Part 3 Content

- Import Libraries
- · Load myData CSV File
- Q3: Which directors, writers, actors and actresses make the most profit (Medium Budget)?
- Q4: Which genres make the most profit (Medium Budget)?

Import Libraries

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        from functions import *
```

Load myData CSV File

```
In [2]: #myData.csv file is created in Part 1 python file. It combined all required
        df = pd.read csv('zippedData/myData.csv')
        df.info()
        <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 53305 entries, 0 to 53304 Data columns (total 18 columns): # Column Non-Null Count Dtype _____ -----____ 0 Unnamed: 0 53305 non-null int64 53305 non-null object release_date 1 2 53305 non-null object production budget 53305 non-null float64 3 53305 non-null float64 domestic gross worldwide gross 5 53305 non-null float64 tconst 53305 non-null object 53265 non-null object genres averagerating 53305 non-null float64 9 numvotes 53305 non-null int64 10 nconst 53305 non-null object 11 category 53305 non-null object 12 characters 21488 non-null object 13 primary_name 53305 non-null object float64 14 death year 1243 non-null 53305 non-null int64 15 release year 16 profit gross 53305 non-null float64 17 profit rate 53305 non-null float64 dtypes: float64(7), int64(3), object(8)

memory usage: 7.3+ MB

In [3]: |#df[df.primary_name =='Emma Thompson']

Q3: Which directors, writers, actors and actresses make the most profit? (Medium budget)

```
In [4]: # Copy dataframe with selected columns
    selected_columns2 = ['category', 'primary_name', 'death_year', 'movie', 'pr
    df2 = df[selected_columns2].copy() ## Select columns

# Clean duplicates
    df2.drop_duplicates(subset=None, keep='first', inplace=True)

#Select the movies with production_budget > $100,000,000
    df2 = df2[(df2.production_budget > 20000000) & (df2.production_budget <= 10

# Remove the dead people
    df2 = df2[df2.death_year.isnull()]

#Drop the movies with release year before 1990
    df2.drop(df2[df2.release_year < 1990].index, inplace=True)

print(df2.shape)
    df2.head(20)</pre>
```

(8267, 8)

Out[4]:

	category	primary_name	death_year	movie	production_budget	profit_gross	prc
6397	producer	Gary Barber	NaN	The Tourist	100000000.0	178731369.0	2.
6398	producer	Patrick Crowley	NaN	The Other Guys	100000000.0	70936470.0	1.
6399	actor	Chris Hemsworth	NaN	In the Heart of the Sea	100000000.0	-10306691.0	0.
6401	producer	Barry Levine	NaN	Hercules	100000000.0	143388614.0	2.
6403	producer	Riza Aziz	NaN	The Wolf of Wall Street	100000000.0	289870414.0	3.
6405	director	Florian Henckel von Donnersmarck	NaN	The Tourist	100000000.0	178731369.0	2.
6410	actor	Biswajit Chakraborty	NaN	Hercules	100000000.0	143388614.0	2.
6414	actor	Joseph Fiennes	NaN	Hercules	100000000.0	143388614.0	2.
6418	director	Brett Ratner	NaN	Hercules	100000000.0	143388614.0	2
6420	writer	Steve Moore	NaN	Hercules	100000000.0	143388614.0	2
6423	cinematographer	Supriyo Dutta	NaN	Hercules	100000000.0	143388614.0	2
6424	writer	Jérôme Salle	NaN	The Tourist	100000000.0	178731369.0	2.
6425	actor	Parambrata Chatterjee	NaN	Hercules	100000000.0	143388614.0	2.
6427	producer	Roger Birnbaum	NaN	The Tourist	100000000.0	178731369.0	2.
6429	producer	Shyamsundar Dey	NaN	Hercules	100000000.0	143388614.0	2.
6430	actress	Paoli Dam	NaN	Hercules	100000000.0	143388614.0	2.

	category	primary_name	death_year	movie	production_budget	profit_gross	pro
6431	producer	Avi Lerner	NaN	The Expendables 2	100000000.0	211979256.0	3.
6433	producer	Avi Lerner	NaN	The Expendables 3	100000000.0	109461378.0	2.
6436	actor	Sylvester Stallone	NaN	The Expendables 2	100000000.0	211979256.0	3
6438	writer	James V. Hart	NaN	Epic	100000000.0	162794441.0	2

In [8]: # Director, call function categoryStudy(df2, 'director', 15, 12, 'med')

Total number: 134

Best director List: ['Chris Renaud', 'Genndy Tartakovsky', 'Paul Feig', 'Phil Lord', 'Olivier Megaton', 'Steve Martino', 'Jake Kasdan', 'Pierre C offin', 'James Foley', 'Kyle Balda', 'Christopher Miller']

