$

(E2)
$$x_i \mid M_i(t) \Rightarrow x_i \nmid M_i(t')$$
 for $t \stackrel{j}{----} t'$

(E3)
$$x_j \mid M_i(t) \Leftrightarrow x_i \mid M_j(t')$$
 for $t \stackrel{i}{-----} t' \stackrel{j}{------} t_1$

(E4)
$$\frac{M_i(t_3)}{M_i(t_4)} = \frac{M_i(t_2)}{M_i(t_1)}\Big|_{x_j \leftarrow \frac{M_0}{x_j}}$$
for $t_1 \frac{i}{t_2 - \frac{j}{t_3}} t_3 \frac{i}{t_4}, M_0 = (M_j(t_2) + M_j(t_3))\Big|_{x_i = 0}$

Remark 0.1.3. The substitution $x_j \leftarrow \frac{M_0}{x_j}$ is effectively a monomial. Since if $M_j(t_2)$ nor $M_j(t_3)$ contain x_i , then $M_i(t_2)$ nor $M_i(t_3)$ contain x_j which it substitute for nothing

$$rac{M_i(t_2)}{M_i(t_1)} = \left. \left(rac{M_i(t_2)}{M_i(t_1)}
ight|_{x_j \leftarrow rac{M_0}{x_j}}
ight)
ight|_{x_j \leftarrow rac{M_0}{x_i}} = \left. rac{M_i(t_3)}{M_i(t_4)}
ight|_{x_j \leftarrow rac{M_0}{x_j}}$$

Definition 0.1.4. There is an involution between $(\mathbf{x}, \mathcal{M})$ and $(\mathbf{x}', \mathcal{M}')$ where $x'_j(t) = x_j(t')$, $M'_j(t) = M_j(t')$ for every t - t'

Definition 0.1.5. Suppose $J \subseteq I$ is a subset of size m, delete sides labeled in I - J in \mathbb{T}_n and choose choose a connected component which would be \mathbb{T}_m , add to the coefficient group x_k 's $k \in I - J$. This is called a restriction

Definition 0.1.6. Exchange pattern on exponents is a family of B(t) such that for each t

$$rac{M_j(t)}{M_j(t')} = rac{p_j(t)}{p_j(t')} \prod_i x_i^{b_{ij}(t)}$$

Thus

$$M_j(t) = p_j(t) \prod_i x_i^{[b_{ij}(t)]_+}, M_j(t') = p_j(t') \prod_i x_i^{[-b_{ij}(t)]_+}$$

Definition 0.1.7. An $n \times n$ matrix B is **sign-skew-symmetric** if $b_{ii} = 0$ and for $i \neq j$, b_{ij} , b_{ji} are both zeros or of opposite signs. B is **skew-symmetrizable** if there is a diagonal matrix D such that DB is skew symmetric, i.e. $d_ib_{ij} = -d_jb_{ji}$. Skew-symmetrizable matrices are obviously sign-skew-symmetric

Lemma on (|a|b+a|b|)/2

Lemma 0.1.8.

$$rac{|a|b+a|b|}{2}=egin{cases} ab & a,b>0\ -ab & a,b<0 &=\operatorname{sgn}(a)[ab]_+&=\operatorname{sgn}(b)[ab]_+\ 0 & ab<0 \end{cases}$$

Note. $|a| = [a]_+ + [-a]_+$

Definition 0.1.9. A mutation on a $m \times n$ (m > n) matrix B in direction k denoted by μ_k is given by

$$b'_{ij} = \begin{cases} -b_{ij} & i = k \text{ or } j = k \\ b_{ij} + \frac{|b_{ik}|b_{kj} + b_{ik}|b_{kj}|}{2} = b_{ij} + \operatorname{sgn}(b_{ik})[b_{ik}b_{kj}]_{+} & \text{otherwise} \end{cases}$$

Here $\mu_k(B) = B'$. μ_k is involutive

Theorem 0.1.10. If B(t) are sign-skew-symmetric and $\mu_k(B(t)) = B(t')$ for each t - t', then it gives a exchange pattern

Proof. Suppose B(t) is an exchange pattern, then B(t) is obviously sign-skew-symmetric. For $t ext{ } ext{ } ext{ } t'$, we have

$$rac{M_k(t)}{M_k(t')} = rac{p_k(t)}{p_k(t')} \prod_i x_i^{b_{ik}}, rac{M_k(t')}{M_k(t)} = rac{p_k(t')}{p_k(t)} \prod_i x_i^{b'_{ik}}$$

Hence $b'_{ik} = -b_{ik}$. Consider $t_1 \stackrel{j}{-----} t' \stackrel{k}{-----} t \stackrel{j}{------} t_2$

$$\left.rac{M_j(t')}{M_j(t_1)}=\left.rac{M_j(t)}{M_j(t_2)}
ight|_{x_k\leftarrowrac{M_0}{x_k}}$$

becomes

$$\left. rac{p_j(t')}{p_j(t_1)} \prod_i x_i^{b'_{ij}} = rac{p_j(t)}{p_j(t_2)} \prod_i x_i^{b_{ij}}
ight|_{x_k \leftarrow rac{M_0}{x_k}}$$

Where

$$M_0 = \left. \left(p_k(t) \prod_i x_i^{[b_{ik}]_+} + p_k(t') \prod_i x_i^{[-b_{ik}]_+}
ight)
ight|_{x_i = 0}$$

Case 1: $b_{jk} > 0 \Leftrightarrow b_{kj} < 0$, then $M_0 = p_k(t') \prod_{i \neq j} x_i^{[-b_{ik}]_+}$, thus

$$\prod_{i
eq j} x_i^{b'_{ij}} = \prod_{i
eq j,k} x_i^{b_{ij}} \cdot \left(x_k^{-1} \prod_{i
eq j,k} x_i^{[-b_{ik}]_+}
ight)^{b_{kj}} = \prod_{i
eq j,k} x_i^{b_{ij} + b_{kj}[-b_{ik}]_+} x_k^{-b_{kj}}$$

