1 13.3: Dot Products

Definition. (Dot Product)

Given two nonzero vectors \boldsymbol{u} and \boldsymbol{v} in two or three dimensions, their **dot product** is

$$\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}||\boldsymbol{v}|\cos\theta,$$

where θ is the angle between \boldsymbol{u} and \boldsymbol{v} with $0 \le \theta \le \pi$. If $\boldsymbol{u} = \boldsymbol{0}$ or $\boldsymbol{v} = \boldsymbol{0}$, then $\boldsymbol{u} \cdot \boldsymbol{v} = 0$, and θ is undefined.

A physical example of the dot product is the amount of work done when a force is applied at an angle θ as shown in figure 13.43:

Note: The result of the dot product is a scalar!

Definition. (Orthogonal Vectors)

Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector is orthogonal to all vectors. In two or three dimensions, two nonzero orthogonal vectors are perpendicular to each other.

- \boldsymbol{u} and \boldsymbol{v} are parallel $(\theta = 0 \text{ or } \theta = \pi)$ if and only if $\boldsymbol{u} \cdot \boldsymbol{v} = \pm |\boldsymbol{u}| |\boldsymbol{v}|$.
- \boldsymbol{u} and \boldsymbol{v} are perpendicular $(\theta = \frac{\pi}{2})$ if and only if $\boldsymbol{u} \cdot \boldsymbol{v} = 0$.

Theorem 31.1: Dot Product

Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$,

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Properties of Dot Products

Theorem 13.2: Properties of the Dot Product

Suppose $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} are vectors and let c be a scalar.

1. $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$

Commutative property

2. $c(\boldsymbol{u} \cdot \boldsymbol{v}) = (c\boldsymbol{u}) \cdot \boldsymbol{v} = \boldsymbol{u} \cdot (c\boldsymbol{v})$

Associative property

3. $\boldsymbol{u} \cdot (\boldsymbol{v} + \boldsymbol{w}) = \boldsymbol{u} \cdot \boldsymbol{v} + \boldsymbol{u} \cdot \boldsymbol{w}$

Distributive property

Orthogonal Projections

Given vectors \boldsymbol{u} and \boldsymbol{v} , the projection of \boldsymbol{u} onto \boldsymbol{v} produces a vector parallel to \boldsymbol{v} using the "shadow" of \boldsymbol{u} cast onto \boldsymbol{v} .

Definition. ((Orthogonal) Projection of u onto v)

The orthogonal projection of u onto v, denoted $\operatorname{proj}_v u$, where $v \neq 0$, is

$$\operatorname{proj}_{oldsymbol{v}} oldsymbol{u} = \underbrace{|oldsymbol{u}| \cos heta}_{ ext{length}} \underbrace{\left(rac{oldsymbol{v}}{|oldsymbol{v}|}
ight)}_{ ext{direction}}.$$

The orthogonal projection may also be computed with the formulas

$$\operatorname{proj}_{oldsymbol{v}}oldsymbol{u} = \operatorname{scal}_{oldsymbol{v}}oldsymbol{u}igg(rac{oldsymbol{v}}{|oldsymbol{v}|}igg) = \Big(rac{oldsymbol{u}\cdotoldsymbol{v}}{oldsymbol{v}\cdotoldsymbol{v}}\Big)oldsymbol{v},$$

where the scalar component of u in the direction of v is

$$\operatorname{scal}_{\boldsymbol{v}} \boldsymbol{u} = |\boldsymbol{u}| \cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{v}|}.$$

Applications of Dot Products

Definition. (Work)

Let a constant force \mathbf{F} be applied to an object, producing a displacement \mathbf{d} . If the angle between \mathbf{F} and \mathbf{d} is θ , then the **work** done by the force is

$$W = |\mathbf{F}||\mathbf{d}|\cos\theta = \mathbf{F} \cdot \mathbf{d}$$

Example.

Parallel and Normal Forces:

Example.

