Algorithmes de comparaison de séquences

Hélène Touzet

Équipe Bioinfo — LIFL — USTL

Master recherche informatique www.lifl.fr/~touzet/masterrecherche.html

Pourquoi comparer des séquences ?

Puisque c'est la structure qui prime pour la fonction (cf cours de Maude Pupin)

Pourquoi comparer des séquences ?

 Les programmes de séquençage fournissent des séquences qu'il faut annoter

"Public Collections of DNA and RNA Sequence Reach 100 Gigabases" (août 2005)

- Recherche d'homologie
 La similitude syntaxique est un signe de proximité fonctionnelle.
- Recherche de fonction commune Les régions conservées correspondent à des régions fonctionnellement importantes.
- ► Prédiction de gènes

Structure des protéines

Structure primaire

Structure secondaire

tertiaire

Structure quaternaire

Swissprot:163235 séquences TrEMBL:1449374 séquences

PDB: 243 structures

Structure des protéines

 Les structures 3D des protéines sont longues et coûteuses à déterminer

Cristallographie, résonance magnétique nucléaire

▶ Dans **PDB**, toutes les protéines avec plus de 25 % d'identité partagent la même structure

PDB: Protein Data Bank - banque de structures de protéines résolues expérimentalement

Exemple: l'insuline

éléphant	FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTGVCSLYQLENYCN
-	
hamster	FVNQHLCGSHLVEALYLVCGERGFFYTPKSGIVDQCCTSICSLYQLENYCN
éléphant	FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTGVCSLYQLENYCN
baleine	FVNQHLCGSHLVEALYLVCGERGFFYTPKAGIVEQCCASTCSLYQLENYCN
éléphant	FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTGVCSLYQLENYCN
alligator	AANQRLCGSHLVDALYLVCGERGFFYSPKGGIVEQCCHNTCSLYQLENYCN

 $horizontalement: ADN \ codant \ pour \ la \ chaîne \ \alpha \ de \ l'hémoglobine \ humaine \\ verticalement: ADN \ codant \ pour \ la \ chaîne \ \beta \ de \ l'hémoglobine \ humaine$

Deux enzymes avec un domaine catalytique commun

Alignement

Mise en correspondance de deux séquences (ADN ou protéines)

- ▶ 3 événements mutationnels élémentaires
 - substitution
 - insertiondélétionindel
- Score d'une opération
 - substitution : score de similitude
 - indel : pénalité
- ▶ Le score de l'alignement est la somme des scores élémentaires

▶ 2 séquences → plusieurs alignements possibles

▶ Bon/mauvais alignement? *matrices de substitutions*

Mismatch	:		Mat	tch :						Indel :
						G,	N	:	6	
DN	:	1				R,	K	:	5	-5
AV, LD	:	0	А,	I,	L,	S,	V	:	4	

▶ 2 séquences → plusieurs alignements possibles

Scores: 19, -11 et 25 respectivement

▶ Bon/mauvais alignement? *matrices de substitutions*

Mismatch :				ch :						Indel :
						G,	N	:	6	
DN	:	1				R,	K	:	5	-5
AV, LD	:	0	A,	I,	L,	S,	V	:	4	

Alignement global

Needleman & Wunsch - 1970

Évaluation d'une ressemblance globale entre deux séquences

Données

- deux séquences (nucléotides ou acides aminés),
- des scores de similitude et des pénalités.

Problème

Quel est l'alignement de score maximal ?

Algorithme

Aligner les séquences ACGGCTAT et ACTGTAC avec les scores match = 2, mismatch = -1 et indel = -2.

Que peut-il se passer pour la dernière opération?

➤ Substitution de T en C ACGGCTA T ? ? ?

score de $\left| \begin{array}{c} {
m ACGGCTA} \\ {
m ACTGTA} \end{array} \right| -1$

► **Délétion** de T

ACGGCTA T

ACTGTA C

score de $\begin{bmatrix} ACGGCTA \\ ACTGTAC \end{bmatrix}$ -2

Insertion de C

ACTGTAC

ACGGCTAT -

ACTGTA

score de ACGGCTAT ACTGTA

▶ Sim(i,j): score optimal entre U(1..i) et V(1..j)

Formule de récurrence :

$$\begin{array}{lcl} {\rm Sim}(0,0) & = & 0 \\ & {\rm Sim}(0,j) & = & {\rm Sim}(0,j-1) + Ins(V(j)) \\ & {\rm Sim}(i,0) & = & {\rm Sim}(i-1,0) + Del(U(i)) \\ & {\rm Sim}(i,j) & = & {\rm max} \left\{ \begin{array}{ll} {\rm Sim}(i-1,j-1) + Sub(U(i),V(j)) \\ {\rm Sim}(i-1,j) + Del(U(i)) \\ {\rm Sim}(i,j-1) + Ins(V(j)) \end{array} \right. \end{array}$$

Méthode : programmation dynamique

Programmation dynamique

- Un algorithme de programmation dynamique procède en réduisant le problème à plusieurs instances plus petites, elle-mêmes résolues par décomposition.
- Les résultats des calculs intermédiaires sont stockés dans une table.
- ► La solution est ensuite construite à partir de la table, en remontant celle-ci.

lci:

calculs intermédiaires

=

scores d'alignements entre préfixes

Étape 1: création d'une table indexée par les deux séquences.

