Chapter 3

Data access optimization

Of all possible performance-limiting factors in HPC, the most important one is data access. As explained earlier, microprocessors tend to be inherently "unbalanced" with respect to the relation of theoretical peak performance versus memory bandwidth. Since many applications in science and engineering consist of loop-based code that moves large amounts of data in and out of the CPU, on-chip resources tend to be underutilized and performance is limited only by the relatively slow data paths to memory or even disks.

Figure 3.1 shows an overview of several data paths present in modern parallel computer systems, and typical ranges for their bandwidths and latencies. The functional units, which actually perform the computational work, sit at the top of this hierarchy. In terms of bandwidth, the slowest data paths are three to four orders of magnitude away, and eight in terms of latency. The deeper a data transfer must reach down through the different levels in order to obtain required operands for some calculation, the harder the impact on performance. Any optimization attempt should therefore first aim at reducing traffic over slow data paths, or, should this turn out to be infeasible, at least make data transfer as efficient as possible.

3.1 Balance analysis and lightspeed estimates

3.1.1 Bandwidth-based performance modeling

Some programmers go to great lengths trying to improve the efficiency of code. In order to decide whether this makes sense or if the program at hand is already using the resources in the best possible way, one can often estimate the theoretical performance of loop-based code that is bound by bandwidth limitations by simple rules of thumb. The central concept to introduce here is *balance*. For example, the *machine balance* $B_{\rm m}$ of a processor chip is the ratio of possible memory bandwidth in GWords/sec to peak performance in GFlops/sec:

$$B_{\rm m} = \frac{\text{memory bandwidth [GWords/sec]}}{\text{peak performance [GFlops/sec]}} = \frac{b_{\rm max}}{P_{\rm max}}$$
(3.1)

"Memory bandwidth" could also be substituted by the bandwidth to caches or even network bandwidths, although the metric is generally most useful for codes that are really memory-bound. Access latency is assumed to be hidden by techniques like

Figure 3.1: Typical latency and bandwidth numbers for data transfer to and from different devices in computer systems. Registers have been omitted because their "bandwidth" usually matches the computational capabilities of the compute core, and their latency is part of the pipelined execution.

data path	balance [W/F]
cache	0.5-1.0
machine (memory)	0.03-0.5
interconnect (high speed)	0.001-0.02
interconnect (GBit ethernet)	0.0001-0.0007
disk (or disk subsystem)	0.0001-0.01

Table 3.1: Typical balance values for operations limited by different transfer paths. In case of network and disk connections, the peak performance of typical dual-socket compute nodes was taken as a basis.

prefetching and software pipelining. As an example, consider a dual-core chip with a clock frequency of 3.0 GHz that can perform at most four flops per cycle (per core) and has a memory bandwidth of 10.6 GBytes/sec. This processor would have a machine balance of 0.055 W/F. At the time of writing, typical values of $B_{\rm m}$ lie in the range between 0.03 W/F for standard cache-based microprocessors and 0.5 W/F for top of the line vector processors. Due to the continuously growing DRAM gap and the increasing core counts, machine balance for standard architectures will presumably decrease further in the future. Table 3.1 shows typical balance values for several different transfer paths.

In Figure 3.2 we have collected peak performance and memory bandwidth data for Intel processors between 1994 and 2010. Each year the desktop processor with the fastest clock speed was chosen as a representative. Although peak performance did grow faster than memory bandwidth before 2005, the introduction of the first dual-core chip (Pentium D) really widened the DRAM gap considerably. The Core i7 design gained some ground in terms of bandwidth, but the long-term general trend is clearly unperturbed by such exceptions.

Figure 3.2: Progress of maximum arithmetic performance (open circles) and peak theoretical memory bandwidth (filled circles) for Intel processors since 1994. The fastest processor in terms of clock frequency is shown for each year. (Data collected by Jan Treibig.)

In order to quantify the requirements of some code that runs on a machine with a certain balance, we further define the *code balance* of a loop to be

$$B_{\rm c} = \frac{\text{data traffic [Words]}}{\text{floating point ops [Flops]}}.$$
 (3.2)

"Data traffic" refers to all words transferred over the performance-limiting data path, which makes this metric to some extent dependent on the hardware (see Section 3.3 for an example). The reciprocal of code balance is often called *computational intensity*. We can now calculate the expected maximum fraction of peak performance of a code with balance B_c on a machine with balance B_m :

$$l = \min\left(1, \frac{B_{\rm m}}{B_{\rm c}}\right) \,. \tag{3.3}$$

We call this fraction the lightspeed of a loop. Performance in GFlops/sec is then

$$P = lP_{\text{max}} = \min\left(P_{\text{max}}, \frac{b_{\text{max}}}{B_{\text{c}}}\right) \tag{3.4}$$

If $l \simeq 1$, performance is not limited by bandwidth but other factors, either inside the CPU or elsewhere. Note that this simple performance model is based on some crucial assumptions:

- The loop code makes use of all arithmetic units (MULT and ADD) in an optimal way. If this is not the case one must introduce a correction factor that reflects the ratio of "effective" to absolute peak performance (e.g., if only ADDs are used in the code, effective peak performance would be half of the absolute maximum). Similar considerations apply if less than the maximum number of cores per chip are used.
- The loop code is based on double precision floating-point arithmetic. However, one can easily derive similar metrics that are more appropriate for other codes (e.g., 32-bit words per integer arithmetic instruction etc.).
- Data transfer and arithmetic overlap perfectly.
- The slowest data path determines the loop code's performance. All faster data paths are assumed to be infinitely fast.
- The system is in "throughput mode," i.e., latency effects are negligible.
- It is possible to saturate the memory bandwidth that goes into the calculation of machine balance to its full extent. Recent multicore designs tend to underutilize the memory interface if only a fraction of the cores use it. This makes performance prediction more complex, since there is a separate "effective" machine balance that is not just proportional to N^{-1} for each core count N. See Section 3.1.2 and Problem 3.1 below for more discussion regarding this point.

type	kernel	DP words	flops	$B_{\rm c}$
COPY	A(:)=B(:)	2 (3)	0	N/A
SCALE	A(:) = s * B(:)	2 (3)	1	2.0 (3.0)
ADD	A(:)=B(:)+C(:)	3 (4)	1	3.0 (4.0)
TRIAD	A(:) = B(:) + s * C(:)	3 (4)	2	1.5 (2.0)

Table 3.2: The STREAM benchmark kernels with their respective data transfer volumes (third column) and floating-point operations (fourth column) per iteration. Numbers in brackets take write allocates into account.

While the balance model is often useful and accurate enough to estimate the performance of loop codes and get guidelines for optimization (especially if combined with visualizations like the roofline diagram [M42]), we must emphasize that more advanced strategies for performance modeling do exist and refer to the literature [L76, M43, M41].

