A practical approach to fitting cancer survival models when data can't move across borders

Paul C Lambert^{1,2}, Mark J Rutherford³, Tor Åge Myklebust^{1,4}

 $^1\mathrm{Cancer}$ Registry of Norway, FHI, Norway $^2\mathrm{Medical}$ Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden $^3\mathrm{Biostatistics}$ Research Group, Population Health Sciences, University of Leicester, UK $^4\mathrm{Dept.}$ of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway

ANCR symposium 2024, Bodø, Norway, 30th August 2024

Slides: pclambert.net/pdf/XXX

Example: pclambert.net/software/standsurv/XXX

Introduction

- It is harder to share data between countries, making international comparisons more difficult.
- Here, I focus on survival analysis.
 - Generally need individual level data
 - Sometimes we need/want to use statistical modelling approaches (e.g. recent NORDCAN Survival Studies).
- NORDCAN.R showed how a federated approach could be applied.
 - Data analysed separately in each country
 - Aggregated/summary data sent to IARC
- Here I will explore something similar for a modelling approach.

Joint or separate models?

- We have choices.
 - 1 Fit separate models for each country.
 - 2 Fit a single joint model to all countries.
- A single model can be more efficient as we can 'borrow strength' between countries.
 - However, it requires data to be in one place or to use a full federated learning approach.
- If we have large data then we are happier to fit separate models.
- A joint model with interactions between country and all covariates (and time) is equivalent to separate models.

- Fit model separately in each country
 - Extract statistics of interest (e.g. 5 year relative survival)
 - Send to hub

- Fit model separately in each country
 - Extract statistics of interest (e.g. 5 year relative survival)
 - Send to hub
- Fit model separately in each country
 - Save model object
 - Send to hub

- Fit model separately in each country
 - Extract statistics of interest (e.g. 5 year relative survival)
 - Send to hub
- Fit model separately in each country
 - Save model object
 - Send to hub
- § Federated learning
 - Hub defines model
 - Parameters sent to each node
 - Aggregated model information sent back
 - Parameters updated
 - Repeat until convergence

We should only choose (3) if we really need to. Often (2) will be sufficient.

- Fit model separately in each country
 - Save model object
 - Send to hub

Example

- Detailed example on webpage pclambert.net/XXX
- Uses entirely simulated (synthetic) data, so code and data available for people to try for themselves.
- Comparing Country A and Country B.
- Assume I do not have access to data in Country B.

Some Stata

I have a colleague willing to run code in Country A

Fit model in Country A

Some Stata

I have a colleague willing to run code in Country A

Fit model in Country A

My colleague sends this file me in Country B (or elsewhere)

What's stored in .ster file?

- The ingredients needeed to predict survival etc from the model.
 - Names of covariates included in the model
 - Parameter estimates and variances
 - Knot locations for spline functions.
 - Various other details (Number of parameters, sample size, likelihood etc)

What's stored in .ster file?

- The ingredients needeed to predict survival etc from the model.
 - Names of covariates included in the model
 - Parameter estimates and variances
 - Knot locations for spline functions.
 - Various other details (Number of parameters, sample size, likelihood etc)

Crucially it contains no individual level data


```
// Load data
. use https://www.pclambert.net/data/CountryB, clear
// Fit relative survival model
 stpm3 i.sex##@ns(age,df(3)), scale(lncumhazard) df(3) ///
                bhazard(rate) tvc(i.sex @ns(age,df(3)))
// standardized relative survival for Country B
. standsurv RS_B, surv timevar(tt) ci frame(RS, replace)
// now load model object for Country A (BUT NOT DATA)
. estimate use CountryA
// standardized relative survival for Country B
// NOTE: standardized to age/sex distribution of Country A
. standsurv RS_A, surv frame(RS, merge) ci
```



```
// Load data
. use https://www.pclambert.net/data/CountryB, clear
// Fit relative survival model
. stpm3 i.sex##@ns(age,df(3)), scale(lncumhazard) df(3) ///
                bhazard(rate) tvc(i.sex @ns(age,df(3)))
// standardized relative survival for Country B
. standsurv RS_B, surv timevar(tt) ci frame(RS, replace)
// now load model object for Country A (BUT NOT DATA)
. estimate use CountryA
// standardized relative survival for Country B
// NOTE: standardized to age/sex distribution of Country A
. standsurv RS_A, surv frame(RS, merge) ci
```



```
// Load data
. use https://www.pclambert.net/data/CountryB, clear
// Fit relative survival model
. stpm3 i.sex##@ns(age,df(3)), scale(lncumhazard) df(3) ///
                bhazard(rate) tvc(i.sex @ns(age,df(3)))
// standardized relative survival for Country B
. standsurv RS_B, surv timevar(tt) ci frame(RS, replace)
// now load model object for Country A (BUT NOT DATA)
. estimate use CountryA
// standardized relative survival for Country B
// NOTE: standardized to age/sex distribution of Country A
. standsurv RS_A, surv frame(RS, merge) ci
```



```
// Load data
. use https://www.pclambert.net/data/CountryB, clear
// Fit relative survival model
. stpm3 i.sex##@ns(age,df(3)), scale(lncumhazard) df(3) ///
                bhazard(rate) tvc(i.sex @ns(age,df(3)))
// standardized relative survival for Country B
. standsurv RS_B, surv timevar(tt) ci frame(RS, replace)
// Load model object for Country A (BUT NOT DATA)
. estimate use CountryA
// standardized relative survival for Country B
// NOTE: standardized to age/sex distribution of Country A
. standsurv RS_A, surv frame(RS, merge) ci
```



```
// Load data
. use https://www.pclambert.net/data/CountryB, clear
// Fit relative survival model
. stpm3 i.sex##@ns(age,df(3)), scale(lncumhazard) df(3) ///
                bhazard(rate) tvc(i.sex @ns(age,df(3)))
// standardized relative survival for Country B
. standsurv RS_B, surv timevar(tt) ci frame(RS, replace)
// now load model object for Country A (BUT NOT DATA)
. estimate use CountryA
// standardized relative survival for Country B
// NOTE: standardized to age/sex distribution of Country A
. standsurv RS_A, surv frame(RS, merge) ci
```


Age standardized relative survival (to ICSS age groups)

Reference adjusted age standardized all cause survival

Standardization

- In my example standardization was to the age/sex distribution of Country B
- Easy to standardize to to extrenal reference, e.g ICSS.
- Also possible to standardize to age/sex distribution of Country A with some summary (aggregated) information.

See tutorial for examples

Discussion

- Simple way to fit statistics models, but still obtain useful, and comparable, summaries from those modele.
- More flexible than each country producing summaries and just sending those.
- Data quality, inclusion/exclusion criteria, consistency of variable naming/labelling very important.
- Not have the control and ability to fit a combined model, but is an easy practical solution that works.
- Brief oveview, lots more details on my webpage.

