Additional Experimental Results

Anonymous Author(s)

Figure 1: Light-IT and Light-IT⁺⁺ concisely and accurately compress irregular tensors. Notably, the output size of Light-IT⁺⁺ is up to $37 \times$ smaller than that of the most compact baseline, showing a similar fitenss. Light-IT⁺⁺ shows up to $5 \times$ higher fitness than the most accurate baseline, even compressing to smaller outputs.

1 COMPRESSION PERFORMANCES OF HYTUCK2 AND BTD2

We add the compression performances of HyTuck2 [2] and BTD2 [1] on 3-order tensors and 4-order tensors, respectively. The results are illustrated in Figure 1. Still, our algorithms perform best in terms of accuracy and compression ability. Note that HyTuck2 is designed for 3-order tensors, while BTD2 is tailored for 4-order tensors. We reduced the size of the 4-order tensors by sampling the second-order and third-order indices (i.e from Enron to Enron_small and Delicious to Delicious_small) because O.O.M occurred when running BTD2 on the original tensors. The sizes of Enron_small and Delicious_small are in Table 1.

REFERENCES

- Christos Chatzichristos, Eleftherios Kofidis, and Sergios Theodoridis. 2017.
 PARAFAC2 and its block term decomposition analog for blind fMRI source unmixing. In EUSIPCO. IEEE.
- [2] Jia Chen and Dalia Orozco. 2022. Unsupervised Multiview Embedding of Node Embeddings. In ACSSC.

Table 1: Statistics of real-world datasets.

Name	N _{max}	Navg	Size (except the 1 st mode)	Order	Density
Enron_small	408	59.4	$50 \times 50 \times 759$	4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Delicious_small	39	13.9	$50 \times 50 \times 1,001$	4	1.16×10^{-3}