Comp 352 Winter 2019 Tutorial 7

March 6, 2019

Outline

1. Binary Search Tree

2. AVL Tree

Announcement

1. None

Binary Search Tree - Definition

- o tree
- binary
- o proper (heap?)
- o external nodes do not store values
- $\circ \ key(v_{left}) \le key(v) \le key(v_{right}).$

0 0 0 0 0

1. Binary Search Tree

Binary Search Tree - Properties

- o inorder traversal
- $\circ BST \in heap \text{ or } heap \in BST$?

0 0 0 0 0

1. Binary Search Tree

Binary Search Tree - Operations and Performance

- Search
- Insertion
- Removal: inorder traversal
 - At most one internal node
 - Two internal nodes
 - Leftmost
 - Rightmost
- $\circ O(h)$

Balanced Search Tree

- Rotation
- Restructure
- $\circ \ a,b,c \ {\rm and} \ x,y,z$

0 0 0 0 0

AVL Tree - Definition

- Inventors: Adelson-Velskii and Landis
- binary search tree
- for every internal node v of T: $|h(v_{left}) h(v_{right}) \le 1|$
- balanced

0 0 0 0 0

AVL Tree - Properties

• The height of an AVL tree storing n keys is $O(\log n)$.

0 0 0 0 0

2. AVL Tree

AVL Tree - Operations and Performance

- Search
- Insertion
 - Trinode Restructuring
 - Single rotation
 - Double rotation
- Removal

2. AVL Tree