A Proof Sketch Of Something Which May Possibly Be A Conjecture of Oege de Moor

Nick Benton
Microsoft Research
nick@microsoft.com

December 6, 2000

This note puports to prove something which Oege de Moor presented as an open problem in a talk entitled "Pointwise Relations" at the Computer Laboratory on December 1st. Since I've rephrased everything in terms with which I'm more familiar¹ (and may well have misunderstood or misremembered what he said), it's entirely possible that it doesn't, however.

Oege starts with a simply-typed lambda calculus. This is given two interpretations, one in \mathbb{S} et and one in \mathbb{R} el. Now \mathbb{R} el is the Kleisli category of the powerset monad \mathbb{P} on \mathbb{S} et and I believe that Oege's direct relational semantics is the same one as you get by factoring through the call-by-value translation into Moggi's computational metalanguage and then interpreting that in \mathbb{S} et with $T = \mathbb{P}$. The call-by-value translation has the following shape:

$$(\Gamma \vdash M : A)^* = \Gamma^* \vdash M^* : T(A^*)$$

where

Types
$$G^* = G G$$
 a ground type $(A \times B)^* = A^* \times B^*$ $(A \to B)^* = A^* \to T(B^*)$

Terms in Context

$$\begin{array}{rcl} (\Gamma,x:A\vdash x:A)^* &=& \Gamma^*,x:A^*\vdash \operatorname{val} x:T(A^*) \\ (\Gamma\vdash (M\ N):B)^* &=& \Gamma^*\vdash (\operatorname{let} x\ \Leftarrow M^*\ \operatorname{in}\, (\operatorname{let} y\ \Leftarrow N^*\ \operatorname{in} x\ y)):T(B^*) \\ (\Gamma\vdash (\lambda x:A.M):A\to B)^* &=& \Gamma^*\vdash \operatorname{val}\, (\lambda x:A^*.M^*):A^*\to T(B^*) \end{array}$$

The val (·) form is interpreted by the unit of the monad and let $\cdot \Leftarrow \cdot$ in \cdot by Kleisli composition.

I don't think that what follows depends on anything that's very specific to Set or the powerset monad, but I haven't got around to rewriting it in an element-free way in terms of CCCs with relations and seeing just what the

¹ "Mathematicians are like Frenchmen: whatever you say to them, they translate into their own language and forthwith it is something entirely different." – Goethe.

conditions are. Not only will I be frightfully uncategorical, but I'll also confuse syntax and semantics all over the place, confident that the i's can be dotted and the ℓ 's crossed if there's any interest . . .

We start by defining a relation \mathcal{R}_A between (the interpretations of) A and A^* for each type A of the source language. To deal with the fact that we've got computation types around, we'll also need a trivial auxiliary relation \mathcal{R}_A^T which relates A with $T(A^*)$:

$$\begin{array}{ccc}
x \ \mathcal{R}_G \ y & \iff & x = y \\
f \ \mathcal{R}_{A \to B} \ g & \iff & \forall x \in A, y \in A^*.x \ \mathcal{R}_A \ y \Rightarrow (f \ x) \ \mathcal{R}_B^T \ (g \ y) \\
x \ \mathcal{R}_A^T \ y & \iff & \exists y' \in A^*.(y = \operatorname{val} y') \land (x \ \mathcal{R}_A \ y')
\end{array}$$

(Probably hiding ' η is mono' in the computation type case.) A simple induction on terms in context yields the usual "fundamental theorem of logical relations":

Lemma 1. If
$$x_1:A_1,\ldots x_n:A_n\vdash M:B$$
 and for all $1\leq i\leq n\vdash V_i:A_i$, $\vdash W_i:A_i^*$, and $V_i\mathrel{\mathcal{R}}_AW_i$, then $M[V_i/x_i]\mathrel{\mathcal{R}}_A^TM^*[W_i/x_i]$.

The above should be read with semantic brackets in appropriate places and probably with W and V being elements of the model rather than terms (and thus composition instead of substitution), but it doesn't make any difference.

But Oege's theorem actually looked something like this:

Where A° and B° are the relational interpretations of the types A and B, M° is the relational interpretation of the term M with one free variable. The $(\cdot)^+$ and $(\cdot)^-$ are inductively defined translations which replace function spaces in the original type by 'relation spaces' in all positive (resp. negative) positions. There are canonical coercion functions $A^- \to A$, $A \to A^+$, $A^- \to A^{\circ}$ and $A^{\circ} \to A^+$ which are defined in the 'obvious' way. Note that it's relational composition along the bottom of the diagram.

