U9507C 模块硬件接口手册_V1.1.2

重要声明

版权声明

版权所有: 龙尚科技(上海)有限公司

本资料及其包含的所有内容为龙尚科技(上海)有限公司所有,受中国法律及适用之国际公约中有关著作权法律的保护。未经龙尚科技(上海)有限公司书面授权,任何人不得以任何形式复制、传播、散布、改动或以其它方式使用本资料的部分或全部内容,违者将被依法追究责任。

不保证声明

龙尚科技(上海)有限公司不对此文档中的任何内容作任何明示或暗示的陈述或保证,而且不对特定目的的适销性及适用性或者任何间接、特殊或连带的损失承担任何责任。

保密声明

本文档(包含任何附件)包含的信息是保密信息。接收人了解其获得的本文档是保密的,限用于规定的目的外不得用于任何目的,也不得将本文档泄露给任何第三方。

免责声明

本公司不承担由于客户不正常操作造成的财产或者人身伤害责任。请客户按照手册中的技术规格和参考设计开发相应的产品。在未声明之前,本公司有权根据技术发展的需要对本手册内容进行更改,且更改版本不另行通知。

目录

1. 引言	7
1.1. 文档目的	7
1.2. 内容一览	7
1.3. 相关文档	8
1.4. 修订记录	8
1.5. 缩略语	8
2. 产品简介	10
2.1. 特性列表	12
2.2. U9507C 模块工作模式	14
2.3. 系统功能框图	15
3. 应用接口及功能描述	
3.1.72-pin LGA PAD 接口定义	16
3.2. 电源	19
3.2.1. 电源接口描述及外围电路设计	20
3.2.1.1. VBAT 输入	
3.2.2. POWER_ON 控制	21
3.2.3. RESET 复位控制	21
3.2.3.1. 引脚复位	21
3.2.3.2. AT 命令复位	
3.3. USB 接口	23
3.3.1. USB 接口描述	
3.3.2. USB 参考电路	
3.3.3. USB 驱动	24
3.3.3.1 Linux 系统加载 U9507C 的 USB 驱动过程	24
3.3.3.1.1 USB 串口驱动添加	24
3.3.3.1.2 增加具体设备驱动	24
3.3.3.1.3 USB 串口驱动过滤 NDIS 接口	24
3.3.3.1.4 USB 串口驱动加载方法	25
3.3.3.2. Linux 系统下 U9507C 交互 AT 过程	
3.3.3.3. Linux 系统下 U9507C 拨号上网过程	26
3.3.3.4. Linux 系统下 U9507C NDIS 驱动加载方法	29
3.3.3.4.1 NDIS 驱动添加系统组件	29
3.3.3.4.2 NDIS 驱动编译	29
3.3.3.4.3 NDIS 驱动加载	30
3.3.3.5. Linux 系统下 U9507C NDIS 拨号上网	30
3.3.3.5.1 修改拨号配置文件	30
3.3.3.5.2 安装 dhcp client 客户端	30
3.3.3.5.3 编译运行测试程序	
3.3.3.5.4 查看 IP 地址与网络连接测试	
3.4. UART 接口	32

	3.4.1. UART 接口描述	32
	3.4.2. UART1 接口参考电路	32
	3.4.3. UART1 接口描述	33
	3.5. U9507C 模块休眠和唤醒控制接口	34
	3.6. PCM 接口	34
	3.6.1 PCM 开启	34
	3.6.2 PCM 关闭	35
	3.6.3. PCM 接口描述	35
	3.7. USIM/SIM 接口	35
	3.7.1. USIM/SIM 卡接口描述	35
	3.7.2. USIM/SIM 卡接口参考设计	
	3.8. 状态指示接口	
	3.8.1.状态指示接口信号描述	38
	3.8.2. 状态指示参考电路	38
	3.9. GPIO 接口	
	3.10. 天线接口	39
	3.10.1. 焊接式天线	39
	3.10.1.1 使用 RF 连接器连接天线	40
	3.10.1.2. 天线 RF 连接器	41
	3.10.1.3. RF 转接线	41
	3.10.1.3. RF 转接线 3.10.2. U9507C 的 RF 输出功率	41
	3.10.3. U9507C 的 RF 接收灵敏度	
	3.10.4. U9507C 工作频率	42
	3.10.5. U9507C 天线要求	43
4.	机械特性	44
	4.1. 模块 3D 图	44
	4.2. 模块 2D 结构图	44
	4.3. 模块应用端 U9507C 接口原理图和 PCB 封装推荐	45
5.	各种业务下的功耗	45
	电气特性	
	6.1. 极限电压范围	47
	6.2. 环境温度范围	47
	6.3. 接口工作状态电气特性	
	6.4. 环境可靠性要求	48
	6.5. ESD 特性	

LONG **** UNG

表格

表 1:	版本修订记录	8
表 2:	缩略语描述对照表	8
表 3:	U9507C 模块主要特性列表	12
	U9507C 工作模式一览	
表 5:	U9507C 连接器 pin 定义表	17
表 6:	U9507C 电源相关接口	20
	U9507C USB 接口	
	U9507C 模块 UART 接口	
	U9507C 休眠和唤醒控制接口	
	: U9507C 数字音频接口	
	: U9507C USIM/SIM 接□	
表 12:	: U9507C 状态指示接口信号接口 : U9507C 网络指示灯状态描述	38
表 14:	: U9507C GPIO 接口表	39
表 15:	: U9507C GFIO 接口表	39
表 16:	: U9507C 的 RF 输出功率表	41
表 17:	: U9507C 的 RF 接收灵敏度	42
表 18:	· U9507C 工作频率	42
	: U9507C 天线指标要求	
	: U9507C 模块各频段功耗	
	: U9507C 模块极限工作电压范围	
	· U9507C 模块温度范围	
表 23:	: U9507C 普通数字 IO 信号的逻辑电平	48
表 24:	: U9507C 接口电源工作状态电特性	48
	: U9507C 环境可靠性要求	
表 26:	: U9507C 接口抗 ESD 特性	49

图表

图	1:	U9507C 模块	央系统框图	15
图	2:	U9507C 模块	央 pin 序图	16
图	3:	U9507C 模块	央 VBAT 输入	.20
图	4:	U9507C 模块	央 VBAT 输入	21
图	5:	U9507C RE	SET 控制模块复位参考电路	.22
图	6:	U9507C RE	:SET 时序图	.22
图	7:	U9507C US	SB 接口参考设计图	.23
图	8:	C707 10MC	006 512 2 SIM Holder的 SPEC	36
图	9:	U9507C US	SIM/SIM 接口参考设计图	.37
图	10:	U9507C 🕸	犬态指示参考设计图	.38
图	11:	U9507C 5	小接焊接式天线参考设计图	40
图	12:	U9507C ₫	使用 RF 连接器连接天线参考设计图	40
冬	13:	U9507C 2	D 结构图	.44

1. 引言

U9507C 无线模块是一款适用于

FDD-LTE/TDD-LTE/TD-SCDMA/UMTS/EDGE/GPRS/GSM/EVDO/CDMA 多种网络制式及 GPS 和 BeiDou 定位服务的无线终端产品,在 FDD-LTE 和 TDD-LTE 网路下,U9507C接入速度下行可达 150Mbps,上行可达 50Mbps,在没有 LTE 网络覆盖的情况下,U9507C还可以通过 3G(TD-SCDMA/UMTS)和 2G(EDGE/GPRS/GSM)接入,通过 TD-SCDMA接入,速率下行可达 4.2Mbps,上行 2.2Mbps; UMTS接入,速率可达下行 42.2Mbps及上行 5.76Mbps; EGDE class12接入下行速率可达 237kbps 和上行 118kbps,GPRS class10接入速率上下行可达 85.6kbps; EVDO上行 1.8Mbps,下行可达到 3.1Mbps。GPS 至少可支持 44 通道,跟踪导航接收灵敏度达到-153dBm,冷启动时间<60S,温启动时间<45S,热启动时间<15S。

U9507C 在提供高速数据接入和 GPS 和 BeiDou 的定位服务的同时,可提供短信、彩信、通讯簿、语音通话等功能,可广泛应用于数据卡、视频监控、平板电脑、电子书、车载设备等多个领域。

1.1. 文档目的

本文详细阐述了 U9507C 无线模块的基本功能及主要特点、硬件接口及使用方法、结构特性、功耗指标和电气特性,指导用户将 U9507CC 模块嵌入各种应用终端的设计。

1.2. 内容一览

本文共分为以下几部分:

