Max-flow min-cut

LEO and BOSS

June 2022

Contents

1	Definitions: Directed graphs, flows and cuts 1.1 Directed graph	2
2	Lemma 77	4
3	Lemma 81 3.1 Definitions: Residual network	7
4	Lemma 'extra'	10
5	Ford-Fulkerson	11
1	Definitions: Directed graphs, flows and cuts	

1.1 Directed graph

Definition 1.1. A pair of the form (V, E), where

- \bullet V is a set, and
- $E \subset V \times V$, such that $(u, v) \in E \implies (v, u) \notin E$

is called a *directed graph*.

1.2 Flows

Definition 1.2. Suppose G = (V, E) is a directed graph and $f : V \times V \to \mathbf{R}$ a function that vanishes on $(V \times V) \setminus E$. Then, we define the functions $\operatorname{In}_f : \mathcal{P}(V) \to \mathbf{R}$ and $\operatorname{Out}_f : \mathcal{P}(V) \to \mathbf{R}$ as follows:

$$\begin{split} &\operatorname{In}_f(S) = \sum \{f[(u,v)]: (u,v) \in (V \backslash S) \times S\}, \text{ and} \\ &\operatorname{Out}_f(S) = \sum \{f[(u,v)]: (u,v) \in S \times (V \backslash S)\}. \end{split}$$

Definition 1.3. Let G = (V, E) be a directed graph. A function $c: V \times V \to \mathbb{R}_{\geq 0}$ that satisfies

- c(e) > 0 if $e \in E$, and
- c(e) = 0 otherwise

is called a *capacity function on* G.

Definition 1.4. The quintuple (V, E, c, s, t) is called a *flow network* if G = (V, E) is a directed graph, $c : V \times V \to \mathbf{R}_{\geq 0}$ is a capacity function on G and $s, t \in V$ are distinct.

Definition 1.5. Suppose N = (V, E, c, s, t) is a flow network. If $f : E \to \mathbf{R}$ is such that

- $e \in E \implies f(e) \ge 0$,
- $e \in E \implies f(e) \le c(e)$, and
- $v \in V \setminus \{s, t\} \implies \operatorname{In}_{f}(\{v\}) = \operatorname{Out}_{f}(\{v\})$

it is called a *flow on* N.

Definition 1.6. The sextuple A = (V, E, c, s, t, f) is called an *active flow network* if N = (V, E, c, s, t) is a flow network and f is a flow on N.

Definition 1.7. Let ActiveFlows_N denote the set of active flows on N = (V, E, c, s, t). Define the function F-value : ActiveFlows_N \rightarrow **R** as F-value(A) = Out_f(s) – In_f(s), where A = (V, E, c, s, t, f) is an active flow.

1.3 Cuts

Definition 1.8. Let N = (V, E, c, s, t) be a flow network. A tuple (S, T) is called an s-t-cut of N if

- $S \cup T = V$,
- $S \cap T = \emptyset$.

• $s \in S$ and $t \in T$.

Definition 1.9. Let Cuts_N denote the set of s-t- cuts of N = (V, E, c, s, t). The function $c_{\mathsf{Cuts}} : \mathsf{Cuts}_N \to \mathbf{R}_{\geq 0}$ is defined as

$$c_{\mathsf{Cuts}}[(S,T)] = \mathsf{Out}_c(S).$$

The value of an s-t-cut (S,T) is defined as $c_{\mathsf{Cuts}}[(S,T)]$.

2 Lemma 77

Lemma 1. For an active flow A=(V,E,c,s,t,f) and $S\subset V\setminus\{s,t\}$, we have that $\operatorname{In}_f(S)-\operatorname{Out}_f(S)=\sum\{\operatorname{In}_f(\{u\})-\operatorname{Out}_f(\{u\}):u\in S\}.$

