AU332 Quiz8 2020/10/9 下午3:03

AU332 Quiz8

*基本信息:

姓名:

学号:

Data Separability

The plots above show points in feature space (x_1, x_2) , also referred to as feature vectors $\mathbf{x} = [x_1 \ x_2]^T$. For each of the following, we will define a function $h(\mathbf{x})$ as a composition of some functions f_i and g_i . For each one, consider the decision rule

$$y(\mathbf{x}) = \begin{cases} \times & h(\mathbf{x}) \ge 0 \\ \bigcirc & h(\mathbf{x}) < 0. \end{cases}$$

Under each composition of functions h, select the datasets for which there exist some **linear** functions f_i and some **nonlinear** functions g_i such that the corresponding decision rule perfectly classifies the data. (Select all that apply)

*1. h(x) = f₁(x) 【多选题】

- (a)
- (b)
 - (c)

*2. $h(x) = f_2(g_1(f_1(x)))$ [多选题]

- (a)
- **(**b)
- (c)

*3. $h(x) = f_4(f_3(f_2(f_1(x))))$ [多选题]

- (a)
- **(**b)
 - (c)

*4. h(x) = g₂(g₁(x)) [多选题]

AU332 Quiz8 2020/10/9 下午3:03

- (a)
- **(**b)
- (c)

Deep Network

Below is a deep network with inputs x_1 , x_2 . The internal nodes are computed below. All variables are scalar values.

Forward propagation: Now, given $x_1 = 1$, $x_2 = -2$, $w_{11} = 6$, $w_{12} = 2$, $w_{21} = 4$, $w_{22} = 7$, $w_{31} = 5$, $w_{32} = 1$, and the same values for x_1 , x_2 above, compute the values of the internal nodes. Please simplify any fractions.

- *5. h_{2:} -10
 - r_{3:} 3
 - s_{1:} 3
 - z: 1

提交

问卷星 提供技术支持