(19) Weltorganisation für geistiges Eigentum Internationales Büro

(10) Internationale Veröffentlichungsnummer WO 2006/103015 A1

(51) Internationale Patentklassifikation:

 C07K 5/10 (2006.01)
 A61K 38/07 (2006.01)

 C07K 5/08 (2006.01)
 A61K 38/06 (2006.01)

 C07K 5/02 (2006.01)
 A61K 38/08 (2006.01)

 C07K 7/02 (2006.01)
 A61K 38/03 (2006.01)

(21) Internationales Aktenzeichen: PCT/EP2006/002617

(22) Internationales Anmeldedatum:

22. März 2006 (22.03.2006)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10 2005 014 245.1 30. März 2005 (30.03.2005) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AICURIS GMBH & CO. KG [DE/DE]; Aprather Weg 18a, 42117 Wuppertal (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): ENDERMANN, Rainer [DE/DE]; In Den Birken 152a, 42113 Wuppertal (DE). EHLERT, Kerstin [DE/DE]; Auf Den

Pöthen 51, 42553 Velbert (DE). RADDATZ, Siegfried [DE/DE]; Jakob-Böhme-Str. 21, 51065 Köln (DE). MICHELS, Martin [DE/US]; 4 Cherrywood Circle, Cheshire, CT 06410 (US). CANCHO-GRANDE, Yolanda [ES/DE]; Christian-Hess-Str. 79, 51373 Leverkusen (DE). WEIGAND, Stefan [DE/DE]; Ahornstr. 21, 82377 Penzberg (DE). FISCHER, Karin [DE/DE]; Schneebacher Weg 20, 42699 Solingen (DE).

- (74) Anwälte: WITTE, Alexander usw.; Witte, Weller & Partner, Postfach 10 54 62, 70047 Stuttgart (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: ANTIBACTERIAL AMIDE-MACROCYCLES V

(54) Bezeichnung: ANTIBAKTERIELLE AMID-MAKROZYKLEN V

insbesondere von bakteriellen Infektionen.

(57) Abstract: The invention relates to antibacterial amide-macrocycles of formula (I), in which R²⁶ represents hydrogen, halogen, amino or methyl, R⁷ represents a group of formula (II), (III), (IV) or (V), where R¹ represents hydrogen or hydroxy and * stands for the bonding point on the carbon atom, and R² represents hydrogen or methyl. The invention also relates to a method for producing said macrocycles, to their use for the treatment and/or prophylaxis of diseases and to their use for producing medicaments for the treatment and/or prophylaxis of diseases, in particular bacterial infections.

(57) Zusammenfassung: Die Erfindung betrifft antibakterielle Amid-Makrozyklen der Formel (I) bei denen R²⁵ gleich Wasserstoff, Halogen, Amino oder Methyl ist, R' gleich eine Gruppe der Formel (I), (II), (III) oder (IV) ist, wobei R' gleich Wasserstoff oder Hydroxy ist, * die Anknüpfstelle an das Kohlenstoffatom ist, . R gleich Wasserstoff oder Methyl ist, und Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten,

WO 2006/103015 A1

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. WO 2006/103015 PCT/EP2006/002617

Antibakterielle Amid-Makrozyklen V

5

25

Die Erfindung betrifft antibakterielle Amid-Makrozyklen und Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere von bakteriellen Infektionen.

In WO 03/106480 und WO 04/012816 werden antibakteriell wirkende Makrozyklen vom Biphenomycin B Typ mit Amid- bzw. Estersubstituenten beschrieben.

In US 3,452,136, Dissertation R. U. Meyer, Universität Stuttgart, Deutschland 1991, Dissertation V. Leitenberger, Universität Stuttgart, Deutschland 1991, Synthesis (1992), (10), 1025-30, J. Chem. Soc., Perkin Trans. 1 (1992), (1), 123-30, J. Chem. Soc., Chem. Commun. (1991), (10), 744, Synthesis (1991), (5), 409-13, J. Chem. Soc., Chem. Commun. (1991), (5), 275-7, J. Antibiot. (1985), 38(11), 1462-8, J. Antibiot. (1985), 38(11), 1453-61, wird der Naturstoff Biphenomycin B als antibakteriell wirksam beschrieben. Teilschritte der Synthese von Biphenomycin B werden in Synlett (2003), 4, 522-526 beschrieben.

Chirality (1995), 7(4), 181-92, J. Antibiot. (1991), 44(6), 674-7, J. Am. Chem. Soc. (1989), 111(19), 7323-7, J. Am. Chem. Soc. (1989), 111(19), 7328-33, J. Org. Chem. (1987), 52(24), 5435-7, Anal. Biochem. (1987), 165(1), 108-13, J. Org. Chem. (1985), 50(8), 1341-2, J. Antibiot. (1993), 46(3), C-2, J. Antibiot. (1993), 46(1), 135-40, Synthesis (1992), (12), 1248-54, Appl. Environ. Microbiol. (1992), 58(12), 3879-8, J. Chem. Soc., Chem. Commun. (1992), (13), 951-3
beschreiben einen strukturell verwandten Naturstoff, Biphenomycin A, der am Makrozyklus eine weitere Substitution mit einer Hydroxygruppe aufweist.

Die Naturstoffe entsprechen hinsichtlich ihrer Eigenschaften nicht den Anforderungen, die an antibakterielle Arzneimittel gestellt werden. Auf dem Markt sind zwar strukturell andersartige antibakteriell wirkende Mittel vorhanden, es kann aber regelmäßig zu einer Resistenzentwicklung kommen. Neue Mittel für eine gute und wirksamere Therapie sind daher wünschenswert.

Eine Aufgabe der vorliegenden Erfindung ist es daher, neue und alternative Verbindungen mit gleicher oder verbesserter antibakterieller Wirkung zur Behandlung von bakteriellen Erkrankungen bei Menschen und Tieren zur Verfügung zu stellen.

Überraschenderweise wurde gefunden, dass bestimmte Derivate dieser Naturstoffe, worin die Carboxylgruppe des Naturstoffs gegen eine Amidgruppe ausgetauscht wird, die eine basische Gruppe enthält, gegen Biphenomycin resistente S. aureus Stämme (RN4220Bi^R und T17) antibakteriell wirksam sind.

Weiterhin zeigen die Derivate gegen S. aureus Wildtyp-Stämme und Biphenomycin resistente S. aureus Stämme eine verbesserte Spontanresistenz-Frequenz.

Gegenstand der Erfindung sind Verbindungen der Formel

5 bei denen

R²⁶ gleich Wasserstoff, Halogen, Amino oder Methyl ist,

R⁷ gleich eine Gruppe der Formel

ist,

10 wobei

R1 gleich Wasserstoff oder Hydroxy ist,

* die Anknüpfstelle an das Kohlenstoffatom ist,

R² gleich Wasserstoff oder Methyl ist,

R³ gleich eine Gruppe der Formel

ist,

wobei

die Anknüpfstelle an das Stickstoffatom ist,

5 A gleich eine Bindung oder Phenyl ist,

R⁴ gleich Wasserstoff, Amino oder Hydroxy ist,

R⁵ eine Gruppe der Formel

ist,

10 worin

die Anknupfstelle an das Kohlenstoffatom ist,

R²³ Wasserstoff oder eine Gruppe der Formel *-(CH₂)_n-OH oder *-(CH₂)_o-NH₂ ist,

worin

- 4. -

die Anknüpfstelle an das Kohlenstoffatom ist,

n und o unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

m eine Zahl 0 oder 1 ist,

R⁸ und R¹² unabhängig voneinander eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

 R^{14} und R^{15} unabhängig voneinander eine Gruppe der Formel

10 sind,

15

20

5

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist.

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6s} gleich Wasserstoff oder Aminoethyl ist,

ođer

 R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8a} und R^{12a} unabhängig voneinander *-(CH₂)_{Z1a}-OH, *-(CH₂)_{Z2a}-NHR^{13a}, *-CONHR^{14a} oder *-CH₂CONHR^{15a} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1a und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{13a} gleich Wasserstoff oder Methyl ist

und

 \mathbb{R}^{14a} und \mathbb{R}^{15a} unabhängig voneinander eine Gruppe der Formel

sind,

worin

10

5

die Anknüpfstelle an das Stickstoffatom ist,

R⁴⁰ gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5c} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6c} gleich Wasserstoff oder Aminoethyl ist,

ke eine Zahl 0 oder 1 ist

15

und

le eine Zahl 1, 2, 3 oder 4 ist,

R^{9a} und R^{11a} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10a} gleich Amino oder Hydroxy ist,

R^{16a} eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

kd eine Zahl 0 oder 1 ist

und

id eine Zahl 1, 2, 3 oder 4 ist,

 R^{18a} und R^{19a} unabhängig voneinander Wasserstoff oder eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R4h gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5h} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6h} gleich Wasserstoff oder Aminoethyl ist,

ođer

R^{5h} und R^{6h} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

kh eine Zahl 0 oder 1 ist

5

10

15

ענ

20

und

lh eine Zahl 1, 2, 3 oder 4 ist,

wobei R^{18a} und R^{19a} nicht gleichzeitig Wasserstoff sind,

ka eine Zahl 0 oder 1 ist,

ea eine Zahl 1, 2 oder 3 ist,

und

la, wa, xa und ya unabhangig voneinander eine Zahl 1, 2, 3 oder 4 sind,

R⁹ und R¹¹ unabhängig voneinander Wasserstoff, Methyl, *-C(NH₂)=NH oder eine Gruppe der Formel

10

15

20

5

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R²⁰ gleich Wasserstoff oder *-(CH₂); NHR²² ist,

worin

R²² gleich Wasserstoff oder Methyl ist

und

eine Zahl 1, 2 oder 3 ist,

R²¹ gleich Wasserstoff oder Methyl ist,

f eine Zahl 0, 1, 2 oder 3 ist,

g eine Zahl 1, 2 oder 3 ist

und

h eine Zahl 1, 2, 3 oder 4 ist,

oder

R⁸ gleich *--(CH₂)_{Z1}-OH ist,

5 worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

Z1 eine Zahl 1, 2 oder 3 ist,

und

R⁹ eine Gruppe der Formel

10

ist,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

und

15

h eine Zahl 1, 2, 3 oder 4 ist,

R¹⁰ gleich Amino oder Hydroxy ist,

 ${\bf R^{16}}$ und ${\bf R^{17}}$ unabhängig voneinander eine Gruppe der Formel

5

10

15

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4b} gleich Wasserstoff, Amino oder Hydroxy ist,

R5b gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6b} gleich Wasserstoff oder Aminoethyl ist,

oder

 ${
m R}^{
m 5b}$ und ${
m R}^{
m 6b}$ bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8b} und R^{12b} unabhängig voneinander *-(CH₂)_{Z1b}-OH, *-(CH₂)_{Z2b}-NHR^{13b}, *-CONHR^{14b} oder *-CH₂CONHR^{15b} sind,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13b} gleich Wasserstoff oder Methyl ist

und

Z1b und Z2b unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

und

 R^{14b} und R^{15b} unabhängig voneinander eine Gruppe der Formel

5

10

$$\begin{array}{c|c}
R^{4g} & R^{5g} \\
\downarrow & \downarrow \\
kg & \downarrow \\
Ig & R^{6g}
\end{array}$$

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4g} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5g} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6g} gleich Wasserstoff oder Aminoethyl ist,

kg eine Zahl 0 oder 1 ist

und

lg eine Zahl 1, 2, 3 oder 4 ist,

 R^{9b} und R^{11b} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10b} gleich Amino oder Hydroxy ist,

kb eine Zahl 0 oder 1 ist,

lb, wb, xb und yb unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

15 R¹⁸ und R¹⁹ unabhängig voneinander Wasserstoff oder eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R⁴⁰ gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5e} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6e} gleich Wasserstoff oder Aminoethyl ist,

oder

5

10

15

R^{5e} und R^{6e} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8e} und R^{12e} unabhängig voneinander *-(CH₂)_{Z1e}-OH oder *-(CH₂)_{Z2e}-NHR^{13e} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R¹³⁶ gleich Wasserstoff oder Methyl ist

und

Z1e und Z2e unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9e} und R^{11e} unabhängig voneinander Wasserstoff oder Methyl sind,

R¹⁰⁰ gleich Amino oder Hydroxy ist,

ke eine Zahl 0 oder 1 ist

und

le, we, xe und ye unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

wobei R¹⁸ und R¹⁹ nicht gleichzeitig Wasserstoff sind,

R²⁴ eine Gruppe der Formel *-CONHR²⁵ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R²⁵ eine Gruppe der Formel

ist,

5 worin

* die Anknüpfstelle an das Stickstoffatom ist,

R4f gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5f} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6f} gleich Wasserstoff oder Aminoethyl ist,

10 oder

15

20

R^{5f} und R^{6f} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R^{8f} und R^{12f} unabhängig voneinander *-(CH₂)_{Z1f}-OH oder *-(CH₂)_{Z2f}-NHR^{13f} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13f} gleich Wasserstoff oder Methyl ist

und

Zlf und Z2f unabhängig voneinander eine Zahl 1, 2 oder 3 sind, R^{9f} und R^{11f} unabhängig voneinander Wasserstoff oder Methyl sind,

- 13 -

R^{10f} gleich Amino oder Hydroxy ist,

kf eine Zahl 0 oder 1 ist

und

lf, wf, xf und yf unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

5 d und e unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

k eine Zahl 0 oder 1 ist.

l, w, x und y unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

w,x oder y unabhängig voneinander bei w, x oder y gleich 3 eine Hydroxy-

Gruppe tragen kann,

10 und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

15

20

Erfindungsgemäße Verbindungen sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, sowie die von Formel (I) umfassten, nachfolgend als Ausführungsbeispiel(e) genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung betrifft deshalb die
Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von
Enantiomeren und/oder Diastereomeren lassen sich durch bekannte Verfahren wie
Chromatographie an chiraler Phase oder Kristallisation mit chiralen Aminen oder chiralen Säuren
die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.

Die Erfindung betrifft in Abhängigkeit von der Struktur der Verbindungen auch Tautomere der Verbindungen.

Als <u>Salze</u> sind im Rahmen der Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen
25 Verbindungen bevorzugt.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasser-

PCT/EP2006/002617

stoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure, Trifluoressigsäure und Benzoesäure.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen auch Salze tiblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin, Arginin, Lysin, Ethylendiamin und Methylpiperidin.

Als <u>Solvate</u> werden im Rahmen der Erfindung solche Formen der Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt.

Halogen steht für Fluor, Chlor, Brom und Jod.

5

10

Ein Symbol # an einem Kohlenstoffatom bedeutet, dass die Verbindung hinsichtlich der Konfiguration an diesem Kohlenstoffatom in enantiomerenreiner Form vorliegt, worunter im Rahmen der vorliegenden Erfindung ein Enantiomerenüberschuss (enantiomeric excess) von mehr als 90% verstanden wird (> 90% ee).

In den Formeln der Gruppen, für die R³ stehen kann, steht der Endpunkt der Linie, neben der jeweils 20 ein * steht, nicht für ein Kohlenstoffatom beziehungsweise eine CH₂-Gruppe sondern ist Bestandteil der Bindung zu dem Stickstoffatom, an das R³ gebunden ist.

In den Formeln der Gruppen, für die R⁷ stehen kann, steht der Endpunkt der Linie, neben der jeweils ein * steht, nicht für ein Kohlenstoffatom beziehungsweise eine CH₂-Gruppe sondern ist Bestandteil der Bindung zu dem Kohlenstoffatom, an das R⁷ gebunden ist.

- 25 Bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), bei denen
 - R²⁶ gleich Wasserstoff, Halogen, Amino oder Methyl ist,
 - R⁷ gleich eine Gruppe der Formel

$$NH_2$$
 NH_2 NH_2 NH_2 NH_2

ist,

wobei

R¹ gleich Wasserstoff oder Hydroxy ist,

* die Anknüpfstelle an das Kohlenstoffatom ist,

R² gleich Wasserstoff oder Methyl ist,

R³ gleich eine Gruppe der Formel

ist,

10 wobei

- die Anknüpfstelle an das Stickstoffatom ist,
- A gleich eine Bindung oder Phenyl ist,

R⁴ gleich Wasserstoff, Amino oder Hydroxy ist,

R⁵ eine Gruppe der Formel

ist,

5 worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R²³ Wasserstoff oder eine Gruppe der Formel *-(CH₂)_n-OH oder *-(CH₂)₀-NH₂ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

n und o unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

m eine Zahl 0 oder 1 ist,

R⁸ und R¹² unabhängig voneinander eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ sind,

15 worin

10

die Anknüpfstelle an das Kohlenstoffatom ist,

R¹⁴ und R¹⁵ unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6a} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8a} und R^{12a} unabhängig voneinander *-(CH₂)_{Z1a}-OH, *-(CH₂)_{Z2a}-NHR^{13a}, *-CONHR^{14a} oder *-CH₂CONHR^{15a} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1a und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{13a} gleich Wasserstoff oder Methyl ist

und

R^{14a} und R^{15a} unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R4c gleich Wasserstoff, Amino oder Hydroxy ist,

10

5

15

20

R50 gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6c} gleich Wasserstoff oder Aminoethyl ist,

ke eine Zahl 0 oder 1 ist

und

le eine Zahl 1, 2, 3 oder 4 ist,

R^{9a} und R^{11a} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10s} gleich Amino oder Hydroxy ist,

R^{16a} eine Gruppe der Formel

10 sind,

5

15

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

kd eine Zahl 0 oder 1 ist

und

ld eine Zahl 1, 2, 3 oder 4 ist,

ka eine Zahl 0 oder 1 ist

20 und

la, wa, xa und ya unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

R⁹ und R¹¹ unabhängig voneinander Wasserstoff, Methyl, *-C(NH₂)=NH oder eine Gruppe der Formel

sind,

5 worin

* die Anknüpfstelle an das Stickstoffatom ist,

R²⁰ gleich Wasserstoff oder *-(CH₂);-NHR²² ist,

worin

R²² gleich Wasserstoff oder Methyl ist

10 und

i eine Zahl 1, 2 oder 3 ist,

R²¹ gleich Wasserstoff oder Methyl ist,

f eine Zahl 0, 1, 2 oder 3 ist,

g eine Zahl 1, 2 oder 3 ist

15 und

h eine Zahl 1, 2, 3 oder 4 ist,

oder

20

R⁸ gleich *--(CH₂)_{Z1}-OH ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1 eine Zahl 1, 2 oder 3 ist,

und

R⁹ eine Gruppe der Formel

$$\begin{array}{c|c} & & \\ & &$$

ist,

5 worin

die Anknüpfstelle an das Stickstoffatom ist,

und

h eine Zahl 1, 2, 3 oder 4 ist,

R¹⁰ gleich Amino oder Hydroxy ist,

10 R¹⁶ und R¹⁷ unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

15 R^{4b} gleich Wasserstoff, Amino oder Hydroxy ist,

R5b gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6b} gleich Wasserstoff oder Aminoethyl ist,

WO 2006/103015

PCT/EP2006/002617

. - 21 -

oder

5

10

15

20

R⁵⁶ und R⁶⁶ bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8b} und R^{12b} unabhängig voneinander *--(CH₂)_{Z1b}-OH, *--(CH₂)_{Z2b}-NHR^{13b}, *-CONHR^{14b} oder *-CH₂CONHR^{15b} sind,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13b} gleich Wasserstoff oder Methyl ist

und

Z1b und Z2b unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

und

R^{14b} und R^{15b} unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4g} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5g} gleich Wasserstoff, Methyl oder Aminoethyl ist.

R^{6g} gleich Wasserstoff oder Aminoethyl ist,

kg eine Zahl 0 oder 1 ist

und

lg eine Zahl 1, 2, 3 oder 4 ist,

5

10

15

20

R% und R116 unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10b} gleich Amino oder Hydroxy ist,

kb eine Zahl 0 oder 1 ist,

lb, wb, xb und yb unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

R¹⁸ und R¹⁹ unabhängig voneinander Wasserstoff oder eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4e} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5e} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6e} gleich Wasserstoff oder Aminoethyl ist,

oder

R⁵⁰ und R⁶⁰ bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R^{8e} und R^{12e} unabhängig voneinander *-(CH₂)_{Z1e}-OH oder *-(CH₂)_{Z2e}-NHR^{13e} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13e} gleich Wasserstoff oder Methyl ist

5

und

Z1e und Z2e unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9e} und R^{11e} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10e} gleich Amino oder Hydroxy ist,

ke eine Zahl 0 oder 1 ist

und

le, we, xe und ye unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind, wobei \mathbb{R}^{18} und \mathbb{R}^{19} nicht gleichzeitig Wasserstoff sind,

R²⁴ eine Gruppe der Formel *-CONHR²⁵ ist,

10 worin

die Anknüpfstelle an das Kohlenstoffatom ist,

. R²⁵ eine Gruppe der Formel

ist,

15 worin

die Anknüpfstelle an das Stickstoffatom ist,

R4f gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5f} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6f} gleich Wasserstoff oder Aminoethyl ist,

WO 2006/103015 PCT/EP2006/002617

-24 -

oder

5

10

15

R^{5f} und R^{6f} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R8f und R12f unabhängig voneinander *-(CH₂)_{Z15}-OH oder *-(CH₂)_{Z2f}-NHR^{13f} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

 R^{13f} gleich Wasserstoff oder Methyl ist

und

Z1f und Z2f unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R9f und R11f unabhängig voneinander Wasserstoff oder Methyl sind,

 R^{10f} gleich Amino oder Hydroxy ist,

kf eine Zahl 0 oder 1 ist

und

lf, wf, xf und yf unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

d und e unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

eine Zahl 0 oder 1 ist, k

l, w, x und y unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

w.xoderv unabhängig voneinander bei w, x oder y gleich 3 eine Hydroxy-

20 Gruppe tragen kann,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel

$$HO$$
 R^{26}
 H_2N
 H_2N
 H_1
 H_2
 H_2
 H_3
 R^3
 R^1
 R^3
 R^3
 R^3

bei denen

R²⁶ gleich Wasserstoff, Halogen, Amino oder Methyl ist,

R¹ gleich Wasserstoff oder Hydroxy ist,

5 R² gleich Wasserstoff oder Methyl ist,

R³ wie oben definiert ist.

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I) oder (Ia), bei denen

10 R²⁶ gleich Wasserstoff, Chlor oder Methyl ist.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I) oder (Ia), bei denen

R²⁶ gleich Wasserstoff ist.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I) oder (Ia), bei denen

R³ gleich eine Gruppe der Formel

ist,

wobei

* die Anknüpfstelle an das Stickstoffatom ist,

R⁴ gleich Wasserstoff, Amino oder Hydroxy ist,

5 R⁵ eine Gruppe der Formel

ist,

worin

10

die Anknüpfstelle an das Kohlenstoffatom ist,

R²³ Wasserstoff oder eine Gruppe der Formel *-(CH₂)_n-OH oder *(CH₂)_o-NH₂ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

n und o unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

m eine Zahl 0 oder 1 ist,

R⁸ eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

 R^{14} und R^{15} unabhängig voneinander eine Gruppe der Formel

- 27 -

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6a} gleich Wasserstoff oder Aminoethyl ist,

oder

 R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8a} und R^{12a} unabhängig voneinander *-(CH₂)_{ZIa}-OH, *-(CH₂)_{Z2a}-NHR^{13a}, *--CONHR^{14a} oder *-CH₂CONHR^{15a} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1a und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{13a} gleich Wasserstoff oder Methyl ist

und

R^{14a} und R^{15a} unabhängig voneinander eine Gruppe der Formel

5

10

15

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R⁴⁰ gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5c} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6c} gleich Wasserstoff oder Aminoethyl ist,

kc eine Zahl 0 oder 1 ist

und

lc eine Zahl 1, 2, 3 oder 4 ist,

R⁹⁸ und R¹¹⁸ unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10a} gleich Amino oder Hydroxy ist,

R^{16a} eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

15

5

10

20

- 29 -

kd eine Zahl 0 oder 1 ist

und

ld eine Zahl 1, 2, 3 oder 4 ist,

ka eine Zahl 0 oder 1 ist

und

5

15

20

la, wa, xa und ya unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

R⁹ und R¹¹ unabhängig voneinander Wasserstoff, Methyl, *-C(NH₂)=NH oder eine Gruppe der Formel

10 sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R²⁰ gleich Wasserstoff oder *-(CH₂)_i-NHR²² ist,

worin

R²² gleich Wasserstoff oder Methyl ist

und

eine Zahl 1, 2 oder 3 ist,

R²¹ gleich Wasserstoff oder Methyl ist,

f eine Zahl 0, 1, 2 oder 3 ist,

g eine Zahl 1, 2 oder 3 ist

und

h eine Zahl 1, 2, 3 oder 4 ist,

oder

R⁸ gleich *-(CH₂)_{ZI}-OH ist,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

Z1 eine Zahl 1, 2 oder 3 ist,

und

R⁹ eine Gruppe der Formel

10 ist,

worin

die Anknüpfstelle an das Stickstoffatom ist,

und

h eine Zahl 1, 2, 3 oder 4 ist,

15 R¹⁰ gleich Amino oder Hydroxy ist,

R²⁴ eine Gruppe der Formel *-CONHR²⁵ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R²⁵ eine Gruppe der Formel

ist,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4f} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5f} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6f} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5f} und R^{6f} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8f} und R^{12f} unabhängig voneinander *-(CH₂)_{Z1f}-OH oder *-(CH₂)_{Z2f}-NHR^{13f} sind,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13f} gleich Wasserstoff oder Methyl ist

und

Z1f und Z2f unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

 R^{9f} und R^{T1f} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10f} gleich Amino oder Hydroxy ist,

kf eine Zahl 0 oder 1 ist

20

5

10

15

und

lf, wf, xf und yf unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

k eine Zahl 0 oder 1 ist,

1, w und x unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

woder x unabhängig voneinander bei w oder x gleich 3 eine Hydroxy-Gruppe tragen kann,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I) oder (Ia), bei denen

10 R³ gleich eine Gruppe der Formel

ist,

wobei

die Anknüpfstelle an das Stickstoffatom ist,

15 R⁴ gleich Wasserstoff, Amino oder Hydroxy ist,

R⁵ eine Gruppe der Formel

ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R²³ Wasserstoff oder eine Gruppe der Formel *-(CH₂)_n-OH oder *-(CH₂)₀-NH₂ ist,

worin

5

die Anknüpfstelle an das Kohlenstoffatom ist,

n und o unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

m eine Zahl 0 oder 1 ist,

k eine Zahl 0 oder 1 ist,

l eine Zahl 1, 2, 3 oder 4 ist,

10 und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I) oder (Ia), bei denen

R³ gleich eine Gruppe der Formel

15 ist,

20

wobei

- die Anknüpfstelle an das Stickstoffatom ist,
- R⁸ eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ ist,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

 R^{14} und R^{15} unabhängig voneinander eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6a} gleich Wasserstoff oder Aminoethyl ist,

oder

 R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8a} und R^{12a} unabhängig voneinander *-(CH₂)_{Z1a}-OH, *-(CH₂)_{Z2a}-NHR^{13a}, *-CONHR^{14a} oder *-CH₂CONHR^{15a} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1a und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{13a} gleich Wasserstoff oder Methyl ist

und

R^{14a} und R^{15a} unabhängig voneinander eine Gruppe der Formel

5

10

15

5

10

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4c} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5c} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6c} gleich Wasserstoff oder Aminoethyl ist,

kc eine Zahl 0 oder 1 ist

und

lc eine Zahl 1, 2, 3 oder 4 ist,

R^{9a} und R^{11a} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10a} gleich Amino oder Hydroxy ist,

R¹⁶⁸ eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

20

15

WO 2006/103015 PCT/EP2006/002617

- 36 -

kd eine Zahl 0 oder 1 ist

und

ld eine Zahl 1, 2, 3 oder 4 ist,

ka eine Zahl 0 oder 1 ist

5 und

la, wa, xa und ya unabhangig voneinander eine Zahl 1, 2, 3 oder 4 sind,

R⁹ und R¹¹ unabhängig voneinander Wasserstoff, Methyl, *-C(NH₂)=NH oder eine Gruppe der Formel

10 sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R²⁰ gleich Wasserstoff oder *-(CH₂);-NHR²² ist,

worin

15 R²² gleich Wasserstoff oder Methyl ist

und

i eine Zahl 1, 2 oder 3 ist,

R²¹ gleich Wasserstoff oder Methyl ist,

f eine Zahl 0, 1, 2 oder 3 ist,

20 g eine Zahl 1, 2 oder 3 ist

und

h eine Zahl 1, 2, 3 oder 4 ist,

oder

R⁸ gleich *-(CH₂)z₁-OH ist,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

ZI eine Zahl 1, 2 oder 3 ist,

und

5

R⁹ eine Gruppe der Formel

10 ist,

worin

die Anknüpfstelle an das Stickstoffatom ist,

und

h eine Zahl 1, 2, 3 oder 4 ist,

15 R¹⁰ gleich Amino oder Hydroxy ist,

R²⁴ eine Gruppe der Formel *-CONHR²⁵ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R²⁵ eine Gruppe der Formel

ist,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4f} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5f} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6f} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5f} und R^{6f} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R^{8f} und R^{12f} unabhängig voneinander *--(CH₂)_{Z1f}-OH oder *--(CH₂)_{Z2f}-NHR^{13f} sind,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13f} gleich Wasserstoff oder Methyl ist

und

Z1f und Z2f unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9f} und R^{11f} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10f} gleich Amino oder Hydroxy ist,

kf eine Zahl 0 oder 1 ist

20

5

10

15

und

lf, wf, xf und yf unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

w und x

unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

woder x unabhängig voneinander bei w oder x gleich 3 eine Hydroxy-Gruppe

5 tragen kann,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I) oder (Ia), bei denen

R³ gleich eine Gruppe der Formel

10

ist,

wobei

* die Anknüpfstelle an das Stickstoffatom ist,

R¹² eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ ist,

15 worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

R¹⁴ und R¹⁵ unabhängig voneinander eine Gruppe der Formel

~ 40 -

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6a} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8a} und R^{12a} unabhängig voneinander *-(CH₂)_{Z1a}-OH, *-(CH₂)_{Z2a}-NHR^{13a}, *-CONHR^{14a} oder *-CH₂CONHR^{15a} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Zla und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{13a} gleich Wasserstoff oder Methyl ist

und

 R^{14a} und R^{15a} unabhängig voneinander eine Gruppe der Formel

5

10

15

5

10

$$\begin{array}{c|c}
R^{4c} & R^{5c} \\
\downarrow & R^{6c}
\end{array}$$

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R4c gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5c} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6c} gleich Wasserstoff oder Aminoethyl ist,

kc eine Zahl 0 oder 1 ist

und

lc eine Zahi 1, 2, 3 oder 4 ist,

 R^{9a} und R^{11a} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10a} gleich Amino oder Hydroxy ist,

R^{16a} eine Gruppe der Formel

$$\begin{array}{c|c}
R^{4d} & R^{5d} \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 &$$

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

20

15

kd eine Zahl 0 oder 1 ist

und

ld eine Zahl 1, 2, 3 oder 4 ist,

ka eine Zahl 0 oder 1 ist

und

5

la, wa, xa und ya unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

y eine Zahl 1, 2, 3 oder 4 ist,

bei y gleich 3 eine Hydroxy-Gruppe tragen kann,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

- 10 Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I) oder (Ia), bei denen
 - R³ gleich eine Gruppe der Formel

ist,

15 wobei

- * die Anknüpfstelle an das Stickstoffatom ist,
- A gleich eine Bindung oder Phenyl ist,

 R^{16} und R^{17} unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R4b gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5b} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6b} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5b} und R^{6b} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8b} und R^{12b} unabhängig voneinander *-(CH₂)_{Z1b}-OH oder *-(CH₂)_{Z2b}-NHR^{13b} sind,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13b} gleich Wasserstoff oder Methyl ist

und

Z1b und Z2b unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9b} und R^{11b} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10b} gleich Amino oder Hydroxy ist,

kb eine Zahl 0 oder 1 ist,

20

5

10

15

lb, wb, xb und yb unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

d eine Zahl 1, 2 oder 3 ist,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Besonders bevorzugt sind darunter Verbindungen, bei denen R3 eine Gruppe der Formel

insbesondere eine Gruppe der Formel

ist.

5

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I) oder 10 (Ia), bei denen

R³ gleich eine Gruppe der Formel

ist,

wobei

15

* die Anknüpfstelle an das Stickstoffatom ist,

 \mathbb{R}^{18} und \mathbb{R}^{19} unabhängig voneinander Wasserstoff oder eine Gruppe der Formel

sind,

worin

5 * die Anknüpfstelle an das Stickstoffatom ist,

R^{4e} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{Se} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6e} gleich Wasserstoff oder Aminoethyl ist,

oder

10

15

20

R^{5e} und R^{6e} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R⁸⁶ und R^{12e} unabhängig voneinander *-(CH₂)_{Z1e}-OH oder *-(CH₂)_{Z2e}-NHR^{13e} sind,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

R¹³⁶ gleich Wasserstoff oder Methyl ist

und

Z1e und Z2e unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9e} und R^{11e} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10a} gleich Amino oder Hydroxy ist,

ke eine Zahl 0 oder 1 ist

und

le, we, xe und ye unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind, wobei R^{18} und R^{19} nicht gleichzeitig Wasserstoff sind,

5 e eine Zahl 1, 2 oder 3 ist,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung der Verbindungen der Formel (I) oder ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze, wobei nach Verfahren

[A] Verbindungen der Formel

10

worin R², R⁷ und R²⁶ die oben angegebene Bedeutung haben und boc gleich *tert*-Butoxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit Verbindungen der Formel

15

 H_2NR^3 (III),

worin R3 die oben angegebene Bedeutung hat,

und anschließend mit einer Säure und/oder durch Hydrogenolyse umgesetzt werden,

oder

[B] Verbindungen der Formel

WO 2006/103015 PCT/EP2006/002617

BnO
$$\mathbb{R}^{28}$$
 (IV),

worin R2, R7 und R26 die oben angegebene Bedeutung haben und Z gleich Benzyloxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit Verbindungen der Formel

$$H_2NR^3$$
 (III),

worin R3 die oben angegebene Bedeutung hat,

10

20

und anschließend mit einer Säure oder durch Hydrogenolyse umgesetzt werden.

