§ 8. Твердые тела

При решении задач этого раздела используются данных таблиц 11, 12, 13 из приложения, кроме того, следует учесту указание к § 5.

8.1. Изменсние энтропии при плавлении количесть $\nu=1$ кмоль льда $\Delta S=22.2$ кДж/К. На сколько изменится температура плавления льда при увеличении внешнего давления $\rho=100$ кПа?

Решение:

Согласно уравнению Клаузиуса — Клапейрона изменение температуры $\Delta T = \frac{\Delta p T \left(V_{**} - V_{**}\right)}{q_0}$ — (1). Изменение энтро-

пии $\Delta S = \frac{m\lambda_0}{T} = \frac{\nu q_0}{T}$ — (2), где λ_0 — удельная теплота плавления, q_0 — молярная теплота плавления, m — масса. Из (2) $\frac{T}{q_0} = \frac{\nu}{\Delta S}$, подставляя это выражение в (1), получим $\Delta T = \Delta p (V_{\pi} - V_{\tau}) \frac{\nu}{\Delta S} = 0,009 \, \text{K}$.

8.2. При давлении $p_1 = 100$ кПа температура плавления олова $t_1 = 231,9^{\circ}$ С, а при давлении $p_2 = 10$ МПа она равна $t_2 = 232,2^{\circ}$ С. Плотность жидкого олова $\rho = 7,0\cdot 10^3$ кг/м³. Найти изменение энтропин ΔS при плавлении количества $\nu = 1$ кмоль олова.

Решение:

Из уравнения Клаузиуса — Клапейрона находим изменение температуры $\Delta T = \frac{\Delta p T (V_{**} - V_{1})}{q_{0}}$ — (1). С другой сто-

роны, изменение энтропии $\Delta S = \frac{m\lambda_0}{T} = \frac{iq_0}{T}$ — (2), где λ_0 — удельная теплота плавления, q_0 — молярная теплота плавления. Из уравнений (1) и (2) имеем $\Delta S = \frac{\Delta p(V_* - V_*)\nu}{\Delta T} = \frac{(p_2 - p_1)(V_* - V_*)\nu}{T_2 - T_1}$. Поскольку молярные объемы твердого и жидкого олова соответственно равны $V_{\rm T} = \frac{\mu}{\rho_{\rm T}}$ и $V_{\rm W} = \frac{\mu}{\rho_{\rm W}}$, то, окончательно, получим $\Delta S = \frac{(p_2 - p_1)(\rho_{\rm T} - \rho_{\rm W})\mu\nu}{(T_2 - T_1)\rho_{\rm T}\rho_{\rm W}} = 15.5 \,\mathrm{кДж/K}.$

8.3. Температура плавления железа изменяется на $\Delta T = 0.012 \,\mathrm{K}$ при изменении давления на $\Delta p = 98 \,\mathrm{k}\Pi a$. На сколько меняется при плавлении объем количества $\nu = 1 \,\mathrm{kmonb}$ железа?

Из уравнения Клаузиуса — Клапейрона находим изме-

Решение:

нение температуры плавления $\Delta T = \frac{\Delta p T (V_{\text{ж}} - V_{\text{т}})}{q_0}$, отсюда $\Delta V_{\text{м}} = V_{\text{ж}} - V_{\text{т}} = \frac{q_0 \Delta T}{T \Delta p}$ — изменение молярного объема, тогда $\Delta V = \nu \Delta V_{\text{м}} = \frac{q_0 \nu \Delta T}{T \Delta p}$. Т. к. удельная и молярная теплота плавления связаны между собой как $q_0 = \mu \lambda_0$, тогда,

окончательно, $\Delta V = \frac{\mu \lambda_0 v \Delta T}{T \Delta p} = 1.03 \text{ л.}$

8.4. Пользуясь законом Дюлонга и Пти, найти удельную теплоемкость c: а) меди; б) железа; в) алюминия.

При очень низких температурах для твердых тел имеет место закон Дюлонга и Пти, согласно которому молярная теплоемкость всех химически простых твердых тел равна приблизительно 3R = 25 Дж/(моль·К). С другой стороны, удельная и молярная теплоемкости связаны соотношением $c = \mu c$, тогда $3R = \mu c$, откуда $c = 3R / \mu$. а) Молярная масса меди $\mu = 63,55 \cdot 10^{-3}$ кг/моль, отсюда c = 393 Дж/(моль·К). б) Молярная масса железа $\mu = 55,84 \cdot 10^{-3}$ кг/моль, тогда c = 448 Дж/(моль·К). в) Молярная масса алюминия $\mu = 26.98 \cdot 10^{-3}$ кг/моль, тогда c = 927 Дж/(моль·К).

8.5. Пользуясь законом Дюлонга и Пти, найти, из какого материала сделан металлический шарик массой $m=0.025\,\mathrm{kr}$, если известно, что для его нагревания от $t_1=10^{\circ}\,\mathrm{C}$ до $t_2=30^{\circ}\,\mathrm{C}$ потребовалось затратить количество теплоты $Q=117\,\mathrm{Дж}$.

Решение:

Затраченное количество теплоты можно найти по формуле $Q=mc(T_2-T_1)$. Согласно закону Дюлонга и Пти молярная теплоемкость $C\approx 3R$. Молярная и удельная теплоемкости связаны соотношением $C=\mu c$, откуда $c=\frac{C}{\mu}=\frac{3R}{\mu}$. Тогда $Q=m\frac{3R}{\mu}(T_2-T_1)$, откуда $\mu=\frac{3mR(T_2-T_1)}{Q}$. Подставив числовые данные, найдем $\mu=0,107\,\mathrm{kr/moлb}$, следовательно. шарик сделан из серебра.

