

## Ch. 7. Entropy and free energy

T is common sense that some natural phenomena happen spontaneously in nature, without any help, in nature whereas others do not. For example, one would expect a ball on a hill to roll down instead of rolling up. How does common sense apply in chemistry? Why some reactions happen spontaneously whereas others do not. For example, methane (CH<sub>4</sub>) spontaneously burns with oxygen (O<sub>2</sub>), producing carbon dioxide, and water. Differently, if we mix water and carbon dioxide, CH<sub>4</sub> is not spontaneously produced. Thermodynamics helps make sense of spontaneity in physics and chemistry. In particular, three thermodynamic properties—enthalpy, entropy, and Gibbs free energy—are commonly used to predict different aspects of spontaneity. At the same time, spontaneity in chemistry is indeed related to equilibrium and these properties can be translated into equilibrium constants.

|                                                                                     | (KJ/mol) (KJ/mol) (J/mol· K) | N/mol)(                 | /mol· N       |                                                                                 | (K)/mol) (K)      |                           | /moil (l/moil N)      | 7                                                              | (IOIII /(V)                 | (N/mol) (         | $(KJ/mol)(KJ/mol)(J/mol \cdot K)$ |                                               | (N/mol) $(N/mol)$ $(N/mol)$ |                    | /mol           |
|-------------------------------------------------------------------------------------|------------------------------|-------------------------|---------------|---------------------------------------------------------------------------------|-------------------|---------------------------|-----------------------|----------------------------------------------------------------|-----------------------------|-------------------|-----------------------------------|-----------------------------------------------|-----------------------------|--------------------|----------------|
|                                                                                     | ٨                            |                         |               | Ba(BrO) 1242                                                                    | 7 652-            | -577 4                    | 243.0                 | BNG                                                            | -2544                       | -2284             | 8 7 1                             | CaCl. · 6H·O                                  | 6 2096-                     | -22050             | 284 9          |
| $\mathrm{Al}_{(\mathrm{s})}$                                                        | 0                            | 0                       | 28.3          | $Ba(BrO_3)_2 \cdot H_2O_{(s)}$                                                  | -1054.8           | -824.6                    | 292.5                 | $B_2S_{3(s)}$                                                  | -240.6                      | -229.0            | 57.4                              | $Ca(ClO_4)_{2(s)}$                            | -736.8                      | NA                 | 233.0          |
| $\mathrm{Al}^{3+}_{(\mathrm{g})}$                                                   | 5483.9                       | $\mathrm{NA}^{\dagger}$ | 149.9         | $\operatorname{Bal}_{2(s)}$                                                     | -602.1            | -609.0                    | 167.0                 |                                                                | Br                          |                   |                                   | )(s)                                          | -1948.9                     | -1476.8            | 433.5          |
| $\operatorname{Al}_{(\operatorname{aq})}$                                           | -524.7                       | -481.2<br>-1425.1       | 99            | $\mathrm{Bal}_2 \cdot 2\mathrm{H}_2\mathrm{O}_{\mathrm{(s)}}$                   | -1216.7           | NA <sup>†</sup><br>-864.8 | 0.63                  | $\frac{\mathrm{Br}_{2(1)}}{\mathrm{Br}_{2(1)}}$                | 30.9                        | 0 %               | 152.2                             | CaBr <sub>2(s)</sub>                          | -682.8                      | -663.6             | 130.0          |
| $AICI_{3(s)}$                                                                       | -704.2                       | -628.9                  | 110.7         | $Ba(IO_3)_2 \cdot H_2O_{(g)}$                                                   | -1322.1           | -1104.2                   | 297.0                 | $\operatorname{Br}_{\widehat{\mathcal{C}}_1}^{\mathcal{L}(g)}$ | -233.9                      | -238.7            | 163.4                             | $CaD_{12} = 0.112 C(s)$<br>$Ca(BrO_3)_{2(s)}$ | -718.8                      | NA <sup>†</sup>    | 227.6          |
| $AICl_3 \cdot 6H_2O_{(s)}$                                                          | -2691.6                      | $NA^{\dagger}$          | NA⊤           | $BaO_{(s)}$                                                                     | -553.5            | -525.1                    | 70.4                  | (8)                                                            | Cd                          |                   |                                   | $CaI_{2(s)}$                                  | -533.5                      | -528.9             | 142.0          |
| AlBr <sub>3(s)</sub>                                                                | -527.2                       | -488.4                  | 163.2         | $BaO_{2(s)}$                                                                    | -634.3            | -572.0                    | 65.7                  | Cd <sub>(s)</sub>                                              | 0                           | 0                 | 51.8                              | $Cal_2 \cdot 8 H_2O_{(s)}$                    | -2929.6                     | $NA^{\dagger}$     |                |
| $\mathrm{All}_{3(\mathrm{s})}$                                                      |                              | -300.8                  | 159.0         | $Ba(OH)_{2(s)}$                                                                 | -944.7            | -855.2                    | 2.66                  | $\operatorname{Cd}_{(\mathrm{g})}^{2+}$                        | 2623.5                      | NA†-              | 167.7                             | $Ca(IO_3)_{2(s)}$                             | -1002.5                     | -893.3             | 230.1          |
| Al <sub>2</sub> O <sub>3(s)</sub>                                                   |                              | -1582.4                 | 50.9          | BaCO <sub>3(s)</sub>                                                            | -1216.3           | -1137.6                   | 112.1                 | $Cd\tilde{F}_{2(s)}$                                           | -700.4                      | -647.7            | 77.4                              | $Ca(IO_3)_2 \cdot H_2O_{(S)}$                 | -1293.3                     | NA                 | į              |
| $AI(OH)_{3(s)}$<br>$AI(NO_2)_2$ : 6 $H_2O_{(s)}$                                    | -1287.4                      | -1149.8<br>-2203.9      | 85.4<br>467.8 | $Ba(HCO_3)_{2(s)}$<br>$Ba(NO_3)_{2(s)}$                                         | -1921.6<br>-992 1 | -1734.3                   | 192.0<br>213.8        | CdCl <sub>2(s)</sub><br>CdCl <sub>2</sub> · H·O <sub>(s)</sub> | -391.5<br>-688.4            | -344.0<br>-587.1  | 115.3<br>167.8                    |                                               | -2780.7                     | -2267.7            | 451.9<br>39.7  |
| $Al_2S_{3(s)}$                                                                      | -723.8                       |                         | decomp.       | $BaS_{(s)}$                                                                     | -460.0            | -456.0                    | 78.2                  | $Cd(CIO_4)_{2(2g_1)}$                                          | -334.6                      | -94.8             | 290.8                             | )2(s)                                         | -986.1                      | -898.6             | 83.4           |
| $Al_2(SO_4)_{3(s)}$                                                                 | -3440.0                      |                         | 239.3         | $\widetilde{\mathrm{BaSO}}_{4(s)}$                                              | -1473.2           | -1362.3                   | 151.9                 | $Cd(CIO_4)_2 \cdot 6H_2O_{(s)}$                                | -2052.7                     | NA†               | 1                                 |                                               | -59.1                       | -64.8              | 6.69           |
| Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> · 6 H <sub>2</sub> O <sub>(s)</sub> | -5311.7                      | -4622.6<br>7427 E       | 469.0         | BaCrO <sub>4(s)</sub>                                                           | -1428.0           | -1338.8<br>NA†            | 132.2                 | CdBr <sub>2(s)</sub>                                           | -316.2                      | -296.3            | 137.2                             |                                               | -1206.9                     | -1128.8            | 92.9           |
| A12(3O4/3 · 10112O(s)                                                               | -00/00-<br>Sp                | C: /C# /-               |               | BaC <sub>2</sub> O <sub>4</sub> (s)                                             | -1306.0           | Z Z                       | $5.20 \times 10^{-5}$ |                                                                | -203.3<br>NA <sup>†</sup> - | 377.1             | NA <sup>†</sup> −                 | Ca(NO <sub>2</sub> ), aragonite               | -1207.1                     | -1127.0            | 193.3          |
| $Sb_{(g)}^{3+}$                                                                     | 2703.3                       | NA†                     | 168.7         | (c) - 7 + - 7                                                                   | Be                |                           |                       |                                                                | -258.2                      | -228.4            | 54.8                              |                                               | -1540.8                     | -1229.3            | 269.4          |
| $\mathrm{Sb}ec{\mathrm{H}}_{3(\mathrm{g})}$                                         | 145.1                        | 147.7                   | 232.7         | Be <sub>(s)</sub>                                                               | 0                 | 0                         | 9.5                   | $Cd(OH)_{2(s)}$                                                | -560.7                      | -473.6            | 0.96                              |                                               | -1838.0                     | -1471.9            | 319.2          |
| $\operatorname{SbF}_{3(s)}$                                                         | -915.5                       | -807.0                  | 105.4         | Be <sub>(s)</sub>                                                               | 2993.0            | NA                        | 136.2                 | $Cd(CN)_{2(s)}$                                                | 162.2                       | 207.9             | 104.2                             | $_{3})_{2}\cdot 4H_{2}O_{(s)}$                | -2132.3                     | -1713.5            | 375.3          |
| SPC13(s)                                                                            | -382.2<br>-440.2             | -323.7                  | 301.0         | ber <sub>2(s)</sub><br>BeCl <sub>2(s)</sub>                                     | -1026.8<br>-490.4 | -979.5<br>-445.6          | 53.2<br>82.7          | $Cd(NO_3)_{2(s)}$                                              | -456.3<br>-1055 6           | -259.0<br>-748.9  | 197.9<br>NA†                      | CaS(s)                                        | -482.4<br>-1156 0           | -4//-4<br>NA†      | 56.5           |
| $\operatorname{Sb}_4\operatorname{O}_{6(\mathrm{s})}$                               | -1440.6                      | -1268.2                 | 220.9         | $\operatorname{BeCl}_{2} \cdot \operatorname{4H_2O_{(s)}}$                      | -1808.3           | -1563.0                   | 243.1                 | $Cd(NO_3)_2 \cdot 4H_2O_{(s)}$                                 | -1649.0                     | -1217.1           | NA                                |                                               | -1431.1                     | -1321.9            | 106.7          |
| $Sb_2S_3(black)_{(s)}$                                                              | -174.9                       | -173.6                  | 182.0         | BeBr <sub>2(s)</sub>                                                            | -353.5            | -354.0                    | 112.1                 | CdS <sub>(s)</sub>                                             | -161.9                      | -156.5            | 64.8                              | s)                                            | -1576.7                     | -1436.8            | 130.5          |
| S02(SO4/3(s)                                                                        | -2402.5<br>As                | NA                      |               | $\stackrel{\mathrm{DeO}(\mathrm{s})}{\mathrm{Be}(\mathrm{OH})_{2(\mathrm{s})}}$ | -609.6<br>-902.4  | -380.3<br>-815.0          | 14.1<br>51.9          | $CdSO_{4}(s)$<br>$CdSO_{4} \cdot 2.67 H_{2}O_{(s)}$            | -933.3                      | -822.8<br>-1465.3 | 123.0<br>229.6                    | $Ca_3(PO_4)_{2(s)}$                           | -2022.6<br>-4120.8          | -1/9/.4            | 236.0          |
