Random Variables and Expectation Statistical Methods in Political Research I

Yuki Shiraito

University of Michigan

Fall 2018

Random Variables

- Data are numbers
- How do we link sample spaces and events to numbers?
- Implicitly we have used:
 - Dice roll: Each outcome has a number
 - Falling stick: Azimuth degrees from 0 to 360
 - Survey responses: Yes as 1, No as 0
 - Supreme court: Number of judges voting for the plaintiff
- Random variable: A random variable X is a function $X:\Omega \to \mathbb{R}$ such that for any real number $x \in \mathbb{R}, \{\omega \mid X(\omega) \leq x\} \in \mathcal{F}$
- Convention:
 - Uppercase letter such as X stands for r.v.
 - 2 Lowercase letter such as x stands for a realized value of r.v.

Remarks on Random Variables

- Random variable is a function:
 - Takes an outcome in the sample space as an argument
 - Gives a single value assigned to each outcome
 - May give a common value for multiple outcomes
- Can consider different r.v.s for the same probability space:
 - Dice roll:
 - Numbers on the dice
 - \bullet -1 if 1 on the dice, 1 if 6 on the dice, 0 otherwise
 - 1 if an even number on the dice, 0 if an odd number on the dice
 - Survey responses:
 - 1 if "yes", 0 if "no" for each response
 - Number of respondents who answer "yes" (sum of the above)
 - Number of times a respondent answers "yes" (multiple responses)
- In applications, it is important to find a useful r.v.

Distribution

- Distribution of a random variable:
 - Let C be a subset of \mathbb{R} such that $\{\omega \mid X(\omega) \in C\}$ is an event

 - 2 The distribution of X: The collection of $\mathbb{P}(X \in C)$ for all possible C
- Distribution of *X* can be considered as a probability measure:
 - lacktriangle Sample space: $\mathbb R$
 - 2 Set of events: Set of all possible C
 - **3** Probability measure: $\mathbb{P}(X \in C)$
- Betting on even or odd numbers from a dice roll:
 - Sample space: 6 faces of a dice
 - Events: Ø, even, odd, all
 - Probability measures: 0, 1/2, 1/2, 1
 - Random variable: $X(\omega) = 1$ if even, $X(\omega) = 0$ if odd
 - $\mathbb{P}(X \le 0) \equiv \mathbb{P}(\text{odd}) = 1/2, \mathbb{P}(X > 0) \equiv \mathbb{P}(\text{even}) = 1/2$
 - $C \in \{\emptyset, \{r \in \mathbb{R} \mid r \le 0\}, \{r \in \mathbb{R} \mid r > 0\}, \mathbb{R}\}$
- Will directly work with r.v.: Write X instead of $X(\omega)$
- Probability space is hidden behind r.v., but it's there

Cumulative Distribution Function

- Generally, there are a huge number of C
- Need a simple way to describe a distribution
- Cumulative distribution function: The cumulative distribution function (c.d.f.) of a r.v. X, denoted by F_X , is a function $F_X : \mathbb{R} \to [0, 1]$ such that

$$F_X(x) = \mathbb{P}(X \le x)$$

- Remember the definition of r.v.: $\{\omega \mid X(\omega) \leq x\} \in \mathcal{F}$ for any $x \in \mathbb{R}$
- Example of c.d.f.:
 - Betting on even or odd numbers on a dice roll
 - Dice roll in the Nigeria Survey
 - Stick fall in the Nigeria Survey
- Uniqueness of c.d.f.: Let X have c.d.f. F and Y have c.d.f. G. If F(x) = G(x) for all $x \in \mathbb{R}$, then $\mathbb{P}(X \in C) = \mathbb{P}(Y \in C)$ for all possible C.

Valid C.D.F.

- Properties of c.d.f.: A function $F : \mathbb{R} \to [0, 1]$ is a c.d.f. for some probability \mathbb{P} if and only if F satisfies the following three conditions:
 - F is non-decreasing: $x_1 < x_2$ implies that $F(x_1) \le F(x_2)$
 - 2 F is normalized:

$$\lim_{x \to -\infty} F(x) = 0$$
$$\lim_{x \to \infty} F(x) = 1$$

- **3** *F* is right-continuous: $F(x) = \lim_{y \downarrow x} F(y)$ for all *x* **Proof.** Samuel's section and future problem set.
- Any function satisfying the three conditions can be a c.d.f.
- Not necessarily well known

Discrete Random Variable

- Discrete r.v.: X is discrete if it takes only countably many values
- Probability function: For a discrete r.v. X, the probability (mass) function (p.f.) of X, denoted by $f_X : \mathbb{R} \to [0, 1]$, is defined by $f_X(x) \equiv \mathbb{P}(X = x)$
- Support of X: $\{x \in \mathbb{R} \mid f_X(x) > 0\}$
- C.d.f. and p.f.:

$$F_X(x) = \sum_{\{y | f_X(y) > 0 \land y \le x\}} f_X(y)$$

$$f_X(x) = \lim_{\substack{y \mid x \\ y \mid x}} F_X(y) - \lim_{\substack{y \uparrow x \\ y \mid x}} F_X(y)$$

- X is discrete \Leftrightarrow c.d.f. of X is a step function
- Valid p.f.: The p.f. of X with its support $\{x_1, \dots\}$ must satisfy the following two conditions:
 - f is non-negative: $f_X(x) \ge 0$
 - **2** f sums to 1: $\sum_{i=1}^{\infty} f_X(x_i) = 1$

Bernoulli Distribution

- Bernoulli trial: Random realization of a "success" or a "failure"
 - Survey response to a yes/no question
 - Yea/nay vote by a legislator, judge, representative, . . .
 - Any binary feature (e.g. democracy, below/above a threshold, etc.)
- X follows a Bernoulli distribution with support {0, 1}:

$$F_X(x) = \begin{cases} 0 & (x < 0) \\ 1 - p & (0 \le x < 1) \\ 1 & (1 \le x) \end{cases}$$

$$f_X(x) = p^{1\{x=1\}} (1-p)^{1\{x=0\}}$$

- Parameter of the Bernoulli distribution: $p = \mathbb{P}(X = 1)$
- 1{·}: Indicator function
- Denoted by: $X \sim \text{Bern}(p)$
- C.d.f. and p.f. of known distributions:
 - Values of X and parameters
 - $F_X(x;\theta)$, $f_X(x;\theta)$