8.6. Пользуясь законом Дюлонга и Пти, найти, во сколько разудельная теплоемкость алюминия больше удельной теплоемкости платины.

Удельная теплоемкость всех химически простых твердых тел (см. задачу 8.4) $c = \frac{3R}{\mu}$, тогда $\frac{c_1}{c_2} = \frac{\mu_2}{\mu_1} = 7,23$.

8.7. Свинцовая пуля, летящая со скоростью $v = 400 \,\mathrm{M/c}$, ударяется о стенку и входит в нее. Считая, что 10% кинетической энергии пули идет на ее нагревание, найти, на сколько градусов нагрелась пуля. Удельную теплоемкость свинца найти по закону Дюлонга и Пти.

Решение:

Кинетическая энергия пули $W_{\rm K}=\frac{mv^2}{2}$. Количество тепла, полученное пулей, $Q=cm\Delta T$. Удельная теплоемкость всех химически простых твердых тел (см. задачу 8.4) $c=\frac{3R}{\mu}$, тогда $Q=\frac{3Rm\Delta T}{\mu}$. Согласно закону сохранения энергии $Q=\eta W_{\rm K}$, тогда $\frac{3Rm\Delta T}{\mu}=\frac{\eta mv^2}{2}$, откуда изменение температуры $\Delta T=\frac{\eta \mu v^2}{6R}=66$ К.

8.8. Пластинки из меди (толщиной $d_1 = 9$ мм) и железа (толщиной $d_2 = 3$ мм) сложены вместе. Внешняя поверхность медной пластинки поддерживается при температуре $t_1 = 50^{\circ}$ С, внешняя поверхность железной — при температуре $t_2 = 0^{\circ}$ С. Найти температуру t поверхности их соприкосновения. Площадь пластинок велика по сравнению с толщиной.

Количество теплоты, прошедшее через сложенные вместе медную и железную пластинки, определяется формулой

$$Q=\lambda_1 rac{t_1-t}{d_1} S_r = \lambda_2 rac{t-t_2}{d_2} S_r$$
 , откуда температура

поверхности соприкосновения
$$t = \frac{\lambda_1 t_1 d_2 + \lambda_2 t_2 d_1}{\lambda_1 d_2 + \lambda_2 d_1} = 34,5$$
° С.

8.9. Наружная поверхность стены имеет температуру $t_1 = -20^{\circ}$ С, внутренняя — температуру $t_2 = 20^{\circ}$ С. Толшина стены d = 40 см. Найти теплопроводность λ материала стены, если через единицу ее поверхности за время $\tau = 1$ ч проходит количество теплоты Q = 460.5 кДж/м².

Решение:

Количество теплоты Q, переносимое вследствие теплопроводности за время $\Delta \tau$, определяется формулой $Q = \lambda \frac{\Delta T}{\Delta x} = \Delta S \Delta \tau$, где $\frac{\Delta T}{\Delta x}$ — градиент температуры в направлении, перпендикулярном площадке ΔS , λ — теплопроводность. В нашем случае $\Delta T = T_2 - T_1$, $\Delta x = d$, $\Delta S = 1 \,\mathrm{m}^2$ и $\Delta \tau = \tau$, тогда $Q = \frac{(T_2 - T_1)\lambda \tau}{d}$. Отсюда теплопроводность $\lambda = \frac{Qd}{(T_2 - T_1)\tau} = 1,28 \,\mathrm{Bt/(m\cdot K)}$.

8.10. Какое количество теплоты Q теряет за время $\tau=1\,\mathrm{mus}$ комната с площадью пола $S=20\,\mathrm{m}^2$ и высотой $h=3\,\mathrm{m}$ через четыре кирпичные стены? Температура в комнате $t_1=15\,^{\circ}\,\mathrm{C}$, температура наружного воздуха $t_2=-20\,^{\circ}\,\mathrm{C}$. Теплопроволность кирпича $\lambda=0.84\,\mathrm{Bt/(m\cdot K)}$. Толщина стен $d=50\,\mathrm{cm}$. Потерями тепла через пол и потолок пренебречь.

В первом приближении комнату можно считать квадратной, тогда площадь боковых стен $\Delta S = 4ah$, где $a = \sqrt{S}$, следовательно, $\Delta S = 4\sqrt{S}h$. Количество тепла, потерянное комнатой за время τ (см. задачу 8.9), равно

$$Q = \frac{\left(T_1 - T_2\right)\lambda\Delta S\tau}{d} = \frac{4\left(T_1 - T_2\right)\lambda\sqrt{S}h\tau}{d} = 190 \text{ кДж.}$$

8.11. Один конец железного стержня поддерживается при температуре $t_1 = 100^{\circ}$ С, другой упирается в лед. Длина стержня I = 14 см, площадь поперечного сечения S = 2 см². Найти количество теплоты Q_{τ} , протекающее в единицу времени вдоль стержня. Какая масса m льда растает за время $\tau = 40$ мин? Потерями тепла через стенки пренебречь.

Решение:

Количество теплоты, протекающее в единицу времени вдоль стержня, $Q_{\tau} = \frac{Q}{\Delta \tau} = \frac{(T_1 - T_0) \lambda S}{l} = 8,38 \, \text{Дж/c}$. Т. к. по условию потерями тепла через стенки можно пренебречь, то по закону сохранения энергии $Q_{\tau}\tau = qm$, откуда

$$m = \frac{Q_{\tau}\tau}{q} = 60 \text{ r.}$$

8.12. Площадь поперечного сечения медного стержня $S = 10 \text{ cm}^2$, длина стержня l = 50 cm. Разность температур на концах стержня $\Delta T = 15 \text{ K}$. Какое количество теплоты Q_r проходит в единицу времени через стержень? Потерями тепла пренебречь.