- ◆ 第1章, 主要介绍文档目的、相关资料、修订记录、缩略语解释等;
- ◆ 第2章,描述 U9507C 无线模块的基本功能和主要特点;
- ◆ 第3章,详细描述了 U9507C 各个硬件接口的功能、特性和使用方法;
- ◆ 第4章,详细描述 U9507C 结构方面的特性和注意事项;
- ◆ 第5章,详细描述 U9507C 各种业务下的功耗:
- ◆ 第6章,详细描述 U9507C 电气特性。

1.3. 相关文档

- ◆ U9507C 模块规格说明;
- ♦ U9507C AT 指令集;
- ♦ U9507C EVB 用户手册;
- ♦ U9507C 参考设计电路;
- ◆ U9507C应用业务流程手册。

1.4. 修订记录

表 1: 版本修订记录

版本	姓名	发布时间	修订描述
V1.0	Gao. Ray	2016-06-22	V1.0 版本创建
V1.0.1	Wangen Wei	2016-07-19	修订
	Ming Zhong		
	Zhanmeng Wang		
V1.1	Hong Yu	2016-08-18	全面复核
	Yanbin Mu		
	Wangen Wei		
V1.1.1	Wangen Wei	2016-09-09	Reset 功能,修改管脚拉低所需的时长
V1.1.2	Xiaomei Peng	2016-09-17	功耗数据修改
	Wangen Wei	4	

1.5. 缩略语

表 2:缩略语描述对照表

缩写	描述	中文描述
AMR	Adaptive Multi-rate	自适应多速率
BER	Bit Error Rate	误码率
BTS	Base Transceiver Station	基站收发信台
PCI	Peripheral Component Interconnect	外设部件互连
CS	Circuit Switched (CS) domain	电路域
CSD	Circuit Switched Data	电路交换数据
DCE	Data communication equipment	数据电路终端设备
DTE	Data terminal equipment	数据终端设备
DTR	Data Terminal Ready	数据终端就绪
EDGE	Enhanced Data rates for GSM Evolution	增强型GPRS
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型GSM

EMC	Electromagnetic Compatibility	电磁兼容性
ESD	Electrostatic Discharge	静电释放
FR	Frame Relay	帧中继
GMSK	Gaussian Minimum Shift Keying	高斯最小移频键控
GPIO	General Purpose Input Output	通用输入/输出
GPRS	General Packet Radio Service	通用分组无线系统
GSM	Global Standard for Mobile Communications	全球标准移动通信系统
HR	Half Rate	半速
HSDPA	High Speed Downlink Packet Access	高速下行分组接入
HSUPA	High Speed Uplink Packet Access	高速上行分组接入
HSPA	HSPA High-Speed Packet Access	高速分组接入
IEC	International Electro-technical Commission	国际电工技术委员会
IMEI	International Mobile Equipment Identity	国际移动设备标识
I/O	Input/Output	输入/输出
ISO	International Standards Organization	国际标准化组织
ITU	International Telecommunications Union	国际电信联盟
bps	bits per second	比特每秒
LED	Light Emitting Diode	发光二极管
LTE	Long Term Evolution	长期演进技术
M2M	Machine to machine	机器到机器
MCU	Micro Control Unit	微处理单元
МО	Mobile Originated	移动台发起的
MT	Mobile Terminated	移动台终止的
NTC	Negative Temperature Coefficient	负温度系数
PC	Personal Computer	个人计算机
PCB	Printed Circuit Board	印制电路板
PCS	Personal Cellular System	个人蜂窝系统
PCI	Peripheral Component Interconnect	外设部件互连
PCM	Pulse Code Modulation	脉冲编码调制
PCS	Personal Communication System	GSM1900
PDU	Packet Data Unit	分组数据单元
PPP	Point-to-point protocol	点到点协议
PS	Packet Switched	分组交换
QPSK	Quadrate Phase Shift Keying	正交相位移频键控
SIM	Subscriber Identity Module	用户识别模块
TCP/IP	Transmission Control Protocol/ Internet Protocol	传输控制协议/互联网协议
UART	Universal asynchronous receiver-transmitter	通用异步收/发器(机)
USIM	Universal Subscriber Identity Module	通用用户识别模块
UMTS	Universal Mobile Telecommunications System	通用移动通信系统
USB	Universal Serial Bus	通用串行总线
WCDMA	Wideband Code Division Multiple Access	宽带码分多址

2. 产品简介

U9507C 无线模块是一款适用于

FDD-LTE/TDD-LTE/TD-SCDMA/UMTS/EDGE/GPRS/GSM/EVDO/CDMA 多种网络制式的无线终端产品,U9507C 模块支持多种频段。

LTE-TDD Quad-band Band 38/39/40/41;

LTE-FDD Tri-band Band 1/3/8;

TD-SCDMA Dual-band Band 34/39;

UMTS Dual-band Band 1/8;

EVDO BC0

GSM Dual-band B3/B8;

U9507C 同时提供 GPS 和 BeiDou 定位服务:

GPS 和 BeiDou 可支持至少 44 通道;

跟踪导航接收灵敏度达到-153dBm;

冷启动时间≤60S,温启动时间≤45S,热启动时间≤15S。

U9507C 支持 FDD-LTE、TDD-LTE、TD-SCDMA、 UMTS 和 EVDO 高速接入以及 GPS/BeiDou 定位服务,同时可提供短信、通讯簿,可广泛应用于数据卡、视频监控、手持终端、电子书、车载设备等产品。

U9507C采用先进的高度集成设计方案,将射频、基带集成在一块 PCB上,完成无线接收、发射、基带信号处理和音频信号处理功能,采用单面布局,对外应用接口 LGA PAD 方式,模块结构尺寸为: 31.0×30.0×2.5mm。

U9507C 支持 AT 命令扩展,可以实现用户个性化定制方案。

U9507C 采用 LGA 接口,提供如下功能接口:

- 1) 电源接口
- 2) USB接口
- 3) UART接口
- 4) USIM/SIM接口
- 5) PCM 接口
- 6) RESET接口

- 7) 电压输出(1.8V)
- 8) POWER_KEY接口
- 9) GPIO(1.8V)
- 10) HSIC
- 11) 主集天线接口
- 12) 分集天线接口
- 13) GPS/BeiDou 天线接口
- 14) Wakeup in 和 Wakeup out 管脚
- 15) 状态指示输出接口

2.1. 特性列表

表 3: U9507C 模块主要特性列表

	07C 模块主要 [。] 品 特性			
电源电压		3.3V~4.2V(推荐值 3.8V)		
		LTE-TDD Quad-band Band 38/39/40/41;		
		LTE-FDD Tri-band Band 1/3/8;		
		TD-SCDMA Dual-band Band 34/39;		
工作频段		UMTS Dual-band Band 1/8;		
		GSM Dual-band B3/B8;		
		EVDO BC0	X	
		FDD: 150Mbps(DL), 50Mbps(UL)		
	LTE	TDD: 150Mbps(DL), 50Mbps(UL)		
		支持 Release 9 category 4	10,	
	TD-SCDMA	TD-SCDMA: 4.2Mbps(DL), 2.2Mbps	s(UL)	
	HSPA+	HSPA+: 42.2Mbps(DL), 5.76Mbps(U	JL)	
	EVDO	EVDO: 3.1Mbps(DL), 1.8Mbps(UL)		
数据业务	EDGE	EDGE: Class12, 237kbps(DL), 118k	bps(UL)	
	EDGE	移动台 class B		
		GPRS: Class12, 85.6kbps(DL), 85.6kbps(UL)		
	GPRS	移动台 class B		
		编码方案 CS1-4		
		支持 Full PBCCH		
	CSD	GSM CSD: 14.4kbps		
		点对点 MO、MT		
短信业务		短信小区广播		
		支持 Text 和 PDU 模式		
彩信业务	9	需要 AP 端实现 MMS 协议,模块实现彩信通知		
GPS / BeiDo	u			
频率		L1 :1575.42 +/-10 MHz		
通道数		≥44 通道		
定位精度		< 10M		
A-GPS		支持		
接收灵敏度		Acquisition -140dBm		
		Tracking	-153dBm	
		Cold Start	60S	
首次获星时间		Warm Start	45S	
		Hot Start 15S		
工作温度		-40°C∼+85°C		
ESD		VBAT,GND: 空气放电±8KV,接触放电±4KV		
		射频天线接口:空气放电±8KV,接触放电±4KV		

