Pregunta

1

Correcta Se puntúa 1,00

sobre 1,00 Marcar pregunta Un bloque A de masa m_A reposa sobre un bloque B de masa m_B. La masa m_B es mayor que la masa m_A. Hay fricción entre los bloques, mientras que el suelo es liso. Al tiempo t = 0 s, se aplica sobre el bloque A una fuerza F que hace que el bloque A no deslice respecto al bloque B. **Indique la alternativa correcta.**

- o a. La fricción sobre el bloque B tiene sentido hacia la derecha.
- b. El módulo de la aceleración del bloque B es mayor que el módulo de la aceleración del bloque A.
- \odot c. Si la fricción estática entre los bloques es máxima, entonces su módulo es igual a fe_{máx} = $\mu_e(m_A + m_B)g$.
- od. Entre los bloques A y B existe necesariamente fricción estática máxima.
- o e. La fricción sobre el bloque A tiene sentido hacia la derecha.

Pregunta

2

Parcialmente correcta

Se puntúa 0,75 sobre 1,00

Marcar pregunta Un trabajador de un centro comercial desea subir una caja de masa M por un plano inclinado que forma un ángulo θ con la horizontal. Con este fin, el trabajador aplica sobre la caja una **fuerza F constante** paralela al plano inclinado. Los coeficientes de fricción estática y cinética entre el plano inclinado y la caja son μ_e y μ_c , respectivamente. **Indicar cuáles de las siguientes afirmaciones son verdaderas o falsas:**

(0,25 puntos) Si la caja sube aumentando su rapidez, entonces el módulo de la fricción es proporcional a la normal.

(0,25 puntos) Si la caja no se mueve, entonces la fricción estática sobre la caja no necesariamente tiene su máximo valor.

(0,25 puntos) Si la caja no se mueve, entonces la reacción del piso sobre la caja es de módulo igual a $Mgcos\theta\sqrt{1+\mu_e^2}$

F

(0,25 puntos) Si la caja sube con velocidad constante, entonces la fricción sobre el plano inclinado apunta hacia arriba del plano inclinado.

Pregunta

3

Correcta

Se puntúa 1,00 sobre 1,00

Marcar pregunta En la siguiente figura, se muestran tres opciones para mover un bloque de masa m, sobre un piso horizontal liso ¿En cuál de los casos la aceleración tiene mayor módulo?

- a. Ninguno de los casos
- b. Caso I
- c. Caso III
- o d. Caso II
- e. Todos los casos son iguales

PC4 - Pregunta Desarrollada 1.

Los bloque de masas m_1 y m_2 que se muestran en la figura, permanecen en reposo en las superficies inclinadas lisas. Todas las cuerdas y poleas son ideales (masa y radio despreciables). Considere que $m_2=15,4~{\rm kg}$ y $\theta=65,2^{\circ}$.

Responda las siguientes preguntas:

- a) (2 puntos) Realice el DCL de cada masa.
- b) (1,5 puntos) Determine el módulo de la tensión en la cuerda (1).
- c) (1,5 puntos) Determine la masa del bloque m_1 .

Pregunta Desarrollado 1 (Versión 1)

Los bloque de masas m_1 y m_2 que se muestran en la figura, permanecen en reposo en las superficies inclinadas lisas. Todas las cuerdas y poleas son ideales (masa y radio despreciables). Considere que $m_2=12,5~{
m kg}$ y $\theta=62,4^\circ$.

Responda las siguientes preguntas:

- a) (2 puntos) Realice el DCL de cada masa.
- b) (1,5 puntos) Determine el módulo de la tensión en la cuerda (1).
- c) (1,5 puntos) Determine la masa del bloque m_1 .

Solución:

a) DCL de los bloques:

b) Si el sistema se encuentra en reposo:

En el bloque m_2 : $\boldsymbol{\theta} = \mathbf{62,4}^{\circ}$; $m_2 = \mathbf{12,5}~kg$

$$\sum F_x = 0; \ m_2 * 9.81 * sen(62.4^\circ) - T_2 = 0;$$

$$12.5* 9.81 * sen(62.4^\circ) - T_2 = 0$$

$$T_2 = 108.68 \ N$$

En la polea ideal, si el sistema se encuentra en reposo:

$$2T = T_2 = 108,68 \,\text{N}$$

$$T = 54,33 N$$

c) Si el sistema se encuentra en reposo:

En la polea ideal que une las cuerdas T_1 y T_2 :

$$T_1 = 2T_2 = 2(108,68)$$

$$T_1 = 217,34 N$$

En el bloque m_1 : $\beta = 27,6^{\circ}$.

$$\sum F_{x} = 0; \ T_{1} - m_{1} * 9,81 * sen(27,6^{\circ}) = 0;$$

$$m_1 = 47,82 \; Kg$$

Pregunta Desarrollado 1 (Versión 2)

Los bloque de masas m_1 y m_2 que se muestran en la figura, permanecen en reposo en las superficies inclinadas lisas. Todas las cuerdas y poleas son ideales (masa y radio despreciables). Considere que $m_2=15,4$ kg y $\theta=65,2^\circ$.

