1 Variables

2 root

	var	symbol	documentation	type	units	eqs
21	$u_{N,t,u}$	u_Ntu	input signal in control domain	network		
11	$I_{t,u}$	I_tu	identity mapping from <t> to <u></u></t>	network		
2	$F_{N,A}$	F	incidence matrix	network		
27	$I_{N,A}$	I_NA	$ \ {\rm identity \; mapping \; from} < {\rm N}{\rm > \; to} < {\rm A}{\rm >} $	network		
12	$S_{A,p}$	S_Ap	selection matrix interface species-related measures	network		
20	$A_{N,t,u}$	A_Ntu	mapping from input elements to outputs	network		
10	$S_{I,q}$	S_Iq	selection matrix interface to control output	network		
3	$F^{source}_{N,I}$	F_NI_source	incidence matrix NI source	network		
9	$S_{I,p}$	S_Ip	selection matrix interface to control input	network		
16	mv_I	mv_I	interface variable macro -> control	network		
7	$F^{source}_{N,A}$	F_NA_source	incidence matrix NA source	network		
8	$F^{sink}{}_{N,A}$	F_NA_sink	incidence matrix NA sink	network		
22	$y_{N,t,u}$	y_Ntu	output signal in control domain	network		
6	$F^{sink}{}_{A,I}$	F_AI_sink	incidence matrix AI sink	network		
15	$S_{N,q,t}$	S_Nqt	selection matrix or splitter	network		
19	$A_{N,p,q}$	A_Npq	mapping from inputs to outputs	network		
4	$F^{sink}{}_{N,I}$	F_NI_sink	incidence matrix NI sink	network		
14	$S_{N,p,q}$	S_Npu	selection matrix for stacker	network		
17	cz_N	cz_N	output from control	network		
18	cz_I	cz_I	interface variable macro -> control	network		
5	$F^{source}{}_{A,I}$	F_AI_source	incidence matrix AI source	network		
13	$S_{I,q}$	S_Aq	selection matrix arcs to outputs	network		

Continued on next page

	var	symbol	documentation	type	units	eqs
1	t	t	time	frame	S	
107	Δt	t_interval	time interval	frame	s	6
106	t^e	te	end time	frame	s	5
105	t^o	to	starting time	frame	s	4
102	0	zero	numerical value zero	constant		1
101	#	value	numerical value	constant		
103	1	one	numerical value one	constant		2
104	0.5	oneHalf	numerical value one half	constant		3

3 physical

	var	symbol	documentation	type	units	eqs
25	r_{zN}	r_z	z-coordinate	frame	m	
24	r_{yN}	r_y	y-coordinate	frame	m	
23	r_{xN}	r_x	x-coordinate	frame	m	
144	C_N	C	fundamental state – charge	state	As	
110	V_N	V	volume	state	m^3	7
137	m_N	m	mass	state	kg	30
108	U_N	U	fundamental state – internal energy	state	$kg m^2 s^{-2}$	
109	S_N	S	fundamental state – internal entropy	state	$kg m^2 K^{-1} s^{-2}$	
111	$n_{N,S}$	n	fundamental state – molar mass	state	mol	93
121	N^A	Avo	Avogadro constant	constant	mol^{-1}	
123	R	R	gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	17
132	λ_S	Mm	molecular masses	constant	$kg mol^{-1}$	
122	k^B	Boltz	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	
143	$ ho_N$	rho	density	secondaryState	$kg m^{-3}$	36
149	A_{xzN}	Axz	cross sectional are xz	secondaryState	m^2	41
150	A_{yzN}	Ayz	cross sectional area yz	secondaryState	m^2	42
148	A_{xyN}	Axy	cross sectional area xy	secondaryState	m^2	40

