Extremes 2022-08-31

Extremes

Benedikt Gräler

nivariate tremes

Multivariate Extremes

Spatial Extremes

lands-on

 $\label{eq:Benedikt Gräler} Benedikt Gräler \\ 52°North Spatial Information Research GmbH \\ https://52north.org$

Univariate Extremes

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

What is special about extremes?

- Extremes are rare events / measurements
 - few records in a spatial distributed scene
 - few records in a time series
 - both
- by definition, we will only observe few extremes (if any) in a given sample

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

lands-on

3

Benedikt Gräler

Univariate Extremes

Extremes

Spatial Extremes

What is special about extremes?

Extremes

Benedikt Gräler

Univariate Extremes

xtremes

Spatial Extremes

What is special about extremes?

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Benedikt Gräler

Univariate Extremes Multivariate

Extremes

Spatial Extremes

Hands-on

7

Let X_1, \ldots, X_n be a sequence of independent and identically distributed random variables with cumulative distribution function F and let $M_n = \max(X_1, \ldots, X_n)$ denote the maximum.

In theory, the exact distribution of the maximum can be derived:

$$Pr(M_n \le z) = Pr(X_1 \le z, \dots, X_n \le z)$$

= $Pr(X_1 \le z) \cdots Pr(X_n \le z) = (F(z))^n$.

Source: https://en.wikipedia.org/wiki/Extreme_value_theory

Extremes

Benedikt Gräler

Univariate Extremes

xtremes

Spatial Extremes

1ands-on

8

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Hands-on

a

Benedikt Gräler

Univariate Extremes Multivariate

Extremes

Spatial Extremes

The Fréchet

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

The GEV distribution

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extreme

lands-on

```
G(z) = \exp\left(-\left(1 + s(z-a)/b\right)^{-1/s}\right)
```

with loc = a, scale = b and shape = s:

```
dgev(x, loc=0, scale=1, shape=0, log = FALSE)
pgev(q, loc=0, scale=1, shape=0, lower.tail = TRUE)
qgev(p, loc=0, scale=1, shape=0, lower.tail = TRUE)
rgev(n, loc=0, scale=1, shape=0)
```

Weibull: s < 0

• Gumbel: s = 0

Frechet: s > 0

Block maxima

select your maxima per block (typically temporal) to avoid (at least reduce) auto-correlation and be closer to an iid sample

- month
- annually
- daily
-

Extremes

Benedikt Gräler

Univariate Extremes

Aultivariate Extremes

Spatial Extreme:

lands-on

annual maximum sea level in Venice

Extremes

Benedikt Gräler

Univariate Extremes

//ultivariate extremes

Spatial Extremes

annual maximum sea levels 1887 - 2011

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

```
fgev(venice2[,1])
##
## Call: fgev(x = venice2[, 1])
## Deviance: 1111.223
##
## Estimates
##
        loc
                scale
                          shape
## 105.2995 19.3543
                        -0.1463
##
## Standard Errors
##
       loc
              scale
                       shape
  1.87769 1.27804
                     0.04176
##
## Optimization Information
##
     Convergence: successful
     Function Evaluations: 27
##
##
     Gradient Evaluations: 11
```

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extreme

annual maximum sea levels 1887 - 2011 GEV 0.020 log-normal 0.015 Density 0.010 0.005 0.000 60 80 100 120 140 160 180 200 venice2[, 1]

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Series co2

Extremes

Benedikt Gräler

Univariate Extremes Multivariate

Extremes

Spatial Extremes

Decomposition of additive time series

Extremes

Benedikt Gräler

Univariate Extremes

xtremes

Spatial Extremes

Series co2Residuals

Extremes

Benedikt Gräler

Univariate Extremes

Extremes

Spatial Extremes

Mean Residual Life Plot

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

PoT method

```
fpot(co2Residuals, threshold = 0.22)
##
## Call: fpot(x = co2Residuals, threshold = 0.22)
## Deviance: -113 6398
##
## Threshold: 0.22
## Number Above: 78
## Proportion Above: 0.1711
##
## Estimates
    scale
             shape
   0.2436 -0.3161
##
## Standard Errors
     scale
              shape
## 0.03568 0.09961
##
## Optimization Information
    Convergence: successful
    Function Evaluations: 29
    Gradient Evaluations: 7
```

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extreme

lands-on

Histogram of PoT

Extremes

Benedikt Gräler

Univariate Extremes

Extremes

Spatial Extremes

What is an return period?

Extremes

Renedikt Gräler

Univariate Extremes

Multivariate Extremes

patial Extremes

lands-on

"On average, how many years will it take to observe an event this large/small?"

This is $P(X \ge x) = 1/T$ where X is your annual maximum variable and T is the return period (typically 5, 10, 25, 50, 100, ... years), x is the "critical event".

For a given return period, what is the annual maximum water level in Venice?

