Time Series Analysis & Forecasting Using R

2. Time series graphics

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Quarterly Australian Beer Production

```
beer <- aus_production |>
  select(Quarter, Beer) |>
  filter(year(Quarter) >= 1992)
beer |> autoplot(Beer)
```


Quarterly Australian Beer Production

beer |> gg_season(Beer, labels = "right")

vic_elec

```
# A tsibble: 52,608 x 5 [30m] <Australia/Melbourne>
  Time
                      Demand Temperature Date Holiday
  <dttm>
                       <fdb>>
                                   <dbl> <date> <lgl>
 1 2012-01-01 00:00:00
                       4383.
                             21.4 2012-01-01 TRUE
 2 2012-01-01 00:30:00 4263.
                                21.0 2012-01-01 TRUE
3 2012-01-01 01:00:00 4049.
                                    20.7 2012-01-01 TRUE
 4 2012-01-01 01:30:00
                       3878.
                                    20.6 2012-01-01 TRUE
 5 2012-01-01 02:00:00 4036.
                                    20.4 2012-01-01 TRUE
 6 2012-01-01 02:30:00
                       3866.
                                    20.2 2012-01-01 TRUE
 7 2012-01-01 03:00:00
                       3694.
                                    20.1 2012-01-01 TRUE
 8 2012-01-01 03:30:00
                       3562.
                                    19.6 2012-01-01 TRUE
 9 2012-01-01 04:00:00
                       3433.
                                    19.1 2012-01-01 TRUE
                                    19.0 2012-01-01 TRUF
10 2012-01-01 04:30:00
                       3359.
# i 52,598 more rows
```

vic_elec |> gg_season(Demand)

vic_elec |> gg_season(Demand, period = "week")

vic_elec |> gg_season(Demand, period = "day")

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

beer |> gg_subseries(Beer)

Australian holidays

```
holidays <- tourism |>
  filter(Purpose == "Holiday") |>
  group_by(State) |>
  summarise(Trips = sum(Trips))
# A tsibble: 640 x 3 [10]
# Key:
           State [8]
  State Quarter Trips
  <chr> <atr> <dbl>
 1 ACT 1998 Q1 196.
2 ACT 1998 Q2 127.
 3 ACT 1998 03 111.
```

8 ACT 1999 Q4 218. 9 ACT 2000 Q1 158. 10 ACT 2000 Q2 155.

4 ACT 1998 Q4 170.

1999 02

1999 03

1999 Q1 108.

125.

178.

5 ACT

6 ACT

7 ACT

Australian holidays

```
holidays |> autoplot(Trips) +
  labs(y = "thousands of trips", title = "Australian domestic holiday nights")
```


Seasonal plots

```
holidays |> gg_season(Trips) +
labs(y = "thousands of trips", title = "Australian domestic holiday nights")
```


Seasonal subseries plots

```
holidays |> gg_subseries(Trips) +
labs(y = "thousands of trips", title = "Australian domestic holiday nights")
```


Calendar plots

```
library(sugrrants)
vic elec |>
 filter(year(Date) == 2014) |>
 mutate(Hour = hour(Time)) |>
 frame_calendar(x = Hour, y = Demand, date = Date, nrow = 4) |>
  ggplot(aes(x = .Hour, y = .Demand, group = Date)) +
  geom line() -> p1
prettifv(p1,
 size = 3,
  label.padding = unit(0.15, "lines")
```

- frame_calendar() makes a compact calendar plot
- facet_calendar() provides an easier ggplot2 integration.

Calendar plots

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 3

Look at the quarterly tourism data for the Snowy Mountains

```
snowy <- tourism |>
filter(Region == "Snowy Mountains")
```

- ► Use autoplot(), gg_season() and gg_subseries() to explore the data.
- What do you learn?
- Produce a calendar plot for the pedestrian data from one location and one year.

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Trend pattern exists when there is a long-term increase or decrease in the data.

Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are *not of fixed period* (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
aus_production |>
  filter(year(Quarter) >= 1980) |>
  autoplot(Electricity) +
  labs(y = "GWh", title = "Australian electricity production")
```



```
us_employment |>
filter(Title == "Retail Trade", year(Month) >= 1980) |>
autoplot(Employed / 1e3) +
labs(title = "Retail employment, USA", y = "Million people")
```



```
gafa_stock |>
  filter(Symbol == "AMZN", year(Date) >= 2018) |>
  autoplot(Close) +
  labs(title = "Amazon closing stock price", x = "Day", y = "$")
```


Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Example: Beer production

```
new_production <- aus_production |>
  filter(year(Quarter) >= 1992)
new_production
```