4 macroscopic

	var	symbol	documentation	type	units	eqs
208	\dot{q}_{xN}	aq_x	accumulation due to heat flow in x-direction	transport	kgm^2s^{-3}	103
159	\hat{V}_A	fV	volumetric flow in x-direction	transport	$m^3 s^{-1}$	51
194	$\dot{n}_{N,S}$	anc	accumulation of molar mass due to convection	transport	$mol s^{-1}$	87
204	\dot{H}_{xN}^c	aHnc_x	accumulation of enthalpy due to convective mass flow in x-direction	transport	kgm^2s^{-3}	99
154	$\hat{n}_{xA,S}^d$	fnd_x	diffusion flow in x-direction	transport	$mol s^{-1}$	46 89
152	\hat{q}_{yA}	fq_y	heat flow in y-direction	transport	$kg m^2 s^{-3}$	44
206	\dot{H}^d_{yN}	aHnd_y	accumulation of enthalpy due to diffusional mass flow in y-direction	transport	$kg m^2 s^{-3}$	101
156	$\hat{n}_{zA,S}^d$	fnd_z	diffusion flow in z-direction	transport	$mol s^{-1}$	48 91
210	\dot{q}_{zN}	aq_z	accumulation due to heat flow in z-direction	transport	$kg m^2 s^{-3}$	105
160	$\hat{n}_{xA,S}^c$	fnc_x	molar convective flow in x-direction	transport	$mol s^{-1}$	52
207	\dot{H}^d_{zN}	aHnd_z	accumulation of enthalpy due to diffusional mass flow in z-direction	transport	$kg m^2 s^{-3}$	102
155	$\hat{n}_{yA,S}^d$	fnd_y	diffusion flow in y-direction	transport	$mol s^{-1}$	47 90
195	$\dot{n}^d{}_{N,S}$	and_x	accumulation due to diffusion in x-direction	transport	$mol s^{-1}$	88
158	$c_{A,S}$	c_AS	concentration in convective event-dynamic flow	transport	$m^{-3} mol$	50
209	\dot{q}_{yN}	aq_y	accumulation due to heat flow in y-direction	transport	$kg m^2 s^{-3}$	104
151	\hat{q}_{xA}	fq_x	heat flow in x-direction	transport	$kg m^2 s^{-3}$	43
205	\dot{H}^d_{xN}	aHnd_x	accumulation of enthalpy due to diffusional mass flow in x-direction	transport	kgm^2s^{-3}	100
157	d_A	d	flow direction of convective flow	transport		49
153	\hat{q}_{zA}	fq_z	heat flow in z-direction	transport	$kg m^2 s^{-3}$	45
193	$h_{A,S}$	hA	partial molar enthalpiies in arc	properties	$kg m^2 mol^{-1} s^{-2}$	86

Continued on next page

	var	symbol	documentation	type	units	eqs
182	$k_{zA,S}^{d}$	kdA_z	diffusivity in arc and z-direction	properties	$kg^{-1} m^{-4} mol^2 s$	75
187	k_{yA}^q	kqA_y	thermal conductivity in arc and y-direction	properties	$kg K^{-1} s^{-3}$	80
188	k_{zA}^{q}	kqA_z	thermal conductivity in arc and z-direction	properties	$kg K^{-1} s^{-3}$	81
192	$\hat{k}_z^{d,Fick}{}_{A,S}$	kdAFick_z	Fick diffusivity in arc and z-direction	properties	ms^{-1}	85
190	$\hat{k}_x^{d,Fick}{}_{A,S}$	kdAFick_x	Fick's diffusivity in arc and x-direction	properties	ms^{-1}	83
189	$ ho_A$	rhoA	density in arc	properties	$kg m^{-3}$	82
183	k_{xA}^{c}	kcA_x	convective mass conductivity in arc and x diretion	properties	$m^{-1} s$	76
191	$\hat{k}_y^{d,Fick}{}_{A,S}$	kdAFick_y	Fick diffusivity in arc and y-direction	properties	ms^{-1}	84
185	k_{zA}^{c}	kcA_z	convecive mass conductivity in arc and y-direction	properties	$m^{-1} s$	78
184	k_{yA}^c	kcA_y	convective mass conductivity in arc and y-direction	properties	$m^{-1} s$	77
180	$k_{xA,S}^d$	kdA_x	diffusivity in arc and x-direction	properties	$kg^{-1} m^{-4} mol^2 s$	73
181	$k_{yA,S}^d$	kdA_y	diffusivity in arc and y-direction	properties	$kg^{-1} m^{-4} mol^2 s$	74
186	k_{x}^{q}	kqA_x	thermal conductivity in arc and x-direction	properties	$kg K^{-1} s^{-3}$	79
115	H_N	Н	Enthalpy	state	$kg m^2 s^{-2}$	11
117	G_N	G	Gibbs free energy	state	$kg m^2 s^{-2}$	13
203	$n^o_{N,S}$	no	initial mass	state	mol	98
116	A_N	A	Helmholtz energy	state	$kg m^2 s^{-2}$	12
112	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	8
113	T_N	Т	temperature	effort	K	9
161	$\mu^{o}{}_{N,S}$	chemPotStandard	instantiating standard chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	53
114	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	10 54
140	$x_{N,S}$	x	mole fraction	secondaryState		33
142	c_{VN}	cV	specific heat capacity at constant volume	secondaryState	$m^2 K^{-1} s^{-2}$	35
118	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	14
136	$h_{N,S}$	h	partial molar enthalpies	secondaryState	$kg m^2 mol^{-1} s^{-2}$	29

