SEL FILE

NATIONAL BUREAU OF STANDARDS REPORT

3481

SOME FRACTIONAL FACTORIAL ARRANGEMENTS FOR FACTORS AT TWO LEVELS

by

W. H. Clatworthy
W. S. Connor
M. Zelen

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity. Resistance and Reactance Measurements. Electrical Instruments. Magnetic Measurements. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels. Cryogenic Engineering.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Ray. Betatron. Nucleonic Instrumentation. Radiological Equipment. Atomic Energy Commission Radiation Instruments Branch.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Control.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering.

Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation. Process Technology.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.

Office of Basic Instrumentation

Office of Weights and Measures.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

1103-40-5118/52-1

28 July 1954

3481

SOME FRACTIONAL FACTORIAL ARRANGEMENTS FOR FACTORS AT TWO LEVELS

by

W. H. Clatworthy
W. S. Connor
M. Zelen

Statistical Engineering Laboratory

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

The publication, rep unless permission is 25, D.C. Such pern cally prepared if th Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015

n part, is prohibited indards, Washington iort has been specifiport for its own use.

FOREWORD

This is a technical report on Research in Applications of Mathematical Statistics to Problems of the Chemical Corps, for the Biological Laboratories, Chemical Corps,

U. S. Department of the Army carried out in the Statistical Engineering Laboratory (NBS Project Number 1103-40-5118/52-1).

F.L. Alt
Acting Chief,
National Applied Mathematics
Laboratories

A.V. Astin Director, National Bureau of Standards

TABLE OF CONTENTS

number		, fraction	on al re plic	ation, a	ording and	to	page 1 6
Plan II II II II II II II II II	5.2.4.8 6 5.2.2.8 6 6.2.2.8 6 7.7.2.8 8 8.4.8 6 7.7.8 8 8.4.8 6 7.7.8 8 8.4.8 6 8.4.8 6 9.4.8 6 9.4.8 6 9.4.8 6 10.4.8 6 1	asurement II II II II II II II II II	required II II II II II II II II II	16 16 16 16 16 16 16 16 16 16 16 16 16 1			78 90 12 3 4 5 6 8 9 0 1 2 3 4 5 6 8 9 0 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 2 2 2 2

Plan	8.8.4; 8.8.8; 8.8.6; 9.8.8; 9.8.8; 9.8.8; 10.8.3; 10.8.3; 11.8.3; 11.8.3; 11.6.8;	measurements	required,	32 32 32 64 64	& 3	•		•	*	345689013457890123456789124567801245
17	8-8-16	11	110	32	• •	•	•	•	•	沿
11	9.8.4	11	11	6/1	• •	•	•	•	•	16
11	9.8.8	11	11	61						118
11	9.8.16	11	11	64			•			49
11	9.8.32	11	11	61.		•		•		50
117) 11 11 11	10.8.8	11	11	128 128 128 128 256 256 256			•	ý	•	51
11	10.8.16	11	11	128		*		.3	*	53
11.	10.8.32	11	17.	128		•	•		4	54
n	11.8.8	11	11	256				•		55
11 17	11.8.16	11	11	256		•		•		57
11	11.8.32	11	11	256		•	•	•		58
11:	7.16.4	11	11	8			•	•	•	59
11	7.16.8	11	11	8		•	•	•	•	60
11	8.16.4	11	11	16		•	•	•		61
11	8.16.8	11	11	16		•	•		•	62
11	8.16.16	11:	11	16	• •	•	•	•	4	63
11 11	9.16.4	11 11	11	32	• •	•	•	•	•	64
11	9.16.8	11	11	8 16 16 16 32 32 34		•	•	•	•	65
11	9*10*10) '' } '!	"	32	* *		6	æ	•	66
11	10.16.0) 6 11	 11	64	P 4	*	•	*	•	67
11	10.10.1	.6 ''	11	64	• •	•	9)	•	8	68
11	11.16.0) 6 !!	11	120	• •	•	•	•	•	69
11	11.10.1	.0 "	it	750		•	•	•	•	(<u>T</u>
11	12,10,0	6 11	11	276	• •	•	•	•		71.
11	15 *10 *1	.0	11	22	• •	*	*	•	*	74
11	10 32 8	11	M	35	• •	•	•	•	•	76
11	10 32 1	6 "	11	25	₽ ₽	•	*	•	•	77
11	11 32 8	11	11	611	* *	•	•	•	•	78
11	11 32.1	´6 11	11	6/1	* *		•	•	•	80
11	11.32.3	32 "	11	6/1		•		•	*	81
11	12.32.8	11	11	128			•	•	e ,	82
11	12.32.1	.6 "	11	128						84
11	12.32.3	32 "	11	648 128 128 125 125 128 128 128	2 6			•	•	85

Some Fractional Factorial Arrangements for Factors at Two Levels

by

W.H. Clatworthy, W.S. Connor, and M. Zelen

1. Introduction. This report contains 68 experimental arrangements or plans for fractional replication of factorial designs of the 2ⁿ series, where n, the number of factors, ranges from 5 to 12 and each factor is at two levels. The plans include arrangements which are 1/2, 1/4, 1/8, 1/16, and 1/32 of a full replication and which involve 8, 16, 32, 64,,128, and 256 measurements. With but two exceptions the experimental units have been assigned to blocks.

A bibliography which is not exhaustive is given at the end of this introduction. Several of the designs given in this report may be found in these references. However this report represents an independent effort.

A brief description of the plans follows. Each plan has a designation of the form

Plan n.r.k

which refers to the 1/r replication of the 2ⁿ factorial design with 2ⁿ/rk incomplete blocks of k experimental units each. For example, Plan 7.2.4 refers to the 1/2 replicate of the 2⁷ factorial design with 16 blocks of 4 experimental units each.

In all the designs the n factors, each at two levels, are designated by capital letters A, B, C, etc. Small
letters refer to assignment of the factors to the experimental units, the presence of small letter x meaning that the high level of factor X is applied and the absence of small letter x meaning that the low level of factor X is applied. For example, in Plan 5.2.4 the five factors are A, B, C, D, and E. In block 1 of this design one of the experimental units receives the treatment combination de, i.e., low levels of factors A, B, and C and high levels of factors D and E are applied to the experimental unit. The symbol "(1)" is also found in block 1, indicating that low levels of all factors of the design are applied to one experimental unit of block 1.

A main effect or interaction is said to be estimable if it is confounded only with higher order interactions. In any plan in which a main effect is confounded with two-factor interactions, it is explicitly stated which two-factor interactions are involved.

For each design there is given a fundamental confounding relationship composed of groups of capital letters (representing main effects and interactions) connected with equal signs.

The equal signs are read "is confounded with". The fundamental confounding relationship is useful in determining how the main effects and interactions are confounded with each other as a

result of the design being a fractional part of a complete replication. For example, in Plan 6.4.4 the fundamental confounding relationship is

To determine how the main effects and interactions are confounded by the 1/4 replication of the full 2^6 factorial, each term of the fundamental confounding relationship is multiplied by the main effect or interaction in question with the understanding that $X^2 = 1$ where X = A, B, C, etc. and I(X...Z) = X...Z. For example, the confounding of main effect A is given by

$$A = BCE = BDF = ACDEF$$

Note that multiplication by BCE, BDF, and ACDEF give exactly the same result, except for order of the groups. The other confounding relationships are:

B = ACE = ADF = BCDEF

C = ABE = ABCDF = DEF

D = ABCDE = ABF = CEF

E = ABC = ABDEF = CDF

F = ABCEF = ABD = CDE

AB = CE = DF = ABCDEF

AC = BE = BCDF = ADEF

AD = BCDE = BF = ACEF

AE = BC = BDEF = ACDF

AF = BCEF = BD = ACDE

CD = ABDE = ABCF = EF

CF = ABEF = ABCD = DE

ACD = BDE = BCF = AEF

ACF = BEF = BCD = ADE

The treatment combinations were assigned to the blocks so as to confound interactions AB, BC, and AC with the blocks. If b is the number of blocks, then certain b-1 of the confounding relationships designate which effects cannot be estimated because of block confounding. These are listed for each design as "Block confounding" wherein each group of letters designates a confounding relationship.

Examination of the totality of confounding relationships for Plan 6.4.4 reveals that the main effects A, B, C, D, E, and F are estimable, that the two-factor interactions which are not already confounded with blocks are confounded with other two-factor interactions and hence are not estimable, and that no three-factor interaction is estimable. Thus in this design it is impossible to estimate any interaction unless one is prepared to assume that some other interaction(s) of the same order is(are) negligible.

In some of the plans where the number of treatment combinations is large, the blocks are not written out in full. For such designs only the initial block is recorded in detail and one treatment combination is given for each of the remaining blocks. The other blocks are obtained by successively multiplying the treatment combinations in the initial block by each of the given treatment combinations with the proviso that $x^2 = 1$, (x = a,b,c, etc.). For example, Plan 10.4.8 is such a design. The initial block consists of the following eight treatment combinations

(1), abcd, efhj, abcdefhj, eghk, abcdeghk, fgjk, abcdfgjk.

