МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ТОЭ

ОТЧЕТ

по лабораторной работе №7

по дисциплине «Теоретические основы электротехники» ТЕМА: " ИССЛЕДОВАНИЕ УСТАНОВИВШЕГОСЯ СИНУСОИДАЛЬНОГО РЕЖИМА В ПРОСТЫХ ЦЕПЯХ"

Студент гр. 1384	Степаненко Д.В.
Студентка гр. 1384	— Пчелинцева К.Р.
Преподаватель	

Санкт-Петербург

2023 г.

Цель работы.

Практическое ознакомление с синусоидальными режимами в простых RL-, RC- и RLC-цепях.

Подготовка к работе.

Резонанс — это такое состояние RLC-цепи в установившемся синусоидальном режиме, при котором напряжение и ток на входе цепи совпадают по фазе. Схемы исследуемых цепей приведены на рис. 7.1. Резонанс в цепи на рис. 7.1, а называют резонансом напряжений, а цепь — последовательным контуром; резонанс в цепи на рис. 7.1, б — резонансом токов, а цепь — параллельным контуром. При резонансе вещественными становятся комплексное сопротивление $Z(j\omega) = R + j \left[\omega L - 1/(\omega C)\right]$ последовательной цепи и, соответственно, комплексная проводимость параллельной цепи $Y(j\omega) = G + j \left[\omega C - 1/(\omega L)\right]$ Отсюда резонансная частота приведенных на рис. 7.1, а, б цепей:

При резонансе модуль проводимости цепи на рис. 7.1, а становится максимальным:

$$|Y| = \frac{1}{|Z|} = \frac{1}{\sqrt{R^2 + \left[\omega_0 L - 1/(\omega_0 C)\right]^2}} = \frac{1}{R}.$$

Это значит, что при $\omega = \omega_0$ максимальным будет ток:

$$I_0 = \frac{1}{R}U.$$

Напряжения на емкости и индуктивности в цепи на рис. 7.1, а при резонансе компенсируют друг друга и могут быть во много раз больше напряжения источника. Отношение действующего значения напряжения любого из реактивных элементов к напряжению источника при $\omega = \omega_0$ называют добротностью Q последовательного контура:

$$Q = \frac{U_{C0}}{U} = \frac{U_{L0}}{U} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{\sqrt{\frac{L}{C}}}{R} = \frac{\rho}{R},$$

где ρ – характеристическое сопротивление контура.

Если в режиме резонанса измерены напряжения на входе U и на конденсаторе U_{C0} , ток I_0 и резонансная частота f_0 , то из приведенных соотношений можно определить все параметры последовательного контура: сопротивление R, добротность Q и характеристическое сопротивление ρ , емкость и индуктивность:

$$C = \frac{1}{2\pi f_0 \rho}, \ L = \frac{\rho}{2\pi f_0}.$$

Параллельный RLC-контур на рис. 7.1, б дуален последовательному. При резонансе токов максимальным становится модуль его комплексного сопротивления:

$$|Z| = \frac{1}{|Y|} = \frac{1}{\sqrt{G^2 + \left[\omega_0 C - 1/(\omega_0 L)\right]^2}} = \frac{1}{G}.$$

Это значит, что при $\omega = \omega_0$ максимальным будет напряжение на входе цепи:

$$U_0 = \frac{1}{G}I.$$

Токи, протекающие через индуктивность и емкость в цепи на рис. 7.1, б, при резонансе компенсируют друг друга и могут во много раз быть больше тока источника. Отношение действующего значения тока любого из реактивных элементов к току источника при $\omega = \omega_0$ называют добротностью параллельного контура:

$$Q = \frac{I_{C0}}{I} = \frac{I_{L0}}{I} = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG} = \frac{1}{\rho G} = \frac{R}{\rho}$$
.

Если в режиме резонанса измерены входной ток I и ток конденсатора I_{C0} , напряжение U_0 и резонансная частота f_0 , то можно определить G, Q и ρ , L и C.

