Author:

Magdalena Szymkowiak

magdalena.szymkowiak@put.poznan.pl

Kalman filter

1 Motivation

1.1 Introduction

[Rudolf Emil Kalman (1930–2016) a Hungarian-born, American electrical engineer and mathematician] [Richard S. Bucy (born 1935) an American mathematician]

References

- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME (American Society of Mechanical Engineers), Journal of Basic Engineering, pp. 35–45, 1960
- Kalman, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory, Transaction of the ASME, Journal of Basic Engineering, pp. 95–108, 1961
- P. S. Maybeck, *Stochastic models, estimation and control. Volume 1*, Department of Electrical and Computer Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base Ohio, 1979
- R. Negenborn, Robot Localization and Kalman Filters. On finding your position in a noisy world, Institute of Information and Computing Sciences in partial fulfilment of the requirements for the degree of Master of Science, specialized in Intelligent Systems, 2003
- G. Welch, G. Bishop, An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill Department of Computer Science Chapel Hill, NC 27599-3175, 2006

Goal

Kalman filter KF – a recursive algorithm solving the data filtering problem

- integrates
 - all available measured data (received from sensors)
 - prior knowledge about a state transition and measuring models
- produces an estimate of required states (variables)
- minimizes the mean of the squared errors

Application

- radar tracking of airborne targets
- control systems (with full state measurement)
- tracing moving objects (on the basis of limited observations)
- localization (data fusion) and navigation (autopilot)
- mapping the environment (on the basis of noisy data)

1.2 Assumption

Basic assumption

- $\{X(t)\}$ is an *n*-dimensional Gauss-Markov sequence
 - all states distributions are Gaussian ($\mathbb{S} = \mathbb{R}$ is uncountable)
 - sequence $\{X(t)\}$ has Markov properties
- KF is a Bayes filter with given
 - an initial state prior distribution $\mathbf{X}(t_0)$
 - state transition model $\mathbf{X}(t_k)/\mathbf{X}(t_{k-1})$
 - measurement model $\mathbf{Z}(t_k)/\mathbf{X}(t_k)$
- state transition model and measurement model are linear

Normal (Gaussian) distribution $X \sim N(\mu, \sigma)$

Parameters

$$\mu \in \mathbb{R}, \sigma \in \mathbb{R}_+$$

Probability density function pdf

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 for $x \in (-\infty, +\infty)$

Expectation

$$EX = \mu$$

For $N(\mu, \sigma)$, $EX = \mu$ is the expected value (expected state).

Variance, standard deviation

$$D^2X = \sigma^2$$
, $DX = \sigma$

Variance σ^2 and standard deviation σ are measures of uncertainty! Smaller σ^2 (so σ), smaller uncertainty of the expected state!

We assume that

• $\{\mathbf{X}(t)\}$ is an n-dimensional Gauss-Markov sequence so for each time-step $t_k \in \mathbb{T}$ $\mathbf{X}(t_k) = \left[X_1(t_k), X_2(t_k), ..., X_n(t_k)\right]^T \sim N_n(\pmb{\mu}_k, \pmb{\Sigma}_k) \text{ where }$

$$\mathbf{X}(t_k) = [X_1(t_k), X_2(t_k), ..., X_n(t_k)]^T \sim N_n(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \text{ where}$$

$$\forall_{i=1}^n \quad X_i(t_k) \sim N(\mu_{k_i}, \sigma_{k_i})$$

so $\boldsymbol{\mu}_k = [\mu_{k_1}, \mu_{k_2}, ..., \mu_{k_n}]^T$ is the **expected value (expected state)**

$$\text{and}\quad \boldsymbol{\Sigma}_k = \left[\begin{array}{ccccc} \sigma_{k_1}^2 & \sigma_{k_{12}} & \dots & \sigma_{k_{1n}} \\ \sigma_{k_{21}} & \sigma_{k_2}^2 & \dots & \sigma_{k_{2n}} \\ \dots & \dots & \dots & \dots \\ \sigma_{k_{n1}} & \sigma_{k_{n2}} & \dots & \sigma_{k_n}^2 \end{array} \right] \text{ is a measure of uncertainty !}$$

Remark 1. Smaller diagonal elements of $\Sigma_{\mathbf{X}}$, smaller uncertainty of the expected state!

