,

CSE 3380 - Linear Combinations January 29, 2021 Luke Sweeney UT Arlington Professor Dillhoff

1 Vectors in \mathbb{R}^n

 \mathbb{R}^n is the collection of all lists (ordered n-tuples) of all numbers.

Note: the zero vector $\vec{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$

Algebraic Properties of Vectors

1.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

2.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

3.
$$\vec{u} + 0 = 0 + \vec{u} = \vec{u}$$

4.
$$\vec{u} + (-\vec{u}) = 0$$

$$5. \ c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$$

6.
$$(c+d)\vec{v} = c\vec{v} + d\vec{v}$$

7.
$$c(d\vec{v}) = (cd)\vec{v}$$

8.
$$1\vec{u} = \vec{u}$$

2 Linear Combination

Definition 1 given vectors $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_p}$ in \mathbb{R}^n and scalars $c_i \in \mathbb{R}$, the vector \vec{y} defined by

$$\vec{y} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_p \vec{v_p}$$

is called a linear combination of $\vec{v_1}, \dots, \vec{v_p}$ with weights c_1, \dots, c_p .

Example

Let
$$\vec{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

The point $\vec{w} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$ can be represented as a linear combination of these two vectors.

Example (3D)

Let
$$\vec{a_1} = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $\vec{a_2} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$

Can we write \vec{b} as a linear combination of a_1 and a_2 , so that

$$x_1\vec{a_1} + x_2\vec{a_2} = \vec{b}$$

$$x_{1} \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + x_{2} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$
$$\begin{cases} x_{1} + 2x_{2} = 7 \\ -2x_{1} + 5x_{2} = 4 \\ -5x_{1} + 6x_{2} = -3 \end{cases}$$

We can convert this system to an augmented matrix and solve for a solution. I'll omit a few steps, see previous notes for solving linear systems.

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \xrightarrow{+2 \cdot eq.1} \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 32 \end{bmatrix} \xrightarrow{-2 \cdot eq.2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 16 & 32 \end{bmatrix} \xrightarrow{-16 \cdot eq.2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

It may seem like there are infinite solutions (0 = 0 implies a free variable), but remember there are only 2 unknowns. This system tells us that we have a single solution, $x_1 = 3$, $x_2 = 2$.

So,
$$3\begin{bmatrix} 1\\-2\\-5\end{bmatrix} + 2\begin{bmatrix} 2\\5\\6\end{bmatrix} = \begin{bmatrix} 7\\4\\-3\end{bmatrix}$$

Definition 2 a vector equation $x_1\vec{a_1} + \cdots + x_n\vec{a_n} = \vec{b}$ has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} & \vec{b} \end{bmatrix}$$

Definition 3 if $\vec{v_1}, \dots, \vec{v_p}$ are in \mathbb{R}^n , then the set of all linear combinations of the vectors in denoted by $Span\{\vec{v_1}, \dots, \vec{v_p}\}$ and is called the subset of \mathbb{R}^n spanned by $\vec{v_1}, \dots, \vec{v_p}$.

 $Span\{\vec{v_1}, \cdots, \vec{v_p}\}\$ is the collection of all vectors that can be written in the form

$$c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_n\vec{v_n}$$

2.1 Geometric Description of Span $\{\vec{v}\}$ and Span $\{\vec{u}, \vec{v}\}$

For Span $\{\vec{v}\}$, the span is all vectors formed by scaling \vec{v} by any scalar. That's all we can do. This is one dimension.

For Span $\{\vec{u}, \vec{v}\}$, the span contains every point in \mathbb{R}^2 space. Here's two vectors and an example of them combining to reach a third arbitrary point.

