Intro to NME

| Driving forces and potentials

Description	Equations
Avogadro's number (Critical parameter of amount of particles to resist fluctuations)	$N_A = 6.02 imes 10^{23}~ m mol^{-1}$
Fick's law $ec{J}_{AB}~[{ m mol}/({ m m}^2{ m s})]$ - diffusive flux $D_{AB}~[{ m m}^2/{ m s}]$ - binary diffusion coefficient $ abla c_A$ - concentration gradient	$ec{J}_{AB} = -D_{AB} abla c_A$

| Scaling laws

Description	Equations
Power density of engines	$rac{P}{V} = rac{Fv}{V}$
Scaling law of power density	$rac{P}{V} \propto rac{1}{L}$
Terminal velocity of droplets	$v_t = rac{2gr^2(ho_{ m sphere} - ho_{ m air})}{9\eta}$
Scaling law of terminal velocity	$v_t \propto L^2$

| Electric transport properties

Description	Equations
Bohr's radius (Critical length scale parameter for discrete excited electronic states)	$a_0=rac{4\piarepsilon_0(rac{h}{2\pi})^2}{m_e e^2}$
Ohm's law $ec{J}$ - electric current density (flux) $\sigma~[{ m Sm}^{-1}]$ - electric conductivity $ abla V$ - electric potential gradient	$ec{J} = \sigma abla V$
Ohm's law $G_e~[{ m S}=\Omega^{-1}]$ - electric conductance	$G_e = rac{1}{R} = rac{I}{V}$
Mean free path	$\lambda = rac{k_B T}{\sqrt{2} \pi P d^2}$
$\begin{tabular}{ll} \textbf{Drude model} \\ \textbf{Microscopic description - electric conductivity in 3D} \\ & \sigma \text{ - electric conductivity} \\ & \lambda \text{ - mean free path} \\ & \overline{c} \text{ - mean electron gas velocity} \\ \end{tabular}$	$\sigma = rac{\lambda e^2 n ar{c}}{6 k_B T}$

Description	Equations
Electric conductivity in 1D N_e - transmission probability, # of electronic states (modes) at Fermi level L - length of conuctor	$\sigma = rac{2e^2N_e}{hL}$
Electric conductance in 3D	$G_e = rac{\lambda e^2 n \overline{c}}{6 k_B T} rac{A}{L} \propto rac{1}{L}$
Electric conductance in 1D	$G_e = rac{2e^2}{h} N_e$

| Thermo transport properties

Description	Equations
Volumetric heat capacity at constant pressure	$C_V = ho c_P$
Thermal diffusivity	$lpha = rac{k_c}{C_V} = rac{k_c}{ ho c_P}$
Fourier's law $ec q \ [{ m Wm^{-2}}]$ - heat flux $k_c \ [{ m Wm^{-1}K^{-1}}]$ - thermal conductivity $ abla T$ - temperature gradient	$ec{q} = -k_c abla T$
Fourier's law $ec{J}$ - heat flux (?) $lpha$ - thermal diffusivity $ abla T$ - temperature gradient	$ec{J}=rac{ec{q}}{C_V}=-lpha abla T$
Microscopic description	$k_c=rac{1}{2}nar{c}\lambda k_B$
Thermal conductance in 3D	$G_{th}=k_crac{A}{L}\proptorac{1}{L}$
Thermal conductance in 1D N_{ph} - # of phonons	$G_{th}=rac{\pi^2k_B^2T}{3h}N_{ph}$

| Miniaturization effect on surface energy and strain

Description	Equations
Surface stress $ \gamma \; [\mathrm{Jm}^{-2}] \text{ - surface energy per area of solid} $ $ \gamma \; [\mathrm{F/m}] \text{ - surface tension of liquid} $ $ \varepsilon \text{ - strain} $ $ \frac{\partial \gamma}{\partial \varepsilon} \text{ - stored mechanical energy in solid} $ $ \left(\frac{\partial \gamma}{\partial \varepsilon} = 0 \right) \text{ for liquid} $	$f=\gamma+rac{\partial \gamma}{\partial arepsilon}$
Surface energy/tension	$\gamma = E_{ m coh,surface} - E_{ m coh,inside}$
Isotropic pressure f - surface stress D - diameter of particle	$P=rac{4f}{D}$
Scaling law of elastic strain $arepsilon$ - strain K - bulk modulus	$arepsilon = -rac{P}{3K} = -rac{4}{3}rac{f}{K}rac{1}{D} \propto rac{1}{D}$

