IT 이야기

GPS의 NMEA-0183 데이터 구조

이웃추가

사용하고 있는 GPS 수신기의 데이타 인터페이스 포맷이 NMEA-0183 이다. NMEA-0183 포맷은 아래와 같다.

NMEA: National Marine Electronics Association

NMEA 에서는 GNSS, GPS, Loran, Omega, Transit 등 다양한 애플리케이션을 위한 데이타셋을 정의하고 있다.

아래는 GPS 를 위한 7가지 데이타 셋이다.

GGA: GPS Fix Data,

GLL: Geographic Position - Latitude/Longitude

GSA: GNSS DOP 와 Active Satellites

GSV: GNSS Satellites in View

RMC: Recommended Minumun Specific GNSS Data

VTG: Course over Ground

ZDA: Time and Date NMEA 프로토콜의 구조

8비트 아스키 문자를 사용하여 4800 Baud 로 데이타를 전송한다. 패리티 비트는 사용하지 않는다.

각 GPS 데이타셋은 다음과 같은 구조로 이루어져 있다.

\$GPDTS,Inf_1,Inf_2,Inf_3,Inf_4,Inf_5,Inf_6,Inf_n*CS < CR > < LF >

필드	내용						
\$	데이타셋의 시작을 나타낸다.						
GP	GPS 정보를 나타낸다.						
DTS	데이타셋의 식별자.						
Inf_1 bis Inf_n	bis Inf_n 1 n 정보 (예, course data 를 위한 175.4)						
,	, 서로 다른 정보를 나타내는 아이템간의 구분문자						
*	checksum 을 위한 구분 문자						
CS	전체 데이타셋을 검사하기 위한 첵섬(Control Word)						
<cr><lf></lf></cr>	데이타셋의 끝.						

GPS 데이타셋의 문자열은 시작과 끝을 나타내는 문자를 제외하고 79자를 초과해서는 안된다.

NMEA 프로토콜로 기록한 GPS 데이타 예제(SONY GPS 수신기)

2

\$GPGSV,2,2,05,31,,,28,,,,,,*74

\$GPRMC,004952,A,3723.8259,N,12655.3071,E,000.0,088.7,291107,,,A*72

\$GPVTG,088.7,T,,M,000.0,N,000.0,K,A*0A

1. GGA 데이타 셋

GGA 데이타셋은 시간, longitude, latitude, 시스템의 품질, 사용중인 위성의 수, Height 에 대한 정보를 나타낸다.

데이타 예제

\$GPGGA,004952,3723.8259,N,12655.3071,E,1,04,04.7,00046.9,M,018.1,M,,*4F

개별 문자의 값 과 내용

필드	내용					
\$	GGA 데이타셋의 시작					
GP	GPS 어플라이언스로부터 만들어진 정보					
GGA	GGA 데이타셋 식별자					
004952	UTC Positional Time: 00시 49분 52초					
3723.8259	Latitude: 37도23.8259분					
N	북위 (N=north, S=South)					
12655.3071	Longitude: 126도 55.3071분					
Е	동경 (E=East, W=West)					
1	GPS (0= no GPS, 1=GPS, 2=DGPS)					
04	계산을 위해 사용한 위성의 갯수					
04.7	HDOP(Horizontal Dilution of Precision)					
00046.9	안테나 높이 (Geoid Height)					
М	높이 단위(M=meter)					
018.1	Ellipsoid 와 Geoid 간의 높이 차이					
М	높이 차이의 단위(M=meter)					
DPGS 데이타의 Age (No DGPS)						
*	첵섬 구분자					
4F	전체 데이타 검증을 위한 첵섬값					
<cr><lf></lf></cr>	데이타 종료					

2. GLL 데이타 셋

GLL 데이타 셋은 Latitude, Longitude, time, health 정보를 갖고 있다. SONY GPS 에는 이 데이타셋은 들어 있지 않다.

데이타 예제

\$GPGLL,4717.115,N,00833.912,E,130305.0,A,*32

필드	내용
4	

2

100000.0	5555.5.7.2.25g.taas. 5— 55.5.7.2.2							
Е	동경(E=East, W=West)							
130305.0	UTC 시간: 13시 3분 5.0초							
Α	기타셋 품질: A(Valid), V(Invalid)							
*	첵섬 구분자							
32	첵섬							
<cr> <lf></lf></cr>	데이타 종료							

3. GSA 데이타 셋

측정 모드(2D, 3D)에 대한 정보, 위치 결정에 사용된 위성의 수, DOP 등의 정보를 갖고 있다.

