ÖVEGES JÓZSEF Fizikaverseny

I. forduló 2011. február 28. VII. osztály

JAVÍTÓKULCS

I. feladat

1.) Az egérlyuk 3m- re van az egértől, a kandúr 2s-ot mozog. Megfoghatta volna az egeret, ha legalább 8m-t tett volna meg ez idő alatt. A kandúr sebessége kisebb mint 4m/s, így az egér megmenekül.	3 p
2.) 240 lépést	2 p
 3.) a/ p = 2 10⁴ Pa b/ A nyomott felület felére csökken, a nyomás kétszeresére nő c/ Kiszámítja a nyomást, ha a nyomott felület felére csökken és megfogalmazza helyesen a mondatot. 	3 p
4.) $v_1 > v_2$, $s = 72 m$	2 p
II. feladat	
 a b) és f) ábrán a rendszer egyensúłyban van hiegyensúlyozható a c) Fc = G/4 erővel a forgásponttól mérve a rövidebb végen függőlegesel lefele húzva, a d) Fd = G/8 erővel, a rövidebb végen függőlegesen lefele húzva, az e) Fe = G/8 erővel, az egymásra helyezett negyedek bal szélén függőlegesen lefele húzva, a g) Fg = G/8 erő a rövidebb végen függőlegesen lefele húzva. Az erőt ábrázoló rajzzal 2 p-ot ér minden helyes válasz. a gyertyát vízszintesen, az égő vége felé v' = v/2 sebességgel elmozdítva lehetne egyensúlybtartani 	óvel 8 n
III. feladat	
a.) 6N b.) 8N c.) 10N max. 2 p az erők ábrázol	2 p 3 p 3 p lása

ÖVEGES JÓZSEF Fizikaverseny

I. forduló 2011. február 28. VIII. osztály

JAVÍTÓKULCS

I. feladat

	1.) Helyes válasz.	1 p		
	 2.) Rajz (0,5 p); a G és F A erőpár hatása (1 p) M metacentrum (0,5 p) 3.) Helyes magyarázat 4.) Helyes válasz (1 p); összefüggés megállapítása (2 p); rajz (1 p); számítás (1 p) 	2 p 2 p 5 p		
II.	II. feladat			
	 90%-ra nő; 5,3%-ra csökken a.) F_A felhajtóerő (1 p); "helyes forgási irány" megállapítása (2 p). 	2 p		
	b.) Véleménye (1 p); indoklás (4 p)	8 p		
III. feladat				
	1.) Helyes ábrázolás (1 p); 2,23 $\frac{MJ}{kg}$ (1 p);	2p		
	2.) A mérés menetének a leírása (4 p)			
	a $\rho = \frac{x}{x - x} \rho_v$ összefüggés levezetése (4 p)	8p		

VERMES MIKLÓS Fizikaverseny

I. forduló 2011. február 28. IX. osztály

JAVÍTÓKULCS

I. feladat

1.) Szerkesztéses megoldás: a kép nagyságát az a fénysugár határozza meg, amely az optikai tengellyel párhuzamosan hagyja el a rendszert. Ennek konjugáltja a második lencse tárgyterében át kell menjen az F_1'' tárgytéri gyújtóponton, amely egybeesik az L' lencse O' optikai középpontjával.

Így $O''M = |y_2|$ és az $O'A_1B_1$, illetve O'O''M háromszögek hasonlóságából kapjuk:

$$\frac{\left|y_{2}\right|}{y_{1}} = \frac{f}{\left|p_{1}\right|} \implies \left|p_{1}\right| = 2f = 20cm$$

1. ábra

Analitikus megoldás (a geometriai előjelszabályt alkalmazva)

$$\gamma = \gamma' \cdot \gamma'' = -\frac{1}{2} , \qquad \gamma' = \frac{f}{p_1' + f} , \qquad \gamma'' = \frac{f}{p_1'' + f} , \qquad p_1'' = p_2' - f = -\frac{f^2}{p_1' + f} \Rightarrow$$

$$\gamma'' = \frac{p_1' + f}{p_1'} \Rightarrow \frac{f}{p_1' + f} \cdot \frac{p_1' + f}{p_1'} = -\frac{1}{2} \Rightarrow p_1' = -2f = -20cm$$