To obtain the treatment combinations for block 2, say, one multiplies these eight groups by <u>ab</u> (the treatment combination listed for block 2), obtaining

ab, cd, abefhj, cdefhj, abeghk, cdeghk, abfgjk, cdfgjk.

Although the plans in this report have been carefully checked, there is always the possibility of errors. The authors would appreciate hearing from anyone discovering errors.

The authors wish to express their thanks to Mrs. Lola Deming for checking the plans and to Mrs. Yvette Cocozzella who did the typing.

BIBLIOGRAPHY

- [1] Brownlee, K.A., Kelly, B.K., and Loraine, P.K., "Fractional replication arrangements for factorial experiments with factors at two levels", Biometrika, Vol. XXXV (1948), pp. 268-282.
- [2] Cochran, W.G. and Cox, G.M., Experimental Designs, John Wiley and Sons, Inc., New York, 1950.
- [3] Finney, D.J., "The fractional replication of factorial arrangements", Annals of Eugenics, Vol. 12(1945), pp. 291-301.
- [4] Finney, D.J., "Recent developments in the design of field experiments. III. Fractional replication", Journal of Agricultural Science, Vol. 36 (1946), pp. 184-191.
- [5] Kempthorne, O., "A simple approach to confounding and and fractional replication in factorial experiments", Biometrika, Vol. 34 (1947) pp. 255-272.
- [6] Kempthorne, O., The Design and Analysis of Experiments, John Wiley and Sons, Inc., New York, 1952.
- [7] Kitagawa, Tosio and Mitome, Michiwo, Tables for the Design of Factorial Experiments, Baifukan Co., Ltd., Tokyo, 1953.

Plan 5.2.4. 5 factors, 1/2 replication, 4 blocks of 4 units each.

Factors: A,B,C,D,E

I = ABCDE

Block confounding: AB, AC, BC.

All main effects and all two-factor interactions except AB, AC, and BC are estimable.

Blocks

	•		
<u>1</u>	2	<u>3</u>	7
(1)	ab	ac	ad
abcd	.∕ c đ	bd	bc
đe	abde	acde	ae
abce	се	be	bcde

Plan 5.2.8. 5 factors, 1/2 replication, 2 blocks of 8 units each.

Factors: A,B,C,D,E

I = ABCDE

Block confounding: AB

All main effects and all two-factor interactions except AB are estimable.

	Blocks
1	<u>2</u>
(1)	ac
abcd	bd
de	acde
abce	be
ab	bc
cd	ad
abde	bcde
ce	ae

Plan 6.2.4. 6 factors, 1/2 replication, 8 blocks of 4 units each.

Factors: A,B,C,D,E,F

I = ABCDEF

Block confounding: ABF, ACF, BC, ABE, EF, BCEF, ACE.

All main effects, all two-factor interactions except AD, BC, and EF are estimable. Twelve of the three-factor interactions are confounded in pairs as follows:

ABC = DEF ADE = BCF ABD = CEF ADF = BCE ACD = BEF AEF = BCD

while the remaining eight three-factor interactions are confounded with blocks.

<u>Blocks</u>								
<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	
(1)	ab	a c	bc	ae	be	ce	abce	
abcd	cđ	bd	ad	bcde	acde	abde	de	
bcef	acef	abef	ef	abcf	cf	bf	af	
adef	bdef	cdef	abodef	df	abdf	acdf	bcdf	

Plan 6.2.8. 6 factors, 1/2 replication, 4 blocks of 8 units each.

Factors: A,B,C,D,E,F

I = ABCDEF

Block confounding: ABF, ACF, BC

All main effects and all two-factor interactions <u>except</u> BC are estimable. Sixteen of the twenty three-factor interactions are confounded in pairs as follows:

ABC = DEF	ACE = BDF
ABD = CEF	ADE = BCF
ABE = CDF	ADF = BCE
ACD = BEF	AEF = BCD ,

while the remaining four three-factor interactions are confounded with blocks.

Blocks						
<u>1</u>	2	<u> 3</u>	<u>4</u>			
(1)	ab	ac	bco			
abcd	cd	bd	ad			
bcef	acef	abef	ef			
adef	bdef	cdef	abcdef			
abce	ce	be	ae			
de	abde	acde	bcde			
af	bf	cf	abcf			
bcdf	acdf	abdf	df			

Plan 6.2.16. 6 factors, 1/2 replication, 2 blocks of 16 units each.

Factors: A,B,C,D,E,F

I = ABCDEF

Block confounding: ABF

All main effects and all two-factor interactions are estimable. The three-factor interactions ABF and CDE are confounded with blocks while all others are confounded in pairs as follows:

ABC = DEF	ACD = BEF	ADE = BCF
ABD = CEF	ACE = BDF	ADF = BCE
ABE = CDF	ACF = BDE	AEF = BCD

Blocks

<u> </u>	_	2	
(1)	ab	ac	bc
abcd	cď	bd	ad
bcef	acef	abef	ef
adef	bdef	cdef	abcdef
abce	ce	be	ae
de	abde	acde	bcde
af	bf	cf	abcf
bcdf	acdf	abdf	df

Plan 7.2.4. 7 factors, 1/2 replication, 16 blocks of 4 units each.

Factors: A,B,C,D,E,F,G

I = ABCDEFG

Block confounding: ABFG, ACFG, BC, ABEG, EF, BCEF, ACEG, ABEF, EG, BCEG, ACEF, FG, AB, AC, BCFG

All main effects, 15 of the 21 two-factor interactions, and 26 of the 35 three-factor interactions are estimable. The two-factor interactions

AB, AC, BC, EF, EG, FG

and the three-factor interactions

ADE, ADF, ADG, BDE, BDF, BDG, CDE, CDF, CDG are confounded with blocks.

		B	locks		
<u>1</u>	2	<u>3</u>	7	<u>ِ</u> 5	<u>6</u>
(1) abcd defg abcefg	ab cd abdefg cef{	ac bd acdefg bef	bc ad bcdefg aefg	ae bcde adfg bcfg	be acde bdfg acfg
ce abde cdfg abfg 12 abcf df abcdeg eg	abce de abcdfg fg 13 ef abcdef dg abcg	9 af bcdf adeg bceg 14 abef cdef abdg cg	bf acdf bdeg aceg 15 acef bdef acdg bg	cf abdf cdeg abeg 16 bcef adef bcdg ag	

Plan 7.2.8. 7 factors, 1/2 replication, 8 blocks of 8 units each.

Factors: A,B,C,D,E,F,G

I = ABCDEFG

Block confounding: ABFG, ACF, BCG, BCEF, ACEG, ABE, EFG

All main effects, all two-factor interactions, and all three-factor interactions except

ABE, ACF, ADG, BCG, BDF, CDE, and EFG are estimable.

Blocks							
<u>1</u>	2	<u>3</u>	7	5	7	<u>6</u>	<u>8</u>
(1)	ab	ac	bc	ae	ce	be	abce
abcd	cd	bd	ad	bcde	abde	acde	de
bcef	acef	abef	ef	abcf	bf	cf	af
adef	bdef	cdef	abcdef	đf	acdf	abdf	bcdf
cdfg	abcdfg	adfg	bdfg	acdefg	defg	bcdefg	abdefg
abfg	fg	bcfg	acfg	befg	abcefg	aefg	cefg
bdeg	adeg	abcdeg	cdeg	abdg	bcdg	dg	acdg
aceg	bceg	eg	abeg	cg	ag	abcg	bg

Plan 7.2.16. 7 factors, 1/2 replication, 4 blocks of 16 units each.

Factors: A,B,C,D,E,F,G

I = ABCDEFG

Block confounding: ABFG, ACF, BCG

All main effects, all two-factor interactions, and all three-factor interactions except ACF, BCG, and CDE are estimable.

		Blocks		
1			2	
(1) abcd bcef adef cdfg abfg bdeg aceg	abce de af bcdf abdefg cefg acdg bg		ab cd acef bdef abcdfg fg adeg bceg	ce abde bf acdf defg abcefg bcdg ag
3			4	
ac bd abef cdef adfg bcfg abcdeg eg	be acde cf abdf bcdefg aefg dg abcg		bc ad ef abcdef bdfg acfg cdeg abeg	ae bcde abcf df acdefg befg abdg cg

Plan 7.2.32. 7 factors, 1/2 replication, 2 blocks of 32 units each.

Factors: A,B,C,D,E,F,G

I = ABCDEFG

Block confounding: ABFG

All main effects, all two-factor interactions and all three-factor interactions except CDE are estimable.

