D I V U L G A Ç Ã O revista de ensino de física vol. 9 nº 1 out/1987

PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA: UMA PROPOSTA DIDÁTICA ROBERTO THUT MEDEIROS*

Na comemoração dos trezentos anos da publicação dos "Princípios Matemáticos da Filosofia Natural", o "Principia", causa-nos es tranheza que esse livro fundamental e riquíssimo continue, em geral, ausente das salas de aula dos cursos de Física e Matemática.

Salvo raras exceções, o livro de Sir Isaac Newton tornou-se uma relíquia, objeto de interesse apenas dos historiadores da ciência. Muitos professores têm receio de incluírem obras originais em sua bibliografia, argumentando complexidade de conceitos e demonstrações e obscuridade na linguagem. Como veremos, pelo menos no que se refere ao "Principia", qualquer aluno que tenha cursado o primeiro semestre dos cursos de Cálculo e Geometria Analítica está apto a entender a maior parte dos lemas e proposições que Newton criou em seu livro. Quanto à obscuridade na linguagem, parece-nos um exercício extremamente fértil quando se propõe ao aluno que tente modernizá-la, isto é, traduzir a notação das demonstrações para uma notação atual, uma vez que isso só poderá ser realizado se ele dominar o corpo de conceitos envolvido. Além disso, ele poderá observar como a mecânica foi criada: os raciocínios, os procedimentos, os limites que existiam na época.

Assim sendo, nosso objetivo com esse artigo é menos apresentar um trabalho completo e rigoroso do que indicar exemplos que justifiquem o que expusemos acima. Na primeira parte fizemos um esboço histórico do desenvolvimento do cálculo até o século XVII. Passamos então a discutir uma das proposições do "Principia", procurando trazê-la para uma linguagem atual.

INTRODUÇÃO HISTÓRICA

A preocupação com o infinitesimal é bastante antiga. Podemos citar nomes como Eudoxo de Cnido e Arquimedes que tentaram re-

^{*}O presente trabalho originou-se de um seminario dado pelo autor em 1986, no curso de Métodos da Física Teórica, ministrado pelo profes sor A. L. da Rocha Barros, que propõs o estudo do desenho geométrico que figura no verso da nota inglesa de "one pound" (uma libra) em homenagem a Sir Isaac Newton. Este desenho foi usado por Newton na demonstração da lei do inverso do quadrado da distância e esta no Livro I, seção III, Proposição XI, Problema VI dos "Philosophiae Naturalis Principia Mathematica".

solver o problema dos números irracionais ou "incomensuráveis", apresentado pelos pitagóricos é cuja origem está na seguinte questão:
como expressar a hipotenusa de um triângulo retângulo isósceles?
Eudox propõe um método que encerra o conceito atual de limite e que
permite resolver o problema. Já Arquimedes havia criado um método
de integração para o cálculo da área de regiões limitadas por curvas e volume de regiões limitadas por superfícies que encerrava o
conceito de infinitesimal. No entanto, essas ideias se relacionavam com entes geométricos e não algébricos como o conceito de função, importantíssimo no cálculo diferencial e integral moderno.

Ao passarmos para o período moderno (século XVI e XVII) a situação começa a se modificar. Q interesse de Galileu e Kepler pelo movimento provocou um grande desenvolvimento no estudo de curvas geradas pelo movimento dos corpos. No entanto, o fato de não existir qualquer notação algebrica para variáveis ou para índices forçava os matemáticos a utilizarem-se do modelo grego para as demonstrações das propriedades e para o estudo em geral de tais curvas.

Foi somente apos o intercâmbio com os árabes e sua álgebra já bastante desenvolvida que o "imperialismo da geometria, apesar de todos os seus éxitos" (1), deixou a matemática. As possibilidades de generalização da álgebra, nas mãos de René Descartes, tornam-na um mêtodo poderoso para se aplicar aos problemas geométricos e mecânicos. Nasce assim, a geometria analítica.

Os infinitesimos e os indivisíveis começam então a serem ma nejados despreocupadamente: expressões como "infinitamente pequenos", "incrementos evanescentes", "sucessões infinitas" são utilizadas sem que se tenha uma ideia clara de tais conceitos. Como exemplo dessa situação podemos citar o teorema de Cavalieri: para ele um plano é constituído de um número infinito de retas paralelas. Assim, poderíamos comparar áreas de figuras planas e volumes de sólidos comparando os indivisíveis (retas ou planos) de uma figura com os de outra. Entretanto, surge uma pergunta: como pode a soma de algo que não possui espessura (os indivisíveis) adquirir uma altura?

