IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: ROSEN et al.

Application Serial No.: to be assigned

Art Unit: to be assigned

Filed: April 12, 2001 Examiner: to be assigned

For: ALBUMIN FUSION PROTEINS Attorney Docket No.: PF547

STATEMENT UNDER 37 C.F.R. 1.821(f)

Commissioner For Patents Washington, D.C. 20231

Sir:

Applicants hereby certify that the enclosed paper copy of the sequence listing and the computer-readable form of such sequence listing are identical.

Respectfully submitted,

Dated: Opril 12,2001

Michele M. Wales

(Reg. No. 43,975)

Attorney for Applicants

Human Genome Sciences, Inc.

9410 Key West Avenue Rockville, Maryland 20850 Telephone: 301-610-5772

Totophone.

Enclosure MMW/ts

SEQUENCE LISTING

```
<110> Rosen, Craig A.
      Haseltine, William A.
<120> Albumin Fusion Proteins
<130> PF547
<140> Unassigned
<141> 2001-04-12
<150> 60/229,358
<151> 2000-04-12
<150> 60/256,931
<151> 2000-12-21
<150> 60/199,384
<151> 2000-04-25
<160> 72
<170> PatentIn Ver. 2.1
<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer useful to clone human growth hormone cDNA
<400> 1
                                                                    23
cccaagaatt cccttatcca ggc
<210> 2
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer useful to clone human growth hormone cDNA
                                                                    33
gggaagctta gaagccacag gatccctcca cag
<210> 3
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments
with non-cohesive ends.
```

	<400> 3	
	gataaagatt cccaac	16
	<210> 4	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221> misc_structure	
	<223> synthetic oligonucleotide used to join DNA fragments	
	with non-cohesive ends.	
	<400> 4	
	aattgttggg aatcttt	17
	<210> 5	
	<211> 17	
	<212> DNA	
-	<213> Artificial Sequence	
er Er		
rá F9	<220>	
1.2	<221> misc_structure	
Ļį	<223> synthetic oligonucleotide used to join DNA fragments	
Į.	with non-cohesive ends.	
That's June That's Plant Anna Tough Ang Ang		
	<400> 5	
	ttaggcttat tcccaac	17
	**	
1		
12	<210> 6	
	<211> 18	
e)s	<212> DNA	
dust stan at a stand	<213> Artificial Sequence	
1		
Ė	<220>	
	<221> misc_structure	
	<223> synthetic oligonucleotide used to join DNA fragments	
	with non-cohesive ends.	
	<400> 6	
	aattgttggg aataagcc	18
	<210> 7 ·	
	<211> 24	
	<212> PRT	
	<213> Artificial Sequence	
	<220>	
	<221> SITE	
	<222> 1)(19)	
	<223> invertase leader sequence	
	<220>	
	<221> SITE	
	<222> 20)(24)	

```
<223> first 5 amino acids of mature human serum albumin
<400> 7
Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys
Ile Ser Ala Asp Ala His Lys Ser
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 8
                                                                   21
gagatgcaca cctgagtgag g
<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 9
                                                                    27
gatcctgtgg cttcgatgca cacaaga
<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 10
                                                                    24
ctcttgtgtg catcgaagcc acag
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
```

```
fragments with non-cohesive ends.
<400> 11
                                                                   30
tgtggaagag cctcagaatt tattcccaac
<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 12
                                                                    31
aattgttggg aataaattct gaggctcttc c
<210> 13
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 13
                                                                    47
ttaggcttag gtggcggtgg atccggcggt ggtggatctt tcccaac
<210> 14
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 14
aattgttggg aaagatccac caccgccgga tccaccgcca cctaagcc
                                                                    48
<210> 15
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 15
ttaggcttag gcggtggtgg atctggtggc ggcggatctg gtggcggtgg atccttccca 60
```

