MSAdd01

Manual Técnico

Outubro, 2021

1 Introdução

O MSAdd01 é um software de sintetizador musical do tipo aditivo no qual a síntese se dá pelo controle direto dos harmônicos de uma nota para definir seu timbre.

Toda lógica matemática por trás da síntese e controles disponíveis ao usuário foi programada no GNU-Octave. Toda interface gráfica e entradas do teclado foram programadas no Matlab na ferramenta App Designer.

2 Conceitos Musicais

2.1 Nota

Em uma linguagem, atribuímos *símbolos* a *ideias* ou *sons* para que os possamos registrar em algum meio *visível* (escrita).

Uma nota representa a unidade da emissão de som, ou seja, uma emissão que tem características mínimas, definidas ao longo de sua duração, enquanto que uma sequência de 2 ou mais notas simultâneas, são respectivamente chamadas de intervalo e acorde. As características normalmente atribuídas (além da duração) são a altura (frequência), volume (intensidade sonora) e voz (timbre). Uma partitura é uma forma gráfica de representar e armazenar todas essas informações.

Um teclado musical digital procura mimetizar um piano, logo as características de uma nota são normalmente definidas pelos seguintes procedimentos:

Duração: Tempo desde o pressionamento da tecla até a soltura desta.¹

Frequência: A cada tecla é atribuída uma única frequência.

Intensidade: A intensidade é diretamente proporcional à força aplicada na tecla.

 $^{^1\}mathrm{Um}$ instrumento só consegue "sustentar" uma nota se sua mecânica de produção de som for continuamente excitável, por exemplo, en quanto houver ar, pode-se manter uma nota em uma flauta.

Timbre: É determinado pela natureza acústica de um instrumento; no caso de um instrumento sintético, este parâmetro pode ser controlado atribuindo uma quantidade de controles equivalente ao grau de liberdade desejado.

Devido a limitações técnicas (ver secção 5), a duração e intensidade não podem ser simuladas por estes procedimentos, desta forma, são executadas por controles externos às teclas musicais.

Figura 1: Teclas musicais

2.2 Altura

A atribuição entre frequências e teclas musicais tem o nome de escala musical. A escala utilizada neste trabalho é do tipo maior com temperamento igual, que possui as seguintes convenções e regras de construção:

- Uma forma possui 7 teclas brancas e 5 teclas pretas;
- A cada tecla branca é dado um *nome*, como pode ser visto na figura 3;
- Cada tecla preta pode ser nomeada de acordo com uma vizinha de referência, por exemplo, a tecla preta entre Dó e Ré, pode ser nomeada como Dó# (dó sustenido), ou Réb (ré bemol), dependendo do contexto;
- A distância de altura entre uma tecla preta e brancas adjacentes, ou duas teclas brancas adjacentes sem uma tecla preta no meio é denominada semitom:
- A distância de altura entre duas teclas pretas próximas ou duas teclas brancas adjacentes com um tecla preta no meio é denominada tom e equivale exatamente a 2 semitons;
- Um teclado musical é composto por uma repetição de formas; para diferenciar cada forma são atribuídos números inteiros de forma que uma forma a esquerda tem frequências mais graves e um número imediatamente inferior, enquanto que uma forma a direita tem frequências mais agudas e um número imediatamente superior;

- A nota de referência para todas as formas, conhecida como *lá central*, é nomeada como: Lá4 ou A4 e tem uma frequência exata de 440Hz;
- Notas com o mesmo nome em uma forma adjacente a direita tem exatamente o dobro de frequência (oitava), e vice-versa, ou seja: Lá3 = 220Hz e Lá5 = 880Hz;
- A frequência de cada tecla de uma forma é definida de forma que a *oitava* (x2) seja igualmente divida entre as 12 teclas (7 brancas + 5 pretas), ou seja, aumentar um semitom (ir para a próxima tecla da direita), equivale a multiplicar a frequência da nota pela décima segunda raiz de 2, e viceversa, ou seja: Láb $4 \approx 415,30$ e Lá $\#4 \approx 466,16$. (ver seccção 3.2)

2.3 Timbre

A frequência atribuída a uma tecla é nomeada de fundamental; frequências múltiplas inteiras da fundamental são nomeadas de harmônicos.

