Technical Report 1018

Infrared Detections of Satellites with IRAS

E.M. Gaposchkin R.J. Bergemann

26 September 1995

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Ballistic Missile Defense Organization under Air Force Contract F19628-95-C-0002,

Approved for public release; distribution is unlimited.

20100827232

This report is based on studies performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology. The work was sponsored by the Ballistic Missile Defense Organization under Air Force Contract F19628-95-C-0002.

12 12

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESC Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Gary Tutungian

Administrative Contracting Officer

Directorate of Contracted Support Management

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

INFRARED DETECTIONS OF SATELLITES WITH IRAS

AND STREET

E.M. GAPOSCHKIN
Group 91

R.J. BERGEMANN
Consultant

TECHNICAL REPORT 1018

26 SEPTEMBER 1995

.... Approved for public release; distribution is unlimited.

7 61. h

i de mand de processor de la composición del composición de la com

(v.a., ...

LEXINGTON

ABSTRACT

The sky survey made by the infrared astronomical satellite (IRAS) in 1983 included observations of artificial earth satellites. The data base (with celestial objects removed) was correlated with the NORAD space catalogue to identify 452 satellites in orbit above the IRAS 900-km altitude. The flux density in three of the four wavelength bands has been analyzed to determine the temperature, emissivity, and absorptivity of the identified resident space objects.

TABLE OF CONTENTS

	tract	iii
	of Illustrations	vii
List	of Tables	ix
1.	INTRODUCTION	1
2.	IRAS INSTRUMENT	3
3.	ANALYSIS CONSIDERATIONS	7
4.	SPACECRAFT MATERIALS	11
5.	CALIBRATION ISSUES	17
6.	DATA PROCESSING	19
7.	GENERAL RESULTS	21
8.	REFERENCE SPHERES	27
9.	SPIN-STABILIZED CYLINDERS	31
10.	ROCKET BODIES	51
11.	THREE-AXIS STABILIZED SATELLITES	55
	11.1 GPS 11.2 Gorizont 11.3 Raduga 11.4 Ekran 11.5 ATS-6	55 60 64 67 68
12.	DISCUSSION	73
13.	CONUNDRUMS	77
	PENDIX A—IRAS DETECTIONS CORRELATED WITH THE KNOWN TELLITE CATALOGUE	79
	PENDIX B—SATELLITES OBSERVED BY IRAS	125
	FERENCES	143
LL	PENEIVER	14.7

LIST OF ILLUSTRATIONS

Figure No.		Page
1	IRAS orbit geometry.	3
2	IRAS focal plane.	4
3	Response due to celestial objects.	5
4	SSC 10002 focal plane passage and detections.	6
5	Reflectivity vs. α/ϵ for spacecraft materials.	11
6	Emissivity vs. temperature for silicon solar cells.	12
7	Emissivity vs. wavelength for silicon solar cells.	13
8	Temperature from 1500 large flux sample detections.	23
9	Temperature from correlated and unscreened data.	24
10	Temperature from correlated and screened data.	24
11	Flux density vs. range.	25
12	Hughes HS-376 satellite.	32
13	Flux vs. time for Hughes HS-376 cylinders.	35
14	Flux density vs. projected area.	46
15	Temperature vs. projected area.	47
16	Rocket body temperatures.	52
17	Rocket body temperatures, $n > 2$.	52
18	Rocket body temperature vs. SSC number.	53
19	Rocket body temperature vs. SSC number, $n > 2$.	53
20	GPS Block I satellite.	56
21	GPS Block II satellite.	57
22	GPS temperature vs. date.	58
23	GPS temperature vs. phase angle.	58
24	GPS 12- μ flux vs. phase angle.	59
25	Gorizont satellite. (Used with permission. Donald H. Martin, <i>Communication Satellites</i> 1958–1992, ©1991, The Aerospace Corporation.)	61

LIST OF ILLUSTRATIONS (Continued)

Figure No.		Page
26	Gorizont temperature vs. date.	62
27	Gorizont temperature vs. phase angle.	62
28	Gorizont 12- μ flux vs. phase angle.	63
29	Raduga temperature vs. date.	65
30	Raduga temperature vs. phase angle.	66
31	Raduga 12- μ flux vs. phase angle.	66
32	Ekran satellite. (Used with permission. Donald H. Martin, Communication Satellites 1958–1992, ©1991, The Aerospace Corporation.)	68
33	Ekran temperature vs. date.	69
34	Ekran temperature vs. phase angle.	69
35	Ekran 12- μ flux vs. phase angle.	70
36	ATS-6 satellite. (Used with permission. Donald H. Martin, Communication Satellites 1958–1992, ©1991, The Aerospace Corporation.)	71

LIST OF TABLES

Table No.		Page
1	Free Space Temperature for Basic Satellite Shapes	8
2	Typical Absorptivity and Emissivity for Spacecraft Materials	15
3	IRAS Calibration Errors	17
4	Detector Hits for SBS1	20
5	IRAS Data Correlation Results	21
6	Optical Properties of Aluminum	28
7	IRAS Detections of Hughes HS-376 Cylinders	34
8	Emissivity and Absorptivity for HS-376 Cylinders	37
9	Nominal Solar Panel Temperature for HS-393 Satellites	39
10	Solar Cell Types and Temperature	40
11	Physical Properties for HS-376 Cylinders	41
12	Payloads Detected by IRAS	42
13	IRAS Detections of Spin-Stabilized Cylinders	44
14	INTELSAT4A Model Temperature	45
15	Estimators for Geosynchronous Area and Power	47
16	Geosynchronous Area and Power Estimation	48
17	Emissivity for GPS Satellites	60
18	Emissivity Area for Gorizont Satellites	64
19	Emissivity Area for Raduga Satellites	67
20	ATS-6 Observed Flux	72
21	Ground-Based and IRAS Observations	75

1. INTRODUCTION

Optical observations of artificial earth satellites have been made since the launch of Sputnik. Early measurements made using reflected visible light [1] were for information about the satellite position. Later, photometric observations were made to investigate properties of the satellite. Initially, signature data were obtained in the form of a time series or light curve. Later, calibrated photometric observations were used to discuss the reflective properties, such as reflectivity, and configuration of satellites [2]. Observations of the self-emitted IR radiation from satellites were also obtained. IR data are complementary to the visible band and UV data and can provide information about the absorptivity and emissivity of satellite materials. These ground-based observations were frustrated by large and variable atmospheric absorption [3] in addition to sensor calibration problems. Recently, high-quality ground-based IR satellite observations have been made [3].

The infrared astronomical satellite (IRAS) was launched in 1983 to perform an all-sky survey of the IR portion of the spectrum. While stellar objects—stars, nebulae, comets, and asteroids—were the primary objects of interest, IRAS also observed satellites and space debris. A number of attempts have been made to extract these data and demonstrate that IRAS data can be used to characterize IR emission of orbital debris. De Jong and Wesselius [4] and Anz-Meador et al. [5] used unprocessed IRAS detector data to search for debris. These studies found a few moving sources from searching only a few days of the mission data. Dow [6,29] used objects found in the Sky Brightness Images over the entire IRAS mission. All studies concluded that IRAS had the capability to observe quite small debris—Anz-Meador claimed sizes down to 1 mm—but none systematically attempted to isolate data on known satellites.

The Astronomical Group at Groningen reprocessed all the raw IRAS data tapes with the objective of finding all satellite and debris detections [4,7,8]. This effort produced a debris data base containing more than 190,000 detections. As a first step in analyzing this data base, we have concentrated on the catalogue of known satellites in 1983. By correlating positions in the debris data base with the known satellite catalogue, we have extracted the true satellite detections and been able to discuss the associated radiometric data. This analysis is the subject of this report.

The IRAS satellite made many observations of artificial earth satellites. Processing for astronomical objects (stars, planets, comets, and asteroids), Beichman [9] eliminated all satellite and debris data. The Astronomical Group at Groningen reprocessed all the raw IRAS data tapes. They abandoned the original approach of hours, days, and weeks confirmation, as this method was intended to eliminate observations of objects that did not reappear at the same place in the sky—just those objects of interest here. They established a method that examined each detection for multiple detector "hits" that were consistent in timing of their passage across the focal plane. The approach was very permissive, having wide bounds for accepting a plausible detection. The final catalogue contained more than 190,000 detections. The flux values were limited to those greater than 0.1 Jy (W/m²/Hz). Also, they did not consider data from the $100-\mu$ band. This data base was provided to Lincoln Laboratory. Consideration was limited to those detections with a signal-to-noise ratio (SNR) greater than about three: a data base of about 136,000 detections.

2. IRAS INSTRUMENT

The IRAS operated from March 1983 until cryogen depletion in November 1983. IRAS was in a sun-synchronous orbit with the orbital plane (800-km altitude, 99.2° inclination) nearly perpendicular to the sun line, as illustrated in Figure 1. The telescope was always pointed away from the earth center, i.e., toward the zenith. The spacecraft attitude control system allowed pole-to-pole scans in ecliptic longitude from 60° to 120°; most scans were taken between 84° and 96°.

Figure 1. IRAS orbit geometry.

The IRAS detectors covered four long wavelength IR bands having flux density reporting values of 12, 25, 60, and 100 μ . These correspond to peak flux densities of 242, 116, 48, and 29 K. The peak wavelength for the nominal free-space temperature of 300 K, $T = 2898/\lambda$, is 9.66 μ near the lower cutoff of the 12- μ band.

Figure 2. IRAS focal plane.

The IRAS detectors in each of the bands were arranged on a 30-arcmin focal plane, as illustrated in Figure 2. A star or satellite crossing the scanning focal plane would traverse a number of detectors in several wavebands. Each of the 59 detectors had a different response function, as tabulated in Beichmann, Table II.C.5, page II-18. The detectors had a rectangular shape: 0.75×4.5 arcmin for the 12- and $25-\mu$ detectors and 3×5 arcmin for the 60- and $100-\mu$ detectors. As shown in Figure 2, the spacecraft attitude was such that in the scan direction, motion of fixed stellar sources or satellites across the focal plane was along the short detector axis. Consequently, the positional accuracy in the along-scan direction was much better.

The camera electronics used a 6-Hz lowpass filter to "despike" the data. The detectors were sampled at 16 Hz. The scanning speed, determined by the IRAS orbital motion, was 3.85 arcmin/sec. Therefore, a stationary source traversed the 0.75-arcmin detector in 0.19 sec, giving about three samples for a detection. Consequently, all objects (stellar sources, solar system objects, satellites, and debris) have very similar detections. This is illustrated in Figure 3 (from Wesselius et al.). Therefore, the response function is not a suitable vehicle for identifying satellites and debris.

Figure 3. Response due to celestial objects.

The baseline IRAS method of seconds, hours, days, and weeks confirmation for object identification of a detection relies on the object being stationary. Since rapidly moving satellites and debris would be screened out, this method was abandoned. Wesselius et al. used the following approach. Satellites at a geometric range greater than 10,000 km will have an absolute velocity between 0.25 arcmin/sec (geosynchronous) and 10 arcmin/sec and apparent velocity between 4 and 10 arcmin/sec. The object can take more than 10 sec to cross the IRAS focal plane and will cross each detector at a different time, as illustrated in Figure 4. Here, the detector samples are displayed, as a function of time, for detectors arranged as they were on the focal plane. By correlating the time history of detections, the RSO and debris hits were selected from the raw data. From this data one obtains the amplitude of the hit in each detector, the position, and relative velocity of the object. Because of the relatively inaccurate position, the relative velocity is particularly important in correlating the hits with a catalogue of known satellite orbits.

Figure 4. SSC 10002 focal plane passage and detections.

3. ANALYSIS CONSIDERATIONS

The IRAS radiometric data is provided in Janskys uncorrected for color. The flux in-band was converted to Janskys "without prejudice" by assuming a λ^{-1} frequency distribution of the objects' radiation. This allowed processing the data without making assumptions about the temperature or wavelength distribution of the source, and the bands could be processing independently. Data reduced in this way is said to be uncorrected for color. The *IRAS Explanatory Supplement*, page II-27, describes how to make the color correction and obtain "true" observed Janskys. That procedure is implemented here using the tables given on page VI-26. Note that these tables can, in principle, be derived from the spectral response function, Table II.C.5, page II-18. These tables have been reconstructed to two significant figures. The source of disagreement is unknown, but it probably derives from subtleties in the implementation of the calibration process. The basic process for making the color correction is as follows.

The observed flux density, at a reference wavelength λ_0 , for a source at temperature T, is

$$F_{obs}^{\lambda_o}(T) = \frac{\epsilon A}{\pi r^2} \mathcal{F}_{\lambda_o}(T) \qquad \left(\frac{W}{m^2 \mu}\right) \quad ,$$

where the Planck flux density is

$$\mathcal{F}_{\lambda}(T) = \frac{3.74185 \times 10^{8}}{\lambda^{5} \left(e^{\frac{14388.3}{\lambda^{T}}} - 1\right)} \qquad \left(\frac{W}{m^{2}\mu}\right) ,$$

and λ is in microns (Allen), A is the projected area of the object, ϵ is the emissivity, and r is the range to the object. The IRAS data is reported in Janskys, viz., 10^{-26} W/m²/Hz. Using the relation that $f\lambda = 2.99792458 \times 10^{14}$ µ/sec, one can convert F_{obs}^{λ} to Janskys with

$$J_{obs}^{\lambda_o}(T) = F_{obs}^{\lambda_o}(T) \left(\frac{\lambda_o^2}{2.99792458 \times 10^{-12}} \right) \left(\frac{W}{m^2 Hz} \right)$$

The temperature of an object can be found as follows. The temperature dependence of the observed flux $J_{\text{obs}}^{\lambda}(T)$ depends on λ_0 . The observed flux also depends on ϵ , λ , and r. Assuming ϵ is independent of λ , the ratio of observations made at the same time

$$\Re(T) = \frac{J_{obs}^{\lambda_1}(T)}{J_{obs}^{\lambda_2}(T)}$$

for bands λ_1 and λ_2 is a monotonic function of T. Given a pair of true flux densities, the temperature is obtained from this function. Now we define the color correction, K_{λ} , to convert the quoted, i.e., reported, flux density $f_{\lambda} = J_q^{\lambda}$ to the "true" observed flux density as

$$J_{obs}^{\lambda_o} = J_q^{\lambda_o} / K_{\lambda_o}$$

or converting from Janskys to $W/(m^2\mu)$ then

$$F_{obs}^{\lambda_o} = F_q^{\lambda_o} / K_{\lambda_o}$$

The ratio

$$\Re_{q}(T) = \frac{J_{q}^{\lambda_{1}}}{J_{q}^{\lambda_{2}}}$$

and the $K_{\lambda}s$ are also monotonic functions of T. They can be calculated from the spectral response function for each band. This calculation is described in the IRAS Explanatory Supplement, page VI-27. The temperature from the flux density ratios f_{12}/f_{25} and f_{25}/f_{60} can be obtained. The temperature obtained from the quoted flux density ratios is the same as that obtained from the color-corrected "true" observed flux densities.

Initial modeling of RSO flux and temperature for experiment planning is done assuming that the solar absorptivity α is equal to the LWIR emissivity ϵ . While this is appropriate for solar-cell-powered payloads of principal interest, many objects, particularly debris, may have surfaces with the value of absorptivity different from the emissivity, resulting in a large range of free-space temperatures.

To aid in the discussion a simple model for the radiant flux is developed. This calculation requires a number of assumptions. First, the object is in thermal equilibrium, and all the absorbed solar radiation energy is reemitted from each element following Lambert's law. Consequently, we ignore the energy that is reradiated as microwave radiation. Second, we assume there is no contribution for earth-upwelling radiation. Third, we assume that the satellite has one surface material, which absorbs solar radiation and radiates at a single temperature. Finally, we assume that the satellite is not in or near eclipse. We have developed four simple models, which are listed in Table 1. These constitute four idealized satellite configurations.

TABLE 1
Free-Space Temperature for Basic Satellite Shapes

Principal Shape	Temperature	n= A _s /A _p
Sphere	278 K	4
Cylinder (Radius_r, Length L)	295 K	π(1+ r/L)
Flat Solar Panel (Two Sides)	330 K	2
Flat Solar Panel (One Side)	393 K	1

The free-space equilibrium temperature is determined by setting the solar power absorbed by the projected area equal to the total power reradiated by the surface area according to the Stephan-Boltzmann expression, in MKS units;

1360
$$\alpha A_p = 5.6692 \times 10^{-8} \in A_s T^4$$
,

where A_n is the projected area and A_n is the surface area. This relation then gives

$$T = (393 \text{ K}) \left(\frac{A_p}{A_s}\right)^{\frac{1}{4}} \left(\frac{\alpha}{\epsilon}\right)^{\frac{1}{4}} .$$

For these simple models using the solar radiation input of 1360 W/m², one can calculate the free-space temperature $T_{\alpha} = \epsilon$, assuming that the absorptivity α equals the emissivity ϵ . If the absorptivity is greater/lesser than the emissivity, the temperature will be greater/lesser than this calculated temperature. From the observed temperature and emissivity, we can obtain the absorptivity from

$$\alpha = e \left(\frac{T}{T_{\alpha = e}} \right)^4$$

The expression for total radiant intensity is then

watts /steradian =
$$\frac{1360 \quad \alpha A_p}{n \quad \Pi}$$
,

where $n = A_s/A_p$, as given in Table 1. Thus, the total radiant intensity for a sphere is $108 \alpha A_p$ watts/steradian. This simplified model requires that the object's radiance vs. wavelength be a Planck function with LWIR emissivity ϵ independent of wavelength. For objects in near-earth orbit, the effects of earth temperature, earth-reflected sunlight, and earthshadowing must be included in the RSO temperature estimate [12].

¹ For this analysis, the value of the solar constant, 1360 W/m², is taken from Allan, page 169 [10]. Recent measurements from Nimbus-7 suggest a value of 1372 W/m² for 1983 [13].

4. SPACECRAFT MATERIALS

All model calculations depend on the physical properties of the satellite surface materials. For high-fidelity modeling, detailed information is necessary. Because this information is unavailable, illustrative values are used, as compiled by Dow [6] and reproduced in Table 2 for α and ϵ . Also given are temperatures for a sphere² (T1) and flat plate (T2) covered with the material. The values of α/ϵ range from 0.1 to 10.0. Figure 5 plots reflectivity ($\rho = 1 - \alpha$) vs. the tabulated α/ϵ ratios. As seen, almost all values of α and ϵ are possible. For example, the temperature of a gold-plated sphere can rise above the nominal 278 K, for $\alpha/\epsilon = 1$, to 494 K, and a sphere plated with magnesium oxide white paint can drop to 156 K. Single-sided flats can rise from the nominal 393 K, for $\alpha/\epsilon = 1$, to about 700 K!

Figure 5. Reflectivity vs. $\alpha \in for spacecraft materials$.

There is a paucity of data on the dependence of ϵ with variables such as wavelength and temperature. Ross et al. [13] report measurements on silicon solar cells where they give the value of $\alpha = 0.78$, and emissivity changes from 0.68 at -50°C to 0.78 at 150°C (see Figure 6). Blair et al. [14] report on extensive measurements on a number of materials with emphasis on solar cells manufactured by AEROJET. They measure the emissivity dependence on reflectance angle, temperature, and wavelength ranging from 2 to 24 μ (see Figure 7). From 2 to 18 μ the emissivity is generally between 0.8 and 0.9. There is a decreasing trend in emissivity for wavelengths greater 18 μ , although the data are inconclusive.

Dow inverted this table. Dow used 1400 W/m² for the solar power, whereas 1360 W/m² is used in this analysis.

They report emissivity of about 0.9 at 200 K and less at 373 K. This is the opposite trend from that reported by Ross et al. Dow reports that the emissivity of white paint changes from 0.9 at 50 μ to 0.2 at 75 μ and to 0.1 at 100 μ . Therefore, some dependence of emissivity on temperature is expected, although even the sign of the slope is unknown. More probably we would expect the emissivity to decrease with increasing wavelength. This is consistent with Drudes's theoretical relation between the resistivity ϱ of a metal for a definite wavelength [15].

$$\epsilon_{\lambda} = 0.365 \sqrt{\frac{Q}{\lambda}}$$
.

Figure 6. Emissivity vs. temperature for silicon solar cells.

Figure 7. Emissivity vs. wavelength for silicon solar cells.

Currently, it is not generally known if the values of α/ϵ change with time in space. For optical solar radiators, α/ϵ does change from 0.08 to 0.2 or more over 10 years [18]. This is inferred from the increase in electronic component temperature. Results from the Long Duration Experiment Facility (LDEF), in orbit for almost six years, provide some indication. As summarized by Dow, for anodized aluminum (the primary LDEF surface coating), the values of ϵ did not change significantly, whereas the value of α increased by as much as 16%, depending on the location of the sample. However, white paint exhibited increases as large as 100%. Such phenomenon may help explain the high and low temperatures reported here.

14

TABLE 2
Typical Absorptivity and Emissivity for Spacecraft Materials

Material	ρ	α = 1-ρ	E	α/ε	T1	T2
AIO ₃ on Buffed Aluminum	0.87	0.13	0.23	0.57	243	289
Vapor Dep. Gold on Glass	0.96	0.04	0.02	2.00	333	396
Vapor Dep. Silver on Glass	0.81	0.19	0.02	9.50	492	585
Solar Cell (IUE)	0.14	0.86	0.84	1.02	282	335
Stainless Steel (Polished)	0.58	0.42	0.11	3.82	392	465
Fiberglass	0.15	0.85	0.75	1.13	289	344
Polished Aluminum 6061	0.81	0.19	0.04	4.52	408	485
Unpolished Aluminum 6061	0.63	0.37	0.04	8.81	483	574
Anodized Aluminum	0.58	0.42	0.63	0.67	254	302
Silver	0.96	0.04	0.02	2.00	333	396
Gold (Plated)	0.70	0.30	0.03	10.0	498	593
TiO White Paint	0.80	0.20	0.90	0.22	192	228
Black Paint(#M Velvet)	0.05	0.95	0.92	1.03	282	336
Aluminum Paint	0.71	0.29	0.27	1.07	297	353
1.0 mil Aluminized Mylar*	0.84	0.16	0.54	0.30	207	247
1.0 mil Silverized Teflon†	0.92	0.08	0.66	0.12	165	196
1.0 mil Aluminized Kapton‡	0.64	0.36	0.54	0.67	254	302
Magnesium Oxide White Paint	0.91	0.09	0.90	0.10	158	187
Platinum Foil	0.67	0.33	_0.04	8.25	475	565
* Trade name for polyethylene tereph	nthalate					
† Trade name for fluorinated ethylene	e propylene					
t Trade name for polyamide						

[‡] Trade name for polyamide

5. CALIBRATION ISSUES

The IRAS data received from Groningen was processed with the calibration described in Beichman's report [9]. Since that publication, a number of analyses have questioned the calibration [16,17,18,19,20,21]. Some consider the calibration confirmed (Aumann [22]), whereas a number of analyses suggest the various wavebands are in error by 2% to 12%. The proposed corrections are listed in Table 3. The weight of evidence suggests that some calibration correction may be warranted. The calibration correction adopted for this analysis is also given in Table 3. In this analysis, there is no way to quantify or assess the absolute calibration, as we do not have independent information about the satellite emissivity, absorptivity, or temperature. It is the determination of these quantities that is the objective of this analysis.

TABLE 3
IRAS Calibration Errors

Source	12 μ	25 μ	60 µ	100 μ
Aumann	0	0	0	0
Tedesco	0	10%	10%	?
Gillett	0	6%	0	?
Kirby et al.	0	10%	0	0
Cohen et al.	2%	6%	3%	12%
Used Here	0	0	0	NA

6. DATA PROCESSING

Each detection report contains, among other information, the epoch, direction in right ascension and declination, angular rate crossing the focal plane, and the flux, in uncolor-corrected Janskys, for each detector registering a "hit."

The objectives of this analysis are to identify those detections of known satellites and to analyze the radiometric data for information about IR observations of artificial earth satellites. There were four steps in preparing the data for analysis.

- 1. The observed direction of all detections in the Groningen debris data base was compared with directions computed from an ephemeris of the IRAS satellite and the catalogue of known satellite element sets. Observations were accepted if the observed and computed direction agreed to 0.60° or better and the observed and computed angular velocity agreed to 0.5 arcmin/sec.
- 2. The individual hits for each detection were screened. The intention was to eliminate hits where the satellite image (assumed a point source) did not completely cross a detector, as a partial hit would give a biased flux estimate. The screening was done as follows. As seen from the focal plane geometry (see Figure 2), the detectors for each waveband are in two rows with some overlap. Therefore, in each detection one would expect that two hits would be registered for each waveband. In cases where three or more hits are registered, it is assumed that some of them are at a detector edge and therefore do not give a good flux measurement. Therefore, the screening was that for detections with three or more hits, the two hits with the largest flux density measurement were accepted. This eliminated some, but probably not all, partial detector hits. An example of the editing of the data for SBS1 (12065) is presented in Table 4. The sighting time for each detection is given as the day of the year 1983. The record number is a unique identifier in the Groningen IRAS debris data base. The object number is 12065. The observed in-scan velocity is given in arcmin/sec. In each detection, all the hits are given, and the detector is identified. A number of triple hits are observed. The discarded hit is noted with an asterisk. Hits were discarded for other reasons. The detection on day 222.032 was discarded because of the anomalous in-scan velocity. Other hits discarded, based on a statistical test, were in detections on days 71.535 and 72.537.
 - 3. The detections for each satellite were collated.
- 4. The flux density measurements were color corrected and analyzed to obtain physical properties of the satellite using other observed information such as the range and physical size. Information such as temperature and emissivity were derived.

TABLE 4
Detector Hits for SBS1

Sighting Time	Rec	(Obj	InsV	D12	Flux12	D25	Flux25	09Q	Flux60
48.55410004	2004	12065	4.38	8 82	1.83	42	2.22	34	1.39
142.00761414	55033	12065	4.64	25 83 52	1.70 0.63* 1.90	44	2.43	13	0.43
69.53096771	79019	12065	4.46	51 27	1.86	39 19	2.80	अ अ	0.91
70.53330231	79814	12065	4.46	8 8	1.98	43 40 16	0.65° 2.59 2.32	32 13 8	1.09 0.65* 1.23
71.53556824	80687	12065	4.47	24	1.76	44	0.42*	33	0.85
72.53787231	81955	12065	4.47	8 8	3.37*	45	2.13	37	1.22
73.54016876	82421	12065	4.53	22 SS	1.65	8 23	2.49	38 15	2.19 1.39 0.62*
222.03245544	146290	12065	3.42	198	0.56*	9	2.26*		

7. GENERAL RESULTS

Table 5 summarizes the result of correlating with the satellite catalogue. The number of correlations is given for a variety of error bounds. The 2072 detections with angle errors less than 0.6° are believed to be valid satellite detections. The remaining detections contain uncatalogued objects (UCTs), debris, and false detections. These will not be discussed further.

TABLE 5
IRAS Data Correlation Results

Number of IRAS sig	htings compared with	catalogue	136304
Number of correlation	ons		
Crude filtering			30600
< 4°	•		9955
< 1°			2469
< 0.6°			2072
Number of satellites	correlated		465
Statistics	vs. IRAS DB	vs. Corr	relations
Correlations	22%		
< 4°	7%	33%	
<1'	2%	8%	
< 0.6°	2%	7%	

The Wesselius's original publication [8] displayed the data in an interesting way. From the observed flux ratio, say $f_{12\mu}/f_{25\mu}$, one can determine the temperature of the body, assuming the emissivity is constant. One would expect the temperature measured with the $f_{12\mu}/f_{25\mu}$ ratio to be the same as that obtained from the $f_{25\mu}/f_{60\mu}$ ratio. This is plotted in Figure 8 from Wesselius et al. for the 1500 detections with fluxes greater than 3 Jy. The wide scatter belies our expectation. The same plot is provided for the correlated data before the screening for partial hits (see Figure 9). Instead of selecting detections based on large flux density, we have selected detections based on known satellite detections. A similar scatter is evident. Next, the same plot is provided for temperature derived from the screened flux density measurements (see Figure 10). In this case, the values fall on a straight line, and the scatter is significantly

reduced. From the $f_{12\mu}/f_{25\mu}$ flux ratio, the average temperature of about 300 K is clearly evident. We believe the large scatter in the original IRAS data is due in part to partial detections. In principle a partial detection could be corrected given precise knowledge of the IRAS position and pointing and the satellite position.

Another way to characterize the IR satellite measurements is given in Figure 11. Here, the $12-\mu$ flux density is presented as a function of the range to the observed target. The envelope corresponds to the $1/r^2$ dependence, and its position depends on the sensitivity of IRAS and the maximum size of objects in 1983. A number of detections are at a greater-than-geosynchronous range. These are genuine since they are Astron, Exosat, and other known satellites. The individual fluxes are given in Appendix A.

Figure 8. Temperature from 1500 large flux sample detections.

Figure 9. Temperature from correlated and unscreened data.

Figure 10. Temperature from correlated and screened data.

Figure 11. Flux density vs. range.

8. REFERENCE SPHERES

Isothermal spheres are the simplest and easiest satellite shapes to analyze. A single IRAS focal plane crossing has been correlated with the polished aluminum Lincoln Radar Calibration Sphere LCS1 (SSC # 1361). Although there is only one detection, the analysis of this data is instructive. The temperature is determined to be 480 K using the screened uncolor-corrected flux density ratio of $J_q^{12\mu}$ = 17.69 Jy at 12 μ over $J_q^{25\mu}$ = 11.22 Jy at 25 μ . The radiant flux density of LCS1 at 480 K is $\mathscr{F}_{12\mu}(480)$ = 134.8 W/ μ /(effective ϵA) at a 12- μ reference wavelength.

The IRAS color correction (Beichmann, Table VI-26) adjusts the reported 12- μ flux density to $J_{obs}^{12\mu} = 16.55$ Jy, which is equal to $F_{obs}^{12\mu} = F_q^{12\mu}/K_{12\mu} = 3.45 \times 10^{-13}$ W/(m² μ) spectral irradiance. Now at a range of 2001 km, determined from the a posteriori ephemeris, the observed spectral radiant intensity is $\pi r^2 F_{obs}^{12\mu} = 4.34$ W/ μ .

Now the effective area ϵA is the observed spectral radiance at 12 μ (W/ μ) divided by the Planck function value of the radiant flux density [W/(m² μ)] at the same reference wavelength.

$$\epsilon A = \frac{\pi r^2 F_{obs}^{12\mu}}{\mathscr{F}_{12\mu}(480)} = 0.0322 \ (m^2)$$

Thus, ϵA is 0.0322 m², but since the projected area for LCS1 (1361), $A = 1 \text{ m}^2$, the emissivity is $\epsilon = 0.0322$.

The ratio of solar absorptivity to emissivity $(\alpha/\epsilon)^{1/4}$ is equal to the observed temperature, 480 K, divided by 278 K, the characteristic free-space temperature for an isothermal sphere. Thus, $\alpha/\epsilon = 8.89$, $\alpha = 0.286$, and the reflectivity is $\rho = 1 - \alpha = 0.7139$.

Data on the optical properties of various spacecraft materials give values for aluminum as shown in Table 6.

The radar calibration sphere may have a less polished surface than when launched a quarter century ago, thereby increasing the absorptivity—i.e., reducing the reflectivity—toward the values given for unpolished aluminum.

The IRAS result can be compared with visible band measurements. The apparent visual brightness resulting from a specular sphere with $\rho A = 0.714 \text{ m}^2$ at a 2000-km range is given by

$$M_v = -26.78 - 2.5 \log \left(\frac{0.714}{4\pi (2x10^6)^2} \right) = 7.84 M_v$$

TABLE 6
Optical Properties of Aluminum

	α	E	α/ε	ρ	T (K)
LCS1 Observed	0.286	0.0322	8.89	0.714	480
Polished Al	0.19	0.042	4.52	0.81	408
Unpolished Al	0.63	0.042	8.81	0.63	483

This calculated brightness can be compared with the brightness observed by W. Beavers [2] as a function of phase angle. The value derived from IRAS for M_{ν} is 7.84 M_{ν} at 2001 km. This can be referred to geosynchronous distance, $\approx 36,000$ km, with an adjustment of 6.275 M_{ν} . Therefore, IRAS predicts 14.11 M_{ν} at geosynchronous range. This is in moderate agreement with Beavers's observations reported at geosynchronous range that give a value, at 90° phase angle, of 14.0 M_{ν} . Beavers notes that his observations indicate that 12% of the energy is diffuse. Additional LWIR and visible band measurements at the same epoch are required for a high-accuracy comparison.

Finally, consider the thermal response of LCS1, a 1-m sphere, with a 2-cm-diameter solid aluminum sphere covered with Martin Black with $\alpha = \epsilon = 0.999$ as it enters the earthshadow. The cooling rate, neglecting earth-upwelling radiation, is

$$\frac{dT}{dt} = -\frac{5.67 \times 10^{-8} T^4 \in A (1-\xi)}{c_p M} \left(\frac{kW}{J}\right) ,$$

where c_p is the specific heat, M is the mass, and $(1 - \xi)$ is the fraction of the sphere radiating to free space. Now, the temperature of a sphere is written as

$$T=278\left(\frac{\alpha}{\epsilon}\right)^{\frac{1}{4}}$$
,

giving

$$\frac{dT}{dt} = -\frac{338.65 \alpha A (1-\xi)}{c_p M} \quad .$$

Now, the area-to-mass ratio of the two spheres, $(A/M)_{(1361)} = 0.0285 \text{ m}^2/\text{Kg}$, and $(A/M)_{(2 \text{ cm})} = 0.0252 \text{ m}^2/\text{Kg}$, is virtually the same. The cooling rate for LCS1 (1361) is therefore expected to be about 0.286 that of the 2-cm emissive calibration sphere coated with Martin Black, which results in a temperature excursion less than 10 K. Therefore, LCS1 would provide a relative stable temperature reference.

9. SPIN-STABILIZED CYLINDERS

Spin-stabilized, solar-cell-covered cylinders appear to be simple objects for radiometric analysis. There were 80 such nonmilitary satellites in orbit during the IRAS sky survey compared to 20 three-axis stabilized satellites. The putative simplicity of spin-stabilized cylinders led to early analysis of that data.

The first geostationary satellite, Syncom B, a 28-in-diameter and 15-in-high spun cylinder, was launched in 1963. The cylinder weighed 85 lb. The solar power was 30 W, and the satellite had a lifetime of 18 months. Now, 30 years later, Hughes (the same company that built Syncom) deploys two-ton cylinders, 12 ft in diameter and 30 ft high with 2000 W of solar power at the end of a ten-year life.

The first cylinders employed dipole antennas, sometimes in phase switched arrays, to provide moderate gain in the earth direction. Later, satellites used high-gain parabolic reflectors on a despun platform at the top of the cylinder. The other end of the cylinder was left open, and a second concentric solar-cell-covered cylinder slid down over the apogee kick motor after geosynchronous orbit was achieved. These geosynchronous orbits have nearly 0° inclination and circular orbits with the spin axis maintained normal to the orbit plane, i.e., normal to the earth's equatorial plane. The IRAS orbit geometry results in observations of geosynchronous satellites near quadrature, i.e., at an illumination phase angle between 80° and 100° . The measured flux density from these cylinders is expected to be a weak function of phase angle, which is in contrast to flat solar panels that exhibit a $\cos(\phi)$ relationship. The LWIR detections of spin-stabilized cylinders are therefore expected to be the simplest to understand.

The simple LWIR model used here treats only the main cylindrical body. The LWIR radiance of the antenna and despun platform are ignored for two reasons. First, they are covered with reflective thermal insulating material. Second, because of the IRAS geometry, the observations are made when the parabolic antenna is edge-on to the sun, it is cool, and its radiation is ignorable. The LWIR energy radiated from the open bottom of the cylinder is also ignored in the energy balance calculation. Now, the cylinder, spinning on the order of once per second, is certainly near thermal equilibrium, and only the projected area is considered. Incidentally, the cylindrical geometry produces only $1/\pi$ as much power as an equal number of solar cells on a flat panel normal to the sun.

From information about solar cell absorptivity and emissivity it is known that about 10%-15% of the incident solar power is reflected by the solar cells $\rho = 1 - \alpha$. About 15% of the incident solar power is converted to electrical power. This leaves about 75% of the solar power to be reradiated to achieve thermal equilibrium. The free-space temperature of a solar panel is changed by

$$(\alpha/\in)^{1/4}$$

where $\epsilon \approx 0.85$, and $\alpha \approx 0.75$. Note that $\alpha = 1 - \rho - \eta$, where the symbol for reflectivity is ρ and the symbol for solar cell efficiency is η . It is the fourth root of the ratio of this net absorptivity, $\alpha \approx 0.75$, to emissivity, $\epsilon \approx 0.85$, that determines the temperature of a given-shape solar panel.

Most cylindrical payloads were built by Hughes, including the giant HS-393 class, which includes SBS-6 and INTELSAT-6 (all launched after 1983). The Hughes Galaxy class, HS-376, Figure 12, was

selected for initial analysis because of the number of IRAS detections, ≈ 60, on eight individual satellites that were obtained. In addition, they had flux densities exceeding 2 Jy. Now, the HS-376 class was the first to radiate heat from the electronics using a cylindrical optical solar radiator (OSR). Previous designs radiated the heat from the electronics upward toward the antenna via the despun platform. To obtain the simple model for the cylinder, it is assumed that the radiator power is equal to the reradiated power of the solar panel it replaced. The HS-376 was also the first to increase the solar cell collection area by sliding a concentric solar cylinder down to cover the apogee kick motor after geostationary orbit was achieved.

Figure 12. Hughes HS-376 satellite.

The eight Hughes cylinders observed by IRAS are listed in Table 7. Figure 13(a), (b), and (c) plots the detections as a function of time; there is no indication of a temporal trend, and we would expect none. This confirms the constancy of the IRAS calibration. Therefore, we have taken an average of all the screened detections and obtained the mean values given in Table 7, which are accompanied by the formal uncertainty. In general the average flux is obtained to \pm 0.1 Jy. With this statistical population, the accuracy of a single hit is estimated as \pm 0.6 Jy. The object temperature is obtained as described above. We adopted the temperature derived from the $f_{12\mu}/f_{25\mu}$ ratio as the object temperature for further analysis. Given the temperature, one can then recover physical properties of the satellite as follows. The observed flux densities are color corrected to find the true flux density. Since the range is known from the ephemeris used for correlation and the self-emitting projected surface area of these satellites, $A_p = 8.84 \text{ m}^2$, the emissivity can be calculated in each waveband from

$$\epsilon_{\lambda_o} = \frac{J_q^{\lambda_o}}{K_{\lambda_o}(T)} \frac{\pi r^2}{A_p J_o^{\lambda_o}(T)} .$$

The calculation of emissivity for the eight Hughes cylinders is given in Table 8. Note that the 12-and $25-\mu$ band emissivities are in good agreement with each other, as they should be since they were assumed to be so for calculation of the temperature. The 12- and $25-\mu$ emissivities are also in good agreement with published values (Table 2), whereas the $60-\mu$ values are not. We assume that either there is an (unlikely) calibration error in the $60-\mu$ band or there is a real difference in solar cell emissivity at $60~\mu$. Finally, the solar absorptivity of the satellites can be calculated as described above. The absorptivity calculated in this way is also listed in Table 8.

From the HS-376 results, a convenient rule of thumb is postulated relating the observed $12-\mu$ flux $J_{12\mu}$ to projected solar cell area A_p

$$A_p \approx 5 J_{12\mu} \qquad (m^2) .$$

This leads to a relation between power and observed flux

$$W \approx 500 J_{12 \mu} \qquad (W)$$

for nominal 10% solar cell efficiency.

TABLE 7 IRAS Detections of Hughes HS-376 Cylinders

Sid	Name	12 μ		25 μ		ф09		T12/25	T25/60
		Jansky	#	Jansky	*	Jansky	*	¥	×
12065	SBS-1	1.86±0.04	13	2.42±0.11	12	1.20±0.19	14	297	223
13069	WESTAR 4	1.59±0.06	16	2.30±0.08	16	1.01±0.12	16	284	247
13269	WESTAR 5	1.78±0.03	9	2.48±0.22	5	1.02±0.19	5	288	263
13651	SBS-3	2.03±0.10	2	2.68±0.10	2	1.25±0.10	2	296	235
13652	ANIK C3	1.87±0.10	12	2.67±0.11	12	1.00±0.34	10	286	287
13431	ANIK D1	1.83±0.11	10	2.74±0.08	10	1.14±0.08	-01	279	261
14158	Galaxy 1	1.61±0.19	12	2.39±0.16	12	1.04±0.39	12	280	250
14134	PALAPAB1	1.52±0.10	2	2.64	-	0.98±0.10	0	260	291

Figure 13. Flux vs. time for Hughes HS-376 cylinders.

The general result for analysis of spin-stabilized cylinders is that relatively simple models can give important information about these satellites. Assuming that solar cells are the primary source of LWIR flux seems a workable assumption. It allows inference of effective emissivities and possibly some inference about the solar cell power available.

