```
import matplotlib.pyplot as plt
          from sklearn import datasets
          import time
          np.random.seed(3)
          import seaborn as sns
          sns.set theme(context='notebook')
          import math
In [213]: with open('classification.npy', 'rb') as f:
              X = np.load(f)
              y = np.load(f)
          X = (X-np.mean(X))/np.std(X) # NORMALIZING HERE
          n, m = X.shape
          split = int(0.8 * n)
          p = np.random.permutation(n)
          x_train = X[p[:split]]
          y_train = y[p[:split]]
          x_test = X[p[split:]]
          y_test = y[p[split:]]
```

2 Accelerating K-Nearest Neighbour Classifier (13 points) Load the dataset classification.npy, the dataset consists of over 100 predictors.

1. Implement the following versions of the Nearest Neighbour Classifier

a) Vanila KNN algorithm

In [212]: import numpy as np

```
In [214]: def computeDistance(point1, point2, metric):
              # Euclidean distance
              if metric == 'euclidean':
                      return np.sqrt(np.sum((point1 - point2)**2, axis=1))
                      return np.sqrt(np.sum((point1 - point2)**2))
              # Cosine distance
              elif metric == 'cosine':
                  return sum([a * b for a, b in zip(point1, point2)]) / np.sqrt(sum([a ** 2 for a in point1])) * np.sqrt(sum([b ** 2 for b
          in point2]))
              # City block distance
              elif metric == 'cityblock':
                  return sum([abs(a - b) for a, b in zip(point1, point2)])
In [215]: def vanilla_knn(x_train,y_train, x_test, k, metric):
              neighbors = []# This creates an empty list to store the nearest neighbors for each test data point
              for x in x_test:# This starts a loop that will iterate over each test data point
                  distances = computeDistance(x,x_train, metric) # This calculates the distances between the test data point and all the tr
          aining data points
                  y_sorted = [y for _, y in sorted(zip(distances, y_train))]# This sorts the training labels by the calculated distances
                  neighbors.append(y_sorted[:k])# This adds the k nearest neighbors to the list
              labels = [] # This creates an empty list to store the predicted labels for each test data point
              for nearest neighbors in neighbors: # This starts a loop that will iterate over the list of nearest neighbors
                  labels.append(max(set(nearest neighbors), key=nearest neighbors.count))# This predicts the label for the current test dat
          a point by selecting the most common label among its nearest neighbors
              return labels
          def knn_accuracy(y_pred,y_test):
              # This function calculates the accuracy of a KNN model
              accuracy = sum(y_pred == y_test) / len(y_test)
              return accuracy
```

b) Partial Distances/Lower Bounding

```
# Calculate the distance between the query point and the first k points in the training data
              # Store the indices and distances in the distanceList array
              for index, row in enumerate(x_train[:k,:]):
                  distanceList[index] = (index, computeDistance(query ,row, metric))
              distanceList.sorted(distanceList, key=lambda x:x[1]) # Sort the distanceList array by distance
              for index, row in enumerate(x_train[k:,:]): # Iterate through the remaining rows in the training data
                  m = 1
                  # Initialize partial distance and the number of features used to calculate the partial distance
                  while m < x train.shape[1] and d < computeDistance(query[:m], row[:m], metric):</pre>
                      d += np.sum(np.square(query[:m] , row[:m]))
                  # If the partial distance is less than the full distance, add the row to the distanceList
                  # and sort the distanceList array by distance
                  if d < computeDistance(query ,row, metric):</pre>
                      temp = distanceList.copy()
                      temp.append((index,d))
                      temp = sorted(temp, key=lambda x:x[1])
                      distanceList = temp[:-1]
              k_nearest_class = y_train[[i[0] for i in distanceList]] # Get the classes of the k nearest neighbors
              values, counts = np.unique(k_nearest_class, return_counts=True) # Count the number of occurrences of each class
              predicted class = values[np.argmax(counts)]
              return predicted_class
          def partial_knn(x_train, y_train, x_test, k, metric):
              predicted = [] # Initialize a list to store the predicted classes for each row in the test data
              for testRow in x_test:# Predict the class for the test row using the partial_distance function
                  pred_class = partial_distance(x_train, y_train, testRow, k, metric)
                  predicted.append(pred_class)
              return predicted
In [217]: def partial distance(x train, y train, query, k, metric):
              # Initialize an array to store the indices and distances of the k nearest neighbors
              distanceList = np.zeros(shape=(k,), dtype='i,i')
              # Calculate the distance between the query point and the first k points in the training data
              # Store the indices and distances in the distanceList array
              for index, row in enumerate(x_train[:k,:]):
                  distanceList[index] = (index, computeDistance(query ,row, metric))
              # Sort the distanceList array by distance
              distanceList = sorted(distanceList, key=lambda x:x[1])
              # Iterate through the remaining rows in the training data
              for index, row in enumerate(x_train[k:,:]):
                  # Initialize partial distance and the number of features used to calculate the partial distance
                  d = 0
                  m = 1
                  # Calculate the partial distance using the first m features
                  \# If the partial distance is less than the full distance, update the distance and increment m
                  while m < x_train.shape[1] and d < computeDistance(query[:m], row[:m], metric):</pre>
                      d += np.sum(np.square(query[:m] , row[:m]))
                  # If the partial distance is less than the full distance, add the row to the distanceList
                  # and sort the distanceList array by distance
                  if d < computeDistance(query ,row, metric):</pre>
                      temp = distanceList.copy()
                      temp.append((index,d))
                      temp = sorted(temp, key=lambda x:x[1])
                      distanceList = temp[:-1]
              # Get the classes of the k nearest neighbors
              k_nearest_class = y_train[[i[0] for i in distanceList]]
              # Count the number of occurrences of each class
              values, counts = np.unique(k_nearest_class, return_counts=True)
              # Return the class with the highest count as the predicted class for the query point
              predicted class = values[np.argmax(counts)]
              return predicted class
          def partial_knn(x_train, y_train, x_test, k, metric):
              # Initialize a list to store the predicted classes for each row in the test data
              predicted = []
              # Iterate through each row in the test data
              for testRow in x_test:
                  # Predict the class for the test row using the partial_distance function
                  pred_class = partial_distance(x_train, y_train, testRow, k, metric)
                  # Append the predicted class to the list of predicted classes
                  predicted.append(pred class)
              # Return the list of predicted classes
```

c) Locality Sensitive Hashing

return predicted

In [216]: def partial distance(x train, y train, query, k, metric):

distanceList = np.zeros(shape=(k,)) #array to capture distances

```
In [218]: def similarity_hash(random_vector, observation):
              # Calculates dot product of random vector and observation
              dot_product = np.sum(random_vector * observation)
              sim hash = ""
              # Adds '1' to the hash string if dot product is positive, '0' otherwise
              if dot_product > 0:
                  sim_hash += '1'
              else:
                  sim hash += '0'
              return sim hash
          def create_and_populate_hashtables(inputs, num_tables):
              # Generates num tables random hyperplanes
              hyperplane_vectors = np.random.randn(num_tables, len(inputs[0]))
              tables = []
              # Hashes each data point in inputs using the hyperplanes and stores the resulting hash in tables
              for data in inputs:
                  hashValue = similarity_hash(hyperplane_vectors, data)
                  tables.append(hashValue)
              return tables, hyperplane_vectors
          def create_populate_hashtables(x_train, k):
              # Generates k random hyperplanes
              hyperplanes = np.random.randn(k, x_train.shape[1])
              hashtable = []
              # Hashes each training sample in x_train using the hyperplanes and stores the resulting hash in hashtable
              for trainRow in x_train:
                  hash_val = similarity_hash(hyperplanes, trainRow)
                  hashtable.append(hash_val)
              return hashtable, hyperplanes
          def predict_class(x_train, y_train, testRow, hashtable, hyperplanes, metric):
              # Hash the validation row
              getHash = similarity_hash(hyperplanes, testRow)
              # Find all points in the hashtable that have the same hash value as the validation row
              nearest_neighbors = []
              for i, hash_val in enumerate(hashtable):
                  if hash_val == getHash:
                      nearest_neighbors.append(i)
              # If there are no points with the same hash value, return np.inf
              if len(nearest_neighbors) == 0:
                  return np.inf
              # Otherwise, compute the distances from the validation row to the nearest neighbors
              distances = []
              for i in nearest_neighbors:
                  distance = computeDistance(testRow, x_train[i], metric)
                  distances.append(distance)
              # Find the index of the nearest neighbor
              min_index = np.argmin(distances)
              # Return the label of the nearest neighbor
              return y_train[nearest_neighbors[min_index]]
          def lsh_knn(x_train, y_train, x_test, k, metric):
              \# Generates k hash tables and the corresponding hyperplanes for the training data
              hashtable, hyperplanes = create_populate_hashtables(x_train, k)
              predicted_classes_val = []
              # Classifies each test sample using the hash tables and hyperplanes
              for testRow in x_test:
                  val_predicted_class = predict_class(x_train, y_train, testRow, hashtable, hyperplanes, metric) # Predicting here
                  predicted_classes_val.append(val_predicted_class)
              return predicted_classes_val
```

The following questions are answered cumulatively below:

2. Experiment with k = [1, 2, 3, 4, 5, 7] and report your accuracy on the test set.

Furthermore, report the runtime.

