ANO: 10° ANO DATA: MAIO

TEMA: POLINÓMIOS (AULA 7)

TIPO: GUIÃO DE APOIO #ESTUDOEMCASA

LR MAT EXPLICAÇÕES

(A) Acede à aula a partir do link:

https://www.facebook.com/SRE.GRM/videos/1131816367177802/

(B) Resolve os exercícios seguintes:

1. Considera os monómios na variável x.

$$A(x) = \frac{1}{2}x^2$$

$$B(x) = \frac{1}{6}x \times (-3x)$$

$$C(x) = -1$$

$$D(x) = 0$$

$$E(x) = x^2 \times \left(-\frac{1}{2}\right)$$

- 1.1 Indica:
 - (a) os monómios constantes;
 - (b) o monómio nulo;
 - (c) os monómios que estão escritos na forma canónica;
 - (d) dois monómios iguais;
 - (e) dois monómios semelhantes não iguais.
- 1.2 Completa a tabela seguinte.

Monómio	Forma canónica	Parte numérica ou coeficiente	Parte literal	Grau
A(x)				
B(x)				
C(x)				
D(x)			Não tem	Indeterminado
E(x)				

1.3 A expressão A(x) + B(x) é um monómio? Justifica a tua resposta.

2. Considera os seguintes polinómios: $P(x) = 3x - \frac{1}{2}$; $Q(x) = x^2 + 3x - 2$ e $R(x) = -3x^2 - \frac{3}{5}$.

Determina os polinómios reduzidos e ordenados definidos por:

2.1
$$P(x) + Q(x)$$

2.2
$$P(x) - Q(x)$$

2.3
$$P(x) - Q(x) - R(x)$$

2.4
$$P(x) \times Q(x)$$

2.5
$$Q(x) \times R(x) - P(x)$$

2.6
$$Q(x) \times [R(x) - P(x)]$$

- **3.** Sejam $A \in B$ dois polinómios na variável x tais que: $A(x) = 2x^3 x + 3$ e $B(x) = x^2 + 5x 2$.
 - 3.1 Representa na forma reduzida e indica o grau dos polinómios:

(a)
$$A(x) + B(x)$$

(b)
$$A(x) - B(x)$$

(c)
$$A(x) \times B(x)$$

(d)
$$(B(x))^2 + A(x)$$

- 3.2 Seja C um polinómio do tipo $C(x) = -3x^n + 1$, com $n \in \mathbb{N}$. Determina n, sabendo que $C(x) \times A(x)$ é um polinómio de grau 5.
- 4. Determina o polinómio que:
 - 4.1 dividido por $x^2 + 3x 1$ tem como quociente 3x 2 e resto 5x + 4.
 - 4.2 dividido por x 1 tem como quociente $x^2 + x + 1$ e resto zero.
- 5. Determina o quociente e o resto de cada uma das seguintes divisões.

$$5.1(2x^3 + x^2 - 3x + 2) : (x^2 + 3x)$$

$$5.2(4x^3 + x^2 - 3x + 1) : (x - 2)$$

$$5.3(4x^3 - 5x + 1) : (2x^2 + 3)$$

$$5.4 (4x^4 - 5x^3 + x^2 - x - 3) : (3x^2 - 3x + 2)$$

6. Mostra que o polinómio M(x) é divisível pelo polinómio N(x), em que:

$$M(x) = x^5 + x^4 - x^3 + 2$$
 e $N(x) = x^3 - 2x + 2$