What does that look like in terms of explicit computational types? I confi-

dently assert (but am too lazy to check) that it's this:

Where

$$G^{+} = G$$

 $G^{-} = G$
 $(A \to B)^{+} = A^{-} \to T(B^{+})$
 $(A \to B)^{-} = A^{+} \to B^{-}$

 $\quad \text{and} \quad$

$$\begin{array}{rcl} e_{G}(g) & = & g \\ p_{G}(g) & = & g \\ e_{G}^{*}(g) & = & g \\ p_{G}^{*}(g) & = & g \\ e_{A \to B}(f) & = & e_{B} \circ f \circ p_{A} \\ p_{A \to B}(f) & = & \eta \circ p_{B} \circ f \circ e_{A} \\ e_{A \to B}^{*}(f) & = & \eta \circ e_{B}^{*} \circ f \circ p_{A}^{*} \\ p_{A \to B}^{*}(f) & = & T(p_{B}^{*}) \circ f \circ e_{A}^{*} \end{array}$$

I claim that this is implied by Lemma 1, which requires me to connect the logical relation and all those funny es and ps:

Proposition 2. For any type A

1.
$$\forall x \in A^-. e_A(x) \mathcal{R}_A e_A^*(x);$$

2.
$$\forall x \in A, y \in A^*$$
. $x \mathcal{R}_A y \Rightarrow p_A(x) = p_A^*(y)$.

Proof. The two parts are proved simultaneously by induction on A. The base case is trivial, whilst for function types we reason as follows:

1. If $f \in (A \to B)^-$, we want to know that $e_{A\to B}(f)$ $\mathcal{R}_{A\to B}$ $e_{A\to B}^*(f)$. Expanding the definitions that's

$$(e_B \circ f \circ p_A) \ \mathcal{R}_{A o B} \ (\eta \circ e_B^* \circ f \circ p_A^*)$$

By the definition of $\mathcal{R}_{A \to B}$ that means we have to show that for any a,b with $a \ \mathcal{R}_A \ b$

$$(e_B \circ f \circ p_A)(a) \ \mathcal{R}_B^T \ (\eta \circ e_B^* \circ f \circ p_A^*)(b)$$

By induction (second part), we know $p_A(a) = p_A^*(b)$ so the above is

$$e_B(f(p_A(a)))$$
 \mathcal{R}_B^T $\eta(e_B^*(f(p_A(a))))$

By the definition of \mathcal{R}_B^T (definitely do want η mono) that holds if

$$e_B(f(p_A(a)))$$
 \mathcal{R}_B $e_B^*(f(p_A(a)))$

which holds by induction (first part).

2. Now assume $f \mathcal{R}_{A \to B} g$ and we want $p_{A \to B}(f) = p_{A \to B}^*(g)$. That's

$$(\eta \circ p_B \circ f \circ e_A) = (T(p_B^*) \circ g \circ e_A^*)$$

so pick an arbitrary $x \in A^-$, then we need show

$$(\eta \circ p_B \circ f \circ e_A)(x) = (T(p_B^*) \circ g \circ e_A^*)(x) \tag{1}$$

By induction (first part), we know $(e_A x) \mathcal{R}_A$ $(e_A^* x)$ and hence, as f and g are related, $(f(e_A x)) \mathcal{R}_B^T$ $(g(e_A^* x))$. By the definition of \mathcal{R}_B^T , that means $g(e_A^* x) = \eta(v)$ for some v such that $(f(e_A x)) \mathcal{R}_B v$. But then

$$T(p_B^*)(g(e_A^* x)) = T(p_B^*)(\eta v)$$

= $\eta(p_B^* v)$ (monad defn.)

So we can establish Equation 1 if we can show

$$(p_B(f(e_A x))) = (p_B^* v)$$

which follows immediately from the fact that $(f(e_A x)) \mathcal{R}_B v$ and induction (second part).

Now, look back at my version of Oege's diagram.

Corollary 3. If $x : A \vdash M : B$ then

$$e_A; [\![M]\!]; p_B; \eta = e_A^*; [\![M^*]\!]; T(p_B^*)$$

Proof. If $x \in A^-$ then $(e_A \ x) \ \mathcal{R}_A \ (e_A^* \ x)$ by part 1 of Proposition 2. Hence, by Lemma 1, $[\![M]\!](e_A \ x) \ \mathcal{R}_B^T \ [\![M^*]\!](e_A^* \ x)$. Hence we're done by part 2 of Proposition 2, just as we were in that proof. (Not suprising, since we're in a CCC.)