Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks¹

Nankai University

October 9, 2022

¹Source: Forastiere L, Airoldi E M, Mealli F. Identification and estimation of treatment and interference effects in observational studies on networks[J]. Journal of the American Statistical Association, 2021, 116(534): 901-918.

Interference

▶ Interference is said to be present when a treatment, exposure, or intervention, on one unit has an effect on the response of another unit [Cox 1958]

Figure 1: from Kao(2017)

Related literature

- ▶ assume no interference effect [contained in SUTVA,Rubin 1980],
- unreasonable and risky (Sobel 2006)
- Experimental studies
 - cluster randomized trials, two stage randomization (Hudgens and Halloran 2008;
 Sinclair 2011), Insulated Neighbors Randomization (Toulis and Kao 2013)
 - test and estimate the total treatment effect (Rosenbaum 2007), separately test for treatment and spillover effects (Bowers, Fredrickson, and Panagopoulos 2013), Horvitz-Thompson estimator (Aronow and Samii 2017)

Related literature

- spillover effect for observational studies
 - ▶ parametric multilevel approach (Raudenbush 2006), three-level generalized hierarchical linear model (Verbitsky-Savitz and Raudenbush 2012), IPW estimators (Tchetgen Tchetgen and VanderWeele 2012)
- causal inference for observational studies
 - generalized IPW estimator (Liu et al. 2016), targeted maximum likelihood estimator (TMLE) (Sofrygin and van der Laan 2017), extended this TMLE estimator to allow for dependence (Ogburn et al 2017)

Contents

- Part I. Causal problem and identification
- Part II. Bias analysis
- Part III. Proposed method
- Part IV. Simulation studies
- Part V. Conclusion

I. Causal problem and identification

Notation

- ▶ Undirected network $G = (\mathcal{N}, \mathbb{E})$
- ▶ Treatment $Z_i \in \{0, 1\}$, outcome $Y_i \in \mathcal{Y}$
- ▶ covariates $\mathbf{X}_i \in \mathcal{X}$, individual covariates $\mathbf{X}_i^{ind} \in \mathcal{X}^{ind}$, neighborhood covariates $\mathbf{X}_i^{neigh} \in \mathcal{X}^{neigh}$
- ▶ For unit i, consider partition $(i, \mathcal{N}_i, \mathcal{N}_{-i})$, $(Z_i, \mathbf{Z}_{\mathcal{N}_i}, \mathbf{Z}_{\mathcal{N}_{-i}})$, $(Y_i, \mathbf{Y}_{\mathcal{N}_i}, \mathbf{Y}_{\mathcal{N}_{-i}})$

Potential Outcomes and Neighborhood Interference

Stable unit treatment on neighborhood value assumption (SUTNVA)

Assumption 1 (No multiple version of treatment(consistency))

If
$$Z=z$$
 then $Y_i = Y_i(z)$

Assumption 2 (Neighborhood interference)

Given a function g_i : $\{0,1\}^{\mathcal{N}_i} \to \mathcal{G}_i, \forall i \in \mathcal{N}$, $\forall \mathbf{Z}_{\mathcal{N}_{-i}}$, $\mathbf{Z}'_{\mathcal{N}_{-i}}$ and $\forall \mathbf{Z}_{\mathcal{N}_i}$, $\mathbf{Z}'_{\mathcal{N}_i}$: $g_i(\mathbf{Z}_{\mathcal{N}_i}) = g_i(\mathbf{Z}'_{\mathcal{N}_i})$, the following equality holds:

$$Y_i(Z_i, \boldsymbol{Z}_{\mathcal{N}_i}, \boldsymbol{Z}_{\mathcal{N}_{-i}}) = Y_i(Z_i, \boldsymbol{Z}_{\mathcal{N}_i}', \boldsymbol{Z}_{\mathcal{N}_{-i}}')$$

Each unit's potential outcome is subject to two treatments: the individual treatment Z_i , and the neighborhood treatment G_i [$G_i = g_i(\mathbf{Z}_{\mathcal{N}_i}) \in \mathcal{G}_i$]

Individual and Neighborhood Treatments

► The assignment mechanism is the *probability distribution of the joint treatment* in the whole sample, given all covariates and potential outcomes.

