CVL100:Environmental Science(2-0-0)

Water and Wastewater Treatment Part Dr. Arun Kumar (Tuesday and Friday)

Email: arunku@civil.iitd.ac.in
Check IITD course email daily for information

Learning Objectives

- To introduce water contaminants and their health effects
- To decide about treatment need for a given use objective
- To make aware of reading treatment plant schematic and estimating removal efficiency
- To provide basic information on processes for removing contamiants from water

Emerging Contaminants in Environment

October 21, 2021 Arun Kumar 5

Physical Properties & Environmental Fate

Transport of Enteric Viruses (Wong, K.; MSU)

 Viruses can contaminate the surface water and groundwater by runoff and infiltration.

Harmful Algal Blooms (HABs) (part of reason on eutrophication)

Anabaenopsis sp. bloom

Eutrophication

October 21, 2021

Arun Kumar (arunku@civil.iitd.ac.in)

Effects on human and environmental components

Direct Effects on HUMANS Infections, Toxicity, Carcinogenesis Other disease acute or chronic Effects on Indirect **ECOSYSTEMS** Eutrophication, Oxygen depletion - Hypoxia, Harmful algal bloom formation, Aquatic toxicity, Accumulation in fish and sediments, Bioaccumulation, Endocrine disruption, Antibiotic resistance development

Exercise 1

- List names of 3 water pollutants for your city and find out their standards for drinking water and for discharging in surface water.
- Spots: river, lake, nallah, sea
- Man made pollution (domestic, industrial)
- Accidental water pollution (oil spill situation)

Water Contaminants

- Heavy metals
- Pathogens (not indicator organisms such as fecal coliform and total coliforms)
- Organic compounds (pesticides, antibiotics, endocrine-disrupting chemicals, etc.)
- Nanoparticles

Water Pollutants

TYPES:

- Biological:
 - Viruses
 - Bacteria
 - Parasites
 - Helminths
 - BacterialToxins
- Chemical:
 - Inorganic
 - Organic

EFFECTS:

- To Humans:
 - Infections
 - Toxicity
 - Carcinogenesis
- To Ecosystems:
 - Oxygen Depletion
 - Environmental Toxicity
 - Accumulation in fish and sediments

Courtesy: Dr. Irene Xagoraraki, MSU (USA)

Pollutants that cause ecological damage

- Oxygen demanding wastes (hypoxia, eutrophication)
- Excess nutrients (hypoxia, eutrophication)
- Salts (fresh water population damaged)
- Suspended solids (settling)
- Toxicants (aquatic toxicity)
- Antibiotics (antibiotic resistance bacteria)
- Pharmaceuticals and personal care products (endocrine disruption)

Pathogenic Microorganisms in Water

Bacteria

Parasites

Viruses

October 21, 2029 liovirus

Arun Kumar (arunku@civil.iitd.ac.in)

Norwalk virus (norovirus)

Enteric Pathogens

Arun Kumar

- Exposure is via ingestion
- Primary site of infection is gastrointestinal tract
- Gastroenteritis symptoms
 - Nausea
 - Vomiting
 - Diarrhea
 - Fever
- May spread to other sites (blood, liver, nervous system)
- Shed in fecal material
- "Fecal-oral" route of transmission (arunku@civil.iitd.ac.in)

Pathogenic Microorganisms

Typical Pathogens Excreted In Human Feces

Pathogen Group and Name	Associated Diseases		
Virus			
Adenoviruses	Respiratory, eye infections		
Enteroviruses			
Polioviruses	Aseptic meningitis, poliomyelitis		
Echoviruses	Aseptic meningitis, diarrhea, respiratory infections		
Coxsackie viruses	Aseptic meningitis, herpangina, myocarditis		
Hepatitis A virus	Infectious hepatitis		
Reoviruses	Not well known		
Other viruses	Gastroenteritis, diarrhea		
Bacterium			
Salmonella typhi	Typhoid fever		
Salmonella paratyphi	Paratyphoid fever		
Other salmonellae	Gastroenteritis		
Shigella species	Bacillary dysentery		
Vibrio cholerae	Cholera		
Other vibrios	Diarrhea		
Yersinia enterocolitica	Gastroenteritis		

Pathogenic Microorganisms

Protozoan			
Entamoeba histolytica Giardia lamblia Cryptosporidium species	Amoebic dysentery Diarrhea Diarrhea		
Helminth	Q: Can you list source:		
Ancylostoma duodenale (hookworm) Ascaris lumbricoides (roundworm) Hymenolepis nana (dwarf tapeworm) Necator americanus (hookworm) Strongyloides stercoralis (threadworm) Trichuris trichiura (whipworm)	Hookworm Ascariasis Hymenolepiasis Hookworm Strongyloidiasis Trichuriasis	- which might give you exposure of pathogenic microorganisms?	

Source: Hammer and Hammer, 1996.

Sizes of Microorganisms and Other Particles (size influences removal through filtration method)

Inorganic Pollutants

- Heavy Metals
- Arsenic
- Nitrates
- chromium
- Asbestos
- Other?

Effect =f(valency type, concentration)

For example: toxic effects of arsenate(AsIV)) and arsenite (As(III)) might be different.

Q: Can you list sources which might give you exposure of these inorganic pollutants?