В	1	0	С	k	S

		±	
(3.)	abce	ab	ce
abcd	de	cd	abde
bcef	af	acef	bf
adef	bcdf	bdef	acdf
cdfg	abdefg	abcdfg	defg
abfg	cefg	fg	abcefg
bdeg	acdg	adeg	bcdg
aceg	bg	bceg	ag

		-	
ac	be	bc	ae
bd	acde	ad	bcde
abef	cf	ef	abcf
cdef	abdf	abcdef	dſ
adfg	bcdefg	bdfg	acdefg
bcfg	aefg	acfg	befg
abcdeg	dg	cdeg	abdg
eg	abcg	abeg	cg

Plan 8.2.8. 8 factors, 1/2 replication, 16 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCDEFGH

Block confounding: ABCD, ABCE, DE, ABDEG, CEG, CDG, ABG, BCH, ADH, AEH, BCDEH, ACDEGH, BEGH, BDGH, ACGH.

All main effects, all two-factor interactions except BF and DE, and all three-factor interactions except ABG, ADH, AEH, BCH, CDG, and CEC are estimable. None of the four-factor interactions is estimable.

Blocks					
<u>1</u>	<u>2</u>	<u>3</u>	7	<u>5</u>	<u>6</u>
(1) abfh bcfg acgh cdeh abcdef bdefgh adeg	ab fh acfg bcgh abcdeh cdef adefgh bdeg	ac bcfh abfg gh adeh bdef abcdefgh cdeg	bc acfh fg abgh bdeh adef cdefgh abcdeg	ad bdfh abcdfg cdgh aceh bcef abefgh eg	bd adfh cdfg abcdgh bceh acef efgh abeg
7	<u>8</u>	<u>9</u>	<u>10</u>	11	
cd abcdfh bdfg adgh eh abef bcefgh aceg	abcd cdfh adfg bdgh abeh cf acefgh bceg	ae befh abcefg cegh acdh bcdf abdfgh dg	be aefh cefg abcegh bcdh acdf dfgh abdg	ce abcefh befg aegh dh abdf bcdfgh acdg	

Plan 8.2.8. (Continued).

12	<u>13</u>	14	<u>15</u>	16
abce	de	abde	acde	bcde
cefh	abdefh	defh	bcdefh	acdefh
aefg	bcdefg	acdefg	abdefg	defg
begh	acdegh	bcdegh	degh	abdegh
abdh	ch	abch	ah	bh
df	abcf	cf	bf	af
acdfgh	bfgh	afgh	abcfgh	cfgh
bcdg	ag	bg	cg	abcg

Plan 8.2.16. 8 factors, 1/2 replication, 8 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCDEFGH

Block confounding: ABCD, ABEF, CDEF, BCEG, ADEG, ACFG, BDFG.

All main effects, all two-factor interactions, and all three-factor interactions are estimable. Fourteen of the 70 four-factor interactions are confounded with blocks while the remaining 56 are confounded in pairs.

<u>Blocks</u>					
<u>1</u>	2	<u>3</u>	4		
(1) abcd abef cdef bceg adeg acfg bdfg efgh abcdefgh abgh cdgh bcfh adfh aceh bdeh	ab cd ef abcdef aceg bdeg bcfg adfg adfg abefgh cdefgh gh abcdgh acfh bdfh bceh adeh	ac bd bcef adef adef abeg cdeg fg abcdfg acefgh bdefgh bcgh adgh abfh cdfh eh abcdeh	bc ad acef bdef eg abcdeg abfg cdfg bcefgh adefgh acgh bdgh fh abcdfh abeh cdeh		

Plan 8.2.16. (Continued)

<u>5</u> .	<u>6</u>	I	<u>8</u>
ae bcde bf acdf abcg dg cefg abdefg afgh bcdfgh begh acdegh abcefh defh ch abdh	be acde af bcdf cg abdg abcefg defg bfgh acdfgh aegh bcdegh cefh abdefh abch dh	ce abde abcf df bg acdg aefg bcdefg cfgh abdfgh abcegh degh befh acdefh ah bcdh	abce de cf abdf ag bcdg befg acdefg abcfgh dfgh cegh abdegh aefh bcdefh bh acdh

Plan 8.2.32. 8 factors, 1/2 replication, 4 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCDEFGH

Block confounding: ABCD, ABEF, CDEF

All main effects, all two-factor interactions, and all three-factor interactions are estimable. Six of the 70 four-factor interactions are confounded with blocks and the other 64 are confounded in pairs.

Blocks

Combine blocks in Plan 8.2.16 as follows:

1 and 2

3 and 4

5 and 6

7 and 8 .

Plan 8.2.64. 8 factors, 1/2 replication, 2 blocks of 64 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCDEFGH

Block confounding: ABCD

All main effects, all two-factor and all three-factor interactions are estimable. Two of the 70 four-factor interactions are confounded with blocks while the remaining 68 are confounded in pairs.

Blocks

Combine blocks in Plan 8.2.16 as follows:

1, 2, 3, and 4

5, 6, 7, and 8.

Plan 9.2.8. 9 factors, 1/2 replication, 32 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCDEFGHJ

Block confounding: ABFGJ, ACFG, BCJ, ADG, BDFJ, CDF, ABCDGJ,
FGHJ, ABH, ACHJ, BCFGH, ADFHJ, BDGH, CDGHJ,
ABCDFH, ACE, BCEFGJ, EFG, ABEJ, CDEG, ABCDEFJ,
ADEF, BDEGJ, ACEFGHJ, BCEH, EHJ, ABEFGH,
CDEFHJ, ABCDEGH, ADEGHJ, BDEFH.

The main effects, 33 of the 36 two-factor interactions, 71 of the 84 three-factor interactions and 111 of the 126 four-factor interactions are estimable. The following interactions are confounded with blocks:

BD, FJ, GH, ABG, ABH, ACE, ADG, ADH, BCF, BCJ, CDF, CDJ, EFG, EFH, EGJ, EHJ, ABEF, ABEJ, ACFG, ACFH, ACGJ, ACHJ, ADEF, ADEJ, BCEG, BCEH, BDFJ, BDGH, CDEG, CDEH, FGHJ.

Plan 9.2.8. (Continued).

1.(Initial Block)		Į	Block Mu	ıltiplie	rs		
(1)	2	<u>3</u>	4	5	<u>6</u>	7	
abcd aegh	ab	ac	bc	ae	ъe	ce	
bcdegh cefj	<u>8</u>	9	10	11	12	<u>13</u>	
abdefj acfghj	abce	af	bf	cf	abcf	ef	
bdfgh j	14	<u>15</u>	<u>16</u>	17	18	19	
	abef	acef	bcef	ag	bg	cg	
	20	<u>21</u>	22	<u>23</u>	24	<u>25</u>	
	abcg	eg	abeg	aceg	bceg	fg	
	<u>26</u>	27	28	29	<u>30</u>	<u>31</u>	<u>32</u>
	abfg	acfg	bcfg	aefg	befg	cefg	abcefg

Plan 9.2.16. 9 factors, 1/2 replication, 16 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCDEFGHJ

Block confounding: ABCDE, ABCF, DEF, BDEFGH, ACFGH, ACDEGH, BGH, BCEH, ADH, AEFH, BCDFH, CDFG, ABEFG, ABDG, CEG.

All main effects, all two-factor interactions, all three-factor interactions except

ACJ, ADH, BFJ, BGH, CEG, and DEF

and all four-factor interactions except

ABCF, ABDG, AEFH, AEGJ, BCEH, BDEJ, CDFG, CDHJ, FGHJ are estimable.

				Blocks		
(1)	befg	2	ac ac	bc	5	6
acde	abcdfg	ab		bc	ad	bd
adfj cefj abhj bcdehj	abdegj bcgj aefghj cdfghj		8 abcd	<u>9</u> af	<u>10</u> bf	<u>11</u>
bdfh	degh	12	13 df	14	15	16
abcefh	acgh	abcf		abdf	acdf	bcdf

Plan 9.2.32. 9 factors, 1/2 replication, 8 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCDEFGHJ

Block confounding: ABCD, CDEF, ABEF, ACEG, BDEG, ADFG, BCFG

The main effects, all two-factor interactions, all three-factor interactions, and all four-factor interactions except those mentioned above are estimable.

1. (Initia	l Block)	Block	Multipliers
(1) abcd abef cdef bdeg aceg adfg bcfg bceh adeh acfh bdfh cdgh abgh abcdefgh efgh	hj abcdhj abefhj cdefhj bdeghj aceghj adfghj bcighj bcej adej acfj bdfj cdgj abgj abcdefgj efgj	2.34.56.7.8	ab ac bc ae be ce abce

. . .

Plan 6.4.2. 6 factors, 1/4 replication, 8 blocks of 2 units each.

Factors: A,B,C,D,E,F

I = ABCE = ABDF = CDEF

Block confounding: AB, BC, AC, EF, ABEF, BCEF, ACEF

All main effects are estimable. All two-factor interactions have two-and four-factor interactions as aliases. Three-factor interactions are aliases of main effects or of other three-factor interactions:

ACD = BDE = BCF = AEF

ACF = BEF = BCD = ADE .

	Blocks	Blocks			
<u>1</u>	<u>2</u>	3	4		
(1) abcdef	ab cdef	c e abdf	abce df		
5	<u>6</u>	7	<u>8</u>		
acd	bcd	ade	bde		
bef	aef	bcf	acf		

Plan 6.4.4. 6 factors, 1/4 replication, 4 blocks of 4 units each.