Yuki Shiraito (University of Michigan)

Binomial Distribution

- Sum of "successes" in *n* independent Bernoulli trials
 - Nigeria survey: Number of "yes" answers if asked multiple times
 - Conflict example in Pset 2: Number of battles a country wins
 - Shop owner: Number of customers who give 3+ stars on Yelp
- X follows a Binomial distribution with support $\{0, 1, ...\}$:

$$F_X(x;n,p) = \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{k} p^k (1-p)^{n-k}$$
$$f_X(x;n,p) = \binom{n}{x} p^x (1-p)^{n-x}$$

- Parameters of the Binomial distribution: p and n
- [x]: the greatest integer less than or equal to x
- Denoted by: $X \sim \text{Binom}(n, p)$
- Story gives the p.f. of the Binomial distribution
- Binomial r.v. is the sum of Bernoulli r.v.
- Will revisit the transformation of r.v.s

Continuous Random Variable

• Probability density function: If there exists a function $f_X : \mathbb{R} \to \mathbb{R}^+$ such that for any $a, b \in \mathbb{R}$ with $a \le b$,

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f_{X}(x) dx$$

and $\int_{-\infty}^{\infty} f_X(x) dx = 1$, then $f_X(x)$ is called the *probability density function* (p.d.f.) of X

- A random variable X is continuous if there exists a p.d.f. of X
- Support of X: $\{x \in \mathbb{R} \mid f_X(x) > 0\}$
- C.d.f. and p.d.f.:

$$F_X(x) = \int_{-\infty}^x f_X(y) dy$$

 $f_X(x) = F_X'(x)$ for any x at which F_X is differentiable

- Types of r.v.:
 - 1 Discrete: Support is countable
 - **②** Continuous: P.d.f. exists ⇒ support is uncountable
 - 3 Neither: Support is uncountable but p.d.f. does not exist

Uniform Distribution

- "Completely random" number over a continuous interval
 - Nigeria survey: Direction a stick falls
- X follows the Uniform distribution on the interval [a, b]:

$$F_X(x;a,b) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & b < x \end{cases}$$
$$f_X(x;a,b) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

- Parameters of the Uniform distribution: a and b
- Denoted by: $X \sim \text{Unif}(a, b)$
- Commonly on the unit interval [0, 1]
- Not many real-world examples, unless artificially created
- Useful tool for modeling and simulations

Functions of Random Variables

- How to generate random numbers?
 - Online survey: Randomly switch questions
 - Experiment: Randomly assign treatment or control
- Function of r.v. is also r.v.:
 - If $X : \Omega \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, then $g \circ X : \Omega \to \mathbb{R}$
 - $Y(\omega) \equiv g(X(\omega))$ is r.v.
- If *X* is discrete:
 - P.f. of Y: $f_Y(y) \equiv \mathbb{P}(Y = y) = \mathbb{P}(g(X) = y) = \sum_{\{x \mid g(x) = y\}} f_X(x)$
 - E.g., Y = n X where $X \sim \text{Binom}(n, p)$: $f_Y(y) = \binom{n}{n-y} p^{n-y} (1-p)^y$
- If X is continuous:
 - C.d.f. of Y:

$$F_{Y}(y) \equiv \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \in \{x \mid g(x) \le y\})$$
$$= \int_{\{x \mid g(x) \le y\}} f_{X}(x) dx$$

• E.g., $Y = X^2$ where $X \sim \text{Unif}(0, 1)$: $F_Y(y) = \int_0^{\sqrt{y}} 1 dx$

Inverse-CDF Method

- Increasing function of r.v.:
 - $g : \mathbb{R} \to \mathbb{R}$ is increasing: a < b implies that g(a) < g(b)
 - If g is increasing, then $F_Y(y) = F_X(g^{-1}(y))$
- Quantile function: The quantile function (q.f.) (a.k.a. inverse c.d.f.) of X, denoted by $Q_X : [0,1] \to \mathbb{R}$, is a function $Q_X(u) \equiv \inf\{x \mid F_X(x) > u\}$
- Inverse-CDF method: Let X is an r.v. with $Q_X(\cdot)$, $U \sim \text{Unif}(0, 1)$, and $Y = Q_X(U)$. Then, $F_Y(y) = F_X(y)$
 - $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Q_X(U) \le y) = \mathbb{P}(U \le F_X(y)) = F_X(y)$
 - $\inf\{x \mid F_X(x) > U\} \le y \Leftrightarrow U \le F_X(y)$: **Proof.** Samuel's section
- Generating random numbers whose c.d.f. is F_X :
 - Generate U ∼ Unif(0, 1)
 - Transform by $X = Q_X(U)$
- Special Case:
 - F_X is increasing $\Rightarrow Q_X(U) = F_Y^{-1}(U)$
 - $F_U(Q_x^{-1}(x)) = F_U((F_x^{-1})^{-1}(x)) = F_U(F_X(x)) = F_X(x)$

Multivariate Random Variables

- Multiple r.v.s:
 - Dice roll: Indicator of each number on the dice
 - Survey: Responses by many respondents
- Joint c.d.f.: The *joint c.d.f.* of a random vector $X \equiv (X_1, \dots, X_n)$, denoted by $F_X : \mathbb{R}^n \to [0, 1]$, is a function $F_X(x) = \mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)$ where $x \equiv (x_1, \dots, x_n)$
- Dice roll and indicator: $X_i \equiv 1$ { i shows on the dice}
 - X_i is either 0 or 1
 - $F_X(x) = j/6$ where j is the number of 1 in x
- Joint p.f.: Let $X_1, ..., X_n$ be discrete r.v.s. The joint p.f. of X, denoted by $f_X : \mathbb{R}^n \to [0, 1]$ is a function $f_X(x) = \mathbb{P}(X_1 = x_1, ..., X_n = x_n)$
- Dice roll and indicator, again:
 - $f_X(x) = 1/6$ for any x such that only one element is 1
 - $f_X(x) = 0$ otherwise

