张家口市 2023 年高三年级第二次模拟考试

数学参考答案

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	С	D	С	D	A	В	С	D	ABC	ВС	AB	ВС

1. C **解析:**由题意可得A = (2,4), $B = (-\infty,3)$,于是, $A \cap B = (2,3)$,因此($\mathbb{l}_{\mathbf{R}}A$) \cup ($\mathbb{l}_{\mathbf{R}}B$) = $\mathbb{l}_{\mathbf{R}}(A \cap B) = (-\infty,2] \cup [3,+\infty)$. 故选 C.

「命题意图] 本题考查集合的运算及简单不等式的解法,考查学生的数学运算素养.

2. D **解析:**由题意可得 z=1-i,于是, $\frac{1+i}{z}=\frac{1+i}{1-i}=i$,故 $\left(\frac{1+i}{z}\right)^3=i^3=-i$. 故选 D.

[命题意图] 本题考查复数的几何意义以及复数的除法、乘方运算,考查学生的数学运算素养.

3. C **解析:**利用圆心距 d 和半径 $r=\sqrt{2}$ 的关系来确定直线与圆的位置关系. 由题意可得 $x_0^2+y_0^2=2$,于是 $d=\frac{2}{\sqrt{x_0^2+y_0^2}}=\frac{2}{\sqrt{2}}=\sqrt{2}=r$,所以,两者相切. 故选 C.

「命题意图]本题考查直线与圆的位置关系的判定,考查学生的数学运算和逻辑推理素养.

4. D 解析:由向量数量积的性质可得 $|2\mathbf{a} - \mathbf{b}|^2 = (2\mathbf{a} - \mathbf{b})^2 = 4\mathbf{a}^2 + \mathbf{b}^2 - 4\mathbf{a} \cdot \mathbf{b}$. 于是, $-4\mathbf{a} \cdot \mathbf{b} = 2$,即 $\frac{3}{2}x \cdot (-1) + \frac{1}{2}x = -\frac{1}{2}$,所以, $x = \frac{1}{2}$. 故选 D.

[命题意图] 本题考查向量的运算及数量积的性质,考查学生的逻辑推理和数学运算素养.

5. A **解析:**设地球的公转周期为 5T,则火星的公转周期为 9T. 设地球、火星运行轨道的半长轴分别为 m, n,则 $\frac{m^3}{25T^2} = \frac{n^3}{81T^2}$,于是, $\frac{m}{n} = \sqrt[3]{\frac{25}{81}}$. 故选 A.

[命题意图] 本题考查函数建模、分数指数幂与根式的互化以及阅读理解能力,考查学生的数学运算和数学建模素养.

6. B 解析:在纵断面内,以反射镜的顶点(即抛物线的顶点)为坐标原点,过顶点垂直于灯口直径的直线为x轴,建立直角坐标系,如图,由题意可得A(40,40). 设抛物线的标准方程为 $y^2=2px(p>0)$,于是 $40^2=2p\cdot 40$,解得p=20. 所以,抛物线的焦点到顶点的距离为 $\frac{p}{2}=10$,即光源到反射镜顶点的距离为10 cm. 故选 B.

[命题意图] 本题考查抛物线的标准方程和几何性质,考查学生阅读理解和将实际问题数学化能力.

7. C **解析:**根据欧拉函数的定义可得 $a_1 = \varphi(2) = 1$, $a_2 = \varphi(2^2) = 2$, $a_3 = \varphi(2^3) = 4$, $a_4 = \varphi(2^4) = 8$, 一般地, $a_n = \varphi(2^n) = 2^{n-1}$. 事实上, $\varphi(2^n)$ 表示从 1 到 2^n 的正整数中,与 2^n 互质的正整数的个数,相当于去掉从 1 到 2^n 的正整数中所有 2 的倍数的个数(共 2^{n-1} 个数),因此, $a_n = \varphi(2^n) = 2^n - 2^{n-1} = 2^{n-1}$. 所以, $S_{10} = 1 + 2^n - 2^n = 2^n - 2^n = 2^n - 2^n = 2^n - 2^n = 2^n = 2^n - 2^n = 2^n =$

2+4+···+29=1 023. 故选 C.

[命题意图] 本题考查数学新定义及数列求和,考查学生灵活运用新定义分析和解决问题的能力,考查学生逻辑推理和数学运算素养.

