הגדרות

אלגוריתם - דרך שיטית וחד משמעית לביצוע של משימה מסוימת במספר **סופי** של צעדים

פסאדו קוד – תיאור מצומצם ולא רשמי לאלגוריתם של תוכנית מחשב

זמן ריצה – מספר פעולות היסוד המבוצעות על תוכנית כלשהי למה פעולות יסוד ולא זמן? על מנת להתעלם מאספקטים טכנולוגים כמו סוגי מכונות

דוגמא: חיפוש בינארי מול חיפוש טרינרי

חיפוש טרינרי	חיפוש בינארי
$T(n) = \begin{cases} T\left(\frac{n}{3}\right) + 4, n \ge 2\\ 1, n \le 2 \end{cases}$	$T(n) = \left\{ T\left(\frac{n}{2}\right) + 2, n \ge 2 \right\}$
$(1, n \le 2)$	$(1, n \leq 2)$
$T(n) = \dots = T\left(\frac{n}{3^k}\right) + 4 \cdot k = 4 \cdot \log_3 n$	$T(n) = \dots = T\left(\frac{n}{2^k}\right) + 2 \cdot k = 2 \cdot \log_2 n$

$$2 \cdot \log_2 n = 2 \cdot \frac{\log_3 n}{\log_3 n} = 3.17 \cdot \log_3 n < 4 \cdot \log_3 n$$

אסימפטומטיקה – הערכה של קצב גידול של פונקציה

הסם עליון – נאמר ש-
$$f(n) \in \mathcal{O}(g(n))$$
 אם:
$$\exists c>0, n_0 \geq 0: \forall n>n_0 \qquad f(n) \leq c \cdot g(n)$$

הסם תחתון – נאמר ש-
$$f(n)\in\Omega(g(n))$$
 אם:
$$\exists c>0, n_0\geq 0: \forall n>n_0 \qquad f(n)\geq c\cdot g(n)\geq 0$$

הסם הדוק – נאמר ש-
$$f(n)\in \theta(g(n))$$
 אם:
$$\exists c_1,c_2>0,n_0\geq 0: \forall n>n_0 \qquad c_1\cdot g(n)\leq f(n)\leq c_2\cdot g(n)$$

סימון	שם
$O(c^n)$	אקספוננציאלי
$O(n^c)$	פולינומי
$O(n \cdot log(n))$	
O(n)	לינארי
$O(\sqrt{n})$	
$O(\log(n))$	לוגריתמי
$O(\log(\log(n)))$	
0(1)	קבוע
$O\left(\frac{1}{n}\right)$	

מיונים

הקדמה:

מיון מבוסס השוואות – מיון מבוסס השוואות מסדר אלמנטים במערך ע״י השוואה, בדרך כלל ע״י האופרטורים {≤,≥}

כל אלגוריתם המיון המבוסס על פעולות השוואה דורש לפחות $\Omega(n \cdot \log(n))$ פעולות השוואה במקרה כל אלגוריתם המיון המבוסס על פעולות השוואה דורש לפחות

הוכחה: עבור מיון n איברים יש צורך בעץ החלטה עם n! עלים (עבור כל אחת מהפרמוטציות השונות), בעץ החלטה בגובה n יש לכל היותר 2^h עלים, ולכן:

$$2^h \ge n! \Rightarrow h \ge \log_2(n!) \in \Omega(n \cdot log n)$$

על מנת להשיג סיבוכיות מיון טובה יותר מ- $\Omega(n \cdot logn)$ (ליניאריים) נוכל לאבד את הכלליות ולהתעסק על מנת להשיג סיבוכיות מיון טובה יותר מ- $Counting\ Sort$), סדרה של מספרים הנמצאים בטווח חסום (Radix Sort)

