Finite Element MHD Solver using deal.II

Bryn Barker

May 4, 2021

Outline

- 1 Motivation
- 2 Maxwell solver
- 3 Navier-Stokes solver
- 4 Coupled MHD solver

Magnetohydrodynamics

MHD descirbes behavior of conducting fluids by coupling

- Navier-Stoke equations for fluid dynamics with
- Maxwell's equation of electromagnetism.

Magnetohydrodynamics

MHD descirbes behavior of conducting fluids by coupling

- Navier-Stoke equations for fluid dynamics with
- Maxwell's equation of electromagnetism.

MHD has applications in developing tokamak nuclear fusion reactor for power generation.

Magnetohydrodynamics

Equations for 2-D MHD in Eulerian Coordinates:

$$\rho_t + \operatorname{div}(\rho u) = 0,$$

$$(\rho u)_t + \operatorname{div}(\rho u \otimes u - h \otimes h) + \nabla q = \mu \Delta u + (\eta + \mu) \nabla \operatorname{div} u,$$

$$h_t - \nabla \times (u \times h) = \nu \Delta h,$$

$$(\rho E + \frac{1}{2}h^2)_t + \operatorname{div}(A) = \operatorname{div}\left(\sum u\right) + \kappa \Delta T + \nu \operatorname{div}(B),$$

$$\operatorname{div}(h) = 0,$$

where
$$\sum := \eta \mathrm{div}(u)I + \mu(\nabla u + (\nabla u)^t)$$
, $A = (\rho E + p)u + h \times (u \times h)$, $B = h \times (\nabla \times h)$, $E := e + u_1^2/2 + u_2^2/2$, and $q = p + \frac{|h|^2}{2}$; see [2, 3, 4, 5, 6].

Magnetohydrodynamics: β -Model

In order to guarentee consistent splitting, we use the $\beta\text{-model}$ of our system:

$$\rho_t + \operatorname{div}(\rho u) = 0,$$

$$(\rho u)_t + \operatorname{div}(\rho u \otimes u - h \otimes h) + \nabla q = \mu \Delta u + (\eta + \mu) \nabla \operatorname{div} u,$$

$$h_t - \nabla \times (u \times h) + \beta \operatorname{div}(h) e_1 = \nu \Delta h,$$

$$(\rho E + \frac{1}{2}h^2)_t + \operatorname{div}(A) = \operatorname{div}\left(\sum u\right) + \kappa \Delta T + \nu \operatorname{div}(B),$$

$$\operatorname{div}(h) = 0,$$

where β is a real valued parameter and $e_1 = (1 \quad 0)^T$; see [1].

Major simplifications for initial model:

Major simplifications for initial model:

- Incompressible instead of compressible.

Major simplifications for initial model:

- Incompressible instead of compressible.
- Ignoring temperature/energy.

Major simplifications for initial model:

- Incompressible instead of compressible.
- Ignoring temperature/energy.

With these simplifications our system is given by:

$$\operatorname{div}(u) = 0,$$

$$\rho(u_t + u \cdot \nabla u) + \nabla p = \mu \Delta u + h \cdot \nabla h - \frac{1}{2} \nabla h^2,$$

$$h_t - \nabla \times (u \times h) + \beta \operatorname{div}(h) e_1 = \nu \Delta h,$$

$$\operatorname{div}(h) = 0.$$

The Maxwell's equations relevant to MHD are given by

$$\nabla \times \boldsymbol{h} = \mu J, \quad \nabla \cdot J = 0, \quad \nabla \times E = -\frac{\partial \boldsymbol{h}}{\partial t}, \quad \nabla \cdot \boldsymbol{h} = 0,$$

where

$$J = \sigma(E + \boldsymbol{u} \times \boldsymbol{h}),$$

and F is the Lorenz force given by

$$F = J \times \boldsymbol{h}$$
.

This system can be simplified to:

$$\frac{\partial \boldsymbol{h}}{\partial t} - \nabla \times (\boldsymbol{u} \times \boldsymbol{h}) + \nu \nabla \times (\nabla \times \boldsymbol{h}) = 0,$$
$$\nabla \cdot \boldsymbol{h} = 0.$$

This system is over determined so we add a lagrange multiplier to enforce the divergence free condition.