8. D **解析**:由题意可得,函数 f(x)为增函数. 若 $f(y_0)>y_0$,则 $f(f(y_0))>f(y_0)>y_0$;同理,若 $f(y_0)< y_0$,则 $f(f(y_0))< f(y_0)< y_0$,均与题设条件不符. 由 $f(f(y_0))=y_0$ 可得 $f(y_0)=y_0$,且 $y_0\in[0,1]$. 因此,关于 x 的方程 $\sqrt{2\ln(x+1)+x-m}=x$ 在[0,1]上有解,整理得 $2\ln(x+1)-x^2+x=m$ 在[0,1]上有解. 设 $g(x)=2\ln(x+1)-x^2+x$, $x\in[0,1]$,则 $g'(x)=\frac{2}{x+1}-2x+1$ 为[0,1]上的减函数,注意到 g'(1)=0,故 $g'(x)\geqslant 0$,从而函数 g(x)在[0,1]上单调递增. 所以, $g(x)\in[g(0),g(1)]=[0,2\ln 2]$. 因此,实数 m 的取值范围是 $[0,2\ln 2]$. 故选 D.

「命题意图]本题考查函数的图象与性质、函数的零点的综合运用,考查学生的逻辑推理和数学运算素养.

9. ABC **解析:**显然 a 不是最小的数,也不是最大的数.由于上四分位数即第 75 百分位数,于是 $18 \times 75\% = 13.5$,将这些数据按照从小到大排列后,第 14 个数为上四分位数.而除去 a 后,从小到大排列得到的第 13 个数为 83,所以 a 的可能取值为 83,84,85. 故选 ABC.

[命题意图] 本题考查统计中的百分位数,考查学生的数据分析和数学运算素养.

10. BC 解析:由题意, $f(x) = \cos(2x - \varphi) + \frac{1}{2}$. 将其图象向左平移 $\frac{\pi}{6}$ 个单位长度,得到函数 $g(x) = \cos\left[2\left(x + \frac{\pi}{6}\right) - \varphi\right] + \frac{1}{2} = \cos\left(2x + \frac{\pi}{3} - \varphi\right) + \frac{1}{2}$,而 g(x) - g(-x) = 0 恒成立,即函数 y = g(x) 为偶函数,于是 $\frac{\pi}{3} - \varphi = k\pi$, $k \in \mathbb{Z}$. 又 $|\varphi| < \frac{\pi}{2}$,所以, $\varphi = \frac{\pi}{3}$,因此,函数 $f(x) = \cos\left(2x - \frac{\pi}{3}\right) + \frac{1}{2}$, $g(x) = \cos 2x + \frac{1}{2}$. 所以,函数 g(x) 的最小正周期为 π ,A 错误;由 $2x = \frac{\pi}{2} + k\pi$,即 $x = \frac{\pi}{4} + \frac{k\pi}{2}$ ($k \in \mathbb{Z}$) 时, $\cos 2x = 0$,因此,函数 g(x) 的图象的对称中心为 $\left(\frac{\pi}{4} + \frac{k\pi}{2}, \frac{1}{2}\right)$ ($k \in \mathbb{Z}$),B 正确;当 $0 \le x \le \frac{\pi}{3}$ 时, $-\frac{\pi}{3} \le 2x - \frac{\pi}{3} \le \frac{\pi}{3}$,所以 f(x)在 $\left[0, \frac{\pi}{3}\right]$ 上的最小值为 1,最大值为 $\frac{3}{2}$,C 正确;令 $2x - \frac{\pi}{3} = \pi + 2k\pi$,即 $x = \frac{2\pi}{3} + k\pi$ ($k \in \mathbb{Z}$)为函数的极小值点,D 错误,故选 BC.

[命题意图] 本题考查三角函数的恒等变换、三角函数的图象性质与三角函数图象的变换,考查学生的代数变形能力和数学运算素养.

