1 Introduzione

probabilità \rightarrow misurare l'incertezza statistica:

- descrittiva
- \bullet differenziale \to campione casuale per stimare un esito

probabilità:

 $\frac{casifavorevoli}{casitotali}$ $\underline{\mathbf{SE}}$ equiprobabili

per contare i casi ci si appoggia alla combinatoria

partizione: separazione di A in sottoinsiemi senza elementi comuni

NB:

- \land and \rightarrow A \cap B = {x|x \in A \land x \in B}
- \vee or $\rightarrow A \cup B = \{x | x \in A \lor x \in B\}$

Principi della combinatoria:

- 1. A insieme, $\{\mathbf{E_i}\}_{\mathrm{i}=1}^{\mathrm{n}}$ partizione di A $\rightarrow \#\mathbf{A} = \sum_{i=1}^{n} \#\mathbf{E_i}$
 - A,B insiemi, AxB è l'insieme di coppie ordinate (a,b)

2.
$$\#(AxB) = \#A \cdot \#B \to \{A_i\}_{i=1}^n = \bigotimes_{i=1}^n A_i$$

3. A,B,
$$\#(A \cup B) = \#A + \#B - \#(A \cap B)$$
 (non perfetto) \rightarrow

$$\begin{array}{c} \# \cup_{i=1}^n A_i = \sum_{i=1}^n \# A_i - \sum_{i < j} \# (A_i \cap A_j) + \sum_{i < j < k} \# (A_i \cap A_j \cap A_k) + \\ & \cdots \\ \downarrow \\ + (\text{-}1)^{n+1} \ \# \cap_{i=1}^n A_i \end{array}$$

2 Permutazioni e anagrammi

Fattoriale $\rightarrow x! = 9! = 9.8.7.6....2.1$

NB: 0! = 1

- "prendiamo" ha 9! anagrammi
- "anagramma" ha tre ripetizioni di a e due ripetizioni di m, quindi per calcolare i casi unici:

$$\frac{9!}{3! \cdot 2!}$$

$$\downarrow$$

per calcolare la probabilità degli elementi n, ma mi interessano solo k elementi allora:

$$\frac{n!}{(n-k)!}$$

se non sono interessato all'ordine, allora:

$$\frac{n!}{(n-k)!k!} \Rightarrow \binom{n}{k}$$

chiamato anche coefficente binominiale

Proprietà:

- $\bullet \ \binom{n}{k} = \binom{n}{n-k}$
- $\bullet \ \binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$
- $\bullet \ \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

3 Esperimenti aliatori

Un esperimento si definisce **aliatorio** o casuale se con i dati iniziali il risultato è incerto. I risultati a 2 a2 incompatibili di un esperimento aliatorio sono chiamati **esiti**. Ω denota lo **spazio degli esiti**. Un **evento** è un osservabile di un esperimento aliatorio.

Una parte di Ω può essere considerata come famiglia:

$$\mathcal{F} \subseteq P(\Omega)$$

Questa è definita come algebra se:

- $\Omega \in \mathcal{F}$
- se $A \in \mathcal{F}$ allora $A^c \in \mathcal{F}$
- se $A,B \in \mathcal{F}$, allora $A \cup B \in \mathcal{F}$ potremmo scrivere anche $\{A_i\}_{i=1}^n \subseteq \mathcal{F}$ allora $\cup_{i=1}^n A_i \in \mathcal{F}$

3

Proprietà

- $\bullet \ \emptyset \in \mathcal{F}$
- se $A,B \in \mathcal{F}$ allora $A \cap B \in \mathcal{F}$
- se $\{A_i\}_{i=1}^n \subseteq \mathcal{F} \text{ allora } \cap_{i=1}^n A_i \in \mathcal{F}$
- se $A,B \in \mathcal{F}$, allora $A \cdot B \in \mathcal{F}$
- se A,B $\in \mathcal{F}$, allora A \triangle B $\in \mathcal{F}$

 $\mathcal{F} \subseteq P(\Omega)$ è una **tribù** se:

- $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \Rightarrow A^C \in \mathcal{F}$
- per ogni famiglia <u>numerabile</u> $\{A_i\}_{i=1}^{+\infty} \subseteq P(\Omega)$, allora $\cup_{i=1}^{+\infty} A_i \in \mathcal{F}$

NB: generalmente una tribù è un'algebra se hanno elementi finiti

 \mathcal{F} tribù su Ω . Ogni $E \in \mathcal{F}$ (E è sottoinsieme di Ω) si dice **Evento**. I singoletti si chiamano **eventi elementari**. E si verifica se il risultato dell'esperimento appartiene ad E \mathcal{F} tribù su Ω (Ω , \mathcal{F})

Dati Ω , \mathcal{F} tribù su Ω (Ω , \mathcal{F}) si chiama **spazio probabilizzabile**.

