

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, யூன் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education Northern Province

FWC	Term Examination, June - 2	2019
தரம் :- 13 (2019)	இரசாயனவியல் - I	நேரம் :- 2 மணித்தியாலம்
	பகுதி I 5ம் வாயு நிலையில் உள்ள Co ²⁺ உ மத்திரன் சோடிகளின் எண்ணிக்கை. 3. 4	அயனொன்றில் காணப்படும் இறுதி 4. 5 5. 0
1. n 4. n உம் m _l உம் <i>O</i>	5. m_l உம் m_s உம் O	3. ாஉம் 1உம்
1. ethyl 3 – bromo – 4 – 2. ethyl 3 – bromo – 2 – 3. 3 – bromo – 1 – ethoxy 4. 3 – bromo – 5 – ethoxy	$S-O-C_2H_5$ கீழே காட்டப்பட்ட சேர்னை $S-O-C_2H_5$ கீழு காட்டப்பட்ட சேர்னை $S-O-C_2H_5$ கீழே காட்டப்பட்ட சேர்னை $S-O-C_2H_5$ கீழு கோட்டப்பட்ட சேர்னை $S-O-C_2H_5$ கீழு கோட்டப்பட்ட சேர்னை $S-O-C_2H_5$ கீழு கோட்டப்பட்ட சேர்னை $S-O-C_2H_5$ கீழு கோட்டிர்க்கும் கூற்ற கீழு கோட்டிர்க்கு கீழ்கள் கூற்ற கேற்ற கூற்ற கூ	
	$SO_3 > Na_2SO_4$ 4. $Na_2SO_4 > Na_2$	கத்தின் (S) ஒட்சியேற்ற நிலையின் $SO_3>Na_2S>S_2Cl_2>S \ SO_3>S_2Cl_2>S>Na_2S$
5) $ m N_2O_5$ மூலக்கூறின் உறுதிய 1. 9 2. 8	பான பரிவுக்கட்டமைப்புக்களின் எண்ணி 3. 6	க்கை. 4. 5 5. 4
6) திணிவுப்படி 27 % HCl ഉ மூலல்திறன் (molkg ⁻¹) (H= 1. 7.3 2. 7.5		த்தி உடையதுமான HCl கரைசலின் 4. 8.5 5. 10
உறுதியற்றது. 2. ஆவர்த்தன அட்டவனை	ணையில் கூட்டம் ஒன்றின் ஐதரெ ணயில் கூட்டம் இரண்டின் எல்லா நைத்	ராட்சைட்டுக்களில் LiOH வெப்ப திரேற்றுக்களும் கரையும். ல்லா குளோரைட்டுக்களும் நீரில்

கரைகின்றன.

- ஆவர்த்தன அட்டவணையில் கூட்டம் ஒன்றின் எல்லா உலோகங்களினதும் காபனேற்றுக்களும் நீரில் கரைகின்றன.
- N, P ஆகியவற்றின் ஐதரைட்டுக்கள் மென்மூல இயல்புகளைக் காட்டுகின்றன.
- 8) சிறிதளவு நீரில் AgCl, AgBr ஆகிய உப்புக்கள் 25°C யில் சமநிலையில் உள்ளது. சமநிலையில் திண்மங்களும் கரைசலில் அவதானிக்கப்பட்டது. மேற்படி கரைசலுக்கு தொடர்புகளில் எது பிரயோகிக்க முடியாது. $(25^{\circ}\text{C} \text{ யில் } K_{sp \; (AgCl)} = 10^{-10} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{mol}^2 \; \text{dm}^{-6} \; K_{sp \; (AgBr)} = 10^{-12} \; \text{dm}^{-6} \; \text$ $\text{mol}^2 \, \text{dm}^{-6}$).
 - 1. $\left[Ag_{(aq)}^{+}\right] = \left[Cl_{(aq)}^{-}\right] + \left[Br_{(aq)}^{-}\right]$ 2. $\left[Cl_{(aq)}^{-}\right] = 100\left[Br_{(aq)}^{-}\right]$ 3. $100\left[Cl_{(aq)}^{-}\right] = \left[Br_{(aq)}^{-}\right]$
 - 4. $\frac{K_{sp(AgCl)}}{[Cl_{(aq)}]} = \frac{K_{sp(AgBr)}}{[Br_{(aq)}]}$
- 5. $\frac{K_{sp(AgCl)}}{[Ag_{(aq)}^+]} + \frac{K_{sp(AgBr)}}{[Ag_{(aq)}^+]} = [Cl_{(aq)}^-] + [Br_{(aq)}^-]$
- 9) பின்வரும் மூலகங்களில் எதன் இலத்திரன் பெறும் சக்தியான<u>து</u> நேர்ப்பெறுமானத்தை கொண்டிருக்கக்கூடும்?
 - 1. Li
- 2. Be
- 3. B
- 4. O
- 5. K
- 10) ஆவர்த்தன அட்டவணையில் 3d மூலகங்கள் தொடர்பாக பொய்யானது எது?
 - 1. V இன் உருகுநிலை ஏனையவற்றிலும் உயர்ந்தது.
 - 2. இவற்றின் மின் எதிர்த்தன்மைப் பெறுமானங்கள் S தொகுப்பு மூலங்களுடன் ஒப்பிடுகையில் உயர்வானவை.
 - 3. Zn இற்கு அடுத்தபடியாக உருகுநிலை, கொதிநிலை குறைந்தவை Mn, Cu ஆகும்.
 - 4. இவற்றின் ஒட்சைட்டுக்களை ஊக்கிகளாக பயன்படுத்தலாம்.
 - 5. $[Cr(NH_3)_6]^{3+}$ நீர்க்கரைசலானது மஞ்சள் நிறமுடையது.
- 11) கந்தக இனங்களின் O S O கோணம் தொடர்பாக பின்வருவனவற்றுள் உண்மையானது,
 - 1. $SO_3^{2-} < SO_4^{2-} < SO_2 < SO_3$
- 2. $SO_4^{2-} < SO_3^{2-} < SO_2 < SO_3$
- 3. $SO_3^{2-} < SO_4^{2-} < SO_3 < SO_2$
- 4. $SO_4^{2-} < SO_3^{2-} < SO_3 < SO_2$
- 5. $SO_3 < SO_2 < SO_4^{2-} < SO_3^{2-}$
- 12) ஒரு மாறாவெப்பநிலையில் மூடிய விறைத்த பாத்திரம் ஒன்றில் $2A_{(g)} o B_{(g)}$ எனும் முதன்மைத் தாக்கம் நடைபெறுகின்றது. பாத்திர தொடக்க அமுக்கம் $P_{
 m o}$ உம் தாக்க பெறுமானத்தின் 25% ஆக இருக்கும் போது A யின் அமுக்கம் P_A உம் ஆகும். பின்வருவனவற்றில் $rac{P_A}{P_0}$ இற்கான பெறுமானத்தைத் தருகின்றது

 - 1. $\frac{P_A}{P_0} = \frac{1}{\sqrt{2}}$ 2. $\frac{P_A}{P_0} = \frac{1}{2}$ 3. $\frac{P_A}{P_0} = \sqrt{2}$ 4. $\frac{P_A}{P_A} = 2$ 5. $\frac{P_A}{P_0} = 4$

- 13) ஒரு தாக்கத்தின் அரை வாழ்வுக்காலம் பற்றி தவறானது?
 - 1. தாக்கியின் செறிவு அரைவாசியாக எடுக்கும் நேரமாகும்.
 - 2. இது எப்போதும் மாறிலி அல்ல.
 - எப்பொழுதும் வெப்பநிலையைச் சார்ந்திருப்பதில்லை.
 - 1ம் வரிசை தாக்கத்தின் அரைவாழ்வுக் காலம் மாறிலியாகும்.
 - 5. எப்பொழுதும் தாக்க வரிசையைச் சார்ந்தது.

- $14)\ NH_4\ NO_{2(s)},\ (NH_4)_2Cr_2O_{7(s)},\ NH_4NO_{3(s)}$ ஆகியவற்றை வெப்பமாக்கும் போது கிடைக்கும் நைதரசன் சேர்வைகள் முறையே,
 - 2. N₂O, N₂O, N₂ 1. N_2 , N_2 , N_2
- 3. N_2 , N_2O , N_2
- 4. N₂, N₂, N₂O 5. NO, N₂O, N₂O
- 15) மென்னமிலமொன்றை வலிமையான மூலமொன்றுடன் கலந்து தாங்கற் கரைசலொன்றை தயாரித்து முடியும். pH = 6 உடைய தாங்கற் கரைசலொன்றைத் தயாரித்துக் கொள்வதற்கு தேவையான அமில, உப்பு செறிவுகளிற்கிடையிலான விகிதம். ($Ka = 10^{-6} \, \text{mol dm}^{-3}$)
 - 1. 5:4
- 2.4:5
- 3.1:2
- 4.2:1
- 5.1:1
- இலட்சிய உருவில் 16) விறைத்த இரண்டு கொள்கலன்களில் உள்ள வாயு தொகுதி ஒன்று திருகியை காட்டப்பட்டுள்ளது. தொகுதி A ஆனது திறப்பதன் மூலம் தொகுதி В உடன் ஒன்றிணைக்கப்படுகின்றது.

B

மேற்படி தொகுதி தொடர்பாக தவறானது?

