Leveraging Differentiable Programming in the Inverse Problem of Neutron Stars

Thibeau Wouters, Peter T. H. Pang, Rahul Somasundaram, Ingo Tews, Tim Dietrich, and Chris Van Den Broeck

t.r.i.wouters@uu.nl

() in y

Extreme Matter 17/03/2025

Introduction

Neutron stars (NSs) offer unique probes of the high-density regime of the equation of state (EOS) of dense nuclear matter.

Inverse problem of NSs: infer the EOS from observations of NSs (masses, radii, tidal deformabilities, . . .)

Inverting neutron stars with differentiable programming

Bottleneck: solving Tolman-Oppenheimer-Volkoff (TOV) equations

Our solution: differentiable programming with JAX [1]

- GPU accelerators no emulators required!
- Automatic differentiation to compute gradients of functions

We invert neutron stars using

- **1 Bayesian inference**: \sim 0.24 ms per TOV call, \sim 1 h for MCMC inference
- 2 Gradient-based optimizers: efficient inversion of mass-radius curves

Available open source: JESTER (Otsunhopang/jester)

Methods – Equation of state parametrization (1)

- At low density, we use the metamodel: Taylor expansion of energy per nucleon E/A [2, 3] in $x = (n n_{sat})/3n_{sat}$
- Nuclear empirical parameters (NEPs): coefficients of the expansion

$$E/A(n,\delta) = e_{\mathrm{sat}}(n) + e_{\mathrm{sym}}(n)\delta^2 + \mathcal{O}(\delta^4), \quad \delta = (n_n - n_p)/n$$

$$\begin{split} e_{\rm sat}(n) &= E_{\rm sat} + \tfrac{1}{2} K_{\rm sat} x^2 + \tfrac{1}{3!} Q_{\rm sat} x^3 + \tfrac{1}{4!} Z_{\rm sat} x^4 + \mathcal{O}(x^5) \\ e_{\rm sym}(n) &= E_{\rm sym} + L_{\rm sym} x + \tfrac{1}{2} K_{\rm sym} x^2 \\ &+ \tfrac{1}{3!} Q_{\rm sym} x^3 + \tfrac{1}{4!} Z_{\rm sym} x^4 + \mathcal{O}(x^5) \end{split}$$

 $^{^{1}}n_{\rm sat} \equiv 0.16 \; {\rm fm}^{-3}$

Methods – Equation of state parametrization (2)

- The metamodel description breaks down at high density [4]
- Happens at $n_{\text{break}} \sim [1, 2] n_{\text{sat}}$
- Higher density: parametrize the EOS with $c_s^2(n)$ grid points and linear interpolation [5]
- By default, 8 grid points

Methods – Bayesian inference

Bayesian inference: get posterior of EOS parameters $\theta_{\rm EOS}$ with Markov chain Monte Carlo (MCMC) and NS data d

$$p(\theta_{\rm EOS}|d) \propto p(d|\theta_{\rm EOS})p(\theta_{\rm EOS})$$

Computationally expensive: solve TOV equations for many $\theta_{\rm EOS}!$

- JAX: compiles code, runs on GPU
- flowMC [6, 7]: MCMC with normalizing flows as proposal distributions

With this, we achieve (on NVIDIA H100 GPU)

- ullet \sim 0.24 ms per TOV call
- Complete MCMC run in ~ 1 h

Results – Validation and scaling

- EOS constraints: nuclear theory ($\chi_{\rm EFT}$), NS observations (heavy PSRs, NICER, GW170817)
- Extend Koehn+ [8]: directly sample θ_{EOS}
- Scales well with number of parameters (more $c_s^2(n)$ grid points)

Constraint	$R_{1.4} \; [\mathrm{km}]$			
	Koehn+	This work		
$\chi_{\rm EFT}$	$12.11^{+1.69}_{-3.39}$	$12.59^{+2.24}_{-3.51}$		
Radio timing	$13.70^{+1.41}_{-2.17}$	$13.71^{+1.19}_{-1.88}$		
PSR J0030+0451	$13.17^{+1.65}_{-2.24}$	$13.48^{+1.42}_{-2.15}$		
PSR J0740+6620	$13.39^{+1.57}_{-1.72}$	$13.79^{+1.26}_{-1.73}$		
$\mathrm{GW}170817^\dagger$	$11.98^{+1.08}_{-1.09}$	$12.40^{+1.33}_{-1.49}$		
All	$12.26^{+0.80}_{-0.91}$	$12.62^{+1.04}_{-1.11}$		

Results – Measuring n_{break}

 $\chi_{\rm EFT}$ predicts metamodel to break down at a density $n_{\rm break} \sim 1-2~n_{\rm sat}$ Can we determine this with NSs?

