

Міністерство освіти і науки України НТУУ «Київський політехнічний інститут» Фізико-технічний інститут

КРИПТОГРАФІЯ КОМП'ЮТЕРНИЙ ПРАКТИКУМ №1

Експериментальна оцінка ентропії на символ джерела відкритого тексту.

Виконали:

Перевірив: Чорний О. М.

студенти III курсу ФТІ групи ФБ-71 Мельник Дмитрий Безлюдный Вадим

Мета роботи

Засвоєння понять ентропії на символ джерела та його надлишковості, вивчення та порівняння різних моделей джерела відкритого тексту для наближеного визначення ентропії, набуття практичних навичок щодо оцінки ентропії на символ джерела.

Порядок виконання роботи

- 0. Уважно прочитати методичні вказівки до виконання комп'ютерного практикуму.
- 1. Написати програми для підрахунку частот букв і частот біграм в тексті, а також підрахунку Н1 та Н2 за безпосереднім означенням. Підрахувати частоти букв та біграм, а також значення Н1 та Н2 на довільно обраному тексті російською мовою достатньої довжини (щонайменше 1Мб), де імовірності замінити відповідними частотами. Також одержати значення Н1 та Н2 на тому ж тексті, в якому вилучено всі пробіли.
- 2. За допомогою програми CoolPinkProgram оцінити значення (10) H, (20) H, (30) H.
- 3. Використовуючи отримані значення ентропії, оцінити надлишковість російської мови в різних моделях джерела.

Опис роботи та основні труднощі:

Для роботи було створено текст, який містив у собі цикл статей про шифрування та криптографію і роман М. А. Булгакова «Майстер і Маргарита», таким чином поєднавши науково-технічну та художню літературу. Текстовий файл розміром у 1,4 мб оброблюється програмою за 2-3 секунди в залежності від умов (з пробілами чи без, з перетином біграм чи без). Програма написана на мові Swift. Особливих труднощів під час роботи над комп'ютерним практикумом не виникло, за виключенням того, що декілька разів доводилось змінювати подхід до основного алгоритму програми задля збільшення її оптимізації. В найпершій версії текст проходився програмою 32+32*32 рази, окремо для пошуку кожної монограми та кожної біграми, що займало набагато більше часу. Проблема була вирішена зміною алгоритму таким чином, що текст потрібно було пройти лише 1 раз, і створивши спеціальний словник та матрицю. З кожним кроком по тексут формується нова біграма (або через крок, якщо задано пошук біграм без перетину), а також перевіряється, чи наявна буква в словнику (якщо так, то її значення в словнику збільшується на 1). Сформовані біграми розбиваються на першу і другу, що відповідним чином вказує на і-тий рядок та ј-тий стовпчик в матриці, що вказують на еленемт, який також інкрементується. Далі кожне значення в словнику ділиться на суму всіх значень, а кожний елемент матриці – на суму всіх елементів. Таким чином ми отримуємо частоту кожної букви та біграми. Ентропії Н1 и Н2 рахуються за відповідною формулою.

Результати:

Монограми:

3	3 1	тро	білом
		_	
0	_	0 (952772
е	_		0684669
а	_		068008
И	_		0566651
н	_		0531222
Т	_		0501816
c	_		0469641
Л	_	0. (040755
В	_		0406411
р	_	0.0	039265
К	_	0.0	0288377
Д	_	0.0	0255413
М	_	0.0	249669
У	_	0.0	0220353
П	-	0.0	0216435
Я	-	0.0	0178317
Γ	-	0.0	017157
Ь	-	0.0	0158502
Ы	-	0.0	0154723
3	-		0148638
б	-		0140168
Ч	-		0117437
й	-		00886741
Ж	-		0085591
Ш	-		00743702
Χ	-		00701942
Ю	-		00539621
Ц	-		00305019
Э	-		00245779
Щ			00240625
ф	-	0. (00180453

Без пробіла

o - 0.113926 e - 0.0818684 a - 0.0813197 и - 0.0677566 н - 0.0635202 т - 0.060004 c - 0.0561567 л - 0.0487323 в - 0.048596 p - 0.0469506 к - 0.0344823 д - 0.0305407 м - 0.0298539 y - 0.0263485 п - 0.0258799 я - 0.021322 г - 0.0205153 ь - 0.0189527 ы - 0.0185008 з - 0.0177732 б - 0.0167604 ч - 0.0140424 й - 0.0106031 ж - 0.0102344 ш - 0.00889271 x - 0. 00839337 ю - 0. 00645244 ц - 0.00364723 э - 0.00293887 щ - 0. 00287724 ф - 0.00215774

 $H_1 = 4.45558$

Дані з Інтернету

ранг •	буква •	употреблений •	частотность ф
1	0	55414481	10.97%
2	е	42691213	8.45%
3	а	40487008	8.01%
4	И	37153142	7.35%
5	н	33838881	6.70%
6	т	31620970	6.26%
7	с	27627040	5.47%
8	p	23916825	4.73%
9	В	22930719	4.54%
10	л	22230174	4.40%
11	К	17653469	3.49%
12	м	16203060	3.21%
13	д	15052118	2.98%
14	п	14201572	2.81%
15	у	13245712	2.62%
16	я	10139085	2.01%
17	ы	9595941	1.90%
18	ь	8784613	1.74%
19	r	8564640	1.70%
20	3	8329904	1.65%
21	6	8051767	1.59%
22	ч	7300193	1.44%
23	й	6106262	1.21%
24	x	4904176	0.97%
25	ж	4746916	0.94%
26	ш	3678738	0.73%
27	ю	3220715	0.64%
28	ц	2438807	0.48%
29	щ	1822476	0.36%
30	3	1610107	0.32%
31	ф	1335747	0.26%
32	ъ	185452	0.04%
33	ĕ	184928	0.04%

<u>Біграми:</u>

 $H_1 = 4.3577$

Перетинаються, з пробілом — $H_1 = 3.92424$ Не перетинаються, з пробілом — $H_2 = 3.847661$ Перетинаються, без пробіла — $H_1 = 4.110573$ Не перетинаються, без пробіла — $H_2 = 4.107297$

