test1(par groupe).......2scmath lafontaine(2024/25)

exercice(questions indépendantes)

1. soit la fonction f definie sur \mathbb{R}^* par

$$\frac{E(x+\frac{1}{2})}{x}$$

- calculer : $\lim_{x\to 0} f(x)$, $\lim_{x\to \frac{1}{2}} f(x)$, $\lim_{x\to +\infty} f(x)$
- 2. soit f definie sur [a,b] telle que : $\forall x,y \in [a,b]$: $\left| \frac{f(x)-f(y)}{x-y} \right| \leq 2$, $x \neq y$
 - montrer que f est continue sur [a, b]
- 3. soit f continue sur [1, 2].
 - montrer que $\exists c \in]1, 2[: f(c) = \frac{1}{c-1} + \frac{\sin(c)}{c-2}$

exercice(questions indépendantes)

1. soit la fonction f definie sur \mathbb{R}^* par

$$\frac{E(x+\frac{1}{2})}{x}$$

- calculer : $\lim_{x\to 0} f(x)$, $\lim_{x\to \frac{1}{2}} f(x)$, $\lim_{x\to +\infty} f(x)$
- 2. soit f definie sur [a,b] telle que : $\forall x,y \in [a,b]$: $\left| \frac{f(x)-f(y)}{x-y} \right| \leq 2$, $x \neq y$
 - \bullet montrer que f
 est continue sur [a,b]
- 3. soit f continue sur [1,2].
 - montrer que $\exists c \in]1, 2[: f(c) = \frac{1}{c-1} + \frac{\sin(c)}{c-2}$

exercice(questions indépendantes)

1. soit la fonction f definie sur \mathbb{R}^* par

$$\frac{E(x+\frac{1}{2})}{x}$$

- calculer : $\lim_{x\to 0} f(x)$, $\lim_{x\to \frac{1}{x}} f(x)$, $\lim_{x\to +\infty} f(x)$
- 2. soit f definie sur [a,b] telle que : $\forall x,y \in [a,b]$: $\left|\frac{f(x)-f(y)}{x-y}\right| \leq 2$, $x \neq y$
 - montrer que f est continue sur [a, b]
- 3. soit f continue sur [1,2].
 - montrer que $\exists c \in]1, 2[: f(c) = \frac{1}{c-1} + \frac{\sin(c)}{c-2}$

exercice(questions indépendantes)

1. soit la fonction f definie sur \mathbb{R}^* par

$$\frac{E(x+\frac{1}{2})}{r}$$

- $\bullet \text{ calculer}: \lim_{x \to 0} f(x) \quad , \lim_{x \to \frac{1}{2}} f(x) \quad , \lim_{x \to +\infty} f(x)$
- 2. soit f definie sur [a,b] telle que : $\forall x,y \in [a,b]$: $\left| \frac{f(x)-f(y)}{x-y} \right| \leq 2$, $x \neq y$
 - montrer que f est continue sur [a, b]
- 3. soit f continue sur [1, 2].
 - montrer que $\exists c \in]1, 2[: f(c) = \frac{1}{c-1} + \frac{\sin(c)}{c-2}$