REAL-TIME SPEED ANALYZER

Under the supervision

of

Ms Richa Sharma

Assistant Professor, Dept. of CSE

Richa Sharma

by

Vaishali Garg, 79

Kritika Sharma, 112

Kunal Sharma, 120

Urvashi Dhangar, 136

Department of Computer Science & Engineering

Bhagwan Parshuram Institute of Technology

PSP-4, Sec-17, Rohini, Delhi-89

TABLE OF CONTENTS

- 1. Literature Review
- 2. Design Phase

LITERATURE REVIEW

			Algorithm	Limitation of			Cita in ADA stula
S.No.	Paper Title	Dataset Used	/Methodology/M	the Model	Summary in your words	Future Scope	Cite in APA style
			odel				
1	Vehicle Speed Control and Security System	Real-time data used	Raspberry Pi, GPS/GSM module, Telegram	Does not work efficiently due to a small problem with the GPS and GSM modem, use of hardware, funding required	This paper aims to reduce the exponential increasing theft of vehicles recently. It introduces a multi-layer security system which includes a theft alerting feature, owner speed-limiting system, and emergency monitoring vehicle feature. The first part of the model introduced in this paper deals with the limiting the speed of the vehicle if it is robbed. For this a motor driver IC(controls two or more motors at a time), a DC motor(as a vehicle) and Raspberry Pi(control voltage provided to the vehicle) is used in order to limit the speed of the vehicle or DC motor in this case. The second part deals with geolocation tracking using GPS and GSM module. By GPS module we get the longitude and latitude and	Funding required for hardware and installation in vehicles	Aziz, T., Faisal, T. M., Ryu, H. G., & Hossain, M. N. (2021). Vehicle Speed Control and Security System. In 2021 International Conference on Electronics, Information, and Communication (ICEIC) (pp. 1-4). IEEE.

Machine L 2 Technique Identify U Driving Be Means of Sensor Da	total driving time spent by ten different drivers (https://ocslab.hksecur ity.net/Dataset	Machine learning techniques(SVM, Artificial Neural Network), Controller Area Network (CAN) bus	CAN bus access parameters differ from model to model and company to company, difficulty in getting accurate dataset.	using that we get our location on the map and by GSM module we get the text message where the location is mentioned. Finally, the third part of this paper deals with monitoring the vehicle through a webcam. The webcam looks for any motion and if any kind of motion occurs, it clicks images(40 images per second) and a little microphone inside the webcam records audio and sends through telegram software. This paper aims to identify unsafe driving behaviors of a driver by taking advantage of sensors already present in modern vehicles using machine learning techniques(SVM, Artificial Neural Network). They have taken a short time window of 10 seconds with 50% overlap of the dataset and extracted features like vehicle speed, engine speed, engine load, throttle position, steering wheel angle, brake pedal pressure by On Board Diagnostics(OBD-II) from it and defined a quadratic relationship between acceleration and speed which	More dataset collection and can be used in insurance companies for better services	Lattanzi, E., & Freschi, V. (2021). Machine Learning Techniques to Identify Unsafe Driving Behavior by Means of In-Vehicle Sensor Data. Expert Systems with Applications, 176, 114818.
--	---	--	--	---	--	--

		1	1	1	1 1 1 1	1	
					when plotted, it splits out in		
					two areas representing safe and		
					unsafe driving domains. In		
					particular, the points falling		
					outside the curve represent		
					unsafe driving conditions		
					while those inside are safe.		
					Each time window from the		
					dataset is marked according to		
					the quadratic equation. Then		
					the labelled data was used to		
					train the two classifiers:		
					Support Vector		
					Machines(SVM), Artificial		
					Neural Networks. A binary-		
					class SVM was used to find a		
					hyperplane that best divides		
					the dataset into the desired		
					classes. A simple feedforward		
					network was used with a single		
					hidden layer composed of 50		
					neurons. The network was		
					trained by means of a		
					backpropagation Levenberg-		
					Marquardt algorithm with a		
					traditional mean square error		
					(MSE) performance function.		
					Lastly, graphs were plotted for		
					dataset showing safe(blue		
					circle) and unsafe(red triangle)		
					against different features		
					obtained from OBD-II.		
3	An Enhanced Map-	Real-time data	Iterative Closest	Reduces	This paper proposes a method	Enhanced to	Kang JM, Kim HS, Park JB, Choi YH.
	•				for enhancing the position		An Enhanced Map-Matching
	Matching Algorithm	used	Point(ICP)	horizontal error	accuracy of a low-cost GPS	reduce vertical	g
				1	,	1	

for Real-Time	algorithm, Map	not the vertical	receiver based on map data	error and	Algorithm for Real-Time Position
Desition Assurage		orror	without using any additional	aomanutational	Accuracy Improvement with a Low-
Position Accuracy	matching	error	sensors. Firstly, they loaded	computational	Cost GPS Receiver. Sensors. 2018;
Improvement with a	algorithm		the digital databases .i.e., the	speed even when	18(11):3836.
Low-Cost GPS			Map Set Point(MPS, vector	buff size and area	https://doi.org/10.3390/s18113836
Low-cost GPS			points extracted from the	Duli Size and area	11ttps://doi.org/10.3390/516113636
Receiver			center of roads) is loaded from	size is larger	
			the memory. The current		
			position and heading of a vehicle are acquired from the		
			GPS receiver at each sampling		
			time and stored in Source Point		
			Set(SPS, vector points of the		
			vehicle trajectory) till a		
			predefined scalar value.		
			Reference Point Set(RPS,		
			created from the selected		
			vector points in the MPS that a		
			vehicle is expected to pass) is		
			created based on MPS and SPS		
			.i.e., all those vector points of		
			MPS are chosen whose		
			headings are parallel to that of		
			the trajectory of the vehicle. It		
			increases the horizontal		
			accuracy by considering the		
			direction of the road. After		
			constructing RPS the Iterative		
			Closest Point(ICP) algorithm is		
			used to compute the rotational		
			and translational errors		
			between RPS and SPS which		
			outputs the rotation matrix and the translation vector from		
			which minimized horizontal		
			winch minimized norizontal		

4	Smartphone GPS accuracy study in an urban environment	Real-time dataset used	Shapiro-Wilk test, Mann- Whitney test, RMSE(Root Mean Square Error), Pearson's correlation coefficient	Unable to sufficiently explain why horizontal position accuracy improved during periods of time when WiFi usage was high, lack of access to the technical specifications of the WiFi network, lack of measurement of	position error is concluded. However, this transformation does not sufficiently reflect the change value between the trajectory and the GPS information, which were newly obtained, hence least squares method was used to calibrate the rotational error. The state estimation which implies the correct position of the vehicle is linked to RPS to eliminate the residual disparity using vector projection theorem, which is from the current state estimation and the two points near the estimation point. The lateral error is reduced, and the vehicle position is located on the road of the digital map. This paper aims to understand relative position accuracy in an urban environment by an iPhone 6 using Avenza software for capturing horizontal position. The locations were captured during two seasons of the year(leaf-on and leaf-off), two times of day(AM and PM) and two perceived WiFi usage periods(High and Low, when human activity was hight and low respectively). Data was collected from six monumental	Complementary study to better understand the impact of the spatial arrangement of features, further investigation the role multipath plays in error, it would be useful to set up a device at each sample point and continuously	Merry, K., & Bettinger, P. (2019). Smartphone GPS accuracy study in an urban environment. <i>PloS one</i> , <i>14</i> (7), e0219890.
---	---	---------------------------	--	--	---	--	--

1		
the strength of	locations across the campus	collect data over a
the WiFi signal at	with difference surroundings.	period of time and
each sample	One trip entailed visiting each	at specified time
point, lack of	of the six points once in a	intervals, a
study to better	clockwise or counter-	similar research
understand the	clockwise order, as opposed to	endeavour using a
impact of the	zig-zagging from point to	newer smartphone
spatial	point. During each data	with an improved
arrangement of	collection period, each point	GPS chip would
features	was visited 20 times. The data	be valuable.
	was collected in two ways-	
	GPS-only and WiFi enabled.	
	The data was collected using a	
	unipod and a level, the phone	
	was positioned over each	
	survey cap, with the data	
	collector oriented to face north.	
	The sets of static horizontal	
	position errors data collection	
	scenarios were tested for	
	normality using a Shapiro-	
	Wilk test and was found that	
	the sets of data was not	
	normally distributed. Mann-	
	Whitney test was implemented	
	to test that the static horizontal	
	position error collected during	
	GPS-only data collection was	
	not significantly different than	
	the static horizontal position	
	error collected when WiFi was	
	enabled. Further, to describe	
	the positional error, descriptive	
	statistics including minimum	
	and maximum error, and the	

		DMCE/illustrates the arms	<u> </u>
		RMSE(illustrates the error	
		between the known location	
		and the collected location) of	
		the horizontal position error	
		were calculated for data	
		collected at each sample point	
		and under each of the eight	
		data collection periods.	
		Pearson's correlation	
		coefficient was used to	
		determine whether land cover	
		was correlated with the	
		horizontal position accuracy of	
		data. It was also used to	
		determine whether weather	
		characteristics were correlated	
		with the horizontal position	
		accuracy of the data collected.	
		A multivariate regression	
		analysis was performed to	
		identify the influence of	
		weather conditions on	
		positional error. It was	
		concluded that overall average	
		horizontal position error of the	
		iPhone 6 is in the 7–13 m	
		range, depending on	
		conditions, which is consistent	
		with the general accuracy	
		levels observed of recreation-	
		grade GPS receivers in	
		potential high multipath	
		environments. The time of year	
		did not influence the average	
		horizontal position error	