Решение:

Количество тепла, проходящее за единицу времени через стержень (см. задачу 8.11), $Q_r = \frac{\Delta T \lambda S}{I} = 11,7 \; \text{Дж/c}.$

8.13. На плите стоит алюминиевая кастрюля диаметром D=15 см, наполненная водой. Вода кипит, и при этом за время $\tau=1$ мин образуется масса $m=300\,\mathrm{r}$ водяного пара. Найти температуру t внешней поверхности дна кастрюли, если толщина его d=2 мм. Потерями тепла пренебречь.

Решение:

Количество тепла, которое поучает кастрюля за время τ , $Q = \frac{(T-T_{\rm K})\lambda S\tau}{d}$. Т. к. по условию потерями тепла можно пренебречь, то Q=rm, тогда по закону сохранения энергии $\frac{(t-t_{\rm K})\lambda S\tau}{d}=rm$. Отсюда, с учетом того, что площадь дна кастрюли $S=\frac{\pi D^2}{4}$, температура внешней поверхности дна кастрюли $t=\frac{4drm}{2\pi D^2\tau}+t_{\rm K}=106^{\circ}\,{\rm C}.$

8.14. Металлический цилиндрический сосуд радиусом R=9 см наполнен льдом при температуре $t_1=0$ ° С. Сосуд теплоизолирован слоем пробки толщиной d=1 см. Через какое время τ весь лед, находящийся в сосуде, растает, если температура наружного воздуха $t_2=25$ ° С? Считать, что обмен тепла происходит только через боковую поверхность сосуда средним радиусом $R_0=9.5$ см.

Решение:

Объем сосуда $V = \pi R^2 h$, где h — высота сосуда, тогда масса льда в сосуде $m = \rho V = \rho \pi R^2 h$. Количество тепла, необходимое для расплавления всего льда в сосуде $Q = qm = q \rho \pi R^2 h$. Т. к. по условию теплообмен идст только через боковую поверхность, то ее площадь $\Delta S = 2\pi R_0 h$, тогда количество тепла, проходящее через 400

боковую поверхность за время τ : $Q = \frac{(t_2 - t_1)\lambda 2\pi R_0 h \tau}{d}$. По закону сохранения энергин $q\rho R^2 = \frac{2(t_2 - t_1)\lambda R_0 \tau}{d}$, откуда $\tau = \frac{q\rho R^2 d}{2(t_2 - t_1)\lambda R_0} = 28.6$ часов.

8.15. Какую силу F надо приложить к концам' стального стержня с площадью поперечного сечения $S = 10 \text{ см}^2$, чтобы не дать ему расшириться при нагревании от $t_0 = 0^{\circ}$ C до $t = 30^{\circ}$ C?

Решение:

Чтобы стержень не удлинялся при нагревании, его нужно сжимать с силой $F = \frac{\Delta lES}{l_0}$ — (1), где E — модуль Юнга, $\Delta l = l - l_0 = l_0 at$ — (2) — изменение длины стержня при нагревании. Подставляя (2) в (1), найдем $F = ESat = 71 \,\mathrm{kH}$.

8.16. К стальной проволоке радиусом r = 1 мм подвешен груз. Под действием этого груза проволока получила такое же удлинение, как при нагревании на $\Delta t = 20^{\circ}$ С. Найти массу m груза.

Решение:

14-3268

При повышении температуры длина твердых тел возрастает, в первом приближении, линейно с температурой: $l=l_0(1+at)$, где l и l_0 — длина стержня соответственно при температуре t и t_0 . Тогда относительное удлинение $\frac{l-l_0}{l}=\frac{\Delta l}{l}=a\Delta t$, откуда $\Delta l=la\Delta t$ — (1). где a — температурный коэффициент линейного расширения. С другой стороны, по закону Гука $\frac{\Delta l}{l}=\frac{p}{E}=\frac{mg}{SE}$ где $S=\pi R^2$ — площадь поверхностного сечения прово-

401

локи, E — модуль Юнга, тогда $\Delta l = \frac{lmg}{\pi R^2 E}$ — (2). Приравнивая левые части уравнений (1) и (2), получим $a\Delta t = \frac{mg}{\pi r^2 E}$, откуда масса стержня $m = \frac{\pi r^2 E a \Delta t}{g} = 15$ кг.

8.17. Медная проволока натянута горячей при температуре $t_1 = 150^{\circ}$ С между двумя прочными неподвижными стенками. При какой температуре t_2 , остывая, разорвется проволока? Считать, что закон Гука справедлив вплоть до разрыва проволоки.

Решение:

Длина проволоки при температуре t_1 и t_2 соответственно равна $l_1 = l_0 (1 + at_1)$ и $l_2 = l_0 (1 + at_2)$. При остывании проволока укоротится на $\Delta l = l_1 - l_2 = l_0 a (t_1 - t_2)$ — (1), где a — температурный коэффициент линейного расширения. Проволока разорвется, если $\frac{\Delta l}{l_0} \geq \frac{p_{max}}{E}$ — (2), где E — модуль Юнга, p_{max} — предел прочности меди. В предельном случае из (1) и (2) имеем $a(t_1 - t_2) = \frac{p_{max}}{E}$, откуда $t_2 = t_1 - \frac{p_{max}}{aE} = 20^{\circ}$ С.

8.18. При нагревании некоторого металла от $t_0 = 0^{\circ}$ С до $t = 500^{\circ}$ С его плотность уменьшается в 1,027 раза. Найти для этого металла коэффициент линейного расширения a, считая его постоянным в данном интервале температур.