1.
$$\frac{P_1V}{T_1} + \frac{P_2V}{T_2} = \frac{P_32V}{T_3}$$
 2. $\frac{P_3T_1}{P_1} + \frac{P_3T_2}{P_2} = 2T_3$

2.
$$\frac{P_3T_1}{P_1} + \frac{P_3T_2}{P_2} = 2T_3$$

3.
$$\frac{P_1}{T_1} + \frac{P_2}{T_2} = \frac{P_3}{T_3}$$

$$4. \quad \frac{T_3 P_1}{T_1} + \frac{T_3 P_2}{T_2} = 2 P_3$$

4.
$$\frac{T_3 P_1}{T_1} + \frac{T_3 P_2}{T_2} = 2 P_3$$
 5. $\frac{P_1 V}{R T_1} + \frac{P_2 V}{R T_2} = 2 n$

- 17) பின்வருவனவற்றுள் பீனோல் பற்றிய கூற்றுக்களில் பொய்யானது.
 - 1. இது மென்னமில இயல்பை காட்டும்.
 - 2. $C_2 H_5 OH$ உடன் சேர்க்கையில் அமிலமுன்னிலையில் எசுத்தரை உருவாக்காது.
 - 3. $Na_2 CO_3$, $NaHCO_3$ என்பவற்றுடன் பரிகரிக்கையில் CO_2 வாயுவெளிவிடுகின்றது.
 - 4. NaOH கரைசலில் விடப்படும் போது பீனோலானது கரைந்து ஏகவினதாகும்.
 - வளியும் ஒளியும் படும்போது மென்சிவப்பு நிறமாக காணப்படும்.
- 18) தாக்கவரிசை துணியும் பரிசோதனை தொடர்பாக தவறானது?
 - 1. ${
 m Mg,\ HCl}$ தொடர்பான பரிசோதனையில் மாறாக் கனவளவு ${
 m H_2}$ தோன்ற எடுக்கும் நேரத்தைக் கொண்டு தாக்கவரிசை துணியப்படுகின்றது.
 - 2. $Na_2S_2O_3$, HCl தொடர்பான பரிசோதனையில் மையப்புள்ளி மறைய எடுக்கும் நேரத்தைக் கொண்டு தாக்கவரிசை துணியப்படுகின்றது.
 - 3. Fe^{3+} , I^{-} பரிசோதனையில் காட்டி எதுவும் பயன்படுத்துவதில்லை.
 - 4. ${\rm Fe}^{3+}, {\rm I}^-$ பரிசோதனையில் நிறமாற்றத்தை ஏற்படுத்த எடுக்கும் நேரத்தைக் கொண்டு தாக்கவரிசை துணியப்படுகின்றது.
 - 5. பரிசோதனையில் மொத்த கனவளவு மாறாது பேணப்படுவதன் நோக்கம் பரிசோதிக்கப்படும் தாக்கி தவிர்ந்த ஏனையவற்றின் செறிவை மாற்றாது பேண ஆகும்.

19)
$$O \\ C \\ H \\ C \\ H_3O^+$$

$$CH_2 - C - OCH_3$$

$$O \\ M_3O^+$$

$$A$$

பிரதான விளைபொருள் A ஆனது

$$CH_{3}$$

$$H - C - OH$$

$$CH_{2} - C - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$H - C - OH$$

$$OH$$

$$CH_{2} - C - CH_{3}$$

$$CH_{3}$$

$$CH_{2} - C - CH_{3}$$

$$CH_{3}$$

4.
$$H - C - OH$$
 CH_3
 $H - C - OH$
 $CH_2 - C - CH_3$
 H
 $CH_2 OH$

20) வேறுபட்ட வெப்பநிலையில் $A_{(s)}+A\ O_{2(g)} o 2A\ O_{(g)}$ எனும் தாக்கத்திற்கான $\Delta\ G^\circ$ கீழே தரப்பட்டுள்ளன.

T / K $\Delta G^{\circ}/k \text{J mol}^{-1}$ 500 - 150 1000 - 200

தாக்கத்தின் நியம எந்திரப்பி மாற்றம்,

- 1. $0.1 \text{ Jmol}^{-1} \text{ k}^{-1}$ 2. $-100 \text{ J mol}^{-1} \text{ k}^{-1}$ 3. $100 \text{ Jmol}^{-1} \text{ k}^{-1}$ 4. $350 \text{ Jmol}^{-1} \text{ k}^{-1}$ 5. $-350 \text{ J mol}^{-1} \text{ k}^{-1}$
- 21) பின்வருவனவற்றில் சரியான கூற்றை இனங்காண்க?
 - 1. ஓர் ஐதரசன் அணுவில் n = 1 ← n = 7 என்னும் இலத்திரன்தாண்டல் சக்தி கூடியது.
 - 2. ஐதரசன் காலல் நிறமாலையில் அலைநீளம் கூடிய கதிர்ப்பு லைமன் தொடரில் காணப்படும்.
 - 3. ஐதரசன் காலல் நிறமாலையில் சக்தி குறைந்த கதிர்ப்பு லைமன் தொடரில் காணப்படும்.
 - 4. ஐதரசன் காலல் நிறமாலையில் அலைநீளம் குறைந்த கதிர்ப்பு பாசன் தொடரில் காணப்படும்.
 - 5. ஐதரசன் காலல் நிறமாலையில் கட்புல வீச்சின் அலைநீளம் 200 500 nm ஆகும்.
- 22) 3.56g, KIO_3 முற்றாக நீரில் கரைக்கப்பட்டு அதனுள் மிகை KI சேர்க்கப்பட்டது. விடுவிக்கப்பட்ட I_2 ஆனது $0.05~moldm^{-3}~Na_2S_2O_3$ கரைசலினால் நியமிக்கப்பட்டது. நியமிக்க தேவையான $Na_2S_2O_3$ இன் கனவளவு 20~ml எனின் மாதிரியில் KIO_3 திணிவு சதவீதம் யாது? (O=16, K=39, I=127)
 - 1. 3 % 2.1 % 3. 0.1 % 4. 0.3 % 5. 0.6 %

- 23) பின்வரும் எச்செயன்முறையின் போது சூழலிற்கு வெப்பம் இழக்கப்படும்?
 - 1. NaCl திண்மத்தை நீரில் கரைத்தல்
- 2. NH₄Cl திண்மத்தை நீரில் கரைத்தல்
- 3. செறிந்த H_2SO_4 ஐ நீரில் கலத்தல்
- 4. நப்தலின் உருண்டையை வளிவைத்தல்.
- 5. Br_2 திரவத்தைக் கொண்ட போத்தலைத் திறந்து வைத்தல்.
- 24) H₂S, SO₂ ஆகிய இரு வாயுக்களிற்கும் பொருந்தாதது எது?
 - 1. ஒட்சியேற்றியாக தொழிற்படும்
- 2. தாழ்த்தியாக தொழிற்படும்.
- 3. இரண்டும் அமில வாயுக்களாகும்.
- 4. அமில மழைக்கு பங்களிப்புச் செய்யும்.
- 5. ஈர நிலப்பாசித் தாளின் நிறத்தை மாற்றும்.
- 25) $\operatorname{Zn_{(aq)}}^{2+}/\operatorname{Zn_{(s)}}$, $\operatorname{Cu_{(aq)}}^{2+}/\operatorname{Cu_{(s)}}$ ஆகிய மின்வாய்களைப் பயன்படுத்தி மின் இரசாயனச் கலமொன்று தயார் செய்யப்பட்டது. பின்வரும் சுற்றுக்களில் எது இக்கலத்தின் தொழிற்பாட்டை சரியாக விவரிக்கின்றது. $\operatorname{Zn_{(aq)}}^{2+}/\operatorname{Zn_{(s)}}^{\circ} E = -0.76 \, \text{V}$, $\operatorname{Cu_{(aq)}}^{2+}/\operatorname{Cu_{(s)}}^{\circ} E = 0.80 \, \text{V}$
 - 1. Zn மின்வாய் அனோட்டு, Zn ஓட்சியேற்றப்படுகிறது இலத்திரன்கள் Cu இருந்து Zn இற்கு பாயும்.
 - 2. Cu மின்வாய் அனோட்டு, Cu ஒட்சியேற்றப்படுவது இலத்திரன் Cu இருந்து Zn இற்கு பாயும்.
 - 3. உப்பு பாலத்தின் கற்றயன்கள் அனோட்டு பகுதியை நோக்கி நகருகின்றன.
 - 4. உப்புப் பாலத்தினூடு Zn²⁺ அயன்கள் கதோட்டு பகுதியை நோக்கி நகருகின்றன.
 - 5. உப்புப் பாலத்தின் அன்னயன்கள் அனோட்டுப் பகுதியை நோக்கி நகருகின்றன.

