Sameer Vivek Pande 2017CS10371

Report Part-c

Best Performing Design:

Batch Size = 200 Learning Rate = 1 (adaptive) Activation = Softplus (last layer softmax) number of Hidden Layers = 1 Nodes in Hidden Layer = 120 Regularziation Type = L2 Regularization Parameter = 0.1

Other observations

Number of Iterations = 15000

Here are some the results of multiple tests done

Batch Size = 100

Dutti Siz	<u> </u>					
Learning	Learning	Hidden	Regularizatio	Activation	Best	Training
Type	Rate	Layers	n Parameter		Validation	•
	(base	-			Accuracy %	Validatio
	rate)				(Approx.)	n Split
1	0.5	[200,200]	0.1	SoftPlus	38.1	9:1
1	0.5	[100,100]	0.1	SoftPlus	33.7	9:1
2	1	[120]	0.1	SoftPlus	35	9:1
1	0.5	[100,100	0.1	Relu	15	9:1

1	0.5	[100,100	0.1	Leaky_Relu	31	9:1
1	0.5	[100,50, 10]	0.01	Sigmoid	16	9:1
1	0.5	[100,100 ,10]	0.1	Sigmoid	15	9:1
2	10	[50]	0.01	Sigmoid	28	9:1
2	10	[50]	0.01	Tanh	26	9:1
1	0.5	[100,100	0.1	Tanh	33	9:1

Many were observations were recorded:

- 1. In general regularization parameter of 0.1 performed better than 0.01. Using regularization parameters in range like 1, 2 etc. gave poor results with all activations
- 2. Three hidden layer models overfitted extremely with all activation functions and gave best val accuracy of arround 16 % for sigmoid and softplus activations
- 3. Softplus performs bettern than tanh. Tanh has been seen to perform better than sigmoid functions
- 4. Leaky Relu has performed better but unable to been SoftPlus
- 5. Using two layers led to overfitting without improving validation accuracy by a lot. Instead adding more neurons in a single layered model increased validation accuracy **Batch Size** = **200**

Learning	Learning	Hidden	Regularizatio	Activation	Best	Training
Type	Rate	Layers	n Parameter		Validation	•
	(base	_			Accuracy %	Validatio
	rate)				(Approx.)	n Split
2	1	[120]	0.1	SoftPlus	39	9:1
2	1	[120]	0.1	Sigmoid	32	9:1
2	1	[120]	0.1	Tanh	34	9:1

- 1. For batch size 200, adaptive learning rates worked performed by keeping max iterations same
- 2. Using base learning rate 1 gives better results for max_iterations 15000
- 3. Comparing three activation functions for best result obtained (used in final submission)

Report Part -d

Best Working Design

Learning Type = Adaptive

Base Learning Rate = 1

Number of iterations = 15000

Batch size = 120

Activation Type = SoftPlus

Filter Used = Gaber (Theta = 45 degrees, Frequency = 0.25)

Feature Added = Apply Gaber filter on each image and using the image as a feature

(E.g. 32 X 32 image gave 1024 sized feature vector. Now It will give 2048 sized vector. Just by appending the vector obtained by applying filter on the image)

- 1. Tried different filters Gaber Filters, Sobel Filter, Canny Filter (edge detection)
- 2. For the best working model parameters

Gaber Filter -> Increases Accuracy by (1-1.5)%

Sobel Filter -> Accuracy almost same as without filter

Canny Filter -> Accuracy of model reduced (perhaps required more training or different model to give better accuracy)

Batch Size = 200

Learning	Learning	Hidden	Regularization	Activation	Best	Filter
Type	Rate	Layers	Parameter		Validation	
	(base				Accuracy %	
	rate)				(Approx.)	
2	1	[120]	0.1	SoftPlus	40	Gaber
2	1	[120]	0.1	SoftPlus	39	Sobel
2	1	[120]	0.1	SoftPlus	34	Canny