Санкт-Петербургский политехнический университет Петра Великого
Институт компьютерных наук и кибербезопасности
Высшая школа компьютерных технологий и информационных систем

Отчёт по расчётному заданию №2b

Дисциплина: Теория вероятности и математическая статистика

Выполнил студент гр. 5130901/20003	(подпись)	Гусев М.М.
Преподаватель(под	цпись)		_ Никитин К.В.
		· · · · · · · · · · · · · · · · · · ·	2024 г.

Санкт-Петербург 2024

Оглавление

Исходные данные	3
Формулы и табличные значения	4
Определение характеристик измерений	5
Последовательная полиномиальная аппроксимация	6
Аппроксимация другими способами	15
Вывод	20
Приложение	21

Исходные данные

nx = 41 – количество точек, в которых проводились измерения

ny = 10 - количество измерений в каждой точке

Х	y1	y2	у3	y4	у5	у6	у7	y8	у9	y10
-2	55,5561	19,2686	26,2929	19,9065	27,5261	47,341	-33,0894	13,72	35,3236	21,9196
-1,9	-19,8308	-1,88102	45,4618	17,9815	63,1104	-3,85713	-8,04952	17,9153	28,5558	20,1347
-1,8	-7,85028	-53,2914	-7,63365	38,7993	-42,0105	-11,777	18,7123	-13,5689	-73,6905	27,1165
-1,7	-37,8004	11,5969	-42,6847	-4,94413	14,9078	1,84822	15,5582	-34,8197	14,8925	27,1165
-1,6	55,683	-1,53277	-5,21008	15,5406	19,1883	39,1093	34,2531	-19,5659	5,47818	-21,7328
-1,5	8,78579	31,691	18,1855	-10,7062	35,3726	-7,91345	2,27799	-34,0994	67,0968	2,30931
-1,4	-13,9104	20,3763	-4,06166	32,1249	43,239	42,8988	5,91265	4,70017	25,4134	45,2858
-1,3	-24,7075	-3,90157	5,97991	71,7425	66,1443	21,0057	-2,06615	-1,17994	-28,3195	8,9738
-1,2	-25,8609	-4,80842	32,5214	-51,5519	-24,1509	19,0216	-11,8742	38,0467	3,13693	-12,1835
-1,1	32,4577	-29,0356	-23,7985	-18,9447	-1,8038	33,7451	23,9998	44,8503	13,9773	17,503
-1	-14,5867	-27,8762	-17,2865	-36,051	-51,9107	4,92459	-34,2702	-30,8905	9,89457	6,00533
-0,9	17,1061	-12,0743	-14,5572	-21,6452	19,1637	-24,8965	12,8205	17,0799	44,1682	3,07291
-0,8	-49,7569	21,5107	-40,0989	-36,6974	-72,1967	-13,2032	-16,0486	-75,357	28,2358	-40,0748
-0,7	2,11157	-44,0594	-34,6221	-7,84323	-16,1633	-37,1637	-34,6474	-78,6803	-14,6641	-39,9849
-0,6	-5,0658	17,8069	-34,9983	-83,3564	-78,1036	-56,0472	-55,3746	-25,764	-98,8908	8,56759
-0,5	-16,9153	-53,7687	-34,9469	-73,3201	-69,2994	-72,8752	-57,2416	-14,4457	10,8975	-49,8361
-0,4	7,90437	-20,6477	-60,1209	-62,9717	-81,8908	-31,0109	-7,10737	-63,8919	-76,0016	0,589628
-0,3	-56,2013	-47,9037	-47,0831	-84,8878	-19,1627	-27,6572	-15,9823	-60,4558	-55,9325	-21,7978
-0,2	-0,80371	-57,5786	-7,97322	-26,1241	-11,6874	-1,33681	-17,0417	-15,741	0,241642	-39,2894
-0,1	-16,9677	-22,5431	-60,6463	-22,0293	-27,4863	-45,0305	62,4567	-50,7942	-2,85731	21,4469
0	-0,87484	-6,41432	-7,92234	27,7361	15,5396	-20,8811	36,6115	-9,79278	-15,4399	8,31446
0,1	-17,9939	4,36882	36,5608	17,5444	37,9238	50,7836	40,2244	55,0855	48,1354	59,9598
0,2	25,3264	45,1131	45,9897	14,9565	55,5708	69,4646	95,3541	44,1683	51,2475	50,2461
0,3	27,9426	-0,29798	66,4292	75,5224	33,8217	48,5458	42,9369	52,5374	83,8296	52,0475
0,4	121,965	67,6767	54,658	81,4279	84,7257	118,077	129,066	86,7413	54,8034	22,5489
0,5	83,7792	118,952	85,1974	65,7751	22,4482	91,7766	62,3421	136,241	90,5583	84,6531
0,6	116,177	90,2455	121,251	58,0044	129,087	102,571	69,4904	165,986	106,91	100,596
0,7	62,473	93,4742	69,6246	91,9678	97,492	145,286	83,2676	77,3897	55,8068	88,2761
0,8	108,644	113,478	60,8322	48,5878	70,6321	80,257	65,3139	75,1203	62,5025	84,4399
0,9	97,099	64	82,2634	16,2106	70,9757	73,2072	44,8847	54,5947	71,8078	44,2113
1	3,4396	49,321	55,9221	-12,8525	11,1579	-2,22197	-32,0647	13,2678	30,8	17,8447
1,1	-7,74129	-83,4796	-43,5708	-11,9447	-36,5718	15,893	10,88	-21,8318	-18,9409	-62,3596
1,2	-92,497	-86,3932	-69,5324	-41,7909	-62,9659	-84,0075	-82,4729	-119,186	-50,1021	-66,0127
1,3	-174,071	-106,526	-110,5	-93,2711	-109,403	-158,283	-96,6519	-100,401	-103,136	-98,9743
1,4	-125,289	-153,736	-151,807	-121,92	-121,227	-132,112	-155,215	-148,549	-168,703	-124,199
1,5	-165,643	-145,405	-178,521	-180,356	-190,445	-195,095	-142,835	-182,941	-140,122	-189,803
1,6	-152,96	-195,692	-172,943	-208,769	-217,989	-180,164	-225,862	-160,745	-191,657	-169,699
1,7	-181,528	-189,256	-155,48	-156,448	-180,796	-129,252	-187,279	-147,036	-147,122	-163,494
1,9	-99,4935	-136,136	-143,633	-103,095	-101,439	-78,8729	-66,8386	-98,7416	-127,378	-133,647
2	-55,3619	-25,8188	-103,441	-59,2556	-109,945	-34,4751	-87,9867	-66,6048	-51,038	-24,1991

Табл. 1 Результаты измерений

Формулы и табличные значения

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$
 — среднее значение у для каждого \mathbf{x}_{i}

$$s_i^2 = \frac{1}{n-1} \sum_{i=1}^n (y_n - \bar{y})^2$$
 – несмещенная оценка дисперсии для каждого x_i

$$Q = 0.9 -$$
 доверительная вероятность

$$\alpha = \frac{1+Q}{2} = 0.95$$

Границы доверительного интервала мат. ожидания:

 $ar{y} \pm t_{lpha,n-1} \cdot rac{s_i}{\sqrt{n}}$ — нижняя граница доверительного интервала мат. ожидания, где

$$t_{lpha,n-1}=2$$
,31 — коэффициент Стьюдента

Параметрический толерантный

$$\underline{tol} = \overline{y} - s_i \cdot k$$
 – нижний параметрический толерантный предел

$$\overline{tol} = \overline{y} + s_i \cdot k$$
 – нижний параметрический толерантный предел, где

$$k = 2,535$$
 — толерантный множитель

$$g = \frac{s_{max}^2}{\sum_{i=1}^k s_i^2}$$
 – критерий Кохрена

 $g_{\alpha} = 0,0816$ — табличное критическое значение критерия Кохрена для 40 выборок по 10 измерений

