DISCLAIMER

Questo è un file che contiene una lista di tutti i teoremi, osservazioni, definizioni, esempi, lemmi, corollari, formule e proposizioni senza alcuna dimostrazione, di conseguenza molte informazioni risulteranno essere senza alcun contesto se già non si conosce la materia. Detto questo, buona

Coefficienti binomiali

Definizione 1

- Coefficiente binomiale
 - 0! := 1

•
$$n, k \in \mathbb{N}$$

• $\binom{n}{k} := \begin{cases} \frac{n!}{n!(n-k)!} & k \leq n \\ 0 & k > n \end{cases}$

Teorema 1

• Hp
$$-n, k \in \mathbb{N}$$
• Th
$$-\binom{n}{k} = \binom{n}{n-k}$$

Teorema 2

- Hp $-n, k \in \mathbb{N}$

-
$$n, k \in \mathbb{N}$$

- $\binom{n}{k+1} = \binom{n-1}{k+1} \binom{n-1}{k}$

Teorema 3

• Hp

$$\begin{array}{l} - \mathbf{p} \\ - p \in \mathbb{P} \\ - k \in \mathbb{N} \mid 0 < k < p \end{array}$$

• Th
$$-p \binom{p}{k}$$

- Hp
 - $-n \in \mathbb{Z}$ $-p \in \mathbb{P} : p \mid n$ $-[a] \in \mathbb{Z}_p$

• Th
$$- n \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

• Hp
$$\begin{array}{ccc} & & & & \\ & -n \in \mathbb{Z} \\ & -p \in \mathbb{P} : p \mid n \\ & -[a] \in \mathbb{Z}_p \\ & -k \in \mathbb{N} \mid 0 < k < p \end{array}$$
• Th
$$- \binom{p}{k} \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

Teorema 6

• Hp
$$-p \in \mathbb{P}$$
 $-[a], [b] \in \mathbb{Z}_p$
• Th $-([a] + [b])^p = [a]^p + [b]^p \text{ in } \mathbb{Z}_p$

Teorema 7

• Hp
$$- p \in \mathbb{P} \\
- [a_1], \dots, [a_n] \in \mathbb{Z}_p$$
• Th
$$- ([a_1] + \dots + [a_n])^p = [a_1]^p + \dots + [a_n]^p \text{ in } \mathbb{Z}_p$$

Gruppi diedrali

Definizione 2

- Gruppo diedrale
 - $n \in \mathbb{N}_{\geq 2}$
 - D_n è l'insieme delle simmetrie dell'n-gono regolare
 - l'insieme delle rotazioni che lasciano l'n-gono invariato, e delle riflessioni rispetto agli assi di simmetria

 - $\rho :=$ rotazione di $\frac{360\tilde{r}}{n}$ gradi di un n-gono regolare $\sigma_i :=$ riflessione rispetto all'i-esimo asse di simmetria dell'n-gono regolare

- Hp
 - $-n \in \mathbb{N}_{\geq 2}$
 - $-D_n$ insieme delle simmetrie dell'*n*-gono regolare
- Th

$$-|D_n| = 2n$$

 $-n \in \mathbb{N}_{\geq 2}$

 $-\ D_n$ insieme delle simmetrie dell'
 n-gono regolare

- · è l'operazione di composizione delle simmetrie

• Th

 $-(D_n,\cdot)$ è un gruppo

Teorema 10

• Hp

 $-D_2$ gruppo diedrale

- (D_2,\cdot) è l'unico gruppo diedrale abeliano

Teorema 11

 $-D_n$ gruppo diedrale

• Th

 $-D_n \hookrightarrow S_n$

 $- \ \exists X \subset S_n$ sottogruppo di $S_n \mid D_n \cong X$ $* D_3 \cong S_3$

Definizione 3

• Gruppo di Klein

•
$$K_4 := \{1, a, b, c\}$$

• $a^2 = b^2 = c^2 = 1$

• ab = c = ba

• ac = b = ca

• cb = a = bc

Teorema 12

 $-K_4$ è il gruppo di Klein

• Th

 $-K_4 \cong D_2$

Gruppi

Definizione 4

• Semigruppo

- S insieme
- $m: S \times S \rightarrow S$
- (S, m) semigruppo $\iff \forall x, y, z \in S \quad m(x, m(y, z)) = m(m(x, y), z)$

