1. Sucesiones

Definición 1. Una sucesión es una aplicación $a_n : \mathbb{N} \to \mathbb{R}$. El conjunto $\{a_n\}_n \subseteq \mathbb{R}$ es el conjunto imagen. Decimos que la sucesión $\{a_n\}_n \subseteq \mathbb{R}$ es:

- Eventual creciente si $\exists N \in \mathbb{N}$ tal que $a_m \geq a_n$, $\forall m > n \geq N$ con $n \mid m$ naturales.
- Eventual estrictamente creciente si $\exists N \in \mathbb{N}$ tal que $a_m > a_n$, $\forall m > n \geq N$ con n y m naturales.
- **Eventual decreciente** $si \exists N \in \mathbb{N} \ tal \ que \ a_m \leq a_n, \ \forall m > n \geq N \ con \ n \ y \ m \ naturales.$
- Eventual estrictamente decreciente si $\exists N \in \mathbb{N}$ tal que $a_m < a_n$, $\forall m > n \geq N$ con n y m naturales.

 $Si\ N=1\ en\ cualquiera\ de\ estos\ casos,\ entonces\ quitamos\ "eventual".$

Nos interesa estudiar el comportamiento de la sucesión cuando n se hace grande, es decir *eventualmente*. Veremos que el comportamiento de a_n cercano a n = 1 no importa en lo que a límite se refiere, solo el comportamiento eventual.

Definición 2. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales. Decimos que a_n converge a L y lo denotamos como $a_n \to_n L$ si y solo $si \ \forall \varepsilon > 0, \exists N \in \mathbb{N}$ tal que $|a_n - L| < \varepsilon$ para todo n tal que $n \ge N$.

Proposición 1 (Unicidad del límite). Sean $\{a_n\}_n \subseteq \mathbb{R}$ convergente a L_1 y L_2 . Entonces $L_1 = L_2$.

Demostración. Supongamos que L_1 y L_2 son dos límites de la sucesión $\{a_n\}_n \subseteq \mathbb{R}$. Por tanto, dado un $\varepsilon > 0$, existe un $N \in \mathbb{N}$ tal que $|a_n - L_1| < \varepsilon/2$ y $|a_n - L_2| < \varepsilon/2$ $\forall n > N$ con $N = \max\{n_1, n_2\}$, donde n_1 y n_2 son N dado de la definición del límite para L_1 y L_2 . Sumando ambas desigualdades y usando la desigualdad triangular, tenemos:

$$\varepsilon = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} > |a_n - L_1| + |a_n - L_2| = |a_n - L_1| + |-a_n + L_2|$$
$$\ge |a_n - L_1 - a_n + L_2| = |L_2 - L_1|$$

Como ε es un número arbitrario mayor que 0, si asumimos que $|L_2 - L_1| \neq 0$, siempre vamos a poder encontrar un valor de ε (por ejemplo, $\varepsilon = \frac{|L_2 - L_1|}{2} > 0$) mayor a 0 que contradiga $\varepsilon > |L_2 - L_1|$. Por tanto, $|L_2 - L_1| = 0$ y $L_2 = L_1$.

Definición 3. Sabiendo que una sucesión $\{a_n\}_n \subseteq \mathbb{R}$ converge a un único valor L, llamamos a este valor **límite de la sucesión** a_n , y lo denotamos como $\lim_{n\to+\infty} a_n = L$ o de manera resumida $\lim_n a_n = L$.

Definición 4. Si $\{a_n\}_n \subseteq \mathbb{R}$ no converge a ningún valor $L \in \mathbb{R}$, podemos decir que a_n es:

- **Divergente** $a + \infty$ si $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ tal que $a_n > M \ \forall n > N$.
- **Divergente** $a \infty$ si $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ tal que $a_n < M \ \forall n > N$.
- Oscilante si no converge ni diverge.

Definición 5. Sea $\{n_k\}_k \subseteq \mathbb{N}$ una sucesión estrictamente creciente de números naturales y $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión cualquiera de números reales. Una **subsucesión de** a_n es una sucesión de la forma $\{a_{n_k}\}_k \subseteq \mathbb{R}$.

Teorema 1 (Aritmética de límites). Sean $\{a_n\}_n \subseteq \mathbb{R}$ y $\{b_n\}_n \subseteq \mathbb{R}$ dos sucesiones cualesquiera convergentes a L_a y L_b respectivamente. Entonces:

- $Si \ r \in \mathbb{R}$, entonces $\lim_{n \to +\infty} ra_n = rL_a$
- $\bullet \ \lim_{n \to +\infty} a_n + b_n = L_a + L_b$
- $\bullet \lim_{n \to +\infty} a_n b_n = L_a L_b$
- $Si \ b_n \neq 0 \ \forall n \in \mathbb{N}, \ entonces \ \lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{L_a}{L_b}$

Demostración. Para el lector.

Teorema 2 (Teorema de Bolzano). Sea $f:[a,b] \to \mathbb{R}$ una función continua en [a,b]. Si f(a)f(b) < 0, entonces $\exists c \in (a,b)$ tal que f(c) = 0.

Teorema 3 (Teorema de Weierstrass de los valores extremos). Sea $f:[a,b] \to \mathbb{R}$ una función continua en [a,b]. Entonces $\exists \max_{[a,b]} f y \exists \min_{[a,b]} f$

Teorema 4 (Teorema de Rolle). Sea $f:[a,b] \to \mathbb{R}$ una función continua en [a,b] y derivable en (a,b). Si f(a)=f(b) entonces $\exists c \in (a,b)$ tal que f'(c)=0.

Teorema 5 (Teorema del valor medio). Sea $f : [a, b] \to \mathbb{R}$ una función continua en [a, b]. Si $c \in (min_{[a,b]}f, max_{[a,b]}f)$, entonces $\exists d \in [a, b]$ tal que f(d) = c.