Jalen Powell

November 18, 2022

COMP 3500

Project 5

Question 1:

a)

First-fit

- 1. 212K is put in the 500K partition.
- 2. 417K is put in the 600K partition.
- 3. 112K is put in the 288K partition (new partition 288K = 500K 212K).
- 4. Now the 426K must wait its turn.

Best-fit

- 1. 212K is put in the 300K partition.
- 2. 417K is put in the 500K partition.
- 3. 112K is put in the 200K partition.
- 4. 426K is put in the 600K partition.

Worst-fit

- 1. 212K is put in the 600K partition.
- 2. 417K is put in the 500K partition.
- 3. 112K is put in the 388K partition.
- 4. Now the 426K must wait its turn.

b)

The Best-fit algorithm works the best out of the three. It was the only one to meet all the memory requests.

Question 2:

- **a**) 30000
 - 30000 = 11101 01001 10000
 - Page $\# = (11101)_2 = 29$
 - Offset = $(0100110000)_2 = 304$

- **b**) 256
 - 256 = 100000000
 - Page # = 0
 - Offset = 256
- **c)** 16385
 - $16385 = 10000\ 00000\ 00001$
 - Page $\# = (10000)_2 = 16$
 - Offset = $(0000000001)_2 = 1$

Question 3:

1024 words using 10 bits is accessed as $2^{10} = 1024$

32 pages using 5 bits is accessed as $2^5 = 32$

16 frames using 4 b its can be accessed as $2^4 = 16$

- a) The bits required for the logical address are $\underline{15}$. (5 + 10 = 15)
- **b**) The bits required for the physical address are $\underline{14}$. (4 + 10 = 14)

Question 4:

- **a**) 1, 10
 - The physical address for 1, 10 is 2310. (2300 + 10)
 - The physical address for 3, 400 is $\frac{1727}{1}$. (1327 + 400)
 - The physical address for 4, 112 has a segmentation error as 112 > 96.

Question 5:

Best-fit:

OS
6
In use
17
In use
25
In use

1	4
	9

13K program will be inserted to segment as size "14" in best fit.

First-fit:

OS
6
In use
17
In use
25
In use
14
19

^{*}First segment where the program of size 13K can be inserted is "17"*

Worst-fit

OS
6
In use
17
In use
25
In use
14

19		

The program of size 13K will be inserted to segment of size "25" in worst case

Question 6:

a)

Logical Mapping

Page No	Contents
0	A
	В
	С
	D
1	Е
	F
	G
	Н
2	I
	J
	K
	L
3	M
	N
	О
	P
4	Q
	R
	S
	Т

5	U
	V
	-
	-

Physical Mapping

Frame No	Contents
7	A
	В
	С
	D
26	Е
	F
	G
	Н
52	I
	J
	K
	L
20	M
	N
	О
	P
55	Q
	R
	S
	Т

6	U
	V
	-
	-

b)

Page Table

Page No	Frame No
0	7
1	26
2	52
3	20
4	55
5	6

c)

Page size = 4

The physical address of m is 80. ((4*20) + 0)

The physical address of d is 31. ((4*7) + 3)

The physical address of v is $\underline{25}$. ((4*6) +1)

The physical address of r is $\underline{221}$. ((4*55) + 1)

d)

The size of each instruction is 1 byte with two vacant spaces in the final frame. The vacant space is 2 bytes. No external fragmentation will be present as the space can be used if any instruction comes. Once a frame is used, it can not be touched a second time. This means the internal fragmentation is of size 2.

External Fragmentation = 0

Internal Fragmentation = 2