

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 2

Algebraic Topology

Author: Edward McDonald

Student Number: z3375335

Question 1

Proposition 1. Let C, D and E be categories, and $F: C \to D$ and $G: D \to E$ are functors. Then the composite $GF: C \to E$, defined by (GF)(x) = G(F(x)) for $x \in \text{Obj}(C)$ and (GF)(f) = G(F(f)) for a morphism f, is a functor.

Proof. It is necessary to prove,

- 1. If $x \in \text{Obj}(\mathcal{C})$, then $(\mathcal{GF})(\mathrm{id}_x) = \mathrm{id}_{\mathcal{GF}(x)}$.
- 2. If f and g are morphisms in \mathcal{C} such that gf is defined, then $(\mathcal{GF})(gf) = (\mathcal{GF})(g)(\mathcal{GF})(f)$.

To prove 1, we simply compute,

$$(\mathcal{GF})(\mathrm{id}_x) = \mathcal{G}(\mathrm{id}_{\mathcal{F}(x)})$$

= $\mathrm{id}_{\mathcal{GF}(x)}$.

Similarly, we prove 2,

$$\begin{split} (\mathcal{GF})(gf) &= \mathcal{G}(\mathcal{F}(g)\mathcal{F}(f)) \\ &= (\mathcal{GF})(g)(\mathcal{GF})(f). \end{split}$$

Question 2

Lemma 1. Let $f: A \to B$ be a morphism in **Ab** that has a left inverse $g: B \to A$. Then f is injective and B is the internal direct sum $B = f(A) \oplus \ker g$.

Proof. Let $x, y \in A$ with f(x) = f(y). Then x = g(f(x)) = g(f(y)) = y, so f is injective.

Let $b \in B$. Then

$$b = f(g(b)) + (b - f(g(b)))$$

See that g(b-f(g(b)))=g(b)-g(b)=0, so $b-f(g(b))\in \ker(g)$, and $f(g(b))\in f(A)$, so we have the sum $B=f(A)+\ker(g)$.

To show that this sum is direct, we need to prove that $f(A) \cap \ker(g) = \{0\}$.

To this end, $x \in f(A) \cap \ker(g)$. Then x = f(y) for some $y \in A$. Then 0 = g(x) = g(f(y)) = y. Hence x = f(0) = 0.

Edward McDonald

May 9, 2015

Lemma 2. Let C and D be categories, and let $F : C \to D$ be a covariant functor. If $f \in \text{Hom}_{C}(X,Y)$ is left invertible then so is F(f).

Proof. Let $g \in \text{Hom}_{\mathcal{C}}(Y, X)$ be a left inverse for f. Then,

$$F(g)F(f) = F(gf) = F(\mathrm{id}_X) = \mathrm{id}_{F(X)}.$$

Hence F(q) is a left inverse for F(f).

Recall that a retract of a topological space X is a subspace A such that the inclusion map $\iota:A\to X$ is left invertible.

Proposition 2. There is no retract A of the Klein bottle K with $H_1(A) \cong \mathbb{Z}^2$.

Proof. If there were a left invertible map $A \to K$, then there would be a left invertible map $\mathbb{Z}^2 \cong H_1(A) \to H_1(K) \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Hence there would be an injective map $\varphi: \mathbb{Z}^2 \to \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Hence there are elements $x, y \in \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ such that there are no non-zero integers a, b such that xa + yb = 0. However if 2x = (c, 0) and 2y = (d, 0) then

2cy - 2dx = 0.

Thus φ cannot exist, hence A cannot exist.

Proposition 3. There is no topological space X with $H_1(X) \cong \mathbb{Z}^2 \oplus \mathbb{Z}/4\mathbb{Z}$ such that the Klein bottle K is a retract of X.

Proof. If K is a retract of X. then there is an injection $H_1(K) \to H_1(X)$ such that the image of $H_1(K)$ is a direct summand of $H_1(X)$.