Instrumentos podem ser classificados em tonais ou atonais. O primeiro grupo consiste em instrumentos com altura bem definida e conteúdo frequencial concentrado nos harmônicos, como o piano; enquanto o segundo grupo enquadra instrumentos cujo conteúdo frequencial é espalhado e normalmente não possuem alturas definidas, como um tambor.

Este sintetizador simula e cria apenas vozes (instrumentos) do tipo tonal. (Ver secção 3.3)

2.4 Dinâmica

Instrumentos podem permitir variação dinâmica durante a duração da nota, em muitos casos diretamente proporcional à força aplicada pelo interprete, seja exercendo mais/menos força com as mãos, como no piano, ou emitindo um fluxo mais/menos intenso de ar, como na flauta.

A constituição física de um instrumento também atribui naturalmente algumas características dinâmicas (ver secção) devido suas propriedades elásticas:

- Após o impacto inicial de uma tecla de piano, o sistema demora um tempo para atingir seu valor máximo de intensidade; a este tempo é dado o nome de Ataque (Attack);
- Após o ataque, a intensidade, em excesso, decai até um valor estável; a este tempo é dado o nome de *Decaimento* (Decay);
- Se o instrumento possuir uma característica de *Sustentação* do estímulo, a intensidade estável pode ser mantida por um tempo nomeado de forma análoga (Sustain);
- Após cessar qualquer estímulo à produção de som, o som irá decair até níveis inaudíveis; assim como o período de ataque, instrumentos naturais não podem ter transições instantâneas devido a elasticidade do material; este estágio final da nota é nomeado de *Repouso* (Release);

3 Núcleo

O código do núcleo se divide em três blocos de processamento:

- Controle da Frequência;
- Controle do Timbre;
- Controle da Dinâmica.

Figura 2: Diagrama de Blocos

Todos os cálculos relativos aos controles da síntese são executados a uma taxa fixada pelo programa equivalente a taxa de amostragem a ser enviada para a saída de áudio respeitando o critério de Nyquist para sons do espectro audível em uma resolução, também fixa, e ambos parâmetros não são acessíveis ao usuário:

• Taxa de Amostragem: 44100 amostras/segundo;

• Resolução do Áudio: 16 bits;

3.1 Duração da nota

A duração da nota é controlada pelo usuário e, assim como a taxa, é fundamental no cálculo de todos os módulos. Varia de 0,4 a 4 segundos.

3.2 Módulo de Frequência

A frequência fundamental de cada nota é atribuída através da escala *igualmente temperada*, explicada anteriormente, através do seguinte código:²

²A tecla de número 49 equivale ao A4, ou Lá4.

```
\begin{array}{ll} \textbf{function} & \operatorname{Escalas}\left(\operatorname{app}\right) \\ & \operatorname{app.altura} = @(\operatorname{tecla}) \operatorname{app.A4.*}(2).^{\hat{}}((\operatorname{tecla}-49)/12); \\ & \operatorname{app.escala} = \operatorname{app.altura}\left(1{:}88\right); \\ \textbf{end} \end{array}
```

Além da frequência fundamental determinada pela tecla, é possível fazer alterações na frequência ao longo da duração da nota através do botão de *pitch* e de 4 efeitos disponibilizados ao usuário.

3.2.1 Slide-Up

Este efeito consiste em aumentar a altura da nota linearmente ao longo da duração. A posição do slider correspondente determina a velocidade em que ocorre a variação. O limite máximo de velocidade foi escolhido de forma que na duração máxima permitida (4s), uma nota possa passar da altura mais grave até a mais aguda permitida.

