HaeJoong Lee

Sogang University, EE

2020.03.05

☐ Markov Process

☐ Markov Reward Processes

☐ Markov Decision Processes

Reward

☐ Rewards

- A **reward** R_t is a scalar vector feedback signal
- Indicates how well agent is dong at step t
- The agent's job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected cumulative reward

☐ Sequential Decision Making

- Goal: select actions to maximise total future reward
- Actions may have long term sequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward

Environments

Agent and Environment

Environments

- At each step *t* the agent:
 - Executes actions A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- the environment:
 - Receives actions A^t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

☐ History and State

The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, O_2, R_2, A_2, \dots, A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- What happens next depends on the history:

The agent selects actions
The environment selects observations/rewards

- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment State

☐ Agent State

- The environment state S_t^e is the environment's private representation
- whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if is S_t^e visible, it may contain irrelevant information
- The agent state S_t^a is the agent's internal representation
- whatever information the agent uses to pick the next action
- it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_t^a = f(H_t)$$

Rat Example

What if agent state = last 3 items in sequence?

What if agent state = counts for lights, bells and levers?

What if agent state = complete sequence?

☐ Fully Observable Environments

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state
- Formally, this is a Markov decision process (MDP)

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Value function : how good is each state and/or action
 - **Model**: agent's representation of the environment

Inside An RL Agent

□ Policy

- A policy is the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

□ Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

☐ Model

- A model predicts what the environment will do next
- $\blacksquare \mathcal{P}$ predicts the next state
- R predicts the next (immediate) reward, e.g.

Arrows represent policy $\pi(s)$ for each state s

Numbers represent value $v_{\pi}(s)$ of each state s

Grid layout represents transition model $\mathcal{P}_{ss'}^a$

Numbers represent immediate reward \mathcal{R}_s^a from each state s_{γ} (same for all a)

Categorizing RL agents

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

☐ Markov Process

☐ Markov Reward Processes

☐ Markov Decision Processes

∃—Extensions to MDPs

Markov Processes

☐ Markov Property

Definition

A state S_t is Markov if and only if

$$P[S_{t+1}|S_t] = P[S_{t+1}|S_1, ..., S_t]$$

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future

☐ State Transition Matrix

$$\boldsymbol{P_{ss'}}[S_{t+1} = s' | S_t = s]$$

$$P = \mathbf{from} \begin{bmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{bmatrix}$$

to

Each row of the matrix sums to 1

Markov Processes

☐ Markov Process

Definition

A Markov Process(or Markov Chain) is a tuple <S, P>

- S is a (finite) set of states
- $P_{ss'} = P[S_{t+1} = s' | S_t = s]$

☐ Example

Markov Processes

□ Example : Student Markov Chain Episodes

☐ Transition Matrix

			<i>C</i> 1	C2	<i>C</i> 3	Pass	Pub	FB	Sleep
	C1	Γ		0.5				0.5	7
	C2				0.8				0.2
	C3					0.6	0.4		
$\mathcal{P} =$	Pass								1.0
	Pub		0.2	0.4	0.4				
	FB		0.1					0.9	
	Sleep	L							1

OV

☐ A Markov reward process is a Markov chain with values

Definition

A Markov Reward Process is a tuple $\langle S, P, R, \gamma \rangle$

- S is a finite set of states
- P is a state transition probability matrix, $P_{ss'} = P [S_{t+1} = s' | S_t = s]$
- R is a reward function, $R_s = E[R_{t+1}|S_t = s]$
- γ is a discount factor, $\gamma \in [0, 1]$

☐ Return

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+1} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

discount factor $\gamma \in [0, 1]$

Value Function

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = E[G_t | S_t = s]$$

The value function gives v(s) the long-term value of state s

☐ Returns

			<i>C</i> 1	<i>C</i> 2	<i>C</i> 3	Pass	Pub	FB	Sleep
	<i>C</i> 1	Γ		0.5				0.5	7
	C2				0.8				0.2
	<i>C</i> 3					0.6	0.4		
$\mathcal{P} =$	Pass								1.0
	Pub		0.2	0.4	0.4				
	FB		0.1					0.9	
	Sleep	L							1

Sample returns for Student MRP: Starting from $S_1 = C1$ with $\gamma = \frac{1}{2}$

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T$$

$$\begin{vmatrix} v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8} & = & -2.25 \\ v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} & = & -3.125 \\ v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} \dots & = & -3.41 \\ v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} \dots & = & -3.20 \end{vmatrix}$$

\Box Example: Returns by γ

☐ Bellman Equation for MRPs

The value function can be decomposes into two parts:

- Immediate reward R_{t+1}
- Discounted value of successor state $\gamma v(S_{t+1})$

$$v(s) = \mathbb{E} [G_t \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma V(S_{t+1}) \mid S_t = s]$$

$$v(s) = \mathbb{E}\left[\frac{R_{t+1}}{r} + \gamma v(S_{t+1})\right] | S_t = s$$

$$v(s) = \frac{\mathcal{R}_s}{\mathcal{R}_s} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'} v(s')$$

☐ Bellman Equation in Matrix Form

$$\mathbf{v} = \mathcal{R} + \gamma \mathcal{P} \mathbf{v}$$

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

□ Solving the Bellman Equation

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
 $(I - \gamma \mathcal{P}) v = \mathcal{R}$
 $v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$

Big $O: O(n^3)$

Only small MRPs

There are many iterative methods for large MRPs, e.g.

