MPEI

Geração de números aleatórios

Motivação (exemplos)

- Gerar strings "aleatórias" em que:
 - comprimento assume valores entre 1 e 10 e tendo cada comprimento a mesma probabilidade
 - o caracter em cada posição é uma das letras minúsculas ou maiúsculas do alfabeto português e tendo todas a mesma probabilidade
- Gerar strings em que quer as letras quer o comprimento assumem distribuições mais próximas da realidade
 - Comprimento seguindo uma distribuição Normal com média e variância estimada de um conjunto de textos
 - As letras seguem a distribuição para o Português
 - Que vimos numa aula anterior

Geradores

- Para situações como as do exemplo, necessitamos de resolver o problema de gerar, ou simular, vectores de números aleatórios tendo uma determinada distribuição
- Nos primeiros tempos da simulação utilizavam-se métodos mecânicos para obter valores aleatórios: Moedas, dados, roletas, cartas
- Mais tarde utilizaram-se propriedades de dispositivos e elementos
 - Exemplos (atuais):
 - www.fourmilab.ch/hotbits (decaimento do Césio-137)
 - www.random.org/integers (ruído atmsoférico)
- Na área da Informática e outras, estes métodos foram substituídos por algoritmos que se podem implementar facilmente em computador, os Geradores de números pseudo-aleatórios
 - Capazes de criar sequências numéricas com propriedades próximas de sequências aleatórias
 - São algoritmos determinísticos, pelo que é usual designar os números gerados por "pseudo-aleatórios"

Abordagens principais

Gerar directamente

- Gerar número "aleatório" de uma distribuição uniforme (contínua) e transformar ...
 - Neste caso, torna-se necessário ser capaz de gerar variáveis aleatórias com a distribuição uniforme
 - Em geral distribuída entre 0 e 1
 - É a abordagem comum

Geração de variáveis aleatórias com distribuição uniforme entre 0 e 1

Algoritmos congruenciais

- Os métodos mais comuns para gerar sequência pseudoaleatórias usam os chamados linear congruential generators - LCG (algoritmo congruencial linear)
- Este geradores geram uma sequência de números através da fórmula recursiva

$$X_{i+1} = (aX_i + c) \mod m$$

- Com X_0 sendo a "semente" (seed) e a, c, m (todos inteiros positivos) designados de multiplicador, incremento e módulo, respetivamente
- Quando c=0 o algoritmo designa-se por congruencial multiplicativo

Algoritmos congruenciais

Como X_i pode apenas assumir os valores {0, 1, ..., m-1}, os números

$$U_i = \frac{X_i}{m}$$

são designados por número pseudo-aleatórios e constituem uma aproximação a uma sequência de variáveis aleatórias uniformemente distribuídas

Processo de cálculo em detalhe

- 1. Escolher os valores de *a, c* e *m*
- 2. Escolher a semente X_0 (tal que $1 \le X_0 \le m$)

- 3. Calcular o próximo número aleatório usando a expressão $X_1 = (aX_0 + c) \mod m$
- 4. Substituir X_0 por X_1 e voltar ao ponto anterior

Exemplo

• Fazendo a=9, c=1, m=17 e $X_0=7$

n	X _n	<i>y</i> =9x _n +1	<i>y</i> mod 17	X _{n+1} /17
0	X _o =7	9*7+1=64	13	13/17 = 0.7647
1	X ₁ =13	118	16	16/17 = 0.9412
2	X ₂ =16	145	9	0.5294
3	X ₃ =9	82	14	0.8235
4	X ₄ =14	127	_8	0.4706

números **pseudo aleatórios** inteiros entre **0 e 16** (=17-1) números pseudoaleatórios inteiros entre 0 e 1

Como escolher os parâmetros?

- A sequência repete-se no máximo após m números
- Será, portanto, periódica com um período que não excede m
- Mas pode ser muito pior
 - Exemplo: $a=c=X_0=3$ e m=5 gera a sequência $\{3,2,4,0,3...\}$ com período 4
- Apenas algumas combinações de parâmetros produzem resultados satisfatórios
 - Exemplo: Usar $m=2^{31}-1$ e $a=7^5$ em computadores de 32 bits

Demo Matlab

• Exemplo: $a=c=X_0=3$ e m=5 gera a sequência $\{3,2,4,0,3...\}$

```
function U=lcg(X0,a,c,m, N)
U=zeros(1,N);
U(1)=X0;
for i=2:N
    U(i) = rem(a*U(i-1)+c, m);
end
```

Resultados - histograma

Outros algoritmos congruenciais

- Uma generalização que se pode fazer do algoritmo congruencial multiplicativo é basear o cálculo do novo valor numa combinação linear das k amostras anteriores
- Um exemplo deste tipo baseia-se na sequência de Fibonacci

$$x_i = x_{i-1} + x_{i-2}, \ x_1 = 1, x_0 = 0$$

Como a utilização directa não dá bons resultados, usa-se

$$x_i = (x_{i-j} + x_{i-k}) \bmod m$$

• Para j=31, k=63, $m=2^{64}$ temos período de 2^{124}

Outros algoritmos congruenciais

- Outra estratégia: combinar os resultados obtidos com dois geradores congruenciais que, com a escolha conveniente dos parâmetros, vai permitir maiores períodos
 - Conhecida por Combined Multiple Recursive Generator
- Na implementação em Matlab consiste em:

$$x_{1,n} = (14033580x_{1,n-2} - 810728x_{1,n-3}) \bmod m_1$$

$$x_{2,n} = (527612x_{2,n-1} - 1370589x_{2,n-3}) \bmod m_2$$

Sendo a saída

$$z_n \equiv (x_{1,n} - x_{2,n}) \mod m_1$$
$$u_n = \begin{cases} z_n/(m_1 + 1) &, z_n < 0 \\ m_1/(m_1 + 1) &, z_n = 0 \end{cases}$$

Outros geradores

- FSR Feedback Shift Register
 - Relacionados com os geradores recursivos anteriores
 - A formula recursiva é aplicada a bits
 - Conjuntos de *k* bits representam inteiros
 - A formula de recursão é realizada recorrendo a um Shift Register
 - Vetor de bits que pode ser deslocado para a esquerda um bit de cada vez
 - Feita num computador recorrendo aos registos internos e programação em linguagem máquina
- Mersenne Twister
 - Desenvolvido para resolver problemas de uniformidade do FSR
 - Apresenta um período extraordinário de $2^{19937}-1$
 - Informação em:
 - http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Outros geradores

 Para além destes geradores, outras classes foram propostas por forma a obter períodos mais longos e melhor aproximação à distribuição uniforme

A biblioteca NAG, por exemplo, inclui vários:

Pseuc	lorandom Numbers	
2.1.1	NAG Basic Generator	
2.1.2	Wichmann-Hill I Generator	
2.1.3	Wichmann-Hill II Generator	
2.1.4	Mersenne Twister Generator	
2.1.5	ACORN Generator	
2.1.6	L'Ecuyer MRG32k3a Combined Recursive Generator	

Outros geradores - Exemplo

Wichman-Hill I

Usa uma combinação de 4 LCGs

This series of Wichmann-Hill base generators (see Maclaren (1989)) use a combination of four linear congruential generators and has the form:

$$\begin{split} w_i &= a_1 w_{i-1} \bmod m_1 \\ x_i &= a_2 x_{i-1} \bmod m_2 \\ y_i &= a_3 y_{i-1} \bmod m_3 \\ z_i &= a_4 z_{i-1} \bmod m_4 \\ u_i &= \left(\frac{w_i}{m_1} + \frac{x_i}{m_2} + \frac{y_i}{m_3} + \frac{z_i}{m_4}\right) \bmod 1, \end{split} \tag{1}$$

where the u_i , for i = 1, 2, ..., form the required sequence. The NAG Library implementation includes 273 sets of parameters, a_i, m_j , for j = 1, 2, 3, 4, to choose from.

Na prática...

