# Predictive Model for Insurance Company

Mentored by: Mr. Gunnvant Saini

Presented by: Group 4, IPBA Batch 2

Presenters -

- Shubhangi Bansal
- Gargi Baser
- Pratik Khadse
- Neela Madhav Suram
- Adeep Bhojne

#### **Overview**



- Business Problem
- Data Wrangling(Munging)
- Exploratory Data Analysis
- Model Building
- Market Basket Analysis
- Conclusion

#### **Business Problem**



- Client is a leading Insurance Company having long term protection & savings solution plans as their products.
- Cost of acquiring new customer > expanding existing customer
- Client would like to cross-sell their products to their existing customer base to:
  - Gain more revenue
  - Maximize value of customer portfolio

Develop a predictive model:
To identify customers who will
Buy additional policies

Solution

Identify the product/s:
What type of policies are those
Customers most likely to purchase

# **Data Wrangling (Munging)**



#### Step 1

Performed Variable Identification to identify significance of each variable

#### Step 4

Perform data cleaning and treatment



#### Step 2

Compared the two datasets (Merged & CustSegList)

#### Step 3

Create raw data from data chosen in step 2 to identify Target Variable and perform further analysis

## **Step 1: Variable Identification**

| Identity Variables       | Policy related Variables     |
|--------------------------|------------------------------|
| policy_owner_number      | policy_number                |
| Own_gender               | premium                      |
| LA_gender                | afyp                         |
| Own_Education            | sum_assured                  |
| Own_Edu                  | RCD                          |
| LA_DOB                   | Policy_term                  |
| Marital_status           | PPT                          |
| City                     | billing_frequency            |
| City_classification      | risk_status                  |
| STATNAME                 | contract_type                |
| DSTNAME                  | Product_description          |
| Focus_Region             | Product_Club_Manual          |
| Owner_salary             | CUST_prod_cat                |
| Occ_profile              | Product_brief_category       |
| Occupation               | Par_NonPar                   |
| Occupation_group         | ECS_flag                     |
| own_occupation           | channel_flag                 |
| Freq (CustSegList)       | Med_flag                     |
| multi_cust (CustSegList) | Combine_policy (CustSegList) |

### **Step 2: Comparison of Datasets**

|                 | Merged                                                                                                                                                                                                                                          | CustSegList          |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1. Shape        | (812914,37)                                                                                                                                                                                                                                     | (750598,33)          |
| 2. Observations | One row per policy purchase                                                                                                                                                                                                                     | One row per customer |
|                 | Continuous variables related to personal information have same values in both data sets ex- income, age                                                                                                                                         |                      |
|                 | policy_owner_number is unique and identifies the client                                                                                                                                                                                         |                      |
|                 | Variables related to Insurance policies change in CustSegList:  1. sum_assured and afyp are aggregated.  2. PPT, policy term, billing frequency, max of two values is chosen  3. premium, RCD smaller of the values is chosen for majority rows |                      |
|                 | Categorical values remain same across both data sets except for variables with policy description                                                                                                                                               |                      |

Outcome: Merged data set is more relevant for further use since aggregate values present in CustSegList will not be beneficial for predictions

### Step 3: Create raw data to do further Analysis

- All variables from merged were chosen
- Created variable 'age': derived from LA\_DOB
- Created variable 'Freq': using count of policy\_owner\_number
- Created the 'target' variable:
  - Count of policy\_owner\_number (Freq)>1: 1
  - Count of policy\_owner\_number (Freq)=1: 0
- Drop columns
  - Own\_Education: abbreviated terms from Own\_Edu
  - own\_occupation: abbreviated terms from Occupation

#### **Step 4: Data cleaning and treatment**

Cleaning the Data – Cleaning tasks like converting Data Types, converting 'MISSING', 'N.A.' to NaN, String reformatting

#### **Continous Variable**

 Treating missing values for continuous variables (Owner\_salary) by replacing with mean value

#### **Categorical Variable**

 Dropping rest of missing values (i.e., not treating categorical variables)



