TRABAJO FINAL Análisis de Datos Avanzados

Análisis de series temporales

José Ignacio Escribano

Móstoles, 14 de febrero de 2016

Índice

In	dice de figuras	C
Ín	dice de tablas	d
1.	Introducción	1
2.	Resolución de las series temporales 2.1. Índice de empleo de un determinado país	1 2 12
3.	Código EViews3.1. Índice de empleo3.2. Venta de puros	16 16 18
4.	Conclusiones	18

Índice de figuras

1.	Serie temporal empleo	2
2.	Correlograma de la serie temporal empleo	3
3.	Serie transformada tomando una diferencia regular	3
4.	Correlograma de la serie temporal transformada dempleo	4
5.	Estimación del modelo ARIMA(1,1,0)	5
6.	Estimación del modelo ARIMA(1,1,2)	6
7.	Estimación del modelo ARIMA(0,1,2)	7
8.	Correlograma de los residuos del modelo ARIMA(1,1,0)	8
9.	Residuos del modelo ARIMA(1,1,0)	9
10.	Correlograma de los residuos del modelo ARIMA(0,1,2)	10
11.	Residuos del modelo ARIMA(0,1,2)	11
12.	Serie temporal puros	12
13.	Correlograma de la serie temporal puros	13
14.	Serie temporal puros	14
15.	Correlograma de la serie temporal diferenciada dpuros	15
16.	Serie temporal ddpuros12	16
17.	Correlograma de la serie temporal ddpuros12	17

Índice de tablas

1.	Principales características de la función de autocorrelación y de autoco-	
	rrelación parcial de los principales modelos estacionarios	1
2.	Análisis de la estimación de los modelos ARIMA(1,1,0) y ARIMA(0,1,2)	6
3.	Predicciones del índice de empleo para el año 1994	9

1. Introducción

En este caso práctico utilizaremos la metodología Box-Jenkins para analizar dos series temporales. La primera es el índice de empleo de un determinado país, y la segunda es el volumen de ventas mensual de puros de una empresa tabacalera. En ambos casos, se trata de obtener un modelo que se ajuste lo máximo posible a la serie temporal.

La metodología Box-Jenkins recoge los pasos necesarios para obtener el modelo más adecuado de serie temporal:

1. Especificación inicial: consiste en determinar el orden de integración de la serie temporal y naturaleza de diferencias que se requerirán para convertir en estacionaria la serie temporal. En este paso se usa el análisis gráfico de la serie, además de los correlogramas simple y parcial de la serie. Una vez hecho lo anterior, habrá que decidir los órdenes de los polinomios autorregresivo y de medias móviles. De nuevo, se hará uso del correlograma simple y parcial de la serie. La Tabla 1 recoge las principales características de la función de autocorrelación y de autocorrelación parcial de los principales modelos estacionarios.

Tabla 1: Principales características de la función de autocorrelación y de autocorrelación parcial de los principales modelos estacionarios

Modelo	Función de autocorrelación	Función de autocorrelación parcial
AR(p)	Decrecimiento rápido hacia cero, sin llegar a anularse	p primera autocorrelaciones distintas de cero, y el resto cero
MA(q)	<i>q</i> primeras autocorrelaciones significativas, y el resto cero	Decrecimiento rápido hacia cero, sin llegar a anularse
ARMA(p,q)	Decrecimiento rápido hacia cero, sin llegar a anularse	Decrecimiento rápido hacia cero, sin llegar a anularse

- 2. Estimación: en este paso, se procede a estimar los modelos propuestos, normalmente mediante máxima verosimilitud o mínimos cuadrados no lineales.
- 3. Chequeo o validación: en este paso, se validan los posibles modelos y se escoge el que parezca más adecuado para describir la serie temporal.
- 4. Utilización del modelo: el modelo escogido se puede utilizar para predecir futuros valores de la serie.

2. Resolución de las series temporales

A continuación, aplicamos la metodología Box-Jenkins para obtener un modelo que se adecue a cada una de las series temporales planteadas.

