12.25. Как изменится период вертикальных колебаний груза, пружинах, если от последовательного соединения пружин перейти к параллельному их соединению?

Решение:

Сила упругости пружины по закону Гука F = kx. Если к пружине подвесить груз массой m, то в положении $m\sigma$

равновесия mg = kx, отсюда удлинение пружины $x = \frac{mg}{k}$.

Если две пружины соединить последовательно, то их удлинения будут равны, а общее удлинение составит

$$x_2 = 2x = \frac{2mg}{k}$$
 — (1). С другой стороны, $x_2 = \frac{mg}{k_1}$ — (2),

отсюда, приравнивая правые части уравнений (1) и (2),

получаем
$$\frac{2mg}{k} = \frac{mg}{k_1}$$
 или $k_1 = \frac{k}{2}$. При параллельном

соединении пружин общая жесткость системы $k_2 = 2k$. Таким образом, периоды колебаний при последовательном и параллельном соединении пружин соответственно равны

$$T_1 = 2\pi \sqrt{\frac{m}{k_1}}$$
 и $T_2 = 2\pi \sqrt{\frac{m}{k_2}}$, а их отношение

$$\frac{T_1}{T_2} = \sqrt{\frac{k_2}{k_1}} = \sqrt{4} = 2.$$

12.26. Медный шарик, подвешенный к пружине, совершает вертикальные колебания. Как изменится период колебаний, если к вружине подвесить вместо медного шарика алюминиевый такого же радиуса?

Решение:

Периоды колебаний медного и алюминиевого шариков соответственно равны $T_1 = 2\pi \sqrt{\frac{m_1}{k}}$ и $T_2 = 2\pi \sqrt{\frac{m_2}{k}}$, а их

отношение
$$\frac{T_1}{T_2} = \sqrt{\frac{m_1}{m_2}}$$
. Т. к. по условию радиусы шариков равны, то равны и их объемы, а значит, $\frac{T_1}{T_2} = \sqrt{\frac{\rho_1}{\rho_2}}$, где $\rho_1 = 8.6 \cdot 10^3 \, \mathrm{kr/m^3}$ и $\rho_2 = 2.6 \cdot 10^3 \, \mathrm{kr/m^3}$ — плотности меди и алюминия, тогда $\frac{T_1}{T_2} = 1.82$.

12.27. К пружине подвещена чашка весов с гирями. При этом период вертикальных колебаний $T_1 = 0.5$ с. После того как на чашку весов положили еще добавочные гири, период вертикальных колебаний стал равным $T_2 = 0.6$ с. На сколько удлинилась пружина от прибавления этого добавочного груза?

Решение:

Имеем
$$T_1=2\pi\sqrt{\frac{m}{k}}$$
 — (1); $T_2=2\pi\sqrt{\frac{(m+\Delta m)}{k}}$ — (2). Возведя (1) и (2) в квадрат, а затем вычтя (1) из (2), получим $T_2^2-T_1^2=4\pi^2\frac{\Delta m}{k}$. Жесткость пружины $k=\frac{F}{\Delta l}=\frac{\Delta mg}{\Delta l}$. Тогда $T_2^2-T_1^2=4\pi^2\frac{\Delta l}{g}$, откуди $\Delta l=\frac{g}{4\pi^2}\left(T_2^2-T_1^2\right)=0,027$ м.

12.28. К резиновому шнуру длиной $l = 40 \, \mathrm{cm}$ и разнусо $r = 1 \, \mathrm{mm}$ подвешена гиря массой $m = 0.5 \, \mathrm{kr}$. Зная, что моду: Юнга резины $E = 3 \, \mathrm{MH/m^2}$, найти период T вертикальны колебаний гири. Указание: учесть, что жесткость k резинсвязана с модулем Юнга E соотношением $k = \frac{SE}{l}$, где S площадь поперечного сечения резины, l — ее длина.

12.29. Ареометр массой m=0,2 кг плавает в жидкости. Если погрузить его немного в жидкость и отпустить, то он начнет совершать колебания с периодом T=3,4 с. Считая колебания незатухающими, найти плотность жидкости ρ , в которой плавает ареометр. Диаметр вертикальной цилиндрической трубки ареометра d=1 см.

Решение:

На плавающий ареометр действуют сила Архимеда \vec{F}_A , направленная вверх, и сила тяжести \vec{P} , направленная вниз. Условие равновесия имеет вид: $\vec{P} + \vec{F}_A = 0$ или в скалярном виде $P = F_A$ — (1). Имеем P = mg; $F_A = \rho g(V + Sh)$, где V — объем ареометра (без трубки), S — площадь поперечного сечения трубки ареометра, h — длина трубки. Тогда $mg = \rho g(V + Sh)$. При погружении ареометра на глубину x результирующая выталкивающая сила $F = \rho g(V + S(h + x)) - mg$; $F = \rho g(V + S(h + x)) - \rho g(V + Sh)$; $F = \rho gSx$. Эта сила и вызывает колебания ареометра, T. е.

Можно записать F = -kx, где $k = \rho g S = \rho g \frac{\pi d^2}{4}$ — (2).

Уравнение второго закона Ньютона для ареометра имеет вид $m\ddot{x}=-kx$ — (3). Введя обозначение $\omega_0^2=\frac{k}{m}$, преобразуем уравнение (3) следующим образом: $\ddot{x}+\omega_0^2x=0$. Величина $\omega_0=\frac{2\pi}{T}$ — циклическая частота колебаний, отсюда период данных колебаний $T=2\pi\sqrt{\frac{m}{k}}$ — (4). Подставляя (2) в (4), получим $T=\frac{4}{d}\sqrt{\frac{\pi m}{\rho g}}$, откуда $\rho=\frac{16\pi m}{T^2d^2g}=0.89\cdot 10^3\,\mathrm{kr/m}^3$.

12.30. Написать уравнение движения, получающегося в результате сложения двух одинаково направленных гармонических колебательных движений с одинаковым периодом $T=8\,\mathrm{c}$ и одинаковой амплитудой $A=0,02\,\mathrm{m}$. Разность фаз между этими колебаниями $\varphi_2-\varphi_1=\frac{\pi}{4}$. Начальная фаза одного из этих колебаний равна нулю.