<210 <211 <212 <213	> 63 > DN	ΙΆ	cial	Seq	uenc	e										
<220 <221 <223 frag	> mi > sy	nthe	tic	olig	onuc	:leot :ive			l to	join	. DNA					
<400 aatt gcc			ıagga	itcca	ıc cg	ıccac	caga	tcc	gccg	rcca	ccag	atco	ac c	accg	cctaa	60 63
<211 <212	> 17 > 17 > DN > Hc	'82 IA	sapie	ens												
	.> CI		(1755	5)												
gat		cac												gga Gly 15		48
														ctt Leu		96
														act Thr		144
	_													gac Asp		192
														act Thr		240
														gaa Glu 95		288
	-		_	_		-				-				aac Asn		336
														ttt Phe		384

						ttg Leu 135										432
						gcc Ala										480
						gaa Glu										528
						gat Asp										576
	~		_	_		aaa Lys	_	-	_							624
						gca Ala 215										672
						gtt Val										720
_		_	_	-	_	cat His		_	_		-	-	_	-		768
		_		-	_	tat Tyr		-	_		-					816
						tgt Cys										864
						aat Asn 295										912
						gaa Glu										960
						ctg Leu										1008
						gtc Val										1056
	-					aag Lys	_	_	_	_	_	_			_	1104

tgc Cys	tat Tyr 370	gcc Ala	aaa Lys	gtg Val	ttc Phe	gat Asp 375	gaa Glu	ttt Phe	aaa Lys	cct Pro	ctt Leu 380	gtg Val	gaa Glu	gag Glu	cct Pro	1152
cag Gln 385	aat Asn	tta Leu	atc Ile	aaa Lys	caa Gln 390	aac Asn	tgt Cys	gag Glu	ctt Leu	ttt Phe 395	gag Glu	cag Gln	ctt Leu	gga Gly		1200
									cgt Arg 410							1248
									gtc Val							1296
gtg Val	ggc Gly	agc Ser 435	aaa Lys	tgt Cys	tgt Cys	aaa Lys	cat His 440	cct Pro	gaa Glu	gca Ala	aaa Lys	aga Arg 445	atg Met	ccc Pro	tgt Cys	1344
gca Ala	gaa Glu 450	gac Asp	tat Tyr	cta Leu	tcc Ser	gtg Val 455	gtc Val	ctg Leu	aac Asn	cag Gln	tta Leu 460	tgt Cys	gtg Val	ttg Leu	cat His	1392
									aca Thr							1440
ttg Leu	gtg Val	aac Asn	agg Arg	cga Arg 485	cca Pro	tgc Cys	ttt Phe	tca Ser	gct Ala 490	ctg Leu	gaa Glu	gtc Val	gat Asp	gaa Glu 495	aca Thr	1488
tac Tyr	gtt Val	ccc Pro	aaa Lys 500	gag Glu	ttt Phe	aat Asn	gct Ala	gaa Glu 505	aca Thr	ttc Phe	acc Thr	ttc Phe	cat His 510	gca Ala	gat Asp	1536
ata Ile	tgc Cys	aca Thr 515	Leu	tct Ser	gag Glu	aag Lys	gag Glu 520	aga Arg	caa Gln	atc Ile	aag Lys	aaa Lys 525	caa Gln	act Thr	gca Ala	1584
ctt Leu	gtt Val 530	Glu	ctt Leu	gtg Val	aaa Lys	cac His 535	Lys	ccc Pro	aag Lys	gca Ala	aca Thr 540	Lys	gag Glu	caa Gln	ctg Leu	1632
	Ala					Phe			ttt Phe		Glu				aag Lys 560	1680
					Thr					Glu					gtt Val	1728
				Ala					L	.catc	tac:	attt	aaaa	.gc a	tctcag	1782

<210> 18 <211> 585 <212> PRT <213> Homo Sapiens

<400> 18
Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
1 5 10 15

Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
20 25 30

Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35 40 45

Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55 60

Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu 65 70 75 80

Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro 85 90 95

Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100 105 110

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115 120 125

Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 135 140

Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 150 155 160

Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 170 175

Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 185 190

Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 200 205

Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 215 220

Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240

Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255

Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260 265 270

Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275 280 285

Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser 290 295 300 Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala 315 305 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 330 Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 375 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu 395 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys 425 Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His 450 455 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser 470 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr 485 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 505 Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu 535 Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys

545 550 555 560

Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 565 570 575

Ala Ala Ser Gln Ala Ala Leu Gly Leu 580 585

<210> 19

<211> 57

<212> DNA

```
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used to generate XhoI and ClaI
site in pPPC0006
<400> 19
gcctcgagaa aagagatgca cacaagagtg aggttgctca tcgatttaaa gatttgg
                                                                    57
<210> 20
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
<400> 20
aatcgatgag caacctcact cttgtgtgca tctcttttct cgaggctcct ggaataag
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
 <400> 21
                                                                    24
 tacaaactta agagtccaat tagc
 <210> 22
 <211> 29
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> primer_bind
 <223> primer used in generation XhoI and ClaI
 site in pPPC0006
 <400> 22
                                                                     29
 cacttctcta gagtggtttc atatgtctt
 <210> 23
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> Misc_Structure
```

```
and their steen steen were steen some some some steen steen some steen some steen some steen some steen some s
```

```
<223> Synthetic oligonucleotide used to alter restriction
sites in pPPC0007
<400> 23
aagctgcctt aggcttataa taaggcgcgc cggccggccg tttaaactaa gcttaattct 60
<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc_Structure
<223> Synthetic oligonucleotide used to alter restriction
sites in pPPC0007
<400> 24
agaattaagc ttagtttaaa cggccggccg gcgcgcctta ttataagcct aaggcagctt 60
<210> 25
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for generation of albumin
fusion protein in which the albumin moiety is N-terminal
of the Therapeutic Protein
<220>
<221> misc feature
<222> (18)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (23)
```

```
that they then man the part was the season of the first that the man that who will be season to the season of the
```

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (24)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (25)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (27)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (28)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
 <222> (31)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (32)
 <223> n equals a,t,g, or c
 <400> 25
                                                                     32
 aagctgcctt aggcttannn nnnnnnnnn nn
 <210> 26
 <211> 51
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> primer_bind
 <223> reverse primer useful for generation of albumin
 fusion protein in which the albumin moiety is N-terminal
 of the Therapeutic Protein
```

```
<220>
<221> misc feature
<222> (37)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
 <222> (47)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (48)
 <223> n equals a,t,g, or c
```

```
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<400> 26
                                                                    51
gcgcgcgttt aaacggccgg ccggcgcgcc ttattannnn nnnnnnnnn n
<210> 27
 <211> 33
 <212> DNA
 <213> Artificial Sequence
 <223> forward primer useful for generation of albumin fusion
 protein in which the albumin moiety is c-terminal of the
 Therapeutic Protein
 <220>
 <221> misc feature
 <222> (19)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (20)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (21)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (22)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (23)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (24)
 <223> n equals a,t,g, or c
```

```
<220>
<221> misc feature
<222> (25)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (26)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (27)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (28)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (32)
<223> n equals a,t,g, or c
<220>
 <221> misc feature
 <222> (33)
 <223> n equals a,t,g, or c
                                                                    33
 aggagcgtcg acaaaagann nnnnnnnnn nnn
 <210> 28
 <211> 52
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> primer_bind
 <223> reverse primer useful for generation of albumin
 fusion protein in which the albumin moiety is c-terminal of
 the Therapeutic Protein
```

```
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (46)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (47)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (48)
 <223> n equals a,t,g, or c
 <220>
 <221> misc feature
 <222> (49)
 <223> n equals a,t,g, or c
```

```
The first and the second was the second seco
```

```
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (52)
<223> n equals a,t,g, or c
<400> 28
ctttaaatcg atgagcaacc tcactcttgt gtgcatcnnn nnnnnnnnn nn
<210> 29
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> signal peptide of natural human serum albumin protein
<400> 29
Met Lys Trp Val Ser Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala
                                      10
Tyr Ser Arg Ser Leu Asp Lys Arg
             20
<210> 30
<211> 114
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for generation of PC4:HSA
albumin fusion VECTOR
<220>
 <221> misc_feature
 <222> (5)..(10)
 <223> BamHI retsriction site
 <220>
 <221> misc_feature
 <222> (11)..(16)
 <223> Hind III retsriction site
 <220>
 <221> misc_feature
 <222> (17)..(27)
 <223> Kozak sequence
```

52