Die freie Base der Salze kann zum Beispiel durch Chromatographie an einer Reversed Phase Säule mit einem Acetonitril-Wasser-Gradienten unter Zusatz einer Base erhalten werden, insbesondere durch Verwendung einer RP18 Phenomenex Luna C18(2) Säule und Diethylamin als Base.

Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der Verbindungen der Formel (I) oder ihrer Solvate nach Anspruch 1, bei dem Salze der Verbindungen oder Solvate der Salze der Verbindungen durch Chromatographie unter Zusatz einer Base in die Verbindungen überführt werden.

Die Hydroxygruppe an R^I ist gegebenenfalls während der Umsetzung mit Verbindungen der Formel (III) mit einer *tert*-Butyldimethylsilyl-Gruppe geschützt, die im zweiten Reaktionsschritt abgespalten wird.

Reaktive Funktionalitäten in dem Rest R³ von Verbindungen der Formel (III) werden bereits geschützt mit in die Synthese eingebracht, bevorzugt sind säurelabile Schutzgruppen (z.B. boc). Nach erfolgter Umsetzung zu Verbindungen der Formel (I) können die Schutzgruppen durch Entschützungsreaktion abgespalten werden. Dies geschieht nach Standardverfahren der Schutzgruppenchemie. Bevorzugt sind Entschützungsreaktionen unter sauren Bedingungen oder durch Hydrogenolyse.

von 0°C bis 40°C bei Normaldruck.

5

10

15

20

25

Die Umsetzung der ersten Stufe der Verfahren [A] und [B] erfolgt im Allgemeinen in inerten Lösungsmitteln, gegebenenfalls in Gegenwart einer Base, bevorzugt in einem Temperaturbereich

- 48 -

Als Dehydratisierungsreagenzien eignen sich hierbei beispielsweise Carbodiimide wie z.B. N,N'-Diethyl-, N,N'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid (EDC), N-Cyclohexylcarbodiimid-N'-propyloxymethyl-Polystyrol (PS-Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfat oder 2-tert.-Butyl-5methyl-isoxazolium-perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-1-ethoxycarbonyl-1,2dihydrochinolin, oder Propanphosphonsäureanhydrid, oder Isobutylchloroformat, oder Bis-(2-oxo-3-oxazolidinyl)-phosphorylchlorid oder Benzotriazolyloxy-tri(dimethylamino)phosphoniumhexafluorophosphat, oder O-(Benzotriazol-1-yl)-N,N,N',N'-tetra-methyluroniumhexafluorophosphat (HBTU), 2-(2-Oxo-1-(2H)-pyridyl)-1,1,3,3-tetramethyluroniumtetrafluoroborat (TPTU) O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumhexafluorophosphat (HATU). oder 1-Hydroxybenztriazol (HOBt), oder Benzotriazol-1-yloxytris(dimethylamino)-phosphoniumhexafluoro-phosphat (BOP), oder Mischungen aus diesen, oder Mischung aus diesen zusammen mit Basen.

Basen sind beispielsweise Alkalicarbonate, wie z.B. Natrium- oder Kaliumcarbonat, oder -hydrogencarbonat, oder organische Basen wie Trialkylamine z.B. Triethylamin, N-Methylmorpholin, N-Methylpiperidin, 4-Dimethylaminopyridin oder Diisopropylethylamin.

Vorzugsweise wird die Kondensation mit HATU in Gegenwart einer Base, insbesondere Diisopropylethylamin, oder mit EDC und HOBt in Gegenwart einer Base, insbesondere Triethylamin, durchgeführt.

Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoff wie Benzol, oder Nitromethan, Dioxan, Dimethylformamid oder Acetonitril. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt ist Dimethylformamid.

Die Umsetzung mit einer Säure in der zweiten Stufe der Verfahren [A] und [B] erfolgt bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

30 Als Säuren eignen sich hierbei Chlorwasserstoff in Dioxan, Bromwasserstoff in Essigsäure oder Trifluoressigsäure in Methylenchlorid.

Die Hydrogenolyse in der zweiten Stufe des Verfahrens [B] erfolgt im Allgemeinen in einem Lösungsmittel in Gegenwart von Wasserstoff und Palladium auf Aktivkohle, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Lösungsmittel sind beispielsweise Alkohole wie Methanol, Ethanol, n-Propanol oder iso-Propanol, in einem Gemisch mit Wasser und Eisessig, bevorzugt ist ein Gemisch aus Ethanol, Wasser und Eisessig.

Die Verbindungen der Formel (III) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die Verbindungen der Formel (II) sind bekannt oder können hergestellt werden, indem Ver-10 bindungen der Formel

$$HO$$
 R^{26}
 H_2N
 $R^{7^{**}}$
 H
 R^2
 OH
 $(V),$

worin R2, R7 und R26 die oben angegebene Bedeutung haben,

5

20

mit Di-(tert-butyl)-dicarbonat in Gegenwart einer Base umgesetzt werden.

Die Umsetzung erfolgt im Allgemeinen in einem Lösungsmitteln, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Basen sind beispielsweise Alkalihydroxide wie Natrium- oder Kaliumhydroxid, oder Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder andere Basen wie DBU, Triethylamin oder Diisopropylethylamin, bevorzugt ist Natriumhydroxid oder Natriumcarbonat.

Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid oder 1,2-Dichlorethan, Alkohole wie Methanol, Ethanol oder iso-Propanol, oder Wasser.

Vorzugsweise wird die Umsetzung mit Natriumhydroxid in Wasser oder Natriumcarbonat in Methanol durchgeführt.

Die Verbindungen der Formel (V) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel

BnO
$$\mathbb{R}^{26}$$
 $\mathbb{R}^{7^{N^{*}}}$
 $\mathbb{R}^{7^{N^{*}}}$
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{27}
 \mathbb{R}^{28}
 \mathbb{R}^{27}
 \mathbb{R}^{27}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

worin R2, R7 und R26 die oben angegebene Bedeutung haben, und

R²⁷ gleich Benzyl, Methyl oder Ethyl ist,

5

mit einer Säure oder durch Hydrogenolyse, wie für die zweite Stufe des Verfahrens [B] beschrieben, gegebenenfalls durch anschließende Umsetzung mit einer Base zur Verseifung des Methyl- oder Ethylesters, umgesetzt werden.

Die Verseifung kann zum Beispiel erfolgen, wie bei der Umsetzung von Verbindungen der Formel (VI) zu Verbindungen der Formel (IV) beschrieben.

Die Verbindungen der Formel (IV) sind bekannt oder können hergestellt werden, indem in Verbindungen der Formel (VI) der Benzyl-, Methyl- oder Ethylester verseift wird.

Die Umsetzung erfolgt im Allgemeinen in einem Lösungsmitteln, in Gegenwart einer Base, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Basen sind beispielsweise Alkalihydroxide wie Lithium-, Natrium- oder Kaliumhydroxid, bevorzugt ist Lithiumhydroxid.

- Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Ether wie Tetrahydrofuran oder Dioxan, oder Alkohole wie Methanol, Ethanol oder Isopropanol, oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösungsmittel oder Gemische der Lösungsmittel mit Wasser einzusetzen. Besonders bevorzugt sind Tetrahydrofuran oder ein Gemisch aus Methanol und Wasser.
- 20 Die Verbindungen der Formel (VI) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel

BnO
$$R^{26}$$
 R^{26}
 R^{26}
 R^{27}
 R^{2}
 $R^$

worin R2, R7, R26 und R27 die oben angegebene Bedeutung haben,

in der ersten Stufe mit Säuren, wie für die zweite Stufe der Verfahren [A] und [B] beschrieben, und in der zweiten Stufe mit Basen umgesetzt werden.

In der zweiten Stufe erfolgt die Umsetzung mit Basen im Allgemeinen in einem Lösungsmitteln, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Basen sind beispielsweise Alkalihydroxide wie Natrium- oder Kaliumhydroxid, oder Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder andere Basen wie DBU, Triethylamin oder Diisopropylethylamin, bevorzugt ist Triethylamin.

Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Chloroform, Methylenchlorid oder 1,2-Dichlorethan, oder Tetrahydrofuran, oder Gemische der Lösungsmittel, bevorzugt ist Methylenchlorid oder Tetrahydrofuran.

Die Verbindungen der Formel (VII) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel

BnO
$$R^{26}$$

Z N HO R^{7} R²⁶

(VIII),

worin R2, R7, R26 und R27 die oben angegebene Bedeutung haben,

15

mit Pentafluorphenol in Gegenwart von Dehydratisierungsreagenzien, wie für die erste Stufe der Verfahren [A] und [B] beschrieben, umgesetzt werden.

Die Umsetzung erfolgt bevorzugt mit DMAP und EDC in Dichlormethan in einem Temperaturbereich von -40°C bis 40°C bei Normaldruck.

5 Die Verbindungen der Formel (VIII) sind bekannt oder k\u00f6nnen hergestellt werden, indem Verbindungen der Formel

BnO
$$\mathbb{R}^{26}$$
 \mathbb{R}^{7}
 \mathbb{R}^{7}
 \mathbb{R}^{2}

OTMSE \mathbb{R}^{27}
 \mathbb{R}^{2}
 \mathbb{R}^{26}
 \mathbb{R}^{27}
 \mathbb{R}^{2}

worin R², R⁷, R²⁶ und R²⁷ die oben angegebene Bedeutung haben,

15

mit Fluorid, insbesondere mit Tetrabutylammoniumfluorid, umgesetzt werden.

10 Die Umsetzung erfolgt im Allgemeinen in einem Lösungsmitteln, bevorzugt in einem Temperaturbereich von -10°C bis 30°C bei Normaldruck.

Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Dichlormethan, oder Kohlenwasserstoffe wie Benzol oder Toluol, oder Ether wie Tetrahydrofuran oder Dioxan, oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Bevorzugte Lösungsmittel sind Tetrahydrofuran und Dimethylformamid.

Die Verbindungen der Formel (IX) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel

BnO
$$\mathbb{R}^{26}$$

Z N OR \mathbb{R}^{27} (X),

worin R2, R26 und R27 die oben angegebene Bedeutung haben,

mit Verbindungen der Formel

20

25

worin R7 die oben angegebene Bedeutung hat,

5 in Gegenwart von Dehydratisierungsreagenzien, wie für die erste Stufe der Verfahren [A] und [B] beschrieben, umgesetzt werden.

Die Verbindungen der Formel (X) sind bekannt oder können analog den im Beispielteil beschriebenen Verfahren hergestellt werden.

Die Verbindungen der Formel (XI) sind bekannt oder können analog bekannten Verfahren herge-10 stellt werden.

Die erfindungsgemäßen Verbindungen zeigen ein nicht vorhersehbares, wertvolles pharmakologisches und pharmakokinetisches Wirkspektrum.

Sie eignen sich daher zur Verwendung als Arzneimittel zur Behandlung und/oder Prophylaxe von Krankheiten bei Menschen und Tieren.

Die erfindungsgemäßen Verbindungen können aufgrund ihrer pharmakologischen Eigenschaften allein oder in Kombination mit anderen Wirkstoffen zur Behandlung und/oder Prophylaxe von Imfektionskrankheiten, insbesondere von bakteriellen Infektionen, eingesetzt werden.

Beispielsweise können lokale und/oder systemische Erkrankungen behandelt und/oder verhindert werden, die durch die folgenden Erreger oder durch Mischungen der folgenden Erreger verursacht werden:

Gram-positive Kokken, z.B. Staphylokokken (Staph. aureus, Staph. epidermidis) und Streptokokken (Strept. agalactiae, Strept. faecalis, Strept. pneumoniae, Strept. pyogenes); gram-negative Kokken (neisseria gonorrhoeae) sowie gram-negative Stäbchen wie Enterobakteriaceen, z.B. Escherichia coli, Hämophilus influenzae, Citrobacter (Citrob. freundii, Citrob. divernis), Salmonella und Shigella; ferner Klebsiellen (Klebs. pneumoniae, Klebs. oxytocy), Enterobacter (Ent. aerogenes, Ent. agglomerans), Hafnia, Serratia (Serr. marcescens), Proteus (Pr. mirabilis, Pr. rettgeri, Pr. vulgaris), Providencia, Yersinia, sowie die Gattung Acinetobacter. Darüber hinaus

umfaßt das antibakterielle Spektrum die Gattung Pseudomonas (Ps. aeruginosa, Ps. maltophilia) sowie strikt anaerobe Bakterien wie z.B. Bacteroides fragilis, Vertreter der Gattung Peptococcus, Peptostreptococcus sowie die Gattung Clostridium; ferner Mykoplasmen (M. pneumoniae, M. hominis, M. urealyticum) sowie Mykobakterien, z.B. Mycobacterium tuberculosis.

- 54 -

Die obige Aufzählung von Erregern ist lediglich beispielhaft und keineswegs beschränkend aufzufassen. Als Krankheiten, die durch die genannten Erreger oder Mischinfektionen verursacht und durch die erfindungsgemäßen topisch anwendbaren Zubereitungen verhindert, gebessert oder geheilt werden können, seien beispielsweise genannt:

Infektionskrankheiten beim Menschen wie z. B. septische Infektionen, Knochen- und Gelenkinfektionen, Hautinfektionen, postoperative Wundinfektionen, Abszesse, Phlegmone, Wundinfektionen, infizierte Verbrennungen, Brandwunden, Infektionen im Mundbereich, Infektionen nach
Zahnoperationen, septische Arthritis, Mastitis, Tonsillitis, Genital-Infektionen und Augeninfektionen.

Außer beim Menschen können bakterielle Infektionen auch bei anderen Spezies behandelt werden. Beispielhaft seien genannt:

15

Schwein: Coli-diarrhoe, Enterotoxamie, Sepsis, Dysenterie, Salmonellose, Metritis-Mastitis-Agalaktiae-Syndrom, Mastitis;

Wiederkäuer (Rind, Schaf, Ziege): Diarrhoe, Sepsis, Bronchopneumonie, Salmonellose, Pasteurellose, Mykoplasmose, Genitalinfektionen;

20 Pferd: Bronchopneumonien, Fohlenlähme, puerperale und postpuerperale Infektionen, Salmonellose;

Hund und Katze: Bronchopneumonie, Diarrhoe, Dermatitis, Otitis, Harnwegsinfekte, Prostatitis;

Geflügel (Huhn, Pute, Wachtel, Taube, Ziervögel und andere): Mycopiasmose, E. coli-Infektionen, chronische Luftwegserkrankungen, Salmonellose, Pasteurellose, Psittakose.

25 Ebenso können bakterielle Erkrankungen bei der Aufzucht und Haltung von Nutz- und Zierfischen behandelt werden, wobei sich das antibakterielle Spektrum über die vorher genannten Erreger hinaus auf weitere Erreger wie z.B. Pasteurella, Brucella, Campylobacter, Listeria, Erysipelothris, Corynebakterien, Borellia, Treponema, Nocardia, Rikettsie, Yersinia, erweitert.

WO 2006/103015 PCT/EP2006/002617

Weiterer Gegenstand der vorliegenden Erfindung ist der Einsatz der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prophylaxe von Erkrankungen, vorzugsweise von bakteriellen Krankheiten, insbesondere von bakteriellen Infektionen.

- 55 -

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.

Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen, unter Verwendung einer antibakteriell wirksamen Menge der erfindungsgemäßen Verbindungen.

Die erfindungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival, otisch oder als Implantat bzw. Stent.

15

20

25

30

Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.

Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende schnell und/oder modifiziert die erfindungsgemäßen Verbindungen abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/ oder amorphisierter und/oder gelöster Form enthalten, wie z.B. Tabletten (nichtüberzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerfallende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.

Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z.B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z.B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.

10

15

25

Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen, -sprays; lingual, sublingual oder buccal zu applizierende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (wie beispielsweise Pflaster), Milch, Pasten, Schäume, Streupuder, Implantate oder Stents.

- 56 -

Die erfindungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe (beispielsweise mikrokristalline Cellulose, Laktose, Mannitol), Lösungsmittel (z.B. flüssige Polyethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecylsulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispielsweise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und / oder Geruchskorrigentien.

Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 5 bis 250 mg/kg Körpergewicht je 24 h zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Menge etwa 5 bis 100 mg/kg Körpergewicht je 24 h.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.

WO 2006/103015

- 57 -

PCT/EP2006/002617

A. Beispiele

Verwendete Abkürzungen:

abs. absolut
aq. wässrig
Bn Benzyl

boc tert-Butoxycarbonyl

Bsp. Beispiel
CDCl₃ Chloroform
CH Cyclohexan

d dublett (im ¹H-NMR)

dd dublett von dublett (im ¹H-NMR)

DC Dünnschichtchromatographie

DCC Dicyclohexylcarbodiimid

DIC Diisopropylcarbodiimid

DIEA Diisopropylethylamin (Hünig-Base)

DMSO Dimethylsulfoxid

DMAP 4-N,N-Dimethylaminopyridin

DMF Dimethylformamid

d. Th. der Theorie

EDC N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid x HCl

EE Ethylacetat (Essigsäureethylester)
ESI Elektrospray-Ionisation (bei MS)

Fmoc 9-Fluorenylmethoxycarbonyl

ges. gesättigt

HATU O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-

hexafluorophosphat

HBTU O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-

hexafluorophosphat

HOBt 1-Hydroxy-1H-benzotriazol x H₂O

h Stunde(n)

HPLC Hochdruck-, Hochleistungsflüssigehromatographie

LC-MS Flüssigchromatographie-gekoppelte Massenspektroskopie

m multiplett (im ¹H-NMR)

min Minute

MS Massenspektroskopie

WO 2006/103015 PCT/EP2006/002617

- 58 -

NMR Kernresonanzspektroskopie

MTBE Methyl-tert-butylether

Pd/C Palladium/Kohle
PFP Pentafluorphenol

proz. Prozent

q quartett (im ¹H-NMR)

R_f Retentions index (bei DC)

RP Reverse Phase (bei HPLC)

RT Raumtemperatur

Retentionszeit (bei HPLC)
s singulett (im ¹H-NMR)
t triplett (im ¹H-NMR)
TBS tert-Butyldimethylsilyl
TFA Trifluoressigsäure
THF Tetrahydrofuran

TMSE 2-(Trimethylsilyl)-ethyl

TPTU 2-(2-Oxo-1(2H)-pyridyl)-1,1,3,3-tetramethyluroniumtetrafluoroborat

Z Benzyloxycarbonyl

LC-MS- und HPLC-Methoden:

15

Methode 1 (LC-MS): Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90%A → 2.5 min 30%A → 3.0 min 5%A → 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 208-400 nm.

Methode 2 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4mm; Eluent A: 1 l Wasser + 0.5 ml
50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90%A → 2.5 min 30%A → 3.0 min 5%A → 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 3 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 11 Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient:

10

15

20

25

30

PCT/EP2006/002617

0.0 min 90%A \rightarrow 2.5 min 30%A \rightarrow 3.0 min 5%A \rightarrow 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min. 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

- 59 -

Methode 4 (LC-MS): Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 μ m; Eluent A: 1 l Wasser + 1 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 1 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A \rightarrow 0.2 min 100%A \rightarrow 2.9 min 30%A \rightarrow 3.1 min 10%A \rightarrow 4.5 min 10%A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.

Methode 5 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Merck Chromolith SpeedROD RP-18e 50 mm x 4.6 mm; Eluent A: Wasser + 500 μ l 50%ige Ameisensäure / l; Eluent B: Acetonitril + 500 μ l 50%ige Ameisensäure / l; Gradient: 0.0 min 10%B \rightarrow 3.0 min 95%B \rightarrow 4.0 min 95%B; Ofen: 35°C; Fluss: 0.0 min 1.0 ml/min \rightarrow 3.0 min 3.0 ml/min \rightarrow 4.0 min 3.0 ml/min; UV-Detektion: 210 nm.

Methode 6 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / l, Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / l; Gradient: 0.0 min 0%B → 2.9 min 70%B → 3.1 min 90%B → 4.5 min 90%B; Ofen: 50 °C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 7 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μ m; Eluent A: Wasser + 500 μ l 50%ige Ameisensäure; Eluent B: Acetonitril + 500 μ l 50%ige Ameisensäure / l; Gradient: 0.0 min 5%B \rightarrow 2.0 min 40%B \rightarrow 4.5 min 90%B \rightarrow 5.5 min 90%B; Ofen: 45°C; Fluss: 0.0 min 0.75 ml/min \rightarrow 4.5 min 0.75 ml/min 5.5 min \rightarrow 5.5 min 1.25 ml/min; UV-Detektion: 210 nm.

Methode 8 (LC-MS): Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Thermo HyPURITY Aquastar 3μ 50 mm x 2.1 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 1 Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A \rightarrow 0.2 min 100%A \rightarrow 2.9 min 30%A \rightarrow 3.1 min 10%A \rightarrow 5.5 min 10%A; Ofen: 50°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 9 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 x 2 mm, 3.0 μm; Eluent B: Acetonitril + 0.05% Ameisensäure, Eluent A: Wasser + 0.05% Ameisensäure; Gradient: 0.0 min 70%B → 4.5 min 90%B → 5.5 min 90%B; Ofen: 45°C; Fluss: 0.0 min 0.75 ml/min → 4.5 min 0.75 ml/min → 5.5 min 1.25 ml/min; UV-Detektion: 210 nm.

WO 2006/103015 PCT/EP2006/002617

5

- 60 -

Methode 10 (LCMS): Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Thermo Hypersil GOLD-3 μ 20 x 4 mm; Eluent A: 1 1 Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 I Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A \rightarrow 0.2 min 100%A \rightarrow 2.9 min 30%A \rightarrow 3.1 min 10%A \rightarrow 5.5 min 10%A; Ofen: 50°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 11 (HPLC): Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x 2 mm, 3.5 μm; Eluent A: 5 ml HClO₄/l Wasser, Eluent B: Acetonitril; Gradient: 0 min 2%B, 0.5 min 2%B, 4.5 min 90%B, 6.5 min 90%B; Fluss: 0.75 ml/min; Ofen: 30°C; UV-Detektion: 210 nm.

Methode 12 (HPLC): Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x
 2 mm, 3.5 μm; Eluent A: 5 ml HClO₄/l Wasser, Eluent B: Acetonitril; Gradient: 0 min 2%B, 0.5 min 2%B, 4.5 min 90%B, 15 min 90%B; Fluss: 0.75 ml/min; Ofen: 30°C; UV-Detektion: 210 nm.

<u>Ausgangsverbindungen</u>

Beispiel 1A

5-Brom-2-methylbenzaldehyd

77.7 g (583 mmol) Aluminiumtrichlorid werden in 200 ml Dichlormethan suspendiert und auf 0°C gekühlt. 40.0 g (333 mmol) 2-Methylbenzaldehyd werden innerhalb von 30 min zugetropft. Anschließend gibt man 53.2 g (333 mmol) Brom innerhalb von 6 h bei 0°C zu, lässt auf RT erwärmen und rührt 12 h nach. Die Reaktionslösung wird auf 500 ml Eiswasser gegeben. Die wässrige Phase wird mehrfach mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden nacheinander mit 2N Salzsäure, gesättigter wässriger Natriumhydrogencarbonat-Lösung und gesättigter wässriger Natriumchlorid-Lösung gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Man reinigt per Kieselgelchromatographie und anschließend über Kristallisation aus Cyclohexan. Das ausgefallene Produkt wird abfiltriert.

Ausbeute: 3.2 g (5% d.Th.)

15 LC-MS (Methode 7): $R_t = 3.26 \text{ min}$

MS (EI): $m/z = 199 (M+H)^+$

Beispiel 2A

Methyl-(2Z)-3-(3-bromphenyl)-2-[(tert-butoxycarbonyl)amino]acrylat

Zu einer auf -70°C gekühlten Lösung von 10 g (54.1 mmol) 3-Brombenzaldehyd und 17.7 g (59.5 mmol) Methyl-[(tert-butoxycarbonyl)amino](dimethoxyphosphoryl)acetat in 200 ml wasserfreiem Tetrahydrofuran werden 7.48 ml (59.5 mmol) N,N,N,N-Tetramethylguanidin hinzugegeben. Nach 4 h Rühren bei -70°C wird das Reaktionsgemisch 15 h bei RT gerührt. Die Mischung wird mit 500 ml Wasser und 500 ml Essigsäureethylester versetzt. Die organische Phase wird mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan:Essigsäureethylester 4:1) gereinigt.

Ausbeute: quant.

LC-MS (Methode 3): $R_t = 2.61 \text{ min.}$

MS (EI): $m/z = 356 (M+H)^{+}$. 10

> ¹H-NMR (300 MHz, DMSO-d₆): $\delta = 1.40$ (s, 9H), 3.73 (s, 3H), 7.15 (br.s, 1H), 7.48 (m, 1H), 7.56 (dd, 1H), 7.63 (dd, 1H), 7.86 (s, 1H), 8.82 (br.s, 1H).

Analog zu obiger Vorschrift wird Beispiel 3A aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Beispiel-Nr.	Analytische Daten
3A	H ₃ C O O O	aus Bsp. 1A und Benzyl-[(tert- butoxycarbonyl)- amino](dimethoxy- phosphoryl)acetat	LC-MS (Methode 4): R _t = 3.38 min. MS (EI): m/z = 446 (M+H) ⁺ ¹ H-NMR (300 MHz, CDCl ₃): δ = 1.35 (s, 9H), 2.28 (s, 3H), 5.30 (s, 2H), 6.21 (br. s, 1H), 7.04 (d, 1H), 7.21-7.46 (m, 7H), 7.10 (d, 1H).

15 Beispiel 4A

Methyl-3-brom-N-(tert-butoxycarbonyl)-L-phenylalaninat

10 g (28.1 mmol) Methyl-(2Z)-3-(3-bromphenyl)-2-[(tert-butoxycarbonyl)amino]acrylat (Beispiel 2A) werden in einer Mischung aus 150 ml Ethanol und 100 ml Dioxan gelöst. Unter Argonatmosphäre gibt man 100 mg (0.14 mmol) Hydrierkatalysator [(+)-1,2-Bis((2S,5S)-2,5-diethylphospholano)benzol-(cyclooctadien)rhodium(I)trifluormethansulfonat] hinzu und leitet 30 min Argon durch die Lösung. Anschließend wird für 5 Tage unter einem Wasserstoffdruck von 3 bar hydriert. Es wird über Kieselgel filtriert und sorgfältig mit Ethanol nachgewaschen. Das Filtrat wird im Vakuum eingeengt und das Rohprodukt am Hochvakuum getrocknet.

Ausbeute: 9.2 g (89% d.Th.)

5

10 LC-MS (Methode 3): $R_t = 2.63 \text{ min.}$

 $MS (EI): m/z = 358 (M+H)^+$

^tH-NMR (400 MHz, DMSO-d₆): δ = 1.32 (s, 9H), 2.74 (m₆, 1H), 3.03 (m₆, 1H), 3.62 (s, 3H), 4.70 (m₆, 1H), 7.20-7.5 (m, 5H).

Analog zu obiger Vorschrift wird Beispiel 5A aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Beispiel-Nr.	Analytische Daten
5A	Br—CH ₃ H ₃ C O O	4A aus Bsp. 3A	LC-MS (Methode 6): R _t = 3.81 min. MS (EI): m/z = 448 (M+H) ⁺ ¹ H-NMR (300 MHz, CDCI ₃): δ = 1.39 (s, 9H), 2.24 (s, 3H), 2.83-3.15 (m, 2H), 4.57 (m _o , 1H), 5.00 (br. s, 1H), 5.09 (dd, 2H), 6.97 (d, 1H), 7.14-7.48 (m, 7H).

Beispiel 6A

WO 2006/103015

Methyl-3-brom-N-(tert-butoxycarbonyl)-N-methyl-L-phenylalaninat

Zu einer Lösung von 16.5 g (43.86 mmol) Methyl-3-brom-N-(tert-butoxycarbonyl)-L-phenylalaninat (Beispiel 4A) in 220 ml wasserfreiem Tetrahydrofuran werden 49.8 g (350.86 mmol)
lodmethan und 2.28 g (57.01 mmol) Natriumhydrid hinzugegeben. Die Reaktionsmischung wird
bei RT über Nacht gerührt. Die Mischung wird mit 1000 ml Wasser und 1000 ml
Essigsäureethylester versetzt. Die organische Phase wird nacheinander mit Wasser und gesättigter
Natriumchlorid-lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt
wird säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan:Essigsäureethylester 3:1)
gereinigt.

Ausbeute: quant.

HPLC (Methode 11): $R_t = 5.1 \text{ min.}$

MS (DCI(NH₃)): $m/z = 390 (M+H)^{+}$.

¹H-NMR (400 MHz, CDCI₃): δ = 1.48 (d, 9H), 2.23 (d, 3H), 3.09 (dd, 1H), 3.30 (dd, 1H), 3.75 (s, 3H), 4.70 (ddd, 1H), 6.92 (dd, 1H), 7.30 (m, 2H).

Beispiel 7A

10

15

Methyl-(2S)-3-(4'-(benzyloxy)-3'-{(2S)-2-{[(benzyloxy)carbonyl]amino}-3-oxo-3-[2-(trimethyl-silyl)ethoxy]propyl}biphenyl-3-yl)-2-[(tert-butoxycarbonyl)amino]propanoat

Eine Lösung von 6.0 g (16.8 mmol) Methyl-3-brom-N-(tert-butoxycarbonyl)-N-methyl-L-phenyl-alaninat (Beispiel 4A) und 11.7 g (18.4 mmol) 2-(Trimethylsilyl)ethyl-2-(benzyloxy)-N-[(benzylo

Ausbeute: 6.82 g (52% d. Th.).

20 LC-MS (Methode 1): $R_t = 3.41 \text{ min}$

MS (EI); $m/z = 783 (M+H)^{+}$.

Analog zu obiger Vorschrift werden die in der folgenden Tabelle aufgeführten Beispiele 8A und 9A aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog	
		Beispiel-Nr.	
8A	BnO—	7A	HPLC (Methode 12): R _t = 6.62 min.
	Z H O H ₃ C N O CH ₃		MS (ES): $m/z = 819 (M+Na)^+$
	INSE	aus WO03/106480	
9A	BnO—CH _a	7A	LC-MS (Methode 9); $R_t = 4.01$ min.
	TMSE O HN DOG O	aus Bsp. 5A und Bsp. 84A aus WO03/106480	MS (ES): m/z = 873 (M+H) ⁺

Beispiel 10A

5

10

Zu einer auf 0°C gekühlten Lösung von 4.0 g (3.6 mmol) der Verbindung aus Beispiel 7A in 10 ml wasserfreiem Dioxan werden 54 ml einer 4M Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 3 h Rühren wird das Lösungsmittel im Vakuum eingedampft, mehrmals mit Dichlormethan coevaporiert und im Hochvakuum bis zur Gewichtskonstanz getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

LC-MS (Methode 2): $R_t = 2.24 \text{ min.}$

MS (EI): $m/z = 683 (M-HCl+H)^{+}$.

Analog zu obiger Vorschrift werden die in der folgenden Tabelle aufgeführten Beispiele 11A und 12A aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Beispiel-Nr.	Analytische Daten
11A	BnO—	10A	Rohprodukt wurde ohne weitere
	TMSE O H ₃ C N CH ₃	aus Bsp. 8A	Reinigung umgesetzt
12A	BnO————————————————————————————————————	1 0A	LC-MS (Methode 6): $R_t = 3.10$ min.
	TMSE O H ₂ N OBn	aus Bsp. 9A	MS (ES): m/z = 773 (M-HCl+H) ⁺

Beispiel 13A

5

2-(Trimethylsilyl)ethyl-(2S)-3-(4-(benzyloxy)-3'-{(2S)-2-[((2S,4R)-5-{[(benzyloxy)carbonyl]-amino}-2-[(tert-butoxycarbonyl)amino]-4-{[tert-butyl(dimethyl)silyl]oxy}pentanoyl)amino]-3-methoxy-3-oxopropyl}biphenyl-3-yl)-2-{[(benzyloxy)carbonyl]amino}propanoat

WO 2006/103015 PCT/EP2006/002617

- 68 -

Zu einer Lösung von 1.91 g (2.66 mmol) der Verbindung aus Beispiel 10A und 1.45 g (2.92 mmol) (2S,4R)-5-{[(Benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]-4-{[tert-butyl-(dimethyl)silyl]oxy}pentansäure (Beispiel 14A aus WO03/106480) in 20 ml abs. DMF werden bei 0°C (Badtemperatur) 1.26 g (3.32 mmol) HATU und 1.1 ml (6.2 mmol) Hünig-Base gegeben. Man rührt 30 min. bei dieser Temperatur, versetzt dann mit weiteren 0.55 ml (1.1 mmol) Hünig-Base und lässt die Temperatur auf RT ansteigen. Nach Reaktion über Nacht engt man alles im Vakuum zur Trockne ein und der Rückstand wird in Dichlormethan aufgenommen. Die organische Phase wird mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird chromatographisch an Silicagel gereinigt (Laufmittel: Cyclohexan / Essigsäureethylester $5:1 \rightarrow 3:1$).