Continued on next page

	var	symbol	documentation	type	units	eqs
119	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	15
139	$n^t{}_N$	nt	total number of moles	secondaryState	mol	32
120	v_{zN}	v_z	velocity in z-direction	secondaryState	ms^{-1}	16
125	CV_N	CV	total heat capacity at constant volume	secondaryState	$kg m^2 K^{-1} s^{-2}$	19
141	c_{pN}	ср	specific heat capacity at constant pressure	secondaryState	$m^2 K^{-1} s^{-2}$	34
124	Cp_N	Ср	total heat capacity at constant pressure	secondaryState	$kg m^2 K^{-1} s^{-2}$	18
138	$c_{N,S}$	С	molar concentration	secondaryState	$m^{-3} mol$	31
202	$ ilde{n}_{N,S}$	np	link variable np to interface macroscopic	conversion	$m^{-3} mol s^{-1}$	97
196	$\dot{n}_{N,S}$	an	differential mass balance without reaction	diffState	$mol s^{-1}$	92

5 reactions

	var	symbol	documentation	type	units	eqs
26	$N_{S,K}$	N	stoichiometric matrix	constant		
198	$K^o{}_K$	Ко	Arrhenius frequency factor	constant	$m^{-3} mol s^{-1}$	
197	$E^a{}_K$	Ea	Arrhenius activation energy	constant	$kg m^2 mol^{-1} s^{-2}$	
167	$T_{N,p}$	Т	link variable T to interface reactions	effort	K	60
165	$x_{N,S,p}$	x	link variable x to interface reactions	secondaryState		58
163	$c_{N,S,p}$	С	link variable c to interface reactions	secondaryState	$m^{-3} mol$	56
200	$ ilde{n}_{N,S,q}$	np	production from reaction set	conversion	$m^{-3} mol s^{-1}$	95
169	$\xi_{N,K,p}$	probability	probability of reaction to take place	conversion		62
199	$K_{N,K,p}$	K	Arrhenius reaction "constant"	conversion	$m^{-3} mol s^{-1}$	94
168	$f_{N,S,K,p}$	factor	factor for probability computation	conversion		61

6 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
201	$_np_{I,S}$	_np	link variable np to interface reactions »> macroscopic with source:node	get	$m^{-3} mol s^{-1}$	96

7 macroscopic-reactions

	var	symbol	documentation	type	units	eqs
164	$_x_{I,S}$	_x	$\label{eq:link_variable} \begin{array}{l} link\ variable\ x\ to\ interface\ macroscopic\ >>\ reactions \\ with\ source: node \end{array}$	get		57
166	$_T_I$	_T	link variable T to interface macroscopic $\gg>$ reactions with source:node	get	K	59
162	$_c_{I,S}$	_c	link variable c to interface macroscopic $\gg>$ reactions with source:node	get	$m^{-3} mol$	55

8 Equations

9 Generic

no	equation		documentation
1	$0 := \mathbf{Instantiate}(\#, \#)$		numerical value zero
2	$1 := \mathbf{Instantiate}(\#, \#)$		numerical value one
3	$0.5 := \mathbf{Instantiate}(\#, \#)$		numerical value one half
4	$t^o := \mathbf{Instantiate}(t, \#)$		starting time
5	$t^e := \mathbf{Instantiate}(t, \#)$		end time
6	$\Delta t := \mathbf{Instantiate}(t, \#)$		time interval
7	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$		volume
8	$p_N := \frac{\partial U_N}{\partial V_N}$		thermodynamic pressure
9	$T_N := \frac{\partial U_N}{\partial S_N}$		temperature
10	$\mu_{N,S} := \frac{\partial U_N}{\partial n_{N,S}}$		chemical potential
11	$H_N := U_N - p_N \cdot V_N$		Enthalpy
12	$A_N := U_N - T_N . S_N$		Helmholtz energy
13	$G_N := U_N + p_N \cdot V_N - T_N \cdot$	$.S_N$	Gibbs free energy
14	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$		velocity in x-direction
15	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$		velocity in y-direction
16	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$		velocity in z-direction

