Chú ý: Đề nghị sinh viên ghi rõ các thông tin sau và Nộp lại đề thi

Họ và tên sinh viên: Lớp:

Ngày - tháng - năm sinh:

Đề 1 – Kiểm tra cuối kì: MI3052 Nhập môn Tối ưu – HK20181

(Thời gian làm bài: 90 phút)

(Không sử dụng điện thoại di động trong phòng thi)

Ký hiệu: $\beta := ng$ ày sinh và $\alpha := th$ áng sinh.

1. Cho $x^1 = (3,0)^T$ và $x^2 = (0,5)^T$. Xét bài toán

$$\min f(x) = x_1^2 + (x_2 - 7)^2 + \alpha \text{ v.đ.k } x \in M.$$
 (P₁)

Trong đó $M = \{ x \in \mathbb{R}^2 \mid 2x_1 + x_2 \le 9, \ x_2 \le 5, \ x_1 \ge 0, \ x_2 \ge 0 \}.$

- a. Sử dụng phương pháp nhân tử Lagrange, kiểm tra x^1 và x^2 có phải là nghiệm tối ưu của bài toán (P_1) không? Có thể kiểm tra bằng cách nào khác không?
- b. Véc tơ $d = x^2 x^1$ có phải là hướng giảm chấp nhận được của bài toán (P_1) tại x^1 không?
- 2. Lấy tùy ý $x^0 \in \mathbb{R}^n$. Xét bài toán

$$\min \varphi(x) = \frac{1}{2} x^T Q x - b^T x + \alpha \text{ v.đ.k } x \in \mathbb{R}^n.$$
 (P₂)

Trong đó Q là ma trận cấp $n \times n$, đối xứng xác định dương, không suy biến và $b \in \mathbb{R}^n$. Tính điểm x^2 bằng phương pháp Newton thuần túy. Chứng minh rằng x^1 là nghiệm tối ưu của bài toán (P_2) .

3. Cho bài toán (P_3) như sau

min
$$f(x) = 2x_1 + 8x_2 + 3x_3$$

v.đ.k. $-2x_1 + 2x_2 + x_3 \ge 1$
 $x_1 + 4x_2 - 3x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

- a. Viết bài toán tối ưu (D_3) của bài toán (P_3) và giải bài toán (D_3) bằng pp hình học.
- b. Bài toán (P_3) có nghiệm tối ưu không? Trả lời bằng ít nhất hai cách?
- c. Dựa vào quan hệ đối ngẫu, kiểm tra xem $x^{\circ} = (0,3,1)^{T}$ có phải là nghiệm tối ưu của bài toán (P_3) không?