11. AB 解析: 当 P 在对角线 BD 上运动时,BD//平面 AB_1D_1 ,从而点 P 到平面 AB_1D_1 的距离为定值,从而三棱锥 P- AB_1D_1 的体积为定值,即三棱锥 A- PB_1D_1 的体积为定值,A 正确;以 D 为原点,DA,DC, DD_1 分别为 x 轴、y 轴、z 轴,建立空间直角坐标系,则 $D_1(0,0,1)$,由 P 在对角线 BD 上运动, $B_1(1,1,1)$,C(0,1,0),A(1,0,0), $C_1(0,1,1)$,P(m,m,0) (0 $\leq m \leq 1$),于是 $\overrightarrow{B_1C} = (-1,0,-1)$, $\overrightarrow{D_1P} = (m,m,-1)$. 假设存在点 P 满足异面直线 D_1P 与 B_1C 所成角为 $\frac{\pi}{3}$,因此, $\frac{1}{2} = \left| \frac{-m+1}{\sqrt{2m^2+1} \cdot \sqrt{2}} \right|$,解得 $m = \frac{1}{4}$. 所以,异面直线 D_1P 与 B_1C 所成角可以取到 $\frac{\pi}{3}$,B 正确;注意到直线 AC_1 上平面 A_1BD ,所以,平面 A_1BD 的一个法向量为 $\overrightarrow{AC_1} = (-1,1,1)$,于是, $\frac{\sqrt{3}}{2} = \left| \frac{-m+m-1}{\sqrt{2m^2+1} \cdot \sqrt{3}} \right|$,解得 $m \in \emptyset$. 所以,C 错误;注意到点 P 到核 AA_1 的距离为 AA_2 的距离为 AA_3 的距离为 AA_4 的距离

ABCD 内,动点 P 到定点 A 的距离与到定直线 BC 的距离之比为 2,即动点 P 的轨迹在双曲线上, D 错误. 故选 AB.

[命题意图] 本题考查立体几何中动点轨迹,异面直线所成角、线面角的计算,考查利用空间向量处理空间角,利用圆锥曲线的定义确定立体几何中动点的轨迹,考查学生的逻辑推理、直观想象和数学运算素养.

12. BC 解析:对于选项 A, $\forall \epsilon > 0$,令 $x_1 = n$, $x_2 = n + \frac{1}{n}$,当 n 充分大时, $x_2 - x_1 = \frac{1}{n} < \delta$;另一方面, $|f(x_1) - f(x_2)| = \left|n^2 - \left(n + \frac{1}{n}\right)^2\right| = 2 + \frac{1}{n^2} > 2$,不满足 $|f(x_1) - f(x_2)| < \epsilon$,因此,函数 $f(x) = x^2$ 在 $[0, +\infty)$ 上不一致连续。对于选项 B,令 $x_1, x_2 \in [1, +\infty)$,且 $x_1 < x_2$,则 $|\sqrt{x_1} - \sqrt{x_2}| = \frac{|x_1 - x_2|}{\sqrt{x_1} + \sqrt{x_2}} < \frac{|x_1 - x_2|}{2}$, $\forall \epsilon > 0$,取 $\delta = 2\epsilon$,当 $x_1, x_2 \in [1, +\infty)$,且 $|x_1 - x_2| < \delta$ 时, $|\sqrt{x_1} - \sqrt{x_2}| < \frac{\delta}{2} = \epsilon$,所以,函数 $f(x) = \sqrt{x}$ 在区间 $[1, +\infty)$ 上一致连续。对于选项 C, $\forall \epsilon > 0$,取 $\delta = \epsilon > 0$, $\forall x_1, x_2 \in (-\infty, +\infty)$,当 $|x_1 - x_2| < \delta$ 时,有 $|\sin x_1 - \sin x_2| = 2 \left|\sin \frac{x_1 - x_2}{2}\right| \cos \frac{x_1 + x_2}{2} \le 2 \left|\sin \frac{x_1 - x_2}{2}\right| \le 2 \cdot \frac{|x_1 - x_2|}{2} < \delta = \epsilon$,因此,函数 $f(x) = \sin x$ 在区间 $(-\infty, +\infty)$ 上一致连续。利用题目给出的一致连续的定义,我们可以得到函数 f(x)在区间 I 不一致连续的定义,对给定的某正数 ϵ_0 ,不论 δ 取值多么小,总至少有 $x_1, x_2 \in I$,满足 $|x_1 - x_2| < \delta$,但 $|f(x_1) - f(x_2)| \ge \epsilon_0$,则称函数 f(x) 在区间 I 不一致连续。对于选项 D,对给定的 $\epsilon_0 = 1$, $\forall \delta > 0$, δ 充分小,不妨设 $\delta < \frac{1}{2}$,取 $x_1 = \delta, x_2 = \frac{\delta}{2}$,则 $|x_1 - x_2| = \frac{\delta}{2} < \delta$,但 $\left|\frac{1}{x_1} - \frac{1}{x_2}\right| = \frac{1}{\delta} > 1$,这说明,函数 $f(x) = \frac{1}{x}$ 在区间 $(0, +\infty)$ 上不一致连续。故选 BC.

