Chensheng Peng

✓ chensheng_peng@berkeley.edu | [(510) 289-7123 | ♦ Homepage

EDUCATION

Ph.D. at UC Berkeley (affiliated with BAIR, BDD)

2023 - Present

Research: 3D Computer Vision

Advisor: Masayoshi Tomizuka

Bachelor at Shanghai Jiao Tong University (SJTU)

2019 - 2023

Electrical and Computer Engineering

GPA: 3.9/4.0

Publications/Preprints

1. Q-SLAM: Quadric Representations for Monocular SLAM. (ECCV 2024 under review) C. Peng, C. Xu, Y. Wang, M. Ding, H. Yang, M. Tomizuka, M. Pavone, and W. Zhan

- 2. DELFlow: Dense Efficient Learning of Scene Flow for Large-Scale Point Clouds. (ICCV 2023) C. Peng, G. Wang, X. Lo, C. Xu, M. Tomizuka, W. Zhan, and H. Wang
- 3. Multi-Modal Object Tracking with Pareto Neural Architecture Search. (IEEE RA-L) C. Peng, Z. Zeng, J. Gao, J. Zhou, X. Wang, C. Zhou, and N. Ye
- 4. Interactive Multi-scale Fusion of 2D and 3D Features for Multi-object Tracking. (IEEE T-ITS) G. Wang*, C. Peng*, J. Zhang, and H. Wang (* equal contribution)
- 5. Object Detection with OOD Generalizable Neural Architecture Search. (ICLR 2023 Workshop) F. Wu, K. Li, J. Gao, C. Peng, L. Hong, E. Xie, Z. Li and N. Ye
- 6. Certifiable out-of-distribution generalization. (AAAI 2023) N. Ye, L. Zhu, J. Wang, Z. Zeng, J. Shao, C. Peng, B. Pan, K. Li, J. Zhu

RESEARCH EXPERIENCE

3D Dense Reconstruction with Monocular SLAM

Jun. 2023 - Nov. 2023

- Improved the accuracy of depth prediction based on the quadratic assumption to correct noisy values.
- Incorporated ray transformer to optimize NeRF given RGB images and corrected depth maps.
- Realized fine-grained reconstruction of 3D scenes and joint optimization of camera tracking.

Efficient Processing of Large-Scale Point Clouds

Jun. 2022 – Mar. 2023

- Conducted research on the efficient processing of large-scale point clouds in autonomous driving.
- Achieved scene flow prediction from large-scale point clouds by reducing the computational complexity.
- Realized real-time processing of dense point clouds with a novel form and a kernel-based grouping technique.

Latency Reduction for Multiple Object Tracking

Nov. 2021 – May. 2022

- Searched for efficient structures of neural networks for feature extraction using Neural Architecture Search.
- Added latency constraint to the traditional DARTs method such that the running time can be reduced.
- Achieved dynamic trade-off between accuracy and latency and real-time performance on edge devices.

Multiple Object Tracking based on Camera-LiDAR Fusion

Nov. 2020 - Oct. 2021

- Led the group and collaborated with members to conduct research in object detection and tracking.
- Fused the features from multiple sensors to improve the performance of multi-object tracking.
- Realized effective soft feature fusion by exploring the spatial relation between LiDAR points and image pixels.

SKILLS

Computer Skills Python, PyTorch, TensorFlow, C/C++, MATLAB

Language Chinese(native), English(fluent)

Last updated: April 14, 2024