Cose matematiche

C. g(n) Cimiti Asintotici Limite superiore ordine di grandezza di una fine Trovare fine de definitivamente risulta sempre maggiore di f(n) a differenza di una c. stante pos. or (g(n))= {f(n) | ∃no>0, c>0 t.c. f(n) < c.g(n) +n>no} VO grande di g(n) es. $f(n) = 7n^2 = O(n^2)$ mette in evidenza quello che conta $f(n) = 7n^2 + 2n + 100 = O(n^2)$

$$f(n) = \partial_0 + \Omega_4 \cdot n + \sigma_z n^2 + \partial_3 n^3 + \dots + \sigma_K n^K = O(n^K)$$

$$f(n) = 7n^2 - 100n - 1000 = O(n^2)$$
Servono per semplificare il calcolo dei tempi
le simple istruzioni nono influiscono (tutte c)

cidi 4 volta ± sti cazzi

esempio esame Ve e Vz quanti elementi di Vz in V4 int Esempio (VI[], V, []) { c.4 cont=0 con for (i= to Vz. lenght) } $c \cdot n \cdot j = 1$ $c \cdot$ j++ } C·N if(j < V₁.lenght) { C.t.f cont++

3

C1 return(cont)

3 $T(n) = zc + 3n + ctif + zc \sum_{i=1}^{n} tw;$ migliore twi = 0 +i=1...n L> Vz éfatto da un unico elemento in tutte le posizioni, ed è in V1[4] $t_m(n) = zc + 3cn + cn + 0 = \Omega(n)$

Peggiore					tw:=n
Tp (n)= zc+	+3CH + C. (0 + Z C.	£ n =	_	
= 7.0	:+3Cn+n	$r^2 = \mathcal{O}(v)$	h ²		
medio —	$tw_i = \frac{n}{2}$ $(n) = \epsilon$				
Tmedio ($(n) = \epsilon$	\rightarrow (n^2)			