# Chemické reakcie v organickej chémii

- \* reakcie org. zlúčenín prebiehajú **pomalšie/rýchlejšie** ako u anorganických
- \* zložitý priebeh, vzniká pri nich zmes produktov
- \* viac čiastkových krokov a medziproduktov reakcie voláme to REAKČNÝ MECHANIZMUS



Príklady reakčných schém s ich vysvetlením:

| Α | konc. H <sub>2</sub> SO <sub>4</sub> -H <sub>2</sub> O | B + C<br>85 % 15 % | Z látky <b>A</b> sa účinkom koncentrovanej kyseliny<br>sírovej odštepuje voda a vzniká 85 % látky <b>B</b><br>a 15 % látky <b>C</b> .  |
|---|--------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Α | oxid.                                                  | B + C + D          | Látka A sa oxiduje bližšie neurčeným oxidovadlom za vzniku látok B, C a D.                                                             |
| Α | H <sub>2</sub> /Pt<br>20 °C; 0,1 MPa                   | В                  | Látka A reaguje s molekulovým vodíkom<br>za prítomnosti platiny ako katalyzátora pri teplote<br>20°C a tlaku 0,1 MPa a vzniká látka B. |

\* 101,325 kPa = 101 325 Pa štandardné podmienky 25 °C (298,15 K)

substrát = reaktant, na ktorom sa v priebehu reakcie uskutočňuje zmena

činidlo = reaktant, ktorý vyvoláva zmeny na substráte, často anorganické látky (HCl, Cl<sub>2</sub>....)

# A) HOMOLÝZA = homolytické štiepenie väzby

- väzba sa štiepi symetricky, t.j. väzbový elektrónový pár sa rozdelí každý z prvkov si ponechá jeden elektrón,
- vznikajú- radikály= častice s nespáreným elektrónom, označujeme ich bodkou, napríklad H₃C•, Cl•)



- sú veľmi reaktívne, existujú len veľmi krátko (zlomky sekundy), vznikajú napríklad pôsobením ultrafialového žiarenia, vysokou teplotou pri grilovaní....



- aj únava môže byť dôsledkom účinku radikálov zlého živ. štýlu .....!!!!



ANTIOXIDANTY = zelený čaj; čierny čaj; Aloe vera; vitamíny A, C, E; jablká

- B) <u>HETEROLÝZA</u> pri heterolytických reakciách sa väzba štiepi asymetricky, t.j. celý väzbový elektrónový pár si ponechá elektronegatívnejší atóm (napríklad Cl),
  - \* vznikajú elektricky nabité častice=ióny ANIÓNY, alebo KATIÓNY napríklad na C karbkatión



Nepolárne väzby sa štiepia Homolyticky Polárne väzby sa štiepia Heterolyticky

# Typy reakcií podľa použitého činidla

 RADIKÁLOVÉ reakcie = reakcie, kde reagujú radikály vzniknú homolýzou, napríklad H•, Cl•,

H₃C• Metylový radikál

2. ELEKTROFILNÉ reakcie = zúčastňujú sa ich elektrofilné častice – FILNÝ=mať rád, e- = záporná častica, v preklade "priťahujú" elektróny, sama musí byť kladná – sú akceptormi (príjemcami) elektróny.

Patria tu katióny, napr. H\*, Br\*, NO\*2, ale aj elektroneutrálne molekuly.

- 3. NUKLEOFILNÉ reakcle nukleofilné častice majú elektróny, sú donormi (darcami) elektrónov. patria tu:
  - a) anióny (napr. OH, I),
  - b) aj elektroneutrálne molekuly s 1 alebo viac voľných elektrónových párov, napríklad H<sub>2</sub>O, NH<sub>3</sub>.

Nakreslite molekulu H<sub>2</sub>O, NH<sub>3</sub> Koľko elektrónových párov majú molekuly?

#### Delenie org. činidiel:

- homolytické činidlá=radikálové
- \* heterolytické činidlá rozlišujeme a) elektrofilné

b) nukleofilné

### Typy reakcií podľa javového opisu:

### 1. ADÍCIA = pripojenie

- ide o naviazanie molekuly alebo zlúčeniny.
- znižovaniu násobnosti väzieb, t.j. premene trojitých väzieb na dvojité a dvojitých väzieb na jednoduché.
- typická reakcia nenasýtených zlúčenín



- adície môžu byť elektrofilné (A<sub>E</sub>), nukleofilné (A<sub>N</sub>) a radikálové (A<sub>N</sub>)

#### 2. ELIMINÁCIA = odštiepenie

- \* ide o naviazanie molekuly alebo zlúčeniny.
- zvyšovaníu násobnosti väzieb, t.j. premene jednoduchých na dvojité, dvojité na trojité, ide o vznik nenasýtených zlúčenín
- z molekuly sa odštiepi (eliminuje) malá, spravidla anorganická, molekula (napríklad H<sub>2</sub>, H<sub>2</sub>O, NH<sub>3</sub>, HCI
   ...).



### 3. SUBSTITÚCIA = nahradenie

 nahradí (substituuje) sa <u>1 atóm alebo skupina atómov</u> v molekule iným atómom alebo skupinou atómov (substituentom)



### 4. MOLEKULOVÝ PREŠMYK -

\* ide o preskupenie atómov v rámci jednej molekuly

nukleofilné (S<sub>N</sub>) a radikálové (S<sub>D</sub>).

vzniká nová - stabilnejšia zlúčenina

Napríklad produktom molekulového prešmyku vinylalkoholu je acetaldehyd.

Je to príklad TAUTOMÉRIE – izoméria, pri ktorej majú zlúčeniny \_\_\_\_\_ sumárny vzorec, líšia sa polohou \_\_\_\_\_ a \_\_\_\_\_ väzby.