

MA2011 MECHATRONICS SYSTEMS INTERFACING

Tutorial 3
Prof. Cai Yiyu

College of Engineering
School of Mechanical and Aerospace Engineering

ASSESSMENT STRUCTURE

Assessment (includes both continuous and summative assessment)

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weightin g	Team/ Individua I	Assessmen t rubrics
1. Continuous Assessment 1 – Team Project Presentation	LO1-3	EAB SLO a, b, d, į	20%	Team	Appendix 1
2. Continuous Assessment 2 – Quiz 2	LO4	EAB SLO a, b, d	20%	Individual	
3. Final Examination - Restricted Open Book; 2.5hrs	LO1-4	EAB SLO a, b, c, d, e	60%	Individual	
Total			100%		

LINEAR SYSTEMS

Linear systems are of the form

$$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$$

where X_{in} and X_{out} are input and output variables, A_n and B_m are coefficients, N is the order of the system.

Which of the following is correct for the Characteristic Equations of the Linear System?

$$1) \quad \sum_{n=1}^{N} A_n s^n = 0$$

$$2) \quad \sum_{n=1}^{N} A_n s^n = 1$$

3)
$$\sum_{n=0}^{N} A_n s^n = 0$$

4)
$$\sum_{n=0}^{N} A_n s^n = 1$$

Which of the following is correct for the Characteristic Equations of the Linear System?

$$1) \quad \sum_{n=1}^{N} A_n s^n = 0$$

$$\sum_{n=1}^{N} A_n s^n = 1$$

$$3)\sqrt{\sum_{n=0}^{N}A_{n}s^{n}}=0$$

4)
$$\sum_{n=0}^{N} A_n s^n = 1$$

Quadratics Equation Solving

$$ax^2 + bx + c = 0 \quad (a \neq 0)$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad (\Delta = b^2 - 4ac \ge 0)$$

Cubic or Quartic Equation Solving

Cubic equation

Quartic equation

Explicit Form of Solution Available

High Order Equation Solving

Quintic equation High degree (N>5) equation

Galois Group Theory

$$f(s) = \sum_{n=0}^{N} A_n s^n$$
, $A_N \neq 0$

$$f(s) = 0$$

No Explicit Solution Available Normally, and Numerical Approach may be attempted

Newton-Raphson Method

NEWTON-RAPHSON FORMULA

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

STEP BY STEP LINEAR SYSTEMS SOLVING

1: Look into the homogenous equation of Linear system:

$$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \mathbf{0}$$

2: Find roots for the characteristic equation of Homogenous equation of Linear system

$$\sum_{n=0}^{N} A_n S^n = 0$$

3: Find homogenous or transit solutions X_{out_g} of Homogenous System:

$$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$$

4: Find a particular solution X_{outp} of Linear system

$$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$$

5: Find general solutions of Linear system

$$X_{out} = X_{out_{\mathbf{g}}} + X_{out_{\mathbf{p}}}$$

During a step function calibration, a first-order instrument is exposed to a step change of 100 units. If after 1.2 s the instrument indicates 80 units, estimate the instrument time constant. Estimate the error in the indicated value after 1.5 s. Assume $X_{out}(0) = 0$ units and K = 1 unit/unit.

 $c \tau = 0.75 \text{ s}$; error at 1.5 s = 13.4 units

LINEAR SYSTEM

1st Order System
$$\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$$

$$\tau \frac{\mathrm{d}X_{\mathrm{out}}}{\mathrm{d}t} + X_{\mathrm{out}} = 0$$

The Characteristic Equation of The Homogenous Equation of the 1st Order System

$$\tau s + 1 = 0$$

Step input

Since the root of this equation is $s = -1/\tau$, the **homogeneous** or **transient solution** is

$$X_{\text{out}_h} = C e^{-t/\tau}$$

where C is a constant determined later by applying initial conditions. A particular or steady state solution resulting from the step input is

$$X_{\text{out}_p} = KA_{\text{in}}$$

The **general solution** is the sum of the homogeneous and particular solutions

$$X_{\text{out}}(t) = X_{\text{out}_b} + X_{\text{out}_p} = C e^{-t/\tau} + KA_{\text{in}}$$

