1. Main Points

The primary objective of the coursework is to demonstrate the knowledge you have gathered. Focus on choosing a problem that is sufficiently challenging to showcase understanding but not overly trivial. Avoid simplistic tasks, such as a plug-in classifier, that may not adequately demonstrate your knowledge.

2. Dataset Selection

- Start by identifying a labeled open-source dataset.
- Minimize or eliminate time spent on labeling; the emphasis is on models rather than data engineering.
- No strict preferences for datasets; feel free to use any open-source dataset, including those provided in the module - always provide link or access to the dataset.

3. Problem Definition

- Clearly define the problem you intend to address and explain why it is interesting.
- Set realistic objectives, considering the limited time available.

4. Model Selection

- Choose an open-source model suitable for the identified problem.
- Provide a rationale for why the selected model is a good fit.
- Don't just use the model out of the box come-up with additions, provide the reasoning for the changes.

5. Accuracy Metrics

- Define the accuracy metrics you plan to use.
- Explain why these metrics are appropriate for the specific problem.

6. Collaboration and Approval

• Prior to starting the coursework, discuss your plan with the instructor to receive feedback.

7. Pair Work Considerations

- If working in pairs, each student must select a different section for work.
- Grades will differ based on individual contributions.

8. Reporting Guidelines

- Present important details clearly and readably.
- Enumerate tables, equations, figures, etc., and refer to them correctly in the text.
- Discuss key concepts rather than restating or rewording published papers.

9. Conciseness and Focus

Exclude discussions on basic and widely-known concepts, such as ConvNet and MLP layers, learning rate, weight decay, batch, etc. Avoid in-depth discussions on older models like (Fast) R-CNN. However make sure you reference them and specify why they are relevant to YOUR project.

- Succinctly discuss basic classifiers like ResNet, focusing on their specific methodology.
- Present mathematical ideas, such as optimizer functionality and loss functions, succinctly with equations and explanations.

10. Code Quality

- Ensure all code submitted is meaningful.
- Models must train effectively, and results should reflect the intended metrics. Your grade will suffer if your model was not able to learn anything.

11. Models that are too basic

Avoid the use of overly basic models like MLE and NNLM from Weeks 2 and 3.

12. Evaluation Criteria

- Hyperparameters and model discussions are essential, but code quality and meaningful results take precedence.
- Avoid extreme values in metrics (e.g., 100% or 0%) that may indicate bugs; strive for realistic performance.