Question 1: Alle-til-alle vha. Dijkstra
×
Hvordan kan du løse alle til alle korteste vei-problemet i en rettet graf med ikke-negative kantvekter, ved hjelp av Dijkstras algoritme?
$igotimes$ Kjør algoritmen en gang fra hver node, totalt $\Theta(V)$ ganger.
Ingen av de andre alternativene er korrekte.
\bigcirc Kjør algoritmen mellom alle par med noder, totalt $\Theta(V^2)$ ganger.
○ Kjør algoritmen en gang.
Question 2: Alle-til-alle vha. SSSP
×
Hvordan kan du raskest finne korteste vei mellom alle par med noder i en rettet graf uten negative sykler, ved å kjøre en av algoritmene nedenfor fra hver node? Hva blir kjøretiden?
\bigcirc Dijkstra m/min-heap, $O(VE\lg V)$
\bigcirc Bellman-Ford, $O(V^3)$

Dijkstra m/min-heap $O(V^2 \lg V + VE)$

lacksquare Bellman-Ford, $O(V^2E)$

Question 3: Forgjengermatriser	
	×
π_{ij} i en forgjengermatrise, forteller oss	
\bigcirc Hvor man må gå for å ta korteste vei fra i til j	
\bigcirc Hvor man må gå for å ta korteste vei fra j til i	
Hvor man kom fra, på korteste vei fra i til j	
\bigcirc Hvor man kom fra, på korteste vei fra j til i	
Question 4: Forgjengermatriser	
	×
$\pi_{ij} = nil$ betyr at	
\bigcirc Det er aldri mulig å komme seg fra i til j	
\bigcirc Enten er $i=j$ eller så er det ingen sti fra j til i	
\bigcirc Enten er $i=j$ eller så er det ingen sti fra i til j	
Ingen av de andre alternativene er korrekte.	

Question 7: Floyd-Warshall

Implementasjonen av Floyd-Warshall i kapittel 25.2 i Cormen bruker unødvendig mye plass.

I praksis bruker vi en versjon som bruker mindre plass. Hvor mye plass bruker denne implementasjonen? $\Theta(V^2)$

- \bigcirc $\Theta(E+V)$
- $\bigcirc \Theta(V^3)$
- Θ(E)

Question 8: Floyd-Warshall

To obilling til folgsonde utsern

- Ta stilling til følgende utsagn: $\hbox{1. Etter at Floyd-Warshall har kjørt, kan diagonalen avstandsmatrisen D (dvs. $d_{1,1}$, $d_{2,2}$ osv.) inneholde positive }$
 - tall.

 2. Etter at Floyd-Warshall har kjørt, kan diagonalen avstandsmatrisen D (dvs. $d_{1,1}$, $d_{2,2}$ osv.) inneholde negative
- tall.

 Begge utsagnene er sanne.
- Begge utsagnene er
 - Begge utsagnene er usanne.
 - Kun utsagn 2 er sant.

Kun utsagn 1 er sant.

Question 9: Transitive-closure

Oppgave fra en tidligere eksamen:

I Transitive-Closure brukes den binære variabelen $t_{ij}^{(k)}$ til å indikere om det går en sti fra i til j hvis alle noder på veien mellom dem må ligge i mengden $1, 2, \ldots, k$. For eksempel er $t_{ij}^{(0)} = 1$ hvis og bare hvis $(i, j) \in E$. Hva er utrykket for $t_{ij}^{(k)}$, når k > 0? $t_{ii}^{(k)} = t_{ii}^{(k-1)} \wedge (t_{ik}^{(k-1)} \vee t_{ki}^{(k-1)})$

$$color=0 \ t_{ij}^{(k)} = t_{ij}^{(k-1)} \land (t_{ik}^{(k-1)} \lor t_{kj}^{(k-1)})$$

$$color=0 \ t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{jk}^{(k-1)} \land t_{ki}^{(k-1)})$$

$$color=0 \ t_{ij}^{(k)} = t_{ij}^{(k-1)} \land (t_{jk}^{(k-1)} \lor t_{ki}^{(k-1)})$$

$$color=0 \ t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{ki}^{(k-1)})$$

Question 10: Transitive-closure

Dersom $t_{ii}^{(k)} = 0$ betyr det at

- Det eksisterer en sti fra i til j med lengde nøyaktig lik k.
- Det eksisterer en sti fra i til j med lengde større eller lik k.
- \bigcirc Det ikke eksisterer en sti fra i til j med lengde større eller lik k.
- Ingen av de andre alternativene.
- Det eksisterer en sti fra i til j med lengde mindre eller lik k.
- Det ikke eksisterer en sti fra i til j med lengde mindre eller lik k.

Question 11: Johnsons algoritme	
	¢
Johnsons bruker andre algoritmer som subrutiner. Hvilke?	
O Dijkstra og BFS	
Bellman-Ford og Floyd-Warshall	
Dijkstra og Bellman-Ford	
○ BFS og Floyd-Warshall	
Question 12: Johnsons algoritme	
x	ζ
Anta at vi bruker en binær min-heap. Da har Johnsons algoritme har kjøretid	
$\bigcirc O(V^2 \lg V + VE)$	
$\bigcirc O(V^2 \lg V + V^3)$	
$\bigcirc O(E \lg V + VE)$	
\bigcirc $O(VE \lg V)$	

Question 13: Johnsons algoritme
×
Johnsons algoritme finner korteste vei i grafer med negative sykler. O Usant. Sant.
Question 14: Johnsons algoritme
×
Hvilken teknikk er det som gjør Johnsons algoritme spesiell?
○ Grådighet
Revekting av kantvekter
O Bruk av nabolister
Relaksering av kantvekter

Question 15: Johnsons algoritme

Hva blir kjøretiden til Johnsons algoritme i en rettet graf der alle par med noder har en kant hver vei mellom seg (en komplett digraf), dersom vi antar at vi bruker en Fibonacci-heap?

- $\bigcirc O(V^4)$
- O(V³)