Санкт-Петербургский политехнический университет Высшая школа теоретической механики, ФизМех

Направление подготовки

«01.03.03 Механика и математическое моделирование»

Отчет по индивидуальной работе №02
тема "Метод конечных разностей. Уравнение колебаний струны"
дисциплина "Вычислительная механика"

Выполнил студент гр. 90301

М. А.Бенюх

Преподаватель:

Е.Ю. Витохин

Санкт-Петербург

2021

Оглавление.

Формулировка задания:	
Метод решения	
явная схема интегрирования	
Неявная схема интегрирования	
Численный анализ решения задач	6
Заключение	7
Код	8.

1. Формулировка задания:

Методом конечных разностей, используя явную и неявной схему интегрирования, решить уравнение колебаний струны.

2. Постановка задачи:

Объект моделирования: Среда с однородными граничными условиями.

$$\frac{\partial^2 u}{\partial^2 t} = \frac{\partial^2 u}{\partial x^2}$$

при заданных начальных условиях $u(x,0)=f(x),\ u_t(x,0)=\Phi(x),\$ где $x\in[0,1];\ u(0,t)=\varphi(t),\ u(1,t)=\psi(t).$ Решение выполнить при h=0.1 для $t\in[0,0.5].$

$$u(x,0) = \cos\left(\frac{\pi x}{2}\right), u'(x,0) = x^2,$$

$$u(0,t) = 1 + 2t, u(1,t) = 0$$

Метод решения:

Разложим U(x,t) в окрестности точки x_0 в ряд:

$$U(x_0 + h) = U(x_0) + U'(x_0) \frac{h}{1!} + U''(x_0) \frac{h^2}{2!} + o(h^2)$$

$$U(x_0 - h) = U(x_0) - U'(x_0) \frac{h}{1!} + U''(x_0) \frac{h^2}{2!} + o(h^2)$$

$$U(x_0 + h) + U(x_0 - h) = 2U(x_0) + U''(x_0) h^2 + o(h^2)$$

$$U''(x_0) = \frac{U(x_0 + h) - 2U(x_0) + U(x_0 - h)}{h^2} + o(h^2)$$

Разложим U(x,t) в окрестности точки t_0 в ряд:

$$\begin{split} &U(t_0 + \Delta t) = U(t_0) + U'(t_0) \frac{\Delta t}{1!} + U''(t_0) \frac{\Delta t^2}{2!} + o(\Delta t^2) \\ &U(t_0 - \Delta t) = U(t_0) - U'(t_0) \frac{\Delta t}{1!} + U''(t_0) \frac{\Delta t^2}{2!} + o(\Delta t^2) \\ &U(t_0 + \Delta t) + U(t_0 - h) = 2U(t_0) + U''(t_0) \Delta t^2 + o(\Delta t^2) \\ &U''(t_0) = \frac{U(t_0 + \Delta t) - 2U(t_0) + U(t_0 - \Delta t)}{\Delta t^2} + o(\Delta t^2) \end{split}$$

Введем сетки для времени $t=k\cdot \Delta t$ и для пространства $x=j\cdot h$. Тогда:

$$\ddot{U}(x,t) = \frac{U_j^{k+1} - 2U_j^k + U_j^{k-1}}{\Delta t^2}$$

$$U''(x,t) = \frac{U_{j+1}^k - 2U_j^k + U_{j-1}^k}{h^2}$$

Конечно-разностное уравнение примет вид

$$\frac{U_{j+1}^k - 2U_j^k + U_{j-1}^k}{h^2} - \frac{1}{c^2} \frac{U_j^{k+1} - 2U_j^k + U_j^{k-1}}{\Delta t^2} = 0$$

Явная схема метода:

$$U_j^{k+1} = \frac{c^2 \Delta t^2}{h^2} \left(U_{j+1}^k - 2U_j^k + U_{j-1}^k \right) + 2U_j^k - U_j^{k-1}$$

Для преобразования начальных условий воспользуемся формулой 2-го порядка точности:

$$U_j^1 = U_j^*(x) + U_j^{**}(x)\Delta t + \frac{c^2\Delta t^2}{2h^2}(U_{i+1}^* - 2U_i^* + U_{i-1}^*)$$
 где $U^*(x) = U(x,0), \ U^{**}(x) = U_t(x,0)$

Для вывода неявной схемы интегрирования введем значение для аппроксимации частных производных:

$$\begin{split} \frac{\partial^2 U}{\partial t^2} &= \frac{U_{j+1}^{k-1} - 2U_{j+1}^k - U_{j+1}^{k+1}}{\Delta t^2} \\ \frac{\partial^2 U}{\partial x^2} &= \frac{U_{j-1}^{k+1} - 2U_{j}^{k+1} - U_{j+1}^{k+1}}{h^2} \end{split}$$

