MATH 217 (Fall 2021)

Honors Advanced Calculus, I

Midterm Model Solutions

1. Let $S \subset \mathbb{R}^N$, and let $x \in \mathbb{R}^N$. Show that x is a cluster point of S if and only if there is a sequence in $S \setminus \{x\}$ converging to x.

Solution: Suppose that x is a cluster point of S. Then, for each $n \in \mathbb{N}$, there is $x_n \in B_{\frac{1}{n}}(x) \cap (S \setminus \{x\})$. It is clear that $x_n \to x$.

Conversely, suppose that there is a sequence $(x_n)_{n=1}^{\infty}$ in $S\setminus\{x\}$ such that $x_n \to x$. Let $\epsilon > 0$. Then there is $n_{\epsilon} \in \mathbb{N}$ such that $||x_{n_{\epsilon}} - x|| < \epsilon$, so that $x_{n_{\epsilon}} \in B_{\epsilon}(x) \cap (S\setminus\{x\})$. Therefore, x is a cluster point for S.

2. Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, and let $f,g:U \to \mathbb{R}$ be twice partially differentiable. Show that

$$\Delta(fg) = f\Delta g + 2(\nabla f) \cdot (\nabla g) + (\Delta f)g.$$

Solution: Let $j \in \{1, ..., N\}$, and note that

$$\begin{split} \frac{\partial^2}{\partial x_j^2} fg &= \frac{\partial}{\partial x_j} \left(\frac{\partial}{\partial x_j} fg \right) \\ &= \frac{\partial}{\partial x_j} \left(f \frac{\partial g}{\partial x_j} + \frac{\partial f}{\partial x_j} g \right), \quad \text{by the Product Rule,} \\ &= \frac{\partial}{\partial x_j} \left(f \frac{\partial g}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_j} g \right) \\ &= f \frac{\partial^2 g}{\partial x_j^2} + \frac{\partial g}{\partial x_j} \frac{\partial f}{\partial x_j} + \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial x_j} + \frac{\partial^2 f}{\partial x_j^2} g, \quad \text{again by the Product Rule,} \\ &= f \frac{\partial^2 g}{\partial x_i^2} + 2 \frac{\partial g}{\partial x_j} \frac{\partial f}{\partial x_j} + \frac{\partial^2 f}{\partial x_j^2} g. \end{split}$$

Taking the sum over j from 1 to N yields the claim.

3. Recall that $C \subset \mathbb{R}^N$ is called *path connected* if, for any $x, y \in C$, there is a continuous $\gamma \colon [0, 1] \to C$ with $\gamma(0) = x$ and $\gamma(1) = y$.

Show that:

- (a) if $C_1 \subset \mathbb{R}^{N_1}$ and $C_2 \subset \mathbb{R}^{N_2}$ are path connected, then so is $C_1 \times C_2 \subset \mathbb{R}^{N_1 + N_2}$;
- (b) if $C \subset \mathbb{R}^N$ is path connected and $f: C \to \mathbb{R}^M$ is continuous, then f(C) is path connected;
- (c) if $C_1, C_2 \subset \mathbb{R}^N$ is path connected, then so is $C_1 + C_2$.

Solution:

(a) Let $(x_1, x_2), (y_1, y_2) \in C_1 \times C_2$. As C_1 and C_2 are path connected, there are, for j = 1, 2, continuous $\gamma_j : [0, 1] \to C_j$ with $\gamma_j(0) = x_j$ and $\gamma_j(1) = y_j$. Consequently,

$$\gamma \colon [0,1] \to C_1 \times C_2, \quad t \mapsto (\gamma_1(t), \gamma_2(t))$$

is continuous with $\gamma(0) = (x_1, x_2)$ and $\gamma(1) = (y_1, y_2)$.

- (b) Let $x, y \in f(C)$. Choose, $u, v \in C$ such that f(u) = x and f(v) = y. As C is path connected, there is a continuous $\sigma : [0,1] \to C$ with $\sigma(0) = u$ and $\sigma(1) = y$. Consequently, $\gamma := f \circ \sigma$ is continuous with $\gamma(0) = x$ and $\gamma(1) = y$.
- (c) By (a), $C_1 \times C_2 \subset \mathbb{R}^{2N}$ is path connected. As

$$f: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N, \quad (x, y) \mapsto x + y$$

is continuous, $C_1 + C_2 = f(C_1 \times C_2)$ is also path connected.