[命题意图] 本题考查学生阅读理解能力及逻辑推理素养,考查学生灵活运用所学知识解决问题的能力.

13. -160 解析: 由题意可得 $2^n = 64$,于是, n = 6. 设第 r + 1 项为常数项,则 $C_6^r x^{6-r} \left(-\frac{2}{x}\right)^r = (-2)^r C_6^r x^{6-2r}$,即6-2r=0,解得r=3. 所以,该展开式的常数项为 $(-2)^3 C_6^3 = -160$.

[命题意图] 本题考查二项展开式通项公式以及二项式系数的性质,考查学生的数学运算素养.

14.1 **解析:**函数 f(x)的定义域为 $(-\infty,0]$ \cup $[2,+\infty)$. 由复合函数的单调性可知,f(x)在 $(-\infty,0]$ 上单调递减,在 $[2,+\infty)$ 上单调递增. 而 f(0)=4,f(2)=1. 所以,函数 f(x) 的最小值为 1.

「命题意图] 本题考查函数的单调性及应用求最值,考查学生的逻辑推理和数学运算素养.

15. 1 **解析**: 由题意可得,点 C 在抛物线 $y=x^2-ax-3$ ($a \in \mathbb{R}$)上,且点 D 在x 轴上方,即 b>0. 设过 A,B, C 三点的圆的方程为 $x^2+y^2+Dx+Ey+F=0$. 令 y=0,则有 $x^2+Dx+F=0$;令 x=0,则有 $y^2+Ey+F=0$. 设 A,B 的横坐标分别为 x_1 , x_2 ,则 x_1 , x_2 也为方程 $x^2+Dx+F=0$ 的根,由韦达定理可得,

 $x_1x_2=F=-3$;同理,-3,b 为方程 $y^2+Ey+F=0$ 的根,由韦达定理可得-3b=F.因此,-3b=-3,即 b=1.

[命题意图] 本题考查圆的定义及方程的应用,考查学生的数学抽象能力和数学运算素养.

 $16. \frac{\sqrt{10}}{5}$ 解析:如图,由 $\overrightarrow{PM} = \frac{3}{2} \overrightarrow{NM}$,可得 $\frac{|PN|}{|PM|} = \frac{1}{3}$,又 $\frac{|PF_2|}{|PF_1|} = \frac{1}{3}$,故 $NF_2 /\!\!/ MF_1$,且 $|MF_1| = 3 |F_2N|$.设 $|F_2N| = m$,则 $|MF_1| = 3m$,而 $|\overrightarrow{F_2M}| = 2 |\overrightarrow{F_2N}|$,于是 $|F_2M| = 2m$. 由椭圆的定义可知, $2a = |MF_1| + |MF_2| = 3m + 2m = 5m$,即 $a = \frac{5m}{2}$.延长 MF_1 交椭圆 C 于点 Q,连接 QF_2 ,则由椭圆的对称性可知, $|QF_1| = |F_2N| = m$.又 $|QF_1| + |QF_2| = 2a$,故 $|QF_2| = 4m$,即 $\triangle QMF_2$ 为等腰三角形,于是, $\cos \angle QMF_2 = \frac{1}{4}$.在 $\triangle MF_1F_2$ 中,设 $|F_1F_2| = 2c$,由余弦定理可得 $4c^2 = 9m^2 + 4m^2 - 2 \cdot 3m \cdot 2m \cdot 2m \cdot 2m$

$$\frac{1}{4} = 10m^2$$
,即 $c = \frac{\sqrt{10}}{2}m$. 所以,椭圆 C 的离心率为 $e = \frac{c}{a} = \frac{\frac{\sqrt{10}}{2}m}{\frac{5}{2}m} = \frac{\sqrt{10}}{5}$.

