

RoboCup@Home Final Project: Compliant Grasping

Team: NineAndThreeQuaters $(9\frac{3}{4})$

Member: Siqi Hu, Zhenyu Li, Chensheng Chen, Chenhao Wang

Technical University of Munich

Chair for Cognitve Systems

Prof. Gordon Cheng

Munich, 08. February 2019

General Structure

Cartesian Controller by Siqi Hu

Cartesian Controller

Cartesian Controller

Small Demo in Simulation: Set a goal in cartesian space. Convert goal position into 7 goal joint values, publish the goal joint values in order to move the end-effector to the goal.

Perception by Zhenyu Li

Perception: pipeline

Perception: advantages

- 1. No need of clustering
- 2. Accurate centroid
- 3. Capable for dealing with moving scenario

Wrist Admittance Control

Wrist Admittance Control

What is admittance in the field of mechanical system?

Wrist Admittance Control: 1-dimension

$$M\ddot{x} + D\dot{x} + K(x - x_r) = -F_{env}$$

Wrist Admittance Control: cartesian space

$$M\ddot{x} + D\dot{x} + K(x - x_r) = F_{env}$$

$$\ddot{\mathbf{x}} = \frac{1}{\mathbf{M}} \left[-\mathbf{D}\dot{\mathbf{x}} + \mathbf{K}(\mathbf{x_r} - \mathbf{x}) + \mathbf{F_{env}} \right]$$

Wrist Admittance Control: cartesian space

$$\ddot{\mathbf{x}} = \frac{1}{\mathbf{M}} \left[-\mathbf{D}\dot{\mathbf{x}} + \mathbf{K}(\mathbf{x}_{r} - \mathbf{x}) + \mathbf{F}_{env} \right]$$

Gripper Impedance/Admittance Controller

Control Structure:

Control Law:

Designed Property: $M\Delta \ddot{x} + B\Delta \dot{x} + K\Delta x = F_{ext}$

Target State: $\ddot{x}_d = 0$ $\dot{x}_d = 0$ $x_d = x_d$ ("grip": $x_d = 0$, "release": $x_d = 0.04$)

Control Function: $M\ddot{x}_c + B\dot{x}_c + K(x_c - x_d) = F_{ext}$ (current state: \ddot{x}_c , \dot{x}_c , x_c)

Practical Problem:

Problem: Tiago can't use \ddot{x} or force

Solution: Using \ddot{x} to calculate \dot{x} and x

$$\dot{x}(t+dt) = \dot{x}(t) + \ddot{x}(t+dt) * dt$$

$$x(t+dt) = x(t) + \dot{x}(t+dt) * dt$$

Problem: In each iteration, $\Delta \dot{x}(t)$ is too small \longrightarrow PID control can't deal with so small change and next iteration, \dot{x} and x will stay the same

Solution: using \ddot{x}_c to calculate virtual \dot{x}_c which increases in each iteration

Stability Analysis:

Extension:

```
Two mode: \begin{cases} soft \ mode \\ hard \ mode \end{cases} \Rightarrow ensure \ F_{ext} \ not \ too \ big \\ (with \ different \ parameters \ M, B, K)
```

Using the length of object and the position of both grippers to switch the modes

Get data from sensor

Topic: /tiago/patches Every cell each time publish data

→ Take the smallest distance from cells in one path
Algorithm flow of each pitch:

Movement correction:

The distance between object and skin too small \rightarrow give an Δa to arm controller

Cost function:

Assume prox =
$$\frac{1}{\Delta x}$$

$$F = (\frac{1}{\Delta x_L})^2 + (\frac{1}{\Delta x_R})^2$$

$$\frac{\partial F}{\partial x} = -\frac{1}{2} \Delta x_L^{-\frac{3}{2}} * \frac{\partial \Delta x_L}{\partial x} - \frac{1}{2} \Delta x_R^{-\frac{3}{2}} * \frac{\partial \Delta x_R}{\partial x}$$

$$= \Delta x_R^{-\frac{3}{2}} - \Delta x_L^{-\frac{3}{2}}$$

$$\Delta \dot{x} = \Delta x_L^{-\frac{3}{2}} - \Delta x_R^{-\frac{3}{2}} \implies prox_L^2 - prox_R^2 \implies (\max prox_L)^2 - (\max prox_R)^2$$
$$\implies \Delta a = w * (prox_L^2 - prox_R^2)$$

Optimizations:

- 1. Avoid large $\Delta a \rightarrow$ different w for different distances
- 2. Estimating noise in sensor data \rightarrow discard small Δa

Position correction:

4 cases when grasp

- (1) Send Δx to arm impedance control to change the goal
- (2) When arm approaches the target, open position correction
- (3) Perform not good in practice because of the distance, which can be detected by sensor is too short compare to the motion of arm

Temperature

Take the temperature from the patch3 and patch5

Too hot → tiago speak "hot"

Too cold → tiago speak "cold"

Practical Problem:

Plastic layer of the skin too thick

Chair for Cognitive Systems
Department of Electrical and Computer Engineering
Technische Universität München

Thanks!