Решение:

При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой $A = \sqrt{A_1^2 + A_2^2 + 2} A_1 A_2 \cos(\varphi_2 - \varphi_1)$ и с начальной фазой, определяемой уравнением $tg \varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$, где A_1 и A_2 — амплитуды слагаемых колебаний, φ_1 и φ_2 — их начальные фазы. Подставляя числовые данные, получим $A = \sqrt{2 \cdot (0.02)^2 + 2(0.02)^2 \cos \frac{\pi}{4}} = 0.037 \, \text{м};$

$$sin(\pi/4) = \frac{\pi}{8}$$
; $\omega = \frac{2\pi}{T} = \frac{\pi}{4}$. Отсюда уравнение результирующего движения $x = 0.037 cos(\frac{\pi}{4}t + \frac{\pi}{8})$.

12.31. Найти амплитуду A и начальную фазу φ гармонического колебания, полученного от сложения одинаково направленных колебаний, данных уравнениями $x_1 = 0.02 \times \sin\left(5\pi t + \frac{\pi}{2}\right)$ м и $x_2 = 0.03 \sin\left(5\pi t + \frac{\pi}{4}\right)$ м.

Решение:

12.32. В результате сложения двух одинаково направленных гармонических колебаний с одинаковыми амплитудами и одинаковыми периодами получается результирующее колебание с тем же периодом и той же амплитудой. Найти разность фаз од складываемых колебаний.

Решение:

При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой $A = \sqrt{A_1^2 + A_2^2 + 1} A_1 A_2 \cos(\varphi_2 - \varphi_1)$ — (1). Т. к. по условию $A_1 = A_2 = A$, то уравнение (1), возведенное в квадрат, примет вид $A^2 = A^2 + A^2 + 2A^2 \cos(\varphi_2 - \varphi_1)$, откуда $\cos(\varphi_2 - \varphi_1) = -\frac{1}{2}$. Тогда разность фаз складываемых колебаний $\varphi_2 - \varphi_1 = \arccos\left(-\frac{1}{2}\right) = 120^\circ = \frac{2\pi}{3}$.

12.33. Найти амплитуду A и начальную фазу φ гармонического колебания, полученного от сложения одинаково направленных колебаний, данных уравнениями $x_1 = 4 \sin \pi t$ см и $x_2 = \sin \left(\pi t + \frac{\pi}{2} \right)$ см. Написать уравнение результирующего колебания. Дать векторную диаграмму сложения амплитуд.

Решенне:

Из уравнения колебаний $x_1 = 4 \sin \pi t$ и $x_2 = 3 x$ $\times \sin \left(\pi + \frac{\pi}{2} \right)$ находим амплитуды колебаний $A_1 = 4 \text{ см}$ и $A_2 = 3 \text{ см}$ и их начальные фазы $\varphi_1 = 0$ и $\varphi_2 = \frac{\pi}{2}$. Амплитуда и фаза результирующего колебания (см. задачу 12.31)

$$\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)} = 5 \text{ см},$$

$$\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)} = 5 \text{ см},$$

$$\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)} = 0,73, \text{ следовательно},$$

$$\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)} = 0,73, \text{ следовательно},$$

 $\frac{\pi}{6}$ arctg 0,73 = $\frac{\pi}{5}$. Тогда уравнение результирующего ко-

пебания будет иметь вид $x = 5 sin \left(\pi + \frac{\pi}{5} \right)$. Для построения векторной диаграммы отложим от начала отсчета векторы, плицы которых равны амплитудам A_1 и A_2 . Т. к. $\varphi_1 = 0$ и

 $\frac{\pi}{2}$, то оба вектора лежат на осях координат. Сложив **ресторы по** правилу параллелограмма, получим вектор **амилитуды рез**ультирующего колебания.

12.34. На рис. I дан спектр результирующего колебания. Пользуясь данными этого рисунка, написать уравнения опебаний, из которых составлено результирующее колебание. Начертить график этих колебаний. Принять, что в момент t=0 разность фаз между этими колебаниями $\varphi_2 - \varphi_1 = 0$. Начертить график результирующего колебания.

Решение:

По спектру сложного колебания найдем амплитуду и частоту каждого из составляющих колебаний. Имеем: $A_1 = 0.03 \text{ м};$ $V_T = 0.2 \Gamma \text{ц};$ $A_2 = 0.02 \text{ m};$ $V_2 = 0.5 \Gamma \text{ц};$ $A_3 = 0.01 \text{ m};$ $V_4 = 1 \Gamma \text{ц}.$

Тогда уравнения этих колебаний будут иметь вид $x=0.03\sin\frac{2\pi}{5}t$ м; $x=0.02\sin\pi t$ м; $x=0.01\sin2\pi t$ м. Составим таблицу значений x=f(t) для данных колебаний и построим их графики (рис.2). Затем, сложив значения x, соответствующие одним и тем же значениям t, получим график результирующего колебания (рис.3).

t, c	0	0.5	1	1,5	2	2.5
X ₁ , CM	0,000	1,763	2,853	2,854	1,766	c.005
x_2 , CM	0.000	2,000	0,003	-2,000	-0.006	2.000
x_3 , CM	0,000	0,002	-0.003	0,005	-0,006	0.008
x, cm	0,000	3,764	2.853	0,859	1,754	2.013

200	3	3.5	4	4,5	5
CM	-1,759	-2,851	-2,856	-1,770	-0.010
TI, CM	0,010	-2,000	-0,013	2,000	0,016
X2, CM	-0,010	0.011	-0,013	0,014	-0.016
x ₃ , cm x, cm	-1,759	-4,840	-2,881	0,244	-0,010
X, UM					

12.35. Уравнения двух гармонических колебаний имеют вид $x_1 = 3 \sin 4\pi t$ см и $x_2 = 6 \sin 10\pi t$ см. Построить график этих колебаний. Сложив графически эти колебания, построить график результирующего колебания. Начертить спектр результирующего колебания.

Решение:

Составим таблицу значений x = f(t) для данных колебаний и построим их графики (рис.1). Затем, сложив значения x, соответствующие одним и тем же значениям t, получим график результирующего колебания (рис.2). Из уравнений колебаний найдем амплитуду и частоту каждого из них. Имеем: $A_1 = 0.03 \,\mathrm{m}$; $v_1 = 2 \,\Gamma\mathrm{u}$; $A_2 = 0.06 \,\mathrm{m}$;

 $v_2 = 5 \, \Gamma$ ц. По этим данным начертим спектр результирующего колебания (рис.3).

