Ensemble szegmentáló módszerek idősoros adatokon

Önálló laboratórium szóbeli beszámoló

Készítette: Czotter Benedek (TFB4FY)

Konzulensek: Dr. Szűcs Gábor, Németh Marcell

2024/25/2

Feladat leírása

- Van több szegmentáló módszer
- Hogyan lehet kiválasztani k darabot, hogy pontosabb eredményt érjünk el?
- Ensemble módszer hogyan tud dönteni

Idősor szegmentálás

- kisebb, egymástól elkülönülő szakaszokra bontás
- egyes szakaszok statisztikai vagy szerkezeti tulajdonságai hasonlóak legyenek

Idősor szegmentálás területei

- Pénzügy
- Egészségügy és orvosi diagnosztika
- Ipari gépmonitorozás
- Beszédfelismerés és jelfeldolgozás
- Közlekedés és mobilitás

State-of-the-art algoritmusok

Statisztikai és szabályalapú módszerek	Klaszterezési és tanulási alapú módszerek	Mélytanulás alapú módszerek
Pruned Exact Linear Time (PELT)	Dynamic Time Warping KMeans (DTW KMeans)	Temporal Convolutional Network (TCN) Autoencoder
Binary Segmentation (BinSeg)	Classification Score Profile (CLaSP)	Long Short-term Memory (LSTM)
Bottom-Up		Konvolúciós neurális háló (CNN)
Window-Based		

Adott klaszteren legjobban teljesítő algoritmus választása

- Idősorok klaszterezése KMeans-sel
- Vizsgált paraméterek:
 - Hossz
 - Autokorreláció
 - Variációs koefficiens
 - Trend

10000

35000

25000

Hossz

30000

Adott klaszteren legjobban teljesítő algoritmus választása

Eredmények

- Használt adathalmazok:
 - TSSB 75 idősor
 - HAS 250 idősor
- Teszthalmaz nagysága: 40%

HAS adathalmaz		TSSB adathalmaz	
F1 score	Covering	F1 score	Covering
0.7235	0.6459	0.8890	0.8385
0.7462	0.6100	0.7705	0.5962
0.7385	0.6412	0.6560	0.3663
0.6940	0.6175	0.6376	0.5225
0.3173	0.4592	0.4233	0.4472
0.7835	0.5759	0.6401	0.4215
0.5538	0.6164	0.4395	0.6764
0.5335	0.5364	0.4260	0.4670
0.5246	0.5955	0.5492	0.5492
0.7504	0.6368	0.8890	0.8385
	F1 score 0.7235 0.7462 0.7385 0.6940 0.3173 0.7835 0.5538 0.5538 0.5246	F1 score Covering 0.7235 0.6459 0.7462 0.6100 0.7385 0.6412 0.6940 0.6175 0.3173 0.4592 0.7835 0.5759 0.5538 0.6164 0.5335 0.5364 0.5246 0.5955	F1 score Covering F1 score 0.7235 0.6459 0.8890 0.7462 0.6100 0.7705 0.7385 0.6412 0.6560 0.6940 0.6175 0.6376 0.3173 0.4592 0.4233 0.7835 0.5759 0.6401 0.5538 0.6164 0.4395 0.5335 0.5364 0.4260 0.5246 0.5955 0.5492

Összegzés és kitekintés

- Idősorok megkülönböztetése statisztikai jellemzők alapján
- Egyes algoritmusok erősségeinek feltérképezése
- Robusztusabb algoritmus
- Jövőbeli feladatok:
 - Hierarchikus klaszterezés más módszerrel történő optimalizálása
 - TCN autoencoder fejlesztése
 - Idősorok megkülönböztetése további paraméterek alapján
 - Több előre szegmentált adathalmaz gyűjtése

Köszönöm szépen a figyelmet!

- Elvégzett munka:
 - Szegmentáló algoritmusok optimalizálása
 - Ensemble modellek:
 - Hierarchikus klaszterezéssel
 - Kmeans és statisztikai jellemzők alapján
 - Robusztusabb, pontosabb eredmények elérése