Esercizi del 14 marzo

Esercizio 1.4

Sia K>0 tale che le palle iperboliche di raggio K abbiano area maggiore di 2π ; mostriamo che tale K soddisfa la condizione richiesta.

Sia $\Delta \subseteq \mathbb{H}^2$ un triangolo, $p \in \Delta$ un punto giacente su un lato ℓ . Se p è un vertice la tesi è ovvia, dunque supponiamo che non lo sia. Sia \mathcal{A} il semipiano (aperto) delimitato da ℓ su cui giace il triangolo. Definiamo $\mathcal{B} \subseteq \mathbb{H}^2$ come l'intersezione di \mathcal{A} con la palla di centro p e raggio K; osserviamo che \mathcal{B} ha area maggiore di $2\pi/2 = \pi$. Di conseguenza, essendo l'area di Δ al più π , necessariamente B non è contenuto in Δ . Poiché \mathcal{B} interseca Δ ed è connesso, deve esistere un punto di $q \in \mathcal{B}$ che giace sul bordo di Δ . Giacché \mathcal{A} e ℓ sono disgiunti, q deve appartenere a uno degli altri due lati; essendo la distanza fra p e q al più K, otteniamo la tesi.

Esercizio 1.5

Utilizziamo il modello $H^2 = \{(x,y) \in \mathbb{R}^2 : y > 0\}$ del semipiano. Siano ℓ_1, ℓ_2, ℓ_3 i lati del triangolo Δ , con ℓ_1 di lunghezza l. A meno di isometria, possiamo supporre che ℓ_1 giaccia sulla circonferenza centrata in (0,0) di raggio r > 0, e che ℓ_2 giaccia su una retta verticale (parallela all'asse y). Siano inoltre α, β gli angoli che le rette congiungenti (0,0) agli estremi di ℓ_1 formano con l'asse x.

Una parametrizzazione di ℓ_1 è data dalla curva

$$\gamma: [\alpha, \pi - \beta] \longrightarrow H^2$$

 $t \longmapsto r(\cos t, \sin t).$

Pertanto la lunghezza di ℓ_1 si può calcolare come

$$l = \int_{\alpha}^{\pi-\beta} \frac{1}{r \sin t} \|\gamma'\|_E dt = \int_{\alpha}^{\pi-\beta} \frac{1}{r \sin t} \cdot r dt = \int_{\alpha}^{\pi-\beta} \frac{1}{\sin t} dt > \pi - \beta - \alpha,$$

dove $\|-\|_E$ indica la norma euclidea. Denotiamo con \mathcal{A} il cono sopra ℓ_1 di vertice ∞ , ossia

$$A = \{(x, y) \in H^2 : -r\cos\beta \le x \le r\cos\alpha, x^2 + y^2 \ge r^2\}.$$

È evidente che Δ è contenuto in \mathcal{A} ; inoltre \mathcal{A} è un triangolo con angoli α , β e 0, dunque ha area $\pi - \alpha - \beta$. Ma allora

$$l > \pi - \alpha - \beta = \text{Area}(A) \ge \text{Area}(\Delta).$$

Esercizio 1.9

Lemma. Siano $A \in O(n)$ una matrice ortogonale, $b \in \mathbb{R}^n$ un vettore. Definiamo $\varphi \in \text{Isom}(\mathbb{R}^n)$ come $\varphi(x) = Ax + b$. Supponiamo che φ non abbia punti fissi. Allora esiste una retta affine di \mathbb{R}^n che è φ -invariante.

Dimostrazione.

■ Vale $\mathbb{R}^n = \ker(A - I) \oplus \operatorname{im}(A - I)$.

Per motivi di dimensione, è sufficiente mostrare che i due sottospazi hanno intersezione banale. Sia $v \in \ker(A - I) \cup \operatorname{im}(A - I)$; allora v = Aw - w per un qualche $w \in \mathbb{R}^n$. Allora

$$\langle v, v \rangle = \langle Aw - w, v \rangle = \langle Aw, v \rangle - \langle w, v \rangle = \langle w, Av, - \rangle \langle w, v \rangle = \langle w, Av - v \rangle = 0,$$

da cui v = 0.

