CS915/435 Advanced Computer Security - Elementary Cryptography

Classical Cryptography

Quote of the day

"Any apparently contradictory set of requirements can be met using right mathematical approach."

Ronald L. Rivest

At ACM Turing Award lecture 2007

What's cryptography?

- The art and science of keeping information secure.
 - Bruce Schneier
- Computer security and crypto communities have drifted apart over the past 20 years
 - The former don't always understand the available crypto tools
 - The latter don't always understand the real-world problems
 - A security engineer must be able to be familiar with both

Basic terminology

- Cipher: a cryptographic algorithm to do encryption and decryption.
- Key: used for encryption and decryption
- Keyspace: the range of the key
- The secrecy must reside entirely on the key, not the cipher algorithm.
- -- Kerckhoff's principle

Cryptanalysis

- The art and science of analyzing weaknesses of cipher algorithms
- Also known as attack.
- Cryptology = Cryptography + Cryptanalysis

Four general types of attack

- 1. Ciphertext-only attack
- 2. Known-plaintext attack In WWII, German ciphertext started with a date
- 3. Chosen-plaintext attack Breaking secret code AF at Midway
- 4. Chosen-ciphertext attack The job is to deduce the key (lunch time attack)

Dramatis Personae

Alice First participant in a crypto system

Bob Second participant

Carol Third participant

• **Eve** Eavesdropper

Mallory Malicious active attacker

Large Numbers (storage)

•	No of atoms in the planet	2^{170}
•	No of atoms in the sun	2^{190}
•	No of atoms in the galaxy	2 ²²³
•	No of atoms in the observable universe	2 ²⁶⁵

To store all 256-bit Keys

2²⁶⁴ bits

Large Numbers (time)

•	Time until	the next ice age	2 ¹⁴ years

- Time until the sun dies
 2³⁰ years
- Age of the planet
 2³⁰ years
- Age of the observable universe 2³⁴ years
- To brute-force a 256-bit key

 2¹⁹² years

(Assume guessing one billion keys in one ms)

Dyson, "Time Without End: Physics and Biology in an Open Universe," Reviews of Modern Physics, v. 52, n. 3, July 1979, pp. 447–460.

Roadmap

- Symmetric cryptography
 - Classical cryptography
 - Stream cipher
 - Block cipher I, II
 - Hash
 - MAC
- Asymmetric cryptography
 - Public key encryption
 - Digital signature
 - Key agreement

Classical cryptography

- Classical cryptography
 - Based on characters (human)
- Modern cryptography
 - Based on binary inputs (computer)
- What has changed?
 - 26 elements to 2 elements.
 - But, the philosophy remains basically the same.

Confusion and Diffusion

 Two basic principles to obscure redundancies in a plaintext message (Shannon, 1949)

Confusion:

 Obscures the relationship between the plaintext and the ciphertext (e.g., by substituting letters)

Diffusion:

 Dissipates the redundancy of the plaintext by spreading it out over the ciphertext (e.g., by transposing plaintext).

Substitution ciphers

- 1. Monoalphabetic cipher
 - E.g. a->b, b->c
- 2. Polyalphabetic cipher
 - Made up of several monoalphabetic ciphers

Example: Casesar cipher

- Named after Julius Caesar
- Used for hundreds of years
- Shifts every letter 3 positions to the right

- Example
 - attackatdawm -> dwwdfndwgdzp

ROT13

- Another example of monoalphabetic cipher
- Commonly found on UNIX systems
- Every letter is rotated by 13 positions
- Question
 - Why not ROT14?

(Source: Wikipedia.org)

Review of modular arithmetic

- Suppose a and b are integers, and m is a positive integer.
- We write $a \equiv b \pmod{m}$ if m divides b-a.
- The phrase $a \equiv b \pmod{m}$ is called a congruence.
- It is read as "a is congruent to b modulo m"
- The integer m is called the modulus.

Data range

Some programming languages define
 a mod m in the range of (-m, m). But for our
 purpose, we define it always to be non negative.

$$101 = 7x14 + 3$$

= 3 mod 7

$$-101 = -7x14 - 3$$

= -3 mod 7
= 4 mod 7

Shift cipher (formal definition)

Arithmetic modulo Z_m is the set $\{0,...,m-1\}$

Let
$$P = C = K = Z_{26}$$
. For $0 \le K \le 25$, define

$$e_K(x) = (x + K) \bmod 26$$

And

$$d_K(y) = (y - K) \bmod 26$$

$$(x,y\in Z_{26})$$

Examples:

- K = 3 → Caesar cipher
- K = 13 → ROT13

Cryptanalysis of shift cipher

Given JBCRCLQRWCRVNBJENBWRWN, can you find out the plaintext?

jbcrclqrwcrvnbjenbwrwn	(K=O)
iabqbkpqvbqumaidmavqvm	(K=1)
hzapajopuaptlzhclzupul	(K=2)
gyzozinotzoskygbkytotk	(K=3)
fxynyhmnsynrjxfajxsnsj	(K=4)
ewxmxglmrxmqiweziwrmri	(K=5)
dvwlwfklqwlphvdyhvqlqh	(K=6)
cuvkvejkpvkogucxgupkpg	(K=7)
btujudijoujnftbwftojof	(K=8)
astitchintimesavesnine	(K=9)

What went wrong?