2.1. Índice de empleo de un determinado país

La primera serie temporal es el índice de empleo de un determinado país. La serie está corregida de estacionalidad y tiene frecuencia trimestral. El período muestral abarca desde el primer trimestre del año 1962 hasta el cuarto trimestre del año 1994.

Comenzamos representando la serie temporal (Figura 1).

Figura 1: Serie temporal empleo

Se observa que podría haber tendencia en la serie original. Para verificarlo, usamos el correlograma de la serie que se puede ver en la Figura 2.

Como se observa un decrecimiento lento en la parte positiva del eje X, estamos ante una serie que presenta tendencia, por lo que estamos ante una serie no estacionaria. Tenemos que eliminar la tendencia, haciendo uso de las diferencias regulares de la serie original.

Tomamos la primera diferenciación para convertir la serie en estacionaria, que llamamos dempleo. Representamos la nueva serie para comprobar que hemos eliminado la tendencia de la serie original.

La nueva serie parece indicar que estamos ante una serie estacionaria, ya que hemos eliminado la tendencia tomando una diferencia regular, y la serie carecía de estacionalidad de acuerdo al enunciado. Esto se puede comprobar mirando el correlograma de esta nueva serie (Figura 4).

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	1	1	0.949	0.949	118.05	0.000
	<u> </u>	2	0.877	-0.244	219.60	0.000
	' ['	3	0.795	-0.100	303.65	0.000
	'E '	4	0.707	-0.070	370.75	0.000
	'E '	5	0.617	-0.066	422.20	0.000
1	(6	0.526	-0.047	459.91	0.000
ı	(7	0.437	-0.031	486.23	0.000
· 🗀	t t	8	0.351	-0.049	503.32	0.000
· 🗀		9	0.258	-0.151	512.62	0.000
' 	'E '	10	0.163	-0.071	516.36	0.000
ı j ı ı		11	0.073	-0.010	517.12	0.000
1 1	1 1 1	12	-0.005	0.016	517.13	0.000
ı (<u> </u>	13	-0.062	0.125	517.69	0.000
ı п -		14	-0.103	0.033	519.24	0.000
' -	ינם י	15	-0.125	0.069	521.55	0.000
' □ '	1 11	16	-0.135	0.016	524.24	0.000

Figura 2: Correlograma de la serie temporal empleo

Figura 3: Serie transformada tomando una diferencia regular

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-	·	1	0.463	0.463	27.822	0.000
· 🗀		2	0.242	0.035	35.483	0.000
ı 🗀 ı		3	0.118	-0.009	37.307	0.000
ı j ı		4	0.073	0.019	38.011	0.000
- I) I		5		-0.023	38.084	0.000
- I) I		6	0.015	0.009	38.114	0.000
- I) I	1 1	7	0.013	0.007	38.138	0.000
۱ ال ا	' <u> </u>	8	0.075	0.083	38.904	0.000
ı اا ا ا		9	0.081	0.023	39.826	0.000
	'[['	10		-0.057	39.876	0.000
' " '	'🖣 '	11	-0.093		41.099	0.000
-	" '	ı	-0.197		46.637	0.000
-	' '	ı	-0.178		51.194	0.000
-	'['		-0.191		56.505	0.000
'□ '	']'		-0.129	0.019	58.928	0.000
'□ '	'[]'		-0.124		61.183	0.000
'□ '	'🖣 '	17			64.041	0.000
<u>'</u>		ı	-0.125		66.380	0.000
' ¶ '		19	-0.094		67.710	0.000
<u> </u>	<u> </u>	20	0.040	0.177	67.955	0.000
<u>'</u>	<u>'</u>	21		-0.132	68.654	0.000
9 !	<u>"</u> ".	22	-0.165		72.912	0.000
<u> </u>	<u> </u>	23	-0.063	0.080	73.542	0.000
' '	<u> </u>	24	0.048	0.081	73.908	0.000
!] !	<u> </u>	25		-0.068	73.915	0.000
<u> </u>	'¶'	26	-0.018		73.968	0.000
<u> </u>	<u> </u>	27	0.014	0.046	73.999	0.000
. □	! ₽ !	28	0.149	0.134	77.676	0.000
. □	<u> </u>	29	0.195	0.051	84.043	0.000
¦ ₽ .		30	0.162	0.006	88.482	0.000
¦ ₽!	<u> </u>	31	0.134	0.047	91.567	0.000
' <u> </u>	<u>'</u> L'	32		-0.046	92.166	0.000
¦ ₽;		33	0.146	0.106	95.890	0.000
: P:	'.∤'.	34	0.134	0.029	99.048	0.000
' D '		35		-0.016	100.57	0.000
	' '	36	0.089	0.020	102.00	0.000