This system is over determined so we add a lagrange multiplier to enforce the divergence free condition.

$$\frac{\partial \boldsymbol{h}}{\partial t} - \nabla \times (\boldsymbol{u} \times \boldsymbol{h}) + \nu \nabla \times (\nabla \times \boldsymbol{h}) + \nabla q + \beta (\nabla \cdot \boldsymbol{h}) \boldsymbol{e}_1 = \boldsymbol{f},$$
$$\nabla \cdot \boldsymbol{h} = 0,$$

This system is over determined so we add a lagrange multiplier to enforce the divergence free condition.

$$\frac{\partial \boldsymbol{h}}{\partial t} - \nabla \times (\boldsymbol{u} \times \boldsymbol{h}) + \nu \nabla \times (\nabla \times \boldsymbol{h}) + \nabla q + \beta (\nabla \cdot \boldsymbol{h}) \boldsymbol{e}_1 = \boldsymbol{f},$$
$$\nabla \cdot \boldsymbol{h} = 0,$$

The weak form corresponding to the test function $\phi = [v \quad w]^{\top}$ is given by:

This system is over determined so we add a lagrange multiplier to enforce the divergence free condition.

$$\frac{\partial \boldsymbol{h}}{\partial t} - \nabla \times (\boldsymbol{u} \times \boldsymbol{h}) + \nu \nabla \times (\nabla \times \boldsymbol{h}) + \nabla q + \beta (\nabla \cdot \boldsymbol{h}) \boldsymbol{e}_1 = \boldsymbol{f},$$
$$\nabla \cdot \boldsymbol{h} = 0,$$

The weak form corresponding to the test function $\phi = [{m v} \quad w]^{\top}$ is given by:

$$\left(\boldsymbol{v}, \frac{\partial \boldsymbol{h}}{\partial t}\right)_{\Omega} - \left(\nabla \times \boldsymbol{v}, \boldsymbol{u} \times \boldsymbol{h}\right)_{\Omega} + \nu \left(\nabla \times \boldsymbol{v}, \nabla \times \boldsymbol{h}\right)_{\Omega} - \left(\nabla \cdot \boldsymbol{v}, q\right)_{\Omega}
+ \beta \left(\boldsymbol{v}, (\nabla \cdot \boldsymbol{h})\boldsymbol{e}_{1}\right)_{\Omega} - \left(\boldsymbol{w}, \nabla \cdot \boldsymbol{h}\right)_{\Omega} = (\boldsymbol{v}, \boldsymbol{f})_{\Omega}.$$

- To start we will consider a constant velocity field.

- To start we will consider a constant velocity field.
- We need $H({\rm curl})$ conforming elements : Nedelec Element for the magnetic field.

- To start we will consider a constant velocity field.
- We need $H({\rm curl})$ conforming elements : Nedelec Element for the magnetic field.
- Using backward Euler, at each time step, we end up with a system of the form

$$\begin{bmatrix} A & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} \mathbf{h} \\ q \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix}$$

where A is composed of the mass matrix, the velocity term, and the curl curl operator. B is the divergence operator. F is the right hand side.

- To start we will consider a constant velocity field.
- We need $H({\rm curl})$ conforming elements : Nedelec Element for the magnetic field.
- Using backward Euler, at each time step, we end up with a system of the form

$$\begin{bmatrix} A & B^{\top} \\ B & 0 \end{bmatrix} \begin{bmatrix} \mathbf{h} \\ q \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix}$$

where A is composed of the mass matrix, the velocity term, and the curl curl operator. B is the divergence operator. F is the right hand side.

- Solve using Schur decomposition with a direct solve for A and the lagrange mass matrix as the preconditioner for the Schur complement.

Maxwell Results

Test problem:

$$\begin{bmatrix} \boldsymbol{h} \\ q \end{bmatrix} = \begin{bmatrix} t\cos(y) \\ t\sin(y) \\ 0 \end{bmatrix}.$$

Maxwell Results

Test problem:

$$\begin{bmatrix} \boldsymbol{h} \\ q \end{bmatrix} = \begin{bmatrix} t \cos(y) \\ t \sin(y) \\ 0 \end{bmatrix}.$$

Magnetic field - x

Magnetic field - y

Lagrange Multiplier

Maxwell Convergence

Second order convergence:

Requires extremely small time step for stability.

Our equations for incompressible Navier-Stokes are given by:

$$-\nabla \cdot \boldsymbol{u} = 0,$$

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p = \mu \Delta \boldsymbol{u} + \boldsymbol{f},$$

where f is the Lorenz force defined using the magnetic field.

Our equations for incompressible Navier-Stokes are given by:

$$-\nabla \cdot \boldsymbol{u} = 0,$$

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p = \mu \Delta \boldsymbol{u} + \boldsymbol{f},$$

where f is the Lorenz force defined using the magnetic field.

This system has the following weak form:

Our equations for incompressible Navier-Stokes are given by:

$$\begin{split} -\nabla \cdot \boldsymbol{u} &= 0, \\ \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p &= \mu \Delta \boldsymbol{u} + \boldsymbol{f}, \end{split}$$

where f is the Lorenz force defined using the magnetic field.

