FORMULAS DE FÍSICA Versão RC

ARMANDO CRUZ

CINEMÁTICA

Grandezas Básicas

$$Vm = \frac{\Delta x}{\Delta t} \qquad a = \frac{\Delta v}{\Delta t}$$

M.R.U.V.

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

$$v^2 = v_0^2 + 2a\Delta x$$

Queda livre

$$h_{max} = \frac{v_{0y}^2}{2g} \quad t_{h_max} = \frac{v_{0y}}{g}$$
$$A = \frac{v_0^2 \operatorname{sen}(2\theta)}{g}$$

M.C.U.

$$\boxed{\boldsymbol{\varphi} = \frac{S}{R}} \qquad \boxed{\boldsymbol{\omega} = \frac{v}{R}} \qquad \boxed{\boldsymbol{\alpha} = \frac{a}{r}}$$

$$\omega_m = \frac{\Delta \varphi}{\Delta t} \qquad \propto = \frac{\Delta \omega}{t}$$

$$\varphi = \varphi_0 + \omega_0 t + \frac{\alpha t^2}{2}$$

$\omega^2 = \omega_0^2 + 2\alpha\Delta\varphi$

Acoplamento de polias Por correia $v_a = v_h$

$$f_a R_a = f_b R_b \quad \omega_a R_a = \omega_b R_b$$

Por eixo

$$\omega_a = \omega_b \qquad \frac{v_a}{R_a} = \frac{v_b}{R_b}$$

DINÂMICA

2ª Lei de Newton

$$\overrightarrow{F_r} = m\vec{a}$$

Lei de Hooke

$$F = kx$$

Força de atrito

$$\overline{|F_{ae} \le \mu_e N|} \overline{|F_{ac} = \mu_c N|}$$

Momento de uma força (Torque)

$$M = Fd$$

Resultante centrípeta

$$F_{cp} = ma_c \qquad a_c = \frac{v^2}{R}$$

Trabalho

$$\mathcal{T} = F\Delta x \cdot cos\theta \qquad \mathcal{T} = \Delta E$$

Potencia mecânica

$$\boxed{\mathcal{P} = \frac{\mathcal{T}}{\Delta t}} = \frac{F\Delta x}{\Delta t} = FV$$

Rendimento

$$\eta = \frac{P_u}{P_t}$$

Energia cinética

$$E_c = \frac{mv^2}{2}$$

Energia potencial gravitacional

$$E_{pg} = mgh$$

Energia potencial elástica

$$E_{pe} = \frac{kx^2}{2}$$

Energia mecânica

$$E_m = E_c + E_p$$

Quantidade de movimento

$$\vec{Q} = m\vec{v}$$

Impulso

$$\vec{I} = \vec{F}\Delta t$$
 $\vec{I} = \Delta \vec{Q}$

Coeficiente de Restituição

$$e = \frac{|V_{af}|}{|V_{ap}|}$$

Centro de massa

$$X_{CM} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n}$$

Gravitação

Força Gravitacional $F = G \frac{Mm}{d^2}$

3° lei de Kepler $T^2 = kr^3$

Velo. de um satélite $v = \sqrt{\frac{GM}{r}}$

Fluidos

Pressão

$$p = \frac{F}{S}$$

Densidade ou massa especifica

$$\mu = \frac{m}{V}$$

Pressão no interior de um liquido

$$p_l = \mu g h$$

Vasos comunicantes

$$\mu_a h_a = \mu_b h_b$$

Principio de Pascal

$$\frac{F_1}{S_1} = \frac{F_2}{S_2}$$

Empuxo $E = \mu_l V_l g$

$$P_r = P_a + E | \mu_c V_c = \mu_l V_l |$$

TERMODINAMICA

Termometria

	°C	k	°F
Fusão	0	273	32
Ebulição	100	373	212

$$\boxed{\frac{T_{x} - T_{F_{x}}}{T_{E_{x}} - T_{F_{x}}} = \frac{T_{y} - T_{F_{y}}}{T_{E_{y}} - T_{F_{y}}}}$$

