33441

常 庚 哲 图节专用章

抽屉原则及其他

上海教育出版社

抽屉原则及其他

常庚哲

上海教育出版社

抽屉原则及其他

常庚哲

上海教育出版社出版 (上海永福路 123 号)

女孝孝 A 上海发行所发行 上海崇明印刷厂印刷

开本 787×1092 1/32 印张 I-875 字数 88,000 1978 年 12 月第 1 版 3978 年 12 月第 1 次印節 印数 1-89,000 本

统一书号: 7150-1967 定价: 0.15元

前 言

"把n+1个或者更多的物体放到n个集合之中,那末,至少有一个集合里要放进两个或者更多的物体",这就是抽屉原则的最简单的形式。抽屉原则又叫重选原则,虽然它的正确性十分明显,很容易被不具备多少数学知识的人所接受,但是,加以灵活运用,可能得到一些意想不到的结果。各种形式的抽屉原则,在初等数学乃至高等数学中,经常地被采用着。

本书以抽屉原则为主题,着重介绍了它在初等数论中的一些应用.因此,书中不得不引进"初等数论"中的一些基本知识,例如:同余式,用有理数来追近无理数,不定方程,数的几何等等,但并不对这些作进一步的讨论.作者其所以作出这种安排,是希望读者不单单知道什么是"抽屉原则"——这本来是不难做到的,还能接触到一些在中学数学教材中读不到的内容,以扩大他们的知识面,增强他们学习数学的兴趣.

1978年4月,在全国部分省市中学生数学竞赛举行的前夕,作者曾以《抽屉原则》为题,在安徽省几个城市对中学生作过讲演.本书就是在当时讲稿的基础上扩充而成的.在编写本书第七节佩尔方程的时候,征得严士健同志的同意,吸收了他发表在《数学通报》1957年第7期上的一篇文章的部分内容,特此志谢.冯克勤、单填、杨劲根和李克正同志给作者提供了一些有趣的例题和习题,单填同志还详细阅读了第七节的初稿,提出了若干有益的建议,作者对他们表示衷心的感谢!

由于作者水平的限制,错误和不妥之处,恐难避免,切望读者批评指正.

作 者 于1978年7月

目 录

前書		
— 、	第一堂算术课	1
二、	抽屉原则	2
	一些例子	
四、	剩余类1	4
_	有理数 和无理数 ·······2	
	不定方程2	
七、	佩尔方程3	0
	面积的重迭原则3	
练习	题4	5
练工	题解答概要4	8

一、第一堂算术课

新学年开始了.

开学的那一天,红星小学一年级一班第一堂就是算术课. 任课的张老师,是一位很有经验、很有水平的老教师. 她讲课 深入浅出,活泼生动,凡是长期听张老师讲课的同学,总是不 知不觉地对数学发生了浓厚的兴趣.

张老师走进课堂,全班同学起立,向这位辛勤的园了致敬. 环视那几十张陌生而可爱的小脸,张老师心里充满了无限的喜悦. 她用简单而诚挚的语言向新同学表示祝贺和欢迎,接着说道:"我校今年招收了三百七十名一年级新生,他们都年满六岁但还不到七岁. 我说呀,这么多的新同学中间,一定有两个人是同年、同月、同日出生的. 小同学们,你们说对不对?"

对于这个新奇的结论,大家感到有趣而又惊讶. 同学们 低声地互相议论起来了.

"张老师知道我们每一个人的生日了吗?"

"不会的. 她今天同我们才头一次见面,连我们的名字恐怕都叫不上来."

(t,....,*17*

"张老师一定查看过我们的报名登记表了!"

这一句话恰巧被张老师听见了,她笑着说:"我没有看过你们的登记表,而且,完全不必要看这些表,就可以得出这个

结论."

同学们更惊奇了!

张老师接着说:"同学们想想看,把十只苹果放到九个抽屉中去,无论怎么放,这九个抽屉中一定有一个抽屉里放了两只或两只以上的苹果.你们说对吗?"——

"对!对!"同学们齐声回答。小朋友所具备的常识,就足以使他们明白:要是每个抽屉中最多只有一只苹果的话,那么九个抽屉至多才装着九个苹果。

"好!我们把一年中的三百六十五天(闰年三百六十六天)的每一天,看成一个抽屉,而把三百七十个新同学中的每一个人看成一只"苹果".按照"苹果"出生的日子,把他们放到对应的抽屉中去。由于"苹果"数目多于"抽屉"数目,就能知道:一定有一个"抽屉"中,至少放着两只"苹果"。这就是说,至少有两个同学的生日相同。再根据同学们的年龄的差别不超过一岁,所以,这两个同学一定是同年、同月、同日出生的了。"

小朋友们恍然大悟,会心地微笑了。

二、抽屉原则

。 运用第一节中采用过的推理方法,我们还可以证明如下的更加令人惊讶的结论.

根据常识,一个人的头发的根数不会超过二十万. 因此, 在一个拥有二十多万人口的城市中,一定有那么两个人,他们 的头发的根数相同.

推理方法如下:我们设置二十万零一个"抽屉",并且对

每一个"抽屉"依次标上从 0, 1, 2, 3, … 直到 200000 之中的一个号码。按各人头上头发的根数归入相应的一个"抽屉",比如说,如果张乐平同志画的三毛生活在这个城市,那么他就被归为标有号码"3"的那个"抽屉",我们没有理由排除这个城市中有留着光头的人,所以必须设置"0"号"抽屉"。由于人的数目多于"抽屉"的数目,可以断定,一定至少有两个人与同一"抽屉"相对应,这两个人自然就有同样多根头发了。

容易看到,这从本质上来说,仍然是前节中"十只苹果"和"九个抽屉"的推理方法。这种推理的正确性,"显然"到了连小学一年级的学生也能完全接受。如果把这种推理推广到更加一般的形式,其正确性也完全可以被不具备多少数学知识的人所认识。

全点。怎样把这种推理推广到一般形式呢?我们来注意以下两 点前。

沙语。如果将"苹果"换成"皮球"、"铅笔"或"数",同时将"抽屉"相应地换成"袋子"、"文具盒"或"数的集合",那么仍把可以得出相同的结论。

这就是说: 推理的正确性与具体的对象没有关系. 我们把一切可以同"苹果"互换的对象称之为"元素", 而把一切可以同"抽屉"互换的对象称之为"集合", 从而得知: 十个元素以任意的方式归入九个集合之中, 那么其中一定有一个集合中至少包含两个元素.

2. "苹果"和"抽屉"的具体数目是无关紧要的,只要苹果(元素)的个数比抽屉(集合)的个数多,那么推理照样成立.

于是,我们就可以把"十只苹果"和"九个抽屉"的推理方法,推广到下述一般形式:

- 原则一 把多于 n 个的元素按任一确定的方式分成 n 个

集合,那么一定有一个集合中含有两个或两个以上的元素.

原则一还有以下更加一般的形式。

原则二 把多于 m×n 个的元素按任一确定的方式分或 n 个集合,那么一定有一个集合中含有 m+1 个或 m+1 个以上的元素.

这是很明显的,因为若每个集合中所含元素的数目均不超过m,那么这n个集合所含元素个数就不会超过 $m \times n$.

原則三 把无穷个元素按任一确定的方式分成有穷个集合。那么至少有一个集合中仍含无穷多个元素。

这也是很显然的,这是因为,如果每个集合中只含有穷多净元素,那么有穷个集合只能包含有穷个元素。

以上三个原则都称为抽屉原则. 看上去,它们都是非常简单的. 可是,正是这样一些很简单的原则,在初等数学乃至高等数学中,有着许多应用. 巧妙地运用这些原则,可以很顺利地解决一些看上去相当复杂、甚至觉得简直无从下手的数 撑瓶目.

三、一些例子

在本节,我们运用抽屉原则,来证明初等数学中的一些题目.

[例1] 在边长为1的正方形内任意放置五个点,求证,其中必有两点,这两点之间的距离不大于 $\frac{\sqrt{2}}{2}$.

证明 将这个正方形的两对对边上的中点连接起来,把它分成四个大小相等的小正方形(图1)。 在大正方形里任放

五个点,就相当于把五个点以任一确定的方式投放在这四个小正方形中。 这里,我们把每一个小正方形看成一个"抽屉",于是问题就归结为把五个元素(点)放入四个"抽屉"(小正方形)。根据前节的原则一,必有一个小正方形,其中包含两个或两个以上的点,对于其

中的两点,它们间的距离不会超过小正方形对角线的长度(即大正方形对角线长度的一半),即不大于 $\frac{\sqrt{2}}{2}$.

[例 2] 空间中有六个点,其中任何三点都不共线,任何四点都不共面。在每两点之间连起直线段之后,将每一条这样的线段或涂上红色,或涂上蓝色。求证:不论如何涂色,一定存在一个三角形,它的三边有相同的颜色。

证明 从任一点出发,到其余五个点,共可联五条线段。由于这五条线段已被红、蓝两种颜色所涂染,如果把红线段分入一个"抽屉",蓝线段分入另一个"抽屉",于是问题就归结为五个元素(线段),即多于2×2个元素,分到2个"抽屉"(蓝色或红色),按照原则二,其中至少有三条线段被分入同一"抽屉",

图 2

即染有相同的颜色,例如说是红色(图2中的实线). 我们来考察这三条由同一点出发,具有相同颜色的线段,把这三条线段的另外三个端点两两联接起来,就构成了图2所示的虚线三角形. 如果有一条虚线被涂成红色,那么它就与两条实线组成一个

红边三角形;如果这三条虚线中一条红边也没有,那么它们本身就组成一个蓝边三角形了.

[例8] 在边长为1的正方形中,任意放入9个点,证

明:在以这些点为顶点的许许多多三角形中,必有一个三角形,它的面积不超过 1/2. (1963 年北京市数学竞赛试题)

证明 用三条平行于上下底边的直线,把正方形分成四个大小相等的长方形。九个点任意放入这四个长方形中,根据原则二,即多于2×4个点放入四个长方形中,则至少有2+1个点(即三个点)落在某一个长方形之内。现在,特别取出这个长方形来加以讨论(图3)。

把落在这长方形中的三点记为 A、B、O, 通过这三点 分别作平行于底边的直线、由图 3 显然可见

 $\triangle ABC$ 的面积 = $\triangle AA'B$ 的面积 + $\triangle AA'C$ 的面积

$$\leq \frac{1}{2} \times 1 \times h + \frac{1}{2} \times 1 \times \left(\frac{1}{4} - h\right)$$
$$= \frac{1}{2} \times \frac{1}{4} = \frac{1}{8},$$

这样就得到了需要证明的结论。

[例4] 一个正方形被分成了 15×15=225 个大小相同的小方格(图4)。在每一个小方格中,任意填写 1,2,3,…,55,56 中的一个数。求证:一定能够找到四个小方格,它们的中心构成一个平行四边形的四个顶点,并且这平行四边形各条对角线两端的两个小方格中的数字之和相等。

图 4

证明 由于15是一个奇数,所以一定有一个小方格处在大正方形的中心位置,我们把它称为"中心小方格",在图4中用黑色标出。把关于中心小方格为中心对称的每两个小方格配成一对,这样,便把除去中心小方格之外的224个小方格配成了112对。在任一对这种小方格中,令 æ 表示其中一个小方格中所放的数, æ* 表示其对称的另一小方格中所放的数, a 使设可知

$$1 \leqslant x \leqslant 56$$
, $1 \leqslant x^* \leqslant 56$.

所以

 $2 \le x + x^* \le 112$.

这就是说,任何一对小方格中两数之和不外乎 2, 3, 4, ···, 110, 111, 112

这 111 种可能. 但是,我们共有 112 对小方格. 根据原则一,必有至少两对小方格,使得各对中两数之和为同一数字. 每 对小方格的中心的联线,假如它们不重合的话,必在中心小方格的中心处互相平分,所以这时四个小方格的中心是一个平行四边形的四个顶点.

把联线互相重合的情形,看作是一个蜕化了的平行四边形,可以认为,在这种情况下,结论仍然是正确的.