For 1-dimensional Normal variable

- $X \sim N_1(\mu, \Sigma)$ denotes $X \sim N_1(\mu, \sigma^2)$
- $X \sim N_1(\mu, \Sigma) \Leftrightarrow X \sim N(\mu, \sigma)$

•
$$pdf$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

For 2-dimensional normal variable $\mathbf{X} = (X_1, X_2) \sim N_2(\boldsymbol{\mu}_{\mathbf{X}}, \ \boldsymbol{\Sigma}_{\mathbf{X}})$

•
$$X_1 \sim N(\mu_1, \ \sigma_1), \ X_2 \sim N(\mu_2, \ \sigma_2) \ \text{and} \ \rho = \frac{Cov(X_1 \ X_2)}{\sigma_1 \sigma_2}$$

$$\bullet \ \boldsymbol{\mu}_{\mathbf{X}} = \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right] \,, \, \boldsymbol{\Sigma}_{\mathbf{X}} = \left[\begin{array}{cc} \sigma_1^2 & Cov(X_1 \ X_2) \\ Cov(X_2 \ X_1) & \sigma_2^2 \end{array} \right] = \left[\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{array} \right]$$

•
$$pdf$$

$$f_{\mathbf{X}}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

Properties of Expectation and (Co)Variance

• for 1-dimmensional random variables X, Y

e1
$$E(aX + b) = aE(X) + b$$

d1 $D^2(aX + b) = a^2D^2(X) \Rightarrow D^2(X + b) = D^2(X)$
e3 $E(X + Y) = EX + EY$

• for INDEPENDENT 1-dimmensional random variables X, Y

$$i2 D^2(X+Y) = D^2X + D^2Y$$

• for random vector **X** with $\mu_{\mathbf{X}} = E(\mathbf{X})$ and $\Sigma_{\mathbf{X}} = Cov(\mathbf{X} \ \mathbf{X}^T)$

n1
$$E(\mathbf{AX} + \mathbf{b}) = \mathbf{A}E(\mathbf{X}) + \mathbf{b} = \mathbf{A}\boldsymbol{\mu}_{\mathbf{X}} + \mathbf{b}$$

n2
$$\Sigma_{AX+b} = A\Sigma_X A^T \quad \Rightarrow \quad \Sigma_{X+b} = \Sigma_X$$

n3 for *n*-dimensional Gaussian random vector $\mathbf{X} \sim N_n(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}}) \boldsymbol{A}\mathbf{X} + \mathbf{b} \sim N_n(\boldsymbol{A}\boldsymbol{\mu}_{\mathbf{X}} + \mathbf{b}, \boldsymbol{A}\boldsymbol{\Sigma}_{\mathbf{X}}\boldsymbol{A}^T)$

ullet for two random vectors ${f X}$ and ${f Y}$

n4
$$E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$$

ullet for two INDEPENDENT random vectors ${f X}$ and ${f Y}$

n5
$$\Sigma_{X+Y} = \Sigma_X + \Sigma_Y$$

• for two INDEPENDENT *n*-dimensional Gaussian random vectors $\mathbf{X} \sim N_n(\boldsymbol{\mu}_{\mathbf{X}}, \ \boldsymbol{\Sigma}_{\mathbf{X}})$,

$$\mathbf{Y} \sim N_n(\boldsymbol{\mu}_{\mathbf{Y}}, \ \boldsymbol{\Sigma}_{\mathbf{Y}})$$

n6
$$\mathbf{X} + \mathbf{Y} \sim N_n(\boldsymbol{\mu}_{\mathbf{X}} + \boldsymbol{\mu}_{\mathbf{Y}}, \ \boldsymbol{\Sigma}_{\mathbf{X}} + \boldsymbol{\Sigma}_{\mathbf{Y}})$$

