

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Вершков Станислав Александрович

Задание по курсу «Суперкомпьютерное моделирование и технологии»

Численное решение краевой задачи для уравнения Пуассона

ОТЧЕТ

Оглавление

1	Математическая постановка задачи	2	
2	Численный метод решения задачи	3	
3	Описание MPI программы и гибридной реализации MPI/Open	^{1}MP	6
4	Результаты расчетов	7	

1 Математическая постановка задачи

Вариант 2.

Требуется методом конечных разностей приближенно решить краевую задачу для уравнения Пуассона с потенциалом в прямоугольной области.

В прямоугольнике $\Pi = [0,4] \times [0,3]$ рассматривается дифференциальное уравнение Пуассона с потенциалом

$$-\Delta u + q(x,y)u = F(x,y), \tag{1}$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial}{\partial x} (k(x, y) \frac{\partial u}{\partial x}) + \frac{\partial}{\partial y} (k(x, y) \frac{\partial u}{\partial y})$$

и функции заданы:

$$k(x, y) = 4 + x + y, q(x, y) = x + y.$$

Для выделения единственного решения уравнение дополняется граничными условиями. На отрезке нижней границы прямоугольника Π задается условие третьего типа:

$$(k\frac{\partial u}{\partial n})(x,y) + \alpha u(x,y) = \psi(x,y),$$

где n — единичная внешнаяя нормаль к границе прямоугольника. Заметим, что нормаль n не определена в угловых точках прямоугольника. Коэффициент α предлагается взять равным 1. На остальных границах прямоугольника используется граничное условие первого типа:

$$u(x,y) = \phi(x,y).$$

Функции $F(x,y), \phi(x,y), \psi(x,y)$ получены аналитически.

$$F(x,y) = \frac{(4+x+y)(x^2+y^2)-2(x+y)(4+xy)}{4(4+xy)^{\frac{3}{2}}} + (x+y)\sqrt{4+xy},$$

$$\phi(x,y) = u(x,y),$$

$$\psi(x,y) = \frac{x(4+x+y)}{2\sqrt{4+xy}} + \sqrt{4+xy}.$$

2 Численный метод решения задачи

Краевую задачу для уравнения Пуассона с потенциалом 1 предлагается численно решить методом конечных разностей. В расчетной области Π определяется равномерная прямоугольная сетка $\tilde{\omega_h} = \tilde{\omega_1} \times \tilde{\omega_2}$, где

$$\tilde{\omega}_1 = \{x_i = ih_1, i = 0 \dots M\}, \ \tilde{\omega}_2 = \{y_j = jh_2, j = 0 \dots N\}.$$

Здесь $h_1=\frac{4}{M},\ h_2=\frac{3}{N}.$ Через ω_h обозначим множество внутренних узлов сетки $\tilde{\omega_h}$, т.е. множество узлов сетки прямоугольника, не лежащих на границе Γ .

Рассмотрим линейное пространство H функций, заданных на сетке $\tilde{\omega_h}$. Обозначим через ω_{ij} значение сеточной функции $\omega \in H$ в узле сетки. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$??[u,v] = \sum_{i=0}^{M} h_1 \sum_{j=0}^{N} h_2 \rho_{ij} u_{ij} v_{ij}, |u| = \sqrt{[u,u]}.$$
(2)

Весовая функция $\rho_{ij} = \rho^{(1)}(x_i)\rho^{(2)}(y_j)$, где

$$ho^{(1)}(x_i) = egin{cases} 1, 1 \leq i \leq M-1 \ rac{1}{2}, i = 0, i = M \end{cases}
ho^{(2)}(y_j) = egin{cases} 1, 1 \leq j \leq N-1 \ rac{1}{2}, j = 0, j = N \end{cases}$$

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида

$$A\omega = B,\tag{3}$$

где $A: H \to H$ — оператор, действующий в пространстве сеточных функций, $B \in H$ — известная правая часть. Задача 3 называется разностной схемой. Решение этой задачи считается численным решением исходной задачи.

Уравнение 1 во всех внутренних точках сетки аппроксимируется разностным уравнением

$$-\Delta_h \omega_{ij} + q_{ij} \omega_{ij} = F_{ij}, i = 1 \dots M - 1, j = 1 \dots N - 1,$$
(4)

в котором $F_{ij} = F(x_i, y_j), q_{ij} = q(x_i, y_j).$

Введем обозначения правой и левой разностных производных по переменным x, y соответственно:

$$\omega_{x,ij} = \frac{\omega_{i+1j} - \omega_{ij}}{h1}, \ \omega_{\tilde{x},ij} = \frac{\omega_{ij} - \omega_{i-1j}}{h1},$$

$$\omega_{y,ij} = \frac{\omega_{ij+1} - \omega_{ij}}{h2}, \ \omega_{\tilde{y},ij} = \frac{\omega_{ij} - \omega_{ij-1}}{h2},$$

а также определим сеточные коэффициенты

$$a_{ij} = k(x_i - 0.5h_1, y_j), b_{ij} = k(x_i, y_j - 0.5h_2).$$

С учетом принятых обозначений разностый оператор Лапласа представляется как

$$\Delta_h \omega_{ij} = (a\omega_{\tilde{x}})_{x,ij} + (b\omega_{\tilde{y}})_{y,ij}.$$

