Matrices

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

Trace, matrices symétriques et antisymétriques

QCOP MAT.1

Soit $n \in \mathbb{N}^*$. Soient $A, B, C \in M_n(\mathbb{K})$.

- Définir Tr(A).
- ightharpoonup Montrer que Tr(AB) = Tr(BA).
- (a) Montrer que

$$Tr(ABC) = Tr(BCA) = Tr(CAB).$$

- **(b)** A-t-on Tr(ABC) = Tr(CBA)?
- (c) Soit $P \in GL_n(\mathbb{K})$ telle que

$$B = P^{-1}AP$$
.

Déterminer Tr(B).

QCOP MAT.2

Soit $n \in \mathbb{N}^*$. Soit $A \in GL_n(\mathbb{K})$.

- \blacksquare Définir « $A \in GL_n(\mathbb{K})$ ».
- Montrer que

$$A^{\top} \in \mathsf{GL}_n(\mathbb{K}) \ \ \mathsf{et} \ \ \left(A^{\top}\right)^{-1} = \left(A^{-1}\right)^{\top}.$$

% Montrer que

$$A \in S_n(\mathbb{K}) \iff A^{-1} \in S_n(\mathbb{K}).$$

QCOP MAT.3

Soit $n \in \mathbb{N}^*$.

- \blacksquare Définir les espaces $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$.
- \mathcal{M} Soit $M \in M_n(\mathbb{K})$. Calculer

$$(M + M^{\top})^{\top}$$
 et $(M - M^{\top})^{\top}$.

- (a) Montrer que toute matrice est somme d'une matrice symétrique et d'une matrice antisymétrique.
 - **(b)** Montrer que

$$S_n(\mathbb{K}) \cap A_n(\mathbb{K}) = \{0_n\}.$$

QCOP MAT.4

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{K})$.

- Soit $(i,j) \in [1, n]^2$. Donner l'expression du coefficient d'indice (i,j) de la matrice AB.
- Montrer que

$$(AB)^{\top} = B^{\top}A^{\top}.$$

- \mathbf{X} On suppose que $A, B \in S_n(\mathbb{K})$.
 - (a) A-t-on $AB \in S_n(\mathbb{K})$?
 - (b) Déterminer une condition nécessaire et suffisante pour que $AB \in S_n(\mathbb{K})$.

Inversibilité

QCOP MAT.5

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{K})$.

 \blacksquare Soit $X \in M_{n,1}(\mathbb{K})$. Calculer AX.

Montrer que

$$A \in \mathsf{GL}_n(\mathbb{K}) \implies \mathsf{Ker}(A) = \{0_{n,1}\}.$$

On admettra la réciproque.

% On suppose que *A* est diagonale.

(a) Montrer que $A \in GL_n(\mathbb{K})$ si, et seulement si, tous ses coefficients sont non nuls.

(b) Donner, dans ce cas, A^{-1} .

QCOP MAT.6

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{K})$.

■ Donner la définition de « A est inversible dans $M_n(\mathbb{K})$ ».

Soit $p \in \mathbb{N}$. Soient $a_0, \dots, a_p \in \mathbb{K}$. On pose

$$P := \sum_{k=0}^{p} a_k X^k \text{ et } P(A) := \sum_{k=0}^{p} a_k A^k.$$

On suppose que 0 n'est pas racine de P.

(a) Que dire du coefficient a_0 ?

(b) On suppose que $P(A) = 0_n$. Montrer que $A \in GL_n(\mathbb{K})$ et déterminer A^{-1} .