$$\begin{split} P(\mathbf{Z},\mathbf{G}|\mathbf{X},\{\mathbf{Y}(z,g),z=0,1;g\in\mathcal{G}\}) = \\ \left\{ \begin{array}{ll} P(\mathbf{Z}|\mathbf{X},\{\mathbf{Y}(z,g),z=0,1;g\in\mathcal{G}\}) & \text{if} & \mathbf{G}=\mathbf{g}(\mathbf{Z}) \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Causal Estimands: Main Effects and Spillover effects

Average dose-response function (ADRF)

$$\mu(z, g; V) = E[Y_i(z, g)|i \in V] \qquad \forall z \in \{0, 1\}, g \in \mathcal{G}$$

Main effect $\tau(g)$ and overall main effect τ

$$\tau(g) = \mu(1, g; V_g) - \mu(0, g; V_g)$$

$$\tau = \sum_{g \in \mathcal{G}} \tau(g) P(G_i = g)$$

Spillover effect $\delta(g; z)$ and overall spillover effect $\Delta(z)$

$$\delta(g; z) = \mu(z, g; V_g) - \mu(z, 0; V_g)$$

$$\Delta(z) = \sum_{g \in \mathcal{G}} \delta(g; z) P(G_i = g)$$

$$TE = \sum_{g \in \mathcal{G}} E[Y_i(Z_i = 1, G_i = g) - Y_i(Z_i = 0, G_i = 0) | i \in V_g] P(G_i = g) = \tau + \Delta(0)$$

Unconfoundedness of the Joint Treatment

Assumption 3 (Unconfoundedness of individual and neighborhood treatment)

$$Y_i(z,g) \perp \!\!\! \perp Z_i, G_i | \mathbf{X}_i \qquad \forall z \in \{0,1\}, g \in \mathcal{G}_i, \forall i$$

Theorem 1 (Identification of ADRF)

Under Assumption 1 (no multiple versions of treatment), Assumption2 (neighborhoood interference), and Assumption 3 (unconfoundedness), we have

$$E[Y_i(z,g)|i\in V_g]=\sum_{\mathbf{x}\in\mathcal{X}}E[Y_i|Z_i=z,G_i=g,\mathbf{X_i}=\mathbf{x},i\in V_g]P(\mathbf{X_i}=\mathbf{x}|i\in V_g)$$

II. Bias analysis

Bias When SUTVA Is Wrongly Assumed

Under SUTVA ,average (individual) treatment effect : $\tau_{sutva} = E[Y_i(Z_i = 1) - Y_i(Z_i = 0)]$

Naive estimator

$$au_{f X^\star}^{obs} = \sum_{f x \in \mathcal{X}^\star} (E[Y_i|Z_i=1,f X_i^\star] - E[Y_i|Z_i=1,f X_i^\star]) P(f X_i^\star=f x)$$

The difference between τ and the quantity $\tau_{\mathbf{X}^*}^{obs}$ represents the bias for τ of a naive approach that neglects interference

Theorem 2.A

Let $G=(\mathcal{N},\mathbb{E}$ be a known social network and lei \mathcal{N}_i be the neighborhood of unit i as a defined by the presence of edges . Let $Z_i \in \{0,1\}$ be a binary treatment assigned to unit i and let G_i be a deterministic function of the subset of the treatment vector \mathbf{Z} in the neighborhood \mathcal{N}_i , that is , $G_i=g_i(\mathbf{Z}_{\mathcal{N}_i})$, with $g_i:\{0,1\}^{N_i}\to\mathcal{G}_i$. If

- 1. Assumption 1 holds
- 2. Assumption 2 holds, given function $q_i(\cdot)$ for each unit $i \in \mathcal{N}$
- 3. Assumption 3 holds conditional on \mathbf{X}_{i}^{\star} , that is, $Y_{i}(z, g) \perp \!\!\! \perp Z_{i}$, $G_{i}|\mathbf{X}_{i}^{\star}$, $\forall z \in \{0, 1\}, g \in \mathcal{G}_{i}$

then the following equality holds

$$\tau_{\mathbf{X}^{\star}}^{obs} = \sum_{\mathbf{x} \in \mathcal{X}^{\star}} \Big(\sum_{g \in \mathcal{G}} E[Y_i(1,g) | \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] P(G_i = g | Z_i = 1,, i \in X_i^{\star} = \mathbf{x})$$
$$- E[Y_i(0,g) |, \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] P(G_i = g | Z_i = 0, \mathbf{X}_i^{\star} = \mathbf{x}) \Big) P(\mathbf{X}_i^{\star} = \mathbf{x})$$