no	equation	documentation
17	$R := N^A \cdot k^B$	gas constant
18	$Cp_N := rac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure
19	$CV_N := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume
29	$\left \ h_{N,S} := H_N \cdot \left(n_{N,S} ight)^{-1} ight.$	partial molar enthalpies
30	$m_N := \lambda_S \stackrel{S}{\star} n_{N,S}$	mass
31	$c_{N,S} := (V_N)^{-1} \cdot n_{N,S}$	molar concentration
32	$\left egin{aligned} n^t{}_N := \mathbf{reduceSum} \left(n_{N,S}, S ight) \end{aligned} ight.$	total number of moles
33	$x_{N,S} := (n^t{}_N)^{-1} \cdot n_{N,S}$	mole fraction
34	$c_{pN} := Cp_N \cdot (m_N)^{-1}$	specific heat capacity at constant pressure
35	$c_{VN} := CV_N \cdot (m_N)^{-1}$	specific heat capacity at constant volume
36	$\rho_N := \left(V_N\right)^{-1} . m_N$	density
40	$A_{xyN} := r_{xN} \cdot r_{yN}$	cross sectional area xy
41	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional are xz
42	$A_{yzN} := r_{yN} \cdot r_{zN}$	cross sectional area yz
43	$\hat{q}_{xA} := k_{xA}^q \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in x-direction
44	$\hat{q}_{yA} := k_{yA}^q \cdot A_{xzN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in y-direction
45	$\hat{q}_{zA} := k_{zA}^q \cdot A_{xyN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	heat flow in z-direction

no	equation	documentation
46	$\hat{n}^d_{xA,S} := \hat{k}^{d,Fick}_{x}{}_{A,S} \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} c_{N,S}$	Fick diffusion flow in x-direction
47	$\hat{n}_{yA,S}^d := \hat{k}_y^{d,Fick}{}_{A,S} \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	Fick diffusion flow in y-direction
48	$\hat{n}_{zA,S}^d := \hat{k}_z^{d,Fick}{}_{A,S} \cdot (A_{xyN} \cdot F_{N,A}) \overset{N}{\star} c_{N,S}$	Fick diffusion flow in z-direction
49	$d_A := \mathbf{sign}\left(F_{N,A} \stackrel{N}{\star} p_N ight)$	flow direction of convective flow
50	$c_{A,S} := (0.5 \cdot (F_{N,A} - d_A \cdot F_{N,A})) *^{N} c_{N,S}$	concentration in convective event- dynamic flow
51	$\hat{V}_A := (\rho_A)^{-1} \cdot k_{xA}^c \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} p_N$	volumetric flow in x-direction
52	$\hat{n}_{xA,S}^c := \hat{V}_A \cdot c_{A,S}$	molar convective flow in x-direction
53	$\mu^o{}_{N,S} := \mathbf{Instantiate}(\mu_{N,S},\#)$	instantiating standard chemical potential
54	$\mu_{N,S} := \mu^o_{N,S} + R \cdot T_N \cdot \ln(x_{N,S})$	chemical potential standard model with mole fraction
61	$f_{N,S,K,p} := x_{N,S,p}((N_{S,K}))$	factor for probability computation
62	$\xi_{N,K,p} := \prod_S f_{N,S,K,p}$	probability of reaction to take place
73	$k_{xA,S}^d := I_{N,A} \stackrel{N}{\star} \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{xN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and x-direction
74	$k_{yA,S}^d := I_{N,A} \stackrel{N}{\star} \left(\left(\mu_{N,S} \right)^{-1} \cdot \left(v_{yN} \cdot \left(\left(V_N \right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and y-direction
75	$k_{zA,S}^d := I_{N,A} \stackrel{N}{\star} \left((\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	diffusivity in arc and z-direction
76	$k_{xA}^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN} \right)$	convective mass conductivity in arc and x diretion
77	$k_{yA}^{c} := I_{N,A} * \left(\left(\lambda_{S} * (\mu_{N,S})^{-1} \right) \cdot (V_{N})^{-1} \cdot \frac{\partial U_{N}}{\partial p_{N}} \cdot v_{yN} \right)$	convective mass conductivity in arc and y-direction