Перетинаються, з пробілом

 $H_1 = 3.92424$

a	6 в	1	r	д	e	ж	3	и	й	к	л	M	н о	п	р	С	т	Y	Ф	×	ц	ч	ш	щ	ы	ь	3	ю	я
a 0.000011	0.000884 0	0.005000	0.001189	0.002651	0.001434	0.001717	0.005659	0.000175	0.000940	0.005863	0.012550	0.003941	0.007246 0.000	0.0013	88 0.004340	0.005138	0.006974	0.000196	0.000740	0.001397	0.000108	0.001094	0.001843	0.000352	0.000000	0.000000	0.000001	0.001076	0.000000
6 0.001422	0.000014 0	000133	0.000014	0.000030	0.002067	0.000009	0.000009	0.001055	0.000000	0.000307	0.001124	0.000058	0.000397 0.003	221 0 00000	0 0 001643	0.000108	0.000009	0.001490	0.000000	0.000137	0.000004	0.000027	0.000005	0.000393	0.005524	0.000207	0.000000	0.000005	0.000001
													0.001668 0.010																
r 0.001347	0.000000	0.000057	0.000060	0.001442	0.000858	0.000001	0.000000	0.001059	0.000000	0.000110	0.002464	0.000005	0.000355 0.012	885 0.00000	0.001724	0.000122	0.000010	0.000927	0.000000	0.000000	0.000002	0.000034	0.000010	0.000000	0.000000	0.000001	0.000000	0.000004	0.000000
д 0.006212	0.000045 0	0.001355	0.000009	0.000040	0.006445	0.000020	0.000004	0.003587	0.000000	0.000271	0.001141	0.000182	0.002380 0.005	332 0.00014	0.002767	0.000568	0.000299	0.002358	0.000008	0.000060	0.000170	0.000046	0.000178	0.000000	0.000874	0.000805	0.000002	0.000061	0.000001
e 0.000046	0.001581 0	0.002216	0.004874	0.003797	0.002327	0.001481	0.001805	0.000262	0.003450	0.001591	0.008646	0.005712	0.011183 0.000	770 0.00128	0.009709	0.006692	0.005513	0.000104	0.000021	0.001332	0.000339	0.001405	0.000973	0.000857	0.000000	0.000000	0.000000	0.000552	0.000000
ж 0.001950	0.000087 0	.000000	0.000017	0.001073	0.005340	0.000026	0.000000	0.001948	0.000000	0.000116	0.000006	0.000009	0.001682 0.000	0.00000	0.000004	0.000034	0.000000	0.000221	0.000000	0.000000	0.000000	0.000053	0.000000	0.000000	0.000000	0.000060	0.000000	0.000054	0.000000
3 0.007383	0.000245 0	0.001144	0.000597	0.002394	0.000361	0.000227	0.000105	0.000516	0.000000	0.000178	0.000303	0.000380	0.002347 0.000	953 0.0000	0.000299	0.000325	0.000021	0.000396	0.000000	0.000000	0.000005	0.000020	0.000014	0.000000	0.000818	0.000930	0.000000	0.000097	0.000000
и 0.000129	0.000634	0.003564	0.000737	0.002158	0.004130	0.000562	0.004220	0.001336	0.001997	0.002814	0.006635	0.004267	0.004575 0.000	280 0.00028	0.000798	0.004249	0.004673	0.000008	0.000050	0.002585	0.001703	0.001850	0.000493	0.000199	0.000000	0.000000	0.000000	0.000532	0.000000
й 0.000000	0.000008	0.000000	0.000001	0.000220	0.000005	0.000000	0.000000	0.000000	0.000000	0.000082	0.000114	0.000058	0.000597 0.000	0.00000	0.000024	0.001029	0.000342	0.000000	0.000002	0.000002	0.000041	0.000081	0.000153	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001
к 0.011978	0.000000	0.000521	0.000003	0.000010	0.000796	0.000030	0.000014	0.003787	0.000000	0.000021	0.000556	0.000008	0.002215 0.012	0.0000	0.002183	0.000271	0.000685	0.002123	0.000000	0.000001	0.000016	0.000026	0.000012	0.000000	0.000000	0.000001	0.000000	0.000008	0.000000
л 0.009734	0.000031 0	.000008	0.000177	0.000358	0.006255	0.000520	0.000006	0.009009	0.000000	0.000816	0.000147	0.000009	0.000402 0.008	999 0.00024	0.000000	0.001720	0.000061	0.001707	0.000010	0.000008	0.000000	0.000274	0.000009	0.000003	0.001452	0.005295	0.000000	0.001540	0.000000
м 0.004035	0.000040 0	0.000001	0.000069	0.000001	0.005435	0.000000	0.000008	0.004757	0.000000	0.000093	0.000158	0.000032	0.001541 0.004	995 0.00030	0.000065	0.000169	0.000063	0.003362	0.000009	0.000000	0.000034	0.000032	0.000008	0.000007	0.001164	0.000047	0.000000	0.000044	0.000000
н 0.015307	0.000019 0	0.000033	0.000175	0.001358	0.012881	0.000023	0.000019	0.011693	0.000000	0.000302	0.000006	0.000003	0.003959 0.012	512 0.00000	0.000093	0.000835	0.000656	0.003187	0.000013	0.000009	0.001027	0.000311	0.000033	0.000163	0.004714	0.001447	0.000001	0.000200	0.000000
o 0.000009	0.004795 0	0.011769	0.006862	0.006792	0.003448	0.002478	0.001379	0.001185	0.004904	0.003936	0.009871	0.007232	0.009504 0.000	291 0.00185	52 0.009164	0.010374	0.009888	0.000090	0.000486	0.000799	0.000104	0.001901	0.001571	0.000199	0.000000	0.000000	0.000034	0.001195	0.000000
n 0.001737	0.000000 0.	0.000000	0.000005	0.000000	0.003689	0.000000	0.000000	0.001134	0.000000	0.000097	0.001051	0.000000	0.000097 0.012	705 0.0000	71 0.009081	0.000008	0.000061	0.000953	0.000027	0.000000	0.000019	0.000122	0.000007	0.000002	0.000366	0.001255	0.000000	0.000000	0.000000
n 0.012421	0.000225 0	000434	0.000466	0.000489	0.008795	0.000466	0.000049	0.007462	0.000000	0.000341	0.000131	0.000448	0.000920 0.011	270 0.0000	M 0.000038	0.000359	0.000856	0.004122	0.000034	0.000141	0.000119	0.000100	0.000409	0.000070	0.002225	0.001350	0.000001	0.000196	0.000000
													0.001296 0.004																
													0.001382 0.021																
y 0.000029	0.000833 0	0.001194	0.001726	0.002434	0.000297	0.001829	0.001297	0.000026	0.000097	0.001127	0.001744	0.001370	0.000399 0.000	0.0009	0.000909	0.001957	0.001969	0.000005	0.000016	0.000470	0.000011	0.001119	0.001023	0.000383	0.000000	0.000000	0.000028	0.001405	0.000000
ф 0.000210	0.000000	.000000	0.000000	0.000000	0.000204	0.000000	0.000000	0.000824	0.000000	0.000006	0.000098	0.000003	0.00000 0.000	0.0000	0.000842	0.000018	0.000018	0.000115	0.000004	0.000000	0.000000	0.000000	0.000000	0.000000	0.000015	0.000004	0.000000	0.000003	0.000000
× 0.001193	0.000000	0.000174	0.000002	0.000001	0.000046	0.000000	0.000000	0.000222	0.000000	0.000000	0.000127	0.000074	0.000151 0.003	0.0000	0.000148	0.000089	0.000051	0.000165	0.000000	0.000001	0.000000	0.000000	0.000011	0.000000	0.000000	0.000003	0.000000	0.000000	0.000000
ц 0.000802	0.000000	0.000030	0.000009	0.000001	0.001308	0.000000	0.000000	0.000353	0.000000	0.000181	0.000004	0.000002	0.00008 0.000	530 0.00000	0.000000	0.000000	0.000002	0.000840	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000213	0.000000	0.000000	0.000000	0.000000
ч 0.003098	0.000000	.000007	0.000000	0.000000	0.004540	0.000000	0.000000	0.002064	0.000000	0.000334	0.000053	0.000006	0.000756 0.000	0.00000	0.000030	0.000000	0.005155	0.000870	0.000000	0.000000	0.000000	0.000000	0.000131	0.000000	0.000000	0.000255	0.000000	0.000000	0.000000
ш 0.002086	0.000000	.000025	0.000000	0.000000	0.003270	0.000000	0.000000	0.002685	0.000000	0.000566	0.000604	0.000021	0.000532 0.000	392 0.00005	0.000003	0.000000	0.000151	0.000432	0.000000	0.000000	0.000002	0.000000	0.000002	0.000000	0.000000	0.000376	0.000001	0.000000	0.000000
щ 0.000547	0.000000	0.000000	0.000000	0.000000	0.001840	0.000000	0.000000	0.001066	0.000000	0.000000	0.000000	0.000000	0.000043 0.000	0.0000	0.000003	0.000000	0.000000	0.000130	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000021	0.000000	0.000000	0.000000
ы 0.000000	0.000530 0.	0.001560	0.000119	0.000148	0.001583	0.000028	0.000080	0.000023	0.002036	0.000258	0.003389	0.002149	0.000366 0.000	0.0001	0.000421	0.001123	0.000973	0.000006	0.000000	0.001522	0.000009	0.000246	0.000695	0.000004	0.000000	0.000000	0.000000	0.000000	0.000002
ь 0.000008	0.000139 0	0.000011	0.000045	0.000064	0.002124	0.000000	0.000191	0.000201	0.000000	0.001549	0.000000	0.000428	0.001552 0.000	0.00000	0.000000	0.001188	0.000108	0.000000	0.000004	0.000001	0.000124	0.000079	0.000664	0.000012	0.000000	0.000000	0.000000	0.000735	0.000000
э 0.000000	0.000000 0.	0.000000	0.000007	0.000005	0.000000	0.000000	0.000004	0.000000	0.000016	0.000075	0.000132	0.000007	0.000041 0.000	0.0000	0.000026	0.000059	0.003296	0.000000	0.000002	0.000009	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
ю 0.000001	0.000588 0	0.000000	0.000003	0.000620	0.000001	0.000009	0.000032	0.000000	0.000000	0.000016	0.000080	0.000027	0.000053 0.000	0.0000	0.000080	0.000165	0.000647	0.000000	0.000000	0.000009	0.000034	0.000109	0.000118	0.000695	0.000000	0.000000	0.000000	0.000049	0.000001
													0.000839 0.000																
0.000000	0.000056 0	.000338	0.000199	0.000848	0.000161	0.000724	0.001452	0.000020	0.000052	0.000167	0.001232	0.000521	0.000839 0.000	0.0000	0.000031	0.000913	0.001998	0.000000	0.000000	0.000290	0.000054	0.000189	0.000020	0.000296	0.000000	0.000000	0.000000	0.000170	0.000000

