

GerMedIQ: A Resource for Simulated and Synthesized Anamnesis Interview Questions in German

Justin Hofenbitzer¹, Sebastian Schöning², Sebastian Belle³, Jacqueline Lammert¹, Luise Modersohn¹, Martin Boeker¹, Diego Frassinelli⁴

¹Technical University of Munich, ²Fraunhofer IPA, ³University of Heidelberg, ⁴LMU Munich

justin.hofenbitzer@tum.de

The Problem: German Clinical Data is Sparse

- Strict privacy regulations in Germany and the EU for clinical data
- In the US, large datasets (e.g., MIMIC (Johnson et al., 2016)) contain real clinical texts
- No comparable corpora in German (Hahn, 2025)

The Solution: Data Augmentation

Synthetic data generation and **augmentation** of existing datasets with the help of LLMs (*Piedboef and Langlais, 2024*)

The German Medical Interview Questions Corpus (GerMedIQ)

Simulated Human Responses:

- 4,524 unique question-response pairs
- 116 German questions from standardized medical anamnesis questionnaires (University Medical Centre Mannheim)
- 39 laypersons answered each question with an *appropriate* response in German without disclosing any personally identifiable information

LLM-Augmented Synthetic Responses:

- 18 open-weight LLMs produced five independent responses per question in a stateless setup
- Zero-Shot Inference: No human responses were provided

	General Domain	Biomedical Domain	Total
Small (< 3B)	2	3	5
Medium	8	3	11
Large (> 8B)	2	0	2
Total	12	6	18

The GerMedIQ Corpus:

The Quality of the Dataset: A Take-Home Message

Structural Evaluation:

- Failing to follow instructions, 273 outputs from *BioGPT MedText* and *Gemma 3* were removed
- LLM responses were **longer** and **more complex** than human responses (especially, small and medium-sized general models)

Semantic Evaluation:

Gemma 3 was closest to the human responses, while small LLMs were the farthest away:

Acceptability Study:

- Humans (N = 4) and LLM judges (N = 15) rate the **acceptability** of each response given the corresponding question on a Likert scale between 1 (*completely unacceptable*) and 5 (*very acceptable*)
- LLMs and humans rated the responses from medium and large LLMs better than those from small models
- Mistral (124B) produced the most acceptable responses, surpassing humans

Leaderboard	Model	Count	Self-Vote	Human-Vote
Best	Mistral (124 B)	8/15	True	True
	Qwen 2.5	2/15	False	False
Worst	BioGPT	6/15	False	True
	BioGPT MedText	4/15	False	False

Alistair E. W. Johnson, et al.. 2016. MIMIC-III, a freely accessible critical care database. Scientific Data.
Frédéric Piedboeuf and Philippe Langlais. 2024. On Evaluation Protocols for Data Augmentation in a Limited Data Scenario. arXiv

