ΜΥΥ601 Λειτουργικά Συστήματα Εαρινό 2024

Μάθημα 3 Νήματα

Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων

1

Περίγραμμα

- Εισαγωγή
- Πολυνηματισμός
- Υλοποίηση
- Πολυεπεξεργαστές
- Solaris
- Linux
- Windows
- Pthreads

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Χαρακτηριστικά Διεργασιών

- Κατοχή πόρων
 - Ο χώρος εικονικών διευθύνσεων περιέχει την εικόνα διεργασίας
 - Κύρια μνήμη, κανάλια και συσκευές Ε/Ε, αρχεία
 - Ονομάζεται *διεργασία* (process) ή *στοιχειώδης εργασία (task)*
- Δρομολόγηση εκτέλεσης
 - Μονοπάτι εκτέλεσης μέσα από ένα ή περισσότερα προγ/τα
 - Δρομολογήσιμη οντότητα με προτεραιότητα διεκπεραίωσης
 - Ονομάζεται *νήμα (thread)* ή *ελαφριά διεργασία (lightweight process)*

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **3**

3

Πολυνηματισμός

- Ικανότητα του λειτουργικού συστήματος να
 - Υποστηρίζει πολλαπλά νήματα εκτέλεσης σε μία διεργασία

Εαρινό 2024

©Σ. Β. Αναστασιάδης

4

Πολυνηματικό Περιβάλλον

- Διεργασία: μονάδα καταχώρησης και προστασίας
 - Χώρος εικονικής μνήμης με εικόνα της διεργασίας
 - Προστατευμένη πρόσβαση στους επεξεργαστές, άλλες διεργασίες, αρχεία, Ε/Ε, κλπ.
- Νήμα: ανεξάρτητος μετρητής προγράμματος μέσα σε μια διεργασία
 - Ένα ή περισσότερα νήματα μέσα σε μια διεργασία
 - Κατάσταση εκτέλεσης νήματος (Εκτελούμενο, κλπ)
 - Περιβάλλον εκτέλεσης νήματος
 - Στοίβα εκτέλεσης
 - Στατική αποθήκευση για τοπικές μεταβλητές
 - Πρόσβαση στους πόρους της διεργασίας

Εαρινό 2024

©Σ. Β. Αναστασιάδης

5

5

Πλεονεκτήματα

- Ταχύτητα διαχείρισης
 - Χρόνος δημιουργίας
 - Χρόνος τερματισμού
 - Χρόνος αλλαγής νήματος μέσα σε μία διεργασία
 - Χρόνος επικοινωνίας μεταξύ νημάτων μέσα σε μία διεργασία
- Παραδείγματα
 - Προσκήνιο/παρασκήνιο, π.χ. εκτέλεση εντολών και απεικόνιση
 - Ασύγχρονη εκτέλεση, π.χ. περιοδική αποθήκευση δεδομένων
 - Ταχεία εκτέλεση, π.χ. ταυτόχρονη ανάγνωση/επεξεργασία εργασιών
 - Αρθρωτή δομή προγράμματος, π.χ. ταυτόχρονη πρόσβαση στο δίσκο και μεταφορά δεδομένων στο δίκτυο

Εαρινό 2024

©Σ. Β. Αναστασιάδης

6

Λειτουργικότητα

- Καταστάσεις
 - Εκτελούμενη, Έτοιμη, Αποκλεισμένη: παρόμοιες με των διεργασιών
- Πράξεις
 - Έναρξη
 - Όταν δημιουργείται μια διεργασία ή ένα νήμα δημιουργεί ένα άλλο
 - Καταχώρηση μνήμης καταχωρητών και στοίβας σε νέο νήμα
 - Αποκλεισμός
 - Αποθήκευση καταχωρητών και δεικτών στοίβας όταν το νήμα περιμένει
 - Άρση αποκλεισμού
 - Μετακίνηση νήματος από την ουρά Αποκλεισμένων στην ουρά Έτοιμων, όταν συμβεί το γεγονός
 - Τερματισμός
 - Αποδέσμευση χώρου καταχωρητών και στοίβας

Εαρινό 2024

©Σ. Β. Αναστασιάδης

7

7

Παράδειγμα

- Θεωρούμε
 - Έναν επεξεργαστή, μία διεργασία, ένα ή δύο νήματα
- Remote Procedure Call (RPC)
 - Απομακρυσμένη εξυπηρέτηση τύπου πελάτη/διακομιστή με κλήση διαδικασιών
- Αλλαγή νήματος
 - Μετά τον αποκλεισμό ή την ολοκλήρωση του εκτελούμενου νήματος