Не перетинаються, з пробілом

 $H_2 = 3.847661$

														\mathbf{n}_2 =	= 3.84	1001															
	а	6	В	г	д	e	ж	3	и	й	к	л	M	н	0	п	Р	С	т	у ф	Þ	×	ц	ч	ш	щ	ы	ь	э	ю	Я
a	0.000012	0.001345	0.005367	0.001857	0.004535	0.001871	0.002435	0.006769	0.000289	0.001518	0.011494	0.014884	0.006714	0.007539	0.000016	0.002775	0.006270	0.007574	0.008589	0.000232 0	0.000149	0.002051	0.000140	0.001496	0.003905	0.000626	0.000000	0.000000	0.000003	0.001336	0.000000
6	0.000980	0.000026	0.000104	0.000025	0.000067	0.001825	0.000020	0.000020	0.000751	0.000000	0.000535	0.000590	0.000124	0.000653	0.001628	0.000000	0.001574	0.000175	0.000021	0.000959	0.000000	0.000298	0.000001	0.000009	0.000005	0.000642	0.001575	0.000399	0.000000	0.000000	0.000000
В	0.008083	0.000003	0.000004	0.000066	0.000210	0.003956	0.000000	0.000038	0.004938	0.000000	0.000102	0.001850	0.000018	0.001845	0.010139	0.000045	0.000356	0.000780	0.000068	0.001395	0.000000	0.000001	0.000033	0.000003	0.001459	0.000008	0.001733	0.000255	0.000000	0.000000	0.000000
г	0.001151	0.000000	0.000016	0.000003	0.000722	0.000246	0.000000	0.000000	0.000991	0.000000	0.000070	0.000877	0.000001	0.000472	0.012072	0.000000	0.000833	0.000052	0.000003	0.000456	0.000000	0.000000	0.000005	0.000002	0.000012	0.000000	0.000002	0.000000	0.000000	0.000003	0.000000
д	0.005741	0.000008	0.000388	0.000000	0.000002	0.004135	0.000003	0.000002	0.003945	0.000000	0.000099	0.000423	0.000131	0.003218	0.002226	0.000231	0.001642	0.000823	0.000009	0.001707	0.000000	0.000003	0.000284	0.000023	0.000183	0.000000	0.000607	0.000762	0.000004	0.000004	0.000000
e	0.000092	0.003068	0.003001	0.004571	0.003875	0.002276	0.001715	0.002682	0.000394	0.004271	0.002695	0.014399	0.006586	0.014438	0.001586	0.002411	0.014247	0.008447	0.007988	0.000223 0	0.000024	0.001322	0.000398	0.002089	0.001279	0.000444	0.000000	0.000000	0.000000	0.000653	0.000000
ж	0.001516	0.000192	0.000000	0.000003	0.000971	0.003966	0.00006	0.000000	0.001603	0.000000	0.000131	0.000000	0.000001	0.001348	0.000074	0.000000	0.000000	0.000007	0.000000	0.000203	0.000000	0.000000	0.000000	0.000001	0.000000	0.000000	0.000000	0.000014	0.000000	0.000003	0.000000
3	0.005727	0.000264	0.000917	0.000644	0.003905	0.000160	0.000193	0.000149	0.000277	0.000000	0.000217	0.000171	0.000361	0.001070	0.000361	0.000060	0.000282	0.000014	0.000027	0.000226 0	0.000000	0.000000	0.000000	0.000004	0.000013	0.000000	0.000644	0.000068	0.000000	0.000003	0.000000
и	0.000151	0.000481	0.003508	0.000455	0.002878	0.004585	0.000371	0.001769	0.001898	0.002580	0.003915	0.008930	0.005242	0.004830	0.000170	0.000242	0.001056	0.004996	0.005845	0.000002	0.000092	0.002908	0.002245	0.002263	0.000580	0.000271	0.000000	0.000000	0.000000	0.000698	0.000000
й	0.000000	0.000006	0.000001	0.000000	0.000109	0.000000	0.000000	0.000001	0.000000	0.000000	0.000046	0.000014	0.000027	0.000557	0.000010	0.000000	0.000004	0.000584	0.000289	0.000000	0.00000	0.000003	0.000034	0.000005	0.000108	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
к	0.008354	0.000001	0.000989	0.000004	0.000023	0.000586	0.000000	0.000032	0.003452	0.000000	0.000036	0.000424	0.000008	0.000743	0.007211	0.000001	0.001039	0.000377	0.000278	0.001283 0	0.000001	0.000000	0.000027	0.000056	0.000018	0.000000	0.000000	0.000000	0.000000	0.000002	0.000000
л	0.010643	0.000027	0.000003	0.000024	0.000009	0.006412	0.000486	0.000006	0.008525	0.000000	0.000267	0.000068	0.000005	0.000100	0.005874	0.000202	0.000000	0.001419	0.000012	0.001981 0	0.000002	0.000000	0.000000	0.000089	0.000000	0.000000	0.001960	0.003727	0.000001	0.000872	0.000000
M	0.001523	0.000044	0.000002	0.000006	0.000002	0.006944	0.000000	0.000000	0.003363	0.000000	0.000125	0.000122	0.000006	0.000234	0.002414	0.000425	0.000035	0.000196	0.000037	0.003347 0	0.000004	0.000001	0.000006	0.000022	0.000006	0.000013	0.000630	0.000006	0.000001	0.000027	0.000000
н	0.011754	0.000020	0.000016	0.000338	0.001442	0.004717	0.000016	0.000029	0.011227	0.000000	0.000200	0.000001	0.000001	0.004639	0.011570	0.000017	0.000009	0.001109	0.000613	0.002598 0	0.000018	0.000002	0.001838	0.000125	0.000014	0.000013	0.005411	0.001469	0.000001	0.000262	0.000000
0	0.000020	0.002950	0.016254	0.010349	0.009254	0.003812	0.003700	0.002504	0.000517	0.006783	0.007024	0.018016	0.011168	0.005235	0.000555	0.001804	0.015375	0.015789	0.010653	0.000157	0.000273	0.001241	0.000168	0.002602	0.002767	0.000171	0.000000	0.000000	0.000069	0.001403	0.000000
n	0.001560	0.000002	0.000000	0.000000	0.000000	0.001543	0.000000	0.000000	0.000844	0.000000	0.000130	0.000367	0.000000	0.000107	0.003076	0.000122	0.002285	0.000013	0.000074	0.000729 0	0.000004	0.000000	0.000001	0.000181	0.000007	0.000000	0.000235	0.000080	0.000000	0.000000	0.000000
р	0.011609	0.000027	0.000124	0.000595	0.000453	0.010091	0.000432	0.000018	0.010521	0.000000	0.000207	0.000161	0.000733	0.000363	0.011117	0.000012	0.000017	0.000203	0.000680	0.004815	0.000025	0.000146	0.000107	0.000093	0.000225	0.000053	0.001613	0.000285	0.000002	0.000109	0.000000
С	0.000714	0.000006	0.000373	0.000018	0.000026	0.006259	0.000003	0.000001	0.001662	0.000000	0.006404	0.001583	0.000363	0.001153	0.001207	0.001690	0.000070	0.000262	0.017119	0.000439 0	0.000006	0.000148	0.000009	0.000104	0.000012	0.000000	0.000342	0.003096	0.000001	0.000199	0.000000
т	0.007174	0.000086	0.004254	0.000024	0.000501	0.004516	0.000002	0.000019	0.005936	0.000000	0.000891	0.000425	0.000043	0.001575	0.026299	0.000192	0.012804	0.001641	0.000360	0.001989 0	0.000016	0.000036	0.000341	0.000307	0.000002	0.000001	0.001666	0.006748	0.000001	0.000035	0.000000
У	0.000041	0.000863	0.001577	0.001066	0.003504	0.000159	0.001719	0.002387	0.000050	0.000125	0.001521	0.001659	0.002040	0.000587	0.000026	0.000584	0.001229	0.002088	0.003075	0.000007	0.000030	0.000600	0.000017	0.001318	0.001322	0.000548	0.000000	0.000000	0.000062	0.001567	0.000000
ф	0.000260	0.000000	0.000000	0.000000	0.000000	0.000138	0.000000	0.000000	0.001428	0.000000	0.000001	0.000000	0.000002	0.000001	0.000066	0.000000	0.000065	0.000011	0.000002	0.000142 0	8000008	0.000000	0.000000	0.000001	0.000000	0.000000	0.000009	0.000003	0.000000	0.000000	0.000000
×																				0.000052											
ц																				0.000208											
ч																				0.000215 0											
ш																				0.000256											
щ																				0.000142 0											
ы																				0.000012 0											
ь																				0.000001											
9																				0.000000											
ю																															
Я	0.000001	0.000071	0.000297	0.000337	0.000980	0.000138	0.001278	0.003033	0.000000	0.000013	0.000327	0.001132	0.000727	0.000889	0.000000	0.000070	0.000051	0.000910	0.002043	0.000000	.000000	0.000357	0.000012	0.000076	0.000004	0.000172	0.000000	0.000000	0.000000	0.000194	0.000000