Figura 4: Correlograma de la serie temporal transformada dempleo

Así pues, tenemos que d=1 y D=0, y

$$dempleo = (1 - B)empleo$$

Es decir, dempleo es un modelo integrado de orden 1.

Observando el correlograma de la Figura 4 podemos sugerir que la serie temporal puede venir dada por un modelo AR(1), ya que la función de autocorrelación decrece rápidamente hacia cero, sin llegar a anularse, y en la función de autocorrelación parcial,

hay un valor no nulo positivo, y el resto es cero. También podría tratarse de un modelo MA(2), ya que en la función de autocorrelación hay dos valores no nulos positivos y el resto es cero, y en la función de autocorrelación parcial hay un decrecimiento rápido sin llegar a anularse. Así planteamos los siguientes modelos:

- 1. ARIMA(1,1,0)
- 2. ARIMA(0,1,2)
- 3. ARIMA(1,1,2)

Estimamos cada uno de los modelos propuestos. En primer lugar estimamos el modelo ARIMA(1,1,0). La salida de EViews de este modelo se muestra en la Figura 5.

Dependent Variable: D(EMPLEO,1)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/14/16 Time: 12:10 Sample: 1962Q2 1993Q4 Included observations: 127

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) SIGMASQ	0.459214 2.139284	0.064247 0.157305	7.147611 13.59957	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.214012 0.207724 1.474284 271.6891 -228.6135 2.024943	S.D. dependent var 1. Akaike info criterion 3. Schwarz criterion 3. Hannan-Quinn criter. 3.		0.017041 1.656314 3.631709 3.676500 3.649907
Inverted AR Roots	.46			

Figura 5: Estimación del modelo ARIMA(1,1,0)

Se observa que todos los parámetros del modelo son significativos, por lo que lo consideraremos adecuado. Además, se obtiene un valor de R^2 ajustado de 0.214.

Estimamos nuestro segundo modelo, es decir, el modelo ARIMA(0,1,2) usando EViews. La salida que produce este programa se puede ver en la Figura 6.

Observando la salida de EViews, tenemos que todos los parámetros del modelo son significativos, por lo que consideraremos este modelo adecuado para representar la serie de tiempo del índice de empleo. Además, tiene tiene un coeficiente R^2 ajustado de 0.195.

Dependent Variable: D(EMPLEO,1)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/14/16 Time: 12:28 Sample: 1962Q2 1993Q4 Included observations: 127

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MA(1) MA(2)	0.434809 0.194397	0.075247 0.093151	5.778406 2.086909	0.0000 0.0389
SIGMASQ	2.157131	0.187482	11.50579	0.0000
R-squared	0.207454	Mean depend	ent var	0.017041
Adjusted R-squared	0.194671	S.D. depende	nt var	1.656314
S.E. of regression	1.486378	Akaike info cri	terion	3.655626
Sum squared resid	273.9556	Schwarz criter	ion	3.722812
Log likelihood	-229.1323	Hannan-Quin	n criter.	3.682923
Durbin-Watson stat	1.962206			
Inverted MA Roots	2238i	22+.38i		

Figura 6: Estimación del modelo ARIMA(1,1,2)

Por último, estimamos nuestro último modelo propuesto: el ARIMA(1,1,2). De nuevo, usamos EViews que nos devuelve la salida de la Figura 7.

