CPU Scheduling

Practice Problems

By

ANAUM HAMID

FCFS

Consider the set of 5 processes whose arrival time and burst time are given below:

Process ID	Arrival Time	Burst Time
P1	4	5
P2	6	4
P3	0	3
P4	6	2
P5	5	4

Calculate the average waiting time and average turnaround time, if FCFS Scheduling Algorithm is followed.

SRTF-1

An operating system uses shortest remaining time first scheduling algorithm for pre-emptive scheduling of processes. Consider the following set of processes with their arrival times and CPU burst times (in milliseconds):

Process ID	Arrival Time	Burst Time
P1	0	12
P2	2	4
P3	3	6
P4	8	5

The average waiting time (in milliseconds) of the processes is ______.

SRTF - 2

Consider the following processes, with the arrival time and the length of the CPU burst given in milliseconds. The scheduling algorithm used is preemptive shortest remaining-time first.

Process ID	Arrival Time	Burst Time
P1	0	10
P2	3	6
P3	7	1
P4	8	3

The average turn around time of these processes is _____ milliseconds.

Priority Scheduling - 1

Consider the set of processes with arrival time (in milliseconds), CPU burst time (in milliseconds), and priority (0 is the highest priority) shown below. None of the processes have I/O burst time.

Process ID	Arrival Time	Burst Time	Priority
P1	0	11	2
P2	5	28	0
P3	12	2	3
P4	2	10	1
P5	9	16	4

The average waiting time (in milliseconds) of all the processes using preemptive priority scheduling algorithm is_____.

Priority Scheduling - 2

Consider the set of processes with arrival time (in milliseconds), CPU burst time (in milliseconds), and priority shown below: (Higher number represents higher priority)

Process ID	Arrival Time	Burst Time	Priority
P1	0	4	2
P2	1	3	3
P3	2	1	4
P4	3	5	5
P5	4	2	5

If the CPU scheduling policy is priority non-preemptive, calculate the average waiting time and average turn around time.

Round Robin

Consider the set of 5 processes whose arrival time and burst time are given below:

Process ID	Arrival Time	Burst Time
P1	0	5
P2	1	3
P3	2	1
P4	3	2
P5	4	3

If the CPU scheduling policy is Round Robin with time quantum = 2 units, calculate the average waiting time and average turn around time.