Owner\_salary 1.0766 %missing values
Marital\_status 0.085 %missing values
Own\_Education 9.3519 %missing values
Own\_Edu 9.3519 %missing values
Own\_gender 0.0846 %missing values
own\_occupation 0.1856 %missing values
Occupation 0.2722 %missing values
Occupation\_Group 0.2722 %missing values
Focus\_region 0.0608 %missing values
Occ\_Profile 0.2722 %missing values
DSTNAME 0.0015 %missing values
City\_classification 0.0015 %missing values

### **Exploratory Data Analysis (EDA)**



### **Dataset for Model Building: Concept**

| Customer   | Policy Bought |
|------------|---------------|
| Customer 1 | Α             |
| Customer 1 | В             |
| Customer 1 | С             |
| Customer 2 | Α             |
| Customer 2 | D             |
| Customer 3 | A             |
| Customer 3 | С             |
| Customer 3 | D             |
| Customer 4 | В             |
| Customer 5 | С             |

- As seen from above example, some of the Customers have bought multiple policies. So we sorted the data as per the 1<sup>st</sup> policy (based on RCD)
- Based on first policy, we predicted Customer buying multiple policies

#### **Dataset for Model Building: Execution**

Variable RCD (Risk Commencement Date) identified to fetch first policy bought by a customer

```
#create dataset to model on
df_merged.sort_values(['policy_owner_number', 'RCD'], inplace=True)
df_merged.reset_index(drop=True, inplace=True)
dataset=df_merged.drop_duplicates(subset='policy_owner_number', keep='first')
```

- Dropping columns not needed for model development
  - policy\_number, policy\_owner\_number: Identifiers
  - RCD: sorted already
  - Freq: Target variable has been obtained

### **Owner Salary (significant)**



### **Customer Product Category (significant)**



### **Gender-wise classification (insignificant)**



# **Summary of EDA**

| Sr.<br>No. | Variable<br>Category       | No. of<br>Variables | Variable Name                                                                               | Impact on Target Variable |
|------------|----------------------------|---------------------|---------------------------------------------------------------------------------------------|---------------------------|
| 1          | Amount                     | 4                   | Owner_Salary, afyp, premium, sum_assured                                                    | Significant               |
| 2          | Gender                     | 2                   | Own_gender, LA_gender                                                                       | Low                       |
| 3          | Education                  | 1                   | Own_Edu                                                                                     | Moderate                  |
| 4          | Occupation                 | 3                   | Occ_Profile, Occupation_Group, Occupation                                                   | Significant               |
| 5          | Internal<br>Categorization | 2                   | risk_status, contract_type                                                                  | Moderate                  |
| 6          | Product                    | 5                   | Product_Description, Par_NonPar, Product_brief_Category, Product_Club_Manual, CUST_prod_cat | Significant               |
| 7          | Location                   | 5                   | city, DSTNAME, STATNAME, Focus_region, City_classification                                  | Significant               |
| 8          | Time                       | 4                   | Age, PPT, Policy_term, billing_frequency                                                    | Significant               |
| 9          | Flags                      | 3                   | channel_flag, Med_Flag, ECS_flag                                                            | Moderate                  |
| 10         | Marital Status             | 1                   | Martial_status                                                                              | Moderate                  |
| 11         | Identifiers                | 2                   | policy_number, policy_owner_number                                                          | NA                        |
| 12         | Date                       | 1                   | RCD                                                                                         | NA                        |
| 13         | Frequency                  | 2                   | Freq, Target                                                                                | NA                        |

## **Model Building**



#### **Random Forest Model**





#### Steps:

- Feature Engineering
- Verifying important variables from iteration 1
- > Checking metrics after choosing important variables from iteration 2
- Fine tuning the model in iteration 3

