

TASK

- 1. Build a next word predictor given a sequence of words
 - 2. Predict next 10 words for each given input of words
- 3. Find ways to evaluate generated sequence of words

Overview

- Data Loading + EDA
- Preprocessing (Tokenization, Input Output Pairs)
- Modelling (SimpleRNN, GRU, LSTM, etc.)
- Evaluation (Accuracy, METEOR, Perplexity, Readability)
- Improving on Models (Bi-LSTM & Bi-GRU)
- Conclusions

EVALUATION METHODS

Evaluation Methods

- Model Accuracy (Train and Validation): As we are performing sequence generation, we should try to complement accuracy with other metrics, as generated text may not necessarily be classified into predefined categories
- METEOR Score: considers precision, recall, stemming, synonymy, and word order, more on Quality of generated text, higher the better
- Perplexity: Helps evaluate the fluency and coherence of generated sequences, the lower the score the better
- Readability (Flesch Score): Assesses the ease with which a text can be read and understood
- Human Evaluation: Creativity and appropriateness are challenging to be measured purely on metrics

Function: predict_next_N_words

- This function generates a sequence of words given an initial input text using a trained RNN.
- Input Parameters:
 - model: Trained RNN model.
 - input_text: Initial text for generating the sequence (seed texts in this case).
 - N_words: Number of words to generate (default: 10).
 - input_length: Maximum sequence length (default: max_sequence_len-1).
 - temperature: Controls randomness in the output (default: 1.0)

The temperature parameter allows for more "creative" generated texts by setting it >1.0 while also getting "precise" texts <1.0

DATA LOADING & EDA

Data Loading & EDA

- Our data contains 1000 quotes of 10 different 'themes', each having 100 quotes per theme
- Most quotes fall under 20 words, as seen from the distribution plot, while the maximum word count for a quote is 35
- Most common words includes "the", "of" and "your"

PREPROCESSING

Tokenization & Input Output Pairs

- For our case, we would try retaining punctuations like apostrophes, semicolons, and commas as they play a part in sentence sequence and coherence
- To generate more Input Output pairs, we can make use of a loop, iterating through till the max sequence length of our data (35), and will consider every possible combination of lists ranging from 2 to 35 words which helps us get more data
- We then pad them with the length of 35
- We split X and y into train and validation sets with this shapes =>
- Then apply One Hot Encoding to y_train and y_val

X_train shape: (48247, 33) y_train shape: (48247,) X_val shape: (20678, 33) y_val shape: (20678,)

MODELLING

SimpleRNN

Model Architecture

- Embedding (128)
- SimpleRNN (64)
- Dropout (0.3)
- Dense

"Precise" prediction (0.2 Temperature):

"radiate some positivity, for it is the heartbeat of transformation that our"

"Creative" prediction (2.0 Temperature):

'radiate some growth; it is the canvas, your reality spread wide open'

- We notice that for the more "creative" sequence, it is more random put less meaningful as compared to the "precise" sequence which has a decent sentence structure
- Train Accuracy of 0.75, Validation Accuracy of 0.76
- METEOR Scores of "Precise" text (0.375) was also higher than "Creative" text (0.285) which is expected since the "Creative" sequences are more random, which results in overall poorer quality

Perplexity of SimpleRNN

- The Model mainly struggles to continue sequences for seed text 6, 7 & 10 meaning that model is less certain and less accurate in predicting the next word
- Average Perplexity of 55.14

6: let your time and energy is the realization of your heart lead a day is

7: every person is a garden of kindness we plant its burdens be the

10: morning and evening would make it is the foundation of every action and decision shaping the

MODEL IMPROVEMENTS

Bi-GRU

allows model to capture both past and future input sequences, wherelse regular GRU only has access to past input sequences

We would be using **KerasTuner** & **GridSearch** to tune:

- Learning Rate
- Dropout rate
- No. of Layers
- Nodes

"Precise" prediction (0.2 Temperature):

"radiate some confidence, and let it be the foundation of your greatness"

"Creative" prediction (1.5 Temperature):

'radiate some confidence, and let it be the armor that shields your'

- We do notice that the generated sequences are more coherent and well structured, as compared to the ones that SimpleRNN generated
- Train accuracy of 0.78, Validation accuracy of 0.77, improved a little vs SimpleRNN
- METEOR Scores of "Precise" text (0.38) was also higher than "Creative" text (0.36) which is expected since the "Creative" sequences are more random, which results in overall poorer quality
- "Precise" text also was more readable, having a higher FLESCH score of 66 (compared to 60)

Perplexity of Bi-GRU

- Like SimpleRNN, Bi-GRU Model mainly struggles to continue sequences for seed text 6, as the perplexity was the highest, which is common as seen in SimpleRNN
- Average Perplexity of 16.50 is lower than that of the SimpleRNN (55.14), indicating a

6: let your time and energy ripples out, creating abundance around you leave behind a precious

CONCLUSIONS

Conclusions

- Overall, GRU performed better than the SimpleRNN, but LSTM by itself did perform worse than SimpleRNN
- However, using Bidirectional GRU / LSTM does help the model improve
- Although most of our model's accuracy were not as high(around 75% range), we shouldn't solely look at accuracy metrics in the case of text generation, as it does not cover the fluency, coherence and relevance to the input or context
- However, we could probably increase our model's performance if we had performed some text augmentation
- It can be quite challenging to evaluate the model's "creativity" using a metric, and usually, human evaluation works better

THANK YOU