第1問(必答問題)(配点??)

太郎さんと花子さんが放課後の教室で話している。

花子:ねぇ太郎くん。

太郎:どうしたんだ?

花子:この前友達と遊んでいて、平方根の近似値をみんなで手計算で求めることに

なったのよ。私は $\sqrt{2}$ を計算したんだけど,私が 3 桁求める間にみんなは倍

以上計算し終えていたのよ。一体みんははどう計算していたのかしら。

太郎:なるほどな。それじゃあ今日は、「平方根の近似値の計算方法」について解

説するぜ。

花子:お願いします。

太郎:ところで花子さんは、どうやって計算したんだ?

花子:ええと,

〔1〕 $\sqrt{2}$ の近似値を求める。以下, a_n を $\sqrt{2}$ の小数点以下第 n 桁目の数とする。ただし, a_0 は整数部分である。

 $a_0^2 \le 2 < (a_0+1)^2$ を満たす a_0 を求めると, $a_0 = \mathbb{P}$ である。 $(a_0+a_1\times 10^{-1})^2 \le 2 < (a_0+(a_1+1)\times 10^{-1})^2$ を満たす a_1 を求めると, $a_1 = \mathbb{I}$ である。同様に, $(a_0+a_1\times 10^{-1}+1\times 10^{-2})^2 = \mathbb{I}$ であるから $a_2 = 1$ となり,さらに続けると $a_3 = \mathbb{I}$ である。よって $\sqrt{2}$ が 3 桁求められた。

数学総合

太郎:なるほどな。花子さんは工夫せずに地道に計算していったのか。

花子: そうよ。なにか工夫できる方法があるの?

太郎:もちろんあるぜ。じゃあまずは「ニュートン法」を解説するぜ。

[2]

(1) $\sqrt{2}$ を解の一つに持つ二次関数として, $f(x) = x^2 - 2$ とする。 $f(x_0) \neq 0$, $f'(x_0) \neq 0$ である x_0 を置くと, $x = x_0$ における f(x) の接線の式 $g_1(x)$ は

$$g_1(x) = \boxed{ t}$$

また, $g_1(x)$ と x 軸の交点の x 座標を x_1 とおくと,

$$\boxed{ \mathcal{Y} } = 0$$

が得られる。この式を用いると、 x_1 を x_0 を用いて

$$x_1 = \boxed{9}$$
 ①

と表せる。

 $x=x_1$ における接線の式を $g_2(x)$ とし, $g_2(x)$ と x 軸との交点を x_2 とし,先 と同様の操作を繰り返すと①と同様の関係式を得る。

 $x=x_n$ における接線の式を $g_{n+1}(x)$ とし、 $g_{n+1}(x)$ と x 軸との交点を x_{n+1} として一般化すると、 x_n についての漸化式を得られる。

の解答群

- $0 2x(x_0-x)+x^2-2$
- (1) $2x(x_0-x)-x^2+2$
- $2x_0(x-x_0)+x_0^2-2$
- $3 2x_0(x-x_0)-x_0^2+2$

の解答群

- $0 g(x_0)$

- ① $g(x_1)$ ② $g(-x_0)$ ③ $g(-x_1)$

- $(g(x_0) x_0)$ $(g(x_1) x_1)$ $(g(-x_0) x_0)$ $(g(-x_1) x_1)$

タの解答群

- $3 x_0 \frac{x_0^2 1}{x_0}$
- ② $x_0 + \frac{x_0^2 1}{x_0}$ ⑤ $x_0 \frac{x_0^2 2}{2x_0}$

数学総合

花子:なるほど。この方法では チー ことで近似を求めるのね。同じようにし

て, 別の関数にも応用できるのかしら。

太郎:そうだな。それじゃあ $\sqrt[3]{2}$ を求めるために $f(x) = x^3 - 2$ としてみようか。

会話文中の チー については、最も適当なものを次の ②~③のうちから一つ選べ。

- \bigcirc 接線と x 軸との交点を次々に更新することで真の値に近づける
- ① 展開式を利用して面積が2を超えない正方形をつくる
- ② 接線の傾きを $\sqrt{2}$ に近づけ座標の比を考える
- ③ 特殊な手法でナーマギリ女神を召喚する

(2) 太郎さんと花子さんは $\sqrt[3]{2}$ の近似を求めるために, $f(x)=x^3-2$ として,数 列 $\{x_n\}$ についての漸化式

$$x_{n+1} = x_n - \frac{x_n^3 - 2}{3x_n^2}$$

を得た。

花子:ところで,この漸化式で表される数列 $\{x_n\}$ は本当に $\sqrt[3]{2}$ に近づくのかし

ら。

太郎: それじゃあ, 証明してみようか。