

2/498

FIG. 3

FIG. 6

9/498

FIG. 13

FIG. 15

FIG. 16

FIG: 17

FIG. 20

FIG. 23C

FIG. 24

FIG. 25

Sialic acid N-acety/glucosamine Galactose Mannose

FIG. 27

AI-201 - AutoImmune 12AP1/E5 -- Viventia Biotech AI-301 - AutoImmune 1964 -- Aventis AIDS vaccine - ANRS, CIBG, Hesed 20K growth hormone -- AMUR Biomed, Hollis-Eden, Rome, United 28P6/E6 -- Viventia Biotech Biomedical, American Home Products, 3-Hydroxyphthaloyl-beta-lactoglobulin -4-IBB ligand gene therapy -Maxvgen airway receptor ligand -- IC Innovations 64-Cu MAb conjugate TETA-1A3 --AJvW 2 -- Aiinomoto Mallinckrodt Institute of Radiology AK 30 NGF -- Alkermes 64-Cu MAb conjugate TETA-cT84.66 Albuferon -- Human Genome Sciences 64-Cu Trastuzumab TETA conjugate – albumin - Biogen, DSM Anti-Infectives, Genentech Genzyme Transgenics, PPL Therapeutics, A 200 -- Amgen TranXenoGen, Welfide Corp. A10255 - Eli Liliy aldesleukin -- Chiron A1PDX - Hedral Therapeutics alefacept -- Biogen A6 -- Anastrom Alemtuzumab aaAT-III -- Genzyme Allergy therapy -- ALK-Abello/Maxygen, Abciximab -- Centocor ABI,001 - Atlantic BioPharmaceuticals ALK-Abello/RP Scherer allergy vaccines -- Allergy Therapeutics ART-828 - Abbott Alnidofibatide -- Aventis Pasteur Accutin Alnorine - SRC VB VECTOR Actinohivin ALP 242 - Gruenenthal activin -- Biotech Australia, Human Alpha antitrypsin -- Arriva/Hyland Therapeutics, Curis Immuno/ProMetic/Protease Sciences AD 439 - Tanox Alpha-1 antitrypsin - Cutter, Bayer, PPL AD 519 - Tanox Therapeutics, Profile, ZymoGenetics, Adalimumab -- Cambridge Antibody Tech. Arriva Adenocarcinoma vaccine - Biomira - NIS Alpha-1 protease inhibitor -- Genzyme Adenosine deanimase -- Enzond Transgenics, Welfide Corp. Adenosine A2B receptor antagonists --Alpha-galactose fusion protein -Adenosine Therapeutics Immunomedics ADP-001 - Axis Genetics Alpha-galactosidase A -- Research AF 13948 - Affymax Corporation Technologies, Genzyme Afelimomab - Knoll Alpha-glucosidase - Genzyme, Novazyme AFP-SCAN - Immunomedics Alpha-lactalbumin AG 2195 - Corixa Alpha-L-iduronidase -- Transkaryotic agalsidase alfa - Transkaryotic Therapies agalsidase beta -- Genzyme Therapies, BioMarin alteplase -- Genentech AGENT- Antisoma alvircept sudotox - NIH Al 300 - AutoImmune ALX-0600, a GLP-2 agonist -- NPS Allelix Al-101 - Teva Corp. Al-102 - Teva

ALX1-11 -sNPS Pharmaceuticals Molecular Evolution Alzheimer's disease gene therapy Anti-angiogenesis monoclonal antibodies --AM-133 -- AMRAD KS Biomedix/Schering AG Amb a 1 immunostim conj. -- Dynavax Anti-B4 MAb-DC1 conjugate -- ImmunoGen AMD 3100 - AnorMED -- NIS Anti-B7 antibody PRIMATIZED -- IDEC AMD 3465 - AnorMED -- NIS AMD 3465 - AnorMED -- NIS Anti-B7-1 MAb 16-10A1 Anti-R7-1 MAb 1G10 AMD Fab -- Genentech Amediplase - Menarini, Novartis Anti-B7-2 MAb GL-1 Anti-B7-2-gelonin immunotoxin -AM-F9 Amoebiasis vaccine Antibacterials/antifungals --Diversa/IntraBiotics Amphiregulin -- Octagene Anti-beta-amyloid monoclonal antibodies -anakinra -- Amgen Cambridge Antibody Tech., Wyeth-Ayerst analgesic -- Nobex Anti-BLvS antibodies -- Cambridge ancestim -- Amgen Antibody Tech. /Human Genome Sciences AnergiX.RA - Corixa, Organon Antibody-drug conjugates -- Seattle Angiocidin -- InKine Genetics/Eos angiogenesis inhibitors -- ILEX Anti-C5 MAb BB5-1 -- Alexion AngioMab - Antisoma Angiopoietins -- Regeneron/Procter & Anti-C5 MAb N19-8 -- Alexion Anti-C8 MAb anticancer cytokines - BioPulse angiostatin -- EntreMed Angiostatin/endostatin gene therapy -anticancer matrix - Telios Integra Anticancer monoclonal antibodies - ARIUS. Genetix Pharmaceuticals angiotensin-II. topical -- Maret **Immunex** anticancer peptides - Maxygen, Micrologix Anthrax -- EluSys Therapeutics/US Army Medical Research Institute Anticancer prodrug Tech. -- Alexion Anthrax vaccine Antibody Technologies Anti platelet-derived growth factor D human anticancer Troy-Bodies - Affite -- Affitech anticancer vaccine -- NIH monoclonal antibodies - CuraGen Anti-17-1A MAb 3622W94 -anticancers -- Epimmune Anti-CCR5/CXCR4 sheep MAb -- KS GlaxoSmithKline Anti-2C4 MAb -- Genentech Biomedix Holdings anti-4-1BB monoclonal antibodies -- Bristol- Anti-CD11a MAb KBA --Myers Squibb Anti-CD11a MAb M17 Anti-Adhesion Platform Tech. -- Cytovax Anti-CD11a MAb TA-3 -Anti-adipocyte MAb -- Cambridge Antibody Anti-CD11a MAb WT.1 --Tech./ObeSvs Anti-CD11b MAb -- Pharmacia antiallergics -- Maxygen Anti-CD11b MAb LM2 antiallergy vaccine -- Acambis Anti-CD154 MAb -- Biogen

Anti-CD16-anti-CD30 MAb -- Biotest

Anti-alpha-4-integrin MAb

Anti-CD18 MAb -- Pharmacia Anti-CD4 MAb - Centocor, IDEC Pharmaceuticals, Xenova Group Anti-CD19 MAb B43 -Anti-CD19 MAb -liposomal sodium butyrate Anti-CD4 MAb 16H5 Anti-CD4 MAb 4162W94 - GlaxoSmithKline conjugate -Anti-CD4 MAb B-F5 -- Diaclone Anti-CD147 Anti-CD19 MAb-saporin conjugate -Anti-CD4 MAb GK1-5 Anti-CD19-dsFv-PE38-immunotoxin -Anti-CD4 MAb KT6 Anti-CD4 MAb OX38 Anti-CD2 MAb 12-15 --Anti-CD4 MAb PAP conjugate -- Bristol-Anti-CD2 MAb B-E2 -- Diaclone Myers Squibb Anti-CD2 MAb OX34 -Anti-CD4 MAb RIB 5-2 Anti-CD2 MAb OX54 -Anti-CD4 MAb W3/25 Anti-CD2 MAb OX55 -Anti-CD4 MAb YTA 3.1.2 Anti-CD2 MAb RM2-1 Anti-CD4 MAb YTS 177-9 Anti-CD2 MAb RM2-2 Anti-CD40 ligand MAb 5c8 -- Biogen Anti-CD2 MAb RM2-4 Anti-CD40 MAb Anti-CD20 MAb BCA B20 Anti-CD20-anti-Fc alpha RI bispecific MAb -Anti-CD40 MAb 5D12 - Tanox Anti-CD44 MAb A3D8 Medarex. Tenovus Anti-CD22 MAb-saporin-6 complex -Anti-CD44 MAb GKWA3 Anti-CD44 MAb IM7 Anti-CD3 immunotoxin -Anti-CD3 MAb 145-2C11 -- Pharming Anti-CD44 MAb KM81 Anti-CD44 variant monoclonal antibodies --Anti-CD3 MAb CD4lgG conjugate --Corixa/Hebrew University Genentech Anti-CD3 MAb humanised - Protein Design, Anti-CD45 MAb BC8-I-131 Anti-CD45RB MAb RW Johnson Anti-CD48 MAb HuLy-m3 Anti-CD3 MAb WT32 Anti-CD3 MAb-ricin-chain-A conjugate -Anti-CD48 MAb WM-63 Anti-CD3 MAb-xanthine-oxidase conjugate Anti-CD5 MAb -- Becton Dickinson Anti-CD5 MAb OX19 Anti-CD30 MAb BerH2 -- Medac Anti-CD6 MAb Anti-CD7 MAb-PAP conjugate Anti-CD30 MAb-saporin coniugate Anti-CD7 MAb-ricin-chain-A conjugate Anti-CD30-scFv-ETA'-immunotoxin Anti-CD8 MAb - Amerimmune, Cvtodyn, Anti-CD38 MAb AT13/5 Anti-CD38 MAb-saporin conjugate Becton Dickinson Anti-CD3-anti-CD19 bispecific MAb Anti-CD8 MAb 2-43 Anti-CD3-anti-EGFR MAb Anti-CD8 MAb OX8 Anti-CD3-anti-interleukin-2-receptor MAb Anti-CD80 MAb P16C10 -- IDEC Anti-CD80 MAb P7C10 -- ID Vaccine Anti-CD3-anti-MOv18 MAb -- Centocor Anti-CD3-anti-SCLC bispecific MAb Anti-CD8-idarubicin conjugate Anti-CD4 idiotype vaccine Anti-CEA MAb CE-25

Anti-CFA MAb MN 14 - Immunomedics

WO 2004/033651 PCT/US2003/031974

34/498

Anti-heparanase human monocional Anti-CEA MAb MN14-PE40 conjugate antibodies -- Oxford Immunomedics Anti-CEA MAb T84,66-interleukin-2 Glycosciences/Medarex Anti-hepatitis C virus human monoclonal conjugate antibodies -- XTL Biopharmaceuticals Anti-CEA sheep MAb -- KS Biomedix Anti-HER-2 antibody gene therapy Holdinas Anti-herpes antibody - Epicyte Anti-cell surface monoclonal antibodies --Anti-HIV antibody - Epicyte Cambridge Antibody Tech. /Pharmacia anti-HIV catalytic antibody -- Hesed Biomed Anti-c-erbB2-anti-CD3 bifunctional MAb -anti-HIV fusion protein -- Idun Otsuka anti-HIV proteins -- Cangene Anti-CMV MAb -- Scotgen Anti-HM1-24 MAb -- Chugai Anti-complement Anti-hR3 MAb Anti-CTLA-4 MAb Anti-Human-Carcinoma-Antigen MAb --Anti-EGFR catalytic antibody -- Hesed Riomed Epicyte Anti-ICAM-1 MAb -- Boehringer Ingelheim anti-FGFR immunotoxin -- IVAX Anti-ICAM-1 MAb 1A-29 - Pharmacia Anti-EGFR MAb -- Abgenix Anti-ICAM-1 MAb HA58 Anti-EGFR MAb 528 Anti-EGFR MAb KSB 107 -- KS Biomedix Anti-ICAM-1 MAb YN1/1.7.4 Anti-ICAM-3 MAb ICM3 -- ICOS Anti-EGFR MAb-DM1 conjugate --Anti-idiotype breast cancer vaccine 11D10 ImmunoGen Anti-idiotype breast cancer vaccine Anti-FGFR MAb-LA1 -ACA14C5 -Anti-EGFR sheep MAb -- KS Biomedix Anti-idiotype cancer vaccine -- ImClone Anti-FAP MAb F19-I-131 Systems/Merck KGaA ImClone, Viventia Anti-Fas IgM MAb CH11 Anti-Fas MAb Jo2 Biotech Anti-idiotype cancer vaccine 1A7 -- Titan Anti-Fas MAb RK-8 Anti-Fit-1 monoclonal antibodies -- ImClone Anti-idiotype cancer vaccine 3H1 -- Titan Anti-idiotype cancer vaccine TriAb -- Titan Anti-fungal peptides -- State University of Anti-idiotype Chlamydia trachomatis New York antifungal tripeptides - BTG vaccine Anti-ganglioside GD2 antibody-interleukin-2 Anti-idiotype colorectal cancer vaccine --Novartis fusion protein -- Lexigen Anti-idiotype colorectal cancer vaccine --Anti-GM2 MAb -- Kyowa Anti-GM-CSF receptor monoclonal Onvvax Anti-idiotype melanoma vaccine -- IDEC antibodies -- AMRAD Anti-gp130 MAb -- Tosoh **Pharmaceuticals** Anti-HCA monoclonal antibodies --Anti-idiotype ovarian cancer vaccine ACA AltaRex/Epigen Anti-hCG antibodies -- Abgenix/AVI Anti-idiotype ovarian cancer vaccine AR54 -- AltaRex BioPharma

Anti-L-selectin monoclonal antibodies --Anti-idiotype ovarian cancer vaccine CA-Protein Design Labs, Abgenix, Stanford 125 - AltaRex, Biomira Anti-IgE catalytic antibody - Hesed Biomed University Anti-MBL monoclonal antibodies --Anti-laE MAb E26 -- Genentech Alexion/Brigham and Women's Hospital Anti-IGF-1 MAb Anti-MHC monoclonal antibodies anti-inflammatory -- GeneMax Anti-MIF antibody humanised - IDEC, anti-inflammatory peptide -- BTG Cytokine PharmaSciences anti-integrin peptides -- Burnha Anti-interferon-alpha-receptor MAb 64G12 -- Anti-MRSA/VRSA sheep MAb -- KS Biomedix Holdings Pharma Pacific Management Anti-interferon-gamma MAb -- Protein Anti-mu MAb -- Novartis Anti-MUC-1 MAb Design Labs Anti-interferon-gamma polyclonal antibody - Anti-MUC 18 - Advanced Biotherapy Anti-Nogo-A MAb IN1 Anti-nuclear autoantibodies -- Procyon Anti-interleukin-10 MAb -Anti-ovarian cancer monoclonal antibodies -Anti-interleukin-12 MAb -Anti-interleukin-1-beta polyclonal antibody -- - Dompe Anti-p185 monoclonal antibodies R&D Systems Anti-p43 MAb Anti-interleukin-2 receptor MAb 2A3 Antiparasitic vaccines Anti-interleukin-2 receptor MAb 33B3-1 --Anti-PDGF/bFGF sheep MAb -- KS Immunotech Biomedix Anti-interleukin-2 receptor MAb ART-18 Anti-properdin monoclonal antibodies --Anti-interleukin-2 receptor MAb LO-Tact-1 Abgenix/Gliatech Anti-interleukin-2 receptor MAb Mikbeta1 Anti-PSMA (prostrate specific membrane Anti-interleukin-2 receptor MAb NDS61 Anti-interleukin-4 MAb 11B11 antigen) Anti-interleukin-5 MAb -- Wallace Anti-PSMA MAb J591 -- BZL Biologics Anti-Rev MAb gene therapy -Laboratories Anti-RSV antibodies - Epicyte, Intracell Anti-interleukin-6 MAb - Centocor, Anti-RSV monoclonal antibodies --Diaclone, Pharmadigm Anti-interleukin-8 MAb -- Abgenix Medarex/MedImmune, Applied Molecular Evolution/MedImmune Anti-interleukin-8 MAb - Xenotech Anti-RSV MAb, inhalation --Anti-. II 1 MAh Anti-Klebsiella sheep MAb -- KS Biomedix Alkermes/MedImmune Anti-RT gene therapy Holdings Antisense K-ras RNA gene therapy Anti-Laminin receptor MAb-liposomal Anti-SF-25 MAb doxorubicin conjugate Anti-LCG MAb -- Cytoclonal Anti-sperm antibody -- Epicyte Anti-Tac(Fv)-PE38 conjugate Anti-lipopolysaccharide MAb -- VitaResc Anti-TAPA/CD81 MAb AMP1

Anti-tat gene therapy

AOP-RANTES -- Senetek

Anti-TCR-alphabeta MAb H57-597 Anti-TCR-alphabeta MAb R73 Anti-tenascin MAb BC-4-I-131 Anti-TGF-beta human monoclonal antibodies -- Cambridge Antibody Tech., Genzyme Anti-TGF-beta MAb 2G7 -- Genentech Antithrombin III -- Genzyme Transgenics, Aventis, Bayer, Behringwerke, CSL, Myriad Anti-Thv1 MAb Anti-Thv1.1 MAb Anti-tissue factor/factor VIIA sheep MAb --KS Biomedix Anti-TNF monoclonal antibodies -Centocor, Chiron, Peptech, Pharacia, Anti-TNF sheep MAb - KS Biomedix Holdings Anti-TNFalpha MAb -- Genzyme Anti-TNFalpha MAb B-C7 -- Diaclone Anti-tooth decay MAb -- Planet BioTech. Anti-TRAIL receptor-1 MAb -- Takeda Antitumour RNases -- NIH Anti-VCAM MAb 2A2 - Alexion Anti-VCAM MAb 3F4 - Alexion Anti-VCAM-1 MAb Anti-VEC MAb -- ImClone Anti-VEGF MAb -- Genentech Anti-VEGE MAb 2C3 Anti-VEGF sheep MAb -- KS Biomedix Holdings Anti-VLA-4 MAb HP1/2 -- Biogen Anti-VI A-4 MAh PS/2 Anti-VLA-4 MAb R1-2 Anti-VLA-4 MAb TA-2 Anti-VAP-1 human MAb Anti-VRE sheep MAb -- KS Biomedix Holdings ANUP -- TranXenoGen ANUP-1 -- Pharis

Apan-CH - Praecis Pharmaceuticals APC-8024 -- Demegen ApoA-1 -- Milano, Pharmacia Apogen -- Alexion apolipoprotein A1 -- Avanir Apolipoprotein E -- Bio-Tech. General Applaggin - Biogen aprotinin -- ProdiGene APT-070C - AdProTech AR 177 -- Aronex Pharmaceuticals AR 209 -- Aronex Pharmaceuticals, **Antigenics** AR545C ARGENT gene delivery systems - ARIAD Arresten ART-123 -- Asahi Kasei arvisulfatase B -- BioMarin Arylsulfatase B, Recombinant human --**BioMarin** AS 1051 -- Aiinomoto ASI-BCL -- Intracell Asparaginase - Merck ATL-101 - Alizyme Atrial natriuretic peptide -- Pharis Aurintricarboxylic acid-high molecular weiaht Autoimmune disorders -- GPC Biotech/MorphoSvs Autoimmune disorders and transplant rejection -- Bristol-Myers Squibb/Genzyme Tra Autoimmune disorders/cancer --Abgenix/Chiron, CuraGen Autotaxin -Avicidin - NeoRx axogenesis factor-1 -- Boston Life Sciences Axokine -- Regeneron B cell lymphoma vaccine -- Biomira B7-1 gene therapy -BABS proteins -- Chiron

RMP 2 -- Genetics Institute/Medtronic-BAM-002 -- Novelos Therapeutics Sofamor Danek, Genetics Institute/ Basiliximab (anti CD25 MAb) -- Novartis Collagenesis, Genetics Bay-16-9996 -- Bayer Institute/Yamanouch Bay-39-9437 -- Bayer BMP 2 gene therapy Bay-50-4798 -- Bayer BMP 52 -- Aventis Pasteur, Biopharm BB-10153 -- British Biotech RMP-2 -- Genetics Institute BBT-001 -- Bolder BioTech. BMS 182248 -- Bristol-Myers Squibb BBT-002 -- Bolder BioTech. BMS 202448 - Bristol-Myers Squibb BRT-003 -- Bolder BioTech. bone growth factors -- IsoTis BBT-004 -- Bolder BioTech. BPC-15 -- Pfizer BRT-005 -- Bolder BioTech. brain natriuretic peptide -BBT-006 -- Bolder BioTech. Breast cancer -- Oxford BBT-007 -- Bolder BioTech. GlycoSciences/Medarex BCH-2763 -- Shire Breast cancer vaccine -- Therion Biologics. BCSF -- Millenium Biologix BDNF -- Regeneron - Amgen Oregon Becaplermin -- Johnson & Johnson, Chiron BSSL -- PPL Therapeutics BST-2001 – BioStratum Bectumomab - Immunomedics BST-3002 -- BioStratum Beriplast -- Aventis BTI 322 -Beta-adrenergic receptor gene therapy -butvrvlcholinesterase - Shire University of Arkansas C 6822 -- COR Therapeutics bFGF -- Scios C1 esterase inhibitor -- Pharming BI 51013 - Behringwerke AG C3d adjuvant -- AdProTech BIBH 1 -- Boehringer Ingelheim CAB-2.1 -- Millennium BIM-23190 - Beaufour-Ipsen calcitonin - Inhale Therapeutics Systems, birch pollen immunotherapy -- Pharmacia Aventis, Genetronics, TranXenoGen. bispecific fusion proteins -- NIH Unigene, Rhone Poulenc Rohrer Bispecific MAb 2B1 - Chiron calcitonin -- oral - Nobex, Emisphere. Bitistatin Pharmaceutical Discovery BIWA 4 -- Boehringer Ingelheim Calcitonin gene-related peptide -- Asahi blood substitute - Northfield, Baxter Intl. BI P-25 -- Biomira Kasei - Unigene BLS-0597 -- Boston Life Sciences calcitonin, human -- Suntory calcitonin, nasal - Novartis, Unigene BLvS -- Human Genome Sciences calcitonin, Panoderm - Elan BLvS radiolabelled -- Human Genome calcitonin, Peptitrol -- Shire Sciences calcitonin, salmon -- Therapicon BM 06021 -- Boehringer Mannheim calin -- Biopharm BM-202 -- BioMarin Calphobindin I BM-301 -- BioMarin calphobindin I -- Kowa BM-301 -- BioMarin calreticulin -- NYU BM-302 -- BioMarin

38/498

CD4 fusion toxin -- Senetek Campath-1G CD4 IgG -- Genentech Campath-1M CD4 receptor antagonists -cancer therapy -- Cangene Pharmacopeia/Progenics cancer vaccine - Aixlie, Aventis Pasteur, CD4 soluble -- Progenics Center of Molecular Immunology, YM CD4. soluble -- Genzyme Transgenics BioSciences, Cytos, Genzyme, CD40 ligand -- Immunex Transgenics, Globelmmune, Igeneon, CD4-ricin chain A -- Genentech ImClone, Virogenetics, InterCell, Iomai, CD59 gene therapy -- Alexion Jenner Biotherapies, Memorial Sloan-Kettering Cancer Center, Sydney Kimmel CD8 TIL cell therapy -- Aventis Pasteur CD8. soluble -- Avidex Cancer Center, Novavax, Protein CD95 ligand -- Roche Sciences, Argonex, SIGA CDP 571 -- Celltech Cancer vaccine ALVAC-CEA B7.1 -CDP 850 -- Celltech Aventis Pasteur/Therion Biologics CDP-860 (PEG-PDGF MAb) -- Celltech Cancer vaccine CEA-TRICOM -- Aventis CDP 870 -- Celltech Pasteur/Therion Biologics CDS-1 -- Ernest Orlando Cancer vaccine gene therapy -- Cantab Cedelizumab -- Ortho-McNeil **Pharmaceuticals** Cancer vaccine HER-2/neu - Corixa Cetermin -- Insmed CETP vaccine -- Avant Cancer vaccine THERATOPE -- Biomira Cetrorelix cancer vaccine, PolyMASC - Valentis Cetuximab Candida vaccine - Corixa, Inhibitex CGH 400 -- Novartis Canstatin -- ILEX CGP 42934 - Novartis CAP-18 - Panorama CGP 51901 - Tanox Cardiovascular gene therapy -- Collateral CGRP -- Unigene Therapeutics CGS 27913 - Novartis carperitide -- Suntory CGS 32359 -- Novartis Casocidin-1 -- Pharis CAT 152 - Cambridge Antibody Tech. Chagas disease vaccine -- Corixa chemokines - Immune Response CAT 192 -- Cambridge Antibody Tech. CAT 213 -- Cambridge Antibody Tech. CHH 380 -- Novartis chitinase - Genzyme, ICOS Catalase-- Enzon Chlamydia pneumoniae vaccine -- Antex Cat-PAD -- Circassia CB 0006 -- Celltech Biologics Chlamydia trachomatis vaccine -- Antex CCK(27-32)-- Akzo Nobel CCR2-64I -- NIH Biologics Chlamydia vaccine -- GlaxoSmithKline CD. Procept -- Paligent Cholera vaccine CVD 103-HqR -- Swiss CD154 gene therapy Serum and Vaccine Institute Berne CD39 -- Immunex Cholera vaccine CVD 112 -- Swiss Serum CD39-L2 -- Hvseq CD39-L4 -- Hyseq and Vaccine Institute Berne

FIG. 28H

39/498

Cholera vaccine inactivated oral - SBL CRL 1605 -- CytRx CS-560 -- Sankyo Vaccin CSF -- ZymoGenetics Chrysalin -- Chrysalis BioTech. CSF-G - Hangzhou, Dong-A, Hanmi CI-782 -- Hitachi Kase CSF-GM - Cangene, Hunan, LG Chem Ciliary neurotrophic factor - Fidia, Roche CSF-M -- Zarix CIM project -- Active Biotech CT 1579 - Merck Frosst CL 329753 -- Wyeth-Ayerst CT 1786 - Merck Frosst CL22. Cobra -- ML Laboratories CT-112[^] -- BTG Clenoliximab -- IDEC CTB-134L -- Xenova Clostridium difficile antibodies -- Epicyte CTC-111 -- Kaketsuken clotting factors -- Octagene CTGF -- FibroGen CMB 401 -- Celltech CTLA4-la -- Bristol-Myers Squibb CNTF -- Sigma-Tau CTLA4-lg gene therapy -Cocaine abuse vaccine - Cantab, CTP-37 -- AVI BioPharma ImmuLogic, Scripps C-type natriuretic peptide -- Suntory coccidiomycosis vaccine -- Arizo CVS 995 - Corvas Intl. collagen -- Type I -- Pharming Collagen formation inhibitors -- FibroGen CX 397 – Nikko Kyodo Collagen/hydroxyapatite/bone growth factor CY 1747 -- Epimmune CY 1748 -- Epimmune -- Aventis Pasteur, Biopharm, Orquest Cyanovirin-N collagenase -- BioSpecifics Colorectal cancer vaccine -- Wistar Institute Cystic fibrosis therapy -- CBR/IVAX Component B, Recombinant -- Serono CYT 351 Connective tissue growth factor inhibitors - cytokine Traps - Regeneron cytokines - Enzon, Cytoclonal FibroGen/Taisho Cytomegalovirus glycoprotein vaccine -Contortrostatin Chiron, Aquila Biopharmaceuticals. contraceptive vaccine - Zonagen Aventis Pasteur, Virogenetics Contraceptive vaccine hCG Cytomegalovirus vaccine live -- Aventis Contraceptive vaccine male reversible --Pasteur IMMUCON Cytosine deaminase gene therapy --Contraceptive vaccine zona pellucida --GlaxoSmithKline Zonagen Copper-64 labelled MAb TETA-1A3 - NCI DA-3003 -- Dong-A DAB389interleukin-6 -- Senetek Coralyne DAB389interleukin-7 Corsevin M DAC:GLP-2 -- ConjuChem, Inc. C-peptide analogues -- Schwarz Daclizumab (anti-IL2R MAb) - Protein CPI-1500 -- Consensus Design Labs CRF -- Neurobiological Tech. DAMP^A -- Incvte Genomics cRGDfV pentapeptide -Daniplestim -- Pharmacia CRL 1095 -- CvtRx darbepoetin alfa - Amgen CRL 1336 -- CvtRx

dural graft matrix -- Integra DBI-3019 -- Diabetogen Duteplase - Baxter Intl. DCC -- Genzyme DWP-401 -- Daewoong DDF -- Hysea DWP-404 -- Daewoong decorin - Integra, Telios DWP-408 -- Daewoong defensins - Large Scale Biology Dx 88 (Epi-KAL2) -- Dyax DEGR-VIIa Dx 890 (elastin inhibitors) -- Dyax Delmmunised antibody 3B6/22 AGEN Deimmunised anti-cancer antibodies -F coli O157 vaccine -- NIH E21-R -- BresaGen Biovation/Viragen Eastern equine encephalitis virus vaccine -Dendroamide A Dengue vaccine -- Bavarian Nordic, Merck Echicetin --Echinhibin 1 denileukin diftitox -- Ligand Echistatin -- Merck DES-1101 -- Desmos Echitamine desirudin -- Novartis Ecromeximab - Kyowa Hakko desmopressin -- Unigene EC-SOD -- PPL Therapeutics Desmoteplase - Merck, Schering AG Eculizumab (5G1.1) -- Alexion Destabilase Diabetes gene therapy - DeveloGen, Pfizer EDF - Ajinomoto FDN derivative -- NIH Diabetes therapy -- Crucell Diabetes type 1 vaccine -- Diamyd FDNA -- NIH Edobacomab -- XOMA Therapeutics DiaCIM -- YM BioSciences Edrecolomab -- Centocor FF 5077 dialytic oligopeptides - Research Corp Ffalizumab -- Genentech Diamyd -- Diamyd Therapeutics EGF fusion toxin - Seragen, Ligand DiaPep227-- Pepgen EGF-P64k vaccine -- Center of Molecular DiavaX -- Corixa Digoxin MAb -- Glaxo Immunology Diphtheria tetanus pertussis-hepatitis B EL 246 -- LigoCyte elastase inhibitor -- Synergen vaccine -- GlaxoSmithKline elcatonin -- Therapicon DIR therapy -- Solis Therapeutics -EMD 72000 - Merck KGaA DNase -- Genentech Dornase alfa -- Genentech Fmdogain -- BIORA emfilermin -- AMRAD Domase alfa, inhalation -- Genentech Doxorubicin-anti-CEA MAb conjugate -Fmoctakin -- Novartis enamel matrix protein -- BIORA Immunomedics DP-107 -- Trimeris Fndo III -- NYU endostatin - EntreMed, Pharis drotrecogin alfa -- Eli Lilly DTctGMCSF Enhancins -- Micrologix Enlimomab -- Isis Pharm. DTP-polio vaccine - Aventis Pasteur Enoxaparin sodium -- Pharmuka DU 257-KM231 antibody conjugate --

Kvowa

41/498

Factor IX gene therapy -- Cell Genesys enzyme linked antibody nutrient depletion Factor VII -- Novo Nordisk, Bayer, Baxter therapy -- KS Biomedix Holdings Eosinophil-derived neutralizing agent -Intl. Factor VIIa -- PPL Therapeutics, EP-51216 -- Asta Medica ZvmoGenetics FP-51389 -- Asta Medica Factor VIII - Bayer Genentech, Beaufour-EPH family ligands -- Regeneron Ipsen, CLB, Inex, Octagen, Pharmacia. Epidermal growth factor -- Hitachi Kasei, Pharming Johnson & Johnson Factor VIII -- PEGylated -- Baver Epidermal growth factor fusion toxin --Factor VIII fragments -- Pharmacia Senetek Factor VIII gene therapy -- Targeted Epidermal growth factor-genistein -Genetics EPI-HNE-4 -- Dyax Factor VIII sucrose formulation - Baver. EPI-KAL2 -- Dyax Epoetin-alfa - Amgen, Dragon Genentech Factor VIII-2 -- Bayer Pharmaceuticals, Nanjing Huaxin Factor VIII-3 -- Bayer Epratuzumab - Immunomedics Factor Xa inhibitors - Merck, Novo Nordisk, Fostein-Barr virus vaccine --Mochida Aviron/SmithKline Beecham, Bioresearch Factor XIII -- ZymoGenetics Eptacog alfa -- Novo Nordisk Factors VIII and IX gene therapy -- Genetics Eptifibatide -- COR Therapeutics Institute/Targeted Genetics erb-38 -Famoxin -- Genset Frlizumab -- Genentech erythropoietin -- Alkermes, ProLease, Dong-Fas (delta) TM protein - LXR BioTech. Fas TR -- Human Genome Sciences A. Elanex, Genetics Institute, LG Chem, Felvizumab -- Scotgen Protein Sciences, Serono, Snow Brand, FFR-VIIa - Novo Nordisk SRC VB VECTOR, Transkaryotic FG-001 - F-Gene Therapies FG-002 - F-Gene Erythropoietin Beta -- Hoffman La Roche Erythropoietin/Epoetin alfa -- Chugai FG-004 - F-Gene Escherichia coli vaccine -- North American FG-005 - F-Gene FGF + fibrin -- Repair Vaccine, SBL Vaccin, Swiss Serum and Fibrimage -- Bio-Tech. General Vaccine Institute Berne fibrin-binding peptides - ISIS Innovation etanercept -- Immunex fibringen -- PPL Therapeutics, Pharming examorelin – Mediolanum fibroblast growth factor - Chiron, NYU. Exendin 4 -- Amylin Ramot, ZymoGenetics exonuclease VII fibrolase conjugate - Schering AG F 105 - Centocor F-992 -- Fornix Filarastim -- Amaen filgrastim -- PDA modified -- Xencor Factor IX -- Alpha Therapeutics, Welfide FLT-3 ligand - Immunex Corp., CSL, enetics Institute/AHP,

Pharmacia, PPL Therapeutics

FN18 CRM9 -

follistatin -- Biotech Australia, Human Therapeutics follitropin alfa - Alkermes, ProLease, PowderJect, Serono, Akzo Nobel Follitropin Beta - Bayer, Organon FP 59 FSH -- Ferring FSH + LH -- Ferring F-spondin -- CeNeS fusion protein delivery system -- UAB Research Foundation fusion toxins - Boston Life Sciences G 5598 -- Genentech GA-II - Transkarvotic Therapies Gamma-interferon analogues -- SRC VB VECTOR Ganirelix -- Roche gastric lipase -- Meristem Gavilimomab -G-CSF - Amgen, SRC VB VECTOR GDF-1 -- CeNeS GDF-5 -- Biopharm GDNF (glial derived neurotrophic factor) -Amaen aelsolin -- Biogen Gemtuzumab ozogamicin - Celltech Gene-activated epoetin-alfa -- Aventis Pharma - Transkaryotic Therapies Glatiramer acetate -- Yeda glial growth factor 2 -- CeNeS GLP-1 - Amylin, Suntory, TheraTech, Watson GLP-1 peptide analogues - Zealand Pharaceuticals GLP-2 - Novo Nordisk, Ontario, Inc., Suntory Limited glucagon -- Eli Lilly, ZymoGenetics Glucagon-like peptide-1 7-36 amide --Suntory Glucogen-like peptide -- Amylin

Glucocerebrosidase -- Genzvme glutamate decarboxylase -- Genzyme Transgenics Glycoprotein S3 -- Kureha GM-CSF -- Immunex GM-CSF tumour vaccine -- PowderJect GnRH immunotherapeutic -- Protherics Goserelin (LhRH antagonist) -- AstraZeneca gp75 antigen - ImClone an96 -- Antigenics GPI 0100 -- Galenica GR 4991W93 -- GlaxoSmithKline Granulocyte colony-stimulating factor --Dong-A Granulocyte colony-stimulating factor conjugate grass allergy therapy -- Dynavax GRF1-44 -- ICN Growth Factor - Chiron, Atrigel, Atrix, Innogenetics, ZymoGenetics, Novo growth factor peptides -- Biotherapeutics growth hormone -- LG Chem growth hormone, Recombinant human --GT 4086 -- Gliatech GW 353430 -- GlaxoSmithKline GW-278884 -- GlaxoSmithKline H 11 -- Viventia Biotech Glanzmann thrombasthenia gene therapy - H5N1 influenza A virus vaccine -- Protein Sciences haemoglobin -- Biopure haemoglobin 3011, Recombinant -- Baxter Healthcare haemoglobin crosfumaril – Baxter Intl. haemoglobin stabilized -- Ajinomoto haemoglobin, recombinant -- Apex HAF -- Immune Response Hantavirus vaccine HB 19 HBNF -- Regeneron

HCC-1 -- Pharis

hCG -- Milkhaus hCG vaccine -- Zonagen HF-317 -- Hollis-Eden Pharmaceuticals Heat shock protein cancer and influenza vaccines - StressGen Helicobacter pylori vaccine - Acambis, AstraZeneca/CSL, Chiron, Provalis Helistat-G - GalaGen Hemolink -- Hemosol hepapoietin -- Snow Brand heparanase -- InSight heparinase I -- Ibex heparinase III -- Ibex Hepatitis A vaccine -- American Biogenetic HIP-- Altachem Sciences Hepatitis A vaccine inactivated Henatitis A vaccine Nothay - Chiron Henatitis A-hepatitis B vaccine --GlaxoSmithKline hepatitis B therapy -- Tripep Henatitis B vaccine - Amgen, Chiron SpA, Meiji Milk, NIS, Prodeva, PowderJect, Rhein Biotech Henatitis B vaccine recombinant -- Evans Vaccines, Epitec Combiotech, Genentech, Medlmmune, Merck Sharp & Dohme, Rhein Biotech, Shantha Biotechnics, Vector, Yeda Hepatitis B vaccine recombinant TGP 943 - HIV immune globulin - Abbott, Chiron Takeda Hepatitis C vaccine -- Bavarian Nordic. Chiron, Innogenetics Acambis, Hepatitis D vaccine -- Chiron Vaccines Henatitis E vaccine recombinant --

Sosei hepatocyte growth factor kringle fragments -- EntreMed

Genelabs/GlaxoSmithKline, Novavax hepatocyte growth factor - Panorama,

Her-2/Neu peptides -- Corixa

Herpes simplex glycoprotein DNA vaccine -Merck, Wyeth-Lederle Vaccines-Malvern, Genentech, GlaxoSmithKline, Chiron, Takeda

Herpes simplex vaccine -- Cantab Pharmaceuticals, CEL-SCI, Henderson Morley

Herpes simplex vaccine live -- ImClone Systems/Wyeth-Lederle, Aventis Pasteur HGF derivatives - Dompe hIAPP vaccine -- Crucell Hib-hepatitis B vaccine -- Aventis Pasteur

HIC 1 Hirudins - Biopharma, Cangene, Dongkook, Japan Energy Corporation, Pharmacia Corporation, SIR International, Sanofi-Synthelabo, Sotragene, Rhein Biotech HIV edible vaccine -- ProdiGene HIV ap120 vaccine - Chiron, Ailnomoto, GlaxoSmithKline, ID Vaccine, Progenics, VaxGen HIV gp120 vaccine gene therapy -HIV ap160 DNA vaccine - PowderJect. Aventis Pasteur, Oncogen, Hyland Immuno. Protein Sciences HIV gp41 vaccine -- Panacos HIV HGP-30W vaccine -- CEL-SCI

HIV peptides -- American Home Products HIV vaccine -- Applied bioTech., Axis Genetics, Biogen, Bristol-Myers Squibb, Genentech, Korea Green Cross, NIS, Oncogen, Protein Sciences Corporation, Terumo, Tonen Corporation, Wyeth-Averst, Wyeth-Lederle Vaccines-Malvern, Advanced BioScience Laboratories. Bavarian Nordic, Bavarian Nordic/Statens

Serum Institute, GeneCure, Immune Response, Progenics, Therion Biologics, United Biomedical. Chiron

FIG. 28M

HIV vaccine vCP1433 -- Aventis Pasteur HIV vaccine vCP1452 -- Aventis Pasteur HIV vaccine vCP205 -- Aventis Pasteur HL-9 -- American BioScience HM-9239 - Cytran HML-103 -- Hemosol HML-104 -- Hemosol HMI -105 -- Hemosol HMI -109 -- Hemosol HMI -110 -- Hemosol HMI -121 -- Hemosol hNLP -- Pharis Hookworm vaccine host-vector vaccines -- Henogen HPM 1 -- Chugai HPV vaccine -- MediGene HSA -- Meristem HSF -- StressGen HSP carriers -Weizmann, Yeda, Peptor HSPPC-70 -- Antigenics HSV 863 -- Novartis HTI V-I DNA vaccine HTLV-I vaccine HTI V-II vaccine -- Access HU 901 - Tanox Hu23F2G -- ICOS HuHMFG1 Humal YM -- Intracell Human krebs statika -- Yamanouchi human monoclonal antibodies --Abgenix/Biogen, Abgenix/ Corixa, Abgenix/Immunex, Abgenix/Lexicon, Abgenix/ Pfizer, Athersys/Medarex, Biogen/MorphoSys, CAT/Searle. Centocor/Medarex, Corixa/Kirin Brewery, Corixa/Medarex, Eos BioTech./Medarex, Fos/Xenerex, Exelixis/Protein Design Labs, ImmunoGen/ Raven, Medarex/ B.Twelve, MorphoSys/ImmunoGen, XTL Biopharmaceuticals/Dyax,

Human monoclonal antibodies --Medarex/Northwest Biotherapeutics. Medarex/Seattle Genetics human netrin-1 -- Exelixis human papillomavirus antibodies - Epicyte Human papillomavirus vaccine - Biotech Australia, IDEC, StressGen Human papillomavirus vaccine MEDI 501 --MedImmune/GlaxoSmithKline Human papillomavirus vaccine MEDI 503/MEDI 504 --MedImmune/GlaxoSmithKline Human papillomavirus vaccine TA-CIN -Cantab Pharmaceuticals Human papillomavirus vaccine TA-HPV --Cantab Pharmaceuticals Human papillomavirus vaccine TH-GW --Cantab/GlaxoSmithKline human polyclonal antibodies -- Biosite/Eos BioTech./ Medarex HSPPC-96, pathogen-derived -- Antigenics human type II anti factor VIII monoclonal antibodies -- ThromboGenics humanised anti glycoprotein Ib murine monoclonal antibodies -- ThromboGenics HumaRAD -- Intracell HuMax EGFR -- Genmab HuMax-CD4 -- Medarex HuMax-IL15 -- Genmab HYB 190 -- Hybridon HYB 676 -- Hybridon I-125 MAb A33 -- Celltech Ibritumomab tiuxetan -- IDEC IBT-9401 -- Ibex IBT-9402 -- Ibex IC 14 -- ICOS Idarubicin anti-Ly-2.1 -IDEC 114 -- IDEC IDEC 131 -- IDEC IDEC 152 -- IDEC IDM 1 -- IDM IDPS -- Hollis-Eden Pharmaceuticals

iduronate-2-sulfatase -- Transkaryotic Therapies IGF/IBP-2-13 - Pharis IGN-101 -- laeneon IK HIR02 – Iketon IL-11 -- Genetics Institute/AHP IL-13-PE38 -- NeoPharm IL-17 receptor -- Immunex IL-18BP -- Yeda IL-1Hv1 -- Hvseq IL-1ß -- Celltech IL-1ß adjuvant -- Celltech IL-2 -- Chiron IL-2 + IL-12 -- Hoffman La-Roche IL-6/sIL-6R fusion - Hadasit IL-6R derivative - Tosoh IL-7-Dap 389 fusion toxin - Ligand IL-21 - Novo Nordisk, ZymoGenetics IM-862 -- Cytran IMC-1C11 -- ImClone imiglucerase -- Genzyme Immune globulin intravenous (human) --Hoffman La Roche immune privilege factor -- Proneuron Immunocal -- Immunotec Immunogene therapy - Briana Bio-Tech Immunoliposomal 5-fluorodeoxyuridinedipalmitate immunosuppressant vaccine -- Aixlie immunotoxin - Antisoma, NIH ImmuRAIT-Re-188 - Immunomedics imreg-1 - Imreg infertility - Johnson & Johnson, E-TRANS Infliximab -- Centocor Influenza virus vaccine -- Aventis Pasteur. Protein Sciences inhibin -- Biotech Australia, Human Therapeutics Inhibitory G protein gene therapy INKP-2001 -- InKine Inclimomab -- Diaclone

insulin -- AutoImmune, Altea, Biobras, BioSante, Bio-Tech. General, Chong Kun Dang, Emisphere, Flamel, Provalis, Rhein Biotech, TranXenoGen insulin (bovine) -- Novartis insulin analogue -- Eli Lilly Insulin Aspart -- Novo Nordisk insulin detemir - Novo Nordisk insulin alargine -- Aventis insulin inhaled - Inhale Therapeutics Systems, Alkermes insulin oral -- Inovax insulin, AeroDose -- AeroGen insulin, AERx -- Aradigm insulin, BEODAS -- Elan insulin, Biphasix -- Helix insulin, buccal -- Generex insulin, I2R - Flemington insulin, intranasal -- Bentley insulin, oral - Nobex, Unigene insulin. Orasome -- Endorex insulin, ProMaxx -- Epic insulin, Quadrant -- Elan insulin, recombinant -- Aventis insulin. Spiros -- Elan insulin. Transfersome -- IDEA insulin, Zvmo, recombinant - Novo Nordisk insulinotropin -- Scios Insulvsin gene therapy integrin antagonists -- Merck interferon (Alpha2) -- SRC VB VECTOR, Viragen, Dong-A, Hoffman La-Roche. Genentech interferon - BioMedicines, Human Genome Sciences interferon (Alfa-n3)-Interferon Sciences interferon (Alpha), Biphasix -- Helix

interferon (Alpha)-Amgen, BioNative, Novartis, Genzyme Transgenics, Havashibara, Inhale Therapeutics Systems, Medusa, Flamel, Dong-A, GeneTrol, Nastech, Shantha, Wassermann, LG Chem, Sumitomo, Aventis, Behring EGIS, Pepgen, Servier, Rhein Biotech, interferon (Alpha2A) interferon (Alpha2B) - Enzon, Schering-Plough, Biogen, IDEA interferon (Alpha-N1) -- GlaxoSmithKline interferon (beta) - Rentschler, GeneTrol, Meristem, Rhein Biotech, Toray, Yeda, Dajichi, Mochida interferon (Beta1A) - Serono, Biogen interferon (beta1A), inhale - Biogen interferon (ß1b)-- Chiron interferon (tau) -- Pepgen Interferon alfacon-1 -- Amgen Interferon alpha-2a vaccine Interferon Beta 1b -- Schering/Chiron, InterMune Interferon Gamma -- Boehringer Ingelheim, Sheffield, Rentschler, Hayashibara interferon receptor, Type I -- Serono interferon(Gamma1B) -- Genentech Interferon-alpha-2b + ribavirin - Biogen, ICN Interferon-alpha-2b gene therapy --Schering-Plough Interferon-con1 gene therapy interleukin-1 antagonists - Dompe Interleukin-1 receptor antagonist - Abbott Bioresearch, Pharmacia Interleukin-1 receptor type I -- Immunex interleukin-1 receptor Type II -- Immunex Interleukin-1 trap -- Regeneron Interleukin-1-alpha -- Immunex/Roche interleukin-2 -- SRC VB VECTOR. Aiinomoto, Biomira, Chiron

IL-2/ diphtheria toxin -- Ligand Interleukin-3 -- Cangene Interleukin-4 -- Immunology Ventures, Sanofi Winthrop, Schering-Plough, Immunex/ Sanofi Winthrop, Bayer, Ono interleukin-4 + TNF-Alpha -- NIH interleukin-4 agonist - Bayer interleukin-4 fusion toxin -- Ligand Interleukin-4 receptor - Immunex, Immun Interleukin-6 - Ajinomoto, Cangene, Yeda, Genetics Institute, Novartis interleukin-6 fusion protein interleukin-6 fusion toxin - Ligand, Serono interleukin-7 -- IC Innovations interleukin-7 receptor -- Immunex interleukin-8 antagonists -- Kyowa Hakko/Millennium/Pfizer interleukin-9 antagonists -- Genaera Interleukin-10 - DNAX, Schering-Plough Interleukin-10 gene therapy interleukin-12 -- Genetics Institute, Hoffman La-Roche interleukin-13 - Sanofi interleukin-13 antagonists -- AMRAD Interleukin-13-PE38QQR interleukin-15 -- Immunex interleukin-16 -- Research Corp interleukin-18 -- GlaxoSmithKline Interleukin-18 binding protein -- Serono lor-P3 -- Center of Molecular Immunology IP-10 -- NIH IPF -- Metabolex IR-501 -- Immune Response ISIS 9125 -- Isis Pharmaceuticals ISURF No. 1554 -- Millennium ISURF No. 1866 - Iowa State Univer. ITF-1697 -- Italfarmaco IxC 162 - Ixion J 695 - Cambridge Antibody Tech., Genetics Inst., Knoll

Jagged + FGF -- Repair

JKC-362 Phoenix Pharmaceuticals	leptin, 2nd-generation Amgen
JTP-2942 - Japan Tobacce	leridistim Pharmacia
Juman monoclonal antibodies	leuprolide, ProMaxx Epic
Medarex/Raven	leuprorelin, oral Unigene
K02 Axys Pharmaceuticals	LeuTech - Papatin
Keliximab IDEC	LEX 032 SuperGen
Keyhole limpet haemocyanin	LIDEPT Novartis
KGF Amgen	Lintuzumab (anti-CD33 MAb) Protein
KM 871 Kyowa	Design Labs
KPI 135 Scios	lipase Altus Biologics
KPI-022 Scios	lipid A vaccine - EntreMed
Kringle 5	lipid-linked anchor Tech ICRT, ID
KSB 304	Biomedical
KSB-201 KS Biomedix	liposome-CD4 Tech Sheffield
L 696418 Merck	Listeria monocytogenes vaccine
L 703801 Merck	LMB 1
L1 Acorda	LMB 7
L-761191 - Merck	LMB 9 Battelle Memorial Institute, NIH
lactoferrin - Meristem, Pharming, Agennix	LM-CD45 Cantab Pharmaceuticals
lactoferrin cardio Pharming	Iovastatin Merck
LAG-3 Serono	LSA-3
LAIT GEMMA	LT-ß receptor Biogen
LAK cell cytotoxin Arizona	lung cancer vaccine Corixa
lamellarins PharmaMar/University of	lusupultide Scios
Malaga	L-Vax AVAX
laminin A peptides NIH	LY 355455 Eli Lilly
lanoteplase Genetics Institute	LY 366405 Eli Lilly
laronidase BioMarin	LY-355101 Eli Lilly
Lassa fever vaccine	Lyme disease DNA vaccine Vical/Aventis
LCAT NIH	Pasteur
LDP 01 Millennium	Lyme disease vaccine Aquila
LDP 02 - Millennium	Biopharmaceuticals, Aventis, Pasteur,
Lecithinized superoxide dismutase -	Symbicom, GlaxoSmithKline, Hyland
Seikagaku	Immuno, MedImmune
LeIF adjuvant Corixa	Lymphocytic choriomeningitis virus vaccine
leishmaniasis vaccine Corixa	lymphoma vaccine – Biomira, Genitope
lenercept Hoffman La-Roche	LYP18
Lenograstim - Aventis, Chugai	lys plasminogen, recombinant
lepirudin Aventis	Lysosomal storage disease gene therapy -
leptin - Amgen, IC Innovations	Avigen
Leptin gene therapy Chiron Corporation	lysostaphin Nutrition 21

M 23 -- Gruenenthal M1 monoclonal antibodies -- Acorda Therapeutics MA 16N7C2 - Corvas Intl. malaria vaccine -- GlaxoSmithKline. AdProTech, Antigenics, Apovia, Aventis Pasteur, Axis Genetics, Behringwerke, CDCP, Chiron Vaccines, Genzyme Transgenics, Hawaii, MedImmune, NIH, NYU. Oxxon, Roche/Saramane, Biotech Australia, Rx Tech Malaria vaccine CDC/NIIMALVAC-1 malaria vaccine.multicomponent mammaglobin -- Corixa mammastatin -- Biotherapeutics mannan-binding lectin -- Natlmmu mannan-MUC1 -- Psiron MAP 30 Marinovir -- Phytera MARstem -- Maret MB-015 -- Mochida MBP -- ImmuLogic MCI-028 -- Mitsubishi-Tokyo MCIF -- Human Genome Sciences MDC -- Advanced BioScience -- Akzo Nobel, ICOS MDX 11 -- Medarex MDX 210 -- Medarex MDX 22 -- Medarex MDX 22 MDX 240 - Medarex MDX 33 MDX 44 -- Medarex MDX 447 -- Medarex MDX H210 -- Medarex MDX RA -- Houston BioTech., Medarex ME-104 -- Pharmexa Measles vaccine Mecasermin -- Cephalon/Chiron, Chiron MEDI 488 -- Medimmune MEDI 500

MEDI 507 -- BioTransplant melanin concentrating hormone --Neurocrine Biosciences melanocortins -- OMRF Melanoma monoclonal antibodies -- Viragen melanoma vaccine - GlaxoSmithKline, Akzo Nobel, Avant, Aventis Pasteur, Bavarian Nordic, Biovector, CancerVax, Genzyme Molecular Oncology, Humbolt, ImClone Systems, Memorial, NYU, Oxxon Melanoma vaccine Magevac -- Therion memory enhancers -- Scios meningococcal B vaccine -- Chiron meningococcal vaccine -- CAMR Meningococcal vaccine group B conjugate - North American Vaccine Meningococcal vaccine group B recombinant -- BioChem Vaccines. Microscience Meningococcal vaccine group Y conjugate -- North American Vaccine Meningococcal vaccine groups A B and C conjugate -- North American Vaccine Mepolizumab - GlaxoSmithKline Metastatin - EntreMed, Takeda Met-CkB7 -- Human Genome Sciences met-enkephalin -- TNI METH-1 -- Human Genome Sciences methioninase -- AntiCancer Methionine lyase gene therapy --AntiCancer Met-RANTES - Genexa Biomedical. Serono Metreleptin Microtubule inhibitor MAb Immunogen/Abgenix MGDF -- Kirin MGV -- Progenics micrin -- Endocrine microplasmin -- ThromboGenics

MIF -- Genetics Institute

MAb 45-2D9- - haematoporphyrin migration inhibitory factor - NIH conjugate Mim CD4.1 – Xycte Therapies mirostipen -- Human Genome Sciences MAb 4B4 Mitumomab (BEC-2) - ImClone Systems. MAb 4E3-CPA conjugate -- BCM Oncologia MAh 4E3-daunorubicin conjugate Merck KGaA MAb 50-6 MK 852 -- Merck MAb 50-61A - Institut Pasteur MLN 1202 (Anti-CCR2 monoclonal antibody) - Millenium Pharmaceuticals MAb 5A8 - Biogen MAb 791T/36-methotrexate conjugate Mohenakin -- NIS molgramostim -- Genetics Institute, Novartis MAb 7c11.e8 monoclonal antibodies -- Abgenix/Celltech, MAb 7E11 C5-selenocystamine conjugate MAb 93KA9 -- Novartis Immusol/ Medarex, Viragen/ Roslin Institute, Cambridge Antibody Tech./Elan MAb A5B7-cisplatin conjugate --Biodynamics Research, Pharmacia MAb 108 -MAb A5B7-I-131 MAb 10D5 --MAb 14.18-interleukin-2 immunocytokine -- MAb A7 MAh A717 -- Exocell Lexiden MAb A7-zinostatin conjugate MAb 14G2a -MAb ABX-RB2 - Abgenix MAh 15A10 -MAh ACA 11 MAb 170 -- Biomira MAb AFP-I-131 - Immunomedics MAb 177Lu CC49 --MAb AP1 MAb 17F9 MAb AZ1 MAb 1D7 MAb B3-LysPE40 conjugate MAb 1F7 - Immune Network MAb B4 - United Biomedical MAb 1H10-doxorubicin conjugate MAb B43 Genistein-conjugate MAb 26-2F MAb B43.13-Tc-99m -- Biomira MAb 2A11 MAb B43-PAP conjugate MAb 2E1 -- RW Johnson MAb B4G7-gelonin conjugate MAb 2F5 MAb BCM 43-daunorubicin conjugate --MAb 31.1 -- International Biolmmune BCM Oncologia Systems MAb 32 -- Cambridge Antibody Tech., MAb BIS-1 MAb BMS 181170 -- Bristol-Myers Squibb Pentech MAb 323A3 -- Centocor MAb BR55-2 MAb BW494 MAb 3C5 MAb C 242-DM1 conjugate -- ImmunoGen MAb 3F12 MAb C242-PE conjugate MAb 3F8 MAb c30-6 MAh 42/6 MAb CA208-cytorhodin-S conjugate --MAb 425 - Merck KGaA Hoechst Japan MAb 447-52D -- Merck Sharp & Dohme MAb CC49 -- Enzon

WO 2004/033651

MAh LiCO 16-88

50/498

MAb LL2-I-131 - Immunomedics MAb ch14.18 -MAb LL2-Y-90 MAb CH14.18-GM-CSF fusion protein --MAb LS2D617 -- Hybritech Lexiaen MAb LYM-1-gelonin conjugate MAb chCE7 MAb LYM-1-I-131 MAb CI-137 -- AMRAD MAb LYM-1-Y-90 MAb cisplatin conjugate MAb LYM-2 -- Peregrine MAb CLB-CD19 MAb M195 MAb CLB-CD19v MAb M195-bismuth 213 conjugate --MAb CLL-1 -- Peregrine Protein Design Labs MAb CLL-1-GM-CSF conjugate MAb CLL-1-IL-2 conjugate -- Peregrine MAb M195-gelonin conjugate MAb CLN IgG -- doxorubicin conjugates MAb M195-I-131 MAb M195-Y-90 MAb conjugates - Tanox MAb MA 33H1 - Sanofi MAb D612 MAb MAD11 MAb Dal B02 MAb MGb2 MAb DC101 -- ImClone MAb MINT5 MAb EA 1 -MAb MK2-23 MAb EC708 -- Biovation MAb MOC31 ETA(252-613) conjugate MAb EP-5C7 -- Protein Design Labs MAh MOC-31-In-111 MAb ERIC-1 -- ICRT MAb MOC-31-PE conjugate MAb F105 gene therapy MAb MR6 -MAb FC 2.15 MAh MRK-16 -- Aventis Pasteur MAb G250 -- Centocor MAh MS11G6 MAb GA6 MAb MX-DTPA BrE-3 MAh GA733 MAb MY9 MAh Gliomah-H -- Viventia Biotech MAb Nd2 -- Tosoh MAb HB2-saporin conjugate MAb NG-1 -- Hygeia MAb HD 37 -MAb NM01 - Nissin Food MAh HD37-ricin chain-A conjugate MAh HNK20 -- Acambis MAb OC 125 MAb OC 125-CMA conjugate MAb huN901-DM1 conjugate --MAb OKI-1 -- Ortho-McNeil ImmunoGen MAb OX52 -- Bioproducts for Science MAb I-131 CC49 -- Corixa MAb PMA5 MAb ICO25 MAb ICR12-CPG2 conjugate MAb PR1 MAb prost 30 MAb ICR-62 MAb IRac-ricin A conjugate MAh R-24 MAb R-24 α Human GD3 - Celltech MAh K1 MAb RFB4-ricin chain A conjugate MAb KS1-4-methotrexate conjugate MAb RFT5-ricin chain A conjugate MAb L6 -- Bristol-Myers Squibb, Oncogen MAb SC 1

MAb SM-3 ICRT	Muc-1 vaccine Corixa
MAb SMART 1D10 Protein Design Labs	mucosal tolerance Aberdeen
MAb SMART ABL 364 Novartis	mullerian inhibiting subst
MAb SN6f	muplestim - Genetics Institute, Novartis,
MAb SN6f-deglycosylated ricin A chain	DSM Anti-Infectives
conjugate -	murine MAb KS Biomedix
MAb SN6j	Mutant somatropin JCR Pharmaceutical
MAb SN7-ricin chain A conjugate	MV 833 Toagosei
MAb T101-Y-90 conjugate Hybritech	Mycoplasma pulmonis vaccine
MAb T-88 Chiron	Mycoprex XOMA
MAb TB94 Cancer ImmunoBiology	myeloperoxidase Henogen
MAb TEC 11	myostatin Genetics Institute
MAb TES-23 Chugai	Nacolomab tafenatox Pharmacia
MAb TM31 Avant	Nagrecor Scios
MAb TNT-1 Cambridge Antibody Tech.,	nagrestipen British Biotech
Peregrine	NAP-5 – Corvas Intl.
MAb TNT-3	NAPc2 – Corvas Intl.
MAb TNT-3 IL2 fusion protein -	nartograstim Kyowa
MAb TP3-At-211	Natalizumab Protein Design Labs
MAb TP3-PAP conjugate –	Nateplase – NIH, Nihon Schering
MAb UJ13A ICRT	nateplase Schering AG
MAb UN3	NBI-3001 Neurocrine Biosci.
MAb ZME-018-gelonin conjugate	NBI-5788 Neurocrine Biosci.
MAb-BC2 GlaxoSmithKline	NBI-6024 Neurocrine Biosci.
MAb-DM1 conjugate ImmunoGen	Nef inhibitors BRI
MAb-ricin-chain-A conjugate XOMA	Neisseria gonorrhoea vaccine Antex
MAb-temoporfin conjugates	Biologics
Monopharm C Viventia Biotech	Neomycin B-arginine conjugate
monteplase Eisai	Nerelimomab Chiron
montirelin hydrate Gruenenthal	Nerve growth factor – Amgen – Chiron,
moroctocog alfa Genetics Institute	Genentech
Moroctocog-alfa Pharmacia	Nerve growth factor gene therapy
MP 4	nesiritide citrate Scios
MP-121 Biopharm	neuregulin-2 CeNeS
MP-52 Biopharm	neurocan NYU
MRA Chugai	neuronal delivery system CAMR
MS 28168 Mitsui Chemicals, Nihon	Neurophil inhibitory Factor Corvas
Schering	Neuroprotective vaccine University of
MSH fusion toxin Ligand	Auckland
MSI-99 Genaera	neurotrophic chimaeras Regeneron
MT 201 Micromet	neurotrophic factor - NsGene, CereMedix

NeuroVax -- Immune Response neurturin -- Genentech neutral endopeptidase -- Genentech NGF enhancers -- NeuroSearch NHL vaccine -- Large Scale Biology NIP45 -- Boston Life Sciences NKI-B20 NM 01 - Nissin Food NMI-139 -- NitroMed NMMP -- Genetics Institute NN-2211 -- Novo Nordisk Noggin -- Regeneron Nonacog alfa Norelin -- Biostar Norwalk virus vaccine NRLU 10 -- NeoRx NRLU 10 PE -- NeoRx NT-3 -- Regeneron NT-4/5 -- Genentech NU 3056 NU 3076 NX 1838 -- Gilead Sciences NY ESO-1/CAG-3 antigen -- NIH NYVAC-7 -- Aventis Pasteur NZ-1002 -- Novazyme obesity therapy -- Nobex OC 10426 -- Ontogen OC 144093 -- Ontogen OCIF -- Sankvo Oct-43 -- Otsuka Odulimomab -- Immunotech OK PSA - liposomal OKT3-gamma-1-ala-ala OM 991 OM 992 Omalizumab -- Genentech oncoimmunin-L -- NIH Oncolysin B -- ImmunoGen Oncolvsin CD6 -- ImmunoGen Oncolysin M -- ImmunoGen Oncolysin S -- ImmunoGen

