Devoir maison n°13: Ln, IAF et suites

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Problème 1 - Fonction logarithme népérien

- 1)
- 2)
- 3)
- 4)
- 5) a)
 - b)
 - c)

Problème 2 - Inégalité des accroissements finis et suites

Partie A

1) Supposons être dans les conditions de l'énoncé. Posons :

$$g(x) = f(x) - f(a) - M(x-a) \\$$

$$h(x) = f(x) - f(a) - m(x - a)$$

Alors, d'une part, g(a) = h(a) = 0. De plus, ces deux fonctions sont dérivables sur a; b[par sommes de fonctions dérivables et pour tout $a \in a; b[$:

$$g'(x) = f'(x) - M \leq 0$$
 par hypothèse

Ainsi que :

$$h'(x) = f'(x) - m \geq 0$$
 par hypothèse

Donc g est décroissante sur]a;b[. Comme elle est continue sur [a;b], on peut conclure que, comme $b\geq a,$ $g(b)\leq g(a)=0,$ d'où :

$$f(b)-f(a) \leq M(b-a)$$

Similairement, h est croissante sur]a;b[et $h(b)\geq h(a)=0,$ d'où :

$$m(b-a) \leq f(b) - f(a)$$

Partie B

On définit sur \mathbb{R}_* :

$$\varphi(x) = \frac{1}{2} \left(x + \frac{5}{x} \right)$$

1) φ est impaire : soit $x \in \mathbb{R}_*$. Alors $-x \in \mathbb{R}_*$ et :

$$\varphi(-x) = \frac{1}{2} \left(-x - \frac{5}{x} \right) = -\frac{1}{2} \left(x + \frac{5}{x} \right)$$
$$= -\varphi(x)$$

2)

• Quand $x \to +\infty : \frac{5}{x} \to 0$ et par somme :

$$\lim_{x \to +\infty} \varphi(x) = +\infty$$

• Quand $x \to -\infty : \frac{5}{x} \to 0$ et par somme :

$$\lim_{x \to -\infty} \varphi(x) = -\infty$$

- Quand $x \to 0^- : \frac{5}{x} \to -\infty$ et par somme :

$$\lim_{x \to 0^-} \varphi(x) = -\infty$$

• Quand $x \to 0^+ : \frac{5}{x} \to +\infty$ et par somme :

$$\lim_{x \to 0^+} \varphi(x) = +\infty$$

3) φ est dérivable sur son intervalle de définition comme somme de deux fonctions dérivables sur \mathbb{R}_* . Sa dérivée est pour tout $x \in \mathbb{R}_*$:

$$\varphi'(x) = \frac{1}{2} - \frac{5}{2x^2}$$

Ainsi, $\varphi'(x) \leq 0$ si et seulement si :

$$\begin{split} \frac{1}{2} & \leq \frac{5}{2x^2} \\ \iff x^2 & \leq 5 \\ \iff x \in \left[-\sqrt{5}; \sqrt{5} \right] \cap \mathbb{R}_* \end{split}$$

On a donc le tableau de variations suivant :

- 4) TODO: Thomas? dis moi si tu ne veux pas le faire:3
- **5)** Soit $x \in \mathbb{R}_*$:

$$\varphi(x) - x = \frac{x}{2} + \frac{5}{2}x - x$$
$$= -\frac{x}{2} + \frac{5}{2}x$$
$$= \frac{5 - x^2}{2x}$$

Ce qu'il fallait démontrer.

6) Soit $x\in\left[\sqrt{5};\frac{5}{2}\right]$. Alors $x\geq\sqrt{5}$, et par le 3), $\varphi'(x)\geq0$. De plus :

$$\varphi'(x) \le \frac{1}{10}$$

$$\iff \frac{1}{2} - \frac{1}{10} \le \frac{5}{2x^2}$$

$$\iff \frac{4}{5} \le \frac{5}{x^2}$$

$$\iff x^2 \le \frac{25}{4}$$

$$\iff x \le \frac{5}{2} \operatorname{car} x \ge \sqrt{5} \ge 0.$$

Donc $0 \le \varphi'(x) \le \frac{1}{10} \operatorname{sur} \left[\sqrt{5}; \frac{5}{2} \right]$.

