UNIVERSIDADE FEDERAL DE ITAJUBÁ RYAN WYLLYAN RIBEIRO INÁCIO

PAINEL DE CONTROLE DE UMA IOGURTEIRA INDUSTRIAL Relatório

Itajubá

RYAN WYLLYAN RIBEIRO INÁCIO

PAINEL DE CONTROLE DE UMA IOGURTEIRA INDUSTRIAL Relatório

Relatório técnico requisitado pela disciplina de Programação Embarcada como critério de avaliação dos discentes.

Prof. Otávio de Souza Martins Gomes

Itajubá

RESUMO

O presente relatório apresenta o sistema embarcado do Painel de Controle de uma Iogurteira Industrial, o qual foi solicitado como projeto final da disciplina de Programação Embarcada. Logo, este trabalho visa à explanação do algoritmo desenvolvido, bem como a sua simulação. Ademais, dividiram-se as fases da produção das bebidas na iogurteira em bibliotecas que atendem cada etapa e relacionam-nas aos componentes da placa PICGenios. Portanto, é notório como o painel de controle aperfeiçoa e atende as demandas dos comandos referentes à produção das bebidas.

Palavras-chave: Iogurteira Industrial. Sistema Embarcado. Painel de controle.

LISTA DE ILUSTRAÇÃO

Figura 1 – Iogurteira Industrial	7
Figura 2 – Esquema elétrico da placa PICGenios	9
Figura 3 – Configuração PICSimLab	10
Figura 4 – Bibliotecas do Projeto	11
Figura 5 –1° fase de aquecimento da bebida láctea	13

SUMÁRIO

1 INTRODUÇÃO	6
2 IOGURTEIRA INDUSTRIAL	7
3 PROJETO	9
3.1 Ferramentas e Componentes	9
3.2 Hardware	9
3.3 Software	10
4 RESULTADOS	13
5 CONCLUSÃO	14
REFERÊNCIAS	15

1 INTRODUÇÃO

Um sistema embarcado trata-se de um software que age em um dispositivo específico se adequando ao ambiente e ao usuário. Sendo assim, é de extrema importância conhecer o objetivo e as especificações que o sistema deve atender.

Paralelamente, é notória a importância de ações regulares e específicas quando se trata de tarefas que envolvem máquinas industriais. Haja vista que tais ações promovem o correto funcionamento desses equipamentos, bem como evitam riscos aos seus usuários.

Desta forma, a aplicação de sistemas embarcados em máquinas industriais é uma ótima opção para melhorar a utilização destas ou, possivelmente, automatizá-las. Sendo assim, este relatório visa apresentar o desenvolvimento de um sistema embarcado, o qual fará com que um microcontrolador torne-se capaz de controlar uma Iogurteira Industrial, ou seja, funcionar como o painel de controle desta máquina.

Destarte, tendo em vista o processo de produção de bebidas por uma Iogurteira, neste trabalho serão abordadas as fases envolvidas no sistema, bem como os equipamentos utilizados e as funções referentes as etapas de fabricação do iogurte e bebida láctea.

2 IOGURTEIRA INDUSTRIAL

Tendo em vista a experiência do discente com essa máquina (Figura 1), a motivação para o desenvolvimento do sistema destinado a uma Iogurteira é oriunda do desejo de amenizar as dificuldades envolvidas no processo de produção, bem como o aprimoramento deste.

Figura 1 – Iogurteira Industrial
Fonte: própria

Sendo assim, utilizando a proporção para uma quantidade final de 1000 litros, os seguintes tópicos representarão as fases necessárias para a produção do iogurte:

- Adicionar 1000 litros de leite cru;
- Adicionar 50 kg de açúcar;
- Adicionar 2 kg de estabilizante (amido de milho);
- Homogeneizar a solução por 3 minutos;

- Aquecer até 90° C;
- Manter por 15 minutos com a temperatura de 90° C;
- Resfriar até 36° C;
- Adicionar o fermento segundo as especificações do fabricante;
- Deixar em fermentação por 24 horas;
- Homogeneizar por 10 minutos;
- Adicionar 40 kg de polpa de fruta do sabor desejado;
- Adicionar 800 g de sorbato de potássio;
- Homogeneizar por 15 minutos;
- Fazer a extração do líquido.

Outro produto que pode ser preparado na mesma máquina é a bebida láctea, sendo o seu processo muito semelhante ao do iogurte. Assim, as fases divergentes são as inicias, então, mantendo-se a mesma quantidade de produção as diferenças são abordadas nos itens:

- Adicionar 500 litros de soro;
- Adicionar 50 kg de açúcar;
- Adicionar 2 kg de estabilizante (amido de milho);
- Homogeneizar a solução por 3 minutos;
- Aquecer até 65° C;
- Adicionar 500 litros de leite cru;
- Aquecer até 90° C;

Após este último item o procedimento será o mesmo para ambos os produtos.

3 PROJETO

3.1 Ferramentas e Componentes

Para a formulação deste projeto foram utilizadas as seguintes ferramentas:

- Simulador do PICSimLab da versão 0.8.7 [1]
- MPLab X IDE [2]
- Compilador XC8 [3]

Dentre os componentes que são oferecidos pelas ferramentas citadas, utilizaram-se os seguintes:

- 4 Displays de 7-Segmentos
- 1 Display LCD 16x4
- 1° coluna do teclado
- 16 LEDs
- Cooler
- Heater
- 1 Relé

3.2 Hardware

O microcontrolador utilizado neste projeto é o PIC18F4520, o qual é simulado por meio da ferramenta PICSimLab. Além disso, a placa utilizada será a PICGenios (Figura 2) que também é simulada na mesma ferramenta.

