Variance, Bias, Generalization, etc.

Loss, Training, Cost

The most typical Loss we've been using so far

$$J(\theta) = \frac{1}{n} \sum_{i} (y^{(i)} - h_{\theta}(x^{(i)}))^{2}$$

- How did we find it?
- Maximum Likelihood Estimation
- $\max P(y | x; \theta)$: use the negative log-likelihood as the training loss

How to choose $\phi(x)$?

How to optimize over $\phi(x)$

Underfitting High Bias

$$\phi(x) = [1, x]$$

Just right

$$\phi(x) = [1, x, x^2]$$

Overfitting High Variance

$$\phi(x) = [1, x, x^2, x^3, \dots]$$

Variance Bias Trade-off

Error as a function of complexity

How to choose $\phi(x)$?

How to optimize over $\phi(x)$

Underfitting High Bias

 J_{test} and J_{train} are big

Just right

Overfitting High Variance

J_{test} is big, J_{train} is small

Bias ≈ what you can get with infinite data

How to choose $\phi(x)$?

How to optimize over $\phi(x)$

Just right

 J_{test} and J_{train} are big

 J_{test} is big, J_{train} is small

Machine Learning workflow - Cross Validation

Decomposition of Test Error

Test error can be written as

$$J_{test}(\theta) \sim Bias^2 + Variance$$

Decomposition of Test Error

See derivation in Section 8.1.1

- Draw a training dataset $S=\{x^{(i)},y^{(i)}\}_{i=1}^n$ such that $y^{(i)}=h^*(x^{(i)})+\xi^{(i)}$ where $\xi^{(i)}\sim\mathcal{N}(0,\sigma^2)$
- Train a model on the dataset, denoted by \hat{h}_S
- Take a test example (x,y) such that $y=h^*(x)+\xi$ where $\xi\sim\mathcal{N}(0,\sigma^2)$ and measure the expected test error (averaged over the random draw of the training set S and the randomness of ξ)

$$MSE(x) = \mathbb{E}_{S,\xi} \left[(y - \hat{h}_S(x))^2 \right]$$

Decomposition of Test Error for square loss

See derivation in Section 8.1.1

$$MSE(x) = \mathbb{E}\left[(y - \hat{h}_S(x))^2 \right]$$

$$= \mathbb{E}\left[(\xi + (h^*(x) - \hat{h}_S(x)))^2 \right]$$

$$= \mathbb{E}\left[\xi^2 \right] + \mathbb{E}\left[(h^*(x) - \hat{h}_S(x))^2 \right]$$

$$= \sigma^2 + \mathbb{E}\left[(h^*(x) - \hat{h}_S(x))^2 \right]$$

$$= \sigma^2 + (h^*(x) - h_{\text{avg}}(x))^2 + \mathbb{E}\left[(h_{\text{avg}}(x) - \hat{h}_S(x))^2 \right]$$

$$= \underbrace{\sigma^2}_{\text{unavoidable}} + \underbrace{(h^*(x) - h_{\text{avg}}(x))^2}_{\text{bias}^2} + \underbrace{\text{var}(\hat{h}_S(x))}_{\text{variance}}$$

Solving Bias and Variance Problems

- High Variance:
 - Problem: Lack of data, and model is too expressive
 - Solution: More data, and simpler model

Solving Bias and Variance Problems

- High Bias:
 - Problem: Lack of expressivity (doesn't depend on data)
 - Solution: Make model more complex

Regularization

Force fitting parameters to be smaller - 'shrink' hypothesis class

$$h_{\theta}(x) = 100.2 + 50.6x + 70.4x^2 + 1345x^3 + 200.3x^4$$

$$J_{reg}(\theta) = J(\theta) + \lambda R(\theta)$$

L1 Regularization

$$R(\theta) = \|\theta\|_1$$

$$h_{\theta}(x) = 5.1x + 7.2x^2 + 3.3x^4$$

Less coefficients

L2 Regularization

$$R(\theta) = \|\theta\|_2$$

$$h_{\theta}(x) = .1 + 5.2x + 7.4x^2 + .05x^3 + 2.3x^4$$

Smaller coefficients

Regularization

Force fitting parameters to be smaller - 'shrink' hypothesis class

Regularization

Force fitting parameters to be smaller - 'shrink' hypothesis class

$$J_{reg}(\theta) = J(\theta) + \lambda R(\theta)$$

- Other regularizations:
 - $R(\theta) = \|\theta\|_0$ enforces sparsity
 - Loss related to smoothness or equation known about problem

Double Descent

Model-wise

Double Descent

Double Descent Why?

- Existing algorithms (e.g. linear models) underperform dramatically when #params = #data
- Norm of θ is big when #params = #data

Double Descent

Regularization solves the problem with large parameters

Double Descent Why?

- Existing algorithms (e.g. linear models) underperform dramatically when #params = #data
- Norm of θ is big when #params = #data

