Содержание

1	Воп	росы	3
	1.1	Что такое высшие дифференциалы отображения $F: \mathbb{R}^n \to \mathbb{R}^m$	3
	1.2	Пусть дана m -раз дифференцируемая функция $f:\mathbb{R}^n \to \mathbb{R},$ то как выглядит общая	
		формула для дифференциала $(\mathbf{d}^k f)$	3
	1.3	Что такое полином Тэйлора для функции $f:\mathbb{R}^n o \mathbb{R}$	
	1.4	Что такое компактное пространство	3
	1.5	Что такое аксиома Бореля—Лебега	3
	1.6	Что такое аксиома отделимости Хаусдорфа	3
	1.7	Верно ли, что метрические пространства удовлетворяют аксиоме Хаусдорфа	4
	1.8	Что такое полином Тэйлора в матричной форме? Что такое Гессиан?	4
	1.9	Что такое локальный экстремум функции $f: \mathbb{R}^n \to \mathbb{R}$?	4
	1.10		4
	1.11	Сформулируйте теорему о неявной фукнции (отображении)	4
		Что такое условный экстремум фукнции $f: \mathbb{R}^n \to \mathbb{R}$?	5
		Что такое числовой ряд?	5
		Что такое сходящийся ряд?	5
		Что значит почти похожие ряды?	5
	1.16	Что такое положительный ряд?	5
2	Teo	ремы	6
	2.1	Если функция $f:\mathbb{R}^n \to \mathbb{R}$ в окрестности точки \mathbf{a} m раз дифференцируема, то для	
		каждого $1 \le k \le m$: $\left(d^k f \right)_{\mathbf{a}} (\mathbf{h}) = \left(\frac{\partial}{\partial x_1} h_1 + \dots + \frac{\partial}{\partial x_n} h_n \right)^k \Big \cdot f \dots \dots \dots$	6
	2.2	Пусть $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в окрестности точки \mathscr{U} точки а, и пусть при $0 \le t \le 1$, точка $\mathbf{a} + t\mathbf{h} \in \mathscr{U}$. Тогда, при фиксированных \mathbf{a}, \mathbf{h} , функция $\psi_{\mathbf{a},\mathbf{h}}(t) := f(\mathbf{a} + t)$	
		$t\mathbf{h}$) : $\mathbb{R} \to \mathbb{R}$ дифференцируема при $0 \le t \le 1$ и $\psi'_{\mathbf{a},\mathbf{h}}(t) = \left. \frac{\partial f}{\partial x_1} \right _{\mathbf{a}+t\mathbf{h}} \cdot h_1 + \dots + \left. \frac{\partial f}{\partial x_n} \right _{\mathbf{a}+t\mathbf{h}} \cdot h_n$	7
	2.3	Пусть $f: \mathbb{R}^n \to \mathbb{R}$ есть $m+1$ раз дифференцируемая функция в окрестности точки $\mathbf{a} \in \mathbb{R}^n$, то для всех \mathbf{h} из окрестности точки 0_n верно $f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + (\mathrm{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!} \left(\mathrm{d}^2 f\right)_{\mathbf{a}}\mathbf{h} + \cdots + \frac{1}{m!} \left(\mathbf{d}^m f\right)_{\mathbf{a}}\mathbf{h} + \frac{1}{(m+1)!} \left(\mathbf{d}^{m+1} f\right)_{\mathbf{a}+\theta \mathbf{h}}\mathbf{h}$, где $0 < \theta < 1$ и она зависит от	
		$\mathbf{a}, \mathbf{h} \bowtie m$	7
	2.4	Докажите, что подпространство K в метрическом пространстве (E,d) — компакт тогда и только тогда, когда из любого его покрытия множествами, открытыми в E ,	
	2.5	можно выделить конечное подпокрытие этими же множествами	8
		ности	8
	2.6 2.7	Докажите, что в любом метрическом пространстве (E,d) точка — замкнутое множество Докажите, что в метрическом пространстве (E,d) любой компакт обладает следую-	8
		щими свойствами:	
		(a) Компакт — ограниченное множество, т.е., найдётся такой шар $B(a,r)\subseteq E$, что	
		$K \subseteq B(a,r);$	
		(b) Компакт — замкнутое множество, т.е., он содержит все свои точки прикосновения	
		(K=K);	
	0.0	(с) Замкнутое подмножество компакта самое является компактом	6
	2.8	Докажите, что если $f: E \to E'$ — непрерывное отображение между метрическими	,
	2.0	пространствами, тогда если X — компактно, то $f(X)$ — компактно	ć
	2.9	Докажите, что параллелепипед \mathcal{P} — компакт в \mathbb{R}^n , где рассматривается евклидова	
	0.10	метрика	Ĝ
	∠.1U	Докажите критерий компактности в \mathbb{R}^n ; множество $K\subseteq\mathbb{R}^n$ компактно тогда и только	11
	9 11		11
	2.11	Докажите, что на компактном множестве всякая непрерывная функция ограничена и достигает наибольшего и наименьшего значений	11
	2.12	и достигает наиоольшего и наименьшего значении. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ есть m раз дифференцируема функция в окрестности точки а и все её частные производные непрерывны в этой точке, тогда $f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + (\mathrm{d}f)_{\mathbf{a}}\mathbf{h} +$	11
			11

3 Если функция $f:\mathbb{R}^n o\mathbb{R}$ — дважды дифференцируема в точке $\mathbf{a},$ то $f(\mathbf{a}+\mathbf{h})=$	
	12
	12
5 Докажите необходимое условие условного экстремума	13
6 Докажите критерий сходимости Коши для рядов и выведете необходимый признак	
сходимости ряда. Этот признак достаточен? Ответ обоснуйте	15
7 Докажите, что если ряды (x_n) и (x'_n) сходятся и имеют суммы s и s' , соотвественно,	
то ряд (x_n+x_n') сходится к сумме $s+s'$, а ряд (λx_n) для любого $\lambda\in\mathbb{R}$ — к сумме λs	15
8 Докажите, что если (x_n) и (x_n') почти похощие ряды, то оба они сходятся или расходятся	16
9 Докажите критерий сходимости положительного ряда	16
0 Пусть $(x_n),(x_n')$ — два положительных ряда, при этом $x_n \leq x_n'$ почти для всех $n.$ Если	
ряд (x'_n) сходится, то сходится и ряд (x_n) . Если же ряд (x_n) расходится, то расходится	
и ряд (x_n')	16
	$f(\mathbf{a}) + \nabla_{\mathbf{a}}(f)(\mathbf{h}) + \frac{1}{2}\mathbf{h}^{\top}\mathbf{H}_{\mathbf{a}}(f)\mathbf{h} + o\left(\ \mathbf{h}\ ^{2}\right), \mathbf{h} \to 0_{n}$

1 Вопросы

1.1 Что такое высшие дифференциалы отображения $F: \mathbb{R}^n o \mathbb{R}^m$

Рассмотрим дифференцируемое отображение $F: \mathbb{R}^n \to \mathbb{R}^m$ в каком-то открытом $\mathscr{U} \subseteq \mathbb{R}^n$, т.е. для каждой точки $\mathbf{p} \in \mathscr{U}$ у нас есть линейное отображение $(\mathrm{d}F)_{\mathbf{p}}: \mathbb{R}^n \to \mathbb{R}^m$

Так как линейные отображения из \mathbb{R}^n в \mathbb{R}^m — это просто матрицы размера $n \times m$, то дифференцируемость отображения F в \mathscr{U} означает, что у нас есть отображение

$$dF : \mathscr{U} \to \mathrm{Mat}_{n \times m}(\mathbb{R}), \quad \mathbf{p} \mapsto (dF)_{\mathbf{p}}.$$

С другой стороны, пространство матриц $\mathrm{Mat}_{n\times m}(\mathbb{R})$ — векторное пространство, которое можно отождествить (=изоморфно) с \mathbb{R}^{nm}

Тогда мы можем поставить вопрос о дифференцируемости отображения $\mathrm{d}F$ и получить отображение

$$d^{2}(F) := d(dF) : \mathscr{U}' \to \operatorname{Mat}_{n \times nm}(\mathbb{R}),$$

где \mathscr{U}' открыто в \mathscr{U}

Таким образом, мы получаем отображения (если они существуют)

$$F := d^0 F, \quad dF, \quad d^2(F) := d(dF), \dots,$$

среди которых $d^k(F)$ при k>1 называются высшими дифференциалами

1.2 Пусть дана m-раз дифференцируемая функция $f: \mathbb{R}^n \to \mathbb{R},$ то как выглядит общая формула для дифференциала $(\mathrm{d}^k f)$

