Kontinuumsmechanik

Theorieaufgaben zum Formelblatt 5 - Rayleigh-Quotient

1. Gegeben ist der skizzierte Euler-Bernoulli-Balken (Biegesteifigkeit EI, Länge l, Massenbelegung μ). Unter Verwendung des Rayleigh-Quotienten soll eine Abschätzung für die erste Eigenkreisfrequenz der Biegeschwingung bestimmt werden.

a) Skizzieren Sie die erste Eigenform.

b) Welche der folgenden Funktionen können als Ansatzfunktionen verwendet werden?

$\bar{W}(x) = \sin(\frac{\pi}{l}x)$	
$\bar{W}(x) = x(l-x)$	
$\bar{W}(x) = x^2(1 - \frac{x}{l})$	

2. Der skizzierte Euler-Bernoulli-Balken (Biegesteifigkeit EI, Länge l, Massenbelegung μ) wird durch eine harmonische Streckenlast $q(x,t) = Q(x)\cos(\Omega t)$ zur Schwingung angeregt.

Setzen Sie die Eigenformen $W_k(x)$ und die zugehörigen Eigenkreisfrequenzen ω_k als bekannt voraus. Kreuzen Sie die richtige(n) Aussage(n) an.

	Für $Q(x)=W_1(x), \Omega=\omega_1$ tritt keine Resonanz auf.	
C	Filt $\int_{0}^{l} Q(x)W_{k}(x)dx = 0$ und $\Omega = \omega_{k}$, tritt keine Resonanz auf.	
Fü	r $Q(x) = \delta(x - \frac{l}{2})$ ist unabhängig von Ω keine Resonanz möglich.	