Observando la salida de este modelo, vemos que todos los parámetros no son significativos, por lo que desechamos este modelo ya que no parece adecuado para describir la serie temporal que estamos tratando.

Sólo tenemos dos modelos que validar: el modelo ARIMA(1,1,0) y el ARIMA(0,1,2). La Tabla 2 muestra una comparativa entre la estimación de los dos modelos.

Tabla 2: Análisis de la estimación de los modelos ARIMA(1,1,0) y ARIMA(0,1,2)

	ARIMA(1,1,0)	ARIMA(0,1,2)
R^2	0.214	0.207
\mathbb{R}^2 ajustado	0.208	0.195
Akaike Info Criterion	3.631	3.656
Schwarz Criterion	3.677	3.723
Error de regresión	1.474	1.487

Dependent Variable: D(EMPLEO,1)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/14/16 Time: 12:36 Sample: 1962Q2 1993Q4 Included observations: 127

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.489035	0.327248	1.494388	0.1376
MA(1)	-0.045889	0.344651	-0.133146	0.8943
MA(2)	0.017759	0.192464	0.092271	0.9266
SIGMASQ	2.136406	0.185092	11.54242	0.0000
R-squared	0.215069	Mean depend	lent var	0.017041
Adjusted R-squared	0.195924	S.D. depende	ent var	1.656314
S.E. of regression	1.485221	Akaike info cr	iterion	3.661878
Sum squared resid	271.3235	Schwarz crite	rion	3.751459
Log likelihood	-228.5293	Hannan-Quin	n criter.	3.698274
Durbin-Watson stat	1.992379			
Inverted AR Roots	.49			
Inverted MA Roots	.02+.13i	.0213i		

Figura 7: Estimación del modelo ARIMA(0,1,2)

El modelo ARIMA(1,1,0) tiene un menor error (1.474) que el modelo ARIMA(0,1,2) (1.487). Además tanto los estadísticos de Akaike como de Scharwz son menores en el modelo ARIMA(1,1,0) que en el modelo ARIMA(0,1,2). Lo anterior parece indicar que el modelo más adecuado es el ARIMA(1,1,0).

Para confirmar nuestras sospechas, hacemos un análisis de los residuos de ambos modelos.

Comenzamos con el modelo ARIMA(1,1,0). En la Figura 8 se puede ver el correlograma de los residuos del modelo.

Se puede observar que las autocorrelaciones de los residuos no son significativas y entran dentro de las bandas de confianza, lo que indica que no son distintas de cero. De la misma forma, el estadístico Q no muestra indicios de autocorrelación de los residuos, por lo que todo parece indicar que estamos ante ruido blanco. Para comprobarlo, representamos el gráfico de residuos, que se puede ver en la Figura 9.

La mayoría de los residuos se encuentran dentro de las bandas de confianza, lo que apoya la teoría de autocorrelación. Todo parece confirmar que estamos ante ruido blanco.

Notar la presencia de un outlier en el primer trimestre de 1987.