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B Running

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Δεύτερο Παράδειγμα

- Θεωρούμε
 - Έναν επεξεργαστή, δύο διεργασίες, τρία νήματα
- Αλλαγή νήματος
 - Αποκλεισμός εκτελούμενου νήματος ή εξάντληση κβάντου χρόνου

Εαρινό 2024

©Σ. Β. Αναστασιάδης

9

9

Νήματα Επιπέδου Χρήστη

- Διαχείριση νημάτων
 - Από βιβλιοθήκη νημάτων συνδεμένη με την εφαρμογή
 - Ο πυρήνας αγνοεί την ὑπαρξη νημάτων
- Βιβλιοθήκη νημάτων
 - Δημιουργεί και καταστρέφει νήματα
 - Περνάει μηνύματα και δεδομένα μεταξύ νημάτων
 - Δρομολογεί εκτέλεση νημάτων
 - Αποθηκεύει και επαναφέρει περιεχόμενα νημάτων

- Πλεονεκτήματα
 - Αλλαγή νημάτων σε επίπεδο χρήστη, εξειδικευμένη χρονοδρομολόγηση, μεταφερσιμότητα κώδικα εφαρμογών μεταξύ λειτουργικών συστημάτων
- Μειονεκτήματα
 - Κλήση συστήματος με αποκλεισμό αποκλείει όλα τα νήματα μιας διεργασίας
 - Μία διεργασία δεν αξιοποιεί πολλαπλούς διαθέσιμους επεξεργαστές

Εαρινό 2024

©Σ. Β. Αναστασιάδης

10

Νήματα Επιπέδου Πυρήνα

Διαχείριση νημάτων

- Διεπαφή προγραμματισμού εφαρμογών με τον πυρήνα
- Καθόλου κώδικας διαχείρισης νημάτων στην εφαρμογή
- Π.χ. Linux, Windows

Πλεονεκτήματα

- Νήματα από μία διεργασία σε πολλαπλούς επεξεργαστές
- Αποκλεισμένο νήμα δεν αποκλείει την διεργασία του
- Οι ρουτίνες πυρήνα μπορούν να είναι πολυνηματικές

Μειονεκτήματα

- Αλλαγή νημάτων απαιτεί μεταφορά του επιπέδου εκτέλεσης στον πυρήνα

11 Εαρινό 2024 ©Σ. Β. Αναστασιάδης

11

Συνδυασμένη Προσέγγιση

Υπηρεσία

- Συνδυασμός νημάτων επιπέδου χρήστη (ULT) και επιπέδου πυρήνα (KLT)
- Απεικόνιση των ULT σε ίσο ή μικρότερο πλήθος KLT
- Π.χ. Solaris

Βιβλιοθήκη επιπέδου χρήστη

- Δημιουργία, χρονοδρομολόγηση, συγχρονισμός νημάτων
- Προσαρμογή του πλήθους ΚLΤ σε εφαρμογή/μηχανή

Πυρήνας

- Τρέχει ΚLΤ σε πολλαπλούς επεξεργαστές
- Αλλάζει το KLT όταν μπαίνει σε αποκλεισμό

Εαρινό 2024 ©Σ. Β. Αναστασιάδης

12

12

Χρήστη

Χώρος Πυρήνα

Απόδοση Παράλληλου Λογισμικού

Νόμος του Amdahl

 $Speedup = \frac{\chi\rho\acute{o}vo\varsigma \quad \epsilon\kappa t\acute{e}\lambda\epsilon\sigma\eta\varsigma \quad \pi\rho\rho\gamma\rho\acute{a}\mu\mu\alpha\tau\circ\varsigma \quad \sigma\epsilon \quad \acute{e}v\alpha v \quad \epsilon\pi\epsilon\xi\epsilon\rho\gamma\alpha\sigma t\acute{v}}{\chi\rho\acute{o}vo\varsigma \quad \epsilon\kappa t\acute{e}\lambda\epsilon\sigma\eta\varsigma \quad \pi\rho\rho\gamma\rho\acute{a}\mu\mu\alpha\tau\circ\varsigma \quad \sigma\epsilon \quad N \quad \pi\alpha\rho\acute{a}\lambda\lambda\eta\lambda\circ\upsilon\varsigma \quad \epsilon\pi\epsilon\xi\epsilon\rho\gamma\alpha\sigma t\acute{e}\varsigma} = \frac{1}{(1-f) + \frac{f}{N}}$

