Reg. No.	
----------	--

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Fourth Semester

18CSC268J - SOFTWARE DESIGN WITH UNIFIED MODELING LANGUAGE

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

-		
	nta.	
_1.7	ULC.	

- (i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

 Part - B & Part - C should be answered in answered.
- (ii)

(n) rait-b & rait-C should be	answered in ans	wei bookiet.				
Time: 3 hours			Max. I	Marl	s: 1	00
	(20 × 1 = 20 N r ALL Questic	,	Marks	BL	СО	PO
 A collection of statement the result to the caller is called 	hat perform so	ome specific task and return the	1	2	1	2
(A) Methods(C) Procedures		Messages States				
2. What does the study of an ex(A) Requirement analysis(C) System analysis	(B)	refer to? Feasibility study System planning	1	1	1	1
3. Alpha and beta testing are fo(A) System testing(C) Acceptance testing	(B)	Unit testing Integration testing	1	1	2	1
4. If the objects focus on the pr(A) Object oriented design(C) Object oriented program	(B)	then we are concerned with Object oriented analysis and design Object oriented analysis	1	1	2	1
5. The standard class diagram i (A) Five (C) Four	s composed of (B)		1	1	1	1
6 shows a full or part for a modeled system.(A) State diagram(C) Component diagram	(B)	e structure within a precise time Object diagram Class diagram	1 .	3	2	2
7. The design pattern can(A) Be transformed direct source code(C) Be a complete design	(D)	Not be reused to solve a problem Help the designer in getting to the right design faster		2	2	2
8. Which is not a valid design p(A) Structural(C) Functional	pattern?	Creational Behavioral	1	1	2	1

9.		represent the interaction of	the	user with the software but tells	1	2	2	2
	nothir	age about the internal working o	f the	software				
	(A)	State diagram	(B)	Use case diagram				
	(C) .	State diagram Activity diagram	(D)	Class diagram	+			
10				ch new resource sharing services	1	2	1	1
10.		e made available to the user's, i						
		Concurrency		Resource sharing				
		Openness		Fault tolerance				
	(-)	C P CALLOS						
11.	Use c	ase modelling is used to describ	e the	requirements.	1	1	3	1
		Dynamic		Functional				
	. ,	Non-functional	` '	Data				
	(-)		` /	*				
12.		describes the relationship b	etwe	en use cases, where a use case is	1	1	3	2
		er use case functionality if certa						
		Generalization		Include				
	` /	Extend	(D)	Association				
	()		` `					
13.	A	is the method by which	the	user and the computer exchange	1	1	3	1
		mation and instructions						
	(A)	User interface	(B)	Use case model				
	(C)	User relationship	(D)	User scenario				
								Y
14.	In co	omponent diagram, components	s com	municate with each other using	1	1	3	1
		h of the following?						
	(A)	Components	(B)	Port				
	(C)	Interface	(D)	Dependency				
1.5	3371-:-	In a fall a fall assign a grant a TIMI	diac	ram?	1	1	5	1
13.		th of the following is not a UMI		Object diagram				
	• /	Class diagram		Use case model				
	(C)	Interface diagram	(D)	Ose case model				
16	IIMI	gives an overview of a	softs	vare system	1	1	4	1
10.		Class diagram		List of attributes				
	. ,	List of operations	` '	List of objects				
	(0)	List of operations	(5)	Elect of objects				
17	ΔnI	JML diagram which has a static	view		1	1	4	2
1 /		Use case	(B)					
	(C)		(D)	_				
	(0)	List	(2)	1				
18	Semi	ence diagram is oriente	d		1	1	4	1
10.		Time		Class				
	` '		` '	Object				
	(-)		(-)	3				
19	Doci	umentation is prepared		4	1	1	5	2
		At every stage	(B)	At system design				
	(C)	At system analysis	` '	At system developments				
	(-)	J	` ` '	•				

20.	Problem analysis is done during (A) System design phase (B) Systems analysis phase (C) Before system test (D) Test	1	1	3	1
	$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions	Marks	BL	со	PO
21.	Draw the classical spiral model and discuss the importance of each step.	4	2	1	2
22.	You have been given with a ATM transaction system. Construct a use case diagram for the system with at least 3 actors and uses cases.	4	2	1	1
23.	List out the patterns in event handling.	4	3	2	1
24.	List out different design issues of distributed system.	4	4	2	2
25.	Explain use case relationships.				1
26.	Describe interface and class with comparison.	4	3	4	1
27.	Describe class diagram with access specfieir.	4	4	5	2
	PART - C (5 × 12 = 60 Marks) Answer ALL Questions	Marks	BL	СО	PO
28. a.	Explain the object oriented programming concepts with examples that are related to UML.	.12	2	1	2
Ъ.	(OR) Explain about the software process life cycle and the quality software characteristics.	12	2	1	2
29. a.	Analyze and explain various types of design pattern.	12	3	2	1
•	(OR)	12	4	3	2
	Explain about state diagram and activity diagram with a case study.			4	2
30. a.	Illustrate in detail about all components in an use case diagram.	12	4	4	2
b.	(OR) Develop an component diagram for email management system and explain all the components.	12	3	3	3
31. a.	Explain about the collaboration diagram and its components with an example.	12	2	4	2
ъ.	(OR) Illustrate all components of the sequence diagram with an case study.	12	4	4	1

32. a. Draw a deployment diagram for cloud based web application system with 12 3 5 explanation.

(OR)

b. Draw a UML class diagram for memory management (Ex: Copying a file 12 3 6 from a hard disk to USB flash drive) with proper attributes and justify your choice.

* * * *