In [9]: # Writer, call function categoryStudy(df2, 'writer', 20, 15, 'med')

Total number: 218

Best writer List: ['Wellesley Wild', 'Chris McKenna', 'Niall Leonard', 'Alec Sulkin', 'Erik Sommers', 'Craig Mazin', 'Dan Hageman', 'Robert Mark Kamen', 'Kevin Hageman', 'Billy Ray', 'Anthony McCarten', 'Cinco Paul', 'E.L. James', 'Brian Lynch', 'Stephenie Meyer', 'Ken Daurio']


```
In [10]: df2[df2.primary_name == 'Selena Gomez']
```

Out[10]:

	category	primary_name	death_year	movie	production_budget	profit_gross	profit_rate
8020	actress	Selena Gomez	NaN	Hotel Transylvania	85000000.0	293505812.0	4.45301(
8582	actress	Selena Gomez	NaN	Hotel Transylvania 2	80000000.0	389500298.0	5.868754
10775	actress	Selena Gomez	NaN	Hotel Transylvania 3: Summer Vacation	65000000.0	462079962.0	8.108922

In [11]: # Actor, call function categoryStudy(df2, 'actor', 20, 15, 'med')

Total number: 321

Best actor List: ['Bradley Cooper', 'Denis Leary', 'Marwan Kenzari', 'Ed Skrein', "Dylan O'Brien", 'Eric Stonestreet', 'Aziz Ansari', 'Neil Patric k Harris', 'Andy Samberg', 'Seth MacFarlane', 'Taylor Lautner', 'Eric Joh nson', 'Jamie Dornan', 'Benjamin Bratt', 'Thomas Brodie-Sangster', 'Micha el Keaton']


```
In [12]: # Actress, call function
  categoryStudy(df2, 'actress', 15, 10, 'med')
```

Total number: 167
Best actress List: ['Kristen Wiig', 'Sandra Bullock', 'Jennifer Lawrenc e', 'Eloise Mumford', 'Jennifer Ehle', 'Hailee Steinfeld', 'Dakota Johnson', 'Famke Janssen', 'Selena Gomez', 'Ali Larter', 'Miranda Cosgrove']

Q4: Which genre brings highest profit? (medium budget)

```
In [13]: # Copy dataframe with selected columns
    selected_columns3 = ['movie', 'production_budget', 'genres', 'profit_gross'
    df3 = df[selected_columns3].copy() ## Select columns

# Clean duplicates
    df3.drop_duplicates(subset=None, keep='first', inplace=True)

#Select the movies with production_budget > $100,000,000
    df3 = df3[(df3.production_budget > 20000000) & (df3.production_budget <= 10

#Drop the movies with release date before 1990
    df3.drop(df3[df3.release_year < 1990].index, inplace=True)

print(df3.shape)
    df3.head(20)</pre>
```

(2019, 6)

Out[13]:

	movie	production_budget	genres	profit_gross	profit_rate	release_year
6397	The Tourist	100000000.0	Action	178731369.0	2.787314	2010
6398	The Other Guys	100000000.0	Crime	70936470.0	1.709365	2010
6399	In the Heart of the Sea	100000000.0	Adventure	-10306691.0	0.896933	2015
6400	In the Heart of the Sea	100000000.0	Action	-10306691.0	0.896933	2015
6401	Hercules	100000000.0	Adventure	143388614.0	2.433886	2014
6402	Hercules	100000000.0	Action	143388614.0	2.433886	2014
6403	The Wolf of Wall Street	100000000.0	Crime	289870414.0	3.898704	2013
6404	The Other Guys	100000000.0	Action	70936470.0	1.709365	2010
6406	The Tourist	100000000.0	Thriller	178731369.0	2.787314	2010
6407	The Tourist	100000000.0	Adventure	178731369.0	2.787314	2010
6408	Hercules	100000000.0	Fantasy	143388614.0	2.433886	2014
6409	In the Heart of the Sea	100000000.0	Biography	-10306691.0	0.896933	2015
6410	Hercules	100000000.0	Comedy	143388614.0	2.433886	2014
6416	The Other Guys	100000000.0	Comedy	70936470.0	1.709365	2010
6431	The Expendables 2	100000000.0	Adventure	211979256.0	3.119793	2012
6432	The Expendables 2	100000000.0	Thriller	211979256.0	3.119793	2012
6433	The Expendables 3	100000000.0	Action	109461378.0	2.094614	2014
6434	The Expendables 3	100000000.0	Adventure	109461378.0	2.094614	2014
6435	The Expendables 3	100000000.0	Thriller	109461378.0	2.094614	2014
6436	The Expendables 2	100000000.0	Action	211979256.0	3.119793	2012

```
In [14]:
         # Plot genres
         genre_series1 = df3.groupby('genres')['profit_gross'].median().sort_values(
         genre_series2 = df3.groupby('genres')['profit_rate'].median().sort_values(a
         fig, axes = plt.subplots(1, 2, figsize=(20, 15))
         plt.subplots_adjust(wspace=0.4)
         sns.set(font_scale=1.5)
         genre_series1.plot.barh(ax=axes[0])
         axes[0].set_title('Median Profit per Genre ($20,000,000 < Production Budget</pre>
         axes[0].set_xlabel('Median Profit')
         axes[0].set_ylabel('Genres')
         genre series2.plot.barh(ax=axes[1], color='green')
         axes[1].set_title('Median Profit Rate per Genre ($20,000,000 < Production B
         axes[1].set_xlabel('Median Profit Rate')
         axes[1].set_ylabel('Genres')
         plt.savefig('figures/genres-profit1_medBudget.png')
```