Далее воспользуемся формулами:

$$-AU_{i-1}^{k+1} + BU_{i}^{k+1} - CU_{i+1}^{k+1} = F_{i}$$

$$A = \frac{1}{h^{2}}$$

$$B = \frac{2c^{2}\Delta t^{2} + h^{2}}{c^{2}\Delta t^{2}h^{2}}$$

$$C = \frac{1}{h^{2}}$$

$$F_{i} = \frac{2}{\Delta t^{2}c^{2}}U_{i}^{k} - \frac{1}{\Delta t^{2}c^{2}}U_{i}^{k-1}$$

Решение можно получить неявно, используя метод прогонки:

Прямой ход:

$$\begin{split} P_i &= \frac{c}{B - A P_i} \\ P_1 &= \frac{C}{B} \end{split} \qquad \qquad Q_i = \frac{F_i + A Q_{i-1}}{B - A P_{i-1}} \end{split}$$

Обратный ход:

$$U_i^{k+1} = P_i U_{i+1}^{k+1} + Q_i$$

Отдельно отметим, что шаг по времени Δt необходимо выбирать из условия Куранта о сходимости явной схемы интегрирования: $\Delta t \ll \frac{h}{c}$

3. Явная схема интегрирования

$$U_j^{k+1} = \frac{c^2 \Delta t^2}{h^2} \left(U_{j+1}^k - 2 U_j^k + U_{j-1}^k \right) + 2 U_j^k - U_j^{k-1}$$

явная схема

Рис. 1 Визуализация матрицы решений (явной схемы интегрирования)

U1 =

0.987688	1.01238	1.03708	1.06321	1.09194	1.12402	1.15976	1.19899	1.24116	1.28544
0.951057	0.974833	0.997109	1.01795	1.03759	1.05651	1.07536	1.09498	1.11623	1.13988
0.891007	0.913282	0.934151	0.953583	0.971554	0.988064	1.00317	1.017	1.02983	1.04204
0.809017	0.829242	0.848192	0.865836	0.882147	0.897101	0.910678	0.922863	0.93366	0.943092
0.707107	0.724784	0.741347	0.756768	0.771025	0.784092	0.795938	0.8065	0.815665	0.823235
0.587785	0.60248	0.616247	0.629066	0.640878	0.651522	0.660669	0.667786	0.672153	0.672938
0.45399	0.46534	0.475974	0.485249	0.492039	0.495005	0.492932	0.485059	0.471334	0.452529
0.309017	0.316742	0.313959	0.301679	0.282017	0.257855	0.2324	0.208702	0.189233	0.175569
0.987688	1.01238	1.03708	1.06321	1.09194	1.12402	1.15976	1.19899	1.24116	1.28544
0.951057	0.974833	0.997109	1.01795	1.03759	1.05651	1.07536	1.09498	1.11623	1.13988

Разрезы в разные моменты времени(явная схема) 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Рис. 2 Х Разрезы в разные моменты времени

4. Неявная схема интегрирования

$$\begin{split} -AU_{i-1}^{k+1} + BU_i^{k+1} - CU_{i+1}^{k+1} &= F_i \\ A &= \frac{1}{h^2}; \ B = \frac{2c^2\Delta t^2 + h^2}{c^2\Delta t^2 h^2}; \ C &= \frac{1}{h^2}; \quad F_i \ = \frac{2}{\Delta t^2 c^2} U_i^k - \frac{1}{\Delta t^2 c^2} U_i^{k-1} \end{split}$$

(явной схемы интегрирования)

Метод матричной прогонки:

Прямой ход:
$$P_i=\frac{c}{B-AP_i}$$
; $Q_i=\frac{(F_i+AQ_{i-1})}{B-AP_{i-1}}$; $P_1=\frac{C}{B}$; $Q_1=\frac{F_i^k}{B}$ Обратный ход: $T_i^{k+1}=P_iT_{i+1}^{k+1}+Q_i$

х

неявная схема

Рис. 3 Визуализация матрицы решений (неявной схемы интегрирования)

Таблица значений матрицы решений (явной схемы интегрирования)