Если функция $f:\mathbb{R}^n \to \mathbb{R}$ в окрестности точки **а** m раз дифференцируема, то для каждого $1 \le k \le m$

$$(\mathbf{d}^k f)_{\mathbf{a}}(\mathbf{h}) = \left(\frac{\partial}{\partial x_1} h_1 + \dots + \frac{\partial}{\partial x_n} h_n\right)^k \Big|_{\mathbf{a}} \cdot f$$

1.3 Что такое полином Тэйлора для функции $f:\mathbb{R}^n o\mathbb{R}$

$$T_f(x) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ есть m+1 раз дифференцируемая функция в окрестности точки $\mathbf{a} \in \mathbb{R}^n$, то для всех \mathbf{h} из окрестности точки $\mathbf{0}_n$ верно

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + (\mathrm{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!}(\mathrm{d}^2f)_{\mathbf{a}}\mathbf{h} + \dots + \frac{1}{m!}(\mathbf{d}^mf)_{\mathbf{a}}\mathbf{h} + \frac{1}{(m+1)!}(\mathbf{d}^{m+1}f)_{\mathbf{a}+\theta\mathbf{h}}\mathbf{h},$$

где $0 < \theta < 1$ и она зависит от \mathbf{a}, \mathbf{h} и m

1.4 Что такое компактное пространство

Компактным называется метрическое пространство E, которое удовлетворяет аксиоме Бореля — Лебега

1.5 Что такое аксиома Бореля—Лебега

Для каждого покрытия $(\mathscr{U}_{\lambda})_{\lambda \in \Lambda}$ пространства E открытыми множествами (=открытое покрытие) существует конечное подсемейство $(\mathscr{U}_{\lambda})_{\lambda \in L}$ (где $L \subseteq \Lambda$, и L — конечное множество), являющееся покрытием пространства E

1.6 Что такое аксиома отделимости Хаусдорфа

Для любых двух различных точек найдутся их непересекающиеся окрестности

1.7 Верно ли, что метрические пространства удовлетворяют аксиоме Xaусдорфа

Да, любое метрическое пространство удовлетворяет аксиоме отделимости Хаусдорфа

1.8 Что такое полином Тэйлора в матричной форме? Что такое Гессиан?

$$T_f(x) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Если функция $f:\mathbb{R}^n \to \mathbb{R}$ — дважды дифференцируема в точке \mathbf{a} , то

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla_{\mathbf{a}}(f)(\mathbf{h}) + \frac{1}{2}\mathbf{h}^{\top}\mathbf{H}_{\mathbf{a}}(f)\mathbf{h} + o(\|\mathbf{h}\|^{2}), \qquad \mathbf{h} \to \mathbf{0}_{n}$$

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ дважды дифференцируема в точке \mathbf{a} , тогда матрица

$$\mathbf{H}_{\mathbf{a}}(f) := \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} \Big|_{\mathbf{a}} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \Big|_{\mathbf{a}} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \Big|_{\mathbf{a}} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} \Big|_{\mathbf{a}} & \frac{\partial^2 f}{\partial x_2^2} \Big|_{\mathbf{a}} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \Big|_{\mathbf{a}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} \Big|_{\mathbf{a}} & \frac{\partial^2 f}{\partial x_n \partial x_2} \Big|_{\mathbf{a}} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \Big|_{\mathbf{a}} \end{pmatrix}$$

называется матрицей Гессе или **гессианом** функции f в точке $\mathbf a$

1.9 Что такое локальный экстремум функции $f: \mathbb{R}^n \to \mathbb{R}$?

Точка $\mathbf{a} \in \mathbb{R}^n$ называется **точкой локального максимума (минимума)** функции $f : \mathbb{R}^n \to \mathbb{R}$, если она определена в некоторой её окрестности $\mathscr{U}(\mathbf{a})$ и $f(\mathbf{x}) \geq f(\mathbf{a})$ (cooms. $f(\mathbf{x}) \leq f(\mathbf{a})$) для любой точки $\mathbf{x} \in \mathscr{U}(\mathbf{a})$

Точки локального максимума и минимума называются точками экстремума

1.10 Сформулируйте теорему об обратной фукнции (отображении)

Пусть $\mathscr{U},\mathscr{V}\subseteq\mathbb{R}^n$ — два открытых множества, и пусть $F:\mathscr{U}\to\mathscr{V}$ — дифференцируемое отображение. Пусть $(\mathrm{d}F)_{\mathbf{a}}$ обратимо в точке $\mathbf{a}\in\mathscr{U}$

Тогда существуют такие открытые множества $\widetilde{\mathscr{U}},\widetilde{\mathscr{V}}\subseteq\mathbb{R}^n$, что $\mathbf{a}\in\widetilde{\mathscr{U}},F(\mathbf{a})\in\widetilde{\mathscr{V}},F:\widetilde{\mathscr{U}}\to\widetilde{\mathscr{V}}$ — биективно, и его обратное $F^{-1}:\widetilde{\mathscr{V}}\to\widetilde{\mathscr{U}}$ — дифференцируемое

1.11 Сформулируйте теорему о неявной фукнции (отображении)

Пусть $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$, \mathcal{W} — окрестность точки $(\mathbf{x}_0, \mathbf{y}_0) \in \mathbb{R}^n \times \mathbb{R}^m$, отображение $F : \mathcal{W} \to \mathbb{R}^m$ непрерывно дифференцируемо, $F(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}_m$ и якобиан отображения $\mathbf{y} \mapsto F(\mathbf{x}_0, \mathbf{y})$ в точке \mathbf{y}_0 отличен от нуля

Тогда найдутся открытые окрестности \mathscr{U} и \mathscr{V} точек \mathbf{x}_0 и \mathbf{y}_0 в \mathbb{R}^n и \mathbb{R}^m и непрерывно дифференцируемое отображение $f:\mathscr{U}\to\mathscr{V}$, обладающее следующим свойством: для точки $(\mathbf{x},\mathbf{y})\in\mathscr{U}\times\mathscr{V}$ равенство $F(\mathbf{x},\mathbf{y})=0$ эквивалентно равенству $\mathbf{y}=f(\mathbf{x})$.

Для точки $\mathbf{x} \in \mathcal{U}$ дифференциал отображения f при этом можно вычислить по формуле

$$(\mathrm{d}f)_{\mathbf{x}} = -\left(\mathrm{d}_2 F\right)_{(\mathbf{x}, f(\mathbf{x}))}^{-1} \circ (\mathrm{d}_1 F)_{(\mathbf{x}, f(\mathbf{x}))},$$

где d_1 — дифференциал отображения F с фиксированными переменными \mathbf{y} , а d_2 — дифференциал отображения F с фиксированными переменными \mathbf{x} .

1.12 Что такое условный экстремум фукнции $f: \mathbb{R}^n \to \mathbb{R}$?

Рассмотрим вопрос об экстремумах функции $f: \mathbb{R}^{n+m} \to \mathbb{R}$ от n+m переменных, x_1, \dots, x_{n+m} в предположении, что эти переменные подчинены ещё m уравнениям связи

$$\begin{cases}
\Phi_{1}(x_{1}, \dots, x_{n}, \dots, x_{n+m}) = 0 \\
\Phi_{2}(x_{1}, \dots, x_{n}, \dots, x_{n+m}) = 0 \\
\vdots \\
\Phi_{m}(x_{1}, \dots, x_{n}, \dots, x_{n+m}) = 0
\end{cases}$$
(1)

Говорят, что в точке $\mathbf{a}=(a_1,\dots,a_{n+m})$, удовлетворяющей уравнением связи функция $f(\mathbf{x})$, $\mathbf{x}=(x_1,\dots,x_{n+m})$ имеет условный (=относительный) максимум (соотв. минимум), если неравенство $f(\mathbf{x}) \leq f(\mathbf{a})$ (соотв. $f(\mathbf{x}) \geq f(\mathbf{a})$) выполняется в некоторой окрестности точки \mathbf{a} для всех её точек \mathbf{x} , удовлетворяющих уравнениям (1)

1.13 Что такое числовой ряд?

Пара последовательностей $(x_n)_{n\geq 1},\ (s_n)_{n\geq 1}$ называется **рядом**, если их элементы $x_n,\ s_n$ при любом n связаны соотношениями

$$s_n = x_1 + \dots + x_n,$$

или, что равносильно

$$x_1 = s_1, \qquad x_n = s_n - s_{n-1}, \qquad n \ge 1.$$

где мы положили, что $s_0 := 0$

1.14 Что такое сходящийся ряд?

Ряд (x_n) называется **сходящимся к** s, если $\lim_{n \to \infty} s_n = s$

$$s$$
 называют cy ммой ряда и пишут $s=x_1+x_2+\ldots+x_n+\ldots$ или $s=\sum_{n=1}^{\infty}x_n$

Величина $r_n := s - s_n$ называется n-ым остатком ряда

1.15 Что значит почти похожие ряды?