Corollary 1

Under the three conditions of Theorem 2.A and the additional condition

4. Z_i and G_i are independent conditional on \mathbf{X}_i^{\star} , that is, $Z_i \perp \!\!\! \perp G_i | \mathbf{X}_i^{\star}$ the following equality holds:

$$au_{\mathbf{X}^{\star}}^{obs} = au$$

Corollary 2

Under the three conditions of Theorem 2.A and $Z_i \not\perp \!\!\! \perp G_i | \mathbf{X}_i^{\star}$, an unbiased estimator of $\tau_{\mathbf{X}^{\star}}^{obs}$ would be biased for the overall main effect τ , with bisas given by

Corollary 2 continued

$$\begin{split} \tau_{\mathbf{X}^{\star}}^{obs} - \tau &= \sum_{\mathbf{x} \in \mathcal{X}^{\star}} \sum_{g \in \mathcal{G}} \left(E[Y_i | Z_i = 1, G_i = g, \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \right) \\ - E[Y_i | Z_i = 1, G_i = g', \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \right) \\ \left(P(G_i = g | Z_i = 1, \mathbf{X}_i^{\star} = \mathbf{x}) - P(G_i = g | \mathbf{X}_i^{\star} = \mathbf{x}) \right) P(\mathbf{X}_i^{\star} = \mathbf{x}) \\ - \sum_{\mathbf{x} \in \mathcal{X}^{\star}} \sum_{g \in \mathcal{G}} \left(E[Y_i | Z_i = 0, G_i = g, \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \right) \\ - E[Y_i | Z_i = 0, G_i = g', \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \right) \\ \left(P(G_i = g | Z_i = 0, \mathbf{X}_i^{\star} = \mathbf{x}) - P(G_i = g | \mathbf{X}_i^{\star} = \mathbf{x}) \right) P(\mathbf{X}_i^{\star} = \mathbf{x}) \end{split}$$

Theorem 2.B

Under Assumption 1 and 2, if Assumption 3 does not hold conditional on \mathbf{X}_i^\star , that is $Y_i(z,g) \not\perp\!\!\!\perp Z_i$, $G_i|\mathbf{X}_i^\star$, but holds conditioanl on \mathbf{X}_i^\star and an additional vector of covariates $\mathbf{U}_i \in \mathcal{U}$, that is, $Y_i(z,g) \perp\!\!\!\perp Z_i$, $G_i|\mathbf{X}_i^\star$, \mathbf{U}_i , an unbiased estimator of $\tau_{\mathbf{X}^\star}^{obs}$ would be unbiased for the overall main effect τ , with bias $\tau_{\mathbf{X}^\star}^{obs} - \tau$ given by

$$\begin{split} &= \sum_{\mathbf{x} \in \mathcal{X}^{\star}} \sum_{g \in \mathcal{G}} \sum_{u \in \mathcal{U}} \Big(E[Y_i | Z_i = 1, G_i = g, \mathbf{U}_i = \mathbf{u}, \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \\ &- E[Y_i | Z_i = 1, G_i = g', \mathbf{U}_i = \mathbf{u}', \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \Big) \\ &\Big(P(\mathbf{U}_i = \mathbf{u} |, Z_i = 1, G_i = g, \mathbf{X}_i^{\star} = \mathbf{x}) P(G_i = g | Z_i = 1, \mathbf{X}_i^{\star} = \mathbf{x}) \\ &- P(\mathbf{U}_i = \mathbf{u} | G_i = g, \mathbf{X}_i^{\star} = \mathbf{x}) P(G_i = g | \mathbf{X}_i^{\star} = \mathbf{x}) \Big) P(\mathbf{X}_i^{\star} = \mathbf{x}) \end{split}$$