Multinomial Distribution

- The number of times each "category" appears in *n* trials
 - Multiple dice rolls: How many times each number shows
 - Responses to multiple choice/count questions
 - Word counts in a document (Problem Set 3)
- X follows a Multinomial distribution:
 - Joint p.f.: For non-negative integers $x_1, \ldots x_K$,

$$f_{X}(x; n, p) = \begin{cases} \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k} & \text{when } \sum_{i=1}^k x_i = n \\ 0 & \text{otherwise} \end{cases}$$

- Parameters of the Multinomial distribution: *n* and **p**
- $p_1 + \cdots + p_k = 1$
- Denoted by: $X \sim Multi(n, p)$
- Multinomial is Binomial if k = 2
- Multinomial is the sum of indicators for each trial

Multivariate Uniform

• Joint p.d.f.: For a random vector $X = (X_1, ..., X_n)$, if there exists a function $f_X : \mathbb{R}^n \to \mathbb{R}^+$ such that for any set $C \subset \mathbb{R}^n$,

$$\mathbb{P}(X \in C) = \int \dots \int_{C} f_X(x) dx_1 \dots dx_n$$
 and $\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_X(x) dx_1 \dots dx_n = 1$, then $f_X(x)$ is called the *joint p.d.f.* of X

- $X = (X_1, X_2)$ follows a Uniform distribution over $[0, 1] \times [0, 1]$:
 - Joint p.d.f.:

$$f_X(x) = \begin{cases} 1 & 0 \le x_1 \le 1, \ 0 \le x_2 \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Joint c.d.f.:

$$F_{X}(x) = \begin{cases} 0 & x_{1} < 0 \text{ or } x_{2} < 0 \\ x_{1}x_{2} & 0 \le x_{1} \le 1 \text{ and } 0 \le x_{2} \le 1 \\ 1 & x_{1} > 1 \text{ and } x_{2} > 1 \end{cases}$$

Marginal Distribution

• Marginal c.d.f.: Let $X = (X_1, ..., X_n)$ be a random vector and F_X be its joint c.d.f. Then, $F_{X_i}(x_i) = \lim_{x_1 \to \infty} ... \lim_{x_{i-1} \to \infty} \lim_{x_{i+1} \to \infty} ... \lim_{x_n \to \infty} F_X(x_1, ..., x_{i-1}, x, x_{i+1}, ... x_n)$

$$x_1 \to \infty$$
 $x_{i-1} \to \infty$ $x_{i+1} \to \infty$ $x_n \to \infty$
 F_{X_i} is called the *marginal c.d.f.* of X_i : **Proof.** $n = 2$ case

- F_{X_i} is a valid c.d.f.: The marginal distribution of X_i
- Marginal p.f.: If the marginal distribution of X_i is discrete, the marginal p.f. of X_i is defined by

$$f_{X_i}(x) \equiv \mathbb{P}(X_i = x_i) = F_{X_i}(x_i) - \lim_{y \uparrow x_i} F_{X_i}(y)$$

- If a joint p.f. $f_X(x)$ exists, $f_{X_i}(x_i) = \sum_{x_1} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_n} f_X(x)$
- Marginal p.d.f.: If the marginal c.d.f. F_{X_i} has a p.d.f. f_{X_i} , it is called a marginal p.d.f. of X_i
- If a joint p.d.f. $f_X(x)$ exists, $f_{X_i}(x_i) = \int_{x_1} \cdots \int_{x_{i-1}} \int_{x_{i+1}} \cdots \int_{x_n} f_X(x) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n$

Independence

- Independent r.v.s: Very important in data analysis
- Independence of r.v.s: R.v.s $X_1, ..., X_n$ are independent if and only if for any subsets $C_1, ..., C_n$ of \mathbb{R} ,

$$\mathbb{P}(X_1 \in C_1, \dots, X_n \in C_n) = \mathbb{P}(X_1 \in C_1) \dots \mathbb{P}(X_n \in C_n)$$

- Notation: $X_i \perp X_j$
- Knowing the value of X_i does not help predict X_j
- Connection with marginal distribution:
 - X_1, \ldots, X_n are independent if and only if for any $x_1, \ldots, x_n \in \mathbb{R}$

$$F_{\mathsf{X}}(\mathsf{x}) = \prod_{i=1}^{n} F_{\mathsf{X}_i}(\mathsf{x}_i)$$

- If a joint p.f. $f_X(x)$ exists, $f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)$
- If a joint p.d.f. $f_X(x)$ exists, $f_X(x) = \prod_{i=1}^h f_{X_i}(x_i)$

I.i.d. and Random Sample

- Benchmark model of data generating process
 - Data points are independent random variables
 - All data points follow a common distribution
- Independent and identically distributed: X₁,...,X_n are i.i.d. (independent and identically distributed) if and only if they are independent and each has the same marginal distribution with c.d.f. F
- Notation: $X_i \stackrel{\text{i.i.d.}}{\sim} F \text{ or } X_i \stackrel{\text{i.i.d.}}{\sim} f$
- (X_1, \ldots, X_n) is called a random sample of size n from F
- Random sampling for opinion poll:
 - Population N, Dem supporters $m_D < N$, $p \equiv m_D/N$
 - X_i : 1 if person i is Dem supporter, 0 otherwise
 - *i* is randomly chosen:
 - \bigcirc X_i is i.i.d. Bernoulli with p with the super population assumption
 - ② X_i is independent but not indentically distributed under the *finite* population assumption

