## CLASSES DE COMPLEXIDADE E REDUÇÕES DCE770 - Heurísticas e Metaheurísticas

Atualizado em: 11 de agosto de 2025



Departamento de Ciência da Computação



## INTRODUÇÃO

De forma ampla, podemos dizer que um problema é fácil ou difícil

- $\bigcirc$  Fácil: tratável, tempo polinomial:  $\mathcal{O}\left(p(n)\right)$
- O Difícil: intratável, tempo exponencial:  $\mathcal{O}\left(c^{n}\right)$ , onde c>1

#### Problemas fáceis

- Caminho mínimo
- Árvore geradora mínima
- Componentes conexos
- O Programação linear
- Números primos
- O ..

#### Problemas difíceis

- Caminho máximo
- Árvore de Steiner
- Satisfabilidade
- O Programação inteira
- Caixeiro viajante
- O ...

#### CLASSES DE PROBLEMAS

Problemas fáceis podem ser resolvidos em tempo polinomial

O Considera-se que estão na classe P

Problemas difíceis não podem ser resolvidos em tempo polinomial

- Tempo exponencial
- Considera-se que estão na classe NP

# EXISTEM ALGORITMOS POLINOMIAIS PARA PROBLEMAS EM *NP*?

#### REDUTIBILIDADE EM PROBLEMAS NP

Um problema em NP pode ser transformado em outro problema em NP em tempo polinomial

Esta premissa também é válida para problemas em P

Caso encontre-se um algoritmo polinomial para um problema em NP, então todos os problemas em NP poderão ser resolvidos em tempo polinomial

Problemas de decisão são a base para o estudo de classes de complexidade

Um problema de decisão aceita duas respostas

- Sim
- Não

A classe NP contém problemas de decisão onde esta pergunta (sim, não) pode ser respondida em tempo polinomial

 $\bigcirc$  Verificar a solução  $\neq$  computar a solução

Problema do caminho mínimo: existe um caminho entre A e G com peso menor ou igual a k?

E com peso maior do que k?



**Problema do caminho mínimo**: existe um caminho entre A e G com peso menor ou igual a  $k? \rightarrow F\acute{a}cil$ 

E com peso maior do que  $k? \rightarrow Dificil$ 



Problema do caminho hamiltoniano: existe um caminho que passe por todos os vértices do grafo uma única vez?

Grau dos vértices  $\leq$  2:  $\rightarrow$  *Fácil* 

Caso contrário: 

— Difícil



#### DETERMINISMO E NÃO-DETERMINISMO

Um *algoritmo determinista* é aquele em que o resultado de cada operação é definido de forma única

- O No mundo real, só existem algoritmos determinísticos
- Todos os algoritmos que vocês já implementaram até hoje são determinísticos

Um *algoritmo* **não** *determinista* é capaz de, magicamente, escolher a melhor resposta instantaneamente

O Escolhe dentre um conjunto de respostas possíveis

## FUNÇÃO ESCOLHE

Obter o menor número de uma matriz

- $\bigcirc$  Algoritmo determinista:  $\mathcal{O}(nm)$
- $\bigcirc$  Algoritmo não-determinista:  $\mathcal{O}(1)$ 
  - Função *escolhe*

| 83 | 67 | 39 | 85 | 11 | 21 | 87 |
|----|----|----|----|----|----|----|
| 25 | 48 | 74 | 7  | 15 | 74 | 90 |
| 13 | 10 | 87 | 57 | 3  | 75 | 36 |
| 19 | 47 | 89 | 48 | 16 | 7  | 81 |
| 79 | 40 | 68 | 70 | 25 | 59 | 96 |

#### DETERMINISMO E NÃO-DETERMINISMO

Uma máquina de Turing determinística é um dispositivo de computação capaz de rodar somente algoritmos determinísticos

Processadores atuais

Já uma máquina de Turing não determinística é aquela capaz de rodar algoritmos determinísticos e não-determinísticos

- O Computação quântica
- Quantum-Dot Cellular Automata



P: Conjunto de problemas que podem ser resolvidos em tempo polinomial por uma máquina de Turing determinística

NP: Conjunto de problemas que podem ser resolvidos em tempo polinomial por uma máquina de Turing não-determinística

É fácil perceber que  $P \subseteq NP$ 

Entretanto, um dos maiores problemas em computação (e da matemática) é provar

- $\bigcirc P = NP?$
- $\bigcirc P \neq NP?$

Se existem algoritmos polinomiais deterministas para todos os problemas em NP, então P=NP



Muitos problemas em NP podem ou não pertencer a P

- O Não conhecemos algoritmos polinomiais para eles
- Isto não quer dizer que tais algoritmos não existam

Se conseguirmos provar que um problema não pertence a P, então não precisaríamos mais procurar algoritmos eficientes para os problemas em NP

O Ninguém nunca conseguiu provar algo semelhante

Como não existe tal prova, então existe a esperança de que  $P=\mathit{NP}$ 

#### COMO MOSTRAR QUE UM PROBLEMA PERTENCE A NP

Existem duas maneiras para mostrar que um problema pertence a NP

- 1. Encontrar um algoritmo não-determinístico que resolve o problema em tempo polinomial
- 2. Encontrar um algoritmo determinístico que checa o custo de uma solução do problema em tempo polinomial