Date: 02/14/16 Time: 15:49 Sample: 1962Q1 1993Q4 Included observations: 127

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1 (1	1 1	1 -0.0	13 -0.013	0.0219	
ı j ı		2 0.0	34 0.033	0.1695	0.681
1 1		3 -0.0	03 -0.002	0.1704	0.918
ı j ı		4 0.0	30 0.029	0.2887	0.962
1 1		5 -0.0	15 -0.015	0.3207	0.988
1 1		6 0.0	02 -0.001	0.3211	0.997
1 (1		7 -0.0	32 -0.031	0.4601	0.998
ı j ı		8 0.0	59 0.058	0.9453	0.996
ı j ı		9 0.0	71 0.075	1.6384	0.990
ı j ı		10 0.0	36 0.034	1.8194	0.994
1 🛊 1		11 -0.0	39 -0.042	2.0386	0.996
п	<u>"</u> '	12 -0.1	45 -0.155	5.0349	0.929
1 ()	'[['	13 -0.0	47 -0.055	5.3560	0.945
□ □	'🖺 '	14 -0.1	16 -0.112	7.2940	0.886
1 1		15 -0.0	14 -0.008	7.3241	0.921
1 ()			34 -0.018	7.4949	0.942
1 4 1	'[]'	17 -0.0	68 -0.078	8.1890	0.943
1 (1	'['	18 -0.0	56 -0.071	8.6677	0.950
·Ц ·	' '	19 -0.0	95 -0.118	10.033	0.931
' 		20 0.1	56 0.184	13.758	0.798
1 (1		21 -0.0	31 0.016	13.905	0.835
-	['	22 -0.1	78 -0.169	18.852	0.595
1 (1	'['	23 -0.0	29 -0.035	18.984	0.646
ı þ i		24 0.1	0.096	20.817	0.592
1 1		25 -0.0	0.000	20.826	0.649
1 🛊 1	'['	26 -0.0	40 -0.075	21.086	0.688
1 4 1	'['	27 -0.0	55 -0.049	21.584	0.711
ı þ i		28 0.1		23.476	0.659
ı 	<u> </u>	29 0.1	19 0.088	25.837	0.582
ı j ı ı	וווויו	30 0.0	57 0.025	26.389	0.605
ı j ı ı	<u> </u>	31 0.0		27.430	0.601
1 4 1	'[['	32 -0.0	73 -0.058	28.351	0.603
ı b ı		33 0.1	13 0.066	30.557	0.540
ı j ı ı		34 0.0	67 0.067	31.343	0.550
1) 1		35 0.0		31.369	0.597
ı j ı ı		36 0.0	65 0.059	32.138	0.607

Figura 8: Correlograma de los residuos del modelo ARIMA(1,1,0)

Figura 9: Residuos del modelo ARIMA(1,1,0)

Procedemos de forma similar para comprobar que los residuos del modelo son ruido blanco.

Las Figuras 10 y 11 muestran la presencia de los residuos como ruido blanco.

De todo lo anterior, se deduce que el modelo ARIMA(1,1,0) es superior al modelo ARIMA(0,1,2) ya que tiene mejor coeficiente \mathbb{R}^2 , menor error en la estimación, y menores valores en los estadísticos de Akaike y Schwarz.

Así pues, el índice de empleo viene dado por el modelo ARIMA(1,1,0).

Utilizaremos este modelo para predecir los valores de empleo del año siguiente (1994). Los datos para cada uno de los trimestres se pueden ver en la Tabla 3.

Tabla 3: Predicciones del índice de empleo para el año 1994

Trimestre	Predicción
1/1994	88.34407
2/1994	88.33593
3/1994	88.33219
4/1994	88.33048

Según estas predicciones, el índice de empleo del 1994 se mantuvo constante, en torno

Date: 02/14/16 Time: 15:54 Sample: 1962Q1 1993Q4 Included observations: 127

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 1 1		1	0.018	0.018	0.0442	
1 j i 1		2	0.040	0.040	0.2550	
ı b ı		3	0.088	0.087	1.2866	0.257
ı j ı		4	0.031	0.027	1.4173	0.492
1 1		5	-0.006	-0.013	1.4216	0.700
1 1		6	0.014	0.004	1.4481	0.836
1 1		7	-0.024	-0.029	1.5299	0.910
1 j i 1		8	0.056	0.058	1.9640	0.923
1 j i 1		9	0.058	0.059	2.4333	0.932
1 j) 1		10	0.029	0.028	2.5497	0.959
1 (1	'[['	11	-0.048	-0.062	2.8692	0.969
' '	•	12	-0.144	-0.163	5.8258	0.830
1 [] 1	'[['	ı	-0.055		6.2585	0.856
' - '	'🖣 '	ı	-0.127		8.5882	0.738
' ≬ '		ı	-0.037	0.002	8.7871	0.789
' ∐ '	'['		-0.052		9.1866	0.819
' [] '	'[['	ı	-0.069		9.8906	0.827
' [] '	'[] '	ı	-0.066		10.539	0.837
' - '	'🖣 '	ı	-0.112		12.445	0.772
' 	'	20	0.141	0.189	15.470	0.629
' ['	' '	21	-0.029	0.021	15.596	0.684
- '	¶'	ı	-0.187	-0.160	21.044	0.395
1 1	'['	ı	-0.021	-0.049	21.110	0.452
י 🏻 י	' '	24	0.097	0.091	22.620	0.423
1 1	' '	25	-0.012	0.021	22.642	0.482
' ['[]'	26	-0.032		22.805	0.531
' ('['	27	-0.038		23.042	0.575
' 	' ='	28	0.117	0.100	25.305	0.502
י 🗗 י	' '	29	0.112	0.087	27.386	0.443
י וַן י	יולי	30	0.069	0.035	28.185	0.455
' 	יוםי	31	0.096	0.075	29.753	0.426
' ['['	32		-0.065	30.284	0.451
' 	יוםי	33	0.124	0.070	32.954	0.372
ı إ را	' b'	34	0.079	0.055	34.045	0.369
1 1		35	0.008	0.004	34.057	0.417
ı þ i	ינוי	36	0.076	0.049	35.101	0.416

