Divisibilidad

Prof. Jhon Fredy Tavera Bucurú

Universidad del Tolima

Divisibilidad

Máximo común divisor

Lema de Euclides

Teorema de Bachet-Bezout

Teorema Fundamental de la Aritmetica

Mínimo Común Múltiplo

Algunas propiedades de los números primos

Divisibilidad

Definición: Divisibilidad

Definición

Dado dos enteros d y a, decimos que d divide a a (o que d es un divisor de a) si existe un entero q tal que:

$$a = qd$$
.

Escribimos d | a para indicar que d divide a a.

Definición: Divisibilidad

Definición

Dado dos enteros d y a, decimos que d divide a a (o que d es un divisor de a) si existe un entero q tal que:

$$a = qd$$
.

Escribimos d | a para indicar que d divide a a.

Ejemplos:

- ▶ $-5 \mid 10$, ya que existe q = -2 tal que 10 = (-2)(-5).
- ▶ $10 \nmid -5$, porque no existe un entero q tal que -5 = 10q.

Lema

Sea $a, b, c, d \in \mathbb{Z}$. Tenemos:

- (i) ("d divide") Si $d \mid a \ y \ d \mid b$, entonces $d \mid (ax + by)$ para cualquier combinación lineal ax + by de a y b con coeficientes $x, y \in \mathbb{Z}$.
- (ii) (Limitación) Si $d \mid a$, entonces a = 0 o $|d| \le |a|$.
- (iii) (**Transitividad**) Si $a \mid b \mid y \mid b \mid c$, entonces $a \mid c$.

Demostración:

(i) "d divide"

Si $d \mid a$ y $d \mid b$, entonces podemos escribir $a = dq_1$ y $b = dq_2$ con $q_1, q_2 \in \mathbb{Z}$. Luego, $ax + by = d(q_1x + q_2y)$. Como $q_1x + q_2y \in \mathbb{Z}$, tenemos $d \mid (ax + by)$.

Demostración:

(i) "d divide"

Si $d \mid a \text{ y } d \mid b$, entonces podemos escribir $a = dq_1 \text{ y } b = dq_2 \text{ con } q_1, q_2 \in \mathbb{Z}$. Luego, $ax + by = d(q_1x + q_2y)$. Como $q_1x + q_2y \in \mathbb{Z}$, tenemos $d \mid (ax + by)$.

(ii) Limitación

Para mostrar $|d| \leq |a|$, supongamos que $d \mid a$ y $a \neq 0$. En este caso, a = dq con $q \neq 0$. Así, $|q| \geq 1$ y |a| = |d||q|, lo que implica $|d| \leq |a|$.

Demostración:

(i) "d divide"

Si $d \mid a \text{ y } d \mid b$, entonces podemos escribir $a = dq_1 \text{ y } b = dq_2 \text{ con } q_1, q_2 \in \mathbb{Z}$. Luego, $ax + by = d(q_1x + q_2y)$. Como $q_1x + q_2y \in \mathbb{Z}$, tenemos $d \mid (ax + by)$.

(ii) Limitación

Para mostrar $|d| \le |a|$, supongamos que $d \mid a$ y $a \ne 0$. En este caso, a = dq con $q \ne 0$. Así, $|q| \ge 1$ y |a| = |d||q|, lo que implica $|d| \le |a|$.

(iii) Transitividad

Si $a \mid b$ y $b \mid c$, entonces existen $q_1, q_2 \in \mathbb{Z}$ tales que $b = aq_1$ y $c = bq_2$. Por lo tanto, $c = a(q_1q_2)$ y $a \mid c$.

4D + 4B + 4B + B + 900

Enunciado:

Encuentre todos los enteros positivos n tales que $2n^2 + 1 \mid n^3 + 9n - 17$.

Enunciado:

Encuentre todos los enteros positivos n tales que $2n^2 + 1 \mid n^3 + 9n - 17$.

