Problem Statement or Requirement:

1.) Identify your problem statement:

AI USED AT THE PREDICT THE INSURANCE CHARGES

2.)basic info about the dataset (Total number of rows, columns):

1338 rows 6 columns

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

	age	bmi	children	charges	sex_male	smoker_yes
0	19	27,900	0	16884.92400	- 0	1
.1	18	33.770	1	1726,66230	- 4	0
2	28	33.000	3	4449.46200	- 1	0
3	33	22.705	0	21984 47061		0
4	32	28.880	0	3886.85520		0
1111	- 444				::::	-
1333	50	30,970	9	10000.54830	- 1	0
1334	18	31.920	0	2205.96060	0	0
1335	10	36.050	0	1629,83350	0	0
1336	21	25,800	0	2007.94500	0	0
1337	61	29.070	0	29141.36030	- 0	

- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models., you have to come up with final model
 - 1.Multiple Linear Regression(R2-value)=0.7894790349867009
 - 2.Support vector Machine R²[poly and Hyperparameter(1500)]=0.8580889
 - 3.DECESION TREE (R2-value)[friedman_mse,log2,best]=0.76619222

4.RANDOM FORESET(R²-value)[friedman_mse,log2,100]=0.8744112

5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

1.Multiple Linear Regression(R²-value)=0.7894790349867009

S.NO	HYPER PARAMETER VALUE(C)	LINEAR VALUE (R) V	RBF(non-linear value R)	POLY (R)	SIGMOID(R)
1	C=10	0.4624684	-0.0322732	0.0387162	0.0393071
2	C=100	0.6288792	0.3200317	0.6179569	0.5276103
3	C=500	0.7631057	0.6642984	0.8263683	0.4446061
4	C=1000	0.7649311	0.8102064	0.8566487	0.2874706
5	C=1500	0.7440487	0.8427494	0.8580889	-0.0674411

2.Support vector Machine R²[poly and Hyperparameter(1500)]=0.8580889

DECESION TREE (R²-value)						
S.NO	CRITIERION	MAX FEATUREAS	SPLITTERS	R VALUE		
1	Mse	Auto	Best	0.7000521		
2	Mse	Auto	Random	0.6919682		
3	Mse	Sqrt	Best	0.6110177		
4	Mse	Sqrt	Random	0.7157955		
5	Mse	log2	Best	0.7229416		
6	Mse	log2	Random	0.7215323		
7	Mae	auto	Best	0.6573389		
8	Mae	auto	Random	0.7507558		
9	Mae	Sqrt	Best	0.6848415		
10	Mae	Sqrt	Random	0.7031684		
11	Mae	log2	Best	0.6977008		
12	Mae	log2	Random	0.676316		
13	friedman_mse	auto	Best	0.7033522		
14	friedman_mse	auto	Random	0.6861428		
15	friedman_mse	Sqrt	Best	0.7519077		
16	friedman_mse	Sqrt	Random	0.7088883		
17	friedman_mse	log2	Best	0.76619222		
18	friedman_mse	log2	Random	0.6962025		

3.DECESION TREE (R²-value)[friedman_mse,log2,best]=0.76619222

	RANDOM FORESET (R²-value)						
S.NO	CRITIERION	MAX FEATUREAS	N_ESTIMATORS	R VALUE			
1	Mse	Auto	10	0.8326454			
2	Mse	Auto	100	0.8560729			
3	Mse	Sqrt	10	0.8405621			
4	Mse	Sqrt	100	0.8713959			
5	Mse	log2	10	0.8460456			
6	Mse	log2	100	0.8744112			
7	Mae	auto	10	0.8388896			
	Mae	auto	100	0.8527284			
9	Mae	Sqrt	10	0.8559707			
10	Mae	Sqrt	100	0.8723463			
11	Mae	log2	10	0.8504588			
12	Mae	log2	100	0.8723241			
13	friedman_mse	auto	10	0.8247351			
14	friedman_mse	auto	100	0.8545791			
15	friedman_mse	Sqrt	10	0.8542056			
16	friedman_mse	Sqrt	100	0.8691738			
17	friedman_mse	log2	10	0.8612186			
18	friedman_mse	log2	100	0.870177			

4.RANDOM FORESET(R²-value)[friedman_mse,log2,100]=0.8744112

ADA BOOST REGRESSOR(R²-value)						
S.NO	N_ESTIMATERS	LOSS-LINEAR(R VALUE)	LOSS-SQUARE(R V	LOSS-EXPONENTIAL(R		
1	10	0.8566564	0.7101662	0.8254744		
2	50	0.8512062	0.521828	0.6066836		
3	100	0.8501721	0.4654836	0.537644		
4	500	0.8687976	0.4531099	0.4751371		
5	1000	0.8507999	0.4447981	0.4593156		

ADA BOOST REGRESSOR(R²-value)[N-EST=500,LOSS-LINEAR]=0.8687976

XGBOOSTINGREGRESSOR[GradientBoostingRegressor]((R2-value)							
S.NO	CRITIERION	LOSS	N_ESTIMATOR	R VALUE			
1	Mse	HUBER	100	0.89135			
2	Mse	QUANTILE	100	0.63105			
3	FRIEDMAN_MSE	HUBER	100	0.89147			
4	FRIEDMAN_MSE	QUANTILE	100	0.63094			

XGBOOSTINGREGRESSOR[GradientBoostingRegressor]((F

0.8914659

6.) Mention your final model, justify why u have chosen the same.

1.RANDOM FORESET

2.R²-VALUE HIGH BUT COMPARISION ANOTHER MODEL