DEEP LEARNING

FOR SPEECH AND LANGUAGE

Day 4 Lecture 2

Speech to speech paradigms

Fonollosa

Supported by

Hernando

GitHub Education

Giró-i-Nieto

Ooogle Cloud Platform

+ info: https://telecombcn-dl.github.io/2018-dlsl/

[course site]

Santiago Pascual santi.pascual@upc.edu

#DLUPC

Outline

- 1. Introduction
- 2. Encoder-Decoder Paradigms
 - a. Generative modeling
- 3. Speech Enhancement
 - a. Discriminative Procedure
 - b. SEGAN/FSEGAN
- 4. Voice Conversion

Introduction

Speech to speech

Speech is transformed through a non-linear function Y = f(X):

- Enhance/Denoise signal
- Convert content respecting identity
 - Translation
- Convert identity respecting content
 - Voice Conversion

Speech Enhancement/Denoising

Recover lost information or add enhancing details by learning the natural distribution of audio samples.

Speech Enhancement

Applicable to many scenarios:

- Improving automatic speech recognition (ASR).
- Improve intelligibility in complex communication scenarios (like airplanes).
- For hearing aid implants.
- Enhance low quality recordings in speech synthesis data to train a system.

Speaker A

Transfer the spoken contents and style from one speaker A to another speaker B.

Speaker A

Also: transfer the spoken contents and style from within same speaker identity.

Potential Applications:

- Technologies to help people with motor speech disorders like dysarthria.
- Additional flexible block to speech synthesis systems, specially to unit selection ones, where we can enforce emotions and prosody changes.
- Dubbing industry. Human speech contains a set of expressive and natural patterns that are hard to obtain directly from text like in TTS.

Encoder-Decoder Paradigms

Encoder-Decoder paradigm

These speech2speech systems typically work under an encoder-decoder framework:

- Build an intermediate representation that captures latent characteristics of the spoken utterance.
- Reconstruct the signal with the proper new features.

Vanilla AutoEncoders

- Encoder mapping c = E(x) is deterministic, as well as code vector c.
- Decoder mapping reconstructs x into a plausible version x[^] deterministically.

Variational AutoEncoders

- Encoder mapping z = E(x) is deterministic, but we apply restrictions on Z space, so that it follows a prior probability density, like isotropic Normal one: N(0, I).
- Decoder mapping reconstructs a sampled z into a plausible version x[^] deterministically.

Decode Z **Encode**

NOTE: Working directly with waveforms is a very recent thing (1 year at most), and one of the most challenging parts of deep speech2speech systems.

VQ-VAE

 Z space is a discretized embedding space, so every encoded point z(x) is mapped to nearest embedding e, which is the information given to decode the sample.

Generative Adversarial Networks

(Goodfellow et al. 2014)

We have two modules: **Generator** (G) and **Discriminator** (D).

- They "fight" against each other during training → Adversarial Training
- G mission: Fool D to missclassify.
- D mission: Discriminate between G samples and real samples.

Generative Adversarial Networks

Conditional GANs

For details on ways to condition GANs:

Ways of Conditioning Generative
Adversarial Networks (Wack et al.)

GANs can be conditioned on other info extra to **z**: text, labels, speech, etc...

z might capture random characteristics of the data (variabilities of plausible futures), whilst **c** would condition the deterministic parts!

Conditional GANs

For details on ways to condition GANs:

Ways of Conditioning Generative
Adversarial Networks (Wack et al.)

GANs can be conditioned on other info extra to **z**: text, labels, speech, etc...

z might capture random characteristics of the data (variabilities of plausible

futures), whilst **c** would condition the deterministic parts!

Adversarial Training (1)

- Pick a sample x from training set
- Show x to D and update weights to output 1 (real)

Adversarial Training (2)

- G maps sample z to x
- show x and update weights to output 0 (fake)

Adversarial Training (3)

- Freeze **D** weights
- Update G weights to make D output 1 (just G weights!)

<u>Least Squares Generative Adversarial</u> <u>Networks</u>, Mao et al. 2016

Least Squares GAN

Main idea: shift to loss function that provides smooth & non-saturating gradients in D

- Because of sigmoid saturation in binary classification loss, G gets no info when
 D gets to label true examples → vanishing gradients make G no learn
- Least squares loss improves learning with notion of distance of *Pmodel* to *Pdata*:

$$\begin{split} \min_{D} V_{\text{\tiny LSGAN}}(D) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{\tiny data}}(\boldsymbol{x})} \big[(D(\boldsymbol{x}) - 1)^2 \big] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})))^2 \big] \\ \min_{G} V_{\text{\tiny LSGAN}}(G) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - 1)^2 \big], \end{split}$$

Figure credit: Daniel Erro

Figure credit: Daniel Erro

Figure credit: Daniel Erro

Figure credit: Daniel Erro

General VC pipeline with Discriminative model:

Pitch can be linearly converted, pre-calculating both speakers' (source and target) statistical moments (mean and variance) among sliding window frames in training set:

(3) Train a perform the

$$log(f0_{conv}) = \mu_{tgt} + \frac{\sigma_{tgt}}{\sigma_{src}} (log(f0_{src}) - \mu_{src})$$

Figure credit: Daniel Erro

Parallel corpora and frame-wise VC (Sun et al. 2015)

General VC pipeline with Discriminative model:

Figure credit: Daniel Erro

Unaligned corpora

- Speakers do NOT say the same, so there's no content to align.
- Speakers can even speak in different languages!

Challenging transferrability problem: no supervised discriminative approach

(Hsu et al. 2016)

VAE based **VC**

We can take advantage of Variational Auto-Encoder training procedure to learn latent representations of speakers, and a deterministic identity code will map all back to destination acoustic space.

