Calculus III Final Review

Convergence: 10.3-10.5	2
Convergence Notes	2
Convergence Problems	4
Power Series: 10.6	5
Power Series Notes	5
Power Series Problems	5
Taylor Series: 10.7-10.8	6
Taylor Series Notes	6
Taylor Series Problems	6
Parametric Equations: 11.1	7
Parametric Notes	7
Parametric Problems	7
Arc Length, Polar Coordinates: 11.2-11.4	8
Polar Coordinates Notes	8
Polar Coordinate Problems	8
Conic Sections: 11.5	9
Conic Sections Notes	9
Conic Section Problems	9
Quiz Questions	10
Quiz 3	10
Quiz 4	10
Final Review Questions	11

Convergence: 10.3-10.5

Convergence Notes

Fundamentals

• Let $\sum_{n=1}^{\infty} a_n$ be given and note for which series for which convergence is known, i.e., the geometric series and p-series:

Geometric: let $c \neq 0$, if |r| < 1, then **p-Series**: converges if p > 1.

$$\sum_{n=0}^{\infty} cr^n = \frac{c}{1-r}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

• The n^{th} Term Divergence Test: a relatively easy test that can be used to quickly determine if a test diverges if the $\lim_{n\to\infty}a_n\neq 0$. If $\lim_{n\to\infty}a_n=0$, then the test is inconclusive and other tests must be applied.

Tests for Positive Series

• **Direct Comparison Test**: use if dropping terms from the denominator or numerator gives a series b_n wherein convergence is easily found, then compare to the original series a_n as follows:

$$\sum_{n=1}^{\infty} b_n \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges } \leftarrow 0 \le a_n \le b_n$$

$$\sum_{n=1}^{\infty} b_n \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges } \leftarrow 0 \le b_n \le a_n$$

• **Limit Comparison Test**: use when the direct comparison test isn't convenient or when comparing two series. One can to take the dominant term in the numerator and denominator from a_n to form a new positive sequence b_n if needed.

Assuming the following limit $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists, then:

$$L>0 \implies \sum_{n=1}^{\infty} a_n \text{ converges} \iff \sum_{n=1}^{\infty} b_n \text{ converges}$$
 $L=0 \text{ and } \sum_{n=1}^{\infty} b_n \text{ converges} \implies \sum_{n=1}^{\infty} a_n \text{ converges}$
 $L=\infty \text{ and } \sum_{n=1}^{\infty} a_n \text{ converges} \implies \sum_{n=1}^{\infty} b_n \text{ converges}$

• Ratio Test: often used in the presence of a factorial (n!) or when the are constants raised to the power of $n(c^n)$.

Assuming the following limit $ho = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$ exists, then

$$ho < 1 \implies \sum a_n$$
 converges absolutely

$$\rho > 1 \implies \sum a_n$$
 diverges

$$ho=1 \implies$$
 test is inconclusive

• Root Test: used when there is a term in the form of $f(n)^{g(n)}$.

Assuming the following limit $C = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$ exists, then

$$C < 1 \implies \sum a_n$$
 converges absolutely

$$C > 1 \implies \sum a_n$$
 diverges

$$C = 1 \implies$$
 test is inconclusive

• Integral Test: if the other tests fail and $a_n = f(n)$ is a decreasing function, then one can use the improper integral $\int_1^\infty f(x) dx$ to test for convergence.

Let $a_n = f(n)$ be a positive, decreasing, and continuous function $\forall x \geq 1$, then:

$$\int_{1}^{\infty} f(x) dx \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges}$$

$$\int_{1}^{\infty} f(x) dx \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges}$$

Tests for Non-Positive Series

• Alternating Series Test: used for series in the form $\sum_{n=0}^{\infty} (-1)^n a_n$

Converges if $|a_n|$ decreases monotonically $(|a_n+1|\leq |a_n|)$ and if $\lim_{n\to\infty}a_n=0$

• **Absolute Convergence**: used if the series $\sum a_n$ is not alternating; simply test if $\sum |a_n|$ converges using the test for positive series.

Convergence Problems

Power Series: 10.6

Power Series Notes

0

Power Series Problems

Taylor Series: 10.7-10.8

Taylor Series Notes

0

Taylor Series Problems

Parametric Equations: 11.1

Parametric Notes

0

Parametric Problems

Arc Length, Polar Coordinates: 11.2-11.4

• Polar Coordinates Notes

0

Polar Coordinate Problems

Conic Sections: 11.5

Conic Sections Notes

0

Conic Section Problems

Quiz Questions

Quiz 3

0

Quiz 4

Final Review Questions