$$S_{1} = \begin{bmatrix} \dot{y} \\ \dot{y} \\ \dot{y} \end{bmatrix}$$

$$S_{2} = \begin{bmatrix} \chi \\ \dot{\chi} \end{bmatrix}$$

$$S_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{-4Ca}{m\dot{\chi}} & 0 & -\dot{\chi} + \frac{2Ca(lr-l_{f})}{m\dot{\chi}} \\ 0 & 0 & 0 & 1 \\ 0 & \frac{2(lr-l_{f})Ca}{l\dot{\chi}} & 0 & -\frac{2(l_{f}^{2}+l_{r}^{2})Ca}{l\dot{\chi}} \end{bmatrix} S_{1} + \begin{bmatrix} 0 & 0 \\ \frac{2Ca}{m} & 0 \\ 0 & 0 \\ \frac{2tfCa}{l\dot{\chi}} & 0 \end{bmatrix} \begin{bmatrix} \delta \\ F \end{bmatrix}$$

$$S_{3} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \chi \\ \dot{\chi} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{m} \end{bmatrix} \begin{bmatrix} \delta \\ F \end{bmatrix} + \begin{bmatrix} \dot{\psi}\dot{\psi} - fg \end{bmatrix}$$

$$S_{3} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \chi \\ \dot{\chi} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{m} \end{bmatrix} \begin{bmatrix} \delta \\ F \end{bmatrix} + \begin{bmatrix} \dot{\psi}\dot{\psi} - fg \end{bmatrix}$$

Since we are only considering lateral dynamics we can write the system as:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{-4C_{a}}{mx} & 0 & -\dot{x} + \frac{-2C_{a}(t_{1}-t_{1})}{m\dot{x}} \\ 0 & 0 & 0 \\ 0 & \frac{-2(t_{1}-t_{1})C_{a}}{I_{2}\dot{x}} & 0 & -\frac{2(t_{1}^{2}+t_{1}^{2})C_{a}}{I_{2}\dot{x}} \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ \frac{-2C_{a}}{m} & 0 \\ 0 & 0 \\ \frac{-2t_{1}C_{a}}{I_{2}} & 0 \end{bmatrix}, C = I(4, 4)$$

Set e, = y - ydes, e2 = 4 - 4 des :

$$\psi_{des} = \frac{V_X}{R}$$
 $\frac{V_X^2}{R} = V_X \psi_{des}$

Set
$$E_1 = \begin{bmatrix} e_1 \\ e_2 \\ e_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & \frac{1}{2 \operatorname{Caf}} + 2 \operatorname{Car} & \frac{0}{2 \operatorname{Caf}} + 2 \operatorname{Car} & \frac{0}{2 \operatorname{Caf}} + 2 \operatorname{Car} & \frac{0}{2 \operatorname{Caf}} \\ 0 & 0 & 0 & 0 \\ 0 & -\frac{2 \operatorname{Caf} \mathcal{U} + 2 \operatorname{Car} \mathcal{U}}{I_{2} \dot{\chi}} & \frac{2 \operatorname{Caf} \mathcal{U} + 2 \operatorname{Car} \mathcal{U}}{I_{2}} & \frac{2 \operatorname{Caf} \mathcal{U} + 2 \operatorname{Car} \mathcal{U}}{I_{2} \dot{\chi}} \end{bmatrix} B = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \frac{2 \operatorname{Caf} \mathcal{U} + 2 \operatorname{Car} \mathcal{U}}{M} & \frac{2 \operatorname{Caf} \mathcal{U} + 2 \operatorname{Car} \mathcal{U}}{I_{2}} & \frac{2 \operatorname{Caf} \mathcal{U} + 2 \operatorname{Car} \mathcal{U}}{I_{2} \dot{\chi}} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -\frac{2Caf}{4} + 2Car & \frac{2Caf}{4} + 2Car & -\frac{2Caf}{4} + 2Car lr \\ 0 & 0 & 0 \\ 0 & -\frac{2Caf}{4} + 2Car lr & \frac{2Caf}{4} + 2Car lr & \frac{2Caf}{4} + 2Car lr \\ 1z \dot{x} & 1z & 1z \dot{x} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{4Ca}{m\dot{x}} & \frac{4Ca}{m} & \frac{2Ca(lr-lf)}{mx} \\ 0 & 0 & 0 & 0 \\ 0 & \frac{2Ca(lr-lf)}{1z\dot{x}} & \frac{2Ca(lf-lr)}{1z} & -\frac{2(lf+lr)}{1z\dot{x}} \end{bmatrix}$$

$$\dot{\chi} = \lambda : A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -15 & 30 & 4.5 \\ 0 & 0 & 0 & 1 \\ 0 & 2.6914 & -5.3828 & -18.3911 \end{bmatrix}$$

$$\dot{X} = \delta : A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -3.75 & 30 & 1.125 \\ 0 & 0 & 0 & 1 \\ 0 & 0.6728 & -5.3628 & -4.5978 \end{bmatrix}$$

Something that I don't understand occurred. During the test I had run time of 428s but when I ran it again I could only get a run time of 1100s....

We can observe that as the two singular value gets closer (in the first graph the value gets closer to zero), the system becomes more controllable but less stable, as the poles become less negative.