12.36. Уравнение колебаний имеет вид $x = A \sin 2\pi v_1 t$, причем амплитуда A изменяется со временем по закону $A = A_0 \left(1 + \cos 2\pi v_2 t\right)$. Из каких гармонических колебаний состоит колебание? Построить график слагаемых и результирующего колебаний для $A_0 = 4$ см, $v_1 = 2$ Γ ц, $v_2 = 1$ Γ ц. Начертить спектр результирующего колебания.

Решение:

По условию $x = A \sin 2\pi v_1 t$ — (1); $A = A_0 (1 + \cos 2\pi v_2 t)$ — (2). Подставляя (2) в (1), получим $x = A_0 (1 + \cos 2\pi v_2 t) \sin 2\pi v_1 t$; $x = A_0 \sin 2\pi v_1 t + A_0 \cos 2\pi v_2 t \sin 2\pi v_1 t$; $x = A_0 \sin 2\pi v_1 t + A_0 / 2 \sin (2\pi (v_1 - v_2)t) + A_0 / 2 \sin (2\pi (v_1 + v_2)t)$. Т. е. данное колебание состоит из трех гармонических колебаний. Подставляя числовые дайные, построим график слагаемых (рис.1), график результирующего колебания (рис.2) и начертим спектр результирующего колебания (рис.3).

12.37. Написать уравнение результирующего колебания, получающегося в результате сложения двух взаимно перпендикулярных колебаний с одинаковой частотой $v_1=v_2=5\,\Gamma_{\rm H/M}$ одинаковой начальной фазой $\varphi_1=\varphi_2=\frac{\pi}{3}$. Амплитулы колебаний равны $A_1=0.10\,{\rm M}$ и $A_2=0.05\,{\rm M}$.

Решение:

При сложении двух взаимно перпендикулярных колебаний одинакового периода уравнение траектории результируюимеет вид $\frac{x^2}{A_i^2} + \frac{y^2}{A_2^2} - \frac{2xy}{A_1A_2}$ колебания шего $\times cos(\varphi_2 - \varphi_1) = sin^2(\varphi_2 - \varphi_1)$ — (1). T. k. y hac $\varphi_2 - \varphi_1 = 0$, то уравнение (1) примет вид $\frac{x^2}{A_+^2} + \frac{y^2}{A_-^2} - \frac{2xy}{A_-A_-} = 0$, или $\left(\frac{x}{A} - \frac{y}{A_2}\right)^2 = 0$, откуда $y = \frac{A_2}{A_1}x$ — уравнение прямой линии. Таким образом, результирующее колебание будет происходить по прямой линии. Угол наклона прямой найдется из уравнения $ig\alpha = \frac{A_2}{A} = 0.5$, т. е. $\alpha = 26^{\circ}34'$. Период результирующего колебания равен периоду слагаемых колебаний, а амплитуда результирующего колебания $A = \sqrt{A_1^2 + A_2^2} = 11.2$ см. Следовательно, уравнение результирующего колебания имеет вид: $s = 11.2 sin \left(10 \pi t + \frac{\pi}{3} \right) cm$.

12.38. Точка участвует в двух колебаниях одинакового периода с одинаковыми начальными фазами. Амплитуды колебаний равны $A_1 = 3$ см и $A_2 = 4$ см. Найти амплитуду A_1 разультирующего колебания, если колебания совершаются: а) в отном направлении; б) в двух взаимно перпендикулярных направлениях.

Решение:

а) В случае сложения одинаково направленных колебаний амплитуда результирующего колебания $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$. Учитывая, что $\cos(\varphi_2 - \varphi_1) = 1$, найдем A = 0.07 м. б) В случае сложения двух взаимно перпендикулярных колебаний амплитуда результирующего колебания $A = \sqrt{A_1^2 + A_2^2}$; A = 0.05 м.

12.39. Точка участвует в двух взанмно перпендикулярных колебаниях $x = 2 \sin \omega t$ м и $y = 2 \cos \omega t$ м. Найти траекторию результирующего движения точки.

Решение:

Из уравнений колебаний $x = 2 \sin \omega t - (1)$ и $y = 2 \cos \omega t - (2)$ исключим время. Из уравнения (1) $\sin \omega t = \frac{x}{2}$, из основного тригонометрического тождества $\cos \omega t = \sqrt{1 - \frac{x^2}{4}}$ (3). Подставив (3) в (2), получаем $y = 2\sqrt{1 - \frac{x^2}{4}}$ или $y^2 = 4\left(1 - \frac{x^2}{4}\right) = 4 - x^2$. Отсюда после преобразования получим уравнение окружности радиусом R = 2 м, которое имеет вид $\frac{x^2}{4} + \frac{y^2}{4} = 1$.

12.40. Точка участвует в двух взаимно перпендикулярных колебаниях $x = \cos \pi t$ и $y = \cos \frac{\pi}{2} t$. Найти траекторию результирующего движения точки и начертить ее с нанесением масштаба.

Решение:

Имеем $y = \cos\frac{\pi}{2}t = \sqrt{\frac{1+\cos\pi t}{2}}$, откуда $2y^2 - 1 = \cos\pi t$. По условню $x = \cos\pi t$, отсюда $\frac{2y^2 - 1}{x} = 1$ или $2y^2 - 1 = 1$ уравнение параболы.

12.41. Точка участвует в двух взаимно перпендику... x_{KO} лебаниях $x = \sin \pi t$ и $y = 2\sin \left(\pi t + \frac{\pi}{2}\right)$. Найти траект, чло результирующего движения точки.

Решение:

При сложении двух взаимно перпендикулярных : монических колебательных движений материальной очки описываемых уравнениями $x = a\cos(\phi_0 t + c)$ и $y = b\cos(\omega_0 t + \phi_{o2})$, траектория результирующей материальной точки описывается уранием $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab}\cos\alpha = \sin^2\alpha$, где разность фаз е мых колебаний $\alpha = \phi_{o1} - \phi_{o2}$. У нас a = 1, b = 2 и $= \frac{\pi}{2}$.

Подставляя числовые данные, получим $\frac{x^2}{1} + \frac{y^2}{4} = 1$, т. е. **траектория** точки — эллипс.

12.42. Точка участвует в двух взаимно перпендикулярных колебаниях $x = sin\pi \pi$ и $y = 4sin(\pi + \pi)$. Найти траекторию результирующего движения точки и начертить ее с нанесением масштаба.

