

Mahindra University Hyderabad École Centrale School of Engineering Minor - 2

Program: B. Tech Branch: CSE/ARI/CAM/CAB/ECM/ECE Year: I Semester:2 Subject:- Discrete Mathematical Structures (CS 1202)

Date: 01/05/2023 Time Duration: 1 h 30 m Start Time: 10:00 AM Max. Marks: 100

Marks: $5 \times 4 = 20M$

Instructions:

Answer all the questions.

All the sub-questions belonging to a big question should be answered together.

• Total marks are set to 100 only for convnience. There is nothing to worry. Answer what you can, happily.

Q1: RSA encryption

A quick recap of how the RSA algorithm works:

Bob's side	Alices's side
1) Setting up	2) Transmission
• Generates two prime numbers p and q such the product $n = p \times q$ is large enough.	• Alice decides on the message M to be transmitted to Bob.
• Generates a public-key (n, e) , and displays it for the public. (Remember how?)	• Alice looks up for Bob's public-key (n, e) and encrypts M and converts it to M_e . (Remember how?)
• Generates a private-key (n, d) , and keeps it a secret. (Remember how?)	• Broadcasts M_e with absolute confidence that only Bob can decrypt this message. (Remember
3) Reception	why?)

Answer the following questions:

Receives the ecrypted message M_e.

computation remainder (M_e^d, n) .

1. How large should $n = p \times q$ be in order to be large enough?

· Finds the original message by performing the

- Suppose the two primes that Bob generates are p = 11 and q = 3. What is the totient m?
- Supposing e = 7, what is the value of d, the multiplicative inverse of $e \pmod{n}$?
 - Suppose Alice's secret message is M=17. What is the encrypted message (M_c) that Alice broadcasts?
- Suppose Bob receives $M_e = 3404825447$. What is the corresponding decrypted message M?

Q2: Summations

Marks: $4 \times 5 = 20M$

Consider the following summation

$$S(n) = 1 - 2^2 + 3^2 - 4^2 + 5^2 + \dots + (-1)^{n-1}n^2$$

Answer the following questions

+. Compute the value of S(1).

 \sim 2. Compute the value of S(10).

Find the closed form expression for any general n.

4. Compute the value of S(201).

-Q3: GCD

Marks: $2 \times 10 = 20M$

1. Compute the value of gcd(1147, 899).

2. Compute c_1 and c_2 where $gcd(7, 20) = c_1.7 + c_2.20$.

Q4: Fundamental Theorem of arithmetic

Marks: $2 \times 10 = 20M$

-1. Prime factorize 4087.

2. Prime factorize 43751.

Q5: Modular Artithmetic

Marks: $2 \times 10 = 20M$

Find the remainder when 3¹²³ divided by 7.

2 Solve the following congruence relation for x

 $84x - 38 \equiv 79 \pmod{15}$