Testing production scenarios for (anti-)(hyper-)nuclei and exotica at LHC energies

Francesca Bellini* and Alexander P. Kalweit[†]
European Organisation for Nuclear Research (CERN)
Geneva, Switzerland
(Dated: February 20, 2019)

We present a detailed comparison of coalescence and thermal-statistical models for the production of (anti-)(hyper-)nuclei in high-energy collisions. For the first time, such a study is carried out as a function of the size of the object relative to the size of the particle emitting source. Our study reveals large differences between the two scenarios for the production of objects with extended wavefunctions. While both models give similar predictions and show similar agreement with experimental data for (anti-)deuterons and (anti-)³He nuclei, they largely differ in their description of (anti-)hypertriton production. We propose to address experimentally the comparison of the production models by measuring the coalescence parameter systematically for different (anti-)(hyper-)nuclei in different collision systems and differentially in multiplicity. Such measurements are feasible with the current and upgraded LHC experiments. Our findings highlight the unique potential of ultra-relativistic heavy-ion collisions as a laboratory to clarify the internal structure of exotic QCD objects and can serve as a basis for more refined calculations in the future.

I. INTRODUCTION

Nuclei and hyper-nuclei are special objects with respect to non-composite hadrons (pions, protons, etc.), because their size is comparable to a fraction or the whole system created in high-energy proton-proton (pp), proton-nucleus (pA) and nucleus-nucleus (AA) collisions [1]. Their size is typically defined as the rms of their (charge) wave-function, corresponding to about 2 fm for light (anti-)nuclei as obtained from electron scattering experiments. For the hyper-triton, theoretical calculations indicate a rms of the wave-function of about 5 fm [2], significantly larger than that of non-strange nuclei with mass number A=3 and driven by the average separation of the Λ relative to the two other nucleons. This difference in the wave-functions results in dramatic consequences for the production scenarios, as discussed in the following. The properties of the objects under study here are summarised in Tab. I.

For about sixty years, coalescence models have been used to describe the formation of composite objects Surprisingly, thermal-statistical models have been successful in describing the production of light (anti-)(hyper-)nuclei across a wide range of energies in AA collisions [12, 13]. In this approach, particles are produced from a fireball in thermal equilibrium with temperatures of $T_{chem} \approx 156$ MeV. Particle abundances are fixed at chemical freeze-out, when inelastic collisions cease. Further elastic and pseudo-elastic collisions occur among the components of the expanding fireball, that affect the spectral shapes and the measurable yields of short-lived (strongly decaying) hadronic resonances. Once the mean free path for elastic collisions is larger than the system size, the fireball freezes-out kinetically at $T_{kin} \approx 90 \text{ MeV}$ [14]. In such a dense and hot environment, composite objects with binding energies that are small with respect to the temperature of the system, appear as "fragile". For instance, the binding energy of the deuteron is $B_{E,d} = 2.2 \text{ MeV} \ll T_{chem}, T_{kin}$. The cross-section for pion-induced deuteron breakup is significantly larger than the typical (pseudo)-elastic crosssections for the re-scattering of hadronic resonance decay products [15–18]. Similarly, the elastic cross-section driving deuteron spectra to kinetic equilibration in central heavy-ion collisions [19] is smaller than the breakup crosssection [15–18] (Anti-)nuclei produced at chemical freezeout are not expected to survive the hadronic phase, yet their measured production is consistent with statisticalthermal model predictions and a non-zero elliptic flow is observed [19, 20]. Several solutions have been proposed to solve this "(anti-)nuclei puzzle": (a.) a sudden freezeout at the QGP-hadron phase boundary, (b.) the thermal production of these objects as compact quark bags [13], (c.) the continuous interplay of breakup and formation reactions resulting in the coincidence of thermal and kinetic equilibration [18, 21], (d.) the coincidence of coalescence and thermal production [7, 22]. Data from rescattering of short-lived hadronic resonances suggest a long-lasting hadronic phase [23], thus strongly disfavouring hypothesis (a.). Hypothesis (b.) cannot presently be tested beyond the agreement of measured (anti-)nuclei yields with statistical-thermal model predictions. Calculations for (c.) are currently available only for deuterons. Hypothesis (d.) is scrutinised in this letter. To this purpose, we propose a new method to compare models that also allows for a direct comparison with LHC data.

