Algebra Linear Computacional

lista 11

7-)
Com:
$$\frac{\overline{A}}{x} = C^{-1}AC^{-1}$$
 $\frac{\overline{x}}{x} = Cx$
 $\overline{b} = C^{-1}b$
 $C^{-2} = M^{-1}$

Algoritmo: Gradiente para $\overline{A}\overline{x} = \overline{b}$

Entrada: matriz \overline{A} , vetor \overline{b} , escalar α

Saída: x (aproximação da solução de $\overline{A}\overline{x} = \overline{b}$)

Escolha
$$\mathbf{x} \in \Re^n$$
 $\bar{r} \leftarrow \bar{b} - \overline{A}\overline{x}$
Enquanto $(\bar{r} < \varepsilon)$
 $\bar{x} \leftarrow \bar{x} + \alpha(\bar{b} - \overline{A}\overline{x})$
 $\bar{r} \leftarrow \bar{b} - \overline{A}\overline{x}$

Fim_Enquanto

Retorne \bar{x}

Fazendo alguns calculos termos:

$$\overline{r} \leftarrow \overline{b} - \overline{Ax} = C^{-1}b - C^{-1}AC^{-1}Cx = C^{-1}b - C^{-1}Ax =$$

$$= C^{-1}(b - Ax) = C^{-1}r \text{ , fazendo } \overline{r} = C^{-1}r, \text{ temos } :$$

$$C^{-1}r = C^{-1}b - C^{-1}Ax = C^{-1}(b - Ax) \Leftrightarrow r = b - Ax$$

$$\overline{x} \leftarrow \overline{x} + \alpha(\overline{b} - \overline{A}\overline{x}) \Rightarrow Cx = Cx + \alpha(C^{-1}b - C^{-1}AC^{-1}Cx) \Rightarrow$$

$$\Rightarrow Cx = Cx + \alpha(C^{-1}b - C^{-1}Ax) \Rightarrow Cx = Cx + \alpha C^{-1}b - \alpha C^{-1}Ax$$

Multiplicando por C^{-1} pela direita, temos :

$$x \leftarrow x + \alpha C^{-2}b - \alpha C^{-2}Ax$$
, Logo
 $x \leftarrow x + \alpha (M^{-1}b - M^{-1}Ax)$

Algoritmo: Gradiente para com Pré-condicionador

Entrada: matriz A, matriz M vetor b, escalar α **Saída**: x (aproximação da solução de Ax = b)

Escolha
$$x \in \mathbb{R}^n$$
 $r \leftarrow b - Ax$
Enquanto $(r < \varepsilon)$
 $x \leftarrow x + \alpha(M^{-1}b - M^{-1}Ax)$
 $r \leftarrow b - Ax$

Fim_Enquanto

Retorne *x*