- A maioria das linguagens de computador disponibilizam geradores de números pseudoaleatórios
 - Em geral o utilizador apenas fornece o valor da "semente"

Java

- Classe Random
- Random rnd = new Random()
- rnd.nextDouble()

Matlab

 A geração de números (pseudo-)aleatórios no Matlab baseia-se na geração de números uniformemente distribuídos no intervalo (0, 1) por um algoritmo similares aos anteriormente descritos, usando o comando rand()

- Por defeito rand() utiliza o algoritmo
 Mersenne twister
 - Mas permite que se altere, usando rng()

rng

• s=rng

• S =

struct with fields:

Type: 'twister' %% algoritmo por defeito

Seed: 0

State: [625×1 uint32]

rng

• rng(type)

Type define o tipo de algoritmo usado e pode ser:

nome	descrição	state
'twister'	Mersenne Twister	625x1 uint32
'combRecursive'	Alg. multiplo recursivo	12x1 uint32
'multFibonacci'	Alg. Fibonacci multplica-	130x1 uint64
	tivo com atraso	
'v5uniform'	Gerador uniforme do	35x1 double
	MATLAB® 5.0	
'v5normal'	Gerador normal do MAT-	2x1 double
	LAB 5.0	
'v4'	Gerador do MATLAB 4.0	1 uint=seed

rand

```
% generate a uniform random number
>> rand
    0.0196
>> rand
                         % generate another uniform random number
    0.823
\rightarrow rand(1,4)
                        % generate a uniform random vector
    0.5252 0.2026 0.6721 0.8381
rand('state',1234)
                        % set the seed to 1234
                        % generate a uniform random number
>> rand
    0.6104
rand('state',1234)
                        % reset the seed to 1234
>> rand
    0.6104
                        % the previous outcome is repeated
```

Demonstração do uso de rand()

```
N = 1000
X = rand(1, N); Y = rand(1, N);
subplot(121), plot(X,Y,'.')
axis equal
xlabel('X')
ylabel('Y')
subplot(122), hist(X)
title('Histograma');
xlabel('X')
ylabel('Freq abs');
```

Transformações

Transformações simples

 Aplicando a de transformação linear Y=a U + b é simples obter variáveis com distribuição uniforme num intervalo

ex: Y=2 U + 1 permite intervalo [1, 3]

- A aplicação da transformação linear seguida da conversão para inteiros permite obter, por exemplo, uma simulação de lançamentos de um dado (uma gama de números inteiros)
 - Em versões mais recentes do Matlab existe mesmo a função randi()

Exemplos em Matlab

```
% geração de n resultados do lançamento de uma moeda
function Y=moeda(n)
if nargin ==0
      n=1;
end
z=round(rand(1,n));
Y(find(z==0))='R'; % COROA
```

% usando moeda(10)

Exemplos em Matlab

```
% n resultados do lançamento de um dado
function Y=dado(n)
if nargin==0
  n=1;
end
Y=floor(rand(1,n)*6)+1; %% ou randi(6,1,n)
dado
                \rightarrow 5
dado(10)
                \rightarrow 3145634324
```

Métodos Genéricos para gerar variáveis aleatórias com distribuições não uniformes

Métodos

 Números aleatórios com outras distribuições podem ser obtidos das sequências com distribuição uniforme através de:

Métodos de transformação

- Métodos de rejeição

Procura em tabelas

Método da Transformação (Inversa)

• Para uma v.a. contínua, se a função de distribuição acumulada é F(x) então para uma variável U com distribuição uniforme em (0,1)

 $X = F^{-1}(U)$ tem por função distrib. acum. F(x)

- Este método é apenas eficiente num conjunto pequeno de casos (ex: distribuição exponencial)
- Também não é possível ou é difícil determinar a inversa de muitas distribuições

Demonstração

• $X = F^{-1}(U)$ tem por função de distribuição acumulada F(x) ??

• Por definição $F(x) = P(X \le x)$

- $P(X \le x) = P(F^{-1}(U) \le x)$
- $= P(U \le F(x))$
- = F(x) porque $P(U \le a) = a$

Algoritmo

1. Gerar U com distribuição U(0,1)

2. Devolver $X = F^{-1}(U)$

Exemplo de aplicação – Simulação de uma variável aleatória exponencial

- Sendo $F(x) = 1 e^{-x}$ (exponencial de média 1)
- $F^{-1}(u)$ será o valor de x que verifique

$$1 - e^{-x} = u$$

- ou seja $x = -\log(1 u)$
- Portanto:

$$F^{-1}(u) = -\log(1-u)$$

É exponencialmente distribuída com média 1

- 1-U é também uniforme em (0,1)
- Como $c \ X$ é exponencial com média c para obter uma exponencial de média c basta usar $-c \log(U)$

Exemplo em Matlab

```
function X=exponencial(m,N)
U=rand(1,N);
X=-m*log(U)
%
N=1e6
X=exponencial(10,N);
[n,xout] = hist(X,100);
bar(xout,n/N)
```


Algoritmo para caso discreto

1. Gerar U com distribuição U(0,1)

- exemplo U=0,7
- 2. Ir aumentando x e determinar o primeiro para o qual $F(x) \ge U$
- 3. Devolver esse valor de x

A procura pode ser tornada mais rápida usando técnicas de procura eficientes

Método de procura numa tabela

 Se a função cumulativa for guardada numa tabela, então este algoritmo pode ser visto como uma simples procura numa tabela de

$$i$$
 tal que $F_{i-1} < u \le F_i$

• Ou seja:

$$X = \begin{cases} x_1, & \text{if } U < P_1 \\ x_2, & \text{if } P_1 < U < P_1 + P_2 \\ \vdots & & \\ x_j, & \text{if } \sum_{1}^{j-1} P_i < U < \sum_{i}^{j} P_i \\ \vdots & & \\ \end{cases}$$

Exemplo de aplicação

- Gerar pseudo-palavras com as letras assumindo a probabilidade das letras em Português
 - Que já vimos anteriormente

Em Matlab

```
letters='abcde';
% p=[0.0828 0.0084 0.0201 0.0342 0.0792]; % PT real
p=[0.800 \ 0.01 \ 0.01 \ 0.01 \ 0.17];
                                                % fake
p=p/sum(p); % só existem para nós 5 letras
X = zeros(1,60);
for j=1:60
        U=rand();
        i = 1 + sum(U > cumsum(p));
        % out sera valor entre 1 e 5
        % de acordo com as probabilidades p
        X(j)= letters(i);
end
char(X)
```

Métodos baseados em Rejeição

- Na sua forma mais simples:
 - define-se uma zona que contém todos os valores da função densidade de probabilidade no intervalo em que está definida
 - Geram-se números com distribuição uniforme nessa zona e rejeitam-se os que ficam acima de f(X)

Algoritmo

- 1. Gerar X com distribuição U(a,b)
- 2. Gerar Y com distribuição U(0,c)independente de X
- 3. Se $Y \leq f(X)$ devolver Z = X; Caso contrário ir para o passo 1

02 - 12 - 2020

Exemplo

•
$$f(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & outros \ valores \end{cases}$$

• Temos de usar c=2 , a=0 e b=1

```
%
N=1e6;
X=rand(1,N);
Y=rand(1,N)*2;

Z=X(Y<=2*X);

% grafico
Y2= Y(Y<=2*X);
plot(Z,Y2,'.')
```


Algoritmos específicos para distribuição mais comuns (discretas)

Bernoulli

 Aplicando o método da transformação inversa para o caso discreto tem-se

- De onde decorre o seguinte algoritmo:
 - 1 Gerar U com distribuição U(0,1)
 - 2 Se U<= p X=1; caso contrário X=0

Exemplo Matlab

function X=**Bernoulli** (p,N) X=rand(1,N)<=p

% usando N=1e6 X=Bernoulli(0.3, N);

myhist(X,'Bernoulli p=0.3') p=sum(X==1) /N \rightarrow 0.2999

Técnicas especiais - Obter Binomial

 Pode obter-se uma variável aleatória Binomial usando o facto de que esta pode ser expressa como a soma de n variáveis de Bernoulli independentes

• $X = \sum_{i=1}^{n} X_i$ é uma v.a. Binomial com parâmetros n e p quando X_i é de Bernoulli com parâmetro p