| AS <sub>(s)</sub>                                                                   | 0                            | 0                       | 35.1          | Be(NO <sub>3</sub> ) <sub>2</sub> · 3 H <sub>2</sub> O <sub>(s)</sub>           | -787.8            | $NA^{\dagger}$            | 0.804                 | (6) -7                                                         | Cs                          |                   |                                   | 021                                           | -1379.0                     | -1277.4            | 133.9          |
| $\mathrm{As}^{3+}_{(\mathrm{g})}$                                                   | 5950.2                       | $\mathrm{NA}^\dagger$   | 162.3         | BeS <sub>(s)</sub>                                                              | -234.3            | -232.0                    | 35.0                  | $Cs_{(s)}$                                                     | 0                           | 0                 |                                   |                                               | -1360.6                     | $NA^{\dagger}$     | $NA^{\dagger}$ |
| $AsH_{3(g)}$                                                                        | 66.4                         | 6.89                    | 222.7         | $BeSO_{4(s)}$                                                                   | -1205.2           | -1093.9                   | 6.77                  | $\mathrm{Cs}^{1+}_{(\mathrm{g})}$                              | 458.0                       | NA↑               | 169.7                             | $^{42}O_{(s)}$                                | -1674.9                     | -1514.0            | 156.5          |
| AsF <sub>3(1)</sub>                                                                 | -956.3                       | -909.1                  | 181.2         | $BeSO_4 \cdot 4H_2O_{(s)}$                                                      | -2423.7           | -2080.7                   | 234.0                 | $\operatorname{CsF}_{(s)}$                                     | -553.5                      | -525.5            | 92.8                              | $CaSi_{2(s)}$                                 | -151.0                      | NA <sup>†</sup>    | decomp.        |
| ASF3(g)<br>ASCl2d                                                                   | -920.6                       | -905./<br>-259.4        |               | Bic                                                                             | DI (              | C                         | 56.9                  |                                                                | -443.0<br>-411.7            | -414.5            | 156.1                             |                                               | -1634.9                     | -1549./<br>-2192.8 | 81.9           |
| $AsBr_{3(s)}$                                                                       | -197.5                       | -169.0                  |               | $B_{i(r)}^{(s)}$                                                                | 5005.7            | NA <sup>†</sup>           |                       | CsClO <sub>4(s)</sub>                                          | -443.1                      | -314.3            | 175.1                             | nite                                          | 0                           | 0                  | 5.7            |
| As <sub>2</sub> O <sub>3(s)</sub>                                                   | -653.0                       | -571.0                  |               | $\operatorname{BiCI}_{3(s)}$                                                    | -379.1            | -315.1                    | 177.0                 | $\operatorname{CsBr}_{(\mathrm{s})}$                           | -405.8                      | -391.4            | 113.1                             | C(s), diamond                                 | 1.9                         | 2.9                | 2.4            |
| As <sub>2</sub> O <sub>5(s)</sub>                                                   | -924.9                       | -782.4                  |               | $Bi(CIO)_{3(s)}$                                                                | -366.9            | -322.2                    | 120.5                 | $\mathrm{CsI}_{(\mathrm{s})}$                                  | -346.0                      | -340.6            | 123.1                             | $C_{(g)}$                                     | 716.7                       | 671.3              | 158.0          |
| $As_2O_{3(s)}$                                                                      | -169.0                       | -168.6                  | 163.6         | $\mathrm{Bil}_{3(\mathrm{s})}$                                                  | -105.0            | -175.3                    | 233.9                 | $CsIO_{4(s)}$                                                  | - AΔς-<br>α π               | -380.7            | 184.0<br>146.9                    | $C_{2(g)}^{Z(g)}$                             | 836.8                       | 780.4<br>773.1     | 199.3          |
| 1 224 Cb(S)                                                                         | Ва                           | 0.0011                  | 0.03          | $B_{12}S_{3(s)}$                                                                | -143.1            | -140.6                    | 200.46                | $CSOH_{(s)}$                                                   | -417.2                      | -359.0            | 86.0                              | CCI <sub>4(1)</sub>                           | -134.0                      | -65.3              | 214.4          |
| Ba <sub>(s)</sub>                                                                   | 0                            | 0                       | 6.99          | $\operatorname{Bi}_2(\operatorname{SO}_4)_{3(s)}$                               | -2544.3           | -2583.6                   | $NA^{\dagger}$        | $CsHCO_{3(s)}$                                                 | -966.1                      | -831.8            | 130.0                             | $CO_{(g)}$                                    | -110.5                      | -137.2             | 197.6          |
| $Ba_{(g)}^{2+}$                                                                     | 1660.5                       | NA                      | 170.2         |                                                                                 | В                 |                           |                       | CsNO <sub>3(s)</sub>                                           | -506.0                      | -406.6            | 155.2                             | $CO_{2(g)}$                                   | -393.5                      | -394.4             | 213.6          |
| $\mathrm{Ba}_{\mathrm{(aq)}}^{2+}$                                                  | -537.0                       | -560.8                  | 9.6           | $\tilde{B_{(s)}}$                                                               | 0                 | 0                         | 5.9                   | $Cs_2SO_{4(s)}$                                                | -1443.0                     | -1323.7           | 211.9                             | CO <sub>2(aq)</sub>                           | -413.8                      | -386.0             | 117.6          |
| $BaH_{2(s)}$                                                                        | -178.7                       | -132.2                  | NA<br>₹       | $\mathbf{B}_{(\mathbf{s})}^{3+}$                                                | 7468.0            | NAŤ                       | 138.5                 | ,                                                              | S C                         | c                 | 7 7                               | $CO_3^{2-}$ (aq)                              | -677.1                      | -527.8             | -56.9          |
| Darz(s)<br>BaCless                                                                  | -1207.1                      | -1156.9                 | 70.4<br>122.7 | D2H6(g)                                                                         | 33.0<br>137.0     | 56.6<br>1120.2            | 254.0                 | (a(s)                                                          | 1025.0                      | - ¥<br>V          | 41.4                              | C2IN2(g)                                      | 6.70c                       | 2,062<br>65.7      | 151.2          |
| BaCl · 2 H·O <sub>6</sub>                                                           | -636.0                       | -510.4                  | 202.9         | $^{\mathrm{DF3(g)}}_{\mathrm{BCl}_{3d}}$                                        | -137.0            | -387.4                    | 20 <del>1</del> .0    | CaH <sub>2</sub> (g)                                           | -186.2                      | -147.3            | 42.0                              | CS(3)                                         | 117.0                       | 67.2               | 237.7          |
| Ba(CIO <sub>3</sub> ) <sub>2(s)</sub>                                               | -762.7                       | -556.9                  | 231.0         | $\overline{\mathrm{BCl}_{3(g)}}$                                                | -403.7            | -388.7                    | 290.0                 | $CaF_{2(s)}$                                                   | -1219.6                     | -1167.3           | 689                               | (B)                                           | IJ                          |                    |                |
| Ba(ClO <sub>3</sub> ) <sub>2</sub> ·H <sub>2</sub> O <sub>(s)</sub>                 | -1069.0                      | —NA†                    | 0.125         | $\mathrm{BI}_{3(\mathrm{g})}$                                                   | 71.1              | 20.8                      | 349.1                 | $CaCl_{2(s)}$                                                  | -795.8                      | -748.1            | 104.6                             | Cl <sub>2(g)</sub>                            | 0                           | 0                  | 233.0          |
| $Ba(CIO_4)_{2(s)}$                                                                  | -800.0                       | -535.1                  | 249.0         | $B_2O_{3(s)}$                                                                   | -1272.8           | -1193.7                   | 54.0                  | $CaCl_2 \cdot H_2O_{(s)}$                                      | -1109.2                     | -1010.9           | $NA^{\dagger}$                    | $\operatorname{Cl}_{(g)}^{-1}$                | -246.0                      | -240.0             | 153.1          |
| $BaBr_{2(s)}$                                                                       | -757.3                       | -736.8                  | 146.0         | $B_2O_{3(1)}$                                                                   | -1254.5           | -1182.4                   | 77.8                  | $CaCl_2 \cdot 2H_2O_{(s)}$                                     | -1402.9                     | NA                | 0.665                             | $Cl_2O_{(g)}$                                 | 80.3                        | 97.9               | 266.1          |

| Substance                                                    | $\Delta H_f^\circ$ | $\Delta G_f^\circ$               | $\Delta S^{\circ}$      | Substance $\Delta H_f^0 - \Delta G_f^0 - \Delta S^0$ Substance $\Delta$ . | $\Delta H_f^\circ$                       | $\Delta G_f^\circ$ | $\Delta S^{\circ}$ | Substance                                                                                  | $\Delta H_f^\circ$ | $\Delta G_f^\circ$ | $\Delta S^{\circ}$         | Substance                                                                                        | $\Delta H_f^{\circ}$ | $\Delta G_f^\circ$               | $\Delta S^{\circ}$ |
|--------------------------------------------------------------|--------------------|----------------------------------|-------------------------|---------------------------------------------------------------------------|------------------------------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------|--------------------|--------------------|----------------------------|--------------------------------------------------------------------------------------------------|----------------------|----------------------------------|--------------------|
|                                                              | KJ/mol)            | (KJ/mol) (KJ/mol) (J/mol· K)     | I/mol· K                |                                                                           | (KJ/mol) (KJ/mo                          | $\overline{}$      | (J/mol·K)          |                                                                                            | (KJ/mol)           | (KJ/mol)           | KJ/mol) (KJ/mol) (J/mol·K) |                                                                                                  | (KJ/mol) (           | (KJ/mol) (J/mol·                 | /mol· K)           |
|                                                              |                    |                                  |                         |                                                                           |                                          |                    |                    |                                                                                            |                    |                    |                            |                                                                                                  |                      |                                  |                    |