- Wide, agnostic prior on $n_{\rm break}$: U(1,4) $n_{\rm sat}$
- Only consider heavy PSRs, NICER, GW170817

Methods – Variational inference

Alternative to Bayesian inference: optimization with gradients

- $\hat{R}_i, \hat{\Lambda}_i$: "target" tidal deformabilities at masses M_i
- Loss function $L(heta_{\mathrm{EOS}})$: relative error in tidal deformability Λ
- Gradient descent: $\boldsymbol{\theta}^{(i+1)} \leftarrow \boldsymbol{\theta}^{(i)} \gamma \nabla L(\boldsymbol{\theta}^{(i)})$
- Efficiently invert a complete NS mass-radius curve

$$L(\boldsymbol{\theta}_{\text{EOS}}) = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\Lambda_i(\boldsymbol{\theta}_{\text{EOS}}) - \hat{\Lambda}_i}{\hat{\Lambda}_i} \right|$$

$$\begin{array}{c} 2.75 \\ 2.50 \\ 2.25 \\ 2.25 \\ 2.75 \\ 2.75 \end{array}$$

Results – recovery of metamodel parameters

- Consider only metamodel NEPs no $c_s^2(n)$ grid points
- Recover with increasingly more NEPs being varied
- ullet If more NEPs are varied, $L_{
 m sym}$ is no longer constrained
- Recovered EOS deviate < 100 meters, < 10 in Λ from the true EOS in [1,2] M_{\odot} range

10

Conclusion

- We have developed JESTER, a differentiable programming framework for the inverse problem of NSs
- We demonstrate accurate and scalable Bayesian inference on NS data
- Gradient-based optimizers can efficiently invert a complete NS family
- New tool to gain insights into how NSs probe the EOS

Available open source: JESTER (Otsunhopang/jester)

11

More validation results

Constraint	$M_{ m TOV} \; [M_{\odot}]$		$p(3n_{ m sat})~{ m [MeV~fm^{-3}]}$		$n_{ m TOV} \; [n_{ m sat}]$	
	Koehn+	This work	Koehn+	This work	Koehn+	This work
χeft	$2.05^{+1.08}_{-1.16}$	$2.03^{+1.03}_{-0.97}$	69^{+186}_{-53}	72^{+165}_{-65}	$6.51^{+10.7}_{-3.11}$	$6.53^{+9.26}_{-4.09}$
Radio timing	$2.35^{+0.73}_{-0.29}$	$2.20^{+0.39}_{-0.26}$	111^{+140}_{-49}	97^{+65}_{-49}	$5.51^{+1.89}_{-1.66}$	$5.68^{+1.63}_{-1.74}$
PSR J0030+0451	$2.16^{+0.83}_{-0.71}$	$2.19^{+0.78}_{-0.76}$	89^{+143}_{-46}	94^{+135}_{-62}	$5.62^{+4.44}_{-1.91}$	$5.60^{+3.65}_{-2.59}$
PSR J0740+6620	$2.34^{+0.65}_{-0.32}$	$2.38^{+0.70}_{-0.42}$	107^{+125}_{-40}	118^{+150}_{-59}	$5.34^{+1.63}_{-1.61}$	$5.16^{+1.72}_{-2.04}$
GW170817	$2.21^{+0.45}_{-0.18}$	$2.17^{+0.39}_{-0.23}$	80^{+81}_{-32}	80^{+70}_{-48}	$6.25^{+1.40}_{-1.70}$	$6.35^{+1.65}_{-1.88}$
All	$2.25^{+0.42}_{-0.22}$	$2.24^{+0.36}_{-0.23}$	90^{+71}_{-31}	93_37	$5.92^{+1.35}_{-1.38}$	$5.91^{+1.36}_{-1.45}$