- Dynamic programming
- Monte-Carlo evaluation
- Temporal-Difference learning

 \square MDP is a MRP with decisions(actions).

Definition

A Markov Decision Process is a tuple $\langle S, A, P, R, \gamma \rangle$

- S is a finite set of states
- A is a finite set of actions
- P is a state transition probability matrix, $P_{SS'}^{a} = P [S_{t+1} = s' | S_t = s, A_t = a]$
- R is a reward function, $R_s^2 = E[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0, 1]$

☐ Example : Student MDP

□ Policy

Definition

A Policy π is a distribution over actions given states,

$$\pi(\mathsf{a}|s) = P[A_t = \mathsf{a} \mid S_t = s]$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are stationary (time-independent), $A_t \sim \pi(\cdot|S_t), \forall t > 0$
- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence $S_1, R_2, S_2, ...$ is a Markov reward process $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
- where

$$\mathcal{P}^{\pi}_{s,s'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$
 $\mathcal{R}^{\pi}_{s} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}^{a}_{s}$

☐ Example

If the current(A) value-function is 0, Let's get it through the bellman equation

$$v_{\pi}(s) = \sum_{\mathsf{a} \in A} \pi \left(\mathsf{a}|s \right) P_{ss'}^{\mathsf{a}} (R_{t+1} + \gamma v_{\pi}(s'))$$

$$v_{\pi}(s) = \sum_{\mathsf{a} \in A} \pi \left(\mathsf{a}|s \right) \mathbf{1} (R_{t+1} + 0.9 v_{\pi}(s'))$$

$$\pi(a|s) = P[A_t = a \mid S_t = s]$$
 $A_t = \{\text{left, right, up, down}\} = \frac{1}{4}$
 $P_{ss'}^{a} = P[S_{t+1} = s' | S_t = s, A_t = a] = 1$

1 Action = left
$$\frac{1}{4} \times (0 + 0.9 \times 1) = 0.225$$

2 Action = right $\frac{1}{4} \times (1 + 0.9 \times 0) = 0.25$
3 Action = up $\frac{1}{4} \times (0 + 0.9 \times 0) = 0$
4 Action = down $\frac{1}{4} \times (0 + 0.9 \times 0.5) = 0.1125$
Total $0.225 + 0.25 + 0 + 0.1125 = 0.5875$

 $\nu = 0.9$

□ Value function

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

□ Q-function (action-value function)

Definition

The action-value function $q_{\pi}(s)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = E_{\pi}[G_t | S_t = s, A_t = a]$$

☐ Example : State-Value Function for Student MDP

☐ Bellman Expectation Equation

The state-value function

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})| S_t = s]$$

The action-value function

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

 \square Bellman Expectation Equation for V^{π}

 \square Bellman Expectation Equation for $oldsymbol{Q}^{\pi}$

2

$$q_{\pi}(s,a) \longleftrightarrow s,a$$

$$r$$

$$v_{\pi}(s') \longleftrightarrow s'$$

$$q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

4

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

□ Example : State-Value Function for Student MDP

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \frac{\pi(a|s)}{\pi(a|s)} \left(\frac{\mathcal{R}_{s}^{a}}{\mathcal{R}_{s}^{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{sss}^{a} v_{\pi}(s') \right) = \frac{1}{2} * (10 + 1*[0]) + \frac{1}{2} * (1 + 1*[0.2*(-1.3)] + 0.4*(2.7) + 0.4*(7.4)])$$

□ Bellman Expectation Equation (Matrix Form)

$$egin{aligned} oldsymbol{v}_\pi &= \mathcal{R}^\pi + \gamma \mathcal{P}^\pi oldsymbol{v}_\pi \ oldsymbol{v}_\pi &= (I - \gamma \mathcal{P}^\pi)^{-1} \, \mathcal{R}^\pi \end{aligned}$$

☐ Optimal Value Function

Definition

The *optimal state-value function* $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The *optimal action-value function* $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s, \mathsf{a}) = \max_{\pi} q_{\pi}(s, \mathsf{a})$$

☐ Example : Optimal Value Function for Student MDP

☐ Example : Optimal Action-Value Function for Student MDP

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi'$$
 if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

Theorem

For any Markov Decision Process

- There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal value function, $v_{\pi_*}(s) = v_*(s)$
- All optimal policies achieve the optimal action-value function, $q_{\pi_*}(s, a) = q_*(s, a)$

증명은 생략...

☐ Finding an Optimal Policy

An optimal policy can be found by maximising over $q_*(s, a)$,

$$\pi_*(a|s) = \left\{ egin{array}{ll} 1 & ext{if } a = ext{argmax } q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy

☐ Example: Optimal Policy for Student MDP

\square Bellman Expectation Equation for V_*

 $v_*(s) \longleftrightarrow s$ $q_*(s,a) \longleftrightarrow a$ $v_*(s) = \max_{a} q_*(s,a)$ $v_*(s) = \max_{a} \mathcal{R}_s^a$

 $v_*(s) = \max_a \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$

\square Bellman Expectation Equation for Q_*

2

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

4

$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

☐ Example: Bellman Optimality Equation in Student MDP

- □ Solving the Bellman Optimality Equation
 - Bellman Optimality Equation is non-linear
 - No closed form solution (in general)
 - Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa

Networking **Next**

Intelligence Innovative

Communications Creative

Energy Envisioning

