Министерство науки и высшего образования

Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: <u>ИУК «Информатики и управления»</u>

КАФЕДРА: <u>ИУК7-КФ «Экология и промышленная безопасность»</u>

Лабораторная работа №1

«ИССЛЕДОВАНИЕ ПОКАЗАТЕЛЕЙ МИКРОКЛИМАТА ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ» ДИСЦИПЛИНА: «Безопасность жизнедеятельности»

Выполнил: студент	гр. ИУК5-62Б		· · · · · · · · · · · · · · · · · · ·	_ (<u>Ли_Р.В.</u> _)
			(подпись)		Ф.И.О.
Проверил:			(подпись)	_ (_Ac	стахова Л.В_) Ф.И.О.
Дата сдачи (защ	иты): 25.03.20	25			
Результаты сдач	и (защиты):				
	- Бальная	оцен	ка: 5		
	- Оценка:				

Цель работы

Целью работы является изучение санитарно-гигиенических требований к показателям микроклимата рабочей зоны производственных и служебных помещений и возможных опасных и вредных факторов, действующих при нарушении этих требований.

Теоретическая часть

<u>Тепловой обмен и терморегуляция организма.</u> Воздух рабочей зоны — это воздушная среда в пространстве высотой до 2 м над уровнем пола или площадки, где находятся рабочие места.

Под *терморегуляцией* понимается способность организма поддерживать температуру его внутренней среды постоянной при изменении показателей микроклимата и при изменении физических нагрузок.

В условиях, когда терморегуляция человека идет нормально количество тепла, вырабатываемого организмом, равно количеству тепла, отдаваемого в окружающую среду.

Математически это описывается следующим выражением (*уравнение теплового баланса*):

$$Q = Q_T + Q_K + Q_{H3} + Q_{HC} + Q_B$$

- где Q количество тепла, вырабатываемое организмом в результате протекания биохимических процессов при выполнении работы или в состоянии покоя, Дж/с (ккал/час);
- $Q_{\scriptscriptstyle T}$ отдача или прием теплоты организмом в результате теплопроводности через одежду или предметы;
 - Ок отдача или прием теплоты через конвекцию;
- $Q_{\text{ис}}$ отдача теплоты в окружающую среду за счет испарения влаги с поверхности кожи;
 - $Q_{\mbox{\tiny H3}}$ отдача или прием теплоты за счет тепловых излучений;
- $Q_{\scriptscriptstyle B}$ отдача или прием теплоты за счет нагрева или охлаждения вдыхаемого воздух.

Конвекцией называется перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости.

Теплопроводность — это перенос тепла вследствие беспорядочного (теплового) движения микрочастиц (атомов, молекул или электронов), непосредственно соприкасающихся друг с другом.

Тепловое излучение – это процесс распространения электромагнитных колебаний с различной длиной волны, обусловленный тепловым движением атомов или молекул излучающего тела.

Количество отдаваемой или принимаемой организмом теплоты зависит от величины каждого из показателей микроклимата: температуры воздуха (t, °C), относительной влажности воздуха (φ , %), скорости движения воздуха (V, м/c), интенсивности теплового излучения окружающих предметов (E, BT/M^2).

Атмосферное давление (р, гПа) существенного влияния на теплообмен не оказывает, однако оно влияет на процесс дыхания и самочувствие человека, так как определяет парциальное давление кислорода и азота в воздухе. Быстрое изменение давления даже на несколько гектопаскалей вызывает болезненное ощущение.

Повышенная отдача тепла организмом в окружающую среду за счёт увеличения

 Q_{r} , Q_{κ} , Q_{us} , и Q_{s} , происходит при низких значения температуры воздуха, большой его подвижности и отсутствии внешних источников теплового излучения. Происходит его переохлаждение, что приводит к дискомфорту, заболеваниям, а в отдельных случаях, когда снижается значительно, к гибели организма.

В условиях, когда температура воздуха превышает температуру тела, теплоотдача организма за счёт конвекции, теплопроводности, излучения и нагрева воздуха прекращается. Организм в этих условиях может отдавать теплоту только за счёт испарения.

