1

IoT-Enabled Temperature & Humidity Monitoring Device

1. Circuit Functionality	2
2. Schematics	2
3. Manufacturing (CAM) Images	3
4. Bill of Materials	5
5. Arduino Code & Libraries	7
6. Adafruit IO Dashboard	8
7. Improvements	9
Appendix A: Arduino Code	10

1. Circuit Functionality

The custom-designed IoT PCB is built to measure and display ambient temperature and humidity using a DHT22 sensor. The data is displayed in real time by sending it over Wi-Fi using an ESP-01 (ESP8266) module to the Adafruit IO cloud platform. The Arduino acts as the main microcontroller. The PCB interfaces with the Arduino via pin headers, drawing power and signal connections. LEDs indicate power and activity status.

2. Schematics

The above schematic includes:

- DHT22 temperature and humidity sensor.
- ESP-01 Wi-Fi module (connected via TX/RX and reset pin).
- 2x LEDs with series resistors for power/activity indication.
- Capacitors for voltage stabilization.

3. Manufacturing (CAM) Images

Top Copper Layer (left) & Bottom Copper Layer (Right).

Front Silkscreen (Left), Back Silkscreen (Right).

Full PCB Image

3D image of PCB (front and back).

4. Bill of Materials

Component	Value	Footprint	Link	Qty	Cost
J1	Power	PinSocket_1x08_P2.54 mm_Vertical	https://www.digikey.com/e n/products/detail/metz-con nect-usa-inc/PR20208VB NN/13402440	1	0.12
J2	Digital /PWM	PinSocket_1x10_P2.54 mm_Vertical	https://www.digikey.com/e n/products/detail/sullins-c onnector-solutions/PPPC1 01LFBN-RC/810182	1	0.64
J3	Analo g	PinSocket_1x06_P2.54 mm_Vertical	https://www.digikey.com/e n/products/detail/metz-con nect-usa-inc/PR20208VB NN/13402440	1	0.12
J4	Digital /PWM	PinSocket_1x10_P2.54 mm_Vertical	https://www.digikey.com/e n/products/detail/sullins-c onnector-solutions/PPPC1 01LFBN-RC/810182	1	0.64
D1, D2	LEDs (R&G)	LED_D3.0mm_FlatTop	https://www.digikey.com/e n/products/detail/marktech -optoelectronics/MT7403A -UR-A/4214630	2	0.82
R1-R4	1kΩ	R_Axial_DIN0207_L6.3 mm_D2.5mm_P10.16m m_Horizontal	https://www.digikey.com/e n/products/detail/vishay-b eyschlag-draloric-bc-comp onents/MBB0207VD1001 BC100/7350409	4	6.8
R5	150Ω	R_Axial_DIN0207_L6.3 mm_D2.5mm_P10.16m m_Horizontal	https://www.digikey.com/e n/products/detail/vishay-b eyschlag-draloric-bc-comp onents/SFR2500001500F R500/595677	1	0.14

					0
Component	Value	Footprint	Link	Qty	Cost
R6	330Ω	R_Axial_DIN0207_L6.3 mm_D2.5mm_P10.16m m_Horizontal	https://www.digikey.com/e n/products/detail/yageo/C FR-25JR-52-330R/11962	1	0.10
C1, C2	100µF	CP_Radial_D6.3mm_P2 .50mm	https://www.digikey.com/e n/products/detail/rubycon/ 35YXJ100M6-3X11/35631 27	2	0.58
J5	DHT2 2	JST_XA_B04B (4-pin vertical)	https://www.adafruit.com/p roduct/385	1	9.95
U1	ESP8 266-0 1 WiFi Modul e	XCVR_ESP8266-01_ES P-01	https://www.microcenter.c om/product/616024/ESP8 266_WiFi_Transceiver_R eceiver_Module2_Pac k?gQT=2	1	5.99

Total estimated cost = \$25.9

5. Arduino Code & Libraries

Arduino code:

- Reads temperature and humidity from the DHT22 sensor.
- Sends data to Adafruit IO using SoftwareSerial to communicate with the ESP-01.

Libraries used:

- DHT.h
- SoftwareSerial.h

6. Adafruit IO Dashboard

This custom Adafruit IO dashboard provides real-time remote monitoring of temperature and humidity using the DHT22 sensor and ESP8266 module.

Widgets:

- Two gauge indicators show the live temperature (°C) and humidity (%) values.
- Icons for quick visual identification of each measurement.
- 2 graphs plot changes in temperature and humidity over time.
- A data log panel displays sensor data with timestamps.
- A status indicator shows whether the temperature exceeds 23.5°C (red = false).

Data is sent from the device to Adafruit IO every 5 seconds via the ESP-01 module over Wi-Fi, this allows remote viewing from any device connected to the internet.

Temperature Feed (Left) and Humidity feed (Right).

7.Improvements

If I was to redesign my device I would explore the following ideas:

- Header for LiPo battery connection, making the device more portable.
- Design/3D print an enclosure.
- Label silkscreen more clearly as I do not have labels for J1-J4.
- Think about future expansion, extra GIPO pins etc.

Appendix A: Arduino Code

```
#include "Arduino.h"
#include <SoftwareSerial.h> // use two GPIO pins for a second UART
#include "DHT.h" // Include DHT library
#define RESET_PIN 4  // pin used to bring ESP-01 module up in UART mode #define UART TX PIN 3  // UART software serial transmit pin
#define UART TX PIN 3
#define UART_RX_PIN 2 // UART software serial receive pin
#define DHTPIN 6
#define DHTTYPE DHT22 // Using DHT22 sensor
DHT dht(DHTPIN, DHTTYPE);  // Create DHT object
SoftwareSerial espSerial(UART RX PIN, UART TX PIN); // Create software UART to talk
to the ESP8266
// credentials
String IO USERNAME = "omaraloud";
String IO KEY = "aio KswB755xCpPJbU0fPD4ZCSmKTjZv";
String WIFI SSID = "UD Devices";
String WIFI_PASS = "";
// Internal state
String response;
String subresp;
long int time, updatetime;
 response = "";
```

```
subresp = "";
response = espSend("get macaddr", 2000, true);
response = espSend("get version", 2000, true);
response = espSend("wifi ssid=" + WIFI SSID, 2000, true);
response = espSend("wifi_pass=" + WIFI_PASS, 2000, true);
response = espSend("io_user=" + IO_USERNAME, 2000, true);
response = espSend("io key=" + IO KEY, 2000, false);
response = espSend("setup io", 30000, true);
response = espSend("setup pubfeed=1,CPEG298Temp", 2000, false);  // Temperature
response = espSend("setup pubfeed=2,CPEG298Humidity", 2000, false); // Humidity
roid loop() {
```

```
return;
Serial.print(temp);
response = espSend("send_data=1," + String(temp), 2000, false); // Temp to feed 1
String espSend(String command, const int timeout, boolean debug) {
response = "";
    response += c;
 return response;
```