Ряд (y_n) почти такой же (или почти похож) на ряд (x_n) , если $y_n=x_n$ почти для всех n, т.е. существует конечное множество n_1,\ldots,n_ℓ , таких что, $x_{n_1}\neq y_{n_1},\ldots,x_{n_\ell}\neq y_{n_\ell}$, но $x_n=y_n$ для всех остальных n

1.16 Что такое положительный ряд?

Ряд (x_n) положительный, если все $x_n > 0$

2 Теоремы

2.1 Если функция $f: \mathbb{R}^n \to \mathbb{R}$ в окрестности точки а m раз дифференцируема, то для каждого $1 \le k \le m$: $\left(\mathrm{d}^k f \right)_{\mathbf{a}} (\mathbf{h}) = \left(\frac{\partial}{\partial x_1} h_1 + \dots + \frac{\partial}{\partial x_n} h_n \right)^k | \cdot f$

Докажем по индукции. Если m=1, то мы получаем просто определение дифференциала. Пусть формула верна при $1 \leq k < m$, имеем

$$(\mathbf{d}^k f)(\mathbf{h}) = \sum_{p_1 + \dots + p_n = k} \frac{k!}{p_1! \cdots p_n!} \frac{\partial^k f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} h_1^{p_1} \cdots h_n^{p_n}$$

Дифференцируем это равенство, получаем

$$(\mathbf{d}^{k+1}f)(\mathbf{h}) = (\mathbf{d}(\mathbf{d}^k f))(\mathbf{h})$$

$$= \sum_{p_1 + \dots + p_n = k} \frac{k!}{p_1! \cdots p_n!} \mathbf{d} \left(\frac{\partial^k f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} h_1^{p_1} \cdots h_n^{p_n} \right) \mathbf{h}$$

$$= \sum_{p_1 + \dots + p_n = k} \frac{k!}{p_1! \cdots p_n!} \left(\mathbf{d} \left(\frac{\partial^k f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \right) (\mathbf{h}) \right) \cdot h_1^{p_1} \cdots h_n^{p_n}$$

Теперь применяя формулу дифференциала, мы получим

$$(\mathbf{d}^{k+1}f)(\mathbf{h}) = \sum_{p_1 + \dots + p_n = k} \frac{k!}{p_1! \cdots p_n!} \left(\frac{\partial^{k+1}f}{\partial x_1^{p_1+1} \cdots \partial x_n^{p_n}} h_1 + \dots + \frac{\partial^{k+1}f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_n \right) \cdot h_1^{p_1} \cdots h_n^{p_n}$$

Фиксируем набор (p_1, \ldots, p_n) и рассмотрим соответствующую сумму

$$S(p_1, \dots, p_n) := \frac{\partial^{k+1} f}{\partial x_1^{p_1+1} \partial x_2^{p_2} \cdots \partial x_n^{p_n}} h_1^{p+1} h_2^{p_2} \cdots h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_1^{p_1} h_2^{p_2} \cdots h_n^{p_n+1} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_1^{p_1} h_2^{p_2} \cdots h_n^{p_n+1} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n+1}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_n} \cdots \partial x_n^{p_n}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_n} \cdots \partial x_n^{p_n}} h_n^{p_n} h_n^{p_n} + \dots + \frac{\partial^{k+1} f}{\partial x_1^{p_n} \cdots \partial x_n^{p_n}} h_n^{p_n} h_n^{p$$

тогда первое слагаемое этой суммы также присутствует в следующих суммах

$$S(p_1 + 1, p_2 - 1, p_3, \dots, p_n),$$

$$S(p_1 + 1, p_2, p_3 - 1, \dots, p_n),$$

$$\vdots$$

$$S(p_1 + 1, p_2, p_3, \dots, p_n - 1).$$

Тогда коэффициент при $\frac{\partial^{k+1} f}{\partial x_1^{p+1} \partial x_2^{p_2} \cdots \partial x_n^{p_n}} h_1^{p_1+1} h_2^{p_2} \cdots h_n^{p_n}$ есть следующее выражение

$$K = \frac{k!}{p_1!p_2!\cdots p_n!} + \frac{k!}{(p_1+1)!p_2!\cdots p_n!} + \cdots + \frac{k!}{(p_1+1)!p_2!\cdots (p_n-1)!}$$

имеем

$$\begin{split} K &= \frac{k!}{p_1!p_2!\cdots p_n!} + \frac{k!}{(p_1+1)!p_2!\cdots p_n!} + \cdots + \frac{k!}{(p_1+1)!p_2!\cdots (p_n-1)!} \\ &= \frac{k!}{p_1!(p_2-1)!\cdots (p_n-1)!} \left(\frac{1}{p_2p_3\cdots p_n} + \frac{1}{(p_1+1)p_2\cdots p_n} + \cdots + \frac{1}{(p_1+1)p_2\cdots p_{n-1}}\right) \\ &= \frac{k!}{p_1!(p_2-1)!\cdots (p_n-1)!} \cdot \frac{p_1+1+p_2+\cdots + p_n}{(p_1+1)p_2\cdots p_n} \\ &= \frac{k!(k+1)}{(p_1+1)!p_2!\cdots p_n!} \\ &= \frac{(k+1)!}{(p_1+1)!p_2!\cdots p_n!} \end{split}$$

Таким образом, рассуждая аналогично для остальных мономов, мы можем записать

$$(\mathbf{d}^{k+1}f)(\mathbf{h}) = \sum_{\substack{p_1, \dots, p_n = k+1 \\ p_1 \neq \dots p_n = k}} \frac{(k+1)!}{p_1! \cdots p_n!} \frac{\partial^{k+1}f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} h_1^{p_1} \cdots h_n^{p_n}$$

2.2 Пусть $f:\mathbb{R}^n \to \mathbb{R}$ дифференцируема в окрестности точки \mathscr{U} точки а, и пусть при $0 \le t \le 1$, точка $\mathbf{a} + t\mathbf{h} \in \mathscr{U}$. Тогда, при фиксированных $\mathbf{a}, \mathbf{h},$ функция $\psi_{\mathbf{a}, \mathbf{h}}(t) := f(\mathbf{a} + t\mathbf{h}) : \mathbb{R} \to \mathbb{R}$ дифференцируема при $0 \le t \le 1$ и $\psi'_{\mathbf{a}, \mathbf{h}}(t) = \left. \frac{\partial f}{\partial x_1} \right|_{\mathbf{a} + t\mathbf{h}} \cdot h_1 + \dots + \left. \frac{\partial f}{\partial x_n} \right|_{\mathbf{a} + t\mathbf{h}} \cdot h_n$

Наша функция $\psi_{\mathbf{a},\mathbf{h}}(t)$ есть композиция двух стрелок

Далее, для функции от одной переменной, значение её производной это есть значение дифференциала вычисленного в этой же точке. Тогда по теореме о композиции,

$$\psi'_{\mathbf{a},\mathbf{h}}(t) = (\mathrm{d}\psi)_t = (\mathrm{d}f)_{\mathbf{a}+t\mathbf{h}} \cdot (\mathrm{d}\gamma)_t,$$

где

$$\gamma(t) := \mathbf{a} + t\mathbf{h} = \begin{pmatrix} a_1 + th_1 \\ \vdots \\ a_n + th_n \end{pmatrix}$$

Тогда её матрица Якоби (=дифференциал) имеет вид

$$\mathrm{d}\gamma = \begin{pmatrix} \dot{\gamma}_1(t) \\ \vdots \\ \dot{\gamma}_n(t) \end{pmatrix} = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} = \mathbf{h},$$

здесь $\gamma_1(t)=a_1+th_1,\ldots,\gamma_n(t)=a_n+th_n$. Тогда, получаем

$$\psi'_{\mathbf{a},\mathbf{h}}(t) = (\mathrm{d}\psi)_t = (\mathrm{d}f)_{\mathbf{a}+t\mathbf{h}} \cdot (\mathrm{d}\gamma)_t$$
$$= (\mathrm{d}f)_{\mathbf{a}+t\mathbf{h}}\mathbf{h}$$
$$= \frac{\partial f}{\partial x_1}\bigg|_{\mathbf{a}+t\mathbf{h}} \cdot h_1 + \dots + \frac{\partial f}{\partial x_n}\bigg|_{\mathbf{a}+t\mathbf{h}} \cdot h_n$$

