LUCRARE DE VERIFICARE LA MATEMATICI SPECIALE, FCIM, FR (Variantă în lucru)

"Funcția complexă de o variabilă complexă"

Problema 1.

1.
$$\ln(\sqrt{3}-i)$$
; 2. 1^{i} ; 3. $(1+i)^{\sqrt{2}}$; 4. $\ln\frac{1-i}{\sqrt{2}}$;

5.
$$\left(\frac{\sqrt{3}+i}{2}\right)^{l+i}$$
; 6. $\sin(1+i)$; 7. $e^{1+\frac{\pi}{2}i}$; 8. $\cos(2+i)$;

9.
$$(1-i)^{3-3i}$$
; 10. Arc sin i ; 11. Ln(-1- i); 12. $(-1)^{\sqrt{5}}$

13.
$$\operatorname{Arccos}\left(\frac{\pi^3}{3}\right)$$
; 14. $\ln(1-i)$; 15. $\operatorname{Arcth} \pi i$; 16. $\ln(-\sqrt{3}-i)$; 17. $\operatorname{Arctg}(1-i)$; 18. $\operatorname{Arcsh}(1-i)$;

16.
$$\ln(-\sqrt{3}-i)$$
; 17. $Arctg(1-i)$; 18. $Arcsh(1-i)$;

19. Arc sin 3; 20. sh
$$\left(1+\frac{\pi}{2}i\right)$$
; 21. ln 1ⁱ;

22. Arcch
$$\frac{\pi i}{2}$$
; 23. Arccos i ; 24. Arctg $\frac{i}{3}$;

25.
$$\ln(1+i)$$
; 26. $(1+i)^{i}$; 27. $\ln i^{\frac{1}{i}}$;

28.
$$\operatorname{Ln}\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)$$
; 29. Atcctg $\left(\sqrt{3+i}\right)$; 30. Arccos $(1+i)$.

Problema analiticitatea cerceteze se f(z)=u(x,y)+iv(x,y), unde z = x+iy, și să se calculeze $f'(z_0)$, dacă $1. u=3x^2y-y^3$, $v=3xy^2-x^3$, $z_0=-1+i$;

2.
$$f(z) = \frac{e^z}{z}$$
, $z_0 = 1 + i$;

3.
$$u=e^{x}(x\cos x - y\sin y), v=e^{x}(x\sin x + y\sin y), z_{0}=-1+\pi i;$$

4.
$$f(z)=(1+z) \cdot \text{Im}z^2$$
, $z_0=-1$;

5.
$$u=x^3-3xy^2+x^2-y^2$$
, $v=3x^2y-y^3+2xy$, $z_0=\frac{2}{3}i$;

6.
$$f(z) = 5e^{2z}$$
, $z_0 = I - i$;

7)
$$u = e^{l+y}\cos x$$
, $v = -e^{l+y}\sin x$, $z_0 = \frac{\pi}{2} + i$;

8.
$$f(z) = |z - 1|^2$$
, $z_0 = 1$;

9.
$$u=2xy-2x$$
, $v=y^2-2y-x^2+2$, $z_0=1$;
10. $f(z)=sh3z$, $z_0=2+i$;
11. $u=x^3-3xy^2+3x$, $v=3x^2y-y^3+3y+1$, $z_0=-1-i$;
12. $f(z)=ich3z$, $z_0=i$;
13. $u=e^{1+3y}\cos 3x$, $v=-e^{1+3y}\sin 3x$, $z_0=\frac{\pi}{3}+i$;
14. $f(z)=2\sin 2z$, $z_0=\frac{\pi}{8}i$;
15. $u=x^2+2x-y^2$ $v=2xy+2y$, $z_0=i$;
16. $f(z)=(z+1)\cdot \text{Rez}$, $z_0=-1$;