Ausbeute: 1.89 g (61% d.Th.)

LC-MS (Methode 3): $R_t = 3.66$ min.

MS (EI): $m/z = 1161 (M+H)^{+}$

15 Beispiel 14A

5

10

2-(Trimethylsilyl)ethyl-(2S)-3-{4-(benzyloxy)-3'-[(2S)-2-({(2S)-5-{[(benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]pentanoyl}amino)-3-methoxy-3-oxopropyl]biphenyl-3-yl}-2-{[(benzyloxy)carbonyl]amino}propanoat

WO 2006/103015 PCT/EP2006/002617

- 69 -

Zu einer Lösung von 1.55 g (2.16 mmol) der Verbindung aus Beispiel 10A und 0.95 g (2.59 mmol) N^5 -[(Benzyloxy)carbonyl]- N^2 -(tert-butoxycarbonyl)-L-ornithin in 28 ml abs. DMF werden bei 0°C (Badtemperatur) 1.03 g (2.7 mmol) HATU und 1.1 ml (6.1 mmol) Hünig-Base gegeben. Man rührt 30 min. bei dieser Temperatur, versetzt dann mit weiteren 0.3 ml (1.5 mmol) Hünig-Base und lässt die Temperatur auf RT ansteigen. Nach Reaktion über Nacht engt man alles im Vakuum zur Trockne ein und der Rückstand wird in Dichlormethan aufgenommen. Die organische Phase wird mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird chromatographisch an Silicagel gereinigt (Laufmittel: Dichlormethan / Essigsäureethylester 30:1 \rightarrow 5:1).

Ausbeute: 1.67 g (75% d.Th.)

5

10

LC-MS (Methode 1): $R_c = 3.40$ min.

MS (EI): $m/z = 1031 (M+H)^{+}$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten 15 Beispiele 15A bis 17A aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Beispiel-	
		Nr.	
15A	BnO—	13A	LC-MS (Methode 5): $R_t = 3.47$ min.
		aus Bsp. 11A	MS (ES): $m/z = 1175 (M+H)^{+}$
İ	Z N O CH3	und Bsp. 14A	
	TMSE O H	aus	
1	bac	WO03/106480	
	TBS		
	z		
7()			
16A	BnO—	14A	LC-MS (Methode 3): $R_t = 3.52 \text{ min.}$
		aus Bsp. 11A	MS (ES): $m/z = 1045 (M+H)^+$
	Z N O H,C N O CH,	und N⁵-[(Benzyl-	
	TMSE O DOC 0	oxy)-carbonyl]-	
		N^2 -(tert-butoxy-	
	, NH	carbonyl)- L -	
	ż	ornithin	
17A	BnO—CH ₃	14A	LC-MS (Methode 3): $R_4 = 3.54$ min.
		aus Bsp. 12A	MS (ES): $m/z = 1121 (M+H)^{+}$
	Z N OBn OBn	und N ⁵ -[(Benzyl-	
	TMSE O N	oxy)-carbonyl]-	
	boc	N ² -(tert-butoxy-	
	NH.	carbonyl)-L-	
	<u> </u>	ornithin	

Beispiel 18A

5

 $(2S)-3-\{4-(Benzyloxy)-3'-[(2S)-2-(\{(2S,4R)-5-\{[(benzyloxy)carbonyl]amino\}-2-[(tert-butoxy-carbonyl)amino]-4-hydroxypentanoyl\}amino)-3-methoxy-3-oxopropyl]biphenyl-3-yl\}-2-\{[(benzyloxy)carbonyl]amino\}propansäure$

- 71 -

Zu einer Lösung von 1.89 g (1.63 mmol) der Verbindung aus Beispiel 13A in 10 ml abs. DMF werden unter Rühren 4.88 ml (4.88 mmol) einer 1N Tetra-n-butylammoniumfluorid-Lösung in THF gegeben. Nach 2 h bei RT wird auf 0°C abgekühlt und mit Eiswasser und etwas 0.5 N Salzsäure versetzt. Es wird sofort mit Essigsäureethylester extrahiert. Die organische Phase wird über Magnesiumsulfat getrocknet, im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

5

LC-MS (Methode 3): $R_t = 2.90$ min.

10 MS (EI): $m/z = 947 (M+H)^+$

Beispiel 19A

(2S)-3-{4-(Benzyloxy)-3'-[(2S)-2-({(2S)-5-{[(benzyloxy)carbonyl]amino}-2-[(*tert*-butoxy-carbonyl)amino]pentanoyl}amino)-3-methoxy-3-oxopropyl]biphenyl-3-yl}-2-{[(benzyloxy)-carbonyl]amino}propansäure

- 72 -

Zu einer Lösung von 2.38 g (1.79 mmol) der Verbindung aus Beispiel 14A in 35 ml absolutem DMF werden tropfenweise 3.58 ml 1N Tetra-n-butylammoniumfluorid-Lösung in THF hinzugegeben. Nach 2 h bei RT wird auf 0°C abgekühlt und mit Eiswasser und etwas 0.5 N Salzsäure versetzt. Es wird sofort mit Essigsäureethylester extrahiert. Die organische Phase wird über Magnesiumsulfat getrocknet, im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant,

5

LC-MS (Methode 2): $R_t = 2.88 \text{ min.}$

10 MS (EI): $m/z = 931 (M+H)^+$.

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 20A bis 22A aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.	•	analog	
	:	Beispiel-Nr.	·
20A	BnO—	18A .	Rohprodukt wurde ohne weitere
i		aus Bsp. 15A	Reinigung umgesetzt
	Z N O CH3	•	
	HÓ H Ö		
:	boc		
	NH		
	i ż		
21A		19A	Rohprodukt wurde ohne weitere
2111	BnO	~~~	Reinigung umgesetzt
	. (""	aus Bsp. 16A	
	HO H O CH3		
	boc	,	
	NH		
	-		
22A	BnO—CH ₃	19A	LC-MS (Methode 6): R _t = 3.90 min.
		Then 1971	Mg (750) (1001 (M) ID ⁺
	Z N OBn	aus Bsp. 17A	MS (ES): $m/z = 1021 (M+H)^+$
	HO HAT T		
:	boc		
	,		
	NH 2		
	·		<u> </u>

Beispiel 23A

5

Pentafluorphenyl-(2S)-3-{4-(benzyloxy)-3'-[(2S)-2-({(2S,4R)-5-{[(benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]-4-hydroxypentanoyl}amino)-3-methoxy-3-oxopropyl]biphenyl-3-yl}-2-{[(benzyloxy)carbonyl]amino}propanoat

- 74 -

Eine Lösung aus 1.54 g (1.63 mmol) der Verbindung aus Beispiel 18A in 50 ml abs. Dichlormethan wird auf -20°C abgekühlt und unter Rühren mit 1.2 g (6.52 mmol) Pentafluorphenyl, 0.02 g (0.16 mmol) DMAP und 0.48 g (2.12 mmol) EDC versetzt. Man lässt die Temperatur langsam auf RT ansteigen und rührt über Nacht nach. Es wird im Vakuum eingeengt und das Rohprodukt im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 1.8 g (99% d.Th.)

LC-MS (Methode 2): $R_t = 3.14 \text{ min.}$

MS (EI): $m/z = 1113 (M+H)^+$

10 Beispiel 24A

5

Pentafluorphenyl-(2S)-3-{4-(benzyloxy)-3'-[(2S)-2-({(2S)-5-{[(benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]pentanoyl}amino)-3-methoxy-3-oxopropyl]biphenyl-3-yl}-2-{[(benzyloxy)carbonyl]amino}propanoat

- 75 -

Eine Lösung aus 1.67 g (1.79 mmol) der Verbindung aus Beispiel 19A in 70 ml abs. Dichlormethan wird auf -20°C abgekühlt und unter Rühren mit 1.65 g (8.95 mmol) Pentafluorphenyl, 0.025 g (0.18 mmol) DMAP und 0.53 g (2.33 mmol) EDC versetzt. Man lässt die Temperatur langsam auf RT ansteigen und rührt über Nacht nach. Es wird im Vakuum eingeengt und das Rohprodukt im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: quant.

5

LC-MS (Methode 3): $R_t = 3.47$ min.

MS (EI): $m/z = 1097 (M+H)^+$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 25A bis 27A aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		.analog	
		Beispiel-Nr.	
		_	
25A	BnO—	23A	Rohprodukt wurde ohne weitere
		— ••••	Reinigung umgesetzt
	Z H ₃ C L O	aus Bsp. 20A	
	PFP H O CH ₃		
	boo		
	NH I z		
	_		
26A	BnQ—	24A	Rohprodukt wurde ohne weitere
			Reinigung umgesetzt
	Z H.C. J. O.	aus Bsp. 21A	
	PFP H O CH ₃		
	boc		
	ЙН		
	4		
27A	BnO—CH.	24A	LC-MS (Methode 5): R _t = 3.32 min.
	BnO—CH _a		
	Z N OBn	aus Bsp. 22A	MS (ES): $m/z = 1187 (M+H)^+$
	PFP H		
	boc		
	NH z		
	z		

Beispiel 28A

5

- 77 -

Eine Lösung aus 1.81 g (1.63 mmol) der Verbindung aus Beispiel 23A in 10 ml Dioxan wird unter Rühren bei 0°C mit 20 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Man rührt 30 min bei 0°C, lässt die Temperatur auf RT ansteigen, rührt eine weitere Stunde und dampft dann alles im Vakuum zur Trockne ein. Nach Trocknen im Hochvakuum bis zur Gewichtskonstanz erhält man das Produkt.

Ausbeute: quant.

LC-MS (Methode 3): $R_t = 2.62$ min.

MS (EI): $m/z = 1013 (M-HCl+H)^{+}$

10 Beispiel 29A

.2

Methyl-(2S)-2-[((2S)-2-amino-5-{[(benzyloxy)carbonyl]amino}pentanoyl)amino]-3-{4'-(benzyloxy)-3'-[(2S)-2-{[(benzyloxy)carbonyl]amino}-3-oxo-3-(pentafluorphenoxy)propyl]biphenyl-3-yl}propanoat Hydrochlorid

- 78 -

x HCI

Eine Lösung aus 1.96 g (1.79 mmol) der Verbindung aus Beispiel 24A in 20 ml Dioxan wird unter Rühren bei 0°C mit 60 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Man rührt 60 min bei 0°C, lässt die Temperatur auf RT ansteigen, rührt eine weitere Stunde und dampft dann alles im Vakuum zur Trockne ein. Nach Trocknen im Hochvakuum bis zur Gewichtskonstanz erhält man das Produkt.

Ausbeute: quant.

5

LC-MS (Methode 1): $R_t = 2.73$ min.

MS (EI): $m/z = 997 (M-HCI+H)^{+}$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 30A bis 32A aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog	
		Beispiel-Nr.	
30A	BnO H ₂ C N O CH ₃ x HCl . OH	28A aus Bsp. 25A	Rohprodukt wurde ohne weitere Reinigung umgesetzt
31A	BnO H ₃ C O CH ₃ x HCl NH	29A aus Bsp. 26A	Rohprodukt wurde ohne weitere Reinigung umgesetzt
32A	BnO CH ₃ Z N O HN O OBn X HCI NH Z	29A aus Bsp. 27A	LC-MS (Methode 5): $R_t = 3.32 \text{ min.}$ MS (ES): $m/z = 1087 \text{ (M-HCl+H)}^+$

Beispiel 33A

5 1(20),2(21),3,5,16,18-hexaen-8-carboxylat

~ 80 ~

Eine Lösung von 1.71 g (1.63 mmol) der Verbindung aus Beispiel 28A in 600 ml abs. Dichlormethan wird unter kräftigem Rühren tropfenweise in 20 min mit einer Lösung von 4.5 ml (32.6 mmol) Triethylamin in 150 ml Dichlormethan versetzt. Man lässt tiber Nacht weiterrühren und dampft alles im Vakuum ein (Badtemperatur ca. 40°C). Der Rückstand wird mit Acetonitril verrührt und der zurückbleibende Feststoff wird abfiltriert und im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 0.611 g (45% d.Th.)

LC-MS (Methode 3): $R_t = 2.92 \text{ min.}$

10 MS (EI): $m/z = 829 (M+H)^+$

Beispiel 34A

5

Eine Lösung von 1.85 g (1.79 mmol) der Verbindung aus Beispiel 29A in 600 ml abs. Chloroform wird unter kräftigem Rühren tropfenweise in 20 min mit einer Lösung von 5 ml (35.8 mmol) Triethylamin in 150 ml Chloroform versetzt. Man lässt über Nacht weiterrühren und dampft alles im Vakuum ein (Badtemperatur ca. 40°C). Der Rückstand wird mit Acetonitril verrührt und der zurückbleibende Feststoff wird abfiltriert und im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 1.21 g (83% d.Th.)

LC-MS (Methode 1): $R_t = 3.0$ min.

10 MS (EI): $m/z = 813 (M+H)^{+}$

5

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 35A bis 37A aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Beispiel-Nr.	Analytische Daten
35A	BnO CH ₃ CH ₃ OCH ₃	33A aus Bsp. 30A	LC-MS (Methode 2): R _t = 2.83 min. MS (EI): m/z = 843 (M+H) ⁺

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog	
` I		Beispiel-Nr.	
36A	BnO—	34A	LC-MS (Methode 3): $R_t = 3.23$ min.
	HN CH ₃ O CH ₃	aus Bsp. 31A	MS (EI): m/z = 827 (M+H) ⁺
	A-z		
37A.	BnQ-CH ₃	34A	LC-MS (Methode 1): R _t = 3.23 min.
	HN Z OBn	aus Bsp. 32A	MS (EI): m/z = 903 (M+H) ⁺
	N-z		

Beispiel 38A

5

Methyl-(8S,11S,14S)-14-amino-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo [14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat Dihydroacetat

Es werden 0.50 g (0.61 mmol) der Verbindung aus Beispiel 33A in ein Gemisch aus 60 ml Essigsäure/Wasser/Ethanol (4:1:1) gegeben. Dazu gibt man 100 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 36 h bei RT und Normaldruck. Das Reaktionsgemisch wird

- 83 -

über vorgewaschenem Kieselgur filtriert, mit Ethanol gewaschen und das Filtrat im Vakuum einrotiert. Der Rückstand wird im Hochvakuum bis zur Gesichtskonstanz getrocknet.

Ausbeute: quant.

LC-MS (Methode 2): $R_t = 0.88$ min.

5 MS (EI): $m/z = 471 (M-2HOAc+H)^{+}$.

Beispiel 39A

Methyl-(8S,11S,14S)-14-amino-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat Dihydroacetat

- Es werden 1.19 g (1.46 mmol) der Verbindung aus Beispiel 34A in ein Gemisch aus 440 ml Essigsäure/Wasser/Ethanol (4:1:1) gegeben. Dazu gibt man 200 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 36 h bei RT und Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert, mit Ethanol gewaschen und das Filtrat im Vakuum einrotiert. Der Rückstand wird im Hochvakuum bis zur Gesichtskonstanz getrocknet.
- 15 Ausbeute: quant.

LC-MS (Methode 8): $R_t = 2.33$ min.

MS (EI): $m/z = 455 (M-2HOAc+H)^{+}$.

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 40A bis 42A aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog	ļ.
		Beispiel-Nr.]
40A	но-	38A	LC-MS (Methode 3): $R_t = 1.22$ min.
		aus Bsp. 35A	MS (EI): m/z = 485 (M-2HOAc+H) ⁺ .
	H ₃ N O CH ₃	•	
	" Ö ᢤ Ċн, Ö — он		
ł	2 x HOAc		
	NH ₂		
41A		39A	LC-MS (Methode 10): $R_t = 2.33$ min.
	но-		
		aus Bsp. 36A	MS (EI): $m/z = 469 (M-2HOAc+H)^{+}$.
	H ₂ N CH ₃ CCH ₃		
	2 x HOAc		
	NH ₂		
42A	но—(39A	LC-MS (Methode 2): $R_t = 0.96$ min.
		aus Bsp. 37A	MS (EI): m/z = 455 (M-2HOAc+H) ⁺ .
	H ₂ N OH		100 (117-2110/10/11)
	1 12 1 H H		
	2 x HOAc		1
	NH ₂		
1			

Beispiel 43A

 $(8S,11S,14S)-14-[(\textit{tert}-Butoxycarbonyl)amino]-11-\{(2R)-3-[(\textit{tert}-butoxycarbonyl)amino]-2-hydroxypropyl\}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3,1.1^{2,6}]henicosa-$

5 1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

Eine Lösung von 150 mg (0.26 mmol) der Verbindung aus Beispiel 38A in 1 ml Wasser wird mit 1.3 ml 1N Natronlauge versetzt. Unter Rühren wird eine Lösung von 170 mg (0.78 mmol) Di-tert-butyldicarbonat in 0.5 ml Methanol bei RT hinzugegeben und für 4 h gerührt. Der Ansatz wird auf 15 ml Wasser gegeben, mit 0.1N Salzsäure stellt man pH 3 ein und schüttelt zweimal mit Essigsäureethylester aus. Die organischen Phasen werden vereinigt, mit Magenisiumsulfat getrocknet und im Vakuum zur Trockne eingedampft. Der verbleibende Feststoff wird chromatographisch (Sephadex LH20, Laufmittel: Methanol / Essigsäure (0.25%)) gereinigt.

Ausbeute: 137 mg (81% d. Th.)

10 LC-MS (Methode 1): $R_t = 1.94$ min.

MS (EI): $m/z = 657 (M+H)^{+}$

Beispiel 44A

5

15

 $(8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-\{3-[(tert-butoxycarbonyl)amino]propyl\}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure$

- 86 -

Eine Lösung von 0.85 g (1.45 mmol) der Verbindung aus Beispiel 39A in 5 ml Wasser wird mit 7.3 ml 1N Natronlauge versetzt. Unter Rühren wird eine Lösung von 0.95 g (4.36 mmol) Di-tert-butyldicarbonat in 2 ml Methanol bei RT hinzugegeben und für 6 h gerührt. Der Ansatz wird auf 25 ml Wasser gegeben, mit 0.1N Salzsäure stellt man pH 3 ein und schüttelt zweimal mit Essigsäureethylester aus. Die organischen Phasen werden vereinigt, mit Magenisiumsulfat getrocknet und im Vakuum zur Trockne eingedampft. Der verbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz gereinigt.

Ausbeute: 0.75 g (81% d. Th.)

10 LC-MS (Methode I): $R_t = 2.20$ min.

MS (EI): $m/z = 641 (M+H)^{+}$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 45A bis 47A aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.	,	analog	
		Beispiel-Nr.	
47.1		40.	
45A	HO	43A	LC-MS (Methode 2): $R_t = 1.96$ min.
	poor H CH CO ⁵ H	aus Bsp. 40A	MS (EI): $m/z = 671 (M+H)^+$
	HOW		
46A	HO-(=)-(=)	44A	LC-MS (Methode 2): $R_t = 2.08$ min.
	boc H CH ₂ CO ₂ H	aus Bsp. 41A	MS (EI): m/z = 655 (M+H) ⁺
	boo		
47A	но-СН,	44A	LC-MS (Methode 2): $R_t = 2.06$ min.
	POO H CO ² H	aus Bsp. 42A	MS (EI): m/z = 655 (M+H) ⁺
	boo		

Beispiel 48A

Benzyl-{(1S)-4-[(tert-butoxycarbonyl)amino]-1-[({2-[(tert-butoxycarbonyl)amino]ethyl}amino)-carbonyl]butyl}carbamat

5

Unter Argon werden 300 mg (0.82 mmol) N^2 -[(Benzyloxy)carbonyl]- N^5 -(tert-butoxycarbonyl)-Lornithin und 171 mg (1.06 mmol) tert-Butyl-(2-aminoethyl)carbamat in 6 ml Dimethylformamid
gelöst. Bei 0°C (Eisbad) werden dann 204 mg (1.06 mmol) EDC und 33 mg (0.25 mmol) HOBt

zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum getrocknet.

Ausbeute: 392 mg (94% d. Th.)

LC-MS (Methode 2): $R_t = 2.36$ min.

5

 $MS (ESI): m/z = 509 (M+H)^{+}$

Beispiel 49A

10 N⁵-(tert-Butoxycarbonyl)-N-{2-[(tert-butoxycarbonyl)amino]ethyl}-L-ornithinamid

Eine Lösung von 390 mg (0.77 mmol) Benzyl-{(1.S)-4-[(tert-butoxycarbonyl)amino]-1-[({2-[(tert-butoxyca butoxycarbonyl)amino]ethyl}amino)carbonyl]butyl}carbamat (Beispiel 48A) in 50 ml Ethanol wird nach Zugabe von 40 mg Palladium auf Aktivkohle (10%ig) 4 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

15

Ausbeute: 263 mg (91% d. Th.)

MS (ESI): $m/z = 375 (M+H)^{+}$; 397 (M+Na)+.

Beispiel 50A

5

10

20

25

tert-Butyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(hydroxymethyl)butyl]carbamat

Eine Lösung von 300 mg (0.90 mmol) N^2, N^5 -Bis(tert-butoxycarbonyl)-L-ornithin in 10 ml Tetrahydrofuran wird bei -10°C mit 91 mg (0.90 mmol) 4-Methylmorpholin und 98 mg (0.90 mmol) Chlorameisensäureethylester versetzt und 30 min gerührt. Bei dieser Temperatur werden 1.81 ml (1.81 mmoi) einer 1M Lösung von Lithiumaluminiumhydrid in Tetrahydrofuran langsam zugetropft. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Unter Eiskühlung gibt man vorsichtig 0.1 ml Wasser und 0.15 ml 4.5%ige Natriumhydroxid-Lösung hinzu und rührt weitere 3 h bei RT. Der Ansatz wird filtriert und das Filtrat wird im Vakuum eingeengt. Der Rückstand wird in Essigsäureethylester gelöst, mit Wasser gewaschen, über Magnesiumsulfat getrocknet und erneut im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 239 mg (83% d. Th.)

15 MS (ESI): $m/z = 319 (M+H)^+$; 341 $(M+Na)^+$.

Beispiel 51A

(2S)-2,5-Bis[(tert-butoxycarbonyl)amino]pentyl-methansulfonat

Eine Lösung von 240 mg (0.75 mmol) tert-Butyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(hydroxymethyl)butyl]carbamat (Beispiel 50A) in 20 ml Dichlormethan wird mit 103 mg (0.90 mmol) Methansulfonsäurechlorid und 0.21 ml (1.5 mmol) Triethylamin versetzt und für 16 h bei RT gerührt. Es wird mit Dichlormethan verdünnt und zweimal mit 0.1N Salzsäure gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum bis zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 218 mg (73% d. Th.)

- 90 -

MS (ESI): $m/z = 419 (M+Na)^{+}$.

Beispiel 52A

tert-Butyl-{(4S)-5-azido-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat

5 Eine Lösung von 218 mg (0.55 mmol) (25)-2,5-Bis[(tert-butoxycarbonyl)amino]pentyl-methansulfonat (Beispiel 51A) in 15 ml Dimethylformamid wird mit 36 mg (0.55 mmol) Natriumazid
versetzt und 12 h bei 70°C gerührt. Ein Großteil des Lösungsmittel wird im Vakuum abdestilliert
und der Rückstand wird mit Essigsäureethylester verdünnt. Es wird mehrmals mit gesättigter
Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum
20 zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 188 mg (99% d. Th.)

MS (ESI): $m/z = 344 (M+H)^{+}$.

Beispiel 53A

tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat

15

20

Eine Lösung von 188 mg (0.55 mmol) tert-Butyl-{(4S)-5-azido-4-[(tert-butoxycarbonyl)amino}-pentyl}carbamat (Beispiel 52A) in Ethanol wird nach Zugabe von 20 mg Palladium auf Aktivkohle (10%ig) 12 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 102 mg (59% d. Th.)

MS (ESI): $m/z = 318 (M+H)^{+}$; 340 (M+Na)⁺.

Beispiel 54A

5

Benzyl-[2-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-2-oxoethyl]carbamat

Die Herstellung erfolgt analog zu Beispiel 48A aus 92 mg (0.44 mmol) N-[(Benzyloxy)-carbonyl]glycin und 181 mg (0.57 mmol) tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)-amino]pentyl}carbamat (Beispiel 53A) in 6 ml Dimethylformamid unter Zusatz von 110 mg (0.57 mmol) EDC und 18 mg (0.13 mmol) HOBt. Das Produkt wird mittels präparativer RP-HPLC gereinigt (Laufmittel Wasser / Acetonitril Gradient: 90:10 → 5:95).

Ausbeute: 105 mg (47% d. Th.)

10 LC-MS (Methode 2): $R_t = 2.12 \text{ min.}$

MS (ESI): $m/z = 509 (M+H)^{+}$

Beispiel 55A

tert-Butyl-{(4S)-5-[(aminoacetyl)amino]-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat

Die Herstellung erfolgt analog Beispiel 49A aus 105 mg (0.21 mmol) Benzyl-[2-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-2-oxoethyl]carbamat (Beispiel 54A) in 50 ml Ethanol unter Zusatz von 11 mg Palladium auf Aktivkohle (10%ig). Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 64 mg (83% d. Th.)

20 MS (ESI): $m/z = 375 (M+H)^+$

Beispiel 56A

Benzyl- $\{(IS)-1-[(\{(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl\}amino)carbonyl]-4-[(tert-butoxycarbonyl)amino]butyl\}carbamat$

- Die Herstellung erfolgt analog zu Beispiel 48A aus 120 mg (0.33 mmol) N⁵-(tert-Butoxycarbonyl)-N²-[(benzyloxy)carbonyl]-L-ornithin und 136 mg (0.43 mmol) tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat (Beispiel 53A) in 6 ml Dimethylformamid unter Zusatz von 82 mg (0.43 mmol) EDC und 13 mg (0.1 mmol) HOBt. Das Produkt wird mittels präparativer RP-HPLC gereinigt (Laufmittel Wasser / Acetonitril Gradient: 90:10 → 5:95).
- 10 Ausbeute: 132 mg (61% d. Th.)

LC-MS (Methode 3): $R_t = 2.68 \text{ min.}$

 $MS (ESI): m/z = 666 (M+H)^{+}$

Beispiel 57A

15

20

tert-Butyl-[(4S)-4-amino-5-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-5-oxopentyl]carbamat

Die Herstellung erfolgt analog Beispiel 49A aus 132 mg (0.20 mmol) Benzyl-{(1S)-1-[({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)carbonyl]-4-[(tert-butoxycarbonyl)amino]butyl}-carbamat (Beispiel 56A) in 50 ml Ethanol unter Zusatz von 13 mg Palladium auf Aktivkohle (10%ig). Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

MS (ESI): $m/z = 532 (M+H)^+$

Beispiel 58A

Benzyl-[(1S)-1-[(benzyloxy)methyl]-2-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-2-oxoethyl]carbamat

5 Die Herstellung erfolgt analog zu Beispiel 48A aus 150 mg (0.46 mmol) O-Benzyl-N[(benzyloxy)carbonyl]-L-serin und 188 mg (0.59 mmol) tert-Butyl-{(4S)-5-amino-4-[(tertbutoxycarbonyl)amino]pentyl}carbamat (Beispiel 53A) in 6 ml Dimethylformamid unter Zusatz
von 114 mg (0.57 mmol) EDC und 18 mg (0.13 mmol) HOBt. Das Produkt wird mittels
präparativer RP-HPLC gereinigt (Laufmittel Wasser / Acetonitril Gradient: 90:10 → 5:95).

10 Ausbeute: 129 mg (45% d. Th.)

LC-MS (Methode 3): $R_t = 2.81 \text{ min.}$

MS (ESI): $m/z = 629 (M+H)^+$

Beispiel 59A

15

20

tert-Butyl-{(4S)-5-{[(2S)-2-amino-3-hydroxypropanoyl]amino}-4-[(tert-butoxycarbonyl)amino]-pentyl}carbamat

Eine Lösung von 128 mg (0.77 mmol) Benzyl-[(1S)-1-[(benzyloxy)methyl]-2-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-2-oxoethyl]carbamat (Beispiel 58A) in 50 ml Ethanol wird nach Zugabe von 13 mg Palladium auf Aktivkohle (10%ig) 48 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird mittels präparativer RP-HPLC gereinigt (Laufmittel Wasser / Acetonitril Gradient: 90:10 → 5:95).

Ausbeute: 22 mg (27% d. Th.)

LC-MS (Methode 1): $R_t = 1.43$ min.

MS (ESI): $m/z = 405 (M+H)^+$

Beispiel 60A

5

10

20

Benzyl-[2-({(3S)-3-{[(benzyloxy)carbonyl]amino}-6-[(tert-butoxycarbonyl)amino]hexanoyl}-amino)ethyl]carbamat

Zu einer Lösung von 500 mg (1.31 mmol) (3S)-3-{[(Benzyloxy)carbonyl]amino}-6-[(tert-butoxycarbonyl)amino]hexansäure in 25 ml wasserfreiem DMF werden 549.7 mg (1.446 mmol) HATU und 339.7 mg (2.629 mmol) N,N-Diisopropylethylamin hinzugegeben. Nach 15 min Rühren bei RT werden 333.5 mg (1.446 mmol) Benzyl-(2-aminoethyl)carbamat Hydrochlorid hinzugegeben. Das Reaktionsgemisch wird 15 h bei RT gerührt. Das Lösungsmittel wird dann eingedampft und der Rückstand in Dichlormethan aufgenommen. Die organische Phase wird mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch präparative HPLC aufgereinigt.

15 Ausbeute 556.6 mg (44% d. Th.)

LC-MS (Methode 3): $R_t = 2.41 \text{ min.}$

 $MS (ESI): m/z = 557 (M+H)^{+}.$

Beispiel 61A

Benzyl-((1S)-4-amino-1-{2-[(2-{[(benzyloxy)carbonyl]amino}ethyl)amino]-2-oxoethyl}butyl)-carbamat Hydrochlorid

Zu einer Lösung von 320 mg (0.287 mmol) Benzyl-[2-({(3S)-3-{[(benzyloxy)carbonyl]amino}-6-[(tert-butoxycarbonyl)amino]hexanoyl}amino)ethyl]carbamat (Beispiel 60A) in 2 ml Dioxan

werden bei 0°C 8 ml einer 4M Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 1 h bei RT wird die Reaktionslösung im Vakuum eingeengt, mehrmals mit Dichlormethan coevaporiert und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

5 LC-MS (Methode 2): $R_t = 2.84 \text{ min.}$

MS (ESI): $m/z = 457 (M-HCl+H)^{+}$.

Beispiel 62A

Benzyl- $\{2-[((3S)-3-\{[(benzyloxy)carbonyl]amino\}-6-\{[N^5-[(benzyloxy)carbonyl]-N^2-(tertbutoxycarbonyl)-L-ornithyl]amino\}$ hexanoyl)amino]ethyl $\{arbanat\}$

10

15

Zu einer Lösung von 78.4 mg (0.214 mmol) N⁵-[(Benzyloxy)carbonyl]-N²-(tert-butoxycarbonyl)-L-ornithin in 5 ml wasserfreiem DMF werden 89.5 mg (0.235 mmol) HATU und 55.3 mg (0.428 mmol) N,N-Diisopropylethylamin hinzugegeben. Nach 15 min Rühren bei RT wird eine Lösung von 116 mg (0.235 mmol) Benzyl-((1S)-4-amino-1-{2-[(2-{[(benzyloxy)carbonyl]amino}-ethyl)amino]-2-oxoethyl}butyl)carbamat Hydrochlorid (Beispiel 61A) in 5 ml wasserfreiem DMF hinzugegeben. Das Reaktionsgemisch wird 15 h bei RT gerührt. Das Lösungsmittel wird dann eingedampft und der Rückstand in Dichlormethan aufgenommen. Die organische Phase wird mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch präparative HPLC aufgereinigt.

20 Ausbeute 48 mg (28% d. Th.)

LC-MS (Methode 2): $R_i = 2.33$ min.

 $MS (ESI): m/z = 805 (M+H)^{+}$.

Beispiel 63A

Benzyl-((4S,10S)-4-amino-10-{[(benzyloxy)carbonyl]amino}-5,12,17-trioxo-19-phenyl-18-oxa-6,13,16-triazanonadec-1-yl)carbamat Hydrochlorid

Zu einer Lösung von 48 mg (0.060 mmol) Benzyl-{2-[((3S)-3-{[(benzyloxy)carbonyl]amino}-6-{[N^6-[(benzyloxy)carbonyl]-N^2-(tert-butoxycarbonyl)-L-ornithyl]amino}hexanoyl)amino]ethyl}-carbamat (Beispiel 62A) in 1 ml Dioxan werden bei RT 2.5 ml einer 4M Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 4 h bei RT wird die Reaktionslösung im Vakuum eingeengt, mehrmals mit Dichlormethan coevaporiert und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

LC-MS (Methode 2): $R_t = 1.69$ min.

MS (ESI): m/z = 705 (M-HCl+H)⁺.

Beispiel 64A

20

Benzyl[(5S)-5-[(tert-butoxycarbonyl)amino]-7-({2-[(tert-butoxycarbonyl)amino]ethyl}amino)-7-oxoheptyl]carbamat

Unter Argon werden 1 g (2.54 mmol) (3S)-7-{[(Benzyloxy)carbonyl]amino}-3-[(tert-butoxy-carbonyl)amino]heptancarbonsäure, 406 mg (2.54 mmol) tert-Butyl-(2-aminoethyl)carbamat und 0.96 ml Triethylamin (6.85 mmol) in 20 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 826 mg (4.3 mmol) EDC und 113 mg (0.84 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand

- 97 -

wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum getrocknet.