### Iteration 1: Feature Importance

#### Feature engineering:

Label encode categorical variables

#### Feature Importance:

- Selecting features greater than or close to 0.05 for further iteration
- Features used
  - 30 (including target)
- Accuracy
  - 。 93.92%

```
0.08
0.06
0.04
0.02
{'Med Flag': 0.0036103132780933127,
 'Product brief category': 0.003942889966881695,
 'Par NonPar': 0.00783010620232286,
'billing frequency': 0.008633024397178949,
'LA gender': 0.00989515060598074,
'ECS_flag': 0.010154501350665633,
 'Own gender': 0.010240100643347584,
 'channel flag': 0.012270895522397903,
 'Marital_status': 0.012993972748597047,
'Product_Club_Manual': 0.013884481997877294,
 'Occ Profile': 0.01487766277211495,
 'Product Description': 0.016440911196840415,
 'Focus region': 0.017649273119928775,
'risk status': 0.020533235459192833,
 'Occupation_Group': 0.022011234130765167,
'PPT': 0.023237607828855207,
 'contract type': 0.02409288227066682,
 'City classification': 0.024783623021481183,
 'Own Edu': 0.029254436418316477,
 'Policy term': 0.0348848550603813,
 'Occupation': 0.035029395203075624.
 'STATNAME': 0.041366717364934656,
 'city': 0.05789232222330059,
 'DSTNAME': 0.06062141998036463,
 'Owner salary': 0.07159908584080715,
 'afyp': 0.07702363060510536,
 'premium': 0.07992699849148813,
 'CUST prod cat': 0.08174333454685098,
 'age': 0.08388140312196837,
```

### **Iteration 2: Fitting the Model**

- Features selected: 16 (including target)
- Accuracy on validation data:
  - 0 93.88%
- Confusion Matrix: We are fine with false positives, but false negatives impact us more → resources spent will not be useful for these percentage of customers

|        | Predicted              |                         |
|--------|------------------------|-------------------------|
| Actual | 0                      | 1                       |
| 0      | True Negative (94.47%) | False Positive (44.16%) |
| 1      | False Negative (5.53%) | True Positive (55.84%)  |

#### **Iteration 2: ROC Plot**



**AUC:** 0.792

As observed from the graph, the bend is visible between the range 0.3 to 0.5

#### **Iteration 3: Fine Tuning the Model**

|        | Predicted              |                         |
|--------|------------------------|-------------------------|
| Actual | 0                      | 1                       |
| 0      | True Negative (95.01%) | False Positive (51.24%) |
| 1      | False Negative (4.99%) | True Positive (48.76%)  |

- > Accuracy on Testing Data: 93.63%
- $\rightarrow$  Threshold = 0.40
- ❖ We changed the Threshold to get the False Negatives below 5% assuming the same would be tolerated by Business Team

# **Market Basket Analysis**



#### **Dataset for MBA: Concept**

| Customer   | Policy Bought |
|------------|---------------|
| Customer 1 | Α             |
| Customer 1 | С             |
| Customer 2 | Α             |
| Customer 2 | D             |
| Customer 3 | Α             |
| Customer 3 | D             |
| Customer 3 | С             |

- Amongst people buying multiple policies, majority buy D as a second policy
- ➤ Apriori generates such Association Rules (A → D)

#### **Dataset for MBA: Execution**

- We use all records of individual policies pertaining to a customer
- In above figure, each row indicates a customer buying multiple policies; policies chosen form the individual columns
- We noted whether a customer buys a policy (listed as 1, 0 otherwise)

### **Association Rules: Application**

- Apriori generates rules which can be summarized as shown in table below
- Displaying rules for few Top (71%) categories (Variable: Product\_Club\_Manual)
- Depending on needs of the Business, more rules can be generated
- Metric 'Lift': determines how likely the recommended product will be purchased, given the product already purchased

| Lift value = 1 | No relation between Product A and B |
|----------------|-------------------------------------|
| Lift value > 1 | Product B is likely to be bought    |
| Lift value < 1 | Product B is likely to be avoided   |

#### **Conclusion**

- Random Forest Model helped us to predict -
  - 'Which Customer would buy an additional policy' with an accuracy of 93.63%
- Apriori Model (Market Basket Analysis) helped us find the trend of -
  - 'Which policy the Customers would likely buy as their next policy during cross-selling'

# **Thank You**