Solución:

Utilizando que $2n^2 + 1$ divide para reducir el grado de $n^3 + 9n - 17$, tenemos que:

$$2n^2 + 1 \mid n^3 + 9n - 17,$$

 $2n^2 + 1 \mid 2n^2 + 1.$

Enunciado:

Encuentre todos los enteros positivos n tales que $2n^2 + 1 \mid n^3 + 9n - 17$.

Solución:

Utilizando que $2n^2 + 1$ divide para reducir el grado de $n^3 + 9n - 17$, tenemos que:

$$2n^2 + 1 \mid n^3 + 9n - 17,$$

 $2n^2 + 1 \mid 2n^2 + 1.$

Luego,

$$2n^2 + 1 \mid (n^3 + 9n - 17) \cdot 2 + (2n^2 + 1) \cdot (-n),$$

lo cual implica:

$$2n^2 + 1 \mid 17n - 34$$
.

Como el grado de 17n-34 es menor que el de $2n^2+1$, podemos utilizar la "limitación" para obtener una lista finita de candidatos para n. Tenemos:

$$17n-34 = 0 \Leftrightarrow n = 2 \text{ o } 2n^2+1 \le |17n-34| \Leftrightarrow n = 1, 4, 5.$$

De estos candidatos, solo n = 2 y n = 5 son soluciones.

Dado dos números enteros a y b con $a \neq 0$ o $b \neq 0$, podemos asociar a cada uno de ellos su conjunto de divisores positivos, D_a y D_b respectivamente.

Dado dos números enteros a y b con $a \neq 0$ o $b \neq 0$, podemos asociar a cada uno de ellos su conjunto de divisores positivos, D_a y D_b respectivamente.

La intersección de estos conjuntos $D_a \cap D_b$ es finita (por la "limitación") y no vacía (ya que 1 pertenece a la intersección). Por ser finito, $D_a \cap D_b$ posee un elemento máximo, que es llamado el **máximo divisor común** (MCD) de los números a y b. Denotamos este número por MCD(a, b) tambien lo podemos notar como (a, b)).

Dado dos números enteros a y b con $a \neq 0$ o $b \neq 0$, podemos asociar a cada uno de ellos su conjunto de divisores positivos, D_a y D_b respectivamente.

La intersección de estos conjuntos $D_a \cap D_b$ es finita (por la "limitación") y no vacía (ya que 1 pertenece a la intersección).

Por ser finito, $D_a \cap D_b$ posee un elemento máximo, que es llamado el **máximo divisor común** (MCD) de los números a y b.

Denotamos este número por MCD(a, b) tambien lo podemos notar como (a, b)).

Para a = b = 0, convencionamos que MCD(0,0) = 0.

Dado dos números enteros a y b con $a \neq 0$ o $b \neq 0$, podemos asociar a cada uno de ellos su conjunto de divisores positivos, D_a y D_b respectivamente.

La intersección de estos conjuntos $D_a \cap D_b$ es finita (por la "limitación") y no vacía (ya que 1 pertenece a la intersección).

Por ser finito, $D_a \cap D_b$ posee un elemento máximo, que es llamado el **máximo divisor común** (MCD) de los números a y b.

Denotamos este número por MCD(a, b) tambien lo podemos notar como (a, b)).

Para a = b = 0, convencionamos que MCD(0, 0) = 0.

Cuando MCD(a, b) = 1, decimos que a y b son **primos relativos**.

Ejemplos: Máximo Común Divisor (MCD)

Ejemplo:

Calculemos el MCD de -24 y 36:

Divisores de positivos de -24 son los mismos que los de 24

$$D_{-24} = D_{24} = \{1, 2, 3, 4, 6, 8, 12, 24\}$$

Divisores de 36 : $D_{36} = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$

Intersección: $D_{24} \cap D_{36} = \{1, 2, 3, 4, 6, 12\}$

Por lo tanto, MCD(-24, 36) = 12.

Observación: Los divisores de un número a y de su inverso aditivo -a son los mismos, en particular, $D_a = D_{-a}$.