17.
$$u = e^{-1-y}\cos x$$
, $v = e^{-1-y}\sin x$, $z_0 = \pi - i$;
18. $f(z) = z\cos z$, $z_0 = \frac{\pi}{4}i$;
19. $u = e^{1-2x}\cos 2y$, $v = -e^{1-2x}\sin 2y$, $z_0 = \frac{\pi}{4}i$;
20. $f(z) = 2\cosh 2z$, $z_0 = 1+i$;
21. $u = e^{1+2y}\cos 2x$, $v = -e^{1+2y}\sin 2x$, $z_0 = \frac{\pi}{6}$;
22. $f(z) = z \cdot e^z$, $z_0 = 1 - i$;
23. $u = e^x \cos y + 1$, $v = e^x \sin y + 1$, $z_0 = 1 + \frac{\pi}{4}i$;
24. $f(z) = z^3 + 2z + 1$, $z_0 = 2 + 3i$;
25. $u = x$, $v = y$, $z_0 = 5 + 3i$;
26. $f(z) = zz$, $z_0 = 0$;
27. $u = 2e^x \cos y$, $v = 2e^x \sin y$, $z_0 = 2 - 3i$;
28. $f(z) = z^2 + 4iz$, $z_0 = 2 + i$;
29. $u = \frac{x}{x^2 + y^2}$, $v = -\frac{y}{x^2 + y^2}$, $z_0 = 2 - i$;
30. $f(z) = 2\sin z - z$, $z_0 = \frac{\pi}{3}i$.

Problema 3. Să se calculeze integrala

- 1. $\int_{AB} (1+i+4z)dz$, unde AB este segmentul de parabolă $y=x^2+1, x \in [0,2]$;
- 2. $\int_{L} (z^3 + z\overline{z})dz$, unde $\overline{z} = x iy$, L este semicircumferința |z| = 2, $0 \le \arg z \le \pi$;
- 3. $\int_{L} ze^{z} dz$, unde $\overline{z} = x iy$ și L este segmentul de dreaptă, ce unește punctele $z_1 = 0$, $z_2 = \pi i\pi$;
- 4. $\int_{1+i}^{3+i} (3z^2 + z + 5)dz$; 5. $\int_{0}^{2i} z \cos 2z dz$; 6. $\int_{i+1}^{i} (z+1)e^{iz} dz$
- 7. $\int_{L} z \operatorname{Re} z dz$, unde L este semicircumferința |z 1| = 1, $\operatorname{Im} z \ge 0$;
- 8. $\int_{L} \cos^2 z dz$, unde L este segmentul de dreaptă, ce unește

punctele
$$z_1 = \frac{\pi}{2}$$
, $z_2 = \pi + i$;

- 9. $\int_{1}^{i} (3z^5 + 2z^4) dz$; 10. $\int_{0}^{1+i} (z+i)e^z dz$; 11. $\int_{0}^{2+i} \sin z \cos z dz$;
- 12. $\int_{L} (z+i)shz dz$, unde L este circumferința |z-i|=1,
- 13. $\iint_L |z| \cdot z \, dz$, unde L este semicircumferința |z| = 2, Re $z \ge 0$.
- 14. $\iint_L z \cdot \operatorname{Im} z^2 dz$, unde L este semicircumferința |z-2| = 2, $\operatorname{Im} z \ge 0$;

- 15. $\int_{L} (z + shz)dz$, unde L este circumferință |z+i| = 1.
- 16. $\int_{L} (\cos iz + chz) dz$, unde L este linia poligonală ce unește punctele $z_1 = 0$, $z_2 = 2$, $z_3 = 2+i$;
- 17. $\int_{L} z^{-2} dz$, unde L este segmentul de dreaptă ce unește punctele $z_1 = 1$, $z_2 = 2+2i$;
- 18. $\int_{L} (5z^3 + 4z + 3)dz$, unde L este segmentul de parabolă $y = 2x^2$, ce unește punctele $z_1 = 0$, $z_2 = 1 + 2i$;
- 19. $\int_{L} z \cdot z dz$, unde $\overline{z} = x iy$, iar L este circumferință |z+1| = 2.
- |z+1| = 2.20. $\int_{0}^{1-i} (z+i)e^{-z}dz; 21. \int_{-1}^{\frac{\pi}{i}} \sin^{2}zdz; 22. \int_{-1}^{\frac{\pi}{4}i} z\sin z dz;$
- 23. $\int_{L} (\cos iz + ze^{-z}) dz$, unde L este arcul de circumferință $|z| = 2, \text{Im} z \ge 0, \text{Rez} \ge 0;$
- 24. $\int_{L} (\sin iz + z^2) dz$, unde L este linia poligonală, ce unește punctele $z_1 = 0$, $z_2 = 2$, $z_3 = 3+i$;
- 25. $\int_{L} (\cos z)^2 \sin z dz$, unde L este segmentul de dreaptă, ce unește punctele $z_1 = \frac{\pi}{4} + i$, $z_2 = \frac{\pi}{4} i$;

