Feuille d'exercices 3

Applications linéaires

Exercice 1 (*). Déterminer si les applications de \mathbb{R}^2 dans \mathbb{R}^2 dont les expressions sont données ci-dessous sont linéaires.

- a) f(x,y) = (x + y, x y).
- **b)** f(x,y) = (|x| + |y|, 2).
- c) f(x,y) = (x, -y).
- **d)** f(x,y) = (xy,y).
- e) f(x,y) = (x+y-1,x).
- **f**) $f(x,y) = (\frac{1}{x^2+1}, \frac{1}{1+y^2}).$

Exercice 2 (*). Démontrer que les applications définies ci-dessous sont linéaires, puis déterminer leur noyau, leur image et donner une base de ces sous-espaces vectoriels.

- a) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (2x + 3y, 3x y)$.
- **b)** $f: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x + 3y, -3x 9y).$
- c) $f: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto 2x y + 3z.$
- d) $f: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (x + y + z, 2x + y z).$
- e) $f: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (x y, y x, 0).$

Exercice 3 (*). Soit $m, n \ge 1$ des entiers, et soit $f: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire.

- a) (cours) Démontrer que f est injective si et seulement si $\ker(f) = \{0\}$.
- b) Supposons que n=m. Démontrer que f est injective si et seulement si elle est surjective.
- c) Prouver que si f est injective, alors $n \leq m$.
- d) Prouver que si f est surjective, alors $n \geq m$.
- e) Les réciproques des deux implications ci-dessus sont-elles vraies?

Exercice 4 (*). Soient E et F des espaces vectoriels. Soient (e_1, \ldots, e_n) une base de E et soit $u_1, \ldots, u_n \in F$. On note $\varphi : E \to F$ l'unique application linéaire telle que $\varphi(e_i) = u_i$ pour tout $i = 1, \ldots, n$.

- a) Déterminer l'image par φ d'un vecteur v de coordonnées (x_1, \ldots, x_n) dans la base (e_1, \ldots, e_n) .
- b) Démontrer que φ est injective si et seulement si la famille (u_1, \ldots, u_n) est libre.
- c) Démontrer que φ est surjective si et seulement si la famille (u_1, \ldots, u_n) est génératrice.

Exercice 5. Soient E un espace vectoriel de dimension d et soit $f: E \to E$ un endomorphisme de E. On définit par récurrence un endomorphisme $f^{\circ n}$ pour tout $n \in \mathbb{N}$ de la manière suivante:

$$f^{\circ n} = \begin{cases} \operatorname{Id}_E & \text{si } n = 0, \\ f \circ f^{\circ (n-1)} & \text{si } n \ge 1. \end{cases}$$

On note en particulier que $f^{\circ 1} = f$. On dit que f est nilpotent s'il existe $n \in \mathbb{N}$ tel que $f^{\circ n} = 0$, l'application linéaire triviale. L'ordre de nilpotence de f est alors le plus petit entier $n \in \mathbb{N}$ tel que $f^{\circ n} = 0$.

- a) Supposons que $f^{\circ 2} = 0$. Démontrer que $\operatorname{Im}(f) \subset \ker(f)$.
- **b)** Si $\operatorname{Im}(f) \subset \ker(f)$, prouver que $f^{\circ 2} = 0$.
- c) Si Im(f) = ker(f), démontrer que la dimension d de E est paire.
- d) Supposons maintenant que f est nilpotente d'ordre m. Prouver qu'il existe $v \in E$ tel que $f^{\circ (m-1)}(v) \neq 0$. Pour un tel v, démontrer que la famille $(v, f(v), \ldots, f^{\circ (m-1)}(v))$ est libre.
- e) Déduire du point précédent que $f^{\circ d} = 0$.

Exercice 6 (*). Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes à une indéterminée à coefficients dans \mathbb{R} .

- a) Démontrer que la dérivation de polynômes $\varphi \colon \mathbb{R}[X] \to \mathbb{R}[X]$ est un endomorphisme de l'espace vectoriel $\mathbb{R}[X]$.
- b) Déterminer l'image de φ .
- c) Déterminer le noyau de φ .
- d) L'endomorphisme φ est-il injectif, surjectif, bijectif?
- e) Déduire du point précédent que $\mathbb{R}[X]$ n'est pas un espace vectoriel de dimension finie.

