ESERCIZI DI ANALISI REALE - FOGLIO 5

CORSO DI LAUREA TRIENNALE IN MATEMATICA

A.A. 2017-18

ANDREA DAVINI

SOMMARIO. Eventuali commenti, suggerimenti e segnalazioni di errori sono graditi. Gli esercizi contrassegnati con un asterisco sono più difficili

Si ricorda che l'integrale di una funzione misurabile $f: X \to [-\infty, +\infty]$ si definisce come

 $\int_X f \, \mathrm{d}\mu = \int_X f^+ \, \mathrm{d}\mu - \int_X f^- \, \mathrm{d}\mu$

ogni volta che questa espressione ha senso (cioè quando almeno uno dei due integrali a secondo membro è finito), dove

$$f^+(x) := \max\{f(x), 0\}$$
 e $f^-(x) := \max\{-f(x), 0\}.$

Una funzione $f: X \to [-\infty, +\infty]$ si dice integrabile se è misurabile e $\int_X |f| d\mu < +\infty$.

Esercizio 1. Sia $f: X \to [-\infty, +\infty]$. Verificare che f è integrabile se e solo se f^+ e f^- sono integrabili.

Esercizio 2. Sia $f: X \to [-\infty, +\infty]$ una funzione integrabile. Verificare che $\mu(\{x: |f(x)| = +\infty\}) = 0$ e che l'insieme $\{x \in X: |f(x)| > 0\}$ è σ -finito.

Esercizio 3. Sia $f: X \to [-\infty, +\infty]$ una funzione misurabile. Mostrare con un esempio che $\mu(\{x: |f(x)| = +\infty\}) = 0$ non implica che f sia integrabile.

Esercizio 4. Sia X uno spazio non vuoto e y un suo punto. Definiamo $\delta_y : \mathscr{P}(X) \to [0, +\infty]$ ponendo $\delta_y(E) = 1$ se $y \in E$ e $\delta_y(E) = 0$ altrimenti.

- \circ Verificare che δ_y è una misura su $\mathscr{P}(X)$;
- o Verificare che $\int_X f(x) d\delta_y(x) = f(y)$ per ogni $f: X \to [0, +\infty]$.

La misura δ_y prende il nome di delta di Dirac in y.

Esercizio 5. (Formula di cambio di variabili) Sia (X, \mathcal{M}, μ) uno spazio di misura, (Y, \mathcal{N}) uno spazio misurabile e $\phi : X \to Y$ una funzione misurabile. Il push-forward della misura μ tramite ϕ , indicato con $\phi_*\mu$, è definito come

- (1) $\phi_*\mu(E) := \mu(\phi^{-1}(E)) \quad \text{per ogni } E \in \mathcal{N}.$
 - Verificare che $(Y, \mathcal{N}, \phi_* \mu)$ è uno spazio di misura;
 - o Verificare che per ogni $f: Y \to [0, +\infty]$ misurabile si ha

$$\int_{V} f \, \mathrm{d}\phi_* \mu = \int_{V} f \circ \phi \, \mathrm{d}\mu.$$

Date: 7 novembre 2017.

Esercizio 6. Sia (X, \mathcal{M}, μ) uno spazio di misura e $f_n : X \to [0, +\infty]$ una famiglia di funzioni misurabili tali che $f_n \ge f_{n+1}$ su X per ogni $n \in \mathbb{N}$ e $\lim_n f_n(x) = f(x)$ per ogni $x \in X$. Dimostrare che se $f_1 \in L^1(X, \mu)$, allora

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

Mostrare che il risultato non è in generale vero se si rimuove la condizione che $f_1 \in L^1(X,\mu)$.

Esercizio 7. Sia E un sottinsieme Lebesgue misurabile di $\mathbb R$ di misura finita. Si definisca una successione di funzioni f_n ponendo $f_n=\chi_E$ se n è pari e $f_n=1-\chi_E$ se n dispari. Si verifichi che per questa successione la disuguaglianza nel Lemma di Fatou può essere effettivamente stretta.

Esercizio 8. Dimostrare che nel Teorema della Convergenza Monotona la condizione $f_n \ge 0$ per ogni $n \in \mathbb{N}$ può essere sostituita da $f_n \ge g$ per ogni $n \in \mathbb{N}$ con $g \in L^1(X, \mu)$.

Esercizio 9 (Fatou per limsup). Sia (X, \mathcal{M}, μ) uno spazio di misura e siano $f_n, g: X \to [-\infty, +\infty]$ funzioni misurabili tali che $f_n(x) \leq g(x)$ per μ -q.o. $x \in X$, per ogni $n \in \mathbb{N}$. Dimostrare che se $g \in L^1(X, \mu)$, allora

$$\limsup_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu \leqslant \int_X \limsup_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

Mostrare che il risultato non è in generale vero se si rimuove la condizione che $g \in L^1(X, \mu)$.

Esercizio 10. Sia (X, \mathcal{M}, μ) uno spazio di misura e $(f_n)_n$ una successione di funzioni in $L^1(X, \mu)$ tali che $f_n \to f$ uniformemente in X.

- (a) Mostrare che $f \in L^1(X, \mu)$ e $\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu$ se $\mu(X) < +\infty$.
- (b) Mostrare che la conclusione di (a) non è più vera in generale se $\mu(X) = +\infty$.

Esercizio 11. Sia (X, \mathcal{M}, μ) uno spazio di misura e siano $(E_n)_n \subset \mathcal{M}$ tali che

$$\sum_{n=1}^{+\infty} \mu(E_n) < +\infty.$$

Dimostrare che μ -q.o. $x \in X$ appartiene ad un numero finito di insiemi E_n .

Esercizio 12. Sia $X = \mathbb{N}$, $\mathcal{M} = \mathscr{P}(\mathbb{N})$ e μ la counting measure su \mathbb{N} . Reinterpretare il Lemma di Fatou e i Teoremi della convergenza monotona e dominata in termini di risultati sulle serie.

Esercizio 13. Calcolare i seguenti limiti:

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{1}{1+x^n} \, \mathrm{d}x, \qquad \lim_{n \to +\infty} \int_0^n \frac{1}{1+nx} \, \mathrm{d}x,$$

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{x}{n} \right) e^{x/2} dx \qquad \lim_{n \to +\infty} \int_0^n \left(1 + \frac{x}{n} \right) e^{-2x} dx$$