26.
$$\int_{L} \sin z \cdot dz$$
, unde $z = x - iy$ şi L este arcul de parabolă $y = x^2$, ce unește punctele $z_1 = 1 + i$, $z_2 = -1 + i$;

27.
$$\int_{1-i}^{1+i} ze^z dz$$
; 28. $\int_{L} \sin iz \cdot dz$; 29. $\int_{0}^{\frac{\pi}{2}+i} \cos iz \cdot dz$;

30.
$$\int_{L} z \operatorname{Im} z^{2} dz$$
, unde conturul L este mulțimea punctelor

Rez = 1, $|\text{Im}z| \le 1$ **Problema 4.** Să se dezvolte funcția f(z) în seria Laurent în vecinătatea punctului z_0 și să se afle domeniul de convergență al acestei serii.

$$1. f(z) = (z+i)^{2} \cdot e^{\frac{1}{z}}, z_{0} = 0; \qquad 2. f(z) = \frac{1}{(z-2)(z+3)}, z_{0} = 0;$$

$$3. f(z) = \frac{1}{(z+2)}, z_{0} = i; \qquad 4. f(z) = \frac{1}{z(1-z)}, \quad z_{0} = 1;$$

$$5. f(z) = \frac{1}{(z^{2}+1)}, z_{0} = 0; \qquad 6. f(z) = \frac{1}{z^{2}+z}, \quad z_{0} = i;$$

$$7. f(z) = z^{2} \cos \frac{1}{z-2}, z_{0} = 2; \qquad 8. f(z) = \frac{1}{3z-4}, z_{0} = 2i;$$

$$9. f(z) = ze^{\frac{1}{z-1}}, z_{0} = 1; \qquad 10. f(z) = \frac{z^{2}-1}{z^{2}+1}, z_{0} = i;$$

$$11. f(z) = \sin \frac{z}{1+z}, z_{0} = -1; \qquad 12. f(z) = \frac{1}{z(z-5)}, z_{0} = 2;$$

$$13. f(z) = \frac{z+i}{z^{2}}, z_{0} = -1; \qquad 14. f(z) = \frac{1}{(z+1)^{2}(z+2)}, z_{0} = -i;$$

$$15. f(z) = \frac{1}{(z^{2}+1)(z^{2}+2)}, z_{0} = 0;$$

$$16. f(z) = z \sin \frac{z+1}{z}, z_{0} = 0; \qquad 17. f(z) = \frac{1}{z(z+1)}, z_{0} = i;$$

$$18. f(z) = \frac{z}{(z-1)(z+2)}, z_{0} = 2;$$

$$19. f(z) = \frac{1}{z^2 - 4}, \quad z_0 = 1; \qquad 20. f(z) = \frac{1}{z^2 + 4}, \qquad z_0 = 2i;$$

$$21. f(z) = \frac{\cos z}{z^2}, \quad z_0 = 0; \qquad 22. f(z) = \frac{1}{3z + 5}, \qquad z_0 = 1;$$

$$23. f(z) = \sin \frac{z + 1}{z - 1}, z_0 = 1; \qquad 24. f(z) = \frac{z}{1 + z^2}, z_0 = -i;$$