Краевые условия первого типа аппроксимируются равенством

$$\omega_{ij} = \phi(x_i, y_j).$$

Краевое условие третьего типа для нижней стороны аппроксимируется следующими равенствами

$$-(2/h2)(b\omega_{\tilde{y}})_{i1} + (q_{i0} + 2/h2)\omega_{i0} - (a\omega_{\tilde{x}})_{x,i0} = F_{i0} + (2/h_2)\psi_{i0}, i = 1...M - 1.$$

Краевые условия для угловых точек выбраны следующим образом

$$\omega_{00} = \phi(0,0), \ \omega_{M0} = \phi(M,0), \ \omega_{0N} = \phi(0,N), \ \omega_{MN} = \phi(M,N).$$

Приближенное решение системы уравнений 3 для сформулированных выше краевых задач получается с помощью итерационного метода наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $\omega^{(k)} \in H, k=1,2,\ldots$, сходящуюся по норме пространства H к решению разностной схемы, то есть

$$|\omega - \omega^{(k)}| \to 0, k \to +\infty.$$

Начальное приближение ω^0 выбирается равным нулю во всех точках.

Итерация $\omega^{(k+1)}$ вычисляется по итерации $\omega^{(k)}$ согласно равенствам:

$$\omega_{ij}^{(k+1)} = \omega_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)},$$

где невязка $r^{(k)} = A\omega^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{[Ar^{(k)}, r^{(k)}]}{|Ar^{(k)}|^2}.$$

В качестве условия остановки итерационного процесса выбрано неравенство

$$|w^{(k+1)} - w^{(k)}| < \epsilon,$$

где ϵ – положительное число, определяющее точность итерационного метода.

3 Описание MPI программы и гибридной реализации MPI/OpenMP

Для решения задачи с использованием технологии MPI рассматриваемая область разбивается на подобласти прямоугольной формы, причем число подобластей равно числу процессов. В каждой из них отношение θ количества узлов по ширине и длине удовлетворяет неравенстам $0.5 \le \theta \le 2$. Используется вызов функции MPI_Cart_create , которая возвращает новый коммуникатор. Далее, каждый процесс, используя функции MPI_Cart_coords и MPI_Cart_shift получает свое местоположение в сетке процессов, ранги соседей и расчитывает диапазон точек матрицы, которые ему необходимо расчитать.

В процессе работы алгоритма процессам необходимо знать значения граничных областей, рассчитываемых другими процессами. Для этого процесса обмениваются граничными областями с использованием функции *MPI Sendrecv*.

Для расчета скалярного произведения необходимо вычислять сумму по всей области. Каждый процесс рассчитывает локальную сумму в своей области, а затем используется опервция $MPI_Allreduce$ с функцией аггрегации MPI_SUM для того, чтобы все процессы получили общую сумму. Аналогичная операция используется и при расчете условия остановки итерацииного процесса, однако там используется аггрегации MPI_MAX . В программах в качестве точности выбрано $\epsilon = 10^{-6}$.

В гибридной MPI/OpenMP программе дополнительно с помощью технологии OpenMP производилось распараллеливание циклов. Для этого использовалась следующие директива: $\#pragma\ omp\ parallel\ for\ default(shared)$ $private(li,\ gi,\ lj,\ gj)\ schedule(dynamic)$, которая изменялась в зависимости от существования приватных переменных в цикле. В случае, когда вычисляется сумма в скалярном произведении используется директива: $\#pragma\ omp\ parallel\ for\ default(shared)\ private(li,\ gi,\ lj,\ gj)\ schedule(dynamic)\ reduction(+:local_sum)$.

4 Результаты расчетов

Ускорение расчитывается по формуле $S = \frac{Timeonseq}{Timeonparallel}$.

Были выбраны размеры сетки (M,N)=(160,160) и (M,N)=(160,320) в силу того, что мои программы получают time-out на ПВС IBM Polus при увеличении размера сетки.

Последовательная программа на ПВС IBM Polus отработала на сетках 160×160 и 160×320 соответственно 204.586 (c) и 852.287 (c).

Число точек сетки	Число МРІ-процессов	Время (с)	Ускорение <i>S</i>
	4	51.160	3.916
	8	29.768	6.872
160×160	16	18.575	11.014
	32	14.919	13.713
	4	229.417	3.715
	8	124.321	6.855
160×320	16	82.307	10.354
	32	52.391	16.267

Таблица 1. Таблица с результатами расчетов на ПВС IBM Polus (МРІ код).

Всюду в таблице 2 количество ОМР-нитей в процессе равно четырем.

Число точек сетки	Число МРІ-процессов	Время (с)	Ускорение <i>S</i>
	1	54.497	3.754
	2	34.535	5.924
160×160	4	21.126	9.684
	8	17.216	11.878
	220.571	0	3.864
	2	149.629	5.696
160×320	4	65.849	12.943
	8	49.425	17.244

Таблица 2. Таблица с результатами расчетов на ПВС IBM Polus (MPI+OpenMP код).

Погрешность приближенного решения на сетке $160 \times 160 \ \delta = 0.047324$. Погрешность приближенного решения на сетке $160 \times 320 \ \delta = 0.131496$.

Выбраны графики решений на сетке 160×160 , так как они уже визуально достаточно точны и неотличимы.

the real value

Рисунок 1. График точного решения на сетке 160×160 . the simulated value

Рисунок 2. График приближееного решения на сетке 160×160 .