This system has the following weak form:

$$\rho \left(\boldsymbol{v}, \frac{\partial \boldsymbol{u}}{\partial t} \right)_{\Omega} + \rho (\boldsymbol{v}, \boldsymbol{u} \cdot \nabla \boldsymbol{u})_{\Omega} + \mu (\nabla \boldsymbol{v}, \nabla \boldsymbol{u})_{\Omega}$$
$$- (\nabla \cdot \boldsymbol{v}, p)_{\Omega} - (\boldsymbol{w}, \nabla \cdot \boldsymbol{u})_{\Omega} = (\boldsymbol{v}, \boldsymbol{f})_{\Omega}.$$

There are a few different ways to solve this system:

There are a few different ways to solve this system:

- Schur decomposition with Grad-Div stabilization. This amounts to adding $\gamma \nabla (\nabla \cdot \boldsymbol{u})$ into the conservation of momentum equation and then solving similar to the Maxwell's system with different preconditioners.

There are a few different ways to solve this system:

- Schur decomposition with Grad-Div stabilization. This amounts to adding $\gamma \nabla (\nabla \cdot \boldsymbol{u})$ into the conservation of momentum equation and then solving similar to the Maxwell's system with different preconditioners.
 - Even with Grad-Div stabilization, the condition number of the coupled system is super bad.

There are a few different ways to solve this system:

- Schur decomposition with Grad-Div stabilization. This amounts to adding $\gamma \nabla (\nabla \cdot \boldsymbol{u})$ into the conservation of momentum equation and then solving similar to the Maxwell's system with different preconditioners.
 - Even with Grad-Div stabilization, the condition number of the coupled system is super bad.
- Projection method, or essentially decoupling the pressure and velocity.

Navier-Stokes Results

Test problem:

$$\begin{bmatrix} \boldsymbol{u} \\ p \end{bmatrix} = \begin{bmatrix} t\cos(y) \\ t\sin(y) \\ txy \end{bmatrix}.$$

Navier-Stokes Results

Test problem:

$$\begin{bmatrix} \boldsymbol{u} \\ p \end{bmatrix} = \begin{bmatrix} t\cos(y) \\ t\sin(y) \\ txy \end{bmatrix}.$$

Velocity field - \boldsymbol{x}

Velocity field - y

Pressure

Navier-Stokes Results

Test problem:

$$\begin{bmatrix} \boldsymbol{u} \\ p \end{bmatrix} = \begin{bmatrix} t\cos(y) \\ t\sin(y) \\ txy \end{bmatrix}.$$

Note: the velocity solve is what is lagging the convergence.

Navier-Stokes Convergence

First order convergence in both velocity and pressure:

Still stable with larger time step.

Coupling the Two Solvers

Our coupled system is given by:

$$\frac{\partial \boldsymbol{h}}{\partial t} - \nabla \times (\boldsymbol{u} \times \boldsymbol{h}) + \nu \nabla \times (\nabla \times \boldsymbol{h}) + \nabla q + \beta (\nabla \cdot \boldsymbol{h}) \boldsymbol{e}_1 = 0,$$

$$\nabla \cdot \boldsymbol{h} = 0,$$

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p = \mu \Delta \boldsymbol{u} + \boldsymbol{h} \cdot \nabla \boldsymbol{h} - \frac{1}{2} \nabla \boldsymbol{h}^2,$$

$$-\nabla \cdot \boldsymbol{u} = 0$$

Coupling the Two Solvers

Our coupled system is given by:

$$\frac{\partial \boldsymbol{h}}{\partial t} - \nabla \times (\boldsymbol{u} \times \boldsymbol{h}) + \nu \nabla \times (\nabla \times \boldsymbol{h}) + \nabla q + \beta (\nabla \cdot \boldsymbol{h}) \boldsymbol{e}_1 = 0,$$

$$\nabla \cdot \boldsymbol{h} = 0,$$

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p = \mu \Delta \boldsymbol{u} + \boldsymbol{h} \cdot \nabla \boldsymbol{h} - \frac{1}{2} \nabla \boldsymbol{h}^2,$$

$$-\nabla \cdot \boldsymbol{u} = 0$$

To start we will initialize h^0 , q^0 , u^0 , and p^0 using initial conditions.

Coupling the Two Solvers

Our coupled system is given by:

$$\frac{\partial \boldsymbol{h}}{\partial t} - \nabla \times (\boldsymbol{u} \times \boldsymbol{h}) + \nu \nabla \times (\nabla \times \boldsymbol{h}) + \nabla q + \beta (\nabla \cdot \boldsymbol{h}) \boldsymbol{e}_1 = 0,$$

$$\nabla \cdot \boldsymbol{h} = 0,$$

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) + \nabla p = \mu \Delta \boldsymbol{u} + \boldsymbol{h} \cdot \nabla \boldsymbol{h} - \frac{1}{2} \nabla \boldsymbol{h}^2,$$

$$-\nabla \cdot \boldsymbol{u} = 0.$$

To start we will initialize h^0 , q^0 , u^0 , and p^0 using initial conditions. And we will set $u^1 \approx u^0$ and $p^1 \approx p^0$.

