Denetimli İstatistiksel Öğrenme Final

Buse BALTACIOĞLU ~ 2019900540 07 02 2021

Doğrusal regresyon (LM)

Değişken seçim yöntemlerinden adımsal regresyon uyguladık ve yeni modelimizi kurduk.

```
##
## Call:
## lm(formula = train_a$Bwt ~ train_a$UI + train_a$Ltw + train_a$Race +
       train a$Smoke, data = train a)
##
## Residuals:
##
        Min
                  10
                       Median
                                     3Q
                                             Max
## -1768.95 -405.89
                         51.59
                                 478.70 1658.55
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  2762.561
                               279.649 9.879 < 2e-16 ***
## train_a$UI1 -573.872 15
## train_a$Ltw 4.625
## train_a$Race2 -544.495 18
                               159.174 -3.605 0.000448 ***
                                 1.975 2.342 0.020740 *
                               184.754 -2.947 0.003823 **
## train a$Race3 -349.218
                               131.983 -2.646 0.009185 **
## train a$Smoke1 -357.621
                               125.754 -2.844 0.005203 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 646.4 on 126 degrees of freedom
## Multiple R-squared: 0.2252, Adjusted R-squared: 0.1944
## F-statistic: 7.323 on 5 and 126 DF, p-value: 4.695e-06
```

UI1,Ltw,Race2,Race3,Smoke1 %5 önem düzeyinde anlamlı çıkmıştır. p<alfa olduğu içinde model anlamlı çıkmıştır. 5 bağımsız değişken doğum ağırlığını %23 açıklamaktadır.

 H_0 : Bwt değişkeni normal dağılır. H_1 : Bwt değişkeni normal dağılmaz.

```
##
## Shapiro-Wilk normality test
##
## data: train_a$Bwt
## W = 0.99331, p-value = 0.7909
```

0.7909>0.05 olduğu için H_0 reddedilemez. Bwt değişkeni normal dağılır.

 H_0 : Artıklar normal dağılır. H_1 : Artıklar normal dağılmaz.

```
##
## Shapiro-Wilk normality test
##
## data: Lm_new$residuals
## W = 0.99422, p-value = 0.8727
```

0.8727 > 0.05 olduğu için H_0 reddedilemez. Hatalar normal dağılır.

 H_0 :Artıkların varyansı homojendir H_1 :Artıkların varyansı heterojendir

```
##
## studentized Breusch-Pagan test
##
## data: Lm_new
## BP = 5.7093, df = 5, p-value = 0.3355
```

0.3355 > 0.05 olduğu için H_0 reddedilemez. Artıkların varyansı homojendir.

Tüm değişkenlerin vif değerleri 5'ten küçük olduğu için aralarında çoklu doğrusal bağlantı sorunu yoktur.

2. gözlem uç değer çıkmıştır.

Tüm doğrusal regresyon varsayımlarını modelimiz sağlamıştır.

Doğrusal regresyon modeli için temel performansları

lm	rmse	mae	mape
train	631.5292	519.1709	0.1988
test	890.4845	689.9774	0.3512

Regresyon Ağacı (RT)

```
##
## Regression tree:
## tree(formula = train_a$Bwt ~ ., data = train_a, subset = train_dataa)
## Variables actually used in tree construction:
## [1] "UI" "Ltw" "Race" "Age" "Smoke" "Ftv" "Ptl"
## Number of terminal nodes: 14
## Residual mean deviance: 304900 = 24090000 / 79
```

```
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1091.0 -417.0 39.0 0.0 344.4 1037.0
```

Terminal node sayısı 14, artıkların ortalamadan sapması 304900

Oluşan ağaca baktığımızda gereksiz dallanmalar olduğu görülmekte bu sebepten dolayı budamamız gerekir.

