```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
# Load or simulate soil sensor data
data = {
  'Moisture': np.random.uniform(10, 50, 100),
  'pH': np.random.uniform(4.5, 8, 100),
  'Nitrogen': np.random.uniform(10, 100, 100),
  'Phosphorus': np.random.uniform(5, 50, 100),
  'Potassium': np.random.uniform(5, 50, 100),
  'SoilQuality': np.random.choice(['Poor', 'Moderate', 'Good'], 100)
}
df = pd.DataFrame(data)
# Encode labels
df['SoilQuality'] = df['SoilQuality'].astype('category').cat.codes
# Split data
X = df.drop('SoilQuality', axis=1)
y = df['SoilQuality']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train ML model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```

Predictions

y_pred = model.predict(X_test)

Evaluation

accuracy = accuracy_score(y_test, y_pred)

print(f'Accuracy: {accuracy:.2f}')

print(classification_report(y_test, y_pred))

Feature Importance

feature_importances = pd.Series(model.feature_importances_, index=X.columns)

feature_importances.sort_values(ascending=False).plot(kind='bar')

plt.title('Feature Importance')

plt.show()

Accuracy: 0.50

Accur acy.	0.5	precision	recall	f1-score	support
	0	0.33	0.40	0.36	5
	1	0.60	0.60	0.60	5
	2	0.56	0.50	0.53	10
accura	асу			0.50	20
macro a	avg	0.50	0.50	0.50	20
weighted a	avg	0.51	0.50	0.50	20

