

HIT阅读与思考

扫一扫二维码,加入群聊。

一.实验题目, 串联谐振与频率特性

工实验目的:研究串联谐振电路的指点,掌握谐振曲线 的测量方法;研究串联炮路的频率特性, 掌握电路幅频特性和相频特性的测量方法。 五实验仪器5模块名称:

DDS 函数信号发生器, Fluke 190-104型测试仪, 数字万月表。

电容箱 0.1~1/JF, 电感箱100~1000 mH 电阻箱 100~1000 I 电阻箱 1~10 € KS 四、实验预习思考问题解答:

(2) AD 130 C [预习显考]: (1) A C 图考问题Ja. Up的相位与端口电流相位什么关系? 答: UR与端口电流周相位

b. 实际测量的谐振频率fb与理论计算值是否 店在误差?分析产生误差原因?少塘新端有 答,存在误差。电阻箱电容箱存在系统误差,测试仪 相位差测量精度不够即端中的现代形成 内阻

C.确定谐振点的方法:

- ①端口电压电流 同相位确定谐振频率
- ②调节信号源频率使电流表所测电流为最大值 确定谐振频率

[思考问题] 谐振时刻 电阻箱上电压 Up与由源电压是否相同? 分析原因?

答:不相同。约为电源电压一半,过是由于所用电感 箱是店在一定内阻的非理想电感器,且阻值与10057相 [思考问题] 垂想获得带通特性曲线,高通输出特性曲线,其 输出端应分别选择哪个元件?

高通 电感 带通:电阻/

五、实验过程

1.基本便务:

- (1) 打开信号源, Fluke 190-104测试仪电源开关, 工作正常、经万用表 测量,所有元器件正确.
- 121 R2C" 串联谐振电路频率测量
 - ・拇右围连接实验电路
 - ·信号源设置输出;Vrms正弦波 频率先设置在398 Hz处
 - 7/1517电影相上=400m/1.7/1720 1 = 1 388 测其阻值见=101.852 理论于。= 271/12 = 271/400×103×0.4×16 Hz ·调节电感箱 L=400mH.万用表

伊多发过

器20 字

連合

- ·调节电容箱电容C=0.4UF,电阻箱 R=100-17 使用Fluke 190-104
- ·设置测试仪 ScopE模式 → F2 Reading → 选择 mA. on B → Vac →衰减系数1:1. To Reading -> OABbon B (4) -> Phase
- ·调节信号派频率使A.B两路波形相使相同。

猷问题: 波形不稳定?

解决办法:将测量量程模式调为AUTO.

结果 f=394.81 分析:实测谐振频率394.81 略小于理 池值398, 误差在允许范围内.

(3) 电压有效值的测量及品质 固数计算,先将频率设为谐振频率 计算 1= 元时. UR = URMAY = 2.14 =1.513. x调节信号源频 分别句低,高 車直至B通道しか不数め心は. 记录和时信号源频率

谐振时,截止频率时,使用测试仪电压测试线分别测量电阻低Ux,电源电压Us,电感电压Uk,电容电压Uc分别通道B.A.C.C.C.在果见下表.
A.通道测程谐振

截止频率引 谐振频率f. 店频制上频率 f. 网星坂 f/Hz 39481 355.21 436.81 UKLV 13.7 21.6 168 UclV 16.7 13.6 URIV 1.51 1.51

A通道测得谐振 频率下电源电压 Us =4:42V

品质图数 O=R=Uc=21.4== 4.84

理论值 $Q = \frac{1}{R} = \frac{1}{R} \sqrt{\frac{1}{C}} = \frac{1}{(00+101.8)} \sqrt{\frac{400 \times 10^{-3}}{0.4 \times 10^{-4}}} = 4.95$ 分析: 谐振时地路的 $U_R = 2.14 > U_R' = 1.51$ 其它时刻;

潜振时电路电感电压与电客电压近似相等,

潜振时电路电感电压与电路电压高于电源电压数倍。

4)端口电压与电视相位关系测量

- ·调节信号源频率分别为3红21 Hz. 394.81 Hz. 436.81 Hz
- ·测试仪通道设置 Supe -> Fi(Reading) -> A(1) -> Phase, B(2)->
 Phase

 Base
- ·将A通道测试线连接UR,B通道分别接电容Uk和电路Uc 示数显示。

6通道相位	fic	355.21	f.	394.81	fzc 436.81		
4B - 4A EP	UK	UL	Uk	Uc	UK	Uc	
$\varphi_{u} - \varphi_{i}$	+84°	-91°	+82°	-91°	+84°	-91°	

