

Fundamentals of Radiation Detection & Measurement

R. Redus, Chief Scientist, Amptek

18 January 2018

- R. Redus, Chief Scientist of Amptek, gave a presentation on "Electronics for Radiation Detection" at the "Short Course on Radiation Detection and Measurement", which was part of the 2017 IEEE Nuclear Science Symposium, in Atlanta, GA.
- This current presentation provides some background information on radiation detection, needed to understand the notes on electronics.
- The presentation on electronics is available online with additional tutorial information which has been added. A set of notes with additional info is also available.
- Amptek recommends these notes as an introduction to electronics for radiation detection and measurement and as a useful guide to many of Amptek's customers.

Outline

1. Ionizing Radiation

- 1. What is ionizing radiation?
- 2. What do we measure?
- 3. Why do we measure?

2. Types of ionizing particles

- 1. Fast electrons
- 2. Heavy ions
- 3. Gamma-rays and X-rays
- 4. Neutrons

3. Characteristics of Radiation Measurements

4. Radiation Detectors

- 1. Gas-filled
- 2. Semiconductors

1. Ionizing Radiation

What is radiation?

- Transmission of energy in the form of waves or particles
 - Radio waves, light, magnetic forces, sound
 - Anything that moves energy between objects

What is ionizing radiation?

 Particles or waves that carry enough energy to ionize, i.e. to remove electrons from an atom

Ionization is key

- Ionization is the key to its risks
 - Ionization causes chemical reactions
 - Reactions in cells interfere with metabolism
 - Reactions in DNA interfere with genetics
- Ionization is the key to its use
 - Medical, materials analysis, research
- Ionization is the key to its detection
 - Humans cannot directly detect ionization
 - Radiation detection equipment measures ionization, directly or indirectly
 - Ionization → Electric charge is produced. We detect electric charge

Why do we measure radiation?

- Safety
 - Is radiation above a threshold?
 - Dose, dose rate in medicine, reactors, etc
- Medicine
 - Imaging: X-rays, SPECT, PET, CT
 - Radiation therapy for cancer
- Industry
 - Attenuation is used to measure thickness
 - X-ray spectra used in material analysis: XRF, XRD,
 - Sterilization
- Research
 - Understand materials (batteries, biochemical)
 - Understand nuclei, high energy particles

What properties of radiation do we measure?

- Presence of radiation
 - Is there any present (above a threshold)?
- Amount of radiation
 - Flux Number per cm² per sec Fluence Number per cm²
 - Dose Energy deposited per gram
 - Radiation damage Dose x damage factor
- Type of radiation
 - Alpha particle, beta particle, X-ray, neutron, muon, ...
- Energy, time of interaction, position, ...
 - Many other quantities could be of interest
 - Often measure the distribution (or spectrum) of energy, time, position,

Units

- Energy: eV
 - 1 eV is energy gained when one electron crosses potential of 1 volt
 - 1 eV = $1.6x10^{-19}$ joules Very small! Drop paperclip by 1": $3x10^{-4}$ joules
 - eV ~ energy of chemical reactions
 - keV ~ energy of ionization
 - MeV ~ energy of nuclear transitions
 - GeV ~ rest energy of protons and neutrons
- Flux: particles/cm²-sec
 - Note that we are counting individual quanta

Radiation safety

- Dose: Rad
 - Dose is energy deposited per unit volume
 - 1 Rad = 100 erg/gram = 0.01 joule/kilogram
- Health effects
 - "REM" is Rads x damage factor
 - 1 Gray = 100 Rads 1 Sievert 100 REM
- What matters?
 - 0.05 millirem dose from typical dental X-ray
 - 1.0 millirem average daily dose from natural background
 - 600 millirem average dose from CT or fluoroscopy
 - 80 rem given slowly increases chance of cancer by 1%

- Radiation is a natural part of our environment
 - Uranium, thorium in rocks, ⁴⁰K in rocks
 - Food contains ⁴⁰K and ¹⁴C
 - Cosmic rays

Radiation is not exotic or foreign, it's just that we cannot directly sense it. We need detectors.

2. Types of Ionizing Radiation

Directly Ionizing Particles

- Electrically charged
- As charged particle passes atoms, rips electrons away, leaving ionized atoms

- Continuously lose energy (slow down) like bullet fired into styrofoam
- Definite range (no particles go past some fixed depth)

Indirectly Ionizing Particles

- Electrically neutral
- Pass through matter w/o interacting, then collide, producing charged secondary

- Continuous loss of number of particles (intensity) but no change of energy
- Attenuated with depth but no definite range

Fast electrons

- Electrons with energy enough to ionize, e.g. > few keV
- Production
 - Processes inside a nucleus: beta decay produce <u>beta particles</u> (electrons)
 - Accelerating voltage of kilovolts (or more)

- Directly interacting
 - Lose energy continuously.
 - Range is ~ mm/MeV in solids
 - Beta particles stopped by 1-2 mm Al, plastic
 - Electrons have low mass, so scatter a lot

Heavy ions

- Production
 - Processes inside a nucleus: alpha decay
 - High energy accelerators produce protons, pions, etc