Convolution

- Sum of two random variables is called convolution
- Convolution: Let X_1 and X_2 be independent random variables and $Y \equiv X_1 + X_2$. Then, the distribution of Y is called the *convolution* of the distributions of X_1 and X_2 .
- If both X_1 and X_2 are discrete,

$$f_Y(y) = \sum_{x_1 = -\infty}^{\infty} f_{X_1}(x_1) f_{X_2}(y - x_1)$$

• If both X_1 and X_2 are continuous,

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X_1}(x_1) f_{X_2}(y - x_1) dx_1$$

• Convolution of Bernoulli r.v.s with common p is Binom(2, p):

$$f_{Y}(y) = \sum_{x_{1}=0}^{1} f_{X_{1}}(x_{1}) f_{X_{2}}(y - x_{1}) = \begin{cases} (1 - p)^{2} & (y = 0) \\ 2p(1 - p) & (y = 1) \\ p^{2} & (y = 2) \end{cases}$$

Conditional Distribution

- In many studies, prediction is of interest
 - Vote choice given ethnicity, gender, age, etc...
 - Attitude toward immigration given occupation
 - Economic growth/conflict behavior given regime type
- Regression (covered in 699) is the most important method
- Conditional distribution is the idea behind regression
- Conditional c.d.f.: Let $X \equiv (X_1, ..., X_n)$ have the joint distribution with c.d.f. F_X . Then,

$$F_{X_{1:i}|X_{(i+1):n}}(x_1, \dots, x_i \mid X_{(i+1):n} \in \times_{j=i+1}^n C_j)$$

$$\equiv \mathbb{P}(X_1 \le x_1, \dots, X_i \le x_i \mid X_{i+1} \in C_{i+1}, \dots, X_n \in C_n)$$

$$= \frac{F_{X}(x_1, \dots, x_n)}{\mathbb{P}(X_{i+1} \in C_{i+1}, \dots, X_n \in C_n)}$$

for $C_j \subset \mathbb{R}, j = i + 1, ..., n$, is called the *conditional c.d.f.* of $X_{1:i}$ given that $X_{i+1} \in C_{i+1}, ..., X_n \in C_n$

• Conditional c.d.f. uniquely defines the conditional distribution of $X_{1:i}$ given that $X_{(i+1):n} \in \times_{i=i+1}^n C_i$

Conditional P.(d.)f. and Hybrid Random Vectors

• If X is discrete, then there exists the conditional p.f.:

$$f_{X_{1:i}|X_{(i+1):n}}(x_1,\ldots,x_i\mid x_{i+1},\ldots,x_n)=\frac{f_{X}(x_1,\ldots,x_n)}{f_{X_{(i+1):n}}(x_{i+1},\ldots,x_n)}$$

• If X is continuous, then there exists the conditional p.d.f.:

$$f_{X_{1:i}|X_{(i+1):n}}(x_1,\ldots,x_i\mid x_{i+1},\ldots,x_n)=\frac{f_{X}(x_1,\ldots,x_n)}{f_{X_{(i+1):n}}(x_{i+1},\ldots,x_n)}$$

- Independence $\Leftrightarrow f_{X_1|X_2}(x_1 \mid x_2) = f_{X_1}(x_1)$
- Joint p.(d.)f. = cond. p.(d.)f. \times marg. p.(d.)f.
- Joint p.f.-p.d.f. of a hybrid random vector: Let $X_{(i+1):n}$ have a marginal p.d.f. (p.f.) $f_{X_{(i+1):n}}$ and $X_{1:i}$ have the conditional p.f. (p.d.f.) $f_{X_{1:i}|X_{(i+1):n}}$. Then, we define the *joint p.f.-p.d.f.* of X as $f_X(x_1,\ldots,x_n)$

$$\equiv f_{X_{1,i}|X_{(i+1),n}}(x_1,\ldots,x_i|x_{i+1},\ldots,x_n)f_{X_{(i+1),n}}(x_{i+1},\ldots,x_n)$$

Uniform-Binomial Model

- A popular model in Bayesian statistics:
 - Proportion of Dem supporters drawn from the Uniform
 - 2 Random sample of size *n* for a survey on partisanship
- Data generating process:
 - **1** Proportion of Dem supporters: $X_1 \sim U[0, 1]$
 - 2 Number of Dem supporters in sample: $X_2 \sim \text{Binom}(n, X_1)$
- Joint p.f.-p.d.f.:

$$f_{X_1,X_2}(x_1,x_2) = f_{X_2|X_1}(x_2 \mid x_1)f_{X_1}(x_1) = 1 \times \binom{n}{x_2} x_1^{x_2} (1-x_1)^{n-x_2}$$

- Marginal p.d.f. and p.f.:
 - Marginal p.d.f. of X_1 :

$$f_{X_1}(x_1) = \begin{cases} 1 & (0 \le x_1 \le 1) \\ 0 & (\text{otherwise}) \end{cases}$$

2 Marginal p.f. of X_2 : Letting $B(\cdot, \cdot)$ be the Beta function

$$f_{X_2}(x_2) = \binom{n}{x_2} \int_0^1 x_1^{x_2} (1-x_1)^{n-x_2} dx_1 = \binom{n}{x_2} B(x_2+1, n-x_2+1)$$

Bayes' Theorem for Random Variables

- The number of Dem supporters in sample is known
- Need to estimate the proportion of Dems in population
- Bayes' theorem for r.v.s: Let (X_1, X_2) has a joint p.f., p.d.f., or p.f.-p.d.f. Then,

$$f_{X_1}(x_1) = \frac{f_{X_2|X_1}(x_2 \mid x_1)f_{X_1}(x_1)}{f_{X_2}(x_2)}$$

• Law of total probability for r.v.s: Let (X_1, X_2) has a joint p.f., p.d.f., or p.f.-p.d.f. Then,

$$f_{X_2}(x_2) = \sum_{x_1} f_{X_2|X_1}(x_2 \mid x_1) f_{X_1}(x_1)$$
 (X₁ is discrete)

$$f_{X_2}(x_2) = \int_{X_1} f_{X_2|X_1}(x_2 \mid x_1) f_{X_1}(x_1) dx_1$$
 (X₁ is continuous)

• Posterior p.d.f. of X_1 given X_2 in the Uniform-Binomial:

$$f_{X_1|X_2}(x_1 \mid x_2) = \frac{x_1^{X_2}(1-x_2)^{n-x_2}}{B(x_2+1, n-x_2+1)}$$

Posterior P.d.f.