	Α	C	G	G	C	Т	Α	Т
Α								
С								
Т								
G								
Т								
Α								
Т								

Case (i,j): score entre les i premières bases de ACGGCTAT et les j premières bases de ACTGTAT.

Étape 1: création d'une table indexée par les deux séquences.

		Α	С	G	G	C	Т	Α	Т
	0	-2	-4	-6	-8	-10	-12	-14	-16
Α	-2								
С	-4								
Т	-6								
G	-8								
Т	-10								
Α	-12								
Т	-14								

Cas de base - initialisation

Étape 1: création d'une table indexée par les deux séquences.

		Α	С	G	G	С	Т	Α	Т
	0	-2	-4	-6	-8	-10	-12	-14	-16
А	-2	2	0	-2	-4	-6	-8	-10	-12
С	-4								
Т	-6								
G	-8								
Т	-10								
Α	-12								
Т	-14								

Remplissage ligne par ligne

Étape 1: création d'une table indexée par les deux séquences.

		Α	С	G	G	C	Т	Α	Т
	0	-2	-4	-6	-8	-10	-12	-14	-16
Α	-2	2	0	-2	-4	-6	-8	-10	-12
С	-4	0	4	2	0	-2 -4		-6	-8
Т	-6	-2	2	3	1	-1	0	-2	-4
G	-8	-4	0	4	5	3	1	-1	-3
Т	-10	-6	-2	2	3	4	5	3	1
Α	-12	-8	-4	0	1	2	3	7	5
Т	-14	-10	-6	-2	-1	0	4	5	9

Remplissage ligne par ligne

Étape 2 : recherche du chemin des scores maximaux dans la matrice.

		Α	С	G	G	C	Т	Α	Т
	0	-2	-4	-6	-8	-10	-12	-14	-16
А	-2	2	0	-2	-4	-6	-8	-10	-12
С	-4	0	4	2	0	-2	-4	-6	-8
Т	-6	-2	2	3	1	-1	0	-2	-4
G	-8	-4	0	4	5	3	1	-1	-3
Т	-10	-6	-2	2	3	4	5	3	1
Α	-12	-8	-4	0	1	2	3	7	5
Т	-14	-10	-6	-2	-1	0	4	5	9

Étape 3 : construction de l'alignement

Sur le chemin des scores maximaux, on regarde quelle est l'opération correspondante.

Résultat

Graphe d'édition pour l'alignement de séquences

- ▶ Le problème peut également être vu comme la recherche d'un chemin optimal dans un graphe.
- ► Grille à deux dimensions
- ► Trois types d'arc : délétion, insertion et substitution

Graphe d'édition pour l'alignement de séquences

- ▶ Le problème peut également être vu comme la recherche d'un chemin optimal dans un graphe.
- ► Grille à deux dimensions
- ► Trois types d'arc : délétion, insertion et substitution

Complexité de l'algorithme

- ▶ Pour le calcul du score d'alignement : (étape 1)
 - \triangleright $O(n \times m)$ en temps
 - $ightharpoonup O(\min\{n,m\})$ en espace
- ▶ Pour la construction de l'alignement : (étapes 1, 2 et 3)
 - $O(n \times m)$ en temps et en espace
- ▶ Optimisation pour la construction de l'alignement avec espace linéaire (en O(n)). (Myers & Millers - 1988)

Calcul de l'alignement avec espace linéaire

Diviser pour régner

S, séquence de longueur m, T séquence de longueur n

A: alignement optimal entre deux séquences

Que peut-il se passer pour S(i) ?

▶ **Cas 1.** S(i) est aligné avec un certain T(j) $(j \in [1..n])$

$$\mathbf{A} \left(\begin{array}{c} S(1..i-1) \\ T(1..j-1) \end{array} \right) \& \left(\begin{array}{c} S(i) \\ T(j) \end{array} \right) \& \mathbf{A} \left(\begin{array}{c} S(i+1..m) \\ T(j+1..n) \end{array} \right)$$

▶ Cas 2. S(i) est supprimé: S(i) est aligné avec un –, situé entre T(j) et T(j+1) $(j \in [0..n])$

$$\mathbf{A} \left(\begin{array}{c} S(1..i-1) \\ T(1..j-1) \end{array} \right) \& \left(\begin{array}{c} S(i) \\ - \end{array} \right) \& \mathbf{A} \left(\begin{array}{c} S(i+1..m) \\ T(j..n) \end{array} \right)$$

- ► Comment déterminer le cas (1 ou 2) ?
- Comment déterminer la bonne valeur de j ?

