Lab7 集成运放电路

课程名称:电路与电子技术实验I

日期: 2023.12.25

地点: 东3-406

指导教师:姚缨英

实验目的

1. 学习集成运放芯片的使用方法以及输入输出电路。

2. 学会使用运放电路连接加减法电路, 积分电路等运算电路。

3. 学习选择适当电路参数。

实验仪器

1. 运放芯片LM358.

2. 直流稳压源。

3. 导线, 实验箱内电阻。

Part1: 实现同相比例运算

实验方法

- 1. 先将运放器作为电压跟随器使用, 检查芯片的完好性。
- 2. 连接电路为下图。

理论计算

由于1,3脚在负反馈过程中有虚短和虚短的性质,因此,输入电压与输出电压的关系有:

$$\dot{A}_f = rac{v_o}{v_s} = 1 + rac{R_2}{R_1} = 1 + rac{20k}{10k} = 3$$

实验仿真

1. 当电路输入3V时,输出8.99V≈9V。

2. 当电路输入5V时,输出13.5V,不满足3倍输出。

		н High-level output voltage	$R_L \ge 2 k\Omega$		25°C	$V_{\rm CC}$ – 1.5		V _{CC} - 1.5			
Vo	\/		$R_L \ge 10 \text{ k}\Omega$		25°C					.,	
	v _{OH} High-level output voltage		V - MAY	$R_L = 2 k\Omega$	Full range	26		26		V	
		V_{CC} = MAX $R_L \ge 10 \text{ k}\Omega$	R _L ≥ 10 kΩ	Full range	27	28	27	28			

可以看到,输出电压的最高值不高于V_{CC}-1.5V。

3. 当输入4.5V时仍然满足3倍的输出。

但当4.6V时,输出电压被限制在13.5V

4. 调整 V_{CC} 电压,输出电压被限制在 $V_{CC}-1.5V=10.5V$

实际测量

V _{irms} /V	输入电压性质	V _{orms} /V	输出电压性质	V_o/V_i	示波器图示
1.02	正弦1kHz	3.03	正弦	2.97	
5.07	正弦1kHz	11.93	正弦,V _{max} =14.8	2.35	
3.26	正弦1kHz	9.721	正弦,V _{max} =14.4,V _{min} =-14.6	2.98	
0	(-)0.9mV(+)0mV	0	2.1mV的输出电压	/	1
1.1	DC	3.28	DC	2.98	1
5.1	DC	14	DC	2.75	1
5.3	DC	14.4	DC	2.72	1
6	DC	14.8	DC	2.47	/

3.26V的有效输出电压时,刚刚好满足正弦波两端电压均不失真。可以得到失真电压此时为14.5V左右。

通过李萨如图像(CH1: V_i, CH2: V_o)

得到一段两端有截止电压的输入输出图像,直线部分,输出斜率约为3。

结果分析

- 输出电压有一定的限度,通过放大比例,可以倒推输入电压的限制范围。仿真中的最大输出电压为V_{CC}-1.5V,实际上的输出电压约比这个大,但是不超过输入电压。
- 当输入电压为0,两端共地接法的时候,可以看到,输入电压并非理想的0V,也有一定的输出电压。

Part2: 实现两个信号的反相加法运算

实验方法

1. 连接电路如下图。满足 $V_o = -2V_1 - 10V_2$ 。

2. 调整输入电压,观察输出电压。

理论计算

对于反向加法器, 根据虚短虚断的性质, 计算如下

$$V_o = -(rac{R_2}{R_{11}}V_1 + rac{R_2}{R_{12}}V_2) = -(rac{100k}{50k}V_1 + rac{100k}{10k}V_2) = -2V_1 - 10V_2$$

实验仿真

1. 功能验证,当输入 $V_1=1V, V_2=0.5V$ 时,输出-7.03Vpprox-2 imes1-10 imes0.5=-7V

当输入 $V_1=1V,V_2=1V$ 时,输出-12Vpprox-2 imes1-10 imes1=-12V

2. 超出输出限制。

$$-1 \times 2 - 1.5 \times 10 = -17V < -15V$$
,输出15V。

实际测量

V ₁ /V	输入波性质	V _{2rms} /V	输入波性质	V _o	示波器图示
1V _{rms}	sin 1kHz	0.5V _{rms}	1kHz	7.112V _{rms}	
1V _{rms}	sin 1kHz	1V _{rms}	1kHz	V _{max} =14.5V,V _{min} =-15.1V	
3.5V _{pp}	sin 1kHz	2V _{pp}	1kHz	V _{max} =14.3V,V _{min} =-14.3V	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6V _{pp}	sin 1kHz	0.4V _{pp}	3kHz	两个正弦波叠加	

