Sveučilište u Rijeci ODJEL ZA INFORMATIKU Ulica Radmile Matejčić 2, Rijeka Akademska 2020/2021. godina

PARALELNO PROGRAMIRANJE NA HETEROGENIM SUSTAVIMA

Studij: Preddiplomski studij informatike Godina i semestar: 3. godina, 5. semestar

Web stranice predmeta: https://moodle.srce.hr/2020-2021/

ECTS bodovi: 5

Nastavno opterećenje: 2 + 2

Nositelj predmeta:

izv. prof. dr. sc. Božidar Kovačić

E-mail: bkovacic@inf.uniri.hr

Web stranica: https://portal.uniri.hr/portfelj/1506

Ured: Ulica Radmile Matejčić 2, O-414

Vrijeme konzultacija: utorkom od 10 do 12 sati ili po dogovoru e-mailom

Asistent:

v. pred. dr. sc. Vedran Miletić E-mail: vmiletic@inf.uniri.hr

Web stranica: https://vedran.miletic.net/ Ured: Ulica Radmile Matejčić 2, O-520

Vrijeme konzultacija: utorkom od 12 do 14 sati ili po dogovoru e-mailom

PARALELNO PROGRAMIRANJE NA HETEROGENIM SUSTAVIMA

Razvijanje općih i specifičnih kompetencija (znanja i vještina)

- usvajanje temeljnih znanja o načinu rada grafičkog procesora kod izvođenja računskih operacija opće namjene
- usvajanje tehnika paralelnog programiranja na heterogenim sustavima, što se intenzivno primjenjuje kod proračuna u prirodnim i tehničkim znanostima, obradi slika u medicini, baratanju digitalnim multimedijskim sadržajem i drugdje

Korespodentnost i korelativnost programa

Preduvjet za upis predmeta *Paralelno programiranje na heterogenim sustavima* je položen ispit iz predmeta *Operacijski sustavi 2*.

Pored navedenog, ovaj predmet tematski i problemski nasljeđuje i predmet *Algoritmi i strukture podataka*, a pojedinim temama prethodi predmetu *Računalna grafika*. Predmet je povezan i s predmetom *Numerička matematika*.

Okvirni sadržaj predmeta

Osnovne ideje višejezgrenosti, paralelnog programiranja i primjeri primjene. Programski jezici za paralelno programiranje na heterogenim sustavima. Osnovne programske strukture, tipovi podataka, operatori i funkcije.

Hardverska arhitektura heterogenih sustava. Platforme, uređaji i konteksti. Prijenos podataka između memorije različitih uređaja. Događaji, obavijesti i sinkronizacija. Analiza peformansi koda i otklanjanje grešaka u kodu.

Modeli konkuretnosti i izvođenja programskih naredbi. Obrada slika. Implementacija programskog jezika za paralelno programiranje na osnovnim i grafičkim procesorima.

Studijski slučajevi stvarnih algoritama: redukcija i sortiranje, algoritmi na matricama, obrada slika, konvolucija, obrada videa, histogram, simulacija višečestičnih sustava, generiranje slučajnih brojeva, kriptoalgoritmi.

Implementiranje vlastitih algoritama. Ekstenzije programskih jezika za paralelno programiranje. Mogućnosti primjene heterogenog računanja na webu. Mogućnosti primjene u ubrzanju prikaza računalne grafike.

Oblici provođenja nastave i način provjere znanja

Predavanja, vježbe, samostalni zadaci, konzultacije.

Popis literature potrebne za studij i polaganje ispita

- 1. Hwu, W. Heterogeneous system architecture: a new compute platform infrastructure. (Elsevier, 2015).
- 2. Kirk, D. B. & Hwu, W. W. Programming Massively Parallel Processors: A Hands-on Approach. (Elsevier, 2016).
- 3. ROCm documentation. Dostupno na: https://rocm-documentation.readthedocs.io/
- 4. CUDA C Programming Guide. (NVIDIA, 2020). Dostupno na: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
- 5. Skripte, prezentacije i ostali materijali za učenje dostupni u e-kolegiju.

Popis literature koja se preporučuje kao dopunska

- 1. Kaeli, D. R., Mistry, P., Schaa, D. & Zhang, D. P. Heterogeneous Computing with OpenCL 2.0. (Elsevier/Morgan Kaufmann, 2015).
- 2. OpenCL Overview. (Khronos Group, 2017). Dostupno na: https://www.khronos.org/opencl/
- Advanced Micro Devices. "RDNA 1.0" Instruction Set Architecture, Reference Guide. (AMD Developer Central, 2019). Dostupno na: https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Shader_ISA_7July2019.pdf

- 4. Advanced Micro Devices. "Vega" Instruction Set Architecture, Reference Guide. (AMD Developer Central, 2017). Dostupno na:
 - https://developer.amd.com/wordpress/media/2017/08/Vega_Shader_ISA_28July2017.pdf
- Advanced Micro Devices. OpenCL Programming Guide, Revision 2.7. (AMD Developer Central, 2013). Dostupno na:
 https://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL
 L Programming Guide-rev-2.7.pdf
- 6. Advanced Micro Devices. OpenCL Optimization Guide. (AMD Developer Central, 2015). Dostupno na: https://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
- 7. Advanced Micro Devices. OpenCL User Guide. (AMD Developer Central, 2015). Dostupno na: https://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.pdf
- 8. LLVM documentation. Dostupno na: https://llvm.org/docs/

Način praćenja kvalitete i uspješnosti izvedbe predmeta

Kroz ustrojeni sustav osiguranja kvalitete Odjela za informatiku.

Mogućnost izvođenja na stranom jeziku

Ima (engleski).

R. BR.	OČEKIVANI ISHODI
1.	objasniti vezu višejezgrenosti i paralelnog programiranja
2.	navesti primjere paralelnih algoritama i često korištenih programskih struktura
3.	objasniti pojam heterogenog sustava
4.	opisati hardversku arhitekturu heterogenih sustava i njezinu softversku reprezentaciju
5.	navesti razlike u načinu rada osnovnih i grafičkih procesora
6.	objasniti pojam paralelizabilnosti algoritma i prepoznati to svojstvo kod konkretnih algoritama
7.	implementirati jednostavnije paralelne algoritme i strukture podataka
8.	primijeniti stečena znanja kod implementacije paralelnih algoritama za rješavanje stvarnih problema

AKTIVNOSTI I OCJENJIVANJE STUDENATA

VRSTA AKTIVNOSTI	ECTS	ISHODI UČENJA	SPECIFIČNA AKTIVNOST	METODA PROCJENJIVANJA	BODOVI MAX.
Pohađanje nastave	1	1–8	Prisutnost studenata	Popisivanje (evidencija)	0
Pisani ispit	1	1–6	Dva kolokvija	0–20 bodova za svaki kolokvij, ovisno o stupnju točnosti i potpunosti	40
Kontinuirana provjera znanja	1	7–8	Dvije kontrolne zadaće	0–15 bodova za svaku kontrolnu zadaću, ovisno o stupnju točnosti i potpunosti	30
Završni ispit	2	7–8	Dizajn, implementacija i prezentacija heterogenog paralelnog algoritma	30 bodova prema definiranim kriterijima	30
UKUPNO	5				100

Obveze i vrednovanje studenata

Pohađanje nastave

Nastava se odvija prema mješovitom modelu u kombinaciji klasične nastave u učionici i online nastave uz pomoć sustava za e-učenje Merlin (https://moodle.srce.hr/2020-2021/).

Pisani ispit

Tijekom semestra pisat će se dva kolokvija koji će uključivati pitanja iz gradiva predavanja i na svakom od njih student će moći skupiti maksimalno 20 bodova.

Kontinuirana provjera znanja

Tijekom semestra pisat će se dvije kontrolne zadaće koje će uključivati praktične zadatke iz gradiva vježbi i na svakom od njih student će moći skupiti maksimalno 15 bodova.

Ocjena iz kolegija

Završni ispit

Kontinuiranim radom tijekom semestra na prethodno opisani način studenti mogu ostvariti najviše 70 ocjenskih bodova, a da bi mogli pristupiti završnom ispitu moraju ostvarili 50% i više bodova (minimalno 35).

Studenti koji su skupili najmanje 35 ocienskih bodova, mogu pristupiti završnom ispitu.

Tijekom semestra studenti će u grupama po dvoje ili troje odabrati projekt koji će izraditi i predati neposredno prije ispitnog roka, a zatim na završnom ispitu obraniti usmenim putem. Projekt se sastoji se od izrade programskog koda koji rješava određeni problem korištenjem heterogenog paralelnog algoritma i pripadne dokumentacije. Vrednovat će se točnost i potpunost predanog programskog koda i pripadne dokumentacije te opis načina rješavanja danog problema. Da bi student mogao pristupiti usmenoj obrani projekta, mora barem jednom doći na konzultacije s djelomično izrađenim projektom.

Završni ispit nosi udio od maksimalno 30 ocjenskih bodova, a smatra se položenim samo ako na njemu student postigne minimalno 50%-ni uspjeh (ispitni prag je 50% uspješno riješenih zadataka).

Ukoliko je završni ispit prolazan, skupljeni bodovi će se pribrojati prethodnima i prema ukupnom rezultatu formirati će se pripadajuća ocjena. U suprotnom, student ima pravo pristupa završnom ispitu još 2 puta (ukupno do 3 puta).

Konačna ocjena

Donosi se na osnovu zbroja svih bodova prikupljenih tijekom izvođenja nastave prema sljedećoj skali:

- A 90%–100% (ekvivalent: izvrstan 5)
- B 75%–89,9% (ekvivalent: vrlo dobar 4)
- C 60%–74,9% (ekvivalent: dobar 3)
- D 50%–59,9% (ekvivalent: dovoljan 2)
- F 0%–49,9% (ekvivalent: nedovoljan 1)

Ispitni rokovi

Redoviti:

- 3. veljače 2021.
- 17. veljače 2021.

Izvanredni:

- 31. ožujka 2021.
- 15. rujna 2021.

RASPORED NASTAVE – zimski (I) semestar ak. godine 2020./2021.

Nastava će se na predmetu odvijati u zimskom semestru prema sljedećem rasporedu:

- predavanja: srijeda 8:15–9:45, prostorija O-358 i online
- vježbe: srijeda 14:15–15:45, prostorija O-359 i online

Tj.	Datum	Vrijeme	Prostor	Tema	Nastava	Izvođač
1.	5. 10. 2020.	10:15– 11:45	O-366	Postavljanje okoline za razvoj programa na platformi ROCm (CUDA). Standardi C++11, C++14 i C++17. Formatiranje znakovnih nizova bibliotekom {fmt}	V	v. pred. dr. sc. Vedran Miletić
1.	7. 10. 2020.	8:15– 9:45	O-358	Uvod. Pojam i osnovne ideje računanja na grafičkim procesorima	Р	izv. prof. dr. sc.

Tj.	Datum	Vrijeme	Prostor	Tema	Nastava	Izvođač
						Božidar Kovačić
2.	12. 10. 2020.	10:15– 11:45	O-366	Arhitektura platforme ROCm (CUDA). Prevođenje i pokretanje gotovih programa otvorenog koda. Mjerenje performansi	V	v. pred. dr. sc. Vedran Miletić
2.	14. 10. 2020.	8:15– 9:45	O-358	Povijest razvoja grafike i računanja na grafičkim procesorima	Р	izv. prof. dr. sc. Božidar Kovačić
3.	19. 10. 2020.	10:15– 11:45	O-366	Osnove rada s grafičkim procesorom: biblioteka rocPRIM (ugrađene funkcije CUDA-e)	V	v. pred. dr. sc. Vedran Miletić
3.	21. 10. 2020.	8:15– 9:45	O-358	Paralelizam zasnovan na podacima. Struktura programa. Množenje matrica	Р	izv. prof. dr. sc. Božidar Kovačić
4.	26. 10. 2020.	10:15– 11:45	online	Generiranje slučajnih brojeva: C++11 biblioteka random i biblioteka rocRAND	V	v. pred. dr. sc. Vedran Miletić
4.	28. 10. 2020.	8:15– 9:45	online	Memorije uređaja i prijenos podataka. Zrna i višenitni rad	Р	izv. prof. dr. sc. Božidar Kovačić
5.	2. 11. 2020.	10:15– 11:45	online	Dokumentiranje programskog koda alatom Doxygen. Dokumentiranje programa alatom MkDocs	V	v. pred. dr. sc. Vedran Miletić
5.	4. 11. 2020.	8:15– 9:45	online	Indeksi blokova i niti. Redanje izvođenja zrna	Р	izv. prof. dr. sc. Božidar Kovačić
6.	9. 11. 2020.	10:15– 11:45	online	1. kontrolna zadaća	I	v. pred. dr. sc. Vedran Miletić
6.	11. 11. 2020.	8:15– 9:45	online	Tipovi memorija. Tehnike za smanjenje korištenja globalne memorije. Memorija kao ograničavajući faktor kod paralelizacije	Р	izv. prof. dr. sc. Božidar Kovačić
7.	16. 11. 2020.	10:15– 11:45	online	Operacije na vektorima i matricama: aplikacijska programska sučelja BLAS i LAPACK. C++ biblioteka Eigen	V	v. pred. dr. sc. Vedran Miletić

Tj.	Datum	Vrijeme	Prostor	Tema	Nastava	Izvođač
8.	23. 11. 2020.	10:15– 11:45	online	Operacije na vektorima i matricama: biblioteka rocBLAS (cuBLAS)	V	v. pred. dr. sc. Vedran Miletić
8.	25. 11. 2020.	8:15– 9:45	online	Tehnike za poboljšanje performansi. Dinamičko particioniranje resursa. Pretpreuzimanje podataka. Granularnosti niti	Р	izv. prof. dr. sc. Božidar Kovačić
9.	30. 11. 2020.	10:00	online	Objavljene ponuđene teme projekata	Z	v. pred. dr. sc. Vedran Miletić
9.	30. 11. 2020.	10:15– 11:45	online	Rješavanje sustava linearnih jednadžbi: biblioteka rocSOLVER (cuSOLVER)	V	v. pred. dr. sc. Vedran Miletić
9.	2. 12. 2020.	8:15– 9:45	online	1. kolokvij	I	izv. prof. dr. sc. Božidar Kovačić
10.	7. 12. 2020.	10:15– 11:45	online	Rijetke matrice: biblioteke rocSPARSE i rocALUTION (cuSPARSE)	V	v. pred. dr. sc. Vedran Miletić
10.	9. 12. 2020.	8:15– 9:45	online	Problemi računanja s pomičnim zarezom: preciznost i zaokruživanje brojeva	Р	izv. prof. dr. sc. Božidar Kovačić
11.	14. 12. 2020.	10:00	online	Rok za odabir teme projekta	Z	v. pred. dr. sc. Vedran Miletić
11.	14. 12. 2020.	10:15– 11:45	online	Brza Fourierova transformacija: rocFFT (cuFFT)	V	v. pred. dr. sc. Vedran Miletić
11.	16. 12. 2020.	8:15– 9:45	online	Studijski slučajevi: obrada slika magnetske rezonance te vizualizacija i analiza molekula	Р	izv. prof. dr. sc. Božidar Kovačić
12.	21. 12. 2020.	10:15– 11:45	online	2. kontrolna zadaća	I	v. pred. dr. sc. Vedran Miletić
12.	23. 12. 2020.	8:15– 9:45	online	Paralelno programiranje i računsko razmišljanje	Р	izv. prof. dr. sc. Božidar Kovačić

Tj.	Datum	Vrijeme	Prostor	Tema	Nastava	Izvođač
13.	11. 1. 2021.	10:15– 11:45	online	Prevođenje OpenCL C koda u LLVM-ovu srednju reprezentaciju	V	v. pred. dr. sc. Vedran Miletić
13.	13. 1. 2021.	8:15– 9:45	online	Programiranje aplikacija za heterogena superračunala	Р	izv. prof. dr. sc. Božidar Kovačić
14.	18. 1. 2021.	10:15– 11:45	online	Prevođenje LLVM-ove srednje reprezentacije u strojni kod za mikroarhitekture GCN i RDNA	V	v. pred. dr. sc. Vedran Miletić
14.	20. 1. 2021.	8:15– 9:45	online	Pogled u budućnost: evolucija heterogenih arhitektura i programskih okruženja	Р	izv. prof. dr. sc. Božidar Kovačić
15.	25. 1. 2021.	10:15– 11:45	online	LLVM-ovi analitički i transformacijski prolazi kod prevođenja koda	V	v. pred. dr. sc. Vedran Miletić
15.	27. 1. 2021.	8:15– 9:45	online	2. kolokvij	I	izv. prof. dr. sc. Božidar Kovačić
15.	1. 2. 2021.	10:00	online	Rok za predaju projekta	Z	v. pred. dr. sc. Vedran Miletić

P – predavanja V – vježbe I – pisani ili usmeni ispit, kontinuirana provjera znanja Z – samostalni zadaci (esej, praktični rad, projekt)