Obter Binomial - Algoritmo

• Gerar variáveis independentes e identicamente distribuídas (iid) X_1, \dots, X_n usando distribuição de Bernoulli com parâmetro p

• Devolver $X = \sum_{i=1}^{n} X_i$

Demo obtenção binomial

```
function X=binomial(n,p, N)
Bern=rand(n,N)<=p; % n Bernoulli(p)
X=sum(Bern);
                                           Binomial n=20 p=0.3
                                   0.2
% usando
                                   0.1
N=1e6; n=20; p=0.3;
                                   0.05
X=binomial(n,p, N);
myhist(X,'Binomial n=20 p=0.3')
```

Simulação versus teoria

• N=1e6

Algoritmos específicos para distribuição mais comuns (contínuas)

Distrib. Normal – Alg. Box Müller

Algoritmo de Box e Müller:

1 – Gerar 2 variáveis independentes U_1 e U_2 uniformes em (0,1)

2 — Obter 2 variáveis com distribuição Normal, X e Y, através de:

$$X = (-2 \ln U_1)^{1/2} \cos(2\pi U_2) ,$$

$$Y = (-2 \ln U_1)^{1/2} \sin(2\pi U_2) .$$

Box Müller em Matlab

function(X,Y)=BoxMuller(N)

```
U1=rand(1,N); % gerar uma v.a. uniforme U2=rand(1,N); % gerar outra v.a. uniforme
```

```
X=(-2*log(U1)).^(1/2).* cos(2*pi*U2);
Y=(-2*log(U1)).^(1/2).* sin(2*pi*U2);
```

• Atenção ao uso de .^ e .*

Demonstração em Matlab

```
for i=1:6
  subplot(2,3,i)
  N=10^i;
  [X,Y]=BoxMuller(N);
  hist(X,50)
  title(['N=' num2str(N)]);
  ax=axis;
  ax(1)=-5; ax(2)=5;
  axis(ax)
end
```


Distribuição Normal – Algoritmo Ziggurat

- Desenvolvido por Marsaglia em 2000
- É um método de rejeição
- Utiliza a curva $y = f(x) = e^{-x^2/2}$ para x > 0
 - Devido a simetria
- Utiliza um conjunto de tiras com a mesma área e geração de números com distrib. Uniforme

Figura faz lembra um Zigurate (antiga Mesopotâmia)

Em Java

- É similar a gerar números de uma distribuição uniforme
- O exemplo seguinte mostra como gerar um número aleatório de uma distribuição Gaussiana com média 0 e variância 1

```
import java.util.*;
Random r = new Random();
g = r.nextGaussian();
```

 De cada vez que se invoca r.nextGaussian() obtém-se um novo número

Distribuição normal no Matlab

- Em Matlab está disponível a função randn()
 - Gera números aleatórios com uma distribuição Normal de média 0 e variância 1
- Para obter outras médias e variâncias basta aplicar uma transformação
- O comando randn() utliza o algoritmo Ziggurat

randn() Matlab

Utilizando as já referidas propriedades

$$E(X + c) = E(X) + c$$

e $Var(cX) = c^2 Var(X)$

podem gerar-se valores de distribuições com média e variância arbitrárias

• Exemplo: média 2 e variância 1/2 ...

Y=sqrt(1/2) * randn(1, 1e4)+2; hist(Y,50)

Outras distribuições em Matlab

• Exemplos de distribuições discretas

Distribution	Random Number Generation Function	
Binomial	binornd, random, randtool	
Geometric	geornd, random, randtool	
Negative binomial	nbinrnd, random, randtool	
Poisson	poissrnd, random, randtool	
Uniform (discrete)	unidrnd, random, randtool	

Fonte: https://www.mathworks.com/help/stats/random-number-generation.html

Outras distribuições em Matlab

Exemplos de distribuições contínuas

Dietribution	Random Number		
Distribution	Generation Function		
Chi-square	chi2rnd, random, randtool		
Exponential	exprnd, random, randtool		
Gamma	gamrnd, randg, random, randtool		
Normal (Gaussian)	normrnd, randn, random, randtool		
Rayleigh	raylrnd, random, randtool		
Student's t	trnd, random, randtool		
Uniform (continuous)	unifrnd, rand, random		

• Fonte: https://www.mathworks.com/help/stats/random-number-generation.html

Para aprender mais

- Online
 - Capítulo "RANDOM NUMBERS, RANDOM VARIABLES AND STOCHASTIC PROCESS GENERATION"
 http://moodle.technion.ac.il/pluginfile.php/22073
 9/mod resource/content/0/slava fall 2010/Rand om number 2 .pdf
- Cap. 1 e Apêndice B do livro "Probabilidades e Processos Estocásticos", F. Vaz, Universidade de Aveiro

MPEI

Funções de dispersão (Hash functions)

Motivação

- Em muitos programas de computador tornase necessário aceder a informação através de uma chave
 - Exemplo:
 - Obter nome associado a um número de telefone

 Em Java, por exemplo, temos estruturas de dados como HashMap e Hashtable

Um dicionário simples: Hashtable

Para criar uma Hashtable:

```
import java.util.*;
Hashtable table = new Hashtable();
```

 Para colocar elementos (par chave-valor) na Hashtable, usa-se:

```
table.put(chave, valor);
```

Para obter um valor:

```
valor = table.get(chave);
```

Implementação comum

Separate chaining with linked lists

 As chaves são transformadas em posições num array

> usando uma função

 Cada posição do array é o início de uma lista ligada

Outra implementação Separate chaining with list head cells

Função de dispersão

Em termos gerais, uma função de dispersão - em Inglês hash function - é qualquer
 algoritmo que mapeia um conjunto grande e
 de tamanho variável para um conjunto de
 tamanho fixo de menor dimensão

• É, como veremos, essencial para muitas aplicações

Função de dispersão / Hash function

 Uma função de dispersão (hash function) mapeia símbolos de um universo U num conjunto de M valores, em geral inteiros

- Processo pode ser visto como a atribuição de uma posição num vetor de M posições, entre 0 e M-1, a cada símbolo.
 - As posições designam-se nuitas vezes por buckets

Hash Code

- O conjunto dos símbolos efetivamente usados numa determinada aplicação é, em geral, apenas uma parte do universo de valores (U) pelo que faz todo o sentido usar um valor de M muito menor do que a dimensão de U
 - Muitas vezes os valores designam-se por chaves
- Uma função de dispersão recebe um elemento de U como entrada e devolve um número inteiro h no intervalo $0, \ldots, M-1$
 - -h é o Código de dispersão (em Inglês hash code)

Funções de dispersão / Hash functions

- Qualquer função que mapeie uma chave do universo U no intervalo 0..M-1 é uma função de dispersão em potencial.
- No entanto, uma tal função só é eficiente se distribuir as chaves pelo intervalo de uma forma razoavelmente uniforme
 - mesmo quando existem regularidades nas chaves.
- Uma função de dispersão ideal mapeia as chaves em inteiros de uma forma aleatória
 - De forma a que as keys sejam igualmente distribuídos pelos buckets.
- É fundamental que a função de dispersão seja uma função no sentido matemático do termo,
 - Isto é, que para cada chave a função devolva sempre o mesmo código

Funções de dispersão / Hash functions

- Uma função de dispersão ideal mapeia as chaves em inteiros de uma forma aleatória,
 - De forma a que os valores sejam igualmente distribuídos, mesmo quando existem regularidades nas chaves
- As funções de dispersão são tipicamente transformações matemáticas pseudo-aleatórias, existindo uma grande variedade, com diferentes graus de complexidade e diferentes desempenhos
 - Em geral o desempenho depende da aplicação pelo que é recomendável testar várias.

Funções de dispersão

- O processo pode ser dividido em dois passos:
- Mapeamento do elemento para um inteiro
- Mapeamento do inteiro para um conjunto limitado (de inteiros).

