Multimedia Lecture 8

Dr. Mona M.Soliman

Faculty of Computers and Artificial Intelligence
Cairo University
Fall 2022

Scalar Quantization

Quantization

Quantization:

•a process of representing a large – possibly infinite – set of values with a much smaller set.

Scalar quantization:

•a mapping of an input value x into a finite number of output values (*Reconstruction values*)

Quantization is one of the simplest and most general idea in **lossy compression.**

Image Quantization

256 Levels (8 Bits) 32 Levels (5 Bits) 16 Levels (4 Bits) 2 Levels (1 Bits) afa 8 Levels (3 Bits) 4 Levels (2 Bits)

Uniform Scalar Quantizer

- A uniform scalar quantizer partitions the domain of input values into <u>equally spaced intervals</u>. Each Interval is defined by its <u>decision boundaries</u>
- •Each interval is represented by a distinct codeword (Q).
- The output or reconstruction value (Q^{-1}) corresponding to each interval is taken to be the <u>midpoint</u> of the interval.
- The **length** of each interval is referred to as the *step size*.

Quantization and De-Quantization

X: Input Value

q: Codeword for X

(Encoded value of X)

X: Output Value

(Reconstructed Values of X)

MAX Error=1/2 STEP

For the following sequence {1.2,-0.2,-0.5,0.4,0.89,1.3...}, Quantize it using a uniform quantizer in the range of (-1.5,1.5) with 4 levels, and write the quantized sequence.

Q Step=(MAX-MIN)/# of levels

Q⁻¹=(Lower_R+Upper_R)/2

Solution: Q=3/4=0.75. Quantizer is illustrated below.

Coded_Sequence "Q" : 3,1,1,2,2)

Quantized sequence:

{1.125,-0.375,-0.375,0.375,1.125,1.125}

Yellow dots indicate the partition levels (boundaries between separate quantization intervals)
Red dots indicate the reconstruction levels (middle of each interval)

Scalar Quantization - Encoder (Input Output Mapping)

Scalar Quantization - Decoder (Input Output Mapping)

Example

Quantize the following:

5, 100, 200, 85

5	0
100	3
200	6
85	2
0	16
3	112
6	208
2	8

Original	Q(compressed)	Q- 1(Uncompressed)	Error
5	0	16	11
100	3	112	12
200	6	208	8
85	2	80	5

Q Step = 32, Full Scale =256 No. Of Steps =Full Scale / Step =256 / 32 = 8 Steps (3 Bits) Max Error = 1/2 Step = 16

Example of Output Quality of Uniform and Non Uniform Quantizers

Example:

Compress the following Data using 2 bits uniform quantizer with <u>step= 32</u>, <u>Full Scale=128</u> 6, 15, 17, 60, 100, 90, 66, 59, 18, 3, 5, 16, 14, 67, 63, 2, 98, 92.

Calculate MSE (as Distortion Measure)

Range	Q	Q -1
0 31	0	16
3263	1	48
6495	2	80
96127	3	112

Original	6	15	17	60	100	90	66	59	18	3	5	16	14	67	63	2	98	92
Q	0	0	0	1	3	2	2	1	0	0	0	0	0	2	1	0	3	2
Q ⁻¹	16	16	16	48	112	80	80	48	16	16	16	16	16	80	48	16	112	80
Error	10	1	1	12	12	10	14	11	2	13	11	0	2	13	15	14	14	12
Error ²	100	1	1	144	144	10 0	196	121	4	169	12 1	0	4	169	225	196	196	144

Mean Square Error (MSE)= 1/18[100+1+1+144+144+100+196+....]= 2035 /18=113

Example of Output Quality of Uniform and Non Uniform Quantizers

Example:

Compress the following Data using the following 2 bits

Non uniform quantizer

6, 15, 17, 60, 100, 90, 66, 59, 18, 3, 5, 16, 14, 67, 63, 2, 98, 92.

Calculate MSE (as Distortion Measure)

Range	Q	Q -1
010	0	4
1139	1	16
4079	2	63
80127	3	95

Original	6	15	17	60	100	90	66	59	18	3	5	16	14	67	63	2	98	92
Q	0	1	1	2	3	3	2	2	1	0	0	1	1	2	2	0	3	3
Q ⁻¹	4	16	16	63	95	95	63	63	16	4	4	16	16	63	63	4	95	95
Error	2	1	1	3	5	5	3	4	2	1	1	0	2	4	0	2	3	3
Error ²	4	1	1	9	25	25	9	16	4	1	1	0	4	16	0	4	9	9

Mean Square Error (MSE)= 1/18[4+1+1+9+25+25+9+16+....] = 138 /18=7.66

Design of Non Uniform Quantizer (using LBG Algorithm with Splitting)

Design of Non Uniform Quantizer (using LBG Algorithm with Splitting)

Range	Q	Q ⁻¹			
<mark>0</mark> 10	0	4			
1139	1	16			
4079	2	63			
80127	3	95			