Moreover, we assume that

- $\{\mathbf{Z}(t)\}$ is a set of m-dimensional noisy measurements
- $\{\mathbf{U}(t)\}\$ is an optional set of l-dimensional control inputs

Methodology

We try to **estimate distribution** of $\mathbf{X}(t_k)/\mathbf{X}(t_{k-1})$ using, determined at each time-step t_k

• linear state transition recursive equation

$$\mathbf{x}_k = \mathbf{A} \ \mathbf{x}_{k-1} + \mathbf{B} \ \mathbf{u}_{k-1} + \mathbf{w}_{k-1}$$

• linear measurement equation

$$\mathbf{z}_k = C \ \mathbf{x}_k + \mathbf{v}_k$$

2 Kalman filter KF

Linear equation – deterministic part

There is a deterministic part in

• linear state transition recursive equation

$$\mathbf{x}_k = \mathbf{A} \ \mathbf{x}_{k-1} + \mathbf{B} \ \mathbf{u}_{k-1} + \mathbf{w}_{k-1}$$

• linear measurement equation

$$\mathbf{z}_k = \mathbf{C} \ \mathbf{x}_k + \mathbf{v}_k$$

- A is $n \times n$ -dimensional transition matrix relating
 - prior state \mathbf{x}_{k-1}
 - to current state \mathbf{x}_k
- B is an optional $n \times l$ -dimensional control input matrix relating
 - previous optional control input \mathbf{u}_{k-1}
 - to current state \mathbf{x}_k
- C is $m \times n$ -dimensional measurement matrix relating
 - current state \mathbf{x}_k
 - to current measurement \mathbf{z}_k
- in practice matrices A, B, C can change with each time-step t_k , but here are assumed to be constant

Linear equation - random part

There is a random part in

• linear state transition recursive equation

$$\mathbf{x}_k = \mathbf{A} \ \mathbf{x}_{k-1} + \mathbf{B} \ \mathbf{u}_{k-1} + \mathbf{w}_{k-1}$$

linear measurement equation

$$\mathbf{z}_k = C \ \mathbf{x}_k + \mathbf{v}_k$$

- \mathbf{w}_{k-1} is a **previous state** of *n*-dimensional **process noise** $\mathbf{W}(t_{k-1}) \sim N_n(\mathbf{0}, \mathbf{Q})$ representing *n*-dimensional **zero-mean white Gaussian noise** $\{\mathbf{W}(t)\}$
- \mathbf{v}_k is a current state of m-dimensional measurement noise $\mathbf{V}(t_k) \sim N_m(\mathbf{0}, \mathbf{R})$ representing m-dimensional zero-mean white Gaussian noise $\{\mathbf{V}(t)\}$
- in practice matrices Q and R can change with each time-step t_k , but here are assumed to be constant

Stationary zero-mean white Gaussian noise

So $\{\mathbf{W}(t)\}\$ and $\{\mathbf{V}(t)\}\$ are

- independent (of each other)
- stationary
- respectively, n-dimensional and m-dimensional, zero-mean white Gaussian noises
- $\mathbf{W}(t_k) \sim N_n(\mathbf{0}, \mathbf{Q})$ for each time-step $t_k \in \mathbb{T}$ and
- for any different time-steps $t_i, t_j \in \mathbb{T}$, $\mathbf{W}(t_i), \mathbf{W}(t_j)$ are pairwise independent
- $\mathbf{V}(t_k) \sim N_m(\mathbf{0}, \mathbf{R})$ for each time-step $t_k \in \mathbb{T}$ and
- for any different time-steps $t_i, t_j \in \mathbb{T}$, $\mathbf{V}(t_i), \mathbf{V}(t_j)$ are pairwise independent