Neste ponto, é interessante citar uma observação de J. Babi ni ⁽¹⁾: "Os homens do Renascimento são pessoas urgidas pelos problemas que as novas condições econômicas e os progressos tecnológicos impõem. Ao contrário da concepção antiga na qual o caminho é mais importante que o resultado, agora é o resultado que interessa".

Não obstante a carência de fundamentos, é nos séculos XVII e XVIII que o cálculo infinitesimal toma corpo e alcança seus maiores êxitos em sistematização e aplicação, principalmente devido aos trabalhos de Newton e Leibniz. Seu grande mérito deve-se ao fato de terem eles unificado uma série de processos até então desconexos: tra çado de tangentes, máximos e mínimos, áreas de figuras planas, vol<u>u</u> mes de sólidos, etc..

Em sua obra, Newton varia todas as quantidades em relação ao tempo; as velocidades de variação são as "fluxões" - equivalente por tanto à derivada da função em relação ao tempo - e as quantidades mesmas são os "fluentes". Ele utiliza a notação do ponto para indicar a fluxão de uma variável, isto é, se y é a quantidade variável, y será fluxão. Seu método ficou conhecido como "Método das Fluxões". Note-se a vinculação direta que Newton faz entre seu método e o conceito de movimento. Como ele próprio diz, na introdução ao seu "Tratado sobre a Quadratura das Curvas": "Neste trabalho, considero as magnitudes matemáticas constituídas, não por partes arbitrariamente pequenas, mas sim engendradas por um movimento continuo. As linhas não se engendram mediante a soma de partes, mas pelo movimento continuo de pontos...". Com isso, Newton evita os paradoxos consequentes do teorema de Cavalieri.

Em seu "Método das Primeiras e Ûltimas Razões", Newton apresenta o equivalente ao nosso conceito de limite, que ainda carecia de uma definição segura. Por "quadratura de uma curva", ele entende a integral da função em um determinado intervalo, ou seja, a área abaixo do gráfico da função.

Por sua vez, Leibniz havia elaborado seu método utilizando um simbolismo que, por sua funcionalidade acabou se tornando a nota ção que ainda hoje utilizamos. Além disso, Leibniz variava as quantidades matemáticas com respeito a outras quantidades e não somente em relação ao tempo. É interessante atribuirmos às diferenças de mentalidades, os aspectos diferentes dos trabalhos dele e de Newton: este último, sendo um "filósofo natural" (diríamos hoje em dia um físico) que procurava vincular suas ideias ao mundo dos fenómenos, e o primeiro, um matemático, um filósofo cujas ideias possuem aquele caráter mais abstrato e simbólico.

Já dissemos que o grande mérito desses dois grandes cientis tas foi unificar uma série de métodos desconexos. Para Newton, o pon to essencial encontra-se na inversão do processo de determinação da área contida sob uma curva partindo da ordenada ao qual, na expressão da área, ele aplica o método das tangentes e obtém a ordenada, demonstrando que são problemas inversos. Podemos indetificar aí o Teorema Fundamental do Cálculo. Em Leibniz o problema das áreas é encarado como uma soma de ordenadas e o das tangentes como uma diferença de ordenadas uma vez que soma e diferença são operações inversas o cálculo das áreas e a determinação das tangentes também o seriam.

II. OS "PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA"

Se Newton não houvesse escrito o Principia, poderíamos ainda assim considerá-lo como um dos maiores cientistas que jã viveram. No entanto, com a publicação desse livro, ponto alto de seu pensamento, ele se tornou - sem dúvida alguma - o mais brilhante pensador da natureza, o "filósofo natural" mais completo que se tem notícia. À medida em que folheamos o Principia e tomamos contato com seus axiomas, lemas e proposições, uma sensação de profundo respeito vai se desenvolvendo em nosso espírito. Sua coerência interna e quase infinita riqueza de ideias tornam-no um livro digno de ser lido por qualquer pessoa que ainda possua sensibilidade a intuições físicas e demonstrações matemáticas.

Newton utiliza-se largamente dos conceitos de limite, continuidade e derivada ao longo de todo o livro. Na primeira seção do livro I - sob a denominação de "O Método das Primeiras e Últimas Razões" - essas idéias são apresentadas. Ao contrário do procedimento moderno, Newton relaciona esses conceitos e suas demonstrações às quantidades geométricas tais como comprimento de semi-retas, de arcos, etc... Com isso, o método das "fluxões", junto com sua notação não aparece em nenhum momento de modo explícito.