Case 2: $b_{jk} < 0 \Leftrightarrow b_{kj} > 0$, then $M_0 = p_k(t') \prod_{i \neq j} x_i^{[-b_{ik}]_+}$, thus

$$\prod_{i
eq j} x_i^{b'_{ij}} = \prod_{i
eq j,k} x_i^{b_{ij}} \cdot \left(x_k^{-1} \prod_{i
eq j,k} x_i^{[b_{ik}]_+}
ight)^{b_{kj}} = \prod_{i
eq j,k} x_i^{b_{ij} + b_{kj}[b_{ik}]_+} x_k^{-b_{kj}}$$

Case 3: $b_{ik} = 0 \Leftrightarrow b_{kj} = 0$, then

$$\prod_{i
eq j,k} x_i^{b'_{ij}} = \prod_{i
eq j,k} x_i^{b_{ij}}$$

Therefore $b'_{kj} = -b_{kj}$ and $b'_{ij} = b_{ij} + \operatorname{sgn}(b_{ik})[b_{ik}b_{kj}]_+$

Conversely, if B(t) are sign-skew-symmetric and $\mu_k(B(t)) = B(t')$ for each t - t', take

$$M_k(t) = \prod_i x_i^{[b_{ik}(t)]_+}, M_k(t') = \prod_i x_i^{[-b_{ik}(t)]_+}$$

for $t - \frac{k}{k} t'$, then obviously $x_k \nmid M_k(t)$ since $b_{kk} = 0$ and

$$x_j \mid M_k(t) \Leftrightarrow b_{jk} > 0 \Leftrightarrow -b_{jk} < 0 \Rightarrow x_j \nmid M_k(t')$$

For $t \stackrel{k}{-\!\!\!-\!\!\!-\!\!\!-} t' \stackrel{j}{-\!\!\!\!-\!\!\!\!-} t_1$

$$x_j \mid M_k(t) \Leftrightarrow b_{jk} > 0 \Leftrightarrow b'_{kj} = -b_{kj} > 0 \Leftrightarrow x_k \mid M_j(t')$$

For $t_1 - \frac{j}{k} - t' - \frac{k}{k} - \frac{j}{k} - t_2$, it is the exact argument above by taking $p_j(t) \equiv 1$ Mutation of a skew-symmetrizable matrix preserves the skew-symmetrizing matrix

Proposition 0.1.11. Given a skew-symmetrizable matrix B, the all possible mutations B(t) in \mathbb{T}_n are skew-symmetrizable with the same skew-symmetrizing matrix D

Proof. True for each mutation μ_k

Remark 0.1.12. For cluster algebra of rank $n \le 2$, the exchange pattern is skew-symmetrizable. If n = 1, $B(t) \equiv 0$. If n = 2, $B(t_n) = (-1)^n \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$

Definition 0.1.13. Denote 2n tuple $\mathbf{p}(t)$ the coefficients $p_j(t), p_j(t')$ for $t - \mathbf{p}(t)$. $\Sigma(t) = (\mathbf{x}(t), \mathbf{p}(t), B(t))$ is a **seed**, $\mathbf{x}(t)$ is the **cluster** of the seed. If we assume $\mathbf{x}(t_0)$ are algebraically independent $(\mathbf{x}(t_0))$ is a cluster of rank n, then so are $\mathbf{x}(t)$ since they are all mutationally equivalent. Denote the collection of all cluster variables \mathcal{X} , the collection of all coefficients \mathcal{P} , the collection of exchange matrices \mathcal{B} , the collection of $M_j(t)$'s \mathcal{M} , the collection of seeds \mathcal{S} . We can take $\mathcal{F} = \mathbb{ZP}(x_1, \dots, x_n)$ to be the **ambient field**, \mathbf{x} can be some cluster $\mathbf{x}(t_0)$. The **cluster algebra** is the subalgebra $\mathbb{ZP}[\mathcal{X}]$

Proposition 0.1.14. Given B(t) that give rise to exchange pattern, the coefficients must satisfy

$$\begin{aligned} p_i(t_1)p_i(t_3)p_i(t_3)^{[b_{ji}(t_3)]_+} &= p_i(t_2)p_i(t_4)p_i(t_2)^{[b_{ji}(t_2)]_+} \\ Proof. \text{ For } t_1 & \xrightarrow{i} t_2 & \xrightarrow{j} t_3 & \xrightarrow{i} t_4 \\ & \frac{p_i(t_3)}{p_i(t_4)} \prod_k x_k^{b_{ki}(t_3)} &= \frac{M_i(t_3)}{M_i(t_4)} = \frac{M_i(t_3)}{M_i(t_4)} \bigg|_{x_j \leftarrow \frac{M_0}{x_j}} &= \frac{p_i(t_2)}{p_i(t_1)} \prod_k x_k^{b_{ki}(t_2)} \bigg|_{x_j \leftarrow \frac{M_0}{x_j}} \end{aligned}$$

Here

$$M_0 = \left. \left(M_j(t_2) + M_j(t_3)
ight)
ight|_{x_i = 0} = \left. \left(p_j(t_2) \prod_k x_k^{[b_{kj}(t_2)]_+} + p_j(t_3) \prod_k x_k^{[b_{kj}(t_3)]_+}
ight)
ight|_{x_i = 0}$$

Take $x_k = 1$ for $k \neq j$, and use the fact that B(t) are sign-skew-symmetric, we get

$$p_i(t_1)p_i(t_3) = p_i(t_2)p_i(t_4)M_0^{b_{ji}(t_2)}$$

With

Case 1: $b_{ij}(t_2) > 0$. Then $b_{ij}(t_3) < 0$, $M_0 = p_j(t_3)$ and

$$p_i(t_1)p_i(t_3)p_i(t_3)^{b_{ji}(t_3)}=p_i(t_2)p_i(t_4)$$

Case 2: $b_{ij}(t_2) < 0$. Then $b_{ij}(t_3) > 0$, $M_0 = p_j(t_2)$ and

$$p_i(t_1)p_i(t_3) = p_i(t_2)p_i(t_4)p_i(t_2)^{b_{ji}(t_2)}$$

Case 3: $b_{ij}(t_2) = 0$. Then $b_{ij}(t_3) = 0$, $M_0 = p_j(t_2) + p_j(t_3)$, but $b_{ji}(t_2) = b_{ji}(t_3) = 0$, hence

$$p_i(t_1)p_i(t_3) = p_i(t_2)p_i(t_4)$$

Note. A trivial solution of (0.1.1) is $p_j(t) = 1$

Proposition 0.1.15. The universal coefficient group \mathcal{P} of \mathbb{P} is the free abelian group generated by $p_i(t)$ modulo (0.1.1). \mathcal{P} is torsion free, more precisely, it is the free abelian group generated by $p_i(t_0)$, $p_i(t)$ for every $t_0 \stackrel{i}{-----} t$ and exactly one of $p_i(t)$, $p_i(t')$ for every $t \stackrel{i}{-----} t'$ where $t, t' \neq t_0$