Dilatação

Linear

$$\Delta L = \propto L_0 \Delta T$$

Superficial
$$\Delta S = \beta S_0 \Delta T$$
 $\beta \cong 2\alpha$
Volumétrica $\Delta V = \gamma V_0 \Delta T$ $\gamma \cong 3\alpha$

$$\Delta V_r = \Delta V_{ap} + \Delta V_{rec}$$

Calorimetria

Calor latente $\left| L = \frac{Q}{m} \right|$

Capacidade calorífica $C = \frac{Q}{\Lambda T}$

Calor específico $c = \frac{c}{m} = \frac{Q}{m\Delta T}$

Transferência de calor por condução

$$\phi = \frac{\Delta Q}{\Delta t} = k \frac{A(T_2 - T_1)}{x}$$

Estudo dos gases

Lei Geral dos gases perfeitos

$$\boxed{\frac{P_0 V_0}{T_0} = \frac{PV}{T}}$$

Equação de Clapeyron $\frac{PV}{T} = nR$

Leis da termodinâmica

$$\Delta Q = \mathcal{T} + \Delta E i$$

Transformação:

Isobárica $\mathcal{T} = p \cdot \Delta V$

Isotérmica $\mathcal{T} = \Delta Q$

Isométrica $\Delta E_i = \Delta Q \mid \mathcal{T} = 0$

Adiabáticas $\Delta Ei = -T$

Cíclica $\overline{T = \Delta Q} = Q_1 - Q_2$

Rendimentos

$$\boxed{\eta = \frac{\mathcal{P}_u}{\mathcal{P}_t} = \frac{Q_1 - Q_2}{Q_1}} = 1 - \frac{Q_2}{Q_1}$$

Maquina de Carnot

$$\boxed{\frac{Q_2}{Q_1} = \frac{T_2}{T_1} \Longrightarrow \eta = 1 - \frac{T_2}{T_1}}$$

ÓPTICA

Associação de espelhos planos

$$r = \frac{360^{\circ}}{\propto} - 1$$

Equação dos pontos conjugados

$$\boxed{\frac{1}{f} = \frac{1}{x} + \frac{1}{x'}}$$

Ampliação da imagem

$$A = \frac{y'}{y} = -\frac{x'}{x}$$

Índice de refração

$$n_{2,1} = v_1/v_2$$

Lei de Snell-Descartes

$$\boxed{\frac{\operatorname{sen}\hat{\imath}}{\operatorname{sen}\hat{r}} = \frac{n_2}{n_1}} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

Reflexão interna total

$$sen \hat{L} = \frac{n_2}{n_1}$$

Lâmina de faces paralelas

$$d = e \frac{\sin(\hat{\imath} - \hat{r})}{\cos \hat{r}}$$

Desvio produzido por um prisma

$$\propto = \hat{\imath} + \hat{\imath}' - \hat{A}$$

Convergência ou vergencia

$$V = \frac{1}{f}$$

ONDULATORIA

Movimento harmônico simples

$$x = A\cos(\omega t + \theta_0)$$

$$v = -\omega A \sin(\omega t + \theta_0)$$

Velocidade angular de um sistema massa mola

$$\omega = \sqrt{k/m}$$

Velocidade angular de um pendulo

$$\omega = \sqrt{g/L}$$

Velocidade das ondas

$$v = \frac{\lambda}{T}$$

Em uma corda $v = \sqrt{F/\mu_l}$

No ar (Som) $v = \sqrt{B/\mu}$

Acustica

Intensidade sonora $i = \frac{\Delta E}{S \cdot \Delta t} = \frac{P}{S}$

Nível sonoro $\beta = 10 \log \frac{i}{i_0}$

Cordas e tubos sonoros

Frequência de uma corda ou tubo sonoro $f = n \cdot f_n$

corda ou tubo sonoro aberto $f_n = \frac{v}{2L}$

tubo sonoro fechado $f_n = \frac{\overline{v}}{4I}$

Efeito Doppler

$$f = f_0 \left(\frac{v \pm v_r}{v \pm v_f} \right)$$

Experiência de Young

$$\lambda = dl/D$$

ELETROSTÁTICA

Carga elétrica de um corpo

$$Q = n \cdot e$$

Lei de Coulomb

$$F = k \frac{|Q_1 \cdot Q_2|}{x^2}$$

Vetor intensidade campo elétrico

$$\vec{E} = \frac{\vec{F}}{q} = \frac{kQ}{x^2}$$

Energia potencial elétrica

$$E_{pe} = k \frac{Q_1 \cdot q_2}{x}$$

Potencial elétrico

$$\boxed{V_A = \frac{E_{pe}}{q} = k \frac{Q}{x}}$$

Trabalho da força elétrica

$$\mathcal{T}_{AB} = Uq$$

ddp em campo elétrico uniforme

$$U = ED$$

Capacitância

$$\boxed{C = \frac{Q}{U}} \boxed{V = \frac{Q_1 + Q_2 + \dots + Q_n}{C_1 + C_2 + \dots + C_n}}$$

