

Computer Architecture

Sheet (9)

5.1 Give a block diagram similar to the one in Figure 5.10 for a $8M \times 32$ memory using $512K \times 8$ memory chips.

5.4 Consider a main memory constructed with SDRAM chips that have timing requirements depicted in Figure 5.9, except that the burst length is 8. Assume that 32 bits of data are transferred in parallel. If a 133-MHz clock is used, how much time does it take to transfer:

- (a) 32 bytes of data
- (b) 64 bytes of data

What is the latency in each case?

5.5 Criticize the following statement: "Using a faster processor chip results in a corresponding increase in performance of a computer even if the main memory speed remains the same."

5.9 A block-set-associative cache consists of a total of 64 blocks divided into 4-block sets. The main memory contains 4096 blocks, each consisting of 128 words.

- (a) How many bits are there in a main memory address?
- (b) How many bits are there in each of the TAG, SET, and WORD fields?

5.10 A computer system has a main memory consisting of 1M 16-bit words. It also has a 4K-word cache organized in the block-set-associative manner, with 4 blocks per set and 64 words per block.

- (a) Calculate the number of bits in each of the TAG, SET, and WORD fields of the main memory address format.
- (b) Assume that the cache is initially empty. Suppose that the processor fetches 4352 words from locations 0, 1, 2, ..., 4351, in that order. It then repeats this fetch sequence nine more times. If the cache is 10 times faster than the main memory, estimate the improvement factor resulting from the use of the cache. Assume that the LRU algorithm is used for block replacement.

- 5.15** How might the value of k in the interleaved memory system of Figure 5.25b influence block size in the design of a cache memory to be used with the system?
- 5.16** In many computers the cache block size is in the range of 32 to 128 bytes. What would be the main advantages and disadvantages of making the size of cache blocks larger or smaller?
- 5.17** Consider the effectiveness of interleaving with respect to the size of cache blocks. Using calculations similar to those in Section 5.6.2, estimate the performance improvement for block sizes of 16, 8, and 4 words. Assume that all words loaded into the cache are accessed by the processor at least once.