Bayes filter cycle

Operations of Bayes estimation filter

- INITIALIZATION a given initial prior distribution $\mathbf{X}(t_0)$ of state \mathbf{x}_0
- PREDICTION time-step update
 - having old prior distribution $\mathbf{X}(t_{k-1})/\mathbf{Z}(t_{1:k-1})$ of state \mathbf{x}_{k-1} given measurements $\mathbf{z}_{1:k-1}$ (and optionally, distribution $\mathbf{U}(t_{1:k-1})$ of control inputs $\mathbf{u}_{1:k-1}$)
 - using state transition model
 - we obtain predicted distribution $\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k-1})$ of predicted state \mathbf{x}_k given measurements $\mathbf{z}_{1:k-1}$
- CORRECTION measurement update
 - given predicted distribution $\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k-1})$
 - using a measurement model
 - we obtain corrected posterior distribution $\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k})$ of state \mathbf{x}_k given measurements $\mathbf{z}_{1:k}$

Operations of KF estimation

- INITIALIZATION a given initial prior distribution $\mathbf{X}(t_0) \sim N_n(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ of state \mathbf{x}_0
- PREDICTION time-step update
 - having prior distribution $\mathbf{X}(t_{k-1})/\mathbf{Z}(t_{1:k-1}) \sim N_n(\boldsymbol{\mu}_{k-1}, \boldsymbol{\Sigma}_{k-1})$ of state \mathbf{x}_{k-1} given measurements $\boldsymbol{z}_{1:k-1}$

(and optionally, distribution $U(t_{1:k-1})$ of control inputs $u_{1:k-1}$)

- using linear state transition recursive equation $\mathbf{x}_k = A \mathbf{x}_{k-1} + B \mathbf{u}_{k-1} + \mathbf{w}_{k-1}$
- we obtain predicted distribution $\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k-1}) \sim N_n(\boldsymbol{\mu}_k^-, \boldsymbol{\Sigma}_k^-)$ of predicted state \mathbf{x}_k given measurements $\boldsymbol{z}_{1:k-1}$
- CORRECTION measurement update
 - given predicted distribution $\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k-1})$
 - using linear measurement equation $\mathbf{z}_k = \mathbf{C} \ \mathbf{x}_k + \mathbf{v}_k$
 - we obtain posterior distribution $\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k}) \sim N_n(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ of state \mathbf{x}_k given measurements $\boldsymbol{z}_{1:k}$

INITIALIZATION, PREDICTION, CORRECTION

INITIALIZATION – prior distribution

- $\mathbf{X}(t_{k-1})/\mathbf{Z}(t_{1:k-1}) \sim N_n(\boldsymbol{\mu}_{k-1}, \boldsymbol{\Sigma}_{k-1})$
- $\bullet \ \mu_{k-1} = \hat{\mathbf{x}}_{k-1}$
- $\Sigma_{k-1} = P_{k-1}$

at t_0 , given initial distribution $\mathbf{X}(t_0) \sim N_n(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ of state \mathbf{x}_0

PREDICTION - linear state transition recursive equation

•
$$\mathbf{x}_k = A \mathbf{x}_{k-1} + B \mathbf{u}_{k-1} + \mathbf{w}_{k-1}$$
, where $\mathbf{W}(t_{k-1}) \sim N_n(\mathbf{0}, \mathbf{Q})$

predicted distribution

- $\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k-1}) \sim N_n(\boldsymbol{\mu}_k^-, \boldsymbol{\Sigma}_k^-)$
- $\bullet \ \boldsymbol{\mu}_k^- = \hat{\mathbf{x}}_k^- = \boldsymbol{A}\hat{\mathbf{x}}_{k-1} + \boldsymbol{B}\mathbf{u}_{k-1}$
- $\bullet \ \boldsymbol{\Sigma}_{k}^{-} = \boldsymbol{P}_{k}^{-} = \boldsymbol{A}\boldsymbol{P}_{k-1}\boldsymbol{A}^{T} + \boldsymbol{Q}$