Oncophage -- Antigenics Oncostatin M -- Bristol-Myers Squibb OncoVax-CL -- Jenner Biotherapies OncoVax-P -- Jenner Biotherapies onercept -- Yeda onychomycosis vaccine -- Boehringer Ingelheim opebecan -- XOMA opioids -- Arizona Oprelvekin - Genetics Institute Oregovomab -- AltaRex Org-33408 b-- Akzo Nobel Orolip DP -- EpiCept orvzacystatin OSA peptides - GenSci Regeneration osteoblast-cadherin GF -- Pharis Osteocalcin-thymidine kinase gene therapy osteogenic protein -- Curis osteopontin -- OraPharma osteoporosis peptides - Integra, Telios osteoprotegerin - Amgen, SnowBrand otitis media vaccines -- Antex Biologics ovarian cancer - University of Alabama OX40-IgG fusion protein -- Cantab, Xenova P 246 -- Diatide P 30 -- Alfacell p1025 -- Active Biotech P-113[^] -- Demegen P-16 peptide -- Transition Therapeutics p43 -- Ramot P-50 peptide -- Transition Therapeutics p53 + RAS vaccine -- NIH, NCI PACAP(1-27) analogue paediatric vaccines -- Chiron Pafase -- ICOS PAGE-4 plasmid DNA -- IDEC PAI-2 - Biotech Australia. Human Therapeutics Palifermin (keratinocyte growth factor) --Amaen Palivizumab -- Medimmune

FIG. 28V

PAM 4 -- Merck namiteplase -- Yamanouchi pancreatin, Minitabs -- Eurand Pangen -- Fournier Pantarin - Selective Genetics Parainfluenza virus vaccine - Pharmacia, Pierre Fahre paraoxanase -- Esperion parathyroid hormone - Abiogen, Korea Green Cross Parathyroid hormone (1-34) --Chugai/Suntory Parkinson's disease gene therapy -- Cell Genesys/ Ceregene Parvovirus vaccine -- MedImmune PCP-Scan - Immunomedics PDGF -- Chiron PDGF cocktail -- Theratechnologies peanut allergy therapy - Dynavax PEG anti-ICAM MAb - Boehringer Ingelheim PEG asparaginase -- Enzon PEG alucocerebrosidase PEG hirudin - Knoll PEG interferon-alpha-2a -- Roche PEG interferon-alpha-2b + ribavirin -Biogen, Enzon, ICN Pharmaceuticals, Schering-Plough PEG MAb A5B7 -Pegacaristim - Amgen -- Kirin Brewery --ZvmoGenetics Pegaldesleukin -- Research Corp pegaspargase -- Enzon pegfilgrastim -- Amgen PEG-interferon Alpha -- Viragen PEG-interferon Alpha 2A -- Hoffman La-Roche PEG-interferon Alpha 2B -- Schering-Plough PEG-r-hirudin -- Abbott PEG-rHuMGDF -- Amgen

PEG-uricase -- Mountain View Pegvisomant - Genentech PEGylated proteins, PolyMASC -- Valentis PEGylated recombinant native human leptin -- Roche Pemtumomab Penetratin -- Cyclacel Pepscan - Antisoma peptide G - Peptech, ICRT peptide vaccine - NIH ,NCI Pexelizumab pexiganan acetate -- Genaera Pharmaprojects No. 3179 -- NYU Pharmaprojects No. 3390 -- Ernest Orlando Pharmaprojects No. 3417 -- Sumitomo Pharmaprojects No. 3777 -- Acambis Pharmaprojects No. 4209 -- XOMA Pharmaprojects No. 4349 - Baxter Intl. Pharmaprojects No. 4651 Pharmaprojects No. 4915 -- Avanir Pharmaprojects No. 5156 -- Rhizogenics Pharmaprojects No. 5200 -- Pfizer Pharmaprojects No. 5215 -- Origene Pharmaprojects No. 5216 -- Origene Pharmaprojects No. 5218 -- Origene Pharmaprojects No. 5267 - ML Laboratories Pharmaprojects No. 5373 -- MorphoSvs Pharmaprojects No. 5493 -- Metabolex Pharmaprojects No. 5707 -- Genentech Pharmaprojects No. 5728 -- Autogen Pharmaprojects No. 5733 -- BioMarin Pharmaprojects No. 5757 -- NIH Pharmaprojects No. 5765 -- Gryphon Pharmaprojects No. 5830 -- AntiCancer Pharmaprojects No. 5839 -- Dyax Pharmaprojects No. 5849 -- Johnson & Johnson Pharmaprojects No. 5860 -- Mitsubishi-

Tokvo

Pharmaprojects No. 5869 - Oxford **GlycoSciences** Pharmaprojects No. 5883 -- Asahi Brewery Pharmaprojects No. 5947 -- StressGen Pharmaprojects No. 5961 --Theratechnologies Pharmaprojects No. 5962 -- NIH Pharmaprojects No. 5966 -- NIH Pharmaprojects No. 5994 -- Pharming Pharmaprojects No. 5995 - Pharming Pharmaprojects No. 6023 -- IMMUCON Pharmaprojects No. 6063 -- Cytoclonal Pharmaprojects No. 6073 -- SIDDCO Pharmaprojects No. 6115 -- Genzyme Pharmaprojects No. 6227 -- NIH Pharmaprojects No. 6230 -- NIH Pharmaprojects No. 6236 -- NIH Pharmaprojects No. 6243 -- NIH Pharmaprojects No. 6244 -- NIH Pharmaprojects No. 6281 -- Senetek Pharmaprojects No. 6365 -- NIH Pharmaprojects No. 6368 -- NIH Pharmaprojects No. 6373 -- NIH Pharmaprojects No. 6408 - Pan Pacific Pharmaprojects No. 6410 - Athersys Pharmaprojects No. 6421 - Oxford GlycoSciences Pharmaprojects No. 6522 -- Maxvoen Pharmaprojects No. 6523 -- Pharis Pharmaprojects No. 6538 -- Maxygen Pharmaprojects No. 6554 -- APALEXO Pharmaprojects No. 6560 -- Ardana Pharmaprojects No. 6562 -- Baver Pharmaprojects No. 6569 -- Eos Phenoxazine Phenylase -- Ibex Pigment epithelium derived factor plasminogen activator inhibitor-1, recombinant -- DuPont Pharmaceuticals

Plasminogen activators - Abbott Laboratories, American Home Products, Boehringer Mannheim, Chiron Corporation, DuPont Pharmaceuticals, Eli Lilly, Shionogi, Genentech, Genetics Institute, GlaxoSmithKline, Hemispherx Biopharma, Merck & Co, Novartis, Pharmacia Corporation, Wakamoto, Yeda plasminogen-related peptides -- Bio-Tech. General/MGH platelet factor 4 -- RepliGen Platelet-derived growth factor - Amgen --ZvmoGenetics plusonermin- Havashibara PMD-2850 -- Protherics Pneumococcal vaccine -- Antex Biologics, Aventis Pasteur Pneumococcal vaccine intranasal --BioChem Vaccines/Biovector PR1A3 PR-39 pralmorelin -- Kaken Pretarget-Lymphoma -- NeoRx Priliximab -- Centocor PRO 140 -- Progenics PRO 2000 -- Procept PRO 367 -- Progenics PRO 542 -- Progenics pro-Apo A-I -- Esperion prolactin -- Genzyme Prosaptide TX14(A) -- Bio-Tech. General prostate cancer antbodies - Immunex, UroCor prostate cancer antibody therapy --Genentech/UroGenesys, Genotherapeutics prostate cancer immunotherapeutics -- The PSMA Development Company prostate cancer vaccine -- Aventis Pasteur,

Zonagen, Corixa, Dendreon, Jenner Biotherapies, Therion Biologics

prostate-specific antigen -- EntreMed RD 62198 rDnase -- Genentech protein A -- RepliGen RDP-58 -- SangStat protein adhesives -- Enzon RecepTox-Fce -- Kervx protein C - Baxter Intl., PPL Therapeutics, RecepTox-GnRH - Keryx, MTR ZvmoGenetics protein C activator - Gilead Sciences Technologies RecepTox-MBP - Keryx, MTR protein kinase R antags -- NIH Technologies protirelin -- Takeda recFSH -- Akzo Nobel, Organon protocadherin 2 -- Caprion Pro-urokinase - Abbott, Bristol-Myers REGA 3G12 Regavirumab -- Teijin Squibb, Dainippon, Tosoh -- Welfide P-selectin glycoprotein ligand-1 -- Genetics relaxin -- Connetics Corp Renal cancer vaccine -- Macropharm Institute repifermin -- Human Genome Sciences pseudomonal infections -- InterMune Respiratory syncytial virus PFP-2 vaccine --Pseudomonas vaccine -- Cytovax Wveth-Lederle PSGL-Ig -- American Home Products Respiratory syncytial virus vaccine -PSP-94 - Procvon GlaxoSmithKline, Pharmacia, Pierre Fabre PTH 1-34 -- Nobex Respiratory syncytial virus vaccine Quilimmune-M -- Antigenics inactivated R 744 - Roche Respiratory syncytial virus-parainfluenza R 101933 virus vaccine -- Aventis Pasteur, R 125224 -- Sankvo Pharmacia RA therapy -- Cardion Rabies vaccine recombinant -- Aventis Reteplase -- Boehringer Mannheim, Hoffman La-Roche Pasteur, BioChem Vaccines, Kaketsuken Retropep -- Retroscreen Pharmaceuticals 3 4 1 RFB4 (dsFv) PE38 RadioTheraCIM -- YM BioSciences RFI 641 -- American Home Products Ramot project No. 1315 -- Ramot RFTS -- UAB Research Foundation Ramot project No. K-734A -- Ramot RG 12986 -- Aventis Pasteur Ramot project No. K-734B -- Ramot RG 83852 -- Aventis Pasteur Ranibizumab (Anti-VEGF fragment) --RG-1059 -- RepliGen Genentech rGCR -- NIH RANK -- Immunex rGLP-1 -- Restoragen rannirnase -- Alfacell ranpirnase-anti-CD22 MAb -- Alfacell rGRF -- Restoragen rh Insulin - Eli Lilly RANTES inhibitor -- Milan RHAMM targeting peptides - Cangene RAPID drug delivery systems -- ARIAD rHb1.1 - Baxter Intl. rasburicase -- Sanofi rhCC10 -- Claragen rBPI-21, topical -- XOMA rhCG -- Serono RC 529 -- Corixa Rheumatoid arthritis gene therapy rCFTR -- Genzyme Transgenics

SB RA 31012 -Rheumatoid arthritis vaccine -- Veterans SC 56929 -- Pharmacia Affairs Medical Center SCA binding proteins - Curis, Enzon rhl H -- Serono scFv(14E1)-ETA Berlex Laboratories. Ribozyme gene therapy -- Genset Schering AG Rickettsial vaccine recombinant ScFv(FRP5)-ETA -RIGScan CR - Neoprobe ScFv6C6-PE40 -RIP-3 -- Rigel SCH 55700 - Celltech Rituximab -- Genentech Schistosomiasis vaccine -- Glaxo RK-0202 -- RxKinetix Wellcome/Medeva, Brazil RLT peptide -- Esperion SCPF -- Advanced Tissue Sciences rM/NFI -- IVAX scuPA-suPAR complex - Hadasit rmCRP -- Immtech SD-9427 -- Pharmacia RN-1001 -- Renovo SDF-1 -- Ono RN-3 -- Renovo SDZ 215918 -- Novartis RNAse conjugate -- Immunomedics SDZ 280125 -- Novartis RO 631908 - Roche SDZ 89104 - Novartis Rotavirus vaccine -- Merck SDZ ABL 364 -- Novartis RP 431 -- DuPont Pharmaceuticals SDZ MMA 383 -- Novartis RP-128 -- Resolution Secretin - Ferring, Repligen RPE65 gene therapy serine protease inhibs -- Pharis RPR 110173 -- Aventis Pasteur sermorelin acetate - Serono RPR 115135 -- Aventis Pasteur SFRP-1 -- Viron RPR 116258A -- Aventis Pasteur sertenef -- Dainippon rPSGL-Ig -- American Home Products serum albumin, Recombinant human -r-SPC surfactant -- Byk Gulden Aventis Behring RSV antibody -- Medimmune serum-derived factor -- Hadasit Ruplizumab -- Biogen Sevirumab -- Novartis rV-HER-2/neu -- Therion Biologics SGN 14 - Seatle Genetics SA 1042 -- Sankyo SGN 15 -- Seatle Genetics sacrosidase - Orphan Medical SGN 17/19 -- Seatle Genetics Sant 7 SGN 30 - Seatle Genetics Sargramostim -- Immunex SGN-10 -- Seatle Genetics saruplase - Gruenenthal SGN-11 -- Seatle Genetics Satumomab -- Cytogen SH 306 -- DuPont Pharmaceuticals SB 1 -- COR Therapeutics Shanvac-B -- Shantha SB 207448 -- GlaxoSmithKline Shigella flexneri vaccine - Avant, Acambis, SB 208651 - GlaxoSmithKline Novavax SB 240683 - GlaxoSmithKline Shigella sonnei vaccine --SB 249415 -- GlaxoSmithKline

SB 249417 -- GlaxoSmithKline

SB 6 -- COR Therapeutics

sICAM-1 -- Boehringer Ingelheim

Silteplase -- Genzyme

SIV vaccine - Endocon, Institut Pasteur SK 896 -- Sanwa Kagaku Kenkyusho SK-827 -- Sanwa Kagaku Kenkyusho Skeletex -- CellFactors SKF 106160 -- GlaxoSmithKline S-nitroso-AR545C -SNTP -- Active Biotech somatomedin-1 - GroPep, Mitsubishi-Tokyo, NIH somatomedin-1 carrier protein -- Insmed somatostatin -- Ferring Somatotropin/ Human Growth Hormone -- Bio-Tech. General, Eli Lilly somatropin - Bio-Tech. General, Alkermes. SUIS-LHRH -- United Biomedical ProLease, Aventis Behring, Biovector, Cangene, Dong-A, Eli Lilly, Emisphere, Enact, Genentech, Genzyme Transgenics. YM BioSciences Novartis, Novo Nordisk, Pharmacia Serono, TranXenoGen somatropin derivative -- Schering AG somatropin, AIR -- Eli Lilly Somatropin, inhaled -- Eli Lilly/Alkermes somatropin, Kabi -- Pharmacia somatropin, Orasome -- Novo Nordisk Sonermin -- Dainippon Pharmaceutical SP(V5.2)C - Supertek SPf66 sphingomyelinase -- Genzyme SR 29001 - Sanofi SR 41476 -- Sanofi SR-29001 -- Sanofi SS1(dsFV)-PE38 -- NeoPharm ß2 microglobulin -- Avidex ß2-microglobulin fusion proteins -- NIH ß-amyloid peptides -- CeNeS ß-defensin -- Pharis Staphylococcus aureus infections --Inhibitex/ZLB

Staphylococcus aureus vaccine conjugate --Nabi Staphylococcus therapy -- Tripep Staphylokinase - Biovation, Prothera, Thrombogenetics Streptococcal A vaccine -- M6 Pharmaceuticals. North American Vaccine Streptococcal B vaccine -- Microscience Streptococcal B vaccine recombinant --Biochem Vaccines Streptococcus pyogenes vaccine STRL-33 -- NIH Subalin -- SRC VB VECTOR SUIS -- United Biomedical SUN-E3001 -- Suntory super high affinity monoclonal antibodies -Grandis/InfiMed, CSL, InfiMed, MacroMed, Superoxide dismutase - Chiron, Enzon, Ube Industries, Bio-Tech, Yeda superoxide dismutase-2 -- OXIS suppressin - UAB Research Foundation SY-161-P5 -- ThromboGenics SY-162 -- ThromboGenics Systemic lupus erythematosus vaccine --MedClone/VivoRx T cell receptor peptides -- Xoma T cell receptor peptide vaccine T4N5 liposomes -- AGI Dermatics TACI, soluble -- ZymoGenetics targeted apoptosis -- Antisoma tasonermin -- Boehringer Ingelheim TASP TASP-V Tat peptide analogues -- NIH TBP I -- Yeda TBP II TRV25H -- NIH Tc 99m ior cea1 -- Center of Molecular **Immunology**

Tc 99m P 748 -- Diatide

TIF -- Xoma

Tifacogin - Chiron, NIS, Pharmacia

58/498

Tissue factor -- Genentech Tc 99m votumumab -- Intracell Tissue factor pathway inhibitor Tc-99m rh-Annexin V - Theseus Imaging T.IN-135 -- Tsumura teceleukin - Biogen TM 27 -- Avant tenecteplase -- Genentech TM 29 -- Avant Teriparatide -- Armour Pharmaceuticals, TMC-151 - Tanabe Seiyaku Asahi Kasei, Eli Lilly TNF tumour necrosis factor -- Asahi Kasei terlipressin -- Ferring TNF Alpha -- Cytlmmune testisin -- AMRAD TNF antibody -- Johnson & Johnson Tetrafibricin -- Roche TNF binding protein -- Amgen TFPI -- EntreMed TNF degradation product -- Oncotech taD-IL-2 -- Takeda TNF receptor -- Immunex TGF-Alpha -- ZymoGenetics TNF receptor 1, soluble -- Amgen TGF-ß -- Kolon TNF Tumour necrosis factor-alpha -- Asahi TGF-R2 -- Insmed Kasei, Genetech, Mochida TGF-ß3 -- OSI TNF-Alpha inhibitor -- Tripep Thalassaemia gene therapy -- Crucell TNFR:Fc gene therapy - Targeted Genetics TheraCIM-h-R3 -- Center of Molecular TNF-SAM2 Immunology, YM BioSciences ToleriMab -- Innogenetics Theradigm-HBV -- Epimmune Toxoplasma gondii vaccine --Theradigm-HPV -- Epimmune GlaxoSmithKline Theradigm-malaria -- Epimmune TP 9201 - Telios Theradigm-melanoma -- Epimmune TP10 -- Avant TheraFab - Antisoma TP20 -- Avant ThGRF 1-29 -- Theratechnologies ThGRF 1-44 -- Theratechnologies tPA -- Centocor trafermin -- Scios Thrombin receptor activating peptide --TRAIL/Apo2L -- Immunex Abbott TRAIL-R1 MAb - Cambridge Antibody thrombomodulin - Iowa, Novocastra Thrombopoietin -- Dragon Pharmaceuticals, Technologies transferrin-binding proteins -- CAMR Genentech Transforming growth factor-beta-1 -thrombopoietin, Pliva -- Receptron Genentech Thrombospondin 2 transport protein -- Genesis thrombostatin -- Thromgen Trastuzumab -- Genetech thymalfasin -- SciClone TRH -- Ferring thymocartin – Gedeon Richter Triabin -- Schering AG thymosin Alpha1 -- NIH thyroid stimulating hormone -- Genzyme Triconal Triflavin tICAM-1 -- Bayer troponin I -- Boston Life Sciences Tick anticoagulant peptide -- Merck TRP-2" -- NIH

FIG. 28BB

trypsin inhibitor -- Mochida

59/498

Vascular endothelial growth factors - R&D TSP-1 gene therapy -Systems TT-232 vascular targeting agents -- Peregrine TTS-CD2 -- Active Biotech vasopermeation enhancement agents --Tuberculosis vaccine -- Aventis Pasteur. Peregrine Genesis Tumor Targeted Superantigens -- Active vasostatin -- NIH Biotech -- Pharmacia VCI -- Bio-Tech, General VEGF - Genentech. Scios tumour vaccines -- PhotoCure tumour-activated prodrug antibody VEGF inhibitor -- Chugai VEGF-2 -- Human Genome Sciences conjugates -- Millennium/ImmunoGen VEGF-Trap -- Regeneron tumstatin -- ILEX viscumin, recombinant -- Madaus Tuvirumab -- Novartis Vitaxin TV-4710 - Teva Vitrase - ISTA Pharmaceuticals TWEAK receptor -- Immunex West Nile virus vaccine -- Bavarian Nordic TXU-PAP WP 652 TY-10721 - TOA Eiyo Type I diabetes vaccine -- Research Corp WT1 vaccine -- Corixa WX-293 -- Wilex BioTech. Typhoid vaccine CVD 908 WX-360 -- Wilex BioTech. U 143677 -- Pharmacia WX-LIK1 -- Wilex BioTech. U 81749 -- Pharmacia XMP-500 - XOMA UA 1248 -- Arizona XomaZvme-791 -- XOMA UGIF -- Sheffield XTL 001 -- XTL Biopharmaceuticals UIC 2 XTL 002 -- XTL Biopharmaceuticals UK 101 veast delivery system -- Globelmmune UK-279276 - Corvas Intl. Yersinia pestis vaccine urodilatin -- Pharis YIGSR-Stealth -- Johnson & Johnson urofollitrophin -- Serono Yissum Project No. D-0460 -- Yissum Urokinase -- Abbott YM 207 - Yamanouchi uteroferrin-- Pepgen YM 337 -- Protein Design Labs V 20 -- GLYCODesign Yttrium-90 labelled biotin V2 vasopressin receptor gene therapy Yttrium-90-labeled anti-CEA MAb T84.66 vaccines -- Active Biotech 7D 0490 - AstraZeneca Varicella zoster glycoprotein vaccine -Research Corporation Technologies ziconotide -- Elan Varicella zoster virus vaccine live -- Cantab ZK 157138 -- Berlex Laboratories Pharmaceuticals Zolimomab aritox Vascular endothelial growth factor -Zorcell -- Immune Response

Genentech, University of California

ZRXL peptides - Novartis

$$\mathbf{B} \leftarrow \begin{pmatrix} (\mathrm{Sia})_b \\ -\mathrm{GalNAc\text{-}(Gal)_a\text{-}(Sia)_c\text{-}} (R)_d \end{pmatrix}_e$$

a-c, e (independently selected) = 0 or 1; d = 0; $R = modifying\ group,\ sialyl\ or \ oligosialyl$

FIG. 29A

61/498

CHO, BHK, 293 cells, Vero expressed G-CSF a-c, e (independently selected) = 0 or 1; d = 0

1. Sialidase 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 29B

Insect cell expressed G-CSF a, e (independently selected) = 0 or 1;

b, c, d = 0.

1. Galactosyltransferase, UDP-Gal 2. CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; R = PEG.

FIG. 29C

```
E. coli expressed G-CSF
a-e = 0.
```

GalNAc Transferase, UDP-GalNAc
 CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 29D

```
NSO expressed G-CSF
a, e (independently selected) = 0 or 1;
b, c, d = 0
```

```
1. CMP-SA-levulinate, ST3Gal1

2. H<sub>4</sub>N<sub>2</sub>-PEG
```

a, c, d, e (independently selected) = 0 or 1; b = 0; R = PEG.

FIG. 29E

63/498

FIG. 29F

FIG. 29G

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & \\ | & &$$

a-d, i, n-u (independently selected) = 0 or 1. aa, bb, cc, dd, ee (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-z = 0; R = modifying group, mannose, oligo-mannose. R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 30A

```
GHO, BHK, 293 cells, Vero expressed interferon alpha 14C.
a-d, aa, bb = 1; e-h = 1 to 4;
cc, j-m, i, r-u (independently selected) = 0 or 1;
q, n-p, v-z, cc, dd, ee = 0.
```

Sialidase
 CMP-SA-PEG, ST3Gal3

```
a-d, aa, bb = 1; e-h = 1 to 4;
bb, cc, i, r-u (independently selected) = 0 or 1;
q, n-p, v-z, cc, dd, ee = 0;
v-y (independently selected) = 1,
when j-m (independently selected) = 1;
R = PEG.
```

FIG. 30B

```
Insect cell or fungi expressed interferon alpha-14C. a-d, f, h, j-q, s, u, v-z, cc, dd, ee = 0; e, g, i, r, t (independently selected) = 0 or 1; aa, bb = 1.
```

GNT's 1&2, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal-PEG

```
b, d, f, h, j-q, s, u, w, y, z, cc, dd, ee = 0;
a, c, e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when a, c, (independently selected) = 1;
aa, bb = 1; R = PEG.
```

Yeast expressed interferon alpha-14C.
a-q, cc, dd, ee, v-z = 0;
r-y (independently selected) = 0 to 1;
aa, bb = 1;
R (branched or linear) = Man, oligomannose or polysaccharide.

Endo-H
 Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal3

a-z, bb=0; aa=1; R'=-Gal-Sia-PEG.

FIG. 30D

$$(Fuc)_{i} \\ \mathbf{A} \leftarrow \begin{matrix} (Glc)_{a} \\ Glc)_{d} \\ Glc)_{d} \\ Glc)_{d} \\ (R')_{d} \end{matrix} \\ (Glc)_{d} \\ (Glc)_{d}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1. R = polymer; R' = sugar, glycoconjugate.

FIG. 30E

68/498

```
CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;
a-g, j-m, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
n, v-y = 0; z = 1.
```

1. CMP-SA-PEG, ST3Gal3 ▼

```
h=1 to 3;
a-g, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
z=1; n=0; R=PEG.
```

FIG. 30F

```
Insect cell or fungi expressed interferon alpha-14C.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0 or 1;
z = 1.
```

- GNT's 1,2,4,5, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

FIG. 30G

69/498

Yeast expressed interferon alpha-14C. a-n=0; r-y (independently selected) = 0 to 1; z=1; R (branched or linear) = Man, oligomannose.

```
1. mannosidases
```

- 2. GNT's 1,2,4,5, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal 4.. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

FIG. 30H

NSO expressed interferon alpha 14C. a-i, r-u (independently selected) = 0 or 1; j-m, n, v-y = 0; z = 1.

> CMP-SA-levulinate, ST3Gal3, buffer, salt
> H₄N₂-PEG

a-i, j-m, r-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG.

FIG. 301

70/498

CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.
h = 1 to 3;
a-g, j-m, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
n, v-y = 0; z = 1.

1. CMP-SA-PEG, α2,8-ST

h = 1 to 3;
a-g, i, r-u (independently selected) = 0 or 1;
j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
z = 1; n = 0; R = PEG.

FIG. 30J

CHO, BHK, 293 cells, Vero expressed Interferon alpha-14C. a-g, j-m, r-u (independently selected) = 0 or 1; h = 1 to 3; n, v-y = 0; z = 1.

Sialidase
 Trans-sialidase, PEG-Sia-lactose

 $\begin{array}{lll} a\text{-g, j-m, r-y} & (independently selected) = 0 \ or \ 1; \\ h=1 \ to \ 3; \ n=0; \ z=1; \ R=PEG. \end{array}$

FIG. 30K

71/498

```
CHO, BHK, 293 cells, Vero expressed interferon alpha-14C.

h = 1 to 3;
a-g, j-m, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
n, v-y = 0; z = 1.

1. CMP-SA, α2,8-ST

h = 1 to 3;
```

a-g, i, r-u (independently selected) = 0 or 1; j-m (independently selected) = 0 to 40;

FIG. 30L

z = 1; v-y, n = 0.

```
Insect cell or fungi expressed interferon alpha-14C. a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0 or 1; z = 1.
```

```
    GNT's 1 & 2, UDP-GlcNAc
    Galactosyltransferase,
    UDP-Gal-linker-SA-CMP
    ST3Gal3, transferrin
```

```
a, c, e, g, i, r, t, v, x (independently selected) = 0 or 1; z = 1; b, d, f, h, j-n, s, u, w, y = 0; R = \text{transferrin}.
```

FIG. 30M

Insect cell or fungi expressed interferon alpha-14C. a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0 or 1; z = 1.

endoglycanase
 Galactosyltransferase,
 UDP-Gal-linker-SA-CMP
 ST3Gal3, transferrin

i (independently selected) = 0 or 1; a-h, j-m, r-z = 0; n = 1; R' = -Gal-linker-transferrin.

FIG. 30N

a-c, e, f (independently selected) = 0 or 1; d, g = 0; R = polymer, glycoconjugate.

FIG. 300

CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b). a-c (independently selected) = 0 or 1; e=1; d, f, g=0

1. Sialidase
2. CMP-SA-PEG, ST3Gal1

a-d (independently selected) = 0 or 1; e = 1; b, f, g = 0; R = PEG.

FIG. 30P

Insect cell expressed interferon alpha (2a or 2b). a, e (independently selected) = 0 or 1; b, c, d, f, g = 0.

Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; b, f, g = 0; R = PEG.

FIG. 30Q

75/498

E. coli expressed IF-alpha (2a or 2b). a-g = 0.

GalNAc Transferase,
 UDP-GalNAc-PEG

a-c, f, g = 0; d, e = 1; R = PEG.

FIG. 30R

NSO expressed IF-alpha (2a or 2b). a (independently selected) = 0 or 1;

e = 1; b, c, d, f, g = 0

1. CMP-SA-levulinate, ST3Gal1

2. H₄N₂-PEG

a, c, d (independently selected) = 0 or 1; e = 1; b, f, g = 0; R = PEG.

FIG. 30S

E. coli expressed IF-alpha (2a or 2b). a-g = 0.

 Endo-N-acetylgalatosamidase (synthetic enzyme), PEG-Gal-GalNAc-F

a, d, e = 1; b, c, f, g = 0; R = PEG.

FIG. 30T

E. coli expressed IF-alpha (2a or 2b). a-g=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. sialyltransferase, CMP-SA-PEG

b, d = 0 or 1; e = 1; a, c, f, g = 0; R = PEG.

FIG. 30U

77/498

```
CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b). a-c, f (independently selected) = 0 or 1; e=1; d, g=0
```

Sialidase
 CMP-SA-PEG, ST3Gal1 and ST3Gal3

a-d, f, g (independently selected) = 0 or 1; e = 1; R = PEG.

FIG. 30V

```
CHO, BHK, 293 cells, Vero expressed IF-alpha (2a or 2b).
a-c, f (independently selected) = 0 or 1;
e = 1; d, g = 0
```

- 1. Sialidase
 2. CMP-SA-linker-SA-CMP,
 ,ST3Gal1
 3. ST3Gal3, transferrin
- a-d, f (independently selected) = 0 or 1; e = 1; R = transferrin; g = 0.

FIG. 30W

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_b \\ -(\operatorname{GalNAc-(Gal)_a-(Sia)_c-(R)_d})_c \end{pmatrix}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, glycoconjugate.

FIG. 30X

79/498

CHO, BHK, 293 cells, Vero expressed interferon alpha-mucin fusion protein. a-c, e (independently selected) = 0 or 1; d = 0

- Sialidase
 CMP-SA-PEG, ST3Gal1
- a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 30Y

Insect cell expressed interferon alpha-mucin fusion protein.

a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 30Z

80/498

E. coli expressed interferon alpha-mucin fusion protein.

a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 30AA

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_b \\ -\operatorname{GalNAc-(Gal)_a-(Sia)_c-(R)_d} \end{pmatrix}$$

$$C \leftarrow (R')_n$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 30BB

E. coli expressed interferon alpha-mucin fusion protein.

a-e, n = 0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 30CC

E. coli expressed interferon alpha-mucin fusion protein.

a-e, n = 0.

- GalNAc Transferase,
 UDP-GalNAc-linker-SA-CMP
 ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 30DD

E. coli expressed Interferon alpha (no fusion). a-e, n = 0.

NHS-CO-linker-SA-CMP
 ST3Gal3, transferrin

a-e = 0; n = 1; R' = linker-transferrin.

FIG. 30EE

84/498

$$(Fuc)_{i} \\ \mathbf{A} \leftarrow \underbrace{\mathsf{GlcNAc}}_{l} \\ \mathsf{GlcNAc} - \underbrace{\mathsf{GlcNAc}}_{l} \\ \mathsf{GlcNAc} - \underbrace{\mathsf{GlcNAc}}_{l} \\ \mathsf{GlcNAc} - \underbrace{\mathsf{GlcNAc}}_{l} \\ \mathsf{A} \leftarrow \underbrace{\mathsf{GlcNAc}}_{l} \\ \mathsf{GlcNAc} - \underbrace{\mathsf{Gal}}_{l} \\ \mathsf{al}_{l} \\$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = polymer

FIG. 31A

85/498

CHO, BHK, 293 cells, Vero expressed IF-beta h=1 to 3; a-g, j-m, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; n, v-y = 0; z = 1.

Sialidase
 CMP-SA-PEG, ST3Gal3

h=1 to 3; a-g, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; j-m, v-y (independently selected) = 0 or 1; z=1; n=0; R=PEG.

FIG. 31B

Insect cell expressed IF-beta a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0 or 1; z = 1.

 GNT's 1&2, UDP-GIcNAc
 Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal3, buffer, salt

 $\label{eq:continuous} \begin{array}{ll} b,\,d,\,f,\,h,\,k,\,m,\,n,\,s,\,u,\,w,\,y=0;\\ a,\,c,\,e,\,g,\,i,\,r,\,t\ \ (independently\ selected)=0\ \ or\ 1;\\ j,\,l,\,v,\,x\ \ (independently\ selected)=0\ \ or\ 1;\\ z=1;\ R=PEG. \end{array}$

FIG. 31C

```
Yeast expressed IF-beta
a-n = 0; z = 1;
r-y (independently selected) = 0 to 1;
R (branched or linear) = Man, oligomannose or polysaccharide.
```

```
1. Endo-H
```

2. Galactosyltransferase, UDP-Gal

↓ 3.. CMP-SA-PEG, ST3Gal3

a-m, r-z=0; n = 1; R' = -Gal-Sia-PEG.

FIG. 31D

```
CHO, BHK, 293 cells, Vero expressed IF-beta h=1 to 3; a-g, j-m, i (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; n, v-y = 0; z=1.
```

1. CMP-SA-PEG, ST3Gal3

```
\begin{array}{l} h=1 \text{ to 3;} \\ a\text{-g, i (independently selected)} = 0 \text{ or 1;} \\ r\text{-u (independently selected)} = 0 \text{ or 1;} \\ j\text{-m, v-y (independently selected)} = 0 \text{ or 1;} \\ z=1; \text{ n=0; } R=PEG. \end{array}
```

FIG. 31F

87/498

$$\label{eq:continuous} \begin{split} &\text{Insect cell expressed IF-beta} \\ &\text{a-d, f, h, j-n, s, u, v-y=0; e, g, i, r, t} \\ &\text{(independently selected)=0 or 1; } z=1. \end{split}$$

GNT's 1,2,4,5, UDP-GleNAc
 Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1: n = 0: R = PEG.

FIG. 31F

Yeast expressed IF-beta a-n=0; z=1; r-y (independently selected) = 0 to 1; R (branched or linear) = Man, oligomannose.

- 1. mannosidases 2. GNT's 1,2,4,5, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal
- 4.. CMP-SA-PEG, ST3Gal3

a-m, r-y (independently selected) = 0 or 1; z = 1; n = 0; R = PEG.

88/498

```
NSO expressed IF-beta
a-i, r-u (independently selected) = 0 or 1;
j-m, n, v-y = 0; z = 1.

1. CMP-SA-levulinate, ST3Gal3, buffer, salt
2. H_4N_2-PEG
a-i, j-m, r-y (independently selected) = 0 or 1;
n = 0; z = 1; R = PEG.
```

FIG. 31H

```
CHO, BHK, 293 cells, Vero expressed IF-beta h = 1 to 3;
a-g, j-m, i (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
n, v-y = 0; z = 1.
```

1. CMP-SA-PEG, α2,8-ST

```
\begin{split} &h=1\ to\ 3;\\ &a\cdot g,\ i,\ r\cdot u\ (independently\ selected)=0\ or\ 1;\\ &j\cdot m\ (independently\ selected)=0\ to\ 2;\\ &v\cdot y\ (independently\ selected)=1,\\ &when\ j\cdot m\ (independently\ selected)\ is\ 2;\\ &z=1;\ n=0;\ R=PEG. \end{split}
```

FIG. 311

89/498

CHO, BHK, 293 cells, Vero expressed IF-beta a-g, j-m, r-u (independently selected) = 0 or 1; h=1 to 3; n, v-y=0; z=1.

- 1. Sialidase
- 2. Trans-sialidase, PEG-Sia-lactose

a-g, j-m, r-y (independently selected) = 0 or 1; h = 1 to 3; n = 0; z = 1; R = PEG.

FIG. 31J

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.

- Sialidase
 - 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
 - 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n=0;

v-y (independently selected) = 0 or 1; R = PEG.

FIG. 31K

90/498

```
NSO expressed Ifn-beta.
a-d, i-m, r-u, z (independently selected) = 0 or 1;
e-h = 1; n, v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- Sialidase and α-galactosidase
 α-Galactosyltransferase, UDP-Gal
 3. CMP-SA-PEG, ST3Gal3
- a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; R = PEG n = 0; v-y (independently selected) = 1, when j-m (independently selected) is 1;

FIG. 31L

```
CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n, v-y = 0.
```

- Sialidase
 CMP-SA-PEG (16 mol eq), ST3Gal3
 CMP-SA, ST3Gal3
- a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 31M

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG

a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h = 1; n = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 31N

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, r-u, z (independently selected) = 0 or 1; e-h=1; n, v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, r-u, z (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; n, v-y (independently selected) = 0.

FIG. 310

92/498

a-d, i, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group; R' = H, glycosyl group, modifying group, glycoconjugate.

FIG. 31P

93/498

```
Insect cell expressed Ifn-beta.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

```
    GNT's 1,2,4,5, UDP-GlcNAc
    Galactosyltransferase, UDP-Gal-PEG
```

```
a-i, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 31Q

```
Yeast expressed Ifin-beta. 
a-m = 0; q-y (independently selected) = 0 to 1; p = 1; 
R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
 2. Galactosyltransferase, UDP-Gal

 3. CMP-SA-PEG, ST3Gal3
- a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 31R

94/498

CHO, BHK, 293 cells, Vero expressed Ifn-beta. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.

- CMP-SA-linker-SA-CMP, ST3Gal3
 ST3Gal3, desialylated transferrin.
- 3. CMP-SA, ST3Gal3

a-m, q-u (independently selected) = 0 or 1; p = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-transferrin.

FIG. 31S

95/498

$$\mathbf{A} \leftarrow \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_a]_c^-}(\operatorname{Sia})_j - (R)_v \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_c^-}(\operatorname{Sia})_j - (R)_w \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_c^-}(\operatorname{Sia})_j - (R)_x \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_g^-}(\operatorname{Sia})_j - (R)_x \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_g^-}(\operatorname{Sia})_m - (R)_y \end{bmatrix}_u \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_g^-}(\operatorname{Sia})_m - (R)_y \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_g^-}(\operatorname{Sia})_m - (R)_y \end{bmatrix}_u \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_g^-}(\operatorname{Sia})_m - (R)_y \end{bmatrix}_t \\ = \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_b]_g^-}(\operatorname{Sia})_m -$$

 $\mathbf{B} \leftarrow \left(\text{Glc-}(\mathbf{X}\mathbf{y}\mathbf{l})_{n} \right)_{0}$

C ←[-Fuc]_n

a-d, i, q-u (independently selected) = 0 or 1. o, p (independently selected) = 0 or 1. e-h, n (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-y = 0;

R = modifying group, mannose, oligomannose, Sia-Lewis X, Sia-Lewis A...

FIG. 32A

96/498

```
BHK expressed Factor VII or VIIa a-d, e, i, g, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, v-y = 0; n = 0-4.
```

```
    Sialidase
    CMP-SA-PEG (16 mole eq),
ST3Gal3
```

```
a-d, e, g, i, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, w, y = 0; n = 0-4; v, x, (independently selected) = 1, when j, l (respectively, independently selected) is 1; R = PEG.
```

FIG. 32B

CHO, BHK, 293 cells, Veto expressed Factor VII or VIIa a-d, e, i, g, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, v-y = 0; n = 0-4.

```
    Sialidase
    CMP-SA-PEG (1.2 mole eq),
ST3Gal3
    CMP-SA (8 mol eq), ST3Gal3
```

```
a-d, e, g, i, q, j, l, o, p (independently selected) = 0 or 1; r, t = 1; f, h, k, m, s, u, w, y = 0; n = 0-4; v or x, (independently selected) = 1, when j or l, (respectively, independently selected) is 1; R = PEG.
```

FIG. 32C

97/498

NSO expressed Factor VII or VIIa a--u (independently selected) = 0 or 1; v-y = 0; n = 0-4; Sia (independently selected) = Sia or Gal.

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

a-m, o-u (independently selected) = 0 or 1; n = 0.4; v-y (independently selected) = 1, when j-m (independently selected) is 1; Sia = Sia; R = PEG.

FIG. 32D

D ←-Fuc (GlcNAc)_{cc}-(Gal)_{dd}-(Sia)_{eg} (R)_{gg}

a-d, i, n-u (independently selected) = 0 or 1. bb, cc, dd, ec, ff, gg (independently selected) = 0 or 1. e-h, aa (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-z = 0: R = modifying group, mannose, oligo-mannose,

FIG. 33A

99/498

CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q=1; e-h=1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg=0.

Sialidase

2. CMP-SA-PEG, ST3Gal3

a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected) = 0 or 1; o, p, z = 0; j-m, ee, v-y, gg (independently selected) = 0 or 1; R = PEG.

FIG. 33B

CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.

Sialidase

CMP-SA-PEG, ST3Gal3

3. ST3Gal1, CMP-SA

a-d, n, p, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, i, r-u (independently selected) = 0 or 1; j-m, ee, v-y, gg (independently selected) = 0 or 1; o, z = 0; R = PEG.

FIG. 33C

CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q, bb, cc, dd, ff = 1; e-h, aa = 1 to 4; ee, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.

```
    sialidase
```

- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA, ST3Gal3
 4. CMP-SA-PEG, ST3Gal1

```
a-d, n, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, r-u (independently selected) = 0 or 1; R = PEG;
o, v-y, gg = 0;
j-m, p, ee (independently selected) = 0 or 1, but when p = 1, z = 1.
```

FIG. 33D

```
CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q=1; e-h=1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.
```

CMP-SA-PEG, ST3Gal3

```
a-d, q = 1; e-h = 1 to 4;
aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected) = 0 or 1; R = PEG;
o, p, z = 0; j-m, ee, v-y, gg (independently selected) = 0 or 1.
```

FIG. 33E

101/498

CHO, BHK, 293 cells, Vero expressed Factor IX a-d, q=1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, j-m, i, n, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.

1. CMP-SA-levulinate, ST3Gal3, buffer, salt
2. H₄N₂-PEG

a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected) = 0 or 1; o, p, z = 0; R = PEG; j-m, ee, v-y, gg (independently selected) = 0 or 1.

FIG. 33F

CHO, BHK, 293 cells, Vero expressed Factor IX a-d, n, q, bb, cc, dd, ff = 1; e-h, aa = 1 to 4; e-, j-m, i, o, p, r-u (independently selected) = 0 or 1; v-z, gg = 0.

1. CMP-SA-PEG, α2,8-ST

a-d, q = 1; e-h = 1 to 4; aa, bb, cc, dd, ee, ff, i, n, r-u (independently selected) = 0 or 1; o, p, z = 0; R= PEG; j-m, ee (independently selected) = 0 to 2; v-y, gg (independently selected) = 1, when j-m (independently selected) is 2;

FIG. 33G

$$\mathbf{A} \leftarrow \underbrace{ \begin{aligned} & \text{[GlcNAc-(Gal)_a]_c^-(Sia)_j^-(R)_v} \\ & \text{[GlcNAc-Gal)_b]_t^-(Sia)_k^-(R)_w} \\ & \text{[GlcNAc-Gal)_b]_t^-(Sia)_k^-(R)_w} \\ & \text{[GlcNAc-(Gal)_b]_g^-(Sia)_j^-(R)_w} \\ & \text{[[GlcNAc-(Gal)_d]_g^-(Sia)_m^-(R)_y]_u} \end{aligned} }_{\mathbf{Man}}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose.

FIG. 34A

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = PEG.

FIG. 34B

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. Sialidase
 - CMP-SA-PEG (1.2 mol eq), ST3Gal3
 - 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 34C

NSO expressed FSH.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0;
Sia (independently selected) = Sia or Gal.

- Sialidase and α-galactosidase
 Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = PEG.

FIG. 34D

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase 2. CMP-SA-PEG (16 mol eq),
- ST3Gal3
- 3. CMP-SA, ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 34E

105/498

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₂N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 34F

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 34G

Insect cell expressed FSH. a-d, f, h, j-m, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1.

> 1. GNT's 1,2,4,5, UDP-GlcNAc 2. Galactosyltransferase, UDP-Gal-PEG

a-i, q-u (independently selected) = 0 or 1: j-m=0; v-y (independently selected) = 1. when e-h (independently selected) is 1; R = PEG

FIG. 34H

Yeast expressed FSH. a-m=0; q-y (independently selected) = 0 to 1; p = 1: R (branched or linear) = Man, oligomannose.

- Endoglycanase 2. Galactosyltransferase, UDP-Gal ◆ 3. CMP-SA-PEG, ST3Gal3
- a-m, p-y = 0;

 $n ext{ (independently selected)} = 0 ext{ or } 1;$ R' = -Gal-Sia-PEG.

FIG. 341

CHO, BHK, 293 cells, Vero expressed FSH. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

 CMP-SA-linker-SA-CMP, ST3Gal3
 ST3Gal1, desialylated chorionic gonadrophin (CG) produced in CHO.
 CMP-SA, ST3Gal3, ST3Gal1

a-m, q-u (independently selected) = 0 or 1; p = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-CG.

FIG. 34J

108/498

$$\begin{array}{c} (\operatorname{Fuc})_{i} \\ \mathbf{A} & \leftarrow -\operatorname{GlcNAc-GlcNAc-Man} \\ & \left[(\operatorname{GlcNAc-Gal})_{a} \right]_{e}^{-} (\operatorname{Sia})_{p}^{-} (R)_{v} \right]_{r} \\ & \left[(\operatorname{GlcNAc-Gal})_{a} \right]_{e}^{-} (\operatorname{Sia})_{r}^{-} (R)_{v} \right]_{s} \\ & \left[(\operatorname{GlcNAc-Gal})_{d} \right]_{e}^{-} (\operatorname{Sia})_{r}^{-} (R)_{v} \right]_{u} \\ & \mathbf{B} & \left(-\operatorname{Gal})_{A} \right]_{e}^{-} (\operatorname{Sia})_{p}^{-} (R)_{z} \\ & \left[(\operatorname{GlcNAc-(Gal)}_{d} \right]_{h}^{-} (\operatorname{Sia})_{m}^{-} (R)_{y} \right]_{u} \\ \end{array}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z=0; R = polymer.

FIG. 35A

109/498

```
CHO, BHK, 293 cells, Vero expressed EPO a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to1; v-z=0
```

2. CMP-SA-PEG, ST3Gal3

1. Sialidase

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
j-m, v-y (independently selected) = 0 or 1;
R = PEG; z = 0.
```

FIG. 35B

```
Insect cell expressed EPO a-d, f, h, j-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.
```

GNT's 1&2, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal3

 $\begin{array}{l} b,\,d,\,f,\,h,\,k,\,m\text{-}q,\,s,\,u,\,w,\,y,\,z=0;\\ a,\,c,\,e,\,g,\,i,\,r,\,t\ \ (independently\ selected)=0\ or\ 1;\\ j,\,l,\,v,\,x\,(independently\ selected)=0\ or\ 1;\\ R=PEG. \end{array}$

FIG. 35C

110/498

CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z=0.

- sialidase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA, ST3Gal3
- ↓ 4. CMP-SA-PEG, ST3Gal1

```
a-h, n, q = 1;
i-m, o, r-u (independently selected) = 0 or 1;
v-y = 0; p, z = 0 or 1; R = PEG.
```

FIG. 35D

```
CHO, BHK, 293 cells, Vero expressed EPO a-g, n, q = 1; h=1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z=0
```

1. CMP-SA-PEG, ST3Gal3

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m, v-y (independently selected) = 0 or 1;
R = PEG; z = 0.
```

FIG. 35E

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

GNT's 1, 2 & 5, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal-PEG

a-c, e-g, i, i-t, v-x (independently selected) = 0 or 1; d, h, i-q, u, y, z = 0; R = PEG.

FIG. 35F

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- GNT's 1, 2 & 5, UDP-GlcNAc
 Galactosidase (synthetic enzyme),
 PEG-Gal-F
- a-c, e-g, n, q-t, v-x, z (independently selected) = 0 or 1; d, h, j-m, o, p, y, z = 0; R = PEG.

FIG. 35G

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z=0; e, g, i, r, t (independently selected) = 0 or 1.

1. GNT-1, UDP-GlcNAc-PEG

e, i, r, v (independently selected) = 0 or 1; a-h, j-q, s-u, w-z = 0; R = PEG.

FIG. 35H

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z=0; e, g, i, r, t (independently selected) = 0 or 1.

- GNT-1, UDP-GlcNAc
 - 2. Galactosyltransferase, UDP-Gal-PEG

a, e, i, r, v (independently selected) = 0 or 1; b-d, f-h, j-q, s-u, w-z = 0; R = PEG.

FIG. 351

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- GNT-1, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal
 ST3Gal3, CMP-SA-PEG

a, e, i, j, r, v (independently selected) = 0 or 1; b-d, f-h, k-q, s-u, w-z = 0; R = PEG.

FIG. 35J

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- 1. GNT's 1, 2 & 5, UDP-GlcNAc
- Galactosyltransferase, UDP-Gal
 - 3. ST3Gal3, CMP-SA-PEG

a-c, e-g, i-l, r-t, v-x (independently selected) = 0 or 1; d, h, m-q, u, y, z = 0; R = PEG.

FIG. 35K

Insect cell, yeast or fungi expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1.

- GNT's 1, 2 & 5, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal
- ▼ 3. α2,6-sialyltransferase, CMP-SA-PEG

```
a-c, e-g, i-l, r-t, v-x (independently selected)
= 0 or 1;
d, h, m-q, u, y, z = 0; R = PEG.
```

FIG. 35L

```
CHO, BHK, 293 cells, Vero expressed EPO
a-q, r-u (independently selected) = 0 or 1;
v-z = 0.

1. sialidase
2. CMP-SA, ST3Gal3
3. CMP-SA-PEG, ST3Gal1
```

```
a-h, q, i-o, r-u (independently selected)
= 0 or 1;
v-y=0; p, z=0 or 1; R=PEG.
```

FIG. 35M

115/498

```
CHO, BHK, 293 cells, Vero expressed EPO
a-q, r-u (independently selected) = 0 or 1;
v-z = 0.

1. CMP-SA-PEG, ST3Gal3

a-h, i-o, q-u (independently selected) = 0 or 1;
```

R = PEG.

y-y=0; p, z=0 or 1;

FIG. 35N

CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z = 0.

1. CMP-SA-PEG, α 2,8-sialyltransferase

FIG. 350

116/498

CHO, BHK, 293 cells, Vero expressed EPO a-q, r-u (independently selected) = 0 or 1; v-z = 0.

CMP-SA-PEG, α2,8-sialyltransferase

a-h, i-o, p-u, v-z (independently selected) = 0 or 1; R = SA-PEG.

FIG. 35P

yeast or fungi expressed EPO r, t, u, v, x, y (independently selected) = 0 or 1; a-m, n-q, s, w, z = 0; R = (Man)_n where n = 1-5, linear or branched.

- mannosidases
 GNT-1, UDP-GlcNAc
 galactosyltransferase, UDP-Gal
 ST3Gal3, CMP-SA-PEG
- a, e, j, r, v (independently selected) = 0 or 1; b-d, f-i, k-q, s-u, w-z = 0; R = PEG.

FIG. 35Q

117/498

yeast or fungi expressed EPO r, t, u, v, x, y (independently selected) = 0 or 1; a-m, n-q, s, w, z = 0; $R = (Man)_n$ where n = 1-5, linear or branched.

mannosidases
 GNT-1, UDP-GlcNAc-PEG

e, r, v (independently selected) = 0 or 1; a-h, i-q, s-u, w-z = 0; R = PEG.

FIG. 35R

yeast or fungi expressed EPO r, t, u, v, x, y (independently selected) = 0 or 1; a-m, n-q, s, w, z = 0; $R = (Man)_n$ where n = 1-5, linear or branched.

- mannosidase-I
 GNT-1, UDP-GlcNAc
 galactosyltransferase, UDP-Gal
 ST3Gal3, CMP-SA-PEG
- a, e, j, r, t-u, v, x, y (independently selected) = 0 or 1; b-d, f-i, k-q, s, w, z = 0; $(R)_v = PEG$; $(R)_x$ and $(R)_y = Man$.

FIG. 35S

a-d, i, n-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20.

v-z=0; aa, bb=1; cc=0;

R = polymer; R" and R' = sugar-polymer or Fuc.

FIG. 35T

```
yeast or fungi expressed EPO

r, t, u, v, x, y (independently selected) = 0 or 1;

cc, a-m, n-q, s, w, z = 0;

aa, bb = 1;

R = (Man)_a where n = 1-100, linear or branched.
```

```
    1. endo-H
    2. galactosyltransferase, UDP-Gal-PEG
```

```
i (independently selected) = 0 or 1;
aa, bb, cc, a-h, j-z = 0; R" = Gal-PEG.
```

FIG. 35U

```
yeast or fungi expressed EPO r, t, u, v, x, y (independently selected) = 0 or 1; cc, a-m, n-q, s, w, z = 0; aa, bb = 1; R = (Man)_n where n = 1-100, linear or branched.
```

- endo-H
 galactosyltransferase, UDP-Gal
- 3. ST3Gal3, CMP-SA-PEG

```
i (independently selected) = 0 or 1;
aa, bb, cc, a-h, j-z=0; R" = Gal-SA-PEG.
```

FIG. 35V

120/498

```
Insect cell expressed EPO a-d, f, h, j-m, n-q, s, u, v-z = 0; e, g, i, r, t (independently selected) = 0 or 1; aa = 1; \mathbb{R}^{2} = Fuc.
```

mannosidases

2. galactosyltransferase, UDP-Gal-PEG

cc, e, i, r, v (independently selected) = 0 or 1; bb, a-h, j-q, s-u, w-z = 0; aa = 1; R' = Gal-PEG.

FIG. 35W

121/498

$$\begin{array}{c} (\operatorname{Fuc})_i \\ \mathbf{A} \leftarrow -\operatorname{GlcNAc-GlcNAc-Man} \\ & \begin{array}{c} \operatorname{Man} \left[[\operatorname{GlcNAc-(Gal)}_a]_e \cdot (\operatorname{Sia})_i \cdot (R)_v \right]_e \\ [\operatorname{GlcNAc-(Gal)}_b]_f \cdot (\operatorname{Sia})_k \cdot (R)_w \right]_e \\ & \begin{array}{c} \operatorname{Man} \left[[\operatorname{GlcNAc-(Gal)}_b]_g \cdot (\operatorname{Sia})_f \cdot (R)_v \right]_e \\ (\operatorname{GlcNAc-(Gal)}_d]_h \cdot (\operatorname{Sia})_m \cdot (R)_y \right]_u \\ \\ \mathbf{B} \leftarrow \left(\begin{array}{c} \operatorname{Gial}_b \cdot (\operatorname{Gal})_m \cdot (\operatorname{Sia})_p \cdot (R)_z \\ -\operatorname{GalNAc-(Gal)}_m \cdot (\operatorname{Sia})_p \cdot (R)_z \right)_q \\ \\ & \begin{array}{c} \operatorname{a-d}, \ i, \ n-u \ (independently \ selected) = 0 \ \text{to} \ 4. \end{array} \right. \end{array}$$

a-d, i, n-ti (independently selected) = 0 or 1 e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer.

FIG. 35X

122/498

```
NSO expressed NESP q = 1; a-i, n, r-u (independently selected) = 0 or 1; j-m, o, p, v-z = 0
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    H<sub>4</sub>N<sub>2</sub>-PEG
```

```
q = 1; a-i, j-n, r-y (independently selected) = 0 or 1;
o, p, z = 0; R = PEG.
```

FIG. 35Y

```
CHO, BHK, 293 cells, Vero expressed NESP a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z=0
```

1. CMP-SA-PEG, α2,8-ST

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
R = PEG; z = 0.
```

FIG. 35Z

CHO, BHK, 293 cells, Vero expressed NESP a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; v-z = 0

1 CMP-SA, poly- α 2,8-ST

a-g, n, q = 1; h = 1 to 3; i, j-m, o, p, r-u, (independently selected) = 0 or 1; v-z (independently selected) = 0-40; R = Sia.

FIG. 35AA

$$\begin{array}{c} \textbf{A} & \longleftarrow \\ (\text{Fuc})_{i} \\ -\text{GlcNAc-GlcNAc-Man} \\ & \boxed{ \begin{bmatrix} [\text{GlcNAc-(Gal)}_{a}]_{e^{-}} (\text{Sia})_{j}^{-} (R)_{v} \end{bmatrix}_{r} \\ \left[[\text{GlcNAc-(Gal)}_{b}]_{l^{-}} (\text{Sia})_{k}^{-} (R)_{w} \end{bmatrix}_{r} \\ Man \\ \left[[\text{GlcNAc-(Gal)}_{d}]_{g^{-}} (\text{Sia})_{l^{-}} (R)_{x} \end{bmatrix}_{t} \\ \left[[\text{GlcNAc-(Gal)}_{d}]_{h^{-}} (\text{Sia})_{m^{-}} (R)_{y} \end{bmatrix}_{u} \\ \end{array}$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{o} \\ -(\operatorname{GalNAc-(Gal})_{n}-(\operatorname{Sia})_{p}-(R)_{g} \end{bmatrix}_{2a}$$

a-d, i, n-u, aa (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 36A

```
CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.
```

 Sialidase
 CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u, aa (independently selected) = 0 or 1;
o, p, z = 0; n, e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 36B

```
CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z=0.
```

- Sialidase
- 2. CMP-SA-PEG (1.2 mol eq),

7 3. CMP-SA (16 mol eq), ST3Gal3 & ST3Gal1

a-d, i-m, p-u, as (independently selected) = 0 or 1; o, z = 0; n, e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 36C

```
NSO expressed GM-CSF.
a-d, i-m, o-u, aa (independently selected) = 0 or 1;
n, e-h = 1; v-z=0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-PEG, ST3Gal1

```
a-d, i-m, p-u, z, aa (independently selected) = 0 or 1;
n, e-h = 1; o, v-y = 0; z = 1, when p = 1; R = PEG.
```

FIG. 36D

```
CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.
```

- 1. Sialidase
- CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-y, aa (independently selected) = 0 or 1; o, p, z = 0; n, e-h = 1; R = PEG.
```

FIG. 36E

CHO, BHK, 293 cells, Vero expressed GM-CSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG

a-d, i-m, o-y, aa (independently selected) = 0 or 1; z = 0; n, e-h = 1; R = PEG.

FIG. 36F

CHO, BHK, 293 cells, Vero expressed GMCSF. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

1. CMP-SA, α2,8-ST

a-d, i, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; j-m (independently selected) = 0-20; v-z (independently selected) = 0.

FIG. 36G

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n} - (\operatorname{Sia})_{p} - (R)_{z} \end{pmatrix}_{aa}$$

a-d, i, n-u, aa, bb, cc (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 100.

v-y = 0; R = modifying group, mannose, oligo-mannose. R'= H, glycosyl residue, modifying group. glycoconjugate.

FIG. 36H

129/498

```
Insect cell expressed GM-CSF.
a-d, f, h, j-m, o, p, s, u, v-z = 0;
e, g, i, n, q, r, t, aa (independently selected) = 0 or 1.
```

```
    GNT's 1,2,4,5, UDP-GlcNAc
    Galactosyltransferase, UDP-Gal-PEG
```

```
a-i, n, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 361

```
Yeast expressed GM-CSF.
a-p, z, cc = 0;
q-y, aa (independently selected) = 0 to 1;
bb = 1; R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

```
    Endoglycanase
    mannosidase (if aa = 1).
    Galactosyltransferase, UDP-Gal-PEG
```

```
a-p, r-z, aa, bb = 0;
q, cc (independently selected) = 0 or 1;
R' = -Gal-PEG.
```

FIG. 36J

CHO, BHK, 293 cells, Vero expressed GM-CSF. a--m, o-u, aa, bb (independently selected) = 0 or 1; n, v-z, cc = 0.

- 1. sialidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-linker-SA-CMP, ST3Gal1
- 3. ST3Gal3, transferrin

a--m, p-u, z, as (independently selected) = 0 or 1; o, v-y, cc = 0; bb, n = 1; R = transferrin.

FIG. 36K

$$\mathbf{A} \leftarrow \begin{bmatrix} \operatorname{Fuc})_{i} & \operatorname{Man} & \left[[\operatorname{GlcNAc-(Gal)_{a}]_{e^{-}}} (\operatorname{Sia})_{j^{-}} (\operatorname{R})_{v} \right]_{r} \\ \operatorname{GlcNAc-GlcNAc-Man} & \operatorname{Man} & \left[[\operatorname{GlcNAc-(Gal)_{b}]_{f^{-}}} (\operatorname{Sia})_{i^{-}} (\operatorname{R})_{w} \right]_{s} \\ \operatorname{Man} & \left[[\operatorname{GlcNAc-(Gal)_{d}]_{g^{-}}} (\operatorname{Sia})_{i^{-}} (\operatorname{R})_{x} \right]_{t} \\ \left[[\operatorname{GlcNAc-(Gal)_{d}]_{h^{-}}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \right]_{u} \\ \end{bmatrix}_{q} \end{aligned}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 37A

132/498

```
CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

```
1. Sialidase
2. CMP-SA-PEG (16 mol eq),
5T3Gal3
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 37B

```
CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

```
1. Sialidase
2. CMP-SA-PEG (1.2 mol eq),
ST3Gal3
```

3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 37C

133/498

```
NSO expressed Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- Sialidase and α-galactosidase
 α-Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 37D

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

```
    Sialidase
    CMP-SA-PEG (16 mol eq),
ST3Gal3
    CMP-SA, ST3Gal3
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 37E

134/498

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

```
1. CMP-SA-levulinate, ST3Gal3, 2. H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R \doteq PEG.
```

FIG. 37F

```
CHO, BHK, 293 cells, Vero expressed Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

1. CMP-SA, α2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1; j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 37G

$$\mathbf{A} \leftarrow \begin{bmatrix} \text{Fuc})_i \\ \text{GlcNAc-GlcNAc-Man} \\ \text{R'})_n \end{bmatrix} \begin{bmatrix} \text{[GlcNAc-(Gal)_a]_s- (Sia)_j - (R)_v} \\ \text{[GlcNAc-(Gal)_b]_r- (Sia)_k - (R)_w} \end{bmatrix}_s \\ \text{[GlcNAc-(Gal)_a]_s- (Sia)_j - (R)_x} \end{bmatrix}_t \\ \text{[GlcNAc-(Gal)_d]_s- (Sia)_m - (R)_y} \end{bmatrix}_q \\ \text{[GlcNAc-(Gal)_d]_s- (Sia)_m - (R)_y} \\ \text{[GlcNA$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 37H

```
Insect or fungi cell expressed IF-gamma.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

GNT's 1,2,4,5, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 371

```
Yeast expressed IF-gamma.

a-m=0; q-y (independently selected) = 0 to 1; p=1;

R (branched or linear) = Man, oligomannose.
```

- Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 37J

```
CHO, BHK, 293 cells, Vero expressed IF-gamma. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase.

```
a-m, q-u (independently selected) = 0 or 1;
p = 1; n = 0;
v-y (independently selected) = 0 or 1;
R = linker-transferrin.
```

FIG. 37K

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h, p = 1; n, v-y = 0.
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h, p = 1;
n, v-y (independently selected) = 0 or 1;
R = PEG.
```

ST3Gal3

FIG. 37L

138/498

```
Insect or fungi cell expressed IF-gamma.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT's 1 & 2, UDP-GlcNAc-PEG

a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, q (independently selected) = 0 or 1;
p = 1; v, x (independently selected) = 1,
when e, g (independently selected) is 1;
R = PEG.
```

FIG. 37M

```
CHO, BHK, 293 cells, Vero expressed
Interferon gamma.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. CMP-SA-PEG, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1; j-m (independently selected) = 0-2;
v-y (independently selected) = 1,
when j-m (independently selected) = 2;
R = PEG.
```

FIG. 37N

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & \\ -\operatorname{GlcNAc-GlcNAc-Man} & & & \\ -\operatorname{GlcNAc-GlcNAc-Man} & & & \\ & & & & \\ -\operatorname{GlcNAc-GlcNAc-Man} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & &$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 38A

CHO, BHK, 293 cells, Vero or transgenic animal expressed α_1 antitrypsin. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

 Sialidase
 CMP-SA-PEG (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = PEG.