3. Experiment with distance=[cosine,euclidean,cityblock]. You can use scipy for the distance, report accuracy on the test set

Euclidean

```
In [219]: import sys
          import matplotlib.pyplot as plt
          import time
          k = 7
          metric = 'euclidean'
          # list of function names
          functions = ['vanilla_knn', 'partial_knn', 'lsh_knn']
           # create a figure with subplots for the accuracy values and elapsed time values
          fig, (axes1, axes2) = plt.subplots(nrows=2, ncols=len(functions), figsize=(18, 10))
           # iterate over the functions
          for i, f in enumerate(functions):
              \# list to store the accuracy values for each k value
              accuracy_list = []
              \# list to store the elapsed time values for each k value
              time_list = []
              # iterate over the k values
              for kval in range(1, k+1):
                  # get the function object using the name
                  func = getattr(sys.modules[__name__], f)
                  # measure the elapsed time before calling the function
                  start_time = time.perf_counter()
                  # call the function with the required arguments
                  predicted = func(x_train, y_train, x_test, kval, metric)
                  # measure the elapsed time after calling the function
                  end_time = time.perf_counter()
                  # compute the elapsed time
                  elapsed time = end time - start time
                  # compute the accuracy
                  accuracy = knn_accuracy(predicted, y_test.ravel())
                  # store the accuracy and elapsed time values
                  accuracy_list.append(accuracy)
                  time_list.append(elapsed_time)
                  # print the elapsed time and accuracy
                  print('Algorithm: {} Time for k: {} is: {:.4f}s Accuracy is: {}%'.format(f, kval, elapsed_time, np.round(accuracy*100,
          4)))
              print()
              # plot the accuracy vs k values in the first set of subplots
              axes1[i].plot(range(1, k+1), accuracy_list)
              axes1[i].set_title(f+''+'Accuracy')
              axes1[i].set_xlabel('k')
              axes1[i].set_ylabel('Accuracy')
              \# plot the elapsed time vs k values in the second set of subplots
              axes2[i].plot(range(1, k+1), time_list)
              axes2[i].set_title(f+' '+'Elapsed Time')
              axes2[i].set xlabel('k')
              axes2[i].set_ylabel('Time (s)')
           # show the plot
          plt.show()
```

```
Algorithm: vanilla_knn Time for k: 1 is: 0.1046s Accuracy is: 59.5%
Algorithm: vanilla_knn Time for k: 2 is: 0.0963s Accuracy is: 54.5%
Algorithm: vanilla_knn Time for k: 3 is: 0.0875s Accuracy is: 60.5%
Algorithm: vanilla_knn Time for k: 4 is: 0.0885s Accuracy is: 58.0%
Algorithm: vanilla_knn Time for k: 5 is: 0.0915s Accuracy is: 59.5%
Algorithm: vanilla_knn Time for k: 6 is: 0.0880s Accuracy is: 61.5%
Algorithm: vanilla_knn Time for k: 7 is: 0.0883s Accuracy is: 58.5%
Algorithm: partial_knn Time for k: 1 is: 8.3244s Accuracy is: 36.0%
Algorithm: partial_knn Time for k: 2 is: 8.2361s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 3 is: 8.2415s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 4 is: 8.2778s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 5 is: 8.3759s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 6 is: 8.3526s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 7 is: 8.3444s Accuracy is: 37.0%
Algorithm: lsh_knn Time for k: 1 is: 0.5905s Accuracy is: 55.5%
Algorithm: lsh_knn Time for k: 2 is: 0.5877s Accuracy is: 53.0%
Algorithm: lsh_knn Time for k: 3 is: 0.5942s Accuracy is: 55.5%
Algorithm: 1sh knn Time for k: 4 is: 0.5924s Accuracy is: 49.5%
Algorithm: lsh_knn Time for k: 5 is: 0.5908s Accuracy is: 53.0%
Algorithm: lsh_knn Time for k: 6 is: 0.5824s Accuracy is: 52.5%
Algorithm: lsh_knn Time for k: 7 is: 0.5868s Accuracy is: 50.0%
```