2.3 Пусть $f: \mathbb{R}^n \to \mathbb{R}$ есть m+1 раз дифференцируемая функция в окрестности точки $\mathbf{a} \in \mathbb{R}^n$, то для всех \mathbf{h} из окрестности точки $\mathbf{0}_n$ верно $f(\mathbf{a}+\mathbf{h}) = f(\mathbf{a}) + (\mathrm{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!} \left(\mathrm{d}^2 f\right)_{\mathbf{a}}\mathbf{h} + \cdots + \frac{1}{m!} \left(\mathbf{d}^m f\right)_{\mathbf{a}}\mathbf{h} + \frac{1}{(m+1)!} \left(\mathbf{d}^{m+1} f\right)_{\mathbf{a}+\theta \mathbf{h}}\mathbf{h}$, где $0 < \theta < 1$ и она зависит от \mathbf{a}, \mathbf{h} и m

Пусть $\varphi_{\mathbf{a},\mathbf{h}}(t) := f(\mathbf{a} + t\mathbf{h}), t \in [0,1],$ тогда она m+1 раз дифференцируема и

$$\varphi^k(t) = (\mathbf{d}_{\mathbf{a}+t\mathbf{h}}^k f)(\mathbf{h}).$$

Тогда её полином Тэйлора с остаточным мономом в форме Лагранже имеет вид

$$\varphi(t) = \varphi(0) + \frac{\varphi'(0)}{1!}t + \frac{\varphi''(0)}{2!}t^2 + \dots + \frac{\varphi^{(m)}(0)}{m!}t^m + \frac{\varphi^{(m+1)}(\theta)}{(m+1)!}t^{m+1}$$

где $0 < \theta < t$.

Тогда, используя равенство

$$\varphi_{\mathbf{a},\mathbf{h}}^k(t) = (\mathrm{d}_{\mathbf{a}+t\mathbf{h}}^k f)(\mathbf{h}), \qquad 1 \leq k \leq m+1.$$

получаем

$$\begin{split} \varphi(0) &= & f(\mathbf{a}), \\ \varphi^{(k)}(0) &= & (\mathbf{d}_{\mathbf{a}}^k f)(\mathbf{h}), & 1 \leq k \leq m, \\ \varphi^{(m+1)}(\theta) &= & (\mathbf{d}_{\mathbf{a}+\theta \mathbf{h}}^k f)(\mathbf{h}). \end{split}$$

Тогда мы можем записать

$$\varphi(t) = f(\mathbf{a}) + \sum_{k=1}^{m} \frac{(\mathbf{d}_{\mathbf{a}}^{k} f)(\mathbf{h})}{k!} t^{k} + \frac{(\mathbf{d}_{\mathbf{a}+\theta \mathbf{h}}^{k} f)(\mathbf{h})}{(m+1)!} t^{m+1},$$

так как $\varphi(1) = f(\mathbf{a} + \mathbf{h})$, то подставляя t = 1 в последней сумме мы получаем требуемое

- 2.4 Докажите, что подпространство K в метрическом пространстве (E,d) компакт тогда и только тогда, когда из любого его покрытия множествами, открытыми в E, можно выделить конечное подпокрытие этими же множествами
- (1) Пусть $(K,d|_K)$ компактное подпространство в (E,d), и пусть $\{\mathscr{U}_\alpha\}_{\alpha\in A}$ его покрытие, т.е. $K=\bigcup_{\alpha\in A}\mathscr{U}_\alpha$, где все $\mathscr{U}_\alpha\subseteq K$ открыты в K, но тогда для каждого $\alpha\in A$ существует открытое

множество $\widetilde{\mathscr{U}}_{\alpha}$ в E такое, что $\widetilde{\mathscr{U}}_{\alpha}=\mathscr{U}_{\alpha}\cap K$

Тогда $K\subseteq\bigcup_{\alpha\in A}\widetilde{\mathscr{U}}_{\alpha}.$ Так как K — компакт, то можно найти конечное число множеств, скажем,

 $\mathscr{U}_1,\dots,\mathscr{U}_n$, таких, что $K=igcup_{i=1}^n\mathscr{U}_i$, но тогда $K\subseteqigcup_{i=1}^n\widetilde{\mathscr{U}_i}$

(2) Пусть для любого покрытия $\{\widetilde{\mathscr{U}}_{\alpha}\}_{\alpha\in A}$ множества K открытыми множествами из E можно всегда найти конечное подпокрытие, скажем, $K\subseteq\bigcup_{i=1}^n\widetilde{\mathscr{U}}_i$, но тогда

$$K = K \cap \bigcup_{i=1}^{n} \widetilde{\mathscr{U}_i} = \bigcup_{i=1}^{n} \mathscr{U}_i$$

при этом каждое $\mathscr{U}_{\alpha} := \widetilde{\mathscr{U}_{\alpha}} \cap K$ — открыто в K

2.5 Докажите, что любое метрическое пространство удовлетворяет аксиоме отделимости Хаусдорфа; для любых двух различных точек найдутся их непересекающиеся окрестности

Пусть (E,d) — метрическое пространство, и пусть $x_1,x_2\in E$ — две его различные точки. Нужно показать, что найдутся два открытых множества $\mathscr{U}_1,\mathscr{U}_2\subset E$ такие, что $x_1\in\mathscr{U}_1,x_2\in\mathscr{U}_2$ и $\mathscr{U}_1\cap\mathscr{U}_2=\varnothing$

Пусть $y \in B(x_1, r_1) \cap B(x_2, r_2)$, тогда $d(x_1, y) < r_1$ и $d(x_2, y) < r_2$. По неравенству треугольника, получаем

$$d(x_1, x_2) \le d(x_1, y) + d(x_2, y) < r_1 + r_2$$

Это означает, что $B(x_1,r_1)\cap B(x_2,r_2)\neq\varnothing$, если и только если $r_1+r_2>d(x_1,x_2)$, а если $r_1+r_2\leq d(x_1,x_2)$, то $B(x_1,r_1)\cap B(x_2,r_2)=\varnothing$

Таким образом, для данных двух различных точек x_1, x_2 полагаем $\mathscr{U}_1 := B(x_1, r_1),$ $\mathscr{U}_2 := B(x_2, r_2)$ и требуем, чтобы $r_1 + r_2 \leq d(x_1, x_2)$

2.6 Докажите, что в любом метрическом пространстве (E,d) точка — замкнутое множество

Пусть $y \in \overline{\{x\}}$ тогда для любого r > 0, $B(y,r) \cap \{x\} \neq \emptyset$, т. е. для любого r > 0 $x \in B(y,r)$, учитывая выполнения аксиомы отделимости в метрических пространствах получаем, что такое возможно, только если x = y

- **2.7** Докажите, что в метрическом пространстве (E, d) любой компакт обладает следующими свойствами:
 - (a) Компакт ограниченное множество, т.е., найдётся такой шар $B(a,r)\subseteq E$, что $K\subseteq B(a,r)$;
 - (b) Компакт замкнутое множество, т.е., он содержит все свои точки прикосновения ($\bar{K} = K$);
 - (с) Замкнутое подмножество компакта самое является компактом

Пусть (E, d) — метрическое пространство, K — компакт в E.

- (1) Согласно Аксиоме Выбора, мы можем взять точку $x \in K$. Рассмотрим бесконечную последовательность шаров $(B(x,n))_{n=1}^\infty$ в K, очевидно, что это покрытие для K, и более того $E=\cup_{n\geq 1}B(x,n)$. Так как K компакт, то из этого покрытия можно выбрать конечное подпокрытие, скажем, $\{B(x,r)\}_{r=t}^N$, такое, что $K\subseteq \cup_{t=1}^N B(x,r)$. Так как $B(x,p)\subseteq B(x,q)$ при p< q, то $\cup_{t=1}^N B(x,r)=B(x,N)$, что и показывает ограниченность K
- (2) Ясно, что $K \subseteq \bigcup_{x \in K} B(x, r_x)$, для каких-то $r_x > 0$. Так как K компакт, то можно найти конечное множество точек $\{x_1, \dots, x_n\}$ такое, что $K \subseteq \bigcup_{i=1}^n B(x_i, r_i)$, где $r_i = r_{x_i}$, $1 \le i \le n$

Пусть $y \in \overline{K}$, тогда для любого шара B(y,r) имеем $B(y,r) \cap K \neq \emptyset$, и пусть $y \notin K$. Но тогда по лемме 2.5 для каждого $1 \le i \le n$ найдутся такие $\varepsilon_i > 0$, что $B(y,\varepsilon_i) \cap B(x_i,r_i) = \emptyset$, тогда, полагая $\varepsilon := \min\{\varepsilon_1,\ldots,\varepsilon_n\}$, получаем, что

$$B(y,\varepsilon)\cap K\subseteq B(y,\varepsilon)\cap \bigcup_{i=1}^n B(x_i,r_i)=\varnothing,$$