[命题意图] 本题考查椭圆的定义、几何性质、离心率的计算,考查学生数形结合、逻辑推理、直观想象和数学运算素养.

所以,数列
$$\{a_n\}$$
的通项公式为 $a_n = \begin{cases} 1, n=1, \\ 2n, n \geq 2. \end{cases}$ (5 分)

所以、
$$T_n = b_1 + b_2 + \dots + b_n = \frac{1}{4} + \frac{1}{4} \left(\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{4} + \frac{1}{8} - \frac{1}{4(n+1)} < \frac{3}{8}$$
.

综上所述,对
$$n \in \mathbb{N}^*$$
,都有 $T_n < \frac{3}{8}$. (10 分)

[命题意图] 本题考查利用递推关系确定数列的通项公式以及数列求和方法,考查学生的逻辑推理能力和数学运算素养.

18. **解:**(1) 由 $A+B+C=\pi$,得 $\tan A = -\tan(B+C) = -\frac{\tan B + \tan C}{1-\tan B \tan C}$, 因为 $A \in \left(0, \frac{\pi}{2}\right)$,所以, $A = \frac{\pi}{3}$. (5 分) (2)由题意可得 $\lambda \geqslant \frac{b(c-b)}{a^2}$ 恒成立. 由余弦定理可得 $\frac{1}{2}$ = $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$, 于是, $b^2 + c^2 - a^2 = bc$. 由正弦定理得 $\frac{c}{a} = \frac{\sin C}{\sin A} = \frac{2\sqrt{3}}{3} \sin C$. (8分) 所以 $\frac{1}{2}$ < $\sin C$ <1,所以 $\frac{c}{a} \in \left(\frac{\sqrt{3}}{2}, \frac{2\sqrt{3}}{2}\right)$, (10 分) 因此, $\frac{b(c-b)}{c^2} \in \left(-\frac{2}{3}, \frac{1}{3}\right)$, …… (11 分) 「命题意图]本题考查利用正弦定理、余弦定理解三角形问题,考查边元结构的取值范围,考查学生的逻 辑推理和数学运算素养. 19. **解**:(1) 由题意可得,EF//BC,又 BC⊂平面 ABC,EF⊄平面 ABC,所以,EF//平面 ABC. ····· (2 分) (2)由(1)可知,在底面 ABC 内过点 A 作 BC 的平行线,即平面 AEF 与底面 ABC 的交线 l. 由题意可得 $AC^2+BC^2=AB^2$,即 $AC\perp BC$. 故 $\triangle ABC$ 的面积 $S = \frac{1}{2}AC \cdot BC = 4$. 注意到侧面 PAC 是边长为 2 的正三角形,取 AC 的中点记为 D,连接 PD,则 $PD = \sqrt{3}$, 取 AB 的中点记为 M, 连接 DM, 则 $DM \perp AC$. 于是,以D为坐标原点,DA,DM,DP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,

则 A(1,0,0), $P(0,0,\sqrt{3})$, C(-1,0,0), B(-1,4,0), $E\left(-\frac{1}{2},0,\frac{\sqrt{3}}{2}\right)$, $F\left(-\frac{1}{2},2,\frac{\sqrt{3}}{2}\right)$, 设 $Q(1,y_1,0)$. 于是, $\overrightarrow{PQ} = (1,y_1,-\sqrt{3})$, $\overrightarrow{AE} = \left(-\frac{3}{2},0,\frac{\sqrt{3}}{2}\right)$, $\overrightarrow{EF} = (0,2,0)$. 设平面 AEF 的法向量为 $\mathbf{n} = (x_2,y_2,z_2)$, 则 $\left\{\overrightarrow{\overrightarrow{AE}} \cdot \mathbf{n} = 0, \text{ pr} \begin{cases} -\frac{3}{2}x_2 + \frac{\sqrt{3}}{2}z_2 = 0, \text{ pr} \ x_2 = 1, \text{ pr} \end{cases} \right\}$

又直线
$$PQ$$
 与平面 AEF 所成角为 α ,于是 $\sin \alpha = |\cos\langle \overrightarrow{PQ}, \mathbf{n} \rangle| = \frac{\left|\frac{\sqrt{3}}{3} - \sqrt{3}\right|}{\sqrt{1 + \frac{1}{3}}\sqrt{4 + y_1^2}} = \frac{1}{\sqrt{4 + y_1^2}}$,

而异面直线
$$PQ$$
, EF 所成角为 β , 于是 $\cos \beta = |\cos\langle \overrightarrow{PQ}, \overrightarrow{EF}\rangle| = \frac{|y_1|}{\sqrt{4+y_1^2}}$,(10 分)

[命题意图] 本题考查立体几何中的面与面的交线、线面平行、线面垂直、线面角与异面直线所成角的计算,考查学生的逻辑推理能力和数学表达能力.