For the first time, LHC data allow for the study of (anti-)(hyper-)nuclei production as a function of the system- and object-size. A quantitative comparison of the production scenarios has been proposed in [29], resulting in the idea to study the production rates of nuclei with similar mass but very different internal structure, as ⁴He and ⁴Li [10]. As ⁴Li is not stable with respect to strong decay, its measurement is experimentally diffi-

^{*} francesca.bellini@cern.ch

[†] alexander.kalweit@cern.ch

Mass number	Nucleus	Composition	Binding energy (MeV)	Spin	$\lambda_A{}^{meas}$ (fm)	r_A (fm)	Refs.
A = 2	d	pn	2.224575 (9)	1	2.1413 ± 0.0025	3.2	[24, 25]
A = 3	$^3\mathrm{H}$ $^3\mathrm{He}$ $^3_\Lambda\mathrm{H}$	pnn ppn pΛn	8.4817986 (20) 7.7180428 (23) 0.13 ± 0.05 ^a	1/2 1/2 1/2	1.755 ± 0.086 1.959 ± 0.030 $4.9 - 10.0$	$ 2.15 \\ 2.48 \\ 6.8 - 14.1 $	[26] [26] [2, 27]

^a For hypertriton, we report here the separation energy of the Λ from the two other nucleons.

TABLE I. Properties of nuclei and hyper-nuclei with mass number $A \leq 3$. The nucleus size is given in terms of the (charge) rms radius of the wave-function, λ_A . The size parameter of the wave-function of the harmonic oscillator potential, r_A , is chosen to approximately reproduce the measured/expected rms, λ_A^{meas} (fm). The proton rms charge radius $\lambda_p = 0.879(8)$ fm [28] is subtracted from λ_A^{meas} according to $\lambda_A = \sqrt{(\lambda_A^{meas})^2 - \lambda_p^2}$ to account for the finite extension of the constituents. We assume $\lambda_A \approx \lambda_p$.

cult and probably less constraining than the systematic measurement of the (hyper-)nuclei coalescence parameters propose d here.

II. COALESCENCE APPROACH

In the coalescence picture, nucleons produced in the collision coalesce into nuclei if they are close in space and have similar velocities [3, 4]. For a nucleus with mass number A = Z + N, the coalescence probability is quantified by the coalescence parameter B_A . Considering that at LHC energies the number of produced protons and neutrons at midrapidity is expected to be equal, B_A is defined as

$$E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d}p_A^3} = B_A \left(E_{\mathrm{p,n}} \frac{\mathrm{d}^3 N_{\mathrm{p,n}}}{\mathrm{d}p_{\mathrm{p,n}}^3} \right)^A \Big|_{\vec{p}_{\mathrm{p}} = \vec{p}_{\mathrm{n}} = \frac{\vec{p}_A}{A}}, \quad (1)$$

where $p_{p,n}$ are the proton and neutron momenta and $E_{p,n}$ their energies. The LHC is particularly suited for the production of anti-nuclei, since the number of baryons and anti-baryons is equal at midrapidity [30]. Consequently, the anti-particle to particle ratio for (hyper-)nuclei is consistent with unity [19, 31–33]. In a simple coalescence approach, B_A is expected to be independent of momentum and of the object size relative to the volume of particle emission (hereafter referred to as "source size"). While this picture is found to be approximately valid in pp and p-Pb collisions [31, 32], it breaks down in Pb-Pb collisions, which exhibit a strong decrease of B_A with centrality [34]. The elliptic flow of deuterons cannot be explained by simple coalescence [19].

