Etude mathématique et simulation de la dynamique neuronale

Kévin Polisano

Encadré par : Arnaud Tonnelier

23 Mai 2012

- Introduction
 - Objet d'étude : le neurone biologique
 - Démarche suivie
- Modèle de Hodgkin-Huxley
 - Modélisation physique
 - Simulation numérique du modèle
- Réductions dimensionnelles de Hogkin-Huxley
 - Elimination de 2 variables
 - Etude du modèle réduit
- Modèles intègre-et-tire
 - Présentation du modèle IF
 - Introduction d'un nouveau type de seuil
- Conclusion
 - Bilan
 - Perspectives futures

Sommaire

- Introduction
 - Objet d'étude : le neurone biologique
 - Démarche suivie
- 2 Modèle de Hodgkin-Huxley
- Réductions dimensionnelles de Hogkin-Huxley
- Modèles intègre-et-tire
- Conclusion

Introduction

Objet d'étude : le neurone biologique

Bicouche lipédique

- Types de canaux
- Types d'ions

Echanges transmembranaire

- Potentiel de repos à environ -70 mV
- Flux d'ions et polarisation
- Potentiel d'action (spike)

23 Mai 2012

Introduction Démarche suivie

Plan d'attaque

- Présentation du modèle de Hodgkin et Huxley
- Réduction du modèle et étude mathématiques
- Modèles intègre-et-tire avec un nouveau type de seuil

Introduction Démarche suivie

Plan d'attaque

- Présentation du modèle de Hodgkin et Huxley
- Réduction du modèle et étude mathématiques
- Modèles intègre-et-tire avec un nouveau type de seuil

Introduction Démarche suivie

Plan d'attaque

- Présentation du modèle de Hodgkin et Huxley
- Réduction du modèle et étude mathématiques
- Modèles intègre-et-tire avec un nouveau type de seuil

Sommaire

- 1 Introduction
- 2 Modèle de Hodgkin-Huxley
 - Modélisation physique
 - Simulation numérique du modèle
- Réductions dimensionnelles de Hogkin-Huxley
- Modèles intègre-et-tire
- Conclusion

Modélisation physique Equations de Hodgkin-Huxley

Equation des canaux

 $\begin{array}{ll} \text{Fraction de portes} & \xrightarrow{\alpha_i(V)} & \xrightarrow{\beta_i(V)} & \text{Fraction de portes} \\ & \xrightarrow{\beta_i(V)} & \text{ouvertes } p_i(t) \\ \end{array}$

$$\frac{dp_i}{dt} = \alpha_i(V)(1-p_i(t)) - \beta_i(V)p_i(t) = \frac{p_\infty(V)-p_i(t)}{\tau_i(V)}$$

$$p_{\infty}(V) = \frac{\alpha_i(V)}{\alpha_i(V) + \beta_i(V)}$$
 et $\tau_i(V) = \frac{1}{\alpha_i(V) + \beta_i(V)}$

Equation du circuit

- o loi des mailles : $I_C + I_{Na} + I_K + I_L = 0$
- o loi d'ohm : $I_i = g_i(V E_i)$

Equations de Hodgkin-Huxley

$$\begin{cases}
c_M \frac{dV}{dt} &= -\bar{g}_{N_2} m^3 h(V - E_{N_2}) \\
-\bar{g}_K n^4 (V - E_K) \\
-\bar{g}_L (V - E_L) + I_{app}
\end{cases}$$

$$\begin{cases}
\frac{dn}{dt} &= \phi[\alpha_n(V)(1 - n) - \beta_n(V)n] \\
\frac{dm}{dt} &= \phi[\alpha_m(V)(1 - m) - \beta_m(V)m] \\
\frac{dh}{dt} &= \phi[\alpha_h(V)(1 - h) - \beta_h(V)h]
\end{cases}$$

□ ▶ ◀畵 ▶ ◀돌 ▶ ◀돌 ▶ · 돌 · 쒸익()

Stimulation par un échelon de courant de 4 μA

Stimulation par un échelon de courant de $10~\mu A$

Sommaire

- 1 Introduction
- Modèle de Hodgkin-Huxley
- 3 Réductions dimensionnelles de Hogkin-Huxley
 - Elimination de 2 variables
 - Etude du modèle réduit
- Modèles intègre-et-tire
- Conclusion

Réduction dimensionnelle

Elimination de 2 variables

$$n + h$$
 ≈ 0.87

$$m(t) \simeq m_{\infty}(V(t))$$

Réduction dimensionnelle

Equations du modèle réduit

$$\begin{cases} \frac{dV}{dt} = \frac{1}{C_M} [I_{app} - I_{ion}(V, n)] \equiv f(V, n) \\ \frac{dn}{dt} = \frac{\phi(n_{\infty}(V) - n)}{\tau_n(V)} \equiv g(V, n) \end{cases}$$

$$I_{ion}(V,n) = g_{Ca}m_{\infty}(V - E_{Ca}) - g_{K}n(V - E_{K}) - g_{L}(V - E_{L})$$