Решение:

Из уравнений колебаний $x = \sin \pi t$ — (1); $y = 4\sin(\pi t + \pi)$ — (2) исключим время. Для этого преобразуем уравнение (2), используя формулу синуса суммы: $\sin(\pi t + \pi) = \sin \pi t \cos \pi + \cos \pi t \sin \pi = -\sin \pi t$, т. к. $\cos \pi = -1$ и $\sin \pi = 0$. Тогда уравнение (2) примет вид $y = -4\sin \pi t$ — (3). Подставляя (1) в (3), получаем уравнение траектории y = -4x, т. е. траекторией является прямая.

12.43. Период затухающих колебаний $T=4\,\mathrm{c}$; логарифмический декремент затухания N=1.6; начальная фаза $\varphi=0$. При $t=\frac{T}{4}$ смещение точки $x=4.5\,\mathrm{cm}$. Написать уравнение движения

этого колебания. Построить график этого колебания в пределах двух периодов.

Решение:

292

Урависние затухающего колебательного движения имеет вид $x = Ae^{-\delta t}\sin(\omega t + \varphi)$ — (1). Круговая частота $\omega = \frac{2\pi}{T} = \frac{\pi}{2}$. Логарифмический декремент затухания $\aleph = \delta T$, откуда $\delta = \frac{\aleph}{T} = 0.4 \, \mathrm{c}^{-1}$. По условию $t = \frac{T}{A}$. т. е. t = 1 с. Зная значение x в этот момент времени, найдем амплитуду. Подставляя числовые данные, получим Тогда уравнение движения A = 6.7 M. $x = 6.7e^{-0.4t} sin(\frac{\pi}{2}t)$ — (2). Для построения графиков колебания найдем моменты времени $t_1, t_2, t_3...$ соответствующие максимальным значениям смещения х. Максымум x найдется из условия $v = \frac{dx}{dt} = 0$. Из уравнения (1) находим (при $\varphi = 0$) $v = A\omega e^{-\delta t} \cos \omega t - A\delta e^{-\delta t} \sin \omega t = 0$ отсюда $tg\omega t = \frac{\omega}{\delta} = \frac{2\pi}{8}$ — (3). Из уравнения (3) видно, что при незатухающих колебаниях, когда $\aleph = 0$, величиих $tg\omega t = \infty$ или $\omega t = \frac{\pi}{2}$, т. е. $\frac{2\pi t}{T} = \frac{\pi}{2}$, или $t = \frac{T}{4}$. В нашем же случае $tg\omega t = \frac{2\pi}{2} = 3,925$, т. е. $\omega t = 75^{\circ}42' \approx 0,42$ hд. откуда $t = 0.421 \frac{\pi}{c} = 0.842 \text{ c}$. Таким образом, $x = x_{max}$ — \mathbb{C}_{+}^{max} $t_1 = 0.842 \text{ c};$ $t_2 = t_1 + \frac{T}{2} = 2.842 \text{ c},$ $t_3 = t_1 + T = 4.842 \text{ c}$ $t_4 = t_1 + \frac{3T}{2} = 6,842$ с и т.д. Подставляя соответствующие числовые значения в (2), получим $x_1 = 0.1$ см; $x_2 = 0.17$ см; $x_3 = 0.12$ см; $x_4 = 0.08$ см. По полученным данным пост оним график.

12.44. Построить график затухающего колебания, данного **урав**нением $x = 5e^{-0.1t} \sin \frac{\pi}{4} t$ м.

Решение:

Подставляя значения t в интервале от 0 до 2T, построим график данного колебания (см. задачу 12.43)

12.45. Уравнение затухающих колебаний дано в виде $x = 5e^{-0.25t} \sin \frac{\pi}{2}t$ м. Найти скорость v колеблющейся точки в моменты времени t, равные: 0, T, 2T, 3T и 4T.

Решение:

Скорость точки, совершающей колебания, в том мисле затухающие, определяется соотношением $v = \frac{dx}{dt}$ — (1). По

условию смещение
$$x = 5e^{-0.25t} \sin \frac{\pi}{2}t$$
 — (2). Подставляя (2)

в (1), получаем
$$v = \frac{d}{dt} \left(5e^{-0.25t} \sin \frac{\pi}{2} t \right); \quad v = 5.$$
 25t x

$$\times \left(\frac{\pi}{2}\cos\frac{\pi}{2}t - 0.25\sin\frac{\pi}{2}t\right)$$
. Подставляя числовые даниые, составим таблицу:

 t, c
 0
 T
 2T
 3T
 47

 v, M/c
 7.85
 2.89
 1.06
 0.39
 0.15

12.46. Логарифмический декремент затухания матем, чического маятника $\aleph = 0.2$. Во сколько раз уменьшится ами интуда колебаний за одно полное колебание маятника?

Решение:

По формулам для затухающих колебаний меем
$$A_1 = A_0 \exp\left(-\aleph \frac{t}{T}\right); \quad A_2 = A_0 \exp\left(-\aleph \frac{t+T}{T}\right), \text{ отку да } \frac{d_1}{d_2} = e^\aleph = 1.22$$
.

12.47. Найти логарифмический декремент затухания Σ математического маятника, если за время t=1 мин амплиту Σ келебаний уменьшилась в 2 раза. Длина маятника I=1 м.

 $A_1=A_0 imes$ формулам для затухающих колебаний имеем $A_1=A_0 imes$

$$\exp\left(-\aleph \frac{t}{T}\right)$$
 — (1). Период колебаний математического

маятника $T = 2\pi \sqrt{\frac{l}{\sigma}}$ — (2). Из уравнения (1) с учетом (2)

разучаем
$$\frac{A_0}{A_l} = exp \left(\frac{\aleph t}{2\pi} \sqrt{\frac{g}{l}} \right)$$
 — (3). По условию $\frac{A_0}{A_l} = 2$,

гогда из уравнения (3) получим
$$exp\left(\frac{\aleph t}{2\pi}\sqrt{\frac{g}{l}}\right) = 2$$
 — (4).

прологарифмируем уравнение (4), тогда $\frac{\aleph t}{2\pi}\sqrt{\frac{g}{I}}=\ln 2$, откуда логарифмический декремент затухания

 $\frac{2\pi}{t}\sqrt{\frac{l}{a}}\ln 2 = 0.023$.