Перетинаються, без пробіла

 $H_1 = 4.110573$

a	ь	В	r	Д	e	ж	3	и	й	к	Л	M	н	0	п	р	С	т	Y	Φ	×	ц	ч	ш	щ	ы	ь	3	ю	Я
0.000283	0.001501	0.006942	0.001484	0.002992	0.001723	0.001524	0.004951	0.001557	0.000755	0.006017	0.010353	0.003931	0.007897	0.001447	0.003035	0.003994	0.006178	0.006445	0.000567	0.000707	0.001232	0.000137	0.001372	0.001562	0.000289	0.000000	0.000000	0.000334	0.000867	, ,
0.001153	0.000016	0.000108	0.000013	0.000028	0.002479	0.000008	0.000011	0.000889	0.000000	0.000249	0.000901	0.000049	0.000330	0.002703	0.000007	0.001318	0.000097	0.000009	0.001231	0.000000	0.000110	0.000003	0.000024	0.000004	0.000234	0.004427	0.000166	0.000041	0.000004	1 (
0.006737	0.000275	0.000596	0.000502	0.000757	0.005283	0.000060	0.000716	0.005034	0.000000	0.000851	0.001410	0.001557	0.001929	0.009316	0.001126	0.001437	0.004609	0.000823	0.001089	0.000034	0.000088	0.000042	0.000231	0.001411	0.000009	0.002952	0.000198	0.000304	0.000004	1 (
0.001105	0.000081	0.000293	0.000086	0.001264	0.000716	0.000017	0.000064	0.001002	0.000000	0.000201	0.001992	0,000047	0.000481	0.010479	0.000261	0.001428	0.000331	0.000063	0.000789	0.000011	0.000009	0.000005	0.000168	0.000012	0.000000	0.000000	0.000001	0.000031	0,000003	
																										0.000700				
																										0.000000				
0.001564	0.000079	0.000022	0.000019	0.000872	0.004289	0.000023	0.000008	0.001572	0.000000	0.000105	0.000008	0.000022	0.001377	0.000071	0.000013	0.000005	0.000042	0.000019	0.000180	0.000000	0.000001	0.000000	0.000047	0.000000	0.000000	0.000000	0.000048	0.000012	0.000044	C
0.005934	0.000238	0.001032	0.000523	0.001998	0.000311	0.000193	0.000118	0.000459	0.000000	0.000281	0.000267	0.000387	0.001998	0.000850	0.000210	0.000290	0.000440	0.000089	0.000347	0.000007	0.000006	0.000008	0.000040	0.000023	0.000001	0.000655	0.000745	0.000042	0.000078	0
0.000343	0.001454	0.005259	0.001265	0.002746	0.003833	0.000643	0.003945	0.002783	0.001603	0.003468	0.005668	0.004063	0.005766	0.001908	0.002615	0.001268	0.005677	0.004718	0.000533	0.000177	0.002220	0.001413	0.002085	0.000532	0.000169	0.000000	0.000001	0.000257	0.000432	. 0
0.000188	0.000336	0.000789	0.000339	0.000695	0.000119	0.000135	0.000159	0.000629	0.000002	0.000675	0.000239	0.000401	0.001078	0.000538	0.000811	0.000359	0.001750	0.000536	0.000176	0.000078	0.000069	0.000065	0.000322	0.000194	0.000003	0.000000	0.000000	0.000067	0.000004	C
0.009665	0.000463	0.000800	0.000155	0.000247	0.000718	0.000217	0.000099	0.003358	0.000000	0.000380	0.000501	0.000196	0.002338	0.010090	0.000397	0.001853	0.000709	0.000794	0.001790	0.000025	0.000041	0.000025	0.000158	0.000031	0.000002	0.000000	0.000001	0.000104	0.000008	
0.007915	0.000308	0.000834	0.000387	0.000639	0.005476	0.000463	0.000154	0.007695	0.000001	0.001305	0.000192	0.000140	0.001071	0.008161	0.000983	0.000245	0.002286	0.000354	0.001517	0.000048	0.000039	0.000011	0.000606	0.000053	0.000006	0.001164	0.004244	0.000118	0.001235	, c
0.003344	0.000350	0.000827	0.000387	0.000403	0.004493	0.000129	0.000172	0.004576	0.000000	0.000649	0.000300	0.000266	0.001877	0.004674	0.001064	0.000253	0.001101	0.000323	0.002894	0.000061	0.000072	0.000041	0.000504	0.000067	0.000008	0.000933	0.000037	0.000078	0.000037	, ,
0.012319	0.000327	0.000562	0.000282	0.001274	0.010397	0.000054	0.000179	0.009726	0.000000	0.000451	0.000046	0.000118	0.003713	0.010416	0.000585	0.000186	0.001209	0.000710	0.002731	0.000031	0.000057	0.000828	0.000350	0.000042	0.000132	0.003778	0.001160	0.000048	0.000161	
0.000210	0.005222	0.012358	0.006115	0.006548	0.003404	0.002400	0.001656	0.002480	0.003931	0.004376	0.008301	0.006584	0.010075	0.002382	0.003803	0.007912	0.010760	0.009181	0.000631	0.000514	0.000809	0.000125	0.002750	0.001345	0.000166	0.000000	0.000000	0.000386	0.000963	1 C
0.001393	0.000001	0.000003	0.000006	0.000001	0.002957	0.000000	0.000000	0.000915	0.000000	0.000082	0.000843	0.000001	0.000083	0.010185	0.000060	0.007278	0.000013	0.000050	0.000764	0.000023	0.000000	0.000015	0.000099	0.000006	0.000002	0.000294	0.001006	0.000002	0.000000) (
0.010007	0.000251	0.000978	0.000408	0.000448	0.007065	0.000382	0.000080	0.006114	0.000000	0.000371	0.000119	0.000397	0.000900	0.009224	0.000280	0.000060	0.001805	0.000733	0.003352	0.000038	0.000125	0.000098	0.000111	0.000337	0.000056	0.001791	0.001082	0.000022	0.000157	, ,
																										0.000419				
																										0.001606				
0.000148	0.000890	0.001580	0.001586	0.002261	0.000352	0.001545	0.001182	0.000664	0.000078	0.001425	0.001498	0.001370	0.001084	0.000423	0.001391	0.000894	0.002242	0.001847	0.000123	0.000047	0.000422	0.000020	0.001318	0.000842	0.000311	0.000000	0.000000	0.000102	0.001127	0
0.000174	0.000009	0.000022	0.000004	0.000003	0.000165	0.000001	0.000005	0.000688	0.000000	0.000012	0.000081	0.000007	0.000015	0.000105	0.000020	0.000695	0.000036	0.000023	0.000096	0.000004	0.000001	0.000000	0.000002	0.000002	0.000000	0.000012	0.000003	0.000000	0.000002	0
0.000999	0.000158	0.000530	0.000149	0.000212	0.000102	0.000048	0.000083	0.000525	0.000000	0.000234	0.000293	0.000201	0.000421	0.002750	0.000450	0.000242	0.000544	0.000161	0.000235	0.000027	0.000017	0.000012	0.000076	0.000028	0.000001	0.000000	0.000003	0.000039	0.000000	0
0.000648	0.000010	0.000053	0.000019	0.000009	0.001055	0.000001	0.000005	0.000307	0.000000	0.000163	0.000006	0.000011	0.000028	0.000445	0.000035	0.000007	0.000036	0.000015	0.000675	0.000001	0.000001	0.000000	0.000005	0.000001	0.000000	0.000171	0.000000	0.000004	0.000000	C
0.002488	0.000011	0.000041	0.000152	0.000008	0.003641	0.000001	0.000003	0.001668	0.000000	0.000278	0.000046	0.000010	0.000622	0.000100	0.000034	0.000042	0.000028	0.004138	0.000703	0.000000	0.000002	0.000000	0.000007	0.000107	0.000000	0.000000	0.000204	0.000002	0.000000	0
0.001673	0.000010	0.000028	0.000003	0.000006	0.002621	0.000001	0.000002	0.002157	0.000000	0.000460	0.000486	0.000022	0.000435	0.000320	0.000055	0.000007	0.000008	0.000124	0.000347	0.000000	0.000000	0.000002	0.000001	0.000002	0.000000	0.000000	0.000302	0.000003	0.000000	0
0.000438	0.000000	0.000001	0.000000	0.000000	0.001475	0.000000	0.000000	0.000856	0.000000	0.000001	0.000000	0.000000	0.000035	0.000000	0.000000	0.000004	0.000000	0.000000	0.000104	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000017	0.000000	0.000000	, (
0.000054	0.000684	0.001713	0.000211	0.000341	0.001376	0.000064	0.000210	0.000487	0.001633	0.000444	0.002773	0.001942	0.000848	0.000308	0.000619	0.000454	0.001376	0.000981	0.000098	0.000026	0.001261	0.000015	0.000297	0.000576	0.000006	0.000000	0.000000	0.000056	0.000000	, c
0.000473	0.000455	0.001302	0.000284	0.000457	0.002190	0.000071	0.000418	0.001009	0.000001	0.001960	0.000157	0.000632	0.002258	0.000776	0.000984	0.000235	0.002096	0.000553	0.000207	0.000041	0.000082	0.000113	0.000467	0.000568	0.000011	0.000000	0.000000	0.000201	0.000591	L C
0.000000	0.000000	0.000003	0.000006	0.000007	0.000000	0.000000	0.000003	0.000000	0.000013	0.000061	0.000106	0.000006	0.000033	0.000000	0.000034	0.000020	0.000048	0.002642	0.000000	0.000001	0.000007	0.000001	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000) (
0.000121	0.000576	0.000330	0.000140	0.000677	0.000085	0.000091	0.000094	0.000343	0.000000	0.000257	0.000135	0.000166	0.000336	0.000247	0.000322	0.000213	0.000522	0.000662	0.000119	0.000025	0.000028	0.000045	0.000244	0.000121	0.000560	0.000000	0.000000	0.000044	0.000041	
																										0.000000				