Proof. First, we note the following:

$$\begin{split} & \operatorname{In}_f(S) + \sum \{f(u,v) : (u,v) \in S \times S\} \\ & = \sum \{f(u,v) : (u,v) \in (V \backslash S) \times S\} + \sum \{f(u,v) : (u,v) \in S \times S\} \\ & = \sum \{f(u,v) : (u,v) \in (V \backslash S) \times S\} \sqcup \{f(u,v) : (u,v) \in S \times S\} \\ & = \sum \{f(u,v) : (u,v) \in (V \backslash S) \times S \cup (S \times S)\} \\ & = \sum \{f(u,v) : (u,v) \in V \times S\} \end{split}$$

and similarly:

$$\begin{split} & \mathsf{Out}_f(S) + \sum \{f(u,v) : (u,v) \in S \times S\} \\ &= \sum \{f(u,v) : (u,v) \in S \times (V \backslash S)\} + \sum \{f(u,v) : (u,v) \in S \times S\} \\ &= \sum \{f(u,v) : (u,v) \in S \times (V \backslash S)\} \sqcup \{f(u,v) : (u,v) \in S \times S\} \\ &= \sum \{f(u,v) : (u,v) \in S \times (V \backslash S) \cup (S \times S)\} \\ &= \sum \{f(u,v) : (u,v) \in S \times V\} \\ &= \sum \{f(v,u) : (v,u) \in S \times V\}. \end{split}$$

We thus obtain that

$$\begin{split} & \operatorname{In}_f(S) - \operatorname{Out}_f(S) = \operatorname{In}_f(S) - \operatorname{Out}_f(S) + \sum \{f(u,v) : (u,v) \in S \times S\} \\ & - \sum \{f(u,v) : (u,v) \in S \times S\} \\ & = \sum \{f(u,v) : (u,v) \in V \times S\} - \sum \{f(v,u) : (v,u) \in S \times V\} \\ & = \sum_{v \in S} \left(\sum \{f(u,v) : u \in V\} - \sum \{f(v,u) : u \in V\}\right) \\ & = \sum_{v \in S} (\operatorname{In}_f(\{v\}) - \operatorname{Out}_f(\{v\})) \\ & = \sum_{v \in S} 0. \end{split}$$

Lemma 2. Suppose that A = (V, E, c, s, t, f) is an active flow. Let $S \subset V \setminus \{s, t\}$. Then $In_f(S) = Out_f(S)$.

Not so formal proof. Consider the difference $In_f(S) - Out_f(S)$ and notice that it may equivalently be rewritten as

$$\sum \{ In_f(\{u\}) - Out_f(\{u\}) : u \in S \};$$
 (1)

indeed, if $u, v \in S$ and $(u, v) \in E$, then, in (1), the terms f(u, v) and f(v, u) cancel, and so we are left with $In_f(S) - Out_f(S)$. Since (1) evaluates to 0, per definition, the statement follows.

Lemma 3. Suppose that A = (V, E, c, s, t, f) is an active flow and let $S, T \subset V$ be disjoint. Then the following equality holds:

$$\operatorname{Out}_f(S \cup T) - \operatorname{In}_f(S \cup T) = \operatorname{Out}_f(S) + \operatorname{Out}(T) - \operatorname{In}_f(S) - \operatorname{In}_f(T).$$

Proof. We have the following chain of equalities:

$$\begin{aligned} & \mathsf{Out}_f(S \cup T) + \sum \{f(u,v) : (u,v) \in S \times T\} + \sum \{f(u,v) : (u,v) \in T \times S\} \\ &= \sum \{f(u,v) : (u,v) \in (S \cup T) \times V \setminus (S \cup T)\} + \sum \{f(u,v) : (u,v) \in S \times T\} \\ &+ \sum \{f(u,v) : (u,v) \in T \times S\} \\ &= \sum \{f(u,v) : (u,v) \in (S \times V \setminus (S \cup T)) \cup (T \times V \setminus (S \cup T))\} \\ &+ \sum \{f(u,v) : (u,v) \in S \times T\} + \sum \{f(u,v) : (u,v) \in T \times S\} \\ &= \sum \{f(u,v) : (u,v) \in S \times V \setminus (S \cup T)\} + \sum \{f(u,v) : (u,v) \in T \times V \setminus (S \cup T)\} \\ &+ \sum \{f(u,v) : (u,v) \in S \times T\} + \sum \{f(u,v) : (u,v) \in T \times S\} \\ &= \sum \{f(u,v) : (u,v) \in (S \times V \setminus (S \cup T)) \cup (S \times T)\} \\ &+ \sum \{f(u,v) : (u,v) \in (S \times V \setminus (S \cup T)) \cup (S \times T)\} \\ &+ \sum \{f(u,v) : (u,v) \in S \times V \setminus S\} + \sum \{f(u,v) : (u,v) \in T \times V \setminus T\} \\ &= \mathsf{Out}_f(S) + \mathsf{Out}_f(T). \end{aligned}$$