Atomic Theory of Matter

| Blackbody radiation

Description	Equations
Wein's displacement law λ_{\max} - maximum of irradiation spectrum	$\lambda_{ m max}T=2.898 imes10^{-3}~{ m m\cdot K}$
$I \ [\mathrm{Wm}^{-2}] \ \text{- radiation power}$ $I_{\lambda} \ [\mathrm{Wm}^{-3}] \ \text{- spectral irradiation}$ $\varepsilon \ \text{- emissivity}$ $\sigma \ \text{- Stefan-Boltzmann constant}$	$egin{aligned} I &= \int_0^\infty I_\lambda \; d\lambda = arepsilon \sigma T^4 \ (\sigma &= 5.67 imes 10^{-8} \; \mathrm{Wm}^{-2} \mathrm{K}^{-4}) \end{aligned}$
Radiation power	P=IA
Rayleigh-Jeans' average mode energy of photon	$\langle E angle = rac{1}{2} k_B T$
Rayleigh-Jeans radiation law k_B - Boltzmann's constant	$egin{aligned} I_{\lambda}(\lambda) &= rac{2\pi c k_B T}{\lambda^4} \ I_{ u}(u) &= rac{8\pi u^2 k_B T}{c^3} \end{aligned}$
Planck's average mode energy of photon	$\langle E angle = rac{h u}{e^{h u/k_B T} - 1}$
Planck's radiation law $\it u$ - energy density	$egin{aligned} u_{\lambda}(\lambda) &= rac{8\pi hc}{\lambda^5} rac{1}{e^{hc/\lambda k_BT}-1} \ u_{ u}(u) &= rac{8\pi h u^3}{c^3} rac{1}{e^{h u/k_BT}-1} \end{aligned}$
Planck's law confirms Stefan-Boltzmann law I - radiation intensity σ - Stefan-Boltzmann constant	$egin{aligned} I(u) &= \sigma T^4 \ \sigma &= rac{2\pi^5 k_B^4}{15c^2h^3} \end{aligned}$
Energy of an EM mode	$E_n=nh u$

| Photoelectric effect

Equations
$\Delta E = h u$
$\Phi=e\phi$
$E_k = h u - e \phi$
$h u \geq e\phi$
$E=mc^2$

| Wave-particle duality

Description	Equations
Classical linear momentum	$p=mv=\sqrt{2mE}$
Photon linear momentum	$p=rac{h u}{c}=rac{h}{\lambda}$
de Broglie wavelength of particle	$\lambda = rac{h}{mv} = rac{h}{\sqrt{2mE_k}}$

Description	Equations
Davisson-Germer experiment (electron diffraction constructive interference)	$n\lambda=2d\sin heta$
Bragg's law	$rac{1}{\lambda} = rac{n}{2d\sin heta}$
Bragg-de Broglie relation	

Atomic Model

| Bohr's model of atoms

Equations
$egin{aligned} rac{1}{\lambda} &= R_H \left(rac{1}{n_1^2} - rac{1}{n_2^2} ight) \ R_H &= 1.097 imes 10^7 ext{ m}^{-1} \end{aligned}$
$2\pi r=n\lambda$
$E_n=rac{-m_ee^4}{8arepsilon_0^2h^2}rac{1}{n^2}$
$egin{align} h u&=\Delta E\ &=-rac{m_e e^4}{8arepsilon_0^2 h^2}\left(rac{1}{n_j^2}-rac{1}{n_i^2} ight)\ &=-13.6~\mathrm{eV}\left(rac{1}{n_j^2}-rac{1}{n_i^2} ight) \end{array}$
$\mu = rac{m_e m_p}{m_e + m_p}$
$\hbar=rac{h}{2\pi}$
$R_H=R_\inftyrac{\mu}{m_e}=rac{\mu e^4}{8arepsilon_0^2h^3c}$
$a_0 = rac{4\piarepsilon_0 \hbar^2}{m_e e^2} pprox 0.053 ext{ nm}$
$a_0^* = rac{4\piarepsilon_0 \hbar^2}{\mu e^2} pprox 0.053 ext{ nm}$
$E_I=rac{-\mu e^4}{8arepsilon_0^2 h^2}=-13.6~\mathrm{eV}$

| Dispersion relations

Description	Equations
Wave equation of traveling wave	$u(x,t) = A\sin(kx - \omega t + \phi)$

