

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 June 2001 (21.06.2001)

PCT

(10) International Publication Number
WO 01/44386 A1

(51) International Patent Classification⁷: C09D 11/10, C08L 33/02, 33/08, 33/10, 73/00, 41/00, 27/12

(21) International Application Number: PCT/US00/33409

(22) International Filing Date: 8 December 2000 (08.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/460,959 14 December 1999 (14.12.1999) US

(71) Applicant: LEXMARK INTERNATIONAL, INC.
[US/US]; Intellectual Property Law Dept., 740 West New Circle Road, Lexington, KY 40550 (US).

(72) Inventors: BEACH, Bradley, Leonard; 1757 Hawthorne Lane, Lexington, KY 40505 (US). HOLLOWAY, Ann, P.; 1136 Chetford Drive, Lexington, KY 40509 (US). SUTHAR, Ajay, Kanubhai; 1316 Norcross Court, Lexington, KY 40513 (US).

(74) Agent: DASPIK, Jacqueline, M.; Lexmark International, Inc., Intellectual Property Law Department, 740 West New Circle Road, Lexington, KY 40550 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A1

(54) Title: INK COMPOSITIONS

(57) Abstract: The present invention relates to ink compositions. More particularly, the present invention relates to ink compositions comprising a colorant and a polymeric binder having a below ambient glass transition temperature, an average particle diameter above about 200nm and an acid component ranging from about 1 % to about 10 % by weight of the polymeric binder. Additionally, the present invention has the novel and useful feature of resistance to both wet-rub and dry smear as well as increased highlighter

WO 01/44386 A1

"INK COMPOSITIONS"**Technical Field**

This invention relates to the field of ink compositions for ink jet printers.

Background Art

The present invention relates to ink compositions for ink jet printers. More particularly, the present invention relates to ink compositions comprising a colorant and a polymeric binder.

Ink jet printing is a conventional technique by which printing is normally accomplished without contact between the printing apparatus and the substrate, or medium, on which the desired print characters are deposited. Such printing is accomplished by ejecting ink from the ink jet printhead of the printing apparatus via numerous methods which employ, for example, pressurized nozzles, electrostatic fields, piezo-electric elements and/or heaters for vapor phase bubble formation.

The ink compositions used in ink jet printing typically employ an aqueous carrier, usually water, colorants and low molecular weight water miscible materials. The colorants which may be employed include dyes and pigments. Pigments provide improved properties such as improved print quality, lightfastness and waterfastness. Unlike dyes, which penetrate into the substrate along with the other components of the ink, pigments tend to sit on top of the substrate. As a result of the physical properties of pigments, pigment based ink compositions have a tendency to dry smear, have low resistance to wet-rub and have low highlighter resistance. The term "dry smear," as used herein, means applying abrasive pressure across the printed substrate and measuring any smear created thereby. The term "wet-rub," as used herein, means applying a drop of water to the

printed substrate followed by applying abrasive pressure across the printed substrate using a cloth and measuring the optical density of the residual ink which lifts from the substrate onto the cloth; wet-rub differs from waterfastness because abrasion is used. The term "highlighter resistance," as used herein, means applying abrasive pressure across the 5 printed substrate with a commercially available highlighting marker and measuring any smear created thereby; an example of such marker is Sanford Corp. MAJOR ACCENT brand highlighting markers. To solve this problem, the present invention was developed to provide an ink composition comprising a colorant and a polymeric binder that improves the resistance of the printed ink to dry smear and wet-rub and provides better highlighter 10 resistance when the ink is jetted onto the substrate. The present invention has demonstrated the ability to resist smearing upon dry smear and wet-rub as well as increased highlighter resistance.

Polymers have been added to ink jet ink compositions to improve durability, to improve print quality and to reduce color bleeding and feathering. However, the inclusion 15 of polymers has resulted in increased printhead maintenance problems, including clogging of the nozzles and kogation, i.e. formation of film on or about the heater. Also, polymers may tend to form films on the nozzle plate. The addition of polymers to ink compositions also may cause decreased pigment dispersion stability and interference with bubble formation. Existing inventions have attempted to address the problems, such as kogation, 20 clogging and other malfunctioning of the printhead, that result from the incorporation of polymers into ink compositions

U.S. Patent No. 5,814,685 to Satake, et al. (hereinafter referred to as "Satake") discloses an ink composition in which pigment and a resin are dispersed in an aqueous medium. Satake further teaches that the resin is a polymeric core/shell material with a glass transition temperature (Tg) of the core in the range of from -100°C to 40°C, and a Tg of the shell in the range from 50°C to 150°C, and an average particle size of 20 to 200nm. Satake teaches that particle size greater than 200nm causes increased maintenance problems.

U.S. Patent Application Serial No. 08/987,185 filed 12/08/97 to Kappele, et al. and assigned to Lexmark International, Inc. (hereinafter referred to as "Kappele") discloses wet-rub resistant ink compositions. Kappele teaches an ink composition utilizing specific copolymers and/or terpolymers as binders, which encapsulate or cover the colorants and form a film on the substrate when the ink is jetted.

