1.

(i) For all $n \in \mathbb{N}$ such that $n \ge 2$, $P(n) : 1^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Let n = 2. Clearly $1^2 + 2^2 = 5 = \frac{2*3*5}{6} = \frac{2*(2+1)*(2(2)+1)}{6}$, thus P(2). Now let n be some number such that $n \in \mathbb{N}$ and $n \ge 2$, and suppose P(n). Hence $1^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$. Observe that

$$1^{2} + \dots + (n+1)^{2} = (1^{2} + \dots + n^{2}) + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^{2}}{6}$$

$$= \frac{(n+1)\left(n(2n+1) + 6(n+1)\right)}{6}$$

$$= \frac{(n+1)\left(2n^{2} + 1n + 6n + 6\right)}{6}$$

$$= \frac{(n+1)\left(2n^{2} + 4n + 3n + 6\right)}{6}$$

$$= \frac{(n+1)\left(2n(n+2) + 3(n+2)\right)}{6}$$

$$= \frac{(n+1)\left(n+2\right)\left(2n+3\right)}{6}$$

$$= \frac{(n+1)\left((n+1) + 1\right)\left(2(n+1) + 1\right)}{6}.$$

Thus P(n+1). By induction, it follows that for all $n \in \mathbb{N}$ such that $n \geq 2$, $P(n): 1^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

(ii) For all $n \in \mathbb{N}$ such that $n \geq 2$, $P(n): 1^3 + ... + n^3 = (1 + ... + n)^2$. Proof.

Let n=2. Clearly, $1^3+2^3=9=(1+2)^2$. Thus P(2). Now let n be some number such that $n\in\mathbb{N}$ and $n\geq 2$, and suppose

P(n). Hence $1^3 + ... + n^3 = (1 + ... + n)^2$. Observe that

$$1^{3} + \dots + (n+1)^{3} = (1^{3} + \dots + n^{3}) + (n+1)^{3}$$

$$= (1 + \dots + n)^{2} + (n+1)^{3}$$

$$= \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2} + 4(n+1)^{3}}{4}$$

$$= \frac{(n+1)^{2}(n^{2} + 4(n+1))}{4}$$

$$= \frac{(n+1)^{2}(n^{2} + 2n + 2n + 4)}{4}$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{4}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^{2}$$

$$= \left(\frac{(n+1)((n+1)+1)}{2}\right)^{2}$$

$$= (1 + \dots + (n+1))^{2}.$$

Thus P(n+1). By induction, it follows that for all $n \in \mathbb{N}$ such that $n \ge 2$, $P(n): 1^3 + ... + n^3 = (1 + ... + n)^2$.