Factors: A,B,C,D,E,F

I = ABCE = ABDF = CDEF

Block confounding: AB, BC, AC

The main effects are estimable, but all two factor-interactions have two- and four-factor aliases while all three-factor interactions are aliases of either main effects or three-factor interactions.

Blocks				
<u>1</u>	· <u>2</u>	<u>3</u>	4	
(1)	ab	acd	bcd	
abcdef	cdef	bef	aef	
abce	ce	bde	ade	
df	abdf	acf	bcf	

Plan 6.4.8. 6 factors, 1/4 replication, 2 blocks of 8 units each.

Factors: A,B,C,D,E,F

I = ABCE = ABDF = CDEF

Block confounding: AB

The main effects are estimable. All two-factor interactions have two- and four-factor aliases while all three-factor interactions are aliases of either main effects or three-factor interactions.

	Blocks	
<u>1</u>		2
(1)		acd
abcdef		bef
abce		bde
df		acf
ab		bcd
cdef		aef
ce		ade
abdf		bcf

Plan 7.4.4. 7 factors, 1/4 replication, 8 blocks of 4 units each.

Factors: A,B,C,D,E,F,G

I = ABCE = ABDFG = CDEFG

Block confounding: ACD, BEF, ABCDEF, BC, ABD, CEF, ADEF

The main effects, 12 of the 21 two-factor interactions, and 5 of the higher order interactions are estimable. The following two-factor interactions are estimable:

AD, AF, AG, BD, BF, BG, CD, CF, CG, DE, EF, EG.

Blocks							
<u>1</u>	2	<u>3</u>	<u>4</u>	<u> </u>	<u> 6</u>	I	8
(1)	ab	df	abdf	dg	abdg	fg	abfg
abce	ce	abcdef	cdef	abcdeg	cdeg	abcefg	cefg
adefg	bdefg	aeg	beg	aef	bef	ade	bde
bcdfg	acdfg	bcg	acg	bcf	acf	bcd	acd

Plan 7.4.8. 7 factors, 1/4 replication, 4 blocks of 8 units each.

Factors: A,B,C,D,E,F,G

I = ABCEG = ABDF = CDEFG

Block confounding: AB, AD, BD

The main effects and all of the two-factor interactions except (for those already confounded in pairs by the fundamental identity)

AB, AD, AF, BD, BF, DF

are estimable. Six of the three-factor interactions have as aliases six other three-factor interactions.

Blocks				
<u>1</u>	2	<u>3</u>	4	
(1)	ab	bcd	acd	
ce	abce	bde	ade	
cg	abcg	bdg	adg	
eg	abeg	bcdeg	acdeg	
abdf	df	acf	bcf	
abcdef	cdef	aef	bef	
abcdfg	cdfg	afg	bfg	
abdefg	defg	acefg	bcefg	

Plan 7.4.16. 7 factors, 1/4 replication, 2 blocks of 16 units each.

Factors: A,B,C,D,E,F,G

I = ABCEG = ABDF = CDEFG

Block confounding: AB

All main effects and all two-factor interactions except

AB, AD, AF, BD, BF, DF

are estimable.

Blocks

Combine blocks in Plan 7.4.8 as follows:

1 and 2

3 and 4.

Plan 8.4.4. 8 factors, 1/4 replication, 16 blocks of 4 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCEG = ABDFH = CDEFGH

Block confounding: ACD, BEF, ABCDEF, BC, ABD, CEF, ADEF, DE, ACE, BDF, ABCF, BCDE, ABE, CDF, AF

The main effects, all two-factor interactions except

AF, AH, BC, BG, CG, DE, FH,

and 19 of the higher order interactions are estimable.

		Blocks			
<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>
(1) adefh bcdeg abcfgh	ab bdefh acdeg cfgh	acd cefh abeg bdfgh	bcd abcefh eg adfgh	aef dh abcdfg bcegh	bef abdh cdfg acegh
7	<u>8</u>	2	10	11	e
cdef ach bfg abdegh	abcdef bch afg degh	agh defg abcdeh bcf	bgh abdefg cdeh acf	cdgh acefg beh abdf	
12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	
abcdgh bcefg aeh df	efgh adg bcdfh abce	abefgh bdg ãcdfh ce	acdefgh cg abfh bde	bcdefgh abcg fh ade	

Plan 8.4.8. 8 factors, 1/4 replication, 8 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCEG = ABDFH = CDEFGH

Block confounding: ACD, BEF, ABCDEF, BC, ABD, CEF, ADEF

The main effects, all two-factor interactions except BC and FH, and 22 higher order interactions are estimable.

Blocks

Combine blocks in Plan 8.4.4 as follows:

1 and 13 5 and 9

2 and 14 6 and 10

3 and 15 7 and 11

4 and 16 8 and 12.

Plan 8.4.16. 8 factors, 1/4 replication, 4 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCEG = ABDFH = CDEFGH

Block confounding: ACD, BEF, ABCDEF

The main effects, all two-factor interactions, and 24 higher order interactions are estimable.

Blocks

Combine blocks in Plan 8.4.4 as follows:

1, 7, 11, and 13 3, 5, 9, and 15

2, 8, 12, and 14 4, 6, 10, and 16.

Plan 8.4.32. 8 factors, 1/4 replication, 2 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCEG = ABDFH = CDEFGH

Block confounding: ACD

The main effects, all two-factor interactions, and 26 higher order interactions are estimable.

Blocks

Combine blocks in Plan 8.4.4 as follows:

1, 4, 6, 7, 10, 11, 13, and 16

2, 3, 5, 8, 9, 12, 14, and 15.

Plan 9.4.8. 9 factors, 1/4 replication, 16 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCEGJ = ABDFHJ = CDEFGH

Block confounding: ACDJ, BEFJ, ABCDEF, BCJ, ABD, CEF, ADEFJ, DEJ, ACE, BDF, ABCFJ, BCDE, ABEJ, CDFJ, AF.

The main effects, all two-factor interactions except AF and CG, and 69 of the higher order interactions are estimable.

		Blocks			
<u>1</u>	2	<u>3</u> .	7	5	<u>6</u>
(1) bcdeg adefh abcfgh bdhj ceghj abefj acdfgj	ab acdeg bdefh cfgh adhj abceghj efj bcdfgj	ce bdg acdfh abefgh bcdehj ghj abcfj adefgj	abce ado bcdfh efgh acdehj abghj cfj bdefgj	cg bde acdefgh abfh bcdghj ehj abcefgj adfj	abcg ade bcdefgh fh acdghj abehj cefgj bdfj
I	<u>8</u>	<u>9</u>	10	11	
eg bcd adfgh abcefh bdeghj chj abfgj acdefj	abeg acd bdfgh cefh adeghj abchj fgj bcdefj	df bcefg aeh abcdgh bfhj cdefghj abdej acgj	abdf acefg beh cdgh afhj abcdefghj dej bcgj	cdef bfg ach abdegh bcefhj dfghj abcdj aegj	

Plan 9.4.8. (Continued)

Blocks							
12	13	14	<u>15</u>	16			
abcdef afg bch degh acefhj abdfghj cdj begj	cdfg bef acegh bcfghj defhj abcdegj	abcdfg aef bcegh dh acfghj abdefhj cdegj	defg bcf agh abcdeh befghj cdfhj abdgj acej	abdefg acf bgh cdeh aefghj abcdfhj dgj bcej			

Plan 9.4.16. 9 factors, 1/4 replication, 8 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCEGJ = ABDFHJ = CDEFGH

Block confounding: ACDJ, BEFJ, ABCDEF, BCJ, ABD, CEF, ADEFJ.

The main effects, all two-factor interactions, and 75 higher order interactions are estimable.

Blocks

Combine blocks in Plan 9.4.8 as follows:

1 and 4 9 and 12

2 and 3 10 and 11

5 and 8 13 and 16

6 and 7 14 and 15.

Plan 9.4.32. 9 factors, 1/4 replication, 4 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCEGJ = ABDFHJ = CDEFGH

Block confounding: ACDJ, BEFJ, ABCDEF

All main effects, all two-factor interactions, and 79 higher order interactions are estimable.

Blocks

Combine blocks in Plan 9.15.8 as follows:

- 1, 4, 10, and 11
- 2, 3, 9, and 12
- 5, 8, 14, and 15
- 6, 7, 13, and 16.

Plan 10.4.8. 10 factors, 1/4 replication, 32 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABCDEFG = ABCDHJK = EFGHJK

Block confounding: ABEFHJ, CDEFHJ, ABCD, ACEH, BCFJ, ADFJ, BDEH, ACGK, BCEFGHJK, ADEFGHJK, BDGK, EGHK, ABFGJK, CDFGJK, ABCDEGHK, ACFJ, BCEH, ADEH, BDFJ, EFHJ, AB, CD, ABCDEFHJ, FGJK, ABEGHK, CDEGHK, ABCDFGJK, ACEFGHJK, BCGK, ADGK, BDEFGHJK

All main effects, 36 of the 45 two-factor interactions, and 178 higher order interactions are estimable. The following two-factor interactions are confounded with blocks:

AB, AC, AD, BC, BD, CD, EH, FJ, and GK.