Intérêts du modèle réduit

- Représentation des variables dans le plan de phase
- Interprétations géométriques du comportement neuronal
- Etude du système dynamique (stabilité, bifurcation, etc)

Stimulation par un échelon de courant de 60 mA Réponses temporelle et dans le plan de phase

Stimulation par un échelon de courant de 100 mA Réponses temporelle et dans le plan de phase

Analyse théorique du système

Etude de stabilité du point fixe

On examine les valeurs propres de la matrice jacobienne :

$$\begin{bmatrix} -\frac{\partial I_{ion}(V_R, n_R)}{\partial V} / C_M & -g_K(V_R - E_K) / C_M \\ \phi n_\infty'(V_R) / \tau_n(V_R) & -\phi / \tau_n(V_R) \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Nature du point fixe

- $a \le 0$ le point fixe est stable
- a > 0
 - si -a/b > -c/d alors le point fixe est instable
 - sinon stable si a + d < 0 et instable si a + d > 0

Interprétations dans le plan de phase

 $I_{app} = 100 \text{ mA} : Instable}$

Interprétations dans le plan de phase

 $I_{app} = 90 \text{ mA}$: Bistabilité

Théorie des bifurcations

Bifurcation de Hopf

- ullet Stabilité du système dynamique dépendante de I_{app}
- Pour $I_{app} < 94$ et $I_{app} > 212$ point fixe stable
- Pour $I_{app} \in [94, 212]$ point fixe instable

Sommaire

- 1 Introduction
- Modèle de Hodgkin-Huxley
- 3 Réductions dimensionnelles de Hogkin-Huxley
- 4 Modèles intègre-et-tire
 - Présentation du modèle IF
 - Introduction d'un nouveau type de seuil
- Conclusion

Présentation du modèle IF

Formulation mathématiques

Forme générale d'un modèle IF

$$\dot{v} = F(v) - w + I_{app}$$
 $\dot{w} = a(bv - w)$
 $si \ v \geqslant v_{seuil}$
 $alors \ v \leftarrow v_{reset}$
 $et \ w \leftarrow w + d$

Présentation du modèle IF Simulation du modèle IF d'Izhikevich

Modèle d'Izhikevich

$$F(v) = 0.04v^2 + 5v + 140$$
, $a = 0.02$, $b = 0.2$, $v_{seuil} = 30$ mV, $I_{app} = 20$

$$v_{reset} = -65 \ mV, \ d = 8$$

$$v_{reset} = -55 \ mV, \ d = 2$$

Introduction d'un nouveau type de seuil Détermination d'une fonction seuil

Introduction d'un nouveau type de seuil Détermination d'une fonction seuil

$$n = 0.0188V + 1.4322$$

Introduction d'un nouveau type de seuil

$$v_{reset} = -75 \ mV$$
, $n_{reset} = 0.7$

HH réduit avec seuil affine

$$\begin{cases} \frac{dV}{dt} = f(V, n) + input(V, t) \\ \frac{dn}{dt} = g(V, n) \\ si \ n < 0.0188V + 1.4322 \\ alors \ v \leftarrow v_{reset} \\ et \ n \leftarrow n_{reset} \end{cases}$$

Extraction d'un modèle IF

Approximation des nullclines

Equations approchées

$$P(V) = 1,27.10^{-3} V^2 + 0,16V + 5,21$$

 $n = 0,0159V + 1,343$

Problème : perte d'information!

Extraction d'un modèle IF

Approximation des surfaces

Equations des surfaces approchées

$$z = f(V, n) \simeq_{L^2} z = 3V^2 + 374V + 10552 - 1170n$$

 $z = g(V, n) \simeq_{L^2} z = 4.10^4V + 0, 27 - 0, 27n$

Extraction d'un modèle IF Projection des surfaces sur z = 0

Visualisation dans le plan de phase

- Problème : courbes nullcline et point fixe incohérents
- Solution : minimisation sous contraintes des nullclines

Discussion : application à des données biologiques Challenge de l'INCF

Sommaire

- 1 Introduction
- Modèle de Hodgkin-Huxley
- 3 Réductions dimensionnelles de Hogkin-Huxley
- 4 Modèles intègre-et-tire
- Conclusion
 - Bilan
 - Perspectives futures

Conclusion Bilan

Récapitulation de la démarche

- Présentation du modèle complet de Hodgkin-Huxley
- Réduction du modèle à 2 variables
- Détermination d'un seuil naturel
- Introduction de ce seuil dans le modèle réduit

Intérêts du nouveau type seuil

- Biologiquement plus plausible
- Gain de temps en simulation
- Amélioration du pouvoir prédictif

Conclusion Perspectives futures

Pistes à suivre

- ▶ Terminer l'extraction du modèle IF
- Soumettre ce modèle aux données biologiques du challenge et analyser statistiquement son pouvoir prédictif
- Appliquer ce nouveau type de seuil aux modèles déjà existants et l'étendre aux réseaux de neurones

Questions?