Em um condutor Esférico

$$C_{esf} = R/k$$

Energia elétrica armazenada

$$E_{pe} = QU/2$$

Capacitor de placas paralelas

$$C = \epsilon \frac{A}{D} \quad \vec{E} = \frac{Q}{\epsilon \cdot A}$$

ELETRODINÂMICA

Corrente elétrica $i = \frac{\Delta q}{\Delta t}$

1º lei de Ohm $R = \frac{U}{i}$

2° lei de Ohm $R = \rho \frac{l}{A}$

Aquecimento por efeito Joule

$$Q = i^2 \cdot R \cdot \Delta t$$

Potencia elétrica $\mathcal{P} = Ui$

Energia elétrica $E_{ele} = \mathcal{P}\Delta t$

Força eletromotriz $\mathcal{E} = \frac{\Delta \mathcal{T}}{\Delta q}$

Equação do gerador

$$U = \mathcal{E} - ri$$

Potências e rendimento do gerador

$$\begin{array}{|c|c|c|}\hline \mathcal{P}_u = Ui & \boxed{\mathcal{P}_t = Ei} & \boxed{\mathcal{P}_d = ri^2} \\ \hline \eta = \frac{\mathcal{P}_u}{\mathcal{P}_t} = \frac{U}{\mathcal{E}} \\ \end{array}$$

Equação do receptor

$$U = \mathcal{E}' + ri$$

Potências e rendimento do receptor

$$\begin{array}{c|c}
\boxed{\mathcal{P}_t = Ui} & \boxed{\mathcal{P}_u = \mathcal{E}'i} & \boxed{\mathcal{P}_d = ri^2} \\
\hline
\eta' = \frac{\mathcal{P}_u}{\mathcal{P}_t} = \frac{\mathcal{E}}{U}
\end{array}$$

Lei de Ohm generalizada

$$U = \sum (R + r + r') \cdot i + \sum \varepsilon' - \sum \varepsilon$$

MAGNÉTISMO

Campo magnético

Em fio: $B = \frac{\mu i}{2\pi r}$

Em espira circular: $B = \frac{\mu i}{2r}$

Em bobina: $B = \left(\frac{\mu i}{2r}\right) N$

Em solenoide: $B = \mu i \frac{N}{l}$

Força magnética

 $F = Bqv \cdot \operatorname{sen} \theta$

Em um fio condutor

$$F = Bil \cdot \operatorname{sen} \theta$$

Entre fios paralelos

$$F = \frac{\mu i_1 i_2 l}{2\pi d}$$

Indução magnética

Fluxo magnético $\Phi = \vec{B}A \cos \alpha$

Lei de Faraday $\varepsilon = -\frac{\Delta\Phi}{\Delta t}$

Transformador

$$\frac{U_2}{N_2} = \frac{U_1}{N_1}$$

$$P_1 = P_2 \rightarrow U_1 i_1 = U_2 i_2$$

PRINCIPAIS RELAÇÕES MATEMATICAS E DE UNIDADES

$$\boxed{1\frac{m}{s} = 3,6\frac{km}{h}} \boxed{1\ell = dm^3}$$

$$\boxed{dam^3} \xrightarrow{\times 1000} \boxed{m^3} \xleftarrow{\cdot}_{\div 1000} \boxed{dm^3}$$

 $1atm = 760mmHg \cong 10^5 N/m$

1cal = 4,186I

Carga elétrica de um elétron (e)

$$e = 1.6 \cdot 10^{-9}C$$

Constante universal dos gases (R)

$$8,31 \frac{J}{mol \cdot K} = 0,082 \frac{atm \cdot l}{mol \cdot K} = 2 \frac{cal}{mol \cdot K}$$