no	equation	documentation
78	$k_{zA}^c := I_{N,A} \stackrel{N}{\star} \left(\left(\lambda_S \stackrel{S}{\star} (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN} \right)$	convecive mass conductivity in arc and y-direction
79	$k_{xA}^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot Cp_N \cdot v_{xN} \right)$	thermal conductivity in arc and x-direction
80	$k_{yA}^{q} := I_{N,A} * \left(\left(V_{N} \right)^{-1} . Cp_{N} . v_{yN} \right)$	thermal conductivity in arc and y-direction
81	$k_{zA}^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot Cp_N \cdot v_{zN} \right)$	thermal conductivity in arc and z-direction
82	$ ho_A := I_{N,A} \stackrel{N}{\star} ho_N$	density in arc
83	$\hat{k}_x^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and x-direction
84	$\hat{k}_{y}^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{yN} \cdot \frac{\partial U_{N}}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and y-direction
85	$\hat{k}_z^{d,Fick}{}_{A,S} := I_{N,A} \stackrel{N}{\star} \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick diffusivity in arc and z-direction
86	$h_{A,S} := I_{N,A} \overset{N}{\star} h_{N,S}$	partial molar enthalpiies in arc
87	$\dot{n}_{N,S} := F_{N,A} \stackrel{A}{\star} \hat{n}_{xA,S}^c$	accumulation of molar mass due to convection
88	$\dot{n}^d{}_{N,S} := F_{N,A} \stackrel{A}{\star} \hat{n}^d_{xA,S}$	accumulation due to diffusion in x-direction
89	$\hat{n}_{xA,S}^d := k_{xA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	Fick diffusion flow in x-direction
90	$\hat{n}_{yA,S}^d := k_{yA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) * \mu_{N,S}$	Fick diffusion flow in y-direction
91	$\hat{n}_{zA,S}^d := k_{zA,S}^d \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	mass diffusion flow in z-direction
92	$\dot{n}_{N,S} := \dot{n}_{N,S} + \dot{n}^d{}_{N,S} + V_N \cdot \tilde{n}_{N,S}$	differential mass balance without reaction

no	equation	documentation
93	$n_{N,S} := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt + n^o{}_{N,S}$	fundamental state – molar mass
94	$K_{N,K,p} := K^o{}_K \cdot \exp\left((-E^a{}_K) \cdot (R \cdot T_{N,p})^{-1}\right)$	Arrhenius reaction "constant"
95	$\tilde{n}_{N,S,q} := A_{N,p,q} \star \left(N_{S,K} \star \left(K_{N,K,p} \cdot \xi_{N,K,p} \right) \right)$	production from reaction set
98	$igg \left \left n^o{}_{N,S} ight := \mathbf{Instantiate}(n_{N,S}, \#) ight $	initial mass
99	$\dot{H}_{xN}^c := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^c \stackrel{S}{\star} h_{N,S} \right)$	enthalpy accumulation due to convective flow in x-direction
100	$\dot{H}_{xN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in x-direction
101	$\dot{H}_{yN}^d := F_{N,A} \overset{A}{\star} \left(\hat{n}_{yA,S}^d \overset{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in y-direction
endlay	macroscopic	
102	$\dot{H}_{zN}^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{zA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	accumulation of enthalpy due to diffusional mass flow in z-direction
103	$\dot{q}_{xN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{xA}$	accumulation due to heat flow in x-direction
104	$\dot{q}_{yN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{yA}$	accumulation due to heat flow in y-direction
105	$\dot{q}_{zN} := F_{N,A} \stackrel{A}{\star} \hat{q}_{zA}$	accumulation due to heat flow in z-direction

10 Interface Link Equation

no	equation	documentation	layer
55	$_c_{I,S} := F^{source}{}_{N,I} \overset{N}{\star} c_{N,S}$	interface equation	macroscopic -> reactions
56	$c_{N,S,p} := \left(F^{sink}_{N,I} \cdot _c_{I,S}\right) \stackrel{I}{\star} S_{I,p}$	interface equation	reactions
57	$_x_{I,S} := F^{source}_{N,I} \overset{N}{\star} x_{N,S}$	interface equation	macroscopic -> re- actions
58	$x_{N,S,p} := (F^{sink}_{N,I} \cdot _x_{I,S}) \overset{I}{\star} S_{I,p}$	interface equation	reactions
59	$_T_I := F^{source}{}_{N,I} \stackrel{N}{\star} T_N$	interface equation	macroscopic -> re- actions
60	$T_{N,p} := (F^{sink}_{N,I} \cdot _T_I) \overset{I}{\star} S_{I,p}$	interface equation	reactions
96	$_np_{I,S} := \mathbf{reduceSum}\left(\left(\left(F^{source}_{N,I} \overset{N}{\star} \tilde{n}_{N,S,q}\right).S_{I,q}\right), q\right)$	interface equation	reactions -> macroscopic
97	$\tilde{n}_{N,S} := F^{source}{}_{N,I} \overset{I}{\star} _np_{I,S}$	interface equation	macroscopic