При отклонении частоты от резонансной реактивное сопротивление последовательного контура и реактивная проводимость параллельного не равны нулю, поэтому ток первого и напряжение второго уменьшаются.

АЧХ (резонансная кривая) последовательного контура есть зависимость модуля проводимости от частоты:

$$|Y(j\omega)| = \frac{1}{\sqrt{R^2 + \left\lceil \omega L - 1/(\omega C) \right\rceil^2}} = \frac{1}{R\sqrt{1 + Q^2 \left(\omega/\omega_0 - \omega_0/\omega\right)^2}}.$$

Для параллельного контура, дуально, AЧX — это зависимость модуля сопротивления от частоты:

$$\left|Z(j\omega)\right| = \frac{1}{\sqrt{G^2 + \left[\omega C - 1/(\omega L)\right]^2}} = \frac{1}{G\sqrt{1 + Q^2(\omega/\omega_0 - \omega_0/\omega)^2}}.$$

«Острота» резонансной кривой определяет частотную избирательность цепи. По AЧX можно определить добротность контура. Она равна отношению f_0 к полосе пропускания Δf , измеренной по уровню 0,707 от максимума AЧX:

Рис. 7.2

Примерный вид AЧX, построенных по выражению (7.7) при различных значениях R, представлен на рис. 7.2.

Основные расчетные формулы.

1. Расчетная формула для определения добротности контура

$$Q = \frac{U_{C0}}{U},$$

где U — напряжение источника, U_{C0} — напряжение на конденсаторе

2. Расчетная формула для определения характеристического сопротивления:

$$\rho = Q \cdot R$$

3. Расчетная формула для определения индуктивности катушки:

$$L = \frac{\rho}{2\pi f_0},$$

где f_0 – резонансная частота

4. Расчетная формула для определения емкости конденсатора:

$$C = \frac{1}{2\pi f_0 \rho}$$

5. Расчетная формула для определения значений АЧХ резонансной кривой:

$$|Y(j\omega)| = \frac{1}{R\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

Обработка результатов.

1) Исследование резонанса напряжений и АЧХ контура с малыми потерями.

Таблица 1 – Измерения в при резонансе с малыми потерями.

Измеряют при резонансе			Вычисляют					
U, B	I ₀ , мА	f_0 , к Γ ц	U_{C0} , B	R, Ом Q p, Ом L, Гн C,				С, нФ
2	11,7	3,7	40,8	170,94	22,4	3 487,18	0,15	12,34

Рисунок 3 - Схема установки для исследования резонанса напряжений в последовательном контуре с малыми потерями.

Вычисления:

$$R = \frac{U}{I_0} = \frac{2}{0.0117} \approx 170.94 \text{ Om};$$

$$Q = \frac{U_{C0}}{U} = \frac{40.8}{2} = 22.4;$$

$$ho = Q \cdot R = 22,4 \cdot 170,94 \approx 3 \ 487,18 \ \mathrm{Om};$$

$$L = \frac{\rho}{2\pi f_0} = \frac{3487,18}{2 \cdot 3,14 \cdot 3700} \approx 0,15 \ \Gamma_{
m H};$$

$$C = \frac{1}{2\pi f_0 \rho} = \frac{1}{2 \cdot 3,14 \cdot 3700 \cdot 3487,18} \approx 12,34 \text{ H}\Phi;$$

$$|Y(j\omega)| = \frac{1}{R\sqrt{1 + Q^2 \left(\frac{f}{f_0} - \frac{f_0}{f}\right)^2}} = \frac{1}{170,94 \cdot \sqrt{1 + 22,4^2 \cdot \left(\frac{1,85}{3,7} - \frac{3,7}{1,85}\right)^2}} \approx 0,000178 \text{ Cm};$$

$$Q = \frac{f_0}{\Delta f} = \frac{f_0}{\operatorname{argmax}(|Y(j\omega_0)| \cdot 0,707) - \operatorname{argmin}(|Y(j\omega_0)| \cdot 0,707)} = \frac{3,7}{3,92 - 3,59} \approx 11,2$$

Таблица 2 - Измерения для построения АЧХ при малых потерях.