Theorem 2.B continued

$$\begin{split} &= \sum_{\mathbf{x} \in \mathcal{X}^{\star}} \sum_{g \in \mathcal{G}} \sum_{u \in \mathcal{U}} \Big(E[Y_i | Z_i = 0, G_i = g, \mathbf{U}_i = \mathbf{u}, \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \\ &- E[Y_i | Z_i = 0, G_i = g', \mathbf{U}_i = \mathbf{u}', \mathbf{X}_i^{\star} = \mathbf{x}, i \in V_g] \Big) \\ &\Big(P(\mathbf{U}_i = \mathbf{u} |, Z_i = 0, G_i = g, \mathbf{X}_i^{\star} = \mathbf{x}) P(G_i = g | Z_i = 0, \mathbf{X}_i^{\star} = \mathbf{x}) \\ &- P(\mathbf{U}_i = \mathbf{u} | G_i = g, \mathbf{X}_i^{\star} = \mathbf{x}) P(G_i = g | \mathbf{X}_i^{\star} = \mathbf{x}) \Big) P(\mathbf{X}_i^{\star} = \mathbf{x}) \end{split}$$

Corollary 3

Under the following conditions

- 1. Assumption 1 holds and . if
- 2. Assumption 2 holds given the function $g_i(\cdot)$ for each unit $i \in \mathcal{N}$
- 3. Assumption 3 holds conditional on \mathbf{X}_{i}^{\star} and \mathbf{U}_{i} , that is, $Y_{i}(z, g) \perp \!\!\! \perp Z_{i}, G_{i} | \mathbf{X}_{i}^{\star}, \mathbf{U}_{i}$, $\forall z \in \{0, 1\}, g \in \mathcal{G}_{i}$
- 4. Z_i and G_i are independent conditioanl on \mathbf{X}_i^* , that is, $Z_i \perp \!\!\! \perp G_i | \mathbf{X}_i^*$

$$\begin{aligned} \tau_{\mathbf{X}^{\star}}^{obs} - \tau &= \sum_{\mathbf{x} \in \mathcal{X}^{\star}} \sum_{u \in \mathcal{U}} \left(E[Y_i | Z_i = z, \mathbf{U}_i = \mathbf{u}, \mathbf{X}_i^{\star} = \mathbf{x}] \right. \\ &- E[Y_i | Z_i = z, \mathbf{U}_i = \mathbf{u}', \mathbf{X}_i^{\star} = \mathbf{x}] \right) \\ &\left. \left(P(\mathbf{U}_i = \mathbf{u} | Z_i = 1, \mathbf{X}_i^{\star} = \mathbf{x}) - P(\mathbf{U}_i = \mathbf{u} | Z_i = 1, \mathbf{X}_i^{\star} = \mathbf{x}) \right) P(\mathbf{X}_i^{\star} = \mathbf{x}) \end{aligned}$$

where $z \in \{0, 1\}$

19/40

Corollary 4

Under the following conditions

- 1. SUTVA holds
- 2. Assumption 3 holds conditional on \mathbf{X}_{i}^{\star} and \mathbf{U}_{i} , that is, $Y_{i}(z, g) \perp \!\!\! \perp Z_{i}$, $G_{i}|\mathbf{X}_{i}^{\star}$, \mathbf{U}_{i} , $\forall z \in \{0, 1\}, g \in \mathcal{G}_{i}$

Bias $\tau_{\mathbf{X}^*}^{obs} - \tau$ given only by the unmeasured confounder \mathbf{U}_i as in equation from corollary 3

III.Proposed method

Generalized Propensity Score

- joint propensity score $\psi(z;g;x) = P(Z_i = z, G_i = g | \mathbf{X}_i = \mathbf{x})$
 - ▶ Balancing Property $P(Z_i = z, G_i = g | \mathbf{X}_i, \psi(z; g; \mathbf{X}_i)) = P(Z_i = z, G_i = g | \psi(z; g; \mathbf{X}_i))$
 - ▶ Conditional unconfoundedness $Y_i(z,g) \perp \!\!\! \perp Z_i$, $G_i|\psi(z;g;\mathbf{X}_i) \ \forall z \in \{0,1\}$, $g \in \mathcal{G}_i$
- individual propensity score $\phi(z; x^z) = P(Z_i = z | \mathbf{X}_i^z = \mathbf{x}^z)$
- ▶ neighborhood propensity score $\lambda(g; z; x^g) = P(G_i = g | Z_i = z, \mathbf{X}_i^g = \mathbf{x}^g)$
- ▶ factorization of joint propensity score $\psi(z; g; x) = \phi(z; x^z)\lambda(g; z; x^g)$
 - conditional unconfoundedness

$$Y_i(z,g) \perp \!\!\! \perp Z_i, G_i | \lambda(g;z;\mathbf{X}_i^g), \phi(1;\mathbf{X}_i^z) \quad \forall z \in \{0,1\}, g \in \mathcal{G}_i$$