	I
	其它接口: 空气放电±2KV,接触放电±500V
	Class 4 (2 W) for GSM900
	Class 1 (1 W) for GSM1800
最大发射功率	Class E2 (0.5 W) for EDGE900
	Class E2 (0.4 W) for EDGE1800
	Class 3 (0.25 W) for TD-LTE/FDD-LTE/TD-SCDMA/UMTS
	关机漏电流: 50μA
 功耗	Idle 模式: <40mA
· 均代	通话模式: <300mA
	数据模式: <800mA
接口连接器	LGA 接口
	电源接口(3pin VBAT,15pin GND)
	1 路 USB2.0 High-Speed 接口
	2路UART接口
	1 路标准 USIM/SIM 卡接口(支持 3V、1.8V USIM/SIM)
	1路PCM接口
	1 路硬件复位接口
	1 路 1.8V 电压输出
	1 路开机接口
LGA 接口	9 路 GPIO (1.8V)
	1 个睡眠和解除控制 GPIO
	1 开漏输出管脚(保留)
	3 路天线接口
	1 路 NETLIGHT 输出接口
	1 路 STATUS_LED 输出接口
	1 路 HSIC (保留)
	2 路下载测试点: Boot 和 NAND_BUSY, 必须要引出来
	1 个主 RF 连接器,匹配 50Ω 阻抗特性天线
天线连接口	1 个分集接收 RF 连接器,匹配 50Ω 阻抗特性天线
Q	1 个 GPS 接收 RF 连接器,匹配 50Ω 阻抗特性天线
结构尺寸	31.0×30.0×2.5mm
重量	<5 克
固定方式	LGA PAD 焊接
	支持标准 AT 指令集(Hayes 3GPP TS 27.007 和 27.005)
AT命令	支持 LongSung 扩展 AT 指令集
	RoHS
 认证	ccc
	CTA
<u> </u>	

2.2. U9507C 模块工作模式

表 4: U9507C 工作模式一览

模式	描述				
GSM 模式	GSM IDLE	模块系统处于工作空闲状态,模块已经注册到 GSM 网络,模块此时已经做好了收发(短信和语音服务)的准备。			
	GSM TALK	此时模块做语音通话服务,模块功耗取决于网络设置。			
	GPRS IDLE	模块已经为 GPRS 数据传输做好了准备。但此时尚无数据收发。模块功耗取决于网络设置和 GPRS 的相关设置(比如多时隙 Class 等级设置)。			
GPRS 模式	GPRS DATA	GPRS 数据收传输中,模块功耗取决于网络设置(比如功率控制等级)、数据上下行速率和 GPRS 的相关设置(比如多时隙 Class 等级设置)。			
EDGE 模式	EDGE IDLE	模块已经为 EDGE 数据传输做好了准备。但此时尚无数据收发。模块功耗取决于网络设置和 EDGE 的相关设置(比如多时隙 Class 等级设置)。			
EDGE (K.X)	EDGE DATA	EDGE 数据传输中,模块功耗取决于网络设置(比如功率控制等级)、数据上下行速率和 EDGE 的相关设置(比如多时隙 Class 等级设置)。			
	TD-SCDMA IDLE	模块系统处于工作空闲状态,模块已经注册到 TD-SCDMA 网络,模块此时已经做好了收发服务的准备。			
TD-SCDMA 模式	TD-SCDMA TALK	模块 TD-SCDMA 语音服务中,模块功耗取决于网络设置。			
	TD-SCDMA DATA	TD-SCDMA 数据传输中,模块功耗取决于网络设置(比如功率控制等级)、数据上下行速率和 TD-SCDMA 的相关设置。			
HSPA 模式	HSPA IDLE	模块已经为 HSPA 数据传输做好了准备。但此时尚无数据收发。模块功耗取决于网络设置。			
TISFA 模式	HSPA DATA	HSPA 数据传输中,模块功耗取决于网络设置(比如功率控制等级)、数据上下行速率和 HSPA 的相关设置。			
LTE 模式	LTE IDLE	模块已经为 LTE 数据传输做好了准备。但此时尚无数据收发。 模块功耗取决于网络设置。			
口口 決大	LTE DATA	LTE 数据传输中,模块功耗取决于网络设置(比如功率控制等级)、数据上下行速率和 LTE 的相关设置。			
最小功能模式	VBAT 持续供电,使用 AT+CFUN=0 使模块进入最小功能模式,此时模块的射频收发 处于关闭状态。使用 AT+CFUN=1 模块重新打开收发注册网络到正常功能模式。				
关机模式	VBAT 低电压关机。				

LONG 🖴 UNG

2.3. 系统功能框图

图 1 是 U9507C 模块系统框图:

图 1: U9507C 模块系统框图

☆ 射频部分包括:

- 1) LTE 射频收发信机
- 2) TD-SCDMA 射频收发信机
- 3) WCDMA 射频收发信机
- 4) GSM 射频收发信机
- 5) EVDO 射频收发信机
- 6) GPS/BeiDou 接收机
- 7) SW 表面滤波器与开关
- 8) 射频功率放大器

☆ PMU 部分包括:

- 1) 电源管理单元 PMU
- ☆ 模拟/数字基带部分包括:
 - 1) 模拟/数字基带芯片
 - 2) 存储器,包含 NAND FLASH 和 LPDDR2

3. 应用接口及功能描述

3.1.72-pin LGA PAD 接口定义

图 2: U9507C 模块 pin 序图

LONG 🔷 UNG

表 5: U9507C 连接器 pin 定义表

	J930/C 建安稲 pill A			11 mm 144 h	
				休眠模式下	
序号	功能	电平(V)	I/O	可唤醒的中	功能
				断的 GPIO	
1	USIM_RESET		0		
2	USIM_CLK	1.8/3	0		SIM卡
3	USIM_DATA	1.0/0	I/O		CHAIL IN
4	VREG_USIM		0		
					SIM 卡插入检测, 内部上到 1.8V。
					配合外部带卡在位检测的 SIM 卡
5	USIM_DET	1.8		是	座使用,当 SIM 移除以后,此管
					脚通过卡座检测管脚被拉地。如不
					使用 SIM 卡检测功能,请悬空。
6	VBAT				
7	VBAT				电源
8	VBAT				
9	GND			C-1	
					复位信号输入,内部上拉到 1.8V,
10	RESET	1.8			建议开漏方式输入,采用三极管驱
					动
11	POWER_ON	1.8			开机信号,内部上拉到 1.8V,建
- 11	TOWER_ON	1.0			议开漏方式输入,采用三极管驱动
12	GND	4			
13	PCM_SYNC	1.8			
14	PCM_CLK	1.8			默认 PCM 接口。可以复用为
15	PCM_DI	1.8			GPIO □
16	PCM_DO	1.8			
17	WAKEUP_IN	1.8		是	输入,Active low。
	70				输出,Active low。
18	WAKEUP_OUT	1.8			H: 模块处于唤醒模式
					L: 模块处于睡眠模式
19	GND				
20	ANT_PRI				主天线
21	GND				
22	GND				
23	LED_OPENDRAIN	开漏输出			开漏输出,保留管脚。
					网络指示灯,驱动 2mA。
24	NETLIGHT_LED	1.8			需要外接 NPN 管驱动 LED。
					可以复用为 GPIO 口。
	1	1		1	i

LONG 🔷 UNG

序号	功能	电平(V)	I/O	休眠模式下 可唤醒的中 断的 GPIO	功能
25	STATUS_LED	1.8			状态指示灯,驱动 2mA。 需要外接 NPN 管驱动 LED。 可以复用为 GPIO 口。
26	GPIO_1.8V	1.8			GPIO
27	GND				
28	GND				
29	ANT_DIV				分集天线接收
30	GND				
31	GND				0
32	I2C_SDA	1.8		否	I2C 管脚。可以复用为 GPIO 口,
33	I2C_SCL	1.8		否	内部已经上拉到 2.2KΩ 电阻。
34	UART1_RTS	1.8		是	串口 1 的 RTS 流控,信号输出,低有效。可以复用为 GPIO 口
35	UART1_CTS	1.8		是	串口 1 的 CTS 流控,信号输入,低有效。可以复用为 GPIO 口
36	UART1_RXD	1.8)	是	串口1的信号输入。
37	UART1_TXD	1.8		是	串口1的信号输出。
38	GND	7			GND
39	GPS_ANT				GPS 天线出口
40	GND				GND
41	19.2M_OUT	模拟信号			模拟 19.2MhZ 时钟输出,用于外接 PCM 的 codec
42	UARTO_CTS	1.8		是	UART 串口的 CTS。可以复用为GPIO 口
43	UART0_RTS	1.8		是	UART 串口的 RTS。可以复用为GPIO 口
44	GPIO_1.8V	1.8		是	GPIO □
45	GPIO_1.8V	1.8		是	GPIO □
46	PMU_GPIO6				Reserved for WLAN。不可作为普通用途
47	PMU_GPIO2				Reserved for WLAN。不可作为普通用途

