Dynamic Programming

Joy Mukherjee

n-th Fibonacci Number: Recursion

```
int fib(int n)
{
    if (n <= 1)
        return n;
    return fib(n-1) + fib(n-2);
}</pre>
```

Optimal Substructure

Overlapping Subproblems

Dynamic Programming

- Break a problem into subproblems:
 - Find a recurrence relation with base cases (Optimal Substructure Property)
- Stores the results of subproblems in a table
 - Avoid computing the same subproblem again. (Overlapping Subproblem Property)
 - Size of the table/array can be determined from the recursion tree.
- How to populate the table?
 - Top-down approach: Memoization (Recursive)
 - Bottom-up approach: Tabulation (Iterative)

Memoization: A Top-Down Approach

- 1. Recursion with lookup table.
- 2. Initialize a lookup table with all initial values as -1
- 3. If (lookup = -1)
 - a. Calculate the value and put the result in the lookup table
- 4. Else
 - a. Return precomputed value

```
int fib(int n)
  if (T[n] == -1) {
     if (n <= 1)
      T[n] = n;
     else
     T[n] = fib(n-1) + fib(n-2);
  return T[n];
```

Tabulation: A Bottom-Up Approach

- 1. Iteration with lookup table.
- 2. Compute and store the result of the subproblems in the table in a bottom-up fashion (start from the base case of the recurrence relation).
- 3. Return last entry of the table

```
int fib(int n)
    int i, f[n+1];
    f[0] = 0; f[1] = 1;
    for (i = 2; i \le n; i++)
         f[i] = f[i-1] + f[i-2];
    return f[n];
```

Dynamic Programming

- 1. Recursion
- 2. Memoization: Recursion + Table
 - 1. It is better than Tabulation only when a subset of the subproblems are needed to solve the original problem.
- 3. Tabulation: Table (typically used methodology to solve a DP)
 - It is better than Memoization only when all of the subproblems are needed to solve the original problem.

Substring vs Subsequence

- A subsequence of a string is a sequence of characters in the string that maintains the same relative order as in the string with one or more characters left out.
- Example: "CBCDB" is a subsequence in "ACBCCDAB"
- A substring of a string is a sequence of contiguous characters in the string.
- Example: "CBCCD" is a substring in "ACBCCDAB"
- A substring is a subsequence, but a subsequence may not be a substring.

Longest Common Subsequence (LCS)

• Input:

$$X = "ACBCCDAB"$$
 $Y = "DABCADB"$

Output: Length of LCS

5
$$(Z = "ABCDB" \text{ or } Z = "ABCAB")$$

Length of LCS: Optimal Substructure

Input: x[] = "ACBCCDAB" y[] = "DABCADB"

```
Since x[7] = y[6], then
LCS ("ACBCCDAB", "DABCADB") = 1 + LCS("ACBCCDA", "DABCAD")
Input: x[] = "ACBCCDAB" y[] = "DABCADA"
Since x[7] \neq y[6], then
LCS ("ACBCCDAB", "DABCADA") = MAX{
         LCS("ACBCCDAB", "DABCAD"), LCS("ACBCCDA", "DABCADA")}
```

Length of LCS: Optimal Substructure

```
Input: Xm = x0, x1, ..., xm-1

Yn = y0, y1, ..., yn-1
```

Important Observation:

LCS (Xm, Yn) depends on

Either LCS (Xm-1, Yn-1)

Or LCS (Xm-1, Yn) and LCS (Xm, Yn-1)

Length of LCS (X[m], Y[n])

L	Y =	Α	С	В	Α	В
X=		0	0	0	0	0
С	0	0	1	1	1	1
С	0	0	1	- 1	1	1
Α	0	1	1	1	2	2
В	0	1	1	2	2	3

```
int L[m+1][n+1];
L[1][2] = Length of
LCS("C", "AC");
L[4][5] = Length of
LCS("CCAB", "ACBAB")=1
+LCS("CCA",
"ACBA")=L[3][4];
```

L[i][j] = Length of LCS of string X[0..i-1] and string Y[0..j-1]

Length of LCS (X[m], Y[n])