Lema (Euclides)

 $Si\ a = bq + r$, entonces MCD(a, b) = MCD(b, r).

Lema (Euclides)

Si a = bq + r, entonces MCD(a, b) = MCD(b, r).

Demostración: Basta mostrar que $D_a \cap D_b = D_b \cap D_r$, ya que si estos conjuntos son iguales, en particular sus máximos también serán iguales.

Lema (Euclides)

Si a = bq + r, entonces MCD(a, b) = MCD(b, r).

Demostración: Basta mostrar que $D_a \cap D_b = D_b \cap D_r$, ya que si estos conjuntos son iguales, en particular sus máximos también serán iguales.

Si $d \in D_a \cap D_b$, tenemos $d \mid a \text{ y } d \mid b$, luego $d \mid a - bq$ implica $d \mid r$ y, por lo tanto, $d \in D_b \cap D_r$.

Lema (Euclides)

Si a = bq + r, entonces MCD(a, b) = MCD(b, r).

Demostración: Basta mostrar que $D_a \cap D_b = D_b \cap D_r$, ya que si estos conjuntos son iguales, en particular sus máximos también serán iguales.

Si $d \in D_a \cap D_b$, tenemos $d \mid a \text{ y } d \mid b$, luego $d \mid a - bq$ implica $d \mid r$ y, por lo tanto, $d \in D_b \cap D_r$.

De la misma forma, si $d \in D_b \cap D_r$, tenemos $d \mid b$ y $d \mid r$, luego $d \mid bq + r$ implica $d \mid a$ y, así, $d \in D_a \cap D_b$.

Lema (Euclides)

Si a = bq + r, entonces MCD(a, b) = MCD(b, r).

Demostración: Basta mostrar que $D_a \cap D_b = D_b \cap D_r$, ya que si estos conjuntos son iguales, en particular sus máximos también serán iguales.

Si $d \in D_a \cap D_b$, tenemos $d \mid a \text{ y } d \mid b$, luego $d \mid a - bq$ implica $d \mid r$ y, por lo tanto, $d \in D_b \cap D_r$.

De la misma forma, si $d \in D_b \cap D_r$, tenemos $d \mid b$ y $d \mid r$, luego $d \mid bq + r$ implica $d \mid a$ y, así, $d \in D_a \cap D_b$.

Por lo tanto, MCD(a, b) = MCD(b, r).

Cual es el $MCD(26^{64}+1,26^{16}+1)$? este ejercicio es un caso particular de...

Cual es el $MCD(26^{64} + 1, 26^{16} + 1)$? este ejercicio es un caso particular de...

Enunciado:

Sean $m \neq n$ dos números naturales. Demostrar que

$$\mathsf{MCD}(a^{2^m}+1,a^{2^n}+1) = egin{cases} 1 & \mathsf{si}\ a\ \mathsf{es}\ \mathsf{par}, \\ 2 & \mathsf{si}\ a\ \mathsf{es}\ \mathsf{impar}. \end{cases}$$

Cual es el $MCD(26^{64} + 1, 26^{16} + 1)$? este ejercicio es un caso particular de...

Enunciado:

Sean $m \neq n$ dos números naturales. Demostrar que

$$MCD(a^{2^m}+1, a^{2^n}+1) =$$

$$\begin{cases} 1 & \text{si } a \text{ es par,} \\ 2 & \text{si } a \text{ es impar.} \end{cases}$$

Solución:

Supongamos sin pérdida de generalidad que m > n y observemos la factorización

$$a^{2^m} - 1 = (a^{2^{m-1}} + 1)(a^{2^{m-2}} + 1)\cdots(a^{2^n} + 1)(a^{2^n} - 1).$$

Note que cada producto adiciona 1 al exponente

Por lo tanto,

$$a^{2^m} + 1 = (a^{2^n} + 1) \cdot q + 2,$$

con $q \in \mathbb{Z}$, y así

$$MCD(a^{2^m} + 1, a^{2^n} + 1) = MCD(a^{2^n} + 1, 2).$$

Finalmente, $MCD(a^{2^n} + 1, 2)$ es igual a 2 si $a^{2^n} + 1$ es par, es decir, si a es impar; y es igual a 1 en caso contrario.

