MATU9D2: Practical Statistics

Spring 2017

Practical 6: Hand Calculations: Solutions

Question 1

One Sample t-test (since one sample & sd eshimated from data H_0 : $\mu = 224$ H_1 : $\mu \neq 224$ $\mu = mean dimension$ Significance here 0.05Test Statistic $t = \frac{\pi}{2} - 224$ Λ t(n-1) under H_0 Significance here 0.05Test Statistic $t = \frac{\pi}{2} - 224$ Λ t(n-1) under H_0 Significance here 0.05Test Statistic $t = \frac{\pi}{2} - 224$ Λ t(n-1) under H_0 Significance here 0.05 $\Lambda = 16$ $\Sigma = 3585.02$ $\Sigma = 224.06375 = 224.064// <math>\Lambda = 16$ $\pi = \frac{\pi}{2} = \frac{3585.02}{16} = \frac{1}{15} \left[803274.0454 - \frac{3585.02^2}{16} \right]$

 $t = \frac{224.064 - 224}{0.2608/\sqrt{1h}} = \frac{0.064}{0.0652} = 0.982//$

Rejection Region Sigherel 0.05; 2 huled; t(n-1)

 $\frac{\text{p value}}{\text{o.15}} = 2 \times P(t(15) > 0.982) = 2 \times 0.15 = 0.3 \text{ //}$ $0.15 \qquad \text{from tables } t(15)$

Conclusion
Observed Test Statistic of 0.982 is not in the Rejection Region &
p > 0.05 so insufficient evidence to reject the infavour of H,
at 5% level
is insufficient evidence to reject that mean diameter is 224mm

Question 2

Unpaved t-test (assuming equal variance)

Ha:
$$\mu_1 = \mu_2$$
 H: $\mu_1 \neq \mu_2$ $\mu_2 = \text{mean weight loss (A)}$
 $\mu_2 = \text{mean weight loss (B)}$

Significance bevol 0.05

Test Statistic
$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{sp^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim t(n_1 + n_2 - 2)$$
 under Hø

Observed Test Statistic

Cleaner A
$$n_1 = 10 \ \bar{x}_1 = 10.36 \ s_1 = 0.756$$

Cleaner B
$$n_2 = 8$$
 $\bar{x}_2 = 9.50$ $s_2 = 0.676$

$$Sp^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{3}^{2}}{n_{1}+n_{2}-2} = \frac{5.1438 + 3.1988}{16}$$

0.5214

$$\frac{10.36 - 9.50}{\sqrt{0.5214 \left(\frac{1}{10} + \frac{1}{8}\right)}} = \frac{0.86}{0.3425} = 2.511$$

See below for full working for means and sd's.

It should always be included.

FULL WORKING FOR MEANS & SD's FOR QUESTION 2

$$\overline{x_1} = \frac{\sum x}{n} = \frac{103.6}{10} = 10.36$$

$$s_1 = \sqrt{\frac{1}{n-1} \left[\sum x^2 - \frac{(\sum x)^2}{n} \right]} = \sqrt{\frac{1}{9} \left[1078.44 - \frac{103.6^2}{10} \right]} = \sqrt{\frac{5.144}{9}} = 0.756$$

$$\overline{x_2} = \frac{\sum x}{n} = \frac{76.00}{8} = 9.50$$

$$s_2 = \sqrt{\frac{1}{n-1} \left[\sum x^2 - \frac{(\sum x)^2}{n} \right]} = \sqrt{\frac{1}{7} \left[725.50 - \frac{76.00^2}{8} \right]} = \sqrt{\frac{3.20}{7}} = 0.676$$

Rejection Region Sighered \$1.05; 2 builed; t(ni+nz-2)

Crtical Value = t(16; 0.025) = 2.12

p value = 2 x P(t(16) > 2.51.) = 2×0.01 = 0.02// → P(t(16) > 2.583)= 0.01

Conducin Observed Test Statistic is in the Rejection Region & p < 0.05 so can reject the infavour of Hi at 5% level. it condude sufficient evidence of a difference in mean weight loss on the two cleaners.

(111) 95% CI for M1-M2

 $\bar{x}_1 - \bar{x}_2 \pm t(n_1 + n_2 - 2; 0.025) \sqrt{sp^2(\frac{1}{n_1} + \frac{1}{n_2})}$

t(16:0.025)= 2.12

 $(10.36 - 9.50) \pm 2.12 \times \sqrt{0.5214 \left(\frac{1}{10} + \frac{1}{8}\right)}$ $0.86 \pm 2.12 \times 0.3425$ 0.86 ± 0.7261

(0.134, 1.586)

Hø: ud = 0

Hi: Md

ud = mean diff Before-After

Significance Level Ø.05

Observed Test Statistic

Patient	After	Before	Diff	
 1	120	122	+2-	Ixd= 16
2	124	127	+3	$\Sigma x_d^2 = 100$
	130	129	, -1	
 4	118	120	+2	xd = 1.333
S	140	145	+5	sd = 2.674
 . 6	128	129	+1 .	n = 12
 	140	138	-2	
 8	135	132	-3	$t = \frac{1.333}{2.634/\sqrt{12}} = 1.7269$
 . 9	126	127	+1	2,674/012
 10	130	129	-1	
 	126	131	+ 5	44
12	127	131	+ 4	

Rejection Region 2 tailed; 0. 05; t(11)

$$t(11; 0.025) = 2.201$$

$$p \text{ value}$$
 = 2 x P(t(11)>1.7269) = 2 x 0.06 = 0.13

Observed Test Statistic outside the rejection region & p > \$.05 so insufficient evidence to reject Ho in favoring of H, at 5% level is insufficient evidence of a difference in diastolic blood pressure on average.

95% CI for
$$\mu_d$$
 $\overline{x_d} \pm t(n-1; 0.026) \frac{s_d}{\sqrt{n}}$
1.333 \pm 2.201 $\times \frac{2.674}{\sqrt{12}}$
1.333 \pm 1.699

95% CI for the difference includes zero so we cannot reject H_o in favour of H₁ at 5% level. So no statistically significant difference at 5% level.