QF604 MCQ Practice Test 4

Please tick the most suitable answer to each multiple-choice question.

- Q1. What is $X^2 + Y^2 + Z^2$ where X, Y, Z are independently distributed as N(0, 2)?
 - (A) $3 \times [N(0,2)]^2$
 - (B) $2 \times \chi_3^2$
 - (C) $3 \times \chi_2^2$
 - (D) None of the above
- Q2. Suppose we run an Ordinary Least Square regression of $Y_i = a + bX_i + e_i$ where e_i is a white noise that is independent of X_i . Given sample averages for Y and X are 300 and 250, respectively, and $\hat{b} = 1.0$, what is \hat{a} ?
 - (A) 1.20
 - (B) 1.19
 - (C) 50.0
 - (D) Indeterminate from the given information.
- Q3. For the general covariance-stationary processes such as ARMA(p,q) (p, q) being any reasonably finite integers)
 - (A) conditional mean and conditional variance are constant at each t
 - (B) conditional mean and conditional variance change at each t
 - (C) conditional mean changes and conditional variance is constant at each t
 - (D) conditional mean is constant and conditional variance changes at each t
- Q4. If a stochastic trend exists in a price process Z_t with i.i.d. increments, then this is <u>not</u> likely to show up as
 - (A) mean reversion
 - (B) a possibly changing conditional mean term
 - (C) a decreasing variance as time decreases
 - (D) a correlation function against time lags) that decays very slowly.
- Q5. Suppose we are testing if P_t is a unit root or I(1) process, and we perform the following OLS regression $\Delta P_t = \delta + \theta P_{t-1} + e_t$, where e_t is a stationary random variable. Suppose the critical ADF statistic for this case at 1% significance level is -3.44, at 5% significance level is -2.86, and the computed $\hat{\theta} < 0$'s "t-statistic" is -3.965, then you
 - (A) reject null of unit root at 1%
 - (B) cannot reject null of unit root at 1%
 - (C) cannot reject null of no unit root at 1%

- (D) cannot reject null of no unit root at 5%
- Q6. If $Q_t = e^{-rt}P_t$, and Q_t follows a martingale, then
 - (A) $E_t(P_{t+1}) = P_t$
 - (B) $E_t(P_{t+1}) = e^r P_t$
 - (C) $E_t(P_{t+1}) = e^{rt}P_t$
 - (D) $E_t(P_{t+1}) = e^{r(t+1)}P_t$
- Q7. The reason why stock returns may be predictable is associated with
 - (A) daily time trend of the stock return
 - (B) long-term stock return autocorrelations
 - (C) weekly stock price variations
 - (D) momentum of stock movements
- Q8. A stock beta is obtained by running
 - (A) Cross-sectional regression
 - (B) Time series regression
 - (C) Cross-sectional regression with constraint on loadings
 - (D) Time series regression with constraint on residual error
- Q9. An irrelevant variable was included in a mulitple linear regression,. Which of the following is most reasonable?
 - (A) the estimated coefficients will always be biased
 - (B) the estimated coefficients will always be biased downward
 - (C) the estimated coefficient standard errors are typically larger
 - (D) the estimated coefficient standard errors are typically smaller
- Q10. In multi-factor models on stock pricing when only risk factors are identified, the Fama-McBeth procedure is
 - (A) First running cross-sectional regressions, then running time series regressions
 - (B) First running cross-sectional regression, then repeat after sorting
 - (C) First running time series regressions, then running cross-sectional regressions
 - (D) First sorting, then running cross-sectional regressions
- Q11. Suppose $Y_i = c_0 + c_1 X_i + e_i$, i = 1, 2, ..., N. X_i and zero mean e_i are stochastically independent, and e_i is heteroskedastic, then the OLS estimator is
 - (A) BLUE

- (B) biased but consistent
- (C) unbiased but not efficient
- (D) None of the above
- Q12. Suppose $Y_t = c_0 + c_1 X_t + c_2 Z_t + e_t$, t = 1, 2, ..., T and e_t satisfies the classical conditions. However, in a regression, Z_t was omitted. If $Z_t = \rho Z_{t-1} + u_t$ where $\rho < 0$, and u_t is i.i.d., the D-W statistic in the above is likely to be
 - (A) less than 2
 - (B) about 2
 - (C) more than 2
 - (D) cannot be computed.
- Q13. In a regression of future excess return on current dividend/price variable, suppose the errors or disturbances are not contemporaneously correlated with dividend yields, but are serially correlated, then the OLS estimates will be
 - (A) unbiased but inconsistent
 - (B) unbiased and consistent
 - (C) biased and consistent
 - (D) wrong because of wrong t-statistic.
- Q14. If null hypothesis is that abnormal return $AR_{it} \sim N(0, \sigma^2)$, what is the null of the distribution of cumulative abnormal return at the end of a window of 5 days?
 - (A) $\frac{1}{5}N(0,\sigma^2)$
 - (B) $\sqrt{5}N(0,\sigma^2)$
 - (C) $5N(0, \sigma^2)$
 - (D) $N(0, \sigma^2)$
- Q15. There are typically many specifications that are consistent with the unbiased expectations hypothesis.