As an example consider the standard vector triad benchmark introduced in Section 1.3. The kernel loop,

```
1 do i=1, N
2 A(i) = B(i) + C(i) * D(i)
3 enddo
```

executes two flops per iteration, for which three loads (to elements B (i), C (i), and D (i)) and one store operation (to A (i)) provide the required input data. The code balance is thus $B_{\rm c}=(3+1)/2=2$. On a CPU with machine balance $B_{\rm m}=0.1$, we can then expect a lightspeed ratio of 0.05, i.e., 5% of peak.

Standard cache-based microprocessors usually have an outermost cache level with write-back strategy. As explained in Section 1.3, a cache line write allocate is then required after a store miss to ensure cache-memory coherence if nontemporal stores or cache line zero is not used. Under such conditions, the store stream to array A must be counted twice in calculating the code balance, and we would end up with a lightspeed estimate of $l_{\rm wa} = 0.04$.

3.1.2 The STREAM benchmarks

The McCalpin STREAM benchmarks [134, W119] is a collection of four simple synthetic kernel loops which are supposed to fathom the capabilities of a processor's or a system's memory interface. Table 3.2 lists those operations with their respective code balance. Performance is usually reported as bandwidth in GBytes/sec. The STREAM TRIAD kernel is not to be confused with the vector triad (see previous section), which has one additional load stream.

The benchmarks exist in serial and OpenMP-parallel (see Chapter 6) variants and are usually run with data sets large enough so that performance is safely memory-bound. Measured bandwidth thus depends on the number of load and store streams only, and the results for COPY and SCALE (and likewise for ADD and TRIAD)

tend to be very similar. One must be aware that STREAM is not only defined via the loop kernels in Table 3.2, but also by its Fortran source code (there is also a C variant available). This is important because optimizing compilers can recognize the STREAM source and substitute the kernels by hand-tuned machine code. Therefore, it is safe to state that STREAM performance results reflect the true capabilities of the hardware. They are published for many historical and contemporary systems on the STREAM Web site [W119].

Unfortunately, STREAM as well as the vector triad often fail to reach the performance levels predicted by balance analysis, in particular on commodity (PC-based) hardware. The reasons for this failure are manifold and cannot be discussed here in full detail; typical factors are:

- Maximum bandwidth is often not available in both directions (read and write)
 concurrently. It may be the case, e.g., that the relation from maximum read
 to maximum write bandwidth is 2:1. A write stream cannot utilize the full
 bandwidth in that case.
- Protocol overhead (see, e.g., Section 4.2.1), deficiencies in chipsets, errorcorrecting memory chips, and large latencies (that cannot be hidden completely by prefetching) all cut on available bandwidth.
- Data paths inside the processor chip, e.g., connections between L1 cache and registers, can be unidirectional. If the code is not balanced between read and write operations, some of the bandwidth in one direction is unused. This should be taken into account when applying balance analysis for in-cache situations.

It is, however, still true that STREAM results mark a maximum for memory bandwidth and no real application code with similar characteristics (number of load and store streams) performs significantly better. Thus, the STREAM bandwidth $b_{\rm S}$ rather than the hardware's theoretical capabilities should be used as the reference for light-speed calculations and (3.4) be modified to read

$$P = \min\left(P_{\text{max}}, \frac{b_{\text{S}}}{B_{\text{c}}}\right) \tag{3.5}$$

Getting a significant fraction (i.e., 80% or more) of the predicted performance based on STREAM results for an application code is usually an indication that there is no more potential for improving the utilization of the memory interface. It does not mean, however, that there is no room for further optimizations. See the following sections.

As an example we pick a system with Intel's Xeon 5160 processor (see Figure 4.4 for the general layout). One core has a theoretical memory bandwidth of $b_{\rm max} = 10.66$ GBytes/sec and a peak performance of $P_{\rm max} = 12$ GFlops/sec (4 flops per cycle at 3.0 GHz). This leads to a machine balance of $B_{\rm m} = 0.111$ W/F for a single core (if both cores run memory-bound code, this is reduced by a factor of two, but we assume for now that only one thread is running on one socket of the system).

Table 3.3 shows the STREAM results on this platform, comparing versions with

	with write allocate			w/o write	allocate
type	reported	actual	$b_{\rm S}/b_{\rm max}$	reported	$b_{\rm S}/b_{\rm max}$
COPY	2698	4047	0.38	4089	0.38
SCALE	2695	4043	0.38	4106	0.39
ADD	2772	3696	0.35	3735	0.35
TRIAD	2879	3839	0.36	3786	0.36

Table 3.3: Single-thread STREAM bandwidth results in GBytes/sec for an Intel Xeon 5160 processor (see text for details), comparing versions with and without write allocate. Write allocate was avoided by using nontemporal store instructions.

and without write allocate. The benchmark itself does not take this detail into account at all, so reported bandwidth numbers differ from actual memory traffic if write allocates are present. The discrepancy between measured performance and theoretical maximum is very pronounced; it is generally not possible to get more than 40% of peak bandwidth on this platform, and efficiency is particularly low for ADD and TRIAD, which have two load streams instead of one. If these results are used as a reference for balance analysis of loops, COPY or SCALE should be used in load/store-balanced cases. See Section 3.3 for an example.

3.2 Storage order

Multidimensional arrays, first and foremost matrices or matrix-like structures, are omnipresent in scientific computing. Data access is a crucial topic here as the mapping between the inherently one-dimensional, cache line based memory layout of standard computers and any multidimensional data structure must be matched to the order in which code loads and stores data so that spatial and temporal locality can be employed. *Strided* access to a one-dimensional array reduces spatial locality, leading to low utilization of the available bandwidth (see also Problem 3.1). When dealing with multidimensional arrays, those access patterns can be generated quite naturally:

Stride-N access

```
1 do i=1, N
2 do j=1, N
3 A(i,j) = i*j
4 enddo
5 enddo
```

Stride-1 access

```
for(i=0; i<N; ++i) {
  for(j=0; j<N; ++j) {
    a[i][j] = i*j;
  }
}</pre>
```

These Fortran and C codes perform exactly the same task, and the second array index is the "fast" (inner loop) index both times, but the memory access patterns are

Figure 3.3: Row major order matrix storage scheme, as used by the C programming language. Matrix rows are stored consecutively in memory. Cache lines are assumed to hold four matrix elements and are indicated by brackets.

quite distinct. In the Fortran example, the memory address is incremented in steps of N*sizeof (double), whereas in the C example the stride is optimal. This is because C implements *row major order* (see Figure 3.3), whereas Fortran follows the so-called *column major order* (see Figure 3.4) for multidimensional arrays. Although mathematically insignificant, the distinction must be kept in mind when optimizing for data access: If an inner loop variable is used as an index to a multidimensional array, it should be the index that ensures stride-one access (i.e., the first in Fortran and the last in C). Section 3.4 will show what can be done if this is not easily possible.

