Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Arquitectura de computadores y ensambladores 1

MANUAL TÉCNICO

Khristian Manolo Junior García Pineda	201404202
Sergio Emilio de León Búcaro	201800673
Alberto Josué Hernández Armas	201903553
Kevin Mark Hernández Chicol	202001053
Jennifer Yulissa Lourdes Taperio Manuel	202103763
Melvin Alexander Valencia Estrada	202111556
Harold Alejandro Sánchez Hernández	202200100

Indice

- Introducción
- Descripción del Proyecto
- Infraestructura
- Instalación
- Operación
- Apéndices

Introducción

Este manual proporciona instrucciones detalladas sobre la instalación, operación, y del sistema de monitorización y control implementado con Raspberry Pi para una sucursal. Incluye información técnica necesaria para utilizar y gestionar los diferentes componentes del sistema.

Descripción del Proyecto

Objetivo General:

Desarrollar un prototipo físico utilizando Raspberry Pi para solucionar problemas de monitorización y control de dispositivos electrónicos en una sucursal.

Objetivos Específicos:

- Utilizar Python para el control de GPIO y gestionar la información de distintos componentes electrónicos.
- Mantener un flujo de control en cada sensor para la toma automática de decisiones.
- Conectar elementos físicos con tecnología digital a través de una página web.

Resumen del Proyecto:

El proyecto consiste en una infraestructura que permite la obtención de datos y el control remoto de dispositivos electrónicos en una sucursal. Se utiliza una Raspberry Pi para gestionar tanto el backend como el frontend, y se desarrolla una página web para controlar los dispositivos y mostrar datos relevantes.

Infraestructura

Componentes Principales:

- 1. Raspberry Pi 3 o superior: Unidad central del sistema.
- 2. Sensores de Fotorresistencia: Para detección de luz en áreas exteriores.
- 3. Pantalla LCD 16x2: Para visualización local de estados de dispositivos.
- 4. Motores: Para el control de la banda transportadora y portón de carga y descarga.
- 5. Sensores de Detección de Personas: Para conteo de personas en la entrada y dentro de la sucursal.
- 6. Láser Perimetral y Buzzer: Para la alarma de seguridad.
- 7. Display de 7 Segmentos: Para mostrar el conteo de clientes dentro de la sucursal.
- 8. LEDs: Para indicación del estado de iluminación y otros dispositivos.

Áreas de la Sucursal:

- Recepción
- Área de Conferencias
- Área de Trabajo
- Área Administrativa
- Área de Carga y Descarga
- Cafetería
- Baño
- Exterior

Presupuesto:

precio por unidad

Raspberry	(1)Q675
Sensores de Fotorresistencia	(1)Q3.75
Pantalla LCD 16x2	(1)Q39
Motor	(1)Q24
Final de carrera	(2)Q14
sensor detector de laser	(1)Q20
laser	(1)Q15
Display de 7 segmentos	(1)Q5
led	(8)Q1

total:Q817.75

Instalación

Requisitos Previos:

- Raspberry Pi configurada con Raspbian OS.
- Conexión a Internet.
- Herramientas de montaje y soldadura.

Pasos de Instalación:

- 1. Configuración de la Raspberry Pi:
 - Instalar Raspbian OS.
 - Configurar acceso SSH.
 - Instalar bibliotecas necesarias.

2. Montaje de Sensores y Actuadores:

- Conectar los sensores de fotorresistencia y detección de personas a los pines GPIO.
- Instalar y conectar los motores para la banda transportadora y portón.
- Conectar LEDs y display de 7 segmentos.
- 3. Despliegue de la Página Web:
 - Configurar el servidor web con Flask.
 - Desarrollar el frontend con React (opcional).
 - Implementar API REST para comunicación entre frontend y backend.

4. Pruebas Iniciales:

- Verificar la funcionalidad de cada componente individualmente.
- Realizar pruebas de integración del sistema completo.

Operación

Encendido del Sistema:

- Conectar la Raspberry Pi a la fuente de alimentación.
- Iniciar el servidor web mediante SSH o VNC.

Control de Dispositivos desde la Página Web:

- Acceder a la página web del sistema.
- Encender/apagar iluminación.
- Activar/desactivar banda transportadora y portón.
- Monitorizar el estado de la alarma perimetral.

Visualización de Estados:

- Utilizar la pantalla LCD para verificar el estado de los dispositivos.
- Consultar el display de 7 segmentos para el conteo de clientes.

Mantenimiento

Mantenimiento Preventivo:

- Verificar conexiones y soldaduras periódicamente.
- Limpiar sensores y actuadores regularmente.
- Actualizar software y firmware según sea necesario.

Mantenimiento Correctivo:

- Diagnosticar y reparar fallos en sensores o actuadores.
- Sustituir componentes defectuosos.

Apéndices

