Universidade Federal de Santa Maria

MTM 1020 - Cálculo B

I Avaliação

Aluno: Din Varya Territa

Questão	1	2	3	4	Total
Valor	1,5	1.5	2,0	3,0	8.0
Nota					

- 1. Considerando a função vetorial $\vec{r}(t) = (-2sen(3t), e^{-t}, \frac{4}{t})$. Determine:
 - a. $\lim_{t\to 0} \overrightarrow{r}(t) =$
 - b. $\frac{d}{dt}\overrightarrow{r}(t) =$
 - c. $\int_{-\pi}^{\pi} \overrightarrow{r}(t) dt =$
- 2. Considerando o elipsóide $4x^2 + 9y^2 + 18z^2 = 72$
 - a. Obtenha uma equação do traço eliptico no plano $z = \sqrt{2}$
 - Obtenha os comprimentos dos eixos maior e menor da elipse determinada em a.
 - c. Obtenha as coordenadas dos focos da elipse da parte a
 - d. Descreva a orientação do eixo focal da elipse da parte a. relativamente aos eixos coordenados.
- 3. Marque V se verdadeiro e F se falso, justificando TODAS as respostas:
- a.(F) O comprimento de arco de parte da hélice circular $\overrightarrow{r}(t) = (cos(t), sen(t), t)$ de t = 0a $t=2\pi \text{ é }\sqrt{2}$
- b. (\mathbb{F}) O ponto cujas coordenadas esféricas são $Q=(5,\frac{\pi}{6},\frac{\pi}{4})$ tem coordenadas retangulares $(\frac{1}{2}, \frac{3}{2}, 1)$.
- c. (F) A equação da rosácea $r = 3\cos\theta$ em coordenadas retangulares passa a ser y = $4\sqrt{x^2-3x}$
- d. (F) Se uma curva C do plano for parametrizada pela função vetorial suave $\overrightarrow{r}(s)ds$, onde s é um parâmetro comprimento de arco, então $\int_{-1}^{5} \|\overrightarrow{r}'(s)\| = 5$
- 4. Determine o triedro de Frenet, a curvatura e a torção da curva $\overrightarrow{r}(t) = (3sen(t), 3cos(t), 4t)$. $t \in \mathbb{R}$.

$\kappa(s) = \left\ \overrightarrow{r''}(s) \right\ $	$\overrightarrow{N}(s) = \frac{\overrightarrow{r^{h}}(s)}{\left\ \overrightarrow{r^{h}}(s)\right\ }$	$\overrightarrow{T}(s) = \overrightarrow{r'}(s)$	$\tau(s) = \overrightarrow{B'}(s) \cdot \overrightarrow{N}(s)$
$\overrightarrow{B}(s) = \overrightarrow{T}(s) \times \overrightarrow{N}(s)$	$\kappa(t) = \frac{ \vec{r}'(t) }{ \vec{r}'(t) }.$	$\kappa(t) = -\frac{\ \overrightarrow{r'}(t) \times \overrightarrow{r''}(t)\ }{\ \overrightarrow{r'}(t)\ ^3}$	$\tau(t) = -\frac{\left(\overrightarrow{r}^{\dagger}(t) \times \overrightarrow{r}^{\delta}(t)\right) \cdot \overrightarrow{r}^{\delta}(t)}{\left\ \overrightarrow{r}^{\dagger}(t) \times \overrightarrow{r}^{\delta}(t)\right\ ^{2}}$
$\overrightarrow{T}(t) = \frac{\overrightarrow{r'}(t)}{\left\ \overrightarrow{r'}(t)\right\ }$	$\overrightarrow{N}(t) = \frac{\overrightarrow{T}(t)}{\ \overrightarrow{T}(t)\ }$	$\overrightarrow{B}(t) = \frac{\overrightarrow{r'}(t) \times \overrightarrow{r''}(t)}{\ \overrightarrow{r'}(t) \times \overrightarrow{r''}(t)\ }$	