Если же влажность воздуха приближается к 100%, то теплоотдача полностью прекращается и происходит перегрев организма. При перегреве организма нарушаются его функции, возможен тепловой удар, а при повышении температуры внутренней среды более 42°C наступает смерть.

Таким образом, организм может существовать в узких пределах изменения внутренней температуры. При нормальном функционировании организма в допустимых условиях внутренняя температура тела поддерживается постоянной и составляет 36,6°C.

При увеличении температуры воздуха и при физической нагрузке сосуды кожи и мышц расширяются, кровь приливает к поверхности тела, увеличивая теплоотдачу в окружающую среду. При переохлаждении тела периферийные сосуды наоборот сужаются и происходит отток крови к внутренним органам, поддерживая их температуру, в пределах нормы, а отдача тепла в окружающую среду уменьшается. В условиях переохлаждения происходит непроизвольное дрожание мышц, что увеличивает выделение тепла организмом, однако более существенное увеличение выделения тепла происходит при физической работе.

Таким образом, тепловой обмен организма со средой определяется в основном тяжестью работы и параметрами микроклимата на рабочем месте. Значительное отклонение показателей микроклимата и физических нагрузок от допустимых значений становятся вредными и опасными факторами. В соответствии с ГОСТ 12.003-74* ССБТ к вредным и опасным факторам, воздействующим на организм через микроклимат, относятся:

- повышенное или пониженное значение температуры воздуха рабочей зоны;
- повышенное или пониженное значение относительной влажности воздуха;
- повышенное значение скорости движения воздуха;
- повышенное значение интенсивности инфракрасной радиации.

Одной из задач создания нормальных условий труда является обеспечение допустимых, а в ряде случаев и оптимальных параметров микроклимата на рабочих местах. С этой целью осуществляется санитарно-гигиеническое нормирование показателей микроклимата, отопление, кондиционирование и вентиляция производственных помещений.

<u>мест.</u> Общие санитарно-гигиенические требования к воздуху рабочей зоны установлены в ГОСТ 12.1.005-88, входящем в ССБТ. а требования к отоплению, вентиляции и кондиционированию - в СНиП 2.04.05-88. (Отопление, вентиляция и кондиционирование воздуха).

Нормируемыми показателями, характеризующими микроклимат, являются:

- 1) температура воздуха;
- 2) относительная влажность воздуха;
- 3) скорость движения воздуха;
- 4) интенсивность теплового излучения.

Оптимальные микроклиматические условия - это сочетание количественных показателей микроклимата, которые при длительном систематическом воздействии на человека обеспечивают сохранение нормального теплового состояния организма без

напряжения механизмов терморегуляции и создают условия для высокого уровня работоспособности.

Под *допустимыми* микроклиматическими условиями понимается сочетание количественных показателей микроклимата, которые при длительном и систематическом воздействии на человека могут вызывать переходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящем за пределы физиологически приспособленных возможностей. При этом не возникает повреждений и нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения.

Оптимальные и допустимые величины показателей микроклимата не имеют однозначных величин для всех случаев и устанавливаются с учетом тяжести работы и периода года. Наличие теплового облучения и расположение производственных помещений в отдельных строительно-климатических районах также учитываются при определении приемлемых значений температуры на рабочих местах

Все работы по тяжести подразделяются на 3 категории в зависимости от энергозатрат организма в ккал/час или в Вт, первая и вторая категории, в свою очередь, имеют еще дополнительное деление. В табл.1(приложение 4) представлены категории работ по тяжести и признаки их разграничения.

