Math 260 Exam 3 Take Home Solutions

David L. Meretzky

Friday Decmeber 7th, 2018

Problems 1-5 are worth 18 points each. Problem 6 is worth 10 points. The test is out of 100 points.

Definition 1. Let V be a real or complex vectorspace, $\mathbf{F} = \mathbf{R}$ or \mathbf{C} . A norm on V is a real-valued function $|| \ || : V \to \mathbf{R}$ such that

- 1. for any non-zero vector $v \in V$, ||v|| > 0,
- 2. for any scalar $\alpha \in \mathbf{F}$, $||\alpha v|| = |\alpha|||v||$ for all $v \in V$,
- 3. for any $u, v \in V ||u + v|| \le ||u|| + ||v||$

We call V a normed linear space.

Let $B = e_1, ..., e_n$ be the usual basis for \mathbf{F}^n . For instance, we know that \mathbf{R}^n has the usual euclidean norm: for $v \in \mathbf{F}^n$, $v = a_1e_1 + ... + a_ne_n$, define

$$||v|| = \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \tag{1}$$

Example 1.

$$||(1,-1)|| = \sqrt{1^2 + (-1)^2}$$

Clearly \mathbf{F}^n is a normed linear space. You will show that if V is finite dimensional then $\mathcal{L}(V)$ is a normed linear space.

Definition 2. Let V be a finite dimensional normed linear space and let $T \in \mathcal{L}(V)$. Define the operator norm of T to be the smallest number M such that $||Tv|| \leq M||v||$ for any $v \in V$. We will write ||T|| to mean that smallest number M, the operator norm.

Notice that the norms in the expression $||Tv|| \le M||v||$ are the norm that V was born with. That is, this definition only makes sense if V has a norm.

Problem 1. Let $B = e_1, ..., e_n$ be an orthonormal basis for V a normed linear space of dimension n. Let $T \in \mathcal{L}(V)$. Let $m = Max\{||Te_1||, ||Te_2||, ..., ||Te_n||\}$. That is, m is the length of the longest vector in the list $Te_1, ..., Te_n$. Prove that for any unit-length vector $v \in V$, $||Tv|| \leq mn$.

Solution 1. We have that $v = \sum_{i=1}^{n} a_i e_i$ moreover, the requirement that ||v|| = 1 means that $\sum_{i=1}^{n} a_i^2 = 1$, and thus for each $i, |a_i| \leq 1$. We compute,

$$||Tv|| = ||T(\sum_{i=1}^{n} a_i e_i)|| = ||\sum_{i=1}^{n} a_i Te_i|| \le \sum_{i=1}^{n} |a_i|||Te_i|| \le \sum_{i=1}^{n} ||Te_i|| \le \sum_{i=1}^{n} m = nm.$$
(2)

Problem 2. Let $B = e_1, ..., e_n$ be an orthonormal basis for V a normed linear space of dimension n. Let $T \in \mathcal{L}(V)$. Show that the operator norm of T exists and is finite. (I am asking you to show that taking any $v \in V$, show that there exists a number K such that $||Tv|| \le K||v||$.) Hint: Use the conclusion of the previous problem. Hint: maybe the problem is easier if you assume ||v|| = 1?

Solution 2. Assume that ||v|| = 1, then $||Tv|| \le nm = nm||v||$. Letting K = nm we are finished. Now suppose that we have any $u \in V$,

$$||Tu|| = ||u|||(\frac{1}{||u||}Tu)|| = ||u||||T(\frac{u}{||u||})||$$

A vector divided by it's norm is of norm 1. Let $v = \frac{u}{||u||}$. Then ||v|| = 1. Furthermore,

$$||Tu|| = ||u||||Tv|| \le ||u||nm||v|| = K||u||$$

where K = nm||v|| = nm.

Now that we know the operator norm exists and is finite:

Problem 3. Show that the operator norm is a norm (satisfies definition 1) on $\mathcal{L}(V)$ for a finite dimensional normed linear space V.

