TA 5- Ej1 Análisis Discriminante Lineal (1)

- recordar que el LDA asume que:
 - las variables de entrada tienen distribución normal.
 - la varianza de cada variable de entrada, agrupada por cada clase de la salida, es la misma

utilizando una planilla electrónica,

- utilizaremos un conjunto de datos con 1 atributo, y 1 salida con dos clases
- insertar los datos contenidos en el archivo "TA5-DATASET.CSV"
 - la variable Y tiene dos Clases: 0 y 1
 - los valores de la variable X han sido generados con distribuciones normales y varianzas similares

TA 5- Ej1 Análisis Discriminante Lineal (2)

grafica los datos, separando en las dos clases de la salida

TA5 - Ej 1 - Análisis Discriminante Lineal (3)

- Calcula P(Y=0) y P(Y=1) (conteo)
- para Y=0,
 - calcula la media de los X y, para cada X, (x-media(x))²
 - totaliza las diferencias cuadráticas
- repite para Y=1

Probabilidad				
P(y=0)		P(y=1)		
	0.5	0.5		
X, Y=0		media(x)	(x-media(x))^2	Suma
	2.1936	3.2990	1.2219	
	3.2731		0.0007	

X, Y=0	n	nedia(x)	$(x-media(x))^2$	Suma
	2.1936	3.2990	1.2219	
	3.2731		0.0007	
	1.7922		2.2704	
	3.3280		0.0008	25.3357

X, Y=1	media(x)	$(x-media(x))^2$	Suma
7.7691	7.7871	0.0003	
9.0430		1.5773	
7.6416		0.0212	22.5028

TA5 - Ej 1 - Análisis Discriminante Lineal (4)

 Calcula la varianza con los datos de diferencias hallados (aqui K = 2 y n = 40):

$$sigma^2 = \frac{1}{n-K} \times \sum_{i=1}^{n} (x_i - mean_k)^2$$

• ya tienes todos los parámetros del modelo!

$$D_k(x) = x \times \frac{mean_k}{sigma^2} - \frac{mean_k^2}{2 \times sigma^2} + ln(P(k))$$

TA5 - Ej 1 - Análisis Discriminante Lineal (5)

- Predicción y error
 - -utilizar los mismos datos de entrada de X
 - en las 2 siguientes columnas calcular los discriminantes para Y=0 e Y=1

$$D_k(x) = x \times \frac{mean_k}{sigma^2} - \frac{mean_k^2}{2 \times sigma^2} + ln(P(k))$$

- -calcular la predicción de clase (comparar los discriminantes)
- -agregar una columna con las Y originales, calcular el error de predicción en cada ejemplo, y al final, la exactitud de la predicción total