ECOAD DIAM: - voges outomato! E

Veges automatais de termi miralosa

$$A = (Q, T, \delta, g_0, \mp)$$
 men determinisations
 $A' = (Q', T, \delta', g_0', \mp)$ determinisations
 $L(A) = L(A')$

Konstruscio

	la	b		la	6
$\rightarrow 2$	{2 ₁₁₂ }	ø	-> 2°	9/2n	Ø
L-21	$\widehat{\mathcal{Z}_1}$	(2 Z	Z-212	201	212
·- 22	20	27	£ 201	212	22
23	21)	23	<u>- 2</u> 2	20	21
(2-2, /2	2, 1	9_

$\overline{(3)}$	a	5
20	[go19]	[20192]
21	2 3	\$
92	Ø	24
- 93 - 33	23	23
(- gh	24	94

		a	6
	> 2°	201	202
	201	2013	202
	202	201	2024
<i>-</i> <-	- 2013.	2013	2023
< —	2024	2014	2024
<u></u>	2023	2013	20234
<u>ر</u> ــــ	2014	20134	2024
_ くー	20234	20134	20234
<u>ر</u> پ	20134	2013	4 20234
		1	,

Dsørefügge automata egy v. d.a. os refügge, ha t allapota elenheté

Lépèser (-> ismefügge v.d.a)

1) Hatarosaue meg a
$$H$$
 endmost

 $H_0 = \{g_0\}$
 $H_{i+1} = H_i \cup \{p\} \ \delta(g_1 \alpha) = p \ \land \ g_0 H_i, \alpha \in T\}$
 $H_m = H_{m+1} := H$

pl:
$$-20$$
 -20

$$H_0 = \frac{2}{90}$$
 $H_1 = H_0 \cup \frac{2}{11} = \frac{2}{11} = \frac{2}{112}$
 $H_2 = H_1 \cup \frac{2}{11} = H_1 = H_1$

Lepest:

$$A \rightarrow \alpha_1 \times_1 \\ \times_1 \rightarrow \alpha_2 \times_2$$

$$\chi_{m-1} \gg a_m \chi_m \qquad \chi_m \gg \varepsilon$$

2) Lauctalomitals

- Minuden AEN esction meghotonomie
$$U(A)$$
 - $U_A(A) = 2A^2$

$$U_m(A) = U_{m+n}(A) = U(A)$$

3-> 63/ Wi V-> at2/ bt3 2, > 65 1, > at3 23 > E

S > atr | b3 | atr | bts 3 > b3 | atr | bts tr > b5 tr > ats 23 > E $U_{\lambda}(3) = \{b\}$ $U_{2}(3) = U_{1}(5) \cup \{5\} = \{3,5\}$ $U_{3}(3) = U_{2}(5) \cup \{7\} = \{3,5\} = U(5)$ $U_{\lambda}(V) = \{V\}$ $U_{\lambda}(V) = \{V\}$ $U_{\lambda}(V) = \{V\}$ $U_{\lambda}(V) = U_{\lambda}(V) \cup \{3\} = \{V,3\}$ $U_{\lambda}(V) = U_{\lambda}(V) \cup \{7\} = \{V,3\} = U(V)$ $S \rightarrow a_{\lambda} = \{b\} = \{b\}$