Exercice 7 (Polynômes d'interpolation de Lagrange). Dans ce problème, on va considérer le problème de faire passer une fonction polynomiale de degré inférieur ou égal à n par n+1 points du plan d'abscisses distinctes. Pour $n \in \mathbb{N}$, on pose

$$\mathbb{R}_n[X] := \{ P \in \mathbb{R}[X] | \deg(P) \le n \},$$

et on considère une famille $\mathbf{t} = (t_0, t_1, \dots, t_n)$ de n+1 nombres réels distincts.

- a) Démontrer que $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}[X]$.
- **b)** Démontrer que $(1, ..., X^n) \subset \mathbb{R}_n[X]$ est une base. Quelle est la dimension de $\mathbb{R}_n[X]$?
- c) Soit $t \in \mathbb{R}$ et $\operatorname{ev}_t : \mathbb{R}_n[X] \to \mathbb{R}$ l'application définie par $\operatorname{ev}_t(P) = P(t)$. Vérifier que cette application est linéaire.
- d) Plus généralement, soit $\operatorname{ev}_{\mathbf{t}}: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ l'application définie par $\operatorname{ev}_{\mathbf{t}}(P) = (P(t_0), \ldots, P(t_n))$. Montrer que $\operatorname{ev}_{\mathbf{t}}$ est linéaire.
- e) Démontrer que l'application linéaire ev_t est injective, puis en déduire que pour tout (n+1)-uple de nombres réels $\mathbf{a}=(a_0,\ldots,a_n)$ il existe un *unique* polynôme $P_{\mathbf{a}}$ de degré inférieur ou égal à n satisfaisant $P_{\mathbf{a}}(t_i)=a_i$ pour tout $i=0,\ldots,n$.

- **f)** Pour tout i = 0, ..., n, on pose $P_i := \prod_{0 \le k \le n, k \ne i} \frac{X t_k}{t_i t_k} \in \mathbb{R}_n[X]$. Déterminer $\text{ev}_{\mathbf{t}}(P_i)$ pour tout i = 0, ..., n.
- g) Que peut-on dire de la famille (P_0, \ldots, P_n) ? En déduire une expression de $P_{\mathbf{a}}$ en fonction des polynômes (P_0, \ldots, P_n) .

Exercice 8. Soit E l'espace vectoriel des suites réelles, et soit $F \subset E$ le sous-ensemble des suites qui sont 3-périodiques.

- a) Démontrer que F est un sous-espace vectoriel de E.
- b) Soit $\phi: F \to \mathbb{R}^3$ définie par $\varphi((u_n)_{n \in \mathbb{N}}) = (u_0, u_1, u_2)$. Démontrer que cette application est linéaire.
- c) Démontrer qu'elle est bijective.
- d) En déduire une base de F et donner sa dimension.

Exercice 9 (*). Considérons les sous-ensembles suivants de \mathbb{R}^2 ou \mathbb{R}^3 :

$$E = \{(x, y) \in \mathbb{R}^2 | x + y = 0\}; \qquad F = \{(x, y) \in \mathbb{R}^2 | x = y\};$$

$$G = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}; \quad H = \{(x, y, z) \in \mathbb{R}^3 | x = y = 0\}.$$

- a) Justifier rapidement pourquoi ces parties sont des sous-espaces vectoriels, puis en donner la dimension et en trouver une base.
- b) Démontrer que $\mathbb{R}^2 = E \oplus F$ et que $\mathbb{R}^3 = G \oplus H$.
- c) Donner explicitement l'image d'un vecteur v de \mathbb{R}^3 par la projection sur H parallèlement à G.
- d) Donner explicitement l'image d'un vecteur v de \mathbb{R}^2 par la symétrie par rapport à F parallèlement à E.

Exercice 10. Soit $E = \mathbb{R}_2[X], F := \{P \in E | \int_0^1 P(t)dt = 0\} \subset E \text{ et } G = \text{Vect}(1 + X).$

- a) Démontrer que $E = F \oplus G$.
- b) Soit π la projection sur F parallèlement à G. Déterminer $\pi(P)$ pour tout polynôme $P \in E$.
- c) Soit s la symétrie par rapport F parallèlement à G. Déterminer s(P) pour tout polynôme $P \in E$.