Решение:

Плотность металла при температуре t равна $\rho = m/V$ тогда его плотность при температуре t_0 равна $\rho_0 = m/V_0$. Относительное изменение объема металла при нагревании 402

$$\frac{\Delta V}{V_0} = \frac{V - V_0}{V_0} = \frac{\frac{m}{\rho} - \frac{m}{\rho_0}}{\frac{m}{\rho_0}} = \frac{\rho_0 - \rho}{\rho}$$
, или $\frac{\Delta V}{V_0} = \frac{\rho_0}{\rho} - 1$ — (1).

С другой стороны, $\frac{\Delta V}{V_0} = b\Delta T$, где b — температурный коэффициент объемного расширения. Т. к. металл изотропный, то температурный коэффициент линейного расширения $a = \frac{b}{3}$, тогда $\frac{\Delta V}{V_0} = 3a(t-t_0)$ — (2). Приравнивая в выражениях (1) и (2) правые части, имеем $\frac{\rho_0}{\rho} - 1 = 3a(t-t_0)$, откуда температурный коэффициент ли-

нейного расширения $a = \frac{\rho_0 / \rho - 1}{3(t - t_0)} = 1.8 \cdot 10^{-5} \,\mathrm{K}^{-1}$.

8.19. Какую длину l_0 должны иметь при температуре $t_0 = 0^{\circ}$ С стальной и медный стержни, чтобы при любой температуре стальной стержень был длиннее медного на $\Delta l = 5$ см?

Решение:

Для любой температуры длина стального стержня равна $l_1 = l_{01} (1+a_1t) = l_{01} + l_{01}a_1t$ — (1), медного стержня — $l_2 = l_{02} (1+a_2t) = l_{02} + l_{02}a_2t$ — (2). По условию $l_1 - l_2 = \Delta l$, $l_{01} - l_{02} = \Delta l$ — (3). Решая совместно (1) — (3), получим $a_1l_{01} = a_2l_{02}$ — (4). Из уравнений (3) и (4) найдем длины обоих стержней при $l_0 = 0^{\circ}$ С: $l_{02} = \frac{\Delta la_1}{a_2 - a_1} = 11$ см, $l_{01} = l_{02} + \Delta l = 16$ см.

8.20. На нагревание медной болванки массой m=1 кг, нахо-дящейся при температуре $t_0=0^{\circ}$ С, затрачено количество тепло-

ты Q = 138,2 кДж. Во сколько раз при этом увеличился ее объем? Удельную теплоемкость меди найти по закону Дюлонга и Пти.

Решение:

Относительное изменение объема металла при нагревании от температуры t_0 до температуры t (см. задачу 8.18)

$$\frac{\Delta V}{V_0} = 3a(t - t_0)$$
, откуда $\frac{V}{V_0} = 3a(t - t_0) + 1$ — (1). Количество

тепла, израсходованное на нагревание болванки $Q = cm(t - t_0)$, где c — удельная теплоемкость меди,

которая по закону Дюлонга и Пти равна $c = \frac{3R}{\mu}$, где μ —

молярная масса меди. Тогда $Q = \frac{3Rm}{\mu}(t-t_0)$, откуда раз-

ность температур $t-t_0=\frac{Q\mu}{3Rm}$. После подстановки последнего выражения в уравнение (1) окончательно имеем $\frac{V}{V_0}=\frac{aQ\mu}{Rm}+1=1{,}02\;.$

8.21. При растяжении медной проволоки, поперечное сечение которой $S=1,5~{\rm mm}^2$, начало остаточной деформации наблюдалось при нагрузке $F=44,1~{\rm H}$. Каков предел упругости p материала проволоки?

Решение:

Пределом упругости называется минимальное давление, при котором тело, после снятия нагрузки, уже не способно вернуться из деформированного состояния в первоначальное. По определению давления найдем $p_n = \frac{F}{S} = 29,4 \, \mathrm{M}\Pi \mathrm{a}.$

8.22. Каким должен быть предельный диаметр d стального троса, чтобы он выдержал нагрузку F = 9.8 кН?

Чтобы трос выдержал данную нагрузку, необходимо выполнение условия: $\frac{F}{S} \leq P_{max}$, где $S = \frac{\pi d^2}{4}$ — площадь поперечного сечения троса, $p_{max} = 785\,\mathrm{M}\Pi a$ — предел прочности стали. В предельном случае $\frac{4F}{\pi d^2} = P_{max}$, откуда $d^2 = \frac{4F}{\pi p_{max}}$ или $d = \sqrt{\frac{F}{\pi p_{max}}} = 4\,\mathrm{MM}$.

8.23. Найти длину *l* медной проволоки, которая, будучи подвешена вертикально, начинает рваться под действием собственной силы тяжести.

Решение:

Чтобы проволока начала рваться, необходимо выполнение условия: $\frac{mg}{S} \ge p_{max}$, где $m = \rho V = \rho Sl$ — масса проволоки, $p_{max} = 245\,\mathrm{M}\Pi a$ — предел прочности меди. В предельном случае $\rho gl = p_{max}$, откуда $l = \frac{p_{max}}{\rho g} = 2.9\,\mathrm{km}$.

8.24. Решить предыдущую задачу для свинцовой проволоки.

Решение:

Чтобы проволока начала рваться, необходимо выполнение условия: $\frac{mg}{S} \ge p_{max}$, где $m = \rho V = \rho Sl$ — масса проволоки, $p_{max} = 20 \, \mathrm{M\Pi a}$ — предел прочности свинца. В предельном случае $\rho gl = p_{max}$, откуда $l = \frac{p_{max}}{\rho g} = 180 \, \mathrm{m}$.

8.25. Для измерения глубины моря с парохода спустили гирю на стальном тросе. Какую наибольшую глубину *l* можно изме-

рить таким способом? Плотность морской воды $\rho = 1 \cdot 10^3 \text{ кг/м}^3$. Массой гири по сравнению с массой троса пренебречь.