т.е. мы нашли окрестность $B(y,\varepsilon)$ точки y, которая не пересекается с K, что означает, что $y\notin \overline{K}$. Поэтому если $y\in \overline{K}$, то $y\in K$, т. е. $\overline{K}=K$

(3) Пусть $F \subseteq K$ — замкнутое подмножество в K, и пусть $\{\mathscr{U}_{\alpha}\}_{\alpha \in A}$ — покрытие F открытыми множествами из E, т. е. $F \subseteq \cup_{\alpha \in A} \mathscr{U}_{\alpha}$

Тогда имеем

$$K \subseteq F \cup (E \setminus F) \subseteq \bigcup_{\alpha \in A} \mathscr{U}_{\alpha} \cup (E \setminus F),$$

т. е. мы получили покрытие для K, но так как K — компакт, то можно найти такие, скажем, $\mathscr{U}_1,\dots,\mathscr{U}_n$, что

$$K \subseteq \mathcal{U}_1 \cup \cdots \cup \mathcal{U}_n \cup (E \setminus F),$$

но тогда

$$F \subseteq \mathscr{U}_1 \cup \cdots \cup \mathscr{U}_n$$

что означает компактность F

2.8 Докажите, что если $f: E \to E'$ — непрерывное отображение между метрическими пространствами, тогда если X — компактно, то f(X) — компактно

Пусть $\{\mathscr{U}'_{\alpha}\}_{\alpha\in A}$ — покрытие f(E) открытыми в E' множествами, тогда $\{f^{-1}(\mathscr{U}'_{\alpha})\}_{\alpha\in A}$ — покрытие E, и так как f — непрерывно, тогда это покрытие открытыми множествами в E. Так как X — компактно, то можно найти конечное подпокрытие, скажем, $\{f^{-1}(\mathscr{U}'_i)\}_{i=1}^n$, но тогда $\{\mathscr{U}_i\}_{i=1}^n$ — покрытие для f(X), что и показывает компактность f(X)

2.9 Докажите, что параллелепипед \mathcal{P} — компакт в \mathbb{R}^n , где рассматривается евклидова метрика

(Прямоугольным) параллелепипедом в \mathbb{R}^{\ltimes} будем называть множество

$$\mathcal{P} := [a_1, b_1] \times \cdots \times [a_n, b_n]$$

Доказывать будем от противного. Допустим, что существует такое покрытие $\{\mathscr{U}_{\alpha}\}_{\alpha\in A}$ открытыми множествами из \mathbb{R}^n для параллелепипеда \mathcal{P} , что из него нельзя выбрать конечное подпокрытие.

Итак, пусть $\mathcal{P} \subseteq \bigcup_{\alpha \in A} \mathscr{U}_{\alpha}$ и из этого покрытия нельзя выбрать конечное подпокрытие которое бы покрыло \mathcal{P} . Разобьём каждый отрезок $[a_k, b_k]$ пополам **т.е.,** представим его так

$$[a_k, b_k] = \left[a_k, \frac{a_k + b_k}{2}\right] \cup \left[\frac{a_k + b_k}{2}, b_k\right] \qquad 1 \le k \le n,$$

тогда \mathcal{P} разобьётся на 2^n параллелепипедов. По условию, \mathcal{P} нельзя покрыть конечным числом множеств из $\{\mathscr{U}_{\alpha}\}_{\alpha\in A}$, тогда найдётся хотя бы один из полученных параллелепипедов, обозначим его через \mathcal{P}_1 , который тоже нельзя покрыть конечным числом множеств из покрытия $\{\mathscr{U}_{\alpha}\}_{\alpha\in A}$.

Разобьём теперь параллелепипед \mathcal{P}_1 аналогичным образом на 2^n параллелепипедов. Так как \mathcal{P}_1 нельзя покрыть конечным числом множеств из покрытия $\{\mathscr{U}_\alpha\}_{\alpha\in A}$, то найдётся хотя бы один, скажем \mathcal{P}_2 , из только что полученных, который тоже нельзя покрыть конечным числом множеств. Будем повторять эту процедуру каждый раз. В результате мы получаем бесконечную цепь вложенных друг в друга параллелепипедов

$$\mathcal{P} \supsetneq \mathcal{P}_1 \supsetneq \mathcal{P}_2 \supsetneq \dots$$

каждый из которых нельзя покрыть конечным числом элементов множества $\{\mathscr{U}_{\alpha}\}_{\alpha\in A}$, и где каждый из них описывается следующим образом

$$\mathcal{P}_i = \left[a_i^{(1)}, b_i^{(1)} \right] \times \dots \times \left[a_i^{(n)}, b_i^{(n)} \right], \qquad i \ge 1,$$

при этом, по построению, получаем n систем вложенных друг в друга отрезков

$$\begin{bmatrix} a_1^{(1)}, b_1^{(1)} \end{bmatrix} \supseteq \begin{bmatrix} a_2^{(1)}, b_2^{(1)} \end{bmatrix} \supseteq \begin{bmatrix} a_3^{(1)}, b_3^{(1)} \end{bmatrix} \supseteq \dots$$
$$\begin{bmatrix} a_1^{(2)}, b_1^{(2)} \end{bmatrix} \supseteq \begin{bmatrix} a_2^{(2)}, b_2^{(2)} \end{bmatrix} \supseteq \begin{bmatrix} a_3^{(2)}, b_3^{(2)} \end{bmatrix} \supseteq \dots$$

у которых длины строго уменьшаются (каждый из отрезков по длине в два раза меньше чем его соседний слева отрезок). Тогда по Лемме о вложенных отрезках, для каждой из этих n систем есть своя общая точка, $c_i \in \bigcap_{k>1} [a_k^{(i)}, b_k^{(i)}]$, которая есть предельная для последовательности их концов;

тогда для любого $\varepsilon>0$ и для каждого $1\leq p\leq n$, найдётся такой номер M_p , что при $m\geq M_p$ все $a_m^{(p)},b_m^{(p)}\in (c_p-\varepsilon,c_p+\varepsilon).$ Пусть $M:=\max_{1\leq p\leq n}\{M_p\}$, тогда при m>M все $a_m^{(p)},b_m^{(p)}\in (c_p-\varepsilon,c_p+\varepsilon)$ при любом $1\leq p\leq n.$

Рассмотрим теперь параллеленипед

$$\mathcal{P}_{\varepsilon}(\mathbf{c}) := [c_1 - \varepsilon, c_1 + \varepsilon] \times \cdots \times [c_n - \varepsilon, c_n + \varepsilon]$$

где $\mathbf{c} := (c_1, \dots, c_n)$. Тогда, для всех m > M, получаем что все параллеленинеды $\mathcal{P}_m \subset \mathcal{P}_{\varepsilon}(\mathbf{c})$. С другой стороны,

$$\mathbf{c} = (c_1, \dots, c_n) \in \bigcap_{i \ge 1} \mathcal{P}_i \subset \mathcal{P} \subseteq \bigcup_{\alpha \in A} \mathscr{U}_{\alpha}$$

тогда найдётся хотя бы одно \mathscr{U}_{α} содержащее это точку \mathbf{c} , так как \mathscr{U}_{α} открыто, то найдётся шар $B(\mathbf{c},r)$ такой, что $B(\mathbf{c},r)\subseteq\mathscr{U}_{\alpha}$.

B(c,r) такой, что $B(\mathbf{c},r)\subseteq \mathscr{U}_{\alpha}.$ Пусть теперь $0<\varepsilon<\frac{r}{\sqrt{n}},$ тогда получаем, что для каждого m>M

$$\mathcal{P}_m \subseteq \mathcal{P}_{\varepsilon}(\mathbf{c}) \subseteq B(\mathbf{c}, r) \subseteq \mathscr{U}_{\alpha}.$$

Но это означает что, каждый из \mathcal{P}_m при m > M можно покрыть всего одним элементом \mathscr{U}_{α} , что противоречит выбору таких параллелепипедов, т.е., первоначальный параллелепипед можно тогда покрыть конечным числом элементов множества $\{\mathscr{U}_{\alpha}\}$, что означает его компактность

2.10 Докажите критерий компактности в \mathbb{R}^n ; множество $K \subseteq \mathbb{R}^n$ компактно тогда и только тогда когда оно замкнуто и ограничено

- (1) Согласно свойствам компакта из 2.7 мы получаем необходимость
- (2) Если $K \subseteq \mathbb{R}^n$ ограниченно и замкнуто, то это значит, что оно содержится в некотором шаре, скажем, $B(\mathbf{x},r)$ который содержится целиком внутри параллелепипеда

$$\mathcal{P} = [x_1 - r, x_1 + r] \times \cdots \times [x_n - r, x_n + r]$$

где $\mathbf{x} = (x_1, \dots, x_n)$. Так как K — замкнуто, то из предложения из 2.9 и свойств компакта 2.7 вытекает утверждение