5 p

2.) A tárgyról az első lencse $p_2' = \frac{p_1'f'}{p_1' + f'} = 60cm$ -re alkot, $\gamma' = \frac{p_2'}{p_1'} = -2$, a tárgynál kétszer nagyobb,

valódi, fordított állású képet. Ezért a második lencse képfordító lencse szerepét tölti be. Úgy kell elhelyezni, hogy az első lencse által alkotott kép a második lencsétől kétszeres fókusztávolságra legyen. Tehát a két lencse közötti távolság 80cm. 5 p

II. feladat

a.)
$$G = \frac{tg\alpha_2}{tg\alpha_1} = -\frac{f_{ob}}{f_{ok}}$$
, $tg\alpha_1 = -\frac{d_1}{d_2}$ \Rightarrow $tg\alpha_2 = \frac{f_{ob}}{f_{ok}} \cdot \frac{d_1}{d_2} = \frac{2}{11}$ 5 p

b.) Az okulár által alkotott kép az okulár optikai középpontjától $2f_{ok}$ távolságra keletkezik. Ezért tárgya szintén $2f_{ok}$ távolságra kell legyen. Az okulárt előző helyzetéhez képest 5cm-rel kell 3 p távolítanunk az objektívtől.

c.) Az okulár által alkotott kép nagysága megegyezik az objektív által alkotott kép nagyságával.

$$|y'| = f_{ob}|tg\,\alpha_1| = \frac{d_1}{d_2}f_{ob} = 9mm$$

III. feladat

a.)

Az ábra alapján
$$\frac{D'}{D''} = \frac{f_2'}{f_2' - 2R} = 3$$
, $f_2' = \frac{nR}{n-1}$ \Rightarrow $n = 1,5$

5 p

b.) Az első törőfelület képtéri gyújtópontja látszólagos tárgy a második törőfelület számára:

$$p''_1 = f'_2 - 2R$$
 és $\frac{1}{p''_2} - \frac{n}{p''_1} = \frac{1-n}{-R}$.

$$p_{2}''=\frac{R}{2},$$

$$p_2'' = \frac{R}{2}$$
, igy $OF_2 = p_2'' + R = \frac{3R}{2}$

3 p

c.) A gömb a párhuzamos nyalábot szórni fogja, ha az első törőfelület F_2^{\prime} képtéri gyújtópontja a gömb

belsejébe esik:
$$OF_2' \le 2R$$
 \Rightarrow $\frac{n_x R}{n_x - 1} \le 2R$ \Rightarrow $n_x \ge 2$

ERMES MIKLÓS Fizikaverseny

forduló 111. február 28. . osztály

JAVÍTÓKULCS

eladat

a)
$$\Delta U_{AB} = vC_v (T_B - T_A)$$

$$\frac{T_B}{T_A} = \frac{V_B}{V_A} = 2$$

$$T_B = 2T_A$$

$$\Delta U_{AB} = vC_v T_A = 5\frac{5}{2}RT_A = 5RT_A$$

$$\Delta U_{BC} = vC_v (T_C - T_B)$$

$$\frac{T_C}{T_B} = \frac{p_B}{p_A} = 2$$

$$T_C = 2T_B = 4T_A$$

$$\Delta U_{BC} = 24930J$$
b)
$$\Delta U_{BC} = 24930J$$

$$L_{AB} = p_A (V_B - V_A) = p_A (2V_A - V_A) = p_A V_A = p_A \frac{vRT_A}{p_A} = vRT_A$$

$$L_{AB} = 2 \cdot 8.31 \cdot 300J = 4986J - \text{ezt a munkát a termodinamikai rendszer végzi}$$
c)
$$Q_{AB} = vC_p (T_B - T_A) = v\frac{7}{2}RT_A = 2\frac{7}{2}8.31 \cdot 300J$$

$$\frac{T_C}{T_B} = \frac{p_B}{p_A} = 2$$

$$T_C = 2T_B = 4T_A$$

$$2 \cdot 8.31 \cdot 300J = 4986J - \text{ezt a munkát a termodinamikai rendszer végzi}$$