Prefixos						
Mili	m	10^{-3}				
Micro	μ	10^{-6}				
Nano	n	10 ⁻⁹				

Teorema do paralelogramo

$$a^2 = b^2 + c^2 + 2bc \cdot \cos \propto$$

Unidades do SI

Unidades fundamentais						
Grandeza	Unidade	Símbolo	Observações e definições (simplificado)			
Comprimento	metro	m	Comprimento percorrido pela luz no vácuo no intervalo de 1/299 792 458 segundos.			
Massa	quilograma	kg	Massa do protótipo internacional			
Тетро	segundo	S	Duração de 9 192 631 770 períodos da radiação correspondente à transição entre dois níveis hiperfinos do átomo de césio 133			
Corrente elétrica	ampère	A	Corrente mantida em dois condutores paralelos, situados no vácuo a 1 metro de distância um do outro, produz uma força entre esses condutores igual a $2 \cdot 10^{-7}$ newtons.			
Temperatura	kelvin	K	Fração 1/273,16 da temperatura termodinâmica do ponto tríplice da água.			
Quantidade de matéria	mol	mol	Quantidade de matéria contida em 0,012 kg de carbono 12. Equivalendo a 6,02 · 10 ²³			
Intensidade luminosa	candela	cd	Intensidade luminosa de uma fonte emissora de radiação monocromática na frequência de 540 1012 hertz, com uma intensidade energética, de 1/683 watts por esferorradiano.			
	Unida	des deriva	adas			
Área	metro quadrado	m^2				
Volume	metro cúbico	m^3				
Ângulo	radianos	rad				
Densidade	quilograma por m ²	kg/m^3				
Velocidade	metro por segundo	m/s				
Aceleração	metro por s ²	m/s^2				
Força	newton	N	$1N = 1kg \cdot m/s^2$			
Pressão	pascal	Ра	N/m^2			
Trabalho, energia	joule	J	$1J = N \cdot m$			
Potência	watt	W	$W = J/s$ ou $W = N \cdot v$			
Intensidade sonora	potencia por área	W/m^2				
Nível sonoro	decibéis	dB				
Frequência	hertz	Hz	Quantidade de ciclos em um segundo (s^{-1})			
Convergência ou vergencia	dioptria	di	$di = m^{-1}$			
Carga elétrica	coulomb	С				
Diferença de potencial (ddp)	volt	V	J/C			
Capacitância	farad	F	C/V			
Resistência elétrica	ohm	Ω	V/A			
Fluxo magnético	weber	Wb	$1Wb = 1T \cdot m^2$			
Indução magnética	tesla	T	$1T = 1N/(C \cdot m/s)$ ou $1N/(A \cdot m)$			

CONSTANTES FISICAS

Constante	Símbolo	Valor para calculo	Valor + (incerteza) + unidade
Velocidade da luz no vácuo	С	$3\cdot 10^8 m/s$	2,997 924 58 (exato)
Carga elementar	e	$1.6 \cdot 10^{-19} C$	1,602 177 33(49) · 10 ⁻¹⁹ C
Número de Avogadro	N_A	$6,02 \cdot 10^{23}$	$6,022\ 136\ 7(36)\cdot 10^{23}$
Constante da gravitação universal	G	$6,67 \cdot 10^{-11} \frac{N \cdot m^2}{kg^2}$	$6,672\ 59(85)\cdot 10^{-11}\ \frac{N\cdot m^2}{kg^2}$
Permeabilidade elétrica do vácuo	ϵ_0	$8.8 \cdot 10^{-12} \frac{C^2}{Nm^2}$	$8,854\ 187\ 817\ \cdot 10^{-12} \frac{C^2}{Nm^2}$ (exato)
Permeabilidade magnética do vácuo	μ_0	$4\pi \cdot 10^{-7} \; \frac{T \cdot m}{A}$	$4\pi \cdot 10^{-7} \frac{T \cdot m}{A} \text{ (exato)}$
Constante eletrostática do vácuo ou Constante de Coulomb	k_0	$9\cdot 10^9 \; \frac{N\cdot m^2}{C^2}$	$8,987\ 551\ 787\cdot 10^9 \frac{N\cdot m^2}{c^2}$ (exato)
Unidade de massa atômica	и	$1.66 \cdot 10^{-12} Kg$	$1.660\ 540\ 2(10)\cdot 10^{-12} Kg$
Constante dos gases	R	$8,31\frac{J}{mol \cdot K}$	8.314 510(70) $\frac{J}{\text{mol} \cdot K}$
Constante de Planck	h	$6.63 \cdot 10^{-34} \text{J} \cdot \text{s}$	$6.626\ 075(40)10^{-34}\ \text{J} \cdot \text{s} \text{ (exato)}$