Cosine

```
In [220]: import sys
          import matplotlib.pyplot as plt
          import time
          k = 7
          metric = 'cosine'
          # list of function names
          functions = ['vanilla_knn', 'partial_knn', 'lsh_knn']
           # create a figure with subplots for the accuracy values and elapsed time values
          fig, (axes1, axes2) = plt.subplots(nrows=2, ncols=len(functions), figsize=(18, 10))
           # iterate over the functions
          for i, f in enumerate(functions):
              \# list to store the accuracy values for each k value
              accuracy_list = []
              # list to store the elapsed time values for each k value
              time_list = []
              # iterate over the k values
              for kval in range(1, k+1):
                  # get the function object using the name
                  func = getattr(sys.modules[__name__], f)
                  # measure the elapsed time before calling the function
                  start_time = time.perf_counter()
                  # call the function with the required arguments
                  predicted = func(x_train, y_train, x_test, kval, metric)
                  # measure the elapsed time after calling the function
                  end_time = time.perf_counter()
                  # compute the elapsed time
                  elapsed time = end time - start time
                  # compute the accuracy
                  accuracy = knn_accuracy(predicted, y_test.ravel())
                  # store the accuracy and elapsed time values
                  accuracy_list.append(accuracy)
                  time_list.append(elapsed_time)
                  # print the elapsed time and accuracy
                  print('Algorithm: {} Time for k: {} is: {:.4f}s Accuracy is: {}%'.format(f, kval, elapsed_time, np.round(accuracy*100,
          4)))
              print()
              # plot the accuracy vs k values in the first set of subplots
              axes1[i].plot(range(1, k+1), accuracy_list)
              axes1[i].set_title(f+''+'Accuracy')
              axes1[i].set_xlabel('k')
              axes1[i].set_ylabel('Accuracy')
              \# plot the elapsed time vs k values in the second set of subplots
              axes2[i].plot(range(1, k+1), time_list)
              axes2[i].set_title(f+' '+'Elapsed Time')
              axes2[i].set xlabel('k')
              axes2[i].set_ylabel('Time (s)')
           # show the plot
          plt.show()
```

```
Algorithm: vanilla_knn Time for k: 1 is: 0.2284s Accuracy is: 36.0%
Algorithm: vanilla_knn Time for k: 2 is: 0.2181s Accuracy is: 38.5%
Algorithm: vanilla_knn Time for k: 3 is: 0.2169s Accuracy is: 36.0%
Algorithm: vanilla_knn Time for k: 4 is: 0.2180s Accuracy is: 39.5%
Algorithm: vanilla_knn Time for k: 5 is: 0.2186s Accuracy is: 36.5%
Algorithm: vanilla_knn Time for k: 6 is: 0.2155s Accuracy is: 41.5%
Algorithm: vanilla_knn Time for k: 7 is: 0.2182s Accuracy is: 38.0%
Algorithm: partial_knn Time for k: 1 is: 9.3381s Accuracy is: 28.0%
Algorithm: partial_knn Time for k: 2 is: 9.4579s Accuracy is: 33.0%
Algorithm: partial_knn Time for k: 3 is: 9.4665s Accuracy is: 26.0%
Algorithm: partial_knn Time for k: 4 is: 9.4376s Accuracy is: 31.5%
Algorithm: partial_knn Time for k: 5 is: 9.4552s Accuracy is: 35.0%
Algorithm: partial_knn Time for k: 6 is: 9.4986s Accuracy is: 34.0%
Algorithm: partial_knn Time for k: 7 is: 9.6607s Accuracy is: 34.0%
Algorithm: 1sh knn Time for k: 1 is: 3.9920s Accuracy is: 32.0%
Algorithm: lsh_knn Time for k: 2 is: 4.2029s Accuracy is: 31.5%
Algorithm: 1sh knn Time for k: 3 is: 3.9941s Accuracy is: 36.5%
Algorithm: lsh_knn Time for k: 4 is: 3.9884s Accuracy is: 28.0%
Algorithm: 1sh knn Time for k: 5 is: 4.0135s Accuracy is: 29.0%
Algorithm: lsh_knn Time for k: 6 is: 4.0298s Accuracy is: 31.0%
Algorithm: lsh_knn Time for k: 7 is: 4.0193s Accuracy is: 30.5%
```