FIG. 38B

CHO, BHK, 293 cells, Vero or transgenic animal expressed α_1 antitrypsin. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

 Sialidase
 CMP-SA-PEG (1.2 mol eq), ST3Gal3
 CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG

FIG. 38C

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed alpha-1 antitrypsin.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.

1. Sialidase
2. CMP-SA-PEG (16 mol eq),
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

ST3Gal3
3. CMP-SA. ST3Gal3

FIG. 38D

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed α<sub>1</sub>-antitrypsin.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 38E

142/498

CHO, BHK, 293 cells, Vero expressed α_1 -antitrypsin. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 38F

$$\mathbf{A} \overset{(\mathrm{Fuc})_{i}}{\overset{|}{\operatorname{GleNAc\text{-}(Gal)}_{k}]_{e^{-}}(\mathrm{Sia})_{i} - (R)_{v}}}{\underset{(\mathrm{R}')_{n}}{\operatorname{GleNAc\text{-}Man}}} \underbrace{\left[[\mathrm{GleNAc\text{-}(Gal)}_{k}]_{e^{-}}(\mathrm{Sia})_{i} - (R)_{v} \right]_{r}^{r}}_{\left[[\mathrm{GleNAc\text{-}(Gal)}_{k}]_{e^{-}}(\mathrm{Sia})_{i} - (R)_{x} \right]_{t}} \underbrace{\left[[\mathrm{GleNAc\text{-}(Gal)}_{k}]_{h^{-}}(\mathrm{Sia})_{m^{-}}(R)_{y} \right]_{u}}_{q_{p}} \underbrace{\left[[\mathrm{GleNAc\text{-}(Gal)}_{k}]_{h^{-}}(\mathrm{Sia})_{m^{-}}(R)_{y} \right]_{u}}_{u}}_{u}}_{u}$$

a-d, i, n, p-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 100.

v-y=0;

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 38G

144/498

```
Insect or fungi cell expressed \alpha_1-antitrypsin. a-d, f, h, j-m, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1.
```

```
    GNT's 1,2,4,5, UDP-GlcNAc
    Galactosyltransferase, UDP-Gal-PEG
```

```
a-i, q-u (independently selected) = 0 or 1; j-m = 0; v-y (independently selected) = 1, when e-h (independently selected) is 1; R=PEG.
```

FIG. 38H

```
Yeast expressed \alpha_1-antitrypsin.

a-m=0; q-y (independently selected) = 0 to 1;

p=1; R (branched or linear) = Man, oligomannose.
```

- Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- ↓ 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 381

145/498

CHO, BHK, 293 cells, Vero expressed α_1 -antitrypsin. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase

a-m, q-u (independently selected) = 0 or 1: p = 1; n = 0;v-y (independently selected) = 0 or 1;

R = linker-transferrin.

FIG. 38J

146/498

$$(Fuc)_{i} \\ \mathbf{A} \leftarrow (Glc)_{i} \\ \mathbf{A} \leftarrow (Glc)_{i} \\ (R')_{p} \\ (R')_{q} \\ (R$$

a-d, i, n-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 to 20.

R = polymer;

R', R" (independently selected) = sugar, glycoconjugate.

FIG. 38K

147/498

```
Yeast expressed alpha-1 antitrypsin. a-h, i-m, p, q = 0;
```

R (independently selected) = mannose, oligomannose, polymannose;

r-u, v-y (independently selected) = 0 or 1; n, o = 1.

- endoglycanase
- ▼ 2. Galactosyltransferase, UDP-Gal-PEG

```
a-h, i-o, q, r-u, v-y = 0; p = 1.
R" = Gal-PEG.
```

FIG. 38L

```
Plant expressed alpha-1 antitrypsin.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1;
n=1; R'=xylose
```

- 1. hexosaminidase.
- 2. alpha mannosidase and xylosidase
- 3. GlcNAc transferase, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, v-y = 0;
c, g, i, r, t (independently selected) = 0;
q = 1; R' = GlcNAc-PEG.
```

FIG. 38M

CHO, BHK, 293 cells, Vero, transgenic animal expressed α_1 antitrypsin. a-h, i-o, r-u (independently selected) = 0 or 1; p, q, v-y = 0.

1. CMP-SA-PEG, ST3Gal3

a-h, i-o, r-u (independently selected) = 0 or 1; p, q = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 38N

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 39A

CHO, BHK, 293 cells, Vero expressed Cerezyme a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

```
    Sialidase
    CMP-SA-PEG (16 mol eq),
ST3Gal3
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 39B

```
CHO, BHK, 293 cells, Vero expressed Cerezyme.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. Sialidase
 2. CMP-SA-M-6-P (1.2 mol eq),
 ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = mannose-6-phosphate
```

FIG. 39C

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

```
    Sialidase
    CMP-SA-PEG (16 mol eq),
ST3Gal3
    CMP-SA, ST3Gal3
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = Mannose-6-phosphate
```

FIG. 39D

```
CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; y-y = 0.
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    H<sub>4</sub>N<sub>2</sub>-spacer-M-6-P or clustered M-6-P
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = M-6-P or clustered M-6-P
```

FIG. 39E

CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 39F

153/498

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 39G

154/498

```
Insect cell expressed Cerezyme.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

```
    GNT's 1,2,4,5, UDP-GlcNAc
    Galactosyltransferase, UDP-Gal-PEG
```

```
a-i, q-u (independently selected) = 0 or 1;
j-m = 0;
v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 39H

```
Yeast expressed Cerezyme.

a-m = 0; q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- Endoglycanase
 Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG. ST3Gal3
- a-m, p-y=0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 391

CHO, BHK, 293 cells, Vero expressed Cerezyme. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal3, desialylated transferrin.3. CMP-SA, ST3Gal3
- a-m, q-u (independently selected) = 0 or 1; p = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-transferrin.

FIG. 39J

156/498

$$\begin{array}{c} (Fuc)_{i} \\ \textbf{B} \leftarrow -\text{GlcNAc} - (Gal)_{a}l_{e}^{-} \cdot (Sia)_{j}^{-} \cdot (R)_{v} \\ (R')_{o} \end{array} \\ \begin{array}{c} \text{Man} \left[[\text{GlcNAc} - (Gal)_{a}l_{e}^{-} \cdot (Sia)_{j}^{-} \cdot (R)_{v} \right]_{g}^{r} \\ \left[(\text{GlcNAc} - (Gal)_{e}l_{g}^{-} \cdot (Sia)_{k}^{-} \cdot (R)_{x} \right]_{t}^{r} \\ \left[(\text{GlcNAc} - (Gal)_{e}l_{g}^{-} \cdot (Sia)_{i}^{-} \cdot (R)_{y} \right]_{u} \\ \end{array}$$

$$C \longleftarrow \text{-(Fuc)}_{0-1} \qquad A \longleftarrow \text{-GlcNAc-GlcNAc-Man} \qquad \underbrace{\text{Man-[Man]}_{0-12}}_{\text{Man}}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. R = polymer; R' = sugar, glycoconjugate.

FIG. 40A

```
CHO, BHK, 293 cells, Vero expressed tPA a-g, n=1; h=1 to 3; j-m, i, (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; o, v-y = 0.
```

```
1. Mannosidase(s), sialidase
2. GNT1,2 (4 and/or 5) UDP-GlcNAc
3. Gal transferase, UDP-Gal
4. CMP-SA-PEG, ST3Gal3
```

```
 A=B; \ a-g, \ n=1; \ h=1 \ to \ 3; \\ i, r-u \ (independently \ selected)=0 \ or \ 1; \\ o=0; \ j-m, v-y \ (independently \ selected)=0 \ or \ 1; \\ R=PEG
```

FIG. 40B

```
\label{eq:approx} \begin{split} &\text{Insect or fungi cell expressed tPA} \\ &A=B; \ a\text{-d}, f, h, j\text{-o}, s, u, v\text{-y}=0; \\ &e, g, i, n, r, \ t \ (independently selected)=0 \ \text{or} \ 1. \end{split}
```

```
1. GNT's 1&2, UDP-GlcNAc
2. Galactosyltransferase, UDP-Gal
3. CMP-SA-PEG. ST3Gal3
```

```
\begin{split} A=B; & b,d,f,h,k,m,o,s,u,w,y=0;\\ a,c,e,g,i,r,t & (independently selected)=0 \text{ or } 1;\\ n=1; & j,l,v,x & (independently selected)=0 \text{ or } 1;\\ R=PEG. \end{split}
```

FIG. 40C

```
Yeast expressed tPA
B = A; i = 0.
```

- endoglycanase
 Galactosyltransferase,
 UDP-Gal-PEG
- A = B; a-n, r-y = 0; o = 1; R' = Gal-PEG.

FIG. 40D

$$\begin{split} &\text{Insect or fungi cell expressed tPA} \\ &A=B; \ a\text{-d}, f, h, j\text{-o}, s, u, v\text{-y}=0; \\ &e, g, i, n, r, \ t \ (independently selected)=0 \ or \ 1. \end{split}$$

- 1. alpha and beta mannosidases
- 2. Galactosyltransferase, UDP-Gal-PEG

A = B; a-n, r-y = 0; o = 1; R' = Gal-PEG.

FIG. 40F

159/498

```
Insect or fungi cell expressed tPA A = B; a-d, f, h, j-o, s, u, v-y = 0; e, g, i, n, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1&2, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
\begin{array}{lll} A=B; & b,d, \ f, \ h, \ j\text{-o}, s, u, w, y=0; \\ a,c,e,g, \ i, \ r, \ t, v, \ x \ (independently \ selected)=0 \ or \ 1; \\ n=1; \ R=PEG. \end{array}
```

FIG. 40F

```
Insect or fungi cell expressed tPA A=B;\ a-d,\ f,\ h,\ j-o,\ s,\ u,\ v-y=0; e, g, i, n, r, t (independently selected) = 0 or 1.
```

- GNT's 1 & 2, UDP-GlcNAc
 Galactosidase (synthetic enzyme),
- 2. Galactosidase (synthetic enzyme)

 ▼ PEG-Gal-F.

A = B; b, d, f, h, j-o, s, u, w, y = 0; a, c, e, g, i, r, t, v, x (independently selected)= 0 or 1; n = 1; R = PEG.

FIG. 40G

160/498

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. R = polymer; R' = sugar, glycoconjugate.

FIG. 40H

161/498

```
NSO expressed tPA

A = B; a-m, r-u (independently selected) = 0 or 1;

n = 1; o, p, q, v-y = 0
```

sialidase, alpha-galactosidase
 CMP-SA-levulinate, ST3Gal3,
 H₄N₂-PEG

```
 A = B; \ a\text{-m, r-y (independently selected)} = 0 \ \text{or} \ 1; \\ n = 1; \ o, p, q = 0; \\ v\text{-y (independently selected)} = 1, \\ \text{when j-m (independently selected)} \ is \ 1; \\ R = PEG.
```

FIG. 401

```
CHO, BHK, 293 cells, Vero expressed tPA a-g, n, p = 1; h = 1 to 3; j-m, i, (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; q, o, v-y = 0.
```

- 1. alpha and beta Mannosidases
- 2. CMP-SA, ST3Gal3
- 3. Galactosyltransferase, UDP-Gal-PEG

```
a-g, n = 1; h = 1 to 3;
i, r-u (independently selected) = 0 or 1; o = 1;
q, p, v-y = 0; j-m (independently selected) = 0 or 1;
R' = Gal - PEG
```

FIG. 40J

Plant expressed tPA

A = B; a-d, f, h, j-m, s, u, v-y = 0;

e, g, i, q, r, t (independently selected) = 0 or 1; n=1; R' = xylose

- 1. hexosaminidase,
- 2. alpha mannosidase and
 - xylosidase

3. GlcNAc transferase, UDP-GlcNAc-PEG

A = B; a-d, f, h, j-n, s, u, v-y = 0; e, g, i, r, t (independently selected) = 0; q = 1; R' = GlcNAc-PEG.

FIG. 40K

$$\mathbf{A} = \underbrace{\left[[\operatorname{GlcNAc-(Gal)}_a]_e^- \left(\operatorname{Sia} \right)_j^- \left(\operatorname{R} \right)_v \right]_r}_{\left[[\operatorname{GlcNAc-(Gal)}_b]_f^- \left(\operatorname{Sia} \right)_k^- \left(\operatorname{R} \right)_w \right]_s}_{\left[[\operatorname{GlcNAc-(Gal)}_b]_g^- \left(\operatorname{Sia} \right)_i^- \left(\operatorname{R} \right)_x \right]_t}_{\left[[\operatorname{GlcNAc-(Gal)}_d]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u} \underbrace{\left[\left(\operatorname{GlcNAc-(Gal)}_b \right)_g^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_y \right]_u}_{\left[\operatorname{GlcNAc-(Gal)}_d \right]_h^- \left(\operatorname{Sia} \right)_m^- \left(\operatorname{R} \right)_u}_{\left[\operatorname{ClcNAc-(Gal)}_h^- \left(\operatorname{ClcNAc-(G$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 40L

164/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

```
    Sialidase
    CMP-SA-PEG (16 mol eq),
ST3Gal3
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 40M

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
 2. CMP-SA-PEG (1.2 mol eq),
 ST3Gal3
 - 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 40N

165/498

```
NSO expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0; Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α -galactosidase 2. Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 400

166/498

$$\mathbf{A} \leftarrow \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_a}]_e \cdot (\operatorname{Sia})_j \cdot (R)_v \\ [\operatorname{GlcNAc-GlcNAc-Man}]_t \\ [\operatorname{GlcNAc-(Gal)_b}]_t \cdot (\operatorname{Sia})_k \cdot (R)_w \end{bmatrix}_t \\ [\operatorname{GlcNAc-(Gal)_b}]_t \cdot (\operatorname{Sia})_t \cdot (R)_v \end{bmatrix}_t \cdot \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_a}]_e \cdot (\operatorname{Sia})_t \cdot (R)_v \\ [\operatorname{GlcNAc-(Gal)_a}]_h \cdot (\operatorname{Sia})_m \cdot (R)_y \end{bmatrix}_u \end{bmatrix}_t \cdot \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_m \cdot (R)_y \\ [\operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_m \cdot (R)_y \end{bmatrix}_u \end{bmatrix}_t \cdot \begin{bmatrix} \operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \\ [\operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_m \cdot (R)_y \end{bmatrix}_u \end{bmatrix}_t \cdot \begin{bmatrix} \operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_v \\ [\operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \end{bmatrix}_u \cdot \begin{bmatrix} \operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \\ [\operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \end{bmatrix}_u \cdot \begin{bmatrix} \operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \\ [\operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \end{bmatrix}_u \cdot \begin{bmatrix} \operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \\ [\operatorname{GlcNAc-(Gal)_a}]_t \cdot (\operatorname{Sia})_t \cdot (R)_y \end{bmatrix}_u \cdot (R)_y \cdot (R$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
 - CMP-SA-PEG (16 mol eq), ST3Gal3
 - 3. CMP-SA, ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 40Q

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₇-PEG
- a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1;

R = PEG.

FIG. 40R

168/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 40S

169/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & (\operatorname{R"})_{0} & (\operatorname{Gal})_{a}]_{e}^{-} (\operatorname{Sia})_{i}^{-} (\operatorname{R})_{v} \end{bmatrix}_{i} \\ \operatorname{GlcNAc-Gal}_{i} & \operatorname{GlcNAc-Man}_{i} & (\operatorname{GlcNAc-Gal})_{a}]_{e}^{-} (\operatorname{Sia})_{e}^{-} (\operatorname{R})_{v} \end{bmatrix}_{i} \\ \operatorname{GlcNAc-Gal}_{i} & \operatorname{Man}_{i} & (\operatorname{GlcNAc-Gal})_{d}]_{h}^{-} (\operatorname{Sia})_{i}^{-} (\operatorname{R})_{v} \end{bmatrix}_{u} \\ \operatorname{GlcNAc-Gal}_{i} & \operatorname{Man}_{i} & (\operatorname{GlcNAc-Gal})_{d}]_{h}^{-} (\operatorname{Sia})_{i}^{-} (\operatorname{R})_{v} \end{bmatrix}_{u} \\ \operatorname{GlcNAc-Gal}_{i} & \operatorname{Gal}_{i} & \operatorname{$$

a-d, i, n-y (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 100.

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

R" = glycosyl residue.

FIG. 40T

```
Insect cell expressed TNK tPA
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

GNT's 1,2,4,5, UDP-GlcNAc
 Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-m = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 40U

```
Yeast expressed TNK tPA a-m=0; q-y (independently selected) = 0 to 1; p=1; R (branched or linear) = Man, oligomannose.
```

- Endoglycanase
 Galactosyltransferase, UDP-Gal-PEG
- a-m, p-y = 0; n (independently selected) = 0 or 1; R' =-Gal-PEG.

FIG. 40V

171/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.

```
1. CMP-SA-linker-Gal-UDP,
ST3Gal3
```

2. Galactosyltransferase, anti-TNF IG chimera produced in CHO.

a-m, r-u (independently selected) = 0 or 1; p, q = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-anti-TNF IG chimera protein.

FIG. 40W

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc} - (\mathrm{Gal})_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{c}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = modifying group, mannose, oligomannose.

FIG. 41A

173/498

CHO, BHK, 293 cells, Vero expressed IL-2 a-c, e (independently selected) = 0 or 1; d = 0

1. Sialidase 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 41B

Insect cell expressed IL-2 a, e (independently selected) = 0 or 1; b, c, d = 0.

Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; R = PEG.

FIG. 41C

```
E. coli expressed IL-2
a-e = 0.

1. GalNAc Transferase, UDP-GalNAc
2. CMP-SA-PEG, sialyltransferase
```

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 41D

```
NSO expressed IL-2
a, e (independently selected) = 0 or 1;
b, c, d = 0

1. CMP-SA-levulinate, ST3Gal1
2. H_4N_2-PEG

a, c, d, e (independently selected) = 0 or 1;
```

FIG. 41F

b = 0; R = PEG.

FIG. 41F

FIG. 41G

2 peptides
A and A' - N-linked sites
B - O-linked sites

a-d, i, n-u (independently selected) = 0 or 1.

aa, bb (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

v-z = 0; R = polymer, glycoconjugate.

FIG. 42A

177/498

```
CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed
Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1;
v-z = 0.
```

1. Sialidase
2. CMP-SA-PEG, ST3Gal3

```
e-h = 1 to 4;
aa, bb, a-d, i, n, q-u (independently selected) = 0 or 1;
o, p, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42B

```
CHO, BHK, 293S cells, Vero, MDCK, 293S, HEKC expressed Factor VIII. e-h = 1 to 4; aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1; v-z = 0.
```

```
1. Sialidase
2. CMP-SA-PEG, ST3Gal3
3. ST3Gal1, CMP-SA
```

```
e-h = 1 to 4;
aa, bb, a-d, i, n, p-u (independently selected) = 0 or 1;
o, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42C

178/498

```
CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;
v-z = 0.
```

1. CMP-SA-PEG, ST3Gal3

```
e-h = 1 to 4;
aa, bb, a-d, i, n-u (independently selected) = 0 or 1;
z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42D

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected) 0 or 1;
v-z = 0.
```

1. CMP-SA-PEG, ST3Gal1

```
e-h = 1 to 4;
aa, bb, a-d, i, n-u (independently selected) = 0 or 1;
z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42E

CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;
v-z = 0.

1. CMP-SA-PEG, α 2,8-ST

e-h = 1 to 4; aa, bb, a-d, i, n-y (independently selected) = 0 or 1; z = 0; j-m (independently selected) = 0 to 2; v-y (independently selected) = 1, when j-m (independently selected) is 2; R = PEG.

FIG. 42F

180/498

2 peptides

A or A' - N-linked sites

B - O-linked sites

$$A = (\operatorname{Fuc})_{i} \setminus (\operatorname{Fuc})_{i} \setminus (\operatorname{GicNAc-(Gal)_al_e^-}(\operatorname{Sia})_{i}^- (\operatorname{R})_{v}) \setminus (\operatorname{GicNAc-(Gal)_al_e^-}(\operatorname{Sia})_{i}^- (\operatorname{R})_{v}) \setminus (\operatorname{GicNAc-(Gal)_al_e^-}(\operatorname{Sia})_{i}^- (\operatorname{R})_{v}) \setminus (\operatorname{GicNAc-(Gal)_al_a^-}(\operatorname{Sia})_{i}^- (\operatorname{R})_{v}) \setminus (\operatorname{GicNAc-(Gal)_al_a^-}(\operatorname{Sia})_{m}^- (\operatorname{R})_{v}) \setminus (\operatorname{GicNAc-(Gal)_al_a^-}(\operatorname{GicNAc-(Gal)_a^-}(\operatorname{GicNAc-(Gal)_a^-}(\operatorname{GicNAc-(Gal)_a^-}(\operatorname{GicNAc-(Gal)_a^-}(\operatorname{GicNAc-(Gal)_a^-}(\operatorname{GicNAc-(G$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc} - (\operatorname{Gal})_{n} - (\operatorname{Sia})_{p} - (R)_{z} \end{bmatrix}_{q}$$

glycoconjugate.

$$A^{2} \longleftarrow (Fuc)_{i} \qquad (Man)_{0.2} \qquad (R')_{ad} \qquad (Man)_{0.2} \qquad (Man)_{0.2$$

a-d, i, n-u, (independently selected) = 0 or 1.

aa, bb, cc, dd (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

v-z = 0;

R = modifying group, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group,

FIG. 42G

181/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

1. CMP-SA-levulinate, ST3Gal3, 2. H₄N₂-PEG

```
e-h = 1 to 4; aa, bb, cc, a-d, i, n-u (independently selected) = 0 or 1; dd, z = 0; j-m, v-y (independently selected) = 0 or 1; R = PEG.
```

FIG. 42H

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII. c-h=1 to 4; aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1; dd, v-z=0.
```

```
    1. endo-H
    2. galactosyltransferase, UDP-Gal-PEG
```

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
cc, v-z = 0; R' = -Gal-PEG.
```

FIG. 421

182/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC
expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.

1. ST3Gal3, CMP-SA
2. endo-H
3. galactosyltransferase, UDP-Gal-PEG
```

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
```

cc, v-z=0: R'=-Gal-PEG.

FIG. 42J

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

```
1. mannosidases
2. GNT 1 & 2, UDP-GlcNAc
3. galactosyltransferase, UDP-Gal-PEG
```

```
e-h = 1 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z = 0; R = PEG.
```

FIG. 42K

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII. e-h = 1 to 4; aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1; dd, v-z = 0.
```

- 1. mannosidases
- 2. GNT-1,2, 4 & 5; UDP-GlcNAc
- ▼ 3. galactosyltransferase, UDP-Gal
 4. ST3Gal3, CMP-SA

```
e-h = 1 to 4;
aa, bb, cc, a-d, i, j-q (independently selected) = 0 or 1;
dd, v-z=0.
```

FIG. 42L

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII. e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1; dd, v-z = 0.
```

```
    1. mannosidases
    ▼ 2. GNT-1, UDP-GlcNAc-PEG
```

```
e-h=0 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z=0.
```

FIG 42M

$$\mathbf{A} \leftarrow \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_a]_e^- & (\operatorname{Sia})_j - (R)_v \\ -\operatorname{GlcNAc-GlcNAc-Man} \end{bmatrix}_t^r \\ \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_b]_l^- - (\operatorname{Sia})_k - (R)_v \\ -\operatorname{GlcNAc-(Gal)}_b]_l^- & (\operatorname{Sia})_l - (R)_x \\ -\operatorname{Man} \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_a]_g^- & (\operatorname{Sia})_l - (R)_x \\ -\operatorname{GlcNAc-(Gal)}_a]_l^- & (\operatorname{Sia})_m^- & (R)_y \\ -\operatorname{GlcNAc-(Gal)}_a & (\operatorname{Sia})_m^- & (R)_y \\ -\operatorname{GlcNAc-(Gal)}_a & (\operatorname{Sia})_m^- & (R)_y \\ -\operatorname{GlcNAc-(Gal)}_a & (R)_y \\ -\operatorname{GlcNAc-(Gal)}_$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 43A

185/498

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

```
1. Sialidase
2. CMP-SA-PEG (16 mol eq),
ST3Gal3
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 43B

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

```
1. Sialidase
2. CMP-SA-PEG (1.2 mol eq),
ST3Gal3
3. CMP-SA (16 mol eq), ST3Gal3
```

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 43C

186/498

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. Sialidase
2. CMP-SA-PEG (16 mol eq),
ST3Gal3
3. CMP-SA, ST3Gal3
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG
```

FIG. 43D

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. CMP-SA-levulinate, ST3Gal3,
buffer, salt
2. H<sub>4</sub>N<sub>2</sub>-PEG

a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

CHO, BHK, 293 cells, Vero expressed Urokinase.

FIG. 43E

187/498

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 43F

$$\mathbf{A} \leftarrow \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_a]_c^-}(\operatorname{Sia})_j^- (R)_v \end{bmatrix}^T_{[\operatorname{GlcNAc-Man}} \begin{bmatrix} [\operatorname{GlcNAc-(Gal)_a]_c^-}(\operatorname{Sia})_j^- (R)_w \end{bmatrix}^T_{[\operatorname{GlcNAc-(Gal)_a]_c^-}(\operatorname{Sia})_j^- (R)_x \end{bmatrix}^T_{[\operatorname{GlcNAc-(Gal)_a]_c^-}(\operatorname{Sia})_j^- (R)_x \end{bmatrix}^T_{[\operatorname{GlcNAc-(Gal)_a]_c^-}(\operatorname{Sia})_j^- (R)_y \end{bmatrix}_{q}^T_{q}$$

a-d, i, n, p-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 100.
v-y = 0;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 43G

189/498

```
Insect cell expressed Urokinase.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

```
1. GNT's 1,2,4,5, UDP-GlcNAc
2. Galactosyltransferase, UDP-Gal-PEG
```

```
a-i, q-u (independently selected) = 0 or 1;
j-n = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 43H

```
Yeast expressed Urokinase.
a-n = 0;
q-y (independently selected) = 0 to 1;
p = 1; R (branched or linear) = Man, oligomannose.
```

```
    Endoglycanase
    Galactosyltransferase, UDP-Gal
    CMP-SA-PEG, ST3Gal3
```

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 431

190/498

```
CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; n, v-y = 0.
```

```
    CMP-SA-linker-SA-CMP, ST3Gal3
    ST3Gal1, desialylated Urokinase produced in CHO.
    3. CMP-SA, ST3Gal3, ST3Gal1
```

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-Urokinase.
```

FIG. 43J

```
Isolated Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0; n = 0; Sia (independently selected) = Sia or SO_4; Gal (independently selected) = Gal or GalNAc; GleNAc (independently selected) = GleNAc or GleNAc-Fuc.
```

1. sulfohydrolase

```
a-d, i-m, q-u (independently selected) = 0 or 1;
n = 0; e-h = 1; Sia = Sia;
Gal (independently selected) = Gal or GalNAc;
GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
v-y (independently selected) = 0 or 1;
R = PEG
```

2. CMP-SA-PEG, sialyltransferase

FIG. 43K

Isolated Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; n = 0; v-y = 0; Sia (independently selected) = Sia or SO_4 ; Gal (independently selected) = Gal or GalNAc; GleNAc (independently selected) = GleNAc or GleNAc-Fuc,

- 1. sulfohydrolase, hexosaminidase
- 2. UDP-Gal-PEG, galactosyltransferase

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-n = 0; Gal (independently selected) = Gal; GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 43L

$$\mathbf{A} = \begin{bmatrix} [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{a}]_{e}^{-} \cdot (\mathrm{Sia})_{j}^{-} \cdot (\mathrm{R})_{v} \end{bmatrix}_{t}^{t}$$

$$\begin{bmatrix} [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{b}]_{r}^{-} \cdot (\mathrm{Sia})_{k}^{-} \cdot (\mathrm{R})_{w} \end{bmatrix}_{t}^{t}$$

$$\begin{bmatrix} [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{d}]_{e}^{-} \cdot (\mathrm{Sia})_{l}^{-} \cdot (\mathrm{R})_{x} \end{bmatrix}_{t}^{t}$$

$$\begin{bmatrix} [\mathrm{GlcNAc\text{-}}(\mathrm{Gal})_{d}]_{h}^{-} \cdot (\mathrm{Sia})_{m}^{-} \cdot (\mathrm{R})_{y} \end{bmatrix}_{u}^{t}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 44A

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.
```

1. Sialidase
2. CMP-SA-PEG (16 mol eq),

ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 44B

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

1. Sialidase 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44C

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

```
    Sialidase
    CMP-SA-PEG (16 mol eq), ST3Gal3
    CMP-SA, ST3Gal3
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44D

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44E

195/498

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

1. CMP-SA, α2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1;
j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 44F

196/498

$$\begin{array}{c} \textbf{A} & \overbrace{(\text{Fuc})_{i}}^{\text{(Fuc)}_{i}} & \overbrace{(\text{GlcNAc-(Gal)}_{a}]_{e^{-}}(\text{Sia})_{i}^{-}(R)_{v}}^{\text{(Fuc)}_{i}} \\ & \overbrace{(\text{GlcNAc-(Gal)}_{b}]_{r^{-}}(\text{Sia})_{k^{-}}(R)_{w}}^{\text{(IGlcNAc-(Gal)}_{b}]_{r^{-}}(\text{Sia})_{r^{-}}(R)_{x}}^{\text{(IGlcNAc-(Gal)}_{d}]_{b^{-}}(\text{Sia})_{r^{-}}(R)_{y}} \\ & \underbrace{(\text{IGlcNAc-(Gal)}_{d}]_{b^{-}}(\text{Sia})_{r^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d}]_{b^{-}}(\text{Sia})_{r^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d}]_{b^{-}}(R)_{y}} \\ & \underbrace{(\text{IGlcNAc-(Gal)}_{d}]_{b^{-}}(\text{Sia})_{r^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}} \\ & \underbrace{(\text{IGlcNAc-(Gal)}_{d})_{b^{-}}(\text{Sia})_{r^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}} \\ & \underbrace{(\text{IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}} \\ & \underbrace{(\text{IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}} \\ & \underbrace{(\text{IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{y}}^{\text{(IGlcNAc-(Gal)}_{d})_{b^{-}}(R)_{$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 44G

```
Insect cell expressed DNase I. a-d, f, h, j-n, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1.
```

```
1. GNT's 1,2,4,5, UDP-GlcNAc
2. Galactosyltransferase, UDP-Gal-PEG
```

```
a-i, q-u (independently selected) = 0 or 1; j-n = 0; v-y (independently selected) = 1, when e-h (independently selected) is 1; R = PEG. \label{eq:period}
```

FIG. 44H

```
Yeast expressed DNase I.
a-n = 0;
q-y (independently selected) = 0 to 1;
p = 1; R (branched or linear) = Man, oligomannose.
```

- Endoglycanase
 Galactosyltransferase, UDP-Gal
- ↓ 3. CMP-SA-PEG, ST3Gal3

```
a-n, p-y=0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 441

198/498

CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; n, v-y = 0.

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- ST3Gal1, desialylated alpha-1-Proteinase inhibitor.
 - 3. CMP-SA, ST3Gal3, ST3Gal1

a-m, q-u (independently selected) = 0 or 1; p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker- alpha-1-Proteinase inhibitor.

FIG. 44J

199/498

$$\begin{array}{c} (\operatorname{Fuc})_{i} \\ \mathbf{A} \longleftarrow (\operatorname{GlcNAc-Man})_{i} \\ (R')_{n} \end{array} \\ \begin{array}{c} (\operatorname{GlcNAc-(Gal)}_{a,l_{c}} - (\operatorname{Sia})_{j} - (R)_{v})_{r} \\ (\operatorname{GlcNAc-Man})_{s} \\ (\operatorname{GlcNAc-(Gal)}_{a,l_{c}} - (\operatorname{Sia})_{s} - (R)_{w})_{s} \\ (\operatorname{GlcNAc-(Gal)}_{a,l_{c}} - (\operatorname{Sia})_{i} - (R)_{x})_{t} \\ (\operatorname{GlcNAc-(Gal)}_{a,l_{c}} - (\operatorname{Sia})_{m} - (R)_{y})_{u} \\ \end{array}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 45A

200/498

```
CHO, BHK, 293 cells, Vero expressed Insulin. a-m, r-u (independently selected) = 0 or 1; n = 0; v-y = 0; z = 1.
```

```
1. Sialidase
2. CMP-SA-PEG, ST3Gal3
```

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 45B

Insect cell expressed Insulin.

```
a-h, j-n, s-y = 0;

i, r (independently selected) = 0 or 1; z = 1.

1. GNT's 1&2, UDP-GlcNAc-PEG

a-d, f, h, j-n, s, u, w, y = 0;

e, g, i, r, t, v, x (independently selected) = 0 or 1;

v, x (independently selected) = 1,

when e, g (independently selected) is 1;

z = 1; R = PEG.
```

FIG. 45C

201/498

Yeast expressed Insulin.

a-n=0; r-y (independently selected) = 0 to 1;

z = 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

1. Endo-H

2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 45D

$$\mathbf{B} \quad \overset{\text{(Sia)}_{b}}{\leftarrow} \quad \overset{\text{(Sia)}_{c}}{\operatorname{GalNAc-(Gal)}_{a}\text{-(Sia)}_{c}\text{- (R)}_{d}}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 45E

203/498

CHO, BHK, 293 cells, Vero expressed insulinmucin fusion protein.

- a-c, e (independently selected) = 0 or 1; d = 0
 - 1. Sialidase
 - 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 45F

Insect cell expressed Insulin-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 45G

E. coli expressed Insulin-mucin fusion protein. a-e=0.

GalNAc Transferase, UDP-GalNAc
 CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 45H

205/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{b} \\ -(\operatorname{GalNAc-(Gal)}_{a}-(\operatorname{Sia})_{c}-(R)_{d} \end{bmatrix}_{c}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = modifying group, mannose, oligo-mannose.

FIG. 451

206/498

E. coli expressed Insulin-mucin fusion protein. a-e, n=0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 45J

E. coli expressed Insulin-mucin fusion protein. a-e, n = 0.

- GalNAc Transferase,
 UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 45K

E. coli expressed Insulin (N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e = 0; n = 1; R' = linker-transferrin.

FIG. 45L

$$(Acyl)_{0-1}HN \xrightarrow{4} \xrightarrow{4} \xrightarrow{146} COOH$$

$$A \qquad A$$

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_i & \operatorname{Man} \left([\operatorname{GlcNAc-(Gal)_a}]_e \cdot (\operatorname{Sia})_i - (R)_v \right)_s^T \\ -\operatorname{GlcNAc-GlcNAc-Man} & \operatorname{Man} \left([\operatorname{GlcNAc-(Gal)_b}]_e \cdot (\operatorname{Sia})_k - (R)_w \right)_s^T \\ \operatorname{Man} \left([\operatorname{GlcNAc-(Gal)_c}]_g \cdot (\operatorname{Sia})_i - (R)_x \right)_t \\ \left([\operatorname{GlcNAc-(Gal)_d}]_h \cdot (\operatorname{Sia})_m \cdot (R)_y \right)_u \\ -\operatorname{GalNAc-(Gal)_n^-(Sia)_p^-}(R)_z \end{bmatrix}_{aa} \end{bmatrix}$$

a-d, i, n-u, aa (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 46A

209/498

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z=0.

 Sialidase
 CMP-SA-linker-lipid-A, ST3Gal3

a-d, i-m, q-u, aa (independently selected) = 0 or 1; o, p, z = 0; n, e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = linker-lipid-A.

FIG. 46B

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z=0.

- sialidase
 CMP-SA-linker-tetanus toxin, ST3Gal1

a-d, i-m, p-u, z, aa (independently selected) = 0 or 1; o, v-y = 0; n, e-h = 1; R = tetanus toxin.

FIG. 46C

```
NSO expressed M-antigen.
a-d, i-n, o-u, aa (independently selected) = 0 or 1;
e-h = 1; v-z = 0;
Sia (independently selected) = Sia or Gal.
```

```
    α-galactosidase
    CMP-SA, ST3Gal3
    CMP-SA-KLH, ST3Gal1
```

```
a-d, i-n, p-u, z, aa (independently selected) = 0 or 1;
e-h = 1; o, v-y = 0;
z = 1, when p = 1;
R = KLH.
```

FIG. 46D

```
Yeast expressed M-antigen.
a-p, z = 0; q-y, aa (independently selected) = 0 to 1;
R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

```
    α1,2-mannosidase
    GNT 1,
    UDP-GlcNAc-linker-diphtheria toxin.
```

```
e, q, l, m, r, t, u, v, aa (independently selected) =0 or 1;
a-d, f-h, j, k, n-p, s, w-z = 0;
Sia = Man; R = linker-diphtheria toxin.
```

FIG. 46E

211/498

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

CMP-SA-levulinate, ST3Gal3,
 H₄N₂-linker-DNA

a-d, i-m, o-y, aa (independently selected) = 0 or 1; z = 0; n, e-h = 1; R = linker-DNA.

FIG. 46F

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-n, o-u, aa (independently selected) = 0 or 1; e-h = 1; v-z = 0.

1. CMP-SA, poly-α2,8-ST

a-d, i, n-u, aa (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-100; v-z (independently selected) = 0.

FIG. 46G

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GaINAc-(GaI)}_{n} - (\operatorname{Sia})_{p} - (\operatorname{R})_{z} \end{bmatrix}_{aa}$$

a-d, i, n, q-u, aa, bb, (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-p (independently selected) = 0 to 100. Cc, v-y = 0; R = modifying group, mannose, oligo-mannose. R'=H, glycosyl residue, modifying group, glycoconiugate.

FIG. 46H

213/498

```
Insect cell expressed M-antigen.
a-d, f, h, j-m, o, p, s, u, v-z, cc = 0;
bb = 1;
e, g, i, n, q, r, t, aa (independently selected) = 0 or 1.
```

 GNT-2, UDP-GlcNAc-linker-Neisseria protein

```
\label{eq:continuous} \begin{split} &a,c,e,g,i,n,q,r,t,v,x, aa~(independently~selected) = \\ &0~or~1;\\ &b,d,f,h,j\text{-}p,s,u,w,y,z,cc=0;\\ &bb=1;~R=\text{-}linker\text{-}Neisseria~protein.} \end{split}
```

FIG. 461

```
Yeast expressed M-antigen.
a-p, z, cc = 0;
q-y, aa (independently selected) = 0 to 1;
bb = 1; R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

- Endoglycanase
 Galactosyltransferase,
 UDP-Gal-linker-Neisseria protein
- ▼ UDP-Gal-linker-Neisseria proteir

```
a-p, r-z, bb = 0;
q, aa, cc (independently selected) = 0 or 1;
R' = -Gal-linker-Neisseria protein.
```

FIG. 46J

Yeast expressed M-antigen.

- a-p, z, cc = 0;
- q-y, aa (independently selected) = 0 to 1; bb = 1;
- R (branched or linear) = Man, oligomannose;
- GalNAc = Man.
 - 1. mannosidases

 - 2. GNT 1 & 2, UDP-GlcNAc
 3. UDP-Gal, Galactosyltransferase,
- a, c, e, g, j, l, q, r, t, aa (independently selected) = 0 or 1;
- b, d, f, h, k, m-p, s, u-z, cc = 0; bb = 1.

FIG. 46K

215/498

$$\begin{array}{c} (\operatorname{Fuc})_{i} \\ \mathbf{A} \leftarrow \operatorname{GlcNAc} - \operatorname{GlcNAc} - \operatorname{GlcNAc} - \operatorname{Man} \\ (R')_{n} \end{array} \\ \begin{bmatrix} \operatorname{GlcNAc} - (\operatorname{Gal})_{a} \right]_{e}^{-} \cdot (\operatorname{Sia})_{j}^{-} \cdot (R)_{v} \\ \left[\left[\operatorname{GlcNAc} - (\operatorname{Gal})_{e} \right]_{f}^{-} \cdot (\operatorname{Sia})_{k}^{-} \cdot (R)_{w} \right]_{t}^{t} \\ \left[\left[\operatorname{GlcNAc} - (\operatorname{Gal})_{e} \right]_{g}^{-} \cdot (\operatorname{Sia})_{l}^{-} \cdot (R)_{y} \right]_{u} \\ \end{bmatrix}_{u} \end{array}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconiugate.

FIG. 47A

216/498

CHO, BHK, 293 cells, Vero expressed Growth Hormone.

a-m, r-u (independently selected) = 0 or 1; n = 0; v-y = 0; z = 1.

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

a-m, r-u (independently selected) = 0 or 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; n = 0; R = PEG; z = 1.

FIG. 47B

Insect cell expressed growth hormone. a-h, j-n, s-y = 0; i, r (independently selected) = 0 or 1; z = 1.

1. GNT's 1&2, UDP-GlcNAc-PEG

a-d, f, h, j-n, s, u, w, y = 0; e, g, i, r, t, v, x (independently selected)= 0 or 1; v, x (independently selected) = 1, when e, g (independently selected) is 1; z = 1; R = PEG.

FIG. 47C

Yeast expressed growth hormone.

a-n = 0; r-y (independently selected) = 0 to 1;

z = 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 47D

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{c}$$

a-c, e (independently selected) = 0 or 1; d = 0;

R = modifying group, mannose, oligomannose.

FIG. 47E

CHO, BHK, 293 cells, Vero expressed growth hormone-mucin fusion protein.

a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 47F

Insect cell expressed Growth Hormone-mucin fusion protein.

a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 47G

E. coli expressed growth hormone-mucin fusion protein. a-e=0.

GalNAc Transferase, UDP-GalNAc
 CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 47H

E. coli expressed growth hormone-mucin fusion protein.

a-e, n = 0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 471

221/498

E. coli expressed growth hormone-mucin fusion protein.

a-e, n = 0.

- GalNAc Transferase,
 UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin

 ▼ 3. CMP-SA. ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 47J

E. coli expressed growth hormone (N)—no mucin peptide.

a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- ST3Gal3, asialo-transferrin
 CMP-SA, ST3Gal3

a-e=0; n=1; R'=linker-transferrin.

FIG. 47K

222/498

a-d, i-m, q-u, w, z, nn, ww, zz (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4.

n, v-y = 0;

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 48A

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n=1; v-z=0.

- 1. CMP-SA, ST3Gal1
- 2. galactosyltransferase, UPD-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48B

CHO, BHK, 293 cells, Vero expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

1. sialidase ▼ 2. CMP-SA-PEG, ST3Gal1

a-i, p-u, z, as (independently selected) = 0 or 1; n = 1; o, j-m, v-y = 0; R = PEG.

FIG. 48C

224/498

CHO, BHK, 293 cells, Vero expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

l. galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, aa (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48D

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v = z = 0.

1. CMP-SA, ST3Gal1
2. galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48F

```
CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.
```

```
1. CMP-SA-levulinate, ST3Gal1 ··· 2. H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.
```

FIG. 48F

```
CHO, BHK, 293 cells, Vero expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.
```

1. CMP-SA-PEG, α2,8-ST

```
a-i, o, q-u, v-z, as (independently selected) = 0 or 1; 

n = 1; j-m, p (independently selected) = 0 to 2; 

v-z (independently selected) = 1, 

when j-m, p (independently selected) is 2; 

R = PEG.
```

FIG. 48G

$$\begin{array}{c} \textbf{A} \leftarrow \begin{array}{c} \text{(Fuc)}_{i} \\ \text{GlcNAc-Man} \\ \text{(R')}_{n} \end{array} \\ \text{Man} \begin{array}{c} \left[[\text{GlcNAc-(Gal)}_{a}]_{e^{-}} (\text{Sia})_{j^{-}} (R)_{v} \right]_{r}^{r} \\ \left[[\text{GlcNAc-(Gal)}_{b}]_{r^{-}} (\text{Sia})_{r^{-}} (R)_{w} \right]_{s}^{r} \\ \left[[\text{GlcNAc-(Gal)}_{d}]_{e^{-}} (\text{Sia})_{l^{-}} (R)_{y} \right]_{v^{-}} \\ \left[[\text{GlcNAc-(Gal)}_{d}]_{h^{-}} (\text{Sia})_{m^{-}} (R)_{y} \right]_{v^{-}} \end{array}$$

a-d, i, l, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-k (independently selected) = 0 or 1.

M = 0 to 20.

n, v-y=0; z=0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 49A

227/498

CHO, BHK, 293 cells, Vero expressed Herceptin. a, c, i (independently selected) = 0 or 1; e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.

```
1. galactosyltransferase, UPD-Gal
2. CMP-SA-toxin, ST3Gal3
```

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; R = toxin;
f, h, k, m, n, s, u-y=0; q, z=1;
v-y (independently selected) = 51,
when j, l (independently selected) is 1.
```

FIG. 49B

```
CHO, BHK, 293 cells, Vero or fungal expressed Herceptin. 
a, c, i (independently selected) = 0 or 1; e, g, r, t = 1; b, d, f, h, j-m, n, s, u - y = 0; g, z = 1.
```

 galactosyltransferase, UPD-Gal-Toxin

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 49C

Fungi expressed Herceptin.

e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal

a-m, r-z=0; q, n=1;

R' = -Gal-Sia-radioisotope complex.

FIG. 49D

229/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_i & & & & & & & & \\ (\operatorname{GlcNAc-Man} & & & & & & \\ (\operatorname{R'})_n & & & & & & & \\ (\operatorname{GlcNAc-Man} & & & & & & \\ (\operatorname{GlcNAc-Man} & & & & & & \\ (\operatorname{GlcNAc-Gal})_p & & & & & & \\ (\operatorname{GlcNAc-Gal})_p & & & & & & \\ (\operatorname{GlcNAc-Gal})_d \end{bmatrix}_{l_n} \cdot (\operatorname{Sia})_{l_n} \cdot (\operatorname{R})_{v_j} \end{bmatrix}_{t_j}$$

a-d, i, p-u, (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 or 1.

n, v-y=0; z=0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 50A

230/498

```
CHO, BHK, 293 cells, Vero expressed Synagis.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1;
b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

2. CMP-SA-PEG, ST3Gal3

```
\begin{aligned} &a,c,i,j,w, (independently selected) = 0 \text{ or } 1;\\ &e,g,r,t=1;\ f,h,k,m,n,s,u-y=0;\\ &q,z=1;\ v-y (independently selected) = 1,\\ &when j,l (independently selected) \text{ is } 1;\\ &R=PEG. \end{aligned}
```

FIG. 50B

```
CHO, BHK, 293 cells, Vero or fungal expressed Synagis.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

galactosyltransferase,
 UPD-Gal-PEG

```
a, c, i, w (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 50C

Fungi expressed Synagis. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal3

a-m, r-z=0; q, n=1; R'=-Gal-Sia-PEG.

FIG. 50D

232/498

$$A \leftarrow \overbrace{ \begin{bmatrix} (\operatorname{Fuc})_i \\ \operatorname{GlcNAc-Gal})_* \end{bmatrix}_s^* \cdot (\operatorname{Sia})_j - (\operatorname{R})_v \\ - \left[(\operatorname{GlcNAc-(Gal)})_* \right]_r^* \cdot (\operatorname{Sia})_k - (\operatorname{R})_v \\ - \left[(\operatorname{GlcNAc-(Gal)})_* \right]_r^* \cdot (\operatorname{Sia})_k - (\operatorname{R})_v \\ - \left[(\operatorname{GlcNAc-(Gal)})_* \right]_r^* \cdot (\operatorname{Sia})_k - (\operatorname{R})_v \\ - \left[(\operatorname{GlcNAc-(Gal)})_* \right]_r^* \cdot (\operatorname{Sia})_k - (\operatorname{Sia})_k - (\operatorname{R})_v \\ - \left[(\operatorname{GlcNAc-(Gal)})_* \right]_r^* \cdot (\operatorname{Sia})_k - (\operatorname{$$

a-d, i, q-u, w (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 51A

```
CHO, BHK, 293 cells, Vero expressed Remicade. a, c, i (independently selected) = 0 or 1; e, g, r, t=1; b, d, f, h, j-m, n, s, u-y=0; q, z=1.
```

galactosyltransferase, UPD-Gal
 CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1; e, g, r, t = l; f, h, k, m, n, s, u-y = 0; q, z = 1; v-y (independently selected) = l, when j, l (independently selected) is 1; R = PEG.
```

FIG. 51B

```
CHO, BHK, 293 cells, Vero or fungal expressed Remicade. a, c, i (independently selected) = 0 or 1; e, g, t, t = 1; b, d, f, h, j-m, n_x s, u-y = 0; q, z = 1.
```

 galactosyltransferase, UPD-Gal-PEG

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1, when a, c (independently selected) is 1;
R = PEG.
```

FIG. 51C

Fungi expressed Remicade. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3.. CMP-SA-radioisotope complex, ST3Gal3

```
a-m, r-z= 0; q, n = 1;
R' = -Gal-Sia-radioisotope complex.
```

FIG. 51D

$$A \leftarrow \begin{bmatrix} (\operatorname{Fuc})_i \\ \operatorname{GlcNAc-Man} \\ (\operatorname{R'})_n \end{bmatrix} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a})_{a^-} (\operatorname{Sia})_{j^-} (R)_{v} \\ (\operatorname{GlcNAc-(Gal)}_{a})_{l^-} (\operatorname{Sia})_{k^-} (R)_{w} \end{bmatrix}_{s} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{x} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{y} \end{bmatrix}_{u} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{y} \end{bmatrix}_{u}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{d})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (\operatorname{Sia})_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{z} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{t} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{t} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{t} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{l^-} (R)_{w} \\ (\operatorname{GlcNAc-(Gal)}_{l^-})_{l^-} (R)_{w} \end{bmatrix}_{t}}_{t} \\ = \underbrace{\begin{bmatrix} (\operatorname{GlcNAc-($$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 52A

236/498

```
CHO, BHK, 293 cells, Vero expressed Reopro. a-m, r-u (independently selected) = 0 or 1; n=0;\ v-y=0;\ z=1.
```

```
1. Sialidase
2. CMP-SA-PEG, ST3Gal3
```

```
a-m, r-u (independently selected) = 0 or 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; n=0; R=PEG; z=1.
```

FIG. 52B

```
Insect cell expressed Reopro.

a-h, j-n, s-y = 0; i, r (independently selected) = 0 or 1;

z = 1.

1. GNT's 1&2, UDP-GlcNAc-PEG
```

```
a-d, f, h, j-n, s, u, w, y=0;
e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z=1; R=PEG.
```

FIG. 52C

237/498

```
Yeast expressed Reopro.
```

a-n = 0; r-y (independently selected) = 0 to 1; z = 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 52D

$$\mathbf{B} \leftarrow \begin{pmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{pmatrix}_{c}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 52E

CHO, BHK, 293 cells, Vero expressed Reopro-mucin fusion protein. a-c, e (independently selected) = 0 or 1; d=0

Sialidase
 CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 52F

Insect cell expressed Reopro-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 52G

E. coli expressed Reopro-mucin fusion protein. a-e=0.

GalNAc Transferase, UDP-GalNAc
 CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 52H

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_b \\ -(\mathrm{GalNAc-(Gal)_a-(Sia)_c-(R)_d} \end{bmatrix}_c$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 521

E. coli expressed Reopro-mucin fusion protein. a-e, n=0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 52J

E. coli expressed Reopro-mucin fusion protein. a-e, n = 0.

 GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
 ST3Gal3, asialo-transferrin
 CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 52K

E. coli expressed Reopro(N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e=0; n=1; R'=linker-transferrin.

FIG. 52L

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_i \\ \operatorname{GlcNAc} \\ (\operatorname{R}')_n \end{bmatrix} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_a)_e^- & (\operatorname{Sia})_i^- & (\operatorname{R})_v \\ (\operatorname{GlcNAc-(Gal)}_b)_i^- & (\operatorname{Sia})_i^- & (\operatorname{R})_w \\ (\operatorname{GlcNAc-(Gal)}_e)_g^- & (\operatorname{Sia})_i^- & (\operatorname{R})_v \\ (\operatorname{GlcNAc-(Gal)}_a)_h^- & (\operatorname{Sia})_m^- & (\operatorname{R})_y \\ \end{bmatrix}_{z=q}$$

a-d, i, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 or 1.

n, v-y = 0; z = 0 or 1; R = polymer, toxin, radioisotope-complex, drug, glycoconjugate.

R' = H, sugar, glycoconjugate.

FIG. 53A

245/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

```
    galactosyltransferase, UPD-Gal
    CMP-SA-toxin, ST3Gal3
```

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = toxin.
```

FIG. 53B

```
CHO, BHK, 293 cells, Vero or fungal expressed Rituxan. a, c, e, g, i, r, t (independently selected) = 0 or 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

galactosyltransferase,
 UPD-Gal-drug

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 53C

246/498

```
Fungi expressed Rituxan.

e, g, i, r, t (independently selected) = 0 or 1;

a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-radioisotope complex, ST3Gal3

```
a-m, r-z= 0; q, n = 1;
R' = -Gal-Sia-radioisotope complex.
```

FIG. 53D

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & & \\ \operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{c} \cdot (\operatorname{Sia})_{j} \cdot (\mathbf{R})_{v} \\ \operatorname{GlcNAc-Gal})_{b} \mathbf{l}_{r} \cdot (\operatorname{Sia})_{k} \cdot (\mathbf{R})_{w} \end{bmatrix}_{i} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{r} \cdot (\operatorname{Sia})_{k} \cdot (\mathbf{R})_{w} \right]_{i} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{y} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\operatorname{Sia})_{m} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \mathbf{l}_{h} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \right]_{v} \\ \operatorname{Man} \left[(\operatorname{GlcNAc-Gal})_{a} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})_{w} \cdot (\mathbf{R})$$

a-d, i, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 or 1.

n, v-y=0; z=0 or 1;

R = polymer, toxin, radioisotope-complex, drug, glycoconjugate, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 53E

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan. a, c, i (independently selected) = 0 or 1; e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

galactosyltransferase, UPD-Gal
 CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = PEG.
```

FIG. 53F

```
Fungi, yeast or CHO expressed Rituxan.
e, g, i, r, t, v, x (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u, w, y = 0; q, z = 1;
R (independently selected) = mannose, oligomannose, polymannose.
```

- 1. mannosidases (alpha and beta)
- 2. GNT-I,II, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal-radioisotope

```
a-m, r-z= 0; q, n = 1;
R' = -Gal-radioisotope complex.
```

FIG. 53G

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = mannose, polymer.

FIG. 54A

250/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. Sialidase
2. CMP-SA-PEG (16 mol eq),
ST3Gal3
```

```
\begin{array}{lll} a\text{-d, i-m, q-u (independently selected)} = 0 \ or \ 1; \\ e\text{-h} = 1; \\ v\text{-y (independently selected)} = 1, \\ when j\text{-m (independently selected)} \ is \ 1; \\ R = PEG. \end{array}
```

FIG. 54B

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h=1; v-y=0.

1. Sialidase
2. CMP-SA-PEG (1.2 mol eq)
```

```
    CMP-SA-PEG (1.2 mol eq),
    ST3Gal3
    CMP-SA (16 mol eq), ST3Gal3
```

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 54C

251/498

```
NSO expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.
```

- Galactosyltransferase, UDP-Gal
- ◆ 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 54D

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

1. Sialidase
2. CMP-SA-PEG (16 mol eq),
ST3Gal3
3. CMP-SA, ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1;
```

v-y (independently selected) = 0 or 1;

FIG. 54F

e-h = 1:

R = PEG.

252/498

CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 54F

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, poly-α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 54G

a-d, i, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100. R = polymer, linker, mannose. R' = H, sugar, glycoconjugate.

FIG. 54H

```
Insect, yeast or fungi cell expressed AT III.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1;
p = 1.

1. GNT 1, UDP-GlcNAc-PEG

a, i, q, r, -u (independently selected) = 0 or 1;
b-g, j-n, s-u, w-y = 0; p = 1;
v (independently selected) = 1,
```

when a (independently selected) is 1:

FIG. 541

R = PEG.

```
Yeast expressed AT III.

a-n=0; q-y (independently selected) = 0 to 1;

p=1;

R (branched or linear) = Man, oligomannose.
```

Endoglycanase
 Galactosyltransferase, UDP-Gal
 CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 54J

255/498

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.

- CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase

a-m, q-u (independently selected) = 0 or 1; p = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-transferrin.

FIG. 54K

$$(Fuc)_{i} \\ | \\ A \leftarrow GlcNAc \cdot GlcNAc \cdot Man \\ | \\ (R^{*})_{p} \\ | \\ (R^{*})_{q} \\ ([GlcNAc - (Gal)_{a}]_{e}^{-} \cdot (Sia)_{j}^{-} \cdot (R)_{v} \\ | \\ ([GlcNAc - (Gal)_{b}]_{f}^{-} \cdot (Sia)_{k}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{g}^{-} \cdot (Sia)_{l}^{-} \cdot (R)_{x} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{y} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^{-} \cdot (R)_{w} \\ | \\ ([GlcNAc - (Gal)_{d}]_{h}^{-} \cdot (Sia)_{m}^$$

a-d, i, n-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 to 20.

R = polymer.

R', R" (independently selected) = sugar, glycoconjugate.

FIG. 54L

257/498

```
Yeast expressed AT III.
a-h, i-m, p, q = 0;
R (independently selected) = mannose,
oligomannose, polymannose;
r-u, v-y (independently selected) = 0 or 1;
n, o = 1.
```

- 1. endoglycanase
- ▼ 2. Galactosyltransferase, UDP-Gal-PEG

```
a-h, i-o, q, r-u, v-y = 0; p = 1.
R" = Gal-PEG.
```

FIG. 54M

```
Plant expressed AT III.

a-d, f-h, j-m, p, s-u, v-y = 0;

e, i, q, r (independently selected) = 0 or 1;

n, o = l; R' = xylose.
```

- xylosidase
 Galactosyl transferase, UDP-
- Gal-PEG

b-d, f-h, j-m, p, q, s-u, w-y = 0; a, e, i, r (independently selected) = 0 or 1; n, o = 1; R = PEG.

FIG. 54N

258/498

CHO, BHK, 293 cells, Vero, transgenic animal expressed AT III.
a-h, i-o, r-u (independently selected) = 0 or 1;

a-h, i-o, r-u (independently selected) = 0 or 1 p, q, v-y = 0.

1. CMP-SA-PEG, ST3Gal3

a-h, i-o, r-u (independently selected) = 0 or 1; p, q = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 540

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer

FIG. 55A

260/498

CHO, BHK, 293 cells, insect cell, Vero expressed hCG a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 to 1; r-u (independently selected) = 0 to 1; y-z = 0

1. Sialidase
2. CMP-SA-PEG, ST3Gal3

a-g, n, q = 1; h=1 to 3; i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; j-m, v-y (independently selected) = 0 or 1; R=PEG; z=0.

FIG. 55B

Insect cell, yeast, fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.

1. GNT's 1&2, UDP-GlcNAc
2. Galactosyltransferase, UDP-Gal
2. CMP-SA-PEG. ST3Gal3

 $\begin{aligned} &b,\,d,\,f,\,h,\,k,\,m,\,o,\,p,\,s,\,u,\,w,\,y,\,z=0;\\ &a,\,c,\,e,\,g,\,i,\,n,\,q,\,r,\,t\,\,\,(independently\,selected)\\ &=0\,\,or\,\,1;\\ &j,\,l,\,v,\,x\,\,(independently\,selected)=0\,\,or\,\,1;\\ &R=PEG. \end{aligned}$

FIG. 55C

```
CHO, BHK, 293 cells, insect cell,
Vero expressed hCG
a-q, r-u (independently selected) = 0 or 1;
v-z = 0.
```

- sialidase
- 2. CMP-SA, ST3Gal3
- 3. CMP-SA-PEG, ST3Gal1

```
a-h, i-o, q, r-u (independently selected) = 0 or 1; v-y = 0; p, z = 0 or 1; R = PEG.
```

FIG. 55D

```
CHO, BHK, 293 cells, insect cell or
Vero expressed hCG
a-g, n, q = 1; h = 1 to 3;
j-m, i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1; v-z = 0
```

1. CMP-SA-PEG, ST3Gal3

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m, v-y (independently selected) = 0 or 1;
R = PEG; z = 0.
```

FIG. 55E

262/498

```
Insect cell, yeast or fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.
```

1. GNT's 1 and 2, UDP-GlcNAc-PEG

e, g, i, n, q, r, t, v, x (independently selected) = 0 or 1; a-d, f, h, j-m, o, p, s, w, y, z = 0; R = PEG.

FIG. 55F

Insect cell, yeast or fungi expressed hCG
a-d, f, h, j-m, o, p, s, u, v-z = 0;
e, g, i, n, q, r, t (independently selected)
= 0 or 1.

1. GNT-1, UDP-GlcNAc-PEG

e, i, n, q, r, v (independently selected) = 0 or 1; a-d, g, f, h, j-m, o, p, s, t, w-z = 0; R = PEG.

FIG. 55G

263/498

```
CHO, BHK, 293 cells, insect cell or

Vero expressed hCG
a-g, n, q = 1; h = 1 to 3;
j-m, i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1;
v-z = 0

1. CMP-SA-PEG, ST3Gal3
```

```
a-g, n, q = 1; h = 1 to 3;
i, o (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m, p, z (independently selected) = 0 or 1;
R = PEG; v-y = 0.
```

FIG. 55H

```
CHO, BHK, 293 cells, Vero expressed hCG
a-g, n, q = 1; h = 1 to 3;
j-m, i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1; v-z = 0

1. CMP-SA-PEG, a2.8-ST
```

```
a-g, n, q = 1; h = 1 to 3;

i, o, p (independently selected) = 0 or 1;

r-u (independently selected) = 0 to 1;

j-m (independently selected) = 0 to 2;

v-y (independently selected) = 1, when j-m

(independently selected) is 2; R = PEG; z = 0.
```

FIG. 551

264/498

```
CHO, BHK, 293 cells, Vero expressed hCG a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to1; v-z = 0
```

1. CMP-SA, poly-α2,8-ST

a-i, j-q, r-u, (independently selected) = 0 or 1; v-z (independently selected) = 0-100; R = Sia.

FIG. 55J

265/498

a-d, i, n, q-u, z (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100; R = mannose, mannose-6-phosphate and mannose, polymer.

FIG. 56A

266/498

CHO, BHK, 293 cells, insect cells, Vero expressed and secreted alpha-galactosidase
a-h, i-m, q-u (independently selected) = 0 or 1;
z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.

