

Prof. Dr.-Ing. Florian Schäfer

PB 12-1: Planung und Entwurf von Straßen

(Verkehrswesen 1)

V04: Linienführung im Höhenplan

Wintersemester 2018/19

V04: Linienführung im Höhenplan

- 1. Entwurfselemente im Höhenplan
- 2. Geometrie der Kuppen und Wannen
- 3. Anwendung der Höhenplanelemente für Autobahnen
- 4. Anwendung der Höhenplanelemente für Landstraßen

Entwurfsebenen: Lageplan, Höhenplan und Querschnitt

1. Entwurfselemente im Höhenplan

Ausrundung mit idealisierten Kreisbögen, die als quadratische Parabel eingerechnet werden

Berechnung der Kuppenund Wannenausrundungen (bezogen auf AA)

Formen für Neigungswechsel und -änderungen

	Konvexe Ausrundung: Kuppe	Konkave Ausrundung: Wanne
Neigungs- wechsel	Sy H _K X	S ₇ H _W T T
Neigungs- änderung	T S ₂ H _K S' HX	S_2 H_W S_2

Rechenbeispiel: Höhe des Tangentenschnittpunkts und Wannenausrundung

1. Teil (Berechnung des Tangentenzuges)

Gesucht: Station (TS) und Höhe (y_{TS}) des Tangentenschnittpunkts

Rechenbeispiel: Höhe des Tangentenschnittpunkts und Wannenausrundung 2. Teil (Berechnung der Ausrundung)

$$H_W = 2000 \text{ m}$$

Gesucht: Tangentenlänge (T) und Höhe der Trasse (h_{TS}) am Tangentenschnittpunkt

Rechenbeispiel:

Höhe des Tangentenschnittpunkts und Wannenausrundung

3. Teil (Berechnung für den Scheitelpunkt)

SP = Tiefpunkt

 $H_W = 2000 \text{ m}$

Gesucht: Station (SP) und Höhe (h_{SP}) des Tiefpunkts

Grenzwerte für die Längsneigung nach RAA

Maximale Längsneigung:

Entwurfsklasse	max s [%]	
EKA 1 A	4,0	
EKA 1 B	4,5	
EKA 2	4,5	
EKA 3	6,0	

Tunnel: max s = 3 % (bei L > 500 m sind 2,5 % anzustreben)

Minimale Längsneigung im Verwindungsbereich:

 $s \ge 1.0 \%$ (Ausnahme $s \ge 0.7 \%$)

Minimale Längsneigung bei Brückenbauwerken und bei Hochborden:

s ≥ 0,7 %

Grenzwerte für die Kuppen und Wannen nach RAA

Mindesthalbmesser:

Entwurfsklasse	min H _K [m]	min H _W [m]	
EKA 1 A	13 000	8 800	
EKA 1 B	10 000	5 700	
EKA 2	5 000	4 000	
EKA 3	3 000 2 600		

Mindesttangentenlängen:

Entwurfsklasse	min T [m]	
EKA 1 A	150 (120*)	
EKA 1 B	120	
EKA 2	100	
EKA 3	100	

 $H_W \ge 0.5 \times H_K$

anzustreben:

^{*)} Ausnahmewert beim Um- und Ausbau

Grenzwerte für die Längsneigung nach RAL 2012

Maximale Längsneigung:

Entwurfsklasse	max s [%]		
EKL 1	4,5		
EKL 2	5,5		
EKL 3	6,5		
EKL 4	8,0		

im Bereich von Knotenpunkten:

max s = 6,0 %

anzustreben: s ≤ 4,0 %

Tunnel (bei L > 400 m): max s = 3 %

Minimale Längsneigung im Verwindungsbereich:

 $s \ge 1,0 \%$ (anzustreben: $s \ge 1,5 \%$, Ausnahmefälle: $s \ge 0,7 \%$)

Minimale Längsneigung bei langen Brückenbauwerken:

 $s \ge 0.7 \%$

Minimale Längsneigung bei Hochborden:

 $s \ge 0.5 \%$

Grenzwerte für Kuppen und Wannen nach RAL 2012

Entwurfsklasse	empfohlene Kuppen- halbmesser H _K [m]	empfohlene Wannen- halbmesser H _w [m]	Mindestlänge der Tangenten min T [m]
EKL 1	≥8.000	≥4.000	100
EKL 2	≥6.000	≥3.500	85
EKL 3	≥5.000	≥3.000	70
EKL 4	≥3.000	≥2.000	55

bei Zwangsbedingungen Unterschreitung um bis maximal 15 % möglich,

anzustreben:

im hügeligen Gelände: $H_K \ge H_W \ge 0.5 \times H_K$

im flachen Gelände: $H_W ≥ H_K$