2.11 Докажите, что на компактном множестве всякая непрерывная функция ограничена и достигает наибольшего и наименьшего значений

Другими словами, если $f: K \to \mathbb{R}$ — непрерывная функция, K — компактно, то найдутся такие $a,b \in X$, что $f(a) \le f(x) \le f(b)$ для любого $x \in X$

Согласно п.2.8 f(K) — компактно в \mathbb{R} , тогда согласно критерию компактности в \mathbb{R}^n (п. 2.10) оно ограничено. Тогда согласно принципу полноты Вейерштрасса существуют $m := \inf f(X)$, $M := \sup f(X)$

Но, согласно критерию компактности в \mathbb{R}^n (п.2.10) f(X) также и замкнуто, тогда $m, M \in f(X)$, откуда и следует существование таких точек $a, b \in X$, что $f(a) \leq f(x) \leq f(b)$ при всех $x \in X$

2.12 Пусть $f: \mathbb{R}^n \to \mathbb{R}$ есть m раз дифференцируема функция в окрестности точки а и все её частные производные непрерывны в этой точке, тогда $f(\mathbf{a}+\mathbf{h}) = f(\mathbf{a}) + (\mathrm{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!} \left(\mathrm{d}^2f\right)_{\mathbf{a}}\mathbf{h} + \cdots + \frac{1}{m!} \left(\mathrm{d}^mf\right)_{\mathbf{a}}\mathbf{h} + o\left(\|\mathbf{h}\|^m\right), \mathbf{h} \to \mathbf{0}_n$

По теореме 2.3

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + (\mathrm{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!}(\mathrm{d}^2f)_{\mathbf{a}}\mathbf{h} + \dots + \frac{1}{(m-1)!}(\mathbf{d}^{m-1}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{m!}(\mathbf{d}^mf)_{\mathbf{a}+\theta\mathbf{h}}\mathbf{h},$$

рассмотрим последний моном (самый правый) этого полинома, имеем

$$(\mathbf{d}^m f)_{\mathbf{a}+\theta \mathbf{h}}(\mathbf{h}) = (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h}) + ((\mathbf{d}^m f)_{\mathbf{a}+\theta \mathbf{h}}(\mathbf{h}) - (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h})).$$

Согласно теореме 2.1,

$$(\mathbf{d}^m f)_{\mathbf{b}}(\mathbf{h}) = \sum_{p_1 + \dots + p_n = m} \frac{m!}{p_1! \cdots p_n!} \left. \frac{\partial^m f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \right|_{\mathbf{b}} \cdot h_1^{p_1} \cdots h_n^{p_n},$$

тогда, получаем

$$\begin{split} (\mathbf{d}^m f)_{\mathbf{a}+\theta\mathbf{h}}(\mathbf{h}) &= (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h}) + \left((\mathbf{d}^m f)_{\mathbf{a}+\theta\mathbf{h}}(\mathbf{h}) - (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h}) \right) \\ &= (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h}) + \sum_{p_1 + \ldots + p_n = m} \frac{m!}{p_1! \cdots p_n!} \left(\frac{\partial^m f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \bigg|_{\mathbf{a}+\theta\mathbf{h}} - \frac{\partial^m f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \bigg|_{\mathbf{a}} \right) \cdot h_1^{p_1} \cdots h_n^{p_n} \\ &= (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h}) \\ &+ \|h\|^m \sum_{p_1 + \ldots + p_n = m} \frac{m!}{p_1! \cdots p_n!} \left(\frac{\partial^m f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \bigg|_{\mathbf{a}+\theta\mathbf{h}} - \frac{\partial^m f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \bigg|_{\mathbf{a}} \right) \frac{h_1^{p_1}}{\|h\|^{p_1}} \cdots \frac{h_n^{p_n}}{\|h\|^{p_n}}. \end{split}$$

Так как $||h|| := \sqrt{h_1^2 + \dots + h_n^2}$, то

$$\frac{h_1^{p_1}}{\|\mathbf{h}\|^{p_1}}, \dots, \frac{h_1^{p_1}}{\|\mathbf{h}\|^{p_1}} \le 1$$

далее, так как все частные производные непрерывны в точке а, то по критерию непрерывности,

$$\lim_{\mathbf{h}\to\mathbf{0}_n} \left(\frac{\partial^m f}{\partial x_1^{p_1}\cdots\partial x_n^{p_n}} \bigg|_{\mathbf{a}+\theta\mathbf{h}} - \frac{\partial^m f}{\partial x_1^{p_1}\cdots\partial x_n^{p_n}} \bigg|_{\mathbf{a}} \right) = 0,$$

при каждом разбиении $m = p_1 + \dots + p_n$, таким образом,

$$\lim_{\mathbf{h} \to \mathbf{0}_n} \sum_{p_1 + \dots + p_n = m} \frac{m!}{p_1! \cdots p_n!} \left(\frac{\partial^m f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \bigg|_{\mathbf{a} + \theta \mathbf{h}} - \frac{\partial^m f}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}} \bigg|_{\mathbf{a}} \right) = 0,$$

а это и означает, что

$$(\mathbf{d}^m f)_{\mathbf{a}+\theta \mathbf{h}}(\mathbf{h}) = (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h}) + \omega(\mathbf{h}) \|h\|^m, \quad \mathbf{h} \to \mathbf{0}_n,$$

где $\lim_{\mathbf{h}\to\mathbf{0}_n}\omega(\mathbf{h})=\mathbf{0}_n$, т.е.,

$$(\mathbf{d}^m f)_{\mathbf{a}+\theta \mathbf{h}}(\mathbf{h}) = (\mathbf{d}^m f)_{\mathbf{a}}(\mathbf{h}) + o(\|h\|^m), \quad \mathbf{h} \to \mathbf{0}_n,$$

но тогда

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + (\mathbf{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!}(\mathbf{d}^{2}f)_{\mathbf{a}}\mathbf{h} + \dots + \frac{1}{(m-1)!}(\mathbf{d}^{m-1}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{m!}(\mathbf{d}^{m}f)_{\mathbf{a}+\theta\mathbf{h}}\mathbf{h}$$

$$= f(\mathbf{a}) + (\mathbf{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!}(\mathbf{d}^{2}f)_{\mathbf{a}}\mathbf{h} + \dots + \frac{1}{(m-1)!}(\mathbf{d}^{m-1}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{m!}((\mathbf{d}^{m}f)_{\mathbf{a}}(\mathbf{h}) + o(\|\mathbf{h}\|^{m}))$$

$$= f(\mathbf{a}) + (\mathbf{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2!}(\mathbf{d}^{2}f)_{\mathbf{a}}\mathbf{h} + \dots + \frac{1}{m!}(\mathbf{d}^{m}f)_{\mathbf{a}}\mathbf{h} + o(\|\mathbf{h}\|^{m}), \quad \mathbf{h} \to \mathbf{0}_{n}$$

2.13 Если функция $f:\mathbb{R}^n \to \mathbb{R}$ — дважды дифференцируема в точке a, то $f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+\nabla_{\mathbf{a}}(f)(\mathbf{h})+\frac{1}{2}\mathbf{h}^{\top}\mathbf{H}_{\mathbf{a}}(f)\mathbf{h}+o\left(\|\mathbf{h}\|^2\right),\mathbf{h}\to\mathbf{0}_n$

Согласно п. 2.12,

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + (\mathrm{d}f)_{\mathbf{a}}\mathbf{h} + \frac{1}{2}(\mathrm{d}^2f)_{\mathbf{a}}\mathbf{h} + o(\|\mathbf{h}\|^2), \quad \mathbf{h} \to \mathbf{0}_n,$$

но $(\mathrm{d}f)_{\mathbf{a}}\mathbf{h} = \nabla_{\mathbf{a}}(f)(\mathbf{h})$. Далее, по теореме 2.1,

$$(\mathbf{d}^k f)_{\mathbf{a}}(\mathbf{h}) = \left(\frac{\partial}{\partial x_1} h_1 + \dots + \frac{\partial}{\partial x_n} h_n\right)^2 \Big|_{\mathbf{a}} \cdot f$$
$$= \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \Big|_{\mathbf{a}} h_i^2 + 2 \sum_{1 \le i < j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j} \Big|_{\mathbf{a}} h_i h_j,$$

