Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, Hari Balakrishnan

M.I.T.

http://web.mit.edu/anirudh/www/sdn-data-plane.html

Switch Data Planes today

Two key decisions on a per-packet basis:

Scheduling: Which packet to transmit next?

• Queue Management: How long can queues grow? Which packet to drop?

The Data Plane is continuously evolving

Each scheme wins in its own evaluation.

Quest for a "silver bullet" in-network method.

We disagree: There is no silver bullet!

- Different applications care about different objectives.
- Applications use different transport protocols.

Networks are heterogeneous.

Our work:

- Quantify non-universality of in-network methods.
- Extend SDN to the Data Plane to handle in-network diversity.

Quantifying "No Silver Bullet": Network Configurations

Configuration	Description			
CoDel+FCFS	One shared FCFS queue with CoDel			
CoDel+FQ	Per-flow fair queueing with CoDel on each queue (Nichols 2013)			
Bufferbloat+FQ	Per-flow fair queueing with deep buffers on each queue			

Quantifying "No Silver Bullet": Workloads and Objectives

Workload	Description	Objective
Bulk	Long-running bulk transfer flow	Max. throughput
Web	Switched flow with ON/OFF periods	Min. 99.9 %ile flow completion time
Interactive	Long-running interactive flow	Max. throughput delay

CoDel+FQ

Bufferbloat+FQ

CoDel+FQ

Bufferbloat+FQ

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

CoDel+FQ

Bufferbloat+FQ

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

Bulk Tpt: 3.9 Mbps

CoDel+FQ

Bufferbloat+FQ

Web Tail FCT: 43 s

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

Bulk Tpt: 3.9 Mbps

CoDel+FQ

Web Tail FCT: 43 s

Bulk Tpt: 11.2 Mbps

Bufferbloat+FQ

Web Tail FCT: 21 s

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

Bulk Tpt: 3.9 Mbps

CoDel+FQ

Web Tail FCT: 43 s

Bulk Tpt: 11.2 Mbps

Bufferbloat+FQ

Web Tail FCT: 21 s

Why is no single data plane configuration the best?

Bufferbloat gives the best throughput on variable-rate links.

- FCFS is preferable to Fair Queuing with homogenous objectives.
- Fair Queuing is preferable with heterogeneous objectives.

So what should the network designer do?

▶ Don't strive for the best in-network behaviour.

Instead, architect for evolvability.

Conceptually, extend SDN to include the data plane as well.

Flexibility without sacrificing performance

 Provide interfaces only to the head and tail of queues

- Operators specify only queue-management/scheduling logic
- No access to packet payloads.

- Hardware gadgets
 - ► Random number generators (RED, BLUE)
 - ▶ Binary tree of comparators (pFabric, SRPT)
 - ► Look-up tables for function approximation (CoDel, RED)

- Hardware gadgets
 - ► Random number generators (RED, BLUE)
 - ▶ Binary tree of comparators (pFabric, SRPT)
 - ▶ Look-up tables for function approximation (CoDel, RED)
- ► I/O interfaces
 - Drop/mark head/tail of queue
 - Interrupts for enqueue/dequeue
 - Rewrite packet fields

- Hardware gadgets
 - Random number generators (RED, BLUE)
 - ▶ Binary tree of comparators (pFabric, SRPT)
 - ▶ Look-up tables for function approximation (CoDel, RED)
- ▶ I/O interfaces
 - Drop/mark head/tail of queue
 - ► Interrupts for enqueue/dequeue
 - Rewrite packet fields
- State maintenance
 - ► Per-flow (WFQ, DRR)
 - Per-dst address (PF)

- Hardware gadgets
 - ► Random number generators (RED, BLUE)
 - Binary tree of comparators (pFabric, SRPT)
 - ► Look-up tables for function approximation (CoDel, RED)
- ► I/O interfaces
 - Drop/mark head/tail of queue
 - Interrupts for enqueue/dequeue
 - ► Rewrite packet fields
- State maintenance
 - Per-flow (WFQ, DRR)
 - Per-dst address (PF)
- A domain-specific instruction set
 - Expresses control flow
 - Implements new functions unavailable in hardware

Feasibility study: CoDel

Synthesis numbers on the Xilinx Kintex-7

Resource	Usage		Fraction
Slice logic	1,256		1%
Slice logic dist.	1,975		2%
IO/GTX ports	27		2%
DSP slices	0		0%
Maximum speed	12.9	million	
	pkts/s ~1	10 Gbps	

- Small fraction of the FPGA's resources.
- Can be improved by pipelining or parallelizing.

Conclusion

▶ No silver bullet to in-network resource allocation.

Algorithms will evolve: Data Plane should help

Reproduce our results: http://web.mit.edu/anirudh/www/sdn-dataplane.html