Diskretne strukture

Gašper Fijavž

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

18. december 2024

Kaj je graf

Graf je urejen par G = (V, E), kjer je

- ▶ V neprazna končna množica točk (vozlišč) grafa G in
- E množica povezav grafa G, pri čemer je vsaka povezava par točk .

Zgled:
$$V = \{u, v, w, x, y\}$$
 $E = \{\{u, v\}, \{u, w\}, \{v, w\}, \{v, x\}\}$

Pisava: Namesto $e = \{u, v\}$ pišemo krajše e = uv ali e = vu. V tem primeru pravimo, da sta točki u in v krajišči povezave e. Pravimo tudi, da sta u in v sosednji, kar označimo z $u \sim v$.

Oznake: V=V(G) ... množica točk grafa G E=E(G) ... množica povezav grafa G

Stopnje točk

Stopnja točke $v \in V(G)$ je število povezav, ki imajo v za krajišče. Stopnjo točke v označimo z deg(v).

Točki stopnje 0 je izolirana točka, točki stopnje 1 pravimo tudi list grafa.

Graf G je d-regularen, če so vsa vozlišča grafa G stopnje d. 3-regularnim grafom pravimo tudi $kubični\ grafi$.

Stopnje točk

Izrek (Lema o rokovanju)

Naj bo G graf z n točkami in m povezavami. Potem je

$$\sum_{i=1}^n \deg(v_i) = 2 \cdot m$$

Posledica

V vsakem grafu je sodo mnogo točk lihe stopnje.

Posledica

Naj bo G d-regularen graf z n točkami in m povezavami. Potem je

$$n \cdot d = 2 \cdot m$$

Izomorfizem grafov

Grafa G_1 in G_2 sta *izomorfna*, če obstaja preslikava $f:V(G_1)\to V(G_2)$, za katero velja:

- 1. f je bijektivna in
- $2. \ u \sim_{G_1} v \Leftrightarrow f(u) \sim_{G_2} f(v).$

V tem primeru pravimo, da je f *izomorfizem* grafov G_1 in G_2 , ter pišemo $G_1\cong G_2$.

Trditev

Izomorfizem ohranja število točk, število povezav, stopnje točk, število trikotnikov, ...

Ali so izomorfni?

Polni grafi

Graf je poln, če sta vsaki njegovi točki sosedi. Poln graf na n točkah označimo s K_n .

$$V(K_n) = \{v_1, v_2, \dots, v_n\}$$
 $|V(K_n)| = n$ $|E(K_n)| = \{v_i v_j : 1 \le i < j \le n\}$ $|E(K_n)| = \frac{n(n-1)}{2}$ $|E(K_n)| = \frac{n(n-1)}{2}$

Prazni grafi

Graf je *prazen*, če nobeni njegovi točki nista sosedi. Prazen graf na n točkah označimo s $\overline{K_n}$.

$$\begin{array}{ll} V(\overline{K_n}) = \{v_1, v_2, \dots, v_n\} & |V(\overline{K_n})| = n \\ E(\overline{K_n}) = \emptyset & |E(\overline{K_n})| = 0 \\ \deg(v_1) = 0 & \overline{K_n} \text{ je 0-regularen graf.} \end{array}$$

$$\overline{K_1} = K_1$$

Polni dvodelni grafi

 $K_{m,n}$ je polni dvodelni graf na n+m točkah. Vsebuje dva barvna razreda s po n in m točkami, točki sta sosedi natanko tedaj, ko sta v različnih barvnih razredih.

$$\begin{array}{ll} V(K_{m,n}) = \{v_1, v_2, \ldots, v_m, u_1, u_2, \ldots, u_n\} & |V(K_{m,n})| = m+n \\ E(K_{m,n}) = \{v_i u_j \; ; \; 1 \leq i \leq m \; \text{in} \; 1 \leq j \leq n\} & |E(K_{m,n})| = m \cdot n \\ \deg(v_1) = n \; , \; \deg(u_1) = m & K_{n,n} \; \text{je n-regularen.} \end{array}$$

$$K_{1,1} = K_2$$

Cikli

Cikel na $n \ge 3$ točkah označimo s C_n .

$$\begin{array}{ll} V(C_n) = \{v_1, v_2, \dots, v_n\} & |V(C_n)| = n \\ E(C_n) = \{v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n, v_n v_1\} & |E(C_n)| = n \\ \deg(v_1) = 2 & C_n \text{ je 2-regularen graf.} \end{array}$$

$$C_3 = K_3, C_4 = K_{2,2}$$

Poti

Pot na n točkah označimo s P_n .

