

Origami: Folding Warps for Energy Efficient GPUs

Mohammad Abdel-Majeed*, Daniel Wong†, Justin Huang‡ and Murali Annavaram*

* University of Southern California

†University of California, Riverside

‡Stanford University

Outline

- GPU overview
- Motivation and related work
- Warp Folding
- Origami Scheduler
- Evaluation

GPGPU Overview (GTX480)

GPGPU Power Break-Down

GPUWattch, ISCA 2013

GPGPU Power Break-Down

GPUWattch, ISCA 2013

GPU	Fermi GTX 480	Kepler GTX 680	Maxwell GTX 980
Cores (SMs)	16	8	16
Execution Units	512	1536	2048
RF size	128KB/SM	256KB/SM	256KB/SM
#transistors	3 billion	3.5 billion	5.2 billion

GPU	Fermi GTX 480	Kepler GTX 680	Maxwell GTX 980	
Cores (SMs)	16	8	16	
Execution Units	512	1536	2048	
RF size	128KB/SM	256KB/SM	256KB/SM	
#transistors	3 billion	3.5 billion	5.2 billion	

Technology Scaling

- As technology scales leakage power will increase
 - Accounts for 50% of the execution units power
- Power Gating can be used to reduce the leakage power
 - Need long idle periods to be effective

Warped Gates, MICRO 2012

- Int. Unit idle period length distribution for hotspot
 - Assume 5 idle detect, 14 BET

- Int. Unit idle period length distribution for hotspot
 - Assume 5 idle detect, 14 BET

- Int. Unit idle period length distribution for hotspot
 - Assume 5 idle detect, 14 BET

- Int. Unit idle period length distribution for hotspot
 - Assume 5 idle detect, 14 BET

- Int. Unit idle period length distribution for hotspot
 - Assume 5 idle detect, 14 BET

- Int. Unit idle period length distribution for hotspot
 - Assume 5 idle detect, 14 BET

Warp Scheduler Effect on Power Gating

INT	FP	INT	INT	FP	INTO			
Ready Warps								
			ı					
		INIT	ED.					

Warp Scheduler Effect on Power Gating

Ready Warps

Warp Scheduler Effect on Power Gating

Ready Warps

Related Work/Warped-Gates*

- Schedule instructions based on their type
- Force power gated units to stay in power gating state for at least the breakeven time

Related Work/Warped-Gates*

- Schedule instructions based on their type
- Force power gated units to stay in power gating state for at least the breakeven time

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

SP0

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Temporal idleness
 - Infrequent issues to the same pipeline
 - Finely interspersed leading to limited power gating opportunities

- Spatial Idleness
 - Lanes have different activity
 - Branch divergence
 - Insufficient parallelism

Warp Folding

➤Improve the power gating potential by coalescing the pipeline bubbles

Warp Folding

Warp Folding

Sub_Warp0:
Sub_Warp1:

Active Mask:

Active Mask:

Active Mask:

Active Mask:

Sub_Warp0:

Sub_Warp1:

Warp Folding

Active Mask:

Active Mask:

Warp Folding

Sub_Warp0: 1 1 1 1 1 Sub_Warp1: 1 1 1

Sub_Warp0: Sub_Warp1:

0	0	0	0	
1	1	1	1	

Sub_Warp0:

Sub_Warp1: 0 0 0 0 1 1 1 1

Sub_Warp0: 1 1 1 1 0 0 0 0

Sub_Warp1:

Sub_Warp0:

Sub_Warp1: 0 0 0 0

Sub_Warp0: 1 1 1 1 0 0 0 0

Sub_Warp1: 1 1 1 1

Sub_Warp0: 1 1 1 1 1 Sub_Warp1: 1 1 1 1 1

0 0 0 0 0 0 0 0

Sub_Warp0: 1 1 1 1 Sub_Warp1: 1 1 1 1

0 0 0 0 0 0 0

c c c c

Active Mask:

Folding Granularity

Sub_Warp0: Sub_Warp1:

Active Mask:

- + Simple
- High wiring overhead
- Delay

Sub_Warp0: Sub_Warp1:

Active Mask:

| C | C | C |

- + Simple
- + Low wiring overhead
- + Small delay
- +Support for lane shuffling

- + Simple
- + Low wiring overhead
- + Small delay
- +Support for lane shuffling

Warp Folding Pipeline

Warp Folding Pipeline

Warp Folding Pipeline

1111 1111 1100 1100

Origami scheduler

- **➤**Improve the power gating potential by coalescing warps based on:
 - **➤Threads utilization**
 - **➢**Instruction type

Origami scheduler

- Group the threads based on their active mask
 - One group will have the active mask with less than 32 threads
 - The other group will have the active masks with 32 active threads

Origami scheduler

- Group the threads based on their active mask
 - One group will have the active mask with less than 32 threads
 - The other group will have the active masks with 32 active threads

```
Lane#: 0 1 2 3 4 5 6 7
Cycle x: 1 1 0 1 0 1 0 0
Cycle x+1: 0 1 1 1 0 1 0 1 0 0
Cycle x+2: 1 1 1 1 1 1 1 1 1
Cycle x+3: 0 0 1 1 0 1 0 1
Cycle x+4: 0 1 1 1 0 1 1 0
Cycle x+5: 1 1 1 1 1 1 1 1
```