Figura 10: Correlograma de los residuos del modelo ARIMA(0,1,2)

Figura 11: Residuos del modelo ARIMA(0,1,2)

al 88%.

2.2. Venta de cigarros puros de una empresa tabacalera

La segunda serie temporal es el volumen de ventas mensual de puros de una empresa tabacalera. El período de la serie abarca desde enero de 1989 hasta diciembre de 1996.

Comenzamos representando la serie temporal (Figura 1).

Figura 12: Serie temporal puros

Se puede ver una fuerte tendencia decreciente a lo largo de la serie temporal. Además, se observa una estacionalidad de los datos: la venta aumenta entre los meses de enero y septiembre, y desciende en los meses de octubre a diciembre.

Nos aseguramos de que la presencia de tendencia y estacionalidad mirando el correlograma de la serie (Figura 13).

Se observa el decaimiento tanto en la parte regular como en la parte estacional, es decir, en los retardos múltiplos de 12, por lo que necesitamos eliminar la tendencia y la estacionalidad para que nuestra serie sea estacionaria.

Comenzamos eliminando la tendencia. Para ello, tomamos una diferencia regular de la serie, que llamaremos dpuros. La Figura 14 muestra nueva serie con una diferencia regular.

Date: 02/14/16 Time: 12:54 Sample: 1989M01 1996M12 Included observations: 96

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.721	0.721	51.465	0.000
		2	0.629	0.227	91.006	0.000
ı		3	0.575	0.134	124.42	0.000
ı	<u> </u>	4	0.522	0.060	152.29	0.000
I		5	0.625	0.369	192.73	0.000
ı		6	0.587	0.025	228.77	0.000
I	וון ו	7	0.568	0.061	262.85	0.000
ı	 	8	0.461	-0.188	285.53	0.000
ı	' '	9	0.448	0.121	307.21	0.000
ı	ון ו	10	0.476	0.042	331.98	0.000
ı		11	0.537	0.231	363.90	0.000
		12	0.671	0.321	414.36	0.000
ı	<u> </u> '	13	0.469	-0.399	439.33	0.000
1	" '	14		-0.170	456.83	0.000
' 🗀	'📮 '	15		-0.116	469.48	0.000
' 🗀	'['	16		-0.025	479.35	0.000
1	' '	17	0.393	0.023	497.74	0.000
' 🗀	'['	18		-0.082	510.79	0.000
' 🗀	יון י	19	0.316	0.055	522.97	0.000
' 🗖	'['	20		-0.027	529.16	0.000
' 	' '	21	0.193	0.017	533.85	0.000
' 	'[]'	22		-0.074	539.87	0.000
' 🗀	יון י	23	0.270	0.053	549.24	0.000
1	' '	24	0.373	0.114	567.38	0.000
' 	' □ '	25		-0.129	572.63	0.000
' P '	' □ '	26		-0.133	574.43	0.000
י 🏚 י		27		-0.006	575.08	0.000
י ולן י	' '	28	0.046	0.019	575.37	0.000
' 	'['	29		-0.028	578.00	0.000
י 🏚 י	'['	30		-0.057	578.76	0.000
י ולן י		31	0.059	0.008	579.26	0.000
' ('	' '	ı		-0.088	579.49	0.000
' ('	' '	33	-0.044	0.124	579.78	0.000
1 (1	'['	34	-0.016		579.82	0.000
1 1 1	'['	35		-0.035	579.86	0.000
ı 🗖 ı	1 1	36	0.102	0.005	581.49	0.000