Algoritmo de Euclides

Si 0 < b < a, aplicamos el algoritmo de división y escribimos:

$$a = bq_1 + r_1, \quad 0 \le r_1 < b.$$

Algoritmo de Euclides

Si 0 < b < a, aplicamos el algoritmo de división y escribimos:

$$a = bq_1 + r_1, \quad 0 \le r_1 < b.$$

Si $r_1 = 0$, entonces $b \mid a$ y MCD(a, b) = b. Si no, aplicamos nuevamente el algoritmo para obtener:

$$b = r_1 q_2 + r_2, \quad 0 \le r_2 < r_1.$$

Algoritmo de Euclides

Si 0 < b < a, aplicamos el algoritmo de división y escribimos:

$$a = bq_1 + r_1, \quad 0 \le r_1 < b.$$

Si $r_1 = 0$, entonces $b \mid a$ y MCD(a, b) = b. Si no, aplicamos nuevamente el algoritmo para obtener:

$$b = r_1 q_2 + r_2, \quad 0 \le r_2 < r_1.$$

Si $r_2 \neq 0$ repetimos el proceso, hasta llegar, a lo sumo en b pasos, a un residuo cero, obteniendo las siguientes ecuaciones:

$$a = bq_1 + r_1, \quad 0 < r_1 < b,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{k-2} = r_{k-1}q_k + r_k, \quad 0 < r_k < r_{k-1},$$

$$r_{k-1} = r_kq_{k+1} + 0.$$

$$a = bq_1 + r_1, \quad 0 < r_1 < b,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{k-2} = r_{k-1}q_k + r_k, \quad 0 < r_k < r_{k-1},$$

$$r_{k-1} = r_kq_{k+1} + 0.$$

La aplicación repetida del Lema de Euclides nos permite afirmar que:

$$\mathsf{MCD}(a,b) = \mathsf{MCD}(b,r_1) = \mathsf{MCD}(r_1,r_2) = \cdots = \mathsf{MCD}(r_{k-1},r_k) = r_k.$$

Teorema (Teorema de Bachet-Bézout)

Sean $a, b \in \mathbb{Z}$. Entonces existen $x, y \in \mathbb{Z}$ tales que:

$$ax + by = MCD(a, b).$$

Por lo tanto, si $c \in \mathbb{Z}$ es tal que $c \mid a$ y $c \mid b$, entonces $c \mid MCD(a,b)$. Es decir podemos escribir el máximo común divisor de dos números enteros como combinación lineal de ellos.

Demostración Teorema Bache-Bézout

demostracion El caso a = b = 0 es trivial (tenemos x = y = 0). En otros casos, consideremos el conjunto de todas las combinaciones lineales positivas de a y b:

$$I(a,b) = \{ax + by : x,y \in \mathbb{Z}\}.$$

Ya que $I(a,b) \neq \emptyset$, por el PBO existe Min(I(a,b)) = d, es decir $d = ax_0 + by_0$. Probaremos que d divide a todos los elementos de I(a,b).

Demostración Teorema Bache-Bézout

demostracion El caso a=b=0 es trivial (tenemos x=y=0). En otros casos, consideremos el conjunto de todas las combinaciones lineales positivas de a y b:

$$I(a,b) = \{ax + by : x,y \in \mathbb{Z}\}.$$

Ya que $I(a,b) \neq \emptyset$, por el PBO existe Min(I(a,b)) = d, es decir $d = ax_0 + by_0$. Probaremos que d divide a todos los elementos de I(a,b).

De hecho, dado $m = ax + by \in I(a, b)$, sean $q, r \in \mathbb{Z}$ el cociente y el resto en el algortimo de la division de m por d, de modo que m = dq + r y $0 \le r < d$.