Analagously we obtain

$$\begin{split} & \operatorname{In}_f(S \cup T) + \sum \{f(u,v) : (u,v) \in S \times T\} + \sum \{f(u,v) : (u,v) \in T \times S\} \\ = & \operatorname{In}_f(S) + \operatorname{In}_f(T). \end{split}$$

We thus obtain that

$$\operatorname{Out}_f(S \cup T) - \operatorname{In}_f(S \cup T) = \operatorname{Out}_f(S) + \operatorname{Out}_f(T) - \operatorname{In}_f(S) - \operatorname{In}_f(T).$$

Lemma 4. Suppose that A = (V, E, c, s, t, f) is an active flow and let $S \subset V$. Then $\operatorname{Out}_f(S) = \operatorname{In}_f(V \setminus S)$.

Proof. By definition we have that

$$\begin{split} \mathrm{Out}_f(S) &= \sum \{f(u,v) : (u,v) \in S \times V \backslash S\} \\ &= \sum \{f(v,u) : (u,v) \in V \backslash S \times S\} \\ &= \mathrm{In}_f(V \backslash S). \end{split}$$

Följdsats 2.1. Let A, S be as in the above lemma. Then $In_f(S) = Out_f(V \setminus T)$.

Lemma 5. Suppose that A = (V, E, c, s, t, f) is an active flow and let (S, T) be an s-t-cut thereof. Then the following equality holds:

$$\operatorname{Out}_f(\{s\}) - \operatorname{In}_f(\{s\}) = \operatorname{Out}_f(S) - \operatorname{In}_f(S).$$

Proof. By lemma 4 we have that

$$\operatorname{Out}_f(S \setminus \{s\}) = \operatorname{In}_f(T \cup \{s\}) \tag{2}$$

and by följdsats 2.1 we have that

$$In_f(S \setminus \{s\}) = Out_f(T \cup \{s\}). \tag{3}$$

By considering 2 - 3, using lemma 1, lemma 3 (since $\{s\} \cap T = \emptyset$ as $s \in S$, with $S \cap T = \emptyset$) and lemma 4 (in that order) we obtain the following chain of equalities:

$$\begin{split} 0 &= \mathsf{Out}_f(S \backslash \{s\}) - \mathsf{In}_f(S \backslash \{s\}) \\ &= \mathsf{In}_f(T \cup \{s\}) - \mathsf{Out}_f(T \cup \{s\}) \\ &= \mathsf{In}_f(T) + \mathsf{In}_f(\{s\}) - \mathsf{Out}_f(T) - \mathsf{Out}_f(\{s\}) \\ &= \mathsf{Out}_f(S) + \mathsf{In}_f(\{s\}) - \mathsf{In}_f(S) - \mathsf{Out}_f(\{s\}) \end{split}$$

which rearranges to the desired expression.

Lemma 6. Suppose that A = (V, E, c, s, t, f) is an active flow and $S \subset T$. Then $\operatorname{Out}_f(S) \leq \operatorname{Out}_c(S)$.

