Lecture 13 Competitive Equilibrium in Two-Period Model

Hui-Jun Chen

National Tsing Hua University

October 23, 2025

Outline

1 Real Interest Rate ↑

2 Competitive Equilibrium

3 Ricardian Equivalence

Increase in Real Interest Rate

real interest rate r increase \Rightarrow budget line rotate

Figure: 9.12 An Increase in the Real Interest Rate

- ➤ Recall $we = y t + \frac{y' t'}{1 + r}, r \uparrow \Rightarrow we \downarrow$
- > can do nothing: pivot around E
- ➤ similar to wage increase (slope ↑)
- income & substitution effects (change in relative price)
- income effect depends on the sign of saving s

Increase in Real Interest Rate: Effect on Lender (s > 0)

Figure: 9.13 An Increase in the Real Interest Rate for a Lender

Let initial bundle be A.

- **> Substitution effect**: rotate from \overline{AE} to \overline{FG}
 - >> $: r \uparrow$, current consumption become more expensive $\Rightarrow c_D < c_A, c_D' > c_A'$
- **Income effect**: shift from \overline{FG} to \overline{BE}
 - \Rightarrow normality: $c_B > c_D$, $c'_B > c'_D$
 - \Rightarrow $c' \uparrow$, : both effects aligned
 - \Rightarrow c and s = y t c are ambiguous, \therefore both effects contradict

Increase in Real Interest Rate: Effect on Borrower (s < 0)

Figure: 9.14 An Increase in the Real Interest Rate for a Borrower

Let initial bundle be A.

- **Substitution effect**: rotate from \overline{AE} to \overline{FG}
 - >> : $r \uparrow$, current consumption become more expensive $\Rightarrow c_D < c_A, c_D' > c_A'$ [same as lender!]
- **Income effect**: shift from \overline{FG} to \overline{BE}
 - >> normality: $c_B < c_D, c'_B < c'_D$ [opposite to lender!]
 - $>> c, s \downarrow, ::$ both effects aligned
 - \Rightarrow c' is ambiguous, : both effects contradict

Summary

Both borrowers and lenders experience intertemporal substitution:

- > $r \uparrow \Rightarrow$ cost of current consumption $\uparrow \Rightarrow c \downarrow$
- ➤ aggregate effect depends on the distribution of borrowers and lenders
 - >> : both effects are in opposite directions
 - important and active research topic in macro!
- > tendency for confounding income effects on borrowers and lenders to roughly cancel out, still effect on aggregate consumption is not guaranteed.

Outline

1 Real Interest Rate ↑

2 Competitive Equilibrium

3 Ricardian Equivalence

Government in Two-Period Model

Impose lump-sum tax T and issue government bond B to finance government spending G in each period.

- ▶ government purchase *G* unit of good today and *G'* tomorrow,
- \triangleright impose T and T' of lump-sum taxes to consumers, and
- ▶ Issue *B* unit of bond today and pay back (1 + r)B tomorrow.

Budget constraints:

$$date 0: \quad G = T + B \tag{1}$$

date 1:
$$G' + (1+r)B = T'$$
 (2)

$$\Rightarrow$$
 lifetime budget constraint : $G + \frac{G'}{1+r} = T + \frac{T'}{1+r}$ (3)

Budget deficit is allowed in one period, but must be repaid in the future.

Two-Period Competitive Equilibrium in Words

A competitive equilibrium given government spending and consumers' endowment is a set of endogenous quantities and prices of current and future consumption, current and future lump-sum taxes, savings, government bond, as well as the real interest rate such that

1. Taken the real interest rate and lump-sum taxes as given, **consumers** maximized their lifetime utility subject to the intertemporal budget constraints.

2. Taken the real interest rate as given, the intertemporal **government** budget constraint holds.

3. The credit market clears determines the equilibrium real interest rate.

Two-Period Competitive Equilibrium in Math

A competitive equilibrium given exogenous quantities $\{G, G', Y, Y'\}$, is a set of **endogenous** quantities and prices $\{C, C', S, T, T', B, r\}$

1. Taken r, T, and T', consumers solve

$$\max_{C,C'} U(C,C') \quad \text{subject to} \quad C + \frac{C'}{1+r} = Y - T + \frac{Y' - T'}{1+r},$$

where solutions are C^* , C'^* , and $S^* = Y - T - C^*$.