More advanced coalescence models [5–7] take into account the source size, as the coalescence probability naturally decreases for nucleons with similar momenta that are produced far apart in configuration space. We rely on the formalism proposed in [7]. As coalescence is a quantum-mechanical process, the classical definition of phase space is replaced by the Wigner formalism. The production probability of a nucleon cluster is given by the overlap of the Wigner function with the phase-space

distributions of the constituents. The wave-functions of the (hyper-)nuclei are approximated by the ground-state wave-functions of an isotropic spherical harmonic oscillator as in [7] with one single characteristic-size parameter, r_A . For the deuteron wave-function $\varphi_d(\vec{r})$, one obtains

$$\varphi_d(\vec{r}) = (\pi r_d^2)^{-3/4} \exp\left(-\frac{r^2}{2r_d^2}\right) .$$
 (2)

For nuclei with A > 2, analogous forms exist. The relation between r_A and the rms of the wave-function was derived in [35] as

$$\lambda_A^2 = \frac{3}{2} \frac{A - 1}{A} \frac{r_A^2}{2} \tag{3}$$

for point-like constituents. We follow the gaussian ansatz to obtain fully analytic solutions. In Tab. I, we list the measured rms of the wave-function, λ_A^{meas} , and the r_A parameter derived from these relations. We encourage future more rigorous numerical studies that address the calculation of coalescence probabilities with more realistic wave-functions, e.g. the Hulthen parameterisation for deuterons [6] or a Λ -deuteron parameterisation for hyper-tritons as done in [36, 37].

The quantum-mechanical nature of the coalescence products is explicitly accounted for by means of an average correction factor, $\langle C_A \rangle$. For deuterons, $\langle C_d \rangle$ has been approximated as

$$\langle C_d \rangle \approx \frac{1}{\left[1 + \left(\frac{r_d}{2R_{\perp}(m_T)}\right)^2\right] \sqrt{1 + \left(\frac{r_d}{2R_{\parallel}(m_T)}\right)^2}}$$
 (4)

where r_d is the size parameter, R_{\perp} and R_{\parallel} are the lengths of homogeneity of the coalescence volume and m_T is the transverse mass of the coalescing nucleons. The nucleus size enters in the calculation of B_2 via $\langle C_d \rangle$, as well as the homogeneity volume $R_{\perp}^2 R_{\parallel}$, according to the relation [7]

$$B_2 = \frac{3\pi^{3/2} \langle C_d \rangle}{2m_T R_+^2 (m_T) R_{\parallel}(m_T)} . (5)$$

The coalescence parameter decreases with increasing volume, as expected. $\langle C_d \rangle$ introduces a length scale defined by the deuteron size relative to the source size. If we assume that $R_{\perp} \approx R_{\parallel} \approx R$, Eqs. 4 and 5 simplify to

$$\langle C_d \rangle \approx \left[1 + \left(\frac{r_d}{2R(m_T)} \right)^2 \right]^{-3/2}$$
 (6)

and

$$B_2 = \frac{3\pi^{3/2} \langle C_d \rangle}{2m_T R^3(m_T)}. (7)$$

Figure 1 shows the source radius (R) dependence of $\langle C_d \rangle$ and B_2 , calculated assuming (a.) $r_d=0$, (b.) $r_d=0.3$ fm, (c.) the actual value $r_d=3.2$ fm [25], (d.) a larger, irrealistic $r_d=10$ fm. As shown in Fig. 1, $\langle C_d \rangle$ suppresses significantly the production of objects with radius larger than the source.

FIG. 1. The quantum-mechanical correction factor $\langle C_d \rangle$ (top, see Eq. 6) and the coalescence parameter B_2 for deuteron (bottom, see Eq. 7) as a function of the radius of the source R, calculated assuming a size parameter for the deuteron $r_d=0,0.3,3.2$ and 10 fm. The inflection point of $\langle C_d \rangle$ corresponds to $R=r_d/\sqrt{6}$ and is indicated in the left panel by the vertical dotted line for $r_d=3.2$ fm.

Following the discussion in [9], Eq. 4 may be generalised as

$$\langle C_A \rangle = \prod_{i=1,2,3} \left(1 + \frac{r^2}{4R_i^2} \right)^{-\frac{1}{2}(A-1)} .$$
 (8)

Similarly, the coalescence parameter B_A for a nucleus with mass number A and spin J_A is generalised by Eq. 6.2 of [7]. For the case of ³He, the latter becomes Eq. 9 of [9].

In summary, under the assumption $R_1 \approx R_2 \approx R_3 \approx R$ as in [9] and by combining Eq. 6.2 in [7] with our Eq. 8,

we obtain:

$$B_A = \frac{2J_A + 1}{2^A} \frac{1}{\sqrt{A}} \frac{1}{m_T^{A-1}} \left(\frac{2\pi}{R^2 + (\frac{r_A}{2})^2} \right)^{3/2(A-1)} . \tag{9}$$

This general formula can be used to compare the predicted B_A with data directly.