Extremes

Benedikt Gräler

Univariate Extremes

Extremes

Hands on

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Multivariate Extremes

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Benedikt Gräler

Jnivariate Extremes

Multivariate Extremes

Spatial Extremes

lands-on

- Once we look at more than one variable, we have to think about dependencies.
- Correlation measures summarize dependence in a single number, but as for univariate statistics, a multivariate distribution has more characteristics than a single number
- while histograms are often the first step for univariate cases, scatter plots are the first choice for multivariate case

Data is only sometimes Gaussian

- Most approaches based correlation/covariance matrices will assume a multivariate Gaussian distributions
- a wider concept are **copulas**. Any continuous multivariate distribution H with its $X_1, \ldots X_n$) marginal random variables can be decomposed into its marginal distribution functions F_i and its copula C:

$$H(x_1,\ldots,x_n)=C\left(F_1(x_1),\ldots,F_n(x_n)\right)$$

A copula can be perceived as a multivariate distribution on the unit hyper-cube $[0,1]^n$.

Extremes

Benedikt Gräler

Jnivariate extremes

Multivariate Extremes

Spatial Extremes

lands-on

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extreme

More copulas

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Hands-on

https://copulatheque.org

Multivariate Extremes

- What happens with the dependence if both margins become large?
- Composite extremes is assessed via upper/lower tail dependence

Extremes

Benedikt Gräler

Extremes

Multivariate Extremes

Spatial Extremes

lands-on

0.0000000 0.7688556

lambda(tCopula(iTau(tCopula(), 0.7))) ## lower upper ## 0.6144008 0.6144008

lambda(tCopula(iTau(tCopula(df=0.3), 0.7), df=0.3))

lower upper 0.8213634 0.8213634

```
Tail Dependence

lambda(normalCopula(iTau(normalCopula(), 0.3)))

## lower upper

## 0 0

lambda(gumbelCopula(iTau(gumbelCopula(), 0.3)))

### lower upper

### lower upper
```

lower upper
0.0000000 0.3754952

lambda(tCopula(iTau(tCopula(), 0.3)))

lower upper
0.2289254 0.2289254

10wer upper ## 0.2289254 0.2289254 lambda(tCopula(iTau(tCopula(df=0.3), 0.3), df=0.3)) ## lower upper

0.5884455 0.5884455

Fitting a Copula

Extremes

Benedikt Gräler

Multivariate Extremes

agPseudoObs <- pobs(cbind(airquality\$Solar.R. airquality\$Temp)) BiCopSelect(agPseudoObs[,1], agPseudoObs[,2])

Warning: In BiCopSelect: 7 observations (4.6%) contain NAs. Only complete ## observations are used.

Bivariate copula: Rotated Tawn type 2 180 degrees (par = 2.46, par2 = 0.2, tau = 0.16)

Fitting a Copula

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Fitting a Copula

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Multivariate Return Periods

Figure 1: alt text here

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Extremes

Benedikt Gräler

Extremes

Multivariate Extremes

Spatial Extreme

Multivariate Return Periods

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extreme

Multivariate Return Periods

Figure 4: comparison of critical events

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extreme

Spatial Extremes

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Does that make any difference?

Extremes

Benedikt Gräler

Extremes

Spatial Extremes

. .

Spatial Copulas - Margins

Figure 5: Marignal Distribution

Extremes

Benedikt Gräler

Univariate Extremes

> dultivariate xtremes

Spatial Extremes

Spatail Copula - distance

Strength of dependence on copula scale

Figure 6: Spatially varying copulas

Benedikt Gräler

xtremes

Spatial Extremes

Spatail Copula - vine

Extremes

Benedikt Gräler

Jnivariate Extremes

Extremes

Spatial Extremes

lands-on

Spatial Copulas Interpolation

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Spatail Copula - Comparison

Figure 9: different approaches

Extremes

Benedikt Gräler

Jnivariate Extremes

Multivariate Extremes

Spatial Extremes

Spatio-Temporal Copulas

Extremes

Benedikt Gräler

Extremes

lultivariate xtremes

Spatial Extremes

lands-on

Extremes

Benedikt Gräler

Univariate Extremes

Multivariate Extremes

Spatial Extremes

Hands-on

Libraries to look at

- copula
- VineCopula
- VC2copula
- spcopula (only on GitHub, slight workaround needed for VC2copula)

Extremes

Benedikt Gräler

Jnivariate Extremes

Aultivariate extremes

Spatial Extremes

Data sets to try and demos to follow

- retry the code snippets in the underlying Rmd-file
- use your own data set and check scatter plots of pseudo observations
- data set uranium of the copula package
- demo MRP of the spcopula package
- demo pureSpVineCopula of the spcopula package

Extremes

Benedikt Gräler

Extremes

Multivariate Extremes

Spatial Extremes