$$\begin{array}{ll} V(P_n) = \{v_1, v_2, \dots, v_n\} & |V(P_n)| = n \\ E(P_n) = \{v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n\} & |E(P_n)| = n-1 \\ \deg(v_1) = 1, \deg(v_2) = 2 & \text{\'e} \ n \geq 3. \end{array}$$

$$P_1 = K_1 = \overline{K_1}, P_2 = K_2 = K_{1,1}, P_3 = K_{2,1}$$

Hiperkocke

Točke d-razsežne hiperkocke Q_d so zaporedja ničel in enic dolžine d. Dve takšni točki-zaporedji sta sosedi, če se razlikujeta v natanko enem členu.

$$|V(Q_d)| = 2^d$$

 $|E(Q_d)| = d \cdot 2^{d-1}$
 Q_d je d-regularen graf.

$$Q_0 = K_1, Q_1 = K_2, Q_2 = C_4$$

Operacije z grafi

Poznamo naslednje elementarne operacije z grafi:

- odstranjevanje povezave: $G \mapsto G e$
- **b** dodajanje povezave: $G \mapsto G + f$
- ightharpoonup odstranjevanje točke: $G \mapsto G v$

Podgrafi

Pravimo, da je H podgraf grafa G, $H \subseteq G$, če je $V(H) \subseteq V(G)$ in $E(H) \subseteq E(G)$.

Podgraf H grafa G je *vpet podgraf*, če je V(H) = V(G).

Podgraf H grafa G je induciran podgraf, če za vsako povezavo $e = uv \in E(G)$ velja: če sta u in v točki grafa H, potem je tudi e povezava v grafu H.

Oznake: G[U] *induciran,* G[F] *vpet,* pri $U \subseteq V(G)$ in $F \subseteq E(G)$.

Zgledi podgrafov

Sprehodi v grafih

Sprehod S v grafu G = (V, E) je zaporedje točk

$$u_0u_1u_2\ldots u_{n-1}u_n$$

pri čemer sta zaporedni točki sprehoda u_i in u_{i+1} sosedi v grafu G $(i=0,\ldots,n-1)$.

Dolžina sprehoda $S = u_0 u_1 \dots u_n$ je enaka n, |S| = n.

Točko u_0 imenujemo začetek, točko u_n pa konec sprehoda. u-v sprehod je sprehod z začetkom v u in koncem v v.

Sprehod $S = u_0 \dots u_n$ je *pot*, če $u_i \neq u_j$ za vse $0 \leq i < j \leq n$. Sprehod $S = u_0 \dots u_n$ je *obhod*, če je $u_0 = u_n$.

Sprehod $S = u_0 \dots u_n$ je *cikel*, če je $u_0 = u_n$, sicer pa so točke med sabo različne in je $n \geq 3$.

Sprehodi, operacije

Za sprehoda

$$S = u_0 u_1 u_2 \dots u_{k-1} u_k$$

in

$$Z = u_k u_{k+1} u_{k+2} \dots u_{\ell-1} u_{\ell}$$

je

- $S^R = u_k u_{k-1} \dots u_1 u_0$ obratni sprehod k S,
- $SZ = u_0 u_1 \dots u_{k-1} u_k u_{k+1} \dots u_{\ell-1} u_{\ell}$ stik sprehodov S in Z in
- $S_{u_iu_j} = u_iu_{i+1}\dots u_{j-1}u_j$, kjer i,j zadoščata $0 \le i \le j \le k$ odsek sprehoda S.

Sprehod ali pot, povezanost

Lema

Če v grafu G = (V, E) obstaja u - v sprehod S, potem v G obstaja tudi u - v pot.

Posledica (dokaza zgornje leme)

Najkrajši u – v sprehod v grafu je pot.

Graf G je povezan, če za vsaki dve točki $u,v\in V(G)$ v grafu G obstaja u-v sprehod

Povezane komponente

 $uPv \iff v G \text{ obstaja } u-v \text{ sprehod.}$

Razdalja v povezanem grafu

Naj bo G povezan graf. Razdalja med točkama u in v v grafu G, dist(u, v), je dolžina najkrajše u - v poti (sprehoda) v G.