5	An Improved Strong	Real-time data	Cubature Kalman	The proposed	observed when GPS-only parameters were assumed, or when WiFi was enabled and average horizontal position error only seemed to improve with time of day (afternoon) during the leaf-off season. Horizontal position error seemed to improve in general during perceived high WiFi usage periods (when more people were present) within each season and during each time of day most prominently in the afternoon. In general, directional error was consistent at each data collection point during both GPS-only and WiFi collection. Finally, weather conditions had little to no influence on the accuracy of data collected. In this paper, an improved	Development of	Feng, K., Li, J., Zhang, X., Zhang,
	Tracking Cubature	used	Filter	method is	strong tracking cubature Kalman filter is proposed to	modified multiple fading factors	X., Shen, C., Cao, H., & Liu, J. (2018). An improved strong
	Kalman Filter for			complex and	suppress the process uncertainty induced by the	strong tracking method that is	tracking cubature Kalman filter for
	GPS/INS Integrated			difficult to	severe manoeuvring for the	more suitable for	GPS/INS integrated navigation
	Navigation Systems			understand,	low-cost GPS/INS integrated navigation systems. Based on	CKF.	systems. Sensors, 18(6), 1919.
				greater time	the improved strong tracking		
				complexity for	technique, the process uncertainty can be detected and		
				the algorithm.	suppressed by modifying the prior state estimate covariance		

					online according to the change in vehicle dynamics. Moreover, the seventh-degree spherical simplex-radial cubature rule, which can be used to compute the more exact Gaussian type integral, is integrated into the strong tracking cubature Kalman filter to further enhance the estimation accuracy. Thus, the proposed IST-7thSSRCKF possesses the advantage of 7thSSRCKF's high accuracy and strong tracking filter's strong robustness against process uncertainties. The carmounted experiments are utilized to demonstrate that the proposed IST-7thSSRCKF can achieve high estimation accuracy and has better robustness for the suppression of process uncertainties.		
	An Approach for	The main data	The concept	. The model	The model revolves around the	1. Displaying	Lohrer, J., & Lienkamp, M.
6	predicting vehicle	source is the conducted	provides a two-	mainly	two main stages,	Points of	(2016). An approach for
	velocity in	Field	stage approach.	emphasizes on	The first stage is the	Interests as	predicting vehicle velocity in
	combination with	Operational	The first stage is	prediction of trip	prediction of upcoming turns	per user will	combination with driver
	driver turns	Test (FOT). Smartphones	the prediction of	and speed of	and trip segments based on the	make the	turns. Automotive and Engine Technology, 1(1),
		track	upcoming turns	vehicle which	historical features and the	model more	27-33.
		approximately 90 taxis	and trip segments		currently driven road	user friendly.	27 00.

and 20	based on the	reduces the	segments. The second stage	2. The major
commercial	historical features	efficiency.	uses this information to predict	future scope
vehicles		•	*	•
equipped with	and the currently	. Calculation of	the vehicle's speed. The model	of this model
an internal	driven road	velocity of	is completely based on the	is, it can be
combustion engine in the	segments. The	vehicle is	prediction, it analyses the data	used as a
area of	second stage uses	completely	obtained from Field	virtual driving
Munich and	this information	based on	operational testing in order to	assistant.
Upper				assistant.
Bavaria.	to predict the	prediction and	detect the future turns, trip and	
Besides the mobility data	vehicle's speed.	other factors like	vehicles velocity. The main set	
acquisition, an	The dataset	Traffic flow,	back for the model is, if the	
electric	obtained from	inner city	destination is unknown, the	
vehicle is	Field Operational	mobility etc.	preview is limited to the end of	
simulated in a	Test is utilized	The model is not	the road section, which limits	
smartphone application.			·	
The	for the above	suitable for new	the user to a particular region.	
original GPS,	mentioned steps.	trips as it cannot		
speed	The approach	predict the new		
information,	combines a trip	destination.		
and the simulated	prediction			
data are	*			
transferred to	algorithm with a			
the server	speed profile			
infrastructure.	prediction.			
The				
sample time				
of the GPS				
data as main				

information is
one one
second. The
FOT started in
2013 and was
in progress till
2016 . As
additional
data source,
live traffic
information is
used.Traffic used.Traffic
flow
information is
accessed at
regular
intervals
of State of
approximately
15 min for the
corresponding
regions.
The data is
stored in a
PostgreSQL
database.
For map-
based
approach,
OSM is used
which
provides open
source map
<u> </u>

1	Т	Т	T	T	Г	
		data with road				
		and location-				
		specific				
		attributes.				
		These				
		attributes				
		contain				
		geometrical				
		information,				
		maximum				
		allowed				
		speed,				
		position of				
		traffic signals,				
		stop signs,				
		and road class				
		amongst				
		others. Since				
		original				
		OSM data are				
		not routable,				
		the map data				
		are converted				
		using				
		OSM2PO . As				
		a result, road				
		segments are				
		split at				
		intersections,				
		which enables				
		the map-				
			1			

		based							
		approach.							
7	Monitoring Vehicle	Eleven	Eleven attributes	1.	The	The proposed work is an	1.	The model is	Reddy, N. R., & Subhani, S.
	speed using GPS and	attributes	from speed data		methodolo	endeavor to control speed of		limited only	(2019). Monitoring Vehicle
	Categorizing driver.	from speed	have been		gy used in	the vehicle structured with Pc		to public	Speed using GPS and Categorizing Driver.
		data have	considered to		this model	programming to empower the		transport	Categorizing Driver.
		been	categorize these		limits its	outsider or proprietor to get		vehicles and	
		considered to	drivers, these		implement	the area, speed and action of		other	
		categorize the	eleven attributes		ation in the	the driver. GSM/GPRS are		commercial	
		driver, these	(Mail id, user id,		real world.	utilized to track the objects		vehicles,	
		attributes are	project id,	2.	The model	and provide the up to date		while it can	
		Mail id, user	maximum speed,		is	data. This data is stored in the		be modified	
		id, project id,	distance, time ,		completely	server and sent to the users.		to keep track	
		maximum	average speed,		dependent			of personal	
		speed,	eligibility,		on			vehicles as	
		distance, time	accuracy , GPS		different			well.	
		, average	Satellites)		API in		2.	Displaying the	
		speed,	are recorded for		order to			data in	
		eligibility,	effortlessness,		give			proper	
		accuracy , GPS	these attributes		desired			analysed	
		Satellites	are utilized based		output.			form to the	
			on GPS service of						

T T				l	<u> </u>	1
	the smartphone	3.	The		user, to save	
	and fire base to		Accuracy of		users time.	
	predict the speed		the model	3.	The model	
	of vehicle and		is		can be	
	categorize the		unknown.		modified into	
	driver.	4.	The output		a virtual	
			given to		driving	
			the		assistant.	
			Director/ad	4.	An alarm	
			min is in		mechanism	
			raw form		can also be	
			and needs		embedded in	
			to be		this app so	
			analyzed		that when a	
			before		person	
			implement		crosses the	
			ation.		speed limit,	
					an alert is	
					displayed on	
					the screen.	

8	Vehicle tracking and	The available	The method	1.	The model is	The model was basically	1.	The model	Hua, S., Kapoor, M., &
	speed estimation	dataset has	takes a detect-		only able to	designed to aid the traffic		can be	Anastasiu, D. C. (2018).
	from the traffic	been captured	then-track		detect the	department in empowering		improved and	Vehicle tracking and speed
	videos	by stationary	approach and		constant	the traffic rules, to prevent		used by	estimation from traffic
		cameras	can use object		speed of the	vehicles from rash driving and		traffic police	videos. In <i>Proceedings of</i>
			·		•				the IEEE Conference on
		located at	detections from		moving	over speeding. the basic		to empower	Computer Vision and
		urban	any vehicle		vehicle and	approach of the model to		traffic rules.	Pattern Recognition
		intersections	detection		sudden	track the vehicles using vehicle	2.	The model	Workshops (pp. 153-160).
		and free	algorithms input;		variation in	detection algorithms and then		can be	
		ways.Followin	the vehicle is		the speed of	detecting the speed of vehicles		implemented	
		g are details	tracked using		vehicle goes	using optical flow and speed		in the	
		of the dataset:	vehicle tracking		undetected.	estimation algorithms. In		vehicles in	
		• The Track 1	algorithms	2.	The	order to predict the speed of a		order to	
		dataset	enhanced with		predictive	moving vehicle and track the		predict the	
		contains 27	optical-flow		speed	vehicle the camera recording		speed of	
		one-minute	based features to		calculated by	traffic should be static, which		vehicles and	
		1080p videos	provide robust		the model	also adds ups as a downfall of		speed of	
		(1920x1080)	vehicle		suffered	the proposed model. Overall		other vehicles	
		recorded at	trajectories. The		from both	the approach used in the		passing users'	
		30 frames per	method takes a		lower	model was impressive but due		vehicles, this	
		seconds (fps).	data-driven		detection	to some factors the model		will help	
		Those videos	approach to		rate and high			users to claim	

are captured	estimating the		root mean	faces challenges in the real		for insurance	
at 4 different	speed of vehicles		square error	world situations.		in case of an	
locations,	and relies on		than the			accident.	
locations 1	several strong		constant		3.	The model	
and 2 being	assumptions.		speed model.			finds its	
highway and 3	First, the camera	3.	•			implementati	
and 4	recording traffic		performance			on in the	
intersection	should be static,		of the vehicle			virtual driving	
locations,	Secondly, assume		depends on			assistant.	
respectively.	that the		the quality of				
• The Track 2	maximum speed		video and				
dataset	limit is known for		other				
involves 100	the road		physical				
videos, each	segments		factors like				
approximately	captured in the		wind and				
15 minutes	footage and at		position of				
	_		the camera.				
long, recorded	least one vehicle		the camera.				
at 800x410	drives on the						
resolution and	segment at that						
30 fps.	speed.						
• The Track 3							
dataset has 15							

9	Speed Determination of Moving Vehicle using Lucas-Kanade Algorithm.	videos of 1080p resolution recorded at 30 fps, in four different locations. Each video is 0.5 to 1.5 hours long. The dataset used for this model are the video sequences captured using a digital camera with 15 fps sample rate and resizing the images to 120	The model implements the lucas-kanade algorithm which uses the video recording to determine the speed of moving objects. The optical flow of the recorded video is utilized		The output of the model depends on the quality of video recorded by the camera. The model is good for calculating vehicle speed but will not	The model takes simple video file as input and calculates speed of vehicle using Lucaskanade algorithm, which makes use of Optical flow of the input video to derive the necessary equations which are then replaced by the values as per rate of change of pixels will give the velocity of the moving vehicle.	1.	The model can be used in implementing a virtual driving assistant. The model can be integrated with a speed alert system in order to alert drivers of	Shukla, D., & Patel, E. (2013). Speed determination of moving vehicles using Lucas- Kanade Algorithm. International Journal of Computer Applications Technology and Research, 2(1), 32-36.
---	---	---	---	--	--	--	----	---	--