 (Ω,\mathcal{F}) , una funzione P: $\mathcal{F} \to \mathcal{R}$ si dice funzione di probabilità se:

- per ogni evento $E P(E) \ge 0$
- $P(\Omega)=1$
- data una famiglia numerabile $\{E_i\}_{i=1}^{+\infty}$ di eventi a 2 a 2 disgiunti:

$$P(\cup_{i=1}^{\infty}E_{i})=\sum_{i=1}^{\infty}P(E_{i})$$
 (additività)

Proprietà delle probabilità

- $P(\emptyset) = 0$
- $E \in \mathcal{F}$ allora $P(E^c) = 1 P(E)$
- E,F $\in \mathcal{F}$, E \subseteq F \Rightarrow P(E) \leq P(F) E $\in \mathcal{F}$ P(E) \leq 1
- (disuguaglianza di bonferrow) $\sum_{i=1}^{+\infty} P(E_i) \sum_{i < j} P(E_i \cap E_j) \le P(\cup_{i=1}^{+\infty} E_i) \le \sum_{i=1}^{\infty} P(E_i)$

4 Probabilità condizionata

 $(\Omega,\,\mathcal{F},\,P),\,E,\!F\!\in\mathcal{F}$ con $P(F)\!\neq\!0,$ allora la probabilità di E condizionale a F è:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Dato (Ω, \mathcal{F}, P) e due sotto tribù $\mathcal{F}_1, \mathcal{F}_2$ di \mathcal{F} allora $\mathcal{F}_1 e \mathcal{F}_2$ sono indipendenti se se ogni elemento di \mathcal{F}_1 è indipendente da ogni elemento di \mathcal{F}_2

$$P(E_1 \cap E_2 | \mathcal{F}) = P(E_1 | \mathcal{F}) \cdot P(E_2 | \mathcal{F})$$

5 funzione di probabilità (Ω, \mathcal{F}, P)

1. Ω finito o numerabile

$$\Omega$$
è dato

$$\mathcal{F} = \mathcal{P}(\Omega)$$

P: assegnamo ad ogni singoletto ($\omega \in \Omega$) un probabilità tale che:

$$P(\omega) \ge 0$$

$$\sum P(\omega) = 1$$

A questo punto $\forall E \in \mathcal{F} P(E) := \sum_{\omega \in E} P(\omega)$

2. Spazi prodotto

considerando più ripetizioni di un esperimento o l'unione di più esperimenti: data una famiglia di sottoinsiemi di Ω dette \mathcal{A} . La tribù di $\mathcal{F}_{\mathcal{A}}$ generata da \mathcal{A} come la più piccola tribù contenente \mathcal{A}

$$\mathcal{F}_{\mathcal{A}} = \sigma(\mathcal{A}) = \bigcap \{ \mathcal{G} : \mathcal{G} \text{ è tribù in } \Omega \in \mathcal{A} \subseteq \mathcal{G} \}$$

quindi il prodotto $\Omega_1 \times \Omega_2$, la tribù sarà:

$$\mathcal{F} = \mathcal{F}_{E} \bigotimes \mathcal{F}_{E} = \sigma(\{E_{1} \times E_{2} : E_{1} \in \mathcal{F}_{E}, E_{2} \in \mathcal{F}_{E}\})$$

$$(\Omega_{1}, \mathcal{F}_{1}, P_{1}), (\Omega_{2}, \mathcal{F}_{2}, P_{2})$$

$$\downarrow \downarrow$$

$$\Omega = \Omega_{1} \times \Omega_{2}$$

$$\mathcal{F} = \mathcal{F}_{E} \bigotimes \mathcal{F}_{E} = \sigma(\{E_{1} \times E_{2} : E_{1} \in \mathcal{F}_{E}, E_{2} \in \mathcal{F}_{E}\})$$

$$P : P(E_{1} \times E_{2}) = P_{1}(E_{1}) \cdot P_{2}(E_{2})$$

Quindi:

con un numero finito di esperimenti $\{(\Omega_i, \mathcal{F}_i, P_i)\}_{i \in I}$ allora lo spazio prodotto ha forma:

$$\Omega = \bigotimes_{i \in I} \Omega_i$$

$$\mathcal{F} = \bigotimes_{i \in I} \mathcal{F}_i = \sigma(\prod_{i \in I} E_i : E_i \in \mathcal{F}_i \text{ e } \exists \text{n tc } \forall j \geq n \text{ E}_j = \Omega_i)$$

$$P = \bigotimes_{i \in I} P_i \operatorname{cio\acute{e}} P(\Pi_{i \in I} E_i) = \Pi_{i \in I} P_i(E_i)$$

