Notes

13 février, 2015

1.4 directed graphs

digraphs are graphs with orientations (arrows) on the edges every term from graphs has a directed version for digraphs. one notable lexicographical difference: edges are called **arcs**.

examples

a digraph is weakly connected if the underlying graph is connected.

a digraph is **strongly connected** if for every $u, v \in V(G)$, there exists a directed u - v path and a directed v - u path.

thrm

a digraph is strongly connected iff it contains a closed spanning directed walk.

notes

in proving things about digraphs, the degree of a vertex is nuanced. eg arcs in and arcs out might be different numbers. so we say: let D be a digraph and $v \in V(D)$ and we say id(v) is the number of incoming arcs to v and od(v) is the number of outgoing arcs

4.1 directed graphs

if D is a simple digraph of size m then $\sum \operatorname{od}(v) = \sum \operatorname{id}(v) = m$

eulerian digraphs

eulerian circuit that is directed

thm

a digraph D has an eulerian circuit iff $\operatorname{od}(v) = \operatorname{id}(v)$ for all $v \in V(D)$

proof

basically identical to undirected case

need everything to be even so we can go in and out, now we need to be able to go in and out similarly

$_{\mathrm{thm}}$

a digraph D has an eulerian path iff id(v) = od(v) for all vertices but two called u, v and od(u) = id(u) + 1 and id(v) = od(v) + 1

Homework

2,7