Variables aléatoires

Dans toute la fiche, $\left(\Omega,\mathbb{P}(\cdot)\right)$ désigne un espace probabilisé fini.

Lois usuelles

QCOP VA.1

Compléter le tableau suivant.

	support $X[\Omega]$	$\mathbb{P}(X=k), k \in X[\Omega]$	espérance $\mathbb{E}[X]$	variance $\mathbb{V}[X]$
$X \sim \mathcal{U}ig(\llbracket a,b rbracket ig)$ $a,b \in \mathbb{N}$				
$a,b\in\mathbb{N}$				
$X \sim \mathscr{B}(p)$				
$p \in [0,1]$				
$X \sim \mathscr{B}(n,p)$				
$n \in \mathbb{N}$, $p \in [0,1]$				

On détaillera les calculs des espérances et des variances.

Espérance, variance, covariance

QCOP VA.2

Soit X une variable aléatoire réelle.

lacksquare Définir l'espérance de X, notée $\mathbb{E}[X]$.

Les questions qui suivent sont indépendantes.

- (a) Énoncer le théorème de transfert et la formule de transfert.
 - **(b)** En déduire une formule de calcul de $\mathbb{E}[X^2]$.
- \blacksquare Soit Y une variable aléatoire indépendante de X. Que vaut $\mathbb{E}[XY]$?
- **%** Soit $N \in \mathbb{N}$ tel que $X[\Omega] \subset [0, N]$.
 - (a) Montrer que, pour tout $k \in \mathbb{N}$, $\mathbb{P}(X = k) = \mathbb{P}(X \geqslant k) \mathbb{P}(X \geqslant k+1)$.
 - **(b)** En déduire que $\mathbb{E}[X] = \sum_{k=1}^{N} \mathbb{P}(X \geqslant k)$.

QCOP VA.3

Soit X une variable aléatoire réelle.

- Définir la variance de X, notée $\mathbb{V}[X]$, à l'aide d'une espérance.
- Montrer que

$$\mathbb{V}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

% On suppose que $X[\Omega] = \{0, 1\}$. Déterminer V[X].

QCOP VA.4

Soient X et Y deux variables aléatoires réelles.

- \blacksquare Définir la covariance de X et Y, notée Cov(X, Y).
- ${m Z}$ À l'aide de $\lambda\mapsto {\mathbb V}[\lambda X+Y]$, montrer que

$$|\mathsf{Cov}(X,Y)| \leqslant \sqrt{\mathbb{V}[X]\mathbb{V}[Y]}$$

✗ Montrer que, si X et Y suivent chacune une loi de Bernoulli,

$$\left| \mathsf{Cov}(X,Y) \right| \leqslant \frac{1}{4}$$

QCOP VA.5

Soient X et Y deux variables aléatoires réelles.

- Donner la définition de « X et Y sont corrélées » et de « X et Y sont décorrélées ».
- **2** Exprimer la covariance de X et de Y, notée Cov(X, Y) en fonction de $\mathbb{E}[X]$, $\mathbb{E}[Y]$ et $\mathbb{E}[XY]$.
- Compléter et démontrer :

$$Cov(X, Y) = 0$$
 ... X et Y sont indépendantes.

> Justifier que l'implication réciproque est fausse.

Inégalités probabilistes

QCOP VA.6

- Énoncer et démontrer l'inégalité de Markov.
- Soit X une variable aléatoire réelle. Soit t > 0. Soit a > 0.
 - (a) Montrer que

$$(X \geqslant a) = (e^{tX} \geqslant e^{ta}).$$

(b) En déduire que

$$\mathbb{P}(X\geqslant a)\leqslant \frac{\mathbb{E}[\mathrm{e}^{tX}]}{\mathrm{e}^{ta}}.$$

QCOP VA.7

- Énoncer et démontrer l'inégalité de Bienaymé-Tchebychev.
- Soit X une variable aléatoire réelle d'espérance μ et de variance σ^2 . Soit $\alpha > 0$.
 - (a) Montrer que

$$\mathbb{P}(|X - \mu| \geqslant \alpha \sigma) \leqslant \frac{1}{\alpha^2}.$$

(b) En déduire que

$$\mathbb{P}\left(\mu - \alpha\sigma < X < \mu + \alpha\sigma\right) \geqslant 1 - \frac{1}{\alpha^2}.$$