Решение

На трос действует сила тяжести, направленная вниз, и сила Архимеда, направленная вверх, поэтому (см. залачу 8.22) $\frac{mg - F_A}{c} \le p_{max}$. Macca троса $m = \rho_{x}V = \rho_{x}lS$, а сила Архимеда равна весу воды, вытесненной тросом, т.е. $F_{\Delta} = \rho_{\tau} gV = \rho_{\tau} glS$. Тогда в предельном случае имеем $(\rho_{**} - \rho_{*})gl = p_{max}$, откуда $l = \frac{p_{max}}{(\rho_{**} - \rho_{**})g} = 11,9$ км.

8.26. С крыши дома свешивается стальная проволока длиной $l = 40 \,\mathrm{m}$ и диаметром $d = 2 \,\mathrm{mm}$. Какую нагрузку F может выдержать эта проволока? На сколько удлинится эта проволока. если на ней повиснет человек массой $m = 70 \,\mathrm{kr}$? Будет ли наблюдаться остаточная деформация, когда человек отпустит проволоку? Предел упругости стали p = 294 МПа.

Решение: Чтобы проволока выдержала нагрузку, т.е. не разорвалась. необходимо выполнение условия: $\frac{m_0 g + F}{c} \le p_{max}$, где $m_0 = \rho V = \rho l S$ — масса проволоки, $p_{max} = 785 \,\mathrm{MHa}$ — предел прочности стали. Площадь поперечного сечения проволоки $S = \frac{\pi d^2}{A}$, тогда в предельном случае имеем $\frac{\rho l \pi d^2 g + 4F}{\sigma^{-1/2}} = p_{max}$, откуда максимальная нагрузка, которую выдерживает проволока: $F = \frac{(p_{max} - \rho \lg)\pi d^2}{4} = 2,45$ кH.

Если на проволоке повиснет человек, то по закону Гука 406

 $\frac{\Delta l}{l} = \frac{p}{E}$, где E = 216 ГПа — модуль Юнга стали, $p = \frac{(m_0 + m)g}{S} = \frac{(\rho l \pi d + 4m)g}{\pi d^2} = 221 \text{ M}\Pi a$ — суммарное давление человека и собственного веса проволоки. Тогда удлинение проволоки $\Delta l = \frac{pl}{F} = 4$ см. Поскольку $p < p_{_{\rm H}}$, где $p_{\rm H} = 294\,{\rm M}\Pi a$ — предел прочности стали, то остаточная деформация наблюдаться не будет.

8.27. К стальной проволоке раднусом r = 1 мм подвешен груз массой m = 100 кг. На какой наибольший угол α можно отклонить проволоку с грузом, чтобы она не разорвалась при прохождении этим грузом положения равновесия?

Решение:

На проволоку действует сила тяжести тф и равновесия $F-mg=ma_n$, где a_n — \vec{a}_n нормальное ускорение. В стартовом положении, при отклонении на угол α , нормальное ускорение $a_n=0$, тогда $F\cos\alpha-mg=0$, откуда $F=\frac{mg}{\cos\alpha}$. Провосила упругости \vec{F} . По второму закону

лока разорвется, если $\frac{F}{S} \ge p_{max}$, где $S = \pi r^2$ — площадь поперечного сечения проволоки, p_{max} — предел прочности стали. Следовательно, в предельном случае имеем $\frac{mg}{\pi r^2 \cos \alpha} = p_{max}$, откуда $\cos \alpha = \frac{mg}{\pi r^2 p_{max}}$, следовательно, наибольший угол $\alpha = \arccos\left(\frac{mg}{\pi r^2 p_{max}}\right) = 75.5^{\circ}$.

8.28. К железной проволоке длиной l = 50 см и днаметром d = 1 мм привязана гиря массой m = 1 кг. С какой частотой n можно равномерно вращать в вертикальной плоскости такую проволоку с грузом, чтобы она не разорвалась?

Решение:

Проволока будет максимально удлиняться в крайнем нижнем положении, т.е. сила тяжести в любой точке всегда направлена вертикально вниз. Следовательно, для крайнего нижнего положения по второму закону Ньютона имеем $F - mg = ma_n$ — (1), где $a_n = \frac{v^2}{l}$ — нормальное ускорение Пилажительное положения по втором закону Ньютона имеем I — нормальное ускорение пилажительное ускорение ускорение пилажительное ускорение где $a_n = \frac{v^2}{l}$ — нормальное ускорение. Линейная скорость вращения гири $v = \frac{2\pi l}{T} = 2l\pi n$, где T и nсоответственно период и частота вращения гири, тогда нормальное ускорение $a_n = 4l\pi^2 n^2$ — (2). Из уравнений (1) и (2) сила упругости проволоки $F = m(g + 4l\pi^2 n^2)$. Чтобы проволока не разорвалась, необходимо, чтобы $\frac{F}{S} \le p_{max}$, или, в предельном случае, $\frac{4m(g+4\pi^2n^2l)}{\pi d^2} = p_{max}$, откуда частота вращения гири $n = \sqrt{\frac{p_{max}\pi d^2 - 4mg}{16\pi^2 lm}} = 3,4$ Гц.

8.29. Однородный медный стержень длиной l=1м равномерно вращается вокруг вертикальной оси, проходящей через один из его концов. При какой частоте вращения стержень разорвется?

Решение:

На стержень действует центрооежная сила $F = \int_0^1 r\omega^2 dm$, где ω — угловая скорость вращения, r — расстояние от 408

элемента массы dm, до оси вращения. Для однородного стержня $dm = \rho S dr$, где ρ — плотность материала стержня и S — его сечение. Тогда $F = \omega^2 \rho S \int_0^l r dr$ или, после интегрирования, $F = \frac{\rho S \omega^2 l^2}{2}$. Поскольку $\omega = 2\pi n$, то предельная частота вращения $n = \frac{1}{\pi l} \sqrt{\frac{F}{2 \rho S}} = 38 \text{ об/c}$.

