Yakeen NEET 2.0 2026

Physics By Saleem Sir

Basic Maths & Calculus (Mathematical Tools)

DPP: 9

- **Q1** y=2t(3-t) then find $\frac{dy}{dt}$.
- **Q2** y=2t(3-t) then find $\frac{dy}{dt}$
- **Q3** If $y = B\cos(kx)$ then $\frac{dy}{dx}$ will be
 - $(A) B\sin(kx)$
 - (B) $-Bx\cos(kx)$
 - (C) $-Bk\sin(kx)$
 - (D) $B\sin(kx)$
- **Q4** If $y = (\sin x)^2$ then find $\frac{dy}{dx}$
 - (A) $2\sin x$
 - (B) $2\cos x$
 - (C) $2\sin x \cdot \cos x$
 - (D) $2\cos^2 x$
- **Q5** Given $(ax+b)^2$ then find $\frac{dy}{dx}$
 - (A) 2(ax + b)
 - (B) ax + b
 - (C) (ax-b)
 - (D) 2a(ax+b)
- **Q6** If $\ell+r=12$ here ℓ is length of cylinder and r is radius of cylinder then find maximum value of volume of cylinder
 - (A) 156π
- (B) 350π
- (C) 256π
- (D) 250π
- Q7 Find out minimum/maximum value of $y = 2x^3 - 15x^2 + 36x + 11$ also find out those points where value is minimum/maximum.
 - (A) max=39 at x=2, min=39 at x=-2
 - (B) max=39 at x=3, min=38 at x=2
 - (C) max=39 at x=2, min=38 at x=3

- (D) max=39 at x=2, min=38 at x=-2
- Q8 If $y = \sin^3(3x^3)$, $\frac{dy}{dx}$ will be
 - (A) $\cos^3(3x)^3$
 - (B) $\sin^3(9x^2)$
 - (C) $27x^2 \sin^2(3x^2)\cos(3x^3)$
 - (D) $3\sin^2(3x^3)\cos(3x^3)$
- **Q9** If $y = e^{-\alpha_x}$, then find double differentiation of
 - (A) $\alpha e^{-\alpha_x}$
 - (B) $-\alpha e^{-\alpha_x}$
 - (C) $e^{-\alpha x}$
 - (D) $\alpha^2 e^{-\alpha_x}$
- Q10 At point P, the value of slope is;

- (A) Zero
- (B) Positive
- (C) Negative
- (D) Infinite
- **Q11** If $x = 2\cos t \cos 2t$, $y = 2\sin t \sin 2t$, then at $t=rac{\pi}{4},rac{dy}{dx}=$
 - (A) $\sqrt{2} + 1$
 - (B) $\sqrt{2+1}$
 - (C) $\frac{\sqrt{2+1}}{2}$
 - (D) None of these

- Q12 If radius of solid sphere is increasing at a rate of 2 cm/sec, then find rate of increase in its surface area when its radius is $3\ \mathrm{cm}$:
 - (A) $24\pi \text{cm}^2/\text{s}$
 - (B) $48\pi \text{cm}^2/\text{s}$
 - (C) $12\pi \text{cm}^2/\text{s}$
 - (D) $6\pi \mathrm{cm}^2/\mathrm{s}$
- Q13 If y = $2 \sin^2 \theta + \tan \theta$ then $\frac{dy}{d\theta}$
 - (A) $4 \sin \theta \cos \theta + sec\theta \tan \theta$
 - (B) $2 \sin 2\theta + sec^2\theta$
 - (C) $4 \sin \theta + sec^2 \theta$
 - (D) $2 \cos^2 \theta + sec^2 \theta$
- **Q14** Find derivative of $y = (x^3 + 1)^2$
 - (A) $(x^3 + 1)(3x^2)$ (B) $2(x^3 + 1)$
 - (C) $2(3x^2)$
- (D) $2(x^3+1)(3x^2)$
- **Q15** A metallic disc is being heated. Its area A (in m^2) at any time t (in sec) is given by $A = 4t^2 + 2t$. Calculate the rate of increase in area at t = 4 sec.
 - (A) $72 \text{ m}^2/\text{sec}$
- (B) 72 m^2
- (C) $34 \text{ m}^2/\text{sec}$
- (D) 34 m^2
- Q16 $\frac{d}{dx}(e^x) = ?$
 - (A) e^{x}

(B) 0

(C)1

- (D) None of these
- **Q17** If $y = e^{-\alpha x}$, then find double differentiation of y.
 - (A) $\alpha e^{-\alpha x}$
 - (B) $-\alpha e^{-\alpha x}$
 - (C) $e^{-\alpha x}$
 - (D) $lpha^2 e^{-lpha x}$
- **Q18** Differentiate following w.r.t. 'x' ($\sin 2x \cos 3x$).
 - (A) $-3 \sin 2x \cdot \sin 3x + 2 \cos 3x \cdot \cos 2x$
 - (B) $3 \sin 2x \cdot \sin 2x + 2 \sin 3x \cdot \cos x$
 - (C) $2 \sin 2x \cdot \sin 3x + 2 \sin x \cdot \cos 3x$
 - (D) None of these

Answer Key

Q1		Q10	(A)
Q2	6 – 4 <i>t</i>	Q11	(A)
Q3	(C)	Q12	(B)
Q4	(C)	Q13	(B)
Q5	(D)	Q14	(D)
Q6	(C)	Q15	(C)
Q7	(C)	Q16	(A)
Q8	(C)	Q17	(D)
Q9	(D)	Q18	(A)

