Derivator

Wanmin Liu 8 januari 2025

Table of contents

1. Derivat vid en punkt

2. Derivata som funktion

3. Derivata och differentialer

Derivat vid en punkt

Inledning

Betrakta funktionen y = f(x).

Om vi ändrar x från x_0 till $x_0 + \Delta x$ så kommer funktionsvärdet y att ändras från $f(x_0)$ till $f(x_0 + \Delta x)$.

Beteckna Δy för ändringen, dvs

$$\Delta y := f(x_0 + \Delta x) - f(x_0).$$

Definition

Definition 1.1

Antag att y=f(x) definieras i en omgivning av $x=x_0$. Om differenskvoten eller ändringskvoten

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{(x_0 + \Delta x) - x_0}$$

närmar sig talet L då $\Delta x \to 0$ så kallas L för $derivatan \ av \ f \ i$ $pubnkten \ x_0$ och betecknas exempelvis

$$f(x_0), y'(x_0), \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=x_0}$$
, eller $Df(x_0)$.

Man säger att f är **deriverbar** i x_0 , med värdet $f(x_0) = L$, dvs

$$f(x_0) := \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

3

Geometrisk tolkning av begreppet derivata

Genom punkterna $P_0:=(x_0,f(x_0))$ och $P:=(x_0+\Delta x,f(x_0+\Delta x))$ på kurvan y=f(x) lägger vi en linje. Denna linje har riktningskoefficienten

$$k_{P_0P} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Då $\Delta x \to 0$ kommer punkten P att närma sig P_0 och linjen genom P_0 och P kommer att vrida sig kring P_0 .

Om f är deriverbar i x_0 så kommer linjen att nå ett gränsläge, en linje med riktningskoefficienten $f(x_0)$. Denna linje kollas tangenten till kurvan i punkten x_0 . Tangentens ekvation ges av

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Geometrisk tolkning av begreppet derivata

Derivatan $f'(x_0)$ är lutningen på tangenten till kurvan y = f(x) vid punkten $x = x_0$.

Geometrisk tolkning av begreppet derivata

Fysisk tolkning av begreppet derivata

Om y = f(x) representerar en kropps position som funktion av tiden x, så ges **medelhastigheten** från tiden x_0 till $x_0 + \Delta x$ av

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{(x_0 + \Delta x) - x_0}.$$

Derivatan $f(x_0)$ är kroppens momentanhastighet vid tiden $x = x_0$.

Fysisk tolkning av begreppet derivata Derivatan i x_0 talar om hur snabbt funktionsvärdet ändras precis i en viss punkt x_0 . Man kan se derivatan som **momentanhastigheten**.

Derivata som funktion

Definition

Definition 2.1

Om en funktion y=f(x) är deriverbar i varje punkt i sin definitionsmängd säger vi kortfattat att f är deriverbar. Funktionen $x\mapsto f'(x), \ x\in D_f$, kallas $derivatan \ av \ f$ och betecknas exempelvis

$$f', y', \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}f}{\mathrm{d}x}, Df,$$

och

$$f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Exempel

Låt f(x) = ax + b vara en linjär funktion, då

$$f'(x) = \lim_{\Delta x \to 0} \frac{a(x + \Delta x) + b - (ax + b)}{\Delta x} = a.$$

7

Derivata och differentialer

Differential

Man är intresserad av att undersöka hur en liten ändring Δx av x ändrar funktionsvärdet av en funktion y=f(x). Detta kan man göra genom att räkna ut differensen $\Delta f:=f(x_0+\Delta x)-f(x_0)$.

Om f är deriverbar i x_0 så närmar sig differenskvoten $\frac{\Delta f}{\Delta x}$ värdet $f(x_0)$ då $\Delta x \to 0$. Vi får en approximation av differensen Δf .

$$\Delta f = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x$$
, för små värden på Δx .

Definition 3.1

Uttrycket $f(x_0) \cdot \Delta x$ kallas för **differentialen** av f i punkten x_0 och betecknas $\mathrm{d}y(x_0)$ eller $\mathrm{d}f(x_0)$. Med differentialen $\mathrm{d}y$ av en funktion y = f(x) (i punkten x) menas

$$dy := f(x) \cdot \Delta x.$$

8

Differentialen dy är en approximation av Δy

Uttrycket dx kan ses som differentialen av funktionen x, vars derivata alltid är 1, dvs

$$dx := 1 \cdot \Delta x = \Delta x$$
.

Då får man uttrycket

$$dy = f'(x) \cdot dx = f'(x)dx.$$

Approximationen $\Delta y \approx \mathrm{d} y$ innebär att man approximerar kurvan med dess tangent.

Sammanfattning

Vi sammanfattar ovanstående begrepp i en bild, där

- Δx är förändringen i variabeln x,
- $\Delta y := f(x_0 + \Delta x) f(x_0)$ är förändringen i funktionsvärdet,
- $\frac{\Delta y}{\Delta x}$ är differenskvoten, $\frac{dy}{dx} = f(x_0) := \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ är derivatan,
- $dy := f'(x_0) dx$ är **differentialen** av y = f(x) i x_0 och $dx := \Delta x$.
- Differentialen dy är en linjär approximation av differensen Δy .

