Practice Machine Learning Algorithm: Linear Regression

In [1]: import numpy as np import plotly.express as px import plotly.graph objects as go import matplotlib.pyplot as plt

The np.linspace function in NumPy is used to create an array of evenly spaced values over a specified range

Generates a set of y values based on a quadratic equation with some added noise.

Quadratic relationship with noise

In [3]: x= np.linspace(0,10,100) # Independent variable

4

2. Splitting the data into training and test sets

In [7]: plt.scatter(x_train, y_train, color = 'blue', label ='Training data') plt.scatter(x_test, y_test, color = 'red', label ='Test data')

train-test split each time the code is run

plt.title('Training and Testing Data split')

Training data

Test data

6

In [6]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size= 0.2, random_state = 42)

Training and Testing Data split

6

8.8888889, 2.62626263, 4.24242424, 6.96969697,

, 5.45454545, 4.34343434, 5.05050505,

Machine learning models typically expect the input feature data (x train) to be in a 2D array format where ea # a sample and each column is a feature. This means if you have 80 samples and 1 feature, the shape should be (

Х

1.51515152, 4.04040404, 9.6969697, 0.90909091, 7.27272727, 1.11111111, 4.74747475, 8.58585859, 2.82828283, 9.39393939, 0.50505051, 6.66666667, 6.56565657, 3.53535354, 1.61616162, 4.94949495, 3.43434343, 0.70707071, 9.5959596, 2.72727273, 1.91919192, 8.18181818, 2.52525253, 6.26262626, 1.31313131, $2.42424242, \quad 0.3030303 \ , \quad 1.71717172, \quad 3.83838384, \quad 0.80808081,$ 7.87878788, 0.60606061, 6.46464646, 3.63636364, 8.98989899,

6.76767677, 4.64646465, 6.86868687, 6.16161616, 9.7979798, 7.97979798, 4.14141414, 5.85858586, 4.84848485, 9.8989899, 5.75757576, 7.57575758, 3.23232323, 9.49494949, 5.95959596, 6.36363636, 8.48484848, 3.73737374, 2.92929293, 0.1010101 , 5.25252525, 2.12121212, 0.2020202, 2.32323232, 8.78787879, 9.19191919, 7.47474747, 8.68686869, 8.28282828, 2.02020202, 6.06060606, 7.17171717, 1.41414141, 9.29292929, 5.15151515])

On the other hand, the target data (y train) is expected to be a 1D array

array([51.8141829 , 94.97148613, 15.23362843, 13.66273427,

70.00522072, 10.17788193, 17.96054728, 123.2271306, 7.65970403, 86.10475065, 19.1106363, 44.55584428, 118.43343517, 31.81182439, 126.19430588, -8.00255127,

48.14246097, 58.78700647, 24.66827492, 22.40125395, 37.2185823 , 18.61862363, 1.10758902, 127.93605104, 13.74799621, 0.89991599, 100.49586818, -0.59099885,

6.04861122, 22.37507383, 2.0450485, 82.59613675, 11.68637545, 62.95985473, 36.43513821, 118.33249809,

49.63160422, 134.01989363, 45.8338802, 51.40347888, 31.7044508, 70.73230169, 23.00107405, 58.71193626, 52.85483059, 143.25305245, 88.17822316, 15.37537414, 45.5555649 , 21.9142814 , 128.95609164, 53.44712485, 73.27127466, 11.2670257 , 122.20257837, 49.76816022, 42.32395084, 112.3297212 , 37.20388215, 32.06222355, 4.31480543, 38.23854591, 17.39936318, 10.43425261, 4.94545519, 101.7912016, 124.29158671, 82.31950865, 113.31008936, 98.11035361, -15.3880759, 48.18815953, 74.23850781, 10.68085251, 116.3200725 , 45.86167879])

4. Model used to make predictions on the test data

6.88045795, 35.84722484, 23.40985027,

where each element corresponds to the target value of a sample, so its shape is (80,).

8

test_size=0.2: Specifies that 20% of the data should be used for testing and the remaining 80% for training

random state=42: Ensures reproducibility. The data is shuffled in a specific way to produce the same

10

10

Using np.random.seed(0) ensures that the random numbers generated using NumPy will be the same each time we r

In [2]: np.random.seed(0)

from sklearn.model selection import train test split from sklearn.linear model import LinearRegression

In [4]: y= 3*x+x**2+np.random.normal(0,10,100) # Dependent variable

plt.title('Quadratic relationship with noise')

Data with Noise

In [5]: plt.scatter(x, y, label='Data with Noise')

plt.xlabel('x') plt.ylabel('y')

plt.legend() plt.show()

140

120

100

80

60

40

20

0

plt.xlabel('x') plt.ylabel('y')

plt.legend() plt.show()

140

120

100

80

60

40

20

-20

In [8]: x_train # 1D array

Out[8]:

In [10]:

In [11]:

Out[11]:

Out[12]:

In [13]:

Out[13]:

Out[14]:

array([5.5555556,

5.65656566, 10.

3. Training the model

model= LinearRegression()

▼ LinearRegression

LinearRegression()

In [12]: x train.shape # 2d array

(80, 1)

(80,)

In [14]: y_train

model.fit(x_train, y_train)

y_train.shape # 1d array

49.87690367,

In [15]: x_test= x_test.reshape(-1,1)

array([[8.38383838],

[0.

In [16]: y_pred= model.predict(x test)

plt.xlabel('x') plt.ylabel('y')

plt.legend() plt.show()

100

80

60

40

20

0

-20

In [17]: | plt.scatter(x_test, y_test, color='blue', label='Actual')

2

In [18]: # Print shapes of the data to ensure correctness print("x_train shape:", x_train.shape) print("x_test shape:", x_test.shape) print("y_train shape:", y_train.shape) print("y_test shape:", y_test.shape)

> print("y test shape:", y test.shape) print("y_pred shape:", y_pred.shape)

Model coefficients: [13.34962728] Model intercept: -17.12238419162958

5. Results visualized using Plotly

x train shape: (80, 1) x test shape: (20, 1) y_train shape: (80,) y test shape: (20,)

 x_{test} shape: (20, 1) y_test shape: (20,) y pred shape: (20,)

In [19]: fig=go.Figure()

fig.show()

100

80

60

0

-20

In [20]:

4

Х

plt.title('Actual and Predicted test data')

Actual

Predicted

plt.scatter(x_test, y_pred, color='red', label='Predicted')

Actual and Predicted test data

[5.35353535], [7.07070707], [4.54545455], [4.4444444], [3.93939394], [2.2222222], [8.08080808], [1.01010101],

[1.81818182], [3.03030303], [7.37373737],[3.33333333], [9.09090909], [0.4040404], [7.67676768], [7.77777778],[1.21212121], [3.13131313])

x test

Out[15]:

In [9]: x_train= x_train.reshape(-1,1) # 1D converted to 2D array

-20

from sklearn.metrics import mean squared error, r2 score

1. Generate independent and dependent variables

print("Model coefficients:", model.coef) print("Model intercept:", model.intercept) # Displaying the results print("x_test shape:", x_test.shape)

fig.add_trace(go.Scatter(x= x_test.flatten(), y= y_test, mode= 'markers', name= 'Actual Data'))

fig.add_trace(go.Scatter(x= x_test.flatten(), y= y_pred, mode= 'lines', name= 'Linear regression line'))

fig.update layout(title ='Linear regression', xaxis title ='Independent variable(X)', yaxis title ='Dependent va

Actual Data

- Linear regression line

6

8

Linear regression

pendent variable(Y) 40 De 20

2 Independent variable(X) 6. Model Evaluation # Evaluate the model mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred)

Mean Squared Error: 256.9949119622545 R-squared: 0.7258608090887344

 Mean squared error gives you an idea of how well your model is performing in terms of prediction accuracy. Lower values of MSE • An R-squared value of 0.7258608090887344 indicates that approximately 72.59% of the variance in the actual values is explained by the model's predictions. This suggests that the model has a good fit, explaining a significant portion of the variance, but there is still

indicate better model performance.

print(f'Mean Squared Error: {mse}')

print(f'R-squared: {r2}')

Observation:

about 27.41% of the variance that is not explained by the model.