CSI - 3105 Design & Analysis of Algorithms Course 6

Jean-Lou De Carufel

Fall 2019

Connected Components of G = (V, E)

The goal is to number the connected components as 1, 2, 3, ... such that for each vertex v,

ccnumber(v) = # of the connected component that v belongs to

Connected Components of G = (V, E)

Algorithm DFS(G)

```
    for all v ∈ V do
    visited(v) = false
    end for
    cc = 0
    for all v ∈ V do
    if visited(v) = false then
    cc = cc + 1
    explore(v)
    end if
```

In exlore(v),

10: end for

- $previsit(v) \equiv "ccnumber(v) = cc"$
- $postvisit(v) \equiv$ " nil "

As usual, assume that the adjacency lists are sorted in alphabetical order.

As usual, assume that the adjacency lists are sorted in alphabetical order. We get the following DFS-forest.

ccnumber = 3

First for-loop : O(|V|) time

Second for-loop:

First for-loop : O(|V|) time Second for-loop :

- \rightarrow explore(u) is called exactly once for each vertex u (this may be part of a recursive call)
- \rightarrow time spent for explore(u), excluding recursive calls, is O(1 + degree(u))

First for-loop : O(|V|) time

Second for-loop:

- \rightarrow explore(u) is called exactly once for each vertex u (this may be part of a recursive call)
- \rightarrow time spent for explore(u), excluding recursive calls, is O(1 + degree(u))

Total time:

$$O\left(|V| + \sum_{u \in V} (1 + degree(u))\right)$$

First for-loop : O(|V|) time

Second for-loop:

- \rightarrow explore(u) is called exactly once for each vertex u (this may be part of a recursive call)
- \rightarrow time spent for explore(u), excluding recursive calls, is O(1 + degree(u))

Total time:

$$O\left(|V| + \sum_{u \in V} (1 + degree(u))\right) = O(|V| + |V| + 2|E|) = O(|V| + |E|)$$

Assume that G = (V, E) is directed **and acyclic**.

Assume that G = (V, E) is directed **and acyclic**.

Topological Sorting (or topological ordering): number the vertices 1, 2, ..., n such that for each edge (u, v),

$$\#(u) < \#(v).$$

Assume that G = (V, E) is directed **and acyclic**.

Topological Sorting (or topological ordering): number the vertices 1, 2, ..., n such that for each edge (u, v),

$$\#(u) < \#(v).$$

If G is cyclic, this is not possible. Do you see why? How to compute such a numbering.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

B gets number 1.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

B gets number 1.

Remove B from G.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

We can pick A or D.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

We can pick A or D.

Let us choose A.

A gets number 2.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of V

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

We can pick A or D.

Let us choose A.

A gets number 2.

Remove A from G.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

D gets number 3.

7 / 12

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

D gets number 3.

Remove D from G.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

C gets number 4.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

Remove C from G.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of V

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

E We can pick E or F.

Let us choose E.

E gets number 5.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of *V*

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

We can pick E or F.

Let us choose E.

E gets number 5.

Remove E from G.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of V

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

F gets number 6.

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of V

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

F gets number 6.

Remove F from G.

7 / 12

Input: A directed acyclic graph G = (V, E)

Output: A topological ordering of V

- 1: k = 1
- 2: while $V \neq \{\}$ do
- 3: Choose a vertex $u \in V$ with indegree 0.
- 4: Give u the number k.
- 5: k = k + 1
- 6: Remove u from G.
- 7: end while

Prenumbers and Postnumbers

Let G = (V, E) be a directed graph. For each vertex $v \in V$, we define the following two numbers with respect to Depth-First-Search.

```
pre(v): the first time we visit v (the time at which explore(v) is called)
```

post(v): the time at which explore(v) is finished

Prenumbers and Postnumbers

Let G = (V, E) be a directed graph. For each vertex $v \in V$, we define the following two numbers with respect to Depth-First-Search.

- pre(v): the first time we visit v (the time at which explore(v) is called)
- post(v): the time at which explore(v) is finished Use variable clock. At start, clock = 1.

$$previsit(v) \equiv pre(v) = clock$$

 $clock = clock + 1$

$$postvisit(v) \equiv post(v) = clock$$

 $clock = clock + 1$

Tree edge:

- \bullet edge $v \longrightarrow u$
- explore(u) is called as a recursive call within explore(v)

Solid edges

Forward edge:

- edge $v \longrightarrow u$ where in the (solid) tree,
- $\cdot u$ is in subtree of v
- $\cdot u$ is not a child of v

Acyclic vs Cyclic

How to decide if a directed graph has a directed cycle?

Lemma

G has a directed cycle if and only if DFS-forest has a back-edge.