К холодному периоду года относятся период, характеризуемый среднесуточной температурой наружного воздуха, равной $+10^{\circ}$ С и ниже. Период года, характеризуемый среднесуточной температурой наружного воздуха выше $+10^{\circ}$ С относится к теплому периоду года. Оптимальные и допустимые показатели микроклимата в рабочей зоне производственных помещений должны соответствовать значениям, указанным в табл. 2 (приложение 5)

Инменсивность меплового облучения работающих от нагревательных поверхностей технологического оборудования и других источников не должна превышать $35~\mathrm{Br/m^2}$ при облучении 50% поверхности тела, $70~\mathrm{Br/m^2}$ при облучении 25-50% и $100~\mathrm{Br/m^2}$ при облучении менее 25% поверхности тела. При работе с открытыми источниками (нагретый металл, пламя и др.) интенсивность облучения не должна превышать $140~\mathrm{Br/m^2}$ при условии облучения не более 25% поверхности тела и использовании индивидуальных средств защиты. (Приложение 8)

<u>Требования к методам и приборам для контроля показателей микроклимата.</u> В соответствии с ГОСТ 12.1.005-88 на постоянных и непостоянных рабочих местах должен осуществляться контроль за влажностью, температурой, скоростью движения воздуха, а также за интенсивностью теплового излучения и температурой поверхности технологического оборудования и строительных конструкций.

Измерение показателей микроклимата должны проводиться в начале, середине и в конце каждого периода года не менее 3-х раз в смену (в начале, середине и конце смены).

Точки замера выбираются из следующих требований: температура, относительная влажность и скорость движения воздуха измеряется на высоте 1 м от пола при работе сидя и на высоте 1,5 м от пола - при работе, выполняемой стоя.

Для определения разности температур и скоростей движения воздуха по высоте рабочей зоны следует проводить выборочные измерения на высоте 0.1; 1.0 и 1.7м от пола или рабочей площадки.

При наличии источников лучистого тепла (инфракрасной радиации и части видимого спектра) определяется интенсивность теплового излучения. Приемник измерительного прибора располагается на высоте 0.5; 1.0; 1.5м от пола в направлении, перпендикулярном источнику.

Измерение температуры относительной влажности воздуха. Для измерения температуры, относительной влажности используются аспирационные психрометры. При отсутствии источников тепловых излучений допускается использовать психрометры типа ПВУ-1М, а также суточные и недельные термографы и гигрографы при условии сравнения их показаний с показаниями аспирационного психрометра.

Аспирационный психрометр Ассмана М-34 является наиболее другие психрометры, например,

совершенным прибором, чем другие психром стационарный психрометр Августа.

Психрометр Ассмана состоит из двух оди

Психрометр Ассмана состоит из двух одинаковых ртутных термометров, закрепленных в термодержатели, состоящие из трубок защиты, воздухоприемной трубки, в верхней части прибора укреплена аспирационная чаша, имеющая электромотор и вентилятор; чтобы

При подключении прибора к сети вентилятор всасывает воздух, который обтекает резервуары термометров и, проходя по воздушной трубке, выбрасывается наружу. После просасывания воздуха в течение 5 минут снимают показания по сухому и влажному термометру. Сухой термометр показывает истинную температуру воздуха. Относительная влажность воздуха определяется по специальной таблице или по психрометрическому графику на основании разницы температур сухого и влажного термометров по сухому термометру (приложение 1). По вертикальным линиям отмечают показания сухого термометра, а по наклонным - показания влажного. На пересечении этих линий определяют наклонную линию, выражающую относительную влажность в процентах.

Применяются также приборы (гигрометры) для определения влажности без таблиц и графиков. Волосяной гигрометр представляет собой рамку, на которой вертикально натянут специально обезжиренный волос, укрепленный одним концом на металлической рамке, другим на оси стрелки. При изменении длины волоса с изменением влажности стрелка гигрометра перемещается вдоль шкалы и указывает влажность в процентах.

Специальные приборы гигрографы используются для изменения относительной влажности во времени. Перо пишет на ленте, натянутой на специальный барабан, приводимый в движение часовым механизмом. В

гигрографе M-21C один оборот барабана совершается за 26 часов, а в гигрографе M-21M за 176 часов.

Для измерения температуры, воздуха кроме аспирационного психрометра могут использоваться

Для измерения температуры, воздуха кроме аспирационного психрометра могут использоваться специальные метеорологические ртутные термометры и термографы.