Exercice 11. Soit $E = \mathbb{R}_3[X]$, l'espace vectoriel des polynômes de degré inférieur ou égal à 3.

- a) Pour tout $a \in \mathbb{R}$, on pose $V_a := \{P \in E | \operatorname{ev}_a(P) = 0\} \subset E$. Montrer que V_a est un sous- espace vectoriel pour tout $a \in \mathbb{R}$.
- **b)** A-t-on $V_1 \cap V_2 = \{0\}$?
- c) Démontrer que E est la somme directe des sous-espaces $V_1 \cap V_2 = \{0\}$ et $V_3 \cap V_4 = \{0\}$.
- d) En déduire que tout polynôme $P \in E$ s'écrit de manière unique comme une somme $P = P_1 + P_2$, avec $P_1(1) = P_1(2) = 0$ et $P_2(3) = P_2(4) = 0$ et $P_2(4) = 0$ et $P_$

Exercice 12. On note $\mathcal{C}^2(\mathbb{R})$ l'ensemble des applications $f: \mathbb{R} \to \mathbb{R}$ qui sont deux fois dérivables, et dont la dérivée seconde f'' est continue. Soient $a, b \in \mathbb{R}$.

- a) Démontrer que $\mathcal{C}^2(\mathbb{R})$ est un sous-espace vectoriel de l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} dans \mathbb{R} .
- b) Démontrer que l'application $\psi : \mathcal{C}^2(\mathbb{R}) \to \mathbb{R}^{\mathbb{R}}$ définie par $\psi(f) = f'' + af' + bf$ est linéaire. A partir de maintenant, on note E le noyau de ψ .
- c) Soit $\alpha \in \mathbb{R}$. Sous quelle condition l'application $t \mapsto e^{\alpha t}$ appartient-elle à E?
- d) On considère l'application $\phi: E \to \mathbb{R}^2$ définie par $\phi(f) = (f(0), f'(0))$. Démontrer que ϕ est une application linéaire.
- e) Supposons que l'équation $X^2 + aX + b = 0$ a deux solutions réelles distinctes. Démontrer que ϕ est surjective.
- f) Soit $f \in \ker(\phi)$.
 - (i) Que vaut f''(0)?
 - (ii) Démontrer qu'il existe une constante $\delta < 1$ telle que pour tout $x \in]-\delta, \delta[$, on ait $|f'(x)| \leq |x|$ et $|f(x)| \leq \frac{1}{2}|x|^2$. (On pourra éventuellement utiliser qu'une application dérivable dont la dérivée est positive sur un intervalle est croissante sur cet intervalle en l'appliquant à la différence entre des applications bien choisies).
 - (iii) Notons C = |a| + |b|. Déduire de la question précédente que $|f''(x)| \le C|x|$ pour tout $x \in]-\delta, \delta[$.
 - (iv) Démontrer par récurrence sur n que pour tout $n \in \mathbb{N}$ et tout $x \in]-\delta, \delta[$ on a $|f(x)| \leq C^n |x|^{n+2}$.
 - (v) Démontrer qu'il existe un intervalle I contenant 0 tel que la restriction de f à I soit la fonction constante nulle.
- g) Soit $c \in \mathbb{R}$ et $T_c \colon E \to \mathbb{R}^{\mathbb{R}}$ l'application définie par $T_c(f) = f(t-c)$.
 - (i) Démontrer que $T_c(f) \in E$ pour tout $f \in E$.
 - (ii) Démontrer que T_c est linéaire. Quel est son noyau? Que vaut la composition $T_{-c} \circ T_c$?
 - (iii) Exprimer simplement $\phi(T_c(f))$.
- **h)** Soit $f \in \ker(\phi)$ et $A := \{t \in \mathbb{R}_+ | f(x) = f'(x) = 0 \ \forall x \in [0, t[\}].$
 - (i) Démontrer que $A = \mathbb{R}_+$ (On pourra raisonner par l'absurde et considérer la borne supérieure de A).
 - (ii) En déduire que f est l'application constante nulle.
- i) Démontrer que ϕ est injective.
- j) Que peut-on en déduire sur la dimension de l'espace E?