Ahora note que:

$$r = m - dq = a(x - qx_0) + b(y - qy_0) \in I(a, b).$$

Pero como r < d y d es el menor elemento positivo de I(a,b), se sigue que r no puede ser positivo, es decirr = 0 y, por lo tanto, $d \mid m$.

Ahora note que:

$$r = m - dq = a(x - qx_0) + b(y - qy_0) \in I(a, b).$$

Pero como r < d y d es el menor elemento positivo de I(a,b), se sigue que r no puede ser positivo, es decirr = 0 y, por lo tanto, $d \mid m$.

En particular, como $a, b \in I(a, b)$ tenemos que $d \mid a$ y $d \mid b$ (d es un divisor común), por lo que $d \leq MCD(a, b)$.

Ahora note que:

$$r = m - dq = a(x - qx_0) + b(y - qy_0) \in I(a, b).$$

Pero como r < d y d es el menor elemento positivo de I(a, b), se sigue que r no puede ser positivo, es decirr = 0 y, por lo tanto, $d \mid m$.

En particular, como $a, b \in I(a, b)$ tenemos que $d \mid a$ y $d \mid b$ (d es un divisor común), por lo que $d \leq MCD(a, b)$.

Además, por la propiedad "divide combinación lineal"

$$MCD(a, b) \mid ax_0 + by_0$$

es decir $MCD(a, b) \leq d$

Sean a y b enteros no ambos nulos. Entonces,

MCD(a, b) = 1 si y solo si existen enteros x, y tales que 1 = ax + by.

Sean a y b enteros no ambos nulos. Entonces,

MCD(a, b) = 1 si y solo si existen enteros x, y tales que 1 = ax + by.

Demostración: Si MCD(a, b) = 1, el Teorema de Bache-Bézout garantiza la existencia de tales x y y. Recíprocamente, si existen x y y tales que 1 = ax + by, entonces $MCD(a, b) \mid 1$ y, por lo tanto, MCD(a, b) = 1.

Si $k \neq 0$ entonces (ka, kb) = |k|(a, b)

Si $a \mid bc \ y \ MCD(a, b) = 1$, entonces $a \mid c$.

Demostración: Como $a \mid bc$, existe k tal que bc = ak.

Como MCD(a, b) = 1, existen enteros x y y tales que ax + by = 1.

Por lo tanto:

$$c = c(ax + by) = acx + bcy = acx + aky = a(cx + ky),$$

es decir, $a \mid c$.

Definición: Número Primo

Recordemos que un número natural p>1 se llama **primo** si sus únicos divisores positivos son 1 y p. Un número natural n>1 se llama **compuesto** si admite otros divisores además de 1 y n.

Definición: Número Primo

Recordemos que un número natural p>1 se llama **primo** si sus únicos divisores positivos son 1 y p. Un número natural n>1 se llama **compuesto** si admite otros divisores además de 1 y n. Es decir

p es primo sii p = nm $n, m \in \mathbb{N}$, entonces n = 1 o m = 1.

Observación: El número 1 no es ni primo ni compuesto.

Corolarios

Corolario

Si p es primo y p | ab, entonces p | a o p | b.

Demostración: Si $p \nmid a$, entonces MCD(a, p) = 1, y por el teorema anterior $p \mid b$.

Corolarios

Corolario

Si p es primo y p | ab, entonces p | a o p | b.

Demostración: Si $p \nmid a$, entonces MCD(a, p) = 1, y por el teorema anterior $p \mid b$.

Corolario

Si p es primo y p $\mid a_1 a_2 \dots a_n$, entonces p $\mid a_i$ para algún i, $1 \leq i \leq n$.

Demostración: La demostración es por inducción. El caso base es n=2, que se demuestra con el corolario anterior. Supongamos que el resultado es cierto para n=k, es decir, si $p\mid a_1a_2\ldots a_k$, entonces $p\mid a_i$ para algún $i,\ 1\leq i\leq k$. Ahora, consideremos el caso n=k+1. Si $p\mid a_1a_2\ldots a_ka_{k+1}$, entonces por el corolario anterior, $p\mid a_1a_2\ldots a_k$ o $p\mid a_{k+1}$. Por la hipótesis de inducción, p divide a alguno de los $a_i,\ 1\leq i\leq k+1$. Esto completa la inducción.

