

About the Beamer class in presentation making A short story

E. Cominato 137396¹

¹Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università degli studi di Udine

Very Large Conference, April 2013

Definition 1 (Plant)

A plant automaton is a tuple $\mathcal{P} = (Q, \Sigma_c, \delta, q)$ where Q is a finite set of states, Σ_c is a set of controller commands, $\delta: Q \times \Sigma_c \longmapsto 2^Q$ is the transition function and $q_o \in Q$ is an initial state.

Definition 2 (Controllers)

A controller (strategy) for a plant specified by $\mathcal{P} = (Q, \Sigma_c, \delta, q)$ is a function $C: Q^+ \longmapsto \Sigma_c$. A simple controller is a controller that can be written as a function $C: Q^+ \longmapsto \Sigma_c$.

Definition 3 (Trajectories)

Let \mathcal{P} ne a plant and let $C: Q^+ \longmapsto \Sigma_c$ be a controller. An infinite sequence of states $\alpha: q[0], q[1], \ldots$ such that $q[0] = q_0$ is called a trajectory of \mathcal{P} if

$$q[i+1] \in \bigcup_{\sigma \in \Sigma_c} \delta(q[i], \sigma)$$

Definition 4 (Acceptance Condition)