	words_	oredictue analys	sis -s Dat Science
Analysis.	us Analytics	in bración 45	remler tous
Analy tics	recionada de una Vhy?		
Qualifelivo	ntuición y		Quantitative de jormoles algóritmos
			algor, 1mo

Aventoda TECNICIS MOST - Analitica ESQUEMA BUSINESS Orliness Borness Business Andles Analytics Data report DATA DATA DATA ANALY TKS Preliminary report Science Dyited Signed Optimize M of Oriling (Secondary) BI Dosbboords IA Client Mochine Retation + me Deshood, Jeorning Fraud Prevention s. do. Compo Anlas Future Present PAST Business Intelligence (31): Analisis, peport de de los historices de negocio

M=1/ Probabilidad A > Evento P(A) - Projes. 1. del P(A) = preferred (outomes)) preferrod = (avoura) la all - somple spece P(A and B) = P(A) . P(B) Trid-inle Exper-en1: conjunto de interto, Experimental possible - probables a fear to gornes Thes: al prossilite - % free = a DEl complemento de un evento en todo lo que no en el evento, es decir la produtitad restate A + A = Sa -plc spece A + 1 = L (A')' = A

Combinatoria	
Lomsinalogia	
o Permutaciones	
Cantidad de moneres union de definir un sot	
Contrinación de de un set con mos etas	
$P_n = n \cdot (n-1) \cdot (n-1) \cdot o \cdot o \cdot 1 = n! (n \text{ factorial})$	
D Factories	
m = 1 · 2 · × n	
3(-1,203-6	
o dos loctoriales mo tienen negativos	
· 0! = 1	
Propiedades	
$n! = n \cdot (m-1)!$	
$(n+1)=m\cdot(n+1)$	
$(n+k)$ = $n! \cdot (m+1) \cdot \circ \circ \cdot (m+k)$	
$(n \cdot k)$ = $n!$	
$(n-k+1) \cdot (n-k+2) \cdot \cdot \cdot (n-k+k)$	
y(n>k)	
$\frac{n!}{k!} = (k+1) \cdot \cdots \cdot n$	

Combinatoria - Variaciones & Combinations Variaciones con repeticion

Formula

P - nº p-9 mumber of positions Variaciones sin repetición m - num options Formula $V_p^n = \frac{n!}{(n-p)!}$ Variacione, donde el orden no importa $C_{\rho}^{\gamma} = \frac{m!}{\rho! \cdot (m \cdot \rho)!}$ $C_{4} = \frac{10!}{4! \cdot (10-4)!} = \frac{10!}{4 \cdot 6!} = \frac{7 \cdot 8 \cdot 9 \cdot 10}{1 \cdot 2 \cdot 3 \cdot 4} = \frac{7 \cdot 8 \cdot 9 \cdot 10}{1 \cdot 2 \cdot 3 \cdot 4} = \frac{10!}{4! \cdot 6!} = \frac{10!}{4!} = \frac{1$

Combinatoria - Simetria	
Il punto simetrico es m/z	
pich p-many of n = omit n-p	
Conjunto de combinaciones	
$C_1 \circ C_2 \circ C_3 \circ G \circ C_m$	
Bosicamente calcula el numero de opciones para	
cada evento y multiplica	
S/W REPE	
$P_{\mathbf{n}} = n$	
$\int C = \frac{V}{P}$	
$\bigvee_{\rho} \frac{n!}{(n-\rho)!}$	
$(m^2 P)$	
V CON NEPE	
$\sqrt{\rho} = n^{\rho}$	
$\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$	
$ \begin{array}{c} $	
p! (n-1)!	
SIMETRIA	
P n-p	

Mutually Exclusive Sets No tienen mingun tipo de overlop Ang= Ø / Aug= Atg / Dependence and Independence Sets P(AIB) - 1/3 - Probabilded Je
A en B A -> Q 🌢 B -P(A1c)== Conditional Probability C -> Q Conditional Probability P(A) = P(A/B) Independients -> S. son independiente, P(AAB) = P(A). P(B) Solo si son independientes Formula: P(A/B) = P(A/B) > Only true of P(B)> O | El orden en P(AIB) I Importa Formula Independing to: P(A/B): P(A) P(B) = P(A)

$$-\frac{MULTIPLICATION}{P(A / 13)} = \frac{P(A / 13)}{P(B)} - D P(A / 13) \cdot P(B) = \frac{P(A / 13)}{P(B)}$$