опои

- f είναι το ποσοστό παραλληλοποιήσιμου κώδικα και
- (1-f) το ποσοστό του σειριακού κώδικα ενός προγράμματος
- Παραδείγματα για διάφορες τιμές του (1-f)

Εαρινό 2024

©Σ. Β. Αναστασιάδης

13

13

Κατηγορίες Υπολογιστικών Συστημάτων

- Απλής Εντολής Απλών Δεδομένων (SISD)
 - Ένας επεξεργαστής εκτελεί μια ροή εντολών
 - Λειτουργεί με δεδομένα αποθηκευμένα σε απλή μνήμη
- Απλής Εντολής Πολλαπλών Δεδομένων (SIMD)
 - Μια απλή εντολή ελέγχει την εκτέλεση πολλαπλών στοιχείων επεξεργασίας
 - Κάθε στοιχείο επεξεργασίας έχει τη δική του μνήμη δεδομένων
 - Π.χ. επεξεργαστές διανύσματος ή πίνακα, κάρτα γραφικών
- Πολλαπλών Εντολών Απλών Δεδομένων (MISD)
 - Ακολουθία από δεδομένα μεταφέρεται σε πολλαπλούς επεξεργαστές
 - Κάθε επεξεργαστής εκτελεί διαφορετική ακολουθία εντολών
 - Δεν υλοποιήθηκε ποτέ
- Πολλαπλών Εντολών Πολλαπλών Δεδομένων (MIMD)
 - Σύνολο από επεξεργαστές εκτελούν διαφορετικές ακολουθίες εντολών σε διαφορετικά δεδομένα

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Πολλαπλών Εντολών Πολλαπλών Δεδομένων

- Συστοιχία υπολογιστών (computer cluster)
 - Κάθε επεξεργαστής ένας αυτοτελής υπολογιστής
 - Επικοινωνία μεταξύ επεξεργαστών μέσω δικτύου
- Πολυπεξεργαστής κοινόχρηστης μνήμης (shared-memory multiprocessor)
 - Επεξεργαστές
 - Έχουν πρόσβαση σε κοινόχρηστη μνήμη
 - Προσπελάζουν προγράμματα και δεδομένα από την κοινόχρηστη μνήμη
 - Επικοινωνούν μέσω της κοινόχρηστης μνήμης
 - Εκτέλεση πυρήνα λειτουργικού συστήματος μπορεί να γίνεται
 - 1. Μόνο σε συγκεκριμένο επεξεργαστή (αρχιτεκτονική master/slave)
 - 2. Σε οποιουσδήποτε επεξεργαστές (συμμετρικός πολυεπεξεργαστής SMP)

Εαρινό 2024

©Σ. Β. Αναστασιάδης

15

15

Solaris

- Διεργασία
 - Κανονική διεργασία Unix
 - Περιλαμβάνει χώρο διευθύνσεων χρήστη,
 στοίβα και δομή ελέγχου διεργασιών
- Νήμα χρήστη (user thread)
 - Υλοποίηση από βιβλιοθήκη νημάτων στο χώρο διευθύνσεων της διεργασίας
 - Αόρατα στο λειτουργικό σύστημα
- Ελαφριά διεργασία (lightweight process, LWP)
 - Αντιστοιχεί σε ένα νήμα πυρήνα
 - Υποστηρίζει ένα ή πολλαπλά νήματα χρήστη
- Νήμα πυρήνα (kernel thread)
 - Δρομολογούνται από τον πυρήνα
 - Εκτελούνται σε έναν από τους επεξεργαστές

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Παράδειγμα

- Διεργασία 1
 - Ένα νήμα χρήστη αντιστοιχεί σε μία LWP, π.χ. πολύ απλή εφαρμογή
- Διεργασία 2
 - Πολλαπλά νήματα χρήστη αντιστοιχούν σε μία LWP, π.χ. πολλαπλά παράθυρα με ένα ενεργό
- Διεργασία 3
 - Πολλαπλά νήματα χρήστη πολυπλέκονται σε λιγότερες LWP
 - Π.χ. πολλά νήματα μερικά από τα οποία μπαίνουν σε αποκλεισμό Ε/Ε
- Διεργασία 4
 - Κάθε νήμα χρήστη αντιστοιχεί σε μία LWP
 - Π.χ. πολλαπλασιασμό πινάκων με σταθερό πλήθος γραμμών/νήμα
- Διεργασία 5
 - Πολλαπλά νήματα αντιστοιχούν σε λιγότερες LWP
 - Mia LWP αντιστοιχεί σε έναν επεξεργαστή π.χ εφαρμογή πραγματικού χρόνου

