

Galaxy Clusters with the EVLA: Enabling Low Frequencies

N. Kassim¹, F. Owen², S. Durand², C. Kutz², R. Perley², T. Clarke¹, J. Lazio¹, P. Ray¹, M. Perley², R. Dickman², K. Weiler¹

¹Naval Research Laboratory, ²National Radio Astronomy Observatory

- Low frequency radio studies of clusters:
 - Probe of the oldest particle populations
 - Tracers of merger induced particle acceleration & past AGN activity
- Early, important radio cluster work driven by the VLA
 - Significant contribution to ongoing renaissance in low frequency radio astronomy
- Unfortunately, low frequencies lost in the VLA to EVLA conversion!

Enabling Low Frequencies on the EVLA Joint NRL & NRAO project

- New broad-band (~50-500 MHz), low-noise EVLA "Low Band" receivers currently under development
 - Will replace separate, narrow-band VLA "legacy" 74 & 330 MHz receivers
- Increased bandwidth, improved receiver performance
 - Coupled with EVLA correlator, evolving RFI mitigation & ionospheric calibration, expect significant improvements over past VLA systems

- First sky tests later this year full EVLA deployment by 2012
- EVLA to re-join exciting suite of low frequency radio instruments!