Final Report: Comparative Analysis of Feature Extraction Methods for MNIST Classification

1. Introduction

Image classification is a fundamental task in computer vision, with applications ranging from optical character recognition to medical imaging. The MNIST dataset, consisting of 70,000 handwritten digits (0-9), serves as a benchmark for evaluating different feature extraction techniques. This report compares traditional methods (HOG, LBP, Edge Detection) with deep learning-based features (MobileNetV2) when used with a Random Forest classifier.

Objectives

- 1. Evaluate performance of different feature extraction techniques.
- 2. Compare accuracy, training time, and computational efficiency.
- 3. Analyze why certain methods outperform others on MNIST.

2. Methodology

2.1 Dataset & Preprocessing

- Dataset: MNIST (28×28 grayscale images).
- Train/Test Split: 80% training (56,000 samples), 20% testing (14,000 samples).
- Normalization: Pixel values scaled to [0, 1].

2.2 Feature Extraction Techniques

Method	Description	Parameters	
нос	Captures gradient orientations	orientations=8, pixels_per_cell=(4,4)	
LBP	Encodes local texture patterns radius=3, n_points=24		
Edge Detection	Extracts contours using Canny sigma=1.0, resized to 14×14		
Deep Features (MobileNetV2)	Pre-trained CNN features	Input resized to 32×32, RGB conversion	

2.3 Classification

- Classifier: Random Forest (n_estimators=100).
- **Evaluation Metrics:** Accuracy, Precision, Recall, F1-Score.

3. Results & Analysis

3.1 Performance Comparison

Method	Accuracy	/ Precisior	n Recall	F1-Score	Training Time (s)
ноб	97.09%	97.07%	97.07%	97.07%	66.34
Edge Detection	187.30%	87.23%	87.02%	87.00%	17.04
Deep Features	78.71%	78.42%	78.39%	78.33%	64.89
LBP	60.77%	59.19%	59.96%	59.26%	16.23

3.2 Key Findings

1. HOG is the Best Performer (97.09% Accuracy)

- Captures gradient structures effectively, ideal for digit recognition.
- Confirmed by prior work (Dalal & Triggs, 2005).

2. Edge Detection Performs Moderately (87.30%)

o Preserves shape but loses internal details.

3. Deep Features Underperform (78.71%)

- o Pre-trained on natural images (ImageNet), less suitable for MNIST.
- Resizing grayscale to RGB adds no useful information.

4. LBP Performs Worst (60.77%)

o Texture-based features are less discriminative for digits.

3.3 Computational Efficiency

Method	Feature Ext	raction Time (s) Training Time (s)
HOG	75.67	66.34
LBP	37.19	16.23
Edge Detection -		17.04
Deep Features -		64.89

- Fastest: LBP (16.23s training).
- **Slowest:** HOG (66.34s training), but justified by high accuracy.

4. Discussion

Why HOG Outperforms Deep Learning?

- MNIST Simplicity: Handwritten digits have clear edges, making gradient-based methods highly effective.
- **Overkill for Deep Learning:** Pre-trained CNNs are optimized for complex natural images, not simple digits.

Limitations

- 1. **Deep Features:** Transfer learning may require fine-tuning.
- 2. **LBP:** Not suitable for shape-based recognition.
- 3. **Edge Detection:** Loses stroke thickness information.

5. Conclusion & Recommendations

5.1 Conclusions

- **HOG** is the best choice for MNIST digit recognition.
- **Deep learning is unnecessary** for simple datasets like MNIST.
- LBP is unsuitable for digit classification.

5.2 Recommendations

- 1. For MNIST: Use HOG + Random Forest for best results.
- 2. For Complex Datasets: Consider fine-tuned CNNs.
- 3. Future Work:
 - o Combine HOG with CNNs for hybrid features.
 - o Experiment with SVM for better classification.

6. References

- 1. Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. CVPR.
- 2. Ojala, T., et al. (2002). Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. TPAMI.
- 3. LeCun, Y., et al. (1998). *Gradient-Based Learning Applied to Document Recognition*. Proceedings of the IEEE.