25.
$$f(z) = ze^{\frac{1}{1+z}}$$
, $z_0 = -1$; 26. $f(z) = \frac{1}{z^2 + 9}$, $z_0 = 0$;
27. $f(z) = \cos \frac{z-1}{z+i}$, $z_0 = -i$; 28. $f(z) = \frac{1}{z^2 - z}$, $z_0 = 1$;
29. $f(z) = \frac{1}{(z-2)^2(z-1)}$, $z_0 = 2$; 30. $f(z) = \frac{\sin z}{(z-1)^2}$, $z_0 = 1$;

Problema 5. Să se aplice teoremele Cauchy la calcularea următoarelor integrale (orientarea conturului L se consideră pozitivă):

1.
$$\oint_{L} \frac{\sin \pi(z+1)}{z^{2}-2z+2} dz$$
, unde L: $|z-1-i|=2$;
2. $\oint_{L} \frac{e^{z}}{z^{2}(z+1)} dz$, unde L: $|z|=2$;
3. $\oint_{L} \frac{e^{z}}{z^{4}-z^{2}-2} dz$, unde L: $|z+i|=1$;
4. $\oint_{L} \frac{\cos z}{z^{2}-4} dz$, unde L: $\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$;
5. $\oint_{L} \frac{dz}{z^{3}+1}$, unde L: $x^{2}+y^{2}+2x=0$;
6. $\oint_{L} \frac{\sin \pi z}{(z^{2}-1)^{2}} dz$, unde L: $x^{2}+y^{2}-2x=0$;

7.
$$\oint_L \frac{dz}{(z-1)^n (z-2)},$$

8.
$$\oint_L z^3 \sin \frac{1}{z} dz$$
, unde L: $|z-i| = 2$;

7.
$$\oint \frac{dz}{(z-1)^n(z-2)}$$
, unde L: $|z| = \frac{3}{2}$, $n \in \mathbb{N}$;

unde L:
$$|z-i| = 2$$
;

9.
$$\oint_{L} \frac{z-1}{z^2+z-2} dz$$
, unde L: $|z+2|=4$;

10.
$$\oint \frac{zdz}{z^3 + 8},$$

11.
$$\oint_L \frac{dz}{(z-1)^2(z^2+1)}$$
, unde L: $|z-1-i|=2$;

12.
$$\oint_{L} \frac{\sin z \cdot \sin(z+1)}{z^2 - z} dz$$
, unde L: $|z| = 3$;

13.
$$\oint_L \frac{dz}{(z^2+4)(z+4)}$$
, unde L: $|z-i|=4$;

14.
$$\oint_L \frac{\sin(z+\pi i)}{z(e^z+1)} dz$$
, unde L: $|z|=4$;

15.
$$\oint \frac{shz}{z^4-1}dz$$
,

16.
$$\oint_{L} \frac{ch(z+1)}{z^2+1} dz$$
,

17.
$$\oint_{L} \frac{e^{z} \cos \pi z}{z^{2} - 2z} dz$$

18.
$$\oint_{L} \frac{chzdz}{(z+1)^2(z-1)},$$

unde L:
$$|z+2| = 4$$
;

10.
$$\oint \frac{zdz}{z^3 + 8}$$
, unde L: $|z-1-i\sqrt{3}| = 2,5$;

unde L:
$$|z-1-i| = 2$$

unde L:
$$|z| = 3$$
;

unde L:
$$|z-i| = 4$$

unde L:
$$|z| = 4$$
;

unde L:
$$|z-1|=1,5$$
;

unde L:
$$x^2 + \frac{y^2}{4} = 1$$
;

unde L:
$$|z| = 3$$
;

unde L:
$$|z| = 2$$
;

19.
$$\oint_{L} \frac{zshz}{(z^2+1)^2} dz$$
, | 1 about

unde L:
$$|z+i| = 1,5$$
;

20.
$$\oint_L \frac{e^{iz}}{(z^2-1)^2} dz$$
, unde L: $|z-1|=1$;

unde L:
$$|z-1|=1$$
;

21.
$$\oint \frac{dz}{(z^2+2)^3(z^2-1)}$$
,

unde L:
$$|z| = 1,5$$
;