Propensity Score Based Estimator for Main Effects and Spillover Effects

unbiased estimator of $\mu(z, g; V)$

- $\blacktriangleright E \Big[E[Y_i | Z_i = z, G_i = g, \psi(z; g; \mathbf{X}_i)] | Z_i = z, G_i = g \Big]$
- ► $E[E[Y_i|Z_i=z,G_i=g,\lambda(g;z;\mathbf{X}_i^g),\phi(1;\mathbf{X}_i^z)]|Z_i=z,G_i=g]$ (separate joint propensity score)

Estimation Procedure: Subclassification and GPS

- ▶ Derive a subcalssification on the individual propensity score $\phi(1; \mathbf{X}_i^z)$
 - (a) estimate $\phi(1; \mathbf{X}_i^z)$ by logistic regression : $Z_i \sim \mathbf{X}_i^z$
 - (b) predict $\phi(1; \mathbf{X}_i^z)$
 - (c) identify J subclasses B_i by $\phi(1; \mathbf{X}_i^z)$, where $\mathbf{X}_i^z \perp \!\!\! \perp \mathbf{Z}_i | i \in B_i$
- lacksquare Within B_j ,estimate $\mu_j(z,g;V_g)=E[Y_i(z,g)|i\in B_i^g]$, where $B_i^g=V_g\cap B_j$
 - (a) estimate model for $\lambda(g; z; x^g)$ by $f^G(g, z, \mathbf{X}_i^g)$
 - (b) estimate model for $Y_i(z, g)$ by $f^Y(z, g, \lambda(g; z; \mathbf{X}_i^g))$
 - (c) predict $\lambda(g; z; \mathbf{X}_i^g)$ and $Y_i(z, g)$
 - (d) estimate $\hat{\mu}_j(z, g; V_g) = \sum_{i \in B_j^g} \hat{Y}_i(z, g) / |B_j^g|$
- ▶ Derive the ADRF $\hat{\mu}(z, g; V_g) = \sum_{j=1}^J \hat{\mu}_j(z, g; V_g) \pi_j^g$, where $\pi_j^g = \frac{|B_j^g|}{v_g}$

IV.Simulation studies

Takeaways for simulation

Aims

- validate the analytical derivation of the bias for the main effect when interference is wrongly ruled out
- ▶ show the performance of the proposed estimators in a realistic sample
- <u>Data</u>: We use friendship network data collected through the National Longitudinal Study of Adolescent Health. (29 schools for a total of 16410 students)

Variables

- $ightharpoonup Z_i$: denote whether student i was covered or not by some health insurance
- ➤ Y_i: denote the number of days student i missed school because of illness in one given year
- $\qquad \qquad \mathbf{X}_{i}^{ind} = (\textit{race}_{i}, \textit{grade}_{i}) \text{ and } \mathbf{X}_{i}^{neig} = (\frac{\sum_{k \in \mathcal{N}_{i}} \textit{race}_{k}}{\textit{N}_{i}}, \frac{\sum_{k \in \mathcal{N}_{i}} \textit{grade}_{k}}{\textit{N}_{i}}, \textit{N}_{i})$

Four scenarios of dependence between Z_i and G_i ²

- ► Scenario 1 : $Z_i \perp \!\!\! \perp G_i | \mathbf{X}_i^{ind}$. (treatment generating process : $logit(P(Z_i = 1)) = -18 + 2grade_i + 3race_i$)
- ► Scenario 2: $Z_i \perp \!\!\! \perp G_i | \mathbf{X}_i^{ind}, \mathbf{X}_i^{neig}$ (treatment generating process: $logit(P(Z_i=1)) = -47 + 2grade_i + 4race_i + 3friends.grade_i + 5friends.race_i)$
- ► Scenario 3 : $Z_i \perp \!\!\! \perp G_i | \mathbf{X}_i^{ind}, \mathbf{N}_i$ (treatment generating process : $logit(P(Z_i = 1)) = -49 + 3grade_i + 4race_i + 4N_i)$
- ► Scenario 4 : $Z_i \not\perp L G_i | \mathbf{X}_i^{ind}, \mathbf{X}_i^{neig}$ (treatment generating process : $logit(P(Z_i = 1)) = -20 + 2grade_i + 3race_i + 4G_i)$