Определение характеристик измерений

v	\bar{y}	s_i^2	<u>tol</u>	\overline{tol}	Нижняя граница	Верхняя граница
X	У	s_i	<u> </u>		доверительного интервала	доверительного интервала
-2	23,37	565,6	-36,91	83,66	15,85	30,89
-1,9	15,95	649,5	-48,65	80,56	7,894	24,01
-1,8	-12,51	1277	-103,1	78,10	-23,82	-1,214
-1,7	-3,304	667,5	-68,80	62,19	-11,47	4,864
-1,6	12,12	650,9	-52,55	76,79	4,052	20,18
-1,5	11,29	804,3	-60,59	83,19	2,331	20,26
-1,4	20,19	449,0	-33,51	73,91	13,49	26,89
-1,3	11,36	1135	-74,06	96,79	0,7104	22,02
-1,2	-3,770	772,9	-74,25	66,70	-12,56	5,021
-1,1	9,291	687,6	-57,18	75,77	1,002	17,58
-1	-19,20	431,3	-71,85	33,44	-25,77	-12,63
-0,9	4,023	484,4	-51,77	59,82	-2,936	10,98
-0,8	-29,36	1221	-117,9	59,23	-40,42	-18,31
-0,7	-30,57	522,9	-88,54	27,40	-37,80	-23,33
-0,6	-41,12	1603	-142,6	60,38	-53,78	-28,46
-0,5	-43,17	814,9	-115,5	29,19	-52,20	-34,14
-0,4	-39,51	1114	-124,1	45,11	-50,07	-28,95
-0,3	-43,70	491,0	-99,88	12,46	-50,71	-36,69
-0,2	-17,73	348,6	-65,06	29,59	-23,63	-11,82
-0,1	-16,44	1331	-108,9	76,07	-27,98	-4,904
0	2,68	358,1	-45,28	50,65	-3,296	8,671
0,1	33,25	611,9	-29,44	95,96	25,43	41,08
0,2	49,74	486,5	-6,171	105,6	42,76	56,71
0,3	48,33	597,6	-13,64	110,3	40,60	56,06
0,4	82,16	1152	-3,883	168,2	71,43	92,90
0,5	84,17	960,6	5,602	162,7	74,37	93,97
0,6	106,03	932,6	28,61	183,4	96,37	115,6
0,7	86,50	617,3	23,52	149,4	78,64	94,36
0,8	76,98	428,6	24,49	129,4	70,43	83,52
0,9	61,92	523,3	3,935	119,9	54,69	69,15
1	13,46	725,0	-54,79	81,72	4,94	21,97
1,1	-25,96	973,3	-105,0	53,11	-35,83	-16,10
1,2	-75,49	500,1	-132,1	-18,80	-82,56	-68,42
1,3	-115,1	767,2	-185,3	-44,90	-123,8	-106,3
1,4	-140,2	295,9	-183,8	-96,66	-145,7	-134,8
1,5	-171,1	447,7	-224,7	-117,4	-177,8	-164,4
1,6	-187,6	603,2	-249,9	-125,3	-195,4	-179,8
1,7	-163,7	408,7	-215,0	-112,5	-170,1	-157,3
1,8	-168,7	558,0	-228,6	-108,8	-176,1	-161,2
1,9	-108,9	650,4	-173,5	-44,27	-116,9	-100,8
2	-61,81	931,0	-139,1	15,53	-71,46	-52,16

Табл. 2 Характеристики измерений

Критерий Кохрена — $g=\frac{s_{max}^2}{\sum_{i=1}^k s_i^2}=0,054246$, меньше критического значений => измерения равноточные.