Partie C

1) Par le tableau de variations, φ est croissante sur $\left[\sqrt{5},\frac{5}{2}\right]$. Ainsi, si pour $n\in\mathbb{N},\,u_n\in\left[\sqrt{5};\frac{5}{2}\right]$, u_{n+1} est bien défini et :

$$\sqrt{5} \leq u_{n+1} = \varphi(u_n) \leq \varphi\bigg(\frac{5}{2}\bigg) = \frac{9}{4} \leq \frac{5}{2}$$

Comme $u_0\in\left[\sqrt{5};\frac{5}{2}\right]$, par récurrence, la suite (u_n) est bien définie et pour tout $n\in\mathbb{N},\sqrt{5}\leq u_n\leq\frac{5}{2}$.

2) Soit $n \in \mathbb{N}$. Alors:

$$\begin{split} u_{n+1} - u_n &= \varphi(u_n) - u_n \\ &= \frac{5 - u_n^2}{2u_n} \text{ par le B)5)} \\ &\leq 0 \text{ car } u_n \geq \sqrt{5} \end{split}$$

Donc $u_{n+1} \le u_n$ est la suite (u_n) est décroissante.

3) a) Soit $n \in \mathbb{N}$. On sait par le B)6) que pour tout $x \in \left[\sqrt{5}; \frac{5}{2}\right]$, $0 \le \varphi'(x) \le \frac{1}{10}$. φ est dérivable, en particulier continue, sur cet intervalle, et on peut donc appliquer l'IAF avec u_n et $\sqrt{5}$ qui sont dans le bon intervalle, donnant :

$$\begin{split} 0 \Big(u_n - \sqrt{5} \Big) & \leq \varphi(u_n) - \varphi \Big(\sqrt{5} \Big) \leq \frac{1}{10} \Big(u_n - \sqrt{5} \Big) \\ & \iff 0 \leq u_{n+1} - \sqrt{5} \leq \frac{1}{10} \Big(u_n - \sqrt{5} \Big) \end{split}$$

Ce qu'il fallait démontrer.

b) On procède par récurrence.

$$\underline{\text{Initialisation}}: 0 \leq u_0 - \sqrt{5} \text{ car } \tfrac{5}{2} \geq \sqrt{5}, \text{ et } u_0 - \sqrt{5} \leq \tfrac{1}{2} \text{ car } \sqrt{5} \geq 2.$$

<u>Hérédité :</u> Supposons pour $n\in\mathbb{N}$ que $0\leq u_n-\sqrt{5}\leq\frac{1}{2}\cdot\left(\frac{1}{10}\right)^n$. Alors $u_{n+1}-\sqrt{5}\geq 0$ par le 1), et le 3)a) donne :

$$\begin{aligned} u_{n+1} - \sqrt{5} &\leq \frac{1}{10} \left(u_n - \sqrt{5} \right) \\ &\leq \frac{1}{2} \cdot \left(\frac{1}{10} \right)^{n+1} \end{aligned}$$

Par récurrence, pour tout $n \in \mathbb{N}$,

$$0 \le u_n - \sqrt{5} \le \frac{1}{2} \cdot \left(\frac{1}{10}\right)^n$$

4) La suite (u_n) est bornée en bas par $\sqrt{5}$ (1) et décroissante (2). Elle est donc convergente. Notons $l=\lim u_n$: on a donc $l\geq \sqrt{5}$. Par passage à la limite du membre droit du 3)b), $l-\sqrt{5}\leq 0$. Donc $l=\sqrt{5}$: la suite (u_n) tend vers $\sqrt{5}$.

(On aurait pu procédér uniquement avec le 3)b) par gendarmes.)

5) On voit par l'inégalité du 3)b) que $u_6-\sqrt{5}\leq 10^{-6}$. Ainsi, $k\leq 6$. Le code python (non optimisé) suivant calcule la valeur de k:

```
from math import sqrt
def u(n):
    if n == 0:
        return 5/2
    else:
        return ( u(n-1) + 5/(u(n-1)) )/2

k = 0
while u(k) - sqrt(5) > 10**(-6):
    k += 1

print(k)
```

Et échoue misérablement en trouvant k=3, écrasé par les erreurs de précision de flottants, proférant en se ruant vers sa propre fin des insanités comme $0.0001=10^{-10}$, inscrivant pour l'éternité sa place dans le recueil des langages de programmation incapables de faire des calculs scientifiques sans y sacrifier une nuit blanche.