Politecnico di Milano - Facoltà di Ingegneria dei Sistemi - A. A. 2009/2010 Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica Metodi Analitici (20-9-10) - Prof. I. FRAGALÀ

COGNOME E NOME:	N. I	MATRICOLA:	

I. ANALISI COMPLESSA

Si consideri la funzione di variabile complessa

$$f(z) := \frac{(1 - e^z)(z^2 - \pi^2)}{\sin z} \ .$$

- (i) Determinare le singolarità isolate di f e classificarle.
- (ii) Calcolare l'integrale di f sul cerchio $|z|=(3\pi)/2$ percorso una volta in senso orario.
- (i) Le singolarità isolate di f sono i punti $z_k = k\pi$ al variare di $k \in \mathbb{Z}$. Si tratta di poli semplici eccetto i casi $k = 0, \pm 1$ che sono singolarità eliminabili.
- (ii) Poiché il cerchio $|z|=3\pi/2$ contiene solo le singolarità eliminabili di f, l'integrale assegnato è nullo.

II. ANALISI FUNZIONALE

Enunciare il teorema di convergenza dominata di Lebesgue e illustrarne qualche applicazione tramite esempi e controesempi.

Si vedano le slides del corso o uno dei testi consigliati.

III. SERIE/TRASFORMATA DI FOURIER

Data $\varphi \in L^2(\mathbb{R})$, si consideri l'equazione differenziale

$$u - 4u'' = \varphi , \qquad x \in \mathbb{R}$$

Discutere esistenza e unicità di soluzioni $u \in L^2(\mathbb{R})$ e determinarle esplicitamente.

Trasformando l'equazione si ottiene

$$(1+4\xi^2)\widehat{u}(\xi) = \widehat{\varphi}(\xi) ,$$

da cui

$$\widehat{u}(\xi) = \frac{\widehat{\varphi}(\xi)}{1 + 4\xi^2} \ ,$$

formula che determina in modo univoco la trasformata di una soluzione.

Antitrasformando si ottiene

$$u(x) = \varphi(x) * \frac{1}{2}e^{-\frac{|x|}{2}}$$
.

Tale soluzione appartiene a $L^2(\mathbb{R})$, poiché $\varphi \in L^2(\mathbb{R})$ e $e^{-\frac{|x|}{2}} \in L^1(\mathbb{R})$.

La soluzione trovata è anche l'unica in $L^2(\mathbb{R})$ per la biunivocità della trasformata di Fourier da $L^2(\mathbb{R})$ in $L^2(\mathbb{R})$.