Figure 3.4: Column major order matrix storage scheme, as used by the Fortran programming language. Matrix columns are stored consecutively in memory. Cache lines are assumed to hold four matrix elements and are indicated by brackets.

3.3 Case study: The Jacobi algorithm

The Jacobi method is prototypical for many stencil-based iterative methods in numerical analysis and simulation. In its most straightforward form, it can be used for solving the diffusion equation for a scalar function $\Phi(\vec{r},t)$,

$$\frac{\partial \Phi}{\partial t} = \Delta \Phi \,, \tag{3.6}$$

on a rectangular lattice subject to Dirichlet boundary conditions. The differential operators are discretized using finite differences (we restrict ourselves to two dimensions with no loss of generality, but see Problem 3.4 for how 2D and 3D versions can differ with respect to performance):

$$\frac{\delta\Phi(x_{i}, y_{i})}{\delta t} = \frac{\Phi(x_{i+1}, y_{i}) + \Phi(x_{i-1}, y_{i}) - 2\Phi(x_{i}, y_{i})}{(\delta x)^{2}} + \frac{\Phi(x_{i}, y_{i-1}) + \Phi(x_{i}, y_{i+1}) - 2\Phi(x_{i}, y_{i})}{(\delta y)^{2}}.$$
(3.7)

In each time step, a correction $\delta\Phi$ to Φ at coordinate (x_i, y_i) is calculated by (3.7) using the "old" values from the four next neighbor points. Of course, the updated Φ values must be written to a second array. After all points have been updated (a "sweep"), the algorithm is repeated. Listing 3.1 shows a possible kernel implementation on an isotropic lattice. It "solves" for the steady state but lacks a convergence criterion, which is of no interest here. (Note that exchanging the ± 0 and ± 1 lattices does not have to be done element by element; compared to a naïve implementation we already gain roughly a factor of two in performance by exchanging the third array index only.)

Many optimizations are possible for speeding up this code. We will first predict its performance using balance analysis and compare with actual measurements. Figure 3.5 illustrates one five-point stencil update in the two-dimensional Jacobi algorithm. Four loads and one store are required per update, but the "downstream neighbor" phi (i+1, k, t0) is definitely used again from cache two iterations later, so only three of the four loads count for the code balance $B_c = 1.0 \text{ W/F}$ (1.25 W/F) including write allocate). However, as Figure 3.5 shows, the row-wise traversal of the lattice brings the stencil site with the largest k coordinate (i.e., phi (i, k+1, ± 0)) into the cache for the first time (we are ignoring the cache line concept for the moment). A memory transfer cannot be avoided for this value, but it will stay in the cache for three successive row traversals if the cache is large enough to hold more than two lattice rows. Under this condition we can assume that loading the neighbors at rows k and k-1 comes at no cost, and code balance is reduced to $B_c = 0.5$ W/F (0.75 W/F including write allocate). If the inner lattice dimension is gradually made larger, one, and eventually three additional loads must be satisfied from memory, leading back to the unpleasant value of $B_c = 1.0 (1.25)$ W/F.

Listing 3.1: Straightforward implementation of the Jacobi algorithm in two dimensions.

```
double precision, dimension(0:imax+1,0:kmax+1,0:1) :: phi
  integer :: t0,t1
  t0 = 0; t1 = 1
  do it = 1, itmax
                       ! choose suitable number of sweeps
    do k = 1, kmax
       do i = 1, imax
6
          ! four flops, one store, four loads
          phi(i,k,t1) = (phi(i+1,k,t0) + phi(i-1,k,t0)
8
                         + phi(i,k+1,t0) + phi(i,k-1,t0) ) \star 0.25
9
10
       enddo
11
    enddo
12
     ! swap arrays
     i = t0; t0=t1; t1=i
13
  enddo
```

Figure 3.5: Stencil update for the plain 2D Jacobi algorithm. If at least two successive rows can be kept in the cache (shaded area), only one T_0 site per update has to be fetched from memory (cross-hatched site).

Figure 3.6: Performance versus inner loop length (lattice extension in the i direction) for the Jacobi algorithm on one core of a Xeon 5160 processor (see text for details). Horizontal lines indicate predictions based on STREAM bandwidth.

Based on these balance numbers we can now calculate the code's lightspeed on a given architecture. In Section 3.1.2 we have presented STREAM results for an Intel Xeon 5160 platform which we use as a reference here. In the case where the cache is large enough to hold two successive rows, the data transfer characteristics match those for STREAM COPY or SCALE, i.e., there is one load and one store stream plus the obligatory write allocate. The theoretical value of $B_{\rm m}=0.111\,{\rm W/F}$ has to be modified because the Jacobi kernel only comprises one MULT versus three ADD operations, hence we use

$$B_{\rm m}^+ = \frac{0.111}{4/6} \,\text{W/F} \approx 0.167 \,\text{W/F} \,.$$
 (3.8)

Based on this theoretical value and assuming that write allocates cannot be avoided we arrive at

$$l_{\text{best}} = \frac{B_{\text{m}}^{+}}{B_{\text{c}}} = \frac{0.167}{0.75} \approx 0.222 \;,$$
 (3.9)

which, at a modified theoretical peak performance of $P_{\rm max}^+ = 12 \cdot 4/6\,{\rm GFlops/sec} = 8\,{\rm GFlops/sec}$ leads to a predicted performance of 1.78 GFlops/sec. Based on the STREAM COPY numbers from Table 3.3, however, this value must be scaled down by a factor of 0.38, and we arrive at an expected performance of $\approx 675\,{\rm MFlops/sec}$. For very large inner grid dimensions, the cache becomes too small to hold two, and eventually even one grid row and code balance first rises to $B_c = 1.0\,{\rm W/F}$, and finally to $B_c = 1.25\,{\rm W/F}$. Figure 3.6 shows measured performance versus inner lattice dimension, together with the various limits and predictions (a nonsquare lattice was used for the large-N cases, i.e., kmax \ll imax, to save memory). The model can obviously describe the overall behavior well. Small-scale performance fluctuations can have a variety of causes, e.g., associativity or memory banking effects.

