### Announcements

Reminder: Class challenge out! Ends December 10th

Assignment Project Exam Help

• Lab this week: final review, class survey https://powcoder.com

Add WeChat powcoder



# Assignment Project Exam Help On-device Machine Learning

Add WeChat powcoder CS542 Fall 2020

### Creating an Al Model



model development

model deployment

What if the model you trained is too big/takes too long to run?

### Reminder: memory representation

- Int − 4 bytes
- Float 4 bytes

Assignment Project Exam Help

https://powcoder.com

Double – 8 bytes

Add WeChat powcoder

Binary variable – 1 byte

Aha! We can reduce memory by 1/4<sup>th</sup> if we can binarize the weights/features!

Binary features enable us to use hamming distance for fast similarity computation!

# Why should I care?

resource scarce Aystens nment Project Exafficient features for search



### Goals

- Efficiency
  - Inference speed
  - Assignment Project Exam Help

     Memory reduction (either RAM or disk space) https://powcoder.com
- Limit Performance loss Add WeChat powcoder

## Today

- Network/Feature Quantization
- Parameter Pruning Assignment Project Exam Help
- Knowledge Distillation https://powcoder.com

Add WeChat powcoder



### Assignment Project Exam Help

https://powcoder.com/uantization

Add WeChat powcoder CS542 Fall 2020

### Simple feature quantization method - threshold

• Find the mean  $\mu$  of each feature  $x_i$  in the training set, then binarize using  $\mu > x_i$ Assignment Project Exam Help



### Iterative quantization



Paper reference: <u>Iterative Quantization: A Procrustean Approach to Learning Binary Codes. Y. Gong and S. Lazebnik, CVPR 2011</u>.

### Quantization optimization

For orthogonal rotation matrix R and projected features V, minimize:

Assignment Project Exam Help 
$$Q(B,R) = \|B - VR\|_F^2$$
 https://powcoder.com

where B is a binary code that powcoder

But it is dependent on two variables! Fix one, update the other

### Performance over time





# 

Add WeChat powcoder CS542 Fall 2020

# Convolutions in binary networks

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

### Runtime comparison



# A simple approach



Results in significant loss of information!

### Example of binarization

### Simple method:

```
Assignmen OP10ject From Help]

https://powcoder.com 1]
```

Add WeChat powcoder

### A better approach

$$w_b = \begin{cases} +1 & \text{with probability } p = \sigma(w) \\ \text{Assign weith possible basis in the probability } p = \sigma(w) \end{cases}$$

https://powcoder.com

$$\sigma(x) = \max\left(0, \min\left(1, \frac{x+1}{2}\right)\right)$$

### Example of binarization

Reminder: 
$$\sigma(x) = \max\left(0, \min\left(1, \frac{x+1}{2}\right)\right)$$

Simple method:

Assignment Project Exam Help

$$W = \begin{bmatrix} 0.1, 0.1, 0.1, 0.1 \end{bmatrix}$$

https://ppwqoder.com 1, 1]

Add WeChat powcoder Better approach:

$$w = [0.1, 0.1, 0.1, 0.1]$$
  
=  $[1, -1, -1, 1]$ 

Additional details: Courbariaux et al. BinaryConnect: Training Deep Neural Networks with binary weights during propagations. NeurIPS, 2015.



# Assignment Project Exam Help Parameter Pruning https://powcoder.com

Add WeChat powcoder CS542 Fall 2020

### Remove unimportant weights

Many weights may not affect performance much (if at all)

Assignment Project Exam Help

 Can save space and computation since you can skip https://powcoder.com
 operations\*

Add WeChat powcoder

### Optimal Brain Damage (LeCun et al., NeurIPS, 1989)

- Find parameters that don't affect the training/validation error of the network.
  - 1. Train your netwignment Project Exam Help
  - 2. Compute the second-processes  $h_{kk}$  for each parameter
  - 3. Compute parameter saliencies  $s_k = \frac{h_{kk}u_k}{2}$  ( $u_k = \frac{h_{kk}u_k}{2}$ ) next layer parameters)
  - 4. Delete some low saliency parameters
  - 5. Repeat

## Does this really save space/time?

It depends....



For CNNs we can just prune entire filters instead!

### Pruning entire filters in CNNs



Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

### Pruning process

- 1. Train your neural network
- 2. Prune filters for layer  $l_k$  https://powcoder.com
- 3. Retrain your network Add WeChat powcoder
- 4. Repeat for layer  $l_{k+1}$

Why not all at once?

### How to choose which filters to prune?

- Often the focus of many research papers.
- The approach of <u>Li et al., Pruning Filters for Efficient Convnets,</u>
  ICLR, 2017: Assignment Project Exam Help
  - Rank filters  $w_1, w_2, \dots$  https://singvender.





# Assignment Project Exam Help https://powcoder.com/ Distillation

Add WeChat powcoder CS542 Fall 2020

### Creating an efficient network



Why not train a more efficient network to begin with?

**Efficient CNN!** 

### Distillation idea

- Smaller, more efficient networks may not perform well
- We have an example of a network that achieves better performance
   https://powcoder.com

Add WeChat powcoder

Try to get the small network to mimic the large network

# Learning with a student-teacher framework



## Learning with a student-teacher framework



# Distillation loss (i.e. matching representations)

$$L_{distill}(a_t, a_s) = \|a_t - a_s\|_2^2$$
  
Assignment Project Exam Help

https://powcoder.com
More generally considering a case where relevant information is extracted through some transformation in the strategy of the deather, student, respectively

$$L_{distill}(a_t, a_s) = ||f(a_t) - g(a_s)||_2^2$$

### Applications of distillation

Creating an efficient student using a teacher network

#### Assignment Project Exam Help

 Can distill ensemble results into a single network https://powcoder.com

| Method Add WeCha       | t poperatore cognition accuracy |
|------------------------|---------------------------------|
| Baseline               | 58.9                            |
| Ensemble of 10 models  | 61.1                            |
| Distilled single model | 60.8                            |

### **Next Class**

#### **Final Review:**

expect questions on material covered in the entire course in Assignment Project Exam Help lectures, problem sets, LABs, and assigned reading https://powcoder.com

#### Add WeChat powcoder

Course evaluations available (5-10 minutes to complete).

Please fill it out at: <a href="https://bu.campuslabs.com/courseeval">https://bu.campuslabs.com/courseeval</a>