

Open-Sampling Exploring Out-of-Distribution Data for Rebalancing Long-tailed Datasets

Hongxin Wei ¹ Lue Tao ² Renchunzi Xie ¹ Lei Feng ³ Bo An ¹

ICML 2022

In the literature, a popular direction in long-tailed learning is to re-balance the data distribution by data re-sampling.

Over-sampling repeats samples from under-presented classes, but it usually causes over-fitting to the minority classes.

To alleviate the over-fitting issue:

- synthesized novel samples to augment the minority classes(error-prone due to noise).
- [1] introduced unlabeled-in-distribution data + semi-supervised (require in-distribution data, but the cost is expensive).

Motivation -> out-of-distribution (OOD) data for long-tailed imbalanced learning

[1] Rethinking the value of labels for improving class-imbalanced learning. NeurIPS, 2020.

label space: $\mathcal{Y} = \{1, ..., K\}$

training data: $\mathcal{D}_{train} = \{(x_i, y_i)\}_{i=1}^N \in \mathcal{X} \times \mathcal{Y}$

source distribution: $P_s(X, Y)$

target distribution: $P_t(X, Y)$

same class conditional probability: $P_s(X|Y) = P_t(X|Y)$

class priors are different: $P_s(Y) \neq P_t(Y)$

an unlabeled auxiliary dataset: $\mathcal{D}_{\mathrm{out}}^{(x)} = \{\tilde{x}_i\}_{i=1}^M \in \mathcal{X}, M \gg N, \mathcal{D}_{\mathrm{out}} = \{(\tilde{x}_i, y_i)\}_{i=1}^M$

$$y^* = \underset{y \in \mathcal{Y}}{\arg \max} P(y|x) = \underset{y \in \mathcal{Y}}{\arg \max} P(x|y)P(y), \quad (1)$$

$$\underset{y \in \mathcal{Y}}{\arg\max} \ P_{\min}(\boldsymbol{x}|y) P_{\min}(y) = \underset{y \in \mathcal{Y}}{\arg\max} \ P_{\mathrm{s}}(\boldsymbol{x}|y) P_{\mathrm{s}}(y).$$

$$\begin{split} &P_{\text{mix}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{mix}}(\boldsymbol{y}) \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{y}) + \frac{M}{M+N}P_{\text{out}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{out}}(\boldsymbol{y}) \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{y}) + \frac{M}{M+N}P_{\text{out}}(\boldsymbol{x})P_{\text{out}}(\boldsymbol{y}) \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{y}) + \frac{M}{M+N}P_{\text{out}}(\boldsymbol{x})P_{\text{out}}(\boldsymbol{y}) \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{x},\boldsymbol{y}) + \frac{1}{K} \cdot \frac{M}{M+N}P_{\text{out}}(\boldsymbol{x}), \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{x},\boldsymbol{y}) + \frac{1}{K} \cdot \frac{M}{M+N}P_{\text{out}}(\boldsymbol{x}), \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{x},\boldsymbol{y}) + \frac{1}{M+N}P_{\text{out}}(\boldsymbol{x}), \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{x},\boldsymbol{y}) + \frac{1}{M+N}P_{\text{out}}(\boldsymbol{x}), \\ &= \frac{N}{M+N}P_{\text{s}}(\boldsymbol{x}|\boldsymbol{y})P_{\text{s}}(\boldsymbol{x},\boldsymbol{y}). \end{split}$$

motivates us to exploit the potential value of OOD instances to repair class imbalance.

Method

 $P_{mix}(Y)$ still remains largely imbalanced.

the trade-off between re-balancing the class priors and keeping the non-toxicity of the added noisy labels.

Complementary Distribution: a label distribution for the auxiliary dataset to re-balance the class priors of the original dataset.

Minimum Complementary Distribution(MCD): the smallest number of auxiliary instances.

We use instances from 300K Random Images as OOD data and label as a minority class—"9".

Simply adding OOD data into training may downgrade the generalization performance.