2. The present value of government budget constraint holds:

$$G + \frac{G'}{1+r} = T + \frac{T'}{1+r},$$

where government bond *B* is determined by B = G - T.

3. The **credit market clears**: S = B at the equilibrium interest rate r^* .

The Credit Market and GDP Accounting

In one-period model, firm and consumer interact in the labor market. Here, government and consumer interact in the credit market.

- ▶ S is private saving, and $-B = S^g$ is public saving
- \blacktriangleright closed economy: national net saving must equals 0, so S-B=0.

current consumer budget:
$$S = Y - T - C$$

with current gov budget: $S = Y - (G - B) - C$
 $S = B$: $Y = C + G$
future consumer budget: $(1 + r)S = C' + T' - Y'$
with future gov budget: $(1 + r)S = C' + (G' + (1 + r)B) - Y'$
 $S = B$: $Y' = C' + G'$

An Example

Suppose G = G' = T = T' = B = 0, i.e., government is ignored, then

• consumer: let $U(C, C') = \ln C + \ln C'$, and Y = Y' = 1,

$$\max_{C,C'} \ln C + \ln C' \quad \text{subject to} \quad C + \frac{C'}{1+r} = 1 + \frac{1}{1+r}$$

> FOC:

$$MRS_{C,C'} = \frac{C'}{C} = 1 + r \quad \Rightarrow \quad C + \frac{(1+r)C}{1+r} = \frac{2+r}{1+r}$$
$$\Rightarrow \quad 2C = \frac{2+r}{1+r} \Rightarrow C^* = \frac{2+r}{2(1+r)}$$

credit market clear:

$$S = B = Y - T - C^* = 1 - 0 - \frac{2+r}{2(1+r)} = 0 \Rightarrow r^* = 0 \Rightarrow C = C' = 1$$

Outline

1 Real Interest Rate ↑

2 Competitive Equilibrium

3 Ricardian Equivalence

Ricardian Equivalence

In this model, the timing of taxes is **neutral**: no effect on the real interest rate or on the consumption of individual consumers.

Recall consumer and government budget constraint:

government:
$$G + \frac{G'}{1+r} = T + \frac{T'}{1+r}$$

consumer: $C + \frac{C'}{1+r} = Y + \frac{Y'}{1+r} - \left(T + \frac{T'}{1+r}\right)$
 $= Y + \frac{Y'}{1+r} - \left(G + \frac{G'}{1+r}\right)$

Therefore, for any tax scheme such that government budget constraint holds, there's no effect on r, C and C'.

Ricardian Equivalence in Graph

Figure: 9.16 Ricardian Equivalence with a Cut in Current Taxes for a Borrower

Suppose under tax scheme (T, T'), consumer:

- \triangleright has endowment point E_1
- chooses optimal bundle A

If there's a tax cut scheme $(\tilde{T},\tilde{T'})$ such that (G,G') remain the same,

- lower current taxes $(\tilde{T} < T)$
- but higher future taxes $(\tilde{T}' > T')$

Then consumer has endowment E_2 , but still choose optimal bundle A.

Ricardian Equivalence and Credit Market

Figure: 9.17 Ricardian Equivalence and Credit Market Equilibrium

Following the tax cut in last slide,

- **>** T ↓ \Rightarrow larger deficit today
- ➤ Recall B = G T, $B \uparrow$, more bonds today (demand \uparrow)
- ➤ Recall S = Y T C, $S \uparrow$, more private saving today (supply \uparrow)
- Ricardian Equivalence: both shifts exactly offsets, r₂ = r₁
- ➤ Recall PIH: tax cut is 100% temporary!

When Will Ricardian Equivalence fail?

This is an extreme result! It provides a useful benchmark to consider richer settings. What can change to "undo" this result?

- 1. **distribution of tax burden:** consider a case of this model with N consumers, labeled i = 1, ... N. Assume that $T = \sum_{i=1}^{N} t_i$, and consumer i pays t_i .
 - **>>** Everyone pays different t_i ! What if tax cut not apply to everyone?
- 2. **consumer lives the whole time:** government can "kick the can" until long in the future, when current generation is retired or dead.
 - >> redistribution of wealth across generations, social security
- 3. distorting taxes: lump sum not feasible, but proportional distort
- 4. imperfect credit market: borrowing and lending is often "frictional"
 - >> example: different rates on borrowing and saving, many others!