Sensor-Aware Augmented Reality Addressing Real-World HMI Challenges

Dr. Liu Ren

Global Head and Chief Scientist, HMI Bosch Research North America Palo Alto, CA

Sensor-Aware Augmented Reality Bosch Overview

Bosch is one of the world's leading international providers of technology and services

- 375,000¹ Bosch associates
- More than 440¹ subsidiary companies and regional subsidiaries in some 60¹ countries
- Including its sales and service partners, Bosch is represented in some 150¹ countries.

Mobility Solutions

Sensor-Aware Augmented Reality Human Machine Interaction (HMI) Research in Bosch

Car Infotainment

Sensor-Aware Augmented Reality Key Success Factors of HMI Products

Sensor-Aware Augmented Reality Global HMI Research Team

Liu Ren Short Bio

BOSCH • Global Head and Chief Scientist, HMI, Bosch Research

Ph.D. and M.Sc. in Computer Science, **Carnegie Mellon** University

B.Sc. in Computer Science, **Zhejiang** University, P.R. China

Sensor-Aware Augmented Reality Real-World HMI Challenges for (Wearable) AR

Sensor-Aware Augmented Reality Bosch Product: CAP (Common Augmented Reality Platform)

Bosch CAP enables implementation of complete enterprises AR solutions

- Integrates the production of visual and digital content directly into the authoring process.
- Existing CAD, image and video data were used and save the expense of creating new content.

Sensor-Aware Augmented Reality Our Sensor-Aware Solutions

Sensor-Aware Augmented Reality Dynamic Occlusion Handling

Sensor-Aware Augmented Reality **Dynamic Occlusion Handling: Motivation**

Goals

Compact setup: single sensor

One near-range RGBD sensor

Optical see-through headmounted display (HMD)

Dynamic occlusion handling

Challenges

- Performance requirements for real-time AR applications
- Limited computational resources (e.g., on tablet)

Sensor-Aware Augmented Reality Dynamic Occlusion Handling: Our Sensor-Aware Solution

(i) Knowledge on RGBD Sensor

Depth data not reliable at the object boundary

- Structured Light/Stereo: matching is not accurate at the boundary
- Time of Flight: light signal reaching object boundary barely bounce back to the sensor

Edge Snapping-Based Algorithm

- Use color images as guidance
- Snap object boundaries in depth data towards the edges in color images
- Formulated as an optimization problem, efficiently solved via dynamic programming

Sensor-Aware Augmented Reality Dynamic Occlusion Handling: Expo

Dynamic Occlusion Handling: Experimental Results

Sensor-Aware Augmented Reality Robust Visual Tracking

Sensor-Aware Augmented Reality Robust Visual Tracking: Motivation

Background

- Visual tracking is an essential AR component
 - 6 DoF camera pose
 - Correctly place virtual objects in real world
- 2. Markerless Visual Tracking:
 - Visual SLAM (simultaneous localization and mapping)

Sensor-Aware Augmented Reality Robust Visual Tracking: Our Sensor-Aware Solution (σ-DVO)

Knowledge on RGBD Sensor

- Working well with textureless environments
- Less sensitive to lighting condition changes
- Noise of depth measurement grows quadratically as depth increases

RGBD Dense Visual Odometry

- Estimate the relative pose between two given frames based on residuals (front-end of visual SLAM)
- Utilize all pixels from RGBD images
- Incorporate sensor noise model to guide pose optimization

Previous Frame

Current Frame

Sensor-Aware Weighting

Weight decreases as noise of depth measurement grows

Sensor-Aware Augmented Reality Robust Visual Tracking: Our Sensor-Aware Solution (σ-DVO)

Bayesian Framework

 For better robustness and accuracy, we formulated the optimization problem in a Bayesian framework

 $p(pose|residuals) \propto p(residuals|pose) \cdot p(pose)$

Early approaches

- Assume uniform distribution of residuals
 - ✓ All the pixels share the same weight

The state-of-the-art approach (DVO[1])

- Find an empirical distribution via experiments
 - ✓ Weights only depends on residuals

Our sensor-aware approach (σ-DVO)

- Explore the source of residuals, especially based on sensor characteristics
- Develop a sensor noise model to generate distribution of residuals
 - ✓ Decrease weights of pixels with either noisy sensor measurement or high residuals
- Easily incorporate sensor-specific noise model for different sensors to customize pose optimization for best performance

[1] Christian Kerl, Jürgen Sturm, and Daniel Cremers. "Dense visual SLAM for RGB-D cameras." 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013.