```
    Endo-H
    Galactosyltransferase, UDP-Gal-PEG-transferrin
```

```
a-h, i-m, q-u (independently selected) = 0 or 1;

n, v, y = 0; z = 1; and when z = 0 and q = 1,

then n (independently selected) = 0 or 1;

R' = Gal-PEG-transferrin.
```

FIG. 56B

```
CHO, BHK, 293 cells, Insect cells,
Vero expressed and secreted alpha-galactosidase
a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y
= 0; and when a-n = 0, then r-u (independently selected) = 0
or 1; v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.
```

```
1. Sialidase
2. CMP-SA-linker-Mannose-6-phosphate
```

```
a-h, i-m, q-u, v-y (independently selected) = 0 or 1;

n = 0; z = 1; R = mannose-6-phosphate; and when a-n

= 0, then r-u (independently selected) = 0 or 1;

v-y (independently selected) = 0-100;

R = mannose or mannose with mannose-6-phosphate.
```

FIG. 56C

267/498

NSO expressed alpha-galactosidase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0; Sia (independently selected) = Sia or Gal.

- 1. Sialidase and $\alpha\mbox{-galactosidase}$
- Galactosyltransferase, UDP-Gal
 CMP-SA-linker-mannose-6-phosphate
 sialyltransferase

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = mannose-6 phosphate

FIG. 56D

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-galactosidase
a-h, i-m, q-u (independently selected) = 0 or 1; z = 1;
n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.

- 1. Sialidase
- 2. CMP-SA-PEG, sialyltransferase

a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y = 0-100; R = mannose or mannose with mannose-6-phosphate.

FIG. 56E

268/498

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-galactosidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate.
```

mannosyltransferase,
 GDP-mannose-linker-ApoE

```
 \begin{array}{ll} a\text{-}i=0; \ q\ (\text{independently selected})=0 \ \text{or}\ 1; \ z=1; \\ r\text{-}u\ (\text{independently selected})=0 \ \text{or}\ 1; \\ j\text{-}m\ (\text{independently selected})=0\text{-}100; \\ \text{Sia}=\text{mannose or mannose with mannose-6-phosphate;} \\ v\text{-}y\ (\text{independently selected})=0 \ \text{or}\ 1; \\ R=\text{mannose-linker-ApoE.} \end{array}
```

FIG. 56F

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-galactosidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100;
Sia = mannose or mannose with mannose-6-phosphate.

1. endo-H
2. galactosyltransferase,
UDP-Gal-linker-alpha2-macroglobulin
```

a-m, r-z = 0; n, q (independently selected) = 0 or 1; R' = galacotose-linker-alpha2-macroglobulin.

FIG. 56G

```
\begin{split} &\text{Insect cell, yeast, fungi expressed} \\ &\text{alpha-galactosidase.} \\ &\text{a-d, f, h, j-m, s, u, v-y} = 0; \\ &\text{e, g, i, q, r, t (independently selected)} = 0 \text{ or } 1. \end{split}
```

```
1. GNT-1,
UDP-GlcNAc-PEG-mannose-6-phosphate
```

```
e, i, q, r, v (independently selected) = 0 or 1;
a-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-mannose-6-phosphate.
```

FIG. 56H

```
Insect cell, yeast, fungi expressed alpha-galactosidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

1. GNT-1, UDP-GlcNAc
2. galactosyltransferase,
UDP-Gal-PEG-transferrin

```
a, e, i, q, r, v (independently selected) = 0 or 1;
b-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-transferrin.
```

FIG. 561

270/498

Insect cell, yeast, fungi expressed alpha-galactosidase.

a-d, f, h, j-m, s, u, v-y=0;

e, g, i, q, r, t (independently selected) = 0 or 1.

- 1. GNT-1 and 2, UDP-GlcNAc
- 2. galactosyltransferase, UDP-Gal
- 3. sialyltransferase,

CMP-SA-PEG-melanotransferrin

a, c, e, g, i, j, l, q, r, t, v, x (independently selected) = 0 or 1;

b, d, f, h, k, m, n, s, u, w, y = 0;

z = 1; R = PEG-melanotransferrin.

FIG. 56J

a-d, i, n, q-u, z (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 100.

v-y = 0 to 100;

R = mannose, mannose-6-phosphate and mannose, polymer.

FIG. 57A

272/498

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase a-h, i-m, q-u (independently selected) = 0 or 1; z = 1:

n, v-y=0; and when a-n=0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

- Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG-transferrin

a-h, i-m, q-u (independently selected) = 0 or 1: n, v-y = 0; z = 1; and when z = 0 and q = 1, then n (independently selected) = 0 or 1; R' = Gal-PEG-transferrin.

FIG. 57B

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase

a-h, i-m, q-u (independently selected) = 0 or 1: z = 1: n, v-y=0; and when a-n=0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

- Sialidase
- 2. CMP-SA-linker-Mannose-6-phosphate ST3Gal3

a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0z = 1; R = mannose-6-phosphate; and when a - n = 0,

then r-u (independently selected) = 0 or 1;

v-v (independently selected) = 0-100:

R = mannose or mannose with mannose-6-phosphate.

FIG 57C

NSO expressed alpha-iduronidase.
a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1;
v-y = 0; Sia (independently selected) = Sia or Gal.

- Sialidase and α-galactosidase
- Galactosyltransferase, UDP-Gal
- 3. CMP-SA-linker-mannose-6-phosphate sialyltransferase

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = mannose-6 phosphate
```

FIG. 57D

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

- 1. Sialidase
- 2. CMP-SA-PEG, sialyltransferase

```
a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y = 0-100; R = mannose or mannose with mannose-6-phosphate.
```

FIG. 57E

274/498

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-iduronidase.
a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100;
Sia = mannose or mannose with mannose-6-phosphate.
```

```
    mannosyltransferase,
    GDP-mannose-linker-ApoE
```

```
a-i = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate; v-y (independently selected) = 0 or 1; R = mannose-linker-ApoE.
```

FIG. 57F

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-iduronidase.

a-i, v-y = 0; q (independently selected) = 0 or 1;

z = 1; r-u (independently selected) = 0 or 1;

j-m (independently selected) = 0-100;

Sia = mannose or mannose with mannose-6-phosphate.
```

```
    endo-H
    galactosyltransferase,
    UDP-Gal-linker-alpha2-macroglobulin
```

```
a-m, r-z = 0; n, q (independently selected) = 0 or 1; R' = galacotose-linker-alpha2-macroglobulin.
```

FIG. 57G

```
Insect cell, yeast, fungi expressed alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

```
1. GNT-1,
UDP-GlcNAc-PEG-mannose-6-phosphate
```

```
e, i, q, r, v (independently selected) = 0 or 1;
a-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-mannose-6-phosphate.
```

FIG. 57H

```
Insect cell, yeast, fungi expressed
alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

1. GNT-1, UDP-GlcNAc
2. galactosyltransferase,
UDP-Gal-PEG-transferrin

```
a, e, i, q, r, v (independently selected) = 0 or 1; b-d, f-h, j-n, s-u, w-y = 0; z = 1; R = PEG-transferrin.
```

FIG. 571

276/498

```
Insect cell, yeast, fungi expressed alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- GNT-1 and 2, UDP-GlcNAc
 galactosyltransferase, UDP-Gal
 sialyltransferase,
 CMP-SA-PEG-melanotransferrin
- a, c, e, g, i, j, l, q, r, t, v, x (independently selected) = 0 or 1; b, d, f, h, k, m, n, s, u, w, y = 0; z = 1; R = PEG-melanotransferrin.

FIG. 57J

277/498

FIG. 58A

ACCCCCTGGGCCCTGCCAGCTCCCTGCCCCAGAGCTTCCTGCTCAAT
GCTTAGAGCAAGTGAGGAAGATCCAGGGCGATGGCGCAGCGCTCCAG
GAGAAGCTGTGTGCCACCCAAGAGCTGTGCCACCCCAGAGAGCTTGGT
GCTGCTCGGGACACTCTCTGGGCATCCCTTGAGCCAACTCCATA
GCGGCCTTTTCCTCTACCAGGGGCTCCTGCAGGCCTGGAAGGGATCT
CCCCCAGTTGGGTCCCACCTTGGACACACTGCAGCTGGACGTCCCA
ACTTTGCCACACACTCTGGCAGCAGTGGAAGACTTGCCC
CCTGCCTGCAGCCCACCCAGGGTGCCATGCAGCTCGCCTTCCCTTCCT
TTCCAGCGCCGGCAGGAGGGTCCTGGTTGCCTCCATCTGCAGAG
CTTCCTGGAGGTGCCACCCTTGCCACCCTTGCAGAG
CTTCCTGGAGGTGCCACCCAGGCTTCCCCATCTGCAGAG
CTTCCTGGAGGTGCTACCGCGCTTCACCCAGCCCTTG
A

FIG. 58B

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Glin Ser Phe Leu Leu Lys Cys Leu Glu Glin Val Arg Lys Ile Glin Gly Asp Gly Ala Ala Leu Glin Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Glin Ala Leu Glin Leu Ala Gly Cys Leu Ser Glin Leu His Ser Gly Leu Phe Leu Tyr Glin Gly Leu Leu Glin Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Glin Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Glin Glin Met Glu Glu Leu Gly Met Ala Pro Ala Leu Glin Pro Thr Glin Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Glin Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Glin Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Glin Pro

278/498 FIG. 59A

GCGCCTCTTATGTACCCACAAAAATCTATTTTCAAAAAAGTTGCTCTA AGAATATAGTTATCAAGTTAAGTAAAATGTCAATAGCCTTTTAATTTA ATTTTTAATTGTTTTATCATTCTTTGCAATAATAAAACATTAACTTTAT ACTTTTTAATTTAATGTATAGAATAGAGATATACATAGGATATGTAAA TAGATACACAGTGTATATGTGATTAAAATATAATGGGAGATTCAATC AATAATGAAAAAATGTGGTGAGAAAACAGCTGAAAACCCATGTA AAGAGTGTATAAAGAAAGCAAAAAGAGAAGTAGAAAGTAACACAGG GGCATTTGGAAAATGTAAACGAGTATGTTCCCTATTTAAGGCTAGGC ACAAAGCAAGGTCTTCAGAGAACCTGGAGCCTAAGGTTTAGGCTCAC CCATTTCAACCAGTCTAGCAGCATCTGCAACATCTACAATGGCCTTGA CCTTTGCTTTACTGGTGGCCCTCCTGGTGCTCAGCTGCAAGTCAAGCT GCTCTGTGGGCTGTGATCTGCCTCAAACCCACAGCCTGGGTAGCAGG AGGACCTTGATGCTCCTGGCACAGATGAGGAGAATCTCTCTTTTCTCC TGCTTGAAGGACAGACATGACTTTGGATTTCCCCAGGAGGAGTTTGG CAACCAGTTCCAAAAGGCTGAAACCATCCCTGTCCTCCATGAGATGA TCCAGCAGATCTTCAATCTCTTCAGCACAAAGGACTCATCTGCTGCTT GGGATGAGACCCTCCTAGACAAATTCTACACTGAACTCTACCAGCAG CTGAATGACCTGGAAGCCTGTGTGATACAGGGGGTGGGGGTGACAGA GACTCCCTGATGAAGGAGGACTCCATTCTGGCTGTGAGGAAATACT TCCAAAGAATCACTCTCTATCTGAAAGAGAAGAAATACAGCCCTTGT GCCTGGGAGGTTGTCAGAGCAGAAATCATGAGATCTTTTCTTTGTCA ACAAACTTGCAAGAAAGTTAAGAAGTAAGGAATGAAAACTGGTTCA ACATGGAAATGATTTCATTGATTCGTATGCCAGCTCACCTTTTTATG ATCTGCCATTTCAAAGACTCATGTTTCTGCTATGACCATGACACGATT TAAATCTTTTCAAATGTTTTTAGGAGTATTAATCAACATTGTATTCAG ATCTATTTAAATATTTTTAAAAATATTATTTATTTAACTATTTATAAAAAC AACTTATTTTTGTTCATATTATGTCATGTGCACCTTTGCACAGTGGTTA CATTGAACTTTTGCTATGGAACTTTTGTACTTGTTTATTCTTTAAAATG AAATTCCAAGCCTAATTGTGCAACCTGATTACAGAATAACTGGTACA TTTCTGTAAACCAAGTTGTATGTTGTACTCAAGATAACAGGGTGAACC TAACAAATACAATTCTGCTCTCTTGTGTATTTGATTTTGTATGAAAA AAACTAAAAATGGTAATCATACTTAATTATCAGTTATGGTAAATGGT ATGAAGAGAAGAAGGAACG

279/498

FIG. 59B

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu

FIG. 59C

FIG. 59D

Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn His Gly Leu Leu Ser Arg Asn Thr Leu Val Leu Leu His Gln Met Arg Arg Ile Ser Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe Pro Gln Glu Met Val Lys Gly Ser Gln Leu Gln Lys Ala His Val Met Ser Val Leu His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His Thr Gly Leu His Gln Gln Leu Gln His Leu Gly Glu Gly Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu Larg Arg Tyr Phe Gln Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys Tyr Ser Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys Ser Leu Phe Leu Ser Thr Asn Met Gln Glu Arg Leu Arg Ser Lys Asp Arg Asp Leu Gly Ser Ser

FIG. 60A

ATGACCAACAAGTGTCTCCTCCAAATTGCTCTCCTGTTGTGCTTCTCC ACTACAGCTCTTTCCATGAGCTACAACTTGCTTGGATTCCTACAAGA AGCAGCAATTTTCAGTGTCAGAAGCTCCTGTGGCAATTGAATGGGAG GCTTGAATATTGCCTCAAGGACAGGATGAACTTTGACATCCCTGAGG AGATTAAGCAGCTGCAGCAGTTCCAGAAGGAGGACGCCGCATTGACC ATCTATGAGATGCTCCAGAACATCTTTGCTATTTTCAGACAAGATTCA TCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTCCTGGCTAA TGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAC TGGAGAAAGAAGATTTTACCAGGGGAAAACTCATGAGCAGTCTGCAC CTGAAAAGATATTATGGGAGGATTCTGCATTACCTGAAGGCCAAGGA GTACAGTCACTGTGCCTGGACCATAGTCAGAGTGGAAATCCTAAGGA ACTTTTACTTCATTAACAGACTTACAGGTTACCTCCGAAACTGAAGAT CTCCTAGCCTGTCCCTCTGGGACTGGACAATTGCTTCAAGCATTCTTC AACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTACTGCAAAT GAAAGGACACTAGAAGATTTTGAAATTTTTATTAAATTATGAGTTATT TTTATTTAT TTAAATTTTATTTTGGAAAATAAATTATTTTTGGTGC

FIG. 60B

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly ArgLeu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn

281/498

FIG. 61A

ATGGTCTCCCAGGCCCTCAGGCTCCTCTGCCTTCTGCTTGGGCTTCAG GGCTGCCTGGCTGCAGTCTTCGTAACCCAGGAGGAAGCCCACGGCGT CCTGCACCGGCGCGCGCGCCAACGCGTTCCTGGAGGAGCTGCGGC CGGGCTCCCTGGAGAGGAGGAGGAGGAGCAGTGCTCCTTCGA GGAGGCCCGGGAGATCTTCAAGGACGCGGAGAGGACGAAGCTGTTC TGGATTTCTTACAGTGATGGGGACCAGTGTGCCTCAAGTCCATGCCA GAATGGGGGCTCCTGCAAGGACCAGCTCCAGTCCTATATCTGCTTCT GCCTCCCTGCCTTCGAGGGCCGGAACTGTGAGACGCACAAGGATGAC CAGCTGATCTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAG TGACCACACGGGCACCAAGCGCTCCTGTCGGTGCCACGAGGGGTACT CTCTGCTGGCAGACGGGGTGTCCTGCACACCCACAGTTGAATATCCA TGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCA AGGCCGAATTGTGGGGGGCAAGGTGTGCCCCAAAGGGGAGTGTCCA TGGCAGGTCCTGTTGTTGGTGAATGGAGCTCAGTTGTGTGGGGGGAC CCTGATCAACACCATCTGGGTGGTCTCCGCGGCCCACTGTTTCGACAA AATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGGCGAGCACGAC CTCAGCGAGCACGACGGGATGAGCAGAGCCGGCGGGTGGCGCAGG GCGCTGCTCCGCCTGCACCAGCCCGTGGTCCTCACTGACCATGTGGTG CCCCTCTGCCTGCCCGAACGGACGTTCTCTGAGAGGACGCTGGCCTTC GTGCGCTTCTCATTGGTCAGCGGCTGGGGCCAGCTGCTGGACCGTGG CGCCACGGCCCTGGAGCTCATGGTGCTCAACGTGCCCCGGCTGATGA CCCAGGACTGCCTGCAGCAGTCACGGAAGGTGGGAGACTCCCCAAAT ATCACGGAGTACATGTTCTGTGCCGGCTACTCGGATGGCAGCAAGGA CTCCTGCAAGGGGACAGTGGAGGCCCACATGCCACCCACTACCGGG GCACGTGGTACCTGACGGGCATCGTCAGCTGGGGCCAGGGCTGCGCA ACCGTGGGCCACTTTGGGGTGTACACCAGGGTCTCCCAGTACATCGA GTGGCTGCAAAAGCTCATGCGCTCAGAGCCACGCCCAGGAGTCCTCC TGCGAGCCCCATTTCCC

FIG. 61B

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val Leu His Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn Cvs Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn His Asp Ile Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp His Val Val Pro Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr Leu Ala Phe Val Arg Phe Ser Leu Val Ser Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu Met Val Leu Asn Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser Pro Asn Ile Thr Glu Tvr Met Phe Cvs Ala Gly Tvr Ser Asp Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met Arg Ser Glu Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro

283/498

FIG. 62A

ATGCAGCGCGTGAACATGATCATGGCAGAATCACCAAGCCTCATCAC CATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTTTCTT GATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA GTATGGAAGAAAGTGTAGTTTTGAAGAACCACGAGAAGTTTTTGAA AACACTGAAAAGACAACTGAATTTTGGAAGCAGTATGTTGATGGAGA TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGA ACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG CAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACT GAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGT GCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCAC CCGTGCTGAGGCTGTTTTTCCTGATGTGGACTATGTAAATCCTACTGA AGCTGAAACCATTTTGGATAACATCACTCAAGGCACCCAATCATTTA ATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAA TTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGA GGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTT GAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGA GGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAGCAATT ATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACG TTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCA AATTTGGATCTGGCTATGTAAGTGGCTGGGCAAGAGTCTTCCACAAA GGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGAC CGAGCCACATGTCTTCGATCTACAAAGTTCACCATCTATAACAACAT GTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAG ATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTA ACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATA TGGAATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAA AAACAAAGCTCACTTAATGAAAGATGGATTTCCAAGGTTAATTCATT GGAATTGAAAATTAACAG

FIG. 62B

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr Ile Cvs Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe Thr Arg Val Val Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asp Ser Tyr Val Thr Pro Ile Cys Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser Arg Tvr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr

285/498

FIG. 63A

FIG. 63B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Sèr Ala Pro Asp Val Ghn Asp Cys Pro Glu Cys Thr Leu Ghn Glu Asn Pro Phe Phe Ser Ghn Pro Gly Ala Pro Ile Leu Ghn Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Ghn Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser

FIG. 63C

FIG. 63D

Met Lys Thr Leu Gin Phe Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys Glu

FIG. 64A

CCCGGAGCCGGGCCACCGCGCCCGCTCTGCTCCGACACCGC GCCCCTGGACAGCCGCCCTCTCCTCCAGGCCCGTGGGGCTGGCCCT GCACCGCCGAGCTTCCCGGGATGAGGGCCCCCGGTGTGGTCACCCGG CGCGCCCAGGTCGCTGAGGGACCCCGGCCAGGCGCGGAGATGGGG GTGCACGAATGTCCTGCCTGGCTGTGGCTTCTCCTGTCCCTGCTGTCG CTCCCTCTGGGCCTCCCAGTCCTGGGCGCCCCACCACGCCTCATCTGT GACAGCCGAGTCCTGGAGAGGTACCTCTTGGAGGCCAAGGAGGCCG AGAATATCACGACGGGCTGTGCTGAACACTGCAGCTTGAATGAGAAT ATCACTGTCCCAGACACCAAAGTTAATTTCTATGCCTGGAAGAGGAT GGAGGTCGGGCAGCAGGCCGTAGAAGTCTGGCAGGGCCTGGCCCTG CTGTCGGAAGCTGTCCTGCGGGGCCAGGCCCTGTTGGTCAACTCTTCC CAGCCGTGGGAGCCCCTGCAGCTGCATGTGGATAAAGCCGTCAGTGG CCTTCGCAGCCTCACCACTCTGCTTCGGGCTCTGCGAGCCCAGAAGG AAGCCATCTCCCCTCCAGATGCGGCCTCAGCTGCTCCACTCCGAACA ATCACTGCTGACACTTTCCGCAAACTCTTCCGAGTCTACTCCAATTTC CTCCGGGGAAAGCTGAAGCTGTACACAGGGGAGGCCTGCAGGACAG GGGACAGATGACCAGGTGTGTCCACCTGGGCATATCCACCACCTCCC TCACCAACATTGCTTGTGCCACACCCTCCCCGCCACTCCTGAACCCC GTCGAGGGGCTCTCAGCTCAGCGCCAGCCTGTCCCATGGACACTCCA GTGCCAGCAATGACATCTCAGGGGCCAGAGGAACTGTCCAGAGAGC AACTCTGAGATCTAAGGATGTCACAGGGCCAACTTGAGGGCCCAGAG CAGGAAGCATTCAGAGAGCAGCTTTAAACTCAGGGACAGAGCCATG CTGGGAAGACGCCTGAGCTCACTCGGCACCCTGCAAAATTTGATGCC AGGACACGCTTTGGAGGCGATTTACCTGTTTTCGCACCTACCATCAGG GACAGGATGACCTGGAGAACTTAGGTGGCAAGCTGTGACTTCTCCAG GTCTCACGGGCATGGGCACTCCCTTGGTGGCAAGAGCCCCCTTGACA CCGGGGTGGTGGGAACCATGAAGACAGGATGGGGGCTGGCCTCTGG CTCTCATGGGGTCCAAGTTTTGTGTATTCTTCAACCTCATTGACAAGA ACTGAAACCACCAAAAAAAAAAAAA

288/498

FIG. 64B

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Ala Glu Ass Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Leu Glu Ala Lys Glu Ala Glu Ass Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg

FIG. 65

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Lyr Thr Gly Glu Ala Cys Arg Thr Gly Asp

289/498

FIG. 66A

FIG. 66B

Met Trp Leu Gln Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe Asp Leu Gln Gln Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu

290/498

FIG. 67A

ATGAAATATACAAGTTATATCTTGGCTTTTCAGCTCTGCATCGTTTTG
GGTTCTCTTGGCTGTTACACTGCAGGACCCATATGTAAAAGAAGCAGA
AAACCTTAAGAAATATTTTAATGCAGGTCATTCAGATGTAGCGGATA
ATGGAACTCTTTTCTTAGGCATTTTGAAGAATTTGGAAAGAAGGAGAGT
GACAGAAAAATAATGCAGAGCCAAATTGTCTCCTTTTACTTCAAACT
TITTAAAAACTTTAAAGATGACCAGAGCCTCCAAAAGAGTGTGGAGA
CCATCAAGGAAGACATGAATGTCAAGTTTTTCAATAGCAACAAAAG
AAACGAGATGACTTCGAAAAGCATCAATTATTCGGTAACTGACTT
GAATGTCCAACGCAAAGCATCACATGAACTCATCAAGTGATGGCTG
AACTGTCGCAGCACAAACAAAAGGAGATGACTCATCAAGTGATGGCTG
GACTGTCGCCAGCAGCTAAAACAGGAAGCGAAAAAGGAGTCAGAT
GCTGTTTCGAGGTCGAAGAGCATCCCAGTAA

FIG. 67B

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gin Leu Cys Ile Val Leu Gly Ser Leu Gly Cys Tyr Cys Gin Asp Pro Tyr Val Lys Glu Ala Glu Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp Arg Lys Ile Met Gln Ser Gin Ile Val Ser Phe Tyr Phe Lys Leu Phe Lys Asn Phe Lys Asp Asp Gln Ser Ile Gin Lys Ser Val Glu Thr Ile Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val Gln Arg Lys Ala Ile His Glu Leu Ile Gin Val Met Ala Glu Leu Ser Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg Gly Arg Arg Ala Ser Gln

291/498

FIG. 68A

CTGGGACAGTGAATCGACAATGCCGTCTTCTGTCTCGTGGGGCATCCT CCTGCTGGCAGGCCTGTGCTGCCTGGTCCCTGTCTCCCTGGCTGAGGA TCCCCAGGGAGATGCTGCCCAGAAGACAGATACATCCCACCATGATC AGGATCACCCAACCTTCAACAAGATCACCCCCAACCTGGCTGAGTTC GCCTTCAGCCTATACCGCCAGCTGGCACACCCAGTCCAACAGCACCAA TATCTTCTCCCCAGTGAGCATCGCTACAGCCTTTGCAATGCTCTC CCTGGGGACCAAGGCTGACACTCACGATGAAATCCTGGAGGGCCTGA ATTTCAACCTCACGGAGATTCCGGAGGCTCAGATCCATGAAGGCTTC GACCACCGGCAATGGCCTGTTCCTCAGCGAGGGCCTGAAGCTAGTGG ATAAGTTTTTGGAGGATGTTAAAAAGTTGTACCACTCAGAAGCCTTC ACTGTCAACTTCGGGGACACCGAAGAGGGCCAAGAACAGATCAACG ATTACGTGGAGAAGGGTACTCAAGGGAAAATTGTGGATTTGGTCAAG GAGCTTGACAGAGACACAGTTTTTGCTCTGGTGAATTACATCTTCTTT. AAAGGCAAATGGGAGAGACCCTTTGAAGTCAAGGACACCGAGGAAG AGGACTTCCACGTGGACCAGGTGACCACCGTGAAGGTGCCTATGATG AAGCGTTTAGGCATGTTTAACATCCAGCACTGTAAGAAGCTGTCCAG CTGGGTGCTGATGAAATACCTGGGCAATGCCACCGCCATCTTCT TCCTGCCTGATGAGGGGAAACTACAGCACCTGGAAAATGAACTCACC CACGATATCATCACCAAGTTCCTGGAAAATGAAGACAGAAGGTCTGC CAGCTTACATTTACCCAAACTGTCCATTACTGGAACCTATGATCTGAA GAGCGTCCTGGGTCAACTGGGCATCACTAAGGTCTTCAGCAATGGGG CTGACCTCTCCGGGGTCACAGAGGAGGCACCCCTGAAGCTCTCCAAG GCCGTGCATAAGGCTGTGCTGACCATCGACGAGAAAGGGACTGAAGC TGCTGGGGCCATGTTTTTAGAGGCCATACCCATGTCTATCCCCCCCGA GGTCAAGTTCAACAAACCCTTTGTCTTCTTAATGATTGAACAAAATAC AACTGCCTCTCGCTCCTCAACCCCTCCCTCCATCCCTGGCCCCCTCC CTGGATGACATTAAAGAAGGGTTGAGCTGG

292/498

FIG. 68B

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn Lvs Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gin Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala LeuVal Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu AspArg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr Gln Lvs

293/498

. FIG. 69A-1

GCTAACCTAGTGCCTATAGCTAAGGCAGGTACCTGCATCCTTGTTTTT GTTTAGTGGATCCTCTATCCTTCAGAGACTCTGGAACCCCTGTGGTCT TCTCTTCATCTAATGACCCTGAGGGGATGGAGTTTTCAAGTCCTTCCA AGCCTCACAGGTTTGCTTCTACTTCAGGCAGTGTCGTGGGCATCAGGT GCCCGCCCTGCATCCCTAAAAGCTTCGGCTACAGCTCGGTGGTGTGT GTCTGCAATGCCACATACTGTGACTCCTTTGACCCCCCGACCTTTCCT GCCCTTGGTACCTTCAGCCGCTATGAGAGTACACGCAGTGGGCGACG GATGGAGCTGAGTATGGGGCCCATCCAGGCTAATCACACGGGCACAG GCCTGCTACTGACCCTGCAGCCAGAACAGAAGTTCCAGAAAGTGAAG GGATTTGGAGGGCCATGACAGATGCTGCTGCTCTCAACATCCTTGCC CTGTCACCCCCTGCCCAAAATTTGCTACTTAAATCGTACTTCTCTGAA GAAGGAATCGGATATAACATCATCCGGGTACCCATGGCCAGCTGTGA CTTCTCCATCCGCACCTACACCTATGCAGACACCCCTGATGATTTCCA GTTGCACAACTTCAGCCTCCCAGAGGAAGATACCAAGCTCAAGATAC CCCTGATTCACCGAGCCCTGCAGTTGGCCCAGCGTCCCGTTTCACTCC TTGCCAGCCCTGGACATCACCCACTTGGCTCAAGACCAATGGAGCG GTGAATGGGAAGGGTCACTCAAGGGACAGCCCGGAGACATCTACC ACCAGACCTGGGCCAGATACTTTGTGAAGTTCCTGGATGCCTATGCTG AGCACAAGTTACAGTTCTGGGCAGTGACAGCTGAAAATGAGCCTTCT GCTGGGCTGTTGAGTGGATACCCCTTCCAGTGCCTGGGCTTCACCCCT GAACATCAGCGAGACTTCATTGCCCGTGACCTAGGTCCTACCCTCGCC AACAGTACTCACCACAATGTCCGCCTACTCATGCTGGATGACCAACGC TTGCTGCCCCCACTGGGCAAAGGTGGTACTGACAGACCCAGAAGC AGCTAAATATGTTCATGGCATTGCTGTACATTGGTACCTGGACTTTCT GGCTCCAGCCAAAGCCACCCTAGGGGAGACACACCGCCTGTTCCCCA ACACCATGCTCTTTGCCTCAGAGGCCTGTGTGGGCTCCAAGTTCTGGG AGCAGAGTGTGCGGCTAGGCTCCTGGGATCGAGGGATGCAGTACAGC CACAGCATCATCACGAACCTCCTGTACCATGTGGTCGGCTGGACCGAC TGGAACCTTGCCCTGAACCCCGAAGGAGGACCCAATTGGGTGCGTAA CTTTGTCGACAGTCCCATCATTGTAGACATCACCAAGGACACGTTTTA CAAACAGCCCATGTTCTACCACCTTGGCCACTTCAGCAAGTTCATTCC TGAGGGCTCCCAGAGAGTGGGGCTGGTTGCCAGTCAGAAGAACGACC TGGACGCAGTGGCACTGATGCATCCCGATGGCTCTGCTGTTGTGGTCG TGCTAAACCGCTCCTCTAAGGATGTGCCTCTTACCATCAAGGATCCTG CTGTGGGCTTCCTGGAGACAATCTCACCTGGCTACTCCATTCACACCT ACCTGTGGCATCGCCAGTGATGGAGCAGATACTCAAGGAGGCACTGG GCTCAGCCTGGGCATTAAAGGGACAGAGTCAGCTCACACGCTGTCTG TGACTAAAGAGGGCACAGCAGGGCCAGTGTGAGCTTACAGCGACGT

294/498

FIG. 69A-2

AAGCCCAGGGGCAATGGTTTGGGTGACTCACTTTCCCCTCTAGGTGGT GCCCAGGGCTGGAGGCCCCTAGAAAAAGATCAGTAAGCCCCAGTGTC CCCCCAGCCCCCATGCTTATGTGAACATGCGCTGTTGTGTTGCTT TGGAAACT

FIG. 69B

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gln Ala Val Ser Trp Ala Ser Glv Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tvr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly Pro Thr Leu Ala Asp Ser Thr His His Asp Val Arg Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val Leu Thr Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg Gln

295/498

FIG. 70A

ATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGG AGCAGTCTTCGTTTCGCCCAGCCAGGAAATCCATGCCCGATTCAGAA GAGGAGCCAGATCTTACCAAGTGATCTGCAGAGATGAAAAAACGCA GATGATATACCAGCAACATCAGTCATGGCTGCGCCCTGTGCTCAGAA GCAACCGGGTGGAATATTGCTGGTGCAACAGTGGCAGGGCACAGTGC CACTCAGTGCCTGTCAAAAGTTGCAGCGAGCCAAGGTGTTTCAACGG GGGCACCTGCCAGCAGGCCCTGTACTTCTCAGATTTCGTGTGCCAGTG CCCCGAAGGATTTGCTGGGAAGTGCTGTGAAATAGATACCAGGGCCA CGTGCTACGAGGACCAGGGCATCAGCTACAGGGGCACGTGGAGCAC AGCGGAGAGTGCCCGAGTGCACCAACTGGAACAGCAGCGCGTTG GCCCAGAAGCCCTACAGCGGGCGGAGGCCAGACGCCATCAGGCTGG GCCTGGGGAACCACAACTACTGCAGAAACCCAGATCGAGACTCAAA GCCCTGGTGCTACGTCTTTAAGGCGGGGAAGTACAGCTCAGAGTTCT GCAGCACCCCTGCCTGCTCTGAGGGAAACAGTGACTGCTACTTTGGG AATGGGTCAGCCTACCGTGGCACGCACAGCCTCACCGAGTCGGGTGC CTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGGCAAGGTTTACAC AGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATT ACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTG AAGAACCGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTC CACCTGCGGCCTGAGACAGTACAGCCAGCCTCAGTTTCGCATCAAAG GAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAGGCTGCCATCT TTGCCAAGCACAGGAGGTCGCCGGGAGAGCGGTTCCTGTGCGGGGGC ATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTCCAG GAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAACATA CCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAA TACATTGTCCATAAGGAATTCGATGATGACACTTACGACAATGACAT TGCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGA GCAGCGTGGTCCGCACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTG CCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAGGC CTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGACT GTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAG TCACCGACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCC CAGGCAAACTTGCACGACGCCTGCCAGGGCGATTCGGGAGGCCCCCT GGTGTGTCTGAACGATGGCCGCATGACTTTGGTGGGCATCATCAGCT GGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACACCAAG GTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGACC AGGAACACCCGACTCCTCAAAAGCAAATGAGATCC

296/498

FIG. 70B

Met Asn Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asp Met Arg Pro

297/498

FIG. 71A

ATCACTCTCTTTAATCACTACTCACATTAACCTCAACTCCTGCCACAA TGTACAGGATGCAACTCCTGTCTTGCATTGCACTAATTCTTGCACTTG TCACAAACAGTGCACCTACTTCAAGTTCGACAAAGAAACAAAGAAA ACACAGCTACAACTGGAGCATTTACTGCTGGATTTACAGATGATTTTG AATGGAATTAATAATTACAAGAATCCCAAACTCACCAGGATGCTCAC ATTTAAGTTTTACATGCCCAAGAAGGCCACAGAACTGAAACAGCTTC AGTGTCTAGAAGAAGAACTCAAACCTCTGGAGGAAGTGCTGAATTTA GCTCAAAGCAAAACTTTCACTTAAGACCCAGGGACTTAATCAGCAA TATCAACGTAATAGTTCTGGAACTAAAGGGATCTGAAACAACATTCA TGTGTGAATATGCAGATGAGACAGCAACCATTGTAGAATTTCTGAAC AGATGGATTACCTTTTGTCAAAGCATCATCTCAACACTAACTTGATAA AATATTTAAATTTTATTTTTTTTTTGAATGTATGGTTGCTACCTATTG TAACTATTATTCTTAATCTTAAAACTATAAATATGGATCTTTTATGAT CAAAAATATTATTATTATGTTGAATGTTAAATATAGTATCTATGTAG AAACAAAAAAAAAA

FIG. 71B

Met Tyr Arg Met Gin Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys Thr Gin Leu Gin Leu Glu His Leu Leu Asp Leu Gin Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Giu Leu Lys Gin Leu Gin Cys Leu Gin Giu Giu Leu Lys Pro Leu Giu Giu Val Leu Asn Leu Ala Gin Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu Lys Giy Ser Giu Thr Thr Phe Met Cys Giu Tyr Ala Asp Giu Thr Ala Thr Ile Val Giu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gin Ser Ile Ile Ser Thr Leu Thr

FIG. 72A-1

298/498

ATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCT GCTTTAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCA TGGGACTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGACGCAAG ATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTCAACACCTCAGTCGT GTACAAAAAGACTCTGTTTGTAGAATTCACGGATCACCTTTTCAACAT CGCTAAGCCAAGGCCACCCTGGATGGGTCTGCTAGGTCCTACCATCC AGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCT TCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCT TCTGAGGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAG AAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTAC CTACTCATATCTTCTCATGTGGACCTGGTAAAAGACTTGAATTCAGG CCTCATTGGAGCCCTACTAGTATGTAGAGAAGGGAGTCTGGCCAAGG AAAAGACACAGACCTTGCACAAATTTATACTACTTTTTTGCTGTATTTG ATGAAGGGAAAAGTTGGCACTCAGAAACAAGAACTCCTTGATGCA GGATAGGGATGCTGCATCTGCTCGGGCCTGGCCTAAAATGCACACAG TCAATGGTTATGTAAACAGGTCTCTGCCAGGTCTGATTGGATGCCACA GGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA GTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCAT CGCCAGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAA ACACTCTTGATGGACCTTGGACAGTTTCTACTGTTTTGTCATATCTCTT CCCACCAACATGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT CCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCGGAAG ACTATGATGATGATCTTACTGATTCTGAAATGGATGTGGTCAGGTTTG ATGATGACAACTCTCCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGA AGCATCCTAAAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGAC TGGGACTATGCTCCCTTAGTCCTCGCCCCGATGACAGAAGTTATAAA AGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAA AAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTCGTG AAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTACTTTATGGGG TCAAGGAGATTACCAAAAGGTGTAAAACATTTGAAGGATTTTCCAAT TCTGCCAGGAGAAATATTCAAATATAAATGGACAGTGACTGTAGAAG ATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC TCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGATA ATGTCAGACAAGAGGAATGTCATCCTGTTTTCTGTATTTGATGAGAAC CGAAGCTGGTACCTCACAGAGAATATACAACGCTTTCTCCCCAATCCA GCTGGAGTGCAGCTTGAGGATCCAGAGTTCCAAGCCTCCAACATCAT GCACAGCATCAATGGCTATGTTTTTGATAGTTTGCAGTTGTCAGTTTG TTTGCATGAGGTGGCATACTGGTACATTCTAAGCATTGGAGCACAGA CTGACTTCCTTTCTCTCTCTGGATATACCTTCAAACACAAAAT

299/498

FIG. 72A-2

GGTCTATGAAGACACACTCACCCTATTCCCATTCTCAGGAGAAACTGT CTTCATGTCGATGGAAAACCCAGGTCTATGGATTCTGGGGTGCCACA ACTCAGACTTTCGGAACAGAGGCATGACCGCCTTACTGAAGGTTTCT AGTTGTGACAAGAACACTGGTGATTATTACGAGGACAGTTATGAAGA TATTTCAGCATACTTGCTGAGTAAAAACAATGCCATTGAACCAAGAA GCTTCTCCCAGAATTCAAGACACCGTAGCACTAGGCAAAAGCAATTT AATGCCACCACAATTCCAGAAAATGACATAGAGAAGACTGACCCTTG GTTTGCACACAGAACACCTATGCCTAAAATACAAAATGTCTCCTCTA GTGATTTGTTGATGCTCTTGCGACAGAGTCCTACTCCACATGGGCTAT CCTTATCTGATCTCCAAGAAGCCAAATATGAGACTTTTTCTGATGATC CATCACCTGGAGCAATAGACAGTAATAACAGCCTGTCTGAAATGACA CACTTCAGGCCACAGCTCCATCACAGTGGGGACATGGTATTTACCCC TGAGTCAGGCCTCCAATTAAGATTAAATGAGAAACTGGGGACAACTG CAGCAACAGAGTTGAAGAAACTTGATTTCAAAGTTTCTAGTACATCA AATAATCTGATTTCAACAATTCCATCAGACAATTTGGCAGCAGGTACT GATAATACAAGTTCCTTAGGACCCCCAAGTATGCCAGTTCATTATGAT AGTCAATTAGATACCACTCTATTTGGCAAAAAGTCATCTCCCCTTACT GAGTCTGGTGGACCTCTGAGCTTGAGTGAAGAAAATAATGATTCAAA GTTGTTAGAATCAGGTTTAATGAATAGCCAAGAAAGTTCATGGGGAA AAAATGTATCGTCAACAGAGAGTGGTAGGTTATTTAAAGGGAAAAGA GCTCATGGACCTGCTTTGTTGACTAAAGATAATGCCTTATTCAAAGTT AGCATCTCTTTGTTAAAGACAAACAAACTTCCAATAATTCAGCAACT AATAGAAAGACTCACATTGATGGCCCATCATTATTAATTGAGAATAG TCCATCAGTCTGGCAAAATATATTAGAAAGTGACACTGAGTTTAAAA AAGTGACACCTTTGATTCATGACAGAATGCTTATGGACAAAAATGCT ACAGCTTTGAGGCTAAATCATATGTCAAATAAAACTACTTCATCAAA AAACATGGAAATGGTCCAACAGAAAAAAGAGGGCCCCATTCCACCA GATGCACAAAATCCAGATATGTCGTTCTTTAAGATGCTATTCTTGCCA GAATCAGCAAGGTGGATACAAAGGACTCATGGAAAGAACTCTCTGAA CTCTGGGCAAGGCCCCAGTCCAAAGCAATTAGTATCCTTAGGACCAG GTAGTAGGAAAGGGTGAATTTACAAAGGACGTAGGACTCAAAGAGA TGGTTTTTCCAAGCAGCAGAAACCTATTTCTTACTAACTTGGATAATT TACATGAAAATAATACACACAATCAAGAAAAAAAAAATTCAGGAAGA AATAGAAAAGAAGGAAACATTAATCCAAGAGAATGTAGTTTTGCCTC AGATACATACAGTGACTGGCACTAAGAATTTCATGAAGAACCTTTTC TTACTGAGCACTAGGCAAAATGTAGAAGGTTCATATGACGGGGCATA TGCTCCAGTACTTCAAGATTTTAGGTCATTAAATGATTCAACAAATAG AACAAAGAAACACACAGCTCATTTCTCAAAAAAAGGGGAGGAAGAA AACTTGGAAGGCTTGGGAAATCAAACCAGCAAATTGTAGAGAAATAT GCATGCACCACAAGGAATATCTCCTAATACAAGCCAGCAGAATTTTG TCACGCAACGTAGTAAGAGAGCTTTGAAACAATTCAGACTCCCACTA

FIG. 72A-3

300/498

GAAGAAACAGAACTTGAAAAAAGGATAATTGTGGATGACACCTCAAC CCAGTGGTCCAAAAACATGAAACATTTGACCCCGAGCACCCTCACAC AGATAGACTACAATGAGAAGGAGAAAGGGGCCATTACTCAGTCTCCC TTATCAGATTGCCTTACGAGGAGTCATAGCATCCCTCAAGCAAATAGA TCTCCATTACCCATTGCAAAGGTATCATCATCTATTAGACCTA TATATCTGACCAGGGTCCTATTCCAAGACAACTCTTCTCATCTTCCAG CAGCATCTTATAGAAAGAAAGATTCTGGGGTCCAAGAAAGCAGTCAT TTCTTACAAGGAGCCAAAAAAAAAAATAACCTTTCTTTAGCCATTCTAACC TTGGAGATGACTGGTGATCAAAGAGAGGTTGGCTCCCTGGGGACAAG TGCCACAAATTCAGTCACATACAAGAAAGTTGAGAACACTGTTCTCCC GAAACCAGACTTGCCCAAAACATCTGGCAAAGTTGAATTGCTTCCAA AAGTTCACATTTATCAGAAGGACCTATTCCCTACGGAAACTAGCAATG GGTCTCCTGGCCATCTGGATCTCGTGGAAGGGAGCCTTCTTCAGGGAA CAGAGGGAGCGATTAAGTGGAATGAAGCAAACAGACCTGGAAAAGT GCTATTGGATCCTCTTGCTTGGGATAACCACTATGGTACTCAGATACC AAAAGAAGAGTGGAAATCCCAAGAGAAGTCACCAGAAAAAAACAGCT TTTAAGAAAAAGGATACCATTTTGTCCCTGAACGCTTGTGAAAGCAAT CATGCAATAGCAGCAATAAATGAGGGACAAAATAAGCCCGAAATAG AAGTCACCTGGGCAAAGCAAGGTAGGACTGAAAGGCTGTGCTCTCAA AACCCACCAGTCTTGAAACGCCATCAACGGGAAATAACTCGTACTAC TCTTCAGTCAGATCAAGAGGAAATTGACTATGATGATACCATATCAGT TGAAATGAAGAAGGAAGATTTTGACATTTATGATGAGGATGAAAATC AGAGCCCCCGCAGCTTTCAAAAGAAAACACGACACTATTTTATTGCTG CAGTGGAGAGGCTCTGGGATTATGGGATGAGTAGCTCCCCACATGTT CTAAGAAACAGGGCTCAGAGTGGCAGTGTCCCTCAGTTCAAGAAAGT TGTTTTCCAGGAATTTACTGATGGCTCCTTTACTCAGCCCTTATACCGT GGAGAACTAAATGAACATTTGGGACTCCTGGGGCCATATATAAGAGC AGAAGTTGAAGATAATATCATGGTAACTTTCAGAAATCAGGCCTCTC GTCCCTATTCCTTCTATTCTAGCCTTATTTCTTATGAGGAAGATCAGAG GCAAGGAGCAGAACCTAGAAAAAACTTTGTCAAGCCTAATGAAACCA AAACTTACTTTTGGAAAGTGCAACATCATATGGCACCCACTAAAGAT GAGTTTGACTGCAAAGCCTGGGCTTATTTCTCTGATGTTGACCTGGAA AAAGATGTGCACTCAGGCCTGATTGGACCCCTTCTGGTCTGCCACACT AACACACTGAACCCTGCTCATGGGAGACAAGTGACAGTACAGGAATT TGCTCTGTTTTCACCATCTTTGATGAGACCAAAAGCTGGTACTTCACT GAAAATATGGAAAGAAACTGCAGGGCTCCCTGCAATATCCAGATGGA CATAATGGATACACTACCTGGCTTAGTAATGGCTCAGGATCAAAGGA TTCGATGGTATCTGCTCAGCATGGGCAGCAATGAAAACATCCATTCT ATTCATTTCAGTGGACATGTGTTCACTGTACGAAAAAAAGAGGAGTA TAAAATGGCACTGTACAATCTCTATCCAGGTGTTTTTGAGACAGTGGA

FIG. 72A-4

301/498

AATGTTACCATCCAAAGCTGGAATTTGGCGGGTGGAATGCCTTATTGG CGAGCATCTACATGCTGGGATGAGCACACTTTTTCTGGTGTACAGCAA TAAGTGTCAGACTCCCCTGGGAATGGCTTCTGGACACATTAGAGATTT TCAGATTACAGCTTCAGGACAATATGGACAGTGGGCCCCAAAGCTGG CCAGACTTCATTATTCCGGATCAATCAATGCCTGGAGCACCAAGGAG CCCTTTCTTGGATCAAGGTGGATCTGTTGGCACCAATGATTATTCAC GGCATCAAGACCCAGGGTGCCCGTCAGAAGTTCTCCAGCCTCTACAT CTCTCAGTTTATCATCATGTATAGTCTTGATGGGAAGAAGTGGCAGA CTTATCGAGGAAATTCCACTGGAACCTTAATGGTCTTCTTTGGCAATG TGGATTCATCTGGGATAAAACACAATATTTTTAACCCTCCAATTATTG CTCGATACATCCGTTTGCACCCAACTCATTATAGCATTCGCAGCACTC TTCGCATGGAGTTGATGGGCTGTGATTTAAATAGTTGCAGCATGCCAT TGGGAATGGAGAGTAAAGCAATATCAGATGCACAGATTACTGCTTCA TCCTACTTTACCAATATGTTTGCCACCTGGTCTCCTTCAAAAGCTCGA CTTCACCTCCAAGGGAGGAGTAATGCCTGGAGACCTCAGGTGAATAA TCCAAAAGAGTGGCTGCAAGTGGACTTCCAGAAGACAATGAAAGTCA CAGGAGTAACTACTCAGGGAGTAAAATCTCTGCTTACCAGCATGTAT GTGAAGGAGTTCCTCATCTCCAGCAGTCAAGATGGCCATCAGTGGAC TCTCTTTTTCAGAATGGCAAAGTAAAGGTTTTTCAGGGAAATCAAGA CTCCTTCACACCTGTGGTGAACTCTCTAGACCCACCGTTACTGACTCG CTACCTTCGAATTCACCCCCAGAGTTGGGTGCACCAGATTGCCCTGAG GATGGAGGTTCTGGGCTGCGAGGCACAGGACCTCTACTGAGGGTGGC CACTGCAGCACCTGCCACTGCCGTCACCTCTCCCTCAGCTCCAGG GCAGTGTCCCTCCCTGGCTTGCCTTCTACCTTTGTGCTAAATCCTAGC AGACACTGCCTTGAAGCCTCCTGAATTAACTATCATCAGTCCTGCATT TCTTTGGTGGGGGCCAGGAGGGTGCATCCAATTTAACTTAACTCTTA CCTATTTCTGCAGCTGCTCCCAGATTACTCCTTCCTTCCAATATAACT AGGCAAAAAGAAGTGAGGAGAAACCTGCATGAAAGCATTCTTCCCTG AAAAGTTAGGCCTCTCAGAGTCACCACTTCCTCTGTTGTAGAAAAACT ATGTGATGAAAACTTTGAAAAAGATATTTATGATGTTAACATTTCAGGT TAAGCCTCATACGTTTAAAATAAAACTCTCAGTTGTTTATTATCCTGA TCAAGCATGGAACAAAGCATGTTTCAGGATCAGATCAATACAATCTT GGAGTCAAAAGGCAAATCATTTGGACAATCTGCAAAATGGAGAGAA TACAATAACTACTACAGTAAAGTCTGTTTCTGCTTCCTTACACATAGA TATAATTATGTTATTTAGTCATTATGAGGGGCACATTCTTATCTCCAA AACTAGCATTCTTAAACTGAGAATTATAGATGGGGTTCAAGAATCCC TAAGTCCCCTGAAATTATATAAGGCATTCTGTATAAATGCAAATGTGC ATTTTTCTGACGAGTGTCCATAGATATAAAGCCATTTGGTCTTAATTCT GACCAATAAAAAAATAAGTCAGGAGGATGCAATTGTTGAAAGCTTTG AAATGATGA

FIG. 72B-1 302/498

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr Met Gln Ser Asn Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tvr Asp Asp Asp Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asp Ser Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe

FIG. 72B-2

303/498

Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Glv Asp Tvr Tvr Glu Asp Ser Tvr Glu Asp Ile Ser Ala Tvr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly Lvs Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu Lvs Thr Asn Lvs Thr Ser Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Glv Pro Ser Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr Gly Thr Lvs Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser Ser His Leu Pro

FIG. 72B-3 304/498

Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tvr Lvs Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu As Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn lle His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile

FIG. 72B-4

305/498

Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gin Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro. Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr

306/498

FIG. 73A

TCCACCTGTCCCGCAGCGCCGGCTCGCGCCCTCCTGCCGCAGCCACC GAGCCGCCGTCTAGCGCCCCGACCTCGCCACCATGAGAGCCCTGCTG GCGCGCCTGCTTCTCTGCGTCCTGGTCGTGAGCGACTCCAAAGGCAGC AATGAACTTCATCAAGTTCCATCGAACTGTGACTGTCTAAATGGAGGA ACATGTGTGTCCAACAGTACTTCTCCAACATTCACTGGTGCAACTGC CCAAAGAAATTCGGAGGGCAGCACTGTGAAATAGATAAGTCAAAAAC CTGCTATGAGGGGAATGGTCACTTTTACCGAGGAAAGGCCAGCACTG ACACCATGGGCCGGCCCTGCCTGCCCTGGAACTCTGCCACTGTCCTTC AGCAAACGTACCATGCCCACAGATCTGATGCTCTTCAGCTGGGCCTGG GGAAACATAATTACTGCAGGAACCCAGACAACCGGAGGCGACCCTGG TGCTATGTGCAGGTGGGCCTAAAGCCGCTTGTCCAAGAGTGCATGGT GCATGACTGCGCAGATGGAAAAAAGCCCTCCTCCTCCCAGAAGAAT TAAAATTTCAGTGTGGCCAAAAGACTCTGAGGCCCCGCTTTAAGATTA TTGGGGGAGAATTCACCACCATCGAGAACCAGCCCTGGTTTGCGGCC ATCTACAGGAGGCACCGGGGGGGCTCTGTCACCTACGTGTGTGGAGG CAGCCTCATCAGCCCTTGCTGGGTGATCAGCGCCACACACTGCTTCAT TGATTACCCAAAGAAGGAGGACTACATCGTCTACCTGGGTCGCTCAA GGCTTAACTCCAACACGCAAGGGGAGATGAAGTTTGAGGTGGAAAAC CTCATCCTACACAAGGACTACAGCGCTGACACGCTTGCTCACCACAAC GACATTGCCTTGCTGAAGATCCGTTCCAAGGAGGGCAGGTGTGCGCA GCCATCCCGGACTATACAGACCATCTGCCTGCCCTCGATGTATAACGA TCCCCAGTTTGGCACAAGCTGTGAGATCACTGGCTTTGGAAAAGAGA ATTCTACCGACTATCTCTATCCGGAGCAGCTGAAGATGACTGTTGTGA AGCTGATTTCCCACCGGGAGTGTCAGCAGCCCCACTACTACGGCTCTG AAGTCACCACAAAATGCTGTGTGCTGCTGACCCACAGTGGAAAACA GATTCCTGCCAGGGAGACTCAGGGGGACCCCTCGTCTGTTCCCTCCAA GGCCGCATGACTTTGACTGGAATTGTGAGCTGGGGCCGTGGATGTGC CCTGAAGGACAAGCCAGGCGTCTACACGAGAGTCTCACACTTCTTAC GGGTCCCCAGGGAGGAAACGGGCACCACCCGCTTTCTTGCTGGTTGTC ATTTTTGCAGTAGAGTCATCTCCATCAGCTGTAAGAAGAGACTGGGA AGAT

307/498

FIG. 73B

Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cvs Val Leu Val Val Ser Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cvs Asp Cvs Leu Asn Glv Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser Ala Thr Val Leu Gln Gln Thr Tvr His Ala His Arg Ser Asn Ala Leu Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asn Asn Arg Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val Glu Asn Leu Île Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His His Asp Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu

308/498

FIG.74A

TCCTGCACAGGCAGTGCCTTGAAGTGCTTCTTCAGAGACCTTTCTTCA TAGACTACTTTTTTTTTTTAAGCAGCAAAAAGGAGAAAATTGTCATCA AGGATATTCCAGATTCTTGACAGCATTCTCGTCATCTCTGAGGACATC ACCATCATCTCAGGATGAGGGGCATGAAGCTGCTGGGGGGCGCTGCTG GCACTGGCGGCCCTACTGCAGGGGGCCGTGTCCCTGAAGATCGCAGC CTTCAACATCCAGACATTTGGGGAGACCAAGATGTCCAATGCCACCCT CGTCAGCTACATTGTGCAGATCCTGAGCCGCTATGACATCGCCCTGGT CCAGGAGGTCAGAGACAGCCACCTGACTGCCGTGGGGAAGCTGCTGG ACAACCTCAATCAGGATGCACCAGACACCTATCACTACGTGGTCAGT GAGCCACTGGGACGGAACAGCTATAAGGAGCGCTACCTGTTCGTGTA CAGGCCTGACCAGGTGTCTGCGGTGGACAGCTACTACGATGATG GTCAGGTTCTCCCCGGTTCACAGAGGTCAGGGAGTTTGCCATTGTT CCCCTGCATGCGGCCCCGGGGGACGCAGTAGCCGAGATCGACGCTCT CTATGACGTCTACCTGGATGTCCAAGAGAAATGGGGCTTGGAGGACG TCATGTTGATGGGCGACTTCAATGCGGGCTGCAGCTATGTGAGACCCT CCCAGTGGTCATCCGCCTGTGGACAAGCCCCACCTTCCAGTGGC TGATCCCCGACAGCGCTGACACCACAGCTACACCCACGCACTGTGCCT ATGACAGGATCGTGGTTGCAGGGATGCTGCTCCGAGGCGCCGTTGTTC CCGACTCGGCTCTTCCCTTTAACTTCCAGGCTGCCTATGGCCTGAGTG ACCAACTGGCCCAAGCCATCAGTGACCACTATCCAGTGGAGGTGATG CTGAAGTGAGCAGCCCTCCCCACACCAGTTGAACTGCAG

309/498

FIG. 74B

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Ala Leu Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala IIe Ser Asp His Tyr Pro Val Glu Val Met Leu Lys

310/498

FIG. 75A

FIG. 75B

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly lle Val Glu Glin Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn

311/498

FIG. 76A

ATGGGAGGTTGGTCTTCCAAACCTCGACAAGGCATGGGGACGAATCT TTCTGTTCCCAATCCTCTGGGATTCTTTCCCGATCACCAGTTGGACCCT GCGTTCGGAGCCAACTCAAACAATCCAGATTGGGACTTCAACCCCAA CAAGGATCACTGGCCAGAGGCAATCAAGGTAGGAGCGGGAGACTTC GGGCCAGGGTTCACCCCACCACACGGCGGTCTTTTGGGGTGGAGCCC TCAGGCTCAGGGCATATTGACAACAGTGCCAGCAGCGCCTCCTCCTG TTTCCACCAATCGGCAGTCAGGAAGACAGCCTACTCCCATCTCTCCAC CTCTAAGAGACAGTCATCCTCAGGCCATGCAGTGGAACTCCACAACA TTCCACCAAGCTCTGCTAGATCCCAGAGTGAGGGGCCTATATTTTCCT GCTGGTGGCTCCAGTTCCGGAACAGTAAACCCTGTTCCGACTACTGTC TCACCCATATCGTCAATCTTCTCGAGGACTGGGGACCCTGCACCGAAC ATGGAGAGCACAACATCAGGATTCCTAGGACCCCTGCTCGTGTTACA GGCGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCACAGAGTCT AGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAGCACCCACGTG TTGTCCTCCAATTTGTCCTGGTTATCGCTGGATGTGTCTGCGGCGTTTT ATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTC TTCTGGACTACCAAGGTATGTTGCCCGTTTGTCCTCTACTTCCAGGAA CATCAACTACCAGCACGGGACCATGCAAGACCTGCACGATTCCTGCT CAAGGAACCTCTATGTTTCCCTCTTGTTGCTGTACAAAACCTTCGGAC GGAAACTGCACTTGTATTCCCATCCCATCATCCTGGGCTTTCGCAAGA TTCCTATGGGAGTGGGCCTCAGTCCGTTTCTCCTGGCTCAGTTTACTA GTGCCATTTGTTCAGTGGTTCGCAGGGCTTTCCCCCACTGTTTGGCTTT CAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAACATCT TGAGTCCCTTTTTACCTCTATTACCAATTTTCTTTTGTCTTTGGGTATAC ATTTGA

312/498

FIG. 76B

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn Lys Asp His Trp Pro Glu Ala Ile Lvs Val Glv Ala Glv Asp Phe Glv Pro Glv Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly Thr Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro Ala Gln Gly Thr Ser Met Phe Pro Ser Cys Cys Thr Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Ala Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile

313/498

FIG. 77A

CGAACCACTCAGGGTCCTGTGGACAGCTCACCTAGCTGCAATGGCTA CCTGGCTTCAAGAGGGCAGTGCCTTCCCAACCATTCCCTTATCCAGGC CTTTTGACAACGCTATGCTCCGCGCCCATCGTCTGCACCAGCTGGCCT TTGACACCTACCAGGAGTTTGAAGAAGCCTATATCCCAAAGGAACAG AAGTATTCATTCCTGCAGAACCCCCAGACCTCCCTCTGTTTCTCAGAG TCTATTCCGACACCCTCCAACAGGGAGGAAACACACACAGAAATCCAA CCTAGAGCTGCTCCGCATCTCCCTGCTGCTCATCCAGTCGTGGCTGGA GCCCGTGCAGTTCCTCAGGAGTGTCTTCGCCAACAGCCTGGTGTACGG CGCCTCTGACAGCAACGTCTATGACCTCCTAAAGGACCTAGAGGAAG GCATCCAAACGCTGATGGGGAGGCTGGAAGATGGCAGCCCCCGGACT GGGCAGATCTTCAAGCAGACCTACAGCAAGTTCGACACAAACTCACA CAACGATGACGCACTACTCAAGAACTACGGGCTGCTCTACTGCTTCAG GAAGGACATGGCAAGGTCGAGACATTCCTGCGCATCGTGCAGTGCCG CTCTGTGGAGGGCAGCTGTGGCTTCTAGCTGCCCGGGTGGCATCCCTG TGACCCCTCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGT GCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATC

FIG. 77B

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln CysArg Ser Val Glu Gly Ser Cys Gly Phe

314/498

FIG. 78A

TTATCTTTTGTCCTTGCTGCTCATTGGCTTCTGGGACTGCGTGACCTGT CACGGGAGCCTGTGGACATCTGCACAGCCAAGCCGCGGGACATTCC CATGAATCCCATGTGCATTTACCGCTCCCGGAGAAGAAGGCAACTG AGGATGAGGCTCAGAACAGAAGATCCCGGAGGCCACCAACCGGCG TGTCTGGGAACTGTCCAAGGCCAATTCCCGCTTTGCTACCACTTTCTA TCAGCACCTGGCAGATTCCAAGAATGACAATGATAACATTTTCCTGTC ACCCCTGAGTATCTCCACGGCTTTTGCTATGACCAAGCTGGGTGCCTG TAATGACACCTCCAGCAACTGATGGAGGTATTTAAGTTTGACACCAT ATCTGAGAAACATCTGATCAGATCCACTTCTTCTTTGCCAAACTGAA CTGCCGACTCTATCGAAAAGCCAACAAATCCTCCAAGTTAGTATCAGC CAATCGCCTTTTTGGAGACAAATCCCTTACCTTCAATGAGACCTACCA GGACATCAGTGAGTTGGTATATGGAGCCAAGCTCCAGCCCCTGGACT TCAAGGAAAATGCAGAGCAATCCAGAGCGGCCATCAACAAATGGGTG TCCAATAAGACCGAAGCCGAATCACCGATGTCATTCCCTCGGAAGC CATCAATGAGCTCACTGTTCTGGTGCTGGTTAACACCCATTTACTTCAA TGTTCTACAAGGCTGATGGAGAGTCGTGTTCAGCATCTATGATGTACC AGGAAGGCAAGTTCCGTTATCGGCGCGTGGCTGAAGGCACCCAGGTG CTTGAGTTGCCCTTCAAAGGTGATGACATCACCATGGTCCTCATCTTG CCCAAGCCTGAGAAGAGCCTGGCCAAGGTGGAGAAGGAACTCACCCC AGAGGTGCTGCAGGAGTGGCTGGATGAATTGGAGGAGATGATGCTGG TGGTCCACATGCCCCGCTTCCGCATTGAGGACGGCTTCAGTTTGAAGG AGCAGCTGCAAGACATGGGCCTTGTCGATCTGTTCAGCCCTGAAAAG TCCAAACTCCCAGGTATTGTTGCAGAAGGCCGAGATGACCTCTATGTC TCAGATGCATTCCATAAGGCATTTCTTGAGGTAAATGAAGAAGGCAG TGAAGCAGCTGCAAGTACCGCTGTTGTGATTGCTGGCCGTTCGCTAAA CCCCAACAGGGTGACTTTCAAGGCCAACAGGCCTTTCCTGGTTTTTAT AAGAGAAGTTCCTCTGAACACTATTATCTTCATGGGCAGAGTAGCCA ACCCTTGTGTTAAGTAA