The HS-376 spacecraft observed by IRAS were assumed initially to be more or less identical and were expected to yield the same flux densities and temperatures. The values of flux density for a given spacecraft were averaged without adjustment for possible seasonal variations. However, individual spacecraft had important differences, some of which could explain the difference in observed characteristics. WESTAR 4 and 5 have shorter solar panels and corresponding lower power [23]. If the radiator is the same size, which is not documented, the two WESTARs have only 7.8 m² projected area compared with the other HS-376 with 8.84 m². Thus, the WESTARs have 0.88 of the area, and this is in good agreement with the 12- μ flux density ratio of 0.87 of the average of the two WESTARs compared with the two ANIKS (1.613 Jy/1.851 Jy). In addition, the two SBS satellites had IRAS-derived temperatures about 15 K higher than the other spacecraft. This may be due to the smaller number of 20-W TWT amplifiers employed. Yenne [24] reports that SBS satellites had only 10 TWTs compared with the usual 20 on other satellites. Another possible source of difference is that early spacecraft were launched without baking out the solar cell panels to remove the water from the hydroscopic solar cell adhesives. Both SBS-1 and WESTAR 4 were not baked out before launch, resulting in a few percent lower solar power for several months during outgassing in orbit. However, outgassing should have been completed long before the IRAS data was taken.

The most startling difference among spacecraft is the switch from a K7 Spectrolab solar cell to the mixture of K7 and K4 $\frac{3}{4}$ cells on the Galaxy 1. The K7 cells have been featured as having the highest peak solar output (19 mW/cm²), albeit with higher temperature resulting from a higher absorptivity, $\alpha \approx 0.84$. The K7 cells are thin (2.5 mils) and have a textured front surface together with an aluminized rear coating that reflects near-IR back through the cell for increased power generation. The K7 was particularly extolled for use on the deployable solar panel where the characteristic excess heat could be easily radiated [25]. Apparently, the K7 cells on the fixed panels flanking the radiator made it more difficult to control the temperature of the electronics and batteries behind the radiator panel.

The design of high-power, long-lived, solar-cell-covered cylinders is strongly driven by the temperature control required for electronic components and batteries, which power the RSO during earth eclipse near equinoxes. The solar cells are cemented to 1/2-in-thick, Kevlar-faced, aluminum honeycomb structural panels. In the early Hughes 376 series, the new K7 high-efficiency solar cells were used on both the fixed upper (forward) and deployable (lower) cylinders. The switch to the cooler K4 ¾ solar cells suggests a temperature control issue.

TABLE 8 Emissivity and Absorptivity for HS-376 Cylinders

Sid	Name	J12/J25	T(K)	J12/J25*	E _{12u}	6 _{25µ}	109 ₃	۵
12065	SBS-11	0.7690	297	0.9645	0.73	0.72	0.98	0.75
13069	WESTAR 4	0.6910	281	0.8749	0.85	0.88	1.02	0.74
13269	WESTAR 5	0.7160	288	0.9055	0.92	0.91	66.0	0.82
13651	SBS-3	0.7570	295	0.9519	0.82	0.82	1.03	0.82
13652	ANIK C3	0.7018	284	0.8882	0.89	0.89	0.82	0.77
13431	ANIK D1	0.6690	277	0.8480	0.97	0.97	1.03	0.76
14158	Galaxy 1	0.6763	278	0.5570	0.83	0.83	0.93	0.67
14134	PALAPAB1	0.5739	258	0.7307	1.13	1.13	1.00	0.67
* Color Corrected See Table 7 for pl Free-space tempe	nysic eratu	al dimensions. re = 295 K.					:	

The OSR has quartz panel sections with second surface mirrors and black backing coatings. The initial solar absorptivity-to-reflectivity ratio is less than 0.08. Thus, the radiator cooling section, between the two upper solar panels, acts as a one-way mirror that reflects sunlight and allows heat from the TWTs, nickel cadmium battery cells, etc., to radiate into free space. The electronics shelf, including the RF output TWTs behind the radiator, is on the despun platform with the antenna and feeds. The batteries spin with the solar panels. The rise of spacecraft temperature of several degrees over its lifetime has been attributed to the slow degradation of the OSR's α/ϵ .

The power system for spacecraft usually comprises two redundant main array buses together with battery charge and trickle arrays. The nearly 14,000 solar cells of the HS-376 spacecraft are connected in various "strings" of series-parallel configurations, with protective diodes, to allow graceful degradation in the event of string failure.

Hughes's modeling of solar cell power, voltage, and current predicts performance within a few percent. This is confirmed by several years of telemetry. Temperature is also modeled, but telemetric data agrees with models to only $\pm 6\%$ of the typical solar panel temperature (283 K). The seasonal variation of bus voltage due to the 23.5° obliquity of the ecliptic and the earth orbit eccentricity is clearly observed in the models. The temperature cycle is not so apparent since at eclipse season, when more solar power is available during sunlight, more power must be used to recharge the batteries following the eclipse.

More detail about solar cell panels is given for the HS-376 successor, the HS-393 [26]. Table 9, taken from Fodor et al. converted to degrees Kelvin, summarizes the predicted array panel temperatures by season and for the beginning and end of life. $K4\frac{3}{4}$ cells are used only on the fixed panels, and the K7 cells are used on the deployable panel. Though the total power of the two buses is over 2000 W, the number of solar cells required is not larger than for HS-376 because much larger solar cells have been developed to simplify fabrication. Note that the temperature of the $K4\frac{3}{4}$ cell panel is higher by 5–9 K than the K7 panels, except near winter solstice. This indicates that equipment temperatures are better controlled with the $K4\frac{3}{4}$ cells near the radiator. Incidentally, the lower panel falls to 191 K before emerging from eclipse. Also note the trickle charge panel rises to 306 K at winter solstice as the sunlight partially illuminates the inside of the lower cylinder.

It was recently learned that in the mid-1970s solar cell improvements foretold an operational increase in watts per square meter of 30% to 50%. Allison et al. [27] describes an improved "violet" cell (announced in 1972) with vastly improved response to the blue-violet solar spectrum that achieved at least a 30% increase in solar power over the conventional cell in use. The COMSAT nonreflective (CNR) cell announced in 1974 offered a 50% increase in power above the conventional cell as well as increased radiation hardness. The solar efficiency η is 15.4%.

TABLE 9
Nominal Solar Panel Temperature for HS-393 Satellites

		K4¾		K7 Deployable	
Date	Years in		Array Temper	ature (Deg K)	
Date	Orbit	Panel A1	Panels C1-C4 MC1	Panel MC2	Panel Tc
Summer Solstice	0	275.8	266.9 266.9	268.0	265.2
Autumnal Equinox	0	278.0 280.8	275.8	268.0 277.4	265.2 272.5
Winter	10 0	283.0 276.3	275.8 297.4	277.4 289.1	272.5 305.8
Solstice	10	278.6	298	289.7	305.8
21 March Post-Ecl	0	191.3	144.7		

Meulenberg [20] also advises that $(\alpha - \eta)/\epsilon$ is a better indicator of cell temperature than α/ϵ . Table 10, taken from the COMSAT paper, tabulates the properties of conventional cells, the violet cell, and the CNR cell. We have added the calculated cell temperature modeled on a cylindrical satellite

$$T \doteq 295 \left(\frac{\alpha - \eta}{\varepsilon}\right)^{\frac{1}{4}}$$
.

The CNR cell clearly has a higher temperature, and the paper suggests that a specific cover slide would increase the emissivity from 0.803 to 0.843, thereby somewhat ameliorating the temperature increase. The K7 cells used on the early Hughes HS-376 class satellites are more or less equivalent to the CNR cells. IRAS data on seven of the eight observed satellites were reexamined—the PALAPA B1 detection was excluded—to correlate the observed temperatures with the solar cell models. The results are given in Table 11.

TABLE 10
Solar Cell Types and Temperature

Туре	Electrical Efficiency	Solar Absorptivity α	Normal Emittance	(α-η)/ε	Temperature
Conventional (Pre-1976)	0.101	0.725	0.803	0.777	277
(F16-1970)	0.101	0.725	0.843*	0.74	273.6
"Violet"	0.14	0.81	0.803	0.834	281.9
	0.14	0.81	0.843*	0.795	278.5
COMSAT Non-	0.155	0.906	0.803	0.935	290.1
reflective (CNR)	0.155	0.906	0.843*	0.891	286.6

IRAS data on the ANIKs and the WESTARs show good agreement with the model temperature. Satellite Business System Consortium of COMSAT, SBS-1 and -3 were reported to have only 10, instead of 20, 20-W RF power TWTs [24]. With the assumption that only about one-half the bus power was used, and the remaining power was reradiated at LWIR instead of RF, the CNR cell equivalent of η was one-half of 15%. The result is in good agreement with the observed temperature and the solar cell model, thus explaining the approximate 9° difference between the 295 K for the SBSs and the 286 K for the ANIKs and WESTARs.

The Galaxy 1 with $K4\frac{3}{4}$ cells on the fixed upper cylinder and K7 on the deployable panel was modeled by averaging the properties of the old solar cell with the CNR cell properties from Table 10. The resulting model is within about 6 K of the IRAS measured temperature.

The good agreement found between the simple model and the IRAS measurements should not lead to the conclusion that the simple model is an adequate treatment of a very complex thermodynamic system. Rather, the neglected details, such as the antenna thermal flux and radiation from the open deployed cylinder, tend to compensate for one another.

TABLE 11
Physical Properties for HS-376 Cylinders

SSN	Satellite	Model Temp	IRAS Temp	Laboratory ©	IRAS €	Laboratory α-η	IRAS (α-η)*
13431	ANIK D1	286.6	277.1	0.843	0.973	0.751	0.763
13652	ANIK C3	286.6	283.6	0.843	0.892	0.751	0.768
13069	WESTAR 4	286.6	281.4	0.843	0.891	0.751	0.744
13269	WESTAR 5	286.6	286.4	0.843	0.917	0.751	0.822
12065	SBS-1	293.7	296.9	0.843	0.728	0.828	0.747
13651	SBS-3	293.7	294.5	0.843	0.818	0.828	0.815
14158	Galaxy 1	280.1	278.5	0.843	0.836	0.688	0.670
* (α-η)	is tabulated as	α in Table	9 IRAS me	asurement.			

The previous analysis concentrated on IRAS detections of the eight HS-376 spin-stabilized cylinders. The moderate consistency of flux densities and temperatures encouraged analysis of the remaining observations of spin-stabilized cylinders. Table 12 gives some physical information about many of the satellites in orbit during IRAS observations as well as the spin-stabilized cylinders observed: size, weight, electrical power, type, name, and manufacturer. Table 13 gives the observed flux densities—uncorrected for color temperature—and the calculated temperatures, emissivities, and absorptivities. All other observed cylinders had smaller projected areas than the HS-376 class, and almost all the reported flux densities were smaller than those for the HS-376s. Two INTELSAT 4s (4881 and 6052) and three INTELSAT 4As (8620, 10557, and 10778) were observed to have temperatures between 291 and 298 K, with a mean near 295 K. Both classes, HS-312 and HS-381, have approximately the same projected area.

TABLE 12 Payloads Detected by IRAS

Name	TELSTAR 2 (A-41)	LCS 1	ATS 1	ATS 3	LES-6	NATO 1	INTELSAT 3 F-8	INTELSAT 4 P-2	NATO 2	INTRESAT 4 P-5	ANIK A1 (TELESAT-1)	ANIK A2 (TELESAT-2)	WESTAR 1	ANIK A3 (TELESAT-3)	GOES 1 (SMS-C)	INTELSAT 4A P-2	LAGEOS I	COMSTAR 1	MARISAT 2	PALAPA 1	COMSTAR 2	MARISAT 3	KIKU 2 (ETS-2)	GOES 2	HIMAMARI (GMS-1)	INTRESAT 4A F-3	INTELSAT 4A P-6	ANIK BI (TELESAT-4)	AYAMB 2 (ECS-2)	GORS 4
Manufacturer							TRW	Rughes 312		Hughes 312	Hughes	Hughes	Hughes 333	Hughes	Philco Ford	Hughes 353		Hughes 351		Hughes	Hughes 351	Hughes 356	NASDA	Philco Ford	Hughes	Hughes 353	Hughes 353			Hughes 371
Remarks			Gravity Stabilized	Gravity Stabilized				2.45-m antenna		2.45-m antenna			1.5-m entenna			2.45-m antenna		3.38-m entenna		1.5-m antenna	3.38-m antenna	1.65-m antenna				2.45-m antenna	2.45-m antenna		lost contact on injection	
TV	.581	1.003	2.059	2.599	2.044	1.110	1.477	6.740	1.110	6.740	2.782	2.782	2.040	2.782	2.560	6.740	.283	6.897		3.610	6.897	3.450	1.148	4.370	3.350	6.740	6.740	4.644	1.330	3.350
	•			14										• •	~	•														
Diameter (m)	98.	1.13	1.42	1.42	1.22	1.37	1.42	2.39	1.37	2.39	1.83	1.83	1.90	1.83	1.90 2	2.39	09.	2.44		1.90	2.44	1.90	1.40	1.90	2.15	2.39	2.39	2.17	56.	2.16
		1.13									1.52 1.83		1.90	1.03	1.90	2.39		2.82 2.44			2.44					2.82 2.39			1.40 .95	
Diameter (m)		1.13		1.42	1.22				10.			1.83	1.60 1.90	1.52 1.03	1.90	2.39				1.90	2.82 2.44						2.82			2.16
Height (m) Diameter (m)				1.42	1.66 1.22	10.	1.04	2.82	.01	2.82	1.52	1.52 1.83	300 1.60 1.90	1.52 1.03	1.90	2.62 2.39				1.90 1.90	2.82 2.44	2.42		2.30	3.45	2.82	600 2.82			2.16

TABLE 12 (Continued)
Payloads Detected by IRAS

814	Mass (kg)	Power (watts)	Height (r	Ē	Diameter (m)	77	Remarks	Manufacturer	Маже
1 1 1			 	-					
12065		1100	4.78		2.16	8.600	1.82-m antenna	Hughes 376	SBS 1
12295			2.80		2.10	5.880		NASDA	KIKU 3 (ETS-4)
12309			2.82		2.44	6.897	3.38-m antenna	Hughes 351	COMSTAR 4
12677		225	3.45		2.15	3.350		Hughes	HIMAMARI 2 (GMS-2)
13069		1000	4.78		2.16	7.80	7.800 1.82-m antenna	Hughes 376	WESTAR 4
13269		1000	4.78		2.16	7.800	1.82-m antenna	Hughes 376	WESTAR 5
13431		006	4.78		2.18	0.600	1.65-m antenna	Hughes 376	ANIK DI (TELESAT-6)
13651		1100	4.78		2.16	8.600	1.82-m antenna	Hughes 376	SBS 3
13652		1135	4.78		2.18	8.60	8.600 1.65-m antenna	Hughes 376	ANIK C3 (TELESAT-5)
13782			3.20		2.18	6.976	5 0.31-m antenna	Mitaubishi	SAKURA 2A (CS-2A)
14050			3.50		2.16	7.560		Hughes 371	GOES 6
14134	630.0		5.00		2.16	9.600	1.83-m antenna	Hughes 376	PALAPA B1
14158		1000	4.78		2.16	9.60	8.600 2.05-m antenna	Highes 376	GALAXY 1

TABLE 13
IRAS Detections of Spin-Stabilized Cylinders

								f_{12u}		$\hat{f}_{12\mu}$					
Sid	Name	$f_{12\mu}$	$f_{25\mu}$	f 60µ	range	A ^a	Tero	$f_{25\mu}$	T12/28	$f_{25\mu}$	T* 12/25	$\epsilon_{12\mu}$	E25µ	E 60µ	Ø
2608	ATS 1	0.5850	0.3550	0.000	36000	2.06	295.0	1.6479	489.50	1.9133	409.19		0.157	0.000	1.197
3029	ATS 3	0.6470	0.6480	0.2900	36000	2.60	295.0	0.9985	343.03	1.2207	342.50	0.474	0.410	0.650	0.862
3431	9 537	0.3750	0.2800	0.0000	36000	1.72	295.0	1.3393	416.02	1.6059	416.52	0.203	0.202	0.000	0.809
4353	MATO 1	1.0600	0.5450	0.0000	36000	1.11	295.0	1.9450	573.53	2.1987	571.93	0.342	0.339	0.000	4.828
4478	INTELSAT3 FO	2.5180	2.5500	1.0550	36000	1.48	295.0	0.9875	341.57	1.2161	340.23	3.334	3.307	4.200	5.898
4001	INTELSATE F2	2.1080	2.7730	1.1980	36000	6.74	295.0	0.7602	295.13	0.9553	295.30	1.108	1.099	1.292	1.112
4902	KATO 2	0.6450	0.7900	0.3400	36000	1.11	295.0	0.8165	306.46	1.0161	305.82	1.764	1.750	2.113	2.038
6052	INTELSAT4 PS	1.9670	2.6630	1.0970	36000	6.74	295.0	0.7386	290.91	0.9325	291.52	1.095	1.087	1.206	1.045
6278	ANIK AL	3.4650	4.8500	1.5800	36000	2.78	295.0	0.7144	286.09	0.9037	286.76	5.037	4.997	4.325	4.498
6437	ANIK A2	2.2250	3.3100	1.5100	36000	2.78	295.0	0.6722	277.69	0.6519	278.27	3.716	3.686	4.343	2.942
6974	DSCS 4	1.0520	1.3090	0.5870	36000	8.00	295.0	0.7574	294.58	0.9523	294.81	0.751	0.745	958.0	0.749
7250	WESTAR 1	0.7590	0.7470	0.3640	36000	2.04	295.0	1.0161	347.45	1.2488	346.14	0.680	0.675	1.023	1.289
7790	ANIK A3	0.5200	1.0600	0.6000	36000	2.78	295.0	9064.0	240.95	0.6222	241.00	1.775	1.761	2.186	0.791
1366	00ES 1	0.7560	0.7040	0.5350	36000	2.56	295.0	1.0739	359.31	1.3145	358.25	0.473	0.469	1.139	1.029
0620	INTELSAT4AF2	1.7350	2.2400	0.6050	36000	6.74	295.0	0.7746	297.95	9.9704	297.81	0.878	0.871	0.645	0.912
1638	CONSTAR 1	1.8800	1.8850	1.2050	36000	6.90	295.0	0.9973	343.60	1.2274	342.27	0.521	0.516	1.016	0.943
1112	HURISAT 2	0.8430	1.0020	0.6340	36000	3.45	295.0	0.7791	298.85	0.9751	298.60	0.823	0.817	1.314	0.864
6006	PALAPA 1	0.9600	0.7500	0.0000	36000	3.61	295.0	1.2800	401.90	1.5440	403.59	0.277	0.274	0.000	0.969
9478	MARISAT 3	0.8270	1.1460	0.6600	36000	3.45	295.0	0.7216	287.53	0.9125	288.21	0.947	0.940	1.444	0.863
9852	K1KU 2	0.3300	1.2100	0.0000	36000	1.15	295.0	0.2727	192.37	0.3367	192.38	10.004	9.924	000.0	1.809
0061	GOES 2	0.7420	0.9220	0.3600	36000	2.56	295.0	0.8048	304.06	1.0045	303.52	606.0	0.903	0.981	1.019
0143	HIMAMARI	0.7380	0.8950	0.4690	36000	3.35	295.0	0.8246	308.13	1.0277	307.43	0.654	0.649	0.958	0.771
0557	INTELSAT4AF3	1.7160	2.2110	1.0560	36000	6.74	295.0	0.7761	298.26	0.9720	298.08	0.865	0.858	1.124	0.901
8770	INTELSAT4AF6	1.0000	2.5370	1.0960	36000	6.74	295.0	0.7410	291.38	0.9351	291.94	1.040	1.032	1.202	0.998
1144	DSCS 11	1.1460	1.2050	0.5890	36000	8.00	295.0	0.8918	321.94	1.1059	320.82	0.568	0.564	954.0	0.795
1145	DSCS 12	1.6350	1.9940	0.9590	36000	8.00	295.0	0.8200	307.18	1.0222	306.52	0.903	0.975	1.319	1.146
1715	AYAMB 2	0.1800	0.7600	0.0000	36000	1.33	295.0	0.2368	183.29	0.2891	103.39	6.398	6.347	000.0	0.955
1964	00ES 4	0.7140	0.9000	0.5480	36000	3.35	295.0	0.7933	301.71	0.9910	301.27	0.691	0.685	1.155	0.751
2065	SBS 1	1.8610	2.4200	1.1990	36000		295.0	0.7690	296.86	0.9645	296.84	0.728	0.723	0.979	0.747
2295	KIKU 3	0.6250	0.6730	0.4500	36000	3.75	295.0	0.9267	329.50	1.1485	328.24	0.376	0.373	0.744	0.577
2309	COMSTAR 4	1.9670	2.6850	1.1590	36000	6.90	295.0	0.7326	289.72	0.9259	290.42	1.009	1.080	1.252	1.023
7677	HIMMARI 2	0.6160	0.7400	0.4150	36000	3.35	295.0	0.8324	309.74	1.0360	308.99	0.534	0.530	0.841	0.643
3069	WESTAR 4	1.5920	2.3040	1.0130	36000	7.80	295.0	0.6910	281.39	0.8749	282.04	0.891	0.884	1.017	0.744
3269	WESTAR S	1.7770	2.4820	1.0100	36000	7.00	295.0	0.7160	286.39	0.9055	287.06	0.917	0.910	0.992	0.822
3431	ANIK DI	1.8310	2.7370	1.1350	36000	. 84	295.0	0.6690	277.06	0.8480	277.63	0.973	0.965	1.031	0.763
3651	583 3	2.0250	2.6750	1.2450	36000		295.0	0.7570	294.51	0.9519	294.74	0.818	0.012	1.027	0.815
3652	ANIK C3	1.0710	2.6660	0.9990	36000		295.0	0.7018	203.56	0.8882	284.22	0.892	99.0	0.874	0.768
3782	SAKURA 2A	0.9210	1.1920	0.0000	36000	3.57	295.0	0.7727	297.58	0.9684	297.47	0.884	0.877	0.000	0.914
4050	9 5300	0.7320	0.000	0.5650	36000	3.35	295.0	0.9116	325.99	1.1200	324.79	0.515	0.511	1.063	0.757
4134	PALAPA B1	1.5150	2.6400	0.9800	36000		295.0	0.5739	258.14	0.7307	258.59	1.134	1.125	1.000	0.670
4150	GALAXY 1	1.6130	2.3850	1.0350	36000		295.0	0.6763	278.49	0.8570	279.10	0.836	0.829	0.933	0.670

The three INTELSAT 4A satellites with nearly equal flux densities, absorptivities, and temperatures were selected as a baseline for estimating the projected area and solar power from the 12- μ flux density. The mean value for $J_{12\mu}=1.777$ establishes $A_p=6.74/1.777$ m²/ $J_{12\mu}$. Using projected solar cell area, $A_p=6.74$ m², the mean ϵ is computed to be 0.928, and the mean α is 0.937. Thus, the α/ϵ is very close to unity, and the observed temperature, 295.9 K, is very close to that of the free-space cylinder model, which is 295 K. The INTELSAT 4A series provides a better baseline than the newer HS-376 because the analysis is simplified: the INTELSAT series did not use the new K7 high-efficiency solar cells. Table 14 gives the COMSAT model temperature for the INTELSAT 4 solar panels.

TABLE 14 INTELSAT 4A Model Temperature

		Summer Solstice	Winter Solstice	Equinox	Eclipse
Solar Power	FWD	287 K	290 K	295 K	220 K
	AFT	283 K	290 K	293 K	194 K
Sun Shield	DISC	285 K	255 K	269 K	233 K
	CONE	264 K	244 K	254 K	222 K
TWT Power		309 K	312 K	308 K	283 K
Supply		310 K	314 K	309 K	276 K

Figure 14 plots the measured (uncolor corrected) $12-\mu$ flux vs. A_p for the cylinders observed (from the data in Table 13). Also shown are parameter lines for $\epsilon = 1.0$ and 0.5, which are valid for temperatures near 295 K. Note that most of the satellites fall between $\epsilon = 1.0$ and 0.75, although several satellites, smaller than 3 m², give flux densities above the $\epsilon = 1$ parameter line. Since ϵ cannot exceed unity, the implication is that additional satellite surface area is contributing observable flux. This could be the antenna or a top-of-the-cylinder optical solar radiator. Equally likely is that the sum of the small signal and the space background yields excessive flux observations. The fact that many more objects are above the unity parameter line than below suggests that the SNR alone is not the cause. The detection threshold level, 0.15 Jy, is also shown on Figure 14. One of the smallest satellites, Ayame 2, about 1.2 m², has a

12- μ flux slightly greater than the threshold. Most of the satellites smaller than a few square meters yielded only one of two detections compared to more than a dozen for the largest. Some large cylinders also have few or a single detection such as COMSTAR 2, $A_p = 6.9 \text{ m}^2$, which appears to yield inaccurate results, e.g., T = 8000 K!

Figure 14. Flux density vs. projected area.

As might be expected, the temperature measurement suffers greatly with small flux densities and small samples. Recall the formal flux density uncertainty in the $12-\mu$ HS-376 flux data is 0.6 Jy. Figure 15 plots calculated temperature vs. the projected solar cell area for the cylinders observed. Almost all of the largest satellites are at or below 300 K. For smaller cylinders, the temperature deviation from 300 K increases. Arrows are shown for 10%, 20%, 30%, and 50% change in the J12/J25 flux ratio. Above several square meters, most satellites are close to or somewhat below 295 K.

The projected area of a geostationary spin-stabilized satellite, as well as the solar power, can be estimated directly from the flux density. The $12-\mu$ flux (uncolor corrected) is multiplied by a constant for area and a constant for power. The values of the constants for satellites of the INTELSAT 4, 4A epoch and earlier are given in Table 15. Values for power estimation are shown for beginning of life (BOL) as well as end of life (EOL). The solar power is based on 520 W available at EOL, which is seven years. Values are also given for the HS-376 class and for the somewhat different Hughes Galaxy 1.

Figure 15. Temperature vs. projected area.

TABLE 15
Estimators for Geosynchronous Area and Power

	Older Cells	HS-376	Galaxy 1
*	INTELSAT 4,4A	K7 Cells	K4¾ & K7 Cells
Area/J _q ^{12µ}	3.79 m²/Jy	4.65 m ² /Jy	5.48 m²/Jy
BOL Power/J _q ^{12µ}	365 W/Jy	512 W/Jy	614 W/Jy
EOL Power/J _q ^{12µ}	292 W/Jy	410 W/Jy	491 W/Jy

Table 16 applies the simple flux density relationship to a number of satellites including Lincoln LES-6 (3431), launched in 1968. The area and power estimates for the GOES satellites 1, 2, 3, and 4 are also given together with the Japanese Himawari 1 and 2. (All are components of the global Earthwatch weather system that forecasters display on television.) GOES 1 and synchronous meteorological satellite (SMS-3) are the series built by Philco Ford for NASA before Hughes began the GOES series. The area

calculated for Table 16 agrees with the drawings: the power estimate has not been verified. Both COMSAT and MARISAT appear to yield good power and area agreement. COMSTAR may have some new solar cells that yield additional power.

Most of the smaller cylinders are older than the INTELSAT 4 series and should be near the 300-K temperature. If there is no automatic shutdown, power on the order calculated may still be available since the degradation rate is slowed after ten years (5% in the first year, 18% after ten years).

TABLE 16
Geosynchronous Area and Power Estimation

		Projected	Area (m²)	Pow	er (W)
Satellite	J _y ¹² μ	IRAS	Drawing	IRAS	Referenced
LES-6 3431	0.375	1.43	1.72	110	220 BOL
					190 1 Yr
GOES 1 8366	0.756	2.87	2.56	221	•
GOES 2 10061	0.742	2.82	2.54	216	•
GOES 4 11964	0.714	2.71	3.35	209	•
GOES 6 14050	0.732	2.78	3.35	214	*
Himawri1 10143	0.738	2.80	3.35	214	225
Himawri2 12677	0.616	2.34	2.35	180	225
COMSTAR 4 12309	1.97	7.47	6.9	575	760 BOL
					608 7Yr
Marisat 3 8882	0.882	3.35	3.45	258	220 BOL
					264 EOL
Marisat 2 9478	0.827	3.14	3.45	242	220 BOL
					264 EOL
* Not found					

Two important thresholds exist for space surveillance. The first, and lower, is the minimum signal required for detection for a metric position measurement. The second, requiring greater signal strength, is the threshold for useful, repeatable space object information such as emissivity area product and temperature. The data in Table 13 shows that cylinders smaller than about 3 m² usually exhibit flux densities below 0.6 Jy, the formal uncertainty determined in the HS-376 analysis. Low flux densities correspond to low SNRs, hence derived temperatures far from 300 K and emissivities near 0 or greater than 1, and unlikely values for α .

The demonstrated IRAS geosynchronous satellite threshold is slightly below 1 m². The threshold for repeatable space object information appears to be slightly above the 3-m² cylinder projected area corresponding to about 0.5 Jy. However, the information threshold is strongly dependent on the number of observations.

10. ROCKET BODIES

There are 668 IRAS detections of rocket bodies. The common denominator among rocket bodies is their white paint (TiO₂) covering, which helps to maintain a low temperature while on the launch pad. As discussed in Section 3, the low temperature results from the small value of $\alpha / \epsilon = 0.22$ for TiO₂. The IRAS data on rocket bodies is represented in Figure 16, which displays the $f_{12\mu}/f_{25\mu}$ temperature plotted against the $f_{25\mu}/f_{60\mu}$ temperature for all individual hits. Figure 17 displays the 107 detections on satellites for which there were more than two detections (n > 2). There are three notable features. First is the large scatter in both temperatures. The scatter of these data is significantly greater than, say, the spin-stabilized cylinders. A contributing factor could be the slow passage across the focal plane (≈ 10 sec) of a tumbling target. The change in projected area with time can introduce error in the deduced flux ratio. The extreme values are as low as 50 K and as high as 800 K. Second is the value of the median temperature (from the n > 2 data) $T(f_{12\mu}/f_{25\mu}) = 182$ K. One would expect $(\alpha/\epsilon)^{1/4} \times 295$ K = 202 K for a tumbling cylinder covered with TiO2. This is consistent with the white paint covering. Third is the difference between $T(f_{12\mu}/f_{25\mu}) = 182$ K and $T(f_{25\mu}/f_{60\mu}) = 235$ K. The median temperatures for all the detections are 283 and 249 K, respectively. This suggests that the emissivity of white paint has some wavelength dependence. This is similar to the general result (Section 7), specifically with the results from spin-stabilized cylinders (Section 8), and the discussion in Section 4—but in the opposite sense. Finally, Figure 18 gives the temperature as a function of SSC number, and Figure 19 gives the same plot for satellites with more than two detections. This is the order of launch: smaller SSC numbers are associated with earlier launches. A change in the temperature is not apparent. Dow's suggested increase in α with time would result in higher temperatures for earlier launches. This is not observed in the IRAS data.

Figure 16. Rocket body temperatures.

Figure 17. Rocket body temperatures, n > 2.

Figure 18. Rocket body temperature vs. SSC number.

Figure 19. Rocket body temperature vs. SSC number, n > 2.

11. THREE-AXIS STABILIZED SATELLITES

11.1 GPS

The Global Positioning System (GPS) provides a means of determining position. These three-axis stabilized satellites are in 12-h circular orbits. The Block I series, Figure 20 [28], have solar panels furnishing 400 W of power and are in orbits with an inclination of 63.5°. The Block II series, Figure 21, have solar panels furnishing 700 W of power and are in orbits with an inclination of 56°.

The Block I solar panels are in the shape of a cylindrical section, whereas the Block II solar panels are flat. The satellite attitude is continuously adjusted so the antenna-populated side of the satellite is facing the earth, and the solar panel arrays are normal to the sun direction. For the Block I satellites, the earth-facing side has an area of $A_{\text{flat}} = 1.35 \text{ m}^2$, and the solar panels have a projected area of $A_{\text{solar}} = 5.28 \text{ m}^2$. To complete the model, assume the main body of a GPS satellite is cylindrical in shape. Therefore, the side silhouette is a rectangle of area $A_{\text{side}} = 1.6 \text{ m}^2$. Further, assume that this cylinder and flat solar panel model is a simple model that has no shadowing.

The IRAS satellite made 22 detections of five Block I satellites: SSC numbers 10684, 11054, 11141, 11690, and 11783. These measurements were made with sun-GPS-IRAS phase angles ranging from 78° to 120°. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 22 as a function of time. There are some significant outliers. The median temperature is 297 K and is preferred to the average to avoid a bias from the extreme values. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 23 as a function of phase angle. Except for three outliers, the temperature seems to be independent of phase angle. This suggests that the solar panels have the same temperature as the body. The reported 12- μ flux as a function of phase angle is plotted in Figure 24. A dependence of flux on phase angle is shown. Averaging groups of observations, one observes a minimum of 1.07 Jy at $\theta = 90.6^{\circ}$, 1.57 Jy at $\theta = 101.8^{\circ}$, raising to 2.71 Jy at $\theta = 120.8^{\circ}$ and 1.72 Jy at $\theta = 81.3^{\circ}$.

249378-20

Figure 20. GPS Block I satellite.

Figure 21. GPS Block II satellite.

Figure 22. GPS temperature vs. date.

Figure 23. GPS temperature vs. phase angle.

Figure 24. GPS 12-µ flux vs. phase angle.

As an illustration, the emissivity is calculated assuming the $\theta = 90^{\circ}$ data all from the earth-facing, 1.35 m² side of the GPS satellite is the only source of radiant energy. So the radiant flux density at 300 K is

$$\mathcal{F}_{12\mu}$$
(298) = 27.39 W/ μ /(effective eA) .

The IRAS color correction adjusts the 90° value to

$$J_{obs}^{12\mu} = J_{g}^{12\mu}/K_{12\mu} = 1.07/0.92 = 1.163 Jy$$
,

which is equal to $F_{\text{obs}}^{12\mu} = 2.421 \times 10^{-14} \text{ W/(m}^2 \mu)$. Now at a typical range of 19,000 km, the observed spectral radiation intensity is $\pi r^2 F_{\text{obs}}^{12\mu} = \pi (19.0 \times 10^6)^2 (2.421 \times 10^{-14}) = 27.46 \text{ W/}\mu$. Therefore, the effective area ϵA is

$$eA = \frac{\pi r^2 F_{obs}^{12\mu}}{\mathscr{F}_{12\mu}(298)} = 1.0025 \quad (m^2)$$

Since the projected area is $A = 1.35 \text{ m}^2$, the emissivity of the flat, antenna-populated side is $\epsilon = 0.74$.

A more detailed model can be defined as follows. At phase angles $\theta \neq 90^{\circ}$ and aspect angles $\phi \neq 0$, the solar panel and the satellite body, assumed cylindrical, will contribute to the observed flux. Now the cylinder and plate model will have the projection of the solar panel on the IRAS line of sight as $A_{\text{solar}}|\cos(\theta)|$. So if the cylinder flat end area is $A_{\text{flat}} = 1.35 \text{ m}^2$, the cylinder side projected area is $A_{\text{side}} = 1.6 \text{ m}^2$, and the solar panel area is $A_{\text{solar}} = 5.28 \text{ m}^2$, then the flux received would be

$$F_{obs}^{\lambda_o} = \frac{1}{\pi R^2} \left[\epsilon_{body} (A_{flat} \cos{(\phi)} + A_{side} | \sin{(\phi)} |) \mathcal{F}_{\lambda_o} (T_{body}) \epsilon_{solar}^{\pm} A_{solar} | \cos{(\theta)} | \mathcal{F}_{\lambda_o} (T_{solar}) \right],$$

where ϕ is the IRAS-GPS aspect angle. The back of the solar panel is observed at $\theta > 90^{\circ}$ and the emissivity is ϵ^{-} ; the front of the solar panel is observed at $\theta < 90^{\circ}$ and the emissivity is ϵ^{+} . The illustrative calculation can be generalized to obtain the emissivity of the solar panels accounting for the phase angle, the aspect angle, and the range. The linear regression results are summarized in Table 17.

TABLE 17
Emissivity for GPS Satellites

θ	Element	A (m²)	Э
=90	Body Flat	1.35	0.622±0.04
<90	Solar Cell Front	5.28	0.933±0.10
>90	Solar Cell Back	5.28	0.619±0.08

The emissivity for the solar panel front side, $\epsilon = 0.93 \pm 0.1$, is larger than expected. It depends directly on the adopted area. Based on laboratory measurements one expects emissivity values about 0.80. The spin-stabilized cylinders give values of solar cell emissivity between 0.6 and 0.7. The solar panel back and the main body have the same emissivity, $\epsilon = 0.62$. The two values are equal within the statistical uncertainty.

11.2 GORIZONT

The Gorizont satellites, for telephone and international television, were launched by the Soviet Union. Gorizont I (SSN 11158) has a 24-h period and was launched in 1978 into an orbit with 11.3°

inclination. By 1993 the inclination increased to more than 21°. The other Gorizont satellites are geosynchronous satellites in low inclination orbits.

The Gorizont is a three-axis stabilized satellite (see Figure 25) [28]. The main body is about 5 m long and 2 m in diameter. There are a number of appendages that will increase the effective area. Two panels of solar cells of unknown size provide power.

Figure 25. Gorizont satellite. (Used with permission. Donald H. Martin, Communication Satellites 1958–1992, ©1991, The Aerospace Corporation.)

The IRAS satellite made 26 detections of four Gorizont satellites: SSC numbers 11158, 11440, 13092, and 13624. These measurements were made with sun-Gorizont-IRAS phase angles ranging from 60° to 117°. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 26 as a function of time. The median temperature is 280 K and is preferred to the average to avoid a bias from the extreme values. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 27 as a function of phase angle. The trend is temperature independent of phase angle. This suggests that the solar panels have the same temperature as the body. The reported 12- μ flux as a function of phase angle is plotted in Figure 28. Here, a minimum of 1.3 Jy is observed at $\theta = 90^{\circ}$, raising to 2.2 Jy at $\theta = 80^{\circ}$, and 2.8 Jy at $\theta = 115^{\circ}$. Note also that none of the data for Gorizont I follow this trend. Therefore, it is not included in the following calculation.

Figure 26. Gorizont temperature vs. date.

Figure 27. Gorizont temperature vs. phase angle.

Figure 28. Gorizont 12-µ flux vs. phase angle.

Now the radiant flux density at 280 K is

$$\mathcal{F}_{12\mu}$$
(280) = 21.06 W/ μ /(effective ϵA).

The IRAS color correction adjusts the 90° value to

$$J_{obs}^{12\mu} = J_q^{12\mu}/K_{12\mu} = 1.3/0.90 = 1.44 \ Jy \ ,$$

which is equal to $F_{\rm obs}^{-12\mu} = 3.007 \times 10^{-14} \ {\rm W/(m^2\mu)}$. Now at a range of 36,000 km, the observed spectral radiation intensity is $\pi r^2 F_{\rm obs}^{-12\mu} = \pi (36.0 \times 10^6)^2 (3.007 \times 10^{-14}) = 122.4 \ {\rm W/\mu}$. Now the effective area ϵA is

$$eA = \frac{\pi r^2 F_{obs}^{12\mu}}{\mathscr{F}_{12\mu}(280)} = 5.81 \quad (m^2)$$

In this case we chose to adopt a value of the emissivity, $\epsilon = 0.70$, and calculate the earth-facing area, which is $A = 8.3 \text{ m}^2$. This is equivalent to a 3.2-m-diameter main body, which is 60% larger than the nominal main body dimension. We can estimate the size of the solar panels. Following the same

reasoning used for GPS (see Section 11.1), the projection of the solar panel on the IRAS line of sight is $A_{\text{solar}}|\cos(\theta)|$. So if the cylinder flat end area is A_{flat} , the cylinder side project area is A_{side} , and the solar panel area is A_{solar} , then the flux received would be

$$F_{obs}^{\lambda_o} = \frac{1}{\pi R^2} \left[e_{body} (A_{flat} \cos(\varphi) + A_{side} | \sin(\varphi) |) \mathcal{F}_{\lambda_o} (T_{body}) e_{solar} A_{solar} | \cos(\theta) | \mathcal{F}_{\lambda_o} (T_{solar}) \right],$$

where ϕ is the IRAS-Gorizont aspect angle. The back of the solar panel is observed at $\theta = 115^{\circ}$, and the front is observed at $\theta = 80^{\circ}$. The same regression calculation can be done. Since we have no prior knowledge of the solar plane area, we chose to determine the emissivity area product ϵA . The results are summarized in Table 18.

TABLE 18
Emissivity Area for Gorizont Satellites

θ	Element	€A (m²)	A (m²)
=90	Body Flat	4.38±0.6	6.25
<90	Solar Cell Front	30.75±6.8	33
>90	Solar Cell Back	15.50±2.2	25

This estimate of the earth-facing area, $\epsilon A = 4.38$, leads to an area A = 6.25 m², equivalent to a main body diameter of 2.8 m, which is about 40% larger than the nominal. The estimates of the panel size from the front and back emissions differ due to measurement error, model error, and above all, error in the adopted emissivity. Based on the GPS results one might expect the back panel emissivity to be lower by 30% to 50%. If we adopt the GPS values of emissivity from the body and solar cells, then we get values given in Table 18. The solar panel area is of the order of 25 to 35 m². This is consistent with two solar panels, each providing 1 to 2 kW of power.

11.3 RADUGA

The Raduga satellites were the first Soviet satellites in geosynchronous orbit. They were three-axis stabilized and were used for telephone, telegraph, and television transmission. The characteristics are

similar to the Gorizont satellites (Section 11.2). The IRAS satellite made 27 detections of six Raduga satellites: SSC numbers 10159, 10987, 11708, 12897, 13669, and 13974. These measurements were made with the sun-Raduga-IRAS phase angle ranging from 84° to 103°. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 29 as a function of time. These measurements were made with sun-Raduga-IRAS phase angles ranging from 76° to 103°. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 30 as a function of phase angle. The median temperature is 288 K and is preferred to the average to avoid a bias from the extreme values. The trend is temperature independent of phase angle. This suggests that the solar panels have the same temperature as the body. The reported 12- μ flux as a function of phase angle is plotted in Figure 31. The same regression calculation that was done for GPS and Gorizont satellite data can be done. Since there is no prior knowledge of the solar plane area, we determined the emissivity area product ϵA . The results are summarized in Table 19.

