

Леонард Стучилин

школа Skillbox

Цель проекта:

Научиться предсказывать совершение целевого действия (ориентировочное значение ROC-AUC ~ 0.65) — факт совершения пользователем целевого действия.

Итог проекта:

Упакованная в сервис модель, берущая на вход все атрибуты, типа utm_*, device_*, geo_*, и предсказывающая на выходе 0/1 (1 — если пользователь совершит любое целевое действие).

Методология исследования данных:

CRISP DM

Предоставленные данные:

1. датасет GA Sessions

2. датасет GA Hits

Работа выполнена:

Python,
Jupyter_notebook,
PyCharm

Приступая к проекту

Главной целью для меня в данном проекте, было научиться самостоятельной реализации подобного задания.

Дополнительно я получил прекрасную возможность разобраться во всех этапах подготовки и реализации проекта. От понимания предоставленных данных до реализации готового сервиса.

При реализации проекта мною были применены полученные на курсе знания и навыки.

Так-же была использована техническая документация библиотек и модулей используемых в проекте.

Что позволило улучшить навыки в поиска, освоения и закрепления новых знаний.

Data Understanding

Исследование датасета GA Sessions

Исследование датасета GA Hits

Извлечение целевой переменной - event_value из датасета GA Hits

Добавление целевой переменной к датасету GA Session

Data Preparation

Удаление дубликатов

Удаление неинформативных признаков, с пропусками в значениях более 45%

Заполнение пропусков в категориальных переменных введением дополнительного значения, ввиду предположения, что пропуски в данных признаках обусловлены отсутствием события

Data Cleaning

очистка данных

Удаление выбросов в числовых переменных, заменой значений выбросов, значением следующим за граничным значением квантиля, в данном случае==2

Преобразование значений в категориальных признаках. Взяты первые 2-5 букв значения в признаках: utm_source, utm_campaign, utm_adcontent, с сохранением количества уникальных значений

Объединение колонок содержащих дату и время, приведение к типу Datetime

Data Visualization

просмотр распределений признаков и их влияния на целевую переменную

Создание дополнительного датафрейма с преобразованием данных по типу '.astype('category').cat.codes', для просмотра корреляций признаков (включая категориальные строчные значения) к целевой переменной

Что удалось выяснить

Исходя из исследований, можно предполагать следующее:

Данные слабокоррелированы с целевой переменной.

Присутствует дисбаланс классов.

Присутствуют шумы которые ухудшат качество модели.

Feature Engineering

были созданы следующие фичи:

date_time - дата и время события

month_day_your - месяц, день недели и час события

geo - численная переменная указывающая на локацию (от перевода к координатам отказался ввиду значительного времени обработки)

utm_organic - переменная указывающая на тип трафика

utm_path - составная переменная состоящая из нескольких признаков типа utm

Балансировка классов

Проводились эксперименты по балансировке классов методами Взвешивания классов и Undersampling.

Впоследствии от идеи балансировки классов отказался.

Поскольку результаты обучения моделей на подготовленных данных были стабильны и TruePositiveRate была достаточного уровня.

Что позволило сохранить естественные данные и не допустить их искусственности.

Modeling

Для моделирования использовались следующие модели, подходящие для задач бинарной классификации:

LogisticRegression()

RandomForestClassifier()

KNeighborsClassifier()

Pipeline

Создание конвейера, включающего в себя все этапы обработки данных

Так-же частью конвейера является кодирование признаков в

OneHotEncoder и StandardSkalern

Последним этапом pipeline является обучение моделей и получение метрики оценки модели гос_auc

Evaluation

Данный этап проекта явился наиболее насыщенным экспериментами

поскольку как и предполагалось на этапе Data Visualization, в данных присутствуют шумы и дисбаланс классов

Вследствии проведенных экспериментов и дополнительной работы с данными были уменьшены факторы снижающие метрики гос_аис модели

По итогам этапа Evaluation

для обучения модели были оставлены следующие признаки

```
visit_date
visit_number
utm_path
utm_organic
device screen resolution
geo
count_duplicates
event_value - целевая переменная
```

Deployment

Сервис для обращения к модели по API построен на FastApi

Сервис принимает следующие запросы:

get/status - ответ сервиса, о своем статусе

get/version - выводит метаданные модели, включая метрику гос_auc get/readmi - выводит информацию о форме запроса для предсказания модели

<u>post/predict</u> - предсказание модели на приложенный json запрос

Deployment

Сервис работающий в автоматическом режиме построен на Apache AirFlow

Порядок работы сервиса:

Сервис на основе новых данных, обучает новую модель (предыдущая модель при этом удаляется)

Записывает в файл предсказания на json файлы запросов к модели

Структура проекта:

data/to_pipeline: данные для

обучения модели

/modules: модули с кодом PyCarm для работы проекта:take data модуль подготовки датасета из

исходных данных <u>pipeline</u> модуль конвейера для

дообработки данных и обучения

модель

sber_auto: /data: исходные данные

> result out - модуль вывода предсказания при работе серверного сервиса /dags: модуль для работы с AirFlow

модели по арі

(необходимо скопировать в scheduler)

<u>/jupyter</u>: jupyter_notebook c исследованиями и подготовкой данных

/models: обученная модель проекта

predict api - модуль для предсказаний

predict - модуль для работы серверного

сервиса. def true_positive_rate, выводит

tpr и confusion_matrix, обученной модели

/data/predictions - папка для json файлов запросов предсказаний