Inteligencia Artificial e Ingeniería del Conocimiento Elena Verdú Pérez

Aprendizaje Supervisado (Continuación)

¿ Cómo estudiar este tema?

SEMANAS TEMAS CLASES EN DIRECTO (15.0 PUNTOS)

Semana7 25-abr-2022 -29-abr-2022 6.1. ¿Cómo estudiar este tema?

Tema 6. Aprendizaje supervisado

6.2. Introducción al Aprendizaje Automático

6.3. Clasificación

25-db1-2022

Semana8 02-may-2022 -06-may-2022 Tema 6. Aprendizaje supervisado (continuación)

6.4. Regresión

6.5. Validación de resultados

Actividad: Laboratorio Aprendizaje Supervisado con Weka

(5.0 puntos)

Fecha de entrega: 23/05/2022

Test - Tema 06

(0.1 puntos)

Fecha de entrega: 03/07/2022

Clase del tema 6 y presentación del laboratorio (2h x 2 turnos)

Aprendizaje automático Aprendizaje supervisado

Clasificación Árboles de decisión

Regresión | Regresión lineal

Aprendizaje no supervisado

Clustering

Clase del tema 6

¿Cómo estudiar este tema?

- Ideas clave
- Lectura de páginas 71-75, 77-81 y 83-85 del libro: Gironés, J.,
 Casas, J., Minguillón, J. y Caihuelas, R. (2017). Minería de datos: modelos y algoritmos. Barcelona: Editorial UOC.

» TEMA 6. APRENDIZAJE SUPERVISADO

IDEAS CLAVE	LO + RECOMENDADO	+ INFORMACIÓN
¿Cómo estudiar este tema?	Lecciones magistrales	A fondo
Introducción al Aprendizaje Automático	Aprendizaje supervisado No dejes de leer	Aprendizaje Automático en Open Course Ware
Clasificación Regresión	Machine Learning y Data Mining	Six Novel Machine Learning Applications
Validación de resultados	No dejes de ver Aprendizaje Automático en	Bibliografía
	Coursera TV	Recursos externos
		WEKA

Validación

- El modelo generado "describe" los datos de los clientes ya clasificados.
- Ante un cliente que se presente en el futuro ¿será el modelo generado capaz de clasificarlo correctamente?

Vivienda	Hijos	Tarjeta	Contrato	Tipo
Hipoteca	О	Débito	Funcionario	Bueno
Hipoteca	О	Crédito	Asalariado	Malo
Hipoteca	2	Débito	Autónomo	Bueno
Pagada	2	Débito	Asalariado	Bueno
Hipoteca	1	Débito	Asalariado	Malo
Alquiler	2	Débito	Asalariado	Malo

Validación

¿podemos estar seguros de que esas futuras instancias estarán correctamente clasificadas?

Validación

- La validación del modelo permite medir su capacidad de predicción de la clase de nuevas instancias que le lleguen en un futuro.
- Podemos utilizar la tasa de error del clasificador al predecir la clase de un conjunto de datos de prueba.

Tasa de error = número de errores / número total de instancias de prueba

Validación. Validación cruzada

- Validación cruzada de k-iteraciones (K-fold cross validation)
 - Los datos se dividen en k particiones disjuntas de igual tamaño
 - Se realizan k iteraciones, en cada una:
 - Generación del modelo a partir de k-1 participaciones
 - Validación mediante la partición no utilizada
 - en la generación del modelo de esta iteración
 - en la validación de iteraciones previas
 - Se promedian los resultados de evaluación de las k iteraciones

Validación. Matriz de confusión

- Cada elemento de la matriz → número de ejemplos de prueba cuya clase real es la indicada en la cabecera de la fila y la clase estimada es la indicada en la cabecera de la columna.
- Tasa de Éxito es la suma de los valores en la diagonal dividido por el total de instancias.

