Intro to the Kalman filter

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information May 3, 2021

Outline

Last time:

• Filtering, smoothing, and fitting in HMMs

Today:

• Filtering for linear Gaussian dynamical systems

Aside: covariances and HW5

Model specification for HW5

Model specification from the HW:

$$y_{i} \sim \operatorname{Bernoulli}(p_{i})$$

$$\log \operatorname{id}(p_{i}) = \alpha_{d(i)} + \beta_{d(i)} u_{i}$$

$$\begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} \sim \operatorname{MvNormal} \begin{pmatrix} \begin{bmatrix} \bar{\alpha} \\ \bar{\beta} \end{bmatrix}, \Sigma \end{pmatrix}$$

$$\bar{\alpha} \sim \operatorname{Normal}(0, 1)$$

$$\bar{\beta} \sim \operatorname{Normal}(0, 1)$$

$$\Sigma = \begin{pmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \end{pmatrix} \mathbf{R} \begin{pmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \end{pmatrix}$$

$$\sigma_{i} \sim \operatorname{Exponential}(1)$$

$$\mathbf{R} \sim \operatorname{LKJ}(2)$$

3

Model specification for HW5

Model specification from the HW:

$$\begin{aligned} y_i &\sim \mathrm{Bernoulli}(p_i) \\ \mathrm{logit}(p_i) &= \alpha_{d(i)} + \beta_{d(i)} u_i \\ \left(\begin{array}{c} \alpha_j \\ \beta_j \end{array}\right) &\sim \mathrm{MvNormal}\left(\left[\begin{array}{c} \bar{\alpha} \\ \bar{\beta} \end{array}\right], \Sigma\right) \\ \bar{\alpha} &\sim \mathrm{Normal}(0,1) \\ \bar{\beta} &\sim \mathrm{Normal}(0,1) \\ \Sigma &= \left(\begin{array}{cc} \sigma_1 & 0 \\ 0 & \sigma_2 \end{array}\right) \mathbf{R} \left(\begin{array}{cc} \sigma_1 & 0 \\ 0 & \sigma_2 \end{array}\right) \\ \sigma_i &\sim \mathrm{Exponential}(1) \\ \mathbf{R} &\sim \mathrm{LKJ}(2) \end{aligned}$$

Last 3 lines look a bit different in PyMC3

In PyMC3

In PyMC3 this looks a little different:

```
with pm.Model() as bernoulli_model:
    # This doesn't create a variable
    sd dist = pm.Exponential.dist(1)
    chol, corr, sd = pm.LKJCholeskyCorr(
        'chol cov',
        eta = 2,
        n = 2.
        sd dist = sd dist,
        compute_corr = True # requires PyMC3 >=3.9
```

What are the components?

In PyMC3

The LKJCholeskyCorr constructor returns 3 objects:

- chol the lower triangular Cholesky factor of Σ , in an "unpacked" form (i.e. as a square matrix)
 - Can be passed directly to MvNormal using chol=chol
- corr the correlation matrix (1s on diagonal, ρ_{ij} off diagonal)
- sd variable holding the standard deviations of the components

In PyMC3 "by hand"

Alternatively, we could assemble the components one by one something like this:

```
sigma1 = pm.Exponential('sigma1', 1)
sigma2 = pm.Exponential('sigma2', 1)
corr = pm.LKJCorr('corr', eta = 2, n = 2)
corr_mat = corr + corr.T + tt.eye(2)
sigma_mat = tt.diag(tt.stack(sigma1, sigma2))
cov = tt.dot(sigma_mat, tt.dot(corr_mat, sigma_mat))
```

The cov can be passed to MvNormal with cov=cov

Linear dynamical systems and the

Kalman filter

Noisy linear dynamical systems

Difference from last time:

Arrows are linear transformations with noise added.

Reference: Welch & Bishop, An Introduction to the Kalman Filter (on D2L)

Noisy linear dynamical systems

Basic system structure:

• Sequence of states x_k evolves according to a linear difference equation:

$$x_k = Ax_{k-1} + w_k$$

where w_k is a random noise term

• Sequence of observations z_k is a linear function of the state:

$$z_k = Hx_k + v_k$$

again, v_k is a noise term

Assumption: $w_k \sim N(0, Q)$, $v_k \sim N(0, R)$.

Here, N means multivariate normal.

Simplifying assumptions

Normality assumption for noise plays a big role:

$$w_k \sim N(0, Q)$$

 $v_k \sim N(0, R)$

- Linear function of a normal RV is also normal
- Begin with normal prior on x_k : all states and observations are also normal
- Just need to estimate a mean vector (estimate) and covariance matrix (uncertainty/error)

Nonlinear dynamics: more complicated, sometimes can be approximated by a linear filter.

