DS 7

L'usage des calculatrices est interdite.

On note S l'ensemble des séries de complexes. On rappelle que c'est un \mathbb{C} -espace vectoriel et que lorsque $u = \sum u_n$ et $v = \sum v_n$ sont deux séries de complexes, pour tout $\alpha \in \mathbb{C}$, on a $\alpha u + v = \sum (\alpha u_n + v_n)$. On note :

- S_0 l'ensemble des séries de complexes dont le terme général tend vers 0 en $+\infty$;
- S_C l'ensemble des séries convergentes de complexes et
- S_{AC} l'ensemble des séries absolument convergentes de complexes.

Partie I : à la frontière des séries convergentes

1°) Montrer que S_0 est un sous-espace vectoriel strictement inclus dans S. Montrer que S_C est un sous-espace vectoriel strictement inclus dans S_0 . Montrer que S_{AC} est un sous-espace vectoriel strictement inclus dans S_C .

Pour toute série $u = \sum u_n$ de S et pour tout entier naturel n, on note U_n la somme partielle d'ordre n et, lorsque $u \in S_C$, on note R_n le reste de Cauchy d'ordre n:

$$U_n = \sum_{k=0}^{n} u_k, \quad R_n = \sum_{k=n+1}^{+\infty} u_k,$$

en convenant que $U_{-1} = 0$ et $R_{-1} = \sum_{k=0}^{+\infty} u_k$.

- 2°) Soit $u = \sum u_n \in S$. Indiquer, en justifiant, une suite croissante $(\alpha_n)_{n \in \mathbb{N}}$ de réels positifs ou nuls qui tend vers $+\infty$ telle que $\sum \alpha_n u_n \in S_C$ dans les cas suivants :
 - $u_0 = 0$ et pour tout $n \ge 1$, $u_n = \frac{1}{n^3}$;
 - $u_0 = 0$ et pour tout $n \ge 1$, $u_n = \frac{1}{n^2}$;
 - $u_0 = u_1 = 0$ et pour tout $n \ge 2$, $u_n = \frac{1}{n(\ln n)^2}$.

On attend une expression simple et explicite pour α_n , qui n'utilise pas les questions suivantes.

3°) Soit $\sum u_n \in S$ avec, pour tout $n \in \mathbb{N}$, $u_n \in \mathbb{R}_+$.

À quelle condition portant sur la suite (u_n) peut-on définir,

pour tout
$$n \in \mathbb{N}$$
, $\alpha_n = \frac{1}{\sqrt{R_n} + \sqrt{R_{n-1}}}$?

pour tout $n \in \mathbb{N}$, $\alpha_n = \frac{1}{\sqrt{R_n} + \sqrt{R_{n-1}}}$? Dans ce cas, montrer que la suite $(\alpha_n)_{n \in \mathbb{N}}$ est une suite croissante de réels positifs ou nuls qui tend vers $+\infty$.

1

- **4°)** Montrer que, pour toute série convergente $\sum u_n$ à termes réels positifs ou nuls, il existe une suite (α_n) de réels positifs ou nuls, tendant vers $+\infty$ en croissant, telle que la série $\sum \alpha_n u_n$ soit convergente.
- **5**°) Soit $u = \sum u_n \in S$. Indiquer, en justifiant, une suite décroissante $(\alpha_n)_{n \in \mathbb{N}}$ de réels strictement positifs qui tend vers 0 telle que $\sum \alpha_n u_n$ diverge, dans les cas suivants :
 - $u_0 = 0$ et pour tout $n \ge 1$, $u_n = \frac{1}{\sqrt{n}}$;
 - $u_0 = 0$ et pour tout $n \ge 1$, $u_n = \frac{1}{n}$;
 - $u_0 = u_1 = 0$ et pour tout $n \ge 2$, $u_n = \frac{1}{n\sqrt{\ln n}}$.

On attend une expression simple et explicite pour α_n , qui n'utilise pas les questions suivantes.

6°) Montrer que, pour toute série divergente $\sum u_n$ à termes réels positifs ou nuls, il existe une suite décroissante $(\alpha_n)_{n\in\mathbb{N}}$ de réels strictement positifs qui tend vers 0 telle que $\sum \alpha_n u_n$ est encore divergente.

Partie II : Normes sur S_{AC} .

- **7°)** Soit $(\alpha_n)_{n\in\mathbb{N}}$ une suite de réels positifs ou nuls. Montrer que si $(\alpha_n)_{n\in\mathbb{N}}$ est majorée, alors pour toute série $\sum u_n$ à termes réels positifs ou nuls et convergente, la série $\sum \alpha_n u_n$ est convergente.
- 8°) Soit $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ une suite de réels positifs ou nuls et majorée.

Pour tout
$$u = \sum u_n \in S_{AC}$$
, on pose $N_{\alpha}(u) = \sum_{k=0}^{+\infty} \alpha_k |u_k|$.

Montrer que N_{α} est une norme sur S_{AC} si et seulement si la suite $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ est à valeurs dans \mathbb{R}_+^* .