		<u>B1</u>	ocks				
<u>1</u>	2	<u>3</u>	<u>1</u>	<u>5</u>	<u>6</u>	7	<u>8</u>
(1) abcd efhj	ab	ac	bc	ef	abef	acef	bcef
abcdefhj eghk	9	10	11	12	<u>13</u>	14	
abcdeghk fgjk abcdfgjk	eg	abeg	aceg	bceg	fg	abfg	
	<u>15</u>	16	17	18	19	<u>20</u>	
	acfg	bcfg	aeh	beh	ceh	abceh	
	<u>21</u> afh	<u>22</u> bfh	<u>23</u> cfh	24 abcfh	2 <u>5</u> agh	<u>26</u> bgh	
	<u>27</u>	28	29	30	<u>31</u>	<u>32</u>	
	cgh	abcgh		befgh	cefgh	abcefgl	ı

Plan 10.4.16. 10 factors, 1/4 replication, 16 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABCDEFG = ABCDHJK = EFGHJK

Block confounding: ABEFHJ, CDEFHJ, ABCD, ACEH, BCFJ, ADFJ, BDEH, ACGK, BCEFGHJK, ADEFGHJK, BDGK, EGHK, ABFGJK, CDFGJK, ABCDEGHK.

All main effects, 42 of the 45 two-factor interactions, and 188 higher order interactions are estimable. Interactions AD, BC, and FJ are confounded with blocks.

Blocks

Combine blocks in Plan 10.4.8 as follows:

1	and	12	17	and	28	
2	and	11	18	and	27	
3	and	10	19	and	26	
4	and	9	20	and	25	
5	and	16	21	and	32	
6	and	15	22	and	31	
7	and	14	23	and	30	
8	and	13	24	and	29	

Plan 10.4.32. 10 factors, 1/4 replication, 8 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABCDEFG = ABCDHJK = EFGHJK

Block confounding: ABEFHJ, CDEFHJ, ABCD, ACEH, BCFJ, ADFJ, BDEH.

All main effects, all two-factor interactions, and 193 higher order interactions are estimable.

Blocks

Combine blocks in Plan 10.4.8 as follows:

1, 6, 12, and 15

2, 5, 11, and 16

3, 8, 10, and 13

4, 7, 9, and 14

17, 22, 28, and 31

18, 21, 27, and 32

19, 24, 26, and 29

20, 23, 25, and 30.

Plan 8.8.4. 8 factors, 1/8 replication, 8 blocks of 4 units each.

Factors: A,B,C,D,E,F,G,H

I = ABEGH = ACFG = BCEFH = ABCD = CDEGH = BDFG = ADEFH

Block confounding: EGH, FG, EFH, BEH, BG, BEFGH, BF

All main effects and the following two-factor interactions are estimable:

AE, AH, BE, BH, CE, CH, DE, DH, EF, EG, EH, FH, GH

Blocks 5 6 7 8 2 3 4 1 (1)abcd acefgh bdefgh cdf abf adegh bcegh abcdefg bdh ach abeg cdeg bcfh adfh efg abcdeh acfg cdefh abefh adg eh ace bcg abgh cdgh bcef abcdfgh fgh bdfg adef .bde

Plan 8.8.8. 8 factors, 1/8 replication, 4 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H

I = ABEGH = ACFG = BCEFH = ABCD = CDEGH = BDFG = ADEFH

Block confounding: EGH, FG, EFH

All main effects and the following two-factor interactions are estimable:

AE, AH, BE, BH, CE, CH, DE, DH, EF, EG, EH, FH, GH. The following two-factor interactions are confounded with one another:

AF = CG, AG = CF, BF = DG, BG = DF.

Blocks 1 3 4 2 cdf (1)acefgh adegh abcdefg bdh abeg bcfh cdefh eh acfg adg abcdfgh bde abgh bcef abcd bdefgh abf bcegh efg ach cdeg adfh abcdeh ace abefh bcg fgh bdfg cdgh adef

Plan 8.8.16. 8 factors, 1/8 replication, 2 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H

I = ABEGH = ACFG = BCEFH = ABCD = CDEGH = BDFG = ADEFH

Block confounding: EGH

All main effects are estimable and the following two-factor interactions are estimable:

AE, AH, BE, BH, CE, CH, DE, DH, EF, EG, EH, FH, GH.

The following two-factor interactions are confounded with one another:

AF=CG, AG=CF, BF=DG, BG=DF, AD=BC.

Blocks

1	2
(1) abcdefg eh abcdfgh abcd efg abcdeh fgh acefgh bdh	cdf abeg cdefh abgh abf cdeg abefh cdgh adegh bcfh
acfg bde bdefgh ach ace bdfg	adg bcef bcegh adfh bcg adef

Plan 9.8.4. 9 factors, 1/8 replication, 16 blocks of 4 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABEGHJ = ACFGJ = BCEFH = ABCD = CDEGHJ = BDFGJ = ADEFH

Block confounding:

EGHJ, FGJ, EFH, AFHJ, AEFG, AGH, AEJ, ABEG, ABHJ, ABFGH, ABEFJ, BEFGHJ, BF, BEH, BGJ

All main effects and all two-factor interactions are estimable with the exception of:

AB, AC, AD, AF, BC, BD, BF, CD, CF, DF, EG, HJ.

	Block	<u>5</u>	
<u>1</u>	2	<u>3</u>	<u>1</u> 4
(1)	fgh	abcdfgh	abcd
abcdefg	abcdeh	eh	efg
eghj	efj	abcdefj	abcdeghj
abcdfhj	abcdgj	gj	fhj
5	<u>6</u>	7	8
bdefgh	bde	ace	bdegj
ach	acfg	bdfg	acefgh
bdfj	bdghj	acghj	bdh
acegj	acefhj	bdefhj	acfj

Plan 9.8.4. (Continued)

	Block	<u> </u>	
9	10	11	12
abf cdeg abefghj cdhj	abgh cdefh abej cdfgj	cdgh abefh cdej abfgj	cdf abeg cdefghj abhj
<u>13</u>	14	<u>15</u>	16
adegh bcfh ad j bcefgj	adef bcg adfghj bcehj	bcef adg bcfghj adehj	bcegh adfh bcj adefgj

Plan 9.8.8. 9 factors 1/8 replication, 8 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABEGHJ = ACFGJ = BCEFH = ABCD = CDEGHJ = BDFGJ = ADEFH

Block confounding: EGHJ, FGJ, EFH, AFHJ, AEFG, AGH, AEJ

All main effects and all two-factor interactions are estimable with the exception of:

AB, AC, AD, BC, BD, CD

			Blocks				
<u>1</u>	<u>2</u>	<u>3</u>	77	<u>5</u>	· <u>6</u>	7	<u>8</u>
(1)	abcd	bde	ace	abf	cdf	adef	bcef
abcdefg	efg	acfg	bdfg	cdeg	abeg	bcg	adg
fgh	abcdfgh	bdefgh	acefgh	abgh	cdgh	adegh	bcegh
abcdeh	eh	ach	bdh	cdefh	abefh	bcfh	adfh
efj	abcdefj	bdfj	acfj	abej	c de j	adj	bcj
abcdgj	gj	acegj	bdegj	cdfgj	abfgj	bcefgj	adefgj
eghj	abcdeghj	bdghj	acghj	abefghj	cdefghj	adfghj	bcfghj
abcdfhj	fhj	acefhj	bdefhj	cdhj	abhj	bcehj	adehj

Plan 9.8.16. 9 factors, 1/8 replication, 4 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABEGHJ = ACFGJ = BCEFH = ABCD = CDEGHJ = BDFGJ = ADEFH

Block confounding: EGHJ, FGJ, EFH

All main effects and all two-factor interactions are estimable with the exception of:

AB, AC, AD, BC, BD, CD.

Blocks

Combine blocks in Plan 9.8.8 as follows:

1 and 2

3 and 4

5 and 6

7 and 8 .

Plan 9.8.32. 9 factors, 1/8 replication, 2 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABEGHJ = ACFGJ = BCEFH = ABCD = CDEGHJ = BDFGJ = ADEFH

Block confounding: EGHJ

All main effects and all two-factor interactions are estimable with the exception of:

AB, AC, AD, BC, BD, CD.

Blocks

Combine blocks in Plan 9.8.8 as follows:

1, 2, 3, and 4

5, 6, 7, and 8.