[例5] 从自然数集

{1, 2, 3, 4, ···, 99, 100}

中,随意选出 51 个数来,求证: 其中一定有两个数,它们中的某一个是另外一个的整倍数、

证明 首先注意,一个正整数要么本身是一个奇数,要么是一个偶数. 若是一个偶数时,则经过反复地提取因数"2",最后总能表示为: 奇数×2"(其中 l=1, 2, 3, ···)的形式. 并且,这个奇数决不会超过原数的一半. 例如

 $16=8\times2=4\times2^{3}=2\times2^{3}=1\times2^{4},$ $24=12\times2=6\times2^{5}=3\times2^{3}.$

如果容许;-0, 那么奇数也被包括在上述一般形式之中。

二 "现在,把1到100的全部整数,分成下面的50个集合: 4° " 30_{1} = {1, 1×2, 1×2², 1×2³, 1×2⁴, 1×2⁵, 1×2⁵},

 $(3, 3 \times 2, 3 \times 2^2, 3 \times 2^3, 3 \times 2^4, 3 \times 2^5),$

 $\mathfrak{M}_{8} = \{5, 5 \times 2, 5 \times 2^{2}, 5 \times 2^{8}, 5 \times 2^{4}\},\$

 $\mathfrak{M}_{4} = \{7, 7 \times 2, 7 \times 2^{8}, 7 \times 2^{8}\},\$

 $\mathfrak{M}_{25} = \{49, 49 \times 2\},$ $\mathfrak{M}_{26} = \{51\},$

 $\mathfrak{M}_{59} = \{99\}$

很明显, 1, 2, …, 100 这一百个整数没有遗漏地被放入了这五十个集合, 并且, 同一个数字决不会出现在两个不同的集合中(读者可自行证明这一结论). 因此, 不论用何种方式从中取出 51 个数时, 必然有至少两个数是出自同一集合的, 而同一集合中的两数, 大数必定是小数的整倍数.

在讨论下一个例子之前,我们介绍几个数学中的基本概

念、按照一定顺序排列起来的数串

$$a_1, a_2, a_3, \dots, a_n, a_{n+1}, \dots,$$
 (1)

称为一个数列, 如果其中包含无穷多项, 称之为无穷数列; 若只含有穷项,则称为有穷数列, 无穷数列和有穷数列统称 为"数列",每个 a, 称为数列的一项,自然数 i 叫做这一项的 足标,它指示着这一项在数列中所处的位置,例如

1, 2, 3, …,
$$n$$
, … (其中 $a_n=n$);
1, -1 , 1, -1 , 1, -1 , … (其中 $a_n=(-1)^{n-1}$);
1, $\sqrt{2}$, $\frac{1}{2}$, -1 , 0, 2,

都是数列,其中头两个是无穷数列,最后一个是有穷数列(因 为它只含六项)。

如果数列(1)适合

$$a_1 \leqslant a_2 \leqslant a_8 \leqslant \cdots \leqslant a_n \leqslant a_{n+2} \leqslant \cdots$$

称(1)为一个上升数列,如果上述不等式中每一个"≤"都成立着不等号"<",则称(1)为严格上升数列,类似地,如果数列(1)适合

$$a_1 \geqslant a_2 \geqslant a_3 \geqslant \cdots \geqslant a_n \geqslant a_{n+1} \geqslant \cdots,$$

就说(1)是一个下降数列,如果上述不等式的每一个"≥"都成立着不等号">",则称(1)为严格下降数列. 上升数列和下降数列统称单调数列. 例如,前面的三个数列的头一个是单调数列,并且是严格上升数列;而后两个数列都不是单调数列.

从数列(1)中取出一部分项来,但不改变它们在原数列(1)中的先后顺序,这样就得到了一个新的数列,它叫做数列(1)的一个子数列.(1)的任一个子数列可以这样来表示。

$$a_{i_1}, a_{i_2}, a_{i_3}, \cdots, a_{i_n}, a_{i_{n+1}}, \cdots,$$

其中的足标必须适合

这就是说,子数列中项的先后顺序必须保持它们在原数列中的先后顺序、注意以下两种极端情况:数列(1)本身一定是(1)的子数列:任意抽出(1)的某一项所组成的数列必是(1)的子数列,很显然,这两种极端情况完全符合子数列的定义.

有了上述这些准备之后,就可以继续我们的讨论了...

[例 6] 任意给定由 n²+1 个项所组成的实数列, 求证, 从中一定可以挑出由 n+1 个项所组成的单调子数列.

为了具体地了解这个结论说的是什么内容,在证明之前,我们来看几个特殊的情况. 当 n=1 时, n²+1=2, n+1=2, 这就是说: 任意给定两个项组成的实数列,从中一定可以取出由两个项组成的单调子数列. 这是不证自明的,因为任何两个实数所组成的数列一定是单调数列. 当 n=2 时, n²+1=5, n+1=3, 这就是说: 任意给定由五个项组成的数列,从中一定可以取出有三个数组成的单调子数列. 即使在这种 n 相当小的情形,结论的正确性已经不是显而易见的了.

证明 把原数列记为

$$a_1, a_2, a_3, \dots, a_n, a_{n+1}$$

海以 a_i 作为首项的,项数最多的下降数列的项数记为 N_i . 由于单单是一个 a_i 就可组成一个下降于数列,所以 $N_i > 1$. 这就是说, N_1 , N_2 , …, N_{n+1} 是 n^2+1 个正整数。如果其中某一个大于或等于 n+1, 那么结论就已经或立了,因为我们这时即可找出一个含有 n+1 项的下降子数列、所以,只须讨论另外一种情况,即。

$$1 \leqslant N_i \leqslant n$$
 $(i=1, 2, \dots, n^2+1)$

的情况。 当 n³+1个自然数 N₄只呈现 1, 2, ···, n 这 n 种可能时, 由原则二可知, 它们之中至少有 n+1个数相等, 设为

$$N_{i_1} = N_{i_2} = \cdots = N_{i_{n+1}} \tag{2}$$

其中足标适合

$$1 \leq i_1 < i_2 < \cdots < i_{n+1} \leq n^2 + 1$$

现在我们来证明。子数列

$$a_{i_1}, a_{i_2}, \cdots, a_{i_{n+1}}$$

是严格上升数列,可以用反证法,假若

$$a_{i_1} \geqslant a_{i_2}$$

那么,以 a, 为头的,具有最大项数的下降子数列,起码要比以 a, 为头的,具有最大项数的下降子数列多一个项. 也就是说,应当有

$$N_{i_1} > N_{i_2} + 1$$

这与等式(2)矛盾,所以,只能是 an<an。同理可证

$$a_{i_1} < a_{i_2} < a_{i_3} < \cdots < a_{i_{n+1}}$$

这就是说:在原数列不包含由 n+1 个项所组成的下降 子数列的情况下,我们证明了原数列一定含有由 n+1 个项所 组成的严格上升子数列,所需的结论就完全证明了.

[例7] 一个国际社团的成员来自六个国家,共有1978人,用1,2,…,1977,1978来编号. 试证明:该社团至少有一个成员的编号与他的两个同胞的编号之和相等,或是其一个同胞的编号的两倍. (1978年第二十届国际中学生数学竞赛试题)

证明 本题与下列问题完全相当:"把 1, 2, 3, …, 1977, 1978 按任意方式分成六组,则必有一组有这样的性质. 其中至少有一个数,或是等于同一组中其他两数之和,或是等于另一数的两倍。"

用反证法来证明这一结论. 假设任一组数都不具备上述性质,那么由此可推知,每一组中的数都具备下列性质,

同一组数中任何两数之差必不在这个组中。 (*) 这是因为, 若 a, b 和 b—a 这三数在同一组中, 那么由等式 a+(b-a)=b

可知,这一组数已经具备欲证的性质了.

由 $\frac{1978}{6}$ > 329, 故根据原则二,可以肯定有一个数组 A, 其中至少含 330 个数. 现从 A 中任意取出 330 个数来,记其中最大的那一个数为 m_1 . 把 m_1 减去其余的 329 个数,得到的 329 个数既是正整数又小于 1978,而且,由性质(*)可知,它们必不在组 A 中,即应属于其余五个数组. 又由 $\frac{329}{5}$ > 65, 再根据原则二,可以肯定有一个数组 B, 其中至少含上述 329 个中的 66 个数。 再从 B 中任取上述 329 个数中的 66 个来,记其中最大的那一个为 m_2 。 把 m_2 减去其余 65 个数,得出 新的 65 个数,由性质(*),它们必不属于 B; 现在指出,这 65 个数也不会属于 A,假若其中有某一个数 (m_2-b) 属于 A,因 m_3 与 b 可以写为;

$$m_2 = m_1 - a_1;$$
 $(a_1 风于 A)$
 $b = m_1 - a_2,$ $(a_2 风于 A)$

汶将导致

$$a_2-a_1=(m_1-a_1)-(m_1-a_2)-m_2-b$$

属于 A,这就同 A 具备性质(*)的假设相违背.这就是说,这 65 个数必属于其余四个数组.由 65 / 16,根据原则二又可断言,必有一个数组 O 至少含有上述 65 个数中的 17 个数,仍从 O 中任取上述 65 个数中的 17 个,记其最大者为 ma. 把 ma 减去其余 16 个数字,而得出新的 16 个数;仿照前而的推理可以证明,它们既不属于 O,也不会属于 B 与 A,而只能

零散的例子还很多,不再一一列举了. 从以上七个例题,读者可以看到,虽说"抽屉原则"容易理解,而且解题过程中并没有用到什么高深的数学知识,但是,解题时需要相当灵活的技巧. 最关键的一着是"制造抽屉",这要求具备代数、几何、数论等方面的坚实的基础知识. 拿例1来说吧,如果用正方形的两条对角线把它分成四个全等的等腰直角三角形(图5),把每一个直角三角形当成一个"抽屉",依照原则一,虽然仍可断言五个点中必定至少有两点落在同一个三角形之上,但是无法作出它们之间的距高不超过 2 的结论. 所以,只有重视基础知识的学习和基本技能的训练; 牢固面且灵活地掌握代数、几何、三角知识,才能成为制造"抽屉"的能工巧匠.

在下面的各节中,将不断地介绍一些新鲜的数学知识(这些知识本身也就是数学中一些最基本、最重要的内容),然后在新的知识领域内继续运用抽屉原则,进一步得出一些有趣的给论。

图 5

四、剩余类

先从两个具体的例子谈起,

[例1] 在坐标平面上,我们把两个坐标都是整数的点称为整点.对于任意给定的五个整点,求证其中一定有两个点,使得其联线的中点仍为整点.

分析 两点 (x_1, y_1) 和 (x_2, y_2) 的联线的中点是 $\left(\frac{x_1+x_2}{2}\right)$, y_1+y_2 . 当 x_1 , x_2 与 y_1 , y_2 均为整数时,为了保证 $\frac{x_1+x_2}{2}$ 和 $\frac{y_1+y_2}{2}$ -均为整数,必须而且只须 (x_1+x_2) 和 (y_1+y_2) 都是偶数,亦即 x_1 和 x_2 以及 y_1 和 y_2 有相同的奇偶性。因此,这里先来讨论平面整点的两个坐标的奇偶性的各种可能的情况。任何一个平面整点,可归为下列四种类型之一:

(奇,奇),(奇,偶),(偶,奇),(偶,偶). 当任给五个平面整点时,根据原则一,一定至少有两个点属于 同一类型.

证明 设五个整点中,属于同一类型的两个整点是 (x_1, y_1) 和 (x_2, y_2) ,这就是说。 x_1 和 x_2 以及 y_1 和 y_2 有相同的奇偶性,所以 x_1+x_2 和 y_1+y_2 都是偶数,亦即 $\frac{x_1+x_2}{2}$ 和 $\frac{y_1+y_2}{2}$ 都是整数。这就证明了, (x_1, y_1) 与 (x_2, y_2) 的联线的中点 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ 仍为整点。

[例 2] 同样地,在空间直角坐标系中,我们把三个坐标。 14 都是整数的点称为整点,对于空间中任意给定的 28 个整点,求证其中一定有两个点,使其联线上的三等分点仍为整点.

读者一定会认为,例2和例1是属于同一性质的问题,因此用大致相同的方法就能加以解决,这种看法是正确的,不过,再想用什么"奇数"、"偶数"来说明它,那却是不可能的了.

为了简明地说清楚这一大类问题,我们首先来介绍"同余"和"剩余类"的概念,而把证明例2放在本节的最后.

首先介绍一个函数[x]. 设x是任一实数,则用[x]来表示适合下列不等式的整数。

$$[x] \leq x < [x] + 1$$
.

这个定义意味着以下三点:

- (i) [a] 是一个整数;
- (ii) 整数[x]不超过 x;
- (iii) 比[x] 再大的整数,哪怕是[x] +1,就已大于x 了. 把这三条合在一起,则是:[x] 是不超过x 的最大的整数.我们称[x]为x 的整数部分、例如

$$[5] = 5,$$

 $[0.9999] = 0,$
 $[-3.6] = -4,$
 $[-7] = -7;$

如果 # 表示圆周率, 那么

$$[\pi] = 3,$$
$$[-\pi] = -4.$$

函数[x]是数学中常用的一个重要函数、现在,设m是一个正整数,a为任一整数,令

$$q = \left[\frac{a}{m}\right],$$

斯以,依照定义,有

$$q \leq \frac{a}{m} < q+1$$
.