Не перетинаються, без пробіла

 $H_2 = 4.107297$

	a	6	8	-	Д	e	284	з и	й	К	7	м	н	0	п	р	С	т	У	Ф	×	ц	ч	ш	щ	ы	ь	3	ю	я
a	0.000292	0.001569	0.006933	0.001587	0.003126	0.001777	0.001512	0.004951 0.0016	12 0.000777	0.006482	0.010556	0.003964	0.007649	0.001479	0.003226	0.003818	0.006520	0.006606	0.000608	0.000684	0.001305	0.000134	0.001367	0.001670	0.000305	0.000000	0.000000	0.000367	0.000899	0.000000
6	0.001120	0.000011	0.000104	0.000013	0.000029	0.002420	0.000011	0.000012 0.0009	0.000000	0.000266	0.000882	0.000059	0.000333	0.002698	0.000008	0.001311	0.000092	0.000009	0.001212	0.000000	0.000107	0.000002	0.000019	0.000003	0.000265	0.004403	0.000176	0.000047	0.000005	0.000000
В	0.006590	0.000253	0.000576	0.000477	0.000734	0.005253	0.000059	0.000672 0.0049	86 0.000000	0.000801	0.001368	0.001598	0.001942	0.009196	0.001045	0.001398	0.004321	0.000754	0.001115	0.000032	0.000091	0.000046	0.000209	0.001263	0.000006	0.002922	0.000214	0.000300	0.000006	0.000000
г	0.001093	0.000094	0.000296	0.000079	0.001271	0.000682	0.000015	0.000057 0.0009	0.000000	0.000180	0.001907	0.000044	0.000495	0.010220	0.000245	0.001372	0.000344	0.000059	0.000748	0.000009	0.000009	0.000006	0.000144	0.000015	0.000000	0.000001	0.000001	0.000034	0.000003	0.000000
д	0.004963	0.000072	0.001163	0.001147	0.000072	0.005046	0.000019	0.000049 0.0029	99 0.000000	0.000285	0.000853	0.000147	0.002037	0.004210	0.000247	0.001697	0.000612	0.000292	0.001848	0.000019	0.000046	0.000146	0.000059	0.000149	0.000001	0.000528	0.000626	0.000024	0.000009	0.000000
e	0.000237	0.002424	0.003874	0.004657	0.004010	0.002299	0.001424	0.002101 0.0015	39 0.002371	0.002316	0.007900	0.005664	0.010660	0.002055	0.003141	0.008597	0.007846	0.005281	0.000630	0.000094	0.001278	0.000319	0.001682	0.000886	0.000654	0.000000	0.000000	0.000307	0.000380	0.000000
ж	0.001555	0.000089	0.000019	0.000020	0.000832	0.004205	0.000020	0.000003 0.0015	64 0.000000	0.000109	0.000011	0.000022	0.001026	0.000076	0.000016	0.000004	0.000044	0.000022	0.000181	0.000000	0.000001	0.000000	0.000050	0.000000	0.000000	0.000000	0.000039	0.000013	0.000046	0.000000
_	0.005704	0.000370	0.001041	0.000553	0.001076	0.000074	0.000104	0.000127 0.0004	20 0 000000	0.000300	0.000053	0.000000	0.001.000	0.0000034	0.000310	0.000006	0.000453	0.000000	0.000330	0.000007	0.000005	0.000000	0.000043	0.000013	0.000001	0.000511	0.000443	0.000046	0.000003	0.000000
и	0.000335	0.001443	0.005215	0.001273	0.002746	0.003934	0.000643	0.003878 0.0029	18 0.001709	0.003502	0.005938	0.004069	0.005731	0.001859	0.002557	0.001232	0.005861	0.004721	0.000518	0.000181	0.002257	0.001449	0.002098	0.000510	0.000168	0.000000	0.000000	0.000257	0.000442	0.000000
й	0.000184	0.000345	0.000853	0.000333	0.000715	0.000131	0.000151	0.000161 0.0006	56 0.000003	0.000682	0.000262	0.000415	0.001104	0.000576	0.000869	0.000355	0.001773	0.000550	0.000190	0.000084	0.000069	0.000064	0.000342	0.000194	0.000003	0.000000	0.000000	0.000064	0.000006	0.000000
к	0.009738	0.000431	0.000761	0.000144	0.000196	0.000738	0.000207	0.000082 0.0033	59 0.000000	0.000329	0.000484	0.000171	0.002204	0.009885	0.000365	0.001759	0.000668	0.000758	0.001748	0.000023	0.000043	0.000020	0.000142	0.000021	0.000001	0.000000	0.000001	0.000093	0.000005	0.000000
л	0.007785	0.000303	0.000764	0.000378	0.000618	0.005558	0.000444	0.000138 0.0074	20 0.000002	0.001300	0.000187	0.000135	0.001003	0.007955	0.000932	0.000235	0.002033	0.000330	0.001506	0.000046	0.000044	0.000011	0.000583	0.000054	0.000006	0.001169	0.004089	0.000112	0.001205	0.000000
M	0.003403	0.000330	0.000818	0.000375	0.000415	0.004382	0.000114	0.000169 0.0043	59 0.000001	0.000643	0.000293	0.000270	0.001841	0.004552	0.001079	0.000253	0.001067	0.000324	0.002971	0.000062	0.000069	0.000042	0.000513	0.000062	0.000004	0.000912	0.000034	0.000069	0.000040	0.000000
н	0.011950	0.000322	0.000584	0.000283	0.001803	0.010148	0.000048	0.000187 0.0097	0.000000	0.000453	0.000052	0.000123	0.003580	0.010609	0.000618	0.000183	0.001199	0.000741	0.002575	0.000031	0.000065	0.000835	0.000339	0.000042	0.000114	0.003951	0.001184	0.000054	0.000169	0.000000
0	0.000213	0.005014	0.012553	0.006410	0.006722	0.003420	0.002449	0.001729 0.0024	88 0.003990	0.004418	0.008603	0.006817	0.010144	0.002448	0.003858	0.008236	0.011044	0.009177	0.000643	0.000535	0.000818	0.000125	0.002945	0.001403	0.000161	0.000000	0.000000	0.000409	0.000961	0.000000