后用示波器进行检验,使用 Math 叠加[sin 1kHz, 12Vpp]和[sin 3kHz, 4Vpp]。可知,满足输出 $V_o=-2V_1-10V_2$ 。

结果分析

输出电压有一定的范围,同上,不超过V_{CC},因此可以倒推回去输入电压的范围。

Part3: 实现积分运算与波形变换

实验方法

1. 连接积分电路为下图。

- 2. 保持S1, S3打开, 闭合S2, 使电容放电。后打开S2, 闭合S3, 观察此时的波形变化。
- 3. 闭合S1,将电路连接成负反馈电路,从而实现波形变换电路。

4. S3打开, 闭合S2, 使电容放电。后打开S2, 闭合S3, 观察此时的波形变化。

理论计算

积分器原理计算, 根据虚短虚断的原则

$$i_C=i_i=v_s/R_1 \ v_o(t)=-rac{1}{C}\int i_C\mathrm{d}t+v_o(0)=-rac{1}{RC}\int v_s\mathrm{d}t+v_0(0)$$

∴ 输入直流电源时,由于*i*不变,理论上应该输出一条直线。

波形转换器,联入并联在电容两端的电阻,进行负反馈平衡,减小失调电压与失调电流对电路造成的影响,避免积分漂移。

$$V_{i} = IR + V_{OS} - I_{b+}R_{r}$$
 $I = \frac{V_{i}}{R} - \frac{V_{OS}}{R} + Ib + \frac{R_{r}}{R}$
 $V_{o} = V_{OS} - I_{b+}R_{r} - V_{C}$

$$egin{align} V_o &= -rac{1}{C} \int (I - I_{b-}) \mathrm{d}t + V_{OS} - I_{b+} R_r \ &= -rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_{OS} \mathrm{d}t + rac{1}{C} \int (I_{b-} rac{R_r}{R} I_{b+}) \mathrm{d}t + V_{OS} - I_{b+} R_r \ &= -rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_{OS} \mathrm{d}t + rac{1}{C} \int (I_{b-} rac{R_r}{R} I_{b+}) \mathrm{d}t + V_{OS} - I_{b+} R_r \ &= -rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_{OS} \mathrm{d}t + rac{1}{C} \int (I_{b-} rac{R_r}{R} I_{b+}) \mathrm{d}t + V_{OS} - I_{b+} R_r \ &= -rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_{OS} \mathrm{d}t + rac{1}{C} \int (I_{b-} rac{R_r}{R} I_{b+}) \mathrm{d}t + V_{OS} - I_{b+} R_r \ &= -rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_{OS} \mathrm{d}t + rac{1}{C} \int (I_{b-} rac{R_r}{R} I_{b+}) \mathrm{d}t + V_{OS} - I_{b+} R_r \ &= -rac{1}{RC} \int V_i \mathrm{d}t + rac{1}{RC} \int V_i \mathrm{d}t + \frac{1}{RC} \int$$

∴标色部分表示失调电压与失调电流对积分电路的影响,随着时间累积使得积分曲线发生偏移。

加入电阻后对波形转换器电路进行理论计算:

$$\because v_i/R_1 = -v_o/R_2 - Crac{\mathrm{d}v_o}{\mathrm{d}t}$$
 $v_o = -rac{R_2v_i}{R_1}(1-e^{-rac{t}{R_2C}})$ $au = R_2C$ 当方波频率很大,即 $T << au$ 时, $V_{opp} = rac{V_{ip}T/2}{R_1C}$ 当输入正弦波时, $v_o = rac{1}{RC\omega}V_{im}\cos\omega t$

可以得知,加上电阻以后,具体的波形将与R₂C的值相关。

实验仿真

1. 积分运算电路仿真

根据理论计算,直线的斜率应为 $k=-\frac{V_s}{R_1C}=-3.0\times 10^3$,右图计算得 $k=\frac{-10.5653+1.2238}{39.6467-36.5241}\times 10^3=-2.9\times 10^3$