LINEAR SYSTEM

5: Determine the coefficients using initial condition

$$\tau \frac{\mathrm{d}X_{\mathrm{out}}}{\mathrm{d}t} + X_{\mathrm{out}} = KX_{\mathrm{in}}$$

$$X_{\text{out}}(t) = X_{\text{out}_h} + X_{\text{out}_p} = C e^{-t/\tau} + KA_{\text{in}}$$

Applying the initial condition $X_{out}(0) = 0$ to this equation gives

$$0 = C + KA_{\rm in}$$

thus,

$$C = -KA_{\rm in}$$

so the resulting step response is

$$X_{\text{out}}(t) = KA_{\text{in}}(1 - e^{-t/\tau})$$

LINEAR SYSTEM

5: Determine the coefficients using initial condition (continue)

Step input

$$\tau \frac{dX_{\text{out}}}{dt} + X_{\text{out}} = KX_{\text{in}}$$

$$X_{\text{out}}(t) = X_{\text{out}_{\kappa}} + X_{\text{out}_{\kappa}} = C e^{-t/\tau} + KA_{\text{in}}$$

$$X_{\text{out}}(t) = KA_{\text{in}}(1 - e^{-t/\tau})$$

Given
$$X_{\text{out}}(0) = 0$$

SOLUTION:

A first order system subjected to a step function $A_{in}U_1(t)$ can be modelled as:

$$a_1 \frac{dX_{\text{out}}}{dt} + a_0 X_{\text{out}} = b_0 X_{\text{in}}$$

The solution is given as

$$X_{\text{out}}(t) = KA_{\text{in}} + (X_{\text{out}}(0) - KA_{\text{in}})e^{-t/\tau}$$

Substituting known variables gives:

$$X_{\text{out}}(t) = 100 + (0 - 100)e^{-t/\tau}$$

At
$$t = 1.2$$
 s, we have $X_{\text{out}}(1.2) = 80 = 100 - 100e^{-1.2/\tau}$.

Thus,
$$e^{-1.2/\tau} = \frac{20}{100}$$

 $\frac{-1.2}{\tau} = \ln(0.2) = -1.61$
 $\therefore \tau \approx 0.75$

At
$$t = 1.5$$
 s, error = $100 - X_{out}(1.5) = 100e^{-1.5/0.75} = 13.4$ units.

Step response of system

Note that two parameters, i.e. τ and K, are needed to characterise the first order system. τ and K are system variables, and are **not** dependent on the input.

A first-order instrument with a time constant of 2 s is to be used to measure a periodic input. If a dynamic error of 2% can be tolerated, determine the maximum frequency of a periodic input that can be measured.

 $(\omega_{\text{max}} = 0.1 \text{ rad s}^{-1})$

1. Magnitude Ratio or Normalized Amplitude Ratio: $M(\omega)$ (Detail, see appendix)

$$M(\omega) = \frac{1}{\sqrt{1 + (\omega \tau)^2}}$$

2. Dynamic Error: $M(\omega)$

$$\delta(\omega) = 1 - M(\omega)$$

3. Solution (next page)

For a first order system, the output of the system always lags (follows behind) the input and $M(\omega)$ must always be less than 1. So, for $\delta(\omega) \leq 0.02$, we have

$$1 \ge M(\omega) \ge 0.98$$

$$M(\omega) = \frac{1}{\sqrt{1 + (\omega \tau)^2}}$$

Hence,
$$1 \ge \frac{1}{\sqrt{1 + (\omega \tau)^2}} \ge 0.98$$

i.e.
$$\frac{1}{0.98} \ge \sqrt{1 + \left(\omega\tau\right)^2} \ge 1$$

At
$$\tau = 2$$
 s, we find that $0.1 \ge \omega \ge 0$ rad s⁻¹
So, $\omega_{max} = 0.1$ rad s⁻¹ or $f_{max} = 0.016$ Hz.

Sinusoidal Forcing of a First-Order Process

For a first-order transfer function with gain K and time constant τ , the response to a general sinusoidal input, $x(t) = A\sin \omega t$ is:

$$y(t) = \frac{KA}{\omega^2 \tau^2 + 1} \left(\omega \tau e^{-t/\tau} - \omega \tau \cos \omega t + \sin \omega t \right)$$
 (5-25)

Note that y(t) and x(t) are in deviation form. The *long-time* response, $y_l(t)$, can be written as:

$$y_{\ell}(t) = \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}} \sin(\omega t + \varphi) \text{ for } t \to \infty$$
 (13-1)

where:

$$\varphi = -\tan^{-1}(\omega \tau)$$

Figure 13.1 Attenuation and time shift between input and output sine waves (K= 1). The phase angle φ of the output signal is given by $\varphi = -\text{Time shift}/P \times 360^{\circ}$, where Δt is the (period) shift and P is the period of oscillation.

Frequency Response Characteristics of a First-Order Process

For $x(t) = A \sin \omega t$, $y_{\ell}(t) = \hat{A} \sin(\omega t + \varphi)$ as $t \to \infty$ where:

$$\hat{A} = \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}}$$
 and $\varphi = -\tan^{-1}(\omega \tau)$

- 1. The output signal is a sinusoid that has the same frequency, ω , as the input.signal, $x(t) = A\sin\omega t$.
- 2. The amplitude of the output signal, \hat{A} , is a function of the frequency ω and the input amplitude, A:

$$\hat{A} = \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}} \tag{13-2}$$

3. The output has a phase shift, φ , relative to the input. The

Dividing both sides of (13-2) by the input signal amplitude A yields the *amplitude ratio* (AR)

$$AR = \frac{\hat{A}}{A} = \frac{K}{\sqrt{\omega^2 \tau^2 + 1}}$$
 (13-3a)

which can, in turn, be divided by the process gain to yield the normalized amplitude ratio (AR_N)

$$AR_{N} = \frac{1}{\sqrt{\omega^2 \tau^2 + 1}}$$
 (13-3b)

Magnitude ratio plot of system

REMARKS ON Q2 AND Q3

- Q2. looks at the time response of a system, i.e. in the time domain.
- looks at its frequency response, i.e. in the frequency domain. Both are often needed, especially for a more complicated system, to have a good understanding of the system.

Plots.

Step response of system

Magnitude ratio plot of system

The output from a temperature system indicates a steady, time-varying signal having amplitude which varies between 30 and 40 °C, with a single frequency of 10 Hz. Express the output signal as a waveform equation, T(t). If the dynamic error is to be less than 1%, what must the system time constant be? Assume that the sensitivity K = 1 and system is of first order.

$$(T(t) = 35 + 5\sin(20\pi t \pm \phi); \tau \le 2.27 \text{ ms})$$

SOLUTION:

Amplitude varies between 30°C and 40°C, and frequency is 10 Hz.

Assume sensitivity K = 1 and system is first order.

Output signal is
$$T(t) = \frac{40 + 30}{2} + \frac{40 - 30}{2} \sin(2\pi f t \pm \phi)$$

= 35 + 5 \sin(20 \pi t \pm \phi)

 ϕ is the unknown phase shift between input and output signal. For a 1st order system, the maximum phase shift is $\pi/2$ radians.

Dynamic error is
$$\delta(\omega) = 1 - M(\omega)$$
 and $M(\omega) = \frac{1}{\sqrt{1 + (\omega \tau)^2}}$

And we know that $\delta \leq 0.01$, hence

$$1 \ge \frac{1}{\sqrt{1 + (\omega \tau)^2}} \ge 0.99$$

At $\omega = 2\pi f = 20\pi \text{ rad s}^{-1}$, we find that

$$0 \le \tau \le 2.27 \text{ ms}$$