Teorema (fundamental de la aritmetica)

Sea $n \geq 2$ un número natural. Podemos escribir n de una única forma como un producto

$$n = p_1 \cdots p_m$$

donde $m \ge 1$ es un natural y $p_1 \le \cdots \le p_m$ son primos.

Demostración: Mostramos la existencia de la factorización de n en primos por inducción. Si n es primo no hay nada que probar (escribimos m=1, $p_1=n$). Si n es compuesto podemos escribir n=ab, $a,b\in\mathbb{N}, 1< a< n, 1< b< n$. Por hipótesis de inducción, a y b se descomponen como producto de primos. Juntando las factorizaciones de a y b (y reordenando los factores) obtenemos una factorización de n.

Vamos ahora a mostrar la unicidad. Sea S el conjunto de todos los números que admiten más de una factorización, Supongamos por absurdo que $S \neq \emptyset$, por el PBO, existe n posee dos factorizaciones diferentes

$$n=p_1\cdots p_m=q_1\cdots q_{m'},$$

con $p_1 \leq \cdots \leq p_m$, $q_1 \leq \cdots \leq q_{m'}$ y que n es mínimo con tal propiedad. Como $p_1 \mid q_1 \cdots q_{m'}$ tenemos $p_1 \mid q_i$ para algún valor de i por el corolario. Luego, como q_i es primo, $p_1 = q_i$ y $p_1 \geq q_1$. Analogamente $p_1 \leq q_1$, por tanto $p_1 = q_1$. Pero

$$\frac{n}{p_1}=p_2\cdots p_m=q_2\cdots q_{m'}.$$

admite una única factorización, por la minimalidad de n, donde m=m' y $p_i=q_i$ para todo i, lo que contradice el hecho de que n tenga dos factorizaciones.

Definición: Mínimo Común Múltiplo

El **mínimo común múltiplo** (MCM) de dos enteros no nulos *a* y *b* es el menor entero positivo que es múltiplo de ambos. Se denota como

$$MCM(a, b)$$
 o simplemente $[a, b]$.

Para que un número m sea el MCM de a y b, deben cumplirse las siguientes condiciones:

- (i) m > 0.
- (ii) $a \mid m \lor b \mid m$ (es decir, m es múltiplo de $a \lor de b$).
- (iii) Si n es un entero tal que $a \mid n$ y $b \mid n$, entonces $m \mid n$ (es decir, m es el menor de todos los múltiplos comunes).

Teorema: Fórmula del Mínimo Común Múltiplo Sean *a* y *b* enteros no nulos. Entonces,

$$[a,b]=\frac{|ab|}{(a,b)},$$

donde (a, b) representa el máximo común divisor de a y b.

Demostración

Sea $m = \frac{|ab|}{(ab)}$. Veamos que m satisface las condiciones (i), (ii) y (iii).

Evidentemente m > 0. Sea d = (a, b), entonces a = Ad y b = Bddonde (A, B) = 1. Así,

$$m = \frac{|ab|}{d} = \frac{|a||b|}{d} = |a||B| = a(\pm B),$$

luego $a \mid m$ y de forma similar $b \mid m$.

Sea ahora n un entero tal que $a \mid n$ y $b \mid n$. Entonces existen enteros r y s tales que n = ar = bs. En consecuencia Adr = Bds y por lo tanto Ar = Bs. Así, $B \mid Ar$ y como (A, B) = 1 se deduce que $B \mid r$, es decir, r = Bt para algún $t \in \mathbb{Z}$.

Reemplazando tenemos:

$$n = ar = a(Bt) = (aB)t = (ab/d)t = \pm mt$$

es decir, $m \mid n$ y se completa la demostración.