U.S. Patent No. 5,679,724 to Sacripante, et al. (hereinafter referred to as "Sacripante") discloses an ink for ink jet printing including a pigment and an emulsifiable polymer resin. Further, Sacripante discloses a Tg range of 10°C - 100°C, preferably 35°C - 80°C. Sacripante teaches that if the Tg is too low, the print media becomes sticky.

European Patent Application No. 851 010 of inventor Anton, et al. (hereinafter referred to as "Anton") discloses an ink composition utilizing a core/shell emulsion polymer with a pigment as the colorant. Further, Anton teaches adding core/shell emulsion polymers to inks containing insoluble colorants in effective quantities to improve waterfastness. Anton illustrates a core/shell emulsion polymer containing two

distinct phases having different T_g, i.e. one phase has a T_g above ambient temperature and the other phase has a T_g below ambient temperature.

European Patent Application No. 704 303 of inventors Fujisawa, et al. (hereinafter referred to as "Fujisawa") discloses an ink composition comprising a colorant, a 5 thermoplastic resin and water. Fujisawa teaches that the thermoplastic resin has a T_g of 50° - 150°C. Fujisawa further teaches that the particle diameter of the thermoplastic resin is less than 300nm, preferably 50-200nm.

European Patent Application No. 887 391 of inventors Kubota, et al. (hereinafter referred to as "Kubota") discloses an ink composition which comprises a colorant, an 10 inorganic oxide colloid, an alkali metal hydroxide and an aqueous solvent. Kubota teaches including a resin emulsion having a particle size less than 150nm, preferably 5 – 100nm.

European Patent Application No. 869 160 A2 of inventors Nichols, et al. (hereinafter referred to as "Nichols") discloses an inkjet ink formulation with colorant, 15 vehicle and resin emulsion containing ionic carboxylic groups on the surface of resin emulsion particles to cause disassociation of the colorant and resin particles. The resin of Nichols has 1 to 40 wt.% "carboxylic acid groups", and T_g of 0°C to 120°C; exemplified embodiments of the resin include copolymers of butyl acrylate, methyl methacrylate and (meth)acrylic acid, with 3 to 20 wt.% acid, T_g of 53°C to 95°C and particle size of 63 nm 20 to 235 nm, utilizing high T_{gs} and low particle sizes. Nichols asserts that the inks have good water resistance, however the tests of Nichols only assessed passive water bleed, and did not assess the commercially critical wet-rub resistance or highlighter resistance.

As illustrated by Satake, Fujisawa and Kubota, prior research in this area teaches that smaller binder particles, generally less than about 200nm average diameter, are preferred, presumably as a result of anticipating lowered maintenance problems such as clogging of the ink jet printhead nozzles. As illustrated by Sacripante and Fujisawa, prior 5 research teaches that the apparent Tg of the binder should be significantly above ambient temperature (i.e., above about 25°C) to avoid maintenance problems such as kogation.

As illustrated by Kappele and Anton, prior research teaches that resistance to wet-rub may be incorporated into inks by utilizing polymer resins or core/shell polymer emulsions.

10 As identified above, the challenge and problem presented by the prior art are to develop an inkjet ink binder which will remain dispersed in the complete inkjet ink formulation, will not clog the printhead nozzle or other aspects of the print mechanism, will form a film or other means to bind the pigment together and onto the surface of the paper or other print medium, and will provide a printed ink which is wet-rub, dry smear, 15 scrub and highlighter resistant. The present invention solves all of these problems by use of a polymeric binder as described herein.

Contrary to accepted research and knowledge, the present invention provides for an ink composition comprising a colorant and a polymeric binder wherein the polymeric binder has an average particle diameter of greater than about 200nm, a below ambient Tg 20 of about -10°C and an acid component content of about 1% to about 10% by weight of the binder. Unlike the prior inventions, the present invention provides improved resistance to

dry smear, improved resistance to wet-rub, and improved highlighter resistance without creating the printhead maintenance problems of kogation and clogging.

Summary of the Invention

The present invention is an aqueous ink. More specifically, this invention relates

- 5 to inks comprising a colorant and a polymeric binder wherein the binder has suitable glass transition temperature ("Tg"), particle size, and charge such that there is no adverse interaction between the ink, the polymeric binder, and the printhead, and such that the resultant ink demonstrates acceptable maintenance, improved resistance to dry smear, improved resistance to wet-rub and highlighter resistance. The ink composition of the
- 10 present invention includes a colorant and a polymeric binder with the extraordinary and unexpected properties of providing an ink jet ink composition which successfully adheres to the substrate without experiencing wet-rub or dry smear, with increased highlighter resistance and without causing increased printhead maintenance problems due to clogging, kogating and other malfunctioning of the nozzles.

- 15 An ink composition utilizing a polymeric binder with a below ambient Tg is an object of this invention. A polymeric binder with a below ambient Tg removes the requirement that the ink composition be heated to activate the polymer binder after jetting. Typically, a polymeric binder with a below ambient Tg generally causes increased maintenance problems such as kogation and clogging, and further, generally such inks
- 20 including such a polymeric binder do not jet.

These and other objectives of the present invention will become apparent from a description of the preferred embodiments herein, and from the claims, which will further define the scope of this invention.

