

数学Z問題

(120分)

20)

【選択問題】 次の Z1 $\sim Z3$ の3題の中から2題選択し、解答せよ。

- **Z1** 座標平面上で、放物線 $y=x^2-2x-3$ を Cとし、直線 y=2x+2 を ℓ とする。放物線 Cと直線 ℓ で囲まれた図形を Dとする。
 - (1) 図形 D の面積を求めよ。
 - (2) 図形Dのうち,直線y=5の上側にある部分の面積を求めよ。 (配点
- **Z2** 数直線上にある 2 点 P, Q は, それぞれ原点, 4 を表す点を出発点とし, 次の規則によって移動する。

【規則】

1

1個のさいころを投げて

- [1] 1, 2の目が出たとき、Pは正の向きに2だけ、Qは負の向きに2だけ移動する。
- [2] 3の目が出たとき、Pは正の向きに1だけ、Qは負の向きに1だけ移動する。
- [3] 4, 5, 6の目が出たとき, P, Qはともに移動しない。
- (1) さいころを2回投げたとき、PとQの座標が等しくなる確率を求めよ。
- (2) さいころを 3 回投げたとき、P と Q の座標をそれぞれ p, q とする。 $p \ge q$ となる確率 を求めよ。 (配点 20)
- ${f Z3}$ m, n, Nを自然数とし、等式 $m^2(n-1)=N$ ……① を考える。
 - (1) N=4 とする。等式①を満たすm, nの組をすべて求めよ。
- (2) N=600 とする。等式①を満たすm, n の組のうち, m と n が互いに素である組をすべて求めよ。

【選択問題】 次の Z4 , Z5 から1題選択し、解答せよ。

- ${f Z4}$ kは正の定数とする。関数 $f(x)=kxe^{-\frac{x^2}{2}}$ がある。ただし,e は自然対数の底である。
 - (1) 導関数 f'(x) を求めよ。
 - (2) 関数 f(x) の極大値,極小値をkを用いて表せ。また,極大値と極小値の差が $2\sqrt{e}$ であるとき、定数 k の値を求めよ。
 - (3) k を(2)で求めた値とし、a を定数とする。曲線 y=f(x) 上の点 (t, f(t)) における接線が点 A(0, a) を通るような t が $0 \le t \le 2$ に 2 個存在する。このとき、a のとり得る値の範囲を求めよ。

- **Z5** 方程式 $z^2 \sqrt{3}z + 1 = 0$ の解のうち、虚部が正であるものを α とする。また、複素 数 β は等式 $\alpha^{10}(\beta + 2i) + (2\alpha \beta) = 0$ を満たしている。ただし、i は虚数単位である。
 - (1) α を極形式で表せ。ただし、偏角 θ の範囲は $0 \le \theta < 2\pi$ とする。
 - (2) α^{10} を求めよ。また、 β を求めよ。
 - (3) t を 1 でない実数とする。複素数平面上に 3 点 A (α), B(β), C($t\beta$) を b と b , 点 b を 点 b の の 周りに $\frac{\pi}{6}$ だけ回転した点を b とする。 3 点 a , b , b が一直線上にあるとき, b の 値を求めよ。

【必答問題】 Z6 ~ Z8 は全員全問解答せよ。

- **Z6** 平面上に \triangle OAB があり、OA=3、OB=6、 \cos \angle AOB= $-\frac{1}{4}$ である。また、点 P は $3\overrightarrow{OP}+2\overrightarrow{AP}+\overrightarrow{BP}=\overrightarrow{0}$ を満たしている。直線 OP と直線 AB との交点を C とし、 $\overrightarrow{OA}=\overrightarrow{a}$ 、 $\overrightarrow{OB}=\overrightarrow{b}$ とする。
 - (1) 内積 $\overline{a \cdot b}$ の値を求めよ。また、 \overline{OP} を \overline{a} , \overline{b} を用いて表せ。
 - (2) \overrightarrow{OC} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、線分 OC の長さを求めよ。
 - (3) 点 P を通り直線 OC に垂直な直線を m とし、点 B から直線 m に引いた垂線と直線 m との交点を Q とする。 \overline{OQ} を \overline{a} , \overline{b} を用いて表せ。 (配点 40)

 ${f Z7}$ $\triangle ABC$ において、 $\angle B={\pi\over 4}$ 、 $AB=\sqrt{3}$ 、BC=2 である。辺 AC 上に $\angle ABX=\theta$ $\left(0<\theta<{\pi\over 4}\right)$ となるように点 X をとり、直線 BX を引く。

また、点 A、点 C から直線 BX に垂線を下ろし、直線 BX との交点をそれぞれ P、 Q とする。さらに、 $\triangle ABP$ と $\triangle BCQ$ の面積の和を S とする。

- (1) 線分 AP, BP の長さを θ を用いて表せ。また、 \triangle ABP の面積を $\sin 2\theta$ を用いて表せ。
- (2) $S \in \sin 2\theta$, $\cos 2\theta$ を用いて表せ。
- (3) $0 < \theta < \frac{\pi}{4}$ のとき,S の最大値を求めよ。また,そのときの $\sin \theta$, $\cos \theta$ の値をそれぞ れ求めよ。

CALLES AND THE CONTRACTOR OF THE PROPERTY OF T

Z8 a を実数の定数とする。

$$a_1 = a$$
, $a_{n+1} = 3a_n - 2^{n-1}$ $(n = 1, 2, 3, \cdots)$

で定められる数列 {an} がある。

- (1) $b_n = \frac{a_n}{2^n}$ ($n = 1, 2, 3, \dots$) とするとき, $b_{n+1} \in b_n$ を用いて表せ。
- (2) a_n を a , n を用いて表せ。また, $\lim_{n\to\infty}\frac{a_n}{3^n}=\frac{2}{3}$ であるとき,a の値を求めよ。
- (3) (2)のとき, $S_n = \sum\limits_{k=1}^n a_k$ とし、p を正の定数とする。数列 $\left\{ \frac{S_n}{p^n} \right\}$ の極限を調べよ。

(配点 40)