The figure also introduces a performance metric that is more suitable for stencil algorithms as it emphasizes "work done" over MFlops/sec: The number of lattice site updates (LUPs) per second. In our case, there is a simple 1:4 correspondence between flops and LUPs, but in general the MFlops/sec metric can vary when applying

optimizations that interfere with arithmetic, using different compilers that rearrange terms, etc., just because the number of floating point operations per stencil update changes. However, what the user is most interested in is how much *actual work* can be done in a certain amount of time. The LUPs/sec number makes all performance measurements comparable if the underlying physical problem is the same, no matter which optimizations have been applied. For example, some processors provide a *fused multiply-add* (FMA) machine instruction which performs two flops by calculating $r = a + b \cdot c$. Under some circumstances, FMA can boost performance because of the reduced latency per flop. Rewriting the 2D Jacobi kernel in Listing 3.1 for FMA is straightforward:

```
do k = 1,kmax

2 do i = 1,imax

3 phi(i,k,t1) = 0.25 * phi(i+1,k,t0) + 0.25 * phi(i-1,k,t0)

4 + 0.25 * phi(i,k+1,t0) + 0.25 * phi(i,k-1,t0)

5 enddo

6 enddo
```

This version has seven instead of four flops; performance in MLUPs/sec will not change for memory-bound situations (it is left to the reader to prove this using balance analysis), but the MFlops/sec numbers will.

3.4 Case study: Dense matrix transpose

For the following example we assume column major order as implemented in Fortran. Calculating the transpose of a dense matrix, $A = B^{T}$, involves strided memory access to A or B, depending on how the loops are ordered. The most unfavorable way of doing the transpose is shown here:

```
1 do i=1, N

2 do j=1, N

3 A(i,j) = B(j,i)

4 enddo

5 enddo
```

Write access to matrix A is strided (see Figure 3.7). Due to write-allocate transactions, strided writes are more expensive than strided reads. Starting from this worst possible code we can now try to derive expected performance features. As matrix transpose does not perform any arithmetic, we will use effective bandwidth (i.e., GBytes/sec available to the application) to denote performance.

Let C be the cache size and L_c the cache line size, both in DP words. Depending on the size of the matrices we can expect three primary performance regimes:

• In case the two matrices fit into a CPU cache $(2N^2 \lesssim C)$, we expect effective bandwidths of the order of cache speeds. Spatial locality is of importance only between different cache levels; optimization potential is limited.

Figure 3.7: Cache line traversal for vanilla matrix transpose (strided store stream, column major order). If the leading matrix dimension is a multiple of the cache line size, each column starts on a line boundary.

• If the matrices are too large to fit into the cache but still

$$NL_{\rm c} \lesssim C$$
, (3.10)

the strided access to A is insignificant because all stores that cause a write miss during a complete row traversal start a cache line write allocate. Those lines are most probably still in the cache for the next $L_c - 1$ rows, alleviating the effect of the strided write (spatial locality). Effective bandwidth should be of the order of the processor's maximum achievable memory bandwidth.

• If N is even larger so that $NL_c \gtrsim C$, each store to A causes a cache miss and a subsequent write allocate. A sharp drop in performance is expected at this point as only one out of L_c cache line entries is actually used for the store stream and any spatial locality is suddenly lost.

The "vanilla" graph in Figure 3.8 shows that the assumptions described above are essentially correct, although the strided write seems to be very unfavorable even when the whole working set fits into the cache. This is probably because the L1 cache on the considered architecture (Intel Xeon/Nocona) is of *write-through* type, i.e., the L2 cache is always updated on a write, regardless of whether there was an L1 hit or miss. Hence, the write-allocate transactions between the two caches waste a major part of the available internal bandwidth.

In the second regime described above, performance stays roughly constant up to a point where the fraction of cache used by the store stream for N cache lines becomes comparable to the L2 size. Effective bandwidth is around 1.8 GBytes/sec, a mediocre value compared to the theoretical maximum of 5.3 GBytes/sec (delivered by two-channel memory at 333 MTransfers/sec). On most commodity architectures the theoretical bandwidth limits can not be reached with compiler-generated code, but well over 50% is usually attainable, so there must be a factor that further reduces available bandwidth. This factor is the *translation lookaside buffer* (TLB), which

Figure 3.8: Performance (effective bandwidth) for different implementations of the dense matrix transpose on a modern microprocessor with 1 MByte of L2 cache. The N = 256 and N = 8192 lines indicate the positions where the matrices fully fit into the cache and where N cache lines fit into the cache, respectively. (Intel Xeon/Nocona 3.2 GHz.)

caches the mapping between logical and physical memory pages. The TLB can be envisioned as an additional cache level with cache lines the size of memory pages (the page size is often 4kB, sometimes 16kB and even configurable on some systems). On the architecture considered, it is only large enough to hold 64 entries, which corresponds to 256kBytes of memory at a 4kB page size. This is smaller than the whole L2 cache, so TLB effects may be observed even for in-cache situations. Moreover, if *N* is larger than 512, i.e., if one matrix row exceeds the size of a page, every single access in the strided stream causes a TLB *miss*. Even if the page tables reside in the L2 cache, this penalty reduces effective bandwidth significantly because every TLB miss leads to an additional access latency of at least 57 processor cycles (on this particular CPU). At a core frequency of 3.2 GHz and a bus transfer rate of 666 MWords/sec, this matches the time needed to transfer more than a 64-byte cache line!

At $N \gtrsim 8192$, performance has finally arrived at the expected low level. The machine under investigation has a theoretical memory bandwidth of 5.3 GBytes/sec of which around 200 MBytes/sec actually reach the application. At an effective cache line length of 128 bytes (two 64-byte cache lines are fetched on every miss, but evicted separately), of which only one is used for the strided store stream, three words per iteration are read or written in each loop iteration for the in-cache case,

Figure 3.9: Cache thrashing for an unfavorable choice of array dimensions (dashed): Matrix transpose performance breaks down dramatically at a dimension of 1024×1024. Padding by enlarging the leading dimension by one removes thrashing completely (solid).

whereas 33 words are read or written for the worst case. We thus expect a 1:11 performance ratio, roughly the value observed.

We must stress again that performance predictions based on architectural specifications [M41, M44] do work in many, but not in all cases, especially on commodity systems where factors like chipsets, memory chips, interrupts, etc., are basically uncontrollable. Sometimes only a qualitative understanding of the reasons for some peculiar performance behavior can be developed, but this is often enough to derive the next logical optimization steps.

The first and most simple optimization for dense matrix transpose would consist in interchanging the order of the loop nest, i.e., pulling the \pm loop inside. This would render the access to matrix B strided but eliminate the strided write for A, thus saving roughly half the bandwidth (5/11, to be exact) for very large N. The measured performance gain (see inset in Figure 3.8, "flipped" graph), though noticeable, falls short of this expectation. One possible reason for this could be a slightly better efficiency of the memory interface with strided writes.

In general, the performance graphs in Figure 3.8 look quite erratic at some points. At first sight it is unclear whether some N should lead to strong performance penalties as compared to neighboring values. A closer look ("vanilla" graph in Figure 3.9) reveals that powers of two in array dimensions seem to be quite unfavorable (the benchmark program allocates new matrices with appropriate dimensions for each new N). As mentioned in Section 1.3.2 on page 19, strided memory access leads to thrashing when successive iterations hit the same (set of) cache line(s) because of insufficient associativity. Figure 3.7 shows clearly that this can easily happen with matrix transpose if the leading dimension is a power of two. On a direct-mapped cache of size C, every C/N-th iteration hits the same cache line. At a line length of

Figure 3.10: Cache line traversal for padded matrix transpose. Padding may increase effective cache size by alleviating associativity conflicts.