		X160 pixel resolution.	by the lucas- kanade algorithm to get numerical values related to the rate of change of pixels and hence predicting the velocity of the vehicle.		be able to display it to the user in real time which limits its functionalitie s.		3.	crossing the speed limit. The model can be used to calculate the speed of nearby vehicles.	
10	SenSpeed: Sensing Driving Conditions to Estimate Vehicle Speed in Urban Environments	The data obtained from mobile phones, accelerometer s and gyroscopes is analysed to calculate the velocity of the vehicle.	The model implements Accelerometer and gyroscope readings to calculate the actual velocity of the vehicle, in order to obtain the vehicle speed, a series of	1.	We need to align the mobile phone in such a way that the y axis of mobile phone and vehicle point in the same direction.	The models make use of mobile phones Accelerometer and Gyroscope to calculate the velocity of the moving vehicle, the readings of accelerometer are continuously observed for the same purpose. The basic drawback of the model is, in order to use an accelerometer for velocity calculation the mobile phone should be	2.	be implemented in creating a virtual driving assistant.	Yu, J., Zhu, H., Han, H., Chen, Y. J., Yang, J., Zhu, Y., & Li, M. (2015). Senspeed: Sensing driving conditions to estimate vehicle speed in urban environments. <i>IEEE Transactions on Mobile Computing</i> , <i>15</i> (1), 202-216.

Therefore,	the acceleration	2.	The efficiency	placed in such a way that the		in order to	_
readings of	samples are		of the model	y-axis of the mobile phone and		help drivers to	
the	taken and		is directly	the vehicle are		drive below	
accelerometer	monitored by the		depending on	parallel.gyroscope is used to		the speed	
and gyroscope	accelerometer		the mobile	check the smoothness of the		limit.	
serves as the	continuously.		phones	road but because it consumes	3.	The model can	
dataset for	The position of a		alignment.	more power than		be modified so	
the model.	smartphone can			accelerometer ,it is preferred		that the	
	be determined			to use only accelerometer and		device's	
	by using GPS. The			not gyroscope this step		alignment with	
	average vehicle			optimize the power		the vehicle	
	speed is utilized			consumption. After		may have very	
	by the position			performing various		little impact on	
	and time interval			experiments on the model it		the accuracy	
	from adjacent			was concluded that SenSpeed		of the model.	
	GPS data.			can estimate the vehicle speed			
	Gyroscope data			in real-time with a low average			
	is used to detect			error of 2.12km/h, while			
	the smoothness			achieving 1.21km/h during the			
	of roads.Modern			offline estimation.			
	motion sensors						
	usually have 6						

	1		 1	1
		power modes,		
		i.e. Idle Mode,		
		Accelerometer		
		Low Power		
		Mode,		
		Accelerometer		
		Mode,		
		Gyroscope Mode		
		and Gyroscope &		
		Accelerometer		
		Mode. Energy		
		consumption is		
		the lowest when		
		the motion		
		sensor is running		
		under Idle Mode,		
		which is only		
		5μA. Besides,		
		energy		
		consumption is		
		also relatively		
		low when		
L	1			

Accelerometer	
Low Power Mode	
is on, which is	
10-140μA.There	
is no low power	
mode for	
gyroscopes. Once	
the gyroscope	
consumes much	
more energy	
than the	
accelerometer,	
which is 3.6mA.	
Therefore, there	
are two	
important	
principles in	
reducing power	
consumption of	
Senspeed: Since	
the power	
	Low Power Mode is on, which is 10–140µA.There is no low power mode for gyroscopes. Once the gyroscope starts running, it consumes much more energy than the accelerometer, which is 3.6mA. Therefore, there are two important principles in reducing power consumption of Senspeed: Since

	consumption of a	
	gyroscope is	
	much higher than	
	that of an	
	accelerometer.	
	Avoiding use of	
	gyroscopes in	
	order to reduce	
	the power	
	consumption is	
	the better	
	option; Since the	
	low power mode	
	is available when	
	the sampling rate	
	is low, a	
	significant	
	amount of	
	energy could be	
	saved by	
	reducing the	

			sampling rate of SenSpeed.				
11	Estimating true speed of moving vehicle using smartphone-based GPS measurement	Recorded GPS measurement (timestamp, horizontal accuracy, latitude, longitude).	It proposes the use of correction filters to remove the error in measured reading due to low update frequency of GPS.	The GPS measurement provide less accuracy due to weather changes, loss of signals, canyon effect.	This paper proposed a speed calculation approach using the gps measurement in smartphones. The readings may get suffer due the urban canyon effects, also the accurate speed turn measurements are required to be captured. Since the gps measurements are not dependent on phone orientation, it is better to use. Gps data provide the values timestamp, horizontal accuracy, latitude, longitude. The gps measurement take some time to deflect the reflect the sudden change in speed. To overcome this the model proposes the use of two	The model can further be enhanced by use of Kalman filter to provide more accuracy.	Chowdhury, A., Chakravarty, T., & Balamuralidhar, P. (2014, October). Estimating true speed of moving vehicle using smartphone-based GPS measurement. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3348-3353). IEEE.