315/498

FIG. 78B

Met Tyr Ser Asn Val Ile Gly Thr Val Thr Ser Gly Lys Arg Lys Val Tyr Leu Leu Ser Leu Leu Ile Gly Phe Trp Asp Cys Val Thr Cys His Gly Ser Pro Val Asp Ile Cys Thr Ala Lys Pro Arg Asp Ile Pro Met Asn Pro Met Cys Ile Tyr Arg Ser Pro Glu Lys Lys Ala Thr Glu Asp Glu Gly Ser Glu Gln Lys Ile Pro Glu Ala Thr Asn Arg Arg Val Trp Glu Leu Ser Lys Ala Asn Ser Arg Phe Ala Thr Thr Phe Tyr Gln His Leu Ala Asp Ser Lys Asn Asp Asn Asp Asn Ile Phe Leu Ser Pro Leu Ser Ile Ser Thr Ala Phe Ala Met Thr Lys Leu Gly Ala Cys Asn Asp Thr Leu Gln Gln Leu Met Glu Val Phe Lys Phe Asp Thr Ile Ser Glu Lys Thr Ser Asp Gln Ile His Phe Phe Phe Ala Lys Leu Asn Cys Arg Leu Tyr Arg Lys Ala Asn Lys Ser Ser Lys Leu Val Ser Ala Asn Arg Leu Phe Gly Asp Lys Ser Leu Thr Phe Asn Glu Thr Tvr Gln Asp Ile Ser Glu Leu Val Tyr Gly Ala Lys Leu Gln Pro Leu Asp Phe Lys Glu Asn Ala Glu Gln Ser Arg Ala Ala Ile Asn Lys Trp Val Ser Asn Lys Thr Glu Gly Arg Ile Thr Asp Val Ile Pro Ser Glu Ala Ile Asn Glu Leu Thr Val Leu Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Leu Trp Lys Ser Lys Phe Ser Pro Glu Asn Thr Arg Lys Glu Leu Phe Tyr Lys Ala Asp Gly Glu Ser Cys Ser Ala Ser Met Met Tyr Gln Glu Gly Lys Phe Arg Tyr Arg Arg Val Ala Glu Gly Thr Gln Val Leu Glu Leu Pro Phe Lys Gly Asp Asp Ile Thr Met Val Leu Ile Leu Pro Lys Pro Glu Lys Ser Leu Ala Lys Val Glu Lys Glu Leu Thr Pro Glu Val Leu Gln Glu Trp Leu Asp Glu Leu Glu Glu Met Met Leu Val Val His Met Pro Arg Phe Arg lle Glu Asp Gly Phe Ser Leu Lys Glu Gln Leu Gln Asp Met Gly Leu Val Asp Leu Phe Ser Pro Glu Lys Ser Lys Leu Pro Gly Ile Val Ala Glu Gly Arg Asp Asp Leu Tyr Val Ser Asp Ala Phe His Lys Ala Phe Leu Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ala Ser Thr Ala Val Val Ile Ala Gly Arg Ser Leu Asn Pro Asn Arg Val Thr Phe Lys Ala Asn Arg Pro Phe Leu Val Phe Ile Arg Glu Val Pro Leu Asn Thr Ile Ile Phe Met Gly Arg Val Ala Asn Pro Cys Val Lys

316/498

FIG. 79A

ATGGATTACTACAGAAAATATGCAGCTATCTTTCTGGTCACATTGTCG
GTGTTTCTGCATGTCCATTCCGCTCCTGATGTGCAGGATTGCCCAG
AATGCACGCTACAGGAAAACCCATTCTTCTCCCAGCCGGGTGCCCCA
ATACTTCAGTGCATGGGCTGCTGCTTCTCTAGAGCATATCCCACTCCA
CTAAGGTCCAAGAAGACGATGTTGGTCCAAAAGAACGTCACCTCAGA
GTCCACTTGCTGTGTAGCTAAATCATATAACAGGGTCACAGTAATGGG
GGGTTTCAAAGTGGAGAACCACACGGCGTGCCACTGCAGTACTTGTT
ATTATCACAAATCTTAA

FIG. 79B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser

317/498

FIG. 79C

ATGAGATGTTCCAGGGCTGCTGCTGTTGCTGCTGAGCATGGGC
GGGACATGGGCATCCAAGGAGCCGCTTCGGCCACGGTGCGCCCCCAT
CAATGCCACCCTGGCTGTGGAGAAGAGGGCTGCCCCGTTGCATCA
CCGTCAACACCACCATCTGTGCCGGCTACTGCCCCACCATGACCCGCG
TGCTGCAGGGGTCCTGCCGGCCCTCAGGTGGTGCAACTACC
GCGATGTGCGCTTCGAGTCCATCCGGCTCCCTGGCTGCCCGCCGGCG
TGAACCCCGTGCTCTACGCCGTTCCATGCTGCAACTACC
CTGACCTGCGACACCACTGACTGCAGCTCCAAGGACCACCCC
TTGACCTGTGATGACCCCCGCTTCCAGGACTCCTCTCAAAGGCC
CCTCCCCCCAGCCTTCCAAGCCCATCCCGACTCCCGGGGGCCTTGGAC
ACCCCGATCCTCCAACACCATCCCGACTCCCGGGGCCCTCGGAC
ACCCCGATCCCCCACAATAA

FIG. 79D

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Leu Ser Met Gly Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val Leu Gln Gly Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln

318/498 FIG. 80A

ATGCGTCCCCTGCGCCCCGCGCGCGCTGCTGGCGCTCCTGGCCTCG CTCCTGGCCGCCCCCGGTGGCCCCGGCCGAGGCCCCGCACCTGGT GCAGGTGGACGCGCCCGCGCGCTGTGGCCCCTGCGGCGCTTCTGGA GGAGCACAGGCTTCTGCCCCCCGCTGCCACACAGCCAGGCTGACCAG TACGTCCTCAGCTGGGACCAGCAGCTCAACCTCGCCTATGTGGGCGCC GTCCCTCACCGCGCATCAAGCAGGTCCGGACCCACTGGCTGCTGGA GCTTGTCACCACCAGGGGGTCCACTGGACGGGGCCTGAGCTACAACT TCACCCACCTGGACGGGTACTTGGACCTTCTCAGGGAGAACCAGCTCC TCCCAGGGTTTGAGCTGATGGGCAGCGCCTCGGGCCACTTCACTGACT TTGAGGACAAGCAGCAGGTGTTTGAGTGGAAGGACTTGGTCTCCAGC CTGGCCAGGAGATACATCGGTAGGTACGGACTGGCGCATGTTTCCAA GTGGAACTTCGAGACGTGGAATGAGCCAGACCACCACGACTTTGACA ACGTCTCCATGACCATGCAAGGCTTCCTGAACTACTACGATGCCTGCT GGCGACTCCTTCCACACCCCACCGCGATCCCCGCTGAGCTGGGGCCTC CTGCGCCACTGCCACGACGGTACCAACTTCTTCACTGGGGAGGCGGG CGTGCGGCTGGACTACATCTCCCTCCACAGGAAGGGTGCGCGCAGCT CCATCTCCATCCTGGAGCAGGAGAAGGTCGTCGCGCAGCAGATCCGG CAGCTCTTCCCCAAGTTCGCGGACACCCCCATTTACAACGACGAGGCG GACCCGCTGGTGGGCTGGTCCCTGCCACAGCCGTGGAGGCCGGACGT GACCTACGCGCCATGGTGGTGAAGGTCATCGCGCAGCATCAGAACC TGCTACTGGCCAACACCACCTCCGCCTTCCCCTACGCGCTCCTGAGCA ACGACAATGCCTTCCTGAGCTACCACCCGCACCCCTTCGCGCAGCGCA CGCTCACCGCGCGCTTCCAGGTCAACACCCCGCCGCCGCCGCACGTG CAGCTGTTGCGCAAGCCGGTGCTCACGGCCATGGGGCTGCTGGCGCT GCTGGATGAGGAGCAGCTCTGGGCCGAAGTGTCGCAGGCCGGGACCG TCCTGGACAGCACCACGGTGGGCGTCCTGGCCAGCGCCCACCGC CCCCAGGGCCGGCGACGCCTGGCGCGCGCGGTGCTGATCTACGC GAGCGACGACCCGCGCCCCACCCCAACCGCAGCGTCGCGGTGACCC TGCGGCTGCGCGGGTGCCCCCGGCCCGGGCCTGGTCTACGTCACG CGCTACCTGGACAACGGGCTCTGCAGCCCCGACGGCGAGTGGCGCG CCTGGGCCGGCCGTCTTCCCCACGGCAGAGCAGTTCCGGCGCATGC GCGCGGCTGAGGACCCGGTGGCCGCGCGCCCCCTTACCCGCC GGCGGCCGCCTGACCCTGCGCCCCGCGCTGCGGCTGCCGTCGCTTTTG CTGGTGCACGTGTGCGCCCCGAGAAGCCGCCCGGGCAGGTCAC GCGGCTCCGCGCCCTGCCCCTGACCCAAGGGCAGCTGGTTCTGGTCTG GTCGGATGAACACGTGGGCTCCAAGTGCCTGTGGACATACGAGATCC AGTTCTCTCAGGACGGTAAGGCGTACACCCCGGTCAGCAGGAAGCCA TCGACCTTCAACCTCTTTGTGTTCAGCCCAGACACAGGTGCTGTCTCT GGCTCCTACCGAGTTCGAGCCCTGGACTACTGGGCCCGACCAGGCCC CTTCTCGGACCCTGTGCCGTACCTGGAGGTCCCTGTGCCAAGAGGGCC CCCATCCCCGGGCAATCCAT GA

319/498

FIG. 80B

Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Leu Ala Asn Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Gln Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp Ala Trp Arg Ala Ala Val Leu Ile Tyr Ala Ser Asp Asp Thr Arg Ala His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cys Ala Arg Pro Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser Pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro

320/498

FIG. 81A

ATGCAGCTGAGGAACCCAGAACTACATCTGGGCTGCGCGCTTGCGCT TCGCTTCCTGGCCCTCGTTTCCTGGGACATCCCTGGGGCTAGAGCACT AGCGCTTCATGTGCAACCTTGACTGCCAGGAAGAGCCAGATTCCTGC ATCAGTGAGAAGCTCTTCATGGAGATGGCAGAGCTCATGGTCTCAGA AGGCTGGAAGGATGCAGGTTATGAGTACCTCTGCATTGATGACTGTTG GATGGCTCCCCAAAGAGATTCAGAAGGCAGACTTCAGGCAGACCCTC AGCGCTTTCCTCATGGGATTCGCCAGCTAGCTAATTATGTTCACAGCA AAGGACTGAAGCTAGGGATTTATGCAGATGTTGGAAATAAAACCTGC GCAGGCTTCCCTGGGAGTTTTGGATACTACGACATTGATGCCCAGACC TTTGCTGACTGGGGAGTAGATCTGCTAAAATTTGATGGTTGTTACTGT GACAGTTTGGAAAATTTGGCAGATGGTTATAAGCACATGTCCTTGGCC CTGAATAGGACTGGCAGAAGCATTGTGTACTCCTGTGAGTGGCCTCTT TATATGTGGCCCTTTCAAAAGCCCAATTATACAGAAATCCGACAGTAC TGCAATCACTGGCGAAATTTTGCTGACATTGATGATTCCTGGAAAAGT ATAAAGAGTATCTTGGACTGGACATCTTTTAACCAGGAGAGAATTGTT GATGTTGCTGGACCAGGGGGTTGGAATGACCCAGATATGTTAGTGAT TGGCAACTTTGGCCTCAGCTGGAATCAGCAAGTAACTCAGATGGCCCT CTGGGCTATCATGGCTGCTCCTTTATTCATGTCTAATGACCTCCGACA CATCAGCCCTCAAGCCAAAGCTCTCCTTCAGGATAAGGACGTAATTGC CATCAATCAGGACCCCTTGGGCAAGCAAGGGTACCAGCTTAGACAGG GAGACAACTTTGAAGTGTGGGAACGACCTCTCTCAGGCTTAGCCTGG GCTGTAGCTATGATAAACCGGCAGGAGATTGGTGGACCTCGCTCTTAT ACCATCGCAGTTGCTTCCCTGGGTAAAGGAGTGGCCTGTAATCCTGCC TGCTTCATCACACACCTCCTCCCTGTGAAAAGGAAGCTAGGGTTCTAT GAATGGACTTCAAGGTTAAGAAGTCACATAAATCCCACAGGCACTGT TTTGCTTCAGCTAGAAAATACAATGCAGATGTCATTAAAAGACTTACT TTAA

321/498

FIG. 81B

Met Gln Leu Arg Asn Pro Glu Leu His Leu Gly Cys Ala Leu Ala Leu Arg Phe Leu Ala Leu Val Ser Trp Asp Ile Pro Gly Ala Arg Ala Leu Asp Asn Gly Leu Ala Arg Thr Pro Thr Met Gly Trp Leu His Trp Glu Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp Ser Cys Ile Ser Glu Lys Leu Phe Met Glu Met Ala Glu Leu Met Val Ser Glu Gly Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp Cys Trp Met Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp Pro Gln Arg Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His Ser Lys Gly Leu Lys Leu Gly Ile Tyr Ala Asp Val Gly Asn Lys Thr Cys Ala Gly Phe Pro Gly Ser Phe Gly Tyr Tyr Asp Ile Asp Ala Gln Thr Phe Ala Asp Trp Gly Val Asp Leu Leu Lys Phe Asp Gly Cys Tyr Cys Asp Ser Leu Glu Asn Leu Ala Asp Gly Tyr Lys His Met Ser Leu Ala Leu Asn Arg Thr Gly Arg Ser Ile Val Tyr Ser Cys Glu Trp Pro Leu Tyr Met Trp Pro Phe Gln Lys Pro Asn Tyr Thr Glu Ile Arg Gln Tyr Cys Asn His Trp Arg Asn Phe Ala Asp Ile Asp Asp Ser Trp Lys Ser Ile Lys Ser Ile Leu Asp Trp Thr Ser Phe Asn Gin Glu Arg Ile Val Asp Val Ala Gly Pro Gly Gly Trp Asn Asp Pro Asp Met Leu Val Ile Gly Asn Phe Gly Leu Ser Trp Asn Gln Gln Val Thr Gin Met Ala Leu Trp Ala Ile Met Ala Ala Pro Leu Phe Met Ser Asn Asp Leu Arg His Ile Ser Pro Gln Ala Lys Ala Leu Leu Gln Asp Lys Asp Val Ile Ala Ile Asn Gln Asp Pro Leu Gly Lys Gln Gly Tyr Gln Leu Arg Gln Gly Asp Asn Phe Glu Val Trp Glu Arg Pro Leu Ser Gly Leu Ala Trp Ala Val Ala Met Ile Asn Arg Gln Glu Ile Gly Gly Pro Arg Ser Tyr Thr Ile Ala Val Ala Ser Leu Gly Lys Gly Val Ala Cys Asn Pro Ala Cys Phe Ile Thr Gln Leu Leu Pro Val Lys Arg Lys Leu Gly Phe Tyr Glu Trp Thr Ser Arg Leu Arg Ser His Ile Asn Pro Thr Gly Thr Val Leu Leu Gln Leu Glu Asn Thr Met Gln Met Ser Leu Lys Asp Leu Leu

322/498

FIG. 82A

ATGGCGCCGTCGCCGTCTGGGCCGCCGTCGGACTGGAGCT CTGGGCTGCGCCACGCCTTGCCCGCCCAGGTGGCATTTACACCCTA CGCCCGGAGCCCGGGAGCACATGCCGGCTCAGAGAATACTATGACC AGACAGCTCAGATGTGCTGCAGCAAATGCTCGCCGGGCCAACATGCA AAAGTCTTCTGTACCAAGACCTCGGACACCGTGTGTGACTCCTGTGAG GACAGCACATACACCCAGCTCTGGAACTGGGTTCCCGAGTGCTTGAG $\tt CTGTGGCTCCGGTGTAGCTCTGACCAGGTGGAAACTCAAGCCTGCAC$ TCGGGAACAGAACCGCATCTGCACCTGCAGGCCCGGCTGGTACTGCG CGCTGAGCAAGCAGGAGGGGTGCCGGCTGTGCGCAAG TGCCGCCCGGGCTTCGGCGTGGCCAGACCAGGAACTGAAACATCAGA CGTGGTGTCAAGCCCTGTGCCCCGGGGACGTTCTCCAACACGACTTC ATCCACGGATATTTGCAGGCCCCACCAGATCTGTAACGTGGTGGCCAT CCCTGGGAATGCAAGCATGGATGCAGTCTGCACGTCCACGTCCCCCA ACACGATCCCAACACACGCAGCCAACTCCAGAACCCAGCACTGCTCC AAGCACCTCCTTCCTGCTCCCAATGGGCCCCAGCCCCCAGCTGAAGG GAGCACTGGCGACTTCGCTCTTCCAGTTGGACTGATTGTGGGTGTGAC AGCCTTGGGTCTACTAATAATAGGAGTGGTGAACTGTGTCATCATGAC CCAGGTGAAAAAGAAGCCCTTGTGCCTGCAGAGAGAAGCCAAGGTGC CTCACTTGCCTGCCGATAAGGCCCGGGGTACACAGGGCCCCGAGCAG CAGCACCTGCTGATCACAGCGCCGAGCTCCAGCAGCAGCTCCCTGGA GAGCTCGGCCAGTGCGTTGGACAGAAGGGCGCCCACTCGGAACCAGC CACAGGCACCAGGCGTGGAGGCCAGTGGGGCCGGGGAGGCCCGGGC CAGCACCGGGAGCTCAGATTCTTCCCCTGGTGGCCATGGGACCCAGG TCAATGTCACCTGCATCGTGAACGTCTGTAGCAGCTCTGACCACAGCT CACAGTGCTCCCCAAGCCAGCTCCACAATGGGAGACACAGATTCC AGCCCCTCGGAGTCCCCGAAGGACGAGCAGGTCCCCTTCTCCAAGGA GGAATGTGCCTTTCGGTCACAGCTGGAGACGCCAGAGACCCTGCTGG GGAGCACCGAAGAGAAGCCCCTGCCCCTTGGAGTGCCTGATGCTGGG ATGAAGCCCAGTTAACCAGGCCGGTGTGGGCTGTGTCGTAGCCAAGG TGGGCTGAGCCCTGGCAGGATGACCCTGCGAAGGGGCCCTGGTCCTT CCAGGC

323/498

FIG. 82B

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gin Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser

324/498

FIG. 83A

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys

FIG. 83B

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

325/498

FIG. 84A

Gin Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gin Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser Gly Met Ser Val Gly Trp Ile Arg Gin Pro Ser Gly Lys Ala Leu Glu Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser

FIG. 84B

Asp Ile Gin Met Thr Gin Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Cys Gin Leu Ser Val Gly Tyr Met His Trp Tyr Gin Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gin Gly Ser Gly Tyr Pro Phe Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

326/498

FIG. 85A

GACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGA
GAAAGAGTCAGTTTCTCCTGCAGGGCCAGTCAGTTCGTTTGGCTCAAGC
ACACACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCATA
AAGTATGCTTCTGAGTCTATGTCTGGGATCCCTTCCAGGTTTAGTGGC
AGTGGATCAGGGACAGATTTTACTCTTAGCATCAACACTGTGGAGTCT
GAAGATATTGCAGATTATTACTGTCAACACAAGTCATAGCTGGCCATTC
ACGTTCGGCTCGGGGACAAATTTGGAAGTAAAAGAAGTCATGAAGCTTGA
GGAGTCTGGAGGAGGCTTGGTGCAACCTGGAGGATCCATGAAACTCT
CCTGTGTTGCCTCTGGATTCATTTTCAGTAACCACTGGATGAACTGG
TCCACCAGTCTCCAGAGAAGGGGCTTGATTGGTTGCTGAAATTAGA
TCAAAATCTATTAATTCTGCAACACTTATGGCGGCTTGTGAAAGGG
AGGTTCACCATCTCAAGAGATGATTCCAAAAGTGCTGTCTACCTGCAA
ATGACCGACTTAAGAACTGAAGACACTGGCGTTTATTACTGTTCCAGG
AATTACTACGGTAGTACCTACGACTACTGGGGCCAAGGCACCACTCTC
ACACGTCTCC

FIG. 85B

Asp Ile Leu Leu Thr Gin Ser Pro Ala Ile Leu Ser Val·Ser Pro Gly Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gin Phe Val Gly Ser Ser Ile His Trp Tyr Gin Gin Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gly Thr Thr Leu Thr Val Ser

FIG. 86A

ATGGAGACAGACACTCCTGTTATGGGTGCTGCTGCTCTGGGTTCCA GGTTCCACTGGTGACGTCAGGCGAGGCCCCGGAGCCTGCGGGGCAG GGACGCCCAGCCCCACGCCCTGCGTCCCGGCCGAGTGCTTCGACC TGCTGGTCCGCCACTGCGTGGCCTGCGGGCTCCTGCGCACGCCGCGGC CGAAACCGGCCGGGCCAGCAGCCCTGCGCCCAGGACGCGCTGCAG CCGCAGGAGTCGGTGGGCGCGGGGGGCGGCGGCGGCGGCGACA AAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGA CCGTCAGTCTTCCCCCCCAAAACCCAAGGACACCCTCATGATC TCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGA AGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGC ATAATGCCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTA CCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGG CAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG GTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGT CAGCCTGACCTGCTCAAAGGCTTCTATCCCAGCGACATCGCCGT GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACG CCTCCCGTGTTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTC ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTC CGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT CCCTGTCTCCCGGGAAATGA

FIG. 86B

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

FIG. 87

Asp lle Gin Met Thr Gin Thr Thr Ser Ser Leu Ser Ala Ser Leu Giy Asp Arg Val Thr lle Ser Cys Arg Ala Ser Gin Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Asp Giy lle Val Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Giy Val Pro Ser Arg Phe Ser Giy Ser Giy Ser Giy Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Giu Gin Gin Asp Ile Ala Thr Tyr Phe Cys Gin Gin Giy Asn Thr Leu Pro Trp Thr Phe Giy Giy Giy Thr Lys Leu Giu Ile Lys

FIG. 88

Gin Val Gin Leu Gin Gin Ser Gly Ala Glu Leu Val Gly Pro Gly Thr Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu lle Glu Trp Val Lys Gln Arg Pro Gly Gin Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ala

FIG. 89

Asp Ile Gin Met Thr Gin Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gin Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gin Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gin Gin Gly Asn Thr Leu Pro Trp Thr Phe Gly Gin Gly Thr Lys Val Glu Val Lys

FIG. 90

Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

330/498

FIG. 91

Asp Ile Gin Met Thr Gin Thr Pro Ser Thr Leu Ser Ala Ser Val Giy Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gin Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gin Gin Lys Pro Giy Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Giy Val Pro Ser Arg Phe Ser Giy Ser Giy Ser Giy Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gin Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gin Gin Giy Asn Thr Leu Pro Trp Thr Phe Giy Gin Giy Thr Lys Val Giu Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Giu Gin Leu Lys Ser Giy Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Giu Ala Lys Val Gin Trp Lys Val Asp Asn Ala Leu Gin Ser Giy Asn Ser Gin Giu Ser Val Thr Giu Gin Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Giu Lys His Lys Val Tyr Ala Cys Giu Val Thr His Gin Giy Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Giy Giu Cys

FIG. 92

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Glv

FIG. 93A

ATGGATTTTCAGGTGCAGATTATCAGCTTCCTGCTAATCAGTGCTTCA GTCATAATGTCCAGAGGGCAAATTGTTCTCTCCCAGTCTCCAGCAATC CTGTCTGCATCTCCAGGGGAGAAGGTCACAATGACTTGCAGGGCCAG CTCAAGTGTAAGTTACATCCACTGGTTCCAGCAGAAGCCAGGATCCTC CCCCAAACCCTGGATTTATGCCACATCCAACCTGGCTTCTGGAGTCCC TGTTCGCTTCAGTGGCAGTGGGTCTGGGACTTCTTACTCTCTCACAAT CAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGCCAGCAGT GGACTAGTAACCCACCCACGTTCGGAGGGGGGACCAAGCTGGAAATC AAA

FIG. 93B

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

332/498

FIG. 94A

ATGGGTTGGAGCCTCATCTTGCTCTTCCTTGTCGCTGTTGCTACGCGTGTCCTGTCCACGGTGACACACTGCAGCAGCAGCCTGGGGCTGAGCTGGTGAAGCCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACATTTACCAGTTACAATATGCACTGGGTAAAACAGACACCTGGTCGGGGCCTGGAATGGATTGAAGGCTATTTATCCCGGAAATGGTGATACTTCCTACAATCAGAAGTTCAAAGGCAAGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCACAGCACTCTGCAGCTCACTGCAGCTCACTGCAGCTCACTGCAGCTCACTGCAGCTCACTGCAGCTTACTACTGCGGTGACTGGTACTTCAAATGTCTGGGGCGCAGGGACCACGGTCACCGTCACCGTCTCTTGCA

FIG. 94B

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Asp Trp Tyr Phe Asn Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala

333/498 FIG. 95A

GACGTCGCGGCCGCTCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCT AAAATTAGTCAGCCATGCATGGGGGGGAGAATGGGCGGAACTGGGCG GAGTTAGGGGCGGATTGGCTGCT GACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCT ATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGA CACACATTCCACAGAATTAATTCCCCTAGTTATTAATAGTAATCAATT ACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAA CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCC ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA CTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACT TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACG TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCT TATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA TTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGC GGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATG GGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTA ACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGG GAGGTCTATATAAGCAGAGCTGGGTACGTGAACCGTCAGATCGCCTG GAGACGCCATCACAGATCTCTCACCATGAGGGTCCCCGCTCAGCTCCT GGGGCTCCTGCTCTGGCTCCCAGGTGCACGATGTGATGGTACCAA GGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCT GCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAG GACAGCAAGGACACCTACAGCCTCAGCAGCACCCTGACGCTGAG CAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCC ATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAG TGTTGAATTCAGATCCGTTAACGGTTACCAACTACCTAGACTGGATTC GTGACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTG CCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCT TGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGG AAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTG GGGTGGGCAGGACAGCAAGGGGGGGGGATTGGGAAGACAATAGCAG GCATGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGAC AGCTATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGC CCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTT GGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGT TTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGA

334/498 FIG. 95B

CAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTG ACGCAAATGGGCGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG AGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGAACACAGACCC GTCGACATGGGTTGGAGCCTCATCTTGCTCTTTCCTTGTCGCTGTTGCTA CGCGTGTCGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCT CCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTC AAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGG ACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGG CACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCA AGGTGGACAAGAAGCAGAGCCCAAATCTTGTGACAAAACTCACACA TGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTC CTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCT GAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGT CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA CAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGACTACAA GTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTG CCCCCATCCCGGGATGAGCTGACCAGGAACCAGGTCAGCCTGACCTG CCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGA GCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG GACTCCGACGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAG AGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGA GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG TAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGTG ACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCCT CCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAA TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGG TGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA TGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGACAGC GCTGGATCTCCCGATCCCCAGCTTTGCTTCTCAATTTCTTATTTGCATA ATGAGAAAAAAAGGAAAATTAATTTTAACACCAATTCAGTAGTTGAT TGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCT GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG TTGTGTTGGGAGCTTGGATAGCTTGGACAGCTCAGG

FIG. 95C

GCTGCGATTTCGCGCCAAACTTGACGGCAATCCTAGCGTGAAGGCTG GTAGGATTTTATCCCCGCTGCCATCATGGTTCGACCATTGAACTGCAT CGTCGCCGTGTCCCAAAATATGGGGATTGGCAAGAACGGAGACCTAC CCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCCAAAGAATGACC ACAACCTCTTCAGTGGAAGGTAAACAGAATCTGGTGATTATGGGTAG GAAAACCTGGTTCTCCATTCCTGAGAACAATCGACCTTTAAAGGACA GAATTAATATAGTTCTCAGTAGAGAACTCAAAGAACCACCACGAGGA GCTCATTTCTTGCCAAAAGTTTGGATGATGCCTTAAGACTTATTGAA CAACCGGAATTGGCAAGTAAAGTAGACATGGTTTGGATAGTCGGAGG CAGTTCTGTTTACCAGGAAGCCATGAATCAACCAGGCCACCTTAGACT CTTTGTGACAAGGATCATGCAGGAATTTGAAAGTGACACGTTTTTCCC AGAAATTGATTTGGGGAAATATAAACTTCTCCCAGAATACCCAGGCG TCCTCTCTGAGGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTTGAA GTCTACGAGAAGAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGC TCCCCTCCTAAAGTCATGCATTTTTATAAGACCATGGGACTTTTGCTG TTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCAC TGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG GTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGG AGGATTGGGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCT ATGGAACCAGCTGGGGCTCGAGCTACTAGCTTTGCTTCTCAATTTCTT ATTTGCATAATGAGAAAAAAAGGAAAATTAATTTTAACACCAATTCA GTAGTTGATTGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACA GTGTTCTCTGCACAGATAAGGACAAACATTATTCAGAGGGAGTACCC AGAGCTGAGACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGA AATATGCTTGTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGG TAAGGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGG CAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTC TGACATAGTTGTGTGGGAGCTTGGATCGATCCTCTATGGTTGAACAA GATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTC GGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGT GTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGA CCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTAT CGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTG TCACTGAAGCGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGG CAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATC ATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGC CCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCG GATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATC AGGGGCTCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATG CCCGACGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCG

336/498 FIG. 95D

AATATCATGGTGGAAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGC CGGCTGGGTGTGGCGACCGCTATCAGGACATAGCGTTGGCTACCCG TGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGT GCTTTACGGTATCGCCGCTTCCCGATTCGCAGCGCATCGCCTTCTATC GCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGAC CGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCG CCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCG GCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCC ACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATA GCATCACAAATTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTT GTGGTTTGTCCAAACTCATCAATCTATCTTATCATGTCTGGATCGCGG CCGCGATCCCGTCGAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCC TGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGG AGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCAC ATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTC GTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTT TGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC GGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAA TACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGA GCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGC TGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATC GACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACC CTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTG GCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTC GTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGAC CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGA CACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTA ACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGA AGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAA CAAACCACCGCTGGTAGCGGTGGTTTTTTTTTTTTTGCAAGCAGCAGATT ACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTCTAC GGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGG TCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAA AATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTG ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTC TATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTAC GATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGC GAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCA GCCGGAAGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTC

337/498

FIG. 95E

CAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGG
TGTCACGCTCGTCGTGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAAC
GATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTT
AGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTG
TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGC
CATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCAT
CTGAGAATAGTGTTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAA
TACGGGATAATACCGCCCACATAGCAGAACTTTAAAAGTGCTCATC
ATTGGAAAACGTTCTTCGGGGGGAAAACTCTCAAGGATCTTCA
GCATCTTTTACTTTCACAGCTTTCTGGGTGACCCAACTGATCTTCA
GCATCTTTTACTTTCACAGCGTTTCTGGGTGACCCAACAGAACTGATCTTCA
GCATCTTTTACTTTCACAGCGTTTCTTGGGTGAGCAAAAACAGGAAGG
CAAAATGCCGCAAAAAAGGGAATATTATTATTATAGAAACTTTTACAGGGTTA
TACTCATACTCTTTCTTTTCAATATTATTAGAAACATTTATCAAGGGTTA
TTGTCTCATGAGCGGAACATATTTCCCGAAAAATGTCCACCT

338/498 FIG. 96A

GACGTCGCGGCCGCTCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCT AAAATTAGTCAGCCATGCATGGGGCGGAGAATGGGCGGAACTGGGCG GAGTTAGGGGCGGATTGGCTGGTTAGGGGCGGGACTATGGTTGCT GACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCT ATACTTCTGCCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGA CACACATTCCACAGAATTAATTCCCCTAGTTATTAATAGTAATCAATT ACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAA ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA CTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACT TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACG TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCT TATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA TTACCATGGTGATGCGGTTTTTGGCAGTACATCAATGGGCGTGGATACC GGTTTGACTCACGCGGATTTCCAAGTCTCCACCCCATTGACGTCAATG GGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTA ACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGG GAGGTCTATATAAGCAGAGCTGGGTACGTGAACCGTCAGATCGCCTG GAGACGCCATCACAGATCTCTCACTATGGATTTTCAGGTGCAGATTAT CAGCTTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGGACAAAT TGTTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGGAGAA GGTCACAATGACTTGCAGGGCCAGCTCAAGTGTAAGTTACATCCACT GGTTCCAGCAGAAGCCAGGATCCTCCCCCAAACCCTGGATTTATGCCA CATCCAACCTGGCTTCTGGAGTCCCTGTTCGCTTCAGTGGCAGTGGGT CTGGGACTTCTTACTCTCTCACAATCAGCAGAGTGGAGGCTGAAGATG GAGGGGGACCAAGCTGGAAATCAAACGTACGGTGGCTGCACCATCT GTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC TCTGTTGTGTGCCTGAATAACTTCTATCCCAGAGAGGCCAAAGTA CAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAG TGTCACAGAGCAGGACAGCAGCACCTACAGCCTCAGCAGCA CCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCC TGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTT CAACAGGGGAGAGTGTTGAATTCAGATCCGTTAACGGTTACCAACTA CCTAGACTGGATTCGTGACAACATGCGGCCGTGATATCTACGTATGAT CAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTC CCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCC

339/498 FIG. 96B

TAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCT ATTCTGGGGGTGGGGTGGGCAGGACAGCAAGGGGGAGGATTGGG AAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGAACCA GCTGGGGCTCGACAGCTATGCCAAGTACGCCCCCTATTGACGTCAATG ACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGG ACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT GGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTG ACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTT TGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACT CCGCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC TATATAAGCAGAGCTGGGTACGTCCTCACATTCAGTGATCAGCACTGA ACACAGACCCGTCGACATGGGTTGGAGCCTCATCTTGCTCTTGT CGCTGTTGCTACGCGTGTCCTGTCCCAGGTACAACTGCAGCAGCCTGG GGCTGAGCTGGAAGCCTGGGGCCTCAGTGAAGATGTCCTGCAAGG CTTCTGGCTACACATTTACCAGTTACAATATGCACTGGGTAAAACAGA CACCTGGTCGGGGCCTGGAATGGATTGGAGCTATTTATCCCGGAAAT GGTGATACTTCCTACAATCAGAAGTTCAAAGGCAAGGCCACATTGAC TGCAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGA CATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACTACG GCGGTGACTGGTACTTCAATGTCTGGGGCGCAGGGACCACGGTCACC GTCTCTGCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC TCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGT CAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCG CCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAG GACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGG GCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACC AAGGTGGACAAGAAAGCAGAGCCCAAATCTTGTGACAAAACTCACAC ATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTT CCTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCC TGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG TCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATGCCAAG ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCT GCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCT GGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAA GAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATG AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG GTAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCGT

340/498

FIG. 96C

GACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCC ACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAA ATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGG GTGGGGCAGGACAGCAAGGGGGGGGGGGATTGGGAAGACAATAGCAGGC ATGCTGGGGATGCGGTGGGCTCTATGGAACCAGCTGGGGCTCGACAG CGCTGGATCTCCCGATCCCCAGCTTTGCTTCTCAATTTCTTATTTGCAT AATGAGAAAAAAGGAAAATTAATTTTAACACCAATTCAGTAGTTGA TTGAGCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCT GCACAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAG ACTCCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCC AATCTGCTCACACAGGATAGAGAGGGCAGGAGCAGGCAGAGCAT ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAG TTGTGTTGGGAGCTTGGATAGCTTGGACAGCTCAGGGCTGCGATTTCG CGCCAAACTTGACGGCAATCCTAGCGTGAAGGCTGGTAGGATTTTATC CCCGCTGCCATCATGGTTCGACCATTGAACTGCATCGTCGCCGTGTCC CAAAATATGGGGATTGGCAAGAACGGAGACCTACCCTGGCCTCCGCT CAGGAACGAGTTCAAGTACTTCCAAAGAATGACCACAACCTCTTCAG TGGAAGGTAAACAGAATCTGGTGATTATGGGTAGGAAAACCTGGTTC TCCATTCCTGAGAAGAATCGACCTTTAAAGGACAGAATTAATATAGTT CTCAGTAGAGAACTCAAAGAACCACCACGAGGAGCTCATTTCTTGC CAAAAGTTTGGATGATGCCTTAAGACTTATTGAACAACCGGAATTGG CAAGTAAAGTAGACATGGTTTGGATAGTCGGAGGCAGTTCTGTTTACC AGGAAGCCATGAATCAACCAGGCCACCTTAGACTCTTTGTGACAAGG ATCATGCAGGAATTTGAAAGTGACACGTTTTTCCCAGAAATTGATTTG GGGAAATATAAACTTCTCCCAGAATACCCAGGCGTCCTCTCTGA GGTCCAGGAGAAAAAGGCATCAAGTATAAGTTTGAAGTCTACGAGA AGAAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGCTCCCCTCCTAA AGCTATGCATTTTATAAGACCATGGGACTTTTGCTGGCTTTAGATCA CCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTA ATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTAT TCTGGGGGGTGGGGGGGGGGGGGAGGATTGGGAA GACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGAACCAGC TGGGGCTCGAGCTACTAGCTTTGCTTCTCAATTTCTTATTTGCATAATG GCAAATGCGTTGCCAAAAAGGATGCTTTAGAGACAGTGTTCTCTGCA CAGATAAGGACAAACATTATTCAGAGGGAGTACCCAGAGCTGAGACT CCTAAGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTTGTC ATCACCGAAGCCTGATTCCGTAGAGCCACACCTTGGTAAGGGCCAAT CTGCTCACACAGGATAGAGAGGCAGGAGCAGGAGCATATA AGGTGAGGTAGGATCAGTTGCTCCTCACATTTGCTTCTGACATAGTTG

341/498 FIG. 96D

TGTTGGGAGCTTGGATCGATCCTCTATGGTTGAACAAGATGGATTGCA CGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTG GGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTC AGCGCAGGGGCCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGC CGACGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGG GAAGGGACTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTG TCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCA ATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCAC CAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGG TCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGC CAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAG GATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTG GAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTG GCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGA AGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTAT CGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGA GCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGA AAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCT CCAGCGCGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTT TATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTT CACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAA ACTCATCAATCTATCTTATCATGTCTGGATCGCGGCCGCGATCCCGTC GAGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGT TATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTG TAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTT GCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGC GCTCTTCCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCT GCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCA CAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCA GCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCC ATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGT CAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCC CCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTAC CGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCA ATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA GCTGGGCTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATC

FIG. 96E

GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG TAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTAC ACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC TTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAACCACCGC TGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAA AAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATC AAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAA ATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATG CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGG CTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTC ACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCG ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGC GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGT TTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTA CATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTC CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTA TGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCT TTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTA TGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACC GCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCG ATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCA CCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAA AAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCT TTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGG ATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGC GCACATTTCCCCGAAAAGTGCCACCT

344/498

FIG. 97B

FIG. 97C

FIG. 98A

FIG. 98C

352/498

FIG. 100A

FIG. 101A

FIG 101B

FIG. 102A

FIG. 102B

FIG. 102C

FIG. 103A

FIG. 103B

FIG. 103D

FIG. 104B

FIG. 104C

FIG. 105A

FIG. 105B

FIG. 105C

FIG. 107A

FIG. 107C

FIG. 108B

FIG. 108C

383/498

PCT/US2003/031974

388/498

FIG. 111A

FIG. 111B

FIG. 111C

FIG. 112A

395/498

FIG. 113A

IG. 114A

401/498

FIG. 114B

402/498

ilg. 114C

FIG. 115A

404/498

405/498

407/498

FIG. 116A

408/498

FIG. 116B

FIG. 116C

410/498

FIG. 117A

411/498

FIG. 117C

FIG. 118D

FIG. 118C

FIG. 118E

WO 2004/033651 PCT/US2003/031974

416/498

Pre Post

FIG. 119

418/498

422/498

423/498

FIG. 127

FIG. 128

WO 2004/033651 PCT/US2003/031974

FIG. 129

428/498

FIG. 130

429/498

430/498

432/498

FIG. 137

FIG. 138

437/498

FIG. 139B

439/498

FIG. 141

FIG. 142

442/498

FIG. 143A

FIG. 143B

FIG. 144A

FIG. 144B

FIG. 146

447/498

FIG. 148

450/498

FIG. 152

FIG. 154

FIG. 155

FIG. 156

FIG. 157

461/498

FIG. 161

FIG. 162

FIG. 163

FIG. 164

FIG. 165

FIG. 166

FIG. 167

FIG. 168

FIG. 170

FIG 172B

476/498

FIG. 173B

FIG. 174

=1G. 175

480/498

482/498

FIG. 179

484/498

FIG. 181

FIG. 182A

487/498

FIG. 187A

FIG. 187B

FIG. 189

FIG. 190

FIG. 191

SEQUENCE LISTING

<110>	Neose Technolog DeFrees, Shawn Zopf, David Bayer, Robert Hakes, David Chen, Xi Bowe, Caryne	gies, Inc.				
<120>	ERYTHROPOIETIN ERYTHROPOIETIN	: REMODELING	AND GLYCOG	CONJUGATION	OF	
<130>	040853-01-5083	VO O				
<150> <151>						
<150> <151>	US 10/287,994 2002-11-5					
<150> <151>	US 10/360,770 2003-01-06					
<150> <151>	US 10/369,779 2003-03-17					
<150> <151>	US 10/410,945 2003-04-09					
<160>	75					
<170>	PatentIn version	on 3.2				
<210> <211> <212> <213>	1 525 DNA Homo sapiens					
<400>	1 ctgg gccctgccag	*********	an en ent ton	heatannets.	ettoeoeee	60
		-				
	aaga teeagggega					
-	cacc ccgaggagct				-	240
	aget geeecageca					
	ttcc tctaccaggg					300
cccacc	ttgg acacactgca	getggaegte	gccgactttg	ccaccaccat	ctggcagcag	
atggaa	gaac tgggaatggc	ccctgccctg	cagcccaccc	agggtgccat	geeggeette	420
geetet	gett tecagegeeg	ggcaggaggg	gtcctggttg	cctcccatct	gcagagette	480
ctggag	gtgt cgtaccgcgt	tetaegecae	cttgcccagc	cctga		525
<210>						

<211> 174 <212> PRT

<213> He	omo sa	piens												
<400> 2 Thr Pro 1	Leu Gl	y Pro 5	Ala	Ser	Ser	Leu	Pro 10	Gln	Ser	Phe	Leu	Leu 15	Lys	
Cys Leu (Glu Gl 20	n Val	Arg	Lys	Ile	Gln 25	Gly	Asp	Gly	Ala	Al a 30	Leu	Gln	
Glu Lys	Leu Cy 35	s Ala	Thr	Tyr	Lys 40	Leu	Суз	His	Pro	Glu 45	Glu	Leu	Val	
Leu Leu 50	Gly Hi	s Ser	Leu	Gly 55	Ile	Pro	Trp	Ala	Pro 60	Leu	Ser	Ser	Cys	
Pro Ser	Gln Al	a Leu	Gln 70	Leu	Ala	Gly	Cys	Leu 75	Ser	Gln	Leu	His	Ser 80	
Gly Leu	Phe Le	u Tyr 85	Gln	Gly	Leu	Leu	Gln 90	Ala	Leu	Glu	Gly	I1e 95	Ser	
Pro Glu	Leu Gl 10		Thr	Leu	Asp	Thr 105	Leu	Gln	Leu	Asp	Val 110	Ala	Asp	
Phe Ala	Thr Th	r Ile	Trp	Gln	Gln 120	Met	Glu	Glu	Leu	Gly 125	Met	Ala	Pro	
Ala Leu 130	Gln Pr	o Thr	Gln	Gly 135	Ala	Met	Pro	Ala	Phe 140	Ala	Ser	Ala	Phe	
Gln Arg 145	Arg Al	a Gly	Gly 150	Val	Leu	Val	Ala	Ser 155	His	Leu	Gln	Ser	Phe 160	
Leu Glu	Val Se	r Tyr 165		Val	Leu	Arg	His 170	Leu	Ala	Gln	Pro			
<210> 3 <211> 1733 <212> DNA <213> Homo sapiens														
<400> 3		accca	.ca a	aaat	ctat	t tt	caaa	aaag	ttg	ctct	aag	aata	tagtta	60
tcaagtta	ag taa	aatqt	ca a	tage	cttt	t aa	ttta	attt	tta	attg	ttt	tatc	attott	120
tgcaataa														180
taggatat	gt aaa	tagat	ac a	cagt	gtat	a tg	tgat	taaa	ata	taat	ggg	agat	tcaatc	240
agaaaaaa	gt tto	taaaa	ag g	ctct	g gg g	t aa	aaga	ggaa	gga	aaca	ata	atga	aaaaaa	300
tgtggtga	ıga aaa	acago	tg a	aaac	ccat	g ta	aaga	gtgt	ata	aaga	aag	caaa	aagaga	360
agtagaaa	ıgt aac	acago	igg c	attt	ggaa	a at	gtaa	acga	gta	tgtt	ccc	tatt	taaggc	420
taggcaca	iaa gca	aggto	tt c	agag	aacc	t gg	agcc	taag	gtt	tagg	ctc	accc	atttca	480
accagtet	ag cag	catct	gc a	acat	ctac	a at	ggcc	ttga	cct	ttgc	ttt	actg	gtggcc	540

2

600

ctcctggtgc tcagctgcaa gtcaagctgc tctgtgggct gtgatctgcc tcaaacccac

agcc	tggg.	ta g	cagg	agga	c ct	tgat	gctc	ctg	gcac	aga	tgag	gaga	at c	tctc	ttttc	660
tcct	gett	ga a	ggac	agac	a tg	actt	tgga	ttt	cccc	agg	agga	gttt	gg c	aacc	agttc	720
caaa	aggc	tg a	aacc	atcc	c tg	tcct	ccat	gag	atga	tcc	agca	gatc	tt c	aatc	tcttc	780
agca	caaa	gg a	ctca	tetg	c tg	cttg	ggat	gag	accc	tcc	taga	caaa	tt c	taca	ctgaa	840
stat	acca	gc a	ıgctg	aatg	a cc	tgga	agcc	tgt	gtga	tac	aggg	ggtg	gg ç	gtga	cagag	900
actc	ccct	ga t	gaag	gagg	a ct	ccat	tctg	gct	gtga	gga	aata	cttc	ca a	agaa	tcact	960
ctct	atct	ga a	agag	aaga	a at	acag	ccct	tgt	gcct	ggg	aggt	tgtc	ag a	gcag	aaatc	1020
atga	gatc	tt t	ttct	ttgt	c aa	caaa	cttg	caa	gaaa	gtt	taag	aagt	aa ç	gaat	gaaaa	1080
ctgg	ttca	aç a	tgga	aatg	a tt	ttca	ttga	ttc	gtat	gcc	agct	cacc	tt t	ttat	gatct	1140
gcca	tttc	aa a	gact	catg	t tt	ctgo	tatg	acc	atga	cac	gatt	taaa	tc t	tttc	aaatg	1200
tttt	tagg	ag t	atta	atca	аса	ttgt	attc	agc	tctt	aag	gcac	tagt	cc o	cttac	agagg	1260
acca	tgct	gad	tgat	ccat	t at	ctat	ttaa	ata	tttt	taa	aata	ttat	tt a	attta	actat	1320
ttat	aaaa	ca a	actta	tttt	t gt	tcat	atta	tgt	catg	tgc	acct	ttgc	ac a	agtgg	ttaat	1380
gtaa	taaa	at o	gtgtt	cttt	g ta	tttç	gtaa	att	tatt	ttg	tgtt	gttc	at 1	gaac	ttttg	1440
ctat	ggaa	ct 1	ttgt	actt	g tt	tatt	cttt	aaa	atga	aat	tcca	agco	ta a	attgt	gcaac	1500
ctga	ttac	ag a	aataa	ctgg	t ac	actt	catt	tgt	ccat	caa	tatt	atat	tc a	aagat	ataag	1560
taaa	aata	iaa (ettte	tgta	a ac	caaç	ttgt	atg	ttgt	act	caag	ataa	ica (gggtg	aacct	1620
aaca	aata	ca i	attct	gctc	t ct	tgto	gtatt	tga	tttt	tgt	atga	aaaa	aa (ctaaa	aatgg	1680
taat	cata	ct ·	taatt	atca	g tt	atg	taaa	tgg	rtatg	aag	agaa	gaag	gga i	acg		1733
<210 <211 <212 <213	> 1 > E	.88 RT	sapi	ens.												
<400 Met 1	> 4 Ala	Leu	Thr	Phe 5	Ala	Leu	Leu	Val	Ala 10	Leu	Leu	Val	Leu	Ser 15	Cys	
Lys	Ser	Ser	Cys 20	Ser	Val	Gly	Cys	Asp 25	Leu	Pro	Gln	Thr	His 30	Ser	Leu	
Gly	Ser	Arg 35	Arg	Thr	Leu	Met	Leu 40	Leu	Ala	Gln	Met	Arg 45	Arg	Ile	Ser	
Leu	Phe 50	Ser	Cys	Leu	Lys	Asp 55	Arg	His	Asp	Phe	Gly 60	Phe	Pro	Gln	Glu	
Glu 65	Phe	Gly	Asn	Gln	Phe 70	Gln	Lys	Ala	Glu	Thr 75	Ile	Pro	Val	Leu	His 80	

3

Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser

PCT/US2003/031974 WO 2004/022651

W	O 20	04/03	3651											P	C1/US	2003/031
				85					90					95		
Ala	Ala	Trp	Asp 100	Glu	Thr	Leu	Leu	Asp 105	Lys	Phe	Tyr	Thr	Glu 110	Leu	Tyr	
Gln	Gln	Leu 115	Asn	Asp	Leu	Glu	Ala 120	Суз	Va1	Ile	Gln	Gly 125	Val	Gly	Val	
Thr	Glu 130	Thr	Pro	Leu	Met	Lys 135	Glu	Asp	Ser	Ile	Leu 140	Ala	Val	Arg	Lys	
Tyr 145	Phe	Gln	Arg	Ile	Thr 150	Leu	Tyr	Leu	Lys	Glu 155	Lys	Lys	Tyr	Ser	Pro 160	
Cys	Ala	Trp	Glu	Val 165	Val	Arg	Ala	Glu	Ile 170	Met	Arg	Ser	Phe	Ser 175	Leu	
Ser	Thr	Asn	Leu 180	Gln	Glu	Ser	Leu	Arg 185	Ser	Lys	Glu					
<210 <211 <212 <213	.> ?>	5 757 DNA Homo	sap:	iens												
<400 atga		5 aca	agtg	tctc	ct c	caaa	ttgc	t ct	cctg	ttgt	gct	tata	cac	taca	gctct	t 6
tcca	atga	get	acaa	cttg	ct t	ggat	tcct	a ca	aaga	agca	gca	attt	tca	gtgt	cagaa	g 120
ctc	etgt	ggc	aatt	gaat	gg g	aggc	ttga	a ta	ttgc	ctca	agg	acag	gat	gaac	tttga	c 18
atco	cctg	agg	agat	taag	ca g	ctgc	agca	g tt	ccag	aagg	agg	acgc	cgc	attg	accat	c 24
tate	gaga	tgc	tcca	gaac	at c	tttg	ctat	t tt	caga	caag	att	catc	tag	cact	ggctg	g 30
aat	gaga	cta	ttgt	tgag	aa c	ctcc	tggc	t aa	tgtc	tatc	atc	agat	aaa	ccat	ctgaa	g 36
aca	gtcc	tgg	aaga	aaaa	ct g	gaga	aaga	a ga	tttt	acca	ggg	gaaa	act	catg	agcag	t 42
ctg	cacc	tga	aaag	atat	ta t	ggga	ggat	t ct	gcat	tacc	tga	aggc	caa	ggag	tacag	t 48
cact	tgtg	cct	ggac	cata	gt c	agag	tgga	a at	ccta	agga	act	ttta	ctt	catt	aacag	a 54
ctta	acag	gtt	acct	ccga	aa c	tgaa	gatc	t cc	tagc	ctgt	ccc	tctg	gga	ctgg	acaat	t 60
gct	tcaa	gca	ttct	tcaa	сса	gcag	atgc	t gt	ttaa	gtga	ctg	atgg	cta	atgt	actgo	a 66
aat	gaaa	gga	cact	agaa	ga t	tttg	aaat	t tt	tatt	aaat	tat	gagt	tat	tttt	attta	t 72
tta	aatt	tta	tttt	ggaa	aa t	aaat	tatt	t tt	ggtg	С						75
<21 <21 <21 <21	1> 2>	6 187 PRT Home	sap	iens												
<40 Met 1		6 Asr	Lys	Cys 5	Leu	Leu	Gln	ıIle	Ala	Leu	Leu	Leu	Cys	Phe	Ser	

4

	Thr	Thr	Ala	Leu 20	Ser	Met	Ser	Tyr	Asn 25	Leu	Leu	Gly	Phe	Leu 30	Gln	Arg	
	Ser	Ser	Asn 35	Phe	Gln	Cys	Gln	Lys 40	Leu	Leu	Trp	Gln	Leu 45	Asn	Gly	Arg	
	Leu	Glu 50	Tyr	Суз	Leu	Lys	Asp 55	Arg	Met	Asn	Phe	Asp 60	Ile	Pro	Glu	Glu	
	Ile 65	Lys	Gln	Leu	Gln	Gln 70	Phe	Gln	Lys	Glu	Asp 75	Ala	Ala	Leu	Thr	Ile 80	
	Tyr	Glu	Met	Leu	Gln 85	Asn	Ile	Phe	Ala	Ile 90	Phe	Arg	Gln	Asp	Ser 95	Ser	
	Ser	Thr	Gly	Trp 100	Asn	Glu	Thr	Ile	Val 105	Glu	Asn	Leu	Leu	Ala 110	Asn	Val	
	Tyr	His	Gln 115	Ile	Asn	His	Leu	Lys 120	Thr	Val	Leu	Glu	Glu 125	Lys	Leu	Glu	
	Lys	Glu 130	Asp	Phe	Thr	Arg	Gly 135	Lys	Leu	Met	Ser	Ser 140	Leu	His	Leu	Lys	
	Arg 145	Tyr	Tyr	Gly	Arg	11e 150	Leu	His	Tyr	Leu	Lys 155	Ala	Lys	Glu	Tyr	Ser 160	
	His	Cys	Ala	Trp	Thr 165	Ile	Val	Arg	Val.	Glu 170	Ile	Leu	Arg	Asn	Phe 175	Tyr	
	Phe	Ile	Asn	Arg 180	Leu	Thr	Gly	Tyr	Leu 185	Arg	Asn						
<210> 7 <211> 1332 <212> DNA <213> Homo sapiens																	
	<40 atg	0> gtct	7 ccc	aggo	cctc	ag g	ctcc	tctg	c ct	tctg	cttg	ggc	ttca	ggg	ctgc	ctggct	60
	gca	gtct	tcg	taac	ccag	ga g	gaag	ccca	c gg	cgtc	ctgc	acc	ggcg	ccg	gcgc	gccaac	120
	gcg	ttcc	tgg	agga	gctg	cg g	ccgg	gctc	c ct	ggag	aggg	agt	gcaa	gga	ggag	cagtgo	180
	tcc	ttcg	agg	aggc	ccgg	ga g	atct	tcaa	g ga	cgcg	gaga	gga	cgaa	gct	gttc	tggatt	240
	tct	taca	gtg	atgg	ggac	ca g	tgtg	cctc	a ag	tcca	tgcc	aga	atgg	iggg	ctcc	tgcaag	300
	gao	cago	tcc	agto	ctat	at c	tgct	tctg	c ct	ccct	gcct	tcg	aggg	ccg	gaac	tgtgag	360
	acg	caca	agg	atga	ccaç	rct g	atct	gtgt	g aa	cgag	aacg	gcg	gctg	tga	gcag	tactgo	420
	agt	gaco	aca	cggg	cacc	aa g	cgct	cctg	rt cg	gtgc	cacg	agg	ggta	ctc	tatg	ctggca	480
	gac	gggg	tgt	ccto	caca	icc c	acaç	ttga	a ta	tcca	tgtg	gaa	aaat	acc	tatt	ctagaa	540
	aaa	agaa	atg	cca	gcaaa	acc c	caaç	gccc	ra at	tgtg	igggg	gca	aggt	gtg	cccc	aaaggg	600
	gaç	tgto	cat	ggca	ggto	ect c	ıttgt	tggt	g aa	ıtgga	igete	agt	tgt	gtgg	gggg	acccto	660

5

atca	acac	ca t	ctg	gtgg	rt ct	ccgc	ggcc	cac	tgtt	tcg	acaa	aato	aa ç	aact	ggagg
aacc	tgat	cg o	ggtç	ctgg	id cd	agca	egac	cto	agco	agc	acga	cggg	ıga t	gago	agagc
cggc	gggt	gg d	gcaç	gtca	t ca	tecc	cago	acc	rtace	tcc	cggç	cacc	ac c	caacc	acgac
atcç	eget	gc t	ccgc	ctgo	ca cc	agco	cgtç	gto	ctca	ctg	acca	tgto	gt ç	ceco	tetge
ctgo	ccga	ac ç	gaco	ttct	c to	agaç	gacç	cto	geet	tcg	tgc	gctto	etc a	ttgg	tcagc
ggct	gggg	jcc a	gcto	ctgg	ја сс	gtgg	gegee	acç	gccc	etgg	agct	cato	ıgt ç	getea	acgtg
cccc	ggct	ga t	gaco	cago	ja ct	geet	gcag	caç	gtcac	gga	aggt	ggga	iga c	tccc	caaat
atcacggagt acatgttctg tgccggctac tcggatggca gcaaggactc ctgcaagggg															
gacagtggag gcccacatgc cacccactac cggggcacgt ggtacctgac gggcatcgtc															
agetggggee agggetgege aaccgtggge cactttgggg tgtacaccag ggteteccag															
tacatcgagt ggctgcaaaa gctcatgcgc tcagagccac gcccaggagt cctcctgcga															
gccc	gcccatttc cc														
<210> 8 <211> 444 <212> PRT <213> Homo sapiens															
<400										_		_		_	
1			Gln	5					10					15	
Gly	Cys	Leu	Ala 20	Ala	Val	Phe		Thr 25	GIn	GIu	Glu	Ala	30	GIY	Val
Leu	His	Arg 35	Arg	Arg	Arg	Ala	Asn 40	Ala	Phe	Leu	Glu	Glu 45	Leu	Arg	Pro
G1y	Ser 50	Leu	Glu	Arg	Gl u	Cys 55	Lys	Glu	Glu	Gln	Cys 60	Ser	Phe	Glu	Glu
A1a 65	Arg	Glu	Ile	Phe	Lys 70	Asp	Ala	Glu	Arg	Thr 75	Lys	Leu	Phe	Trp	Ile 80
Ser	Tyr	Ser	Asp	Gly 85	Asp	Gln	Cys	Ala	Ser 90	Ser	Pro	Cys	Gln	Asn 95	Gly
Gly	Ser	Cys	Lys 100	Asp	G1n	Leu	Gln	Ser 105	Tyr	Ile	Суз	Phe	Cys 110	Leu	Pro
Ala	Phe	G1u 115	Gly	Arg	Asn	Cys	Glu 120	Thr	His	Lys	Asp	Asp 125	Gln	Leu	Ile
Cys	Val 130	Asn	Glu	Asn	Gly	Gly 135	Cys	Glu	Gln	Tyr	Cys 140	Ser	Asp	His	Thr
Gly 145	Thr	Lys	Arg	Ser	Cys 150	Arg	Cys	His	Glu	Gly 155	Tyr	Ser	Leu	Leu	Ala 160
Asp	Gly	Val	Ser	Cys 165	Thr	Pro	Thr	Val	Glu 170	Tyr	Pro	Cys	Gly	Lys 175	Ile

Pro	Ile	Leu	Glu 180	Lys	Arg	Asn	Ala	Ser 185	Lys	Pro	Gln	Gly	Arg 190	Ile	Val		
Gly	Gly	Lys 195	Val	Cys	Pro	Lys	Gly 200	Glu	Суз	Pro	Trp	Gln 205	Val	Leu	Leu		
Leu	Val 210	Asn	Gly	Ala	Gln	Leu 215	Cys	Gly	Gly	Thr	Leu 220	Ile	Asn	Thr	Ile		
Trp 225	Val	Val	Ser	Ala	Ala 230	His	Cys	Phe	Asp	Lys 235	Ile	ьуs	Asn	Trp	Arg 240		
Asn	Leu	Ile	Ala	Val 245	Leu	Gly	Glu	His	Asp 250	Leu	Ser	Glu	His	Asp 255	Gly		
Asp	Glu	Gln	Ser 260	Arg	Arg	Val	Ala	Gln 265	Val	Ile	Ile	Pro	Ser 270	Thr	Tyr		
Val	Pro	Gly 275	Thr	Thr	Asn	His	Asp 280	Ile	Ala	Leu	Leu	Arg 285	Leu	His	Gln		
Pro	Val 290	Val	Leu	Thr	Asp	His 295	Val	Val	Pro	Leu	Cys 300	Leu	Pro	Glu.	Arg		
Thr 305	Phe	Ser	Glu	Arg	Thr 310	Leu	Ala	Phe	Val	Arg 315	Phe	Ser	Leu	Val	Ser 320		
Gly	Trp	Gly	Gln	Leu 325	Leu	Asp	Arg	Gly	Ala 330	Thr	Ala	Leu	Glu	Leu 335	Met		
Val	Leu	Asn	Val 340	Pro	Arg	Leu	Met	Thr 345	Gln	Asp	Cys	Leu	Gln 350	Gln	Ser		
Arg	Lys	Val 355	Gly	Asp	Ser	Pro	Asn 360	Ile	Thr	Glu	Tyr	Met 365	Phe	Cys	Ala		
Sly	Tyr 370	Ser	Asp	Gly	Ser	Lys 375	Asp	Ser	Cys	Lys	Gly 380	Asp	Ser	Gly	Gly		
Pro 385	His	Ala	Thr	His	Tyr 390	Arg	Gly	Thr	Trp	Tyr 395	Leu	Thr	Gly	Ile	Val 400		
Ser	Trp	Gly	Gln	Gly 405	Cys	Ala	Thr	Val	Gly 410	His	Phe	Gly	Val	Tyr 415	Thr		
Arg	Val	Ser	Gln 420	Tyr	Ile	Glu	Trp	Leu 425	Gln	Lys	Leu	Met	Arg 430	Ser	Glu		
Pro	Arg	Pro 435	Gly	Val	Leu	Leu	Arg 440	Ala	Pro	Phe	Pro						
<210 <211 <212 <213	> 1 !> [.437 NA	sapi	ens.													
<400 atgc			gaac	atga	at ca	ıtggo	agaa	tca	ccaa	gcc	tcat	cacc	at c	tgec	tttta	6	0
														-	aaatt	12	

ctgaatcggc	caaaga	iggta	taatt	caggt	aaa	ttgg	aag	agtt	tgtt	ca a	aggga	acctt	180
gagagagaat	gtatgo	gaaga	aaagt	gtagt	ttt	gaag	aac	cacg	agaa	gt t	tttg	aaaac	240
actgaaaaga	caacto	gaatt	ttgga	agcag	tat	gttg	atg	gaga	tcag	tg t	tgagt	ccaat	300
ccatgtttaa	atggcg	gcag	ttgca	aggat	gac	atta	att	ccta	tgaa	tg t	tggt	gtccc	360
tttggatttg	aaggaa	agaa	ctgt	gaatta	gat	gtaa	cat	gtaa	catt	aa q	gaatg	gcaga	420
tgcgagcagt	tttgta	aaaa	tagt	ctgat	aac	aagg	tgg	tttg	ctcc	tg t	tactg	aggga	480
tatcgacttg	cagaaa	acca	gaagt	cctgt	gaa	ccag	cag	tgcc	attt	cc a	atgtg	gaaga	540
gtttctgttt	cacaaa	acttc	taag	ctcacc	cgt	gctg	agg	ctgt	tttt	cc 1	tgatg	rtggac	600
tatgtaaatc	ctacto	gaagc	tgaa	ccatt	ttg	gata	aca	tcac	tcaa	igg (cacco	aatca	. 660
tttaatgact	tcacto	egggt	tgtt	ggtgga	gaa	gatg	cca	aacc	aggt	ca a	attco	cttgg	720
caggttgttt	tgaat	ggtaa	agtt	gatgca	ttc	tgtg	gag	gctc	tato	gt i	taatq	aaaaa	780
tggattgtaa	ctgct	gccca	ctgt	gttgaa	act	ggtg	tta	aaat	taca	igt 1	tgtc	caggt	840
gaacataata	ttgagg	gagac	agaa	cataca	gag	caaa	agc	gaaa	tgtg	at i	togaç	caatt	900
attoctcacc	acaact	tacaa	tgca	gctatt	aat	aagt	aca	acca	tgac	at	tgccc	ttctg	960
gaactggacg	aaccct	ttagt	gcta	acago	tac	gtta	cac	ctat	ttgc	at	tgcto	acaag	1020
gaatacacga	acatci	ttcct	caaa	ttgga	tct.	ggct	atg	taag	tggc	tg (ggcaa	gagto	1080
ttccacaaag	ggagai	tcagc	ttta	gttctt	: caç	gtacc	tta	gagt	tcca	ct ·	tgttg	jaccga	1140
gccacatgtc	ttcgat	tctac	aaag	tcaco	ato	tata	aca	acat	gtto	etg	tgct	gette	1200
catgaaggag	gtaga	gattc	atgt	caagga	a gat	agto	ggg	gaco	ccat	gt	tacto	gaagto	1260
gaagggacca	gtttc	ttaac	tgga	attatt	ago:	etggg	gtg	aaga	gtgt	gc	aatga	aaggo	1320
aaatatggaa	tatata	accaa	ggta	teceg	j tat	gtca	act	ggat	taaç	gga .	aaaa	caaag	1380
ctcacttaat	gaaag	atgga	tttc	caaggt	taa	ttca	ttg	gaat	tgaa	aaa	ttaad	cag	143
<210> 10 <211> 462 <212> PRT <213> Hom		ens											
<400> 10 Met Gln Ar 1	g Val	Asn M 5	Met Il	e Met	Ala	Glu 10	Ser	Pro	Ser	Leu	Ile 15	Thr	
Ile Cys Le	u Leu 20	Gly I	yr Le	u Leu	Ser 25	Ala	Glu	Cys	Thr	Val 30	Phe	Leu	
Asp His Gl		Ala A	sn Ly	s Ile 40	Leu	Asn	Arg	Pro	Lys 45	Arg	Tyr	Asn	
Ser Gly Ly	s Leu	Glu G	Slu Ph	e Val	Gln	Gly	Asn	Leu	Glu	Arg	Glu	Cys	