Description	Equations
Wave number	$k=rac{2\pi}{\lambda}$
Angular frequency	$\omega=2\pi u=rac{2\pi}{\lambda}c=kc$
Period	$T=rac{1}{ u}=rac{\lambda}{c}$
Dispersion relation of EM wave	$\omega(k)=ck$
Dispersion relation of particle wave	$\omega(k)=rac{\hbar}{2m}k^2$

| Single slit experiment

Description	Equations
Variables	a - width of the slit L - distance between slit and screen p - integer destructive interference # $p=\pm 1, \pm 2, \pm 3, \ldots$
Destructive interference	$\phi=p\lambda=a\sin heta$
Constructive interference	$\phi = (p + rac{1}{2})\lambda = a\sin heta$
Location of destructive interference	$y_p=prac{\lambda L}{a}$
Location of constructive interference	$y_p = (p + rac{1}{2}) rac{\lambda L}{a}$

| Double slit experiment

Description	Equations
Variables	δ - path difference of two diffracting waves d - distance between two slits L - distance between slit and screen m - integer constructive interference # $m=0,\pm 1,\pm 2,\pm 3,\ldots$
Constructive interference	$\delta = m\lambda = d\sin heta$
Destructive interference	$\delta = (m + rac{1}{2})\lambda = d\sin heta$
Location of constructive interference	$y_m=mrac{\lambda L}{d}$
Location of destructive interference	$y_m = (m+rac{1}{2})rac{\lambda L}{d}$
Intensity of macroscopic particle and quantum particle with observation	$I=I_1+I_2$
Intensity of wave and quantum particle	$I=I_1+I_2+2\sqrt{I_1I_2}\cos\delta$

| Heisenberg uncertainty principle

Description	Equations
Heisenberg uncertainty principle position-momentum form	$\Delta x \Delta p \geq rac{\hbar}{2}$
Heisenberg uncertainty principle energy-time form	$\Delta E \Delta t \geq rac{\hbar}{2}$
Macroscopicity	$10^{\mu} \propto rac{ au_p}{ au_e}$

Wave Function

| The Schrodinger equation

Description	Equations
Wave function	$\Psi(x,t)=\Psi_0 e^{i(kx-\omega t)}$
Wave function as probability density	$P= \Psi(x) ^2$
Linear momentum operator	$\hat{p_x} = -i\hbarrac{\partial}{\partial x} \implies p_x$ as eigenvalue
Time operator	$\hat{t} = -i\hbarrac{\partial}{\partial t} \implies E$ as eigenvalue
Hamiltonian operator	$\hat{H} = -rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2} + V(x) \implies E$ as eigenvalue
Time-dependent wave equation for free particle	$i\hbarrac{\partial}{\partial t}\Psi(x,t)=-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}\Psi(x,t)$
Time-dependent Schrodinger equation (particle with potential constraint)	$i\hbarrac{\partial}{\partial t}\Psi=\left(-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}+V(x) ight)\Psi$
Time-independent Schrodinger equation	$\left(-rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}+V(x) ight)\psi=E\psi$
Time-independent Schrodinger equation (operator form)	$\hat{H}\psi=E\psi$

| Particle in infinite 1D box

Description	Equations
Potential function	$V(x) = egin{cases} 0 & (0,L) \ \infty & (-\infty,0) \cup (L,\infty) \end{cases}$
SE inside the box	$rac{d^2\psi}{dx^2}+k^2\psi=0$
General solution	$\psi_n(x) = \sqrt{rac{2}{L}} \sin\left(rac{n\pi x}{L} ight)$
Quantized wave number	$k_n=rac{n\pi}{L}$
Quantized momentum	$p_n=\hbar k_n=rac{n\pi\hbar}{L}$
Quantized energy level	$E_n = rac{p_n^2}{2m} = rac{(n\pi\hbar)^2}{2mL^2} = n^2 E_1$