22.
$$\oint ctg(\pi z)dz$$
,

unde L:
$$|z + i| = \sqrt{2}$$
;

23.
$$\oint_L \sin \frac{1}{z} dz$$

unde L:
$$|z-i| = 2$$
;

24.
$$\oint_{L} \left(\sin \frac{1}{z^2} + \frac{1}{z^3} e^{z^2} \right) dz$$
,

unde L:
$$|z-1-i|=2$$
;

25.
$$\oint_L (z-1)e^{\frac{1}{z}}dz$$
,

unde L:
$$|z + 1| = 2$$
;

$$26. \oint_{L} \frac{e^{iz}}{(z-\pi)^3} dz,$$

unde L:
$$|z| = 4$$
;

$$27. \oint_{L} \frac{ctg\pi z}{z^2 - \frac{\pi^2}{4}} dz,$$

unde L:
$$|z-1| = 0.8$$
;

28.
$$\oint_{L} \frac{e^{z} ch z dz}{(z^{2}-9)^{3} (e^{z}+1)^{2}}$$

unde L:
$$|z + i \cdot \frac{\pi}{2}| = 2;$$

29.
$$\oint \frac{e^z}{z(z-1)^2} dz$$
,

unde L:
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
;

30.
$$\oint_{L} \frac{z \, dz}{\sin^2 z \cos z},$$

unde L:
$$|z-1| = 2$$
.

"Calculul operațional"

Problema 1. Să se restabilească originalul după imaginea lui:

1.
$$F(p) = \frac{1}{p^3 + 8}$$
;

1.
$$F(p) = \frac{1}{p^3 + 8}$$
; 2. $F(p) = \frac{p+2}{p^2 - 4p + 7}$;

3.
$$F(p) = \frac{e^{-3p}}{(p+1)^2}$$
;

4.
$$F(p) = \frac{1}{(p^2 - 1)^2 (p^2 + 2p + 2)};$$

5.F(p) =
$$\frac{p}{(p^2+1)(p^2+2)}$$
; 6. F(p) = $\frac{1}{(p^2+2)^2}$;

6.
$$F(p) = \frac{1}{(p^2 + 2)^2}$$
;

7.
$$F(p) = \frac{p}{(p-1)(p^2+4)};$$
 8. $F(p) = \frac{p^2}{p^4+4p^2+3};$

8.
$$F(p) = \frac{p^2}{p^4 + 4p^2 + 3}$$

9.
$$F(p) = \frac{1}{p^2(p^2+9)}$$
; 10. $F(p) = \frac{p}{p^3-1}$;

10.
$$F(p) = \frac{p}{p^3 - 1}$$
;

11.
$$F(p) = \frac{2p}{p^2 - 1}e^{-p}$$
; 12. $F(p) = \frac{p^3}{p^4 - 1}$;

12.
$$F(p) = \frac{p^3}{p^4 - 1}$$

13.
$$F(p) = \frac{p}{(p + 1)(p + 2)^2}$$
;

13.
$$F(p) = \frac{p}{(p+1)(p+2)^2}$$
; 14. $F(p) = \frac{p+1}{(p-3)^3(p-1)^3}$;

15.
$$F(p) = \frac{p^2}{p^4 + 4p^2 + 3}$$
;

15.
$$F(p) = \frac{p^2}{p^4 + 4p^2 + 3}$$
; 16. $F(p) = \frac{1}{(p-1)^2(p^2 - 9)}$;

17.
$$F(p) = \frac{p^2 + 2}{(p+3)(p^2 - 1)};$$
 18. $F(p) = \frac{13p + 1}{p(p-1)^2(p+2)};$

18.
$$F(p) = \frac{13p+1}{p(p-1)^2(p+2)}$$
;

19.
$$F(p) = \frac{p+4}{(p^3-1)}$$
;

20.
$$F(p) = \frac{1}{p^2} \sin \frac{1}{p}$$
;

21.
$$F(p) = \frac{e^p}{p^2} + \frac{5e^{-3p}}{p^2 + 2};$$
 22. $F(p) = \frac{1}{p}\cos\frac{1}{p};$