Plan 10.8.8. 10 factors, 1/8 replication, 16 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABEGHJ = ACFGJK = BCEFHK = ABCDK = CDEGHJK = BDFGJ = ADEFH

Block confounding: GHJ, EHK, EGJK, FHJK, FGK, EFJ, EFGH, EG, EHJ, GHK, JK, EFGHJK, EFK, FGJ, FH

All main effects and all two-factor interactions are estimable with the exception of:

BD, EG, FH, JK

	Blocks		
<u>1</u>	2	<u>3</u>	4
(1) abcd aegjk bcdegjk acefgh bdefgh cfhjk abdfhjk	eghj abcdeghj ahk bcdhk acfj bdfj cefgk abdefgk	dfk abcfk adefgj bcefgj acdeghk beghk cdhj abhj	defghjk abcefghjk adfh bcfh acdjk bjk cdeg abeg
5	<u>6</u>	I	<u>8</u>
dhjk abchjk adegh bcegh acdefgjk befgjk cdf abf	degk abcegk adj bcj acdfhk bfhk cdefghj abefghi	fhj abcdfhj aefghk bcdefghk acegj bdegj ck	efg abcdefg af jk bcdf jk ach bdh ceghjk abdeghjk

Plan 10.8.8. (Continued).

Blocks

9	10	11	12
abej cdej bgk acdgk bcfghj adfghj abcefhk defhk	abgh cdgh behjk acdehjk bcef adef abcfgjk dfgjk	abdefjk cefjk bdfg: acfg bcdghjk aghjk abcdeh eh	abdfghk cfghk bdefhj acefhj bcdek aek abcdgj
<u>13</u>	14	<u>15</u>	<u>16</u>
abdehk cehk bdghj acghj bcdfgk afgk abcdefj efj	abdgjk cgjk bde ace bcdefhjk aefhjk abcdfgh fgh	abefh cdefh bfghjk acdfghjk bcg adg abcejk dejk	abfgj cdfgj befk acdefk bcehj adehj abcghk dghk

Plan 10.8.16. 10 factors, 1/8 replication, 8 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABEGHJ = ACFGJK = BCEFHK = ABCDK = CDEGHJK = BDFGJ = ADEFH Block confounding: GHJ, EHK, EGJK, FHJK, FGK, EFJ, EFGH All main effects and two-factor interactions are estimable.

Blocks

Combine blocks in Plan 10.8.8 as follows:

1 and 2 9 and 10

3 and 4 11 and 12

5 and 6 13 and 14

7 and 8 15 and 16

Plan 10.8.32. 10 factors, 1/8 replication, 4 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABEGHJ = ACFGJK = BCEFHK = ABCDK = CDEGHJK = BDFGJ = ADEFH

Block confounding: GHJ, EHK, EGJK

All main effects and two factor interactions are estimable.

Blocks

Combine blocks in Plan 10.8.8 as follows:

1, 2, 3, and 4

5, 6, 7, and 8

9, 10, 11, and 12

13, 14, 15, and 16

Plan 11.8.8. 11 factors, 1/8 replication, 32 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I = ABEGHJ = ACFGJK = BCEFHK = ABCDKL = CDEGHJKL = BDFGJL
= ADEFHL

Block confounding: GHJL, EHKL, EGJK, FHJK, FGKL, EFJL, EFGH,

EGL, EHJ, GHK, JKL, EFGHJKL, EFK, FGJ,

FHL, AEG, AEHJL, AGHKL, AJK, AEFGHJK,

AEFKL, AFGJL, AFH, AL, AGHJ, AEHK, AEGJKL,

AFHJKL, AFGK, AEFJ, AEFGHL

All main effects and all two-factor interactions are estimable with the exception of:

AL, CJ, DG.

Blocks

1 2 3 4 5 <u>6</u> 7. 8 (1)eghj dfk defghjk dhjk degk fhj efg bcdegjk bdefgh cfhjk adfgkl abcef jl abehkl acdgh jl

Plan 11.8.8. (Continued).

	Blocks		
9	10	<u>11</u>	12
abe j	abgh	abdef jk	abdfghk
<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>
abdehk	abdg jk	abefh	abfgj
<u>17</u> abdfl	<u>18</u> abdefghjl	<u>19</u> abkl	20 abeghjkl
<u>21</u> abfhjkl	22 abefgkl	<u>23</u> abdhjl	<u>24</u> abdegl
<u>25</u> def j l	26 dfghl	<u>27</u> ejkl	<u>28</u> gh kl
<u>29</u> efhkl	<u>30</u> fgjkl	<u>31</u> dehl	<u>32</u> dg j l

Plan 11.8.16. 11 factors, 1/8 replication, 16 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I = ABEGHJ = ACFGJK = BCEFHK = ABCDKL = CDEGHJKL = BDFGJL

= ADEFHL

Block confounding: GHJL, EHKL, EGJK, FHJK, FGKL, EFJL, EFGH,

EGL, EHJ, GHK, JKL, EFGHJKL, EFK, FGJ, FHL

All main effects and two-factor interactions are estimable.

		Blocks	
<u>1</u>	<u>2</u>	<u>3</u>	7
(1) bcdegjk bdefgh cfhjk adfgkl abcdfjl abehkl acdghjl defjl bcfgkl bghjl cdehkl aegjk abcd abdfhjk acefgh	eghj 5 dhjk 8 efg 11 abdefjk 14 abdgjk	dfk 6 degk 9 abej 12 abdfghk 15 abefh	defghjk 7 fhj 10 abgh 13 abdehk 16 abfgj

Plan 11.8.32. 11 factors, 1/8 replication, 8 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I = ABECHJ = ACFGJK = BCFFHK = ABCDIL = CDECHJKE

= BDFGJL = ADEFHL

Block confounding: GHJL, EHKL, EGJK, FHJK, FGKL, EFJL, EFGH All main effects and two-factor interactions are estimable.

	Block	<u>s</u>	
	1		<u></u>
(1) bcdegjk bdefgh cfhjk adfgkl abcefjl abehkl acdghjl defjl bcfgkl bghjl cdehkl aegjk abcd abdfhjk acefgh		accade abcces accafs bccabc accafs accafs accafs accafs accafs accafs	ghjkl dfhl degl jkl hl cdefghjkl fk fgj
<u>2</u> eghj	<u>3</u> dfk	<u>4</u> defghjk	<u>5</u> dhjk
6	7	, <u>8</u>	
. degk	fhj	efg	

Plan 7.16.4. 7 factors, 1/16 replication, 2 blocks of 4 units each.

Factors: A,B,C,D,E,F,G

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFG

= EFG = CDG = ABG = ADF = BCF = BDE = ACE

Block confounding: A

All main effects except A are estimable. They are identified with two-factor interactions as follows:

B = AG = CF = DE E = FG = BD = AC

C = DG = BF = AE F = EG = AD = BC

D = CG = AF = BE G = EF = CD = AB

Blocks

 1
 2

 (1)
 acfg

 cdef
 adeg

 bdfg
 abcd

 bceg
 abef

Plan 7.16.8. 7 factors, 1/16 replication, 1 block of 8 units

Factors: A,B,C,D,E,F,G

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFG

= EFG = CDG = ABG = ADF = BCF = BDE = ACE

cdef

All main effects are estimable. They are identified with two-factor interactions as follows:

A = BG = DF = CE E = FG = BD = AC

B = AG = CF = DE F = EG = AD = BC

C = DG = BF = AE G = EF = CD = AB

D = CG = AF = BE

Block

(1)	abcd
acfg	bdfg
adeg	bceg

abef

Plan 8.16.4. 8 factors, 1/16 replication, 4 blocks of 4 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFGH

= EFGH = CDGH = ABGH = ADFH = BCFH = BDEH = ACEH

Block confounding: AB, AC, BC

All main effects are estimable.

	Block	s	
<u>1</u>	2	<u>3</u>	4
(1)	acfg	cdef	adeg
abcd	bdfg	abef	bceg
abcdefgh	bdeh	abgh	bcfh
efgh	aceh	cdgh	adfh

Plan 8.16.8. 8 factors, 1/16 replication, 2 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFGH

= EFGH = CDGH = ABGH = ADFH = BCFH = BDEH = ACEH

Block confounding: AB

All main effects are estimable.

Blocks	
<u>1</u>	2
(1)	acfg
cdef	adeg
abcd	bdfg
abef	bceg
abcdefgh	bdeh
abgh	bcfh
efgh	aceh
cdgh	adfh

Plan 8.16.16. 8 factors 1/16 replication, 1 block of 16 units each.

Factors: A,B,C,D,E,F,G,H

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFGH

= EFGH = CDGH = ABGH = ADFH = BCFH = BDEH = ACEH

All main effects are estimable.

Block

(1)	abcdefgh
acfg	bdeh
adeg	bcfh
cdef	abgh
abcd	efgh
bdfg	aceh
bceg	adfh
abef	cdgh

Plan 9.16.4. 9 factors, 1/16 replication, 8 blocks of 4 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFGHJ

= EFGHJ = CDGHJ = ABGHJ = ADFHJ = BCFHJ = BDEHJ = ACEHJ

Block confounding: AB, AC, BC, AE, BE, CE, ABCE

All main effects and the following two-factor interactions are estimable: AH, AJ, BH, BJ, CH, CJ, DH, DJ, EH, EJ, FH, FJ, GH,GJ,HJ.