| Quantum structures

Description	Equations
General continuous energy spectrum in non-confined dimensions	$E_i = rac{\hbar^2 k_i^2}{2m}$
General discrete energy spectrum in confined dimension	$E_{n_i}=rac{\hbar^2\pi^2}{2mL^2}n_i^2$
Total energy	$E=E_x+E_y+E_z$
General wave function	$\psi_{n_x}(x) = \sqrt{rac{2}{L}} \sin\left(rac{n_x \pi x}{L} ight)$

| The hydrogen atom

Description	Equations
Potential function	$V(r)=rac{-e^2}{4\piarepsilon_0 r}$
Energy level of electrons in H atom	$E_n=rac{-m_ee^4}{8arepsilon_0^2h^2}rac{1}{n^2}$
Wave function of electrons in H atom	$\psi_{100} = rac{1}{\sqrt{\pi}} \left(rac{1}{a_0} ight)^{3/2} e^{-r/a_0}$
Principle quantum number	$n=1,2,3,\dots$
Orbital (angular momentum) quantum number	$l=0,1,2,\dots,n-1$
Magnetic quantum number	$m_l = -l, \ldots, -1, 0, 1, \ldots, l$
Spin quantum number	$m_s=rac{1}{2},-rac{1}{2}$

Nanoscience & Technology

| Electron transport through 1D quantum wire

Description	Equations
Variables	μ - electrochemical potential of electrode M - mode number (single node: $M=1$) S - source; D - drain
Electrochemical potential difference between source and drain	$eV_{ m bias} = \mu_S - \mu_D$
Current in 1D quantum wire (single mode)	$I=rac{2q}{h}(\mu_S-\mu_D)=rac{2q^2}{h}V_{ m bias}$
Quantum conductance (single mode)	$G_Q=rac{2q^2}{h}pprox 7.75 imes 10^{-5}~{ m S}$
Quantum resistance (single mode)	$R=rac{h}{2q^2}pprox 12.9~ ext{k}\Omega$
Current in 1D quantum wire (multi-mode)	$I = rac{2qM}{h}(\mu_S - \mu_D) = rac{2q^2M}{h}V_{ m bias}$
Quantum conductance (multi-mode)	$G_Q=rac{2q^2M}{h}$
Quantum resistance (multi-mode)	$R=rac{h}{2q^2M}$

| Particle in finite 1D box

Description	Equations
Finite potential	$V(x) = egin{cases} V & (-\infty,0) \cup (L,\infty) \ 0 & (0,L) \end{cases}$
Wave number	$k=\sqrt{rac{2mE}{\hbar^2}}$
Modified wave number	$k'=\sqrt{rac{2m}{\hbar^2}(V-E)}$
Wave function on the left	$\psi_1(x) = C_1 e^{ik^*x}$
Wave function in the middle	$\psi_2(x) = A_1 \sin(kx) + A_2 \cos(kx)$
Wave function on the right	$\psi_3(x) = C_2 e^{-ik^{\cdot}x}$

| Tunneling effect

Description	Equations
Wave number	$k=\sqrt{rac{2mE}{\hbar^2}}$
Modified wave number	$k' = \sqrt{rac{2m}{\hbar^2}(V-E)}$
Wave function on the left	$egin{aligned} \psi_1(x) &= \psi_{ ext{incid}}(x) + \psi_{ ext{refl}}(x) \ \psi_{ ext{incid}}(x) &= Ae^{ikx} \ \psi_{ ext{refl}}(x) &= Be^{-ikx} \end{aligned}$
Wave function in the barrier	$\psi_2(x) = Ce^{ik'x} + De^{-ik'x}$
Wave function on the right	$\psi_3(x) = \psi_{ ext{trans}}(x) = F e^{ikx}$
Transmission probability	$egin{aligned} T(L,V,E) &= rac{ \psi_{ ext{trans}}(x) ^2}{ \psi_{ ext{incid}}(x) ^2} \ &pprox 16rac{E}{V}\left(1-rac{E}{V} ight)e^{-k^{\prime}L} \ &pprox rac{1}{2}e^{2k^{\prime}L} \end{aligned}$
Work function with trapezoidal approximation at junction	$\Phi=rac{1}{2}(\Phi_1+\Phi_2- eV_{ m bias})$
Tunnel current $D_s(E_F)$ - density of states at Fermi level	$I_t \propto V_{ m bias} D_s(E_F) \exp\left(-\sqrt{rac{8m}{\hbar^2}(\Phi-E)}L ight)$