	Υ=	Α	С	В	Α	В
X=	0	0	0	0	0	0
С	0	0	1	1	1	1
С	0	0	1	1	1	(2,5)1
Α	0	1	1	1	(3,4)2	(3,5)2
В	0	1	1	(4,3)2	(4,4)2	(4,5)3

Input:
$$Xm = x0, x1, ..., xm-1$$

 $Yn = y0, y1, ..., yn-1$

- If xm-1 = yn-1, then
 LCS (Xm, Yn) = 1 + LCS (Xm-1, Yn-1)
- If xm-1 ≠ yn-1,
 LCS (Xm, Yn) = MAX{ LCS (Xm-1, Yn),

LCS (Xm, Yn-1)

L[i][j] = LCS(X, i, Y, j) = Length of LCS of string X[0..i] and string Y[0..j]

LCS: Assignment

- 1. Write a Recursive program for longest common subsequence (LCS).
- 2. Write a Memoized DP for LCS.
- 3. Write a Tabulated DP for LCS.
- 4. Print an LCS.

Length of LCS (X[m], Y[n]) (Tabulation)

```
int lcs(char *X, char *Y)
    int i, j, m = strlen(X), n = strlen(Y), L[m+1][n+1];
    /* L[i][j] is length of LCS of string X[0..i] and string Y[0..j] */
    for (i = 0; i \le m; i++)
        for (j = 0; j \le n; j++)
            if (i == 0 | | j == 0) L[i][j] = 0;
            else if (X[i-1] == Y[j-1]) L[i][j] = L[i-1][j-1] + 1;
            else if (L[i-1][j] > L[i][j-1]) L[i][j] = L[i-1][j];
            else
                                          L[i][j] = L[i][j-1];
    return L[m][n];
```

Longest Palindromic Subsequence (LPS)

```
LPS("ACBCCDA")
= 2 + LPS("CBCCD")
= 2 + max(LPS("CBCC"), LPS("BCCD"))
= 2 + max(2+LPS("BC"), max(LPS("BCC"), LPS("CCD")))
= 2 + max(2 + 1, max(max(LPS("BC"), LPS("CC")), max(LPS("CC"), LPS("CC"))))
= 2 + max(3, 2) = 5
```

Output: Length of LPS

```
5 (Z = "ACBCA") or Z = "ACCCA")
```

Length of LPS: Optimal Substructure

```
Input: x[8] = "ACBCCDBA"
Since x[0] = x[7], then
   LPS(x, 0, 7) = 2 + LPS(x, 1, 6)
   LPS("ACBCCDBA") = 2 + LPS("CBCCDB")
Input: x[8] = "ACBCCDAB"
Since x[0] \neq x[7], then
   LPS(x, 0, 7) = MAX\{LPS(x, 0, 6), LPS(X, 1, 7)\}
   LPS("ACBCCDAB") = MAX{ LPS("ACBCCDA"), LPS("CBCCDAB")}
```

Length of LPS: Optimal Substructure

```
Input: Xm = x0, x1, ..., xm-1
```

Output: Z, 0, k-1 = LPS(X, 0, m-1)

1. If
$$x0 = xm-1$$
, then $z0 = x0$ and $zk-1 = xm-1$
Z, 1, $k-2 = LPS(X, 1, m-2)$

1. If $x0 \neq xm-1$, then

Important Observation:

LPS
$$(X, i, j)$$
 = Length of LPS $X[i..j]$

Either LPS (
$$X$$
, $i+1$, $j-1$) if $X[i]=X[j]$

Or Maximum of

Optimal Substructure: LPS

Length of LPS (X[m])

	Α	С	В	В	A
Α	0, 0	0, 1	0, 2	0, 3	0, 4
С		1, 1	1, 2	(1, 3)= max{(1,2),(2,3)}	1, 4
В			2, 2	2, 3	2, 4
В				3, 3	3, 4
Α					4, 4

	Α	С	В	В	Α
Α	1	1 \	1 \	2	4
С	0	1	1	2	2
В		0	1	2	2
В			0	1	1
Α				0	1

Α	С	В	В	Α
0	1	2	3	4

0	1	2	3
Α	В	В	Α

$$L[i][j] = LPS(X, i, j) = Length of LPS X[i..j]$$

Reduction: Solving LPS using LCS

 $LPS(X) = LCS(X, X_R) = LCS(ACBBA, ABBCA) = ABBA$

LPS: Assignment

- 1. Write a Recursive program for longest palindromic subsequence (LPS).
- 2. Write a Memoized DP for LPS.
- 3. Write a Tabulated DP for LPS.
- 4. Print an LPS.