8.30. Однородный стержень равномерно вращается вокруг вертикальной оси, проходящей через его середину. Стержень разрывается, когда скорость конца стержня достигает $v = 380 \,\mathrm{m/c}$. Найти предел прочности p материала стержня. Плотность материала стержня $\rho = 7.9 \cdot 10^3 \,\mathrm{kr/m}^3$.

Решение:

Центробежная сила, действующая на стержень, в данном случае $F = \int\limits_0^{l} r\omega^2 dm$, где ω — угловая скорость вращения, r — расстояние от элемента массы dm до оси вращения. Для однородного стержня $dm = \rho S dr$, где ρ — плотность материала стержня и S — его сечение. Произведя интегрирование, получим $F = \frac{\rho S \omega^2 l^2}{8}$. Угловая и линейная скорости вращения связаны соотношением $v = \omega \frac{l}{2}$, тогда $F = \frac{\rho S v^2}{2}$. Стержень разорвется, если $\frac{F}{S} \ge p_{max}$, тогда предел прочности материала стержня $p_{max} = \frac{\rho v^2}{2} = 570 \, \mathrm{MHa}$.

8.31. К стальной проволоке длиной l=1м и радиусом r=1 мм подвесили груз массой m=100 кг. Найти работу A растяжения проволоки.

Решение:

Согласно закону Гука относительное удлинение $\frac{\Delta l}{l} = \alpha p_{_{\rm H}} = \frac{1}{E} \frac{F}{S}$, откуда $F = \frac{SE}{l} \Delta l$ — (1). Для сил упругости имеем $F = k \Delta l$. Тогда коэффициент упругости $k = \frac{SE}{l}$. Отсюда работа $A = k \frac{(\Delta l)^2}{2} = \frac{SE(\Delta l)^2}{2l}$ — (2). Поскольку растягивающая сила F = mg, то из (1) $\Delta l = \frac{mgl}{SE}$, где $S = \pi r^2$. Тогда из (2) $A = \frac{m^2g^2l}{2\pi r^2E}$. Подставляя числовые данные, получим A = 0.706 Дж.

8.32. Из резинового шнура длиной $l=42\,\mathrm{cm}$ и радиусом $r=3\,\mathrm{mm}$ сделана рогатка. Мальчик, стреляя из рогатки, растянул резиновый шнур на $\Delta l=20\,\mathrm{cm}$. Найти модуль Юнга для этой резины, если известно, что камень массой $m=0.02\,\mathrm{kr}$, пущенный из рогатки, полетел со скоростью $v=20\,\mathrm{m/c}$. Изменением сечения шнура при растяжении пренебречь.

Решение:

По закону сохранения энергии потенциальная энергия упругого взаимодействия переходит в кинетическую энергию камня, т.е. $W_{\rm II}=W_{\rm K}$. Потенциальная энергия упругого взаимодействия $W_{\rm II}=\frac{\beta(\Delta l)^2}{2}$, а кинетическая энергия камня $W_{\rm K}=\frac{mv^2}{2}$, тогда $\frac{\beta(\Delta l)^2}{2}=\frac{mv^2}{2}$. Отсюда коэффициент жесткости резины $\beta=\frac{mv^2}{(\Delta l)^2}$, тогда по закону

Гука сила упругости резины $F = \beta \Delta l = \frac{mv^2}{\Delta l}$. Предел упругости $p_{_{\rm H}} = \frac{F}{S} = \frac{mv^2}{\pi r^2 \Delta l}$ — (1). С другой стороны, из закона Гука $\frac{\Delta l}{l} = \frac{p_{_{\rm H}}}{E}$, предел упругости резины $p_{_{\rm H}} = \frac{E\Delta l}{l}$ — (2). Приравняем правые части уравнений (1) и (2), тогда $\frac{mv^2}{\pi r^2 \Delta l} = \frac{E\Delta l}{l}$, откуда модуль Юнга резины равен $E = \frac{mv^2 l}{\pi r^2 (\Delta l)^2} = 2,97$ МПа.

8.33. Имеется резиновый шланг длиной $l=50\,\mathrm{cm}$ и внутренним диаметром $d_1=1\,\mathrm{cm}$. Шланг натянули так, что его длина стала на $\Delta l=10\,\mathrm{cm}$ больше. Найти внутренний диаметр d_2 натянутого шланга, если коэффициент Пуассона для резины $\sigma=0.5$.

Решение:

При растяжении внутренний диаметр шланга уменьшится на $\Delta d = \beta d_1 \frac{F}{S}$. Согласно закону Гука $\frac{\Delta l}{l} = \alpha p_{_{\rm H}} = \alpha \frac{F}{S}$, откуда $\frac{F}{S} = \frac{\Delta l}{\alpha l}$. Тогда $\Delta d = \beta d_1 \frac{1}{\alpha} \frac{\Delta l}{l} = \frac{\sigma d_1 \Delta l}{l}$. Поскольку $d_2 = d_1 - \Delta d$, следовательно, $d_2 = d_1 \left(1 - \frac{\sigma \Delta l}{l}\right) = 9 \cdot 10^{-3}\,{\rm M}$.

8.34. На рис. AB — железная проволока, CD — медная проволока такой же длины и с таким же поперечным сечением, BD — стержень длиной l=80 см. На стержень подвесили груз массой m=2 кг. На каком расстоянии x от точки B надо его подвесить, чтобы стержень остался горизонтальным?

