Hochschule Pforzheim

- Fakultät Technik -

Studiengang:

Elektrotechnik/Informationstechnik (Bachelor) Technische Informatik (Bachelor)

Fach: Kommunikationstechnik /

Studiensemester:

Signale und Systeme

Datum: 11.02.2011

Prüfer: Prof. Dr.-Ing. Norbert Höptner

Bearbeitungszeit: 45 Minuten

Hilfsmittel: Vorlesungsskripten, Mitschriften (incl. gelöster Übungsaufgaben), Fachbücher, Taschenrechner (nicht programmierbar, nicht grafikfähig)

Hinweis: Modul LV-Nr. EEN3071/3072

Matrikel-Nummer:	
Name, Vorname:	

Aufgabe 1 (15 Punkte)

Gegeben ist das im Folgenden dargestellte Signal x(t).

Ein System, das mit x(t) erregt wird, antwortet mit y(t) = x(1/2 - t/2).

- a) Skizzieren Sie y(t).
- b) Zerlegen Sie das Signal y(t) in einen geraden Signalanteil $y_g(t)$ und ungeraden Signalanteil $y_u(t)$.
- c) Stellen Sie die Gleichung zur Berechnung des Spektrums $Y_g(f)$ für den geraden Signalanteil $y_g(t)$ auf (keine Lösung erforderlich!).

Aufgabe 2 (20 Punkte)

Gegeben ist die Impulsantwort eines LTI-Systems mit:

$$h(t) = 0.5 \text{ für } 0 < t < 3 \text{ und } h(t) = 0 \text{ sonst.}$$

Am Eingang des LTI-Systems liegt ein zufälliges Signal mit der Autokorrelationsfunktion

$$\varphi_{XX}(\tau) = 2 \delta(\tau)$$

an. Berechnen Sie das Leistungsdichtespektrum $\Phi_{yy}(f)$ am Ausgang des LTI-Systems.

Aufgabe 3 (10 Punkte)

Gegeben sei eine Schar von Gleichspannungen $x(n,t) = a_n$. Die Amplitude a_n kann entsprechend einer Gleichverteilung einen der Werte -5 V oder 8 V annehmen.

- a) Wie groß ist der Scharmittelwert?
- b) Wie groß ist die Varianz?