Seminarium dyplomowe magisterskie

Prezentacja nr 1

Wojciech Pasternak

Wyznaczanie zer wielomianów

Finding of roots of polynomial

Promotor: dr hab. inż. Robert Janczewski

Główne problemy do rozwiązania

- Znalezienie metody, odnajdującej wszystkie rzeczywiste pierwiastki wielomianów
- Konstrukcja intuicyjnego interfejsu, pozwalającego na łatwe wprowadzanie danych wejściowych
- Wysoka precyzja obliczeń eliminacja błędów zaokrągleń
- Wybór struktury do reprezentacji wielomianu
- Optymalizacja podstawowych działań na wielomianach

Wybór struktury do reprezentacja wielomianu

- Reprezentacja wielomianu w pamięci na dwa sposoby:
 - Trzymanie tylko niezerowych współczynników wielomianu (mapa)
 - Trzymanie wszystkich współczynników wielomianu (tablica)
- Przeprowadzenie testów i porównanie wydajności obu struktur pod względem czasowym (być może także pod względem pamięciowym)

Precyzja obliczeń i błędy zaokrągleń

- Brak stabilności obliczenia na wielomianach, zwłaszcza wysokich stopni, wymagają dużej precyzji obliczeń – drobna zmiana może zupełnie zmienić wartość wielomianu i jego pierwiastki
- Żaden z podstawowych typów w C++ nie rozwiązuje problemu długich liczb
- Konieczność użycia dodatkowej biblioteki długich liczb (np. GNU MP library) albo własnej implementacji
- Współczynniki wielomianu są liczbami wymiernymi można je reprezentować w postaci ilorazu dwóch liczb: licznika i mianownika
- Każdą z liczb (licznik i mianownik) można reprezentować jako długą liczbę całkowitą lub cały ułamek jako liczbę wymierną

GNU MP library

- Biblioteka programistyczna dla języków m.in. C, C++
- Udostępnia liczby całkowite oraz wymierne
- Jedynym ograniczeniem precyzji jest dostępna pamięć
- Jest to zoptymalizowany kod asemblerowy
- Używane różne algorytmy dla odpowiednich operandów, optymalizujące działania dla małych i dużych liczb
- Instalacja pod Windowsem wymaga MinGW lub Cygwina
- Licencja LGPL

Intuicyjny interfejs, pozwalający na łatwe wprowadzanie danych

- Wprowadzanie dowolnych (poprawnych składniowo) wyrażeń
- Wyrażenie zostaje parsowane i zapisane w strukturze, reprezentującej wielomian w pamięci
- Walidacja wyrażenia pod względem poprawności składniowej
- Brak potrzeby wpisywanie znaków * oraz ^ w oczywistych miejscach
- Dopuszczalne typy wyrażeń:
 - -5x4 + x3 + x2 + 3
 - -x3 + 2x3 + 4x + 8x + 3
 - $-(x+2)(2x2 + 3x + 4)^2$

Znane sposoby rozwiązywania równań nieliniowych

- Metoda bisekcji
- Metoda Newtona-Raphsona (metoda stycznych)
- Metoda Eulera (metoda siecznych)
- Reguła falsi
- ✓ Zastosowanie ciągu Sturma

Dlaczego standardowe metody numeryczne odpadają?

- Wszystkie podstawowe metody numeryczne (bisekcji, stycznych, siecznych, reguła falsi) zakładają różny znak na końcach przedziału
- Potrzeba metody działającej, niezależnie od znaków na krańcach przedziału początkowego
- Potrzeba metody dobrze radzącej sobie z pierwiastkami wielokrotnymi

Zastosowanie ciągu Sturma

- Eliminacja pierwiastków wielokrotnych poprzez podzielenie wielomianu W przez NWD(W, W')
- Pozwala na znalezienie wszystkich pierwiastków rzeczywistych w zadanym przedziale z dowolną dokładnością
- Ważna jest liczba zmian znaku dla wartości wielomianów, będących kolejnymi elementami ciągu Sturma

Wolfram Alpha

Wolfram Alpha

Wolfram Alpha

- + Dokładne obliczenie pierwiastków
- + Rysowanie wykresu
- + Alternatywna reprezentacja wielomianu: rozkład na czynniki itd.
- + Obliczana pochodna
- + Informacja o pierwiastkach zespolonych
- Przy skomplikowanych wielomianach, obliczenia i wizualizacja wyników trwa ponad kilkanaście sekund

Podsumowanie

- Implementacja działań na wielomianach w C++
- Znajdowanie pierwiastków w oparciu o ciąg
 Sturma
- Konieczność zastosowania biblioteki dla dużych liczb całkowitych i wymiernych
- Zastosowanie intuicyjnego interfejsu, ułatwiające użytkownikowi wprowadzanie danych wejściowych
- Przeprowadzone zostaną testy i porównanie wydajności różnych struktur, mogących reprezentować wielomiany w pamięci

Literatura

- 1. A Concrete Introduction to Higher Algebra, Lindsay N. Childs
- 2. Accuracy and Stability of Numerical Algorithms, Nicholas J. Higham
- 3. Algebraiczne metody rozwiązywania równania Schrödingera, W. Salejda
- 4. Algorithmic Number Theory, Duncal Buell
- 5. Data Structures Using C++, D. S. Malik
- 6. Gnu MP 6.0 Multiple Precision Arithmetic Library, Torbjorn Granlund
- 7. Metody numeryczne i graficzne cz. 1, Mieczysław Warmus, Józef Łukaszewicz
- 8. Metody obliczeniowe i ich komputerowa realizacja, Bogusław Bożek
- 9. Numerical Analysis, Richard L. Burden, J. Douglas
- 10. Numerical Methods for Roots of Polynomials cz. 1, J.M. McNamee
- 11. Numerical Methods, Germund Dahlquist, Åke Björck
- 12. Pierwiastki wielokrotne wielomianu, Maciej Bryński
- 13. Podstawowe metody numeryczne dla studentów kierunków inżynierskich, Adam Marlewski
- 14. Polynomials, E.J. Barbeau
- 15. Relations between polynomial roots, Michael Drmota, Mariusz Skałba
- 16. Repozytorium z matematyki dla studentów pierwszego roku, Janina Płaskonka, Karol Selwat
- 17. Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy, Teo Mora
- 18. Structured Matrices and Polynomials: Unified Superfast Algorithms, Victor Pan
- 19. Twierdzenie Sturma, Maciej Bryński
- 20. Wiadomości matematyczne, Tomy 10-11, Polskie Towarzystwo Matematyczne
- 21. Wielomiany, Arkadiusz Męcel
- 22. Wprowadzenie do metod numerycznych Wykład 2, Romuald Kotowski
- 23. Wstęp do metod numerycznych, J Stoer, R Bulirsch, M Mikulska
- 24. Wykład analizy matematycznej, cz. 1: Funkcje jednej zmiennej, Wojciech Kryszewski
- 25. Zasady algebry wyższej, z przypisem Andrzeja Mostowskiego Zarys teorii Galois Wacław Sierpiński, Andrzej Mostowski