■ Vale $b \notin im(A - I)$.

Se per assurdo b = Aw - w, allora $\varphi(-w) = -Aw + b = -w$, dunque φ avrebbe un punto fisso, il che è contro l'ipotesi.

lacksquare L'isometria φ ammette una retta invariante.

Utilizzando la decomposizione del primo punto, scriviamo b = v + (Aw - w) con Av = v. Poiché $b \notin \text{im}(A-I)$, necessariamente $v \neq 0$. Mostriamo che la retta affine $\ell = -w + \text{span}(v)$ è φ -invariante. Per $t \in \mathbb{R}$ vale

$$\varphi(-w + tv) = -Aw + tAv + b = -Aw + tv + (v + Aw - w) = -w + (t+1)v \in \ell,$$

da cui la tesi. \Box

Sia $\psi \in \text{Isom}(\mathbb{H}^n)$ un'isometria parabolica. Consideriamo il modello del semispazio H^n ; possiamo supporre che ψ fissi ∞ . Allora ψ si scrive come $\psi(x,t)=(Ax+b,t)$ per opportuni $A\in O(n-1)$, $b\in \mathbb{R}^{n-1}$. Per il Lemma, esiste una retta euclidea $\ell=w+\text{span}(v)\subseteq \mathbb{R}^{n-1}$ invariante per la mappa $(x\mapsto Ax+b)$. È allora evidente che il piano iperbolico $\{(w+sv,t): s\in \mathbb{R}, t>0\}\subseteq H^n$ è ψ -invariante.

Esercizi del 28 marzo

Introduzione teorica

Definizione. Sia $\Gamma < \text{Isom}(\mathbb{H}^n)$ un sottogruppo. Fissiamo un punto $x \in \mathbb{H}^n$. Definiamo $L(\Gamma)$ come l'insieme dei punti limite in $\partial \mathbb{H}^n$ dell'orbita $\Gamma \cdot x$. Poniamo inoltre $O(\Gamma) = \partial \mathbb{H}^n \setminus L(\Gamma)$.

Mostriamo che questa definizione è ben posta (ossia non dipende dalla scelta del punto x).

Proposizione. Siano $x, x' \in \mathbb{H}^n$. Sia $y \in \partial \mathbb{H}^n$ un punto limite dell'orbita $\Gamma \cdot x$. Allora y è anche un punto limite dell'orbita $\Gamma \cdot x'$.

Dimostrazione. Per ipotesi esiste una successione di isometrie $\{g_i\}_{i\geq 0} \subseteq \Gamma$ tali che $g_i(x) \to y$. Essendo g_i un'isometria di \mathbb{H}^n , vale $\mathrm{dist}(g_i(x), g_i(x')) = \mathrm{dist}(x, x')$, pertanto anche $g_i(x') \to y$. \square

È evidente che $L(\Gamma)$ è un chiuso Γ -invariante. Inoltre abbiamo la seguente.

Proposizione. Supponiamo che Γ non sia elementare. Sia $S \subseteq \partial \mathbb{H}^n$ un chiuso non vuoto Γ -invariante. Allora $L(\Gamma) \subseteq S$.

Dimostrazione. Sia $K \subseteq \overline{\mathbb{H}^n}$ l'inviluppo convesso di S. Poiché Γ non è elementare, S contiene almeno due punti, dunque $K \cap \mathbb{H}^n$ è non vuoto. Scegliamo un $x \in K \cap \mathbb{H}^n$; poiché S è chiuso e Γ -invariante, lo stesso vale per K. Ma allora l'insieme dei punti limite di $\Gamma \cdot x$ che giacciono in $\partial \mathbb{H}^n$ (ossia $L(\Gamma)$ è contenuto in $K \cap \partial \mathbb{H}^n = S$, da cui la tesi.

Proposizione. Supponiamo che Γ agisca su \mathbb{H}^n in modo libero e propriamente discontinuo. Allora Γ agisce liberamente anche su $O(\Gamma)$.