Figure 29. Raduga temperature vs. date.

Figure 30. Raduga temperature vs. phase angle.

Figure 31. Raduga 12-µ flux vs. phase angle.

TABLE 19
Emissivity Area for Raduga Satellites

θ	Element	€A (m²)	A (m ²)
=90	Body Flat	2.80±1.4	4.00
<90	Solar Cell Front	37.13±14.4	40
>90	Solar Cell Back	36.44±16.4	58

This estimate of the earth-facing area, $\epsilon A = 2.8 \text{ m}^2$, leads to an area $A = 4 \text{ m}^2$, which is equivalent to a main body diameter of 2.25 m. There is no prior knowledge of the body size. The estimates of the panel size from the front and back emissions differ due to measurement error, model error, and above all, error in the adopted emissivity. Based on the GPS results one might expect the back panel emissivity to be lower by 30% to 50%. However, the ϵA product for the front and back are nearly equal. Nevertheless, uncertainty is quite large. If the GPS values of emissivity from the body and solar cells are adopted, then values for A are as given in Table 18. The solar panel area is larger than 35 m². This is consistent with two solar panels, each providing 1 to 2 kW of power.

11.4 EKRAN

The Ekran satellites were three-axis stabilized and were used for telephone, telegraph, and television transmission within the USSR and bordering countries. The characteristics are similar to the Gorizont satellites (Section 11.2), Figure 32 [28], with the addition of a complex antenna array on the earth-facing side of the satellite. The IRAS satellite made 27 detections of five Ekran satellites: SSC numbers 11273, 12120, 12564, 13554, and 13878. These measurements were made with the sun-Ekran-IRAS phase angle ranging from 70° to 97°. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 33 as a function of time. Temperatures determined with the $f_{12\mu}/f_{25\mu}$ flux ratio are plotted in Figure 34 as a function of phase angle. The median temperature is 284 K and is preferred to the average to avoid a bias from the extreme values. There is a suggestion of an increase in temperature for phase angles greater than 90°. The reported 12- μ flux as a function of phase angle is plotted in Figure 35. The temperature measurements are consistent with those of other satellites. However, there seems to be no simple relation between phase angle and flux. A more complex radiation model is necessary to explain these data, which are probably due to the large antenna array.

Figure 32. Ekran satellite. (Used with permission. Donald H. Martin, Communication Satellites 1958–1992, ©1991, The Aerospace Corporation.)

11.5 ATS-6

The Application Technology Satellite (ATS)-6, SSC number 7318, was active for more than five years. It was used for a number of experiments in satellite communications technology. It was a three-axis stabilized satellite with an enormous parabolic antenna, a split cylindrical solar cell panel, and a rectangular payload; see Figure 36 [28].

The IRAS satellite made three detections of the ATS-6, which are given in Table 20. The curiosity is the large flux measured. The antenna material was copper netting on a structure of 48 aluminum ribs, of which there is no specific knowledge of the emissivity or temperature. Still, even with extreme values of the emissivity, it is difficult to calculate such a large flux.

Figure 33. Ekran temperature vs. date.

Figure 34. Ekran temperature vs. phase angle.

Figure 35. Ekran 12- μ flux vs. phase angle.

Figure 36. ATS-6 satellite. (Used with permission. Donald H. Martin, Communication Satellites 1958–1992, ©1991, The Aerospace Corporation.)

TABLE 20
ATS-6 Observed Flux

MJD	J _a ^{12µ}	J _a ^{25µ}	J ₂ 60µ	Т _{12ш/25µ}	T _{251/60µ}	θ	ф
45521.605	4.88	6.98	2.24	284	349	92	0.3
45551.092	5.48	7.45	2.24	291	379	96	1.8
45641.552	5.51	9.00	3.42	267	287	89	0.8

12. DISCUSSION

The IRAS satellite made both position and radiometry observations of RSOs. The accuracy of the position measurement was limited by the detector size of 4.5 arcmin. This was adequate for correlation with a satellite catalogue to associate observations with specific satellites. Use of these position observations for determination of ephemerides is not addressed here. Concerning the radiometry measurements, the accuracy of a single observation is experimentally determined to be ± 0.6 Jy. Of the 190,000 detections, 2047 were correlated with the known satellite catalogue. The correlation used both the position and velocity measurement. The observations were correlated with 452 satellites. Due to the zenith pointing of IRAS, most of the observations are on deep space satellites, many of which are geosynchronous.

The radiometer flux data required some screening. The principal issue concerned partial detections where the image crossed the detector edge. Lacking detailed knowledge of the image path across the detector, this could only be done statistically. Therefore, even the screened data will have some partial detections. Nevertheless, screening individual detections significantly improved the data consistency.

Calibration of the IRAS data remains a nagging question. There have been suggestions about revision of the IRAS calibration, as reviewed in Section 5. There are significant questions of interpretation that would be affected by a change in calibration. For example, for all the IRAS data there is the uniformly lower temperature observed with the 25- to $60-\mu$ band flux ratio than observed with the 12- to $25-\mu$ band flux ratio. This is true for the majority of the observations and is particularly striking in the Hughes HS-376 cylinders. As Table 3 shows, most critiques suggest that the $25-\mu$ fluxes are high by 4% to 10%. For our analysis of the HS-376 cylinders, changing the calibration in this way would result in worse agreement between the IRAS observations and the models. Also, any decrease in the $25-\mu$ flux would increase the disagreement between the $12-\mu/25-\mu$ and the $25-\mu/60-\mu$ temperatures and would increase the derived emissivities. On the other hand, for both classes, the HS-376 and the INTELSAT 4 and 4A satellites, the average value measured for emissivity is just below unity. This is 5% to 15% above the laboratory measurements for solar cells. Perhaps this is due in part to the simple model ignoring the antenna heat. Perhaps some of the excess flux density should be attributed to calibration error on the order of 5% too high in both the 12- and 25-\mu bands. How to apportion these disagreements between dependence of solar cell emissivity on wavelength and calibration remains undecided. Therefore, no definite conclusion about IRAS calibration can be reached from this analysis.

IRAS observations were serendipitous. Therefore, there is no systematic set of observations for analysis. On average there were six observations for each satellite, but many satellites were observed only once. This was ameliorated by using classes of satellites that can be assumed to be virtually identical, for example, the Hughes HS-376 spin-stabilized cylinders, the GPS satellites, and a number of Soviet communication satellites. In this case a data set exceeding 20 detections could be formed.

The discussion of IR satellite radiometry inevitably turns on the properties of spacecraft materials. These include paints, solar cells, antennas, and radiators. Existing laboratory data is suggestive but not conclusive. Also, data on the effects of the space radiation environment on spacecraft materials from the LDEF are helpful. Nevertheless, the IRAS data must stand on its own. For example, the effects of TiO₂ on

rocket body temperature is consistent with expectations. However, expectations that ${\rm TiO}_2$ will change absorptivity after exposure to the space environment are not supported by the IRAS data.

With these caveats, one can see a lot of information in the IRAS radiometry. Even with very simple models one can learn about the absorptivity and emissivity of spacecraft materials. Alternatively, by using the geometrical variation of phase angle and aspect angle, one can estimate the physical size of certain spacecraft components. Further progress will entail considerably more complex models and detailed knowledge of the spacecraft.

The fact that the IRAS was a space-based platform was extremely valuable. The whole question of atmospheric absorption is avoided, and the data have remarkable consistency. In addition, the multispectral data immediately provides information on the object temperature and leads directly to physical analysis. Much analysis of the ground-based data has suffered from both these limitations.

In 1992 no data on geosynchronous objects were published from either ground- or space-based LWIR sensors. In the winter of 1992–1993, Seniw and Rieke collected LWIR data. This included 60 tracks on 20 geosynchronous satellites in the N- and Q-bands, which allowed temperature measurements on two objects [3]. The data were obtained over a wide range of sun-sensor-satellite phase angles and included observations of temperature in and out of the earth shadow. Six geosynchronous objects observed by Seniw and Rieke were observed by IRAS a decade earlier. Two cylinders, GOES 6 and the Hughes Galaxy 1, had illumination phase angles of 52° and 64°, respectively. This is close enough to the IRAS near 90° phase angle to warrant comparison. Only astronomical N-band data were obtained from the ground so that temperature could not be determined. The radiant intensity, watts/steradian, was computed from the IRAS temperature and satellite ϵA_p and multiplied by the fraction of the total in N-band. Table 21 compares the University of Arizona and the IRAS measurements. In this calculation, following the logic in Section 9, the EOL temperature estimate for Galaxy 1 of 295 K is used instead of the observed value of 278 K.

Recall that the IRAS pointing logic generally viewed sun-tracking solar panels nearly edge-on. Therefore, for those satellites, the radiant intensity was probably from the equipment body and antennas, which is a small fraction of the RSO's radiant intensity at maximum phase. Slight changes in aspect angle would yield moderate changes in observed intensity, which we have exploited. On the other hand, spin-stabilized cylindrical solar panels present a near-constant geometry. The despun antennas are pointing at the earth but are edge-on to the sun.

TABLE 21
Ground-Based and IRAS Observations

	Category	Univ Arizona	IRAS
GOES-6	Phase Angle	52°	90∘
Weather Sat 14050	Reported Flux	0.74 Jy @ 10.6 μ	0.732 Jy @ 12 μ
	Temperature	-	325 K
	Radiant Inten.	- 169 W/sr	132 W/sr
Galaxy 1	Phase Angle	64∘	90∘
HS-376 14158	Reported Flux	1.58 Jy @ 10.6 µ	1.61 Jy @ 12 µ
	Temperature		295 K
4	Radiant Inten.	372	382

13. CONUNDRUMS

The IRAS debris data base presents a number of unanswered questions—some going to the heart of this analysis. In Section 9, analysis of Hughes HS-376 spin-stabilized cylinders (the simplest, homogeneous, and unambiguous data set available) is presented. The radiometric model is quite simple and reasonably good. The data set, after screening, seems consistent, and the derived results are quite reasonable. From the analysis of variance, we derived the formal uncertainty of a single observation as ± 0.6 Jy in the 12- μ band. However, to reach this state, some data had to be edited. There were far more screened detections, with errors exceeding 1.2 Jy, than expected on the basis of Gaussian statistics. One could postulate that another satellite was observed at that time and direction. If true, then where is the measurement of the correlated satellite that we know was there at that time? One must assume that the detection was indeed of the correlated satellite, with quite a large flux error. Consequently, we have considerable concern about the error statistics of the IRAS debris data base. Unfortunately, there is insufficient data to actually discuss the error distribution function.

A data set with a related problem is derived as follows. Select all the detections that were obtained with small velocity (< 6 arcmin/sec) across the focal plane. There are 22,000 such detections. Of these, 2047 were correlated with the catalogue. Excluding the pathological case of a co-orbiting satellite, these would be observations of satellites at extreme range: geosynchronous satellites or high eccentricity satellites observed at apogee. In both cases the observed range would be 36,000 km or greater. Among these data, there are 54 detections with a $12-\mu$ flux > 100 Jy and 10 exceeding 900 Jy. Note that a flux greater than 999.99 Jy is listed as 999.99. Of these, only nine had a 12- to $25-\mu$ flux ratio that implied a plausible temperature, e.g., between 250 K and 400 K. Most of the large fluxes occur in only one band. There are cases where both detectors for a band registered these high values. Only three were observed at small declination, i.e., in the geosynchronous belt, with most having very high declination. These very large flux detections seem to have no consistent orbits. One must conclude that these are all bogus observations.

The reliability of a single detection, even with multiple hits, is seriously in question. With the spin-stabilized cylinders, there were hits with twice the "correct" flux value. These can be deduced because in this case there are multiple detections of a well-understood target. Detections at a geosynchronous range of 100 Jy or more seem implausible. It is difficult to assess the observed flux without multiple detections. Therefore, we believe that any conclusions based on a single detection must be made very cautiously.

APPENDIX A IRAS DETECTIONS CORRELATED WITH THE KNOWN SATELLITE CATALOGUE

This appendix is a list of the 2047 IRAS detections correlated with the known satellite catalogue. This selection includes the detections in agreement within 0.6°. In some cases detections were not used in further analysis. The reasons include angular velocity error exceeding some value, the radiometric data being noisy, or exceeding a statistical test, as discussed in the text.

The list contains 12 items for each detection. First is the satellite identification number. We have chosen the identification given by the US Air Force Space Surveillance Center (SSC). In Appendix B we provide other information such as the international designator and orbital characteristics. All 12 items, in the following order, are given below.

- 1. Satellite identification number.
- 2. Modified Julian date of the detection.
- 3. Temperature, Kelvin, derived from the $f_{12} / f_{25} \mu$ flux ratio.
- 4. Temperature, Kelvin, derived from the $f_{25} / f_{60\mu}$ flux ratio. If the flux ratio is not available, then the temperature is reported as -1.
- 5. Quoted $12-\mu$ flux, Janskys. Data screening is applied as described, eliminating partial detections, and the selected detections are averaged to obtain the value given here.
- 6. Quoted 25- μ flux, Janskys, screened in the same way as the 12- μ data.
- 7. Quoted 60- μ flux, Janskys, screened in the same way as the 12- μ data.
- 8. IRAS-satellite-sun phase angle, degrees.
- 9. IRAS satellite aspect angle, degrees.
- 10. Satellite declination of the detection.
- 11. IRAS-to-satellite range derived from the ephemeris, km.
- 12. Observed angular rate of the detection, arcmin/sec.

תינייית	של עי ה תי בי -	177.00001	,,o,,,,	. സ യ യ ധ 4 4 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2756. 5662. 5306. 9699.	8544. 11116. 8517.	259. 244. 711. 604.	3781. 7270. 6915. 2001. 3779. 4124.	22865. 5037. 9438. 0994. 7890. 2206.	32759.0 32517.0 32537.0 32546.0 33003.0 32994.0 32858.0 32764.0 35116.0
13.		2 1 2 2 2 4 4 1 2 2		4 n o w o u	11.2 -0.8 -22.8 33.7 -0.3 -0.3 -6.2
97.	1000001		909000	10000H00h	1000.5 88 99.1 100.5 88 44.1 88 86.0 99.3 7.7 4.0 99.3 7.7
.350	24 000 000	.750 .665 .915 .870 .865	. 110 . 240 . 735 . 280 . 000 . 820		1.1250 1.1450 4.5500 7.1600 1.1450 0.1900 0.7450 1.4850 0.2900
935	0.000 0.000 0.000 0.000 0.000	2000 2000 2000 2000 2000 2000 2000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.8500 0.5050 1.0000 0.4200 0.4200 0.6500
. 955 . 955	2.00.4. 0.00.4. 0.00.4. 0.00.4.	.805 .805 .305 .855 .315	. 100 . 985 . 985 . 360 . 360	0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.2400 0.8100 3.8700 0.5250 0.5250 1.5750 1.5750 0.5050
	000 1 4 W 1		on a m I inc	M 44 I 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	250 266 266 107 1241 245 249 249
00000	7200mm	4777007	97 98 8 50 0	1000000000	26 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 45434.062027 2 45483.094238 3 45498.806854 5 45628.519348	8 45382.894252 8 45476.588882 8 45423.560806 8 45434.950943 8 45649.951477 1 45409.812515	0 45528.289184 9 45538.817825 9 45538.886932 9 45530.742904 9 45532.080688 9 45532.581466	8 45592.055847 0 45413.299003 1 45406.497695 2 45568.526428	2 45393.032638 2 45624.522647 8 45425.787468 3 45393.784095 3 45574.425811 3 45644.779594 3 45617.079986	88 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			8 8 M W W W W	000000000	00000000000000000000000000000000000000

4.52	9.	0.5	9.	4.9	S.	1.1	1.7	2	1	7		4		-	9	80	σ.		S	.7	۲.	S	S		9.	9.	ω.	'n	9	00	0	9	9	. 2	9	9.	6.	6.	9.	S	9.	<u>.</u>	9.
33102.0	3473.	5127.	4974.	538.	4735.	205.	5220.	32485.	6855.	26856.	43117.	4965.	465.	13405.	4793.	16303.	16299.	03751.	12702.	02265.	17881.	5749.	4993.	0027.	5516.	5504.	3878.	5885.	5145.	1941.	1131.	2750.	5511.	5834.	5634.	5804.	5582.	5583.	4800.	5053.	4449.	4941.	5553.
6 4 2 .		Θ.	0	0	7	8	4	57.	6	49.	59.	;		. 9	34.	7	37.	7	Э.	8	S.	1	7	4	Э.	Э.	6	2	0		0	ω.	5	0		7	9	9		1	6		
4.00			ص		;		2					•																															
80.2			1.	ω.	00	8	7	5	6	6	6	0	7.	9	9	3	3	S	0	2	9	83.	6	6	5	3	4	4	0	9	9	8	85.	2	91.	3	-	01.	86.	2	87.	6	7
1.2100	960	.040	.120	.000	.000	.900	.735	.000	.000	.000	.000	.000	.180	.805	000.	000.	.000	.310	.000	.000	.000	.895	.215	.975	.240	.155	.915	.115	.340	.510	.435	.255	.345	.960	.200	.160	.000	000	.550	900	.370	.000	.560
3.6950	7.50	6.515	.910	0.280	.780	.285	.470	.610	.650	.500	. 595	.545	.660	.070	.810	.375	.480	.370	.315	100	.880	.180	.920	.610	.580	.965	745	.235	.790	.335	.250	.900	.735	.365	.700	.515	.665	590	.765	675	800	.095	.635
3.2850	765	880	805	0.375	385	.550	.570	.650	.950	.950	.100	090.	.530	.370	.680	.750	.300	395	220	045	885	615	420	.065	035	180	.630	.500	645	.765	.905	.820	.920	.260	.775	810	710	890	.050	800	150	450	.650
339) a	0 0	4	- 1	- 1	7	383	- 1	-	-1	-1	-1	440	-	- 1	-1	-	161	1	-	-	4	9	S	(-	381	-	LO	0	-	H	N	9	4	(4)	1	-	4) -	170	. 1	253
333	0 0	0 0	V	N	4	00	7	5	S	9	S	-	0	-	-	6	4	-	· 00	4	· 14	0	1 00	1	· C	0	1	0	-	S	0	m	8	S	1	α	0	I V	0 0	0	0	10	10
92 45381.15258	92 45509.293869	92 45523.538040	7 45479 294265	31 45577 074630	32 45628.171081	48 45562 151824	48 45578.574111	54 45478 680648	54 45497 583938	54 45497 583938	55 45641.276580	53 45545.545196	54 45516.526107	54 45615,573974	66 45412.003181	56 45423 S62461	66 45423 562461	26 45411 968048	700001 T1007 00	707/31/7/16/2 ACENT 815765	45605 275024 82	220273.2003.800	70 45507 074677	FC1207 45554 0F	21 45455 718467	81 45456 220672	82 45439 067733	R2 45484 600891	02 45381.082092	25 45455.533737	25 45462.337265	25 45602.332733	04 45540.034622	04 45565 047866	04 45531.874038	9080EE 90338 FO	2001CO 5125CF FO	777170 C1364 FO	04 43513.071719 05 45540 965789	CC 4 7 0 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	05 45467 095108	2016 0 1 3 3 4 5 4 6 7 6 7 7 7 0 7 7 7 0 7 7 7 0 7 7 7 9 7 7 7 7	205 45454.6020660

4.63	י נ	- (۵ ا		0	. 7	٠	9	7	9	9	۲,	9	- 1	9	9	9	0	7.	m.	9	8	9	۳.	9.	4		9	9	. c	4.8	7	20	m I		. I		9.	S	9.	9.	0.	S.	8	
35300.0		2440.	2589.	9419.	0847.	7332.	5677.	4948.	9305.	2363.	5125.	5120.	5197.	5135.	4991.	5247.	5124.	4547.	5745.	5616.	9821.	3856.	5436.	5205.	2247.	2421.	1555.	4873.	5067.	5033.	4751.	4837.	5286.	7297.	8979.	8050.	32260.	8499.	4738.	4457.	4676.	0929.	9698	4412.	
4.	-	2	m	m	4	4	8	7	i	4	0		5		7	-	-	5		3	9	7	0	1	3		6	1.	9	1	9	3	m		9	1	4	4	ب	8	-		0	7	
1.8		•				•				•					•		•	•	•		•		•		•			•	•				•	•					•						
16		02.	1	3	6	3	4	8	-	5	6	6	9	9	i	8	S.	ä	6	0	0	ص	ω.	6	-	2	1	6	1	0	5	7	0	7.	9	4	8	2	1	-	91	1	1	7	
0.7850	. 570	. 505	.970	096.	.450	.215	.255	.865	.785	.125	.380	.290	.850	000.	.040	.180	.070	.125	.055	.000	.185	.960	.580	.000	.410	. 245	.785	.510	.200	.920	.070	.290	.675	.385	. 550	.240	160	.000	.270	000	225	.570	.665	.355	
2.1550	. 280	.100	.665	.930	.010	6.780	.680	.130	.100	3.775	.275	.305	.740	.290	. 285	.835	.870	.015	615	795	690	475	850	525	050	490	.065	.310	495	.425	.440	.970	.300	.195	.925	.415	.740	.660	.530	270	725	490	355	.090	
.460	.605	.715	.505	4.785	445	.650	.645	.120	.595	.470	415	.560	.125	.510	.735	.010	155	.855	210	980	845	540	465	580	7.00	160	315	.225	.335	.595	.570	.440	.475	.080	2.630	.020	415	395	775	660	755	585	430	2.3500	
	П	3	N	-	S	4	2	(1)	-	0	6	S	C		4		8	-	5		-		* 4	P 8	C	- 0	1 00		(8	2	0	9	0	7	-	C C) 1		1	4	ra) L	334)
-	8	-	0	S	-	S	8	5	0	4	-	4	-	N	6	00	0	10	1	0	V	U) @	7 0	- 4) (1 0	. [U	7	~	0	2	00	1	. 0	σ	V) L	7 (- 1	- 1	- a	259)
5536.133132	5582.512924	5611.138763	5545 976852	5571.888092	5554 138382	5586.846908	5610.105926	5616 045349	5645 667724	5621 984527	5462 194107	5462 194076	5517 451705	5504.355819	5480 017608	5554 634002	5550 180847	5508 35929R	PEEC 734579	EFEC DORONE	2000 0000	591090 6999	7357.V62163	0407.20.6090	5622.30/000	5499.035060 EERA 631500	5054.63E00	5534 951736	EAAE AADGG	5394.720966	5537 673950	5561 941757	5619 121795	5631 929595	5412 28466R	5424 381828	32010C. 225C	5430.400000	5447 263717	7447.303442	70000.0000	5512.778991	5541./66922	45545.8390503	045451.0900
58	58	9	ן מ	1 6	ם ב	4 6	1 8	ם מ	1 0	ם ב	ם א	ט מ	ט מ	0 0	S C	2 0	0 0	0 0	0 0	ח נ	0 6	7 6	א נ	7 1	70	200	200	2 6	7 0	0 0	100	77	77	17	. 0	0 0	1 0	0 0	0 0	0 6	7 7	91	7 6	6916	7.6

11 24 4 4 0 4 4 4 4 4 0 0 4 4 0 0 0 0 0 0 0	v 4 N 0 N N 4 4 N 0 4 0 L 4 N 0 N 0
5322.0 31363.0 314611.0 346111.0 346111.0 346111.0 346111.0 310000.0 34254.0 34254.0 34254.0 34254.0 34255.0 34255.0 34255.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 333397.0 34256.0 333397.0 34256.0 333397.0 34256.0 34256.0 333397.0 34256.0 333397.0 34256.0 333397.0 34256.0 34256.0 333397.0 34256.0 34256.0 333397.0 34256.0 34256.0 333397.0 34256.0 34256.0 333397.0 34256.0 34256.0 333397.0 34256.0 34256.0 333397.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 34256.0 3426	8396. 55158. 55280. 55280. 6867. 6981. 7216. 7263. 7428.
	WOH4WWOONHNNHUNN
4 EE 4 T EE RUE REEE EE H C 4 4 4 4 4 4 0 4 0 4 1 4 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
88 8 8 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 7 8 8 8 8	000000000000000000000000000000000000000
48.2250 1.2250 0.7000 0.7000 0.7550 0.9150 0.0000 0	22. 22. 22. 24. 20. 20. 20. 20. 20. 20. 20. 20
145. 56.9200 1.0800 1.7000 2.5900 1.7000 1.6250 0.3550	4.0.004.000.004.0000000000000000000000
98.9700 2.4300 1.6350 0.1700 1.1350 2.8250 1.1350 1.1150 1.1150 0.5600 0.5600 0.5600 1.1600 0.7300 0.7300 0.7300 0.7300 0.7300 0.7300 0.7300 0.7300 0.7300 1.1600 1	81000000000000000000000000000000000000
8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	201299621999152
916 45562.8610840 916 45392.3957558 916 45588.1486816 916 45588.1486816 916 455610.0491333 916 45610.0491333 916 45642.4689941 919 45610.0491333 939 45626.2253413 939 45626.2253113 939 45626.2253113 939 45626.2253113 939 45626.2253113 939 45626.2253113 939 45626.2253113 939 45626.2253113 939 45626.2253123 939 45626.2253123 939 45626.2253123 939 45626.2253123 939 45631.6024475 939 45631.6024475 938 45532.6016998 958 45532.6016998 958 45539.1305695 958 45539.1305695	58 45639.666931 74 45378.111698 74 45524.072006 74 45552.056900 74 45552.056900 76 45409.895835 76 45407.819122 76 45407.819122 76 45407.819122 76 45407.819122 76 45407.819122 76 45407.819122 76 45407.819122 76 45407.819122

4.42		4 6	י נ		. i	7.	4	4.	4	9.	.7	ų.	. 7	9.	S.	9.	9	4.5	۳.	Φ.	9.	4.5	9.	9.	'n	Φ.	7	4.	4.5	0	4.	4.5	8	4	4.	S	.7	7.	6.	9.	9.	4.	4.	7.	
37409.0	2000	3607	0000	0000	3898.	4169.	1846.	8758.	6442.	8326.	6191.	9591.	5275.	5064.	5552.	5230.	5479.	9005.	5975.	9664.	4891.	9350.	9345.	9395.	9393.	7338.	2449.	7126.	5978.	7738.	7651.	2232.	2241.	6990.	6829.	0941.	2547.	9888.	4976.	4104.	8050.	8052.	8051.	5721.	
7.4-7				i .	.i	-	ω.	i	3	4	2	6	0	0	0	0		2	5	7	4	ŝ		9	9	3	8	9	7	m	m ·	0	0	m ·	m	8	6	5	9	4	3	m	m		
9.0			•		•																																								
91.2	- 0	;	• t	- 1	7	7	0	8	6	9	7	6	i	S.	7	0	7	3	0	6	0	3	m	m	m.	5	7	9	5	0	0	1	1	0	6	0	S.	9	S	4	0	0	0	0	
0.9700	0/9.	.420	. 000	0//.	.000	.320	.815	.655	.660	.570	445	.595	.475	.000	.250	.000	.310	.715	.000	.280	.880	.995	.000	000.	.750	.360	.815	.585	.390	.000	.720	.520	.000	.670	.410	.250	.630	340	275	190	000	915	915	985	3
2.6550	.380	.350	.300	.250	.700	. 595	.015	.475	.210	.595	.860	.465	.940	.550	.000	.355	.030	.130	305	.010	640	.595	.555	.280	.210	.780	.660	.215	.905	.940	.860	.030	.610	.505	.715	.790	600	1.410	680	1.610	1 435	570	025	275	
2.0650	. 525	. 505	. 590	.485	.680	.450	.730	.020	.740	.405	470	.045	.770	.900	.685	.585	.855	.330	240	.220	795	.795	100	.285	.680	.890	885	.855	.480	.120	.080	.730	.920	.335	.710	990	675	695	390	390	680	505	800	775	
295	-	S	1	327	-1	-	4	4	0	S	-	1 4	221	- 1	515		7	329		S	(281	1	1	C	N	4	229	9	- 1	4	222	- 1	m	-	(m	231	1 (1 0	0	١ ١	0	S	195	7
298	-	g	Ø	7	S	9	8	8	9	8	L.) a	-	9	00	0	-	1	4	. 0	0	00	N	S	0	00	S	00	7	6	S	S	9	7	-	4	4 4	* 4	" V	0	, (ח ע	00		n
976 45638.33197	000 45440.566261	000 45441.067291	000 45536.624465	000 45454.594100	000 45454.594108	000 45455.095138	000 45619.054840	000 45633.656005	000 45641 670745	178 45481 508331	178 45464 543746	178 45442 671691	250 45475 547287	250 45507 682586	750 45519 705673	250 45555 R51028	250 45595 465087	250 455055 ± 555050	25/101:05/55 027	260 45382 507122	200 4000E: 500 500 500 500 500 500 500 500 500 50	260 45500:51711 260 45401 544364	260 45401 544380	260 45401.544500	260 45402 045105	260 4540£:040£00 260 45490 450206	260 45556.455225	264 45594 866577	276 45539 975326	76 45379.565979	276 45380.067852	276 45407 558219	276 45407 558197	276 45382 573185	276 45383 075172	276 45409 063278	2/6 45409:0032/0	016 45424 00050	000000.12#0# 0/2	ACCOON 00404 012	071706.007679 0/7	276 453/6.063190	276 45378.063190	276 453/8.063198	2/6 455//.841354

00040004	4.46 11.61 11.61 4.73 4.73 11.66 13.66	L R W O L H L L 4	00000000046	0400400400
6100. 44500. 44312. 44988. 5145.	31158.0 13296.0 39433.0 24811.0 34066.0 28577.0 10610.0 30929.0 39003.0	90000. 8301. 2529. 4945. 9205. 3857. 1957.	9835. 64731. 7235. 7323. 7323. 7323.	6225. 7448. 33030. 7143. 0820. 1682. 4675. 8344.
7404044	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	800911113		
	~ & ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4			
00000000	98.5 93.8 91.3 90.1 92.0 109.1 78.8	0040007000		4480400444
223 233 233 2000 2010 2010 2010	0.9550 1.7100 0.4200 0.5900 0.6250 5.3850 0.6850	.190 .500 .500 .955 .000 .810 .170	2.000 2.000 2.000 2.000 2.000 2.000	
0.000	1.1800 3.7400 0.6000 0.5200 0.9900 1.2300 1.24450 1.5550 0.6100	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	. 925 . 825 . 825 . 230 . 830 . 930 . 930
. 3485 . 3485 . 3485 . 3485 . 3485 . 3485	1.4200 2.2500 0.4650 0.9500 0.7400 1.0200 0.8300	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		. 450 . 470 . 470 . 140 . 550 . 655
L4L00 104	164 239 178 197 220 251 247 -1	W0001 1000	250 250 250 250 250 250 217	0 6 4 R 0 0 0 0 0 4 4
000007	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 M O O O M T 4 8 9 1	1000170004	4400471000
276 45578.842834 318 45521.604736 318 4551.091888 318 45641.552154 324 45420.848884 324 45460.651474 324 45456.178123	7354 45654.8389893 7369 45623.2937927 7372 45477.4274597 7372 45396.5918732 7372 45462.0407867 7372 45521.3782654 7372 45599.3959351 7373 45538.1118317 7373 45383.5754585	373 45383.575401 373 45383.575401 373 45424.382818 373 45431.043899 373 45591.650024 373 45619.84083	376 45375.611492 376 45344.139831 376 45394.083934 376 45393.080257 376 45469.97323 376 45469.973754 376 45469.973754	382 45539.045669 382 45539.045639 382 45591.010894 382 45612.273315 468 45537.605239 468 45537.605239 468 45649.883239 468 45470.563049

4.89		. 10	4	4	0	m.	00		9	8	6	4	4	0	9	?	0 1		80	4 . 7	0		ü	9	0	9		80	1.	9	9 .	4.		7	9	4.6	7	9.	1.	m.	4	4	0
27024.0	07.00	7458.	6691.	7123.	8348.	4735.	7024.	6912.	7990.	2410.	2249.	8083.	8495.	7453.	4256.	0139.	6393.	6053.	9891.	3882.	8269.	6197.	9604.	5055.	4774.	7319.	7156.	7153.	2702.	7535.	8407.	6278.	4268.	4705.	6165.	8547.	8546.	9154.	8121.	8794.	.9956	4178.	4133.
61.6			N.	9	0	7	1	1	3	4	8	N	9	19.	m	15.	22.	25.	16.	11.	9	4	9	9	4	3	7	7	0	7	80		4	7	1	9	9	7	7	4	7.	0	2
ю r									•							•	•								•								•	•	•	•		•	•				
0.68	> u	, 0	9	9	4	3	6	6	4	'n	-	9	9	m·	2	3	2	8	8	3	8	7.	4	3	4	9	9	9	;	4	S.	6	9	m	2	6	6	5	4	S	6	S	6
1.6650	000	250	840	545	.625	.955	.665	.420	.895	.530	.400	.790	.970	.265	.890	. 790	.330	.015	.235	.280	000.	.000	.700	.515	.215	.690	. 505	.270	.610	.345	.995	. 745	.030	.680	.440	.425	.000	.360	.515	.600	.500	.160	. 295
4.1850	075	נעס.	370	470	.325	190	.185	.590	.625	.310	.390	.530	.140	805	.860	5.785	.190	4.835	3.260	.045	900	.735	.540	.700	.450	.270	.400	.815	.655	900	.080	.345	.790	.630	.210	.020	.945	.045	.940	.230	.250	.725	. 265
2.6500	040	C/T.	470	645	.805	.360	.650	.760	.855	.435	.060	.195	495	.875	.200	1.150	.100	2.540	2.885	.595	.835	.410	.000	.035	.960	.870	.820	.590	.740	.985	.480	.945	.550	.715	.725	.630	.920	. 595	.835	. 225	.840	405	.800
271	י ת	9 -	10	4	m	4	-	N	9	9	-	9	9	3	9	9	8	9	8	S			4	4	N	-	9	m	-	N		0	9	9	0	LO.	1	-	00	0		Š	-
270	9	1 0	- 0	1	4	9	1	-	10	5	3	3	-	9	9	8	8	N	3	N	4	S	1	00	-	-	9	8	N	8	-	8	S	8	Ý	4	0	5	0	· W	1	4	S
45402.6068	45403.108276	45466.121414	4548/.233886	45638.08/243 45638 588287	45485 377609	45648 608612	45402.606803	45402.606811	45486.231872	45488.305709	45554 160263	45638.087616	45638.588623	45539.502655	45546.370468	45405.097297	45390.561569	45516.312866	45548.590164	45553.171340	45482.225799	45492.530059	45649 898681	45571.030853	45404.554695	45423.094276	45422.593132	45422.593139	45582.983398	45587.994445	45588.996612	45617.626312	45411.430557	45401.195861	45427.319847	45429 196629	45429 396621	45413 544845	45495 395675	45611 899810	45617.053253	45475 999908	5 45511.0863647
48	48	48	4 8	4 4	4 4	4 4	4	7 4	7 4	54	4	54	54	54	54	54	54	4	4	54	54	2 4	7 7	של	000	1 00	58	8	58	58	58	58	58	8	(C	2	ם מ	ם מ	0 0	0 0	ם מ	200	762

4	4	4	9	6	4	8	۳.	-	4	1	9.	9.	1	4.68			٠,	4		4	Ŋ.	9.	0.	7	4	4	'n	9	1	0	9.	٦,	9	9	0	1	7	8	4.	Ξ.	ហ	4	.7	4
5226.	5267.	5268.	6167.	6763.	6767.	7335.	4425.	3728.	4719.	4721.	4898.	4598.	5979.	36834.0	0645.	9325.	2440.	1451.	5617.	0085.	5727.	9661.	8368.	8401.	7766.	1473.	1906.	1294.	1288.	0662.	0000	. 6000	9316.	8596.	8607.	8599.	0148.	8787.	8790.	4622.	9327.	6264.	3643.	4910.
-	0	0	7	7	7	7	6	5	0	0	0	6	0	63.3	1	9	٠ ص	8	i	0	1	S.	3	Э.	2	4	4	4	4	4	3	m	-	5	5	5	5	6	6	7	0	2	6	0
														1.6				٠																										
0	2	0	4	5	N.	2	2	4	3	3	4	7	9	94.1	-	10.	9	4	5	0	.90	2	S.	Ŋ.	4	1.	9	9	9	7	7.	7.	8	6	6	6	-	7	7	3	2	9	2	6
455	535	680	000	.320	000.	.000	.000	.000	.720	.900	.290	.780	.300	0.8650	.130	.365	475	160	.830	.900	.470	.585	.640	.000	.000	.030	.190	000.	.000	.730	.020	.000	.930	.960	000.	.630	.575	.365	.000	.675	.190	.610	.685	.600
018	048	000	340	.860	425	.840	.950	.845	.680	435	.130	.905	.780	1.9800	2.485	.265	.070	.140	.295	.590	.060	.780	.070	.530	.730	.850	.120	.290	.375	.500	.760	.440	.205	.335	.290	.600	.605	.510	.265	.390	500	.650	745	.060
000	640	040	650	.825	.440	475	.820	.320	.225	.350	.400	.635	.250	1.1550	.270	.975	.975	.520	.175	.135	.785	.235	.765	540	.830	.915	. 945	.675	.420	.845	.225	.475	.690	.970	.770	.925	990	970	.150	.430	595	340	.065	.520
-	212	4 0	N 1	272	- 1	-	-	-1	4	-	(1)	S	-	249	9	0	9	Н	9	-	~	(4)		1 1	-	9	145	- 8	-1	2	118	- 8	9	161	-	9	0	176	- 1	-	00	0	1 4	204
L	n u	n a	n v	7	-	25	C	H	6	0	-	1 00	6	9	9	9	9	8	4	-	V	7	0	1 4	0	1	4	9	8	0	0	1	4	0	-	9	4	9	0	26	0	1	1	241
10000	2 45459 462501	7 47400 900300	5 45460.966308 E 45608 038817	5 45610 041748	5 45610 041839	5 45611.043548	5 45628 576721	9 45471 418441	9 45626 642486	9 45626 642608	9 45627 644256	9 45638.662353	1 45475 139343	1 45486.231552	1 45594,525085	1 45595.527282	3 45475,147827	45477.220031	3 45553 443771	45647 812774	3 45601 322937	45608 480438	45500 120529	45500 120468	A 45500 621444	8 45597.012908	R 45629 648773	8 45630.650604	8 45630 650665	R 45631.652435	8 45632.654235	8 45632.654205	8 45633.656036	8 45634.657836	8 45634 657775	8 45634.657836	1 45479 575637	1 45512 217468	1 45512 2174835	45425 3169174	45621 991088	F90166.12964 1	45598 948211	45648
(7 5	70	70	200	200	62	5	200	50	200	200	200	64	64	64	64	65	5	2	שונ	שוני	שני	ש ה	3 6	יה	3 6	7	30	2	200	7	73	73	73	73	7 5	74	7 7	74	74	7 7	- [- 1	779

4.84	0	80	. 7	.7	7.	4	4	6.	7.	4.	S	S	S	.5	S.	9.	ഗ	9	'n		9	6	٦.		9.	8	9	. 7	v	m I	S	4.	9	0 1	1	1	6.4	e.	9.	9.	0	80	4	9.	
	6221.	8015.	5531.	4818.	2421.	8665.	8811.	6901.	4498.	6775.	7025.	8306.	8300.	0627.	2563.	1939.	6245.	8202.	8554.	8557.	8645.	8643.	2866.	336	8482.	2247.	8381.	8966	5139.	4812.	5392.	5387.	8292.	6479.	3540.	3291.	3294.	7556.	7559.	7558.	4776.	6882.	4580.	5700.	
17.9		1:	ص	7	4	4	4	3	9	80	6	4	4	5	6	7	-	٠ ص	0	0	4	4	9	1	0	0	i	4	0	7			m		œ	S.	2	9	9	9	S.	-	6	9	
2.1																																													
98.8	93.	7	98.	7	3	8	8	2	-	14.	9	81.	1	7	3	8	-	7.	6	9	-	4	0	4	4	6	85.	5	1	9	9	9	9	-	6	6	6	8	8	8	9	6		S.	
0.3500	.515	000.	000	.000	390	.420	.530	. 295	.515	905	645	000	.800	.940	.360	3.040	.555	.775	.120	.000	000.	.000	.440	.270	.780	.815	.645	.230	.000	.000	.375	.160	. 265	.950	.680	.725	300	000.	.775	000	135	190	295	435	
0.4650	.775	.485	.525	.510	.755	.320	.325	315	250	815	575	945	395	.915	.590	5.330	.170	.960	.100	.370	.945	.460	.835	.620	.350	.460	.350	.925	.275	.575	.105	.890	.475	.675	.675	.285	.420	.430	.850	810	25.5	375	450	980	
.515	. 200	.535	.490	.470	705	.730	.760	450	505	210	980	125	560	.570	1550	2.435	.040	.065	.555	.260	.455	.670	525	.590	.750	.385	.765	.360	.915	.740	.480	.710	.710	.715	.165	.900	.430	.975	.015	520	295	635	700	69	
171	8				C	S	9	-		7	. (4	38	0	3		-	-					9	9	8	9	- 1		4		9	0	9	0	1			1	2	- 0	1 U	200	h
378	~	7	4	4	. 4	L	LC.	0	1	1 4	U	V	4	S	0	m	-	S	0	m	23	U)	1	4	1	6	7	S	8	0	m	0	6	1	8	00	9	0	0	1		1 0	סר		2"
5568.122787	5521.249694	5586 588241	5615 571014	5618 361999	5512 988876	5384 363597	5497 607532	200 00 00 PD	56767 166763	501001.22CC	5562 5043333	EEE 819946	5569 819976	5411 426773	5478 306121	5529.813095	5555 792099	5591.793396	5429 254203	5429.254203	5596.086792	5596.086792	5555 993316	5587 055145	5477.213546	5436.036804	5466.259613	5593.523681	5531.957992	5423.023925	5422,522514	5422.522499	5589.861541	5480.082214	5481 154220	5510.497238	5510 497207	5482 225967	5482 226013	EAR2 225967	707077 7070	2464 . 1013/3	5555.51966 5645.671966	45645.6/19665	55/1.420349
794	794	794	704	707			000	000	200	000	200	מונים	010	210	210	210	210	015	810	810	810	010	124	134	187	187	187	187	195	195	195	195	195	274	274	274	274	274	274	777		4/7	4/7	6 4/78	331