12.48. Математический маятник длиной l = 24,7 см совершает затукающие колебания. Через какое время t энергия колебаний матника уменьшится в 9,4 раза? Задачу решить при значении **погарифмического** декремента затухания: a) $\aleph = 0.01$; б) $\aleph = 1$.

Решение:

 \mathbf{A}_1 я затухающих колебаний имеем $A_1 = A_0 \exp\left(-\aleph \frac{t}{T}\right)$ или

$$\frac{A_0}{A_1} = exp\left(\frac{\aleph t}{T}\right)$$
 — (1). Период колебаний математического

маятника
$$T = 2\pi \sqrt{\frac{l}{g}}$$
 — (2). Подставляя (2) в (1), получаем

$$\frac{A_0}{A_1} = exp\left(\frac{\aleph t}{2\pi}\sqrt{\frac{g}{l}}\right)$$
 — (3). Полная энергия колебаний

$$W = \frac{2\pi^2 m}{T^2} A^2$$
, и по условию $\frac{W_0}{W_1} = k$, где $k = 9,4$ раза, тогда $k = \left(\frac{A_0}{A_1}\right)^2$ или, с учетом (3), $k = exp\left(\frac{\aleph t}{\pi}\sqrt{\frac{g}{l}}\right)$ — (4). Прологарифмируем уравнение (4), тогда $lnk = \frac{\aleph t}{\pi}\sqrt{\frac{g}{l}}$. Отсюда время, за которое энергия колебаний уменьшится в k раз, $t = \frac{\pi}{\aleph}\sqrt{\frac{l}{g}} lnk$ — (5). Подставляя в (5) значение лога-

рифмического декремента затухания, находим: а) для $\aleph_1 = 0.01$ время $t_1 = 144$ с; б) для $\aleph_2 = 1$ время $t_2 = 1.14$ с.

12.49. Математический маятник совершает затухающие колебания с логарифмическим декрементом затухания $\aleph = 0.2$. Во сколько раз уменьшится полное ускорение маятника в его крайнем положении за одно колебание?

Решение:

Уравнение затухающего колебательного движения имеет вид $x = Ae^{-\delta t} \sin(\omega t + \varphi)$ — (1). Для нахождения ускорения маятника продифференцируем дважды по времени уравнение (1). Имеем: $v = \frac{dx}{dt} = \frac{d}{dt} \left[Ae^{-\delta t} \sin(\omega t + \varphi) \right];$ $v = Ae^{-\delta t} \left[-\delta \sin(\omega t + \varphi) + \omega \cos(\omega t + \varphi) \right]$ — (2) — скорость колебаний маятника. Тогда $v = \frac{dv}{dt} = \frac{d}{dt} \times \left[Ae^{-\delta t} \left(-\delta \sin(\omega t + \varphi) + \omega \cos(\omega t + \varphi) \right) \right];$ $v = Ae^{-\delta t} \left(\left(\delta^2 + \omega^2 \right) \sin(\omega t + \varphi) + \delta \omega \cos(\omega t + \varphi) \right)$ — (3). Из уравнения (3) находим $\frac{dt_0}{dt} = \frac{-Ae^0 \left[\left(\delta^2 + \omega^2 \right) \sin\varphi + \delta \omega \cos(2\pi t + \varphi) \right]}{-Ae^{-\delta T} \left[\left(\delta^2 + \omega^2 \right) \sin(2\pi t + \varphi) + \delta \omega \cos(2\pi t + \varphi) \right]};$

$$\frac{e^{\mathbf{0}}}{e^{-\delta T}} = e^{\delta T}$$
 — (4). По определению логарифмический
кремент затухания $\aleph = \delta T$ — (5), тогда, подставляя (5) в
окончательно получаем $\frac{a_0}{a} = e^{\aleph} = 1,22$.

12.50. Амплитуда затухающих колебаний математического маятника за время t = 1 мин уменьшилась вдвое. Во сколько разуменьшится амплитуда за время t = 3 мин?

Решение:

отношение начальной и конечной амплитуд колебаний

см. задачу 12.48)
$$\frac{A_0}{A_l} = exp\left(\frac{\aleph t}{2\pi}\sqrt{\frac{g}{l}}\right)$$
 — (1).

Прологарифмируем уравнение $ln\left(\frac{A_0}{A_1}\right) = \frac{\aleph t}{2\pi}\sqrt{\frac{g}{l}}$, отслода

время уменьшения амплитуды
$$t=rac{2\pi}{\aleph}\sqrt{rac{l}{g}}\ln{\left(rac{A_0}{A_1}
ight)}.$$

Спедовательно, $\frac{t_1}{t_2} = \frac{ln(A_0 / A_1)}{ln(A_0 / A_2)}$, отсюда $ln \frac{A_0}{A_2} = \frac{t_2}{t_1} ln \frac{A_0}{A_1}$,

еледовательно,
$$\frac{A_0}{A_2} = exp\left(\frac{t_2}{t_1} \ln \frac{A_0}{A_1}\right) = 8$$
.

12.51. Математический маятник длиной $l=0,5\,\mathrm{M}$, выведенный из положения равновесия, отклонился при первом колебании на $x_1=5\,\mathrm{cm}$, а при втором (в ту же сторону) — на $x_2=4\,\mathrm{cm}$. Найти время релаксации t, т. е. время, в течение которого амплитуда колебаний уменьшится в e раз, где e — основание натуральных логарифмов.

Решение:

Уравнение затухающего колебательного движения имеет вид $x = Ae^{-\delta t} \sin(\omega t + \varphi)$ — (1). Из уравнения (1) находим $\frac{x_1}{x_2} = \frac{Ae^0 \sin \varphi}{Ae^{-\delta t} \sin(2\pi + \varphi)} = \frac{e^0}{e^{-\delta t}} = e^{\delta t}$ — (2). По условню $e^{\delta t} = e$ — (3). Прологарифмировав уравнения (2) и (3), получаем $\delta T = \ln \frac{x_1}{x_2}$ — (4) и $\delta t = 1$ — (5). Разделив (4) на (5), имеем $\frac{T}{t} = \ln \frac{x_1}{x_2}$ или $t = \frac{T}{\ln(x_1/x_2)}$ — (6). Период колебаний математического маятника $T = 2\pi \sqrt{1/g}$ — (7). Подставляя (7) в (6), находим время релаксации $t = \frac{2\pi \sqrt{1/g}}{\ln(x_1/x_2)} = 6.44$ с.