OBJ4	OBJ2		OBJ3	OBJ1
0	1	2	3	4

Notação

- Adopta-se para a representação das funções de dispersão
 - h()
 - do Inglês hash function

- e k para uma chave
 - do Inglês key

Funções de dispersão - colisões

 Como o número de elementos de *U* é em geral maior que *M*, é inevitável que a função de dispersão mapeie vários elementos diferentes no mesmo valor de *h*, situação em que dizemos ter havido uma colisão

• Por exemplo, sendo k um elemento de U e a função de dispersão:

$$h(k, M) = k \mod M$$

• teremos colisões para k, M + k, 2M + k, ...

Exemplo muito simples

Considere o universo U é o conjunto dos números inteiros que vai de 100001 a 9999999. Suponha que M=100 e se adota os dois últimos dígitos da chave como código de dispersão (em outras palavras, o código é o resto da divisão por 100). Calcule os códigos (hash codes) para 123456, 7531 e3677756.

Resultado:

chave código

123456 56

7531 31

3677756 56

Propriedades

- Requer-se, em geral, que as funções de dispersão satisfaçam algumas propriedades, como:
- Serem determinísticas

Uniformidade:

- Uma boa função de dispersão deve mapear as entradas esperadas de forma igual por toda a gama de valores possíveis para a sua saída
- Todos os valores possíveis para a função de dispersão devem ser gerados com aproximadamente a mesma probabilidade

Funções de dispersão para inteiros

• Estas funções mapeiam uma única chave inteira k num número inteiro h(k) entre M possíveis

- Existem vários tipos:
 - baseadas em divisão
 - baseadas em multiplicação
 - membros de famílias universais.

Método da Divisão

- Utiliza o resto da divisão por M
- A fução de de dispersão é

$$h(k) = k \mod M$$

- M é o número de posições (igual ao tamanho da tabela), que deve ser um número primo
- Exemplo: se M=12 e a chave k=100 temos h(k)=4
- Método bastante rápido
 - Requer apenas uma operação de divisão
- Funciona muito mal para muitos tipos de padrões nas chaves
- Foram desenvolvidas variantes como a de Knuth:

$$h(k) = k(k+3) \bmod M$$

Exemplo: Variante de Knuth

- $h(k) = k(k+3) \mod M$
- M = 113
- Aplicação a todos os inteiros de 500 a 600.

- A sequência
 igualmente espaçada
 de números (à
 esquerda) é
 dispersada sem
 regularidade aparente
 - que é o que se pretende de uma boa função de dispersão

Método da multiplicação

- Este método opera em duas etapas:
 - primeiro, multiplica-se a chave por uma constante A, 0 < A < 1, e extrai-se a parte fraccionária de kA;
 - de seguida, multiplica-se por M e arredonda-se para o maior inteiro menor ou igual ao valor

obtido

Matlab:

```
h=floor(M*(mod(k*A,1)));
```

A = 0.5*(sqrt(5) - 1);

Função de dispersão de uma sequência de caracteres

Função de dispersão de uma sequência de caracteres

- Uma função de dispersão para cadeias de caracteres (strings) calcula a partir desta, qualquer que seja o seu tamanho, um inteiro
- Como sabemos uma sequência de caracteres (String) é em geral representada como uma sequência de inteiros
- Em consequência, a função de dispersão para Strings tem por entrada uma sequência de inteiros

$$k = k1, \dots, ki, \dots, kn$$

- e produz um número inteiro pequeno h(k)
- Os algoritmos para este tipo de entrada assumem que os inteiros são de facto códigos de caracteres

Função de dispersão de uma sequência de caracteres

- Os algoritmos para este tipo de entrada fazem em geral o uso do seguinte:
- Em muitas linguagens um caracter é representado em 8 bits
- O código ASCII apenas usa 7 desses 8 bits
- Desses 7, os caracteres comuns apenas usam os 6 menos significativos
 - E o mais significativo desses 6 indica essencialmente se é maiúscula ou minúscula, muitas vezes pouco relevante
- Em consequência os algoritmos concentram-se na preservação do máximo de informação dos 5 bits menos significativos, fazendo muito menos uso dos 3 bits mais significativos

Função de dispersão de uma sequência de caracteres (String)

- Em geral, o processamento efetuado consiste em:
 - inicializar h com 0 ou outro valor inicial
 - Percorrer a sequência de inteiros (representando os caracteres) combinando os inteiros ki, um por um, com h
 - ullet Os algoritmos diferem na forma como combinam ki com h
 - Obtenção do resultado final através de h mod M (método da divisão).
- Para evitar ao máximo problemas com overflow, em geral os inteiros ki são representados por números inteiros sem sinal (unsigned int)
 - A utilização de representações de inteiros com sinal pode resultar em comportamentos estranhos

Exemplo simples

$$hash(key) = \sum_{i=0}^{KeySize-1} Key[KeySize-i-1] \cdot 37^{i}$$

```
int hash (const string &key, int tableSize)
{
  int hashVal = 0;

  for (int i = 0; i < key.length(); i++)
     hashVal = 37 * hashVal + key[i];

  hashVal %=tableSize;
  if (hashVal < 0)  /* in case overflows occurs */
     hashVal += tableSize;

  return hashVal;
};</pre>
```

Hash function for strings:

hash("ali") = (105 * 1 + 108*37 + 98*372) % 10,007 = 8172

CENG 213 Data Structures

12

Exemplo - hashCode() do Java

- A classe java.lang.String implementa desde o Java 1.2 a função hashCode() usando um somatório de produtos envolvendo todos os caracteres
- Uma instância s da classe java.lang.String tem o seu código h(s) definido por:

$$h(s) = \sum_{i=0}^{n-1} s [i] \cdot 31^{n-1-i}$$

- com *s*[*i*] representando o código UTF-16 do caracter *i* da cadeia de comprimento *n*
- A adição é efectuada usando 32 bits

Alguns algoritmos – variante CRC

- Fazer um shift circular de 5 bits para a esquerda ao h.
- De seguida fazer XOR de h com ki.

CRC variant: Do a 5-bit left circular shift of h. Then XOR in ki. Specifically:

Alguns Algoritmos – PJW hash

- Deslocar (shift) h 4 bits para a esquerda
- Adicionar ki
- Mover 4 bits mais significativos

PJW hash (Aho, Sethi, and Ullman pp. 434-438): Left shift h by 4 bits. Add in ki. Move the top 4 bits of h to the bottom. Specifically:

```
// The top 4 bits of h are all zero h = (h << 4) + ki // shift h 4 bits left, add in ki g = h \& 0xf0000000 // get the top 4 bits of h if (g != 0) // if the top 4 bits aren't zero, h = h ^ (g >> 24) // move them to the low end of h h = h ^ g // The top 4 bits of h are again all zero
```

Exemplo de uma função completa

- Mapeia uma string de comprimento arbitrário num inteiro (>=0)
- DJB31MA

```
uint hash(const uchar* s, int len, uint seed)
{
   uint h = seed;
   for (int i=0; i < len; ++i)
       h = 31 * h + s[i];
   return h;
}</pre>
```

Fonte: Paulo Jorge Ferreira "MPEI – summary" 2014

Exemplo Matlab

function hash=string2hash(str,type)

```
% This function generates a hash value from a text string %
% hash=string2hash(str,type);
% inputs,
% str: The text string, or array with text strings.
% outputs,
hash: The hash value, integer value between 0 and 2^32-1
type: Type of has 'djb2' (default) or 'sdbm'
% From c-code on: http://www.cse.yorku.ca/~oz/hash.html
.....
```

From: http://www.mathworks.com/matlabcentral/fileexchange/27940-string2hash/content/string2hash.m

Exemplo Matlab

```
str=double(str);
hash = 5381*ones(size(str,1),1);
for i=1:size(str,2),
   hash = mod(hash * 33 + str(:,i), 2^32-1);
end
Exemplos de uso (M=11):
k = António \rightarrow h(k) = 4
k = Antónia -> h(k) = 1
k = Manuel \rightarrow h(k) = 6
         -> h(k) = 4
k = Manu
k = Manuela  -> h(k) = 0
k = Vitor
         -> h(k) = 0
```

Problemas

- As funções de dispersão terão que lidar com conjuntos $S \subseteq U$ com |S| = n chaves não conhecidos de antemão
- Normalmente, o objetivo destas funções é obter um número baixo de colisões (chaves de S que mapeiam na mesma posição)
- Uma função de dispersão determinística (fixa) não pode oferecer qualquer garantia de que não ocorrerá o pior caso:
 - um conjunto S com todos os elementos a serem mapeados na mesma posição, tornando a função de dispersão inútil em muitas situações.
- Além disso, uma função determinística não pode ser alterada facilmente em situações em que ocorram muitas colisões.