Se este efeito for aplicado de forma que durante a duração da nota ultrapasse a frequência limite (22050Hz), ocorre *aliasing* e o efeito parecerá ter sido invertido (diminuição da altura).

3.2.2 Slide-Down

Este efeito é o caso contrário do anterior e foi projetado de forma equivalente. Da mesma forma, também sofrerá aliasing se passar do limite inferior (0Hz).

3.2.3 Vibrato

Este efeito consiste em uma flutuação periódica (senóide) na altura da nota ao longo de sua duração. A *intensidade* determina o tamanho do deslocamento na altura por flutuação, e a *velocidade* determina a quantidade de flutuações por segundo.

```
function Vibrato(app)
    %Vibrato:
    app.vibrato =
    app.intensidadeV.*sin((2*pi.*app.velocidadeV).*app.t)
    ;
end
```

Se a velocidade for muito alta o efeito de "flutuação" deixa de ser percebido e a nota passa a ser distorcida devido a baixa definição temporal da altura.

Devido a forma como o *vibrato* é implementado no código, ele é efetivamente calculado apenas no *Módulo de Timbre* (ver seccção 3.3).

Os limites dos parâmetros foram escolhidos de forma que a máxima variação de altura na nota de referência (Lá4), não ultrapasse os limites inferior ou superior (evitar aliasing), e a região de máxima velocidade não possui diferenças marcantes entre valores próximos (saturação do efeito).

3.2.4 Escalator

Este efeito combina o anterior com *Slide-Up* para implementar uma *flutuação crescente*, porém apenas com parâmetros do mesmo tipo do efeito de vibrato, ou seja, a taxa de crescimento da flutuação não é um parâmetro diretamente controlável, e fica dependente dos outros dois (intensidade, velocidade).

```
function Escalator(app)
    app.escalator =
    1+app.intensidadeE*sin((2*pi*app.velocidadeE).*app.t)
    ;
end
```

Este efeito também apresenta distorção se a velocidade estiver alta, e diferente dos *slides*, o *aliasing* é desejado como uma característica integrante deste efeito.

Ao receber o gatilho de uma tecla (digital ou teclado do computador), o número correspondente aquela tecla será associado a escala e o Módulo de Frequência irá chamar os efeitos empregados (com exceção do *vibrato*):

```
function DefinirFrequencia(app,valueNota)
    app.frequencia =
    app.escala(valueNota).*app.pitch.*app.slideUp
    .*app.slideDn.*app.escalator;
end
```

3.3 Módulo de Timbre

Este módulo é responsável por selecionar uma voz dentre exemplos pré-selecionados, ou criar uma voz através do controle direto do nível relativo de intensidade entre os harmônicos. Desta forma, cada botão do tipo [harmônico-n] varia de 0 a 1 e correspondem respectivamente a fundamental (1), e seus 9 harmônicos consecutivos.

$$\sum_{n=1}^{10} \text{harmonico}(n) * sen(2\pi * n * \text{fundamental} * (t + \text{vibrato}))$$
 (1)

Diferente do *escalator*, o *vibrato* não é aplicado diretamente ao cálculo da frequência, mas ao cálculo temporal de cada senoide (timbre).

3.4 Módulo de Dinâmica

Este módulo determina a variação de intensidade da nota ao longo de sua duração, para isso, foram implementados um botão de *volume* geral, um submódulo de *envelope ASR*, e 3 efeitos.

3.4.1 Envelope ASR

O envelope implementado neste sintetizador não possui a porção de *Decay*, pois além de ser menos expressivo do que as outras porções, também seria necessário especificar o excesso de energia do pico, e para isso mais uma normalização seria necessária para manter todas as amostras de som dentro dos valores aceitáveis para a interface de som, assim evitando saturação. Os períodos de *attack* e *release* são implementados de forma *exponencial* para representar as propriedades elásticas das vozes.

