UofT GDS Submission to University of Washington Microfabrication Facility

Jared Mikkelsen, Wesley Sacher, Hasitha Jayatilleka, Richark Bojko, and Joyce K.S. Poon

Dimensional Sensitivity in PICs

 High Index contrast for tight optical confinement and compact PICs

• **Problem:** High sensitivity to dimensional variations

⇒ Yield? Scalability?

Variation-Tolerant Microrings

- For sufficiently wide bent waveguides, no modal interaction with inner waveguide wall ⇒ Whispering-Gallery Mode (WGM)-like propagation
- WGMs are ~2 orders of magnitude less sensitive to width variations than strip waveguide modes

Adiabatically widened microrings

- Adiabatic mode conversion between sensitive 500 nm strip waveguide mode and variation-tolerant WGM
- Design mode converters to be short and maintain low insertion losses (<0.02 dB)

Microring Design

- Coupling region consists of parallel strip waveguides and partial circular arc bends to separate the waveguides.
- Adiabatic bends have an outer wall in the shape of a partial circular arc extending from angle θ_{start} to θ_{stop} .
- For our designs $|\theta_{stop} \theta_{start}| = 154^{\circ}$
- Along the bend, the waveguide width w (measured normal to the outer wall) varies parabolically from w_{min} (the strip waveguide width) to w_{max} :

 $w(\theta) = w \downarrow max - 4w \downarrow max - w \downarrow min / (\theta \downarrow stop - \theta \downarrow start) \uparrow 2 (\theta - 0.5 * (\theta \downarrow start + \theta \downarrow stop)) \uparrow 2$

Microring Design

 Two sets of adiabatically widened rings AR1 and AR2 fabricated alongside matching sets of standard microrings without widened bends BR1 and BR2

Device family	Adiabatic bend outer wall radius (μm)	W _{max} (μm)
AR1	5	1.3
BR1	5	0.5
AR2	10	2.2
BR2	10	0.5

Microring from AR2 family

Microring from BR2 family

GDS Organization (Bottom Half)

Parameter sweeps for microring designs:

{coupling gap: 180nm,200nm} X {coupling length: 4μm, 6μm, 8μm} X{width offset: -20nm,-10nm,0nm,+10nm,+20nm}

GDS Organization

• Uniform width offset α is mask level

GDS Organization

• Best results for family of larger microrings (AR2)

Microring Design

- Published results are for the AR2 and BR2 sets of devices
- 2.5x reduction in sensitivity of resonance wavelength

Other Devices on GDS

 Top half of GDS contains devices that we did not publish

3 Ring Filter Designs

Ring and Filters with Ridge Waveguide Couplers

- We explored incorporating ridge waveguide couplers into microrings for further improvement to variation tolerance:
- "J. Mikkelsen, W. Sacher, and J. Poon, "Dimensional variation tolerant siliconon-insulator directional couplers," Opt. Express 22, 3145-3150 (2014)"

Microdisk Resonators

• We explored "pulley-coupled" microdisk resonators for single-mode excitation:

E. Shah Hosseini, S. Yegnanarayanan, A. Atabaki, M. Soltani, and A. Adibi, "Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths," Opt. Express 18, 2127-2136 (2010)

