Examenul de bacalaureat național 2016 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 - \frac{3}{4} = \frac{1}{4}$	3p
	$\frac{1}{4}:\frac{1}{4}=1$	2p
2.	f(-1) = 0	2p
	$f(1) = 0 \Rightarrow f(-1) + f(1) = 0$	3 p
3.	3x + 4 = 16	3 p
	x = 4, care verifică ecuația	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	1p
	Multiplii de 3 din mulțimea A sunt 3, 6 și 9, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{10}$	2p
5.	AO = 5	2p
	$BO = 5 \Rightarrow \triangle AOB$ este isoscel	3 p
6.	$A_{\Delta ABC} = \frac{4 \cdot 3}{2} =$	3p
	= 6	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 1 =$	3p
	=1-2=-1	2p
b)	$A \cdot A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$	3 p
	$A \cdot A - 2A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
c)	$A \cdot B = \begin{pmatrix} 2x - 3 & x - 2 \\ x - 2 & x - 1 \end{pmatrix}$	3p
	$\begin{pmatrix} 2x-3 & x-2 \\ x-2 & x-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ de unde obținem } x = 2$	2p
2.a)	$f(1) = 1^3 + 5 \cdot 1^2 - 4 =$	3p
	=1+5-4=2	2 p
b)	Câtul este $X^2 + 4X - 4$	3 p
	Restul este 0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 9

c)
$$x_1x_2 + x_1x_3 + x_2x_3 = 0$$
, $x_1x_2x_3 = 4$
 $x_1 + x_2 + x_3 = -5 \Rightarrow \frac{x_2 + x_3}{x_1} + \frac{x_3 + x_1}{x_2} + \frac{x_1 + x_2}{x_3} = \frac{-5 - x_1}{x_1} + \frac{-5 - x_2}{x_2} + \frac{-5 - x_3}{x_3} = -5\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) - 3 = 3$

$$= -5 \cdot \frac{x_1x_2 + x_1x_3 + x_2x_3}{x_1x_2x_3} - 3 = -5 \cdot 0 - 3 = -3$$

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (3x)' - (x^3)' =$	2p
	$=3-3x^2=3(1-x^2), x \in \mathbb{R}$	3p
b)	$\lim_{x \to +\infty} \frac{\ln x}{f(x)} = \lim_{x \to +\infty} \frac{\ln x}{3x - x^3} = \lim_{x \to +\infty} \frac{(\ln x)'}{(3x - x^3)'} =$	3р
	$= \lim_{x \to \infty} \frac{1}{x} = 0$	2p
	$= \lim_{x \to +\infty} \frac{x}{3 - 3x^2} = 0$	
c)	f(1)=2, f'(1)=0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 2$	3р
2.a)	$\int_{-1}^{1} \left(f(x) + x^2 - x + 1 \right) dx = \int_{-1}^{1} \left(x^3 - x^2 + x - 1 + x^2 - x + 1 \right) dx = \int_{-1}^{1} x^3 dx = \frac{x^4}{4} \Big _{-1}^{1} =$	3p
	$=\frac{1}{4}-\frac{1}{4}=0$	2p
b)	$F'(x) = \left(\frac{x^4}{4} - \frac{x^3}{3} + \frac{x^2}{2} - x\right)' = \frac{4x^3}{4} - \frac{3x^2}{3} + \frac{2x}{2} - 1 =$	3р
	$=x^3-x^2+x-1=f(x), x \in \mathbb{R}$	2 p
c)	$g(x) = x - 1 \Rightarrow V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} (x - 1)^{2} dx = \pi \cdot \frac{(x - 1)^{3}}{3} \Big _{1}^{2} =$	3p
	$=\frac{\pi}{3}$	2p