Example: $x^p - t$ in K[x] where $K = |F_p(t)|$, is an

example of an irreducible, non separable polynomial.

Definition: For any field K and $f(x) \in K[x]$ given by $f(x) = \sum_{i = 0}^{d} a_i x^i$. Define the derivative of f by $f'(x) = \sum_{i = 0}^{d} i a_i x^{i-1}$.

Proposition: For fige KIXI,

(i)
$$(f(x) + g(x))' = f'(x) + g'(x)$$

(ii)
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

(iii)
$$(f \circ g)(x)' = f'(g(x)) g'(x)$$
.

Suppose $f(x) \in K[x]$ is irreducible and not separable. Let

L be a splitting field. $f(x) = (x-a)^2 g(x) \in L[x]$ for some a $f'(x) = 2(x-a)g(x) + (x-a)^2 g'(x) \implies f'(a) = 0.$

But $f'(x) \in K[x]$ and $f'(\alpha) = 0$, so $f'(x) \in \langle f(x) \rangle$.

However, deg(f'(x)) < deg(f(x))

and $f'(x) = f(x)g(x) = \frac{1}{2} deg(f'(x)) > deg(f(x)) (absurd)$

or f'(x) = 0.

If $f(x) = \sum_{i=1}^{n} a_i x^i$, then $f'(x) = \sum_{i=0}^{n} i a_i x^{i-1} = 0$ if and only if $ia_i = 0$. Assuming d > 1, then not all a_i are zero so, some $i = 0 \implies$ char(K) $\neq 0$. In particular, char(K) = p.

in a Nine of the state of the s

and $ia_i = 0$ $\forall i$, so $a_i = 0$ $\forall i$ not divisible by p. So, $f(x) = \sum_{i=0}^{n} a_{pi} x^{pi} = \sum_{i=0}^{n} a_{pi} (x^p)^i = g(x^p) \text{ for some polynomial}$

g(x) e K[x]. So f(x) is irreducible and inseparable implies

 $f(x) = g(x^p)$ for some $g(x) \in K[x]$,

Note: Any irreducible polynomial (in characteristic p) can be written as $g(x^{pe})$ for $e \ge 0$ and g is separable.

If $f(x) = g(x^{p^e})$, the roots of fare p^e th roots of

a separable polynomial.

If char(K) = 0, $irreducible \Leftrightarrow separable$.

Note: Let char(K) = p and suppose $K = K^p = \{a^p : a \in K\}$ if $f(x) = g(x^p) = \sum_{i=0}^{d} a_i x^{pi} = \sum_{i=0}^{d} b_i^p x^{pi}$ for $a_i = b_i^p$, $b_i \in K$ $= \left(\sum_{i=0}^{d} b_i x^i\right)^p \implies f$ is reducible, so char(K) = p and $K = K^p$ implies irreducible \iff separable.

Definition: K is called perfect if char(K) = 0 or char(K) = p and $K = K^{p}$.

<u>Stronger</u>: K is perfect if every irreducible polynomial is separable.

Note: All finite fields are perfect.

Proof: If K is a finite field of char(K) = p, $\Psi(x) = x^p$ is additive $\Psi(x+y) = \Psi(x) + \Psi(y)$ and

 $\varphi(a) = \varphi(b) = 0 = \varphi(a) - \varphi(b) = \varphi(a-b) = (a-b)^{\rho} \Rightarrow a = b.$

So Ψ is one-to-one, and hence onto as well.

Theorem: If F/K is an extension, TFAE

(a) F is algebraic and Galors over K

(b) F is separable and splitting field

(c) F is a splitting field over K of a set of separable polynomials.

Proof: omitted.

Definition: An extension F/K is normal if every irreducible polynomial $f(x) \in K[x]$ which has a root in F factors as a product of linear factors $f(x) = \alpha (x-\alpha_1)(x-\alpha_2) \cdots (x-\alpha_n)$

Theorem: An algebraic extension is Galois if and only if it is normal and separable.

Note: If F/K is a finite separable extension, it has a basis $b_1, ..., b_n \in K$ and those have some (separable) minimal polynomials $f_1, ..., f_n$. The splitting field of these is a finite, separable splitting field, so its Galois extension of K containing F. This is called the Galois Closure over K Example: The Galois closure of $Q(\sqrt[4]{2})$ is $Q(i, \sqrt[4]{2})$ over Q

Galois Group of Polynomials

Definition: The Galois group of $f(x) \in K[x]$ is $Aut_{K}(F)$ for

a splitting field F of f over K.

Example: If deg(f) = 2 and f is irreducible, then the Galois group of f is \mathbb{Z}_2 , unless char(K) = 2 in which the

Galois group of t is \mathbb{Z}_2 , unless char(K) = \mathbb{Z} in which the Galois group could be trivial if $f(x) = x^2 - t$, for example.

Example: If deg(f) = 3, then the splitting field has degree at most 3!

Observation: If deg(f) = n, then the action of $Aut_k(F)$ on the roots of f (F a splitting field) gives an embedding $Aut_k(F) \hookrightarrow S_n$ Also, if f is separable, this subgroup of S_n is transitive.

Example: Let $f(x) = ax^3 + bx^2 + Cx + d$ irreducible, separable, then the Galois group is a transitive subgroup of S_3 , so it is S_3 or A_3 . Can we tell which one?

Definition: Let char(K) $\neq 2$. If $f(x) \in K[x]$ has distinct roots $\alpha_1, ..., \alpha_n$ (in some splitting field F), let

$$\Delta_f = \prod_{i \le j} (\alpha_i - \alpha_j)$$
 and $D_f = \Delta_f^2$

Df is called the discriminant of f.

Observations:

(i) Of eF

(ii) Df e K

Indeed, if $\sigma \in Gal(F/K)$, σ permutes the roots, so