23.
$$F(p) = \frac{p^3 + 2p^2 + 3}{p^5 + 2p^4 + p^3};$$
 24. $F(p) = \frac{p}{(p^2 - 1)^2};$

25.
$$F(p) = \frac{p^2 + p + 1}{p^3 - 3p^2 + 3p - 1};$$
 26. $F(p) = \frac{1}{p^2(p^2 + 1)};$

27.
$$F(p) = \frac{p-3}{(p+1)^2(p^2-2p)};$$
 28. $F(p) = \frac{p^2}{(p^2+1)^2};$

29.
$$F(p) = \frac{1}{p^4 - 5p^2 + 6}$$
; 30. $F(p) = \frac{e^{-\frac{p}{3}}}{p(p^2 + 2)}$.

Problema 2. Să se afle soluția particulară a ecuației diferențiale cu condițiile inițiale indicate:

1.
$$x''' + x'' = \sin t$$
, $x(0) = 1$, $x'(0) = 1$, $x''(0) = 0$.

2.
$$x'' + 2x' = \cos t$$
, $x(0) = x'(0) = 0$.

3.
$$x'''-x''+x'=4$$
, $x(0)=1, x'(0)=2, x''(0)=-2$.

4.
$$x'' + 2x' - 3x = e^{-x}$$
, $x(0) = 0, x'(0) = 1$.

5.
$$x''' + x'' = 1$$
, $x(0) = x'(0) = 0$, $x''(0) = 1$.

6.
$$x''-x'=te^{t}$$
, $x(0)=0, x'(0)=-1$.

7.
$$x'''-x' = \cos t$$
, $x(0) = 1, x'(0) = x''(0) = 0$.

8.
$$x''-2x'+3x = t - \sin t$$
, $x(0) = 1, x'(0) = 0$.

9.
$$x''+9x = \cos 3t$$
, $x(0) = x'(0) = 0$.

10.
$$x'' + 3x' + x = 1 + t + t^2$$
, $x(0) = 0, x'(0) = 2$.

11.
$$x'' + 2x' + x = \sin t$$
, $x(0) = x'(0) = 1$.

12.
$$x''-3x'-4x = 10 \sin t$$
, $x(0) = 0, x'(0) = 1$.

13.
$$x'' + 2x' + x = 9 e^{2t}$$
, $x(0) = x'(0) = 0$.

14.
$$x''+16x = e^{-t}$$
, $x(0) = 0$, $x'(0) = 1$.

15.
$$x'''-3x''+3x'-x=5(1+5t)$$
, $x(0)=x'(0)=x''(0)=0$.

16.
$$x''-3x'+2x = 2(3+2t)$$
, $x(0) = -1$, $x'(0) = 1$.

17.
$$x''' + x'' = 2t^2$$
, $x(0) = -3$, $x'(0) = 1$, $x''(0) = 0$.

18.
$$x''-2x' = t \sin t$$
,

19.
$$x'''-x'=1-t$$
,

20.
$$x'''-x''=t e^{t}$$
,

21.
$$x''+4x = \sin\frac{3}{2}t\cos\frac{t}{2}$$
,

22.
$$x'''+3x'-4x=0$$
,

23.
$$x'' + 2\alpha x' + (\alpha^2 + \beta^2) = 0$$
,

24.
$$x'''+x'=e^{2t}$$
,

25.
$$x''-x'+x=te^{t}$$
,

26.
$$x'''+x=t^2e^t$$
,

27.
$$x''-x = t \cos 2t$$
,

28.
$$x'''-2x''+x'=4$$
,

29.
$$x''+4x' = 2\cos t \cos 3t$$
,

30.
$$x''' + x' = t e^{t} + \sin t$$
,

$$x(0) = 0, x(0) = -1.$$

$$x(0) = 0$$
, $x'(0) = 1$, $x''(0) = -1$.