A, B ஆகியவற்றிற்கு மிகப்பொருத்தமான விளைவுகள் முறையே,

1.
$$\bigcirc N - CH_2 - C - \bigcirc$$

$$\downarrow H \qquad 0 \qquad \qquad \downarrow \\ N - CH_2 - C - \bigcirc \bigcirc$$

$$\downarrow N - CH_2 - C - \bigcirc \bigcirc$$

Br

$$\begin{array}{c|c}
 & O \\
 & O \\$$

$$\begin{array}{c|cccc}
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & |$$

- 27) அமில, கார நியமிப்பு சம்பந்தமாக பின்வரும் கூற்றுக்களில் தவறானது?
 - 1. சமவலுப் புள்ளியானது சடுதியான pH மாற்றவீச்சின் நடுப்புள்ளியாகும்.
 - 2. சமவலுப் புள்ளி pH நியமிப்பின் வகையைச் சார்ந்தது.
 - 3. சமவலுப் புள்ளியில் நியமிப்புக் குடுவையில் அமிலமோ / காரமோ மிகையாக காணப்பட மாட்டாது.
 - 4. சமவலுப் புள்ளியானது முடிவுப்புள்ளியிலும் சற்றுக் குறைவானது.
 - 5. முடிவுப் புள்ளியில் கரைசல் எப்போதும் அமிலமாக காணப்படும்.
- 28) பல்பகுதியங்கள் தொடர்பாக பின்வரும் கூற்றுக்களில் தவறானது எது?
 - 1. ரெப்லோன் ஒரு வெப்பத்திற்கு உறுதியான பல்பகுதியமாக இருந்த போதும் ஒரு வெப்பம் இளக்கும் பல்பகுதியமாகும்.
 - 2. யூரியா போமல்டிகைட் ஒரு வெப்பம் இறுக்கும் பல்பகுதியமாகும்.
 - 3. இயற்கை இறப்பரின் ஒவ்வொரு மீள் அலகும் ஒரு இரட்டைப் பிணைப்பை உடையது.
 - 4. எபனைற்று ஆனது இயற்கை றப்பரிற்கு 25 -30 % கந்தகம் சேர்ப்பதால் பெறப்படுகின்றது.
 - 5. இயற்கை இறப்பர் ஒரு ஒடுங்கற் பல்பகுதியம் ஆகும்.
- 29) பின்வரும் கூற்றுக்களில் தவறானது எது?
 - 1. சமநிலைக்கு மூடிய தொகுதி, மாறாவெப்பநிலை அவசியமாகும்.
 - 2. சமநிலையில் முற்தாக்க வீதம் பிற்தாக்க வீதத்திற்கு சமனாகும்.
 - 3. சமநிலையில் விளைவுகள் தோன்றும் <mark>வீதம்</mark> தாக்கிகள் உருவாகும் வீதத்திற்கு சமனாக இருக்கலாம்.
 - 4. சமநிலையில் முற்தாக்க வீத மாறிலிக்கு<mark>ம் பிற்தாக்க வீத மா</mark>றிலிக்கும் இடையேயான விகிதம் சமநிலை மாறிலியைத் தரும்.
 - 5. சமநிலையில் முற்தாக்க வீதமாறிலி பிற்தாக்க வீத மாறிலிக்குச் சமனாகும்.
- 30) மின்பகுப்பு பற்றிய பின்வரும் கூற்றுக்களில் தவறானது?
 - 1. மின் பகுபொருளின் தன்மை மாறுபட விளைவு மாறுபடும்.
 - 2. மின் பகுபொருளின் செறிவு மாறுபட விளைவு மாறுபடும்.
 - 3. மின்வாய் மாறுபட விளைவு மாறுபடும்.
 - 4. வெப்பநிலையில் மாறுபடும் போது ஏற்படும் விளைவு மாற்றமுற மாட்டாது.
 - 5. மின் வாய்களின் மேற்பரப்பளவு மாறும் போது விளைவு மாறுபடும்.

31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றிற்கும் (a), (b), (c), (d) எனும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளை தேர்ந்தெடுக்க

1	2	3	4	5
(a),(b)	(b) (c)	(c) (d)	(d) (a)	வேறு தெரிவுகளின்
ஆகியவை	ஆகியவை	ஆகியவை	ஆகியவை	எண்ணோ
மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	சேர்மானவைகளோ
திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை

- 31) ஊக்கி தொடர்பாக பின்வரும் கூற்றுக்களில் எது / எவை சரியானது,
 - (a) ஊக்கி ஒட்டுமொத்த தாக்கவரிசையை ஒருபோதும் மாற்றாது.
 - (b) ஊக்கி விளைவின் அளவை அதிகரிக்கின்றது.
 - (c) ஊக்கி ஒரு குறிப்பிட்ட தாக்கத்தின் ஏவற்சக்தியை மாற்றுகின்றது.
 - (d) ஊக்கி பொறிமுறையை மாற்றுவதன் மூலம் ஏவற்சக்தி குறைந்த படியின் மூலம் தாக்கத்தை நிகழ்த்தும்.

32) கீழே தரப்பட்ட மூலக்கூறு தொடர்பாக பின்வருவனவற்றுள் உண்மையான கூற்று / கூற்றுக்கள் எது / எவை?

- (a) எல்லா காபன் அணுக்களும் ஒரே தளத்தில் உள்ளன.
- (b) C_d இற்கும் C_e இற்கும் இடையே ஒரு σ பிணைப்பும் இரு π பிணைப்பும் உள்ளன.
- (c) $C_a C_b H$ ஆகிய பிணைப்புக் கோணம் 109° இற்கு அண்ணளவாக சமனாகும்.
- (d) C_b-C_c பிணைப்பு நீளம் C_d-C_e பிணைப்பு நீளத்திலும் குறைவாகும்.
- 33) கீழே தரப்பட்ட மூலக்கூறு பற்றிய பின்வரும் கூற்றுக்களில் எது / எவை உண்மையானது / உண்மையானவை?

$$CH_2 = CH - (CH_2)_2 - C - O CH_3$$

- (a) $\operatorname{Br}_2/\operatorname{CCl}_4$ ஐ நிறம் நீக்கும்.
- (b) நீர் NaOH உடன் கார நீர்ப்பகுப்பிற்கு உள்ளாகும்.
- (c) HBr உடன் தாக்கமுற்று ஒளியியல் சேர்வை உருவாக்காது.
- (d) NaBH₄ உடன் பரிகரிக்கையில் தாழ்த்தப்<mark>படும்.</mark>
- 34) 2 பியூட்டீன் சம்பந்தமாக பின்வருவனவற்றுள் உண்மையான கூற்று /கூற்றுக்களில் எது / எவை?
 - (a) கேத்திரகணித சமபகுதியத்தைக் காட்டக்கூடியது.
 - (b) ஒளியியல் சமபகுதியச் சேர்வையைக் காட்டக்கூடியது.
 - (c) Ni / H_2 உடன் தாக்கமுற்று பெறப்படும் சேர்வை ஒளியியல் தாக்கமுடையது.
 - (d) HCl உடன் தாக்கமுற்று பெறப்படும் சேர்வை ஒளியியல் தாக்கமுடையது.
- 35) நைத்திரிக்கமிலம் பற்றிய பின்வரும் கூற்றுக்களில் எது / எவை தவறானது / தவறானவை?
 - (a) தூய நைத்திரிக்கமிலம் நிறமற்ற திரவமாகும்.
 - (b) நைத்திரிக்கமிலம் ஒளிக்கு பிரிகையடைந்து NO_2 ஐ விடுவிக்கக்கூடியது.
 - (c) நைத்திரிக்கமிலம் மூலமாக செயற்பட முடியாதது.
 - (d) நைத்திரிக்கமிலம் தொடுகை முறை மூலம் தயாரிக்கப்படும்.
- 36) வாயு அவத்தையில் நடைபெறும் மும்மூலக்கூற்று முதன்மை தாக்கம் தொடர்பாக சரியான கூற்று / கூற்றுக்கள் எது / எவை?
 - (a) ஒரு தாக்கியுடன் ஒப்பிடுகையில் மற்றைய தாக்கியின் செறிவு 1000 மடங்கு பெரியதாயின் தாக்க வீதம் செறிவு கூடிய தாக்கியின் செறிவில் தங்காது.
 - (b) தாக்கத்தின் போது தாக்கி ஒன்றின் செறிவில் கருதத்தக்க மாற்றத்தை ஏற்படுத்தாது விடின் தாக்க வீதம் அத்தாக்கியின் செறிவில் தங்காது.
 - (c) ஒரு தாக்கி குறித்த தாக்க வரிசை பூச்சியமாக இருக்கலாம்.
 - (d) தாக்க வீத மெதுவான படியிலேயே தங்கியிருக்கும்

- 37) NaOH உற்பத்தி சம்பந்தமாக பின்வரும் கூற்றுக்களில் சரியானது எது / எவை?
 - (a) மென்சவ்வு கலமானது Cl⁻ அயன்களை அனோட்டு அறையிலிருந்து கதோட்டு அறைக்கு குடிபெயர அனுமதிக்கின்றது.
 - (b) மென்சவ்வு கலமானது OH அயன்களை குடிபெயர தடைசெய்யும்.
 - (c) NaOH கரைசல் பகுதியாக ஆவியாக விடப்பட்டு குளிர விடப்படும்.
 - (d) கடல் நீரானது மூலப்பொருளாக பயன்படுத்தப்படும்.
- 38) வெப்பநிலை T இல் நிகழும் ஒரு சுயாதீன தாக்கம் பற்றி பின்வரும் கூற்றுக்களில் எது / எவை **எப்போதும்** உண்மையானது / உண்மையானவை?
 - (a) கிப்ஸ் சக்தி நேர்ப் பெறுமானத்தைக் கொண்டிருத்தல் வேண்டும்.
 - (b) தாக்கம் ஒரு மறை வெப்பவுள்ளுறை மாற்றத்தை கொண்டிருத்தல் வேண்டும்.
 - (c) எந்திரப்பி மாற்றம் மறை எனில் தாக்கவெப்பவுள்ளுறை மாற்றம் மறை ஆக இருத்தல் வேண்டும்.
 - (d) எந்திரப்பி மாற்றம் நேர் எனில் தாக்கவெப்பவுள்ளுறை மாற்றம் நேராக / எதிராக அமையலாம்.
- 39) கீழே தரப்பட்டுள்ளசமநிலை பற்றிப் பின்வருவனவற்றில் எது / எவை உண்மையானது உண்மையானவை?