Cityblock

```
In [221]: import sys
          import matplotlib.pyplot as plt
          import time
          k = 7
          metric = 'cityblock'
          # list of function names
          functions = ['vanilla_knn', 'partial_knn', 'lsh_knn']
           # create a figure with subplots for the accuracy values and elapsed time values
          fig, (axes1, axes2) = plt.subplots(nrows=2, ncols=len(functions), figsize=(18, 10))
           # iterate over the functions
          for i, f in enumerate(functions):
              \# list to store the accuracy values for each k value
              accuracy_list = []
              # list to store the elapsed time values for each k value
              time_list = []
              # iterate over the k values
              for kval in range(1, k+1):
                  # get the function object using the name
                  func = getattr(sys.modules[__name__], f)
                  # measure the elapsed time before calling the function
                  start_time = time.perf_counter()
                  # call the function with the required arguments
                  predicted = func(x_train, y_train, x_test, kval, metric)
                  # measure the elapsed time after calling the function
                  end_time = time.perf_counter()
                  # compute the elapsed time
                  elapsed time = end time - start time
                  # compute the accuracy
                  accuracy = knn_accuracy(predicted, y_test.ravel())
                  # store the accuracy and elapsed time values
                  accuracy_list.append(accuracy)
                  time_list.append(elapsed_time)
                  # print the elapsed time and accuracy
                  print('Algorithm: {} Time for k: {} is: {:.4f}s Accuracy is: {}%'.format(f, kval, elapsed_time, np.round(accuracy*100,
          4)))
              print()
              # plot the accuracy vs k values in the first set of subplots
              axes1[i].plot(range(1, k+1), accuracy_list)
              axes1[i].set_title(f+''+'Accuracy')
              axes1[i].set_xlabel('k')
              axes1[i].set_ylabel('Accuracy')
              \# plot the elapsed time vs k values in the second set of subplots
              axes2[i].plot(range(1, k+1), time_list)
              axes2[i].set_title(f+' '+'Elapsed Time')
              axes2[i].set xlabel('k')
              axes2[i].set_ylabel('Time (s)')
           # show the plot
          plt.show()
```

```
Algorithm: vanilla_knn Time for k: 1 is: 0.0467s Accuracy is: 33.0%
Algorithm: vanilla_knn Time for k: 2 is: 0.0459s Accuracy is: 32.0%
Algorithm: vanilla_knn Time for k: 3 is: 0.0459s Accuracy is: 34.5%
Algorithm: vanilla_knn Time for k: 4 is: 0.0472s Accuracy is: 38.0%
Algorithm: vanilla_knn Time for k: 5 is: 0.0469s Accuracy is: 36.5%
Algorithm: vanilla_knn Time for k: 6 is: 0.0464s Accuracy is: 36.0%
Algorithm: vanilla_knn Time for k: 7 is: 0.0472s Accuracy is: 36.5%
Algorithm: partial_knn Time for k: 1 is: 7.6759s Accuracy is: 36.5%
Algorithm: partial knn Time for k: 2 is: 7.7155s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 3 is: 7.7314s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 4 is: 7.7742s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 5 is: 7.7957s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 6 is: 7.8220s Accuracy is: 37.0%
Algorithm: partial_knn Time for k: 7 is: 7.7730s Accuracy is: 37.0%
Algorithm: lsh_knn Time for k: 1 is: 1.4880s Accuracy is: 49.0%
Algorithm: 1sh knn Time for k: 2 is: 1.6061s Accuracy is: 51.0%
Algorithm: 1sh knn Time for k: 3 is: 1.7756s Accuracy is: 61.0%
Algorithm: 1sh knn Time for k: 4 is: 1.7522s Accuracy is: 55.0%
Algorithm: 1sh knn Time for k: 5 is: 1.6407s Accuracy is: 57.0%
Algorithm: lsh_knn Time for k: 6 is: 1.6837s Accuracy is: 55.5%
Algorithm: 1sh knn Time for k: 7 is: 1.6436s Accuracy is: 57.0%
```


How is the NN algorithm different from the algorithms we have studied so far?

The k-nearest neighbors (k-NN) algorithm is a non-parametric method used for classification and regression. It is a lazy learning algorithm, meaning that it does not build a model ahead of time, but instead waits until a prediction is requested to find the nearest neighbors and make a prediction based on their values. Moreover, in KNN we do not train weights, rather the predictions are computed based on the values/classes of 'k' number of nearest neighbours