$$x(0) = 1, x'(0) = -1 = x''(0).$$

$$x(0) = 1, x'(0) = 0.$$

$$x(0) = x'(0) = 0, x''(0) = 2.$$

$$x(0) = 0, x'(0) = 1.$$

$$x(0) = x''(0) = 0, x'(0) = 1.$$

$$x(0) = 0, x'(0) = 2.$$

$$x(0) = x'(0) = x''(0) = 0.$$

$$x(0) = 1, x'(0) = 0.$$

$$x(0) = x'(0) = 1, x''(0) = 2.$$

$$x(0) = x'(0) = 1.$$

$$x(0) = x'(0) = 0, x''(0) = 1.$$

Problema 3. Să se rezolve sistemul de ecuații diferențiale liniare cu condițiile inițiale indicate:

1.
$$\begin{cases} x_t' = y - z, \\ y_t' = x + y, \\ z_t' = x + y, \end{cases}$$

2.
$$\begin{cases} x_{t}' + y_{t}' - y = e^{t}, \\ 2x_{t}' + y_{t}' - 2y = 2\cos t, \end{cases}$$

3.
$$\begin{cases} x_{t}' = -x + y + z, \\ y_{t}' = x - y + z, \\ z_{t}' = x + y - z, \end{cases}$$

4.
$$\begin{cases} x_{t}' + y_{t}' = 0, \\ x_{t}' + 2y_{t}' + x = 0, \end{cases}$$

$$x(0) = 1, y(0) = 2, z(0) = 3.$$

$$x(0) = 1, y(0) = -1.$$

$$x(0) = y(0) = 1, z(0) = -1.$$

$$x(0) = 1, y(0) = -1.$$

5.
$$\begin{cases} x_{t}' = -2x - 2y - 4z, \\ y_{t}' = -2x + y - 2z, \\ z_{t}' = x + y + 2z, \end{cases}$$
6.
$$\begin{cases} x_{t}' + x + 2y = 2t, \\ -2x_{t}' + y_{t}' - y = e^{t}, \end{cases}$$

6.
$$\begin{cases} x_{t}' + x + 2y = 2t, \\ -2x_{t}' + y_{t}' - y = e^{t}, \end{cases}$$

7.
$$\begin{cases} x_{t}' + y - z = 0, \\ y_{t}' - z = 0, \\ x + z - z_{t}' = 0, \end{cases}$$
8.
$$\begin{cases} x_{t}' + y = 0, \\ y_{t}' - 2x - 2y = 0, \end{cases}$$

8.
$$\begin{cases} x_{t}' + y = 0, \\ y_{t}' - 2x - 2y = 0, \end{cases}$$

9.
$$\begin{cases} x_t' - x + 2y = 3, \\ 3x_t' + y_t' - 4x + 2y = 0, \end{cases}$$

10.
$$\begin{cases} x_t' = y + z, & 1 = (0)u, \\ y_t' = x + y, \\ z_t' = x - z, & = (0)u. \end{cases}$$

11.
$$\begin{cases} x_{t}' + 7x - 2y = 0, \\ y_{t}' + 2x - 5y = 0, \end{cases}$$

12.
$$\begin{cases} x_{t}' = x + z, \\ y_{t}' - x = 0, \\ z_{t}' = x + y - z, \end{cases} = (0)x.$$

13.
$$\begin{cases} x_t' = x - y, \\ y_t' = 2x + 2y, \end{cases}$$

$$x(0) = y(0) = 1$$
, $z(0) = -1$.

$$x(0) = y(0) = 1.$$

$$x(0) = 1$$
, $y(0) = 2$, $z(0) = 3$.

$$x(0) = 1$$
, $y(0) = -1$.

$$x(0) = y(0) = 1.$$

$$x(0) = y(0) = z(0) = 1$$

$$x(0) = 0, y(0) = 0.$$

$$x(0) = 1, y(0) = -1, z(0) = 2.$$

$$x(0) = 1, y(0) = -1.$$

14.
$$\begin{cases} x \ ' = 2x - 2y + 4z, \\ y \ ' = -2x + y + 2z, \\ z \ ' = 3x + y + 2z, \end{cases}$$

15.
$$\begin{cases} x_{t'} - x - 2y = t, \\ 2x + 2y_{t'} - 3y = t, \end{cases}$$

$$x(0) = y(0) = z(0) = 0.$$

$$x(0) = 3$$
, $y(0) = 2$.

