Unit 8 Support Vector Machines

EE-UY 4563/EL-GY 9143: INTRODUCTION TO MACHINE LEARNING PROF. SUNDEEP RANGAN, WITH MODIFICATION BY YAO WANG

Learning Objectives

- □ Interpret weights in linear classification of images
- ☐ Describe why linear classification for images does not work
- ☐ Define the margin in linear classification
- ☐ Describe the SVM classification problem.
- ☐ Write equations for solutions of constrained optimization using the Lagrangian.
- ☐ Describe a kernel SVM problem for non-linear classification
- ☐ Implement SVM classifiers in python
- Select SVM parameters from cross-validation

Outline

- Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
 - ☐ Maximum margin classifiers
 - ■Support vector machines
 - ☐ Kernel trick
 - □ Constrained optimization

MNIST Digit Classification

NAME DATE CITY STATE ZIP 8-3-89 Minuter CITY Mi 48457 This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers and letters. Please print the following characters in the boxes that appear below.

HANDWRITING SAMPLE FORM

- ☐ Problem: Recognize hand-written digits
- ☐ Original problem:
 - Census forms
 - Automated processing
- □Classic machine learning problem
- Benchmark

From Patrick J. Grother, NIST Special Database, 1995

A Widely-Used Benchmark

Classifiers [edit]

This is a table of some of the machine learning methods used on the database and their error rates, by type of classifier:

Type 	Classifier \$	Distortion +	Preprocessing +	Error rate (%) \$
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[9]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52 ^[14]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[15]
Non-Linear Classifier	40 PCA + quadratic classifier	None	None	3.3 ^[9]
Support vector machine	Virtual SVM, deg-9 poly, 2-pixel jittered	None	Deskewing	0.56 ^[16]
Neural network	2-layer 784-800-10	None	None	1.6 ^[17]
Neural network	2-layer 784-800-10	elastic distortions	None	0.7 ^[17]
Deep neural network	6-layer 784-2500-2000-1500-1000-500-10	elastic distortions	None	0.35 ^[18]
Convolutional neural network	Committee of 35 conv. net, 1-20-P-40-P-150-10	elastic distortions	Width normalizations	0.23 ^[8]

- ☐ We will look at SVM today
- Not the best algorithm
- ☐But quite good
- ☐...and illustrates the main points

Downloading MNIST

```
import tensorflow as tf

(Xtr,ytr),(Xts,yts) = tf.keras.datasets.mnist.load_data()

print('Xtr shape: %s' % str(Xtr.shape))

print('Xts shape: %s' % str(Xts.shape))

ntr = Xtr.shape[0]

nts = Xts.shape[0]

nrow = Xtr.shape[1]

ncol = Xtr.shape[2]
```

```
Xtr shape: (60000, 28, 28)
Xts shape: (10000, 28, 28)
```

- ■MNIST data is available in many sources
 - Note: It has been removed from sklearn
- ☐ Tensorflow version:
 - 60000 training samples
 - 10000 test samples
- ☐ Each sample is a 28 x 28 images
- □ Grayscale: Pixel values $\in \{0,1,...,255\}$
 - 0 = Black and
 - 255 = White

Matrix and Vector Representation

- \square For this demo, we reshape data from $N \times 28 \times 28$ to $N \times 784$
- ☐ But, you can easily go back and forth
- □Also, scale the pixel values from -1 to 1

$$S = Mat(x) = \begin{bmatrix} s_{11} & \cdots & s_{1,28} \\ \vdots & \vdots & \vdots \\ s_{28,1} & \cdots & s_{28,28} \end{bmatrix} \qquad x = vec(S) = [x_1 & \cdots & x_{784}]$$

 $784 = 28^2$

Displaying Images in Python

4 random images in the dataset

A human can classify these easily

```
def plt_digit(x):
   nrow = 28
   ncol = 28
   xsq = x.reshape((nrow,ncol))
   plt.imshow(xsq, cmap='Greys_r') ◀
                                                 Key command
   plt.xticks([])
   plt.yticks([])
# Convert data to a matrix
X = mnist.data
y = mnist.target
# Select random digits
                                                 Sample
nplt = 4
nsamp = X.shape[0]
                                                 permutation is
Iperm = np.random.permutation(nsamp)
                                                 necessary for this
# Plot the images using the subplot command
                                                 dataset, as the
for i in range(nplt):
   ind = Iperm[i]
                                                 original data is
   plt.subplot(1,nplt,i+1)
                                                 ordered by digits
    plt digit(X[ind,:])
```