8	7	S	'n	0	e.	9	9.	4	7	9.	1	4	7	<u>س</u>	N.	0.	4	4.	0	S.	٠.	6	0	ហ	٣.	4.60	S.	4.6	σ.	ا	9 1	5	. ·	4,	١٩	ו יע	S.	9	m.	9.	S.	'n	7.	9.
8619.	5001.	5115.	5037.	5037.	4999.	2571.	4418.	2289.	6968.	7964.	6413.	4775.	4781.	4782.	4768.	4780.	4536.	4538.	3593.	9448.	2391.	8851.	1147.	4894.	4894.	34887.0	4898.	5175.	5333.	4894	4975.	5028.	4942.	4940.	5186.	4898.	5088.	5087.	8962	8260.	6230.	6514.	4174.	5911.
9	2	0		0	ij	00	6	S.	1	Š.	2	2	3	'n	5	7	σ.	6	S.	4	ر. م	0	ω.	0		0.2		0	0		4	;	'n	m·	4			4	9	m ·	80	6	1.	
																										0.5																		
α	S.	2	02.	02.	2	9	7	7	4	8	8	9	9	9	9	9	9	9	1	7	4	6	4	6	6	91.2	8	7	7	9	S.	2	9	9	m	7	ص	7	8	6	19.	00	88.	
530	000	535	.000	.000	.000	.050	.455	.765	.080	.900	.990	.220	.630	.510	.840	.640	.575	190	.160	.210	.085	.460	000	.000	000	0.3600	.605	.460	.000	.000	.610	.780	.000	000.	. 795	.105	.835	.945	.815	0.730	.715	. 925	.205	.910
130	820	860	.570	.860	.410	.220	.160	.910	.690	.040	.535	895	.740	.390	.375	.380	.095	.710	695	.440	430	2.675	740	.600	505	.77	.600	.330	.220	.430	.705	.370	.535	.980	.380	.290	.350	.380	.290	1.105	.230	. 500	.450	1.2250
725	570	665	860	.010	675	.715	.840	.385	.065	.655	.810	.050	.675	.490	.390	.720	.865	.750	.115	.050	105	905	310	500	540	430	.535	.920	.565	.920	.610	.670	.130	.565	.055	.045	.965	.330	.015	0.940	680	535	395	1.3050
200	0 1		1			S	-	9	00	(0	ហ	9	9	0		8	S	-	0	C) C) (m	4		- 1	ı	9		ě	1	7	2	S	9	N	00	0	0	1	172
•	r a	0	NE	00	0	9	00	00	1	-	00	8	m	0	9	9	8	S	22	0	V LC	7 (. 0	1	1	- W	(00	N	1	9	-	9	0	9	9	00	0	-	C	l W	1 6	00	371
	45548.590454	45240.00.0404	45554.1567016 45611.067016	45611 067016	45612.069000	45540.834533	45582 634277	45417.228408	45526 016830	45616 046844	45648 270996	45398.538581	45398.538566	45398.538566	45398 538650	45398.538566	45399,039772	45399, 039779	45652 490264	45536 967559	45485 927856	AEA97 673787	AEA24 E97900	45424.557500 AEA1E 655536	AEA1E 62522	45415.625226	45417.630027	45504.603866	45533.590896	45561.579208	45514.230300	45406.960289	45432.876937	45432.876937	45463.801284	45397.476295	45425.395042	45455.318901	45495 949569	45524 168685	45575 485763	45574 487640	45481 856155	45509.6405487
- (2 6	9 0	ם מ	2 6	3 6	4	41	41	41	41	41	42	42	2	42	42	42	0	43	7 7	7 4	7 4	9 4	7 9		17	47	47	47	47	8	8	48	48	8	8	8	000	0	0	0 0	7 0	0	8521

9			2 .		٠, ر	9	9	m.	'n	8	4.	5	7	1.	7	۲.	σ.	4	0	0	80	4	6	9	S.	4	. 4	. 4	. ~	4	S		4.7	9.	m.	6.	۲.	6.	'n	9.	'n	'n	3.93	'n	9.	
0100			6246	1 54 /	7252.	8138.	7325.	7327.	6131.	5797.	5441.	4458.	8753.	4901.	1466.	9437.	9442.	6515.	5880.	5881.	1210.	1421.	8399	6780	4601.	5746	5075	7661	7661	8446	8010	8005	3841.	3844.	3844.	6209	5969.	3479.	5859.	1377.	5172.	4109.	35969.0	5992.	5599.	
	, ,	1	. r	-	i	2	m	m ·	س	3	2	2	m		'n.	0	0	8	3	3	80	00	α	, ~	9				· -			4	•	1	1	m.	S.	S.	7	2	1		7.7			
																								•																			4.0			
	5 0		0		m	-	-	-	8	7	7	N.	0	8	6	4	4	'n	2	2	0	œ	u			. 0	. 0	9 0	h o			. α	7	7	7	6	'n	7	7	79.	00	89	84.8	4	8	
1	0/9.	. 890	000.	0000	.830	. 900	.560	.280	.840	.000	850	070	000	755	395	.000	000	415	.345	000	760	255		460	845	10	000	020	CT#.	000	000	000	450	.460	.000	.000	690	350	395	340	605	470	0.8550	.735	.580	
1	. 290	895	.460	.660	.350	.420	.965	.660	.520	920	600	320	440	585	970	445	930	380	965	790	365	200	200	000	415	410	340	140	440	. 4.40	200	170	120	280	020	720	555	020	935	180	240	400		520	.130	
	.045	.780	. 205	.270	.125	.850	.850	.460	870	500	615	325	700	880	000	610	825	180	795	370	740	000	000	DOT.	015	CTK.	7007	.535	0,44	0 7 2	0000	770	7 6	745	360	810	940	625	405	770	735	635	470	. 830	3.4300	
		9			9	8	0	S	0	1	4		1		u	1		-	- C) 1	C	9 0	0 0	VC	VO	ות	N.	-	ות	- 0	ח כ	0 4) C	1		4		1 1	7	. 4	· L	10	1 4	104	
	0	ø	S	1	2	9	N	00	σ	1 0	V	o u	1 0) L	V	0	7) W	-	1 -	4 4	0 4	n c	י מ	ח נ	-	4	7	-	91	n ·	4	0 4	. 4	0	1	1 4	V	2 0	1 4	1 0	10	- 0	10	376	
	45510.141540	45395.019809	45395.019863	45497.046508	45497.046539	45522.165191	45554.159240	45554 159286	A5612 559875	AEC14 EC1798	4561E E62600	45613.363636	TOTACE CENTA	45542.155101 46611 602666	ACCOL ALTICA	45510.016253	ACCOUNTED 162011	45550.16564	#00000 00000	45459.330445	40404.0404	45510.036364	45534.6230//	45537.198013	45497.822189	45585.436752	45640.394378	45427.042366	45385.854019	45385.854019	45403.108604	45469.043396	45469.045426	ACAGE GEORGE	45495 959808	AEA 07 534072	45457.33457.3	AFFOR FOILE	45520.051635	*C*000 CULL	4000/.000404	45601.343011	45415.130250 45431 524795	45451.524/35 45431.534848	1 45434.7406921	
	S	S	S	S	C	S) W	ı u	1 U	n u	n L	n L	n ı	n u	n u	n u	n L	n u	n u	n L	n ı	A I	n	S	S	S	S	S	9	9	9	9	0	0	DY	D V	0	0	0	0	0	0	0 4	O V	862)

0	7	9.	12.18	9	-	4		4	S	Φ.	9	8		7	9	Φ.	9	9.	3.4	1	6.0	8.2	0	1.7	00	00		4	9	w 1	0		2 1	0 .	4	<u>س</u> ا	S	∞.	S	9.	9	S.	9.	S.
8314.	0647.	6492.	26486.0	5429.	3999.	5810.	6471.	6070.	6302.	0989.	8914.	3054.	4901.	4902.	5145.	5326.	4902.	4892.	4970.	011.	226.	036.	050.	5013.	1480.	517.	5141.	2933.	5077.	5470.	5263.	2776.	6406.	8//4.	1462.	9042.	5085.	5161.	5154.	4994.	4918.	239.	4957.	5161.
7	9	6	49.4	м	S.	7	ο.	س	6	0	5	m ·	0			0	0	0	8	m ·	6	0	19.	4	<u>.</u>		ω	6	2		9	-	-	7	9		-	-		÷	i	0		
			2.9																																									
6	-	4	84.0	N.	4	6	6	8	80	4	9	4	6	89.	ij	2	S.	80	0	7	i	0	8	2	93.	H	80	80	9	9	80	9	4	80	-	9	4	9	9	5	9	0	1	6
440	000	060	000000	.995	.775	.935	.780	.815	.985	.740	.925	.380	.420	.355	.615	.000	690	.230	.300	.780	.000	.610	.380	.550	695	.400	.250	.700	.750	.660	.550	1.300	.260	.775	.775	.580	.725	.000	.000	595	.685	.630	.545	.560
675	0.760	460	1.2050	.360	.570	.695	.165	.595	.550	300	.935	.285	.335	.875	.720	.270	.370	.920	.310	.670	.660	.105	.430	.580	.225	.660	.450	.980	.535	.175	.690	3.785	.785	.895	.835	.255	.955	.590	.240	.225	.200	.390	.425	.200
715	0.585	800	19	110	645	.330	.270	.050	.530	.395	.570	625	.945	.940	695	.880	.165	.450	.615	305	840	950	.500	190	.810	.825	.420	300	.695	.065	585	3.500	.300	.560	.240	895	.935	745	895	.225	960	805	950	LO.
A				LO.		0	9	S	00	4	4	S	S	9	0	- 1	C	-	S	(1)	1	0	0	-	9		N	7	8	N	3	-	44	S	S	m	-			N	0	4	00	235
V	0	10	1 4	m	1	0	9	0	S	9	4	4	00	-	S	CC	C	4	00	0	C	1	-	-	-	00	9	-	-	N	9	4	9	9	1	00	S	0	00	ហ	0	9	1	296
46600 600000	1 45555 963655	1 ACACA ACACA L	45434 406203	1 45476 138885	1 45528 110107	1 45617.052856	1 45544 . 553253	1 45410.359306	1 45553.707656	2 45477.143661	2 45464.619506	2 45467.192031	4 45511.083709	4 45511.083709	4 45533.055801	4 45533 590957	4 45560 576797	4 45562 581573	0 45481 011093	45562 013366	45643 102600	2 45380 065788	2 45557 538238	2 45610 433197	3 45571 623947	3 45554.232238	3 45633.865997	3 45639.878936	8 45419.024116	8 45393.507675	0 45520.638824	0 45527.940094	0 45627.629516	4 45482.438095	4 45644.815856	4 45652.619842	2 45419.059631	2 45421.063842	2 45421.063888	2 45507 037948	2 45508 040725	2 45551 054855	2 45427 544235	2 45467.5599213
5	100	1 0	700	74	74	74	75	75	75	76	76	76	77	77	77	77	77	77	Ca	2 0	2 0	2 0	2 0	2 6	2 0	0 00	8	83 6	83	8	84	84	84	84	84	84	88	00	000	α	0 0	0 00	0 00	0 00 00

4.58	5	9.	v.	7	<u>ء</u> ۾		٩	9 1	υr	٠. ·	4. 1	٠, ı	v. r	3	S.	9	9.	S	5.1	4.4	0	9.9	0	5	8	1	4	4	m.	0	9.	S.	S	8	80	S	m.	ω.	S	9.	m.	S.	S.
35232.0 35204.0	4963.	4960.	4948.	4948.	0748.		4 903.	4867.	5312.	5026.	5432.	5407.	5358.	4984	4971.	5039.	5467.	5372.	5372.	2048.	2091.	9322.	3284.	6057.	5603.	5619.	9434.	0390.	0370.	0377.	7311.	5295.	7491.	8772.	9139.	8204.	6889	2231.	2234.	2233.	237.	3161.	9292.
-0.2	1	Η.		H .		n .	٠	'n .	4	i,	i,	i .	.i	3	m ·	•		3	3	0	2	•	4	-	6		2	6	3	3	3	7	0	1	-	ش	4	3	4	4	57.5	6	0
9.5 1.2									•	•		•	•	•	•	•			•	•		2						•	•	•						•							
70.1	8	7	7	7	m (,	9	7	00	0	m .	4	5	6	σ	9	5	18.	8	88.	6	2	0	4	0	60	6	6	6	6	8	6	6	6	6	5	7	8	80	8	80	9	S.
0.5650	470	.340	.575	000.	000	.315	.275	.065	.230	.920	.790	.150	.450	.120	.095	.850	.145	960	.000	.470	9.090	000	335	000	260	000	.660	440	160	.000	.080	.810	.555	.735	.310	.000	.900	.440	.940	000	350	.760	405
1.4200	. 550	300	.330	.790	.785	.530	.195	.345	.810	.095	.970	.110	.960	.290	090.	.530	.840	.150	.725	0.690	450	0.750	490	435	מעט.	200	875	025	.230	990	. 220	435	.350	.100	765	805	715	625	925	430	700	. 560	.795
1.0250	675	800	.810	.580	.665	.395	.250	.275	.740	.145	.900	.720	.885	.345	.115	.755	.410	.040	340	4.835	525	0.96.0	435	080	425	280	015	0.0	645	435	995	080	890	.710	650	590	565	515	140	775	925	945	400
271	0	473	S	-	1	9	200	4	0	4	9	9	9	S	H	N	9	4		4	419	4 1	α	101	0	ו ר	σ	V	179	. 1	C	0	370	2	1	1	6	1	227	3 1	O	N	222
288	10	9	9	9	N	9	S	S	m	S	1	S	9	9	S	00	C	14	· W	0	V	0 0	2	ם ר	- 0	700	0 0	N U	1 4	~	0	-	10	C	C	0	S	7	1 4	> 4	2 4	9	4
882 45596.0028	882 45597.004841 882 45626 524047	RR2 45627 525939	882 45628.527801	882 45628.527832	910 45478.080505	910 45396.189132	916 45508.040008	916 45509.042678	916 45534.020187	916 45375.569152	916 45586.985336	916 45587.987289	916 45588.989257	916 45623.518981	916 45624 520843	918 45419 023719	918 45584 981811	018 45577 503433	010 45577 503463	002 4E410 349800	000 454IO:347000	000 45465 019516	009 45465.019316	01/4548U.156524	01/45496.11/669	01/45524.334/14	047 453/5.536655	049 45500.120300	049 45361.130168	040 45281 130165	049 45504 15010	040 45276 114349	049 45378 120883	049 4554 6 47970	040 45543 138824	040 AEC18 A97619	040 45647 478741	152015.1505 CFO	CEDE20.0/00 COA COAC	100420.016.02	269 453/9.02402 88786 4537 628	269 45515.026.25	34399

6 456218 5590668 259 228 1.0800 1.8700 0.9100 94.3 1.5 45.4 22491.0800 6.656 45620258 445 2.1 0.7100 0.6500 0.9450	N	-	S	٣.	4	4	۲.	4.	.2	4.	0.			9	4.52	0.7	0.	7 . 7	0	0	4	S.	9.	0.	9.	4,	6	4	7	e.	۳.	9	ω.	9	80	9	9.	4.	9	4	9	S.	4	9.	7.
455.2.20228 445 -1 0.100 0.9100 94.3 1.5 45.3 455.2.20228 445 -1 0.1100 0.5000 0.0000 89.2 4.3 1.5 65.2 65.2 65.2 0.9450 9.4551 9.4552 4.3 1.5 0.9450 9.4552 9.4550 9.4550 9.4500 1.000 106.0 4.6 6.0 9.4501 1.000 106.0 4.6 6.0 9.4501 1.000 106.0 4.6 6.0 9.6	3491.	5254.	8199.	0169.	5160.	5161.	5158.	5993.	5991.	1763.	5039.	3059.	6274.	8835.	1695.	. 4767	8739.	8737.	8382.	8472.	8211.	6732.	4952.	4954.	4942.	6153.	1133.	1564.	5440.	3261.	2841.	5421.	4151.	7314.	4777.	1868.	9802.	2034.	5231.	4212.	6551.	3910.	4326.	7685.	4783.
4.5538 5590668 259 228 1.0800 1.8700 0.9100 94.3 4.5522 202258 445 -1 0.7100 0.5000 0.9450 94.3 4.5527 1935547 166 295 0.5900 3.4500 0.0900 89.2 4.9 4.5603 1122742 371 -1 0.6250 1.700 0.0900 106.0 4.9 4.5603 1122742 371 -1 0.6250 1.700 0.0000 106.0 4.9 4.5641 0382385 371 -1 0.7450 0.0000 106.0 4.9 4.5642 03823 312 245 0.0000 0.000 106.0 4.9 4.5641 0382385 355 -1 0.7450 0.0000 106.0 4.9 4.5642 06252 363 -1 0.7450 0.0000 106.0 4.9 4.5642 06263 347 -1 0.4450 0.0000 0.4 0.0 0.0 4.5642 06263 347 -1 0.450 0.	2	2	ص	6	0	0	0	8	3	6	6	7	6	i	80	7	4	4	4	S.	ص	3	3	3	ω.	9	80	6	9	3	5	9	7	6	7	7	0	2	3	5	3	4	0	2	9
45528.5590668 259 228 1.0800 1.8700 0.5100 9.45652.2002268 445 -1 0.7100 0.5000 0.0000 89. 45652.2002268 445 -1 0.7100 0.5000 0.0000 0.9450 9.45623.2002268 445 -1 0.7100 0.0000 0.9450 9.45633.1122742 367 -1 1.0750 0.0000 0.0000 106 9.45633.1122742 371 -1 1.0750 0.7000 0.0000 106 9.45633.1122742 371 -1 1.0750 0.7000 0.0000 106 9.4560.10230 9.4560.10230 9.4560.002 0.0000 106 9.4560.002 9.4560.002 0.0000 106 9.4560.002 9.4560.002 0.0000 106 9.4560.002 9														•	٠																														
9 45538 5590668 259 228 1.0800 1.8700 0.910 9 45652.2002258 445 -1 0.7100 0.5000 0.000 9 45652.3002258 445 -1 0.7100 0.5000 0.000 9 45533.6547050 320 276 2.0450 2.4450 0.5000 0.000 9 45533.6547050 320 276 2.0450 3.4500 0.000 9 45603.1122742 371 -1 0.750 1.1700 0.000 9 45603.1122742 371 -1 0.750 1.1700 0.000 9 45603.1122742 371 -1 0.6250 1.1700 0.000 9 45641.0382385 235 -1 0.750 1.1700 0.000 9 45641.0382385 235 -1 0.750 1.1700 0.000 9 45641.0382385 235 -1 0.0450 0.3400 0.000 9 45641.0382385 235 -1 0.0450 0.3400 0.000 9 45641.0382385 235 -1 0.6100 0.3400 0.000 9 45650.3082086 235 -1 0.0450 0.3400 0.000 9 45650.308208 233 332 245 21.335 0.0450 0.4550 0.000 9 45651.0382383 254 245 21.335 0.0450 0.000 9 45651.0382383 254 245 21.335 0.0450 0.000 9 45651.0382383 254 245 21.335 0.0450 0.000 9 45651.0382383 254 245 21.335 0.0450 0.000 9 45651.0382383 254 245 21.335 0.0450 0.000 9 45651.0382383 254 245 245 245 245 245 245 245 245 245	4	6	8	5	.90	. 90	.90	8	8	4	6	4	7	6	6	9	4	4	9	3.	0	2	9	9	7	رى	7	8	0	о О	80	6	64.	. 60	9	8	0	6	S.	20.	08.	2	3.	80	5
45538.5590668 259 228 1.0800 1.870 9 45652.2002258 445 -1 0.7100 0.500 9 45652.2002258 445 -1 0.7100 0.500 9 45603.1122742 367 -1 1.0750 1.030 9 45603.1122742 367 -1 1.0750 1.030 9 45603.1122742 371 -1 0.7450 1.030 9 45603.1122742 371 -1 0.7450 1.030 9 45641.0382385 355 -1 0.7450 0.700 9 45641.0382385 535 -1 0.7450 0.700 9 45641.0382385 535 -1 0.7450 0.700 9 45641.038233 264 -1 0.7450 0.700 1 454051.038233 264 -1 0.7450 0.700 1 454071.4140930 563 -1 0.650 0.240 1 454071.098215 279 295 0.940 0.750 1 45405.066409 264 -1	.910	.000	.945	.245	.000	.000	.000	.470	.000	0.730	2.015	.170	.495	.000	.680	. 230	.000	.000	.000	640	.635	.535	655	000	.665	000	.380	.370	.070	.885	.315	.385	5.410	.105	.680	.775	440	.095	.540	.810	.645	885	.925	.130	.060
9 45538.5590668 259 228 1.080 9 455622.2002258 445 945 945652.2002258 445 945552.3092258 945 945552.2002258 945 945552.2002258 945603.1122742 367 945603.1122742 367 945603.1122742 367 945603.1122742 367 945603.1122742 371 945603.1122742 371 945603.1122742 371 945603.1122742 371 945641.0382395 251 945641.0382395 252 945641.0382395 252 94561.0382395 252 945 21.335 945641.0382395 252 945 21.335 945641.0382395 252 945 21.335 945641.0382395 252 945 21.335 945641.0382395 252 945 21.335 945641.0382395 254 279 295 295 9450 9450 9450 9450 9450 9450 9450 94	.870	.500	425	.450	.030	.170	.700	.730	.340	4.085	7.085	.800	.420	.455	.710	.670	.320	.240	.700	.035	.210	280	200	660	335	690	.520	.490	.445	.430	.780	090.	.110	.420	.630	3.530	3.405	.090	.870	.400	.850	485	9.180	2.370	.610
9 45538.5590668 259 9 45632.2002258 445 9 45532.2002258 445 9 45532.3093268 259 9 45527.3935547 166 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 9 45603.1122742 251 1 45410.198238 254 1 45409.1091232 458 1 45409.1091232 254 1 45475.9950409 264 1 45475.9950409 264 1 45475.9950409 264 1 45475.9950409 264 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064459 254 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064453 291 1 45645.6064654 253 1 45645.00647125 253 1 45600.3227844 1 45482.2242584 282 2 56 1 45482.2242584 282 2 56 1 45485.1593323 263 2 6 1 45485.1593323 263	080	.710	045	. 590	.075	625	.745	.975	.610	1.335	5.985	.965	.620	.430	.145	.805	.605	.445	.420	.110	665	940	910	725	845	480	940	050	.785	785	.520	.825	.450	.145	.045	0.465	2.365	.120	.390	945	475	235	6.045	1.635	. 555
9 45538 .5590668 945939 .55393 .5590668 945939 .6547050 945527 .3935547 9945527 .3935547 9945527 .3935547 9945527 .3935547 9945503 .1122742 945603 .1122742 945603 .1122742 945603 .1122742 945603 .1122742 945603 .1122742 945641 .0382385 945641 .0382385 945641 .0382385 945641 .0382385 945641 .0382385 945641 .0382385 945540 .1082323 333 333 333 333 333 333 333 333 33	N	- 1	-	0				4		Nº	0	00	m	- 1	7	9				4	-	1 4) () 1	0	1	0	-	1 0	~	N	4	9	-	S	0	S	0	9	00	-	10	1 4) ("	9
9 45538. 9 45539. 9 45393. 9 45393. 9 45393. 9 45527. 9 45527. 9 45603. 112274 9 45603. 112274 9 45603. 112274 9 45603. 112274 9 45603. 112274 1 45417. 1 45437. 1 45648. 2 45567. 2 45648. 2 45648. 2 45648. 2 45677. 2 4568. 3 4568. 3 4568. 3 4568. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	L/I	1	. 0	1 4	4	L/C	1	S) (ا (د	C	0	S	4	-	-	9	S	9	O	· W	0	0	10	- 1	٠ α	0	-	1 4	LC.	N	9	N	9	1	6	00	8	0	-	0	-	1	4 00	9
	9 45538 559066	9 45652 200225	45393 654705	0 45527 393554	45603 112274	45603 112274	9 45603 112274	9 45641 038299	45641 DAR2AR	0 45505 968353	9 45543 761871	Q 45587 845687	0 45409.109123	45393 786266	1 45652.258178	1 45437, 199821	1 45471.414093	1 45471.414093	1 45475 995040	FFCFUL 3085 T	1 ASEA2 028595	1 45645 606445	Agrear ready o	45507.755769	45507.755485 45508 755485	202021.00CC# 0	5 45541 R37051	A 45 67 474578	5 45530 817230	5 45557 024795	5 45556 524459	5 45592 084045	5 45585.141845	5 45598.391143	6 45540.692520	6 45553 705856	4 4 5 5 5 5 3 0 9 3 1 0	45556 309570	6 45587 645462	C 45574 064712	6 45600 322784	26/226.000CF 0	4 45471 566268	45471.300200	4 45485.159332

44.6	9.1	4.6	1	9 -	. m	0,1	0 00	. 6	w r	Ü ,	0 4	5.9	S	1.7	6	4 1	9	0 4	. u	5		v.	0.0	. A	. 00	7	4	4.9	9	4.3	m r	ם נ		
33811.0 33523.0 10845.0	1064.	1024.	5141.	4563.	7042.	8332.	4214	4935.	8201.	8150.	10/07	5689	5909.	7517.	4811.	4800.	7844.	1842.	8260.	4952.	6432.	5377.	9175.	9726.	5876	5876.	5875.	0425.	0583.	3875.	3870.	6577.	6436.	6613.
63.5 52.7 11.4	· · · ·	9 6	, m	9 -		9	D C	. n	m .	m (n c	, 0	. n	Э.	3	E	i.	٠,	i m	1	2	1	4		, ,	7	5	9	9	6	6		m (0
4.000				•		•	•		•	•	•	•		•			•	•			•	•	•		•					٠	•		•	•
91.2	0 70	9 4	93.	16.		92.	0 0	 n	1				. 4	9	4	4	7		20	4	2	2	7				7	9	6	7	7	9	m .	i
0.8500 1.2600 3.9600	. 250	.420	.020	.750	000	.380	000	640	.000	.425	000	000	000	460	.225	.000	.515	000.	0000	930	165	.805	.640	480	1000	000	000	.590	.610	.415	000.	000.	.630	. 755
2.2000 2.3950 13.0650	.580	480	.810	485	. 210	.130	990	495	.290	.490	.670	180	565	310	.775	.400	.980	. 235	210	540	.330	.035	.460	.385	070	315	150	.770	.520	.915	.575	.865	.515	.335
1.4600 1.5600 8.2650	.630	400	.135	.020	200	.680	.635	985	310	.355	.485	280.	740	370	.615	.500	.400	.240	330	070	740	.945	.790	.860	.600	260	930	920	.435	425	470	.390	.985	.420
279 215 374				C					1	3867	1	210		C	246	1	215	1	1 0	0 0	311	-	4	-	9	0 1	1 -	257	0	241	- 1	-	260	9
277 274 270	10	25	7 9	8	00	9	-	10	-	S	0	4 (BD C	> -	26	9	2	9	6	4 6	· -	m	S	9	24	D 4	0 0	4	-	3	1	m	-	9
45522 45645 45477	45522.379791	45513.222183	45520.022903	45577.493515	45595.526275	45512.847580	45541.632370	45525.586959	45441.564300	45442.065460	45475.067230	45424.524711	45424.524749	45425.025521 45612.025506	45401 189254	45401.189201	45630.864746	45630.864807	45438.889564	4544U.56115/	45588 927932	45602.956207	45541.907867	45572.626113	45398.323562	45398.323593	45398.323333	45589 791091	45549.997070	45417.441436	45417.441490	45399.253646	45599.879303	45580.632461
9574 9574 9579	57	63	63	63	63	64	64	64	82	82	82	82	82	2 0	9 0	8 5	85	85	85	88	0 0	8	8 8	88	91	91	7 6	10	92	92	9 2	92	92	92

4.91	2	4	7	9.	7	9.	S	S	4	æ	'n	9.	S.	4	9	9	0	S.	9.	9	4.6	0.	'n	9	ഗ	9	9	4	6	m 1	1	80 .	4.	4	S.	S.	ហ	S	9	ഗ	7	9	7	ų.
18865.0	6264.	5502.	7819.	1330.	5260.	5048.	8217.	8152.	6632.	0146.	6022.	6212.	8384.	8387.	6021.	6190.	6106.	6105.	5921.	5053.	4874.	4876.	4875.	4874.	5085.	7545.	5257.	5170.	5179.	5017.	7867.	4748.	5323.	6042.	5457.	5483.	5550.	5029.	5020.	4974.	5837.	170.	4780.	9511.
42.9	m	7	0	9	о О	s.	3	3	0	8	3	3	ص	3	•	ij	-		5											-	21.		13	6	-	1	i	-		0	i.		7	4
5.6										•		•			•					•	•											•		•										
	4	6	9	7	7	9	7	2	0	S.	2	2	8	ထ	1	7	4	4	ä	3	6	6	9	6	7	9	S.	8	8	7	4	8	4	4	9	0	ä	7	-	9	4	83.8	5	m
.545	.540	.530	.300	.105	.185	.305	.000	. 555	.795	.450	.100	.005	.070	.000	.780	.880	.000	.440	000.	000.	.635	000.	.000	.680	.670	.715	.715	.620	.160	.770	.330	.065	.290	.500	000.	.355	.240	.405	.270	.425	.220	0.4200	.800	.000
.600	.325	960	.740	.080	3.475	745	2.580	305	.260	.240	.590	.705	.945	.450	.660	.710	.570	.550	.560	.500	.305	.510	.065	.065	.430	.960	.815	.865	455	.630	.040	.160	7.955	.070	.885	.820	.030	.900	.905	.930	.940	1.5800	.140	.420
.450	. 930	.680	. 885	.780	.575	395	. 595	000	. 720	.725	.615	.840	.790	.550	.155	.385	.780	.130	.510	.050	.860	.490	.740	.540	.890	.580	.320	.445	.790	.415	.220	3.000	.730	1.790	.675	690	.730	.920	.765	.600	540	1.0500	.440	400
9	9	0		4	9	0	1	S	0	9	0	9			(L)		- 1		- 1	00		1		00	3	9	-		0	3	7	0	9	N	1	S	0	4	8	3	4	460	8	
A.	8	00	0	0	1	σ	1 4	σ	10	1	-	00	00	9	00	0	3	9	~	0	1	5	0	4	9	0	8	9	-	N	N	9	9	9	9	-	00	4	C	1	4	1		1652
45569.744354	45420.228309	45634 656768	45561 579132	45463 548645	45417.311447	45470 064468	45440.561195	45441 062400	45447 578796	45399 540367	45423.522178	45424 023262	45615.980529	45615.980468	45427.257591	45455.247978	45602.014068	45602.014129	45654 431335	45418 773849	45429.263572	45429.263519	45429 263572	45429.263572	45564.260101	45468.815078	45432.626274	45633.574279	45633.574340	45639.869842	45410.894470	45568.273529	45438.886726	45466.334075	45568 525177	45569.527236	45570 529464	45427 042617	45428 044929	45432.054283	45586 924041	45623.139556	45651.899261	45538.0969086
92	92	0	9 6	0	0	ופ	0 0	0 4	40	0	94	9	94	94	000	000	000	000	000						000	000	000	000	000	000	002	002	002	005	900	900	900	900	900	900	0 0	000	000	10001

-	4.00		4 1	v.	4	4.2	ω.	80	4.	4	4.	9.	۲.	4.	9	'n	1		S.	Φ.	9.	9.	4.	Φ.	8	7.	4	. 7	5.7	9	œ.	4.6	Φ,	4.6	-		0	9.	Φ.	ο.	'n	-	Φ.	80	9.	
1200	19251.0	- TEC.	9374.	9462.	0536.	0528.	0525.	2662.	2650.	8620.	0000	2415.	2423.	5149.	4919.	4904	4998.	5430.	5260.	5232.	5273.	5718.	5730.	7869.	8492.	1792.	4111.	7966.	8302.	8311.	5054.	5053.	6800.	4785.	4780.	9477.	9462.	5077.	3535.	6786.	8266.	8273.	1751.	6580.	8777.	
	7.77		-	6	4	4	4	7	7	i	3	5	5					5		0	3	4	6	4	<u>ر</u>	6		Š.	0	0	2	7	4	0	0	4.	4	i	1	2	3	3		0	0	
	0.0													•								•					•			•		•				•	•	•		•	•	•			•	
	95.0		0	8	8	8	8	8	8	7	8	9	. 98	i	88.	6	6	9	11.	0	. 66	6	9	4	ω.	7	0	9	-	i	4	4	ص	m	m.	S.	S.	9	6	7	4	4	8	7.	1	
	0.7400	. 960	. 595	.645	.610	.000	.680	.395	.000	.940	.545	.160	.000	.465	.630	.390	.400	.490	.640	.420	.180	.095	.060	.825	.290	455	.910	.020	.565	.190	.000	.580	.000	.510	000.	.615	.180	.600	.000	.520	.160	.195	.150	.000	.000	
	· 5	. 955	.370	. 550	.775	.705	410	.110	.780	.240	.015	.745	.360	.040	.000	.110	.920	.140	.815	375	.220	.880	.985	.660	.020	.620	.570	.495	.970	.630	.310	.300	.905	.145	.465	.780	.540	.460	.080	.215	.270	.490	.570	645	020	
	.02	.320	.920	.275	.060	.960	.840	270	365	.870	.290	.480	.040	.845	.650	.095	.680	.770	.750	390	100	805	980	540	975	095	780	.475	.790	.220	.785	.890	.590	.745	.700	.320	.465	.780	.085	.800	090.	.695	.260	. 560	0.3100	
	236	3	S	9	9		~			-	00			4	9	0	S	LC.	4	4	. 0	1) C	0	10	V		4	1	-	- 1				- 1	-		9	- 1	œ	6	-		1	· -	
	7	œ	1	\forall	m	1	4	V	~) ("	1	1	-	31	1	S	0	1	4	v	7	- 4	7 0	- 0	1 5	. 4	0	L.	1	-	1 40	00	N	-	8	0	C	S	1	4	0	4	4	- 0	142	
	5538.348663	5561.581207	5394.606021	5564.335830	5375,614734	5375 614795	5375 614R22	5463 113693	5462 113616	5632 079437	5632 583892	5627 590118	5637, 590179	5173FR CRES	5482 307952	5401 807655	5496 B05786	5519 777084	ECOR 256897	EE 00 35 872 8	02/062.6200	5377 973503	5577 054565	2337.0349 EABC 088348	5466.0003±0	10100.7010 01101	5554 595047	5415 56372R	5447 081161	5447 081199	5471 342910	5471 342910	5478.143158	5507.205307	5507.205368	5537 196914	5537, 196991	541R 523063	5623 590240	5423 502105	5458 172164	5458 172210	5619 AR1958	5541 909201	45555.9326782	
	600	600	000	000	000	000	000	000	000	000	000	000	000	410	110	710	710	7 7 0	7 7 0	7 7 7	410	CTO	CTO	010	CTO	010	מנס	1 1 1	015	210	015	710	210	015	015	710	210	7 10	210	910	710	910	910	910	10315	

6000	4.00	No wo		0, 6, 6	0 H 4 R	4444	0.4.0.0.4.	44000	444444444 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
6064. 5407. 5465. 1223.	1224. 4172. 7451. 4138.	4562. 1080. 2422.	1986. 1432. 1781.	7803. 7186. 4107.	2907. 1787. 5213.	8458. 8458. 7868.	8412. 8473. 8473. 4024.	5075. 5131. 4986. 4912.	35269.0 35237.0 35147.0 35147.0 34943.0 35069.0
46.46	90 90			9.000	2000		21110	00000	0.000
									шшиинии 4.поочи40
0 6 6 0	0000	9 20 20	9977	87. 92.	0 6 4 6	994.	87. 114. 06.	00000	88 88 88 32 32 32 32 32 32 32 32 32 32 32 32 32
.585 .200 .310 .515	. 735 . 000 . 000	230	.000	. 790	585	. 710 . 000 . 430	.240 .000 .310	. 735 . 650 . 770 . 010	0.9300 0.6800 1.1950 1.2100 0.9950 1.1150
.750 .120 .865	. 695	. 550 . 870 . 945	.045 .415 .980	. 340 . 770 . 960	. 690	. 120 . 090 . 365 . 980	.540 .275 .380 .135	. 455 . 155 . 465	1.5250 2.0900 2.3850 2.2850 2.2850 2.3850 1.7350
. 540 . 520 . 520 . 505	.430	. 525	.930 .680 .200	. 510	395	. 730 . 670 . 800 . 765	. 905 . 905 . 825 . 900	. 070 . 925 . 645	1.6250 1.7250 1.9100 1.8100 1.6900
	4010		0141		00100	700104		10094	234 233 233 212 225 189
6196	000000	0400	10 1 W	1099	D 10 01 0	00000	7 0 0 0 m	00000	391 277 277 306 307 296 291
5574.497634 55593.456085 5509.629592	5382.221336 5497.964309 5526.879516	55/9.833816 5583.777420 5584.520309 5377.619266	5378.121563 5378.121513 5463.612823 5464.114379	5464.114410 5488.163604 5645.105590	5597.462127 5598.464386 5598.427032	5585.436889 5507.061386 5507.061386 5538.627868	5632.864471 5582.287216 5582.287216 5604.260711 5543.291488	5381.904811 5383.909469 5404.885368 5544.759124	45462.7283935 45462.7283935 45463.7306671 45493.7245026 45398.2635498 45495.2629852 45519.2420349
031	986	036 036 042 045	045 045 045	045	045	040 040 040 040 040	000000000000000000000000000000000000000	051	10557 10557 10557 10557 10557 10557 10557

9	5	S	S	1	3.4	רי	٠.	9	m.	'n	9	4	9	9	1	Ņ,	00	1	5.7	0	80	1	'n	9	1	9.	S.	S.	'n	S I	v.	N.	S.	9	9.	9	4	4.		9.	9.	Ŋ.	5.58	۲.
1150.	1736.	2310.	8459.	3602.	3596.	7956.	3505.	2672.	5942.	5964.	5182.	5494.	4983.	4897.	9494.	9553.	9465.	9275.	9493.	1366.	8986	9598.	4893.	0431.	6195.	3516.	5165.	5127.	5118.	5095.	5023.	4929.	4921.	5145.	4893.	5038.	4939.	4931.	1369.	5256.	5283.	3236.	14487.0	1881.
7	8	6		9	9.	9	٠ ص	0							'n	ω	7	53.	S.	0	-	2	-	1	0		0		0	0		0	0		i			0	9	-	0	8	26.6	6
							•											•						•						•											•		3.7	
LC.	9	7	1	9	9	5	'n	0	0	00	7.	0	9	0	ij	S.	2	-	8	6	18.	7	94.	9	3	9	1	3	3	S.	7	6	3	m.	6	9	4	4	0	S.	0	0	88.7	4
820	000	.745	.920	.435	.350	000.	.795	.990	.080	.000	.845	690	.500	. 595	.775	.650	.630	.485	.720	.240	.500	.290	.915	.415	.640	.545	.125	.130	.110	.030	.305	.010	.265	.115	.915	.210	.835	.160	.610	. 245	.235	.670	0.3800	.980
400	380	920	490	.815	.250	.180	9.215	.390	2.540	.510	.290	.135	.820	895	.970	.685	.535	.025	.880	.610	.350	.460	.725	.030	.680	.255	.730	.605	.675	.840	.445	.255	.200	.240	. 555	.450	.305	.095	.530	.720	.620	.750	1.8800	.210
125	275	445	175	.365	935	.410	.5700	.0700	1.9200	610	.770	.870	.610	.615	.660	.175	.955	.690	.145	.600	.810	745	285	.515	.705	.510	.175	.845	.920	.795	.805	.955	.825	.855	.925	.760	.880	815	.410	305	165	6100	1.3750	.255
C		C	169	œ	N	-	9	00		-	8	9	9	œ	-	-	9	9	9	-	00	0	0	(4	S	9	S	9	9	H	4	0	N	0	N	9	00	0	1	C	N	958	0
V	7 0	200	2	1 4	8	21	4	m	9	9	(9	9	8	N	8	9	-	-	மி	9	0	-	4 -	10	1	0	00	00	-	9	N		H	9	8	-	1 4	S	~	0	0	0	298
	5506.907272	E508 912918	5555 864852	5550 946395 5560 946395	5560.946426	5400.046157	5403.054138	5403.555580	5382.554340	5382,554386	5475.005264	5402.528854	5488.033813	5556.032104	5503.816040	5499.560012	5499.873046	5522.845901	5481.782943	5524.102661	5575 490860	5576 492492	5405 201431	5411 575920	5421 095336	5537 281707	5408.750381	5409.752807	5410.755081	5411.757484	5413.762451	5414.765602	5417.772880	5505.749130	5549.770446	5465.270156	5633 250427	5634 252227	5441 573623	5470 492004	5461 474136	5643 665405	5414.770813	45439.7430649
	090	0 0	000	0 40	000	090	090	090	990	990	990	990	990	990	068	068	068	068	068	690	000	000	000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100	270	770	770	770	077	770	077	077	077	077	770	770	770	770	7	77	770	079	10801

