김정수교수님

2주 2강

무선통신공학

본 강의 콘텐츠는 학습 용도 외의 불법적 이용, 무단 전재 및 배포를 금지합니다.

주파수 스펙트럼과 대역폭

● 통신시스템의 주파수 영역

통신 시스템	주파수 영역
FM 라디오 방송	88 ~ 108 (MHz)
AM 라디오 방송	530 ~ 1700 (KHz)
셀 룰 러 이 동통 신	824~894 (MHz)
와이브로(Wibro)	2.3, 2.5, 3.5 (GHz)
Wi-Fi	2.4 , 5(GHz)
블루투스(Bluetooth)	2.4 (GHz)

주파수 스펙트럼과 대역폭

● 국내 TV Channel 대역 및 주파수 대역폭

- **ISM (Industrial Scientific and Medical) Band**
 - 산업용, 과학용, 의학용으로 이용되는 주파수로 제한이 없다.

● 신호강도측정의 단위(dB)

- 비교되는 두 신호간의 상대적인 크기
- Decibel: $dB = 10 \times \log_{10} \frac{P_2}{P_1}$

P: 신호의 에너지(강도)

 대수에 비례하는 사람의 청각 반응을 표현
ex) 실제 10,000배 커진 소리 → 청각적으로는 40배 커진 소리로 인식

● dB사용의 용이점

- 간단한 연산(대수함수의 성질 이용)
- 시스템의 특성 파악 용이(+, -로 표현)

● 사람이 인지할 수 있는 소리들의 상대적인 크기

소리의 종류	dB	느낌
제트기 이륙(60m)	120 dB	견디기 어렵다
공사장 소음, 헤비메탈 연주회	110 dB	
고함(1.5m)	100 dB	대단히 시끄럽다
대형 트럭(15m에서), 굴착기(1m)	90 dB	
대도시 거리 소음	80 dB	꽤 시끄럽다
자동차 실내 소음	70 dB	

● 사람이 인지할 수 있는 소리들의 상대적인 크기

소리의 종류	dB	느낌
보통 대화(1m)	60 dB	보통
교실, 사무실	50 dB	
조용한 거실	40 dB	조용하다
밤중의 침실	30 dB	고요하다
방송국 스튜디오	20 dB	
나뭇잎 스치는 소리	10 dB	겨우 무엇인가 들린다
들을 수 있는 가장 작은 소리	0 dB	

● 신호의 상대적인 크기

- 신호 P_0 에 대한 신호 P_1 의 크기를 표기
 - dB = 10 $\log_{P_0}^{P_1}$
 - dB (for volts) = 20 $log \frac{V1}{V_0}$
- 예시 1) 어떤 회로에 0.1V의 전압을 가지는 신호를 가해서 5V로 증폭,

$$f(t) = 0.1 \text{v} \longrightarrow h(t) \longrightarrow g(t) = 5 \text{v}$$

20
$$\log \frac{5}{0.1} = 34 \text{ dB}$$

• 예시 2) 5V 신호가 0.1V 감쇠, 이때 dB = ?

20
$$\log \frac{0.1}{5} = -34 \text{ dB}$$
 $f(t) = 5\text{v}$ $h(t)$ $g(t) = 0.1\text{v}$

- 신호의 dB값이 증폭 등으로 늘어날 경우
 - 양수(positive) 값으로 표현 : 이득

- 신호의 dB값이 감쇄 등으로 줄어들 경우
 - 음수(negative) 값으로 표현 : 손실

- 두 신호의 값이 같은 크기를 가지고 있을 경우
 - 0 dB로 표현

- ♥ 낮은 신호 레벨
 - dBm 단위로 1mW에 대한 신호의 크기 표현
- 높은 신호 레벨
 - dBW 단위로 1W에 대한 신호의 크기 표현
- 전압: 1V에 대한 값으로 dBV가 사용
- 신호의 절대 강도
 - 신호의 절대적인 강도 측정
 - 와트(Watt) 혹은 밀리와트(milliWatt)에 대한 dB로 표현

(a)
$$dBm = 10 \times log \frac{Power}{1mW}$$
 (b) $dBW = 10 \times log \frac{Power}{1W}$

● 값이 두 배가 되면

• 전력 값이 두배

dB = 10
$$\log \left(2x \frac{P_0}{P_0} \right) = 10 \log 2 = 3.01$$

3dB = 전력 값이 2배

-3dB: 전력 값이 1/2(0.5)배

• 전압 값이 두배

dB = 20
$$log (2x \frac{V_0}{V_0}) = 20 log 2 = 6.02$$

6dB: 전압 값이 2배

-6dB: 전압 값이 1/2(0.5)배

● dB사용의 예

• $(A dB) \pm (B dB) = (A \pm B)dB$

● dB 단위: 두 신호의 전력, 전압의 비를 빠르게 산출

● 전력의 경우

10dB: 10배 증가
3dB: 2배 증가

-10dB: 1/10배 감소 -3dB: 1/2배 감소

ex1) 13dB(10+3)의 이득

10dB(10배)와 3dB(2배), 즉 20배의 전력비를 나타낸다.

ex2) 36dB(10+10+10+3+3)의 이득

10, 10, 10, 2, 2로 총 4000배의 전력 비

ex3) 7dB(10-3)의 이득

10 과 (1/2)의 곱으로 5배의 전력비를 나타낸다.

● 전압의 경우

• 20dB: 10배 증가 6dB: 2배 증가

-20dB: 1/10배 감소 -6dB: 1/2배 감소

 \cdot 46dB(20+20+6)

- → 이득 10배, 10배, 2배로 200배의 전압비
- · 34dB(20+20-6)의 전압 이득
- → 10배, 10배, (1/2)배로 50의 전압 이득을 나타낸다.

