Applied Real Analysis

AMATH 331

Prof. Henry Shum

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of AMATH 331 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Pı	retac	e	1	
1	Real Numbers			
	1.1	Decimal expansions and the real number line	3	
	1.2	Ordering of real numbers		
2	Bounds and Limits			
	2.1	Bounded sets of real numbers	6	
	2.2	Examples	7	
	2.3			
3	Limits of Sequences			
	3.1	Sequences	8	
	3.2	Examples		
	3.3			
	3.4	Examples		
	3.5			
4	Monotone Sequence and Applications			
	4.1	Monotone Sequences	12	
	4.2	Applications: Calculate Square Roots		
	4.3	Warning about computing limits that don't exist		

Real Numbers

Refs 1 for review. 2.1-2.2, 2.9

1.1 Decimal expansions and the real number line

finite decimal expansion

A finite decimal expansion has the form

$$x = a_0 \circ a_1 a_2 a_3 \dots a_N$$

where a_0 is an integer (positive, negative or zero) for $1 \le n \le N$ $a_n \in \{0, 1, \ldots, 9\}$

Example:

$$1.45$$
 -38.298743

You can think of this as

this as
$$x = a_0 + a_1 \left(\frac{1}{10}\right) + \ldots + a_N \left(\frac{1}{10^N}\right)$$

Warning This looks like the usual decimal representation but it is not the same for negative numbers.

Any finite decimal expansion can be replaced on the real number line.

Example:

We can similarly define infinite decimal expansions

infinite decimal expansions

$$x = a_0 \circ a_1 a_2 \dots$$

Example:

$$1_{\circ}450000000...$$

$$\pi = 3_{\circ}1415926535...$$

Assuming the real number line has no gaps, every infinite decimal expansion x corresponds to a point on the line.

Given any positive integer k, let $y = a_{0} \circ a_1 a_2 \dots a_k$ be the finite decimal expansion of x to the k-th decimal space. Then, x lies in the interval from y to $(y + 10^{-k})$. So, y approximates x to an accuracy of $1/10^k$. As we increase k, we improve the accuracy; in fact, the error can be made arbitrarily small.

The converse direction: given a point on the real number line, can we find its decimal expansion?

Yes!

It is possible for two decimal expansions to represent the same point. This happens

precisely when one ends in an infinite string of 0's.

1.000... and
$$0.999...$$

25.300... and $25.2999...$

We define the real numbers \mathbb{R} as the set of all infinite decimal expansions.

1.2 Ordering of real numbers

Suppose

$$x = x_{0\circ}x_1x_2x_3\dots, \qquad y = y_{0\circ}y_1y_2y_3\dots$$

We say that x and y are equal and write x = y if infinite decimal expansions are identical or equivalent, as discussed previously.

If x and y are not equal, then we say that x are not equal, then x is less than y and write x < y if there exists integer $k \ge 0$ such that $x_k < y_k$ and $x_i = y_i$ for i < k. x is greater than y (x > y) if ...

For any two real numbers x, y, exactly one of the following holds:

$$x = y$$
 $x < y$ $x > y$

Bounds and Limits

2.1 Bounded sets of real numbers

upper bound

A set $S \subseteq \mathbb{R}$ is bounded above if there exists $M \in \mathbb{R}$ such that $s \leq M$ for all $s \in S$. M is an upper bound of S.

lower bound

A set $S \subseteq \mathbb{R}$ is bounded below if there exists $m \in \mathbb{R}$ such that $s \geq m$ for all $s \in S$. m is an lower bound of S.

bounded

A set is *bounded* if it is both bounded above and bounded below.

supremum

The supremum or least upper bound of a nonempty set S that is bounded above is the upper bound L satisfies $L \leq M$ for all upper bounds M of S is written as $\sup S$.

infimum

The infimum or greatest lower bound of a nonempty set S is the lower bound ℓ satisfying $\ell \geq m$ for all lower bounds m of S. The infimum is denoted inf S.

max

If there exists $M \in S$ such that $s \leq M$ for all $s \in S$, then M is called the maximum of S, $\max S$.

min

Analogous defin for $\min S$.

2.2 Examples

- 0. $S_0 = \emptyset$. Bounded above and below. No supremum or infimum.
- 1. $S_1 = \{n \in \mathbb{Z}^+\} = \{1, 2, 3, \ldots\}$ not bounded above, bounded below.

1 is infimum and minimum

- 2. $S_2 = \{-3, -2, 0.5, 1.423\}$. Bounded above and below. Bounded. Has max, min.
- 3. $S_3 = \left\{1 \frac{1}{n} : n \in \mathbb{Z}^+\right\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \ldots\right\}$

Bounded above by 1. Bounded below by 0.