SIGNIFICADOS E UNIDADES DAS FORMULAS

CINEMÁTICA

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
Vm	Velocidade média	m/s	A	Alcance máximo horizontal	m
х	Posição	m	φ	Ângulo descrito	rad
t	Tempo	S	S	Arco do círculo descrito	m
а	Aceleração	m/s^2	R	Raio do círculo	m
v	Velocidade	m/s	ω	Velocidade angular	rad/s
h_{max}	Altura máxima	m	α.	Aceleração angular	rad/s ²
g	Gravidade	m/s^2	T	Período	S
t_{h_max}	Tempo da altura máxima	S	f	Frequência	Hz

DINÂMICA

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
$\overrightarrow{F_r}$	Força resultante	N	Δχ	Variação de posição	m
m	Massa	kg	Е	Energia	J
\vec{a}	Aceleração	m/s^2	P	Potência	W
p	Peso de um corpo	N	Δt	Variação de tempo	S
g	Aceleração da gravidade	m/s^2	η	Rendimento	*
F	Força	N	P_u	Potência útil	W
k	Coeficiente elástico da mola	N/m	P_t	Potência total	W
x	Elongação da mola	m	E_c	Energia cinética	J
F_{ae}	Força de atrito estático	N	E_{pg}	Energia potencial gravitacional	J
μ_e	Coeficiente de atrito estático	*	h	Altura	m
F_{ac}	Força de atrito cinético	N	E_{pe}	Energia potencial elástica	J
μ_c	Coeficiente de atrito cinético	*	E_m	Energia mecânica	J
N	Força normal	N	$ec{Q}$	Quantidade de movimento	kg⋅m/s
М	Momento de uma força	$N \cdot m$	\vec{I}	Impulso	$N \cdot s$
d	Distancia	m	е	Coeficiente de restituição	*
F_{cp}	Força centrípeta	N	V_{af}	Velocidade de afastamento	m/s
a_c	Aceleração centrípeta	m/s^2	V_{ap}	Velocidade de aproximação	m/s
v	Velocidade	m/s	X_{CM}	Ponto do centro de <i>m</i> em x	m
R	Raio do circulo	m	m_1 ; m_n	Massa dos corpos	kg
\mathcal{T}	Trabalho	J	x_1 ; x_n	Posição em x dos corpos	m

^{*} Unidade adimensional

GRAVITAÇÃO E FLUIDOS

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
T	Período orbital	S	F	Força	N
k	Constante		S	Área da superfície	m^2
r	Raio médio da orbita	m	V	Volume do corpo	m^3
F_g	Força gravitacional	N	m	Massa do corpo	kg
G#	Constante de gravitação universal	$\frac{Nm^2}{kg^2}$	μ	Densidade	$\frac{kg}{m^3}$
M_1M_2	Massa dos corpos	kg	h	Altura	m
d	Distancia dos corpos	m	Е	Empuxo	N
v	Velocidade	m/s	P_r	Peso real	N
p	Pressão	Ра	P_a	Peso aparente	N

Quando aparecer o símbolo "#" ver a tabela: "CONSTANTES FISICAS"

TERMODINAMICA

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
T	Temperatura	K	m	Massa	kg
$T_{F_{\mathcal{X}}}$	Temperatura de fusão de "x"	K	С	Capacidade calorífica	J/K
$T_{E_{\mathcal{X}}}$	Temperatura de ebulição de "x"	K	С	Calor específico	J/kg·K
oc	Coeficiente de dilatação linear	K^{-1}	P	Pressão	Ра
β	C. de dilatação superficial	K^{-1}	n	Quantidade de <i>mol</i> do gás	mol
γ	C. de dilatação volumétrica	K^{-1}	R [#]	Constante universal dos gases	J/mol K
L	Comprimento	m	φ	Fluxo de calor por condução	J/s
S	Superfície	m^2	k	Coeficiente de condutibilidade	$J/s \cdot m \cdot K$
V	Volume	m^3	х	Distancia	m
ΔV_r	Variação de volume real	m^3	A	Área da secção transversal	m^2
ΔV_{ap}	Variação de volume aparente	m^3	\mathcal{T}	Trabalho	J
ΔV_{rec}	Variação de volume do recipiente	m^3	Ei	Energia interna	J
L	Calor latente	J/K	η	Rendimento	*
Q	Quantidade de energia	J			