For small sources, as $R \to 0$, the coalescence probability is anti-proportional to the harmonic oscillator size parameter, and thus proportional to the depth of the attractive potential in the harmonic oscillator picture (and thus to the nucleus binding energy). Quite naturally, the allowed momentum difference between the coalescing nucleons is larger for more attractive, i.e. deeper, potentials. For a large source where $R \gg r_A$, the coalescence probability is dominated by the classical phase-space separation, thus decreases for large distances in configuration space.

III. SOURCE VOLUME

We identify the source volume as the effective subvolume of the whole system that is governed by the homogeneity length of the interacting nucleons (as in [7]) and experimentally accessible with Hanbury-Brown-Twiss (HBT) interferometry. To match the Bertsch-Pratt parameterisation $(R_{out}, R_{side}, R_{long})$ employed by experiments, with the Yano-Koonin-Podgoretskii $(R_{\perp},$ R_{\parallel} , R_0) parameterisation used in the coalescence model, we identify $R_{\perp} = R_{side}$, $R_{\parallel} = R_{long}$ and then take $R = (R_{\perp}^2 R_{\parallel})^{1/3} \approx (R_{side}^2 R_{long})^{1/3}$. Experimentally, R can be controlled by selecting different collision geometries, i.e. different centralities [38]. The HBT radii scale with the cubic root of the average charged-particle multiplicity density $\langle dN_{\rm ch}/d\eta \rangle^{1/3}$ [1], and depend on the pair average transverse momentum $\langle k_{\rm T} \rangle$ [39]. We make the simplifying assumption that the scaling with $\langle dN_{\rm ch}/d\eta \rangle^{1/3}$ holds across collision systems, which is approximately fulfilled in data [40]. In contrast to [9], we do not explicitly use the measured HBT radii in our study. We derive R from the measured $\langle dN_{ch}/d\eta \rangle$ according to

$$R = a \left\langle dN_{\rm ch}/d\eta \right\rangle^{1/3} + b \quad . \tag{10}$$

The coefficients, a=0.339 and b=0.128 (in units of fm), have been determined by fitting linearly the ALICE data, as shown in Fig. 2. The values we obtain by interpolating the geometric mean of the measured radii are consistent with the radii from kaon femtoscopy for $m_{\rm T}\approx 1$ GeV/c in low-multiplicity pp collisions [41] and the radii from pion femtoscopy in high-multiplicity Pb–Pb collisions at the highest available $k_{\rm T}\approx 0.9$ GeV/c [1]. The highest $k_{\rm T}$ was chosen as it is closest in $m_{\rm T}$ to the lowest transverse momentum per nucleon $(p_{\rm T}/A\approx 0.8~{\rm GeV/c})$ accessible by ALICE for the measurement of nuclei production. Ideally, one would use the proton femtoscopic radii, but given the unavailability of these measurements

in every collision system and centrality, we assume that $m_{\rm T}$ -scaling holds [42].

FIG. 2. Parameterisation A of the dependence of the source radius on multiplicity compared to HBT data from [1, 40, 41]. The radius R and the parameters a and b are in units of fm.

