Лабораторная работа №7

"Модель распространения рекламы"

Выполнил: Кармацкий Никита Сергеевич

НФИбд-01-21

Цель работы:

Изучить модель распростаранния рекламы. Применить ее на практике для решения задания лабораторной работы

Теоретическая справка. Математическая модель.

Мальтузианская модель роста (англ. Malthusian growth model), также называемая моделью Мальтуса — это экспоненциальный рост с постоянным темпом. Модель названа в честь английского демографа и экономиста Томаса Мальтуса. [4]

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов.

Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$rac{dn}{dt} = (lpha_1(t) + lpha_2(t)n(t))(N-n(t))$$

При $lpha_1(t) >> lpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Рис.1 График решения уравнения модели Мальтуса

В обратном случае $lpha_1(t) << lpha_2(t)$ получаем уравнение логистической кривой

Рис.2 График логистической кривой

Задание лабораторной работы:

Вариант 32

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.54 + 0.00016n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000021 + 0.38n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.2\cos t + 0.2\cos(2t)n(t))(N-n(t))$$

При этом объем аудитории N=609, в начальный момент о товаре знает 4 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Основные этапы выполнения работы

1. Результат работы программы для первого случая. Julia

Рис.1 График первого случая на Julia

2. Результат работы программы для второго случая. Julia

Рис.2 График второго случая на Julia

3. Результат работы программы для третьего случая. Julia

Рис.3 График третьего случая на Julia

4. Результат работы программы для первого случая. OpenModelica

Рис.4 График первого случая на OpenModelica

5. Результат работы программы для второго случая. OpenModelica

Рис.5 График второго случая на OpenModelica

6. Результат работы программы для третьего случая. OpenModelica

Рис.6 График третьего случая на OpenModelica

Анализ полученных результатов. Сравнение языков.

В итоге проделанной работы мы построили графики распространения рекламы для трех случаев на языках Julia и OpenModelica. Построение модели распространения рекламы на языке OpenModelica занимает значительно меньше строк, чем аналогичное построение на Julia. Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу.

Вывод:

В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и в дальнейшем построена модель на языках Julia и Open Modelica

Список литературы. Библиография

- Документация по Julia: https://docs.julialang.org/en/v1/
- Документация по OpenModelica: https://openmodelica.org/
- Решение дифференциальных уравнений: https://www.wolframalpha.com/
- Мальтузианская модель роста: https://www.stolaf.edu//people/mckelvey/envision.dir/malthus.html

Спасибо за внимание