Try a Logistic Classifier

```
ntr1 = 5000
Xtr1 = Xtr[Iperm[:ntr1],:]
ytr1 = ytr[Iperm[:ntr1]]
```

- ☐ Train on 5000 samples
 - To reduce training time.
 - In practice want to train with ~40k
- □ Select correct solver (lbfgs)
 - Others can be very slow. Even this will take minutes

Performance

- □Accuracy = 89%. Very bad
- ☐ Some of the errors seem like they should have been easy to spot
- ■What went wrong?

```
nts1 = 5000
Iperm_ts = np.random.permutation(nts)
Xts1 = Xts[Iperm_ts[:nts1],:]
yts1 = yts[Iperm_ts[:nts1]]
yhat = logreg.predict(Xts1)
acc = np.mean(yhat == yts1)
print('Accuaracy = {0:f}'.format(acc))
```

Accuaracy = 0.891000

Recap: Logistic Classifier

- □ Each logit $z_k = \mathbf{w}_k^T \mathbf{x}$ = inner product with weight \mathbf{w}_k with digit \mathbf{x} , k = 0, ..., 9
- \square Will select $\hat{y} = \arg \max_{k} P(y = k | x) = \arg \max_{k} z_{k}$
 - \circ Output z_k which is largest
- \square When is z_k large?

Interpreting the Logistic Classifier Weights

- \square A logit $z_k = \mathbf{w}_k^T \mathbf{x}$ is high when there is high overlap between \mathbf{w}_k with digit \mathbf{x}
 - Visualize each weight as an image
 - Suppose pixels are 0 or 1
 - $z_k = \mathbf{w}_k^T \mathbf{x} = \sum_i w_{ki} x_i = \text{number of pixels that overlap with } \mathbf{w}_k \text{ and } \mathbf{x}$
- □ Conclusion: Small variations in digits can cause low overlap

Example with Actual Digits

- ☐ Take weight w from a random digit "2"
- \square Inner products $z = \mathbf{w}^T \mathbf{x}$ are only slightly higher for other digits "2"
- lacktriangle Cannot tell which digit is correct from the inner product $z = \mathbf{w}^T \mathbf{x}$

Visualizing the Weights

- □Optimized weights of the classifier
- □Blurry versions of image to try to capture rotations, translations, ...

Problems with Logistic Classifier

- ☐ Linear weighting cannot capture many deformities in image
 - Rotations
 - Translations
 - Variations in relative size of digit components
- ☐ Can be improved with preprocessing
 - E.g. deskewing, contrast normalization, many methods
- □ Is there a better classifier?

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- Maximum margin classifiers
- ■Support vector machines
- ☐ Kernel trick
- □ Constrained optimization

Non-Uniqueness of Separating Plane

- ☐ Linearly separable data:
 - Can find a separating hyper-plane as a linear classifier.
- ☐ Separating hyper-plane is not unique
 - Fig. on right: Many separating planes
- ☐Which one is optimal?

Hyperplane Basics

- $\Box \text{Linear function: } f(x) = w^T x + b, x \in \mathbb{R}^d$
- \square Hyperplane in d-dimensional: f(x) = 0
- ☐Parameters:
 - Weight w and bias b
 - Unique up to scaling:
 - (b, \mathbf{w}) and $(\alpha b, \alpha \mathbf{w})$ define the same plane.
 - For unique definition, we can require ||w||=1.
- \square Distance of any point **x** to the hyperplane:
 - d = f(x)/||w||, where $f(x) = b + w^T x$.
 - See ESL Sec. 4.5.
 - ESL: Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning". 2nd Ed. Springer.

Hyperplane

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$

Linear Separability and Margin

- \square Given training data (x_i, y_i) , i = 1, ..., N
 - Binary class label: $y_i = \pm 1$
- \square Suppose it is separable with parameters (w, b)
- □ There must exist a $\gamma > 0$ s.t.:

•
$$b + w_1 x_{i1} + \cdots w_d x_{id} > \gamma$$
 when $y_i = 1$

•
$$b + w_1 x_{i1} + \cdots w_d x_{id} < -\gamma$$
 when $y_i = -1$

☐ Single equation form:

$$y_i(b + w_1x_{i1} + \cdots w_dx_{id}) > \gamma \text{ for all } i = 1, ..., N$$

- \square Margin: $\mathbf{m} = \frac{\gamma}{\|\mathbf{w}\|}$: minimal distance of a sample to the plane
 - \circ γ is the minimum value satisfying the above constraints

Which separating plane is better?

