Problem 2.1 c) 1/1

Q:18 & strongly convex? If so, find a nigh M.

A: fis twice differentiable, so it is strongly convex if $\nabla^2 f(w) > \mu I$, $\forall w$

We have $\nabla^2 f(w) = \frac{1}{N} \sum_{i} \nabla_{i}^2 f(w) + 2\lambda$,

so we need M:

 $\times^{T} (\nabla^{2} f(w) - \mu I) \times \geq 0$, $\forall x, w$

×T ∇²f(w) x ≥ µ xTx , ∀x, w

 $\rightarrow M \leq \frac{\times^{T} \nabla^{2} f(\omega) \times}{\times^{T} \times} = \frac{1}{N} \sum_{i \in [N]} \frac{\times^{T} \nabla^{2} f_{i}(\omega) \times}{\times^{T} \times} + 2\lambda, \forall x \neq 0, \omega$

where A is lower bounded by Zero.

Thus, we need $\mu \leq 2\lambda$, - choose $\mu = 2\lambda$.

Answer: f(w) is M-strongly convex, with $M=2\lambda$.