| į                                                            | ٠ ڻ                | c                                | 0 00                    | $Cu(IO_3)_{2(aq)}$                                                        | -377.8                                   | -190.4             | 137.2              | HBr <sub>(g)</sub>                                                                         | -36.4              | -53.4              | 198.6                      | FeBr <sub>2(s)</sub>                                                                             | -249.8               | -236.0                           | 140.7              |
| (1(s)                                                        | -232.0             | NA T                             | 0.67                    | Cu(1O3)2 · 1 · 2O(s)                                                      | 168.6                                    | -146.0             | 2±7.7<br>03.1      | III(g)<br>HIOc                                                                             | 20.7               | -144.3             | 118.0                      | rei2(s)<br>FeI2(s)                                                                               | 71.0                 | -120.4<br>NA†                    | 0.11               |
| CI(aq)                                                       | -252.0             | -10880                           | 93.9                    | Cu2O(s)                                                                   | -157.3                                   | -140.0             | 42.6               | H <sub>2</sub> O <sub>(1)</sub>                                                            | 285.1              | -737.2             | 0.011                      | rei3(g)<br>FeO(c)                                                                                | -271 9               | -245.4                           | ς<br>π             |
| $\widetilde{\operatorname{CrCl}}_{2(s)}^{(s)}$               | -326.0             | -282.0                           | 115.0                   | $Cu(OH)_{2(s)}$                                                           | -449.8                                   | -359.4             | 75.0               | $H_2^{(I)}$                                                                                | -241.8             | -228.6             | 188.7                      | $Fe_2O_{3(s)}$                                                                                   | -824.2               | -742.2                           | 87.4               |
| $\operatorname{CrCl}_{3(\mathrm{s})}$                        | -556.5             | -486.2                           | 115.3                   | $Cu(NO_3)_{2(s)}$                                                         | -302.9                                   | -118.2             | 193.0              | $H_2O_{2(l)}$                                                                              | -187.8             | -120.4             | 109.6                      | $Fe_3O_{4(s)}$                                                                                   | -1118.4              | -1015.5                          | 146.4              |
| $CrO_2Cl_{2(1)}$                                             | -579.5             | -510.9                           | 221.8                   | Cu(NO <sub>3</sub> ) <sub>2</sub> ·3H <sub>2</sub> O <sub>(s)</sub>       |                                          | NA                 | 0.570              | $H_3AsO_{3(aq)}$                                                                           | -742.2             | -NA⊤               |                            | $Fe(OH)_{2(s)}$                                                                                  | -569.0               | -486.6                           | 88.0               |
| $\operatorname{Crl}_{3(s)}$                                  | -205.0             | -202.5                           | NA†                     | $Cu(NO_3)_2 \cdot 6H_2O_{(s)}$                                            | 1.                                       | γΑγ                | 0.824              | $_{\mathrm{IGN}}^{\mathrm{ASO}_{4(\mathrm{aq})}}$                                          | -902.5             | NA†                | 0                          | $Fe(OH)_{3(s)}$                                                                                  | -823.0               | 9.969-                           | 106.7              |
|                                                              | -1139.7<br>-598 5  | -1050.1                          | 01.2<br>NA†             | Cu25(s)                                                                   | -73.1                                    | -00.7              | 120.9<br>66.5      | HCN()                                                                                      | 135 1              | 124.9              | 2017                       | FeCO <sub>3(s)</sub>                                                                             | -774 O               | -000.7                           | 338.1              |
| 196                                                          | -3025.0            | -501.0<br>NA†                    | 0.163                   | Cu2(s)                                                                    | -771 4                                   | -661 9             | 109.0              | H <sub>2</sub> CO <sub>2(-1)</sub>                                                         | 1.001              | -6233              | 187.4                      | Te(CO)5(1)<br>FeS(2)                                                                             | -100.0               | -100.4                           | 503                |
| 8H,O                                                         | -8339.0            | NAT                              | 0.167                   | Cu3O4(s)                                                                  | 9 6266-                                  | -1880 1            | 300.4              | $HCO_{s-1}$                                                                                | -692.0             | 2.525<br>8.687-    | 91.2                       | 1 CJ(s)<br>FPS <sub>2/2</sub>                                                                    | -178.2               | -166.9                           | 52.9               |
|                                                              | -1076.9            | -975.0                           | 0.10<br>NA <sup>†</sup> | Cu2O4 : 0.112O(s)                                                         | F. F | 1,0001-            | F.0000             | HNO3(1)                                                                                    | -174.1             | -80.8              | 266.3                      | resz(s)<br>FeSO <sub>4(s)</sub>                                                                  | -178.2               | -100.9                           | 107.5              |
|                                                              | ී                  |                                  |                         | F <sub>2(g)</sub>                                                         | 0                                        | 0                  | 202.7              | $H_2S_{(g)}$                                                                               | -20.6              | -33.6              | 205.7                      | FeSO <sub>4</sub> · 7 H <sub>2</sub> O <sub>(s)</sub>                                            | -3014.6              | -2510.3                          | 409.2              |
| Co <sub>(s)</sub>                                            | 0                  | 0                                | 30.0                    | F <sub>(g)</sub>                                                          | -270.7                                   | -266.6             | 145.4              | $ m H_2S_{(aq)}$                                                                           | -39.7              | -27.9              | 121.3                      | Fe <sub>2(s)4</sub> ) <sub>3(s)</sub>                                                            | -2581.5              | $\mathbf{N}\mathbf{A}^{\dagger}$ | 261.7              |
| $Co_{(g)}^{2+}$                                              | 2841.6             | $\mathbf{N}\mathbf{A}^{\dagger}$ | 178.8                   | $ m F_2O_{(g)}$                                                           | -21.7                                    | -4.7               | 247.3              | $H_2S_{2(1)}$                                                                              | -23.1              | $NA^{\dagger}$     | decomb.                    | Fe(NO <sub>3</sub> ) <sub>3(aq)</sub>                                                            | -674.9               | $NA^{\dagger}$                   |                    |
| $\mathrm{Co}\widetilde{\mathrm{F}}_{3(\mathrm{g})}$          | -810.9             | -707.0                           | 94.6                    |                                                                           | Ga                                       |                    |                    | $H_2Se_{(g)}$                                                                              | 76.0               | 62.3               | 219.0                      | $Pb_{(s)}$                                                                                       | 0                    | 0                                | 64.8               |
| $CoCl_{2(s)}$                                                | -312.5             | -269.9                           | 109.2                   | $Ga_{(g)}^{3+}$                                                           | 5816.0                                   | $NA^{\dagger}$     | 161.6              | $\mathrm{H}_2\mathrm{SO}_{4(1)}$                                                           | -814.0             | -690.1             | 156.9                      | $Pb_{(g)}^{2+}$                                                                                  | 916.8                | $NA^{\dagger}$                   | 175.3              |
|                                                              | -923.0             | -764.8                           | 188.0                   | $GaF_{3(s)}$                                                              | -1163.0                                  | -1085.3            | 84.0               | $\mathrm{H}_{2}\mathrm{SO}_{4(\mathrm{aq})}$                                               | -909.3             | -744.5             | 20.1                       | $Pb_{(aq)}^{2+}$                                                                                 | -1.7                 | -24.4                            | 10.5               |
| (s)                                                          | -2115.4            | -1725.5                          | 343.0                   | $GaCl_{3(s)}$                                                             | -524.7                                   | -454.8             | 142.0              | H <sub>2</sub> Te <sub>(g)</sub>                                                           | 154.0              | 138.0              | 234.0                      | PbF <sub>2(s)</sub>                                                                              | -664.0               | -617.1                           | 110.5              |
| CO(CIO4)2(aq)                                                | -316.7             | -/1.5<br>+ v i v                 | 0.162                   | Gabr <sub>3(s)</sub>                                                      | -386.6                                   | -339.8             | 180.0              | H3FO4(s)                                                                                   | -12/9.0            | -1119.2            | C:011                      | PPC1 <sub>2(s)</sub>                                                                             | 4.655-               | -314.1                           | 136.0              |
| Co(CIO4)2 · b H2O(s)                                         | -2038.4            | NA -                             | 1256                    | Gal3(s)                                                                   | 10801                                    | 0./12-             | 49.0<br>0.0        | H3bO3(s)                                                                                   | -1094.3            | -969.0<br>NIA†     | 88.8                       | PPC14(I)                                                                                         | 7.675                | 0.627-0                          | NA 121 E           |
| $CoBr_{2(s)}$                                                | -2020.0            | -210.0<br>NA†                    | 0.001                   | Gd2O3(s)                                                                  | -1009.1                                  | 5.076-             | 0.00               | 113O1 (g)                                                                                  | 1308.4             | NAT V              |                            | FDDI2(s)                                                                                         | -270.7               | -201.9                           | 101.3              |
| CODI 2 : 0.1.12O(s)                                          | 0.0202             |                                  | 0.00                    | ++-                                                                       | 25 55                                    | TATA               |                    |                                                                                            | 1.020.1            | TVI V              |                            | 1 D(D1 C3/2(s)<br>Pl-1                                                                           | 0.104.0              | 20.0                             | 174                |
| Col <sub>2(s)</sub>                                          | 788-               | -101.3                           | 158.2                   | Ge(g)                                                                     | 10412.3                                  | NA.                | -                  | $_{	ext{if}}^{	ext{G}}$                                                                    | -140.9             | AN ?               |                            | Pbl <sub>2(s)</sub>                                                                              | -175.5               | -173.6                           | 174.5              |