$$3 \cdot p$$

$$Q_{AB} = vC_p (T_B - T_A) = v\frac{7}{2}RT_A = 2\frac{7}{2}8.31 \cdot 300J = 17451J$$

$$Q_{BC} = vC_v (T_C - T_B) = 2vC_v T_A = 2 \cdot 2 \cdot \frac{5}{2}8.31 \cdot 300J$$

$$\frac{T_C}{T_B} = \frac{p_B}{p_A} = 2$$

$$T_C = 2T_B = 4T_A = 1200K$$

$$Q_{BC} = 24930J$$
d)
$$T_B = 600K \cdot \text{\'es } T_C = 1200K$$

1 p

II. feladat

a.) 1.)
$$l_{01}(1+\alpha_1 t) = l_{02}(1+\alpha_2 t)$$
 ebből

$$l_{02} - l_{01} = l_{01}\alpha_1 t - l_{02}\alpha_2 t \qquad t = \frac{l_{02} - l_{01}}{l_{01}\alpha_1 - l_{02}\alpha_2} \approx 420^{\circ} C$$
2.) $V_{01}(1 + 3\alpha_1 t') = V_{02}(1 + 3\alpha_2 t') \qquad V_{02} - V_{01} = (3V_{01}\alpha_1 - 3V_{02}\alpha_2)t'$

2.)
$$V_{01}(1+3\alpha_1 t') = V_{02}(1+3\alpha_2 t')$$
 $V_{02} - V_{01} = (3V_{01}\alpha_1 - 3V_{02}\alpha_2)t'$
 $t' = \frac{V_{02} - V_{01}}{3(V_{01}\alpha_1 - V_{02}\alpha_2)} = \frac{I_{02} - I_{01}}{3(I_{01}\alpha_1 - I_{02}\alpha_2)}$ $t' \approx 140^{\circ} C$

- b.) 1.) Az (1) és a (2) egyenes egy-egy izochor állapotváltozást ábrázol, ugyanis mindkét esetben a nyomás egyenesen arányos az abszolút hőmérséklettel.
 - 2.) A kettőben azonban az állandó térfogatok már nem azonosak. Ezt abból is láthatjuk, hogy a két folyamatot feltüntető egyenesek iránytényezője (meredeksége) *tgα* nem azonos. Az iránytényező fordítottan arányos a térfogattal.

$$tg\alpha = \frac{p}{T} = \frac{vR}{V}$$
, $tg\alpha_1 > tg\alpha_2 \implies V_1 < V_2 \implies$ Ezért függetlenül attól, hogy milyen folyamatot képzelünk el az egyenesek bármely két pontja között a térfogat nem lehet állandó. **4 p**

III. feladat

Dalton törvénye alapján

$$p_k V + p_0 v = p_1 V$$
, ahonnan $p_1 = p_k + p_0 \frac{v}{V}$ az első lenyomás után

$$p_1V + p_0v = p_2V$$
, ahonnan

$$p_2 = p_1 + p_0 \frac{v}{V} = p_k + 2p_0 \frac{v}{V}$$
 a második lenyomás után

$$p_n = p_k + np_0 \frac{v}{V} = p_v$$
 az *n*-edik lenyomás után

$$n = \frac{p_v - p_k}{p_0} \cdot \frac{V}{v_0} = 40$$

10 p

VERMES MIKLÓS Fizikaverseny

I. forduló 2011. február 28. XI. osztály

JAVÍTÓKULCS

I. feladat

1.)
$$v = 1450 \frac{m}{s}$$
, $v = 725 Hz$, $\lambda = \frac{v}{v} = \frac{1450 \frac{m}{s}}{725 \frac{1}{s}} = 2m$, $d = \frac{\lambda}{2} = 1m$

2.)