Чтобы стержень остался горизонтальным, необходимо, чтобы моменты сил упругости F_1 и F_2 относительно точки подвеса груза были равны по величине, т.е. $F_1x = F_2(l-x)$ — (1). Из закона Гука $\frac{\Delta l}{l} = \frac{p_{\rm H}}{E}$. При равных длинах и деформациях

железной и медной проволоки имеем $\frac{p_{\rm H\,I}}{E_1}=\frac{p_{^{\prime}2}}{E_2}$, где E_1 и E_2 — модули Юнга соответственно железа и меди. Т. к. площади поперечных сечений железной и медной проволоки равны, то $\frac{p_{^{\prime}1}}{p_{^{\prime}2}}=\frac{F_1}{F_2}$ или $\frac{F_1}{E_1}=\frac{F_2}{E_2}$ — (1). Из уравнений (1) и (2) имеем $\frac{l-x}{x}=\frac{E_1}{E_2}$, откуда расстояние $x=\frac{E_2l}{E_1+E_2}=0.3$ м.

8.35. Найти момент пары сил M, необходимый для закручивания проволоки длиной l=10 см и радиусом r=0.1 мм на угол $\varphi=10'$. Модуль сдвига материала проволоки $N=4.9\cdot 10^{10}$ Па.

Решение:

Для закручивания проволоки на некоторый угол φ необходимо приложить момент пары сил, называемый закручивающим моментом $M = \frac{\pi N r^4}{2l} \varphi$, где l — длина проволоки, r — радиус ее сечения, φ — угол поворота, измеря-412

емый в радианах. Для перевода угла φ в радианную меру решим две пропорции: если $\begin{cases} 1^o-60',\\ x^o-10', \end{cases}$ то $x=0,167^\circ$; если $\begin{cases} 180^\circ-\pi\\ 0,167^\circ-x \end{cases}$ (в радианах), то x=0,003 рад. Произведя вычисления, получим $M=2,26\cdot 10^{-7}$ Н·м.

8.36. Зеркальце гальванометра подвешено на проволоке длиной $l=10\,\mathrm{cm}$ и диаметром $d=0.01\,\mathrm{mm}$. Найти закручивающий момент M, соответствующий отклонению зайчика на величину $a=1\,\mathrm{mm}$ по шкале, удаленной на расстояние $L=1\,\mathrm{m}$ от зеркальца. Модуль сдвига материала проволоки $N=4\cdot 10^{10}\,\mathrm{\Pi a}$.

Решение:

Имеем
$$M=\frac{\pi Nd^4}{2l\cdot 16}\varphi$$
. При повороте зер-
кальца гальванометра на угол φ отраженный луч повернется на угол 2φ , при этом $tg2\varphi=\frac{a}{L}$. Поскольку угол φ мал, то $tg\varphi\approx\varphi$, следовательно, $\varphi=\frac{a}{2L}$. Тогда $M=\frac{\pi Nd^4a}{64\cdot ll}=1,96\cdot 10^{-13}$ Н·м.

8.37. Найти потенциальную энергию W проволоки длиной l=5 см и диаметром d=0.04 мм, закрученной на угол $\varphi=10'$. Модуль сдвига материала проволоки $N=5.9\cdot 10^{10}\, \Pi$ а.

Решение:

При повороте проволоки на угол $d\varphi$ совершается работа $dA = Md\varphi$, где M — закручивающий момент. За счет этой

работы закрученная проволока приобретает потенциальную энергию W . Поскольку закручивающий момент

$$M=rac{\pi Nr^4 arphi}{2l}$$
 , то $W=A=rac{\pi Nr^4}{2l}\int\limits_0^{arphi} arphi darphi=rac{\pi Nr^4 arphi^2}{4l}$. Подставляя

числовые данные, получим $W = 1.25 \cdot 10^{-12}$ Дж.

8.38. При протекании электрического тока через обмотку гальванометра на его рамку с укрепленным на ней зеркальцем действует закручивающий момент $M = 2 \cdot 10^{-13} \, \text{H·м.}$ Рамка при этом поворачивается на малый угол φ . На это закручивание идет работа $A = 8.7 \cdot 10^{-16} \, \text{Дж.}$ На какое расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале, удаленной на расстояние α переместится зайчик от зеркальца по шкале α переместите α переместится зайчик от зеркальца по шкале α переместите α переместите

Решение:

При повороте рамки на угол $d\varphi$ совершается работа пары сил $2dA = Md\varphi$, где M — закручивающий момент. Тогда

полная работа
$$2A = \int\limits_0^\varphi M d\varphi = M \varphi$$
, откуда $\varphi = \frac{2A}{M}$ — (1).

Перемещение зайчика по шкале равно длине дуги окружности радиусом R=l, соответствующей углу φ , тогда $a=L\cdot tg2\varphi\approx L\cdot 2\varphi$, т. к. по условию угол φ — малый. Тогда, с учетом (1), $a=\frac{4LA}{M}=17.4$ мм.

8.39. Найти коэффициент Пуассона σ , при котором объем проволоки при растяжении не меняется.

Решение:

Первоначальный объем проволоки $V_1 = Sl = \pi r^2 i$. После растяжения ее объем стал $V_2 = \pi (r - \Delta r)^2 (l + \Delta l)$. Поскольку 414

объем при растяжении не изменился, то $m^2l = \pi(r-\Delta r)^2(l+\Delta l);$ $m^2l = \pi(r^2-2r\Delta r+\Delta r^2)(l+\Delta l).$ Величиной Δr^2 можно пренебречь, тогда, раскрывая скобки, получим $r^2l = r^2l - 2r\Delta rl + r^2\Delta l - 2r\Delta r\Delta l$. Отсюда, пренебрегая величиной $2r\Delta r\Delta l$, получим $\frac{\Delta rl}{r\Delta l} = \frac{1}{2}$. Коэффициент Пуассона $\sigma = \frac{\beta}{\alpha} = \frac{\Delta rl}{r\Delta l}$, следовательно, $\sigma = 0.5$.