CORRECTION – linear measurement equation

- $\mathbf{z}_k = \mathbf{C} \ \mathbf{x}_k + \mathbf{v}_k$, where $\mathbf{V}(t_k) \sim N_m(\mathbf{0}, \mathbf{R})$
- measurement likelihood $N_m(\mathbf{z}_k, \mathbf{R})$

posterior distribution

•
$$\mathbf{X}(t_k)/\mathbf{Z}(t_{1:k}) \sim N_n(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Kalman gain – an $n \times m$ -dimensional matrix $\boldsymbol{K}_k = \boldsymbol{P}_k^- \boldsymbol{C}^T \left(\boldsymbol{C} \boldsymbol{P}_k^- \boldsymbol{C}^T + \boldsymbol{R} \right)^{-1} \text{ allows us to determine}$

•
$$\boldsymbol{\mu}_k = \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + \boldsymbol{K}_k \left(\mathbf{z}_k - \boldsymbol{C} \hat{\mathbf{x}}_k^- \right)$$

•
$$\Sigma_k = P_k = (I - K_k C) P_k^-$$

 K_k is a factor that minimizes posterior error covariance Σ_k (minimizes uncertainty of the posterior state!).

Posterior state estimate:

$$\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + \boldsymbol{K}_k(\mathbf{z}_k - \boldsymbol{C}\hat{\mathbf{x}}_k^-)$$

- $\mathbf{z}_k C\hat{\mathbf{x}}_k^-$ the measurement innovation (the residual) - the difference between the actual measurement and the predicted measurement
- Kalman gain $K_k = \frac{P_k^- C^T}{CP_k^- C^T + R} = \frac{P_k^- C^T}{CP_k^- C^T + R}$

 \boldsymbol{K}_k is a weight of FILTERING influence on state estimate

- if covariance of measurement noise $R \to 0$ (measurements are reliable) then $K_k \to C^{-1}$ Kalman gain K_k has stronger influence on the residual
 - the actual measurement z_k is trusted more and more
 - the predicted measurement $C\hat{\mathbf{x}}_k^-$ is trusted less and less
- ullet if covariance of prediction errors $m{P}_k^- = m{\Sigma}_k^- o 0$ (correction is reliable) then $m{K}_k o 0$

Kalman gain K_k has weaker influence on the residual

- the actual measurement \mathbf{z}_k is trusted less and less
- the predicted measurement $C\hat{\mathbf{x}}_k^-$ is trusted more and more

KF Convergence

The Kalman filter dynamics results from the consecutive cycles of

- prediction
- correction (filtering)

If the system dynamics is time-invariant (A, B) and C are constant) and the measurement and process noises are stationary (Q) and C are constant) then

- KF dynamics converges to a steady-state
- Posterior covariance matrix P_k converges to a symmetric positive definite matrix \overline{P} (it stabilizes)

Kalman gain K_k converges to a steady-state gain K
 (it stabilizes)

It means that the system model is completely observable and controllable.

Estimate errors

State at time-step t_k

- $\mathbf{x}_k = [x_{k_1}, x_{k_2}, \cdots, x_{k_n}]^T \in \mathbb{S} \subset \mathbb{R}^n$ is *n*-dimensional **state vector** a value of random variable $\mathbf{X}(t_k)$ (we try to estimate)
- $\hat{\mathbf{x}}_k^-$ n-dimensional state estimate after prediction
- $\hat{\mathbf{x}}_k$ n-dimensional posterior state estimate after correction

Estimate errors

- ullet $\mathbf{e}_k^- = \mathbf{X}(t_k) \mathbf{\hat{x}}_k^-$ estimate error after prediction
- $\mathbf{e}_k = \mathbf{X}(t_k) \hat{\mathbf{x}}_k$ posterior estimate error after correction

Expectation of estimate errors

• after prediction

$$E[\mathbf{X}(t_k)] = \boldsymbol{\mu}_k^- = \hat{\mathbf{x}}_k^-$$

so $E[\mathbf{e}_k^-] = E[\mathbf{X}(t_k) - \hat{\mathbf{x}}_k^-] = E[\mathbf{X}(t_k)] - E[\hat{\mathbf{x}}_k^-] = 0$

• after correction

$$E[\mathbf{X}(t_k)] = \boldsymbol{\mu}_k = \hat{\mathbf{x}}_k$$

so $E[\mathbf{e}_k] = E[\mathbf{X}(t_k) - \hat{\mathbf{x}}_k] = E[\mathbf{X}(t_k)] - E[\hat{\mathbf{x}}_k] = 0$