A Bayesian estimation step

The Kalman filter equations are based on an iterative application of Bayes' theorem.

Assume that we have, by magic, a prior estimate of the kth state, \hat{x}_k^- and this estimate's error covariance P_k^- , then, the distribution of the true x_k is:

$$x_k \sim N(\hat{x}_k^-, P_k^-)$$

Conditional on x_k , the distribution of the measurement z_k is

$$z_k|x_k \sim N(Hx_k, R)$$

Finally, the marginal distribution of the measurement z_k is

$$z_k \sim N(H\hat{x}_k^-, HP_k^-H^T + R)$$

A Bayesian estimation step

Plugging everything into Bayes' theorem, we get the posterior density for x_k .

$$p(x_k|z_k) = \frac{N(\hat{x}_k^-, P_k^-)N(Hx_k, R)}{N(H\hat{x}_k^-, HP_k^-H^T + R)}$$

A Bayesian estimation step

Plugging everything into Bayes' theorem, we get the posterior density for x_k .

$$p(x_k|z_k) = \frac{N(\hat{x}_k^-, P_k^-)N(Hx_k, R)}{N(H\hat{x}_k^-, HP_k^-H^T + R)}$$

With a bunch of $\sim \uparrow \uparrow$ algebra $\uparrow \uparrow \sim$ we can calculate the mean of x_k :

$$\hat{x}_{k}^{-} + (P_{k}^{-}H^{T}(HP_{k}^{-}H^{T} + R)^{-1})(z_{k} - H\hat{x}_{k}^{-})$$

The highlighted factor is often denoted K_k , the Kalman gain or blending factor.

We also have the posterior covariance:

$$P_k = (I - K_k H) P_k^-$$

Interpretation

Posterior mean for the kth state is

$$\hat{x}_{k}^{-} + \underbrace{(P_{k}^{-}H^{T}(HP_{k}^{-}H^{T}+R)^{-1})}_{K_{k}}(z_{k}-H\hat{x}_{k}^{-})$$

- prior estimate x_k^- plus a correction based on $(z_k H\hat{x}_k^-)$
- $(z_k H\hat{x}_k^-)$ is the residual (disagreement between observation z_k and predicted observation $H\hat{x}_k^-$).

Kalman gain determines the weight of each part.

This is best understood in two separate limits.

Role of the Kalman gain

If our measurements are really good, we should trust the observed values.

$$P_k^- H^T (H P_k^- H^T + R)^{-1} \rightarrow H^{-1}$$
 as $R \rightarrow 0$

Then, in the limit of perfect measurement, the posterior mean is

$$\hat{x}_k^- + (P_k^- H^T (H P_k^- H^T + R)^{-1})(z_k - H \hat{x}_k^-) = H^{-1} z_k$$

(Remember H is the linear transformation mapping x_k to z_k .)

Role of the Kalman gain

The "opposite" limit occurs when the prior estimate's error covariance goes to 0:

$$P_k^- H^T (H P_k^- H^T + R)^{-1} \rightarrow 0$$
 as $P_k^- \rightarrow 0$

in which case the posterior mean becomes

$$\hat{x}_k^- + (P_k^- H^T (H P_k^- H^T + R)^{-1})(z_k - H \hat{x}_k^-) = \hat{x}_k^-$$

The filtering algorithm

This assumed we had a prior estimate for the state and error covariance.

Where do we get these?

The filtering algorithm

This assumed we had a prior estimate for the state and error covariance.

Where do we get these?

From the previous time step! If we have estimates \hat{x}_{k-1} , P_{k-1} , the dynamical system gives:

$$\hat{x}_k^- = A\hat{x}_{k-1}$$

$$P_k^- = AP_{k-1}A^T + Q$$

- take posterior estimates from step k-1
- push them through the dynamics to get priors for step k
- adjust by incorporating the measurement

The filtering algorithm

So, after setting initial estimates for \hat{x}_0^-, P_0^- , the filtering algorithm proceeds in two steps:

- 1. Obtain prior estimates \hat{x}_k^-, P_k^- by applying the dynamical system to \hat{x}_{k-1}, P_{k-1} .
- 2. Compute the Kalman gain K_k and adjust estimates to \hat{x}_k , P_k .

Notes:

- We're taking advantage of normality and linearity here; all conditional and marginal distributions remain normal, so we can work only in terms of the mean/covariance.
- If Q, R are constant, then the estimate error covariance P_k and the gain K_k stabilize quickly and then stay constant.