12.52. К вертикально висящей пружине подвещивают груз. При этом пружина удлиняется на $\Delta l = 9.8$ см. Оттягивая этот груз вниз и отпуская его, заставляют груз совершать колебания. Каким должен быть коэффициент затухания δ , чтобы: а) колебания прекратились через время t=10 с (считать условно, что колебания прекратились, если их амплитуда упала до 1% от начальной); б) груз возвращается в положение равновесия апериодически; в) логарифмический декремент затухания колебаний был равным $\aleph=6$?

Решение:

а) По условию
$$\frac{A_1}{A_0} = 0.01 = 1\%$$
 — (1), где $A_0 = Ae^0$ — (2) и $A_1 = Ae^{-\delta t}$ — (3) — соответственно начальная и континая амплитуда колебания груза на пружине. Подставляя (2) и (3) в (1), получаем $\frac{e^{-\delta t}}{e^0} = 0.01$ или $e^{\delta t} = 100$ — (4).

Брарифмируя уравнение (4), получаем $\delta t = \ln 100$, откуда **раффициент** затухания $\delta = \frac{\ln 100}{t} = 0.46 \, \text{c}^{-1}$.

В случае апериодического возвращения системы в ноложение равновесия коэффициент затухания $\delta = \omega_0$ — (1), где ω_0 — начальная циклическая частота колебаний.

 $\omega_0 = \sqrt{\frac{g}{\Delta l}}$ — (2), то, подставляя

(2) в (1), получаем $\delta = \sqrt{\frac{g}{\Delta l}} = 10 \, \text{c}^{-1}$.

По определению логарифмический декремент затухания

$$\delta T - (1)$$
, где $T = \frac{2\pi}{\omega} - (2)$ — период затухающих

колебаний. Из (1) с учетом (2) коэффициент затухания

$$\frac{8\omega}{2\pi}$$
 — (3). Циклическая частота затухающих

колебаний $\omega = \sqrt{\omega_0^2 - \delta^2}$ — (4). Подставляя (4) в (3),

получаем
$$\delta = \frac{\aleph\sqrt{\omega_0^2 - \delta^2}}{2\pi}$$
 — (5). Поскольку колебания

ТРУЗА НА ПРУЖИНЕ СОВЕРШАЮТСЯ ПОД ДЕЙСТВИЕМ ДВУХ СИЛ: **СИЛЬ ТЯЖЕСТИ** mg и силы упругости $F = k\Delta l$, где k — **Жесткость пруж**ины, то в состоянии покоя $mg = k\Delta l$,

откуда $\frac{m}{k} = \frac{\Delta l}{g}$ — (6). Начальный период колебания груза

$$T_0 = 2\pi \sqrt{\frac{k}{m}}$$
 или, с учетом (6). $T_0 = 2\pi \sqrt{\frac{\Delta l}{g}}$ — (7). Из

формулы (2) начальная циклическая частота $\omega_0 = \frac{2\pi}{T_0}$ или,

Учетом (7), $\omega_0 = \sqrt{\frac{g}{\Delta l}}$, тогда $\omega_0^2 = \frac{g}{\Delta l}$ — (8). Подставляя

(8) в (5), получаем $\delta = \frac{\aleph\sqrt{\frac{g}{\Delta l} - \delta^2}}{2\pi}$ — (9) и, возведя обе части уравнения (9) в квадрат, окончательно находим $\delta = \frac{\aleph}{\sqrt{4\pi^2 + \aleph^2}} \sqrt{\frac{g}{\Delta l}} = 6.98 \, \mathrm{c}^{-1}$.

12.53. Тело массой m=10 г совершает затухающие колебания с максимальной амплитудой $A_{max}=7$ см, начальной фазой $\varphi=0$ и коэффициентом затухания $\delta=1,6\,\mathrm{c}^{-1}.$ На это тело начала действовать внешняя периодическая сила F, под действием которой установились вынужденные колебания. Уравнение вынужденных колебаний имеет вид $x=5\sin\left(10\pi t-\frac{3\pi}{4}\right)\mathrm{см}.$ Найти (с числовыми коэффициентами) уравнение собственных

колебаний и уравнение внешней периодической силы.

Решение:

В случае, когда внешняя сила изменяется по гармоническому закопу, колебания описываются дифференциальным уравнением $\ddot{x}+2\delta\,\dot{x}+\omega_0^2x=f_0\cos\omega t$, где δ — коэффициент затухания, ω_0 — собственная частота системы, ω — частота силы. Общее решение данного уравнения является уравнением собственных колебаний и имеет вид $x=A_0e^{-\delta t}\sin\omega_0 t$. По условию сдвиг фаз между собственными и вынужденными колебаниями равен $-\frac{3\pi}{4}$,

следовательно,
$$lg\varphi = \frac{2\delta\omega}{\omega_0^2 - \omega^2} = lg\left(-\frac{3\pi}{4}\right) = 1$$
, отсюда

 $\omega_{\rm o} = \sqrt{\omega^2 + 2\delta\omega}$. Подставляя числовые данные, получим $\omega_{\rm o} = 10.5\pi$. Тогда уравнение собственных колебаний примет вид $x = 0.07e^{-1.6t} \sin 10.5\pi t$ м. Уравнение внешней 300

ериодической силы $F = F_0 \sin \omega t$. имеет вид значение внешней периодической силы $R = Am\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2} = 72 \text{ MH}.$ Тогда уравнение периодической будет внешней силы иметь вил $F = 72 \sin 10\pi t \text{ MH}.$

12.54. Гиря массой m=0.2 кг, висящая на вертикальной пружине, совершает затухающие колебания с коэффициентом затухания $\delta=0.75\,\mathrm{c}^{-1}$. Жесткость пружины $k=0.5\,\mathrm{кH/m}$. Начертить зависимость амплитуды A вынужденных колебаний гирьки от частоты внешней периодической силы, если известно, что максимальное значение внешней силы $F_0=0.98\,\mathrm{H}$. Для построения трафика найти значение A для частот: $\omega=0$, $\omega=0.5$, $\omega=0.75$, $\omega=\omega_0$, $\omega=1.5\omega_0$ и $\omega=2\omega_0$, где ω_0 — частота собственных колебаний подвешенной гири.

