

院(系): 智能工程学院

组号:第一组

组长: 方桂安

自期: 2022.10.28

实验名称:基于 NI ELVIS 的线性系统根轨迹分析

一、 实验目的

- A. 了解频率特性函数曲线的定义和实验方法
- B. 掌握波德图的绘制方法;
- C. 了解由波特图确定系统开环传递函数的方法。

二、小组成员

- 1. 方桂安: 20354027, 负责任务一, 二, 三, 四
- 2. 刘梦莎: 20354091, 负责全部任务及结果计算
- 3. 陈石翰: 20354019, 负责任务一, 二, 三, 四
- 4. 刘恩骐: 20354086, 负责任务一, 二, 三, 四
- 5. 刘 玥: 20354229, 负责全部任务及报告撰写

三、 实验任务

- (1)针对一阶惯性系统,绘制相应的伯德图,并对比分析不同电容值对系统性能的影响。
- (2)针对二阶线性系统,绘制相应的伯德图,并对比分析不同电阻值对系统性能的影响。
- (3)通过绘制的二阶线性系统伯德图,确定系统所对应的开环传递函数,并与理论
- (4) 计算的开环传递函数对比。

四、 实验设备

- 1. 笔记本电脑——Windows 11
- 2. MATLAB———R2021b
- 3. ELVIS III 主机
- 4. CCG 实验拓展板卡
- 5. CCB 实验程序 (LabVIEW)

五、 实验原理

- ▶ 频域分析法是应用频率特性研究线性系统的一种经典方法。该方法最突出的 优点是:可以通过实验方法确定系统的开环传递函数。
- 它以控制系统的频率特性作为数学模型,以频率ω为参变量,采用波德图、 极坐标图或其他图表作为分析工具,来研究控制系统的动态性能与稳态性能。
- ▶ 频率特性的定义:
 - 幅频特性: $A(\omega) = |G(j\omega)|$ 反映系统对不同频率正弦信号在稳态时的放大(或衰减) 特性:
 - 相频特性: $\varphi(\omega) = \angle G(j\omega)$, 反映系统在不同频率正弦信号的作用下,输出信号相对 输入信号的相移。
 - 频率特性 $G(j\omega)$: 系统的幅频特性和相频特性统称为系统的频率特性。

$$G(j\omega) = G(s) \Big|_{s=j\omega}$$

- ▶ 频率特性的几何表示方法: 极坐标图、伯德图等。
- ▶ 伯德图即对数频率特性曲线,它是将幅频特性和相频特性分别绘制在两个不同的坐标平面上,前者叫对数幅频特性,后者叫对数相频特性。
- 横轴(ω轴)用对数lg(ω)分度,单位弧度/秒。对数幅频特性曲线的纵坐标表示对数幅频特性的函数值,单位是分贝[dB]。对数相频特性曲线的纵坐标表示相频特性的函数值,单位是度[°]。

对数幅频特性定义为:

$$\begin{cases} L(\omega) = 20 \lg |G(j\omega)| \\ \varphi(\omega) = \angle G(j\omega) \end{cases}$$

伯德图的优点包括:

- 1. 它把各串联环节幅值的乘除化为加减运算,从而简化了开环频率特性的计算与作图。
- 2. 利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。
- 3. 横轴 (ω 轴)用对数分度,实现了横坐标的非线性压缩,便于在较大频率范围反应频率特性的变化情况。

一阶惯性系统

六、 实验过程

- 1. 频率响应分析实验步骤:
- (1) 打开程序"实验 4 线性系统的频率响应实验"
 - 程序位置: …\自动控制原理课程实验套件\实验 4 线性系统的频率响应实

验\实验代码

- 打开界面如图 1 所示
- 双击打开 Main. vi, 并单击程序运行按钮, 运行界面如图 2 所示

图1.程序打开界面

图2. 程序运行界面

(2) 关闭电源, 根据一阶惯性系统模拟电路图或实物连线示意图 3 进行接线(请勿带电操作), 并按照图 4 进行软件设置

图3. 实物连线示意图

图4. 软件设置

- (3) 打开电源,点击开始按钮,运行程序并截图保存一阶惯性系统实验结果,并填写表 1。
- **任务 1:** 对于给定的一阶惯性系统,给出其对数幅频与相频特性曲线,并将测得的对数幅频和相频记录于下表(至少给出 10 组值);

实验结果:

表 1

$\omega(rad)$	$L(\omega)(dB)$		φ(ω)(deg)	
	实验值	理论值	实验值	理论值
3.141593	-0.0306653	-0.00428	-2.08564	-1.79941
4.979089	-0.0380649	-0.01075	-3.09408	-2.85045
7.891324	-0.0480708	-0.02696	-4.79111	-4.51205
12.506906	-0.0864548	-0.06741	-7.06903	-7.12891
19.82211	-0.199899	-0.16737	-11.0852	-11.2119
31.415927	-0.458382	-0.40878	-17.297	-17.4406
49.790888	-1.02264	-0.96184	-25.9496	-26.4691

78.91324	-2.14032	-2.10246	-37.2926	-38.2781
125.069056	-4.03345	-4.08956	-49.4978	-51.3556
198.221096	-6.71176	-6.92773	-61.0002	-63.2296
314.159265	-9.97012	-10.3621	-69.2642	-72.3432
497.908881	-13.5672	-14.1147	-76.7013	-78.6438
789.132396	-17.3373	-18.0122	-80.6595	-82.7779
1250.690562	-21.197	-21.9707	-82.8005	-85.4286

任务 2:增加惯性系统频率响应附加实验分别给出电容 $C=1\mu F$ 和 $C=2\mu F$ 所对应的伯德图,并分析电容值对系统性能的影响。步骤如下:

- ① 关闭电源,根据如下一阶惯性系统模拟电路图或实物连线示意图 5 进行接线 (请勿带电操作)。
- ② 打开电源,点击开始按钮,运行程序并截图保存当 $C = 1\mu F$ 时惯性系统的实验结果。
- ③ 重复以上实验,记录 $C = 2\mu F$ 时惯性系统的实验结果。

图5. 典型惯性环节模拟电路及实物连线示意图

实验结果:

\succ $C = 1\mu F$

表 1

		W I	
角频率 - 增益	增益(dB) - 增益	角频率 - 相位	相位(deg) - 相位
3.141593	-1.76881	3.141593	-34.3202
4.979089	-3.29375	4.979089	-47.1584
7.891324	-5.515	7.891324	-56.4551
12.506906	-8.81768	12.506906	-73.0314
19.82211	-12.0456	19.82211	-76.0175
31.415927	-15.7429	31.415927	-80.9242
49.790888	-19.575	49.790888	-85.9285
78.91324	-23.4769	78.91324	-89.625
125.069056	-27.4356	125.069056	-93.4148
198.221096	-31.4679	198.221096	-97.8456
314.159265	-35.6322	314.159265	-103.756
497.908881	-40.0866	497.908881	-110.235
789.132396	-45.0827	789.132396	-121.728
1250.690562	-50.8744	1250.690562	-132.407

角频率 - 増益	增益(dB) - 增益	角频率 - 相位	相位(deg) - 相位
3.141593	-4.64981	3.141593	-58.5743
4.979089	-7.40756	4.979089	-66.8419
7.891324	-10.4693	7.891324	-67.762
12.506906	-14.4575	12.50691	-87.395
19.82211	-17.7757	19.82211	-83.6191
31.415927	-21.6	31.41593	-85.4925
49.790888	-25.5399	49.79089	-88.8622
78.91324	-29.4878	78.91324	-91.3822
125.069056	-33.4711	125.0691	-94.1786
198.221096	-37.5264	198.2211	-97.475
314.159265	-41.7098	314.1593	-103.632
497.908881	-46.1697	497.9089	-110.887
789.132396	-51.1349	789.1324	-118.352
1250.690562	-56.9134	1250.691	-127.975

结论:

对 RC 一阶电路的零输入响应、零状态响应少量地改变电容值或电阻值的时候发现,当电容值或电阻值增大时,放电过程和充电过程的时间变长.减小是则变短.

任务 3: 对于给定的二阶线性系统,给出其对数幅频与相频特性曲线,并将测得的对数幅频和相频记录于下表(至少给出 10 组值);

- ① 关闭电源,根据二阶线性系统模拟电路图或实物连线示意图 6 进行接线(请勿带电操作),并按照图 7 进行软件设置。
- ② 打开电源, 点击开始按钮, 运行程序并截图保存二阶线性系统的实验结果, 并填写表 2。
- ③ 点击结束按钮, 结束实验。
- ④ 待所有实验结束后,关闭 ELVIS Ⅲ 试验台电源,并整理好导线。

实验结果:

角频率 - 相位	相位(deg) - 相位	相位(deg) - 相位
	(实验值)	(理论值)
3.141593	-2.62865	-1.8
7.891324	-4.89785	-4.81
12.506906	-7.76663	-7.49
19.82211	-12.0494	-11.8
31.415927	-19.9243	-19.1
49.790888	-34.7545	-33.5
78.91324	-65.5249	-64.6
125.069056	-110.893	-114
198.221096	-141.701	-146

角频率 - 增益	增益(dB) - 增益	增益(dB) - 增益
	(实验值)	(理论值)
3. 141593	-0.0211679	-0.00462
4. 979089	-0.00240064	-0.0103
7. 891324	0. 0261763	0.0274
12. 506906	0.0679936	0.0654
19. 82211	0. 143093	0.16
31. 415927	0. 326794	0.37
49. 790888	0. 676577	0.863
78. 91324	0. 549621	1. 13
125. 069056	-3. 23474	-2.97
198. 221096	-10.6309	-10.6

任务 4: 增加二阶线性系统频率响应分析附加实验,分别给出电阻R=50kΩ, 160kΩ, 200kΩ时所对应的伯德图,并分析电阻值对系统性能的影响。

- ① 关闭电源,根据如下二阶线性系统模拟电路图或实物连线示意图 8 进行接线 (请勿带电操作)。
- ② 打开电源,点击开始按钮,运行程序并截图保存当 $R=50k\Omega$ 时二阶系统的实验结果。
- ③ 重复以上实验,分别记录 $R=160k\Omega$,200 $k\Omega$ 时二阶系统的实验结果。

图8. 典型二阶系统模拟电路及实物连线示意图

实验结果:

$> R=50k\Omega$

角频率

100

1000

$ightharpoonup R=200k\Omega$

任务 5: 根据二阶系统附加实验中电阻 R = 50k Ω 时的伯德图,试确定二阶系统的开环传递函数,并与理论计算的结果进行对比分析。

图9. 典型二阶系统模拟电路及对应的开环传递函数

结论:

电阻值越大, K1 越小, 固有频率越小, 上升时间越大。

当 R 为 50 K Ω 时, 开环传递函数为

$$G(s) = \frac{4}{s(0.2s+1)}$$

观察所得伯德图,可以发现,对数幅频曲线的斜率k满足: $k \approx 0$, $\omega \ll 100 rad/s$

 $k \approx -40 dB/dec$, $\omega \gg 100 rad/s$

因此转折频率 $\omega_n = 100 rad/s$,系统是一个二阶环节,设闭环传递函数为 $\varphi(s)$,则:

$$\varphi(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{10^4 K}{s^2 + 200\zeta s + 10^4}$$

因为:

$$L(1) = 20lgK = 0$$

所以K=1,则:

$$L(\omega) = -20lg\sqrt{(1 - 10^{-4}\omega^2)^2 + 4 \times 10^{-4}\zeta^2\omega^2}$$

带入点(78.91324, 0.549621),代入 matlab 中求解方程得 $\zeta = 0.5446 \approx 0.5$ 如下图所示:

```
clear,clc;
syms x;
y = solve(0.549621==-20*log10(((1-0.0001*78.91324^2)^2+4*0.0001*x^2*78.91324^2)^(0.5)), x);
```

令行窗口

ans =

0.5446

所以:

$$\varphi(s) = \frac{{\omega_n}^2}{s^2 + 2\zeta\omega_n s + {\omega_n}^2} = \frac{10^4}{s^2 + 100s + 10^4}$$

则开环传递函数:

$$G(s) = \frac{1}{0.01s(0.01s+1)}$$

七、 实验心得

通过上述实验,我们可以得到以下结论:

- 1、截止频率对于一阶惯性而言,意味着信号响应性能的转折点,截止频率以前均能够较好的跟随,但是截止频率之后,输入信号被大幅度衰减。
- 2、伯德图能够对系统的响应特性进行一个直观的分析。
- 3、增大一阶惯性环节的开环增益,会导致幅频曲线上移,导致幅频曲线与横轴 0 的交点右移,也就是截止频率 wc 增大。
- 4、增大一阶惯性环节的开环增益,不会对相频曲线产生任何影响。相频曲线只和 s 前的系数有关,只和转折频率有关。
- 5、二阶系统阻尼比 ζ 越小,上升时间 tr 则越小; ζ 越大则 tr 越大。 固有频率越大, tr 越小,反之则 tr 越大。 固有频率具有角速度的量纲,而阻尼比为无量纲参量