²In all scenarios but the third, G_i is the proportion of friends with health insurance among the first five best friends. In the third scenario, G_i is the number of "treated" friends among all friends

Outcome Models

Outcome Models for Main Effects Simulations

$$Y_i(z,g)|\mathbf{X}_i^{ind} \sim \mathcal{N}(\mu(z,g,\mathbf{X}_i^{ind}),1)$$
 $\mu(z,g,\mathbf{X}_i^{ind}) = 15 - 7\mathbf{I}(\phi(1;\mathbf{X}_i^{ind}) \geq 0.7) - 15z + 3z\mathbf{I}(\phi(1;\mathbf{X}_i^{ind}) \geq 0.7) + \delta g$

- ▶ $X_i^{ind} = [race_i + grade_i]$, $X_i^g = [race_i, grade_i, friends.race_i, friends.grade_i, N_i]$, $\delta \in (-5, -8, -10)$ corresponding to a low medium and high level of interference
- ▶ main effects : $\tau(g) = -15 + 3\mathbf{I}(\phi(1; \mathbf{X}_i^{ind}) \ge 0.7) \ \forall g \in \mathcal{G} \Longrightarrow \tau = -15 + 3\mathbf{I}(\phi(1; \mathbf{X}_i^{ind}) \ge 0.7)$
- ▶ spillover effects : $\delta(g; z) = \delta g \Longrightarrow \Delta(z) = \delta E[G_i] \forall z = 0, 1$

Outcome Models

▶ Outcome Models for Spillover Effects Simulations

$$\begin{aligned} \mathbf{Y}_i(z,g)|\mathbf{X}_i^{ind},\mathbf{X}_i^g &\sim \mathcal{N}(\mu(z,g,\mathbf{X}_i^{ind},\mathbf{X}_i^g),1) \\ \mu(z,g,\mathbf{X}_i^{ind},\mathbf{X}_i^g) &= 15 + \textit{friends.grade}_i + 7\textit{friends.race}_i - 10\mathbf{I}(\phi(1;\mathbf{X}_i^{ind}) \geq \\ 0.7) &- 10z + \delta g - 10\lambda(g;z,\mathbf{X}_i^g + 5g\mathbf{I}(\phi(1;\mathbf{X}_i^{ind}) \geq 0.7) + 3zg \end{aligned}$$

- ▶ $X_i^{ind} = [race_i + grade_i]$, $X_i^g = [race_i, grade_i, friends.race_i, friends.grade_i, N_i]$, $\delta \in (-5, -8, -10)$ corresponding to a low medium and high level of interference
- ▶ main effects : $\tau(g) = -10 + 3g \Longrightarrow \tau = -10 + 3E[G_i]$ $\tau(g) = -15 + 3I(\phi(1; \mathbf{X}_i^{ind}) \ge 0.7) \ \forall g \in \mathcal{G} \Longrightarrow \tau = -15 + 3I(\phi(1; \mathbf{X}_i^{ind}) \ge 0.7)$
- spillover effects: $\delta(g; z) = \delta g 5 g E[\mathbf{I}(\phi(1; \mathbf{X}_i^{ind}) \ge 0.7)] 10\lambda(g; z, \mathbf{X}_i^g)$

 $\Longrightarrow \Delta(z) = \delta E[G_i] + 5E[G_i]E[\mathbf{I}(\phi(1; \mathbf{X}_i^{ind}) \ge 0.7)] - 10E[\lambda(G_i; z, \mathbf{X}_i^g)] + 3zE[G_i]$

Main Effects: Bias of Naive Estimator and GPS-Based Estimator

▶ Table 1 shows the bias computed using formulas in Theorem 2.A and Theorem 2.B, bias resulting from neglecting interference and from adjusting for different sets of covariates : $\mathbf{X}_i^{\star} = \{\emptyset, \mathbf{X}_i^{ind}, \mathbf{X}_i^z\}$

Scenario	Interference	Bias(Ø)	Bias(X ind)	Bias(X ^z _i)
1	Low	-5.977	-0.045	-0.045
· · · · · · · · · · · · · · · · · · ·	Medium	-6.200	-0.072	-0.072
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{ind})$	High	-6.323	-0.090	-0.090
2	Low	-5.749	-1.636	-0.034
ind neigh	Medium	-6.498	-2.618	-0.054
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, \mathbf{X}_i^{\mathrm{neigh}})$	High	-6.998	-3.273	-0.068
3	Low	-4.158	-1.247	-0.047
	Medium	-4.792	-2.079	-0.075
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, N_i)$	High	-5.744	-3.327	-0.095
4	Low	-9.504	-1.414	-1.415
	Medium	-11.681	-2.263	-2.263
$(Z_i \not\perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, \mathbf{X}_i^{\mathrm{neigh}})$	High	-13.132	-2.829	-2.825

Table 1: Computed bias for τ

Main Effects: Bias of Naive Estimators and GPS-Based Estimator

► Table 2 reports the mean bias and root mean squared error of six estimators in all scenarios.

