Semiconductor Manufacturing Technology

Michael Quirk & Julian Serda
© October 2001 by Prentice Hall

Chapter 2

Characteristics of Semiconductor Materials

Objectives

After studying the material in this chapter, you will be able to:

- 1. Describe the atom, including valence shell, band theory and ions.
- 2. Interpret the periodic table with regards to main group elements and explain how ionic and covalent bonds are formed.
- 3. State the three classes of materials and describe each one with regards to current flow.
- 4. Explain resistivity, resistance, capacitance and discuss their importance to wafer fabrication.
- 5. Describe pure silicon and give four reasons why it is the most common semiconductor material.
- 6. Explain doping and how the trivalent and pentavalent dopant elements make silicon a useful semiconductor material.
- 7. Explain p-type (acceptor) silicon and n-type (donor) silicon, how silicon resistivity changes with the addition of a dopant, and the PN junction.
- 8. Discuss alternative semiconductor materials, with emphasis on gallium arsenide.

Atomic Structure

- Matter
- Element
 - Nucleus
 - Proton
 - Neutron
 - Orbital Shell
 - Electron
- Molecule
- Compound
 (substance different
 from individual)

- Electrons
 - Electron Energy
 - Valence Shells
 - Energy-Band Theory
 - Ions

Elementary Model of the Carbon Atom

Carbon atom: The nucleus contains an equal number of protons (+) and neutrons (6 each). Six electrons (-) orbit around the nucleus.

Figure 2.1 4/38

Electron Shells in Atoms

Electron energy (eV): the kinetic energy gain by a electron in passing a 1V potential gap.

Figure 2.2 5/38

Electron Shells for Sodium and Chlorine Atoms

Easy to give up a electron

It has an affinity to accept one electron

Figure 2.3 6/38

Energy Band Gaps

Eg > 2 eV

Overlap: no gap

Eg: moderate

Figure 2.4 7/38

Sodium Chloride: ionic compound

• Once gas particles are charged by ionization, the gas flow and motion of atoms can be controlled by use of electrostatic and magnetic fields.

Figure 2.5 8/38

The Periodic Table

- Characteristics of Commonly Used Elements
- Ionic Bonds
- Covalent Bonds

Figure 2.6

10/38

Element Box of the Periodic Table

- * Based on carbon-12. () indicates the most stable or best known isotope.
- † s. indicates sublimation
- ‡ For representative oxides of group. Oxide is acidic if color is red, basic if color is blue, and amphoteric if both colors are shown. Intensity of color indicates relative strength.

Figure 2.7 11/38

Characteristics of Chemicals used in Wafer Fabrication

Group Number	Characteristics					
IA	1 valence electron that is easily given up; low electronegativity					
	Highly unstable					
	Very reactive; explosive					
	Forms ionic bonds					
	Prefer not to use the metals in this group due to contamination issues					
IIA	2 valence electrons					
	Somewhat unstable					
	Quite reactive					
	Prefer not to use metals in this group					
IIIA	3 valence electrons					
	Dopant elements (primarily B) added to semiconductor material					
	Common interconnect conductor material (AI)					
IVA	4 valence electrons					
	Semiconductor materials					
	• Forms covalent bonds					

Continued on next slide

Table 2.1 12/38

Characteristics of Chemicals used in Wafer Fabrication (continued)

Group Number	Characteristics
<u>VA</u>	5 valence electrons
	Dopant elements (primarily P and As)
VIA	6 valence electrons
<u>VIIA</u>	 7 valence electrons; readily accepts electrons; <u>high electronegativity</u>
	Corrosive
	Very reactive
	Forms ionic bonds
	 Useful in some semiconductor application; dangerous etching and cleaning compounds
VIIIA	8 valence electrons
	Stable; nonreactive
	• Inert gas
	Safe to use in semiconductor manufacturing
IB	Best metal conductors
	Cu is replacing Al as primary interconnect conductor material
IVB – VIB	 <u>Refractory</u> (high melting temperature) metals commonly used in semiconductor manufacturing to improve metallization (especially Ti, W, Mo, Ta, and Cr)
	 Reacts well with silicon to form stable compound with good electrical characteristics

Table 2.1 13/38

Ionic Bond for NaCl

Formation of ionic bonds

- Oxidation: loss of electrons (Na⁺)
- Reduction: gain of electrons (Cl⁻)

Figure 2.8 14/38

Covalent Bond for HCI

Figure 2.9 15/38

Classifying Materials

- Conductors
- Insulators
- Semiconductors

Electrical Current Flow

Copper wires provide connections that allow electrons to flow from the - terminal, through the filament inside the lamp, and back into the + terminal of the battery.