Figure credit: Hsu et al.

Vector Quantised-VAE (end to end) samples

Latest most successful and natural sounding approach has been VQ-VAE by Google DeepMind. They build a discrete latent space that resembles a phoneset unsupervisedly! A **Wavenet** decodes the latent codes **conditioned on one-hot ID**.

Figure credit: Äaron van den Oord

VC Evaluation

- Typically subjective evaluation: like Mean Opinion Score (MOS) [1, 5] pooling a group of listeners opinions' in terms of (1) naturalness and (2) similarity to target.
- Objective metrics for specific features (e.g. Mel Cepstral Distortion [dB] for cepstrums, or RMSE [Hz] for F0 can serve as a guidance, but not as a final decision).

Speech Enhancement

SE Approaches

- Spectral substraction: estimate noise activity during non-speech regions and subtract it.
- Subspace algorithms: decompose the higher dimensional noisy signal into a lower dimensional one where clean version lays.
- Spectral masking: predict a binary freq-time mask that can cancel out noisy bins.
- Statistical model based: predict the clean features/signal as a statistical regression problem.

Discriminative regression

(Xu et al. 2015)

A DNN is used to map noisy parameterized speech (features) into the clean version as a regression problem (MSE estimation).

The log power of spectral module is enhanced (predicted). Phase remains the same and ISTFT recorvers signal back.

Figure credit: Xu et al.

Discriminative regression

(Xu et al. 2015)

A DNN is used to map noisy parameterized speech (features) into the clean version as a regression problem (MSE estimation).

Figure credit: Xu et al.

Samples

Two stages in Generator (fully convolutional) network:

 Encoder (Downconv): Project noisy signal into a deterministic representation c and concatenate to latent variable z ~ N(0, I)

 Decoder (Deconv): Interpolate the intermediate hidden features w/ learnable params. until re-generation of clean speech.

SEGAN: underlying structures

1D convolutional neural networks

 Virtual Batch Normalization: normalize layer responses with statistics from (reference_batch + current_batch) → less intra dependent statistics to avoid GAN instability.

- LeakyReLU/ParametricReLU:
 - \circ α fixed (0.3) or learnable

SEGAN end to end training

- Show pairs of signals to "learn" a reconstruction loss.
- Use of L1 regularization to guide the GAN training.

SEGAN end to end training

- Show pairs of signals to "learn" a reconstruction loss.
- Use of L1 regularization to guide the GAN training.

Wavenet for Speech Denoising

(Rethage et al. 2017)

Wavenet proved to be effective as a generative model for raw speech and audio. A modified version of it was applied to speech denoising too, getting rid of the original autoregressive behavior, and dealing with a regression problem!

Advanced SE research

Other active advances focus on using **perceptually weighted losses**, or **using enhancement as an internal stage** within another task, like Text-to-Speech (TTS) or Automatic Speech Recognition (ASR):

- RNN-based SE for noise-robust TTS (Valentini et al. 2016)
- <u>Perception Optimized Deep Denoising AutoEncoders for Speech Enhancement</u>
 (Gurunath and Georgiou 2016)
- Exploring Speech Enhancement with Generative Adversarial Networks for Robust
 Speech Recognition (Donahue et al. 2017)

SE Evaluation

Typical objective metrics:

- PESQ: Perceptual Evaluation of Speech Quality [-0.5, 4.5]: designed for telephonic compression assessment.
- COVL: MOS prediction of the overall effect [1, 5]
 - CSIG: Mean opinion score (MOS) prediction of the signal distortion attending only to the speech signal [1, 5].
 - CBAK: MOS prediction of the intrusiveness of background noise [1, 5].
- SSNR: Segmental SNR [0, inf).

Nonetheless, subjective eval is always preferrable (in any speech synthesis task)!

Summary

- Speech2speech paradigms have been discussed, emphasizing the two salient ones at the moment: enhancement and conversion. All these methods are converging to end-to-end approaches.
- Voice Conversion parallel and non-parallel approaches have been reviewed, from classic frame-by-frame analysis to end-to-end VQ-VAE.
- Speech Enhancement methods have been reviewed, specially end-to-end ones, like SEGAN and Denoising Wavenet.
- Speech Enhancement is being included as an inherent end-to-end component for ASR and TTS, among others.
- Speech2speech paradigms are gaining momentum, specially the end-to-end embedded versions to process speech signals in real time in our handset devices.

References

- Auto-Encoding Variational Bayes (Kingma and Welling 2014)
- Generative Adversarial Networks (Goodfellow et al. 2014)
- Voice Conversion Using Artificial Neural Networks (Desai et al. 2009)
- Voice Conversion Using Deep Bidirectional Long-Short Term Memory Based Recurrent Neural Networks (Sun et al. 2015)
- Voice Conversion from Non-Parallel Corpora Using Variational Auto-encoder (Hsu et al. 2016)
- Neural Discrete Representation Learning (van den Oord et al. 2017)
- A Regression approach to speech enhancement based on deep neural networks (Xu et al. 2015)
- Perception Optimized Deep Denoising AutoEncoders for Speech Enhancement (Gurunath and Georgiou 2016)
- RNN-based SE for noise-robust TTS (Valentini et al. 2016)
- SEGAN: Speech Enhancement Generative Adversarial Network (Pascual et al. 2017)
- Exploring Speech Enhancement with Generative Adversarial Networks for Robust Speech Recognition
 (Donahue et al. 2017)
- A Wavenet for Speech Denoising (Rethage et al. 2017)