Space and Congruence Compression of Proofs

Andreas Fellner

European Master in Computational Logic

Master Thesis Presentation Vienna, 23rd of September 2014

Space and Congruence Compression of ${f Proofs}$

Resolution

Resolution Rule

$$\frac{C \vee x \quad D \vee \neg x}{C \vee D}$$

Resolution

Resolution Rule

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$\neg x_1$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1)$$

Length: 7

Best Space: 3

Space and Congruence Compression of Proofs

Proof Compression

- Smaller unsat cores, interpolants
- Easier proof processing
- Smaller proofs libraries
- Easier trusted interaction of deductive systems
- Proof generalization
- Proof carrying code

• Georg Hofferek, et al, 2013, TU Graz

• Georg Hofferek, et al, 2013, TU Graz

Method

- Formulate problem in SMT theory of uninterpreted functions
- Obtain proof of unsatisfiability from SMT solver
- 3 Transform proof (local first, colorable)
- Extract a single *n*-interpolant from the proof
- **3** Extract multiple interpolants the single interpolant

• Georg Hofferek, et al, 2013, TU Graz

Method

- Formulate problem in SMT theory of uninterpreted functions
- Obtain proof of unsatisfiability from SMT solver
- 3 Transform proof (local first, colorable)
- Extract a single *n*-interpolant from the proof
- **5** Extract multiple interpolants the single interpolant
 - Worst case exponential runtime in proof size

• Georg Hofferek, et al, 2013, TU Graz

Method

- Formulate problem in SMT theory of uninterpreted functions
- Obtain proof of unsatisfiability from SMT solver
- Transform proof (local first, colorable)
- Extract a single *n*-interpolant from the proof
- Extract multiple interpolants the single interpolant
 - Worst case exponential runtime in proof size

Proof Compression using Skeptik

- Input proof: 1,870,407 nodes
- Output proof: 868,760 nodes (53,6% compression)

Space and Congruence Compression of Proofs

Knowledge

- **1** f(a) = a
- a = b
- **3** b = f(b)
- $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Knowledge[®]

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

A different Proof

f(.) is a function, therefore from a = b follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

A proof

A different proof

Ground Terms

- Constants a, b, c, \dots
- Compound Terms $f(t_1, \ldots, t_n)$

Ground Terms

- Constants a, b, c, \dots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation R

- Reflexive: $\forall t(t, t) \in R$
- Symmetric: $(s, t) \in R \Rightarrow (t, s) \in R$
- Transitive: $(t_1, t_2) \in R \dots (t_{m-1}, t_m) \in R \Rightarrow (t_1, t_m) \in R$
- Compatible: $\forall i(t_i, s_i) \in R \Rightarrow (f(t_1, \dots, t_n), f(s_1, \dots, s_n)) \in R$

Ground Terms

- Constants a, b, c, \ldots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation R

- Reflexive: $\forall t(t, t) \in R$
- Symmetric: $(s, t) \in R \Rightarrow (t, s) \in R$
- Transitive: $(t_1, t_2) \in R \dots (t_{m-1}, t_m) \in R \Rightarrow (t_1, t_m) \in R$
- Compatible: $\forall i(t_i, s_i) \in R \Rightarrow (f(t_1, \dots, t_n), f(s_1, \dots, s_n)) \in R$

Congruence Closure E^* of set of equations E

- Smallest Congruence Relation containing E
- Computable in $O(n \log(n))$
- E is explanation for $(s, t) \in E^*$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ f(a) = a, a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ a=b$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for
$$f(a) = f(b)$$

$$\begin{cases} a = b \end{cases}$$

Short explanation → short (sub)proof

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

NP-complete

NP-completeness proof sketch

From a propositional logic formula Φ obtain ...

- a set of equations E_{Φ}
- a target equation $s_{\Phi} = t_{\Phi}$
- $k_{\Phi} \in \mathbb{N}$

such that ...

