lui \$s1, 0x1001 #direccion base del vector

Tipo i

0011 11	00 000	1 0001	0000 0000 0000 0000
ор	RS	RT	
6 bits	5 bits	5 bits	16 bits

0x3C110000 Instruccion hexadecimal

jal longitud_array #CalcularLongitudArray()

Tipo j

0000 11	00 000	1 1111	0000 0000 0000 1000
ор	RS	RT	Constant
6 bits			26 bits

0x0C1F0008 Instruccion hexadecimal

lui \$a0, 0x1001 #direccion base del vector en a0

Tipo i

0011 11	00 000	0 0100	0000 0000 0000 0000
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x3C040000 Instruccion hexadecimal

addi \$a1, \$s0, 0 #a1=longitud

Tipo i

0010 00	10 000	0 0101	0000 0000 0000 0000
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x22050000 Instruccion hexadecimal

jal penultimo #Obtener penultimo elemento

Tipo j

6 bits

0000 11	00 000	1 1111	0000 0000 0000 1110
ор		Constan	t

26 bits

0x0C1F000E Instruccion hexadecimal

addi \$a1, \$v0, 0 #arg1 = valor penult y=x

Tipo i

0010 00	00 010	0 0101	0000 0000 0000 0000
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x20450000 Instruccion hexadecimal

jal mult_function # function_multiplicacion()

Tipo j

0000 11	00 000	1 1111	0000 0000 0001 0011
ор	RS	RT	Constant
6 bits			26 bits

0x0C1F0013 Instruccion hexadecimal

j exitfinal

Tipo j

0000 10	00 000	0 0000	0000 0000 0001 0111
ор	RS	RT	Constant
6 bits			26 bits

0x08000017 Instruccion hexadecimal

lw \$a0, 0(\$s1) #a0=s1[i]

Tipo i

1000 11	10 001	0 0100	0000 0000 0000 0000
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x8E240000 Instruccion hexadecimal

beq \$a0, 0, exit #if(i=0)exit

Tipo i

0001 00	00 100	0 0000	0000 0000 0000 0011
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x10800003 Instruccion hexadecimal

addi \$s0, \$s0, 1 # longitud=longitud + 1

Tipo i

0010 00	10 000	1 0000	0000 0000 0000 0001
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x22100001 Instruccion hexadecimal

addi \$s1, \$s1, 1 #direccion = direccion + 1

Tipo i

0010 00	10 001	1 0001	0000 0000 0000 0001
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x22310001 Instruccion hexadecimal

j longitud_array

Tipo j

0000 10	00 000	0 0000	0000 0000 0000 1000
ор	RS	RT	Constant
6 bits			26 bits

80000080x0

Instruccion hexadecimal

jr \$ra

Tipo r

0000 01	11 111	0 0000	0000 0	000 00	00 1000
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x07E00008

Instruccion hexadecimal

addi \$t2, \$t2, 2

Tipo i

0010 00	01 010	0 1010	0000 0000 0000 0010
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x214A0002

Instruccion hexadecimal

sub \$t1, \$a1, \$t2 #Resta del registro traido

Tipo r

0000 00	00 101	0 1010	0100 1	000 00	10 0010
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x00AA4822

Instruccion hexadecimal

add \$s2, \$s2, \$t1 ## direccion del penultimo

Tipo r

0000 00	10 010	0 1001	1001 0	000 00	10 000
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x02499020 Instruccion hexadecimal

lw v0,0(\$s2) #cargamos en v0 el penultimo.value

Tipo i

1000 11	10 010	0 0010	0000 0000 0000 0000
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x8E420000 Instruccion hexadecimal

jr \$ra

Tipo r

0000 01	11 111	0 0000	0000 0	000 00	00 1000
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x07E00008 Instruccion hexadecimal

sll \$t3, \$a1, 6 #x * 64

Tipo r

0000 00	00 000	0 0101	0101 1	001 10	00 0000
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x00055980 Instruccion hexadecimal

Tipo r

0000 00	00 000	0 0101	0110 0	001 00	00 0000
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x00056100 Instruccion hexadecimal

add v1, t3, t4 #(x*64) + (x*16) = x*80

Tipo r

0000 00	01 011	0 1100	0001 1	000 00	10 000
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x016C1820 Instruccion hexadecimal

jr \$ra

Tipo r

Tipo i

0000 01	11 111	0 0000	0000 0	000 00	00 1000
ор	RS	RT	RD	SHAMT	FUNCTION
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

0x07E00008 Instruccion hexadecimal

addi \$s5, \$s5, 20 #Puntero de la dirección base del resultado

0010 00	10 101	1 0101	0000 0000 0001 0100
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0x22B50014 Instruccion hexadecimal

sw v1 , 0(\$s5) #Guardar el valor del resultado

Tipo i

1010 11	10 101	0 0011	0000 0000 0000 0000
ор	RS	RT	Constant
6 bits	5 bits	5 bits	16 bits

0xAEA30000 Instruccion hexadecimal