	Изм	Вычисляют		
U, B	f, кГц	Т, мк с	I, мА	Y(jω) , Cm
2	1,85	540	0,38	0,00017
2	2,16	462	0,48	0,00023
2	2,47	404	0,62	0,00031
2	2,78	359	0,96	0,00045
2	3,09	323	1,47	0,00072
2	3,4	294	2,53	0,00149
2	3,7	270	11,7	0,00585
2	4,31	232	2,08	0,00084
2	4,92	203	1,17	0,00045
2	5,53	180	0,78	0,00032
2	6,14	162	0,58	0,00025
2	6,75	148	0,5	0,00020
2	7,4	135	0,4	0,00017

Рисунок 4 – График АЧХ для цепи на рис. 3

2) Исследование резонанса напряжений и АЧХ контура с большими потерями.

Таблица 3 – Измерения в при резонансе с большими потерями.

Измеряют при резонансе					Вычисляю	Т		
U, B	I ₀ , MA	f_0 , к Γ ц	U_{C0} , B	R, Om Q p, Om L, Гн C,				С, нФ
2	3,19	3,7	10,46	627	5,23	3 279,21	0,14	13,12

Рисунок 5 - Схема установки для исследования резонанса напряжений в последовательном контуре с большими потерями.

Вычисления:

$$R = \frac{U}{I_0} = \frac{2 \cdot 1000}{3,19} \approx 627 \text{ Om};$$

$$Q = \frac{U_{C0}}{U} = \frac{10,46}{2} = 5,23;$$

$$ho = Q \cdot R = 22,4 \cdot 170,94 \approx 3\ 279,21\ {
m Om};$$

$$L = \frac{\rho}{2\pi f_0} = \frac{3\ 279,21}{2\cdot 3,14\cdot 3700} \approx 0,14\ \Gamma_{\rm H};$$

$$C = \frac{1}{2\pi f_0 \rho} = \frac{1}{2 \cdot 3.14 \cdot 3700 \cdot 3487.18} \approx 13.12 \text{ H}\Phi;$$

$$|Y(j\omega)| = \frac{1}{R\sqrt{1+Q^2\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}} = \frac{1}{R\sqrt{1+Q^2\left(\frac{2\pi f}{2\pi f_0} - \frac{2\pi f_0}{2\pi f}\right)^2}} = \frac{1}{627 \cdot \sqrt{1+5,23^2 \cdot \left(\frac{3}{4,5} - \frac{4,5}{3}\right)^2}} \approx 0,0002;$$

$$Q = \frac{f_0}{\Delta f} = \frac{f_0}{\operatorname{argmax}(|Y(j\omega_0)| \cdot 0,707) - \operatorname{argmin}(|Y(j\omega_0)| \cdot 0,707)} = \frac{3.7}{4.08 - 3.3} \approx 4.8$$

Таблица 4 - Измерения для построения АЧХ при малых потерях.

	Изм	Вычисляют		
U, B	f, кГц	Т, мк с	І, мА	Y(jω) , Cm
2	1,85	540	0,36	0,00020
2	2,16	462	0,47	0,00027
2	2,47	404	0,66	0,00036
2	2,78	359	0,9	0,00050
2	3,09	323	1,33	0,00074
2	3,4	294	1,98	0,00119
2	3,7	270	3,19	0,00159
2	4,31	232	1,96	0,00084
2	4,92	203	1,09	0,00050
2	5,53	180	0,76	0,00036
2	6,14	162	0,56	0,00028
2	6,75	148	0,49	0,00024
2	7,4	135	0,38	0,00020

Рисунок 6 – График АЧХ для цепи на рис. 5

3) Исследование влияния емкости на характеристики контура.

Таблица 5 – Измерения в при резонансе. Влияние емкости.

Измеряют при резонансе			Вычисляют					
U, B	I ₀ , MA	f_0 , к Γ ц	U_{C0} , B	R, Ом Q p, Ом L, Гн C,				С, нФ
2	3,57	1,9	6,17	560,2	3,085	3 279,21	0,14	48,47

Рисунок 5 - Схема установки для исследования резонанса напряжений в последовательном контуре с большими потерями.