Dimostrazione. È sufficiente mostrare che tutti i punti fissi di elementi di Γ giacciono in $L(\Gamma)$. Sia $g \in \Gamma$; distinguiamo due casi.

- Se g è iperbolico, considerando il modello del semispazio H^n si vede immediatamente che i due punti fissi di g sono anche punti limite di $\langle g \rangle$.
- Se g è parabolico, consideriamo una qualunque orbita $\langle g \rangle \cdot x$. Poiché $\overline{\mathbb{H}^n}$ è metrizzabile e compatto, necessariamente questa orbita ammette un punto limite, il quale risulta fissato da g; ma g ha un unico punto fisso, che dunque è anche un punto limite.

Definizione. Sia $K \subseteq \overline{\mathbb{H}^n}$ un convesso chiuso contenente almeno due punti (dunque non tutto contenuto in $\partial \mathbb{H}^n$). Definiamo l'applicazione $\rho_K \colon \overline{\mathbb{H}^n} \to K$ come segue:

- se $x \in \mathbb{H}^n$, allora $\rho_K(x)$ è il punto di $K \cap \mathbb{H}^n$ di minima distanza da x;
- se $x \in \partial \mathbb{H}^n$, allora $\rho_K(x)$ è l'unico punto di K giacente sulla minima orosfera centrata in x che interseca K.

Osserviamo che questa definizione è ben posta poiché K è convesso e chiuso. Inoltre si verifica facilmente che vale l'uguaglianza $\rho_{g(K)} \circ g = g \circ \rho_K$ per ogni isometria g di \mathbb{H}^n .

Proposizione. La restrizione

$$\rho_K \colon \mathbb{H}^n \cup (\partial \mathbb{H}^n \setminus K) \to \mathbb{H}^n$$

è continua.

Dimostrazione. Utilizziamo il modello del disco. Sia $x \in \mathbb{H}^n \cup (\partial \mathbb{H}^n \setminus K)$. Poiché $x \notin \partial \mathbb{H}^n \cap K$, sicuramente $\rho_K(x) \in \mathbb{H}^n$. A meno di isometria, possiamo supporre che $\rho_K(x) = 0$. Sia ora $y \in \mathbb{H}^n \cup (\partial \mathbb{H}^n \setminus K)$. Mostreremo che $\|\rho_K(y)\|_E \leq \|y - x\|_E$, dove $\|-\|_E$ indica la norma euclidea sul disco: questo sarà sufficiente per concludere.

Se $\rho_K(y) = 0$ la disuguaglianza è sicuramente verificata, dunque possiamo supporre $\rho_K(y) \neq 0$. Osserviamo che tutto il segmento euclideo (che è anche un segmento iperbolico) $[0, \rho_K(y)]$ è contenuto in K, essendo K convesso. Poiché 0 è il punto di K più vicino a x, allora necessariamente l'angolo fra $[0, \rho_K(y)]$ e [0, x] è ottuso, dunque $\langle x, \rho_K(y) \rangle \leq 0$ (questa disuguaglianza è vera anche se x = 0, nel qual caso l'angolo citato non è ben definito). Allo stesso modo, spostando $\rho_K(y)$ in 0 e ricordando che le isometrie sono (anti)conformi, anche l'angolo fra $[\rho_K(y), 0]$ e il segmento iperbolico fra $\rho_K(y)$ e y è ottuso, dunque a maggior ragione anche l'angolo fra $[\rho_K(y), 0]$ e $[\rho_K(y), y]$ (segmento euclideo) lo è. Segue che $\langle \rho_K(y) - y, \rho_K(y) \rangle \leq 0$ (di nuovo, questa disuguaglianza è vera anche se $y = \rho_K(y)$). Combinando le due disuguaglianze trovate otteniamo che

$$\|\rho_K(y)\|_E^2 \le \langle \rho_K(y), y - x \rangle \le \|\rho_K(y)\|_E \cdot \|y - x\|_E$$

dove abbiamo applicato la disuguaglianza di Cauchy-Schwarz. La tesi segue immediatamente. \Box

Proposizione. Supponiamo che $L(\Gamma)$ contenga almeno due punti e che Γ agisca in modo propriamente discontinuo su \mathbb{H}^n . Allora Γ agisce allo stesso modo su $\mathbb{H}^n \cup O(\Gamma)$.