```
# A tsibble: 74 x 7 [10]
            Beer Tobacco Bricks Cement Electricity
                                                         Gas
     <atr> <dbl>
                    <dbl>
                            <dbl>
                                   <dbl>
                                                <dbl> <dbl>
1 1992 01
             443
                     5777
                              383
                                    1289
                                                38332
                                                         117
2 1992 Q2
             410
                     5853
                                    1501
                                                39774
                                                         151
                              404
3 1992 Q3
                                    1539
             420
                     6416
                              446
                                                42246
                                                         175
4 1992 04
             532
                     5825
                              420
                                    1568
                                                38498
                                                         129
5 1993 01
             433
                     5724
                              394
                                    1450
                                                39460
                                                         116
6 1993 02
             421
                     6036
                              462
                                    1668
                                                41356
                                                         149
7 1993 03
             410
                     6570
                              475
                                    1648
                                                42949
                                                         163
8 1993 04
             512
                     5675
                              443
                                    1863
                                                40974
                                                         138
9 1994 01
                                    1468
                                                40162
             449
                     5311
                              421
                                                         127
10 1994 02
             381
                     5717
                              475
                                    1755
                                                41199
                                                         159
и ∴ са ..... .....
```

Example: Beer production

new_production |> gg_lag(Beer)

Example: Beer production

new_production |> gg_lag(Beer, geom = "point")

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.
- ACF (autocorrelation function):
 - $ightharpoonup r_1 = Correlation(y_t, y_{t-1})$
 - $ightharpoonup r_2 = Correlation(y_t, y_{t-2})$
 - $ightharpoonup r_3 = Correlation(y_t, y_{t-3})$
 - etc.
- If there is **seasonality**, the ACF at the seasonal lag (e.g., 12 for monthly data) will be **large and positive**.

Autocorrelation

Results for first 9 lags for beer data:

```
new_production |> ACF(Beer, lag_max = 9)
# A tsibble: 9 x 2 [10]
      lag acf
  <cf_lag> <dbl>
       10 -0.102
       20 -0.657
       30 -0.0603
4
       40 0.869
       50 -0.0892
6
       6Q -0.635
       70 -0.0542
       80 0.832
       90 -0.108
```

Autocorrelation

Results for first 9 lags for beer data:

```
new_production |>
ACF(Beer, lag_max = 9) |>
autoplot()
```


ACF

Australian holidays

holidays |> ACF(Trips)

```
# A tsibble: 152 x 3 [10]
# Kev:
            State [8]
  State lag acf
  <chr> <cf_lag> <dbl>
1 ACT
             10 0.0877
2 ACT
             20 0.252
3 ACT
             30 -0.0496
4 ACT
              40 0.300
5 ACT
             50 -0.0741
6 ACT
              60 0.269
7 ACT
              70 -0.00504
8 ACT
              80 0.236
9 ACT
              90 -0.0953
10 ACT
             100 0.0750
# i 142 more rows
```

Australian holidays

holidays |> ACF(Trips) |> autoplot()

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

US retail trade employment

```
retail <- us_employment |>
  filter(Title == "Retail Trade", year(Month) >= 1980)
retail |> autoplot(Employed)
```


US retail trade employment

```
retail |>
    ACF(Employed, lag_max = 48) |>
    autoplot()
    1.00 -
    0.75 -
act - 0.50 -
    0.25 -
    0.00
                                 12
                                             18
                                                                               36
                                                                                           42
                      6
                                                                    30
                                                       lag [1M]
```

Google stock price

10 2015-01-15 400

```
google 2015 <- gafa stock |>
  filter(Symbol == "GOOG", year(Date) == 2015) |>
  select(Date, Close)
google_2015
# A tsibble: 252 x 2 [!]
             Close
  Date
  <date>
              <dbl>
 1 2015-01-02 522.
 2 2015-01-05 511.
3 2015-01-06 499.
 4 2015-01-07
              498.
 5 2015-01-08
              500.
6 2015-01-09 493.
 7 2015-01-12 490.
8 2015-01-13 493.
 9 2015-01-14 498.
```

Google stock price

google_2015 |> autoplot(Close)

Google stock price

```
google_2015 |>
ACF(Close, lag_max = 100) |>
autoplot()
```


Outline

- 1 Seasonal plots
- 2 Lab Session
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 4

We have introduced the following functions: gg_lag and ACF. Use these functions to explore the four time series: Bricks from aus_production, Lynx from pelt, Close price of Amazon from gafa_stock, Demand from vic_elec. Can you spot any seasonality, cyclicity and trend? What do you learn about the series?

Which is which?

Outline

- 1 Seasonal plots
- 2 Lab Session
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn |> autoplot(y)
```



```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn |> autoplot(y)
```


White noise data is uncorrelated across time with zero mean and constant variance.

(Technically, we require independence as well.)

- Sample autocorrelations for white noise series.
- Expect each autocorrelation to be close to zero.
- Blue lines show 95% critical values.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is not a white noise series.

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 5

You can compute the daily changes in the Google stock price in 2018 using

```
dgoog <- gafa_stock |>
  filter(Symbol == "GOOG", year(Date) >= 2018) |>
  mutate(diff = difference(Close))
```

Does diff look like white noise?