III. UM EXEMPLO: LIVRO I. SEÇÃO III. PROPOSIÇÃO XI. PROBLEMA VI

"Se um corpo possui uma órbita elíptica, é necessário encontrar a expressão da força centrípeta que tende ao foco da elipse."

Na seção II, Newton procura estabelecer uma relação entre a força centrípeta e grandezas geométricas (distâncias) para um corpo se movendo sobre uma trajetória qualquer. O resultado obtido é: - a força centrípeta é inversamente proporcional a $\frac{\mathsf{SP}^2.\mathsf{QT}^2}{\mathsf{QR}}$ (seção II, proposição VI, corolários I e V).

É na seção III que ele passa a analisar diversos tipos de órbitas particulares. No nosso caso, a órbita elíptica com a força centrípeta dirigida para um dos focos da elipse. O trabalho resume-se, portanto, em encontrar uma razão igual à expressão acima. Isto é feito multiplicando-se três proporções determinadas exclusivamente por métodos geométricos (semelhança de triângulos, propriedades da elipse, etc.) e com o auxílio do conceito de limite, sendo este último estabelecido na seção I (Método das primeiras e últimas razões).

TEXTO EXTRAÍDO DO ORIGINAL DE NEWTON* PROPOSIÇÃO XI. PROBLEMA VI

"If a body revolves in an ellipse; it is required to find the law of the centripetal force tending to the focus of the ellipse."

"Seja S o foco da elipse. Tracemos SP cortando o diâmetro DK da elipse em E, e a ordenada Qv em x; completemos o paralelogramo QxPr. E evidente que EP é igual ao semieixo AC: pois se tracarmos HI a partir do foco H da elipse e paralelo a EC, como CS e CH

são iguais, ES e EI também se rão iguais; então EP é a meia-soma de PS e PI, isto é (por causa das paralelas HI e PR e dos ângulos iguais IPR e HPZ), de PS e PH, os quais tomados juntos são iguais ao eixo inteiro 2AC. Tracemos QT perpendicular a SP, e designando por L o latus rectum principal da elipse (ou \frac{2BC^2}{AC}), teremos:

L.QR:L.Pv = QR:Pv = PE:PC = AC.PC

e, também, L.Pv:Gv.Pv = L:Gv , e, Gv.Pv:Qv* = $PC^{2}:CD^{2}$.

Pelo Corolário II, Lema VII, quando os pontos P e Q coincidem, $Qv^2=Qx^2$, e Qx^2 ou $Qv^2:QT^2=EP^2:PF^2=CA^2:PF^2$, e (pelo Lema XII) = $CD^2:CB^2$.

Multiplicando os termos correspondentes das quatro proporções e simplificando, teremos:

 $L.\, QR:\, QT^2 = AC.\, L.\, PC^2.\, CD^2:\, PC.\, Gv.\, CD^2.\, CB^2 = 2PC:\, Gv.\, desde \,\,\, que$ $AC.\, L = 2BC^2. \quad Mas \,\,\, coincidindo \,\, os \,\, pontos\,\, Q\,\, e\,\, P,\,\, 2PC\,\, e\,\,\, Gv\,\, s\,\, ão\,\, iguais.$ $E\,\, portanto \,\, as \,\, quantidades\,\, L.\, QR\,\, e\,\,\, QT^2,\,\, proporcionais\,\, a\,\, estas,\,\, também \,\, ser\, ão\,\, iguais. \quad\, Multiplicando \,\, esses\,\, iguais\,\, por\,\, \frac{SP^2}{QR},\,\, L.\, SP^2\,\, se\,\, tornaria \,\, igual\,\, a\,\,\, \frac{SP^2.\, QT^2}{QR}. \quad\, Portanto\,\, (pelos\,\, Corolários\,\, I\,\, e\,\, V,\,\, Proposição\,\, VI)\,\, a\,\, força\,\, centrípeta\,\, e\,\, inversamente\,\, proporcional\,\, a\,\, L.\, SP^2,\,\, isto\,\, e,\,\, inversamente\,\, proporcional\,\, ao\,\, quadrado\,\, da\,\, distancia\,\, SP.\,\, "$

QEI

[&]quot;Mathematical Principles of Natural Philosophy and his System of the World", Sir Isaac Newton, traduzido ao inglês por Andrew Motte em 1729 e revista por Florian Cajori. University of California Press, edição de 1946, pags. 56/7.