X=1表示甲盒中取出1个白球1个红球、C盒中取出2个白球或甲盒中取出2个白球、C盒中取出1个

白球 1 个红球,故
$$P(X=1) = \frac{C_2^1 C_3^1}{C_5^2} \cdot \frac{C_4^2}{C_5^2} + \frac{C_3^2}{C_5^2} \cdot \frac{C_4^1 C_1^1}{C_5^2} = \frac{12}{25};$$
 (3 分)

X=3 表示从甲盒中取出 2 个红球、乙盒中取出 1 个白球 1 个红球,故 $P(X=3) = \frac{C_2^2}{C_5^2} \cdot \frac{C_4^1 C_1^1}{C_5^2} = \frac{1}{25}$

.....(4 分)

所以,随机变量X的分布列为

X	0	1	2	3
P	$\frac{9}{50}$	$\frac{12}{25}$	$\frac{3}{10}$	$\frac{1}{25}$

数学期望为
$$E(X)=0 \times \frac{9}{50} + 1 \times \frac{12}{25} + 2 \times \frac{3}{10} + 3 \times \frac{1}{25} = \frac{6}{5}$$
. (6 分)

(2)设事件 A_1 :从甲盒中取出两个红球,事件 A_2 :从甲盒中取出两个白球,事件 A_3 :从甲盒中取出一个红 球一个白球,事件 B:从乙盒中取出两个白球. $\mathbb{E} P(A_1) = \frac{C_2^2}{C_z^2}, P(B|A_1) = \frac{C_4^2}{C_z^2}, P(A_2) = \frac{C_3^2}{C_z^2}, P(B|A_2) = \frac{C_6^2}{C_z^2}, P(A_3) = \frac{C_3^1 C_2^1}{C_z^2}, P(B|A_3) = \frac{C_5^2}{C_z^2}. \dots$ f是, $P(B) = P(A_1B \cup A_2B \cup A_3B) = P(A_1B) + P(A_2B) + P(A_3B)$ $=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+P(A_3)P(B|A_3)$ $= \frac{C_2^2}{C_5^2} \cdot \frac{C_4^2}{C_7^2} + \frac{C_3^2}{C_5^2} \cdot \frac{C_6^2}{C_7^2} + \frac{C_3^1 C_2^1}{C_5^2} \cdot \frac{C_5^2}{C_7^2} = \frac{37}{70}.$ 「命题意图」本题考查概率与统计的综合应用,考查随机变量的分布列和期望的计算以及复杂事件的全 概率公式,考查学生的逻辑推理和数学运算素养. 21. **解**:(1) 由题意可得 $\frac{b}{a} = \sqrt{3}$,即 $b^2 = 3a^2$. (1分) 因此,双曲线 C 的方程为 $x^2 - \frac{y^2}{3} = 1$. (3分) (2)设点 M(x,y), $P(x_1,y_1)$, $Q(x_2,y_2)$, x_1 , $x_2 > 1$, 设直线 l 的方程为 x = my + 2, 与双曲线 C 的方程 $x^2 - \frac{y^2}{3} = 1$ 联立,整理得 $(3m^2 - 1)y^2 + 12my + 9 = 0$, 由根与系数的关系得 $y_1 + y_2 = -\frac{12m}{3m^2 - 1}$,于是 $x_1 + x_2 = m(y_1 + y_2) + 4 = \frac{-4}{3m^2 - 1}$, 又点M满足 $\overrightarrow{FP} = \overrightarrow{QM}$,即 $\begin{pmatrix} x_1 - 2 = x - x_2 \\ y_1 = y - y_2 \end{pmatrix}$,整理得 $\begin{pmatrix} x = x_1 + x_2 - 2 \\ y = y_1 + y_2 \end{pmatrix}$, (9分) 于是 $\begin{cases} x = \frac{-4}{3m^2 - 1} - 2 = \frac{-6m^2 - 2}{3m^2 - 1}, \\ y = \frac{-12m}{3m^2 - 1}, \end{cases}$ 消去 m 得 $\frac{x^2}{4} - \frac{y^2}{12} = 1(x > 0).$ (10 分) 因此,点M的轨迹是以(-4,0),(4,0)为焦点,实轴长为4的双曲线的右支,……………… (11分) 由双曲线的定义可知,存在两个定点 $E_1(-4,0), E_2(4,0),$ 使得 $|ME_1|-|ME_2|=4$,(12 分) 「命题意图] 本题考查双曲线的定义、几何性质、直线与双曲线的位置关系以及动点轨迹,考查学生的逻 辑推理、数学抽象和数学运算素养. 22. **解**:(1)函数 f(x)的定义域为(0,+ ∞) 由題意, $f'(x) = -2x + 1 - \frac{a}{x} = -\frac{2x^2 - x + a}{x}$. (1分) 所以,函数 f(x)为 $(0,+\infty)$ 上的单调递减函数时,实数 a 的取值范围是 $\left\lceil \frac{1}{8},+\infty \right\rceil$(5分) (2) 若函数 f(x) 的极值点为 $x_1, x_2(x_1 \neq x_2)$,则 x_1, x_2 是方程 $2x^2 - x + a = 0$ 的两个不等正实根,