Вычисления:

$$R = \frac{U}{I_0} = \frac{2 \cdot 1000}{3,57} \approx 560,2 \text{ Ом};$$

$$Q = \frac{U_{C0}}{U} = \frac{6,17}{2} = 3,085;$$

$$\rho = Q \cdot R = 22,4 \cdot 170,94 \approx 1728,2 \text{ Ом};$$

$$L = \frac{\rho}{2\pi f_0} = \frac{1728,2}{2 \cdot 3,14 \cdot 1900} \approx 0,14 \text{ Гн};$$

$$C = \frac{1}{2\pi f_0 \rho} = \frac{1}{2 \cdot 3,14 \cdot 3700 \cdot 3487,18} \approx 48,47 \text{ H}\Phi;$$

$$|Y(j\omega_0)| = \frac{1}{R\sqrt{1+Q^2}} = \frac{1}{560,2 \cdot \sqrt{1+3,085^2}} \approx 0,00055 \text{ Cm};$$

$$Q = \frac{f_0}{\Delta f} = \frac{f_0}{\text{argmax}(|Y(j\omega_0)| \cdot 0,707) - \text{argmin}(|Y(j\omega_0)| \cdot 0,707)} = \frac{1,9}{2,29-1,69} \approx 3,12$$

Таблица 2 - Измерения для построения АЧХ при малых потерях.

	Изм	Вычисляют		
U, B	f, кГц	Т, мк с	I, MA	Y(jω) , C _M
2	0,95	1052	0,74	0,00020
2	1,11	900	0,92	0,00027

	Изм	Вычисляют		
2	1,27	787	1,2	0,00036
2	1,43	699	1,58	0,00050
2	1,59	628	2,29	0,00074
2	1,75	571	3,09	0,00119
2	1,9	526	3,57	0,00159
2	2,21	452	2,89	0,00084
2	2,52	396	1,82	0,00050
2	2,83	353	1,37	0,00036
2	3,14	318	1,13	0,00028
2	3,45	289	0,98	0,00024
2	3,8	263	0,81	0,00020

Рисунок 6 – График АЧХ для цепи на рис. 5

Вывод.

В результате выполнения лабораторной работы были получены следующие выводы: исследование последовательного колебательного контура позволило оценить его характеристики при отсутствии резистивных элементов. Потери были связаны с неидеальностью всех элементов контура. В контуре с большими потерями наблюдалось увеличение напряжения

примерно на величину балластного резистора. Это указывает на наличие потерь в контуре. В ёмкостном контуре сопротивление было немного выше, что подтверждает верность теоретических расчетов влияния элементов на потери. Значения емкостей и индуктивностей, полученные в результате эксперимента, сходятся с теоретическими значениями. АЧХ (Амплитудночастотная характеристика) контуров показала, что увеличение емкости в контуре приводит к снижению резонансной частоты.

Контрольные вопросы.

1. Как, используя эквивалентные схемы цепи для $\omega = 0$, $\omega \to \infty$ и $\omega = \omega_0$, определить значения AЧX на этих частотах и проконтролировать результаты эксперимента?

2. В чём сходство и в чём различие данных, измеренных и рассчитанных в 7.2.1 и 7.2.2?

Одинаковые: значения индуктивности катушки, ёмкости конденсатора, характеристические сопротивления контуров, напряжение цепи и резонансные частоты.

Различные: добротность (во втором опыте в разы меньше), проводимость (уменьшается, из-за увеличения сопротивления)

3. В чём сходство и в чём различие данных, измеренных и рассчитанных в 7.2.2 и 7.2.3? Почему диапазон изменения частоты другой?

Одинаковые: значения сопротивления и тока, индуктивность катушки

Различные: резонансная частота, добротность (во втором опыте в разы меньше), характеристическое сопротивление контура и ёмкость

Диапазон изменения частот изменился, т. к. изменилась ёмкость конденсатора, от которой зависит значение резонансной частоты.