Т.к. измерения равноточные, многократные, характеристики погрешностей измерений неизвестны, то используется МНК, средняя оценка дисперсии вычисляется по формуле

$$s_{\varepsilon}^2 = \frac{1}{k} \sum_{i=1}^k s_{\varepsilon,i}^2$$
,

Последовательная полиномиальная аппроксимация

Степень полинома q=0

 $a = (-18.6924)^T$

 $S_a = (1.7582)$

 $F_p = 76.4858$

 $critical F_p = 2,8259$

Рис. 1 Степень q=0

$$a = (-18.6924 - 27.3569)^{T}$$

$$S_{a} = \begin{pmatrix} 1.75823 & 1.3603 * 10^{-17} \\ 1.3603 * 10^{-17} & 1.2559 \end{pmatrix}$$

$$R_{a} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$F_{p} = 63.1671$$

$$critical F_{p} = 2.8289$$

Рис. 2 Степень q = 1

Степень полинома q=2

$$a = (18.2330 - 27.3569 - 26.3753)^{T}$$

$$S_{a} = \begin{pmatrix} 3.9510 & -1.8032 * 10^{-17} & -1.5726 \\ -1.8032 * 10^{-17} & 1.2559 & 2.2596 * 10^{-17} \\ -1.5727 & 2.2596 * 10^{-17} & 1.1233 \end{pmatrix}$$

$$R_{a} = \begin{pmatrix} 1 & -0.24 & -0.99 \\ -0.24 & 1 & 0.10 \\ -0.99 & 0.10 & 1 \end{pmatrix}$$

$$F_p = 48.5325$$
 $critical F_p = 2.832$

Рис. 3 Степень q = 2

$$a = (18.2330 \quad 22.9609 \quad -26.3753 \quad -19.9832)^T$$

 S_a

$$=\begin{pmatrix} 3.951 & -1.2386*10^{-15} & -1.5726 & 4.8475*10^{-16} \\ -1.2386*10^{-15} & 7.8822 & 7.8284*10^{-16} & -2.6316 \\ -1.5726 & 7.8284*10^{-16} & 1.1233 & -3.0192*10^{-16} \\ 4.8475*10^{-16} & -2.6316 & -3.0192*10^{-16} & 1.0451 \end{pmatrix}$$

$$R_a = \begin{pmatrix} 1 & -0.10 & -0.98 & 0.09 \\ -0.10 & 1 & 0.04 & -1 \\ -0.98 & 0.04 & 1 & -0.03 \\ 0.09 & -1 & -0.03 & 1 \end{pmatrix}$$

$$F_p = 39.5172$$

 $critical F_p = 2.8352$

Рис. 4 Степень q = 3

$$a = (35.47 \quad 22.96 \quad -67.52 \quad -19.98 \quad 11.45)^T$$

 S_a

$$= \begin{pmatrix} 6.2 & -7.82 * 10^{-15} & -6.91 & 2.93 * 10^{-15} & 1.49 \\ -7.82 * 10^{-15} & 7.88 & 1.65 * 10^{-14} & -2.63 & -4.37 * 10^{-15} \\ -6.91 & 1.65 * 10^{-14} & 13.8 & -6.14 * 10^{-15} & -3.55 \\ 2.93 * 10^{-15} & -2.63 & -6.14 * 10^{-15} & 1.05 & 1.62 * 10^{-15} \\ 1.49 & -4.37 * 10^{-15} & -3.55 & 1.62 * 10^{-15} & 9.89 * 10^{-1} \end{pmatrix}$$

$$R_a = \begin{pmatrix} 1 & -0.01 & -0.97 & 0.01 & 0.95 \\ -0.01 & 1 & -0.03 & -1 & 0.04 \\ -0.97 & -0.03 & 1 & 0.02 & -1 \\ 0.01 & -1 & 0.02 & 1 & -0.03 \\ 0.95 & 0.04 & -1 & -0.03 & 1 \end{pmatrix}$$

$$F_p = 36.9297$$

critical $F_p = 2,8259$

Рис. 5 Степень q = 4

$$a = (35.47 \quad 148.39 \quad -67.52 \quad -159.96 \quad 11.45 \quad 30.10)^T$$