Figura 13: Correlograma de la serie temporal puros

Figura 14: Serie temporal puros

Observamos que se ha eliminado la tendencia, pero no así la estacionalidad. Para asegurarnos observamos de nuevo el correlograma de esta nueva serie temporal (Figura 15).

En el correlograma se puede observar que se ha corregido la tendencia, pero no la estacionalidad en los retardos múltiplos de 12. Así que tomamos una diferencia estacional de 12 como retardo. A esta nueva variable la llamamos ddpuros12, que se muestra en la Figura 16.

Se puede ver que esta nueva serie tiene tanto ausencia de tendencia como de estacionalidad. Para asegurarnos, vemos el correlograma de esta serie (Figura 17).

El correlograma no deja duda de que esta nueva serie es estacionaria.

Por tanto, para convertir la serie en estacionaria hemos tenido que aplicar la siguiente transformación:

$$ddpuros12 = (1-B)(1-B^{12}) \cdot puros$$

Es decir, tenemos que d = D = 1.

Debemos establecer el modelo generador de la serie.

Date: 02/14/16 Time: 12:57 Sample: 1989M01 1996M12 Included observations: 95

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.333	-0.333	10.871	0.001
1 (<u>"</u> '	2	-0.056		11.186	0.004
1 (1	'🖣 '	3	-0.019		11.220	0.011
<u> </u>		4	-0.307		20.766	0.000
' 🗖	'[]'	5		-0.080	27.589	0.000
1 [1	'[]'	6		-0.074	27.598	0.000
'	<u> </u>	7	0.153	0.149	30.036	0.000
' -		8		-0.199	33.774	0.000
' 🗓 '	<u>'</u>		-0.074		34.357	0.000
' 🖺 '	'		-0.096		35.353	0.000
'		11	-0.124		37.043	0.000
	' =	12	0.639	0.320	82.378	0.000
-	l ' ₽ '	13	-0.213	0.168	87.492	0.000
'] '	<u> </u>	14	0.006	0.133	87.497	0.000
<u>'</u>				0.038	88.019	0.000
	<u>'</u> [-0.033	98.029	0.000
'	<u> </u>	17	0.318	0.086	109.96	0.000
<u> </u>	'¶'	18	-0.069		110.53	0.000
' -		19	0.143	0.022	112.99	0.000
<u> </u>	'¶'	20		-0.028	114.86	0.000
<u> </u>		21	-0.121	0.034	116.68	0.000
<u> </u>			-0.060	0.006	117.14	0.000
! 	'¶.'		-0.100		118.41	0.000
'-	l : E:	24	0.523	0.106	153.96	0.000
<u> </u>			-0.133	0.148	156.28	0.000
1 1			-0.022	0.035	156.35	0.000
'∃ :	l [L]	28	-0.085 -0.217	-0.022 0.080	157.34 163.81	0.000
7	' '	29	0.274	0.063	174.31	0.000
	; ;	30	-0.104		175.86	0.000
; .		31		-0.007	180.10	0.000
` _ _'			-0.164		184.05	0.000
·	'7 ;				185.12	0.000
; 4 ;			-0.003	0.000	185.19	0.000
	; ;	35	-0.022	0.046	186.28	0.000
; 4 ·	; ; ;	36	0.441	0.054	216.68	0.000
	i ' P '	1 30	0.441	0.054	210.00	0.000

