Table of Contents

Q1	
Q2	
Q3	
a.	
b	
Q4	
0.5	

Q1

```
clear all
close all
clc
% x = [x1;x2]
% Following Constraint equations are written in the form of Ax<=b
-x1+2x2<=4
% x1+x2<=5
% x1<=3
% -x2<=0
% -x1<=0
A = [ -1 \ 2 \ ; \ 1 \ 1 \ ; \ 1 \ 0; \ 0 \ -1 \ ; -1 \ 0]
b=[4;5;3;0;0]
x0=[ \ 0 \ 0 \ ]; % Initial guess value for x1 and x2 taken 0 0
[x, fval] = fmincon(@fun, x0, A, b)
x1=x(1)
x2=x(2)
% function v = fun(X)
% x1=X(1);
% x2=X(2);
% v= (x1-4)^2+(x2-5)^2;
% end
         A =
             -1
                    2
              1
                    1
              1
                     0
              0
                   -1
                   0
             -1
```

b =

Warning: The default trust-region-reflective algorithm does not solve probwith the constraints you have specified. FMINCON will use the active-set algorithm instead. For information on applicable algorithms, see Choosing Algorithm in the documentation.

Warning: Your current settings will run a different algorithm (interior-poin a future release.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance and constraints are satisfied to within the default value of the constrain

```
Active inequalities (to within options.TolCon = 1e-06):
  lower
             upper
                        ineglin
                                  inegnonlin
                           1
                           2
x =
    2.0000
              3.0000
fval =
    8.0000
x1 =
    2.0000
x2 =
    3.0000
```

Q2.

clear all
close all
clc

```
g=9.80665;
rhop=1800;
Dp=0.208*10^{(-3)};
rho=994.6;
mu=8.931*10^{(-4)};
Re=0.05; % Initial guess value of Reynold's number
    Cd=24/Re;
    v=sqrt(4*g*(rhop-rho)*Dp/(3*Cd*rho));
    Re=rho*v*Dp/mu;
    if(Re<0.1)
         Re
         Vt=v
    end
Cd=(24/Re)*(1+0.14*Re^0.7);
v=sqrt(4*g*(rhop-rho)*Dp/(3*Cd*rho));
Re=rho*v*Dp/mu;
if(Re<=1000 && 0.1<=Re)</pre>
    Re
    Vt=v
    end
Cd=0.44 ;
 v=sqrt(4*g*(rhop-rho)*Dp/(3*Cd*rho));
Re=rho*v*Dp/mu;
if(Re<=350000 && 1000<Re)</pre>
     Re
    Vt=v
end
Cd=0.19-8*(10^4)/Re;
v=sqrt(4*g*(rhop-rho)*Dp/(3*Cd*rho));
Re=rho*v*Dp/mu;
if(Re>350000)
    Re
    Vt=v
end
        Re =
            1.5001
        Vt =
            0.0065
```

Q3.

clear all

```
close all
        clc
        F = 70;
a.
       A= 0.01*[ 7 18 15 24 ; 4 24 10 65 ; 54 42 54 10 ; 35 16 21 1 ]
        % Rows correspond to
        % Xylene
        % Styrene
        % Toluene
        % Benzene
       T=F*0.01*[ 15;25;40;20]
        % Solving Ax=T where x' = [ D1 B1 D2 B2]
        x=A\T
                A =
                    0.0700
                              0.1800
                                       0.1500
                                                  0.2400
                    0.0400 0.2400
                                     0.1000
                                                  0.6500
                    0.5400
                             0.4200
                                       0.5400
                                                  0.1000
                    0.3500
                             0.1600
                                        0.2100
                                                  0.0100
                T =
                   10.5000
                   17.5000
                   28.0000
                   14.0000
                x =
                   26.2500
                   17.5000
```

b.

D=x(1)+x(2)

8.7500 17.5000

```
CompD=A(:,1:2)*x(1:2)
B=x(3)+x(4)
CompB=A(:,3:4)*x(3:4)
% Xylene
% Styrene
% Toluene
% Benzene
        D =
           43.7500
        CompD =
            4.9875
            5.2500
           21.5250
           11.9875
        B =
           26.2500
        CompB =
            5.5125
           12.2500
            6.4750
            2.0125
```

Q4

```
clc
clear all
close all

global V k1 k2 v cAin cBin cCin cDin
V=100;
k1=1;
k2=1;
v=1;
cAin=1;
cBin=2;
cCin=0;
cDin=0;
```

```
C=[ cAin cBin cCin cDin ];
[t,c]=ode15s(@cstr,[0 10],C)
plot(t,c)
xlabel('time')
ylabel('conc')
legend('A','B','C','D')
% function conc = cstr(t,C)
% global V k1 k2 v cAin cBin cCin cDin
% A=(v/V)*(cAin-C(1))-k1*C(1)*C(2);
B=(v/V)*(cBin-C(2))-k1*C(1)*C(2)-k2*C(2)*C(3);
% Co=(v/V)*(cCin-C(3))+k1*C(1)*C(2)-k2*C(2)*C(3);
D=(v/V)*(cDin-C(4))+k2*C(2)*C(3);
% conc= [ A ; B ; Co;D];
% end
        t =
                 0
            0.0004
            0.0007
            0.0011
            0.0031
            0.0052
            0.0073
            0.0094
            0.0150
            0.0207
            0.0264
            0.0320
            0.0560
            0.0799
            0.1038
            0.1278
            0.1517
            0.1886
            0.2256
            0.2625
            0.2994
            0.3364
            0.3733
            0.4507
            0.5281
            0.6055
            0.6828
            0.7602
```

0.8376 0.9709 1.1041 1.2374 1.3707 1.5039 1.6372 1.8568 2.0764 2.2960 2.5156 2.7353 2.9549 3.3201 3.6853 4.0505 4.4157 4.7809 5.1461 5.8394 6.5328 7.2261 7.9195 8.6128 9.3062 10.0000

c =

1.0000	2.0000	0	0
0.9993	1.9993	0.0007	0.0000
0.9986	1.9986	0.0014	0.0000
0.9979	1.9979	0.0021	0.0000
0.9937	1.9937	0.0062	0.0000
0.9897	1.9896	0.0103	0.0001
0.9856	1.9855	0.0143	0.0001
0.9816	1.9814	0.0183	0.0002
0.9706	1.9702	0.0289	0.0004
0.9599	1.9590	0.0393	0.0008
0.9493	1.9480	0.0494	0.0013
0.9389	1.9370	0.0592	0.0019
0.8969	1.8914	0.0976	0.0055
0.8577	1.8470	0.1317	0.0107
0.8211	1.8040	0.1619	0.0171
0.7868	1.7622	0.1886	0.0246
0.7547	1.7218	0.2123	0.0329
0.7091	1.6619	0.2437	0.0472
0.6677	1.6051	0.2696	0.0627
0.6300	1.5510	0.2910	0.0790
0.5957	1.4998	0.3085	0.0959
0.5642	1.4512	0.3228	0.1130
0.5354	1.4051	0.3343	0.1303
0.4823	1.3160	0.3514	0.1663

0.4373	1.2360	0.3613	0.2014
0.3990	1.1640	0.3661	0.2350
0.3660	1.0991	0.3671	0.2669
0.3374	1.0404	0.3656	0.2970
0.3125	0.9872	0.3622	0.3253
0.2763	0.9064	0.3537	0.3700
0.2469	0.8370	0.3432	0.4099
0.2227	0.7771	0.3317	0.4456
0.2025	0.7249	0.3199	0.4776
0.1854	0.7243	0.3083	0.5063
0.1709	0.6388	0.2969	0.5322
0.1512	0.5817	0.2793	0.5695
0.1355	0.5341	0.2630	0.6014
0.1229	0.4939	0.2482	0.6290
0.1225	0.4597	0.2346	0.6528
0.1040	0.4302	0.2223	0.6737
0.0967	0.4047	0.2112	0.6921
0.0871	0.3690	0.1948	0.7181
0.0797	0.3399	0.1806	0.7398
0.0739	0.3159	0.1682	0.7580
0.0693	0.2960	0.1573	0.7733
0.0657	0.2792	0.1478	0.7865
0.0627	0.2649	0.1394	0.7979
0.0586	0.2430	0.1258	0.8156
0.0558	0.2263	0.1148	0.8295
0.0539	0.2135	0.1056	0.8405
0.0528	0.2035	0.0979	0.8493
0.0521	0.1957	0.0914	0.8565
0.0518	0.1895	0.0859	0.8623
0.0517	0.1845	0.0812	0.8672

Q.5

```
clear all
close all
clc
cA0=0.2;
k=0.001;
D=1.2*10^{(-9)};
L=0.001;
syms c(z)
Dc=diff(c);
cA1=dsolve(diff(c,2)==(k/D)*c,'c(0)=cA0','Dc(0)=25.3126');
cA0=0.2;
z=[0:0.0001:0.001];
CA1=eval(cA1);
plot(z,CA1,'r-')
xlabel('z')
ylabel('Conc of A' )
```

```
syms c(z)
Dc=diff(c);
cA2=dsolve(diff(c,2)==(k/D)*c,'c(0)=cA0','Dc(0)=-131.9112');
cA0=0.2;
z=[0:0.0001:0.001];
CA2=eval(cA2);
hold on
plot(z,CA2, 'b-')
legend('IC1','IC2');
hold off
% 2nd initial conditions are correct because as we can see from graph,dcA/dz at z=
figure(2)
z=[0:0.0001:0.001];
\texttt{cAanal= cA0*cosh(L*sqrt(k/D)*(1-z/L)/cosh(L*sqrt(k/D)))}
plot(z,cAanal,z,CA2);
legend('cAnalytical','cNumerical')
xlabel('z')
ylabel('Conc of A' )
        cAanal =
          Columns 1 through 7
            0.2412
                      0.2331
                                 0.2260
                                           0.2198
                                                     0.2145
                                                                0.2100
                                                                          0.2064
          Columns 8 through 11
                                 0.2004
            0.2036
                      0.2016
                                           0.2000
```


