Deutsche Demokratische Republik

Amt für Erfindungsund Patentwesen

PATENTSCHRIFT

Wirtschaftspatent

Erteilt gemäß § 5 Absatz 1 des Anderungsgesetzes zum Patentgesetz

Zusatzpatent zum Patent: -

Anmeldetag: 20.12.71

(WP G 11 b / 159 966)

Priorität:

Ausgabetag: 20.12.72

Kt.: 21 a1, 37/34

Int. Cl.: G 11 b,

5/72

94657

In der vom Anmelder eingereichten Fassung veröffentlicht

Erfinder zugleich Inhaber:

Renner, Dipl.-Ing. Peter; Schumann, Dipl.-Ing. Joachim

Schutzschicht, insbesondere für einen magnetischen Informationsträger, und ein Verfahren zu ihrer Herstellung

Die Erfindung betrifft eine Schutzschicht, vorzugsweise für einen magnetischen Informationsträger, der beispielsweise in Elektronenrechnern und Datenverarbeitungsanlagen angewendet wird, und ein Verfahren zur Herstellung dieser Schicht.

Es ist bekannt, magnetische Informationsträger mit einer Schutzschicht zu versehen, um diese vor Korrossion, Schlagbeanspruchung und Verschleiß zu schützen. Zum Schutz werden Metallschichten, nichtmetallische Schichten und auch Oxidischichten verwendet. Die Methoden des Aufbringens dieser Schichten auf den Informationsträger sind unterschiedlich. Bekannt ist die Methode des Abscheidens aus flüssiger oder gasförmiger Phase.

Nachteilig bei den bekannten Schutzschichten ist, daß sie teilweise sehr stark anfällig gegenüber Verletzungen infolge Schlagbeanspruchung sind. Ist einmal eine solche Schicht beschädigt, unterliegt sie weiterer Zerstörung, bis sie schließlich total verschleißt. Auch hat eine Verletzung der Schicht eine Schädigung der Oberfläche des Informationsträgers zur Folge, so daß es zu Informationsverstümmelungen kommt.

Darüber hinaus ist der technologische Aufwand sehr groß und die Herstellungskosten sind hoch.

Zweck der Erfindung ist es, einen magnetischen Informationsträger vor mechanischen Beanspruchungen, wie Reibungs- und Schlagbeanspruchungen, zu schützen und dabei den technologischen Aufwand gering zu

Der Erfindung Niegt die Aufgabe zugrunde, einen magnetischen Informationsträger mit einer haftfesten und elastischen Schutzschicht in einem Arbeitsgang beiderseitia zu versehen.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß als Schutzschicht eine Polymerschicht verwendet wird, deren Ausgangsmaterial aus einer oder mehreren organischen Substanzen besteht. Diese Schicht hat an von ihrer Grundfläche verschieden weit entfernten Stellen unterschiedliche oder gleiche Eigenschaften. Die Bereiche der Schicht, die mit dem magnetischen Informationsträger in Berührung stehen bzw. sich in unmittelbarer Nähe mit diesem befinden, haben eine hohe Haftfestigkeit zur Unterlage, während die Oberfläche der Polymerschicht eine hohe Elastizität aufweist. Diese Eigenschaften können sich von der Grundfläche der Schicht durch deren innere Zusammensetzung und/oder durch den Polymerisationsgrad bis zu ihrer Oberfläche verändern. Dadurch, daß die Schicht an ihrer Oberfläche eine hohe Elastizität aufweist, ist sie sehr schlagund verschließfest.

Die Schutzschicht wird auf dem Plasma eines oder mehrerer organlischer Substanzen (Monomere) abgeschieden. Auf dem Informationsträger, der sich im Wirkungsbereich der Plasmen befindet wächst somit eine Polymerschicht. Das Plasma wird beispielsweise mittels einer Gleichspannung, einer technischen Wechselspannung, einer Hochfrequenzspannung, einer Impulsentladung oder als magnetfeldunterstützte Gleichspannungsentladung oder als Heißkathodenglimmentladung gezündet und aufrechterhalten. Es list vorteilhaft, die zu beschichtenden magnetischen Informationsträger während des Abschei-

3

dungs- und Polymerisationsprozesses zu bewegen. Dadurch wird die Homogenität der Schutzschicht erhöht. Günstig wirkt sich auch die Anwesenheit eines inerten oder reaktiven Gases aus.