Supremum is 1, but there is no max.

2.3 Least Upper Bound Principle

Theorem 2.1: Least Upper Bound Principle

Every nonempty set S of \mathbb{R} that is bounded above has a supremum. Every nonempty set that is bounded below has an infimum.

Sketch of proof for "infimum". There are only finitely many integers from m_0 to $s_0 + 2$. Choose the greatest integer lower bound \rightarrow call it a_0 .

 $a_0 + 1$ is not a lower bound. Divide $[a_0, a_0 + 1]$ into 10, find a_1 such that $a_{0\circ}a_1$ is lower bound of S, but $a_{0\circ}a_1 + 1/10$ is not. Repeat infinitely many times to construct $L = a_{0\circ}a_1a_2a_3...$

Now, show that L is infimum.¹

¹See details in textbook.

Limits of Sequences

3.1 Sequences

An *infinite sequence of real* numbers is an infinite, enumerated list of real numbers, denoted by

$$(a_n)_{n=1}^{\infty} = (a_1, a_2, \ldots)$$

Each $a_n \in \mathbb{R}$ is an *element* of the sequence.

We will just refer to them as sequences, and often write (a_n) . Formally, a sequence is a function that maps positive integers to \mathbb{R} .

We say that a sequence is [bounded above/bounded below/bounded] if the set $A = \{a_n\}$ is respectively [bounded above/bounded below/bounded].

3.2 Examples

- 1. $(a_n)_{n=1}^{\infty}$, where $a_n = (-1)^n$ for $n \ge 1$.
- 2. $a_n = \frac{1}{n}$, for $n \ge 1$.
- 3. $(a_n) = (1, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, \ldots)$

3.3 Limits of Sequences

limit

Let $(a_n)_{n=1}^{\infty}$ be a sequence. We call $L \in \mathbb{R}$ the *limit* of the sequence if for all $\epsilon > 0$, there exists an integer N such that

$$|a_n - L| < \epsilon$$

for all $n \geq N$.

If such L exists, then we say that (a_n) is convergent, and converges to L and we write $\lim_{n\to\infty} a_n = L$, or $a_n \to L$.

If a sequence does not have such a limit, then we say it diverges, or is divergent.

A sequence (a_n) diverges to ∞ if for all M > 0, there exists N such that $a_n > M$ for all $n \geq N$. We write $\lim_{n \to \infty} a_n = \infty$.

A sequence (a_n) diverges to $-\infty$ if for all M < 0, there exists N such that $a_n < M$ for all $n \ge N$. We write $\lim_{n \to \infty} a_n = -\infty$.

Note

I $\lim_{n\to\infty} a_n = \pm \infty$ does not mean limit exists.

3.4 Examples

1. $a_n = 1/n$, $\lim_{n \to \infty} a_n = 0$

For any $\epsilon > 0$, we need to show that there exists N such that $|a_n - 0| < \epsilon$ for all $n \ge N$.

Choose N to be any integer greater than $1/\epsilon$. $(N > \frac{1}{\epsilon})$

For any $n \geq N$, $a_n = 1/n \leq \frac{1}{N} < \epsilon$. We also have $a_n \geq 0$

$$\implies |a_n| < \epsilon$$

for all $n \geq N$ as required.

3.5 Some basic properties of limits

Theorem 3.1: Squeeze Theorem

Let $(a_n), (b_n), (c_n)$ be sequences.

If $a_n \leq b_n \leq c_n$ for all $n \geq 1$ and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$$

then

$$\lim_{n\to\infty}b_n=1$$

We want to show that for all $\epsilon > 0$, there exists N such that $|b_n - L| < \epsilon$ for all $n \ge N$.

Let $\epsilon > 0$. Since $a_n \to L$, we can find N_1 such that $|a_n - L| < \epsilon$ for all $n \ge N_1$.

Similarly, there exists N_2 s.t. $|c_n - L| < \epsilon$ for all $n \ge N_2$.

Define $N := \max\{N_1, N_2\}$. Then, for $n \ge N$, $|a_n - L| < \epsilon$ and $|c_n - L| < \epsilon$.

Equivalently,

$$L - \epsilon < a_n < L + \epsilon$$
 $L - \epsilon < c_n < L + \epsilon$

Since $a_n \le b_n \le c_n$. $L - \epsilon < b_n < L + \epsilon$, or

$$|b_n - L| < \epsilon$$

as required.

Proposition 3.2

If a sequence converges to a limit L, then this limit is unique.

See PDF.

Proposition 3.3

If a sequence (a_n) converges, then the set $A := \{a_n : n \ge 1\}$ is bounded.

Proof:

Exercises.

Theorem 3.4

Let (a_n) and (b_n) be two convergent sequences. If $\lim_{n\to\infty}a_n=L$ and $\lim_{n\to\infty}b_n=M$, then

- 1. $\lim_{n\to\infty} (a_n + b_n) = L + M$
- 2. for any $\alpha \in \mathbb{R}$, $\lim_{n\to\infty} (\alpha a_n) = \alpha L$
- 3. $\lim_{n\to\infty} (a_n b_n) = LM$, and
- 4. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M}$ if $M \neq 0$ and $b_n \neq 0$ for all n.

Monotone Sequence and Applications

4.1 Monotone Sequences

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. it is

- 1. monotone increasing if $a_{n+1} \ge a_n$ for all $n \ge 1$.
- 2. strictly monotone increasing if $a_{n+1} > a_n$ for all $n \ge 1$.
- 3. monotone decreasing if $a_{n+1} \leq a_n$
- 4. strictly monotone decreasing if $a_{n+1} < a_n$

monotone

A sequence is monotone is *monotone* if it is either (monotone) increasing or (monotone) decreasing.

Theorem 4.1: Monotone Convergence Theorem

Monotone Convergence Theorem:

- (i) Every monotone increasing sequence that is bounded above converges
- (ii) Every monotone decreasing sequence that is bounded below converges

Proof:

We will first show that (i) \implies (ii).

Let (a_n) be a monotone decreasing sequence that is bounded below by m.

The sequence $(-a_n)_{n=1}^{\infty}$ is monotone increasing and is bounded above by -m. By part (i), $(-a_n)$ must converge. Call the limit $L = \lim_{n \to \infty} (-a_n)$.

By Theorem 3.4 Part 2,

$$\lim_{n \to \infty} = \lim_{n \to \infty} [(-1)(-a_n)] = (-1) \lim_{n \to \infty} (-a_n) = -L$$

To prove Part(i) of this theorem, suppose (a_n) is monotone increasing and bounded

The set $A = \{a_n | n \in \mathbb{Z}^+\}$ is bounded above, and nonempty.

By LUBP(Theorem 2.1), A has a supremum, which we call $L = \sup A$. We show that L is the limit of (a_n) .

Given $\epsilon > 0$, we know that $L - \epsilon$ cannot be an upper bound of A.

So there exists N such that $a_n > L - \epsilon$.

Since (a_n) is increasing, $a_n > L - \epsilon$ for all $n \ge N$. Since L is an upper bound of $A, a_n \leq L \text{ for all } n \geq N.$

$$\implies L - \epsilon < a_n \le L < L + \epsilon$$

That is $|a_n - L| \le \epsilon$ for all $n \ge N$.

Applications: Calculate Square Roots 4.2

The square root of a real number a > 0 can be obtained as the limit of the sequence defined recursively by

$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right), \quad \text{for } n \ge 1$$

where the starting point x_0 is any positive number.

Moreover, for any $n \geq 1$, the error in approximating \sqrt{a} by x_n satisfies the bound

$$0 \le x_n - \sqrt{a} < x_n - \frac{a}{x_n}$$

- Prove that (x_n) is bounded below.
 Prove that (x_n) is monotone decreasing.
- 3. Prove that (x_n) is monotone decreasing.

- 4. Use MCT to prove that (x_n) converges.
- 5. Use properties of limits to determine that \sqrt{a} is the limit.
- 6. Look for upper and lower bounds for error.

See PDF for full proof.

Warning about computing limits that don't 4.3 exist

$$a_1 = 2$$
, $a_{n+1} = \frac{1}{2}(a_n^2 + 1)$ for $n \ge 1$

 $a_1=2,\ a_{n+1}=\frac{1}{2}(a_n^2+1)$ for $n\geq 1.$ If we assume (a_n) has a limit L, then we can get nonsense.

$$a_{n+1} = \frac{1}{2}(a_n^2 + 1)$$

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2}(a_n^2 + 1)$$

$$\implies L = \frac{1}{2} \left(\lim_{n \to \infty} a_n\right)^2 + \frac{1}{2} = \frac{1}{2}L^2 + \frac{1}{2}$$

$$L^2 - 2L + 1 = 0 \implies L = 1 \text{ is a solution}$$

However, it can be shown that (a_n) is monotone increasing. Since $a_1 = 2$, (a_n) cannot possibly converge to 1.

(In fact, it does not converge.)

Index

В	lower bound 6
bounded	M max 7 min 7
infimum	monotone
	U upper bound6