I prodotti di uno spazio vettoriale

Dispense del corso di Geometria 1

Gabriel Antonio Videtta

A.A. 2022/2023

Indice

1	Intr	troduzione al prodotto scalare					
	1.1	Prime definizioni					
		1.1.1	Prodotto scalare e vettori ortogonali rispetto a φ				
		1.1.2	Prodotto definito o semidefinito				
	1.2 Il radicale di un prodotto scalare						
		1.2.1	La forma quadratica q associata a φ e vettori isotropi				
		1.2.2	Matrice associata a φ e congruenza				
		1.2.3	Studio del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$				

1 Introduzione al prodotto scalare

Nota. Nel corso del documento, per V, qualora non specificato, si intenderà uno spazio vettoriale di dimensione finita n.

1.1 Prime definizioni

1.1.1 Prodotto scalare e vettori ortogonali rispetto a φ

Definizione (prodotto scalare). Un **prodotto scalare** su V è una forma bilineare simmetrica φ con argomenti in V.

Esempio. Sia $\varphi: M(n, \mathbb{K})^2 \to \mathbb{K}$ tale che $\varphi(A, B) = \operatorname{tr}(AB)$.

- $ightharpoonup \varphi(A+A',B) = \operatorname{tr}((A+A')B) = \operatorname{tr}(AB+A'B) = \operatorname{tr}(AB) + \operatorname{tr}(A'B) = \varphi(A,B) + \varphi(A',B)$ (linearità nel primo argomento),
- $\blacktriangleright \varphi(\alpha A, B) = \operatorname{tr}(\alpha AB) = \alpha \operatorname{tr}(AB) = \alpha \varphi(A, B)$ (omogeneità nel primo argomento),
- $ightharpoonup \varphi(A,B) = \operatorname{tr}(AB) = \operatorname{tr}(BA) = \varphi(B,A)$ (simmetria),
- ightharpoonup poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su $M(n, \mathbb{K})$.

Definizione (vettori ortogonali). Due vettori \underline{v} , $\underline{w} \in V$ si dicono **ortogonali** rispetto al prodotto scalare φ , ossia $v \perp w$, se $\varphi(v, w) = 0$.

Definizione. Si definisce prodotto scalare *canonico* di \mathbb{K}^n la forma bilineare simmetrica φ con argomenti in \mathbb{K}^n tale che:

$$\varphi((x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n x_i y_i.$$

Osservazione. Si può facilmente osservare che il prodotto scalare canonico di \mathbb{K}^n è effettivamente un prodotto scalare.

- $\varphi(\alpha(x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n \alpha x_i y_i = \alpha \sum_{i=1}^n x_i y_i = \alpha \varphi((x_1,...,x_n),(y_1,...,y_n))$ (omogeneità nel primo argomento),
- $\varphi((x_1,...,x_n),(y_1,...,y_n)) = \sum_{i=1}^n x_i y_i = \sum_{i=1}^n y_i x_i = \varphi((y_1,...,y_n),(x_1,...,x_n))$ (simmetria),

 \blacktriangleright poiché φ è simmetrica, φ è lineare e omogenea anche nel secondo argomento, e quindi è una forma bilineare simmetrica, ossia un prodotto scalare su \mathbb{K}^n .

Esempio. Altri esempi di prodotto scalare sono i seguenti:

- $\blacktriangleright \varphi(A,B) = \operatorname{tr}(A^{\top}B) \operatorname{per} M(n,\mathbb{K}),$
- $ightharpoonup \varphi(p(x), q(x)) = p(a)q(a) \text{ per } \mathbb{K}[x], \text{ con } a \in \mathbb{K},$
- $\varphi(p(x), q(x)) = p(a)q(a)$ per $\mathbb{K}[x]$, con $a \in \mathbb{K}$, $\varphi(p(x), q(x)) = \sum_{i=1}^{n} p(x_i)q(x_i)$ per $\mathbb{K}[x]$, con $x_1, ..., x_n$ distinti, $\varphi(p(x), q(x)) = \int_a^b p(x)q(x)dx$ per lo spazio delle funzioni integrabili su \mathbb{R} , con a, b in
- $ightharpoonup \varphi(\underline{x},y) = \underline{x}^{\top}Ay \text{ per } \mathbb{K}^n, \text{ con } A \in M(n,\mathbb{K}) \text{ simmetrica.}$

1.1.2 Prodotto definito o semidefinito

Definizione. Sia $\mathbb{K} = \mathbb{R}$. Allora un prodotto scalare φ si dice **definito positi**vo se $\underline{v} \in V$, $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) > 0$. Analogamente φ è definito negativo se $\underline{v} \neq \underline{0} \implies \varphi(\underline{v},\underline{v}) < 0$. In generale si dice che φ è **definito** se è definito positivo o definito negativo.

Infine, φ è semidefinito positivo se $\varphi(\underline{v},\underline{v}) \geq 0 \ \forall \underline{v} \in V$ (o semidefinito negativo se invece $\varphi(\underline{v},\underline{v}) \leq 0 \ \forall \underline{v} \in V$). Analogamente ai prodotti definiti, si dice che φ è **semidefinito** se è semidefinito positivo o semidefinito negativo.

Esempio. Il prodotto scalare canonico di \mathbb{R}^n è definito positivo: infatti $\varphi((x_1,...,x_n),(x_1,...,x_n)) = \sum_{i=1}^n x_i^2 > 0$, se $(x_1,...,x_n) \neq \underline{0}$.

Al contrario, il prodotto scalare $\varphi: \mathbb{R}^2 \to \mathbb{R}$ tale che $\varphi((x_1, x_2), (y_1, y_2)) = x_1y_1 - x_2y_2$ non è definito positivo: $\varphi((x,y),(x,y)) = 0, \forall (x,y) \mid x^2 = y^2$, ossia se y = x o y = -x.

1.2 Il radicale di un prodotto scalare

1.2.1 La forma quadratica q associata a φ e vettori isotropi

Definizione. Ad un dato prodotto scalare φ di V si associa una mappa $q:V\to\mathbb{K}$, detta forma quadratica, tale che $q(\underline{v}) = \varphi(\underline{v}, \underline{v})$.

Osservazione. Si osserva che q non è lineare in generale: infatti $q(\underline{v} + \underline{w}) \neq q(\underline{v}) + q(\underline{w})$

Definizione. Un vettore $\underline{v} \in V$ si dice **isotropo** rispetto al prodotto scalare φ se $q(v) = \varphi(v, v) = 0.$

Esempio. Rispetto al prodotto scalare $\varphi: \mathbb{R}^3 \to \mathbb{R}$ tale che $\varphi((x_1, x_2, x_3), (y_1, y_2, y_3)) =$ $x_1y_1+x_2y_2-x_3y_3$, i vettori isotropi sono i vettori della forma (x,y,z) tali che $x^2+y^2=z^2$, ossia i vettori stanti sul cono di equazione $x^2 + y^2 = z^2$.

¹In realtà, la definizione è facilmente estendibile a qualsiasi campo, purché esso sia ordinato.

1.2.2 Matrice associata a φ e congruenza

Osservazione. Come già osservato in generale per le applicazioni multilineari, il prodotto scalare è univocamente determinato dai valori che assume nelle coppie v_i, v_j estraibili da una base \mathcal{B} . Infatti, se $\mathcal{B} = (\underline{v_1},...,\underline{v_k}), \ \underline{v} = \sum_{i=1}^k \alpha_i \underline{v_i}$ e $\underline{w} = \sum_{i=1}^k \beta_i \underline{v_i}$, allora:

$$\varphi(\underline{v},\underline{w}) = \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_i \beta_j \, \varphi(\underline{v_i},\underline{v_j}).$$

Definizione. Sia φ un prodotto scalare di V e sia $\mathcal{B}=(\underline{v_1},...,\underline{v_n})$ una base ordinata di V. Allora si definisce la matrice associata a φ come la matrice:

$$M_{\mathcal{B}}(\varphi) = (\varphi(\underline{v_i}, \underline{v_j}))_{i, j=1 \dots n} \in M(n, \mathbb{K}).$$

Osservazione.

- \blacktriangleright $M_{\mathcal{B}}(\varphi)$ è simmetrica, infatti $\varphi(v_i, v_j) = \varphi(v_j, v_i)$, dal momento che il prodotto scalare

Teorema. (di cambiamento di base per matrici di prodotti scalari) Siano \mathcal{B} , \mathcal{B}' due basi ordinate di V. Allora, se φ è un prodotto scalare di V e $P = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{Id}_V)$, vale la seguente identità:

$$\underbrace{M_{\mathcal{B}'}(\varphi)}_{A'} = P^{\top} \underbrace{M_{\mathcal{B}}}_{A} P.$$

Dimostrazione. Siano $\mathcal{B} = (\underline{v_1}, ..., \underline{v_n})$ e $\mathcal{B}' = (\underline{w_1}, ..., \underline{w_n})$. Allora $A'_{ij} = \varphi(\underline{w_i}, \underline{w_j}) = [\underline{w_i}]_{\mathcal{B}}^{\top} A[\underline{w_j}]_{\mathcal{B}} = (P^i)^{\top} A P^j = P_i^{\top} (AP)^j = (P^{\top} A P)_{ij}$, da cui la tesi.

Definizione. Si definisce **congruenza** la relazione di equivalenza \cong (denotata anche come \equiv) definita nel seguente modo su $A, B \in M(n, \mathbb{K})$:

$$A \cong B \iff \exists \, P \in GL(n, \mathbb{K}) \mid A = P^{\top}AP.$$

Osservazione. Si può facilmente osservare che la congruenza è in effetti una relazione di equivalenza.

- ► $A = I^{\top}AI \implies A \cong A$ (riflessione), ► $A \cong B \implies A = P^{\top}BP \implies B = (P^{\top})^{-1}AP^{-1} = (P^{-1})^{\top}AP^{-1} \implies B \cong A$ (simmetria),
- $lacksymbol{A} \cong B, \ B \cong C \implies A = P^{\mathsf{T}}BP, \ B = Q^{\mathsf{T}}CQ, \ \mathrm{quindi} \ A = P^{\mathsf{T}}Q^{\mathsf{T}}CQP = Q^{\mathsf{T}}CQ$ $(QP)^{\top}C(QP) \implies A \cong C \text{ (transitività)}.$

Osservazione. Si osservano alcune proprietà della congruenza.

- ▶ Per il teorema di cambiamento di base del prodotto scalare, due matrici associate a uno stesso prodotto scalare sono sempre congruenti (esattamente come due matrici associate a uno stesso endomorfismo sono sempre simili).
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \operatorname{rg}(A) = \operatorname{rg}(P^{\top}BP) = \operatorname{rg}(BP) = \operatorname{rg}(B)$, dal momento che P e P^{\top} sono invertibili; quindi il rango è un invariante per congruenza. Allora si può ben definire il rango $\operatorname{rg}(\varphi)$ di un prodotto scalare come il rango della matrice associata di φ in una qualsiasi base di V.
- ▶ Se A e B sono congruenti, $A = P^{\top}BP \implies \det(A) = \det(P^{\top}BP) = \det(P^{\top})\det(B)\det(P) = \det(P)^2\det(B)$. Quindi, per $\mathbb{K} = \mathbb{R}$, il segno del determinante è un altro invariante per congruenza.

1.2.3 Studio del radicale V^{\perp} attraverso $M_{\mathcal{B}}(\varphi)$

Definizione. Si definisce il **radicale** di un prodotto scalare φ come lo spazio:

$$V^{\perp} = \{ \underline{v} \in V \mid \varphi(\underline{v}, \underline{w}) = 0 \ \forall \, \underline{w} \in V \}$$

Osservazione. Il radicale del prodotto scalare canonico su \mathbb{R}^n ha dimensione nulla, dal momento che $\forall \underline{v} \in \mathbb{R}^n \setminus \{\underline{0}\}, \ q(\underline{v}) = \varphi(\underline{v},\underline{v}) > 0 \implies \underline{v} \notin V^{\perp}$. In generale ogni prodotto scalare definito positivo (o negativo) è non degenere, dal momento che ogni vettore non nullo non è isotropo, e dunque non può appartenere a V^{\perp} .

Definizione. Un prodotto scalare si dice **degenere** se il radicale dello spazio su tale prodotto scalare ha dimensione non nulla.

Osservazione. Sia $\alpha_{\varphi}: V \to V^*$ la mappa² tale che $\alpha_{\varphi}(\underline{v}) = p$, dove $p(\underline{w}) = \varphi(\underline{v}, \underline{w})$ $\forall v, w \in V$.

Si osserva che α_{φ} è un'applicazione lineare. Infatti, $\forall \underline{v}, \underline{w}, \underline{u} \in V$, $\alpha_{\varphi}(\underline{v} + \underline{w})(\underline{u}) = \varphi(\underline{v} + \underline{w}, \underline{u}) = \varphi(\underline{v}, \underline{u}) + \varphi(\underline{w}, \underline{u}) = \alpha_{\varphi}(\underline{v})(\underline{u}) + \alpha_{\varphi}(\underline{w})(\underline{u}) \implies \alpha_{\varphi}(\underline{v} + \underline{w}) = \alpha_{\varphi}(\underline{v}) + \alpha_{\varphi}(\underline{w}).$ Inoltre $\forall \underline{v}, \underline{w} \in V$, $\lambda \in \mathbb{K}$, $\alpha_{\varphi}(\lambda \underline{v})(\underline{w}) = \varphi(\lambda \underline{v}, \underline{w}) = \lambda \varphi(\underline{v}, \underline{w}) = \lambda \alpha_{\varphi}(\underline{v})(\underline{w}) \implies \alpha_{\varphi}(\lambda \underline{v}) = \lambda \alpha_{\varphi}(\underline{v}).$

Si osserva inoltre che Ker α_{φ} raccoglie tutti i vettori $\underline{v} \in V$ tali che $\varphi(\underline{v},\underline{w}) = 0 \ \forall \underline{w} \in W$, ossia esattamente i vettori di V^{\perp} , per cui si conclude che $V^{\perp} = \operatorname{Ker} \alpha_{\varphi}$ (per cui V^{\perp} è effettivamente uno spazio vettoriale). Se V ha dimensione finita, dim $V = \dim V^*$, e si può allora concludere che dim $V^{\perp} > 0 \iff \operatorname{Ker} \alpha_{\varphi} \neq \{\underline{0}\} \iff \alpha_{\varphi}$ non è invertibile (infatti lo spazio di partenza e di arrivo di α_{φ} hanno la stessa dimensione). In particolare, α_{φ} non è invertibile se e solo se $\det(\alpha_{\varphi}) = 0$.

Sia $\mathcal{B}=(\underline{v_1},...,\underline{v_n})$ una base ordinata di V. Si consideri allora la base ordinata del duale costruita su $\mathcal{B},$ ossia $\mathcal{B}^*=(\underline{v_1^*},...,\underline{v_n^*})$. Allora $M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_{\varphi})^i=[\alpha_{\varphi}(\underline{v_i})]_{\mathcal{B}^*}=$

²In letteratura questa mappa, se invertibile, è nota come *isomorfismo musicale*, ed è in realtà indicata come b.

1 Introduzione al prodotto scalare

$$\begin{pmatrix} \varphi(\underline{v_i},\underline{v_1}) \\ \vdots \\ \varphi(\underline{v_i},\underline{v_n}) \end{pmatrix} \underbrace{\longleftarrow}_{\varphi \text{ è simmetrica}} \begin{pmatrix} \varphi(\underline{v_1},\underline{v_i}) \\ \vdots \\ \varphi(\underline{v_n},\underline{v_i}) \end{pmatrix} = M_{\mathcal{B}}(\varphi)^i. \text{ Quindi } M_{\mathcal{B}^*}^{\mathcal{B}}(\alpha_\varphi) = M_{\mathcal{B}}(\varphi).$$

Si conclude allora che φ è degenere se e solo se $\det(M_{\mathcal{B}}(\varphi)) = 0$ e che $V^{\perp} \cong \operatorname{Ker} M_{\mathcal{B}}(\varphi)$ mediante l'isomorfismo del passaggio alle coordinate.