 Φ is satisfiable if and only if there is an explanation $E'\subseteq E_{\Phi}$ of $s_{\Phi}=t_{\Phi}$ with $|E'|\leq k_{\Phi}$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

$$\perp_1 - - \hat{x}_1 - - \top_1$$
 $\perp_2 - - \hat{x}_2 - - \top_2$ $\perp_3 - - \hat{x}_3 - - \top_3$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

$$\perp_1 \longrightarrow \hat{x}_1 \longrightarrow \top_1 \qquad \perp_2 \longrightarrow \hat{x}_2 \longrightarrow \top_2 \qquad \perp_3 \longrightarrow \hat{x}_3 \longrightarrow \top_3$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Small subset corresponding to satisfying assignment

$$\hat{x}_1 - \top_1$$

$$\hat{x}_1 - T_1$$
 $\perp_2 - \hat{x}_2$ $\hat{x}_3 - T_3$

$$\hat{x}_3 - \top_3$$

$$\hat{c}_1 - t_1(\hat{x}_1) \quad t_1(\top_1) - \hat{c}_2 - f_2(\hat{x}_2) \quad f_2(\bot_2) - \hat{c}_3 - f_3(\hat{x}_2) \quad f_3(\bot_2) - \hat{c}_4$$

Space and Congruence Compression of Proofs

Is it possible to remove parts of the proof from memory during proof processing?

Which parts?

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- O Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

Space Measure Example

Maximum number of nodes in memory: 5

Not in memory

In memory

Good traversal orders are essential!

Space Measure

Space measure of a proof and a traversal order

Maximal amount of nodes that have to be kept in memory at once while processing the proof following the traversal order

Construct Traversal Orders

Construct Optimal Order

- NP-complete
- Optimal strategy in some pebbling game

Construct Good Order

- Greedy Algorithms
- Heuristic choices
- Top-Down
- Bottom-Up

Experiments, Unsung Heroes & Conclusion

Experimental Results

Congruence Compression

- 2% average effective compression in proof length
- 28% compression in explanation length

Space Compression

- Bottom-Up outperforms Top-Down
- Average space measure is 44.1 times smaller than proof length

Unsung Heroes

- Explanation producing congruence closure algorithm
 - Using immutable data structures
 - Modified version of Dijkstra's shortest path algorithm
- Proof producing algorithm
- Resolution calculus extended with equality
- SAT translation of optimal traversal order
- Correct- & soundness proofs
- Implementation of all presented methods

Conclusion

- Proofs can be compressed in length and space
- Finding the shortest explanation is NP-complete
- Proof production is tricky
- Construct traversal orders Bottom-Up

Thank you for your attention!

Short explanation, long proof

$$f(a,b) \neq f(b,a), f(a,a) \neq f(b,b), t_a = t_b$$

$$a \neq b, f(a,b) = f(b,a)$$

$$a \neq b, f(a,a) \neq f(b,b), t_a = t_b$$

$$a \neq b, f(a,a) = f(b,b)$$

$$a \neq b, t_a = t_b \qquad t_a \neq a, a \neq b, b \neq t_b, t_a = t_b$$
Compatibility proof

Transitivity proof

Congruence Experimental Results

• 3965 proofs of problems of the SMT-LIB benchmark in the QF_UF logic

Method	Compression	Min	Max	Speed
EqGraph	5.350 %	-18.302 %	81.347 %	0.343
Proof Forest	5.196 %	-43.985 %	77.202 %	0.611
DAGify	3.368 %	0.0 %	14.433 %	1.655

Compression Results

Congruence Graph	Compressed	Compression
Equation Graph	12.42 %	28.34 %
Proof Forest	11.459 %	28.69 %

Explantion Size Results

../latex/chapters/congruence/figures

Compression vs Proof Length

Space Compression Results

- VeriT: Problems from SMT-lib
- TraceCheck: Problems from SATLIB, computed with PicoSAT

Name	Number of proofs	Maximum length	Average length
TraceCheck ₁	2239	90756	5423
TraceCheck ₂	215	1768249	268863
$veriT_1$	4187	2241042	103162
veriT ₂	914	120075	5391

Table: Proof Benchmark Sets

Space Compression Results

Algorithm Heuristic	Relative Performance (%)	Speed (nodes/ms)
Bottom-Up		
Children	17.52	88.6
LastChild	26.31	84.5
Distance(1)	9.46	21.2
Distance(3)	-0.40	0.5
Top-Down		
Children	-27.47	0.3
LastChild	-31.98	1.9
Distance(1)	-70.14	0.6
Distance(3)	-74.33	0.1

Experimental Results

Construct Order Top-Down

