COMP-273 – Machine Structures

Caches, Part I

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Outline

- ° Memory Hierarchy
- ° Direct-Mangned Gasche Exam Help
- ° Types of Cars://eduassistpro.github.io/
- ° A (long) detailedexample assist_pro

Memory Hierarchy (1/4)

° Processor

- executes programs
- runs on order of nanoseconds to picosecoigdsent Project Exam Help
- needs to https://eduassistpro.gdata.itor programs: where ar Add WeChat edu_assist_pro

° Disk

- HUGE capacity (virtually limitless)
- VERY slow: runs on order of milliseconds
- so how do we account for this gap?

Memory Hierarchy (2/4)

- ° Memory (DRAM)
 - smaller than disk (not limitless capacity)
 - contains <u>subset</u> of data on disk: basically portions <u>of programes</u> that all electronically being run

https://eduassistpro.github.io/

- · much fas ory accesses don't slow down probedu_assisturite as much
- Problem: memory is still too slow (hundreds of nanoseconds)
- Solution: add more layers (caches)

Memory Hierarchy (3/4)

Size of memory at each level As we move to deeper levels the latency goes up and price per bit goes down.

Memory Hierarchy (4/4)

- °If level is closer to Processor, it must...
 - Be smaller
 - Be faster
 - Contain a Assignment Project Exam Help ntly used data) of lower le https://eduassistpro.github.io/
 - · Contain all the data in edu_assise yels above it
- Lowest Level (usually disk) contains all available data
- ° Is there another level lower than disk?

Memory Hierarchy

°Purpose:

 Faster access to large memory from processor

Memory Hierarchy Analogy: Library (1/2)

- You're writing a term paper (processor) at a table in Schulich
- °Schulich Library is equivalent to disk
 - essential Project Exam Help
 - very slo https://eduassistpro.github.io/
- ° Table is Memory Add WeChat edu_assist_pro
 - smaller capacity: means you must return book when table fills up
 - easier and faster to find a book there once you've already retrieved it

Memory Hierarchy Analogy: Library (2/2)

- °Open books on table are cache
 - smaller capacity: can have very few open books fit on table; again, when table fills up, you must close a book Exam Help
 - much, m ve data https://eduassistpro.github.io/
- °Illusion created: what edu_assist_yropen on the tabletop
 - Keep as many recently used books open on table as possible since likely to use again
 - Also keep as many books on table as possible, since faster than going to library

Memory Hierarchy Basis

- ° Disk contains everything.
- °When Processor needs something, bring it into all lower levels of memory.

Assignment Project Exam Help

- °Cache con data in memory t https://eduassistpro.geteub.io/
- ° Memory contains c data on disk that are being used.
- Entire idea is based on <u>Temporal</u> <u>Locality</u>: if we use it now, we'll want to use it again soon

Cache Design

- ° How do we organize cache?
- Where does each memory address map to? (Remember that cache is subset of memory) so multiple memory a the same cache loca https://eduassistpro.github.io/
- Objective of the control of the c
- Our Property of the Propert

Direct-Mapped Cache (1/2)

- old a direct-mapped cache, each memory address is associated with one possible block within the cache
 - Therefore, we only need to look in a single lo e for the data if it exists i https://eduassistpro.github.io/
 - Block is the dunit of tedu_assisted ween cache and memory

Direct-Mapped Cache (2/2)

308-273 (13)

Issues with Direct-Mapped

- 1 Since multiple memory addresses map to same cache index, how do we tell which one is in there?
- 2 What if Awee have Parjotockus izep> 1 byte?
- °Solution: https://eduassistpro.git/defriess into three fields

tag index offset to check to byte if have correct block block

Direct-Mapped Cache Terminology

- ° All fields are read as unsigned integers.
- Index: specifies the cache index (which "row" of the cache we should look in)
- Offset: Onc Orrect Exam Help Orrect block, specifies Whttps://eduassistpro.giththeoblock we want

Add WeChat edu_assist_pro

Tag: the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location

Direct-Mapped Cache Example (1/3)

- °Suppose we have a 16KB direct-mapped cache with 4 word blocks.
- Operation of the size of the tag, index and offset fields in weirge using a 2-bit architectur

https://eduassistpro.github.io/

° Offset

Add WeChat edu_assist_pro

- need to specify correct byte within a block
- block contains 4 words = 16 bytes =
 2⁴ bytes
- need 4 bits to specify correct byte

Direct-Mapped Cache Example (2/3)

° Index

- need to specify correct row in cache
- cache contains 16 KB = 2⁴ 2¹⁰ = 2¹⁴ bytes block contains 24 bytes (41 Words)
- # rows/c https://eduassistpro.grache/(since
 th block/row)
 Add WeClayedu_assistepro

 bytes/row
 = 2¹⁴ bytes/cache
 2⁴ bytes/row
 = 2¹⁰ rows/cache
- need <u>10 bits</u> to specify this many rows

Direct-Mapped Cache Example (3/3)