Bayes Rule - LAW - THEONEM P(AIB)= P(AAB)
P(B) (P(AnB) = P(BIA) · P(A) Lo (P(AIB) = P(BIA) · P(A) / P(B) Practical example Women Men Men 886 | 1000 | 1886 Full Time Part 111 Time 888 1009 11897

Distributions
The possible value, a variable can take and
how freewestly they ocur
Y - Actual Outrome P(Y = y)
y-o Posible outcomes PCy)
Ej: 7 -> marble) from bay
E; -/ -> marble) from bay y -> x number v) mar, 5/0,
Getting 5 marsle, P(Y=5) or P(S)
Averag value of a distribution
How spread the data is How for volve, or from the mean
Population Data Samp & Data,
Todos la Datos Parte de las data
mean: µ mean de un S-p/c: X
variance or vourionce

Standard Deviation Square root of the verience To2 P Population: o / Se mide en la migma unidodes

P Sample: S | que la media media

Mas angestion on Menos congestion

el medio de la distribución

= more data an ét Los datas estarar mais
dispersos.

Hay relector constante entre mean y

 $\sigma^{2} = E((Y-\mu)^{2}) = E(Y^{2}) - M^{2}$

Experted value o

Joy once.

TYPES OF DISTAIBUTIONS

DISCRETE DISTRIBUTIONS

Finite number of outcome

D CONTINUOUS DISTRIBUTIONS

Infinitely many outcomes

Vorielle 7/5 struction (Preden Joséan)

Instaciones para expresor to distribución

Discrete Distributions
DDistribuciones de cosa finicas
- o Uniform Distributions
DAIL outcome, tienen la misma prolosiled
Fy dip can ó saccr carta
Solo has de posibles respuestas Etrue
- D Binomial Distribution
Solo dos atromes por itiración pero prede haser varios
1 teraciones
E Longo una meneda 3 seces y calcular la prode Salidad
A qui solga cora 2 veces eggistes
- DPoisson Distribution
un intervalu especifica,

CONTINUOUS DISTRIBUTIONS Se representan como curvas en un grafico en lugar de las bouves que estama, axosto-lædes en las Discelles >}atlenshtm-o Suder ser los que encontramo, en la naturaleza Ejemplo: el peso de un oso polor dos outliers no suelen mosterx en les distribuciones normales P Student's -T Distriction Tipo de distribución mormal con datos limitado, Solemon tratada como una somple de una distribución mormal Los outlinos de este tipo de distríbucios suelas estor elevados a djorcada do los de los pormal Margaret Students -T

CONTINUOUS DISTRIBUTIONS D Chi - Squared D Asimetria D Solo valores no negation, DEmpiera en el Osiempia De siele reflejer la realison de aentes reales De usa principal-ente pura testos de Hypotesis D Exponencial Distribution Frentos que ambien reprisomente al comices ou reciser mucha más atención articulos, cuendo son nuevos D Jogistic Distribution D Forecast Analysis D Usado pora determinor el punto de corte de un outrome sotisfactorio Ej: Cuenta ventaja de ero ha que trerer a minuto 10 en el la para pader realizar predictione de victoria

Uniform Pistrisotion rage of whe. Declaration

Onlyn- Database Femplo declaración $\times \sim U(3,7)$ o Todo los resultados tionen la misma productidad nou Dice FLIP COIW F das: P(1) - P(2) - = P(6) DE expected value no no de info 123458

d ser toobs ignol de Arosesses Asi mis mo el men y la cerionce no tiener interpretación

	\sim			П	. (\cap				_							
	1	er	∞	ا ا ن	i i	ء بر	tri	<u>ُىلا</u>	tia	n							