用正数加遍乘上不等式, 得到

$$mq \leq a < mq + m$$
.

再令整数

$$q = a - mq_{\bullet}$$

于是

$$0 \leqslant r < m$$
.

这就是说,m 为任一正整数, α 为任一整数,则必存在整数 q 和 r,使得

$$a = mq + r$$
, (其中 $0 \leqslant r < m$)

这里, q 称为m除 a 所得的不完全商, 而 r 称为m除 a 所得的 余数. 当 r=0 时, 称m 可以整除 a, 或称 a 可被m 所整除, 记为 m|a. 例如, 当 m=5 时,

一般地说,用正整数m去除任一整数时,余数不外乎 $0, 1, 2, \dots, m-1$

这样加种情况.

设a, b 是两个整数,如果用m去除它们,将有整数 q_1 , q_2 及 r_1 , r_2 , 使得

$$a = mq_1 + r_1, \tag{1}$$

$$b = mq_2 + r_2, \tag{2}$$

并且 $0 \le r_1 \le m$, $0 \le r_2 \le m$; 当 $r_1 = r_2$ 时, 称 a 和 b 关于模 m 同余, 用同余式

$$a \equiv b \pmod{m}$$

来表示。例如

$$15 \equiv 0 \pmod{5}$$
,
 $14 \equiv 9 \pmod{5}$,
 $18 \equiv -6 \pmod{8}$,

等等,关于模m 同余,还可以用另一方式来 刻 划,这 就 是: $a \equiv b \pmod{m}$ 的必要充分条件是 $m \mid (b-a)$,关于这一性质,可以证明如下:

先证必要性、当(1)和(2)中的
$$r_1=r_2$$
时,有
$$b-a=(mq_2+r_2)-(mq_1+r_1)=mq_2-mq_1$$
$$=m(q_2-q_1),$$

由于 q_2-q_1 是整数, 所以 $m \mid (b-a)$.

再证充分性. 设 $m \mid (b-a)$, 故有整数q, 使得b-a = mq, 亦即b=a+mq, 由于(1), 便有

$$b = a + mq = mq_1 + mq + r_1 = m(q_1 + q) + r_1,$$

因为 q_1+q 为整数, 故上式表明。用m 去除 b 时余数也是 r_1 ,所以 b 和 a 关于模m 是同余的。

以一个任意固定的正整数m为模,可以把全体整数按照余数来分类:凡用m来除有相同余数的整数都归为一类。这样,便可把全体整数分成m个类:

$$\{0\}, \{1\}, \{2\}, \dots, \{m-1\},$$

第一类中包含能被加除尽的全都整数,第二类中包含被加除 余1的全部整数,如此等等。这m个类称为关于模 m 的剩余 类,再强调一次,关于模加的剩余类只有m个。

剩余类的概念,在日常生活中,是见得很多的。用2作模,可把所有整数分为两大类,这就是通常人们所说的双数和单数;用7作模,就把无穷尽的日子分成了七大类,即,星期

日,星期一, ·····,星期六,人们按照这一分类来安排学习、劳动和休息。

[例 3] 任意给定正整数 m, 求证: 一定有 m 的某一个整倍数,它完全由 0 和 1 两个数字所组成。

证明 考察正整数列:

1, 11, 1111, 1111, ...,
$$\underbrace{111...1}_{m+1.\uparrow}$$

我们把它们归入关于模加的剩余类中。前已指出,关于模加的剩余类只有加个,而上述m+1个数归入加个剩余类时,依照原则一,其中一定至少有两个数,例如说 a 和 b (不妨设 a < b),属于同一剩余类,即 $a \equiv b \pmod{m}$ 。 这就是说,b-a是加的一个整倍数。另一方面,根据 a 和 b 的构成可知,b-a具有下列形式。

这就是我们要证的结论.

[例 4] 设 a₁, a₂, ···, a_n是 n 个任意给定的整数。求证,其中一定可以找到紧连在一起的若干个数,使得它们的和可被 n 整除。

证明 考察数列:

a₁, a₁+a₂, a₁+a₂+a₃, …, a₁+a₂+a₃+…+a_n. (3) 若这n个整数中至少有一个能被n所整除,那么结论就不证自明了. 所以,设上述数列中没有一个是n的整倍数,于是,当我们把它们分到关于模n的剩余类中去的时候,它们只能进入以下n-1个类.

$$\{1\}, \{2\}, \dots, \{n-1\}.$$

可是数列(3)中有n个整数,按照原则一,数列(3)中至少有两个数 $a_1+\cdots+a_k$ 和 $a_1+\cdots+a_k+\cdots a_1$ 属于同一类(l>k),即

 $(a_1+\cdots+a_k+\cdots+a_l)-(a_1+\cdots+a_k)=a_{k+1}+\cdots+a_l$ 可被 n 整除, 这正是我们想要证明的结论。

现在回头来解答本节的例2.

例 2 的证明。以 8 为模, 可将全体整数分为三个剩余类. 因此, 一切空间整点 (x, y, z), 可以按照其每一个坐标 所属的剩余类的三种情况, 划分为 $3 \times 3 \times 3 \times 27$ 类。任给 28 个空间整点, 按照原则一, 应至少有两点——记为 (x_1, y_1, z_1) 和 (x_2, y_2, z_2) ——属于同一类中, 这就是说

$$x_1 \equiv x_2 \pmod{3}$$
,
 $y_1 \equiv y_2 \pmod{3}$,
 $z_1 \equiv z_2 \pmod{3}$,

或者说,三个数

$$x_2-x_1, \quad y_2-y_1, \quad z_2-z_1$$

都可被3整除,由解析几何可知;将(22, y1, 21)和(22, y2; 22)的联线三等分的两个分点是

$$(x_1, y_1, z_1) + \frac{1}{3}(x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$= \left(x_1 + \frac{x_2 - x_1}{3}, y_1 + \frac{y_2 - y_1}{3}, z_1 + \frac{z_2 - z_1}{3}\right);$$

$$(x_1, y_1, z_1) + \frac{2}{3}(x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$= \left(x_1 + 2 \cdot \frac{x_2 - x_1}{3}, y_1 + 2 \cdot \frac{y_2 - y_1}{3}, z_1 + 2 \cdot \frac{z_2 - z_1}{3}\right).$$

显然,它们的各个坐标都是整数,因此这两个点都是整点.

本例证明中的基本方法,在第七节定理三的证明中还要采用.

同余关系具有以下一些基本性质,

1.
$$a \equiv a \pmod{m}$$
 (反身性).

- 2. $\ddot{a} = b \pmod{m},$ 则 $b = a \pmod{m}$ (对称性).
- 3. 若 a = b (mod m), b = o (mod m), 则 a = c (mod m) (传递性).

上述三条性质的证明,请读者自行宪成.

4. 著 $a \equiv a \pmod{m}$, $b \equiv \beta \pmod{m}$, 则

$$a+b \equiv a+\beta \pmod{m}$$
;
 $ab \equiv a\beta \pmod{m}$.

这就是说, 同余式也象等式一样, 可以两边相加或相乘,

证明 因为 $a = a \pmod{m}$ 和 $b = \beta \pmod{m}$, 故存在整数 8 和 t, 使得

$$a = \alpha + sm$$
, $b = \beta + tm$.

于是

$$a+b=a+\beta+sm+tm=a+\beta+(s+t)m$$
,

这正表明

$$a+b\equiv \alpha+\beta\pmod{m}$$
;

此外,还有

$$ab = (\alpha + 8m) (\beta + tm) = \alpha\beta + \alpha tm + \beta 8m + 8tm^{2}$$
$$= \alpha\beta + (\alpha t + \beta 8 + stm) m,$$

这里 at+ Bs-stm 是一整数, 故知

$$ab \equiv \alpha\beta \pmod{m}$$
.

五、有理数和无理数

通过小学和中学里的数学学习,大家对有理数的运算应当是很熟悉的了. 所谓有理数,是指那些能够写成两个整数之商的数. 也就是说,当 m、n 为整数,且 m≠0 时,形如 n/m · 20 ·

的数叫做有理数.

整数是有理数的特例。 因为,设 n 为任一整数,由等式 $n = \frac{n}{1}$ 可知,整数也可以看成是有理数。

设 $\frac{n}{m}$ 和 $\frac{n'}{m'}$ 是两个有理数,于是由于列等式

$$\frac{n}{m} \pm \frac{n'}{m'} = \frac{nm' \pm mn'}{mm'},$$

$$\frac{n}{m} \cdot \frac{n'}{m'} = \frac{nn'}{mm'},$$

$$\frac{n}{m} \cdot \frac{n'}{m'} = \frac{nm'}{mn'} \qquad (这里还应设 n' \neq 0)$$

可知:有理数的和、差、积、商还是有理数.换句话说,在全体有理做范围内,进行加、减、乘、除四则运算,其结果仍不会越出有理数的范围(当然,在作除法的时候,不允许用零作除数). 这个性质,叫做有理数系统对于四则运算的封闭性.

特别,设 a 和 b 是两个有理数,那么可以推知 $\frac{1}{2}(a+b)$ 也是有理数.要是 $a \neq b$ 时,把 a 和 b 頭在数轴上就是不同的两个点, $\frac{1}{2}(a+b)$ 就是这两点联线上的中点.由此可见,两个不同的有理数的中点必定是一个有理数.反复地进行这种推理,就可发现:在两个不同的有理数之间,有着无穷多个不同的有理数.

具体来说,线段[0,1]的两个端点是有理数,它的中点 $\frac{1}{2}$ 是一个有理数;接着再看两条线段 $\left[0,\frac{1}{2}\right]$ 和 $\left[\frac{1}{2},1\right]$,它们各自的中点 $\frac{1}{4}$ 和 $\frac{3}{4}$ 都是有理做;考察四条更短的线段:

 $\begin{bmatrix} 0, \frac{1}{4} \end{bmatrix}$, $\begin{bmatrix} \frac{1}{4}, \frac{2}{4} \end{bmatrix}$, $\begin{bmatrix} \frac{2}{4}, \frac{3}{4} \end{bmatrix}$, $\begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}$, 它们看自的中点 $\frac{1}{8}$, $\frac{3}{8}$, $\frac{5}{8}$, $\frac{7}{8}$ 也是有理数, ……, 如此等等. 一般地, 对于任何自然数 n, 数列

$$0, \frac{1}{2^n}, \frac{2}{2^n}, \frac{3}{2^n}, \cdots, \frac{2^n-1}{2^n}, 1$$

是线段 [0, 1] 上等距离分布的一组有理数,它们相邻两个数之间的距离是 1/2ⁿ. 只要把正整数 n 取得充分地大,就能使这个距离变得任意地小,由此可以推知,在线段 [0, 1] 之内的随便哪个地方,不论画一条多么短的线段,在这线段之内必然包含着有理数,而且是包含着无穷无尽的有理数. 我们把这个性质说成是:有理数在线段 [0, 1] 上是处处稠密的.

设加为任一给定的整数,于是将 [0,1] 中的任何有理数个平移加个单位之后,得到 r+m,它就成了线段 [m, m+1] 上的一个有理数. 这就表明:线段 [m, m+1] 中有理数分布的"密度"决不会低于线段 [0,1] 中有理数的"密度"! 由于上述整数 m 可取为 ±1, ±2, ±3, ···,故可推出,不论在数轴上的那一个地方画一条多么小的线段,这线段中必定包含着无穷无尽的有理数! 这就是有理数在整个数轴上的稠密性.

有理数的稠密性,可以通俗地说成。有理数在数轴上"无处不在"! 虽然如此,但整个数轴绝不是有理数的"一统天

E

下". 数轴上还有许许多多的不能用有理数来表示的点. 最简单的例子是: 边长为1的正方形的对角线的长度——用符号 $\sqrt{2}$ 来记——不是有理数(图 6).

证明 用反证法来证明上述结论。假若 $\sqrt{2}$ 是有理数。于是有整数m和 n、使得

$$\sqrt{2} = \frac{n}{m}, \quad (m \neq 0)$$

并且,不妨设加和 n 已不含 2 作为公因数。由勾股定理,得

$$\left(\frac{n}{m}\right)^2 = 1^2 + 1^2 = 2,$$

即 $m^2=2m^2$. 由于 $2m^2$ 为偶数,即 n^2 为偶数,于是 n 只能是偶数 (因为奇数的平方永远是奇数). 设 n=2p,其中 p 为整数. 从 $(2p)^2=2m^2$,又可得出 $2p^2=m^2$,进而推得 n 也是一个偶数. m 和 n 都是偶数,这就与 m 和 n 不含公因数 2 矛盾! 这个矛盾说明 $\sqrt{2}$ 决不能是有理数.

用类似的办法,可以证明。 $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$ …都不是有理数。更一般地,我们可以证明

定理一 如果正整数d不是某一个整数的平方,那么 \sqrt{d} 就一定不是有理数、

证明 仍旧用反证法来证明. 假若 \sqrt{d} 是有理数,即有正整数 m 和 n,使得 $\sqrt{d} = \frac{n}{m}$. 无妨设 m 和 n 已经约去了任何大于 1 的公因数. 由此可得 $n^2 = m^2 d$. 设 d 的标准素因子分解式为

$$d = p_1^{l_1} p_2^{l_2} \cdots p_k^{l_k},$$

其中 p_1 , p_2 , …, p_k 是 d 的全部互不相同的素因子, l_1 , l_2 , …, l_k 是一些正整数. 由于 d 不是整数的平方, 故 l_1 , l_2 , …, l_k 中至少有一个是奇数. 为确定起见,设 l_1 是一个 奇数. 由等式

$$m^2 = m^2 p_1^{l_1} \cdots p_k^{l_k}$$

可知,必须有 $p_1|n$. 设 $n-p_1' \cdot l$, 其中 t 已不能被 p_1 整除. 由

此得到

$$p_1^{2s}t^2 = m^2p_1^{l_1}\cdots p_k^{l_k}$$
.

由于 28≥11, 11 又为奇数,实际上是 28>11. 即有:

$$p_1^{2s-l_1}t^2 = m^3p_2^{l_2}\cdots p_k^{l_k},$$

由此又可推知, 必须有 p_1 m, 从而 m 和 n 具有素公约数 p_1 ,这是一个矛盾。这个矛盾表明, 假设 \sqrt{d} 为有理数是不合理的。证宪、

这样一来,我们已经证明了一大批非有理数的存在性. 数轴上的非有理数,称之为无理数.

前已证明 $\sqrt{2}$ 为无理数. 于是,对任何有理数r,数 $r+\sqrt{2}$ 一定是无理数. 这是因为,若 $r+\sqrt{2}$.是有理数,根据有理数系统对减法的封闭性,将得出 $\sqrt{2}=(r+\sqrt{2})-r$ 为有理数,这是不可能的. 这就是说:将每一个有理点在数 轴上向右平移同一距离 $\sqrt{2}$,将得出一批无理点. 由此可以作出以下两个推论:

- (i) 数轴上全体无理数的"数目", 决不少于全体有理数的"数目";
- (ii) 数轴上无理数的密集程度决不次于有 理 数 的 密 集程度,特别可知,数轴上无理数的全体也是处处稠密的.

现在,我们来证明一个刻划有理数的特性的定理.

定理二 任何一个有理数,一定能表示成十进有穷小数 或十进无穷循环小数;反之,任一有穷小数或无穷循环小数, 一定是有理数.

证明 显然,我们只须讨论正有理数的情形就可以了.

(1) 对于任意给出的一个正有理数 ⁿ/_m(其中 m, n 均为正整数), 在用 m 去除 n 的过程中, 如果经过有穷次计算正好除 · 24 ·

尽,那么 $\frac{n}{m}$ 就化成了有穷十进小数.

如果任何有穷次计算仍不能除尽,那么,在商过 $\left[\frac{n}{m}\right]$ 之后,以后每除一次的余数无非是:1,2,3…,m-1这样有限种可能的情况。由原则一,充其量作过m次除法之后,必会重复出现同一个余数,在这种情形下,进一步的计算便将重复前面已进行过的过程,这时就化得了十进无穷循环小数。

(ii) 十进有穷小数显然是有理数. 因此只须证明: 十进 无穷循环小数也是一个有理数. 事实上,

$$a_{0} \cdot a_{1}a_{2} \cdots a_{n}b_{1}b_{2} \cdots b_{s}$$

$$= a_{0} \cdot a_{1}a_{2} \cdots a_{n} + \frac{1}{10^{2}} \left(\frac{b_{1} \cdots b_{s}}{10^{s}} + \frac{b_{1} \cdots b_{s}}{10^{2s}} + \cdots \right)$$

$$= a_{0} \cdot a_{1}a_{2} \cdots a_{n} + \frac{b_{1}b_{2} \cdots b_{s}}{10^{n+s}} \left(1 + \frac{1}{10^{s}} + \frac{1}{10^{2s}} + \cdots \right)$$

$$= a_{0} \cdot a_{1}a_{2} \cdots a_{n} + \frac{b_{1}b_{2} \cdots b_{s}}{10^{n+s}} \cdot \frac{1}{1 - \frac{1}{10^{s}}}$$

$$= a_{0} \cdot a_{1}a_{2} \cdots a_{n} + \frac{b_{1}b_{2} \cdots b_{n}}{10^{n}} \cdot \frac{1}{10^{s} - 1},$$

这虽然是一个有理数,证完.

由定理二可以推知无理数的一个特征, 无**理数就是那些** 能而且只能表示为十进无穷不循环小数的数.

有理数的全体和无理数的全体组成实数系统,实数系统 可以和整个数轴上的点之间建立——对应,

最后,建立一个关于用有理数来逼近实数的定理.

用有理数去逼近实数的可能性,可以很容易地由有理数在数轴上的稠密性推出,任给一个实数 α 和一个不论多么小的正数 ε,以 α 为中点,在数轴上画出线段 (α - ε, α + ε),有理数的稠密性断言,在这个小线段里有无穷多个有理数,它们

中间的任何一个,同 α 的距离当然小于事先给定的很小的正数e.

下面的定理三及其证明过程,提供了具体找出这些有理数的途径,它的更深一层的意思,在证明完毕之后再来细说.

我们先来证明一个引理.

引理 设 x_0, x_1, \dots, x_n 是适合不等式

$$0 \le x_i < 1$$
 $(i = 0, 1, 2, \dots, n)$

的 n+1个实数,则其中必有两个数 xx 和 xi, 适合

$$|x_k-x_k|<\frac{1}{n}.$$

证明 把区间[0,1)分成下列 n个小区间

$$\left[0, \frac{1}{n}\right), \left[\frac{1}{n}, \frac{2}{n}\right), \cdots, \left[\frac{n-1}{n}, 1\right),$$

它们两两无公共点,[0,1) 中的 n+1 个点 x_0, x_2, \dots, x_n 中,按照原则一,必至少有两个点——设为 x_0 和 x_0 ——属于同一小区间,显而易见

$$|x_k-x_l|<\frac{1}{n}$$
.

定理三 设 a 为任一实数, n 为任意给定的正整数,则有一对整数 a、b, 使得

$$\left|a-\frac{b}{a}\right|<\frac{1}{na}$$

并且,其中的 a 还适合条件: $0 < a \le n$.

证明 令
$$m_i = [ia], i = 0, 1, \dots, n$$
, 于是有 $m_i \leq ia < m_i + 1$.

或者

$$0 \le i\alpha - m_i < 1$$
. $(i = 0, 1, \dots, n)$

把 $i\alpha-m$, 当成引理中的 α , 于是, 有足标 k 和 l, 适合 $0 \le k < l \le n$, 并使得

$$|(l\alpha-m_1)-(k\alpha-m_n)|<\frac{1}{n},$$

郰

$$|(l-k)\alpha-(m_l-m_k)|<\frac{1}{n}.$$

置 a=l-k, $b=m_l-m_k$, 它们都是整数,并且 $0 < a=l-k \le l$ $\le n$, 还使得

$$|aa-b|<\frac{1}{n}$$
.

用正数 a 去除上式的两边, 这就证得了:

$$\left|a-\frac{b}{a}\right|<\frac{1}{na}.$$

由于 $a \ge 1$, 故有 $\left| \alpha - \frac{b}{a} \right| < \frac{1}{n}$, 我们可以把 n 取 得 允 分 大, 以使 $\frac{1}{n}$ 足够小; 不等式 $a \le n$ 表明, 可以控制有理数 $\frac{b}{a}$ 的 分母不致过大. 从这两个意义上来说, 我们已经实现了用比较简单的分数来比较精确地逼近一个实数.

六、不 定 方 程

从一个具体的例子谈起,

"百钱买百鸡"是我国古代《张丘建算经》中的名题,用现代汉语叙述乃是。

[例1] 小鸡一元钱三只,母鸡三元钱一只,公鸡五元钱一只,用一百元钱去买一百只鸡,问小鸡、母鸡、公鸡各买几只?

解 用 a、y、2 分别代表小鸡、母鸡、公鸡的只数,根据题设条件,容易写出下面两个方程式

$$x+y+z=100,$$
 (1)

$$\frac{1}{3}x + 3y + 5z = 100, \tag{2}$$

在这里,未知数的数目比方程式的数目多1。这里,我们是要寻求它们的非负整数解,而不是一般的解。

用 3 去乘(2)式的两边,从所得结果中减去(1)式,得 8y+14z=200,

这也就是

$$4y + 7z = 100, (3)$$

这样就消去了一个未知量 &. 由(3)式可以得出

$$7z = 4(25 - y) \tag{4}$$

由(4)式可见7|4(25-y). 但是,7为素数,且除不尽 4,故有7|(25-y). 即有整数 t,使 25-y=7t. 这样一来,应有y=25-7t.

$$y = 20 - 7t,$$

$$z = 4t.$$

我们需要的是非负整数解, 故必须 $0 \le t < \frac{25}{7}$, 即 t 只能取如下四个整数值。0, 1, 2, 3, 对应的四组解是

			<u></u>
t	æ	у	z
0	75	25	0
1	78	18	4
2	٤١	T1	8
3	. 8 4	4	12

"百钱买百鸡"提供了所谓不定方程的比较简单的例子。 不定方程乃是指未知数的数目多于方程的数目,而且未知数 须受某种限制(如整数,正整数或有理数等)的方程。 关于不 定方程,在我国古代有过丰富的研究,"百钱买百鸡"仅是这种 研究成果之一例。

[例2] 证明: 方程

$$x^2 + y^2 + z^2 = 2xyz (5)$$

除 x=y=z=0 而外, 无其他整数解,

证明 若三整数 x, y, z 适合方程(5). 这时,(5)式的右边为偶数,从而 $x^2+y^2+z^2$ 也为偶数;这样,就立即排除了 x, y, z 三个都是奇数,以及其中是两偶一奇的情况. 这是因为,在这两种情况下, $x^2+y^2+z^2$ 显然都是奇数. 我们说. 两奇一偶的情况也不能出现. 这是因为,假设 x-2k, y-2m+1, z-2m+1,其中 k, m 和 n 都是整数,于是

$$x^2+y^2+z^2-4k^2+4m^2+4n^2+4m+4n+1+1$$
,

从面

$$x^2+y^2+z^2\equiv 2\pmod{4}.$$

可是,(5)式的右边

$$2xyz \equiv 4kyz \equiv 0 \pmod{4},$$

于是(5)式自然不能成立了。 这就是说,只须考察 x, y, z 都是偶数的情况。设

$$x=2x_1, \quad y=2y_1, \quad z=2z_1,$$
 (6)

其中 x_1, y_1, z_1 都是整数. 将(6)式代入(5)式,并化简,得 $x_1^2 + y_1^2 + z_1^2 - 4x_1y_1z_1. \tag{7}$

重复同样的推理过程,可以说明 &1、y1、21 都是偶数,设

$$x_1 = 2x_2, \quad y_1 = 2y_2, \quad z_1 = 2z_2,$$
 (8)

其中 x_2 , y_2 , z_2 均为整数、将(8)式代入(7)式,并化简,得 $x_2^2+y_2^2+z_1^2=8x_2y_2z_2$,

.....

这种处理可以无止境地进行下去,这就表明.整数x、y和z中都包含着无穷多个因子2.这只在x-y-z-0时才有可能.

至于x=y=z=0适合方程(5),那是明显的。

例 2 是一个最特殊、最简单的题目.一般来说,决定一个不定方程有没有整数解,决非易事,其复杂性由所谓希尔伯特第十问题及其解决的过程可见. 1900年,德国大数学家希尔伯特(David Hilbert)提出了著名的二十三个数学问题. 其中的第十个问题是: 是不是可以设计一种算法,一种计算的步骤,来决定一个任意指定的整系数的多项式方程是否具有整数解? 问题的回答是否定的,这个答案是经过了很长一段时间才获得的、它是积累了美国数学家鲁宾逊(1952)、戴维斯(1953)、普特曼(1961)和年青的苏联数学家马蒂加斯维克(1970)等人努力的结果. 据报道,在证明的过程中,在技巧上巧妙地使用了"孙子定理"(又称中国剩余定理)、"斐波那契数"和"佩尔方程"的一些理论.

下一节,我们正好要来讨论佩尔(Pell)方程,佩尔方程是一种特殊类型的二元二次不定方程,在讨论它的过程中,我们反复地用到了抽屉原则.

七、佩尔方程

考察不定方程

$$x^2 - dy^2 = 1,$$
 (1)

其中d为正整数. 如果d是某一整数p的平方,即 $d=p^2$,则方程(1)可以写为 ……

$$(x-py)(x+py)=1, (2)$$

当x,y为方程(1)的整数解时,x-py和x+py都是整数,故由(2)式推出

$$\begin{cases} x-py=1, \\ x+py=1, \end{cases} \neq \begin{cases} x-py=-1, \\ x+py=-1. \end{cases}$$

由此推得

$$\begin{cases} x=1, \\ y=0, \end{cases} \quad \begin{cases} x=-1, \\ y=0. \end{cases}$$

所以,当d是一平方数时,方程(1)只有整数解(1,0)和(-1,0)。

在d不等于某一自然数的平方的条件下,方程(1)称为保尔方程。读者自然要问,佩尔方程除了显然的解(1,0)和(-1,0)之外,还有没有其他的整数解?

答案是肯定的.

本节通过初等但冗长的计算和推理,证明佩尔方程有无 穷多整数解,并求出它的全部整数解的表达式.

定理一 当d不是某一自然数的平方数时,有无穷多对整数 (x_i, y_i) ,适合

$$|x_i^2 - dy_i^2| < 2\sqrt{d} + 1, \quad (i=1, 2, 3, \cdots)$$

证明 首先,由于 d 是一个非平方的整数,由第五节的定理一得知, \sqrt{d} 是一个无理数。依第五节的定理三,对于任意给定的自然数 n_1 ,有一对整数(α_1 , y_1),使

$$|x_1-\sqrt{d}|y_1|<\frac{1}{n_1},$$

其中 $1 \leqslant y_1 \leqslant n_1$,因此

$$|x_1^2 - dy_1^2| = |x_1 - \sqrt{d} y_1| \cdot |x_1 + \sqrt{d} y_1|$$

$$< \frac{1}{a} |x_1 + \sqrt{d} y_1|$$

$$\begin{split} & = \frac{1}{n_1} | (x_1 - \sqrt{d} y_1) + 2\sqrt{d} y_1 | \\ & \leq \frac{1}{n_1} (|x_1 - \sqrt{d} y_1| + 2\sqrt{d} y_1) < \frac{1}{n_1} \left(\frac{1}{n_1} + 2\sqrt{d} y_1 \right) \\ & = \frac{1}{n_1^2} + 2\sqrt{d} \frac{y_1}{n_1} \leq 1 + 2\sqrt{d} . \end{split}$$

由于 \sqrt{d} 为无理数, $x_1 - \sqrt{d}y_1 \neq 0$, 所以

$$|x_1-\sqrt{d}y_1|>0,$$

可取自然数 % 适当大, 使得

$$\frac{1}{n_2} < |x_1 - \sqrt{d}y_1|,$$
 (3)

对于这个 n_2 ,又依第五节的定理三,可求得一对整数 (x_2, y_2) ,使

$$|x_2 - \sqrt{d} y_2| < \frac{1}{n_2},$$
 (4)

其中1<9/4</p>

$$|x_2^2 - dy_2^2| < 2\sqrt{d} + 1$$

由(8)式和(4)式,知

$$|x_1 - \sqrt{d} y_1| > |x_2 - \sqrt{d} y_2|$$

续行此法以至无穷,可知有(xi, yi), 使得:

$$|x_i^2 - dy_i^2| < 2\sqrt{d} + 1, \quad (i = 1, 2, 3, \dots)$$

其中 %≥1. 并且, 还有

$$|x_1 - \sqrt{d} y_1| > |x_2 - \sqrt{d} y_2| > |x_3 - \sqrt{d} y_3| > \cdots$$
. (5)
由(5)式可见, 只要 $i \neq i$ 、就有

$$(x_i, y_i) \neq (x_i, y_i)$$

这就是说,适合条件的整数对 $(x_i, y_i), i=1, 2, 3, \dots,$ 确有无穷多,证完。

定理二 存在一个非零的整数 k, 使不定方程

有无穷多整数解.

证明 由定理一得知, 有无穷多对整数(x_i, y_i)适合不等式

 $-(2\sqrt{d}+1) < x_i^2 - dy_i^2 < 2\sqrt{d}+1$, $(i=1, 2, 3, \cdots)$ 但是, 在 $-(2\sqrt{d}+1)$ 与 $2\sqrt{d}+1$ 之间, 只隔着有穷个整数, 依原则三, 在整数列

$$x_1^2 - dy_1^3$$
, $x_2^2 - dy_2^2$, $x_3^2 - dy_3^3$, ...

中,必有无穷项实际上是同一个整数,我们用 k 来记它. k 是一定不会等于零的,这是因为,假若 k=0,将得出 \sqrt{d} 为有理数.正是这个 k 值,使得方程(6)有无穷多解,证完.

定理三 佩尔方程(1)除了显然解(±1,0)之外,还有其 他整数解。

证明 如果(x, y)是方程(6)的解,显然(|x|, |y|)也是方程(6)的解,所以,定理二实际上可以说成:存在无穷多对正整数 (ξ_1, η_1) 和非零整数b,使

$$\boldsymbol{\xi}_{i}^{2} - d\eta_{i}^{2} - \boldsymbol{k} \qquad (l = 1, 2, \dots)$$

遵照证明第四节例2时采用过的办法,把整数对 (x, y) 接其各个坐标关于模 [k] 的剩余分类,可把全部整数对分成 $[k] \times [k] = k^2$ 个互不相交的集合.无穷多个正整数对 (ξ_i, η_i) 被分配在有限个集合之中,依抽屉原则三,一定至少有两对不同的正整数,如 (ξ_i, η_i) 和 (ξ_i, η_i) ,属于同一集合,即有

$$\begin{cases}
\xi_i \equiv \xi, & (\text{mod} |k|), \\
\eta_i \equiv \eta, & (\text{mod} |k|)
\end{cases}$$
(7)

同时成立、这时

$$\begin{split} k^2 &= (\xi_i^2 - d\eta_i^2) (\xi_i^2 - d\eta_i^2) \\ &= (\xi_i \xi_i - d\eta_i \eta_i)^2 - d(\xi_i \eta_i - \xi_i \eta_i)^2. \end{split}$$

由于 №≠0, 即得

$$\left(\frac{\xi_i \xi_j - d\eta \eta_j}{k}\right)^2 - d\left(\frac{\xi \eta_j - \xi_j \eta_i}{k}\right)^2 = 1.$$
 (8)

下面来证明两件事

(i)
$$\frac{\xi_i \xi_j - d\eta_i \eta_j}{\hbar}$$
 和 $\frac{\xi m_i - \xi_j \eta_i}{\hbar}$ 都是整数;

(ii)
$$\frac{\xi \eta_l - \xi_l \eta_l}{k} \neq 0.$$

这两件事与(8)式合在一起,正好表明找到了佩尔方程的 非显然解。

先来证(1). 利用(7)式以及第四节中提到的同余式的性质,便可得到

$$\xi_{i}\xi_{j}-d\eta_{i}\eta_{j}\equiv\xi_{i}\xi_{i}-d\eta_{i}\eta_{k}\equiv\xi_{i}^{2}-d\eta_{k}^{2}$$

$$\equiv k\equiv 0\pmod{|k|},$$

以及

$$\xi_i \eta_i - \xi_j \eta_i \equiv 0 \pmod{|k|}$$
.

这样就证完了(i)。再来证(ii), 假若

$$\frac{\xi \mathcal{D}_j + \xi_j \mathcal{D}_k}{k} = 0,$$

由此得到

$$\frac{\xi_i}{\xi_j} = \frac{\eta_i}{\eta_j}.$$

用 λ 来记这个公共值, 于是有

$$\xi_i^2 - d\eta_i^2 = \lambda^2 (\xi_j^2 - d\eta_j^2),$$

此即 $h=\lambda^2 k$. 由于 $h\neq 0$, 故 $\lambda^2=1$, 从而 $\lambda=\pm 1$. 但因 ξ_1 、 ξ_2 ,均为正数, 只能是 $\lambda=1$,由此得 $\xi_1=\xi_2$,和 $\eta_1=\eta_2$,这与 (ξ_1,η_2) 和 (ξ_1,η_2) 是两对不同的正整数的事实相矛盾,这 样就 证 完了 (ii).

注意到(8)式,即知我们已经获得了佩尔方程的异于 • 34 • (±1,0)的整数解、定理三到此证毕。

下面求佩尔方程通解的表示法.

定理四 若 (x_1, y_1) 和 (x_2, y_2) 都是佩尔方程 (1) 的整数解,那么,由等式

$$x_3 + y_3 \sqrt{d} = (x_1 + y_1 \sqrt{d}) (x_2 + y_2 \sqrt{d})$$
 (9)

所确定的整数对 (x_3, y_2) 也是方程(1)的整数解。

证明 事实上,由(9)可得

$$x_3 = x_1 x_2 + dy_1 y_2,$$

$$y_3 = x_1 y_2 + x_2 y_1.$$

所以有

$$x_3 - y_3 \sqrt{d} = (x_1 - y_1 \sqrt{d}) (x_2 - y_2 \sqrt{d}).$$
 (10)

由(9)式和(10)式,可得

$$x_{3}^{2}-dy_{3}^{2}=(x_{3}+y_{3}\sqrt{d})(x_{3}-y_{3}\sqrt{d})$$

$$=(x_{1}+y_{1}\sqrt{d})(x_{1}-y_{1}\sqrt{d})$$

$$\times(x_{2}+y_{2}\sqrt{d})(x_{3}-y_{3}\sqrt{d})$$

$$=(x_{1}^{2}-dy_{1}^{2})(x_{2}^{2}-dy_{2}^{2})=1\times 1=1.$$

这就证得了 (x_8, y_3) 也是佩尔方程(1)的整数解,证毕。

如果(x, y)是佩尔方程(1)的整数解,并且x>0, y>0,则称(x, y)是方程(1)的正解、设 (x_0, y_0) 是一切正解(x, y)中使得数 $x+y\sqrt{d}$ 为最小的那个正解,我们有

定理五 佩尔方程的全部正解(x, y)中的x和y,由公式

$$x+y\sqrt{d} - (x_0+y_0\sqrt{d})^n$$
 (11)

确定(其中 n=1, 2, 3, …).

证明 因为 (x_0, y_0) 是方程 (1) 的一个正解, 反复运用定理四, 便可知由公式 (11) 确定的 (x, y) 是方程 (1) 的正解.

反过来,设(x,y)是方程(1)的任何一个正解。因为

 $x_0 \ge 1$, $y_0 \ge 1$, 所以 $x_0 + y_0 \sqrt{d} > x_0 \ge 1$, 从而数列

$$x_0 + y_0 \sqrt{d}$$
, $(x_0 + y_0 \sqrt{d})^2$, $(x_0 + y_0 \sqrt{d})^3$, ... (12)

严格上升而趋向于正无穷大、现在,由于

$$x+y\sqrt{d} \geqslant x_0+y_0\sqrt{d}$$
,

可知 $x+y\sqrt{d}$ 一定会夹在数列(12)中的某两项之间,亦即有一自然数 n, 使得

$$(x_0+y_0\sqrt{d})^n \leq x+y\sqrt{d} < (x_0+y_0\sqrt{d})^{n+1},$$

也就是

$$1 \le \frac{x + y\sqrt{d}}{(x_0 + y_0\sqrt{d})^*} < x_0 + y_0\sqrt{d}.$$
 (13)

将上式中间那一项改写为

$$(x+y\sqrt{d})[(x_0+y_0\sqrt{d})^{-1}]^n = (x+y\sqrt{d})(x_0-y_0\sqrt{d})^n,$$

并记之为 $x'+y'\sqrt{d}$.由于 $(x_0, -y_0)$ 和(x, y)是方程(1)的整数解,反复运用定理四,可以得知(x', y')也是方程(1)的整数解,在新的记号下,(13)式就是

$$1 \leq x' + y' \sqrt{d} < x_0 + y_0 \sqrt{d}. \tag{14}$$

在(14)式中,取倒数,得

$$0 < x_0 - y_0 \sqrt{d} < x' - y' \sqrt{d} \le 1. \tag{15}$$

由(14)式和(15)式,可以推出

$$2x' = (x' + y'\sqrt{d}) + (x' - y'\sqrt{d}) > 1 + 0 = 1,$$

$$2y'\sqrt{d} = (x' + y'\sqrt{d}) - (x' - y'\sqrt{d}) \ge 1 - 1 = 0.$$

由上述两式可见: x'>0, y'>0. 如果 y'>0, 那么(x', y')是 方程(1)的正解,由(14)式可见,这与 x_0 及 y_0 为使 $x+y\sqrt{d}$ 最小的那个正解相矛盾. 因此只能是 y'=0;由(14)式与(15)式又得 x'>1>x',这只能是 x'=1,这也就是说(13)式的中

间那一项实际上等于1,即

$$x+y\sqrt{d}=(x_0+y_0\sqrt{d})^n,$$

定理五证完.

定理六 佩尔方程的全部整数解(a, y), 由方程

$$x+y\sqrt{d} = \pm (x_0+y_0\sqrt{d})^n$$
 $(n=0, \pm 1, \pm 2, \cdots)$

所确定.

这一定理的证明是很明显的. n=0 时,决定着佩尔方程的显然解 $(\pm 1,0)$,而当n为自然数时,

$$+(x_0+y_0\sqrt{d})$$
" 决定着方程(1)的全部正解;

$$-(x_0+y_0\sqrt{d})$$
" 决定着方程(1)的全部负解;

当 n 为负整数时,由等式

$$(x_0+y_0\sqrt{d})^n = [(x_0+y_0\sqrt{d})^{-n}]^{-1}$$

可见, $(x_0+y_0\sqrt{d})$ " 决定着第四象限中双曲线 (1) 上的全部整点, $-(x_0+y_0\sqrt{d})$ " 则决定着第二象限中双曲线 (1) 上的全部整点.

最后,看一个例子: 佩尔方程

$$x^2 - 3y^2 = 1$$

有正解 $(x_0, y_0) = (2, 1)$, 按定理六,其全部整数解(x, y)由等式

$$x+y\sqrt{3} = \pm (2+\sqrt{3})^n$$
 $(n=0, \pm 1, \pm 2, \cdots)$

所确定.

例如,令n=4,因为

$$(2+\sqrt{3})^4 = 97+56\sqrt{3}$$

所以(97,56)就是原方程的一个整数解,这是可以直接代入原方程来验证的。

八、面积的重迭原则

抽屉原则又称为重**迭**原则.实际上,第二节中所叙述的原则一、原则二和原则三,都是最简单的重迭原则.现在,要 叙述另外一种重迭原则,这就是关于面积的重迭原则.

假定平面上有n个区域(所谓区域,是指由一条平面封闭曲线所围成的内部,例如一个圆或长方形的内部都可以叫做区域),它们的面积分别是 A_1 , A_2 ,…, A_n 如果我们把这n个区域按任何方式——搬到某一个面积为A的固定区域内部去,那末,当面积的和 $A_1+A_2+\cdots+A_n$ 大于A时,至少有两个区域具有公共点.

这个原则同样是很明显的,也可用反证法加以证明。假如它们搬到固定区域的内部而可以没有公共点,那么,它们的面积的和 $A_1+A_2+\cdots+A_n$ 顶多等于固定区域的 面积 A_n 这跟假设不符合。

自然,对于体积也有类似的重迭原则。

现在,运用关于面积的重迭原则,来证明一个重要而有趣

的定理.

定理一 以原点 0 为对称中心, 任意画一个长方形 ABCD (图 7), 如 果这长方形的面积大于 4, 那么,在它 里面除了 0 点外,一定还有其他的整点.

证明 以那些坐标为偶数的整点 (21, 21)为中心,作出一系列边长为2

的正方形, 长方形 ABOD 必定被某些这样的 2×2 的正方形 所盖住, 把这些正方形一个一个地剪下来, 并把它们平行地 移到和中心在 0 的那个 2×2 的正方形 1284 相重合的位置 上去, 自然, 这时长方形 ABOD 也被剪碎成好几片移到正方形 1284 里面去了.

注意: 正方形 1234 的面 积 等 于 4, 而 长 方 形 ABOD 的面积是大于 4 的。根据面积的重迭原则,至少有两个碎片会有公共点。设一个公共点的坐标是(s,t),其中 $-1 \le s \le 1$,

-1≤t≤1. 这就意味着,在原来的 长方形 ABOD 内有一个点 P, 它的 坐标是(2m+s, 2n+t);还有一个 点 Q, 它的坐标是(2m'+s, 2n'+t) (图 8).

考察点 Q 关于 原点 O 的对称 点 Q'. 由于已知长 方形 ABOD 关 于原点对称, 得知 Q' 必然也在此长

方形内。由对称性可知 Q' 的 坐 标 是 (-2m'-8, -2n'-t)、既然 P 和 Q' 是长方形 ABOD 之内的 两 个 点,那 么 P 和 Q' 的联线上的中点 R,也一定在这个长方形内。可以算出 R 的 两个坐标分别是

$$\frac{(2m+s)+(-2m'-s)}{2}=m-m'$$

和

$$\frac{(2n+t)+(-2n'-t)}{2}=n-n',$$

这表明 R 是包含在长方形 ABOD 中的一个整点,并且, R 和原点 O 显然是不同的,这是 因为,若 R=0,即得 m=m',n=m',也就是 P=Q,这是不可能的、定理一证毕。

定理一是数论的一个分支:"数的几何"中的一个基本定理的一个特例。如果读者希望学习这一基本定理,可参阅《格点和面积》一书(闵嗣鹤著,人民教育出版社1964年版)。

利用定理一,我们来解决一个非常有趣的几何问题.

[例1] 设有一座圆形的公园,中心为 O, 半 径 等于 50 米. 以点 O 为坐标原点,选取过 O 的互相垂直的两条直线为坐标轴,建立平面直角坐标系. 并选取单位长度为 1 米,如果在圆内除 O 以外的每个整点处都种上一棵小树,那么,当这些小树长得足够粗的时候,从园子的中心 O 环顾四周,视线都会被树干所遮断,使人看不到园子的边缘. 理在问,当树干长到多粗时,才会发生所说的这种情况?

我们的答案是: 当树干的半径大于 $\frac{1}{50}$ 米 (即 2 厘 米)时,从点 0 朝任何方向看去,视线都会被遮断; 而当树干的半径小于 $\frac{1}{\sqrt{2501}}$ 米时,至少在一个方向上视线不会被遮断.

证明 先证答案的第一部分. 我们用 ρ 表示树干的半径,并设 $\rho > \frac{1}{50}$. 显然,还必须认为 $\rho < \frac{1}{2}$.

在圆0中,取任一直径AB(如图9)。过A和B两点分

别作圆O的切线,并作两直线 FG和EH 平行于AB,且与AB 的距离均为 ρ ,这样就得到了一个长方形 EFGH. 显然,长方形 EFGH 的面积:

$$100 \times 2\rho > 100 \times 2 \times \frac{1}{50} = 4$$

因此,根据定理一,在这个长方形

内有一个整点 R. 实际上, R 不但在这长方形内, 而且还在公园内部, 对于这一点, 可以证明如下, 设 R=(m,n), 其中 m 和 n 均为整数 显然

$$m^{2}+n^{2}=\overline{O}R^{2}\leqslant\overline{O}E^{3}$$
$$=(50)^{2}+\rho^{2}\leqslant(50)^{2}+\frac{1}{4}.$$

由于 $m^2 + n^2$ 是一个整数,上不等式实际上是 $m^2 + n^2 \le (50)^2$,

即是说,R 还在公园之内。R 的关于0 的对 称点 R' 应 在 此长方形内,并且也在公园之内。

既然 R 和 R' 都是公园内的整点,这两点都不与 O 重合,因此,这些点上是种了树的。很明显,以 R 和 R' 为中心、以 ρ 为半径作出的两个小圆一定和直径 AB 在 O 的两边相交。这就是说,当 $\rho > \frac{1}{50}$ 时,OA 和 OB 两个方向的视线都会被树干遮断。由于直径 AB 是任意作的,所以,这时站在 O 点无论朝哪一个方向上看去,都将看不到公园的边界。

现在证明答案的第二部分、在坐标为 (50,0) 的 点 P 处作圆 O 的切线,在这切线上取 坐 标 为 (50,1) 的 整 点 Q (图 10)、很明显,在线段 OQ 上不再会有整点了。在圆内的整点中,离直线 OQ 最近的整点是 R(49,

1), 作 BS LOQ, 由于

$$\triangle OPQ \Leftrightarrow \triangle QSR$$
.

故有

$$\frac{\overline{RQ}}{\overline{QO}} = \frac{\overline{RS}}{\overline{QP}}.$$

因此

$$\overline{RS} = \overline{QP} \cdot \frac{\overline{RQ}}{\overline{QO}}$$

$$= 1 \cdot \frac{1}{\sqrt{(50)^2 + 1}} - \frac{1}{\sqrt{2501}}.$$

所以,当 $ho<\frac{1}{\sqrt{2501}}$ 时,R 那一点上的树干不会遮断 OQ 方

向的视线,其余整点上种的树,就更不可能干扰视线 *QQ* 了! 讨论完毕.

显然,如果n个区域的面积之和小于固定区域的面积,即

$$A_1 + A_2 + \cdots + A_n < A$$
,

那么,把这n个区域任意搬到固定区域内部之后,固定区域一定不能被这n个区域完全盖住,即固定区域中至少有一个点不属于这n个区域中的任何一个区域。

用这样一个至为明显的道理,也可以去解一些有趣的题 目.

[例2] 在一个20×25的长方形中任意放进120个1×1的小正方形.证明.在这个长方形中,一定还可以放下一个直径为1的圆,使之不和这120个小正方形中的任何一个相交.

解 我们用反证法来证明. 假设按某一种方式 放进 120个 1×1 的小正方形之后, 再也放不进一个直径为 1 的圆, 我们将从中引出矛盾.

从长方形 ABCD (图 11)的每一边剪去一个宽为 $\frac{1}{2}$ 的长条,余下一个 19×24 的长方形 A'B'C'D',可以算出,长方形 A'B'C'D' 的面积是 456.

如果 P 为 A'B'C'D' 内的任一点,以点 P 为中心,以 $\frac{1}{2}$ 为半径,作一个圆,它一定会全部在长方形 ABCD 之内。依假定,它一定会和某一个 1×1 的小正方形 EFGH 相交,这就是说,P 到 EFGH 的(最短)距离不超过 $\frac{1}{2}$.

在 EFGH 的 四条 边 上各 安装一个 $\frac{1}{2} \times 1$ 的长条, EE_2F_1F , FF_2G_1G , GG_2H_1H , HH_2E_1H , 再在四个角上 各安装四分之一个半径为 $\frac{1}{2}$ 的 圆. 这样便得到一个图形 $E_1E_2F_1F_2G_1G_2H_1H_2$,这个图形的面积是

$$1+4\times\frac{1}{2}+\frac{\pi}{4}=\frac{12+\pi}{4}$$
.

由于 P 到 EFGH 的距离不超过 $\frac{1}{2}$, 故 P 必落入 这 - 图 形中,因为点 P 是在 A'B'C'D' 中任意选取的,我们便可得到这样的结论: 长方形 A'B'C'D' 能被 120 个 $E_1E_2F_1F_2G_1G_2H_1H_2$ 那种样子的图形完全盖住。

但是,这是根本不可能的! 因为,一方面 A'B'C'D' 的面积 = 456,

另一方面, 120 个那种图形的面积的总和为

$$120 \times \frac{12 + \pi}{4}$$
,

但是

$$120 \times \frac{12+\pi}{4} < 120 \times \frac{12+3\cdot 2}{4} = 30 \times 15\cdot 2 = 456$$

这个矛盾表明。在长方形 ABCD 中任意放进 120 个 1×1 的正方形之后,一定还有一块空地可以放进一个直径为 1 的完整的圆。

练习题

运用抽屉原则,解下列各题: (1~7)

- 1. 从全世界任选六个人,其中一定可以找出三个人来,使得他们 互相都认识,或者互相都不认识。
- 2. 下图中画出 3 行 9 列共 27 个小方格,将每一个小方格 涂上 红色或者蓝色。证明:不论如何涂色,其中必至少有两列,它们的涂色的方式相同。

(第2题图)

- 3. 在半径为 1 的圆周上任取 n+1 个点,求证: 其中至少 有 两 个 点,它们之间的距离不超过 $2\sin\frac{\sigma}{n}$.
- 4. 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘子的重量在指定的 a 克到(a+0.1)克之间。 现在需要重量相差不超过 0.005 克的两只铁盘来装配一架天平,问最少要有多少盘子,才能从中挑出符合要求的两只铁盘?
- **5**. 用 N 来表示平面上两个坐标都为正整数的点的一个无穷集合、求证: N 中一定有两点 (α, β) 和 (ξ, η) ,使得

$$a < \xi$$
, $\beta < \eta$.

- 6. 在平面上给出了无限多个矩形,它们顶点的直角坐标是(0,0)、(0, m)、(n,0)、(n, m),其中 m、n 是正整数. 证明:在这些矩形中,总存在两个矩形,其中的一个完全落在另一个之内.
 - 7. 设有三个由自然数组成的数列:

$$a_1, a_2, \dots, a_n, \dots, b_1, b_2, \dots, b_n, \dots,$$

$$c_1, c_2, \cdots, c_n, \cdots$$

证明: 一定存在一对正整 数 p 和 q, 使 得 $a_p \ge a_q$, $b_p \ge b_q$, $c_p \ge c_q$ 都 成立。(1961 年第一屆全俄数学竞賽试题)

8. 如果正整数 n≥2, 求证和数

$$1 + \frac{1}{2} + \dots + \frac{1}{n}$$

一定不是整数。

- 9. 证明函数[α]的下列性质:
- (i) $[x]+[y] \leq [x+y];$
- (ii) 若n为正整数,则 n[x]≤[nx];·
- (iii) 若n为正整数,则 $\left[\frac{[nx]}{n}\right] = [x];$
- (iv) $[2x]+[2y] \ge [x]+[x+y]+[y]$.
- 10. 若n为正整数, 求证

$$[x] + \left[x + \frac{1}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] = [nx].$$

- 11. 证明, 任何奇数的平方,关于模 8 与 1 同余。
- 12. 求证: 在数列

中,没有完全平方数.

- **12**. 求出一个具有下述性质的自然数: 个位数字为 2; 将这个 2 移 到该数最高位数字的左边,得出的新数是原数的两倍.
 - 14. 证明:
- (i)一个整数能被3整除,必须而且只须它的各位数字之和能被3整除;
- (ii) 一个整数能被 9 整除,必须而且只须它的各位数字之和能被 9 整除.
- **15**. 设 3^{10000} 的各位数字之和为 a, a 的各位数字之和为 b, b 的各位数字之和为 c, 试求出 c.
- 16. 设 $p_n=1^n+2^n+3^n+4^n$ (这里 $n=1,2,3,\cdots$),问对怎样的自然数 n,5 可以整除 p_n ?

运用抽屉原则,并结合剩余类的方法,解下列各题: (17~22)

17. 已知 a_1, a_2, \dots, a_7 是正整数, 任意改变这七个数的顺序后记为

 b_1, b_2, \dots, b_7 . 证明 $A = (a_1 - b_1)(a_2 - b_2) \dots (a_7 - b_7)$ 是偶數.

- **18**. 求证:对任一自然数,必有其某一整倍数,使之包含着 0, 1, 2, ..., 9 中的每一个数字。
- 19. 对于任一 30 位的整数 M, 可以选得一个数 X, 使能被 1979 整除, 且 X 的最后 30 位数字是 M.
- **20**. 证明: 对于 n+1 个不同的自然数 a_n , 如果每一个均小于 2n, 那么可以从中选出 3 个,使其中的 2 个之和等于第 3 个,
- **21**. 任给五个整数,证明从中必能选出三个,使此三数之和能被 3 整除. (安徽省 1978 年中学生数学竞赛试题)
 - 22. 设 m 为任一偶数, m 个整数 a_1, a_2, \dots, a_m 适合下面两条件: $1 \le a_1 \le a_2 \le \dots \le a_m \le m$, $a_1 + a_2 + \dots + a_m = 2m$.

求证:一定可以把这m个数分为两组,使得每组中各数之和相等,即都等于m.

23. 如右图: 一枚棋子放在七角棋盘的第 0 格上,现依反时针方向按照下述规则来移动这颗棋子: 第一次移动 1 格,第二次移动 2 格,第三次移动 3 格,……,如此等等、证明: 不论把棋子移动多少次,第 2、4、5 号三个位置上总没有停棋的可能.

24. 设 a₁, a₂, …, a_{2n+1}是 2n+1 个有理数,它们具有以下性质: 从中任意取出 2n 个,必能分成两组,每组中含有 n 个数,且各组数字之和相等,求证:

$$a_1 = a_2 = \cdots = a_{2n+1}.$$

- 25. 证明不定方程 x²-4y²=3 没有整数解.
- 26. 证明不定方程

$$x^2+1-3y^n=0$$

(n 为任一自然数)

没有整数解.

27. 永方程组

$$\begin{cases} x+y+z=0, \\ x^3+y^3+z^3=-18 \end{cases}$$

的全部整数解,(1978 年全国部分省市中学生数学竞赛试题)

运用面积的重迭原则,解下列各题: (28~29)

- **28**. 把 66 个直径为 √ 2 的圆任意放到一个边长为 10 的正方形内, 求证必有两个圆有公共点.
- **28**. 在一个半径等于 6 的圆内任意地放 6 个半径为 1 的小圆。 证明,其中总还有一块空位置,可以完整地放下另一个半径为 1 的小圆。

练习题解答概要

- 1. 把每一个人用一个点代表。若某两个人是互相认识的,则在其"代表点"之间用红边相联; 若某两人是互相不认识的,则在其"代表点"之间用蓝边相联. 然后,运用第二节例 2 的结论,即可得证。
- 2. 每列中只有三个小方格,每个小方格只有两种不同的涂色方法,因此,每一列只可能有 2×2×2=8 种不同的涂色方式。今有 9 列这样的格子,根据原则一,必至少有两列的涂色方式相同。
- 8. 把这个圆周分成 n 等份。 根据原则一,至少有两个点在同一段小弧上。 显然,这两点之间距离小于圆内接正 n 边形的边长,即 2 sin 🚾。
- 4. 把壓量在 a 克到 (a+0.1) 克的盘子, 依重量来分类, 使得重量不到 (a+0.005) 克的为第一类, 重量不小于(a+0.005) 克但又不到(a+0.005×2) 克的为第二类, 如此等等, 这样一共可分为 20 类。 依抽屉原则一, 21 个盘子中必至少有两个属于同一类中, 它们的重量即相差不超过 0.005 克, 用它们即可装配一架天平。
 - 5. 从 N 中任取一点 (x_0, y_0) , 把 N 中的每一个点 (x_0, y) 按照下列条件
 - (1) $x>x_0, y>y_0;$
 - (2) $x>x_0, y\leqslant y_0$;
 - (3) $x \le x_0, y > y_0;$
 - (4) $x \le x_0, y \le y_0$

分在四个互不相交的类中。

如果第(1)类中至少有 N 的一个点(ξ , η),则取 $\alpha = \alpha_0$, $\beta = y_0$,那么适合要求的两点(α , β) 和(ξ , η) 就被找到了。同理,若第(4)类中至少有 N 的一个点(α , β),则取 $\xi = \alpha_0$, $\eta = y_0$,适合要求的两点又被找到了。

所以,只须考察 N 的一切点全部在第(2)类和第(3)类中的情况。首先,把第(2)类中的点(x,y)接下列条件。

$$x>x_0, y=1;$$

 $x>x_0, y=2;$
 $x>x_0, y=y_0$

分成 ‰ 个更小的类、同样, 再把第(3)类中的点(a, y)按下列条件:

$$x=1, y>y_0;$$

 $x=2, y>y_0;$
 $x=x_0, y>y_0$

分成 x_0 个更小的类。这样一来,N 中的点被分配在这 x_0+y_0 个互不相 交 的 小类之中、N 中的点的个数是无穷的,而小类的个数是有穷的,因此,被原则三,必有一个小类中含有 N 中的无穷个点,显然,其中任何两个点都适合要求。

- 6. 试与第5题比较。
- 7. 参考第5题之解法。
- 8. 把 1, 2, ..., #分解为

$$i=2hp_i$$
 $(i=1, 2, \dots, n)$

的形式,其中 p_i 为奇数,整数 $l_i \ge 0$ 。令 l_i 是 l_i l_i …, l_i 中的最大者, $p=p_1p_2$ … p_n 。设法证明 l_i l_i …, l_i 中只有一个数为 l_i 其余数均小于 l_i 于是

$$2^{t-1}p\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)=8$$
 数 $+\frac{1}{2}\times$ 奇数,

故 $1+\frac{1}{2}+\cdots+\frac{1}{n}$ 必不能为整数。

9. (i) 由定义, 有

$$[x] \leqslant x$$
, $[y] \leqslant y$.

据此,得 $[x]+[y] \leq x+y$. 故[x]+[y]是一个不超过x+y的整数,自然不大于[x+y].

- (ii) 由(i),用数学归纳法即得。
- (iii) 先设 0≤α<1, 于是 0≤nα<n, 从而有

$$[n\alpha] \leqslant n\alpha < n.$$

$$0 \leqslant \frac{[n\alpha]}{n} < 1.$$

故

$$\left[\frac{[n\alpha]}{n}\right] = 0 = [\alpha].$$

再令[x]=m, 于是x=m+a, 其中0≤a<1. 于是

$$nx = nm + na,$$

$$[nx] = nm + [na],$$

$$\frac{[nx]}{n} = m + \frac{[na]}{n}.$$

故得

$$\left[\frac{[nx]}{n}\right] = \left[m + \frac{[n\alpha]}{n}\right] = m + \left[\frac{[n\alpha]}{n}\right] = m + 0 = m = [x].$$
(iv) $\Rightarrow [x] = m$, $[y] = n$, $\Rightarrow x = m + \alpha$, $0 \le x < 1$;
$$y = n + \beta, \quad 0 \le \beta < 1.$$

于是

$$[x+y] = [m+n+\alpha+\beta] = m+n+[\alpha+\beta],$$

$$[2x] = [2m+2\alpha] = 2m+[2\alpha],$$

$$[2y] = 2n+[2\beta].$$

故原不等式等价于

$$[a+\beta] \leqslant [2n] + [2\beta],$$

其中 $0 \le a < 1$, $0 \le \beta < 1$. 而这个不等式是显然的。

10. 设[x]=m, x=m+a, 其中 0≤a<1. 因此

$$\begin{bmatrix} x \end{bmatrix} = m,$$

$$\begin{bmatrix} x + \frac{1}{n} \end{bmatrix} = m + \begin{bmatrix} \alpha + \frac{1}{n} \end{bmatrix},$$

$$\begin{bmatrix} x + \frac{2}{n} \end{bmatrix} = m + \begin{bmatrix} \alpha + \frac{2}{n} \end{bmatrix},$$

$$\begin{bmatrix} x + \frac{n-1}{n} \end{bmatrix} = m + \begin{bmatrix} \alpha + \frac{n-1}{n} \end{bmatrix}.$$

而 $[n\sigma] = nm + [na]$,故原等式等份于等式

$$\left[\alpha + \frac{1}{n}\right] + \left[\alpha + \frac{2}{n}\right] + \dots + \left[\alpha + \frac{n-1}{n}\right] = [n\alpha],$$

其中 0≪a<1. 由于

$$0 < \frac{1}{n} \le \alpha + \frac{1}{n} < \alpha + \frac{n-1}{n} < 1 + \frac{n-1}{n} < 2$$
,

故前述等式左边每一个整数非0即1.

分两种情况继续讨论。首先,若 $\alpha+\frac{1}{n} \ge 1$,则上式左边-n-1,而此时又

有 n-1≤ $n\alpha$ <n, 故。上式右边—n-1。

其次,若有自然數 k, 使

$$\alpha + \frac{k}{n} < 1$$
, $\alpha + \frac{k+1}{n} \ge 1$.

于是, 上等式左边=n-k-1; 面此时又有

$$n-k-1 \le n\alpha < n-k$$
,

故上式右边为。 $[n\alpha]=n-k-1$ 。

11. 任何奇数均可表为 2k+1 的形式,其中 k 为整数、因为

$$(2k+1)^2=4k(k+1)+1$$
,

由于 k(k+1) 可被 2 整除,因此 $4k(k+1) = 0 \pmod{8}$, 于是

$$(2k+1)^2 \equiv 1 \pmod{8}$$
.

12. 假潜此数列中有平方数,那么它必为奇数之平方,由前题可知,它关于模4也与1同余,但是,对任意大于2的自然数 p,有

$$11\cdots 111 = 11\cdots 100 + 11 = 11\cdots 1 \times 25 \times 4 + 11,$$

 $p + 1$ $p - 2 + 1$ $p - 2 + 1$

所以

$$11 \cdots 11 = 11 = 3 \pmod{4}$$

这是矛盾的。

18. 设此数为 m. 且

$$m = [] \cdots [] 2$$
,

把 m 去掉个位数字 2 后所得到的数记为 a, 于是

$$m=a\times 10+2$$
.

设新数为 n,依条件 n=2×10≈+a,并且 n=2m,即

$$2\times10^{\circ}+\alpha=20\times\alpha+4$$

$$19a = 2 \times (10^{2} - 2)$$
.

由此可知,必须有 19 (10*-2),即应选取 s, 使

$$10^s = 2 \pmod{19}$$
.

由于

$$10^2 \equiv 5 \pmod{19}$$
.

故

$$10^4 = 25 = 6 \pmod{19}$$
.

$$10^8 \equiv 36 \equiv -2 \pmod{19}$$
,

$$10^{18} \equiv 4 \pmod{19}$$
,

$$10^{17} \equiv 40 \equiv 2 \pmod{19}$$
.

故 3-17 是一个解。所以,原数为 105263157894736842。

14. 只证(5)

设 $m=a_010^n+a_110^{n-1}+\cdots+a_{n-1}10+a_n$, 其中 $a_0\geqslant 1$, $0\leqslant a_i\leqslant 9$, i=1,2, ..., n.

由于

$$10 \equiv 1 \pmod{9},$$

敌对任何正整数 5, 有

$$10^{*} = 1 \pmod{9}$$
.

因此

$$m \equiv a_0 + a_1 + a_2 + \dots + a_n \pmod{9}$$
.

故 $9 \mid m$ 必须且只须 $9 \mid (a_0 + a_1 + \cdots + a_n)$.

15. 由于 32=9<10, 故

$$3^{10000} = 9^{5000} < 10^{5000}$$

我们知**道,10⁸⁰⁰⁰ 是最小的五千零**一位数。 可见 3¹⁰⁰⁰⁰ 至多是一个五千位数,所以

$$a \le 9 \times 5000 = 45000 < 999999$$
,
 $b < 5 \times 9 = 45 < 99$,
 $c < 2 \times 9 = 18$

由于 3^{10000} 可被 9 整除,因此,反复用 14 题(ii)之结果,得知 c 是一个能被 9 整除的正数,故只能是 c=9、

16. 由于 3 =
$$-2 \pmod{5}$$
, $4 = -1 \pmod{5}$, 故
$$p_n = 1^n + 2^n + (-2)^n + (-1)^n \pmod{5}$$
.

当 n 为奇数的时候,显然 $p_n = 0 \pmod{5}$ 、今设 n 为偶数, n = 2s, 此时

$$p_{2s} \equiv 2(1+2^{2s}) \equiv 2(1+4^s) \equiv 2(1+(-1)^s) \pmod{5}$$
,

由此可见,当 8 为奇数时, 5 | p_{2s}; 当 8 为偶数时,

$$p_{2a}=4\pmod{5}.$$

综合上两结果,可知当n不是4的整倍数时, $5|p_{n}$

17. 七个数分成奇数、偶数两类时,按原则二,必有一类至少有四个数。因而,在乘积 A 的七个因数中,至少有一个因数,它的相减的两数在同一类中(即同奇偶),这一因数即是偶数,从而可推知 A 为偶数。

18. 令 4-1234567890, 考察数列

$$A, AA, AAA, AAAA, \dots, \underbrace{AA\cdots A}_{m+1}$$

于是,对任何自然数 m,上数列中必至少有两数属于关于模加的同一剩余类。而这两数之差,即为加的整倍数,它包含 0, 1, 2, …, 9 中每一数字。

19. 考察数列 {m/};

$$m_1 = M$$
, $m_2 = MM$,, $M_i = \underbrace{MM \cdots M}_{i \land i}$,, $M_{1979} = \underbrace{MM \cdots M}_{1979 \land i}$.

上述 1979 个数中,假若有一为 1979 的倍数,那么结论便得证了;如果无一被 1979 整除,则必有两数,它们关于模 1979 同余(设为 M_k , M_k , 并设 k>l),那 么 1979 [M_k-M_l),其中

$$M_1 - M_1 = \underbrace{MM \cdots M}_{k-1} \underbrace{00 \cdots 00}_{30i \ \Upsilon}$$

把 $M_k - M_i$ 的尾数的 80l 个零截去,又得一新数 X,可以证明 X 具有所要求的性质。这 是 因 为 $1979 \mid (M_k - M_i)$,即 $1979 \cdot X \times 10^{30l}$,而 $1979 \mid 5 \cdot 10^{30l}$ 互 素,故 $1979 \mid X$ 。

20 不妨设这 n+1 个自然数已排成上升数列:

$$a_0 < a_1 < a_2 < \cdots < a_n$$

令
$$b_i = a_i - a_0$$
(其中 $i = 1, 2, \dots, n$)。那么,显然有 $0 < b_1 < b_2 < \dots < b_n < a_n < 2n$.

考察 2n 个自然数: a_1 , a_2 , ..., a_n , b_1 , b_2 , ..., b_n , 显然它们都小于 2n. 由原则一, 其中必有两数相等,即有 $a_k = b_i$. 于是有 $a_i = a_0 + a_k$, 并由此可知 $l \neq k$. 故三个不同的数 a_0 , a_k , a_i 符合题目要求.

21. 如果在以 3 为模的三个不同的剩余类中,每一类都有这五个整数中的某些数,那么从各类都拍一个数出来,三数之和当然能被 3 整除。若五个整数只分布在两个剩余类中,那么根据原则二,必有一类中至少含三个整数,而此主数之和必定是 3 的整倍数。

22. 令

$$s_1 = a_1, \quad s_2 = a_1 + a_2, \quad \cdots, \quad s_m = a_1 + a_2 + \cdots + a_m = 2m,$$

又作一整数 (a_1-a_n) , 考察下列 m+1 个整数

$$s_1, s_2, \dots, s_m, (a_1 + a_m),$$

根据抽屉原则,它们之中一定有两个数关于模如同余.分两种情况来讨论。

(1) 如果有整数足i, j 适合 $1 \leq i < j \leq m$ 并使得 $s_j \Rightarrow s_i \pmod{m}$,即 $m \mid (s_i - s_i)$.

由于
$$1 \leqslant (s_j - s_i) \leqslant s_m = 2m$$
,所以 $m \mid (s_j - s_i)$ 只能是 $s_j - s_i = m$,亦即 $a_{i+1} + \cdots + a_j = m$.

由此可见,把 $\{a_{i+1}, a_{i+2}, \dots, a_{j}\}$ 当成一组,余下的整数全归为另一组,那么这两组中数字之和将都是m;

- (2) 假如某一个 $s_i(i=1, 2, ..., m)$ 与 (a_1-a_m) 同余。即 $m|(s_i-a_1+a_m)$,这时再细分为三种情况。
 - (i) 如果 i=1, 就是 $m \mid a_n$, 但因 $1 \le a_m \le m$, 故只能是 $a_m = m$, 这时两组 數 $\{a_1, a_2, \dots, a_{m-1}\}, \{a_n\}$

有相同的和数;

(ii) 如果 i=m, 这时 $s_i-a_1+a_m=s_m-a_1+a_m=2m+a_m-a_1$, 而 m (2m+ a_m-a_1) 相当于 m (a_m-a_1),但因 $0 \le a_m-a_1 < a_n \le m$,故只能是 $a_m-a_1=0$,即 a_1-a_m ,由题设条件知

$$a_1 = a_2 = \cdots = a_m = 2$$

这时从中任取 $\frac{m}{2}$ 个数为一组。其余 $\frac{m}{2}$ 个数为另一组,显然这两组数的和相等;

(ii) 设 2≤i≤m-1, 于是

$$s_4 - a_1 + a_m = a_2 + \cdots + a_i + a_m$$

但因 $1 < a_2 + \cdots + a_i + a_m < s_m = 2m$, 故只能得

$$a_2 + \cdots + a_i + a_m = m$$

这时取 $\{a_2, \dots, a_n, a_m\}$ 为一组,其余各数归为另一组,显然这两组数符合题目的要求(证完)。

顺便指出,在本题中,即使 m 为一奇数,只要排除 $a_1 = a_2 = \cdots = a_m = 2$ 这一 极特殊的情况,本题的结论仍然是成立的。

23,移动 4次,共走过

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
 (格),

实际上,棋子所在的位置应是此数关于模?的余数.设

$$n = r \pmod{7}, \quad 0 \leqslant r \leqslant 6,$$

易证

$$\frac{n(n+1)}{2} = \frac{r(n+1)}{2} \pmod{7}.$$

对于r=0,1,2,...,6,直接算出停棋位置,可以发现正好不停在第 2,4,5 号格。

24. 容易知道, 如果 a_1 , a_2 , …, a_{2n+1} 具有题中所描述性质, 那么对任何整数 c, 数列

$$a_1+c$$
, a_2+c , ..., $a_{2n+1}+c$

以及

$$ca_1, ca_2, \cdots, ca_{2n+1}$$

也将具有题中所述性质.

不妨设数列 $a_1, a_2, \cdots, a_{2n+1}$ 巴按从小到大的顺序指列:

$$a_1 \leqslant a_2 \leqslant a_3 \leqslant \cdots \leqslant a_{2n+1}$$
,

由于它们都是存理数,用它们的分母的正的最小公倍数逾乘各项,得出的数列

$$b_1 \leqslant b_2 \leqslant b_3 \leqslant \cdots \leqslant b_{2n+1}$$

是一整数列,并具有同一性质、将(-bi)加到每一项上,又得到数列

$$0 \leqslant c_2 \leqslant c_3 \leqslant \cdots \leqslant c_{2n+1}$$

它仍是一整数列,还具有同一性质。可以证明,这时 62, 63, ···, 65,+1 必须全为 假数。因此,数列

$$0 \leqslant \frac{c_2}{2} \leqslant \frac{c_3}{2} \leqslant \dots \leqslant \frac{c_{2n+1}}{2}$$

为整数列,并且具有同一性质;再由此推得

$$0, \frac{c_3}{2}, \frac{c_3}{2}, \cdots, \frac{c_{2n+1}}{2};$$

$$0, \frac{c_2}{2^2}, \frac{c_8}{2^2}, \cdots, \frac{c_{2n+1}}{2^2}$$

都是偶数,这样反复推断下去,自然可知

$$c_2 = c_3 = \dots = c_{2n+1} = 0$$
.

于是

$$b_1 = b_2 = \cdots = b_{2n+1}$$

亦即

$$a_1 = a_2 = \cdots = a_{2n+1}$$
.

25. 若方程 $x^2 - 4y^2 = 3$ 有整数解(x, y), 那么

$$x^2 \equiv 3 \pmod{4}$$
.

显然, α 不能是偶数; 再由第 11 题, 任何奇数的平方关于模 4 与 1 同余, 故知 α 包不能是奇数, 这是矛盾的。

26. 若方程 x²+1=5y² 有整数解(x, y), 那么

$$x^2+1\equiv 0\pmod{3}.$$

上述同会式是不能被任何整数α所满足的。

27. 因为有恒等式

$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - yz - zx - xy)$$

于是,当x+y+z=0时,就有

$$x^3+y^3+z^3=3xyz$$
.

但 $x^3+y^3+z^3=-18$, 故 xyz=-6, 因此只能是如下六种情况:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{cases} 1 & 1 & 2 & 2 & -3 \\ -3 & -3 & 1 & 2 \\ 2 & -3 & 1 & 2 \end{cases}$$

28. 每一个圈的面积为 $\sigma\left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}\pi$, 66 个小圆的面积的总和为

$$66 \times \frac{1}{2} \pi = 33 \times \pi = 33 \times 3.1415 \dots > 33 \times 3.1 = 102.3.$$

这个数字大于正方形的面积 $10 \times 10 = 100$ 。 由面积的重选原则,知必有两个图有公共点。

29. 证明的思想方法和第八节中例 2 的证法完全相同。可用反证法、假若在大阀中放下 6 个小圆之后再也找不到放另外一个小圆的地方,那么 6 个 半 6 等于 1+1=2 的圆将完全盖住一个半径等于 6-1=5 的圆。这是不可能的,因为

$$6\pi \times 2^2 - 24\pi < 25\pi - \pi \times 5^2$$