Responda las siguientes preguntas:

- a) (2 puntos) Realice el DCL de cada masa.
- b) (1,5 puntos) Determine el módulo de la tensión en la cuerda (1).
- c) (1,5 puntos) Determine la masa del bloque m_1 .

Solución:

a) DCL de los bloques:

b) Si el Sistema se encuentra en reposo:

En el bloque m_2 : $oldsymbol{ heta}=$ 65, 2°; $~oldsymbol{m_2}=$ 15, 4 ${oldsymbol{k}} oldsymbol{g}$

$$\sum F_x = 0; T_2 - m_2 * 9.81 * sen(65.2^\circ) - T_2 = 0;$$

$$15.4 * 9.81 * sen(65.2^\circ) - T_2 = 0$$

$$T_2 = 137.14 N$$

En la polea ideal, si el sistema se encuentra en reposo:

$$2T = T_2 = 137.14 N$$

$$T = 68,57 N$$

c) Si el sistema se encuentra en reposo:

En la polea ideal que une las cuerdas T_1 y T_2 :

$$T_1 = 2T_2 = 2(137,14)$$

$$T_1 = 274,28 N$$

En el bloque m_1 : $\beta = 24,8^{\circ}$.

$$\sum F_x = 0; \ T_1 - m_1 * 9,81 * sen(24,8^\circ) = 0;$$

$$274,28 - m_1 * 9,81 * sen(24,8^\circ) = 0;$$

$$m_1 = 66,66 \, Kg$$

Pregunta Desarrollado 1 (Versión 3)

Los bloque de masas m_1 y m_2 que se muestran en la figura, permanecen en reposo en las superficies inclinadas lisas. Todas las cuerdas y poleas son ideales (masa y radio despreciables). Considere que $m_2=18,6~{\rm kg}$ y $\theta=63,8^{\circ}$.

Responda las siguientes preguntas:

- a) (2 puntos) Realice el DCL de cada masa.
- b) (1,5 puntos) Determine el módulo de la tensión en la cuerda (1).
- c) (1,5 puntos) Determine la masa del bloque m_1 .

Solución:

a) DCL de los bloques:

b) Si el sistema se encuentra en reposo:

En el bloque m_2 : $\theta = 63, 8^\circ$; $m_2 = 18, 6 \ kg$

$$\sum F_{x} = 0; \ m_{2} * 9.81 * sen(63.8^{\circ}) - T_{2} = 0;$$

$$18,6 * 9,81 * sen(63,8^{\circ}) - T_2 = 0$$

$$T_2 = 163,72 N$$

En la polea ideal, si el sistema se encuentra en reposo:

$$2T = T_2 = 163.72 \, N$$

$$T = 81.86 N$$

c) Si el sistema se encuentra en reposo:

En la polea ideal que une las cuerdas T_1 y T_2 :

$$T_1 = 2T_2 = 2(163,72)$$

$$T_1 = 327,44 N$$

En el bloque m_1 : $\beta = 26, 2^{\circ}$.

$$\sum F_{\chi} = 0; \ T_1 - m_1 * 9,81 * sen(27,6^{\circ}) = 0;$$

$$327,44 - m_1 * 9,81 * sen(26,2^\circ) = 0;$$

$$m_1 = 75,60 \, Kg$$

PREGUNTA 2 - VERSIÓN A

(5 puntos) En la figura mostrada todas las superficies son lisas. Las cuerdas y poleas son ideales. Además se sabe que $lpha=30^\circ$, $an heta=rac{5}{12}$, $m_1=30$ kg, $m_2=20$ kg, $F_1=49$ N y $F_2=130$ N.

- a) **(0.5 puntos)** Realizar el diagrama de cuerpo libre (DCL) del bloque de masa m_1 .
- b) (0.5 puntos) Realizar el diagrama de cuerpo libre (DCL) del bloque de masa m_2 .
- c) (1.5 puntos) Hallar el módulo de la aceleración del bloque de masa m_2 .
- d) (1.0 puntos) Hallar el módulo de la tensión en la cuerda.
- e) **(1.5 puntos)** Si m_1 no cambia ¿Cuál debería ser el valor de m_2 para que los bloques estén en equilibrio?

a)

DCL del bloque m₁

b)

DCL del bloque m₂

c) En el bloque m_1

$$\Sigma F_x = m_1 a$$

 $T - F_1 - m_1 g sen \alpha = m_1 a$
 $T - 49 - 30(9.8) sen(30^\circ) = 30a'$
 $T - 196 = 30a \dots (1)$

En el bloque m₂

$$\Sigma F_y = m_2 a$$

$$m_2 g + F_2 cos \theta - T = m_2 a$$

$$20(9.8) + 130(12/13) - T = 20a$$

$$316 - T = 20a \dots (2)$$

$$De (1) y (2): a = 2.4 m/s^2$$

- d) De(1): T 196 = 30(2,4)T = 268 N
- e) En el bloque m_1

$$\Sigma F_{x}=0$$

$$T - F_1 - m_1 gsen\alpha = 0$$

$$T - 49 - 30(9.8)sen(30^\circ) = 0$$

$$T = 196 N$$

$$\Sigma F_y = 0$$

$$m_2g + F_2cos\theta - T = 0$$

$$m_2(9.8) + 130(12/13) - 196 = 0$$

$$m_2 = 7,76 kg$$

PREGUNTA 2 – VERSIÓN B

(5 puntos) En la figura mostrada todas las superficies son lisas. Las cuerdas y poleas son ideales. Además se sabe que $heta=30^\circ$, $an lpha=rac{5}{12}$, $m_1=30$ kg, $m_2=23$ kg, $F_1=260$ N y $F_2=98$ N.

