Problem H. Simple Text Editor

OS Linux

Implement a simple text editor. The editor initially contains an empty string, $\emph{\textbf{S}}$. Perform $\emph{\textbf{Q}}$ operations of the following $\emph{\textbf{4}}$ types:

- 1. append(W) Append string W to the end of S.
- 2. delete(k) Delete the last k characters of S.
- 3. print(k) Print the k^{th} character of S.
- 4. undo() Undo the last (not previously undone) operation of type ${\bf 1}$ or ${\bf 2}$, reverting ${\bf S}$ to the state it was in prior to that operation.

Example

$$S = \text{`abcde'}$$
 $ops = [$ '1 fg', '3 6', '2 5', '4', '3 7', '4', '3 4']

\cap	n		r	2	+	٦	on	
\circ	\sim	$\overline{}$	_	а	$\overline{}$	_	OII	

index	S	ops[index]	explanation
0	abcde	1 fg	append fg
1	abcdefg	3 6	print the 6th letter - f
2	abcdefg	2 5	delete the last 5 letters
3	ab	4	undo the last operation, index 2
4	abcdefg	3 7	print the 7th characgter - g
5	abcdefg	4	undo the last operation, index 0
6	abcde	3 4	print the 4th character - d

The results should be printed as:

f

g

d

Input Format

The first line contains an integer, Q, denoting the number of operations.

Each line i of the Q subsequent lines (where $0 \le i < Q$) defines an operation to be performed. Each operation starts with a single integer, t (where $t \in \{1, 2, 3, 4\}$), denoting a type of

operation as defined in the *Problem Statement* above. If the operation requires an argument, t is followed by its space-separated argument. For example, if t=1 and W="abcd", line i will be 1 abcd.

Constraints

- $1 \le Q \le 10^6$
- $1 \le k \le |S|$
- The sum of the lengths of all W in the input $\leq 10^6$.
- The sum of k over all delete operations $\leq 2 \cdot 10^6$.
- All input characters are lowercase English letters.
- It is guaranteed that the sequence of operations given as input is possible to perform.

Output Format

Each operation of type **3** must print the k^{th} character on a new line.

Sample Input

Sample Output

С

У

а

Explanation

Initially, S is empty. The following sequence of 8 operations are described below:

```
1. S = "". We append abc to S, so S = "abc".
```

- 2. Print the $\mathbf{3}^{rd}$ character on a new line. Currently, the $\mathbf{3}^{rd}$ character is $\, \circ \,$.
- 3. Delete the last ${f 3}$ characters in ${f S}$ (${f abc}$), so ${f S}=""$.
- 4. Append xy to S, so S = "xy".
- 5. Print the $\mathbf{2}^{nd}$ character on a new line. Currently, the $\mathbf{2}^{nd}$ character is $_{\mathrm{Y}}$.
- 6. Undo the last update to S, making S empty again (i.e., S = "").
- 7. Undo the next to last update to S (the deletion of the last 3 characters), making S = "abc".
- 8. Print the $\mathbf{1}^{st}$ character on a new line. Currently, the $\mathbf{1}^{st}$ character is a .