1. If G is open and P is a special polygon with $P \subset G$, prove there exists a special polygon P' such that $P \subset P' \subset G$ and $\lambda(P) < \lambda(P')$.

Solution: Recall the definition of a measure on an open set G:

$$\lambda(G) := \sup \{\lambda(P) : P \subset G, P \text{ is a special polygon}\}.$$

We have two occasions:

- 1. $\lambda(G) < \infty$.
- 2. $\lambda(G) = \infty$.

Let's address the first case.

1. If $\lambda(G) < \infty$, according to the definition of *supremum*, it satisfies the following property:

$$\lambda\left(G\right) - \epsilon = \lambda\left(P\right)$$

for some $\epsilon > 0$. Then by the definition of *supremum*, there exists an element $\lambda(P') \in \{\lambda(P) : P \subset G, P \text{ is a special polygon}\}$ such that

$$\underbrace{\lambda\left(G\right) - \epsilon < \lambda\left(P'\right)}_{\lambda(P) < \lambda(P')} < \lambda\left(G\right).$$

2. If $\lambda(G) = \infty$, the set $\{\lambda(P) : P \subset G, P \text{ is a special polygon}\}$ is not bounded above. Therefore, it immediately follows that there exists an element

$$\lambda(P') \in {\lambda(P) : P \subset G, P \text{ is a special polygon}}$$

such that $\lambda(P) < \lambda(P')$.

- 2. (a) Prove that if G is a bounded open set, then $\lambda(G) < \infty$.
 - (b) In the plane \mathbb{R}^2 let

$$G = \left\{ (x, y) : 1 < x \text{ and } 0 < y < \frac{1}{x} \right\}.$$

Prove that $\lambda(G) = \infty$

(c) In the plane \mathbb{R}^2 let

$$G = \{(x, y) : 0 < x \text{ and } 0 < y < e^{-x}\}.$$

Prove that $\lambda(G) = 1$.

(d) In the plane \mathbb{R}^2 let

$$G = \{(x, y) : 1 < x \text{ and } 0 < y < x^{-a}\},\$$

where a is a real number satisfying a > 1. Prove that $\lambda(G) = 1/(a-1)$.

Solution:

Solution:

Solution:

Solution:

3. Let $G_i, i \in \mathcal{I}$, be a collection of disjoint open sets in \mathbb{R}^n . Prove that only countably many of these sets are nonempty.

Solution: We can use the fact that \mathbb{Q}^n is dense in \mathbb{R}^n , which is put another way as such: every neighbourhood in \mathbb{R}^n contains a point of \mathbb{Q}^n . Therefore, if G_i is a nonempty open set, every point in G_i is an interior point with a neighbourhood with a point in \mathbb{Q}^n contained in G_i . Since G_i are disjoint, they must not share a point in \mathbb{Q}^n , which concludes that the number of nonempty open sets in the collection $\{G_i\}$ is as large as the cardinality of \mathbb{Q}^n . \mathbb{Q}^n has the same cardinality as \mathbb{N}^n thereby lending itself to the definition of *countability*.

4. The structure of open sets in \mathbb{R} .

Prove that every nonempty open subset of $\mathbb R$ can be expressed as a countable disjoint union of open intervals:

$$G = \bigcup_{k} \left(a_k, b_k \right),\,$$

where the range on k can be finite or infinite. Furthermore, show that this expression is unique except for the numbering of the component intervals.

Solution:

5. In the notation of the previous problem, prove that $\lambda(G) = \sum_{k} (b_k - a_k)$.

Solution:

6. Prove that the open disk B(0,1) in \mathbb{R}^2 cannot be expressed as a disjoint union of open rectangles.

Solution:

7. Prove that every nonempty open subset of \mathbb{R}^n can be expressed as a countable union of nonoverlapping special rectangles, which may be taken to be cubes:

$$G = \bigcup_{k=1}^{\infty} I_k.$$

The range on k must be infinite. Why?

(HINT: First pave \mathbb{R}^n with cubes of side 1. Select those cubes which are contained in G. Then bisect the sides of the remaining cubes to obtain cubes with side 1/2. Select those cubes which are contained in G.)

Solution:

8. In the notation of Problem 2, calculate the measure of the totality of discarded open sets. That is, calculate $\lambda (\bigcup_{k=1}^{\infty} G_k)$.

Solution:

9. let $\epsilon > 0$. Prove that there exists an open set $G \subset \mathbb{R}$ such that $\mathbb{Q} \subset G$ and $\lambda(G) < \epsilon$. (This result will probably surprise you: Although G is open and contains every rational number, "most" of \mathbb{R} is in G^c .)

Solution:

10. Use your method of working Problem 12 to give a proof that \mathbb{R} is uncountable (cf. Section 1B).

Solution: