

Lecture 12b – Green-Ampt model for estimating infiltration rates

Learning Outcomes

- Be able to draw and interpret graphs and carry out calculations related to infiltration rates using the following methods:
 - Horton equation (empirical)
 - Green-Ampt model (simplified conceptual model)
- Be able to explain briefly the instrumentation we can use to measure soil properties, soil moisture content, and infiltration rates

Infiltration models

Scale matters!

Watershed scale

- "Upscaled" versions of local scale models
- Empirical and semi-empirical models related to infiltration capacity (rainfall excess, Kostiakov, modified Kostiakov, Horton, Horland)

Local scale

- Darcy's Law with conservation of mass
- Approximate solutions to Richard's equation (Philip, Smith-Parlange, Broadridge)
- Conceptually simplified models Green-Ampt models

Based on fundamental physics with some simplifications:

- Wetting front not often sharp
- Soil above wetting front may not be saturated

More realistic = Richard's equation but too complex for this class!!

$$f = -K_s \frac{dh}{dz}$$

$$f = -K_s \frac{h_f - h_o}{Z_f}$$

$$f = K_s \frac{\left| \psi_f \right| + Z_f}{Z_f}$$

Where f = infiltration rate h_o = hydraulic head at soil surface h_f = hydraulic head at wetting front ψ_f = suction/tension head at wetting front (cm) K_s = saturated hydraulic conductivity

$$F = Z_f (\theta_s - \theta_i)$$

Where F = cumulative infiltrated water (cm)

 θ_i = initial moisture content

 θ_{s} = saturated moisture content

Where $P = rainfall\ rate\ (cm/hr)$ $t_p = time\ of\ ponding\ (hr)$ $F_p = amount\ of\ water\ that\ infiltrates\ before\ ponding\ occurs\ (cm)$

$$t_{p} = \frac{F_{p}}{P} \qquad F_{p} = \frac{\left|\psi_{f}\right| K_{s} (\theta_{s} - \theta_{i})}{P - K_{s}}$$

Before ponding $(t \le t_p)$ f(t) = P

Reminder: Rainfall infiltration

Time (Hours)

Where $P = rainfall\ rate\ (cm/hr)$ $t_p = time\ of\ ponding\ (hr)$ $F_p = amount\ of\ water\ that\ infiltrates\ before\ ponding\ occurs\ (cm)$

$$t_{p} = \frac{F_{p}}{P} \qquad F_{p} = \frac{\left|\psi_{f}\right| K_{s} (\theta_{s} - \theta_{i})}{P - K_{s}}$$

Before ponding
$$(t \le t_p)$$
 $f(t) = P$

After ponding $(t > t_p)$ $f(t) = K_s + K_s \frac{|\psi_f|(\theta_s - \theta_i)}{F}$

Given that f = dF/dt, we can write the calculate t for a given F (when $F>F_p$)

$$t = t_p + \frac{1}{K_s} \left[F - F_p + \left| \psi_f \right| (\theta_s - \theta_i) \ln \left(\frac{\left| \psi_f \right| (\theta_s - \theta_i) + F_p}{\left| \psi_f \right| (\theta_s - \theta_i) + F} \right) \right]$$

I sieve my soil and find that it is 50% sand, 20% silt, and 30% clay. What type of soil is it?

- a) Clay loam
- b) Sandy clay loam
- c) Silt loam
- d) Loam
- e) Clay

What is the K_{sat} (cm/hr) and suction head (cm) for your soil?

Texture	Porosity n	Residual Porosity Θ _r	Effective Porosity $\Theta_{\rm e}$	Suction Head ψ (cm)	Conductivity K (cm/hr)
Sand	0.437	0.020	0.417	4.95	11.78
Loamy Sand	0.437	0.036	0.401	6.13	2.99
Sandy Loam	0.453	0.041	0.412	11.01	1.09
Loam	0.463	0.029	0.434	8.89	0.34
Silt Loam	0.501	0.015	0.486	16.68	0.65
Sandy Clay Loam	0.398	0.068	0.330	21.85	0.15
Clay Loam	0.464	0.155	0.309	20.88	0.10
Silty Clay Loam	0.471	0.039	0.432	27.30	0.10
Sandy Clay	0.430	0.109	0.321	23.90	0.06
Silty Clay	0.470	0.047	0.423	29.22	0.05
Clay	0.475	0.090	0.385	31.63	0.03

A rainfall event lasts for 2 hours with a 0.8 cm/hr intensity. The soil θ_i = 0.25 and θ_s = 0.50.

What is the total runoff and infiltration (cm) from the rainfall event?

When does runoff begin?

What is the infiltration rate at the end of the storm?

Step 1: Calculate t_p and F_p

$$t_p = \frac{F_p}{P}$$
 $F_p = \frac{\left|\psi_f\right| K_s (\theta_s - \theta_i)}{P - K_s}$ $t = t_p \text{ and } P > K_s$

Reminder: Rainfall infiltration

Time (Hours)

Step 2: Calculate t and f using below equations for randomly chosen F values

F (cm) 0 1.26 (=Fp) 1.35 1.45 1.57

t (hrs)	f (cm/hr	
0	0.8	
1.57 (= tp)	0.8	
1.69	0.757	
1.83	0.715	
2.00 (rain stopped)	0.672	

Before ponding

For
$$F < Fp$$
, $t = F/P$

For
$$t < tp$$
, $f(t) = P$

After ponding

For F>Fp,
$$t = t_p + \frac{1}{K_s} \left[F - F_p + \left| \psi_f \right| (\theta_s - \theta_i) \ln \left(\frac{\left| \psi_f \right| (\theta_s - \theta_i) + F_p}{\left| \psi_f \right| (\theta_s - \theta_i) + F} \right) \right]$$

For t>tp,
$$f(t) = K_s + K_s \frac{|\psi_f|(\theta_s - \theta_i)}{F}$$