IV. STATISTICAL-THERMAL APPROACH AND BLAST-WAVE

In the statistical-thermal approach [43–45], the yields (dN/dy) of light anti- and hyper-nuclei are very sensitive to T_{chem} due to their large mass and approximately scale as $dN/dy \propto \exp(-m/T_{chem})$. At the LHC, the chemical potentials which ensure the conservation of baryon number, strangeness, and electric charge are negligible. In contrast to coalescence, the statistical-thermal models provide only $p_{\rm T}$ -integrated yields. We use a blastwave [46] parameterization to model the $p_{\rm T}$ -dependence, with parameters obtained from the simultaneous fit to pion, kaon and proton spectra measured in Pb-Pb collisions by ALICE [14]. The normalisation is fixed using the $p_{\rm T}$ -integrated deuteron-to-pion ratio and ³He-topion ratio predicted by the GSI-Heidelberg model with $T_{chem} = 156$ MeV, multiplied by the measured pion yield [14]. This choice, as opposed to using the ratio to proton, is motivated by the fact that the measured proton yield is seen to be slightly overestimated by the thermal model [47]. For hyper-triton, the normalisation is extracted from the statistical-thermal model prediction of the strangeness population factor $S_3 = \frac{^3 \text{H}/^3 \text{He}}{\Lambda/p}$ multiplied by the measured Λ/p ratio [14, 48] and $^3 \text{He}$ yield [34]. With the resulting spectra, we calculate B_A for a given $p_{\rm T}/A$ and compare it with coalescence expectations. We use the corresponding $\langle dN_{ch}/d\eta \rangle$ in each class to estimate the system radius based on the parameterisation discussed in Sec. III. In contrast to the coalescence approach, the object size does not enter in the formulation of the blast-wave model. The thermal model

on the other hand, implements eigenvolume corrections by fixing the object radius as an external parameter. We refer to the literature for the extensive discussions on the validity of the eigenvolume correction for light (anti-)(hyper-)nuclei [49] and the relation with the possible production as compact quark bags [13].

V. CONSTRAINING THE SOURCE VOLUME WITH DATA

Multiplicity-differential data on anti- and hyper-nuclei production at the LHC have been released by ALICE [19, 31, 33, 34]. To facilitate the comparison with multiplicity-dependent data given in the INEL>0 class, we have rescaled the inelastic pp collision data in [31] by the ratio of $\langle dN_{ch}/d\eta \rangle$ in these two event classes [50]. In order to map $\langle dN_{\rm ch}/d\eta \rangle$ to the source size we first used the parameterisation (labeled as "A") from the fit to the HBT data shown in Fig. 2. When comparing to data, we found a discrepancy between the coalescence volume from parameterisation A and the coalescence curve. In particular, the model would require a larger radius for a given value of B_2 in Pb-Pb collisions. In a second step we tuned the parameterisation (labeled as "B") such that the data points for (anti-)deuterons fall onto the coalescence prediction, finding the values a = 0.473 and b = 0for Eq. 10.

With parameterisation B, we compare models to data, thus constraining the coalescence volume with the more differential (anti-)deuteron data and assuming that it is the same for all anti- and hyper-nuclei. The necessity of introducing a second parameterisation might suggest that the kinetic freeze-out volume relevant for coalescence is not given by the m_T -scaled pion HBT radius considered in parameterisation A, but by a slightly larger system as from parameterisation B.

VI. COMPARISON WITH DATA

In Fig. 3, the available LHC data for (anti-)(hyper-)nuclei [31, 33, 34] are compared to coalescence and to the thermal model+blast wave predictions described in Sec. IV. For the latter and for data, the radius parameterisation B is used, see Sec. V. For deuterons, both approaches lead to similar predictions and describe reasonably the data for $R \gtrsim 1.6$ fm. For ³He, the models exhibit a qualitatively similar R-dependence but differ by a factor of about 1.5 to 2. The currently available data are consistent with both models within 2σ to 3σ , where σ is the total uncertainty on data. Both approaches show large differences (a factor 5 to 6 for central Pb-Pb collisions and a factor larger than 50 for R < 2 fm) for the ³_AH caused by the significantly larger size of ³_AH with respect to ³He. The only data point available so far in Pb-Pb collisions is in agreement with the thermal model but differs by 6σ from coalescence, albeit the validity

FIG. 3. Comparison of the coalescence parameters measured by ALICE (solid markers) for deuterons (upper panel), $^3{\rm He}$ (middle panel) and $^3_{\Lambda}{\rm H}$ (lower panel) in pp [31] and Pb–Pb [33, 34] collisions with the thermal+blast-wave model expectations (dotted line) and the coalescence predictions (solid lines). Parameterisation B has been used to map $\langle {\rm d}N_{\rm ch}/{\rm d}\eta\rangle$ into the radius R of the source. The dashed line in the lower right panel corresponds to the coalescence prediction for the $^3_{\Lambda}{\rm H}$ with a larger radius.

of our assumptions (in primis the usage of a gaussian wave-function). In [36] it is argued that the difference between data and coalescence might be explained by a later formation through coalescence of Λ s and deuterons. A possible difference attributable to the presence of excited states with J=3/2 of $^{\Lambda}_{\Lambda}{\rm H}$ is not considered here as

there is no evidence for its existence [51].