Proof. By definition we have the following:

$$\begin{aligned} \mathsf{Out}_f(S) &= \sum \{ f(u,v) : (u,v) \in S \times (V \backslash S) \} \\ &\leq \sum \{ c(u,v) : (u,v) \in S \times (V \backslash S) \} \\ &= \mathsf{Out}_c(S). \end{aligned}$$

////

////

Not so formal proof. From lemma 5, we realize that F-value(A) = $Out_f(S) - In_f(S)$. By trivial inequality and then lemma 6, we obtain

$$\operatorname{Out}_f(S) - \operatorname{In}_f(S) \le \operatorname{Out}_f(S) \le \operatorname{Out}_c(S) = c(S, T)$$

as desired.

Definition 2.1. A: ActiveFlows is maximal if $\forall A'$: ActiveFlows $(A'.Flow network = A.Network <math>\rightarrow$ F-value $(A') \leq$ F-value(A)).

Definition 2.2. C: Cuts is minimal if $\forall C':$ Cuts $(C'.Network = C.Network \rightarrow c_{\text{Cuts}}(C') \geq c_{\text{Cuts}}(C)).$

Superlemma 1. Let A = (V, E, c, s, t, f) be an active flow and C be an s-t-cut of N = (V, E, c, s, t). If $C_{\text{Cuts}}(C) = \text{F-value}(A)$, then A is maximal and C is minimal.

Not so formal proof. Let A' be an active flow. By lemma 7, we have that $\mathsf{F}\text{-value}(A') \le c_{\mathsf{Cuts}}(C)$, which can be rewritten as $\mathsf{F}\text{-value}(A') \le \mathsf{F}\text{-value}(A)$. Next, if we let C' be some cut, then lemma 7 yield $\mathsf{F}\text{-value}(A) \le c_{\mathsf{Cuts}}(C')$, which can be rewritten as $c_{\mathsf{Cuts}}(C) \le c_{\mathsf{Cuts}}(C')$.

3 Lemma 81

3.1 Definitions: Residual network

Definition 3.1. Directed multigraph

Definition 3.2. *Path in a multigraph*

Definition 3.3. For a path p in a weighted directed multigraph, we define ω_p as the smallest weight in p.

Definition 3.4. Suppose that A = (V, E, c, s, t, f) is an active flow. Define the function $c_f : E \to \mathbf{R}$ as follows:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), & \text{if } (u,v) \in E \\ f(v,u), & \text{if } (v,u) \in E \\ 0, & \text{otherwise.} \end{cases}$$

Next, form the set

$$E' = \{(u,v) : c_f(u,v) \neq 0\}.$$

The triple $A_f = (V, E', c_f, s, t)$ is called the residual network of A.

¹ Some overloading required; a flow A is maximal if for any other active flow A' = (V, E, c, s, t, f'), we have F-value $(f) \ge F$ -value(f').

Definition 3.5. Let $A_f = (V, E', c_f, s, t)$ be the residual network of A, then the tuple (V, E') is a multigraph. A path in (V, E'), from s to t, is called an *augmenting path in* A_f .

Definition 3.6. Suppose that A_f is a residual network and p an augmenting path thereof.

Definition 3.7. Suppose that $A_f = (V, E', c_f, s, t)$ is the residual network of A. Furthermore, let p be an augmenting path in A_f . We then define

$$f_{\text{NEW}}(u,v) = \begin{cases} f(u,v) + \omega_p, & (u,v) \in E \land (u,v) \in E(p). \\ f(u,v) - \omega_p, & (u,v) \in E \land (v,u) \in E(p) \\ f(u,v), & (u,v) \in E \land (v,u), (u,v) \notin E(p) \\ 0, & \text{else.} \end{cases}$$

Lemma 8 (Non-negative). Let A = (V, E, c, s, t, f) be an active flow. Then $\forall u, v \in V : f_{NEW}(u, v) \geq 0$.

Proof. Since $\omega_p > 0$, all cases of edges (u, v), but the one saying $(u, v) \in E \land (v, u) \in E(p)$, are trivial. We therefore consider such an edge.

From the assumption, we conclude that $c_f(v, u) = f(u, v)$. By the minimality of ω_p , we have that $m_p \le f(u, v)$ and so $0 \le f(u, v) - \omega_p$.

Lemma 9 (No-overflow). Let A = (V, E, c, s, t, f) be an active flow. Then $\forall u, v \in V : f_{NEW}(u, v) \leq c(u, v)$.