Definition 0.1.16. Take the field of rational functions of cluster variables $\mathbf{x}(t_0)$ with coefficients in $\mathbb{Z}\mathcal{P}$ to be the ambient field \mathcal{F} , all other cluster variables $\mathbf{x}(t)$ are also in \mathcal{F} by Theorem 0.2.3. The **universal cluster algebra** \mathcal{A} is the subalgebra generated by all cluster variables with coefficients in $\mathbb{Z}\mathcal{P}$

M-equivalence

Definition 0.1.17. $t, t' \in \mathbb{T}_n$ are \mathcal{M} -equivalent if there is a permutation σ of I such that

- $x_{\sigma(i)}(t) = x_i(t')$
- $M_{\sigma(j)}(t)(\mathbf{x}(t)) = M_j(t')(\mathbf{x}(t'))$ and $M_{\sigma(j)}(t_1)(\mathbf{x}(t)) = M_j(t'_1)(\mathbf{x}(t'))$ for $t \frac{\sigma(j)}{t'}$ and $t' \frac{j}{t'}$

0.2 Laurent phenomenon

Caterpillar lemma

Lemma 0.2.1 (Caterpillar lemma). Define the caterpillar tree $\mathbb{T}_{n,m}$ consists of a spine of m+2 nodes, with an orientation from t_{tail} to t_{head} with t_{base} connected to t_{tail} , as illustrated in Figure 0.2.1

Figure 0.2.1: $\mathbb{T}_{4.8}$

T4,8

Let \mathbb{A} be a UFD, exchange polynomial $P \in \mathbb{A}[x_1, \cdots, x_n]$ for each edge t - t', denoted x - t' satisfying the generalized exchange pattern

- P doesn't depend on x_j and x_i doesn't divide P
- For $t_0 \xrightarrow{i} t_1 \xrightarrow{j} t_2$, P, Q_0 are coprime in $\mathbb{A}[x_1, \dots, x_n]$, where $Q_0 = Q|_{x_i=0}$
- For $t_0 \xrightarrow{i} t_1 \xrightarrow{j} t_2 \xrightarrow{i} t_3$, $LQ_0^b P = R|_{x_j \leftarrow \frac{Q_0}{x_j}}$ for some $b \ge 0$ and some Laurent monomial L with coefficients in \mathbb{A} coprime with P

Cluster variables $\mathbf{x}(t) = \{x_i(t)\}\$ for $t \in \mathbb{T}_{n,m}$ satisfying for each $t - \frac{i}{p} t'$

- $x_i(t) = x_i(t')$ for any $i \neq j$
- $x_i(t)x_i(t') = P(t)(\mathbf{x}(t))$

Then $\mathbf{x}(t_{\mathtt{head}})$ are Laurent polynomials in $\mathbf{x}(t_{\mathtt{0}})$ with coefficients in \mathbb{A}

Proof. Write the subring of Laurent polynomials generated by $\mathbf{x}(t)$ as

$$\mathcal{L}(t) = \mathbb{A}[x_1(t)^{\pm 1}, \cdots, x_n(t)^{\pm 1}]$$

Make induction on m. If m = 1, consider $t_{\text{tail}} = t - \frac{i}{P} t_{\text{base}} = t' - \frac{j}{Q} t_{\text{head}} = t_1$, we have for $k \neq i, j$

$$egin{aligned} x_k(t_1) &= x_k(t') = x_k(t) \ x_i(t_1) &= x_i(t') = rac{P(\mathbf{x}(t))}{x_i(t)} \ x_j(t_1) &= rac{Q(\mathbf{x}(t'))}{x_j(t')} = rac{Q(\mathbf{x}(t'))}{x_j(t)} \end{aligned}$$

Now suppose $m \geq 2$, let's show that $X = x_k(t_{\text{head}}) \in \mathcal{L}(t_0)$, by induction, $X \in \mathcal{L}(t_1) \cap \mathcal{L}(t_3)$. Since $X, x_i(t_1) = \frac{P(\mathbf{x}(t_0))}{x_i(t_0)} \in \mathcal{L}(t_0)$, $X = \frac{f_0}{x_i(t_1)^a}$ for some $f_0 \in \mathcal{L}(t_0)$ and $a \geq 0$, similarly, $X = \frac{g_0}{x_j(t_2)^b x_i(t_3)^c}$ for some $g_0 \in \mathcal{L}(t_0)$ and $b, c \geq 0$, thanks to Lemma 0.2.2, $X \in \mathcal{L}(t_0)$

Lemma for caterpillar lemma

Lemma 0.2.2. For
$$t_0 \xrightarrow{i} t_1 \xrightarrow{j} t_2 \xrightarrow{i} t_3$$
, $\mathbf{x}(t_1), \mathbf{x}(t_2), \mathbf{x}(t_3) \in \mathcal{L}(t_0)$, and

$$\gcd(x_i(t_1), x_i(t_3)) = \gcd(x_i(t_2), x_i(t_1)) = 1$$

in $\mathcal{L}(t_0)$

Note. $\mathcal{L}(t_0)$ is a UFD, $\mathcal{L}(t_0)^{\times}$ consists of Laurent monomials with coefficients \mathbb{A}^{\times}