从而,
$$\begin{cases} \Delta = 1 - 8a > 0, \\ x_1 + x_2 = \frac{1}{2} > 0, \\ x_1 x_2 = \frac{a}{2} > 0, \end{cases}$$
解得 $0 < a < \frac{1}{8}.$

不妨设 $x_1 < x_2$,则 $x_1 = \frac{1 - \sqrt{1 - 8a}}{4}$, $x_2 = \frac{1 + \sqrt{1 - 8a}}{4}$,且 f(x)在 $(0, x_1)$, $(x_2, +\infty)$ 上单调递减,在

因此, $|f(x_1)-f(x_2)|=f(x_2)-f(x_1)=-x_2^2+x_2-a\ln x_2+x_1^2-x_1+a\ln x_1=(x_1-x_2)(x_1+x_2)+a\ln x_1$

$$(x_2-x_1)+a\ln\frac{x_1}{x_2}=\frac{x_1-x_2}{2}+(x_2-x_1)+a\ln\frac{x_1}{x_2}=\frac{x_2-x_1}{2}+a\ln\frac{x_1}{x_2}.$$

整理得
$$\frac{\sqrt{1-8a}}{4}$$
+ $a \ln \frac{1-\sqrt{1-8a}}{1+\sqrt{1-8a}}$ < $\frac{1}{4}$ - $2a$,(*)其中 0< a < $\frac{1}{8}$.

谈
$$\sqrt{1-8a} = t$$
,则 $t \in (0,1)$,且 $a = \frac{1-t^2}{8}$,

则不等式(*)等价于 $\frac{t}{4} + \frac{1-t^2}{8} \ln \frac{1-t}{1+t} < \frac{1}{4} - 2 \cdot \frac{1-t^2}{8}$,其中 $t \in (0,1)$,

整理得 $\ln \frac{1-t}{1+t} < \frac{-2t}{1+t}$,其中 $t \in (0,1)$,

设
$$y = \ln(1+x) - x$$
,由 $y' = \frac{1}{1+x} - 1 = \frac{-x}{1+x} > 0$,得 $x \in (-1,0)$,

即函数 $y = \ln(1+x) - x$ 在(-1,0)上单调递增,在 $(0,+\infty)$ 上单调递减,

于是,当x=0时,y取得最大值0,从而, $\ln(1+x) \le x$,当且仅当x=0时取等号.

而
$$t \in (0,1)$$
, $\frac{-2t}{1+t} \neq 0$, 所以 $\ln\left(1 + \frac{-2t}{1+t}\right) < \frac{-2t}{1+t}$, 其中 $t \in (0,1)$.

[命题意图] 本题考查函数与导数的综合应用,考查利用导数研究函数的单调性,证明函数极值满足的含参不等式问题,考查学生的逻辑推理、数学建模和数学运算素养.