| Energy discretization of nanoparticles

Description	Equations
Spacing between energy levels	$\Delta E = rac{4}{3}rac{E_F}{N_e}$
Energy level and thermal noise	$\Delta E egin{cases} \ll k_B T & ext{not quant. confined, continuous} \ > k_B T & ext{quant. confined, discrete} \end{cases}$
Conductor-insulator classification	$\Delta E = rac{4}{3}rac{E_F}{N_e} = k_B T$

Description	Equations
Number of electrons that can have discrete energy level	$N_e < rac{4}{3} rac{E_f}{k_B T}$

| Single electron box

Description	Equations
Variables	t - tunnel; g - gate; c - charging
Total capacitance	$C_{ m dot} = C = C_t + C_G$
Gate voltage	$V_G = rac{q_1}{C_t} + rac{q_2}{C_G}$
System energy	$E_{ ext{sys}} = rac{q_1^2}{2C_t} + rac{q_2^2}{2C_G}$
Charging energy	$E_c=rac{e^2}{2C}$
Quantum kinetic energy V - volume of QD $D_s(E)$ - density of states	$E_k = rac{1}{V D_s(E_F)}$
Electron addition energy	$E_a=E_c+E_k$
Thermal noise requirement of single electron box (Coulomb blockade)	$E_c\gg k_BT \ E_c>10k_BT$
Quantum noise requirement of single electron box	$R_t\gg rac{h}{e^2}pprox 25.8 \mathrm{k}\Omega$
RC time constant	$ au=R_tC$
Gibbs free energy	$\mathcal{F} = H - TS$
Gibbs free energy at equilibrium (Coulomb parabola potential)	$\mathcal{F}(n,V_G) = rac{(C_G V_G - ne)^2}{2C} \propto V_G^2$
Coulomb parabola potential conditions	$\mathcal{F} = egin{cases} 0 & ext{if } C_G V_G = ne \ E_c & ext{if } C_G V_G = (n+1)e \end{cases}$
Capacitance of quantum dots \emph{d} - diameter	$C_{ m dot} = G arepsilon arepsilon_0 d$
Geometric factor	$G = egin{cases} 2\pi & ext{sphere} \ 4 & ext{disc} \end{cases}$

| Single electron transistor

Description	Equations
Charging energy	$E_c = rac{e^2}{2C_{ m dot}}$
Charging energy Q_0 - polarization charge ne - uncompensated electrons	$E_c = rac{(Q_0 - ne)^2}{2C_{ m dot}}$
Charging voltage	$V_g = rac{E_c}{e} = rac{e}{2C_{ m dot}}$

Description	Equations
Capacitance of quantum dot	$C_{\mathrm{dot}} = C_{t_1} + C_{t_2} + C_G$

Electronic Structure of Molecules

| The hydrogen atom (revisited)

Description	Equations
Potential function	$V(r)=rac{-e^2}{4\piarepsilon_0 r}$
Energy level of electrons in H atom	$E_n = rac{-m_e e^4}{8 arepsilon_0^2 h^2} rac{1}{n^2} = -13.6 ext{ eV} rac{1}{n^2}$
Bohr radius	$a_0 = rac{4\piarepsilon_0 oldsymbol{\hbar}^2}{m_e e^2} pprox 0.053 ext{ nm}$
Wave function	$\psi({f r})=R(r)Y(heta,\phi)$
Angular component of wave function	$Y(heta,\phi)=\Theta(heta)\Phi(\phi)$
Wave function in ground state	$\psi_{100} = rac{1}{\sqrt{\pi}} \left(rac{1}{a_0} ight)^{3/2} e^{-r/a_0}$
Wave function in $n,0,0$ state	$\psi_{n00}=rac{R_n(r)}{\sqrt{4\pi}}$
Probability density function	$ ho_{nlm} = \psi_{nlm} ^2 = \psi \psi^*$
Radial probability density	$P_{nl}(r)= R_{nl} ^2r^2$
Number of radial nodes	n-l-1