序号 功能 电平(V) I/O 休眠模式下 可唤醒的中 断的 GPIO 功能 48 NAND_BUSY 必须采用测试点拉出来预留做能升级用途知果客户使用有源天线,此 G用于接供 GPS 天线的供电通验控制管脚。高表示打开,低表活闭。 50 GND GND 51 UART1_DCD 1.8 是 52 UART1_DTR 1.8 是 53 UART0_RXD 1.8 是 54 UART1_DSR 1.8 是 55 UART1_RI 1.8 是 UART1_RI。可以复用为 GPIC 56 GPIO_1.8V 1.8 是 GPIO 57 BOOT_MODE 1.8 否 采用测试点拉出来预留做可能
RAND_BUSY ### ####
(#PS POWER_CTRL
49
49
控制管脚。高表示打开,低表示 按制管脚。高表示打开,低表示 闭。
50 GND
51 UART1_DCD 1.8 是 UART1_DCD。可以复用为G口 52 UART1_DTR 1.8 是 UART1_DTR。可以复用为G口 53 UART0_RXD 1.8 是 UART1_DSR。可以复用为G口 54 UART1_DSR 1.8 是 UART1_DSR。可以复用为G口 55 UART1_RI 1.8 是 UART1_RI。可以复用为GPIC 56 GPIO_1.8V 1.8 是 GPIO 57 BOOT_MODE 1.8 否 采用测试点拉出来预留做可能级用途。
51 UART1_DCD 1.8 是 口 52 UART1_DTR 1.8 是 UART1_DTR。可以复用为 G口 53 UART0_RXD 1.8 是 UART1_DSR。可以复用为 G口 54 UART1_DSR 1.8 是 UART1_DSR。可以复用为 G口 55 UART1_RI 1.8 是 UART1_RI。可以复用为 GPIC 56 GPIO_1.8V 1.8 是 GPIO 57 BOOT_MODE 1.8 否 采用测试点拉出来预留做可能级用途。
52 UART1_DTR 1.8 是 UART1_DTR。可以复用为 G口 53 UART0_RXD 1.8 是 UART0_RXD。 54 UART1_DSR 1.8 是 UART1_DSR。可以复用为 G口 55 UART1_RI 1.8 是 UART1_RI。可以复用为 GPIC 56 GPIO_1.8V 1.8 是 GPIO 57 BOOT_MODE 1.8 否 采用测试点拉出来预留做可能级用途。
52
D
54 UART1_DSR 1.8 是 UART1_DSR。可以复用为 G D D D D D D D D D D D D D D D D D D
54 UART1_DSR 1.8 是 口 55 UART1_RI 1.8 是 UART1_RI。可以复用为 GPIC 56 GPIO_1.8V 1.8 是 GPIO 57 BOOT_MODE 1.8 否 采用测试点拉出来预留做可能级用途。
55 UART1_RI
56 GPIO_1.8V 1.8 是 GPIO 57 BOOT_MODE 1.8 否 采用测试点拉出来预留做可能级用途。
57 BOOT_MODE 1.8 否 拉高进入 forced USB boot, 采用测试点拉出来预留做可能级用途。
57 BOOT_MODE 1.8 否 采用测试点拉出来预留做可能级用途。
级用途。
58 VOUT_1.8V 1.8V 电压输出
59 HSIC_DATA HSIC 接口
60 HSIC_STROBE
61 GND
62 USBDM。支持 USB 2.0
63 USBDP。支持 USB 2.0
64 USB_VBUS USB_VBUS
65 GND
66 GPIO_1.8V 1.8 是 GPIO
67 GPIO_1.8V 1.8 是 GPIO
68 GPIO_1.8V 1.8 是 GPIO
69 GPIO_1.8V 1.8 是 GPIO
70 UARTO_TXD 1.8 是 UARTO_TXD
71 GPIO_1.8V 1.8 是 GPIO
<u>, , , , , , , , , , , , , , , , , , , </u>

3.2. 电源

本节描述和电源相关,开关机相关的接口。涉及的接口包括如下:

表 6: U9507C 电源相关接口

PIN Name	I/O	PIN No.	描述
VBAT	1	6,7,8	模块供电, 3.3~4.2, 标称值 3.8V
VEXT_1.8V	0	58	电压输出,1.8V,50mA
GND		9,12,19,21,22,27,28,30,31,38,40,50,6	地
GND		1,65,72	地
RESET	1	10	复位, 1.8V, 低电平有效

3.2.1. 电源接口描述及外围电路设计

3.2.1.1. VBAT 输入

U9507C 模块的供电采用单电源供电方式,VBAT 范围在 3.3V-4.2V 之间。在 LTE/HSPA/UTMS/TD-SCDMA/GSM/EVDO/CDMA 网络下工作,数据传输或者通话时, 瞬间大功率发射会形成高达 2A 的电流峰值,从而导致 VBAT 大的纹波出现,如瞬间压降造成 VBAT 供电电压过低,模块将会关机。为保证模块能正常工作,要求电源供电必须具备足够的供电能力。

在确保 VBAT 电源供电能力足够(3.8V,1A 连续负载、2A 瞬时负载能力)的前提下,电路接法依照下图所示,在 VBAT 输入靠近模块侧接一个(2200uF/10V)电解电容(C_A),若结构受限,可用两个并联(470uF/6.3V)钽电容(C_A),再并上一个 0.1uF~1uF 的陶瓷电容(C_B)。

图 3: U9507C 模块 VBAT 输入

3.2.2. POWER_ON 控制

在 VBAT 供电条件下,POWER_ON 可控制模块的开机和关机。POWER_ON 管脚内部上 拉到 1.8V。

通过外部 MCU 的控制可实现 U9507C 的开机和关机。外围电路设计对 POWER_ON 可控,在 VBAT 持续加电情况下

- ※ 模块在关机状态, 拉低 POWER_ON 2s 后拉高, 可以让模块开机;
- ※ 模块在开机状态, 拉低 POWER ON 2s 后拉高, 可以让模块关机

如下图, AP_POWER_ON 是应用端给 U9507C 的控制信号, 可以实现 U9507C 的开关机。 建议客户 AP 通过一个 GPIO (如图中标示的 MODULE_STATE 这个网络)检测模块的 VOUT_1.8V 来确定是模块是否开机成功。

图 4: U9507C 模块 VBAT 输入

3.2.3. RESET 复位控制

U9507C 复位方式有两种: 引脚复位、AT 命令复位。

3.2.3.1. 引脚复位

U9507C 的 PIN10 为 RESET 输入。当需要复位 U9507C 模块时,将此管脚拉低,模块即可复位。

● 需要应用端控制 U9507C 模块的复位,需要给模块一个低电平 T 时长(100mS<T<600mS)脉冲;

关于 RESET 的参考电路如下图,AP_RESET 是应用端给的 RESET 控制信号,可以控制 U9507C 的复位。RESET 请勿接上下拉电阻。若 RESET 接对地电容,不应该超过 100pF。

图 5: U9507C RESET 控制模块复位参考电路

图 6: U9507C RESET 时序图

3.2.3.2. AT 命令复位

AT 命令复位有两种方式:

一种是: AT^RESET

另一种是:设置 at+cfun=7 后再设置 at+cfun=6 进行重启;

3.3. USB 接口

3.3.1. USB 接口描述

U9507C 模块提供一路 USB2.0 High-Speed 接口。U9507C 默认 PID 是 0x9B3C,加载驱动之后,会在操作系统上映射出 6 个串口,分别为: ADB 口、modem 口、AT 口。预留口、NDIS 口。

表 7: U9507C USB 接口

PIN Name	I/O	PIN No.	描述
USB_DM	I/O	62	USB 数据通道-
USB_DP	I/O	63	USB 数据通道+
GND		9,12,19,21,22,27,28,30,31,38,40,50,61, 65,72	

3.3.2. USB 参考电路

U9507C 模块 USB 接口应用参考电路如下图所示。

图 7: U9507C USB 接口参考设计图

- 1) 为降低 USB 高速数据传输时的信号干扰,在 USB_DM 和 USB_DP 接口电路上串接 共模滤波器可提高数据传输正确率;
- 2) 为提高 USB 接口的抗静电性能,推荐在 USB_DP、USB_DM 接口电路上加 ESD 保

护器件,建议使用结电容小于 0.5pF 的 ESD 器件;

3) 为确保 USB 工作可靠,设计时还需更多考虑对 USB 的保护,比如 Layout 时对 USB 的保护,需要对 USB_DP、USB_DM 做 90Ω 的阻抗控制,尽可能远离干扰信号。 **PCB** 走线避免有分支或端头线。

3.3.3. USB 驱动

U9507C 模块支持:

- Windows 操作系统
- 嵌入式操作系统 linux

U9507C 模块的默认 VID 和 PID 是: VID_1C9E & PID_9B3C。

3.3.3.1 Linux 系统加载 U9507C 的 USB 驱动过程

3.3.3.1.1 USB 串口驱动添加

在 Linux 系统中通常使用 USB 转串口的驱动。驱动添加需要配置 Linux 内核,方法如下: cd kernel

make menuconfig

device drivers->usb support->usb serial converter support

选中如下组件:

USB driver for GSM and CDMA modems

选中后保存配置。

3.3.3.1.2 增加具体设备驱动

打开内核源码文件 option.c(路径一般为 drivers/usb/serial/option.c); 在源码中找到 option_ids 数组,在数组中添加 Longsung 产品的 VID(0x1C9E)和 PID(0x9B3C);

3.3.3.1.3 USB 串口驱动过滤 NDIS 接口

由于 USB 串口跟 NDIS 都属于非标准 CDC 设备,需要防止 NDIS 口被 USB 串口驱动加载而导致无法正常加载 NDIS 口驱动。有三种方式可以解决:

- 1) 比较新的 kernel 版本(3.8 以上),在 option.c 中的 opiton_ids 中添加 blacklist,驱 动在加载时会自动跳过 blacklist 指定的 interface;设置 interface 4 不加载 option驱动;添加 blacklist 到 option_ids 数组中。
- 2) 对于之前的内核,不支持在 option_ids 数组中设置过 blacklist,要先增加 U9507C 的 PID 和 VID: 在 probe 函数内判断当前 interface 号进行过滤。
- 3) 对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb_serial_probe()函数开始增加如下判断来过滤 NDIS 接口。

3.3.3.1.4 USB 串口驱动加载方法

加载 USB 串口驱动: sudo modprobe option 使用 dmesg 命令查看系统 log,确认端口都加载上了 USB 驱动

3.3.3.2. Linux 系统下 U9507C 交互 AT 过程

- 1) 请将 USIM/SIM 正确插入应用终端,将 LTE/TD-SCDMA/GSM 天线连接到 U9507C 的射频连接器。U9507C 开机,加载 USB 驱动,获取 USB 端口: ttyUSB0~ ttyUSB4。
- 2) 启动 Linux 系统串口应用程序 minicom, 使用如下指令:

#minicom -s

在 minicom 菜单中选择 "Serial port setup",配置"Serial device"为/dev/ttyUSB2;注意: **U9507C** 的串口中 **AT(ttyUSB2)**, **Modem(ttyUSB1)** 可以发 **AT** 命令,其他不能发 AT 指令;修改完毕后退出到 minicom 菜单,选择"Save setup as df1"保存配置后选择"exit"退出 minicom 配置;

3) 通过 minicom 发送 AT 指令进行系统测试

#minicom

将会得到如下的返回结果:

Welcome to minicom 2.3 OPTIONS: I18n

Compiled on Feb 24 2008, 16:35:15. Port /dev/ttyUSB1

Press CTRL-A Z for help on special keys

输入 AT 指令(打开回显):

ATE

如果系统工作正常,将会得到如下的返回结果:

OK

AT+LCTSW

将会得到如下 U9507C 的 Firmware 版本信息:

SoftwareVersion:LLA0029.1.0 M005

InnerVersion:LLA0029_0012_0.0.3_L0608_EFS1.1

AP: LLA0029_0012_0.0.3_L0608_M005

OK

输入如下指令(查询信号):

AT+CSQ

将会得到如下信号强度和误码率信息:

+CSQ: 20,74

OK

输入如下指令(注册状态):

AT+CREG?

将会得到如下注册信息:

+CREG: 0,1

OK

输入如下指令(网络运营商信息):

AT+COPS?

将会得到如下运营商信息(不同运营商返回字段不同。以中国移动 USIM 卡为例):

+COPS: 0,0,"CMCC",2

OK

3.3.3.3. Linux 系统下 U9507C 拨号上网过程

- 1) 重复 U9507C 的 USB 加载过程和 AT 交互流程。确保 U9507C 正确注册到网络, 信号强度 CSQ 返回的第一个参数在 13 以上;
- 2) 确认 Linux 系统带有 pppd 应用程序,如果系统没有 pppd,请安装 kppp,里面 带有 pppd 应用程序;
- 3) 建立拨号配置文件/etc/ppp/chat/gprs-connect-chat 在其中加入如下配置:

LONG **S** UNG

TIMEOUT 15

ABORT "DELAYED"

ABORT "BUSY"

ABORT "ERROR"

ABORT "NO DIALTONE"

ABORT "NO CARRIER"

TIMEOUT 40

\rAT

OK ATS0=0
OK ATE0V1

OK AT+CGDCONT=1,"IP","CMNET"

OK ATDT*99***1#

CONNECT "

注:插入不同运营商的卡,AT+CGDCONT=1,"IP","CMNET"最后一个参数不同,请咨询当地的运营商获取 APN。

4) 修改 pppd 的配置文件/etc/ppp/options

找到 auth 字样的行然后将其改为#auth, 这样在拨号过程中就不会提示需要身份验证:

5) 建立拨号配置文件/etc/ppp/peer/gprs

在其中加入配置如下(必须指定 Modem 口是 ttyUSB1):

Usage: root>pppd call gprs

/dev/ttyUSB1

9600

crtscts

modem

#noauth

debug

nodetach

#hide-password

usepeerdns

noipdefault

defaultroute

0.0.0.0:0.0.0.0

ipcp-accept-local

ipcp-accept-remote

#lcp-echo-failure 12

#lcp-echo-interval 3

#noccp

#novj

#novjccomp

#persist

connect '/usr/sbin/chat -s -v -f /etc/ppp/chat/gprs-connect-chat'

6) 拨号上网,使用如下指令:

#pppd call gprs

ifconfig 如果出现如下回显,多出了一个 ppp0 网口,说明拨号已经成功: eth0 Link encap:Ethernet HWaddr 00:1D:09:33:A7:E1 inet addr:172.16.180.105 Bcast:172.16.180.255 Mask:255.255.255.0 inet6 addr: MTU:1500 Metric:1 RX packets:39793 errors:0 dropped:0 overruns:0 frame:0 TX packets:17971 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:3445057 (3.2 MiB) TX bytes:20088925 (19.1 MiB) Interrupt:169 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:20 errors:0 dropped:0 overruns:0 frame:0 TX packets:20 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:1160 (1.1 KiB) TX bytes:1160 (1.1 KiB) ppp0 Link encap:Point-to-Point Protocol inet addr:10.182.207.113 P-t-P:10.64.64.64 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0 frame:0 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3 RX bytes:62 (62.0 b) TX bytes:101 (101.0 b)

7) 测试连接 Internet

测试是否连接 Internet, 用如下指令:

ping 119.75.217.56

测试是否 ping 通 baidu 的 IP 地址。如果 ping 不通,需要给本机加条路由,使用如下指令:

route add default gw 10.64.64.64

注: 10.64.64.64: 运营商的 ip 地址,即上述红色字体部分。

如果 IP 地址能 ping 通,而 ping 域名不通,如下指令:

ping www.baidu.com

则需要添加 DNS 到/etc/resolv.conf。

8) Linux 断开网络(必须 kill 当前的 pppd, 才能进行下一次 pppd),需要 kill pppd 进程(这个过程需要一段时间,中间可能无响应),使用如下指令: # killall pppd

3.3.3.4. Linux 系统下 U9507C NDIS 驱动加载方法

3.3.3.4.1 NDIS 驱动添加系统组件

NDIS 驱动需要系统的 usbnet 驱动支持,因此需要配置 Linux 内核,配置方法如下: cd kernel

make menuconfig

device drivers->Network device support->usb Network Adapters

选中如下组件

Multi-purpose USB Networking Framework

选中后保存配置,重新编译内核。

3.3.3.4.2 NDIS 驱动编译

驱动以源代码的形式提供,由用户在自己的系统编译。

lc_cdc_ether.c 为 ndis 口驱动,qmi 开头的文件为 QMI 协议相关文件,用于解析 ioctl 的 QMI 包。用户可以单独编译,也可以将代码放入内核中一起编译。

1) 单独编译

修改 src/Makefile 中 KDIR 的值为 kernel 的编译路径;

在 ndis_driver 目录下执行 make modules 命令,即可在 src 目录下生成 lc_ether.ko 文件;

2) 与内核一起编译

将 src 下的代码文件复制到用户自己的 kernel 代码的 drivers/net/usb 目录下;

在 drivers/net/usb/Makefile 中增加以下内容:

c_ether-objs += qmi_oper.o qmi_util.o \

Ic_cdc_ether.o

obj-m += lc_ether.o

之后每次编译内核都会自动编译 NDIS 驱动。

3.3.3.4.3 NDIS 驱动加载

通过 insmod 命令加载 NDIS 驱动:

sudo insmod lc_ether.ko

通过 modprobe 命令加载 NDIS 驱动:

在 ndis driver 目录执行 make install 命令;

sudo make install

会将驱动安装到系统的 module 目录中,并且分析依赖关系,将相关模块同时加载。 使用 ifconfig 命令查看网卡信息,如果出现 wan0 表示驱动加载成功

```
wan0 Link encap:Ethernet HWaddr 00:a0:c6:00:00:00
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
```

也可以直接运行 make_driver.sh 脚本来自动完成驱动的编译和加载 sudo ./make_driver.sh

3.3.3.5. Linux 系统下 U9507C NDIS 拨号上网

NDIS 拨号如下举例测试在 Ubuntu10.04.3-64bit 环境下进行,使用联通 SIM 卡。测试代码在提供的 ndis_app 目录中。

3.3.3.5.1 修改拨号配置文件

修改 profile.init 文件,内容如下所示:

[profile]

apn=UNINET

username=

pwd=

auth=0

3.3.3.5.2 安装 dhcp client 客户端

1)在 Ubuntu PC 上, 执行以下命令:

sudo apt-get install udhcpc

执行完成后就安装上了 dhcp client。

2)如果在嵌入式系统上,需要配置自己的 kernel 支持 dhcp client 功能,并且配置 busybox 支持 udhcpc 命令。

3.3.3.5.3 编译运行测试程序

在 ndis_app 目录下执行编译脚本 build.sh,输入如下命令:

./build.sh

编译后会生成 ndis_manager 文件。

使用管理员权限运行 ndis_manager,进行 NDIS 拨号,输入如下命令:

sudo ./ndis_manager -c

测试程序会读取拨号配置文件,并且进行拨号,拨号成功后会启用 dhcp client 获取 IP 地址和 DNS 地址等,如下图所示:

```
songchenglin@Longsung:~/qmi/version2.12/ndis_app$ sudo ./ndis_manager -c
connection signal ==CONNECT COMMAND.
ndis_get_lib_version success,version=1.5.
ndis connect test!
connection use apn:UNINET,usrname:,pwd:,auth:0.
ndis connect success.
ndis_get_status success.
connected to internet success, .
connect_managerect success.
Internet Systems Consortium DHCP Client V3.1.3
Copyright 2004-2009 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Listening on LPF/wan0/00:a0:c6:00:00:00
Sending on LPF/wan0/00:a0:c6:00:00:00
Sending on
             Socket/fallback
DHCPDISCOVER on wan0 to 255.255.255.255 port 67 interval 6
DHCPOFFER of 10.5.61.106 from 10.5.61.105
DHCPREQUEST of 10.5.61.106 on wan0 to 255.255.255.255 port 67
DHCPACK of 10.5.61.106 from 10.5.61.105
bound to 10.5.61.106 -- renewal in 3214 seconds.
```

3.3.3.5.4 查看 IP 地址与网络连接测试

输入 ifconfig 命令查看 wan0 的 IP 地址,如下图所示:


```
wan0 Link encap:Ethernet HWaddr 00:a0:c6:00:00:00
inet addr:10.5.61.106 Bcast:10.5.61.107 Mask:255.255.255
inet6 addr: fe80::2a0:c6ff:fe00:0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:18 errors:0 dropped:0 overruns:0 frame:0
TX packets:35 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2614 (2.6 KB) TX bytes:5795 (5.7 KB)
```

输入 ping www.baidu.com 命令,测试是否可以 ping 通网站;或者打开浏览器上网进行测试。

3.4. UART 接口

U9507C 提供两个 UART 接口。UART1,1)作为 AT 命令通道; 2)打印 log 访问系统。 UART1 是全功能串口,默认用于 AT 和数据接入及模块 firmware 升级,UART0 默认用于 Trace。

3.4.1. UART 接口描述

U9507C 模块的 UART 接口见下表。

表 8: U9507C 模块 UART 接口

PIN Name	I/O	PIN Num.	描述
UART1_RTS	0	34	RTS in UART1
UART1_CTS	1	35	CTS in UART1
UART1_RXD	_	36	RX in UART1
UART1_TXD	0	37	TX in UART1
UART1_DCD	0	51	DCD in UART1
UART1_DTR	7	52	DTR in UART1
UART1_DSR	0	54	DSR in UART1
UART1_RI	0	55	RI in UART1
UARTO_CTS	I	42	CTS in UART0
UARTO_RTS	0	43	RTS in UART0
UART0_RXD	I	53	RX in UART0
UART0_TXD	0	70	TX in UART0
GND		9,12,19,21,22,27,28,30,31,38,40,	11h
GIND		50,61,65,72	地

3.4.2. UART1 接口参考电路

U9507C 模块 UART1 提供的是全 UART 接口。U9507C 模块作为 DCE(Data Communication Equipment),客户应用端作为 DTE(Data terminal equipment)。

- 若将 U9507C 的 UART1 口作为数据接入口,考虑数据传输的稳定,建议必须连接硬件流控 CTS 和 RTS:
- 若将 U9507C 设计成使用 AT 指令交互的方式,此时可以不考虑硬件流控的连接。

3.4.3. UART1 接口描述

1) UART1_RTS/UART1_CTS: 申口硬件流控信号, DCE 和 DTE 的 RTS/CTS 需要交 叉连接;

UART 的波特率可设置为: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200;

波特率设置可用 AT 指令设置,设置之后模块保存设置。AT 指令是:

AT+IPR=<value>

<value>:

300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

注意: 默认的波特率是 115200, 且 Data Bits=8, Parity=None, Stop Bits=1, Flow Control=None。

- 2) U9507C模块的UART接口是1.8电平,如果要转换成RS232电平(比如PC的RS232接口)就需要电平转换芯片进行电平在转换:
- 3) 建议对 UART 接口进行 ESD 保护设计。

3.5. U9507C 模块休眠和唤醒控制接口

控制 U9507C 模块的休眠和唤醒相关信号接口见下表。

表 9: U9507C 休眠和唤醒控制接口

·	77 77 77 77 77 77 77 77 77 77 77 77 77		
PIN Name	1/0	PIN Num.	描述
WAKEUP_IN	1	17	H: DTE唤醒U9507C; L: DTE让U9507C进入休眠模式。
WAKEUP_OUT	0	18	H: 模块处于唤醒模式,并且串口/USB处于可用状态; L: 模块处于睡眠模式,并且串口/USB不可用。

关于 WAKEUP_IN 的参考电路如下图,AP_WAKEUP 是应用端给的模块 WAKEUP_IN 的控制信号,用于控制模块的休眠唤醒。

注:

- 使用中模块上电后应保持模块 WAKEUP IN 为高电平;
- 在 AP 端控制模块拉低 WAKEUP_IN 信号后,模块进入休眠模式,此时如果有电话/ 短信等唤醒模块后,AP 端检测到 WAKEUP_OUT 变为高电平时,应把 WAKEUP_IN 信号同步拉高。

3.6. PCM 接口

目前只支持 PCM 语音, MASTER mode, CLK 2048KHZ, SYNC 8KHZ, 16bit linear。

3.6.1 PCM 开启

在未开启 PCM 时,无法进行语音业务。开启 PCM 有两种方法:

- 1) 在 AT 口发送 at+syscmd=start_pcm,返回时间大概 1s,当返回 OK 时通过示波器可以检测到 PCM 的时钟信号;
- 2) 在 AT 口发送 at+syscmd=start_pcm acdb, 立即返回 OK, 1s 后通过示波器可以

检测到 PCM 的时钟信号。

3.6.2 PCM 关闭

在开启 PCM 后,可以通过发送 at+syscmd=start_pcm stop 关闭 PCM。

3.6.3. PCM 接口描述

U9507C 模块的 PCM 接口信号见下表。

表 10: U9507C 数字音频接口

		*	
PIN Name	I/O	PIN No.	描述
PCM_SYNC	О	13	PCM_SYNC
PCM_CLK	0	14	Clock signal
PCM_DI	I	15	输入
PCM_DO	0	16	输出

3.7. USIM/SIM 接口

U9507C 支持 LTE/HSPA/UTMS/EVDO 模式的 USIM 卡, 同时也支持 GSM/GPRS/EDGE/CDMA 模式的 SIM 卡。

3.7.1. USIM/SIM 卡接口描述

U9507C的 USIM/SIM 卡支持 1.8/3.0V的卡, USIM/SIM 接口信号见下表。

表 11: U9507C USIM/SIM 接口

PIN Name	1/0	PIN No.	描述
USIM_DATA	I/O	3	USIM/SIM DATA
USIM_CLK	0	2	Clock Signal
USIM_RESET	0	1	RESET Signal
VREG_USIM	0	4	SIM VCC
USIM_DET	1	5	USIM/SIM detect
		9,12,19,21,22,27,28	
GND		,30,31,38,40,50,61,	
		65,72	

