DFA Minimization & Equivalence

Nathan, Brandon, and David

DFA Minimization

L(N) = { the set of strings w such that w ends with a 1 }

Steps Involved

- Delete all nodes in the graph that are unreachable
- Run the table filling algorithm (TFS) on the graph
- Collect coordinates for unmarked cells
- Use Union Find to find all the pairs and group them into disjoint groups (grouping together all the remaining pairs into a new group)
- Use the disjoint sets to make a single state pairs {1, 3, 5} => {1_3_5}
- Use the single state pairs to access the original graph using a slightly modified version of NFA to DFA conversion to create the newly minimized dfa

Steps Visualized

Combined Min States ['0_1_2', '3']

Steps Visualized (cont.)

DFA Equivalence

Problem Statement:

"Design an efficient algorithm to test the equivalence of DFA's"

Data Structure/Algorithms Used:

Hopcroft-Karp Algorithm using a Union/Find Data Structure

Union/Find Data Structure

- Sometimes called a Disjoint Set Data Structure
- Two main operations:
 - FIND(x): returns the set identifier that x belongs to
 - UNION(x,y): combines set x and y into a single set
- Our Implementation:
 - A simple array based storage where index = the identifier for the particular element, and the value at the index = the identifier for the set that the element belongs to.
 - Takes advantage of "path compression" to make sure the find operation remains constant time.

Hopcroft-Karp Algorithm

Main Steps:

- 1. Make a set for every state in the union of the two DFA's
- 2. Union the starting states into one set and push onto a stack
- 3. Pop from stack if not empty and search for the sets which contain the states reached by the transitions from the popped pair; if the sets equal each other do nothing, otherwise union the two different sets into one set
- 4. The DFAs are considered equivalent if and only if no set contains both a final and a non-final state

Visual Representation

Example provided by: Bhanva Ganji and Gurpreet Kaur: "A Linear Algorithm For Testing Equivalence of Finite Automata"

http://drona.csa.iisc.ernet.in/~deepakd/atc-2010/equivalence-checking-seminar.pdf

Step 1 : For every state $\mathsf{q} \in \mathit{Q}_1 \cup \mathit{Q}_2$, $\mathsf{MakeSet}(\mathsf{q})$

Step 2 : Union(s_1 , s_2) and Push (s_1 , s_2) on to a stack, S

$$\begin{cases} 1,3 \} \{2\} \{4\} \{5\} \{6\} \end{cases}$$

$$\begin{cases} \delta(1,a) = 2 \\ \delta(3,a) = 4 \end{cases}$$

$$\begin{cases} \delta(3,a) = 4 \end{cases}$$

Step 3: While S is non-empty

- Pop pair (q₁, q₂) from S
- For each $a \in \Sigma$
 - $r_1 = \operatorname{Find}(\delta(q_1, a))$ and $r_2 = \operatorname{Find}(\delta(q_2, a))$
 - If $r_1 \neq r_2$

Union (r_1, r_2) and Push (r_1, r_2) on to S_{-1} on to S_{-1}

Step 3: While S is non-empty

- Pop pair (q₁, q₂) from S
- For each a ∈ Σ
 - r₁ = Find(δ(q₁, a)) and r₂ = Find(δ(q₂, a))
 - If $r_1 \neq r_2$ Union (r_1, r_2) and Push (r_1, r_2) on to S_{-1}, \dots, r_{2}

Skipping to final step:

- Step 3: While S is non-empty
 - Pop pair (q₁, q₂) from S
 - For each $a \in \Sigma$
 - $r_1 = \operatorname{Find}(\delta(q_1, a))$ and $r_2 = \operatorname{Find}(\delta(q_2, a))$
 - If $r_1 \neq r_2$ Union (r_1, r_2) and Push (r_1, r_2) on to S_{r_1, r_2, r_3} and S_{r_1, r_2, r_3} and S_{r_1, r_2, r_3}

Step 4 : $L(M_1) = L(M_2)$ if and only if no set contains both a final and a non-final state.

Time Complexity

Step 1: O(n)

Step 2:O(1), achieved through the UNION/FIND Data Structure

Step 3: O(mn)

Step 4: O(n)

'n' is the number of states of the two DFAs and 'm' is the number of symbols in sigma.