Estructuras de Patos

Gonzalo Gabriel Méndez, Ph.D.

www.ggmendez.com

DEFINICION

- * Abunda este concepto, en la vida cotidiana
 - * Cuando vamos al cine, para comprar las entradas
 - * Cuando estamos en el supermercado, en el banco, etc.
 - * Como funciona
 - Se puede decir que la cola tiene 2 extremo
 - * FRENTE, Y FINAL
 - * Todo el que llega se ubica al final de la cola
 - * Todo el que sale, lo hace por el frente de la cola
 - La cola es por turno
 - * El primero en llegar, tiene la seguridad de que será el primero en salir:

HP DeskJet 660C

Document Name

3 iobs in aueue

Printer Document View Help

Microsoft Word - TAREA_1.doc

Microsoft Word - TAREA 1.doc

Microsoft Word - TAREA 1.doc

Printing

- * FIRST IN FIRST OUT -> FIFO
- * La computadora las utiliza:
 - Para manejar la impresión de documentos, tiempo compartido, etc.

Queue -> Cola Cada documento que se manda a imprimir es "encolado", uno a uno es enviado a la impresora

0 of 1 pages

1 page(s)

1 page(s)

OPERACIONES BASICAS

- * Al suponer que existe un TDA Cola, podemos:
 - ★ Cola Q;
- * Todo TDA presenta operaciones básicas, en este caso:
 - * EnColar
 - *Insertar un elemento nuevo a la cola, al final de la misma,
 - * El final aumenta

* DesEnColar

- * Cuando un elemento es removido de la cola
- * Remueve el elemento del **frente**
- * Retorna el elemento removido
- *No se puede ejecutar si la cola **EstaVacia**

* Así como en la pila

- * Cualquier intento de acceder a elementos en una Cola Vacía:
 - * SUBDESBORDAMIENTO DE LA COLA

Interface Queue < E >

Type Parameters:

E - the type of elements held in this collection

Interface Queue < E >

Type Parameters:

E - the type of elements held in this collection

All Known Implementing Classes:

AbstractQueue, ArrayBlockingQueue, ArrayDeque, ConcurrentLinkedDeque, ConcurrentLinkedQueue, DelayQueue, LinkedBlockingDeque, LinkedBlockingQueue, LinkedList, LinkedTransferQueue, PriorityBlockingQueue, PriorityQueue, SynchronousQueue

Interface Queue < E >

Type Parameters:

E - the type of elements held in this collection

All Known Implementing Classes:

AbstractQueue, ArrayBlockingQueue, ArrayDeque, ConcurrentLinkedDeque, ConcurrentLinkedQueue, DelayQueue, LinkedBlockingDeque, LinkedBlockingQueue, LinkedList, LinkedTransferQueue, PriorityBlockingQueue, PriorityQueue, SynchronousQueue

Métodos para añadir y remover elementos

	Throws exception	Returns special value
Insert	add(e)	offer(e)
Remove	remove()	poll()
Examine	element()	peek()

Colas de Prioridad

TDA COLAS DE PRIORIDAD

- * En las colas normales
 - * Las operaciones están definidas en función del orden de llegada de los elementos
 - *Al encolar un elemento ingresa al final de la cola
 - * Al desencolar, sale del frente de la cola
 - * En una cola, los elementos esperan por ser atendidos
 - * Es justo, porque el que llega primero, se atiende primero
- * En una cola de prioridad
 - * Prioridad
 - * El orden de atención, no esta dado solo por el orden de llegada
 - * Cada elemento, tendrá asociado una cierta prioridad
 - * Cada elemento será "procesado", según su prioridad

TIPOS DE COLAS DE PRIORIDAD

- * Hay dos tipos de colas de prioridad
 - * De Prioridad Ascendente
 - * EnColar: son encolados arbitrariamente(PQEnColar)
 - * DesEnColar: se remueve el elemento mas pequeño de la cola(PQMinDesEncolar)
 - * De Prioridad Descendente
 - * EnColar: son encolados arbitrariamente
 - * DesEnColar: se remueve el elemento mas grande de la cola(PQMaxDesEncolar)
- * Las colas de prioridad pueden contener
 - * Enteros, Reales
 - * Estructuras,
 - * Estarían ordenadas en base a uno o mas campos

DESENCOLAR EN COLAS DE PRIORIDAD

- * Al **encolar** un elemento en este tipo de cola
 - * Se encola al final de los elementos con la misma prioridad
- * El **desencolar** elementos de una cola
 - * Quiere decir, que ese elemento es escogido para ser "atendido"
 - * Se elige el primer elemento con la mayor/menor prioridad
 - * En las de prioridad ascendente, por ejemplo
 - *Se busca atender primero al de menor valor en toda la cola: BUSCAR
 - *Y luego sacarlo
- * Es decir, existe un conjunto de prioridades
 - * Cada prioridad tendrá un conjunto de elementos que se comportara como una cola