From Fig. 9.2 and Fig. 9.3 in ISL.

Maximum Margin Classifier

- ☐ For the classifier to be more robust to noise, we want to maximize the margin!
- □ Define maximum margin classifier

$$\max_{w,\gamma} \gamma$$
• Such that $y_i(b + w^T x) \ge \gamma$ for all i
•
$$\sum_{i=1}^d w_i^2 \le 1$$

Maximizes the margin

Ensures all points are correctly classified

Scaling on weights

- □ Called a constrained optimization
 - Objective function and constraints
 - More on this later.
- See closed form solution in Sec. 4.5.2 in ESL. Note notation difference.

Visualizing Maximum Margin Classifier

- ☐ Fig. 9.3 of ISL
- ☐ Margin determined by closest points to the line
 - The maximal margin hyperplane represents the midline of the widest "slab" that we can insert between two classes
- ☐ In this figure, there are 3 points at the margin

ISL: James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer. 2013.

Problems with MM classifier

- □ Data is often not perfectly separable
 - Only want to correctly separate most points

- ■MM classifier is not robust
 - A single sample can radically change line

Fig. 9.4

In-Class Exercise

☐ Found in github site: svm_inclass.ipynb

Problem 1. Margin

For the points below with binary labels:

- . Create a scatter plot of the points with different markers for the two classes
- . Find the weight and bias of the classifier that separates the two classes
- . Compute the distance to the classifier boundary for the points
- Find the margin

```
X = np.array([[0.5,0.5], [1,0.5],[0.5,1.75], [0.75,2.75], [1.1,2.2], [2,1], [3,1.5]])

y = np.array([1,1,1,0,0,0,0])
```

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- Support vector machines
 - ☐ Kernel trick
 - □ Constrained optimization

Support Vector Machine

- ■Support Vector Machine (SVM)
 - Vladimir Vapnik, 1963
 - But became widely-used with kernel trick, 1993
 - More on this later
- ☐Got best results on character recognition
- ☐ Key idea: Allow "slack" in the classification
 - Support vector classifier (SVC): Directly use raw features.
 Good when the original feature space is roughly linearly separable
 - Support vector machine (SVM): Map the raw features to some other domain through a kernel function

Hinge Loss

- \Box Fix $\gamma = 1$
- □ Want ideally: $y_i(\mathbf{w}^T \mathbf{x} + b) \ge 1$ for all samples i
 - Equivalently, $y_i z_i \ge 1$, $z_i = b + \mathbf{w}^T \mathbf{x}$
- ☐ But perfect separation may not be possible
- □ Define hinge loss or soft margin:
 - $L_i(\mathbf{w}, b) = \max(0, 1 y_i z_i)$
- ☐ Starts to increase as sample is misclassified:
 - $y_i z_i \ge 1 \Rightarrow \text{Sample meets margin target}, \ L_i(w) = 0$
 - ∘ $y_i z_i \in [0,1)$ ⇒ Sample margin too small, small loss
 - $y_i z_i \le 0 \Rightarrow$ Sample misclassified, large loss

SVM Optimization

- \square Given data (x_i, y_i)

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

C controls final margin

Hinge loss term
Attempts to reduce
Misclassifications

- \square Constant C > 0 will be discussed below
- Note: ISL book uses different naming conventions.
 - We have followed convention in sklearn

margin= $1/\|\boldsymbol{w}\|$

Alternate Form of SVM Optimization

☐ Equivalent optimization:

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

■Subject to constraints:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \epsilon_i$$
 for all $i = 1, ..., N$

- ϵ_i = amount sample i misses margin target
- \square Sometimes write as $J_1(w, b, \epsilon) = C \|\epsilon\|_1 + \frac{1}{2} \|w\|^2$
 - $\| \epsilon \|_1 = \sum_{i=1}^N \epsilon_i \,$ called the "one-norm"
 - Generally one-norm would have absolute sign over ϵ_i .
 - But in this case, when the constraint is met, $\epsilon_i >= 0$.