Dimostrazione. Sia $K \subseteq \overline{\mathbb{H}^n}$ l'inviluppo convesso di $L(\Gamma)$; poiché $L(\Gamma)$ è un chiuso Γ-invariante, lo stesso vale per K. Consideriamo l'applicazione $\rho \colon \mathbb{H}^n \cup O(\Gamma) \to \mathbb{H}^n$ definita come la restrizione a $\mathbb{H}^n \cup O(\Gamma)$ di ρ_K . Per quanto abbiamo osservato, ρ è continua e soddisfa $\rho \circ g = g \circ \rho$ per ogni $g \in \Gamma$.

Mostriamo che l'azione di Γ su $\mathbb{H}^n \cup O(\Gamma)$ è propriamente discontinua. Siano $y, y' \in \mathbb{H}^n \cup O(\Gamma)$. Poiché l'azione di Γ su \mathbb{H}^n è propriamente discontinua, esistono intorni U, U' di $\rho(y), \rho(y')$

rispettivamente tali che $U \cap g(U') \neq \emptyset$ solo per un numero finito di $g \in \Gamma$. Scegliamo $W = \rho^{-1}(U)$ e $W' = \rho^{-1}(U')$ come intorni, rispettivamente, di $g \in Y'$. Si verifica facilmente che se $U \cap g(U') = \emptyset$ allora $W \cap g(W') = \emptyset$, da cui la tesi.

Teorema. Supponiamo che la varietà iperbolica completa $M = \mathbb{H}^n/\Gamma$ abbia volume finito. Sia

$$S = \bigcup_{g \in \Gamma \setminus \{ id \}} \operatorname{Fix}(g) \subseteq \partial \mathbb{H}^n.$$

Allora $S \ \dot{e} \ denso \ in \ \partial \mathbb{H}^n$.

Dimostrazione. Osserviamo innanzitutto che Γ non è elementare, altrimenti M avrebbe volume infinito. Notiamo poi che $\overline{S} \subseteq \partial \mathbb{H}^n$ è un chiuso non vuoto Γ-invariante, dunque contiene $L(\Gamma)$. Allo stesso tempo, poiché Γ agisce su $O(\Gamma)$ senza punti fissi, necessariamente $S \subseteq L(\Gamma)$; in particolare, essendo Γ non elementare, $L(\Gamma)$ contiene almeno due punti.

Supponiamo ora per assurdo che S non sia denso in $\partial \mathbb{H}^n$. Poiché $L(\Gamma) \subseteq \overline{S}$, segue che $O(\Gamma)$ è non vuoto. Sia dunque $y \in O(\Gamma)$; poiché l'azione di Γ su $\mathbb{H}^n \cup O(\Gamma)$ è libera e propriamente discontinua, esiste un intorno $W \subseteq \mathbb{H}^n \cup O(\Gamma)$ di y tale che $W \cap g(W) = \emptyset$ per ogni $g \in \Gamma$ diverso dall'identità. Poiché y ha un sistema fondamentale di intorni costituito da semispazi, possiamo supporre che W sia un semispazio. Ma allora $\operatorname{vol}(M) \geq \operatorname{vol}(W) = \infty$, il che contraddice l'ipotesi.

Esercizio 2.1

Per assurdo, sia $\varphi \in \text{Isom}(\mathbb{H}^n)$ un'isometria che commuta con tutti gli elementi di Γ . Distinguiamo due casi.