Trditev

Razdalja dist v povezanem grafu ustreza trikotniški neenakosti, za poljubne tri točke u,v,w grafa G velja

$$dist(u, w) \leq dist(u, v) + dist(v, w)$$

Dvodelni grafi

Graf G je *dvodelen*, če lahko točke grafa G pobarvamo z dvema barvama takó, da ima vsaka povezava krajišči različnih barv.

Izrek

Graf G je dvodelen natanko tedaj, ko G ne vsebuje ciklov lihe dolžine.

Eulerjev problem

▶ Ali obstaja obhod po mestu, ki bi prehodil vse mostove in sicer vsakega natanko enkrat?

Eulerjevi grafi

Sprehod v grafu G je *enostaven*, če vsako povezavo *uporabi* največ enkrat.

Problem: Ali v grafu *G* obstaja enostaven obhod, ki vsebuje vse povezave in vsa vozlišča?

Enostaven obhod v grafu G, ki vsebuje vse povezave in vsa vozlišča imenujemo *Eulerjev obhod*.

Graf G je *Eulerjev*, če ima kak Eulerjev obhod.

Eulerjevi grafi

► Eulerjev obhod:

Eulerjev izrek

Izrek (Euler)

Graf G je Eulerjev natanko tedaj, ko je G povezan in so vsa njegova vozlišča sodih stopenj.

Posledica

Graf je Eulerjev natanko tedaj, ko ga lahko narišemo z eno samo potezo, ki je povrh vsega še sklenjena.

Drevesa in gozdovi

Drevo je povezan graf brez ciklov. *Gozd* je graf brez ciklov.

Trditev

G je gozd \iff povezane komponente G so drevesa.

G je drevo \iff G je povezan gozd.

Grafi P_n in $K_{1,n}$ so drevesa.

Prerezne točke in povezave

Točka $v \in V(G)$ je prerezna točka grafa G, če ima G-v strogo več povezanih komponent kot G.

Povezava $e \in E(G)$ je *prerezna povezava* grafa G, če ima G-e strogo več povezanih komponent kot G.

Trditev

 $e \in E(G)$ je prerezna povezava natanko tedaj, ko e ne leži na nobenem ciklu v grafu G.

Prerezne točke in povezave

u in v sta prerezni točki v grafu G, e je prerezna povezava.

Lastnosti dreves

Naj bo T drevo z n točkami in m povezavami.

- 1. T je povezan graf.
- 2. T je brez ciklov.
- 3. m = n 1.
- 4. Vsaka povezava v T je prerezna.
- 5. Za poljubni točki $u, v \in V(T)$ obstaja natančno ena u v pot v T.
- 6. Če drevesu *T* dodamo katerokoli novo povezavo, vsebuje dobljeni graf natanko en cikel.

Vpeto drevo

Naj bo G graf in $H \subseteq G$. H je vpeto drevo v G, če je

- ► H vpet podgraf v G in
- ► *H* drevo.

Lastnosti vpetih dreves

Izrek

G je povezan \iff G ima vsaj eno vpeto drevo.

Trditev

Če je T drevo in je $|V(T)| \ge 2$, potem ima T vsaj dva lista.

Posledica

Če je G povezan in je $|V(G)| \ge 2$, potem vsebuje G vsaj dve točki, ki nista prerezni.

Hamiltonovi grafi

 $Cikel v grafu \ G$ je Hamiltonov, če vsebuje vse točke grafa G.

Graf G je Hamiltonov, če vsebuje kak Hamiltonov cikel.

Zgledi

Zgledi

Kakšna je zveza med Hamiltonovimi in Eulerjevimi grafi?

Kako prepoznati Hamiltonove grafe

Hamiltonov problem je mnogo težji kot Eulerjev.

Ne obstaja enostavna karakterizacija Hamiltonovih grafov.

Spoznali bomo en *potreben pogoj*, da je graf Hamiltonov in en *zadosten pogoj*, da je graf Hamiltonov.

Potrebni pogoj z razpadom grafa

Izrek

Naj bo G povezan graf. Denimo, da obstaja takšna podmnožica točk grafa $S\subseteq V(G)$ moči |S|=k, za katero velja, da ima

$$G-S$$

vsaj k + 1 povezanih komponent. Potem G ni Hamiltonov.

Komentar: Pogoj, da v grafu takšna množica S ne obstaja, je potreben. To pomeni, da Hamiltonov graf zadošča temu pogoju (tj. ne razpade preveč). Toda če graf pogoju zadošča (ne razpade), to še ne pomeni, da je Hamiltonov.

