49. Китайская теорема об остатках

Лемма. Пусть (a,b) = 1, тогда $\exists c : ac \equiv 1 \pmod{b}$

\Delta. Рассмотрим числа a, 2a, ..., (b-1)a. Они образуют приведённую систему вычетов, а значит есть остаток 1.

Теорема (Китайская теорема об остатках). Пусть $n_1, n_2, ..., n_k \in \mathbb{N}$ попарно взаимно простые, а $r_1, r_2, ..., r_k \in \mathbb{Z}$. Тогда $\exists ! M$ по модулю $\prod_{i=1}^k n_i$ решение системы сравнений:

$$\begin{cases} M \equiv r_1 \pmod{n_1} \\ M \equiv r_2 \pmod{n_2} \\ \dots \\ M \equiv r_k \pmod{n_k} \end{cases}$$

Δ. Пусть $N = \prod_{i=1}^k n_i; N_i = \frac{N}{n_i}; N_i^{-1}$ — обратный к N_i по модулю n_i . Существование N_i^{-1} можно обосновать по лемме, так как $(N_i, n_i) = 1$.

Покажем, что $M = \sum_{i=1}^{k} r_i N_i N_i^{-1}$ будет решением.

Рассмотрим M по модулю n_1 . Все слагаемые, кроме первого, содержат множитель N_i , который делится на n_1 . Получается, что $M \equiv r_1 N_1 N_1^{-1} \pmod{n_1} \equiv r_1 \pmod{n_1}$, то есть M является решением первого сравнения.

Аналогично проверяем все k сравнений.

Теперь докажем, что решение единственно по модулю N.

Пусть A и B – различные решения по модулю N. Тогда $A-B\equiv 0\pmod{n_i}$. Так как n_i взаимно простые, то $A - B \equiv 0 \pmod{N}$. Получается, что A и B – одинаковые решения по модулю N.

Противоречие.