Proof. Denote $x = x_i(t_0)$, $y = x_j(t_0) = x_j(t_1)$, $z = x_i(t_1) = x_i(t_2)$, $u = x_j(t_2) = x_j(t_3)$, $v = x_i(t_3)$, think of P, Q, R as functions of x_j, x_i, x_j respectively, then

$$egin{aligned} z &= rac{P(y)}{x} \ u &= rac{Q(z)}{y} = rac{Q\left(rac{P(y)}{x}
ight)}{y} \ v &= rac{R(u)}{z} = rac{R\left(rac{Q(z)}{y}
ight)}{z} = rac{R\left(rac{Q(z)}{y}
ight) - R\left(rac{Q(0)}{y}
ight)}{z} + rac{R\left(rac{Q(0)}{y}
ight)}{z} \end{aligned}$$

$$\frac{R\left(\frac{Q(z)}{y}\right) - R\left(\frac{Q(0)}{y}\right)}{z} = R'\left(\frac{Q_0}{y}\right) \frac{Q'(0)}{y} + \frac{1}{2} R\left(\frac{Q(z)}{y}\right)'' \bigg|_{z=0} z + \cdots \equiv R'\left(\frac{Q_0}{y}\right) \frac{Q'(0)}{y} \bmod z$$

$$rac{R\left(rac{Q_0}{y}
ight)}{z}=rac{L(y)Q_0(y)^bP(y)}{z}=L(y)Q_0(y)^bx$$

Thus $v \in \mathcal{L}(t_0)$

Since $gcd(P, Q_0) = gcd(P, L) = 1$

$$\gcd(z,v)=\gcd\left(\frac{P(y)}{x},L(y)Q_0(y)^bx\right)=\gcd\left(P(y),L(y)Q_0(y)^b\right)=1$$

Since $\frac{Q(z)}{y} \equiv \frac{Q_0}{y} \mod z$

$$\gcd(z,u) = \gcd\left(z, \frac{Q_0}{u}\right) = \gcd\left(P(y), Q_0\right) = 1$$

Laurent phenonmenon

Theorem 0.2.3. Catepillar lemma 0.2.1 implies that in a cluster algebra, any cluster variable can be expressed as a Laurent polynomial in a given $\mathbf{x}(t_0)$ with coefficients in $\mathbb{Z}_{\geq 0}\mathbb{P}$ since there is no subtraction involved

Proof. $\mathbb{T}_{n,m}$ can be embedded in \mathbb{T}_n . $M_j(t) + M_j(t')$ doesn't depend on x_j and not divisible by x_i for t - t' and any $i \neq j$

$$\left. \frac{P}{M_i(t_0)} = 1 + \frac{M_i(t_1)}{M_i(t_0)} = 1 + \left. \frac{M_i(t_2)}{M_i(t_3)} \right|_{x_j \leftarrow \frac{M_0}{x_j}} = \left. \frac{R}{M_i(t_3)} \right|_{x_j \leftarrow \frac{M_0}{x_j}}$$

Where $M_0 = (M_j(t_1) + M_j(t_2))|_{x_i=0} = Q_0$, thus

$$\frac{R|_{x_j \leftarrow \frac{Q_0}{x_j}}}{P} = \frac{M_i(t_3)|_{x_j \leftarrow \frac{Q_0}{x_j}}}{M_i(t_0)}$$

Note that
$$M_i(t_0) = p_i(t_0) \prod_k x_k^{[b_{ki}(t_0)]_+}$$
 and

$$egin{aligned} M_i(t_3)|_{x_j\leftarrowrac{Q_0}{x_j}} &= p_i(t_3) \prod_k x_k^{[b_{ki}(t_3)]_+}igg|_{x_j\leftarrowrac{Q_0}{x_j}}\ &= p_i(t_3) \left(rac{Q_0}{x_j}
ight)^{[b_{ji}(t_3)]_+} \prod_{k
eq i,j} x_k^{[b_{ki}(t_3)]_+}\ &= p_i(t_3) Q_0^{[b_{ji}(t_3)]_+} x_j^{-[b_{ji}(t_3)]_+} \prod_{k
eq i,j} x_k^{[b_{ki}(t_3)]_+} \end{aligned}$$

Hence

$$\left.R\right|_{x_j\leftarrow\frac{Q_0}{x_j}}=\frac{p_i(t_3)}{p_i(t_0)}x_j^{-[b_{ji}(t_3)]_+-[b_{ji}(t_0)]_+}\prod_{k\neq i,j}x_k^{[b_{ki}(t_3)]_+-[b_{ki}(t_0)]_+}Q_0^{[b_{ji}(t_3)]_+}P=LQ_0^bP$$

Since the sum of two monomials P doesn't depend on x_i and is not divisible by any x_k for $k \neq i$, Q_0 is a monomial, L is a Laurent monomial, Q_0 , P are coprime in $\mathbb{A}[\mathbf{x}]$ and L, P are coprime in $L[\mathbf{x}]$

0.3 Y-system

A is the Cartan matrix of root system Φ with simple system Π , denote $[\alpha:\alpha_i]$ as the coefficients of $\alpha\in\Phi$, write $\Phi_{\geq -1}=\Phi_+\cup(-\Pi)$. Since the Coxeter graph is a tree, it is bipartite, up to renaming $I=\{1,\cdots,n\}=I_-\sqcup I_+,\,\varepsilon(i)=\varepsilon$ for $i\in I_\varepsilon$ be the indicator. Let $t_\varepsilon=\prod_{i\in I_\varepsilon}s_i,\,t=t_-t_+$

is a Coxeter element, h is the Coxeter number. s_{i_-}, s_{i_+} are reduced words of t_-, t_+ , then

$$w_{\circ} = \underbrace{s_{\mathbf{i}_{-}}s_{\mathbf{i}_{+}}\cdots s_{\mathbf{i}_{\pm}}}_{h \; \mathrm{times}} = s_{\mathbf{i}_{\circ}}$$

is the element of longest length

Definition 0.3.1. Suppose Φ is irreducible, then

$$[s_i(lpha):lpha_k] = egin{cases} -[lpha:lpha_i] - \sum_{j
eq i} a_{ij} [lpha:lpha_j] & k=i \ [lpha:lpha_k] & k
eq i \end{cases}$$

Define a piecewise linear modification

$$[\sigma_i(lpha):lpha_k] = egin{cases} -[lpha:lpha_i] - \sum_{j
eq i} a_{ij} [lpha:lpha_j]_+ & k=i \ [lpha:lpha_k] & k
eq i \end{cases}$$

Proposition 0.3.2.