• Monoide

- S insieme
- $m: S \times S \rightarrow S$
- (S,m) monoide \iff (S,m) semigruppo e $\forall x \in S \ \exists e \in S \mid m(x,e) = m(e,x) = x$

• Gruppo

- \bullet S insieme
- $m: S \times S \rightarrow S$
- (S,m) gruppo \iff (S,m) monoide e $\forall x \in S \ \exists x^{-1} \in S \mid m(x,x^{-1}) = m(x^{-1},x) = e$

• Gruppo abeliano

- \bullet S insieme
- $m: S \times S \rightarrow S$
- (S,m) gruppo abeliano $\iff (S,m)$ gruppo e $\forall x,y \in S \quad m(x,y) = m(y,x)$

Teorema 13

- Hp
 - G monoide
 - $\ \exists e \in G$ elemento neutro
- Th
 - e è unico in G

Teorema 14

- Hp
 - -(G,m) gruppo
 - $-x \in G$
 - $-\exists x^{-1} \in G$ inverso di x rispetto ad m
- Th
 - $-x^{-1}$ è unico in G per x rispetto a m

Teorema 15

- Hp
 - -X, Y insiemi, $-Y^X = \{f \mid f: X \to Y\}$
- Th
 - $-(X^X, \circ)$ è monoide

- Hp
 - -X,Y insiemi finiti

• Th $- |Y^X| = |Y|^{|X|}$

Anelli

Definizione 5

- Anello
 - A insieme
 - $\bullet \ \ +: A \times A \to A$
 - $\bullet \ \ *: A \times A \to A$
 - (A, +, *) anello \iff (A, +) gruppo abeliano, (A, *) monoide e $\forall a, b, c \in A$ a*(b+c) = a*b+a*c
 - $a*b=b*a \quad \forall a,b\in A \implies (A,*,+)$ è un anello commutativo
- Campo
 - (A, +, *) anello
 - (A, +, *) è un **campo** $\iff \forall x \in A \quad \exists x^{-1}$ rispetto a *
- Semianello commutativo
 - \bullet A insieme
 - $\bullet \ \ +: A \times A \to A$
 - $\bullet \ \ *: A \times A \to A$
 - (A, +, *) semianello commutativo \iff (A, +) monide commutativo, (A, *) monoide commutativo e $\forall a, b, c \in A$ a * (b + c) = a * b + a * c
- Sottoanello
 - $(A, +, \cdot)$ anello
 - $(B, +, \cdot) \subset (A, +, \cdot)$ sottoanello $\iff (B, +) \subset (A, +)$ sottogruppo e $B \cdot B \subset B$

Definizione 6

- Invertibili
 - $(A, +, \cdot)$ anello commutativo
 - $a \in A$ invertibile $\iff \exists a^{-1} \in A \mid a \cdot a^{-1} = e$, dove e è l'elemento neutro dell'anello rispetto a \cdot
 - $A^* := \{a \in A \mid a \text{ invertibile}\}$ è l'insieme degli invertibili di A

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)$ è un gruppo

- Hp
 - $(A, +, \cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)\subset (A,\cdot)$ è un sottogruppo

Definizione 7

- Divisori dello 0
 - $(A, +, \cdot)$ anello commutativo
 - $a \in A$ divisore dello $0 \iff \exists b \in A \{0\} \mid a \cdot b = 0$
- Dominio di integrità
 - $(A, +, \cdot)$ anello commutativo
 - A dominio di integrità $\iff \nexists x : x \mid 0$, oltre a x = 0
 - alternativamente, A è dominio di integrità \iff in A vale la legge di annullamento del prodotto

Teorema 19

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-x \mid 0 \iff x \notin A^*$