```
<220>
<221> misc_feature
<222> (25)..(97)
<223> cds natural signal sequence of human serum albumin
<220>
<221> misc_feature
<222> (75)..(81)
<223> XhoI restriction site
<220>
<221> misc_feature
<222> (98)..(114)
<223> cds first six amino acids of human serum albumin
tcagggatcc aagcttccgc caccatgaag tgggtaacct ttatttccct tcttttctc 60
                                                                   114
tttagctcgg cttactcgag gggtgtgttt cgtcgagatg cacacaagag tgag
<210> 31
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of
PC4:HSA albumin fusion VECTOR
<220>
<221> misc_feature
<222> (6)..(11)
<223> Asp718 restriction site
<220>
<221> misc_feature
<222> (12)..(17)
<223> EcoRI restriction site
<220>
<221> misc_feature
<222> (15)..(17)
<223> reverse complement of stop codon
<220>
<221> misc_feature
<222> (18)..(25)
 <223> AscI restriction site
 <220>
 <221> misc_feature
 <222> (18)..(43)
 <223> reverse complement of DNA sequence encoding last 9 amino acids
 <400> 31
                                                                    43
 gcagcggtac cgaattcggc gcgccttata agcctaaggc agc
 <210> 32
```

```
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for inserting Therapeutic
protein into pC4:HSA vector
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (33)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (34)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (35)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (36)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (37)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
```

```
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<400> 32
                                                                    46
ccgccgctcg aggggtgtgt ttcgtcgann nnnnnnnn nnnnnn
<210> 33
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for inserting Therapeutic
protein into pC4:HSA vector
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
```

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
```

```
<223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (52)
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (53)
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (54)
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (55)
      <223> n equals a,t,g, or c
      <400> 33
      agteceateg atgageaace teactettgt gtgcatennn nnnnnnnnnn nnnnn
                                                                         55
Œ.
a,
      <210> 34
<211> 17
100
      <212> PRT
T,
      <213> Artificial Sequence
ħ.
M.
      <220>
      <221> signal
<223> Stanniocalcin signal peptide
<400> 34
ļ.,
      Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser
ħ
      Ala
      <210> 35
       <211> 22
       <212> PRT
       <213> Artificial Sequence
       <220>
       <221> signal
       <223> Synthetic signal peptide
      Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Ala Leu
                                            10
      Trp Ala Pro Ala Arg Gly
       <210> 36
       <211> 23
      <212> DNA
       <213> Artificial Sequence
```

	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	
	<400> 36 caggtgcagc tggtgcagtc tgg	23
	<210> 37 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	
	<400> 37 caggtcaact taagggagtc tgg	23
પિતારે કેલ્લા તૈકાર માના દ્વાતા પાસ્ટ ૧૬૧૦ પુરા	<210> 38 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	
R R Rude	<400> 38 gaggtgcagc tggtggagtc tgg	23
याः माम्ह संस्था क्षः	<210> 39 <211> 23 <212> DNA <213> Artificial Sequence	
	<pre><220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains</pre>	
	<400> 39 caggtgcagc tgcaggagtc ggg	23
	<210> 40 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate VH forward primer useful for amplifying human VH domains	

	<400> 40 gaggtgcagc tgttgcagtc tgc	23
	<210> 41	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind <223>Degenerate VH forward primer useful for	
	amplifying human VH domains	
	<400> 41	
	caggtacagc tgcagcagtc agg	23
	<210> 42 <211> 24	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
# 15 mm	<220>	
i,	<221>primer_bind	
ľ)	<223>Degenerate JH reverse primer useful for	
Herry gran from their th	amplifying human VH domains	
	<400> 42	
	tgaggagacg gtgaccaggg tgcc	24
	<210> 43	
m 12	<211> 24	
in it	<212> DNA	
67 82 20	<213> Artificial Sequence	
3. 3 June 8 "178 B 8	.000	
1000	<220>	
	<221>primer_bind <223>Degenerate JH reverse primer useful for	
z Ś	amplifying human VH domains	
	<400> 43	
	tgaagagacg gtgaccattg tccc	24
	<210> 44	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate JH reverse primer useful for	
	amplifying human VH domains	
	<400> 44	
	tgaggagacg gtgaccaggg ttcc	24
	<210> 45	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	

	<220> <221>primer_bind <223>Degenerate JH reverse primer useful for amplifying human VH domains	
	<400> 45 tgaggagacg gtgaccgtgg tccc	24
	<210> 46 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
	<400> 46 gacatccaga tgacccagtc tcc	23
And And Park And Park	<210> 47 <211> 23 <212> DNA <213> Artificial Sequence	
And the first first that And the first first that the first first that the first fir	<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
	<400> 47 gatgttgtga tgactcagtc tcc	23
	<210> 48 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
	<400> 48 gatattgtga tgactcagtc tcc	23
	<210> 49 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
	<400> 49 gaaattgtgt tgacgcagtc tcc	23