U2 =

t			
	ī	ī	ī

Х

						_			
0.987688	1.01238	1.03475	1.05624	1.07817	1.10159	1.12721	1.15544	1.18635	1.21978
0.951057	0.974833	0.997034	1.01764	1.03674	1.05461	1.07163	1.08833	1.1053	1.12312
0.891007	0.913282	0.934117	0.953479	0.971343	0.987707	1.00261	1.01615	1.0285	1.03991
0.809017	0.829242	0.848162	0.865749	0.881974	0.896808	0.910223	0.922185	0.932661	0.941623
0.707107	0.724784	0.74132	0.756681	0.770821	0.783668	0.795108	0.804977	0.813058	0.819094
0.587785	0.60248	0.616198	0.628823	0.640142	0.649831	0.65748	0.662632	0.664859	0.663829
0.45399	0.46534	0.475448	0.483485	0.488557	0.489928	0.487191	0.480354	0.469847	0.456457
0.309017	0.316742	0.31483	0.305009	0.289531	0.270821	0.251165	0.232472	0.216129	0.202946
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0.987688	1.01238	1.03475	1.05624	1.07817	1.10159	1.12721	1.15544	1.18635	1.21978

(неявной схемы интегрирования)

5. Численный анализ решения задач

Рис. 5,6 Разрезы явной и неявной схемы в момент времени 2(рис. 5), в момент времени 5(рис. 6),

6. Заключение

Было получено решение тепловой задачи при помощи метода конечных разностей с применением явной и неявной схемы интегрирования. Неявная схема показала себя более гладкой по сравнению с явной.

7. Код

```
x,h,t,dt=1,0.1,0.25,0.05
func_x_0 = lambda x: [math.cos((math.pi*i)/2) for i in x]
func2_x_0 = lambda x: math.cos((math.pi*x)/2)
d_func_x_0 = lambda x: x^{**}2
func_0_t = lambda t: 1+2*t
func_1_t = lambda t: 0
\textit{Test=Struna(x, t, h, dt, func\_x\_0, d\_func\_x\_0, func2\_x\_0, func\_0\_t, func\_1\_t)}
res1=Test.explicit_schema()
res2=Test.implicit_schema()
def \_init\_(self, x, t, h, dt, func\_x\_0, func2\_x\_0, d\_func\_x\_0, func\_0\_t, func\_1\_t):
           self.x= x
           self.x_0=0
           self.t=t
           self.t 0=0
           self.h=h
           self.func_x_0=func_x_0
           self.func2_x_0=func2_x_0
           self.d_func_x_0=d_func_x_0
           self.func 0 t=func 0 t
           self.func 1 t=func 1 t
           self.X=np.arange(self.x_0,self.x, self.h)
           self.dt=self.t/(len(self.X))
           self.Time=np.arange(self.t 0,self.t, self.dt)
           self.len_X=len(self.X)
           self.len_T=len(self.Time)
           print("init")
      def StartFillMatrix(self):
           T=np.zeros((self.len X, self.len T))
           T[:,0]=self.func_x_0(self.X)
           T[0,:]=self.func 0 t(self.Time)
           T[-1,:]=self.func_1_t(self.Time)
           #T[:,1]
           for i in range(1,self.len_X-1):
                print(i)
                 print(self.X[i])
                T[i,1] = T[i,0] + self.d\_func\_x\_0(self.X[i]) * self.dt * (self.dt * * 2)/(2*(self.h * * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * * 2)/(2*(self.h * * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * * 2)/(2*(self.h * * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * * 2)/(2*(self.h * * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * * 2)/(2*(self.h * * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * * 2)/(2*(self.h * * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (T[i,0] - 2*T[i,0] + T[i,0]) * (self.dt * 2)/(2*(self.h * 2))) * (self.dt * 2)/(2*(self.h * 2)/(2*(self.h * 2))) * (self.dt * 2)/(2*(self.h * 2
           return T
      def explicit schema(self):
           T=self.StartFillMatrix()
           c=1
           for k in range(1,self.len T-1):
                for i in range(1,self.len X-1):
                      T[i,k+1] = (((c^*2)^*(self.dt^*2))/(self.h^*2))^*(T[i+1,k]-2^*T[i,k]+T[i-1,k]) + 2^*T[i,k]-T[i,k-1]
           return T
      def implicit_schema(self):
           T=self.StartFillMatrix()
           A=1/(self.h**2)
           C=1/(self.h**2)
           B=(2*(self.dt**2)+(self.h**2))/((self.h**2)*(self.dt**2))
           F=np.zeros((self.len X))
           P=np.zeros((self.len_X))
           Q=np.zeros((self.len_X))
```

```
for k in range(1,self.len_T-1):
    for i in range(0, self.len_X):
        F[i]=((2*T[i,k])/(self.dt**2))-(T[i,k-1]/(self.dt**2))
    P[0]=C/B
    Q[0]=F[0]/B
    for i in range(1,self.len_X):
        P[i]=C/(B-A*P[i-1])
        Q[i]=(F[i]+A*Q[i-1])/(B-A*P[i-1])
    for i in range(self.len_X-2,0,-1):
        T[i,k+1]=P[i]*T[i+1,k+1]+Q[i]
```

return T