Теоретические вопросы для подготовки к РК-1

1) Сформулировать теорему о разложении правильной рациональной дроби на простейшие и метод интегрирования рациональных функций.

Теорема. Всякая правильная рациональная дробь представляется в виде

$$rac{P_m(x)}{Q_n(x)}=rac{A_{1,1}}{(x-c_1)^{k_1}}+\ldots+rac{A_{1,k_1}}{(x-c_1)}+\ldots+[ext{ аналогочно для }c_2,\ldots c_r]+ \ +rac{M_{1,1}x+N_{1,1}}{(x^2+p_1x+q_1)^{s_1}}+\ldots+rac{M_{1,s_1}x+N_{1,s_1}}{(x^2+p_1x+q_1)}+\ldots+[ext{ аналогочно для }(p_2,q_2),\ldots,(p_t,q_t)]$$

где в знаменателях стоят сомножители разложения $A_{i,j}, M_{i,j}, N_{i,j}$ – некоторые числа, зависящие от $P_m(x)$ и $Q_n(x)$

Алгоритм интегрирования рациональных функций:

- 1. Выделить правильную дробь.
- 2. Найти вид разложения на простейшие дроби.
- 3. Найти коэффициенты разложения, используя методы неопределенных коэффициентов или подстановки.
- 4. Проинтегрировать каждое слагаемое полученного разложения.

2) Дать определение интеграла Римана и его геометрическую интерпретацию

Предел по базе $\lambda \to 0$ значений интегральных сумм для функции f, отвечающих разбиению с отмеченными точками отрезка [a,b], называют **интегралом Римана** (определенным интегралом) от функции f на отрезке [a,b] и обозначают

$$\int_a^b f(x) dx = \lim_{\lambda o 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

Геометрически определенный интеграл интерпретируется как площадь криволинейной трапеции abBA.

3) Сформулировать свойства интеграла Римана: линейность, аддитивность и интеграл от константы.

Линейность: Пусть функции f_1 и f_2 интегрируемы на отрезке [a,b]. Тогда при $\alpha_1,\,\alpha_2\in\mathbb{R}$ функция $\alpha_1f_1+\alpha_2f_2$ также интегрируема на отрезке [a,b] и

$$\int_a^b (lpha_1 f_1 + lpha_2 f_2)(x) dx = lpha_1 \int_a^b f_1(x) dx + lpha_2 \int_a^b f_2(x) dx$$

Аддитивность теорема 1: Если функция интегрируема на отрезке [a,b], то она интегрируема и на любом меньшем отрезке $[c,d] \subset [a,b]$.

Аддитивность теорема 2: Если функция f(x) интегрируема на наибольшем из отрезков [a,b], [a,c]и [c,b], то она интегрируема на двух других отрезках и справедливо равенство

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx,$$

каково бы ни было взаимное расположение точек a, b и c.

Интеграл от константы

$$\int_{a}^{b} c dx = c(b-a)$$

4) Сформулировать необходимое условие интегрируемости и критерий интегрируемости.

Необходимое условие интегрируемости: $f \in \mathfrak{R}[a,b] \implies f$ ограничена на отрезке [a,b]

Критерий интегрируемости:

$$f\in \mathfrak{R}[a,b] \iff \lim_{\lambda o 0} \sum_{i=1}^n \omega(f;\Delta_i) \Delta x_i = 0$$

где $\omega(f;\Delta_i)$ – колебание функции f на отрезке $[x_{i-1},x_i]$

5) Сформулировать следствия из критерия интегрируемости: интегрируемость непрерывных функций и функций с конечным числом точек разрыва. Привести пример неинтегрируемой функции.

Следствие о интегрируемости непрерывных функций: Если функция f(x) непрерывна на отрезке [a,b], то она интегрируема на этом отрезке.

Следствие о интегрируемости функций с конечным числом точек разрыва:

Ограниченная с конечным числом точек разрыва на отрезке функция интегрируема на этом отрезке.

Пример неинтегрируемой функции (функция Дирехле):

$$f(x) = egin{cases} 1, x \in Q \ 0, x \in R \setminus Q \end{cases}$$

рассматриваемая на отрезке [0,1], не интегрируема на нем. Действительно, для любого разбиения P отрезка [0,1] в каждом частичном отрезке Δ_i , разбиения P есть рациональные точки, и иррациональные точки, поэтому $\omega(D;\Delta_i)=1$, а значит, $\sum_{i=1}^n \omega(D,\Delta_i) \Delta x_i = 1$ и условие критерия интегрируемости не выполняется.

6) Сформулировать свойства определенного интеграла: монотонность, теорему о сохранении интегралом знака подынтегральной функции, теорему об оценке модуля и теорему об оценке определенного интеграла.

Теорема о монотонность интеграла. Если a < b, функции f_1 и f_2 интерируемы на отрезке [a,b] и $f_1(x) \ge f_2(x) \ \forall x \in [a,b]$, то

$$\int_a^b f_1(x) dx \geq \int_a^b f_2(x) dx$$

Теорема о сохранении интегралом знака подынтегральной функции:

1. Если a < b, функция f интегрируема на отрезке [a,b] и $f(x) \geq 0 \ \forall x \in [a,b]$, то

$$\int_a^b f(x) dx \geq 0$$

2. Если, кроме того, существует точка $x' \in [a,b]$, в которой f(x) непрерывна и f(x') > 0, то

$$\int_a^b f(x) dx > 0$$

Теорема об оценке модуля интеграла. Если функция f(x) интегрируема на отрезке [a,b], то ее модуль |f(x)| есть также интегрируемая функция на отрезке [a,b] и

$$\int_a^b f(x) dx \le \int_a^b |f(x)| dx$$

Теорема об оценке. Если a < b, функция f(x) интегрируема на отрезке [a,b] и $m \le f(x) \le M \ \forall x \in (a,b)$, то

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

7) Сформулировать две теоремы о среднем для определенного интеграла и формулу Ньютона-Лейбница.

Теорема о среднем значении. Если функция f(x) непрерывна на отрезке [a,b], то на этом отрезке найдется хотя бы одна точка c, для которой справедливо равенство

$$\int_a^b f(x)dx = f(c)(b-a)$$

Обобщенная теорема о среднем значении. Если на отрезке [a,b] функция f(x) непрерывна, а функция g(x) интегрируема и знакопостоянна, то на этом отрезке найдется хотя бы одна точка c, для которой справедливо равенство

$$\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx$$

Формула Ньютона - Лейбница. Пусть функция f(x) непрерывна на отрезке [a,b]. Тогда существует первообразная функции f(x) на отрезке [a,b] и

$$\int_a^b f(t)dt = \Phi(b) - \Phi(a)$$

где $\Phi(x)$ - одна из первообразных функции f(x) на этом отрезке.

8) Сформулировать теорему о замене переменной и теорему об интегрировании по частям определенного интеграла.

Теорема о замене переменной. Если функция f(x) непрерывна на отрезке [a,b], а функция $\phi(t)$ непрерывно дифференцируема на отрезке $[\alpha,\beta]$, причем $\phi(\alpha)=a$, $\phi(\beta)=b$ и $\phi(t)\in[a,b]$ при $t\in[\alpha,\beta]$, то справедливо равенство

$$\int_a^b f(x) dx = \int_lpha^eta f(\phi(t)) \phi'(t) dt$$

Теорема об интегрировании по частям. Если функции u(x) и v(x) непрерывно дифференцируемы на отрезке [a,b], то справедлива формула

$$\int_a^b u(x)dv(x) = u(x)v(x) \left. egin{smallmatrix} b & - \int_a^b v(x)du(x) \end{matrix}
ight.$$

9) Сформулировать теоремы о непрерывности и о производной интеграла с переменным верхним пределом.

Теорема о непрерывности интеграла с переменным верхним пределом. Если функция f(x) интегрируема на отрезке [a,b], то функция

$$F(x) = \int_{a}^{x} f(t)dt \qquad (1)$$

определена и непрерывна на [a,b]

Теорема о производной интеграла с переменным верхним пределом. Если функция f(x) интегрируема на отрезке [a,b] и непрерывна в точке $x_0 \in [a,b]$, то функция (1) дифференцируема в этой точке, причем $F'(x_0) = f(x_0)$.

10) Сформулировать косвенные приемы интегрирования: интегрирование периодических функций; интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат.

Интегрирование периодических функций:

$$\int_{\lambda}^{\lambda+T}f(x)dx$$

Данный интеграл не зависит от λ

Интегрирование четных и нечетных функций на отрезке:

1. f(x) – чётная функция

$$\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$$

2. f(x) – нечётная функция

$$\int_{-a}^{a} f(x)dx = 0$$

11) Сформулировать формулы для вычисления с помощью определенного интеграла площади плоской фигуры для случаев, когда граница задана в декартовых координатах, параметрически или в полярных координатах.

Теорема 1. Пусть плоская фигура ограничена отрезками прямых x=a и x=b, и графиками непрерывных на отрезке [a,b] функций $f_1(x)$ и $f_2(x)$, причем $f_1(x) < f_2(x)$ $\forall x \in [a,b]$. Тогда площадь такой фигуры равна

$$S=\int_a^b (f_2(x)-f_1(x))dx$$

Следствие. Пусть плоская фигуры ограничена кривой, заданой параметрически уравнениями $x=x(t),\,y=y(t),\,t\in[\alpha,\beta]$, и, может быть, вертикальными прямыми и осью Ox. Функция y(t) непрерывна на отрезке $[\alpha,\beta]$, а x(t) дифференцируема и имеет непрерывную на $[\alpha,\beta]$ производную. Кроме того, двигаясь по кривой в направлении роста t фигура остается справа. Тогда площадь этой фигуры равна

$$S = \int_{lpha}^{eta} y(t) x'(t) dt$$

Теорема 2. Пусть в полярных координатах (ρ,ϕ) плоская фигура Φ ограничена кривой $\rho=\rho(\phi)$ и двумя лучами $\phi=\alpha$ и $\phi=\beta$, $(\alpha<\beta)$. Функция $\rho(\Phi)$ непрерывна на отрезке $\rho(\Phi)$. Тогда площадь фигуры Φ равна

$$S=rac{1}{2}\int_{lpha}^{eta}
ho^{2}(\phi)d\phi$$

12) Сформулировать формулы для вычисления с помощью определенного интеграла объемов тел по площадям параллельных сечений и тел вращения вокруг осей OX и OY в декартовой системе координат.

Теорема 1. Пусть тело заключено между плоскостями x=a и x=b, а все сечения этого тела плоскостями, перпендикулярными координатной оси Ox, известны, причем зависимость S(x) площади сечения от абсциссы $x \in [a,b]$ является заданной функцией, непрерывной на отрезке [a,b]. Тогда объем этого тела равен

$$V = \int_a^b S(x) dx$$

Теорема 2 . Пусть фигура Φ - криволинейная трапеция непрерывной и неотрицательной функции f(x) на отрезке [a,b]. Тогда

а) объем тела, образованного вращением фигуры Φ вокруг оси Ox , равен

$$V_{Ox}=\pi\int_a^bf^2(x)dx$$

б) При $a \geq 0$ и вращении фигуры Φ вокруг оси Oy получаем тело с объемом

$$V_{Oy} = 2\pi \int_a^b x f(x) dx$$

Объём при вращении вокруг полярной оси:

$$V=rac{2\pi}{3}\int_a^b r^3\sin(\phi)d\phi$$

13) Дать определения длины дуги кривой и спрямляемых кривых. Сформулировать достаточное условие спрямляемости кривых и формулу для вычисления с помощью определенного интеграла длины дуги кривой в многомерном пространстве.

Если M_1 и M_2 – точки кривой γ , то **дугой** M_1M_2 кривой γ называют кривую, состоящую из точек кривой γ , лежащих между M_1 и M_2 .

Длиной $L(\gamma)$ **кривой** γ называется точная верхняя грань длин ломаных, вписанных в кривую γ . Кривая называется **спрямляемой**, если ее длина существует и конечна.

Достаточное условие спрямляемости кривой. Гладкая кривая спрямляема. Длина $L(\gamma)$ гладкой кривой γ с параметризацией $\overline{r}(t)=(x_1(t),\dots,x_m(t))$, $t\in[a,b],\,a< b$, вычисляется по формуле

$$L(\gamma) = \int_a^b |\overline{r}(t)| dt = \int_a^b \sqrt{\sum_{i=1}^a (x_i'(t))^2} dt$$

- 14) Сформулировать формулы для вычисления с помощью определенного интеграла длины дуги плоской кривой, заданой параметрически, в декартовой или полярной системах координат.
 - 1. Если функции x(t) и y(t) непрерывно дифференцируемы на отрезке [a,b], то плоская кривая, заданная параметрически уравнениями $x=x(t),\,y=y(t),\,t\in[a,b]$, имеет длину

$$\int_a^b \sqrt{(x'(t))^2+(y'(t))^2}dt$$

2. Длина графика непрерывно дифференцируемой на отрезке [a,b], функции f(x) равна

$$\int_a^b \sqrt{1+(f'(x))^2} dx$$

3. Если функция $ho(\Phi)$ непрерывно дифференцируема на отрезке [a,b], то длина кривой, заданной в полярной системе координат (ϕ,ρ) уравнением $\rho=\rho(\phi)$, равна

$$\int_{lpha}^{eta} \sqrt{(
ho(\phi))^2 + (
ho'(\phi))^2} d\phi$$

15) Сформулировать формулы для вычисления с помощью определенного интеграла площади поверхности вращения в

декартовой системе координат и для параметрического задания функции.

Площади поверхности вращения вокруг оси Ox:

$$S=2\pi\int_a^bf(x)\sqrt{1+(f'(x))^2}dx$$

Площади поверхности вращения вокруг оси Ox параметрически заданной функции:

$$S = 2\pi \int_a^b y(t) \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

Площади поверхности вращения вокруг полярной оси:

$$S=2\pi\int_a^b r\sin\phi\sqrt{r^2+(r')^2}d\phi$$

16) Сформулировать определение кривизны кривой, геометрический смысл кривизны и формулы для вычисления кривизны графика функции и кривизны кривой, заданной параметрически.

Кривизной кривой γ в точке M_0 называют неотрицательное число k , равное пределу средней кривизны $\frac{\theta}{L(M_0M)}$ дуги M_0M при стремлении точки M к точке M_0 , при этом точка M остается на кривой γ .

Теорема 1. Кривизна кривой в R^3 , заданной дважды непрерывно дифференцируемой векторной функцией r(t), в регулярной точке $r(t_0)$ ($|r'(t_0)| \neq 0$) вычисляется по формуле

$$k = rac{|r'(t_0) imes r''(t_0)|}{|r'(t_0)|^3}$$

Теорема 2 (кривизна графика функции). Если функция y = f(x) дважды непрерывно дифференцируема в точке x, то кривизна графика этой функции в точке (x, f(x)) равна

$$k(x) = rac{|f''(x)|}{ig(1 + (f'(x))^2ig)^{3/2}}$$

17) Дать определение радиуса кривизны, круга кривизны и центра кривизны плоской кривой. Сформулировать геометрический смысл круга кривизны и идею вывода формулы для вычисления координат центра кривизны.

Пусть k – кривизна плоской кривой γ в точке $M_0 \in \gamma$. Величину R=1/k, обратную кривизне, называют **радиусом кривизны кривой** γ в точке M_0 . Если k=0, то радиус R кривизны кривой полагают равным $+\infty$.

Точку C_0 нормали, расположенной на расстоянии радиуса кривизны от точки M_0 в сторону вогнутости кривой называют **центром кривизны кривой в точке** M_0 , а круг (окружность) с центром в C_0 , радиус которого равен радиусу кривизны, называют **кругом** (окружностью) кривизны кривой в точке M_0 .

Геометрический смысл окружности кривизны. Окружность кривизны плоской гладкой кривой $\gamma \in C^2$ в точке M — это единственная окружность, которая касается кривой в точке M с порядком 2, т.е.

$$\lim_{x o x_0}rac{|f(x)-g(x)|}{|x-x_0|^2}=0$$

где f(x) и g(x) - функции, графики которых в окрестности точки хо совпадают с кривой и окружностью соответственно, x_0 — абсцисса точки M.

Координаты центра кривизны. Если функция f(x) дважды непрерывно дифференцируема в окрестности точки x_0 , и $f''(x_0) \neq 0$, то координаты ξ, n центра кривизны графика этой функции в точке $(x_0, y_0 = f(x_0))$ равны

$$\xi = x_0 - f'(x_0) rac{1 + (f'(x_0))^2}{f''(x_0)} \qquad n = y_0 + rac{1 + (f'(x_0))^2}{f''(x_0)}$$

18) Дать определение эволюта и эвольвенты. Сформулировать механический способ построения по заданной кривой одной из ее эвольвент.

Множество центров кривизны кривой называют ее **эволютой**. По отношению к своей эволюте кривую называют **эвольвентой** (иногда инволютой или разверткой).

Механический способ построения по заданной кривой одной из ее эвольвент. Если нерастяжимую нить, натянутую на жесткий контур, соответствующий заданной кривой Ω с дугой C_1C_2 (см. рис. 9), сматывать с этого контура, оставляя ее натянутой, то конец нити

опишет дугу M_1M_2 эвольвенты \varGamma заданной кривой.

Рис. 9