SEMAINE DU 06/11 AU 10/11

1 Cours

Fonctions usuelles

Fonctions exponentielle, puissances, logarithme Étude générale de ces trois types de fonctions, propriétés algébriques, croissances comparées des fonctions exponentielle, puissances et logarithme.

Fonctions trigonométriques Rappel sur les fonctions trigonométriques. Les formules usuelles de trigonométrie (addition, duplication, factorisation) sont à connaître.

Fonctions trigonométriques réciproques Définition. Ensembles de départ et d'arrivée. Dérivées. Étude des fonctions. Formules usuelles.

2 Méthodes à maîtriser

- ▶ Pour étudier une expression du type $f(x)^{g(x)}$, mettre cette expression sous forme exponentielle exp $(g(x) \ln(f(x)))$.
- Savoir utiliser les croissances comparées.
- ► Connaître les intervalles de validité des identités du type $\arcsin(\sin x) = x$ ou $\sin(\arcsin x) = x$.
- Savoir utiliser l'injectivité des fonctions usuelles sur des intervalles adéquats.
- ► Savoir établir des identités par dérivation.
- ▶ Connaître les graphes de arcsin, arccos, arctan pour retrouver parité, dérivées, ensembles de définition, images, ...
- ▶ Résoudre des équations faisant intervenir des fonctions trigonométriques réciproques.

3 Questions de cours

Pour les trois premières questions de cours, la fonction ln a été définie comme l'unique primitive de $x \mapsto \frac{1}{x}$ sur \mathbb{R}_+^* s'annulant en 1.

- ► Montrer que pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $\ln(xy) = \ln x + \ln y$ puis que $\ln \frac{x}{y} = \ln x \ln y$.
- lacktriangle Établir que $\lim_{x \to +\infty} \ln x = +\infty$. On admettra qu'une fonction croissante admet une limite finie ou égale à $+\infty$ en $+\infty$.
- \blacktriangleright Établir que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$. On admettra qu'une fonction décroissante et minorée admet une limite finie en $+\infty$.
- ► Tracer le graphe des fonctions arcsin, arccos et arctan. On fera apparaître les tangentes remarquables et les asymptotes éventuelles.
- ▶ Justifier la dérivabilité des fonctions arcsin, arccos et arctan sur des intervalles adéquats et déterminer leurs dérivées.
- ► Montrer que pour tout $x \in \mathbb{R}^*$, $\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$.
- ► Montrer que pour tout $x \in [-1, 1]$, $\arccos x + \arcsin x = \frac{\pi}{2}$.
- ▶ Montrer que pour tout $x \in [-1, 1]$, $\sin(\arccos x) = \cos(\arcsin x) = \sqrt{1 x^2}$.