© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°15

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1

E3A Maths B MP 2012

Soit E un espace euclidien muni d'un produit scalaire noté $\langle \cdot, \cdot \rangle$. On note $\| \cdot \|$ la norme euclidienne associée à ce produit scalaire.

Pour tout endomorphisme u de E, on note u^* son *endomorphisme adjoint*, c'est-à-dire l'unique endomorphisme de E vérifiant

$$\forall (x,y) \in \mathrm{E}^2, \ \langle u(x),y \rangle = \langle x,u^*(y) \rangle$$

On dit qu'un endomorphisme p de E est un *projecteur* s'il vérifie $p^2 = p$. On dit que le projecteur p est strict si p n'est ni l'endomorphisme nul, ni l'identité Id_{E} .

Un projecteur p est dit *orthogonal* si les sous-espaces vectoriels Im(p) et Ker(p) sont orthogonaux.

- 1. Soit *p* un projecteur de E.
 - **a.** Démontrer que $E = Ker(p) \oplus Im(p)$.
 - **b.** Dans le cas où p est un projecteur orthogonal, démontrer que
 - i. Pour tout $x \in E$, $||p(x)|| \le ||x||$. Dans quel cas a-t-on égalité?
 - ii. Pour tout $x \in E$, $\langle p(x), x \rangle \ge 0$. Dans quel cas a-t-on égalité?
 - **c.** Démontrer que p est un projecteur orthogonal si et seulement si $p = p^*$.
- **2.** On considère ici le cas particulier du plan $E = \mathbb{R}^2$.
 - **a.** Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Démontrer que M est la matrice d'un projecteur strict orthogonal dans une base

orthonormée de E si et seulement si
$$\begin{cases} d=1-a\\ b=c\\ a(1-a)=b^2 \end{cases}.$$

- **b.** Qu'impose cette dernière égalité pour la valeur de *a*?
- c. Soit $M = \begin{pmatrix} a & b \\ b & 1-a \end{pmatrix}$ la matrice d'un projecteur strict orthogonal dans une base orthonormée de

E. Exprimer ce produit de matrices

$$N = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ b & 1 - a \end{pmatrix}$$

Justifier que la matrice N est diagonalisable et que ses valeurs propres sont dans l'intervalle [0, 1].

d. Soient p_1 et p_2 deux projecteurs stricts orthogonaux de E. Démontrer que l'endomorphisme $p_1 \circ p_2$ est diagonalisable et que ses valeurs propres sont toutes dans l'intervalle [0, 1].

© Laurent Garcin MP Dumont d'Urville

- 3. Soient p_1 et p_2 deux projecteurs stricts orthogonaux d'un espace euclidien de dimension $n \ge 1$.
 - **a.** Déterminer l'endomorphisme adjoint de $p_1 \circ p_2 \circ p_1$. En déduire que l'endomorphisme $p_1 \circ p_2 \circ p_1$ est diagonalisable dans une base orthonormée (on citera précisément le théorème utilisé) et que ses valeurs propres sont toutes dans l'intervalle [0,1].
 - **b.** Démontrer que le sous-espace vectoriel $\text{Im}(p_1)$ est stable par l'endomorphisme $p_1 \circ p_2 \circ p_1$.
 - c. Démontrer que le sous-espace vectoriel $\operatorname{Im}(p_1)$ est stable par l'endomorphisme $p_1 \circ p_2$ et que celuici induit sur $\operatorname{Im}(p_1)$ un endomorphisme diagonalisable dont toutes les valeurs propres sont dans l'intervalle [0,1].
 - **d.** Soit G le sous-espace vectoriel $\text{Im}(p_1) + \text{Ker}(p_2)$. On note G^{\perp} son orthogonal dans E. Démontrer que $G^{\perp} = \text{Ker}(p_1) \cap \text{Im}(p_2)$. Que vaut l'endomorphisme $p_1 \circ p_2$ sur G^{\perp} ?
 - e. Démontrer que l'endomorphisme $p_1 \circ p_2$ est diagonalisable et que ses valeurs propres sont toutes dans l'intervalle [0,1].
 - **f.** Soit r_2 le rang de p_2 . Démontrer que $\operatorname{tr}(p_1 \circ p_2) \leq r_2$. Etudier le cas d'égalité.

Exercice 2 E3A Maths B MP 2012

Etant donné un entier naturel non nul n, $\mathcal{M}_n(\mathbb{C})$ désigne la \mathbb{C} -algèbre des matrices (n, n) à coefficients dans \mathbb{C} . On désigne par I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$.

Etant donnée une matrice M dans $\mathcal{M}_n(\mathbb{C})$, on note $\chi_M(\lambda) = \det(\lambda I_n - M)$ son polynôme caractéristique. Si A, B, C, D sont quatre matrices dans $\mathcal{M}_n(\mathbb{C})$, on note $M_{A,B,C,D}$ la matrice de $\mathcal{M}_{2n}(\mathbb{C})$ définie par blocs par :

$$M_{A,B,C,D} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

- **1.** Soient A, B, C, D, E cinq matrices dans $\mathcal{M}_n(\mathbb{C})$.
 - **a.** Exprimer la matrice produit $M_{A,B,C,D}M_{I_n,E,0_n,I_n}$.
 - **b.** On suppose la matrice A inversible. Justifier l'égalité :

$$\det(M_{A,B,C,D}) = \det(A) \det(D - CA^{-1}B)$$

- 2. On suppose que les matrices A et C commutent.
 - **a.** On suppose que la matrice A est inversible. Démontrer que $det(M_{A,B,C,D}) = det(AD CB)$.
 - **b.** On ne suppose plus la matrice A inversible.
 - i. Démontrer qu'il existe des matrices U et V dans $\mathcal{M}_n(\mathbb{C})$ telles que le polynôme caractéristique de la matrice $M_{A,B,C,D}$ vérifie $\chi_{M_{A,B,C,D}}(\lambda) = \det(\lambda^2 I_n + \lambda U + V)$. Expliciter U et V en fonction des matrices A, B, C et D.
 - ii. En déduire que $det(M_{A,B,C,D}) = det(AD CB)$.
- 3. Dans cette question, on suppose que $A = D = I_n$ et que C et B sont deux matrices à coefficients réels transposées l'une de l'autre. On désigne la matrice M_{I_n,B,B^T,I_n} par S.
 - a. Justifier que B^TB est une matrice symétrique positive.
 - **b.** Exprimer le polynôme χ_S en fonction du polynôme χ_{B^TB} .
 - **c.** En déduire que la matrice S est symétrique définie positive si et seulement si les valeurs propres de la matrice B^TB sont toutes strictement inférieures à 1.
- **4.** On considère la suite de matrices $(A_n)_{n\in\mathbb{N}}$ définies par récurrence par :

$$A_1 = \begin{pmatrix} 2 & i \\ i & -2 \end{pmatrix} \qquad \text{et} \qquad \forall n > 1, \ A_n = \begin{pmatrix} 2A_{n-1} & iA_{n-1} \\ iA_{n-1} & -2A_{n-1} \end{pmatrix}$$

- **a.** Soit n > 1. Déterminer une relation de récurrence entre $\det(A_n)$ et $\det(A_{n-1})$.
- **b.** Soit $n \ge 1$. Exprimer $\det(A_n)$ en fonction de n.
- c. Soit n > 1. Exprimer le polynôme caractéristique χ_{A_n} de la matrice A_n en fonction de $\chi_{A_{n-1}}$ et $\chi_{(-A_{n-1})}$.
- **d.** Soit $n \ge 1$. Déterminer les valeurs propres de la matrice A_n .