- Se φ è parabolica o iperbolica, per un Lemma visto a lezione segue che Fix (φ) = Fix(g) per ogni $g \in \Gamma$ non banale, ossia tutti gli elementi di Γ non banali hanno gli stessi punti fissi. Per un altro Lemma visto a lezione, ciò implica che Γ è elementare, il che contraddice l'ipotesi di finitezza del volume di M.
- Se φ è ellittica, denotiamo con $S \subseteq \overline{\mathbb{H}^n}$ il sottospazio dei punti fissi di φ (si tratta di un sottospazio proprio e non vuoto). Sia $g \in \Gamma$ non banale; mostriamo che $\operatorname{Fix}(g) \subseteq S$.
 - Se g è parabolica, poiché φ e g commutano abbiamo che $\varphi(\text{Fix}(g)) = \text{Fix}(g)$, ossia l'unico punto fisso di g è fissato da φ , da cui $\text{Fix}(g) \subseteq S$.
 - Se g è iperbolica, poiché φ e g commutano abbiamo che g(S) = S. Consideriamo il modello del semispazio H^n , in cui i punti fissi di g siano 0 e ∞ . Ricordando che φ si scrive come $(x,t) \mapsto \lambda(Ax,t)$, si vede immediatamente che S deve necessariamente essere un'iperpiano ortogonale a ∂H^n , ossia $\infty \in S$. Scambiando 0 e ∞ otteniamo che entrambi i punti fissi di g appartengono a S.

Poiché S è un sottospazio proprio, $S \cap \partial \mathbb{H}^n$ non può essere denso in $\partial \mathbb{H}^n$, il che contraddice il Teorema.

Esercizio 2.4

La proiezione $\phi \colon \mathbb{Z}[i] \to \mathbb{Z}[i]/2\mathbb{Z}[i]$ induce un omomorfismo di gruppi

$$\Phi \colon \mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i]) \to \mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i]/2\mathbb{Z}[i])$$

applicando ϕ a ogni entrata della matrice. Sia $\Gamma < \mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i])$ il nucleo di Φ . Poiché $\mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i]/2\mathbb{Z}[i])$ è finito, Γ ha indice finito in $\mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i])$. Osserviamo che

$$\Gamma = \left\{ \begin{pmatrix} 1+2a & 2b \\ 2c & 1+2d \end{pmatrix} \in \mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i]) : a,b,c,d, \in \mathbb{Z}[i] \right\}.$$

(con lieve abuso di notazione, trattiamo gli elementi di $\mathbb{P}SL(2,\mathbb{Z}[i])$ come matrici invece che come classi di equivalenza).

■ Γ non contiene elementi ellittici. Supponiamo per assurdo che un elemento $\begin{pmatrix} 1+2a & 2b \\ 2c & 1+2d \end{pmatrix}$ di Γ sia ellittico, ossia abbia traccia reale minore di 2 in modulo. Allora 2+2a+2d è un numero reale, intero, pari e minore di 2 in modulo, dunque è necessariamente nullo. La condizione sul determinante diventa allora

$$1 = \det \begin{pmatrix} 1+2a & 2b \\ 2c & -1-2a \end{pmatrix} = -(1+4a+4a^2+4bc),$$

ossia

$$1 + 2a + 2a^2 + 2bc = 0,$$

il che è assurdo (ad esempio guardando la parità della parte reale).

- La varietà iperbolica \mathbb{H}^3/Γ ha volume finito. Dall'Esercizio 2.3 sappiamo che il gruppo $\mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i])$ ha un dominio fondamentale D di volume finito. Poiché Γ ha indice finito in $\mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i])$, allora esiste un dominio fondamentale (in senso lato) per Γ di volume finito, che si ottiene prendendo l'unione dei domini $g \cdot D$ al variare di g in un insieme di rappresentanti per $\mathbb{P}\mathrm{SL}(2,\mathbb{Z}[i])/\Gamma$.
- La varietà iperbolica \mathbb{H}^3/Γ non è compatta. Basta osservare che Γ contiene l'elemento parabolico $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$.

Esercizio 2.5

Poiché M è compatta, tutti gli elementi di Γ sono iperbolici. Dal Teorema segue immediatamente che S è denso in $\partial \mathbb{H}^n$.