Solução

 A solução para estes problemas consiste em escolher uma função aleatoriamente de uma família de funções,

 Têm particular interesse as famílias de funções universais.

Funções de dispersão universais

Uma família H de funções de dispersão h é universal se:

$$\forall x, y \in U, \ x \neq y: \quad P_{h \in H}[h(x) = h(y)] \le \frac{1}{M}$$

- Por palavras...
- quaisquer duas chaves do universo colidem com probabilidade máxima igual a 1/M quando a função de dispersão h é extraída aleatoriamente de H
 - exatamente a probabilidade de colisão esperada caso a função de dispersão gerasse códigos realmente aleatórios para cada chave.

Funções de dispersão universais

- Esta solução garante um baixo número de colisões em média, mesmo no caso de os dados serem escolhidos por alguém interessado na ocorrência do pior cenário (ex: hacker).
- Este tipo de funções pode utilizar mais operações do que as funções que vimos anteriormente
- Existe uma diversidade de famílias universais e métodos para as construir
 - Veremos a seguir alguns

Método de Carter Wegman

• A proposta original, de Carter e Wegman, consiste em escolher um primo $p \ge M$ e definir

$$h_{a,b}(x) = ((ax + b) \bmod p) \bmod M$$

• sendo a e b inteiros aleatórios módulo p

 Trata-se de uma iteração de um gerador de números aleatórios de congruência linear.

Método da Matriz

Este método baseia-se em:

- considerar as chaves na sua representação binária
- 2. construir uma matriz de bits aleatoriamente

3. multiplicar a chave e matriz

Método da Matriz (continuação)

- Consideremos que as chaves são representáveis por \boldsymbol{u} bits
- Sendo M uma potência de 2 : $M = 2^b$
- Criar uma matriz h de 0s e 1s de forma aleatória
 - a matriz terá dimensões b x u
- Definir h(x) = hx
 - usando adição mod 2
- Examplo:
 - u = 4
 - b = 3

O que significa hx?

 Pode ser interpretada como a adição de algumas das colunas de h, aquelas em que x tem o valor 1 nas linhas

- No exemplo:
- A 1ª e 3ª coluna são somadas
 - 1 + 0 = 1
 - 0 + 1 = 1
 - 1 + 1 = 0

Método da matriz

Propriedade. A função de dispersão h(x) definida desta forma terá:

$$\forall x \neq y, \quad P_{h \in H}[h(x) = h(y)]) = \frac{1}{M} = \frac{1}{2^b}$$

Demonstração:

- Um par de chaves diferentes x e y difere em algum dos bits.
 Consideremos que diferem no bit na posição i e que x_i = 0 e y_i = 1.
- Se selecionarmos toda a matriz h exceto a coluna i obteremos um valor fixo para h(x);
- No entanto, cada uma das 2^b diferentes possibilidades da coluna i implica um valor diferente para h(y), pois sempre que se muda um valor nessa coluna muda o bit correspondente em h(y);
- Em consequência temos exatamente a probabilidade $1/2^b$ de h(x) = h(y).

Outro método

- Mais eficiente do que o da matriz
- A chave é representa por um vetor de inteiros
 - Em vez do vetor de bits do método da matriz

$$[x_1, x_2, ..., x_k]$$

- x_i pertencendo a $\{0,1,...,M-1\}$
- k é o tamanho do vetor
- M um número primo

- Exemplo:
 - Em Strings, x_i pode representar o código do caracter i

Outro método (continuação)

 Para seleccionar uma função de dispersão h escolhem-se k números aleatórios

$$r_1, r_2, \dots, r_k$$
 de $\{0, 1, \dots, M-1\}$

• E define-se :

$$h(x) = (r_1x_1 + r_2x_2 + ... + r_k x_k) \mod M$$

Exemplo Matlab

```
s='Métodos Probabilísticos'
M = 113;
% converter para vetor
x=double(s)
% gerar vetor r
r=randi(M-1,1,length(x))
% h(x) = r * x \mod M
h=mod(r*x', M)
```

Demonstração da universalidade

 A demonstração segue a mesma linha da apresentada anteriormente para o método da matriz

- Considere-se duas chaves distintas $x \in y$
- Pretendemos demonstrar que

$$P[h(x) = h(y)] \le 1/M$$

Demonstração da universalidade

Como $x \neq y$, existe pelo menos um indíce i tal que $x_i \neq y_i$. Selecionando todos os números aleatórios r_j com $j \neq i$ podemos definir $h'(x) = \sum_{j \neq i} r_j x_j$.

Desta forma, ao escolher um valor para r_i teremos $h(x) = h'(x) + r_i x_i$.

Teremos uma colisão entre x e y exatamente quando

$$h'(x) + r_i x_i = h'(y) + r_i y_i \mod M$$

ou, de forma equivalente, quando

$$r_i(x_i - y_i) = h'(y) - h'(x) \mod M$$
.

Demonstração da universalidade

Como M é primo, a divisão por um valor não nulo módulo M é possível e existe apenas um único valor $r_i \mod M$ que constitui a solução, mais exactamente

$$r_i = \frac{h'(y) - h'(x)}{x_i - y_i} \mod M$$

Temos assim apenas uma possibilidade de igualdade entre 1 e M-1 e, em consequência, a probabilidade de colisão é exatamente 1/M, como pretendíamos demonstrar.

Exemplo em Matlab

```
function InitHashFunction(this)
    % Set prime parameter
    ff = 1000; % fudge factor
    pp = ff * max(this.m + 1,76);
    pp = pp + \sim mod(pp, 2); % make odd
    while (isprime(pp) == false)
        pp = pp + 2;
    end
    this.p = pp; % sufficiently large prime number
    % Randomized parameters
    this.a = randi([1, (pp - 1)]);
    this.b = randi([0, (pp - 1)]);
    this.c = randi([1, (pp - 1)]);
end
```

Exemplo em Matlab - HashCode()

```
function hk = HashCode(this, key)
    % Convert character array to integer array
   ll = length(key);
    if (ischar(key) == false)
        % Non-character key
        HashTable.KeySyntaxError();
    end
    key = double(key) - 47; % key(i) = [1, ..., 75]
    응
    % Compute hash of integer vector
     Reference: http://en.wikipedia.org/wiki/Universal hashing
    응
                 Sections: Hashing integers
                           Hashing strings
   hk = key(1);
    for i = 2:11
        % Could be implemented more efficiently in practice via bit
        % shifts (see reference)
        hk = mod(this.c * hk + key(i), this.p);
    end
   hk = mod(mod(this.a * hk + this.b, this.p), this.m) + 1;
end
```

end

Como ter *n* funções de dispersão ?

Possíveis soluções:

- 1. Ter mesmo *n* funções diferentes
- Usar funções customizáveis (definindo uma família de funções) e usando parâmetros diferentes
- 3. Usar a mesma função de dispersão e processar a chave por forma a ter *n* chaves diferentes baseadas na chave original

```
Exemplo (Matlab):
    for i=1:n
        str= [str num2str(i)];
        h=HashCode(hash,m,str);
    end
```

Propriedades (continuação)

 As n funções de dispersão devem cumprir um requisito adicional:

- Produzir resultados <u>não-correlacionados</u>
- Esta propriedade é muito importante e é aconselhável verificá-la/avaliá-la em trabalhos envolvendo várias funções

"Teste" de funções de dispersão

- Um teste simples e básico consiste em:
 - 1. Gerar um conjunto grande de chaves (pseudo)aleatórias
 - 2. Processar todas essas chaves com as *n* funções de dispersão
 - Guardando os resultados produzidos (hash codes)
 - 3. Analisar o histograma de cada função de dispersão
 - Para verificar a uniformidade da distribuição dos hash codes
 - 4. Calcular, visualizar e analisar as correlações entre os resultados produzidos pelas várias funções de dispersão

Exemplo

Teste com 100 mil números de 6 funções (h1, . . , h7)

Funções de dispersão criptográficas

- Para este tipo de funções (cryptographic hash functions) M é um número exponencialmente grande
 - Como 2^{256}
- A tabela seria maior que o número de eletrões no universo!
- Mas não temos a tabela... h(k) é apenas uma impressão digital (fingerprint) de k.
- Mesmo para M com valores muito grandes os indíces de h(k) são pequenos
 - Ex: apenas 256 bits (32 bytes) para $M = 2^{256}$
- A principal propriedade requerida para uma função de dispersão criptográfica é de que seja computacionalmente intratável para alguém descobrir $y \neq x$ tal que h(y) = h(x)

cryptographic hash functions

- For cryptographic hash functions M is as an exponentially large number, like 2^256.
- The table would be bigger than the # electrons in the universe!
- But we don't have the table. Instead, h(x) is a "fingerprint" of x.
- Note that even for M very big (like 2^256) the indices h(x) are fairly small
 - e.g., only 256 bits (32 bytes)
- The main property you want for a cryptographic hash function is that given x, it should be computationally intractable for anyone to find $y \neq x$ such that h(y) = h(x)

Alguns links

- http://www.mathworks.com/matlabcentral/fileexchange/27940-string2hash/content/string2hash.m
- http://www.mathworks.com/matlabcentral/fileexchange/45123datastructures/content/Data%20Structures/Hash%20Tables/HashTable.m
- http://www.cse.yorku.ca/~oz/hash.html
- http://programmers.stackexchange.com/questions/49550/whic h-hashing-algorithm-is-best-for-uniqueness-and-speed
- https://www.cs.hmc.edu/~geoff/classes/hmc.cs070.200101/ho mework10/hashfuncs.html
- https://en.wikipedia.org/wiki/Hash_function#Properties
- https://en.wikipedia.org/wiki/Universal hashing
- http://www.i-programmer.info/programming/theory/2664universal-hashing.html

Funções de Dispersão Universais

- https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1 004.pdf
- https://ocw.mit.edu/courses/electrical-engineeringand-computer-science/6-046j-introduction-toalgorithms-sma-5503-fall-2005/video-lectures/lecture-8-universal-hashing-perfect-hashing/lec8.pdf
- http://cswww.bu.edu/faculty/homer/537/talks/SarahAdelBarga | UniversalHashingnotes.pdf

MPEI

Solução Probabilística do Problema da Pertença a um Conjunto

Definição do problema

 Em termos gerais o problema pode ser colocado da seguinte forma:

 Dado um elemento e e um conjunto C, e pertence a C?

O elemento pode ser, por exemplo, uma String

Problema para conjuntos de grandes dimensões

- A resolução deste tipo de problemas para pequenos conjuntos é fácil
 - usando, por exemplo, hash tables
- No entanto, para conjuntos de dimensão muito grande (e apenas passíveis de serem definidos em extensão) não é assim tão simples
 - pode mesmo não haver memória suficiente para armazenar todos os elementos de C
 - aparecendo soluções probabilísticas como necessárias e interessantes
 - Com o aumento de Big Data cada vez mais relevantes

Problema 1 - Verificação ortográfica

- Utiliza dicionário(s)
 - Muitas vezes complementados por regras
- Ortografia validada através da pertença a dicionário
 - Que deve ser de confiança

Problema 2 - Firewall

Problema 3

Detetar sequências de bits (ex: Strings)

Generalizando ...

- Na área da Informática temos muitos outros exemplos
 - Combate ao SPAM: pertença a uma lista de emails seguros
 - Browser: pertença à lista de endereços que já visitámos

— ...

 Em muitas aplicações e situações temos de ter uma forma eficiente de determinar se um determinado item pertence ou não a um conjunto

Ideia base

- Em muitos problemas apenas pretendemos saber se um elemento pertence ou não ao conjunto
 - sem necessitarmos de acesso ao conjunto ou informação associada aos elementos
- Nestas situações podemos eliminar a parte de armazenamento dos elementos
 - guardando nele apenas informação de que existe

Filtros de Bloom

(Bloom Filters)

Os Filtros de Bloom são uma forma de usar funções de dispersão para determinar se um elemento pertence a um conjunto

Filtros de Bloom

 Os Filtros de Bloom usam funções de dispersão para calcular um vetor (o filtro) que é representativo do conjunto

 A pertença ao conjunto é testada através da comparação dos resultados da aplicação das mesmas funções de dispersão aos potenciais membros com o conteúdo desse vetor

Filtro de Bloom

Filtros de Bloom

- Na sua forma mais simples o vetor (filtro) é composto por n posições
 - cada uma de apenas 1 bit
- O bit correspondente a um elemento é apenas colocado a 1 se a função de dispersão mapear nessa posição algum dos elementos do conjunto
- São rápidos, de complexidade temporal constante
- e não incorporam qualquer tentativa de resolução de colisões.

Filtro

Descartar o elemento

Se é mapeado pela função de dispersão para uma posição contendo 0

Exemplo – Deteção de SPAM

- Conhecem-se mil milhões (10⁹) de endereços de email de confiança
 - que constituem o nosso conjunto C
- Se uma mensagem é proveniente de um destes endereços não é SPAM

Pretende-se filtrar um conjunto de emails recebidos

Exemplo – Deteção de SPAM

Uma solução consiste em:

- 1. Criar um vetor de *n* bits *B* bastante grande e inicializando todos esses bits com 0
- Utilizar uma função de dispersão para mapear cada endereço de email numa posição desse vetor
- 3. Colocar a 1 os bits correspondentes à aplicação da referida função de dispersão a toda a lista de endereços de email "bons" (todos os elementos do conjunto *C*)

4. Aplicar a função de dispersão ao endereço de cada uma das mensagens que se pretende verificar, considerando SPAM todas as em que o vetor tem 0 na posição correspondente

Ausência de falsos negativos

- Se um endereço que verificamos pertence a C então ele vai ser certamente mapeado pela função de dispersão numa posição do vetor que contém 1
 - Será sempre considerado de confiança
- Todos os que são de confiança serão sempre considerados de confiança, nunca havendo falsos negativos.

Generalização

- A solução adotada para o exemplo anterior pode ser generalizada pela utilização de um conjunto de funções de dispersão
 - com algumas vantagens, como veremos mais adiante.
- No caso geral temos
 - C como sendo o Conjunto
 - com m elementos (membros) (#C = m)
 - B o vetor (filtro) de Bloom
 - de dimensão n (#B = n)
 - -k funções de dispersão independentes $h_1,...,h_k$

Inicialização de um Filtro de Bloom

Inicializar todas as posições de B com 0

- Aplicar k funções de dispersão a cada um dos elementos de C
 - colocando a um todas as posições devolvidas pelas funções de dispersão
 - Ou seja $B[h_i(elemento)] = 1.$

Utilização do Filtro de Bloom

- Para testar um valor x:
- aplicar as k funções de dispersão
- e analisar o conteúdo das posições resultantes

- se B[h_i(x)] == 1 para todos os valores de i =
 1,...,k então x provavelmente pertence a C
 - caso contrário não pertence C

Retomando o nosso exemplo ...

- Adotando valores pequenos para o número de funções, tamanho do conjunto e do filtro
 - -n=11 bits
 - k = 2 funções de dispersão.

Erros

 O teste de associação para um elemento x funciona verificando os elementos que teriam sido atualizados se a chave tivesse sido inserida no vetor

- Se todos os bits apropriados foram colocados a 1 por outras chaves, então x será reportado erradamente como um membro do conjunto.
- Temos neste caso o que se designa habitualmente por falso positivo.