16.
$$\begin{cases} x_{t}' + 2x + y = 1, \\ x_{t}' + 4y_{t}' + 3y = 0, \end{cases}$$
17.
$$\begin{cases} x_{t}' + y = 2x + z, \\ y_{t}' = x + z, \\ z_{t}' + 2z = y - 3x, \end{cases}$$

17.
$$\begin{cases} x_{t}' + y = 2x + z, \\ y_{t}' = x + z, \\ z_{t}' + 2z = y - 3x, \end{cases}$$

18.
$$\begin{cases} x_t' + y_t' + y = e^t, \\ 2x + y_t' + 2y = \sin t, \end{cases}$$

19.
$$\begin{cases} x_{t}' + y + z = 0, \\ y_{t}' + x + z = 0, \\ z_{t}' + x - y = 0, \end{cases}$$

20.
$$\begin{cases} x + x_{i}' = y + e^{t}, \\ y + y_{i}' = x + e^{t}, \\ x_{i}' = y + z, \end{cases}$$

21.
$$\begin{cases} y_{t'}' = 3x + z, \\ z_{t'}' = 3y + x, \end{cases}$$

22.
$$\begin{cases} x_{t}' - 2x + 2y = 1 + 2t, \\ y_{t}' + 2x + y = 0, \end{cases} \qquad x(0) = y(0) = 0.$$

23.
$$\begin{cases} x_{t}' = 2x + y + z, \\ y_{t}' = x - z, \\ z_{t}' = 3x - y + 2z, \end{cases}$$

$$x(0) = y(0) = 0.$$

$$x(0) = 0$$
, $y(0) = z(0) = 0$

$$x(0) = y(0) = 0.$$

$$x(0) = -1, y(0) = 0, z(0) = 1.$$

$$x(0) = 0, y(0) = 1.$$

$$x(0) = y(0) = 0, z(0) = 1.$$

$$x(0) = y(0) = 0.$$

$$x(0) = y(0) = 1, z(0) = 0.$$

24.
$$\begin{cases} x \ ' = 3y + x, \\ y \ ' = x + y + e^{t}, \end{cases} \qquad x(0) = 0, y(0) = 1.$$

$$x(0) = 0$$
, $y(0) = 1$.

25.
$$\begin{cases} x_{t}' = x - y + z + t, \\ y_{t}' = x + y - z + t^{2}, \\ z_{t}' = x + y + z, \end{cases} \qquad x(1) = y(1) = z(1) = 0.$$

$$x(1) = y(1) = z(1) = 0.$$

26.
$$\begin{cases} x_{t}' + y_{t}' + x = e^{t}, \\ y_{t}' + 2x + y = 1, \end{cases} \qquad x(0) = 1, y(0) = 0.$$

$$x(0) = 1, y(0) = 0.$$

27.
$$\begin{cases} 3x_{t}' = 2x + y - z, \\ 2y_{t}' = x + 2y + z, \\ 6z_{t}' = x - y - z, \end{cases}$$

$$x(1) = y(1) = z(1) = 1.$$

28.
$$\begin{cases} x_{t}' = 3y - x + 1, \\ y_{t}' = x + y + e^{t}, \end{cases}$$

$$x(0) = 1, y(0) = -1.$$

29.
$$\begin{cases} x \ ' = y - z + 1, \\ y \ ' = 2x + y + 2z, \\ z \ ' = x + y + z + 4, \end{cases}$$

$$x(0) = y(0) = z(0) = 0.$$

29.
$$\begin{cases} x_{t}' = y - z + 1, \\ y_{t}' = 2x + y + 2z, \\ z_{t}' = x + y + z + 4, \end{cases}$$
30.
$$\begin{cases} 3x_{t}' + 2x + y_{t}' = 1, \\ x_{t}' + 4y_{t}' + 5y = 0, \end{cases}$$

$$x(0) = 1, y(0) = -1.$$