Because for n-dimensional random vector \mathbf{X} ,

 $\Sigma_{X+b} = \Sigma_X$ then covariance of estimate errors

• after prediction

$$\mathbf{\Sigma}_{k}^{-} = \mathbf{P}_{k}^{-} = \mathbf{\Sigma}_{\mathbf{X}(t_{k})} = \mathbf{\Sigma}_{\mathbf{e}_{k}^{-} + \hat{\mathbf{x}}_{k}} = \mathbf{\Sigma}_{\mathbf{e}_{k}^{-}} = Cov(\mathbf{e}_{k}^{-} \mathbf{e}_{k}^{-T}) = E[\mathbf{e}_{k}^{-} \mathbf{e}_{k}^{-T}] - E[\mathbf{e}_{k}^{-}] = E[\mathbf{e}_{k}^{-} \mathbf{e}_{k}^{-T}]$$

• after correction (posterior error covariance)

$$\mathbf{\Sigma}_{k} = \mathbf{P}_{k} = \mathbf{\Sigma}_{\mathbf{X}(t_{k})} = \mathbf{\Sigma}_{\mathbf{e}_{k} + \hat{\mathbf{x}}_{k}} = \mathbf{\Sigma}_{\mathbf{e}_{k}} = Cov(\mathbf{e}_{k} \ \mathbf{e}_{k}^{T}) = E[\mathbf{e}_{k} \ \mathbf{e}_{k}^{T}] - E[\mathbf{e}_{k}] \ E[\mathbf{e}_{k}^{T}] = E[\mathbf{e}_{k} \ \mathbf{e}_{k}^{T}]$$

Covariance of estimate errors

Covariance of estimate error after prediction

$$\begin{split} & \boldsymbol{\Sigma}_{k}^{-} = \boldsymbol{P}_{k}^{-} = Cov(\mathbf{e}_{k}^{-} \ \mathbf{e}_{k}^{-T}) = \boldsymbol{\Sigma}_{\mathbf{e}_{k}^{-}} = \boldsymbol{\Sigma}_{\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-}} \\ & = \boldsymbol{\Sigma}_{A \ \mathbf{x}_{k-1} + B \ \mathbf{u}_{k-1} + \mathbf{w}_{k-1} - (A \ \hat{\mathbf{x}}_{k-1} + B \ \mathbf{u}_{k-1})} = \boldsymbol{\Sigma}_{A(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}) + \mathbf{w}_{k-1}} = (*) \end{split}$$

variables $\mathbf{e}_{k-1}^- = \mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1}$ and \mathbf{w}_{k-1} are independent, so

$$(*) = oldsymbol{A} oldsymbol{\Sigma}_{\mathbf{e}_{k-1}^-} oldsymbol{A}^T + oldsymbol{\Sigma}_{\mathbf{w}_{k-1}} = oldsymbol{A} oldsymbol{P}_{k-1}^- oldsymbol{A}^T + oldsymbol{Q}$$

Covariance of estimate error after correction (posterior error covariance)

$$\begin{split} & \boldsymbol{\Sigma}_{k} = \boldsymbol{P}_{k} = Cov(\mathbf{e}_{k} \ \mathbf{e}_{k}^{T}) = \boldsymbol{\Sigma}_{\mathbf{e}_{k}} = \boldsymbol{\Sigma}_{\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}} \\ & = \boldsymbol{\Sigma}_{\mathbf{x}_{k} - [\hat{\mathbf{x}}_{k}^{-} + \boldsymbol{K}_{k}(\mathbf{z}_{k} - \boldsymbol{C}\hat{\mathbf{x}}_{k}^{-})]} = \boldsymbol{\Sigma}_{\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-} - \boldsymbol{K}_{k}(\boldsymbol{C}\mathbf{x}_{k} + \mathbf{v}_{k} - \boldsymbol{C}\hat{\mathbf{x}}_{k}^{-})} \\ & = \boldsymbol{\Sigma}_{(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-}) - \boldsymbol{K}_{k}} \boldsymbol{C}(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-}) - \boldsymbol{K}_{k}} \boldsymbol{v}_{k} = \boldsymbol{\Sigma}_{(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}^{-})(I - \boldsymbol{K}_{k}\boldsymbol{C}) - \boldsymbol{K}_{k}} \boldsymbol{v}_{k}} = (**) \end{split}$$