Description of the Preferred Embodiments

5 The ink composition according to the present invention contains a colorant, a polymeric binder, and an aqueous carrier. Each of these required components, as well as some optional components, is described in detail below.

The colorant of the present invention may be a dye or a pigment, and preferably is a pigment. Preferably the colorant is a water insoluble pigment. The colorant may be a
10 self-dispersed pigment, a pigment mixed with a dispersant, or a combination of these. There is essentially no limitation with respect to the colorants which may be utilized in preparing the ink compositions of the present invention. In one embodiment, the colorant is present at from about 0.5% to about 7% by weight of the final ink composition, in another embodiment, the colorant is present at from about 1% to about 5% by weight of
15 the final ink composition, and in yet another embodiment, the colorant is present at from about 2% to about 4% by weight of the final ink composition.

There is no limitation with respect to the pigments that may be employed in this invention other than that they are capable of resulting in an ink. Any of the commonly employed organic or inorganic pigments may be used. An illustrative example of the
20 pigments which may be employed in this invention includes azo pigments such as condensed and chelate azo pigments; polycyclic pigments such as phthalocyanines, anthraquinones, quinacridones, thioindigoids, isoindolinones, quinophthalones. Still other pigments which

may be employed include, for example, nitro pigments, daylight fluorescent pigments, carbonates, chromates, titanium oxides, zinc oxides, iron oxides and carbon black. Such pigments may be prepared via conventional techniques and many are commercially available.

The pigment particle size ranges from about 10nm to about 250nm, and in one embodiment, it is about 130nm. There are many art recognized techniques to prepare pigment for inks including preparation of self-dispersed pigment and preparation of pigment-dispersant mixtures. A process for preparing pigment dispersions used in inks is disclosed in U.S. Patent No. 5,891,231 to Gnerlich, et al. and assigned to Lexmark International, Inc., which disclosure is incorporated by reference herein. Examples of 10 pigments which may be used in the present invention are carbon black, such as Monarch 700, Monarch 880, Monarch 800, Regal 250R, Mogul L (from Cabot Corporation), FW18, FW200, Special Black 4A, Printer 95 (from Degussa Corporation), Raven 3500, Raven 1170 and Raven 2500 (from Columbian Chemicals Company); yellow pigment, such as pigment yellow 74 and pigment yellow 13 (from Sun Chemical Corporation), 15 pigment yellow 138 (from Toyo Manufacturing); cyan pigment, such as pigment blue 15:3 (from Sun Chemical Corporation) and pigment blue 15:3 (from Toyo Manufacturing); and magenta pigment, such as pigment red 122, pigment red 57 and pigment red 81 (from Sun Chemical Corporation), pigment red 122 (from Toyo Manufacturing). Such examples are not meant to be limiting, and, as is art recognized, 20 other sources and grades of carbon black, yellow pigment, cyan pigment and magenta pigment may be utilized in the present invention.

The polymeric binder of the present invention comprises a polymer or copolymer formed from monomer classes, including, but not limited to: acrylate esters, methacrylate esters, styrenes, substituted styrenes, vinyl acrylates, vinyl acetates, fluoromethacrylates, acrylamides, substituted acrylamides, methacrylamides, substituted methacrylamides, and combinations thereof. Among the esters of acrylic acid and methacrylic acid, preferred monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, lauryl methacrylate, and isobutylene methacrylate. Reference is made to contemporaneously filed U.S. Provisional Patent Application Serial No. _____, 5 titled "Polymeric Binder for Water-Resistant Ink Jet Inks," by Freeman, et al., assigned to Rohm and Haas Company, which application is incorporated by reference herein. In one embodiment, the binder comprises copolymer of butyl acrylate and methyl methacrylate. In a more specific embodiment, the polymeric binder comprises a co-polymer ranging from about 20% to about 40% by weight of methyl methacrylate and about 60% to about 10 15 20 10% by weight of butyl acrylate. The polymeric binder may comprise a copolymer ranging from about 27% to about 33% by weight of methyl methacrylate and about 66% to 72% by weight of butyl acrylate. In another embodiment, the polymeric binder comprises 10% to 50% by weight methyl methacrylate, 50% to 85% by weight butyl acrylate, and 3% to 10% by weight methacrylic acid, based on the total weight of the polymeric binder; for example 14.5% by weight methyl methacrylate, 80.5% by weight butyl acrylate, and 5% by weight methacrylic acid. The foregoing merely represent example of suitable polymeric binder compositions. The polymeric binders of the

invention comprise polymer or copolymers with from 1 to 10% by weight acid component, based on the total weight of the polymeric binder. In the examples of ink compositions below, the polymeric binder is present at about 0.5% and at about 3% by weight of the ink composition. It should be noted, however, that the present invention

5 includes ink compositions where the polymeric binder may be present at from about 0.1% to about 10% by weight of the ink composition.

The polymeric binder further comprises an acid component. The acid component may comprise acrylic acid, methacrylic acid, itaconic acid, vinyl sulfonic acid, maleic acids or combinations thereof, or may be derived from salts or anhydrides of such acids,

10 such as methacrylic or maleic anhydride or sodium vinylsulfonate or acrylomidopropane sulfonate. In one embodiment the acid component is methacrylic acid. In another embodiment, the acid component is methacrylic acid in combination with another acid.