In [15]: df3.groupby('genres').count().sort_values(by='movie', ascending=False)

movie production_budget profit_gross profit_rate release_year

Out[15]:

genres					
Drama	366	366	366	366	366
Comedy	272	272	272	272	272
Action	265	265	265	265	265
Adventure	168	168	168	168	168
Thriller	157	157	157	157	157
Crime	150	150	150	150	150
Romance	85	85	85	85	85
Biography	84	84	84	84	84
Horror	66	66	66	66	66
Mystery	62	62	62	62	62
Animation	58	58	58	58	58
Fantasy	54	54	54	54	54
Sci-Fi	54	54	54	54	54
Family	45	45	45	45	45
Documentary	44	44	44	44	44
History	29	29	29	29	29
Sport	20	20	20	20	20
Music	18	18	18	18	18
War	9	9	9	9	9
Western	6	6	6	6	6
Musical	4	4	4	4	4
News	1	1	1	1	1

```
In [17]: # Select the popular genres names with higher number of movies
         popular_genres = list(df3.groupby('genres').count().sort_values(by='movie',
         popular_genres
Out[17]: ['Drama',
          'Comedy',
          'Action',
          'Adventure',
          'Thriller',
          'Crime',
          'Romance',
          'Biography',
          'Horror',
          'Mystery',
          'Animation',
          'Fantasy',
          'Sci-Fi',
          'Family',
          'Documentary',
          'History',
          'Sport',
          'Music']
In [18]: # Filter the data for the popular genres
         df3_pop = df3.loc[df3['genres'].isin(popular_genres)]
         df3_pop
```

Out[18]:

	movie	production_budget	genres	profit_gross	profit_rate	release_year
6397	The Tourist	100000000.0	Action	178731369.0	2.787314	2010
6398	The Other Guys	100000000.0	Crime	70936470.0	1.709365	2010
6399	In the Heart of the Sea	100000000.0	Adventure	-10306691.0	0.896933	2015
6400	In the Heart of the Sea	100000000.0	Action	-10306691.0	0.896933	2015
6401	Hercules	100000000.0	Adventure	143388614.0	2.433886	2014
26849	Kidnap	21000000.0	Drama	13836080.0	1.658861	2017
26862	Kidnap	21000000.0	Crime	13836080.0	1.658861	2017
27021	Pulse	20500000.0	Fantasy	9741435.0	1.475192	2006
27022	Pulse	20500000.0	Drama	9741435.0	1.475192	2006
27025	Pulse	20500000.0	Sci-Fi	9741435.0	1.475192	2006

1997 rows × 6 columns

```
In [19]: # plots for popular genres
    genre_series1 = df3_pop.groupby('genres')['profit_gross'].median().sort_val
    genre_series2 = df3_pop.groupby('genres')['profit_rate'].median().sort_valu

fig, axes = plt.subplots(1, 2, figsize=(20, 12))
    plt.subplots_adjust(wspace=0.4)
    sns.set(font_scale=1.5)

genre_series1.plot.barh(ax=axes[0])
    axes[0].set_title('Median Profit per Popular Genres ($20,000,000 < Producti
    axes[0].set_xlabel('Median Profit')
    axes[0].set_ylabel('Genres')

genre_series2.plot.barh(ax=axes[1], color='green')
    axes[1].set_title('Median Profit Rate per Popular Genres ($20,000,000 < Pro
    axes[1].set_xlabel('Median Profit Rate')
    axes[1].set_ylabel('Genres')

plt.savefig('figures/genres-profit2_medBudget.png')</pre>
```

