Occupancy Grids

Course 4, Module 2, Lesson 1

Learning Objectives

- Define occupancy grid
 - o Creation of occupancy grid using autonomous car sensors
- Noise inherent to measurement data used to construct occupancy grid
- Handling noisy data by using Bayesian updates

Occupancy Grid

- Discretized fine grain grid map
 - Which can be 2D or 3D
- Occupancy by a static object
 - Trees and buildings
 - Curbs and other non drivable surfaces
- Each cell is a binary value

$$m^i \in \{0,1\}$$

Assumption of Occupancy Grid

- Static environment
- Independence of each cell
- Known vehicle state at each time step

Occupancy Grid - Sensor

LIDAR Data Filtering

Range Sensor

 2D range sensor measuring distance to static objects

LIDAR Data Noise

Sensor Noise

Map Uncertainties

Probabilistic Occupancy Grid

 Probability of occupancy will be stored

$$m^i \in \{0,1\}$$

A belief map is built

$$bel_t(m^i) = p(m^i|(y,x))$$

Current map cell Sensor measurement for given cell

 Threshold of certainty will be used to establish occupancy

Bayesian Update of the Occupancy Grid

 To improve robustness multiple timesteps are used to produce the current map

$$bel_t(m^i) = p(m^i|(y,x)_{1:t})$$

 Bayes' theorem is applied for at each update step for each cell

Normalizer constant

$$bel_t(m^i) = (y_t|m^i)bel_{t-1}(m^i)$$

Occupancy Grid in Action

Summary

- Define occupancy grid
 - o Creation of occupancy grid using lidar data
- Noise inherent to lidar data used to construct occupancy grid
- Creating accurate occupancy grid with noisy data by using Bayesian updates