| Angular momentum

Description	Equations
Angular momentum operator in z direction	$\hat{L}_z=i\hbar(xrac{\partial}{\partial y}-yrac{\partial}{\partial x})$
Orbital angular momentum in \boldsymbol{z} direction	$L_z=m_l\hbar$
Angular momentum magnitude operator	$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$
Orbital angular momentum	$L=\hbar\sqrt{l(l+1)}$
Spin angular momentum in \boldsymbol{z} direction	$S_z=m_s\hbar$
Spin angular momentum	$S=\hbar\sqrt{s(s+1)}$
Total angular momentum in \boldsymbol{z} direction	$J_z=m_j\hbar$
Total angular momentum	$J=\hbar\sqrt{j(j+1)}$
spin angular momentum quantum number	$s=rac{1}{2},m_s=\pmrac{1}{2}$
Spin-orbit coupling	$j=l\pm s$
Energy degeneracy considering spin	$2n^2$

| Bonding in molecules

Description	Equations
Bonding (symmetric linear combination)	$\psi_g = \psi_1 + \psi_2$
Anti-bonding (asymmetric linear combination)	$\psi_u = \psi_1 - \psi_2$

| Electronic states

Note: the mass here are electron mass.

Description	Equations
Fermi-Dirac distribution	$f(E) = rac{1}{\exp\left(rac{E-E_f}{k_BT} ight) + 1}$
Fermi energy in 3D at 0 K	$E_F=rac{\hbar^2 k_F^2}{2m}=rac{\hbar^2}{2m}\left(3\pi^2 n_e ight)^{2/3}$
Fermi wave number in 3D at 0 K	$k_F=rac{1}{\hbar}\sqrt{2mE_F}=\left(3\pi^2n_e ight)^{1/3}$
Fermi velocity approximation in 3D	$v_F=rac{\hbar k_F}{m}=rac{\hbar}{m}(3\pi^2n_e)^{1/3}$
Wavelength in 3D at 0 K	$\lambda_F = rac{2\pi\hbar}{mv_F}$
Density of states (general)	$D_s(E) = rac{dN}{dE}rac{1}{V}$
Density of states in 3D at 0 K	$D_s^{ m 3D}(E) = rac{8\sqrt{2}\pi m^{3/2}}{h^3} \sqrt{E}$
Density of states in 2D at 0 K $(0 < E < E_1)$	$D_s^{ m 2D}(E)=rac{4\pi m}{h^2}$
Density of states in 1D at 0 K	$D_s^{ m 1D}(E) = rac{\sqrt{2m}}{h} rac{1}{\sqrt{E}}$
Density of states in 0D at 0 K	$D_s^{0\mathrm{D}}(E)=2$
Number density of electron (general)	$n_e(E) = rac{N}{V} = \int_0^\infty f(E) D(E) \ dE$
Number density of electron in 3D at 0 K	$n_e^{ m 3D} = rac{16\sqrt{2}\pi m^{3/2}}{3h^3} E_F^{3/2}$
Number density of electron in 2D at 0 K	$n_e^{ m 2D} = rac{4\pi m}{h^2} E_F$
Number density of electron in 1D at 0 K	$n_e^{ m 1D} = rac{2\sqrt{2m}}{h}\sqrt{E_F}$
Number density of electron in 0D at 0 K	$n_e^{0\mathrm{D}} = 2E_F$

| Semiconductor carriers

Description	Equations
Band gap	$E_g=E_c-E_v$
Density of state of electrons (conduction band)	$D_c(E) = rac{8\sqrt{2}\pi m_e^{*3/2}}{h^3}\sqrt{E-E_c}$
Density of state of holes (valance band)	$D_v(E) = rac{8\sqrt{2}\pi m_h^{*3/2}}{h^3} \sqrt{E_v - E}$