Solution 3. We must show that for $T \in \mathcal{L}(V)$ such that $T \neq 0 \in \mathcal{L}(V)$, ||T|| > 0. Since $T \neq 0$, there exists at least one vector $v \in V$ such that $Tv \neq 0 \in V$. Thus

$$0 < ||Tv|| \le ||T||||v||.$$

Since $Tv \neq 0$ it follows that ||v|| > 0 and since 0 < ||T|| ||v|| we must have that ||T|| > 0 as desired.

Next we must show that for $T\in \mathscr{L}(V),\, ||\alpha T||=|\alpha|||T||$

Given any $v \in V$ by the definition of the operator norm for the operator αT we have

$$||\alpha Tv|| \le ||\alpha T||||v||.$$

However,

$$||\alpha Tv|| = |\alpha|||Tv|| \le |\alpha|||T||||v||.$$

Thus, $||\alpha T|| \leq |\alpha|||T||$.

To show the reverse inequality, note that for $\alpha \neq 0$:

$$||Tv|| = ||\alpha T \frac{1}{\alpha}v|| \leq ||\alpha T||||\frac{1}{\alpha}v|| = |\frac{1}{\alpha}|||\alpha T||||v||$$

from which it follows that

$$||T|| \le |\frac{1}{\alpha}|||\alpha T||$$

and thus

$$|\alpha|||T|| \le ||\alpha T||.$$

The desired equality

$$|\alpha|||T|| = ||\alpha T||$$

is obtained. The case $\alpha = 0$ is immediate.

For any $T, S \in \mathcal{L}(V)$ and any $v \in V$, we compute

$$||(S+T)(v)|| = ||Sv+Tv|| \le ||Sv|| + ||Tv|| \le ||S|| ||v|| + ||T|| ||v|| = (||S|| + ||T||) ||v||$$

from which it follows that

$$||S + T|| \le ||S|| + ||T||$$

where the second inequality above comes from the triangle inequality for the norm on V.

Let T be an invertable linear operator of a finite dimensional normed linear space V.

Problem 4. Let v be an eigenvector for T with eigenvalue λ . Prove that $||Tv|| = |\lambda|||v||$. Prove that $|\lambda| \le ||T||$.

Solution 4. We have $||Tv|| = ||\lambda v|| = |\lambda|||v||$. Now compute

$$|\lambda|||v|| = ||Tv|| \le ||T||||v||$$

from which it follows that $|\lambda| \leq ||T||$.

Problem 5. Suppose $T \in \mathcal{L}(V)$ is invertible. Suppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

Solution 5. Let v be an eigenvector for λ . Then $T^{-1}Tv = T^{-1}\lambda v = \lambda T^{-1}v$. But since $T^{-1}Tv = v$, we must have that $\lambda T^{-1}v = v$ from which it follows that $T^{-1}v = \frac{1}{\lambda}v$. Since all steps of the proof hold with equality, the result holds in both directions.

Problem 6. Let V be a finite dimensional inner product space over \mathbf{R} . What can you say about the relationship between the induced norm on V and the operator norm on $\mathcal{L}(V,\mathbf{R})$? Define the operator norm on $\mathcal{L}(V,\mathbf{R})$ by letting $||\phi||$ for $\phi \in \mathcal{L}(V,\mathbf{R})$ be the smallest number M such that $|\phi(v)| \leq M||v||$ for all $v \in V$.

Hint: The Reisz Representation Theorem gives a nice association: for every $\phi \in \mathcal{L}(V, \mathbf{R})$ there exists a unique $v \in V$ such that $\langle , v \rangle$ is equal to $\phi()$.

Solution 6. Pick any ϕ . There exists a unique $v \in V$ such that $\langle , v \rangle$ is equal to $\phi($). Now for any $u \in V$, we compute

$$|\phi(u)| = |\langle u, v \rangle| \le ||u|| ||v||$$

by the The Reisz Representation Theorem and the Cauchy-Schwarz Inequality. It must follow that

$$||\phi|| \le ||v||.$$

To show the reverse inequality note that

$$|\phi(v)| = |\langle v, v \rangle| = ||v||^2 \le ||\phi|| ||v||$$

from which it follows that

$$||v|| \leq ||\phi||$$

and furthermore that

$$||\phi|| = ||v||.$$