Figura 15: Correlograma de la serie temporal diferenciada dpuros

Figura 16: Serie temporal ddpuros12

Date: 02/14/16 Time: 13:02 Sample: 1989M01 1996M12 Included observations: 83

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.571	-0.571	28.029	0.000
ı j ı	·	2	0.028	-0.442	28.097	0.000
· 🗀 ·	' '	3	0.164	-0.120	30.470	0.000
' 二 '	' □ '	4	-0.166	-0.142	32.937	0.000
1 1		5	0.000	-0.231	32.937	0.000
ı 🗀 ı	'd''	6	0.134	-0.073	34.589	0.000
'	📮 '	7	-0.187	-0.197	37.823	0.000
' 	' = '	8	0.111	-0.165	38.989	0.000
1 j i 1	'['	9	0.046	-0.053	39.195	0.000
' = '	' = '	10		-0.157	41.421	0.000
' 🗀		11	0.308	0.272	50.696	0.000
-	ינן י	12	-0.312	0.047	60.362	0.000
	" '	13	0.010	-0.181	60.372	0.000
' 	🗖 '	14	0.119	-0.262	61.815	0.000
1 j 1	יום י	15	0.026	0.073	61.887	0.000
'□ '	'['	16		-0.025	64.647	0.000
' 🖭 '	' □ '	17	0.153	-0.144	67.151	0.000
1 1	ינוי	18	-0.017	0.027	67.184	0.000
' 🗓 '		19	-0.070	-0.007	67.723	0.000
' P '	י 🖪 י	20	0.139	0.100	69.883	0.000
' " '	' '	21	-0.097	0.138	70.950	0.000
' [] '	' □ '	22	-0.090	-0.116	71.889	0.000
' 🖭	יוןי	23	0.142	0.072	74.266	0.000
'■'	' '	24	-0.103	0.011	75.547	0.000
' I II '	' '	25		-0.004	76.071	0.000
'_ I I'	'['	26		-0.037	76.426	0.000
' = _'		27	-0.159	0.011	79.612	0.000
' P '		28	0.127	0.014	81.679	0.000
1) 1	'['	29	0.012	-0.076	81.698	0.000
' [] '	' '	30	-0.054	0.155	82.085	0.000
1 1		31	-0.022	0.014	82.150	0.000
1 1	'['	32		-0.089	82.150	0.000
-	י וון י	33	0.023	0.082	82.224	0.000
· • • • • • • • • • • • • • • • • • • •	'['	34		-0.057	82.261	0.000
י ון י	' '	35	0.049	0.151	82.613	0.000
' □ '	'4'	36	-0.128	-0.075	85.086	0.000

Figura 17: Correlograma de la serie temporal ddpuros12

3. Código EViews

3.1. Índice de empleo

```
empleo.sheet
{%graph}.line
empleo.correl(16)
series d
series dempleo = empleo - empleo (-1)
dempleo.sheet
{%graph}.line
dempleo.correl
{%equation}.ls(optmethod=opg) d(empleo,1) ar(1)
{%equation}.resids(g)
{%equation}.correl
{%equation}.ls(optmethod=opg) d(empleo,1) ma(1) ma(2)
{%equation}.resids(g)
{%equation}.results
{%equation}.correl
{%equation}.resids(g)
dempleo.hist
{%graph}.line
{%equation}.ls(optmethod=opg) d(empleo,1) ar(1)
smpl 1994q1 1994q4
{%equation}.forecast(e, g) empleof
smpl 1962q1 1993q4
{%equation}.forecast
{%equation}.results
empleof.sheet
{%graph}.line
empleo.correl(16)
empleo.sheet
empleof.sheet
```

3.2. Venta de puros

```
puros.sheet
{%graph}.line
puros.correl
series dpuros = puros - puros(-1)
dpuros.sheet
{%graph}.line
dpuros.correl
```

```
series dd12puros = dpuros(puros,1,12)
series dd12puros = d(puros,1,12)
dd12puros.sheet
{%graph}.line
dd12puros.correl
```

4. Conclusiones