4.65	4.9	2.1	9	S	9.	m.	9	۲.	4	9	9	<u>.</u>		5.5	. 7	. 7	. 7	6	4	6.4	7	4	4	. 2	8	8	S	1	m I	0	7.1	m (٠,	١ ب	S	4	N.	7	8	2	9.		Γ.	1.	
913.	5985.	3889.	7501.	2364.	2365.	3962.	4332.	5996.	7865.	5030.	. 8996	9662.	9468.	.9900	9653.	9657.	9641.	5051.	0540.	4147.	8061.	1217.	0507.	8189.	2386.	7424.	489.	2039.	5398.	6447.	1167.	2414.	6400.	3694.	1184.	1185.	8560.	2916.	8214.	7286.	4983.	34994.0	1039.	9386.	
2	0	0	ä	6		ъ.	0	6	4	0	48.	8	61.	4	5	62.	62.	0	46.	26.	3	3	5	2	3		8	1	0	28.		9	33.	0	2	S.	6	8	0	0	0	-0.5	9	22.	
																		9																								1.6			
9	2	8	2	0	0	4	1	S.	8	0	9	9	8	0	8	8	8	81.	9	13.	9	7	7	6	8	6	о В	7	92.	-	9	N	8	N	7	7	5	2	-	S.	2	93.5	Э.	00	
.000	.745	.310	.000	.490	.000	.705	.000	.940	.635	.605	.820	.000	.290	.710	.255	.000	.000	.815	.295	.060	.000	.745	.605	.590	.350	.860	.740	.495	.000	.605	.920	.000	.440	.050	.000	.000	.195	.530	.000	.000	.840	1.0550	.230	.000	
.140	430	995	.735	.290	.310	.435	.390	.095	.580	.030	.825	.470	.700	.530	.495	.770	.330	.050	.385	.565	.800	.985	.575	.585	.015	.750	.225	.830	.790	.390	.695	.680	.455	.615	.790	.000	.030	3.945	415	.610	995	2.0300	.540	.460	
.790	.935	110	.110	.765	.660	.975	.520	.250	.235	.860	.125	.060	.095	.705	.610	.170	.790	.710	.900	.980	580	315	525	400	.640	.480	.820	.965	0.720	.235	.765	.740	.145	.415	.210	.730	.705	3.250	.175	820	340	1.4000	.600	.560	
	-		1				- 1	4		9	4	- 1		22		t		1	00	9	- 1	8	(3	8			N		1				H	27	9	1	L	216	I W		
00	C		. 6	9	4	ហ	N	9	9	-	19	0	-	6	9	9	9	H	C	0	00	1	-	0	-	0	H	3	3	3	-	_	0	S	9	14	L	H	L	U (C	27	. 00	7	394	
2 45588.004455	2 45635 244598	45375 687721	45549 273742	3 45403 036338	3 45403.036338	3 45525 939514	3 45553.515609	4 45527 104995	3 45640.250976	5 45522.216171	3 45412.679603	4 45412.679664	3 45468.588546	3 45574.139663	3 45626.608886	3 45626.608917	3 45626.608795	4 45462.010986	4 45583 094467	4 45587.312698	5 45652 116149	5 45615 493866	5 45616 495880	9 45542 492538	9 45468 825866	0 45563.944870	0 45632.066131	5 45526.258056	0 45417.121406	0 45565.629486	0 45570.272232	0 45552.037780	0 45557.540145	0 45518.444870	0 45637, 949890	0 45637.949890	6 45479 232772	6 45538 062667	6 45493 259597	45591 311676	A L S S S S S S S S S S S S S S S S S S	45506 645065	45571 665786	83 45633.6399536	
80	8	0 0	0 0	0 0	0 8	800	80	800	0 0	0 0	0 0	800	0 8	80	08	080	080	80	80	800	0	0	0	0 0	0	60	60	60	60	60	60	60	60	60	60	0	0	0	0	0 0	0 0	0 0	0	1098	

9.	9.	0	4	S	S	4	9	9	9.	S.	4	9	. 7	2		2	00	. 7	-	۲.	9	5.6	٦.	5.4	4.	S	°.		i.	7	'n	w.	0,	9	4.	9		۲.	9.	v.	7	4.50	4.7	9.
5451.	7651.	1728.	883.	5231.	5355.	5068.	4948.	4907.	4904.	5036.	2840.	6767.	1966.	5790.	9881.	9882.	0261.	5306.	5140.	4153.	9301.	9296.	9296.	9845.	9293.	9245.	6582.	6050.	8798.	6270.	8462.	8469.	9707.	7935.	7026.	9268.	2132.	2882.	4722.	2619.	2622.	39004.0	7151.	3120.
-		9	4	•			•	•		0	8	6	<u>.</u>	0	ď	•	6	7	S.	6	22.	7	27.	8	3.	•	3	8	m	1	4	4	÷	4	m.	7	7	2	4	i.	H.	61.0	i	8
																	•					•											•						•			3.0	•	•
4	9	-	7	4	7	0	5	4	e.	02.	7	9	ω.	S.	7	5	7	4	5	6	00	01.	7	98	-	8	0	7.	4	S.	8	8	0	9	0	2	7	S.	S.	9	9	88.6	4	S.
α. Γ.	495	.250	.080	.890	.965	.535	.100	.850	.680	.085	.665	000.	.450	.965	.230	470	.560	.000	.235	.215	.870	.810	.000	.590	000	.170	.000	.005	.350	.290	.015	.760	.835	.800	.560	.740	.940	.275	.860	.540	.000	0.4500	.630	.220
630	890	270	.730	.945	.520	.820	.605	.450	.240	.450	.670	.420	2.665	.265	.690	.120	.720	.475	.380	0.340	.730	.075	710	000	695	540	.430	.830	.940	.860	.795	.910	.045	.460	.590	.190	.290	.400	.760	.305	360	0.6700	.160	.560
125	610	670	795	860	.370	.280	.955	.620	415	.710	.040	.575	.175	.650	.695	.330	.145	.610	.330	.775	450	480	650	920	100	970	535	000	.855	.490	445	.730	.345	.055	.055	.815	.150	.855	335	.510	200	0.3550	.755	.675
C	10	L L		~	00	4	S	H	-	4	-	-	S	4	m		4	-	8		0	0	4 1) 1		1	9	00		0	3	9	0	0	9	4	00	0	9	1	00	-	295
0	0 0	α	0	~	1	LC:	0	0	-	00	9	(1)	(S	9	9	8	0	m	-	-	1 0	-	4 ~	2	9 6	0	-	1	In In	LC:	00	-	00	7	00	4	-	0	N	1 ~	יש ר	7 (373
	5558.901977	011200.120	5647 477966	36366 6183	5421 599510	5375 640182	5456 536430	5457 538757	5458 540870	5610 422943	5651.471466	5527.034927	5396.540119	5399.543861	5426.530509	5426.530548	5427.031738	5466.618240	5475 897506	5467 193695	5267.1358 5281 041358	E202 044437	5565.044457	A12453 3753	1010.07.00 1010.00	5441.20/033	EEA2 125252	5495 AR7558	5501 531356	5539.976089	5529 246719	5529.246749	5573,115539	5601.962738	5636 530242	5505 203704	5512 363143	5424 025482	E422 258400	5487 379638	EA07 2 70638	5639 88110	5464 667587	45465.7395477
0	200	000	0 0	000	000	000	000	000	000	000	000	000	100	100	100	100	100	001	101	100	707	0 0	100	100	100	100	100	107	100	107	107	107	107	107	107	107	10	107	107	101	100	107	107	11076

the first of the f

	14454444444444444444444444444444444444
1538. 33766. 94740. 96876. 22991. 22972. 22972. 22972. 22972. 22972. 22972. 22039. 22039. 22039.	24949.0 23249.0 23249.0 447549.0 44949.0 32199.0 31487.0 27000.0 27000.0 35111.0 35481.0 35481.0 34481.0 34843.0
	74 7 7 7 8 8 8 8 7 7 7 8 8 8 8 8 8 8 8 8
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
77-1-0-0-0-4-0-4-0-9-0-9-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.0000 9.000 9.00	0.7900 0.7900 0.7900 0.6550 0.6550 0.5650 0.9200 0.9200 0.9850 0.0000 0.0000 0.2550 0.2550 0.3200 0.3200
7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.5800 2.6800 2.6800 1.2450 1.2450 1.5300 2.2800 2.1200 2.7200 2.3600 3.8700 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500 0.8500
	1.1800 0.5850 0.8850 0.8850 0.7850 0.7850 0.9950 1.6650 1.3950 1.3950 1.9650 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460
4 M O 1 M M O 4 8 4 M M I I M O M M M M M	2011 2011 2011 2011 2011 2011 2011 2011
00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45521.234237 45495.8884473 45584.781631 45584.781631 45541.491145 45544.897293 45543.5739 45552.62620 45553.604391 45492.578843 45492.57884 45494.117584 45544.578689 45568.555114 45570.559524 45571.562118	5 45612.0327454 5 45613.0346680 3 45550.5585022 8 4551.9121704 8 45551.9121704 8 45565.095215 8 45563.963873 8 45518.0425720 0 45538.5578613 0 45539.567147 0 45542.0671692 0 45543.0685730 0 45543.0685730 0 45543.5523007 0 45543.5523007 0 45543.5523007 0 45543.5523007 0 45543.5523007 0 45543.5523007

0	4		U II		4. 6	٠.	4	4	4	4	4.	9.	9.	4.	9.	9	9.	9.	Š	S.	9	ů.	7.	4	1.	5	9.	9.	9.	.5	4	4.	9	v.	7	-	. 7	4.64	9.	1		9	ω.	9.	0.
4981	4987		720.	. / 40	0.812/	8495.	8439.	8569.	8231.	8255.	3446.	8147.	5737.	5163.	5169.	4865.	5084.	5113.	5152.	5057.	5450.	7188.	3711.	5524.	5591.	4920.	5073.	4899.	4900.	4927.	4947.	4953.	5367.	5337.	5349.	5987.	4650.	37338.0	7436.	576.	8418.	7110.	542.	7185.	6140.
				# (٠, ٧	4	4	٠ س	4	4	0	3	3	H	0				0	0	3	3		0	0	0	7							ij	00	0	7	63.3	m	•	i	3		2	6
																																						2.2	2						
-			, ,		m 1	0	0	0	0	i	6	6	4	4	3	1	4	3	0	6	1	0	S.	0	0	7	. 6		H	6	3	7	5	14.	m	<u>س</u>	4	91.3	1	9	7.	9	7	7	6
0		. 040	.270	.450	. 520	.000	.970	.970	.880	600	.705	1.030	000	060	.115	610	545	.650	.925	.975	920	540	.420	735	000	455	930	940	908	.950	.740	.130	.465	.705	.845	.550	.590	. 94	.335	.695	8.890	.250	.690	060.	3.1550
745	0000	070	. 220	.080	.380	430	.570	.930	.820	640	7000	2.9300	625	300	965	755	.175	.045	160	460	910	300	620	840	530	705	280	055	865	210	785	.930	.590	.100	.655	.495	.850	.74	.685	4.9250	.2300	2.170	190	300	335
1	7.70	. 615	.025	.915	.915	.720	.955	745	.680	170	110	2.4350	945	870	480	685	640	740	570	230	490	260	325	י מר	715	120	575	AOR	150	460	380	.245	.170	.735	.655	.935	.100	.550	.620	7.980	.185	1.300	350	860	4.1850
	1 5	9		S	8		8	N	C	I W	1) 1	v	0	V	-	0	1	1	. 0	a		n a	0 1	u		ם ת	10	1 1	1 6	1	9	Ý	C	3	S	-	N	3	C	0	S LC) (252
	ורי	-	-	2	7	9	9	(4	٠,-	1 6) -	4	15	. 0	1	ľ) α	0	1 (0	L	n -	1 0	D C	4 0	OC	0 0	O V	7 0	. 0	0	m	-	7	S	9	S	9	4	· M	2	O C) L	258
	45645.022186	45646.023986	45543.913925	45569.891632	45406.483367	45379.495014	45379.994709	45383 002716	45377 490078	45770 00758	45377.330700 45467 ABAGOS	AEE 02 860755	45555.000255	45410 059783	AEENE 033172	45431 E53695	ACACC SERORR	AEA67 560134	A E E S C O O S S O O O O O O O O O O O O O O	4E62E 522064	450453.322004	05 A0 20 COTTA	45593.868438	45610.969604	45383.444/89	45595.044097	45411.508438	45498.483888	45539.496307	45541.303474	453010 70534	45621 980041	45584 444976	45585.446746	45477.576004	45478.076828	45500.618713	45508.637085	45509.138107	45466.528076	45467.025833	45494 175491	45454.17551	45633.621213	45460.6531677
	27	27	132	132	132	132	132	133	122	100	132	132	132	136	120	100	136	1,0	100	100	100	120	138	138	143	143	144	144	144	144	7 7 T	TAT	144	144	147	147	147	147	147	147	147	147	147	7 57	11509

5.21	m	4	4	4	8	0	9	1	S	6.		4	1	9.	,	9.1	,	m.	4	S.	m.	ŝ	S	9.	4	1.	1	4	9.	0	4.6	7	9	m (0	9.	9	9.	S.	9	9.	.5	S.	N.
	2042.	0285.	4974.	9930.	9926.	9125.	7294.	6019.	2973.	8802.	.9269	6387.	6377.	9277.	1882	8158.	8158.	3904.	0619.	8956.	8955.	2335.	3219.	6700.	7727.	6	6107.	4033.	3696.	6020.	7851.	7852.	7857.	3171.	.9029	4740.	4960.	4790.	4881.	4810.	4960.	5142.	4970.	4981.
1.	ო	2	9	m	3		9	5	0		1		9	m :	3	m	m	80	8	1	i	ä	m	4	4	60.5	1	6	ij	6	ص	m.	m m	'n	0	9			•			2		
															•				•						•	6.3	•							•					•					
80	ص	08.	03.	00	0	88	9	0	83.	. 60	0	8	8	6	9	9	9	2	4	8	8	5	60	8	0	82.4	2	9	8	9	9	6	9	60	ŝ	7.	5	0	5	4	7.	80	68	10
.310	.250	.000	.200	.590	.000	.870	.515	.690	.000	.000	.630	.000	.190	.310	000.	.225	000.	.940	.760	.480	.000	.545	465	460	000	0	.000	.425	.970	.235	.320	000.	.000	.370	.975	.965	.575	.875	.825	.475	.520	.660	.815	.520
.190	.280	.070	.360	170	195	.375	.135	.905	.720	.880	.820	090.	.330	.675	. 545	.345	.755	.900	.850	.850	820	460	140	810	435	88	.680	.020	.555	.280	.380	.420	.380	.765	.500	.430	.415	.390	.900	.220	495	875	. 555	590
.575	485	675	895	815	510	.655	.050	.835	.525	285	.495	.960	.505	.110	.670	.600	.580	.585	.815	625	290	065	640	390	440	. 265	345	.605	.995	.390	.485	.790	.585	.435	.340	.725	.550	.270	.470	.230	.755	.880	110	2.8100
(1)			0) 1	0	4		- 1					238	1		1	C	~		1	α) v) 1	262		L	0		-	- 1		N	-	9	0	S	m	00	0	S	1	199
-	-	27	. 0	1 0	\ U	00	4	4	6	00	9	4	-	0	-	00	S	4	0	0	1	. 0	V L) () V	o v	4	. 9	C	9	-	9	N	4	S	N	0	6	1	. 9	00	0	1 0	374
5461.158584	5520 088424	E 600 250640	5607 265564	170075 553	5622 371002	5415 635505	5446 916099	5436 R24607	5623 625549	5599 105011	5612 275939	5626.522552	5626.522644	5383.504489	5413.054229	5413.560646	5413.560600	5431 950157	5458 030731	5492 316726	301916.2613	02/01/07/07/07/09/0	EA20 A70892	EE 60 - 4 / 0033	FEDE 086020	176756 937371	5427 246589	5455 455535	5463 049301	5630.930267	5510.426361	5510.426361	5510.426361	5482.297973	5465.815658	5480.556121	5537.636077	5435 884857	5423.461410	5433 412475	5483 021453	5503.021233	EE02 008021	45596.4670410
150	150	1 1	100	100	0 0	155	100	155	150	157	155	150	150	155	155	155	155	150	ן נו	100	100	100	100	100	TOO	100	100	155	150	155	155	155	155	155	15.0	156	156	1 1 1	150	156	1 1 1 1	100	D C T	11569

Φ.	5	9.	9	5	9	4. 1	S	. 5	9	4.6	7	σ.	9	9	4 . 7	-!	. 1		0		œ	S.	9	80	9	9	4.6	ا ب	Ü.	-! [י ר	. c	7.4		9 (י ע	Ü.	4. 1	ů,	9	9	1	9.
4656.	6259.	5648.	5636.	5823.	4934.	4770.	5026.	4950.	4853.	5164.	4676.	0908	7987.	4783.	3765.	8065.	8064	4390.	9134.	9759.	9775.	4036.	8513.	2966.	4901.	4899.	4890.	5923.	6796.	32/9.	4378.	5840.	8668	13504 0	2000	4321	1700	. 6676	0388.	9045.	9030.	7021.	5985.	5037.
~		2									i	0	3	6	٦.	1	i	4	4	6	6	3	3	0	-		0		<u>.</u>	80 .	4	٠ د	٠	1.50 7.75		. 0		. 00	Η,	2	7	S.	4	6
																																		7.0								•		
6	9	1		3.	8	8	6	4	2	7	8	7	<u>ب</u>	4	8	4	4	3	8	7	7	8	'n.	4	6	6	0	9	4.	i	7	9	9	96.2		. c	,	œ ·	ω.	S.	2	;	0	6
000	315	870	.535	.290	.560	.390	.380	.390	.785	.980	.000	.870	.830	.145	.490	. 590	000.	.885	.000	.780	.000	.400	.605	.650	.600	.825	.915	.000	.010	000.	.650	.365	.765	0.0000	. 430	.050	. 860	. 940	. 780	.405	.445	.075	. 945	.920
660	2002	105	870	. 595	.700	.880	.350	.520	.545	.705	.570	.075	.095	.720	.590	305.	.830	.935	.310	.105	.440	.205	.295	.895	.500	.710	.490	.200	.320	.680	.840	.290	. 550	1.3650	595	. 920	. 885	828	.145	.165	060.	.140	.920	.880
725	205	200	630	840	.630	.735	.840	675	.985	.600	.375	.955	.390	.685	.045	.550	.750	.175	.300	.400	.830	585	.955	.035	.050	.050	.955	415	.870	.400	. 595	.975	.175	0.2500	. 535	.715	. 705	.945	.890	.680	.880	.530	395	.960
	M	ח רי		N	1	4	H	9	1	9	. 1	(C)	-		9				- 1	6		(1)	1) =	9		9			- 1	0		2	7	4	3	9	9	Н	H	9	N	N	
	- 4	7 5	- 4	. 1	0	-	9	-	1	. 4	-	00	-	-	S	3	3	9	C	1	. 4	4	0	S	Œ	9	-	S	0	9	C	N	g	169	g	S	B	\vdash	9	9	0	8	0	280
	9 45524.152902	0 45541.542999	0 45441.503941	0 45426 111206	A5567 087036	1 45379.039615	1 45555, 212417	1 45425 036872	1 45467 631073	1 45578 433639	1 45617 078430	9 45467 966110	9 45557.868331	9 45400.549385	9 45591.655426	9 45586 784088	9 45586.784088	9 45585 851486	9 45614 493591	9 45641 468475	9 45641 468546	066664.126646	2 45587 145172	2 45587 782592	1 45549 770248	1 45468.743850	1 45469.746368	3 45520.530929	3 45552.094421	5 45569.877365	5 45614.894409	1 45560.794769	2 45476.067352	2 45476.067352	2 45426.032974	2 45426.033035	2 45426.534454	2 45430.543235	2 45431.044204	2 45465.614868	2 45466.116272	2 45521.596572	2 45522 599411	2 45523.6012573
	15	1:	ת ד	ן ה	1 1	1 5	1 1	14	י ב	1 5	ן ע	1 5	1 5	15	5	1 5	15	1 5	1 1	1 4	1 1	17	101	10	1 4	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	14	1 4	14	1166

7	1	α	. 4	9	ט ע) (0 1	n ·	4		4	4	'n	9	9		8	9	9		9	ო.	7	0.	3	'n	3.86	'n	0	S.	4	v.	4.1	. i	9	9 .	4	4	'n		9	9.	9	1	9.
4144	3399.	6610	1511		1130		5064	277	5133.	5130.	5904.	5900.	5912.	5608.	5525.	5338.	5335.	2606.	9848.	9485.	9825.	2134.	2134.	4507.	0034.	4969.	34803.0	6624.	5306.	6534.	5901.	5839.	5878.	5730.	5697.	5903.	5728.	2741.	7562.	2679.	5737.	2319.	609	3943.	9115.
			n -	1 L	0 -						0		0	2		ί.		1	ä	4	0	9	36.	2		0	-1.0	0		7	0	0		i			2	9	6	9	4	2		4	0
				0				٠																			1.2																		
a			D L	'n.	4	4	7	m	S.	9	رى س	N.	N.	S.	8	8	8	S.	0	9	2	2	2	0	95.	2	88.1	7	1	72.	4	m	i.	9	8	9	N	2	9	4	3	4	7	0	
375	705	000	000	320	455	2000	990	.615	.780	.190	.280	.470	.280	.480	.170	000.	.120	.845	.505	355	.615	740	000	808	.200	.780	0.9000	.000	.335	.765	.595	.645	.850	.025	.410	.575	.730	900	.810	.585	900	.780	.870	615	000.
0	175	100	250	OTR.	410	. 205	. 695	.910	.740	.260	.965	855	.965	.885	.265	.355	.305	.490	.030	.340	.460	325	640	310	470	.550	.39	.760	.990	.930	.915	.700	.235	.195	.450	.885	.980	.945	.630	.130	.250	.680	.055	490	09
7.5	000	0 0 0	020	.455	.165	. 685	.290	.515	.310	.630	340	395	935	.280	.545	425	.985	.925	.635	995	205	850	680	200	735	300	785	180	190	.760	875	300	.700	.180	.585	.890	. 590	090.	.545	.150	.375	485	.880	315	0.8550
0	087	D	1 [-	336	N	S	9	9	6	S	0	S	00	-		77	9	2	9	LC.	352	1	C	S LC	1	106	1	0	20	9		00	m	S	0	0	4	9	9	9	m	163	6	- 1
(ם עכ	C	4 1	2	4	S	$\boldsymbol{\omega}$	-	0	4		0	C	Y	00	N	1	27	C	0		1 0	V	9	26	-	0	α	9	00	6	0	9	S	9	S	N	-	9	4	C	m	-	((1)	261
	5524.602691	5525.603/14	5463.398010	5518.516189	5610.824737	5625.142272	5569.127807	5601.656707	5612.677398	5613 679199	5405 062149	5405 062164	5405 062149	5499 557708	5544 292404	5434 023536	5434 023559	5484 311126	5502 818679	5494 119018	CUCCRE FE35	100300 1605	E471 02500E	56727 158081	ALL 1000 1532	5409 110878	5434 023460	7C97FA 41797	5283 558250	5607 AR1622	5385.055061	5410.683532	5375.282756	5570.416183	5562.723892	5518.024337	5646.954132	5446.152450	5432.118995	5602.884002	5608 894073	5601 882843	5614.044952	260251 F105	45654.4229736
	166	166	167	167	167	167	167	167	167	167	971	100	001	1 6 8	168	168	168	168	160	700	001	100	1 1 0	1 7	170	170	170	171	171	171	175	172	172	172	172	172	172	175	175	175	175	176	176	371	11762

.5	8	.5	.7	1	9	5.6	. J	4.5	3	'n	6.	S	4.7	80	7.		ŝ	'n	0	S	S	9.	0.	9.	m	9.	9	9	'n		E	4	1.		·.	9	00	0.	Φ.	8	00	4.65	2	4	
112.	9105.	9674.	500.	9545.	251.	246.	248.	244.	322.	7910.	5014.	7231.	8391.	9116.	9468.	0057.	5523.	5320.	4367.	8660.	3257.	8462.	6041.	8777.	9632.	5633.	5769.	5646.	5956.	1214.	5972.	3400.	2474.	2199.	7611.	6874.	8074.	8067.	8900.	8898	0147.	38262.0	4977.	9720.	
0	0	S.	37.	54.	48.	48.	80	48.		4	5	8	0	1	3	3	3	3	0	ij	4	7	8	4	8	1	•	•	1	9	?	ω.	9	1	9	3	8	8	6	6	0	57.2	0	7.	
	•																	•															•	•					•		•	4.0		•	
0	0	7	81.	02.	00	00	0	00	87.	8	-	4	6	0	-	0	4	4	3	3	4	9	3	7	0	4	3	9	5	90	07.	7	6	91.	4	S.	7	7	8	8	-	81.2	6	0	
000.	000.	.800	.840	960	.000	.860	.000	000	425	365	885	425	.905	000	.080	.930	.410	.230	490	000	.480	000.	. 225	.320	.515	.515	.255	.155	.095	000.	.070	096.	300	.660	000.	.600	.430	000	000	000	455	1.5100	.630	. 225	
.530	.035	.210	.040	. 225	.545	.310	.725	.660	.855	760	.315	. 925	.135	.430	.560	450	.515	.570	.860	2.070	.965	.455	.340	.440	.045	3.300	.100	.580	.690	.480	.625	.615	.6850	1.465	060.	.000	.775	.540	795	210	475	3.3350	.920	.750	
.530	.460	.775	895	.590	710	908	640	535	535	410	635	675	295	390	815	465	165	.080	.760	1.210	475	.460	290	050	4200	1.9050	.375	190	.750	355	685	.480	.8300	0.8550	.800	.630	805	645	290	685	275	2.4250	390	.985	
		6		S	1		1		v	0	1 00	7			S	CC	0		8			1	6	-	4	(m		9		9		N	4	1	6		1			5	241	. 0	0	
S	3	C	4	· 00	, -	٠.	1 C) (י ע) () (0	10	1 (200	9		2	1	. 6	4	. 6	ď	ש נ	1	· M	7	. 60	-	9	-	S	S	9	6	-	6	0		1 4		- 00	S	188	
5654 422912	5654 422943	5565 049163	5522 R51165	5610 504516	5380 105159	5280 105159	5380 105167	5380 105159	5500.103133 5525 604766	5654 905120	5447 221282	5495 612945	PECATO : CE #C	5568 889022	5282 000518	5382 502460	5433 546493	5434 047325	5467 556762	5608 895782	5405 480056	5432 115562	5584 136734	5607 679473	5644 593750	5506.214874	5459 113899	5462 195419	5592, 173919	5642.957153	5601.326507	5610.419433	5626 457122	5403.965148	5606 122375	5539.833633	5495 887237	5495 BR7222	2496 889694	E406 889694	5498 891601	5555 A63235	5563 014419	45611.4875183	
176	176	170	170	170	170	170	170	710	170	107	707	107	101	107	0 0	ם מ	100	100	100	ם מ	707	186	701	100	100	186	100	186	186	187	187	187	187	188	188	9 0	100	100	1007	100	1001	1001	189	11896	

4 4 4 10 4 4 4 4 4 4 10 10 4 4 4 	04.00.00.00.40.40.4	4. 1. 1. 1. 0. 0. 0. 1. 4.	ए ए ए ए व व व व व प ए व व व व
28857.0 31611.0 38602.0 38602.0 38087.0 29403.0 38157.0 34867.0 17933.0 20092.0 27376.0	5586. 5086. 5086. 50850. 50850. 50025.	5064. 1552. 2418. 3345. 4294. 4266.	4677. 5938. 5140. 5511. 5523. 5524. 5562. 44887.
000000440004400 0110000440004400 001100000000	7 N N O O M M O O 4 C		
4 U U 4 U U 4 4 4 0 U 4 E E E E E E E E E E E E E E E E E E			
00000000000000000000000000000000000000	76644674667	97.94.66.9	6 6 0 2 4 2 4 2 0 0 6 6
2.1950 0.0000 0.0000 0.3700 0.3450 0.44400 0.44400 0.6450 0.6450	.830 .830 .845 .845 .865 .800 .800 .800	. 5335 . 080 . 600 . 565 . 720 . 670	
3.3700 1.2900 1.0450 0.3350 1.1900 1.3250 1.3250 1.3750 5.1200 5.1200 5.4600		. 100 . 010 . 325 . 325 . 3325 . 335 . 335 . 260	2000 2000 2000 2000 2000 2000 2000 200
1.3700 1.2100 0.4200 0.6850 1.4550 0.7350 0.7350 1.6800 3.4200 1.6800 1.6800	.810 .850 .865 .885 .885 .935 .030 .030 .030	725 818. 1014. 1014. 1016. 101	2000 000 000 000 000 000 000 000
186 257 257 262 262 262 263 263 263 263	V 8 4 9 4 0 V 9 I 9	228 229 229 223 253 255	159 838 1955 251 251 223 167 204
24 4 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 10 10 10 10 10 10 10 10 10 10 10 10 10	L0000000H	777777777777777777777777777777777777777
896 45636.4595032 909 45511.1329498 909 45542.7687683 909 4555.0071106 909 4557.5824127 909 45587.0010529 909 45587.0010529 909 45587.9984436 909 45611.2732544 909 45611.3515930 909 45616.3515930	45460.974632 45450.974632 45545.150970 145505.886810 14554.610809 145554.610809 145554.610809 4554.610809 4554.610809	4 45613.607208 2 45614.609100 2 45432.256988 2 45434.260202 2 45435.262222 2 45465.259399 2 45648.036254	5 45464 . 614440 5 45464 . 614440 5 45382 . 5541500 5 45403 . 533005 5 45404 . 533302 5 45404 . 533302 5 45405 . 535568 5 45407 . 540168 6 45511 . 499267 6 45412 . 000488

																																										33		
															•						4									4												5.0		
•							•	•		•	•	•					•	•		•	•	•	•			•	•		•	•	٠	•	•		•	•	•	•		•	•	0.		•
612	144	778	826	861	65	684	081	081	794	759	801	503	257	442	490	485	504	495	489	487	487	959	325	07	525	291	267	057	379	49	402	926	799	828	528	838	868	457	078	743	190	27092	850	875
																																										6.		
4	4	3	3	~		œ	m	3	S	S	-	∞	0	1	-	-	H	-	-			-		N	4	2	3	9	-	S	9	0	9	9	S	-	œ	S	0	S	4	57	1	9
														•																				•								1.9		•
,	, .,	(*)	.,	.,					(*)	(*)	_	(*)	•		_	_	. 4	_		0	Ü	w		_	w	.,	w	(*)	4		금	<u> </u>	(~)	4	•		(~)	1-	41	4	-	-	4	(*)
v	2 0	0	8	1	5	6	4	4	-	2	0	1	5	6	i	œ	m ·	4	S.	0	H	7	80	0	9	2	9	6	-	8	0	4	9	9	1	0	2	6	2	5	3	88.3	7	S.
•			•		•	•	•	•	~	~		0,	•	~	•	~	~	~	~	0,	01		~	•			~	~	0,		7	0,	•		=	0,	٠.		0,	~	0,	~		•
0	10	00	55	50	10	05	45	00	50	65	00	40	70	35	45	160	45	455	255	50	235	00	940	000	835	280	260	635	680	45	300	15	35	00	90	90	09	50	40	09	30	6100	55	70
														0		0	1	7	1	٦	7	0	0	0	15	0	7	0	m	1	19	0									1	0		
976	245	470	335	. 295	.035	.280	.310	.590	.460	.385	.810	.685	.650	.320	.880	.980	.250	.395	345	.255	415	930	370	710	750	600	980	.610	190	.455	.130	.925	060.	.425	.050	.910	.860	. 245	.550	.060	.050	4100	.935	.800
c	o C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					0	0	0	0	0	9 0	0	0	0	0	0	0	0	0	0	0	0 1	0	0
0	13	-	89	.82	. 26	.62	. 50	.43	.51	. 84	.12	.39	.17	. 84	.93	.27	.46	. 94	.37	. 60	85	6.19	46	74	2 72	1.05	56	. 05	. 94	. 72	9.36	1.14	.35	. 95	.97	.75	.61	. 29	25	58	.14	0.950	53	.50
-		2	2	10	44	2	0		7	N		3	9	3	-	9	Ø	4	S	1	V) 1	-	- 1	C	100	4	1	4	S	-	57	1		ហ	0	0	4	0	S	0	51	00	1
t	~ ш	η α	0 00	0	8 2	9	00	0	00	3	9	00	2	1 2	80	9	2	0		1 (2		ט נ	,	. [. 0	4		4	· LC	ı LO	7	6 1	9	2	-	ıın		· ~		. ~	9	6	. 60	0 0
c	7 (10	9 (10	~	7	N	(1)	N	00	7	7	7	7	2	2	2	۳ (, ,	10	1 0	4 0	4 6	י ר	4 L) ני	0		1 (7	2	(m)	7	9	2	וייי	0	10	10	10	0	1 (1	7	50
0	1809	1100	1405	2764	5604	2996	6422	6422	2251	7467	4680	4947	1417	7305	4110	5220	4859	7529	0123	0141	1042	3404	2400	5107	2000	8214	2069	9497	559A	0951	9219	3543	8727	7445	510R	8426	0783	7187	8528	2000	5694	128	2606	6286
	7.06	7 . 4 . 7		0.00	04.0	07.6	85.9	85.9	37.5	38.6	31.0	32.6	82.7	30.0	70.1	29.0	25.0	26.0	27.0					7.77	0.00	. 000	7.00	20.4	A 52	14.9	2 5	72.5	R7 1	87.6	95.4	000	10.01	7 2 2 2	0 40	26.2	4 52	56.5	79.0	86.14
,	6 45	1 4	4 4	4 4	45	0 45	0 45	0 45	A 7	4.7	4 7	4.5	45	6 45	0 45	45	45	45	1 4	1 4	7 7	7	2 4 5	04 0	04 5	4 4	1 4	4 4	7 7 7	1 4	45	6 45	45	45	45	4 4 5	45	45	7 0	45	4 4 5	4.0	4 4 5	9 455
	206	707	207	200	200	207	207	207	207	207	207	207	207	208	212	212	212	212	212	217	217	717	213	213	213	213	213	213	בדס	215	215	215	215	215	215	210	110	215	315	215	710	215	215	1215

'n	4	6	7	0	6	00	9.	5	9	4	9		9 4		<i>y</i> c	,	00	4	۳.	'n	S.	9	00	9	4 4 8 8	. 4	0 0		ا ب	٠.		-	. 2	0	0	9	9.	9	₹.	9	9.	0	9.	7.	7	٧	9
2198.	7542.	3194.	6752.	6888	7218.	6030.	4906.	4993.	4937.	4905	5063				1126.	247	5942.	9003.	5128.	5126.	5000.	4984.	4989.	5049	0.04056		4932.	4936.	5080.	5147.	5121.	1070.	8473.	5307.	5798.	5527.	5529.	5756.	9161.	4570.	4845.	4855.	5367.	6327.	6329	7678	.0101
i.	5	9		-	6	6		0						D I		7	;	3	0	0	0	0	0							0		0	0	0	0	m	3	3	ij	0		•	0		~		
												•										•			0.0																						
7	7	4	0	. 0	. 0	00		1	- α	. 0	, ,	. (٠, ١	0	00	6	6	4	2	4	(L.	L.	. 0	0.00		.i	9		3	ص	9	2	2	3	6	6	6	1	7	9	9	00	0			,
.460	.350	450	000	755	000	540	370	620	000	000	מלו.	000.	.105	. 095	.015	.875	.680	.855	.570	100	265	070	340	100	0.9020	. 800	.050	. 595	.210	090.	.170	.310	.360	.550	060.	.905	.380	.590	.570	.460	.810	.000	715	675	245	440	.470
.000	425	970	50 B	100	645	100	480	0.00	200	0 0	2000	079.	.380	. 495	.140	090.	.055	.720	.540	340	205	280	950	000	2.0900	782	.045	.025	096.	.740	.525	.675	.300	.345	.620	.430	.090	.510	.745	.640	.965	180	445	535	חלם.	0,00	.320
.460	675	770	000	200	265	200	0 4 0	160	007.	7 7	011.	820	.020	.765	.220	.310	.545	.050	505	405	226	245	100		1.0250	.895	190	.140	.185	465	.860	.065	.125	2.795	.595	.200	.570	.850	180	365	780	585	770	415	200	000	.115
238	153	750	620	100	701	111	1100	0 0	D -	100	232	213	236	295	232	255	187	224	676	234	1 4 4	224	200	300	251	311	218	389	192	278	237	320	245	237	201	189	313	276	169	418	262	-	225	242	202	513	323
(*)	a	0 0	> <	# L	n v	0 4	# C	0	0 0	0	-	200	2	9	S	-	4	9	V	V	V	P	0 0	9	241	S	9	S	9	S	9	-	00	-	00	-	4	S	00	-	~	4	· W	n a	D C	20 0	00
45615,492340	AEEA1 AE7773	STANCE COLL	45439.136154	45515.522903	45436.039909	40409.091433	45557.021530	4543/.603643	45433.593658	45434.596443	45435.599182	45526.112869	45548.086181	45549.088348	45435.824943	45468.817794	45555 519912	45633 462524	45409 609603	DEALLY OFFIE	ALATO COUCE	45410.030300	45507.611030	45507.610992	45550.6264801	45380.151233	45428.117279	45432.126266	45466.128967	45600.582946	45601,584869	45464.479492	45404.027381	45435.549263	45436.050125	45462.539703	45462 539703	45463 040771	45645 033569	454RD 912490	45513 086074	45513 086029	ACETE 823684	455/6.823584	45498.103408	45498.602386	45499.671676
215	1 1	017	229	677	230	230	230	230	230	230	230	230	230	230	231	231	231	221	100	200	200	233	233	233	12339	233	233	233	233	233	233	236	236	236	236	236	220	320	200	222	227	237	237	757	237	237	237