60 50 Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe 210 Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His 295 Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys 330 Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu

375

380

Arg Ser 385	Thr Lys		Thr 390	Ile	Tyr	Asn	Asn	Met 395	Phe	Суз	Ala	Gly	Phe 400	
His Glu	Gly Gly	Arg 405	Asp	Ser	Cys	Gln	Gly 410	Asp	Ser	Gly	Gly	Pro 415	His	
Val Thr	Glu Val 420	Glu	Gly	Thr	Ser	Phe 425	Leu	Thr	Gly	Ile	Ile 430	Ser	Trp	
Gly Glu	Glu Cys 435	Ala	Met	Lys	Gly 440	Lys	Tyr	Gly	Ile	Tyr 445	Thr	Lys	Val	
Ser Arg 450	Tyr Val	Asn	Trp	Ile 455	Lys	Glu	Lys	Thr	Lys 460	Leu	Thr			
<212> D	1 03 NA omo sap	iens												
<400> 1 atggatta		aaaat	a tg	cago	ctato	e ttt	ctg	gtca	catt	gtc	ggt q	gttto	ctgcat	60
gttctcca	tt ccgc	tcctg	na tg	tgca	aggat	t tgo	cca	gaat	gcad	geta	aca q	ggaaa	accca	120
ttcttctc	cc agcc	gggtg	c cc	caat	actt	cas	gtgca	atgg	gct	gctg	ett o	ctcta	agagca	180
tatcccac	tc cact	aaggt	сса	agaa	agaco	g ato	gttg	gtcc	aaaa	agaad	gt (cacct	cagag	240
tccacttg	ct gtgt	agcta	a at	cata	ataac	agg	ggtca	acag	taat	gggg	ggg t	tttca	aagtg	300
gagaacca	ca egge	gtgcc	a ct	gcaç	gtact	t tgi	tati	atc	acaa	atct	ta a	aatgt	tttac	360
caagtgct	gt cttg	atgac	t go	tgat	ttt	tgq	gaato	ggaa	aati	aagi	tg 1	tttag	gtgttt	420
atggcttt	gt gaga	taaaa	c to	etcct	tttt	c cti	tacca	atac	cact	ttga	aca o	egeti	caagg	480
atatactg	ca gctt	tactg	c ct	tcct	cctt	t ato	cta	cagt	acaa	atcaç	gca ç	gtcta	agttct	540
tttcattt	gg aatg	aatac	a go	atta	aagct	t tgi	teca	actg	caaa	ataaa	agc o	ettti	caaatc	600
atc														603
<211> 1 <212> P	2 16 RT omo sap	iens												
<400> 1 Met Asp 1	2 Tyr Tyr	Arg 5	Lys	Tyr	Ala	Ala	Ile 10	Phe	Leu	Val	Thr	Leu 15	Ser	
Val Phe	Leu His 20	Val	Leu	His	Ser	Ala 25	Pro	Asp	Val	Gln	Asp 30	Cys	Pro	
Glu Cys	Thr Leu 35	Gln	Glu	Asn	Pro 40	Phe	Phe	Ser	Gln	Pro 45	Gly	Ala	Pro	
Ile Leu	Gln Cys	Met	Gly	Cys	Cys	Phe	Ser	Arg	Ala	Tyr	Pro	Thr	Pro	

Leu 65	Arg	Ser	Lys	Lys	Thr 70	Met	Leu	Val	Gln	Lys 75	Asn	Val	Thr	Ser	Glu 80	
Ser	Thr	Cys	Cys	Val 85	Ala	Lys	Ser	Tyr	Asn 90	Arg	Va1	Thr	Val	Met 95	Gly	
Sly	Phe	Lys	Val 100	Glu	Asn	His	Thr	Ala 105	Cys	His	Cys	Ser	Thr 110	Cys	Tyr	
Tyr	His	Lys 115	Ser													
<210 <211 <212 <213	> 3 > E	.3 90 NA lomo	sapi	ens.												
<400 atga		.3 cac t	ccaç	ıttt	t ct	tect	tttc	tgt	tgct	gga	aago	aato	tg o	etgea	aatagc	60
tgtg	agct	ga c	caac	atca	ic ca	ttga	aata	a gaç	gaaaq	jaag	aato	tcgt	tt o	etge	ataagc	120
atca	acad	ca c	ttg	ıtgtç	go tọ	gcta	ctgo	tac	cacca	iggg	atct	ggto	jta 1	aag	gaccca	180
gcca	ggco	ca a	aato	caga	aa aa	acato	gtaco	tto	caag	aac	tggt	atat	ga a	aca	gtgaga	240
gtgc	ccg	et ç	gtgct	caco	ca to	rcaga	ttc	tte	gtata	cat	acco	cagto	igc (cacco	cagtgt	300
cact	gtgg	jca a	agtgt	gaca	ag co	gacaç	gcact	gat	tgta	ctg	tgc	gaggo	et e	gggg	cccagc	360
tact	gcto	ect t	tggt	gaaa	at ga	aaga	ataa	a								390
<210 <211 <212 <213	> : > :	L4 L29 PRT Homo	sap:	iens												
<400 Met 1		14 Thr	Leu	Gln 5	Phe	Phe	Phe	Leu	Phe 10	Cys	Cys	Trp	Lys	Ala 15	Ile	
Cys	Cys	Asn	Ser 20	Cys	Glu	Leu	Thr	Asn 25	Ile	Thr	Ile	Ala	Ile 30	Glu	Lys	
Glu	Glu	Cys 35	Arg	Phe	Cys	Ile	Ser 40	Ile	Asn	Thr	Thr	Trp 45	Cys	Ala	Gly	
Tyr	Cys 50	Tyr	Thr	Arg	Asp	Leu 55	Val	Tyr	Lys	Asp	Pro 60	Ala	Arg	Pro	Lys	
Ile 65	Gln	Lys	Thr	Cys	Thr 70	Phe	Lys	Glu	Leu	Val 75	Tyr	Glu	Thr	Val	Arg 80	
Val	Pro	Gly	Cys	Ala 85	His	His	Ala	Asp	Ser 90	Leu	Tyr	Thr	Tyr	Pro 95	Val	
Ala	Thr	Gln	Cys 100	His	Cys	Gly	Lys	Cys 105	Asp	Ser	Asp	Ser	Thr 110	Asp	Cys	
Thr	Val	Arg	Gly	Leu	Gly	Pro	Ser	Tyr	Cys	Ser	Phe	Gly	Glu	Met	Lys	

WO 2004/033651	PCT/US2003/031974

120 125 115

Glu

<210> 15 <211> 1342

<212> DNA

<213> Homo sapiens

<400> 15

cccggagccg gaccggggcc accgcgcccg ctctgctccg acaccgcgcc ccctggacag 60 120 ecqcectete etecaggece gtggggetgg ceetgeaceg ecgagettee egggatgagg gcccccggtg tggtcacccg gcgcgcccca ggtcgctgag ggaccccggc caggcgcgga 180 240 gatgggggtg cacqaatgtc ctgcctggct gtggcttctc ctgtccctgc tgtcgctccc 300 totgggcotc coagtoctgg gogcoccacc acgcotcatc tgtgacagcc gagtoctgga 360 gaggtacete ttggaggeea aggaggeega gaatateacg acgggetgtg etgaacaetg cagottgaat gagaatatca otgtoocaga caccaaagtt aatttotatg ootggaagag 420 gatggaggtc gggcagcagg ccgtagaagt ctggcagggc ctggccctgc tgtcggaagc 480 tgtcctgcgg ggccaggccc tgttggtcaa ctcttcccag ccgtgggagc ccctgcagct 540 gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcg 600 660 ageccagaag gaagecatet cecetecaga tgeggeetea getgetecae teegaacaat 720 cactgotgac actttccgca aactcttccg agtctactcc aatttcctcc ggggaaagct gaagctgtac acaggggagg cctgcaggac aggggacaga tgaccaggtg tgtccacctg 780 840 ggcatateca ccacetecet caccaacatt gettgtgcca caccetecee egecactect gaaccccgtc gaggggctct cagctcagcg ccagcctgtc ccatggacac tccagtgcca 900 960 gcaatgacat ctcaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag ggacagagee atgetgggaa gacgeetgag eteactegge accetgeaaa atttgatgee 1080 aggacacget ttggaggega tttacetgtt ttegeaceta ccatcaggga caggatgace 1140 1200 tggagaactt aggtggcaag ctgtgacttc tccaggtctc acgggcatgg gcactccctt ggtggcaaga gcccccttga caccggggtg gtgggaacca tgaagacagg atgggggctg 1260 geotetaget etcatggggt coaagttttg tgtattette aacctcattg acaagaactg 1320 1342

<210> 16

<211> 193

<212> PRT

<213> Homo sapiens

aaaccaccaa aaaaaaaaaa aa

<400 Met 1		6 Val	His	Glu 5	Cys	Pro	Ala	Trp	Leu 10	Trp	Leu	Leu	Leu	Ser 15	Leu	
Leu	Ser	Leu	Pro 20	Leu	Gly	Leu	Pro	Val 25	Leu	Gly	Ala	Pro	Pro 30	Arg	Leu	
Ile	Cys	Asp 35	Ser	Arg	Val	Leu	Glu 40	Arg	Tyr	Leu	Leu	G1u 45	Ala	Lys	Glu	
Ala	Glu 50	Asn	Ile	Thr	Thr	Gly 55	Cys	Ala	Glu	His	Cys 60	Ser	Leu	Asn	Glu	
Asn 65	Ile	Thr	Val	Pro	Азр 70	Thr	Lys	Val	Asn	Phe 75	Tyr	A1a	Trp	Lys	Arg 80	
Met	Glu	Val	Gly	Gln 85	Gln	Ala	Val	Glu	Val 90	Trp	Gln	Gly	Leu	Ala 95	Leu	
Leu	Ser	Glu	Ala 100	Val	Leu	Arg	G1y	Gln 105	Ala	Leu	Leu	Val	Asn 110	Ser	Ser	
Gln	Pro	Trp 115	G1u	Pro	Leu	Gln	Leu 120	His	Val	Asp	Lys	Ala 125	Val	Ser	G1y	
Leu	Arg 130	Ser	Leu	Thr	Thr	Leu 135	Leu	Arg	Ala	Leu	Arg 140	Ala	Gln	Lys	G1u	
Ala 145	Ile	Ser	Pro	Pro	Asp 150	Ala	Ala	Ser	Ala	Ala 155	Pro	Leu	Arg	Thr	Ile 160	
Thr	Ala	Asp	Thr	Phe 165	Arg	Lys	Leu	Phe	Arg 170	Va1	Tyr	Ser	Asn	Phe 175	Leu	
Arg	Gly	Lys	Leu 180	Lys	Leu	Tyr	Thr	Gly 185	Glu	Ala	Cys	Arg	Thr 190	Gly	Asp	
Arg																
<21 <21 <21 <21	1> 2>	17 435 DNA Homo	sap	iens												
<40 atg		17 tgc	agag	cctg	ct g	ctct	.tggg	c ac	tgtg	gcct	gca	gcat	ctc	tgca	cccgcc	60
cgc	tege	cca	gccc	cago	ac g	cago	cctg	g ga	gcat	gtga	atg	ccat	cca	ggag	gcccgg	120
cgt	ctcc	tga	acct	gagt	ag a	gaca	ctgo	t go	tgag	atga	atg	aaac	agt	agaa	gtcatc	180
tca	gaaa	tgt	ttga	cctc	ca g	gage	cgac	c tg	ccta	caga	ccc	gcct	.gga	getg	tacaag	240
caç	ggeo	tgc	gggg	cago	ct c	acca	agct	.c aa	gggc	ccct	tga	ccat	gat	ggcc	agecae	300
tac	aago	agc	acto	recet	.cc a	acco	eegga	a ac	ttcc	tgtg	caa	ccca	gat	tato	accttt	360
gaa	agtt	tca	aaga	gaac	ct g	aagg	actt	t ct	gctt	gtca	tcc	cctt	tga	ctgo	tgggag	420

WO 2004/033651 PCT/US2003/031974 435 ccagtccagg agtga <210> 18 <211> 144 <212> PRT <213> Homo sapiens <400> 18 Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys 115 Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu 135 130 <210> 19 <211> 501 <212> DNA <213> Homo sapiens <400> 19 atgaaatata caagttatat ettggetttt cagetetgea tegttttggg ttetettgge 60 tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca 120 ggtcattcag atgtagcgga taatggaact cttttcttag gcattttgaa gaattggaaa 180 gaggagagtg acagaaaaat aatgcagagc caaattgtct ccttttactt caaacttttt 240 300 ananacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg 360 aatqtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat 420 tattoggtaa etgaettgaa tgtecaacge aaagcaatac atgaactcat ecaagtgatg

<210> 20 <211> 166

ggtegaagag cateceagta a

14

480 501

getgaactgt egecageage taaaacaggg aagegaaaaa ggagteagat getgtttega

<212> <213>		PRT	sap	iens												
<400> Met I 1		0 Tyr	Thr	Ser 5	Tyr	Ile	Leu	Ala	Phe 10	Gln	Leu	Суз	Ile	Val 15	Leu	
Gly S	Ser	Leu	Gly 20	Cys	Tyr	Cys	Gln	Asp 25	Pro	Tyr	Val	Lys	Glu 30	Ala	Glu	
Asn I	eu	Lys 35	Lys	Tyr	Phe	Asn	Ala 40	Gly	His	Ser	Asp	Val 45	Ala	Asp	Asn	
Gly I	Chr 50	Leu	Phe	Leu	Gly	Ile 55	Leu	Lys	Asn	Trp	Lуs 60	Glu	Glu	Ser	Asp	
Arg I 65	Lys	Ile	Met	Gln	Ser 70	Gl n	Ile	Val	Ser	Phe 75	Tyr	Phe	Lys	Leu	Phe 80	
Lys A	Asn	Phe		Asp 85	Asp	Gln	Ser	Ile	Gln 90	Lys	Ser	Val	Glu	Thr 95	Ile	
Lys 0	Glu	Asp	Met 100	Asn	Val	Lys	Phe	Phe 105	Asn	Ser	Asn	Lys	Lys 110		Arg	
Asp A	Asp	Phe 115	Glu	Lys	Leu	Thr	Asn 120	Tyr	Ser	Val	Thr	Asp 125	Leu	Asn	Val	
Gln A	Arg 130	Lys	Ala	Ile	His	Glu 135	Leu	Ile	Gln	Val	Met 140	Ala	Glu	Leu	Ser	
Pro <i>P</i>	Ala	Ala	Lys	Thr	Gly 150	Lys	Arg	Lys	Arg	Ser 155	Gln	Met	Leu	Phe	Arg 160	
Gly F	Arg	Arg	Ala	Ser 165	Gln											
<2103 <2113 <2123 <2133	> :	21 1352 DNA Homo	sap	iens												
<4002		21	gaat	cgac	aa t	acca	tett	c ta	tete	ataa	ggc	atcc	tee	tgct	ggcagg	60
	-														ccagaa	120
-	-	-													caacct	180
	-														caatat	240
															caaggc	300
															ggaggc	360
-															ccaget	420
ccag	ctg	acc	accg	gcaa	tg g	cctg	ttcc	t ca	gcga	gggc	ctg	aagc	tag	tgga	taagtt	480
tttg	gag	gat	gtta	aaaa	gt t	gtac	cact	c ag	aagc	cttc	act	gtca	act	tcgg	ggacac	540

15

cgaa	gagg	cc a	agaa	acag	a to	aacg	atta	cgt	ggag	aag	ggta	ctca	ag g	gaaa	attgt	600
ggat	ttgg	tc a	agga	gctt	g ac	agag	acac	agt	tttt	gct	ctgg	tgaa	tt a	catc	ttctt	660
taaa	ggca	aa t	ggga	gaga	c cc	tttg	aagt	caa	ggad	acc	gagg	aaga	gg a	cttc	cacgt	720
ggac	cagg	tg a	ccac	cgtg	a ag	gtgc	ctat	gat	gaag	cgt	ttag	gcat	gt t	taac	atcca	780
gcac	tgta	ag a	agct	gtcc	a go	tggg	tgct	gct	gatg	aaa	tacc	tggg	ca a	tgcc	accgc	840
cato	ttct	tc o	etgeo	tgat	g ag	ggga	aact	aca	gcac	ctg	gaaa	atga	ac t	cacc	cacga	900
tato	atca	cc a	agtt	cctg	g aa	aatg	aaga	cag	aagg	tct	gcca	gctt	ac a	ttta	cccaa	960
acto	tcca	tt a	ctgg	aacc	t at	gato	tgaa	gag	cgto	ctg	ggto	aact	gg g	gcato	actaa	1020
ggto	ttca	gc a	atgg	ggct	g ac	ctct	ccgg	ggt	caca	gag	gagg	cacc	cc t	gaag	ctctc	1080
caaç	gccg	tg o	ataa	ggct	g to	ctga	ccat	. cga	cgaç	aaa	ggga	ctga	ag o	tgct	ggggc	1140
cato	tttt	ta 🤄	gaggo	cata	c cc	atgt	ctat	ccc	cccc	gag	gtca	agtt	ca a	caaa	ccctt	1200
tgto	ttct	ta a	atgat	tgaa	c aa	aata	ccaa	gto	tccc	ctc	ttca	tggg	gaa a	agto	gtgaa	1260
tecc	acco	aa a	aaata	actg	c ct	ctcc	ctco	tca	acco	ctc	ccct	ccat	cc o	etggo	cccct	1320
ccct	ggat	ga d	catta	aaga	a gg	gtto	gagct	gg								1352
<210 <211 <212 <213	> 4 > F	18 RT Iomo	sapi	ens												
<400 Met 1		2 Ser	Ser	Val 5	Ser	Trp	Gly	Ile	Leu 10	Leu	Leu	Ala	Gly	Leu 15	Cys	
Сув	Leu	Val	Pro 20	Val	Ser	Leu	Ala	Glu 25	Asp	Pro	Gln	Gly	Asp 30	Ala	Ala	
Gln	Lys	Thr 35	Asp	Thr	Ser	His	His 40	Asp	Gln	Asp	His	Pro 45	Thr	Phe	Asn	
Lys	Ile 50	Thr	Pro	Asn	Leu	Ala 55	Glu	Phe	Ala	Phe	Ser 60	Leu	Tyr	Arg	Gln	
Leu 65	Ala	His	Gln	Ser	Asn 70	Ser	Thr	Asn	Ile	Phe 75	Phe	Ser	Pro	Val	Ser 80	
Ile	Ala	Thr	Ala	Phe 85	Ala	Met	Leu	Ser	Leu 90	Gly	Thr	Lys	Ala	Asp 95	Thr	
His	Asp	Glu	Ile 100	Leu	Glu	Gly	Leu	Asn 105	Phe	Asn	Leu	Thr	Glu 110	Ile	Pro	
Glu	Ala	Gln 115	Ile	His	Glu	Gly	Phe 120	Gln	Glu	Leu	Leu	Arg 125	Thr	Leu	Asn	
Gln	Pro 130	Asp	Ser	Gln	Leu	Gln 135	Leu	Thr	Thr	Gly	Asn 140	Gly	Leu	Phe	Leu	

Ser 145	Glu	Gly	Leu	Lys	Leu 150	Val	Asp	Lys	Phe	Leu 155	Glu	Asp	Val	Lys	Lys 160	
Leu	Tyr	His	Ser	Glu 165	Ala	Phe	Thr	Val	Asn 170	Phe	Gly	Asp	Thr	Glu 175	Glu	
Ala	Lys	Lys	Gln 180	Ile	Asn	Asp	Tyr	Val 185	Glu	Lys	Gly	Thr	Gln 190	Gly	Lys	
Ile	Val	Asp 195	Leu	Val	Lys	Glu	Leu 200	Asp	Arg	Asp	Thr	Val 205	Phe	Ala	Leu	
Val	Asn 210	Tyr	Ile	Phe	Phe	Lys 215	Gly	Lys	Trp	Glu	Arg 220	Pro	Phe	Glu	Val	
Lys 225	Asp	Thr	Glu	Glu	Glu 230	Asp	Phe	His	Val	Asp 235	Gln	Val	Thr	Thr	Val 240	
Lys	val	Pro	Met	Met 245	Lys	Arg	Leu	Gly	Met 250	Phe	Asn	Ile	Gln	His 255	Суѕ	
Lys	Lys	Leu	Ser 260	Ser	Trp	Val	Leu	Leu 265	Met	Lys	Tyr	Leu	Gly 270	Asn	Ala	
Thi	Ala	Ile 275		Phe	Leu	Pro	Asp 280	Glu	Gly	Lys	Leu	Gln 285	His	Leu	Glu	
Ası	1 Glu 290		Thr	His	Asp	11e 295		Thr	Lys	Phe	Leu 300	Glu	Asn	Glu	Asp	
Arg 305	g Arg	Ser	Ala	Ser	Leu 310		Leu	Pro	Lys	Leu 315	Ser	Ile	Thr	Gly	Thr 320	
Ty	. Asp	Leu	Lys	Ser 325		Leu	Gly	Gln	Leu 330	Gly	Ile	Thr	Lys	Val 335	Phe	
Se	r Asn	Gly	Ala 340	Asp	Leu	Ser	Gly	Val 345	Thr	Glu	Glu	Ala	Pro 350	Leu	Lys	
Le	ı Ser	Lys 355		Val	His	Lys	Ala 360	Val	Leu	Thr	Ile	Asp 365	Glu	Lys	Gly	
Th:	r Glu 370		Ala	Gly	Ala	Met 375		Leu	Glu	Ala	11e 380	Pro	Met	Ser	Ile	
Pr 38	o Pro	Glu	(Val	Lys	Phe 390		Lys	Pro	Phe	Val 395	Phe	Leu	Met	Ile	Glu 400	
G1	n Asn	Thr	Lys	Ser 405		Leu	Phe	Met	Gly 410	Lys	Val	Val	Asn	Pro 415	Thr	
G1	n Lys	,														
	10>															
	11>	2004														

<212> DNA <213> Homo sapiens

<400> 23

gctaacctag tgcctatagc taaggcaggt acctgcatcc ttgtttttgt ttagtggatc 60

CLCLACCCLL	Cagagacccc	ggaacccccg	eggeceeee	cccacocaac	guoocogagg	200
ggatggagtt	ttcaagtcct	tccagagagg	aatgtcccaa	gcctttgagt	agggtaagca	180
tcatggctgg	cagcctcaca	ggtttgcttc	tacttcaggc	agtgtcgtgg	gcatcaggtg	240
ccegcecetg	catccctaaa	agcttcggct	acagctcggt	ggtgtgtgtc	tgcaatgcca	300
catactgtga	ctcctttgac	ccccgacct	ttcctgccct	tggtaccttc	agccgctatg	360
agagt ac ac g	cagtgggcga	cggatggagc	tgagtatggg	gcccatccag	gctaatcaca	420
cgggcacagg	cctgctactg	accctgcagc	cagaacagaa	gttccagaaa	gtgaagggat	480
ttggaggggc	catgacagat	gctgctgctc	tcaacatcct	tgccctgtca	cccctgccc	540
aaaatttgct	acttaaatcg	tacttctctg	aagaaggaat	cggatataac	atcatccggg	600
tacccatggc	cagctgtgac	ttctccatcc	gcacctacac	ctatgcagac	acccetgatg	660
atttccagtt	gcacaacttc	agcctcccag	aggaagatac	caagctcaag	atacccctga	720
ttcaccgage	cctgcagttg	gcccagcgtc	ccgtttcact	ccttgccagc	ccctggacat	780
cacccacttg	gctcaagacc	aatggagcgg	tgaatgggaa	ggggtcactc	aagggacagc	840
ccggagacat	ctaccaccag	acctgggcca	gatactttgt	gaagttcctg	gatgcctatg	900
ctgagcacaa	gttacagttc	tgggcagtga	cagetgaaaa	tgagccttct	gctgggctgt	960
tgagtggata	ccccttccag	tgcctgggct	tcacccctga	acatcagcga	gacttcattg	1020
cccgtgacct	aggtcctacc	ctcgccaaca	gtactcacca	caatgteege	ctactcatgc	1080
tggatgacca	acgettgetg	ctgccccact	gggcaaaggt	ggtactgaca	gacccagaag	1140
cagctaaata	tgttcatggc	attgctgtac	attggtacct	ggactttctg	gctccagcca	1200
aagccaccct	aggggagaca	caccgcctgt	tccccaacac	catgctcttt	gcctcagagg	1260
cctgtgtggg	ctccaagttc	tgggagcaga	gtgtgcggct	aggctcctgg	gatcgaggga	1320
tgcagtacag	ccacagcatc	atcacgaacc	teetgtacca	tgtggtcggc	tggaccgact	1380
ggaacettge	cctgaacccc	gaaggaggac	ccaattgggt	gcgtaacttt	gtcgacagtc	1440
ccatcattgt	agacatcacc	aaggacacgt	tttacaaaca	gcccatgttc	taccaccttg	1500
gccacttcag	caagttcatt	cctgagggct	cccagagagt	ggggctggtt	gccagtcaga	1560
agaacgacct	ggacgcagtg	gcactgatgc	atcccgatgg	ctctgctgtt	gtggtcgtgc	1620
taaaccgctc	ctctaaggat	gtgcctctta	ccatcaagga	tcctgctgtg	ggcttcctgg	1680
agacaatcto	acctggctac	tccattcaca	cctacctgtg	gcatcgccag	tgatggagca	1740
gatactcaag	gaggcactgg	gctcagcctg	ggcattaaag	ggacagagtc	agctcacacg	1800
ctgtctgtga	ctaaagaggg	cacagcaggg	ccagtgtgag	cttacagcga	cgtaagccca	1860
qqggcaatgg	tttgggtgac	tcactttccc	ctctaggtgg	tgcccagggc	tggaggcccc	1920

WO 2004/033651 PCT/US2003/031974
tagaaaaaqa tcagtaagcc ccagtgtcc cccaqcccc atgettatgt gaacatgcgc 1980

2004

tqtqtqctqc ttqctttqqa aact <210> 24 <211> 536 <212> PRT <213> Homo sapiens <400> 24 Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gln Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gin Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp 185 Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln 205 200 Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu 215 Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu 245 Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu 260 265 270

Asn	Glu	Pro 275	Ser	Ala	Gly	Leu	Leu 280	Ser	Gly	Tyr	Pro	Phe 285	Gln	Cys	Leu
Gly	Phe 290	Thr	Pro	Glu	His	Gln 295	Arg	Asp	Phe	Ile	Ala 300	Arg	Asp	Leu	Gly
Pro 305	Thr	Leu	Ala	Asn	Ser 310	Thr	His	His	Asn	Val 315	Arg	Leu	Leu	Met	Leu 320
Asp	Asp	Gln	Arg	Leu 325	Leu	Leu	Pro	His	Trp 330	Ala	Lys	Val	Val	Leu 335	Thr
Asp	Pro	Glu	Ala 340	Ala	Lys	Tyr	Val	His 345	Gly	Ile	Ala	Val	His 350	Trp	Tyr
Leu	Asp	Phe 355	Leu	Ala	Pro	Ala	Lys 360	Ala	Thr	Leu	Gly	Glu 365	Thr	His	Arg
Leu	Phe 370	Pro	Asn	Thr	Met	Leu 375	Phe	Ala	Ser	Glu	Ala 380	Cys	Val	Gly	Ser
Lys 385	Phe	Trp	Glu	Gln	Ser 390	Val	Arg	Leu	Gly	Ser 395	Trp	Asp	Arg	Gly	Met 400
Gln	Tyr	Ser	His	Ser 405	Ile	Ile	Thr	Asn	Leu 410	Leu	Tyr	His	Val	Val 415	Gly
Trp	Thr	Asp	Trp 420	Asn	Leu	Ala	Leu	Asn 425	Pro	Glu	Gly	Gly	Pro 430	Asn	Trp
Val	Arg	Asn 435	Phe	Val	Asp	Ser	Pro 440	Ile	Ile	Val	Asp	Ile 445	Thr	Lys	Asp
Thr	Phe 450	Tyr	Lys	Gln	Pro	Met 455	Phe	Tyr	His	Leu	Gly 460	His	Phe	Ser	Lys
Phe 465	Ile	Pro	Glu	Gly	Ser 470	Gln	Arg	Val	Gly	Leu 475	Val	Ala	Ser	Gln	Lys 480
Asn	Asp	Leu	Asp	Ala 485	Val	Ala	Leu	Met	His 490	Pro	Asp	Gly	Ser	Ala 495	Val
Val	Val	Val	Leu 500	Asn	Arg	Ser	Ser	Lys 505	Asp	Val	Pro	Leu	Thr 510	Ile	Lys
Asp	Pro	Ala 515	Val	Gly	Phe	Leu	Glu 520	Thr	.Ile	Ser	Pro	Gly 525	Tyr	Ser	Ile
His	Thr 530		Leu	Trp	His	Arg 535	Gln								
<21 <21 <21 <21	1> 2> :	25 1726 DNA Homo	sap	iens											
<40 atg		25 caa	tgaa	gaga	gg g	ctct	getg	t gt	gctg	ctgc	tgt	gtgg	agc	agtc	ttcgtt
			-												gtgatc
509		,	-990			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	-9	5	22-9	554	,			

tgcagagatg	aaaaaacgca	gatgatatac	cagcaacatc	agtcatggct	gcgccctgtg	180
ctcagaagca	accgggtgga	atattgctgg	tgcaacagtg	gcagggcaca	gtgccactca	240
gtgcctgtca	aaagttgcag	cgagccaagg	tgtttcaacg	ggggcacctg	ccagcaggcc	300
ctgtacttct	cagatttcgt	gtgccagtgc	cccgaaggat	ttgctgggaa	gtgctgtgaa	360
atagatacca	gggccacgtg	ctacgaggac	cagggcatca	gctacagggg	cacgtggagc	420
acagcggaga	gtggcgccga	gtgcaccaac	tggaacagca	gcgcgttggc	ccagaagccc	480
tacagcgggc	ggaggccaga	cgccatcagg	ctgggcctgg	ggaaccacaa	ctactgcaga	540
aacccagatc	gagactcaaa	gccctggtgc	tacgtcttta	aggcggggaa	gtacagetea	600
gagttctgca	gcacccctgc	ctgctctgag	ggaaacagtg	actgctactt	tgggaatggg	660
tcagcctacc	gtggcacgca	cagcctcacc	gagtcgggtg	ceteetgeet	cccgtggaat	720
tccatgatcc	tgataggcaa	ggtttacaca	gcacagaacc	ccagtgccca	ggcactgggc	780
ctgggcaaac	ataattactg	ccggaatcct	gatggggatg	ccaagccctg	gtgccacgtg	840
ctgaagaacc	gcaggctgac	gtgggagtac	tgtgatgtgc	cctcctgctc	cacctgcggc	900
ctgagacagt	acagccagcc	tcagtttcgc	atcaaaggag	ggetettege	cgacatcgcc	960
tcccacccct	ggcaggctgc	catctttgcc	aagcacagga	ggtcgccggg	agagcggttc	1020
ctgtgcgggg	gcatactcat	cagctcctgc	tggattctct	ctgccgccca	ctgcttccag	1080
gagaggtttc	cgccccacca	cctgacggtg	atcttgggca	gaacataccg	ggtggtccct	1140
ggcgaggagg	agcagaaatt	tgaagtcgaa	aaatacattg	tccataagga	attcgatgat	1200
gacacttacg	acaatgacat	tgcgctgctg	cagctgaaat	cggattcgtc	ccgctgtgcc	1260
caggagagca	gcgtggtccg	cactgtgtgc	cttcccccgg	cggacctgca	gctgccggac	1320
tggacggagt	gtgagctctc	cggctacggc	aagcatgagg	ccttgtctcc	tttctattcg	1380
gagcggctga	aggaggctca	tgtcagactg	tacccatcca	geegetgeae	atcacaacat	1440
ttacttaaca	gaacagtcac	cgacaacatg	ctgtgtgctg	gagacactcg	gageggeggg	1500
ccccaggcaa	acttgcacga	cgcctgccag	ggcgattcgg	gaggccccct	ggtgtgtctg	1560
aacgatggcc	gcatgacttt	ggtgggcatc	atcagctggg	gcctgggctg	tggacagaag	1620
gatgtcccgg	gtgtgtacac	caaggttacc	aactacctag	actggattcg	tgacaacatg	1680
cgaccgtgac	caggaacacc	cgactcctca	aaagcaaatg	agatcc		1726

<210> 26 <211> 562 <212> PRT <213> Homo sapiens

<400> 26

Met 1	Asp	Ala	Met	Lys 5	Arg	Gly	Leu	Сув	Cys 10	Val	Leu	Leu	Leu	Cys 15	Gly
Ala	Val	Phe	Val 20	Ser	Pro	Ser	Gln	Glu 25	Ile	His	Ala	Arg	Phe 30	Arg	Arg
Gly	Ala	Arg 35	Ser	Tyr	Gln	Val	11e 40	Cys	Arg	Asp	Glu	Lys 45	Thr	Gln	Met
Ile	Tyr 50	Gln	Gln	His	Gln	Ser 55	Trp	Leu	Arg	Pro	Val 60	Leu	Arg	Ser	Asn
Arg 65	Val	Glu	Tyr	Cys	Trp 70	Cys	Asn	Ser	Gly	Arg 75	Ala	Gln	Cys	His	Ser 80
Val	Pro	Val	Lys	Ser 85	Cys	Ser	Glu	Pro	Arg 90	Сув	Phe	Asn	Gly	Gly 95	Thr
Cys	Gln	Gln	Ala 100	Leu	Tyr	Phe	Ser	Asp 105	Phe	Val	Cys	Gln	Cys 110	Pro	Glu
Gly	Phe	Ala 115	Gly	Lys	Cys	Cys	Glu 120	Ile	Asp	Thr	Arg	Ala 125	Thr	Cys	Tyr
Glu	Asp 130	Gln	Gly	Ile	Ser	Tyr 135	Arg	Gly	Thr	Trp	Ser 140	Thr	Ala	Glu	Ser
Gly 145	Ala	Glu	Cys	Thr	Asn 150	Trp	Asn	Ser	Ser	Ala 155	Leu	Ala	Gln	Lys	Pro 160
Tyr	Ser	Gly	Arg	Arg 165	Pro	Asp	Ala	Ile	Arg 170	Leu	Gly	Leu	Gly	Asn 175	His
Asn	Tyr	Cys	Arg 180	Asn	Pro	Asp	Arg	Asp 185	Ser	Lys	Pro	Trp	Cys 190	Tyr	Val
Phe	Lys	Ala 195	Gly	Lys	Tyr	Ser	Ser 200	Glu	Phe	Cys	Ser	Thr 205	Pro	Ala	Cys
Ser	Glu 210	Gly	Asn	Ser	Asp	Cys 215	Tyr	Phe	Gly	Asn	Gly 220	Ser	Ala	Tyr	Arg
Gly 225	Thr	His	Ser	Leu	Thr 230	Glu	Ser	Gly	Ala	Ser 235	Cys	Leu	Pro	Trp	Asn 240
Ser	Met	Ile	Leu	11e 245	Gly	Lys	Val	Tyr	Thr 250	Ala	Gln	Asn	Pro	Ser 255	Ala
Gln	Ala	Leu	Gly 260	Leu	Gly	Lys	His	Asn 265	Tyr	Cys	Arg	Asn	Pro 270	Asp	Gly
Asp	Ala	Lys 275	Pro	Trp	Cys	His	Val 280	Leu	Lys	Asn	Arg	Arg 285	Leu	Thr	Trp
Glu	Tyr 290	Cys	Asp	Val	Pro	Ser 295	Сув	Ser	Thr	Cys	Gly 300	Leu	Arg	Gln	Tyr
ser 305	Gln	Pro	Gln	Phe	Arg 310	Ile	Lys	Gly	Gly	Leu 315	Phe	Ala	Asp	Ile	Ala 320
Ser	His	Pro	Trp	Gln	Ala	Ala	Ile	Phe	Ala	Lys	His	Arg	Arg	Ser	Pro

				325					330					335		
Gly	Glu	Arg	Phe 340	Leu	Cys	Gly	Gly	11e 345	Leu	Ile	Ser	Ser	Cys 350	Trp	Ile	
Leu	Ser	Ala 355	Ala	His	Cys	Phe	Gln 360	Glu	Arg	Phe	Pro	Pro 365	His	His	Leu	
Thr	Val 370	Ile	Leu	Gly	Arg	Thr 375	Tyr	Arg	Val	Val	Pro 380	Gly	Glu	Glu	Glu	
Gln 385	Lys	Phe	Glu	Val	Glu 390	Lys	Tyr	Ile	Val	His 395	Lys	Glu	Phe	Asp	Asp 400	
Asp	Thr	Tyr	Asp	Asn 405	Asp	Ile	Ala	Leu	Leu 410	Gln	Leu	Lys	Ser	Asp 415	Ser	
Ser	Arg	Суз	Ala 420	Gln	Glu	Ser	Ser	Val 425	Val	Arg	Thr	Val	Cys 430	Leu	Pro	
Pro	Ala	Asp 435	Leu	Gln	Leu	Pro	Asp 440	Trp	Thr	Glu	Cys	Glu 445	Leu	Ser	Gly	
Tyr	Gly 450	Lys	His	Glu	Ala	Leu 455	Ser	Pro	Phe	Tyr	Ser 460	Glu	Arg	Leu	Lys	
Glu 465	Ala	His	Val	Arg	Leu 470	Tyr	Pro	Ser	Ser	Arg 475	Cys	Thr	Ser	Gln	His 480	
Leu	Leu	Asn	Arg	Thr 485	Val	Thr	Asp	Asn	Met 490	Leu	Cys	Ala	Gly	Asp 495	Thr	
Arg	Ser	Gly	Gly 500	Pro	Gln	Ala	Asn	Leu 505	His	Asp	Ala	Cys	Gln 510	Gly	Asp	
Ser	Gly	Gly 515	Pro	Leu	Val	Cys	Leu 520	Asn	Asp	Gly	Arg	Met 525	Thr	Leu	Val	
Gly	Ile 530	Ile	Ser	Trp	Gly	Leu 535	Gly	Cys	Gly	Gln	Lys 540	Asp	Val	Pro	Gly	
Val 545	Tyr	Thr	Lys	Val	Thr 550	Asn	Tyr	Leu	Asp	Trp 555	Ile	Arg	Asp	Asn	Met 560	
Arg	Pro															
<21 <21 <21 <21	1> 2>	27 825 DNA Homo	sap	iens												
<40		27														
															ggatgc	60
			_												cttcaa	120
-															atttac	180
-															tcacat	240
tta	agtt	tta	catg	ccca	ag a	aggc	caca	g aa	ctga	aaca	gct	tcag	tgt	ctag	aagaag	300

aactcaa	acc t	ctgg	agga	a gt	get	gaatt	taç	getea	aag	caaa	aact	tt o	cactt	aagac	360
ccaggga	ctt a	atca	gcaa	ıt at	caac	egtaa	a tag	ttet	gga	acta	aag	gga t	ctga	aacaa	420
cattcat	gtg t	gaat	atgo	a ga	atgaç	gacaç	g caa	ccat	tgt	agaa	tttt	etg a	acaq	gatgga	480
ttacctt	ttg t	caaa	gcat	c at	ctca	acao	e taa	ette	gata	atta	agt	get t	ccca	acttaa	540
aacatat	cag g	cctt	ctat	t ta	attta	attta	a aat	attt	aaa	tttt	atai	tt a	ttgt	tgaat	600
gtatggt	tgc t	acct	atto	gt aa	ctat	tati	ctt	aato	etta	aaac	tata	aa t	atg	gatett	660
ttatgat	tct t	tttg	rtaaç	ge ed	tago	gggct	cta	aaat	ggt	ttac	ectta	att t	atco	ccaaaa	720
atattta	tta t	tatg	ttga	aa to	gttaa	atat	agt	atct	atg	taga	ttg	gtt a	agtaa	aacta	780
tttaata	aat t	tgat	aaat	a ta	aaaa	aaaa	a aaa	caaa	aaaa	aaaa	ıa				825
<210> <211> <212> <213>	28 156 PRT Homo	sapi	.ens												
<400> Met Tyr 1	28 Argi	Met	Gln 5	Leu	Leu	Ser	Cys	Ile 10	Ala	Leu	Ile	Leu	Ala 15	Leu	
Val Thr		Ser 20	Ala	Pro	Thr	Ser	Ser 25	Ser	Thr	Lys	Lys	Thr 30	Lys	Lys	
Thr Glr	Leu 35	Gln	Leu	Glu	His	Leu 40	Leu	Leu	Asp	Leu	Gln 45	Met	Ile	Leu	
Asn Gly 50	Ile.	Asn	Asn	Tyr	Lys 55	Asn	Pro	Lys	Leu	Thr 60	Arg	Met	Leu	Thr	
Phe Lys 65	Phe	Tyr	Met	Pro 70	Lys	Lys	Ala	Thr	G1u 75	Leu	Lys	Gln	Leu	Gln 80	
Cys Let	Glu	Glu	Glu 85	Leu	Lys	Pro	Leu	Glu 90	Glu	Val	Leu	Asn	Leu 95	Ala	
Gln Ser		Asn 100	Phe	His	Leu	Arg	Pro 105	Arg	Asp	Leu	Ile	Ser 110	Asn	Ile	
Asn Val	Ile 115	Val	Leu	Glu	Leu	Lys 120	Gly	Ser	Glu	Thr	Thr 125	Phe	Met	Cys '	
Glu Tyr 130		Asp	Glu	Thr	Ala 135	Thr	Ile	Val	Glu	Phe 140	Leu	Asn	Arg	Trp	
Ile Thi	Phe:	Cys	Gln	Ser 150	Ile	Ile	Ser	Thr	Leu 155	Thr					
<210> <211> <212> <213>	29 7931 DNA Homo	sapi	.ens												
<400>	29														

atgcaaatag	agctctccac	ctgcttcttt	ctgtgccttt	tgcgattctg	ctttagtgcc	60
accagaagat	actacctggg	tgcagtggaa	ctgtcatggg	actatatgca	aagtgatctc	120
ggtgagctgc	ctgtggacgc	aagatttcct	cctagagtgc	caaaatcttt	tccattcaac	180
acctcagtcg	tgtacaaaaa	gactctgttt	gtagaattca	cggatcacct	tttcaacatc	240
gctaagccaa	ggccaccctg	gatgggtctg	ctaggtccta	ccatccagge	tgaggtttat	300
gatacagtgg	tcattacact	taagaacatg	getteccate	ctgtcagtct	tcatgctgtt	360
ggtgtatcct	actggaaagc	ttctgaggga	gctgaatatg	atgatcagac	cagtcaaagg	420
gagaaagaag	atgataaagt	cttccctggt	ggaagccata	catatgtctg	gcaggtcctg	480
aaagagaatg	gtccaatggc	ctctgaccca	ctgtgcctta	cctactcata	tctttctcat	540
gtggacctgg	taaaagactt	gaattcaggc	ctcattggag	ccctactagt	atgtagagaa	600
gggagtctgg	ccaaggaaaa	gacacagacc	ttgcacaaat	ttatactact	ttttgctgta	660
tttgatgaag	ggaaaagttg	gcactcagaa	acaaagaact	ccttgatgca	ggatagggat	720
gctgcatctg	ctcgggcctg	gcctaaaatg	cacacagtca	atggttatgt	aaacaggtct	780
ctgccaggtc	tgattggatg	ccacaggaaa	tcagtctatt	ggcatgtgat	tggaatgggc	840
accactcctg	aagtgcactc	aatattcctc	gaaggtcaca	catttcttgt	gaggaaccat	900
cgccaggcgt	ccttggaaat	ctcgccaata	actttcctta	ctgctcaaac	actcttgatg	960
gaccttggac	agtttctact	gttttgtcat	atctcttccc	accaacatga	tggcatggaa	1020
gcttatgtca	aagtagacag	ctgtccagag	gaaccccaac	tacgaatgaa	aaataatgaa	1080
gaagcggaag	actatgatga	tgatcttact	gattctgaaa	tggatgtggt	caggtttgat	1140
gatgacaact	ctccttcctt	tatccaaatt	cgctcagttg	ccaagaagca	tcctaaaact	1200
tgggtacatt	acattgctgc	tgaagaggag	gactgggact	atgctccctt	agtcctcgcc	1260
cccgatgaca	gaagttataa	aagtcaatat	ttgaacaatg	gccctcagcg	gattggtagg	1320
aagtacaaaa	aagtccgatt	tatggcatac	acagatgaaa	cctttaagac	tegtgaaget	1380
attcagcatg	aatcaggaat	cttgggacct	ttactttatg	gggaagttgg	agacacactg	1440
ttgattatat	ttaagaatca	agcaagcaga	ccatataaca	tctaccctca	cggaatcact	1500
gatgtccgtc	ctttgtattc	aaggagatta	ccaaaaggtg	taaaacattt	gaaggatttt	1560
ccaattctgc	caggagaaat	attcaaatat	aaatggacag	tgactgtaga	agatgggcca	1620
actaaatcag	atcctcggtg	cctgacccgc	tattactcta	gtttcgttaa	tatggagaga	1680
gatctagett	caggactcat	tggccctctc	ctcatctgct	acaaagaatc	tgtagatcaa	1740
agaggaaacc	agataatgtc	agacaagagg	aatgtcatcc	tgttttctgt	atttgatgag	1800
aaccgaagct	ggtacctcac	agagaatata	caacgctttc	tccccaatcc	agctggagtg	1860

cagettgagg	atccagagtt	ccaageetee	aacatcatgc	acagcatcaa	tggctatgtt	1920
tttgatagtt	tgcagttgtc	agtttgtttg	catgaggtgg	catactggta	cattctaagc	1980
attggagcac	agactgactt	cctttctgtc	ttettetetg	gatatacctt	caaacacaaa	2040
atggtctatg	aagacacact	caccctattc	ccattctcag	gagaaactgt	cttcatgtcg	2100
atggaaaacc	caggtctatg	gattctgggg	tgccacaact	cagactttcg	gaacagaggc	2160
atgaccgcct	tactgaaggt	ttctagttgt	gacaagaaca	ctggtgatta	ttacgaggac	2220
agttatgaag	atatttcagc	atacttgctg	agtaaaaaca	atgccattga	accaagaagc	2280
ttctcccaga	attcaagaca	ccgtagcact	aggcaaaagc	aatttaatgc	caccacaatt	2340
ccagaaaatg	acatagagaa	gactgaccct	tggtttgcac	acagaacacc	tatgcctaaa	2400
atacaaaatg	tctcctctag	tgatttgttg	atgctcttgc	gacagagtcc	tactccacat	2460
gggctatcct	tatctgatct	ccaagaagcc	aaatatgaga	ctttttctga	tgatccatca	2520
cctggagcaa	tagacagtaa	taacagcctg	tctgaaatga	cacacttcag	gccacagete	2580
catcacagtg	gggacatggt	atttacccct	gagtcaggcc	tccaattaag	attaaatgag	2640
aaactgggga	caactgcagc	aacagagttg	aagaaacttg	atttcaaagt	ttctagtaca	2700
tcaaataatc	tgatttcaac	aattccatca	gacaatttgg	cagcaggtac	tgataataca	2760
agttccttag	gacccccaag	tatgccagtt	cattatgata	gtcaattaga	taccactcta	2820
tttggcaaaa	agtcatctcc	ccttactgag	tctggtggac	ctctgagctt	gagtgaagaa	2880
aataatgatt	caaagttgtt	agaatcaggt	ttaatgaata	gccaagaaag	ttcatgggga	2940
aaaaatgtat	cgtcaacaga	gagtggtagg	ttatttaaag	ggaaaagagc	tcatggacct	3000
gctttgttga	ctaaagataa	tgccttattc	aaagttagca	tctctttgtt	aaagacaaac	3060
aaaacttcca	ataattcagc	aactaataga	aagactcaca	ttgatggccc	atcattatta	3120
attgagaata	gtccatcagt	ctggcaaaat	atattagaaa	gtgacactga	gtttaaaaaa	3180
gtgacacctt	tgattcatga	cagaatgctt	atggacaaaa	atgctacagc	tttgaggcta	3240
aatcatatgt	caaataaaac	tacttcatca	aaaaacatgg	aaatggtcca	acagaaaaaa	3300
gagggcccca	ttccaccaga	tgcacaaaat	ccagatatgt	cgttctttaa	gatgctattc	3360
ttgccagaat	cagcaaggtg	gatacaaagg	actcatggaa	agaactctct	gaactctggg	3420
caaggcccca	gtccaaagca	attagtatcc	ttaggaccag	aaaaatctgt	ggaaggtcag	3480
aatttcttgt	ctgagaaaaa	caaagtggta	gtaggaaagg	gtgaatttac	aaaggacgta	3540
ggactcaaag	agatggtttt	tccaagcagc	agaaacctat	ttcttactaa	cttggataat	3600
ttacatgaaa	ataatacaca	caatcaagaa	aaaaaaattc	aggaagaaat	agaaaagaag	3660

gaaacattaa	tccaagagaa	tgtagttttg	cctcagatac	atacagtgac	tggcactaag	3720
aatttcatga	agaacctttt	cttactgagc	actaggcaaa	atgtagaagg	ttcatatgac	3780
ggggcatatg	ctccagtact	tcaagatttt	aggtcattaa	atgattcaac	aaatagaaca	3840
aagaaacaca	cagctcattt	ctcaaaaaaa	ggggaggaag	aaaacttgga	aggcttggga	3900
aatcaaacca	agcaaattgt	agagaaatat	gcatgcacca	caaggatatc	tcctaataca	3960
agccagcaga	attttgtcac	gcaacgtagt	aagagagctt	tgaaacaatt	cagactecca	4020
ctagaagaaa	cagaacttga	aaaaaggata	attgtggatg	acacctcaac	ccagtggtcc	4080
aaaaacatga	aacatttgac	cccgagcacc	ctcacacaga	tagactacaa	tgagaaggag	4140
aaaggggcca	ttactcagtc	tecettatea	gattgcctta	cgaggagtca	tagcatccct	4200
caagcaaạta	gatetecatt	acccattgca	aaggtatcat	catttccatc	tattagacct	4260
atatatctga	ccagggtcct	attccaagac	aactcttctc	atcttccagc	agcatcttat	4320
agaaagaaag	attctggggt	ccaagaaagc	agtcatttct	tacaaggagc	caaaaaaaat	4380
aacctttctt	tagecattet	aaccttggag	atgactggtg	atcaaagaga	ggttggctcc	4440
ctggggacaa	gtgccacaaa	ttcagtcaca	tacaagaaag	ttgagaacac	tgttctcccg	4500
aaaccagact	tgcccaaaac	atctggcaaa	gttgaattgc	ttccaaaagt	tcacatttat	4560
cagaaggacc	tattccctac	ggaaactagc	aatgggtete	ctggccatct	ggatctcgtg	4620
gaagggagcc	ttcttcaggg	aacagaggga	gcgattaagt	ggaatgaagc	aaacagacct	4680
ggaaaagttc	cctttctgag	agtagcaaca	gaaagetetg	caaagactcc	ctccaagcta	4740
ttggatcctc	ttgcttggga	taaccactat	ggtactcaga	taccaaaaga	agagtggaaa	4800
tcccaagaga	agtcaccaga	aaaaacagct	tttaagaaaa	aggataccat	tttgtccctg	4860
aacgcttgtg	aaagcaatca	tgcaatagca	gcaataaatg	agggacaaaa	taagcccgaa	4920
atagaagtca	cctgggcaaa	gcaaggtagg	actgaaaggc	tgtgctctca	aaacccacca	4980
gtcttgaaac	gccatcaacg	ggaaataact	cgtactactc	ttcagtcaga	tcaagaggaa	5040
attgactatg	atgataccat	atcagttgaa	atgaagaagg	aagattttga	catttatgat	5100
gaggatgaaa	atcagagccc	ccgcagcttt	caaaagaaaa	cacgacacta	ttttattgct	5160
gcagtggaga	ggctctggga	ttatgggatg	agtagetece	cacatgttct	aagaaacagg	5220
geteagagtg	gcagtgtccc	tcagttcaag	aaagttgttt	tccaggaatt	tactgatggc	5280
tectttactc	agcccttata	ccgtggagaa	ctaaatgaac	atttgggact	cctggggcca	5340
tatataagag	cagaagttga	agataatatc	atggtaactt	tcagaaatca	ggcetetegt	5400
ccctattcct	tctattctag	ccttatttct	tatgaggaag	atcagaggca	aggagcagaa	5460
cctagaaaaa	actttgtcaa	gcctaatgaa	accaaaactt	acttttggaa	agtgcaacat	5520

casacggcac	ccaccaaaga	cgageetgae	tycaaayccc	gggcccaccc	cccigatgee	5500
gacctggaaa	aagatgtgca	ctcaggcctg	attggacccc	ttctggtctg	ccacactaac	5640
acactgaacc	ctgctcatgg	gagacaagtg	acagtacagg	aatttgctct	gtttttcacc	5700
atctttgatg	agaccaaaag	ctggtacttc	actgaaaata	tggaaagaaa	ctgcagggct	5760
ccctgcaata	tccagatgga	agateceact	tttaaagaga	attatcgctt	ccatgcaatc	5820
aatggctaca	taatggatac	actacctggc	ttagtaatgg	ctcaggatca	aaggattcga	5880
tggtatctgc	teageatggg	cagcaatgaa	aacatccatt	ctattcattt	cagtggacat	5940
gtgttcactg	tacgaaaaaa	agaggagtat	aaaatggcac	tgtacaatct	ctatccaggt	6000
gtttttgaga	cagtggaaat	gttaccatcc	aaagctggaa	tttggcgggt	ggaatgcctt	6060
attggcgagc	atctacatge	tgggatgage	acacttttc	tggtgtacag	caataagtgt	6120
cagactecce	tgggaatggc	ttctggacac	attagagatt	ttcagattac	agcttcagga	6180
caatatggac	agtgggeeec	aaagetggee	agacttcatt	atteeggate	aatcaatgcc	6240
tggagcacca	aggagccctt	ttcttggatc	aaggtggatc	tgttggcacc	aatgattatt	6300
cacggcatca	agacccaggg	tgcccgtcag	aagtteteea	gcctctacat	ctctcagttt	6360
atcatcatgt	atagtettga	tgggaagaag	tggcagactt	atcgaggaaa	ttccactgga	6420
accttaatgg	tettetttgg	caatgtggat	tcatctggga	taaaacacaa	tatttttaac	6480
cctccaatta	ttgctcgata	catecgtttg	cacccaactc	attatagcat	tegeageact	6540
cttcgcatgg	agttgatggg	ctgtgattta	aatagttgca	gcatgccatt	gggaatggag	6600
agtaaagcaa	tatcagatge	acagattact	gcttcatcct	actttaccaa	tatgtttgcc	6660
acctggtctc	cttcaaaagc	tegaetteae	ctccaaggga	ggagtaatgc	ctggagacct	6720
caggtgaata	atccaaaaga	gtggctgcaa	gtggacttcc	agaagacaat	gaaagtcaca	6780
ggagtaacta	ctcagggagt	aaaatctctg	cttaccagca	tgtatgtgaa	ggagttcctc	6840
atctccagca	gtcaagatgg	ccatcagtgg	actctcttt	ttcagaatgg	caaagtaaag	6900
gtttttcagg	gaaatcaaga	ctccttcaca	cctgtggtga	actctctaga	cccaccgtta	6960
ctgactcgct	accttcgaat	tcacccccag	agttgggtgc	accagattgc	cctgaggatg	7020
gaggttctgg	gctgcgaggc	acaggacete	tactgagggt	ggccactgca	gcacctgcca	7080
ctgccgtcac	ctctccctcc	tcagctccag	ggcagtgtcc	ctccctggct	tgccttctac	7140
ctttgtgcta	aatcctagca	gacactgcct	tgaagcctcc	tgaattaact	atcatcagtc	7200
etgeatttet	ttggtggggg	gccaggaggg	tgcatccaat	ttaacttaac	tcttacctat	7260
tttctqcagc	tgctcccaga	ttactccttc	cttccaatat	aactaggcaa	aaagaagtga	7320

ggag	aaac	ct ç	gcato	aaaç	c at	tctt	ccct	gaa	aagt	tag	gcct	ctca	ıga ç	tcac	cactt	7380
cctc	tgtt	gt a	igaaa	aact	a tọ	tgat	:gaaa	ctt	tgaa	aaa	gata	ttta	ıtg a	tgtt	aacat	7440
ttca	ggtt	aa ç	geete	atac	g tt	taaa	ataa	aac	etete	agt	tgtt	tatt	at o	ctga	tcaag	7500
catg	gaac	aa a	agcat	gttt	c aç	gato	agat	. caa	taca	atc	ttgg	ragto	aa a	aggo	caaatc	7560
attt	ggac	aa t	ctgo	aaaa	ıt gç	agaç	gaata	caa	taac	tac	taca	gtaa	ag t	ctgt	ttctg	7620
cttc	ctta	ica d	cataç	atat	a at	tato	ttat	tta	gtca	tta	tgag	gggg	ac a	ttct	tatct	7680
ccaa	aact	ag o	atto	ttaa	a ct	gaga	atta	taç	gatgo	ggt	tcaa	gaat	cc c	taaç	teccc	7740
tgaa	atta	ıta t	aagg	catt	c to	tata	aatg	g caa	atgt	gca	tttt	tct	jac ç	gagto	gtccat	7800
agat	ataa	ag o	catt	tggt	c tt	aatt	ctga	cca	ataa	aaa	aata	agto	ag q	gagga	atgcaa	7860
ttgt	tgaa	ag o	ettte	aaat	a aa	ataa	caat	gto	ttct	tga	aatt	tgt	gat o	gcca	agaaa	7920
gaaa	atga	atg a	a													7931
<210 <211 <212 <213	> 2 > I	30 2351 PRT domo	sapi	.ens												
<400 Met 1		30 Ile	Glu	Leu 5	Ser	Thr	Cys	Phe	Phe 10	Leu	Cys	Leu	Leu	Arg 15	Phe	
Суз	Phe	Ser	Ala 20	Thr	Arg	Arg	Tyr	Tyr 25	Leu	Gly	Ala	Val	G1u 30	Leu	Ser	
Trp	Asp	Tyr 35	Met	Gln	Ser	Asp	Leu 40	Gly	Glu	Leu	Pro	Val 45	Asp	Ala	Arg	
	Pro 50	Pro	Arg	Val	Pro	Lys 55	Ser	Phe	Pro	Phe	Asn 60	Thr	Ser	Val	Val	
Tyr 65	Lys	Lys	Thr	Leu	Phe 70	Val	Glu	Phe	Thr	Asp 75	His	Leu	Phe	Asn	Ile 80	
Ala	Lys	Pro	Arg	Pro 85	Pro	Trp	Met	Gly	Leu 90	Leu	Gly	Pro	Thr	Ile 95	Gln	
Ala	Glu	Val	Tyr 100	Asp	Thr	Val	Val	Ile 105	Thr	Leu	Lys	Asn	Met 110	Ala	Ser	
His	Pro	Val 115	Ser	Leu	His	Ala	Val 120	Gly	Val	Ser	Tyr	Trp 125	Lys	Ala	Ser	
Glu	Gly 130	Ala	Glu	Tyr	Asp	Asp 135	Gln	Thr	Ser	Gln	Arg 140	Glu	Lys	Glu	Asp	
Asp 145	Lys	Val	Phe	Pro	Gly 150	Gly	Ser	His	Thr	Tyr 155	Val	Trp	Gln	Val	Leu 160	
Lys	Glu	Asn	Gly	Pro 165	Met	Ala	Ser	Asp	Pro 170	Leu	Cys	Leu	Thr	Tyr 175	Ser	