$$BiCl_{3(aq)} + H_2O_{(l)} \rightleftharpoons BiOCl_{(s)} \downarrow 2HCl_{(aq)}$$

- (a) சமநிலையை அவதானிப்பதற்கு $BiCl_{3(aq)}$, $H_2O_{(1)}$, $BiOCl_{(s)}$. $HCl_{(aq)}$ எல்லாம் இருத்தல் வேண்டும்.
- (b) சமநிலை மாறிலிக்கான கோவையில் நான்கு கூறுகளும் அமைந்திருக்கும்.
- (c) தொகுதியில் BiOCl_(s) ஐச் சேர்த்தல் சமநிலைப் புள்ளியை இடது பக்கமாக நகர்த்தும்.
- (d) தொகுதியில் $m H_2O_{(1)}$ ஐச் சேர்த்தல் சமநிலைப்புள்ளியை வலது பக்கமாக நகர்த்தும்.
- 40) பின்வரும் கூற்றுக்களில் எது / எவை தவறானது / தவறானவை?
 - (a) இலங்கையில் Ti ஆனது ருத்தைலாகவும், இல்மனைற்றாகவும் காணப்படும்.
 - (b) கறுவா இலைகளிலிருந்து கறுவா தைலம் பகுதிபடக் காய்ச்சி வடித்தல் மூலம் பிரித்தெடுக்கப் படுகின்றது.
 - (c) நீரில் கரைந்த ஒட்சிசன், இரசாயனத் தேவைக்குரிய ஒட்சிசன் என்பவற்றைக் கொண்டு நீரின் மாசாக்கத்தை அறிய முடியாது.
 - (d) விங்லர் முறைமூலம் நீரில் கரைந்த ஓட்சிசன் அளவைத் துணியலாம்.

💠 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தை தருவது
453		உண்மையாக இருந்து முதலாம் கூற்றுக்கு
(2)	உண்மை	திருத்தமான விளக்கத்தை தராதது
(3)	உண்மை	பொய்
(4)	பொய்	உண்மை
(5)	பொய்	பொய்

	முதலாம் கூற்று	இரண்டாம் கூற்று
41)	NaCl ஆனது NaBr இலும் பார்க்க	அன்னயன்களின் ஆரை அதிகரிக்கையில்
	வெப்பவுறதி கூடியது.	முனைவாகு தன்மை அதிகரிக்கின்றது.
42)	அல்டிகைட்டுக்களின் கருநாட்ட கூட்டல்தாக்க	கீற்றோன்களின் காபனைல் காபன்
	வேகம் நேரொத்த கீற்றோன்களின் கருநாட்ட	அற்கைல் கூட்டங்களின் தள்ளுகை
	கூட்டல் தாக்க வேகத்திலும் அதிகம்.	காரணமாக குறைந்த
		நேரேற்றமுடையதாக மாற்றப்படுகின்றது.
43)	மாறாவெப்ப நிலையில் $H_{2(g)}+I_{2(s)} ightleftarrows$	மாறா வெப்பநிலையில் இரசாயனச்
	$2HI_{(g)}$ சமநிலைக் கலவையின்	சமநிலையிலுள்ள வாயுக் கலவையின்
	அமுக்கத்தை குறைந்தல் சமநிலைத்	அமுக்கத்தை குறைக்கும் போது
	தானத்தை வலப்பக்கமாக நகர்த்தும்.	மூல்களின் எண்ணிக்கை குறைவடையும்
	தானத்தை வல்பப்பைய நகர்த்தும்.	திசையில் தாக்கம் நிகழும்.
		அமில ஊடகத்தில் Zn ²⁺ , Mn ²⁺ அயன்கள்
44)	ZnS, MnS என்பன ஐதான HCl இல் கரையும்.	$ m H_2S$ முன்னிலையில் வீழ்படிவாக
		மாட்டாது.
	0	
45)		CH ₃ CH ₂ CH ₂ CH ₂ OH இன் ஐதரசன்
	CH_3 CH_2 CH_2 CH_3 , CH_3 — C — CH_3 என்பவற்றின்	பிணைப்பு உண்டு. CH_3 CH_2 CH_2 CH_3 ,
	கொதிநிலைகள் $CH_3 \ CH_2 \ CH_2 OH$ இன்	0
	கொதிநிலையிலும் அதிகம்.	$CH_3-\overset{\sqcap}{C}-CH_3$ என்பவற்றில் இல்லை.
46)	மூடிய தொகுதியில் உள்ள நீரானது	மூடிய தொகுதியினால் உறிஞ்சப்படும்
	ஆவியாகும் போது சுற்று சூழலின் எந்திரப்பி	வெப்பம் சுற்றுச் சூழலின் வெப்ட
	அதிகரிக்கும்.	இயக்கத்தை அதிகரிக்கச் செய்யும்.
47)	சவர்க்கார தயாரிப்பு என்பது கொழுப்பமில	எசுத்தர்களின் கார நீர்ப்பகுப்பின் போத
	எசுத்தர்களைக் NaOH / KOH கொண்டு கார	
	நீர்ப்பகுப்பு செய்தல் ஆகும்.	உப்பையும் அற்ககோலையும் தரும்.
48)	்	்
ru <i>)</i>	அற்கோல் சார்பாக அல்கொச்சைட்	இல்லை ஆனால் அல்க்கொச்சைப்
	அயனிலும் உறுதி குறைந்தது.	அயனில் பரிவுத் தன்மை உண்டு.
10.		
49)	மாறாவெப்பநிலையில் மென்னமிலங்களின்	மாறாவெப்பநிலையில் மென்னமிலத்தின்
	கூட்டப் பிரிகை அதிகரிக்கும் போது	கூட்டற் பிரிகையின் அளவு செறிவுக்கு
	அவற்றில் செறிவு குறைவடைதல் வேண்டும்.	நேர்விகித சமனாகும்.
50)	பூகோள வெப்பமாதல் பச்சை தாவரங்களின்	வளிமண்டல CO_2 இன் அதிகரிப்டை
	அதிகரிப்பின் மூலம் குறைக்கப்படலாம்.	பச்சைத் தாவரங்களின் அதிகரிப்பின்
		மூலம் கட்டுப்படுத்தலாம்.

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, யூன் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education Northern Province

Term Examination, June - 2019

தரம் :- 13 (2019)

இரசாயனவியல் - II A

நேரம் :- 3 மணித்தியாலம் 10 நிமிடம்

	பகுதி II A அமைப்புக் கட்டுரை வினாக்கள்
	அமைப்பும் மட்டுமர் வின்ரமைய
1) (A)	பின்வரும் அடைப்புக் குறிக்குள் தரப்பட்ட இயல்புகளை ஏறுவரிசைப்படி ஒழுங்குபடுத்துக.
	(i) <i>C, N, Cl, Ar</i> (முதலாம் அயனாக்கச் சக்தி)
	(ii) Li, F, Al, Ca (அணு ஆரை)
	······································
	(iii) P, Mg, O, Cl (முதலாம் இலத்திரன் நாட்ட சக்தி)
	$(\mathrm{iv})SO_2$, SO_3 , H_2S , H_2SO_4 (கந்தகத்தின் மின் எதிர்த் தன்மை)
	(v) NF_3 , NH_3 , CCl_4 , $AlCl_3$ $$ (பிணைப்புக் கோணம்)
	(vi) NaCl, KCl, RbCl, LiCl (உருகு நிலை)
	(3.0 புள்ளிகள்)
(B)	பின்வரும் (i) தொடக்கம் (v) வரையான வினாக்கள் அமைனோ அமிலத்தை (amino acid) அடிப்படையாகக் கொண்டவை. இதன் வன்கூட்டமைப்பு கீழே தரப்பட்டுள்ளது.
	H = O O
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\stackrel{1}{H}$ $\stackrel{1}{N}-H$
	 H
	(i) மேலே உள்ள அமினோ அமிலத்திற்கு மிகவும் ஏற்றுக்கொள்ளக்கூடிய லூயியின்
	(Lewis) கட்டமைப்பை வரைக.