Support Vectors

- □ Support vectors: Samples that either:
 - Are exactly on margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$
 - Or, on wrong side of margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 1$
- ☐ Changing samples that are not SVs
 - Does not change solution
 - Provides robustness

Illustrating Effect of C

- ☐ Fig. 9.7 of ISL
 - Note: *C* has opposite meaning in ISL than python
 - Here, we use python meaning
- \square Low C:
 - Leads to large margin
 - But allow many violations of margin.
 - Many more SVs
 - Reduces variance by using more samples
- ☐ Large C:
 - Leads to small margin
 - Reduce number of violations, and fewer SVs.
 - Highly fit to data. Low bias, higher variance
 - More chance to overfit

Relation to Logistic Regression

□ Logistic regression also minimizes a loss function:

$$J(\mathbf{w}, b) = \sum_{i=1}^{N} L_i(\mathbf{w}, b), \qquad L_i(\mathbf{w}, b) = \ln P(y_i | \mathbf{x}_i) = -\ln(1 + e^{-y_i z_i})$$

In-Class Exercise

Problem 2. Minimizing the Hinge Loss

For the data below, first create a scatter plot of the points with different markers for the two classes. You should see that the data is not linearly separable.

Then, consider a set of classifiers:

```
yhat = sign(z), z = w.dot(x)+b
```

Use the the w below, plot the hinge loss as a function of the bias b where the hinge loss is:

```
J = sum( maximum(0, 1-ypm*z) )
```

Here ypm=2*y-1 so that it is a value +1 or -1. Find the b that minimizes the hinge loss and plot the boundary of the classifier.

```
X = np.array([[0.5,0.5], [1,0.5],[0.5,1.75], [2,2], [0.75,0.75], [0.75,2.75], [1.1,2.2], [2,1], [3,1.5]])
y = np.array([1,1,1,1,0,0,0,0])

w = np.array([1.5, 1])
w = w / np.linalg.norm(w)
```

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- ■Support vector machines
- Kernel trick
- □ Constrained optimization

Non-Linear Transformations

- \square Transformations: Replace x with $\phi(x)$
 - Enables more rich, non-linear classifiers
 - \circ Examples: polynomial classification $\phi(x) = [1, x, x^2, ..., x^{d-1}]$
- ☐ Tries to find separation in a feature space

The SVM algorithm

From https://www.dtreg.com/solution/view/20

Solution with the Transformation

- \square Consider SVM model with x replaced by $\phi(x)$
- ☐ Theorem: The optimal weight is of the form:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)$$

- $\alpha_i \geq 0$ for all i
- $\alpha_i > 0$ if and only if sample *i* is a support vector
- Will show this fact later using results in constrained optimization
- \square Consequence: The linear discriminant on any other sample x is:

$$z = b + \mathbf{w}^T \phi(\mathbf{x}) = b + \sum_{i=1}^N \alpha_i y_i \boxed{\phi(\mathbf{x}_i)^T \phi(\mathbf{x})}$$

0

$$K(x_i, x) = \text{"kernel"}$$

Kernel Trick

 \square Classifier can be written with the kernel $K(x_i, x)$ and values $\alpha_i \ge 0$:

$$\circ z = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}),$$

$$\hat{y} = \operatorname{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \end{cases}$$

- □ Dual parameters: $\alpha_i \ge 0$, i = 1, ..., N
 - Called the dual parameters (due to constrained optimization see next section)
- ☐ Kernel trick:
 - \circ Solve the parameters $oldsymbol{lpha}$ instead of the weights $oldsymbol{w}$
 - \circ Can show that the optimization only needs the kernel $K(x_i, x)$
 - \circ Does not need to explicitly use $\phi(x)$

Understanding the Kernel

- \square Kernel function $K(x_i, x)$:
 - \circ measures "similarity" between new sample x and training data x_i
 - $K(x_i, x)$ large $\Rightarrow x_i, x$ close
 - $K(x_i, x) \approx 0 \Rightarrow x_i, x \text{ far}$
- ☐ Linear discriminant:

$$z = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x})$$

 \circ Weights sample x_i that are close to x

Common Kernels

☐Linear SVM:

$$K(x, x') = x^T x$$

☐ Radial basis function:

$$K(x, x') = \exp[-\gamma ||x - x'||^2]$$

 \circ 1/ γ indicates width of kernel

 \square Polynomial kernel: $K(x, x') = |x^T x|^d$

• Typically d=2

Example in 1D: Constant α_i

- \square Example data with 7 points (x_i, y_i)
- $\Box \text{Discriminant: } z = \sum_{i=1}^{N} \alpha_i y_i K(\boldsymbol{x}_i, \boldsymbol{x})$
- ☐ To make plot easy:
 - Fix $\alpha_i = 1$ for all i and use RBF with different γ

i	1	2	3	4	5	6
x_i	-1	0	1	2	3	5
y_i	-1	-1	1	-1	1	1

\square As γ increases

- \circ z "fits" data (x_i, y_i) closer
- Leads to more complex decision regions. Nonlinear decision regions