发现, 当输出电压达到截止电压约为15V时, 变为直线。

2. 波形转换器

当未联入负反馈上的电阻时,输入方波信号,可以看到,虽然方波信号被积分为三角波,输出电压的平均值呈 一条直线缓慢下降,证明失调电压与失调电流对结果的影响。

联入负反馈上的电阻以后,根据理论计算, $au=R_fC=0.01s, f_0=100Hz, V_{opp}=1V$

。 情况一:当输入频率 $F=500Hz>>f_0$,输出三角波 $V_{pp}pprox 1V$ 。

。 情况二:当输入频率 $F=80Hz\approx f_0$,输出三角波 ${\rm V_{pp}}\approx 1{\rm V}$ 。输出波形的直线形不好,此时 $1-e^{-\frac{t}{R_2C}}$ 无法 $pprox \frac{t}{R_2C}$,输出曲线为指数型。

。 情况二:当输入频率 $F=5Hz<< f_0$,输出三角波 $V_{\rm pp}$ pprox 1V。输出波形的直线形不好,此时 $1-e^{-\frac{t}{R_2C}}$ 无法 $pprox \frac{t}{R_2C}$,输出曲线为一阶电路达到稳定状态时的图像。此时输出电压 $V_{om}=-\frac{R_f}{R_1}V_i=-1V$ 。理论与仿真结果相似。

实际测量

- 1. 输入直流电压,利用示波器 Single 模式,捕捉瞬间变化。
 - 3.6V时,输出波形为绿色图所示。

9V时,输出波形以更快的速度到饱和电压。

2. 输入方波

$$C = 0.1 \mu F, R_f = 100 k \Omega, \tau = R_f C = 0.01 S, f = 1/ au = 100 Hz$$

V _{ipp} /V	ipp/V f/Hz 输入频率特征		V _{opp}	输出图样		
4vpp	30Hz	f< <f<sub>0</f<sub>	/	1.000 1.00		
4vpp	100Hz	f≈f ₀	11.6V	1000 1000		
4vpp	100kHz	f>>f ₀	3.2V	1		

可以看到,频率越大,输出的三角波的直线形更好,而频率越小,越像电容放电充电曲线。

3. 输入正弦波

f	V _{ipp}	V _{opp}	$\Delta arphi$	Α
100Hz	4.4V	6.4V	≈-90°	1.46
4kHz	4.4mV	0.41V	≈-90°	/

理论上,当输入频率为100Hz时,输出幅值增加倍数为: $A_f=rac{1}{RC\omega}=1.59$,可以看到,最终输出波形与理论值基本相似。

由于运放器GWB与SR的限制,我们可以计算频率的限制值:

运放器的
$$GWB=0.7MHz,\ SR=3V/\mu S.$$
 积分放大电路的基本放大倍数为: 10 $\therefore SR \geq 2\pi f V_{om} \therefore f_m = 238kHz$ $\therefore GWB \geq 100A \cdot f_m \therefore f_m \approx 1kHz$

所以当f=4kHz有一个明显的毛刺在图片上。而当频率再高,这个毛刺的范围会被扩大,逐渐变成三角波。

结果分析

运放电路可以将输入电压进行积分变换,变换的放大倍数与输入电阻和电容的大小有关。输入电路的频率有一定的 范围,当频率过高,则输出波形会产生毛刺,而频率再过高则会变化为三角波。

Part4: 微分电路

1. 采用上述基本微分电路进行仿真,发现,当输入正弦波时,输出波形为sin的反向微分,但是,激跃响应的输出波形并不理想放大输出波形后可以发现,输出的波形是一个振荡的图线。由于电路的负反馈作用,输出的幅值不断减小。

$$v_o = -i_R R = -RC rac{\mathrm{d} v_s}{\mathrm{d} t}$$

理论上输出波形应该没有振荡,但是由于激跃输出的频率可认为非常高,所以产生了自激振荡噪声。为了消除该噪声,采用电容,电阻进行补偿。

2. 改进后的电路如下图, 当输入1kHz, 1Vp的方波时, 输出右下图振荡图形。

- 采用RC串联的方式,增加时间常数,使电路频带损失比原来小一些。
- C₁作为负反馈的一部分,使得负反馈的相位滞后,破坏运放自激振荡的条件。而,由于补偿的是小电容,在低频时可视为开路基本不影响电路的输出性质。