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **17**

17

Εκτέλεση Νήματος

- Ενεργή κατάσταση
 - Αντιστοιχεί σε μία LWP και τρέχει όταν τρέχει το νήμα πυρήνα
- Τι απενεργοποιεί ένα νήμα επιπέδου χρήστη ;
 - Άλλο νήμα χρήστη με υψηλότερη προτεραιότητα
 - Αίτηση παραχώρησης από το ίδιο το νήμα
 - Συγχρονισμός που επιτρέπει μόνο ένα νήμα να προχωρήσει
 - Αίτηση αναστολής από άλλο νήμα χρήστη
- Καταστάσεις
 - RUN: Έτοιμο για εκτέλεση
 - ONPROC: Εκτελείται
 - STOP: Σταματημένο (π.χ., για debugging)
 - SLEEP: Σε αποκλεισμόZOMBIE: Τερματισμένο
 - FREE: Πριν την πλήρη διαγραφή του

Εαρινό 2024

©Σ. Β. Αναστασιάδης

19

19

Καταστάσεις Διεργασίας Linux

- Το Linux δεν κάνει διάκριση μεταξύ διεργασιών και νημάτων
 - Running: Η διεργασία είναι είτε Εκτελούμενη (Executing) ή Έτοιμη (Ready)
 - Interruptible: Αναμένει κάποιο γεγονός, μπορεί να διακοπεί από σήμα
 - Uninterruptible: Αναμένει κάποιο γεγονός, αλλά αγνοεί τα σήματα
 - Stopped: Μπορεί να ξεκινήσει από άλλη διεργασία π.χ. έναν debugger
 - Zombie: Τερματίζεται αλλά παραμένει στον πίνακα διεργασιών

Εαρινό 2024

©Σ. Β. Αναστασιάδης

20

Windows

• Διεργασία

- Υλοποιείται σαν αντικείμενο που κατέχει πόρους
- Περιέχει ένα ή περισσότερα νήματα, καθένα εκτελείται ακολουθιακά
- Το κουπόνι ασφάλειας πρόσβασης ελέγχει την πρόσβαση σε άλλα αντικείμενα
- Ο χώρος εικονικής μνήμης αποτελείται από κομμάτια μνήμης
- Το τμήμα (section) δίνει πρόσβαση στην κοινόχρηστη μνήμη

Εαρινό 2024

©Σ. Β. Αναστασιάδης

21

21

Καταστάσεις Νημάτων

• Ready: Μπορεί να δρομολογηθεί για εκτέλεση

• Standby: Περιμένει μέχρι να γίνει διαθέσιμος ο επεξεργαστής

• Running: Εκτελείται σε έναν επεξεργαστή

• Waiting: Περιμένει να συμβεί ένα γεγονός π.χ. Ε/Ε

• Transition: Περιμένει να γίνουν διαθέσιμοι κάποιοι πόροι π.χ. μνήμη

• Terminated: Απομακρύνεται από το σύστημα

Εαρινό 2024

©Σ. Β. Αναστασιάδης

22

Εφαρμογή Android

- Υλοποιεί μια εφαρμογή με συστατικά ένα ή περισσότερα στιγμιότυπα από τα παρακάτω
 - Activities μοναδική οθόνη ως διεπαφή χρήστη,
 π.χ. λίστα με email, σύνθεση ή ανάγνωση email
 - Services εκτελούν λειτουργίες στο υπόβαθρο, π.χ. παίζουν μουσική, φέρνουν δεδομένα από το δίκτυο
 - Content providers διεπαφές σε δεδομένα εφαρμογών, π.χ., αποθηκεύουν δεδομένα σε σύστημα αρχείων, SQLite βάση δεδομένων, Ιστό
 - Broadcast receivers αποκρίνονται σε ανακοινώσεις του συστήματος, π.χ. κατέβασμα αρχείου, ένδειξη χαμηλής μπαταρίας
- Κάθε εφαρμογή τρέχει στην δική της διεργασία με ένα ή περισσότερα νήματα

Εαρινό 2024

©Σ. Β. Αναστασιάδης

23

23

Δραστηριότητα (Activity)

