МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ

Пояснювальна записка до розрахунково-графічної роботи

з дисципліни «Алгоритмізація і програмування»

XAI.301	31 РГР	
	Виконав студент г	rp. 319a
		(№ групи)
	Моісеєнь	∞ €.Ο
	(Підпис, дата)	(П.І.Б.)
	Перевірив к.т.н., д	оцент
	(Науковий	ступінь, вчене звання)
		О. В. Гавриленко
	(Підпис, дата)	(П.І.Б.)

Завдання	2
Вступ	
Перетворення чисел в двійкову систему числення	. 5
Перетворення чисел в шістнадцяткову систему числення	. 6
Перетворення чисел в 9-річну систему числення	. 7
Двійкова арифметика	. 9
Висновки	10

Завдання

Дослідити шляхом власних обчислень, розробити і реалізувати алгоритми роботи з числами в різних позиційних системах числення:

- 1. Перетворити десяткові числа <u>116 та 2668</u> в двійкову систему числення, описати покроково процес перетворень. Виконати перевірку, виконавши зворотне перетворення в десяткову систему.
- 2. Перетворити десяткові числа <u>116 та 2668</u> в шістнадцяткову систему числення, описати покроково процес перетворень. Виконати перевірку шляхом зворотного перетворення в десяткову і двійкову систему.
- 3. Розробити діаграму активності алгоритму перетворення числа з десяткової системи числення в <u>9-річну</u>. *Реалізувати алгоритм у вигляді строкової функції DecTo N (D) з вхідним цілочисельним параметром на мові С ++.
- 4. Для двох чисел <u>116 та 2668</u> провести операцію <u>ділення</u> у двійковій системі числення. Виконати перевірку шляхом перетворення результатів в десяткову систему.
- 5. Зробити висновки.

Вступ

Системи числення ϵ фундаментальною складовою математичного апарату, який використовується для представлення та маніпулювання числовими даними. Вони відіграють ключову роль у широкому спектрі наукових дисциплін, від комп'ютерних наук до фізики та інженерії. Цей текст пропонує докладне пояснення різних систем числення, їх теоретичні основи та практичні застосування.

Система числення складається з набору символів (цифр) та правил, що визначають їхнє значення та взаємозв'язок. Найпоширеніша система числення - десяткова, яка базується на десяти символах (від 0 до 9) та позиційному значенні, де кожна позиція відображає множник степеню десятки. Проте існують й інші системи числення, такі як двійкова (основана на двох символах: 0 і 1), вісімкова (з 8 символами) та шістнадцяткова (з 16 символами), кожна з яких має свої унікальні властивості.

Системи числення широко використовуються у комп'ютерних науках та інформаційних технологіях. Двійкова система числення, зокрема, є основою для представлення та обробки даних в електронних пристроях. Її простота та ефективність дозволяють комп'ютерам швидко виконувати обчислення та зберігати великі обсяги інформації.

У фізиці та інженерії системи числення використовуються для моделювання та аналізу складних систем. Наприклад, шістнадцяткова система числення часто використовується для представлення кольорів у графічному програмуванні та дизайні, оскільки вона дозволяє зручно кодувати та маніпулювати кольоровими значеннями.

Системи числення є невід'ємною частиною нашого розуміння та взаємодії з числовими даними. Вони використовуються в різних наукових дисциплінах та технологічних галузях і грають ключову роль у розвитку сучасного суспільства. Докладне вивчення та розуміння різних систем числення відкриває нові можливості для подальших досліджень та інновацій.

Перетворення чисел в двійкову систему числення

Перетворити десяткові числа <u>116 та 2668</u> в двійкову систему числення, описати покроково процес перетворень. Виконати перевірку, виконавши зворотне перетворення в десяткову систему.

