CS 6375.004: Machine Learning - Spring 2023 Project #3

 $Kartikey. Gupta \ (kartikey. gupta@utdallas.edu)$

March 27, 2023

1 Scores of various tree/ensemble models on the given dataset

1.1 sklearn.tree.DecisionTreeClassifier

Clauses	Samples	criterion	splitter	min_sample_split	min_sample_leaf	Accuracy	F1
	100	gini	best	2	2	0.605	0.603
300	1000	log_loss	best	2	1	0.652	0.648
	5000	gini	best	2	10	0.734	0.741
	100	entropy	best	2	10	0.625	0.611
500	1000	entropy	best	2	1	0.683	0.682
	5000	entropy	best	2	1	0.736	0.738
	100	entropy	best	2	1	0.75	0.75
1000	1000	log_loss	best	2	1	0.774	0.774
1000	5000	entropy	random	4	5	0.844	0.844
	100	gini	best	2	5	0.86	0.855
1500	1000	gini	best	2	5	0.913	0.912
	5000	entropy	random	4	2	0.9.484	0.482
	100	entropy	random	4	5	0.955	0.955
1800	1000	entropy	best	2	1	0.97	0.97
	5000	log_loss	best	2	1	0.98	0.980

1.2 sklearn.ensemble.BaggingClassifier

Clauses	Samples	n_estimators	max_samples	max_features	oob_score	Accuracy	F1
	100	100	1.0	1.0	False	0.725	0.744
300	1000	100	1.0	1.0	False	0.845	0.842
	5000	100	1.0	1.0	False	0.900	0.905
	100	50	1.0	1.0	False	0.72	0.728
500	1000	100	1.0	1.0	False	0.846	0.844
	5000	100	1.0	1.0	False	0.916	0.917
	100	50	0.5	0.25	False	0.94	0.941
1000	1000	100	1.0	1.0	False	0.968	0.968
	5000	100	1.0	1.0	False	0.989	0.989
	100	50	1.0	0.25	False	1.0	1.0
1500	1000	100	0.25	0.25	False	0.99	0.99
	5000	50	1.0	0.25	False	0.9997	0.997
	100	50	1.0	1.0	False	0.98	0.98
1800	1000	50	0.25	0.25	True	1.0	1.0
	5000	100	0.5	0.25	True	1.0	1.0

1.3 sklearn.ensemble.RandomForestClassifier

Clauses	Samples	criterion	min_sample_split	min_sample_leaf	max_features	bootstrap	Accuracy	F1
	100	gini	2	1	sqrt	True	0.725	0.744
300	1000	gini	2	1	None	True	0.845	0.842
	5000	gini	2	1	None	True	0.9005	0.905
	100	gini	2	5	sqrt	True	0.835	0.829
500	1000	log_loss	2	5	sqrt	True	0.928	0.928
	5000	gini	2	1	sqrt	False	0.9455	0.9458
	100	log_loss	4	2	log2	False	0.965	0.9651
1000	1000	gini	2	5	sqrt	True	0.987	0.987
	5000	log_loss	4	5	log2	False	0.995	0.995
	100	gini	2	1	sqrt	True	1.0	1.0
1500	1000	gini	2	1	sqrt	True	0.999	0.9989
	5000	gini	2	1	2	True	0.999	0.9989
	100	gini	2	1	sqrt	True	1.0	1.0
1800	1000	gini	2	1	sqrt	True	1.0	1.0
	5000	gini	2	1	sqrt	True	0.999	0.9989

1.4 sklearn.ensemble.GradientBoostingClassifier

Clauses	Samples	learning_rate	n_estimators	subsample	criterion	min_sample_split	min_sample_leaf	max_features	Accuracy	F1
	100	0.1	100	1.0	friedman_mse	2	5	sqrt	0.75	0.7641
300	1000	0.1	400	0.5	squared_error	4	10	None	0.9625	0.9628
	5000	0.1	100	1.0	friedman_mse	2	1	None	0.9789	0.9793
	100	0.1	400	1.0	friedman_mse	2	5	log2	0.9	0.8958
500	1000	1	400	1.0	squared_error	3	5	None	0.971	0.9711
	5000	0.1	100	1.0	friedman_mse	2	1	None	0.9815	0.9817
	100	1	100	1.0	friedman_mse	2	1	sqrt	0.945	0.946
1000	1000	0.1	400	1.0	friedman_mse	2	5	sqrt	0.9955	0.9955
	5000	0.1	400	1.0	friedman_mse	2	1	sqrt	0.9983	0.99830
	100	0.1	100	1.0	friedman_mse	2	1	sqrt	1.0	1.0
1500	1000	0.1	100	1.0	friedman_mse	2	1	sqrt	0.999	0.9989
	5000	1	100	1.0	friedman_mse	2	1	sqrt	1.0	1.0
	100	0.1	100	1.0	friedman_mse	2	1	sqrt	1.0	1.0
1800	1000	0.1	100	1.0	friedman_mse	2	1	sqrt	1.0	1.0
	5000	0.1	100	1.0	friedman_mse	2	1	sqrt	1.0	1.0

2 Evaluation of models

2.1 Which classifier (among the four) yields the best overall generalization accuracy/F1 score? Based on your ML knowledge, why do you think the "classifier" achieved the highest overall accuracy/F1 score?

On the basis of the results, we can confidently say that the <code>GradientBoostingClassifier</code> yields the best overall generalization and accuracy. This is because <code>GradientBoostingClassifier</code> brings the best of all tree/ensemble methods. It uses the "wisdom-of-the-crowd" to reduce variance, and unlike <code>BaggingClassifier</code> and <code>RandomForestClassifier</code>, each successive tree is added only when it improves the performance of the overall classifier.

2.2 What is the impact of increasing the amount of training data on the accuracy/F1 scores of each of the four classifiers?

Increasing the training data increases the accuracy of the all the classifiers. This is because more examples allow the classifiers to "study" the data more effectively, thereby better understanding the relations between the features.

2.3 What is the impact of increasing the number of features on the accuracy/F1 scores of each of the four classifiers?

Similary, increasing the number of features also increases the accuracy across all classifiers.

3 Evaluation of various tree/ensemble models on the MNIST dataset

3.1 Which classifier among the four yields the best classification accuracy on the MNIST dataset and why?

Similar to the results that we get for the randomly-sampled dataset, we see that the accuracy of the classifiers is this order (lowest to highest): DecisionTreeClassifier (87.97%), BaggingClassifier (94.22%),

GradientBoostingClassifier(94.59%), RandomForestClassifier(96.94%).

3.2 Compare the classification accuracy of tree and ensemble based classifiers with the (best) accuracy you obtained using the MLPClassifier, SVMs and nearest-neighbors in Project 2 (best as in after tuning the hyperparameters). Which classifier (or classifiers) among the seven has (have) the highest accuracy on the test set and why?

We see that the MLPClassifier wins among all the classifiers that we have tested so far with an accuracy of 97.5%. This is because neural networks have more parameters than tree-based methods, which gives them more flexibility for capturing complex relationships between features.