Description	Equations
Fermi-Dirac distribution for electrons	$f(E) = rac{1}{1 + \exp(rac{E - E_F}{k_B T})}$
Fermi-Dirac distribution for holes	1-f(E)
Boltzmann approximation	$E-E_F\gg k_BT$
Effective density of state of electrons in 3D	$N_c^{ m 3D} = N_{e,{ m eff}} = 2 \left(rac{2\pi m_e^* k_B T}{h^2} ight)^{3/2}$
Effective density of state of holes in 3D	$N_v^{ m 3D} = N_{h,{ m eff}} = 2 \left(rac{2\pi m_h^* k_B T}{h^2} ight)^{3/2}$
Effective density of state in 2D (use appropriate mass)	$N^{ m 2D} = rac{m^*k_BT}{\pi\hbar^2}$
Effective density of state in 1D (use appropriate mass)	$N^{ m 1D} = \sqrt{rac{m^*k_BT}{2\pi\hbar^2}}$
Effective density of state in 0D (use appropriate mass)	$N^{0\mathrm{D}}=2$
Electron (carrier) density	$n_e(E)pprox N_{e, ext{eff}}\exp\left(-rac{E_c-E_F}{k_BT} ight)$
Hole (carrier) density	$n_h(E)pprox N_{h, ext{eff}}\exp\left(-rac{E_v-E_F}{k_BT} ight)$
Intrinsic carrier density	$n_i = \sqrt{N_c N_v} \exp\left(-rac{E_g}{2k_B T} ight)$
Exciton separation distance	$a_{ m ex} = a_0 rac{arepsilon}{m_{ m ex}/m_e}$

| Semiconductor doping

Description	Equations
Variables	oc - open circuit bi - built-in sc - short circuit
Solar cell conductivity μ - electron mobility	$K \propto \mu n_i$
Open-circuit voltage (p-n solar cells) N_a - donor atom concentration Δn - excess electrons generated by photons (photocurrent) $q=e$ - elementary charge	$egin{aligned} V_{ ext{oc}} &= rac{E_{ ext{HL}}}{q} = rac{E_{F_n} - E_{F_p}}{q} \ &= rac{k_B T}{q} \ln \left(rac{(N_a + \Delta n) \Delta n}{n_i^2} ight) \ &pprox rac{k_B T}{q} \ln \left(rac{I_{ph}}{I_0} ight) \end{aligned}$
Built-in voltage (p-n diode)	$egin{aligned} V_{ ext{bi}} &= rac{E_{F_n} - E_{F_p}}{q} \ &= rac{k_B T}{q} \ln \left(rac{N_a N_d}{n_i^2} ight) \end{aligned}$
Relationship between open circuit and built-in voltages	$egin{aligned} V_{ m oc} < V_{ m bi} \ V_{ m bi} = V_{ m oc} + rac{2k_BT}{q} \end{aligned}$

Description	Equations
Depletion width	$w = \sqrt{rac{2arepsilon_r arepsilon_0 (N_a + N_d)}{q N_a N_d} V_{ ext{eff}}}$
Fill factor	$ ext{FF} = rac{P_{ ext{max}}}{V_{ ext{oc}}I_{ ext{sc}}}$
Efficiency	$\eta = rac{P_{ m max}}{P_{ m in}} = rac{({ m FF})V_{ m oc}I_{ m sc}}{P_{ m in}}$

Molecular Modes and Energetic Properties

Energy: Electronic \gg Vibrational \gg Rotational \gg Thermal noise $(k_BT)\gg$ Translational