X	X % 2	X // 2
116	0	58
58	0	29
29	1	14
14	0	7
7	1	3
3	1	1
1	1	0

 $116_{10} = 01110100_2$

X	X % 2	X // 2
2668	0	1334
1334	0	667
667	1	333
333	1	166
166	0	83
83	1	41
41	1	20
20	0	10
10	0	5
5	1	2
2	0	1
1	1	0

 $2668_{10} = 101001101100_2$

Перевіримо:

$$01110100_2 = 2^2 + 2^4 + 2^5 + 2^6 = 4 + 16 + 32 + 64 = 116_{10}$$
$$101001101100_2 = 2^2 + 2^3 + 2^5 + 2^6 + 2^9 + 2^{11} = 4 + 8 + 32 + 64 + 512 + 2048 = 2668_{10}$$

Перетворення чисел в шістнадцяткову систему числення

Перетворити десяткові числа 116 та 2668 в шістнадцяткову систему числення, описати покроково процес перетворень. Виконати перевірку шляхом зворотного перетворення в десяткову і двійкову систему.

X	X % 16	X // 16
116	4	7
7	7	0

$$116_{10} = 74_{16}$$

X	X % 16	X // 16
2668	С	166
166	6	10
10	A	0

$$2668_{10} = A6C_{16}$$

Перевіримо:

$$74_{16} = 4 * 16^0 + 7*16^1 = 4 + 112 = 116_{10}$$

$$74_{16}\!=0111\mid 0100_2$$

$$A6C_{16} = 12 * 16^0 + 6 * 16^1 + 10 * 16^2 = 12 + 96 + 2560 = 2668_{10}$$

$$A6C_{16} = 1010 \mid 0110 \mid 1100_2$$

Перетворення чисел в 9-річну систему числення

Розробити діаграму активності алгоритму перетворення числа з десяткової системи числення в 9-річну. *Реалізувати алгоритм у вигляді строкової функції DecTo N (D) з вхідним цілочисельним параметром на мові С ++.

Алфавіт: 0 1 2 3 4 5 6 7 W

```
#include<iostream>
#include<string>
std::string dec_to_9(unsigned n)
  const int base = 9;
  const char alphabet[base] = {'0','1','2','3','4','5','6','7','W'};
  std::string result;
  while (n > 0)
  {
    result.insert(0, 1, alphabet[n%base]);
    n = n / base;
  }
  return result;
}
int main(int argc, char const *argv[])
  int n = 116;
  std::cout << n << " " << dec_to_9(n) << "\n";
  n = 2668;
  std::cout << n << " " << dec_to_9(n) << "\n";
  return 0;
}
```

116 13W 2668 35W4

Малюнок 1. Результат

Малюнок 2. Блок-схема

Двійкова арифметика

Для двох чисел 116 та 2668 провести операцію ділення у двійковій системі числення. Виконати перевірку шляхом перетворення результатів в десяткову систему.

 $116_{10} = 01110100_2$ $2668_{10} = 101001101100_2$

4p	1	0	1	0	0	1	1	0	1	1	0	0	P
3p		1	1	1	0	1	0	0					1
Залишок			1	1	0	0	1	0					
4p			1	1	0	0	1	0	1				0
3p			1	1	1	0	1	0	0				
4p			1	1	0	0	1	0	1	1			
3p				1	1	1	0	1	0	0			1
Залишок				1	0	1	0	1	1	1			
4p				1	0	1	0	1	1	1	0		
3p					1	1	1	0	1	0	0		1
Залишок						1	1	1	0	1	0		
4p						1	1	1	0	1	0	0	
3p						1	1	1	0	1	0	0	1
Залишок												0	

 $10111_{2} = 23_{10}$ $2668_{10} // 16_{10} = 23_{10}$

Висновки

В даній розрахунково-графічній роботі було проведено роботу з числами в різних системах числення. Виконано завдання по різним арифметичним операціям з двійковими, десятковими, шістнадцятковими числами. Також було реалізовано алгоритм на мові С++ що дозволяє перетворювати десяткове число в число 9кової системи числення з заданим алфавітом.