6 Trasformazioni lineari di variabili aleatorie

07/04/21

X variabile aleatoria con legge F_X . Se X è variabile aleatoria discreta:

$$\varphi_Y(y) = \sum_{x \in g^{-1}(\{y\})} \varphi_X(x)$$

Se X è variabile aleatoria assolutamente continua abbiamo 2 strategia:

- 1. Ricaviamo la legge di Y usando la forma di X e della funzione g
- 2. usiamo il teorema generale

Teorema del cambio di variabile

Sia X variabile aleatoria continua di densità f_X , sia Y = g(x) con $g : \mathbb{R} \to \mathbb{R}$ continua a tratti t.c. P(g(x) = 0) = 0. Allora:

$$f_Y(y) = \sum_{x \in g^{-1}(\{y\})} \frac{f_X(x)}{|g^1(x)|}$$

7 Vettori aleatori

Dato uno spazio probabilizzabile (Ω, \mathcal{F}, P) consideriamo 2 variabili aliatorie $X, Y: \Omega \to \mathbb{R}^2$

Def: dati (Ω, \mathcal{F}, P) e X, Y variabili aleatorie su di esso si chiama **coppia di variabili aleatorie** o **variabile aleatoria doppia** o **2-vettore aleatorio**. La funzione $V: \Omega \to \mathbb{R}^2: V(\omega) = (X(\omega/Y(\omega)))$. Il supporto del vettore aleatorio V:

$$\mathcal{R}_V = \mathcal{R}_{X,Y} = \mathcal{R}_X \times \mathcal{R}_Y = \{(x,y) \in \mathbb{R}^2 : x \in \mathcal{R}_X, y \in \mathcal{R}_Y\}$$

Def: Data (X,Y) coppia di variabili aleatorie, la sua funzione di ripartizione è:

$$F_{X,Y}((x,y)) = F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

 $F_{X,Y}$ si chiama anche funzione di ripartizione congiunta di X e Y

Def: Data (X,Y) coppia di variabili aleatorie, chiameremo **funzione di** ripartizione di X condizionata a Y la funzione:

$$F_{X|Y}(x|y) := \frac{F_{X,Y}(x,y)}{F_{Y}(y)}$$

Def: Dato (Ω, \mathcal{F}, P) e due tribù $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{F}, \mathcal{F}_1, \mathcal{F}_2$ sono indipendenti se lo sono le tribù $\sigma(x)$ e $\sigma(y)$ da esse generate

Prop: X, Y sono indipendenti se e solo se:

$$\forall (x,y) \in \mathbb{R}^2 \ F_{X|Y}(x|y) = F_X(x)F_Y(y)$$

Prop: X, Y sono indipendenti se e solo se:

$$\forall (x,y) \in \mathbb{R}^2 \ F_{X|Y}(x|y) = F_X(x) \ e \ F_{Y|X}(y|x) = F_Y(y)$$

8 Vettori aleatori discreti

Def: Siano X, Y variabili aleatorie discrete su (Ω, \mathcal{F}, P) chiamiamo **densità** discrete congiunte la funzione $\varphi_{X,Y} : \mathbb{R}^2 \to [0, 1]$ definita:

$$\varphi_{X,Y}(x,y) = P(X=x,Y=y)$$

la densità discreta di X condizionata a Y è $\varphi_{X,Y}$ definità:

9 Schema o processo di Bernoulli

21/04/21

Dati infiniti esperimenti indipendenti e identicamente distribuiti

$$(X_i)_i \in \mathbb{N} \ iid \ X_i \sim bin(1,p)$$

$$\Omega = \{0,1\}^{\mathbb{N}/\{0\}}$$

Tribù \mathcal{F} generata dai cilindri

P uguale al prodotto delle probabilità delle componenti

9.1 Cilindri

I cilindri sono sottoinsiemi $c \subseteq \Omega$ tali che esiste un $n \in \mathbb{N}/\{0\}$ e un vettore $v \in \{0,1\}^n$:

$$C = \{ \omega \in \Omega : \omega_i = v_i \ 1 \le i \le n \}$$

Es:

• un successo seguito da due insuccessi:

Cilindro:
$$n = 3 \ v = (1, 0, 0) \Rightarrow prob = p(1 - p)^2$$

• primo successo al k-esimo lancio:

Cilindro:
$$(0, 0, ..., 0_{k-1}, 1_k) \Rightarrow prob = (1-p)^{k-1}p$$

• prob 3° lancio sia un successo:

$$(\cdots 1*) = (001) \cup (101) \cup (011) \cup (111)$$

$$P(\cdots 1*) = \sum P(\dots) = (1-p)^2 p + 2(1-p)p^2 + p^3 = P(p+(1-p))^2$$

10 Geometriche

Una varibile aleatoria $(T_1 := \inf\{i \geq 1 : \omega_i = 1\})$ è una geometrica di parametro p $X \sim geom(p)$ se è l'istante precedente al primo successo in un processo di Bernoulli di parametro p

cdf di una geometria:

$$F_X(x) \begin{cases} 0 & x < 0 \\ \sum_{k=0}^x \varphi_x(k) = 1 - (1-p)^x & x \ge 0 \end{cases}$$
 (1)