	Blocks		
1	2	3	4 adeg bcfh bcfj adeghj
(1)	aceh	cdgh	
abcdefgh	bdfg	abef	
abcdefgj	bdfghj	abefhj	
hj	acej	cdgj	
5	6	7	8
abcd	bdeh	abgh	bceg
efgh	acfg	cdef	adfh
efgj	acfghj	cdefhj	adfj
abcdhj	bdej	abgj	bceghj

Plan 9.16.8. 9 factors, 1/16 replication, 4, blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFGHJ

= EFGHJ = CDGHJ = ABGHJ = ADFHJ = BCFHJ = BDEHJ = ACEHJ

Block confounding: AB, AC, BC

All main effects and the following two-factor interactions are estimable: AH, AJ, BH, BJ, CH, CJ, DH, DJ, EH, EJ, FH, FJ, GH, GJ, HJ.

Blocks			
<u>1</u>	2	<u>3</u>	7
(1)	aceh	cdgh	adeg
abcd	bdeh	abgh	bceg
abcdefgh	bdfg	abef	bcfh
efgh	acfg	cdef	adfh
ef ġ j	acfghj	cdefhj	adfj
abcdefgj	bdfgh j	abefhj	bcfj
abcdhj	bde j	abg j	bceghj
hj	acej	cdgj	adeghj

Plan 9.16.16. 9 factors, 1/16 replication, 2 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J

I = ABCD = ABEF = CDEF = BCEG = ADEG = ACFG = BDFG = ABCDEFGHJ

= EFGHJ = CDGHJ = ABGHJ = ADFHJ = BCFHJ = BDEHJ = ACEHJ

Block confounding: AB

All main effects and the following two-factor interactions are estimable: AH, AJ, BH, BJ, CH, CJ, DH, DJ, EH, EJ, FH, FJ, GH, GJ, HJ.

Blocks

1		2	
(1)	cdgh	aceh	adeg
abcd	abgh	bdeh	bceg
abcdefgh	abef	bdfg	bcfh
efgh	cdef	acfg	adih
efgj	cdefhj	acfghj	adfj
abcdefgj	abefhj	bdfghj	b čf j
abcdhj	abg j	bde j	bceghj
hj	cdgj	acej	adegh j

Plan 10.16.8. 10 factors, 1/16 replication, 8 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABCDJK = ABEFJ = CDEFK = BCEGJK = ADEG = ACFGK = BDFGJ

= ABCDEFGH = EFGHJK = CDGHJ = ABGHK = ADFHJK = BCFH

= BDEHK = ACEHJ

Block confounding: AD, AE, DE, BC, ABCD, ABCE, BCDE

All main effects are estimable. All two-factor interactions are estimable, except AD=EG, AE=DG, AG=DE, BC=FH, BF=CH, BH=CF, and JK.

	Blocks		
<u>1</u>	2	3	<u> 7</u>
(1) adeg bcfh abcdefgh bcjk abcdegjk fhjk adefghjk	dfghj	abcd bceg adfh efgh adjk egjk abcdfhjk bcefghjk	bhj abdeghj cfj acdefgj chk acdeghk bfk abdefgk
dej agj bcdefhj abcfghj bcdek abcgk defhk afghk	abehjk bdghjk acefjk cdfgjk aceh cdgh abef bdfg	acdhj ceghj abdfj befgj abdhk beghk acdfk cefgk	bdeh abgh cdef acfg cdehjk acghjk bdefjk abfgjk

Plan 10.16.16. 10 factors, 1/16 replication, 4 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABCDJK = ABEFJ = CDEFK = BCEGJK = ADEG = ACFGK = BDFGJ

= ABCDEFGH = EFGHJK = CDGHJ = ABGHK = ADFHJK = BCFH = BDEHK = ACEHJ

Block confounding: AD, AE, DE

All main effects are estimable. All two-factor interactions are estimable, except AD=EG, AE=DG, AG=DE, BC=FH, BF=CH, and BH=CF.

	Blocks		
<u>1</u>	2	3	4
(1) adeg bcfh abcdefgh bcjk abcdegjk fhjk adefghjk bhj abdeghj cfj acdefgj chk acdeghk bfk abdefgk	aek dgk abcefhk bcdfghk abcej bcdgj aefhj dfghj abehjk bdghjk acefjk cdfgjk aceh cdgh abef bdfg	acdhj ceghj abdfj befgj abdhk beghk acdfk cefgk abcd bceg adfh efgh adjk egjk abcdfhjk	dej agj bcdefhj abcfghj bcdek abcgk defhk afghk bdeh abgh cdef acfg cdehjk acghjk bdefjk abfgjk

Plan 11.16.8. 11 factors, 1/16 replication, 16 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I = ABCDJK = ABEFJL = CDEFKL = BCEGJKL = ADEGL = ACFGK = BDFGJ

= ABCDEFGH = EFGHJK = CDGHJL = ABGHKL = ADFHJKL = BCFHL = BDEHK

= ACEHJ

Block confounding: DEFG, BCFG, BCDE, ACEF, ACDG, ABEG, ABDF, ABCDEFGHJKL, ABCHJKL, ADEHJKL, AFGHJKL, BDGHJKL, BEFHJKL, CDFHJKL, CEGHJKL.

All main effects are estimable. All two-factor interactions except the following are estimable:

EF, DG, AC, BH .

	Blocks		
<u>1</u>	2	<u>3</u>	<u>1</u>
(1) abcdefgh defgjl abchjl acefjk bdghjk acdgkl befhkl	abdfj ceghj abegl cdfhl bcdek afghk bcfgjkl adehjkl	abcd efgh abcefgjl dhjl bdefjk acghjk bgkl acdefhkl	cfj abdeghj cdegl abfhl aek bcdfghk adfgjkl bcehjkl

Plan 11.16.8. (Continued).

Blocks

bceg adfh bcdfjl aeghjl abfgjk cdehjk abdekl cfghkl 2 adeg bcfh afjl bcdeghjl cdfgjk abehjk cekl abdfghkl	bhj acdefgj bdefghl acl abcefhk dgk abcdghjkl efjkl 10 acdhj befgj acefghl bdl defhk abcgk ghjkl abcdefjkl	abef cdgh abdgjl cefhjl bcjk adefghjk bcdefgkl ahkl 11 cdef abgh cgjl abdefhjl adjk bcefghjk aefgkl	dej abcfghj fgl abcdehl acdfk beghk acegljkl bdfhjkl 12 abcej dfghj abcdfgl ehl bfk acdeghk bdegjkl acfhjkl
acfg	bcdgj	bdfg	agj
bdeh	aefhj	aceh	bcdefhj
acdejl	bcefl	bejl	adefl
bfghjl	adghl	acdfghjl	bcghl cefgk abdhk cdjkl abefghjkl
egjk	abdefgk	abcdegjk	
abcdfhjk	chk	fhjk	
dfkl	abjkl	abcfkl	
abceghkl	cdefghjkl	deghkl	

Plan 11.16.16. 11 factors, 1/16 replication, 8 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I = ABCDJK = ABEFJL = CDEFKL = BCEGJKL = ADEGL = ACFGK = BDFGJ

= ABCDEFGH = EFGHJK = CDGHJL = ABGHKL = ADFHJKL = BCFHL

= BDEHK = ACEHJ

Block confounding: DEFG, BCFG, BCDE, ACEF, ACDG, ABEG, ABDF

All main effects and two-factor interactions are estimable.

Blocks

Combine blocks in Plan 11.16.8 as follows:

1 and 2 9 and 10

3 and 4 11 and 12

5 and 6 13 and 14

7 and 8 15 and 16.

Plan 12.16.8. 12 factors, 1/16 replication, 32 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L,M

I = ABCDJK = ABEFJL = CDEFKL = BCEGJKLM = ADEGLM = ACFGKM

= BDFGJM = ABCDEFGH = EFGHJK = CDGHJL = ABGHKL = ADFHJKLM

= BCFHLM = BDEHKM = ACEHJM

Block confounding: DEFG, BCFG, BCDE, ACEF, ACDG, ABEG, ABDF, ABCDEFGHJKL, ABCHJKL, ADEHJKL, AFGHJKL, BDGHJKL, BEFHJKL, CDFHJKL, CEGHJKL, LM, DEFGLM, BCFGLM, BCDELM, ACEFLM, ACDGLM, ABEGLM, ABDFLM, ABCDEFGHJKM, ABCHJKM, ADEHJKM, AFGHJKM, BDGHJKM, BEFHJKM, CDFHJKM, CEGHJKM

All main effects are estimable. All two factor interactions except the following are estimable:

AF, GH, CE, BD.

<u>.</u> 1	Blocks 2	<u>3</u>	1,
_	_	_	#
(1)	defg jl	abcd	bgkl
abcdefgh			
acefjk		į.	
bdghjk			
bcdejlm afghjlm			
abdfklm			
ceghklm			
5	6	7	8
_		<u> </u>	_
bceg	bcdf jl	abef	ahk1
9	10	11	12
abdf j	abegl	adeg	af jl

Plan 12.16.8. (Continued).

