PONG

Aluna:
Giordanna De
Gregoriis
Professor:
Claudomiro Sales

Programando o Jogo *Pong* Utilizando Algoritmo Genético

Agenda

- Introdução;
- Motivação
- Diagramas;
- Genótipo;
- Fitness;
- Crossover;
- Mutação;

- Seleção;
- O Testes;
- Resultados;
- Conclusão;
- O Referências.

Introdução

- *O Pong* simula um tênis de mesa.
- O Dois jogadores competem entre si atingindo uma bola com suas respectivas raquetes e mandando-a para o lado oposto.
- O Toda vez que rebatida, a bola aumentará de velocidade, até que seja arremessada para fora, assim marcando ponto para o jogador que a arremessou.
- O objetivo do jogo é conseguir a maior pontuação.

Motivação

- Conseguir resultados que:
- 1. Funcionem;
- 2. Sejam melhores que soluções clássicas de AI para *Pong*.

Introdução PONG GENETICO

<< Jogador 1: AI Basico >>

Jogador 2: AI Treinador

Pressione Space para jogar

Introdução

Genótipo

- O Constitui-se de uma cadeia de 3 doubles que servem como pesos que multiplicam os seguintes valores para calcular a velocidade e direção da raquete:
 - velocidade Y da bola;
 - o posição Y da bola;
 - o posição Y da raquete do indivíduo.

Genótipo

Exemplo de um genótipo:

Peso Vel. Y Bola	Peso Pos. Y Bola	Peso Pos. Y Raquete
0,22895	1,063869	-1,12079

Genótipo

Onde é utilizado os genes:

- Contribui pro Fitness:
 - Se o jogador marcou algo.
 - Quantas vezes a bola foi rebatida pela raquete.
 - O Se o jogador errou, por quanto ele errou.

- O Em uma rodada:
- o Fitness = 9999 × P + C + (480 3 × D)
- Onde:
 - P = Pode ser 0 ou 1. Se o indivíduo marcou um ponto ou não.
 - O C = Quantidade de vezes que conseguiu rebater a bola com a raquete.
 - O D = A distância entre a bola e a raquete no momento em que o jogador sofreu um ponto.

O Se o indivíduo já possui um fitness "antigo" (da geração anterior ou de rodadas anteriores), tira-se uma média:

OFitness =
$$9999 \times P + C + (480 - 3 \times D) + Fitness Antigo$$

```
int fitness = 0;
total++;
if (ponto > 0) {
    fitness = MAIOR FITNESS; // se marcou um ponto então ele é bom mesmo
   pontos jogador++;
else if (ponto < 0) {
   pontos adversario++;
fitness += contraatacou;
fitness += 480 - 3 * ultima distancia;
bola passou = false;
if (populacao[atual].getFitness() != 0){
   // faz uma média com o fitness antigo
   populacao[atual].setFitness(populacao[atual].getFitness() + fitness)
    populacao[atual].setFitness(populacao[atual].getFitness() / 2);
else{
    populacao[atual].setFitness(fitness);
```

Crossover

Uma média aritmética é feita com cada gene dos pais.

```
// retorna filho produzido por dois pais através de crossover por média aritmética
public static Genotipo crossover(Genotipo a, Genotipo b) {
    Genotipo novo = new Genotipo();
    for (int i = 0 ; i < Configuração. TAMANHO_CROMOSSOMO ; i++) {
        novo.gene[i] = (a.gene[i] + b.gene[i]) / 2.0;
    }
    return novo;
}</pre>
```

Mutação

é somado um valor aleatório entre -0.1 e 0.1.

