Département d'Informatique

Deuxième année – Licence Informatique

Semestre: S3

Travaux dirigés : n° 1

Module : Architecture des ordinateurs

Exercice 1: Questions de cours

- 1. Donner la définition de l'ordinateur.
- 2. Quels sont les composants externes de l'ordinateur?
- 3. Vrais ou Faux : Les anciens ordinateurs étaient basés sur une architecture multicouches.
- 4. Quel est le système de numérotation adapté par l'ordinateur? Pourquoi?
- 5. Donner la définition d'un système informatique.
- 6. Quelle est l'utilité du codage de l'information?
- 7. Citer les principales étapes à suivre pour effectuer le codage de l'information.
- 8. Donner le schéma représentatif de l'ordinateur proposé par Von Newman avec explication.

Dans une machine de Von Neumann Quelle est le rôle de ?

- L'unité de Contrôle.
- L'unité d'Entrée/Sortie.
- Mémoire.
- Unité Arithmétique et Logique.
- 9. Donner le schéma représentatif de l'architecture l'ordinateur proposé par Harvard
 - Quelle est la différence entre ces deux architectures ?

Exercice 2:

Effectuer les conversions en unités des valeurs suivantes :

300 MHz = ? GHz 500 Go = ? To	2,89 GHz = ? KHz 3072 Mo = ? Go	1.8 GHz = ? Hz 50 o = ? Bit

Déterminer la valeur approchée de 2²⁴ sans l'utilisation de la calculatrice.

Déduire une valeur en puissance de 2 du 1 Giga et 1 Téra.

Exercice 3:

Effectuer les conversions suivantes dans les bases correspondantes.

$$(87)_{10} = (?)_2 = (?)_8 = (?)_{16}$$

$$(328)_{10} = (?)_2 = (?)_8 = (?)_{16}$$

$$(1111101)_2 = (?)_{10} = (?)_8 = (?)_{16}$$

$$(1900)_{10} = (?)_2 = (?)_8 = (?)_{16}$$

$$(3E)_{16} = (?)_2 = (?)_{10} = (?)_8$$

$$(34)_8 = (?)_2 = (?)_{10} = (?)_{16}$$

$$(234)_{16} = (?)_2 = (?)_{10} = (?)_8$$

$$(367)_8 = (?)_2 = (?)_{10} = (?)_{16}$$

$$(567)_8 = (?)_2 = (?)_{10} = (?)_{16}$$

$$(4F3)_{16} = (?)_2 = (?)_{10} = (?)_8$$

$$(1534)_8 = (?)_2 = (?)_{10} = (?)_{16}$$

$$(1534)_8 = (?)_2 = (?)_{10} = (?)_{16}$$

Exercice 04:

Compter:

- 1. En octal de $(7)_{10}$ à $(20)_{10}$
- 2. En hexadécimal de (9)₁₀ à (30)₁₀
- 3. En binaire de $(5)_{10}$ à $(13)_{10}$

Trouvez dans chaque cas la base b:

1.
$$(1001)_b = (201)_{16}$$

2.
$$(1001100)_b = (114)_8$$

3.
$$(125)_b = (293)_{10}$$

Exercice 05:

Effectuer les opérations arithmétiques suivantes (dans le cas du binaire sur 8 bits) :

$$(113)_8 + (27)_8 (45)_{10} + (26)_{16}$$

$$- (101)_{16} + (37)_{16} (10001)_2 + (23)_8$$

$$- (11101)_2 + (1101)_2 (1010011)_2 * (11)_2$$

$$- (110)_2 * (1101)_2 (10001)_2 - (1101)_2$$

$$- (100100)_2 / (100)_2 (111111)_2 / (1001)_2$$

Exercice 6

- 1. Combien d'entiers positifs peut-on coder en binaire sur un octet ?
- 2. Combien de bits faut-il pour représenter 8000 entiers différents en binaire ?
- 3. Coder en binaire sur un octet les entiers 105 et 21 puis effectuer l'addition binaire des entiers ainsi codés. Vérifier que le résultat sur un octet est correct.
- 4. Même question avec les entiers 184 et 72.