 $L_{\rm c}$ words, the effective cache size is

$$C_{\text{eff}} = L_{\text{c}} \max \left(1, \frac{C}{N} \right) . \tag{3.11}$$

It is the number of cache words that are actually usable due to associativity constraints. On an m-way set-associative cache this number is merely multiplied by m. Considering a real-world example with $C=2^{17}$ (1 MByte), $L_{\rm c}=16$, m=8 and N=1024 one arrives at $C_{\rm eff}=2^{11}$ DP words, i.e., 16 kBytes. So $NL_{\rm c}\gg C_{\rm eff}$ and performance should be similar to the very large N limit described above, which is roughly true.

A simple code modification, however, eliminates the thrashing effect: Assuming that matrix A has dimensions 1024×1024 , enlarging the leading dimension by p (called padding) to get A (1024+p, 1024) results in a fundamentally different cache use pattern. After L_c/p iterations, the address belongs to another set of m cache lines and there is no associativity conflict if $Cm/N > L_c/p$ (see Figure 3.10). In Figure 3.9 the striking effect of padding the leading dimension by p=1 is shown with the "padded" graph. Generally speaking, one should by all means stay away from powers of two in leading array dimensions. It is clear that different dimensions may require different paddings to get optimal results, so sometimes a rule of thumb is applied: Try to make leading array dimensions odd multiples of 16.

Further optimization approaches that can be applied to matrix transpose will be discussed in the following sections.

3.5 Algorithm classification and access optimizations

The optimization potential of many loops on cache-based processors can easily be estimated just by looking at basic parameters like the scaling behavior of data transfers and arithmetic operations versus problem size. It can then be decided whether investing optimization effort would make sense.

3.5.1 O(N)/O(N)

If both the number of arithmetic operations and the number of data transfers (loads/stores) are proportional to the problem size (or "loop length") N, optimization potential is usually very limited. Scalar products, vector additions, and sparse matrix-vector multiplication are examples for this kind of problems. They are inevitably memory-bound for large N, and compiler-generated code achieves good performance because O(N)/O(N) loops tend to be quite simple and the correct software pipelining strategy is obvious. *Loop nests*, however, are a different matter (see below).

But even if loops are not nested there is sometimes room for improvement. As an example, consider the following vector additions:

```
! optimized
2  A(i) = B(i) + C(i)
3  enddo
4  do i=1, N
5  Z(i) = B(i) + E(i)
6  enddo

! optimized
do i=1, N
| do i=1, N
| save a load for B(i)
| Z(i) = B(i) + E(i)
| enddo
```

Each of the loops on the left has no options left for optimization. The code balance is 3/1 as there are two loads, one store, and one addition per loop (not counting write allocates). Array B, however, is loaded again in the second loop, which is unnecessary: *Fusing* the loops into one has the effect that each element of B only has to be loaded once, reducing code balance to 5/2. All else being equal, performance in the memory-bound case will improve by a factor of 6/5 (if write allocates cannot be avoided, this will be 8/7).

Loop fusion has achieved an O(N) data reuse for the two-loop constellation so that a complete load stream could be eliminated. In simple cases like the one above, compilers can often apply this optimization by themselves.

3.5.2 $O(N^2)/O(N^2)$

In typical two-level loop nests where each loop has a trip count of N, there are $O(N^2)$ operations for $O(N^2)$ loads and stores. Examples are dense matrix-vector multiply, matrix transpose, matrix addition, etc. Although the situation on the inner level is similar to the O(N)/O(N) case and the problems are generally memory-bound, the nesting opens new opportunities. Optimization, however, is again usually limited to

Figure 3.11: Unoptimized $N \times N$ dense matrix vector multiply. The RHS vector is loaded N times.

a constant factor of improvement. As an example we consider dense matrix-vector multiply (MVM):

```
1 do i=1, N
2    tmp = C(i)
3    do j=1, N
4    tmp = tmp + A(j,i) * B(j)
5    enddo
6    C(i) = tmp
7    enddo
```

This code has a balance of 1 W/F (two loads for A and B and two flops). Array C is indexed by the outer loop variable, so updates can go to a register (here clarified through the use of the scalar tmp although compilers can do this transformation automatically) and do not count as load or store streams. Matrix A is only loaded once, but B is loaded N times, once for each outer loop iteration (see Figure 3.11). One would like to apply the same fusion trick as above, but there are not just two but N inner loops to fuse. The solution is *loop unrolling*: The outer loop is traversed with a stride m and the inner loop is replicated m times. We thus have to deal with the situation that the outer loop count might not be a multiple of m. This case has to be handled by a remainder loop:

```
! remainder loop
  do r=1, mod(N, m)
2
     do j=1, N
3
       C(r) = C(r) + A(j,r) * B(j)
4
     enddo
5
  enddo
  ! main loop
7
 do i=r,N,m
     do j=1, N
      C(i) = C(i) + A(j,i) * B(j)
10
     enddo
```

The remainder loop is subject to the same optimization techniques as the original loop, but otherwise unimportant. For this reason we will ignore remainder loops in the following.

By just unrolling the outer loop we have not gained anything but a considerable code bloat. However, loop fusion can now be applied easily:

```
! remainder loop ignored
do i=1,N,m
do j=1,N
C(i) = C(i) + A(j,i) * B(j)
C(i+1) = C(i+1) + A(j,i+1) * B(j)
! m times

C(i+m-1) = C(i+m-1) + A(j,i+m-1) * B(j)
enddo
enddo
enddo
```

The combination of outer loop unrolling and fusion is often called *unroll and jam*. By m-way unroll and jam we have achieved an m-fold reuse of each element of B from register so that code balance reduces to (m+1)/2m which is clearly smaller than one for m>1. If m is very large, the performance gain can get close to a factor of two. In this case array B is only loaded a few times or, ideally, just once from memory. As A is always loaded exactly once and has size N^2 , the total memory traffic with m-way unroll and jam amounts to $N^2(1+1/m)+N$. Figure 3.12 shows the memory access pattern for two-way unrolled dense matrix-vector multiply.

All this assumes, however, that register pressure is not too large, i.e., the CPU has enough registers to hold all the required operands used inside the now quite sizeable loop body. If this is not the case, the compiler must spill register data to cache, slowing down the computation (see also Section 2.4.5). Again, compiler logs, if available, can help identify such a situation.