The acid component of the polymeric binder ranges from about 1% to about 10% by

weight of the total weight of the polymeric binder. In one embodiment, when the acid

15 component is methacrylic acid, the acid component is about 1.1% to about 1.5% by weight of the total weight of the polymeric binder. In another embodiment, when the acid component is methacrylic acid, the acid component is about 1.3% by weight of the total weight of the polymeric binder. It should be noted, however, that the examples of ink compositions shown below do not represent the only possible formulations encompassed

20 by the present invention, and that the present invention includes ink compositions when the acid component of the polymeric binder ranges from about 1% to about 10% by weight of the total weight of the polymeric binder.

The optimal Tg range of the polymeric binder is from about -20°C to about 70°C.

In one embodiment, the optimal preferable Tg range is from about -12°C to about 25°C.

Contrary to art expectations in below ambient temperatures (*i.e.*, below about 25°C), the polymeric binder of the present invention is suitable for use in conventional (*i.e.*, thermal

5 or piezoelectric) ink jet printers and color ink jet printers, for example the Lexmark 7000,

Lexmark 5700, Lexmark Z51 and Lexmark 2050 printers. The Tg of the polymeric

binder may range from about -10°C to about 25°C, or from about -10°C to about 0°C. In

one embodiment, the polymeric binder has a Tg of about -10°C. At these glass transition

temperatures, the binder is believed to form an adhesive film, continuous or otherwise,

10 between the colorant and the substrate as the aqueous ink medium dissipates by

evaporation, absorption by the substrate or otherwise. When the adhesive polymer is not

continuous so as to constitute a true film, the adhesive effect may be achieved through

“spot welds” in which sufficient polymer is present to adhere one or more colorant

particles to the substrate.

15 The polymer particles comprising the polymeric binder have an average diameter

in the range from about 250nm to about 400nm; preferably about 275nm to 350nm.

Contrary to the general principle that smaller polymer particles, especially particles with

average diameter less than 200nm are less likely to cause printhead maintenance

problems, the polymeric binder of the present invention with an average particle diameter

20 ranging from about 275nm to about 400nm provided better overall printability than

binders with larger or smaller particle sizes.

The particle size distribution of the polymeric binder may be unimodal, bimodal or polymodal, provided that the particle size distribution of the polymeric binder particles is such that essentially all the particles fall in the range from 130 to 450nm in diameter. In one embodiment of the invention, the polymeric binder has a bimodal particle size

5 distribution where, preferably, the small size particles have an average diameter in the range from 175 to 260nm, and the large size particles have an average diameter in the range from 260 to 400nm, and the average particle size is within the range from about 250 to 400nm. In another embodiment of the invention, the polymeric binder has a unimodal particle size distribution with an average diameter in the range from 250 to 400nm. In a

10 preferable embodiment, the polymeric binder has a unimodal particle size distribution with an average diameter in the range from 275 to 350nm, more preferably 275 to 300nm; and a particle size distribution such that essentially all the particles fall in the range from 130 to 450nm. The average particle size and particle size distribution may be determined by the capillary hydrodynamic fractionation (CHDF) technique.

15 The molecular weight of the polymeric binder is not critical. However, it has been found that the polymeric binder preferably has a molecular weight in the range from about 10,000 to about 2,000,000 Daltons (Da); more preferably, 50,000 to 1,000,000 Da. The molecular weight, as used herein, is defined as the weight average molecular weight and may be determined by gel permeation chromatography in tetrahydrofuran as solvent. The

20 polymeric binder of the present invention may further comprise additional components which do not substantially alter the characteristics described above, including without limitation process aids such as surfactants, protective colloids, and other stabilizers

known to those skilled in the art. Suitable surfactants, for example, include sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium dioctyl sulfosuccinate, and ammonium perflororalkyl sulfonates, Triton X-100, Triton X-405, and polyoxyethyleneated polyoxypropylene glycols.

5 The polymeric binder may be prepared by a conventional persulfate-initiated thermal process known in the art such as batch, semi-batch, gradual addition or continuous. The monomers are polymerized to preferably greater than 99% conversion and then the reaction is cooled to room temperature (20-25°C) after the addition of the appropriate amount of neutralizing base to control pH. The pH is adjusted to between pH
10 7-10, more preferably between pH 8-9; with neutralizer such as, for example, ammonia, sodium hydroxide, potassium hydroxide or combinations of these neutralizers.
Preferably, potassium hydroxide is used as neutralizer. The preparation process used has
been found to make it well suited to the preparation of the polymeric binders of the
present invention. It allows for controlled particle size and particle size distribution at the
15 desired acid level range, and a suitable Tg for the resulting polymeric binder.

The polymeric binder may be illustrated, in certain embodiments, through the following examples:

Example I

A sample of binder of the general composition ethyl acrylate (EA), styrene (STY),
20 and methacrylic acid (MAA) was prepared as follows. After heating a reaction vessel
containing 400 ml deionized, buffered water (0.06 mmol buffer/gm of water) and 2.1 g
sodium lauryl sulfate (SLS) to 88°C, 4% of a mixture of 488 g water, 6 g SLS, 714 g EA,

234 g STY and 12.2 MAA was added with 2.7 g sodium persulfate (NaPS) in 12 g of water. This combination was held at 88°C for 10 minutes. Then, the remaining monomer mix was added over a period of 180 minutes, with a cofeed of 1.0 g sodium persulfate in 50 ml water at a rate such that the addition period was 185 minutes.