Proposition 2.3 (Complementary Sampling Rate). $\Gamma_j = (\alpha - \beta_j)/(K \cdot \alpha - 1)$, where $\beta_j = \frac{n_j}{\sum_{i=1}^K n_i}$. Then, (i) $\sum_{i=1}^K \Gamma_i = 1$; (ii) $\Gamma = \Gamma^m$ if $\alpha = \max_j(\beta_j)$; (iii) $\Gamma_j \to 1/K$ as $\alpha \to \infty$.

Issue: consume too much capacity of the network on fitting the open-set noisy labels, making it hard to converge. Especially, M >> N

$$\begin{split} \mathcal{L}_{\text{reg}} &= \mathbb{E}_{\widetilde{\boldsymbol{x}} \sim P_{\text{out}}(X)} \left[\omega_{\widetilde{\boldsymbol{y}}} \cdot \ell \left(f(\widetilde{\boldsymbol{x}}; \boldsymbol{\theta}), \widetilde{\boldsymbol{y}} \right) \right], \quad \widetilde{\boldsymbol{y}} \sim \Gamma, \ \omega_{\widetilde{\boldsymbol{y}}} &= \varGamma_{\widetilde{\boldsymbol{y}}} \cdot K \\ \mathcal{L}_{\text{total}} &= \mathbb{E}_{((\boldsymbol{x}, \boldsymbol{y}) \sim P_{\text{s}}(X, Y))} \left[\ell \left(f(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{y} \right) \right] \\ &+ \eta \cdot \mathbb{E}_{(\widetilde{\boldsymbol{x}}) \sim P_{\text{out}}(X)} \left[\omega_{\widetilde{\boldsymbol{y}}} \cdot \ell \left(f(\widetilde{\boldsymbol{x}}; \boldsymbol{\theta}), \widetilde{\boldsymbol{y}} \right) \right], \end{split}$$
$$\mathcal{L}_{\text{total}} &= \mathcal{L}_{\text{imb}} + \eta \cdot \mathcal{L}_{\text{reg}}. \end{split}$$

Algorithm 1 Open-sampling

Require: Training dataset $\mathcal{D}_{\text{train}}$. Open-set auxiliary dataset $\mathcal{D}_{\text{out}}^{(x)}$;

- 1: **for** each iteration **do**
- 2: Sample a mini-batch of original training samples $\{(x_i, y_i)\}_{i=0}^n$ from $\mathcal{D}_{\text{train}}$;
- 3: Sample a mini-batch of open-set instances $\{\widetilde{x}_i\}_{i=0}^m$ from $\mathcal{D}_{\text{out}}^{(x)}$;
- 4: Generate random noisy label $\widetilde{y}_i \sim \Gamma$ for each open-set instance \widetilde{x}_i ;
- 5: Perform gradient descent on f with \mathcal{L}_{total} from Equation (2);
- 6: end for

Experiments

Table 1. Test accuracy (%) of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100 with various imbalance ratios. "†" indicates the reported results from (Kim et al., 2020). The bold indicates the improved results by integrating our regularization.

Dataset	Long-tailed CIFAR-10			Long-tailed CIFAR-100		
Imbalance Ratio	100	50	10	100	50	10
Standard	71.61 ± 0.21	77.30 ± 0.13	86.74 ± 0.41	37.59 ± 0.19	43.20 ± 0.30	56.44 ± 0.12
SMOTE †	71.50 ± 0.57	-	85.70 ± 0.25	34.00 ± 0.33	-	53.80 ± 0.93
CB-RW	72.57 ± 1.30	78.19 ± 1.79	87.18 ± 0.95	38.11 ± 0.78	43.26 ± 0.87	56.40 ± 0.40
CB-Focal	70.91 ± 0.39	77.71 ± 0.57	86.89 ± 0.21	37.84 ± 0.80	42.96 ± 0.77	56.09 ± 0.15
Ours	$\textbf{77.62} \pm \textbf{0.28}$	$\textbf{81.76} \pm \textbf{0.51}$	$\textbf{89.38} \pm \textbf{0.46}$	40.26 ± 0.65	$\textbf{44.77} \pm \textbf{0.25}$	58.09 ± 0.29
LDAM-RW	74.21 ± 0.61	78.86 ± 0.65	86.44 ± 0.78	29.02 ± 0.34	36.41 ± 0.84	54.23 ± 0.72
+ Ours	$\textbf{75.19} \pm \textbf{0.34}$	$\textbf{79.76} \pm \textbf{0.44}$	$\textbf{87.28} \pm \textbf{0.61}$	35.85 ± 0.62	$\textbf{42.18} \pm \textbf{0.82}$	55.48 ± 0.59
LDAM-DRW	78.08 ± 0.38	81.88 ± 0.44	87.49 ± 0.18	42.84 ± 0.25	47.13 ± 0.28	57.18 ± 0.47
+ Ours	$\textbf{79.82} \pm \textbf{0.31}$	$\textbf{82.22} \pm \textbf{0.45}$	$\textbf{87.83} \pm \textbf{0.38}$	$\textbf{44.07} \pm \textbf{0.75}$	$\textbf{47.5} \pm \textbf{0.24}$	$\textbf{57.43} \pm \textbf{0.31}$
Balanced Softmax	78.03 ± 0.28	81.63 ± 0.39	88.10 ± 0.32	42.11 ± 0.70	46.79 ± 0.24	58.06 ± 0.40
+ Ours	79.05 ± 0.20	$\textbf{82.76} \pm \textbf{0.52}$	$\textbf{88.89} \pm \textbf{0.21}$	42.86 ± 0.27	$\textbf{47.28} \pm \textbf{0.58}$	$\textbf{58.80} \pm \textbf{0.72}$
SSP	74.58 ± 0.16	79.20 ± 0.43	88.50 ± 0.24	43.00 ± 0.51	47.04 ± 0.60	59.08 ± 0.46
+ Ours	79.38 ± 0.65	$\textbf{82.18} \pm \textbf{0.33}$	$\textbf{88.80} \pm \textbf{0.43}$	43.57 ± 0.29	48.66 ± 0.57	59.78 ± 0.91

Table 5. OOD detection performance comparison on long-tailed CIFAR-10. All values are percentages and are averaged over the ten test datasets described in Appendix E. "↑" indicates larger values are better, and "↓" indicates smaller values are better. Bold numbers are superior results. Detailed results for each OOD test dataset can be found in Appendix F.

Method	Test Accuracy ↑	FPR95↓	AUROC↑	AUPR ↑
MSP	71.83	56.1	75.2	32.71
OE	66.74	32.38	84.15	36.86
Ours	77.62	20.68	92.40	58.38
Ours ($\alpha = 5$)	75.16	22.13	94.26	75.91

$$\mathbb{E}_{(x,y)\sim\mathcal{D}_{\text{train}}}\left[-\log f_y(x)\right] + \lambda \mathbb{E}_{x\sim\mathcal{D}_{\text{out}}}\left[H(P(Y);f(x))\right]$$

Figure 3. Results of sensitivity analysis on long-tailed CIFAR-10 with various values for η .

Table 6. Results of ablation study on long-tailed CIFAR-10 for the class-dependent weighting factor w_j .

Imbalance Factor	100	50	10
Standard Ours w/o w_j Ours	71.61 76.57 77.62	77.30 81.18 81.76	86.74 88.57 89.38

Experiments

(d) Auxiliary dataset.

(b) Label distribution.

(e) Sample size.

(c) Alpha.

(f) Number of Classes.

100

50 Imbalanced ratio

Figure 5. t-SNE visualization of test set on long-tailed CIFAR-10 with imbalance ratio 100. We can observe that LDAM and our method appear to learn more separable representations than Standard training and the other algorithms.

南京航空航天大學

NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

Close set noise ratio: 0.4 Open set noise ratio: 0.2 Imbalance ratio: 50

Close samples: Open samples = 10116: 10000

Thank you