Teorema 20

- Hp
 - A campo
- Th
 - A dominio di integrità

Definizione 8

- Elementi irriducibili
 - \bullet A anello commutativo
 - $a \in A \{0\} \mid a \in A^*$
 - a irriducibile $\iff \exists b,c \in A \mid a=bc \implies b \in A^* \lor c \in A^*$
- Elementi primi
 - A anello commutativo
 - $a \in A \{0\} \mid a \in A^*$
 - $a \text{ primo} \iff \exists b, c \in A : a \mid bc \implies a \mid b \lor a \mid c$

- Hp
 - A dominio di integrità

• Th

-a primo $\implies a$ irriducibile

Sottogruppi

Definizione 9

- Sottogruppo
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo $\iff \exists e \in H \mid e \text{ è l'elemento neutro}, \ H*H \subset H$ $e \exists x^{-1} \in H \quad \forall x \in H$

Definizione 10

- Sottogruppo normale
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo
 - $x \in G$
 - $xH := \{xh \mid h \in H\}$
 - $Hx := \{hx \mid h \in H\}$
 - H sottogruppo normale $\iff xH = Hx \quad \forall x \in G$

Teorema 22

- Hp
 - 1) H è sottogruppo normale

 - 2) $\forall g \in G, h \in H$ $g \cdot h \cdot g^{-1} \in H$ 3) $\forall g \in G, h \in H$ $\exists k \in H \mid g \cdot h = k \cdot g$
- Th
 - le tre formulazioni sono equivalenti

Ordine

Definizione 11

- Ordine di un elemento in un gruppo
 - \bullet G gruppo
 - g ∈ G
 - $H(q) := \{q^n \mid n \in \mathbb{Z}\}$ è detto sottogruppo ciclico
 - prende il nome di sottogruppo ciclico poiché, a seconda del gruppo, le potenze di g possono essere infinite o finite, ma quest'ultimo caso si verifica esclusivamente quando le potenze ciclano su loro stesse
 - o(g) := |H(g)| è detto **ordine di** $g \in G$

 $-\,$ tale valore può dunque essere infinito o finito, e in quest'ultimo caso l'ordine costituisce il valore più piccolo, non nullo, per cui $g^{o(g)}=e,$ poiché per valori maggiori le potenze ricicleranno infinitamente

Teorema 23

Hp

 G gruppo
 g ∈ G

 Th

 (H(g),·) ⊂ (G,·) è sottogruppo

Teorema 24

• Hp $-G \text{ gruppo} \\ -g \in G \\ -I(g) := \{n \in \mathbb{Z} \mid g^n = e\}$ • Th -I(g) è un ideale

Teorema 25

• **Hp** -G gruppo $-g \in G$ $-\exists! d \ge 0 \mid I(g) = I(d)$ • **Th** $-d = 0 \implies o(g) := |H(g)| = |\mathbb{Z}|, \text{ dunque infinito}$ $-d > 0 \implies d = o(g)$

Teorema 26

• **Hp** -G gruppo finito $-g \in G \mid d := o(g) \text{ finito}$ • **Th** $-g^{|G|} = e$

Teorema 27

• Hp $-G \text{ gruppo finito} \\ -g \in G$ • Th $-o(g) = o(g^{-1})$

Teorema 28

• Hp

```
- \ G \ {\rm gruppo} \ {\rm finito} - \ k \in \mathbb{Z} 
 • Th - \ \forall g \in G \quad o(g^k) \mid o(g)
```

• **Hp** -G gruppo finito $-g,h \in G \mid gh = hg$ -d := MCD(o(g),o(h)) -m := mcm(o(g),o(h))• **Th** $-\frac{m}{d} \mid o(gh) \wedge o(gh) \mid m$

Teorema 30

• **Hp** $-G \text{ gruppo finito} \\ -g, h \in G \mid gh = hg \\ -d := \text{MCD}(o(g), o(h)) = 1 \\ -m := \text{mcm}(o(g), o(h))$ • **Th** -o(gh) = o(hg) = m

Ideali

Definizione 12

- Ideali
 - $(A, +, \cdot)$ anello
 - $I\subset A$ ideale \iff $(I,+)\subset (A,+)$ è un sottogruppo e $A\cdot I\subset I$ e $I\cdot A\subset I$