5 After the cofeed addition was completed, the vessel was held at 88°C for 30 minutes and then cooled. The product was then filtered through 100 and 325 mesh screens. The filtered product was neutralized by combining 865 g of unneutralized product with 735.2 g deionized water and neutralized to pH 8.5 with 10% potassium hydroxide. The average particle size was 280 nm with a particle size distribution ranging
10 from 175 nm to 400 nm. The calculated Tg was approximately 13°C.

Example 2

A sample of butyl acrylate (BA), methyl methacrylate (MMA), and MAA polymer was prepared according to the procedure in Example 1 except that the monomer mixture consisted of 28.1 g MAA, 663.1 g MMA, 1468.8 g BA and 10.5 g SLS. In this case, a reaction vessel containing 1130 g deionized, buffered water (0.06 mmol buffer/g water) and 4.0 g SLS was heated to 81°C. Then 115.0 g of the monomer mix with a 20 g water rinse was added to the vessel followed by 5.6 g NaPS dissolved in 25 g of water. This combination was held at 81°C for 10 minutes and then the remaining monomer mixture was added over 180 minutes along with an additional 16.5 g SLS and a co-feed of
15 2.2 g NaPS in 100 g of water (added over 185 minutes). After the co-feed was completed, the reaction was held at 81°C for 30 minutes. Then the product was cooled, filtered and neutralized with the neutralization accomplished by combining 1760 g of unneutralized
20

product with 1470 g deionized water and brought to a pH of 8.5 with KOH. The resultant polymer had an average particle sized of 286 nm with a particle size distribution ranging from 174 nm to 408 nm. The calculated Tg was 0°C.

Example 3

5 A sample of butyl acrylate (BA), methyl methacrylate (MMA), and acrylic acid (AA) polymer was prepared according to the procedure in Example 2 except that the monomer mixture consisted of 23.5 g AA, 667.7 g MMA, 1468.8 g BA and 10.5 g SLS. In this case, a reaction vessel containing 1130 g deionized, buffered water and 3.0 g SLS was heated to 81°C. The remaining monomer mix, NaPS, as well as an additional 17.5 g
10 of SLS were fed to the vessel after the initial addition of the mixture. Following neutralization, the resultant polymer had an average particle size of 348 nm with a particle size distribution ranging from 231 nm to 480 nm. The calculated Tg of this polymer was 0°C.

Example 4

15 A sample of butyl acrylate (BA), methyl methacrylate (MMA), and methacrylic acid (MAA) polymer was prepared according to the procedure in Example 2 with the same monomer mixture which consisted of 28.1 g MAA, 663.1 g MMA, 1468.8 g BA and 10.5 g SLS. In this case, a reaction vessel containing 1130 g deionized, buffered water and 3.0 g SLS was heated to 81°C. The remaining monomer mix NaPS, as well as an
20 additional 17.5 g of SLS were fed to the vessel after the initial addition of the mixture. Following neutralization, the resultant polymer had an average particle size of 301 nm with a particle size distribution ranging from 184 nm to 430 nm. The calculated Tg of

this polymer was 0°C. In an assessment of printability, a sample ink containing 3.0% by weight of the polymer was used to print 90 pages on a Lexmark desktop printer. On the 90th page of this print test which was repeated three time, an average of 22 nozzles in the ink cartridge had misfired.

5 Example 5

A sample of butyl acrylate (BA), methyl methacrylate (MMA), and methacrylic acid (MAA) polymer was prepared according to the procedure in Example 2 with the same monomer mixture which consisted of 28.21 g MAA, 663.1 g, 1468.8 g BA and 10.5 g SLS. In this case, a reaction vessel containing 1130 g deionized, buffered water and 5.0 10 g SLS was heated to 81°C. The remaining monomer mix, NaPS, as well as an additional 15.5 g of SLS were fed to the vessel after the initial addition of the mixture. Following neutralization, the resultant polymer had an average particle size of 254 nm with a particle size distribution ranging from 165 nm to 341 nm. The calculated Tg of this polymer was 0°C.

15 Example 6

A sample of butyl acrylate (BA), methyl methacrylate (MMA), and methacrylic acid (MAA) polymer was prepared according to the procedure in Example 2 with a monomer mixture which consisted of 43.2 g MAA, 648.0 g MMA, 1468.8 g BA and 10.5 g SLS. In this case, a reaction vessel containing 1130 g deionized, buffered water and 5.0 20 g SLS was heated to 81°C. The remaining monomer mix, NaPS, as well as an additional 15.5 g of SLS were fed to the vessel after the initial addition of the mixture. Following neutralization, the resultant polymer had an average particle size of 238 nm with a particle

size distribution ranging from 133 nm to 340 nm. The calculated Tg of this polymer was 0°C.

The aqueous carrier of the present invention is water (preferably deionized water).