Unroll and jam can be carried out automatically by some compilers at high optimization levels. Be aware though that a complex loop body may obscure important information and manual optimization could be necessary, either (as shown above) by hand-coding or *compiler directives* that specify high-level transformations like unrolling. Directives, if available, are the preferred alternative as they are much easier to maintain and do not lead to visible code bloat. Regrettably, compiler directives are inherently nonportable.

The matrix transpose code from the previous section is another typical example for an $O(N^2)/O(N^2)$ problem, although in contrast to dense MVM there is no direct

Figure 3.12: Two-way unrolled dense matrix vector multiply. The data traffic caused by reloading the RHS vector is reduced by roughly a factor of two. The remainder loop is only a single (outer) iteration in this example.

opportunity for saving on memory traffic; both matrices have to be read or written exactly once. Nevertheless, by using unroll and jam on the "flipped" version a significant performance boost of nearly 50% is observed (see dotted line in Figure 3.8):

Naively one would not expect any effect at m=4 because the basic analysis stays the same: In the mid-N region the number of available cache lines is large enough to hold up to L_c columns of the store stream. Figure 3.13 shows the situation for m=2. However, the fact that m words in each of the load stream's cache lines are now accessed in direct succession reduces the TLB misses by a factor of m, although the TLB is still way too small to map the whole working set.

Even so, cutting down on TLB misses does not remedy the performance breakdown for large N when the cache gets too small to hold N cache lines. It would be nice to have a strategy which reuses the remaining $L_{\rm c}-m$ words of the strided stream's cache lines right away so that each line may be evicted soon and would not have to be reclaimed later. A "brute force" method is $L_{\rm c}$ -way unrolling, but this approach leads to large-stride accesses in the store stream and is not a general solution as large unrolling factors raise register pressure in loops with arithmetic operations. $Loop\ blocking$ can achieve optimal cache line use without additional register pressure. It does not save load or store operations but increases the cache hit ratio. For a

Figure 3.13: Two-way unrolled "flipped" matrix transpose (i.e., with strided load in the original version).

loop nest of depth d, blocking introduces up to d additional outer loop levels that cut the original inner loops into chunks:

```
do jj=1,N,b
     jstart=jj; jend=jj+b-1
2
     do ii=1,N,b
3
       istart=ii; iend=ii+b-1
4
       do j=jstart, jend, m
5
         do i=istart,iend
6
7
            a(i,j) = b(j,i)
            a(i, j+1) = b(j+1, i)
8
            a(i, j+m-1) = b(j+m-1, i)
10
         enddo
       enddo
12
     enddo
13
  enddo
```

In this example we have used *two-dimensional blocking* with identical blocking factors b for both loops in addition to m-way unroll and jam. This change does not alter the loop body so the number of registers needed to hold operands stays the same. However, the cache line access characteristics are much improved (see Figure 3.14 which shows a combination of two-way unrolling and 4×4 blocking). If the blocking factors are chosen appropriately, the cache lines of the strided stream will have been used completely at the end of a block and can be evicted "soon." Hence, we expect the large-N performance breakdown to disappear. The dotted-dashed graph in Figure 3.8 demonstrates that 50×50 blocking combined with four-way unrolling alleviates all memory access problems induced by the strided stream.

Loop blocking is a very general and powerful optimization that can often not be performed by compilers. The correct blocking factor to use should be determined experimentally through careful benchmarking, but one may be guided by typical cache sizes, i.e., when blocking for L1 cache the aggregated working set size of all blocked inner loop nests should not be much larger than half the cache. Which

Figure 3.14: 4 × 4 blocked and two-way unrolled "flipped" matrix transpose.

cache level to block for depends on the operations performed and there is no general recommendation.

3.5.3 $O(N^3)/O(N^2)$

If the number of operations is larger than the number of data items by a factor that grows with problem size, we are in the very fortunate situation to have tremendous optimization potential. By the techniques described above (unroll and jam, loop blocking) it is sometimes possible for these kinds of problems to render the implementation cache-bound. Examples for algorithms that show $O(N^3)/O(N^2)$ characteristics are dense matrix-matrix multiplication (MMM) and dense matrix diagonalization. It is beyond the scope of this book to develop a well-optimized MMM, let alone eigenvalue calculation, but we can demonstrate the basic principle by means of a simpler example which is actually of the $O(N^2)/O(N)$ type:

```
1 do i=1,N
2     do j=1,N
3         sum = sum + foo(A(i),B(j))
4     enddo
5     enddo
```

The complete data set is O(N) here but $O(N^2)$ operations (calls to foo(), additions) are performed on it. In the form shown above, array B is loaded from memory N times, so the total memory traffic amounts to N(N+1) words. m-way unroll and jam is possible and will immediately reduce this to N(N/m+1), but the disadvantages of large unroll factors have been pointed out already. Blocking the inner loop with a blocksize of b, however,

```
do jj=1,N,b

jstart=jj; jend=jj+b-1

do i=1,N

do j=jstart,jend

sum = sum + foo(A(i),B(j))
```

enddo enddo enddo

has two effects:

- Array B is now loaded only once from memory, provided that b is small enough so that b elements fit into cache and stay there as long as they are needed.
- Array A is loaded from memory N/b times instead of once.

Although A is streamed through cache N/b times, the probability that the current block of B will be evicted is quite low, the reason being that those cache lines are used very frequently and thus kept by the LRU replacement algorithm. This leads to an effective memory traffic of N(N/b+1) words. As b can be made much larger than typical unrolling factors, blocking is the best optimization strategy here. Unroll and jam can still be applied to enhance in-cache code balance. The basic N^2 dependence is still there, but with a prefactor that can make the difference between memory-bound and cache-bound behavior. A code is cache-bound if main memory bandwidth and latency are not the limiting factors for performance any more. Whether this goal is achievable on a certain architecture depends on the cache size, cache and memory speeds, and the algorithm, of course.

Algorithms of the $O(N^3)/O(N^2)$ type are typical candidates for optimizations that can potentially lead to performance numbers close to the theoretical maximum. If blocking and unrolling factors are chosen appropriately, dense matrix-matrix multiply, e.g., is an operation that usually achieves over 90% of peak for $N \times N$ matrices if N is not too small. It is provided in highly optimized versions by system vendors as, e.g., contained in the BLAS (Basic Linear Algebra Subsystem) library. One might ask why unrolling should be applied at all when blocking already achieves the most important task of making the code cache-bound. The reason is that even if all the data resides in a cache, many processor architectures do not have the capability for sustaining enough loads and stores per cycle to feed the arithmetic units continuously. For instance, the current x86 processors from Intel can sustain one load and one store operation per cycle, which makes unroll and jam mandatory if the kernel of a loop nest uses more than one load stream, especially in cache-bound situations like the blocked $O(N^2)/O(N)$ example above.