|                                                              | -500.8             | -310.4                           | 125.5                   | $\operatorname{GeF}_{4(g)}$                                               | -NA-                                     | 302.8              | decomb.            | $H_2S_{(aq)}^{\dagger}$                                                                    | 995.0              | NA                 |                            | PbO <sub>(s)</sub>                                                                               | -217.3               | -187.9                           | 68.7               |
| $\mathrm{H}_{2}\mathrm{O}_{\mathrm{(s)}}$                    | -1081.9            | -795.8                           | 267.8                   | GeCl <sub>2(s)</sub>                                                      | -NA-                                     | NA'-               | 2 45 6             | 1                                                                                          | - с                | c                  | 116.1                      | PbO <sub>2(s)</sub>                                                                              | -277.4               | -217.4                           | 9.89               |
|                                                              | -237.9             | -214.2                           | 33.0<br>102.5           | GeBran                                                                    | -347.7                                   | -402.0             | 280.7              | $\Gamma_{2(s)}$                                                                            | 62.4               | 19.4               | 260.6                      | $Pb_{3}O_{I(s)}$                                                                                 | -718.4               | -420.9                           | oo.0<br>211.3      |
|                                                              | -539.7             | -454.4                           | 79.0                    | GeBr <sub>4(g)</sub>                                                      | -300.0                                   | -318.0             | 396.1              | Z(g)<br>IF(g)                                                                              | -95.6              | -118.5             | 236.1                      | PbCO <sub>3(s)</sub>                                                                             | -700.0               | -626.3                           | 131.0              |
|                                                              | -420.5             | -237.0                           | 192.0                   | $GeO_{(s)}$                                                               | -212.1                                   | -237.2             | 50.0               | $I_{2}^{+}$ (g)                                                                            | 967.5              | $NA^{\dagger}$     |                            | $Pb(NO_3)_{2(s)}$                                                                                | -451.9               | -251.0                           | 213.0              |
| $^{2}H_{2}O_{(s)}$                                           | -1021.7            | NA⊤                              |                         | $GeO_{2(s)}$                                                              | -551.0                                   | -497.1             | 55.3               | $\mathrm{ICl}_{(\mathrm{s})}$                                                              | -35.1              | $NA^{\dagger}$     | decomb.                    | $PbS_{(s)}$                                                                                      | -100.4               | -98.7                            | 91.2               |
|                                                              | -1325.9            | NA                               |                         | $GeS_{(s)}$                                                               | -69.0                                    | -71.5              | 71.0               | $\stackrel{\mathrm{ICI}_{3(s)}}{=}$                                                        | -89.5              | -22.3              | 167.4                      | $PbSO_{4(s)}$                                                                                    | -919.0               | -813.2                           | 148.6              |
| $Co(NO_3)_2 \cdot 4 H_2O_{(s)}$                              | -1630.5            | NA'<br>-1655 6                   | ΝΑ <sup>†</sup>         | GeS <sub>2(s)</sub>                                                       | -189.5                                   | -NA-               | 0.00329            | $\overset{\mathrm{IBr}_{\mathrm{(s)}}}{\overset{\mathrm{I}}{\mathrm{CO}_{\mathrm{c}(s)}}}$ | -10.5              | NA-                | 138.1<br>NA†               | PbCrO <sub>4(s)</sub><br>Pb/CH <sub>2</sub> COO) <sub>2 13</sub> H <sub>2</sub> O <sub>2 3</sub> | -899.6               | -819.6<br>-NA†                   | 152.7              |
| $\cos(x + \cos x)$ or $\cos(x)$                              | -80.8              | -82.8                            | 67.4                    | Au(s)                                                                     | 0                                        | 0                  | 47.7               | $I_{(\sigma)}^{-1}$                                                                        | -196.6             | -221.9             | 169.1                      | Pb(C <sub>2</sub> H <sub>5</sub> ) <sub>4(1)</sub>                                               | 52.7                 | 336.4                            | 472.5              |
| $CoSO_{4(s)}$                                                | -888.3             | -782.4                           | 118.0                   | $\operatorname{Au}_{(\sigma)}^{1+}$                                       | 1262.4                                   | $NA^{\dagger}$     | 174.7              | (9)                                                                                        | Fe                 |                    |                            |                                                                                                  | ij                   |                                  |                    |
| $ m CoSO_4 \cdot 7 H_2O_{(s)}$                               | -2979.9            | -2473.8                          | 406.1                   | $AuH_{(g)}$                                                               | 294.9                                    | 265.7              | 211.0              | Fe <sub>(s)</sub>                                                                          | 0                  | 0                  | 27.0                       | $Li_{(s)}$                                                                                       | 0                    | 0                                | 28.4               |
|                                                              | Cn                 |                                  |                         | AuF <sub>3(s)</sub>                                                       | -363.0                                   | -297.5             | 210.9              | $\mathrm{Fe}_{\mathrm{(g)}}^{2+}$                                                          | 2752.2             | NA                 | 177.2                      | $\mathrm{Li}^+_{(\mathrm{g})}$                                                                   | 9.629                | 650.0                            | 132.9              |
| Cu <sub>(s)</sub>                                            | 0                  | 0                                | 33.2                    | $-$ AuCl $_{3(s)}$                                                        | -117.6                                   | -55.2              | 147.3              | $Fe_{(aq)}^{2+}$                                                                           | -89.1              | -78.9              | 137.7                      | $\operatorname{Li}^+_{(\operatorname{aq})}$                                                      | -278.6               | $NA^{\dagger}$                   | 10.3               |
| $Cu_{(g)}^{2+}$                                              | 3054.0             | NA†                              | 179.0                   | $AuCl_3 \cdot 2H_2O_{(s)}$                                                | -715.0                                   | -519.0             | 226.0              | $\operatorname{Fe}_{(\mathbf{g})}^{3+}$                                                    | -48.5              | -4.7               | 315.9                      | $LiH_{(s)}$                                                                                      | -90.5                | -68.4                            | 20.3               |
| $CuF_{2(s)}$                                                 | -542.7             | -481.0                           | 88.0                    | $AuBr_{3(s)}$                                                             | -53.3                                    | -31.0              | 100.0              | FeF <sub>2(s)</sub>                                                                        | -686.0             | -644.0             | 87.0                       | $\mathrm{Li}_{3}\mathrm{H}_{4(\mathrm{s})}$                                                      | $NA^{\dagger}$       | $NA^{\dagger}$                   | decomp.            |
| $\mathrm{CuF}_2\cdot 2\mathrm{H}_2\mathrm{O}_{\mathrm{(s)}}$ | $NA^{\dagger}$     | -981.6                           | NA                      | $\mathrm{AuI}_{(\mathrm{s})}$                                             | 0.0                                      | -0.2               | 119.2              | $\text{FeF}_{3(aq)}$                                                                       | -1046.4            | -841.0             | 357.0                      | $LiF_{(s)}$                                                                                      | -616.0               | -587.7                           | 35.6               |
| $CuCl_{(s)}$                                                 | -137.2             | -119.9                           | 86.2                    | $Au_2O_{3(s)}$                                                            | -3.3                                     | 76.2               | NA¹-               | $\operatorname{FeCl}_{2(s)}$                                                               | -341.8             | -302.3             | 117.9                      | $LiCl_{(s)}$                                                                                     | -408.6               | -384.4                           | 59.3               |
|                                                              | -220.1             | -1/5.7                           | 108.1                   | H                                                                         | H c                                      | c                  | 130 6              | FeCl <sub>2</sub> ·2H <sub>2</sub> O <sub>(s)</sub>                                        | -953.T<br>1540.3   | 12757              | Z Z                        | LiCIO <sub>3(s)</sub>                                                                            | -369.0               | Z Z                              | 5.531              |
| $Cu(CIO_4)_2(aq)$                                            | -1933.1            | V.S±<br>NA⊤                      | 4.407                   | 1.2(g)<br>HE <sub>(.)</sub>                                               | 2771 1                                   | -273.2             | 173.7              | FeC12 · # 1 12 · (s)                                                                       | -399 5             | -12/5./            | 142.3                      | $_{ m LiClO_4(s)}$                                                                               | -501.0               | -509.6                           | 155.2              |
| C11Br263                                                     | -141.8             | -108.7                           | 118.0                   | HO(5)                                                                     | -97 3                                    | 2, 79-<br>5, 79-   | 186.8              | FeCl., 6 H.O.                                                                              | -223.8             | -1812.9            | NA <sup>†</sup>            | LiClO <sub>4</sub> : 3H <sub>2</sub> O <sub>(3)</sub>                                            | -1798.0              | -1001 3                          | 254.8              |
| $CuBr_2 \cdot 4H_2O_{(s)}$                                   | -1326.3            | -1081.1                          | 293.7                   | $HCI_{(aq)}$                                                              | -167.2                                   | -131.2             | 56.5               | $Fe(ClO_4)_{2(aq)}$                                                                        | -347.7             | -96.1              | 226.4                      | LiBr(s)                                                                                          | -351.2               | -342.0                           | 74.3               |
| $Cul_{(s)}$                                                  | -67.7              | -69.5                            | 2.96                    | $\mathrm{HClO}_{\mathrm{(aq)}}^{-}$                                       | -131.3                                   | -80.2              | 106.8              | Fe(ClO <sub>4</sub> ) <sub>2</sub> ·6 H <sub>2</sub> O <sub>(s)</sub>                      | -2086.6            | $NA^{\dagger}$     | 0.270                      | $\text{LiBr} \cdot \text{H}_2 \text{O}_{(\mathrm{s})}$                                           | -662.6               | -594.3                           | 109.6              |
