Statistical Convex

Ryota Tomioka, Taiji

¹The University of Tokyo,

Tucker decomposition [Tucker 66]

 Problem: Given a partially observed approximately low-rank tensor X, find

- Applications: chemo-/psycho-metrics, signal processing, computer vision, neuroscience
- Estimation: alternate minimization (non-convex)

Model: Convex Tensor Estimation

Performance Tensor Deco

Suzuki, Kohei Hayashi,

²Nara Institute of Science & Tech

Convex Tensor Estimation

Overlapped Schatten 1-norm for Tensors

$$\|\boldsymbol{\mathcal{W}}\|_{S_1} := \frac{1}{K} \sum_{k=1}^K \|\boldsymbol{W}_{(k)}\|_{S_1}$$
 Schatten 1-norm for the mode-k unfolding mode-2 unfolding (matricization)
$$\begin{array}{c} \text{Mode-2 unfolding } \boldsymbol{W}_{(2)} \\ n_1 \\ n_2 \\ n_3 \end{array}$$

NB: rank of mode-k unfolding = mode-k rank r_{ν}

of mposition

Hisashi Kashima^{1,3}

nology, ³PRESTO, JST

Motivation: Phase-transition in Convex Tensor Estimation

Tensor completion result [Tomioka et al. 2010]

Goal: Explain this number of samples M from the size of the tensor [n1, n2, n3] and the Tucker rank [r1, r2, r3]

Previous work

Authors	Observation model	Assumption	Target
Recht, Fazel, Parrilo 2007	$y_i = \langle X_i, W \rangle$ (i = 1,, M)	Restricted Isometry	Matrix
Candès & Recht 2009	$Y_{ij} = W_{ij}$ $((i,j) \in \Omega)$	Incoherence	Matrix
Negahban & Wainwright 2011	$y_i = \langle X_i, W \rangle + \epsilon_i$ $(i = 1, \dots, M)$	Restrited Strong Convexity	Matrix
This work	$y_i = \langle X_i, W \rangle + \epsilon_i$ $(i = 1, \dots, M)$	Restrited Strong Convexity	Tensor

Restricted strong convexity (RSC)

(cf. Negahban & Wainwright 11)

 Assume that there is a positive constantk(X) such that for all tensors $\Delta \subseteq C$

$$\frac{1}{M} \left\| \mathfrak{X}(\Delta) \right\|_{2}^{2} \ge \kappa(\mathfrak{X}) \left\| \Delta \right\|_{F}^{2}$$

(The set C needs to be defined carefully) Note:

- If $C=R^N$, $\kappa(X)=\min \operatorname{eig}(X^TX)$ $(X \subseteq R^{M\times N})$
- When M<N. restriction is necessary.
- The smaller C, the weaker the assumption.

Two special cases

- Noisy tensor decomposition (M=N)
 - -RSC: trivial. $\kappa(\mathfrak{X}) = 1/M$
 - -bound on the noise-design correlation term

$$\mathbb{E} \| \mathcal{X}^*(\epsilon) \|_{\text{mean}} \leq \frac{\sigma}{K} \sum_{k=1}^K \left(\sqrt{n_k} + \sqrt{N/n_k} \right) \tag{Lemma 3}$$

- · Random Gauss design
 - -RSC: more difficult (Lemma 5)
 - -bound on the noise-design correlation term

$$\mathbb{E} \big\| \big\| \mathfrak{X}^*(\boldsymbol{\epsilon}) \big\|_{\text{mean}} \leq \frac{\sigma \sqrt{M}}{K} \sum_{k=1}^K \left(\sqrt{n_k} + \sqrt{N/n_k} \right) \qquad \text{(Lemma 4)}$$

Theorem 3: random Gauss design

Assume elements of X_i are drown iid from standard normal distribution. Moreover

$$\lambda_M \ge c_0 \sigma \sum_{k=1}^K \left(\sqrt{n_k} + \sqrt{N/n_k} \right) / (K\sqrt{M})$$
 and #samples (M)

$$\frac{\#\mathsf{samples}\;(M)}{\#\mathsf{variables}\;(N)} \geq c_1 \|\boldsymbol{n}^{-1}\|_{1/2} \|\boldsymbol{r}\|_{1/2} \approx \frac{r}{n}$$

Convergence!

