

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS DISCIPLINA: CÁLCULO FUNDAMENTAL I/ CÁLCULO DIFERENCIAL E INTEGRAL I GABARITO LISTA DE EXERCÍCIOS - Aplicações de Derivada e Integral

- 1. a) $c = \sqrt{6}$
 - b) Não podemos aplicar o teorema, pois a função não é contínua em [-1,3]
 - c) $c = arc sec \frac{2}{\sqrt{\pi}}$
 - d) Não podemos aplicar o teorema, pois a função não é contínua em $[\pi/4,3\pi/4]$
 - e) Não podemos aplicar o teorema, pois a função não é derivável em (-1,1)
 - f) $c = -\frac{1}{\sqrt{2}}$
- 2. $c = \pm 2 \text{ e } c = 0$
- 3. Porque f'(x) não é derivável em (-1,1).
- 4. Uma função f tem um mínimo local em c, se existir um intervalo aberto contendo c, ou seja uma vizinhança de c, tal que $f(c) \leq f(x)$ para todo x nesse intervalo. Uma função f tem um mínimo absoluto em c, se $f(c) \leq f(x)$ para todos os valores de x no domínio de f.
- 5. Valores Máximos Locais: f(4)=5 e f(6)=4; Valores Mínimos Locais: f(2)=2, f(1)=f(5)=3; Valor Máximo Absoluto: f(4)=5; Valor Mínimo Absoluto: Não possui.
- 6. a) $x = \frac{3}{2}$
 - b) x = 0 e x = -3
 - c) $x = k\pi, k \in \mathbb{Z}$
 - d) Não existe ponto crítico
 - e) x = 0
 - f) Não existe ponto crítico
 - g) x = 0
 - h) x = 0; x = 3; x = -3
 - i) $x = \frac{3\pi}{4} + k\pi, k \in \mathbb{Z}$
 - $j) \ x = \frac{3}{2}$
 - k) x = 0, x = 1
 - 1) $x = 0, x = \frac{4}{9}$
 - m) $x = k\pi, k \in \mathbb{Z}$
- 7. a) Máximo Absoluto: f(-1) = 8; Mínimo Absoluto: f(2) = -19

- b) Máximo Absoluto: f(1) = 1/2; Mínimo Absoluto: f(-1) = -1/2
- c) Máximo Absoluto: f(4) = 2; Mínimo Absoluto: f(2) = 0
- d) Máximo Absoluto: $f(0) = f(\pi) = f(2\pi) = 1$; Mínimo Absoluto: $f(\pi/2) = f(3\pi/2) = 0$
- e) Máximo Absoluto: $f(\pi/2) = 0$; Mínimo Absoluto: f(0) = -1
- f) Máximo Absoluto: $f(1) = \ln 3$; Mínimo Absoluto: $f(-1/2) = \ln(3/4)$
- g) Máximo Absoluto: $f(\sqrt{2})=2;$ Mínimo Absoluto:
 $f(-1)=-\sqrt{3}$
- 8. a) Crescente: [1, 5]; Decrescente: [0, 1], [5, 6]
 - b) Ponto Máximo Local: x = 5; Ponto Mínimo Local: x = 1.
- 9. a) Crescente: $(-\infty, 0]$, $[4/3, +\infty)$; Decrescente: [0, 4/3]
 - b) Crescente: $(-\infty, -\sqrt{7/3}]$, $[\sqrt{7/3}, +\infty)$; Decrescente: $[-\sqrt{7/3}, \sqrt{7/3}]$
 - c) Crescente: $(-\infty, +\infty)$
 - d) Crescente: $(-\infty, 1]$; Decrescente: $[1, +\infty)$
 - e) Crescente: $(-\infty, -1]$, $[1, +\infty)$; Decrescente: [-1, 0), (0, 1)
- 10. a) A função é sempre crescente; Não existe extremos locais.
 - b) Crescente: $[-1, +\infty)$; Decrescente: $(-\infty, -1]$; x = -1 ponto mínimo local.
 - c) Crescente: $[2, +\infty)$, $(-\infty, 3]$; Decrescente: [-3, 2]; x = -3 ponto máximo local; x = 2 ponto mínimo local.
 - d) Crescente: $(-\infty, -1]$, $[1, +\infty)$; Decrescente: [-1, 0), (0, 1]; x = -1 ponto máximo local; x = 1 ponto mínimo local.
 - e) Crescente: $[-1, +\infty)$; Decrescente: $(-\infty, -1]$; x = -1 ponto mínimo local.
 - f) Crescente: $[1/3, +\infty)$; Decrescente: $(-\infty, 1/3]$; x = 1/3 ponto mínimo local.
 - g) Crescente: $(-\infty, -2]$, $[0, +\infty)$; Decrescente: [-2, 0]; x = 0 ponto mínimo local; x = -2 ponto máximo local.
 - h) Crescente: $(-\infty, 0]$; Decrescente: $[0, +\infty)$; t = 0 ponto máximo local.
- 11. a) x = 1 ponto mínimo local;
 - b) t = 0 ponto mínimo local;
 - c) x = 0 ponto mínimo local. x = 8 ponto máximo local
 - d) Não existe extremos locais
 - e) x = -2 ponto máximo local; x = -4/5 ponto mínimo local
 - f) x = 0 ponto mínimo local; x = 64/5 ponto máximo local
- 12. a = -3/2, b = 11/2
- 13. a) x = 0 ponto mínimo local
 - b) x = 0 ponto mínimo local
 - c) x = 0 ponto mínimo local, x = -2 ponto máximo local
 - d) Não é possível determinar os extremos usando o teste da segunda derivada