Although demonstrated here for educational purposes, there is no need to hand-code and optimize standard linear algebra and matrix operations. They should always be used from optimized libraries, if available. Nevertheless, the techniques described can be applied in many real-world codes. An interesting example with some complications is sparse matrix-vector multiply (see Section 3.6).

Figure 3.15: Sparse matrix-vector multiply. Dark elements visualize entries involved in updating a single LHS element. Unless the sparse matrix rows have no gaps between the first and last nonzero elements, some indirect addressing of the RHS vector is inevitable.

3.6 Case study: Sparse matrix-vector multiply

An interesting "real-world" application of the blocking and unrolling strategies discussed in the previous sections is the multiplication of a sparse matrix with a vector. It is a key ingredient in most iterative matrix diagonalization algorithms (Lanczos, Davidson, Jacobi-Davidson) and usually a performance-limiting factor. A matrix is called *sparse* if the number of nonzero entries $N_{\rm nz}$ grows linearly with the number of matrix rows $N_{\rm r}$. Of course, only the nonzeros are stored at all for efficiency reasons. Sparse MVM (sMVM) is hence an $O(N_{\rm r})/O(N_{\rm r})$ problem and inherently memory-bound if $N_{\rm r}$ is reasonably large. Nevertheless, the presence of loop nests enables some significant optimization potential. Figure 3.15 shows that sMVM generally requires some strided or even indirect addressing of the RHS vector, although there exist matrices for which memory access patterns are much more favorable. In the following we will keep at the general case.

3.6.1 Sparse matrix storage schemes

Several different storage schemes for sparse matrices have been developed, some of which are suitable only for special kinds of matrices [N49]. Of course, memory access patterns and thus performance characteristics of sMVM depend heavily on the storage scheme used. The two most important and also general formats are CRS (Compressed Row Storage) and JDS (Jagged Diagonals Storage). We will see that

Figure 3.16: CRS sparse matrix storage format.

CRS is well-suited for cache-based microprocessors while JDS supports dependency and loop structures that are favorable on vector systems.

In CRS, an array val of length $N_{\rm nz}$ is used to store all nonzeros of the matrix, row by row, without any gaps, so some information about which element of val originally belonged to which row and column must be supplied. This is done by two additional integer arrays, col_idx of length $N_{\rm nz}$ and row_ptr of length $N_{\rm r}$. col_idx stores the column index of each nonzero in val. row_ptr contains the indices at which new rows start in val (see Figure 3.16). The basic code to perform an MVM using this format is quite simple:

The following points should be noted:

- There is a long outer loop (length N_r).
- The inner loop may be "short" compared to typical microprocessor pipeline lengths.
- Access to result vector C is well optimized: It is only loaded once from main memory.
- The nonzeros in val are accessed with stride one.
- As expected, the RHS vector B is accessed indirectly. This may, however, not
 be a serious performance problem depending on the exact structure of the matrix. If the nonzeros are concentrated mainly around the diagonal, there will
 even be considerable spatial and/or temporal locality.
- $B_c = 5/4$ W/F if the integer load to col_idx is counted with four bytes. We are neglecting the possibly much larger transfer volume due to partially used cache lines.

Some of those points will be of importance later when we demonstrate parallel sMVM (see Section 7.3 on page 181).

JDS requires some rearrangement of the matrix entries beyond simple zero elimination. First, all zeros are eliminated from the matrix rows and the nonzeros are shifted to the left. Then the matrix rows are sorted by descending number of nonzeros so that the longest row is at the top and the shortest row is at the bottom. The permutation map generated during the sorting stage is stored in array perm of length N_r . Finally, the now established columns are stored in array val consecutively. These columns are also called *jagged diagonals* as they traverse the original sparse matrix from left top to right bottom (see Figure 3.17). For each nonzero the original column index is stored in col_idx just like in the CRS. In order to have the same element order on the RHS and LHS vectors, the col_idx array is subject to the above-mentioned permutation as well. Array jd_ptr holds the start indices of the N_j jagged diagonals. A standard code for sMVM in JDS format is only slightly more complex than with CRS:

```
1 do diag=1, N<sub>j</sub>
2    diagLen = jd_ptr(diag+1) - jd_ptr(diag)
3    offset = jd_ptr(diag) - 1
4    do i=1, diagLen
5     C(i) = C(i) + val(offset+i) * B(col_idx(offset+i))
6    enddo
7    enddo
```

The perm array storing the permutation map is not required here; usually, all sMVM operations are done in permuted space. These are the notable properties of this loop:

- There is a long inner loop without dependencies, which makes JDS a much better storage format for vector processors than CRS.
- The outer loop is short (number of jagged diagonals).
- The result vector is loaded multiple times (at least partially) from memory, so there might be some optimization potential.
- The nonzeros in val are accessed with stride one.
- The RHS vector is accessed indirectly, just as with CRS. The same comments
 as above do apply, although a favorable matrix layout would feature straight
 diagonals, not compact rows. As an additional complication the matrix rows
 as well as the RHS vector are permuted.
- $B_c = 9/4$ W/F if the integer load to col_idx is counted with four bytes.

The code balance numbers of CRS and JDS sMVM seem to be quite in favor of CRS.

3.6.2 Optimizing JDS sparse MVM

Unroll and jam should be applied to the JDS sMVM, but it usually requires the length of the inner loop to be independent of the outer loop index. Unfortunately, the jagged diagonals are generally not all of the same length, violating this condition. However, an optimization technique called *loop peeling* can be employed which, for m-way unrolling, cuts rectangular $m \times x$ chunks and leaves m-1 partial diagonals over for separate treatment (see Figure 3.18; the remainder loop is omitted as usual):

```
do diag=1,N_i,2
                  ! two-way unroll & jam
    diagLen = min( (jd_ptr(diag+1)-jd_ptr(diag)) ,\
                    (jd_ptr(diag+2)-jd_ptr(diag+1)) )
    offset1 = jd_ptr(diag) - 1
4
    offset2 = jd_ptr(diag+1) - 1
    do i=1, diagLen
      C(i) = C(i) + val(offset1+i) *B(col_idx(offset1+i))
      C(i) = C(i) + val(offset2+i) *B(col_idx(offset2+i))
Q
    ! peeled-off iterations
10
    offset1 = jd_ptr(diag)
    do i=(diagLen+1),(jd_ptr(diag+1)-jd_ptr(diag))
      c(i) = c(i)+val(offset1+i)*b(col_idx(offset1+i))
    enddo
14
  enddo
```

Assuming that the peeled-off iterations account for a negligible contribution to CPU time, m-way unroll and jam reduces code balance to

$$B_{\rm c} = \left(\frac{1}{m} + \frac{5}{4}\right) \text{W/F}.$$

Figure 3.18: JDS matrix traversal with two-way unroll and jam and loop peeling. The peeled iterations are marked.