Alpha Decay of a Uranium-238 nucleus

- Directly interacting
 - Lose energy continuously but massive
 Like cannonballs in lettuce
 Lots of damage along a short track

- Range is ~ microns/MeV.
- Alpha particles ~10 microns, one sheet of paper
- Little scattering, high ionization density

Stopping of charged particles

- Ionization loss: Bethe-Bloch formula

$$\left\langle \frac{dE}{dx} \right\rangle_{ion} = \left(\frac{4\pi}{m_e c^2} \right) \left(\frac{Z\rho}{A} \right) \left(\frac{q_{ion}^2}{\beta^2} \right) \left(\frac{N_A}{M_u} \right) \left(\frac{N_A q_e^2}{4\pi \varepsilon_0 M_u} \right)^2 \left[\ln \left(\frac{2m_e c^2 \beta^2}{\varepsilon_{ion} \left(1 - \beta^2 \right)} \right) - \beta^2 \right]$$

- *dE/dx* is energy lost per length, the "stopping power"
- Increases with density of the absorber
- Increases as q_{ion}^2
- Radiative loss

$$\left\langle \frac{dE}{dx} \right\rangle_{rad} = E\left(NZ\left(Z+1\right)\right) \left(\frac{q_e^4}{137m_e^2 c_4}\right) \left[4\ln\left(\frac{2E}{m_e c^2}\right) - \frac{4}{3}\right]$$

- Important for electrons
- Cerenkov radiation
 - Occurs when particle exceeds speed of light in the medium
 - Light a sonic boom but electromagnetic
 - Gives the classic "blue glow"

Electromagnetic (Gamma-rays and X-rays)

- Production
 - Gamma-rays are produced inside a nucleus
 - X-rays are produced outside a nucleus: electron transitions or voltage (kV and up)

- Indirectly interacting
 - Exponentially attenuate beam. Some penetrate deeply
 - Attenuation length microns (low energy X-rays) to centimeters of lead (γ-rays)
 - A photon interacting with an atom produces a secondary electron, which produces the ionization we measure

Stopping of X-rays and gamma-rays

- Photoelectric absorptions
 - All of the energy of the photon is transferred to an electron

$$P_{photoelectric} \sim \frac{\rho Z^{4-5}}{E_{photon}^{3.5}}$$

- Compton scattering
 - Only transfers a portion of the energy to the photon

$$E_{photon} = \frac{E_{incident}}{1 + \left(\frac{E_{incident}}{m_e c^2}\right) (1 - \cos \theta)}$$

- Pair production
 - Gamma-ray produces an electron-positron pair
 - Only possible above 1022 keV (2x electron rest mass)

Neutrons

- Production
 - Only produced in nuclear processes

 Output

 Output
- Indirectly interacting
 - Exponentially attenuate. Stopped by meters of material with hydrogen
 - A neutron interaction is a nuclear reaction. It produces a secondary alpha and/or gamma-ray, which produces the ionization we measure
 - It changes the original atom (transmutation) so can produces radioactive atoms

Bubble chamber

3. Characteristics of Radiation Measurements

Ion chamber

- Charge formation
 - Requires ~25 eV to create an electron-ion pair (depends on gas)
 - 5 keV X-ray \rightarrow 200 ions while 5 MeV $\alpha \rightarrow$ 200,000 ions
- Current
 - Bias voltage \Rightarrow electric field \Rightarrow moving charges \Rightarrow electric current $I=Nq_ev$
 - Velocity depends on bias voltage, pressure, and the gas
 - Current pulse: flows until charges reach electrodes

Ion chamber: Continuous or DC mode

- One can measure the continuous, average electric current
- This corresponds to the continuous, average dose rate
- Useful for radiation safety
- Tells you nothing about the type of radiation, the energy, the timing, etc

Ion chamber: Pulse mode

- One can measure properties of each discrete ionization event
 - Total charge in each pulse → energy deposited by each particle
 - Can set thresholds → number or rate of events within energy ranges
 - Can measure distribution, or spectrum, of events
 - Can measure timing, many other properties
- Most radiation measurements are pulse mode.

Radiation measurements are unique

- Some characteristics of radiation measurements are fundamentally different from the measurement of other physical quantities
- These differences arise from the quantum nature

Radiation is discrete, randomly timed quanta

- If you measure temperature, you can measure it at some instant and with any time resolution you like
- A radiation measurement is built of discrete quanta
- At some instant, you may get no particle at all \rightarrow <u>You MUST measure</u> over some time duration.
- The precision of any measurement improves with the number of pulses

Counting statistics

- Radioactive decay is a random process
 - If <u>average</u> is 16 decays per second, get 16, 14, 17, 13, 18, 16, 19, ...
- Any radiation measurement is subject to statistical fluctuation
 - If you count N events, the standard deviation is VN
 - If N=100, σ =10 or 10%.
 - For $\sigma=1\%$, you need 10^4 counts
- Binomial distribution

Critical and fundamental limit!