Expectation

- BH, Ch. 4 and p. 200; DS, Ch. 4; W, Ch. 3; CB, 2.2
- Summary of r.v. X:
 - What is the gain you expect from a lottery?
 - What is the number of Dems you expect in a sample?
 - What is the lifetime income you expect from an academic job?
- Expectation or expected value of X: Weighted average of X where the weights are the probability measure of events X = x
- For a discrete r.v. X,

$$\mathbb{E}[X] = \sum_{x} x f_X(x)$$

• For a continuous r.v. X,

$$\mathbb{E}[X] = \int_X x f_X(x) dx$$

- $X \sim \text{Bern}(p) \Rightarrow \mathbb{E}[X] = p$
- $X \sim \text{Unif}(0,1) \Rightarrow \mathbb{E}[X] = 1/2$

Existence of Expectation

- Expectation does not always exist
- Existence of expectation: $\mathbb{E}[X]$ exists if and only if $\mathbb{E}[X_{-}] < \infty$ or $\mathbb{E}[X_{+}] < \infty$, where $X_{-} \equiv -\min\{X, 0\}$ and $X_{+} \equiv \max\{X, 0\}$.
 - **1** $\mathbb{E}[X_-] < \infty$ and $\mathbb{E}[X_+] < \infty$: $-\infty < \mathbb{E}[X] < \infty$
 - 2 $\mathbb{E}[X_-] < \infty$ and $\mathbb{E}[X_-] = \infty$: $\mathbb{E}[X] = -\infty$

 - **4** $\mathbb{E}[X_+] = \infty$ and $\mathbb{E}[X_-] = \infty$: $\mathbb{E}[X]$ does not exist
- Expectation can be infinity, but its sign should be well defined
- X follows the standard Cauchy distribution:

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$
 for $-\infty < x < \infty$

- Valid p.d.f: $\int_{-\infty}^{\infty} f(x) dx = [\tan^{-1}(x)/\pi]_{-\infty}^{\infty} = {\pi/2 (-\pi/2)}/{\pi} = 1$
- $\int_0^\infty x f(x) dx = [\log(1+x^2)/2]_0^\infty = \infty$
- Similarly, $\int_{-\infty}^{0} -xf(x)dx = [\log(1+x^2)/2]_{-\infty}^{0} = \infty$
- Expectation does not exist for the Cauchy distribution

Indicator and Linearity

- Expectation of Indicator: For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let A be an event and define r.v. $1_A \equiv 1\{\omega \in A\}$. Then, $\mathbb{E}[1_A] = \mathbb{P}(A)$
- Corollary: Let $C \subset \mathbb{R}$. For r.v. X, define $1_C(X) \equiv 1\{X \in C\}$. Then, $\mathbb{E}[1_{\mathcal{C}}(X)] = \mathbb{P}(X \in \mathcal{C})$
- Dice roll: X is the number on the face
 - Let $C \equiv \{2, 3, 4, 5\}$
 - $\mathbb{P}(X \in C) = 2/3$
 - $\mathbb{E}[1_C(X)] = 1 \times (4 \times 1/6) + 0 \times (2 \times 1/6) = 2/3$
- Linearity: Let X_1, X_2 be r.v.s. Then, $\mathbb{E}[aX_1 + bX_2 + c] = a\mathbb{E}[X_1] + b\mathbb{E}[X_2] + c$
- Binomial expectation:
 - By definition of expactation,

$$\mathbb{E}[X] = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} = np \sum_{x=1}^{n} \binom{n-1}{x-1} p^{x-1} (1-p)^{n-x} = np$$
• Binom (n,p) is the distribution of $\sum_{i=1}^{n} X_{i}$ where $X_{i} \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(p)$

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = np$$

Random Vectors

 Expectation of random vector: For a random vector X, its expectation is defined as

$$\mathbb{E}[X] \equiv (\mathbb{E}[X_1], \dots, \mathbb{E}[X_n])$$

where the expectation of X_i is over its marginal distribution

- Multinomial distribution $X \sim Multi(n, p)$:
 - **1** Marginal distribution of X_1 is Binomial:

$$\begin{split} \mathbb{P}(X_1 = x_1) &= \sum_{x_2 \dots x_K} \frac{n!}{x_1! \dots x_K!} p_1^{x_1} \dots p_K^{x_K} \\ &= \frac{n!}{x_1! (n - x_1)!} p_1^{x_1} \sum_{x_2 \dots x_K} \frac{(n - x_1)!}{x_2! \dots x_K!} p_2^{x_2} \dots p_K^{x_K} \\ &= \frac{n!}{x_1! (n - x_1)!} p_1^{x_1} (1 - p_1)^{n - x_1} \end{split}$$

$$\mathbb{E}[X] = (np_1, \dots, np_K)$$

Functions and Product

• Expectation of functions of r.v.: Let X be a r.v. and $g : \mathbb{R} \to \mathbb{R}$. Then,

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x} g(x) f_{X}(x) & (X \text{ discrete}) \\ \int_{x} g(x) f_{X}(x) dx & (X \text{ continuous}) \end{cases}$$

Proof. Directly follows from the fact that for any $C \subset \mathbb{R}$, $\mathbb{P}(g(X) \in C) = \mathbb{P}(X \in \{x \in \mathbb{R} \mid g(x) \in C\})$

• *X* follows a Geometric distribution, $X \sim \text{Geom}(p)$:

$$f_X(x) = (1-p)^{x-1}p$$
, for $x = 1, 2, ...$

- **1** St. Petersburg paradox: $g(x) \equiv 2^x \Rightarrow \mathbb{E}[g(X)] = \infty$ if p = 1/2
- 2 $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ in general: $\mathbb{E}[X] = 2$
- Lemma: Let X be a discrete r.v. whose support is the non-negative integers. Then, $\mathbb{E}[X] = \sum_{x=1}^{\infty} \mathbb{P}(X \ge x)$
- Product of independent r.v.s: Let X_i , i = 1, ..., n are independent. Then, $\mathbb{E}[\prod_{i=1}^n X_n] = \prod_{i=1}^n \mathbb{E}[X_i]$
- $X_i \overset{\text{i.i.d.}}{\sim} \text{Bern}(p) \Rightarrow \mathbb{P}(X_1 = 1, \dots, X_n = 1) = p^n$

Inequalities of Expectation

- If $X_1 \le X_2$ with probability 1, i.e., $X_1(\omega) \le X_2(\omega)$ for all $\omega \in \Omega$, then $\mathbb{E}[X_1] \le \mathbb{E}[X_2]$
- If $a \le X \le b$ with probability 1, i.e., $a \le X(\omega) \le b$ for all $\omega \in \Omega$, then $a \le \mathbb{E}[X] \le b$
- Jensen's inequality: Let $g : \mathbb{R} \to \mathbb{R}$ be a concave (convex) function. Then, for a random vector X, $\mathbb{E}[g(X)] \leq (\geq)g(\mathbb{E}[X])$
- Concave function: A function $g: \mathbb{R}^n \to \mathbb{R}$ is concave if and only if for every $a \in (0,1)$, $g(ax + (1-a)y) \ge ag(x) + (1-a)g(y)$

for any $x, y \in \mathbb{R}^n$

• Logarithm is common in statistics: $\mathbb{E}[\log(X)] < \log(\mathbb{E}[X])$

Moments and Variance

- Moments of an r.v.: For an r.v. X and a positive integer k, $\mathbb{E}[X^k]$ is called the kth moment of X
- Existence of moments: If $\mathbb{E}[X^k]$ exists, $\mathbb{E}[X^l]$ exists for any l < k
- Central moments: $\mathbb{E}[(X \mathbb{E}[X])^k]$ is called the kth central moment or the kth moment of X about the mean
- If the kth moment exists, the lth central moment exists for $l \le k$
- Variance: The second centeral moment of X is called the variance of X, denoted by $\mathbb{V}(X) \equiv \mathbb{E}[(X \mathbb{E}[X])^2]$
- Variance and moments: $\mathbb{V}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- $\mathbb{V}(X) \geq 0$, with equality if and only if $\mathbb{P}(X = c) = 1$ for some c
- $Y = aX + b \Rightarrow V(Y) = a^2V(X)$
- Variance of Bern(p): $\mathbb{E}[X^2] (\mathbb{E}[X])^2 = p p^2 = p(1-p)$

R.V. C.D.F. P.F. P.D.F. Q.F. Joint Indep. Cond. Expect. Moments Cond.E. M.G.F. Sample Moments

Covariance

• Covariance: For r.v.s X_1 and X_2 , the covariance of X_1 and X_2 , denoted by $Cov(X_1, X_2)$, is defined as:

$$Cov(X_1, X_2) \equiv \mathbb{E}[(X_1 - \mathbb{E}[X_1])(X_2 - \mathbb{E}[X_2])]$$

- Analogously to the variance, $Cov(X_1, X_2) = \mathbb{E}[X_1 X_2] \mathbb{E}[X_1]\mathbb{E}[X_2]$
- Correlation: The correlation of X_1 and X_2 , denoted by $\rho(X_1, X_2)$, is defined as:

$$\rho(X_1, X_2) \equiv \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\mathbb{V}(X_1)\mathbb{V}(X_2)}}$$

- $\rho(X_1, X_2) = \operatorname{Cov}\left((X_1 \mathbb{E}[X_1]) / \sqrt{\mathbb{V}(X_1)}, (X_2 \mathbb{E}[X_2]) / \sqrt{\mathbb{V}(X_2)}\right)$
- Covariance depends on the scale of r.v.s, but $|\rho(X_1, X_2)| \le 1$
- X_1 and X_2 are uncorrelated if and only if $Cov(X_1, X_2) = 0$
- X_1 and X_2 are independent $\Rightarrow X_1$ and X_2 are uncorrelated
- The converse does not necessarily hold:
 - $U \sim \text{Unif}(0, 1), X_1 = \cos 2\pi U \text{ and } X_2 = \sin 2\pi U$
 - Clearly, X_1 and X_2 are not independent, but $Cov(X_1, X_2) = 0$
- Covariance and correlation indicate *linear* relationship b/w r.v.s

Variance-Covariance Matrix

- Trivially, $\mathbb{V}(X) = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])] = \mathsf{Cov}(X, X)$
- Variance-covariance Matrix: For r.v.s X_1, \ldots, X_n , we define the (variance-)covariance matrix, denoted by $\mathbb{V}(X)$ or Σ_X , as

$$\Sigma_{\mathsf{X}} \equiv \left(\begin{array}{ccc} \mathbb{V}(X_1) & \mathsf{Cov}(X_1, X_2) & \cdots & \mathsf{Cov}(X_1, X_n) \\ \mathsf{Cov}(X_2, X_1) & \mathbb{V}(X_2) & \cdots & \mathsf{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(X_n, X_1) & \mathsf{Cov}(X_n, X_2) & \cdots & \mathbb{V}(X_n) \end{array} \right)$$

- In vector notation, $\Sigma_X = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])^\top]$
- \bullet Σ_X is positive semi-definite
- Σ_X is positive definite unless some r.v.s are constant \Rightarrow invertible
- If X_1, \ldots, X_n are i.i.d., Σ_X is diagonal
- $\mathbb{V}\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i^2 \mathbb{V}(X_i) + 2 \sum_{i < j} a_i a_j \mathsf{Cov}(X_i, X_j)$
- X_i s are uncorrelated, $\mathbb{V}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{V}(X_i)$
- If X_1, \ldots, X_n are i.i.d., $\mathbb{V}\left(\sum_{i=1}^n X_i\right) = \operatorname{tr}(\Sigma_X)$

Conditional Expectation

- Summarizing prediction of Y using X:
 - Given X = x, Y is predicted by its conditional distribution
 - Conditional expectation is used to summarize the prediction
- Conditional expectation: The conditional expectation of Y given X, denoted by $\mathbb{E}[Y \mid X]$, is the expectation of the conditional distribution of Y given X
- Conditional moments are defined with expectation replaced by conditional expectation, e.g. $\mathbb{V}(Y \mid X) \equiv \mathbb{E}[(Y \mathbb{E}[Y \mid X])^2 \mid X]$
- Conditional expectation is an r.v.:
 - $\mathbb{E}[Y \mid X]$ is a function of X
 - $\mathbb{E}[Y \mid X]$ has a distribution defined by F_X
- Conditional expectation is expectation:
 - For any fixed x_1 , $\mathbb{E}[Y \mid X = x_1]$ is expectation
 - All the properties of expectation hold for $\mathbb{E}[Y \mid X = x_1]$
- Uniform-Binomial example:

$$\mathbb{E}[X_1 \mid X_2] = \int_0^1 x_1 \frac{x_1^{X_2} (1 - x_1)^{n - X_2}}{B(X_2 + 1, n - X_2 + 1)} dx_1 = \frac{X_2 + 1}{n + 2}$$

Properties of Conditional Expectation

- Law of iterated expectations: Let X and Y be r.v.s. Then, $\mathbb{E}\left[\mathbb{E}[g(X,Y)\mid X]\right] = \mathbb{E}[g(X,Y)]$ for any function g.
- Law of total variance: Let X and Y be r.v.s. Then, $\mathbb{E}\left[\mathbb{V}(Y\mid X)\right] + \mathbb{V}\left(\mathbb{E}[Y\mid X]\right) = \mathbb{V}(Y)$
- Uniform-Binomial example:

$$\mathbb{E}[X_2] = \mathbb{E}[nX_1] = \frac{n}{2}$$

$$\mathbb{V}[X_2] = \mathbb{E}[nX_1(1 - X_1)] + \mathbb{V}(nX_1) = \frac{n}{6} + \frac{n^2}{12}$$

• Minimization of expected squared distance (regression): Conditional expectation is the "best" predictor in the sense that $\operatorname*{argmin} \mathbb{E}\left[(Y-c)^2 \mid X \right] = \mathbb{E}[Y \mid X]$

Proof.
$$\mathbb{E}\left[(Y-c)^2 \mid X \right] = \mathbb{E}\left[(Y - \mathbb{E}[Y \mid X])^2 \mid X \right] + \underbrace{(\mathbb{E}[Y \mid X] - c)^2}_{=0 \text{ iff } c = \mathbb{E}[Y \mid X]}$$

Standard Gaussian Distribution

- X follows the standard multivariate Gaussian distribution:
 - Joint p.d.f.: For a vector of real numbers $x \equiv x_1 \dots, x_K$,

$$f_{X}(x) = \frac{1}{(2\pi)^{K/2}} e^{-\frac{1}{2}x^{T}x} = \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{k}^{2}}{2}}$$

- Denoted by: $X \sim \mathcal{N}(0, \mathbf{I}_K)$
- X_1, \ldots, X_K are independent
- K = 1: The standard Gaussian (Normal) distribution $\mathcal{N}(0, 1)$
- Box-Muller Transfromation: Let U_1 and U_2 be independent uniform r.v.s. Define

$$X_1 = \sqrt{-2\log U_1} \cos(2\pi U_2),$$

$$X_2 = \sqrt{-2\log U_1} \sin(2\pi U_2).$$

Then,

$$X \sim \mathcal{N}(0, \mathbf{I}_2)$$

• Random number generator for the Gaussian distributions

Change of Variables

- **BH**, 8.1; **DS**, p. 172-3, 182-6
- Change of variables: Let X be a continuous random vector of length K and Y $\equiv g(X)$ where $g: \mathbb{R}^K \to \mathbb{R}^K$ is one-to-one and differentiable. Then,

$$f_Y(y) = f_X(g^{-1}(y)) \left| \det \left(J_{g^{-1}}(y) \right) \right|$$

Proof (univariate version). Appendix slides.

The inverse of the Box-Muller transformation is:

$$U_{1} = e^{-(X_{1}^{2} + X_{2}^{2})/2}$$

$$U_{2} = \frac{1}{2\pi} \arctan\left(\frac{X_{2}}{X_{1}}\right)$$

• The determinant of the Jacobian is:

$$\det\left(J_{g^{-1}}(y)\right) = \det\left(\begin{array}{cc} \frac{\partial U_1}{\partial X_1} & \frac{\partial U_1}{\partial X_2} \\ \frac{\partial U_2}{\partial X_1} & \frac{\partial U_2}{\partial X_2} \end{array}\right) = -\frac{1}{\sqrt{2\pi}} e^{-X_1^2/2} \times \frac{1}{\sqrt{2\pi}} e^{-X_2^2/2}$$

Linear Transformation of Gaussian

Linear transformation: Let X be a K-dimensional random vector.
 A linear transformation of X is

$$Y = a + AX$$

where A is a matrix with K columns

• Multivariate Gaussian: Let X follow the standard multivariate Gaussian distribution. Then, for a full rank $K \times K$ matrix A and an K dimensional vector μ , $Y = \mu + AX$ has a p.d.f.:

$$f_{Y}(y) = \frac{1}{(2\pi)^{K/2} \det(\Sigma)^{1/2}} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}$$

where $\Sigma = \mathbf{A}\mathbf{A}^{\top}$

Proof.

$$X = \mathbf{A}^{-1}(Y - \mu)$$
$$I = \mathbf{A}^{-1}$$

- $\mathbb{E}[Y] = \mu$ and $\mathbb{V}(Y) = \Sigma$
- Uncorrelated ⇔ (pairwise) independent