Assenza di memoria: $\forall n,k\in\mathbb{N} \quad P(x\geq n+k|X\geq n)=P(X\geq k)$ es:

$$(Y \ge 60 + 30|Y \ge 60) = (Y \ge 30) = (1 - p)^{30}$$

11 Binominali negative

 T_n = istante dell'n-esimo successo

$$T_1 := \inf\{i \ge 1 : \omega_i = 1\}$$

 $T_{n+1} := \inf\{i \ge T_n : \omega_i = 1\} \ n \ge 1$

X è una variabile aleatoria binominale negativa (o di pascal) di parametri n e p se è il numero di insuccessi precedenti all'n-ennesimo successo di uno schema di bernoulli di parametro p $X \sim NB(n, p)$

$$pnk \in \mathbb{N}\varphi_x(k) \begin{cases} = P(x=k) = P(T_n = k + n) \\ = P(\omega_{n+k} = 1, \sum_{j=1} \omega_j = n - 1) \\ = p\binom{k+n-1}{n-1} p^{n-1} (1-p)^k \end{cases} \Rightarrow \binom{k+n-1}{n-1} p^n (1-p)^k$$
(2)

12 Riproducibilità

22/04/21

Una famiglia di variabili aleatorie si dice riproducibile se sommando 2 variabili aleatorie indipendenti appartenenti a quella famiglia abbiano ancora una variabile aleatoria della medesima famiglia

Prop: La famiglia delle binominali a parametro p fissato è riproducibile. Se $X \sim bin(n, p), \ Y \sim bin(m, p), \ X$ e Y indipendenti allora:

$$X + Y \sim bin(n+m,p)$$

13 Ipergeometriche

Data un urna con n biglie bianche e n biglie nere, contiamo le bianche:

- con reimmissione abbiamo $bin(k,\frac{n}{m+n})$
- senza reimmissione usiamo un'ipergeometrica

Def: Si chiama ipergeometrica di parametri k, n, m la variabile aleatoria che conta il numero di bianche tra le estratte senza reimmissione

$$X \sim hyp(k, n, m)$$

$$\varphi_x(b): \begin{cases} \frac{\binom{m}{b}\binom{n}{k-b}}{\binom{n+m}{k}} \\ 0 \quad altrimenti \end{cases}$$

28/04/2021

Prop: Siano $\{a_i\}_{i\in\mathbb{N}}$, $\{b_i\}_{i\in\mathbb{N}}$ interi non negativi che tendono in modo monotono a $+\infty$, $\lim_{i\to\infty}a_i=\lim_{i\to\infty}b_i=+\infty$ o tali che $\lim_{i\to\infty}\frac{a_i}{b_i+a_i}=\alpha,\ \alpha\in[0,1]$, allora:

$$\frac{\binom{a_i}{k}\binom{b_i}{n-k}}{\binom{a_i+b_i}{n}} \to_{i\to\infty} \binom{n}{k}\alpha^k (1-\alpha)^{n-k}$$

14 Poisson

Def: X è variabile aleatoria di Poisson di parametro $\lambda > 0$ se:

$$\varphi_x(k) \begin{cases} \frac{\lambda^k}{k!} \cdot e^{-\lambda} & k \in \mathbb{N} \\ 0 & altrimenti \end{cases}$$

e si denota come $X \sim Pois(\lambda)$

Es:

in una partita di calcio vengono segnati $2.5~{
m gol}$ di media. X determina la probabilità di fare gol in un intervallo:

- \Rightarrow dividiamo 90' in 5 intervalli: $X \sim bin(5, 1/2)$
- \Rightarrow dividiamo in 20 intervalli: $X \sim bin(20, 1/8)$
- \Rightarrow dividiamo in 90 intervalli: $X \sim bin(90, 1/36)$

Questa successione tende a una variabile aleatoria di Poisson

Oss: Poisson viene a volte utilizzato come descrizione di una binomiale con n, p piccoli o grandi, non precisi

Prop: $\{p_n\}_n$ successione di numeri in [0,1] tale che $\lim_{x\to\infty} n \cdot p_n = \lambda \in \mathbb{R}^+$ allora $\forall k \in \mathbb{N}$:

$$\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Prop: Le variabili aleatorie di Poisson sono riproducibili. $X \sim Pois(\lambda_1), \ Y \sim Pois(\lambda_2)$:

$$X + Y \sim Pois(\lambda_1 + \lambda_2)$$