Caso estes algoritmos não existam, possivelmente o problema é mais difícil do que um problema em *NP* 

Está em umnível mais alto da hierarquia polinomial

## HIERARQUIA POLINOMIAL

Existem duas maneiras para mostrar que um problema pertence a NP

- 1. Encontrar um algoritmo não-determinístico que resolve o problema em tempo polinomial
- 2. Encontrar um algoritmo determinístico que checa o custo de uma solução do problema em tempo polinomial

Caso estes algoritmos não existam, possivelmente o problema é mais difícil do que um problema em *NP* 

Está em umnível mais alto da hierarquia polinomial

## HIERARQUIA POLINOMIAL



#### **NP-COMPLETO**

Existe uma classe especial de problemas NP

Problemas NP-Completos

Problemas NP-Completos são problemas difíceis que podem ser transformados uns nos outros

- O Transformação de tempo polinomial
- Transformação é possível na ida e na volta

Desta forma, ao se resolver um problema *NP*-Completo em tempo polinomial, pode-se resolver todos os outros problemas *NP*-Completo também em tempo polinomial

 $\bigcirc$  Isto provaria que P = NP

## TRANSFORMAÇÃO POLINOMIAL

Sejam  $P_1$  e  $P_2$  dois problemas de decisão

Suponha que exista um algoritmo  $A_2$  que resolva o problema  $P_2$ 

Caso seja possível transformar  $P_1$  em  $P_2$  (e vice-versa), então podemos utilizar o algoritmo  $A_2$  para resolver o problema  $P_1$ 

Transformações devem ser polinomiais



## TRANSFORMAÇÃO POLINOMIAL - CONJUNTO INDEPENDENTE

Seja G = (V, E) um grafo. O conjunto independente  $V' \subseteq V$  é tal que  $i, j \in V' \iff (i, j) \notin E$ 

- $\bigcirc$  V' é um grafo totalmente desconectado
- $\bigcirc$  Todos par de vértices em V' não é adjacente



$$V' = \{0, 1, 2, 6\}$$

## TRANSFORMAÇÃO POLINOMIAL - CLIQUE

Seja G=(V,E) um grafo. O clique  $V'\subseteq V$  é tal que  $i,j\in V'\iff (i,j)\in E$ 

- $\bigcirc$  V' é um subgrafo completo de G
- $\bigcirc$  Todos par de vértices em V' é adjacente



$$V' = \{1, 3, 4\}$$

## TRANSFORMAÇÃO POLINOMIAL

Seja  $P_1$  o problema do clique e  $P_2$  o problema do conjunto independente

- $\bigcirc$  Seja G=(V,E) uma instância de  $P_1$
- $\bigcirc$  Seja  $\overline{G}=(V,E)$  uma instância de  $P_2$
- $\bigcirc$  É possível transformar G em  $\overline{G}$  em tempo polinomial
- $\bigcirc$  É possível transformar  $\overline{G}$  em G em tempo polinomial

Mostre que G possui um clique de tamanho  $\geq k$  se e somente se  $\overline{G}$  possui um conjunto independente de tamanho  $\geq k$ 

## TRANSFORMAÇÃO POLINOMIAL

Se existe um algoritmo que resolve o conjunto independente em tempo polinomial, ele pode ser utilizado para resolver clique também em tempo polinomial

Diz-se que clique  $\propto$  conjunto independente

 $\bigcirc$   $P_1 \propto P_2$  indica que  $P_1$  é polinomialmente transformável em  $P_2$ 

Esta relação é transitiva

 $\bigcirc$   $P_1 \propto P_2$  e  $P_2 \propto P_3$ , então  $P_1 \propto P_3$ 

Dois problemas  $P_1$  e  $P_2$  são polinomialmente equivalentes se e somente se  $P_1 \propto P_2$  e  $P_2 \propto P_1$ 

#### CLASSE NP-COMPLETO

Um problema de decisão  $P_1$  é dito ser NP-completo se

- 1.  $P_1 \in NP$
- 2. Para todo problema  $P' \in \mathit{NP}\text{-}\mathsf{Completo},$  temos que  $P' \propto P_1$

Este *framework* pode ser utilizado para provar que um problema é *NP*-Completo

- São os problemas difíceis
- O Complexidade  $O(c^n)$ , onde
  - $\circ$  c > 1
  - o n é o tamanho da entrada

#### COMO RESOLVER PROBLEMAS NP-COMPLETOS

Usar algoritmos exponenciais eficientes

- Técnicas baseadas em podas
- Branch-and-bound

Utilizar heurísticas, meta-heurísticas ou algoritmos aproximativos

Último assunto de nossa disciplina

#### PROBLEMAS #P E #P-COMPLETOS

Problemas NP e NP-Completos são problemas de decisão

Problemas #P e #P-Completos são problemas de contagem

- O Quantos caminhos existem entre dois pontos no mapa?
- De quantas maneiras é possível arranjar uma sequência de items?
- De quantas formas diferentes podemos montar uma rede de computadores?

Resolver um problema  $\#P ext{-}\mathsf{Completo}$  é tão difícil quanto resolver um problema  $NP ext{-}\mathsf{Completo}$ 

- Também podemos transformar um problema #P-Completo em todos os outros problemas #P-Completos
  - Transformação polinomial

#### CLASSES DE PROBLEMAS