Решение:

Приравнивая правые части уравнений (1) и (2).
$$m = -\frac{1}{2M}$$
, тогда $\omega_s = \sqrt{\frac{k}{L}} = 50 \, \mathrm{c}^{-1}$ — (3). $\Delta v m = 0.03$

вынужденных колебаний
$$A = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2\omega^2}}$$
 - - (4).

Произведя расчет значений амплитуды по формуле (1), с учетом (3), строим график.

,	ω. c ⁻¹	0	25	37.5	50	75	1 10
	A, M	0.0020	0.0026	0,0045	0.0653	0.0016	1.0007

12.55. По грунтовой дороге прошел трактор, оставив с ды в виде ряда углублений, находящихся на расстоянии $l=30~{\rm cm}$ друг от друга. По этой дороге покатили детскую коляску, имеющую две одинаковые рессоры, каждая из которых прогибаеття на $x_0=2~{\rm cm}$ под действием груза массой $m_j=1~{\rm kr}$. С вкой скоростью у катили коляску, если от толчков на углуб дейях она, попав в резонане, начала сильно раскачиваться? Насса коляски $M=10~{\rm kr}$.

Решение:

Коляска начнет сильно раскачиваться, если променуток между двумя последовательными толчками на слублениях будет равен периоду собственных колублений коляски, который можно найти по формуле $T=2\pi\sqrt{\frac{1}{2}}$. На каждую рессору приходится масса $m=\frac{1}{2}$. Кг. Коэффициент упругости $k=\frac{m_e g}{x}=490\,\mathrm{H/M}$. Пода слия

числовые данные, получим $T=0.63\,\mathrm{c}$. Кроме того, $T=\frac{l}{v}$, откуда $v=\frac{l}{T}=0.48\,\mathrm{m/c}$.

12.56. Найти длину волны λ колебания, период которого $T = 10^{-14}$ с. Скорость распространения колебаний $c = 3 \cdot 10^8$ м с.

Решение:

По определению длина волны колебания $\hat{\lambda} = cT = 3$ мкм.

12.57. Звуковые колебания, имсющие частоту $\nu=500~\Gamma$ ц и амплитуду $A=0.25~\rm mm$, распространяются в воздухе. Длина волны $\lambda=70~\rm cm$. Найти скорость c распространения колебаний и максимальную скорость v_{max} частиц воздуха.

Решение:

По определению длина волны колебания $\lambda = cT$ — (1). Т. к. частота колебаний ν есть величина, обратиая периоду, т. е. $\nu = \frac{1}{T}$ — (2), тогда, подставляя (2) в (1),

получаем $\lambda = \frac{c}{v}$, откуда скорость распространення

колебаний $c = \lambda v = 350\,\mathrm{m/c}$. Рассматривая частицы воздуха как материальные точки, запишем для скорости уравнение

$$\mathbf{v} = \frac{d\mathbf{x}}{dt} = \frac{2\pi}{T} A \cos\left(\frac{2\pi}{T}t + \varphi\right)$$
. Поскольку $v = v_{max}$, когда

$$\cos\left(\frac{2\pi}{T}t+\varphi\right)=1$$
, to $v_{\text{obs}}=\frac{2\pi}{T}A$ with, c yuetow (2),

окончательно получим $v_{min} = 2\pi v f = 0.785 \text{ y/c}$.

12.58. Уравнение пезатухоющих колобаний имеет вид $x = 10 \sin \frac{\pi}{2} t$ см. Найти уравнение волны, если скорость распространения колебаний c = 360 м/с. Наименты и изобразить графически уравнение колебания для точки, отстоящей на расстоянии 303

l = 600 м от источника колебаний. Написать и изобразить графически уравнение колебания для точек волны в момент времени t = 4 с после начала колебаний.

Решение:

При распространении незатухающих колебаний со скоростью c вдоль некоторого направления, называемого лучом, смещение любой точки, лежащей на луче и отстоящей от источника колебаний на расстоянии x, определяется выражением: $x = A \sin\left(\frac{2\pi}{T}t - \frac{2\pi l}{\lambda}\right)$ — (1), где A — амплитуда колеблющихся точек, $\lambda = cT$ — (2) — ллина волны.

равнение волны: $x = 0.1 sin \left(\frac{\pi}{2} t - \frac{\pi l}{600} \right)$ м — (3). При t = 600 м уравнение (3) примет вид $t = 0.1 sin \left(\frac{\pi}{2} t - \pi \right)$ м (рис.1), т. е. при t = const получим t = f(t) — смещение риксированной точки, лежащей на луче, меняется со временем. При t = 4 с уравнение (3) примет вид $t = 0.1 sin \left(2\pi - \frac{\pi l}{600} \right)$ м (рис.2), т. е. при t = const получим t = f(t) — различные точки, лежащие на луче, имеют вазличные смещения в данный момент времени.

12.59. Уравнение незатухающих колсбаний имеет вид $x=4\sin 600\pi t$ см. Найти смещение x от положения равновесия гочки, находящейся на расстоянии $t=75\,\mathrm{cm}$ от источника колебаний, для момента времени $t=0.01\,\mathrm{cm}$ после начала колебаний. Скорость распространения колебаний $c=300\,\mathrm{m/c}$.

Решение:

имеем
$$x = A sin \left(\frac{2\pi}{T} t - \frac{2\pi l}{\lambda} \right)$$
 — (1) (см. задачу 12.58), где — амплитуда колеблющихся точек, $\lambda = cT$ — (2) — алина волны. Т. к. по условию уравнение незатухающих колебаний имеет вид $x = 4 sin 600\pi t$ — (3), то, сопоставляя (1) и (3) и учитывая (2), окончательно получаем $x = 4 sin \left(600\pi t - \frac{2\pi l}{cT} \right) = 4 sin \left(600\pi t - 600\pi \frac{l}{c} \right) = 4 cm$.

12.60. Уравнение незатухающих колебаний имеет вид $x = \sin 2.5\pi t$ см. Найти смещение x от положения равновесия, скорость v и ускорение a точки, находящейся на расстоянии

 $l=20\,\mathrm{M}$ от источника колебаний, для момента времени $r=1_{\mathrm{C}}$ после начала колебаний. Скорость распространения колебаний $c=100\,\mathrm{M}/\mathrm{c}$.