- 14. a) Concavidade para cima: $(-\infty, 5/3)$; Concavidade para baixo: $(5/3, +\infty)$; Ponto de inflexão: (5/3, -20/27)
 - b) Concavidade para cima: $(2/3, +\infty)$; Concavidade para baixo: $(-\infty, 2/3)$; Ponto de inflexão: $(2/3, 4/3e^{-2})$
 - c) A função é sempre côncava para baixo. Não existe ponto de inflexão.
 - d) Concavidade para cima: $(0,\pi)$; Concavidade para baixo: $(\pi,2\pi)$; Ponto de inflexão: $(\pi,-e^{-\pi})$
 - e) Concavidade para cima: $(-6,+\infty)$; Concavidade para baixo: $(-\infty,-6)$; Ponto de inflexão: (-6,5)
 - f) Concavidade para cima: $(-\infty,2)$; Concavidade para baixo: $(2,+\infty)$; Ponto de inflexão: (2,0)
- 15. a) Gráfico

b) Gráfico

c) Gráfico

d) Gráfico

e) Gráfico

f) Gráfico

h) Gráfico

i) Gráfico

- 16. a) 6/5
 - b) Não existe
 - c) 0
 - d) -1/2
 - e) 0
 - f) $+\infty$
 - g) 1
 - h) Não existe
 - i) $+\infty$
 - j) -1
 - k) 0
 - l) e^3
 - m) 1
 - n) e^{-1}
 - o) 1
 - p) 1
 - q) e^{-6}
 - r) 1
- 17. a) $-\cot g(x) + c$
 - b) $\frac{\sqrt{2}}{3}arc\ tg(t) + c$
 - c) $\frac{2}{9}x^{9/2} + c$
 - $d) \ x \frac{1}{x} + c$
 - e) sec(x) + c
 - f) 2arc sec(x) + c
 - g) $\frac{1}{2}e^t + \frac{2}{3}t^{3/2} + \ln|t| + c$
 - h) $\frac{2^t}{\ln 2} \sqrt{2}e^t + senh(t) + c$
 - i) $-2arc \ tg(x) + x + c$

$$j) \frac{1}{2}ln|x| + c$$

$$k) tg(x) + c$$

1)
$$e^t - \frac{8}{5}t^{5/4} - \frac{3}{2}t^{-2} + c$$

18.
$$2x - sen(2x)$$

19.
$$F(x) = \frac{3}{5}x^{5/3} + \frac{x^2}{2} - \frac{1}{10}$$

20. a)
$$\frac{(2x^2 + 2x - 3)^{11}}{22} + c$$

b)
$$\frac{7}{24}(x^3-2)^{8/7}+c$$

c)
$$-e^{1/x} - \frac{2}{x} + c$$

$$d) \frac{1}{4}sec^4(x) + c$$

e)
$$-2 \ln |\cos(x)| - 5x + c$$

f)
$$\frac{1}{4}arc \ sen^2(y) + c$$

g)
$$\frac{1}{4}arc\ tg(x/4) + c$$

h)
$$-(y-2)^{-1} + c$$

i)
$$2\sqrt{x+3} - 2\ln\left|\frac{2+\sqrt{x+3}}{2-\sqrt{x+3}}\right| + c$$

j)
$$-\frac{1}{2}(1+\sqrt{v})^{-4}+c$$

k)
$$\frac{8}{27}(6x^3+5)^{3/2}+c$$

$$1) -ln|sen(u)| + c$$

$$21. -5/7$$

22.
$$\sqrt{x+4}$$

c)
$$-\sqrt{e} + e$$

d)
$$-16/3$$

26. a)
$$e-1$$

c)
$$9/2$$

- e) 8 f) $16 \frac{6}{\ln 2}$ g) $\frac{115}{6}$