МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА № 6

по дисциплине 'ИНФОРМАТИКА' Система верстки ЫТЕХ Вариант №89

> Выполнил: Студент группы Р3118 Кравец Роман Денисович Преподаватель: Малышева Татьяна Алексеевна

Метод

наименьших квадратов

Метод наименьших квадратов применяется при обработке измерений для сглаживания «шума» эксперимента: этот метод позволяет исправлять случайные ошибки, неизбежно возникающие при изменениях, в том случае, когда характер зависимости измеряемой величины от независимой переменной задан.

Рассмотрим простейшую ситуацию, когда измеряемая величина у зависит линейно от одной переменной х. Пусть произведено п измерений и для значений x_1, x_2, \ldots, x_n переменной х получены замеры y_1, y_2, \ldots, y_n . Задача состоит в проведении прямой y = ax + b, наилучшим образом прилегающей к точкам $P(x_1; y_1), P(x_2; y_2), \ldots, P(x_n; y_n)$.

Решение задачи, разумеется, зависит от того, что понимается под словами «наилучшим образом прилегающей». Суть метода наименьших квадратов (его называют так же методом Гаусса) состоит в том, что «наилучшей» считается та прямая, для которой принимает наименьшее значение сумма квадратов отклонений, т. е. выражение

$$A_n = \sum_{i=1}^{n} (y_i - (ax_i) + b))^2.$$
 (1)

На рисунке изображена искомая прямая y = ax + b и точки P_1, \ldots, P_n . Разность $y_i - (ax_i + b)$ показывает отклонение (вдоль оси ординат) экспериментальной точки $P_i(x_i, y_i)$ от искомой прямой.

Как найти значение а и b, минимизирующие выражения (1)? Предположим, что такие значения существуют, и параметр а нами уже найден. Чтобы найти b, перепишем A_n в виде

$$A_n = \sum_{i=1}^n (y_i - ax_y)^2 - \sum_{i=1}^n 2b(y_i - ax_i) +$$

$$+ \sum_{i=1}^n b^2 = n * b^2 - 2b \sum_{i=1}^n (y_i - ax_i) +$$

$$+ \sum_{i=1}^n (y_i - ax_i)^2.$$

Рассмотрим A_n как (квадратичную) функцию от b. Она достигает минимума при

$$b = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i) =$$

$$=\frac{1}{n}\sum_{i=1}^{n}y_{i}-\frac{a}{n}\sum_{i=1}^{n}x_{i}.$$

Положив

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i; \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

можно написать $b = \bar{y} - a\bar{x}$, откуда для A_n получим

$$A_n = \sum_{i=1}^n ((y_i - \bar{y}) - a(x_i - \bar{x}))^2 =$$

$$= a^{2} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} - 2a \sum_{i=1}^{n} (y_{i} - \bar{y})(x_{i} - \bar{x}) + \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}.$$

Рассмотрим теперь A_n как квадратичную функцию от а. Она очевидно достигает минимума при

$$a = \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) / \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

Наилучшей оказалась прямая y = ax + b, где

$$a = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \ b = \bar{y} - \frac{\bar{x} \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Задачи

- 1. Решить задачу о сглаживании шума методом Гаусса для следующих не линейных функций от одной переменной
 - (a) $y = ax^2 + bx + c$;
 - (b) $y = a \cdot \cos x + b \cdot \sin x$.
- 2. Как «работает» метод Гаусса в пространстве (для двух независимых переменных)? Рассмотрите задачу для плоскости z = ax + by + c*)
- 3. Найти точку, для которой
 - (a) сумма расстояний от трех заданных точек (не лежащих на одной прямой) минимальна;
 - (b) задача 3a) для n точек, не лежащих на одной прямой;
 - (с) сумма расстояний от трех заданных окружностей минимальна.

А. Строгова

^{*)} Геометрическая иллюстрация к этой задаче дана на первой полосе обложки «Кванта» \mathbb{N}_{2} 8.

Таблица 1

$ \Delta K $	h_6	h_M	$ \Delta K $	h_6	h_M	$ \Delta K $	h_6	h_M
0-3	50	50	122-129	67	33	279-290	84	16
4-10	51	49	130-137	68	32	291-302	85	15
11-17	52	48	138-145	69	31	303-315	86	14
18-25	53	47	146-153	70	30	316-328	87	13
26-32	54	46	154-162	71	29	329-344	88	12
33-39	55	45	163-170	72	28	345-357	89	11
40-46	56	44	171-179	73	27	358-374	90	10
47-53	57	43	180-188	74	26	375-391	91	9
54-61	58	42	189-197	75	25	392-411	92	8
62-68	59	41	198-206	7 6	24	412-432	93	7
69-76	60	40	207-215	77	23	433-456	94	6
77-83	61	39	216-225	78	22	457-484	95	5
84-91	62	38	226-235	7 9	21	485-517	96	4
92-98	63	37	236-245	80	20	518-559	97	3
99-106	64	36	246-256	81	19	560-619	98	2
107-113	65	35	257-267	82	18	620-735	99	1
114-121	66	34	268-278	83	17	свыше 735	100	0