结论:

- ·低频截止频率时,如路阻抗呈容量
- · 谐振频率时. 电路阻抗定电阻性:
- ·高频截止频率时 电路阻抗追感描准。

(5) 测量RLC串股电路 谐振曲线及通带宽度 UR 家途过程与前面描述类似,不予赘述,下为谐振曲线测量

掂	果:		fic			f.		i -	fre		
频率f(Hz	155.21	253.21		3 70.00	380.00	39481	41000	420.0	43681	are	1000
由流り似り	_						1	1.89	1.54	0.295	0.212
	0.10	a 23		0.87	0-96	1	6.95	0.87	0-71	0.14	0-10
flfo	0392	0.646	0.900	0960	0.962	1	1.038	1.064	1.106	2.026	2.533

图线问题低频截止频率左侧点取值不合理, 高频截止频率右侧取点不合理. 应尽量靠近截止频率点 反映潜振点附近变化规律

通带宽度
$$\Delta f = f_{c2} - f_{c_1} = \frac{f_{c_2}}{G}$$
 (理论)
测量: $f_{c2} - f_{c_1} = 436.81 - 355.21 = 81.60$ Hz
$$\frac{f_{c_2}}{G} = \frac{394.81}{4.84} = 81.57$$
 Hz. $\approx f_{e2} - f_{c1}$
测量误差非常小.

d.研究任务

1>研究RLC串联电路的频率持性,按图1至接电路, 1-1×ms正弦破 L=1×0mH. RL 标识为47.0;电阻箱R=2ksc; C=0.1/uF

3)测量输失的幅频特性与相频特性、作出曲线图

买测游旅频率 fo=1614.00H2					/ iti				
_f/f.	0.25	0.5	0.75	- 1	1.25	1-5 1.75	2		
测量位于	403.50	807.00	1210.50	1614.00	2517.50	2421 28245	3728		
4c-4u	-310	-57°	-77°	-92°	-104"	-115°-123°	-12P°		
Uc/V	4.25	3.55	2.81	2.19/	1-71	_	0.88		
Us/v	4.62	4.62	4.61	4.62	4.61	4.61	4.62		
Ue/Us	0.92	0.77	0.61	0.47	0.37	_	0.19		

六 实验收获与体会。

- 1. 进一步熟练掌握3 Fluke190-14型测试仪的使用3弦以及如何排除"故障" 得到理想波形;
- ·对RLC净联谐振的特点有3更加直观的认识,对其敬率特性和谐振现原有关知识的理解和进一步加深。
- 3. 掌握 3 寻找 谐振点. 画 谐振曲线, 颜率特性曲线的 描绘方际.
- 建议:希望实践室可以在实验进行将结束对允许同学们交流讨论,有助于同学们和更快地发现问题补救格,亦有助于同学问经交流分享,加深印题。

串联谐振与频率特性原始数据记录

,其年任务

学号:1161430210 姓名: 和路丰

(2) 诺振频中测量 fo=394.81

(3) 电压有效位测量及品质因为计算

			1	
数字测量	fic	· f.	\int_{2}	
$f(H_2)$	355.21	394.81	436.81	
UK(V)	13.7	21.6	16.8	
U _c (v)	16.7	21.4	13.6	
URW	1.51	. 244	151	
OKW		3.		

(4)端口电压与电流相位关系

通道相位	fic	e	f.	-c-	fre k.	c .
A(R)	-94,	+ 9/	<u>-82°</u>	19/	-84	+91
BLKKULE	+84	-91	+82	-9/°	+84 -	-91
4u-4:	+84°	-910	+82	-7/	+84 -	-9+

RLC串联电路谐振曲线及通带宽达 f(1/2) (tt.2) 25521 fic 37000 380,00 fo=394.81 дь fze 410 420 1.5K 2.07 电流比似 212mv 497mv 1.55 1.89

Uc为输出端 fo=1614.00 Hz 2.研究设务

2) 0.00 [0.5	0.75	1	1.25	2	1.2	KIS	
31. +/fo 1	0.25 402 to		1210.5	161400	2017.5	3228	242	28245	
MIT	403.50	25	-36°-77'	-92°	404	-900-12	9- 415	-123"	
通B: ★4-4	一次引	1200	- D1	7.18	121	0.88			
通道B: Ucl	425	3.55	2.81	2.17	大// 教	 			
通道A: Uslv	4.62	462	4.61	4.62	4.6/	4.62			

HIT大物实验交流群2019 扫一扫二维码,加入群聊。