Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik FMI-MA0022

Wintersemester 2020/21

Übungsblatt 6

Liveaufgaben für 16./17.12.2020

Präsenzaufgabe 6.1: Rang

Es sei $A \in \mathbb{K}^{m \times n}$ und $\vec{b} \in \mathbb{K}^m$, wobei \mathbb{K} ein Körper und $m, n \in \mathbb{N}^*$ ist. Sei $B := (A, \vec{b})$ die erweiterte Matrix. Für $i \in \{1, ..., m\}$ sei \underline{B}_i die i-te Zeile von B. Beweisen Sie:

- a) $LR(A; \vec{b}) \neq \emptyset \iff Rang(A) = Rang(B)$. **Hinweis:** Wie berechnet man die Ränge und wie berechnet man den Lösungsraum?
- b) $LR(A; \vec{b}) = \emptyset \iff (\underbrace{0 \ 0 \dots 0}_{k-\text{mal}} \ 1) \in Span(\underline{B}_1, \dots, \underline{B}_m).$

Präsenzaufgabe 6.2: Vorbereitung: Abbildungsmatrix einer linearen Abbildung Sei $\vec{v}_1 := \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, $\vec{v}_2 := \begin{pmatrix} -5 \\ 6 \\ 7 \end{pmatrix}$. $B := [\vec{v}_1, \vec{v}_2]$ ist eine Basis von $V := \operatorname{Span}(\vec{v}_1, \vec{v}_2) \leq \mathbb{R}^3$. Sei $A := (\vec{v}_1, \vec{v}_2) \in \mathbb{R}^{3 \times 2}$.

- a) Berechnen Sie ${}^B\vec{u}$ für $\vec{u} := \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$.
- b) Bringen Sie die erweiterte Matrix $(A, \mathbb{1}_3)$ auf reduzierte ZSF (A', P') mit $P' \in M_3(\mathbb{R})$. Es sei $P \in \mathbb{R}^{2\times 3}$ die aus den ersten beiden Zeilen von P' gebildete Matrix.
- c) Begründen Sie: Wenn $P \in \mathbb{R}^{2\times 3}$ so wie in b) und $\vec{u} \in V$ ist, dann liefern die beiden Einträge von $P \cdot \vec{u} \in \mathbb{R}^2$ die Koordinaten von \vec{u} bezüglich \vec{v}_1, \vec{v}_2 . Überprüfen Sie dies für den in a) gegebenen Vektor \vec{u} .
- d) Die Abbildung $p \colon \mathbb{R}^3 \to V$ sei gegeben durch $\forall \vec{x} \in \mathbb{R}^3 \colon p(\vec{x}) := A \cdot P \cdot \vec{x}$. Wieso liegt das Ergebnis in V? Wie lässt sich diese Abbildung geometrisch beschreiben? **Hinweis:** Welche Vektoren aus \mathbb{R}^3 werden von p auf $\vec{0}$ abgebildet?