- The shift cipher (modulo 26) is not secure, because it can be broken by *exhaustive* search
- Only 26 possible keys
- On average, a plaintext can be computed after just 26/2=13 tries.
- Lesson: for a cipher to be secure, the key space must be very large
- But, is the reverse true?

Substitution cipher (definition)

Let $P=C=Z_{26}$. K consists of all possible permutations of the 26 symbols. For each permutation $\pi \in K$, define

$$e_{\pi}(x) = \pi(x) \mod 26$$

And

$$d_{\pi}(y) = \pi^{-1}(y) \mod 26$$

 $(x, y \in \mathbb{Z}_{26})$, and π^{-1} is the inverse permutation to π)

Example:

- $\pi = \{2,4,5,0,...,7,16\}$
- $\pi(0)=2$, hence $a \rightarrow c$

Key space of substitution cipher

What's the key space?

```
a) | K | = 26
```

b) | K | = 26! (26 factorial)
$$\approx 2^{88}$$

c)
$$| K | = 2^{26}$$

d)
$$| K | = 26^2$$

Cryptanalysis of substitution cipher

Letter	Probability	Letter	Probability
Α	.082	N	.067
В	.015	0	.075
С	.028	P	.019
D	.043	Q	.001
E	.127	R	.060
F	.022	S	.063
G	.020	Т	.091
Н	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	X	.001
L	.040	Υ	.020
М	.024	Z	.001

Cryptanalysis of substitution cipher

(a) Relative frequencies of English letters

(b) Relative frequencies sorted by frequency

(Source: wikipedia)

What went wrong?

- A large key space is not sufficient to ensure the cipher is secure.
- Substitution only provides confusion.
- Lesson: a secure cipher should combine both confusion and diffusion.

Vigenère cipher

- A polyalphabetic cipher based on the idea of combining a few Caesar ciphers into one
- Named after Blaise De Vigenère, a French diplomat in 1586

$$k = ABCABCABCABCA$$
 $m = BEREADYACKATDAWN$
(+ mod 26)

c = BFTEBFYBEKBVDBYN

Cryptanalysis of Vigenère cipher

- Two steps in the cryptanalysis
 - 1. Find out the key length m
 - 2. Find out each letter in the key

How to find out the key length?

- First method: Kasiski test
 - Described by Friedrich Kasiski in 1863
 - Search for identical segments and count how many positions they are apart

```
ABCDEABCDE ... ABCDE ... ABCDE the.....the.....the.....
```

15 positions apart -> key length is either 3 or 5 or 15

Example: Vigenère cipher

CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX VRVPPTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP 275 WQAIIWXNRMGWOIIFKEE 285

How to find out the key length?

- Second method: index of coincidence
 - Described by William Friedman in 1920
 - Suppose $\mathbf{x} = x_1 x_2 \dots x_n$ is a string of n alphabetic characters.
 - The *Index of coincidence* of *x* is defined to be the probability that two random elements of *x* are identical.

Index of coincidence

- Suppose a string of n English letters
- Occurrence of A = f_0 $(f_0/n) * (f_0-1/n-1)$
- Occurrence of B = f_1 $(f_1/n) * (f_1-1/n-1)$
- ...
- Occurrence of $Z = f_{25}$
- Hence, index of coincidence is calculated:

$$I_c(x) = \frac{\sum_{i=0}^{25} {f_i \choose 2}}{{n \choose 2}} = \frac{\sum_{i=0}^{25} f_i (f_i - 1)}{n(n-1)} \approx \sum_{i=0}^{25} p_i^{2}$$

Difference in index of coincidence

- Normal English text
 - Index of coincidence: $\sum_{i=0}^{25} p_i^2 = 0.065$
- Completely random string of letters

Index of coincidence: $\sum_{i=0}^{25} p_i^2 = 0.038$

1/26

Normal English text shifted by a fixed number

Index of coincidence: $\sum_{i=0}^{25} p_i^2 = \begin{bmatrix} 0.065 \end{bmatrix}$

English text encrypted by Vigenère cipher

Index of coincidence: $\sum_{i=0}^{25} p_i^2 =$

Same Example as before

CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW
RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK
LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX
VRVPPTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR
ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT
AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI
PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP
WQAIIWXNRMGWOIIFKEE

Feed the text into a matrix [n, m] row by row where m is the guessed key length

index of coincidence

m	index of coincidence of each column
1	0.045
2	0.046, 0.041
3	0.043, 0.050, 0.047
4	0.042, 0.039, 0.045, 0.040
5	0.063, 0.068, 0.069, 0.061, 0.072

Next step: break each shift cipher

```
HREE
 OAHM
 ERAT
 IAXX
WT N X B
E E O P H
BSBQM
```