Durch Veränderung der Prozeßparameter, wie Druck, Strom, Spannung, Durchsatzgeschwindigkeit des Monomeres, Mischungsverhältnis verschiedener Monomere oder eines Monomeres zu einem Inertgas und Temperatur des Informationsträgers während des Abscheidungs- und Polymerisationsprazesses werden die Zusammensetzung und der Polymerisationsgrad der abgeschiedenen Polymerschicht und damit deren Eigenschaften geändert. Dadurch ergibt sich, daß die Schicht an Stellen, die verschieden weit von der Grundfläche entfernt sind, unterschiedliche Eigenschaften erhält.

Die erfindungsgemäße Schutzschicht besitzt eine Reihe van wertvollen Eigenschaften: Homogenität, gute Adhösion zur Unterlage, gute Elastizität, Korrossionsbeständigkeit, thermische Beständigkeit und Porenfreiheit. Der

van wertvollen bigenschaften: Homogenität, gute Adhäsion zur Unterlage, gute Elastizität, Korrossionsbeständigkeit, thermische Beständigkeit und Porenfreiheit. Der magnetische Informationsträger wird durch diese Schicht vor den auftretenden mechanischen Beanspruchungen, wie Reilbungs- und Schlagbeanspruchungen, und einem chemischen Angriff geschützt.

Die Herstellung und das Aufbringen der Schutzschicht auf den Informationsträger sind sehr einfach. Die Herstellungskosten sind gering und das Verfahren eignet sich zur Senenproduktion.

D'e Erfindung soll nachstehend an zwei Ausführungsbeispielen näher erläutert werden.

Beispiel 1:

Zwanzig Magnetplatten mit einem Durchmesser von 320 mm werden unmittelbar nach ihrer magnetischen Beschichtung in einem isolierenden Aufnahmegestell kaskadenförmig im Abstand van 3 cm untereinander angeordnet. In den Plattenstapel werden zwei Hilfsplatten (Elektroden) einbezogen, die sich jeweils an den Stapelenden befinden. Die Platten werden untereinander so verschaltet, daß alle ungradzahligen Platten den einen Pol und die gradzahligen den Gegenpol bilden. Die Temperatur der Platten beträgt 25 °C. Die Plattenkaskade wird in eine Vakuumkammer eingebracht, deren Totaldruck auf $\leq 1 \times 10^{-4}$ Torr ernliedrigt wird. Durch Drosseln der Saugleistung der Pumpe und gleichzeitigem ständigem Einlaß von Argon wird ein konstanter Druck van 5 Torr aufrechterhalten. Mittels 50 kHz Wechselspannung wird die Entladung gezündet. Für den 3 Min. dauernden Glimm-Reinigungsprozeß vor der Abscheidung wird eine Stromdichte von 10 mA/cm² benötigt, die über die Spannung geregelt wird. Nach dem Reinigungsprozeß wird die Stromdichte auf 1 mA/cm² reduziert. Gleichzeitig wird an der Vakuumkammer ein Partialdruck von Hexamethyldisiloxan von 1×10-3 Torr eingestellt und über einen Zeitraum von 5 Min. gehalten. Zur Verringerung des Polymerisationsgrades wird der Partialdruck des Siloxans danach bei gleichbleibender Entladungsstromdichte in einer Zeitspanne van 5 Min. kontinuierlich erhöht. Das Ergebnis dieses Prozesses ist eine Schicht von der Dicke von 1 µm mit den gewünschten Eigenschaften, insbesondere Haftfestigkeit an der Unterlage und Elastizität an der Oberfläche. Der Abscheidungsprozeß wird durch Abschalten der Spannung ibei Anwesenheit van monomerer Substanz beendet, wodurch besonders an der Schichtoberfläche der Polymerisationsgrad gering gehalten wird. Zur Beseitigung der in der frisch gebildeten Schicht vorhandenen freien Bindungen und zur Stabilisierung der erreichten Eigenschaften wird der Plattenstapel 120 Min. bei 150 °C nachgetempert.