Length of LPS (X[m]) (Tabulation)

```
int lps(char X[], int m) {
    int i, j, k, l, L[m][m];
    for(i = 0; i < m; i++) L[i][i] = 1;
    for(I = 1; I < m; I++) {
         for(i = 0; i < m-l; i++) {
         if(X[i] == X[i+l]) {
              if(i+1 \le i+l-1) \quad L[i][i+l] = 2 + L[i+1][i+l-1];
                                 L[i][i+l] = 2;
              else
         } else {
              int a = L[i][i+l-1];
              int b = L[i+1][i+l];
              L[i][i+l] = (a > b)? a : b;
    return L[0][m-1];
```

Longest Increasing Subsequence (LIS)

• Input:

$$X[10] = {3, 2, 1, 3, 5, 4, 4, 5, 6, 3}$$

$$X[10] = {3, 2, 1, 3, 5, 4, 4, 5, 6, 3}$$

Output: Length of LIS

Length of LIS (A[n])

Α	3	2	1	3	5	4	4	5	6	3
i	0	1	2	3	4	5	6	7	8	9

Length[i] = Length of LIS that ends with A[i]

Previous[i] = Previous index of LIS that ends with A[i]

Optimal Substructure:

Length[i] = MAX (0, Length[k]) + 1, where i > k AND A[i] > A[k]

Objective:

Max(Length(i)) for all i = 0 to n-1

Initialization

Α	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9

Initialization

Length	1	1	1	1	1	1	1	1	1	1
Previous	0	1	2	3	4	5	6	7	8	9

A	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9
		i = 1								

No update: A[1] < A[0]

Length	1	1	1	1	1	1	1	1	1	1
Previous	0	1	2	3	4	5	6	7	8	9

Α	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9
			i = 2							

No update: A[2] < A[1] AND A[2] < A[0]

Length	1	1	1	1	1	1	1	1	1	1
Previous	0	1	2	3	4	5	6	7	8	9

Α	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9
				i = 3						

Update: A[2] < A[3]

Length	1	1	1	2	1	1	1	1	1	1	
Previous	0	1	2	2	4	5	6	7	8	9	

A	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9
					i = 4					

Update: A[3] < A[4]

Length	1	1	1	2	3	1	1	1	1	1
Previous	0	1	2	2	3	5	6	7	8	9

Α	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9

No Update:
$$A[4] > A[5] j = 4$$

Update: A[3] < A[5] j = 3 (If get a longer subsequence)

Length
Previous

1	1	1	2	3	3	1	1	1	1
0	1	2	2	3	3	6	7	8	9

Since i = 5, the variable j iterates from j = 4 to j = 0, and check whether A[j] < A[i] and Length[j]+1 > Length[i]. If so then update Length[i] = Length[j] + 1 and Previous[i] = j

Α	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9

i = 6

Update: A[3] < A[6]

Length	1	1	1	2	3	3	3	1	1	1
Previous	0	1	2	2	3	3	3	7	8	9

A	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9

i = 7

Update: A[6] < A[7]

Length	1	1	1	2	3	3	3	4	1	1
Previous	0	1	2	2	3	3	3	6	8	9

Since i = 7, the variable j iterates from j = 6 to j = 0, and check whether A[j] < A[i] and Length[j]+1 > Length[i]. If so then update Length[i] = Length[j] + 1 and Previous[i] = j

A	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9
									i _ 0	

Update: A[7] < A[8]

Length	1	1	1	2	3	3	3	4	5	1
Previous	0	1	2	2	3	3	3	6	7	9

A	3	2	1	3	5	4	4	5	6	3
	0	1	2	3	4	5	6	7	8	9

i = 9

Update: A[2] < A[9]

Length	1	1	1	2	3	3	3	4	5	2
Previous	0	1	2	2	3	3	3	6	7	2

LIS

LIS	1	3	4	5	6
	0	1	2	3	4

Algorithm: LIS (Tabulation)

```
For each i = 1 to n-1 {
   For each j = i-1 to 0 {
       if(A[i] > A[j] AND
          length[j] + 1 > length[i]) {
            length[i] = length[j] + 1;
            previous[i] = j;
            if(length[i] > maximum) {
                maximum = length[i];
                LastIndexLIS = i;
```

```
printLIS(int A[], int previous[], int i)
{
    if(previous[ i ] != i)
        printLIS(A, previous, previous[ i ]);
    print(A[ i ]);
}
```