- Group the threads based on their active mask
 - One group will have the active mask with less than 32 threads
 - The other group will have the active masks with 32 active threads

```
Lane#: 0 1 2 3 4 5 6 7

Cycle x: 1 1 0 1 0 1 0 0

Cycle x+1: 0 1 1 1 0 1 0 0

Cycle x+2: 0 0 1 1 0 1 0 1

Cycle x+3: 0 1 1 1 0 1 1 0

Cycle x+4: 1 1 1 1 1 1 1 1 1 1

Cycle x+5: 1 1 1 1 1 1 1 1
```


- Group the threads based on their active mask
 - One group will have the active mask with less than 32 threads
 - The other group will have the active masks with 32 active threads

```
Lane#: 0 1 2 3 4 5 6 7

Cycle x: 1 1 0 1 0 0 0

Cycle x+1: 0 1 1 1 0 1 0 0

Cycle x+2: 0 0 1 1 0 1 0 1

Cycle x+3: 0 1 1 1 1 1 1 1 1 1 1 1

Cycle x+4: 1 1 1 1 1 1 1 1 1

Cycle x+5: 1 1 1 1 1 1 1 1
```


- Group the threads based on their active mask
 - One group will have the active mask with less than 32 threads
 - The other group will have the active masks with 32 active threads

```
Lane#: 0 1 2 3 4 5 6 7
Cycle x: 1 1 0 0 1 0 0
Cycle x+1: 0 1 1 1 0 1 0 0
Cycle x+2: 0 0 1 1 0 1 0
Cycle x+3: 0 1 1 1 0 1 1
Cycle x+4: 1 1 1 1 1 1 1 1 1
Cycle x+5: 1 1 1 1 1 1 1 1
```


- Group the threads based on their active mask
 - One group will have the active mask with less than 32 threads
 - The other group will have the active masks with 32

Active masks are not aligned!!!

```
Cycle x: 1 1 0 1 2 3 4 5 6 7

Cycle x: 1 1 0 0 1 0 0

Cycle x+1: 0 1 1 1 0 1 0 0

Cycle x+2: 0 0 1 1 0 1 0

Cycle x+3: 0 1 1 1 0 1 1 0

Cycle x+4: 1 1 1 1 1 1 1 1 1 1 1

Cycle x+5: 1 1 1 1 1 1 1 1
```


Lane Shifting

- Shift the threads to the lower order SIMT lanes
 - Done at the cluster level to reduce overhead

Lane Shifting

- Shift the threads to the lower order SIMT lanes
 - Done at the cluster level to reduce overhead

```
Lane#: 0 1 2 3 4 5 6 7

Cycle x: 1 1 1 0 1 0 0 0

Cycle x+1: 1 1 1 0 1 0 0 0

Cycle x+2: 1 1 0 0 1 1 0 0

Cycle x+3: 1 1 1 0 1 1 0 0

Cycle x+4: 1 1 1 1 1 1 1 1 1

Cycle x+5: 1 1 1 1 1 1 1 1
```


Origami Scheduling

- Runtime Warp Folding Algorithm
 - Folds warps long enough to guarantee savings

 $N_{phase} = N_{pipelineflush} + N_{idledetect} + N_{breakeventime}$

- Adaptive Folding
 - Aggressive folding for warps with lower instruction count
 - Conservative folding for warps with higher instruction count
 - Change folding frequency based on application utilization
 - See paper for more detail!

EVALUATION

Evaluation Methodology

- GPGPU-Sim v3.0.2
 - Nvidia GTX480
- GPUWattch and McPAT for energy and area estimation
- Benchmarks from ISPASS, Rodinia and Parboil
- Power gating parameters
 - Wakeup delay 3 cycles
 - Breakeven time 14 cycles
 - Idle detect 5 cycles

Folding Ratio

Folding frequency is application dependent

Folding Ratio

Folding frequency is application dependent

Folding Ratio

Folding frequency is application dependent

Energy Savings/INT

- Eliminates negative energy savings
- Origami scheduler able to amplify folding benefits
- Origami is able to save 49%

Energy Savings/INT

- Eliminates negative energy savings
- Origami scheduler able to amplify folding benefits
- Origami is able to save 49%

Energy Savings/FP

- Eliminates negative energy savings
- Origami scheduler able to amplify folding benefits
- Origami is able to save 46%

Energy Savings/FP

- Eliminates negative energy savings
- Origami scheduler able to amplify folding benefits
- Origami is able to save 46%

Performance

- Origami is able to reduce the performance overhead significantly over Warped-Gates
- Origami scheduler has positive impact on performance for some workloads

Performance

- Origami is able to reduce the performance overhead significantly over Warped-Gates
- Origami scheduler has positive impact on performance for some workloads

Conclusion

- Execution units energy efficiency is critical
- Take advantage of the spatial and temporal idleness to Improve the power gating potential
- Warp folding
 - Adaptively fold warp to coalesce bubbles
- Origmai scheduler
 - Scheduler warps based on the threads activity and type.
- Able to save 49% and 46% of the execution units leakage energy
- Negligible performance overhead

Questions?

Origami: Folding Warps for Energy Efficient GPUs

Mohammad Abdel-Majeed*, Daniel Wong†, Justin Huang‡ and Murali Annavaram* abdelmaj@usc.edu, dwong@ece.ucr.edu annavara@usc.edu

* University of Southern California †University of California, Riverside ‡Stanford University

THANK YOU!