Scenario Interferei		Unadjusted		Regression $\sim Z_i$, \mathbf{X}_i^{ind}		Subclass $\hat{\phi}(1, \mathbf{X}_i^{ind})$		Regression $\sim Z_i$, \mathbf{X}_i^z		Subclass $\hat{\phi}(1;\mathbf{X}_i^{\mathrm{z}})$		Subclass $\hat{\phi}(1,\mathbf{X}_{i}^{z})$ and GPS	
	Interference	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
1	Low	-5.104	5.104	-3.429	3.431	-0.016	0.130	-3.254	3.256	0.006	0.074	-0.002	0.064
(Z. II G wind)	Medium	-5.278	5.278	-3.529	3.532	-0.021	0.149	-3.256	3.258	0.007	0.090	0.002	0.067
$(Z_i \perp \!\!\!\perp G_i \mathbf{X}_i^{ind})$	High	-5.396	5.396	-3.598	3.601	-0.021	0.167	-3.258	3.261	0.015	0.108	0.003	0.067
2	Low	-5.136	5.136	-3.477	3.477	-1.652	1.668	-2.156	2.157	-0.066	0.331	-0.000	0.036
indneigh.	Medium	-5.884	5.884	-4.521	4.521	-2.620	2.631	-2.318	2.319	-0.097	0.511	0.003	0.039
$Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, \mathbf{X}_i^{\mathrm{neigh}})$	High	-6.384	6.384	-5.222	5.223	-3.272	3.281	-2.430	2.432	-0.123	0.635	-0.002	0.036
2	Low	-4.106	4.107	-2.079	2.089	-1.146	1.149	-1.033	1.049	0.078	0.553	-0.002	0.230
ind	Medium	-4.725	4.726	-2.886	2.893	-1.911	1.913	-1.041	1.056	0.082	0.556	0.019	0.233
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, N_i)$	High	-5.655	5.656	-4.098	4.103	-3.058	3.059	-1.054	1.068	0.084	0.559	0.012	0.234
4	Low	-8.670	8.670	-7.104	7.104	-1.443	1.445	-7.076	7.076	-1.738	1.740	0.000	0.105
indneigh.	Medium	-10.761	10.761	-8.861	8.862	-2.309	2.309	-8.824	8.823	-2.784	2.785	-0.003	0.095
$Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, \mathbf{X}_i^{\mathrm{neigh}})$	High	-12.154	12.154	-10.030	10.030	-2.883	2.884	-9.985	9.985	-3.477	3.478	0.010	0.090

Table 2: Estimation of main effect τ

▶ Table 3 and Table 4 report the mean bias and root mean squared error of all estimators for spillover effects $\Delta(0)$ and $\Delta(1)$.

Scenario	Interference	Unadjusted regression \sim Z_i , G_i		Subclass $\hat{\phi}(1,\mathbf{X}_{i}^{z})$		GPS		Subclass $\hat{\phi}(1,\mathbf{X}_{i}^{z})$ and GPS	
		Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMS
1	Low	1.576	1.581	2.871	2.901	-1.457	1.465	0.003	0.09
ind	Medium	1.568	1.574	2.838	2.872	-1.462	1.472	0.005	0.11
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{ind})$	High	1.571	1.580	2.878	2.910	-1.467	1.479	0.000	0.14
2	Low	3.503	3.506	4.132	5.259	-0.574	0.590	0.033	0.09
- ind - neigh	Medium	3.506	3.510	4.037	4.933	-0.579	0.599	0.041	0.11
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, \mathbf{X}_i^{\mathrm{neigh}})$	High	3.485	3.489	4.204	5.232	-0.592	0.613	0.034	0.12
$\begin{array}{ccc} 3 \\ (Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, N_i) \end{array}$	Low	5.445	5.446	7.005	7.048	0.380	0.399	-0.035	0.09
	Medium	5.455	5.456	7.009	7.050	0.381	0.401	-0.033	0.09
	High	5.441	5.442	7.054	7.096	0.381	0.400	-0.033	0.09
3	Low	3.002	3.002	2.577	2.584	-1.201	1.202	0.071	0.11
- neigh	Medium	3.002	3.002	2.556	2.563	-1.202	1.203	0.068	0.11
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^z, \mathbf{X}_i^{\text{neigh}})$	High	3.005	3.005	2.548	2.555	-1.200	1.201	0.066	0.11