Parameters and tuning

A couple of comments on choosing the parameters Q, R:

- Measuring R empirically is usually practical, because it's a property of our measurement
- *Q* is trickier. Can come from a scientific model (ideally).
- Q can "compensate" for a poor process model by adding more uncertainty to state estimates – if we don't really know the dynamics, treat them as noise and the filter can still estimate states

Initial values of \hat{x}_0 , P_0 not so important if the filter will run for some time.

Simplest example

Simplest possible example: estimating a constant

A very simple example comes down to estimation of an unknown constant.

For example: we are trying to estimate a voltage, but our instruments are faulty, introducing an amount of noise to each measurement.

This implies the following parameters:

- A = 1 (no deterministic time evolution of states)
- H = 1 (measuring voltage directly)
- $Q \approx 0$ (assume negligible fluctuation in states)
- $R = R_0$ (fixed measurement error)

Kalman filter equations

We can write down the Kalman filter equations for this version easily:

Dynamics update step:

$$\hat{x}_{k}^{-} = \hat{x}_{k-1}$$
 $P_{k}^{-} = P_{k-1} + Q$

We can in principle set Q=0, but we can also adjust it to allow for some fluctuations in the true voltage.

Kalman filter equations

The correction step:

$$K_{k} = \frac{P_{k}^{-}}{P_{k}^{-} + R}$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(z_{k} - \hat{x}_{k}^{-})$$

$$P_{k} = (1 - K_{k})P_{k}^{-}$$

- Q
- *P*₀
- R

- Q: we'll use 10^{-5} for something very small but nonzero.
- *P*₀:
- R:

- Q: we'll use 10^{-5} for something very small but nonzero.
- \hat{x}_0 : we'll start with 0
- *P*₀:
- R:

- Q: we'll use 10^{-5} for something very small but nonzero.
- \hat{x}_0 : we'll start with 0
- P₀: this one determines how quickly we converge to a stable estimate – we'll try a few examples
- R:

We need to pick values for:

- Q: we'll use 10^{-5} for something very small but nonzero.
- \hat{x}_0 : we'll start with 0
- P₀: this one determines how quickly we converge to a stable estimate – we'll try a few examples
- R: this determines how much we "trust" the noisy measurements – we'll try a few examples

Let's try it...

A slightly less trivial example

Kalman filter with control

Kalman initially developed the filter for applications in control theory. So, alternate form:

$$egin{aligned} x_k &= A x_{k-1} + B u_{k-1} + w_k \end{aligned}$$
 (states) $egin{aligned} z_k &= H x_k + v_k \end{aligned}$

(measurements)

- u_{k-1}, the control input, represents some linear forcing we can do to the system
- B defines how the control input influences the system

Modifying the filter equations

It turns out the only modification we need to make is to the prediction step:

$$\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1}$$
$$P_k^- = AP_{k-1}A^T + Q$$

A toy example: position tracking for a robot

Imagine we're trying to track the position of a robot that moves through the following idealized physical environment:

- 2 dimensions (x/y or lat/long)
- No friction
- ullet Fluctuations/turbulence o white noise added to velocity

Our robot has four thrusters that allow us to apply a constant force in any of four directions

Suppose we also get periodic measurements of x/y position (quite noisy) and velocity (not so noisy)

Setting up the dynamics

We need four variables:

- *x*, *y* − position coordinates
- \dot{x} , \dot{y} velocities

We'll use discrete time with a time step Δt .

Setting up the dynamics

If we assume no control, what is the dynamical relationship?

$$x_{k+1} = Ax_k$$

with

$$A = \left(egin{array}{cccc} 1 & \Delta t & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & \Delta t \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Adding control

We'll assume our control vectors look like

$$u = \begin{pmatrix} T_x \\ T_x \\ T_y \\ T_y \end{pmatrix}$$

where $T_x, T_y \in \{-1, 0, 1\}$ give the thruster state (+/- thrust or off), and that the thrusters produce a constant acceleration.

Adding control

This gives rise to the *B* matrix:

$$B = \begin{pmatrix} \frac{1}{2}k\Delta t^2 & 0 & 0 & 0\\ 0 & k\Delta t & 0 & 0\\ 0 & 0 & \frac{1}{2}k\Delta t^2 & 0\\ 0 & 0 & 0 & k\Delta t \end{pmatrix}$$

Adding control

This gives rise to the *B* matrix:

$$B = \begin{pmatrix} \frac{1}{2}k\Delta t^2 & 0 & 0 & 0\\ 0 & k\Delta t & 0 & 0\\ 0 & 0 & \frac{1}{2}k\Delta t^2 & 0\\ 0 & 0 & 0 & k\Delta t \end{pmatrix}$$

This gives us enough to implement the model.

Summary

Today:

Discrete-time Kalman filter

Next time:

- More time series filtering
- End of the semester (yay)