最小方差无偏估计补充题

- 1. 总体X 服从泊松分布 $P(\lambda)$, X_1, X_2, \dots, X_n 为样本。
- (1) 参数 λ 的点估计 $\hat{\lambda} = \overline{X}$,由此猜测 $g(\lambda) = \lambda^2$ 的点估计为 \overline{X}^2 。判断 \overline{X}^2 是否 $g(\lambda) = \lambda^2$ 的无偏估计? 如果不是,请根据 $E(\overline{X}^2)$ 的结果及 $E(\overline{X}) = \lambda$ 修偏得到 \hat{g} ,使得 \hat{g} 是 $g(\lambda) = \lambda^2$ 的无偏估计,即 $E(\hat{g}) = \lambda^2$;
- (2) 写出样本联合密度函数 $p(x_1, x_2, \dots, x_n; \lambda)$, 证明 \hat{g} 是 $g(\lambda) = \lambda^2$ 的 UMVUE;
- (3) 求出 λ 的 Fisher 信息量 $I(\lambda)$ 及 $g(\lambda) = \lambda^2$ 的 C-R 下界;
- (4) 设Y 服从泊松分布 $P(\theta)$,可知 $Var(Y^2 Y) = 4\theta^3 + 2\theta^2$,根据此结论以及泊松分布的可加性求出 $Var(\hat{g})$,并判断 \hat{g} 是否 $g(\lambda) = \lambda^2$ 的有效估计。
 - 2. 总体 X 服从指数分布 $Exp\left(\frac{1}{\theta}\right)$, X_1, X_2, \dots, X_n 为样本。
- (1) 参数 θ 的点估计 $\hat{\theta} = \bar{X}$,由此猜测 $g(\theta) = \theta^2$ 的点估计为 \bar{X}^2 。判断 \bar{X}^2 是否 $g(\theta) = \theta^2$ 的无偏估计?如果不是,请修偏得到 \hat{g} ,使得 $E(\hat{g}) = \theta^2$;
- (2) 写出样本联合密度函数 $p(x_1, x_2, \dots, x_n; \theta)$, 证明 \hat{g} 是 $g(\theta) = \theta^2$ 的 UMVUE;
- (3) 求出 θ 的 Fisher 信息量 $I(\theta)$ 及 $g(\theta) = \theta^2$ 的 C-R 下界;
- (4) 由 X 服从指数分布 $Exp\left(\frac{1}{\theta}\right)$, 可知 $\frac{2n\overline{X}}{\theta} \sim \chi^2(2n)$, 且 $\chi^2(m)$ 的 k 阶原点矩

$$E(Y^{k}) = 2^{k} \left(\frac{m}{2} + k - 1\right) \left(\frac{m}{2} + k - 2\right) \cdots \left(\frac{m}{2} + 1\right) \frac{m}{2}$$
,

由此求出 $E(\overline{X}^4)$, 再求出 $Var(\hat{g})$, 并判断 \hat{g} 是否 $g(\theta) = \theta^2$ 的有效估计。