Sea $n = \prod_{i=1}^k p_i^{n_i}$ la representación canónica de un entero n, y sea d un entero positivo. Entonces, $d \mid n$ si y sólo si

$$d=\prod_{i=1}^k p_i^{d_i}$$

donde $0 \le d_i \le n_i$ para cada $i, 1 \le i \le k$.

Demostración

Supongamos que $d = \prod_{i=1}^k p_i^{d_i}$ donde $0 \le d_i \le n_i$. Entonces,

$$n = \prod_{i=1}^{k} p_i^{n_i} = \prod_{i=1}^{k} p_i^{n_i - d_i + d_i}$$

$$= \left(\prod_{i=1}^{k} p_i^{n_i - d_i}\right) \left(\prod_{i=1}^{k} p_i^{d_i}\right) = (c)(d)$$

donde $c = \prod_{i=1}^{k} p_i^{n_i - d_i}$ es un entero. Luego $d \mid n$.

Recíprocamente, supongamos que $d \mid n$. Por definición, existe un entero positivo c tal que n = cd.

La unicidad de la representación canónica de n garantiza que los primos que aparecen en la factorización de c y d son los mismos que en la de n. Así:

$$d = \prod_{i=1}^k p_i^{d_i}, \quad c = \prod_{i=1}^k p_i^{c_i}, \quad n = \prod_{i=1}^k p_i^{n_i},$$

donde $d_i \ge 0$, $c_i \ge 0$ y $n_i = d_i + c_i$. Por tanto, d tiene la forma mencionada.

Sean

$$a = \prod_{i=1}^k p_i^{a_i}, \quad b = \prod_{i=1}^k p_i^{b_i},$$

donde p_i es primo para todo i, y $a_i \ge 0$, $b_i \ge 0$ para todo i. Entonces:

$$(a,b) = \prod_{i=1}^{k} p_i^{s_i}$$
 y $[a,b] = \prod_{i=1}^{k} p_i^{t_i}$,

donde

$$s_i = \min\{a_i, b_i\}, \quad t_i = \max\{a_i, b_i\}.$$

Demostración

Sea $d = \prod_{i=1}^k p_i^{s_i}$. Veamos que d satisface las condiciones (i), (ii), (iii).

Es un producto de positivos (i).

Además, como $0 \le s_i \le a_i$ y $0 \le s_i \le b_i$ para cada i, por el teorema anterior $d \mid a$ y $d \mid b$, así que d satisface (ii).

Finalmente, si $f \mid a \ y \ f \mid b$, entonces

$$|f| = \prod_{i=1}^k p_i^{f_i}$$

donde $0 \le f_i \le a_i$ y $0 \le f_i \le b_i$ para cada i, y entonces $|f| \mid d$. Luego $f \mid d$ y así d satisface (iii).

Como $[a, b] = \frac{|ab|}{(a,b)}$ se demuestra el correspondiente resultado para el MCM.

Primos

Observación

Un método simple y eficiente para enteros positivos relativamente pequeños es verificar si el entero dado tiene o no divisores primos menores que él.

Puesto que si n=ab entonces $a \le \sqrt{n}$ o $b \le \sqrt{n}$, es suficiente determinar si algún primo menor o igual a \sqrt{n} es divisor de n.

El número de primos es infinito.

Demostración

—Dada por Euclides—. Supongamos que solo hay un número finito de primos,

$$p_1, p_2, \ldots, p_n,$$

y sea

$$N=p_1p_2\cdots p_n+1.$$

Como N > 1, entonces N es primo o se expresa como producto de primos. Ya que N es mayor que cada uno de los primos p_i , entonces N no es primo.

Además, ningún primo p_i divide a N pues si $p_i \mid N$, entonces

$$p_i \mid (N - p_1 p_2 \cdots p_n) = 1,$$

lo que es imposible.

Esto contradice el TFA (Teorema Fundamental de la Aritmética) y por tanto el número de primos es infinito.