Most importantly, Fig. 3 shows that the difference between the two approaches increases with decreasing R, underlining the need for additional multiplicity-differential data to distinguish between the two production scenarios. For $^3_\Lambda {\rm H}$ we considered also a prediction from coalescence for a wider wave-function (see Fig. 3), which results in even lower production probabilities. This behaviour highlights the unique potential to constrain the wave-function of (hyper-)nuclei via precise measurements of the R-dependent coalescence parameter. The curves presented here explicitly allow for an estimate of the hyper-triton production in pp collisions, which is expected to be suppressed by about two orders of magnitude with respect to that of $^3{\rm He}$, making this measurement a prime candidate for future experimental studies.

VII. CONCLUSIONS AND OUTLOOK

We summarise our main conclusions as follows:

- 1. For the production of A=2 and A=3 (anti-)nuclei in heavy-ion collisions, thermal and coalescence models give similar predictions for a source volume that is constrained by experimental data on d, $\bar{\rm d}$ production in central Pb–Pb collisions.
- 2. For the production of hyper-triton, thermal and coalescence models give very different predictions as a function of source volume. In particular, the yield of hyper-triton appears to be suppressed by about two orders of magnitude in pp collisions with respect to ³He. The very limited amount of data available favours the thermal model prediction within our assumptions.
- 3. Systematic measurements in pp, p-Pb, and Pb-Pb collisions at LHC energies have a unique potential to clarify the production mechanism and the nature of composite QCD objects. Ideally, such measurements are accompanied by systematic measurements of the HBT radii in the same multiplicity/centrality classes and collision systems.
- 4. Our findings suggest a clear experimental path to be pursued with high-precision measurements at the upcoming phase of the LHC in the next ten years, which will finally provide sufficient integrated luminosity for the studies proposed here [52].

As our study is deliberately based on simplified assumptions that allow for a completely analytical treatment of the problem, future studies should be based on more realistic approximations (in particular the wave-function), which require numerical calculations. We plan to extend our study to explore further the $p_{\rm T}$ dependence as well as to investigate A=4 systems and more exotic QCD objects like the X(3872) [8, 53]. If the X(3872) corresponds

to a loosely bound \overline{D}^{*0} – D^0 molecule, the rms of its wavefunction can be as large as $4.9^{+13.4}_{-1.4}$ fm [54]. Thus, its possible production via coalescence in pp collisions would be subject to a similar suppression as the hyper-triton. Setting a final word on the production mechanisms also has a broader application in astrophysics and dark-matter searches, by representing an essential input for the measurement of (anti-)nuclei in space with ongoing [55, 56] and future [57, 58] experiments.

ACKNOWLEDGMENTS

We would like to thank Kfir Blum for inspiring this work. We thank U. Heinz for the useful discussions and

the clarification on the equivalence of the Bertsch-Pratt and Yano-Koonin-Podgoretskii parameterisations of the HBT radii. We further acknowledge discussions with Benjamin Doenigus, in particular about the production of $^3_\Lambda H$ in pp collisions, and with Eulogio Serradilla Rodriguez. In addition, we would like to thank Juergen Schukraft, Peter Braun-Munzinger, Marco Van Leuween, Maximiliano Puccio, Roman Lietava, Natasha Sharma and the colleagues from the ALICE Collaboration for their valuable input.