Zgledi

Razpad v dvodelnih grafih

Potrebni pogoj z razpadom grafa ima v družini dvodelnih grafov naslednjo posledico.

Posledica

Naj bo G dvodelen graf z barvnima razredoma V_1 in V_2 . $(V(G) = V_1 \cup V_2, \ V_1$ je množica 'belih', V_2 množica 'črnih' točk.) Če je $|V_1| \neq |V_2|$, potem G ni Hamiltonov.

Diracov zadostni pogoj

Izrek (Bondy in Chvátal)

Naj bosta u in v nesosedi v grafu G in naj zanju velja $deg(u) + deg(v) \ge |V(G)|$. Potem je graf G + uv Hamiltonov natanko tedaj, ko je G Hamiltonov.

Diracov zadostni pogoj

Izrek (Dirac)

Naj bo G graf z vsaj tremi točkami ($|V(G| = n \ge 3)$. Če za vsako točko

$$v \in V(G) \ \textit{velja} \ \deg(v) \geq \frac{n}{2},$$

potem je graf G Hamiltonov.

Komentar: Pogoj je zadosten. To pomeni, da je vsak graf, ki izpolni omenjeni pogoj tudi Hamiltonov. Ni pa res, da bi vsak Hamiltonov graf izpolnil zgornji pogoj.

Grötzschev graf

Ali je Hamiltonov?

Petersenov graf

Ali je Hamiltonov?

Barvanje grafov

k-barvanje točk grafa G je preslikava

$$c: V(G) \to \{1, 2, 3, \ldots, k\},\$$

za katero velja, da je $c(u) \neq c(v)$ za vsako povezavo $uv \in E(G)$.

To pomeni, da morata biti krajišči vsake povezave različnih barv.

Najmanjše naravno število k, za katerega obstaja k-barvanje točk grafa G, imenujemo kromatično število grafa G in ga označimo s $\chi(G)$.

Zakaj barvanje točk grafa

Problem: Skladiščimo nevarne kemikalije $k_1, k_2, k_3, \ldots, k_n$.

Predpisi določajo, da določenih nevarnih snov ne smemo skladiščiti skupaj. Poišči najmanjše potrebno število skladiščnih prostorov.

Rešitev:

- Sestavimo graf G s točkami k_1, \ldots, k_n .
- Dve točki-kemikaliji sta sosedi, če ju ne smemo hraniti v istem prostoru.
- Barve ustrezajo skladiščnim prostorom.
- lščemo najmanjše potrebno število barv.

Zgledi

- 1. $\chi(G) \leq |V(G)|$
- 2. $\chi(G) \leq 1$ natanko tedaj, ko je G brez povezav.
- 3. $\chi(G) \leq 2$ natanko tedaj, ko je G dvodelen.
- 4. $\chi(K_n) = n$, $\chi(\overline{K_n}) = 1$, $\chi(K_{m,n}) = 2$
- 5. $\chi(T)=2$, če je T drevo in ima vsaj dve točki.
- 6. $\chi(C_n) = \begin{cases} 2, & n \text{ sod,} \\ 3, & n \text{ lih.} \end{cases}$
- 7. $\chi(Q_d) = 2$, če je $d \ge 1$.

Zgornja in spodnja meja za $\chi(G)$

```
\omega(G) je velikost največjega polnega podgrafa (tudi klike) v G. \omega(G) \leq 2 velja natanko tedaj, ko je G brez trikotnikov. \Delta(G) označuje največjo stopnjo točke v grafu G, z \delta(G) pa označimo najmanjšo stopnjo točke grafa G. Izrek \omega(G) \leq \chi(G) \leq \Delta(G) + 1 Velja celo boljši rezultat. Izrek (Brooks) Naj bo G povezan graf. Če G ni lih cikel niti poln graf, potem je \chi(G) \leq \Delta(G)
```

Požrešno barvanje

```
požrešnoPobarvaj(G)

če ima G eno samo točko v, jo obarvaj z barvo 1, sicer

izberi točko v,

požrešnoPobarvaj(G-v),

obarvaj točko v z najmanjšo barvo, ki je ne

uporabijo sosede točke v.
```

Petersenov graf Kolikšno je njegovo kromatično število?

Grötzschev graf

Kolikšno je njegovo kromatično število?