					• • • • • • • •
					• • • • • • • • • • • • • • • • • • • •
					• • • • • • •
N ¹ , குறி	நி (i) இல் வரையறுக்கப்பட்ட லூயியில C², C³ மற்றும் C⁴ ஆகிய அணுக்கள் ் ப்பிடுக. அணுவைச் சூழவுள்ள VSEPR சோடிகள்.	தொடர்பாக			
	் அணுவைச் சூழவுள்ள இலத்திரன் சோடி		கணிதம்.		
	அணுவின் கலப்பாக்கம்				
d)	அணுவைச் சூழவுள்ள வடிவம்.				
		N_1	C_2	C_3	С
(a)	VSEPR சோடிகள்				
(b)	இலத்திரன் சோடி கேத்திரகணிதம்				
(c)	கலப்பாக்கம்				
(d)	வடிவம்				
•	நி (i) இல் வரையறுக்கப்பட்ட லூயியில ணப்பு உருவாக்கதுடன் தொடர்புபட்ட அ ${f N}^1 - {f C}^2 \qquad {f N}^1 \qquad$ ${f C}^2 - {f C}^3 \qquad {f C}^2 \qquad$	ணு / கலப் 	பு ஒழுக்குக C ² C ³ C ⁵		D ж па
(a) . (b) (c) (v) மே(கட்ட	$C^4 - C^5$ C^4	அமை(எளவான	பിര
(a) . (b) (c) (v) மே(கட்ட	C⁴ − C⁵ C⁴ லே பகுதி (i) இல் வரையப்பட்ட மைப்பிற்கான வடிவத்தை வரைந்§	அமை(பிவ
(a) . (b) (c) (v) மே(கட்ட	C⁴ − C⁵ C⁴ லே பகுதி (i) இல் வரையப்பட்ட மைப்பிற்கான வடிவத்தை வரைந்§	அமை(பின
(a) . (b) (c) (v) மே(கட்ட	C⁴ − C⁵ C⁴ லே பகுதி (i) இல் வரையப்பட்ட மைப்பிற்கான வடிவத்தை வரைந்§	அமை(பி <i>எ</i>
(a) . (b) (c) (v) மே(கட்ட	C⁴ − C⁵ C⁴ லே பகுதி (i) இல் வரையப்பட்ட மைப்பிற்கான வடிவத்தை வரைந்§	அமை(ன்ளவான	பி 0 புள்

	CaCl _{2 (s)}
1.	2 (8)
H	$ m H_2O_{(1)}$
G	பென்சிற்கரி _(s)
A	$\Delta \mathbf{r}_{(\mathrm{g})}$
K	(s)
<u> </u>	(2.0 புள்ளிகள்
ஆ (வர்த்தன அட்டவணையில் அணுவெண் 20 இற்கு உட்பட்ட P தொகுப்பு மூலகம் 'Ç
	கும். இதன் முதல் எட்டு தொடர் அயனாக்கச் சக்தி பெறுமானங்கள் முறையே kJ mol⁻
_ 	ல் 1600, 2260, 3390, 4540, 6990, 8490, 27100, 31700 ஆகும். Q நான்கு பிறதிருப்பங்களை
	டையது. இவற்றுள் இரண்டு பளிங்குரு வடிவம் உடையது.
(i)	Q ஐ இனம் காண்க.
(ii)	Q இன் நான்கு பிறதிருப்பங்களின் பெயர்களைத் தருக.
(iii) வளியில் $old Q$ ஐ தகனமடைய <mark>வைத்த</mark> போது நிறமற்ற வாயு $old X_1$ உருவாகியத
` .	இனங்காணப்பட்ட நிறமற்ற வா <mark>யு \mathbf{X}_1 ஐ வளியில் குறிப்பிட்ட நிபந்தனையி\mathbf{x}_2</mark>
	தாக்கமடைந்தபோது நிறமற்ற வாயு X_2 ஐ உருவாக்கியது. வாயுக்கள் X_1 மற்றும் X_2 ஐ
	இனம் காண்க.
	\mathbf{X}_1
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
(iv)	\mathbf{X}_2
(iv)	
(iv)	\mathbf{X}_2) லூயியின் கட்டமைப்பை \mathbf{X}_1 மற்றும் \mathbf{X}_2 இற்கு வரைக.
(iv)	\mathbf{X}_2) லூயியின் கட்டமைப்பை \mathbf{X}_1 மற்றும் \mathbf{X}_2 இற்கு வரைக.
	\mathbf{X}_2) லூயியின் கட்டமைப்பை \mathbf{X}_1 மற்றும் \mathbf{X}_2 இற்கு வரைக.
	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.
	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.
	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.
	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.
	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.
	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.
(v)	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.
(v)) Pb(N	X ₂) லூயியின் கட்டமைப்பை X ₁ மற்றும் X ₂ இற்கு வரைக.

முதன்மை இடைத்தாக்கம்

இரண்டாம் நிலை இடைத்தாக்கம்

கூறுகள்

சேர்க்கப்பட்டு அவதானங்கள் அட்டவணைப்படுத்தப்பட்டுள்ளன.

அமோனியாக் கரைசலும் தனித்தனியாக ஒவ்வொரு பரிசோதனைக் குழாய்களிலும் முறையே

பரிசோதனைக் BaCl _{2 (aq)} குழாய்கள்		ஐதான அமோனியா கரைசல்	
A.	வெள்ளை வீழ்படிவு இது குளிர் நீரில் கரையாது ஆனால் சூடான நிலையில் கரையும்.	வெள்ளை வீழ்படிவு	
B.	வெள்ளை வீழ்படிவு ஐதான HNO ₃ இல் கரையாது.	தெளிந்த கரைசல்	
C.	வெள்ளை வீழ்படிவு ஐதான HCl இல் கரையும்	மிகை அமோனியா சேர்க்கப்பட்ட போது கருநீலக் கரைசல் (deep blue)	
D.	தெளிந்த கரைசல்	மஞ்சட் கபில வீழ்படிவு	
E.	மஞ்சள் வீழ்படிவு	நிறமாற்றம் அவதானிக்கப்படவில்லை.	

	A B C
	(ii) விளைவாக வீழ்படிவு உருவாதலுடன் தொடர்புபட்ட அனைத்து தாக்கங்களுக்குமான சமப்படுத்தப்பட்ட இரசாயன சமன்பாட்டைத் தருக. (வீழ்படிவு கீழ்நோக்கிய அம்புக்குறி (↓) இனால் குறிப்பிடப்பட வேண்டும்.)
	(iii) ஐதான அமிலங்களில் கரையக்கூடிய விளைவு வீழ்படிவுக்கான சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டைத் தருக.
	(iv) மிகை அமோனியாக் கரைசலுடன் கருநீல நிறம் உருவாதலுக்கு காரணமான சேர்வை அல்லது சிக்கல் அயனைக் குறிப்பிடுக.
3) (A)	(5.0 புள்ளிகள்) இலட்சிய வாயுச்சமன்பாட்டை எழுதி அதில் உள்ள பதங்களை குறிப்பிடுக.

O =	ாண்டுள்ள $300~{ m cm}^3$. குடுவை ஒன்றினுள் ${ m O}_2$ வாயு செலுத்தப்பட்டது. (K = $39,~{ m Mn}$ = 16)
(1)	$ m KMnO_4$ திண்மத்தில் இருந்து விளைவாக $ m O_2$ வாயு பெறப்படுவதற்கான தாக்கத்திற் சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டைத் தருக.
(ii)	மேலுள்ள தாக்கத்தில் வெளிவிடப்பட்ட ${ m O}_2$ வாயுவின் மூல் எண்ணிக்கையைக் கணிக்கு
(iii) மேலுள்ள தாக்கத்தின் போது தாக்கமடைந்த KMnO _{4(s)} இன் திணிவைக் கணிக்குக.
(iv)	
(10)) இரண்டு வாயுக்களும் கலக்கப்பட்ட பின் கலவையின் மொத்த அமுக்கத்தை 27 ℃ யாது?
(v)	$27~^\circ\mathrm{C}$ இல் கலவையிலுள்ள O_2 வாயுவின் மூல் பின்னத்தைக் கணிக்குக.
(i)	(6.0 புள்ளி இலட்சியக் கரைசல் ஒன்றிற்கான இரவோல்ற்றின் விதியைத் தருக.

	(ii) திரவங்கள் Aயும்	Вயும் கொண்டுள்	ள ஒரு கலவை இல	்சியக் கரைசலாக நடந்து
	கொள்கின்றது. T	K வெப்பநிலையில்	தூய திரவங்கள் A,	B என்பவற்றின் நிரம்பல்
	ஆவியமுக்கங்கள்	முறையே P_A^O உம் P_A^O) _B உம் ஆகும். திரவ அ	அவத்தையில் திரவங்கள் A,
	B யின் மூல்ப்பின்	னங்கள் முறையே ${ m X_A}$	உம் $X_{ m B}$ உம் ஆகும். உ	யூவி அவத்தையில் A இன்
	மூல்ப்பின்னம் $rac{}{{}^{P}_{A}^{O}}$	$rac{P_A^O X_A}{X_A + P_B^O X_B}$ எனக் காட்டு	்க.	
	(iii) 27 ℃ திரவங்கள்	A, B யின் தூய நிரம்	பல் ஆவியமுக்கங்கள்	முறையே 0.5 x 10 ⁴ Pa உம்
	0.3 x10 ⁴ Pa உம் க	ஆகும். 27 ℃ இல் A	, B ஆகிய இரண்டும்	இலட்சியக் கரைசல்களாக
	நடந்து கொள்கின்	ாறன. இச்சமநிலையில்	திரவ அவத்தையில்	A யின் மூல்ப்பின்னம் 0.4
	ஆகும். ஆவி அ	வத்தையின் A இன் மூ	ல்ப்பின்னத்தைக் கணிக்	குக.
				(4.0 புள்ளிகள்)
4) (A)	C H N govi soo			
4) (A)				கள் A, B, C, D ஆகியன A, B, C மற்றும் D ஆகியன
				E, F, G, H ஆகியவற்றை
				மடைந்தன. E உம் F உம்
	முறையே I, J ஆ	கிய கீற்றோன்களை	விளைவாகத் தந்தன	r. G ஆனது K எனும்
	காபொட்சாலிக் அம்	விலத்தை விளைவாக	த் தந்தது. ஆனால்	H ஆனது சாதாரண
	நிபந்தனைகளில் அமி	ல K₂Cr₂O ₇ உடன் தா	க்கமடையவில்லை.	
	கீழே தரப்பட்டுள்ள 🤇	பெட்டிகளுள் A, B, C,	D, E, F, G, H, I, J மற்	ற்றும் K என்பவற்றினுடைய
	கட்டமப்புக்களை வன	ரக		
	A	В	С	D
	Е	F	G	Н

I J K

(5.0 புள்ளிகள்)

பின்வரும் தாக்கங்களுக்கு தாக்கி/கள், ஊக்கி/கள் ஆகிய P, Q, R, S, T, U, V, W, X மற்றும் Y (B) எனும் தாக்கு பொருட்களை எழுதுக.

3. $CH_3 CH_2 CHO$ $\xrightarrow{R} CH_3 CH_2 CH CH - CHO$ R
4. $C_6 H_5 N_2^+ Cl^ \xrightarrow{S} C_6 H_5 CN$ S
5. $CH_3 C \equiv C CH_3$ $\xrightarrow{T} CH_3 CH = CHCH_3$ T

- 6. $C_6 H_5 CH_2 COCl \longrightarrow C_6 H_5 CH_2 COOH$

7. $\bigcirc \qquad \stackrel{||}{C} - CH_2 COOH \xrightarrow{\qquad V \qquad} \bigcirc \qquad \stackrel{CH}{\bigcirc} - CH_2 COOH \qquad V \qquad OH$

9. $CH_3 CH_2 CH = CH_2 \xrightarrow{X} CH_3 CH_2 - CH - CH_2 Br X$ OH

10. $CH_3 - CH = CH_2$ $\xrightarrow{\Upsilon}$ $CH_3 - CH - CH_3$ (4.0 புள்ளிகள்)

மேலே வினா (10) இல் குறிப்பிட்டதாக்கத்திற்கான பொறிமுறையை எழுதுக.

(0.5 புள்ளிகள்)

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, யூன் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education Northern Province

Term Examination, June - 2019

தரம் :- 13 (2019)

இரசாயனவியல் - II B

பகுதி II B கட்டுரை வினாக்கள்

5) (A) ஒவ்வொன்றும் $10~{
m dm}^3$ கனவளவுடைய விறைப்பான குடுவைகள் X உம் Y உம் சிறிய குழாய் ஒன்றினால் இணைக்கப்பட்டுள்ளன. அக்குடுவைகளை இணைக்கும் குழாயின் கனவளவு புறக்கணிக்கத்தகது அத்துடன் குழாய் அடைப்பும் அதில் இணைக்கப்பட்டுள்ளது.

300 K வெப்பநிலையில் குழாயியின் அடைப்பான் ஆரம்பத்தில் அடைக்கப்பட்டுள்ளது. குடுவை $X=1.4~\mathrm{mol}$ AB வாயுவையும் மற்றும் Y வெறுமையாகவும் (காலியாகவும்) காணப்பட்டது. தொகுதி 350 K வெப்பநிலைக்கு உயர்த்தப்பட்டபோது $AB_{(g)}$ பின்வரும் கீழே தரப்பட்ட சமன்பாட்டிற்கு அமைய $A_{2(g)}$ ஆகவும் $B_{2(g)}$ ஆகவும் பிரிகையடைந்தது.

$$2 AB_{(g)} \rightleftharpoons A_{2(g)} + B_{2(g)}$$

தொகுதி 350 K வெப்பநிலைகளில் சமநிலையடைந்த போது $B_{2(g)}$ இன் 0.2 molஇருந்தது. அதன் பின்னர் குழாய் அடைப்பான் திறக்கப்பட்டு 350 K வெப்ப நிலையில் இரண்டாவது சமநிலை பெற்பட்டது. சமநிலையில் $B_{2(g)}$ வின் b மூல் காணப்பட்டது.

- (i) மேலே தரப்பட்ட சன்பாட்டிற்கான $K_{\rm C}$ இற்கான கோவையை விளைவுகள், தாக்கிகள் சார்பில் எழுதுக.
- (ii) அடைப்பான் பூட்டியுள்ள போது $K_{\rm C}$ இன் பெறுமானம் $350~{
 m k}$ இல் கணிக்குக.
- (iii) அடைப்பான் திறந்துள்ளபோது இரண்டாம் சமநிலையில் 'b' இன் பெறுமானத்தைக் 350 K இல் கணிக்குக?
- (iv) விடை (iii) இற்கான விளக்கத்தை இலீச்சற்றலியின் கொள்கையை உபயோகித்து விளக்குக.
- (v) வெப்பநிலை 500 K இற்கு உயர்த்தப்பட்டுள்ளது. பின்னர் தொகுதி மூன்றாம் $E_{\rm color}$ சமநிலையில் அனுமதிக்கப்பட்ட போது $E_{\rm color}$ இன் பெறுமானம் $E_{\rm color}$ ஆகக் காணப்பட்டது. இச்சமநிலையில் $E_{\rm color}$ இன் அளவைக் கணிக்குக..
- (vi) இச்சமநிலையானது அகவெப்பமா அல்லது புறவெப்பமா என்பதை விளக்கத்துடன் தருக.

(70 புள்ளிகள்)

- (B) (i) பிணைப்பு பிரிகைச் சக்திக்கான வரைவிலக்கணத்தை எழுதுக.
 - (ii) கீழ்வரும் தரவுகளைப் பயன்படுத்தி $PCl_{5(g)}$ வின் தோன்றல் வெப்பத்தை $25\ ^{\circ}C$ இல் கணிக்குக.

 ${
m P}_{({
m s})}$ இன் அனுவாதல் வெப்பம் $\Delta\,H^{\phi}_{atm}$ $=315~{
m kJ}~{
m mol}^{-1}$ ${
m P}-{
m Cl}_{({
m g})}$ பிணைப்புச் சக்தி $=259~{
m kJ}~{
m mol}^{-1}$

 $\mathrm{Cl}_{2(\mathrm{g})}$ இன் பிணைப்பு பிரிகைச் சக்தி $\left(\Delta H^{\emptyset}{}_{D}\right)$ is $=242~\mathrm{kJ~mol}^{-1}$

(C) பின்வரும் தாக்கத்தை கருதி வினாக்களுக்கு விடை தருக.

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

பின்வரும் தரவுகள் $\Delta H^{\emptyset}{}_f$ உம் S^{\emptyset} உம் 25 $^{\circ}$ C இல் தரப்பட்டுள்ளன.

	$\Delta H^{\emptyset}_{f} \text{ kJ mol}^{-1}$	S^{\emptyset} J mol ⁻¹ K ⁻¹
$PCl_{5(g)}$		364.6
$PCl_{3(g)}$	- 287. 0	311.8
$\text{\rm Cl}_{2(g)}$	0	223.1

- (i) மேற்படி தாக்கத்திற்கு ΔH^{\emptyset} இனை $25~{\rm ^{\circ}C}$ இல் கணிக்குக.
- (ii) மேற்படி தாக்கத்திற்கு Δ S^{\emptyset} இனை 25 $^{\circ}$ C இல் கணிக்குக.
- (iii) மேற்படி தாக்கத்திற்கு Δ G^{\emptyset} இனை 25 $^{\circ}$ C இல் கணிக்குக.
- (iv) மேற்படி தாக்கம் சுயாதீனமானதா, சுயாதீனமற்றதா என எதிர்வு கூறுக.

(40 புள்ளிகள்)

- 6) (A) 100.00 cm³, 0.20 mol dm³ மென்னமிலம் CH₃COOH ஆனது குறிப்பிட்டளவு தூய மென்னமிலம் CH₃COOH இனை நீரில் கரைத்து ஐதாக்குவதன் மூலம் தயாரிக்கப்பட்டது. 25 °C இல் இக்கரைசலின் pH பெறுமானம் 2.8 ஆகும்.
 - (i) மேற்படி மென்னமிலத்தின் கூட்டற்பிரிவு மாறிலி K_a இற்கான கோவையை எழுதுக.
 - (ii) K_a இன் பெறுமானத்தை 25 ℃ இல் கணிக்குக.
 - (iii) ஐதான CH_3COOH கரைசலின் $25.0~cm^3$ ஆனது $0.2~mol~dm^{-3}$ KOH கரைசலினால் நியமிக்கப்பட்டு விளைவுக் கரைசல் $25~^{\circ}C$ இல் பெறப்பட்டது. இக் கரைசலின் pH பெறுமானத்தை சமவலுப் புள்ளியில் கணிக்குக $25~^{\circ}C$ இல் கரைசலின் $Kw = 1~x~10^{-14}~mol^2$, dm^{-6} .
 - (iv) மேலே தரப்பட்ட நியமிப்புக்கலவை $100~{\rm cm}^3$ வரை காச்சி வடித்த நீர் சேர்த்து ஐதாக்கப்பட்டது. கரைசலின் புதிய pH இனை $25~{\rm C}$ கணிக்குக.