44499,6716766 356 265 2.6560 0.3450 0.3460 31.6 32.6 32.6 4.6600 4.1650 31.6 32.6 32.6 3.4560 31.6 32.6 32.6 3.4560 31.6 32.6 32.6 3.4560 31.6 32.6 <t< th=""><th>4.78</th><th>. "</th><th>י ה</th><th>4</th><th>4</th><th>ن</th><th>8</th><th>'n</th><th>0</th><th>9</th><th>9</th><th>9</th><th>ů,</th><th>0 1</th><th>יי</th><th>9 .</th><th>4. (</th><th>v.</th><th>9</th><th>9</th><th>9</th><th>9</th><th>0</th><th>5.6</th><th>m</th><th>4</th><th>. س</th><th>0 1</th><th></th><th></th><th>4, 1</th><th>v</th><th>- 0</th><th>20 4</th><th></th><th>, 0</th><th>, 0</th><th>9 1</th><th>ا ن</th><th>ů.</th><th>4</th><th>4</th><th>9</th><th>ų.</th></t<>	4.78	. "	י ה	4	4	ن	8	'n	0	9	9	9	ů,	0 1	יי	9 .	4. (v.	9	9	9	9	0	5.6	m	4	. س	0 1			4, 1	v	- 0	20 4		, 0	, 0	9 1	ا ن	ů.	4	4	9	ų.
6 45500 7416766 365 295 2 .6200 2 .5450 0 .3400 92.2 2 .6 93.6 45500 7416766 365 2 .4600 4 .4550 1 .6650 9 .911 5 .0 99.6 4 .5500 74165 9 .912 2 .4600 9 .4550 1 .6650 9 .913 6 .9 9 .9 9 .9 9 .9 9 .9 9 .9 9 .9 9 .	7684.	6647	4284	5414.	7040.	4923.	1865.	7267.	7852.	5000.	5036.	5027.	5227.	4973.	4/36.	4678.	5147.	5278.	4980.	5250.	5245.	5200.	5189.	8798.	7808.	4421.	8491.	5348.	5074	9106.	1970.	4392.	4392.	9339.		1769	#0T6	9241.	3158.	3158.	7381.	5501.	9419.	1296.
6 45549 6716766 365 295 2 6200 2 55450 0 3400 92.2 6 45515 523461 378 267 4 6000 4 1650 1 6650 91.0 6500 6 45515 523461 378 255 2 4400 0 4 1650 1 6650 91.0 6500 1 45515 512451 518778 245 224 000 0 24600 0 6500 91.0 6500 1 45515 1518778 245 224 0 0 9600 0 1.6650 91.0 6500 1 45515 4517773 255 241 0 9400 0 1.6650 0 1.6650 91.0 6 45515 4517773 255 241 0 9400 0 1.6650 0 1.6650 91.0 6 45515 4517773 255 241 0 9400 0 1.6650 0 1.6650 91.0 6 45515 4517773 255 241 0 9400 0 1.6650 0 1.6650 91.0 6 45515 4517773 255 241 0 9400 0 1.6650 0 1.66	0,0		. «	8	m	7	0	6	4	7	i	0	0	٠,	0	•	•			0	3	0	0	9	8	5	٠. س	0	0	9	0	i,	i (. c			n •	4	4	4	7	8	7	•
45499.6716766 365 295 2.6200 2.5450 0.3400 92.6456 45639.671676 378 267 4.6000 4.1650 1.6850 93.64535.232623 45639.7622461 279 227 0.4500 3.4650 1.4650 91. 45639.9522165 267 227 0.4500 0.6900 0.4350 91. 45639.9522165 267 227 0.4500 1.6600 0.7500 91. 45639.9522165 267 220 0.9600 1.6950 0.4350 91. 45639.952165 267 220 0.9600 1.6950 0.4350 91. 45495.9570923 298 236 239 2400 2500	•						•	•	•	•			•	•	•										•				•	•					•							•		
6 45499.6716766 365 295 2.6200 2.5450 0.340 6 45500.4415619 378 267 4.6000 4.1650 1.6650 6 45500.7415619 378 267 4.6000 3.4550 1.6650 6 45630.322053 283 255 2.4000 3.4550 1.6650	2.5		. 4	4	8	1.	8	i.	8	ij	8	'n	4	;	2	88	00	4	m.	4	7	8	8	7	7	S.	1	;	9	S.	1	4	4	m c	76.	000	,	<u>.</u>	7	7	0	4	6	6
6 45499.6716766 365 295 2.6200 2.545 6 456205.3292053 283 265 2.4000 3.455 6 45635.5292053 283 265 2.4000 3.455 6 45636.5292053 283 255 2.4000 3.455 6 456404.968083 283 255 2.4000 3.455 6 456404.9680890 142 245 227 0.4500 0.5400 0.540 1.565 1450 1450 1450 1450 1450 1450 1450 145	340	0 4	690	435	795	.270	.520	.770	.770	.960	.105	.705	.110	.340	.430	.340	. 945	. 945	.970	.275	.245	.350	000.	.155	.000	.045	.000	.195	.540	.335	.730	.440	. 240	745	DOT.	.675	.670	490	000.	400	.330	.450	.335	.665
6 45599 . 6716766 365 295 6206 6 45599 . 6716766 378 265 295 6 45595 . 5292053 283 255 2 4 600 6 45635 . 5292053 283 255 2 4 600 6 45635 . 5292053 283 255 2 2 4 6 6 0 9	545	COT.	4.00	000	.565	390	.540	.700	9.040	.290	.330	.200	.330	.880	.260	.605	.822	.030	.810	.690	.855	.850	490	.985	690	.180	.535	.400	.735	485	.115	.860	.080	1.700	0.4.0	. 945	.715	.915	.180	090.	.700	.105	.750	.175
6 45499 . 6716766 365 29 6 45530 . 5745619 378 6 45635 . 5292053 283 283 6 45635 . 5292053 283 283 283 284 2539 . 55292053 283 283 284 2539 . 55392 . 5298 224 2245 2245 2245 2245 2245 2245 2245	.620	000	400	4.00	960	.545	.195	.940	0.240	3.225	.085	.450	.505	.740	.460	.110	.675	.150	.285	.710	000.	.765	.440	.150	.540	.250	.560	.920	390	.405	.345	.165	.405	1.245	7.315	.440	. 225	.020	.755	.585	.675	.725	.945	.940
6 45499.6716766 6 45535.5292053 6 45635.75292053 3 45635.922461 3 45639.9532165 4 45639.9532165 4 45639.9532165 7 45404.9686890 7 45539.9532165 7 45537.7104922 7 45537.7104922 7 45537.7104922 7 45537.7104922 7 45537.7104922 7 45537.7104922 7 45537.7104922 8 45537.710492 8 45537.710493 8 45534.0618791 8 45534.0618791 8 45554.0618791 8 45564.0618791 8 45504.0570373 8 45504.0570373 8 45504.0570373 8 45504.0570373 8 45510.1444855 1 45510.1444855 1 45538.171478	01	0	n r	10	N	9	N	4	9	3	3	9	9	7	8	-	3	3	-	3	4	m		S	- 1	7	1	0	7	-	-	8	0	4	2	-	-	9		8	m	9	38	21
6 45499 .671676 6 45635 .529205 6 45635 .529205 6 45637 .052246 7 45404 .968689 7 45539 .953219 7 45404 .968689 7 45539 .953219 7 45404 .968689 7 45531 .95321 7 45531 .95321 8 45532 .95734 8 45534 .96194 8 45536 .95734 8 45536 .95734 8 45536 .95734 8 45536 .95734 8 45536 .96195 8 45536 .96196 8 45536 .96196 8 45536 .96196 9 45638 .446075 9 45638 .247650 9 45638 .247650 1 45504 .050338 1 45504 .057033 1 45504 .057033 1 45504 .057033 1 45538 .1124485 1 45538 .418869	9 0	- (1 0	- <	4 6	4	9	S	9	9	9	-	8	0	-	3	9	S	8	7	00	9	m	-	6	9	H	m	S	-	-	9	-	9	9	9	8	S	7	S	S	-	S	9
$ \begin{array}{c} WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW$	76 45499.671676	76 45500.741561	76 45635.529205	76 45647.052246	83 45519.51015/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	84 45404.968689	84 45495.957092	84 45635.457977	45 45557.710449	47 45512.049072	47 45482.450714	47 45437.817565	47 45392.176158	71 45536.955734	71 45438.031517	71 45564.188842	74 45378.111488	74 45419.595779	74 45506.573257	74 45486.064346	74 45553 059677	74 45554 061798	74 45554 061859	12 45504 058792	12 45467 896194	12 45628 446075	19 45636.247650	45 45536.884475	45 45541,896789	46 45500.060592	47 45541.284927	47 45506.205078	47 45506.205078	56 45425.455543	56 45522.034530	61 45381.122024	61 45385.630538	61 45386.135494	61 45504.057037	61 45504,057037	61 45510 144485	61 45538,418869	61 45543,502655	61 45393.717147

w @ 0 0 0 L	6400000	onnoonu.	4400460	4 . 4 . 4 . 4 . 4	7470W111
6110. 3013. 5320. 2273. 3650.	7218. 3758. 3735. 1960. 9874. 8168.	5218. 5211. 5180. 6210. 8862. 3745. 2713.	5132. 5126. 4994. 2525. 2456.	22633.0 13431.0 15721.0 28627.0 14507.0 32477.0	3953. 8617. 3285. 3285. 0623. 6704.
	0 0 0 0 0 0 0		000000740	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				101 103.4 100.3 10	
478996	9829	000041717	77.06418	90.09 1009.55 1000.3 77.8 89.5 77.8	0 0 0 0 0 0 0 0 0
.000.000.000.000.0000.0000.0000.00000.0000		00000000000000000000000000000000000000	000000000000000000000000000000000000000	0.3000 0.4900 0.3800 0.7100 2.0550 0.3850 0.4450	# 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.380 .380 .350 .350 .330			.525 .790 .790 .760 .760	0.7800 1.6800 7.4400 1.9400 3.7200 0.8650	2.00.00.00.00.00.00.00.00.00.00.00.00.00
. 380 . 380 . 840 . 470 . 190	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0004. 0004. 0006. 0006. 0006. 0006. 0006.	600 625 615 600 600 600	0.6450 1.1250 1.0650 1.1250 2.8550 0.64750	044 044 074 008 008 008 008 008 008 008 008 008 00
I M I LA CO C		144114004	41199911	280 293 293 245 245 41	111010111
4 5 L	1 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0	1000000m	315 278 318 254 299 279	100000000
45495.538864 45554.098632 45654.907379 45583.303360	45611.566101 45634.393524 45394.531616 45494.039688 45595.877026 45621.920043	45510.376808 45534.951828 45595.9313136 45505.903138 45495.7451760 45523.435150 45481.572280	45498.341018 45498.341018 45537.350570 45563.867569 45419.688201 45475.529846	45403.08029 45492.64790 45482.05380 45382.77617 45637.31860 45384.37182 45462.33383	110004 3339614 536529 404747 410652 410659
12222	, , , , , , , , , , , , , , , , , , ,	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2007 2007 2007 2007 2007 2007 2007	2567 2567 2568 2578 2578 2578 2578	12787 12810 12810 12810 12810 12810 12810

-	5.43	1	S	4	ר	4	0	4	Φ.	6	4.	8	ų.	4	4	9	9	'n		4.	ω.	7.	9.	4.	9.	S	9.	9.		4. (٥.	4.6	7.	0.0	m.	σ.	4	6.	0	8.3	5.2	7	4.5	7.	
7665	20832.0	9466	2796.	2872.	875.	0770.	0813.	6805.	5665.	2310.	4651.	3082.	7521.	5714.	5436.	5817.	5647.	6639.	5891.	4845.	4830.	4978.	4676.	4714.	5354.	5033.	5092.	5044.	4909.	0179.	.9599	0586.	9950.	0291.	0830.	2231.	2245.	2776.	3526.	093.	445.	5716.	452.	4149.	
•	7. 5. 0	α	. v	6	0	S.	2	7	3	S.	•	7	0	4	•	•	•		•					•	٠		•	•	i	6	2	8	6	۳.	ص	7	2	2	ä	-	9	•	3	3	
	, 4 , -	•					•			•			•			•	•	•	•		•		•			•	•			•	•		•				•	•	•			1		•	
u	6.00					-	0	9	4	H	4	4	7	7	6	4	S.	6	94.	8	4	8	0	6	8	.98	9	ر. در	9	N	7	٠ س	9	3	6	0	0	6	8	m	7	9	4	1	
0	0.0000	10	1 645	940	285	930	815	405	.755	.570	.975	.000	.000	.230	.650	.280	.280	.230	.440	.045	.490	.625	.695	490	.360	.750	.860	.915	690	.410	.980	.320	.290	.610	. 500	000.	000	.000	.000	9.685	090	0.260	. 900	.000	
	0.6850	0000	070.	OF Y	200	730	000	760	830	6.220	.615	.765	.280	.475	.060	.695	.475	.130	.160	.650	.615	.870	590	270	610	.510	.340	.090	.740	060.	. 245	.565	.350	.410	.020	.860	.310	.840	.800	8.375	330	0.880	310	. 945	
	2.2200	0.00.0	010	0.10	140	045	420	202	130	3.610	.750	.520	.630	.520	.760	.705	440	.295	.690	660	160	805	445	235	460	975	685	.665	.435	.850	.030	.445	. 520	.680	.665	640	355	660	580	6.515	150	1.505	980	.570	
	1-1	0	47	0		V	y c	0	10	4	S			C	9	9	-	0	8	C	7	. 1	0	1 4		10	0	4	-	8	9		9	S	2					0	O	387	0		ı
i	4 0	7	4 6	- 1	0 0	200	2 6	- U) L	9	9	8	0	7	8		9	9	-	40	0	a v	0) a	U	1 6	. @	0	-	9	_	0	9	3	7	0	0) C	0	7) (0	0	265)
	488.308151	5447.126678	5436.891754	5413.562339	5416.8522110	5410.0341032	25#2.0/1#30	2330.1403/7	5477 009582	200000.11FC	5425 097663	5437.105766	5434.535820	5609.344970	5615,431610	5539.604904	550990 BESS	296269 8098	5439 032943	5279 613761	EENE 143310	E402 261474	74767.254C	5461.47/690 5649 601501	EE76 673410	0186/6.0/6	5469 493667	5505 499176	5530.016113	5411.828643	5413.832199	5505,487625	5487.592102	5520.088256	5521.090972	5522 595138	CC22 595184	A87302 5022	5525 D98983	EAAO 072822	2202/0.024	5446 004043	5400 469184	45461.0416717	1
	281	281	281	282	282	707	707	707	203	200	200	200	283	283	283	200	200	200	200	200	200	200	200	200	0 0 0	200	200	2807	200	290	290	290	290	290	290	200	200	200	200	200	0 0	2000	167	12915	4

4.72			Φ.	8	8	9	۳.			S	8	9		5.0	0	S.	ω.		1	4	9	6	۳.	ω.	Ε.	Е.	4	9.	9	9.	4.	9	9	0		r.	9.	<u>ن</u>	4		Φ.	6.	1.	4	
23443.0	1545.	0441.	9426.	8189.	7335.	8494.	0632.	2796.	8229.	3000.	7677.	8919.	7159.	7032.	7146.	9050.	8794.	1073.	3361.	9040.	0881.	5696.	9193.	9232.	9243.	227.	5379.	5344.	4989.	4926.	5095.	5120.	5606.	5590.	6549.	6391.	5044.	7724.	7727.	7979.	319.	.090	751.	39.	
32.4	,	7	S.	ص	;	6	٠ س	i	5	4	2	ω.	9	2	٠ ص	3	0	4	0	3	8	4	H	-	-		4	0	-	7	0	0		N	8	3	2	о Ф	8	6	6		6	17.	
8.0																																													
90.2		7	9	2	4	2	3	-	0	9	6	1	0	2	7	8	9	7	1	8	1	4	04	04	03	2	97.	4	4	S.	0	6	÷	3	5	7	4	4	4	1	93.	8	2	90.	
1.1950	. 265	.730	.020	.580	.535	.735	000.	000.	.775	.615	.000	.990	.410	.525	.220	.425	.280	415	685	625	520	725	740	675	390	765	.475	.660	.710	.710	090.	.290	.370	.865	.760	.240	.000	.690	000.	.160	.240	420	510	. 200	
9	. 920	.970	.230	.260	.940	.500	.940	.390	.410	.200	.230	.620	.850	.000	.340	.845	.290	.385	1.860	290	270	825		495	410	560	.380	405	.355	.530	.410	.805	.055	.260	.160	.795	.060	.190	.870	.760	.610	. 955	670		
.875	.040	.105	.605	.695	.485	.130	.160	.585	.855	955	565	908	.605	.305	.710	.535	.120	280	045	155	160	120	090	115	920	020	850	935	050	.220	. 200	.735	.820	.890	.715	.640	.980	.560	.840	.525	795	440	500	7.4850	
	ഗ	4	-	9	7	C	- 1		0		1	O	C	(1)	8	C	4	(4)	O	0	V	7 0	- [4	7	. 0		-	1	-	m	4	0	-	8	00	-	- 1		- 1	-	α	9 40	7	396	
8	8	S	8	3	8	9	6	9	9	C) (°	0	00	9	N	-	C	1	ď) (ר ר	יו ר	ח מ	0 0	10	- 6	. 6	7	0	0	(3	9	-	9	0	4	(S	00	1	- 0	0	10000	
5461.543525	5463.047683	5464.049392	5465.050842	5466.053009	5466.554580	5611.900665	5622 989776	5596 565002	5195 459907	5456 313690	5530 601715	5556 57887	5395 251392	5584.768158	5566 666183	5567 738067	5561 231597	5592 562805	BEREL CORRE	5375 61650R	500010 07 VE	EADE 998214	5400.330514 ECOA ADDOBS	E60E 4000B	E C C A D D C C C C C C C C C C C C C C C	5600 405852	5622 436706	5515 625473	5519 605117	5540.607681	5376.141758	5516.092498	5475.761596	5476.831817	5572.267242	5625.156219	5632.172302	5506 346420	5506.346420	5609 410064	5521 02284	5614 060791	E 611 E 04 E 77	45643.0146484 1	
291	291	291	291	291	291	291	100	100	200	100	200	500	200	100	A9 C	200	100	200	100	7 0 7	000	200	7 0 0	7 0 0	200	2 4 4 6	200	200	200	900	960	296	298	298	000	200	298	800	000	000	0 0	700	7 0	13001	

										-	7	9	8	0) 1	n.	0	4	S	9	9	9	9	S	9	S	9	S	S	0	-	9	i n	- 1	ומ	n I	1	9	-	9	4	4	77	9	S
'n	4	12.	4	7		4	14.		4					4			4																									4		
. 780	7192.	5056.	2475.	890.	4882.	8388.	266.	4259.	0688.	5835.	8348.	0497.	8649.	395.	5259.	9323.	5816.	5824.	5095.	4986.	4901.	4884.	5411.	5406.	5417.	5513.	5627.	4351.	3207.	8039.	1627.	. 1990	4093.	4100.	4097.	3039.	9353.	6738.	2952.	0211.	5418.	34792.0	4893.	4808.
	9			7	ij		23.	3	1	7	6		0		0	•	0	0		•			0	0	0	0	0	Э.	Ф	7	i	9	4	4	4	5	ij	0	0	5	2	1.0-	0	0
						4		7.																																		2.2		
6	6	7	7	0	0	ij	2	7	1	8	3	0	6	9	-	9	m.	03.	3	-	ij	0	2	2	7	8	6	4	3	3		0	8	8	8	8	5	0	0	ä	6	94.0	7	7.
.160	325	.140	0.610	.945	.320	.230	.350	.000	.000	.880	.660	.085	.825	.445	. 530	.250	.940	000.	.055	.650	.900	.230	.045	.000	.250	.305	.825	.595	.700	.905	.645	.660	.000	.530	.635	.940	.515	.985	.280	.000	.170	0.8850	.740	.750
.730	.890	.705	1.380	.375	.885	.510	.440	.230	490	690	.780	.375	.700	.965	.530	.490	.245	640	.240	.005	345	330	445	.730	510	.485	.275	.640	.740	.395	.470	.440	.100	.745	.995	.375	.045	.015	.780	.265	.320	2.4900	.910	.390
.750	.725	.220	1.015	.735	.215	.630	.915	.540	.620	.570	.570	.800	.325	.095	.330	.275	.735	010	545	610	670	630	905	115	375	. 555	.615	.240	.125	2.420	.050	.780	.350	.540	.540	.130	.645	305	.065	.770	.735	1.9000	.075	.140
N	9	9	4		2	-	9			m		N	00		-	0	S		(4	α		10	١ ١	0		9	9	0	S	4	3	1	7	8		N	m	0		9		-	358
9	-	S	0	N	-	9	C	m	0	-	S	-	00	9	2	1	6	Œ	α) C	0	ο α	0	1 L) LC	9	8	9	m	S	Ø	S	0	8	S	-	9	0	(1)	4	S	0	S	238
5462.478622	543 912475	5569 557159	5556 934417	5578.971633	5579.841323	5582.776565	5583,975402	5583.975418	5499 606720	5529 599777	5477.438125	5178 146915	5463 051361	5487,531936	5423 963264	5590.787353	5384 558105	5384 558151	5446 013359	5447 016265	000010.0545	5491 020568	5422 505020	5423 505020	5423.303020	5496 522369	5497 524414	5434.047592	5468.058242	5538.111251	5571,680603	5447.581489	5397.607776	5397.607807	5397.607807	5593.009368	5607.822174	5474 R24493	5403 680915	5522 308685	5613 133758	477.296783	5513.014404	45614.6090698
101	100	100	יו כי	301	301	301	105	105	105	105	300	302	302	302	303	300	906	200	200	200	000	200	000	2000	200	300	300	307	307	307	307	307	307	307	307	307	307	000	200	200	200	200	308	13089

90. 45474, 8244476 252 270 2.2556 4.1660 1.6600 80.8 6.0 -10.9 1.64436 90. 45435, G096133 388 -1 0.9150 0.4460 0.4460 0.4500 9.99 1.1 2.5	80000	0040640	11.044.04	400/44	07.000.000	0004440:1 00044440:1 01740:1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 45474 252 270 2.2550 4.1600 1.6600 80.8 6.0 -10 90 4436 6.06412 3.88 -1 0.5950 0.7400 0.0000 89.9 1.2 54.0 90 4435 6.06612 3.16 2.77 2.250 0.7400 0.0000 89.9 1.8 5.0 91 44559 2.06612 3.16 2.77 0.08 1.11 0.6 0.0000 9.0 1.11 0.0000 9.0 1.11 0.0000 9.0 1.11 0.0000 9.0 1.0 9.0 1.0 9.0 1.0 9.0 9.0 1.0 9.0	6342. 9659. 3749. 5291.	6763. 6936. 8428. 8430. 8850.	6489. 6483. 5025. 5778.	3667. 0379. 8475. 2128. 9624.	8317. 5062. 5044. 4940. 7726.	7876. 1365. 1375. 1375. 2150. 0760. 5985. 6417. 8508.
90 45474 552 270 2.2550 4.1600 1.6600 80.8 9.0 44436 552 270 2.2550 4.1600 1.6600 80.8 9.0 44435 6.0000 89.9 9.0 44435 6.0000 89.9 9.0 44435 6.0000 89.9 9.0 45535 1.0000 99.9 9.0 46535 1.274419 2.7 2.1200 2.7900 1.0050 0.4900 99.9 9.0 46419 9.0 9.0 99.9 9.0 46419 9.0 <t< td=""><td>554.</td><td>000004</td><td>4 0 0 M 4 4 0</td><td>6 6 0 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</td><td>000000Hm</td><td>4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td></t<>	554.	000004	4 0 0 M 4 4 0	6 6 0 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000Hm	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
90 45474 10.915 0.7600 1.6600 90 90 45436 1108093 388 -1 0.9150 0.7800 0.0000 90 90 45436 1108093 388 -1 0.9150 0.7800 0.0000 90 90 45535 1279413 277 2.3200 0.7900 0.0000 90 91 45535 127942 243 4.1250 6.1200 0.7900 90 92 45535 1270 2.3200 0.0000 90 90 94 45537 5.279413 2.93 4.1250 0.5000 0.0000 90 94 45517 2.1260 1.250 0.5000 0.0000 90 12 45577 5.0500 1.0500 0.0000 90 90 12 45577 5.050 1.0500 0.0000 90 90 12 45577 5.050 6.000 0.0000 0.0000					m 00000m	
90 45474.8244476 252 270 2.2550 4.1600 1.000 90 45435.108093 388 -1 0.9150 0.7800 0.000 90 45545.0963123 316 274 0.8100 0.000 0.000 91 45595.0963123 316 273 2.3200 0.7900 0.000 91 45597.579772 279 2.43 4.1250 6.1200 2.750 92 45597.579772 279 2.43 4.1250 6.1200 2.750 92 45419.3793443 327 243 4.1250 6.1200 0.910 92 45418.271.3793443 327 245 1.250 0.550 0.000 12 45506.0611420 327 245 1.250 0.550 0.000 12 45507.536973 399 -1 0.750 0.550 0.000 12 45507.536973 399 -1 0.750 0.550 0.000 12 4	889. 93.	N O 4 4 4 4 W		9460444		99999999999999999999999999999999999999
90 45474.8244476 252 270 2.2550 4.160 90 45436.1108093 388 -1 0.9150 0.780 90 45436.1108093 316 277 2.3200 0.940 91650 45635.0968123 316 277 2.3200 0.940 91650 255.0968123 316 277 2.3200 0.940 91650 255.0968123 316 277 2.3200 0.940 916527.5727272 279 155 0.6800 1.005 92 45573.0309143 219 247 2.3200 2.790 926 455273.0309143 219 -1 0.1950 0.1050 92 45573.0309143 219 -1 0.1950 0.1050 92 45573.0309143 219 -1 0.1950 0.1950 0.500 92 45573.0309143 219 -1 0.1950 0.500 92 45573.0309143 219 -1 0.1950 0.500 92 45573.0309143 219 -1 0.7000 0.650 92 45527.536986 813 -1 0.7000 0.650 92 45527.536986 813 -1 0.7000 0.650 92 45527.536986 813 220 20 9550 1.0450 92 45527.5369878 261 92 92 92 92 92 92 92 92 92 92 92 92 92	. 660 . 000 . 495 . 085	. 910 . 645 . 000 . 000	0000 0000 0000 0000 0000 0000	300 300	11.050 11.050 11.050 0.830 0.835 0.905	2.755 2.755 2.755 0.370 0.050 0.56 0.000 0.420 0.620 0.680
90 45474.8244476 252 270 2.255 90 45435.0968123 316 277 2.320 90 45595.0968123 316 277 2.320 90 45635.3279419 279 243 4.125 91 45527.5797272 279 155 0.680 92 45573.0309143 219 243 4.125 93 45419.379345 327 245 1.260 94 45478.5018921 390 -1 0.770 95 45573.0309443 327 245 1.260 97 45506.0611267 306 -1 0.770 97 45507.536956 8489 -1 0.770 97 45507.536956 289 150 1.035 97 45507.632996 571 -1 0.550 98 45393.458279 226 226 1.035 98 45393.458279 226 226 1.350 99 45393.458279 226 226 1.350 90 45537.7549438 226 226 1.350 90 45537.7549438 226 226 1.350 90 45537.7549438 226 226 1.350 90 45507.2963104 298 226 1.350 90 45507.2963104 298 226 1.350 90 45507.2963104 298 250 1.190 90 45407.201344 268 250 1.190 90 45407.201344 268 250 1.190 90 45407.201344 268 268 260 200 90 45510.05060 200 90 45510.05060 200 90 45510.05060 200 90 45510.05060 200 90 45510.05060 200 90 45510.05060 200 90 905060 20	.160 .780 .940 .790	000. 000. 000. 000. 000. 000.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		22.025 22.025 1.025 1.915 1.910 1.910	0.450 0.040 0.040 0.345 0.345 0.340 0.340 0.340 0.340 0.340 0.340 0.040 0.040 0.040 0.040 0.040
90 45474.8244476 252 27 90 45435.108093 388	.255 .915 .580 .320	. 195 . 260 . 905 . 770 . 510	. 600 . 570 . 655 . 655 . 655 . 655		11.490 11.490 11.190 11.165 11.165	4. 29 3 3 3 2 2 9 3 4 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5
90 45474.8244476 90 45436.11080093 90 45435.6096115 90 45535.0968323 91 45555.0968323 92 455595.0968323 93 45527.572722 92 45573.0309143 93 45527.572722 94 45478.50189453 95 45527.5369845 96 45527.5369873 97 45527.5369873 98 45478.5018921 99 45506.06111420 90 45527.5369873 90 45527.5369873 90 45527.5369873 90 45527.5369873 90 45527.5369873 90 45527.5369873 90 45527.5369873 90 45537.6632996 90 45537.754933 90 45537.7549438 90 45437.09260 90 45537.7549438 90 45537.7549438 90 90 90 90 90 90 90 90 90 90 90 90 90 9	フェュアキ	R 1 4 1 1 1 1	0 1 W M W 1 0	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 0 0 0 0 0 0 v	0 N N 1 A H 4 1 H N 4 N O O
90 45474.82 90 45436.110809 90 455436.110809 90 455435.6096812 90 455435.096832 90 45525.096832 91 45527.370914 92 45537.030914 93 45527.530914 94 45418.501895 95 45527.536987 96 45527.536987 97 45527.536987 98 45527.536987 99 45537.663299 90 45537.663299 90 45537.663299 90 45537.663299 90 45537.663299 90 45537.663299 90 90 90 90 90 90 90 90 90 90 90 90 90 9	710000	000011	1007000	3044HC	1 1 0 0 0 0 0 0 C	227224747000000000000000000000000000000
	90 45474.824447 90 45436.110809 90 45435.609611 90 45595.096832 90 45635.327941	91 45527.579727 92 45573.030914 98 45419.379394 12 45478.501846 12 45478.501892 12 45506.061126	12 45506.061142 12 45527.536956 12 45527.536987 12 45633.586059 12 45637.663299	24 45418.233070 24 45403.192108 37 455493.648223 37 45579.905944 69 45393.453617	69 45587.928527 69 45608.814392 77 45475.507156 77 45488.534663 77 45552.524568 77 45553.527252 00 45553.527252	05 45407.201324 05 45507.296310 05 45424.167213 05 45432.190506 05 45459.251373 05 45459.251373 05 45417.032035 15 45460.970726 15 45460.970726 37 45386.053421 37 45385.996376

ŸŖŖŖŖĠĠĠĠĠĸĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ	4 4 4 4 4 4 4 10 10 4 4 4 4 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10
8503. 9584. 9584. 9584. 96889. 96889. 96889. 9689. 9689. 9699. 9699. 9699. 9699.	35095.0 37777.0 325095.0 325437.0 32092.0 225092.0 323442.0 323442.0 335420.0 35524.0 35524.0 35120.0 34230.0
H 7 8 8 7 0 0 0 0 0 0 1 7 H H W W 0 6 0 0 0 0 1 7 H H W W 0 6 0 0 0 0 1 7 H H W W 0 6 0 0 0 1 7 H H W W 0 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 E 4 4 4 4 6 6 8 4 E 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	- מ מ
	88888888888888888888888888888888888888
00000000000000000000000000000000000000	0.6400 0.3500 0.3200 0.3200 0.6100 0.7000 0.7000 0.5800 0.5800 0.5800 0.5700 0.2200 0.9800 1.0800 1.2850 1.0100 1.2250
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.7100 0.6450 0.7890 1.2860 1.3860 1.3860 1.0100 0.6200 0.6200 0.6200 0.6200 1.3600 1.3600 1.3600 1.3600 1.3600 1.3600 1.3600
27 27	1.3300 0.6050 0.5550 0.9950 1.1750 1.0350 1.4900 0.5050 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700
01000000000000000000000000000000000000	288 233 222 222 226 227 227 231 244 168 175 277 243 217 391
100000400000000000400000	2398 2398 2298 2298 2398 2310 2310 2310 2310 2310 2310 2310 2310
7 45509.568618 7 45588.013214 7 45588.013214 3 45379.624019 3 45379.623977 3 45509.210311 3 45509.210311 3 45509.210311 3 45509.210311 3 45509.210311 3 45509.210311 9 45525.028640 9 45499.599662 9 45523.572052 9 45523.572052 5 45512.061492 5 45512.564865 5 45512.564865	995 45528 998 45527 998 45527 998 45527 998 45527 998 45527 999 45514 999 45514 999 45514 999 45515 999 45515

4.58	1	0 4	0	. a	. 0	. 4	. 4	٥١	0	4		S.	'n	'n	٠.	Φ.	Φ.	S.	ហ	'n.	4	4.4	'n	S.	S.	9.	9	ω.	9	9.	2.0	0	9	9	80	0	σ.	ហ	S. 4	0	6.	£.	00	6
34142.0	. 7115	2486	0110	. סארפ	0000	4000	0 0	4891.	5139.	5066.	5285.	5208.	5234.	1406.	4225.	4154.	4150.	4225.	4146.	9762.	8426.	8089.	8094.	0633.	4278.	5083.	5058.	5016.	4965.	5069.	8457.	8456.	8705.	8218	8347.	8388.	8591.	8314.	8382.	8778.	8268.	8206.	8208	8725.
62.3		, c	, n c	D <	r (· ·				0	0	3	0	4	9	0	0	9	9	4	9		4	7.	۳.	0	7	0	0	0	4	4	÷	9	۳.	23.	9	Η.	62.	7	0	0	0	ij
0.0		٠																														•												
83.6	n I		7 0	5		4 0	0 0	0	0	0	7	S	2	3	4	-	H	4	4	8	3	2	2	4	س	9	s.	'n	4	0	i	4	-	0	7	S.	9	5	9	H	3	H	i	0
0.0000	. 230	. 525	.620	400	087.	3000	510.	.135	. 565	.500	.865	.790	.645	.210	.730	.940	.530	.730	.555	.050	.000	.500	.000	.765	.570	.115	.075	000.	.895	096.	.040	.220	.880	.385	000.	490	.350	.780	.270	.000	.010	.775	.580	.865
1.0600	.040	. 880	.365	670	0000	. 085	. 655	. 255	.065	.620	.030	.530	.270	.520	.780	.375	.700	.780	.180	990	0.950	.795	.835	.275	.290	.295	.055	.325	.780	.600	.540	.750	.570	.540	.785	.555	.510	.065	.830	.310	. 945	.570	.510	. 785
0.7150	.625	.450	. 985	. 855	890	. 885	.715	.190	000.	.805	.090	.160	.585	.810	.520	.365	.055	.520	770	160	430	.955	200	900	.010	.455	.290	.975	.980	.760	.310	.890	.605	.595	.940	.840	.340	.560	.105	.145	305	.690	.365	.990
1 1	Ö	0	9	00	00	N	9	2	H	9	9	-	N	9	9	-	5	9	(1)	1) 1			0	4	N	-		N	9	0	9	9	-	- 1	S	00	4	179		N	1	m	
-	9	4	9	9	d,	-	9	4	-	4	-	0	m	-	C	S	9	N	1	· W	ו ור	0	4	0	0	1	9	0	S	m	N	1	0	S	9	N	4	-	9	9	28	9	9	302
45641.967834	45641.967834	45527.953170	45393.318084	45574.038147	45630.317321	45633.179199	45509.974533	45510.976944	45535.953979	45377.502174	45422, 459518	45423 462059	45435 488960	45557.561035	45471 202484	45446.576087	45446 576087	45471 202484	45471 202514	45535 351882	45458 287596	45487 024826	45487 024795	45495 474502	45652 611206	45498.556152	45499.558319	45537.565506	45538.567962	45564.081787	45512.778167	45512.778167	45581.558654	45402.814025	45549.033401	45560.328750	45590.061828	45407.217086	45493,633270	45582.131942	45571.885772	45375.419906	45375.419979	45582.1283264
344	344	344	344	344	344	344	355	355	355	355	7 1 1	7 7 7	7 1 1	200	מוני	1 1	4 6	ישו	ישני	ים	יים	700	ישר	7 6	יפור	900	159	350	500	9 10	360	360	360	360	360	360	360	360	360	360	360	360	360	13607

,-																																													
σ	. a		U.	7	0.	S.	E.	-	۲.	7	4.	σ.	6.	8		9.	0	S	9	S	ŝ	S	9.	9.	'n	9.	'n	.7	7.	9.	9	9	9	9 '	ه د	v.	9	9	9	9	9	9.	.67	9	9.
ď	י ני	וחו	ות	n ·		15	9	S)	w	un	4	u	L)	L)	LI)	4	-	4	4	₹,	4	4	4	4	4	4	un	m	4	4	4	4	₹,	4,	4, 4	4.	4	4.	4.	4	4	4.	4"	4	4
																																											0		
V	-	0 0	9	98	61	62	18	20	23	36	62	22	17	24	68	88	44	57	32	92	04	88	17	87	59	32	82	81	81	69	48	39	27	79	9 6	3	27	21	18	21	07	98	879.	03	44
a	0 0	0 0	10		00	C)	4	-	4	œ	8	8	8	8	8	4	4	S	S	4	S	4	S	S	S	S	S	S	S	4	4	4	S	S	S I	2	S	S	S	4	4	4	34	4	4
		M 1	•		_	_		_		_	_	_	_	_	~	_	01	_	_		01	_	_	_	_	10				_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_
-		, ,	9	4	4	0	3	9	4	7	0		4	1	8	0	0		0		0			0			5		5		0	0		0				0					0		
			1	•	1	1	1	1	•	•	ı	1	1														•	1	1																
								•																									•										۲.		
ľ	- (0	9	_	7	-	m	4	m	m	0	4	7	9	9	0	-	7	7	ד	7	7	4	4	4	m	4	4	4	7	7	7	m	m	m	m	2	7	7	-	-	0	0	-	П
,	;	,		4	2	6	- i	0	6	0	0	6	7	1	4	0	6	0	6	6	6	0	9	9	N.	4	9	9	9	8	7	9	0	.	7	m	4	4	2	7	8	6	90.7	-	9
•				H		_	٠.	•		•	•		•		H	٠.	_	ī		_		_		H				_	_	٠.	•	•	_	~	_	_	_	_	_	~	_	~	٠.	٠.	ω
																																											00		
Ç	500	. 82	. 52	00.	. 91	. 24	.43	00.	.86	.38	.13	. 84	.99	.40	. 94	.68	.43	.53	.90	. 91	.10	23	58	35	23	29	44	48	00.	.32	. 24	.14	.73	.45	.67	.33	.34	.36	.74	.76	.61	.48	.42	.64	.57
(V	-	N	0	123	m	0	0	0	0	7	S	S	9	7	0	0	0	0	0	7	, ,	7	-	-	-	10	0	0	7	1	7	1	7	7	-	7	7	0	7	7	-	٦	7	7
	5	09	9	09	30	95	65	90	35	00	20	45	50	65	75	45	80	80	10	00	75	80	95	30	1 2	40	שוני	00	95	30	05	35	75	55	95	40	20	40	50	50	00	35	350	60	95
				•				•	•	•	4		m	m	2	1									•	•										•	•						3.2		
					0																																						0		
-	N	8	83	55	83	76	27	35	93	37	67	86	89	00	26	95	42	36	86	67	0.8	61	8 4	12	1 5	AL	1 4	0	80	52	S	33	54	42	11	24	27	25	19	30	13	07	.080	13	09
1	m	m	7	0	13		-	0	0	0	11		000		11		0	1	0	1	10	10	10	1 (4	, ,	1 0	4 C	0	0	•	-	٦	7	7	7	7	7	7	7	7	4	7	7	~	7
	566	-	9	-	C	9	264		8	-	C	1 9	4	0	N	S	1	S	S	00	16	10	. (4	ט ר	1 0	V	9 6	151	1	0	m	C	-	S	4	0	9	-	S	0	(-	248	3	00
		•	7	7	0	~	01	_		. ~									_										. ~			_	_	•		_		_	_	_			· ~		_
- 1	S	8	~	H	9	9	9	4	00	0	C	Y	7		1 00	G	0	0	0	α) C	7 0	- 0	N U	1 0	0	D V	o a	-	1 6	S	S	9	8	S	9	9	1	0	9	9	S	1	9	
																																													6
	233	441	391	975	358	104	944	422	021	532	871	180	700	BOR	973	520	A C	979	182	747	200	400	100	100	100	1000	200	000	200	494	700	006	550	779	007	216	484	484	758	028	289	547	797	921	893
	. 56	. 91	. 98	.18	31	41	83	6	000	B		000	2 6	5	47			47	4	0	0 0			* *	* *	* *	44.	40.	F 0 .	100	27	27	79	. 79	.80	.80	80	80	80	81	81	81	. 81	81	4.79
	558	558	562	559	558	546	548	555	540	7 6	יכו	250	מיני	ישו	260	2 4 4	4 2 2	שני	700	200	777	100	100	200	ם חות	0 0	200	540	240	י ע ע	77,7	500	546	546	546	546	546	546	546	546	546	546	546	547	549
	_	7	_	_	. [0	σ	0	10	١ ٥	o c	o c	o c	0		r <		. 4		r <	# -	3" =	4 4	d 4	4 4	4 (ח כ	ם מ	n c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30 4
	36	36	36	36	3 6	2 6	36	2 6	2 6	2 4	2 0	200	200	200	2 0	י ר	200	2 0	שמ	ייי	2 0	200	2 0	3 6	3 6	2 6	36	36	2 0	ם כ	2 0	2 6	3 6	36	36	36	36	3 6	2	3	2	2 6	9 9	2	1363

V	. 4		0 1	9	9	9	9	7	4	4	'n	4	6.3		9	Φ.	۳.	9	9	S	4	9.	00	80	۳.	٠.	-	9	9	9	9	4 (20 /	9	0 1	J	4.	9 1	v.	9	9	0.	4.42	4	₹.
5075			5091.	5117.	5002.	5073.	5340.	4928.	4917.	4912.	5075.	297.	3532.	3535.	5045.	4898.	5046.	5087.	5010.	5001.	4892.	5076.	5783.	5337.	8765.	5659.	0539.	5307.	5277.	5272.	4983.	4649.	8533.	4544.	5101.	5291.	4604	5047.	5284.	5611.	5568.	4904	34908.0	4925.	4933.
						0	0		0	0	ij	-		9						0	0	0	22.	N.		00	7			0		0		2		2		0	0	0		0	0.0		
																																											1.0		
0	D L	0	N	4	9	0	0	-	1	9	8	0	3	3	7	9	ä	S.	9	1	S.	0	1	9	S.	6	0	S.	4	4	5	'n	m ·	0	N.	6	7	4	2	9	0	4	94.7	9	7.
	. 865	.120	.970	.195	.265	.105	.670	.410	.000	.435	.295	.650	.800	.000	.245	.000	.865	.195	.015	.640	.280	.000	.000	.365	.770	000.	.305	.195	.850	.640	.840	.350	.190	.125	. 795	.000	. 565	. 545	.645	.560	.620	.260	0.5450	.730	.495
	7.00	. 265	.195	.135	.585	.275	069.	.035	990	.380	.770	.630	.250	.460	.675	.850	.575	.540	.650	.740	.980	.510	.610	.715	.630	.275	.335	.625	.290	.780	.995	.250	. 295	.960	.150	.560	.135	.945	.105	.315	.250	.515	1.3050	.070	.240
0	. 775	. 900	.005	. 235	.925	908	.175	.280	.890	.700	.600	.575	.895	.040	.025	.685	895	.780	.660	.040	075	775	.850	.510	.700	.335	.870	.675	.575	.815	.340	.350	.910	.820	.665	.400	.700	.890	.775	.920	.990	.380	0.9650	.970	.040
	_	N	9	0	N	N	-	272	- 1	S	00	270	9	-1	m	-	C	3	00	0	252	- 1	-		m	- 1	4	7	9	S	S	9	187	S	S	- 1	C	0	0		N	4	259	00	-
-	0	8	-	9	9	-	8	0	(1)	4	6	S	0	70	O	00	0	00	9	0	00	00	7	00	7	0	27	9	00	9	-	00	0	9	7	00	9	4	00	00	0	m	5	m	318
	5497.808700	5488.320D22	5514.159561	5515.161499	5537.135940	5564.654205	5461.582962	5638 116394	5639, 118225	5641.121826	5634 718170	5639.261169	5571.087539	5571.087570	5441.002449	5511.012298	5390.102211	5514 087997	5537 064254	5395 581443	5290 SKR798	5564 582626	5416 695518	5468 812545	5527 230224	5624 0922852	5469.6007233	5437.637138	5438,639335	5438.639328	5507.647216	5626.989105	5584.0456696	5480.232833	5500.529754	5578.614151	5640.013000	5477.368133	5439.891593	5572.816101	5573.818206	5649.887451	5650.889251	5653.894531	45654.8963013
	363	363	363	363	363	263	263	200	262	200	264	364	364	364	365	36.5	365	26.5	200	200	200	יש	200	200	200	שנו	366	366	366	366	366	366	367	375	375	375	375	378	378	378	378	378	7 8	378	13782