5 Ausbeute: quant.

LC-MS (Methode 2): $R_t = 2.21$ min.

MS (ESI): $m/z = 537 (M+H)^{+}$

Beispiel 65A

tert-Butyl-((1S)-5-amino-1-{2-[(2-{[(benzyloxy)carbonyl]amino}ethyl)amino}-2-oxoethyl}pentyl)10 carbamat Hydroacetat

Es werden 1.3 g (2.42 mmol) Benzyl-[(5S)-5-[(tert-butoxycarbonyl)amino]-7-({2-[(tert-b

Ausbeute: quant.

15

LC-MS (Methode 1): $R_t = 1.35$ min.

20 MS (ESI): m/z = 403 (M-HOAc+H)⁺

Beispiel 66A

Benzyl-tert-butyl[(2S)-3-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-3-oxopropan-1,2-diyl]biscarbamat

- 98 -

Unter Argon werden 0.127 g (0.37 mmol) N-[(Benzyloxy)carbonyl]-3-[(tert-butoxycarbonyl)-amino]-L-alanin und 0.193 g (0.49 mmol) tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)-amino]pentyl}carbamat (Beispiel 53A) in 6 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 0.093 g (0.49 mmol) EDC und 0.015 g (0.11 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird per präparativer HPLC (Kromasil, Laufmittel Acetonitril/ 0.25% wässrige Trifluoressigsäure 5:95 → 95:5) gereinigt.

Ausbeute: 0.126 g, (53% d. Th.)

LC-MS (Methode 1): $R_t = 2.65$ min.

 $MS (ESI): m/z = 638 (M+H)^+$

15 Beispiel 67A

5

10

 $tert\text{-}Butyl\text{-}[(2S)\text{-}2\text{-}amino\text{-}3\text{-}(\{(2S)\text{-}2\text{,}5\text{-}bis[(tert\text{-}butoxycarbonyl)amino]pentyl}\} amino)\text{-}3\text{-}oxopropyl]carbamat$

- 99 ~

Zu einer Mischung aus 0.122 g (0.19 mmol) der Verbindung aus Beispiel 66A in 50 ml Ethanol gibt man 20 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 4 h bei Normaldruck. Das Reaktionsgemisch wird über Kieselgur filtriert, das Filtrat im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

5

15

MS (ESI): m/z = 504 (M+H)⁺

Beispiel 68A

Benzyl-{(1S)-4-[(tert-butoxycarbonyl)amino]-1-[2-({2-[(tert-butoxycarbonyl)amino]ethyl}amino)2-oxoethyl]butyl}carbamat

Zu einer Lösung von 760.9 mg (2 mmol) (3S)-3-{[(Benzyloxy)carbonyl]amino}-6-[(tert-butoxycarbonyl)amino]hexansäure in 25 ml wasserfreiem DMF werden 836.5 mg (2.2 mmol) HATU und 517.0 mg (4 mmol) N,N-Diisopropylethylamin hinzugegeben. Nach 15 min Rühren bei RT werden 352.5 mg (2.2 mmol) tert-Butyl-(2-aminoethyl)carbamat Hydrochlorid hinzugegeben. Das Reaktionsgemisch wird 15 h bei RT gerührt. Das Lösungsmittel wird dann eingedampft und der Rückstand in Dichlormethan aufgenommen. Die organische Phase wird mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch präparative HPLC aufgereinigt.

20 Ausbeute 400 mg (38% d. Th.)

LC-MS (Methode 1): $R_t = 2.33$ min.

MS (ESI): $m/z = 523 (M+H)^{+}$.

Beispiel 69A

tert-Butyl-[(4S)-4-amino-6-({2-[(tert-butoxycarbonyl)amino]ethyl}amino)-6-oxohexyl]carbamat

Es werden 400 mg (0.765 mmol) Benzyl-{(1S)-4-[(tert-butoxycarbonyl)amino]-1-[2-({2-[(tert-butoxycarbonyl)amino]-1-[2-({2-[(tert-butoxycarbonyl)amino]-thyl}amino)-2-oxoethyl]butyl}carbamat (Beispiel 68A) in 50 ml Ethanol gelöst. Dazu gibt man 80 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 15 h bei Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert und das Filtrat im Vakuum einrotiert. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

LC-MS (Methode 3): $R_t = 1.42 \text{ min}$

MS (ESI): $m/z = 389 (M+H)^{+}$.

10 Beispiel 70A

5

15

20

Benzyl-((1*S*,4*S*)-1,4-bis{3-[(*tert*-butoxycarbonyl)amino]propyl}-13,13-dimethyl-2,6,11-trioxo-12-oxa-3,7,10-triazatetradec-1-yl)carbamat

Unter Argon werden 72 mg (0.197 mmol) N^2 -[(Benzyloxy)carbonyl]- N^5 -(tert-butoxycarbonyl)-Lornithin und 100 mg (0.26 mmol) der Verbindung aus Beispiel 69A in 8 ml Dimethylformamid
gelöst. Bei 0°C (Eisbad) werden dann 49 mg (0.26 mmol) EDC und 8 mg (0.059 mmol) HOBt
zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im
Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die
organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der
verbleibende Feststoff wird im Hochvakuum getrocknet

- 101 -

Ausbeute 121 mg (83% d. Th.)

LC-MS (Methode 1): $R_t = 2.24 \text{ min.}$

MS (ESI): $m/z = 737 (M+H)^+$.

Beispiel 71A

5 tert-Butyl-[(4S)-4-({(2S)-2-amino-5-[(tert-butoxycarbonyl)amino]pentanoyl}amino)-6-({2-[(tert-butoxycarbonyl)amino]ethyl}amino)-6-oxohexyl]carbamat

Es werden 120 mg (0.16 mmol) der Verbindung aus Beispiel 70A in 10 ml Ethanol gelöst. Dazu gibt man 15 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 15 h bei Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert und das Filtrat im Vakuum einrotiert. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

10

MS (ESI): $m/z = 603 (M+H)^{+}$.

Beispiel 72A

Benzyl-[(4S)-4-[(tert-butoxycarbonyl)amino]-6-({2-[(tert-butoxycarbonyl)amino]ethyl}amino)-6-oxohexyl]carbamat

Unter Argon werden 100 mg (0.26 mmol) (3S)-6-{[(Benzyloxy)carbonyl]amino}-3-[(tert-butoxycarbonyl)amino]hexansäure und 55 mg (0.34 mmol) tert-Butyl-(2-aminoethyl)carbamat in 6 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 66 mg (0.34 mmol) EDC und 11 mg (0.08 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonatund Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum getrocknet.

Ausbeute: 71 mg (51% d. Th.)

10 LC-MS (Methode 3): $R_t = 2.43 \text{ min.}$

 $MS (ESI): m/z = 523 (M+H)^+$

Beispiel 73A

tert-Butyl- $\{(1S)$ -4-amino-1- $[2-(\{2-[(tert$ -butoxycarbonyl)amino]ethyl\}amino)-2-oxoethyl]butyl}-carbamat

15

5

Eine Lösung von 71 mg (0.135 mmol) der Verbindung aus Beispiel 72A in 10 ml Ethanol wird nach Zugabe von 15 mg Palladium auf Aktivkohle (10%ig) 12 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

20 Ausbeute: quant.

MS (ESI): $m/z = 389 (M+H)^{+}$.

Beispiel 74A

Benzyl-((1*S*,7*S*)-7-[(*tert*-butoxycarbonyl)amino]-1-{3-[(*tert*-butoxycarbonyl)amino]propyl}-16,16-dimethyl-2,9,14-trioxo-15-oxa-3,10,13-triazaheptadec-1-yl)carbamat

Unter Argon werden 40 mg (0.11 mmol) N²-[(Benzyloxy)carbonyl]-N⁵-(tert-butoxycarbonyl)-Lornithin und 55 mg (0.14 mmol) der Verbindung aus Beispiel 73A in 8 ml Dimethylformamid
gelöst. Bei 0°C (Eisbad) werden dann 27 mg (0.14 mmol) EDC und 4.4 mg (0.033 mmol) HOBt
zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im
Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die
organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der
verbleibende Feststoff wird im Hochvakuum getrocknet

Ausbeute: 72 mg (89% d. Th.)

LC-MS (Methode 1): $R_t = 2.2 \text{ min.}$

15 MS (ESI): $m/z = 737 (M+H)^+$

Beispiel 75A

tert-Butyl-{(4S,10S)-4-amino-10-[(tert-butoxycarbonyl)amino]-19,19-dimethyl-5,12,17-trioxo-18-oxa-6,13,16-triazaicos-1-yl}carbamat

Eine Lösung von 72 mg (0.097 mmol) der Verbindung aus Beispiel 74A in 10 ml Ethanol wird nach Zugabe von 10 mg Palladium auf Aktivkohle (10%ig) 12 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant,

5

15

MS (ESI): $m/z = 603 (M+H)^{+}$.

Beispiel 76A

Benzyl-{(4S)-6-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-4-[(tert-butoxy-10 carbonyl)amino]-6-oxohexyl}carbamat

Unter Argon werden 0.1 g (0.263 mmol) (3S)-6-{[(Benzyloxy)carbonyl]amino}-3-[(tert-butoxy-carbonyl)amino]hexancarbonsäure (Bioorg. Med. Chem. Lett. 1998, 8, 1477-1482) und 0.108 g (0.342 mmol) tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat (Beispiel 53A) in 6 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 0.066 g (0.342 mmol) EDC und 0.011 g (0.079 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat-und Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum

- 105 -

eingedampft. Der verbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 0.127 g (71% d. Th.)

LC-MS (Methode 1): $R_t = 2.36$ min.

5 MS (ESI): $m/z = 680 (M+H)^+$

Beispiel 77A

tert-Butyl-{(1.S)-4-amino-1-[2-({(2.S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-2-oxoethyl]butyl}carbamat

- Zu einer Mischung aus 0.127 g (0.19 mmol) der Verbindung aus Beispiel 76A in 10 ml Ethanol gibt man 20 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 12 h bei Normaldruck. Das Reaktionsgemisch wird über Kieselgur filtriert, das Filtrat im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.
- 15 Ausbeute: quant.

 $MS (ESI): m/z = 546 (M+H)^{+}$

Beispiel 78A

Benzyl-((1S,7S,12S)-7,12-bis[(tert-butoxycarbonyl)amino]-1-{3-[(tert-butoxycarbonyl)amino]-propyl}-19,19-dimethyl-2,9,17-trioxo-18-oxa-3,10,16-triazaicos-1-yl)carbamat

- 106 -

Unter Argon werden 44 mg (0.12 mmol) N²-[(Benzyloxy)carbonyl]-N⁵-(tert-butoxycarbonyl)-L-ornithin und 85 mg (0.16 mmol) der Verbindung aus Beispiel 77A in 8 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 30 mg (0.16 mmol) EDC und 4.9 mg (0.036 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natrium-chlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum getrocknet

10 Ausbeute: 91 mg (85% d. Th.)

LC-MS (Methode 1): $R_t = 2.35$ min.

MS (ESI): $m/z = 894 (M+H)^{+}$

Beispiel 79A

5

15

tert-Butyl-{(4S,10S,15S)-4-amino-10,15-bis[(tert-butoxycarbonyl)amino]-22,22-dimethyl-5,12,20-trioxo-21-oxa-6,13,19-triazatricos-1-yl}carbamat

- 107 -

Eine Lösung von 91 mg (0.10 mmol) der Verbindung aus Beispiel 78A in 10 ml Ethanol wird nach Zugabe von 10 mg Palladium auf Aktivkohle (10%ig) 12 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

5

15

MS (ESI): $m/z = 760 (M+H)^{+}$.

Beispiel 80A

Benzyl-{(1S)-1-[2-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-2-oxoethyl]-4-[(tert-butoxycarbonyl)amino]butyl}carbamat

Unter Argon werden 0.1 g (0.26 mmol) (3S)-3-{[(Benzyloxy)carbonyl]amino}-6-[(tert-butoxy-carbonyl)amino]hexansäure (J. Med. Chem. 2002, 45, 4246-4253) und 0.11 g (0.34 mmol) tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat (Beispiel 53A) in 6 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 0.065 g (0.34 mmol) EDC und 0.011 g (0.079 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester

- 108 -

aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonatund Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

5 Ausbeute: 0.146 g (82% d. Th.)

LC-MS (Methode 2): $R_t = 2.5 \text{ min.}$

MS (ESI): $m/z = 680 (M+H)^{+}$

Beispiel 81A

tert-Butyl-[(4S)-4-amino-6-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-6-oxohexyl]carbamat

Zu einer Mischung aus 0.146 g (0.22 mmol) der Verbindung aus Beispiel 80A in 10 ml Ethanol gibt man 22 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 12 h bei Normaldruck. Das Reaktionsgemisch wird über Kieselgur filtriert, das Filtrat im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

15

MS (ESI): $m/z = 546 (M+H)^{+}$

Beispiel 82A

20 Benzyl-((1*S*,4*S*,9*S*)-9-[(*tert*-butoxycarbonyl)amino]-1,4-bis {3-[(*tert*-butoxycarbonyl)amino]-propyl}-16,16-dimethyl-2,6,14-trioxo-15-oxa-3,7,13-triazaheptadec-1-yl)carbamat

- 109 -

Unter Argon werden 40 mg (0.11 mmol) N^2 -[(Benzyloxy)carbonyl]- N^5 -(tert-butoxycarbonyl)-L-ornithin und 77 mg (0.14 mmol) der Verbindung aus Beispiel 81A in 8 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 27 mg (0.14 mmol) EDC und 4.4 mg (0.032 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natrium-chlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum getrocknet

10 Ausbeute: 78 mg (81% d. Th.)

LC-MS (Methode 1): $R_t = 2.43 \text{ min.}$

MS (ESI): $m/z = 894 (M+H)^+$

Beispiel 83A

5

tert-Butyl-((1S,6S,9S)-9-amino-1,6-bis {3-[(tert-butoxycarbonyl)amino]propyl}-16,16-dimethyl-4,8,14-trioxo-15-oxa-3,7,13-triazaheptadec-1-yl)carbamat

- 110 -

Eine Lösung von 78 mg (0.088 mmol) der Verbindung aus Beispiel 82A in 10 ml Ethanol wird nach Zugabe von 10 mg Palladium auf Aktivkohle (10%ig) 12 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

5

15

MS (ESI): $m/z = 760 (M+H)^{+}$.

Beispiel 84A

 N^5 -[N^2 -[(Benzyloxy)carbonyl]- N^5 -(tert-butoxycarbonyl)-D-ornithyl]- N^2 -(tert-butoxycarbonyl)-N-10 {2-[(tert-butoxycarbonyl)amino]ethyl}-L-ornithinamid

Unter Argon werden 286 mg (0.78 mmol) N^2 -[(Benzyloxy)carbonyl]- N^5 -(tert-butoxycarbonyl)-Dornithin und 439 mg (1.17 mmol) der Verbindung aus Beispiel 104A in 16 ml Dimethylformamid
gelöst. Bei 0°C (Eisbad) werden dann 255 mg (1.33 mmol) EDC und 106 mg (0.78 mmol) HOBt
zugegeben. Es wird langsam auf RT erwärmt und für 48 h bei RT gerührt. Die Lösung wird im
Vakuum eingeengt und der Rückstand mit Dichlormethan aufgenommen und mit gesättigter

Natriumhydrogencarbonat-Lösung, 0.1 N Salzsäure und Wasser gewaschen. Die vereinigten organischen Phasen werden im Vakuum eingeengt und der so erhaltene Feststoff ohne Reinigung weiter umgesetzt.

- 111 -

Ausbeute: 0.58 g (quant.)

5 LC-MS (Methode 3): $R_t = 2.59$ min.

MS (ESI): $m/z = 723 (M+H)^{+}$

Beispiel 85A

 N^5 -[N^5 -(tert-Butoxycarbonyl)-D-ornithyl]- N^2 -(tert-butoxycarbonyl)-N-{2-[(tert-butoxycarbonyl)-amino]ethyl}-L-ornithinamid

10

0.58 g (0.80 mmol) der Verbindung aus Beispiel 84A werden in 27 ml Ethanol gelöst und mit 0.06 g (0.06 mmol) Pd/C versetzt. Man hydriert 12 h bei Normaldruck, filtriert über Celite und engt das Filtrat im Vakuum ein. Der so erhaltene Feststoff wird ohne Reinigung weiter umgesetzt.

Ausbeute: 0.47 g (97% d. Th.)

15 LC-MS (Methode 1): $R_t = 1.61 \text{ min.}$

MS (ESI): $m/z = 589 (M+H)^{+}$

Beispiel 86A

Benzyl-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-({2-[(tert-butoxycarbonyl)amino]ethyl}amino)-3-oxopropyl]carbamat

Unter Argon werden 0.50 g (0.96 mmol) 3-{[(Benzyloxy)carbonyl]amino}-N-(tert-butoxy-carbonyl)-L-alanin - N-Cyclohexylcyclohexanamin (1:1) und 0.154 g (0.96 mmol) tert-Butyl-(2-aminoethyl)carbamat in 10 ml Dimethylformamid und 0.5 ml Triethylamin gelöst. Bei 0°C (Eisbad) werden dann 0.314 g (1.64 mmol) EDC und 0.043 g (0.32 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonat- und Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 0.41 g (88% d. Th.)

LC-MS (Methode 2): $R_t = 2.17 \text{ min.}$

MS (ESI): $m/z = 481 (M+H)^{+}$

Beispiel 87A

5

10

20

3-Amino-N²-(tert-butoxycarbonyl)-N-{2-[(tert-butoxycarbonyl)amino]ethyl}-L-alaninamid Hydroacetat

Zu einer Mischung aus 0.41 g (0.847 mmol) der Verbindung aus Beispiel 86A in 80 ml Essigsäure/Ethanol/Wasser (4:1:1) gibt man 50 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 12 h bei Normaldruck. Das Reaktionsgemisch wird über Kieselgur filtriert, das Filtrat im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

LC-MS (Methode 2): $R_t = 1.09 \text{ min.}$

MS (ESI): $m/z = 347 (M-HOAc+H)^{+}$

Beispiel 88A

 N^5 -{N-[(Benzyloxy)carbonyl]glycyl}- N^2 -(tert-butoxycarbonyl)-N-{2-[(tert-butoxycarbonyl)-amino]ethyl}-L-ornithinamid

5

10

Unter Argon werden 300 mg (1.43 mmol) N-[(Benzyloxy)carbonyl]glycin und 830 mg (2.15 mmol) der Verbindung aus Beispiel 104A in 28 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 467 mg (2.44 mmol) EDC und 194 mg (1.43 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 48 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand mit Dichlormethan aufgenommen und mit gesättigter Natriumhydrogencarbonat-Lösung, 0.1 N Salzsäure und Wasser gewaschen. Die vereinigten organischen Phasen werden im Vakuum eingeengt und der so erhaltene Feststoff ohne Reinigung weiter umgesetzt.

Ausbeute: quant.

LC-MS (Methode 2): $R_t = 1.98 \text{ min.}$

15 MS (ESI): $m/z = 566 (M+H)^+$

Beispiel 89A

 N^5 -Glycyl- N^2 -(tert-butoxycarbonyl)-N-{2-{(tert-butoxycarbonyl)amino}ethyl}-L-ornithinamid

1.03 g (1.82 mmol) der Verbindung aus Beispiel 88A werden in 60 ml Ethanol gelöst und mit 100 mg (0.09 mmol) Pd/C (10%ig) versetzt. Man hydriert über Nacht bei Normaldruck, filtriert über Celite und engt das Filtrat im Vakuum ein. Der so erhaltene Feststoff wird ohne Reinigung weiter umgesetzt.

- 114 -

Ausbeute: 693 mg (84% d. Th.)

LC-MS (Methode 3): $R_t = 1.41$ min.

MS (ESI): $m/z = 432 (M+H)^{+}$

Beispiel 90A

10

15

5 Benzyl-*tert*-butyl-[5-({(2S)-2,5-bis[(*tert*-butoxycarbonyl)amino]pentyl}amino)-5-oxopentan-1,3-diyl]biscarbamat

Unter Argon werden 0.146 g (0.40 mmol) 3-{[(Benzyloxy)carbonyl]amino}-5-[(tert-butoxy-carbonyl)amino]pentansäure (Bioorg. Med. Chem. 2003, 13, 241-246) und 0.164 g (0.52 mmol) tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat (Beispiel 53A) in 8 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 0.10 g (0.52 mmol) EDC und 0.009 g (0.12 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Essigsäureethylester aufgenommen. Die organische Phase wird nacheinander mit gesättigter Natriumhydrogencarbonatund Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingedampft. Der verbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 0.232 g, (87% d, Th.)

LC-MS (Methode 3): $R_t = 2.73$ min.

20 MS (ESI): $m/z = 666 (M+H)^{+}$

Beispiel 91A

tert-Butyl-[3-amino-5-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-5-oxopentyl]-carbamat

Zu einer Mischung aus 0.232 g (0.35 mmol) der Verbindung aus Beispiel 90A in 10 ml Ethanol gibt man 35 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 12 h bei Normaldruck. Das Reaktionsgemisch wird über Kieselgur filtriert, das Filtrat im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 0.175 g (94% d. Th.)

Ś

LC-MS (Methode 3): $R_i = 1.8$ min.

MS (ESI): $m/z = 532 (M+H)^+$

Analog zu der oben aufgeführten Vorschrift von Beispiel 50A werden die in der folgenden Tabelle aufgeführten Beispiele 92A und 93A aus den entsprechenden Ausgangsverbindungen hergestellt:

- 116 -

Bsp Nr.	Struktur	Hergestellt aus	Analytische Daten
92A	HO Z N H	N ⁶ -[(Benzyloxy)- carbonyl]-N ² -(tert- butoxycarbonyl)-L- lysin	LC-MS (Methode 2): R ₄ = 1.94 min. MS (ESI): m/z = 367 (M+H) ⁺
93A	HO HO boc	N-[(Benzyloxy)- carbonyl]-3-[(tert- butoxycarbonyl)- amino]-L-alanin	LC-MS (Methode 1): R _t = 1.98 min. MS (ESI): m/z = 325 (M+H) ⁺

Beispiel 94A

Benzyl-[(1S)-2-amino-1-(hydroxymethyl)ethyl]carbamat Hydrochlorid

Eine Mischung von 269 mg (0.83 mmol) Benzyl-tert-butyl[(2S)-3-hydroxypropan-1,2-diyl]biscarbamat (Beispiel 93A) und 5 ml einer 4M Chlorwasserstoff-Dioxan-Lösung wird 2 h bei RT gerührt. Die Reaktionslösung wird eingeengt, mehrmals mit Dichlormethan coevaporiert und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 212 mg (98% d. Th.)

10 LC-MS (Methode 2): $R_t = 0.55$ min.

MS (ESI): $m/z = 225 (M-HCl+H)^{+}$.

Analog zu der oben aufgeführten Vorschrift von Beispiel 48A werden die in der folgenden Tabelle aufgeführten Beispiele 95A bis 102A aus den entsprechenden Edukten hergestellt:

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.		_	
95A	H H	N⁵-[(Benzyloxy)-	LC-MS (Methode 1): R _t
	boc N boc	carbonyl]-N ² -(tert-	= 2.33 min.
		butoxycarbonyl)-L-	MG (POD),/ #00
	N Z	ornithin	MS (ESI): m/z = 509 (M+H) ⁺
-		und <i>tert</i> -Butyl-(2-	(141-11)
		aminoethyl)-carbamat	
		ammoemyr/-carbamat	
96A	н П н	N ² ,N ⁵ -Bis(tert-	LC-MS (Methode 1): R _t
ľ	boc N Z	butoxycarbonyl)-L-	= 2.20 min.
<u> </u>		ornithin	
<u> </u>	ЙН		MS (ESI): $m/z = 539$
	boc	und Bsp. 94A	(M+H)*
07.4		32 (/D1)	TOMO OF IL IN D
97A	z H N	N ² -[(Benzyloxy)-	LC-MS (Methode 1): R ₁ = 2.31 min.
	【	carbonyl]-N ⁵ -(tert-	= 2.31 nun.
	HN boc OH	butoxycarbonyl)-L- ornithin	MS (ESI): $m/z = 581$
	NH boc	o o o	(M+H) ⁺
		und Bsp. 103A	
90.			101600000000000000000000000000000000000
98A	z H N N boc	O-Benzyl-N-	LC-MS (Methode 2): Rt
	H HN boc	[(benzyloxy)carbonyl]-	= 2.79 min.
	L/ _Q	<i>L-</i> tyrosin	MS (ESI): m/z = 705
	bn	und Bsp. 53A	(M+H) ⁺
99A	н 9 н	N^2 , N^5 -Bis(tert-	LC-MS (Methode 2): R _t
	z N boc	butoxycarbonyl)-L-	= 2.15 min.
		ornithin	1 (g /gg) / 750
	boc N		MS (ESI): $m/z = 509$
	П	und Benzyl-(2-	(M+H) ⁺
	•	aminoethyl)carbamat	

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
100A	boc H boc	N ⁶ -[(Benzyloxy)- carbonyl]-N ² -(tert- butoxycarbonyl)-L- lysin und tert-Butyl-(3- amino-2- hydroxypropyl)- carbamat	LC-MS (Methode 3): R _t = 2.4 min. MS (ESI): m/z = 553 (M+H) ⁺
101A	boc HN boc	N ⁶ -[(Benzyloxy)- carbonyl]-N ² -(tert- butoxycarbonyl)-L- lysin und Benzyl-(2- aminoethyl)carbamat	LC-MS (Methode 3): R _t = 2.49 min. MS (ESI): m/z = 523 (M+H) ⁺
102A	boc NH boc	N ⁶ -[(Benzyloxy)- carbonyl]-N ² -(tert- butoxycarbonyl)-L- lysin und Bsp. 53A	LC-MS (Methode 2): R _t = 2.55 min. MS (ESI): m/z = 680 (M+H) ⁺

Analog zu der oben aufgeführten Vorschrift von Beispiel 49A werden die in der folgenden Tabelle aufgeführten Beispiele 103A bis 111A aus den entsprechenden Edukten hergestellt:

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.		Beispiel	
		_	
103A	HO H ₂ N	92A	MS (ESI): m/z = 233 (M+H) ⁺
104A	boc NH ₂	95A	MS (ESI): m/z = 375 (M+H) ⁺
105A	H ₂ N H boc OH boc	97A	MS (ESI): m/z = 447 (M+H) ⁺
106A	boc NH OH	96A	MS (ESI): m/z = 405 (M+H) ⁺
107A	H ₂ N boc OH .	98A	LC-MS (Methode 3): R _t = 1.67 min. MS (ESI): m/z = 481 (M+H) ⁺
108A	H ₂ N boc boc N	99A	MS (ESI): m/z = 375 (M+H) ⁺

Bsp Nr.	Struktur	Hergestellt aus Beispiel	Analytische Daten
109A	boc H OH OH	100A	MS (ESI): $m/z = 419 (M+H)^+$
110A	boo H boc	101A	MS (ESI): m/z = 388 (M+H) ⁺
111A	boc NH ₂ boc NH ₂ boc	102A	MS (ESI): m/z = 546 (M+H) ⁺

Beispiel 112A

diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}amino)pentanoyl]-amino}ethyl)carbamat

Es werden 50 mg (0.05 mmol) (8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]-henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure (Beispiel 46A) und 34 mg (0.09 mmol) N²-(tert-Butoxycarbonyl)-N-{2-[(tert-butoxycarbonyl)amino]ethyl}-L-ornithinamid (Beispiel 104A) in 2.5 ml DMF gelöst und auf 0°C gekühlt. Man versetzt mit 15 mg (0.08 mmol) EDC und 6 mg (0.05 mmol) HOBt und rührt 12 h bei Raumtemperatur. Das Reaktionsgemisch wird im Vakuum einrotiert. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 215 mg (88% d. Th.)

10 LC-MS (Methode 3): $R_t = 2.70 \text{ min.}$

 $MS (ESI): m/z = 1011 (M+H)^+$

Beispiel 113A

5

15

tert-Butyl[(4S)-5-({(2S)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-4-({[(8S,11S,14S)-14-[(tert-butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}amino)-5-oxopentyl]carbamat

- 122 -

Es werden 29 mg (0.05 mmol) (85,115,145)-14-[(tert-Butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure (Beispiel 44A) und 24 mg (0.05 mmol) tert-Butyl-[(45)-4-amino-5-({(25)-2,5-bis[(tert-butoxycarbonyl)amino]pentyl}amino)-5-oxopentyl]carbamat (Beispiel 57A) in 2.0 ml DMF gelöst und auf 0°C gekühlt. Man versetzt mit 15 mg (0.08 mmol) EDC und 6 mg (0.05 mmol) HOBt und rührt 12 h bei Raumtemperatur. Das Reaktionsgemisch wird im Vakuum einrotiert und chromatographisch über Sephadex-LH20 (Laufmittel: Methanol / Essigsäure 0.25%) gereinigt.

10 Ausbeute: 53 mg (54% d. Th.)

LC-MS (Methode 2): $R_t = 2.68 \text{ min.}$

MS (ESI): $m/z = 1154 (M+H)^+$

Beispiel 114A

5

tert-Butyl-(2-{[(3S)-3-[(tert-butoxycarbonyl)amino]-7-({[(8S,11S,14S)-14-[(tert-butoxycarbonyl)-15 amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}amino)heptanoyl]-amino}ethyl)carbamat

- 123 -

Es werden 40 mg (0.06 mmol) (8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]-henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsăure (Beispiel 46A) und 46 mg (0.08 mmol) tert-Butyl{(1S)-5-amino-1-[2-({2-[(tert-butoxycarbonyl)amino]ethyl}amino)-2-oxoethyl]pentyl}-carbamat (Beispiel 65A) in 2.0 ml DMF gelöst und auf 0°C gekühlt. Man versetzt mit 15 mg (0.08 mmol) EDC, 3 mg (0.02 mmol) HOBt und 0.01 ml (0.08 mmol) Triethylamin und rührt 12 h bei Raumtemperatur. Das Reaktionsgemisch wird im Vakuum einrotiert und via präparativer HPLC gereinigt.

10 Ausbeute: 6 mg (9% d. Th.)

LC-MS (Methode 2): $R_t = 2.47$ min.

MS (ESI): $m/z = 1039 (M+H)^{+}$

Beispiel 115A

Benzyl-((1S)-4-{[(2S)-5-{[(benzyloxy)carbonyl]amino}-2-({[(8S,11S,14S)-14-[(tert-butoxy-carbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yi]carbonyl}amino)-pentanoyi]amino}-1-{2-[(2-{[(benzyloxy)carbonyl]amino}ethyl)amino]-2-oxoethyl}butyl)-carbamat

- 124 -

Es werden 65 mg (0.06 mmol) (8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]-henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure (Beispiel 46A) und 120 mg (0.13 mmol) Benzyl-((5S,11S)-5-amino-11-{[(benzyloxy)carbonyl]amino}-6,13,18-trioxo-20-phenyl-19-oxa-7,14,17-triazaicos-1-yl)carbamat Hydrochlorid (Beispiel 63A) in 3.0 ml DMF gelöst und auf 0°C gekühlt. Man versetzt mit 25 mg (0.13 mmol) EDC, 4 mg (0.03 mmol) HOBt und 0.02 ml (0.13 mmol) Triethylamin und rührt 12 h bei Raumtemperatur. Das Reaktionsgemisch wird im Vakuum einrotiert und via präparativer HPLC gereinigt.

10 Ausbeute: 50 mg (25% d. Th.).

LC-MS (Methode 3): $R_t = 2.92 \text{ min.}$

 $MS (ESI): m/z = 1341 (M+H)^{+}$

Beispiel 116A

5

tert-Butyl{3-[(8S,11S,14S)-8-[({(1S)-4-amino-1-[({(4S)-4-amino-6-[(2-aminoethyl)amino]-6oxohexyl}amino)carbonyl]butyl}amino)carbonyl]-14-[(tert-butoxycarbonyl)amino]-17-hydroxy-9methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-11yl]propyl}carbamat Tris(hydrotrifluoracetat)

- 125 -

49 mg (0.04 mmol) Benzyl-((1S)-4-{[(2S)-5-{[(benzyloxy)carbonyl]amino}-2-({[(8S,11S,14S)-14-[(tert-butoxycarbonyl)amino}-1-{3-[(tert-butoxycarbonyl)amino]propyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}-amino)pentanoyl]amino}-1-{2-[(2-{[(benzyloxy)carbonyl]amino}ethyl)amino}-2-oxoethyl}butyl)-carbamat (Beispiel 115A) wird in 10 ml Eisessig/Wasser (4:1) gelöst, mit 5 mg Pd/C (10%) versetzt und 12 h bei Normaldruck und Wasserstoffatmosphäre hydriert. Man saugt ab, engt das Reaktionsgemisch im Vakuum ein und reinigt durch präparative HPLC (Kromasil 100 C18, 5 μ m 250 mm x 20 mm; Laufmittel Acetonitril / 0.2% wässrige Trifluoressigsäure 5:95 \rightarrow 95:5).

10 Ausbeute: 9 mg (19% d. Th.)

LC-MS (Methode 3): $R_t = 1.45$ min.

MS (ESI): $m/z = 939 (M+H)^+$

Beispiel 117A

5

tert-Butyl-(2-{[(2S)-2-[(tert-butoxycarbonyl)amino]-5-({[(8S,11S,14S)-14-[(tert-butoxycarbonyl)-amino]-11-{((2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}amino)pentanoyl]-amino}ethyl)carbamat

Unter Argon werden 50 mg (0.076 mmol) der Verbindung aus Beispiel 43A und 37 mg (0.1 mmol) N^2 -(tert-Butoxycarbonyl)-N-{2-[(tert-butoxycarbonyl)amino]ethyl}-L-ornithinamid (Beispiel 104A) in 2 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 19 mg (0.1 mmol) EDC und 3.1 mg (0.023 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Wasser verrührt. Der verbleibende Feststoff wird abgesaugt und über präparative HPLC gereinigt.