Sensor-Aware Augmented Reality Robust Visual Tracking: Experimental Results

Visual Odometry

ATE: Absolute Tracking Error [m], RPE: Relative Pose Error [m/s]

Dataset	DVO ^[1]		Our approach (σ-DVO)		
	ATE	RPE	ATE	RPE	
fr1/360	0.415	0.153	0.229	0.110	
fr1/desk	0.109	0.048	0.067	0.039	
fr1/desk2	0.261	0.074	0.088	0.065	
fr1/floor	0.242	0.070	0.226	0.053	
fr1/room	0.459	0.092	0.314	0.063	
fr1/rpy	0.216	0.065	0.072	0.046	
fr1/xyz	0.102	0.05	0.052	0.036	
fr2/desk	0.561	0.038	0.184	0.016	
fr2/large	4.370	0.240	0.724	0.134	
fr2/rpy	0.501	0.039	0.188	0.012	
fr2/xyz	0.497	0.030	0.188	0.010	
fr3/office	0.485	0.044	0.164	0.014	
average	0.684	0.067	0.208	0.050	

Visual SLAM *

Absolute Tracking Error [m]

Dataset	RGB-D SLAM ^[2]	MRSM ap ^[3]	Kintinu ous ^[4]	ElasticFu sion ^[5]	DVO SLAM ^[1]	Our SLAM approach
r1/desk	0.023	0.043	0.037	0.020	0.021	0.019
fr2/xyz	0.008	0.020	0.029	0.011	0.018	0.018
fr3/office	0.032	0.042	0.030	0.017	0.035	0.015
fr1/360	0.079	0.069	-	-	0.083	0.061

^{*} σ -DVO is extended to σ -DVO SLAM by combining the front end (visual odometry) with the backend (pose-graph optimization)

- Our σ-DVO outperforms DVO significantly in all the datasets. On average, **70%** reduction in ATE and **25%** reduction in RPE
- σ-DVO SLAM outperforms the state-of-the-art SLAM algorithms in most of the RGB-D datasets. On average **25% reduction** in ATE

^[1] Kerl, et al. "Dense visual SLAM for RGB-D cameras." 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

^[2] Endres, et al. "An evaluation of the RGB-D SLAM system." Robotics and Automation (ICRA), 2012.

^[3] Stückler, et al. "Model Learning and Real-Time Tracking using Multi-Resolution Surfel Maps". AAAI, 2012.

^[4] Whelan, et al. "Kintinuous: Spatially extended kinectfusion." Proc. Workshop RGB-D, Adv. Reason. Depth Cameras, 2012.

^[5] Whelan, et al. "ElasticFusion: Dense SLAM without a pose graph." Proc. Robotics: Science and Systems, 2015.

Sensor-Aware Augmented Reality Robust Visual Tracking: Experimental Results

Sensor-Aware Augmented Reality Deep Learning for Augmented Reality?

- Require semantic understanding of the environments & context
- Modern AI technologies, e.g., Deep Learning, could be effective approaches

Sensor-Aware Augmented Reality Summary and Outlook

The three "I"s (Intuitive, Interactive, Intelligent) are key success factors of Human Machine Interaction (HMI) solutions.

2 Sensor-aware approaches that leverage sensor knowledge and machine learning are effective to address real-world HMI challenges.

Using the right AI technology to address the right problem. Deep Learning, could be effective for core AR solutions.

Thank You

We're looking for good research scientists and interns!

(Send CV to rbvisualcomp@gmail.com)