Скорость движения воздуха на рабочих местах измеряют анемометрами ротационного действия (крыльчатыми анемометрами). Эти приборы позволяют замерять скорость движения воздуха в пределах от <u>0,3 до 5,0 м/с.</u>

Малые скорости (менее 0.3 м/с) измеряют электроанемометрами или цилиндрическими и шаровыми кататермометрами. Для измерения больших скоростей движения воздуха (1-20 м/с) используются чашечные анемометры.

У крыльчатого анемометра ACO-3 приемной частью является легкая крыльчатка, посаженная на получервячную ось, внутри которой натянута стальная струна, служащая осью. На концах оси у опор струны насажены подшипники. При вращении крыльчатки

вращение посредством зубчатой передачи передается на стрелку прибора. Включение и выключение механизма производится арретиром.

Интенсивность теплового излучения измеряется актинометрами, действие которых основано на поглощении лучистой энергии и превращении ее в тепловую энергию, количество которой регистрируется различными способами. Наибольшее распространение получил актинометр ЭТМ, принцип действия которого основан на термоэлектрическом эффекте - возникновения электрического тока в замкнутой цепи, состоящей из различных металлов, при наличии разности температур на конце спаев.

В качестве приемника в приборе используется термоэлектрическая батарея в виде

ряда термопар, соединенных между собой последовательно. Положительные спаи термопар присоединяются к пластинам со степенью черноты, близкой к абсолютно черному телу, а отрицательные - к пластинам с высокой отражающей способностью. При действии теплового излучения черные пластины интенсивно нагреваются, и в цепи возникает электрический ток, измеряемый гальванометром, шкала которого отградуирована в единицах тепловой разности.

ЭТМ

Измерение атмосферного давления.

Атмосферное давление является одним из параметров микроклимата (который не нормируется). Скорость изменения и абсолютное значение атмосферного

давления фактором,

на кислорода процесс

давления

прибор),

изменение

является важным природным оказывающим влияние на жизнедеятельность организма. Атмосферное давление влияет парциальное давление и азота, а следовательно, и на дыхания.

Измерение атмосферного осуществляется различными приборами: ртутным барометром (наиболее точный барометрами-анероидами и барографами, записывающими с течением времени.

Барографы выпускаются двух типов: М-22Н (наземные), М-22С (суточные).

Из барометров-анероидов наибольшее распространение получил барометр-анероид бытовой метеорологический (БАМ-1).

Он предназначен для измерения атмосферного давления в пределах от 80000 до 160000 Па при температуре от 0 до 40° С и относительной влажности до 80%.

Действие барометра-анероида основано на свойстве мембранной анероидной коробки деформироваться при изменении атмосферного давления. Линейные перемещения мембран преобразуются передаточным рычажным механизмом в условиях перемещения стрелки барометра-анероида. Шкала отградуирована в паскалях.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Для исследования параметров микроклимата на рабочих местах в лаборатории произвести замеры *температуры*, *относительной влажности*, *скорости движения воздуха*, *интенсивность тепловых излучений* и величину атмосферного давления.

<u>Измерение температуры и относительной влажности воздуха.</u> С помощью пипетки смочить батист на одном резервуаре термометра, входящего в психрометр Ассмана.

Включить прибор в сеть и расположив его на высоте 1 м от пола проаспирировать воздух в течении 5 минут.

Снять показания по влажному и сухому термометру, по психрометрическому графику определить относительную влажность. Принять температуру воздуха рабочей зоны по сухому термометру. Выключить прибор, данные свести в таблицу 4 (приложения 6).

<u>Измерение скорости движения воздуха в рабочей зоне.</u> При включенном вентиляторе по методике, изложенной выше данных методических указаний, произвести замеры скорости движения воздуха.

<u>Измерение интенсивности теплового излучения</u> от источников, указанных преподавателем. При наличии источников лучистого тепла (инфракрасной радиации и части видимого спектра) определяется интенсивность теплового излучения. Приемник измерительного прибора располагается на высоте 0.5; 1.0; 1.5м от пола в направлении, перпендикулярном источнику. Измерить интенсивность теплового излучения, записать результаты в обобщенную таблицу (приложение 7), предварительно осуществив перевод значений показаний прибора в СИ.