Ausbeute: 6 mg (7% d. Th.)

LC-MS (Methode 3): $R_t = 2.49$ min.

10 MS (ESI): $m/z = 1013 (M+H)^{+}$

Beispiel 118A

5

15

Di-tert-butyl- $(5-\{[(3S)-6-[(tert-butoxycarbonyl)amino]-3-(\{[(8S,11S,14S)-14-[(tert-butoxy-carbonyl)amino]-11-\{(2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl\}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14,3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}amino)hexanoyl]amino}pentan-1,4-diyl)biscarbamat$

Es werden 30.7 mg (0.046 mmol) (8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{(2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure (Beispiel 45A) und 30 mg (0.055 mmol) der Verbindung aus Beispiel 81A in 2.0 ml DMF gelöst und auf 0°C gekühlt. Man versetzt mit 11.4 mg (0.06 mmol) EDC und 2 mg (0.015 mmol) HOBt und rührt 12 h bei Raumtemperatur. Das Reaktionsgemisch wird im Vakuum einrotiert und chromatographisch über Sephadex-LH20 (Laufmittel: Methanol / Essigsäure 0.25%) gereinigt.

Ausbeute: 13 mg (24% d. Th.)

5

10 LC-MS (Methode 3): $R_t = 2.84$ min.

MS (ESI): $m/z = 1198 (M+H)^{+}$

Analog zur Vorschrift des Beispiels 112A wird das in der folgenden Tabelle aufgeführte Beispiel 119A hergestellt.

Beispiel- Nr.	Vorstufe Beispiel	Struktur	Analytische Daten
119A	108A + 44A	HO HO BOC BOC BOC BOC BOC BOC BOC BOC BOC BO	LC-MS (Methode 3): R _t = 2.57 min. MS (ESI): m/z = 997 (M+H) ⁺ .

Analog zur Vorschrift des Beispiels 117A werden die in der folgenden Tabelle aufgeführten Beispiele 120A bis 126A hergestellt.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
120A	49A		LC-MS (Methode 3): R _t =
IZUA	4 <i>)</i> [но	2.57 min.
	+		
	43A		MS (ESI): $m/z = 1013$
	· ·	Ton]	(M+H) ⁺ .
		NH NH boc boc	
121A	55A		LC-MS (Methode 1): R _t =
	i	HO	2.5 min.
	+	DOC NH	N/G (720),/ 1012
	43A	HM J H J H	MS (ESI): m/z = 1013 (M+H) ⁺ .
		ЙН	(171.711)
		boe boe	
122A	106A	но—()—()	LC-MS (Methode 3); R _t =
:	+	H P boc	2.46 min.
	'	HA THE THE THE THE	MS (ESI): m/z = 1043
	43A	poc g H g = H	(M+H) ⁺ .
		ЙН	
		boc boc	
123A	85A	HO————————————————————————————————————	LC-MS (Methode 1): R _t =
	+		2.71 min.
	463	HN HN HN	MS (ESI): m/z = 1225
	46A	WH MH HM POC	(M+H) ⁺ .
		Poc poc	
	;		

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
124A	89A	HO————————————————————————————————————	LC-MS (Methode 1): R _t = 2.46 min.
	+		MS (ESI): m/z = 1069
	46A	bac Ö CH, Ö HN boc	(M+H) ⁺ .
125A	49A	но	LC-MS (Methode 3): $R_t = 2.74 \text{ min.}$
ļ 1	+		MS (ESI): m/z = 1011
	46A	bac Ö CH ₃ Ö T	(M+H) ⁺ .
126A	87A	. /=\	LC-MS (Methode 2): R _t =
	+	HO HN hac	2.47 min.
		HN HOO CH, O HOOC	MS (ESI): $m/z = 983$
	46A	NH	(M+H) ⁺ .
	<u> </u>		1

Analog zur Vorschrift des Beispiels 113A werden die in der folgenden Tabelle aufgeführten Beispiele 127A bis 149A hergestellt.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
			- 03 (0 0 1 1 0) 7
127A	59A	но-	LC-MS (Methode 3): $R_t =$ 2.59 min.
	+	boo NH	
	44A	HIN TO THE	MS (ESI): $m/z = 1027$ $(M+H)^+$.
	ļ	NH NH boc	
128A	105A	HO————————————————————————————————————	LC-MS (Methode 3): $R_t = 2.65$ min.
	+	POC NH	
	44A	рос 0 - Н 0 - Н ОН	MS (ESI): $m/z = 1069$ $(M+H)^+$.
	ļ	NH NH boc	
129A	67A	но-	LC-MS (Methode 3): $R_t = 2.82 \text{ min.}$
	+		
	44A	HM T HOO	MS (ESI): $m/z = 1126$ $(M+H)^+$.
		NH poc NH	
		boc Boc	
130A	49A	HO	LC-MS (Methode 2): R _t =
	+	HO	2.41 min.
	1		` '
	44A	boo 0	(M+H) ⁺ .
		NH NH boc	

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel	ļ	
131A	55A + 44A	HO BOC BOC BOC BOC BOC BOC BOC BOC BOC BO	LC-MS (Methode 1): R _t = 2.56 min. MS (ESI): m/z = 997
	4474	NH boc boc	(M+H) ⁺ .
132A	107A	но	LC-MS (Methode 3): $R_t =$ 2.67 min.
	+ 44A	HN DOC DOC	MS (ESI): $m/z = 1103$ (M+H) ⁺ .
		NH OH boc	
133A	71A +	HO H I I H	LC-MS (Methode 2): $R_t = 2.56 \text{ min.}$
	44A	HN DOC NH DDC	MS (ESI): m/z = 1225 (M+H) ⁺ .
134A	71A	но	LC-MS (Methode 1): R _t = 2.64 min.
•	+	HN THE HOLD THE PROPERTY OF TH	MS (ESI): m/z = 1241
	43A	NH NH	(M+H) [†] .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
135A	75A	H0	LC-MS (Methode 2): R _t =
i :	+	HN TOH THE DOG	2.47 min.
	43A	NH NH NH NDC	MS (ESI): $m/z = 1241$ (M+H) ⁺ .
136A	75A	**************************************	LC-MS (Methode 2): R _t =
	+	HAN THE PROPERTY OF THE PROPER	2.52 min.
}	44A	poc in poc in g	MS (ESI): $m/z = 1225$
	44A	NH NH	(M+H) ⁺ .
137A	57A	но-	LC-MS (Methode 3): $R_t =$
	+		2.87 min.
	43A	HN boc OH OH O	MS (ESI): $m/z = 1170$
	43A	NH NH NH	(M+H) ⁺ .
		poc poc	
138A	79A	His His	LC-MS (Methode 3): R _t =
1362	7723	HO HIN	2.92 min.
}	+		
	43A	bac 6 Hot bac NH 6 bec	MS (ESI): $m/z = 1398$ $(M+H)^{+}$.
		bos bos	
<u> </u>	لــــــــــــــــــــــــــــــــــــ		

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
139A	79A	HO————————————————————————————————————	LC-MS (Methode 2): R _t =
	+		2.74 min.
	•	HM THE POOL NH	1000 L 1000
	44A		1502
		boo boc	(M+H) ⁺ .
_			
140A	83A	но	LC-MS (Methode 3): R _t =
	+ ;		2.95 min.
	·	HIV DOO	MS (ESI): $m/z = 1382$
•	44A	l l	(M+H) ⁺ .
		NH NH NH	(WITH).
141A	83A	но-	LC-MS (Methode 2): R _t =
	+		2.72 min.
		HIN TOHO THE TOO	MS (ESI): m/z = 1398
	43A	Йн Йн Йн	(M+H) ⁺ .
		boe bee bee	
		,	
142A	85A		LC-MS (Methode 1): R _t =
		***	2.66 min.
	+-	HAT THE BOOK TO SEE THE SEE TH	- Indian
	44A	poc NH H poc	MS (ESI): $m/z = 1211$
	44A	NH NH boc	(M+H) ⁺ .
	[

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel	†	
143A	81A + 44A	HO HN boc	LC-MS (Methode 3): R _t = 2.82 min. MS (ESI): m/z = 1168 (M+H) ⁺ .
144A	91A + 44A	HO HIN boc NH HIN boc	LC-MS (Methode 2): R _t = 2.65 min. MS (ESI): m/z = 1154 (M+H) ⁴ .
145A	109A + 44A	HO H	LC-MS (Methode 2): R _t = 2.3 min. MS (ESI): m/z = 1041 (M+H) ⁺ .
146A	110A + 44A	HO HO BOC NH HN BOC	LC-MS (Methode 2): R _t = 2.38 min. MS (ESI): m/z = 1011 (M+H) ⁺ .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
147A	111A + 44A	HO hoc boc HIN boc	LC-MS (Methode 2): R _t = 2.62 min. MS (ESI): m/z = 1168 (M+H) ⁺ .
148A	67A + 45A	HO HO DOC OH BOC NH BOC	LC-MS (Methode 3): R _t = 2.88 min. MS (ESI): m/z = 1156 (M+H) ⁺ .
149A	49A + 45A	HO HO DOC HAND BOC HOC	LC-MS (Methode 3): R _t = 2.64 min. MS (ESI): m/z = 1027 (M+H) ⁺ .

Analog zur Vorschrift des Beispiels 48A werden die in der folgenden Tabelle aufgeführten Beispiele 150A bis 187A aus den entsprechenden Edukten hergestellt.

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
			X G X G Q G 1 1 1 1 2 B
150A	z-N boc	N-[(Benzyloxy)-	LC-MS (Methode 1): R _t
	A A Cool	carbonyl]-beta-alanin	= 2.19 min.
Ì	N boc	und Bsp. 53A	MS (ESI): $m/z = 523$
į	H		(M+H) ⁺
151A	ż O Hin poc Hin poc	N ² -[(Benzyloxy)-	LC-MS (Methode 2): Rt
		carbonyl]-N ⁵ -(tert-	= 2.62 min.
	L'poc poc-NH	butoxycarbonyl)-D-	MS (ESI): m/z = 894
	п	ornithin	(M+H) ⁺
	i	und Bsp. 111A	
		with rope 1114	
152A	0 1	N⁵-[(Benzyloxy)-	LC-MS (Methode 3): Re
	z-h-poc-NH h-poc	carbonyl]- <i>N</i> ² -(<i>tert</i> -	= 2.68 min.
	boc NH	butoxycarbonyl)- L -	MS (ESI): $m/z = 666$
	boc	ornithin	(M+H) ⁺
		und Bsp. 53A	(NI 12)
	1	ana Dopi voi i	
153A	Z-N-11	3-{[(Benzyloxy)-	LC-MS (Methode 3): R _t
<u> </u>	poc NH poc NH h boc	carbonyl]amino}-N-	= 2.76 min.
1	NH	(tert-butoxycarbonyl)-	MS (ESI): m/z = 852
į		<i>L</i> -alanin	(M+H) ⁺
		und Bsp. 190A	
154A	Z HN	(2S)-4-{[(Benzyloxy)-	LC-MS (Methode 3): R _t
}		carbonyl]amino}-2-	= 2.75 min.
	boc_NH boc_NH	[(tert-butoxycarbonyl)-	MS (ESI): $m/z = 866$
	NH boc	amino]butansäure	(M+H) ⁺
		und Bsp. 190A	\(\sigma_{} \cdot \sigma_{}\)
]			

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
155A	Hit pac	3-{[(Benzyloxy)-	LC-MS (Methode 3): R _t
135A		carbonyl]amino}-5-	= 2.85 min.
	~ H \	[(tert-butoxycarbonyl)-	2.03 mm.
	pod.	amino]pentansāure	MS (ESI): $m/z = 880$ $(M+H)^+$
		und Bsp. 190A	
156A	À O HÑ-poc HÑ-poc	N-[(Benzyloxy)-	LC-MS (Methode 2); R _t
:	Hu H	carbonyl]glycin	= 2.32 min.
	boc ^{, NH}	und Bsp. 111A	MS (ESI): $m/z = 737$
			(M+H) ⁺
157A	н П	N ² -	LC-MS (Methode 2): R _t
}	Z N H Doc	[(Benzyloxy)carbonyl]-	= 2.58 min.
	ОН	N⁵-[[bis(tert-butoxy-	MS (ESI): m/z = 681
	NH boc	carbonyl)amino]-	(M+H) ⁺
	NH	(imino)methyl]-L-	(112.12)
		ornithin	
		und tert-Butyl-(3-	
1		amino-2-hydroxy-	
		propyl)-carbamat	
158A	н О н	N-[(Benzyloxy)-	LC-MS (Methode 2): Rt
	z H boc	carbonyl]-L-leucin	= 2.53 min.
		und Bsp. 53A	MS (ESI): m/z = 565
	CH ₃ NH		(M+H) ⁺
159A	HN, boc HN, boc	N-[(Benzyloxy)-	LC-MS (Methode 1): Re
		carbonyl]glycin	= 2,45 min.
	boc-NH	und Bsp. 190A	MS (ESI): $m/z = 723$
{			(M+H) ⁺
L			<u> </u>

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
160A	boc O HN-boc HN-boc HN-boc N-z	N ⁵ -[(Benzyloxy)-carbonyl]-N ² -(tert-butoxycarbonyl)-L-ornithin	LC-MS (Methode 3): R _t = 2.53 min. MS (ESI): m/z = 737 (M+H) ⁺
161A	boc N DH DH	N ⁵ -[(Benzyloxy)- carbonyl]-N ² -(tert- butoxycarbonyl)-L- ornithin und tert-Butyl-(3- amino-2-hydroxy- propyl)-carbamat	LC-MS (Methode 3): R _t = 2.27 min. MS (ESI): m/z = 539 (M+H) ⁺
162A	boc NH boc	(28)-4-{[(Benzyloxy)-carbonyl]amino}-2- [(tert-butoxycarbonyl) amino]butansäure und Bsp. 199A	LC-MS (Methode 3): R _t = 2.39 min. MS (ESI): m/z = 739 (M+H) ⁺
163A	HN bac	(25)-4-{[(Benzyloxy)- carbonyl]amino}-2- [(tert-butoxycarbonyl) amino]butansäure und tert-Butyl-(2- aminoethyl)carbamat	LC-MS (Methode 3): R _t = 2.35 min. MS (ESI): m/z = 495 (M+H) ⁺

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
		- 2 600	× G > 40 O A 11 A 12 D
164A	boc NH ho	N⁵-[(Benzyloxy)-	LC-MS (Methode 2): R,
	HN boc	carbonyl]-N ² -(tert-	= 2.30 min.
	bas NH	butoxycarbonyl)-L-	MS (ESI): m/z = 709
		ornithin	(M+H) ⁺
	:	und Bsp. 201A	
165A	2-N-1-N-1-Pool	N-[(Benzyloxy)-	LC-MS (Methode 3): R _t
	H H bos NH	carbonyl]-beta-alanin	= 2.60 min.
	NH bos	, und Bsp. 190A	MS (ESI): $m/z = 737$
			(M+H)*
	0 0	2 ([(D))	LC-MS (Methode 3): Rt
166A		3-{[(Benzyloxy)-	
	H H boc_NH boc_NH	carbonyl]amino}-N-	= 2.47 min.
		(tert-butoxycarbonyl)-	MS (ESI): $m/z = 695$
		<i>L</i> -alanin	(M+H) ⁺
		und Bsp. 104A	
			70750 06 1 1 2) 7
167A	H boc	3-{[(Benzyloxy)-	LC-MS (Methode 3): R _t
	poc N OH	carbonyl]amino}-N-	= 2.39 min.
•		(tert-butoxycarbonyl)-	MS (ESI): $m/z = 725$
	Z	L-alanin	(M+H) ⁺
	boc NH	und Bsp. 199A	
	DOC		
		NS (0)1	ICMS (Mathoda 2), D
168A	boc N boc	N^5 -[(Benzyloxy)-carbonyl]- N^2 -(tert-	LC-MS (Methode 3): R _t = 2.40 min.
	H OH H	butoxycarbonyl)-L-	2.40 mm.
	his	ornithin	MS (ESI): $m/z = 753$
	z y o	Vinitini Vinitini	(M+H) ⁺
	boc NH	und Bsp. 199A	
-	}	1	
L	1	<u></u>	

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
		<u></u>	
169A	11 1	N ² -[(Benzyloxy)-	LC-MS (Methode 3): R _t
	z NH ₂	carbonyl]- <i>L</i> -alpha-	= 1.93 min.
] н	glutamin	3.60 (EGD) / 400
	O H boc		MS (ESI): $m/z = 423$
		und tert-Butyl-(2-	(M+H)*
		aminoethyl)carbamat	
170A	z_MH	N ² -[(Benzyloxy)-	LC-MS (Methode 3): Rt
	NH ₂	carbonyl]-N ⁵ -(tert-	= 2.26 min.
		butoxycarbonyl)-D-	
:	HN	ornithin	MS (ESI): $m/z = 637$
	boc O'NH		(M+H) ⁺
	NH	und Bsp. 207A	
	bac		:
171A	y 8 u	N ² -[(Benzyloxy)-	LC-MS (Methode 3): R _t
	z N N boc	carbonyl]-D-glutamin	= 1.94 min.
	\"		
	O NH ₂	und tert-Butyl-(2-	MS (ESI): $m/z = 423$
		aminoethyl)carbamat	(M+H) ⁺
172A	۵	N ² -[(Benzyloxy)-	LC-MS (Methode 3): R _t
1,21	Ž NH J	carbonyl]-N ⁵ -(tert-	= 2.25 min.
	NH IL	butoxycarbonyl)-D-	– 2.23 mm.
	HN boc ONH2	ornithin	MS (ESI): $m/z = 637$
	boc ONH ₂	omunin	(M+H) ⁺
		und Bsp. 209A	
4-6	_		
173A	Z O HN boc HN boc	N-[(Benzyloxy)-	LC-MS (Methode 2): R _t
	-CH - J	carbonyl]-L-leucin	= 2.82 min.
٠,	H ₃ C NH	und Bsp. 111A	MS (ESI): m/z = 793
			(M+H) ⁺
		į	

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
	hne	(25) 4 ([(Parmilosm)	LC-MS (Methode 3): R _t
174A	boc O HÑ, pac OH	(2S)-4-{[(Benzyloxy)-	= 2.44 min.
į	HN-POC	carbonyl]amino}-2-	= 2.44 mm.
	z-ŃH	[(tert-butoxycarbonyl) amino]butansäure	MS (ESI): $m/z = 753$
	ļ	ammologransame	(M+H) ⁺
		und Bsp. 109A	
	ha-	(0.00 4 (1.00 - 1 -)	TO 160 Of the 1- 2). B
175A	poc o HN boc HN boc	(2.S)-4-{[(Benzyloxy)-	LC-MS (Methode 3): Rt
	H 6	carbonyl]amino}-2-	= 2.52 min.
	z-NH	[(tert-butoxycarbonyl)	MS (ESI): $m/z = 723$
1.		amino]butansäure	(M+H) ⁺
		und Bsp. 110A	
176A	, Q <u>u</u>	(2S)-{[(Benzyloxy)-	LC-MS (Methode 2): Rt
	z h hoc	carbonyl]amino}-	= 2.50 min.
		(phenyl)essigsäure	
	ЙН		MS (ESI): $m/z = 585$
	boc	und Bsp. 53A	(M+H) ⁺
177A	н	N^2 , N^5 -Bis-[(benzyloxy)-	LC-MS (Methode 2): R _t
	z N N OH N boc	carbonyl]-L-ornithin	= 2.15 min.
		und tert-Butyl-(3-	MS (ESI): $m/z = 573$
	NH L z	amino-2-hydroxy-	(M+H) ⁺
		propyl)-carbamat	
178A	HN_poc	N^2 -[(Benzyloxy)-	LC-MS (Methode 3): R _t
		carbonyl]-N ⁵ -(tert-	= 2.88 min.
	NH NH boo	butoxycarbonyl)-D-	
	NH boc	ornithin	MS (ESI): $m/z = 880$ (M+H) ⁺
		und Bsp. 190A	

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
179A	HN poc HN poc	N-[(Benzyloxy)- carbonyl]-beta-alanin und Bsp. 111A	LC-MS (Methode 3): R ₄ = 2.52 min. MS (ESI): m/z = 751
		_	(M+H) ⁺
180A	HN boc NH boc NH boc	N^5 -[(Benzyloxy)-carbonyl]- N^2 -(tert-butoxycarbonyl)- L -ornithin	LC-MS (Methode 3): R _t = 2.76 min. MS (ESI): m/z = 880 (M+H) ⁺
		und Bsp. 190A	
181A	boc O HN-boc HN HN D	3-{[(Benzyloxy)- carbonyl]amino}-N- (tert-butoxycarbonyl)- L-alanin und Bsp. 110A	LC-MS (Methode 1): R _t = 2.46 min. MS (ESI): m/z = 709 (M+H) ⁺
182A	Z HN boc boc HN NH HN O boc NH	3-{[(Benzyloxy)- carbonyl]amino}-N- (tert-butoxycarbonyl)- L-alanin und Bsp. 201A	LC-MS (Methode 2): R _t = 2.31 min. MS (ESI): m/z = 681 (M+H) ⁺
183A	HIN D HIV POC FOC O HIN POC POC O HIN POC POC O HIN POC HIN POC	3-{[(Benzyloxy)- carbonyl]amino}-N- (tert-butoxycarbonyl)- L-alanin und Bsp. 109A	LC-MS (Methode 1): R _t = 2.38 min. MS (ESI): m/z = 739 (M+H) ⁺

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
184A	HN boo hoc NH	(2S)-4-{{(Benzyloxy)- carbonyl]amino}-2- [(tert-butoxycarbonyl) amino]butansäure und Bsp. 201A	LC-MS (Methode 2): R _t = 2,29 min, MS (ESI): m/z = 695 (M+H) ⁺
185A	boc H OH H boc	(2S)-4-{[(Benzyloxy)-carbonyl]amino}-2- [(tert-butoxycarbonyl) amino]butansäure und tert-Butyl-(3-amino-2-hydroxy-propyl)-carbamat	LC-MS (Methode 1): R _t = 2.38 min. MS (ESI): m/z = 525 (M+H) ⁺
186A	boc NH NH	3-{[(Benzyloxy)- carbonyl]amino}-N- (tert-butoxycarbonyl)- L-alanin und Bsp. 223A	LC-MS (Methode 1): R _t = 2.36 min. MS (ESI): m/z = 711 (M+H) ⁺
187A	poc O HN-boc HN DOC OH HN-boc	N ³ -[(Benzyloxy)- carbonyl]-N ² -(tert- butoxycarbonyl)-L- ornithin und Bsp. 109A	LC-MS (Methode 3): R _t = 2.44 min. MS (ESI): m/z = 767 (M+H) ⁺

Analog zur Vorschrift des Beispiels 49A werden die in der folgenden Tabelle aufgeführten Beispiele 188A bis 224A aus den entsprechenden Edukten hergestellt.

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
4004		D 150 A	Na cian
188A	H ₂ N boc	Bsp. 150A	MS (ESI): $m/z = 389$
	H 555		(M+H) ⁺
	L _N _bog		
	H		
189A	Ö HÑ-poc HÑ-poc	Bsp. 151A	MS (ESI): $m/z = 750$
		F	(M+H) ⁺
	N.poc poc.NH		
	Н		
190A		Bsp. 152A	MS (ESI): $m/z = 532$
	h ² N boc		(M+H)*
	ν̈́H		
	boc		
191A	HAN THOM TOOK	Bsp. 153A	MS (ESI): $m/z = 718$
[boc NH boc NH		(M+H) ⁺
	HH HH		-
192A	BN 0	D 164A	MS (BSD: -/ 722
192A		Bsp. 154A	MS (ESI): $m/z = 732$ $(M+H)^+$
	boc NH boc NH		(MITTI)
	. NH boc		
193A	Hiv_poc	Bsp. 155A	LC-MS (Methode 2): R _t
		morpe awara	= 1.78 min.
	H _N h _{Doo}		
	PDG.		MS (ESI): $m/z = 746$
	bos		(M+H) ⁺
[]			

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.	,		-
194A	H ² N HN boc HN boc	Bsp. 156A	MS (ESI): m/z = 603 (M+H) ⁺
195A	H ₂ N Doc NH Doc	Bsp. 157A	MS (ESI): m/z = 547 (M+H) ⁺
196A	H ₂ N boc	Bsp. 158A	LC-MS (Methode 2): R_t = 1.37 min. MS (ESI): $m/z = 431$ $(M+H)^+$
197A	H ₂ N HN boc HN boc boc NH	Bsp. 159A	LC-MS (Methode 1): R _t = 1.66 min. MS (ESI): m/z = 589 (M+H) ⁺
198A	boc O HN boc HN boc NH2	Bsp. 160A	MS (ESI): m/z = 603 (M+H) ⁺
199A	boc H boc NH ₂	Bsp. 161A	MS (ESI): m/z = 405 (M+H) ⁺

Bsp	Struktur	Struktur Hergestellt aus	
Nr.			
200A	poc H DH bocc	Bsp. 162A	MS (ESI): m/z = 605 (M+H) ⁺
	H₂N O		
201A	H ₂ N boc NH	Bsp. 163A	MS (ESI): m/z = 361 (M+H) ⁺
202A	HAN DOO NH	Bsp. 164A	MS (ESI): m/z = 575 (M+H) ⁺
203A	H'N Poc	Bsp. 165A	LC-MS (Methode 2): R _t = 1.56 min. MS (ESI): m/z = 603 (M+H) ⁺
204A	H ₂ N bac NH hac NH	Bsp. 166A	MS (ESI): m/z = 561 (M+H) ⁺
205A	boc NH boc	Bsp. 167A	MS (ESI): m/z = 591 (M+H) ⁺
<u> </u>			

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
206A	boc NH boc NH	Bsp. 168A	MS (ESI): m/z = 619 (M+H) ⁺
207A	H ₂ N NH ₂	Bsp. 169A	LC-MS (Methode 10): R _t = 2.23 min. MS (ESI): m/z = 289 (M+H) ⁺
208A	NH ₂ HN boc NH boc NH	Bsp. 170A	LC-MS (Methode 2): R _t = 1.11 min. MS (ESI): m/z = 503 (M+H) ⁺
209A	H ₂ N	Bsp. 171A	LC-MS (Methode 10): R _t = 2.20 min. MS (ESI): m/z = 289 (M+H) ⁺
210A	NH ₂ NH boc	Bsp, 172A	LC-MS (Methode 2): R _t = 1.10 min. MS (ESI): m/z = 503 (M+H) ⁺
211A	H ₂ N H ₃ C	Bsp. 173A	MS (ESI): m/z = 659 (M+H) ⁺

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.		·	
212A	HN HN POC OHN POC	Bsp. 174A	MS (ESI): m/z = 619 (M+H) ⁺
213A	poc O HN boc HN boc NH2	Bsp. 175A	MS (ESI): m/z = 589 (M+H) ⁺
214A	H ₂ N boc	Bsp. 176A	LC-MS (Methode 2): R ₄ = 1.33 min. MS (ESI): m/z = 451 (M+H) ⁺
215A	boc O HN-boc OH HN-boc	Bsp. 187A	MS (ESI): m/z = 633 (M+H) ⁺
216A	HN-boc NH boc NH boc	Bsp. 178A	LC-MS (Methode 2): R ₄ = 1.79 min. MS (ESI): m/z = 746 (M+H) ⁺
217A	H ₂ N boc NH	Bsp. 179A	MS (ESI): m/z = 617 (M+H) ⁺

Bsp	Struktur	Hergestellt aus	Analytische Daten
Nr.			
218A	NH ₂ boc NH boc NH	Bsp. 180A	MS (ESI): m/z = 746 (M+H) ⁺
219A	poc Q HN boc HN boc HN boc HN boc	Bsp. 181A	MS (ESI): m/z = 575 (M+H) ⁺
220A	HN boc hn hn hh	Bsp. 182A	MS (ESI): m/z = 547 (M+H) ⁺
221A	H ₂ N O HN-boc	Bsp. 183A	MS (ESI): m/z = 605 (M+H) ⁺
222A	HN boc boc NH boc NH	Bsp. 184A	MS (ESI): m/z = 561 (M+H) ⁺
223A	boc N OH NH2	Bsp. 185A	MS (ESI): m/z = 391 (M+H) ⁺
224A	boc NH NH	Bsp. 186A	MS (ESI): m/z = 577 (M+H) ⁺

Beispiel 225A

Benzyl-((4S)-5-[(3-amino-2-hydroxypropyl)amino]-4-{[(benzyloxy)carbonyl]amino}-5-oxopentyl)carbamat Hydrochlorid

Eine Lösung von 0.263 g (0.46 mmol) der Verbindung aus Beispiel 187A in 1 ml Dioxan wird bei 0°C mit 6.8 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 2 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 0,205 g (88% d, Th.)

10 LC-MS (Methode 2): $R_t = 1.47 \text{ min.}$

MS (EI): $m/z = 473 (M-HCI+H)^{+}$

Beispiel 226A

Benzyl-[(1S)-4-{[(benzyloxy)carbonyl]amino}-1-({[3-({[(8S,11S,14S)-14-[(tert-butoxycarbonyl)-amino]-11-{(2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl}-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}amino}-2-hydroxypropyl]amino}carbonyl)butyl]carbamat

Es werden 25 mg (0.037 mmol) der Verbindung aus Beispiel 45A in 1.0 ml DMF gelöst und auf 0°C gekühlt. Man versetzt mit 21 mg (0.041 mmol) PyBOP und 15 mg (0.11 mmol) Diisopropylamin. Nach 30 min werden 24.7 mg (0.048 mmol) der Verbindung aus Beispiel 225A hinzugegeben und die Mischung wird 12 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wird im Vakuum einrotiert und chromatographisch über Sephadex-LH20 (Laufmittel: Methanol / Essigsäure 0.25%) gereinigt.

Ausbeute: 12.7 mg (30% d. Th.)

LC-MS (Methode 3): $R_t = 2.61$ min.

MS (ESI): $m/z = 1125 (M+H)^{+}$

10 Beispiel 227A

5

 $tert-Butyl-\{(2R)-3-[(8S,11S,14S)-14-[(tert-butoxycarbonyl)amino]-17-hydroxy-8-(\{[2-hydroxy-3-(L-ornithylamino)propyl]amino\}carbonyl)-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]-henicosa-1(20),2(21),3,5,16,18-hexaen-11-yi]-2-hydroxypropyl\}carbamat$

15 12.7 mg (0.011 mmol) der Verbindung aus Beispiel 226A werden in 5 ml Ethanol gelöst, mit 5 mg Pd/C (10%ig) versetzt und 12 h bei Normaldruck und Wasserstoffatmosphäre hydriert. Man saugt ab, engt das Reaktionsgemisch im Vakuum ein und verwendet das Rohprodukt ohne weitere Reinigung im nächsten Schritt.

Ausbeute: 11 mg (95% d. Th.)