	4.	4	٠ د	٠	m (7	9 1	. 7	9	4	4	9	S.	0.	4.4	0 1		4	9		۳.	S.	S	'n	7.	9	9.		S.	6.4	4	. 7	9 1	7.	1.	S.	N.	Φ.	9.	9.	9.	9.	4.71	9.
4914	5013.	7257.	7258.	7257.	9044.	9047.	. 9999	3350.	5218.	9010.	9012.	2847.	9816.	9446.	9443.	7015.	7012.	7005.	7000.	7000.	7014.	6811.	2807.	2463.	8865.	5401.	5633.	7845.	6821.	8505.	3061.	0616.	3919.	3920.	3920.	6554.	4902.	2096.	5527.	5340.	5767.	5536.	35388.0	6118.
•	0	7	2	5	0	0	2	0	-	5	7	0	9	;	-	7	7	7	7	7	7.	9	1	0	9	2	5	2	S.		0	0	;	1	1	5	m ·	1	0	-	0	0	-0.1	0
																																											0.7	
95.	1	7	5	2	9	9	1	9	6	8	8	7	8	2	2	9	9	9	9	9	9	9	3	3	9	6	6	1	ω.	3	S.	S.	7	5	3	6	S.	3	0	89.	ص	m	90.6	Η.
.640	. 555	.510	.000	.610	.325	000.	.415	.670	365	.505	.000	.320	.480	000.	.340	.890	000.	000.	.000	.000	.000	.455	.605	.560	.320	.345	.595	.770	.390	.855	.370	.730	.670	.000	.000	.485	.425	.420	.480	805	.900	. 205	1.5250	.640
.130	.035	805	.770	.770	.030	490	160	.930	.075	.785	.250	.390	.620	.320	.355	.950	.610	.400	.455	. 555	.690	455	.960	.390	.690	1.020	.880	.490	1.080	.440	.710	.230	.015	.530	.610	.030	.040	.560	740	000	790	360	3.8200	.920
.925	.810	.600	.485	.310	.010	.400	395	.445	.000	.515	.930	.935	.800	.420	.540	.270	.140	.980	.350	405	030	915	710	850	.870	0.755	.760	475	0.800	.530	.795	.725	.570	.675	.570	.565	575	845	230	275	069	150	2.8350	.980
0	H			9		- 6	0	-	4			C			S							V	0	1 4	, -	10	8	m	9	259	S	9	8	- 8		234	264	450	-	4	. L	-	1 1	258
-	9	0	1	N	S	_	9	0	-	-	0	27	4	-	9	N	S	-	0	0	V	7	- 0	V	-	10	N	1	0	S	9	9	S	0	4	S	U	ו נ) -	4 -	10	7	10	296
2 45651.891021	2 45612.355011	5 45407 414123	5 45407.414123	5 45407.414123	5 45419.012977	5 45419,012947	5 45597.875488	5 45616 980011	8 45534 951828	2 45410 996398	2 45410 996429	2 45435 551116	2 45454 380195	2 45603.671691	2 45603 671752	0 45469 554504	0 45469 554519	0 45469 554565	0 45469 554580	45469 554595	0 45459 554519	0 45407 OFFE O	ACA27 573196	045477.77386	45551 991912	45429 538726	45430 039833	0 45522.535354	45633.010528	7 45571.678024	7 45424 167213	7 45424 167221	7 45427 246238	7 45427.246246	7 45427 246238	7 45430 326202	7 45465 617141	74568 89554 7	45567 051467	453507.031407 0 45450 058740	15711C 30414 C	9 45465.411/31	45569.4/6620	9 45582.7634735
37R	378	287	387	387	387	387	387	387	787	0 0	200	0 0	200	280	200	0 0	0 00	0 0	0 0	0 0	000	700	000	ממח	0000	0000	ם מ	0 00	200	000	200	0 00	000	000	000	0 0	0 0	0 0	0 0	0 0	200	0 0	ם מ מ	1389

4.58	9	9	9	9	4.5	4	00	00	-	1	80	80	30		,	2 1		9	4	-	7.2	-	9	7	0	י ו	S	9	9	7	2 1	0 .	- 1	ח ר	7	۲.	9	. 7	1	9.	7	9	8	9.
929	4927.	4831.	4835.	34620.	06856.	3024.	75157.	9801.	8226.	2030.	7293.	5413.	8439.	0585.	. / 0 / 5	5315.	.0007	2891.	2855.	160.	0045.	4247.	6752.	3542.	4038.	4408.	5930.	5806.	5805.	9333.	9002	0170.	3820.	8614.	45/3.	4769.	4864	6302.	6307.	5526.	8388.	018.	9203.	4898.
2.5				5	1		-	3	7	S.	4	œ	σ.					6	5	ص	4	6	9		5	Э.	0		0	4	7		. 0	7	Η.	, N	5	, ,	, ,	5	1			
														0. 0.			٤.																											
6	E	. 98	0.	93.	5	9	7	2	1	6	7	91.	0	114.6	9	3	98.	6	13.	3	0	S.	0	87.	0	8	7	0	0	7	9		8	4	9	0	7	8	8	6	4	4	3	-
. 93D	365	.030	000	.810	000.	.220	.500	.430	.000	.000	000.	.290	000.	0.1600	. 555	.210	.715	.650	.385	.205	.200	.040	.525	.615	.745	.310	.575	.305	000.	.425	.000	.330	. 570	.445	. 595	.020	.950	.220	.000	000.	.660	.280	.685	.705
.915	. 930	.580	.470	.010	.630	.360	.285	.770	.935	.405	.530	.580	.295	0.4350	.140	.580	.025	.355	.805	.600	.320	.075	7.730	.265	.170	.700	.865	.170	.415	.825	.810	.745	.375	1.120	.710	.340	.585	.015	.070	.040	.020	.660	.100	.600
.150	780	.685	.425	.520	.920	.650	390	.405	.605	.660	.435	.410	.575	0.3950	. 995	.560	. 285	.390	.470	.140	.070	.535	.815	.820	.170	.650	.720	.245	.335	.795	.065	.440	.340	0.700	.910	.800	.790	.665	.315	. 565	.620	.110	.450	.720
-	9		- 1	9		9	-		- 1				- (293	2		0	3	8	1	0	N	4	N	-	4	9	9			1		S		S	8	9		- 1		0	N	0	
N	5	1	L/I	0	M	m	8	24	-	8	d	8	6		2	9	1	9	-	(00)	9	4	0	N LO	S	4	8	S	-	35	-	8	3	9	-	4	8	-	9	S	9	0	3	295
0 45425.395378	A 5425 395378	0 45527.328979	0 45547 083419	0 45554 027984	1 45433.403495	1 45637.946472	1 45638.590515	5 45419.382309	5 45447.306976	7 45434.953735	7 45484.197418	8 45441.284111	9 45567.340698	9 45585.44735	2 45423.318542	2 45601.589813	3 45568.194107	3 45576.068954	45594.463623	4 45538 674026	4 45544 113708	5 45494 409256	5 45598 108825	9 45463 407516	0 45566.618499	0 45642.410461	4 45440.286376	4 45543.077713	4 45543.077743	8 45632.642974	0 45577.911422	0 45581.918487	1 45496.674789	4 45538.830841	4 45572.963195	4 45577.838836	4 45596.595764	7 45590.939636	7 45590.939605	7 45592.872528	7 45585.641784	9 45478.553512	9 45478 084503	5461.940895
9	0	0	0	0	0	9	9	0	9	9 6	39	6	19	30	39	9	39	39	0	0	0	0	0 0	חס	0	30	0	30	39	39	39	39	39	39	39	39	9	39	6	0	0	6	0	1396

~~4~4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4536. 44448. 3882. 3882. 2724. 2724. 49342. 7286. 5016. 5016. 5140. 5140.	35074.0 17498.0 30828.0 34987.0 35653.0 35613.0 32421.0 14239.0 37822.0 37822.0 37822.0 37822.0 37822.0 37847.0 37847.0 37940.0 34941.0 34941.0 34941.0
	7.00
	$\begin{array}{c} \bullet \\ \bullet $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	994.3 120.0 121.1 120.0 12
4.000.000.000.000.000.000.000.000.000.0	1.34 0.0000 0.0000 0.0000 0.0000 0.0000 0.1500 0.1500 0.7050 0.7050 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5200 0.5200 0.6750 0.9850 0.9850 0.9850 0.9850 0.3550 0.3550 0.3550 1.4700 1.6800 0.9150 0.5100 3.7200
230 230 230 230 230 230 230 230 230 230	0.6300 0.6300 0.6300 0.2800 0.8100 0.7450 0.7450 0.7450 1.2000 1.2000 1.5050 0.89050 0.8050 0.8050 0.3050 1.2000 1.3050 1.3050 1.3050
2222 2592 2693 2011 2013 2013 2014 2014 3014 3014 3014 3014 3014 3014 3014 3	1083 1083 1083 1083 1083 1083 1083 1083
00740000000000000000000000000000000000	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
3969 45465.019912 3970 45465.807663 3970 45641.336456 3971 45447.625717 3971 45474.52713 3971 45537.819961 3971 45537.819961 3971 45455.881347 3974 45505.499588 3974 45505.499588 3974 45505.499588	139/4 45551.9805561.3974 45551.98082660 13979 45647.8751526 13984 455479.6232910 13984 45573.0671692 13984 45573.0671692 13984 45573.0671692 13984 45573.0671692 13990 45574.0691071 13990 45574.0691071 14005 45512.2983704 14014 45559.2657623 14050 45623.9226685 14050 45559.2657623 14050 45559.2657623 14050 45559.2657623 14050 45559.2657635 14069 45520.0515137 14069 45520.0515137 14069 45520.0515137 14081 45512.5509033 14081 45594.8620605

4.74	! -		0	٦.	'n	9	4.6	9.	4	9.	4.	8	'n	4	'n	00	N.	4	m.	4.	. 7	6.	0	9.	٦.	9.	9	9.	9	4	9	v. ı	v ı	٠ ر	ů.	4 (9.	4	4	. 7	m.	£.	80	00
29974.0 3	20612	0.2100	65079.0	7307.0	4944.	4834.0	4786.	5071.	4654.	4786.	8859.	6427.	5172.	5516.	5168.	5139.	5004.	4967.	4967.	4955.	4944.	584.	4580.	2733.	2107.	4680.	4591.	4962.	5612.	5665.	5322.	4956.	5287.	5276.	5088.	5073.	5073.	4959.	4948.	2908.	9190.	8307.	8579.	8575.
19.6) ப	n	0	7		0	0		0	0		7	0		0	0		0				80	0	1	4		1		;	0	1	0	0	0	0		0	0	0	4	8		4	4
5.2																																												
60.1		-	7.	9	7	Ξ.	0	9	9	6	S.	04	80	7	1	7	ω.	00	7	9	9	4	4	00	6	6	7	7	1.	'n.	0	8	0	-	6	6	6	8	8	6	8	87.	9	6
1.6150	000	000.	000.	000.	.110	.070	.315	.210	.330	195	.350	1.740	.980	.755	.260	.210	.780	.160	.155	100	000	150	000	335	290	.540	.425	.630	.875	.615	.085	.800	.855	.925	.635	.385	000.	435	300	.025	.105	.575	.015	.680
3.5250	OTS.	.430	. 290	.600	.785	.320	745	.520	.010	945	495	6.490	.640	.640	.715	.245	.100	.165	350	340	385	440	580	890	3.905	.780	.290	.785	.230	.630	.600	.740	.840	.200	090.	.670	.310	.945	.330	.570	.010	110	.035	.270
2.9700	640	.600	.670	.005	415	.275	.785	495	790	915	030	5.070	515	.945	990	.710	.340	.255	585	565	320	920	226	810	810	960	400	.015	.420	.540	.000	.605	.220	.135	.695	.360	.755	.125	.700	.910	640	710	160	.265
239	\dashv				1	3	C	9	4	0	10	1 15	0	0	3	S	6	-	10	1 () 1		1	0	1 6		6	S	1	H	00	S	2	9	9	8	-	C	1	00	0	217	I L	274
	91	0	72	9	C	S	-	I L	20	7	10	· 0) L	0	0	~	27	· V	7	- 1	4 6	2 0	1 4	1 0	0	14	V) LC	1	0	00	S	N	0	3	-	S	00	4	4	S LC	15	- 0	296
1 45581.837875	5 45536.545028	5 45536.545059	5 45528.597076	5 45650,619812	4 45569 414062	4 45522 393188	F 45550 840759	5 45525 075134	E 45647 884002	0 C C C C C C C C C C C C C C C C C C C	A E E 1 A 0 0 0 2 1 0	0 45514.030215 0 45508 059845	4 45602 407745	R 45592 570495	A 45599 581054	R 45600 582977	R 45627 096313	8 45628 098175	2/10/0.020/10 0	216660.629.6	000101.05054 0	8 45631.103637 6 45676 983795	0 4ECEO C10E17	8 45650.676527 7 AEESA 284134	7777 05.4.204 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	45473 108230	45569 342468	45463 236267	4 45509 079406	4 45631 246856	5 45536.532379	5 45562.581420	5 45597.577179	5 45598.579071	5 45617,614685	5 45618,616546	5 45618,616455	5 45640.656829	5 45641.658630	K 45542 494537	45575 348114	45648 OS1239	0 AEEE7 705777	8 45557.7952881
04	40	40	40	40	41	41	1 4	1 -	1 -	1 -	1 -	7 7	1 -	1 7	41	41	1 4	1 -	1 -	7 7	T .	4 4	7 7	T .	1 -	1 1	11	1 -	1 7	11	41	41	41	41	41	41	41	41	1 7	10	7 0	7 0	7 0	1425

5.62	6.	6	6.	8	8	6.	6.	8	6.	6	Φ.	6	9	6.	4	S	ω.	ω.	4.59	6.	6.	9.	.7	4.	6.	4.63	
18696.0	576.	441.	280.	8813.	781.	8282.	8704.	8757.	8332.	8601.	8581.	8763.	8704.	8806.	8808	7854.	5890.	0541.	9002.	3352.	8558	128.	5909.	5894.	301.	2487.	
-48.5	7	è.	9	4	4	9	m ·	8		9	4		3	9	9			7	•		7		3	6			
9.9	•												•						3.9		•			•			•
80	4	æ	7	9	4	87	8	-	3	-	3	2	7	16	9	9	9	8	65.2	8	-	9	4	4	9	C)
.260	.055	.350	.165	.200	00.	.645	.350	.620	.525	.980	.520	.550	.655	.305	.000	.390	000	.345	1.0600	.280	.780	.935	.830	000	.600	340	
.86	.32	.32	.40	36	40	. 22	.17	.51	1.70	.63	8.15	2.49	0.95	.61	0.45	.78	.51	. 08	2.6100	.67	.19	.52	00	45	85	9	
.305	.930	.835	.275	920	800	.245	825	240	750	.640	000	.005	705	345	520	510	450	920	1.9700	575	.810	615	540	150	870	175	
-	-	4	C		. 4	-	Œ		3	9	0	4	~	0	1	223	1	4	266	N	α	-	1	1	4	220	4
S	9	S	-	. 0	0	0	1	0	-	4	6	S	4	1	00	1	. (1 4	295	00	-	. 0	1	-	361) ()
5617,605651	5585.376861	5568 417556	5561 586166	SC87 789810	SERO 524551	5561 586288	5590 653778	5570 532684	5571 957000	5565 558685	5557 795227	5587 136581	5611 953277	5579 161117	5579 161117	2577 969284	503606.1160	5500 034509	45587 7859802	5601 548828	5579 631973	SERR GROOM	58318¢ 1633	50105 TESS	E620 994445	C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	643.089233
425	425	425	425	420	100	700	200	426	426	426	426	426	42 A	426	700	200	7 7 7	727	14313	121	107	101	107	1 5	707	0 0	436

APPENDIX B SATELLITES OBSERVED BY IRAS (AT LEAST ONCE)

This appendix identifies the 465 satellites observed by IRAS. This list contains the following information.

- 1. Air Force Space Surveillance Center identification number.
- 2. Year of launch.
- 3. International designator.
- 4. Country of origin.
- 5. Type of object: PL denotes a payload; RB, a rocket body; and DB is debris.
- 6. Status of the object.
- 7. Common name of object or a comment.
- 8. Inclination of the object, degrees.
- 9. Eccentricity of the object.
- 10. Semimajor axis of the object, earth radii.
- 11. Mean motion of the object, revolutions per day.

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
			1	1 1 1 1 1	1					
20	1959	007A	USA	PL	NA	VANGUARD 3	33.3	.1880	1.330300	11.115000
282	1962	0128	USA	RB	NA	RANGER 4//RB (no element set)	7.	.1384	6.613023	1.002251
573	1963	013A	USA	PL	NA	TELSTAR 2	42.8	.4011	1.923095	6.392022
575	1963	013B	USA	RB	NA	TELSTAR 2//SDC 573	42.8	.4007	1.921426	6.400349
748	1964	006B	SOV	PL	NA	ELEKTRON 2	63.6	.6030	6.363943	1.061707
751	1964	Q900	SOV	RB	NA	ELEKTRON 1//SDC 746	64.0	.5809	6.450280	1.040463
830	1964	038B	SOV	PL	AC	ELEKTRON 4	62.9	.8308	6.228553	1.096366
869	1964	0490	SOV	PL	NA	COSMOS 41	71.5	.6721	4.150794	2.015250
868	1964	049E	SOV	RB	NA	COSMOS 41//SDC 869	71.5	.6720	4.163013	2.006391
1360	1965	034B	USA	PL	AC	LES-2	32.2	.3971	2.378194	4.648185
1361	1965	034C	USA	PL	NA	LCS-1	32.1	.0010	1.236000	9.890000
2222	1966	0533	USA	RB	NA	OPS 9381//SDC 2207	11.9	.0162	6.341975	1.067199
2608	1966	110A	USA	PL	NI	ATS 1	13.5	.0045	965909.9	1.003723
2643	1961	001D	USA	DB	IN	INTELSAT IIF-2//SDC 2639	26.9	.6492	2.996155	3.287286
2653	1961	003F	USA	PL	NI	OPS 9326 (IDCSP-13)	11.4	.0034	6.300318	1.077799
2868	1961	5990	USA	RB	NA	OPS 9331//SDC 2862	9.5	. 0049	6.246769	1.091676
3029	1967	1111	USA	PL	IN	ATS 3// SYNCTM 1050Z	13.1	.0024	6.610919	1.002733
3292	1968	0507	USA	RB	NA	IDCSP 4-1,6 Transtage	12.1	.0168	6.386718	1.055998
3307	1968	055A	USA	PL	IN	EXPLORER 38	120.8	.0011	1.916780	6.422126
3431	1968	0810	USA	PL	AC	LES 6//SYNCTM 1330Z	11.3	6000.	6.610243	1.002895
3432	1968	081E	USA	RB	NA	LES-6//SDC 3431	11.0	0600.	6.559110	1.014639
3848	1968	055C	USA	DB	NA	EXPLORER 38//SDC 3307	120.8	.0014	1.916242	6.424930
3954	1969	046D	USM	PL	AC	VELA//OPS 6909	61.6	.2914	18.456831	.214949
3955	1969	046E	USM	PL	AC	VELA//OPS 6911	61.1	.3332	18.452632	.215107
4353	1970	021A	NAT	PL	NA	NATO I	11.3	.0002	6.611288	1.002646
4354	1970	0218	USM	RB	NA	NATO I//SDC 4353	26.1	.7008	3.595968	2.500028
4366	1970	A720	USM	PL	AC.	VELA//OPS 7033	61.2	.0849	18.441386	.215341
4368	1970	027B	USM	PL	AC.	VELA//OPS 7044	57.4	.0668	18.472443	.214696
4478	1970	055A	ITS	PL	N.	INTELSAT IIIF-8	13.1	.0336	6.524887	1.022637

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
			1	1 1 1 1 1	1 1 1 1 1		1 1 1 1 1 1 1 1			
4630	1970	093A	USA	PL	IN	OPS 5960	15.7	.1366	5.858588	1.201954
4881	1971	006A	ITS	PL	NA	INTELSAT IVF-2	10.6	.0037	6.674583	.988434
4882	1971	006B	USA	RB	NA	INTELSAT IVF-2//SDC 4881	27.4	.7192	3.911328	2.203818
4902	1971	W600	NAT	PL	NI	NATO IIB//DO NOT ATTEMPT TO T	11.6	.0211	6.611293	1.002657
4925	1964	0868	USA	DB	NA NA	Explorer 26 Fragments	19.8	.5095	2.141244	5.442057
5204	1971	0398	NSM	PL	NA	OPS 3811 MEWS 2	8.6	.0008	6.706388	.981406
5205	1971	039B	USM	DB	NA	OPS 3811 MEWS 2//SDC 5204	9.2	.0111	6.604062	1.004298
5589	1971	0950	USA	RB	NA	DSCS 1//SDC 5587	12.0	.0165	6.750073	.971874
5598	1971	M960	USA	PL	NA	EXPLORER 45	3.2	.5734	2.444160	4.462531
5816	1972	003B	USA	RB	NA	INTELSAT IVF-4//SDC 5775	28.3	.7185	3.910264	2.204621
5851	1972	0108	MSD	PL	AC	OPS 1570 IMEWS 3	.2	.0060	6.595500	1.007063
5991	1969	2690	USA	RB	NA	ATS 5//SDC 4068	17.2	.6703	4.024681	2.111305
6052	1972	041A	ITS	PL	NA	INTELSAT IVF-5	8.5	.0003	6.618852	1.000938
6058	1972	041B	USA	R.B	NA	INTELSAT IVF-5//SDC 6052	27.2	.7229	3.901311	2.212246
6192	1972	072A	SOV	PL	IN	COSMOS 520	7.79	.6219	4.153195	2.013576
6278	1972	W060	CAN	PL	NA	ANIK A1	8.5	.0024	6.675102	.988313
6302	1972	072E	SOV	RB	NA	COSMOS 520//SDC 6192	9.79	.6170	4.120567	2.037535
6437	1973	023A	CAN	PL	NA	ANIK A2	7.2	.0007	6.631945	.997984
6691	1973	0408	USA	PL	AC	OPS 6157 MEWS 4	7.2	6000.	6.630756	.998236
6779	1967	001X	USA	DB	NA	INTELSAT IIF-2//SDC 2639	28.1	.7178	3.923480	2.193502
6877	1973	076A	SOV	PL	AC	MOLNIYA 2-7	64.2	.7540	4.183995	1.991358
6893	1973	078A	USA	PL	AC	IMP 8	47.3	.1234	35.158855	.081754
6898	1973	D920	SOV	RB	NA	MOLNIYA 2-7//SDC 6877	62.9	.7410	4.223020	1.964020
9169	1973	084A	SOV	PĽ	IN	COSMOS 606	67.9	.6489	4.166774	2.003682
66939	1973	084D	SOV	RB	NA	COSMOS 606//SDC 6916	67.6	.6502	4.119941	2.037931
6958	1973	A760	SOV	PL	AC	MOLNIYA 1-26	64.0	.7378	4.163324	2.006199
6974	1973	100B	MSD	PL	AC	OPS 9434 DSCS 4	10.9	.0063	6.611143	1.002694
9269	1973	100D	USA	RB	NA	OPS 9433-9434//SDC 6973	11.7	.0271	6.850786	.950524
7000	1973	106A	SOV	PL	AC	MOLNIYA 2-8	63.9	.7476	4.162363	2.006889
7178	1973	097D	SOV	RB	NA	MOLNIYA 1-26//SDC 6958	64.2	.7354	4.228946	1.959730

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7250	1974	022A	USA	PL	NA	WESTAR 1	6.8	5000.	6.627711	. 998937
7260	1974	023A	SOV	PL	AC	MOLNIYA 1-27	64.1	.7509	4.157048	2.010475
7264	1974	023E	SOV	RB	NA	MOLNIYA 1-27//SDC 7260	64.1	.7553	4.205795	1.975901
7276	1974	026A	SOV	PL	NA	MOLNIYA 2-9	62.6	.7363	3.900813	2.212090
7318	1974	039A	USA	PL	NA	ATS 6	10.7	.0030	6.536818	1.019838
7324	1974	039C	USA	RB BB	NA	ATS 6//SDC 7318	10.9	.0021	6.593466	1.006711
7354	1974	0500	SOV	82	NA	COSMOS 665//SDC 7352	62.4	.7464	4.031656	2.105105
7369	1974	054A	USA	PL	A C	OPS 7518 NTS1 (TIMATION 3)	125.1	6200.	3.133876	3.072146
7372	1973	106D	SOV	82	NA	MOLNIYA 2-8 // SDC 7000	64.2	.7384	4.224188	1.962997
7373	1974	026E	SOV	RB	NA	MOLNIYA 2-9//SDC 7276	63.0	.7539	4.213054	1.970793
7376	1974	056A	SOV	PL	IN	MOLNIYA 2-10	61.8	.7282	4.163997	2.005808
7382	1974	056D	SOV	RB	NA	MOLNIYA 2-10//SDC 7382	62.3	.7446	4.218274	1.967182
7468	1974	075C	USA	828	NA	WESTAR 2//SDC 7466	24.4	.5651	2.368725	4.676869
7480	1974	0818	SOV	PL	DD	MOLNIYA 1-28//29 DEC 1985	63.4	.7444	3.968185	2.154764
7485	1974	081D	SOV	QQ	NA	MOLNIYA 1-28//SDC 7480//27 OC	63.1	.7501	4.030396	2.106265
7540	1974	092A	SOV	PL	DD	MOLNIYA 3-1//15 MAY 1986	62.9	.1347	1.178695	13.290740
7545	1974	0938	USA	RB	NA	INTELSAT IVF-8//SDC 7544	25.5	.7235	3.908513	2.206224
7546	1974	092E	SOV	DB	NA	MOLNIYA 3-1//SDC 7540	64.0	.7555	4.194397	1.983940
7583	1974	102A	SOV	PL	QQ	MOLNIYA 2-11//07 JUL 1988	61.9	.3008	1.453230	9.727411
7586	1974	102D	SOV	RB	NA	MOLNIYA 2-11//SDC 7583	62.0	.6616	2.997658	3.283689
7625	1975	A100	SOV	PL	NA	COSMOS 706	67.8	. 5069	4.160392	2.008410
7629	1975	007D	SOV	R3	NA	COSMOS 706//SDC 7625	9.19	.5280	4.159821	2.008818
7641	1975	009A	SOV	PL	QQ	MOLNIYA 2-12//04 JUL 1985	63.9	.7379	3.889347	2.221856
7653	1975	Q600	SOV	RB	NA	MOLNIYA 2-12//SDC 7641	63.9	.7455	3.998651	2.131066
7738	1975	029A	SOV	PL	QQ	MOLNIYA 3-2//29 NOV 1988	62.0	.2420	1.336683	11.026730
7741	1975	029D	SOV	RB	NA	MOLNIYA 3-2//SDC 7738	62.3	.7551	4.176679	1.996637
7780	1975	036A	SOV	PL	NI	MOLNIYA 1-29	63.2	.7410	4.163366	2.006173
7790	1975	038A	CAN	PL	NA	ANIK A3	6.0	.0002	6.621058	1.000451
7794	1975	038D	USA	RB	NA	ANIK A3//SDC 7790	24.6	.6448	2.932804	3.394490
7800	1975	036D	SOV	RB	NA	MOLNIYA 1-29//SDC 7780	63.7	.7289	4.221763	1.964718

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
1 1 1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1	-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
7902	1975	042B	USA	82	NA NA	INTELSAT IVF-1//SDC 7815	26.1	.7216	3.911072	2.203979
7903	1975	049A	SOV	PL	DD	MOLNIYA 1-30//12 AUG 1987	62.8	.7267	3.731215	2.362655
8015	1975	063A	SOV	PL	NA	MOLNIYA 2-13	63.4	.7400	4.163128	2,006343
8018	1975	063D	Sov	828	NA	MOLNIYA 2-13//SDC 8015	63.8	.7293	4.221963	1.964575
8134	1975	077C	USA	RB.	KN	SYMPHONIE B//SDC 8132	13.7	TT27.	3.882609	2.228435
8187	1975	079A	Sov	PL	DD	MOLNIYA 1-31//19 NOV 1986	63.8	.6751	3.123115	3.087744
8195	1975	081A	SOV	PL	NI	MOLNIYA 2-14	63.1	.7452	4.163234	2.006262
8274	1975	079E	SOV	RB	DD	MOLNIYA 1-31//SDC 8187//08 JU	63.3	.7236	3.654255	2,439685
8331	1975	091B	USA	RB	KN	INTELSAT IVAF-1//SDC 8330	21.7	.7216	3.909765	2.205187
8366	1975	100A	USA	PL	AC	SMS C-GOES 1// SYNCTM 1120Z	9.6	. 0002	6.610121	1.002910
8418	1975	081D	SOV	RB	NA	MOLNIYA 2-14//SDC 8195	63.7	.7385	4.225118	1.962362
8425	1975	105A	SOV	PL	IN	MOLNIYA 3-3	63.3	.7404	4.163919	2.005770
8462	1975	1050	SOV	838	NA NA	MOLNIYA 3-3//SDC 8425	63.8	.7334	4.225243	1.962282
8476	1975	117A	USA	PL	AC	RCA Satcom 1	0.0	.0001	6.610865	1.002646
8482	1975	118A	USM	PL	AC	OPS 3165 MEWS 5	5.0	.0014	6.600486	1.005112
8492	1975	121A	SOV	PL	NA	MOLNIYA 2-15	62.8	.6703	3.089751	3.137869
8521	1975	125A	Sov	PL	QQ	MOLNIYA 3-4//12 AUG 1986	63.4	.6914	3.290762	2.854843
8529	1975	121D	SOV	RB	DD	MOLNIYA 2-15//SDC 8492//13 OC	63.8	.7319	3.760229	2.337269
8547	1975	123E	SOV	DB	KN	RADUGA 1//SDC 8513	46.5	.6410	2.857945	3.527971
8548	1975	049E	SOV	RB	Z.	MOLNIYA 1-30//SDC 7903	62.7	.7071	3.529642	2.570071
8585	1976	0048	CAN	PL	N.	CTS A	10.2	.0017	6.613727	1.002104
8600	1975	125F	Sov	828	DD	MOLNIYA 3-4//SDC 8521//30 JUL	63.8	.7178	3.572281	2.524123
8601	1976	0068	SOV	PL	N	MOLNIYA 1-32//TT	63.5	.7255	4.174432	1.998236
8620	1976	010A	ITS	PL	NA	INTELSAT IVAF-2	5.9	9000.	6.636881	.996858
8621	1976	010B	USA	RB	NA	INTELSAT IVAF-2//SDC 8620	22.0	.7202	3.913463	2.202021
8701	1976	006D	SOV	RB	NA	MOLNIYA 1-32//SDC 8601	63.6	.7280	4.076651	2.070525
8741	1976	021A	SOV	PL	NI	MOLNIYA 1-22	62.7	.7519	4.154772	2.012438
8751	1976	023F	USA	RB	NA	LES 8-9//SDC 8746-8747	20.1	.0140	6.700733	.982643
8762	1976	026A	SOV	PL	AC	MOLNYIA 1-34	64.0	.7263	4.162679	2.006672
8774	1976	029A	USA	PL	NA	RCA B (SATCOM II)	5.5	.0060	6.684373	.986265

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
8820	1976	039A	USA	PL	NA	LAGEOS I	109.9	.0039	1.923765	6.386718
8822	1976	039C	USA	DB	NA	LAGEOS//SDC 8820	109.9	.0038	1.923371	6.388686
8833	1976	041A	Sov	PL	IN	MOLNIYA 3-5	62.2	.7399	3.910050	2.203367
8838	1976	042A	USA	PL	NI	COMSTAR 1-D1	5.7	.0002	6.631016	.998169
8840	1976	0428	USA	RB	NA	COMSTAR 1-D1//SDC 8838	21.6	.7159	3.891330	2.220879
8844	1976	041D	SOV	RB	NA	MOLNIYA 3-5//SDC 8833	61.9	.7536	4.133384	2.028069
8882	1976	053A	USA	PL	AC	MARISAT B (MARISAT 3)	7.4	.0002	6.610943	1.002729
8910	1976	053F	USA	RB	NA	MARISAT B (MARISAT 3) //SDC 88	25.4	.6807	3.265319	2.889287
8916	1976	059A	USM	PL	AC	OPS 2112 MEWS 6	0.8	. 0004	6.611030	1.002708
8918	1976	0590	USM	RB	NA	OPS 2112 MEWS 6//SDC 8916	5.	.0030	6.603496	1.004675
9007	1976	0658	USM	PL	AC	OPS 3986 SESP 74-2	97.4	.1940	1.283459	11.715864
6006	1976	066A	IND	PL	NA	PALAPA A	4.6	.0003	6.621068	1.000428
9017	1976	D990	USA	88	NA	PALAPA A//SDC 9009	24.6	6909	2.642385	3.969319
9047	1976	073A	USA	PL	AC	COMSTAR 1-D2	9.6	0000	6.610944	1.002703
9049	1976	074A	SOV	PL	QQ	MOLNIYA 1-39//TT//29 MAY 1987	63.4	.6826	3.212861	2.959299
9269	1976	074E	SOV	RB	NA	MOLNIYA 1-35//SDC 9049	62.6	.7276	4.032701	2.104541
9329	1976	073B	USA	RB	NA	COMSTAR 1-D2//SDC 9047	21.4	.7178	3.882406	2.228535
9330	1974	1016	USA	RB	NA	SYMPHONIE A//SDC 7578	13.0	.7303	3.933712	2.185157
9411	1976	021D	SOV	RB	NA	MOLNIYA 1-23//SDC 8741	63.0	.7383	4.214503	1.969832
9478	1976	101A	USA	PL	AC	MARISAT C (MARISAT 2)	0.6	.0001	6.611142	1.002685
9495	1976	105A	SOV	PĽ	NA	COSMOS 862//TT	67.1	.6965	4.162677	2.006607
9056	1976	1050	SOV	838	NA	COSMOS 862//SDC 9495	66.4	.6967	4.140154	2.023012
9574	1976	116A	SOV	PL	1N	MOLNIYA 2-16	62.1	.7434	4.163913	2.005853
9579	1976	116D	SOV	88	NA	MOLNIYA 2-16//SDC 9574	62.3	.7316	4.217925	1.967464
9635	1976	127A	SOV	PL	NA	MOLNIYA 3-6	59.5	.4918	2.099146	5.603660
9647	1976	127E	SOV	RB	QQ	MOLNIYA 3-6//SDC 9635//30 SEP	63.9	.5003	2.025750	5.910550
9829	1977	010A	SOV	PL	IN	MOLNIYA 2-17	63.7	.7167	4.163096	2.006418
9850	1977	O10E	SOV	RB	NA	MOLNIYA 2-17//SDC 9829	64.1	.6972	4.214698	1.969703
9852	1977	014A	JPN	PL	NA	ETS 2//KIKU 2	9.1	.0009	6.613187	1.002210
9880	1977	021A	SOV	PL	NI	MOLNIYA 1-36	63.7	.7241	4.163273	2.006281

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
	1 1 1 1	1 1 1 1 1 1 1	1 1 1		1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
9889	1976	105F	SOV	DB	NA	COSMOS 862//SDC 9495	67.0	9869.	4.165429	2.004620
9911	1977	027A	SOV	PL	NA	COSMOS 903	67.5	.6355	4.163897	2.005828
9921	1977	027D	SOV	RB	NA	COSMOS 903//SDC 9911	67.7	.6469	4.187609	1.988807
9927	1977	021D	SOV	RB	NA	MOLNIYA 1-30//SDC 9880	64.0	.7044	4.221640	1.964843
9931	1977	029A	ESA	PL	NA	ESRO-GEOS 1	27.6	.6604	4.226484	1.961763
9933	1977	029C	ESA	RB	NA	ESA-GEOS 1 //SDC 9931 (3RD ST)	26.0	.3153	1.514224	9.152373
9941	1977	032A	SOV	PL	IN	MOLNIYA 3-7	63.7	.7216	4.163304	2.006261
10000	1977	034A	USM	PL	NA	OPS 9437	9.3	.0019	6.774168	.966703
10001	1977	034B	USM	PL	NA	OPS 9438	6.8	9800.	6.832878	.954265
10002	1977	034C	USM	RB	NA	OPS 9437-9438//SDC 10000-1000	9.5	.0282	6.826526	.955599
10025	1977	0418	USA	RB	NA	INTELSAT IVAF-4//SDC 10024	21.2	.7206	3.890417	2.221650
10059	1977	047A	SOV	PL	NA	COSMOS 917	9.19	.5360	4.162015	2.007234
10001	1977	048A	USA	PL	AC	GOES B// SYNCTM 1415Z	7.9	.0032	6.600820	1.005040
10089	1977	047D	SOV	RB	KN	COSMOS 917//SDC 10059	67.4	.5570	4.181278	1.993376
10001	1977	053A	USM	PL	AC	NTS 2	64.6	.0052	4.164829	2.005211
10092	1977	054A	SOV	PL	NI	MOLNIYA 1-37	63.0	.7199	4.163270	2.006319
10143	1977	065A	JPN	PL	MA	GMS 1//HIMAWARI 1	8.1	.0015	6.656323	.992504
10150	1977	0688	SOV	PL	NA	COSMOS 931	67.2	.5751	4.162650	2.006765
10155	1977	052D	SOV	RB	NA	MOLNIYA 1-37//SDC 10092	63.5	.7066	4.076504	2.070701
10159	1977	071A	SOV	PL	IN	RADUGA 3	10.0	.0028	6.607962	1.003420
10167	1977	0680	SOV	RB	NA	COSMOS 931//SDC 10150	68.2	.5782	4.134114	2.027551
10315	1977.	082A	SOV	PL	NI	MOLNIYA 1-38	62.7	.7290	4.024304	2.111113
10369	1977	082E	SOV	RB	NA	MOLNIYA 1-38//SDC 10315	63.9	.7295	3.834542	2.269660
10422	1977	102E	USA	PL	QQ	ISEE A//26 SEP 1987	8.7	.9126	11.833726	.418747
10455	1977	105A	SOV	PL	IN	MOLNIYA 3-8	63.5	8069.	4.164077	2.005745
10485	1977	105E	SOV	RB	NA	MOLNIYA 3-8//SDC 10455	63.6	.6820	4.216482	1.968477
10489	1977	1088	ESA	PL	NA	METEOSAT 1	9.1	.0017	6.613294	1.002199
10516	1977	118A	JPN	PL	NA	CS//SAKURA	7.5	.0001	6.671310	.989153
10557	1978	002A	ITS	PL	NA	INTELSAT IVAF-3	4.1	.0003	6.626796	.999133
10605	1978	M600	SOV	PL	NA	MOLNIYA 3-9	63.5	.0612	1.076795	15.248947