	S_a											
6.19	-4.30*10 ⁻¹⁴	-6.92	4.22*10 ⁻¹⁴	1.49	-8.46*10 ⁻¹⁵							
-4.30*10 ⁻¹⁴	24.2	8.14*10 ⁻¹⁴	-20	-2.09*10 ⁻¹⁴	3.94							
-6.92	8.14*10 ⁻¹⁴	13.8	-7.87*10 ⁻¹⁴	-3.55	1.56*10 ⁻¹⁴							
4.22*10 ⁻¹⁴	-21	-7.86*10 ⁻¹⁴	21.5	2*10-14	-4.4							
1.49	-2.09*10 ⁻¹⁴	-3.55	2*10-14	9.89*10 ⁻¹	-3.96*10 ⁻¹⁵							
-8.46*10 ⁻¹⁵	3.94	1.56*10 ⁻¹⁴	-4.4	-3.96*10 ⁻¹⁵	0.945							

	R_a												
1,000	-0,003	-0,971	0,002	0,953	-0,001								
-0,003	1,000	-0,008	-0,997	0,010	0,993								
-0,971	-0,008	1,000	0,005	-0,998	-0,003								
0,002	-0,997	0,005	1,000	-0,006	-0,999								
0,953	0,010	-0,998	-0,006	1,000	0,004								
-0,001	0,993	-0,003	-0,999	0,004	1,000								

$$F_p = 10.6046$$

Рис. 6 Степень q = 5

$$a = (12.62 \quad 148.39 \quad 47.51 \quad -159.96 \quad -71.24 \quad 30.1 \quad 14.52)^T$$

			S_a			
8,46	-1,01E-13	-1,83E+01	8,90E-14	9,67	-1,67E-14	-1,44
-1,01E-13	2,43E+01	3,73E-13	-2,10E+01	-2,30E-13	3,94E+00	3,68E-14
-1,83E+01	3,73E-13	7,12E+01	-3,14E-13	-4,48E+01	5,73E-14	7,24E+00
8,90E-14	-2,10E+01	-3,14E-13	2,15E+01	1,89E-13	-4,40E+00	-2,97E-14
9,67E+00	-2,30E-13	-4,48E+01	1,89E-13	3,06E+01	-3,39E-14	-5,20E+00
-1,67E-14	3,94E+00	5,73E-14	-4,40E+00	-3,39E-14	9,46E-01	5,26E-15
-1,44E+00	3,68E-14	7,24E+00	-2,97E-14	-5,20E+00	5,26E-15	9,13E-01

			R_a			
1,000	0,002	-0,983	-0,001	0,972	0,001	-0,966
0,002	1,000	-0,006	-0,997	0,006	0,993	-0,005
-0,983	-0,006	1,000	0,003	-0,999	-0,002	0,997
-0,001	-0,997	0,003	1,000	-0,003	-0,999	0,003
0,972	0,006	-0,999	-0,003	1,000	0,002	-1,000
0,001	0,993	-0,002	-0,999	0,002	1,000	-0,002
-0,966	-0,005	0,997	0,003	-1,000	-0,002	1,000

$$F_p = 76.4858$$
 $critical F_p = 2,8259$

Рис. 7 Степень q = 6

 $a = (12.62 \quad 197.39 \quad 47.51 \quad -265.97 \quad -71.24 \quad 86.12 \quad 14.5 \quad -8.32)^T$