|                                                              |                    |                                  |                         |                                                                           |                                          |                    |                    |                                                                                            |                    |                    |                            |                                                                                                  |                      |                                  |                    |

| Table 7.1 (continued)                                                                     | Standard           | d thermody                  | vnamic fur            | Table 7.1 (continued) Standard thermodynamic functions at 1atm and 298K | 8K.                       |                                  |                                  |                                                                          |                    |                             |                    |                                                     |                              |                                |                    |
|-------------------------------------------------------------------------------------------|--------------------|-----------------------------|-----------------------|-------------------------------------------------------------------------|---------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------|--------------------|-----------------------------|--------------------|-----------------------------------------------------|------------------------------|--------------------------------|--------------------|
| Substance                                                                                 | $\Delta H_f^\circ$ | $\Delta G_f^\circ$          | $\Delta S^{\circ}$    | Substance                                                               | $\Delta H_f^\circ$        | $\Delta G_f^\circ$               | $\Delta S^{\circ}$               | Substance                                                                | $\Delta H_f^\circ$ | $\Delta G_f^\circ$          | $\Delta S^{\circ}$ | Substance                                           | $\Delta H_f^\circ$           | $\Delta G_f^\circ$             | $\Delta S^{\circ}$ |
|                                                                                           | KJ/mol)            | (KJ/mol) (KJ/mol) (J/mol·K) | J/mol· K)             |                                                                         | (KJ/mol)                  | (KJ/mol) (KJ/mol) (J/mol· K)     | /mol· K)                         |                                                                          | (KJ/mol)           | (KJ/mol) (KJ/mol) (J/mol·K) | J/mol·K)           | )                                                   | (KJ/mol) (KJ/mol) (J/mol· K) | KJ/mol) (J                     | /mol· K)           |
| I iRr. 2 H.O.                                                                             | 4 696              | 9008                        | 1623                  | MasiO <sub>2</sub>                                                      | 15/90                     | 114621                           | 7 2 2                            | "HO'HIN                                                                  | 261.0              | 1 177                       | 7656               | COSHA                                               | 1160 6                       | 10317                          | 138 1              |
| $\text{LiBr}^{\circ} \circ \text{LiBr}^{\circ} \circ \text{S}$                            | -347.0             | NA†                         | C:701                 | ${ m Mg}_2{ m SiO}_{4({ m s})}$                                         | -1245.0                   | -11 <del>4</del> 02.1<br>-2055.2 | 95.1                             | NH4NO3(s)                                                                | -365.6             | -184.0                      | 151.1              |                                                     |                              | -1031. <del>4</del><br>-1415.9 | 134.9              |
| $_{ m LiI(s)}^{ m LiI(s)}$                                                                | -270.4             | -270.3                      | 86.8                  |                                                                         | Mn                        | C                                | 32.0                             | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4(s)</sub>                       | -1180.9            | -901.9                      | 220.1              |                                                     |                              | -737.6                         | 171.7              |
| LII : 7 H <sub>2</sub> O(s)                                                               | -890.3             | -7803                       | 1840                  | $M_{n^2+}$                                                              | 2519.0                    | o V<br>V                         | 32.0<br>173.6                    | 1 <b>v</b> 1 14 v C3(s)                                                  | 1.0001-            | -000-                       | 140.0              |                                                     |                              | -1223.6                        | 200.1              |
| Lil : 3 H <sub>2</sub> O <sub>(s)</sub>                                                   | -1192.1            | Z A Z                       | 0.804                 | Mn <sup>2+</sup> ,                                                      | -233.0                    | -228.0                           | -74 6                            | 0,0                                                                      | ) =                | c                           |                    |                                                     |                              | -2240.1                        | 201.2              |
| I iIO <sub>2(-)</sub>                                                                     | -503.4             | NA†                         | 0.447                 | MnCl <sub>2/-</sub>                                                     | -481 3                    | -440 5                           | 1182                             | Ozesone                                                                  | 142.7              | 163.2                       | 2388               | KA1(SO <sub>4</sub> ) <sub>2</sub> (s)              |                              | -5141 7                        | 687.4              |
| $LirO_{(s)}$                                                                              | -597.9             | -561.2                      | 37.6                  | $MnCl_2(s)$                                                             | 6.687-                    | -696.2                           | 174.1                            | $O_{3(g)}^{(g)}$ Ozone<br>O $H_{(2)}^{-1}$                               | -230.0             | -157.2                      | -10.8              |                                                     | -5777.3                      | -J.±1.′<br>NA†                 | 0.0441             |
| LiOH(s)                                                                                   | -484.4             | -439.0                      | 42.8                  |                                                                         | -1092.0                   | -942.2                           | 218.8                            | (ad)                                                                     | Ъ                  | !                           |                    | _                                                   | -249.8                       | -129.7                         | 426.1              |
| LiOH. H <sub>2</sub> O <sub>(s)</sub>                                                     | -788.0             | -681.0                      | 71.2                  |                                                                         | -1687.4                   | -1423.8                          | 303.3                            | $\overline{P}(s)$ , white                                                | 0                  | 0                           | 41.1               |                                                     |                              | -453.1                         | 418.8              |
| Li <sub>2</sub> CO <sub>3(s)</sub>                                                        | -1215.9            | -1132.1                     | 90.4                  | MnBr <sub>2(s)</sub>                                                    | -384.9                    | -365.7<br>NA †                   | 138.0                            | $P_{4(g)}$                                                               | 314.5              | 278.3                       | 163.2              |                                                     | -1466.5 ·                    | -1169.0                        | 593.7              |
| Lis N <sub>©</sub>                                                                        | -309.0             | -000.9                      | 37.7                  | MnBr : $4 \text{ H}_2\text{O}(\text{s})$                                | -703.0                    | -1292.4                          | 291.6                            | $_{ m PH_{4}I_{\odot}}^{ m FH_{4}I_{\odot}}$                             | ±:6<br>-669-       | #:C1                        | 123.0              | Rh.                                                 | 490.1                        | ΝĄ                             | 164.2              |
| LiNO3(e)                                                                                  | -483.1             | -381.2                      | 0.06                  | $MnI_{2(3a)}$                                                           | -331.0                    | -250.6                           | 152.7                            | $PF_{3(\alpha)}$                                                         | -918.8             | -897.5                      | 273.1              | $\overset{\text{reg}}{\text{RbH}_{(e)}}$            | -52.1                        | -32.2                          | NA↑                |
| $\text{LiNO}_3 \cdot 3 \text{H}_2 \text{O}_{(\mathrm{s})}$                                | -1374.4            | -1103.7                     | 223.4                 | $Mnl_2 \cdot 2H_2O_{(s)}$                                               | -842.7                    | NA⊤                              | NA                               | $PF_{5(g)}$                                                              | -1595.8            | NA⊤                         | 281.0              | RbF <sub>(s)</sub>                                  | -557.7                       | -523.4                         | 82.1               |
| $\mathrm{Li}_2\mathrm{SO}_{4(\mathrm{s})}$                                                | -1436.5            | -1321.8                     | 115.1                 | (s)                                                                     | -1438.9                   | $NA^{\dagger}$                   | $NA^{\dagger}$                   | PCl <sub>3(1)</sub>                                                      | -319.7             | -272.4                      | 217.1              | $RbCl_{(s)}$                                        | -435.3                       | -407.8                         | 95.9               |
| $\mathrm{Li}_2\mathrm{SO}_4$ $\mathrm{H}_2\mathrm{O}_{(\mathrm{s})}$                      | -1735.5            | _                           | 163.6                 |                                                                         | -385.2                    | -362.9                           | 59.7                             | $PCl_{5(s)}$                                                             | -443.5             | $NA^{\dagger}$              | 166.5              | $RbClO_{3(s)}$                                      | -402.9                       | -300.4                         | 151.9              |
| Li <sub>3</sub> PO <sub>4(s)</sub>                                                        | -2095.8            |                             | 0.000257              | ф)                                                                      | -542.7                    | -449.4                           | 191.0                            | POCl <sub>3(l)</sub>                                                     | -597.1             | -520.9                      | 222.5              | RbClO <sub>4(s)</sub>                               | -437.2                       | -307.7                         | 164.0              |
| LiAlH <sub>4(s)</sub>                                                                     | -116.3             | 44.8                        | 78.7                  |                                                                         | -1387.8                   | -1283.2                          | 155.6                            | $PBr_{3(1)}$                                                             | -184.5             | -175.7                      | 240.2              | $\operatorname{RbBr}_{(\mathrm{s})}$                | -394.6                       | -381.8                         | 110.0              |
|                                                                                           | Mg                 | c                           | L                     | Mn <sub>2</sub> O <sub>3(s)</sub>                                       | -959.0                    | -881.2                           | 110.5                            | $PBr_{5(s)}$                                                             | -269.9             | -NA-                        | decomp.            | $RbBrO_{3(s)}$                                      | -367.3                       | -278.1                         | 161.1              |
