4 Punkte

Funktionalanalysis - Übungsblatt 10

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 12. Januar 2024, in die Zettelkästen 55/56 oder online über Mampf

Aufgabe 10.1

Sei V ein Hilbertraum und $F \in \mathcal{L}(V)$. Zeigen Sie die Äquivalenz der folgenden Aussagen.

- (i) F ist unitär.
- (ii) F ist isometrisch und surjektiv.
- (iii) F ist ein isometrischer Isomorphismus.

Aufgabe 10.2 4 Punkte

[1+2+1 Punkte]

Sei $(H, \langle \cdot, \cdot \rangle)$ ein K-Hilbertraum und $T \in \mathcal{L}(H)$.

a) Sei zunächst $\mathbb{K} = \mathbb{C}$. Zeigen Sie

$$T = 0 \Leftrightarrow Tv \perp v \quad \forall v \in H.$$

Sei nun $(H, \langle \cdot, \cdot \rangle)$ ein beliebiger K-Hilbertraum und $T \in \mathcal{L}(H)$.

b) Zeigen Sie, dass

$$\ker(T^*) = (\operatorname{im}(T))^{\perp}.$$

Folgern Sie, dass $(\operatorname{im}(T^*))^{\perp} = \ker(T)$ und $((\ker(T^*))^{\perp} = \overline{\operatorname{im}(T)})$.

c) Sei nun $\overline{\operatorname{im}(T-\lambda I)}\neq H$. Zeigen Sie, dass λ^* ein Eigenwert von T^* ist, also dass ein $0\neq u\in H$ existiert mit

$$T^*u = \lambda^*u$$
.

Aufgabe 10.3 4 Punkte

[2+1+1 Punkte]

Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum und $T \in \mathcal{L}(H)$. Zeigen Sie die folgenden Aussagen.

- (a) T ist normal genau dann, wenn $||Tx|| = ||T^*x||$ für alle $x \in H$. Folgern Sie, dass für normale Operatoren $T \in \mathcal{L}(H)$ gilt $\ker(T) = \ker(T^*)$.
- (b) Der Operator $S = T^*T$ ist selbstadjungiert und $\ker(S) = \ker(S^k)$ für alle $k \in \mathbb{N} \setminus \{0\}$.
- (c) T ist invertierbar genau dann, wenn T von unten beschränkt ist (vgl. Aufgabe 8.2) und $\ker(T^*) = 0$. Folgern Sie, dass normale Operatoren $T \in \mathcal{L}(H)$ bereits invertierbar sind, wenn sie lediglich von unten beschränkt sind.

Aufgabe 10.4 4 Punkte

[1+2+1] Punkte

Sei $(H, \langle \cdot, \cdot \rangle)$ ein Hilbertraum, $V \subset H$ eine abgeschlossener Unterraum und $P \in \mathcal{L}(H)$.

- (a) Nehmen Sie an, dass $P^2 = P$. Zeigen Sie, dass $\ker(P)$ und $\operatorname{im}(P)$ abgeschlossen sind.
- (b) Beenden Sie den Beweis von Satz 4.16, d.h. sei P die Projektion auf V. Zeigen Sie, dass P selbstadjungiert ist und $P^2 = P$ erfüllt.
- (c) Nehmen Sie an, dass $P^2 = P$. Zeigen Sie, dass $||P|| \ge 1$ oder P = 0. Folgern Sie, dass für Projektionen stets gilt $||P|| \in \{0, 1\}$.