- Συστατικό εφαρμογής που παρέχει μια οθόνη
 - Επιτρέπει τον χρήστη να αλληλεπιδράσει με την εφαρμογή
 - Εμφανίζει μια διεπαφή χρήστη σε παράθυρο
- Πολλαπλές δραστηριότητες ανά εφαρμογή
 - Οργανώνονται σε στοίβα (last-in-first-out)
 - Η δραστηριότητα προσκηνίου αλληλεπιδρά με τον χρήστη
- Καταστάσεις δραστηριότητας
 - onCreate αρχικοποιείται η δραστηριότητα
 - onStart γίνεται ορατή η δραστηριότητα
 - onResume επιτρέπει εισαγωγή εισόδου χρήστη
 - onPause μετάβαση σε άλλη δραστηριότητα
 - onStop σταματά την δραστηριότητα

Εαρινό 2024

©Σ. Β. Αναστασιάδης

24

Νήματα POSIX

- Διεπαφή προγραμματισμού εφαρμογών
 - Ορίστηκε από την επιτροπή IEEE POSIX (Portable Operating System Interface) τον Ιούνιο 1995
- Κίνητρο
 - Καλύτερη απόδοση λόγω χαμηλότερης επιβάρυνσης σε σχέση με διεργασίες
- Πως γράφουμε πολυνηματικά προγράμματα

```
#include <pthread.h>
```

• Πως μεταγλωττίζουμε πολυνηματικά προγράμματα

```
gcc -lpthread ...
```

Εαρινό 2024

©Σ. Β. Αναστασιάδης

25

25

Δημιουργία

```
int pthread_create(
pthread_t
```

```
pthread_t *tid,

const pthread_attr_t *attr,

void *(*start) (void *),

void *arg );
```

- Δημιουργεί νήμα που εκτελεί τη συνάρτηση *start* με παράμετρο *arg*
- Καθορίζει κάποια χαρακτηριστικά στην παράμετρο attr π.χ. NULL
- Ταυτοποιεί το νέο νήμα στο γονικό μέσω της επιστρεφόμενης τιμής *tid*
- Επιστρέφει 0 αν επιτύχει, ΕΑGAIN σε ανεπάρκεια πόρων, ΕΙΝVAL σε άκυρο attr

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Αναμονή και Παραχώρηση

- int pthread_join(pthread_t thread, void **value ptr);
 - Αναμονή για τον τερματισμό του νήματος με ταυτότητα *thread*
 - Η τιμή εξόδου του νήματος επιστρέφεται μέσω της *value_ptr*
 - Το νήμα που ορίζει η thread πρέπει να δημιουργηθεί με χαρακτηριστικό PTHREAD_CREATE_JOINABLE
- int pthread_yield()
 - Το νήμα που την καλεί παραχωρεί τον επεξεργαστή σε άλλα που περιμένουν
 - Θα εκτελεστεί ξανά αφού τρέξουν όλες οι διεργασίες ίδιας προτεραιότητας

Εαρινό 2024

©Σ. Β. Αναστασιάδης

27

27

Τερματισμός

- int pthread exit(void *value ptr);
 - Τερματίζει αμέσως το νήμα που την κάλεσε
 - Επιστρέφει *value_ptr* στο νήμα που κάλεσε pthread_join για το τερματισμένο
 - Όταν η συνάρτηση main() τερματίζει
 - <u>ME</u> pthread_exit(), τα εκτελούμενα νήματα που δημιούργησε συνεχίζουν
 - <u>ΧΩΡΙΣ</u> pthread_exit(), τα εκτελούμενα νήματα που δημιούργησε τερματίζουν
- int pthread_detach(pthread_t thread);
 - Το νήμα δεν τερματίζει αμέσως
 - Όταν το νήμα τερματίσει, το σύστημα αποδεσμεύει τους πόρους του
 - Χρησιμοποιείται για να μην περιμένουμε τον τερματισμό ενός νήματος (pthread_join)
 - Δε χρειαζόμαστε την κλήση, αν δημιουργήσουμε το νήμα με χαρακτηριστικό PTHREAD_CREATE_DETACHED

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Χαρακτηριστικά

- pthread_attr_t attr;
 - Δηλώνουμε τη μεταβλητή χαρακτηριστικών attr
 - Π.χ. pthread_attr_t thread_attr;
- int pthread_attr_init (pthread_attr_t *attr);
 - Αρχικοποιούμε τη μεταβλητή χαρακτηριστικών *attr*
 - Π.χ. pthread_attr_init(&thread_attr);
- int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
 - Θέτουμε το κατάλληλο χαρακτηριστικό στη μεταβλητή *attr*
 - Π.χ. pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **29**