3.7.2. USIM/SIM 卡接口参考设计

USIM/SIM 设计需要选用 SIM 卡座,推荐使用 Amphenol 公司的 C707 10M006 512 2 SIM Holder。相关的信息请参考 Amphenol 公司网站: http://www.amphenol.com/ C707 10M006 512 2 SIM Holder 的 SPEC 见下图。

图 8: C707 10M006 512 2 SIM Holder 的 SPEC

USIM/SIM 接口参考设计见下图。

图 9: U9507C USIM/SIM 接口参考设计图

- 1) USIM_DATA 需要一个上拉电阻到 USIM_VCC, 此上拉电阻预留不贴;
- 2) 为避免瞬间电压过载,在 USIM_DATA, USIM_CLK 和 USIM_RESET 线路上串一个 22Ω 的电阻:
- 3) 为提高抗静电能力,在 USIM_VCC, USIM_DATA, USIM_CLK 和 USIM_RESET 线路上加 ESD 保护器件:
- 4) 为使 USIM_VCC 更稳定,在 USIM_VCC 线路上加滤波电容,推荐使用 2.2uF 和 100nF 并联对地;
- 5) 为消除高频干扰信号的影响,在 USIM_RESET 线路上加滤波, 推荐使用 33pF 电容对 地。
- 6) USIM_DET 是 USIM/SIM 卡在位侦测输入接口,需要应用端给出一个电平输入给 U9507C,这个电平状态和 USIM/SIM 在位与否相关,和 U9507C 的 firmware 配合 实现 USIM/SIM 的热插拔功能。 USIM_DET 配合客户的 SIM 卡座进行 SIM 卡的检 测功能,当 USIM_DET 高电平 SIM 卡在位,USIM_DET 低电平 SIM 卡移除。

注:如果没有实现 USIM/SIM 的热插拔功能,应设计时结构上规避客户 USIM/SIM 热插拔操作。如不使用热插拔 USIM_DET 悬空处理。

3.8. 状态指示接口

提供 2 个状态指示接口,分别为 PIN24 和 PIN25。

3.8.1.状态指示接口信号描述

U9507C的状态指示接口信号描述见下表。

表 12: U9507C 状态指示接口信号接口

PIN Name	I/O	PIN No. 描述		
NETLIGHT_LED	0	24	状态指示灯	
STATUS_LED	0	25	状态指示灯	

状态指示灯的描述见下表。

表 13: U9507C 网络指示灯状态描述

	操作状态	LED_STATUS	NETLIGHT_LED
1	成功注册到 3G 网络	闪烁 (100ms On/2900ms Off)	关闭
2	3G 数据传输	常开	关闭
3	下载软件版本	关闭	快闪 (100ms On/100ms Off)
4	搜网	美闭	闪烁 2 次(100ms On/100ms
	151274	大网	Off/100ms On/2700ms Off)
5	成功注册到 2G	关闭	闪烁 (100ms On/2900ms Off)
6	2G 数据传输	关闭	常开

3.8.2. 状态指示参考电路

U9507C 的状态指示控制参考电路见下图。

图 10: U9507C 状态指示参考设计图

3.9. GPIO 接口

U9507C 提供了多个 GPIO, 有的 GPIO 默认定义了别的功能。

表 14: U9507C GPIO 接口表

PIN Name	I/O	PIN NO.	描述
GPIO_1.8V	I/O	26	1.8V 电平
GPIO_1.8V	I/O	44	1.8V 电平
GPIO_1.8V	I/O	45	1.8V 电平
GPIO_1.8V	I/O	56	1.8V 电平
GPIO_1.8V	I/O	66	1.8V 电平
GPIO_1.8V	I/O	67	1.8V 电平
GPIO_1.8V	I/O	68	1.8V 电平
GPIO_1.8V	I/O	69	1.8V 电平
GPIO_1.8V	I/O	71	1.8V 电平

3.10. 天线接口

U9507C 提供了 3 个天线接口

表 15: U9507C 天线接口

PIN Name	I/O	PIN Num.	描述
ANT_PRI		20	PRI Antenna
ANT_DIV		29	DIV Antenna
GPS_ANT		39	GPS Antenna

U9507C 模块天线部分的参考设计分为两种,一种是使用焊接式天线,一种是使用射频 50 欧姆天线连接器的方式。射频线走线尽可能的短,射频线要求必须作 50 欧姆阻抗控制。

, 匹配器件建议靠近天线侧摆放。

3.10.1. 焊接式天线

U9507C 模块使用焊接式天线时天线部分参考原理图如下:

LONG **S** UNG

图 11: U9507C 外接焊接式天线参考设计图

U9507C 使用焊接式天线的设计注意事项:

- 1) PI 型匹配网络(L1, C2, C3)靠近天线焊盘(TP1)放置, GND 焊盘(TP2)与天线焊盘 (TP1)的最近边距离 0.70 mm;
- 2) 微带线走线需要控制 50 欧姆阻抗。

3.10.1.1 使用 RF 连接器连接天线

U9507C 模块天线使用连接器时天线部分原理图如下:

图 12: U9507C 使用 RF 连接器连接天线参考设计图

天线连接器(J1)推荐型号为 MURATA 的 MM9329-2700RA1。

U9507C 使用天线连接器的设计注意事项:

- 1) PI 型匹配网络(L1, C2, C3)靠近天线连接器(J1)放置;
- 2) 微带线走线需要控制 50 欧姆阻抗。

3.10.1.2. 天线 RF 连接器

当 U9507C 应用端使用 RF 连接器,推荐使用 MURATA 的 MM9329-2700RA1 型号的 RF Connector,同时推荐使用匹配的 RF 转接线 MURATA 的 MXTK88TK200 连接天线。详细内容请参考第 4 章关于 RF 连接器内容。

3.10.1.3. RF 转接线

当应用端使用 RF Connector 时,需要仔细选择 RF 转接线。需要选择尽可能小损耗的 RF 转接线。推荐使用如下射频损耗需求的 RF 转接线:

- GSM900/CDMA800/LTE Band8<1dB
- DCS1800/LTE Band39/Band3 <1.5dB
- WCDMA2100/LTE Band1/TD-SCDMA Band34<1.5dB
- LTE Band7/Band38/Band40/Band41<2dB

推荐使用 MURATA 的 MXTK88TK200 的 RF 转接线。

3.10.2. U9507C的 RF 输出功率

U9507C的 RF输出功率见下表。

表 16: U9507C 的 RF 输出功率表

Band	Max	Min
GSM/EDGE/GPRS		
GSM900	33dBm±2dB	5dBm ± 5dB
DCS1800	30dBm±2dB	0dBm ± 5dB
FDD-LTE		
B1	23dBm±2dB	≤ -40 dBm
B3	23dBm±2dB	≤ -40 dBm
B8	23dBm±2dB	≤ -40 dBm
TDD-LTE		
B38/39/40/41	23dBm±2dB	≤ -40 dBm
TD-SCDMA		
B34/39	23dBm±2dB	≤ -40 dBm
WCDMA		
B1	23dBm±2dB	≤ -50 dBm
B8	23dBm±2dB	≤ -50 dBm
EVDO		

BC0 23dBm -30dBm ≤ -50 dBm

3.10.3. U9507C的 RF 接收灵敏度

表 17: U9507C 的 RF 接收灵敏度

Band	Receive sensitivity
GSM/EDGE/GPRS	
GSM900	<-106dBm
DCS1800	<-106dBm
FDD-LTE(10MHz)	
B1	<-98dBm
B3	<-95dBm
B8	<-96dBm
TDD-LTE(10MHz)	
B38/39/40	<-98dBm
B41	<-97dBm
TD-SCDMA()	
B34/39	<-110dBm
WCDMA	
B1	<-108dBm
B8	<-108dBm
EVDO	
BC0	<-105.5dBm

3.10.4. U9507C 工作频率

表 18: U9507C 工作频率

Band	Receive	Transmit
E-GSM900	925~960MHz	880~915MHz
DCS1800	1805~1880MHz	1710~1785MHz
B1	2110~2170MHZ	1920~1980MHZ
B3	1805~1880MHZ	1710~1785MHZ
B8	925~960MHz	880~915MHz
EVDO BC0	869~894MHz	824~849MHz
B34	2010~2025MHZ	
B38	2570~2620MHZ	
B39	1880~1920MHZ	
B40	2300~2400MHZ	
B41	2555~2655MHZ	

3.10.5. U9507C 天线要求

表 19: U9507C 天线指标要求

Band	VSWR	G	ain	Efficiency	SAR	TRP	TIS
		Peak	Avg.			(dBm)	(dBm)
GSM900						29	<-102
DCS1800						26	<-102
B1 FDD						19	<-94
B1 WCDMA						19	<-106
B3						19	<-91
B8					<1.6	19	<-92
B34	<2.5:1	>0dBi	>-4dBi	>40%	W/Kg	19	<-106
B38					vv/itg	19	<-93
B39 TDD						19	<-93
B39						19	<-106
TD-SCDMA							
B40					. (19	<-93
B41						19	<-93
EVDO BC0						19	<-100
	1		0				

4. 机械特性

4.1. 模块 3D 图

对于 U9507C 模块, 我们提供完整的结构图。如果需要 3D 图档建模, 请联系索取 U9507C 的 3D 文档。

4.2. 模块 2D 结构图

对于 U9507C 模块,我们提供完整的结构图。2D 结构图请参考下图。

图 13: U9507C 2D 结构图

4.3. 模块应用端 U9507C 接口原理图和 PCB 封装推荐

关于 U9507C 模块在应用端需要 PCB 封装,包括原理图封装图和 PCB 封装图。我们有专门的推荐资料,需要时请联系索取。

5. 各种业务下的功耗

U9507C 模块各种频段的功耗(VBAT 供电: 3.8V)见下表。

表 20: U9507C 模块各频段功耗

Test Type	Channel/	Power Control	Call Current (mA)			
,,,,	Configuration	Level	Power	Avg. Current	Min. Current	Max. Current
LTE EDD	CH50	NA TY	22.3	732.54	714.43	744.78
LTE-FDD Band1	CH300	Max TX Power	22.3	617.39	605.00	627.93
Danui	CH550	1 OWEI	21.9	747.22	734.58	797.66
LTE EDD	CH1250	Marrity	21.8	755.97	748.87	778.30
LTE-FDD Band3	CH1575	Max TX Power	21.6	650.76	638.44	663.78
Banus	CH1900	rowei	21.6	633.00	627.30	641.59
LTE 500	CH3500		21.2	549.35	542.83	558.77
LTE-FDD Band8	CH3625	Max TX Power	20.9	554.57	543.16	569.38
Dariuo	CH3750	rowei	20.9	558.57	542.75	573.85
LTE TDD	CH37850		22.4	406.78	399.29	417.72
LTE-TDD Band38	CH38000	Max TX Power	22.3	382.75	372.74	395.71
	CH38150		22.1	413.89	400.98	457.23
LTE TDD	CH38350	Max TX Power	23.0	352.58	345.13	363.04
LTE-TDD Band39	CH38450		22.5	345.04	338.32	359.75
Dariusa	CH38550	rowei	22.9	352.89	346.86	362.73
LTE TOD	CH38750	Max TX Power	21.8	408.05	400.82	416.54
LTE-TDD Band40	CH39150		21.5	425.32	418.99	452.82
Ballu40	CH39550	rowei	22.1	374.56	370.12	382.76
LTC TOD	CH40290	M. TV	21.8	412.14	406.43	427.07
LTE-TDD Band41	CH40740	Max TX Power	21.5	375.90	370.00	414.14
Danu41	CH41190	rowei	21.8	388.96	384.51	399.74
TD 0001440400	CH10054		23.1	181.95	178.41	190.47
TD-SCDMA2100	CH10087	Max TX Power	23.3	185.25	181.51	195.31
1.28M(SC)	CH10121	rowei	23.2	188.26	183.87	196.48
TD 00001444000	CH9404	NA TV	23.4	181.29	179.55	188.03
TD-SCDMA1900 1.28M(SC)	CH9500	Max TX Power	23.7	183.28	181.98	190.22
1.20IVI(30)	CH9596	1-OWEI	23.5	186.05	184.38	193.12
GPRS900	CH62	PCL5	29.9	488.35	341.12	527.17

GPRS1800	CH698	PCL0	27.5	351.15	251.18	380.98
EGPRS900	CH62	PCL8	22.2	420.17	343.79	534.70
EGPRS1800	CH698	PCL2	21.2	405.59	259.07	520.95
EVDO BC0	CH384	Max TX Power	23.30	506.60	524.94	545.77
	CH777		23.22	585.31	574.92	595.76
	CH1013		23.14	514.17	506.96	529.63

6. 电气特性

6.1. 极限电压范围

极限电压范围指模块电源电压以及数字和模拟输入/输出接口能够承受的最大电压范围。在该范围外工作可能导致本产品损坏。

U9507C 的极限电压范围见下表。

表 21: U9507C 模块极限工作电压范围

Parameter	Description	Min	Тур	Max	Unit
	U9507C 供电	3.3	3.8	4.2	٧
	RMS 平均供电电流	0	()	0.9	Α
VBAT	在每个时隙的瞬时压降,				
	I _{VBAT} 峰值电流可能达到2A			400	mV
	(每4.6ms的时隙功率发射)				
GPIO	数字 IO 的电平供电电压	-0.3	1.8	2.16	٧
0110	关机模式供电电压	-0.25		0.25	>

6.2. 环境温度范围

U9507C模块推荐在-30~+75℃环境下工作。建议应用端在环境恶劣条件下考虑温控措施。同时提供模块的受限操作温度范围,此温度条件下,可能某些RF指标超标。同时建议模块应用终端在一定温度条件下储存。超出此范围模块可能不能正常工作或者损坏。

表 22: U9507C 模块温度范围

Temperature	Min	Тур	Max	Unit
环境温度	-30	25	75	${\mathbb C}$
受限操作温度	-40 ~ -30		75 ~ 85	${\mathbb C}$
储存温度	-45		90	${\mathbb C}$

6.3. 接口工作状态电气特性

V_L: 逻辑低电平;V_H: 逻辑高电平;

LONG 🔷 UNG

表 23: U9507C 普通数字 IO 信号的逻辑电平

Signal	V_{L}		V _H		Unit	
Signal	Min	Max	Min	Max	Unit	
数字输入	-0.3	0.3* V _{DD-PX}	0.7* V _{DD-PX}	V _{DD-PX} +0.5	V	
数字输出	GND	0.45	V _{DD-PX} -0.45	V _{DD-PX}	V	

注: V_{DD-PX}=1.8V

表24: U9507C接口电源工作状态电特性

Parameter	I/O	Min	Тур	Max	Unit
VBAT	I	3.3	3.8	4.2	V
USIM_VCC	0	1.7/2.75	1.8/2.85	1.9/2.95	V

6.4. 环境可靠性要求

表25: U9507C环境可靠性要求

	面口 测计分件				
测试项目	测试条件				
低温存储测试	温度-45℃±3℃,关机状态下	持续24小时			
高温存储测试	温度+90℃±3℃,关机状态下持续24小时				
泪度油土浮砂	关机状态下,分别在温度-45℃和+90℃环境下持续0.5h,温度转换时间<3min,共进				
温度冲击试验	行24个循环				
高温高湿试验	温度+90℃±3℃,湿度90~95%RH,关机状态下持续24小时				
低温运行测试	温度-30℃±3℃,工作状态下持续24小时				
高温运行测试	温度+75℃±3℃,工作状态下持续24小时				
	按照下表所示的要求进行震动测试:				
F-100100	频率	随机振动ASD(加速度谱密度)			
震动测试	5~20Hz	0.96m ² /s ³			
	20~500Hz	0.96m ² /s ³ (20Hz处),其它-3dB/倍频程			
	4				
连接件寿命试验	板对板连接器接口插拔50次	;RF天线接口电缆插拔30次			
	1、模块在通话状态下测试天线接口、电源PAD和大面积地,ESD满足:				
	1) 接触放电应通过±2KV、±4KV试验等级				
ESD 测试	2) 空气放电应通过±2KV、±4KV、±8KV试验等级				
	2、模块在关机状态下,测试EVB的SIM卡座,ESD满足:				
	1) 接触放电应通过±2KVi	式验等级			
	2) 空气放电应通过±2KV、	±4KV试验等级			

6.5. ESD 特性

U9507C是一款消费终端产品。虽然模块设计时已经考虑了ESD的问题,并做了ESD防护,但是考虑U9507C模块在运输和二次开发也可能有ESD问题发生,所以开发者要考虑最终

产品ESD问题的防护,请参考文档中的接口设计的推荐电路。

对于U9507C模块的ESD允许的放电范围参考下表。

表26: U9507C接口抗ESD特性

Part	Air discharge	Contact discharge
VBAT,GND	±8KV	±4KV
Antenna port	±8KV	±4KV
Other port	±2KV	±500V