Tyr	Leu	Ser	His 180	Val	Asp	Leu	Val	Lys 185	Asp	Leu	Asn	Ser	Gly 190	Leu	Ile
Gly	Ala	Leu 195	Leu	Val	Cys	Arg	Glu 200	Gly	Ser	Leu	Ala	Lys 205	Glu	Lys	Thr
Gln	Thr 210	Leu	His	Lys	Phe	Ile 215	Leu	Leu	Phe	Ala	Val 220	Phe	Asp	Glu	Gly
Lys 225	Ser	Trp	His	Ser	Glu 230	Thr	Lys	Asn	Ser	Leu 235	Met	Gln	Asp	Arg	Asp 240
Ala	Ala	Ser	Ala	Arg 245	Ala	Trp	Pro	Lys	Met 250	His	Thr	Val	Asn	Gly 255	Tyr
Val	Asn	Arg	Ser 260	Leu	Pro	Gly	Leu	11e 265	Gly	Cys	His	Arg	Lys 270	Ser	Val
-	_	275			_	Met	280					285			
Phe	Leu 290	Glu	Gly	His	Thr	Phe 295	Leu	Val	Arg	Asn	His 300	Arg	Gln	Ala	Ser
305					310	Thr				315					320
-				325		Leu			330					335	
			340			Val		345					350		
Gln	Leu	Arg 355	Met	Lys	Asn	Asn	Glu 360	Glu	Ala	Glu	Asp	Tyr 365	Asp	Asp	Asp
	370	-				Asp 375			-		380				
Pro 385	Ser	Phe	Ile	Gln	11e 390	Arg	Ser	Val	Ala	Lys 395	Lys	His	Pro	Lys	Thr 400
·			-	405		Ala			410					415	
Leu	Val	Leu	Ala 420		Asp	Asp	Arg	Ser 425	Tyr	Lys	Ser	Gln	Tyr 430	Leu	Asn
	_	435				Gly	440	-				445			
Ala	Tyr 450	Thr	Asp	Glu	Thr	Phe 455	Lys	Thr	Arg	Glu	Ala 460	Ile	Gln	His	Glu
Ser 465	Gly	Ile	Leu	Gly	Pro 470	Leu	Leu	Tyr	Gly	Glu 475	Val	Gly	Asp	Thr	Leu 480
Leu	Ile	Ile	Phe	Lys 485	Asn	Gln	Ala	Ser	Arg 490	Pro	Tyr	Asn	Ile	Tyr 495	Pro
His	Gly	Ile	Thr	Asp	Val	Arg	Pro	Leu	Tyr	Ser	Arg	Arg	Leu	Pro	Lys

V	VO 20	004/03	33651											P	CT/U
			500					505					510		
Gly	Val	Lys 515	His	Leu	Lys	Asp	Phe 520	Pro	Ile	Leu	Pro	Gly 525	Glu	Ile	Phe
Lys	Tyr 530	Lys	Trp	Thr	Val	Thr 535	Val	Glu	Asp	Gly	Pro 540	Thr	Lys	Ser	Asp
Pro 545	Arg	Cys	Leu	Thr	Arg 550	Tyr	Tyr	Ser	Ser	Phe 555	Val	Asn	Met	Glu	Arg 560
Asp	Leu	Ala	Ser	Gly 565	Leu	Ile	Gly	Pro	Leu 570	Leu	Ile	Cys	Tyr	Lys 575	Glu
Ser	Val	Asp	Gln 580	Arg	Gly	Asn	Gln	Ile 585	Met	Ser	Asp	Lys	Arg 590	Asn	Va1
Ile	Leu	Phe 595	Ser	Val	Phe	Asp	Glu 600	Asn	Arg	Ser	Trp	Tyr 605	Leu	Thr	Glu
Asn	Ile 610	Gln	Arg	Phe	Leu	Pro 615	Asn	Pro	Ala	Gly	Val 620	Gln	Leu	Glu	Asp
Pro 625	Glu	Phe	Gln	Ala	Ser 630	Asn	Ile	Met	His	Ser 635	Ile	Asn	Gly	Tyr	Val 640
Phe	Asp	Ser	Leu	Gln 645	Leu	Ser	Val	Cys	Leu 650	His	Glu	Val	Ala	Tyr 655	Trp
Tyr	Ile	Leu	Ser 660	Ile	Gly	Ala	Gln	Thr 665	Asp	Phe	Leu	Ser	Val 670	Phe	Phe
Ser	Gly	Tyr 675	Thr	Phe	Lys	His	Lys 680	Met	Val	Tyr	Glu	Asp 685	Thr	Leu	Thr
Leu	Phe 690	Pro	Phe	Ser	Gly	Glu 695	Thr	Val	Phe	Met	Ser 700	Met	Glu	Asn	Pro
Gly 705	Leu	Trp	Ile	Leu	Gly 710	Cys	His	Asn	Ser	Asp 715	Phe	Arg	Asn	Arg	Gly 720
Met	Thr	Ala	Leu	Leu 725	Lys	Val	Ser	Ser	Cys 730	Asp	Lys	Asn	Thr	Gly 735	Asp
Tyr	Tyr	Glu	Asp 740	Ser	Tyr	Glu	Asp	Ile 745	Ser	Ala	Tyr	Leu	Leu 750	Ser	Lys
Asn	Asn	Ala 755	Ile	Glu	Pro	Arg	Ser 760	Phe	Ser	Gln	Asn	Ser 765	Arg	His	Arg
Ser	Thr 770	Arg	Gln	Lys	Gln	Phe 775	Asn	Ala	Thr	Thr	Ile 780	Pro	Glu	Asn	Asp
Ile 785	Glu	Lys	Thr	Asp	Pro 790	Trp	Phe	Ala	His	Arg 795	Thr	Pro	Met	Pro	Lys 800
Ile	Gln	Asn	Val	Ser 805	Ser	Ser	Asp	Leu	Leu 810	Met	Leu	Leu	Arg	Gln 815	Ser
Pro	Thr	Pro	His 820	Gly	Leu	Ser	Leu	Ser 825	Asp	Leu	Gln	Glu	Ala 830	Lys	Tyr

Glu	Thr	Phe 835	Ser	Asp	Asp	Pro	Ser 840	Pro	Gly	Ala	Ile	Asp 845	Ser	Asn	Asn
Ser	Leu 850	Ser	Glu	Met	Thr	His 855	Phe	Arg	Pro	Gln	Leu 860	His	His	Ser	Gly
Asp 865	Met	Val	Phe	Thr	Pro 870	Glu	Ser	Gly	Leu	Gln 875	Leu	Arg	Leu	Asn	Glu 880
Lys	Leu	Gly	Thr	Thr 885	Ala	Ala	Thr	Glu	Leu 890	Lys	Lys	Leu	Asp	Phe 895	Lys
Val	Ser	Ser	Thr 900	Ser	Asn	Asn	Leu	Ile 905	Ser	Thr	Ile	Pro	Ser 910		Asn
Leu	Ala	Ala 915	Gly	Thr	Asp	Asn	Thr 920	Ser	Ser	Leu	Gly	Pro 925	Pro	Ser	Met
Pro	Val 930	His	Tyr	Asp	Ser	Gln 935	Leu	Asp	Thr	Thr	Leu 940	Phe	Gly	Lys	Lys
Ser 945	Ser	Pro	Leu	Thr	Glu 950	Ser	Gly	Gly	Pro	Leu 955	Ser	Leu	Ser	Glu	960
Asn	Asn	Asp	Ser	Lys 965	Leu	Leu	Glu	Ser	Gly 970	Leu	Met	Asn	Ser	Gln 975	Glu
Ser	Ser	Trp	Gly 980	Lys	Asn	Val	Ser	Ser 985	Thr	Glu	Ser	Gly	Arg		Phe
Lys	Gly	Lys 995	Arg	Ala	His	Gly	Pro 1000		a Le	u Let	a Thi	10	s A		sn Ala
_		995 Lys			His	_	1000 Le)			nr As	10	s A 05	sp A	
Leu	Phe	995 Lys	val	l Sei		Ser 101	1000 : Le 15) eu Le	eu L	ys Tl	nr As 10	10 sn : 020	s A 05 Lys	sp A Thr	Ser
Leu	Phe 1010 Asn 1025	y95 Lys Ser	val	l Sei	: Ile	Ser 101 Arc 103	1000 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10) eu Le 7s Tì	eu Ly	ys Tl is Il	nr As 10 1e As 10	10 3n 020 3p 035	s A 05 Lys Gly	sp A Thr Pro	Ser Ser
Leu Asn Leu	Phe 1010 Asn 1023 Leu 1040	995 Lys Ser Ils	Val	l Sen	: Ile	2 Ser 101 Arg 103 Pro 104	1000 L5 L5 L5 L9 L9 L9 Se L9) eu Le /s Ti /s V	eu Ly nr H: al T:	ys Th is Il	nr As 10 Le As 10 In As 10	10 3n 320 3p 335 3n	s A 05 Lys Gly	sp A Thr Pro Leu	Ser Ser Glu
Leu Asn Leu Ser	Phe 1010 Asn 1025 Leu 1040 Asp 1055	995 Lys Ser	val Ala Glu	I Sen	: Ile : Asr n Ser	2 Ser 103 Arc 103 Pro 104 Lys 106	1000) eu Le ys Ti er Va	eu Ly nr H: al T:	ys This II	nr As 10 le As 10 in As 10 eu Ii	10 sn : 020 sp : 035 sn : 050	s A 05 Lys Gly Ile	sp A Thr Pro Leu Asp	Ser Ser Glu Arg
Leu Asn Leu Ser Met	Phe 1010 Asn 1025 Leu 1040 Asp 1055 Leu	Jys Ser Thr Met	Val	I Sen	: Ile : Asr n Ser e Lys	Pro 103 Pro 104 Lys 106 Ala	1000 Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo) ys Ti er Va al Ti	eu Ly nr H: al T: nr P:	ys This II rp Gl	le As 10 le As 10 ln	10 3n 320 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	s A 005 Llys Gly His	sp A Thr Pro Leu Asp	Ser Ser Glu Arg
Leu Asn Leu Ser Met	Phe 1010 Asn 1025 Leu 1040 Asp 1055 Leu 1070 Asn 1085	Ser Ile	Value Gluca	Ser Thi Asi Phe Lys	c Ile c Asr n Ser e Lys	100 100 100 100 100 100 100 100 100 100	1000 c Le) Ys Ti Her Va Al Ti Al Ti Al Ti Al Ti	har H: Ala T: Ala Le	ys This II	nr As 10 10 10 10 10 10 10 10 10 10 10 10 10	100 BBN :: 0220 BBN :: 035 035 065 065 eu :: 080	s A 05 Lys Gly Ile His	sp A Thr Pro Leu Asp His	Ser Ser Glu Arg Met Gln
Leu Asn Leu Ser Met Ser Lys	Phe 1010 Asn 1025 Leu 1040 Asp 1055 Leu 1070 Asn 1085	Ser Ile Thris Met Lys Glu	Value Gluc Gluc Asp	Asia Thi Asia Phe Duys Thi	c Ile c Asr n Ser e Lys s Asr	103 Arc 103 104 107 108 109 109 109 109 109 109 109 109 109 110 109 110 110	1000 Left Left Left Left Left Left Left Left	D) YS Ti YS Ti All Ti All Ti Co As	eu Linr H: All T: All Edition Me	ys This III rp Gi	nr An 10 10 An 10 An 10 An 10 An 10 An 10 An 11	100 100 100 100 100 100 100 100 100 100	S A 05 Lys Gly His Asn	sp A Thr Pro Leu Asp His Gln Asp	Ser Ser Glu Arg Met Gln Met

Ser	Pro 1145	Lys	Gln	Leu	Val	Ser 1150	Leu	Gly	Pro	Glu	Lys 1155	Ser	Va1	Glu
Gly	Gln 1160	Asn	Phe	Leu	Ser	Glu 1165	Lys	Asn	Lys	Va1	Val 1170	Val	Gly	Lys
Gly	Glu 1175	Phe	Thr	Lys	Asp	Val 1180	Gly	Leu	Lys	Glu	Met 1185	Val	Phe	Pro
Ser	Ser 1190	Arg	Asn	Leu	Phe	Leu 1195	Thr	Asn	Leu	Asp	Asn 1200	Leu	His	Glu
Asn	Asn 1205	Thr	His	Asn	Gln	Glu 1210	Lys	Lys	Ile	Gln	Glu 1215	G1u	I1e	Glu
Lys	Lys 1220	G1u	Thr	Leu	Ile	Gln 1225	G1u	Asn	Val	Va1	Leu 1230	Pro	Gln	Ile
His	Thr 1235	Val	Thr	Gly	Thr	Lys 1240	Asn	Phe	Met	Lys	Asn 1245	Leu	Phe	Leu
Leu	Ser 1250	Thr	Arg	Gln	Asn	Val 1255	G1u	G1y	Ser	Tyr	Asp 1260	Gly	Ala	Tyr
Ala	Pro 1265	Val	Leu	Gln	Asp	Phe 1270	Arg	Ser	Leu	Asn	Asp 1275	Ser	Thr	Asn
Arg	Thr 1280	Lys	Lys	His	Thr	Ala 1285	His	Phe	Ser	Lys	Lys 1290	Gly	Glu	Glu
Glu	Asn 1295	Leu	Glu	Gly	Leu	Gly 1300	Asn	Gln	Thr	Lys	G1n 1305	Ile	Va1	Glu
Lys	Tyr 1310	A1a	Cys	Thr	Thr	Arg 1315	Ile	Ser	Pro	Asn	Thr 1320	Ser	Gln	Gln
Asn	Phe 1325	Val	Thr	Gln	Arg	Ser 1330		Arg	Ala	Leu	Lys 1335	Gln	Phe	Arg
Leu	Pro 1340		Glu	Glu	Thr	G1u 1345		Glu	Lys	Arg	Ile 1350	Ile	Val	Asp
Asp	Thr 1355	Ser	Thr	Gln	Trp	Ser 1360	Lys	Asn	Met	Lys	His 1365	Leu	Thr	Pro
Ser	Thr 1370		Thr	Gln	I1e	Asp 1375	Tyr	Asn	Glu	Lys	Glu 1380	Lys	Gly	Ala
Ile	Thr 1385		Ser	Pro	Leu	Ser 1390		Суз	Leu	Thr	Arg 1395	Ser	His	Ser
Ile	Pro 1400		Ala	Asn	Arg	Ser 1405		Leu	Pro	Ile	Ala 1410	Ьуѕ	Val	Ser
Ser	Phe 1415		Ser	Ile	Arg	Pro 1420		Tyr	Leu	Thr	Arg 1425		Leu	Phe
Gln	Asp 1430		Ser	Ser	His	Leu 1435		Ala	Ala	Ser	Tyr 1440	Arg	Lys	Lys
Asp	Ser	Gly	Val	Gln	G1u	Ser	Ser	His	Phe	Leu	Gln	Gly	Ala	Lys

	1445					1450					1455			
Lys	Asn 1460	Asn	Leu	Ser	Leu	Ala 1465	Ile	Leu	Thr	Leu	Glu 1470	Met	Thr	Gly
Asp	Gln 1475	Arg	Glu	Val	Gly	Ser 1480	Leu	Gly	Thr	Ser	Ala 1485	Thr	Asn	Ser
Val	Thr 1490	Tyr	Lys	Lys	Val	Glu 1495	Asn	Thr	Val	Leu	Pro 1500	Lys	Pro	Asp
Leu	Pro 1505	Lys	Thr	Ser	Gly	Lys 1510	Val	Glu	Leu	Leu	Pro 1515	Lys	Val	His
Ile	Tyr 1520	Gln	Lys	Asp	Leu	Phe 1525	Pro	Thr	Glu	Thr	Ser 1530	Asn	Gly	Ser
Pro	Gly 1535	His	Leu	Asp	Leu	Val 1540	Glu	Gly	Ser	Leu	Leu 1545	Gln	Gly	Thr
Glu	Gly 1550	Ala	Ile	Lys	Trp	Asn 1555	Glu	Ala	Asn	Arg	Pro 1560	Gly	Lys	Val
Pro	Phe 1565	Leu	Arg	Val	Ala	Thr 1570	Glu	Ser	Ser	Ala	Lys 1575	Thr	Pro	Ser
Lys	Leu 1580	Leu	Asp	Pro	Leu	Ala 1585	Trp	Asp	Asn	His	Tyr 1590	Gly	Thr	Gln
Ile	Pro 1595		Glu	Glu	Trp	Lys 1600	Ser	Gln	Glu	Lys	Ser 1605	Pro	Glu	Lys
Thr	Ala 1610		Lys	Lys	Lys	Asp 1615	Thr	Ile	Leu	Ser	Leu 1620	Asn	Ala	Cys
Glu	Ser 1625	Asn	His	Ala	Ile	Ala 1630	Ala	Ile	Asn	Glu	Gly 1635	Gln	Asn	Lys
Pro	Glu 1640		Glu	Val	Thr	Trp 1645	Ala	Lys	Gln	Gly	Arg 1650	Thr	Glu	Arg
Leu	Cys 1655		Gln	Asn	Pro	Pro 1660	Val	Leu	Lys	Arg	His 1665	Gln	Arg	Glu
Ile	Thr 1670		Thr	Thr	Leu	Gln 1675		Asp	Gln	Glu	Glu 1680	Ile	Asp	Tyr
Asp	Asp 1685		Ile	Ser	Val	Glu 1690	Met	Lys	Lуз	Glu	Asp 1695	Phe	Asp	Ile
Tyr	Asp 1700	Glu	Asp	Glu	Asn	Gln 1705		Pro	Arg	Ser	Phe 1710		Lys	Lys
Thr	Arg 1715		Tyr	Phe	Ile	Ala 1720		Val	Glu	Arg	Leu 1725	Trp	Asp	Tyr
Gly	Met 1730		Ser	Ser	Pro	His 1735		Leu	Arg	Asn	Arg 1740	Ala	Gln	Ser
Gly	Ser 1745		Pro	Gln	Phe	Lys 1750	Lys	Val	Val	Phe	Gln 1755	Glu	Phe	Thr

Asp	Gly 1760	Ser	Phe	Thr	Gln	Pro 1765	Leu	Tyr	Arg	Gly	Glu 1770	Leu	Asn	Glu
His	Leu 1775	Gly	Leu	Leu	Gly	Pro 1780	Tyr	Ile	Arg	Ala	Glu 1785	Val	Glu	Asp
Asn	Ile 1790	Met	Val	Thr	Phe	Arg 1795	Asn	Gln	Ala	Ser	Arg 1800	Pro	Tyr	Ser
Phe	Tyr 1805	Ser	Ser	Leu	Ile	Ser 1810	Tyr	Glu	Glu	Asp	Gln 1815	Arg	Gln	Gly
Ala	Glu 1820	Pro	Arg	Lys	Asn	Phe 1825	Val	Lys	Pro	Asn	Glu 1830	Thr	Ьуs	Thr
Tyr	Phe 1835	Trp	Lys	Val	Gln	His 1840	His	Met	Ala	Pro	Thr 1845	Lys	Asp	Glu
Phe	Asp 1850	Cys	Lys	Ala	Trp	Ala 1855	Tyr	Phe	Ser	Asp	Val 1860	Asp	Leu	Glu
-	1865					Leu 1870					1875			
	1880					Ala 1885					1890			
	1895					Thr 1900					1905			
-	1910					Glu 1915					1920			
	1925					Thr 1930					1935			
Ala	1940					Met 1945					1950		Val	Met
	1955	_				Arg 1960					1965		Gly	
	1970					Ile 1975					1980			
	1985	-				Tyr 1990					1995			
	2000					Val 2005					2010			
Ile	Trp 2015		Val	Glu	Cys	Leu 2020		Gly	Glu	His	Leu 2025	His	Ala	G1y
Met	Ser 2030		Leu	Phe	Leu	Val 2035		Ser	Asn	Lys	Cys 2040		Thr	Pro
Leu	Gly 2045		Ala	Ser	Gly	His 2050		Arg	Asp	Phe	Gln 2055		Thr	Ala

Ser	Gly 2060	Gln	Tyr	Gly	Gln	Trp 2065	Ala	Pro	Lys	Leu	Ala 2070	Arg	Leu	His
Tyr	Ser 2075	Gly	Ser	Ile	Asn	Ala 2080	Trp	Ser	Thr	Lys	Glu 2085	Pro	Phe	Ser
Trp	Ile 2090	Lys	Val	Asp	Leu	Leu 2095	Ala	Pro	Met	Ile	Ile 2100	His	Gly	Ile
Lys	Thr 2105	Gln	Gly	Ala	Arg	Gln 2110	Lys	Phe	Ser	Ser	Leu 2115	Tyr	Ile	Ser
Gln	Phe 2120	Ile	Ile	Met	Tyr	Ser 2125	Leu	Asp	Gly	Lys	Lys 2130	Trp	Gln	Thr
Tyr	Arg 2135	Gly	Asn	Ser	Thr	Gly 2140	Thr	Leu	Met	Val	Phe 2145	Phe	Gly	Asn
Val	Asp 2150	Ser	Ser	Gly	Ile	Lys 2155	His	Asn	Ile	Phe	Asn 2160	Pro	Pro	Ile
Ile	Ala 2165	Arg	Tyr	Ile	Arg	Leu 2170	His	Pro	Thr	His	Tyr 2175	Ser	Ile	Arg
Ser	Thr 2180	Leu	Arg	Met	Glu	Leu 2185	Met	Gly	Cys	Asp	Leu 2190	Asn	Ser	Суз
Ser	Met 2195	Pro	Leu	Gly	Met	Glu 2200	Ser	Lys	Ala	Ile	Ser 2205	Asp	Ala	Gln
Ile	Thr 2210	Ala	Ser	Ser	Tyr	Phe 2215	Thr	Asn	Met	Phe	Ala 2220	Thr	Trp	Ser
Pro	Ser 2225	Lys	Ala	Arg	Leu	His 2230		Gln	Gly	Arg	Ser 2235	Asn	Ala	Trp
Arg	Pro 2240	Gln	Val	Asn	Asn	Pro 2245	Lys	Glu	Trp	Leu	Gln 2250	Val	Asp	Phe
Gln	Lys 2255	Thr	Met	Lys	Val	Thr 2260		Val	Thr	Thr	Gln 2265	Gly	Val	Lys
Ser	Leu 2270	Leu	Thr	Ser	Met	Tyr 2275	Val	Lys	Glu	Phe	Leu 2280	Ile	Ser	Ser
Ser	Gln 2285	Asp	Gly	His	Gln	Trp 2290	Thr	Leu	Phe	Phe	Gln 2295	Asn	Gly	Lys
Val	Lys 2300	Val	Phe	Gln	Gly	Asn 2305	Gln	Asp	Ser	Phe	Thr 2310	Pro	Val	Val
Asn	Ser 2315	Leu	Asp	Pro	Pro	Leu 2320		Thr	Arg	Tyr	Leu 2325		Ile	His
Pro	Gln 2330		Trp	Val	His	Gln 2335		Ala	Leu	Arg	Met 2340	Glu	Val	Leu
Gly	Cys 2345		Ala	Gln	Asp	Leu 2350								
<21	0> 3	1												

WO 2004/	033651				PCT/US20	03/03197
<211> 147 <212> DNA <213> Home	l sapiens					
<400> 31 atggcgcccg	tegecgtetg	ggccgcgctg	gccgtcggac	tggagctctg	ggctgcggcg	60
cacgccttgc	ccgcccaggt	ggcatttaca	ccctacgccc	cggagcccgg	gagcacatgc	120
cggctcagag	aatactatga	ccagacaget	cagatgtgct	gcagcaaatg	ctcgccgggc	180
caacatgcaa	aagtettetg	taccaagacc	tcggacaccg	tgtgtgactc	ctgtgaggac	240
agcacataca	cccagctctg	gaactgggtt	cccgagtgct	tgagctgtgg	ctcccgctgt	300
agctctgacc	aggtggaaac	tcaagcctgc	actcgggaac	agaaccgcat	ctgcacctgc	360
aggecegget	ggtactgcgc	gctgagcaag	caggaggggt	gccggctgtg	cgcgccgctg	420
cgcaagtgcc	gcccgggctt	cggcgtggcc	agaccaggaa	ctgaaacatc	agacgtggtg	480
tgcaagccct	gtgccccggg	gacgttctcc	aacacgactt	catccacgga	tatttgcagg	540
ccccaccaga	tctgtaacgt	ggtggccatc	cctgggaatg	caagcatgga	tgcagtctgc	600
acgtccacgt	ccccacccg	gagtatggcc	ccaggggcag	tacacttacc	ccagccagtg	660
tccacacgat	cccaacacac	gcagccaact	ccagaaccca	gcactgctcc	aagcacctcc	720
tteetgetee	caatgggccc	cagcccccca	gctgaaggga	gcactggcga	cttcgctctt	780
ccagttggac	tgattgtggg	tgtgacagcc	ttgggtctac	taataatagg	agtggtgaac	840
tgtgtcatca	tgacccaggt	gaaaaagaag	cccttgtgcc	tgcagagaga	agccaaggtg	900
cctcacttgc	ctgccgataa	ggcccggggt	acacagggcc	ccgagcagca	gcacctgctg	960

ateacagege egagetecag cageagetec etggagaget eggecagtge gttggacaga 1020 agggegecca eteggaacca gecacaggea ecaggegtgg aggecagtgg ggeeggggag 1080 geoegggeea geacegggag eteagattet teeeetggtg geeatgggae ceaggteaat 1140

gtcacctgca tcgtgaacgt ctgtagcagc tctgaccaca gctcacagtg ctcctcccaa 1200 gecageteca caatgggaga cacagattee ageceetegg agteeeegaa ggaegageag 1260 gtccccttct ccaaggagga atgtgccttt cggtcacagc tggagacgcc agagaccctg 1320

ctggggagca ccgaagagaa gcccctgccc cttggagtgc ctgatgctgg gatgaagccc 1380

agttaaccag geoggtgtgg getgtgtegt agecaaggtg ggetgageee tggeaggatg 1440 1471

<210> 32 <211> 461

<211> 401 <212> PRT

<213> Homo sapiens

accotgogaa ggggccctgg tccttccagg c

<400> 32

Met 1	Ala	Pro	Val	Ala 5	Val	Trp	Ala	Ala	Leu 10	Ala	Val	Gly	Leu	Glu 15	Leu
Trp	Ala	Ala	Ala 20	His	Ala	Leu	Pro	Ala 25	Gln	Val	Ala	Phe	Thr 30	Pro	Tyr
Ala	Pro	Glu 35	Pro	Gly	Ser	Thr	Cys 40	Arg	Leu	Arg	Glu	Tyr 45	Tyr	Asp	Gln
Thr	Ala 50	Gln	Met	Cys	Cys	Ser 55	Lys	Cys	Ser	Pro	Gly 60	Gln	His	Ala	Lys
Val 65	Phe	Cys	Thr	Lys	Thr 70	Ser	Asp	Thr	Val	Cys 75	Asp	Ser	Cys	Glu	Asp 80
Ser	Thr	Tyr	Thr	Gln 85	Leu	Trp	Asn	Trp	Val 90	Pro	Glu	Cys	Leu	Ser 95	Cys
Gly	Ser	Arg	Cys 100	Ser	Ser	Asp	Gln	Val 105	Glu	Thr	Gln	Ala	Cys 110	Thr	Arg
Glu	Gln	Asn 115	Arg	Ile	Сув	Thr	Cys 120	Arg	Pro	Gly	Trp	Tyr 125	Cys	Ala	Leu
Ser	Lys 130	Gln	Glu	Gly	Cys	Arg 135	Leu	Cys	Ala	Pro	Leu 140	Arg	Lys	Cys	Arg
Pro 145	Gly	Phe	Gly	Val	Ala 150	Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160
Cys	Lys	Pro	Cys	Ala 165	Pro	Gly	Thr	Phe	Ser 170	Asn	Thr	Thr	Ser	Ser 175	Thr
Asp	Ile	Cys	Arg 180	Pro	His	Gln	Ile	Cys 185	Asn	Val	Val	Ala	Ile 190	Pro	Gly
Asn	Ala	Ser 195	Met	Asp	Ala	Val	Cys 200	Thr	Ser	Thr	Ser	Pro 205	Thr	Arg	Ser
Met	Ala 210	Pro	Gly	Ala	Val	His 215	Leu	Pro	Gln	Pro	Val 220	Ser	Thr	Arg	Ser
Gln 225	His	Thr	Gln	Pro	Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe	Leu	Leu	Pro	Met 245	Gly	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Thr 255	Gly
Asp	Phe	Ala	Leu 260	Pro	Val	Gly	Leu	Ile 265	Val	Gly	Val	Thr	Ala 270	Leu	Gly
Leu	Leu	Ile 275	Ile	Gly	Val	Val	Asn 280	Cys	Val	Ile	Met	Thr 285	Gln	Val	Lys
Lуs	Lys 290	Pro	Leu	Cys	Leu	Gln 295	Arg	Glu	Ala	Lys	Val 300	Pro	His	Leu	Pro
Ala 305	Asp	Lys	Ala	Arg	Gly 310	Thr	Gln	Gly	Pro	Glu 315	Gln	Gln	His	Leu	Leu 320
Ile	Thr	Ala	Pro	Ser	Ser	Ser	Ser	Ser	Ser	Leu	Glu	Ser	Ser	Ala	Ser

,	WO 2	004/0	33651											I	PCT/US	2003/0319
				325					330					335		
Ala	Leu	Asp	Arg 340	Arg	Ala	Pro	Thr	Arg 345	Asn	Gln	Pro	Gln	Ala 350	Pro	Gly	
Val	Glu	Ala 355	Ser	Gly	Ala	Gly	Glu 360	Ala	Arg	Ala	Ser	Thr 365	Gly	Ser	Ser	
qaA	Ser 370	Ser	Pro	Gly	Gly	His 375	Gly	Thr	Gln	Val	Asn 380	Val	Thr	Сув	Ile	
Val 385	Asn	Val	Cys	Ser	Ser 390	Ser	Asp	His	Ser	Ser 395	Gln	Cys	Ser	Ser	Gln 400	
Ala	Ser	Ser	Thr	Met 405	Gly	Asp	Thr	Asp	Ser 410	Ser	Pro	Ser	Glu	Ser 415	Pro	
Lys	Asp	Glu	Gln 420	Val	Pro	Phe	Ser	Lys 425	Glu	Glu	Суз	Ala	Phe 430	Arg	Ser	
Gln	Leu	Glu 435	Thr	Pro	Glu	Thr	Leu 440	Leu	Gly	Ser	Thr	Glu 445	Glu	Lys	Pro	
Leu	Pro 450	Leu	Gly	Val	Pro	Asp 455	Ala	Gly	Met	Lys	Pro 460	Ser				
<21 <21 <21 <21	1> 2>	33 1475 DNA Homo	sap	iens												
<40 tcc		33 gtc	cccg	cagc	gc c	ggct	cgcg	c cc	tcct	geeg	cag	ccac	cga	gccg	ccgtct	60
agc	gccc	cga	cctc	gcca	cc a	tgag	agcc	c tg	ctgg	cgcg	cct	gctt	ctc	tgcg	teetgg	120
tcg	tgag	cga	ctcc	aaag	gc a	gcaa	tgaa	c tt	catc	aagt	tcc	atcg	aac	tgtg	actgto	180
taa	atgg	agg	aaca	tgtg	tg t	ccaa	caag	t ac	ttct	ccaa	cat	tcac	tgg	tgca	actgcc	240
caa	agaa	att	cgga	gggc	ag c	actg	tgaa	a ta	gata	agtc	aaa	aacc	tgc	tatg	agggga	300
atg	gtca	ctt	ttac	cgag	ga a	aggc	cagc	a ct	gaca	ccat	ggg	ccgg	ccc	tgcc	tgccct	360
gga	actc	tgc	cact	gtcc	tt c	agca	aacg	t ac	catg	ccca	cag	atct	gat	gctc	ttcago	420
tgg	gcct	ggg	gaaa	cata	at t	actg	cagg	a ac	ccag	acaa	ccg	gagg	cga	ccct	ggtgct	480
atg	tgca	ggt	gggc	ctaa	ag c	cgct	tgtc	c aa	gagt	gcat	ggt	gcat	gac	tgcg	cagato	540
gaa	aaaa	gcc	ctcc	tctc	ct c	caga	agaa	t ta	aaat	ttca	gtg	tggc	caa	aaga	ctctga	600
ggc	cccg	ctt	taag	atta	tt g	gggg	agaa	t tc	acca	ccat	cga	gaac	cag	ccct	ggtttg	660
cgg	ccat	cta	cagg	aggo	ac c	gggg	gggc	t ct	gtca	ccta	cgt	gtgt	gga	ggca	gcctca	720
tca	gccc	ttg	ctgg	gtga	tc a	gcgc	caca	c ac	tgct	tcat	tga	ttac	cca	aaga	aggagg	780

actacatcgt ctacctgggt cgctcaaggc ttaactccaa cacgcaaggg gagatgaagt

ttgaggtgga aaacctcatc ctacacaagg actacagcgc tgacacgctt gctcaccaca

PCT/US2003/031974 WO 2004/033651

960

acga	catt	gc c	ttgc	tgaa	ıg at	ccgt	tcca	ago	gaggg	cag	gtgt	gcgc	ag c	cato	ccgga	960
ctat	acag	jac c	atct	gcct	g co	ctcg	atgt	ata	acga	tcc	ccaç	tttç	igc a	caaç	ctgtg	1020
agat	cact	gg c	tttc	gaaa	ıa ga	gaat	tcta	ccç	acta	tct	ctat	ccg	gag c	agct	gaaga	1080
tgad	tgtt	gtg	gaago	tgat	t to	eccac	cggc	agt	gtca	ıgca	gccc	cact	ac t	acgo	ctctg	1140
aagt	caco	eac c	aaaa	tgct	g to	tgct	gcto	aco	caca	ıgtg	gaaa	acaç	gat t	ccto	ccagg	1200
gaga	ctca	igg c	ggad	ccct	c gt	ctgt	tece	te	aago	ccg	cato	actt	tg a	etge	gaattg	1260
tgaç	getgg	igg o	ecgto	gato	ıt go	eccto	gaago	g aca	agco	agg	cgt	taca	eg a	agagt	ctcac	1320
actt	ctta	icc c	tgga	tecç	je aç	rtcac	cacca	a ago	gaaga	ıgaa	tgg	ctg	gee o	etete	agggt	1380
ccc	aggg	gag ç	jaaac	gggg	a co	eacco	gett	tct:	tgct	ggt	tgto	attt	tt ç	gcagt	agagt	1440
cato	etcca	atc a	getç	taaq	ga aç	agac	etggg	g aaq	gat							1475
<210 <211 <212 <213	L> 4 2> E 3> F		sapi	.ens												
<400 Met 1		Ala	Leu	Leu 5	Ala	Arg	Leu	Leu	Leu 10	Cys	Val	Leu	Val	Val 15	Ser	
Asp	Ser	Lys	Gly 20	Ser	Asn	Glu	Leu	His 25	Gln	Va1	Pro	Ser	Asn 30	Cys	Asp	
Cys	Leu	Asn 35	Gly	Gly	Thr	Cys	Val 40	Ser	Asn	Lys	Tyr	Phe 45	Ser	Asn	Ile	
His	Trp 50	Cys	Asn	Суз	Pro	Lys 55	Lys	Phe	Gly	Gly	Gln 60	His	Cys	Glu	Ile	
Asp 65	Lys	Ser	Lys	Thr	Cys 70	Tyr	Glu	Gly	Asn	Gly 75	His	Phe	Tyr	Arg	Gly 80	
Lys	Ala	Ser	Thr	Asp 85	Thr	Met	G1y	Arg	Pro 90	Суз	Leu	Pro	Trp	Asn 95	Ser	
Ala	Thr	Val	Leu 100	Gln	Gln	Thr	Туг	His 105	Ala	His	Arg	Ser	Asp 110	Ala	Leu	
Gl n	Leu	G1y 115	Leu	Gly	Lys	His	Asn 120	Tyr	Cys	Arg	Asn	Pro 125	Asp	Asn	Arg	
Arg	Arg 130	Pro	Trp	Cys	Tyr	Val 135	Gln	Val	Gly	Leu	Lys 140	Pro	Leu	Val	Gln	
Glu 145	Суз	Met	Val	His	Asp 150	Cys	Ala	Asp	Gly	Lys 155	Lys	Pro	Ser	Ser	Pro 160	
Pro	Glu	Glu	Leu	Lys 165	Phe	Gln	Суз	Gly	Gln 170	Lys	Thr	Leu	Arg	Pro 175	Arg	
Phe	Lys	Ile	Ile	Gly	Gly	Glu	Phe	Thr	Thr	Ile	Glu	Asn	Gln	Pro	Trp	

185 190 Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu 425 <210> 35 <211> 107 <212> PRT <213> Mus musculus <400> 35 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45

```
Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly
Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
<210> 36
<211> 120
<212> PRT
<213> Mus musculus
<400> 36
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr
Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val
Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln
Gly Thr Leu Val Thr Val Ser Ser
       115
<210> 37
<211>
      120
<212> PRT
<213> Mus musculus
<400> 37
Gin Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser
Gly Met Ser Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu
```

42

Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser

Leu Lys Se 65	r Arg I	Leu Thr 70	Ile Se	Lys	Asp	Thr 75	Ser	Lys	Asn	G1n	Val 80	
Val Leu Ly		Thr Asn 35	Met Ası	Pro	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr	
Cys Ala Ar	Ser N 100	Met Ile	Thr Ası	Trp 105	Tyr	Phe	Asp	Va1	Trp 110	G1y	Ala	
Gly Thr Th		Thr Val	Ser Se:									
<210> 38 <211> 106 <212> PRT <213> Mus	muscul	lus										
<400> 38 Asp Ile Gl 1		Thr Gln 5	Ser Pr	Ser	Thr 10	Leu	Ser	Ala	Ser	Val 15	Gly	
Asp Arg Va	1 Thr 1 20	Ile Thr	Cys Ly	Cys 25	G1n	Leu	Ser	Val	Gly 30	Tyr	Met	
His Trp Ty	r Gln (Gln Lys	Pro Gl	/ Lys	Ala	Pro	Lys	Leu 45	Trp	Ile	Tyr	
Asp Thr Se	r Lys l	Leu Ala	Ser Gl	/ Val	Pro	Ser	Arg 60	Phe	Ser	Gly	Ser	
Gly Ser Gl 65	y Thr (Glu Phe 70	Thr Le	1 Thr	Ile	Ser 75	Ser	Leu	Gln	Pro	Asp 80	
Asp Phe Al		Tyr Tyr 85	Cys Ph	∋ Gln	Gly 90	Ser	G1y	Tyr	Pro	Phe 95	Thr	
Phe Gly Gl	y Gly '	Thr Lys	Leu Gl	1 Ile 105	Lys							
<210> 39 <211> 103 <212> DNA <213> Hor		ens										
<400> 39 tcctgcacac	gcagt	geett g	aagtgct	tc tt	caga	gacc	ttt	cttc	ata	gact	actttt	60
ttttctttaa	gcagc	aaaag g	agaaaat	tg to	atca	aagg	ata	ttcc	aga	ttct	tgacag	120
cattetegte	atctc	tgagg a	catcacc	at ca	tctc	agga	tga	gggg	cat	gaag	ctgctg	180
ggggcgctgc	tggca	ctggc g	gccctac	tg ca	gggg	gccg	tgt	ccct	gaa	gatc	gcagcc	240
ttcaacatc	agaca	tttgg g	gagacca	ag at	gtcc	aatg	cca	ccct	cgt	cagc	tacatt	300
gtgcagatc	tgagc	cgcta t	gacatcg	cc ct	ggtc	cagg	agg	tcag	aga	cagc	cacctg	360
actgccgtg	ggaag	ctgct g	gacaacc	tc aa	tcag	gatg	cac	caga	cac	ctat	cactac	420
gtggtcagt	agcca	ctggg a	cggaaca	gc ta	taag	gago	gct	acct	gtt	cgtg	tacagg	480

													-		
cctgac	cagg 1	tgtct	geg	gt gg	gacaç	gctad	tac	ctace	gatg	atg	gctgo	cga (gccct	geggg	540
aacgac	acct 1	tcaa	ccgaç	ga go	cago	cati	gto	caggt	tct	tete	ccg	gtt	caca	gaggtc,	600
agggag	tttg (ccatt	gtto	ec co	etgea	atgc	g gcd	ccg	gggg	acgo	agta	agc (egaga	atcgac	660
gctctc	tatg a	acgto	ctaco	ct g	gatgi	cca	a gaç	gaaat	ggg	gctt	gga	gga ı	egte	atgttg	720
atgggc	gact 1	tcaat	geg	gg ct	gcaç	gctat	gt	gagad	cct	ccca	gtg	gtc :	atcca	atccgc	780
ctgtgg	acaa	gccc	cacct	t co	cagto	ggct	gato	cccc	gaca	gcgo	etgad	cac	cacaç	gctaca	840
cccacg	cact	gtgc	ctate	ga ca	aggat	egt	g gti	gcag	ggga	tgct	gct	ccg i	aggc	gccgtt	900
gttccc	gact	cggc	tette	cc ct	tta	actt	caq	ggctq	gcct	atg	gcct	gag	tgac	caactg	960
gcccaa	gcca 1	tcagi	tgaco	a ct	atco	cagt	g ga	ggtga	atgc	tgaa	ıgtga	agc i	agcc	cctccc	1020
cacacc	agtt (gaaci	tgcag	3											1039
<210> <211> <212> <213>	40 282 PRT Homo	sap:	iens												
<400> Met Ar 1	40 g Gly	Met	Lys 5	Leu	Le u	Gly	Ala	Leu 10	Leu	A1a	Leu	Ala	Ala 15	Leu	
Leu Gl	n Gly	Ala 20	Val	Ser	Leu	Lys	Ile 25	Ala	Ala	Phe	Asn	Ile 30	Gln	Thr	
Phe Gl	y Glu 35	Thr	Lys	Met	Ser	Asn 40	Ala	Thr	Leu	Val	Ser 45	Tyr	Ile	Val	
Gln Il		Ser	Arg	Tyr	Asp 55	Ile	Ala	Leu	Val	Gln 60	Glu	Val	Arg	Asp	
Ser Hi 65	s Leu	Thr	Ala	Val 70	Gly	Lys	Leu	Leu	Asp 75	Asn	Leu	Asn	Gln	Asp 80	
Ala Pr	o Asp	Thr	Tyr 85	His	Tyr	Val	Val	Ser 90	Glu	Pro	Leu	Gly	Arg 95	Asn	
Ser Ty	r Lys	G1u 100	Arg	Tyr	Leu	Phe	Val 105	Tyr	Arg	Pro	Asp	G1n 110	Va1	Ser	
Ala Va	1 Asp	Ser	Tyr	Tyr	Tyr	Asp 120	Asp	Gly	Cys	Glu	Pro 125	Cys	Gly	Asn	
Asp Th		Asn	Arg	G1u	Pro 135	Ala	Ile	Va1	Arg	Phe 140	Phe	Ser	Arg	Phe	
Thr Gl 145	u Val	Arg	Glu	Phe 150	Ala	Ile	Val	Pro	Leu 155	His	Ala	Ala	Pro	G1y 160	
Asp Al	a Val	Ala	Glu 165	Ile	Asp	Ala	Leu	Tyr 170	Asp	Val	Tyr	Leu	Asp 175	Val	
Gln Gl	u Lys	Trp 180	Gly	Leu	G1u	Asp	Va1 185	Met	Leu	Met	Gly	Asp 190	Phe	Asn	

Ala	Gly	Cys 195	Ser	Tyr	Val	Arg	Pro 200	Ser	Gln	Trp	Ser	Ser 205	Ile	Arg	Leu	
Trp	Thr 210	Ser	Pro	Thr	Phe	Gln 215	Trp	Leu	Ile	Pro	Asp 220	Ser	Ala	Asp	Thr	
Thr 225	Ala	Thr	Pro	Thr	His 230	Cys	Ala	Tyr	Asp	Arg 235	Ile	Val	Val	Ala	Gly 240	
Met	Leu	Leu	Arg	Gly 245	Ala	Val	Val	Pro	Asp 250	Ser	Ala	Leu	Pro	Phe 255	Asn	
Phe	Gln	Ala	A1a 260	Tyr	Gly	Leu	Ser	Asp 265	Gln	Leu	Ala	Gln	Ala 270	Ile	Ser	
Asp	His	Tyr 275	Pro	Val	Glu	Val	Met 280	Leu	Lys							
<210 <211 <211 <211	L> 1 2> 1	41 678 DNA Mus r	nusc	ulus												
<400 gaca		41 tgc 1	gact	tcagi	c to	ccag	ccato	e ete	gtct	gtga	gtc	cagga	aga a	aaga	gtcagt	60
ttci	cct	gca q	gggc	cagto	ca gt	tcg	ttgg	e tea	agca	atcc	act	ggtai	ca (gcaa	agaaca	120
aato	ggtt	ete (caage	gette	et ca	ataa	agtat	t gci	ttct	gagt	cta	tgtc	gg (gatc	cttcc	180
aggi	tta	gtg (gcag	tggai	tc ag	ggga	cagai	t tti	tact	ctta	gca	tcaa	cac '	tgtg	gagtet	240
gaaq	gata	ttg (caga	ttat	ta c	tgtc	aacaa	a agi	cat	agct	ggc	catt	cac	gttc	ggctcg	300
ggg	acaa	att 1	tgga	agta	aa aq	gaag	tgaaq	g cti	tgag	gagt	ctg	gagg	agg i	cttg	gtgcaa	360
cct	ggag	gat	ccat	gaaa	et c	cct	gtgti	t gc	ctct	ggat	tca	tttt	cag	taac	cactgg	420
atga	aact	ggg	tccg	ccag	tc to	ccag	agaa	g gg	gctt	gagt	ggg	ttgc	tga .	aatt	agatca	480
aaa	tcta	tta i	atto	tgca	ac a	catt	atgc	g ga	gtct	gtga	aag	ggag	gtt	cacc	atctca	540
aga	gatg	att	ccaa	aagt	gc t	gtct	acct	g ca	aatg	accg	act	taag	aac	tgaa	gacact	600
ggc	gttt	att	actg	ttcc	ag g	aatt	acta	c gg	tagt	acct	acg	acta	ctg	gggc	caaggc	660
acci	actc	tca	cagt	ctcc												678
<21: <21: <21: <21:	1> 2>	42 226 PRT Mus	musc	ulus												
<40 Asp 1		42 Leu	Leu	Thr 5	Gln	Ser	Pro	Ala	Ile 10	Leu	Ser	Val	Ser	Pro 15	Gly	
Glu	Arg	Val	Ser 20	Phe	Ser	Cys	Arg	Ala 25	Ser	Gln	Phe	Val	Gly 30	Ser	Ser	

Ile	His	Trp 35	Tyr	Gln	Gln	Arg	Thr 40	Asn	Gly	Ser	Pro	Arg 45	Leu	Leu	Ile		
Lys	Tyr 50	Ala	Ser	Glu	Ser	Met 55	Ser	Gly	Ile	Pro	Ser 60	Arg	Phe	Ser	Gly		
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Ser	Ile 75	Asn	Thr	Val	Glu	Ser 80		
G1u	Asp	Ile	Ala	Asp 85	Tyr	Tyr	Cys	Gln	Gln 90	Ser	His	Ser	Trp	Pro 95	Phe		
Thr	Phe	G1y	Ser 100	Gly	Thr	Asn	Leu	Glu 105	Val	Lys	Glu	Val	Lys 110	Leu	Glu		
G1u	Ser	Gly 115	Gly	Gly	Leu	Val	Gln 120	Pro	Gly	Gly	Ser	Met 125	Lys	Leu	Ser		
Cys	Val 130	Ala	Ser	Gly	Phe	Ile 135	Phe	Ser	Asn	His	Trp 140	Met	Asn	Trp	Val		
Arg 145	Gln	Ser	Pro	Glu	Lys 150	Gly	Leu	Glu	Trp	Val 155	Ala	Glu	Ile	Arg	Ser 160		
Lys	Ser	Ile	Asn	Ser 165	Ala	Thr	His	Tyr	Ala 170	Glu	Ser	Val	Lys	Gly 175	Arg		
Phe	Thr	Ile	Ser 180	Arg	Asp	Asp	Ser	Lys 185	Ser	Ala	Val	Tyr	Leu 190	Gln	Met		
Thr	Asp	Leu 195	Arg	Thr	Glu	Asp	Thr 200	Gly	Val	Tyr	Tyr	Cys 205	Ser	Arg	Asn		
Tyr	Tyr 210	Gly	Ser	Thr	Tyr	Asp 215	Tyr	Trp	G1y	Gln	Gly 220	Thr	Thr	Leu	Thr		
Val 225	Ser																
<21 <21 <21 <21	1> 2>	43 450 DNA Homo	sap	, iens													
<40 gct		43 cag	aaga	ggcc	at c	aagc	acat	c ac	tgtc	cttc	tgc	catg	gec	ctgt	ggatge	60	
gec	tect	gcc	cctg	ctgg	cg c	tgct	ggcc	c tc	tggg	gacc	tga	ccca	gcc	gcag	cctttg	120	
tga	acca	aca	cctg	tgcg	gc t	caca	cctg	g tg	gaag	ctct	cta	ccta	gtg	tgcg	gggaac	180	
gag	gett	ctt	ctac	acac	сс а	agac	ccgc	c gg	gagg	caga	gga	cctg	cag	gtgg	ggcagg	240	
tgg	agct	ggg	cggg	ggcc	ct g	gtgc	aggc	a gc	ctgc	agcc	ctt	ggcc	ctg	gagg	ggtccc	300	
tgc	agaa	gcg	tggc	attg	tg g	aaca	atgo	t gt	acca	gcat	ctg	ctcc	ctc	tacc	agctgg	360	
aga	acta	ctg	caac	taga	cg c	agcc	cgca	g gc	agcc	cccc	acc	cgcc	gcc	tcct	gcaccg	420	
aga	gaga	tgg	aata	aago	cc t	tgaa	ccag	С								450	

<210> <211>	44 110														
<212> <213>	PRT Homo	sap	iens												
<400> Met Ala	44 Leu	Trp	Met 5	Arg	Leu	Leu	Pro	Leu 10	Leu	Ala	Leu	Leu	Ala 15	Leu	
Trp Gl	y Pro	Asp 20	Pro	Ala	Ala	Ala	Phe 25	Val	Asn	Gln	His	Leu 30	Cys	Gly	
Ser His	s Leu 35	Val	Glu	Ala	Leu	Tyr 40	Leu	Val	Cys	Gly	Glu 45	Arg	Gly	Phe	
Phe Ty:	c Thr	Pro	Lys	Thr	Arg 55	Arg	Glu	Ala	G1u	Asp 60	Leu	Gln	Val	Gly	
Gln Va	l Glu	Leu	Gly	Gly 70	Gly	Pro	Gly	Ala	Gly 75	Ser	Leu	Gln	Pro	Leu 80	
Ala Le	a Glu	Gly	Ser 85	Leu	Gln	Lys	Arg	Gly 90	Ile	Val	Glu	Gln	Cys 95	Cys	
Thr Se	r Ile	Cys 100		Leu	Tyr	Gln	Leu 105	Glu	Asn	Tyr	Суз	Asn 110			
<210> <211>	45 1203														
<212> <213>	DNA Hepa	titi	s B	viru	s										
<400> atggga	45 ggtt	ggtc	ttcc	aa a	cctc	gaca	a gg	catg	ggga	cga	atcti	ttc	tgtt	cccaat	60
cctctg	ggat	tett	tece	ga t	cacc	agtt	g ga	ccct	gcgt	tcg	gage	caa	ctca	aacaat	120
ccagat	tggg	actt	caac	cc c	aaca	aggat	t ca	ctgg	ccag	agg	caat	caa	ggta	ggagcg	180
ggagac	ttcg	ggcc	aggg	tt c	accc	cacc	a ca	cggc	ggtc	ttt	tggg	gtg	gagc	cctcag	240
geteag	ggca	tatt	gaca	ac a	gtgc	cagc	a gc	gcct	cctc	ctg	tttc	cac	caat	eggeag	300
tcagga	agac	agcc	tact	cc c	atct	ctcc	а сс	tcta	agag	aca	gtca	tcc	tcag	gccatg	360
cagtgg	aact	ccac	aaca	tt c	cacc	aagc	t ct	gcta	gatc	cca	gagt	gag	gggc	ctatat	420
tttcct	gctg	gtgg	ctcc	ag t	tccg	gaac	a gt	aaac	cctg	ttc	cgac	tac	tgtc	tcaccc	480
atatcg	tcaa	tett	ctcg	ag g	actg	ggga	c cc	tgca	ccga	aca	tgga	gag	caca	acatca	540
ggattc	ctag	gacc	cctg	ct c	gtgt	taca	g gc	gggg	tttt	tct	tgtt	gac	aaga	atcctc	600
acaata	ccac	agag	tcta	ga c	tcgt	ggtg	g ac	ttct	ctca	att	ttct	agg	ggga	gcaccc	660
acgtgt	cctg	gcca	aaat	tc g	cagt	cccc	a ac	ctcc	aatc	act	cacc	aac	ctct	tgtcct	720
ccaatt	tgtc	ctgg	ttat	cg c	tgga	tgtg	t ct	gcgg	cgtt	tta	tcat	att	cctc	ttcatc	780
ctgctg	ctat	geet	catc	tt c	ttgt	tggt	t ct	tctg	gact	acc	aagg	tat	gttg	cccgtt	840

110 20	,04,00	0001												C 17 C 520	100/0017	
tgtcctc	tac t	ttcca	aggaa	ic at	caac	ctaco	ago	cacgo	ggac	cato	gcaaq	gac c	etgca	cgatt	900	
cctgctc	aag q	gaaco	eteta	ıt gt	ttco	ectet	tgt:	tgct	gta	caaa	acct	te ç	gaco	gaaac	960	
tgcactt	gta 1	ttcc	catco	c at	cato	ctgo	gct	tteç	gcaa	gatt	ccta	atg o	gagt	gggcc	1020	
tcagtcc	gtt 1	tete	etgge	et ca	igttt	acta	gto	gccat	ttg	ttca	ıgtgo	gtt o	gcaç	ggctt	1080	
tecceca	ctg 1	tttgg	gettt	c a	gttat	atgo	, ato	gatgt	ggt	atto	gggg	gee a	agto	tgtac	1140	
aacatct	tga q	gtee	etttt	t ac	ectet	atta	cca	attt	tet	tttç	gteti	tg q	ggtat	acatt	1200	
tga															1203	
<211> <212>	46 400 PRT Hepai	titis	5 B 1	/irus	3											
<400>	46															
Met Gly 1	Gly	Trp	Ser 5	Ser	Lys	Pro	Arg	Gln 10	Gly	Met	Gly	Thr	Asn 15	Leu		
Ser Val	Pro	Asn 20	Pro	Leu	Gly	Phe	Phe 25	Pro	Asp	His	Gln	Leu 30	Asp	Pro		
Ala Phe	Gly 35	Ala	Asn	Ser	Asn	Asn 40	Pro	Asp	Trp	Asp	Phe 45	Asn	Pro	Asn		
Lys Asp 50	His	Trp	Pro	G1u	Ala 55	Ile	Lys	Val	Gly	Ala 60	Gly	Asp	Phe	Gly		
Pro Gly 65	Phe	Thr	Pro	Pro 70	His	Gly	Gly	Leu	Leu 75	Gly	Trp	Ser	Pro	Gln 80		
Ala Gln	Gly	Ile	Leu 85	Thr	Thr	Val	Pro	Ala 90	Ala	Pro	Pro	Pro	Val 95	Ser		
Thr Asn	Arg	Gln 100	Ser	Gly	Arg	Gln	Pro 105	Thr	Pro	Ile	Ser	Pro 110	Pro	Leu		
Arg Asp	Ser 115	His	Pro	Gln	Ala	Met 120	Gln	Trp	Asn	Ser	Thr 125	Thr	Phe	His		
Gln Ala 130	Leu	Leu	Asp	Pro	Arg 135	Val	Arg	Gly	Leu	Tyr 140	Phe	Pro	Ala	Gly		
Gly Ser 145	Ser	Ser	Gly	Thr 150	Val	Asn	Pro	Val	Pro 155	Thr	Thr	Val	Ser	Pro 160		
Ile Ser	Ser	Ile	Phe 165	Ser	Arg	Thr	Gly	Asp 170	Pro	Ala	Pro	Asn	Met 175	Glu		
Ser Thr	Thr	Ser 180	Gly	Phe	Leu	Gly	Pro 185	Leu	Leu	Val	Leu	Gln 190	Ala	Gly		
Phe Phe	Leu 195	Leu	Thr	Arg	Ile	Leu 200	Thr	Ile	Pro	Gln	Ser 205	Leu	Asp	Ser		
Trp Trp 210	Thr	Ser	Leu	Asn	Phe 215	Leu	Gly	Gly	Ala	Pro 220	Thr	Cys	Pro	Gly		

Gln 225	Asn	Ser	Gln	Ser	Pro 230	Thr	Ser	Asn	His	Ser 235	Pro	Thr	Ser	Суз	Pro 240	
Pro	Ile	Cys	Pro	Gly 245	Tyr	Arg	Trp	Met	Cys 250	Leu	Arg	Arg	Phe	Ile 255	Ile	
Phe	Leu	Phe	Ile 260	Leu	Leu	Leu	Cys	Leu 265	Ile	Phe	Leu	Leu	Val 270	Leu	Leu	
Asp	Tyr	Gln 275	Gly	Met	Leu	Pro	Val 280	Суз	Pro	Leu	Leu	Pro 285	Gly	Thr	Ser	
Thr	Thr 290	Ser	Thr	Gly	Pro	Cys 295	Lys	Thr	Cys	Thr	Ile 300	Pro	Ala	Gln	Gly	
Thr 305	Ser	Met	Phe	Pro	Ser 310	Cys	Cys	Суs	Thr	Lys 315	Pro	Ser	Asp	Gly	Asn 320	
Суз	Thr	Суз	Ile	Pro 325	Ile	Pro	Ser	Ser	Trp 330	Ala	Phe	Ala	Arg	Phe 335	Leu	
Trp	Glu	Trp	Ala 340	Ser	Val	Arg	Phe	Ser 345	Trp	Leu	Ser	Leu	Беи 350	Val	Pro	
Phe	Val	Gln 355	Trp	Phe	Ala	Gly	Leu 360	Ser	Pro	Thr	Val	Trp 365	Leu	Ser	Val	
Ile	Trp 370	Met	Met	Trp	Tyr	Trp 375	G1y	Pro	Ser	Leu	Tyr 380	Asn	Ile	Leu	Ser	
Pro 385	Phe	Leu	Pro	Leu	Leu 390	Pro	Ile	Phe	Phe	Cys 395	Leu	Trp	Val	Tyr	Ile 400	
<210 <211 <212 <213	L> ' 2> 1	47 799 ONA Homo	sap	iens												
<400 cgaa		47 etc :	agggl	teet	gt go	gacaç	getea	a cct	taget	tgca	atg	gcta	cag	gete	ccggac	60
gtc	ctg	ctc (ctgg	cttti	g go	cctg	etete	g ect	tgcc	ctgg	ctto	caaga	agg	gcagi	geett	120
ccca	acc	att (ccct	tatco	ca g	goott	ttga	a ca	acgct	tatg	ctc	gcg	ccc	atcgi	ctgca	180
ccaq	getge	gec :	tttga	acac	et a	cag	gagti	t tga	aagaa	agcc	tata	atcc	caa	agga	acagaa	240
gtat	tca	ttc (ct.gc	agaad	ec c	ccaga	acct	e cet	tctg	tttc	tca	gagto	cta	ttcc	gacacc	300
ctc	caac	agg (gagga	aaaca	ac a	acaga	aaat	c ca	acct	agag	ctg	etcc	gca	tctc	cctgct	360
get	catc	cag i	tegt	ggct	gg a	gece	gtgc	a gti	tcct	cagg	agt	gtcti	tcg	ccaa	cagcct	420
ggt	gtac	ggc (gect	ctga	ca g	caac	gteta	a tga	acct	ccta	aagg	gacci	tag	agga	aggcat	480
ccaa	aacg	etg :	atgg	ggag	ge to	ggaag	gatg	g ca	gece	ccgg	act	gggc	aga	tctt	caagca	540
gac	ctac	age :	aagt	tcga	ca ca	aaact	caca	a ca	acga	tgac	gca	ctact	tca .	agaa	ctacgg	600
gct	gete	tac ·	tgct	tcag	ga aq	ggaca	atgga	a ca	aggt	cgag	acat	tect	tgc ·	gcat	gtgca	660

gtgccgctct	gtggagggca g	ctgtggctt ct	agetgeee	gggtggcatc	cctgtgaccc 72	0
ctccccagtg	cctctcctgg c	cctggaagt to	jecaeteca	gtgcccacca	gccttgtcct 78	0
aataaaatta	agttgcatc				79	9
<210> 48 <211> 217 <212> PRT <213> Homo	sapiens					
<400> 48						
Met Ala Thr	Gly Ser Arg 5	Thr Ser Let	Leu Leu 10	Ala Phe Gly	Leu Leu 15	
Cys Leu Pro	Trp Leu Gln 20	Glu Gly Sea 25	Ala Phe	Pro Thr Ile 30	Pro Leu	
Ser Arg Pro	Phe Asp Asn	Ala Met Let 40	ı Arg Ala	His Arg Leu 45	His Gln	
Leu Ala Phe 50	Asp Thr Tyr	Gln Glu Phe 55	e Glu Glu	Ala Tyr Ile 60	Pro Lys	
Glu Gln Lys 65	Tyr Ser Phe	Leu Gln Ası	Pro Gln 75	Thr Ser Lev	Cys Phe 80	
Ser Glu Ser	Ile Pro Thr	Pro Ser Ası	n Arg Glu 90	Glu Thr Glr	Gln Lys 95	
Ser Asn Leu	Glu Leu Leu 100	Arg Ile Ser 10		Leu Ile Glr		
Leu Glu Pro	Val Gln Phe	Leu Arg Ses 120	r Val Phe	Ala Asn Ser 125	Leu Val	
Tyr Gly Ala 130	Ser Asp Ser	Asn Val Ty: 135	r Asp Leu	Leu Lys Asp 140	Leu Glu	
Glu Gly Ile 145	Gln Thr Leu 150		g Leu Glu 155	Asp Gly Ser	Pro Arg 160	
Thr Gly Glr	Ile Phe Lys 165	Gln Thr Ty	r Ser Lys 170	Phe Asp Thi	Asn Ser 175	
His Asn Asp	Asp Ala Leu 180	Leu Lys Asi 18		Leu Leu Tys 190		
Arg Lys Asp 195	Met Asp Lys	Val Glu Th	r Phe Leu	Arg Ile Val	. Gln Cys	
Arg Ser Val	Glu Gly Ser	Cys Gly Pho 215	9			
<210> 49 <211> 963 <212> DNA			•			
<213> Homo	sapiens					
<400> 49						

atggagacag	acacactcct	gttatgggtg	ctgctgctct	gggttccagg	ttccactggt	60
gacgtcaggc	gagggccccg	gagcctgcgg	ggcagggacg	cgccagcccc	cacgccctgc	1.20
gtcccggccg	agtgcttcga	cctgctggtc	cgccactgcg	tggcctgcgg	gctcctgcgc	180
acgccgcggc	cgaaaccggc	cggggccagc	agccctgcgc	ccaggacggc	gctgcagccg	240
caggagtcgg	tgggcgcggg	ggccggcgag	gcggcggtcg	acaaaactca	cacatgccca	300
cegtgeecag	cacctgaact	cctgggggga	ccgtcagtct	tcctcttccc	cccaaaaccc	360
aaggacaccc	tcatgatctc	ceggacecet	gaggtcacat	gcgtggtggt	ggacg‡gagc	420
cacgaagacc	ctgaggtcaa	gttcaactgg	tacgtggacg	gcgtggaggt	gcataatgcc	480
aagacaaagc	cgcgggagga	gcagtacaac	agcacgtacc	gtgtggtcag	cgtcctcacc	540
gtcctgcacc	aggactggct	gaatggcaag	gagtacaagt	gcaaggtctc	caacaaagcc	600
ctcccagccc	ccatcgagaa	aaccatctcc	aaagccaaag	ggcagccccg	agaaccacag	660
gtgtacaccc	tgcccccatc	ccgggatgag	ctgaccaaga	accaggtcag	cctgacctgc	720
ctggtcaaag	gcttctatcc	cagcgacatc	gccgtggagt	gggagagcaa	tgggcagccg	780
gagaacaact	acaagaccac	gcctcccgtg	ttggactccg	acggctcctt	cttcctctac	840
agcaagctca	ccgtggacaa	gagcaggtgg	cagcagggga	acgtcttctc	atgctccgtg	900
atgcatgagg	ctctgcacaa	ccactacacg	cagaagagcc	tetecetgte	tcccgggaaa	960
tga						963

