Midterm Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

Exercise 1 (5 points)

Answer on the answer sheet. Let us consider the following 10-bit binary number: 10011010102.

- 1. Write down its hexadecimal representation.
- 2. Assuming that it is an unsigned integer, write down its decimal representation.
- 3. Assuming that it is a signed integer, write down its decimal representation.
- 4. Write down the 10-bit binary representation of the following signed number: 511₁₀.
- 5. Write down the 16-bit binary representation of the following signed number: -511₁₀.
- 6. Determine the minimum number of bits required to encode the following unsigned number: 65,536?
- 7. Determine the minimum number of bits required to encode the following signed number: 65,536?
- 8. Determine the minimum number of bits required to encode the following signed number: -65,536?
- 9. How many bytes does the value **8 Mib** contain? Use a power-of-two notation.
- 10. How many bits does the value **512 MiB** contain? Use binary prefixes (Ki, Mi or Gi) and choose the most appropriate prefix so that the integer numerical value will be as small as possible.

Exercise 2 (9 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).
- 3. Determine the smallest and largest absolute values of a single-precision IEEE-754 **denormalized** number. Use the following form: 2^n for the smallest number and $(1 2^{nl}) \times 2^{n2}$ for the largest number where n, n1 and n2 are integers (either positive or negative). Write down the base-10 numerical values of n, n1 and n2 on the <u>answer sheet</u>.

Midterm Exam S2

Exercise 3 (2 points)

Let us consider the following circuit:

- 1. Complete the truth table shown on the <u>answer sheet</u>.
- 2. What is the name of this circuit?

Exercise 4 (4 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

Figure 1

Figure 2

Midterm Exam S2 2/4

Computer Architecture – EPITA – S2 – 2017/2018

Last name:	First name:	Group:
	ANSWER SHEET	Γ

Exercise 1

1.	6.
2.	7.
3.	8.
4.	9.
5.	10.

Exercise 2

1.

Number	S	E	M
163			
27.625			
-0.921875			

2.

IEEE-754 Representation	Associated Representation
413C 0000 0000 0000 ₁₆	
8000 0000 0000 0000 ₁₆	
0001 1000 0000 0000 ₁₆	
7FF0 0000 0000 1000 ₁₆	

3.

n	n1	n2

Exercise 3

A	В	Q
0	0	
0	1	
1	0	
1	1	

Name of the circuit	

Exercise 4

Figure 1

Figure 2

Feel free to use the blank space below if you need to: