Tema 3-1 Clasificación: Conceptos generales

Abdelmalik Moujahid

Grupo de Inteligencia Computacional Universidad del País Vasco (UPV/EHU) Curso 2014-2015

Índice

- 1 Introducción
- 2 Algoritmos de clasificación
- Técnicas de validación

Índice

- 1 Introducción
- 2 Algoritmos de clasificación
- Técnicas de validación

Idea general

- Dada una colección de instancias (Conjunto de entrenamiento). Cada instancia se define por un conjunto de atributos; uno de ellos es la clase.
- Inducir un modelo para el atributo clase como una función de los valores de los demás atributos.
- Objetivo: predecir con la más precisión posible la clase de nuevas instancias (Conjunto de testeo).
- La precisión del modelo se estima en base al porcentaje de bien clasificados obtenido en el conjunto de testeo.
- El modelo debe presentar una buena capacidad de generalización.

Retos de la clasificación

- ¿Existen realmente éstos grupos en mis Datos?
- ¿Cúales son las similitudes y diferencias entre éstos grupos?
- ¿Las diferencias son suficientemente significativas como para discriminar entre los grupos, y predecir el grupo de una nueva observación?
- ¿Qué variables explican mejor las diferencias entre los grupos?

Classification problem data matrix

	a ₁		a_{j}	 a_m	Clase
<i>X</i> ₁	<i>X</i> ₁₁		X 1j	 <i>X</i> ₁ <i>m X</i> _{im} <i>X</i> _{nm}	<i>c</i> ₁
		• • •		 • • •	
X_i	<i>X</i> _{i1}		X_{ij}	 X _{im}	Ci
X_n	<i>X</i> _{<i>n</i>1}		Xnj	 X _{nm}	Cn
Υ	<i>y</i> ₁		y ₂	 Уm	?

Problema de clasificación supervisada.

Machine learning repository: http://archive.ics.uci.edu/ml/

Clasificación: pasos a seguir

- Preparar los datos
- Elegir un algoritmo de aprendizaje
- 3 Ajustar el modelo a los datos
- Elegir un método de validación
- Examinar el ajuste y adaptar el modelo hasta alcanzar un resultado satisfactorio
- 1 Utilizar el modelo ajustado para llevar a cabo la predicción

Características de los algoritmos de aprendizaje

- Precisión predictiva
- Velocidad de ajuste
- Velocidad de predicción
- Uso de memoria
- Facilidad de interpretación

Regresión lineal

- Formular el problema en términos de variables predictoras y variable clase
- Definir una función que relaciona la variable clase con las variables predictoras
- Definir el error cuadrático medio (función a optimizar)
- Estimar los parámetros de regresión

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n$$

$$f(X) = \beta^T X$$

$$J(\beta) = \frac{1}{2} \sum_{i=1}^{n} (f(X^{(i)}) - C^{(i)})^2$$

Regresión no lineal: ajuste exponencial 0 data fitted curve 1.5 000 0.5 0 0 -0.5 0 3 2

$$f(x) = a * exp(b * x)$$

Regresión no lineal: ajuste polinomial

$$sf(x,y) = \rho_{00} + \rho_{10}x + \rho_{01}y + \rho_{20}x^2 + \rho_{11}xy + \rho_{02}y^2 + \rho_{21}x^2y + \rho_{12}xy^2 + \rho_{03}y^3$$

Índice

- 1 Introducción
- 2 Algoritmos de clasificación
- 3 Técnicas de validación

- Métodos basados en vecindad (k-NN)
- Árboles de decición y sistemas de reglas
- Métodos bayesianos
- Redes neuronales
- Métodos paramétricos
- etc

Índice

- 1 Introducción
- 2 Algoritmos de clasificación
- Técnicas de validación

Técnicas de validación

Validación de un modelo de clasificación

- Métricas para evaluar el rendimiento. ¿Cómo evaluar el rendimiento del modelo?
- Métodos para evaluar el rendimiento. ¿Cómo obtener una estimación fiable?
- Métodos para comparar modelos

Matriz de confusión

Predicted class

р

n

rue False
Positive Positive
False True
Negative Negative
P N

True class

Métricas de rendimiente más comunes:

- TP rate (sensitivity): $TPR = \frac{TP}{P}$
- FP rate: $FPR = \frac{FP}{N}$
- Precision= $\frac{TP}{TP+FP}$
- Accuracy= $\frac{TP+TN}{P+N}$

Matriz de confusión: Ejemplo 0

а		← classified as
180	21	a=no-recurrence-events
58	27	a=no-recurrence-events b=recurrence-events

Base de datos: breast-cancer

Clasificador: 1-NN

Modo de evaluación: 10-fold cross-validation

Accuracy: 72.377
TP rate: 0.896
Precison: 0.756

Matriz de confusión: Ejemplo 1

а	b	С	← classified as
50	0	0	a=Iris-setosa
0	49	1	b=Iris-versicolor
0	5	45	b=Iris-versicolor c=Iris-virginica

Base de datos: Iris Clasificador: OneR

Modo de evaluación: sobre el conjunto de entrenamiento

Modelo de clasificación: petalwidth

 $\begin{array}{ll} <0.08 & \rightarrow \text{Iris-setosa} \\ <1.75 & \rightarrow \text{Iris-versicolor} \\ >=1.75 & \rightarrow \text{Iris-virginica} \end{array}$

Matriz de confusión: Ejemplo 2

а	b	С	d	е	← classified as
91	0	0	0	0	a=drugY
91 16 54 23 16	0	0	0	0	b=drugC
54	0	0	0	0	c=drugX
23	0	0	0	0	d=drugA
16	0	0	0	0	a=drugY b=drugC c=drugX d=drugA e=drugB

Base de datos: Drugn Clasificador: ZeroR

Modo de evaluación: sobre el conjunto de entrenamiento

Modelo de clasificación: ZeroR predice la clase mayoritaria, drugY

Limitación de la precisión

а	ı b	← classified as
C	32	a=die
C	123	b=live

Base de datos: hepatitis Clasificador: ZeroR

Modo de evaluación: sobre el conjunto de entrenamiento
Modelo de clasificación: ZeroR predice la clase mayoritaria, live

Precisión: 79.3548

Este modelo tiene una precisión de casi el 80 por ciento, sin embargo, es un modelo que no predice ninguna caso como perteneciente a la clase "die"

Matriz de coste

COST MATRIX when there are only two classes

Predicted class p n C(1,1) C(1,0) C(0,1) C(0,0)

 C(i/j) representa el coste asociado al clasificar un caso de la clase i como perteneciente a la clase j.

Técnicas de validación

- Método Holdout: reserva 2/3 del conjunto de datos para el entrenamiento y 1/3 para el testeo
- Submuestreo aleatorio: es el método H repetidas veces
- Validación cruzada (Cross validation): particiona el conjunto de datos en k subconjuntos (folds), reserva (k-1) folds para entrenar y el fold restante para el testeo. El proceso se repite k veces cada vez con un fold de testeo distinto.
- Bootstrapping: muestreo aleatorio con reemplazo

Técnicas de validación

Comparación de modelos.

- Análisis ROC (Receiver Operating Characteristic)
 - Aprender un conjunto de clasificadores y seleccionar el que mejor se comporte para unas cicunstancias o contextos de coste determinados a posteriori.
 - Seleccionar el subconjunto de clasificadores que tienen un comportamiento óptimo en general.
- Test de hípotesis (de significatividad)