PRIMEIRA PROPORÇÃO

$$CS = CH \Rightarrow \frac{E}{S} = \frac{CS}{HS} \Rightarrow \frac{ES}{ES + EI} = \frac{CS}{2.CS} \Rightarrow ES = EI$$

 \Rightarrow EP = $\frac{SP+PI}{2}$; mas os angulos formados pelas distâncias focais e a tangente (IPR, HPZ) são iguais, e como HI//RZ, os angulos PIH e PHI também são iguais \Rightarrow PI = PH

 \Rightarrow EP = $\frac{SP+PH}{2}$; mas PS+PH = 2.AC (propriedade da elipse) obtemos portanto: EP = AC.

$$\frac{P \times}{P v} = \frac{E P}{P C}$$
 mas

$$\frac{QR}{PV} = \frac{AC}{PC} \qquad . \tag{1}$$

SEGUNDA PROPORÇÃO

$$\frac{Qx}{QT} = \frac{Px}{Pw} = \frac{EP}{PF} \text{; pelo lema VII, corolario II, quando } Q \rightarrow P$$

$$\Rightarrow x + v + w \Rightarrow Qx + Qv + Qw \Rightarrow$$

$$\Rightarrow \frac{Qv}{QT} = \frac{EP}{PF} \text{.}$$

Aqui já aparece uma das ideias fundamentais do cálculo: o conceito de limite. O lema VII diz que "... a razão última entre o arco, a corda e a tangente, qualquer um para qualquer outro, é a razão da igualdade". Tentemos então, utilizando-nos de uma notação moderna, provar este lema:

Seja C_f o comprimento do arco determinado pelos pontos P_0 e P e seja C_r o comprimento do segmento de reta determinado por P_0 e P. Desejamos determinar o limite de C_f/C_r quando x tende a x_0 . Sabemos que:

$$C_f(x) = \int_{x_0}^{x} \sqrt{1 + f^{1/2}(x)} dx$$
; $C_r(x) = \sqrt{(x - x_0)^2 + [f(x) - f(x_0)]^2}$

Quando $x + x_0$, f'(c) + f'(x) e no limite (uma vez que f(x) é continua) f'(c) = f'(x); mas pelo Teorema do Valor Médio para derivadas:

$$f'(c) = \frac{f(x) - f(x_0)}{(x - x_0)} \qquad f'(x) = \frac{f(x) - f(x_0)}{(x - x_0)}. \tag{1}$$

$$C_{f}(x) = \int_{x_{0}}^{x} \sqrt{1 + f^{12}(x)} dx = \int_{x_{0}}^{x} \frac{\sqrt{(x - x_{0})^{2} + [f(x) - f(x_{0})]^{2}} dx}{(x - x_{0})}$$

$$\lim_{x \to x_0} \frac{c_f}{c_r} = \frac{\int_{x_0}^{x} \frac{\sqrt{(x-x_0)^2 + [f(x)-f(x_0)]^2} dx}{(x-x_0)}}{\sqrt{[f(x)-f(x_0)]^2 + (x-x_0)^2}}$$
(11)

Aplicando a regra de L'Hospital:

$$\frac{dC_f}{dx} = \frac{\sqrt{[f(x)-f(x_0)]^2 + (x-x_0)^2}}{(x-x_0)}$$
 (111)

$$\frac{dC_r}{dx} = \frac{2 \cdot f'(x) \cdot (f(x) - f(x_0)) + 2(x - x_0)}{2 \sqrt{[f(x) - f(x_0)]^2 + (x - x_0)^2}}; \text{ utilizando}$$

$$\frac{dC_r}{dx} = \frac{[f(x)-f(x_0)]^2 + (x-x_0)^2}{(x-x_0)\sqrt{[f(x)-f(x_0)]^2 + (x-x_0)^2}}.$$
 (IV)

Substituindo (III) e (IV) em (II):

$$\lim_{x \to x_0} \frac{\frac{\sqrt{[f(x)-f(x_0)]^2 + (x-x_0)^2}}{(x-x_0)}}{\frac{[f(x)-f(x_0)]^2 + (x-x_0)^2}{(x-x_0)\sqrt{[f(x)-f(x_0)]^2 + (x-x_0)^2}}} \Rightarrow$$

$$\Rightarrow \lim_{x \to x_0} \frac{c_f}{c_r} = \frac{[f(x) - f(x_0)]^2 + (x - x_0)^2}{[f(x) - f(x_0)]^2 + (x - x_0)^2} = 1$$