Proof. Since $\omega_p > 0$, all cases of edges (u, v), but the one saying $(u, v) \in E \land (u, v) \in E(p)$, are trivial. We therefore consider such an edge.

From the assumption, we conclude that $c_f(u, v) = c(u, v) - f(u, v)$. By the minimality of ω_p , we have that $m_p \le c(u, v) - f(u, v)$ and so $f(u, v) + \omega_p \le c(u, v)$.

Lemma 10. Suppose that $v \in V \setminus \{s, t\}$ and $(u, v) \in E(p)$ and $(v, w) \in E(p)$. Then, if $(u, v) \in E \land (v, w) \in E$, we have

Lemma 11. Suppose that $v \in V \setminus \{s, t\}$ and $(u, v) \in E(p)$ and $(v, w) \in E(p)$. Then, if $(u, v) \notin E \land (v, w) \in E$, we have

•
$$\operatorname{Out}_{f_{NEW}}(v) = \operatorname{Out}_{f}(v) + f_{NEW}(u, v) - f(u, v)$$

 $[\]bullet \ \operatorname{Out}_{f_{\mathit{NEW}}}(v) = \operatorname{Out}_f(v) + f_{\mathit{NEW}}(u,v) - f\left(u,v\right)$

 $[\]bullet \ \operatorname{In}_{f_{\operatorname{NEW}}}(v) = q \operatorname{In}_f(v) + f_{\operatorname{NEW}}(v,w) - f(v,w)$

• $\operatorname{In}_{f_{NEW}}(v) = \operatorname{In}_{f}(v)$

Lemma 12 (Conservation of flow). Let A = (V, E, c, s, t, f) be an active flow. Then $\forall u \in V \setminus \{s, t\} : \operatorname{In}_{f_{NEW}}(u) = \operatorname{Out}_{f_{NEW}}(u)$.

Proof. Suppose that $v \in V \setminus \{s, t\}$ and $(u, v) \in E(p)$ and $(v, w) \in E(p)$. We distinguish and prove the assertion for four cases:

• $(u, v) \in E \land (v, w) \in E$: Then

$$\begin{split} \mathsf{Out}_{f_{\mathsf{NEW}}}(v) - \mathsf{In}_{f_{\mathsf{NEW}}}(v) = & (\mathsf{Out}_f(v) + f_{\mathsf{NEW}}(u,v) - f(u,v)) \\ & - (\mathsf{In}_f(v) + f_{\mathsf{NEW}}(v,w) - f(v,w)) \\ = & (\mathsf{Out}_f(v) + \omega_p) - (\mathsf{In}_f(v) + \omega_p) \\ & = & \mathsf{Out}_f(v) - \mathsf{In}_f(v) \\ = & 0. \end{split}$$

• $(u, v) \notin E \land (v, w) \in E$: Then

$$\begin{aligned} \operatorname{Out}_{f_{\operatorname{NEW}}}(v) - \operatorname{In}_{f_{\operatorname{NEW}}}(v) &= (\operatorname{Out}_f(v) + f_{\operatorname{NEW}}(v,u) - f(v,u) + f_{\operatorname{NEW}}(v,w) - f(v,w)) - \operatorname{In}_f(v) \\ &= \operatorname{Out}_f(v) - (\operatorname{In}_f(v) - \omega_p + \omega_p) \\ &= \operatorname{Out}_f(v) - \operatorname{In}_f(v) \\ &= 0. \end{aligned}$$

• $(u, v) \in E \land (v, w) \notin E$: Then

$$\begin{split} \mathsf{Out}_{f_{\mathsf{NEW}}}(v) - \mathsf{In}_{f_{\mathsf{NEW}}}(v) = & \mathsf{Out}_f(v) \\ & - (\mathsf{In}_f(v) + f_{\mathsf{NEW}}(u,v) - f(u,v) + f_{\mathsf{NEW}}(v,w) - f(v,w)) \\ = & \mathsf{Out}_f(v) - (\mathsf{In}_f(v) + \omega_p - \omega_p) \\ = & \mathsf{Out}_f(v) - \mathsf{In}_f(v) \\ = & \mathsf{0}. \end{split}$$