Convergence!
$$\frac{\left\|\hat{\mathcal{W}} - \mathcal{W}^*\right\|_F^2}{N} \leq O_p \left(\frac{\sigma^2 \|\boldsymbol{n}^{-1}\|_{1/2} \|\boldsymbol{r}\|_{1/2}}{M}\right)$$

$$\|\boldsymbol{n}^{-1}\|_{1/2} \coloneqq \left(\frac{1}{K} \sum_{k=1}^K \sqrt{1/n_k}\right)^2, \quad \|\boldsymbol{r}\|_{1/2} \coloneqq \left(\frac{1}{K} \sum_{k=1}^K \sqrt{r_k}\right)^2$$

Lemma 1: A key inequality

$$egin{aligned} \mathcal{W}, \mathcal{X} \in \mathbb{R}^{n_1 imes \dots imes n_K} \ & \langle \mathcal{W}, \mathcal{X}
angle \leq \left\| \mathcal{W}
ight\|_{S_s} \left\| \mathcal{X}
ight\|_{ ext{mean}} \end{aligned}$$

$$\left\| \left\| \boldsymbol{\mathcal{W}} \right\|_{S_1} \coloneqq \frac{1}{K} \sum_{k=1}^K \left\| \boldsymbol{W}_{(k)} \right\|_{S_1} \quad \left\| \left\| \boldsymbol{\mathcal{X}} \right\|_{\text{mean}} \coloneqq \frac{1}{K} \sum_{k=1}^K \left\| \boldsymbol{X}_{(k)} \right\|_{S_\infty}$$

K=2: norm duality (tight) K>2: not tight

$$\|oldsymbol{X}\|_{S_1} := \sum_{j=1}^m \sigma_j(oldsymbol{X}) \ \|oldsymbol{X}\|_{S_\infty} := \max_{j \in \{1, \dots, m\}} \sigma_j(oldsymbol{X})$$

Theorem 1 (deterministic)

- Solution of the opt. problem \hat{w}
- Reg const λ_{M} satisfies

$$\lambda_M \geq 2 \| \mathfrak{X}^*(\boldsymbol{\epsilon}) \|_{\text{mean}} / M$$

where $\mathfrak{X}^*(\epsilon) = \sum_{i=1}^M \epsilon_i \mathcal{X}_i$ (noise design correlation)

$$\left\|\boldsymbol{\mathcal{X}}\right\|_{\text{mean}} := \frac{1}{K} \sum_{k=1}^{K} \left\|\boldsymbol{X}_{(k)}\right\|_{S_{\infty}}$$

Under the RSC assumption

$$\|\hat{\mathcal{W}} - \mathcal{W}^*\|_{\mathbf{F}} \le \frac{32\lambda_M}{\kappa(\mathfrak{X})} \frac{1}{K} \sum_{k=1}^K \sqrt{r_k}$$

(cf. Negahban & Wainwright 11) 12

Theorem 2 (noisy tensor decomp.)

When all the elements are observed (M=N) and the regularization const. satisfies

$$\lambda_M \ge c_0 \sigma \sum_{k=1}^K \left(\sqrt{n_k} + \sqrt{N/n_k}\right) / (KN)$$

Then

$$\frac{\left\|\left|\hat{\mathcal{W}} - \mathcal{W}^*\right|\right\|_F^2}{N} \le O_p\left(\sigma^2 \left\|\frac{n^{-1}\|_{1/2}\|\mathbf{r}\|_{1/2}}{N}\right)$$

where

Normalized rank

$$\|\boldsymbol{n}^{-1}\|_{1/2} := \left(\frac{1}{K} \sum_{k=1}^{K} \sqrt{1/n_k}\right)^2, \quad \|\boldsymbol{r}\|_{1/2} := \left(\frac{1}{K} \sum_{k=1}^{K} \sqrt{r_k}\right)^2$$

If $n_i = n$ and $r_i = r$, normalized rank = r/n

Simulation: Noisy tensor decomposition

linear relation between MSE and normalized rank!