<u>Измерение атмосферного давления</u>. Считать показания прибора (БАМ-1) и ввести поправки к ним. Данные свести в обобщенную таблицу.

К показаниям барометра-анероида вводятся следующие поправки:

- 1) Поправки шкалы по табл.3 (приложение 4);
- 2) Поправки на температуру Р=р · Т,
- где р поправка на 1°C (температурная), равная 10 Па; Т температура;
- 3) Добавочная поправка, равная +100.

Пример: По барометру-анероиду отсчитаны деления 96500 Па, температура 20°С.

Введя поправки, получаем исправленный отсчет: 96500+125-200+100=96525Па

<u>Анализ полученных результатию</u>. В обобщенную таблицу (приложение 7) с результатами экспериментов выписать нормативные параметры из таблиц № 2 (прил.5), 4, 5 (прилож.6) (по указанию преподавателя).

Сделать выводы о соответствии параметров микроклимата рабочей зоны нормативным и записать в отчет.

Ответить на вопросы преподавателя (Список вопросов приведен после приложения).

- 1. Название лабораторной работы. Цель.
- 2. Основные понятия определения, формулы.
- 3. Таблицы, графики, основные замеры.
- 4. Общий вывод по замерам.

Контрольные вопросы

- 1. За счет чего поддерживается температура внутренней среды организма?
- 2. Назовите основные показатели микроклимата.
- 3. Когда температура окружающей среды выше температуры тела, как организм будет отдавать теплоту?
- 4. Что происходит с организмом при 100% влажности воздуха?
- 5. С учетом чего устанавливаются нормированные оптимальные и допустимые величины?
- 6. Назовите категорию работ, если работа связана с постоянной ходьбой, переноской тяжести до 10 кг.
- 7. Какой среднесуточной температурой атмосферного воздуха характеризуется холодный период времени?
- 8. Каким прибором измеряют скорость движения воздуха?
- 9. От чего зависит скорость движения воздуха?

График зависимости числа делений шкалы в секунду от скорости направленного воздушного потока от 1 до 20 м/с <u>для чашечного анемометра.</u> I – число делений в 1 секунду, II - скорость, м/с

График зависимости числа делений шкалы в секунду от скорости направленного воздушного потока от 0,3 до 5 м/с <u>для крыльчатого анемометра</u>. I – число делений в 1 секунду, II - скорость, м/с

Разграничение работ по тяжести на основе энергозатрат в ккал/час и Вт

№ п/п	Категории работ	Общие энергозатраты	Вид работ
1	2	3	4
1	Легкие физические работы (категория 1)	Виды деятельности с расходом не более 150 ккал/час (174 Вт)	
1	Категория 1а	Легкие физические работы с энергозатратами до 120 ккал/час (139 Вт)	Работы, производимые сидя без значительного физического напряжения (профессии на предприятиях точного приборо- и машиностроения, в часовом производстве, в сферах управления и т.д.)
	Категория 16	Легкие физические работы с энергозатратами до 121-150 ккал/час (140- 174 Вт)	Работы, производимые сидя, при ходьбе, сопровождающиеся некоторым физическим напряжением (контролеры, мастера, работники связи на различных видах производства и т.д.)
	Средней тяжести физические работы (категория 2)	Виды деятельности с расходом энергии в пределах 151-250 ккал/час (175-290 Вт)	
2	Категория 2а	Работы с энергозатратами 151-200 ккал/час (175-232 Вт)	Работы, связанные с постоянной ходьбой, перемещением изделий до 1 кг в положении стоя, требующие определенного напряжения (ряд профессий в механосборочных цехах)
	Категория 2б	Работы с энергозатратами 201-250 ккал/час (233-290 Вт)	Работы, связанные с постоянной ходьбой, перемещением изделий до 10 кг и сопровождающиеся умеренным физическим напряжением (профессии механизированных литейных, прокатных, кузнечных, сварочных и термических цехов)
3	Тяжелые физические работы (категория 3)	Виды деятельности с расходом энергии более 250 ккал/час (290 Вт)	Работы с постоянной переноской, передвижением тяжестей свыше 10 кг (ряд профессий в немеханизированных, кузнечных, литейных и других цехах, ручная погрузка и др. работы)