The aqueous carrier is present at from about 40% to about 95%, may be present at from

5 about 55% to about 80%, and may be present at from about 70% to about 80% by weight of the ink composition. Selection of a suitable mixture for the ink composition of the present invention depends upon the requirements of the specific ink being formulated, such as the desired surface tension and viscosity, the pigment used, the drying time required for the pigmented ink and the type of paper onto which the ink will be printed.

10 The ink composition of the present invention may also include water miscible materials such as humectants, dispersants, penetrants, chelating agents, buffers, biocides, fungicides, bacteriocides, surfactants, anti-curling agents, anti-bleed agents and surface tension modifiers, all as is known in the art. The addition of such materials is generally dictated by the requirements of the specific ink and is used to modify properties of the ink
15 such as surface tensions and viscosity.

The amount of humectant used is determined by the desired properties of the ink and may range from about 1% to about 30% by weight of the ink composition. Useful humectants include ethylene glycol, 1,3 propanediol, 1,4 butanediol, 1,4 cyclohexanedimethanol, 1,5 pentanediol, 1,6 hexanediol, 1,8 octanediol, 1,2 propanediol,
20 1,2 butanediol, 1,3 butanediol, 2,3 butanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol with average molecular weight of 200, 300, 400, 600, 900, 1000, 1500 and 2000, dipropylene glycol, polypropylene glycol with average

molecular weight of 425, 725, 1000, and 2000, 2-pyrrolidone, 1-methyl-2-pyrrolidone, 1-methyl-2-piperidone, N-ethylacetamide, N-methylpropionamide, N-acetyl ethanolamine, N-methylacetamide, formamide, 3-amino-1, 2-propanediol, 2,2-thiodiethanol, 3,3-thiodipropanol, tetramethylene sulfone, butadiene sulfone, ethylene carbonate, 5 butyrolacetone, tetrahydrofurfuryl alcohol, glycerol, 1,2,4-butenetriol, trimethylpropane, sorbital, pantothenol, Liponic EG-1. Preferred humectants are polyethylene glycol with average molecular weight of 400 to 1000, 2-pyrrolidone, 2,2 thiodiethanol, 1,5 pentanediol, and 1,2 propanediol.

The amount of penetrant used is determined by the desired properties of the ink 10 and may range from about 0.01% to about 10% by weight of the ink composition. Useful penetrants are 1,2 alkyl diols of from 4 to 10 carbon atoms forming the alkyl such as 1,2-hexanediol and others as more fully disclosed in U.S Patent No. 5,364,461 to Beach, et al. and assigned to Lexmark International, Inc., which disclosure is incorporated by reference herein. Useful penetrants include N-propanol, isopropyl alcohol, 1,2 hexanediol, and 15 hexyl carbitol.

The amount of dispersant used is determined by the properties of the colorant when the colorant is a pigment. Useful dispersants are graft copolymers comprising a hydrophilic polymeric segment, a hydrophobic polymeric segment incorporating a hydrolytically-stable siloxyl substituent, and a stabilizing segment. A preferred dispersant 20 is the terpolymer dispersant disclosed in U.S. Patent Nos 5,714,538 and 5,719,204 to Beach, et al. and assigned to Lexmark International, Inc., which disclosures are

incorporated by reference herein. For the purposes of this invention, the dispersant composition is not critical as long as its use results in a stable and printable ink.

The ink composition of the present invention may be prepared by any method known in the art for making such compositions, for example, by mixing, stirring or 5 agitating the ingredients together using any art recognized technique to form an aqueous ink. The procedure for preparation of the ink composition of the present invention is not critical except to the extent that the ink composition is homogenous.

It is expected that the ink composition of the present invention would include any additives necessary to obtain the desired physical properties required for the end use of 10 the ink composition such additives include chelating agents, buffers, biocides, fungicides, bacteriocides, surfactants, anti-curling agents, anti-bleed agents and surface tension modifiers, all as discussed above. Examples of ink composition include the following formulations:

INK COMPOSITION I:

15 4% colorant (mixture of self-dispersed carbon black pigment and mixture of carbon black pigment and dispersant)
 0.5% polymeric binder (Tg -10°C, particle size 285nm, 1.3% acid component)
 15% humectant (7.5% polyethylene glycol 400 and 7.5% 2-pyrrolidone)
 0.75% terpolymer dispersant
20 0.75% penetrant (hexyl carbitol)
 balance deionized water

INK COMPOSITION 2

4.8% colorant (mixture of carbon black pigment and dispersant)

3% polymeric binder (Tg -10°C, particle size 285nm, 1.3% acid component)

5 15% humectant (5% polyethylene glycol 1000, 5% 2,2-thiodiethanol and 5% 2-pyrrolidone)

1% penetrant (1,2-hexanediol)

balance deionized water

10 INK COMPOSITION 3

2.25% colorant mixture of (Toyo cyan pigment and dispersant)

3% polymeric binder (Tg -10°C, particle size 285nm, 1.3% acid component)

20 20% humectant (10% polyethylene glycol 400 and 10% 2,2-thiodiethanol)

15 1% penetrant (1,2-hexanediol)

balance deionized water

COMPARATIVE INK COMPOSITION A

4.8% colorant (mixture of carbon black pigment and dispersant)

20 20% humectant (10% polyethylene glycol 400 and 10% 2,2 thiodiethanol)

2% penetrant (N-propanol)

balance deionized water

COMPARATIVE INK COMPOSITION B

2.25% colorant (mixture of Toyo cyan pigment and dispersant)

25 20% humectant (10% polyethylene glycol 400 and 10% 2,2-thiodiethanol)

1% penetrant (1,2-hexanediol)

balance deionized water

The resistance of Ink Compositions 1, 2, and A to wet rub was determined by using a commercially available densitometer to measure the optical density of the residual ink on a wet cloth that was rubbed over the printed substrate. The results are shown in Chart 1.