где $\mathbf{h} = (h_1, \dots, h_n)^n$, но последнее выражение можно записать в матричном виде следующим образом

$$(h_1, \dots, h_n)^{\top} \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} \Big|_{\mathbf{a}} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \Big|_{\mathbf{a}} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \Big|_{\mathbf{a}} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} \Big|_{\mathbf{a}} & \frac{\partial^2 f}{\partial x_2^2} \Big|_{\mathbf{a}} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \Big|_{\mathbf{a}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} \Big|_{\mathbf{a}} & \frac{\partial^2 f}{\partial x_n \partial x_2} \Big|_{\mathbf{a}} & \dots & \frac{\partial^2 f}{\partial x_n^2} \Big|_{\mathbf{a}} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} = \mathbf{h}^{\top} \mathbf{H}_{\mathbf{a}}(f) \mathbf{h},$$

и так как матрица симметрична, доказано требуемое

2.14 Докажите необходимое условие экстремума

Условие. Если $\mathbf{a}=(a_1,\ldots,a_n)\in\mathbb{R}^n$ — точка экстремума функции $f:\mathbb{R}^n\to\mathbb{R}$, тогда, если все частные производные $f'_{x_i},\ 1\leq i\leq n$ существуют в какой-то окрестности $\mathscr{U}(\mathbf{a})$ точки \mathbf{a} , то $(\mathrm{d} f)_{\mathbf{a}}(\mathbf{h})=0$ для любого $\mathbf{h}\in\mathscr{U}(\mathbf{a})$, или

$$\left. \frac{\partial f}{\partial x_1} \right|_{\mathbf{a}} = \ldots = \left. \frac{\partial f}{\partial x_1} \right|_{\mathbf{a}} = 0.$$

Доказательство. Рассмотрим k функций $\varphi_k(t) := f(a_1, \dots, a_{k-1}, t, a_{k+1}, \dots, a_n), 1 \le k \le n$, где от каждого t мы требуем, чтобы соответствующая точка лежала в окрестности $\mathcal{U}(\mathbf{a})$

Пусть ${\bf a}$ — точка максимума, тогда, в частности, $f(a_1,\dots,t,\dots) \le f({\bf a})$ для любого t, т.е. $\varphi_k(t) \le f({\bf a})$ при каждом $1 \le k \le n$

Другими словами, a_k — точка максимума для $\varphi_k(t)$. Тогда по теореме Ферма, $\varphi_k'(a_k)=0$, но $\varphi_k'(a_k)=f_{x_k}'(\mathbf{a})=0$ для каждого $1\leq k\leq n$

2.15 Докажите необходимое условие условного экстремума

Условие. Пусть $f, \varphi_1, \dots, \varphi_m : \mathbb{R}^{n+m} \to \mathbb{R}$ являются непрерывно дифференцируемыми фукнциями в окрестности \mathscr{W} точки \mathbf{a} , и пусть

$$\operatorname{rk} \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial \varphi_1}{\partial x_{n+m}}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_m}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial \varphi_m}{\partial x_{n+m}}(\mathbf{x}) \end{pmatrix} = m$$

для всех $\mathbf{x} \in \mathcal{W}$. Тогда, если \mathbf{a} — точка условного экстремума функции f на множестве

$$\Omega := \{ \mathbf{x} \in \mathbb{R}^{n+m} : \varphi_1(\mathbf{x}) = 0, \dots, \varphi_m(\mathbf{x}) = 0 \}$$

то найдутся такие числа $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$, что

$$\nabla_{\mathbf{a}} f = \lambda_1 \nabla_{\mathbf{a}} \varphi_1 + \dots + \lambda_m \nabla_{\mathbf{a}} \varphi_m$$

Доказательство. Рассмотрим отображение

$$\Phi: \mathbb{R}^{n+m} \to \mathbb{R}^{n+m}, \qquad \begin{pmatrix} x_1 \\ \vdots \\ x_m \\ x_{m+1} \\ \vdots \\ x_{n+m} \end{pmatrix} \mapsto \begin{pmatrix} \varphi_1(x_1, \dots, x_{n+m}) \\ \vdots \\ \varphi_m(x_1, \dots, x_{n+m}) \\ x_{m+1} \\ \vdots \\ x_{n+m} \end{pmatrix}$$

согласно условиям, оно непрерывно дифференцируемо в окрестности $\mathscr W$ точки а Сделаем замену переменных

$$u_{1} = \varphi_{1}(x_{1}, \dots, x_{n+m})$$

$$\vdots \qquad \vdots$$

$$u_{m} = \varphi_{m}(x_{1}, \dots, x_{n+m})$$

$$u_{m+1} = x_{m+1}$$

$$\vdots \qquad \vdots$$

$$u_{m+n} = x_{m+n}$$

$$(2)$$

Если нужно, то, перенумеровав переменные, можно считать, что из условия о ранге матрицы вытекает

$$\det \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial \varphi_1}{\partial x_m}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_m}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial \varphi_m}{\partial x_m}(\mathbf{x}) \end{pmatrix} \neq 0$$

Тогда по теореме об обратном отображении (1.10), Φ — локально обратима в окрестности $\mathcal{U} \subseteq \mathcal{W}$ точки \mathbf{a} . Это значит, что существуют такие непрерывно дифференцируемые функции $\psi_i : \mathcal{V} \to \mathbb{R}$, $1 \le i \le n+m$, где \mathcal{V} — окрестность точки $\Phi(\mathbf{a})$, что мы получаем обратную замену координат к замене (2)

$$x_1 = \psi_1(u_1, \dots, u_m)$$

$$\vdots \qquad \vdots$$

$$x_{n+m} = \psi_{n+m}(u_1, \dots, u_m)$$

В итоге, мы получаем две коммутативные диаграммы

т.е.,

$$f_u(u_1,\ldots,u_{n+m}):=f(\varphi_1(x_1,\ldots,x_{n+m}),\ldots,\varphi_m(x_1,\ldots,x_{n+m}),x_{m+1},\ldots,x_{m+n}),$$

И

$$f(x_1,\ldots,x_{n+m}) = f_u(\psi_1(u_1,\ldots,\psi_m),\ldots,\psi_{n+m}(u_1,\ldots,u_m)).$$

Тогда, если мы ограничимся рассмотрением точек на множестве Ω , то во-первых, мы получаем, что

$$\Phi(\Omega) = \{(u_1, \dots, u_{n+m}) \in \mathcal{U} : u_1 = 0, \dots, u_m = 0\},\$$

во-вторых мы получаем функцию уже от n переменных $f_u(0,\ldots,0,u_{m+1},\ldots,u_{m+n})$ Далее, из диаграммы

$$\Phi(\Omega \cap \mathcal{U}) \xrightarrow{\Phi^{-1}} \Omega \cap \mathcal{U}$$

следует, что при $\mathbf{y} \in \Phi(\Omega \cap \mathcal{U})$, отображение Φ^{-1} имеет вид

$$\Phi^{-1}: \begin{pmatrix} 0\\ \vdots\\ 0\\ u_{m+1}\\ \vdots\\ u_{m+n} \end{pmatrix} \mapsto \begin{pmatrix} 0\\ \vdots\\ 0\\ x_{m+1}\\ \vdots\\ x_{m+n} \end{pmatrix},$$

а так как $u_{m+1} = x_{m+1}, \dots, u_{m+n} = x_{n+m}$, то

$$f_u(0,\ldots,0,u_{m+1},\ldots,u_{m+n}) = f(0,\ldots,0,x_{m+1},\ldots,x_{n+m}) \circ \Phi^{-1}.$$

Но тогда $\Phi(\mathbf{a})$ — точка экстремума функции $f_u(0,\dots,0,u_{m+1},\dots,u_{m+n})$ и по необходимому признаку, мы получаем

$$\frac{\partial f_u}{\partial u_{m+1}}(\Phi(\mathbf{a})) = \dots = \frac{\partial f_u}{\partial u_{m+n}}(\Phi(\mathbf{a})) = 0.$$

Это значит, что в точке $\Phi(\mathbf{a})$ имеем

$$(\mathrm{d}f_u)_{\Phi(\mathbf{a})} = \begin{pmatrix} \lambda_1 & \dots & \lambda_m & 0 & \dots & 0 \end{pmatrix}.$$

