07 - Specific Angular Momentum on a single chart

September 11, 2022

```
[2]: import h5py
     import matplotlib.pyplot as plt
     import pandas as pd
     from os import listdir
     import numpy as np
     import re
     axisScale = 0.03
     datasets = ['organic', 'gm_early', 'gm_late']
     datasetNo = -1
     galaxyAm = np.array(range(144), dtype=float).reshape(3, 24, 2)
     for dataset in datasets:
         files = listdir('data/' + dataset)
         count = 0
         datasetNo = datasetNo + 1
         for file in files:
             # get redshift from the filename
             m = re.search('(z[0-9])\w+', file)
             s = m.group(0).replace('z', '')
             s = s.replace('p', '.')
             redshift = float(s)
             # load data for a particular galaxy at a particular redshift
             f = h5py.File('data/' + dataset + '/' + file,'r')
             ds_c = f['Coordinates']
             ds_v = f['Velocity']
             ds m = f['Mass']
```

```
\#Calculate the angular momentum of every particle in the array using
 \hookrightarrow vectorisation
        mv = np.multiply(ds_m, np.transpose(ds_v))
        angMom = np.cross(ds_c, np.transpose(mv))
        # Get the vector norm to give the size of the vector, i.e.
        angMomTot = np.linalg.norm(angMom, axis=1)
        specAngMomTot = angMomTot / np.sum(ds_m)
        # Store totals of all particles for each redshift in the current galaxy
        galaxyAm[datasetNo, count, 0] = redshift
        galaxyAm[datasetNo, count, 1] = np.sum(specAngMomTot)
        count = count + 1
# Read data for the redshift->time lookup table
df o = pd.read csv('halo catalogue organic.txt', delimiter='\t')
df_r2t = df_o[["time [Gyr]"]].copy()
df r2t = df r2t.drop(df r2t.index[range(0,3)])
times = df_r2t.to_numpy()
plt.rcParams['font.size'] = '24'
plt.rcParams['font.family'] = 'STIXGeneral'
fig, ax1 = plt.subplots()
fig.set_size_inches(15,10)
plt.plot(times, galaxyAm[0, 0:, 1], label='Organic', color='green')
plt.plot(times, galaxyAm[1, 0:, 1], label='GM Early', color='blue')
plt.plot(times, galaxyAm[2, 0:, 1], label='GM Late', color='red')
plt.title('Total magnitude of specific angular momentum vs. time', pad=30)
plt.xlabel('$t [Gyr]$')
plt.ylabel(r'$\vert L {sp}\vert$ ($M \odot\ Mpc km s^{-1})$')
plt.ticklabel_format(axis='y', style='sci', useMathText=True)
plt.semilogy()
plt.legend()
plt.show()
```

Total magnitude of specific angular momentum vs. time

[]: