Signali i sustavi

Drugi međuispit (grupa A) - 14. svibnja 2007.

1. Ako je odziv LTI (linearnog vremenski nepromjenjivog) sustava y(t) zadan kao y(t) = u(t) * h(t), koliko bi tad iznosilo

3. Zadana je pobuda $u(t) = 2e^{-t}$, a jedini korijeni karakterističnog polinoma kontinuiranog LTI sustava su -1 i -2. Parti-

Zadana je jednadžba diferencija y(n+2) + 5y(n+1) + 6y(n) = 8u(n+1) + 4u(n) uz $u(n) = (\frac{1}{2})^n$. Partikularno rješenje

a) $\cos(2)\delta(t-1)$ b) $\cos(2)$ c) $\cos(2)\delta(t+1)$ d) $\cos(t-1)$ e) $\cos(t+1)$

d) y(t+1) e) y(t+2) f) Ništa od navedenoga!

b) $y_p(t) = Ct(-2)^t$ **c)** $y_p(t) = Cte^{-t}$ **d)** $y_p(t) = Cte^{-2t}$ **e)** $y_p(t) = Ce^{-t}$

f) Ništa od navedenoga!

u(t+2) * h(t-1)?

a) $y_p(t) = Ct(-1)^t$ f) Ništa od navedenoga!

 $y_p(n)$ je:

a) y(t-2) **b)** y(t-1) **c)** y(t)

kularno rješenje $y_p(t)$ je oblika (C je realna konstanta):

2. Izraz $(\cos(t)\delta(t-2))*\delta(t+1)$ je jednak:

	a) $y_p(n) = \frac{32}{35}(-\frac{1}{4})^n$ b) $y_p(n) = \frac{16}{19}(\frac{1}{2})^{2n}$ c) $y_p(n) = \frac{32}{35}(\frac{1}{2})^n$ d) $y_p(n) = \frac{32}{45}(\frac{1}{2})^n$ e) $y_p(n) = \frac{32}{45}(-\frac{1}{2})^n$
5.	Neka je diferencijska jednadžba oblika $\frac{1}{2}y(n-2) + y(n-3) = 3\sin(3n), \forall n \in \mathbb{Z}$. Pretpostavljeno partikularno rješenje biti će oblika:
	a) $C_1 \sin(3n) + C_2 \cos(3n)$ b) $\sin(n)$ c) $C \cos(2n)$ d) $n(C_1 \sin(3n) + C_2 \cos(3n))$ e) $\frac{1}{2}n\sin(3n + \pi/2)$ f) Ništa od navedenoga!
6.	Kontinuirani LTI sustav prvog reda zadan je diferencijalnom jednadžbom $y'(t) + y(t) = u(t)$, $\forall t \in \mathbb{R}$. Na ulaz sustava dovedena je pobuda $u(t) = \mu(t)$. Vrijednost odziva sustava $y(t)$ u trenutku $t = 2007$ uz početni uvjet $y(0^-) = 1$ iznosi:
	a) $\frac{1}{2}$ b) 1 c) e^{-2007} d) $1 + e^{-2007}$ e) $\frac{1}{2} + \frac{1}{2}e^{-2007}$ f) Ništa od navedenoga!
7.	Zadan je kontinuirani LTI sustav. Ako je odziv na pobudu $u(t) = \mu(t)$ jednak $y(t) = (-e^{-t} - te^{-t} + 1)\mu(t)$, nađite impulsni odziv sustava. Pretpostavite da su početni uvjeti jednaki nuli.
	a) $te^{-t}\mu(t) - 2\delta(t)$ b) $te^{-t}\mu(t) - \delta(t)$ c) $te^{-t}\mu(t)$ d) $te^{-t}\mu(t) + \delta(t)$ e) $te^{-t}\mu(t) + 2\delta(t)$ f) Ništa od navedenoga!
8.	Zadan je kontinuiran LTI sustav $y'(t) + 2y(t) = 2u'(t) + u(t)$, $\forall t \in \mathbb{R}$. Ukoliko sustav pobudimo signalom $\mu(t)$ koliko iznosi početni uvjet $y(0^+)$ ako je vrijednost početnog uvjeta $y(0^-) = 1$?
	a) $y(0^+) = -1$ b) $y(0^+) = 0$ c) $y(0^+) = y(0^-) = 1$ d) $y(0^+) = 2$ e) $y(0^+) = 3$ f) Ništa od navedenoga!
9.	Kontinuirani sustav zadan je matricama $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$. Ukoliko sustav prevedemo u
	ulazno izlaznu formu $y''(t) + a_1y'(t) + a_2y(t) = u(t)$ koliki je koeficijent uz y' ?
	a) 0 b) 1 c) 2 d) 3 e) 4 f) Ništa od navedenoga!
10.	Zadan je diskretan LTI sustav trećeg reda opisan jednadžbom $y(n) + 5y(n-1) + 11y(n-2) + 6y(n-3) = u(n)$. Ako su početni uvjeti $y(0) = y(-1) = y(-2) = 0$ odredite vrijednost odziva $y(n)$ nepobuđenog sustava u koraku $n = 100$?
	a) 0 b) 1 c) 2 d) 3 e) 4 f) Ništa od navedenoga!
11.	Za linearni vremenski nepromjenjiv sustav opisan diferencijalnom jednadžbom $\ddot{y}(t)+a\dot{y}(t)+y(t)=u(t)$ odredite parametar a tako da sustav daje kritično prigušeni odziv.
	a) $a = -2$ b) $a = -1$ c) $a = 0$ d) $a = 1$ e) $a = 2$ f) Ništa od navedenoga!

- a) Prirodni odziv kontinuiranog LTI sustava jednak je odzivu nepobuđenog sustava.
- b) Prirodni odziv kontinuiranog LTI sustava NE ovisi o pobudi.
- c) Odziv nepobuđenog kontinuiranog LTI sustava NE ovisi o pobudi.
- d) I prirodni i nepobuđeni odziv kontinuiranog LTI sustava NE ovise o pobudi.
- e) I prirodni i nepobuđeni odziv kontinuiranog LTI sustava ovise o pobudi.
- f) Sve prethodne tvrdnje su krive!
- 13. Ako je odziv nepobuđenog diskretnog LTI sustava drugog reda $y(n) = 3^n + 3^{-n}, \forall n \in \mathbb{Z}$, odredite početna stanja y(-2)
 - **a)** $y(-2) = \frac{82}{9}$, $y(-1) = \frac{10}{3}$ **b)** $y(-2) = \frac{10}{3}$, $y(-1) = \frac{82}{9}$ **c)** y(-2) = 2, $y(-1) = \frac{10}{3}$ **d)** $y(-2) = \frac{10}{3}$, y(-1) = 0 **f)** Ništa od navedenoga!

- 14. Naďite impulsni odziv sustava opisanog jednadžbom $y(n) = u(n) + \sqrt{3}u(n-1) + u(n-2)$.

- a) $h(n) = \delta(n) + \delta(n-1) + \delta(n-2)$ b) $h(n) = \delta(n) \delta(n-1) + \delta(n-2)$ c) $h(n) = \delta(n) + 2\delta(n-1) + \delta(n-2)$ d) $h(n) = \delta(n) 2\delta(n-1) + \delta(n-2)$ e) $h(n) = \delta(n) + \delta(n-2)$ f) Ništa od navedenoga!