Arsenic

October 21, 2021 Arun Kumar 21 (arunku@civil.iitd.ac.in)

Mercury in water and then exposure to human beings through fish consumption

Pharmaceutical compounds

RESEARCH ARTICLE

Antibiotics and antibiotic-resistant bac waters associated with a hospital in Ujj

Vishal Diwan*1,2, Ashok J Tamhankar3,4, Rakesh K Khandal5, Shanta Sen5, Manjeet Aggarw Rama V Iyer⁶, Karin Sundblad-Tonderski⁷ and Cecilia Stålsby- Lundborg¹

Contents lists available at ScienceDirect

Ecotoxicology and Environmental Safety

journal homepage: www.elsevier.com/locate/ecoenv

Mutagenicity and genotoxicity of tannery effluents used for irrigation at Kanpur, India

Mohammad Zubair Alam a,*, Shamim Ahma

Contents lists availab

Food and Chemic

journal homepage: www.elsevie

Available online at www.sciencedirect.com

Journal of Hazardous Materials 148 (2007) 751-755

www.else

Short communication

Effluent from drug manufactures contains extremely high levels of pharmaceuticals

D.G. Joakim Larsson a,*, Cecilia de Pedro a, Nicklas Paxeus b

Sperm motility in the fishes of pesticide exposed and from polluted rivers of Gomti and Ganga of north India

October 21, 2021

Pratap B. Singh*, Vikash Sahu, Vandana Singh, Santosh K. Nigam, Hement K. Singh

Pesticides (hydrophobic organic compounds)

- Organochlorine Insecticides: were commonly used in the past (e.g. DDT and chlordane).
- Organophosphate Pesticides: most are insecticides, some are very poisonous (they were used in World War II as nerve agents)
- Carbamate Pesticides: affect the nervous system
- Pyrethroid Pesticides: were developed as a synthetic version of the naturally occurring pesticide pyrethrin, which is found in chrysanthemums

Other Organic Pollutants

- Fertilizers
- Surfactants
- Explosives, propellants
- Chlorination By-Products (e.g. trihalomethanes)
- Antibiotics
- Pharmaceuticals
- Personal care products
- Cyanobacterial toxins
- nanomaterials

Microcystin-LR (hepatotoxin)

Excess Nutrients

- Nitrogen and phosphorus are nutrients required by all living organisms. They are considered pollutants when they are in excess.
- Excessive nutrients often lead to large growths of algae which in turn become oxygen-demanding material whey they die and settle.

Excess Nutrients

106
$$CO_2$$
 + 16 NO_3^- + HPO_4^{2-} + 122 H_2O → $C_{106}H_{263}O_{110}N_{16}P$ + 138 O_2 algae

Algae +
$$O_2 => CO_2 + H_2O + NH_3$$

Nitrogen and phosphorus are typically the limiting factors

Phosphorus

- Phosphorus is typically the limiting nutrient in lakes, and algae growth is linked to phosphorus inputs.
- P Sources
 - fertilizers
 - detergents
 - wastewater
- P can exist in a variety of chemical forms

Nitrogen

- Nitrogen is often the limiting nutrient in ocean waters and some streams
- Nitrogen can exist in numerous forms, but nitrate (NO₃-), nitrite (NO₂-), ammonia (NH₃) are most commonly measured
- Sources are primarily from fertilizers and acid deposition

Factors Controlling Eutrophication

Stoichiometry of photosysnthesis (C,N,P, O & H)

$$106 \text{ CO}_2 + 16 \text{ NO}_3^- + \text{HPO}_4^{2-} + 122 \text{ H}_2\text{O} \rightarrow \\ \text{C}_{106} \text{H}_{263} \text{O}_{110} \text{N}_{16} \text{P} + 138 \text{ O}_2$$

$$\frac{N}{P} = \frac{16 \times 14}{1 \times 31} = 7.2$$

It takes ~ 7 times more N than P to produce a given mass of algae

- Liebig's law of the minimum growth will be limited by the availability of the nutrient that is least available relative to the need
- Most fresh water systems are phosphorus limited

Salts

- Dissolved solids, or salts, may be present as any number of ions
 - cations: Na+, K+, Mg²⁺, Ca²⁺
 - anions: Cl⁻, SO₄²⁻, HCO₃⁻
- Typically measures as total dissolved solids (TDS)
- Water classification
 - freshwater <1500 mg/L TDS
 - brackish water 1500 5000 mg/L
 - saline water >5000 mg/L
 - sea water 30-34 g/L

Salts

Sources

- industrial discharges
- deicing
- evaporative losses
- minerals
- sea water intrusion

Effects

- natural fresh water population threatened
- limits use for drinking
- crop damage/soil poisoning (cannot use for irrigation)

Suspended Solids

- Organic and inorganic particles in water are termed <u>suspended solids</u>
- May be distinguished from <u>colloids</u>, particles that do not settle readily

- Sources
 - storm water
 - wastes
 - erosion

- Problems
 - sedimentation
 - may exert oxygen demand
 - primary transport mechanism for many metals, organics and pathogens
 - aesthetic
 - complicates drinking water treatment

Oxygen-Demanding Wastes

 When <u>organic substances</u> are broken down in water, oxygen is consumed organic C + O₂ → CO₂

For example:

$$CH_3COOH + 2O_2 => 2CO_2 + 2H_2O$$

 $C_6H_{15}O_6N + 6O_2 => 6 CO_2 + 6 H_2O + NH_3$

Oxygen-Demanding Wastes

- High oxygen levels necessary for healthy stream ecology.
- For example:
 - trout require 5-8 mg/L dissolved oxygen (DO)
 - carp require 3 mg/L DO

Oxygen Demanding Wastesmeasurement/estimation

- Estimated stoichiometrically by theoretical oxygen demand (ThOD)
- Measured by oxygen demand potential
 - biochemical oxygen demand (BOD)
 - Nitrogenous oxygen demand (NBOD)
 - chemical oxygen demand (COD)