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1			
10669	1978	016A	USM	PL	AC	FLTSATCOM 1//OPS 6391	8.2	.0003	6.611457	1.002604
10684	1978	020A	NSM	PL	AC	GPS 1//OPS 5111//NAVSTAR 1	63.7	.0116	4.164326	2.005591
10696	1978	024A	SOV	PL	NI	MOLNIYA 1-39	62.0	.7351	4.164045	2.005774
10722	1978	002B	USA	RB	NA	INTELSAT IVAF-3//SDC 10557	21.0	.7186	3.898747	2.214531
10723	1978	0120	USA	RB	NA	IUE//SDC 10637	29.5	.7194	3,743703	2.353406
10778	1978	035A	ITS	7d	NA	INTELSAT IVAF-6	4.2	8000	6.609938	1.002966
10779	1978	035B	USA	RB	NA	INTELSAT IVAF-6//SDC 10778	21.6	.7193	3.889729	2.222265
10794	1978	039C	JPN	RB	NA	BSE//SDC 10792	27.0	.4609	1.928681	6.365893
10801	1978	020B	USM	RB	NA	GPS 1//OPS 5111//SDC 10684	63.9	.4848	2.160974	5.364645
10802	1978	3600	Sov	RB	K	MOLNIYA 3-9//SDC 10609	63.6	.7367	3.871656	2.237114
10803	1978	024D	SOV	RB RB	NA	MOLNIYA 1-39//SDC 10696	62.2	.7369	4.206771	1.975288
10855	1978	044A	ESA	PL	AC	OTS 2	6.3	.0002	6.611729	1,002554
10893	1978	047A	USM	PL	Ac	GPS 2//OPS 5112//NAVSTAR 2	64.4	.0163	4.164458	2.005478
10894	1978	047B	USM	RB	NA	GPS 2//OPS 5112//SDC 10893	64.0	.5031	2.258748	5.020137
10925	1978	055A	SOV	PL	IN	MOLNIYA 1-40	63.3	.6918	4.163670	2.006045
10949	1978	OSSF	SOV	RB	NA	MOLNIYA 1-40//SDC 10925	63.5	.6898	4.220153	1.965909
10950	1977	108C	USA	RB	NA	METEOSAT//SDC 10489	27.1	.2215	1.317697	11.275614
10955	1978	062C	USA	RB	NA	GOES 3 (3rd Stage) //SDC 10953	23.7	.1873	1.260109	12.058846
10960	1977	053B	USA	RB	NA	NTS 2//SDC 10091	64.5	.5191	2.401229	4.580037
10970	1978	066A	Sov	PL	2	COSMOS 1024	67.8	.5486	4.163185	2.006375
10976	1978	068B	USA	RB	NA	COMSTAR D3//SDC 10975	22.0	.7160	3.893121	2.219335
10981	1978	071A	ESA	PL	NA	GEOS 2// SYNCTM 1535	0.6	.0001	6.650649	.993907
10983	1978	071C	USA	RB	NA	GEOS 2//SDC 10981	25.8	.6607	3.056156	3.190985
10984	1978	092A	SOV	PL	IN	MOLNIYA 1-41	62.0	. 7392	4.036654	2.101448
10987	1978	073A	SOV	PL	IN	RADUGA 4	9.8	.0011	6.607476	1.003522
10998	1978	0660	SOV	RB	NA	COSMOS 1024//SDC 10970	67.8	.5550	4.172478	1.999676
11007	1978	080A	SOV	PL	NA	MOLNIYA 1-42	63.8	.7213	4.163450	2.006160
11015	1978	083A	SOV	PL	NA	COSMOS 1030	9.79	.6031	4.161069	2.007874
11028	1978	087B	JPN	828	NA	EXOS B//SDC 11027	31.2	.6088	2.648467	3.955425
11054	1978	093A	USM	PL	AC	GPS 3//OPS 5113//NAVSTAR 3	63.9	.0062	4.164176	2.005687

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1	1 1 1 1			1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11057	1978	W560	SOV	PL	KN	MOLNIYA 3-10	63.1	.7034	4.164613	2.005360
11073	1978	072D	SOV	RB	NA	MOLNIYA 1-41//SDC 10984	62.4	.7449	4.074208	2.072444
11075	1978	0800	SOV	82	NA	MOLNIYA 1-42//SDC 11007	64.2	.7068	4.219564	1.966293
11076	1978	083D	SOV	RB	NA	COSMOS 1030//SDC 11015	6.59	.6226	4.184862	1.990802
11079	1978	3560	SOV	RB	NA	MOLNIYA 3-10//SDC 11057	63.2	.7109	4.226787	1.961273
11136	1978	1093	SOV	82	Z	COSMOS 1051-1058/SDC 11128-35	74.0	.0140	1.250081	12.189368
11141	1978	112A	USM	PL	AC	GPS 4//OPS 5114//NAVSTAR 4	63.7	6500.	4.164266	2.005628
11142	1978	1128	USM	82	NA	GPS 4//OPS 5114//SDC 11141	63.6	.5035	2.168458	5.336896
11144	1978	113A	USM	PL	AC	OPS 9441 DSCS 11	8.9	.0004	6.608731	1.003227
11145	1978	1138	USM	PL	AC	OPS 9442 DSCS 12	6.7	9000.	6.610930	1.002732
11153	1978	116A	CAN	PL	NA	ANIK B	3.5	9000.	6.630908	.998216
11158	1978	1187	SOV	PL	IN	GORIZONT 1	19.0	.3336	6.610774	1.002778
11240	1979	0048	SOV	PL	IN	MOLNIYA 3-11	63.9	.6845	4.164276	2.005596
11256	1979	A700	USA	PL	AC	SCATHA//OPS 7802//CHECK SYNCT	7.2	.1653	6.547909	1.017236
11273	1979	015A	SOV	PL	IN	EKRAN 3	9.1	.0038	6.613513	1.002139
11328	1979	031A	SOV	PL	QQ	MOLNIYA 1-43//09 DEC 1989	63.8	.3890	1.660161	7.966534
11353	1979	038A	USM	PL	AC	FLISATCOM 2//OPS 6392	6.9	8000.	6.610962	1.002737
11384	1979	0488	SOV	PL	IN	MOLNIYA 3-12	63.5	.7310	3.779156	2.319734
11436	1979	053C	USM	RB	NA	OPS 7484 MEWS 9//SDC 11397	1.5	.0057	6.648204	.994304
11440	1979	062A	SOV	PL	IN	GORIZONT 2	9.6	.0010	6.612037	1.002478
11474	1979	070A	SOV	PL	IN	MOLNIYA 1-44	63.9	.6755	4.164073	2.005753
11509	1979	A770	Sov	PL	NA	COSMOS 1124	68.1	.5850	4.159958	2.008682
11550	1979	0770	SOV	828	NA	COSMOS 1124//SDC 11509	68.1	.5907	4.186651	1.989503
11551	1979	031D	SOV	82	NA	MOLNIYA 1-43//SDC 11328	64.1	.7343	3.814105	2.287917
11553	1979	004D	SOV	88	NA	MOLNIYA 3-11//SDC 11240	64.2	.6738	4.222107	1.964541
11554	1979	0480	SOV	RB	NA	MOLNIYA 3-12//SDC 11384	63.9	.2619	1.382547	10.482293
11555	1979	058D	SOV	RB	NA	COSMOS 1109//SDC 11417	67.4	6099.	4.178737	1.995147
11556	1979	0700	SOV	RB	2	MOLNIYA 1-44//SDC 11474	64.2	.6723	4.222480	1.964282
11567	1974	017F	SOV	RB	NA	COSMOS 637//SDC 7229	11.2	.0047	6.578940	1.010059
11569	1976	107F	SOV	RB	NA	EKRAN 1//SDC 9503	10.3	.0012	6.559342	1.014575

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
			1	1 1 1 1 1						
11570	1977	071F	SOV	RB	NA	RADUGA 3//SDC 10159	10.3	.0011	6.724728	. 977378
11571	1977	092F	SOV	RB	NA	EKRAN 2//SDC 10365	9.6	6000	6.566949	1.012815
11589	1979	091A	SOV	PL	NI	MOLNIYA 1-45	63.2	.7422	4.163954	2.005754
11602	1979	091D	SOV	RB	NA	MOLNIYA 1-45//SDC 11589	63.9	.7445	4.218978	1.966625
11621	- 6161	098A	USM	PL	AC	OPS 9443 DSCS 13 (Type 2)	6.3	.0001	6.610884	1.002734
11623	1979	098C	USM	RB	Ä	OPS 9443-9444//SDC 11622 AND	7.5	.0280	6.838063	.953190
11635	1979	1018	USA	PL	NA	SATCOM C	7.6	.4845	4.434398	1.825425
11661	1979	105D	SOV	DB	NA	GORIZONT 3 4TH STAGE FRACMENTS	46.6	.3902	1.538147	7.839730
11662	1980	002A	SOV	PL	IN	MOLNIYA 1-46	64.0	.7271	4.163677	2,005994
11670	1980	002F	SOV	RB	NA	MOLNIYA 1-46//SDC 11662	64.4	.7162	4.221082	1.965228
11676	1975	097F	SOV	RB	NA NA	COSMOS 775//SDC 8357	11.1	.0029	6.619022	1.000895
11684	1979	105E	SOV	RB	NA NA	GORIZONT 3//SDC 11648	8.4	.0016	6.681624	. 986858
11690	1980	011A	USM	PL	AC	GPS 5//OPS 5117//NAVSTAR 5	64.2	.0113	4.164337	2.005584
11705	1980	0118	USM	RB	NA NA	GPS 5//OPS 5117//SDC 11690	63.5	.5261	2.274022	4.969638
11708	1980	0168	SOV	PL	IN	RADUGA 6	8.5	.0018	6.611372	1.002642
11715	1980	0188	JPN	PL	NA	ECS 2//AYAME 2	6.3	.0002	6.609124	1.003142
11718	1980	018C	JPN	RB	Z.	ECS B//SDC 11715	24.4	.6008	2.598766	4.069713
11728	1980	016D	SOV	RB	NA	RADUGA 6//SDC 11708	8.7	.0016	6.729967	.976243
11758	1980	028A	SOV	PL	IN	COSMOS 1172	66.1	.6447	4.164949	2.005095
11762	1980	028E	SOV	RB	NA	COSMOS 1172//SDC 11758	66.7	.6610	4.180736	1.993731
11783	1980	032A	USM	PL	N C	GPS 6//OPS 5118//NAVSTAR 6	63.7	.0149	4.164278	2.005609
11791	1980	032B	USM	RB	NA	GPS 6//OPS 5118//SDC 11783	63.2	.4815	2.006176	5.997338
11844	1980	050A	SOV	PL	NA	COSMOS 1188	67.4	.6158	4.164143	2.005675
11847	1980	050B	SOV	RB	NA	COSMOS 1188//SDC 11844	67.4	.6149	4.182963	1.992157
11856	1980	053A	SOV	PL	IN	MOLNIYA 1-47	64.2	.7503	4.161057	2.007813
11861	1980	0530	SOV	82	NA	MOLNIYA 1-47//SDC 11856	64.6	.7487	4.221669	1.964740
11862	1980	049F	SOV	RB	Z.	GORIZONT 4//SDC 11841	8.1	.0028	6.715475	.979415
11871	1980	057A	SOV	PL	NA	COSMOS 1191	67.9	.5791	4.158619	2.009652
11888	1980	057D	SOV	RB	Z.	COSMOS 1191//SDC 11871	67.9	.5876	4.179726	1.994454
11896	1980	063A	Sov	PL	IN	MOLNIYA 3-13	63.6	.7226	4.163391	2.006174

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
1 1 1 1	1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					
11909	1980	063D	SOV	82	NA	MOLNIYA 3-13//SDC 11896	64.0	.7282	4.220178	1.965810
11926	1978	118C	SOV	RB	NA	GORIZONT 1//SDC 11158	18.9	.3315	6.553401	1.015970
11940	1973	0408	USM	R.B	NA	OPS 6157 MEMS 4//SDC 6691	7.6	.0041	6.642875	905566
11941	1978	073E	SOV	RB B	NA	RADUGA 4//SDC 10987	7.6	.0017	6.732621	.975658
11964	1980	074A	USA	PL	AC	GOES D	6.3	.0031	6.657232	. 992292
12032	1980	085A	SOV	PL	IN	COSMOS 1217	67.3	.6138	4.157970	2.010150
12035	1980	0850	SOV	RB	NA	COSMOS 1217//SDC 12032	67.5	.6333	4.179682	1.994493
12065	1980	M160	USA	PL	AC	SBS A//AKA AT3 3F3	2.9	.0013	6.611227	1.002678
12066	1980	092A	SOV	PL	NI	MOLNIYA 1-48	64.1	. 7333	4.148413	2.017025
12070	1980	092D	SOV	23	NA	MOLNIYA 1-48//SDC 12066	64.4	.7268	4.224519	1.962780
12078	1980	095A	SOV	PL	NA	COSMOS 1223	67.8	7765.	4.164952	2.005070
12086	1980	095E	SOV	82	NA	COSMOS 1223//SDC 12078	9.19	.6115	4.184700	1.990894
12120	1980	104A	SOV	PL	NI	EKRAN 6	7.9	.0003	6.608718	1.003252
12133	1981	002A	SOV	PL	NI	MOLNIYA 3-14	64.0	.6837	4.163580	2.006105
12134	1981	002B	SOV	RB	NA	MOLNIYA 3-14//SDC 12133	64.3	.6830	4.219042	1.966676
12156	1981	₹600	SOV	PL	NA	MOLNIYA 1-49	64.0	0569.	4.162963	2.006515
12159	1981	Q600	SOV	RB B	KN	MOLNIYA 1-49//SDC 12156	64.3	.7000	4.217012	1.968052
12295	1981	012A	JPN	PL	NA	KIKU 3//ETS 4	28.2	.6583	3.041901	3,213384
12303	1981	016A	SOV	PL	IN	COSMOS 1247	67.8	.6024	4.137721	2.024890
12309	1981	0188	USA	PL	AC	COMSTAR D4	4.1	.0001	6.611088	1.002697
12311	1981	016E	SOV	RB.	NA	COSMOS 1247//SDC 12303	9.19	9665.	4.108122	2.046815
12339	1981	025A	USM	PL	AC	OPS 7350 MEMS 11	. 1	9000.	6.611220	1.002665
12363	1981	0188	USA	RB	NA	COMSTAR D4//SDC 12309	20.1	.7168	3,896993	2,216042
12368	1981	030A	SOV	PL	NI	MOLNIYA 3-15	64.8	.7148	4.163061	2,006438
12371	1981	025C	NSM	RB	NA	OPS 7350 MEMS 11//SDC 12339	.1	.0001	6.564267	1.013442
12376	1981	031A	SOV	PL	NA	COSMOS 1261	6.79	.6154	4.162059	2.007147
12383	1981	030D	SOV	RB	NA	MOLNIYA 3-15//SDC 12368	65.0	.7070	4.221192	1.965147
12384	1981	031D	SOV	RB	NA	COSMOS 1261//SDC 12376	67.8	.6077	4.123651	2.035254
12445	1980	098B	USA	RB.	NA	INTELSAT VF-2//SDC 12089	23.8	.4670	1.964542	6.192570
12447	1980	081F	SOV	RB	NA	RADUGA 7//SDC 12003	8.1	\$000	6.624317	. 999703

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
	1						1 1 1 1 1 1 1 1			
12471	1980	104E	Sov	R3	NA	EKRAN 6//SDC 12120//WAS 96117	7.8	.0037	6.564230	1.013452
12474	1981	050A	ITS	PL	AC	INTELSAT VF-1	2.0	.0003	6.611101	1.002685
12512	1961	054A	SOV	PL	IN	MOLNIYA 3-16	64.0	.6914	4.163742	2.005986
12519	1981	054E	SOV	RB.	NA	MOLNIYA 3-16//SDC 12512	64.3	.6873	4.224368	1.962961
12545	1981	057B	QNI	PL	NA	APPLE	6.3	9890.	6.400852	1.052511
12546	1961	057C	ESA	DB	NA	TECHNOLOGY CAPSULE FOR 12544	10.4	.7000	3.469175	2.638587
12547	1961	058A	SOV	PL	IN	COSMOS 1278	67.1	.6011	4.165105	2.004997
12556	1961	060A	Sov	PL	NI	MOLNIYA 1-50	64.6	.7343	4.163175	2.006326
12561	1961	058D	SOV	82	NA	COSMOS 1278//SDC 12547	67.5	.6170	4.187673	1.988804
12562	1961	057D	ESA	R3	NA	METEOSAT 2//SDC 12544	10.5	.5902	2,538886	4.214981
12563	1961	0090	SOV	82	NA	MOLNIYA 1-50//SDC 12556	6.19	.7301	4.218391	1.967074
12564	1961	061A	SOV	PL	IN	EKRAN 7	7.5	.0003	6.610073	1.002929
12627	1981	071A	SOV	PL	NA	COSMOS 1285	0.89	.6198	4.198788	1.980868
12677	1961	076A	JPN	PL	NA	GMS 2//HIMAWARI 2//MOVED 319	5.7	.0008	6.642737	.995550
12679	1961	070E	USA	82	NA	DE A//SDC 12624	0.68	.6219	2.873547	3.498237
12680	1961	071D	SOV	82	NA	COSMOS 1285//SDC 12627	0.89	.6152	4.182400	1.992522
12787	1981	012C	JPN	RB	NA	KIKU 3//SDC 12295	28.6	.7010	3.470236	2.637089
12810	1961	076C	JPN	RB	NA	GMS 2//SDC 12677	28.6	.3813	1.657350	7.991988
12815	1979	077F	SOV	DB	NA	COSMOS 1124//SDC 11509	64.3	.6458	4.128511	2.031681
12817	1979	077H	SOV	DB	NA	COSMOS 1124//SDC 11509	63.4	.6705	4.180975	1.993589
12818	1981	0888	SOV	PL	NA	COSMOS 1305	63.4	.4526	2.135577	5.460665
12827	1961	0888	SOV	82	NA	COSMOS 1305//SDC 12818	63.4	.4535	2.128496	5.487939
12833	1979	058E	SOV	DB	KN	COSMOS 1109//SDC 11417	67.4	.6586	4.152431	2.014135
12834	1979	058F	SOV	DB	NA	COSMOS 1109//SDC 11417	0.89	.5787	4.167778	2.003030
12850	1961	069F	Sov	82	NA	RADUGA 9//SDC 12618	7.6	.0024	6.726564	.976984
12851	1961	061F	SOV	82	NA	EKRAN 7//SDC 12564	7.4	.0002	6.578894	1.010077
12897	1961	102A	SOV	PL	IN	RADUGA 10	7.2	9000.	6.612061	1.002484
12906	1977	068E	SOV	DB	NA	COSMOS 931//SDC 10150	68.2	.5801	4.154967	2.012297
12907	1978	083E	SOV	DB	NA	COSMOS 1030//SDC 11015	64.1	.6361	4.138938	2.024023
12908	1978	016C	USM	DB	NA	FLISATCOM 1//SDC 10669	26.4	.4426	1.868724	6.674853

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
:		0 0 0 1 1 1 1	1	1	1 1	2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* * * * * * * * * * * * * * * * * * *	
12915	1981	1058	SOV	PL	NI	MOLNIYA 3-1	64.4	. 7172	4.147863	2.017457
12919	1978	0835	SOV	DB	NA	COSMOS 1030//SDC 11015	64.6	.6312	4.171604	2.000305
12920	1981	105E	SOV	RB	NA	MOLNIYA 3-17	64.5	.7078	4.222841	1.963987
12933	1981	1088	SOV	PL	NA	COSMOS 1317	67.0	.5952	4.168110	2.002788
12940	1981	108D	SOV	RB	NA	COSMOS 1317//SDC 12933	67.1	.6167	4.184377	1.991124
12959	1981	113A	SOV	PL	NI	MOLNIYA 1-51	64.0	.7022	4.163993	2.005799
12967	1981	114A	USA	PL	AC	RCA SATCOM III OR III-R//SYNC	τ.	. 0002	6.610797	1.002755
12984	1981	016F	Sov	DB	NA NA	COSMOS 1247//SDC 12303	67.8	.6013	4.135192	2.026747
12986	1981	113D	SOV	RB	NA NA	MOLNIYA 1-51//SDC 12959	64.3	.6934	4.090014	2.060459
12993	1981	071E	SOV	DB	NA	COSMOS 1285//SDC 12627	68.1	.6178	4.202086	1.978535
13001	1981	120E	SOV	PL	AC	RADIO 7	83.0	.0020	1.257734	12.080537
13007	1981	1198	USA	RB	NA	INTELSAT VF-3//SDC 12994	23.6	.4659	1.965853	6.186366
13011	1981	122B	ESA	DB	NA	TECH CAP + VIBRATION ISOL DEV	10.8	.7100	3.584479	2.512290
13012	1981	123A	SOV	PL	IN	MOLNIYA 1-52//TT	64.0	9604	4.163880	2.005823
13016	1981	1230	sov	R.B	N.A.	MOLNIYA 1-52//SDC 13012	64.2	. 6974	4.075956	2.071079
13025	1981	122C	ESA	RB	QQ	MARECS A//SDC 13010//21 NOV 1	10.3	.0886	1.119107	14.414567
13035	1982	0048	USA	PL	AC	RCA SATCOM IV	0.	.0002	6.611011	1.002717
13060	1982	3600	SOV	DB	NA	EKRAN 8//SDC 13056	46.7	.5051	2.067507	5.733829
13069	1982	0148	USA	PL	AC	WESTAR IV	0.	. 0004	6.610866	1.002753
13070	1982	015A	Sov	PL	IN	MOLNIYA 1-53	63.9	.7227	4.162944	2.006505
13075	1982	015D	Sov	RB	NA	MOLNIYA 1-53//SDC 13070	64.1	.7196	4.214036	1.970137
13080	1982	016A	Sov	PL	IN	COSMOS 1341	67.7	.6100	4.162928	2.006531
13089	1982	019B	USM	RB	NA	OPS 8701 IMEWS 13/SDC 13086	.7	.0012	6.573955	1.011194
13090	1982	016D	Sov	RB	NA	COSMOS 1341//SDC 13080	9.19	9609.	4.129090	2.031253
13091	1964	049F	Sov	DB	NA	COSMOS 41//SDC	71.1	.6719	4.150388	2.015556
13092	1982	020A	SOV	PL	NA	GORIZONT 5	6.9	.0035	6.688544	.985342
13098	1981	1148	USA	RB	NA	RCA/SATCOM 3R (PAM-D)	27.4	.7310	3.831213	2.272835
13112	1982	023D	SOV	DB	NA	MOLNIYA 3-18//SDC 13107	65.0	.7154	4.219604	1.966250
13124	1982	029A	SOV	PL	NA	COSMOS 1348	66.3	9909	4.168359	2.002602
13137	1982	031B	IND	RB	NA	INSAT 1A R/B (PAM-D)	28.5	.7220	3.683991	2.411778

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1			1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
13169	1982	0290	SOV	RB BB	NA	COSMOS 1348//SDC 13124	9.99	.6158	4.115358	2.041422
13177	1982	044A	SOV	PL	NI	COSMOS 1366	6.5	.0007	6.611606	1.002573
13205	1982	045A	SOV	PĽ	NI	COSMOS 1367	65.4	.6155	4.161064	2.007897
13215	1982	0450	SOV	82	NA	COSMOS 1367//SDC 13205	9.59	.6279	4.110326	2.045191
13237	1982	050A	SOV	PL	NA	MOLNIYA 1-54	64.8	.7059	4.163304	2.006276
13253	1982	OSOE	SOV	23	NA	MOLNIYA 1-54//SDC 13237	65.0	.7020	4.218973	1.966707
13269	1982	058A	USA	PL	AC	WESTAR V	0.	.0002	6.611020	1.002705
13294	1982	058B	USA	23	QQ	WESTAR V//SDC 13269//22 MAR 1	27.0	.0510	1.075291	15.300376
13295	1982	064A	SOV	PL	IN	COSMOS 1382	67.7	9609.	4.165718	2.004511
13298	1982	0640	SOV	RB BB	NA	COSMOS 1382//SDC 13295	9.19	.6195	4.127253	2.032591
13383	1982	074A	SOV	PL	NA	MOLNIYA 1-55	64.8	.7172	4.163213	2.006326
13390	1982	074D	SOV	RB	NA	MOLNIYA 1-55//SDC 13383	64.8	.7132	4.089145	2.061079
13431	1982	082A	CAN	PL	AC	ANIK DI	0.	.0001	6.610996	1.002712
13432	1982	083A	SOV	PC	IN	MOLNIYA 3-19	64.1	.7092	4.162830	2.006592
13446	1982	083E	SOV	23	NA	MOLNIYA 3-19//SDC 13432	64.4	.7153	4.222407	1.964264
13447	1982	082C	CAN	RB	NA	ANIK D1 (PAM-D) //SDC 13431	24.4	.7330	3.851909	2.254368
13554	1982	093A	SOV	PL	NI	EKRAN 9	5.7	.0023	6.609907	1.002960
13583	1982	0930	SOV	DB	NA	EKRAN 9 DEBRIS//SDC 13554	49.2	.6067	3.017529	3.251671
13585	1982	095A	SOV	PL	NA	COSMOS 1409	64.7	.6211	4.165949	2.004398
13591	1982	0950	SOV	8	NA	COSMOS 1409//SDC 13585	65.2	.6353	4.122668	2.036037
13595	1982	A760	ITS	PĽ	AC	INTELSAT VF-5	ĸ.	.0005	6.611012	1.002712
13603	1982	100A	SOV	PL	NA	COSMOS 1413	64.7	.0003	3.989694	2.138676
13606	1982	1000	SOV	PL	IN	COSMOS 1414	64.7	.0031	3.999207	2.131058
13607	1982	100E	SOV	PL	NA	COSMOS 1415	64.7	0000	3.990402	2.137989
13608	1982	100F	SOV	DB	NA	COSMOS 1413-1415	52.1	.5630	2.389078	4.615646
13609	1982	1000	SOV	DB	NA	COSMOS 1413-1415	52.1	.5685	2.436253	4.482226
13610	1982	100H	sov	RB	NA	COSMOS 1413-1415	64.7	.0007	3.987979	2.140066
13624	1982	103A	SOV	PL	NA	GORIZONT 6	6.1	.0013	6.606816	1.003680
13629	1982	103D	sov	DB	NA	GORIZONT 6 FRAGMENT//SDC 13624	46.8	.7238	3.694801	2.399914
13630	1982	103E	SOV	23	NA	GORIZONT 6//SDC 13624	6.1	.0023	6.605367	1.004003

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
1 1	1 1 1		1	1 1 1 1 1	1 1 1 1		1			
13631	1982	1058	USA	PL	AC	RCA SATCOM V	۲.	0000.	6.611096	1.002686
13637	1982	106B	USM	PL	AC	DSCS III//IRON 6451//SYNCTM 0	1.	.0004	6.610798	1.002768
13643	1982	106D	USM	RB	NA	IUS II//DSCS II-III	4.6	.0042	6.650169	.993882
13644	1982	103F	SOV	DB	NA	GORIZONT 6 FRAGMENT//SDC 13624	46.8	.6052	2.568867	4.125612
13651	1982	1108	USA	PL	AC	SBS C//AKA AT2 F2	1.	.0002	6.611063	1.002694
13652	1982	110C	CAN	PL	AC	ANIK C3	1.	.0004	6.610955	1.002739
13658	1982	1100	USA	RB	NA	SBS C//SBS F2//SDC 13651	22.9	. 7304	3.870926	2.238499
13666	1982	1105	CAN	RB	NA	ANIK C3//SDC 13652	22.7	.7306	3.867618	2.241377
13669	1982	113A	SOV	PL	IN	RADUGA 11	5.5	.0047	6.726116	.977085
13676	1982	113E	SOV	DB	NA	RADUGA 11 FRAGMENT//SDC 13669	46.6	.7004	3,393531	2.726618
13753	1976	023K	USA	DB	NA	LES 8-9//SDC 8746-8747	8.6	.0002	6.564141	1.013484
13782	1983	0068	JPN	PL	AC	CS 2A//SAKURA 2A MOVING FRO	2.6	0000	6.611113	1.002380
13875	1983	015A	Sov	PL	NA	MOLNIYA 3-20	64.0	7607.	4.160848	2.008033
13878	1983	016A	SOV	PL	IN	EKRAN 10	6.9	.0037	6.851947	.950304
13882	1983	015E	SOV	RB	NA	MOLNIYA 3-20//SDC 13875	64.0	.7056	4.218219	1.967220
13890	1983	A610	SOV	PL	IN	MOLNIYA 1-56	63.7	.6992	4.173638	1.998837
13897	1983	019D	SOV	RB	NA	MOLNIYA 1-56//SDC 13890	63.8	6969.	4.220774	1.965456
13899	1982	020F	SOV	RB	NA	GORIZONT 5//SDC 13092	6.9	.0048	6.683793	. 986389
13900	1979	015D	SOV	RB	NA	EKRAN 3//SDC 11273	0.6	.0008	6.564458	1.013398
13901	1983	020A	SOV	PL	NA	ASTRON	79.8	.7092	16.987947	.243381
13905	1967	0012	USA	DB	KN	INTELSAT IIF-1//SDC 2639	23.6	.4677	1.937389	6.323300
13907	1961	01AB	USA	DB	NA	INTELSAT IIF-2//SDC 2639	24.3	.6123	2.680806	3.884282
13908	1961	OIAC	USA	DB	NA	INTELSAT IIF-2//SDC 2639	28.4	.7060	3.556919	2.541279
13909	1961	01AD	USA	DB	NA	INTELSAT IIF-2//SDC 2639	25.6	.6765	3,323449	2.813828
13912	1961	01AG	USA	DB	NA	INTELSAT IIF-2//SDC 2639	26.8	.6422	2.914550	3.426348
13913	1969	0642	USA	DB	QQ	INTELSAT IIIF-5//SDC 4051//06	25.6	.0117	1.033708	16.235988
13914	1969	064#	USA	DB	KN	INTELSAT IIIF-5//SDC 4051//06				
13915	1969	64 AB	USA	DB	QQ	INTELSAT IIIF-5//SDC 4051//23	26.9	.0097	1.030101	16.319154
13939	1961	01AH	USA	DB	ž	INTELSAT IIF-2//SDC 2639	26.2	.1613	1.219524	12.665648
13940	1961	01AJ	USA	DB	NA	INTELSAT IIF-2//SDC 2639	24.3	.5442	2.275830	4.966209

Sid	Year	Designation	Owner	Mission	Status	Comment	Inclination	Eccentricity	Semi major axis	Mean motion
!	:		1	1 1 1 1						
13954	1982	113F	SOV	RB	NA	RADUGA 11//SDC 13669	5.7	.0028	6.732491	.975698
13958	1961	OLAL	USA	08	KN	INTELSAT 11F-2//SDC 2639	26.9	.6607	3.101599	3.121065
13960	1979	0583	SOV	08	NA	COSMOS 1109//SDC 11417	67.1	9899.	4.173199	1.999101
13961	1981	071F	SOV	DB	NA	COSMOS 1285//SDC 12627	64.3	9659.	4.198204	1.981329
13964	1983	025A	SOV	PL	NA	MOLNIYA 1-57//TT	64.1	.7130	4.157697	2.010325
13967	1983	025D	SOV	RB	NA	MOLNIYA 1-57//SDC 13964	64.3	.7002	4.091653	2.059193
13969	1983	0268	USA	PL	AC	TDRS A//STS-6	4.4	.0018	6.623135	. 999972
13970	1983	026D	USA	RB	NA	IUS 2//TDRS A//STS-6	2.7	.1850	5.499688	1.321523
13971	1983	026C	USA	RB	NA	IUS 1//TDRS A//STS-6	26.2	.7056	3.550078	2,548685
13974	1983	028A	SOV	PL	IN	RADUGA 12	5.3	.0004	6.610540	1.002837
13979	1983	028D	SOV	DB	NA	RADUGA 12 FRAGMENT//SDC 13974	46.9	.6628	3.014295	3.257041
13980	1983	028E	sov	08	NA	RADUGA 12 FRAGMENT//SDC 13974	47.4	.7259	3.844159	2.261466
13984	1983	030A	USA	PL	AC	RCA SATCOM VI OR I-R	1.	.0002	6.610953	1.002739
13990	1983	030C	USA	RB	QQ	RCA SATCOM VI//SDC 13984//27	24.1	.6372	2.827561	3.585827
14000	1977	5890	sov	08	KA	COSMOS 931//SDC 10150	65.7	.6268	4.166785	2.003732
14005	1979	062D	sov	RB	NA	GORIZONT 2//SDC 11440	8.8	.0005	6.727741	.976738
14034	1983	038A	SOV	PL	IN	COSMOS 1456	66.8	.6278	4.165452	2.004743
14050	1983	041A	USA	PL	AC	GOES F	2.1	.0003	6.610924	1.002745
14069	1983	041C	USA	82	NA	GOES F//SDC 14050	.3	.1594	7.419138	.843396
14070	1979	062E	SOV	DB	NA	GORIZONT 2 FRAGMENT//SDC 11440	46.5	.4626	1.905248	6.481507
14077	1983	047A	ITS	PL	AC	INTELSAT VF-6	. 2	.0004	6.611039	1.002699
14081	1983	0478	USA	RB	QQ	INTELSAT VF-6//SDC 14077//13	22.9	.0299	1.050765	15.842110
14095	1983	051A	ESA	PL	DD	EXOSAT//06 MAY 1986	74.9	. 9365	16.320628	.259120
14114	1982	044F	sov	RB	NA	COSMOS 1366//SDC 13177	9.1	.0127	6.610716	1.002779
14115	1982	093F	sov	RB	NA NA	EKRAN 9//SDC 13554	6.5	8000.	6.568056	1.012576
14117	1982	009F	sov	RB	NA	EKRAN 8//SDC 13056	6.9	. 0060	6.579804	1.009858
14130	1983	0590	ESA	RB	NA	ECS 1//OSCAR 10//SDC 14128	8.7	.6428	2.897747	3.456614
14134	1983	059C	INO	PL	AC	PALAPA B1//STS-7	т.	.0001	6.610899	1.002748
14158	1983	065A	USA	PL	AC	GALAXY I	т.	.0001	6.610764	1.002762
14166	1983	Q990	SOV	08	QQ	GORIZONT 7//SDC 14160//22 FEB	46.6	.7362	3.856019	2.251050

Sid	Year	Designation Owner	Owner	Mission	Status	Comment	Inclination	Eccentricity	Inclination Eccentricity Semi major axis	Mean motion
			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 1 1 1 1 1 1 1 1 1
14168	1983	0650	USA	R3	KA	GALAXY I//SDC 14158	23.1	.6114	2.667348	3.913793
14182	1983	070A	SOV	PL	IN	COSMOS 1481	67.5	.6354	4.122797	2.035895
14190	1983	0728	USM	RB	NA	GPS 7//OPS 1204//SDC 14189	63.7	.5650	2.685356	3.872803
14193	1980	060F	SOV	828	NA	EKRAN 5//SDC 11890	8.1	.0016	6.553004	1.016065
14194	1981	027F	SOV	828	NA	RADUGA 8//SDC 12351	0.8	.0019	6.728101	.976659
14195	1981	102F	Sov	82	NA	RADUGA 10//SDC 12897	7.3	.0014	6.613034	1.002260
14206	1983	073D	SOV	RB	NA	MOLNIYA 1-58//SDC 14199	63.7	.0132	1.028085	16.344911
14258	1983	084A	Nos	PL	IN	COSMOS 1490	64.8	.0017	3.999237	2.131039
14259	1983	084B	Sov	PĽ	IN	COSMOS 1491	64.7	.0053	3.970319	2.154361
14260	1983	084C	SOV	77	NI	COSMOS 1492//RUN CASPER	64.8	.0001	4.003541	2.127612
14264	1983	084D	NOS	828	NA	COSMOS 1490-1492//SDC 14258-1	64.8	. 0005	4.001447	2.129274
14277	1983	084G	SOV	DB	NA	COSMOS 1490//SDC 14258	51.9	.5734	2.486381	4.347353
14287	1983	081C	JPN	RB	NA	CS 2B//SDC 14248	28.5	.5047	2.074515	5.706308
14313	1983	W060	SOV	PL	NI	MOLNIYA 3-21	64.5	.7218	4.159469	2.009002
14319	1983	Q060	SOV	82	MA	MOLNIYA 3-21//SDC 14313	64.4	T27.	4.215472	1.969098
14369	1983	0980	USA	RB	DD	GALAXY II//SDC 14365//31 DEC	23.7	.6238	2.734019	3.771445

REFERENCES

- 1. F.L. Whipple, "The optical tracking of artificial earth satellites," *Proc. Amer. Phil. Soc.* 102, 215–220 (1958).
- 2. W. Beavers, "Cylindrical satellite specular season photometry," in 1993 Space Surveillance Workshop Vol. II, R.E. Miller and R. Sridharan (eds.) MIT Lincoln Laboratory, Lexington, Mass., Project Report STK-206 (1993). DTIC AD-A265120.
- 3. W.P. Seniw, "LWIR observations of geosynchronous satellites," in 1993 Space Surveillance Workshop Vol. I, R.E. Miller and R. Sridharan (eds.) MIT Lincoln Laboratory, Lexington, Mass., Project Report STK-206 (1993). DTIC AD-A265120.
- 4. A.R.W. de Jonge, P.R. Wesselius, and R.M. van Hees, "Detecting space debris using IRAS, report on work package D," Doc ROD-DEB-92-14, Laboratory for Space Research, Groningen, The Netherlands (1992).
- 5. D.D. Anz-Meador, D.M. Oro, D.J. Kessler, and D.E. Pitts, "Analysis of IRAS data for orbital debris," Adv. Space Res. 6, 139-144 (1986).
- 6. K.L. Dow, "Earth orbiting objects observed by the infrared astronomical satellite," MS Thesis, University of Arizona (1992).
- 7. P.R. Wesselius, R.M. van Hees, A.R.W. de Jonge, and B. Viersen, "Detecting space debris using IRAS, report on work package A: Determination of sighting parameters," Doc ROD-DEB-91-10, Laboratory for Space Research, Groningen, The Netherlands (1992).
- 8. P.R. Wesselius, B. Viersen, A.R.W. de Jonge, and R.M. van Hees, "Access to IRAS orbital debris database, software user manual," Doc ROD-DEB-92-10, Laboratory for Space Research, Groningen, The Netherlands (1992).
- 9. C. Beichmann, "Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement," Jet Propulsion Laboratory, NASA RP-1190 (1987).
- 10. C.W. Allen, Astrophysical Quantities, third edition, London: The Athlone Press (1973).
- 11. P. Foukal, "Study of solar irradiance variations holds key to climate questions," EOS, Trans. Amer. Geophys. Union 75, 377-382 (1994).
- 12. R. Bergemann, private communication.
- 13. R.G. Ross, R.K. Yasui, W. Jaworski, L-C. Wen, and E.L. Cleland, "Measured performance of silicon solar cell assemblies designed for use at high solar intensities," Jet Propulsion Laboratory Technical Memorandum 33-473 (1971).
- 14. M.E. Blair, D. Carmer, D. Zuk, and G. Suits, "Determination of satellite observables, Volume IV, optical properties of satellite materials," Final Report AVSD-0085-74-CR, Vol. IV, AVCO Government Products Group, Systems Division (1974).

REFERENCES (Continued)

- 15. E.U. Condon and H. Odishaw, *Handbook of Physics*, second edition, McGraw Hill (1967).
- 16. Tedesco-Gaposchkin, private communication.
- 17. Gillett, private communication.
- 18. Kirby et al., private communication.
- 19. M. Cohen, R.G. Walker, M.J. Barlow, and J.R. Deacon, "Spectral irradiance calibration in the infrared. I. Ground-based and IRAS broadband calibrations," *Astron. J.* 104, 1650–1657 (1992).
- 20. M. Cohen, R. Walker, and F.C. Witteborn, "Spectral irradiance calibration in the infrared. II. α TAU and the recalibration of the IRAS low resolution spectrometer," *Astron. J.* 104, 2030–2044 (1992).
- 21. M. Cohen, F.C. Witteborn, D.F. Carbon, G. Augason, D. Wooden, J. Bregman, and D. Goorvitch, "Spectral irradiance calibration in the infrared. III. The influence of Co and SiO," Astron. J. 104, 2045–2052 (1992).
- 22. Aumann, private communication.
- 23. S.W. Gelb, L.J. Goldhammer, and D.X. Kerola, "In-orbit performance of Hughes HS-376 solar arrays," IEEE, 0160-8371/85/0000-0362 (1985).
- 24. B. Yenne, The Encyclopedia of U.S. Spacecraft, New York, New York: Exeter Books (1985).
- 25. S.M. Bunyan, D.E. Joslin, J.R. Kukulka, and R.E. Daniel, "Recent silicon space product advances," IEEE, 160/8371/88/0000-0954 (1988).
- J.S. Fodor, W.G. Steven, L.J. Goldhammer, and D.W. Moffett, "The design and performance of the Hughes HS-393C satellite solar arrays featuring large area solar cells," IEEE, 0160/8371/90/0000-1188 (1990).
- J.F. Allison, R.A. Arndt, and A. Meulenberg, "A comparison of the COMSAT violet and non-reflective solar cells," COMSAT Technical Review, Vol. 5, No. 2 (1975).
- 28. G. Caprara, *The Complete Encyclopedia of Space Satellites*, New York, New York: Portland House (1986).
- 29 K.L. Dow, M.V. Sykes, F.J. Low, and F. Vilas, "The detection of earth orbiting objects by IRAS," Adv. Space Res. 10, 381-384 (1990).
- 30. A. Meulenberg, private communication.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to everage 1 hour per response, including the time for reviewing the structions, searching estate sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Devis Highway, Suite 1204, Arfington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0186), Washington, DC 20509.

1. AGENCY USE ONLY (Leave blank	2. REPORT DATE 26 September 1995	3. REPORT TYPE AND Technical Report	DATES COVERED
4. TITLE AND SUBTITLE		1	5. FUNDING NUMBERS
Infrared Detections of Satellites w	ith IRAS		
6. AUTHOR(S)			C — F19628-95-C-0002
Edward M. Gaposchkin and Robe	rt J. Bergemann		
7. PERFORMING ORGANIZATION N	IAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Lincoln Laboratory, MIT	ANNE(S) AND ADDRESS(ES)	'	REPORT NUMBER
244 Wood Street			TR-1018
Lexington, MA 02173-9108			
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING
BMDO/TRS			AGENCY REPORT NUMBER
7100 Defense The Pentagon			ESC-TR-94-116
Washington, DC 20301-7100			
11.SUPPLEMENTARY NOTES			
None			
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public release; distr	ibution is unlimited.		
13. ABSTRACT (Maximum 200 word	is)		
satellites. The data base (with satellites in orbit above the IRA	celestial objects removed) was co	rrelated with the NORAD ty in three of the four wav	d observations of artificial earth D space catalogue to identify 452 velength bands has been analyzed objects.
14. SUBJECT TERMS			15. NUMBER OF PAGES
infrared astronomical satellite spin-stabilized satellite	solar cells	geostationary satellites temperature measuremen	nt 156 16. PRICE CODE
three-axis stabilized satellite	GPS satellite	emissivity measurement	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF OF ABSTRACT	FICATION 20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	Same as Report