	S_a											
8,46E+00	-4,06E-13	-1,83E+01	7,48E-13	9,67E+00	-3,65E-13	-1,44E+00	5,18E-14					
-4,06E-13	5,52E+01	1,31E-12	-8,78E+01	-7,62E-13	3,92E+01	1,17E-13	-5,24E+00					
-1,83E+01	1,31E-12	7,12E+01	-2,35E-12	-4,48E+01	1,13E-12	7,24E+00	-1,60E-13					
7,48E-13	-8,78E+01	-2,35E-12	1,66E+02	1,34E-12	-8,08E+01	-2,03E-13	1,13E+01					
9,67E+00	-7,62E-13	-4,48E+01	1,34E-12	3,06E+01	-6,42E-13	-5,20E+00	9,03E-14					
-3,65E-13	3,92E+01	1,13E-12	-8,08E+01	-6,42E-13	4,13E+01	9,67E-14	-6,00E+00					

-1,44E+00	1,17E-13	7,24E+00	-2,03E-13	-5,20E+00	9,67E-14	9,13E-01	-1,36E-14
5,18E-14	-5,24E+00	-1,60E-13	1,13E+01	9,03E-14	-6,00E+00	-1,36E-14	8,91E-01

	$R_{\rm a}$										
1,0000	0,0001	-0,9830	0,0004	0,9722	-0,0006	-0,9656	0,0006				
0,0001	1,0000	-0,0003	-0,9968	0,0003	0,9928	-0,0003	-0,9898				
-0,9830	-0,0003	1,0000	-0,0010	-0,9985	0,0014	0,9965	-0,0016				
0,0004	-0,9968	-0,0010	1,0000	0,0009	-0,9992	-0,0009	0,9980				
0,9722	0,0003	-0,9985	0,0009	1,0000	-0,0014	-0,9996	0,0016				
-0,0006	0,9928	0,0014	-0,9992	-0,0014	1,0000	0,0013	-0,9997				
-0,9656	-0,0003	0,9965	-0,0009	-0,9996	0,0013	1,0000	-0,0015				
0,0006	-0,9898	-0,0016	0,9980	0,0016	-0,9997	-0,0015	1,0000				

$$F_p = 1.8971$$

$$critical F_p = 2.8500$$

Рис. 8 Степень q = 7

Гипотеза о степени полинома прошла проверку, как только созданная функция уложилась в границы доверительных интервалов.

Степень полинома q = k - 1 = 40

Характеристики коэффициентов получаются очень объёмными:

Рис. 9 Матрицы, характеризующие полином степени q = 40

Полная таблица будет идти вместе с файлом.

Число обусловленности матрицы S_a также очень большое:

$$cond(S_a) = 2.63 \cdot 10^{32}$$

Рис. 10 Степень полинома q=40

Аппроксимация при большой степени полинома очевидно уступает по точности аппроксимации полиномом меньшей степени, что может быть объяснено слишком большой обусловленностью матрицы S_a , для которой $cond(S_a) = 2.63 \cdot 10^{32}$, тогда как для $q = 7 \, cond(S_a) = 2.4 \cdot 10^5$.

В итоге можно сделать вывод, что бездумное повышение степени полинома в погоне за увеличением точности аппроксимации является неэффективным и одним из наименее точных способов решить задачу.

Аппроксимация другими способами

Аппроксимация прямой

Рис. 11 Линейная аппроксимация разными способами

Полученные функции:

regress: $y = -27,3569 \cdot x - 18,6924$

robust: $y = -20.2670 \cdot x - 21.2786$

polyfit: $y = -27,3569 \cdot x - 18,6924$

ridge: $y = -26.8885 \cdot x - 18.6924$

Из графика и уравнений видно, что методы regress и polyfit дали одинаковый результат, ridge довольно близок к ним, а robust немного отличается от остальных. Однако сделать вывод какой метод приближает функцию лучше не представляется возможным, потому что изначальная зависимость нелинейная.

Полиномиальная аппроксимация

Рис. 12 Аппроксимации с помощью polyfit при q=7

Аппроксимация полиномом 7 степени является приемлемой по точности, так как большинство точек попадают в доверительный интервал.

