现代控制理论

一、 线性离散时间控制系统

1. 零阶保持器

原信号e(kT),输出

$$e_{h(t)} = \sum_{k=0}^\infty e(kT)[u(t-kT)-u(t-kT-T)].$$

给定输入 $e(kT) = \delta(t)$, 输出为 $g_h(t) = u(t) - u(t-T)$, 从而传递函数

$$H_0(s) = \frac{1-e^{-Ts}}{s}.$$

2. Z 变换和 Z 反变换

(1) 正变换: 留数法

 $L \to Z : F(z) = \hat{F}(z) + \beta$,已知F(s),则 $\hat{F}(z)$ 可以通过

- 单根: $\lim_{s \to p_i} (s p_i) F(s) \cdot \frac{z}{z e^{p_i T}}$
- - [1] 滯后(右移) $\mathcal{Z}[y(t-kT)] = z^{-k}Y(z)$
 - [2] 超前(左移) $\mathcal{Z}[y(t+kT)] = z^k Y(z) y(0)z^k$ $y(1\cdot T)z^{k-1}\cdots -y\lceil (k-1)T\rceil z^1$
 - [3] 初值 $y(0) = \lim (Y(z))$
- [4] 終值 $y(\infty) = \lim_{z\to 0} (1-z^{-1})Y(z)$ (要判稳: $(1-z^{-1})Y(z)$ 在圆及圆外无极点)

(2) 反变换: 分式展开

若X(z)有极点 p_i ,则

- 単根: $x(kT) = \lim_{z \to p_i} \left[(z p_i) \frac{X(z)}{z} \right] \cdot z^k$ q重根: $x(kT) = \frac{1}{(q-1)!} \lim_{z \to p_i} \frac{d^{q-1}}{dz^{q-1}} \left[(z p_i)^q \frac{X(z)}{z} \right] \cdot z^k$

3. 用 Z 变换求解差分方程

4. 微分方程离散化

一阶惯性环节 $T_1 \frac{dy}{dt} + y = Kx$,在nT < t < (n+1)T, 有 $x(t) \equiv x(nT)$, 其连续的解为

$$y = c \cdot e^{-\frac{t}{T_1}} + Kx(nT)$$

利用初值y(nT)求待定系数后可得

$$y = \frac{y(nT) - Kx(nT)}{e^{-\frac{nT}{T_1}}} \cdot e^{-\frac{t}{T_1}} + Kx(nT)$$

再取终值t = (n+1)T, 可得

$$y((n+1)T) = \frac{y(nT) - Kx(nT)}{e^{-\frac{nT}{T_1}}} \cdot e^{-\frac{(n+1)T}{T_1}} + Kx(nT)$$

$$y[(n+1)T] - e^{-\frac{T}{T_1}}y[nT] = \Big(1 - e^{-\frac{T}{T_1}}\Big)Kx[nT]$$

5. 方块图求解系统脉冲传递函数*

(一) 离散系统的状态空间模型

1. 从连续到离散

使用零阶保持器得到

$$\begin{split} x[(k+1)T] &= G(T)x[kT] + H(T)u(kT) \\ G(T) &= e^{AT} = \mathcal{L}^{-1}\big[(sI-A)^{-1}\big], H(T) = \int_0^T e^{A\tau}Bd\tau \end{split}$$

2. Z 变换求离系状态方程的解

$$x(k) = \mathcal{Z}^{-1} \big[x(0) + (zI - A)^{-1} BU(z) \big]$$

其中 $\Phi(k) = A^k = \mathcal{Z}^{-1}[(zI - A)^{-1}z]$

3. 状态方程→脉冲传递函数

消去输出表达里的X(z),得

$$G(z) = C(zI - A)^{-1}B + D$$

(二) 离散系统的分析设计

1. 稳定性

- 1. 稳定充要条件:特征方程根位于单位圆内。
- 2. 劳斯、Nyquist 判据: 双线性变换 $z = \frac{w+1}{w-1}$ 后再做

2. 稳态误差

- 1. 求Y(z), 再求E(z) = X(z) Y(z), 再用终值定理
- 2. 根据单位负反馈型别判断

3. 无稳态误差的最小拍系统

稳态误差

$$e(\infty) = \lim_{z \to 0} (1 - z^{-1}) E(z) = \lim_{z \to 0} (1 - z^{-1}) (1 - \Phi(z)) X(z)$$

则 $\Phi(z) = 1 - (1 - z^{-1})^m$, 再求补偿器传递函数。

4. 附: 常见 Z 变换

Y(s)	y(kT)	Y(z)	Y(s)	y(kT)	Y(z)
1	$\delta(kT)$	1	e^{-nTs}	$\delta((k-n)T)$	z^{-n}
$\frac{1}{s}$	1	$\tfrac{z}{z-1}/\tfrac{1}{1-z^{-1}}$	$\frac{1}{s+a}$	e^{-akT}	$\frac{z}{z-e^{-aT}}$
$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2} / \frac{Tz^{-1}}{(1-z^{-1})^2}$	$\frac{1}{(s+a)^2}$	kTe^{-aT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
$\frac{1}{s^3}$	$\frac{1}{2}(kT)^2$	$\frac{T^2z(z+1)}{2(z-1)^3}$, ,

Y(s)	y(kT)	Y(z)
$\frac{a}{s(s+a)}$	$\frac{1-e^{-aT}}{1}$	$\frac{z(1{-}e^{-aT})}{(z{-}1)(z{-}e^{-aT})}$
$\tfrac{b-a}{(s-a)(s-b)}$	$e^{-aT}-e^{-bT} \\$	$\frac{z(e^{-aT} - e^{-bT})}{(z - e^{-aT})(z - e^{-bT})}$
$\frac{a}{s^2+a^2}$	$\sin(aKT)$	$\tfrac{z\sin(aT)}{z^2-2z\sin(aT)+1}$
$\frac{s}{s^2+b^2}$	$\cos(akT)$	$\frac{z\cos(aT)}{z^2 - 2z\cos(aT) + 1}$
$\tfrac{s+a}{(s+a)^2+b^2}$	$e^{-aT}\cos(bkT)$	$\frac{z^2 {-} z e^{-aT} \cos(bT)}{z^2 {-} 2z e^{-aT} \cos(bT) {+} e^{-2aT}}$
$\frac{b}{(s+a)^2+b^2}$	$e^{-aT}\sin(bkT)$	$\frac{ze^{-aT}\sin(bT)}{z^2-2ze^{-aT}\sin(bT)+e^{-2aT}}$

二、状态空间分析法

1. 能控性

$$Q_c = (B \ AB \ \cdots \ A^{n-1}B)$$

 $\operatorname{Rank}(Q_c) = n$ 即系统能控。

2. 能观性
$$Q_o = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} \mathrm{Rank}(Q_o) = n$$
即系统能观。