A nonnegative $m \times n$ matrix A is called completely decomposable if there exist partitions α_1 , α_2 of $\{1, \dots, m\}$ and β_1 , β_2 of $\{1, \dots, n\}$ into nonvacuous sets such that $A[\alpha_1, \beta_2]$ and $A[\alpha_2, \beta_1]$ are zero matrices. Here we use the notation that $A[\alpha, \beta]$ is the submatrix of A whose rows are indexed by α and whose columns are indexed by β , the rows and columns in $A[\alpha, \beta]$ appearing in the same order as in A. If m=n, the matrix A is called completely reducible if there exists a partition α_1 , α_2 of $\{1, \dots, m\}$ into nonvacuous sets such that $A[\alpha_1, \alpha_2]$ and $A[\alpha_2, \alpha_1]$ are zero matrices.

ie 3 permutation matrices P. a such

 $PAQ = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$

L Relation to direct sum?
In terms of maps: clear

Generalizing theorems of Sinkhorn and Knopp [10] and Brualdi, Parter, and Schneider [1], Menon [7] proved the following theorem: Let A be an $m \times n$ nonnegative matrix and let $R = (r_1, \dots, r_m)$ and $S = (s_1, \dots, s_n)$ be positive vectors with $r_1 + \dots + r_m = s_1 + \dots + s_n$. Let $\mathbb{Y}(R, S)$ denote the class of all $m \times n$ nonnegative matrices with row sum vector R and column sum vector S. Then there exist diagonal matrices D_1 and D_2 with positive main diagonals such that D_1AD_2 is in $\mathbb{Y}(R, S)$ if and only if there is a matrix in $\mathbb{Y}(R, S)$ which has the same zero pattern as A. (We say that a matrix

completely decomposable

 $A = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}_{m} \quad \begin{bmatrix} mJ = I_1 UI_2 \\ & & & \\ & & & \end{bmatrix}_{n}$

 $A_{I_1I_2}$ and $A_{I_2I_1}$ are omatrices.

Special case : m = n

completely reducible: We want it to be completely decomposable with $I_1 = J_1$

Consider the space $u(R,c) = \begin{cases} A \in IR^{m \times n} \\ A \cdot 1 = n \end{cases}$ $A \cdot 1 = n$ $A \cdot n = n$ closed set in $R^{m \times n}$

Aim: To find D1, D2 &t D1 A D2 & W(R, S): (NOt T)

* Such matrices D₁ and D₂ exist iss 3 a matrix in N(1.1.5) with the same same aparsity pattern as A.

[NOTE: A matrix B has the same [spansity pattern as A is bij = 0 \in aij = D]

[Source of the same sub-pattern as A is bij = 0 \in aij = D]

uniqueness: If A is not completely decomposable, then we have queto scalar factors

If, in addition, A is not completely decomposable, the diagonal matrices D_1 , D_2 are unique up to positive scalar factor: if U_1AU_2 is in $\mathfrak{A}(R,S)$ then there exists $\delta>0$ such that $U_1=\delta D_1$, $U_2=\delta^{-1}D_2$. Brualdi [2] proved that given A there exists a matrix in $\mathfrak{A}(R,S)$ with the same zero pattern as A if and only if the following condition is satisfied.

> All positive matrices have unique matrix ecaling factors.

Equivalent conditions to (*) (Brualdi)

(1) For all partitions α_1 , α_2 of $\{1, \cdots, m\}$ and β_1 , β_2 of $\{1, \cdots, n\}$ into nonempty sets such that $A[\alpha_1, \beta_2]$ is a zero matrix, $\sum_{j \in \beta_1} s_j \geq \sum_{i \in \alpha_1} r_i$ with equality holding if and only if $A[\alpha_2, \beta_1]$ is also a zero matrix.

equivalent condition

with equality

to saying that

an equivalent

matrix in Unic with same

spansity pattern \rightarrow + partitions α_1, α_2 of [m] and β_1, β_2 of [e] $\alpha_1 \left[\begin{array}{c} 0 \\ d_2 \end{array}\right] = \rho A \Omega \qquad \qquad \sum_{i \in B_1} s_i \geq \sum_{i \in \alpha_i} \pi_i \quad \text{with } i = i \quad \text{holding}$ $\alpha_1 \left[\begin{array}{c} 0 \\ d_2 \end{array}\right] = \rho A \Omega \qquad \qquad \sum_{i \in B_1} s_i \geq \sum_{i \in \alpha_i} \pi_i \quad \text{with } i = i \quad \text{holding}$ $\alpha_2 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_3 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_4 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0 \\ i \in B_1 \end{array}\right] = \rho A \Omega \qquad \qquad \alpha_5 \left[\begin{array}{c} 0$