Interrogation Classe virtuelle 1^{ère} 3/4

Durée 1h L'usage de la Calculatrice

Problème 1:13 Points

Le directeur d'une réserve marine a recensé 3000 cétacés

3000 cétacés dans cette réserve au 1er Juin 2020. Le classement

de la zone en \ll réserve marine \gg ne sera pas reconduit

si le nombre de cétacés devient inférieur à 2000.

Une étude lui permet d'élaborer un modèle selon lequel, chaque année :

. entre le 1er Juin et le 3 1 Octobre ,80 cétacés arrivent dans la réserve ;

.entre le 1er Novembre et le 31 Mai , la réserve perd 5% de son effectif par rapport à celui du 31 Octobre qui précède .

Selon ce modèle , pour tout entier naturel n , U_n désigne le nombre de cétacés au 1er Juin de l'année 2020+n .

On a donc $U_0 = 3000$.

1. Justifier que U_1 = 2 926 par un calcul.

On sait que:

- U₀=3000
- Que chaque année il a 80 cétacé qui arrivent en plus dans la réserve
- Qu'il perd $5\% \left(\frac{5}{100}\right)$ des cétacés de l'année précédente.

Donc (U_n) serait égale à U_n=
$$\left(3000*\left(1-\left(\frac{5}{100}\right)\right)\right)+76$$

2. *Justifier que* , *pour tout nombre entier naturel n* :

$$U_{n+1} = 0.95U_n + 76$$

- 3. On désigne par (V_n) la suite définie pour tout entier naturel n, par: $V_n = U_n 1520$.
 - a) Démontrer que la suite (V_n) est géométrique de raison q=0.95 Dont vous préciserez la valeur du terme initial.
 - b) Exprimer Vn en fonction de n puis en déduire U_n en fonction de n c'est-à-dire U_n = 1 480 \times (0,95)ⁿ+ 1520 .
- 4. Recopier et compléter l'algorithme suivant afin de déterminer l'année à partir de laquelle le nombre de

cétacés dans la réserve sera inférieur à 2000.

n← 0

U← 3000

Tant que >2000

n← ···

U←···

Fin Tant que

Exercice 2:7 Points

On considère une suite (U_n) définie pour tout entier naturel non nul n par :

Mathématiques

$$U_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \frac{n}{n^2 + 3} + \dots + \frac{n}{n^2 + n}$$

1. Calculer U_1 , U_2 , U_3 et U_4 .

Pour n=1;
$$U_1 = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \frac{n}{n^2 + 3} + \dots + \frac{n}{n^2 + n} = \frac{1}{1^2 + 1} + \frac{1}{1^2 + 2} + \frac{1}{1^2 + 3} + \dots + \frac{1}{1^2 + 1} = \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2} = \frac{1 + 3}{2 + 3} + \frac{3}{2 + 3} + \frac{2}{3 + 2} + \dots + \frac{3}{2 + 3} = \frac{3 + 3 + 2 + 3}{6} = \frac{11}{6}.$$

Pour n=2;
$$U_2 = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \frac{n}{n^2 + 3} + \dots + \frac{n}{n^2 + n} = \frac{2}{2^2 + 1} + \frac{2}{2^2 + 2} + \frac{2}{2^2 + 3} + \dots + \frac{2}{2^2 + 2} = \frac{2}{5} + \frac{2}{6} + \frac{2}{7} + \dots + \frac{2}{6} = \frac{2 + 5}{6 + 5} + \frac{2 + 5}{6 + 5} + \frac{2}{7} + \dots + \frac{2 + 5}{6 + 5} = \frac{10 + 10 + 10}{30} + \frac{2}{7} = \frac{30}{30} + \frac{2}{7} = 1 + \frac{2}{7} = \frac{7}{7} + \frac{2}{7} = \frac{10}{7}.$$

$$U_3 = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \frac{n}{n^2 + 3} + \dots + \frac{n}{n^2 + n} = \frac{3}{3^2 + 1} + \frac{3}{3^2 + 2} + \frac{3}{3^2 + 3} + \dots + \frac{3}{3^2 + 3} = \frac{3}{10} + \frac{3}{11} + \frac{3}{12} + \dots + \frac{3}{12} = \frac{3}{10}$$

$$+\frac{3}{11} + \frac{6}{12} = \frac{3}{10} + \frac{3}{11} + 2.$$

- 2. Que conjecturez-vous?
- 3. Le réel U_n est la somme de n termes.
 - a) Quel est le plus grand d'entre eux ? Quel est le plus petit d'entre eux ?
 - b) Déduisez-en que pour tout entier naturel non nul n :

$$\frac{n^2}{n^2+n} \le U_n \le \frac{n^2}{n^2+1}$$

c) Pour n=1000 encadrer U_{1000} puis en déduire $\lim_{n \to +\infty} U_n$

BON COURAGE !!! OMIS