Решение:

Смещение точки от положения равновесия (см. срачу 12.59) определяется соотношением

$$x = sin\left(2.5\pi t - 2.5\pi \frac{l}{c}\right) = 0$$
. Тогда екорость точки определить как $v = \frac{dx}{dt} = \frac{d}{dt}\left[sin\left(2.5\pi t - 2.5\pi \frac{l}{c}\right)\right];$ $v = 2.5\cos\left(2.5\pi t - 2.5\pi \frac{l}{c}\right);$ $v = 7.85$ см/с, a ee year sinle $a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = \frac{d}{dt}\left[2.5\cos\left(2.5\pi t - 2.5\pi \frac{l}{c}\right)\right];$ $a = -6.25\pi^2 \sin\left(2.5\pi t - 2.5\pi \frac{l}{c}\right) = 0$.

12.61. Найти разность фаз $\Delta \varphi$ колебаний двух томск. стоящих от источника колебаний на расстояниях I_1 . If $I_2=16$ м. Период колебаний T=0.04 с; скорость рисл. транения c=300 м с.

Решение:

306

Две точки, лежение на луче на расстояниях l_1 и l_2 — петочника колебаний, имеют разность фаз $\varphi_2 - \varphi_1 = 2$. (1). Поскольку длица волны λ связана с перво слебаний T и скоростью их распространения σ петочнением $\lambda = cT$ — (2), то, подставляя (2) в (1), окси но получаем $\Delta \varphi = \varphi_2 - \varphi_1 = 2\pi \frac{l_2 - l_1}{cT} = \pi$, т. е. точки блются в противоположных фазах.

12.62. Найти разность фаз $\Delta \varphi$ колебаний двух точек, **дежащих на** луче и отстоящих на расстоянии l=2 м друг от **друга,** если длина волны $\lambda=1$ м.

Решение:

Две точки, лежащие на луче на расстояниях l_1 н l_2 от источника колебаний, имеют разность фаз $\varphi_2-\varphi_1=2\pi\frac{l_2-l_1}{\lambda}$ — (1). В нашем случае $l=l_2-l_1$ — (2), поэтому, подставляя (2) в (1), окончательно получаем $\Delta\varphi=\varphi_2-\varphi_1=2\pi\frac{l}{\lambda}=4\pi$, т. е. точки колеблются в одинаковых фазах.

12.63. Найти смещение x от положения равновесия точки, отстоящей от источника колебаний на расстоянии $I=\frac{\lambda}{12}$, для момента времени $t=\frac{T}{6}$. Амплитуда колебаний $A=0.05\,\mathrm{M}$.

Решение:

При распространении незатухающих колебаний вдоль некоторого направления, называемого лучом, смещение любой точки, лежащей на луче и отстоящей от источника колебаний на расстоянии l, дается уравнением $\mathbf{x} = A \sin\left(\frac{2\pi}{T}t - \frac{2\pi l}{\lambda}\right)$. Подставляя исходные данные, получим $x = 0.05 \sin\left(\frac{\pi}{3} - \frac{\pi}{6}\right) = 2.5 \,\mathrm{cm}$.

12.64. Смещение от положения равновесия точки, отстоящей от источника колебаний на расстоянии $t=4\,\mathrm{cm}$, в момент времени $t=\frac{T}{6}$ равно половине амплитуды. Найти длину λ бегущей волны.

Решение:

Смещение точки от положения равновесия (см. задачу 12.63) дается уравнением $x = A sin \left(\frac{2\pi}{T} t - \frac{2\pi \, l}{\lambda} \right)$. Подставляя исходные данные, получим $x = A sin \left(\frac{\pi}{3} - \frac{2\pi \, l}{\lambda} \right) = \frac{A}{2}$, отсюда $sin \left(\frac{\pi}{3} - \frac{2\pi \, l}{\lambda} \right) = \frac{1}{2}$, следовательно, $\frac{\pi}{3} - \frac{2\pi \, l}{\lambda} = arcsin \left(\frac{1}{2} \right) = \frac{\pi}{6}$ или $\frac{2\pi \, l}{\lambda} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}$. Тогда окончательно $\lambda = 12l = 0.48$ м.

12.65. Найти положение узлов и пучностей и начертить график стоячей волны, если: а) отражение происходит от менее плотной среды; б) отражение происходит от более плотной среды. Длина бегущей волны $\lambda = 12$ см.

Решение:

Стоячей называется волна, которая образуется в результате наложения двух бегущих синусоидальных когерентных волн, распространяющихся навстречу друг другу. В отличие от бегущей волны она состоит из узлов и пучностей, причем

расстояние между двумя соседними узлами или пучностями есть величина постоянная, называемая длиной стоячей волны, $\lambda_{\rm cr} = \frac{\lambda}{2}$ — (1), где λ — длина бегущей волны. Подставляя значение λ в (1), получим $\lambda_{\rm cr} = 6$ см.

е Если отражение происходит от менее плотной среды, то положение узлов будет определяться из условия $x = (2n+1)\frac{\lambda_{\rm cr}}{2}$ (2), где $n=0,\ 1,\ 2...$ Подставляя в (2)

значение n и $\lambda_{\rm cr}$, получаем $x=3,\,9,\,15\,{\rm cm}$... Положение пучностей будет определяться из условия $x=2n\frac{\lambda_{\rm cr}}{2}=n\lambda_{\rm cr}$... (3). Подставляя в (3)

значение n и λ_{cr} , получаем x = 0, 6, 12, 18 см...

6) Если отражение происходит от более плотной среды, то узлы и пучности поменяются местами и положение узлов будет определяться из условия (3), т. е. x=0, 6, 12, 18 см, а положение пучностей — из условия (2), т. е. x=3, 9, 15 см...

12.66. Найти длину волны λ колебаний, если расстояние между первой и четвертой пучностями стоячей волны l=15 см.

Решение:

Длина стоячей волны (см. задачу 12.65) $\lambda_{\rm cr} = \frac{\lambda}{2}$ — (1), где λ — длина волны колебаний. С другой стороны, $\lambda_{\rm cr} = \frac{l}{n_1 - n_2}$ — (2), где n_1 и n_2 — порядковые номера пучностей. По условию n_1 = 1 и n_2 = 4, тогда, приравнивая правые части уравнений (1) и (2), получаем $\frac{\lambda}{2} = \frac{l}{3}$, откуда длина волны колебаний $\lambda = \frac{2l}{3} = 10$ см = 0,1 м.