Попробуем увеличить степень.

Рис. 13 Аппроксимации с помощью polyfit при q=8

Полином 8 степени аппроксимирует функцию немного точнее.

При увеличении степени полинома вид аппроксимирующей кривой не изменяется примерно до 25 степени, а дальше становится все ближе и ближе к средним точкам, то есть дает практически тот результат, что получится при простейшей интерполяции. В связи с этим можно сделать вывод, аппроксимация полиномом 8-й степени является оптимальной.

Кусочная полиномиальная аппроксимация

Рис. 14 Линейная интерполяция (interp)

Рис. 15 Интерполирование по Эрмиту

Рис. 16 Сплайн-интерполяция

Среди методов интерполяции в данном случае предпочтительнее интерполяция по Эрмиту либо сплайнами, они обе довольно гладкие.

Нелинейная аппроксимация

Для нелинейной аппроксимации на Python будет использоваться scipy.optimize.curve fit(). Нелинейная функция:

$$f(x) = (\sin(\alpha x) + \beta)(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0)$$

Степень берётся как и в полиномиальной аппроксимации q = 7.

 $initial_guess = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$ — начальный вектор коэффициентов используемый для аппроксимации

Рис. 17 Нелинейная аппроксимация

Нелинейная аппроксимация ведёт себя схожим образом с полиномиальной.

Вывод

В ходе выполнения работы была проведена аппроксимация МНК с проверкой гипотезы о степени полинома, были исследованы ее параметры. Первым прошедшим гипотезу по критерию Фишера оказался полином степени д = 7, он был сравнен с полиномом степени q = k-1 = 40. Последний же полином оказался катастрофически неточным. Подобное поведения объясняется плохой матрицы X^TX , обращаемой в обусловленностью процессе получения коэффициентов полинома. Были произведены аппроксимации линиями, результаты которых являются малопригодными вследствие явно нелинейной природы исходных данных. Результаты кусочно-полиномиальных интерполяций хотя и оказались намного лучше линейных, но все равно были недостаточно точны, так как исходные данные были получены многократными измерениями с погрешностью. Принимая во внимание такой фактор как трудоемкость вычислений, можно сказать, что оптимальным будет вариант с интерполяцией сплайнами или интерполяцией полиномами Эрмита, так как эти методы являются малозатратными и в то же время позволяют повторить вид исходной зависимости. Исходя из желания получить наиболее точное решение, можно сделать вывод что аппроксимации многократных экспериментальных измерений с погрешностью лучше всего получать с помощью МНК, ОМНК или методов нелинейной регрессии, использующими в качестве нелинейной функции зависимость, специально подобранную для конкретной ситуации. Какой метод выбирать для решения конкретной задачи – вопрос, не имеющий однозначного ответа, так как в подобных ситуациях всегда необходимо находить баланс между точностью и трудоемкостью вычисления решения.