(50 புள்ளிகள்)

(B) 25 ℃ இல் 0.05 mol dm⁻³ Ag NO₃ கரைசல் ஆனது 0.02 mol dm⁻³ NaCl உம் 0.02 mol dm⁻³ NaI உம் இணையும் கொண்டுள்ள கரைசலினுள் மெதுவாகச் சேர்க்கப்பட்டது. 25 ℃ இல் இரு வெள்ளி ஏலைட்டுக்களினதும் கரைதிறன் பெருக்கங்கள் கீழே தரப்பட்டுள்ளன.

Ksp [AgCl] = $1 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-3}$ Ksp [AgI] = $1 \times 10^{-18} \text{ mol}^2 \text{ dm}^{-3}$

- (i) AgCl அல்லது AgI ஆகியவற்றுள் எது முதலில் வீழ்படிவாக்கப்படும் என உய்த்தறிக.
- (ii) இரண்டாவது வெள்ளி ஏலைட்டு வீழ்படிவாகத் தொடங்கும் கணத்தில் முதலாவதாக வீழ்படிவாக்கப்பட்ட ஏலைட்டில் எஞ்சியிருக்கும் ஏலைட்டு அயன்களின் செறிவைக் கணிக்குக.
- (iii) மேற்படி கணிப்புகளை மேற்கொள்ளத் தேவையான அத்தியாவசியமான எடுகோள் பற்றி கூறுக. (40 புள்ளிகள்)

- (C) CHCl₃ இற்கும் நீருக்கும் இடையிலான I₂ இன் பங்கீட்டுக் குணகத்தை துணிவதற்கான பின்வரும் பரிசோதனை மாணவனால் மேற்கொள்ளப்பட்டது.

 CHCl₃ படையின் 20.00 cm³ இல் உள்ள 0.1 mol dm⁻³ I₂ ஆனது 100.00 cm³ நீருடன் சேர்த்துக் குலுக்கப்பட்டது. பின்னர் இக்கரைசல் 25 °C இல் சமநிலையடை விடப்பட்டது. பின்னர் CHCl₃ படையின் 10.00 cm ஆனது 0.06 mol dm⁻³ Na₂ S₂ O₃ கரைசலுக்கெதிராக மாப்பொருள் காட்டி முன்னிலையில் நியமிக்கப்பட்டது. முடிவுப் புள்ளியில் Na₂ S₂ O₃ இன் கனவளவு 25.00 cm³ ஆகக் காணப்பட்டது.
 - (i) $CHCl_3$ இற்கும் நீருக்கும் இடையிலான I_2 இன் பங்கீட்டுக் குணக மாறிலிக்கான கோவையைத் தருக.
 - (ii) I_2 இன் ஆரம்ப மூலைக் கணிக்குக.
 - (iii) CHC l_3 படையிலும், நீர்ப்படையிலும் I_2 இன் செறிவுகளைக் கணிக்குக.
 - (iv) 25 °C இல் $CHCl_3$ இற்கும் நீருக்கும் இடையிலான I_2 இன் பங்கீட்டுக் குணகத்தைக் கணிக்குக. (50 புள்ளிகள்)
- 7) (A) உமக்கு பின்வருவன வழங்கப்படுகின்றன.
 - 1.0 mol dm⁻³ Zn SO_{4 (aq)}
 1.0 mol dm⁻³ M SO_{4 (aq)} , 1.0 mol dm⁻³ CuSO_{4(aq)}
 - Zn, M மற்றும் Cu உலோகத் தண்டுகள் (Rods)
 - கடத்தும் கம்பிகளும் முகவைகளும்
 - ஊடு கடத்தக்கூடிய மென்சவ்வு (Permiable merbrane)
 - டிஜிற்றல் வோல்ற்றுமானி

$$E^{\emptyset} Z n^{2+} / Z n = -0.76 V,$$
 $E^{\emptyset} M^{2+} / M = E_1,$

 $E^{\emptyset} Cu^{2+} / Cu = +0.34 V$,

 $E^{\emptyset}\,M^{2+}\,/\,M$ இன் மின்வாய் அழுத்தப் பெறுமானம் ஆனது $E^{\emptyset}_{Zn^{2+}\,/\,Zn}$ இன் மின்வாய் அழுத்தப் பெறுமானத்தை விட பெரிதாகவும் $E^{\emptyset}\,Cu^{2+}\,/\,Cu$ இன் மின்வாய் அழுத்தப் பெறுமானத்தை விட சிறிதாகவும் உள்ளது.

- (i) தொடராக இணைக்கப்பட்டுள்ள மிகவும் ஏற்றுக் கொள்ளக்கூடிய மின்கலங்களுக்கான வரைபடத்தை வரைக. இம் மின்கலத் தொடரில் ஒரு மின்வாய் இரண்டு தடவைகள் இணைக்கப்பட்டுள்ளன. (அதிகூடியது நான்கு மின்வாய்களும் இரண்டு மின்கலங்களும் இத்தொடரில் காணப்பட வேண்டும்).
- (ii) டிஜிட்டல் வோல்ற்றுமானி G இன் வாசிப்பைக் கணிக்குக.
- (iii) 25 °C இல் E₁ இன் பெறுமதியைக் கணிக்குக. (Zn_(s) இணையும் M_(s)) இணையும் மின்வாய்களாகக் கொண்ட கலம் 1 இன் மின் இயக்கவிசை 0.53 V ஆகும்.)
- (iv) ஒவ்வொரு கலத்திலும் அனோட் மற்றும் கதோட் இல் இடம் பெறும் அரைக்கலத் தாக்கத்தின் சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டைத் தருக.(50 புள்ளிகள்)
- (B) "P" உம் "Q" உம் எண்முகி வடிவமைப்பையுடைய சிக்கல் மூலக்கூறுகள் அத்துடன் அதன் உலோக அயன்கள் வேறுபட்ட ஒட்சியேற்ற எண்ணைக் கொண்டுள்ளன. சிக்கல் மூலக்கூறுகள் P உம் Q உம் முறையே எனும் $C_0N_6H_{18}Cl_2$, $C_0H_{12}O_6Br_3$ அணுக்களின் கலவையைக் கொண்டுள்ளன.

ஒவ்வொரு சிக்கல் மூலக்கூறுகளிலும் குறித்தளவு எண்ணிக்கையுடைய இணையிகள் உலோக அயன்களுடன் இணைந்துள்ளன. கரைசல்கள் P உம் Q உம் தனித்தனியாக $AgNO_3$ கரைசலுடன் சேர்க்கப்பட்டபோது, P வெள்ளை வீழ்படிவைத் தந்தது இவ்வீழ்படிவு ஐதான மற்றும் செறிந்த அமோனியக் கரைசல்களில் கரைந்தது. அத்துடன் Q மஞ்சள் வீழ்படிவைத் தந்தது. இவ்வீழ்படிவு ஐதான அமோனியா கரைசலில் கரையவில்லை ஆனால் செறிந்த அமோனியாக் கரைசலில் கரைந்தது.

- (i) உலோக (Cobalt) கோபோல்ட் அயனுடன் இணைக்கப்பட்டுள்ள இணையிகளை சுட்டிக்காட்டி சிக்கல் மூலக்கூறுகள் P ஐயும் Q ஐயும் இனம் காண்க.
- (ii) P இனதும் Q இனதும் IUPAC பெயரை எழுதுக.
- (iii) மேலே உள்ள தாக்கங்களில் பெறப்பட்ட இரண்டு வீழ்படிவுகளுடனும் தொடர்புபட்ட அயன் சேர்வைகளின் IUPAC பெயரைத் தருக.
- (iv) P இலும் Q இலும் உள்ள (Cobalt) கோபோல்ட் அயனின் இலத்திரன் நிலையமைப்பைத் தருக. (50 புள்ளிகள்)
- (C) சில சேதன மூலக்கூறுகளின் கட்டமைப்புக்கள் கீழே தரப்பட்டுள்ளன.

- (i) ஒடுங்கல் பல்பகுதியத்தை உருவாக்கக்கூடிய சேர்வை /கள் எது / எவை.
- (ii) கூட்டல் பல்பகுதியத்தை உருவாக்கக்கூடிய சேர்வைகள் எவை.
- (iii) ஒடுங்கல் பல்பகுதியத்தின் கட்டமைப்பை வரைக. (மீண்டும் மீண்டும் வரும் அலகை குறிப்பிடுக.)
- (iv) மேலே உள்ள ஒடுங்கல் பல்பகுதியத்தின் பொதுப் பெயரைத் தருக.
- (v) உம்மால் தரப்பட்ட கூட்டல் பல்பகுதியமொன்றின் உபயோகங்கள் இரண்டு தருக.

(50 புள்ளிகள்)

பகுதி II C

8) பட்டியலில் தரப்பட்டுள்ள இரசாயனப் பதார்த்தங்களை மட்டும் பயன்படுத்தி பின்வரும் மாற்றலை எங்ஙனம் பூர்த்தியாக்குவீர் எனக் காட்டுக.