Seleção

- Ordena-se a população de acordo com o fitness, do maior para o menor;
- Elimina-se ³/₄ dos piores, deixando os melhores;
 (25%)
- Preenche-se metade com cruzamento dos melhores genótipos com um aleatório da geração; (50%)
- Adiciona-se ¹/₈ de indivíduos aleatórios da população sofrendo mutação; (12,5%)
- Preenche o resto com indivíduos aleatórios. (12,5%)

Seleção

```
// ordena população
Arrays.sort(população);
//torna os piores 3/4 nulos
for (int i = populacao.length/4 ; i < populacao.length ; i++) {
    populacao[i] = null;
int j = 0;
int outro:
// preenche metade com os melhores + um genótipo aleatório da mesma geração
for (int i = populacao.length/4 ; i < 3*populacao.length/4 ; i++) {
    while (true) {
        outro = Configuração.R.nextInt(população.length/4);
        if (j != outro) break;
    populacao[i] = new Genotipo(Genotipo.crossover(populacao[j], populacao[outro]));
    j++;
```

Seleção

```
// adiciona alguns poucos genótipos com mutação
for (int i = 3*populacao.length/4 ; i < 7*populacao.length/8 ; i++){
   outro = Configuracao.R.nextInt(populacao.length/2-1);
   populacao[i] = new Genotipo(Genotipo.mutacao(populacao[outro]));
}

// preenche o resto com novos genótipos aleatórios
for (int i = 7*populacao.length/8 ; i < populacao.length ; i++){
     populacao[i] = Genotipo.genotipoAleatorio(-intervalo, intervalo);
}</pre>
```

Testes

- Foram realizados dois testes:
 - O AI Treinador versus AI Básico;
 - O AI Treinador versus AI "Perfeito".
- População: 30 indivíduos;

AI Treinador *versus* AI Básico Gerações: 487

Fitness dos Indivíduos

Placar dos Indivíduos

Melhor Genótipo	Peso Vel. Y Bola	Peso Pos. Y Bola	Peso Pos. Y Raquete
Geração 1	-0,20934	-0,90338	-0,33093
Geração 100	0,523905	0,862016	-0,92503
Geração 200	0,43204	0,643573	-0,73053
Geração 487	0,194921	0,973477	-1,12359

AI Treinador *versus* AI "Perfeito" Gerações: 104

Fitness dos Indivíduos

Gerações

Placar dos Indivíduos

Fitness da Geração 1

Fitness da Geração 50

Fitness da Geração 104

Melhor Genótipo	Peso Vel. Y Bola	Peso Pos. Y Bola	Peso Pos. Y Raquete
Geração 1	-0,54384	0,789705	-0,75384
Geração 50	-0,40925	0,739908	-0,88266
Geração 104	-0,27574	0,844741	-0,90563

Comparação:

Melhor Genótipo	Peso Vel. Y Bola	Peso Pos. Y Bola	Peso Pos. Y Raquete
AI Perfeito	-0,27574	0,844741	-0,90563
AI Básico	0,194921	0,973477	-1,12359

Conclusões

- O algoritmo converge extremamente rápido, em torno de 10 gerações necessárias para se obter um bom resultado;
- Ao ser treinado com o AI que faz previsões da posição da bola, o melhor genótipo tende a ficar com o peso em relação a posição Y da bola negativo;
- ø Já ao ser treinado com o AI que apenas verifica a posição Y da bola, este mesmo peso tende a ser positivo;
- O que foi treinado com o AI Perfeito tende a ganhar mais do que foi treinado com o AI Básico.

Conclusões

- O AI Genético que foi treinado com o AI Básico tende a ganhar mais vezes do AI Básico, pois o algoritmo de calculo da velocidade do AI Genético é uma versão melhorada do AI Básico;
- Já o AI Genético treinado com AI Perfeito tende a perder mais do AI Perfeito, porém consegue vencê-lo.

Referências

- OBUSTARD, J. (2014) Programming Pong in Java! (Full Tutorial).
 Disponível em:
 https://youtu.be/1wD2CdFlDaE>.
- O FOSTER, T. (2015) Genetic Pong The Public Var. Disponível em: http://publicvar.wikidot.com/post:genetic-pong.

OBRIGADA!