Figure 2.10 17/38

Flow of Free Electrons in Copper

Copper atom

	Maximum #	Actual #
Shell#	e⁻ per shell	e⁻per shell
K	2	2
L	8	8
M	18	18
N	32	1
Total #	60	29

One electron in the valence ring

-In metal, for every conduction-band electron there must exist a valence-band hole (electron-hole pair)

-When electron gives up it energy and falls into the hole, called **recombination**. Time of this period is **lifetime.**

Figure 2.11 18/38

How Sizes Affect Resistance

Resistance is the opposition to current flow and is accompanied by the dissipation of heat

Figure 2.12 19/38

Adding an Impurity to Water to Improve its Conductivity

Figure 2.13 20/38

Basic Capacitor Structure [Store charge]

Formula for Capacitance

$$C = \frac{KA}{S}$$

K, dielectric constant in farads/cm

A, plate area in cm²

S, spacing between plates in cm

Figure 2.14 21/38

Battery Charges a Capacitor

Figure 2.15 22/38

Capacitor Holds a Charge

Figure 2.16 23/38

Low-k Dielectric Material

- Low k dielectric reduces capacitance between metal layers.
- High k dielectric increases C for devices and memory.

Figure 2.17 24/38

Silicon

- Pure Silicon
- Why Use Silicon?
- Doped Silicon
 - Dopant Materials
 - n-type Silicon
 - p-type Silicon
 - Resistivity of Doped Silicon
- pn Junctions

Group IVA Elemental Semiconductors

Semiconductors

Group IVA				
6				
14				
32				
50				
82				

Semiconductor: can be either conductor or insulator

Figure 2.18 26/38

Covalent Bonding of Pure Silicon

Silicon is not found pure in nature, it needs refined and purified

Silicon atoms share valence electrons to form insulator-like bonds.

Pure silicon is a **poor conductor**, no free electron, no use.

Figure 2.19 27/38

SiO₂ on Silicon Wafer

Why Silicon:

- 1. Abundance of silicon (25%, the second)
- 2. Higher melting temperature for wider processing range (1412°C)
- 3. Wider temperature range of operation (Eg> Ge)
- 4. Natural growth of silicon dioxide (MOS)

Figure 2.20 28/38

Doping of Silicon (intrinsic→ extrinsic)

Figure 2.21 29/38

Silicon Dopants

Acceptor Impurities		Semiconductor		Donor Impurities		
Group III (p-type)		Group IV		Group V (n-type)		
Boron	5	Carbon	6	Nitrogen 7		
Aluminum	13	Silicon	14	Phosphorus 15		
Gallium	31	Germanium	32	Arsenic 33		
Indium	49	Tin	50	Antimony 51		

^{*} Items underlined are the most commonly used in silicon-based IC manufacturing.

Figure 2.22 30/38

Electrons in N-Type Silicon with Phosphorus Dopant

Figure 2.23 31/38

Conduction in n-Type Silicon

Figure 2.24 32/38

Holes in p-Type Silicon with Boron Dopant

Figure 2.25 33/38

Conduction in p-Type Silicon

Figure 2.26 34/38

Silicon Resistivity Versus Dopant Concentration

Redrawn from VLSI Fabrication Principles, Silicon and Gallium Arsenide, John Wiley & Sons, Inc.

Figure 2.27 35/38

Cross Section of Planar pn Junction

Figure 2.28 36/38

Alternative Semiconductor Materials

Comparison of Some Physical Properties for Semiconductor Materials						
Property	Si	Ge	GaAs	SiO ₂		
Melting point (°C)	1412	937	1238	1700 (approx.)		
Atomic Weight	28.09	72.60	144.63	60.08		
Atomic Density (atoms/cm ³)	4.99×10^{22}	4.42×10^{22}	2.21×10^{22}	$2.3x10^{22}$		
Energy Band Gap (eV)	1.11	0.67	1.40	8 (approx.)		

Table 2.3 37/38

Gallium Arsenide (GaAs)

- GaAs is the most common III-V compound semiconductor
- GaAs has greater electron mobility
- Applications: react to high-frequency microwave signal for communication system.
- GaAs substrate (high E_g) has an increased resistivity ($10^8\,\Omega$ -cm) and higher radiation hardness, attractive for military and space applications
- Disadvantage: lack of a natural oxide, fragility, toxicity of As and cost is high