• $(u, v) \notin E \land (v, w) \notin E$: Then

$$\begin{split} \mathsf{Out}_{f_{\mathsf{NEW}}}(v) - \mathsf{In}_{f_{\mathsf{NEW}}}(v) &= (\mathsf{Out}_f(v) + f_{\mathsf{NEW}}(u,v) - f(u,v)) \\ &- (\mathsf{In}_f(v) + f_{\mathsf{NEW}}(v,w) - f(v,w)) \\ &= (\mathsf{Out}_f(v) - \omega_p) - (\mathsf{In}_f(v) - \omega_p) \\ &= \mathsf{Out}_f(v) - \mathsf{In}_f(v) \\ &= 0. \end{split}$$

Superlemma 2. Let A be an active flow and A_f its residual network. If there is an augmenting path in A_f , then A is not maximal².

Följdsats 3.1. Let A be an active flow and A_f its residual network. If A is maximal, then A_f contains no augmenting path.

Proof. This is the contraposition of superlemma 2.

////

4 Lemma 'extra'

Lemma 13. Let A = (V, E, c, s, t, f) be an active flow that does not contain an augmenting path. If $S := \{u \in V : \exists path \ from \ s \ to \ u\}$ and $T := V \setminus S$. Then (S, T) is an s-t-cut.

Lemma 14. Let A, S and T be as in lemma 13. Then $(u, v) \notin A_f(E)$ (here $A_f(E)$ denotes the edge set of the residual network of A).

Lemma 15. Let A = (V, E, c, s, t, f) be an active flow that does not contain an augmenting path and (S, T) a cut thereof such that $(u, v) \in S \times T \implies (u, v) \notin A_f$. Then $(u, v) \in S \times T \implies c_f(u, v) = 0$.

Lemma 16. Let A = (V, E, c, s, t, f) be an active flow that does not contain an augmenting path. Suppose that $A, B \subset V$ are disjoint and satisfy $(u, v) \in A \times B \implies c_f(u, v) = 0$. Then the following holds

(a)
$$(u, v) \in A \times B \implies f(u, v) = c(u, v)$$
, and

(b)
$$(u, v) \in B \times A \implies f(u, v) = 0$$
.

Lemma 17. Let A = (V, E, c, s, t, f) be an active flow that does not contain an augmenting path and (S, T) a cut thereof that satisfies $(u, v) \in T \times S \implies f(u, v) = 0$. Then F-value $(A) = Out_f(S)$.

Superlemma 3. Let A = (V, E, c, s, t, f) be an active flow that does not contain an augmenting path. Then there is an s-t-cut C such that F-value(A) = c(C).

Not so formal-proof. Define $S = \{u : \exists \text{augmenting path from } s \text{ to } u\}$ and $T = V \setminus S$. Since A contains no augmenting path, T must be non-empty. By the choice of S, we must have that $(u, v) \in S \times T \implies f(u, v) = c(u, v)$. By lemma 2 we have that

$$\operatorname{F-value}(A) = \sum \{f(u,v): (u,v) \in S \times T\},$$

which can then be rewritten as

$$\begin{aligned} \text{F-value}(A) &= \sum \{c(u,v) : (u,v) \in S \times T\} \\ &= c_{\text{Cuts}}(S,T). \end{aligned}$$

²Maximal with respect to F-value.

5 Ford-Fulkerson

```
Sats 1. Let A = (V, E, c, s, t, f) be an active flow. Then the following are equivalent:
```

- (i) A is maximal.
- (ii) A_f contains no augmenting path.
- (iii) There is an s-t-cut on N=(V,E,c,s,t) such that $c_{\text{cuts}}([(S,T)])=\text{F-value}(A)$.

Proof. The statement $(i) \implies (ii)$ is the contraposition of superlemma (2). $(ii) \implies (iii)$ follows from superlemma 3 and $(iii) \implies (i)$ from superlemma 1.