	Blocks		
<u>13</u>	14	15	<u>16</u>
cdef	cgjl	cfj	cdegl
17	18	19	20
acfg	dfkl	bhj	acl
21	22	23	<u> 24</u>
dej	fgl	bdfg	bejl
25	26	27	28
acdhj	bdl	bfk	ehl
29	<u>30</u>	<u>31</u>	<u>32</u>
chk	bcefl	agj	adefl

Plan 12.16.16. 12 factors, 1/16 replication, 16 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L,M

I = ABCDJK = ABEFJL = CDEFKL = BCEGJKLM = ADEGLM = ACFGKM

= BDFGJM = ABCDEFGH = EFGHJK = CDGHJL = ABGHKL = ADFHJKLM

= BCFHLM = BDEHKM = ACEHJM

Block confounding: DEFG, BCFG, BCDE, ACEF, ACDG, ABEG, ABDF, ABCDEFGHJKL, ABCHJKL, ADEHJKL, AFGHJKL, BDGHJKL, BEFHJKL, CDFHJKL. CEGHJKL

All main effects and two-factor interactions are estimable.

Blocks

Combine blocks in Plan 12.16.8 as follows:

1	and	2	17	and	18	
3	and	4	19	and	20	
5	and	6	21	and	22	
7.	and	8	23	and	24	
9	and	10	25	and	26	
11	and	12	27	and	28	
13	and	14	29	and	30	
15	and	16	31	and	32	

Plan 10.32.4. 10 factors, 1/32 replication, 8 blocks of 4 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I = ABCD = ABEF = CDEF = ABGH = CDGH = EFGH = ABCDEFGH = ABJK

= CDJK = EFJK = ABCDEFJK = GHJK = ABCDGHJK = ABEFGHJK = CDEFGHJK

= ACEGJ = BDEGJ = BCFGJ = ADFGJ = BCEHJ = ADEHJ = ACFHJ = BDFHJ

= BCEGK = ADEGK = ACFGK = BDFGK = ACEHK = BDEHK = BCFHK = ADFHK

Block confounding: CD, CE, DE, ACEF, ADEF, AF, ACDF

All main effects are estimable, but no two-factor interactions are estimable.

	Blocks		
<u>1</u>	<u>2</u>	<u>3</u>	4
(1) abcdefgh ghjk abcdefjk	cdef abgh cdefghjk abjk	abcd efgh abcdghjk efjk	abef cdgh abefghjk cdjk
5	<u>6</u>	7	<u>8</u>
bcegj adfhj bcehk adfgk	bdfgj acehj bdfhk acegk	adegj bcfhj adehk bcfgk	acfgj bdehj acfhk bdegk

Plan 10.32.8. 10 factors, 1/32 replication, 4 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I: Same as Plan 10.32.4

Block confounding: CD, CE, DE

All main effects are estimable, but no two-factor interactions are estimable.

Blocks

Combine blocks in Plan 10.32.4 as follows:

1 and 2

3 and 4

5 and 6

7 and 8 .

Plan 10.32.16. 10 factors, 1/32 replication, 2 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K

I: Same as Plan 10.32.4

Block confounding: CD

All main effects are estimable, but no two-factor interactions are estimable.

Blocks

Combine blocks in Plan 10.32.4 as follows:

1, 2, 3, and 4

5, 6, 7, and 8.

Plan 11.32.8. 11 factors, 1/32 replication, 8 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I = ABCDL = ABEFL = CDEF = ABGH = CDGHL = EFGHL = ABCDEFGH

= ABJK = CDJKL = EFJKL = ABCDEFJK = GHJK = ABCDGHJKL

= ABEFGHJKL = CDEFGHJK = ACEGJL = BDEGJ = BCFGJ = ADFGJL

= BCEHJL = ADEHJ = ACFHJ = BDFHJL = BCEGKL = ADEGK = ACFGK

= BDFGKL = ACEHKL = BDEHK = BCFHKA = ADFHKL

Block confounding: CD, CE, DE, ACEF, ADEF, AF, ACDF

All main effects are estimable; the following two-factor interactions are estimable:

AL, BC, BD, BE, BF, BL, CG, CH, CJ, CK, CL,

DG. DH. DJ. DK. DL. EG. EH. EJ. EK. EL. FG.

FH, FJ, FK, FL, GL, HL, JL, KL

Blocks

1	2	<u>3</u>	7
(1) abcdefgh ghjk abcdefjk bhjl acdefgjl bgkl acdefhkl	cdef abgh cdefghjk abjk bcdefhjl agjl bcdefgkl ahkl	abcd efgh abcdghjk efjk acdhjl befgjl acdgkl befhkl	abef cdgh abefghjk cdjk aefhjl bcdgjl aefgkl bcdhkl

Plan 11.32.8. (Continued).

	Blocks		
5	<u>6</u>	I	<u>8</u>
bcegj adfhj bcehk adfgk ceghl abdfl cejkl abdfghjkl	bdfgj acehj bdfhk acegk dfghl abcel dfjkl abceghjkl	adegj bcfhj adehk bcfgk abdeghl cfl abdejkl	acfgj bdehj acfhk bdegk abcfghl del abcfjkl

Plan 11.32.16. 11 factors, 1/32 replication, 4 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I: Same as Plan 11.32.8

Block confounding: CD, CE, DE

All main effects and the following two-factor interactions are estimable:

AC, AD, AE, AF, AL, BC, BD, BE, BF, BL, CG,

CH, CJ, CK, CL, DG, DH, DJ, DK, DL, EG, EH,

EJ, EK, EL, FG, FH, FJ, FK, FL, GL, HL, JL,

KL

Blocks

Combine blocks in Plan 11.32.8 as follows:

1 and 2

3 and 4

5 and 6

7 and 8 .

in the state of the second

<u>Plan 11.32.32</u>. 11 factors, 1/32 replication, 2 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L

I: Same as Plan 11.32.8

Block confounding: CD

All main effects and the following two-factor interactions are estimable:

AC, AD, AE, AF, AL, BC, BD, BE, BF, BL, CG,

CH, CJ, CK, CL, DG, DH, DJ, DK, DL, EG, EH,

EJ, EK, EL, FG, FH, FJ, FK, FL, GL, HL, JL,

KL

Blocks

Combine blocks in Plan 11.32.8 as follows:

1, 2, 3, and 4

5, 6, 7, and 8.

Plan 12.32.8. 12 factors, 1/32 replication, 16 blocks of 8 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L,M

I = ABCDLM = ABEFL = CDEFM = ABGHM = CDGHL = EFGHLM = ABCDEFGH

= ABJKM = CDJKL = EFJKLM = ABCDEFJK = GHJK = ABCDGHJKLM

= ABEFGHJKL = JDEFGHJKM = ACEGJL = BDEGJM = BCFGJ = ADFGJLM

= BCEHJLM = ADEHJ = ACFHJM = BDFHJL = BCEGKLM = ADEGK = ACFGKM

= BDFGKL = ACEHKL = BDEHKM = BCFHK = ADFHKLM

Block confounding: CD, CE, DE, ACEF, ADEF, AF, ACDF, KLM, CDKLM, CEKLM, DEKLM, ACEFKLM, ADEFKLM, AFKLM. ACDFKLM

All main effects and two-factor interactions are estimable except for the following:

AF, BG, CD, CE, CH, DE, DH, EH, GH, GJ, HJ, JK, JM.

1 Blocks
2 3 4

(1) bcdem abcd aem abcdefgh afjkm
bcdeghjkm
bgkl
acdefhkl
abfgjlm
cdehjlm

Plan 12.32.8. (Continued).

Blocks			
<u>5</u>	<u>6</u>	7	<u>8</u>
cdef	b fm	abef	acdfm
<u>9</u>	10	11	12
del	bclm	abcel	adlm
13	14	<u>15</u>	16
cfl	bdeflm	abdfl	aceflm

Plan 12.32.16. 12 factors, 1/32 replication, 8 blocks of 16 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L,M

I: Same as Plan 12.32.8

Block confounding: CD, CE, DE, ACEF, ADEF, AF, ACDF

All main effects and two-factor interactions are estimable except for the following:

AF, CD, CE, DE, GH, GJ, HJ, JK

Blocks

Combine blocks in Plan 12.32.8 as follows:

1 and 2 9 and 10

3 and 4 11 and 12

5 and 6 13 and 14

7 and 8 15 and 16

Plan 12.32.32. 12 factors, 1/32 replication, 4 blocks of 32 units each.

Factors: A,B,C,D,E,F,G,H,J,K,L,M

I: Same as Plan 12.32.8

Block confounding: CD, ACEF, ADEF

All main effects and two factor interactions are estimable except for CD.

Blocks

Combine blocks in Plan 12.32.8 as follows:

1, 2, 3, and 4

5, 6, 7, and 8

9, 10, 11, and 12

13, 14, 15, and 16 .

•

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office. Inquiries regarding the Bureau's reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C.

