Britta Nestler

Fakultät IWI, Hochschule Karlsruhe und Fakultät Maschinenbau, KIT

Klausur zur Modellierung und Simulation 12. Februar 2019, WS 18/19

Es sind keine Hilfsmittel zugelassen. Bearbeitungszeit: 60 Minuten (Master Hochschule, Aufgaben 1 - 4) bzw. 90 Minuten (KIT, alle Aufgaben)

Aufgabe 1: (Hornerschema, Nullstellen, numerisches Differenzieren, Taylorreihe)

Gegeben ist die Funktion $f(x) = 2x^4 - 4x^2 + 2x$.

- a) Berechnen Sie an der Stelle $x_0 = 2$ den Funktionswert f(2) unter Verwendung des Horner-Schemas.
- b) Berechnen Sie für den Startwert $x_0 = 2$ den ersten Iterationsschritt x_1 des Newton-Verfahrens zur numerischen Bestimmung der Nullstelle f(x) = 0.
- c) Bestimmen Sie die numerischen Werte der ersten und zweiten Ableitung an der Stelle $x_0 = 2$ unter Verwendung der zentralen Differenzenformeln Df(x) und $D^2f(x)$ mit einer Schrittweite h = 1.
- d) Entwickeln Sie die Funktion f(x) in eine Taylorreihe um die Stelle $x_0 = 2$.

Aufgabe 2: (Numerische Integration)

Gegeben ist die Funktion $h(x) = 2x^3 - 3x^2 - 4$.

- a) Bestimmen Sie den exakten (analytischen) Wert des Integrals der Funktion h(x) im Intervall I = [1, 3], d.h. $\int_1^3 h(x) dx$.
- b) Teilen Sie das Intervall I in zwei gleiche Teilintervalle und berechnen Sie den numerischen Wert des Integrals mit der Untersumme (Linkssumme).
- c) Bestimmen Sie nun für dieselbe Zerlegung wie in b) den numerischen Wert des Integrals über die Trapezformel.
- d) Bestimmen Sie weiterhin für dieselbe Zerlegung wie in b) den numerischen Wert des Integrals über die Simpsonformel.

Aufgabe 3: (Interpolationspolynome und Splines)

Gegeben sind folgende Messdaten eines Prozessablaufes:

- a) Wenden Sie den Newton-Algorithmus an und bestimmen Sie ein Interpolationspolynom, das die Messdaten verbindet.
- b) Bestimmen Sie für obige Messdaten eine quadratische Spline-Funktion

$$g(x) = \begin{cases} g_1(x) = a_{12}x^2 + a_{11}x + a_{10} & \text{für } 1 \le x \le 2\\ g_2(x) = a_{22}x^2 + a_{21}x + a_{20} & \text{für } 2 \le x \le 3 \end{cases}$$

mit der Zusatzbedingung $g'_1(1) = 0$.

Aufgabe 4: (Raum-Zeit-Problem)

Gegeben ist die partielle Differenzialgleichung

$$u_t(t,x) = -4u_x(t,x) + u_{xx}(t,x), \quad \text{für} \quad x \in [0,2] \quad \text{und} \quad t > 0$$

mit Randbedingungen u(t,0) = 2, u(t,2) = 6 und der Anfangsbedingung

$$u(0,x) = \begin{cases} 1, & \text{für } 0 < x \le \frac{3}{4} \\ 4, & \text{für } \frac{3}{4} < x \le \frac{5}{4} \\ 1, & \text{für } \frac{5}{4} < x < 2 \end{cases}$$

Das Gitter ist so gewählt, dass $\Delta x = 1/2$ und $\Delta t = 1/8$ ist.

- a) Diskretisieren Sie die partielle Differenzialgleichung mit Vorwärtsdifferenzen in der Zeit t und zentralen Differenzen in der Ortskoordinate x. Formulieren Sie für $u_i^n, i=0,\ldots,4, n=0,\ldots$ das explizite Differenzenverfahren. Geben Sie hierbei auch die Rand- und Anfangsbedingungen in diskreter Form an.
- b) Berechnen Sie unter Verwendung des expliziten Differenzenverfahrens die Werte u_1^1, u_2^1 und u_3^1 als Ergebnis der ersten Zeititeration.

Aufgabe 5: (Anfangswertproblem)

Gegeben ist das Anfangswertproblem:

$$y'_1(t) = -2y_1(t) - y_2(t)$$

 $y'_2(t) = -y_2(t) + t$

mit den Anfangswerten $y_1(0) = 0$ und $y_2(0) = 1$.