(A)

தாக்குபொருட்களின் பட்டியல்

CH₃MgCl, dilute NaOH, LiALH₄, NH₃, H₂O, HCl, Pyridinium Chlorochromate (PCC), NaNO₂

(60 புள்ளிகள்)

(B) பின்வரும் தாக்கத்திட்டதைப் பூரணப்படுத்துவதற்கு P_1 தொடக்கம் P_9 ஆகியவற்றையும் மற்றும் R_1 தொடக்கம் R_9 ஆகியவற்றையும் இனம் காண்க.

(72 प्रवांबीडवां)

- (C) (i) உலர் $AlCl_3$ முன்னிலையில் பென்சீனின், எதைல் ஏற்றத்திற்குரிய தாக்கப் பொறிமுறையைத் தருக.
 - (ii) மேற்படி தாக்கத்திற்கு சாத்தியமான பரிவுக் கட்டமைப்புக்களை வரைக.

(18 புள்ளிகள்)

9) (A) ஒரு நீர்க்கரைசல் 'X' மூன்று கற்றயன்களையும் ஒரு அன்னயனையும் கொண்டுள்ளது. பின்வரும் பரிசோதனைகள் கரைசல் X இலுள்ள மூன்று கற்றயன்களையும் ஒரு அன்னயனையும் இனம் காண்பதற்காக மேற்கொள்ளப்பட்டன.

	பரிசோதனை	அவதானம்
(i)	கரைசல் X ஐதான HCl உடன்	தெளிந்த கரைசல் உருவாகியது
	அமிலப்படுத்தப்பட்டது.	
(ii)	$ m H_2S$ வாயு மேலுள்ள கரைசலிற்கு	கருப்பு நிற வீழ்படிவு " $P_{ m l}$ "
	செலுத்தப்பட்டது.	தோன்றியது.
(iii)	மேலே பெறப்பட்ட வடிதிரவம் ஆனது	
	முற்றாக $ m H_2S$ வாயு வெளியேற்றப்படும்	வெள்ளை நிற வீழ்படிவு "P ₂ "
	வரை வெப்பமேற்றப்பட்டது. பின்னர்	பெறப்பட்டது.
	NH₄Cl உம் NH₄OH உம் சேர்க்கப்பட்டது.	
(iv)	மேலே (iii) இல் பெறப்பட்ட	
	வடிதிரவத்திற்கு $ m H_2S$ வாயு செலுத்தப்	தெளிந்த கரைசல் பெறப்பட்டது.
	பட்டது.	
(v)	மேலே (iv) இல் பெறப்பட்ட வடிதிரவம்	வெள்ளை நிற வீழ்படிவு "P ₃ "
	$ m H_2S$, வாயுமுற்றாக வெளியேற்றப்படும்	பெறப்பட்டது.
	வரை வெப்பமேற்றப்பட்டது. பின்னர்	
	NaOH, NH ₄ Cl மற்றும் (NH ₄) ₂ CO ₃ என்பன	
	சேர்க்கப்பட்டன.	
(vi)	ஆரம்பக் கலவையின் சிறிய அளவிற்கு	
(11)	Al தூளும் NaOH கரைசலும் சேர்த்து	வடிதாள் பேப்பர் கபில நிறமாக
	வெப்பமேற்றப்பட்டது. பின்னர்	மாற்றம் அடைந்தது.
	வெளியேறிய வாயு நெஸ்லரின்	
	சோதனைப் பொருளில் தோய்க்கப்பட்ட	350
	வடிதாள் பேப்பரினால் சோதிக்கப்பட்டது.	0

கரைசல் X இலுள்ள மூன்று கற்றயன்களையும் இனம்கண்டு உறுதிப்படுத்துவதற்கு வீழ்படிவுகள் $P_1,\,P_2$ மற்றும் P_3 இற்கான பரிசோதனைகள் மேற்கொள்ளப்பட்டுள்ளன.

a)	வீழ்படிவு " $\mathrm{P_{l}}$ " முற்றாக கரையும் வரை	
	ஐதான HCl மெதுவாகச் சேர்க்கப் பட்டது.	மென் நீலநிற கரைசல் தோன்றியது.
	பின்னர் மிகை அமோனியாக கரைசல்	கரும் நீல நிறக் கரைசல்
	சேர்க்கப்பட்டது.	தோன்றியது.
b)	வீழ்படிவு \mathbf{P}_2 இற்கு காபன்கட்டிப்	நீல நிற மீதி தோன்றியது.
	பரிசோதனை மேற்கொள்ளப்பட்டது.	
c)	வீழ்படிவு P ₃ இற்கு சுவாலைச் சோதனை	செங்கட்டிச் சிவப்பு நிற சுவாலை
	மேற் கொள்ளப்பட்டது.	தோன்றியது.

- (i) கரைசல் X இலுள்ள மூன்று கற்றயன்களையும், ஒரு அன்னயனையும் இனம் காண்க.
- (ii) வீழ்படிவு $P_1,\ P_2$ மற்றும் P_3 உருவாதலுடன் தொடர்புபட்ட இரசாயனத் தாக்கங்களைத் தருக.

- (iii) பரிசோதனை (a) யில் கரும்நீலநிறக்கரைசல் தோன்றலுடன் சம்பந்தப்பட்ட இரசாயனச் சமன்பாட்டைத் தருக.
- (iv) பரிசோதனை (vi) இல் வாயு வெளியேற்றத்துடன் தொடர்புபட்ட சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டைத் தருக. (72 புள்ளிகள்)
- (B) L உம் M உம் 3d தொடரில் அடுத்தடுத்தமையும் மூலங்களாகும். L உம் M உம் ஒட்சோ அன்னயன்களை உருவாக்கும் அவை நான்முகி வடிமைப்பைக் கொண்டதாகவும், சிறந்த ஒட்சியேற்றியாகவும் காணப்படும். L இரண்டு ஒட்சோ அன்னயன்களை உருவாக்கும் அதே நேரம் இவ்விரு ஒட்சோ அன்னயன்களிலும் L இன் ஒட்சியேற்ற எண் பெறுமானம் ஒரே மாதிரியானவை. M இன் + iv என்னும் ஒட்சியேற்ற நிலையில் உள்ள ஒட்சைட்டின் நிறம் கபிலம் ஆகும்.
 - (i) 3d மூலகங்கள் L இனதும் M இனதும் பெயரை தருக.
 - (ii) L இன் இலத்திரன் நிலையமைப்பைத் தருக.
 - (iii) L இனதும் M இனதும் இரண்டு ஒட்சோ அயன்களின் லூயியின் கட்டமைப்புக்களைத் தருக.
 - (iv) M இன் பொதுவான ஒட்சியேற்ற நிலைகளில் உள்ள ஒட்சைட்டுக்களின் இரசாயனச் சூத்திரத்தைத் தருக. அத்துடன் அவ்வொட்சைட்டுக்களின் அமில, மூல மற்றும் ஈரியல்பு என்பவற்றைக் குறிப்பிடுக.
 - (v) M ஆனது 3d மூலகங்களுள் தாழ் உருகுநிலை மற்றும் கொதிநிலை உடையது. இதற்கான காரணத்தை விளக்குக.
 - (vi) அமில ஊடகத்தில் M இன் ஒட்சோ அன்னயனுக்கு H_2S வாயுவைக் செலுத்தம் போது ஏற்படும் நிறமாற்றத்தைத் தருக. $(75\$ புள்ளிகள்)
- 10) (A) இவ் வெண்வரிப்படமானது இரசாயனத் தொழிற்சாலைகளின் மூன்று உற்பத்திச் செயன்முறைகளை அடிப்படையாகக் <mark>கொண்டு</mark>ள்ளது.

- (i) R_1, R_2 மற்றும் R_3 ஆகிய மூன்று மூலப் பொருட்களையும் இனம்காண்க.
- (ii) C_1, C_2, C_3, C_4 மற்றும் C_5 ஆகிய செயன்முறைகளையும் / நிபந்தகளையும் இனம் காண்க.
- (iii) P₁, P₂, P₃, P₄, P₅, P₆, P₇ மற்றும் P₈ ஆகிய விளைவு இனம் காண்.

(80 प्रवां नीडवां)

- (B) பூகோள வெப்பமாதலுக்கும், அமில மழைக்கும் காரணமாக வேறுபட்ட தொழிற்சாலைகளில் இருந்து விடுவிக்கப்படும் கழிவு வாயுக்கள் காரணமாக அமைகின்றன.
 - (i) பூகோள வெப்பமாதலுக்கு, பங்களிப்புச் செய்யும் மூன்று வாயுக்களைத் தருக.
 - (ii) அமில மழைக்குப் பங்களிப்புச் செய்யும் மூன்று வாயுக்களைத் தருக.
 - (iii) மேலே (ii) இல் தரப்பட்ட வாயுக்கள் அமில மழைக்குப் பங்களிப்புச் செய்யும் விதத்தை சமப்பட்ட்ட இரசாயனச் சமன்பாட்டின் மூலம் விளக்குக.
 - (iv) பூகோள வெப்பமாதலுக்கும் அமில மழைக்கும் பங்களிப்புச் செய்யும் ஒவ்வொரு தொழிற்சாலைகளை இனம்காண்க.
 - (v) அமிலமழையால் தோற்றுவிக்கப்படும் மூன்று சூழல் பாதிப்புக்களைத் தருக.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

- C.Maths
- Physics
- Chemistry
 - + more