Vertex Cover

1 Problema 1

Deci avem $X = \{x_1, x_2 \dots x_n\}$ multimea variabilelor de tip bool si $C = \{C_1, C_2 \dots C_m\}$ cele m clauze si algoritmul:

Greedy-3CNF(C, X)

- 1: $C = \{C_1 \dots C_m\}$ multimea de predicate, $X = \{x_1 \dots x_n\}$ multime de variabile
- 2: cât timp $C \neq \emptyset$ execută
 - 3: Alegem aleator $C_j \in C$.
 - 4: Fie x_i una dintre variabilele din C_j .
 - 5: $x_i \leftarrow \text{true}$.
 - 6: Eliminăm din C toate predicatele ce îl conțin pe x_i .
- 7: return X

1.a

In cazul algoritmului nostru consideram ca \exists o var x_1 care se afla in toate $C_i, i = \overline{1, m}$ si in rest valori unice $x_{C_{i1}}$ si $x_{C_{i2}}$ pentru fiecare $C_i, i = \overline{1, m}$.

In acest caz algoritmul nostru poate sa selecteze toate variabilele ignorand x_1 , deci problema care are OPT = 1, algoritmul nostru poate fi ALG = 2m, adica nu are o aproximare fixa, si poate lua valori foarte mari.

Deci factorul de aproximare worst case este ALG = 2mOPT

1.b

Pentru a obtine un algoritm 3-aproximativ trebuie sa modificam linia 4, sa faca toate valorile $x_i = 1, x_i \in C_i$

Greedy-3CNF(C, X)

- 1: $C=\{C_1\dots C_m\}$ mulțimea de predicate, $X=\{x_1\dots x_n\}$ mulțime de variabile 2: cât timp $C\neq\emptyset$ execută
 - 3: Alegem aleator $C_j \in C$.
 - 4: Pentru fiecare $x_i \in C_i$.
 - 5: $x_i \leftarrow \text{true}$.
 - 6: Eliminăm din C toate predicatele ce îl conțin pe x_i .
- 7: return X

Acum trebuie sa demonstram ca $ALG \leq 3OPT$

La fiecare pas al algoritmului retinem in P_i clauzele scoase din C. Sa presupunem ca sunt k pasi.

Deci $P_i = \{C_j \in C \mid C_j \text{ a fost scos la pasul i}\}$

Notam $P = \{P_i \mid i = \overline{1, k}\}$

Este evident ca P este o partitie peste C, adica \nexists 2 clauze comune intre oricare P_i, P_j si $\bigcup_{i=1}^k P_i = C$. Deci observam ca intre oricare 2 multimi $P_i, P_j; \exists C_a \in P_i$ si $C_b \in P_j$ astfel

incat C_a si C_b nu au niciun x in comun.

Asadar, optimul $OPT \geq |P|$ de
oarece in cel mai bun caz $\forall P_i \in P$ necesita doar un $x_i = 1$.

Evdent $ALG = 3 \cdot |P|$ (adica 3* numarul de pasi al algoritmului in care facem cate 3 variabile 1).

Asadar

$$ALG = 3 \cdot |P| \le 3OPT \implies ALG \le 3OPT$$

1.c

Ca sa traducem in programare liniara considerm urmatoarea situatie in programare liniara 0/1, care e chivalenta cu problema 3CNF:

$$\begin{array}{ll} \text{minimizam } \sum_{i=1}^n x_i \\ \text{a.i.} & x_a + x_b + x_c \geq 1 \text{ unde } x_a, x_b, x_c \in C_i, i = \overline{1,m} \\ & x_i \in \{0,1\} \end{array}$$

Notam $OPT_{lin_{0/1}}$ rezultatul acestei probleme de programare liniara 0/1 si fie *OPT* optimul pentru 3CNF. Observam ca:

$$OPT_{lin_{0/1}} = OPT$$

Dar problema de programare liniara 0/1 prezentata mai sus este NPC. Deci vom face o relaxare a problemei pentru a o duce in programare liniara cu numere reale. Notam cu x_i' valoarea lui x_i dusa in intervalul [0,1], adica $x_i' \in [0,1]$

Deci acum avem:

$$\begin{array}{ll} \text{minimizam} \sum_{i=1}^n x_i'\\ \text{a.i.} & x_a' + x_b' + x_c' \geq 1 \text{ unde } x_a, x_b, x_c \in C_i, i = \overline{1,m}\\ & 0 \leq x_i' \leq 1 \end{array}$$

Fie OPT_{lin} valoarea sumei $\sum_{i=1}^{n} x_i'$ in urma rezolvarii problemei de programare liniara prezentata mai sus. Observam ca $OPT_{lin} \leq OPT_{lin_{0/1}}$ deoarece noi am facut o relaxare a constrangerilor variantei 0/1, adica este cel putin la fel de buna ca ea.

Adica cum $OPT_{lin_{0/1}} = OPT$, obtinem:

$$OPT_{lin} \leq OPT$$

Acum avem algoritmul pentru problema 3CNF:

Prog-liniara-3CNF(C, X)

1: $X=\{x_1\dots x_n\}$ - mulțime de variabile, $X'=\{x_1'\dots x_n'\}$ - variabilele $\in [0,1]$ 2: Rezolva urmatoarea problema de programare liniara:

4:
$$X = \{x_i = 1 \mid x_i' \ge \frac{1}{3}\}$$

5: return X

1.d

In primul rand trebuie sa demonstram ca toate clauzele $C_i \in C$ sunt satisfacute.

Acest lucru reiese din constrangerea $x'_a + x'_b + x'_c \ge 1$, adica cel putin o variabila este $\ge \frac{1}{3}$ adica ia o valoare finala 1, asta pentru fiecare $C_i \in C$. Deci algoritmul rezolva corect problema 3CNF.

Acum trebuie sa demonstram ca $ALG \leq 3OPT$ Este evident ca $ALG = \sum_{i=1}^n x_i$

Deci avem ca

$$OPT_{lin} = \sum_{i=1}^{n} x_i'$$

Si stim ca $OPT_{lin} \leq OPT$ si $x_i' \geq \frac{1}{3}$ pentru orice x_i care are valoarea 1 la final. Deci:

$$ALG = \sum_{i=1}^{n} x_i \le 3 \cdot \sum_{i=1}^{n} x_i' \le 3 \cdot OPT_{lin} \le 3 \cdot OPT$$

Deci avem ca algoritmul nostru este 3-aproximativ:

$$ALG \leq 3OPT$$