- [1] J. Adam et al. (ALICE), Phys. Rev. C93, 024905 (2016), arXiv:1507.06842 [nucl-ex].
- [2] H. Nemura, Y. Suzuki, Y. Fujiwara, and C. Nakamoto, Prog. Theor. Phys. 103, 929 (2000), arXiv:nuclth/9912065 [nucl-th].
- [3] S. T. Butler and C. A. Pearson, Phys. Rev. 129, 836 (1963).
- [4] J. I. Kapusta, Phys. Rev. C21, 1301 (1980).
- [5] H. Sato and K. Yazaki, Phys. Lett. **B98**, 153 (1981).
- [6] J. L. Nagle, B. S. Kumar, D. Kusnezov, H. Sorge, and R. Mattiello, Phys. Rev. C53, 367 (1996).
- [7] R. Scheibl and U. W. Heinz, Phys. Rev. C59, 1585 (1999), arXiv:nucl-th/9809092 [nucl-th].
- [8] S. Cho et al. (ExHIC), Prog. Part. Nucl. Phys. 95, 279 (2017), arXiv:1702.00486 [nucl-th].
- [9] K. Blum, K. C. Y. Ng, R. Sato, and M. Takimoto, Phys. Rev. **D96**, 103021 (2017), arXiv:1704.05431 [astro-ph.HE].
- [10] S. Bazak and S. Mrowczynski, (2018), arXiv:1802.08212 [nucl-th].
- [11] W. Zhao, L. Zhu, H. Zheng, C. M. Ko, and H. Song, (2018), arXiv:1807.02813 [nucl-th].
- [12] A. Andronic, P. Braun-Munzinger, J. Stachel, and H. Stocker, Physics Letters B 697, 203 (2011).
- [13] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Nature **561**, 321 (2018), arXiv:1710.09425 [nucl-th].
- [14] B. Abelev et al. (ALICE), Phys. Rev. C88, 044910 (2013), arXiv:1303.0737 [hep-ex].
- [15] H. Garcilazo, Phys. Rev. Lett. 48, 577 (1982).
- [16] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), arXiv:nucl-th/9803035 [nucl-th].
- [17] J. Schukraft, Proceedings, 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017): Chicago, Illinois, USA, February 5-11, 2017, Nucl. Phys. A967, 1 (2017), arXiv:1705.02646 [hep-ex].
- [18] D. Oliinychenko, L.-G. Pang, H. Elfner, and V. Koch, (2018), arXiv:1809.03071 [hep-ph].
- [19] S. Acharya et al. (ALICE), Eur. Phys. J. C77, 658 (2017), arXiv:1707.07304 [nucl-ex].
- [20] M. Puccio (ALICE), Proceedings, 27th International Conference on Ultrarelativistic Nucleus-Nucleus Colli-

- sions (Quark Matter 2018): Venice, Italy, May 14-19, 2018, Nucl. Phys. **A982**, 447 (2019).
- [21] X. Xu and R. Rapp, (2018), arXiv:1809.04024 [nucl-th].
- [22] U. Heinz, "Coalescence model involving HBT and flow," Presentation at EMMI Workshop in Torino, November 2017.
- [23] B. B. Abelev et al. (ALICE), Phys. Rev. C91, 024609 (2015), arXiv:1404.0495 [nucl-ex].
- [24] C. Van Der Leun and C. Alderliesten, Nucl. Phys. A380, 261 (1982).
- [25] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016), arXiv:1507.07956 [physics.atom-ph].
- [26] J. E. Purcell and C. G. Sheu, Nucl. Data Sheets 130, 1 (2015).
- [27] D. H. Davis, Proceedings on 8th International Conference on Hypernuclear and strange particle physics (HYP 2003): Newport News, USA, October 14-18, 2003, Nucl. Phys. A754, 3 (2005).
- [28] J. C. Bernauer et al. (A1), Phys. Rev. Lett. 105, 242001 (2010).
- [29] S. Mrowczynski, Acta Phys. Polon. B48, 707 (2017), arXiv:1607.02267 [nucl-th].
- [30] E. Abbas et al. (ALICE), Eur. Phys. J. C73, 2496 (2013), arXiv:1305.1562 [nucl-ex].
- [31] S. Acharya et al. (ALICE), Phys. Rev. C97, 024615 (2018), arXiv:1709.08522 [nucl-ex].
- [32] Anielski, Jonas, Proceedings, Hot Quarks 2014: Workshop for young scientists on the physics of ultrarelativistic nucleus–nucleus collisions, Andalucia, Spain, J. Phys. Conf. Ser. 612, 012014 (2015).
- [33] J. Adam et al. (ALICE), Phys. Lett. B754, 360 (2016), arXiv:1506.08453 [nucl-ex].
- [34] J. Adam et al. (ALICE), Phys. Rev. C93, 024917 (2016), arXiv:1506.08951 [nucl-ex].
- [35] A. Shebeko, P. Papakonstantinou, and E. Mavrommatis, Eur. Phys. J. A27, 143 (2006), arXiv:nucl-th/0602056 [nucl-th].
- [36] Z. Zhang and C. M. Ko, Phys. Lett. **B780**, 191 (2018).
- [37] K.-J. Sun, C. M. Ko, and B. Doenigus, (2018), arXiv:1812.05175 [nucl-th].
- [38] B. Abelev *et al.* (ALICE), Phys. Rev. **C88**, 044909 (2013), arXiv:1301.4361 [nucl-ex].