					moving average filters with		
					normalised weight coefficients.		
					The raw GPS data is passed		
					through data selection filter		
					that filter out the reading		
					having horizontal accuracy >		
					16 m. then the output is passed		
					through SDA filter followed by		
					two digital filter (CW, EW)		
					and then the result is passed		
					through composition filter to		
					combine the result.		
12	GPS Estimation	Usage of GPS	Kalman Filter	It can be helpful	GPS receiver link with four	Accuracy can be	Laghari, S. M. N. U. Z., & Farrukh,
	using Kalman Filter	data	Model	in reducing the	satellite provide four values	improved further	M. A. M. GPS Estimation using
		collection file		variance in data	(longitude, latitude, elevation).	using extended	Kalman Filter.
		stored in XML		values to some	The accuracy of gps values rely	Kalman filter.	
		format.		extent only.	on the respective devices. To		
					avoid this Kalman filter is		
					brought in use which take		
					noisy data as input and		
					provide less noisy data.		
					Applying the equations		
					$X_{k} = A \times X_{k-1}$		

					$Z_{\kappa} = H * X_{\kappa} + R$		
					The values can now be used		
					for further calculation.		
13	Speed estimation	The data from	The paper was	The calculation	The integration of the	Making use of	Ustun, I., & Cetin, M. (2019).
	using smartphone	the	based on the	depends on the	acceleration values	gyroscope and re-	Speed estimation using
	accelerometer data	accelerometer	methodology	position of	theoretically provides the	orienting the	smartphone accelerometer data.
		(embedded in	that the	smartphone kept	value of speed. Using this basic	mobile device to	Transportation research record,
		smartphones)	integration of the	in moving	approach, the idea of the	align with the	2673(3), 65-73.
		is collected	acceleration	vehicle.	paper was to estimate the	vehicle	
		and used.	values	Also, it provides	speed using the accelerometer	orientation.	
			theoretically	that estimated	(embedded inside the	Taking into	
			provides the	speed is on	smartphone) readings.	account more	
			estimated speed.	average within	However, this may accumulate	than two points	
				10 mph to actual	other factors also like gravity	(start and stop) to	
				speed.	component, sensor bias, noise	calibrate the	
					effect, vibrations etc. The	speed.	
					accelerometer provides with		
					three readings (along x, y, z		
					axis). For the purpose of		
					calculation readings along y		
					axis is only taken into		
					consideration.		

					The estimated speed when		
					plotted observe some linear		
					trends from which it is found		
					that speed can be corrected at		
					some calibration point. Here		
					start, stop point is used. What		
					we do is once the start and		
					stop points are detected, the		
					slope of each segment is		
					computed. The mean of these		
					slope is used for further		
					calculations.		
14	Sen Speed: Sensing	Real time	The paper starts	The accuracy of	Estimating the speed using	Natural driving	Yu, J., Zhu, H., Han, H., Chen, Y. J.,
	Driving Conditions	phone	with estimating	the model	GPS reading often suffer from	condition present	Yang, J., Zhu, Y., & Li, M.
	to Estimate Vehicle	accelerometer	the speed using	decreases under	low accuracy, low update	unique feature	(2015). Sen speed: Sensing
	Speed in Urban	readings along	integral of	high speed.	frequency. To overcome this	and can be	driving conditions to estimate
	Environments	the vehicles	accelerometer	The accuracy of	new approach of estimating	exploited to	vehicle speed in urban
		moving	readings giving	the system is	the speed using accelerometer	enable accurate	environments. IEEE Transactions
		direction.	the large	more in slightly	(embedded in phone) reading	real time vehicle	on Mobile Computing, 15(1), 202-
			deviation from	better in offline	come into play. But it is	speed estimation.	216.
			actual speed. It	mode to that of	observed that directly		
			then provides	online mode	integrating the speed provides		

	Т.			
	various	since the value of	a large deviation ang is linearly	
	correction	acceleration	dependent on time. This is	
	methods to	error is not	because the accumulative	
	estimate the	exactly accurate	error cause large deviation.	
	speed with low	due to lack of	Therefore, to overcome this	
	average error of	next reference	the accumulative error needs	
	1.32 mph.	point	to be eliminated hence model	
		information.	proposes the use of unique	
			reference points (making	
			turns, stopping (at traffic light,	
			due to traffic or at stop sign),	
			even road surfaces). Then the	
			model measures the error in	
			the readings between two	
			adjacent reference point and	
			eliminates such error to obtain	
			high accuracy. The model uses	
			two kinds of sensors	
			(accelerometer – acceleration	
			and gyroscope – angular	
			speed). Coordinate	
			Reorientation is done to align	
		1		