Solving the Coupled System

Then we will solve two steps with the maxwell solver to catch up to the velocity before solving both systems in each time step.

Solving the Coupled System

Then we will solve two steps with the maxwell solver to catch up to the velocity before solving both systems in each time step.

```
for (; current_time <= 1; current_time += time_step, ++time_step_number)
{
    // solve for h^1 and h^2 without updating velocity field
    solve_maxwell(time_step_number > 2); // this boolean = don't update velocity

    // solve for u^k and p^k for all k >= 2
    if (time_step_number > 1)
        solve_ns();
}
```


 Method of manufactured solutions is not meaningful because the coupling occurs in the forcing term of the Navier-Stokes equations.

- Method of manufactured solutions is not meaningful because the coupling occurs in the forcing term of the Navier-Stokes equations.
- Need to test with exact solution.

- Method of manufactured solutions is not meaningful because the coupling occurs in the forcing term of the Navier-Stokes equations.
- Need to test with exact solution.

To start, we test with a constant solution (constant magnetic field, velocity field, and pressure) to make sure the coupling is set-up correctly.

Convergence results for the constant solution:

Identifying the weakness in the solver.

Identifying the weakness in the solver.

```
Number of active cells:
                                                                 Number of active cells:
Number of degrees of freedom: 50
                                                                 Number of degrees of freedom: 50
Timestep size: 1
                                                                 Timestep size: 1
                              maximum m error = 2.22045e-16
                                                                                              maximum m error = 1.11022e-16
                              maximum u error = 3.33067e-16
                                                                                             maximum u error = 3.33067e-16
                             maximum p error = 1.11022e-16
                                                                                              maximum p error = 1.11022e-16
Number of active cells:
                                                                 Number of active cells:
Number of degrees of freedom: 152
                                                                 Number of degrees of freedom: 152
Timestep size: 0.1
                                                                 Timestep size: 0.1
                              maximum m error = 1.93623e-13
                                                                                             maximum m error = 1.91036e-12
                              maximum u error = 0.13072
                                                                                             maximum u error = 3.33067e-16
                             maximum p error = 1.11022e-16
                                                                                             maximum p error = 1.11022e-16
Number of active cells:
                              16
                                                                 Number of active cells:
                                                                                              16
Number of degrees of freedom: 524
                                                                 Number of degrees of freedom: 524
Timesten size: 0.01
                                                                 Timestep size: 0.01
                              maximum m error = 2,28758e-11
                                                                                              maximum m error = 9.25832e-10
                              maximum u error = 0.079528
                                                                                             maximum u error = 3.33067e-16
                              maximum p error = 1.25707
                                                                                             maximum p error = 5.37126e-13
```

Exact Magnetic field

Exact Velocity field

- Speed up code.

- Speed up code.
- Improve incompressible Navier-Stokes solver.

- Speed up code.
- Improve incompressible Navier-Stokes solver.
- Test coupled incompressible solver on harder solutions (ex. Alven wave or stationary traveling wave).

- Speed up code.
- Improve incompressible Navier-Stokes solver.
- Test coupled incompressible solver on harder solutions (ex. Alven wave or stationary traveling wave).
- Create compressible Navier-Stokes solver.

- Speed up code.
- Improve incompressible Navier-Stokes solver.
- Test coupled incompressible solver on harder solutions (ex. Alven wave or stationary traveling wave).
- Create compressible Navier-Stokes solver.
- Add in temperature equation.

- Speed up code.
- Improve incompressible Navier-Stokes solver.
- Test coupled incompressible solver on harder solutions (ex. Alven wave or stationary traveling wave).
- Create compressible Navier-Stokes solver.
- Add in temperature equation.
- Test with traveling wave stability with stationary traveling wave.

That's It!

G. K. Batchelor.

An introduction to fluid dynamics.

Cambridge Mathematical Library. Cambridge University Press, Cambridge, paperback edition, 1999.

H. Cabannes.

Theoretical magnetofluiddynamics.

Academic Press, New York, 1970.

Constantine M Dafermos.

Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der mathematischen wissenschaften [Fundamental principles of mathematical sciences], 2010.

Alan Jeffrey.

Magnetohydrodynamics.

University Mathematical Texts, No. 33. Oliver & Boyd, Edinburgh, 1966.

Shuichi Kawashima.

Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. PhD thesis, Kyoto University, 1983.