п	0.001384	0.000001	0.000003	0.000006	0.000002	0.002881	0.000000	0.00000 0.0008	99 0.000000	0.000076	0.000801	0.000002	0.000085	0.009790	0.000073	0.006935	0.000016	0.000051	0.000744	0.000019	0.000000	0.000015	0.000093	0.000006	0.000001	0.000300	0.000982	0.000003	0.000000	0.000000
	0.010115	0.000347	0.001016	0.000413	0.000480	0.007629	0.000373	0.000085 0.0063	16 0 000000	0.000339	0.000134	0.000430	0.000863	0.009464	0.000397	0.000059	0.001716	0.000722	0.002416	0.000043	0.000124	0.000097	0.000104	0.000339	0.000053	0.001800	0.001222	0.000033	0.000144	0.000000
P																														
С	0.001690	0.000197	0.002183	0.000148	0.000502	0.004182	0.000115	0.000099 0.0017	20 0.000000	0.006078	0.003186	0.001163	0.001276	0.003479	0.002225	0.000428	0.001344	0.017086	0.001006	0.000038	0.000204	0.000041	0.000401	0.000117	0.000000	0.000407	0.002585	0.000049	0.000151	0.000000
т	0.006463	0.000331	0.003696	0.000158	0.000467	0.004974	0.000112	0.000131 0.0044	0.000000	0.000790	0.000342	0.000216	0.001439	0.018123	0.000507	0.006003	0.001690	0.000418	0.001830	0.000034	0.000049	0.000144	0.000403	0.000017	0.000016	0.001561	0.005657	0.000125	0.000048	0.000000
y	0.000143	0.000861	0.001587	0.001523	0.002313	0.000347	0.001549	0.001221 0.0006	72 0.000069	0.001415	0.001594	0.001424	0.001111	0.000407	0.001380	0.000929	0.002272	0.001936	0.000125	0.000046	0.000423	0.000019	0.001349	0.000892	0.000319	0.000000	0.000000	0.000101	0.001152	0.000000
Ф	0.000157	0.000012	0.000026	0.000006	0.000004	0.000170	0.000001	0.000006 0.0006	90 0.000000	0.000013	0.000084	0.000008	0.000014	0.000102	0.000019	0.000678	0.000037	0.000020	0.000105	0.000004	0.000000	0.000000	0.000001	0.000002	0.000000	0.000008	0.000003	0.000000	0.000002	0.000000
×	0.001014	0.000150	0.000494	0.000132	0.000204	0.000102	0.000046	0.000074 0.0004	91 0.000000	0.000215	0.000280	0.000183	0.000399	0.002638	0.000440	0.000240	0.000522	0.000154	0.000240	0.000028	0.000019	0.000009	0.000072	0.000029	0.000001	0.000000	0.000000	0.000042	0.000000	0.000000
ц	0.000629	0.000010	0.000052	0.000019	0.000007	0.001029	0.000000	0.00003 0.0002	93 0.000000	0.000168	0.000006	0.000009	0.000029	0.000452	0.000029	0.000006	0.000037	0.000012	0.000674	0.000001	0.000002	0.000000	0.000005	0.000000	0.000000	0.000177	0.000000	0.000006	0.000000	0.000000
ч	0.002543	0.000013	0.000035	0.000159	0.000007	0.003614	0.000001	0.000003 0.0016	60 0.000000	0.000266	0.000040	0.000013	0.000620	0.000087	0.000025	0.000040	0.000026	0.003802	0.000705	0.000000	0.000002	0.000000	0.000003	0.000108	0.000000	0.000000	0.000205	0.000003	0.000000	0.000000
ш	0.001633	0.000009	0.000026	0.000001	0.000006	0.002649	0.000000	0.000002 0.0022	44 0.000000	0.000401	0.000487	0.000024	0.000442	0.000319	0.000061	0.000007	0.00006	0.000123	0.000350	0.000000	0.000000	0.000003	0.000002	0.000001	0.000000	0.000000	0.000303	0.000002	0.000001	0.000000
	0.000415	0.000000	0.000001	0.000000	0.000000	0.001427	0.000000	0.000000 0.0008	18 0.000000	0.000002	0.000000	0.000000	0.000026	0.000000	0.000000	0.000003	0.000001	0.000000	0.000102	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000011	0.000000	0.000000	0.000000
ы	0.000052	0.000666	0.001845	0.000216	0.000336	0.001423	0.000062	0.000214 0.0004	97 0.001636	0.000482	0.002886	0.001920	0.000895	0.000324	0.000644	0.000466	0.001437	0.001016	0.000087	0.000028	0.001323	0.000012	0.000294	0.000592	0.000006	0.000000	0.000000	0.000062	0.000000	0.000000
ь	0.000847	0.000556	0.001573	0.000318	0.000519	0.002268	0.000076	0.000484 0.0010	75 0.000000	0.002123	0.000171	0.000688	0.002501	0.000889	0.001173	0.000265	0.002451	0.000623	0.000254	0.000052	0.000084	0.000123	0.000504	0.000567	0.000011	0.000000	0.000000	0.000210	0.000611	0.000000
э	0.000000	0.000000	0.000003	0.000004	0.000007	0.000000	0.000000	0.000001 0.0000	00 0.000016	0.000060	0.000106	0.000003	0.000036	0.000000	0.000031	0.000018	0.000056	0.002504	0.000000	0.000000	0.000004	0.000001	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
10	0.000169	0.000605	0.000356	0.000146	0.000706	0.000025	0.000097	0.000092 0.0003	66 0.000000	0.000263	0.000125	0.000164	0.000339	0.000257	0.000329	0.000227	0.000472	0.000607	0.000123	0.000026	0.000025	0.000051	0.000264	0.000164	0.000505	0.000000	0.00000	0.000047	0.000041	0.000000
я	0.000163	0.000501	0.001611	0.000527	0.001243	0.000454	0.000698	0.001579 0.0009	55 0.000045	0.001035	0.001163	0.000779	0.002146	0.000813	0.001094	0.000328	0.002126	0.002148	0.000250	0.000061	0.000296	0.000069	0.000462	0.000061	0.000265	0.000000	0.000000	0.000156	0.000139	0.000000

2. За допомогою програми CoolPinkProgram оцінити значення (10) H, (20) H, (30) H.