| $\mathrm{Mg}_{(\mathrm{s})}$                                                              | 0 ;                | o i                         | 32.5                  | MnO <sub>2</sub> (s),pyrolusite                                         | -520.0                    | -465.2                           | 53.1                             | PObr <sub>3(s)</sub>                                                     | -458.6             | -430.5                      | Ā,                 | Kbl(s)                                              | -333.8                       | -328.9                         | 118.4              |
| ${ m Mg}_{ m aq}^{ m T}$                                                                  | -466.9             | -454.8                      | -138.1                | $Mn(OH)_{2(s)}$                                                         | -695.4                    | -615.0                           | 99.2                             | $P_4O_{6(s)}$                                                            | -1640.1            | NA                          | decomb.            | $RbIO_{3(s)}$                                       | NA.                          | -426.3                         | Ā                  |
| $\widetilde{\mathrm{MgF}_{2(\mathrm{s})}}$                                                | -1123.4            | -1070.3                     | 57.2                  | $MnCO_{3(s)}$                                                           | -894.1                    | -816.7                           | 82.8                             | $\tilde{\mathrm{P_4O_{10(s)}}}$                                          | -2984.0            | -2697.8                     | 228.9              | $RbOH_{(s)}$                                        | -418.2                       | Ν                              | 84.1               |
| $ m MgCl_{2(s)}$                                                                          | -641.3             | -591.8                      | 9.68                  |                                                                         | -576.3                    | -503.3                           | 168.6                            | P <sub>2</sub> S <sub>5(s)</sub>                                         | 251.0              | NA                          | insoluble          |                                                     | -748.9                       | NA.                            |                    |
| $MgCl_2 \cdot H_2O_{(s)}$                                                                 | -966.6             | -861.8                      | 137.2                 | )3)2 · 6 H <sub>2</sub> O <sub>(s)</sub>                                | -2371.9                   | -1809.6                          | NA.                              | 1                                                                        | <b>~</b>           | c                           | 5                  | $^{42}O_{(s)}$                                      | -1053.2                      | NA-                            | 7                  |
| MgCl2 · 4 H2O(s)                                                                          | -12/9./<br>-1898.9 | -1118.1<br>-1623.5          | 1/9.9<br>264.0        | MnSO <sub>4(s)</sub>                                                    | -214.2<br>-1065.2         | -218.4<br>-957.4                 | 78.2<br>112.1                    | $\overset{\mathbf{N}_{(\mathbf{s})}}{\mathrm{K}_{(\mathbf{s})}^{+}}$     | 0<br>514.3         | 481.2                       | 04.2<br>154.4      | Rb2CO3(s)<br>RbHCO3(s)                              |                              | -1021.0<br>-893.6              | 181.4<br>121.3     |
| $ m MgCl_2 \cdot 6H_2O_{(s)}$                                                             | -2499.0            | -2115.0                     | 366.1                 | [2O <sub>(s)</sub>                                                      | -1376.5                   | -1214.6                          | $NA^{\dagger}$                   | $	ext{KF}_{(\mathrm{S})}$                                                | -567.3             | -537.8                      | 9.99               | $RbNO_{3(s)}$                                       | -495.1                       | -395.8                         | 147.3              |
| $\widetilde{\mathrm{Mg}}(\mathrm{ClO_4})_{2(\mathrm{s})}$                                 | -568.9             | -432.2                      | 213.0                 | $MnSO_4 \cdot 4H_2O_{(s)}$                                              | -2258.1                   | -1908.3                          | $\mathbf{N}\mathbf{A}^{\dagger}$ | $\overline{\mathrm{KF} \cdot 2  \mathrm{H}_2 \mathrm{O}_{\mathrm{(s)}}}$ | -1163.6            | -1021.6                     | 155.2              | $Rb_2S_{(s)}$                                       | -360.7                       | -339.0                         | 134.0              |
|                                                                                           | -1218.7            | NA⁺                         |                       | $MmSO_4 \cdot 5H_2O_{(s)}$                                              | -2553.1                   | -2140.0                          | $NA^{\dagger}$                   | KCl <sub>(s)</sub>                                                       | -436.7             | -409.2                      | 82.6               | (s)                                                 |                              | -1317.0                        | 197.4              |
|                                                                                           | -1837.2            | NA                          | 0                     |                                                                         | $\widetilde{\mathrm{Hg}}$ |                                  | ,                                | KClO <sub>3(s)</sub>                                                     | -397.7             | -296.3                      | 143.1              |                                                     | 6                            | -1030.1                        | NA↑                |
| )2 · 6 H <sub>2</sub> O <sub>(s)</sub>                                                    | -2445.5            | -1863.1                     | 520.9                 | Hg(I)                                                                   | 0 7                       | )<br>10<br>10<br>11              | 76.1                             | KCIO <sub>4(s)</sub>                                                     | -432.8             | -303.2                      | 151.0              | 3+                                                  | , SC                         | +                              | 7                  |
| Mgbr <sub>2(s)</sub>                                                                      | -524.3             | -503.8                      | 117.2                 | $Hg_{(g)}$                                                              | 61.32                     | -1/8.6                           | 146.0                            | Kbr(s)                                                                   | -393.8             | -380.7                      | 95.9               |                                                     |                              | NA                             | 156.3              |
| ${ m MgBr}_2 \cdot 6{ m H}_2{ m O}_{ m (s)}$                                              | -2410.0            | -2056.0                     | 397.0                 | $\mathrm{Hg}_{(\mathrm{g})}^{2+}$                                       | 2890.4                    | ΝΑŢ                              | 174.9                            | $\mathrm{KBrO}_{3(\mathrm{s})}$                                          | -360.2             | -271.2                      | 149.2              |                                                     |                              | -1555.6                        | 92.0               |
| $ m Mgl_{2(s)}$                                                                           | -364.0             | -358.2                      | 129.7                 | $Hg2^{2+}$ (aq)                                                         | 172.3                     | 153.6                            | 84.5<br>160.7                    | $	ext{KBrO}_{4(\mathrm{s})}$                                             | -287.9             | -174.5                      | 170.1              | ScCl <sub>3(s)</sub>                                | -925.1<br>-1908.8            | -858.0<br>-1819.4              | 127.2              |
| $_{ m Mg(OH)_{2(s)}}^{ m Mg(OH)_{2(s)}}$                                                  | -924.5             | -833.6                      | 63.2                  | $_{ m Hg_2Cl_2(s), calomel}^{ m L1g_2Cl_2(s), calomel}$                 | -265.2                    | -210.8                           | 192.5                            | $	ext{KIO}_{3(s)}^{(s)}$                                                 | -501.4             | -418.4                      | 151.5              | (3(s)                                               | Sis                          | <b>1</b> ./101-                | 0: 7               |
| $MgCO_{3(s)}$                                                                             | -1095.8            | -1012.1                     | 65.7                  | $H_{\rm gCl_{2(s)}}^{(s)}$                                              | -224.3                    | -178.7                           | 146.0                            | $KIO_{4(s)}$                                                             | -467.2             | -361.4                      | 176.0              | $\mathrm{Si}_{(\mathrm{s})}$                        | 0                            | 0                              | 19.0               |
| $ m Mg_3N_{2(s)}$                                                                         | -460.7             | -406.0                      | 90.0                  | Hg2Br2(s)                                                               | -206.9                    | -181.1                           | 218.0                            | K <sub>2</sub> O <sub>(s)</sub>                                          | -361.4             | NA <sup>†</sup><br>239 ⊓    | NA†<br>116.7       | (g)                                                 | 34.3                         | 56.9                           | 204.5              |
| $M_{\mathcal{C}}(NO_3)_{Z(S)}$                                                            | 1400.7             | - VOV.                      | 0.4.01                | 118012(s)                                                               | 101.7                     | 1110                             | 722 5                            | NOZ(s)                                                                   | 7.E07-             | 270.7                       | 70 0               |                                                     |                              | 610.0                          | 7307               |
| Mg(NO3)2 · 2 H2O(s)<br>Mg(NO3)2 · 6 H2O(s)                                                | -1409.2<br>-2613.3 | -2080.7                     | soluble<br>452.0      | П <b>g</b> 212(s)<br>Нg I <sub>2</sub> (s)                              | -121.5<br>red             | -111.0                           | -101.7                           | KOH · 2 H•O(e)                                                           | -424.8 $-1051.0$   | -5/9.1                      | 78.9<br>151.0      | SiCl <sub>4(3)</sub>                                | -687.0                       | -619.9<br>-617.0               | 330.6              |
| $ m MgS_{(s)}$                                                                            | -346.0             | -341.8                      | 50.3                  | $H_{\mathrm{gO}(\mathrm{s}),\mathrm{red}}^{\mathrm{gO}(\mathrm{s})}$    | 8.06-                     | -58.6                            | 70.26                            | $K_2CO_{3(s)}$                                                           | -1151.0            | -1063.6                     | 155.5              | $\operatorname{SiBr}_{4(1)}$                        | -457.3                       | -443.9                         | 277.8              |
| ${ m MgSO}_{4({ m s})}$                                                                   | -1284.9            | -1170.7                     | 91.6                  | $Hg(OH)_{2(aq)}$                                                        | -355.2                    | -274.9                           | 142.3                            | KHCO <sub>3(s)</sub>                                                     | -963.2             | -863.6                      | 115.5              | $\mathrm{SiBr}_{4(g)}$                              | -415.4                       | -431.8                         | 377.8              |
| $MgSO_4 \cdot 2H_2O_{(s)}$                                                                | -1896.2            | -1376.5                     | Ā,                    | $Hg_2(NO_3)_2 \cdot 2H_2O_{(s)}$                                        | -868.2                    | -563.2                           | NA.                              | $KNO_{2(s)}$                                                             | -369.8             | -306.6                      |                    | $SiO_{(g)}$                                         | -96.e<br>348.e               | -126.3                         | 211.5              |
| $MgSO_4 \cdot 4H_2O_{(s)}$                                                                | -2496.6            | -2138.9                     | NA.                   | HgS(s), black                                                           | -53.6                     | -47.7                            | 88.3                             | KNO <sub>3(s)</sub>                                                      | -494.6             | -349.9                      |                    | SiO <sub>2(s),quartz</sub>                          | -910.9                       | -856.7                         | 41.8               |