- a) Geben Sie die Eulersche Iterationsformel für diese Differenzialgleichung an.
- b) Bestimmen Sie für eine Schrittweite h=1/2 den ersten Iterationsschritt des Eulerverfahrens.
- c) Vervollständigen Sie die Implementierung der Eulerschen Iterationsformel zur Bestimmung von $y_{1,k+1}$ und $y_{2,k+1}$ mit Schrittweite h und den gegebenen Startwerten y1_0, y2_0:

- d) Geben Sie das Runge-Kutta Verfahren 2. Ordnung für diese Differenzialgleichung an.
- e) Bestimmen Sie für h=1/2 den ersten Iterationsschritt des Runge-Kutta Verfahrens 2. Ordnung.

Aufgabe 6: (Ausgleichsproblem)

Gegeben sind die folgenden Messpunkte:

Gesucht ist eine Ausgleichsfunktion der Form: $f(x) = a + bx + cx^2$. Zur Bestimmung der Funktion f(x) gehen Sie nach den folgenden Schritten vor:

- a) Formulieren Sie das Fehlergleichungssystem $A\lambda = y$.
- b) Stellen Sie das Normalengleichungssystem $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{\lambda} = \boldsymbol{A}^T \boldsymbol{y}$ auf.
- c) Lösen Sie das Gleichungssystem und bestimmen Sie die Ausgleichsparabel $f(x) = a + bx + cx^2$.
- d) Tragen Sie die (x_i, y_i) Wertepaare in ein Koordinatensystem ein und skizzieren Sie die in c) gefundene Lösung.

Britta Nestler

Fakultät IWI, Hochschule Karlsruhe und Fakultät Maschinenbau, KIT

Formelsammlung zur Vorlesung "Modellierung und Simulation"

Taylorformel

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + R_n(x)$$

Newton-Algorithmus

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, 3, \dots$$

Regula-Falsi Verfahren

$$x_{n+1} = x_{n-1} - f(x_{n-1}) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Rechteckformel

$$I = h \sum_{i=0}^{n-1} f(\xi_i)$$
, mit $\xi_i = x_i$ oder $\xi_i = \frac{1}{2} (x_i + x_{i+1})$ oder $\xi_i = x_{i+1}$

Trapezformel

$$I_T = \frac{h}{2} \Big(f_0 + 2f_1 + 2f_2 + \ldots + 2f_{n-1} + f_n \Big)$$

Simpsonformel

$$I_S = \frac{4}{3}h(f_1 + f_3 + \dots + f_{2m-1}) + \frac{2}{3}h(f_2 + f_4 + \dots + f_{2m-2}) + \frac{1}{3}h(f_0 + f_{2m})$$

Runge-Kutta Verfahren 2. Ordnung

$$y_{k+1} = y_k + \frac{h}{2} \{ f(x_k, y_k) + f(x_{k+1}, y_k + hf(x_k, y_k)) \}$$

Runge-Kutta Verfahren 4. Ordnung

$$y_{k+1} = y_k + \frac{h}{6} \Big(F_1 + 2F_2 + 2F_3 + F_4 \Big)$$

mit

$$F_{1} = f(x_{k}, y_{k})$$

$$F_{2} = f(x_{k} + \frac{h}{2}, y_{k} + \frac{h}{2}F_{1})$$

$$F_{3} = f(x_{k} + \frac{h}{2}, y_{k} + \frac{h}{2}F_{2})$$

$$F_{4} = f(x_{k+1}, y_{k} + hF_{3})$$

Fehlerfunktional des Ausgleichsproblems

$$E(\lambda_1, \lambda_2, \dots, \lambda_m) := \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 = \sum_{i=1}^n \left(y_i - \sum_{j=1}^m \lambda_j f_j(x_i) \right)^2$$

Jacobi-Matrix

$$m{Df}(m{x}_0) = \left(egin{array}{cccc} rac{\partial f_1}{\partial x_1}(m{x}_0) & rac{\partial f_1}{\partial x_2}(m{x}_0) & \cdots & rac{\partial f_1}{\partial x_n}(m{x}_0) \ rac{\partial f_2}{\partial x_1}(m{x}_0) & rac{\partial f_2}{\partial x_2}(m{x}_0) & \cdots & rac{\partial f_2}{\partial x_n}(m{x}_0) \ dots & dots & dots & dots \ rac{\partial f_n}{\partial x_1}(m{x}_0) & rac{\partial f_n}{\partial x_2}(m{x}_0) & \cdots & rac{\partial f_n}{\partial x_n}(m{x}_0) \end{array}
ight)$$

Gauß-Newton-Verfahren (für nichtlineare Ausgleichsprobleme):

Für k = 0, 1, ...

- Berechne $\boldsymbol{\delta}^{(k)}$ als Lösung des linearen Ausgleichsproblems: Minimiere $||\boldsymbol{f}(\boldsymbol{x}^{(k)}) + \boldsymbol{D}\boldsymbol{f}(\boldsymbol{x}^{(k)})\boldsymbol{\delta}^{(k)}||_2^2$
- Setze $x^{(k+1)} = x^{(k)} + \delta^{(k)}$.