Figura 2: Esquema elétrico da placa PICGenios

Fonte: Luis Claudio Gambôa Lopes, 2015

Para que o PICSimLab seja configurado a atender as especificações anteriores é necessário acessar primeiramente o menu "Board" e, em seguida, selecionar a placa PICGenios. Já para configurar o microcontrolador deve-se utilizar o menu "Microcontroller" e depois escolher a opção PIC18F4520. Vale ressaltar que este projeto utiliza do display lcd 16x4, sendo assim, na caixa de especificação do LCD deve ser escolhida a opção "hd44780 16x4". Desta forma a configuração final desejada pode ser observada na Figura 3.

Figura 3 – Configuração PICSimLab

Fonte: própria

3.3 Software

O desenvolvimento e a compilação do algoritmo referentes a este projeto foram realizadas na ferramenta MPLab X IDE. Assim, para a criação do projeto foi realizado os seguintes passos:

- seleção do menu "File";
- opção "New Project...";
- Na categoria "Microchip Embedded" selecionou-se o tipo "Standalone Project";
- Definição do Device como PIC18F4520;
- Seleção da ferramenta PICSimLab;
- Seleção do compilador XC8;
- Definição do nome do projeto.

Desta forma, finalizado a criação do projeto, foram construídas as bibliotecas necessárias para o painel de controle (Figura 4). Dentre essas bibliotecas, algumas foram fornecidas pelo professor da disciplina, sendo elas: acd, bits, config, io, lcd e ssd.

Figura 4: Bibliotecas do Projeto

Fonte: própria

Posto isto, para esclarecimento, serão apresentadas as funções presentes nestas bibliotecas desenvolvidas e o objetivo de utilização das funções.

• delay

- o delay(char): Pausar o programa pelo tempo em segundos recebido no parâmetro.
- delay_ms(unsigned int): Pausar o programa pelo tempo em milisegundos recebido no parâmetro.
- o cronometro(unsigned long int): Apresentar uma contagem regressiva no display de 7 segmentos do tempo recebido pelo parâmetro.

• info

o info(void): exibir a capacidade, ano de criação e logo no display lcd.

• menu

- menu(void): exibir as opções do menu principal no display de lcd e retornar a opção selecionada pelo usuário.
- o opcao(void): retornar a tecla selecionada pelo usuário.
- o logo(void): passar a logo da UNIFEI pelo display de lcd.

• produc

o producao(): realizar a produção das bebidas conforme informado no item 2 deste relatório.

• stdio

o printf(char[],int): imprimir uma string no display de lcd.

• temp

- o aquecer(unsigned char): utilizar o heater para aquecer até a temperatura recebida pelo parâmetro.
- o void resfriar(unsigned char): utilizar o cooler para resfriar até a temperatura recebida pelo parâmetro.

Por fim, o algoritmo completo pode ser encontrado na seção de resultados deste relatório.

4 RESULTADOS

Para demonstrar o funcionamento do painel de controle da iogurteira foi gravado um vídeo com uma sucinta explicação dos códigos e a simulação realizada no PICSimLab. Tal vídeo pode ser encontrado no seguinte link: https://drive.google.com/file/d/1TBLmJGBNWD4ipkWHGd6yOvvvqPt2p_4j/view?usp=sharing

Vale ressaltar que foi apresentada apenas a produção do iogurte no vídeo, sendo assim, a Figura 5 demostra um dos procedimentos de produção da bebida láctea que difere das fases retratadas no vídeo.

Figura 5 - 1° fase de aquecimento da bebida láctea

Fonte: própria

No que se refere ao algoritmo, ele obteve sucesso no resultado aguardado e pode ser acessado no seguinte link: https://github.com/RWRI/Projeto-Final-ECOP04.git

5 CONCLUSÃO

Com a produção deste projeto foi possível observar a grande capacidade que os sistemas embarcados possuem para facilitar processos. Além disso, é notório como os componentes da placa PICGenios apresentam uma comunicação satisfatória com o usuário, bem como a eficiência desses para realização da tarefas necessárias.

Ademais, vale ressaltar que, apesar das funcionalidades adicionadas ao painel de controle atenderem grande parte da demanda dos procedimentos de produções das bebidas, o projeto pode ser aprimorado para realizar tarefas mais específicas. Dentre tais tarefas, poderse-ia desenvolver uma função dedicada à acidez do líquido presente na máquina, haja vista que esse parâmetro altera a quantidade de alguns dos insumos utilizados.

REFERÊNCIAS

- [1] SOURCEFORGE, PICSimLab Prog. IC Simulator Lab. Disponível em: https://sourceforge.net/projects/picsim/files/v0.8.7/ Acesso em: 28 de julho de 2021.
- [2] MICROCHIP, MPLAB® X Integrated Development Environment (IDE). Disponível em: https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide Acesso em: 28 de julho de 2021.
- [3] MICROCHIP, MPLAB® X Compilers. Disponível em: https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-xc-compilers Acesso em: 28 de julho de 2021.
- [4] LOPES, Luis Claudio Gambôa. PICsimLab Simulador para PIC. Embarcados, 2015. Disponível em: https://www.embarcados.com.br/picsimlab-simulador-para-pic/ Acesso em: 29 de julho de 2021.