<210> 50 <211> 320 <212> PRT

<213> Homo sapiens

Ezo. Monto ouprom

<400> 50

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 $$ 5

Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg 20 25 30

Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro 50 55 60

Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro 65 70 75 80

Gln Glu Ser Val Gly Ala Gly Ala Gly Glu Ala Ala Val Asp Lys Thr 85 90 95

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 310 315 <210> 51 <211> 107 <212> PRT <213> Homo sapiens <400> 51 Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp

85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys 100 105

<210> 52

<211> 107 <212> PRT

<213> Mus musculus

<400> 52

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr 20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile 35 40

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 60

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln 65 70 75 80

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp $85 \hspace{1cm} 90 \hspace{1cm} 95$

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105

<210> 53

<211> 119 <212> PRT

<213> Homo sapiens

<400> 53

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe 50 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr 65 707075

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser 115

```
<210> 54
<211> 119
<212> PRT
<213> Mus musculus
<400> 54
Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr
Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr
Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe
Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr
Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys
Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly
Thr Leu Val Thr Val Ser Ala
        115
<210> 55
<211> 214
<212> PRT
<213> Homo sapiens
<400> 55
Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr
Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
                             120
                                                 125
```

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg GTu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 200 Phe Asn Arg Gly Glu Cys 210 <210> 56 <211> 448 <212> PRT <213> Homo sapiens Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 135 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 170 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro

180

185

														-		
		195					200					205				
Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Lys	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys	
Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240	
Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser	
Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp	
Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn	
Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val	
Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320	
Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys	
Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr	
Leu	Pro	Pro 355	Ser	Arg	Asp	Glu	Leu 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr	
Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu	
Ser 385		Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400	
Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys	
Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu	
Ala	Leu	His 435		His	Tyr	Thr	Gln 440		Ser	Leu	Ser	Leu 445		Pro	Gly	
<21 <21 <21 <21	1> 2>	57 8540 DNA Homo	sap	iens												
<40		57	ccac	tet-	~~ ~	ctes	2227	a a~	cete	ctca	cta	ctto	taa	aats	gctcag	60
-					-										tggggc	
-															gggact	
atg	gttg	ccg	acta	attg	ag a	ugca	rgct	ı tg	cata	LLIC	rge	ccgc	Lgg	ygag	cctggg	240

gactttecae	accigginge	tgactaattg	agatgcatgc	tttgcatact	tetgeetget	300
ggggageet.g	gggactttcc	acaccctaac	tgacacacat	tccacagaat	taattcccct	360
agttattaat	agtaatcaat	tacggggtca	ttagttcata	gcccatatat	ggagttccgc	420
gttacataac	ttacggtaaa	tggcccgcct	ggctgaccgc	ccaacgaccc	ccgcccattg	480
acgtcaataa	tgacgtatgt	tcccatagta	acgccaatag	ggactttcca	ttgacgtcaa	540
tgggtggact	atttacggta	aactgcccac	ttggcagtac	atcaagtgta	tcatatgcca	600
agtacgcccc	ctattgacgt	caatgacggt	aaatggcccg	cctggcatta	tgeceagtac	660
atgaccttat	gggactttcc	tacttggcag	tacatctacg	tattagtcat	cgctattacc	720
atggtgatgc	ggttttggca	gtacatcaat	gggcgtggat	agcggtttga	ctcacgggga	780
tttccaagtc	tccaccccat	tgacgtcaat	gggagtttgt	tttggcacca	aaatcaacgg	840
gactttccaa	aatgtcgtaa	caactecgcc	ccattgacgc	aaatgggcgg	taggcgtgta	900
cggtgggagg	tctatataag	cagagetggg	tacgtgaacc	gtcagatcgc	ctggagacgc	960
catcacagat	ctctcaccat	gagggtcccc	gctcagctcc	tggggeteet	getgetetgg	1020
ctcccaggtg	cacgatgtga	tggtaccaag	gtggaaatca	aacgtacggt	ggctgcacca	1080
tetgtettea	tettecegee	atctgatgag	cagttgaaat	ctggaactgc	ctctgttgtg	1140
tgcctgctga	ataacttcta	teccagagag	gccaaagtac	agtggaaggt	ggataacgcc	1200
ctccaatcgg	gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	cagcacctac	1260
agceteagea	gcaccctgac	gctgagcaaa	gcagactacg	agaaacacaa	agtctacgcc	1320
tgcgaagtca	cccatcaggg	cctgagctcg	cccgtcacaa	agagetteaa	caggggagag	1380
tgttgaattc	agatccgtta	acggttacca	actacctaga	ctggattcgt	gacaacatgo	1440
ggccgtgata	tctacgtatg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	1500
gtttgcccct	cccccgtgcc	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	1560
taataaaatg	aggaaattgc	atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	1620
ggggtggggc	aggacagcaa	gggggaggat	tgggaagaca	atagcaggca	tgctggggat	1680
gcggtgggct	ctatggaacc	agctggggct	cgacagctat	gccaagtacg	ccccctattg	1740
acgtcaatga	cggtaaatgg	cccgcctggc	attatgccca	gtacatgacc	ttatgggact	1800
ficctacttg	gcagtacatc	tacgtattag	tcatcgctat	taccatggtg	atgcggtttt	1860
ggcagtacat	caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtetecace	1920
ccattgacgt	caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	1980
gtaacaactc	cgccccattg	acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	2040
taagcagagc	tgggtacgtc	ctcacattca	gtgatcagca	ctgaacacag	acccgtcgac	2100

atgggttgga	gcctcatctt	getetteett	gtcgctgttg	ctacgcgtgt	cgctagcacc	2160
aagggcccat	eggtetteee	cctggcaccc	teetecaaga	gcacctctgg	gggcacagcg	2220
gccctgggct	gcctggtcaa	ggactacttc	cccgaaccgg	tgacggtgtc	gtggaactca	2280
ggcgccctga	ccagcggcgt	gcacacette	ccggctgtcc	tacagtcctc	aggactctac	2340
tccctcagca	gcgtggtgac	cgtgccctcc	agcagcttgg	gcacccagac	ctacatctgc	2400
aacgtgaatc	acaagcccag	caacaccaag	gtggacaaga	aagcagagcc	caaatcttgt	2460
gacaaaactc	acacatgccc	accgtgccca	gcacctgaac	tcctgggggg	accgtcagtc	2520
tteetettee	ccccaaaacc	caaggacacc	ctcatgatct	cccggacccc	tgaggtcaca	2580
tgcgtggtgg	tggacgtgag	ccacgaagac	cctgaggtca	agttcaactg	gtacgtggac	2640
ggcgtggagg	tgcataatgc	caagacaaag	ccgcgggagg	agcagtacaa	cagcacgtac	2700
cgtgtggtca	gegteeteae	cgtcctgcac	caggactggc	tgaatggcaa	ggactacaag	2760
tgcaaggtct	ccaacaaagc	cctcccagcc	cccatcgaga	aaaccatctc	caaagccaaa	2820
gggcagcccc	gagaaccaca	ggtgtacacc	ctgcccccat	cccgggatga	gctgaccagg	2880
aaccaggtca	gcctgacctg	cctggtcaaa	ggcttctatc	ccagcgacat	cgccgtggag	2940
tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	cgcctcccgt	getggaetee	3000
gacggeteet	tcttcctcta	cagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	3060
aacgtcttct	catgctccgt	gatgcatgag	gctctgcaca	accactacac	gcagaagagc	3120
ctctccctgt	ctccgggtaa	atgaggatcc	gttaacggtt	accaactacc	tagactggat	3180
tegtgacaac	atgcggccgt	gatatctacg	tatgatcagc	ctcgactgtg	ccttctagtt	3240
gecagecate	tgttgtttgc	ccctcccccg	tgccttcctt	gaccctggaa	ggtgccactc	3300
ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	ttgtctgagt	aggtgtcatt	3360
ctattctggg	gggtggggtg	gggcaggaca	gcaaggggga	ggattgggaa	gacaatagca	3420
ggcatgctgg	ggatgcggtg	ggctctatgg	aaccagctgg	ggctcgacag	cgctggatct	3480
cccgatcccc	agctttgctt	ctcaatttct	tatttgcata	atgagaaaaa	aaggaaaatt	3540
aattttaaca	ccaattcagt	agttgattga	gcaaatgcgt	tgccaaaaag	gatgctttag	3600
agacagtgtt	. ctctgcacag	ataaggacaa	acattattca	gagggagtac	ccagagetga	3660
gactcctaag	ccagtgagtg	gcacagcatt	ctagggagaa	atatgcttgt	catcaccgaa	3720
gcctgattcc	gtagagecae	accttggtaa	gggccaatct	gctcacacag	gatagagagg	3780
gcaggagcca	gggcagagca	tataaggtga	ggtaggatca	gttgctcctc	acatttgctt	3840
ctgacatagi	tgtgttggga	gcttggatag	cttggacagc	tcagggctgc	gatttcgcgc	3900

caaactigac	ggcaatccta	gegrgaagge	tygtaggatt	ccacccccgc	egocarcarg	3300
gttcgaccat	tgaactgcat	cgtcgccgtg	tcccaaaata	tggggattgg	caagaacgga	4020
gacctaccct	ggcctccgct	caggaacgag	ttcaagtact	tccaaagaat	gaccacaacc	4080
tcttcagtgg	aaggtaaaca	gaatctggtg	attatgggta	ggaaaacctg	gttctccatt	4140
cctgagaaca	atcgaccttt	aaaggacaga	attaatatag	ttctcagtag	agaactcaaa	4200
gaaccaccac	gaggagctca	ttttcttgcc	aaaagtttgg	atgatgcctt	aagacttatt	4260
gaacaaccgg	aattggcaag	taaagtagac	atggtttgga	tagtcggagg	cagttctgtt	4320
taccaggaag	ccatgaatca	accaggccac	cttagactct	ttgtgacaag	gatcatgcag	4380
gaatttgaaa	gtgacacgtt	tttcccagaa	attgatttgg	ggaaatataa	acttctccca	4440
gaatacccag	gcgtcctctc	tgaggtccag	gaggaaaaag	gcatcaagta	taagtttgaa	4500
gtctacgaga	agaaagacta	acaggaagat	gctttcaagt	tetetgetee	cctcctaaag	4560
tcatgcattt	ttataagacc	atgggacttt	tgctggcttt	agatcagcct	cgactgtgcc	4620
ttctagttgc	cagccatctg	ttgtttgccc	ctccccgtg	ccttccttga	ccctggaagg	4680
tgccactccc	actgtccttt	cctaataaaa	tgaggaaatt	gcatcgcatt	gtctgagtag	4740
gtgtcattct	attctggggg	gtggggtggg	gcaggacage	aagggggagg	attgggaaga	4800
caatagcagg	catgctgggg	atgcggtggg	ctctatggaa	ccagctgggg	ctcgagctac	4860
tagetttget	tctcaatttc	ttatttgcat	aatgagaaaa	aaaggaaaat	taattttaac	4920
accaattcag	tagttgattg	agcaaatgcg	ttgccaaaaa	ggatgcttta	gagacagtgt	4980
tetetgeaca	gataaggaca	aacattattc	agagggagta	eccagagetg	agactcctaa	5040
gccagtgagt	ggcacagcat	tctagggaga	aatatgcttg	teateacega	agcctgattc	5100
cgtagagcca	caccttggta	agggccaatc	tgctcacaca	ggatagagag	ggcaggagcc	5160
agggcagagc	atataaggtg	aggtaggatc	agttgctcct	cacatttgct	tetgacatag	5220
ttgtgttggg	agcttggatc	gatectetat	ggttgaacaa	gatggattgc	acgcaggttc	5280
teeggeeget	tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	caatcggctg	5340
ctctgatgcc	geegtgttee	ggctgtcagc	gcagggggg	ccggttcttt	ttgtcaagac	5400
cgacctgtcc	ggtgccctga	atgaactgca	ggacgaggca	gegeggetat	cgtggctggc	5460
cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgtc	actgaagcgg	gaagggactg	5520
gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tetcacettg	ctcctgccga	5580
gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcat	acgcttgatc	cggctacctg	5640
cccattcgac	caccaagcga	aacategeat	cgagcgagca	cgtactcgga	tggaagccgg	5700
tettqtcqat	caggatgatc	tggacqaaqa	gcatcagggg	ctcgcgccag	ccgaactgtt	5760

egecaggete aaggegegea tgeeegaegg egaggatete gtegtgaeee atggegatge 5880 ctgcttgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg actgtggccg getgggtgtg geggaeeget ateaggaeat agegttgget accegtgata ttgetgaaga 5940 gettggegge gaatgggetg acceptteet egtgetttae ggtategeeg ettecegatt 6000 egeagegeat egeettetat egeettettg aegagttett etgageggga etetggggtt 6060 6120 cgaaatgacc qaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgccgc cttctatgaa aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca 6180 gegegggat eteatgetgg agttettege ceacceaac tigtttattg cagettataa 6240 tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca 6300 ttetagttqt ggtttqtcca aactcatcaa tetatettat catgtetqqa teqeqqeeqe 6360 gatecogteg agagettege gtaatcatgg teatagetgt tteetgtgtg aaattgttat 6420 cogotcacaa ttocacacaa catacgagoo ggagcataaa gtgtaaagoo tggggtgoot 6480 aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 6540 acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 6600 ttgggegete tteegettee tegeteactg actegetgeg cteggtegtt eggetgegge 6660 gagoggtate ageteactea aaggeggtaa taeggttate cacagaatea ggggataaeg 6720 caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 6780 tgetggegtt tttecatagg etcegecece etgacgagea teacaaaaat egacgeteaa 6840 gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct 6900 6960 coctogtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttegggaag egtggegett teteaatget eaegetgtag gtateteagt teggtgtagg 7020 tegttegete caagetggge tgtgtgcaeg aacceccegt teagecegae cgctgegeet 7080 tatocggtaa ctatogtott gagtocaacc oggtaagaca ogacttatog ocactggoag 7140 cagccacteg taacacgatt agcagagcga ggtatgtagg cggtgctaca gagttcttga 7200 agtogtogcc taactacgc tacactagaa ggacagtatt tggtatctgc gctctgctga 7260 agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg 7320 gtageggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 7380 aagateettt gatetttet acggggtetg acgeteagtg gaacgaaaac teacgttaag 7440 ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct 7560

taatcagtga	ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	gtrgcctgac	7620
teccegtegt	gtagataact	acgatacggg	agggettace	atetggcccc	agtgctgcaa	7680
tgataccgcg	agacccacgc	tcaccggctc	cagatttatc	agcaataaac	cagccagccg	7740
gaagggccga	gcgcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	7800
gttgccggga	agctagagta	agtagttcgc	cagttaatag	tttgcgcaac	gttgttgcca	7860
ttgctacagg	catcgtggtg	tcacgctcgt	cgtttggtat	ggcttcattc	agctccggtt	7920
cccaacgatc	aaggcgagtt	acatgatece	ccatgttgtg	caaaaaagcg	gttagctcct	7980
teggteetee	gategttgte	agaagtaagt	tggccgcagt	gttatcactc	atggttatgg	8040
cagcactgca	taattctctt	actgtcatgc	catccgtaag	atgcttttct	gtgactggtg	8100
agtactcaac	caagtcattc	tgagaatagt	gtatgcggcg	accgagttgc	tettgeeegg	8160
cgtcaatacg	ggataatacc	gcgccacata	gcagaacttt	aaaagtgctc	atcattggaa	8220
aacgttcttc	ggggcgaaaa	ctctcaagga	tcttaccgct	gttgagatcc	agttcgatgt	8280
aacccactcg	tgcacccaac	tgatcttcag	catcttttac	tttcaccagc	gtttctgggt	8340
gagcaaaaac	aggaaggcaa	aatgccgcaa	aaaagggaat	aagggcgaca	cggaaatgtt	8400
gaatactcat	actettectt	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	8460
tgagcggata	catatttgaa	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	8520
ttccccgaaa	agtgccacct					8540
<210> 58 <211> 9209	Δ.					
<212> DNA	musculus					
<400> 58	mascazas					
gacgtcgcgg	ccgctctagg	cctccaaaaa	agcetectea	ctacttctgg	aatagctcag	60
aggccgaggc	ggceteggce	tctgcataaa	taaaaaaaat	tagtcagcca	tgcatggggc	120
ggagaatggg	cggaactggg	cggagttagg	ggcgggatgg	gcggagttag	gggcgggact	180
atggttgctg	actaattgag	atgcatgctt	tgcatacttc	tgcctgctgg	ggagcctggg	240
gactttccac	acctggttgc	tgactaattg	agatgcatgc	tttgcatact	tetgeetget	300
ggggagcctg	gggactttcc	acaccctaac	tgacacacat	tccacagaat	taattcccct	360
agttattaat	agtaatcaat	tacggggtca	ttagttcata	geceatatat	ggagttccgc	420
gttacataac	ttacggtaaa	tggcccgcct	ggctgaccgc	ccaacgaccc	ccgcccattg	480
acgtcaataa	tgacgtatgt	tcccatagta	acgccaatag	ggactttcca	ttgacgtcaa	540
tgggtggact	atttacggta	aactgcccac	ttggcagtac	atcaagtgta	tcatatgcca	600

61

agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccagtac 660

atgaccttat	gggactttcc	tacttggcag	tacatctacg	tattagtcat	cgctattacc	720
atggtgatgc	ggttttggca	gtacatcaat	gggcgtggat	accggtttga	ctcacgcgga	780
tttccaagtc	tecaceccat	tgacgtcaat	gggagtttgt	tttggcacca	aaatcaacgg	840
gaetttecaa	aatgtcgtaa	caactc cgc c	ccattgacgc	aaatgggcgg	taggcgtgta	900
cggtgggagg	tctatataag	cagagctggg	tacgtgaacc	gtcagatcgc	ctggagacgc	960
catcacagat	ctctcactat	ggattttcag	gtgcagatta	tcagcttcct	gctaatcagt	1020
gcttcagtca	taatgtccag	aggacaaatt	gttctctccc	agtctccagc	aatcctgtct	1080
gcatctccag	gggagaaggt	cacaatgact	tgcagggcca	gctcaagtgt	aagttacatc	1140
cactggttcc	agcagaagcc	aggateetce	cccaaaccct	ggatttatgc	cacatccaac	1200
ctggcttctg	gagtccctgt	tcgcttcagt	ggcagtgggt	ctgggacttc	ttactctctc	1260
acaatcagca	gagtggaggc	tgaagatgct	gccacttatt	actgccagca	gtggactagt	1320
aacccaccca	cgtteggagg	ggggaccaag	ctggaaatca	aacgtacggt	ggctgcacca	1380
tetgtettea	tettecegee	atctgatgag	cagttgaaat	ctggaactgc	ctctgttgtg	1440
tgcctgctga	ataacttcta	tcccagagag	gccaaagtac	agtggaaggt	ggataacgcc	1500
ctccaatcgg	gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	cagcacctac	1560
agcctcagca	gcaccctgac	gctgagcaaa	gcagactacg	agaaacacaa	agtctacgcc	1620
tgcgaagtca	cccatcaggg	cctgagctcg	cccgtcacaa	agagetteaa	caggggagag	1680
tgttgaattc	agatccgtta	acggttacca	actacctaga	ctggattcgt	gacaacatge	1740
ggccgtgata	tctacgtatg	atcagcctcg	actgtgcctt	ctagttgcca	gccatctgtt	1800
gtttgcccct	cccccgtgcc	ttccttgacc	ctggaaggtg	ccactcccac	tgtcctttcc	1860
taataaaatg	aggaaattgc	atcgcattgt	ctgagtaggt	gtcattctat	tctggggggt	1920
ggggtggggc	aggacagcaa	gggggaggat	tgggaagaca	atagcaggca	tgctggggat	1980
geggtggget	ctatggaacc	agctggggct	cgacagctat	gccaagtacg	ccccctattg	2040
acgtcaatga	cggtaaatgg	cccgcctggc	attatgccca	gtacatgacc	ttatgggact	2100
ttcctacttg	gcagtacatc	tacgtattag	tcatcgctat	taccatggtg	atgcggtttt	2160
ggcagtacat	caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtetecace	2220
ccattgacgt	caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	2280
gtaacaactc	cgccccattg	acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	2340
taagcagagc	tgggtacgtc	ctcacattca	gtgatcagca	ctgaacacag	accegtegae	2400
ataaattaa	geeteatett	gctcttcctt	atcactatta	ctacacatat	cctqtcccaq	2460

gtacaactgc						2520
tgcaaggett	ctggctacac	atttaccagt	tacaatatgc	actgggtaaa	acagacacct	2580
ggtcggggcc	tggaatggat	tggagctatt	tatcccggaa	atggtgatac	ttcctacaat	2640
cagaagttca	aaggcaaggc	cacattgact	gcagacaaat	cctccagcac	agcctacatg	2700
cagctcagca	geetgaeate	tgaggactct	geggtetatt	actgtgcaag	atcgacttac	2760
tacggcggtg	actggtactt	caatgtctgg	ggcgcaggga	ccacggtcac	cgtctctgca	2820
gctagcacca	agggcccatc	ggtcttcccc	ctggcaccct	cctccaagag	cacctctggg	2880
ggcacagcgg	ccctgggctg	cctggtcaag	gactacttcc	ccgaaccggt	gacggtgtcg	2940
tggaactcag	gegeeetgae	cagcggcgtg	cacacettee	eggetgteet	acagtcctca	3000
ggactctact	ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	3060
tacatotgca	acgtgaatca	caagcccagc	aacaccaagg	tggacaagaa	agcagagccc	3120
aaatcttgtg	acaaaactca	cacatgccca	ccgtgcccag	cacctgaact	cctgggggga	3180
ccgtcagtct	tectettece	cccaaaaccc	aaggacaccc	tcatgatete	ccggacccct	3240
gaggtcacat	gcgtggtggt	ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	3300
tacgtggacg	gcgtggaggt	gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	3360
agcacgtacc	gtgtggtcag	cgtcctcacc	gtcctgcacc	aggactggct	gaatggcaag	3420
gagtacaagt	gcaaggtete	caacaaagcc	ctcccagccc	ccatcgagaa	aaccatctcc	3480
aaagccaaag	ggcagccccg	agaaccacag	gtgtacaccc	tgcccccatc	ccgggatgag	3540
ctgaccaaga	accaggtcag	cctgacctgc	ctggtcaaag	gettetatee	cagegacate	3600
gccgtggagt	gggagagcaa	tgggcagccg	gagaacaact	acaagaccac	gcctcccgtg	3660
ctggactccg	acggctcctt	cttcctctac	agcaagctca	ccgtggacaa	gagcaggtgg	3720
cagcagggga	acgtettete	atgctccgtg	atgcatgagg	ctctgcacaa	ccactacacg	3780
cagaagagcc	tetecetgte	teegggtaaa	tgaggatccg	ttaacggtta	ccaactacct	3840
agactggatt	cgtgacaaca	tgeggeegtg	atatctacgt	atgatcagcc	tegactgtge	3900
cttctagttg	ccagccatct	gttgtttgcc	cctcccccgt	gccttccttg	accctggaag	3960
gtgccactcc	cactgtcctt	tectaataaa	atgaggaaat	tgcatcgcat	tgtctgagta	4020
ggtgtcattc	tattctgggg	ggtggggtgg	ggcaggacag	caagggggag	gattgggaag	4080
acaatagcag	gcatgctggg	gatgcggtgg	gctctatgga	accagctggg	gctcgacagc	4140
gctggatctc	ccgatcccca	gctttgcttc	tcaatttctt	atttgcataa	tgagaaaaaa	4200
aggaaaatta	attttaacac	caattcagta	gttgattgag	caaatgcgtt	gccaaaaagg	4260
atgetttaga	qacaqtqttc	tetgeacaga	taaggacaaa	cattattcag	agggagtacc	4320

cagagetgag	actoctaage	caytgagtgg	Cacagcatte	Lagggagaaa	Latyounger	4500
atcaccgaag	cctgattccg	tagagccaca	ccttggtaag	ggccaatctg	ctcacacagg	4440
atagagaggg	caggagccag	ggcagagcat	ataaggtgag	gtaggatcag	ttgctcctca	4500
catttgcttc	tgacatagtt	gtgttgggag	cttggatagc	ttggacagct	cagggctgcg	4560
atttcgcgcc	aaacttgacg	gcaatcctag	cgtgaaggct	ggtaggattt	tatecceget	4620
gccatcatgg	ttcgaccatt	gaactgcatc	gtcgccgtgt	cccaaaatat	ggggattggc	4680
aagaacggag	acctaccctg	gcctccgctc	aggaacgagt	tcaagtactt	ccaaagaatg	4740
accacaacct	cttcagtgga	aggtaaacag	aatctggtga	ttatgggtag	gaaaacctgg	4800
ttctccattc	ctgagaagaa	tcgaccttta	aaggacagaa	ttaatatagt	tctcagtaga	4860
gaactcaaag	aaccaccacg	aggagctcat	tttcttgcca	aaagtttgga	tgatgcctta	4920
agacttattg	aacaaccgga	attggcaagt	aaagtagaca	tggtttggat	agteggagge	4980
agttctgttt	accaggaagc	catgaatcaa	ccaggccacc	ttagactctt	tgtgacaagg	5040
atcatgcagg	aatttgaaag	tgacacgttt	ttcccagaaa	ttgatttggg	gaaatataaa	5100
cttctcccag	aatacccagg	cgtcctctct	gaggtccagg	aggaaaaagg	catcaagtat	5160
aagtttgaag	tctacgagaa	gaaagactaa	caggaagatg	ctttcaagtt	ctctgctccc	5220
ctcctaaagc	tatgcatttt	tataagacca	tgggactttt	gctggcttta	gatcagcctc	5280
gactgtgcct	tctagttgcc	agccatctgt	tgtttgcccc	tecccegtge	cttccttgac	5340
cctggaaggt	gccactccca	ctgtcctttc	ctaataaaat	gaggaaattg	catcgcattg	5400
tctgagtagg	tgtcattcta	ttctgggggg	tggggtgggg	caggacagca	agggggagga	5460
ttgggaagac	aatagcaggc	atgctgggga	tgcggtgggc	tctatggaac	cagctggggc	5520
togagotact	agctttgctt	ctcaatttct	tatttgcata	atgagaaaaa	aaggaaaatt	5580
aattttaaca	ccaattcagt	agttgattga	gcaaatgcgt	tgccaaaaag	gatgctttag	5640
agacagtgtt	ctctgcacag	ataaggacaa	acattattca	gagggagtac	ccagagctga	5700
gactcctaag	ccagtgagtg	gcacagcatt	ctagggagaa	atatgcttgt	catcaccgaa	5760
geetgattee	gtagagccac	accttggtaa	gggccaatct	gctcacacag	gatagagagg	5820
gcaggagcca	gggcagagca	tataaggtga	ggtaggatca	gttgctcctc	acatttgctt	5880
ctgacatagt	tgtgttggga	gcttggatcg	atcctctatg	gttgaacaag	atggattgca	5940
egcaggttet	ccggccgctt	gggtggagag	gctattcggc	tatgactggg	cacaacagac	6000
aatcggctgc	tctgatgccg	ccgtgttccg	gctgtcagcg	caggggcgcc	cggttctttt	6060
+otcaagacc	gacetgteeg	gtgccctgaa	tgaactgcag	qacqaqqcag	cgcggctatc	6120

ч	rggerggee	acgacgggcg	tttttttgtgt	agctgtgtt	gacgeegeea	ceguagoggs	-400
a	agggactgg	ctgctattgg	gcgaagtgcc	ggggcaggat	ctcctgtcat	ctcaccttgc	6240
t	cctgccgag	aaagtatcca	tcatggctga	tgcaatgcgg	cggctgcata	cgcttgatcc	6300
g	gctacctgc	ccattcgacc	accaagcgaa	acatcgcatc	gagcgagcac	gtactcggat	6360
g	gaagccggt	cttgtcgatc	aggatgatct	ggacgaagag	catcaggggc	tegegeeage	6420
С	gaactgttc	gccaggctca	aggegegeat	gcccgacggc	gaggateteg	tegtgaceca	6480
t	ggcgatgcc	tgcttgccga	atatcatggt	ggaaaatggc	cgcttttctg	gattcatcga	6540
С	tgtggccgg	ctgggtgtgg	cggaccgcta	tcaggacata	gcgttggcta	cccgtgatat	6600
t	gctgaagag	cttggcggcg	aatgggctga	ccgcttcctc	gtgctttacg	gtategeege	6660
t	cccgattcg	cagcgcatcg	ccttctatcg	ccttcttgac	gagttettet	gagegggaet	6720
С	tggggttcg	aaatgaccga	ccaagcgacg	cccaacctgc	catcacgaga	tttcgattcc	6780
a	ccgccgcct	tctatgaaag	gttgggcttc	ggaatcgttt	teegggaege	cggctggatg	6840
a	tectccage	gcggggatct	catgctggag	ttettegece	accccaactt	gtttattgca	6900
g	cttataatg	gttacaaata	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	6960
t	cactgcatt	ctagttgtgg	tttgtccaaa	ctcatcaatc	tatcttatca	tgtctggatc	7020
g	cggccgcga	tcccgtcgag	agcttggcgt	aatcatggtc	atagetgttt	cctgtgtgaa	7080
a	ttgttatcc	gctcacaatt	ccacacaaca	tacgagccgg	aagcataaag	tgtaaagcct	7140
g	gggtgccta	atgagtgage	taactcacat	taattgcgtt	gegeteactg	cccgctttcc	7200
а	gtcgggaaa	cctgtcgtgc	cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	7260
9	tttgcgtat	tgggcgctct	tecgetteet	cgctcactga	ctcgctgcgc	teggtegtte	7320
g	gctgcggcg	agcggtatca	geteacteaa	aggcggtaat	acggttatcc	acagaatcag	7380
g	ggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaaggccagg	aaccgtaaaa	7440
а	ggccgcgtt	gctggcgttt	ttccataggc	teegeceee	tgacgagcat	cacaaaaatc	7500
g	acgeteaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	gcgtttcccc	7560
c	tggaagctc:	cctcgtgcgc	totootgtto	cgaccctgcc	gcttaccgga	tacctgtccg	7620
c	ctttctccc	ttcgggaagc	gtggcgcttt	ctcaatgctc	acgctgtagg	tatctcagtt	7680
c	ggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	accccccgtt	cagcccgacc	7740
Č	retgegeett	atccggtaac	tatcgtcttg	agtccaaccc	ggtaagacac	gacttatcgc	7800
c	actggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	ggtgctacag	7860
ā	gttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	ggtatctgcg	7920
c	tctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	7980

ccaccgctg	g tagcggtggt	ttttttgttt	gcaagcagca	gattacgcgc	agaaaaaaag	8040
gatctcaag	a agatcctttq	atcttttcta	cggggtctga	cgctcagtgg	aacgaaaact	8100
cacgttaag	g gattttggt	atgagattat	caaaaaggat	cttcacctag	atccttttaa	8160
attaaaaat	g aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	tctgacagtt	8220
accaatgct	t aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	8280
ttgcctgac	t ccccgtcgt	g tagataacta	cgatacggga	gggcttacca	tctggcccca	8340
gtgctgcaa	t gataccgcg	gacccacgct	caccggctcc	agatttatca	gcaataaacc	8400
agccagccg	g aagggccga	g cgcagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	8460
ctattaatt	g ttgccggga	a gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	8520
ttgttgcca	t tgctacagg	atcgtggtgt	cacgctcgtc	gtttggtatg	gcttcattca	8580
gctccggtt	c ccaacgatc	a aggcgagtta	catgatcccc	catgttgtgc	aaaaaagcgg	8640
ttagctcct	t eggteetee	g atcgttgtca	gaagtaagtt	ggccgcagtg	ttatcactca	8700
tggttatgg	c agcactgca	aattototta	ctgtcatgcc	atccgtaaga	tgcttttctg	8760
tgactggt	ga gtactcaac	aagtcattct	gagaatagtg	tatgcggcga	ccgagttgct	8820
cttgcccg	c gtcaatacg	g gataataccg	cgccacatag	cagaacttta	aaagtgctca	8880
tcattggaa	a acgttcttc	g gggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	8940
gttcgatgt	a acccactcg	t gcacccaact	gatcttcagc	atcttttact	ttcaccagcg	9000
tttctgggt	g agcaaaaac	a ggaaggcaaa	atgccgcaaa	aaagggaata	agggcgacac	9060
ggaaatgti	g aatactcat	a ctcttccttt	ttcaatatta	ttgaagcatt	tatcagggtt	9120
attgtctca	it gagcggata	c atatttgaat	gtatttagaa	aaataaacaa	ataggggttc	9180
egegeacat	t teceegaaa	a gtgccacct				9209
<400> 5) c aggtgcaga	t tatcagette	ctgctaatca	gtgcttcagt	cataatgtcc	60
agagggca	a ttgttctct	c ccagtctcca	gcaatcctgt	ctgcatctcc	aggggagaag	120
gtcacaat	ga cttgcaggg	c cagctcaagt	gtaagttaca	tccactggtt	ccagcagaag	180
ccaggatc	ct cccccaaac	c ctggatttat	gccacatcca	acctggcttc	tggagtccct	240
gttcgctt	ca gtggcagtg	g gtctgggact	tettactete	tcacaatcag	cagagtggag	300
gctgaaga	tg ctgccactt	a ttactgccag	cagtggacta	gtaacccacc	cacgttcgga	360

ggggggacca agctggaaat caaa 384

<210> 60 <211> 128 <212> PRT

<213> Mus musculus

<400> 60

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15

Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile 20 25 30

Leu Ser Ala Ser Pro Gly Glu Lys Va1 Thr Met Thr Cys Arg Ala Ser 35 40 45

Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser 50 55 60

Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro 65 70 75 80

Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 85 90 95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 115 120 125

<210> 61

<211> 420 <212> DNA

<213> Mus musculus

<400> 61

atgggttgga gecteatett getetteett gtegetgttg etaegegtgt eetgteecag 60
gtaeaactge ageageetgg ggetgagetg gtgaageetg gggeeteagt gaagatgtee 120
tgeaaggett etggetaeae atttaeeagt taeaatatge aetgggtaaa aeagacaeet 180
ggteggggee tggaatggat tggagetatt tateeeggaa atggtgatae tteetaeaat 240
cagaagttea aaggeaagge eacattgaet geagacaaat eeteeagea ageetaeatg 300
cageteagea geetgaeate tgaggaetet geggtetatt aetgtgeaag ategaettae 360

<210> 62 <211> 140

<212> PRT

<213> Mus musculus

<400> 62

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg 1 5 10 15

tacogogoto actootactt caatototoo googcagoga ccacogotcac cotototoca

Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Tro Glv Ala Glv Thr Thr Val Thr Val Ser Ala <210> 63 <211> 1395 <212> DNA <213> Homo sapiens <400> 63 60 atgtattcca atgtgatagg aactgtaacc tctggaaaaa ggaaggttta tcttttgtcc ttgctgctca ttggcttctg ggactgcgtg acctgtcacg ggagccctgt ggacatctgc 120 acagecaage egegggacat teccatgaat cecatgtgea tttacegete eeeggagaag 180 aaqqcaactq aqqatqaqqq ctcaqaacaq aaqatcccgg aggccaccaa ccggcgtgtc 240 tgggaactgt ccaaggccaa ttcccgcttt gctaccactt tctatcagca cctggcagat 300 tocaagaatg acaatgataa cattttootg toaccootga gtatotocac ggottttgot 360 atgaccaage tgggtgcctg taatgacacc ctccagcaac tgatggaggt atttaagttt 420 qacaccatat ctqaqaaaac atctgatcag atccacttct tctttgccaa actgaactgc 480 cqactctatc qaaaaqccaa caaatcctcc aagttagtat cagccaatcg cctttttgga 540 600 gacaaatccc ttaccttcaa tgagacctac caggacatca gtgagttggt atatggagcc 660 aagctccagc ccctggactt caaggaaaat gcagagcaat ccagagcggc catcaacaaa 720 tgggtgtcca ataagaccga aggccqaatc accgatgtca ttccctcgga agccatcaat 780 gageteactg ttetggtget ggttaacacc atttacttca agggeetgtg gaagteaaag ttcaqccctq aqaacacaaq gaaggaactg ttctacaagg ctgatggaga gtcgtgttca 840 ccatctatga tqtaccaqqa aggcaagttc cqttatcqqc qcqtqqctqa aggcacccaq 900

gtgc	ttga	gt t	gccc	ttca	a ag	gtga	tgac	ato	acca	tgg	teet	catic	tt g	ссса	agcct	960
gaga	agag	cc t	ggcc	aagg	t gg	agaa	ggaa	ctc	accc	cag	aggt	gctg	ca g	gagt	ggctg	1020
gatg	aatt	gg a	ggag	atga	t go	tggt	ggto	cac	atgo	ccc	gctt	ccgc	at t	gagg	acggc	1080
ttca	gttt	ga a	ggag	cago	t go	aaga	catg	ggc	cttg	tcg	atct	gttc	ag c	cctg	aaaag	1140
tcca	aact	cc c	aggt	attg	rt tg	caga	aggo	cga	gatg	acc	tcta	tgto	tc a	gatg	cattc	1200
cata	aggo	at t	tett	gagg	rt aa	atga	agaa	ggc	agtg	aag	cago	tgca	ag t	accg	ctgtt	1260
gtga	ttgc	tg g	ccgt	tege	t aa	accc	caac	agg	gtga	ctt	tcaa	ggcc	aa c	aggo	ctttc	1320
ctgg	tttt	ta t	aaga	gaag	ıt to	ctct	gaac	act	atta	tct	tcat	gggc	ag a	gtag	ccaac	1380
cctt	gtgt	ta a	ıgtaa	ı												1395
<210 <211 <212 <213	> 4 > E	4 164 PRT Iomo	sapi	ens												
<400 Met 1		Ser	Asn	Val 5	Ile	Gly	Thr	Val	Thr 10	Ser	Gly	Lys	Arg	Lys 15	Val	
Tyr	Leu	Leu	Ser 20	Leu	Leu	Leu	Ile	G1y 25	Phe	Trp	Asp	Cys	Val 30	Thr	Cys	
His	Gly	Ser 35	Pro	Val	Asp	Ile	Cys 40	Thr	Ala	Lys	Pro	Arg 45	Asp	Ile	Pro	
Met	Asn 50	Pro	Met	Cys	Ile	Tyr 55	Arg	Ser	Pro	Glu	Lys 60	Lys	Ala	Thr	Glu	
Asp 65	Glu	Gly	Ser	Glu	G1n 70	Lys	Ile	Pro	Glu	Ala 75	Thr	Asn	Arg	Arg	Val 80	
Trp	Glu	Leu	Ser	Lys 85	Ala	Asn	Ser	Arg	Phe 90	Ala	Thr	Thr	Phe	Tyr 95	Gln	
His	Leu	Ala	Asp 100	Ser	Lys	Asn	Asp	Asn 105	Asp	Asn	Ile	Phe	Leu 110	Ser	Pro	
Leu	Ser	Ile 115	Ser	Thr	Ala	Phe	Ala 120	Met	Thr	Lys	Leu	Gly 125	Ala	Суз	Asn	
Asp	Thr 130	Leu	Gln	Gln	Leu	Met 135	Glu	Val	Phe	Lys	Phe 140	Asp	Thr	Ile	Ser	
Glu 145	Lys	Thr	Ser	Asp	Gln 150	Ile	His	Phe	Phe	Phe 155	Ala	Lys	Leu	Asn	Cys 160	
Arg	Leu	Tyr	Arģ	Lys 165	Ala	Asn	Lys	Ser	Ser 170	Lys	Leu	Val	Ser	Ala 175	Asn	
Arg	Leu	Phe	Gly 180	Asp	Lys	Ser	Leu	Thr 185	Phe	Asn	Glu	Thr	Tyr 190	Gln	Asp	
Ile	Ser	Glu	Leu	Val	Tyr	Gly	Ala	Lys	Leu	Gln	Pro	Leu	Asp	Phe	Lys	

Glu	Asn 210	Ala	Glu	Gln	Ser	Arg 215	Ala	Ala	Ile	Asn	Lys 220	Trp	Val	Ser	Asn	
Lys 225	Thr	Glu	Gly	Arg	Ile 230	Thr	Asp	Val	Ile	Pro 235	Ser	Glu	Ala	Ile	Asn 240	
Glu	Leu	Thr	Val	Leu 245	Val	Leu	Val	Asn	Thr 250	Ile	Tyr	Phe	Lys	Gly 255	Leu	
Trp	Lys	Ser	Lys 260	Phe	Ser	Pro	Glu	Asn 265	Thr	Arg	Lys	Glu	Leu 270	Phe	Tyr	
Lys	Ala	Asp 275	Ġly	Glu	Ser	Cys	Ser 280	Ala	Ser	Met	Met	Tyr 285	Gln	Glu	Gly	
Lys	Phe 290	Arg	Tyr	Arg	Arg	Val 295	Ala	Glu	Gly	Thr	Gln 300	Val	Leu	Glu	Leu	
Pro 305	Phe	Lys	Gly	Asp	Asp 310	Ile	Thr	Met	Val	Leu 315	Ile	Leu	Pro	Lys	Pro 320	
Glu	Lys	Ser	Leu	Ala 325	Lys	Val	G1u	Lys	Glu 330	Leu	Thr	Pro	Glu	Val 335	Leu	
Gln	Glu	Trp	Leu 340	Asp	Glu	Leu	Glu	Glu 345	Met	Met	Leu	Val	Val 350	His	Met	
Pro	Arg	Phe 355	Arg	Ile	Glu	Asp	Gly 360	Phe	Ser	Leu	Lys	Glu 365	Gln	Leu	Gln	
Asp	Met 370	Gly	Leu	Val	Asp	Leu 375	Phe	Ser	Pro	Glu	Lys 380	Ser	Lys	Leu	Pro	
Gly 385		Val	Ala	Glu	Gly 390	Arg	Asp	Asp	Leu	Tyr 395	Val	Ser	Asp	Ala	Phe 400	
His	Lys	Ala	Phe	Leu 405	Glu	Val	Asn	Glu	Glu 410	Gly	Ser	Glu	Ala	Ala 415	Ala	
Ser	Thr	Ala	Val 420	Val	Ile	Ala	Gly	Arg 425	Ser	Leu	Asn	Pro	Asn 430	Arg	Val	
Thr	Phe	Lys 435		Asn	Arg	Pro	Phe 440	Leu	Val	Phe	Ile	Arg 445		Val	Pro	
Leu	Asn 450		Ile	Ile	Phe	Met 455	Gly	Arg	Val	Ala	Asn 460	Pro	Cys	Val	Lys	
<21 <21 <21 <21	1> 2>	65 1962 DNA Homo		iens												
<40 atg		65 ccc	tgcg	cccc	cg c	gccg	cgct	g ct	ggcg	ctcc	tgg	cctc	gct	cctg	geegeg	6
ccc	c c gg	tgg	cccc	ggcc	ga g	gccc	cgca	c ct	ggtg	cagg	tgg	acgc	ggc	ccgc	gcgctg	12
tgg	cccc	tgc	ggcg	cttc	tg g	agga	gcac	a gg	cttc	tgcc	ccc	cgct	gcc	acac	agccag	18

gctgaccagt	acgtcctcag	ctgggaccag	cageteaace	tegeetatgt	gggcgccgtc	240
cctcaccgcg	gcatcaagca	ggtccggacc	cactggctgc	tggagcttgt	caccaccagg	300
gggtccactg	gacggggcct	gagetacaac	ttcacccacc	tggacgggta	cttggacctt	360
ctcagggaga	accageteet	cccagggttt	gagctgatgg	gcagcgcctc	gggccacttc	420
actgactttg	aggacaagca	gcaggtgttt	gagtggaagg	acttggtctc	cagcetggec	480
aggagataca	tcggtaggta	cggactggcg	catgtttcca	agtggaactt	cgagacgtgg	540
aatgagccag	accaccacga	ctttgacaac	gtctccatga	ccatgcaagg	cttcctgaac	600
tactacgatg	cctgctcgga	gggtctgcgc	gccgccagcc	ccgccctgcg	gctgggaggc	660
cccggcgact	ccttccacac	cccaccgcga	tccccgctga	gctggggcct	cctgcgccac	720
tgccacgacg	gtaccaactt	cttcactggg	gaggcgggcg	tgcggctgga	ctacatctcc	780
ctccacagga	agggtgcgcg	cagctccatc	tccatcctgg	agcaggagaa	ggtcgtcgcg	840
cagcagatcc	ggcagctctt	ccccaagttc	gcggacaccc	ccatttacaa	cgacgaggcg	900
gacccgctgg	tgggctggtc	cctgccacag	ccgtggaggg	cggacgtgac	ctacgcggcc	960
atggtggtga	aggtcatcgc	gcagcatcag	aacctgctac	tggccaacac	cacctccgcc	1020
ttcccctacg	cgctcctgag	caacgacaat	gccttcctga	gctaccaccc	gcaccccttc	1080
gegeagegea	cgctcaccgc	gcgcttccag	gtcaacaaca	cccgcccgcc	gcacgtgcag	1140
ctgttgcgca	agccggtgct	cacggccatg	gggctgctgg	cgctgctgga	tgaggagcag	1200
ctctgggccg	aagtgtcgca	ggccgggacc	gtcctggaca	gcaaccacac	ggtgggcgtc	1260
ctggccagcg	cccaccgccc	ccagggcccg	gccgacgcct	ggcgcgccgc	ggtgctgatc	1320
tacgcgagcg	acgacacccg	cgcccacccc	aaccgcagcg	tegeggtgae	cctgcggctg	1380
cgcggggtgc	ccccggccc	gggcctggtc	tacgtcacgc	gctacctgga	caacgggctc	1440
tgcagccccg	acggcgagtg	gcggcgcctg	ggccggcccg	tcttccccac	ggcagagcag	1500
ttccggcgca	tgcgcgcggc	tgaggacccg	gtggccgcgg	cgcccgccc	cttacccgcc	1560
ggeggeegee	tgaccctgcg	ccccgcgctg	cggctgccgt	cgcttttgct	ggtgcacgtg	1620
tgtgcgcgcc	ccgagaagcc	gcccgggcag	gtcacgcggc	tccgcgccct	gcccctgacc	1680
caagggcagc	tggttctggt	ctggtcggat	gaacacgtgg	gctccaagtg	cctgtggaca	1740
tacgagatcc	agttctctca	ggacggtaag	gcgtacaccc	cggtcagcag	gaagccatcg	1800
accttcaacc	tctttgtgtt	cagcccagac	acaggtgctg	tctctggctc	ctaccgagtt	1860
cgagecetgg	actactgggc	ccgaccaggc	cccttctcgg	accctgtgcc	gtacctggag	1920
gtccctgtgc	caagagggcc	cccatccccg	ggcaatccat	ga .		1962

71 .

PCT/US2003/031974

WO 2004/033651 <210> 66 <211> 653 <212> PRT <213> Homo sapiens <400> 66 Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu 135 Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala 150 145 Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser 180 Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly 200

Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His 230

Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu 250

Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro

Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val

,	WO 20	04/03	3651											P	CT/US2003
	290					295					300				
Gly 305	Trp	Ser	Leu	Pro	Gln 310	Pro	Trp	Arg	Ala	Asp 315	Val	Thr	Tyr	Ala	Ala 320
Met	Val	Val	Lys	Val 325	Ile	Ala	Gln	His	Gln 330	Asn	Leu	Leu	Leu	Ala 335	Asn
Thr	Thr	Ser	Ala 340	Phe	Pro	Tyr	Ala	Leu 345	Leu	Ser	Asn	Asp	Asn 350	Ala	Phe
Leu	Ser	Tyr 355	His	Pro	His	Pro	Phe 360	Ala	Gln	Arg	Thr	Leu 365	Thr	Ala	Arg
Phe	Gln 370	Val	Asn	Asn	Thr	Arg 375	Pro	Pro	His	Val	Gln 380	Leu	Leu	Arg	Lys
Pro 385	Val	Leu	Thr	Ala	Met 390	Gly	Leu	Leu	Ala	Leu 395	Leu	Asp	Glu	Glu	Gln 400
Leu	Trp	Ala	Glu	Val 405	Ser	Gln	Ala	Gly	Thr 410	Val	Leu	Asp	Ser	Asn 415	His
Thr	Val	Gly	Val 420	Leu	Ala	Ser	Ala	His 425	Arg	Pro	Gln	Gly	Pro 430	Ala	Asp
Ala	Trp	Arg 435	Ala	Ala	Val	Leu	11e 440	Tyr	Ala	Ser	Asp	Asp 445	Thr	Arg	Ala
His	Pro 450	Asn	Arg	Ser	Val	Ala 455	Val	Thr	Leu	Arg	Leu 460	Arg	Gly	Val	Pro
Pro 465	Gly	Pro	Gly	Leu	Val 470	Tyr	Val	Thr	Arg	Tyr 475	Leu	Asp	Asn	Gly	Leu 480
Cys	Ser	Pro	Asp	Gly 485	Glu	Trp	Arg	Arg	Leu 490	Gly	Arg	Pro	Val	Phe 495	Pro
	Ala		500					505					510		
	Ala	515					520	_		-		525		-	
	Leu 530	-				535					540	-		•	
545					550					555					560
	Gly			565			·		570				·	575	•
_	Leu		580	-				585			-	-	590		-
	Pro	595					600					605			
Pro	Asp 610	Thr	Gly	Ala	Val	Ser 615	Gly	Ser	Tyr	Arg	Val 620	Arg	Ala	Leu	Asp

Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu 625 $$ 630 $$ 635 $$ 640 $$	
Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro 645	
<210> 67 <211> 129 <212> DNA <213> Homo sapiens	
<400> 67 atgeagetga ggaacceaga actacatetg ggetgegege ttgegetteg etteetggee	60
ctegtttect gggacatece tggggctaga geactggaca atggattggc aaggacgect	120
accatgggct ggctgcactg ggagcgcttc atgtgcaacc ttgactgcca ggaagagcca	180
gattectgea teagtgagaa getetteatg gagatggeag ageteatggt eteagaagge	240
tggaaggatg caggttatga gtacctctgc attgatgact gttggatggc tccccaaaga	300
gattcagaag gcagacttca ggcagaccct cagcgctttc ctcatgggat tcgccagcta	360
gctaattatg ttcacagcaa aggactgaag ctagggattt atgcagatgt tggaaataaa	420
acctgegeag gettecetgg gagttttgga tactaegaea ttgatgecea gaeetttget	480
gactggggag tagatctgct aaaatttgat ggttgttact gtgacagttt ggaaaatttg	540
gcagatggtt ataagcacat gtccttggcc ctgaatagga ctggcagaag cattgtgtac	600
tcctgtgagt ggcctcttta tatgtggccc tttcaaaagc ccaattatac agaaatccga	660
cagtactgca atcactggcg aaattttgct gacattgatg attcctggaa aagtataaag	720
agtatettgg actggacate ttttaaccag gagagaattg ttgatgttge tggaccaggg	780
ggttggaatg acccagatat gttagtgatt ggcaactttg gcctcagctg gaatcagcaa	840
gtaactcaga tggccctctg ggctatcatg gctgctcctt tattcatgtc taatgacctc	900
cgacacatca geceteaage caaagetete etteaggata aggaegtaat tgecateaat	960
caggacccct tgggcaagca agggtaccag cttagacagg gagacaactt tgaagtgtgg	1020
gaacgacctc tctcaggctt agcctgggct gtagctatga taaaccggca ggagattggt 1	1080
ggacctcgct cttataccat cgcagttgct tccctgggta aaggagtggc ctgtaatcct 1	1140
gcctgcttca tcacacagct cctccctgtg aaaaggaagc tagggttcta tgaatggact [1200
tcaaggttaa gaagtcacat aaatcccaca ggcactgttt tgcttcagct agaaaataca	1260
atgcagatgt cattaaaaga cttactttaa	1290
<210> 68 <211> 429 <212> PRT <213> Homo sapiens	

<400)> €	58													
		Leu	Arg	Asn 5	Pro	Glu	Leu	His	Leu 10	Gly	Сув	Ala	Leu	Ala 15	Leu
Arg	Phe	Leu	Ala 20	Leu	Val	Ser	Trp	Asp 25	Ile	Pro	Gly	Ala	Arg 30	Ala	Leu
Asp	Asn	G1y 35	Leu	Ala	Arg	Thr	Pro 40	Thr	Met	Gly	Trp	Leu 45	His	Trp	Glu
Arg	Phe 50	Met	Суз	Asn	Leu	Asp 55	Cys	Gln	Glu	Glu	Pro 60	Asp	Ser	Сув	Ile
Ser 65	Glu	Lys	Leu	Phe	Met 70	Glu	Met	Ala	Glu	Leu 75	Met	Val	Ser	Glu	Gl 80
rrp	Lуs	Asp	Ala	Gly 85	Tyr	G1u	Tyr	Leu	Cys 90	Ile	Asp	Asp	Cys	Trp 95	Met
Ala	Pro	Gln	Arg 100	Asp	Ser	Glu	Gly	Arg 105	Leu	G1n	Ala	Asp	Pro 110	Gln	Arg
Phe	Pro	His 115	Gly	Ile	Arg	Gln	Leu 120	Ala	Asn	Tyr	Val	His 125	Ser	Lys	Gly
Leu	Lys 130	Leu	Gly	Ile	Tyr	A1a 135	Asp	Val	Gly	Asn	Lys 140	Thr	Cys	A1a	Gl
Phe 145	Pro	Gly	Ser	Phe	Gly 150	Tyr	Tyr	Asp	Ile	Asp 155	Ala	Gln	Thr	Phe	Ala 160
Asp	Trp	Gly	Val	Asp 165	Leu	Leu	Lys	Phe	Asp 170	Gly	Cys	Tyr	Cys	Asp 175	Ser
Leu	Glu	Asn	Leu 180	Ala	Asp	Gly	Tyr	Lys 185	His	Met	Ser	Leu	Ala 190	Leu	Asr
Arg	Thr	Gly 195	Arg	Ser	Ile	Val	Tyr 200	Ser	Cys	Glu	Trp	Pro 205	Leu	Tyr	Met
Trp	Pro 210	Phe	Gln	Lys	Pro	Asn 215	Tyr	Thr	Glu	Ile	Arg 220	Gln	Tyr	Cys	Asr
His 225	Trp	Arg	Asn	Phe	A1a 230	Asp	Ile	Asp	Asp	Ser 235	Trp	Lys	Ser	Ile	Lys 240
Ser	Ile	Leu	Asp	Trp 245	Thr	Ser	Phe	Asn	Gln 250	Glu	Arg	Ile	Va1	Asp 255	Va]
Ala	Gly	Pro	Gly 260	Gly	Trp	Asn	Asp	Pro 265	Asp	Met	Leu	Val	Ile 270	Gly	Asr
Phe	Gly	Leu 275	Ser	Trp	Asn	Gln	Gln 280	Val	Thr	Gln	Met	A1a 285	Leu	Trp	Ala
Ile	Met 290	Ala	Ala	Pro	Leu	Phe 295	Met	Ser	Asn	Asp	Leu 300	Arg	His	Ile	Sea
Pro 305	Gln	Ala	Lys	Ala	Leu 310	Leu	Gln	Asp	Lys	Asp 315	Val	Ile	Ala	Ile	Asr 320

Gln	Asp	Pro	Leu	Gly 325	Lys	Gln	Gly	Tyr	Gln 330	Leu	Arg	Gln	Gly	Asp 335	Asn	
Phe	Glu	Val	Trp 340	Glu	Arg	Pro	Leu	Ser 345	Gly	Leu	Ala	Trp	Ala 350	Val	Ala	
Met	Ile	Asn 355	Arg	Gln	Glu	Ile	Gly 360	Gly	Pro	Arg	Ser	Tyr 365	Thr	Ile	Ala	
Val	Ala 370	Ser	Leu	Gly	Lys	Gly 375	Val	Ala	Cys	Asn	Pro 380	Ala	Cys	Phe	Ile	
Thr 385	Gln	Leu	Leu	Pro	Val 390	Lуs	Arg	Lys	Leu	Gly 395	Phe	Tyr	Glu	Trp	Thr 400	
Ser	Arg	Leu	Arg	Ser 405	His	Ile	Asn	Pro	Thr 410	Gly	Thr	Val	Leu	Leu 415	Gln	
Leu	Glu	Asn	Thr 420	Met	Gln	Met	Ser	Leu 425	Ьуs	Asp	Leu	Leu				
<210 <210 <210 <210	1> : 2> : I	59 351 DNA Homo	sap:	iens												
<400> 69 atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat												60				
-															accca	120
tte	ttet	ecc a	agcc	gggto	ge ed	caat	acti	caç	gtgca	atgg	gcto	gctgo	ett o	ctcta	agagca	180
tat	cca	ctc o	cacta	aaggt	c ca	aagaa	agac	gate	gttg	gtee	aaaa	agaad	egt o	eacct	cagag	240
tcc	actte	get q	gtgta	ageta	aa at	cata	ataad	agg	ggtca	acag	taai	gggg	ggg 1	ttca	aagtg	300
gaga	aacca	aca o	egge	gtgc	ca ci	gcaç	gtact	t tgt	tati	atc	acaa	aatct	ta a	a		351
<21: <21: <21: <21:	1> : 2> :	70 116 PRT Homo	sap:	iens										÷		
<40 Met 1		70 Tyr	Tyr	Arg 5	Lys	Tyr	Ala	Ala	Ile 10	Phe	Leu	Val	Thr	Leu 15	Ser	
Val	Phe	Leu	His 20	Val	Leu	His	Ser	Ala 25	Pro	Asp	Val	Gln	Asp 30	Cys	Pro	
Glu	Cys	Thr 35	Leu	Gln	Glu	Asn	Pro 40	Phe	Phe	Ser	Gln	Pro 45	Gly	Ala	Pro	
Ile	Leu 50	Gln	Cys	Met	Gly	Cys 55	Cys	Phe	Ser	Arg	Ala 60	Tyr	Pro	Thr	Pro	
Leu 65	Arg	Ser	Lys	Lys	Thr 70	Met	Leu	Val	Gln	Lys 75	Asn	Val	Thr	Ser	Glu 80	

60

Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr 105 Tyr His Lys Ser 115 <210> 71 <211> 498 <212> DNA <213> Homo sapiens <400> 71 atqqaqatqt tecaqqqqet qetqetqttq etqetqetqa qeatqqqeqq gacatqqqea 120 tecaaqqaqe eqetteqqee acqqtqeeqe eccateaatq ecaecetgge tgtggagaag gagggetgee cegtgtgeat caccqtcaac accaccatet gtgeeggeta etgeeceace 180 atgaccegeg tgctgcaggg ggtcctgccg gccctgcctc aggtggtgtg caactaccgc 240 gatqtqcgct tcgagtccat ccggctccct ggctgcccgc gcggcqtqaa ccccgtggtc 300 tectacqccg tqqctctcaq ctgtcaatqt gcactctgcc gccgcagcac cactgactgc 360 gggggtccca aggaccaccc cttgacctgt gatgaccccc gcttccagga ctcctcttcc 420 teaaaggeee eteccecag cettecaage ceatecegae teeeggggee eteggacace 480 498 ccgatcctcc cacaataa <210> 72 <211> 165 <212> PRT <213> Homo sapiens <400> 72 Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly 10 15 Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr 40 Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val Leu Gln Glv Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu 105 110 Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu

WO 2004/033651 115 120 T25 Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln <210> 73 <211> 165 <212> PRT <213> Homo sapiens <400> 73 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 135 130 Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 155 Cys Arg Thr Gly Asp 165

<210> 74 <211> 588 <212> DNA

<213> Home sapiens

atggccetcc tgttccctct actggcagec ctagtgatga ccagctatag ccctgttgga tototggget gtgatotgcc toagaaccat ggcotactta gcaggaacac cttggtgett

ctocaccasa toaggagaat ctcccctttc ttqtgtctca aggacagaag agacttcagg

ttcc	ccca	gg a	gatg	gtaa	a ag	ggag	ccag	ttg	caga	agg	ccca	tgtc	at g	tctg	teete	240
catg	agat	gc t	gcag	caga	t ct	tcag	cctc	tto	caca	cag	agcg	ctcc	tc t	gctg	cctgg	300
aaca	tgac	cc t	ccta	gacc	a ac	tcca	cact	gga	cttc	atc	agca	actg	ca a	cacc	tggag	360
acct	gctt	gc t	gcag	gtag	t gg	gaga	agga	gaa	tctg	ctg	gggc	aatt	ag c	agec	ctgca	420
ctga	ccțt	ga g	gagg	tact	t cc	aggg	aato	cgt	gtct	acc	tgaa	agag	aa g	aaat	acagc	480
gact	gtgc	ct g	ggaa	gttg	t ca	gaat	ggaa	ato	atga	aat	cctt	gttc	tt a	tcaa	caaac	540
atgcaagaaa gactgagaag taaagataga gacctgggct catcttga												588				
<210 <211 <212 <213	> 1 > E	5 .95 RT Iomo	sapi													
<400 Met 1		5 Leu	Leu	Phe 5	Pro	Leu	Leu	Ala	Ala 10	Leu	Val	Met	Thr	Ser 15	Tyr	
Ser	Pro	Val	Gly 20	Ser	Leu	Gly	Cys	Asp 25	Leu	Pro	Gln	Asn	His 30	Gly	Leu	
Leu	Ser	Arg 35	Asn	Thr	Leu	Val	Leu 40	Leu	His	Gln	Met	Arg 45	Arg	Ile	Ser	
Pro	Phe 50	Leu	Cys	Leu	Lys	Asp 55	Arg	Arg	Asp	Phe	Arg 60	Phe	Pro	Gln	Glu	
Met 65	Val	Lys	Gly	Ser	Gln 70	Leu	Gln	Lys	Ala	His 75	Val	Met	Ser	Val	Leu 80	
His	Glu	Met	Leu	G1n 85	Gln	Ile	Phe	Ser	Leu 90	Phe	His	Thr	Glu	Arg 95	Ser	
Ser	Ala	Ala	Trp 100	Asn	Met	Thr	Leu	Leu 105	Asp	Gln	Leu	His	Thr 110	Gly	Leu	
His	Gln	Gln 115	Leu	Gln	His	Leu	Glu 120	Thr	Суз	Leu	Leu	Gln 125	Val	Val	Gly	
Glu	Gly 130	Glu	Ser	Ala	Gly	Ala 135	Ile	Ser	Ser	Pro	Ala 140	Leu	Thr	Leu	Arg	
Arg 145	Tyr	Phe	Gln	Gly	Ile 150	Arg	Val	Tyr	Leu	Lys 155	Glu	Lys	Lys	Tyr	Ser 160	
Asp	Суз	Ala	Trp	Glu 165	Val	Val	Arg	Met	Glu 170	Ile	Met	Lys	Ser	Leu 175	Phe	
Leu	Ser	Thr	Asn 180	Met	Gln	Glu	Arg	Leu 185	Arg	Ser	Lys	Asp	Arg 190	Asp	Leu	
Gly	Ser	Ser 195														