

algebra di Boole

algebra di Boole

- l'algebra di Boole è un *formalismo* che opera su variabili (variabili booleane)
- o le *variabili booleane* possono assumere due soli valori: *vero*, *falso*
- sulle variabili booleane è possibile definire un insieme di funzioni (funzioni booleane)
- o il risultato di una *funzione booleana* può assumere solo il valore *vero* o il valore *falso*
- o il valore vero viene anche rappresentato con 1 e il valore falso con 0

funzioni e tabella di verità

- o una *tabella di verità <mark>definisce</mark>* una funzione booleana
 - o stabilisce il valore risultante per ciascuna *combinazione* dei valori in ingresso
- o a volte, specifica incompleta (certe combinazioni di ingressi non possono verificarsi) \rightarrow non è specificato alcun valore

#	w	X	у	Z	f
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1 0
2	0	0	1	1	0
4 5	0	1	0	0	0
	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

operatori di base

Name	N	TO		ANI)	1	NAN	D		OR			NOI	3		XOI	3	N	KNO	R
Alg. Expr.		Ā		AB			\overline{AB}			A + B	3		$\overline{A+I}$	3		$A \oplus B$	3		$A \oplus B$	3
Symbol	<u>A</u>	>> <u>x</u>	A B)— <u>×</u>)o—			<u> </u>			>-	:		>-			> -
Truth	A 0	X	B	A	X	B	A	X 1	B	A	X 0	B	A	X 1	B	A	X	B	A	X
Table	1	0	0	1	0	0	1	1	0	1	1	0	1	0	0	1	1	0	1	(
			ī	1	1	1	1	0	1	1	1	ī	1	0	1	1	0	1	1	1

espressione booleana

- o operatori possono essere *combinati* in espressioni
 - o altra forma di definizione di funzioni booleane
 - $\circ \ \text{es. } F_2(A,\,B,\,C) = A \cdot B + C$

Operatore	Simbolo
And	· (^)
Or	+ (V)
Not	П
Xor	\oplus
Nand	\uparrow
Nor	↓

proprietà degli operatori

Proprietà	Not
Complemento	$\neg\neg A = A$

Proprietà	And	Or
Commutativa	$A \cdot B = B \cdot A$	A + B = B + A
Associativa	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	(A+B) + C = A + (B+C)
Distributiva	$A + (B \cdot C) = (A+B) \cdot (A+C)$	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$
Idempotenza	$A \cdot A = A$	A + A = A
Identità	$A \cdot 1 = A$	A + 0 = A
Del limite	$A \cdot 0 = 0$	A + 1 = 1
Assorbimento	$A \cdot (A + B) = A$	$A + (A \cdot B) = A$
Inverso	$A \cdot \neg A = 0$	$A + \neg A = 1$
De Morgan	$\neg(A \cdot B \cdot C) = \neg A + \neg B + \neg C$	$\neg(A+B+C) = \neg A \cdot \neg B \cdot \neg C$

Attenzione a De Morgan: errore comune!

leggi di De Morgan

le leggi di De Morgan sono principi della logica proposizionale che stabiliscono come negare le congiunzioni e le disgiunzioni

A	В	A+B	$\overline{A+B}$	$\overline{\overline{A}}$	\overline{B}	$\overline{A}.\overline{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

A	В	A.B	$\overline{A.B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

forme canoniche

- o le *forme canoniche* sono espressioni standardizzate di una funzione booleana e permettono di rappresentarla in modo univoco
- o somma di prodotti (SP): si considerano le righe a 1

$$\circ \quad F1(A,\,B,\,C) = (\neg A\, \neg B\, \neg C) + (\neg A\, \cdot B\, \cdot C) + (A\, \neg B\, \cdot C) + (A\, \cdot B\, \neg C) + (A\, \cdot B\, \cdot C)$$

- \circ *prodotto di somme (PS):* si considerano le righe a θ
 - o $F1(A, B, C) = (A + B + \neg C) \cdot (A + \neg B + C) \cdot (\neg A + B + C)$

somma di prodotti

\boldsymbol{A}	\boldsymbol{B}	C	F	
0	0	0	1	$\rightarrow SP$
0	0	1	0	
0	1	0	0	
0	1	1	1	$\rightarrow SP$
1	0	0	0	
1	0	1	1	$\rightarrow SP$
1	1	0	1	$\rightarrow SP$
1	1	1	1	$\rightarrow SP$

$$F(A,B,C) := (\neg A \cdot \neg B \cdot \neg C) + (\neg A \cdot B \cdot C) + (A \cdot \neg B \cdot C) + (A \cdot B \cdot \neg C) + (A \cdot B \cdot C)$$

prodotto di somme

\boldsymbol{A}	B	\boldsymbol{C}	F	$\neg F$	
0	0	0	1	0	
0	0	1	0	1	$\rightarrow PS$
0	1	0	0	1	$\rightarrow PS$
0	1	1	1	0	
1	0	0	0	1	$\rightarrow PS$
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	

$$F(A, B, C) := (A + B + \neg C) \cdot (A + \neg B + C) \cdot (\neg A + B + C)$$

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A F	F = A • B or F = AB	AB F 00 0 01 0 10 0 11 1
OR	A F	F = A + B	AB F 0000 011 101 1111
NOT	A F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A B F	$F = \overline{AB}$	AB F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A B	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$A \longrightarrow F$	$F = A \oplus B$	A B F 0 0 0 0 1 1 1 0 1

