

## UNIVERSIDADE CRUZEIRO DO SUL

| Nome:                                  | RGM:                                    |  |  |
|----------------------------------------|-----------------------------------------|--|--|
| Professor: Alexandre Miccheleti Lucena | Disciplina: Computação Gráfica - SM - N |  |  |
| 2º Semestre 2022                       | Data: 19/08/2022                        |  |  |

## Atividade Prática - Aula 02

## Parte I - Espaço de Cores

Para realizar a atividade acesse: <a href="https://g.co/kgs/nZQkh2">https://g.co/kgs/nZQkh2</a>

Obs.: Consulte os slides de aula para responder às perguntas.

- 1. A luz pode ser definida como uma radiação eletromagnética de qualquer comprimento de onda. Entretanto, o olho humano só é capaz de perceber parte dessa radiação, a chamada luz visível. Quais são os valores limites (máximo e mínimo) para o comprimento de onda em nanômetros (aproximadamente) que delimitam o espectro de cores visível? Quais as cores associadas a eles?
- 2. A visão humana é capaz de perceber três principais componentes de cor, vermelho, verde e azul. Segundo o gráfico de Absorbância Normalizada (*normalized absorbance*, slides de aula) quais são os comprimentos de onda que marcam os picos para cada uma das três componentes?
- 3. Complete a tabela RGB-CMY-CMYK

| Color | Colorname | RGB           | RGB         | RGB           | CMY     | CMYK      |
|-------|-----------|---------------|-------------|---------------|---------|-----------|
|       |           | 24 bits dec   | 24 bits hex | (Norm.)       | (Norm.) | (Norm.)   |
|       | Black     | (0,0,0)       | #000000     | (0,0,0)       | (1,1,1) |           |
|       | White     | (255,255,255) | #FFFFFF     | (1,1,1)       | (0,0,0) |           |
|       | Red       | (255,0,0)     | #FF0000     |               |         |           |
|       | Green     | (0,255,0)     | #00FF00     |               |         |           |
|       | Blue      | (0,0,255)     | #0000FF     |               |         |           |
|       | Cian      |               | #00FFFF     |               |         | (1,0,0,0) |
|       | Magenta   |               | #FF00FF     |               |         | (0,1,0,0) |
|       | Yellow    |               | #FFFF00     |               |         | (0,0,1,0) |
|       | Med. Gray | (127,127,127) |             | (0.5,0.5,0.5) |         |           |

| - |               |              |  |
|---|---------------|--------------|--|
| - | (192,192,192) |              |  |
| - |               | (1,0.5,0.25) |  |

- 4. Podemos representar todas as cores visíveis num cubo, construído a partir de eixos do espaço de cores, onde o eixo x é associado a cor vermelha, o verde ao eixo y, e o azul ao eixo z. Se o valor máximo que qualquer uma das componentes pode assumir é igual a 100, onde estão localizados os tons de cinza? (múltipla escolha)
  - a. Em qualquer ponto onde o somatório das componentes seja igual à 100.
  - b. Em qualquer ponto onde o valor das componentes seja igual.
  - c. Em qualquer ponto onde uma das componentes assuma o valor igual a 100.
- 5. A imagem abaixo ilustra o seletor de cores disponível no link informado na atividade, com eixos demarcados com as letras x, y e z para os diferentes parâmetros que podem ser utilizados para a seleção de cores. Com base nisso responda:
  - a. Qual é a componente que varia quando percorremos o eixo x?
  - b. Qual é a componente que varia quando percorremos o eixo y?
  - c. Qual é o componente que varia quando percorremos o seletor demarcado em z?
  - d. Qual é o padrão utilizado neste seletor que define o espaço de cores a partir destas componentes?



## Parte II – Three.js Modelo 3D a partir dos vértices.

Para realizar a atividade acesse: <a href="https://threejs.org/editor/">https://threejs.org/editor/</a>

Instruções (disponível nos slides de aula):

1. Clique em 'File > New' para criar um novo projeto.

- 2. Em seguida, no menu ao lado direito, clique em *Scene*, role até o final e clique em *NEW*, dê um nome para o arquivo (script) e em seguida clique em *EDIT*.
- 3. Realize a atividade escrevendo os códigos no editor que irá aparecer na tela.
- 4. O aplicativo realiza salvamento automático. Apesar disso, para salvar seu progresso, certifique-se de copiar código elaborado em um editor de textos de sua preferência e salve o arquivo para submissão junto dessa atividade (pode ser .txt ou .js).
- 1. Utilizando o código elaborado em aula: Crie um código que implemente uma pirâmide e um cubo (como os da imagem a seguir, podem ser códigos separados), a partir da informação das coordenadas dos vértices como demonstrado em aula e submeta junto desta atividade no BlackBoard.



2. Faça uma tabela no formato abaixo e preencha com as coordenadas dos vértices que você utilizou para criar a pirâmide.

|   | V0 | V1 | ••• | VN |
|---|----|----|-----|----|
| Х |    |    |     |    |
| У |    |    |     |    |
| Z |    |    |     |    |

- 3. Repita o item 2 agora para as coordenadas do vértice do cubo.
- 4. Quantos vértices foram necessários para construir a pirâmide? E quantas arestas? E quantos polígonos (triângulos)?
- 5. Quantos vértices foram necessários para construir o cubo? E quantas arestas? E quantos polígonos (triângulos)?