- 1. σ_i are involutions
- **2.** σ_i, σ_j commutes if i, j are not adjacent in the Coxeter graph
- **3.** σ_i preserves $\Phi_{>-1}$

Proposition 0.3.3. Let $\tau_{\varepsilon} = \prod_{i \in I_{\varepsilon}} \sigma_i$

- 1. τ_{ε} are involutions that preserve $\Phi_{\geq -1}$
- **2.** $\tau_{\varepsilon}\alpha = t_{\varepsilon}\alpha$ for $\alpha \in \mathbb{Z}_{>0}\Pi$
- **3.** $\Phi_{\geq -1} \to \Phi_{\geq -1}^{\vee}$, $\alpha \mapsto \alpha^{\vee}$ are τ_{ε} equivariant, i.e. $(\tau_{\varepsilon}\alpha)^{\vee} = \tau_{\varepsilon}\alpha^{\vee}$

Definition 0.3.4. A **Y-system** is a family of commuting variables $Y_i(t)$, $i \in I = \{1, \dots, n\}$, $t \in \mathbb{Z}$ such that

$$Y_i(t+1)Y_i(t-1) = \prod_{j \neq i} (1+Y_i(t))^{-a_{ij}}$$
(0.3.1)

Remark 0.3.5. (0.3.1) only really involve those $Y_j(k)$ with $\varepsilon(j) \cdot (-1)^k = \text{const}$, assume $Y_j(k) = Y_j(k+1)$ for $\varepsilon(i) = (-1)^k$, then we have

$$Y_i(k+1) = egin{cases} rac{\prod_{j
eq i} (1+Y_i(k))^{-a_{ij}}}{Y_i(k)} & arepsilon(i) = (-1)^k + 1 \ Y_i(k) & arepsilon(i) = (-1)^k \end{cases}$$

Denote \mathcal{Y} as the collection of all $Y_i(k)$'s, $u_i = Y_i(0)$, define

$$au_arepsilon(u_i) = egin{cases} rac{\prod_{j
eq i} (1+u_i)^{-a_{ij}}}{u_i} & arepsilon(i) = arepsilon \ u_i & ext{otherwise} \end{cases}$$

0.3. Y-SYSTEM 9

Theorem 0.3.6 (Zamolodichikov). $Y_i(t)$'s are 2(h+2) periodic, i.e. $Y_i(t+2(h+2)) = Y_i(t)$

Theorem 0.3.7. There is a unique family $\{F[\alpha]\}_{\alpha\in\Phi_{\geq -1}}$ of polynomials in u_i such that $F[-\alpha_i]=-1$ and

$$au_{arepsilon}(F[lpha]) = rac{\displaystyle\prod_{arepsilon(i) = -arepsilon} (u_i + 1)^{[lpha^ee} : lpha_i^ee]}{\displaystyle\prod_{arepsilon(i) = arepsilon} u_i^{[lpha^ee} : lpha_i^ee]_+} F[au_{-arepsilon}(lpha)]$$

Furthermore, $F[\alpha] \in \mathbb{Z}_{\geq 0}[\mathbf{u}]$ has constant term 1. Call $F[\alpha]$ Fibonacci polynomials Any $\alpha \in \Phi_{\geq -1}$ can be written as $\alpha(k,i) = (\tau_- \tau_+)^k (-\alpha_i)$, denote $N[\alpha] = \prod_{i \neq i} F[\alpha(-k,i)]^{-a_{ij}}$,

note that $N[\alpha] \in \mathbb{Z}_{\geq 0}[\mathbf{u}]$ also has constant term 1

Theorem 0.3.8. There is a unique bijection $\Phi_{\geq} - 1 \to \mathcal{Y}$, $\alpha \mapsto Y[\alpha] = \frac{N[\alpha]}{\mathbf{u}^{\alpha^{\vee}}}$ such that $Y[-\alpha_i] = u_i$, $\tau_{\varepsilon}(Y[\alpha]) = Y[\tau_{\varepsilon}(\alpha)]$

Definition 0.3.9. A tropical specialization r_{trop} of a rational expression r is changing the addition + and multiplication \cdot into \oplus and \odot where $a \oplus b = \max(a, b)$, $a \odot b = a + b$ The compatibility degree for $\alpha, \beta \in \Phi_{>-1}$ is

$$(\alpha||eta) = (Y[lpha] + 1)(eta)_{\mathrm{trop}}$$

Here $(Y[\alpha] + 1)(\beta)$ is evaluation at $\{u_i = [\beta : \alpha_i]\}$. α, β are **compatible** if $(\alpha||\beta) = 0$ $\Delta(\Phi)$ is a simplicial complex with $\Phi_{\geq -1}$ as vertices and mutually compatible subsets of $\Delta(\Phi)$ are simplices, the maximal simplices are **clusters**. The **exchange graph** $E(\Phi)$ is an unoriented graph with clusters as vertices and an edge between clusters which has intersection of cardinality n-1

Remark 0.3.10. (||) is uniquely characterized by

$$(-lpha_i||eta) = (Y[-lpha_i] + 1)(eta)_{ ext{trop}} = (u_i + 1)(eta)_{ ext{trop}} = [eta:lpha_i]_+$$
 $(au_{arepsilon}(lpha)|| au_{arepsilon}(eta)) = (Y[au_{arepsilon}(lpha)] + 1)(au_{arepsilon}(eta))_{ ext{trop}} = (lpha||eta)$

Proposition 0.3.11. Consider perfect bilinear pairing

$$\mathbb{Z}\Pi^{\vee} \times \mathbb{Z}\Pi \to \mathbb{Z}$$

 $(\xi, \gamma) \mapsto \{\xi, \gamma\}$

Where $\{\xi, \gamma\} = \sum \varepsilon(i)[\xi : \alpha_i^{\vee}][\gamma : \alpha_i]$. Then

$$(\alpha||\beta) = \max(\{\tau_{+}\alpha^{\vee}, \beta\}, \{\alpha^{\vee}, \tau_{+}\beta\}, 0) = \max(-\{\tau_{-}\alpha^{\vee}, \beta\}, -\{\alpha^{\vee}, \tau_{-}\beta\}, 0)$$

Note. (||) doesn't depend on the choice of the indicator ε

Proposition 0.3.12.