CHART 1

The resistance of Ink Compositions 1, 2, 3, A and B to highlighter smear was determined by using a commercially available densitometer to measure the optical density of the trailing edge of a highlighter mark after passing over the printed substrate into an unprinted area of the substrate. The results are shown in Chart 2.

CHART 2

Dry smear, water fastness and highlighter resistance were measured to determine how long each ink composition took to reach an acceptable result (ie. no change in optical density after smear/rub). The results are shown in Table 1.

5

Table 1

Test	<u>Ink Composition</u> (time in minutes)				
	1	2	A	3	B
Dry Smear	10	10	10	10	10
Water Fastness	30	10	30	10	10
Highlighter Resistance	180	30	1440	10	60

Although the exact reasons are not known, it is theorized that the polymeric binder particles flow together at a given temperature (generally a temperature above the Tg) binding the pigment particles together to form a film, successfully adhering the pigment particles together and to the substrate. It is believed that the polymeric binder encapsulates the pigment particles in the ink composition. It is further believed that, when jetted, the polymeric binder forms a film on the substrate, holding the pigment particles in place, and adhering the pigment particles to the substrate. The polymeric binder of the present invention with a below ambient Tg forms a good film at room temperature on a wide range of substrates with little or no dry smear, little or no or wet rub and highlighter resistance.

It is also theorized that the larger particle size of the polymeric binder results in fewer particles per milliliter of ink; therefore, there are fewer instances of particles interacting with each other and with the printhead apparatus (eg. nozzle openings, nozzle channels, ink channels, etc.).

What is claimed is

- 1. An ink comprising:**
 - a. an aqueous carrier;**
 - b. a colorant; and**
 - c. a polymeric binder having a glass transition temperature ranging from about -20°C to about 25°C, an average particle diameter ranging from about 250nm to about 400nm and an acid component ranging from about 1% to about 10% by weight of said binder.**
- 2. The ink of claim 1 wherein said glass transition temperature of said binder ranges from about -12°C to about 0°C, said average particle diameter of said binder ranges from about 250nm to about 350nm and said acid component of said binder ranges from about 1% to about 3% by weight of said binder.**
- 3. The ink of claim 2 wherein said colorant is one or more of a pigment-dispersant mixture and a self-dispersed pigment.**
- 4. The ink of claim 3 wherein said colorant ranges from about 0.5% to about 7% by weight of said ink and said binder ranges from about 0.1% to about 10% by weight of said ink.**
- 5. The ink of claim 4 wherein said colorant is said self-dispersed pigment and said pigment-dispersant mixture, wherein said colorant ranges from about 1% to about 5% by weight of said ink and said binder is about 0.5% by weight of said ink.**
- 6. The ink of claim 4 wherein said colorant is said pigment-dispersant mixture, wherein said colorant ranges from about 1% to about 5% by weight of said ink and said binder is about 3% by weight of said ink.**

7. The ink of claim 1 wherein said glass transition temperature of said binder ranges from about -12°C to about 0°C, said average particle diameter of said binder ranges from about 250nm to about 350nm and said acid component of said binder is about 1.3%.
8. The ink of claim 7 wherein said colorant is one or more of a pigment-dispersant mixture and a self-dispersed pigment.
9. The ink of claim 8 wherein said colorant ranges from about 0.5% to about 7% by weight of said ink and said binder ranges from about 0.1% to about 10% by weight of said ink.
10. The ink of claim 9 wherein said colorant is said self-dispersed pigment and said pigment-dispersant mixture and wherein said colorant ranges from about 1% to about 5% by weight of said ink and said binder is about 0.5% by weight of said ink.
11. The ink of claim 9 wherein said colorant is said pigment-dispersant mixture and wherein said colorant ranges from about 1% to about 5% by weight of said ink and said binder is about 3% by weight of said ink.
12. The ink of claim 1 wherein said glass transition temperature of said binder ranges from about -12°C to about 0°C, said average particle diameter of said binder ranges from about 250nm to about 350nm and said acid component of said binder ranges from about 4% to about 10% by weight of said binder.
13. The ink of claim 12 wherein said colorant is one or more of a pigment-dispersant mixture and a self-dispersed pigment.