- [39] K. Aamodt et al. (ALICE), Phys. Lett. B696, 328 (2011), arXiv:1012.4035 [nucl-ex].
- [40] J. Adam et al. (ALICE), Phys. Rev. C91, 034906 (2015), arXiv:1502.00559 [nucl-ex].
- [41] B. Abelev et al. (ALICE), Phys. Rev. D87, 052016 (2013), arXiv:1212.5958 [hep-ex].
- [42] J. Adam et al. (ALICE), Phys. Rev. C92, 054908 (2015), arXiv:1506.07884 [nucl-ex].
- [43] M. Petran, J. Letessier, J. Rafelski, and G. Torrieri, Comput. Phys. Commun. 185, 2056 (2014), arXiv:1310.5108 [hep-ph].
- [44] S. Wheaton and J. Cleymans, Comput. Phys. Commun. 180, 84 (2009), arXiv:hep-ph/0407174 [hep-ph].
- [45] A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A772, 167 (2006), arXiv:nucl-th/0511071 [nucl-th].
- [46] E. Schnedermann, J. Sollfrank, and U. W. Heinz, Phys. Rev. C48, 2462 (1993), arXiv:nucl-th/9307020 [nucl-th].
- [47] B. Abelev et al. (ALICE), Phys. Rev. Lett. 109, 252301 (2012), arXiv:1208.1974 [hep-ex].
- [48] B. B. Abelev et al. (ALICE), Phys. Rev. Lett. 111, 222301 (2013), arXiv:1307.5530 [nucl-ex].
- [49] V. Vovchenko and H. Stoecker, Proceedings, 16th International Conference on Strangeness in Quark Matter (SQM 2016): Berkeley, California, United States, J. Phys. Conf. Ser. 779, 012078 (2017), arXiv:1610.02346

- [nucl-th].
- [50] J. Adam et al. (ALICE), Eur. Phys. J. C77, 33 (2017), arXiv:1509.07541 [nucl-ex].
- [51] T. Mart, L. Tiator, D. Drechsel, and C. Bennhold, Nucl. Phys. A640, 235 (1998), arXiv:nucl-th/9610038 [nucl-th].
- [52] Z. Citron et al., in HL/HE-LHC Workshop: Workshop on the Physics of HL-LHC, and Perspectives at HE-LHC Geneva, Switzerland, June 18-20, 2018 (2018) arXiv:1812.06772 [hep-ph].
- [53] A. Esposito, A. L. Guerrieri, L. Maiani, F. Piccinini, A. Pilloni, A. D. Polosa, and V. Riquer, Phys. Rev. D92, 034028 (2015), arXiv:1508.00295 [hep-ph].
- [54] P. Artoisenet and E. Braaten, Phys. Rev. D83, 014019 (2011), arXiv:1007.2868 [hep-ph].
- [55] J. Alcaraz et al. (AMS), Phys. Lett. B461, 387 (1999), arXiv:hep-ex/0002048 [hep-ex].
- [56] V. Poulin, P. Salati, I. Cholis, M. Kamionkowski, and J. Silk, (2018), arXiv:1808.08961 [astro-ph.HE].
- [57] S. Schael, "AMS-100 A Magnetic Spectrometer at Lagrange Point 2," Presentation at AMS days La Palma, April 2018.
- [58] T. Aramaki, C. J. Hailey, S. E. Boggs, P. von Doetinchem, H. Fuke, S. I. Mognet, R. A. Ong, K. Perez, and J. Zweerink (GAPS), Astropart. Phys. 74, 6 (2016), arXiv:1506.02513 [astro-ph.HE].