Exercises List Comprehensions

* Exercise 1

Using list comprehension define the list of cubes of the values between (and including) 1 and 10.

squares =
$$[(1,1),(2,4),(3,9),(4,16),(5,25),(6,36),(7,49),(8,64),(9,81),(10,100)]$$

* Exercise 2

Using list comprehension define the following list (note that the second element in the 2-tuple is always 1.

$$myConstFunc = [(1,1),(2,1),(3,1),(4,1),(5,1)]$$

** Exercise 3

Write down the values as defined in the following lists 11, 12, 13. Check your answers.

f1 ::
$$[(Int, Int)]$$

f1 = $[(x, y) | x < -[1..3], y < [4..5]]$
f2 :: $[(Int, Int)]$
f2 = $[(x, y) | y < [4..5], x < -[1..3]]$
f3 :: $[(Int, Int)]$
f3 = $[(y, x) | x < -[1..3], y < [4..5]]$

** Exercise 4

Given the following definition of

```
isEven :: Integer -> Bool
isEven n = (n 'mod' 2 == 0)
```

Write down the values as defined in the following list: Check your answer.

$$[2*n \mid n \leftarrow [2,4,7], \text{ isEven } n, n>3]$$

** Exercise 5

Give a definition of a function

which doubles all the elements of a list of integers.

** Exercise 6

Give a definition of a function

which converts all small letters in a String into capitals.

Hint: You can use the following function (having imported Data.Char):

import Data.Char

toupper :: Char -> Char

** Exercise 7

Using a list comprehension, give an expression that calculates the sum of

$$\sum_{i=1}^{i=100} i^2$$

** Exercise 8

Using a list comprehension, write a function sigma'

$$sigma' :: Int \rightarrow Int$$

that takes an integer n and calculates

$$\sum_{i=1}^{i=n} i^2$$

**** Exercise 9

Define the function

matches :: Integer -> [Integer] -> [Integer]

which picks out all occurences of an integer in a list. For instance:

Using matches or otherwise, define a function

elem':: Integer -> [Integer] -> Bool --elem is already defined in Prelude which is True is the Integer is an element of the list, and False otherwise.

*** Exercise 10

Suppose that a *coordinate grid* of size m x n is given by the list of all pairs (x,y) of integers such that $0 \le x \le m$ and $0 \le y \le n$. Using a list comprehension, define a function:

```
grid :: Int -> Int -> [(Int, Int)]
```

that returns a coordinate grid of a given size. For example:

```
[*Main> grid 1 2
[(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)]
*Main>
```

*** Exercise 11

Using a list comprehension and the function **grid** above, define a function

```
square :: Int -> [(Int, Int)]
```

that returns a coordinate square of size n, excluding the diagonal from (0,0) to (n,n). For example:

```
[*Main> square 2
[(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)]
*Main> |
```

*** Exercise 12

In a similar way to the function *length*, show how the library function

```
replicate :: Int \rightarrow a \rightarrow [a]
```

that produces a list of identical elements can be defined using list comprehension. (Call your version **myReplicate**) For example:

*** Exercise 13

A triple (x, y, z) of positive integers is called pythagorean if $x^2 + y^2 = z^2$. Using a list comprehension, define a function

```
pyths :: Int -> [(Int,Int,Int)]
```

that returns a list of all such triples whose components are at most a given limit. For example

**** Exercise 14

A positive integer is perfect if it equals the sum of all of its factors, excluding the number itself. Using a list comprehension and the function **factors**, define a function

```
perfects :: Int -> [Int]
```

that returns the list of all perfect numbers up to a given limit. For example:

Solutions

Solution to Exercise 1

```
cubes :: [Int] cubes = [x^3 | x \leftarrow [1..10]]
```

Solution to Exercise 2

```
myConstFunc :: [(Int, Int)] 
 myConstFunc = [(x, 1)| x <- [1..5]]
```

Solution to Exercise 3

```
11 = [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
12 = [(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]
13 = [(4,1),(5,1),(4,2),(5,2),(4,3),(5,3)]
```

Solution to Exercise 4

[8]

Solution to Exercise 5

```
\begin{array}{lll} \texttt{doubleAll} & :: & [\textbf{Integer}] & -\!\!\!> & [\textbf{Integer}] \\ \texttt{doubleAll} & \texttt{ns} & = & [\texttt{n*2} & | & \texttt{n<-ns}] \end{array}
```

Solution to Exercise 6

```
capitalize :: String -> String
capitalize xs = [toUpper(c) | c<- xs ]</pre>
```

Solution to Exercise 7

Solution to Exercise 8

Solution to Exercise 9

elem':: Integer
$$\rightarrow$$
 [Integer] \rightarrow Bool elem' x xs = matches x xs /= []