Distributed Shared Memory

Christopher Mersman Bradley M Richards Matt Rakel

Why is the Problem Important?

- Faster Data Processing
 - Processors are increasing exponentially
- Parallel Programming Accessibility
 - Dividing the work and distributing resources
- Large Data Sets
 - When memory cannot be confined to a single device
- Cloud Computing
 - Current trend in computing

Problem Characterization

- Concurrency
 - Large number of execution paths.
- Latency / Network
 - Increased Contention and Latency Limit Scalability
- Consistency / Coherence
 - Synchronized and correct output
- Design Issues

Trade-off Space for Solutions

Software

- Single Reader / Single Writer
- Multi Reader / Single Writer
 - Centralized Manager Algorithm
 - Fixed Distributed Manager Algorithm
 - Broadcast Distributed Manager Algorithm
- Multi Reader / Multi Writer RISKY!

Hardware

- Cache Coherent Nonuniform Memory Architectures
- Cache-only Memory Architectures
- Reflective Memory Systems

Hardware vs Software

Performance vs Cost / Scalability

Dominant Approaches

- Software Solutions
 - o lvy
 - Original Software Proposal
 - Very inefficient
 - Mermaid
 - First on Heterogeneous Environment
 - Needs Data Conversion
 - Munin
 - Uses multiple-consistency protocols
 - Supports multiple concurrent writers

Dominant Approaches Continued...

- Hardware Solutions
 - Memnet
 - Ring-based multiprocessor
 - Goal is to decrease communications
 - Dash (Directory Architecture for Shared Memory)
 - Scalable directory-based DSM
 - Breaks memory into 4-Processor clusters
 - Merlin (Memory Routed Logical Interconnection Network)
 - Provides scalability to bus-based systems
 - Able to handle a heterogenous environment

Insights

- Speeds up Performance
- No simple solution
 - Central-Server
- Software Solutions
 - Scalable and Portable
- Hardware Solutions
 - Less Congestion and higher Performance
- Hybrid Solution
 - Best of both worlds

Future Problem Space

- Quantum Entanglement
 - Two particles share state over long distance
 - Requires only initial physical interaction
- Instant point-to-point communication
 - No physical medium
- Scalable to large networks
 - Routers could distribute quantum pairs
- Already being tested
 - Quantum Cryptography already used in Switzerland
 - Quantum repeaters being developed

Trade-off Space and Future Solutions

- Range of Quantum Entanglement
 - 100m not even a datacenter
- Inside range, location doesn't matter
 - No difference between same or different rack
- Quantum Entanglement is fragile
 - External forces on one particle breaks the connection
- Research could change this
 - Reliable repeaters and ion traps could keep entangled pairs connected indefinitely
- Quantum computing has no real downside
 - Faster, more secure, and smaller