Teorema 31

- Hp $(A, +, \cdot) \text{ anello}$ $a \in \mathbb{Z}$ $I(a) := \{ax \mid x \in A\}$
- Th
 - I(a) è un ideale, e prende il nome di ideale di A generato da $a \in A$

Teorema 32

- A dominio di integrità - $a, b \in A$

• Th
$$-I(a) = I(b) \iff \exists c \in A^* \mid a = bc$$

Hp

 a, b ∈ Z − {0}

 Th

 I(a) = I(b) ⇐⇒ a = ±b

Teorema 34

Hp

 - (A, +, ·) anello
 - a₁,..., a_n ∈ Z
 - I(a₁,...,a_n) := {a₁b₁ + ... + a_nb_n | b₁,...,b_n ∈ A}

 Th

 I(a₁,...,a_n) è un ideale, e prende il nome di *ideale di A generato dagli a*₁,..., a_n ∈ A

Definizione 13

- Congruenza modulo di un ideale
 - $(A, +, \cdot)$ anello
 - $I \subset A$ ideale
 - per definizione, I ideale \Longrightarrow $(I,+) \subset (A,+)$ sottogruppo, dunque ha senso definire A/I, e infatti I induce una relazione di equivalenza su A detta **congruenza modulo** I, dove $\forall a,b \in A$ $a \equiv b \pmod{I} \iff b-a \in I$
 - $b-a \in I \iff (-a)+b \in I$, di conseguenza questa congruenza coincide con la classe laterale sinistra di (A,+)

Teorema 35

Teorema 36

• Hp $-I\subset\mathbb{Z} \text{ ideale}$ • Th $-\exists !\ d\in\mathbb{N}\mid I=I(d), \text{ o equivalentemente, in }\mathbb{Z} \text{ ogni ideale è principale}$

Teorema 37

• Hp

$$-a_1, \dots, a_n \in \mathbb{Z}$$

$$-\exists! d \in \mathbb{N} \mid I(a_1, \dots, a_n) = I(d)$$
• Th
$$-d = \mathrm{MCD}(a_1, \dots, a_n)$$

Definizione 14

- Massimo Comun Divisore
 - $a_1,\ldots,a_n\in\mathbb{Z}$
 - $\exists ! d \in \mathbb{N} \mid I(a_1, \dots, a_n) = I(d)$, ed è detto massimo comun divisore degli a_1, \dots, a_n
 - per dimostrazione precedente $I(a_1, \ldots, a_n)$ è un ideale, e per dimostrazione precedente ogni ideale in \mathbb{Z} è principale, dunque per un certo d coincide con I(d), e in particolare d è proprio il massimo comun divisore degli a_1, \ldots, a_n per dimostrazione precedente

Teorema 38

• Hp $-a_1, \dots, a_n \in \mathbb{Z}$ $-d := MCD(a_1, \dots, a_n)$

• 1n $-\exists x_1,\ldots,x_n\in\mathbb{Z}\mid a_1x_1+\ldots+a_nx_n=d$, che prende il nome di *identità di Bézout*

Teorema 39

• !!! MANCA DIMOSTRAZIONE SISTEMA DI IDENTITÀ DI BÉZOUT

Operazioni sugli ideali

Definizione 15

- + tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I+J=\{i+j\mid \forall i\in I, j\in J\}$

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- $I,J\subset A$ ideali
- Th
 - -I+Jè un ideale

Definizione 16

- \cap tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I \cap J = \{x \in I \land x \in J\}$

Teorema 41

- Hp
 - $(A,+,\cdot)$ anello commutativo
 - $I,J\subset A$ ideali
- Th
 - $I\cap J$ è un ideale

Definizione 17

- Minimo Comune Multiplo
 - $a_1,\ldots,a_n\in\mathbb{Z}$
 - $\exists ! m \in \mathbb{N} \mid I(m) = I(a_1) \cap \ldots \cap I(a_n) = \bigcap_{i=1}^n I(a_i)$, ed è detto minimo comune multiplo degli a_1, \ldots, a_n