° Tag

- used remaining bits as tag
- tag length = mem addr length Assignment Exetect Exam Help

https://eduassistpro.github.io/

Add Wellst edu_assist_pro

 so tag is leftmost 18 bits of memory address

Accessing data in a direct mapped cache

°Example: 16KB, direct-mapped, 4 word blocks

Memory Address (hex) Value of Word

°Read 4 addresses

00000010 00000014

• 0x0000014 1C

0x000001 Chttps://eduassistpro.github.io/

0x00000034, 0x00008014

Add WeCha**Qedu_assis**Q 0000038

000003C

° Memory values on right:

only cache/memory level of hierarchy

00008010 00008014 00008018 0000801C

Accessing data in a direct mapped cache

- °4 Addresses:
 - 0x0000014, 0x0000001C, 0x00000034, 0x00008014
- °4 Addresses divided (for convenience) into Tag, I tields

https://eduassistpro.github.io/

0000000000000000 000000001 1100

0000000000000000 000000011 0100

00000000000000010 0000000001 0100

Tag Index Offset

Accessing data in a direct mapped cache

- °So lets go through accessing some data in this cache
 - 16KB, direct-mapped, 4 word blocks
- ° Will see 3 types of events: Assignment Project Exam Help
- ° cache miss: https://eduassistpro.github.io/propriate
- °cache hit: cache block and contains proper address, so read desired word
- °cache miss, block replacement: wrong data is in cache at appropriate block, so discard it and fetch desired data from memory

16 KB Direct Mapped Cache, 16B blocks

 Valid bit: determines whether anything is stored in that row (when computer initially turned on, all entries are invalid)

V: Index	ali (<u>d</u> Tag	0x0-3		Examp 0x8-b	le Block 0xc-f
0	0		Assignmen	nt Project Ex	am Help	
1	0					
2	0		https:/	/eduassistp	ro.github.io/	
3	0					
4	0		Add \	VeChat edu_	_assist_pro	
5	0					
1234567	0					
7	0					
•••				•••		
1022	0					
1023	0					

Read 0x00000014 = 0...00 0..001 0100

•••	•••	
10220		
1022 ₀ 1023 ₀		

So we read block 1 (000000001)

0000000000000000 000000001 0100 Tag field Index field **Offset** Valid 0x4-7 0x8-b0xc-f 0x0-3**Tag** (Index **1**23456 Assignment Project Exam Help https://eduassistpro.github.jo/ Add WeChat edu lassist pro **1022**0 10230

No valid data

So load that data into cache, setting tag, valid

Read from cache at offset, return word

0000000000000000 000000001 Index field Offset Tag field Valid 0x4 - 70x8-b0xc-f0x0-3Tag Index **1**23456 Assignment Project Exam Help d https://eduassistpm.github.jo/ Add WeChat edu lassist pro **1022**0 **1023**0

Read 0x000001C = 0...00 0..001 1100

T 7	ali	A	rag nera	1110	ack liciu	Oliset
Inde		u Tag	0x0-3	0x4-7	0x8-b	0xc-f
0	0					
1	们	0	A s d gnmer	nt Project Ex	am H © n	d
2	0		7.55.8			
1 2 3 4 5 6	0		https:	/eduassisto	o aithub io/	
4	0					
5	0		Add V	VeChat edu_	assist pro	
6	0					
7	0					
•••				•••		
1022	0					
1023						

Data valid, tag OK, so read offset return word d

Read 0x00000034 = 0...00 0..011 0100

0000000000000000 000000011 0100 Index field Offset Tag field Valid 0x4-7 0x8-b0xc-f 0x0-3Tag Index 123456 d Assignment Project Exam Help https://eduassistpro.github.jo/ Add WeChat edu lassist pro 10220 10230

So read block 3

No valid data

Load that cache block, return word

Read 0x00008014 = 0...10 0..001 0100

0000000000000010 000000001 0100 Index field Offset Tag field Valid 0x4-7 0x8-b0xc-f 0x0-3Tag Index 123456 Assignment Project Exam Help d 0 h ehttps://eduassistpro.gith9h.jo/ Add WeChat edu lassist pro 10220 10230

So read Cache Block 1, Data is Valid

0000000000000010 000000001 0100 Tag field Index field Offset Valid 0x4-7 0x8-b0xc-f 0x0-3**Tag** Index **1**23456 Assignment Project Exam Help d 0 h ehttps://eduassistpro.gith9h.jo/ Add WeChat edu lassist pro 10220 10230

Cache Block 1 Tag does not match (0 != 2)

Miss, so replace block 1 with new data & tag

0000000000000010 000000001 0100 Tag field Index field Offset Valid 0x4-7 0x8-b0xc-f 0x0-3Tag Index 123456 Assignment Project Exam Help ehttps://eduassistpro.gith9h.io/ Add WeChat edu lassist_pro 10220 10230

And return word

Do an example yourself. What happens?

° Chose from: Cache:Hit, Miss, Miss w. replace Values returned: a ,b, c, d, e, ..., k, l

Inde	ali X	id _{Tag}	0x https:/	//eduassistpi	ro.github.ig/	0xc-f
0	0		Add V	VeChat edu_	assist pro	
1	1	2	i		k	
2	0					
3		0	е	f	g	h
4	0					
5	0					
6	0					
7	0					

Cache

Answers

°0x00000030 a hit

Index = 3, Tag matches, Offset = 0, value = e Memory
Address Value of Word

°0x000001c a miss 00000014 b

Assignment Project by 30000014 c

Index = 1, Tag 01c 00000010 c

replace from https://eduassistpro.github.io/

Offset = 0xc, yalue = chat edu_assistanp

- Therefore, returned values are:
 - $\cdot 0 \times 00000030 = e$
 - $\cdot 0x0000001c = d$

_	
00000034	f
0000038	g
000003c	h
	_ _
•••	•••
 00008010	•••
•••	•••

00008018

0000801c

Slides from Patterson's 61C

"And in Conclusion..."

°We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible.

So we create a memory hierarchy:
 Assignment Project Exam Help
 • each suc

- evel contains "most ushttps://eduassistpro.githlowie/r level
- · exploits temporathlo edu_assisd spatial locality
- do the common case fast, worry less about the exceptions (design principle of MIPS)
- Locality of reference is a Big Idea