Dirsek noktalarını

dikkate alırsak 3 terminal node incelenmelidir.

```
##
## Regression tree:
## snip.tree(tree = Rt, nodes = c(4L, 3L, 5L))
## Variables actually used in tree construction:
## [1] "UI"
             "Ltw"
## Number of terminal nodes: 3
## Residual mean deviance: 425100 = 38260000 / 90
## Distribution of residuals:
             1st Qu.
##
       Min.
                       Median
                                        3rd Qu.
                                  Mean
                                                     Max.
## -1482.00 -390.30
                        13.75
                                  0.00
                                         439.70 1382.00
```


Regresyon ağacı modeli için temel performansları

Rt	rmse	mae	mape
train	661.9345	527.1941	0.1993
test	713.4994	563.1298	0.2585

Bagging ile regresyon ağacı (BRT)

```
##
## Call:
## randomForest(formula = train_a$Bwt ~ ., data = train_a, mtry = 8,
importance = TRUE, subset = train_dataa, na.action = na.omit)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 8
##
## Mean of squared residuals: 487849.2
## Wor explained: 6.35
```

MSR=497620 ve varyans açıklama oranı 6.35

Brt

Bagging ile regresyon ağacı modeli için temel performansları

Brt	rmse	mae	mape
train	447.9892	335.6576	0.1315
test	684.1947	557.0798	0.2501

Rassal Ormaniar Regresyonu (RFR)

```
##
## Call:
## randomForest(formula = train_a$Bwt ~ ., data = train_a, mtry = 3,
importance = TRUE, subset = train_dataa, na.action = na.omit)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 3
##
## Mean of squared residuals: 474943.6
## Wor explained: 8.82
```

MSR=474943.6 ve varyans açıklama oranı 8.82

Rassal ormanlar regresyon modeli için temel performansları

Rfr	rmse	mae	mape
train	469.0678	365.8806	0.1440
test	683.0983	542.8808	0.2505

Test verisi üzerinde performanslarını karşılaştırırsak

rmse	mae	mape
-	-	lm 890.4845 689.9774 0.3512 rt 713.4994
563.1298 0	0.2585 brt 684.19	947 557.0798 0.2501 rfr 683.0983 542.8808 0.2505

Modellerimizin test verisi üzerindeki performansları yukarudaki tabloda verilmiştir. En uygun modelin rassal ormanlar regresyonu olduğuna karar verilmiştir.

Sınıflandırma Ağacı (CT)

Terminal node sayısı 11, artıkların ortalamadan sapması 0.9398 ve accuracy=76 den oluşan ağaca baktığımızda gereksiz dallanmalar olduğunu görmekteyiz bu sebepten dolayı budamamız gerekir.

Grafiğe baktığımızda 5 denenmeli diyebiliriz fakat denediğimizde gereksiz dallanma olduğunu ve node değerini 5 in altında alamayacağımızı görüyoruz. Yapılan denemeler üzerine 7 terminal node sayısı olarak alınmıştır.

```
##
## Classification tree:
## snip.tree(tree = Ct, nodes = c(5L, 3L, 74L))
## Variables actually used in tree construction:
## [1] "Ptl" "UI" "Ltw" "Age" "Ftv"
## Number of terminal nodes: 7
## Residual mean deviance: 1.001 = 86.13 / 86
## Misclassification error rate: 0.2581 = 24 / 93
```

Terminal node sayısı 7, artıkların ortalamadan sapması 1.001 ve accuracy=74


```
accuracy train test ct 0.72 0.67
```

Bagging ile sınıflandırma ağacı (BCT)

```
##
## Call:
## randomForest(formula = train_b$Low ~ ., data = train_b, mtry = 8,
importance = TRUE, subset = train_datab, na.action = na.omit)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 8
##
           OOB estimate of error rate: 34.41%
##
## Confusion matrix:
##
      0 1 class.error
## 0 53 10
             0.1587302
## 1 22 8
             0.7333333
```

Bct


```
accuracy train test
bct 0.89 0.72
```

Rassal Ormanlar ile Sınıflandırma Ağacı (RFC)

```
##
## Call:
## randomForest(formula = train_b$Low ~ ., data = train_b, mtry = 3,
importance = TRUE, subset = train_datab, na.action = na.omit)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 3
##
           OOB estimate of error rate: 33.33%
##
## Confusion matrix:
      0 1 class.error
## 0 53 10
             0.1587302
## 1 21 9
             0.7000000
```


accuracy	train	test	
rfc	0.89	0.70	

Lojistik Regresyon (LR)