Os botões de attack e release variam de 0 a 1 e determinam diretamente a porcentagem de tempo da duração em que a nota se encontra nestes estados. Estes botões estão diretamente relacionados, de forma que a soma máxima permitida sempre 1, ou seja, ao colocar um botão em 0,2, o outro será limitado até 0.8.

```
app.fA = 1.-exp(1).^((-5/app.att) .*app.A); %5 constantes
    de tempo
app.fS = app.S./app.S; %vetor de uns;
app.fR = exp(1).^((-5/app.rel) .*app.R); %5 constantes de
    tempo
app.envelope = [app.fA app.fS app.fR];
```

3.4.2 Crescendo

Assim como *slide-up*, o *crescendo* constitui em um aumento linear do volume da nota ao longo da duração. O respectivo botão regula a velocidade desse aumento.

Se este efeito for empregado de forma que o volume total ultrapasse o limite da interface de som ([-1,1]), haverá saturação da nota, prejudicando a qualidade do timbre.

3.5 Diminuendo

De forma análoga ao *slide-down* este efeito também é contrário ao *crescendo* e seu botão também regula a velocidade da variação, porém, neste caso, o efeito

é implementado de forma exponencial assim como Release, pois se fosse implementado de forma linear, ao atingir o limite inferior (0), o efeito passaria a se comportar como crescendo.

```
\begin{array}{ll} \textbf{function} & Efeito Diminuendo (app) \\ & app. dim = \textbf{exp} \big( -0.5756*app. variacaoD*app.t \big); \\ \textbf{end} \end{array}
```

3.5.1 Tremolo

Análogo ao *vibrato*, este efeito consiste em uma variação periódica do volume, e possui dois botões para regular a *intensidade* e *velocidade* dessa variação.

Diferente do vibrato, este efeito possui mais um controle chamado de offset que controla o nível mínimo do decaimento da intensidade, ou seja, uma variação de 0 a 0.5 pode receber um offset de 0.5 e variar de 0.5 a 1.

```
\label{eq:function} \begin{split} & \textit{function} \  \  \, \text{Tremolo\,(app)} \\ & \textit{\%Tremolo\,:} \\ & \text{app.tremo} = (1-\text{app.offseT\,/(2*app.volume)}) \\ & + (\text{app.intensidadeT\,/(2*app.volume)}) * \textbf{sin\,((2*pi*app.volume))} \\ & \text{velocidadeT\,).*app.t\,)}; \end{split}
```

Assim como o efeito de *crescendo*, aplicar este efeito a volumes muito altos pode fazer com que a nota entre na região de *saturação* periodicamente.

O Módulo de Dinâmica é capaz de aplicar todos os efeitos ao mesmo tempo:

```
app.dinamica = app.volume*app.envelope.*app.tremo.*app.
    cres.*app.dim;
```

3.6 Ruído Branco

O sintetizador possuí um controle de ruído branco aditivo implementado direto à saída de som com intensidade na mesma faixa do *volume*.

```
function DefinirRuido(app)
          app.ruido = app.levelN.*randn(1,length(app.t));
end
```

4 Interface

A interface do sintetizador digital foi construída através de um recurso nativo no *Matlab 2019a* chamado *App Designer*. O mesmo possibilita a criação de aplicativos ou os conhecidos como *toolbox* de interface gráfica de forma interativa e visual. Este recurso possui uma série de componentes nativos que facilitam a criação de uma interface de usuário, entre eles: *Axes, button, slider, dropdown*, entre outros.

4.1 Teclas

As teclas da interface são componentes button presentes nativamente no recurso $App\ Designer.$

Figura 3: Interface das teclas

Quando um desses botões é apertado, ele irá acionar um *callback* do *Matlab*, que consiste em uma função assíncrona.