Приложение

```
import matplotlib.pyplot as plt
import openpyxl
matplotlib.use('TkAgg')
wb = openpyxl.Workbook()
sheet = wb.active
data text = open('Task 2b.txt', 'r')
nx = int(re.findall(r'\d+', data text.readline().strip())[0])
ny = int(re.findall(r'\d+', data text.readline().strip())[0])
data text.readline().strip()))
    x points.append(line[0])
    Y.append(line[1:])
data text.close()
ucis = []
ltols = []
utols = []
    avg_y.append(avg_yi)
    sall.append(variance)
    lcis.append(lci)
    ucis.append(uci)
    ltols.append(ltol)
    utols.append(utol)
se2 = 1 / nx * sum(sall) # средняя оценка дисперсии
q = 0 # начальная степень полинома
```

```
while Fp > scipy.stats.f.ppf(0.95, nx - q - 1, ny - 1):
X = np.vander(x_points, N=q + 1, increasing=True) # матрица X
          Fp = 1 / (nx - q - 1) * ny * se2 ** (-1) * (X @ a - np.array(avg y)).T @ (X @ a) + (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (-1) * (
a - np.array(avg y))
                               sheet.cell(row=i + len(Sa), column=j + 1, value=Ra[i][j])
          wb.save('sa.xlsx')
          approximation = X @ a
          plt.scatter(x points, avg y, label='Средние точки', s=5)
          plt.plot(x points, utols, label='Верхний толерантный предел')
          plt.plot(x points, lcis, label='Нижняя граница доверительного интервала')
          plt.show()
                     y.append(Y[j][i])
                     plt.scatter(x points, y, color='red', s=2, label='Измерения')
                     plt.scatter(x points, y, color='red', s=2)
plt.scatter(x points, avg y, label='Точки аппроксимации', s=7, color='black')
regress = scipy.stats.linregress(x points, avg y)
print(f'regress: y = {regress.slope} * x + ({regress.intercept}) ')
          approximation.append(regress.slope * x + regress.intercept)
plt.plot(x points, approximation, label='regress', color='blue')
robust = scipy.stats.siegelslopes(avg y, x points)
print(f'robust: y = {robust.slope} * x + ({robust.intercept}) ')
approximation = []
          approximation.append(robust.slope * x + robust.intercept)
plt.plot(x_points, approximation, label='robust', color='orange')
polyfit = np.polynomial.polynomial.Polynomial.fit(x points, avg y, 1)
print(polyfit)
approximation = []
 for x in x_points:
         approximation.append(polyfit(x))
```

```
plt.plot(x points, approximation, label='polyfit', linestyle='dashed', dashes=(5,
model ridge = Ridge(alpha=1.0)
model_ridge.fit(np.array(x_points).reshape(-1, 1), avg_y)
approximation = model_ridge.predict(np.array(x_points).reshape(-1, 1))
plt.plot(x_points, approximation, label='ridge', color='green')
plt.legend()
plt.show()
polyfit = np.polynomial.polynomial.Polynomial.fit(x points, avg y, 40)
approximation = []
    approximation.append(polyfit(x))
plt.plot(x_points, approximation, label='polyfit')
plt.plot(x points, lcis, label='Нижняя граница доверительного интервала')
plt.show()
x = mooth = np.linspace(-2, 2, 200)
approximation = np.interp(x smooth, x points, avg y)
plt.plot(x smooth, approximation)
plt.plot(x points, lcis, label='Нижняя граница доверительного интервала')
plt.plot(x points, ucis, label='Верхняя граница доверительного интервала')
plt.show()
approximation = scipy.interpolate.PchipInterpolator(np.array(x points),
np.array(avg y))
x = np.linspace(-2, 2, 200)
plt.plot(x smooth, approximation(x smooth))
plt.plot(x_points, lcis, label='Нижняя граница доверительного интервала')
plt.plot(x points, ucis, label='Верхняя граница доверительного интервала')
plt.show()
approximation = scipy.interpolate.CubicSpline(x points, avg y)
x = np.linspace(-2, 2, 200)
plt.plot(x smooth, approximation(x smooth))
plt.plot(x_points, lcis, label='Нижняя граница доверительного интервала') plt.plot(x_points, ucis, label='Верхняя граница доверительного интервала')
plt.show()
params = curve fit(model func, x points, avg y, p0=initial guess)[0]
print(params)
alpha, beta, a7, a6, a5, a4, a3, a2, a1, a0 = params
x_{smooth} = np.linspace(-2, 2, 200)
y = model_func(x_smooth, alpha, beta, a7, a6, a5, a4, a3, a2, a1, a0)
plt.plot(x_smooth, y)
plt.plot(x_points, lcis, label='Нижняя граница доверительного интервала')
plt.plot(x points, ucis, label='Верхняя граница доверительного интервала')
plt.show()
```