ÓPTICA

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
f	Foco	m	sen î	Seno do ângulo de incidência	rad
х	Posição relativa ao eixo "x"	m	sen r̂	Seno do ângulo refratado	rad
у	Posição relativa ao eixo "y"	m	sen Î	Seno do ângulo limite de refração	rad
n	Índice de refração	*	d	Desvio do raio luminoso	m
λ	Comprimento de onda	m	e	Espessura da lamina	m
v_1	Velocidade da onda incidente	m/s	×	Desvio produzido por um prisma	rad
v_2	Velocidade da onda refratada	m/s	V	Convergência ou vergencia	di

ONDULATORIA

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
х	Elongação	m	μ_l	Densidade linear da corda	kg/m
A	Amplitude	m	В	Constante do meio	
θ	Ângulo	rad	n	Numero de harmônicos	N**
ω	Velocidade angular	rad/s	f_n	Frequência natural	Hz
t	Tempo	S	v	Velocidade da onda	m/s
v	Velocidade	m/s	F	Força	N
а	Aceleração	m/s^2	v_r	Velocidade do receptor	m/s
m	Massa	kg	v_f	Velocidade da fonte	m/s
k	Constante		i	Intensidade sonora	W/m^2
L	Comprimento	m	ΔE	Variação de energia	J
g	Gravidade	m/s^2	S	Superfície	m^2
μ	Densidade do ar	kg/m³	β	Nível sonoro	dB

^{**} Numero natural (N)

ELETROSTÁTICA

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
Q	Carga elétrica de um corpo	С	V	Potencial elétrico	V
n	Nº de cargas "e" em excesso	N	$\mathcal{T}_{\!AB}$	Trabalho de <i>A</i> para <i>B</i>	V
$e^{\#}$	Carga elétrica do elétron	С	U	Diferença de potencial (ΔV)	V
F	Força	N	С	Capacitância	F
k [#]	Constante eletrostática do meio	$N \cdot m^2/C^2$	R	Raio da esfera	m
$Q_1 e Q_2$	Cargas dos corpos	С	E_{pe}	Energia potencial elétrica	J
х	Distancia	m	$\epsilon^{\scriptscriptstyle \#}$	Permitividade do meio	N/m
E	Vetor campo elétrico	N/C	A	Área das armaduras	m^2
E_{pe}	Energia potencia elétrica	J	D	Distancia entre as armaduras	m

ELETRODINAMICA

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
i	Intensidade da corrente elétrica	C/s	P	Potencia elétrica	W
Δq	Quantidade de cargas	С	E_{ele}	Energia elétrica	Ws = J
t	Tempo	S	\mathcal{E}	Força eletromotriz	V
R	Resistência elétrica	Ω	r	Resistência interna	Ω
U	Diferença de potencial	V	P_u , $P_t e P_d$	Potencia útil, total e dissipada	W
ρ	Resistividade do material	$\Omega \cdot m$	٤′	Força contraeletromotriz	V
l	Comprimento do fio	m	η	Rendimento	*
A	Área da secção do fio	m^2			

MAGNÉTISMO

Símbolo	Significado	Unidade	Símbolo	Significado	Unidade
В	Intensidade do campo magnético	T	q	Carga do corpo	С
i	Intensidade da corrente elétrica	A	v	Velocidade do corpo	m/s
$\mu^{\#}$	Permeabilidade magnética do meio	$T \cdot m/A$	θ	Ângulo entre \vec{B} e o \vec{v}	rad
r	Raio da circunferência	m	d	Distancia entre os fios	m
N	Numero de espiras	N	Ф	Fluxo magneto	Wb
l	Comprimento	m	A	Área da superfície	m^2
F	Força magnética	N	ε	Força eletromotriz induzida	V