variables $\mathbf{e}_k^- = \mathbf{x}_k - \hat{\mathbf{x}}_k$ and \mathbf{v}_k are independent, so

$$(**) = (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{C}) \boldsymbol{\Sigma}_{\mathbf{e}_k^-} (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{C})^T + \boldsymbol{\Sigma}_{\mathbf{v}_k} = (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{C}) \boldsymbol{P}_k^- (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{C})^T + \boldsymbol{R}$$

Klaman gain
$$K_k = \mathbf{P}_k^- \mathbf{C}^T (\mathbf{C} \mathbf{P}_k^- \mathbf{C}^T + \mathbf{R})^{-1}$$

is chosen to be a factor that minimizes posterior error covariance Σ_k (minimizes uncertainty! of the posterior state).

KF parameters and tuning

Initial conditions choice

- $\hat{\mathbf{x}}_0$ on the basis of a priori knowledge or $\hat{\mathbf{x}}_0 = E[X(0)] = \boldsymbol{\mu}_0$
- P_0 a positive-definite matrix or $P_0 = Cov(X(0) \ X(0)^T) = \Sigma_0$ (if P is chosen to small filter converge slowly)

Tuning – process noise covariance matrix Q and measurement noise covariance matrix R should be considered as **tunable parameters**, as they are usually unknown in practice

- \bullet Q is chosen as a positive-definite matrix (usually diagonal)
 - in practice Q^{-1} represents the confidence in the trusted model
- ullet R is chosen as an empirical covariance of noise (based on measurements prior to operation of the filter) or as a positive-definite matrix
 - in practice R^{-1} represents the confidence in the measurements
- if Q and R are constant both P_k and K_k will stabilize quickly and remain constant (however, often R is not constant)
- elements P_k^- , K_k , P_k do not depend on measurements, therefore they can be calculated off-line

Kalman filter Basic formulas

Time Update ("Predict")

(1) Project the state ahead

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_{k-1}$$

(2) Project the error covariance ahead

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

(1) Compute the Kalman gain

$$K_k = P_k^T C^T (CP_k^T C^T + R)^{-1}$$

(2) Update estimate with measurement z_k

$$\hat{x}_k = \hat{x}_k + K_k(z_k - C\hat{x}_k)$$

(3) Update the error covariance

$$P_k = (I - K_k C) P_k$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

Remark 2. For 1-dimensional Normal variable

- $X \sim N_1(\mu, \Sigma)$ denotes $X \sim N_1(\mu, \sigma^2)$
- $X \sim N_1(\mu, \Sigma) \Leftrightarrow X \sim N(\mu, \sigma)$

•
$$pdf$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Remark 3. For 2-dimensional normal variable $\mathbf{X} = (X_1, X_2) \sim N_2(\boldsymbol{\mu}_{\mathbf{X}}, \ \boldsymbol{\Sigma}_{\mathbf{X}})$

•
$$X_1 \sim N(\mu_1, \ \sigma_1), \ X_2 \sim N(\mu_2, \ \sigma_2) \ and \ \rho = \frac{Cov(X_1 \ X_2)}{\sigma_1 \sigma_2}$$

$$\bullet \ \boldsymbol{\mu}_{\mathbf{X}} = \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right] \ , \ \boldsymbol{\Sigma}_{\mathbf{X}} = \left[\begin{array}{cc} \sigma_1^2 & Cov(X_1 \ X_2) \\ Cov(X_2 \ X_1) & \sigma_2^2 \end{array} \right] = \left[\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{array} \right]$$

$$f_{\mathbf{X}}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$