Conditional and Marginal of Gaussian

• Let $(X_1, X_2)^{\top} \sim \mathcal{N}(\mu, \Sigma)$. The joint p.d.f. is:

$$f_{(X_{1},X_{2})}(x_{1},x_{2}) = \frac{e^{-\frac{1}{2(1-\rho^{2})}\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2} - 2\rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right) + \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}$$

$$= \underbrace{\frac{e^{-\frac{1}{2(1-\rho^{2})\sigma_{2}^{2}}\left(x_{2}-\mu_{2}-\rho\sigma_{2}\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}}}{\sqrt{2\pi}\sigma_{2}\sqrt{1-\rho^{2}}}}_{f_{X_{2}|X_{1}}(x_{2}|X_{1})} \underbrace{\frac{e^{-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}}}{\sqrt{2\pi}\sigma_{1}}}_{f_{X_{1}}(x_{1})}$$

- $X_1 \sim \mathcal{N}\left(\mu_1, \sigma_1^2\right)$, $X_2 \mid X_1 \sim \mathcal{N}\left(\mu_2 + \frac{\rho\sigma_2}{\sigma_1}(X_1 \mu_1), (1 \rho^2)\sigma_2^2\right)$
- Both marginal and conditional distributions are Gaussian
- Regression $\mathbb{E}[X_2 \mid X_1] = \mu_2 + \frac{\rho \sigma_2}{\sigma_1} (X_1 \mu_1)$ is linear in $X_1 \rightsquigarrow \text{linear regression}$

Moment Generating Function

- Moment generating function: Let X be an r.v. The moment generating function (m.g.f.) of X, denoted by $M_X(t)$, is defined as $M_X(t) = \mathbb{E}[e^{tX}]$ if $\mathbb{E}[e^{tX}]$ exists for all $t \in (-s, s)$ for some s > 0.
- If m.g.f. is given, higher order moments can be easily computed:

$$\left. \frac{d^k}{dt^k} M_X(t) \right|_{t=0} = \mathbb{E}[X^k e^{0X}] = \mathbb{E}[X^k], \text{ for } k = 1, 2, \dots$$

• If
$$X_1, \ldots, X_n$$
 are independent, the m.g.f. of $Y \equiv \sum_{i=1}^n X_i$ is
$$M_Y(t) = \mathbb{E}[e^{t\sum_{i=1}^n X_i}] = \mathbb{E}[\prod_{i=1}^n e^{tX_i}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}] = \prod_{i=1}^n M_{X_i}(t)$$

• M.g.f. uniquely determines the distribution: If r.v.s X_1 and X_2 have m.g.f.s and $M_{X_1}(t) = M_{X_2}(t)$ for all $t \in (-a,a)$ for some a > 0, then c.d.f.s $F_{X_1}(x) = F_{X_2}(x)$ for all x

M.g.f. of Gamma Distributions

- Square of a Gaussian r.v. follows a Gamma distribution (PS9, Q4)
- X follows a Gamma distribution:
 - P.d.f.:

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
 for $x > 0$

- Parameters: Shape a > 0 and rate $\beta > 0$
- Alternative parameterization: Shape a>0 and scale $\theta=1/\beta$
- Gamma function: $\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$
- Denoted by: $X \sim Ga(\alpha, \beta)$
- M.g.f. of the Gamma distribution:

$$\mathbb{E}[e^{tX}] = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_0^{\infty} x^{\alpha - 1} e^{-(\beta - t)x} dx = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha)}{(\beta - t)^{\alpha}} = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$$

- Expectation and variance: $\mathbb{E}[X] = \alpha/\beta$, $\mathbb{V}[X] = \alpha/\beta^2$
- Sum of independent Gamma r.v.s $X_i \sim Ga(a_i, \beta), i = 1, ..., n$:

$$M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t) = \prod_{i=1}^{n} \left(\frac{\beta}{\beta - t}\right)^{\alpha_i} = \left(\frac{\beta}{\beta - t}\right)^{\sum_{i=1}^{n} \alpha_i}$$

$$\Rightarrow \sum_{i=1}^{n} X_i \sim Ga(\sum_{i=1}^{n} \alpha_i, \beta)$$

Sample Moments

- Let $X_1, ..., X_n$ is a random sample from a distribution F_X
- In other words, X_1, \ldots, X_n are data
- Sample moments: Let X_1, \ldots, X_n be i.i.d. r.v.s. The kth sample moment, denoted by M_k , is defined as

$$M_k \equiv \frac{1}{n} \sum_{i=1}^n X_i^k$$

- Why this is important: We never observe F_X , hence neither $\mathbb{E}[X^k]$
- We use M_k as an estimator—a function of r.v.s, therefore r.v.
- Mean and variance of M_k for any F_X :

$$\mathbb{E}[M_k] = \mathbb{E}[X^k], \quad \mathbb{V}(M_k) = \frac{\mathbb{V}(X^k)}{n}$$

• In particular, for sample mean $\overline{X} \equiv \sum_{i=1}^{n} X_i / n$,

$$\mathbb{E}[\overline{X}] = \mathbb{E}[X], \quad \mathbb{V}(\overline{X}) = \frac{\mathbb{V}(X)}{n}$$

• If we specify F_{X_k} we can derive the distribution of M_k

Sample Mean of Gaussian R.v.

- We want to find the distribution of the sum of independent r.v.s

 → use m.g.f.!
- M.g.f. of the Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$:

$$\mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2 + tx} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2} \left\{ x - (\mu + \sigma^2 t) \right\}^2 + \mu t + \frac{1}{2}\sigma^2 t^2} dx$$

$$= e^{\mu t + \frac{1}{2}\sigma^2 t^2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2} \left\{ x - (\mu + \sigma^2 t) \right\}^2} dx = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

• M.g.f. of the sample mean:

$$\begin{split} \mathbb{E}[e^{t\overline{X}}] &= \prod_{i=1}^n \mathbb{E}[e^{\frac{t}{n}X}] = e^{n\left\{\mu\frac{t}{n} + \frac{1}{2}\sigma^2\left(\frac{t}{n}\right)^2\right\}} = e^{\mu t + \frac{1}{2}\left(\frac{\sigma^2}{n}\right)t^2} \\ \Rightarrow \overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \end{split}$$