	<210> 50 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
	<400> 50 gacatcgtga tgacccagtc tcc	23
	<210> 51 <211> 23 <212> DNA <213> Artificial Sequence	
in an	<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
ALLE MANOR MANOR	<400> 51 gaaacgacac tcacgcagtc tcc	23
Tool Teen Staf Fran Teen Park bark bark	<210> 52 <211> 23 <212> DNA <213> Artificial Sequence	
Tool Line W. If H Line	<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
	<400> 52 gaaattgtgc tgactcagtc tcc	23
	<210> 53 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
•	<400> 53 cagtctgtgt tgacgcagcc gcc	23
	<210> 54 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind	

	<223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	<400> 54 cagtctgccc tgactcagcc tgc	23
	<210> 55 <211> 23 <212> DNA	
	<213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	<400> 55 tcctatgtgc tgactcagcc acc	23
	<210> 56 <211> 23 <212> DNA <213> Artificial Sequence	
And Bon Jod Low Con List Red Red The	<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
Find Four	<400> 56 tettetgage tgaeteagga eee	23
fact from the first act	<210> 57 <211> 23 <212> DNA <213> Artificial Sequence	
Her Handy Her	<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	<400> 57 cacgttatac tgactcaacc gcc	23
	<210> 58 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	<400> 58 caggetgtge teacteagee gte	23
	<210> 59 <211> 23	

	<213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
	<400> 59 aattttatgc tgactcagcc cca	23
	<210> 60 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains	
Andr	<400> 60 acgtttgatt tccaccttgg tccc	24
Aird Hess Harl Arse Han Hide Lins	<210> 61 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains	
Sant taue 16". It if had	<400> 61 acgtttgatc tccagettgg tccc	24
Sec. 34448	<210> 62 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains	
	<400> 62 acgtttgata tccactttgg tccc	24
	<210> 63 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for	
	amplifying human VL domains	

<400> 63 acgtttgatc tccaccttgg tccc	24
<210> 64	
amplifying human VL domains	
<100 - 61	
	2./
	24
<210> 65	
\ZIJ> AICIIICIAI Sequence	
<220>	
<221>primer_bind	
<223>Degenerate Jlambda reverse primer useful for	
amplifying human VL domains	
<400> 65	
cagtctgtgt tgacgcagcc gcc	23
.010	
amplifying human VI domains	
amplifying naman vir domains	
<400> 66	
cagtctgccc tgactcagcc tgc	23
<210> 67	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
amplifying human VL domains	
<400> 67	
	23
	<i>43</i>
<210> 68	
<212> DNA <213> Artificial Sequence	
	<pre> <210> 64 <211> 24 <212> DNA <213> Artificial Sequence <220> <221>primer_bind <223>Degenerate Jkappa reverse primer useful for amplifying human VL domains <400> 64 acgttaatc tccagtcgtg tccc <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <221>primer_bind <223>Degenerate Jlambda reverse primer useful for amplifying human VL domains <400> 65 cagtctgtgt tgacgcagcc gcc <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <221>primer_bind <223>Degenerate Jlambda reverse primer useful for amplifying human VL domains <400> 65 cagtctgtgt tgacgcagcc gcc <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <221>primer_bind <223>Degenerate Jlambda reverse primer useful for amplifying human VL domains <400> 66 cagtctgccc tgactcagcc tgc <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <221>primer_bind <223>Degenerate Jlambda reverse primer useful for amplifying human VL domains <400> 67 tcctatgtgc tgactcagcc acc <210> 68 <211> 23 <212> DNA <211> 23 <212> DNA </pre>

```
Œ.
ũ
L.
Harry
Seems
46
ñ.
4
 Ti,
```

```
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for
amplifying human VL domains
<400> 68
tcttctgagc tgactcagga ccc
                                                                   23
<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for
amplifying human VL domains
<400> 69
cacgttatac tgactcaacc gcc
                                                                   23
<210> 70
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for
amplifying human VL domains
<400> 70
caggctgtgc tcactcagcc gtc
                                                                   23
<210> 71
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jlambda reverse primer useful for
amplifying human VL domains
<400> 71
aattttatgc tgactcagcc cca
                                                                   23
<210> 72
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<221>turn
<223>Linker peptide that may be used to join VH
and VL domains in an scFv.
<400> 72
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
                                     10
```