- ▶ Similitude entre S(1..i-1) et tous les préfixes de T Calculable en espace linéaire
- ▶ Similitude entre S(i+1..m) et tous les suffixes de TProblème symétrique au précédent - calculable en espace linéaire
- ► Fonction Score

Entrée : les deux séquences S et T, l'indice I dans S Sortie : l'indice J dans T et le Cas, 1 ou 2 (Booléen)

Cas: **Vrai**, si l'alignement optimal correspond au cas 1 (substitution de S(i))

Faux, s'il correspond au cas 2 (délétion de S(i))

J: **indice** correspondant dans T

Complexité de Score ?

Récapitulation

- ▶ Division du problème d'alignement entre S et T en deux sous-alignements, coupés en S(i) et T(j)
- ▶ *i* est fixé et *j* est déterminé en fonction de *i*
- Conclusion avec deux appels récursifs
- Quel indice choisir pour i?

```
function Align(S,T:Sequence) return Alignement is
   M:Natural:= longueur de S;
   N:Natural:= longueur de T;
begin
   if M=0 then
      return (1...N => '-', T);
   elsif N=0 then
      return (S, 1..M =>'-');
   else
      Score(S, T, M/2, J, Cas);
      if Cas then -- cas 1: substitution de S(i)
         return Align(S(1..M/2-1),T(1..J-1)) &(S(M/2), T(J))
           &Align(S(M/2+1..M),T(J+1..N));
      else -- cas 2: deletion de S(i)
         return Align(S(1..M/2-1),T(1..J)) &(S(M/2), '-')
           &Align(S(M/2+1..M),T(J+1..N));
      end if;
   end if;
end Align;
Complexité?
```

Alignement local

Smith & Waterman -1981

Données

- deux séquences (nucléotides ou acides aminés),
- des scores de similitude.

Problème

Quelles sont les régions de forte similarité entre les deux séquences ?

Exemple: GGCTGACCACCTTGTA et GATCACTTCCATGGCAGTA

► Alignement global :

Les séquences présentent une similarité que l'alignement global ne révèle pas.

Exemple: GGCTGACCACCTTGTA et GATCACTTCCATGGCAGTA

► Alignement global :

Les séquences présentent une similarité que l'alignement global ne révèle pas.

► Alignement local :

Loc(i,j): score optimal entre un suffixe de U(1..i) et un suffixe V(1..j).

Formule de récurrence :

$$egin{array}{lll} {\sf Loc}(0,0) &=& 0 \ {\sf Loc}(0,j) &=& 0 \ {\sf Loc}(i,0) &=& 0 \ && \ {\sf Loc}(i,j) &=& \max \left\{ egin{array}{lll} {\sf Loc}(i-1,j-1) + {\it Sub}({\it U}(i),{\it V}(j)) \ {\sf Loc}(i-1,j) + {\it Del}({\it U}(i)) \ {\sf Loc}(i,j-1) + {\it Ins}({\it V}(j)) \ 0 \end{array}
ight.$$

Implémentation, complexité : *cf* alignement global (programmation dynamique)

Recherche du résultat

	G	G	C	Т	G	Α	C	C	Α	C	C	Т	Т
G	2	1	0	0	2	1	0	0	0	0	0	0	0
Α	1	1	0	0	0	4	3	2	2	1	0	0	0
Т	0	0	0	2	1	0	3	2	1	0	0	2	2
С	0	0	2	1	1	0	2	5	4	3	2	1	1
Α	0	0	1	1	0	3	2	4	7	6	5	4	3
С	0	0	2	1	0	2	5	4	6	9	8	7	6
Т	0	0	1	4	3	2	4	4	5	8	8	10	9
Т	0	0	0	3	3	2	3	3	4	7	7	10	12
С	0	0	2	2	2	2	4	5	4	6	6	9	11
С	0	0	2	1	1	1	4	6	4	6	8	8	10
Α	0	0	1	1	0	3	3	5	8	7	7	7	9
Т	0	0	0	3	2	2	2	4	7	7	6	9	11
G	2	2	1	2	5	4	3	3	6	6	6	8	10

- La zone de plus forte similarité : score maximal
- Les zones de similarités au delà d'un seuil
- ▶ Plus difficile: les zones de forte similarité compatibles entre elles

Les zones de forte similarité compatibles

Les zones de forte similarité compatibles

- Deux alignements sont compatibles si :
 - ▶ ils ne créent pas de croisement
 - ▶ ils ne se chevauchent pas
- Recherche du chemin de poids maximal dans un graphe