Приложение 5 Tаблица~2 Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений

			Тем	Относительная влажность, %, не более		Скорость движения воздуха, м/с, не более				
ЮД	Категория		Į	Допустимая на рабочих местах			Допустим ая на]	Допустим ая на	
Период	работ	ьная	Верхняя гра	ница	Нижняя граница		ьная	рабочих	ьная	рабочих
		Оптимальная	Постоянная	Непостоянная	Постоянная	Непостоянная	Оптимальная	местах ()постоян ная и непостоян	Оптимальная	местах ()постоян ная и непостоян
								ная)		ная) не более
	Легкая 1а	22-24	25	26	21	18	40-60	75	0,1	0,2
й	Легкая 1 б	21-23	24	25	20	17	40-60	75	0,1	0,2
холодный	Средней тяжести 2а	18-20	23	24	17	15	40-60	75	0,2	0,3
	Средней тяжести 2б	17-19	21	23	15	13	40-60	75	0,2	0,4
	Тяжелая	16-18	19	20	13	12	40-60	75	0,3	0,5
	Легкая 1а	23-25	28	30	22	20	40-60	55 при 28оС	0,1	0,1-0,2
	Легкая 1 б	22-14	28	30	21	19	40-60	60 при 27oC	0,2	0,1-0,3
Теплый	Средней тяжести 2а	21-23	27	29	18	17	40-60	65 при 26оС	0,3	0,2-0,4
Теп	Средней тяжести 2б	20-22	27	29	16	15	40-60	70 при 25оС	0,4	0,2-0,6
	Тяжелая	18-20	26	28	15	13	40-60	75 при 24оС и ниже	0,4	0,2-0,6

Поправки к показаниям барометра-анероида

Показания прибора, Па	Поправки, Па	Показания прибора, Па	Поправки, Па
105000	-100	92000	+75
104000	-75	91000	+50
103000	-50	90000	+25
102000	-25	89000	0
101000	0	88000	-25
100000	+25	87000	-50
99000	+50	86000	-25
98000	+75	85000	0
97000	+100	84000	-25
96000	+150	83000	-50
95000	+200	82000	-50
94000	+150	81000	-50
93000	+100	80000	-100

 $\it Tаблица~4$ Результаты замера температуры и относительной влажности воздуха

Точка замера	Высота замера	Темпера	Относительная влажность, %	
	замера	По сухому	По влажному	
1	1 м			

 ${\it Tаблица~5}$ Результаты замера скорости движения воздуха

Точка	Показания а	анемометра		Время	Число оборотов за 1 с.	Скорость по графику, м/с
22Mena	До	После	оборотов за время замера	замера, 60 с		
1	измерения	измерении				
2						
3						

Вывод:

Обобщенная таблица

№ п/п	Наименование параметра	Значение измеренного параметра фактич.	Нормативные показатели опт./доп.	Оценка опт./доп.
1	Температура воздуха, °C			
2	Относительная влажность, %			
3	Скорость движения воздуха, м/с			
4	Интенсивность теплового излучения, B_T/M^2			
5	Атмосферное давлении, кПа			

Вывод:

Приложение 8

Интенсивность теплового	Облученная поверхность тела
излучения (ИТИ) в $Bт/м^2$	человека в (ОПТ) %
35	50
70	25-50
100	<25
140	<25

Таблицу читать так: Если на тело человека действует интенсивность теплового излучения равное 35 Вт на кв.м., то тело человека не должно облучиться более, чем на 50% и далее по таблице.

