Clase 6: Inferencia Estadística

Justo Andrés Manrique Urbina

26 de septiembre de 2019

1. Teorema de Rao-Blackwell

Si T es una estadística suficiente para θ y $\hat{\theta}$ es un estimador de θ . Sea $\hat{\theta}^* = E(\hat{\theta}|T)$; entonces:

$$V(\hat{\theta})^* \le V(\hat{\theta}).$$

$$V(\hat{\theta}^*) = V(\hat{\theta})$$
 si y solo si: $\hat{\theta}^* = \hat{\theta}$, c.s..

Proof 1. $E(\hat{\theta}|T)$ no depende de θ , pues T es suficiente. Recordemos que $\hat{\theta}$ es una función de la muestra $g(X_1, X_2, \dots, X_n)$. Por lo tanto, se puede obtener a partir de $f_{(X_1, X_2, \dots, X_n)|T=t}$. Por lo tanto:

$$\hat{\theta}^* = E(\hat{\theta}|T)$$
, es un estimador y función de T.

Asimismo, tenemos por propiedad que V(X) = E(V(X|Y)) + V(E(X|Y)). Por lo tanto, la varianza de $V(\hat{\theta}) = E(V(\hat{\theta}|T)) + V(E(\hat{\theta}|T))$. El primer término es mayor a θ (salvo que la varianza sea constante). Por lo tanto,

$$V(\hat{\theta}) \ge V(E(\hat{\theta}|T)).$$

$$V(\hat{\theta}) \ge V(\hat{\theta}^*).$$

Si todo es constante, entonces todo se hace 0.

Observación: Si $\hat{\theta}$ es insesgado, entonces $\hat{\theta}^*$ es también insesgado, pues:

$$E(\hat{\theta}^*) = E(E(\hat{\theta}|T)) = E(\hat{\theta}) = \theta, \forall \theta \in \Theta.$$

2. Teorema

Si T es una estadística completa para θ y $\hat{\theta}_1$ y $\hat{\theta}_2$ son estimadores insesgados y funciones de T; entonces $\hat{\theta}_1 = \hat{\theta}_2$. Es decir, solamente puede existir un estimador insesgado que sea función de T, casi seguramente.

Proof 2. $\hat{\theta}_1 = g_1(T)$ y $\hat{\theta}_2 = g_2(T)$. Si definimos:

$$E(\hat{\theta}_1 - \hat{\theta}_2) = E(g_1(T) - g_2(T)) = 0, \theta \in \Theta.$$

$$g_1(T) - g_2(T) = 0.$$

3. Teorema de Lemann-Sheffer

Si T es una estadística suficiente y completa para θ y existe un estimador insesgado que sea función de T; entonces, este es el mejor estimador insesgado.

Proof 3. Sea $\hat{\theta}^*$ tal estimador, tal que $\hat{\theta}^* = h(T)$ y $E(\hat{\theta}^*) = \theta, \forall \theta \in \Theta$. Sea $\hat{\theta}$ un estimador insesgado de θ :

$$V(\hat{\theta}^*) \le V(\hat{\theta}).$$

Por teorema de Rao-Blackwell. Además, como $\hat{\theta}_1$ es insesgado $\leftarrow \hat{\theta}$ es insesgado y $\hat{\theta}_1$ es función de T (por definición de esperanza condicional). Entonces, por lo tanto:

$$\hat{\theta}_1 = \hat{\theta}^*$$
.

Por lo tanto, solo existe un estimador insesgado función de T.

4. Ejemplo

Sea $X \sim P(\lambda), \lambda > 0$.

- $T = \sum_{i=1}^{n} X_i$ es suficiente por el teorema de factorización.
- \blacksquare T es completa \leftarrow Familia exponencial $\lambda>0\iff\Theta=\mathbb{R}$: a bierto.
- $\bar{X} = \frac{T}{n}$ es insesgado. $E(\bar{X}) = E(X) = \lambda, \forall \lambda > 0.$

Por lo tanto \bar{X} es el mejor y único estimador insesgado de λ .

5. Ejemplo

Sea $X \sim N(0, \sigma^2), \sigma^2 > 0$.

- $\hat{\sigma}^2 = \sum_{j=1}^n X_j^2$ es suficiente y completa.
- \bullet $E(X^2)=\sigma^2$ y $\bar{X^2}$ es un estimador insesgado $E(\bar{X^2})=E(X^2).$

Por lo tanto

$$\hat{\sigma^2} = \frac{\sum_{i=1}^n X_i^2}{n}.$$

es el mejor estimador insesgado de σ^2 .

6. Ejercicio

Sea $\hat{\theta}$ un estimador completo e insesgado de $\theta.$ Determinar el error en la conclusión siguiente:

$$E(\hat{\theta} - \theta) = 0, \forall \theta in\Theta.$$

Entonces, con $\hat{\theta}$ completo: $\hat{\theta} - \theta = 0$,c.s.

 $g(\hat{\theta}) = \hat{\theta} - \theta$ es una función de $\hat{\theta}$ pero también de θ . Por definición g(T) no puede depender de θ .

Definition 1. Una estadística es auxiliar (anciliar) para θ , si su distribución no depende de θ .

7. Ejemplo

Sea $X \sim N(\mu, \sigma_0^2), \mu \in \mathbb{R}, \sigma^2$ conocido.

$$T = \frac{(n-1)S^2}{\sigma_0^2} \sim X_{(n-1)}^2.$$

Entonces T es una estadística auxiliar para μ .

Nota: Sea $v \in \mathbb{N}$.

$$X_v^2 = G(\frac{v}{2}, 0.5).$$

dónde v se le conoce como grados de libertad.

8. Teorema de Basu

Si Tes una estadística suficiente para θ y Uuna estadística auxiliar, entonces T y U son independientes.

Proof 4. Basta demostrar que:

$$P(U \in A|T) = P(U), \forall A \in R_U.$$