Hence $\mathbb{Z}^2 \oplus \mathbb{Z}/4\mathbb{Z}$ has a subgroup $A \cong \mathbb{Z} \oplus \mathbb{Z}/2$ and a subgroup B such that we have the (internal) direct sum $\mathbb{Z}^2 \oplus \mathbb{Z}/4\mathbb{Z} = A \oplus B$.

See that $\mathbb{Z}^2 \oplus \mathbb{Z}/4\mathbb{Z}$ has a unique element of order 2, (0,0,2). Since A must have an element of order 2, we conclude that $(0,0,2) \in A$.

Note that A has no element of order 4, hence $(0,0,1) \notin A$. Hence there is some nonzero $b \in B$ such that $b - (0,0,1) \in A$.

Thus $2b - (0,0,2) \in A$, hence $2b \in A$. But $b \in B$, so $2b \in B \cap A$. Hence b = 0, so $(0,0,1) \in A$, which is a contradiction.

Question 3

Proposition 4. Let $f: S^n \to S^n$ be a continuous function with non-zero degree. Then f is surjective.

Proof. Let $f: S^n \to S^n$ be a continuous function that is not surjective. Let $y \in S^n$ be not in the image of f. Let $p: S^n \to \mathbb{R}^n$ be stereographic projection from the point y. Consider the functions $r: [0,1] \times \mathbb{R}^n \to \mathbb{R}^n$ that contracts by t, r(t,x) = (1-t)x. r is a polynomial so r is continuous.

Then $H(t,x) = p^{-1}(r(t,p(f(x))))$ continuous, and $H(0,x) = p^{-1}(p(f(x))) = f(x)$, and $H(1,x) = p^{-1}(0)$. Thus H is a homotopy of f to a constant map.

Hence f is homotopic to a constant map, so deg(f) = 0.

Question 4

We consider S^{n-1} as a subset of S^n by embedding it into the equator.

Proposition 5. The relative homology $H_p(S^n, S^{n-1})$ is as follows:

$$H_p(S^n, S^{n-1}) \cong \begin{cases} \mathbb{Z}^2, \ p = n \\ 0, \ otherwise. \end{cases}$$

Proof. We shall compute the homology with a specific triangulation of S^n . Let $\sigma_1, \sigma_2, \sigma_3$ be three distinct *n*-simplices, and let w, w' be two vertices not in $\sigma_i, i = 1, 2, 3$.

We construct a triangulation K as follows:

Place σ_2 at the equator of S^n , and put σ_1 and σ_3 below and above σ_2 respectively.

Place the vertex w on the surface of the sphere, beneath σ_1 , and w' is the antipodal point to w above σ_3 . Now we connect $K_{\sigma_1}^{(n-1)} * w$ to σ_2 as illustrated below in the case for n = 2,

similarly $K_{\sigma_3}^{(n-1)} * w'$ is connected to σ_2 .

Thus we have a triangulation K of S^n , and $K_{\sigma_2}^{(n-1)}$ corresponds to S^{n-1} .

Now let p > 0. We need to compute $C_p(K)/C_p(K_{\sigma_2}^{(n-1)})$.

Let L be the simplicial complex that is the image of K where all of $K_{\sigma_2}^{n-1}$ is identified to a point $x \in L$.

We claim that there is an isomorphism $C_p(L) \cong C_p(K)/C_p(K_{\sigma_2}^{(n-1)})$.

Let $\varphi: C_p(K) \to C_p(L)$ be the map that sends simplices in $K_{\sigma_2}^{(n-1)}$ to 0. Hence $\ker \varphi = C_p(K_{\sigma_2}^{(n-1)})$, so we have the required isomorphism.

It is then easy to see that the boundary map ∂_p is the same on $C_p(L)$ as it is on $C_p(K)/C_p(K_{\sigma_2}^{(n-1)})$. Hence the relative homology $H_p(S^n, S^{n-1})$ is the same as the homology $H_p(L)$ for p > 0.

Now L is a union of two n-spheres, so we have $H_p(L) = 0$ for $0 and <math>H_n(L) = \mathbb{Z}^2$.