Exemplo de falso positivo

 Consideremos um conjunto de vegetais contendo batata e couve mas não tomate

 O filtro da figura identifica incorretamente tomate como vegetal

Parâmetros do Filtro de Bloom

- *m* : Dimensão do conjunto
 - número de membros do conjunto

• n : Número de posições ou células do filtro

• k : Número de funções de dispersão utilizadas

 Adicionalmente, pode definir-se a fração das posições do filtro com o valor igual a 1 (f)

Implementação

- Em geral, a implementação destes filtros consiste em 3 operações
 - inicialização
 - adição de elementos
 - E teste de pertença de um elemento ao conjunto
- A implementação destas operações é simples

Tipo de dados abstrato

FiltroBloom

```
n % número de bits do filtro
```

m % número de elementos do conjunto

k % número de funções de dispersão

+ inicializar (n)

% Inicializar filtro com 0s

+ adicionarElemento (elemento)

% Inserir elemento no filtro

+ membro (elemento)

% Testa se elemento existe no filtro

Implementação

inicializar()

Simplesmente o preenchimento com zeros de todo o vetor B

adicionarElemento()

- Esta operação calcula os valores das k funções de dispersão do elemento a adicionar e atualiza as posições apropriadas do vetor B
- No caso mais simples, coloca a 1 as posições devolvidas pelas funções de dispersão
 - o que requer tempo proporcional ao número de funções

adicionarElemento()

adicionarElemento(B, elemento,k)

for i=1:k do

- Aplicar a função de dispersão hi() a elemento
 - Obtendo o respetivo hash code h
- Colocar a 1 o Vetor B na posição h
 - B[h] = 1

endfor

membro()

- Aplica as k funções como adicionarElemento(), mas apenas verifica se as posições contêm o valor 1
 - Se alguma das posições contém 0 não é um membro do conjunto
- A pior situação em termos de tempo de processamento ocorre para membros e para falsos positivos
 - Ambos obrigam a calcular todas as k funções de dispersão

membro()

membro(B, elemento) -> Boolean i=0repeat i=i+1hi é a função de dispersão i (1<i<=k) h é o hash code devolvido por hi (elemento) until ((i==k) | (B [h] == 0)) if i==k then return (B[h] == 1) % True se posição contém 1 else return(False) end.

Complexidade das operações

Operação	Parâmetros	Complexidad e temporal
Inicializar()	n (tamanho do vetor)	O (n)
adicionarElemento()	Vetor, elemento, k funções de dispersão	O (k)
membro()	Vetor, elemento, k funções de dispersão	O (k)

Exemplos de aplicações de Filtros de Bloom

Mais Informação em:

BLOOM FILTERS & THEIR APPLICATIONS, International Journal of Computer Applications and Technology (2278 - 8298) Volume 1– Issue 1, 2012, 25-29

https://pdfs.semanticscholar.org/d899/05bdf1ff791bdddc7 c471070f34f4da18844.pdf

Aplicações gerais – Spell Checkers

- Os filtros Bloom são particularmente úteis na verificação de ortografia
 - São usados para determinar se uma palavra é válida numa determinada língua
- Verificação é feita criando um Filtro Bloom com todas as palavras possíveis dessa linguagem e verificando uma palavra contra esse filtro
- As correções sugeridas são geradas fazendo todas as substituições únicas em palavras rejeitadas e, em seguida, verificando se esses resultados são membros do conjunto

Redes de dados

- Muitas aplicações na área de redes
- São usados, por exemplo, em caches de servidores proxy na World Wide Web (WWW)
 - para determinar eficientemente a existência de um objeto em cache
 - Servidores proxy interceptam solicitações de clientes e respondem caso tenham a informação solicitada
- O uso de caches na web ajuda a reduzir o tráfego da rede
- Também melhora o desempenho quando os clientes obtêm cópias de arquivos de servidores vizinhos em vez do servidor original
 - que pode ser vários links de rede lentos de distância)

Segurança e Privacidade

- <u>Sistemas de detecção e prevenção de intrusão</u> (IDS/IPS) usam matching de strings do conteúdo dos pacotes para deteção de conteúdo malicioso
- Os filtros Bloom são particularmente úteis para pesquisar um grande número de strings de forma eficiente.
- A ideia básica é encontrar (sub)strings (comumente conhecidas como assinaturas) a alta velocidade
- Uma abordagem comum é separar assinaturas por comprimento e usar filtro Bloom para cada comprimento
 - permitindo processamento paralelo
- O Google Chrome usa filtros Bloom para a decisão preliminar se um determinado site é malicioso ou seguro
- Os filtros de Bloom também são usados na deteção de vírus e Prevenção de Negação de Serviço (DoS), entre muitas outras aplicações

Demonstrações Online

- Bloom Filters by Example
 - http://billmill.org/bloomfilter-tutorial/

- Bloom Filters
 - https://www.jasondavies.com/bloomfilter/

Exemplos de Aplicação (em Matlab)

Pequeno exemplo com vegetais

Dicionário

- Strings aleatórias
 - Efeito do número de funções de dispersão (k)

Alunos da UC MPEI

Questões?

• Como obter *n* ?

• Como determinar o melhor valor para k (número de funções de dispersão) ?

Obtenção dos parâmetros de um Filtro de Bloom

Para que se possa definir de forma adequada um filtro tem de primeiro se perceber como se relacionam com os indicadores de desempenho como a probabilidade de falsos positivos

Falsos positivos e falsos negativos

Elemento pertence ao conjunto?	Resulto do teste de pertença	Correto?	Tipo de erro
SIM	Sim (pertence)	Sim	
	<mark>Não</mark>	ERRO	Falso negativo
NÃO	Sim	ERRO	Falso positivo
	Não	Sim	

02-12-2020

Obtenção dos parâmetros de um Filtro de Bloom

 Qual a relação dos falsos positivos com os parâmetros do filtro (n e k) e do conjunto (m)?

Lançamento de *m* dardos para *n* alvos

- Caso similar ao do lançamento de m dardos para n alvos igualmente prováveis
 - por sua vez similar ao problema dos aniversários
- Se atirarmos m dados para n alvos igualmente prováveis, qual a probabilidade de um alvo ser atingido por pelo menos um dardo?
- No caso dos filtros de Bloom
 - os alvos são os vários bits do filtro
 - os dardos são os valores assumidos pela função de dispersão

Probabilidade de falsos positivos ?

- Para termos falso positivo teremos de ter as k posições determinadas pelas funções de dispersão com o valor 1
 - Para elementos não pertencentes ao conjunto

- Como obter essa probabilidade?
- Comecemos pela probabilidade de um bit estar a 1 ...

Probabilidades para um bit

- Inicialmente todos os bits estão a zero
- Designando o bit na posição i por b_i ...
- Qual a probabilidade do bit $b_i=1\,$ depois de aplicar a primeira função de dispersão na inserção de um elemento?
- Assumindo que a função de dispersão seleciona cada uma das posições do vetor com igual probabilidade ...
- A probabilidade é simplesmente

$$P[b_i=1]=\frac{1}{n}$$

- pois os *n* alvos são equiprováveis.
- Em consequência: $P[b_i = 0] = 1 \frac{1}{n}$

Probabilidade após aplicar *k* funções de dispersão

- Probabilidade de um bit se manter a zero após a inserção de um elemento ?
- É a probabilidade do bit continuar a ser zero depois de aplicadas as k funções de dispersão
- Se assumirmos que os resultados das funções de dispersão são independentes, será:

$$P[b_i = 0] = \left(1 - \frac{1}{n}\right)^k$$

Probablilidade após inserir m elementos

 Após a inserção de m elementos, assumindo independência, temos:

•
$$P[b_i = 0] = \left(1 - \frac{1}{n}\right)^{k m}$$

• Fazendo
$$\left(1 - \frac{1}{n}\right)^m = a$$

•
$$P[b_i = 0] = a^k$$

- $P[b_i = 1] = 1 a^k$
 - Relacionada com a probabilidade de um alvo ser atingido por pelo menos um dardo

Probabilidade de falsos positivos

- Temos um falso positivo quando temos os k bits iguais a 1 para um elemento n\u00e3o pertencente a C
- A probabilidade de um falso positivo, p_{fp} , após inserirmos m elementos é

$$p_{fp} = \left[1 - \left(1 - \frac{1}{n}\right)^{km}\right]^k = \left(1 - a^k\right)^k$$

- Aplicando $\lim_{n\to\infty} (1-1/n)^n = e^{-1}$
- Que pode ser aproximada por:

$$p_{fp} \approx \left(1 - e^{-km/n}\right)^k$$

A probabilidade de falsos positivos depende de k,m e n

Efeito de k na p_{fp}

• Exemplo:

$$m = 10^9$$
 (mil milhões)
 $n = 8 \times 10^9$ (8 mil milhões)

m/n= 1/8

• k=1

$$p_{fp} = 1 - e^{-1/8} = 0.1175$$

• k=2

$$p_{fp} = (1 - e^{-2/8})^2 = 0.00493$$

- Probabilidade de erro diminui com aumento de k (acontece sempre ?)
- O que acontece se formos aumentando k?

