International TOR Rectifier

IRF7822PbF

HEXFET® Power MOSFET for DC-DC Converters

- N-Channel Application-Specific MOSFETs
- Ideal for CPU Core DC-DC Converters
- Low Conduction Losses
- · Low Switching Losses
- Lead-Free

Description

This new device employs advanced HEXFET Power MOSFET technology to achieve an unprecedented balance of on-resistance and gate charge. The reduced conduction and switching losses make it ideal for high efficiency DC-DC converters that power the latest generation of microprocessors.

The IRF7822 has been optimized for all parameters that are critical in synchronous buck converters including $R_{\rm DS(on)},$ gate charge and Cdv/dt-induced turn-on immunity. The IRF7822 offers particulary low $R_{\rm DS(on)}$ and high Cdv/dt immunity for synchronous FET applications.

The package is designed for vapor phase, infra-red, convection, or wave soldering techniques. Power dissipation of greater than 3W is possible in a typical PCB mount application.

DEVICE CHARACTERISTICS ©

	IRF7822					
$R_{DS(on)}$	5.0 m Ω					
Q_{G}	44nC					
Q _{sw}	12nC					
Q _{oss}	27nC					

Absolute Maximum Ratings

Absolute Maximum natings				
Parameter		Symbol	IRF7822	Units
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V _{GS}	±12	
Continuous Drain or Source	T _A = 25°C	I _D	18	
Current (V _{GS} ≥ 4.5V)	T _A = 70°C		13	A
Pulsed Drain Current①		I _{DM}	150	
Power Dissipation	T _A = 25°C	P _D	3.1	W
	T _A = 70°C		3.0	
Junction & Storage Temperate	ure Range	T_{J},T_{STG}	-55 to 150	°C
Continuous Source Current (E	Body Diode)	Is	3.8	Α
Pulsed Source Current①		I _{SM}	150	

Thermal Resistance

Parameter		Max.	Units
Maximum Junction-to-Ambient®	$R_{_{ heta\mathsf{JA}}}$	40	°C/W
Maximum Junction-to-Lead	$R_{_{\theta JL}}$	20	°C/W

International IOR Rectifier

Electrical Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Drain-to-Source Breakdown Voltage	BV _{DSS}	30	-	_	V	$V_{GS} = 0V, I_{D} = 250\mu A$
Static Drain-Source on Resistance	R _{DS(on)}		5.0	6.5	m $Ω$	V _{GS} = 4.5V, I _D = 15A②
Gate Threshold Voltage	V _{GS(th)}	1.0			V	$V_{DS} = V_{GS}, I_{D} = 250\mu A$
Drain-Source Leakage	I _{DSS}			30		$V_{DS} = 24V, V_{GS} = 0$
Current				150	μΑ	$V_{DS} = 24V, V_{GS} = 0,$
						Tj = 100°C
Gate-Source Leakage Current	I _{GSS}			±100	nA	$V_{GS} = \pm 12V$
Total Gate Chg Cont FET	Q _G		44	60		V _{GS} =5.0V, I _D =15A, V _{DS} =16V
Total Gate Chg Sync FET	Q_{G}		38			V _{GS} = 5.0V, V _{DS} < 100mV
Pre-Vth Gate-Source Charge	Q _{GS1}		13			V _{DS} = 16V, I _D = 15A
Post-Vth Gate-Source Charge	Q _{GS2}		3.0		nC	
Gate to Drain Charge	Q_{GD}		9.0			
Switch Chg(Q _{gs2} + Q _{gd})	Q _{sw}		12			
Output Charge	Q _{oss}		27			$V_{DS} = 16V, V_{GS} = 0$
Gate Resistance	R_{G}		1.5		Ω	
Turn-on Delay Time	t _{d (on)}		15			$V_{DD} = 16V, I_{D} = 15A$
Rise Time	t _r		5.5		ns	$V_{GS} = 5.0V$
Turn-off Delay Time	t _{d (off)}		22			Clamped Inductive Load
Fall Time	t _f		12			
Input Capacitance	C _{iss}	-	5500	_		
Output Capacitance	C _{oss}	_	1000	_	pF	$V_{DS} = 16V, V_{GS} = 0$
Reverse Transfer Capacitance		_	300	_		

Source-Drain Rating & Characteristics

Parameter		Min	Тур	Max	Units	Conditions
Diode Forward Voltage*	V _{SD}			1.0	V	$I_{S} = 15A@, V_{GS} = 0V$
Reverse Recovery Charge ®	Q _m		120		nC	di/dt ~ 700A/ μ s $V_{DS} = 16V$, $V_{GS} = 0V$, $I_{S} = 15A$
Reverse Recovery Charge (with Parallel Schottky) ④	Q _{rr(s)}		108		nC	di/dt = $700A/\mu s$ (with 10BQ040) $V_{DS} = 16V$, $V_{GS} = 0V$, $I_{S} = 15A$

- Notes:

 Repetitive rating; pulse width limited by max. junction temperature.
 Pulse width ≤ 400 µs; duty cycle ≤ 2%.
 When mounted on 1 inch square copper board
 Typ = measured Q_{oss}
 Sylocal values of R_{DS}(on) measured at V_{GS} = 4.5V, Q_G, Q_{SW} and Q_{OSS} measured at V_{GS} = 5.0V, I_F = 15A.

Fig 1. Normalized On-Resistance Vs. Temperature

Fig 2. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 3. On-Resistance Vs. Gate Voltage

Fig 4. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 5. Typical Transfer Characteristics

Fig 6. Typical Source-Drain Diode Forward Voltage

Figure 7. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903