学院		专业					班	年级		学号		姓名	_ 共4页	第1页
		2012	~2013	学年.	工程硕	顶士考i	试试卷			3、设 $\{l_k(x)\}_{k=1}^n$	。是[<i>a</i> , <i>b</i>]。	上的以 $a \le x_0 < x_1 < \dots < x_n$	$\leq b$ 为节点的 Lagrange	插值基函数,则
		« /	应用数	学基础	础》(共 4 页	页)			$\sum_{k=0}^{n} l_k(x) = \underline{\hspace{1cm}}$		<u>_</u> .		
		(考证	式时间:	2013	8年 11	月 23	3 日)			k=0	_			
题号	_	<u> </u>	四	五	六	七	八九	成绩		$4 \lor \partial A = \begin{vmatrix} 3 \\ 0 \end{vmatrix}$	$\begin{bmatrix} 2 & 2 \\ -5 & 1 \end{bmatrix}$,则 $\det e^A = $		
得分										2	1 4			
一、判	断题(包	每小题 1 分,	共 10 分)						_	_			
1、已知力	$A \in C^{n \times n}$	$^{\prime}$,则矩阵 λE $-$	A 是满利	失的.				[]	$\begin{bmatrix} -2 \\ 5, & A = \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$,则 $Cond_{\infty}(A) = $		
2、设 <i>A</i> ,	$B \in C^{n \times n}$	n ,则 $A \sim B$ 的	力充要条件	‡是Α和.	B具有相	同的最小	多项式.]]	0	0 4	w ()	-	
3. Hermi	ite 矩阵I	的所有特征值的	模都等于	· 1.				[]		<u></u>	4 3 7		
4、若 <i>A</i> ∈	$\in R^{n\times n}$ $\mathbb{E}_{n}^{n\times n}$	定,则求解线性	方程组 A:	x = b的	Jacobi 迭	迭代格式中	收敛.	[]	三、(12分) 词	$ \exists A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 4 & 3 \\ 2 & 0 \\ 3 & -1 \end{bmatrix}$, 求 A 的 Jordan 标准	形 J 和有理标准形 C .	
5、设 <i>T</i> :	$: X \to Y$	是线性算子,贝	JT(0) = 0	0.				[[0	3 -1]		
6、 ∀ <i>A</i> ∈	$\in C^{n\times n}, x$	$\in C^n$,若 A 可	逆且 <i>x</i> ≠	0,则)	$x^H A^H A x$	x > 0.		[]					
7、设{ <i>x</i> ₂	$_{n}$ $\} \subset (X$	$(x, \ \cdot\), \text{im}_{n \to \infty} \ x\ $	$ x_n \to x =$	0,则1	$\lim_{n\to\infty} x_n =$	= x .		[]					
8 、设 X \sharp	是内积空	间,当 $x,y \in \mathbb{Z}$	$X, \langle x, y \rangle$	$\rangle = 0$ by	寸,必有 <i>x</i>	c = 0	或 $y=0$.	[]					
9、若 A	1 是酉矩	阵,则 $ ho(A)$ =	1.					[]					
10、半负	定矩阵的	的所有特征值都	是小于等	于零,所	所有偶数	阶的顺序	主子式都是大于	等于零. []					
一、埴	空颙(4	豆小颗 2 分,	共 10 分)										

1、设 $p_3(x)$ 是 3 次 Legendre 多项式,则 $\int_{-1}^{1} (x^2 - 1) p_3(x) dx =$ _____.

2、设 $f(x) = (x_1 + x_3 e^{x_2}, x_1^2 + x_2^2 \sin x_3)^T$,则f'(x) =_______.

天津大学试卷专用纸

五、(12分)根据下列插值条件

х	0	0.2	0. 4	0.6	0.8
f(x)	1	1. 2214	1. 4918	1.8221	2. 2255

用 3 次 Newton 插值多项式计算 f(0.15) 的近似值(结果保留至小数点后第 4 位).

四、(10 分) 写出求解线性方程组 Ax = b 的 Gauss—Seidel 迭代格式,并判断所写格式的收敛性,其中

$$A = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 2 & 1 \\ -2 & 1 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 6 \\ 8 \\ 5 \end{bmatrix}.$$

年级______学号

六、(16分) 设 $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 3 \\ 4 & 0 & 1 \end{bmatrix}$, 求

- (1) 矩阵 A 的最小多项式 $\varphi(\lambda)$;
- (2) 方阵函数 e^{At} .

七、**(10 分)**用 Romberg 算法求积分 $\int_0^1 \frac{3}{1+x^2} dx$ 的近似值,并将计算结果列于下表(数据保留至小数点后第 5 位).

k	T_{2^k}	S_{2^k}	C_{2^k}	R_{2^k}
0				
1				
2				
3				
4	2.35572			

八、计算题(12 分) 设 $A = \begin{bmatrix} 1 & 0 & 0 \\ i & 2 & 0 \\ 0 & i & 2 \end{bmatrix}$, 求 $||A||_1$, $||A||_F$, $||A||_{\infty}$, $||A||_2$.

九、证明题(8分) 若正定矩阵 $A,B \in C^{n \times n}$ 且 AB = BA,则 AB 是正定矩阵 .