Основная литература

- 1. Хван, Т.А. Безопасность жизнедеятельности [Электронный ресурс]: учеб. пособие / Т.А. Хван, П.А. Хван. 11-е изд. Ростов-н/Д: Феникс, 2014. 448 с.: ил., табл. (Высшее образование). Режим доступа: http://biblioclub.ru/index.php? раде=book&id=271593
- 2. Муравей, Л.А. Безопасность жизнедеятельности [Электронный ресурс]: учеб. пособие / под ред. Л.А Муравей. 2-е изд., перераб. и доп. М.: Юнити-Дана, 2015. 431 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=119542
- 3. Арустамов, Э.А. Безопасность жизнедеятельности [Электронный ресурс]: учебник / Э.А. Арустамов, А.Е. Волощенко, Г.В. Гуськов; под ред. Э.А. Арустамова. 19-е изд., перераб. и доп. М.: Издательско-торговая корпорация «Дашков и К°», 2015. 448 с. Режим доступа: http://biblioclub.ru/index.php? page=book&id=375807
- 4. Попов, А.А. Производственная безопасность [Электронный ресурс]: учеб. пособие / под ред. А.А. Попова. СПб.: Лань, 2013. 432 с. Режим доступа: http://e.lanbook.com/book/12937

Дополнительная литература

- 1. Виноградов, Д.В. Применение смазочно-охлаждающих технологических средств при резании металлов [Электронный ресурс]: учеб. пособие по курсу «Инструментообеспечение машиностроительных предприятий» Ч. 1: Функциональные действия / Д.В Виноградов— Электрон. дан. М.: МГТУ им. Н.Э. Баумана, 2013. 90 с. Режим доступа: http://e.lanbook.com/book/58525
- 2. Макаров, В.Ф. Современные методы высокоэффективной абразивной обработки жаропрочных сталей и сплавов [Электронный ресурс]: учеб. пособие / В.Ф. Макаров. Электрон. дан. СПб.: Лань, 2013. 320 с. Режим доступа: http://e.lanbook.com/book/32819
- 3. Сибикин, М.Ю. Современное металлообрабатывающее оборудование: справочник [Электронный ресурс] / М.Ю. Сибикин, В.В. Непомилуев, А.Н. Семенов, М.В. Тимофеев. М.: Машиностроение, 2013. 308 с. Режим доступа: http://e.lanbook.com/book/37007
- 4. Суслов, А.Г. Наукоемкие технологии в машиностроении [Электронный ресурс] / А.Г. Суслов, Б.М. Базров, В.Ф. Безъязычный; под ред. А.Г. Суслова. М.: Машиностроение, 2012. 528 с. Режим доступа: http://e.lanbook.com/book/5795
- 5. Кривошеин, Д.А. Основы экологической безопасности производств [Электронный ресурс]: учеб. пособие / Д.А. Кривошеин, В.П. Дмитренко, Н.В. Федотова. СПб: Лань, 2015. 336 с. Режим доступа: http://e.lanbook.com/book/60654

1. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Научная электронная библиотека http://eLIBRARY.RU.
- 2. Электронно-библиотечная система http://e.lanbook.com.
- 3. Электронно-библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru.
- 4. Электронно-библиотечная система http://biblio-online.ru.
- 5. Электронно-библиотечная система http:// iprbookshop.ru

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Приступая к освоению дисциплины обучающийся должен принимать во внимание следующие положения.

Дисциплина построена по модульному принципу, каждый модуль представляет собой логически завершенный раздел курса.

Лекционные занятия посвящены рассмотрению ключевых, базовых положений курса и разъяснению учебный заданий, выносимых на самостоятельную проработку.

Практические занятия проводятся для закрепления усвоенной информации, приобретения в основном умений для решения практических задач в предметной области дисциплины. Практические занятия обеспечены методическими указаниями по их выполнению:

Лабораторные работы предназначены для приобретения умений и навыков для решения практических задач в предметной области дисциплины. Лабораторные работы обеспечены методическими указаниями по их выполнению:

1. Астахова Л.В., Шнитко И.Г., Сорокина И.В. Исследование показателей микроклимата производственных помещений. Методическое пособие. -М.: Издательство МГТУ им. Н.Э. Баумана, 2009.