For the case p=0, we consider $C_0(K)/C_0(K_{\sigma_2}^{(n-1)})$. Now $Z_0(K,K_{\sigma_2}^{(n-1)})=C_0(K)/C_0(K_{\sigma_2}^{(n-1)})$.

However, for every vertex $x \in K \setminus K_{\sigma_2}^{(n-1)}$, there is a one chain joining a vertex in $K_{\sigma_2}^{(n-1)}$ to x. Hence every point $x \in K \setminus K_{\sigma_2}^{(n-1)}$ is the 0-boundary of a 1-chain, modulo points of $K_{\sigma_2}^{(n-1)}$. Hence $H_0(S^n, S^{n-1}) \cong 0$.

Question 5

Let $X = \mathbb{R}^2 \setminus \{p, q\}$ for distinct points $p, q \in \mathbb{R}^2$. Let A be the union of the circles centred at p and q with radius half the distance between p and q.

Proposition 6. A is a weak deformation retract of X.

Proof. By a change of coordinates, we can set p = (1,0) and q = (-1,0). Let C_p be the disc centred at p with radius 1, and C_q is similarly the disc centred at q with radius 1.

First we note that the relation of being a weak deformation retract is transitive, in the sense that if $A \subseteq B \subseteq X$ is a nested triple of topological spaces, and B is a weak deformation retract of X, and A is a weak deformation retract of B, then A is a weak deformation retract of X.

Let D be the closed disc centred at (0,0) of radius 2.

It is easy to see that $D \setminus \{p, q\}$ is a weak deformation retract of X, simply project the exterior of D onto D.

Now we show that A is a weak deformation retract of D.

We now define a function $H:[0,1]\times D\to D$. Let H move points outside of $C_p\cup C_q$ onto the boundary of $C_p\cup C_q$ by moving them towards the x-axis.

For a point $a \in C_p \setminus \{p\}$, let H radially move a towards the boundary of C_p . Similarly H moves points in C_q towards the boundary of C_q .

Proposition 7. We can triangulate A as follows:

May 9, 2015

Let K be the associated simplicial complex.

Proof. Simply perform a projection from |K| to A.

Proposition 8. The homology of A is

$$H_p(A) \cong \begin{cases} \mathbb{Z}^2, \ p=1 \\ \mathbb{Z}, \ p=0 \\ 0 \ otherwise. \end{cases}$$

Proof. By the main theorem of the course, $H_p(A) = H_p(K)$. Since K has no p-simplices for $p \neq 0, 1$, the only potentially non-trivial homology groups are $H_1(K)$ and $H_0(K)$.

Since K is connected, we have $H_0(K) \cong \mathbb{Z}$.

So we now need only compute $H_1(K)$. Since $C_2(K) = 0$, this is exactly $Z_1(K)$. Let $a \in Z_1(K)$. Write,

$$a = \sum_{\sigma} a_{\sigma} \sigma$$

where the sum runs over all 1-simplices in K. Since $\partial a = 0$, we have that $a_{AC} = a_{CE} = a_{AE}$ and $a_{EB} = a_{BD} = a_{DE}$. Hence $Z_1(K)$ is generated by the 1-chains [AC] + [CE] + [AE] and [EB] + [BD] + [DE]. No multiple of these chains can be zero, so we have two order zero generators of $Z_1(K)$. Since they are independent over \mathbb{Z} , we have $H_1(K) \cong \mathbb{Z}^2$.

Proposition 9. $\mathbb{R}^2 \setminus \{p,q\}$ is not homeomorphic to $\mathbb{R}^2 \setminus \{p\}$.

Proof. It was proved in class that $\mathbb{R}^2 \setminus \{p\}$ is a weak deformation retract of S^1 . Hence $H_1(\mathbb{R}^2 \setminus \{p\}) = \mathbb{Z}$. Thus $\mathbb{R}^2 \setminus \{p\}$ and $\mathbb{R}^2 \setminus \{p,q\}$ have different homology.