GAMMA AND BETA FUNCTIONS

Gamma function

- introduced by Swiss mathematician
 Leonhard Euler (1729)
- generalization of factorial function to non-integer values (more specifically, to all complex numbers except the non-positive integers)
- A translated version of factorial function is the following recurrence relation:
 - **1** f(1) = 1,
 - ② f(x+1) = xf(x).

Leonhard Euler (1707–1783)

ullet For p>0, the gamma function, $\Big| \quad \Gamma(p):=\int_0^\infty x^{p-1}e^{-x}dx.$

$$\Gamma(p) := \int_0^\infty x^{p-1} e^{-x} dx$$

Is gamma function convergent?

$$\Gamma(p) = \int_0^1 x^{p-1} e^{-x} dx + \int_1^\infty x^{p-1} e^{-x} dx$$
$$= I_1 + I_2$$

To see the convergence of I_1 (improper integral of second kind), we take $f(x)=x^{p-1}e^{-x}$ and $g(x)=x^{p-1}$, then $\lim_{x\to 0}\frac{f(x)}{g(x)}=1$ and $\int_0^1x^{p-1}dx$ converges.

To see the convergence of I_2 (improper integral of first kind), take $f(x)=x^{p-1}e^{-x}$ and $g(x)=\frac{1}{x^2}$. Then $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}x^{2+p-1}e^{-x}=0$ and $\int_1^\infty\frac{1}{x^2}dx$ converges. Hence by (2) of limit comparison theorem, the integral converges.

Some properties of Gamma function

- $\Gamma(1) = \int_0^\infty e^{-x} dx = 1$.
- $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

Integration by parts formula implies,

$$\Gamma(\alpha+1) = \int_0^\infty x^{\alpha} e^{-x} dx = -(x^{\alpha} e^{-x})|_0^\infty + \alpha \int_0^\infty x^{\alpha-1} e^{-x} dx = \alpha \Gamma(\alpha).$$

Therefore, $\Gamma(n+1) = n! \quad \forall n \in \mathbb{N}$.

• Euler's reflection formula for $p \notin \mathbb{Z}$

$$\Gamma(p) \cdot \Gamma(1-p) = \frac{\pi}{\sin(\pi p)}.$$

• $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Hint: choose $p = \frac{1}{2}$ in the above formula.

Beta functions

- ullet For p,q>0, beta function, $\beta(p,q)=\int_0^1 x^{p-1}(1-x)^{q-1}dx$.
- If p > 1 and q > 1, then the integral is definite integral. When p < 1 and/or q < 1, this integral is improper of second kind at 0 and/or 1.
- To prove the convergence, we divide as before

$$\int_0^1 x^{p-1} (1-x)^{q-1} dx = \int_0^{1/2} x^{p-1} (1-x)^{q-1} dx + \int_{1/2}^1 x^{p-1} (1-x)^{q-1} dx$$
$$= I_1 + I_2.$$

To see the convergence of I_1 , take $f(x)=x^{p-1}(1-x)^{q-1}$ and $g(x)=x^{p-1}$. Then $\lim_{x\to 0}\frac{f(x)}{g(x)}=\lim_{x\to 0}(1-x)^{q-1}=1$ and $\int_0^{1/2}x^{p-1}dx$ converges. Similarly, for convergence of I_2 , we take $f(x)=x^{p-1}(1-x)^{q-1}$ and $g(x)=(1-x)^{q-1}$.

Some properties of beta function

 $\bullet \ \beta(p,q) = \beta(q,p).$

Hint: Substitute t = 1 - x.

•

$$\beta(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta$$

.

Hint: Substitute $x = \sin^2 \theta$ in $\beta(p, q)$.

• Relationship between gamma and beta functions

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

THANK YOU.

