INC 1 část úkolu

Jméno: Ondřej Novotný Login: xnovot2p

Architektura navrhnutého obvodu (na úrovni RTL)

Schéma obvodu

Popis funkce

Jakmile FSM pošle na Clk_counter '1', CNT na CR bude mít vstup 0, tudíž se přestane restartovat a začne počítat. Jedna hodnota vstupu trvá 16 ticků, proto vím, že jakmile mám na výstupu CNT "0111", jsem na mid_bitu, a povolím zapsat DIN hodnotu do registru. Zápis do určitého registru mi určuje výstup druhého counteru, který se inkrementuje na základě prvního CNT. CNT2 se inkrementuje pouze pokud se výstup CNT1 rovná "1111". Vždy když se výstup CNT1 rovná "1111", odešlu do FSM na BIT_FINISH jedničku. Pokud na CNT2 přečtu "111"vím, že jsem dočetl 8. bit, a na vstupu očekávám 1 jako Stop_bit. Poté znovu odesílám na CLK_COUNTER '0' a čekám opět na start_bit.

Návrh automatu (Finite State Machine)

Schéma automatu

Legenda:

Stavy: S_idle, S_start, S_data, s_stop
Vstupy: DIN, BIT_FINISH, WORD_FINISH
Moorovy výstupy: Validity, Data, Clk_count

Popis funkce

Automat čeká ve výchozím stavu S_idle, kde jsou všechny výstupy rovny '0'. Při obdržení DIN '0' se automat přesune do stavu S_start, kde se CLK_COUNTER nastaví na 1. Při obdržení BIT_FINISH = '1', se přesunu do stavu S_data, se DATA a CLK_COUNTER nastaví na '1'. Při obdržení BIT_FINISH = '1' a WORD_FINISH = '1' se přesunu do stavu S_stop, kde se DATA nastaví na 0 a VALIDITY se nastaví na 1 . Pokud dostanu BIT_FINISH = '1' a DIN = '1', přesunu se zpět do stavu S_idle a čekám opět na DIN '0'.