데이타 예제

\$GPGSA,A,3,13,16,19,23,,,,,,,19.3,04.7,18.7*08

필드	내용						
\$	데이타의 시작						
GP	GPS 어플라이언스 정보						
GSA	GSA 데이타셋 식별자						
Α	계산 모드(A = 2D/3D 모두간의 자동선택, M=수동 선택)						
3	3차원 계산 모드(1=none, 2=2D, 3=3D)						
13	계산에 사용된 위성의 번호 (13번 위성)						
16	계산에 사용된 위성의 번호 (16번 위성)						
19	계산에 사용된 위성의 번호 (19번 위성)						
23	계산에 사용된 위성의 번호 (23번 위성)						
	계산에 사용된 위성의 번호						
	계산에 사용된 위성의 번호						
	계산에 사용된 위성의 번호						
	계산에 사용된 위성의 번호						
	계산에 사용된 위성의 번호						
	계산에 사용된 위성의 번호						
19.3	PDOP (Position DOP)						
04.7	HDOP (Horizontal DOP)						
18.7	VDOP (Vertical DOP)						
*	첵섬 구분자						
08	첵섬						
<cr><lf></lf></cr>	데이타 종료						

4. GSV 데이타 셋

위성의 수와

데이타 예제

\$GPGSV,2,1,05,13,33,295,40,16,57,043,41,19,42,212,41,23,40,249,38*7B

필드	내용
\$	데이타의 시작

2

		10-1 1
13	첫번째 위성의 식	l별 번호 13번
33	위성의 고	1도 33도 (090 도)
295	위성의 빙	방위각 295도 (0360도)
40	위성의 Si	ignal-to-noise 비율 40(db-Hz) (199, 추적되지 않을 때 NULL)
16	두번째 위성의 식	l별 번호 16번
57	위성의 고	1도 57도
043	위성의 빙	방위각 43도
41	위성의 Si	ignal-to-noise 비율 41(db-Hz)
19	세번째 위성의 식	l별 번호 19번
42	위성의 고	<u> 1도 42도</u>
212	위성의 빙	방위각 212도
41	위성의 Si	ignal-to-noise 비율 41(db-Hz)
23	네번째 위성의 식	l별 번호 23번
40	위성의 고	그도 40도
249	위성의 빙	방위각 249도
38	위성의 Si	ignal-to-noise 비율 38(db-Hz)
*	첵섬 구분값	
7B	첵섬	

5. RMC 데이타 셋

Recommended Minumum Specific GNSS, 시간, latitude, longitude, height, system status, spe ed, course, date 등의 정보를 갖고 있다.

데이타 예제

\$GPRMC,004952,A,3723.8259,N,12655.3071,E,000.0,088.7,291107,,,A*72

필드	내용							
\$	이타의 시작							
GP	PS 어플라이언스 정보							
RMC	RMC 데이타셋 식별자							
004952	수신 시간 (UTC), 00시 49분 52초							
А	데이타셋 품질 (A=Valid, V=Invalid)							
3723.8259	Latitude: 37도 23.8259분							
N	북위							
12655.3071	Longitude: 126도 55.3071분							
Е	동경							
0.000	속도: 0 Knots							
088.7	경로: 88.7 도							
291107	시간: 2007년 11월 29일 (DDMMYY)							
	보정 편차							
	보정 편차 방향(W=West, E=East)							
А								

6. VTG 데이타 셋

경로와 속도에 기반한 지상 경로와 속도 정보를 갖고 있다.

데이타 예제

\$GPVTG,088.7,T,,M,000.0,N,000.0,K,A*0A

필드	내용				
\$	데이타의 시작				
GP	GPS 어플라이언스 정보				
VTG	VTG 데이타 셋 식별자				
088.7	수평 경로 88.7도 (T)				
Т	지도에 대응하는 Angular Course				
	수평경로 0 도 (M)				
М	자기장에 대응하는 Angular Course				
0.000	수평 속도 (N)				
N	속도 단위 (knots)				
0.000	수평 속도 (km/h)				
K	속도 단위 (km/h)				
Α	데이타 셋 품질로 보임(A=Valid, V=Invalid)				
*	첵섬 구분자				
0A	첵섬				

7. ZDA 데이타 셋

시간 정보가 들어 있다.

SONY GPS 에는 이 정보 역시 들어 있지 않다.

