MAT347 A17

Problem 1.

Since f is a polynomial of degree 2, it is irreducible if and only if it does not have any roots. Any root $x = \frac{a}{b}$ must satisfy a, b|1. Therefore if any roots of f exist they must be $x = \pm 1$. However f(1) = 3 and f(-1) = 1. Thus f is not reducible and $\mathbb{Q}[x]/(f(x))$ is a field. We claim that $\mathbb{Q}[x]/(f(x)) \cong \mathbb{Q}(\sqrt{-3})$, and \overline{x} can be identified with $-\frac{1}{2} + \frac{\sqrt{-3}}{2}$. Under this identification, we have for $g \in \mathbb{Q}[x]/(f(x))$,

$$g=\alpha+b\overline{x}=\alpha+b\left(-\frac{1}{2}+\frac{\sqrt{-3}}{2}\right)=(\alpha-\frac{b}{2})+\frac{b}{2}(\sqrt{-3})\in\mathbb{Q}(\sqrt{-3}).$$

Similarly for $z = a + b\sqrt{-3}$,

$$z = a + b\sqrt{-3} = a + b(2\overline{x} + 1) = (b + a) + 2b(\overline{x}).$$

We conclude $\mathbb{Q}[x]/(f(x)) \cong \mathbb{Q}(\sqrt{-3})$.

MAT347 A17 2

Problem 2.

Suppose that $K(\sqrt{a}) = K(\sqrt{b})$. Without loss of generality, assume that $\sqrt{a}, \sqrt{b} \notin K$. Then certainly there exists some $c, d \in K$ with $\sqrt{a} = c + d\sqrt{b}$. We claim that c = 0. If not, then we have that

$$\alpha = c^2 + 2cd\sqrt{b} + d^2b \implies \sqrt{b} \in \mathsf{K}.$$

A similar argument for $\sqrt{b}=c'+d'\sqrt{a}$ will yield the same contradiction. Therefore $\sqrt{a}=d\sqrt{b}$ for some $d\in K$. Therefore

$$a = y^2b \implies ab = y^2b^2$$
.

So ab is a square. Conversely suppose that $ab=c^2$ for some c. Then, $c=\sqrt{a}\sqrt{b}$ since $b^2a=cb$. Thus we have that $\sqrt{a}=\frac{c}{b}\sqrt{b}$. Any expression of the form $x+y\sqrt{a}=x+y\frac{c}{b}\sqrt{b}$ holds. Similarly we have $x+y\sqrt{b}=x+\frac{b}{c}\sqrt{a}$.

MAT347 A17 3

Problem 3.

Let $\alpha = \sqrt{2} + \sqrt{3}$. We have that

$$\alpha^2 = 5 + 2\sqrt{6} \implies \alpha^2 - 5 = 2\sqrt{6} \implies (\alpha^2 - 5)^2 - 24 = 0.$$

Take $f(x) = (x^2 - 5)^2 - 24$. By construction f will satisfy $f(\alpha) = 0$.

MAT347 A17 4

Problem 4.

We compute the cubes of elements in \mathbb{F}_7 :

$$0^{3} = 0$$
 $1^{3} = 1$
 $2^{3} = 1$
 $3^{3} = 6$
 $4^{3} = 1$
 $5^{3} = 6$
 $6^{3} = 6$

The polynomial $x^3 + 2$ is degree 3 so it is irreducible if it has a root. No such roots exist in \mathbb{F}_7 since a root β must satisfy $\beta^3 = 5$, which cannot happen by our above computation. Suppose that α is a root in $\mathbb{F}_7[x]/(q(x))$. Then, 2α and 4α will also be solutions to $x^3 + 2 = 0$ since $2^3 = 4^3 = 1$.