- 1. $(\alpha||\beta) = (\beta^{\vee}||\alpha^{\vee})$, in particular, if Φ is simply laced, then $(\alpha||\beta) = (\beta||\alpha)$
- **2.** If $(\alpha||\beta) = 0$, then $(\beta||\alpha) = 0$
- **3.** $J \subseteq I$, $\Phi(J) \subseteq \Phi$ is a root subsystem, (||) on $\Phi(J)$ is the same as the restriction

Theorem 0.3.13. $\Delta(\Phi)$ is pure of dimension n-1, and each facet forms a \mathbb{Z} -basis for the root lattice

Theorem 0.3.14. The simplicial cones of all clusters form a complete simplicial fan

Corollary 0.3.15. The geometric realization of $\Delta(\Phi)$ is \mathbb{S}^{n-1}

Conjecture 0.3.16. The simplicial fan of $\Delta(\Phi)$ is the normal fan of some convex polytope $P(\Phi)$

Theorem 0.3.17. $E(\Phi)$ is a regular n tree

Example 0.3.18.

0.4 Associahedron

Definition 0.4.1. Any n regular polygon has $\binom{n}{2} - n = \frac{n(n-3)}{2}$ diagonals, with these as vertices, noncrossing subsets as simplexes, we have given it a abstract simplicial complex structure

0.5 Cluster algebra of geometric type

Semifield is multiplicative torison free

Lemma 0.5.1. Semifield \mathbb{P} is multiplicative torison free

Proof. Suppose $p^m = 1$, then

$$p = \frac{p^m \oplus p^{m-1} \oplus \dots + p}{p^{m-1} \oplus p^{m-2} \oplus \dots + 1} = \frac{1 \oplus p^{m-1} \oplus \dots + p}{p^{m-1} \oplus p^{m-2} \oplus \dots \oplus 1} = 1$$

Definition 0.5.2. Exchange pattern is **normalized** if \mathbb{P} is a semifield and $p_j(t) \oplus p_j(t') = 1$ for any $t \stackrel{j}{-----} t'$

Normalized exchange pattern determines the cluster algebra

Proposition 0.5.3. Given p_j, r_j in a semifield \mathbb{P} such that $p_j \oplus r_j = 1$, and exchange matrix B(t) on \mathbb{T}_n , define $p_j(t_0) = p_j$, $p_j(t) = r_j$ for each $t_0 \xrightarrow{i} t$, this completely determines the cluster algebra

Proof. Define $u_j(t) = \frac{p_j(t)}{p_j(t')}$ for $t - \frac{j}{t'}$, then

$$p_j(t) = rac{u_j(t)}{1 \oplus u_j(t)}, p_j(t') = rac{1}{1 \oplus u_j(t)}$$

Then (0.1.1) becomes

$$u_i(t_3)p_j(t_3)^{[b_{ji}(t_3)]_+} = u_i(t_2)p_j(t_2)^{[b_{ji}(t_2)]_+}$$

Case 1:
$$u_i(t_3)p_j(t_3)^{b_{ji}(t_3)} = u_i(t_2) \Rightarrow u_i(t_3) = u_i(t_2)(1 \oplus u_j(t_2))^{b_{ji}(t_2)}$$

Case 2:
$$u_i(t_3) = u_i(t_2)p_j(t_2)^{b_{ji}(t_2)} = u_i(t_2) \left(\frac{u_j(t_2)}{1 \oplus u_j(t_2)}\right)^{b_{ji}(t_2)}$$

Thus for $t - \frac{j}{t}$, we have

$$u_i(t') = u_i(t)u_j(t)^{[b_{ji}(t)]_+}(1 \oplus u_j(t))^{-b_{ji}(t)}$$

Remark 0.5.4. p determines u which in turn determines p

Fix semifield \mathbb{P} , B is skew-symmetrizable, then (B, \mathbf{p}) determines the cluster algebra $\mathcal{A} = \mathcal{A}(B, \mathbf{p})$ up to isomorphism

Corollary 0.5.5. The exchange graph of a normalized cluster algebra is n-regular

Definition 0.5.6. The **tropical semifield** $(\mathbb{R}, \oplus, \odot)$ is a semifield with multiplication as \odot , min or max as \oplus

The tropical semifield generated by p is the free abelian group generated multiplicatively by p with $p^a \oplus p^b = p^{\min(a,b)}$

Definition 0.5.7. A normalized cluster algebra is of geometric type if \mathbb{P} is the tropical semifield generated by $\{p_i\}_{i\in I'}$ and each $p_i(t)$ is a monomial with nonnegative exponents

Remark 0.5.8. In this particular case, normality just means that for t - t', $p_j(t)$, $p_j(t')$ doesn't have a common variable, or the support doesn't intersect

Proposition 0.5.9. \mathbb{P} is the tropical semifield generated by $p_i, i \in I'$, B(t) is the exchange pattern of exponents, $p_j(t)$ give rise to a cluster algebra of geometric type iff C(t) satisfies the exchange pattern of coefficients, i.e. $p_j(t) = \prod p_i^{[c_{ij}(t)]_+}$ and

$$c'_{ij} = egin{cases} -c_{ij} & j = k \ c_{ij} + rac{|c_{ij}|b_{jk} + c_{ij}|b_{jk}|}{2} & ext{otherwise} \end{cases}$$