데이타 예제

\$GPZDA,130305.2,20,06.2001,,,*57

필드	내용
*	데이타의 시작
GP	GPS 어플라이언스 정보
ZDA	ZDA 데이타셋
130305.2	UTC 시간: 13시3분 5.2초
20	Day (00.31)
06	Month (0112)
2001	Year
	Local Time 일자 예약 (HH)
	Local Time 일자 예약 (MM)
*	체서 구브자

2

첵섬은 데이타의 시작과 끝을 나타내는 문자를 제외한 모든 문자를 8비트 문자로 XOR 조합을 한후, 각 4비트 자릿수에 대한 결과값을 나타낸다.

첫번째 VGA 데이타로 첵섬을 계산해 보자. \$GPVTG,088.7,T,,M,000.0,N,000.0,K,A*0A

문자	아스키 (8비트 값)									
G	0x47	0	1	0	0	0	1	1	1	
Р	0x50	0	1	0	1	0	0	0	0	
V	0x56	0	1	0	1	0	1	1	0	
Т	0x54	0	1	0	1	0	1	0	0	
G	0x47	0	1	0	0	0	1	1	1	
ı	0x2C	0	0	1	0	1	1	0	0	
0	0x30	0	0	1	1	0	0	0	0	
8	0x38	0	0	1	1	1	0	0	0	
8	0x38	0	0	1	1	1	0	0	0	
	0x2E	0	0	1	0	1	1	1	0	
7	0x37	0	0	1	1	0	1	1	1	
ı	0x2C	0	0	1	0	1	1	0	0	
Т	0x54	0	1	0	1	0	1	0	0	
ı	0x2C	0	0	1	0	1	1	0	0	
ı	0x2C	0	0	1	0	1	1	0	0	
М	0x4D	0	1	0	0	1	1	0	1	
ı	0x2C	0	0	1	0	1	1	0	0	
0	0x30	0	0	1	1	0	0	0	0	
0	0x30	0	0	1	1	0	0	0	0	
0	0x30	0	0	1	1	0	0	0	0	
	0x2E	0	0	1	0	1	1	1	0	
0	0x30	0	0	1	1	0	0	0	0	
ı	0x2C	0	0	1	0	1	1	0	0	
N	0x4E	0	1	0	0	1	1	1	0	
ı	0x2C	0	0	1	0	1	1	0	0	
0	0x30	0	0	1	1	0	0	0	0	
0	0x30	0	0	1	1	0	0	0	0	
0	0x30	0	0	1	1	0	0	0	0	
	0x2E	0	0	1	0	1	1	1	0	
0	0x30	0	0	1	1	0	0	0	0	
ı	0x2C	0	0	1	0	1	1	0	0	
K	0x4B	0	1	0	0	1	1	0	1	
ı	0x2C	0	0	1	0	1	1	0	0	
А	0x41	0	1	0	0	0	0	0	1	
XOR 합	0x0A	0	0	0	0	1	0	0	0	
4bit(Nibble)				0000			1000			
Hex 값	0x00 0x0A									

#GPS #NMEA #GPGGA #GPGSA #GPGSV #GPRMB #GPRMC #GPZDA #GPMSS

2 1

사니

Christian, ESTJ, 1bit, Blood_Amazing, 소양인, New Product Design, UI Planning, SCUBA-diving, paragliding, S nowboarding, Wakeboarding, Marathon, Bike...etc.

이웃추가

이 블로그 IT 이야기 카테고리 글

6-Bit ASCII 와 SCANDARD ASCII의 비교표

2014. 5. 12.

0 0

Windows Tip - 신기한 제어판

2014. 5. 10.

0 0

GPS의 NMEA-0183 데이터 구조

2014. 5. 9.

2 1

GPS의 NMEA 구조

2014. 5. 9.

1 0

AGPS용 SUPL 주소

2011 5 Ω

2

이 블로그 인기글

AES 암호화 알고리즘 (ECB, CBC, CFB, OFB, CTR)

2019. 4. 18.

2 0

시놀로지 NAS에서 맥북 타임머신 사용하기

2019. 5. 16.

4 5

폭스바겐 CC 리모컨 키 거리 늘리기

2017. 10. 28.

10 6

USB-UART(TTL) 장치 사용: PL2302HX Driver

2019. 4. 18.

0 2

전등 스위치 터치스위치로 교체하기

2014. 5. 9.

0 0

맨 위로

-blog market | 기념일을 더 특별하게 붓나래 상점 감성 손글씨 pick!

PC버전으로 보기

2