

Improving Calibration for Long-Tailed Recognition

Zhisheng Zhong

Jiequan Cui

Shu Liu

Jiaya Jia

Chinese University of Hong Kong

SmartMore

Background

Long-tailed Recognition

Confidence Calibration

 $^{[1]\} Zhou,\ et.al,\ BBN\ Bilateral\ Branch\ Network\ with\ Cumulative\ Learning\ for\ Long-Tailed\ Visual\ Recognition,\ CVPR\ 2020$

Background

* Backbone: ResNet-32

Background

SOTA one-stage models

* Backbone: ResNet-32

Best Top-1 Acc.: 50.6% & Best ECE: 14.7%

Conclusion: because of the imbalanced composition ratio of each class, networks trained on long-tailed datasets are more mis-calibrated and over-confident. The SOTA one-stage models, and two-stage models suffer terrible over-confidence as well.

In this paper, we focus on the **two-stage decoupling models** (**cRT & LWS**): To relieve the over-confidence issue in long-tailed recognition, We explore **soft label** methods for long-tailed recognition

Study of mixup Strategy

Mark	Stg1	Stg2	ResNet-50	ResNet-101	ResNet-152
CE	X		45.7 / 13.7	47.3 / 13.7	48.7 / 14.5
CE	V		45.5 / 7.98	47.7 / 10.1	48.3 / 10.2
cRT	X	X	50.3 / 8.97	51.3 / 9.34	52.7 / 9.05
cRT	X	•	50.2 / 3.32	51.3 / 3.38	52.8 / 3.60
cRT	V	X	51.7 / 5.62	53.1 / 6.86	54.2 / 6.02
cRT	V	•	51.6 / 3.13	53.0 / 2.93	54.1 / 3.37

Mark	Stg1	Stg2	ResNet-50	ResNet-101	ResNet-152
CE	X		45.7 / 13.7	47.3 / 13.7	48.7 / 14.5
CE			45.5 / 7.98	47.7 / 10.1	48.3 / 10.2
LWS	X	X	51.2 / 4.89	52.3 / 5.10	53.8 / 4.48
LWS	X	✓	51.0 / 5.01	52.2 / 5.38	53.6 / 5.50
LWS	V	X	52.0 / 2.23	53.5 / 2.73	54.6 / 2.46
LWS	•	•	52.0 / 8.04	53.3 / 6.97	54.4 / 7.74

Top-1 Acc. (\uparrow , the higher the better) / ECE (\downarrow , the lower the better)

Cross-entropy

Formulation:
$$l(y, \boldsymbol{p}) = -\log(\boldsymbol{p}_y) = -\boldsymbol{w}_y^{\top} \boldsymbol{x} + \log(\sum \exp(\boldsymbol{w}_i^{\top} \boldsymbol{x}))$$

Optimal solution: $w_y^{*\top} x = \inf$ while keeping others $w_i^{\top} x$, $i \neq y$, small enough.

Label-aware Smoothing

Formulation:
$$l(\boldsymbol{q}, \boldsymbol{p}) = -\sum_{i=1}^{K} \boldsymbol{q}_i \log \boldsymbol{p}_i$$
, $\boldsymbol{q}_i = \begin{cases} 1 - \epsilon_y = 1 - f(N_y), & i = y, \\ \frac{\epsilon_y}{K - 1} = \frac{f(N_y)}{K - 1}, & \text{otherwise,} \end{cases}$

Optimal solution:
$$\mathbf{w}_i^{*\top} \mathbf{x} = \begin{cases} \log\left(\frac{(K-1)(1-\epsilon_y)}{\epsilon_y}\right) + c, & i = y, \\ c, & \text{otherwise,} \end{cases}$$

Label-aware Smoothing

Label-aware Smoothing

Three types of related function $f(\cdot)$:

$$\epsilon_{y} = f(N_{y}) = \begin{cases} \text{(Concave)} & \epsilon_{K} + (\epsilon_{1} - \epsilon_{K}) \sin\left[\frac{\pi(N_{y} - N_{K})}{2(N_{1} - N_{K})}\right], & y = 1, 2, ..., K, \\ \\ \text{(Linear)} & \epsilon_{K} + (\epsilon_{1} - \epsilon_{K}) \frac{N_{y} - N_{K}}{N_{1} - N_{K}}, & y = 1, 2, ..., K, \\ \\ \text{(Convex)} & \epsilon_{1} + (\epsilon_{1} - \epsilon_{K}) \sin\left[\frac{3\pi}{2} + \frac{\pi(N_{y} - N_{K})}{2(N_{1} - N_{K})}\right], & y = 1, 2, ..., K, \end{cases}$$