3. Використовуючи отримані значення ентропії, оцінити надлишковість російської мови в різних моделях джерела.

$$R = 1 - \frac{H_{\infty}}{H_0} \qquad H_0 = \log_2 32 = 5$$

Без пробіла, Н₁:

R = 0.108884

3 пробілом, Н₁:

R = 0.21162

Перетинаються, з пробілом, Н₁:

R = 0.215152

Не перетинаються, з пробілом, H_2 :

R = 0.230467

Перетинаються, без пробіла, Н₁:

R = 0.177885

Не перетинаються, без пробіла, H_2 :

R = 0.17854

Код програми

```
#include <iostream>
#include <fstream>
#include <string>
#include <algorithm>
#include <iomanip>
#include <cmath>
using namespace std;
double sum = 0;
double entropy(double tmp)
        if (tmp == 0.) return 0;
        return -tmp * log2(tmp);
}
void quickSort(int arr[], char strLC[], int left, int right) {
        int i = left, j = right;
        int tmp;
        char ctmp;
        int pivot = arr[(left + right) / 2];
        while (i \leftarrow j) {
                while (arr[i] < pivot)</pre>
                         j++;
                while (arr[j] > pivot)
                         j---;
                if (i <= j) {
                         ctmp = strLC[i];
                         tmp = arr[i];
                         strLC[i] = strLC[j];
                         arr[i] = arr[j];
                         strLC[j] = ctmp;
                         arr[j] = tmp;
                         j++;
                         j---;
                }
        };
        if (left < j)</pre>
                quickSort(arr, strLC, left, j);
        if (i < right)
                quickSort(arr, strLC, i, right);
}
```

```
void copytext()
{
         ofstream output ("output.txt");
         ifstream input("input.txt");
         string str, str1 = "";
         bool flag = 0;
         const int n = 34;
char strLC[n] = { ' ', 'a', 'б', 'в', 'г', 'д', 'e', 'ë', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ъ', 'ы', 'ь', 'э', 'ю', 'я' };
char strUC[n] = { '', 'A', 'Б', 'В', 'Г', 'Д', 'Е', 'Ё', 'Ж', 'З', 'И', 'Й', 'К', 'Л', 'М', 'Н', 'О', 'П', 'Р', 'С', 'Т', 'У', 'Ф', 'Х', 'Ц', 'Ч', 'Ш', 'Щ', 'Ъ', 'Ы',
'Ь', 'Э', 'Ю', 'Я'};
         while (input)
                  getline(input, str);
                  length = str.length();
                  for (int i = 0; i < length; i++)
                  {
                           flag = 0;
                            for (int j = 0; j < n; j++)
                                    if (str[i] == strLC[j] || str[i] == strUC[j])
                                     {
                                              if (j == 7) { str1 += strLC[j - 1]; flag = 1; break;}
                                         if(j == 28) { str1+=strLC[30]; flag = 1; break;}
                                              str1 += strLC[j];
                                              flag = 1;
                                              break;
                                     }
                            if (!flag) { str.erase(i, 1); i--; length--; }
                  }
                  str1 += " ":
                  if (input.eof())break;
         }
         string strtemp = "";
         length = str1. length() - 1;
         for (int i = 0; i < length; i++)
                  strtemp = str1[i];
                  strtemp += str1[i + 1];
                  if (strtemp = "") { str1.erase(i, 1); i--; length--; }
         }
         output << str1 << endl;
         input.close();
         output.close();
}
void monog()
         ofstream output ("monog. txt");
         ifstream input("output.txt");
         string str;
         const int n = 32;
```

```
int length;
char strLC[n] = { ' ','a', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ы', 'ь', 'э', 'ю', 'я'};
         int arr[n];
         for (int i = 0; i < n; i++)
                  arr[i] = 0;
         while (input)
         {
                  getline(input, str);
                  length = str.length();
                  lengfull += length;
                  for (int i = 0; i < length; i++)
                          for (int j = 0; j < n; j++)
                                   if (str[i] = strLC[j]) arr[j]++;
                 }
         int snum = arr[0]; // number of spaces in text
         quickSort(\&arr[0], \&strLC[0], 0, n-1);
         output <<setw(6) << "With space: " <<" " << endl;
         for (int j = n-1; j \ge 0; j--)
         {
                  if (strLC[i] == ' ')continue;
                  tmp = arr[j] / lengfull;
                  sum = sum + entropy(tmp);
                  output << strLC[j] << " - " << std::setprecision(6) << tmp <<setw(6) << " " << endl;
         output << "Entropia - " << sum << setw(6) << endl;
         output <<setw(6) << "\nWithout space: " <<" " << endl;
         sum = 0;
         for (int j = n-1; j >= 0; j--)
                  if (strLC[j] == ' ')continue;
                  tmp = arr[j] / (lengfull - snum);
                  sum = sum + entropy(tmp);
                  output << strLC[j] << " - " << std::setprecision(6) << tmp <<setw(6) << " "<< endl;
         }
         output << "Entropia - " << sum << setw(6) << endl;
         input.close();
         output.close();
}
void bigr_ws_wi() // Перетин з пробілами
{
         ofstream output ("bigr_ws_wi.txt");
         ifstream input("output.txt");//changed
         string str;
         const int n = 32;
         int
                length;
char strLC[n] = { ' ','a', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ы', 'ь', 'э', 'ю', 'я'};
         int arr[n * n];
         for (int i = 0; i < n * n; i++)
                 arr[i] = 0;
```

```
double count = 0.0;
                                string arr1[n * n];
                                 for (int i = 0; i < n * n; i++)
                                                                  arr1[i] == " ":////Типу весь масив забив нулями
(подвійними пробілами)
                               while (input)
                                                                  getline(input, str);
                                                                  length = str.length();
                                                                  for (int i = 0; i < length; i++)
                                                                                                    if (str[i] == ' ' || str[i] == EOF) continue;
                                                                                                    for (int k = 0; k < n; k++)
                                                                                                                                      if (str[i] = strLC[k])
                                                                                                                                                                        if (str[i + 1] == ' ' || str[i + 1] == EOF) { i++; continue; }
                                                                                                                                                                       for (int j = 0; j < n; j++)
                                                                                                                                                                                                        if (str[i + 1] = strLC[i])
                                                                                                                                                                                                                                           arr[k * n + j] += 1;
                                                                                                                                                                                                                                           count++;
                                                                                                                                                                                                                                           break:
                                                                                                                                                                       break;
                                                                                                                                      }
                                                                   if (input.eof())break;
                               }
                                 output <<fixed<< " "; //Matrix for frequency</pre>
                                 for (int i = 1; i < 32; i++)
                                                                  output << setw(9) << strLC[i] << " ";
                                 output << "\n\n\n";
                                 for (int i = 1; i < 32; i++)
                                                                  output << strLC[i] << " ";</pre>
                                                                  for (int j = 1; j < 32; j++)
                                                                                                    output << setw(9) << floor((arr[i * n + j] / count )* 1000000.) / 1000000. << "
                                                                  output << "\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\
                                }
                                sum = 0:
                                 for (int i = 1; i < 32; i++) //Matrix for entropy
                                                                  output << setw(9) << strLC[i] << " ";
                                 output << "\mathbb{"\mathbb{"\nunning";
                                 for (int i = 1; i < 32; i++)
                                                                  output << strLC[i] << ";
                                                                  for (int j = 1; j < 32; j++)
                                                                                                    tmp = floor((arr[i * n + j] / count) * 1000000.) / 1000000.;
                                                                                                    sum = sum + entropy(tmp);
                                                                                                    output << setw(9) << entropy(tmp) << ";
                                                                  output << "\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\
                               }
```

```
output <<setw(9) << "Entropy = " << sum << endl;
        input.close();
        output.close();
}
void bigr_ws_ni() // Без перетину з пробілами
        ofstream output ("bigr_ws_ni.txt");
        ifstream input("output.txt");
        string str;
        const int n = 32;
        int
                 length;
        double tmp = 0.0;
char strLC[n] = { ' ','a', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ш', 'ш', 'ш', 'ы', 'ь', 'э',
'ю', 'я'};
        int arr[n * n];
        for (int i = 0; i < n * n; i++)
                arr[i] = 0;
        double count = 0.0;
        string arr1[n * n];
        for (int i = 0; i < n * n; i++)
                arr1[i] == " ";
        while (input)
                 getline(input, str);
                 length = str.length();
                 for (int i = 0; i < length; i = i + 2)
                         if (str[i] == ' ' || str[i] == EOF)continue;
                         for (int k = 0; k < n; k++)
                                 if (str[i] = strLC[k])
                                  {
                                          if (str[i + 1] == ' ' || str[i + 1] == EOF) { i++; continue; }
                                          for (int j = 0; j < n; j++)
                                                  if (str[i + 1] = strLC[j])
                                                   {
                                                           if (arr[k * n + j] = 0)arr1[k * n + j] = strLC[k]
+ strLC[j];
                                                           arr[k * n + j] += 1;
                                                           count++;
                                                           break;
                                          break;
                                 }
                }
                 if (input.eof())break;
        }
        output << fixed << " ";
