機械学習エンジニアコース Week4 Session

- 機械学習の基礎 -

2019年7月31日(水) 鈴木 達哉

今日の流れ

- 1. チェックイン・KPT(担当:鈴木)
- 2. 講義(担当:鈴木)
- 3. お昼休み
- 4. ペアプログラミング(担当:遠藤)
- 5. KPT・チェックアウト(担当:遠藤)

構成

- 1. 提言
- 2. 導入
- 3. 今日の目的
- 4. 授業前課題の確認
- 5. 授業課題
- 6. 質疑応答

未来は目指すものであり、創るものだ。

安宅 和人

ゴールから逆算して設計されたカリキュラムになっています。数歩先を 見据え、走りながら考えてください。

就職

機械学習エンジニアになる。

Term3(10月)

問題を定義して、時間内に解決できる。

Term2(9月)

現在の問題を認識し、既存の解決策を適用できる。

Term1(8月)

古典的理論を知り、定石を身につける。

事前学習(7月)

道具を活かす思考を身につける。

5

Term3(10月)

問題を定義して、時間内に解決できる。

- 調査
- 仮説を立てる
- 条件を知る
- SQL
- データセット作成
- Docker
- Raspberry Pi
- 公開

Term2(9月)

現在の問題を認識し、既存の解決策を適用できる。

- 深層学習
- 画像認識
- 自然言語処理
- 論文読解
- コードリーディング
- OSS
- フレームワーク

Term1(8月)

古典的理論を知り、定石を身につける。

- 教師あり学習
- 教師なし学習
- スクラッチ
- Kaggle

事前学習(7月) 道具を活かす思考を身につける。

- プログラミング(Python)
- 機械学習のための数学
- 探索的データ分析
- 機械学習の基礎
- オブジェクト指向

導入 - 大切な考え方

今月は、道具を活かす思考を身につける。

	© Good	× Not Good
1	「何があればできるだろう」と自分に問う	「まだ習ってないからなあ」と立ち止まる
2	「本当にあっているのか」と疑う	「○○に書いてあったから」と信じ込む
3	「まずはやってみよう」と手を動かす	「もっと分かってからやろう」と慎重になる

今日の目的

学びの目的。目的が、人の役割と必要な学びを明確にする。明確な学びは、成長実感と自信につながる。

	目的とすること	目的としないこと
1	仲間とプログラムの考え方を学ぶ	関数をたくさん覚える
2	機械学習の基礎を知る	課題を早く完成させる
3	新人ビジネスマンの気持ちになる	

今日の目的:機械学習の基礎を知る

「機械学習の基礎を知る」

そもそも機械学習の基礎とは何か。モデル作りにこだわることではない。

● 機械学習の一連の流れの実装と実行を繰り返す

今日の目的:新人ビジネスマンの気持ちになる

「新人ビジネスマンの気持ちになる。」

分析ツールを使う上で大切にしたい姿勢。以下のようなイメージを持ってみる。

- 自分は新人ビジネスマン
 - ドメイン知識がない
 - データはある
- 会社で先輩や上司にホウレンソウする
 - ビジネスゴールがある

授業前課題の確認

授業前課題の解説を行います。

DIVER 授業前課題で身につけた力を活用して、より実践的な問題に チャレンジ!

- 1. 信用情報の学習
 - a. コンペティション内容の確認
 - b. 学習と検証
 - c. テストデータに対する推定
 - d. 特徴量エンジニアリング

参考情報

HomeCredit_columns_description.csv
https://www.kaggle.com/c/home-credit-default-risk/data

Kaggleコンペティションに取り組むフロー

- 1. 問題提起を理解する
- 2. 評価指標を理解する
- 3. PublicとPrivateの比率を確認する
- 4. EDAする
- 5. First Submissionする
- 6. 指標値の関数をつくる
- 7. 前処理する
- 8. Feature Engineeringする
- 9. Trainingする
- 10. 指標値で評価する
- 11. Submissionする

【注意事項】HomeCredit_columns_description.csv を見て、データセットの列についての説明を確認しよう。

Googleスプレッドシートで GOOGLETRANSLATE関数 を使おう!

https://support.google.com/docs/answer/3093331?hl=ja&authuser=0

特徴量の増やし方

- その専門分野の論文を読むことからはじめる
- ドメイン知識を勉強する
 - 業界人にヒアリングする
- 時系列にデータを追ってみる

DataRobot Essentialsハンズオントレーニング資料より

特徴量の減らし方

- 教師なし学習を活用する
 - 主成分分析(Principal Component Analysis)を行う

不均衡データは、なぜ欠損しているのかの仮説を立てよう。

- 1. ランダムなもの
- 2. 事実上欠損している a. データがない、営業していない
- 3. 恣意的に欠損している a. 年収アンケートに答えない

欠損事由に応じてダミーで補うか否かを考えよう

汎用的に使えるよう学習している状態が好ましい。過学習を防ぎ、汎化性能を高める。

未知のデータを使った予測では、学習不足でも、丸暗記状態でも、予測 精度は下がる。

DataRobot Essentialsハンズオントレーニング資料より

"過ぎたるは、及ばざるがごとし。" 汎化性能があることが重要

適度な精度になっているかどうかは、学習に使ったデータと未知のデータを予測してみた精度(エラー率)の差違で認識できる。

アンダー・オーバーフィッティングを回避するために、データを分割して使用する。以下は分割の一例。Kaggleではテストデータは初めから別にあるため、訓練データの一部を検証データとする。

訓練用と検証用データの分割を複数試す交差検証「クロスバリデーション」を行うことが理想的。(Sprnt1で扱う)

分類問題の精度を考えてみよう。"正解"の率が良い?

	正解	予測値	しきい値				
	0か1	(確率)	0.1	0.3	0.5	0.7	0.9
1	1	0.7	1	1	1	1	0
2	0	0.3	1	1	0	0	0
3	0	0.8	1	1	1	1	0
4	0	0.4	1	1	0	0	0
5	0	0.9	1	1	1	1	1
6	0	0.5	1	1	1	0	0
7	0	0.7	1	1	1	1	0
8	0	0.2	1	0	0	0	0
9	0	0.5	1	1	1	0	0
10	0	0.1	1	0	0	0	0
_		正解率	10%	30%	50%	70%	80%

精度の指標値は、正解率以外にもある。

実際と予測を照合して精度確認ができる表「混同行列」。

混同行列 (Confusion Matrix)		予	測
		ロ ー ン返済する (- 陰性)	ローン返済しない (+ 陽性)
実	ローン返済する (- 陰性)	正解、陰性だった	不正解、陽性ではなかった
際	ローン返済しない (+ 陽性)	不正解、陰性ではなかった	正解、 陽性だった

「混同行列」の TN, FN, FP, TP をおさえておこう。

よく使う評価指標 Precision, Recall をおさえておこう。

指標	英名	和名	計算式	利用観点
TPR	Precision	適合率	TP÷ (TP+FP)	Positiveな予測したもののうち、実際に正解 だったものの比率
FPR	-	偽陽性率	FP÷ (FP+TN)	実際にはNegativeなもののうち、Positiveと 誤って予測したものの比率

TPR -		Pro	edict
		N	Р
	N	TN	FP
	Р	FN	TP -

FPR		Pro	edict
		N	Р
	N	TN	FP
	Р	FN	TP

TPRを縦軸、FPRを横軸にとった評価用曲線「ROC曲線」をモデルの性能評価によく使う。この面積がAUC。

RoC曲線の図式

モデルの性能評価

混同行列で表される指標は、予測分布のグラフとしても表すことができる。 予測精度をしきい値で高めるイメージを持とう。

	Pre	dict
	Z	Р
N	TN	FP
Р	FN	TP

		Pre	dict
		N	Р
	N	TN	FP
	Р	FN	TP

		Pre	dict
		N	Р
	N	TN	FP
	Р	FN	TP

(再掲) 今日の目的

学びの目的。目的が、人の役割と必要な学びを明確にする。明確な学 びは、成長実感と自信につながる。

	目的とすること	目的としないこと
1	仲間とプログラムの考え方を学ぶ	関数をたくさん覚える
2	機械学習の基礎を知る	課題を早く完成させる
3	新人ビジネスマンの気持ちになる	

未来は目指すものであり、創るものだ。

安宅 和人

講義は以上です。

ここまでで疑問に思った点はありますか?