					nhana agandinata ayatana yaith		
					phone coordinate system with		
					vehicle. It senses the reference		
					point by analysing the aligned		
					reading from accelerometer		
					and gyroscope and infer the		
					speed. Finally, the correction is		
					done in reading and the		
					estimated speed result is		
					calculated.		
15	Android Based	Real time GPS	This paper	In this proposed	This paper proposed a	As for the future	Tamilselvan, K., Murugesan, G., &
	Vehicle Speed	measurement	proposed a	system, the	technique to develop an	scope, the system	Suthagar, S. (2018). Android
	Control System in	s are used.	technique to	speed is always	android application with GPS	should be	Based Vehicle Speed Control
	Critical Zones Using		develop an	maintained down	technology in order to identify	enhanced in	System In Critical Zones Using
	GPS Technology		android	to 30 km.	the critical location and	accordance with	GPS Technology. International
			application with		control the speed of vehicle	timer concept	Journal of Advanced Research in
			GPS technology		automatically in two wheelers.	i.e., slowing down	Electronics and Communication
			in order to		The speed measurement and	the speed only at	Engineering (IJARECE), 1(6).
			identify the		control are accomplished via	peak hours.	
			critical location		microcontroller with signal		
			and control the		being received wirelessly from		
			speed of vehicle		gps. In this system when the		
					vehicle reached the critical		

			automatically in two wheelers.		zone, the GPS device transmit the message to the hardware(receiver) to reduce the speed through Bluetooth and the mechanism automatically reduced the speed.		
16	Geofencing on the Real-Time GPS Tracking System and Improving GPS Accuracy with Moving Average, Kalman Filter and Logistic Regression Analysis	Users position	1.Arduino:Arduin o is an electronics development board. 2.Sim908:Sim908 has GSM and GPS modules together. 3.NodeJS:NodeJS is a runtime JavaScript platform that can be used for both background and	always show the exact correct position; it has a certain margin of error.	In this study, real-time tracking and geofence were performed. This geofence was performed by measuring the distance between the coordinates on the hardware side.the geofence process is performed on the map application screen after the data is transferred to the server-side.In real-life applications, the smooth circle-shaped geofence area is useless. This problem was solved by defining geofence in	There are many efficient scope can be introduced that can help in calculate more efficient gps location.	ÖZDEMİR, Z., & TUĞRUL, B. (2019, October). Geofencing on the Real-Time GPS Tracking System and Improving GPS Accuracy with Moving Average, Kalman Filter and Logistic Regression Analysis. In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-6). IEEE.

	foreground	the form of polygon., the		
	applications.	geofence area is customized in		
	4.Leaflet.js:The	two ways as static and		
	leaflet is an	dynamic. Static predefined		
	open-source	polygon. The home where the		
	JavaScript library	child lives is always defined as		
	written to create	static because the school		
	maps.	he/she goes to is always		
	5.Kalman Filter:It	immutable. The fact that the		
	is a filter that is	polygon drawn in real-time in		
	dynamic and can	a newly travelled area can be		
	predict the	used as a geofence without		
	location of the	saving is defined as dynamic		
	next system in a	geofence and has provided a		
	system with	very flexible use to the		
	known state	study.GPS data has errors for		
	space using	various reasons. It is aimed to		
	previous data.	reduce the error rate in the		
	6.Moving	data in order to make the		
	Average	system run faster and to be		
	Filter:The	stable.The comparative results		
	average	of the three methods are		
I	1		l	

			algorithm is to		given. Moving average, logistic		
			obtain a certain		regression and Kalman filter		
			number of data		were applied for error		
			and divide it by		reduction.		
			the number of				
			data.				
17	An Approach to	The position,	1.Position Error	1. When the road	AN enhanced GPS/INS/UWB	In our future	Li, Z., Wang, R., Gao, J., & Wang,
	Improve the	velocity and	Prediction with	environment has	integrated schema with	work, the	J. (2018). An approach to improve
	Positioning	orientation	UWB	changed, the	position error correction is	potential of	the positioning performance of
	Performance of	error vectors,	Observation.	performance will	proposed to improve the	cooperative work	GPS/INS/UWB integrated system with two-step filter. <i>Remote</i>
	GPS/INS/UWB	respectively.		become worse.	position accuracy, which is	for the multi-	Sensing, 10(1), 19.
	Integrated System	wen is the	2.Position Error		based on predicting the	sensor and more	
	with Two-Step Filter	angular rate	correction		position difference between	application	
		of navigation	schema with		GPS/INS and GPS/INS/UWN.	conditions will be	
		frame with	two-step filters.		Based on analytical and	investigated.	
		respect to			experimental results, the	The construction	
		earth, and ωie			GPS/INS/UWB integrated	of a more	
		is the angular			navigation with error	appropriate	
		rate of earth			correction outperforms the	model	
		with respect			GPS/INS integrated navigation	considering the	
		to an inertial			by 48% and 23% in the north	state of motion	
		frame.			and east directions,	and environment	