Efeito de k na prob. Falsos Positivos

 Adicionando mais funções não diminui obrigatoriamente essa probabilidade

- Decresce até um certo valor de k
- Depois aumenta
 - Motivo ?

Redução de falsos positivos

- FP podem ser reduzidos aumentando o tamanho do vetor B
 - neste caso à custa de mais memória.
 - O efeito da relação n/m é ilustrado na figura
- Também podem ser reduzidos aumentando o número de funções de dispersão
 - mas apenas até um certo valor

Então qual o valor ótimo de k?

- E possível determinar o número de funções de dispersão que minimiza a probabilidade de falsos positivos, p_{fp}
- Para facilitar os cálculos minimiza-se $\,ln(p_{fp})$
- Aplicando ln() a $p_{pf} = \left(1 a^k\right)^k$
- temos: $ln(p_{pf}) = k ln(1-a^k)$

Minimização

- Como obter k ótimo (que minimiza p) ?
- A solução usual de calcular zeros da derivada
- Derivando (em ordem a k) e igualando a zero $(1 a^k) \ln(1 a^k) a^k \ln(a^k) = 0$
- Que tem por solução

$$a^k = 1/2$$

[usar, por exemplo, fsolve no Matlab]

k ótimo

 O valor ótimo de k pode ser obtido aplicando logaritmos e resolvendo em ordem a k:

$$k_{\text{\'otimo}} = \frac{ln(1/2)}{ln(a)}$$

Substituindo o valor de a temos

$$k_{\text{\'o}timo} = \frac{ln(1/2)}{m \times ln(1-1/n)}$$

• Aproximando ln(1-1/n) pelo primeiro termo da série de Taylor (-1/n)

$$k_{\text{\'otimo}} \approx \frac{n \ ln(2)}{m} = \frac{0.693 \ n}{m}$$

Na prática utiliza-se o inteiro mais próximo

Exemplo – k ótimo

•
$$m = 10^{12}$$

•
$$n=8 \times 10^{12}$$

k ótimo ?

•
$$k_{\text{\'o}timo} \approx \frac{n \ln(2)}{m} = \frac{0.693 \times 8 \times 10}{10^{12}} = 5.54$$

- Aproximadamente 6
- Qual a relação com um dos gráficos que já vimos?

Determinação de *n*

 O valor de n pode ser calculado substituindo o valor ótimo de k na expressão de probabilidade

$$p_{fp} \approx \left(1 - e^{-km/n}\right)^k$$

- Sendo dados m e um objetivo em termos de probabilidade de falsos positivos p_{fp}
- e assumindo que o valor de k ótimo é adotado

Limite inferior para a probabilidade de erro (FP)

• Se tivessemos $a^k = 1/2$ para um inteiro $k_{\delta timo}$, a equação $\left(1 - a^k\right)^k$ resultaria em:

$$p_{\acute{o}tima} = \left(1 - \frac{1}{2}\right)^{k_{\acute{o}timo}}$$
$$= \left(\frac{1}{2}\right)^{k_{\acute{o}timo}}$$
$$= 2^{-k_{\acute{o}timo}}$$

- Que pode ser considerado o limite inferior para a probabilidade de erro
 - Obviamente falsos positivos

Filtros de Bloom – Aspectos positivos

- Os filtros de Bloom garantem não existência de falsos negativos ...
- e usam uma quantidade de memória limitada
 - Ótimo para pré-processamento antes de processos mais exigentes

- Adequados para implementação em hardware
 - As funções de dispersão podem ser paralelizadas

Filtros de Bloom - Limitações

 Como a tabela não pode ser expandida, o máximo número de elementos a armazenar no filtro tem de ser conhecido previamente

 Assim que se excede a capacidade para a qual foi projetado, os falsos positivos aumentam rapidamente ao serem inseridos mais elementos

Filtros de Bloom - Compromissos

 Os falsos positivos podem ser diminuídos através de:

– Aumento do número de funções de dispersão (até ao $k_{\acute{o}timo}$)

E do espaço alocado para armazenar o vetor

Comentários finais

- Os filtros de Bloom devem ser considerados para programas em que um teste de pertença imperfeito pode ser aplicado a um conjunto de dados (muito) grande
- As grandes vantagens de um filtro de Bloom são a rapidez e taxa de erro
- Apesar de poder ser aplicado a conjuntos de qualquer dimensão, árvores e heaps são melhores soluções para conjuntos pequenos

Filtros Bloom de contagem / Filtros de Contagem

Counting Bloom Filters

Filtros de Contagem

- Um filtro Bloom básico representa um conjunto, mas:
 - não permite a consulta da multiplicidade (número de vezes que elemento foi inserido)
 - nem suporta a remoção de elementos

 Um filtro Bloom de contagem estende um filtro Bloom básico para dar resposta a estas limitações

Filtros de Contagem

 As posições do vetor são estendidas de um único bit para um contador de b bits

[a versão original utilizava 4 bits]

- Na inserção de um elemento o contador é incrementado
- na remoção é decrementado
- Ocupa mais espaço
 - tipicamente 3 a 4 vezes mais que o de Bloom

Filtro de Contagem

Obtenção da multiplicidade

Problema:

- Os contadores correspondentes a um elemento podem também ser alterados por outros elementos
- Como ter boa estimativa do número de inserções de um elemento?

Solução:

 Usar o valor mínimo entre os vários contadores correspondentes ao elemento

Implementação

 A implementação deste tipo de filtros em Matlab é simples

- Bastam ligeiras alterações a:
 - adicionar() : passa a incrementar
 - membro() : requer que todos sejam não nulos
- A criação da função adicional contagem()
- E, se necessário, a função remover()

contagem()

- Operação nova
- Para obter a contagem (multiplicidade) associada a um elemento do conjunto:
 - Detemina-se o conjunto de contadores que lhe correspondem
 - Através das k funções de dispersão
 - Calcula-se o valor mínimo armazenado nesses contadores
 - Algoritmo como minimum selection (MS)

02-12-2020 MPEI 2020/2021 MIECT/LEI 68

remover()

Implementação similar a adicionar()

- Esta operação introduz a possibilidade de falsos negativos
 - Quando se coloca um bit a zero que era parte dos k bits de outro elemento, o filtro deixará de o considerer como pertencendo ao conjunto

Problemas ...

- Overflow do contador
 - Quando a contagem chega a $2^b 1$
 - Tipicamente as implementações param de contar
 - Preferível a recomeçar em 0 (introduziria falsos negativos)
 - Mas introduz mais erro na estimativa da contagem
- Escolha de b (número de bits dos contadores)
 - Um valor grande reduz a poupança de espaço
 - Um valor pequeno rapidamente leva a overflow
 - Escolha do valor é um compromisso e depende dos dados

Outras Técnicas

- Variantes do Filtro de Bloom
 - Ver, por exemplo:
 - http://matthias.vallentin.net/course-work/cs270s11.pdf

- Cuckoo Hashing
 - Ver:
 - http://www.lkozma.net/cuckoo hashing visualiza tion/

Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

PPT baseado em: Mining Data Streams

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Outras fontes utilizadas

 http://matthias.vallentin.net/blog/2011/06/agarden-variety-of-bloom-filters/

 https://en.wikipedia.org/wiki/Bloom_filter#Co unting_filters

02-12-2020 MPEI 2020/2021 MIECT/LEI 73