0. Let X be a random variable with $\mathbb{E}(|X|) < \infty$, and let \mathcal{F}_t be a filtration. Show that $M_t = \mathbb{E}(X|\mathcal{F}_t)$ is a martingale

$$\mathbb{E}(M_t|\mathcal{F}_s) = \mathbb{E}(\mathbb{E}(X|\mathcal{F}_t)|\mathcal{F}_s) = \mathbb{E}(X|\mathcal{F}_s) = M_s$$

as required.

1. Let $(X_t)_{t\geq 0}$ denote a martingale. Show that $\mathbb{E}((X_{T_2}-K)^+)\geq \mathbb{E}((X_{T_2}-K)^+)$ if $0\leq T_1\leq T_2$.

Solution.

$$\mathbb{E}((X_{T_2} - K)^+) = \mathbb{E}(\mathbb{E}((X_{T_2} - K)^+ | X_{T_1})) \quad \text{(from the tower property}$$

$$\geq \mathbb{E}(\mathbb{E}(X_{T_2} - K | X_{T_1})^+)$$
(from the **conditional Jensen inequality** applied to the convex function $f(x) = (x - K)^+$)
$$= \mathbb{E}((X_{T_1} - K)^+).$$

Hence we see that call option prices with maturity T_2 are \geq call option prices with maturity T_1 . This is known as the **convex ordering** condition, which we can write as $\mu_{T_1} \leq \mu_{T_2}$, where μ_t denotes the density of X_t .

2. Let B^{α} denote a Brownian motion with $B_0^{\alpha} \sim \alpha$ (i.e. a random initial starting point with density α with $B^{\alpha} - B_0^{\alpha}$ independent of B_0^{α}). Write down an integral expression for the density of B_t^{α} .

Solution.

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-y)^2}{2t}} \alpha(x) dx = \int_{-\infty}^{\infty} R_t(y-x)\alpha(x) dx = (R_t * \alpha)(y)$$

where $R_t(x)$ denotes the density of Brownian motion.

3. Write an expression for $\mathbb{E}(F(B_1^{\alpha})|B_t^{\alpha}=x)$.

Solution.

$$\mathbb{E}(F(B_1^{\alpha})|B_t^{\alpha} = x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(1-t)}} e^{-\frac{(x-y)^2}{2(1-t)}} F(y) dy = \int_{-\infty}^{\infty} R_{1-t}(y-x) F(y) dy = (R_{1-t} * F)(x).$$

Now let $M_t = \mathbb{E}(F(B_1^{\alpha})|B_t^{\alpha})$ for $t \in (0,1]$. Then replacing x with the random B_t^{α} , we see that

$$M_t = (R_{1-t} * F)(B_t^{\alpha}).$$

We wish to choose α so that $M_0 \sim \mu_0$ and $M_1 \sim \mu_1$, for two given distributions μ_0 and μ_1 (both with zero expectations), with μ_0, μ_1 in convex order.

Then

$$M_t = (R_{1-t} * F)(B_t^{\alpha}). \tag{1}$$

Let μ be a probability density. We define the **push-forward** $F_{\#}\mu$ of μ by F as the distribution of F(X) if $X \sim \mu$, so

$$\mathbb{P}(F(X) \le x) = \mathbb{P}(X \le F^{-1}(x)) = \int_{-\infty}^{F^{-1}(x)} \mu(y) dy.$$