Simulation: Tensor Completion

Matrix / tensor completion

Tensor completion *easier* than matrix completion!?

Conclusion

- Convex tensor decomposition --- now with performance guarantee
- Normalized rank predicts empirical scaling behavior well

Issues

- Why matrix completion more difficult than tensor completion?
- Worst case analysis-> average case analysis
- Analyze tensor completion more carefully
 - Incoherence [Candes & Recht 09]
 - Spikiness [Negahban et al. 10]

Choosing the set C • We only need the residual Δ to be in C

truth

$$\Delta_{(k)} = \Delta_k' + \Delta_k''$$
 mode-k unfolding Component Orthogonal to of the residual spanned by the the truth

Lemma 2. Let $\hat{\mathcal{W}}$ be the solution of the minimization problem (7) with $\lambda_M \geq 2 \| \mathfrak{X}^*(\epsilon) \|_{\text{mann}} / M$, and let $\Delta:=\hat{\mathcal{W}}-\mathcal{W}^*$, where \mathcal{W}^* is the true low-rank tensor. Let $\Delta_{(k)}=\Delta_k'+\Delta_k''$ be the decomposition defined in Equation (4). Then for all k = 1, ..., K we have the following inequalities:

1. $\operatorname{rank}(\Delta'_k) < 2r_k$.

2. $\sum_{k=1}^{K} \|\Delta_k''\|_{S_k} < 3 \sum_{k=1}^{K} \|\Delta_k'\|_{S_k}$

References

- · Candes & Recht (2009) Exact matrix completion via convex optimization. Found. Comput. Math., 9(6):717-772.
- · Gandy, Recht, & Yamada (2011) Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27:025010.
- · Kolda & Bader (2009) Tensor decompositions and applications. SIAM Review, 51(3):455-500.
- · Liu, Musialski, Wonka, & Ye. (2009) Tensor completion for estimating missing values in visual data. In Prof. ICCV.
- Negahban & Wainwright (2011) Estimation of (near) low-rank matrices with noise and highdimensional scaling. Ann. Statist., 39(2).
- Recht, Fazel, & Parrilo (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501.
- Signoretto, de Lathauwer, & Suvkens (2010) Nuclear norms for tensors and their use for convex multilinear estimation. Tech Report 10-186, K.U.Leuven.
- Tomioka, Havashi, & Kashima (2010) On the extension of trace norm to tensors. In NIPS2010 Workshop: Tensors, Kernels and Machine Learning,
- Tomioka, Hayashi, & Kashima (2011) Estimation of low-rank tensors via convex optimization. Technical report, arXiv:1010.0789, 2011.
- Tucker (1966) Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):

Lemma 5 (RSC for random Gaussian)

Let
$$\mathfrak{X}: \mathbb{R}^{n_1 \times \cdots \times n_K} \to \mathbb{R}^M$$

be a random Gaussisan design. Then

$$\frac{\|\mathfrak{X}(\Delta)\|_2}{\sqrt{M}} \ge \frac{1}{4} \|\Delta\|_F - \frac{1}{K} \sum_{k=1}^K \left(\sqrt{\frac{n_k}{M}} + \sqrt{\frac{\bar{n}_{\backslash k}}{M}} \right) \|\Delta\|_{S_1},$$

with probability at least $1 - 2 \exp(-N/32)$

Proof: analogous to that of Prop 1 in Negahban & Wainwright 2011 (use Lemma 1)

Mode-k unfolding (matricization)