					respectively, when the LUAD	is therefore the	
					respectively, when the UWB	is therefore the	
					signal is unavailable. The	next step in our	
					integrated positioning method	research work.	
					based on a multi-sensor is able		
					to realize the integration of		
					advantages from different		
					sensors. The ability of UWB		
					was tapped further in the		
					proposed method, but the		
					cooperative level of different		
					sensors was also not high,		
					such as the modification of		
					system error from the UWB		
					observation and robustness of		
					the original observation.		
18	Design and	It consists of	Decoding the	GPS does not	GPS is one of the technologies	This project can	Verma, P., & Bhatia, J. S. (2013).
	Development of	two units one	NMEA (National	always show the	that are used in a huge	be further	Design and development of GPS-
	GPS-GSM based	is transmitting	Marine	exact correct	number of applications today.	enhanced by the	GSM based tracking system with
	tracking system with	side (vehicle	Electronics	position; it has a	One of the applications is	use of camera	Google map based monitoring. <i>International Journal</i>
	Google Map based	unit) i.e., GPS,	Association)	certain margin of	tracking your vehicle and	and by	of Computer Science,
	monitoring	GSM, Atmega	protocol is the	error.	keeps regular monitoring on	developing a	Engineering and Applications
		microcontrolle	main purpose of		them. This tracking system can	mobile based	(IJCSEA), 3(3), 33-40.
			l	l			

	r MAX 232,	developing this	inform you the location and	application to get
	16x2 LCD.	software. The	route travelled by vehicle, and	the real time view
		NMEA protocol	that information can be	of the vehicle
		consists of set of	observed from any other	instead to check
		messages. These	remote location. It also	it on PC, which
		messages are	includes the web application	would be more
		ASCII character	that provides you exact	convenient for
		set. GPS receives	location of target. This system	the user to track
		data and present	enables us to track target in	the target
		it in the form of	any weather conditions. This	
		ASCII comma –	system uses GPS and GSM	
		delimited	technologies	
		message strings.		
		'\$' sign is used at		
		the starting of		
		each message.		
		The locations		
		(latitude and		
		longitude) have		
		the format of		
		ddmm.mmmm.		
		i.edegrees		

			minutes and				
			decimal minutes.				
10	Impulance autotion of	A mada a i al		A CDC comicar	Lacation based Comittee offer	In factoring and	Singhal, M., & Shukla, A. (2012).
19	Implementation of	Android	Android Location	A-GPS server	Location based Services offer	In future, we	Implementation of location based
	Location based	Mobile	API, Google place	cannot utilize any	many advantages to the	make	services in android using GPS
	Services in Android	Operating	api, Public	of the three	mobile users to retrieve the	availability of	and web services. <i>International</i>
	using GPS and Web	System	Transportation	standby satellites	information about their	cheap GPS	Journal of Computer Science
	Services		API , Stop search	available for GPS	current location and process	enabled	Issues (IJCSI), 9(1), 237.
			Api	connections.	that data to get more useful	handsets. The	
				There needs to	information near to their	issue of cost	
				be	location. With the help of A-	remains to be	
				communication	GPS in phones and through	tackled, since	
				over the wireless	Web Services using GPRS,	these phones are	
				for processing of	Location based Services can be	still all high-end	
				GPS information	implemented on Android	units.	
				so this could be	based smart phones to		
				expensive.	provide these value-added		
					services: advising clients of		
					current traffic conditions,		
					providing routing information,		
					helping them find nearby		
					hotels. In this paper, we		
					propose the implementation		

20	Automated Vehicle Extraction and Speed Determination From QuickBird Satellite Images	Real – time object	1.Methodology of object-based vehicle to find the position of vehicle. 2.Vehicle extraction from pan image. 3.Speed determination from qb image.	Due to the limitation of extracting vehicles from a MS image, highly accurate speed determination cannot be expected. From the results of a simulation, it was found that the speed of a moving vehicle can be determined from	of Location based services through Google Web Services and Walk Score Transit APIs on Android Phones to give multiple services to the user based on their Location. A new method has been developed to automatically extract moving vehicles and subsequently determine their speeds from a pair of QuickBird (QB) panchromatic (PAN) and multispectral (MS) images. Since the PAN and MS sensors of QB have a slight time lag (approximately 0.2 s), the speed of a moving vehicle can be determined from the difference in the positions of the vehicle observed in the PAN and MS images due to the time lag. An object-based	In future we hope to increase the efficiency of finding moving vehicle from 94 to near 100 percentage.	Liu, W., Yamazaki, F., & Vu, T. T. (2010). Automated vehicle extraction and speed determination from QuickBird satellite images. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4</i> (1), 75-82.
----	--	-----------------------	--	--	---	--	---

		a QB bundle	approach can be used to	
		product to within	extract a vehicle from the PAN	
		an error range of	image, which has a resolution	
		16 km/h.	of 0.6 m. However, it is	
			difficult to accurately extract	
			the position of a vehicle from	
			an MS image because its	
			resolution is 2.4 m. Thus, an	
			area correlation method is	
			proposed to determine the	
			location of a vehicle from an	
			MS image at a sub-pixel level.	
			The speed of the moving	
			vehicle can then be calculated	
			by using the vehicle extraction	
			results.	

DESIGN PHASE

1. Proposed Architecture

2. DFD 0

3. DFD 1