20 LC-MS (Methode 2): $R_t = 1.26 \text{ min.}$

 $MS (ESI): m/z = 857 (M+H)^+$

Analog zur Vorschrift des Beispiels 112A werden die in der folgenden Tabelle aufgeführten Beispiele 228A und 229A hergestellt.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
228A	43A	но	LC-MS (Methode 2): R ₄ =
	+ 198A	HN DOC HIN DOC HIN DOC HIN DOC	
229A	43A	HO————————————————————————————————————	
	+ 213A	HD DOG HOSE	MS (ESI): m/z = 1227 (M+H) ⁺ .
			(

Analog zur Vorschrift des Beispiels 117A werden die in der folgenden Tabelle aufgeführten Beispiele 230A bis 254A hergestellt.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
230A	44A	но	LC-MS (Methode 2): $R_t =$
	+		2.76 min.
	2164	boo ö h ö h boc NH h	MS (ESI): $m/z = 1368$
	216A	NH NH NH	(M+H)*.
231A	47A	uo / Su	LC-MS (Methode 2): R _t =
	,	HO————————————————————————————————————	2.71 min.
	+	HN H boo	MS (ESI): m/z = 1140
	67A	POC O HAT THE TOOC	(M+H)*.
		MH poc MH	
	!	boc	
232A	44A	HO NH	LC-MS (Methode 2): R _t =
<u>}</u>	+	boot NH I boot	2.72 min.
		HD I I I I I I I I I I I I I I I I I I I	MS (ESI): $m/z = 1368$
]	193A	NH HN boc	(M+H) ⁺ .
233A	44A	HO- bóc NH	LC-MS (Methode 2): $R_t =$
	+		2.51 min.
	197A	bee Ö H Ü H HÑ boc	MS (ESI): $m/z = 1211$
	17/11	poc NH	(M+H) ⁺ .
234A	43A	boc	LC-MS (Methode 2): R _t =
	+	HO OH NOW	2.61 min.
		H NH	MS (ESI): m/z = 1243
	200A	HN DOC OH DOC NH	(M+H) ⁺ .
		ЙH	
		boc	

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
<u> </u>		-	
235A	47A	но	LC-MS (Methode 1): R _t =
	+	boo H	2.65 min.
	•	HN HN hoc	MS (ESI): m/z = 1211
	202A	NH POC-VH	(M+H) ⁺ .
		Duc	
236A	43A	но	LC-MS (Methode 2): R _t =
	++-	500 NH	2.39 min.
		boo g to ho	MS (ESI): m/z = 1213
	202A	MH DOC-NH	(M+H) ⁺ .
237A	44A	HO————————————————————————————————————	LC-MS (Methode 2): R _t =
	+	HIN THE TOTAL TH	2.51 min.
	203A	bos 8 " 8 "	MS (ESI): $m/z = 1225$
	203A	NH	(M+H)*.
238A	43A		LC-MS (Methode 2): $R_t =$
256A	TJA	HO boc	2.33 min.
]	+	HIN THE POOR	
	188A	POC H H H H	MS (ESI): $m/z = 1027$
		NH	(M+H) ⁺ .
		boc	
239A	47A		LC-MS (Methode 3): R _t =
237A	7117	HO—CH ₃	2.63 min.
1	+		
	1 05A	HN T THE	MS (ESI): $m/z = 1083$
	1	<u> </u>	(M+H) ⁺ .
}		boc boc OH boc	
<u> </u>	L		<u> </u>

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		•
240A	43A		LC-MS (Methode 3): R _t =
240A	4311	но	2.64 min.
	+	boo NH	
	205A	HN OH ONH	MS (ESI): $m/z = 1229$
[]	203A	1 1	(M+H) ⁺ .
		NH OH Doc	
<u> </u>		boc Ö	
241A	43A		LC-MS (Methode 3): R _t =
24,11	1571	HO boc NH	2.56 min.
	+		
}	206A	boo 0 THO	MS (ESI): m/z = 1257
		NH boc boc N boc	(M+H) [†] .
		poc poc	
			7 G 1 G G G G G G G G G G G G G G G G G
242A	44A	boc N N boc	LC-MS (Methode 3): $R_t = 2.67$ min.
:	+	HO————————————————————————————————————	2.07 mm.
		H NH	MS (ESI): $m/z = 1227$
	200A	HN Doc NH	(M+H) ⁺ .
		NH poc.	
		boc	
243A	43A		LC-MS (Methode 3): R _t =
		HO	2.42 min.
	+	HN N N N N N N N N N N N N N N N N N N	MS (ESI): m/z = 1141
	208A	HN H HN O BOC	$(M+H)^{+}$.
		boc	
1	!	H NH ₂ O	
		HN poc	
 	1		
		<u></u>	

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
244A	43A +	но	LC-MS (Methode 3): R _t = 2.42 min.
	210A	HN DOC OH HN O DOC NH HN DOC	MS (ESI): m/z = 1141 (M+H) ⁺ .
245A	47A	но(LC-MS (Methode 3): R _t =
	+		2.51 min.
	208A	HN boc HN O boc	MS (ESI): m/z = 1139 (M+H) ⁺ .
		HN Doc	
246A	47A +	HO—CH ₃	LC-MS (Methode 3): R _t = 2.51 min.
	210A	HN DOC NO DOC	MS (ESI): $m/z = 1139$ $(M+H)^+$.
		HN NH ₂	

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
247A	44A	но—	LC-MS (Methode 3): R _t =
	+	0	2.46 min.
	,	HM WH	MS (ESI): m/z = 1125
	210A	HIN DOG HIN O DOG	(M+H) ⁺ .
		boc	(
	İ	H HN O	
		HN NH ₂	
		boc	
		_	
248A	43A	HO————————————————————————————————————	LC-MS (Methode 3): R _t =
	+		2.63 min.
		HN POC O HN POC POC	MS (ESI): m/z = 1199
	222A	NH BOD	(M+H) ⁺ .
		boc	
2/01	47.4		LC-MS (Methode 1): R _t =
249A	47A	но-Сн,	2.72 min.
	+	HI HIV DOC	2.72 mm.
:		HN HN	MS (ESI): $m/z = 1211$
	206A	MH	(M+H) ⁺ .
		boc mil boc	
		<u></u>	
•		D NH H	
250A	44A	но—	LC-MS (Methode 3): R _t =
	+	boc NH	2.65 min.
		HIN THE NITH	MS (ESI): $m/z = 1241$
	206A		(M+H) ⁺ .
!	·	NH boc boc N H boc	
!		н 4	
	<u> </u>	<u> </u>	<u> </u>

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
251A	47A	но—	LC-MS (Methode 1): R _t =
			2.61 min.
i	+	HIN boc	MS (ESI): m/z = 1241
	221A	NH poc Q Hy poc OH	(M+H) ⁺ .
	:		
252A	44A	HO-NH	LC-MS (Methode 3): R _t =
	+	H H HN	2.71 min.
		HIN THO HIN DOC HOW DOC	MS (ESI): m/z = 1183
	222A	NH 500	(M+H) ⁺ .
]	boc	
253A	47A	HO—CH, HN boo	LC-MS (Methode 1): R _t =
	+	boc NH OH H	2.60 min.
		HN HN H	MS (ESI): $m/z = 1199$
	224A	ЙН	(M+H) ⁺ .
		boc	
254A	44A		LC-MS (Methode 3): R _t =
		но	2.45 min.
	+	HN NH	MS (ESI): m/z = 1125
	208A	HN Doc O HN O boc	(M+H) ⁺ .
		boc N O	
	}	NH ₂ O	1
		The state of the s	
	<u></u> _		<u> </u>

Analog zur Vorschrift des Beispiels 113A werden die in der folgenden Tabelle aufgeführten Beispiele 255A bis 281A hergestellt.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
255A	47A	но—СН3	LC-MS (Methode 2): R _t = 2.73 min.
	+	HN H DOC	MS (ESI): m/z = 1168
	57A	boc Ö H boc boc boc	(M+H) ⁺ .
256A	45A	но	LC-MS (Methode 2): $R_t =$ 2.42 min.
	+	HN HOC CH. DOC	MS (ESI): m/z = 1041
	188A	NH POC Q CH3 Q Q	(M+H) ⁺ .
257A	47A		LC-MS (Methode 3): R _t =
231A.		HO CH, HN box HN box	3.02 min.
	+	HW T T T T T T T T T T T T T T T T T T T	MS (ESI): m/z = 1396
	189A	poc NH H poc	(M+H) ⁺ .
258A	43A	HO————————————————————————————————————	LC-MS (Methode 3): R ₄ = 2.65 min.
	+	HN HN DOC HN DOC	MS (ESI): m/z = 1241
	194A	NH boc	(M+H) ⁺ .
259A	43A	HO-(\)	LC-MS (Methode 3): R _t =
	+	HN HN poor HN poor	2.90 min.
	189A	Poc C HO Poc NH	MS (ESI): $m/z = 1398$ $(M+H)^+$.
			<u> </u>

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
260A	44A	-	TOMO OF ALL D. D.
200A	44A	HO H R HIV boc HIV boc	LC-MS (Methode 3): R _t =
	+		2.96 min.
	1004	boc d d d d d d d d d d d d d d d d d d d	MS (ESI): $m/z = 1382$
	189A	poc H	(M+H) ⁺ .
261A	44A		LC-MS (Methode 2): R _t =
JULY	7771	HO	2.67 min.
	+		2.07 mm,
	192A	NH poo NH poo NH poo	MS (ESI): $m/z = 1354$
	1721	poc , MH	(M+H) ⁺ .
		ύοα	
262A	43A	но-{>	LC-MS (Methode 3): R _t =
	+	boc NH	2.63 min.
	, ,	HN TOH	MS (ESI): m/z = 1255
!	217A	NH O HÀ bac HÀ bac	(M+H) ⁺ .
263A	47A	но-Сн,	LC-MS (Methode 2): $R_t =$
	+	HN I N I N I N I N I N I N I N I N I N I	2.57 min.
	1	HN DOC OH HN HN HN	MS (ESI): $m/z = 1253$
	217A	NH Ö HÄ boc HÄ boc	(M+H) ⁺ .
264A	44A	þac hac	LC-MS (Methode 3): R _t =
		HO BOC AH POC AH	2.95 min.
	+		
]	218A	HW T THE	MS (ESI): $m/z = 1368$
		NH boo	(M+H) ⁺ .
			·

Beispiel-	Vorstufe	Straktur	Analytische Daten
Nr.	Beispiel		
		· ·	
265A	43A	pac NH	LC-MS (Methode 3): R _t =
		HO- boc- NH H pac-NH N	2.90 min.
	+		
	218A	HN TOH	MS (ESI): m/z = 1384
		L _М н	(M+H) ⁺ .
		boc	
266A	44A	HO-NH	LC-MS (Methode 2): R _t =
			2.52 min.
	+		
[104 4	BOD O O O O O O O O O O O O O O O O O O	MS (ESI): $m/z = 1225$
	194A	AT-I boo	(M+H) ⁺ .
	;		
2674	45.4		
267A	45 A	но	LC-MS (Methode 3): $R_t =$
	+		2.96 min.
		HN CH, OH H DOC	MS (ESI): m/z = 1199
	195 A	Poc Q CH ² Q H QH H	(M+H) ⁺ .
	Ì	NH NH	
		boc NH	·
268A	45A	но-(LC-MS (Methode 3): R _t =
		<i>></i>	2.87 min.
	+		
	196A	HN T CH ₃ O CH ₃ boc	MS (ESI): $m/z = 1083$
		— OH	(M+H) ⁺ .
		poc NH poc	
	ļ	. Doc	
269A	43A	HO NH	LC-MS (Methode 2): R _t =
			2.66 min.
	+	HID THE PARTY TO BE A PARTY TO	
İ	191A	boc o OH o o	MS (ESI): $m/z = 1356$
	19174	The second secon	(M+H) ⁺ .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
			,
270A	43A	HO-	LC-MS (Methode 3): R _t =
	+	HN DOE NH BOC NH BOC NH	2.18 min.
	204A	boc	MS (ESI): $m/z = 1199$
	204A.	A A	(M+H) ⁺ .
271A	43A		I C MC (Methodo 2), D =
2/14	-1311	H0	LC-MS (Methode 3): R _t =
	+	HN HN H	2.88 min,
	192A	MH poo-NH poo-NH poo	MS (ESI): $m/z = 1370$
	1,2,11	рос Ин	(M+H) ⁺ .
	\	Ďoc	
272A	43A	но{>	LC-MS (Methode 3): R _t =
	+	HN HA poc HA poc	2.87 min.
	211A	boc O H _S C CH _S	MS (ESI): m/z = 1297
		н	(M+H) ⁺ .
273A	45A	HO————————————————————————————————————	LC-MS (Methode 2): R _t =
	+		2.56 min,
	71A	POC O CH' DI HN POC	MS (ESI): $m/z = 1255$
		NH NH	(M+H) ⁺ .
		bac bac	
0544	42.4		
274A	43A	hoc o hov boc off	LC-MS (Methode 2): R _t =
	+	HI HI BOO	2.35 min.
	015)	Con	MS (ESI): $m/z = 1257$
	212A	ਰਜ਼ boc	(M+H) ⁺ .
		·	

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
	, <u></u>		
275A	44A	HO————————————————————————————————————	LC-MS (Methode 2): $R_t =$
	+	BOOK WH BOOK WH H	2.71 min.
		HIND HOOCE THE PROPERTY OF THE	MS (ESI): m/z = 1340
	191A	NH boc	(M+H) ⁺ .
276A	45A	HO—	LC-MS (Methode 3): R _t =
	+		2.81 min.
	•	HN H boc	MS (ESI): m/z = 1103
<u> </u> 	214A	Poc Q CH' Q H	(M+H) ⁺ .
		NH NH	
		boc boc	
277A	44A	Ho-(-)	LC-MS (Methode 2): R _t =
	+ }	1 1 H	2.52 min.
	T	HN T T T T T T T T T T T T T T T T T T T	MS (ESI): m/z = 1239
	217A	NH Ö HÑ-boc HÑ-boc	$(M+H)^{+}$.
	,,_,,		()
278A	44A	но	LC-MS (Methode 1): $R_t =$
1	+		2.61 min.
	1004) - U/ V/V V V V V	MS (ESI): $m/z = 1225$
	198A		(M+H) ⁺ .
	1		
279A	47A		LC-MS (Methode 2): R _t =
	+	HN BOC NH POC NH	2.52 min.
		HN TO DOE DOE	MS (ESI): m/z = 1239
	204A	`N'	(M+H) [†] .
1			

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
280A	43A + 220A	HO HN boc boc NH boc NH	LC-MS (Methode 1): $R_t = 2.57 \text{ min.}$ MS (ESI): $m/z = 1185 \text{ (M+H)}^+$.
281A	43A + 215A	HO DOC DH HIN boc OH	LC-MS (Methode 3): R _t = 2.52 min. MS (ESI): m/z = 1271 (M+H) ⁺ .

Ausführungsbeispiele

Beispiel 1

5

10

 $(8S,11S,14S)-14-Amino-N-((1S)-4-amino-1-\{\{(2-aminoethyl)amino\}carbonyl\}butyl\}-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Tetrahydrochlorid$

Zu einer Lösung von 5.7 mg (0.006 mmol) der Verbindung aus Beispiel 120A in 1 ml Dioxan werden bei 0°C 0.084 ml einer 4N Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 2 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 3.3 mg (77% d. Th.)

MS (ESI): $m/z = 612 (M-4HCl+H)^{+}$.

Beispiel 2

15 (8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-N-(2-{[(2S)-2,5-diaminopentyl]-amino}-2-oxoethyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Tetrahydrochlorid

Zu einer Lösung von 4.2 mg (0.004 mmol) der Verbindung aus Beispiel 121A in 1 ml Dioxan werden bei 0°C 0.062 ml einer 4N Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 2 mg (64% d. Th.)

MS (ESI): $m/z = 613 (M-4HCl+H)^{+}$.

Beispiel 3

5

10 (8S,11S,14S)-14-Amino-N-[(1S)-4-amino-1-({[(2S)-2,5-diaminopentyl]amino}carbonyl)butyl]-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid

Zu einer Lösung von 22.8 mg (0.02 mmol) der Verbindung aus Beispiel 113A in 1 ml Dioxan werden bei 0°C 0.4 ml einer 4N Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 3 h bei RT

wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 15.3 mg (93% d. Th.)

MS (ESI): $m/z = 654 (M-5HCl+H)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 1.55-1.95 (m, 12H), 2.8-3.2 (m, 9H), 3.3-3.7 (m, 4H), 4.29 (m_o, 1H), 4.47 (m_c, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.94 (d, 1H), 6.99 (s, 1H), 7.16 (d, 1H), 7.31 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 4

(8S,11S,14S)-14-Amino-N-[(1S)-4-amino-1-({[(2S)-2,5-diaminopentyl]amino}carbonyl)butyl]-1110 (3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa1(20),2(21),3,5,16,18-hexaen-8-carboxamid Penta(hydrotrifluoracetat)

Beispiel 3 als Tetrahydrochlorid-Salz wird durch präparative HPLC (Reprosil ODS-A, Laufmittel Acetonitril / 0.2% wässrige Trifluoressigsäure 5:95 → 95:5) in das Tetra(hydrotrifluoracetat) überführt.

15 LC-MS (Methode 10): $R_t = 2.21 \text{ min.}$

MS (ESI): $m/z = 654 (M-5TFA+H)^{+}$.

Beispiel 5

(8S,11S,14S)-14-Amino-N- $\{(4S)-4$ -amino-5-[(2-aminoethyl)amino]-5-oxopentyl $\}$ -11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo $[14.3.1.1^{2,6}]$ henicosa-

20 1(20),2(21),3,5,16,18-hexaen-8-carboxamid Tetrahydrochlorid

Eine Lösung von 4.6 mg (0.005 mmol) der Verbindung aus Beispiel 117A in 1 ml Dioxan wird bei 0°C mit 0.27 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

5 Ausbeute: 3.4 mg (99% d. Th.)

MS (ESI): $m/z = 613 (M-4HCl+H)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 1.47-1.67 (m, 2H), 1.75-2.09 (m, 4H), 2.89 (m_o, 1H), 2.95-3.25 (m, 7H), 3.3 (m_o, 1H), 3.4 (m_o, 1H), 3.5-3.7 (m, 2H), 3.86 (m_o, 1H), 3.98 (m_o, 1H), 4.44 (m_o, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.94 (d, 1H), 6.99 (s, 1H), 7.16 (d, 1H), 7.31 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 6

10

(8S,11S,14S)-14-Amino-N-[(1S)-4-amino-1-({[(5S)-5-amino-6-hydroxyhexyl]amino}carbonyl)-butyl]-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Tetrahydrochlorid

15

Eine Lösung von 62 mg (0.058 mmol) der Verbindung aus Beispiel 128A in 1 ml Dioxan wird bei 0°C mit 0.87 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

20 Ausbeute: 46 mg (97% d. Th.)

LC-MS (Methode 10): $R_r = 1.84 \text{ min.}$

MS (ESI): $m/z = 669 (M-4HCI+H)^{+}$.

¹H-NMR (400 MHz, D₂O): $\delta = 1.25$ -1.95 (m, 14H), 2.9-3.3 (m, 10H), 3.5-3.8 (m, 3H), 4.19 (m_e, 1H), 4.46 (m_e, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.94 (d, 1H), 6.99 (s, 1H), 7.16 (d, 1H), 7.31 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 7

5 (8S,11S,14S)-14-Amino-N-((1S)-1-(aminomethyl)-2-{[(2S)-2,5-diaminopentyl]amino}-2-oxoethyl)-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid

Eine Lösung von 70 mg (0.062 mmol) der Verbindung aus Beispiel 129A in 1 ml Dioxan wird bei 0°C mit 0.94 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 50 mg (99% d. Th.)

MS (ESI): $m/z = 626 (M-5HCl+H)^{+}$.

¹H-NMR (400 MHz, D₂O): $\delta = 1.55-1.95$ (m, 8H), 2.9-3.2 (m, 6H), 3.26 (m_e, 1H), 3.3-3.7 (m, 7H), 4.47 (m_e, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.94 (d, 1H), 6.99 (s, 1H), 7.16 (d, 1H), 7.31 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 8

10

(85,115,145)-14-Amino-N-((15)-4-amino-1-{[(2-aminoethyl)amino]carbonyl}butyl)-11-(3-amino-propyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Tetrahydrochlorid

Eine Lösung von 12 mg (0.012 mmol) der Verbindung aus Beispiel 130A in 1 ml Dioxan wird bei 0°C mit 0.181 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 8.8 mg (99% d. Th.)

MS (ESI): $m/z = 597 (M-4HCl+H)^{+}$.

¹H-NMR (400 MHz, D_2O): $\delta = 1.55-1.95$ (m, 8H), 2.9-3.2 (m, 8H), 3.4-3.7 (m, 4H), 4.25 (m_c, 1H), 4.46 (m_c, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.99 (s, 1H), 7.17 (d, 1H), 7.32 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 9

5

10

 $(8S,11S,14S)-14-Amino-N-((1S)-4-amino-1-\{[((1S)-4-amino-1-\{2-[(2-aminoethyl)amino]-2-oxoethyl\}butyl)amino]carbonyl\}butyl)-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid$

Eine Lösung von 24 mg (0.02 mmol) der Verbindung aus Beispiel 133A in 1 ml Dioxan wird bei 0°C mit 0.29 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

5 Ausbeute: 17.5 mg (99% d. Th.)

MS (ESI): $m/z = 725 (M-5HCl+H)^{+}$.

¹H-NMR (400 MHz, D_2O): $\delta = 1.45-2.0$ (m, 12H), 2.36 (m_o, 1H), 2.9-3.2 (m, 11H), 3.4-3.7 (m, 4H), 4.1-4.25 (m, 2H), 4.47 (m_o, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.98 (s, 1H), 7.17 (d, 1H), 7.32 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

10 Beispiel 10

 $(8S,11S,14S)-14-Amino-N-((1S)-4-amino-1-\{[((1S)-4-amino-1-\{2-[(2-aminoethyl)amino]-2-oxoethyl\}butyl)amino]carbonyl\}butyl)-11-[(2R)-3-amino-2-bydroxypropyl]-17-bydroxy-10,13-dioxo-9,12-diazatricyclo[14,3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid$

15

Eine Lösung von 13 mg (0.01 mmol) der Verbindung aus Beispiel 134A in 1 ml Dioxan wird bei 0°C mit 0.16 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

20 Ausbeute: 9.5 mg (99% d. Th.)

MS (ESI): $m/z = 741 (M-5HCl+H)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 1.4-2.05 (m, 10H), 2.37 (m_c, 1H), 2.53 (m_c, 1H), 2.8-3.2 (m, 10H), 3.3-3.7 (m, 3H), 3.86 (m_c, 1H), 4.1-4.21 (m, 2H), 4.44 (m_c, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.95 (d, 1H), 7.0 (s, 1H), 7.18 (d, 1H), 7.3-7.4 (m, 2H), 7.4-7.5 (m, 2H).

Beispiel 11

(8S,11S,14S)-14-Amino-N-{(1S)-4-amino-1-[({(4S)-4-amino-6-[(2-aminoethyl)amino]-6-oxohexyl}amino)carbonyl]butyl}-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid

Eine Lösung von 24 mg (0.02 mmol) der Verbindung aus Beispiel 135A in 1 ml Dioxan wird bei 0°C mit 0.29 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 17.5 mg (99% d. Th.)

15 MS (ESI): $m/z = 741 (M-5HCI+H)^{+}$.

¹H-NMR (400 MHz, D_2O): δ = 1.45-2.05 (m, 10H), 2.55 (m_c, 1H), 2.68 (m_c, 1H), 2.8-3.2 (m, 10H), 3.3-3.7 (m, 4H), 3.86 (m_c, 1H), 4.21 (m_c, 2H), 4.44 (m_c, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.99 (s, 1H), 7.17 (d, 1H), 7.33 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 12

20 (8S,11S,14S)-14-Amino-N-{(1S)-4-amino-1-[({(4S)-4-amino-6-[(2-aminoethyl)amino]-6-oxohexyl}amino)carbonyl]butyl}-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid

- 173 -

$$H_2N$$
 $=$
 NH_2
 NH_2
 NH_2

Eine Lösung von 21 mg (0.017 mmol) der Verbindung aus Beispiel 136A in 1 ml Dioxan wird bei 0°C mit 0.26 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 15 mg (99% d. Th.)

MS (ESI): $m/z \approx 716 (M-5HCI+H)^{+}$.

¹H-NMR (400 MHz, D_2O): $\delta = 1.45$ -1.95 (m, 12H), 2.55 (m_c, 1H), 2.68 (m_c, 1H), 2.9-3.2 (m, 10H), 3.42 (m_c, 2H), 3.5-3.7 (m, 3H), 4.2 (m_c, 1H), 4.46 (m_c, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.98 (s, 1H), 7.17 (d, 1H), 7.32 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 13

5

10

(8S,11S,14S)-14-Amino-N-[(1S)-4-amino-1- $(\{[(2S)-2,5$ -diaminopentyl]amino} carbonyl)butyl]-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo $[14.3.1.1^{2,6}]$ henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid

Eine Lösung von 20 mg (0.017 mmol) der Verbindung aus Beispiel 137A in 1 ml Dioxan wird bei 0°C mit 0.256 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

5 Ausbeute: 13.5 mg (93% d. Th.)

MS (ESI): $m/z = 670 (M-5HCI+H)^{+}$.

¹H-NMR (400 MHz, D_2O): $\delta = 1.5-2.05$ (m, 10H), 2.8-3.2 (m, 8H), 3.3-3.7 (m, 5H), 3.86 (m_o, 1H), 4.30 (m_o, 1H), 4.44 (m_o, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.99 (s, 1H), 7.17 (d, 1H), 7.33 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

10 Beispiel 14

15

(8S,11S,14S)-14-Amino-N-((1S)-4-amino-1- $\{[((4S)$ -4-amino-6- $\{[(2S)$ -2,5-diaminopentyl]amino}-6-oxohexyl)amino]carbonyl}butyl)-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo $[14.3.1.1^{2.6}]$ henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Hexahydrochlorid

Eine Lösung von 29 mg (0.021 mmol) der Verbindung aus Beispiel 138A in 1 ml Dioxan wird bei 0°C mit 0.31 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

20 Ausbeute: 16.5 mg (78% d. Th.)

MS (ESI): $m/z = 798 (M-6HCl+H)^{+}$.

 1 H-NMR (400 MHz, D_{2} O): δ = 1.45-2.05 (m, 14H), 2.50 (m_o, 1H), 2.72 (m_o, 1H), 2.8-3.7 (m, 15H), 3.89 (m_o, 1H), 4.23 (m_o, 1H), 4.46 (m_o, 1H), 4.7-4.9 (m, 2H, unter D_{2} O), 6.94 (d, 1H), 6.99 (s, 1H), 7.17 (d, 1H), 7.33 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 15

5 (8S,11S,14S)-14-Amino-N-((1S)-4-amino-1-{[((4S)-4-amino-6-{[(2S)-2,5-diaminopentyl]amino}-6-oxohexyl)amino]carbonyl}butyl)-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Hexahydrochlorid

Eine Lösung von 29 mg (0.021 mmol) der Verbindung aus Beispiel 139A in 1 ml Dioxan wird bei 0°C mit 0.31 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 16.5 mg (78% d. Th.)

MS (ESI): $m/z = 782 (M-6HC1+H)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 1.45-1.95 (m, 16H), 2.60 (m_o, 1H), 2.83 (m_o, 1H), 2.9-3.3 (m, 10H), 3.3-3.75 (m, 6H), 4.24 (m_o, 1H), 4.49 (m_o, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.94 (d, 1H), 6.99 (s, 1H), 7.17 (d, 1H), 7.33 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 16

10

(8S,11S,14S)-14-Amino-N-[(1S)-4-amino-1-({[(1S)-4-amino-1-(2-{[(2S)-2,5-diaminopentyl]-20 amino}-2-oxoethyl)butyl]amino}carbonyl)butyl]-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid
Hexahydrochlorid

- 176 -

Eine Lösung von 28 mg (0.02 mmol) der Verbindung aus Beispiel 140A in 1 ml Dioxan wird bei 0°C mit 0.3 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 20 mg (99% d. Th.)

MS (ESI): $m/z = 782 (M-6HCl+H)^{+}$.

¹H-NMR (400 MHz, D_2O): δ = 1.4-1.9 (m, 16H), 2.4 (m_o, 1H), 2.54 (m_o, 1H), 2.85-3.2 (m, 11H), 3.29 (m_o, 1H), 3.39 (m_o, 1H), 3.45-3.65 (m, 2H), 4.1-4.25 (m, 2H), 4.47 (m_o, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.99 (s, 1H), 7.17 (d, 1H), 7.33 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 17

5

10

15

 $(8S,11S,14S)-14-Amino-N-[(1S)-4-amino-1-(\{[(1S)-4-amino-1-(2-\{[(2S)-2,5-diaminopentyI]-amino\}-2-oxoethyl)butyl]amino\} carbonyl)butyl]-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Hexahydrochlorid$

Eine Lösung von 36 mg (0.026 mmol) der Verbindung aus Beispiel 141A in 1 ml Dioxan wird bei 0°C mit 0.39 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

5 Ausbeute: 26 mg (99% d. Th.)

MS (ESI): $m/z = 798 (M-6HCI+H)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 1.4-2.05 (m, 14H), 2.41 (m_e, 1H), 2.54 (m_e, 1H), 2.85-3.2 (m, 11H), 3.29 (m_e, 1H), 3.39 (m_e, 1H), 3.45-3.65 (m, 2H), 3.85 (m_e, 1H), 4.1-4.25 (m, 2H), 4.45 (m_e, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.95 (d, 1H), 7.0 (s, 1H), 7.17 (d, 1H), 7.29-7.6 (m, 4H).

10 Beispiel 18

 N^5 -(N^2 -{[(8S,11S,14S)-14-Amino-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}-L-ornithyl)-N-(2-aminoethyl)-L-ornithinamid Pentahydrochlorid

15 Eine Lösung von 47 mg (0.039 mmol) der Verbindung aus Beispiel 142A in 1 ml Dioxan wird bei 0°C mit 0.58 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 34 mg (99% d. Th.)

20 MS (ESI): m/z = 711 (M-5HCl+H)⁺.

¹H-NMR (400 MHz, D_2O): $\delta = 1.45-1.95$ (m, 12H), 2.9-3.25 (m, 10H), 3.38 (m_e, 1H), 3.5-3.7 (m, 2H), 3.96 (m_e, 1H), 4.26 (m_e, 1H), 4.47 (m_e, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.99 (s, 1H), 7.17 (d, 1H), 7.33 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H).

Beispiel 19

10

15

20

5 (8*S*,11*S*,14*S*)-14-Amino-*N*-[(1*S*)-4-amino-1-(2-{[(2*S*)-2,5-diaminopentyl]amino}-2-oxoethyl)-butyl]-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Penta(hydrotrifluoracetat)

Zu einer Lösung von 15 mg (0.013 mmol) der Verbindung aus Beispiel 143A in 1 ml Dioxan werden bei 0°C 0.19 ml einer 4N Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet. Das Rohprodukt wird durch präparative HPLC (Reprosil ODS-A, Laufmittel Acetonitril / 0.2% wässrige Trifluoressigsäure 5:95 → 95:5) in das Tetra(hydrotrifluoracetat) überführt.

Ausbeute: 5.4 mg (34% d. Th.)

MS (ESI): $m/z = 668 (M-5TFA+H)^{+}$.

¹H-NMR (400 MHz, D_2O): $\delta = 1.4-1.9$ (m, 12H), 2.39 (m_o, 1H), 2.57 (m_o, 1H), 2.83-3.17 (m, 9H), 3.32 (m_o, 1H), 3.41 (m_o, 1H), 3.5-3.7 (m, 2H), 4.21 (m_o, 1H), 4.46 (m_o, 1H), 4.7-4.9 (m, 2H, unter D_2O), 6.94 (d, 1H), 6.98 (s, 1H), 7.11 (d, 1H), 7.32 (s, 1H), 7.35 (t, 1H), 7.44-7.55 (m, 2H).

Beispiel 20

5

10

(8S,11S,14S)-14-Amino-N-(1-(2-aminoethyl)-3-{[(2S)-2,5-diaminopentyl]amino}-3-oxopropyl)-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Penta(hydrotrifluoracetat)

Zu einer Lösung von 14.8 mg (0.013 mmol) der Verbindung aus Beispiel 144A in 1 ml Dioxan werden bei 0°C 0.19 ml einer 4N Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet. Das Rohprodukt wird durch präparative HPLC (Reprosil ODS-A, Laufmittel Acetonitril / 0.2% wässrige Trifluoressigsäure 5:95 → 95:5) in das Tetra(hydrotrifluoracetat) überführt.

Ausbeute: 8.9 mg (57% d. Th.)

MS (ESI): $m/z = 654 (M-5TFA+H)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 1.5-2.0 (m, 10H), 2.4-2.65 (m, 2H), 2.85-3.2 (m, 9H), 3.25-3.47 (m, 2H), 3.53-3.68 (m, 2H), 4.27 (m_o, 1H), 4.46 (m_o, 1H), 4.7-4.9 (m, 2H, unter D₂O), 6.9-7.0 (m, 2H), 7.05-7.15 (m, 1H), 7.3-7.4 (m, 2H), 7.42-7.52 (m, 2H).

Beispiel 21

(8S,11S,14S)-14-Amino-N-[(1S)-4-amino-1-(2-{[(2S)-2,5-diaminopentyl]amino}-2-oxoethyl)20 butyl]-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid Pentahydrochlorid

Eine Lösung von 12.9 mg (0.011 mmol) der Verbindung aus Beispiel 118A in 1 ml Dioxan wird bei 0°C mit 0.161 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Nach 3 h bei RT wird die Reaktionslösung im Vakuum eingeengt und mehrmals mit Dichlormethan coevaporiert. Der zurückbleibende Feststoff wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 9 mg (95% d. Th.)

5

10

MS (ESI): $m/z = 698 (M-5HCl+H)^{+}$.

Analog zur Vorschrift des Beispiels I werden die in der folgenden Tabelle aufgeführten Beispiele hergestellt, entsprechend der jeweiligen Isolierungsmethode als Hydrochlorid- oder Hydro(trifluoracetat)-Salz.

Beispiel- Nr.	Vorstufe Beispiel	Struktur	Analytische Daten
22	112A	HO NH ₂ H NH ₂ H NH ₂	LC-MS (Methode 10): R _t = 1.80 min. MS (ESI): m/z = 654 (M-4TFA+H) ⁺ .
23	114A	H ₂ N H ₂ NH ₂ NH ₂	LC-MS (Methode 10): R _t = 2.11 min. MS (ESI): m/z = 639 (M-4HCl+H) ⁺ .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
24	116A	но	LC-MS (Methode 10): R _t =
1		NH2	1.91 min.
		CH, O	MS (ESI): $m/z = 739$ (M-
		5 x HCi NH ₂ NH	5HCI+H) [†]
	i	. H ₂ N ⁻ - ^J	
-			
25	122A		MS (ESI): $m/z = 643$ (M-
		но	4HCl+H) ⁺
		NH ₂	
		H ⁷ M A A A A A A A A A A A A A A A A A A A	
		4x HGI	
		NH ₂ NH ₂	
26	127A	но(Г	MS (ESI): $m/z = 613$ (M-
			4TFA+H) ⁺
		H ₂ N NH ₂	1
		H H H H	¹ H-NMR (400 MHz, D ₂ O):
		4 x TFA NH ₂ NH ₂	$\delta = 1.5-2.0$ (m, 8H), 2.85-
		2	3.2 (m, 6H), 3.3-3.7 (m,
	! 		4H), 3.83 (m _c , 1H), 4.35-4.5
]		•	(m, 2H), 4.6 (m _o , 1H), 4.7-
			4.9 (m, 2H, unter D ₂ O), 6.9-
			7.0 (m, 2H), 7.17 (d, 1H),
			7.27-7.4 (m, 2H), 7.4-7.5
			(m, 2H).
	<u>.</u>		

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
27	131A	но	MS (ESI): $m/z = 597$ (M-
	 		4TFA+H) [†]
		H ₂ N NH ₂	¹ H-NMR (400 MHz, D ₂ O):
		4×TFA	$\delta = 1.5-2.0$ (m, 8H), 2.9-3.2
<u> </u>	:	NH ₂	(m, 6H), 3.3-3.7 (m, 6H),
			3.96 (m _c , 1H), 4.47 (m _c ,
	Ì		1H), 4.7-4.9 (m, 2H, unter
			D ₂ O), 6.94 (d, 1H), 6.98 (s,
	ļ		1H), 7.17 (d, 1H), 7.31 (s,
			1H), 7.35 (t, 1H), 7.4-7.5
		·	(m, 2H).
			7 0 7 0 0 1 1 1 1 1 D
28	132A	но-	LC-MS (Methode 17): R _t =
]		1.92 min.
 		H ₂ N NH ₂	MS (ESI): $m/z = 703$ (M-
			4HCl+H) ⁺
1	<u> </u>	4 x HCI NH2 OH	
1) 	'H-NMR (400 MHz, D ₂ O):
			$\delta = 1.5-1.8$ (m, 8H), 2.8-3.1
}			(m, 9H), 3.27 (m _o , 1H),
			3.35-3.45 (m, 2H), 3.58 (m _c ,
			1H), 4.45-4.55 (m, 2H), 4.7-
			4.9 (m, 2H, unter D ₂ O), 6.7-
	1		6.8 (m, 2H), 6.9-7.0 (m,
			2H), 7.05-7.2 (m, 3H), 7.27
			(s, 1H), 7.34 (t, 1H), 7.36-
			7.46 (m, 2H).
l			

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
	1104		MS (ESI): m/z = 597 (M-
29	119A	но	4HCl+H) ⁺
		I I NH3	1101-119
		H ₂ N	¹ H-NMR (400 MHz, D ₂ O):
		4 x HCl NH. NH.	$\delta = 1.55-1.95$ (m, 8H), 2.85-
		4 x HGI NH ₂ NH ₂	3.18 (m, 7H), 3.2-3.7 (m,
			5H), 3.95 (m _c , 1H), 4.45
	1		(m _o , 1H), 4.7-4.9 (m, 2H,
			unter D ₂ O), 6.94 (d, 1H),
			6.98 (s, 1H), 7.17 (d, 1H),
			7.31 (s, 1H), 7.35 (t, 1H),
			7.4-7.5 (m, 2H).
30	123A	HO(=)(-)	LC-MS (Methode 10): R _t =
			1.77 min.
		HIN NHY	MS (ESI): m/z = 725 (M-
į		×5 HCI CH, O H	5HCl+H) ⁺
		NH ₂ NH ₂	
			T C MC (M-4-de 10), P -
31	124A	но	LC-MS (Methode 10): $R_t = 1.95$ min.
		NH.	1.53 mm.
		H ² N T CH ³ O NH	MS (ESI): $m/z = 668$ (M-
		×4 HCI NH,	4HCl+H) ⁺
	-	NH ₂	
32	125A	но—(Т)	LC-MS (Methode 10): R _t =
	1		1.92 min.
		NH ₂	MS (ESI): $m/z = 611$ (M-
		H'N A CH' O	4HCi+H) [†]
		x4 HCl NH ₂ NH ₂	
		<u> </u>	<u> </u>

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
33	126A	H ₂ N NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	LC-MS (Methode 10): R _t = 1.81 min. MS (ESI): m/z = 583 (M-4HCl+H) ⁺
34	145A	HO H ₂ NH ₂	MS (ESI): m/z = 641 (M-4TFA+H) ⁺
35	146A	H ₂ N NH ₂ NH ₂ NH ₂ NH ₂	MS (ESI): m/z = 611 (M-4TFA+H) ⁺
36	147A	HO NH ₂ ×6 TFA NH ₃ NH ₃	MS (ESI): m/z = 668 (M- 5TFA+H) ⁺
37	148A		MS (ESI): $m/z = 655$ (M-5HCI+H) ⁺ .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		•
38	149A	HO NH ₂ NH ₂ NH ₂ NH ₂ × 4 HCI	MS (ESI): m/z = 627 (M-4HCl+H) ⁺ .

Analog zur Vorschrift des Beispiels 1 werden die in der folgenden Tabelle aufgeführten Beispiele 39 bis 93 hergestellt, entsprechend der jeweiligen Isolierungsmethode als Hydrochlorid- oder Hydro(trifluoracetat)-Salz.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
39	227A	HO OH NH ₂ OH NH ₂ OH NH ₂ A x TFA	LC-MS (Methode 2): R _t = 0.25 min. MS (ESI): m/z = 657 (M-4TFA+H) ⁺ .
40	228A	HO S X TFA H ₂ N H ₂ N H ₂ N NH ₂ NH ₂ N NH ₂	LC-MS (Methode 10): R _t = 1.08 min. MS (ESI): m/z = 741 (M-5TFA+H) ⁺ .
41	229A	H ₂ N H ₂ N	LC-MS (Methode 10): R _t = 0.86 min. MS (ESI): m/z = 727 (M-5TFA+H) ⁺ .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
		•	
42	230A	но	LC-MS (Methode 1): R _t =
			0.3 min.
		H ² N H NH ³	1.50 CTCD
		NH ₂ NH ₂ 8×HCI NH ₂	MS (ESI): $m/z = 768$ (M-
			бHCl+H) ⁺ .
			¹ H-NMR (400 MHz, D ₂ O):
			$\delta = 1.5-1.9$ (m, 16H), 2.9-
			3.3 (m, 9H), 3.4-3.8 (m,
			6H), 4.0 (m _o , 1H), 4.26 (m _c ,
			1H), 4.47 (m _c , 1H), 4.7-4.9
			(m, 2H, unter D ₂ O), 6.95 (d,
			1H), 6.99 (s, 1H), 7.17 (d,
			1H), 7.31 (s, 1H), 7.35 (t,
			1H), 7.4-7.5 (m, 2H).
43	231A	но-СН3	LC-MS (Methode 10): $R_t =$
		H 8 8	0.46 min.
		H ₂ N NH ₂	MS (ESI): $m/z = 640$ (M-
		Ö TÜ NH2	5HCl+H) ⁺ .
ľ		NH ₂ 5×HCl NH ₂	<i>ing</i> v
		-	į
44	232A	HO—	LC-MS (Methode 1): R _t =
			0.31 min.
		H'N L LA LA LA MH') (C (POP) / 250 05
		NH ₃ 6×HCI	MS (ESI): $m/z = 768$ (M-
	İ		6HCl+H) ⁺ .
45	233A		LC-MS (Methode 2): R _t =
	255A	<u>></u>	0.26 min.
	1	***N~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	v.zo miii,
		Ö "Ö " ÑH, "ÑH, 5×HCI	MS (ESI): m/z = 711 (M-
	1	NH ₂	5HCl+H) [†] .
<u></u>			

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel	·	
46	234A	H ₂ N A	LC-MS (Methode 2): R _t =
		HO OH NH2	0.28 min.
·	•	(H) H WH	MS (ESI): $m/z = 743$ (M-
		H ₂ N NH ₂	5HCI+H) ⁺ .
		5 x HCt	
		NH ₂	
47	235A	но—Сн,	LC-MS (Methode 1): R _t =
		NH ₂ HN NH ₂	0.30 min.
		- HM	MS (ESI): $m/z = 711$ (M-
		5×HOI NH ₂	5HCl+H)*.
48	236A	HO	LC-MS (Methode 1): R _t =
		NH ₂	0.31 min.
		H ^T M L L L L L L L L L L L L L L L L L L L	MS (ESI): m/z = 713 (M-
		NH ₂ 5 x HCl NH ₂	5HCI+H) ⁺ .
49	237A	HO—	LC-MS (Methode 1): $R_t =$
			0.31 min.
		Pan I I I I I I I I I I I I I I I I I I I	MS (ESI): $m/z = 725$ (M-
		NH ₂	5HCl+H) [†] .
		·	,
50	238A	HO-NH ₂	LC-MS (Methode 1): R _t =
			0.23 min.
		H ₂ N H ₂ NH ₂	Me (ESD: m/a - 627 (M
		о он о	MS (ESI): $m/z = 627$ (M-4HCl+H) ⁺ .
		NH ₂ 4 x HCl	anom).

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
51	239A	HO—CH ₃ 4 x HCl NH ₂ NH ₂ NH ₂ NH ₂	LC-MS (Methode 10): R _t = 1.95 min. MS (ESI): m/z = 683 (M-4HCl+H) ⁺ .
52	240A	HO HO NH2 OH NH2 OH NH2 OH NH4 NH2 OH NH4 NH4 OH NH4	LC-MS (Methode 2): R _t = 0.28 min. MS (ESI): m/z = 729 (M-5HCl+H) ⁺ .
53	241A	H ₂ N H ₂ N OH NH ₂ 6 x HCl H ₂ N OH NH ₂	LC-MS (Methode 3): $R_t = 0.26 \text{ min.}$ MS (ESI): $m/z = 757 \text{ (M-5HCl+H)}^{+}$.
54	242A	H ₂ N NH ₂ NH ₂ NH ₂ S x HCI	LC-MS (Methode 2): $R_t = 0.28 \text{ min.}$ MS (ESI): $m/z = 727 \text{ (M-5HCl+H)}^+$.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
55	243A	HO H ₂ N NH ₂ 4 x HCl HN NH ₂	LC-MS (Methode 10): R _t = 1.96 min. MS (ESI): m/z = 741 (M-4HCl+H) ⁺ . ¹ H-NMR (400 MHz, D ₂ O): δ = 1.6-2.15 (m, 8H), 2.3 (m, 2H), 2.9-3.3 (m, 10H), 3.4-3.8 (m, 4H), 3.85 (m _c , 1H), 4.22 (m _c , 1H), 4.35 (m _c , 1H), 4.43 (m _c , 1H), 4.7-4.9 (m, 2H, unter D ₂ O), 6.94
	2444		(d, 1H), 6.98 (s, 1H), 7.17 (d, 1H), 7.32 (s, 1H), 7.35 (t, 1H), 7.4-7.5 (m, 2H). LC-MS (Methode 10): R _t =
56	244A	H ₂ N H ₂ N H ₂ N H ₂ N H ₂ N NH ₂	1.86 min. MS (ESI): m/z = 741 (M-4HCl+H) ⁺ .
57	245A	H ₂ N NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	LC-MS (Methode 10): R _t = 1.96 min. MS (ESI): m/z = 739 (M-4HCl+H) ⁺ .

PCT/EP2006/002617

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
	246A	H ₂ N O H ₂ N NH ₂ 4 × HCl NH ₂	LC-MS (Methode 10): R _t = 2.10 min. MS (ESI): m/z = 739 (M-4HCl+H) ⁺ .
59	247A	HO H ₂ N NH ₂ 4 × HCl H ₂ N NH ₂	LC-MS (Methode 10): R _t = 1.87 min. MS (ESI): m/z = 725 (M-4HCl+H) ⁺ .
60	248A	HO HIN NH2 OH ONH2 5 x HCI	LC-MS (Methode 3): R _t = 0.25 min, MS (ESI): m/z = 699 (M-5HCI+H) ⁺ ,
61	249A	HO CH ₃ NH ₂	LC-MS (Methode 2): R _t = 0.28 min. MS (ESI): m/z = 711 (M-5HCl+H) ⁺ .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		,
	_		
62	250A	но—()—()	LC-MS (Methode 2): R _t =
		H 9 NH2	0.28 min.
-			
		NH NH	MS (ESI): $m/z = 741$ (M-
		NH ₂ OH	5HCl+H)*.
		5 x HCl H ₂ N O	
		_	
63	251A	но-С-	LC-MS (Methode 2): R _t =
		5×HCI	0.24 min.
		H'N T T T NH	
		MH² Q NH² QH	MS (ESI): $m/z = 741$ (M-
			5HCl+H)*.
64	252A	uo / \	LC-MS (Methode 2): R _t =
		HO HN O	0.28 min.
		HYN THE WHY	
		g L Q MH²	MS (ESI): $m/z = 683$ (M-
		NH ₂ 5 × HCI	5HCl+H) ⁺ .
65	253A		LC-MS (Methode 2): R _t =
		HO CH3 H ² N NH ²	0.28 min.
İ		NH. OH	0120 IIII
		HN A LANGE	MS (ESI): m/z = 699 (M-
		5 x HCl	5HCl+H) ⁺ .
		NH ₂	
66	254A		LC-MS (Methode 10): R _t =
		HO—	1.88 min.
		H ₂ N NH ₂	MS (ESI): $m/z = 725$ (M-
		HN O	4HCl+H) ⁺ .
		H ₂ N .	
	ľ	4×HCI	
		HN NH ₂	
			78.41 · · · ·

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
67	255A	но-СТЭ-СН3	LC-MS (Methode 2): $R_t =$
		(11 8) 11 8	0.29 min.
İ		H-JN TO THE NH2	MS (ESI): m/z = 668 (M-
		5 NH ₂	5HCl+H) [†] ,
!		NH ₂ NH ₂	
			¹ H-NMR (400 MHz, D ₂ O):
			$\delta = 1.55-1.95$ (m, 12H), 2.24
			(s, 3H), 2.8-3.2 (m, 9H), 3.3-
			3.7 (m, 4H), 4.33 (m _e , 1H),
			4.46 (m _e , 1H), 4.63 (m _e ,
			1H), 4.94 (m _o , 1H), 6.94 (d,
			1H), 7.07 (s, 1H), 7.25 (d,
			1H), 7.30 (s, 1H), 7.45 (d,
			1H), 7.55 (d, 1H)
68	256A	HO————————————————————————————————————	LC-MS (Methode 2): R _t =
		HO NH ₂	0.27 min.
	!	H ₂ N NH ₂	
		CH, 0 0	MS (ESI): $m/z = 641$ (M-
		∠ 4 x HCl	4HCl+H) ⁺ .
			¹ H-NMR (400 MHz, D ₂ O):
			$\delta = 1.55-1.95$ (m, 6H), 2.49
			(m, 2H), 2.8-3.8 (m, 13H),
			3.96 (m _o , 1H), 4.46 (m _o ,
			1H), 5.11 (m _o , 1H), 5.61
İ			(m _c , 1H), 6.92-7.02 (m, 2H),
			7.10 (s, 1H), 7.18 (d, 1H),
	İ		7.36 (t, 1H), 7.49 (d, 1H),
			7.55 (d, 1H)
<u> </u>			

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel	•	
	-		
69	257A	HO—CH _s	LC-MS (Methode 2): R _t =
:		אַן אַן אַן אַן אַן אַן אַן אַן אַן אַן	0.20 min.
		H-2N NH ₂ 6 x HCI NH ₂	MS (ESI): m/z = 796 (M-6HCl+H) ⁺ .
			¹ H-NMR (400 MHz, D ₂ O): $\delta = 1.3-1.95$ (m, 18H), 2.23
!			(s, 3H), 2.8-3.8 (m, 17H),
			3.98 (m _o , 1H), 4.26 (m _o , 1H), 4.46 (m _o , 1H), 4.63
1			(m _o , 1H), 4.93 (m _o , 1H),
			6.94 (d, 1H), 7.07 (s, 1H),
			7.25 (d, 1H), 7.28 (s, 1H),
			7.44 (td 1H), 7.54 (d, 1H).
			TOMO (MANA) D. B
70	258A	HO-	LC-MS (Methode 2): R ₁ =
		HANDER OF THE PROPERTY OF THE	0.25 min.
]		H ₂ N J J J J J J J J J J J J J J J J J J J	MS (ESI): $m/z = 741$ (M-
		NH _z	5HCl+H) ⁺ .
71	259A	HO	LC-MS (Methode 10): R _t =
			0,86 min.
		CH CH CH CH NH2	MS (ESI): $m/z = 798$ (M-
		NH ₂ · NH ₂	6HСI+H) ⁺ .
L	<u></u>		

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		
·		·	
72	260A	но	LC-MS (Methode 2): R _t =
	-		0.15 min.
		HO BEALTHON BOY	MS (ESI): $m/z = 782$ (M-
		NH ₂ NH ₃ 6×HCI NH ₃	6HCI+H) ⁺ .
	ı		officially.
		·	¹ H-NMR (400 MHz, D ₂ O):
			$\delta = 1.3-1.95$ (m, 18H), 2.8-
ļ			3.8 (m, 17H), 3.97 (m _o , 1H),
	 -		4.26 (m _c , 1H), 4.46 (m _c ,
		•	1H), 4.6-4.9 (m, 2H, unter
			D ₂ O), 6.95 (d, 1H), 6.99 (s,
			1H), 7.16 (d, 1H), 7.29-7.39
			(m, 2H), 7.4-7.5 (m, 2H).
73	261A	но-{-}-	LC-MS (Methode 2): R _t =
]		ex HCI	0.15 min.
		, , , , , , , , , , , , , , , , , , ,	MS (ESI): $m/z = 754$ (M-
		NH ₂ NH ₂ "NH ₂ "	6HCl+H) ⁺ .
		NH ₂	·
74	262A	но	LC-MS (Methode 2): R _t =
			0.2 min.
		I THE THE THE THE THE THE THE THE THE THE	MS (ESI): m/z = 755 (M-
	}	NH ₂ NH ₂ NH ₂	5HCi+H) [†] .
75	263A	но(Сн,	LC-MS (Methode 2): R _t =
		H R S HCI NH2	0.2 min.
		HAVE	
		LOH NH' NH'	MS (ESI): $m/z = 753$ (M-
			5HCl+H)*.
	<u> </u>		<u> </u>

Beispiel-	Vorstufe	Straktur	Analytische Daten
Nr.	Beispiel		
76	264A	HO NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 768 (M-6HCl+H) ⁺ .
77	265A	HO NH ₂ S x HCI	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 784 (M-6HCl+H) ⁺ .
78	266A	HO HO NH ₂ 6 x HCl	LC-MS (Methode 2): R _t = 0.26 min. MS (ESI): m/z = 725 (M-5HCl+H) ⁺ .
79	280A	H ₂ N O HN NH ₂ H ₂ N S x HCI NH ₂	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 685 (M-5HCl+H) ⁺ .
80	281A	H ₂ N OH H ₂ N OH OH	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 771 (M-5HCI+H) ⁺ .

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel		·
81	269A	H ₂ N B× HCI NH ₂ NH ₃ NH ₃ NH ₃	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 756 (M-6HCl+H) ⁺ .
82	270A	HO S HCI	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 699 (M-5HCl+H) ⁺ .
83	271A	HO HO NH ₂ B x HCI NH ₂ NH ₂ NH ₂ NH ₂	LC-MS (Methode 2): $R_t = 0.2 \text{ min.}$ MS (ESI): $m/z = 770 \text{ (M-6HCl+H)}^+$.
84	279A	HO CH _a H ₂ N H ₂ H ₃ N H ₂ NH ₃ NH ₃	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 739 (M-5HCl+H) ⁺ .
85	273A	HO NH ₂ NH ₂ NH ₂ NH ₂ S x HCl	LC-MS (Methode 2): R _t = 0.26 min. MS (ESI): m/z = 755 (M-5HCl+H) ⁺ .
86	274A	HO HAN HAN DH NHA OH NHA OH NHA NHA NHA	LC-MS (Methode 2): $R_t = 0.2 \text{ min.}$ MS (ESI): $m/z = 757 \text{ (M-5HCI+H)}^+$.

Beispiel-	Vorstufe	Struktur	Analytische Daten
Nr.	Beispiel	_	
87 .	275A	HO NH ₂ B x HCI	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 740 (M-6HCl+H) ⁺ .
88	278A	HO H ₂ N H ₂ N H ₂ N NH ₂	LC-MS (Methode 2): R _t = 0.2 min. MS (ESI): m/z = 725 (M-5HCI+H) ⁺ .
89	277A	HO NH ₂ NH ₂ NH ₂ NH ₂	LC-MS (Methode 2): R ₄ = 0.2 min. MS (ESI): m/z = 739 (M-5HCl+H) ⁺ .

- 198 -

Bewertung der physiologischen Wirksamkeit

Verwendete Abkürzungen:

AMP Adenosinmonophosphat
ATP Adenosintriphosphat

BHI Medium Brain heart infusion medium

CoA Coenzym A

DMSO Dimethylsulfoxid

DTT Dithiothreitol

EDTA Ethylendiamintetraessigsäure

KCl Kaliumchlorid

KH₂PO₄ Kaliumdihydrogenphosphat

MgSO₄ Magnesiumsulfat

MHK Minimale Hemmkonzentration

MTP Mikrotiterplatte
NaCl Natriumchlorid

Na₂HPO₄ Dinatriumhydrogenphosphat

NH₄Cl Ammoniumchlorid NTP Nukleotidtriphosphat

PBS Phosphat Buffered Saline

PCP Polymeruse Chain Reservice

PCR Polymerase Chain Reaction

PEG Polyethylenglykol
PEP Phosphoenolpyruvat

5

10

Tris Tris[hydroxymethyl]aminomethan

Die in vitro-Wirkung der erfindungsgemäßen Verbindungen kann in folgenden Assays gezeigt werden:

In vitro Transkription-Translation mit E. coli Extrakten

Zur Herstellung eines S30-Extraktes werden logarithmisch wachsende *Escherichia coli* MRE 600 (M. Müller; University Freiburg) geerntet, gewaschen und wie beschrieben für den *in vitro* Transkriptions-Translations-Test eingesetzt (Müller, M. and Blobel, G. Proc Natl Acad Sci U S A (1984) 81, pp.7421-7425).

Dem Reaktionsmix des *in vitro* Transkriptions-Translations-Tests werden zusätzlich 1 μl cAMP (11.25 mg/ml) je 50 μl Reaktionsmix zugegeben. Der Testansatz beträgt 105 μl, wobei 5 μl der zu

- 199 -

testenden Substanz in 5%igem DMSO vorgelegt werden. Als Transkriptionsmatrize werden 1 μg/100μl Ansatz des Plasmides pBESTLuc (Promega, Deutschland) verwendet. Nach Inkubation für 60 min bei 30°C werden 50 μl Luziferinlösung (20 mM Tricine, 2.67 mM MgSO₄, 0.1 mM EDTA, 33.3 mM DTT pH 7.8, 270 μM CoA, 470 μM Luziferin, 530 μM ATP) zugegeben und die entstehende Biolumineszenz für 1 Minute in einem Luminometer gemessen. Als IC₅₀ wird die Konzentration eines Inhibitors angegeben, die zu einer 50%igen Inhibition der Translation von Firefly Luziferase führt.

In vitro Transkription-Translation mit S. aureus Extrakten

5

Konstruktion eines S. aureus Luziferase Reporterplasmids

Zur Konstruktion eines Reporterplasmids, welches in einem in vitro Transkriptions-Translations-10 Assay aus S. aureus verwendet werden kann, wird das Plasmid pBESTluc (Promega Corporation, USA) verwendet. Der in diesem Plasmid vor der Firefly Luziferase vorhandene E. coli tac Promoter wird gegen den capA1 Promoter mit entsprechender Shine-Dalgarno Sequence aus S. aureus ausgetauscht. Dazu werden die Primer CAPFor 5'-CGGCC-15 AAGAAAGGAAAATAGGAGGTTTATATGGAAGACGCCA-3' und 5'-CAPRev GTCATCGTCGGGAAGACCTG-3' verwendet. Der Primer CAPFor enthält den capA1 Promotor, die Ribosomenbindestelle und die 5'-Region des Luziferase Gens. Nach PCR unter Verwendung von pBESTluc als Template kann ein PCR-Produkt isoliert werden, welches das Firefly Luziferase Gen mit dem fusionierten capAl Promotor enthält. Dieses wird nach einer Restriktion mit ClaI und 20 HindIII in den ebenfalls mit ClaI und HindIII verdauten Vektor pBESTluc ligiert. Das entstandene Plasmid pla kann in E. coli repliziert werden und als Template im S. aureus in vitro Transkriptions-Translations-Test verwendet werden.

Herstellung von S30 Extrakten aus S. aureus

Sechs Liter BHI Medium werden mit einer 250 ml Übernachtkultur eines S. aureus Stammes inokuliert und bei 37°C bis zu einer OD600nm von 2-4 wachsen gelassen. Die Zellen werden durch Zentrifugation geerntet und in 500 ml kaltem Puffer A (10 mM Tris-acetat, pH 8.0, 14 mM Magnesiumacetat, 1 mM DTT, 1 M KCl) gewaschen. Nach erneutem Abzentrifugieren werden die Zellen in 250 ml kaltem Puffer A mit 50 mM KCl gewaschen und die erhaltenen Pellets bei -20°C für 60 min eingefroren. Die Pellets werden in 30 bis 60 min auf Eis aufgetaut und bis zu einem Gesamtvolumen von 99 ml in Puffer B (10 mM Tris-acetat, pH 8.0, 20 mM Magnesiumacetat, 1 mM DTT, 50 mM KCl) aufgenommen. Je 1.5 ml Lysostaphin (0.8 mg/ml) in Puffer B werden in 3 vorgekühlte Zentrifugenbecher vorgelegt und mit je 33 ml der Zellsuspension vermischt. Die

WO 2006/103015

5

10

20

25

30

PCT/EP2006/002617

Proben werden für 45 bis 60 min bei 37°C unter gelegentlichem Schütteln inkubiert, bevor 150 μl einer 0.5 M DTT Lösung zugesetzt werden. Die lysierten Zellen werden bei 30.000 x g 30 min bei 4°C abzentrifugiert. Das Zellpellet wird nach Aufnahme in Puffer B unter den gleichen Bedingungen nochmals zentrifugiert und die gesammelten Überstände werden vereinigt. Die Überstände werden nochmals unter gleichen Bedingungen zentrifugiert und zu den oberen 2/3 des Überstandes werden 0.25 Volumen Puffer C (670 mM Tris-acetat, pH 8.0, 20 mM Magnesiumacetat, 7 mM Na₃-Phosphoenolpyruvat, 7 mM DTT, 5.5 mM ATP, 70 μM Aminosäuren (complete von Promega), 75 μg Pyruvatkinase (Sigma, Deutschland))/ml gegeben. Die Proben werden für 30 min bei 37°C inkubiert. Die Überstände werden über Nacht bei 4°C gegen 2 l Dialysepuffer (10 mM Tris-acetat, pH 8.0, 14 mM Magnesiumacetat, 1 mM DTT, 60 mM Kaliumacetat) mit einem Pufferwechsel in einem Dialyseschlauch mit 3500 Da Ausschluss dialysiert. Das Dialysat wird auf eine Proteinkonzentration von etwa 10 mg/ml konzentriert, indem der Dialyseschlauch mit kaltem PEG 8000 Pulver (Sigma, Deutschland) bei 4°C bedeckt wird. Die S30 Extrakte können aliquotiert bei -70°C gelagert werden.

15 Bestimmung der IC₅₀ im S. aureus in vitro Transcriptions-Translations-Assay

Die Inhibition der Proteinbiosynthese der Verbindungen kann in einem in vitro Transkriptions-Translations-Assay gezeigt werden. Der Assay beruht auf der zellfreien Transkription und Translation von Firefly Luziferase unter Verwendung des Reporterplasmids p1a als Template und aus S. aureus gewonnenen zellfreien S30 Extrakten. Die Aktivität der entstandenen Luziferase kann durch Lumineszenzmessung nachgewiesen werden.

Die Menge an einzusetzenden S30 Extrakt bzw. Plasmid p1a muss für jede Präparation erneut ausgetestet werden, um eine optimale Konzentration im Test zu gewährleisten. 3 μl der zu testenden Substanz gelöst in 5% DMSO werden in eine MTP vorgelegt. Anschließend werden 10 μl einer geeignet konzentrierten Plasmidlösung p1a zugegeben. Anschließend werden 46 μl eines Gemisches aus 23 μl Premix (500 mM Kaliumacetat, 87.5 mM Tris-acetat, pH 8.0, 67.5 mM Ammoniumacetat, 5 mM DTT, 50 μg Folsäure/ml, 87.5 mg PEG 8000/ml, 5 mM ATP, 1.25 mM je NTP, 20 μM je Aminosäure, 50 mM PEP (Na₃-Salz), 2.5 mM cAMP, 250 μg je *E. coli* tRNA/ml) und 23 μl einer geeigneten Menge *S. aureus* S30 Extrakt zugegeben und vermischt. Nach Inkubation für 60 min bei 30°C werden 50 μl Luziferinlösung (20 mM Tricine, 2.67 mM MgSO₄, 0.1 mM EDTA, 33.3 mM DTT pH 7.8, 270 μM CoA, 470 μM Luziferin, 530 μM ATP) und die entstehende Biolumineszenz für 1 min in einem Luminometer gemessen. Als IC₅₀ wird die Konzentration eines Inhibitors angegeben, die zu einer 50%igen Inhibition der Translation von Firefly Luziferase führt.

- 201 -

Bestimmung der Minimalen Hemmkonzentration (CLSI-Standard)

5

10

15

25

30

Die minimale Hemmkonzentration (MHK) ist die minimale Konzentration eines Antibiotikums, mit der ein Testkeim in seinem Wachstum über 18-24 h inhibiert wird. Die Hemmstoffkonzentration kann dabei nach mikrobiologischen Standardverfahren bestimmt werden (siehe z.B. The National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-fifth edition. NCCLS document M7-A5 [ISBN 1-56238-394-9]. NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2000). Dabei werden die Testsubstanzen in 1:2-Verdünnungsreihen in 96-Loch-Rundboden-Mikrotiterplatten (Greiner) doppelt konzentriert in 50 μl Testmedium vorgelegt. Die aerob wachsenden Testkeime (z.B. Staphylokokken und Enterokokken), die über Nacht auf Columbia-Blutagarplatten (Becton-Dickinson) inkubiert werden, werden nach Resuspension in 0.9% NaCl auf eine Keimzahl von ca. 5x107 Keime/ml eingestellt und anschließend 1:150 in Kationen-angepaßtem MH-Medium (Testmedium) verdünnt. Von dieser Suspension werden 50 µl auf die in Mikrotiterplatten vorgelegten Testpräparate pipettiert. Die Kulturen werden bei 37°C für 18-24 Stunden inkubiert. Für mikroaerophil wachsende Keime (z.B. Streptokokken) wird dem Medium 2% lysiertes Pferdeblut in der Endkonzentration zugesetzt und die Kulturen in Gegenwart von 5% CO2 inkubiert. Die jeweils niedrigste Substanzkonzentration, bei der kein sichtbares Bakterienwachstum mehr auftritt, wird als MHK definiert und wird in µg/ml angegeben.

20 Bestimmung der Minimalen Hemmkonzentration (MHK)

Die minimale Hemmkonzentration (MHK) ist die minimale Konzentration eines Antibiotikums, mit der ein Testkeim in seinem Wachstum über 18-24 h inhibiert wird. Die Hemmstoff-konzentration kann dabei nach mikrobiologischen Standardverfahren bestimmt werden (siehe z.B. The National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-fifth edition. NCCLS document M7-A5 [ISBN 1-56238-394-9]. NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2000). Die MHK der erfindungsgemäßen Verbindungen wird im Flüssigdilutionstest im 96er-Mikrotiter-Platten-Maßstab bestimmt. Die Bakterienkeime werden in einem Minimalmedium (18.5 mM Na₂HPO₄, 5.7 mM KH₂PO₄, 9.3 mM NH₄Cl, 2.8 mM MgSO₄, 17.1 mM NaCl, 0.033 μg/ml Thiaminhydrochlorid, 1.2 μg/ml Nicotinsäure, 0.003 μg/ml Biotin, 1% Glucose, 25 μg/ml von jeder proteinogenen Aminosäure mit Ausnahme von Phenylalanin; [H.-P. Kroll; unveröffentlicht]) unter Zusatz von 0.4% BH-Bouillon kultiviert (Testmedium). Im Fall von Enterococcus faecium L4001 wird dem Testmedium hitzeinaktiviertes fötales Kälberserum (FCS; GibcoBRL, Deutschland) in einer Endkonzentration von 10% zugesetzt. Übernachtkulturen

- 202 -

der Testkeime werden auf eine OD₅₇₈ von 0.001 (im Falle der Enterokokken auf 0.01) in frisches Testmedium verdünnt und 1:1 mit Verdünnungen der Testsubstanzen (Verdünnungsstufen 1:2) in Testmedium inkubiert (200 μl Endvolumen). Die Kulturen werden bei 37°C für 18-24 Stunden inkubiert; Enterokokken in Gegenwart von 5% CO₂.

5 Die jeweils niedrigste Substanzkonzentration, bei der kein sichtbares Bakterienwachstum mehr auftritt, wird als MHK definiert.

Alternative Bestimmungsmethode der Minimalen Hemmkonzentration (MHK)

Die minimale Hemmkonzentration (MHK) ist die minimale Konzentration eines Antibiotikums, mit der ein Testkeim in seinem Wachstum über 18-24 h inhibiert wird. Die Hemmstoff-konzentration kann dabei nach mikrobiologischen Standardverfahren mit modifiziertem Medium im Rahmen eines Agardilutionstests bestimmt werden (siehe z.B. The National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-fifth edition. NCCLS document M7-A5 [ISBN 1-56238-394-9]. NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2000). Die Bakterienkeime werden auf 1.5%igen Agarplatten kultiviert, die 20% defibriniertes Pferdeblut enthalten. Die Testkeime, die über Nacht auf Columbia-Blutagarplatten (Becton-Dickinson) inkubiert werden, werden in PBS verdünnt, auf eine Keimzahl von ca. 5x10⁵ Keime/ml eingestellt und auf Testplatten getropft (1-3 μl). Die Testsubstanzen enthalten unterschiedliche Verdünnungen der Testsubstanzen (Verdünnungsstufen 1:2). Die Kulturen werden bei 37°C für 18-24 Stunden in Gegenwart von 5% CO₂ inkubiert.