Durch die gezielte Steuerung des Polymerisationsgrades in der Schicht und damit der sich ändernden Eigenschaften, wie Haftfestigkeit, Härte und Elastizität, wird erreicht, daß äußere mechanische Einflüsse, wie Reibungsund Schlagbeanspruchung, von der Polymerschicht aufgenommen und abgefangen werden, so daß die zu schützende Schicht nicht beschädigt wird.

Beispiel 2:

Zwei hintereinandergeschaltete Vakuumkammern, die durch eine Druckminderstufe verbunden sind, werden von bandförmigem magnetischem Informationsträgermaterial durchlaufen. In der ersten Kammer befindet sich eine Argonatmosphäre von 3 Torr und in der zweiten Kammer eine Oktamethyltrisiloxanatmosphäre von 0,5 Torr. Ober- und unterhalb des zu beschichteten Bandes ist je eine plattenförmige 300 mm lange und das Band beiderseitig um 50mm überragende Elektrode angeordnet. Beide Elektroden haben vom Trägermaterialband einen Abstand von 40 mm. Das Band wird zunächst in einem mit einer 1,5-KV-Wechselspannung der Frequenz 50 Hz brennenden Plasma vorgereinigt. In der zweiten Kommer, in welcher die eigentliche Beschichtung stattfindet, sind zwei Elektrodensysteme unterschiedlicher Länge angeordnet. Der Abstand der Elektraden zum Band und deren Breite halben die gleichen Werte wie die in der Reinigungskammer. Das erste Elektrodensystem ist 100 mm lang. An ihm brennt ein Plasma bei 800 V Wechselspannung der Frequenz 50 kHz. Am zweiten Elektrodensystem, das 300 mm lang ist, beträgt die Brennspannung 350 V bei einer Frequenz von ebenfalls 50 kHz. Das mit einer Geschwindigkeit von 15 cm/min laufende Band ist nach dem Durchlaufen der Strecke mit einer schlag- und stoßfesten 1 µm starken Schutzschicht versehen.

Patentansprüche:

- 1. Schutzschicht, vorzugsweise für einen magnetischen Informatiansträger, dadurch gekennzeichnet, daß sie aus einer Polymerschicht gebildet ist, deren Ausgangsmaterial aus einer organischen Substanz oder mehreren organischen Substanzen besteht, und daß sie an von ihrer Grundfläche verschieden weit entfernten Stellen gleiche oder unterschiedliche Eigenschaften besitzt.
- 2. Verfahren zur Herstellung einer Schutzschicht, vorzugsweise für einen magnetischen Informationsträger, dadurch gekennzeichnet, daß sie aus dem Plasma eines oder mehrerer Monomere oder dem Plasma eines Gemisches aus Monomeren und einem inerten oder reaktiven Gas abgeschieden und polymerisiert und direkt auf dem Informatiansträger aufgebracht wird, wobei zur Erreichung unterschiedlicher Eigenschaften an van der Grundfläche verschieden weit entfernten Stellen der Schicht die äußeren Prozeßparameter, wie Druck, Temperatur, Strom, Spannung und Durchsatzgeschwindigkeit des Monomeren, während der Abscheidung und Polymerisation veröndert werden.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der zu beschichtende magnetische Informationsträger während des Abscheidungs- und Polymerisationsprozesses bewegt wird.

5

- 4. Verfahren nach Anspruch 2 oder 2 und 3, dadurch
- gekennzeichnet, daß die Platten kaskadenförmig angeordnet und elektrisch in Reihe oder wechselweise parallelgeschaltet sind.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Platten nachgetempert werden.