	מבוססי השוואות					לא מבוססי השוואות	
	Bubble	Selection	Insertion	Merge Sort	Quick Sort	Radix Sort	Counting
	Sort	Sort	Sort				Sort
T(n)	T(n)			T(n)	T(n)		
	= (n-1)			$= 2 \cdot T\left(\frac{n}{2}\right)$	=T(k)		
	+ ··· + 1			2 (2)	+T(n-k-1)		
	n-1			+ O(n)	+ O(n)		
	$=n\cdot\frac{n-1}{2}$						
0	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n \cdot logn)$	$O(n^2)$	$O(d \cdot (n+k))$	O(n+k)
Ω	$\Omega(n^2)$	$\Omega(n^2)$	$\Omega(n)$	$\Omega(n \cdot logn$	$\Omega(n \cdot logn$	$\Omega(d \cdot (n+k))$	$\Omega(n+k)$
Θ	$\Theta(n^2)$	$\Theta(n^2)$		$\Theta(n \cdot logn)$	$\Theta(n \cdot logn)$	$\Theta(d \cdot (n+k))$	$\Theta(n+k)$
					בהסתברות		
					גבוהה		

מבני נתונים

סיבוכיות מחיקה	סיבוכיות חיפוש	סיבוכיות הכנסה	מוטיבציה	הגדרה	מבנה נתונים
0(1)	<i>O(n)</i>	0(1)	גודל המערך ידוע בזמן קומפילציה • רוצים Random • לככess (גישה ישירה בזמן קבוע)	מבנה שמורכב מאוסף של תאים סדרתיים בזיכרון בעל גודל קבוע	מערך סטטי
0(1)	O(n)	עד כדי $ heta(1)$ עד רesize $ heta(n)$	גודל המערך לא ידוע בזמן קומפילציה	מבנה שמורכב מאוסף של תאים סדרתיים בזיכרון בעל גודל ניתן לשינוי	מערך דינמי
0(n)	O(logn)	בגלל $O(n)$ shifting של האיברים	נרצה לבצע חיפוש מהיר, כאשר יש יותר חיפושים מאשר הכנסות	אוסף של תאים סדרתיים בזיכרון כך שכל איבר קטן מהאיבר הבא לפי אופרטור השוואה כלשהו {, ≤, ≥}	מערך דינמי ממויין
0(1)	O(n)	0(1)	יותר הכנסות או אין צורך ב- Random Access, פחות אפקטיבי (זניח) מבחינת זיכרון עבור שמירה גם על גודל המצביע	 לכל איבר יש ערך לכל איבר יש לכל היותר מצביע יחיד לאיבר הבא 	רשימה מקושרת
O(n)	O(n)	O(n)	 מימוש לתור עדיפויות היות ומחיקה מהראש ומהסוף היא פעולה קלה מחיקה של איברים זהים כאשר אין זיכרון לטעון ל-HashSet 	 לכל איבר יש ערך לכל איבר יש לכל היותר מצביע יחיד לאיבר הבא, שהוא קטן מהאיבר הבא לפי אופרטור השוואה כלשהו {,≤,≥,} 	רשימה מקושרת ממוינת
0(1)	-	0(1)	LIFO •	• מבנה נתונים אשר תומך ב סדר פעולות היסטורי (האחרון הוא הראשון לצאת)	מחסנית
0(1)	-	0(1)	• FIFO הערה: ניתן לממש תור בעזרת 2 מחסניות ומחסנית בעזרת 2 תורים (יש שקילות)	מבנה נתונים אשר תומך ב סדר פעולות היסטורי (האחרון הוא האחרון לצאת)	תור