- a) **(0.5 puntos)** Realizar el diagrama de cuerpo libre (DCL) del bloque de masa m_1 .
- b) (0.5 puntos) Realizar el diagrama de cuerpo libre (DCL) del bloque de masa m_2 .
- c) (1.5 puntos) Hallar el módulo de la aceleración del bloque de masa m_2 .
- d) (1.0 puntos) Hallar el módulo de la tensión en la cuerda.
- e) **(1.5 puntos)** Si m_1 no cambia ¿Cuál debería ser el valor de m_2 para que los bloques estén en equilibrio?
- a)

DCL del bloque m₁

b)

DCL del bloque m₂

c) En el bloque m_1

$$\Sigma F_{v} = m_{1}a$$

$$m_1g + F_1\cos\alpha - T = m_1a$$

$$30(9.8) + 260(12/13) - T = 30a$$

$$534 - T = 30a \dots (1)$$

$$\Sigma F_x = m_2 a$$

$$T - F_2 - m_2 gsen\theta = m_2 a$$

$$T - 98 - 23(9.8)sen(30^{\circ}) = 23a'$$

$$T - 210.7 = 23a \dots (2)$$

De (1) y (2):
$$a = 6.1 \, m/s^2$$

- d) De(1): 534 T = 30(6,1)T = 351 N
- e) En el bloque m_1

$$\Sigma F_{y} = 0$$

$$m_1g + F_1cos\alpha - T = 0$$

$$30(9.8) + 260(12/13) - T = 0$$

$$T = 534 N$$

$$\Sigma F_{x}=0$$

$$T - F_2 - m_2 gsen\theta = 0$$

$$534 - 98 - m_2(9.8)sen(30^\circ) = 0$$

$$m_2=88,98\,kg$$

PREGUNTA 2 - VERSIÓN C

(5 puntos) En la figura mostrada todas las superficies son lisas. Las cuerdas y poleas son ideales. Además se sabe que $an heta = rac{3}{4}$, $m_1 = 50$ kg, $m_2 = 20$ kg, $F_1 = 392$ N y $F_2 = 592$ N.

- a) **(0.5 puntos)** Realizar el diagrama de cuerpo libre (DCL) del bloque de masa m_1 .
- b) (0.5 puntos) Realizar el diagrama de cuerpo libre (DCL) del bloque de masa m_2 .
- c) **(1.5 puntos)** Hallar el módulo de la aceleración del bloque de masa m_2 .
- d) (1.0 puntos) Hallar el módulo de la tensión en la cuerda.
- e) **(1.5 puntos)** Si m_2 no cambia ¿Cuál debería ser el valor de m_1 para que los bloques estén en equilibrio?
- a)
 - DCL del bloque m₁

- b)
- DCL del bloque m₂

c) En el bloque m_1

$$\Sigma F_{v} = m_{1}a$$

$$T - F_1 - m_1 gsen\theta = m_1 a$$

$$T - 392 - 50(9,8)(3/5) = 50a$$

$$T - 686 = 50a \dots (1)$$

En el bloque m_2

$$\Sigma F_x = m_2 a$$

$$F_2 + m_2 gsen(90^\circ - \theta) - T = m_2 a$$

$$592 + 20(9,8)(4/5) - T = 20a$$

$$748.8 - T = 20a...(2)$$

De (1) y (2): $a = 0.897 \, m/s^2$

- d) De(1): T 686 = 50(0.897)T = 730.86 N
- e) En el bloque m₂

$$\Sigma F_{x}=0$$

$$F_2 + m_2 gsen(90^\circ - \theta) - T = 0$$

$$592 + 20(9,8)(4/5) - T = 0$$

$$T = 748,8 N$$

$$\Sigma F_y = 0$$

$$T - F_1 - m_1 gsen\theta = 0$$

$$748.8 - 392 - m_1(9.8)(3/5) = 0$$

$$m_1 = 60,68 \, kg$$

c) \$F4=0 $\Sigma F_{\chi} = Ma_{\chi}$ \rightarrow $F - f_{\chi} = 5(-1.25)$ -> FR = -6.25 N 152 = 6.25 N d) FR = F-fk -> -6.25 = 10-fk $\frac{1}{1000} > \frac{1}{1000} = \frac{1$ a) $\Sigma = 0 \longrightarrow N - Mg = 0 \longrightarrow N = Mg$ $\rightarrow N = 5(9.8) \rightarrow N = 49 N$ F = Mx N -> 16.25 = Mx (49)