Table 3: Estimation of $\Delta(0)$

Scenario	Interference	Unadjusted regression $\sim Z_i$, G_i		Subclass $\hat{\phi}(1,\mathbf{X}_i^z)$		GPS		Subclass $\hat{\phi}(1,\mathbf{X}^{z}_{i})$ and GPS	
		Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSI
1	Low	3.195	3.196	2.870	2.878	0.432	0.441	0.003	0.05
ind	Medium	3.197	3.198	2.863	2.871	0.437	0.449	0.002	0.08
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}})$	High	3.198	3.200	2.869	2.877	0.434	0.452	0.004	0.10
2	Low	2.483	2.485	2.842	2.862	0.386	0.393	0.001	0.05
$(Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\text{ind}}, \mathbf{X}_i^{\text{neigh}})$	Medium	2.481	2.485	2.885	2.907	0.385	0.394	-0.000	0.07
	High	2.473	2.477	2.882	2.919	0.379	0.391	-0.005	0.08
$ (Z_i \perp \!\!\! \perp G_i \mathbf{X}_i^{\mathrm{ind}}, N_i) $	Low	3.668	3.669	5.921	5.951	0.559	0.562	-0.038	0.04
	Medium	3.668	3.668	5.944	5.975	0.558	0.561	-0.040	0.04
	High	3.669	3.669	5.943	5.982	0.558	0.561	-0.038	0.04
3	Low	-3.280	3.280	-5.182	5.182	0.367	0.370	-0.019	0.05
- neigh	Medium	-3.277	-3.277	-5.182	5.182	0.368	0.371	-0.021	0.05
$(Z_i \not\perp L G_i \mathbf{X}_i^z, \mathbf{X}_i^{\text{neigh}})$	High	-3.281	3.281	-5.178	5.178	0.364	0.367	-0.026	0.05

Table 4: Estimation of $\Delta(1)$

► Figure 2 depicts the scatterplot of the observed outcomes and the estimated ADRFs $\mu(0,g)$ and $\mu(1,g)$, $g \in \{0,0.2,0.4,0.6,0.8,1\}$, for Scenario 2

Figure 2: Estimated dose-response function $\mu(0, g)$ and $\mu(1, g)$

► Figure 3 depicts spillover effects $\delta(0,g)$ i.e $\mu(0,g) - \mu(0,0)$ and spillover effects $\delta(1,g)$ i.e $\mu(1,g) - \mu(1,0)$

Figure 3: Estimated spillover effects $\delta(g; z)$

lacksquare Figure 4 depicts estimated main effects au(g) . i.e $\mu(\mathbf{1},g)-\mu(\mathbf{0},g)$.

Figure 4: Estimated main effects $\tau(g)$

V. Conclusion

Concluding Remarks

- ▶ SUTVA \longrightarrow SUTNVA , potential outcome $Y_i(\mathbf{Z}_i, \mathbf{G}_i)$
- ightharpoonup simple assignment mechanism \longrightarrow compound assignment mechanism
- ▶ naive estimator → Subclassfication and GPS estimator
- ▶ Bias sources : $\mathbf{Z}_{\mathcal{N}_i}$, $P(Z_{i,res}, G_{i,res} | \mathbf{X}_i^{\star})$
- ▶ limitations : network fully known and fixed , model dependent
- future : sensitivity analysis , Bayesian semi-parametric approaches , account for network uncertainty

Software

- networkinference Python package by Michael P. Leung
- ► CausalModel Python package by Qu, Zhaonan and Xiong, Ruoxuan and Liu, Jizhou and Imbens, Guido
- inferference R package by Bradley Saul
- clusteredinterference R package by Brian G. Barkley
- ▶ Interference R package by Georgia Papadogeorgou

Thank You!