华东理工大学 2013-2014 学年第_二_学期

《高分子物理》课程期终考试试卷 B 卷 2014.7

开课学院	E: <u>材料学</u>	<u>院</u> 专业:_	材料物理	_考试形式:	<u>闭卷</u> , 原	所需时间 <u>1</u>	20分钟	
考生姓名:	学号:		班级:		任课教师:			
题序	_		三	四	五.	六	总 分	
得分								
评卷人								
一. 单项选择题(每题 2 分, 共 20 分)								
	下列聚合物			的是				
() 1.			异丁烯;		二烯: (D))聚氯乙烯	i	
() 2. 如果不考虑键接顺序,线形聚异戊二烯的异构体种类数是								
	(A) 5;	(B) 6;	(C) 7	; (D)	8			
() 3.	下列分子量	出同的聚	合物,在机	目同条件下	用稀溶液料	占度法测得	的特性黏	
梦	数最大的是							
	(A)高支化	度; (B) [中支化度;	(C)低支付	化度; (D)	线性		
() 4. 3	全同聚丙烯	的分子链	在晶体中原	斤采取的构	象与下列呀	那种聚合物]类似	
	(A) 聚乙	烯; (B	3) 聚对苯二	二甲酸乙二	:酷; (C)	聚甲醛		
() 5.	下列参数中	一般与聚	合物溶度参	参数无关的	是			
	(A)分子量	(B)极	性; (C)	分子间力;	(D) 内	聚能密度		
() 6.	高分子链的	J柔顺性越	好,其等效	枚自由结合	链的链段	长度		
	` /	` ′	√; (C)		(D) 不确定	È		
()7.可	用来描述	*** ***	_ , , , , , , , , _ , , _			.		
		,	B) Ahrenius					
() 8.	下列聚合物							
() O =				,		, , , , ,		
() 9.						,		
() 10						p; (D)	承平 厶帅	
() 10.						有机玻璃		
` /	下列高聚物 (A) ABS 下列高聚]中,综合 树脂; (物中,在室	B)聚丙烯	具有较高的 腈; (C 发生屈服?	的强度和韧)聚丁二烷 令拉的是	性)最好的 条; (D)	是	

二. 多项选择题(每题2分,共20分)
(下面每题至少有一个答案是正确的,全部答对得2分)
()1. 根据橡胶热力学方程,与产生橡胶张力有关的热力学参数有
(A) 内能; (B) 熵; (C) 体积; (D) 自由能; (E) 热焓
()2. 描述聚合物结晶的结构模型有
(A) 无规线团模型; (B) 折叠链模型; (C) 缨状微束模型;
(D) 两相球粒模型; (E) 插线板模型
() 3. 聚合物下列性质随结晶度增加而增大的是
(A) 拉伸强度; (B) 密度; (C) 冲击强度; (D) 断裂伸长率; (E)模量
()4. 下列哪些因素可提高结晶速率
(A)溶剂; (B)拉伸; (C)增大相对分子量; (D)成核剂
() 5. 下列实验方法中可测定聚合物结晶速率的方法有
(A) IR 法; (B) 膨胀计法; (C) 解偏振光强度法; (D) DSC 法
() 6 . 下列实验方法中能测定高分子溶液 $ heta$ 温度的是
(A) 粘度法; (B) GPC 法; (C) 膜渗透压法; (D) 光散射法
()7.下列橡胶中不能用作轮胎的有
(A) 氯丁橡胶; (B) 顺丁橡胶; (C) 异戊橡胶; (D) 丁腈橡胶
()8. 与橡胶高弹形变有关的分子运动单元有
(A) 链段; (B) 整链; (C) 键长; (D) 键角
() 9. Voigt 模型可用来模拟
(A) 线形聚合物的蠕变行为; (B) 交联聚合物的蠕变行为;
(C)线形聚合物的应力松弛行为;(D)交联聚合物的应力松弛行为;
()10. 下列因素中,使聚合物拉伸强度提高的有
(A) 主链引入芳杂环; (B) 加入增塑剂; (C) 提高支化度;
(D) 提高交联度; (E) 增加分子极性
三. 是非题(每题1分, 共15分)
()1. 聚合物的 $T_{\rm g}$ 大小与测定方法无关,是一个衡定值。
()2. 不同聚合物分子链的均方末端距越短,表示分子链的柔顺性越好。
() 3. 随聚合物结晶度的增加, 抗张强度和抗冲强度增加。
() 4. 短支链可降低结晶度,长支链会改善材料流动性
() 5. WLF 方程适用于聚合物的松弛过程。
() 6. 分子间作用力强的聚合物一般具有较高的强度和模量。
()7 橡胶形变时有热效应, 在拉伸时放热, 而压缩时吸热。

()8. 凝胶渗透色谱的淋出体积越大,该级分的相对分子量越大。

- ()9. 取向与结晶是相同的,都是三维有序。
- ()10. 聚合物熔体的零切粘度大于其表观粘度。
- ()11. 结晶聚合物都能形成高分子液晶。
- ()12. 由于拉伸会产生热量使温度上升,因此结晶速率会下降。
- ()13. 时温等效原理就是指时间可以换算成温度。
- ()14. 结晶聚合物的熔点高于其粘流温度。
- ()15. 柔性链聚合物并非都具有高弹性。

四. 图示题(共15分)

- 1. 在同一坐标轴上画出丙烯腈-苯乙烯二元共聚物(AS)和丙烯腈-苯乙烯-丁二烯三元共聚物(ABS)的应力-应变曲线。(7分)
- 2. 在同一坐标中画出非晶态线形聚合物及高度结晶聚合物的温度-形变曲线,并标注相应的转变温度,其中结晶聚合物熔点高于黏流温度。(8分)

五. 简答题(每题5分,共10分)

- 1. 在主链碳原子数相同情况下,试比较聚酯、聚乙烯、聚酰胺的熔点大小,并简要说明理由。
- 2. 写出不少于 5 个能体现聚合物溶液处于 θ 状态时的相关参数的数值。

六. 计算题 (共 20 分)

已知 PE 和 PMMA 的黏流活化能分别为 41.8 kJ/mol 和 192.3 kJ/mol, PE 在 190 ℃ 时的黏度为 114 Pa·s,PAAM 在 230 ℃的黏度为 490 Pa·s。*R*=8.314 Pa·m³/(mol·K) 试求:

- 1) PE 在 250 ℃时的黏度;
- 2) PMMA 在 250 ℃时的黏度:
- 3) 说明链结构对聚合物黏度的影响;
- 4) 说明温度对不同结构聚合物黏度的影响。