Die jeweils niedrigste Substanzkonzentration, bei der kein sichtbares Bakterienwachstum mehr auftritt, wird als MHK definiert und in ug/ml angegeben.

Tabelle A (mit Vergleichsbeispiel Biphenomyein B)

10

15

Bsp-Nr	MHK	MHK Š. aurėus T17	MIHK E faccium [4001	ICa S. <i>aureus</i> 133 Translation
1	0.5	1.0	4.0	0.07
2	1.0	1.0	2.0	0.07
3	2.0	2.0	16.0	0.2
5	1.0	1.0	2.0	0.2
12	1.0	1.0	16.0	0.08

BspNr.	MHK	МНК	[1987] 《大学》 \$P\$ (2007) [1987] [198] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987] [1987]	ICate to Article State of the
	S.aureus 133	5. aureus 11		S, aureus 133 Arauslation
15	1.0	2.0	>32	0.1
19	1.0	1.0	16.0	0.1
67	1.0	1.0	16	0.1
68	1.0	1.0	8	0.2
Biphenomycin B	<0.03	>32	0.5	1.5

Konzentrationsangaben: MHK in μg/ml; IC₅₀ in μM.

Systemische Infektion mit S. aureus 133

5

10

15

20

Die Eignung der erfindungsgemäßen Verbindungen zur Behandlung von bakteriellen Infektionen kann in verschiedenen Tiermodellen gezeigt werden. Dazu werden die Tiere im allgemeinen mit einem geeigneten virulenten Keim infiziert und anschließend mit der zu testenden Verbindung, die in einer an das jeweilige Therapiemodell angepassten Formulierung vorliegt, behandelt. Speziell kann die Eignung der erfindungsgemäßen Verbindungen zur Behandlung von bakteriellen Infektionen in einem Sepsismodell an Mäusen nach Infektion mit S. aureus demonstriert werden.

Dazu werden S. aureus 133 Zellen über Nacht in BH-Bouillon (Oxoid, Deutschland) angezüchtet. Die Übernachtkultur wurde 1:100 in frische BH-Bouillon verdünnt und für 3 Stunden hochgedreht. Die in der logarithmischen Wachstumsphase befindlichen Bakterien werden abzentrifugiert und zweimal mit gepufferter, physiologischer Kochsalzlösung gewaschen. Danach wird am Photometer (Dr. Lange LP 2W) eine Zellsuspension in Kochsalzlösung mit einer Extinktion von 50 Einheiten eingestellt. Nach einem Verdünnungsschritt (1:15) wird diese Suspension 1:1 mit einer 10%-igen Mucinsuspension gemischt. Von dieser Infektionslösung wird 0.2 ml/20 g Maus i.p. appliziert. Dies entspricht einer Zellzahl von etwa 1-2 x 10⁶ Keimen/Maus. Die i.v.-Therapie erfolgt 30 Minuten nach der Infektion. Für den Infektionsversuch werden weibliche CFW1-Mäuse verwendet. Das Überleben der Tiere wird über 6 Tage protokolliert. Das Tiermodell ist so eingestellt, daß unbehandelte Tiere innerhalb von 24 h nach der Infektion versterben. Für die Beispielverbindung 2 konnte in diesem Modell eine therapeutische Wirkung von ED₁₀₀ = 1.25 mg/kg demonstriert werden.

Bestimmung der Spontanresistenzfrequenzen gegen S. aureus

Die Spontanresistenzraten der erfindungsgemäßen Verbindungen werden wie folgt bestimmt: die Bakterienkeime werden in 30 ml eines Minimalmediums (18.5 mM Na₂HPO₄, 5.7 mM KH₂PO₄,

9.3 mM NH₄Cl, 2.8 mM MgSO₄, 17.1 mM NaCl, 0.033 µg/ml Thiaminhydrochlorid, 1.2 µg/ml Nicotinsäure, 0.003 µg/ml Biotin, 1% Glucose, 25 µg/ml von jeder proteinogenen Aminosäure unter Zusatz von 0,4% BH Bouillon) bei 37°C über Nacht kultiviert, 10 min bei 6.000xg abzentrifugiert und in 2 ml phosphat-gepufferter physiologischer NaCl-Lösung resuspendiert (ca. 2x10° Keime/ml). 100 µl dieser Zellsuspension bzw. 1:10 und 1:100 Verdünnungen werden auf vorgetrockneten Agarplatten (1.5% Agar, 20% defibriniertes Pferdeblut bzw. 1.5% Agar, 20% Rinderserum in 1/10 Müller-Hinton-Medium verdünnt mit PBS), welche die zu testende erfindungsgemäße Verbindung in einer Konzentration entsprechend 5xMHK bzw. 10xMHK enthalten, ausplattiert und 48 h bei 37°C bebrütet. Die entstehenden Kolonien (cfu) werden ausgezählt.

Isolierung der Biphenomycin-resistenten S. aureus Stämme RN4220Bi^R und T17

5

10

15

20

25

30

Der S. aureus Stamm RN4220Bi^R wird in vitro isoliert. Dazu werden jeweils 100 μl einer S. aureus RN4220 Zellsuspension (ca. 1.2x10⁸ cfu/ml) auf einer antibiotikafreien Agarplatte (18.5 mM Na₂HPO₄, 5.7 mM KH₂PO₄, 9.3 mM NH₄Cl, 2.8 mM MgSO₄, 17.1 mM NaCl, 0.033 μg/ml Thiaminhydrochlorid, 1.2 μg/ml Nicotinsäure, 0.003 μg/ml Biotin, 1% Glucose, 25 μg/ml von jeder proteinogenen Aminosäure unter Zusatz von 0.4% BH-Bouillon und 1% Agarose) und einer Agarplatte, die 2 μg/ml Biphenomycin B (10xMHK) enthält, ausplattiert und über Nacht bei 37°C bebrütet. Während auf der antibiotikafreien Platte ca. 1x10⁷ Zellen wachsen, wachsen auf der antibiotikahaltigen Platte ca. 100 Kolonien, entsprechend einer Resistenzfrequenz von 1x10⁻⁵. Einige der auf der antibiotikahaltigen Platte gewachsenen Kolonien werden auf MHK gegen Biphenomycin B getestet. Eine Kolonie mit einer MHK > 50 μM wird zur weiteren Verwendung ausgewählt und der Stamm mit RN4220Bi^R bezeichnet.

Der S. aureus Stamm T17 wird in vivo isoliert. CFW1-Mäuse werden mit 4x10⁷ S. aureus 133 - Zellen pro Maus intraperitoneal infiziert. 0.5 Std. nach der Infektion werden die Tiere mit 50 mg/kg Biphenomycin B intravenös behandelt. Den überlebenden Tieren werden am Tag 3 nach der Infektion die Nieren entnommen. Nach dem Homogenisieren der Organe werden die Homogenate, wie bei RN4220Bi^R beschrieben, auf antibiotikafreien und antibiotikahaltigen Agarplatten, ausplattiert und über Nacht bei 37°C bebrütet. Etwa die Hälfte der aus der Niere isolierten Kolonien zeigen ein Wachstum auf den antibiotikahaltigen Platten (2.2x10⁶ Kolonien), was die Anreicherung von Biphenomycin B resistenten S. aureus Zellen in der Niere der behandelten Tiere belegt. Ca. 20 dieser Kolonien werden auf MHK gegen Biphenomycin B getestet und eine Kolonie mit einer MHK > 50 μM wird zur Weiterkultivierung ausgewählt und der Stamm mit T17 bezeichnet.

- 205 -

B. Ausführungsbeispiele für pharmazeutische Zusammensetzungen

Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:

Intravenös applizierbare Lösung:

5 Zusammensetzung:

1 mg der Verbindung von Beispiel 1, 15 g Polyethylenglykol 400 und 250 g Wasser für Injektionszwecke.

Herstellung:

Die erfindungsgemäße Verbindung wird zusammen mit Polyethylenglykol 400 in dem Wasser unter Rühren gelöst. Die Lösung wird sterilfiltriert (Porendurchmesser 0.22 μm) und unter aseptischen Bedingungen in hitzesterilisierte Infusionsflaschen abgefüllt. Diese werden mit Infusionsstopfen und Bördelkappen verschlossen.

Patentansprüche

1. Verbindung der Formel

$$HO$$
 R^{26}
 H_2N
 R^{7K}
 H
 R^2
 R^3
 R^3

in welcher

5 R²⁶ gleich Wasserstoff, Halogen, Amino oder Methyl ist,

R⁷ gleich eine Gruppe der Formel

ist,

wobei

10 R¹ gleich Wasserstoff oder Hydroxy ist,

* die Anknüpfstelle an das Kohlenstoffatom ist,

R² gleich Wasserstoff oder Methyl ist,

R³ gleich eine Gruppe der Formel

- 207 -

oder * R¹⁶

ist,

wobei

die Anknüpfstelle an das Stickstoffatom ist,

A gleich eine Bindung oder Phenyl ist,

R⁴ gleich Wasserstoff, Amino oder Hydroxy ist,

R⁵ eine Gruppe der Formel

ist,

10 worin

5

die Anknüpfstelle an das Kohlenstoffatom ist,

R²³ Wasserstoff oder eine Gruppe der Formel *-(CH₂)_n-OH oder *-(CH₂)_o-NH₂ ist,

worin

- 208 -

* die Anknüpfstelle an das Kohlenstoffatom ist,

n und o unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

m eine Zahl 0 oder 1 ist,

R⁸ und R¹² unabhängig voneinander eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R¹⁴ und R¹⁵ unabhängig voneinander eine Gruppe der Formel

10 sind,

5

15

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6a} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

- 209 -

 R^{8a} und R^{12a} unabhängig voneinander *-(CH₂)_{Z1a}-OH, *-(CH₂)_{Z2a}-NHR^{13a}, *-CONHR^{14a} oder *-CH₂CONHR^{15a} sind,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

Z1a und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{13a} gleich Wasserstoff oder Methyl ist

und

 R^{14a} und R^{15a} unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4c} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5c} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6c} gleich Wasserstoff oder Aminoethyl ist,

kc eine Zahl 0 oder 1 ist

und

lc eine Zahl 1, 2, 3 oder 4 ist,

R^{9a} und R^{11a} unabhängig voneinander Wasserstoff oder Methyl sind,

5

10

15

-210 -

R^{10a} gleich Amino oder Hydroxy ist,

R^{16a} eine Gruppe der Formel

$$\begin{array}{c|c}
R^{4d} & R^{5d} \\
\downarrow & \downarrow & N \\
kd & \downarrow & ld \\
\end{array}$$

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

kd eine Zahl 0 oder 1 ist

und

ld eine Zahl 1, 2, 3 oder 4 ist,

 R^{18a} und R^{19a} unabhängig voneinander Wasserstoff oder eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R4b gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5h} gleich Wasserstoff, Methyl oder Aminoethyl ist,

5

10

-211 -

R^{6h} gleich Wasserstoff oder Aminoethyl ist,

oder ·

R^{5h} und R^{6h} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

kh eine Zahl 0 oder 1 ist

und

lh eine Zahl 1, 2, 3 oder 4 ist,

wobei R^{18a} und R^{19a} nicht gleichzeitig Wasserstoff sind,

ka eine Zahl 0 oder 1 ist,

ea eine Zahl 1, 2 oder 3 ist,

und

la, wa, xa und ya unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

R⁹ und R¹¹ unabhängig voneinander Wasserstoff, Methyl, *-C(NH₂)=NH oder eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R²⁰ gleich Wasserstoff oder *-(CH₂)_i-NHR²² ist,
worin

5

10

15

- 212 -

R²² gleich Wasserstoff oder Methyl ist

und

i eine Zahl 1, 2 oder 3 ist,

R²¹ gleich Wasserstoff oder Methyl ist,

f eine Zahl 0, 1, 2 oder 3 ist,

g eine Zahl 1, 2 oder 3 ist

und

h eine Zahl 1, 2, 3 oder 4 ist,

oder

R⁸ gleich *-(CH₂)_{Z1}-OH ist,

worin

* die Anknüpfstelle an das Kohlenstoffatom ist,

Z1 eine Zahl 1, 2 oder 3 ist,

und

15 R⁹ eine Gruppe der Formel

ist,

worin

die Anknüpfstelle an das Stickstoffatom ist,

20

5

10

und

- 213 -

h eine Zahl 1, 2, 3 oder 4 ist,

R¹⁰ gleich Amino oder Hydroxy ist,

R¹⁶ und R¹⁷ unabhängig voneinander eine Gruppe der Formel

sind,

5

10

15

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4b} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5b} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6b} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5b} und R^{6b} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13b} gleich Wasserstoff oder Methyl ist

und

- 214 -

Z1b und Z2b unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

und

 R^{14b} und R^{15b} unabhängig voneinander eine Gruppe der Formel

$$\begin{array}{c|c} & R^{4g} & R^{5g} \\ \hline \\ \downarrow \\ kg & \\ \end{matrix} \\ \downarrow \\ lg & R^{6g} \end{array}$$

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

 R^{4g} gleich Wasserstoff, Amino oder Hydroxy ist,

 \mathbb{R}^{5g} gleich Wasserstoff, Methyl oder Aminoethyl ist,

 R^{6g} gleich Wasserstoff oder Aminoethyl ist,

kg eine Zahl 0 oder 1 ist

und

eine Zahl 1, 2, 3 oder 4 ist, Ιg

R^{9b} und R^{11b} unabhängig voneinander Wasserstoff oder Methyl sind,

 R^{10b} gleich Amino oder Hydroxy ist,

kb eine Zahl 0 oder 1 ist,

lb, wb, xb und yb unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind, ${\bf R^{18}}$ und ${\bf R^{19}}$ unabhängig voneinander Wasserstoff oder eine Gruppe der Formel

5

10

- 215 -

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R⁴⁰ gleich Wasserstoff, Amino oder Hydroxy ist,

R⁵⁸ gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6e} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5e} und R^{6e} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8e} und R^{12e} unabhängig voneinander *-(CH₂)_{Z1e}-OH oder *-(CH₂)_{Z2e}-NHR^{13e} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13e} gleich Wasserstoff oder Methyl ist

und

Z1e und Z2e unabhängig voneinander eine Zahl 1, 2 oder 3 sind, $R^{9\circ} \ {\rm und} \ R^{11e} \quad {\rm unabhängig} \ {\rm voneinander} \ {\rm Wasserstoff} \ {\rm oder} \ {\rm Methyl} \ {\rm sind},$ $R^{10e} \quad {\rm gleich} \ {\rm Amino} \ {\rm oder} \ {\rm Hydroxy} \ {\rm ist},$

5

10

-216 -

ke eine Zahl 0 oder 1 ist

und

le, we, xe und ye unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind, wobei \mathbb{R}^{18} und \mathbb{R}^{19} nicht gleichzeitig Wasserstoff sind,

R²⁴ eine Gruppe der Formel *-CONHR²⁵ ist,

worin ·

* die Anknüpfstelle an das Kohlenstoffatom ist,

R²⁵ eine Gruppe der Formel

10 ist,

5

15

worin

die Anknüpfstelle an das Stickstoffatom ist,

R4f gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5f} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6f} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5f} und R^{6f} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

-217 -

 R^{8f} und R^{12f} unabhängig voneinander *-(CH₂)_{Z1f}-OH oder *-(CH₂)_{Z2f}-NHR^{13f} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13f} gleich Wasserstoff oder Methyl ist

und

Z1f und Z2f unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9f} und R^{11f} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10f} gleich Amino oder Hydroxy ist,

kf eine Zahl 0 oder 1 ist

und

lf, wf, xf und yf unabhangig voneinander eine Zahl 1, 2, 3 oder 4 sind,

d und e unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

k eine Zahl 0 oder 1 ist,

l, w, x und y unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

w, x oder y unabhängig voneinander bei w, x oder y gleich 3 eine

Hydroxy-Gruppe tragen kann,

5

10

15

20

oder eines ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze.

2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, dass sie der Formel

$$H_2N$$
 H_2N
 H_2
 H_3
 H_4
 H_2
 H_4
 H_5
 H_5
 H_5
 H_7
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 H_8
 $H_$

entspricht, in welcher

R²⁶ gleich Wasserstoff, Halogen, Amino oder Methyl ist,

R¹ gleich Wasserstoff oder Hydroxy ist,

5 R² gleich Wasserstoff oder Methyl ist,

R³ wie in Anspruch 1 definiert ist,

oder eines ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze.

3. Verbindung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass

R²⁶ gleich Wasserstoff, Chlor oder Methyl ist.

10 4. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass

R³ gleich eine Gruppe der Formel

ist,

15

wobei

* die Anknüpfstelle an das Stickstoffatom ist,

R⁴ gleich Wasserstoff, Amino oder Hydroxy ist,

- 219 -

R⁵ eine Gruppe der Formel

ist,

worin

10

15

* die Anknüpfstelle an das Kohlenstoffatom ist,

R²³ Wasserstoff oder eine Gruppe der Formel *-(CH₂)_n-OH oder *(CH₂)_o-NH₂ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,
 n und o unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

m eine Zahl 0 oder 1 ist,

R⁸ eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ ist,
worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R¹⁴ und R¹⁵ unabhängig voneinander eine Gruppe der Formel

worin

- 220 -

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6a} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

 R^{8a} und R^{12a} unabhängig voneinander *-(CH₂)_{Z1a}-OH, *-(CH₂)_{Z2a}-NHR^{13a}, *-CONHR^{14a} oder *-CH₂CONHR^{15a} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1a und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{13a} gleich Wasserstoff oder Methyl ist

und

 R^{14a} und R^{15a} unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4c} gleich Wasserstoff, Amino oder Hydroxy ist,

5

10

15

- 221 -

R^{5c} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6c} gleich Wasserstoff oder Aminoethyl ist,

ke eine Zahl 0 oder 1 ist

und

lc eine Zahl 1, 2, 3 oder 4 ist,

R^{9a} und R^{11a} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10R} gleich Amino oder Hydroxy ist,

R^{16a} eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

kd eine Zahl 0 oder 1 ist

und

ld eine Zahl 1, 2, 3 oder 4 ist,

ka eine Zahl 0 oder 1 ist

und

5

10

15

- 222 -

la, wa, xa und ya unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

R⁹ und R¹¹ unabhängig voneinander Wasserstoff, Methyl, *-C(NH₂)=NH oder eine Gruppe der Formel

5

10

15

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R²⁰ gleich Wasserstoff oder *-(CH₂);-NHR²² ist,

worin

R²² gleich Wasserstoff oder Methyl ist

und

i eine Zahl 1, 2 oder 3 ist,

R²¹ gleich Wasserstoff oder Methyl ist,

f eine Zahl 0, 1, 2 oder 3 ist,

g eine Zahl 1, 2 oder 3 ist

und

h eine Zahl 1, 2, 3 oder 4 ist,

oder

20 R⁸ gleich *-(CH₂)_{Z1}-OH ist,

worin

- 223 -

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1 eine Zahl 1, 2 oder 3 ist,

und

R⁹ eine Gruppe der Formel

5

ist,

wórin

* die Anknüpfstelle an das Stickstoffatom ist,

und

10

h eine Zahl 1, 2, 3 oder 4 ist,

R¹⁰ gleich Amino oder Hydroxy ist, .

R²⁴ eine Gruppe der Formel *--CONHR²⁵ ist,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

. 15

R²⁵ eine Gruppe der Formel

- 224 -

worin die Anknüpfstelle an das Stickstoffatom ist, R^{4f} gleich Wasserstoff, Amino oder Hydroxy ist, R^{5f} gleich Wasserstoff, Methyl oder Aminoethyl ist, R^{6f} 5 gleich Wasserstoff oder Aminoethyl ist, oder R5f und R6f bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring, R8f und R12f unabhängig voneinander *-(CH₂)_{Z1f}-OH oder *-(CH₂)_{Z2f}-NHR^{13f} sind, 10 worin die Anknüpfstelle an das Kohlenstoffatom ist, R^{13f} gleich Wasserstoff oder Methyl ist unđ 15 Z1f und Z2f unabhängig voneinander eine Zahl 1, 2 oder 3 sind, R^{9f} und R^{11f} unabhängig voneinander Wasserstoff oder Methyl sind, R^{10f} gleich Amino oder Hydroxy ist, 20 kf eine Zahl 0 oder 1 ist und

lf, wf, xf und yf unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

k eine Zahl 0 oder 1 ist,

- 225 -

l, w und x unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

woder x unabhängig voneinander bei woder x gleich 3 eine Hydroxy-

Gruppe tragen kann,

oder eines ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze.

5 5. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass

R³ gleich eine Gruppe der Formel

ist,

wobei

* die Anknüpfstelle an das Stickstoffatom ist,

R¹² eine Gruppe der Formel *-CONHR¹⁴ oder *-CH₂CONHR¹⁵ ist,
worin

die Anknüpfstelle an das Kohlenstoffatom ist,

 R^{14} und R^{15} unabhängig voneinander eine Gruppe der Formel

sind,

15

worin

die Anknitpfstelle an das Stickstoffatom ist,

- 226 -

R^{4a} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5a} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6a} gleich Wasserstoff oder Aminoethyl ist,

oder

R^{5a} und R^{6a} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

Z1a und Z2a unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

 R^{13a} gleich Wasserstoff oder Methyl ist

und

 R^{14a} und R^{15a} unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4c} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5c} gleich Wasserstoff, Methyl oder Aminoethyl ist,

5

10

15

- 227 -

R⁶⁰ gleich Wasserstoff oder Aminoethyl ist,

kc eine Zahl 0 oder 1 ist

und

le eine Zahl 1, 2, 3 oder 4 ist,

R^{9a} und R^{11a} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10a} gleich Amino oder Hydroxy ist,

R^{16a} eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R^{4d} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5d} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6d} gleich Wasserstoff oder Aminoethyl ist,

kd eine Zahl 0 oder 1 ist

und

ld eine Zahl 1, 2, 3 oder 4 ist,

ka eine Zahl 0 oder 1 ist

und

la, wa, xa und ya unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

10

5

15

y eine Zahl 1, 2, 3 oder 4 ist,

oder eines ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze.

- 6. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
- 5 R³ gleich eine Gruppe der Formel

ist,

10

15

wobei

die Anknüpfstelle an das Stickstoffatom ist,

A gleich eine Bindung oder Phenyl ist,

R¹⁶ und R¹⁷ unabhängig voneinander eine Gruppe der Formel

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R4b gleich Wasserstoff, Amino oder Hydroxy ist,

- 229 -

R5b gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6b} gleich Wasserstoff oder Aminoethyl ist,

oder

5

10

15

R^{5b} und R^{6b} bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R^{8b} und R^{12b} unabhängig voneinander *-(CH₂)_{Z1b}-OH oder *-(CH₂)_{Z2b}-NHR^{13b} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13b} gleich Wasserstoff oder Methyl ist

und

Z1b und Z2b unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9b} und R^{11b} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10b} gleich Amino oder Hydroxy ist,

kb eine Zahl 0 oder 1 ist,

lb, wb, xb und yb unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

d eine Zahl 1, 2 oder 3 ist,

oder eines ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze.

- 7. Verbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
- 20 R³ gleich eine Gruppe der Formel

ist,

wobei

die Anknüpfstelle an das Stickstoffatom ist,

R¹⁸ und R¹⁹ unabhängig voneinander Wasserstoff oder eine Gruppe der Formel

5

10

15

sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

R^{4e} gleich Wasserstoff, Amino oder Hydroxy ist,

R^{5e} gleich Wasserstoff, Methyl oder Aminoethyl ist,

R^{6e} gleich Wasserstoff oder Aminoethyl ist,

oder

R⁵⁶ und R⁶⁶ bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

oder

 R^{8e} and R^{12e} unabhängig voneinander *--(CH₂)_{Z1e}-OH *--(CH₂)_{Z2e}-NHR^{13e} sind,

worin

die Anknüpfstelle an das Kohlenstoffatom ist,

R^{13e} gleich Wasserstoff oder Methyl ist

- 231 -

und

Z1e und Z2e unabhängig voneinander eine Zahl 1, 2 oder 3 sind,

R^{9e} und R^{11e} unabhängig voneinander Wasserstoff oder Methyl sind,

R^{10e} gleich Amino oder Hydroxy ist,

ke eine Zahl 0 oder 1 ist

und

5

20

le, we, xe und ye unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind, wobei \mathbb{R}^{18} und \mathbb{R}^{19} nicht gleichzeitig Wasserstoff sind,

- e eine Zahl 1, 2 oder 3 ist,
- 10 oder eines ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze.
 - Verfahren zur Herstellung einer Verbindung der Formel (I) nach Anspruch 1 oder eines ihrer Salze, Solvate oder der Solvate ihrer Salze, dadurch gekennzeichnet, dass

[A] eine Verbindung der Formel

$$P^{26}$$
boc $P^{7^{N}}$ P^{N} $P^{$

worin R², R⁷ und R²⁶ die in Anspruch 1 angegebene Bedeutung haben und boc gleich *tert*-Butoxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit einer Verbindung der Formel

 H_2NR^3 (III),

worin R³ die in Anspruch 1 angegebene Bedeutung hat,

und anschließend mit einer Säure und/oder durch Hydrogenolyse umgesetzt wird,

oder

15

[B] eine Verbindung der Formel

worin R², R⁷ und R²⁶ die in Anspruch 1 angegebene Bedeutung haben und Z gleich Benzyloxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit einer Verbindung der Formel

$$H_2NR^3$$
 (III),

- worin R³ die in Anspruch 1 angegebene Bedeutung hat,
 und anschließend mit einer Säure oder durch Hydrogenolyse umgesetzt wird.
 - 9. Verfahren zur Herstellung einer Verbindung der Formel (I) nach Anspruch 1 oder eines ihrer Solvate, dadurch gekennzeichnet, dass ein Salz der Verbindung oder ein Solvat eines Salzes der Verbindung durch Chromatographie unter Zusatz einer Base in die Verbindung überführt wird.
 - 10. Verbindung nach einem der Ansprüche 1 bis 7 zur Behandlung und/oder Prophylaxe von Krankheiten.
 - 11. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 7 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Krankheiten.
- 20 12. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 7 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von bakteriellen Erkrankungen.

- 233 -

- 13. Arzneimittel enthaltend mindestens eine Verbindung nach einem der Ansprüche 1 bis 7 in Kombination mit mindestens einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
- 14. Arzneimittel nach Anspruch 13 zur Behandlung und/oder Prophylaxe von bakteriellen5 Infektionen.
 - 15. Verfahren zur Bekämpfung von bakteriellen Infektionen in Menschen und Tieren durch Verabreichung einer antibakteriell wirksamen Menge mindestens einer Verbindung nach einem der Ansprüche 1 bis 7 oder eines Arzneimittels nach Ansprüch 13 oder 14.

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2006/002617

					101711	2000/00201/
A. CLASSI INV.	IFICATION OF SUB. C07K5/10 A61K38/06	JECT MATTER C07K5/08 A61K38/08	C07K5/02 A61K38/03	C07K7/	02	A61K38/07
According to	n International Paten	it Classification (IPC) or to bot	th national classification	and IDC:		
	SEARCHED	· Simpolitacioni (ii o) oi io io	THE LOVE ON COURT OF THE PROPERTY OF THE PROPE	MIG IF O		
Minimum do CO7K	ocumentation search CO7D	ed (classification system folio	wed by classification sy	mbols)		
		han minimum documentation				
		during the International search		-	, search terms	used)
		TO BE RELEVANT				
Category*	Citation of docume	ent, with indication, where app	propriate, of the relevant	passages		Relevant to claim No.
A	LAMPE, T DIETER; cited in	06480 A (BAYER H HOMAS; ADELT, I BR) 24 December the application	SABELLE; BEYE 2003 (2003-1	ĒR.		1–15
Р,Х	ENDERMAN RADDATZ, page 155	058943 A (BAYER IN, RAINER; EHLE SIEG) 30 June - page 157; cl ; claim 9	RT, KERSTIN; 2005 (2005-06	•		1–15
Furth	ner documents are lis	sted in the continuation of Box	x C. X	See patent fam	illy annex.	
"A" docume conside garder de filing de "L" documer which i chatton "O" docume other m "P" docume later ib.	ered to be of particular document but publish ate mt which may throw do is cited to establish the cited to establish the other special reason ant referring to an ora means ant published prior to can the priority date of the special section of the control of the control of the control of the control of the control of the control of the control of control of	ral state of the art which is no ar relevance ed on or after the International doubts on priority claim(s) or re publication date of another son (as specified) at disclosure, use, exhibition of the international filing date but laimed	ot al 'X" d "Y" d or ut "8" d	or priority date and cited to understand invention focument of particular cannot be consider involve an inventive locument of particular carnot be consider document is combinents, such combinin the art.	I not in conflict of the principle lar relevance; red novel or e step when it lar relevance; red to involve ined with one ination being o	· · · · · · · · · · · · · · · · · · ·
		the International search	'	Date of malling of th		l search report
-	4 June 2006			22/06/20	006	
Name and m	NL - 2280 HV R	t Office, P.B. 5818 Patentiaan Rijswijk 0–2040, Tx. 31 651 epp nl,		Authorized officer Fink, D		

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP2006/002617

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2006/002617

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 03106480	Α	24-12-2003	AU BR	2003245928 A1 0311948 A	31-12-2003 29-03-2005
			CA	2489454 A1	14-12-2004
			CN De	1675236 A 10226921 A1	28-09-2005 24-12-2003
			EP	1515983 A1	23-03-2005
			JP MX	2006511446 T PA04012438 A	06-04-2006 19-04-2005
WO 2005058943	Α	30-06-2005	DE	10358824 A1	21-07-2005

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP2006/002617

			· · · · · · · · · · · · · · · · · · ·
A. Klassi INV.	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07K5/10 C07K5/08 C07K5/07 A61K38/06 A61K38/08 A61K38/0		A61K38/07
Nach der in	ternationalen Patentklassifikation (IPC) oder nach der nationalen Kia	ssifikation and der IPC	
	RCHIERTE GEBIETE		
Recherchie C07K	rter Mindeatprüfstoff (Klassifikationssystem und Klassifikationssymb ${\tt C07D}$	ole)	
	rta, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s		
Während de	er internationalen Recherche konsultierte elektronische Datenbank (f	lame der Datenbank und evil. verwen	dete Suchbegriffe)
EPO-In	ternal, WPI Data, BEILSTEIN Data, Ch	HEM ABS Data	
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, sowelt erforderilch unter Angeb	e der in Betracht kommenden Telle	Betr. Anspruch Nr.
A	WO 03/106480 A (BAYER HEALTHCARE LAMPE, THOMAS; ADELT, ISABELLE; E DIETER; BR) 24. Dezember 2003 (20 in der Anmeldung erwähnt das ganze Dokument	BEYER,	1-15
P,X	WO 2005/058943 A (BAYER HEALTHCAR ENDERMANN, RAINER; EHLERT, KERSTI RADDATZ, SIEG) 30. Juni 2005 (200 Seite 155 – Seite 157; Anspruch 1 Seite 164; Anspruch 9	N; 95-06-30)	1–15
		•••	
Welt	ere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehme	Stehe Anhang Patentiamilie	
"A" Veröffe: aber ni "E" älteres i	ntlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen decenne befüßentlich werden in	Theorie angegeben ist	itlicht worden ist und mit der n nur zum Verständnis des der izips oder der ihr zugrundellegenden
"L" Veröffer schein andere soli od	ntichung, die geelgnet ist, einen Prioritäteanspruch zweifelhaft er- en zu lessen, oder durch die das Veröffentlichungsdatum einer en im Recherchenbericht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie	kann allein eufgrund dieser Veröff erfinderischer Tätigkeit beruhend : "Y" Veröffentlichung von besonderer B kann nicht als auf erfinderischer T	betrachtet werden edeutung: die beanspruchte Erfindung ätickeit beruhend betrachtet
eine Br P" Veröffer	ntlichung, die sich auf eine mündliche Offenberung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht hillichung, die vor dem internationalen. Annelderfatum, aber nach	werden, wenn die Veröffentlichung	g mit einer oder mehreren anderen de in Verbindung gebracht wird und hann naheliegend ist
Datum des A	Abschlusses der internationalen Recharche	Absendedatum des Internationale	n Recherchenbarichts
1	4. Juni 2006	22/06/2006	
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamit, P.B. 5818 Patentiaan 2	Bevolimächtigter Bedlensteter	
	NL 2290 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Fink, D	

Internationales Aktenzeichen PCT/EP2006/002617

INTERNATIONALER RECHERCHENBERICHT

Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Bla
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr. well sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, närmlich
Obwohl sich der Anspruch 15 auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. Ansprüche Nr. weil sie sich auf Teile der Internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. well es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die Internationale Recherchenbehörde hat festgestellt, daß diese Internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchlerbaren Ansprüche.
Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
9. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser Internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist In folgenden Ansprüchen erfaßt:
Bemerkungen hinslichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamille gehören

Internationales Aktenzelchen
PCT/EP2006/002617

lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
WO	03106480	A	24-12 - 2003	AU BR CA CN DE EP JP MX	2003245928 A1 0311948 A 2489454 A1 1675236 A 10226921 A1 1515983 A1 2006511446 T PA04012438 A	29-03-2005 14-12-2004 28-09-2005 24-12-2003
MO	2005058943	A	30-06-2005	DE	10358824 A1	21-07-2005