O botão A por exemplo, irá chamar a seguinte função:

```
function AButtonPushed(app, event)
     PressKey(app, 'a');
end
```

Então essa função PressKey() irá chamar a função que irá determinar qual nota tocar, a cor do botão após clicar e por quanto tempo ele ficará com essa cor:

Então ele determina a nota e chama a função que irá prepará-la e tocá-la:

```
function PlaySound(app, valueNota)
    Nota(app, valueNota);
    sound(app.nota,app.taxa,app.resolucao)
end
```

Já a nota é determinada pela função a seguir que define a frequência da nota e o timbre a ser tocado, para então armazenar a nota que será tocada pelo PlaySound():

4.2 Knobs

Os knobs também são componentes nativos do App Designer que foram usados para diversas funções dentro da nossa interface, tais como regular volume, tempo, efeitos e harmônicos.

Figura 4: Exemplo de knob

Muito similar as teclas, o knob irá chamar um callback com um evento do tipo ValueChanged, que permite chamar uma função assíncrona quando o valor do knob é alterado, essas funções deverão então armazenar os valores e atualizar as notas e timbres pela função ParameterUpdate() que serão tocados.

```
function ParameterUpdate(app,typeWave)
    app.duracaoInit = 0;

% Atualiza o tempo da nota
    DefinirTempo(app)

% Define as escalas das notas
    Escalas(app)

% Aplica os efeitos
    Efeitos(app)
```

4.3 Sliders

Os sliders tem o mesmo princípio dos knobs, sendo componentes nativos do App Designer que foram usados para alterar os valores do Pitch e dos efeitos Slide Up e Slide Down.

Figura 5: Exemplo de slider

O callback dos sliders são iguais ao dos knobs, onde os mesmos irão chamar uma função quando o evento de mudar valor do slider for ativado, então os valores para o Pitch, Slide Up e Slide Down serão armazenados, em seguida as notas e timbres serão atualizados pela função Parameter Update().

4.4 Gráfico da Nota

O componente que mostra o sinal da nota que deve ser tocada ao apertar uma tecla, é o componente Axes que também é um nativo do $App\ Designer$. Através dele é possível usar o comando de plot e similares do Matlab, assim como as suas configurações.

Não é necessário usar *callback* para o componente, tendo em vista que o mesmo pode ser atualizado sempre pelo *callback* dos outros componentes presentes na interface.

Figura 6: Exemplo de Axes

4.5 Menu de Timbres

Para o menu de timbres, foi utilizado o componente *Dropdown*, nativo do *App Designer*. Componente que permite você selecionar apenas um dos itens de uma lista por vez.

Figura 7: Exemplo de dropdown

Assim como em outros componentes, um callback é ativado com o evento de mudar o valor do dropdown, com isso o mesmo irá chamar uma função que deverá armazenar a escolha de timbre e atualizar o novo timbre pela função ParameterUpdate().

5 Limitações

- Num geral, teclados para PC não possuem *teclas sensitivas* para detectar diferenças na força aplicada, detectando apenas a ativação da tecla.
- Uma tecla pressionada gera gatilhos na CPU até que seja solta, porém ao pressionar mais de uma tecla ao mesmo tempo, apenas uma tecla continua enviando gatilhos.
- As funções sound e soundsc, responsáveis por enviar um vetor número para a saída de som, ocupam o processamento do programa até o final da instrução, desta forma, não é possível executar outras instruções enquanto o som não for produzido por completo, e por tanto, não é possível antecipar a chamada de outra função sound, desta forma, há uma interrupção entre instruções, pois há um delay entre o processamento de uma instrução até o começo da reprodução do som.

- O item anterior implica na impossibilidade de produzir uma nota sustentada por pressionamento de tecla, uma vez que necessitaria de um looping na instrução até que a tecla seja solta, porém a interrupção entre cada loop implica em cliques no som.
- Pelo mesmo motivo, não foi possível fazer alterações no timbre e efeitos durante a emissão de uma nota.