A more powerful classifier framework for Stage-2:

$$oldsymbol{z} = \operatorname{diag}(oldsymbol{s}) \left(r oldsymbol{W} + \Delta oldsymbol{W}
ight)^{ op} oldsymbol{x}$$

Shift Learning on Batch Normalization

The SOTA two-stage decoupling methods ignore the dataset bias or domain shift between these two stages (the distributions of the dataset with **different sampling manners** are inconsistent for two stages). We focus on BN to relieve the dataset bias problem.

$$\mu_{\rm I}^{(j)} = \frac{1}{m} \sum_{i=1}^{m} g(\boldsymbol{x}_i)^{(j)}, \quad \boldsymbol{\sigma}_{\rm I}^{2(j)} = \frac{1}{m} \sum_{i=1}^{m} \left[g(\boldsymbol{x}_i)^{(j)} - \boldsymbol{\mu}_{\rm I}^{(j)} \right]^2, \quad \boldsymbol{x}_i \sim P_{\mathcal{D}_{\rm I}}(\boldsymbol{x}, y),$$

$$\mu_{\mathrm{C}}^{(j)} = \frac{1}{m} \sum_{i=1}^{m} g(\boldsymbol{x}_i)^{(j)}, \quad \boldsymbol{\sigma}_{\mathrm{C}}^{2\,(j)} = \frac{1}{m} \sum_{i=1}^{m} \left[g(\boldsymbol{x}_i)^{(j)} - \boldsymbol{\mu}_{\mathrm{C}}^{(j)} \right]^2, \quad \boldsymbol{x}_i \sim P_{\mathcal{D}_{\mathrm{C}}}(\boldsymbol{x}, y).$$

we unfreeze the update procedures of the running mean μ and running variance σ but fix the learnable linear transformation parameters α and β for a better normalization in Stage-2.

Experiment

Recognition Accuracy

Makal	CIFAR-10-LT			CIFAR-100-LT		
Method	100	50	10	100	50	10
CE	70.4	74.8	86.4	38.4	43.9	55.8
mixup [37]	73.1	77.8	87.1	39.6	45.0	58.2
LDAM+DRW [4]	77.1	81.1	88.4	42.1	46.7	58.8
BBN(include mixup) [39]	79.9	82.2	88.4	42.6	47.1	59.2
Remix+DRW(300 epochs) [5]	79.8	-	89.1	46.8	-	61.3
cRT+mixup	79.1 / 10.6	84.2 / 6.89	89.8 / 3.92	45.1 / 13.8	50.9 / 10.8	62.1 / 6.83
LWS+mixup	76.3 / 15.6	82.6 / 11.0	89.6 / 5.41	44.2 / 22.5	50.7 / 19.2	62.3 / 13.4
MiSLAS	82.1 / 3.70	85.7 / 2.17	90.0 / 1.20	47.0 / 4.83	52.3 / 2.25	63.2 / 1.73

Best Top-1 accuracy and the lowest ECE than all previous SOTA methods

Experiment

Recognition Accuracy

(a) ImageNet-LT

Method	ResNet-50	Method	ResNet-50	Method	ResNet-152
CE	44.6	CB-Focal [7]	61.1	Range Loss [38]	35.1
CE+DRW [4]	48.5	LDAM+DRW [4]	68.0	FSLwF [8]	34.9
Focal+DRW [18]	47.9	BBN(include mixup) [39]	69.6	OLTR [20]	35.9
LDAM+DRW [4]	48.8	Remix+DRW [5]	70.5	OLTR+LFME [35]	36.2
CRT+mixup	51.7 / 5.62	cRT+mixup	70.2 / 1.79	cRT+mixup	38.3 / 12.4
LWS+mixup	52.0 / 2.23	LWS+mixup(under-conf.)	70.9 / 9.41	LWS+mixup	39.7 / 11.7
MiSLAS	52.7 / 1.80	MiSLAS(under-conf.)	71.6 / 7.67	MiSLAS	40.4 / 3.60

(b) iNaturalist 2018

(c) Places-LT

Experiment

Confidence Calibration

Improving Calibration for Long-Tailed Recognition

Zhisheng Zhong

Jiequan Cui

Shu Liu

Jiaya Jia

Chinese University of Hong Kong

SmartMore

Thanks for listening!

Our paper

For more details

Our code