Full model için %95 güvenle 0.0002<0.05 Ho reddedilir ve model geçerlidir.Ptl1 değişkenleri %95 güvenle anlamlı çıkmıştır. Fakat biz değişken seçimi için AIC yöntemi kullanılmıştır. % değişkenli yeni modelimizi kurduk.

```
##
## Call:
## glm(formula = train_b$Low ~ train_b$Ltw + train_b$Race + train_b$Smoke +
##
       train_b$Ptl + train_b$Ht + train_b$UI, family = binomial,
##
       data = train_b)
##
## Deviance Residuals:
       Min
##
                 10
                      Median
                                    30
                                            Max
                     -0.5366
                               0.9251
## -2.0102 -0.8219
                                         2.1795
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   0.343887
                              1.148244
                                          0.299
                                                0.76457
                                                 0.02518 *
## train_b$Ltw
                  -0.018996
                              0.008485
                                         -2.239
## train_b$Race2
                   1.465833
                              0.670113
                                          2.187
                                                 0.02871 *
## train_b$Race3
                                         1.591 0.11151
                   0.824589
                              0.518135
```

```
## train_b$Smoke1 0.820135 0.488278 1.680 0.09303 .
## train_b$Ptl1
                  1.694124 0.642109 2.638 0.00833 **
                  0.471768
                            1.090607
## train_b$Ptl2
                                       0.433 0.66532
## train_b$Ht1
                  1.314175
                            0.871294
                                       1.508 0.13148
## train b$UI1 1.048274
                            0.554565
                                       1.890 0.05872 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 166.62 on 131 degrees of freedom
##
## Residual deviance: 140.04 on 123 degrees of freedom
## AIC: 158.04
##
## Number of Fisher Scoring iterations: 4
```

```
accuracy train test lr 0.70 0.63
```

Doğrusal Ayırma Analizi (LDA)

```
## Call:
## lda(train_b$Low ~ train_b$Age + train_b$Ltw, data = train_b)
##
## Prior probabilities of groups:
           0
## 0.6742424 0.3257576
##
## Group means:
   train_b$Age train_b$Ltw
## 0
        23.39326
                    132.9775
## 1
        22.18605
                    119.7442
##
## Coefficients of linear discriminants:
## train b$Age -0.07486431
## train_b$Ltw -0.02895282
```


accuracy	train	test	
lda	0.68	0.63	

```
##
               Henze-Zirkler test for Multivariate Normality
##
     data : norm_0[, -1]
##
##
##
     HΖ
                     : 3.53203
##
     p-value
                     : 3.563469e-08
##
     Result : Data are not multivariate normal (sig.level = 0.05)
##
               Henze-Zirkler test for Multivariate Normality
##
##
##
     data : norm_1[, -1]
##
##
     ΗZ
                     : 0.8375591
##
     p-value
                     : 0.0734444
##
     Result : Data are multivariate normal (sig.level = 0.05)
##
```

 H_0 = Varyans kovaryans matrisi eşittir. H_1 = Varyans kovaryans matrisi eşit değildir.

```
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: data_b[, c(2, 3)]
## Chi-Sq (approx.) = 5.7226, df = 3, p-value = 0.1259
```

p-value = 0.1259 > 0.05 olduğu için %95 güvenle Ho reddedilemez. Değişkenlerin varyans kovaryans matrisi eşittir.

Eğrisel Ayırma Analizi (QDA)

```
## Call:
## qda(train_b$Low ~ train_b$Age + train_b$Ltw, data = train_b)
##
## Prior probabilities of groups:
## 0 1
## 0.6742424 0.3257576
##
## Group means:
## train_b$Age train_b$Ltw
## 0 23.39326 132.9775
## 1 22.18605 119.7442
```

accuracy	train	test	
qda	0.67	0.64	

Test verisi üzerinde performanslarını karşılaştırırsak

accuracy	ct	bct	rfc	lr	lda	qda
test	0.67	0.72	0.70	0.63	0.63	0.64

Tüm modellere ait ROC eğrisini tek bir grafik üstünde göstererek, eğri altında kalan alan (AUC) hesaplaması

auc	ct	bct	rfc	lr	lda	qda
test	0.65	0.67	0.62	0.54	0.51	0.5

Bu veri seti için genel olarak en uygun modelleme seçimi

Model performanslarını karşılaştırdığımızda en iyi modelin bagging ile sınıflandırma ağacı olarak seçilmiştir.