Example in 1D: Actual α_i

- \square Same as before except fit α using SVM
- \square We see similar trends: As γ increases
 - z "fits" data (x_i, y_i) closer
 - Leads to more complex decision regions.
 - Enables nonlinear decision regions

i	1	2	3	4	5	6
x_i	-1	0	1	2	3	5
y_i	-1	-1	1	-1	1	1

Parameter Selection

- □ Consider SVM with:
 - Parameter C > 0, RBF with $\gamma > 0$
- \square Higher C or γ
 - Fewer SVs
 - Classifiers averages over smaller set
 - Lower bias, but higher variance
- ☐ Typically select via cross-validation
 - Try out different (C, γ)
 - Find which one provides highest accuracy on test set
- ☐ Python can automatically do grid search

http://peekaboo-vision.blogspot.com/2010/09/mnist-for-ever.html

Multi-Class SVMs

- \square Suppose there are K classes
- One-vs-one:
 - Train $\binom{K}{2}$ SVMs for each pair of classes
 - Test sample assigned to class that wins "majority of votes"
 - Best results but very slow
- □One-vs-rest:
 - \circ Train K SVMs: train each class k against all other classes
 - \circ Pick class with highest z_k
- ☐ Sklearn has both options

MNIST Results

- ☐ Run classifier
- □ Very slow
 - Several minutes for 40,000 samples
 - Slow in training and test
 - Major drawback of SVM
- \square Accuracy ≈ 0.984
 - Much better than logistic regression
- ☐ Can get better with:
 - pre-processing
 - More training data
 - Optimal parameter selection

```
from sklearn import svm
# Create a classifier: a support vector classifier
svc = svm.SVC(probability=False, kernel="rbf", C=2.8, gamma=.0073,verbose=10)
svc.fit(Xtr,ytr)
[LibSVM]
SVC(C=2.8, cache size=200, class weight=None, coef0=0.0,
  decision function shape=None, degree=3, gamma=0.0073, kernel='rbf',
  max iter=-1, probability=False, random state=None, shrinking=True,
  tol=0.001, verbose=10)
yhat1 = svc.predict(Xts)
acc = np.mean(yhat1 == yts)
print('Accuaracy = {0:f}'.format(acc))
```

Accuaracy = 0.984000

MNIST Errors

■Some of the error are hard even for a human

Outline

- ☐ Motivating example: Recognizing handwritten digits
 - Why logistic regression doesn't work well.
- ☐ Maximum margin classifiers
- ■Support vector machines
- ☐ Kernel trick
- Constrained optimization

Constrained Optimization

- ☐ In many problems, variables are constrained
- □ Constrained optimization formulation:
 - Objective: Minimize f(w)
 - Constraints: $g_1(\mathbf{w}) \leq 0, ..., g_M(\mathbf{w}) \leq 0$
- ■Examples:
 - Minimize the mpg of a car subject to a cost or meeting some performance
 - In ML: weight vector may have constraints from physical knowledge
- \square Often write constraints in vector form: Write $g(w) \leq 0$

$$g(\mathbf{w}) = [g_1(\mathbf{w}), \dots, g_m(\mathbf{w})]^T$$

Lagrangian

- \square Constrained optimization: Min f(w) s.t. $g(w) \le 0$
- \square Consider first a single constraint: g(w) is a scalar
- □ Define Lagrangian: $L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda g(\mathbf{w})$
 - w is called the primal variable
 - λ is called the dual variable
- \square Dual minimization: Given a dual parameter λ , minimize

$$\widehat{\boldsymbol{w}}(\lambda) = \arg\min_{\boldsymbol{w}} L(\boldsymbol{w}, \lambda), \qquad L^*(\lambda) = \min_{\boldsymbol{w}} L(\boldsymbol{w}, \lambda)$$

- Minimizes a weighted combination of objective and constraint.
- Higher $\lambda \Rightarrow$ Weight constraint more (try to make $g(\mathbf{w})$ smaller)
- Lower $\lambda \Rightarrow$ Weight objective more (try to make f(w) smaller)

KKT Conditions

- \square Given objective f(w) and constraint g(w)
- \square KKT Conditions: $\widehat{\boldsymbol{w}}$, $\widehat{\lambda}$ satisfy:
 - \hat{w} minimizes the Lagrangian: $\hat{w} = \arg\min_{w} L(w, \hat{\lambda})$
 - Either
 - $g(\widehat{\boldsymbol{w}}) = 0$ and $\widehat{\lambda} \ge 0$ [active constraint]
 - $g(\widehat{\boldsymbol{w}}) < 0$ and $\widehat{\lambda} = 0$ [inactive constraint]
- ☐ Theorem: Under some technical conditions,
 - \circ if $\hat{\boldsymbol{w}}$, $\hat{\lambda}$ are local mimima of the constrained optimization, they must satisfy KKT conditions

