C5W4-Quiz-Transformers

- 1. A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture).
 - **✓** False
 - ☐ True
- 2. Transformer Network methodology is taken from: (Check all that apply)
 - Convolutional Neural Network style of processing.
 - ☐ None of these.
 - ☐ Convolutional Neural Network style of architecture.
 - Attention mechanism.
- 3. The concept of *Self-Attention* is that:

- ☐ Given a word, its neighbouring words are used to compute its context by selecting the highest of those word values to map the Attention related to that given word.
- ☐ Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.

Ð	Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that
☐ G	iven word. Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention elated to that given word.
4. Which	h of the following correctly represents Attention ?
□ A	Attention(Q,K,V)=softmax(dkQVT)K
✓ A	Attention(Q,K,V)=softmax(dkQKT)V
□ A	Attention(Q,K,V)=min(dkQKT)V
□ A	Attention(Q,K,V)=min(dkQVT)K
5. Are th	ne following statements true regarding Query (Q), Key (K) and Value (V)?
Q = ir	nteresting questions about the words in a sentence
K = s	pecific representations of words given a Q
V = q	ualities of words given a Q
✓ F	alse
□ T	rue
6.	
	$Attention(W_{i}^{Q}Q,W_{i}^{K}K,W_{i}^{V}V)$
	represents the computed attention weight matrix associated with the ith " in a sentence.
☐ Tr	rue
✓ Fa	alse
	wing is the architecture within a Transformer Network. <i>(without displaying tional encoding and output layers(s)</i>)

What information does the *Decoder* take from the *Encoder* for its second block of *Multi-Head Attention* ? (Marked *X*, pointed by the independent arrow) (Check all that apply)

- \square Q
- ✓ K
- **✓** ₩
- 8. Following is the architecture within a Transformer Network. *(without displaying positional encoding and output layers(s))*

What is the output layer(s) of the *Decoder* ? (Marked *Y*, pointed by the independent arrow)

	Softmax layer
~	Linear layer followed by a softmax layer.
	Linear layer
Why is positional encoding important in the translation process? (Check all that apply)	
~	Position and word order are essential in sentence construction of any language.
	It helps to locate every word within a sentence.
	It is used in CNN and works well there.
~	Providing extra information to our model.
10. Which of these is a good criteria for a good positionial encoding algorithm?	
~	It should output a unique encoding for each time-step (word's position in a sentence).
~	Distance between any two time-steps should be consistent for all sentence lengths.
~	The algorithm should be able to generalize to longer sentences.
	None of the these.