- 15. Zadan je diskretni sustav $y(n) + ay(n-2) = u(n), n \in \mathbb{Z}$. Za koji $a \in \mathbb{R}$ je sustav asimptotski stabilan?
 - a) $a \in [-1, 1]$

- **b)** $a \in \langle -1, 1 \rangle$ **c)** za svaki $a \in \mathbb{R}$ **d)** za svaki $a \in \mathbb{R} \setminus \{0\}$ **e)** Sustav je uvijek nestabilan!
- f) Ništa od navedenoga!
- 16. Zadan je kontinuirani sustav $y''(t) 2\alpha y'(t) + \alpha^2 y(t) = u(t), \forall t \in \mathbb{R}$. Za koji $\alpha \in \mathbb{R}$ će sustav biti nestabilan? Odaberite najopćenitiji od ponuđenih odgovora.
 - a) $\alpha > 0$

- **b)** $\alpha \geq 0$ **c)** $|\alpha| > 1$ **d)** $|\alpha| \geq 1$ **e)** $\alpha < 0$ **f)** Ništa od navedenoga!
- 17. Zadan je diskretni sustav $y(n+2) \frac{10}{7}y(n+1) + \frac{50}{49}y(n) = u(n), n \in \mathbb{Z}$. Odredite karakteristične frekvencije i ispitajte stabilnost sustava!

- a) $q_1 = \frac{5}{7} + j\frac{5}{7}$, $q_2 = \frac{5}{7} j\frac{5}{7}$, stabilan je c) $q_1 = \frac{5}{7} + j\frac{5}{7}$, $q_2 = \frac{5}{7} j\frac{5}{7}$, nestabilan je e) $q_1 = -\frac{5}{7} + j\frac{5}{7}$, $q_2 = -\frac{5}{7} + j\frac{5}{7}$, nestabilan je e) $q_1 = -\frac{5}{7} + j\frac{5}{7}$, $q_2 = -\frac{5}{7} + j\frac{5}{7}$, nestabilan je e) $q_1 = -\frac{5}{7} + j\frac{5}{7}$, $q_2 = -\frac{5}{7} + j\frac{5}{7}$, nestabilan je f) Ništa od navedenoga!
- 18. Zadan je sustav drugog reda y''(t)+12y'(t)+4y(t)=2u(t). Odredite stupanj prigušenja i neprigušenu prirodnu frekvenciju!
 - a) $\zeta = 6$, $\Omega_n = -2$ b) $\zeta = -3$, $\Omega_n = 2$ c) $\zeta = 6$, $\Omega_n = 2$ d) $\zeta = 3$, $\Omega_n = 4$ e) $\zeta = 3$, $\Omega_n = 2$

- f) Ništa od navedenoga!
- 19. Promatramo kontinuiran LTI sustav drugog reda u prostoru stanja yOy' (dakle na apscisi se nalazi y, a na ordinati y'). Ako je odziv sustava $y(t) = e^{-2t}\cos(2t)$ u kojem kvadrantu u prostoru stanja se nalazi točka na trajektoriji za trenutak $t = \pi/3$?
 - a) u prvom kvadrantu (y(t) > 0, y'(t) > 0)
- **b)** u drugom kvadrantu (y(t) < 0, y'(t) > 0)
- c) u trećem kvadrantu (y(t) < 0, y'(t) < 0)
 - d) u četvrtom kvadrantu (y(t) > 0, y'(t) < 0)
- e) u ishodištu (y(t) = y'(t) = 0)
- f) Ništa od navedenog!
- 20. Znate da je odziv nepobuđenog LTI sustava oblika $y(t) = C_1 t + C_2$, gdje su $C_1 \neq 0$ i C_2 realne konstante. Odaberite sustav čiji je to odziv:
 - **a)** $y''(t) + 2y'(t) + y(t) = u(t), y(0) = C_2, y'(0) = C_1$ **b)** $y''(t) = u(t), y(0) = C_2, y'(0) = C_1$ **c)** $y''(t) + 2y'(t) + y(t) = u(t), y(0) = C_1, y'(0) = C_2$ **d)** $y''(t) = u(t), y(0) = C_1, y'(0) = C_2$
- e) $y''(t) + y(t) = u(t), y(0) = C_2, y'(0) = C_1$ f) Nije ponuđen takav sustav.