Figure 3.19: JDS matrix traversal with four-way loop blocking.

If *m* is large enough, this can get close to the CRS balance. However, as explained before large *m* leads to strong register pressure and is not always desirable. Generally, a sensible combination of unrolling and blocking is employed to reduce memory traffic and enhance in-cache performance at the same time. Blocking is indeed possible for JDS sMVM as well (see Figure 3.19):

```
! loop over blocks
  do ib=1, N_r, b
2
    block_start = ib
3
    block_end
                = min(ib+b-1, N_{\rm r})
    ! loop over diagonals in one block
    do diag=1, N_i
       diagLen = jd_ptr(diag+1)-jd_ptr(diag)
      offset = jd_ptr(diag) - 1
Q
      if (diagLen .ge. block_start) then
         ! standard JDS sMVM kernel
10
         do i=block_start, min(block_end,diagLen)
11
           B(i) = B(i) + val(offset+i) * B(col_idx(offset+i))
12
         enddo
13
       endif
14
    enddo
 enddo
```

With this optimization the result vector is effectively loaded only once from memory if the block size *b* is not too large. The code should thus get similar performance as the CRS version, although code balance has not been changed. As anticipated above with dense matrix transpose, blocking does not optimize for register reuse but for cache utilization.

Figure 3.20: Performance comparison of sparse MVM codes with different optimizations. A matrix with 1.7×10^7 unknowns and 20 jagged diagonals was chosen. The blocking size of 400 has proven to be optimal for a wide range of architectures.

Figure 3.20 shows a performance comparison of CRS and plain, two-way unrolled and blocked (b = 400) JDS sMVM on three different architectures, for a test matrix from solid state physics (six-site one-dimensional Holstein-Hubbard model at half filling). The CRS variant seems to be preferable for standard AMD and Intel microprocessors, which is not surprising because it features the lowest code balance right away without any subsequent manual optimizations and the short inner loop length is less unfavorable on CPUs with out-of-order capabilities. The Intel Itanium2 processor with its EPIC architecture [V113], however, shows mediocre performance for CRS and tops at the blocked JDS version. This architecture cannot cope very well with the short loops of CRS due to the absence of out-of-order processing and the compiler, despite detecting all instruction-level parallelism on the inner loop level, not being able to overlap the wind-down of one row with the wind-up phase of the next. This effect would certainly be much more pronounced if the working set did fit into the cache [O56].

Problems

For solutions see page 289 ff.

3.1 Strided access. How do the balance and lightspeed considerations in Sec-

tion 3.1 have to be modified if one or more arrays are accessed with nonunit stride? What kind of performance characteristic do you expect for a stride-s vector triad.

```
1 do i=1,N,s
2 A(i) = B(i) + C(i) * D(i)
3 enddo
```

with respect to s if N is large?

3.2 *Balance fun.* Calculate code balance for the following loop kernels, assuming that all arrays have to be loaded from memory and ignoring the latency problem (appropriate loops over the counter variables i and j are always implied):

```
(a) Y(j) = Y(j) + A(i,j) * B(i) (matrix-vector multiply)
(b) s = s + A(i) * A(i) (vector norm)
(c) s = s + A(i) * B(i) (scalar product)
(d) s = s + A(i) * B(K(i)) (scalar product with indirect access)
```

All arrays are of DP floating-point type except K which stores 4-byte integers. S is a double precision scalar. Calculate expected application performance based on theoretical peak bandwidth and STREAM bandwidths in MFlops/sec for those kernels on one core of a Xeon 5160 processor and on the prototypical vector processor described in Section 1.6. The Xeon CPU has a cache line size of 64 bytes. You may assume that N is large so that the arrays do not fit into any cache. For case (d), give numbers for best and worst case scenarios on the Xeon.

- 3.3 *Performance projection.* In future mainstream microarchitectures, SIMD capabilities will be greatly enhanced. One of the possible new features is that x86 processors will be capable of executing MULT and ADD instructions on 256-bit (instead of 128-bit) registers, i.e., four DP floating-point values, concurrently. This will effectively double the peak performance per cycle from 4 to 8 flops, given that the L1 cache bandwidth is improved by the same factor. Assuming that other parameters like memory bandwidth and clock speed stay the same, estimate the expected performance gain for using this feature, compared to a single current Intel "Core i7" core (effective STREAM-based machine balance of 0.12 W/F). Assume a perfectly SIMD-vectorized application that today spends 60% of its compute time on code that has a balance of 0.04 W/F and the remaining 40% in code with a balance of 0.5 W/F. If the manufacturers chose to extend SIMD capabilities even more, e.g., by introducing very large vector lengths, what is the absolute limit for the expected performance gain in this situation?
- 3.4 Optimizing 3D Jacobi. Generalize the 2D Jacobi algorithm introduced in Section 3.3 to three dimensions. Do you expect a change in performance char-

acteristics with varying inner loop length (Figure 3.6)? Considering the optimizations for dense matrix transpose (Section 3.4), can you think of a way to eliminate some of the performance breakdowns?

- 3.5 *Inner loop unrolling revisited.* Up to now we have encountered the possibility of unrolling *inner* loops only in the contexts of software pipelining and SIMD optimizations (see Chapter 2). Can inner loop unrolling also improve code balance in some situations? What are the prospects for improving the performance of a Jacobi solver by unrolling the inner loop?
- 3.6 *Not unrollable?* Consider the multiplication of a lower triangular matrix with a vector:

```
do r=1, N

2 do c=1, r

3 y(r) = y(r) + a(c, r) * x(c)

4 enddo

5 enddo
```

Can you apply "unroll and jam" to the outer loop here (see Section 3.5.2 on page 81) to reduce code balance? Write a four-way unrolled version of above code. No special assumptions about N may be made (other than being positive), and no matrix elements of A may be accessed that are outside the lower triangle (including the diagonal).

3.7 Application optimization. Which optimization strategies would you suggest for the piece of code below? Write down a transformed version of the code which you expect to give the best performance.

```
double precision, dimension(N,N) :: mat,s
double precision :: val
integer :: i, j
integer, dimension(N) :: v
! ... v and s may be assumed to hold valid data
do i=1,N
do j=1,N
val = DBLE(MOD(v(i),256))
mat(i,j) = s(i,j)*(SIN(val)*SIN(val)-COS(val)*COS(val))
enddo
enddo
enddo
```

No assumptions about the size of N may be made. You may, however, assume that the code is part of a subroutine which gets called very frequently. s and v may change between calls, and all elements of v are positive.

3.8 *TLB impact*. The translation lookaside buffer (TLB) of even the most modern processors is scarcely large enough to even store the mappings of all memory pages that reside in the outer-level data cache. Why are TLBs so small? Isn't this a performance bottleneck by design? What are the benefits of larger pages?