数学公式检测

北京航空航天大学

张木宫

简单使用

打开 predict.py 即可使用,其中 predict.py 的 mode 有:

- predict 单张图片预测,可以直接使用,无需更改任何内容
- dir_predict 对一个文件夹下所有文件预测,并输出预测图片到指定文件夹,在使用时,请注意更改文件夹的 Path 路径:

```
dir_origin_path = 'pdf_img'
dir_save_path = "pdf_img_out"
```

类别以及框的颜色

我们在本次检测任务中设置了两个类别:

- display 对应红色框,只包含公式本身,不包含序号
- display_all 对应蓝色框,包含公式以及对应的序号

具体的区别就是是否含有编号,如下图:

where \mathbf{x}_0 is unknown, but we can reverse Eq. 5 to estimate a \mathbf{x}_0 from \mathbf{x}_t and the predicted noise $\epsilon_t = \mathcal{Z}_{\theta}(\mathbf{x}_t, t)$. We denote the estimated \mathbf{x}_0 at time-step t as $\mathbf{x}_{0|t}$, which can be formulated as:

$$\mathbf{x}_{0|t} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t - \mathcal{Z}_{\theta}(\mathbf{x}_t, t) \sqrt{1 - \bar{\alpha}_t} \right). \tag{12}$$

Note that this formulation is equivalent to the original DDPM. We do this because it provides a "clean" image x = (rother than point image x =). To finally yield a x continuing Ax = x yes five

测试效果

Refine Null-Space Iteratively. We know the reverse diffusion process iteratively samples \mathbf{x}_{t-1} from $p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ to yield clean images $\mathbf{x}_0 \sim q(\mathbf{x})$ from random noises $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0},\mathbf{I})$. However, this process is completely random, and the intermediate state \mathbf{x}_t is noisy. To yield clean intermediate states for range-null space decomposition, we reparameterize the mean $\mu_t(\mathbf{x}_t,\mathbf{x}_0)$ and variance σ_t^2 of distribution $p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ as:

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t, \quad \sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t, \quad (11)$$

where \mathbf{x}_0 is unknown, but we can reverse Eq. 5 to estimate a \mathbf{x}_0 from \mathbf{x}_t and the predicted noise $\epsilon_t = \mathcal{Z}_{\boldsymbol{\theta}}(\mathbf{x}_t, t)$. We denote the estimated \mathbf{x}_0 at time-step t as $\mathbf{x}_{0|t}$, which can be formulated as:

$$\mathbf{x}_{0|t} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t - \mathcal{Z}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) \sqrt{1 - \bar{\alpha}_t} \right). \tag{12}$$

Note that this formulation is equivalent to the original DDPM. We do this because it provides a "clean" image $\mathbf{x}_{0|t}$ (rather than noisy image \mathbf{x}_t). To finally yield a \mathbf{x}_0 satisfying $\mathbf{A}\mathbf{x}_0 \equiv \mathbf{y}$, we fix the range-space as $\mathbf{A}^{\dagger}\mathbf{y}$ and leave the null-space unchanged, yielding a rectified estimation $\hat{\mathbf{x}}_{0|t}$ as:

$$\hat{\mathbf{x}}_{0|t} = \mathbf{A}^{\dagger} \mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0|t}. \tag{13}$$

Hence we use $\hat{\mathbf{x}}_{0|t}$ as the estimation of \mathbf{x}_0 in Eq. [11] thereby allowing only the null space to participate in the reverse diffusion process. Then we yield \mathbf{x}_{t-1} by sampling from $p(\mathbf{x}_{t-1}|\mathbf{x}_t, \hat{\mathbf{x}}_{0|t})$:

$$\mathbf{x}_{t-1} = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\hat{\mathbf{x}}_{0|t} + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t + \sigma_t \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}).$$
(14)

Roughly speaking, \mathbf{x}_{t-1} is a noised version of $\hat{\mathbf{x}}_{0|t}$ and the added noise erases the disharmony between the range-space contents $\mathbf{A}^{\dagger}\mathbf{y}$ and the null-space contents $(\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{x}_{0|t}$. Therefore,

我们在默认文件夹下已经放置了几张图片,并进行了处理,想观察直接效果可以观看 pdf img out 文件夹内容。

如何拿到预测框的数值?

我们在 Inference 的过程中,同时将预测框也进行了输出,如代码中的:

bboxes 存储着该张图片的所有预测框信息,格式为 list[(x_min, y_min, x_max, y_max)], 其中 list 的长度为该张图片拥有多少个预测框。