Наконец, из диаграммы

$$\Omega \cap \mathscr{U} \xrightarrow{\Phi} \Phi(\Omega \cap \mathscr{U})$$

$$\downarrow^{f_u}$$

$$\mathbb{R}$$

и из теоремы о композиции дифференциалов получаем

$$(\mathrm{d}f)_{\mathbf{a}} = (\mathrm{d}f_{u})_{\Phi(\mathbf{a})} \cdot (\mathrm{d}\Phi)_{\mathbf{a}}$$

$$= (\lambda_{1} \dots \lambda_{m} \ 0 \dots 0) \begin{pmatrix} \frac{\partial \varphi_{1}}{\partial x_{1}}(\mathbf{a}) & \dots & \frac{\partial \varphi_{1}}{\partial x_{m}}(\mathbf{a}) & \frac{\partial \varphi_{1}}{\partial x_{m+1}}(\mathbf{a}) & \dots & \frac{\partial \varphi_{1}}{\partial x_{m+n}}(\mathbf{a}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \varphi_{m}}{\partial x_{1}}(\mathbf{a}) & \dots & \frac{\partial \varphi_{m}}{\partial x_{m}}(\mathbf{a}) & \frac{\partial \varphi_{n}}{\partial x_{m+1}}(\mathbf{a}) & \dots & \frac{\partial \varphi_{m}}{\partial x_{m+n}}(\mathbf{a}) \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{pmatrix}$$

$$= \lambda_{1}(\mathrm{d}\varphi_{1})_{\mathbf{a}} + \dots + \lambda_{m}(\mathrm{d}\varphi_{m})_{\mathbf{a}}$$

2.16 Докажите критерий сходимости Коши для рядов и выведете необходимый признак сходимости ряда. Этот признак достаточен? Ответ обоснуйте

Формулировка. Ряд $(x_n)_{n\geq 1}$ сходится, если и только если для любого $\varepsilon>0$ существует такой номер N, что при $n\geq N,$ $p\geq 1$ имеет место неравенство

$$|s_{n+p} - s_n| = |x_{n+1} + \dots + x_{n+p}| < \varepsilon$$

Доказательство. Для ряда (x_n) рассмотрим последовательность (s_n) его частичных сумм, тогда согласно определению, (x_n) сходится, если и только если $\lim_{n\to\infty} s_n = s$, а тогда по критерию Коши (s_n) — фундаментальная, т.е. мы получаем следующее: (s_n) — сходится, если и только если для любого $\varepsilon > 0$ существует такой номер N, что при всех $n, m \ge N$, $|s_m - s_n| < \varepsilon$

Без ограничения общности мы можем положить, что m>n, т.е. m=n+p, где $p\geq 1$, в результате получаем следующее: последовательность (s_n) сходится, если и только если для любого $\varepsilon>0$ существует такой номер N, что для любого $n\geq N$, $p\geq 1$ имеет место

$$|s_{n+p} - s_n| = |x_{n+1} + \dots + x_{n+p}| < \varepsilon$$

Необходимый признак. Если ряд (x_n) сходится, то

$$\lim_{n \to \infty} x_n = 0$$

Доказательство. Достаточно воспользоваться критерием сходимости Коши в случае, когда p=1, мы тогда получим что для любого $\varepsilon>0$ существует такой номер N, что при всех $m\geq N$, имеет место неравенство $|s_{m+1}-s_m|<\varepsilon$, но это означает, что $\lim_{m\to\infty}(s_{m+1}-s_m)=0$

С другой стороны,

$$s_{m+1} - s_m = x_1 + \dots + x_m + x_{m+1}$$

 $-x_1 - \dots - x_m$
 $= x_{m+1}$,

поэтому из сходимости ряда (x_n) следует, что $\lim_{m\to\infty} x_{m+1}=0$, теперь полагая m=n-1 и принимая во внимание соглашение $s_0:=0$, получаем необходимое

Необходимое условие ни в коем случае не является достаточным. Например, гармонический ряд этому условию удовлетворяет, но он не сходится

- 2.17 Докажите, что если ряды (x_n) и (x'_n) сходятся и имеют суммы s и s', соотвественно, то ряд $(x_n + x'_n)$ сходится к сумме s + s', а ряд (λx_n) для любого $\lambda \in \mathbb{R}$ к сумме λs
 - (1) Последовательность частичных сумм ряда $(x_n + x'_n)$ имеет вид

$$(x_1 + \dots + x_n + x_1' + \dots + x_n')$$

т.е. $(s_n + s'_n)$, но тогда по арифметике предела для последовательностей получаем $\lim_{n \to \infty} (s_n + s'_n) =$ s+s', что доказывает первое утверждение

(2) Последовательность частичных сумм для ряда (λx_n) имеет вид $(\lambda x_1 + \cdots + \lambda x_n)$, т.е. (λs_n) , опять воспользовавшись арифметикой предела для последовательностей, мы завершаем доказательство

Докажите, что если (x_n) и (x'_n) почти похощие ряды, то оба они сходятся или расходятся

Рассмотрим ряд $(x_n'') := (x_n - x_n')$, тогда почти все его элементы равны нулю, а это значит, что

- он сходится, т. е. мы имеем $\lim_{n\to\infty} s_n'' = s''$ (1) Пусть ряд (x_n') сходится, и пусть $\lim_{n\to\infty} s_n' = s'$, тогда согласно предложению 2.17, ряд $(x_n'' + x_n')$
- ряд тоже сходится к сумме s'' + s', но $x_n'' + x_n' = x_n$, т. е. ряд (x_n) сходится (2) Пусть теперь ряд (x_n') расходится, а ряд (x_n) сходится. Опять рассмотрим ряд (x_n'') := $(x_n - x'_n)$, у которого почти все элементы нулевые, а значит, он сходится, и мы опять положим $\lim_{n \to \infty} s''_n = s''$. Рассмотрим ряд $(x_n - x'_n)$, исходя из п. 2.17, получаем, что этот ряд сходится, но $x_n - x''_n = x'_n$, и мы тем самым пришли к тому, что ряд (x'_n) сходится, что противоречит предположению, следовательно, ряд (x_n) не может быть сходящимся, т.е. из расходимости ряда (x'_n) следует расходимость ряда (x_n)

2.19 Докажите критерий сходимости положительного ряда

Формулировка. Положительный ряд (x_n) сходится тогда и только тогда, когда последовательность (s_n) его частичных сумм ограничена

Доказательство. В таком случае последовательность (s_n) его частичных сумм строго возрастает, тогда если последовательность (s_n) ограничена, то по теореме Вейрштрасса она имеет предел, т.е. ряд сходится

С другой стороны, пусть ряд сходится, тогда $\lim_{n\to\infty} s_n = s$, т.е. для любого $\varepsilon > 0$ найдётся такой номер N, что при всех $n \ge N$, $s - \varepsilon < s_n < s + \varepsilon$, но (s_n) — возрастающая, значит все $s_i < s + \varepsilon$, т.е. последовательность (s_n) ограничена

Пусть $(x_n),(x_n')$ — два положительных ряда, при этом $x_n \leq x_n'$ почти 2.20для всех n. Если ряд (x'_n) сходится, то сходится и ряд (x_n) . Если же ряд (x_n) расходится, то расходится и ряд (x'_n)

Если неравенства $x_n \leq x_n'$ не выпонены для каких-то конечных значений n, скажем, n= n_1,\ldots,n_ℓ , то рассмотрим ряды $(y_n),(y_n'),$ определённые следующим образом:

$$y_n = \begin{cases} x_n, & n \neq n_1, \dots, n_{\ell}, \\ 0, & n = n_1, \dots, n_{\ell}, \end{cases} \quad y'_n = \begin{cases} x'_n, & n \neq n_1, \dots, n_{\ell}, \\ 0, & n = n_1, \dots, n_{\ell} \end{cases}$$

которые почти похожи на ряды (x_n) и (x'_n) соответственно. Согласно п. 2.18, ряды (y_n) , (y'_n) имеют тот же характер сходимости, как и ряды (x_n) , (x'_n) соответственно. Поэтому исследование характера сходимости рядов (x_n) , (x'_n) сводится к исследованию характера рядов (y_n) , (y'_n) . Это означает, что мы без ограничения общности можем считать, что неравенства $x_n \leq x_n'$ выполняются для всех $n \geq 1$

(1) Пусть ряд (x'_n) сходится, тогда согласно критерию сходимости положительного ряда (п.2.19), последовательность его частичных сумм (s_n') ограничена, скажем, числом α , т.е. $s_n' < \alpha$ для всех n. С другой стороны, по условию, $x_n \le x'_n$, тогда в силу положительности рядов

$$s_n = x_1 + \dots + x_n \le x_1' + \dots + x_n' = s_n' < \alpha$$

для всех n, т.е. последовательность частичных сумм ряда (x_n) ограничена, тогда по критерию 2.19, ряд (x_n) сходится

(2) Пусть ряд (x_n) расходится, тогда по критерию 2.19, последовательность (s_n) неограничена. Так как последовательность (s_n) возрастает, то неограниченность означает, что для любого числа $M\in\mathbb{N}$ найдётся такой номер $n\in\mathbb{N}$, что все $s_n,s_{n+1},\ldots>M$. С другой стороны, как мы уже видели, $s'_n\geq s_n$, таким образом, для всех $m\geq n$ получаем $s'_m\geq s_m>M$, т.е. последовательность (s'_n) неограничена, а тогда по по критерию 2.19, ряд (x'_n) расходится