14. The ink of claim 13 wherein said colorant ranges from about 0.5% to about 7% by weight of said ink and said binder ranges from about 0.1 % to about 10 / by weight of said ink.
15. The ink of claim 14 wherein said colorant is said self-dispersed pigment, wherein said colorant ranges from about .1% to about 5% by weight of said ink wherein said binder ranges from about 0.5% to about 3% by weight of said ink.
16. The ink of claim 1 wherein said binder further comprises a mixture of a plurality of larger particles and a plurality of smaller particles wherein said binder mixture having an average particle diameter greater than 200nm and wherein said binder mixture is unimodal.
17. An ink comprising:
 - a. an aqueous carrier;
 - b. a colorant; and
 - c. a polymeric binder consisting essentially of one or more monomers selected from the group consisting of acrylates, methacrylates, substituted styrenes, styrenes, fluoromethacrylates, vinyl acrylates, vinyl acetates, acrylamides, substituted acrylamides, methacrylamides, and substituted methacrylamides and an acid component selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acids, vinylsulfonic acids and acids derived from methacrylic anhydride, maleic anhydride, sodium 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
928

about -20°C to about 25°C and an average particle diameter ranging from about 130nm to about 450nm.

18. The ink of claim 17, wherein said monomers are selected from one or more of alkyl acrylates and alkyl methacrylates.
19. The ink of claim 18, wherein said monomers are selected from one or more of methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate and butyl methacrylate.
20. The ink of claim 19, wherein said monomers are a combination of butyl acrylate and methyl methacrylate.
21. The ink of claim 20, wherein said binder comprises from about 66% to about 72% by weight butyl acrylate and 27% to about 33% weight methyl methacrylate.
22. The ink of claim 17, wherein said acid component is selected from one or more of acrylic acid and methacrylic acid.
23. The ink of claim 17, wherein said glass transition temperature of said binder ranges from about -12°C to about 0°C, said average particle diameter ranges from about 250nm to about 350nm and said acid component ranges from about 1.3% to about 2.5% by weight of said binder.
24. The ink of claim 23, wherein said colorant is one or more of a pigment-dispersant mixture and a self-dispersed pigment.
25. The ink of claim 24 wherein said colorant ranges from about 0.5% to about 7% by weight of said ink and said binder ranges from about 0.1% to about 10% by weight of said ink.
26. The ink of claim 25 wherein said colorant is said self-dispersed pigment and said

pigment-dispersant mixture, wherein said colorant ranges from about 1% to about 5% by weight of said ink and said binder is about 0.5% by weight of ink.

27. The ink of claim 25 wherein said colorant is said pigment-dispersant mixture, wherein said colorant ranges from about 1% to about 5% by weight of said ink and wherein said binder is about 3% by weight of said ink.
28. The ink of claim 18 wherein said binder further comprises a mixture of a plurality of larger particles and a plurality of smaller particles wherein said binder mixture having an average particle diameter greater than 200nm and wherein said binder mixture is unimodal.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/33409

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :C09D 11/10; C08L 33/02, 33/08, 33/10, 73/00, 41/00, 27/12

US CL :523/160; 524/547, 551, 555, 556, 560

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 523/160, 161; 524/547, 551, 555, 556, 560, 599; 106/31.6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0867484 A2 (MIYABAYASHI et al.) 30 September 1998 (30/09/98), page 3, lines 32-33 and 58, page 4, lines 22-24 and 55-58, page 5, lines 8-9, 43-44, and 53, page 6, line 50.	1-2, 4-7, 9-12, 14-19, 22-23, 25, 27-28
Y	US 5,851,274 A (LIN) 22 Decemeber 1998 (22/12/98), col.11, lines 55-67, col.13, lines 58-62, and col.14, lines 41-43.	3, 8, 13, 20-21, 24, 26
Y	US 5,713,989 A (WICKRAMANAYAKE et al.) 03 February 1998 (03/02/98), col.4, lines 52-56 and col.5, lines 5-8.	3, 8, 13, 20-21, 24, 26

 Further documents are listed in the continuation of Box C.

See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

12 JANUARY 2001

Date of mailing of the international search report

15FEB2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington DC 20231

Authorized officer

CALLIE SHOSHO

DEBORAH THOMAS,
PARALEGAL SPECIALIST

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/33409

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,696,182 A (KASHIWAZAKI et al.) 09 December 1997 (09/12/97), col.4, lines 10-13 and 47-48, col.4, line 64-col.5, line 1, col.5, lines 10-20 and 30-33, col.10, line 65-col.11, line 1, col.16, lines 48-51.	17-23, 25, 27
Y, P	US 6,019,828 A (REHMAN) 01 February 2000 (01/02/00), col.2, lines 53-54 and 65, col.3, lines 51-53, col.4, line 53-col.5, line 12, col.5, lines 32-36, col.6, lines 6-16, col.8, lines 26-29.	1-28
A	US 5,877,235 A (SAKUMA et al.) 02 March 1999 (02/03/99)	1-28
A, P	US 6,025,412 A (SACRIPANTE et al.) 15 February 2000 (15/02/00)	1-28
A	JP 10279870 A (NICHOLS et al.) 20 October 1998 (20/10/98)	1-28

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/33409

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

EAST

search terms: glass transition, particle size, particle diameter, ink, binder, acrylate, methacrylate, acrylic, methacrylic, ink jet, pigment, self-dispersing, unimodal, acrylamide, methacrylamide, vinyl acetate, sulfonic, sulfonate, anhydride, fluoromethacrylate