8.40. Найти относительное изменение плотности цилиндрического медного стержия при сжатии его давлением $p_{\rm H} = 9.8 \cdot 10^7$ Па. Коэффициент Пуассона для меди $\sigma = 0.34$.

Решение:

Плотность несжатого стержня $\rho_1 = \frac{m}{V_1}$, где первоначальный объем $V_1 = Sl = \pi r^2 l$. Плотность сжатого стержня $\rho_2 = \frac{m}{V_2}$, где $V_2 = \pi (r + \Delta r)^2 (l - \Delta l)$. Тогда изменение плотности $\Delta \rho = \rho_2 - \rho_1$; $\Delta \rho = m \left(\frac{1}{V_2} - \frac{1}{V_1} \right) = \frac{m \Delta V}{V_2 V_1}$. Т. к. изменение объема очень мало, то можно принять приближенно $V_2 V_1 = V_1^2$. Тогда $\Delta \rho = \frac{m \Delta V}{V_1^2}$ и $\frac{\Delta \rho}{\rho_1} = \frac{\Delta V}{V_1}$. Изменение объема равно $\Delta V = \pi r^2 l - \pi (r + \Delta r)^2 (l - \Delta l)$. Преобразуя данное выражение, получим $\Delta V = \pi r^2 l - \pi \left[\left(r^2 + 2r \Delta r + \Delta r^2 \right) (l - \Delta l) \right]$. Величиной Δr^2 можно пренебречь, ввиду ее малости, тогда $\Delta V = \pi r^2 l - \pi \times 415$

$$\times \left(r^2l + 2r\Delta rl - r^2\Delta l - 2r\Delta r\Delta l\right); \ \Delta V = \pi r^2l - \pi r^2l \times \\ \times \left(1 + \frac{2\Delta r}{r} - \frac{\Delta l}{l} - \frac{2\Delta r\Delta l}{rl}\right). \ \text{Величина} \ \frac{2\Delta r\Delta l}{rl} \ \text{ очењь мала, ею}$$
 также можно пренебречь, тогда $\Delta V = \pi r^2l\left(\frac{\Delta l}{l} - \frac{2\Delta r}{r}\right);$
$$\Delta V = \pi r^2l\frac{\Delta l}{l}\left(1 - \frac{2\Delta rl}{r\Delta l}\right). \ \text{Поскольку} \ \pi r^2l = V_1, \ \text{а} \ \frac{\Delta rl}{r\Delta l} = \sigma \ , \ \text{то}$$
 последнюю формулу можно записать так:
$$\Delta V = V_1\frac{\Delta l}{l}\left(1 - 2\sigma\right). \ \text{Отсюда} \ \text{ отношение} \ \frac{\Delta \rho}{\rho_1} = \frac{\Delta V}{V_1} =$$

$$= \frac{\Delta l}{l}\left(1 - 2\sigma\right). \ \text{По закону Гука} \ \frac{\Delta l}{l} = \frac{P}{E}, \ \text{где} \ E \ - \text{ модуль}$$
 Юнга, для меди $E = 118\ \Gamma \Pi a. \ \text{Тогда} \ \frac{\Delta \rho}{\rho_1} = \frac{P}{E}\left(1 - 2\sigma\right).$ Подставляя числовые данные, получим $\frac{\Delta \rho}{\rho_1} = 0.027\%.$

8.41. Железная проволока длиной l=5 м висит вертикально. На сколько изменится объем проволоки, если к ней привязать гирю массой m=10 кг? Коэффициент Пуассона для железа $\sigma=0.3$.

Решение:

Первоначальный объем проволоки $V_1 = Sl = \pi r^2 l$. После того как к ней привязали гирю, проволока вытянулась и ее объем стал $V_2 = \pi (r - \Delta r)^2 (l + \Delta l)$. Изменение объема $\Delta V = \pi (r - \Delta r)^2 (l + \Delta l) - \pi r^2 l$. Преобразуя данное выражение, получим $\Delta V = \pi \left[(r^2 - 2r\Delta r + \Delta r^2)(l + \Delta l) \right] - \pi r^2 l$. Величиной Δr^2 можно пренебречь, ввиду ее малости, тогда $\Delta V = \pi (r^2 l - 2r\Delta r l + r^2\Delta l + 2r\Delta r\Delta l) - \pi r^2 l$;

 $\Delta V = \pi r^2 l \left(1 - \frac{2\Delta r}{r} + \frac{\Delta l}{l} + \frac{2\Delta r \Delta l}{rl} \right) - \pi r^2 l$. Величина $\frac{2\Delta r \Delta l}{rl}$

очень мала, сю также можно пренебречь, следовательно, $\Delta V = \pi r^2 l \left(\frac{\Delta l}{l} - \frac{2\Delta r}{r} \right)$ или $\Delta V = \pi r l \frac{\Delta l}{l} \left(1 - \frac{2\Delta r l}{r \Delta l} \right)$. Посколь-

ку $\pi^{2}l = V_{1}$, а $\frac{\Delta rl}{m^{2}l} = \sigma$, то последнюю формулу можно

записать так: $\Delta V = V_1 \frac{\Delta l}{l} (1 - 2\sigma)$. По закону Гука $\frac{\Delta l}{l} = \frac{P}{F}$,

— модуль Юнга, для железа $E = 196 \, \Gamma \Pi a$. Нормальное напряжение равно $P = \frac{F}{S}$, где растягивающая

сила F = mg. Тогда $\Delta V = Sl \frac{mg}{c_F} (1 - 2\sigma) = \frac{lmg}{c} (1 - 2\sigma)$. Подставляя числовые данные, получим $\Delta V = 1 \, \text{мм}^3$.