Here the mutation is in direction k

Proof. Suppose $p_j(t)$ give rise to a cluster algebra of geometric type. Define $u_j(t) = \frac{p_j(t)}{p_j(t')} = \prod_{i \in I'} p_i^{c_{ij}(t)}$ for each t = t', then according to Proposition 0.5.3

$$p_j(t) = rac{u_j(t)}{1 \oplus u_j(t)} = rac{\prod_i p_i^{c_{ij}}}{1 \oplus \prod_i p_i^{c_{ij}}} = rac{\prod_i p_i^{c_{ij}}}{\prod_i p_i^{-[-c_{ij}]_+}} = \prod_i p_i^{[c_{ij}]_+}$$
 $1 = u_k(t)u_k(t') = \prod_i p_i^{c_{ik} + c'_{ik}} \Rightarrow c'_{ik} = -c_{ik}$

And

$$egin{aligned} \prod_{i} p_{i}^{c_{ij}'} &= \prod_{i} p_{i}^{c_{ij}} \left(\prod_{i} p_{i}^{c_{ik}}
ight)^{[b_{kj}]_{+}} \left(1 \oplus \prod_{i} p_{i}^{c_{ik}}
ight)^{-b_{kj}} \ &= \prod_{i} p_{i}^{c_{ij}} \prod_{i} p_{i}^{c_{ik}[b_{kj}]_{+}} \prod_{i} p_{i}^{b_{kj}[-c_{ik}]_{+}} \ &= \prod_{i} p_{i}^{c_{ij}+rac{|c_{ij}|b_{jk}+c_{ij}|b_{jk}|}{2}} \end{aligned}$$

Remark 0.5.10. Note if we take $\tilde{B}(t) = (\tilde{b}_{ij})_{i \in I \cup I', j \in I}$ where $\tilde{b}_{ij} = b_{ij}$ for $i, j \in I$ is the principal part of \tilde{B} , $\tilde{b}_{ij} = c_{ij}$ for $i \in I', j \in I$

Corollary 0.5.11. Given \tilde{B}_0 with a skew-symmetrizable principal part B_0 , then there exists a unique exchange pattern of geometric type such that $\tilde{B}(t_0) = \tilde{B}_0$ for $t_0 \in \mathbb{T}_n$

Proof. By Proposition
$$0.1.11$$

Remark 0.5.12. The class of exchange patterns of geometric type is stable under restriction and direct product

0.6 Rank two case

Cluster algebra of rank 2

Example 0.6.1. If n = 2, consider \mathbb{T}_2

The cluster variables are y_i, y_{i+1} for t_i

$$y_{2k+1} = x_1(t_{2k}) = x_1(t_{2k+1}), y_{2k} = x_2(t_{2k-1}) = x_2(t_{2k})$$

 $M_2(t_0)$ and $M_2(t_1)$ don't have x_1 and can't both have x_2 If both of them don't have x_2 , then $M_2(t_0), M_2(t_1) \in \mathbb{P}$, thus

$$\cdots x_2 \nmid M_1(t_{-1}) \Leftrightarrow x_1 \nmid M_2(t_0) \Leftrightarrow x_2 \nmid M_1(t_1) \Leftrightarrow x_1 \nmid M_2(t_2) \cdots$$

$$\cdots x_2 \nmid M_1(t_0) \Leftrightarrow x_1 \nmid M_2(t_1) \Leftrightarrow x_2 \nmid M_1(t_2) \Leftrightarrow x_1 \nmid M_2(t_3) \cdots$$

So is every $M_*(t_*) \in \mathbb{P}$, write q_m, r_m as the two monomials of $t_{m-1} - t_m$, then we have

$$y_{m-1}y_{m+1} = q_m + r_m$$

And for $t_{m-2} - t_{m-1} - t_m - t_{m+1}$ we have

$$rac{q_{m+1}}{r_{m+1}} = rac{r_{m-1}}{q_{m-1}} \Leftrightarrow q_{m-1}q_{m+1} = r_{m-1}r_{m+1}$$

If $M_2(t_0) = q_1 x_1^b$, $M_2(t_1) = r_1$ (the other case corresponds to the involution) for some b > 0, then $M_1(t_1) = q_2 x_2^c$, $M_1(t_2) = r_2$ for some c > 0, we have

$$\left. rac{M_2(t_2)}{M_2(t_3)} = \left. rac{M_2(t_1)}{M_2(t_0)}
ight|_{x_1 \leftarrow rac{M_0}{x_1}} = \left. rac{r_1}{q_1 x_1^b}
ight|_{x_1 \leftarrow rac{r_2}{x_1}} = rac{r_1 x_1^b}{q_1 r_2^b}$$

Since $x_1 \mid M_2(t_3) \Rightarrow x_2 \nmid M_2(t_2)$ gives a contradiction, $x_1 \nmid M_2(t_3) \Rightarrow M_2(t_3) = r_3$, thus $M_2(t_2) = q_3 x_1^b$, periodically, we can conclude

$$egin{aligned} M_2(t_{2k}) &= q_{2k+1} x_1^b \ M_2(t_{2k+1}) &= r_{2k+1} \ M_1(t_{2k-1}) &= q_{2k} x_2^c \ M_1(t_{2k}) &= r_{2k} \end{aligned}$$

Therefore we have

$$y_{2k-1}y_{2k+1} = q_{2k}y_{2k}^c + r_{2k}$$

 $y_{2k}y_{2k+2} = q_{2k+1}y_{2k+1}^b + r_{2k+1}$

For
$$t_{2k-1}$$
 $\stackrel{1}{----}$ t_{2k} $\stackrel{2}{----}$ t_{2k+1} $\stackrel{1}{----}$ t_{2k+2} we have

$$q_{2k}q_{2k+2}r_{2k+1}^c = r_{2k}r_{2k+2}$$

For
$$t_{2k-2} = \frac{2}{t_{2k-1}} = \frac{1}{t_{2k}} = \frac{2}{t_{2k+1}}$$
 we have

$$q_{2k-1}q_{2k+1}r_{2k}^b = r_{2k-1}r_{2k+1}$$

The exchange matrices are

$$B(t_m) = (-1)^m \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$$

Conversely, given such relation, we can always find a corresponding cluster algebra