Validación. Tasas TP/FP

- 2 clases
- TP y TN → clasificaciones correctas

		Clase Predicha		
		sí	No	
Clase Real	Sí	Verdadero Positivo (TP)	Falso Negativo (FN)	
	no	Falso Positivo (FP)	Verdadero Negativo (TN)	

- FP → Una instancia es incorrectamente clasificada como "Sí" o positivo cuando es negativa
- FN → Una instancia es incorrectamente clasificada como "No" o negativa cuando es positiva

Validación. Tasas TP/FP

Tasa de verdaderos positivos (TP)

Tasa de falsos positivos (FP)

$$\frac{FP}{FP + TN}$$

¿Tasa de verdaderos positivos?

Validación. Tasas TP/FP

Tasa de verdaderos positivos (TP)

$$\frac{TP}{TP + FN}$$

Tasa de falsos positivos (FP)

$$\frac{FP}{FP + TN}$$

¿Tasa de falsos positivos?

Validación. Precisión

Precisión

$$\frac{TP}{TP + FP}$$

Validación. Tasa de éxito

Tasa de éxito general

$$t_{exito} = \frac{TP + TN}{TP + TN + FP + FN}$$

Tasa de error

$$t_{error} = 1 - t_{exito}$$

=== Confusion Matrix ===

a b <--- classified as
7 2 | a = yes
1 3 | b = no

¿Tasa de éxito?

$$\frac{7+3}{7+2+1+3}$$

La variable de salida es continua -> Modelo de regresión

La regresión lineal consiste en encontrar una función lineal lo más cercana posible a la función real del modelo.

Fuente: wikipedia

Las funciones lineales son una combinación lineal de sus parámetros más un valor constante (a menudo denominado término de error o ruido):

$$y = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_i x_i + \varepsilon$$

Aprendizaje automático \rightarrow estimación de la función de regresión lineal \rightarrow aprender los parámetros β_1 , β_2 , β_i ... y ε que mejor ajustan el modelo lineal al comportamiento real de los ejemplos

 Conjunto de ejemplos S (ej: n instancias con p atributos o parámetros continuos y la salida continua)

Método de minimización del error entre la función aproximada f'(x) y los valores reales de los ejemplos f(x) → minimización de la suma del error cuadrático sobre el conjunto de entrenamiento total.

El método de mínimos cuadrados consiste en una búsqueda en el espacio de parámetros β_1 , β_2 , β_i ... y ε tal que se minimice la suma del error cuadrático sobre los ejemplos.

Algoritmo- Método Descenso de gradiente

- 1 Se inicializan los parámetros a un valor inicial aleatorio pequeño
- Para cada parámetro β_i se define un diferencial $\Delta \beta_i$ inicializado a o
- Dado un ratio de aprendizaje η definido por el usuario, por cada ejemplo x modificar $\Delta \beta_i$ de la siguiente manera: $\Delta \beta_i = \Delta \beta_i \eta (\underline{f'(x)} \underline{f(x)})x_i$
- (4) Cada parámetro β_i se modifica de la siguiente manera: $\beta_i = \beta_i + \Delta \beta_i$

Validación en predicción numérica

El **error absoluto medio** (mean absolute error-MAE) es un promedio de los errores de clasificación de cada una de las instancias. Si tenemos n instancias con unos valores predichos p_1 , p_2 , p_3 ... p_n , y unos valores reales x_1 , x_2 , x_3 , ... x_n , el error absoluto medio se calcula según la siguiente expresión:

$$MAE = \frac{|p_1 - x_1| + |p_2 - x_2| + \dots + |p_n - x_n|}{n}$$

Si tenemos n instancias con unos valores predichos p_1 , p_2 , $p_3...p_n$, y unos valores reales x_1 , x_2 , x_3 , ... x_n , la raíz del error cuadrático medio se calcula según la siguiente expresión:

$$RMSE = \sqrt{\frac{(p_1 - x_1)^2 + (p_2 - x_2)^2 + \dots + (p_n - x_n)^2}{n}}$$

¿Dudas?

¡Muchas gracias por vuestra atención!

¡Feliz y provechosa semana!

www.unir.net