 The following is one.

$$S_t = c_0 + c_1 F_{t-k,t} + e_t, \ k > 0$$

What restrictions on the regression coefficients and disturbance are implied by the UEH?

- (A) $c_0 \times c_1 = 0, E(e_t | F_{t-k,t}) = 0$
- (B) $c_0 \times c_1 = 0, E(e_t \mid F_{t-k,t}) \neq 0$
- (C) $c_0 = 0, c_1 = 1, E(e_t \mid F_{t-k,t}) \neq 0$
- (D) $c_0 = 0, c_1 = 1, E(e_t \mid F_{t-k,t}) = 0$
- Q16. An ARMA(p,q) process, where p,q are finite, can be represented as an infinite convergent AR process provided

- (A) it is stationary
- (B) it is invertible
- (C) it does not have unit roots
- (D) it is also autoregressive
- Q17. In a GARCH model where return is $r_t = h_t^{\frac{1}{2}} e_t$, e_t is i.i.d. distributed as N(0,1), and conditional variance of e_t is $h_t = \beta_0 + \beta_1 r_{t-1}^2 + \beta_2 h_{t-1} e_{t-1}^2$, what is the most plausible set of estimates?
 - (A) $\beta_0 = 0.03$, $\beta_1 = 0.7$, $\beta_2 = -0.1$
 - (B) $\beta_0 = -0.03, \beta_1 = 0.7, \beta_2 = -0.1$
 - (C) $\beta_0 = 0.03, \beta_1 = 0.4, \beta_2 = 0.7$
 - (D) $\beta_0 = -0.03$, $\beta_1 = 0.4$, $\beta_2 = 0.7$
- Q18. Which technique can you use to address the endogeneity bias problem in a linear regression?
 - (A) Fama-MacBeth's grouping procedure
 - (B) White's HCCME
 - (C) Instrumental variable method
 - (D) generalized least squares
- Q19. Suppose a first linear regression is $Y_{1t} = a_0 + a_1 X_t + e_t$ for t = 1, 2, ..., T, and the vector of residual errors has $T \times T$ covariance matrix Σ_e . Suppose a second linear regression is $Y_{2t} = b_0 + a_1 Z_t + v_t$ for t = 1, 2, ..., T, and the vector of residual errors has $T \times T$ covariance matrix Σ_v . e_t and v_t are independent. If instead we form dependent variable vector $M_{2T\times 1} = (Y_{11}, ..., Y_{1T}, Y_{21}, ..., Y_{2T})^T$, and explanatory variable matrix S such that M = SB + E where B is vector of coefficients from the two regressions to be estimated, and

$$cov(E) = \begin{pmatrix} \Sigma_e & 0\\ 0 & \Sigma_v \end{pmatrix}_{2T \times 2T},$$

what is the dimension of matrix S?

- (A) $2T \times 2$
- (B) $2T \times 3$
- (C) $2T \times 4$
- (D) None of the above
- Q20. In a linear regression model Y = XB + e, $Y_{N\times 1}$ takes only binary values of 1 or 0, X is a $N\times 3$ explanatory variable matrix where the first column contains all ones, and e is a N vector of zero mean i.i.d. residual errors. e is non-normal. Let the i^{th} row of X be X_i . Suppose $E(Y_i|X_i) = \frac{1}{1+e^{-X_iB}}$ using logistic regression. If the estimates of B are (0.1, 0.1, 0.1), what is the estimated probability of Y = 1 when $X_i = (1, 2, 3)$?
 - (A) 0.62

- (B) 0.65
- (C) 0.68
- (D) None of the above

Ans: Q1 (B), Q2 (C), Q3 (C), Q4 (A), Q5 (A), Q6 (B), Q7 (B), Q8 (B), Q9 (C), Q10 (C) Q11 (C), Q12 (C), Q13 (B), Q14 (B), Q15 (D), Q16 (B), Q17 (A), Q18 (C), Q19 (B), Q20 (B)