Exercise Sheet #4

Advanced Cryptography 2021

Exercise 1 PRF Programming (Final 2013)

A function $\delta(s)$ is called negligible and we write $\delta(s) = \mathsf{negl}(s)$ if for any c > 0, we have $|\delta(s)| = o(s^{-c})$ as s goes to $+\infty$.

Let s be a security parameter. For simplicity of notations, we do not write s as an input of games and algorithms but it is a systematic input.

A family $(f_k)_{k \in \{0,1\}^s}$ of functions f_k from $\{0,1\}^s$ to $\{0,1\}^s$ is called a PRF (Pseudo Random Function) if for any probabilistic polynomial-time oracle algorithm \mathcal{A} , we have that

$$|\Pr[\mathcal{A}^{f_K(\cdot)} = 1] - \Pr[\mathcal{A}^{f^*(\cdot)} = 1]| = \mathsf{negl}(s)$$

where $K \in \{0,1\}^s$ is uniformly distributed, f^* is a uniformly distributed function from $\{0,1\}^s$ to $\{0,1\}^s$, $f_K(\cdot)$ denotes the oracle returning $f_K(x)$ upon query x, and $f^*(\cdot)$ denotes the oracle returning $f^*(x)$ upon query x.

Given a PRF $(f_k)_{k \in \{0,1\}^s}$, we construct a family $(g_k)_{k \in \{0,1\}^s}$ by $g_k(x) = f_k(x)$ if $x \neq k$ and $g_k(k) = k$. The goal of the exercise is to prove that $(g_k)_{k \in \{0,1\}^s}$ is a PRF.

We define the PRF game played by \mathcal{A} for g, f, and f^* by

Game Γ^g	Game Γ^f	Game Γ^*
1: pick $K \in \{0, 1\}^s$	1: pick $K \in \{0, 1\}^s$	1: pick $f^*: \{0,1\}^s \to \{0,1\}^s$
2: run $b = \mathcal{A}^{g_K(\cdot)}$	2: run $b = \mathcal{A}^{f_K(\cdot)}$	2: run $b = \mathcal{A}^{f^*(\cdot)}$
3: give b as output	3: give b as output	3: give b as output

For each integer i, we define an algorithm \mathcal{A}_i (called a hybrid) which mostly simulates \mathcal{A} until it makes the ith query. More concretely, \mathcal{A}_i simulates every step and queries of \mathcal{A} while counting the number of queries. When the counter reaches the value i, \mathcal{A}_i does not make this query k but it stops and the queried value k is returned as the output of \mathcal{A}_i . If \mathcal{A} stops before making i queries, \mathcal{A}_i stops as well, with a special output \perp . We define the following games:

Game Γ_i^f	Game Γ_i^*
1: pick $K \in \{0, 1\}^s$	1: pick $f^*: \{0,1\}^s \to \{0,1\}^s$
2: run $k = \mathcal{A}_i^{f_K(\cdot)}$	2: run $k = \mathcal{A}_i^{f^*(\cdot)}$
3: if $k = \perp$, stop and output 0	3: if $k = \perp$, stop and output 0
4: pick $x \in \{0, 1\}^s$	4: pick $x \in \{0, 1\}^s$
5: if $f_k(x) = f_K(x)$, stop and output 1	5: if $f_k(x) = f^*(x)$, stop and output 1
6: output 0	6: output 0

Let $F(\Gamma)$ be the event that any of the queries by \mathcal{A} in game Γ equals K. We assume that the number of queries by \mathcal{A} is bounded by some polynomial P(s).

- 1. Show that $|\Pr[\Gamma^f \to 1] \Pr[\Gamma^* \to 1]| = \mathsf{negl}(s)$.
- 2. Show that $\Pr[\Gamma^g \to 1 | \neg F(\Gamma^g)] = \Pr[\Gamma^f \to 1 | \neg F(\Gamma^f)]$ and $\Pr[\neg F(\Gamma^g)] = \Pr[\neg F(\Gamma^f)]$.
- 3. Deduce $|\Pr[\Gamma^g \to 1] \Pr[\Gamma^f \to 1]| \le \Pr[F(\Gamma^f)]$.
- 4. Show that $\Pr[F(\Gamma^f)] \leq \sum_{i=1}^{P(s)} \Pr[\Gamma_i^f \to 1]$.
- 5. Show that $|\Pr[\Gamma_i^f \to 1] \Pr[\Gamma_i^* \to 1]| = \mathsf{negl}(s)$ for all $i \leq P(s)$.
- 6. Show that $\Pr[\Gamma_i^* \to 1] = \mathsf{negl}(s)$ for all $i \leq P(s)$.
- 7. Deduce $|\Pr[\Gamma^g \to 1] \Pr[\Gamma^* \to 1]| = \mathsf{negl}(s)$.

Exercise 2 A Weird Signcryption (Midterm 2019)

We consider the plain RSA cryptosystem (RSA.Gen, RSA.Enc, RSA.Dec) and a digital signature scheme (DS.Gen, DS.Sign, DS.Ver). We construct a signcryption scheme as follows:

SC.Gen

- 1: RSA.Gen \rightarrow (ek, dk)
- 2: DS.Gen \rightarrow (sk, vk)
- 3: $pubk \leftarrow (ek, vk)$
- $4: \mathsf{privk} \leftarrow (\mathsf{dk}, \mathsf{sk})$
- 5: return (pubk, privk)

 $SC.Send(pubk_B, privk_A, pt) / user A sends a message to B$

- 1: parse $(ek_B, vk_B) \leftarrow pubk_B$
- 2: parse $(dk_A, sk_A) \leftarrow privk_A$
- 3: $\mathsf{ct} \leftarrow \mathsf{RSA}.\mathsf{Enc}(\mathsf{ek}_B,\mathsf{pt})$
- 4: $\sigma \leftarrow \mathsf{DS}.\mathsf{Sign}(\mathsf{sk}_A,\mathsf{ct})$
- 5: **return** (ct, σ)

so that A can send (ct, σ) to B. Once B obtains pt, he can show proof = (vk_A, ek_B, ct, σ , pt) as a proof that A sent pt. We call this property non-repudiation.

- 1. Describe the algorithm using $(\mathsf{pubk}_A, \mathsf{privk}_B)$ to receive (ct, σ) and compute pt , as well as the algorithm to verify the proof.
- 2. Given (vk_A, ct, σ) such that DS.Ver (vk_A, ct, σ) is true and given an arbitrary pt, prove that we can easily find ek such that $(vk_A, ek, ct, \sigma, pt)$ is a valid proof.
- 3. Propose a fix to this problem so that we have non-repudiation.