| $\begin{array}{c} { m MgSO_4 \cdot 6~H_2O(s)} \\ { m MgSO_4 \cdot 7~H_2O(s)} \end{array}$ | -3388.7            | -2632.2                     | 348.1<br>372.0        | пg>(s),red<br>Нg2SO <sub>4(s)</sub>                                     | -58.2<br>-743.1           | -50.6<br>-625.9                  | 82.4<br>200.7                    | KSCN<br>KSCN<br>KSCN                                                     | -113.0             | -101.9                      | 128.5<br>124.3     | SiO <sub>2(s)</sub>                                 | -909.5<br>-909.1             | -855.9<br>-855.3               | 42.7<br>43.5       |
| (s)                                                                                       | -4022.9            |                             | $7.61 \times 10^{-5}$ |                                                                         | -707.5                    | -590.0                           | 145.0                            | $K_2S_{(g)}$                                                             | -380.7             | -364.0                      |                    | $\operatorname{SiC}_{(\mathrm{s})}^{-(\mathrm{s})}$ | -62.8                        | -60.2                          | 16.5               |
| - 1                                                                                       | 8.//-              |                             | 75.0                  |                                                                         | Z                         |                                  |                                  | K2SO4(s)                                                                 | -1437.8            | -1321.4                     | 1/5.6              | SiS <sub>2(s)</sub>                                 | -207.1                       | -175.3                         | 6.99               |

| Table 7.1 (continue                                             | d) Standa            | rd thermo                   | dynamic            | Table 7.1 (continued) Standard thermodynamic functions at 1atm and 298K                | 298K.                | ı                       | ı                  |                                                                 | ı                    | ı                           | ı                  |                               | ı                  | ı                           | 6                  |
|-----------------------------------------------------------------|----------------------|-----------------------------|--------------------|----------------------------------------------------------------------------------------|----------------------|-------------------------|--------------------|-----------------------------------------------------------------|----------------------|-----------------------------|--------------------|-------------------------------|--------------------|-----------------------------|--------------------|
| Substance                                                       | $\Delta H_f^{\circ}$ | $\Delta G_f^{\circ}$        | $\Delta S_{\circ}$ | Substance                                                                              | $\Delta H_f^{\circ}$ |                         | $\Delta S_{\circ}$ | Substance                                                       | $\Delta H_f^{\circ}$ | $\Delta G_f^{\circ}$        | $\Delta S^{\circ}$ | Substance                     | $\Delta H_f^\circ$ | $\Delta G_f^{\circ}$        | $\Delta S^{\circ}$ |
|                                                                 | (KJ/mol)             | (KJ/mol) (KJ/mol) (J/mol·K) | J/mol· K           | l                                                                                      | (KJ/mol) (KJ/mol)    | _                       | (J/mol·K)          |                                                                 | (KJ/mol) (           | (KJ/mol) (KJ/mol) (J/mol·K) | I/mol·K)           | )                             | (KJ/mol)           | (KJ/mol) (KJ/mol) (J/mol·K) | /mol· K)           |
| $\operatorname{Si}_{(\sigma)}^{4+}$                             | 10428.5              | $NA^{\dagger}$              | 229.8              | $Na_2S_2O_{3(s)}$                                                                      | -1123.0              | -1028.0                 | 155.0              | $\operatorname{Sn}^{4+}_{(\sigma)}$                             | 9323.2               | $NA^{\dagger}$              | 168.4              | $V_{(\sigma)}^{4+}$           | 9943.3             | $NA^{\dagger}$              | 169.3              |
| (8)                                                             | Ag                   |                             |                    | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> ·5H <sub>2</sub> O <sub>(s)</sub>        | -2607.9              | -2230.1                 | 372.4              | $^{(5)}_{ m SnH}_{4({ m g})}$                                   | 162.8                | 188.2                       | 227.6              | ${ m VF}_{4({ m s})}$         | -1403.3            | $NA^{\dagger}$              |                    |
| Ag(s)                                                           | 0                    | 0                           | 42.6               | $Na_3PO_{4(s)}$                                                                        | -1917.4              | -1788.9                 | 173.8              | $SnCl_{2(s)}$                                                   | -325.1               | $NA^{\dagger}$              | 1.42               | $VF_{5(1)}$                   | -1480.3            | -1373.2                     | 175.7              |
| $Ag^+_{(g)}$                                                    | 1019.2               | $NA^{\dagger}$              | 167.2              | $\mathrm{Na_2SiO_{3(s)}}$                                                              | -1554.9              | -1461.0                 | 113.8              | $SnCl_2 \cdot 2H_2O_{(s)}$                                      | -921.3               | -787.8                      | $NA^{\dagger}$     | $\mathrm{VF}_{5(\mathrm{g})}$ | -1433.8            | -1369.8                     | 320.8              |
| $Ag_{(aq)}^+$                                                   | 105.2                | 77.1                        | 72.7               | $Na_2B_4O_{7(s)}$                                                                      | -3291.1              | -3096.2                 | 189.2              | $SnCl_{4(1)}$                                                   | -511.3               | -440.2                      | 258.6              | $VCl_{2(s)}$                  | -452.0             | -406.0                      | 97.1               |
| $\stackrel{AgF_{(\mathrm{s})}}{\underset{A \in E}{\sim}} H_{F}$ | -204.6               | -186.6                      | 80.1               | $\text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}_{(\text{s})}$              | -6288.6              | -5516.6                 | 585.5              | SnBr <sub>2(s)</sub>                                            | -243.5               | -250.6                      | 146.0              | VCl <sub>3(s)</sub>           | -580.7             | -511.3                      | 131.0              |
| $AgF \cdot 2112O(s)$<br>$AGF \cdot 4H_2O(s)$                    | -300.0               | -0/1.1                      | 268.0              | 1Vd1V112(s)                                                                            | -123.0<br>Sr         | 0.4.0                   | 70.7               | $\frac{\text{SilDi4(s)}}{\text{SnBr}_4 \cdot \text{SHsO}_2}$    | 4.776-               | -550.2<br>NA†               | <b>4.4.4</b>       | V. C. 4(1)                    | -3653              | -505-<br>NA⊤                | 126.0              |
| AgCl <sub>©</sub>                                               | -127.1               | -119.8                      | 96.2               | Sr <sup>2+</sup>                                                                       | 1790.6               | Ϋ́                      | 164.6              | $SnI_{2(s)}$                                                    | -143.5               | -145.2                      | 168.6              | VBr <sub>2(s)</sub>           | -433.5             | Y Z<br>V                    | 142.0              |
| $AG(O_{x})$                                                     |                      | 51.2                        | 149.4              | து.<br>த                                                                               | -12163               | -1164.8                 | 22.12              | SnO                                                             | 2,525<br>8,780       | 256.0                       | 7,77               | VBr <sub>4(3)</sub>           | 336.8              | ΥV                          | 335.0              |
| AgCIO3(s)                                                       |                      | 01.7                        | 147.4<br>NIA +     | 311'2(s)                                                                               | 0.0121-              | -1104.0                 | 114.0              | SinO(s)                                                         | 0.007-               | -230.7                      | 0.00               |                               | -550.0<br>- 170.0  | . ↓<br>V.Z                  | 142.1              |
| AgBr(s)                                                         | -51.1                | 0.77<br>-96.9               | 107.1              | $\overset{\mathbf{SrCl}_{2(s)}}{\mathbf{SrCl}_{2}\cdot\mathbf{H}_{2}\mathbf{O}_{(s)}}$ | -020.9               | -/01.2                  | 172.0              | SnS <sub>(s)</sub>                                              | -300.7               | -319.7<br>-98.3             | 22.3<br>77.0       | V 12(s)<br>VO(s)              | -431.8             | -404.2                      | 38.9               |
| $AgBrO_{3(s)}$                                                  | -27.2                | 54.4                        | 152.7              | $SrCl_2 \cdot 2H_2O_{(s)}$                                                             | -1438.0              | -1282.0                 | 218.0              | $Sn(SO_4)_{2(s)}$                                               | -1629.2              | -1443.0                     | 155.2              |                               | -1228.0            | -1139.3                     | 98.3               |
| $\widetilde{\mathrm{AgI}}_{(\mathrm{s})}$                       | -61.8                | -66.2                       | 115.5              | $SrCl_2 \cdot 6H_2O_{(s)}$                                                             | -2623.8              | -2241.2                 | 390.8              |                                                                 | Ϊ                    | -                           |                    |                               | -1550.6            | -1419.6                     | 131.0              |
| $ m Ag2O_{(s)}$                                                 | -31.0                | -11.2                       | 121.3              | $Sr(CIO_4)_{2(s)}$                                                                     | -762.8               | $NA^{\dagger}$          | 247.1              | Ti'2+<br>(g)                                                    | 2450.6               | NA⊤                         |                    |                               | Xe                 |                             |                    |
| $Ag_2CO_{3(s)}$                                                 | -505.8               | -436.8                      | 167.4              | $SrBr_{2(s)}$                                                                          | -717.6               | -697.1                  | 135.1              | Ti(g)                                                           | 9290.2               | NA⊤                         |                    | $XeF_{2(s)}$                  | -133.9             | -62.8                       | 133.9              |
| $AgNO_{3(s)}$                                                   | -124.4               | -33.5                       | 140.9              | $\frac{\mathrm{SrI}_{Z(\mathrm{s})}}{\widehat{\mathfrak{g}}_{T}}$                      | -558.1               | -562.3                  | 159.0              | $\widetilde{\mathrm{Ti}}\widetilde{\mathrm{H}}_{2(\mathrm{s})}$ | -119.7               | -80.3                       | 29.1               | XeF <sub>4(s)</sub>           | -261.5             | -121.3                      | 146.4              |
| $\mathop{\mathrm{AgCN}}_{(\mathrm{s})}$                         | 146.0                | 156.9                       | 107.2              | $Srl_2 \cdot H_2O_{(s)}$                                                               | -886.0               | - ¥                     |                    | $\mathrm{TiCl}_{2(\mathrm{s})}$                                 | -513.8               | -464.4                      | 87.4               | $XeF_{6(s)}$                  | -380.7             | Ā,                          |                    |
| Ag25(s)                                                         | 4.62-                | -39.5                       | 150.6              | $Srl_2 \cdot ZH_2O_{(s)}$                                                              | -1182.4              | AZ ;                    |                    | I1Cl3(s)                                                        | -720.9               | -653.5                      | 139.7              | XeO <sub>3(s)</sub>           | 401.7              | NA                          |                    |
| $Ag_2SO_{4(s)}$                                                 | -715.9               | -618.5                      | 200.4              | $ m Srl_2 \cdot 6H_2O_{(s)} \  m Sr(IO_s)_{s(s)}$                                      | -2388.6              | NA-                     | 234.0              | TiCl <sub>4(s)</sub><br>TiR <del>r</del> 2(s)                   | -804.2               | -737.2                      | 252.3              | Znc                           | , Zu               | c                           | 41.6               |