In particular, consider the coordinate ring of ${\rm Gr}_2(5)$, let

$$y_m = [2m - 1, \overline{2m + 1}]$$
 $q_m = [2m - 2, \overline{2m + 2}]$
 $r_m = [2m - 2, \overline{2m - 1}][2m + 1, \overline{2m + 2}]$
 $b = c = 1$

Note. If we denote $m \mod 2$ as $\langle m \rangle$, then

$$egin{aligned} p_{\langle m
angle}(t_m) &= q_{m+1} \ p_{\langle m+1
angle}(t_m) &= r_m \ x_{\langle m
angle}(t_m) &= q_m \ x_{\langle m+1
angle}(t_m) &= y_{m+1} \end{aligned}$$

Example 0.6.2. As in Example 0.6.1, by Theorem 0.2.3, we know that

$$y_m = rac{N_m(y_1,y_2)}{y_1^{d_1(m)}y_2^{d_2(m)}}$$

Where $N_m(y_1,y_2) \in \mathbb{ZP}[y_1,y_2]$ not divisible by y_1 or y_2

Cluster algebra of finite type 0.7

Definition 0.7.1. Seeds $\Sigma(t)$, $\Sigma(t')$ are equivalent if t,t' are \mathcal{M} -equivalent, i.e. there is a permutation σ of I such that $x_{\sigma(i)(t)} = x_i(t')$, $b_{\sigma(i)\sigma(j)}(t') = b_{ij}(t)$, $p_{\sigma(j)}(t) = p_j(t')$. For geometric type, $c_{i\sigma(j)}(t) = c_{ij}(t')$, or rather, $\tilde{b}_{\sigma(i)\sigma(j)}(t') = \tilde{b}_{ij}(t)$ since σ as only a permutation of I fixes I'. By Proposition 0.5.3, if t, t' are equivalent, and $t - \frac{\sigma(j)}{j} = t_1$ and $t' - \frac{j}{j} = t_1'$, then t_1, t'_1 are equivalent

Cluster algebras $\mathcal{A}(\mathcal{S})$, $\mathcal{A}'(\mathcal{S}')$ are strongly isomorphic if there is a field isomorphism $\mathcal{F} \to \mathcal{F}'$ that sends seeds in \mathcal{S} to seeds \mathcal{S}' , thus inducing bijection $\mathcal{S} \to \mathcal{S}'$ and an isomorphism $\mathcal{A} \to \mathcal{A}'$ $\mathcal{A}(B,-)$ are all the possible normalized cluster algebras. $\mathcal{A}(B), \mathcal{A}(B')$ are strongly isomorphic if there is a one-to-one correspondence between $\mathcal{A}(B,\mathbf{p})$ and $\mathcal{A}(B',\mathbf{p}')$, this is true iff B,B' are mutationally equivalent modulo relabelling rows and columns

 \mathcal{A} is of **finite type** if it has finitely many seeds up to equivalences

Definition 0.7.2. The Cartan counterpart of B is the generalized Cartan matrix A(B) = $(a_{ij}), a_{ii} = 2, a_{ij} = -|b_{ij}|$ for $i \neq j$, with the same symmetrizing matrix D, i.e. $d_i a_{ij} = d_j a_{ji}$ A Cartan matrix of finite type, A(B)=A, bijbik>0, p normalized, then cluster algebra is of finite type **Theorem 0.7.3.** A is a Cartan matrix of finite type, there is a sign-skew symmetric B_{\circ} such that $A(B_{\circ}) = A$ and $b_{ij}b_{ik} > 0$ for all i, j, k, and \mathbf{p}_{\circ} is normalized, then $\mathcal{A}(B_{\circ}, \mathbf{p}_{\circ})$ is of finite type. Any cluster algebra of finite type is strongly isomorphic to one such data

Remark 0.7.4. Since the Coxeter graph of A is a tree which is bipartite, thus we can certainly divide them into sinks and sources. Since $b_{ij} > 0$ would be there is a directed edge from i to j, thus we can always find such a B_{\circ}

Theorem 0.7.5. B, B' sign-skew symmetric, A(B), A(B') iff A(B), A(B') are of the same Cartan-Killing type

Theorem 0.7.6. \mathcal{A} is a cluster algebra, the following are equivalent

- (i) \mathcal{A} is of finite type
- (ii) $|\mathcal{X}| < \infty$
- (iii) For every seed $(\mathbf{x}, \mathbf{p}, B)$, $|b_{xy}b_{yx}| < 3$ for $x, y \in \mathbf{x}$
- (iv) $\mathcal{A} = \mathcal{A}(B_{\circ}, p_{\circ})$ as in Theorem 0.7.3

Theorem 0.7.7. $\mathcal{A}(B)$ consists of cluster algebras all simultaneously of finite type or of infinite type. There is a bijective correspondence between generalized Cartan matrices of finite type and strong isomorphic classes of normalized cluster algebras, through $B \to A(B)$

Bijection between almost positive roots and X Theorem 0.7.8. There is a unique bijection $\Phi_{\geq -1} \to \mathcal{X}$, $\alpha \mapsto x[\alpha] = \frac{P_{\alpha}(\mathbf{x}_{\circ})}{\mathbf{x}^{\alpha}}$, $P_{\alpha} \in \mathbb{Z}_{\geq 0}\mathcal{P}$ with nonzero constant term such that $X[-\alpha_i] = x_i$

Theorem 0.7.9. Every seed $(\mathbf{x}, \mathbf{p}, B)$ in A is uniquely determined by the cluster \mathbf{x} , and for any $x \in \mathbf{x}$, there is a unique cluster \mathbf{x}' such that $\mathbf{x} \cap \mathbf{x}' = \mathbf{x} - \{x\}$. The the cluster complex $\Delta(\mathcal{A})$ encodes the combinatorics of seed mutations

Theorem 0.7.10. The bijection in Theorem 0.7.8 identifies $\Delta(\mathcal{A})$ and $\Delta(\Phi)$, in particular, the cluster complex doesn't depend on \mathbb{P} nor \mathbf{p}_{\circ}