Isso demonstra uma parte do lema: a "razão última" (diríamos hoje, o limite da razão) entre o comprimento da corda e o compri
mento do arco é igual a um. As outras razões podem ser demonstradas
de maneira semelhante. Prosseguindo o raciocínio, Newton escreve:

$$\frac{Qv}{QT} = \frac{EP}{PF} \quad \text{mas} \quad EP = AC \quad \Rightarrow \quad \frac{Qv}{QT} = \frac{AC}{PF} \cdot \Rightarrow \quad \frac{Qv^2}{QT^2} = \frac{AC^2}{PF^2}$$

$$pelo \ lema \ XII: \quad \frac{AC^2}{PF^2} = \frac{CD^2}{BC^2} \quad \Rightarrow \quad \boxed{\frac{Qv^2}{QT^2} = \frac{CD^2}{BC^2}} \quad . \tag{2}$$

No lema XII, Newton diz: "Todo paralelogramo circunscrito sobre quaisquer diâmetros conjugados de uma dada elipse ou hipérbole são iguais entre si"; ou seja, possuem áreas iguais. É importante frisar que a palavra "paralelogramo" inclui o retângulo, uma vez que este é um caso particular do primeiro. Vejamos como esse teorema conduz à proporção utilizada:

TERCEIRA PROPORCÃO

Quando Q + P, os triângulos T e T' tenderão a se tornar semelhantes. Podemos, portanto, montar a seguinte proporção:

Multiplicando os membros correspondentes de (1), (2) e (3), obteremos:

$$\frac{QR}{Pv} \cdot \frac{Gv \cdot Pv}{Qv^2} \cdot \frac{Qv^2}{QT^2} = \frac{AC}{PC} \cdot \frac{PC^2}{CD^2} \cdot \frac{CD^2}{BC^2} \Rightarrow \frac{QR \cdot Gv}{QT^2} = \frac{AC \cdot PC}{BC^2}$$

mas $L=2.\frac{BC^2}{AC}$ onde L= latus rectum, ou seja, o comprimento do segmento de reta, perpendicular ao diâmetro maior da elipse, que pas sa pelo foco (para maiores informações, ver (2)):

$$(\frac{L}{Gv}) \cdot \frac{QR \cdot Gv}{QT^2} = (\frac{L}{Gv}) \cdot \frac{AC \cdot PC}{BC^2} \qquad \qquad \frac{QR \cdot L}{QT^2} = 2 \cdot \frac{PC}{Gv}$$

novamente, quando Q+P, 2.PC+Gv, tal que

$$\ell$$
 im $2.\frac{PC}{Gv} = 1$.: QR.L = QT²; multiplicando por $(\frac{SP^2}{QR})$

$$\left(\frac{\mathsf{SP}^2}{\mathsf{QR}}\right)$$
 . $\mathsf{QR.L} = \left(\frac{\mathsf{SP}^2}{\mathsf{QR}}\right)$. $\mathsf{QT}^2 \implies \mathsf{L.SP}^2 = \frac{\mathsf{SP}^2 . \mathsf{QT}^2}{\mathsf{QR}}$.

Entretanto, para uma dada elipse, L é constante, o que implica que a força centrípeta é inversamente proporcional ao quadrado da distância do foco.

IV. CONCLUSÃO

Nossa proposta não pretende que se transforme obras originais em livros para cursos de graduação em Física ou Matemática, re conhecemos a inviabilidade dessa ideia. Queremos apenas chamar a <u>a</u> tenção para esse recurso que sabemos, por experiência própria, ser a melhor motivação para o estudo de qualquer ramo da Física.

No caso particular dos Principia, gostaríamos de fazer uma última observação: o livro forma um todo orgânico onde cada proposição, cada lema, depende dos anteriores; a demonstração minuciosa de alguns deles necessita da demonstração dos que vieram antes e assim por diante, de tal modo que se não houver um certo bom senso, o aluno e o próprio professor acabarão por se dispersar. Exatamente pelo seu caráter de motivação importa mais que o aluno perceba o que vem a ser uma criação científica do que saber reproduzir com rigor as demonstrações. Poderíamos ainda sugerir que a proposta não fosse encaixada em um esquema expositivo de aula: o professor poderia pedir a um aluno ou grupo de alunos que realizasse um seminário sobre determinado lema ou parte dos Principia.

BIBLIOGRAFIA

- (1) J. Babini, "El Cálculo Infinitesimal", Editorial Universitaria de Buenos Aires, Buenos Aires, 1977.
- (2) F.S. Percey, "Geometria Analítica", Ao Livro Técnico, Rio de Janeiro, 1960, p. 11.
- (3) M.E. Baron, "Curso de História da Matemática", Ed. Universidade de Brasília, Brasília, 1985, Unidades 1, 2, 3.
- (4) I. Newton, "Mathematical Principles of Natural Philosophy", University of California Press, California, 1946.

