Universidade Federal do Rio Grande do Sul Instituto de Informática

Organização de Computadores

Aula 5

Bloco de controle mono-ciclo

INF01113 - Organização de Computadores

Adding Control

- CPU = Datapath + Control
- Single Gde Design:
 - Instruction takes exactly one clock cycle
 - Datapath units used only once per cycle
 - Writable state updated at end of cycle
- What must be "controlled"?
 - Multiplexors (Muxes)
 - Writable state elements: Register File, Data Memory (Dmem)
 - what about PC? Imem?
 - ALU (which operation?)

INF01113 - Organização de Computadores

Processor = Datapath + Control

- Single-Cycle Design: everything happens in one clock cycle
 ⇒
 until next falling edge of clock, processor just one big
 <u>combinational circuit</u>!!!
 - control is just a combinational circuit (output, just function of inputs)
- · outputs? control points in datapath
- inputs? the current instruction! (opcode, funct control everything)

Bloco de controle mono-ciclo

- 1. MIPS mono-ciclo: sinais de controle
- 2. Execução das instruções

Instruções aritméticas e lógicas (formato-R)

Instruções "load word"

Instruções "store word"

Instruções "branch-on-equal"

- 3. Sumário dos sinais de controle
- 4. Projeto lógico do controle da ULA 5. Projeto lógico do bloco de controle

4. Projeto lógico do controle da ALU

Bits de controle da ALU em função de ALUOp e dos códigos de função

op-code	ALUOp	operação	campo "function"	ação na ALU	controle da ALU
lw	00	load word	XXXXXX	add	010
sw	00	store word	XXXXXX	add	010
beq	01	branch equal	XXXXXX	subtract	110
R	10	add	100000	add	010
R	10	subtract	$1\; 0\; 0\; 0\; 1\; 0$	subtract	110
R	10	and	100100	and	000
R	10	or	100101	or	001
R	10	set-on-less-than	101010	set-on-less-than	111

INF01113 - Organização de Computadores

Controle da ALU

Para obter a tabela-verdade dos bits de controle da ALU

ALUOp		Function						Operation
ALUOp1	ALUOp2	F5	F4	F3	F2	F1	F0	Operation
0	0	X	X	X	X	X	X	010
X	1	X	X	X	X	X	X	110
1	X	X	X	0	0	0	0	010
1	X	X	X	0	0	1	0	110
1	X	X	X	0	1	0	0	000
1	X	X	X	0	1	0	1	001
1	X	X	X	1	0	1	0	111

Implementação com lógica aleatória ou PLA é trivial

INF01113 - Organização de Computadores

5. Projeto lógico do bloco de controle

Op-codes

Implementação com lógica aleatória ou PLA é trivial

Tabela-verdade dos sinais de controle em função do op-code

		N.	IW	SW	beq
Entradas	Op5	0	1	1	0
	Op4	0	0	0	0
	Op3	0	0	1	0
	Op2	0	0	0	1
	Op1	0	1	1	0
	Op0	0	1	1	0
Saídas	RegDst	1	0	X	X
	ALUSrc	0	1	1	0
	MemtoReg	0	1	X	X
	RegWrite	1	1	0	0
	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	AT IIO-0	0	Λ	0	1

INF01113 - Organização de Computadores

Antes de encerrar, uma palavra dos patrocinadores...

Se você...

- Acha interessante ORGB, gosta do MIPS e ainda gosta de buzz words como:
 - Geração automática de software
 - Aceleradores de hardware
 - Aplicações multimídia para celulares
- Está disposto a gargantear aos colegas que ganha mal, MAS trabalha só com coisas estado da ate
- Tem uma curiosidade maior que a razão
- Tem 20h/semana livres
- Tem alto CVP

INF01113 - Organização de Computadores

Então:

• Envie-e CV e histórico para carro@inf.ufrgs.br

INF01113 - Organização de Computadores

Perguntas/exercícios:

- O controle atrasa o circuito? A freqüência máxima fica comprometida?
- Modifique o bloco operacional e de controle para incluir a instrução LUI. Houve impacto no ciclo de relógio?
- Modifique o bloco operacional e o controle para incluir a instrução que acessa a memória com pós-incremento:
 - lw \$rt, M(\$rs)
 - addi \$rs, \$rs, 1
- Houve impacto no ciclo de relógio? Vale a pena fazer esta modificação no caso de ciclo único?
- É possível eliminar o sinal MemtoReg e substituí-lo por ALUSrc?