First Derivative Test and Increasing/Decreasing Text

In sketching the graph of a differentiable function it is useful to know where it increases (rises from left to right) and where it decreases (falls from left to right) over an interval. This section gives a test to determine where it increases and where it decreases. We also show how to test the critical points of a function to identify whether local extreme values are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive derivatives are increasing functions and functions with negative derivatives are decreasing functions. A function that is increasing or decreasing on an interval is said to be **monotonic** on the interval.

COROLLARY 3 Suppose that f is continuous on [a, b] and differentiable on (a, b).

If f'(x) > 0 at each point $x \in (a, b)$, then f is increasing on [a, b].

If f'(x) < 0 at each point $x \in (a, b)$, then f is decreasing on [a, b].

EXAMPLE 1 Find the critical points of $f(x) = x^3 - 12x - 5$ and identify the intervals on which f is increasing and on which f is decreasing.

Solution The function f is everywhere continuous and differentiable. The first derivative

$$f'(x) = 3x^2 - 12 = 3(x^2 - 4)$$
$$= 3(x + 2)(x - 2)$$

is zero at x = -2 and x = 2. These critical points subdivide the domain of f to create nonoverlapping open intervals $(-\infty, -2)$, (-2, 2), and $(2, \infty)$ on which f' is either positive or negative. We determine the sign of f' by evaluating f' at a convenient point in each subinterval. The behavior of f is determined by then applying Corollary 3 to each subinterval. The results are summarized in the following table, and the graph of f is given in Figure 4.20.

Interval	$-\infty < x < -2$	-2 < x < 2	$2 < x < \infty$
f' evaluated	f'(-3) = 15	f'(0) = -12	f'(3) = 15
Sign of f'	+	_	+
Behavior of f	increasing	decreasing	increasing

We used "strict" less-than inequalities to specify the intervals in the summary table for Example 1. Corollary 3 says that we could use \leq inequalities as well. That is, the function f in the example is increasing on $-\infty < x \leq -2$, decreasing on $-2 \leq x \leq 2$, and increasing on $2 \leq x < \infty$. We do not talk about whether a function is increasing or decreasing at a single point.

FIGURE 4.20 The function $f(x) = x^3 - 12x - 5$ is monotonic on three separate intervals (Example 1).

First Derivative Test for Local Extrema

In Figure 4.21, at the points where f has a minimum value, f' < 0 immediately to the left and f' > 0 immediately to the right. (If the point is an endpoint, there is only one side to consider.) Thus, the function is decreasing on the left of the minimum value and it is increasing on its right. Similarly, at the points where f has a maximum value, f' > 0 immediately to the left and f' < 0 immediately to the right. Thus, the function is increasing on the left of the maximum value and decreasing on its right. In summary, at a local extreme point, the sign of f'(x) changes.

FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The first derivative changes sign at a critical point where a local extremum occurs.

These observations lead to a test for the presence and nature of local extreme values of differentiable functions.

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across this interval from left to right,

- 1. if f' changes from negative to positive at c, then f has a local minimum at c;
- 2. if f' changes from positive to negative at c, then f has a local maximum at c;
- **3.** if f' does not change sign at c (that is, f' is positive on both sides of c or negative on both sides), then f has no local extremum at c.

The test for local extrema at endpoints is similar, but there is only one side to consider.

EXAMPLE 2 Find the critical points of

$$f(x) = x^{1/3}(x - 4) = x^{4/3} - 4x^{1/3}$$
.

Identify the intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.

Solution The function f is continuous at all x since it is the product of two continuous functions, $x^{1/3}$ and (x-4). The first derivative

$$f'(x) = \frac{d}{dx} \left(x^{4/3} - 4x^{1/3} \right) = \frac{4}{3} x^{1/3} - \frac{4}{3} x^{-2/3}$$
$$= \frac{4}{3} x^{-2/3} \left(x - 1 \right) = \frac{4(x - 1)}{3x^{2/3}}$$

is zero at x = 1 and undefined at x = 0. There are no endpoints in the domain, so the critical points x = 0 and x = 1 are the only places where f might have an extreme value.

FIGURE 4.22 The function $f(x) = x^{1/3}(x - 4)$ decreases when x < 1 and increases when x > 1 (Example 2).

FIGURE 4.23 The graph of $f(x) = (x^2 - 3)e^x$ (Example 3).

The critical points partition the x-axis into intervals on which f' is either positive or negative. The sign pattern of f' reveals the behavior of f between and at the critical points, as summarized in the following table.

Interval	x < 0	0 < x < 1	x > 1
Sign of f'	_	_	+
Behavior of f	decreasing	decreasing	increasing

Corollary 3 to the Mean Value Theorem tells us that f decreases on $(-\infty, 0]$, decreases on [0, 1], and increases on $[1, \infty)$. The First Derivative Test for Local Extrema tells us that f does not have an extreme value at x = 0 (f' does not change sign) and that f has a local minimum at x = 1 (f' changes from negative to positive).

The value of the local minimum is $f(1) = 1^{1/3}(1-4) = -3$. This is also an absolute minimum since f is decreasing on $(-\infty, 1]$ and increasing on $[1, \infty)$. Figure 4.22 shows this value in relation to the function's graph.

Note that $\lim_{x\to 0} f'(x) = -\infty$, so the graph of f has a vertical tangent at the origin.

EXAMPLE 3 Find the critical points of

$$f(x) = (x^2 - 3)e^x.$$

Identify the intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.

Solution The function f is continuous and differentiable for all real numbers, so the critical points occur only at the zeros of f'.

Using the Derivative Product Rule, we find the derivative

$$f'(x) = (x^2 - 3) \cdot \frac{d}{dx} e^x + \frac{d}{dx} (x^2 - 3) \cdot e^x$$
$$= (x^2 - 3) \cdot e^x + (2x) \cdot e^x$$
$$= (x^2 + 2x - 3)e^x.$$

Since e^x is never zero, the first derivative is zero if and only if

$$x^{2} + 2x - 3 = 0$$
$$(x + 3)(x - 1) = 0.$$

The zeros x = -3 and x = 1 partition the x-axis into intervals as follows.

Interval	x < -3	-3 < x < 1	1 < x
Sign of f'	+	_	+
Behavior of f	increasing	decreasing	increasing

We can see from the table that there is a local maximum (about 0.299) at x=-3 and a local minimum (about -5.437) at x=1. The local minimum value is also an absolute minimum because f(x)>0 for $|x|>\sqrt{3}$. There is no absolute maximum. The function increases on $(-\infty, -3)$ and $(1, \infty)$ and decreases on (-3, 1). Figure 4.23 shows the graph.