- **9°)** Soit $\alpha = (\alpha_n)$ et $\beta = (\beta_n)$ les suites definies par : $\forall n \in \mathbb{N}, \ \alpha_n = \frac{1}{2^n}$ et $\beta_n = \frac{1}{n!}$. Les normes N_{α} et N_{β} sont-elles équivalentes sur S_{AC} ?
- 10°) $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ et $\beta = (\beta_n)_{n \in \mathbb{N}}$ désignent maintenant deux suites majorées quelconques de réels strictement positifs. Montrer que N_{α} et N_{β} sont équivalentes si et seulement si $\alpha_n = O(\beta_n)$ et $\beta_n = O(\alpha_n)$.
- 11°) $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ désigne à nouveau une suite majorée quelconques de réels stricte-

ment positifs. On définit l'application
$$\varphi$$
 par : $\forall u = \sum u_n \in S_{AC}, \quad \varphi(u) = \sum_{k=0}^{+\infty} u_k.$

On munit S_{AC} de la norme N_{α} .

Lorsque pour tout $n \in \mathbb{N}$, $\alpha_n = 1$, montrer que φ est continue.

Lorsque pour tout $n \in \mathbb{N}$, $\alpha_n = \frac{1}{2^n}$, montrer que φ n'est pas continue.

Dans le cas général, donner une condition nécessaire et suffisante sur la suite α pour que φ soit continue.

12°) On suppose que $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ est une suite non majorée de réels positifs ou nuls. Montrer qu'il existe une application φ de $\mathbb N$ dans $\mathbb N$, strictement croissante, telle que pour tout $n \in \mathbb{N}$, $\alpha_{\varphi(n)} \geq n$. En déduire la réciproque de la question 7.

Partie III : séries absolument convergentes d'ordre p.

Soit
$$\psi$$
 l'application de S_{AC} dans S_0 définie par : pour tout $u = \sum u_n \in S_{AC}$, $\psi(u) = \sum R_n$, où l'on rappelle que pour tout $n \in \mathbb{N}$, $R_n = \sum_{k=n+1}^{+\infty} u_k$.

On dira qu'une série $u = \sum u_n$ de S_{AC} est absolument convergente d'ordre 0.

On dira qu'elle est absolument convergente d'ordre 1 si et seulement si la série $\psi(u)$ est absolument convergente.

De proche en proche, pour tout entier $p \geq 1$, on dit que la série $u = \sum u_n$ est absolument convergente d'ordre p si elle est absolument convergente et si la série $\psi(u)$ est absolument convergente d'ordre p-1.

Ainsi, la série $u = \sum u_n$ est absolument convergente d'ordre p si et seulement si les séries $u, \psi(u), \ldots, \psi^p(u)$ sont absolument convergentes, où $\psi^p = \psi \circ \psi \circ \cdots \circ \psi$ (on compose p fois).

On dit qu'une série est absolument convergente d'ordre infini si et seulement si elle est absolument convergente d'ordre p, pour tout entier naturel p.

13°) Montrer que ψ est une application linéaire. Est-elle injective? Est-elle surjective?

Pour tout $p \in \mathbb{N}$, on note E_p l'ensemble des séries absolument convergentes d'ordre p. On note également E_{∞} l'ensemble des séries absolument convergentes d'ordre infini.

14°) Soit $p \in \mathbb{N}$. Montrer que E_p est un sous-espace vectoriel de S_{AC} .

Pour tout $q \in \mathbb{N}$, notons c_q la série $\sum \delta_{n,q}$, où $\delta_{n,q}$ vaut 1 lorsque n = q et 0 lorsque

 $n \neq q$. Exprimer $\psi(c_q)$ en fonction des c_k .

En déduire que E_p est de dimension infinie.

 E_{∞} est-il aussi de dimension infinie?

15°) Soit a un nombre complexe non nul, et q un nombre complexe tel que |q| < 1. On note $u = \sum u_n$ la série définie par : $\forall n \in \mathbb{N}, \ u_n = aq^n$.

Montrer que u est absolument convergente d'ordre infini.

16°) Soit deux séries $u = \sum u_n$ et $v = \sum v_n$ à termes positifs ou nuls et soit $p \in \mathbb{N}$. Montrer que si $u_n \sim v_n$ et si u est absolument convergente d'ordre p, alors v est absolument convergente d'ordre p.

17°) Soit p un entier naturel non nul.

On choisit sur S_{AC} la norme N définie par : $\forall u \in S_{AC}, \ N(u) = \sum_{n=0}^{+\infty} |u_n|$.

On note $\psi_p: E_p \longrightarrow E_{p-1}$ $u \longmapsto \psi(u)$. Si l'on choisit sur E_p et sur E_{p-1} la norme N, l'application ψ_p est-elle continue?

18°) Soit $u = \sum u_n$ une série convergente à termes réels positifs ou nuls.

Pour tout entier n, on note encore R_n son reste de Cauchy d'ordre n.

Étant donné un entier naturel n, exprimer la somme partielle d'ordre n de la série $\sum R_k$ en fonction de celle de la série $\sum ku_k$ et de R_n .

Montrer que si u est absolument convergente d'ordre 1 alors $nR_n \underset{n \to +\infty}{\longrightarrow} 0$.

19°) Réciproquement, si $u = \sum u_n$ est une série convergente à termes réels positifs ou nuls et si $nR_n \xrightarrow[n \to +\infty]{} 0$, u est-elle convergente d'ordre 1?