        for (int i = 1; i < 32; i++) //Matrix for frequency
```

```
output << setw(9) << strLC[i] << " ";
                                            output << "\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\
                                            for (int i = 1; i < 32; i++)
                                            {
                                                                                     output << strLC[i] << " ";
                                                                                     for (int j = 1; j < 32; j++)
                                                                                                                                output << setw(9) << floor((arr[i * n + j] / count) * 1000000.) / 1000000. << "
 " ;
                                                                                     output << "\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\
                                          }
                                           output << "\forall "\fora
                                            sum = 0;
                                            for (int i = 1; i < 32; i++) //Matrix for entropy
                                                                                     output << setw(9) << strLC[i] << " ";
                                            output << "\mathbb{"\mathbb{"\nu\n";
                                            for (int i = 1; i < 32; i++)
                                                                                     output << strLC[i] << " ";
                                                                                     for (int j = 1; j < 32; j++)
                                                                                                                                 tmp = floor((arr[i * n + j] / count) * 1000000.) / 1000000.;
                                                                                                                                 sum = sum + entropy(tmp);
                                                                                                                                 output << setw(9) << entropy(tmp) << ";
                                                                                     output << "\n\n\n";
                                           output << setw(9) <<"Entropy = " << sum << endl;
                                            input.close();
                                            output.close();
}
void bigr_ns_wi() // Перетин без пробілів
                                            ofstream output ("bigr_ns_wi.txt");
                                            ifstream input("output ns. txt");
                                           double tmp = 0.0;
                                           string str;
                                           const int n = 32;
                                            int
                                                                                     length;
                                          char strLC[n] = { ' ', 'a', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л',
'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ы', 'ь', 'э',
'ю', 'я'};
                                          int arr[n * n];
                                           for (int i = 0; i < n * n; i++)
                                                                                    arr[i] = 0;
                                            double count = 0.0;
                                           while (input)
                                            {
                                                                                     getline(input, str);
                                                                                      length = str.length();
                                                                                     for (int i = 0; i < length; i++)
                                                                                                                                 if (str[i] == EOF)continue;
                                                                                                                                 for (int k = 1; k < n; k++)
                                                                                                                                                                           if (str[i] = strLC[k])
                                                                                                                                                                                                                      if (str[i + 1] == EOF) \{ i++; continue; \}
                                                                                                                                                                                                                      for (int j = 1; j < n; j++)
```

```
if (str[i + 1] = strLC[j])
                                                           arr[k * n + j] += 1;
                                                           count++;
                                                           break;
                                                   }
                                          break;
                                  }
                 if (input.eof())break;
        }
        output << fixed << " ";
        for (int i = 1; i < 32; i++) //For Freq
                 output << setw(9) << strLC[i] << ";
        output << "\n\n\n";
        for (int i = 1; i < 32; i++)
                 output << strLC[i] << ";
                 for (int j = 1; j < 32; j++)
                         output << setw(9) << floor((arr[i * n + j] / count) * 1000000.) / 1000000. << "
                output << "\mathbb{"\mathbb{"\mathbb{"\nu\n"};
        }
        for (int i = 1; i < 32; i++) //Matrix for entropy
                 output << setw(9) << strLC[i] << " ";
        output << \text{``} YnYnYn";
        for (int i = 1; i < 32; i++)
        {
                 output << strLC[i] << "";
                 for (int j = 1; j < 32; j++)
                 {
                         tmp = floor((arr[i * n + j] / count) * 1000000.) / 1000000.;
                         sum = sum + entropy(tmp);
                         output << setw(9) << entropy(tmp) << ";
                 }
                 output << "\fyn\fyn\fyn\fyn\fyn\";
        output << setw(9) << "Entropy = " << sum << endl;
        input.close();
        output.close();
}
void bigr_ns_ni() // Без перетину без пробілів
        ofstream output ("bigr ns ni.txt");
        ifstream input("output ns. txt");
        string str;
        const int n = 32;
               length;
        double tmp = 0.0;
char strLC[n] = { ' ', 'a', 'б', 'в', 'г', 'д', 'е', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ы', 'ь', 'э',
'ю', 'я'};
        int arr[n * n];
        for (int i = 0; i < n * n; i++)
```

```
arr[i] = 0;
  double count = 0.0;
 while (input)
  {
                                                    getline(input, str);
                                                    length = str.length();
                                                     for (int i = 0; i < length; i = i + 2)
                                                                                                        if (str[i] = EOF) continue;
                                                                                                       for (int k = 1; k < n; k++)
                                                                                                                                                         if (str[i] = strLC[k])
                                                                                                                                                           {
                                                                                                                                                                                                              if (str[i + 1] == EOF) \{ i++; continue; \}
                                                                                                                                                                                                              for (int j = 1; j < n; j++)
                                                                                                                                                                                                                                                                if (str[i + 1] = strLC[j])
                                                                                                                                                                                                                                                                                                                   arr[k * n + j] += 1;
                                                                                                                                                                                                                                                                                                                    count++;
                                                                                                                                                                                                                                                                                                                   break;
                                                                                                                                                                                                            break:
                                                                                                                                                          }
                                                     if (input.eof())break;
}
  output << fixed << " ";
  for (int i = 1; i < 32; i++) //For freq
                                                    output << setw(9) << strLC[i] << " ";
  output << \text{"} YnYnYn";
  for (int i = 1; i < 32; i++)
  {
                                                    output << \,strLC[i] << \, '' \quad '';
                                                    for (int j = 1; j < 32; j++)
                                                                                                       output << setw(9) << floor((arr[i * n + j] / count) * 1000000.) / 1000000. <math><< "
                                                    output << "\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\
 }
  sum = 0;
  for (int i = 1; i < 32; i++) //Matrix for entropy
                                                   output << setw(9) << strLC[i] << " ";
  output << "\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\
  for (int i = 1; i < 32; i++)
                                                    output << strLC[i] << " ";</pre>
                                                    for (int j = 1; j < 32; j++)
                                                     {
                                                                                                        tmp = floor((arr[i * n + j] / count) * 1000000.) / 1000000.;
                                                                                                        sum = sum + entropy(tmp);
                                                                                                        output << setw(9) << entropy(tmp) << ";
                                                    output << "\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\mathbb{"\
 output << setw(9) << "Entropy = " << sum << endl;
  input.close();
  output.close();
```

```
int main() {
    setlocale(LC_ALL, "Russian");
    copytext();
    monog();
    bigr_ws_wi();
    bigr_ws_ni();
    bigr_ns_wi();
    bigr_ns_ni();
    system("pause");
    return 0;
}
```

Висновок:

Отже, в ході практикума ми засвоїли поняття ентропії на символ джерела та його надлишковості, вивчення та порівняння різних моделей джерела відкритого тексту для наближеного визначення ентропії, набуття практичних навичок щодо оцінки ентропії на символ джерела