General Procedure for Single Constraint

■Suppose:

- $\mathbf{w} = (w_1, ..., w_d)^T$: d unknown primal variables
- ∘ $g(\mathbf{w}) \le 0$: scalar constraint
- □ Case 1: Assume constraint is active:
 - Solve w and λ : $\partial L(w,\lambda)/\partial w_i=0$ and g(w)=0 (resulting from setting $\partial L(w,\lambda)/\partial \lambda=0$)
 - $\circ d + 1$ unknowns and d + 1 equations
 - Verify that $\lambda \geq 0$
- □ Case 2: Assume constraint is inactive
 - Solve primal objective $\partial f(\mathbf{w})/\partial w_i = 0$ ignoring constraint
 - $\circ d$ unknowns and d equations
 - Verify that constraint is satisfied: $g(\mathbf{w}) \leq 0$

KKT Conditions Illustrated

☐ Example 1: Constraint is "active"

$$\min_{w} w^2 \quad s.t. \ w + 1 \le 0$$

☐ Example 2: Constraint is "inactive"

$$\min_{w} w^2 \quad s.t. \ w - 1 \le 0$$

☐ Examples worked on board with illustration

Multiple Constraints

- □ Now consider constraint: $g(\mathbf{w}) = [g_1(\mathbf{w}), ..., g_M(\mathbf{w})]^T \le 0$.
- ☐ Lagrangian is:

$$L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda^T g(\mathbf{w}) = f(\mathbf{w}) + \sum_{m=1}^{M} \lambda_m g_m(\mathbf{w})$$

- Weighted sum of all *M* constraints
- \circ λ is called the dual vector
- □KKT conditions extend to:
 - \widehat{w} minimizes the Lagrangian: $\widehat{w} = \arg\min_{w} L(w, \widehat{\lambda})$
 - \circ For each $m=1,\ldots,M$
 - $g_m(\widehat{\boldsymbol{w}}) = 0$ and $\hat{\lambda}_m \geq 0$ [active constraint]
 - $g_m(\widehat{\boldsymbol{w}}) < 0$ and $\hat{\lambda}_m = 0$ [inactive constraint]

SVM Constrained Optimization

☐ Recall: SVM constrained optimization

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

- \circ Constraints: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \epsilon_i$ and $\epsilon_i \ge 0$ for all i = 1, ..., N
- □ After applying KKT conditions and some algebra [beyond this class], solution is
 - \circ Optimal weight vector: $m{w} = \sum_{i=1}^N lpha_i y_i m{x}_i$ linear combination of instances
 - \circ Dual parameters $lpha_i$ minimize

$$\sum_{i=1}^{N} \alpha_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \quad \text{s. t. } 0 \le \alpha_i \le C$$

Support Vectors

- \square Classifier weight is: $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$
- \square Can show that $\alpha_i > 0$ only when x_i is a support vector
 - On boundary or violating constraint
 - \circ Otherwise $\alpha_i = 0$

Correlation Interpretation of SVM

□Classifier weight is:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

- \square Now suppose we are given a new sample x to classify
- \square Classifier discriminant function for any test sample x is:

$$\circ \hat{z}(x) = \mathbf{w}^T x + b = \sum \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

- ☐ Classifier output
 - $\circ \hat{y}(x) = \operatorname{sign}(\hat{z}(x))$
 - \circ Measure "correlation" $oldsymbol{x}_i^Toldsymbol{x}$ of new sample $oldsymbol{x}$ with each support vector $oldsymbol{x}_i$ in training data
 - Predicted label depends on the weighted average of labels for the support vectors, with weights proportional to the correlation of the test sample with the support vector.

What you should know

- □ Interpret weights in linear classification of images (logistic regression): Match filters
- ☐ Understand the margin in linear classification and maximum margin classifier
- □SVM classifier: Allow violation of margin by introducing slack variables (More robust than linear classifier)
- ☐ Solve constrained optimization using the Lagrangian.
 - Understand KKT conditions for a single constraint
- □ Extend to nonlinear classifier by feature transformation: SVM with nonlinear kernels
- Select SVM parameters from cross-validation