O(n)	O(n)	O(n)		עץ בינארי (לכל קודקוד יש ערך ולכל	VII
O(n)	O(n)	O(n)		עץ בינאו <i>(זכר קוו קוו יש עו</i> ן ו <i>זכר</i> קודקוד יש רשימה של לכל היותר 2	עץ חיפוש
				קור קור פרט בור פלי אלי היותר בעל קודקודים) כך שעבור כל קודקוד בעל	וו פוס בינארי
				יין און און און און און און און און און או	
				x-נין x . 1. הערכים הקטנים מ	
				נמצאים בתת עץ השמאלי	
				2. הערכים הגדולים מ- <i>x</i>	
				נמצאים בתת עץ הימני	
O(logn)	O(logn)	O(logn)	• הכנסה, מחיקה, חיפוש	עץ חיפוש בינארי כך שכמות הרמות	עץ
(1.9.1)	(11311)	(1-911)	יעיל	של לוגריתמית ביחס לכמות האיברים	י. חיפוש
			• חיפוש תווכים, איברים •	בעץ	מאוזן
			סמוכים, מבנה נתונים	AVL •	
			ממויין	עץ אדום שחור •	
			•	הוכחות עבור גובה עץ	
				לוגרתמי	
				הוא עץ יותר AVL היות ועץ	
				מאוזן מעץ אדום-שחור,	
				נעדיף להשתמש בו אם	
				כמות החיפושים גדולה, אך	
				אם מתבצעים הרבה שינויים	
				כמות הכנסה או מחיקה,	
				יתבצעו הרבה רוטציות ולכן	
				נעדיף עץ אדום שחור שהוא	
				יותר ״סלחני״	
O(logn)	עובר השורש	O(logn)	עץ עדיפות •	כל האיברים בעץ ניתנים •	ערמה
מחליפים את השורש	עבור $O(1)$	מכניסים לסוף,	במקום חיפוש)	להשוואה ע״י אופרטור	
עם האיבר האחרון,	חיפוש כלשהו	ואז עושים	נרצה עדיִפות לפי	הערך של כל קודקוד קטן או •	
מורידים את הגודל ב-1	O(n)	עד SwapUp	אופרטור)	שווה ביחס לאופרטור	
Heapify ואז עושים		לשורש		מהערך של בניו	
מהשורש, כאשר			הערה: בנייה של עץ	ממומש ע״י מערך כך שהבן •	
בודקים מי מהבנים הוא			ערמה הוא $O(n)$ כי	2i+1 השמאלי באינדקס	
עם עדיפות ומחליפים			עושים Heapify כחצי	2i+2 והבן הימני באינדקס	
			מגודל המערך	כאשר ראש הערמה	
			<u>הוכחה</u>	0 באינדקס	
				מבנה נתונים אשר תומך ב עדיפות לפי אופרטור	
Direct Access	Direct	Direct Access	על מנת לאפשר חיפוש,	לכל ערך יש מפתח •	טבלת
Table:	Access	Table:	הוספה ומחיקה בסיבוכיות	בעל פונקציית גיבוב •	גיבוב
0(1)	Table:	0(1)	קבועה, ניתן להשתמש ב-	פונקציית גיבוב טובה:	
	0(1)		על Direct Access Table	1. ⁻ כמות הפלטים קטנה	
Open Addressing:		Open	מנת לקבל סיבוכיות זו ע״י	מכמות הקלטים	
O(n)	Open	Addressing:	מקום כאשר U זה $\mathcal{O}(U)$	האפשריים	
	Addressing:	O(n)	מרחב המפתחות	2. כמות התנגשויות צריכה	
Separate	O(n)		האפשריים, או לצמצם את	להיות קטנה ככל	
Channing:		Separate	הזיכרון ולפתור בעיות	שאפשר	
תלוי מימוש, מערך של	Separate	Channing:	התנגשות (Collision)	3. קלה לחישוב	
רשימות מקושרות	Channing:	תלוי מימוש,		4. דטרמיניסטית -	
O(list length)	תלוי מימוש,	מערך של	אך, משלמים על זה בכך	5. תשתמש בכל המידע	
בעוד שמערך של עצי	מערך של	רשימות מקושרות	שמבנים דינמאים הם יעילים	שיש למפתח	
חיפוש בינאריים	רשימות	O(list length)	מבחינת זיכרון, בעוד שטבלת	6. מפזרת אחיד	
O(logn)	מקושרות	בעוד שמערך של	גיבוב היא בזבזנית, בנוסף	7. חד כיוונית לעיתים	
	O(list length)	עצי חיפוש	אם אנחנו רוצים להתעסק עם		
	בעוד שמערך	בינאריים	מידע ממוין, מציאת איברים	• פותר התנגשויות	
	של עצי חיפוש	O(logn)	סמוכים, חיפוש תווכים,		

ריענון על מבני נתונים נכתב ע״י צבי מינץ מבוסס על מערכי תרגול <u>מבני נתונים קיץ 2020</u>

נאריים O(log	 מציאת א Open Addressing •	
	● Separate Chaining (מערך של רשימות) מקשורות, עצי חיפוש, וכו׳)	