| 11 <b>5</b> 2~1~4(s)                                            | <br>                 | 777                         | 7.017              | $SrO_{(s)}$                                                                            | -592.0               | -561 9                  | 54.4               | TiBr <sub>2(s)</sub>                                            | -548.5               | -523.8                      | 1766               | $Z_{n^{2+}}$                  | 7 282 7            | NA T                        | 160.9              |
| Nace                                                            | 0                    | 0                           | 51.0               | Sr(OH)2(c)                                                                             | -959.0               | -869.4                  | 88.0               | Ti Br <sub>4(e)</sub>                                           | -616.7               | -589.5                      | 243.5              | Zn2+                          | -153.9             | -147.1                      | -112.1             |
| N + S                                                           | 0 609                | N A                         | 147.9              | $Sr(OH)_2 \cdot 8H_2O_{(2)}$                                                           | -3352.2              | NA†                     | 0.00655            | TiLogy                                                          | -263.0               | -270.1                      | 1477               | ZnE <sub>2(2)</sub>           | -764 4             | -449.5                      | 73.7               |
| Na (g)                                                          | -240.1               | -261.9                      | 59.0               | $Sr(O_{2\ell_0})$                                                                      | -1220.1              | -1104.4                 | 97.1               | TiI <sub>4(s)</sub>                                             | -375.7               | -371.5                      | 249.4              | ZnC <sub>2(s)</sub>           | -415.1             | -369.4                      | 111.5              |
| NaH(s)                                                          | -56.1                | -33.5                       | 40.0               | $Sr(HCO_3)_{2(3,0)}$                                                                   | -1927.9              | -1731.3                 | 150.6              | TiO <sub>2(s)</sub>                                             | -939.7               | -884.5                      | 49.9               | $ZnBr_{2(s)}$                 | -328.7             | -312.1                      | 138.5              |
| $NaF_{(s)}$                                                     | -573.6               | -543.5                      | 51.5               | $Sr(NO_3)_{2(s)}$                                                                      | -978.2               | -780.1                  | 194.6              | $Ti_2O_{3(s)}$                                                  | -1520.9              | -1434.3                     | 78.9               | $ZnI_{2(s)}$                  | -208.0             | -208.9                      | 161.1              |
| $NaCl_{(s)}$                                                    | -411.2               | -384.2                      | 72.1               | $Sr(NO_3)_2 \cdot 4H_2O_{(s)}$                                                         | -2154.8              | -1730.7                 | 369.0              |                                                                 | ×                    | -                           |                    | $ZnO_{(s)}$                   | -348.3             | -318.3                      | 43.6               |
| $NaClO_{3(s)}$                                                  | -365.8               | -262.2                      | 123.4              | $SrS_{(s)}$                                                                            | -453.1               | -448.5                  | 68.2               | $M_{(g)}^+$                                                     | 1625.9               | NA⊤                         |                    | $ZnCO_{3(s)}$                 | -812.8             | -731.6                      | 82.4               |
| NaClO <sub>4(s)</sub>                                           | -383.3               | -254.9                      | 142.3              | $\mathrm{SrSO}_{4(\mathrm{s})}$                                                        | -1453.1              | -1341.0                 | 117.0              | $WF_{6(1)}$                                                     | -1747.7              | -1631.4                     | 251.5              | $Zn(NO_3)_{2(s)}$             | -483.7             | NA†                         | , L                |
| Nabr(s)<br>Na Br · H $_2O_{(s)}$                                | -301.1               | -549.0<br>-828.4            | 86.8<br>179.1      | 5.7.4                                                                                  | v <sup>C</sup>       | c                       | 31.8               | WC12(s)<br>WC14(s)                                              | -255.0<br>-467.0     | -213.6                      | 130.2<br>344.5     | Zn(INO3)2 · 6 H2O(s)          | -2306.6<br>-192 6  | -1//3.1<br>-1870            | 436.9<br>57.7      |
| $NaBrO_{3(c)}$                                                  | -344.1               | -242.8                      | 128.9              | $S_{(z-1)}^{2}$                                                                        | 33.1                 | 85.8                    | -14.6              | WCI <sub>6(5)</sub>                                             | -682.5               | -548.9                      | 254.0              | ZnS(s), wurtzue               | -206.0             | -201.3                      | 65.3               |
| NaI(s)                                                          | -287.8               | -286.1                      | 98.5               | ${ m SF}_{4(g)}^{c(ad)}$                                                               | -774.9               | -731.4                  | 291.9              | $WBr_{6(s)}$                                                    | -348.5               | -328.0                      | 472.0              | ZnSO <sub>4(s)</sub>          | -982.8             | -874.5                      | 119.7              |
| $NaIO_{3(s)}$                                                   | -481.8               | $NA^{\dagger}$              | 135.1              | $\mathrm{SF}_{6(\mathrm{g})}$                                                          | -1209.0              | -1105.4                 | 291.7              | WO <sub>3(s)</sub> , wolfamite                                  | -842.9               | -764.1                      | 75.9               | $ZnSO_4 \cdot 7H_2O_{(s)}$    | -3077.8            | -2563.1                     | 388.7              |
| NaIO <sub>3</sub> ·H <sub>2</sub> O <sub>(s)</sub>              | -779.5               | -634.1                      | 162.3              | $\mathrm{SCl}_{2(\mathrm{g})}$                                                         | -19.7                | $NA^{\dagger}$          | 282.2              | $WS_{2(s)}$                                                     | -209.0               | $NA^{\dagger}$              | 84.0               |                               |                    |                             |                    |
| $NaIO_3 \cdot 5 H_2O_{(s)}$                                     | -1952.3              | $NA^{\dagger}$              |                    | $SCl_{4(l)}$                                                                           | -56.1                | $NA^{\dagger}$          | decomb.            | WC <sub>(s)</sub>                                               | -40.5                | -40.2                       | 35.6               |                               |                    |                             |                    |
| $Na_2O_{(s)}$                                                   | -414.5               | -375.5                      | 75.1               | S <sub>2</sub> Cl <sub>2(s)</sub>                                                      | -59.4                | 4.2                     | NA <sup>†</sup>    | TIE                                                             | U<br>2117.0          | 2000                        | 7.076              |                               |                    |                             |                    |
| Na2O2(s)<br>NaOH(c)                                             | -510.9               | -44/./                      | 0.05<br>0.05       | SO-C1 <sub>2(1)</sub>                                                                  | -245.6               | -197.9                  | 216.7              | UF6(g)<br>[JC] <sub>2(c)</sub>                                  | -2112.9              | -2029.3<br>-80.3            | 2/9.7<br>79.0      |                               |                    |                             |                    |
| $NaOH \cdot H_2O_{(s)}$                                         | -734.5               | -629.4                      | 99.5               | $SO_{2(g)}$                                                                            | -296.8               | -300.2                  | 248.1              | $\stackrel{\text{CCI}_2(s)}{\text{UCI}_2O_{2(s)}}$              | -1263.1              | -1159.0                     | 150.5              |                               |                    |                             |                    |
| Na <sub>2</sub> CO <sub>3(s)</sub>                              | -1130.7              | -1044.5                     | 135.0              | SO <sub>3</sub> (1)                                                                    | -441.0               | -368.4                  | 95.6               | UO <sub>2(s)</sub>                                              | -1129.7              | -1075.3                     | 77.8               |                               |                    |                             |                    |
| NaHCO <sub>3(s)</sub>                                           | -4001.3              | -3426.2                     | 364.0<br>101.7     | $S_{(g)}^{(3(g)}$                                                                      | 278.8                | 238.3                   | 167.8              | U,C3(s)                                                         | -1203.0              | -1104.1<br>-201.0           | 105.0              |                               |                    |                             |                    |
| $NaNO_{2(s)}$                                                   | -358.7               | -284.6                      | 103.8              | $S_{2(g)}^{(b)}$                                                                       | 128.4                | 79.3                    | 228.1              | $\widetilde{\mathrm{UO}_2(\mathrm{NO}_3)_{2(\mathrm{s})}}$      | -1377.4              | -1142.7                     | 276.1              |                               |                    |                             |                    |
| NaCN <sub>(s)</sub>                                             | -87.5                | -76.4                       | 115.6              | S <sub>8(g)</sub>                                                                      | 102.3                | 49.7                    | 430.9              | $UO_2(NO_3)_2 \cdot 6 H_2O_{(s)}$                               | -3197.8              | -2615.0                     | 505.6              |                               |                    |                             |                    |
| $Na_2S(s)$<br>Na <sub>2</sub> SO <sub>4(s)</sub>                | -304.0               | -349.6                      | 53.7<br>149.6      | Sn(s,white)                                                                            | 0                    | 0                       | 51.6               | O32(s)                                                          | V.202-0              | -331.7                      | C.011              |                               |                    |                             |                    |
| $Na_2SO_4 \cdot 10 H_2O_{(s)}$                                  | -4327.3              | -3647.4                     | 592.0              | $\operatorname{Sn}^{2+}_{(g)}$                                                         | 2434.9               | $\mathrm{NA}^{\dagger}$ | 168.4              | $V_{(g)}^{2+}$                                                  | 2590.5               | $NA^{\dagger}$              | 169.4              |                               |                    |                             |                    |
| NaHSO <sub>4(s)</sub>                                           | -1125.5              | -992.9                      | 113.0              | $\mathrm{Sn}^{2+}_{\mathrm{(aq)}}$                                                     | -8.8                 | -27.2                   | -17.0              | $V_{(g)}^{3+}$                                                  | 5430.5               | NA                          | 171.5              |                               |                    |                             |                    |
|                                                                 |                      |                             |                    |                                                                                        |                      |                         |                    |                                                                 |                      |                             |                    |                               |                    |                             |                    |