Intrinsic response function

- Consider gamma-rays interacting in a detector
 - Some pass through the detector → not detected (intrinsic efficiency <100%)
 - Some undergo photoabsorption → deposit full energy.
 - Some undergo Compton scatter; secondary photon exits detector → deposits only part of energy → continuum.
 - Some under pair production; photon exits → deposits sharp "escape peak"

- Physics of radiation interactions limit measurement
 - We want to know the incident radiation field
 - Even a perfect sensor only measures the interaction outcomes

Signals are really small & subject to fluctuations

- Fluctuations in number of electron-ion pairs produced
 - If 5 keV X-ray produces 200 electron-ion pairs, on average, expect $\sigma=\sqrt{200}=14$
 - Actually smaller than this
- "DC" currents arise from discrete electrons → random fluctuations
 - If N electrons pass into transistor, $\sigma=VN$
 - Random current fluctuations mask small current pulses
- Induced currents from EMI, power supply ripple, etc
 - Signal current is picoamps → induced stray currents must be much smaller.

4. Radiation Detectors

Planar ion chamber

- Signal Current
 - $v = \left(\frac{\mu}{P}\right)\left(\frac{V}{L}\right)$ Charge velocity
 - Electrons typical 1000 m/s, so 100 μs to cross 1 cm

5 MeV
$$\alpha \rightarrow$$
 300 pA

5 MeV
$$\alpha \rightarrow$$
 300 pA 5 keV X-ray \rightarrow 300 fA

- Ions typical 1 m/s, so 0.1 second to cross 1 cm
- Pulses are VERY long, too long to get millions of counts
 - Recombination occurs → Signal deficit
 - Pulse duration and shape depend on details of particle track

Cylindrical ion chamber

- Concept
 - Electric field much stronger near wire

$$E = \frac{V}{r \ln \left(R_o / R_i \right)}$$

- Electron speed (and thus current) peaks as electrons near wire
- Leads to a much shorter pulse, submicrosecond
- Key principles
 - Signal current arises when charge MOVE not when COLLECTED
 - Electrode design can greatly impact signal characteristics

Frisch Grid

- Measure current between grid and anode
- Signal arises only from electrons
- Pulse duration is much shorter, due to smaller path and electron speed
- Pulse shape is fixed, because path length is always the same

Wire chamber

- Measure current collected on two orthogonal grids
- Gives position information
- Widely used in high energy physics

Proportional Counter

- Concept
 - Cylindrical chamber but with a higher bias
 - Electrons eventually reach velocity high enough to knock electrons off atoms
 - Leads to "avalanche gain": Each electron initially produced, gives 2 or 5 or 10
 - Output current is proportional to input
- Advantage: Bigger signal to simplify electronics
- Disadvantages
 - Get extra fluctuations from avalanche process
 - Output depends strongly on voltage, temperature, etc.

Geiger Counter

Concept

- Like prop counter but field is even higher
- Ions also accelerate enough to create avalanche, more electrons, etc
- Creates so much charge, it pulls down HV bias (discharges capacitor)

- Results

- All initial events, from smallest to one electron, give same size big output
- Very sensitive, to even smallest signals
- Only for counting. No information on energy, type of particle, etc.

Variation of ion pair charge with applied voltage

Planar semiconductor detector

Concept

- Basically a solid state version of gas detector
- Reverse biased PN junction gives "depletion region" with no free charges
- Ionizing particle creates charge, which is swept by electric field

Advantages

- Less energy to create a pair → bigger signal, less intrinsic fluctuation
- Higher density and atomic number for better stopping

Semiconductor detectors

- Cylindrical geometry
 - Like cylindrical gas chamber
 - Give better electric field to avoid breakdown
 - Common in high purity germanium for gamma-ray spectroscopy
- Frisch grid
 - One cannot fabricate a grid inside a semiconductors
 - Properly patterned surface electrodes give similar results
- Avalanche diodes
 - Like a proportional counter
 - High field region near PN junction gives avalanche gain
- Geiger mode
 - Avalanche diode can be operated in Geiger mode

Scintillation detector

- Interaction produces excited state in crystal
 - E_i is high (light yield low) → photosignal is small and F = 1
 - Pulse duration varies widely: from <nanosec to microseconds
- Photons interact in a photodetector
 - Photodiodes are used but signal current is small
 - Photomultiplier with high gain (~10⁵) common
- Advantages
 - Optically clear crystals can be grown very large
 - Many materials → Wide range of properties (density, speed, resolution, ...)
 - With a PMT, the signal is quite large

Gas filled

- Why would we use gas detectors?
 - Inexpensive per unit volume: you can make them huge
 - You can adjust the gas mixture and density to optimize for measurements
 - You can easily get multiplication for larger signals
- Types: DC Ionization, proportional, Geiger, wire chambers

Semiconductors

- Why would we use semiconductors?
 - Much larger signals (more charge) → better signal to noise ratio
 - Higher density → Can stop radiation in a much smaller volume
 - Semiconductor processing is very sophisticated
- Types: Si photodiode, HPGe, Si drift detector, Si avalanche photodiode, CdTe, ...

Scintillators

- Why would we use scintillators?
 - Inexpensive per unit volume: can make them large, with better density than gas
 - With a PMT, very large signal
- Types: PMT vs photodiode, many materials (NaI(TI), BGO, etc)