| Vibration modes of diatomic molecules

Description	Equations
Spring potential	$V(x)=rac{1}{2}k_sx^2$
Frequency of quantum harmonic oscillator $m_1\gg m_2=m$	$ u=rac{1}{2\pi}\sqrt{rac{k_s}{m}}$
Energy levels of quantum harmonic oscillators	$E_n=(n+rac{1}{2})h u \ n=0,1,2,\ldots$
Zero-point energy	$E_0=rac{1}{2}h u$
Equidistant energy levels	$\Delta E_{ m vib} = h u_{ m vib}$
Reduced mass	$\mu=rac{m_1m_2}{m_1+m_2}$
Frequency of quantum harmonic oscillator $m_1 \ m_2$	$ u=c ilde{ u}=rac{1}{2\pi}\sqrt{rac{k_s}{\mu}}$
Vibrational wave number of quantum harmonic oscillator	$ ilde{ u}=rac{1}{\lambda}=rac{1}{2\pi c}\sqrt{rac{k_s}{\mu}}$
Wave number of quantum harmonic oscillator	$k_{\lambda}=rac{2\pi}{\lambda}=rac{1}{c}\sqrt{rac{k_{s}}{\mu}}$
Dissociation energy D_e and actual dissociation energy D_0	$D_0=D_e+rac{1}{2}h u$
Morse potential r_e - equilibrium position, bond length a - inverse width of Morse potential	$egin{aligned} V(r) &= D_e (1 - e^{-a(r-r_e)})^2 \ a &= \sqrt{rac{k_s}{2D_e}} = \omega \sqrt{rac{\mu}{2D_e}} \end{aligned}$
Vibrational temperature	$\Theta_{ m vib} = rac{h u}{k_B}$
Vibrational energy	$E_{ m vib} = k_B \Theta_{ m vib}$

| Rotational modes of diatomic molecules

Description	Equations
Angular velocity (frequency)	$\omega=2\pi u$
Linear velocity	$v_i=r_i\omega$
Moment of inertia	$I=m_1 r_1^2 + m_2 r_2^2 = \mu R^2$

Description	Equations
Kinetic energy of rigid rotor	$E_k=rac{1}{2}I\omega^2$
Rotational constant	$egin{aligned} B &= rac{\hbar^2}{2I} \ ilde{B} &= rac{B}{hc} = rac{h}{8\pi^2 cI} ext{ [cm}^{-1} ext{]} \end{aligned}$
Rotational temperature	$\Theta_{ m rot} = rac{B}{k_B} = rac{\hbar^2}{2Ik_B}$
Rotational energy	$E_{ m rot} = k_B \Theta_{ m rot}$
Energy of rigid rotor	$egin{aligned} E_J &= J(J+1)rac{\hbar^2}{2I} \ &= J(J+1)B \ &= J(J+1)k_B\Theta_{\mathrm{rot}} \end{aligned}$
Probability of being in a particular rotational energy state	$f_J = (2J+1) \exp(-J(J+1)\Theta_{ m rot}/T)$
Energy for absorption	$\Delta E_{ m rot}^{J o J-1}=2B(J+1)$
Energy for emission	$\Delta E_{ m rot}^{J ightarrow J+1}=2BJ$
Separation between transitions	$\Delta(\Delta E_{\mathrm{rot}}^{J o J-1})=\Delta(\Delta E_{\mathrm{rot}}^{J o J+1})=2B$
Non-degenerate translational energy level in 1D	$E_n^{ m 1D} = rac{n^2 h^2}{2mL^2}$
Non-degenerate translational energy level in 3D	$E_{n}^{ m 3D}=rac{h^{2}}{8m}\left(rac{n_{x}^{2}}{L_{x}^{2}}+rac{n_{y}^{2}}{L_{y}^{2}}+rac{n_{z}^{2}}{L_{z}^{2}} ight)$

| Polyatomic molecules

Degree of freedom	Linear molecule with \boldsymbol{n} atoms	Nonlinear molecule with n atoms
Translational	3	3
Rotational	2	3
Vibrational	3n-5	3n-6

Equations
$I_{ m IR} \propto \left(rac{du_D}{d\xi} ight)^2$
$E_J=rac{J(J+1)\hbar^2}{2I} \ J=0,1,2,\ldots$
$g_J=2J+1$
$I=\sum\limits_{i=1}^n m_i(x_i-x_{cm})^2$

| Lattice vibration and phonon

Description	Equations
Harmonic potential	$V(r_i-r_j)=\sum\limits_{i,j}rac{1}{2}m\omega^2(r_i-r_j)$
Energy of phonon (lattice vibration) in 3D	$E^{ m 3D}_{n_x,n_y,n_z}=(n_x+n_y+n_z+rac{3}{2})\hbar\omega \ n=0,1,2,\dots$
Debye frequency Upper limit of dispersion frequency $\it n$ - atom number density	$\omega_D=6\pi^2 n c_{ m sound}^3$