$$v_{1} = 340 \frac{m}{s}, \ v_{2} = 1440 \frac{m}{s}, \ \delta = r - i$$

$$\frac{\sin i}{\sin r} = \frac{v_{1}}{v_{2}}, \ \sin r = \frac{v_{2}}{v_{1}} \sin i, \ r = \arcsin \frac{v_{2}}{v_{1}} \sin 5^{\circ} = 21,66^{\circ}, \ \delta = 16,66^{\circ}$$
4 p
3.) a.)
$$E = \frac{kx^{2}}{2}$$

b.) Amikor a rugót összenyomjuk a részecskék annyira közel kerülnek egymáshoz, hogy közöttük a taszítóerők dominálnak. Ez a taszító jellegű kölcsönhatási erő a rugó feloldódása után is megmarad, ezért a részecskék mozgási energiájává alakult át. Tehát, megnőtt a részecskék termikus energiája, vagyis az energiamegmaradás elve maradéktalanul teljesül.
 1 p

II. feladat

 $x = A\cos\omega t$

 $y = B + C \sin \omega t$

a.)
$$y = f(x)$$

b.)
$$v = f(t)a = f(t)$$

c.)
$$v_1 = ?$$

d.)
$$F = f(t)$$

$$\frac{x^2}{A^2} = \cos^2 \omega t \tag{1}$$

$$\frac{(y-B)^2}{C^2} = \sin^2 \omega t \tag{2}$$

$$\frac{x^2}{A^2} + \frac{(y-B)^2}{C^2} = 1$$
(3)

vagy bármilyen más, az előbbiekkel egyenértékű összefüggés x és y között.

4 p

2 p

1 p

$$v = \sqrt{v_x^2 + v_y^2}$$

$$v_x = \frac{dx}{dt} = A\omega\cos(\omega t + \frac{\pi}{2}) = -A\omega\sin\omega t \tag{4}$$

$$v_{y} = \frac{dy}{dt} = C\omega\sin(\omega t + \frac{\pi}{2}) = C\omega\cos\omega t$$
 (5)

$$v = \sqrt{A^2 \omega^2 \sin^2 \omega t + C^2 \omega^2 \cos^2 \omega t} = \omega \sqrt{A^2 \sin^2 \omega t + C^2 \cos^2 \omega t}$$
 (6)

$$a_x = \frac{dv_x}{dt}$$
; $a_y = \frac{dv_x}{dt}$; $a = \sqrt{a_x^2 + a_y^2}$; $a = \omega^2 \sqrt{A^2 \cos^2 \omega t + C^2 \sin^2 \omega t}$

c)

A (6) összefüggésbe elvégezzük a $t = t_1 = \frac{T}{4}$ és figyelembe vesszük, hogy $T = \frac{2\pi}{\omega}$ ezért $v_1 = -C\omega$

d)

$$F = m\omega^2 \sqrt{A^2 \cos^2 \omega t + C^2 \sin^2 \omega t}$$

III. feladat

$$mv_0 = (M + m)v_m$$

$$v_m = \frac{mv_0}{M+m}$$
 v_m az elindulási sebesség

$$\frac{(M+m)v_m^2}{2} = \frac{kA^2}{2}$$

$$\frac{(M+m)}{k} \cdot \frac{m^2 v_0^2}{(M+m)^2} = A^2$$

ahonnan
$$A = \frac{mv_0}{M+m} \sqrt{\frac{M+m}{k}}$$
 vagy $A = \frac{mv_0}{\sqrt{(M+m)k}}$ $A=0,2$ m

b.)
$$T = 2\pi \sqrt{\frac{M+m}{k}} = 0.2\pi s$$

2 p

c.)
$$a_{1} = -\omega^{2} y_{1} = -\frac{4\pi^{2}}{T^{2}} \cdot \frac{A}{8}, \ a_{1} = -2.5 \frac{m}{s^{2}}$$

$$a_{1} = -\frac{4\pi^{2}}{4\pi^{2} \left(\frac{M+m}{k}\right)} \cdot \frac{mv_{0}}{8\sqrt{(M+m)k}}$$

$$a_{1} = -\frac{k}{8(M+m)} \cdot \frac{mv_{0}}{\sqrt{(M+m)k}} = -\frac{\sqrt{k}mv_{0}}{8(M+m)^{\frac{3}{2}}}$$

3 p