AI for Software Engineering

Assignment: Understanding the AI Development Workflow

Total Points: 100

Part 1: Short Answer Questions (30 Points)

1. Problem Definition (6 Points)

Hypothetical Problem: Predicting Student Dropout Rates in Online Universities

Objectives:

- 1. Identify students at risk of dropping out based on behavioral and academic data.
- 2. Recommend timely interventions to reduce dropout likelihood.
- 3. Improve overall student retention and graduation rates by at least 15% over 12 months.

Stakeholders:

- University Administration
- Students

Key Performance Indicator (KPI):

• Model accuracy in predicting student dropout, with a target of $\geq 85\%$.

2. Data Collection & Preprocessing (8 Points)

Data Sources:

- 1. Student Enrollment Records (demographics, grades, attendance)
- 2. Learning Management System (LMS) Logs (logins, submission timestamps, interaction levels)

Potential Bias:

• Students with poor internet access may be underrepresented or misclassified due to inconsistent activity data.

Preprocessing Steps:

- 1. Handle missing values in attendance and engagement logs using imputation.
- 2. Normalize grade and score data to a common scale.
- 3. Encode categorical features such as course type and study mode (full-time/part-time).

3. Model Development (8 Points)

Chosen Model: Random Forest

Justification:

- Handles both numerical and categorical data.
- Resilient to missing values and less prone to overfitting.
- Offers feature importance insights.

Data Split Strategy:

- 70% training
- 15% validation
- 15% testing

Hyperparameters to Tune:

- 1. n estimators number of trees; affects model accuracy and computation time.
- 2. max depth limits tree depth to prevent overfitting.

4. Evaluation & Deployment (8 Points)

Evaluation Metrics:

- 1. Accuracy measures overall prediction correctness.
- 2. Recall critical for identifying most actual dropouts.

Concept Drift:

- Definition: A change in data patterns over time affecting model performance.
- Monitoring Strategy: Schedule model re-evaluation every academic term with drift detection tools like River or Alibi Detect.

Deployment Challenge:

• Scalability: System must serve multiple departments and process large volumes of student records in real time.

Part 2: Case Study Application (40 Points)

Scenario: Hospital Readmission Prediction System

Problem Scope (5 Points)

Problem Statement:

Predict the risk of patient readmission within 30 days of discharge to enable timely interventions.

Objectives:

- 1. Reduce readmission rates and improve patient outcomes.
- 2. Assist healthcare staff in proactive care planning.

Stakeholders:

- Hospital Management
- Physicians and Nurses
- Patients

Data Strategy (10 Points)

Data Sources:

- 1. Electronic Health Records (EHRs)
- 2. Patient Demographics and Historical Admissions

Ethical Concerns:

- 1. Patient data privacy and risk of data leaks.
- 2. Bias in treatment recommendations due to underrepresentation of minority groups.

Preprocessing Pipeline:

- Remove duplicates from patient records.
- Impute missing lab test results.
- Feature engineering: Number of prior admissions, comorbidities, age brackets, length of stay.
- Normalize vital signs and numerical attributes.
- Encode diagnosis codes using ICD-10 mapping.

Model Development (10 Points)

Selected Model: Logistic Regression

Justification:

- High interpretability.
- Well-suited for binary classification.
- Ideal for healthcare scenarios where model decisions must be transparent.

Confusion Matrix (Hypothetical):

Predicted: Yes Predicted: No

Actual: Yes 80 20 Actual: No 30 170

Precision: 80 / (80 + 30) = 0.73 **Recall:** 80 / (80 + 20) = 0.80

Deployment (10 Points)

Integration Steps:

- 1. Wrap model in a RESTful API using Flask or FastAPI.
- 2. Connect API to the hospital's EHR dashboard.
- 3. Display risk scores in doctor workflows.
- 4. Integrate alert system for high-risk patients.

Compliance Measures:

- Encrypt all patient data using SSL/TLS.
- Implement role-based access control (RBAC).
- Align with HIPAA guidelines for data storage, sharing, and retention.

Optimization (5 Points)

Overfitting Mitigation:

• Use regularization (L2 penalty) to control model complexity and improve generalization.

Part 3: Critical Thinking (20 Points)

Ethics & Bias (10 Points)

Impact of Bias:

Biased training data may lead to poorer predictions for minority or underserved patient groups, resulting in unequal care or overlooked interventions.

Bias Mitigation Strategy:

- Ensure balanced training datasets across age, race, gender.
- Conduct fairness testing using tools like AI Fairness 360.
- Involve clinicians in evaluating model fairness and utility.

Trade-offs (10 Points)

Interpretability vs Accuracy:

- More accurate models (e.g., deep neural networks) may be black boxes, making them harder to trust in clinical decisions.
- Simpler models (e.g., logistic regression) are interpretable but may have lower performance.
- In healthcare, interpretability is often prioritized.

Limited Computational Resources:

- Prefer lightweight models like logistic regression or gradient boosting.
- Use batch prediction over real-time processing to conserve resources.

Part 4: Reflection & Workflow Diagram (10 Points)

Reflection (5 Points)

Most Challenging Part:

• Designing a robust data preprocessing pipeline due to varied data types and missing values in healthcare.

Improvements with More Time/Resources:

- Collect more diverse data.
- Involve domain experts for better feature selection.
- Deploy a retraining pipeline with CI/CD support.

Workflow Diagram (5 Points)

AI Development Workflow:

- 1. Problem Definition
- 2. Data Collection
- 3. Data Preprocessing

- 4. Model Development
- 5. Model Evaluation
- 6. Deployment
- 7. Monitoring & Maintenance

[Insert labeled flowchart showing connections and feedback loops between each step. Use tools like draw.io, Canva, or Lucidchart.]

References

- Udacity AI for Software Engineering Course Material
- TensorFlow Documentation: https://www.tensorflow.org/
- HIPAA Guidelines: https://www.hhs.gov/hipaa/index.html
- AI Fairness 360 Toolkit by IBM: https://aif360.mybluemix.net/
- scikit-learn Documentation: https://scikit-learn.org/

End of Document