Definizione 18

- tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I \cdot J = \{i_1 j_1 + \ldots + i_k j_k \mid k \ge 1, \forall i_1, \ldots, i_k \in I, j_1, \ldots, j_k \in J\}$

Teorema 42

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- $-I, J \subset A$ ideali
- Th
 - $-\ I\cdot J$ è un ideale

- Hp
 - $-a, b \in \mathbb{Z}$
-d := MCD(a, b)
- Th
 - -I(a) + I(b) = I(d)

 $-I(a) \cdot I(b) = I(a \cdot b)$

Induzione

Definizione 19

• Induzione

• successione di proposizioni infinita P_1, P_2, P_3, \dots

• $\begin{cases} P_1 \text{ vera} \\ P_1, P_2, P_3, \dots, P_n \implies P_{n+1} \quad \forall n \ge 1 \end{cases}$ • allora P_n vera $\forall n$

Teorema 45

 $\begin{aligned} \mathbf{Ip} \\ &- \left\{ \begin{array}{l} F_0 = 0 \\ F_1 = 1 \\ F_n = F_{n-1} + F_{n-2} \end{array} \right. & \text{è detta } \textit{sequenza di Fibonacci} \\ &- x^2 - x - 1 = 0 \text{ ha come soluzioni} \left\{ \begin{array}{l} \phi := \frac{1 + \sqrt{5}}{2} \\ \psi := \frac{1 - \sqrt{5}}{2} \end{array} \right. \end{aligned}$

• Th $- \forall n \in \mathbb{N} \quad F_n = \frac{\varphi^n - \psi^n}{\varphi - \psi} = \frac{\varphi^n - \psi^n}{\sqrt{5}}$

Insieme quoziente

Definizione 20

• Insieme quoziente

- G gruppo
- \sim relazione di equivalenza in G
- $\forall x \in G \quad [x] := \{ y \in G \mid x \sim y \}$
- $G/\sim:=\{[x]\mid x\in G\}$ è l'insieme quoziente, ovvero l'insieme delle classi di equivalenza determinate da \sim

Definizione 21

• Insieme quoziente \mathbb{Z}_n

• $(\mathbb{Z}, +, \cdot)$ anello, in particolare $(\mathbb{Z}, +)$ gruppo

- $n \in \mathbb{Z}$
- \mathbb{Z}/\equiv è l'insieme delle classi di equivalenza definite dalla relazione di equivalenza \equiv
- $m \equiv r \pmod{n} \iff r \equiv m \pmod{n} \implies n \mid m-r \implies \exists q : nq = m-r \implies m = nq + r \quad 0 \le r < n$
- $0 \le r < n \implies$ è possibile definire $\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$, che coincide con \mathbb{Z}/\equiv

- Hp
 - $-n \in \mathbb{Z}$ $-I(n) := \{nk \mid k \in \mathbb{Z}\}\$
- Th
 - $-(\mathbb{Z}_n,+)$ è un gruppo

Teorema 47

- Hp
 - $-p \in \mathbb{P}$
 - $-a,b\in\mathbb{Z}$
 - $-p \mid ab$
- Th
 - $-p \mid a \lor p \mid b$

Teorema 48

- Hp
 - $-n \in \mathbb{Z}$
- Th
 - \mathbb{Z}_n dominio di integrità $\iff n \in \mathbb{P}$

Teorema 49

- Hp
 - $-n \in \mathbb{Z}$
- Th
 - $\forall [a] \in \mathbb{Z}_n \quad MCD(a, n) = 1 \iff [a] \in \mathbb{Z}_n^*$

Teorema 50

- Hp
 - $-p \in \mathbb{P}$
- Th
 - $-\mathbb{Z}_p$ campo

- Hp
 - $-p \in \mathbb{P}$

• Th
$$- (\mathbb{Z}_p^*, \cdot) \ \text{\`e ciclico}$$

Funzione totiente di Eulero

Definizione 22

- Funzione totiente di Eulero
 - $n \in \mathbb{N}$
 - $\varphi(n) := |\mathbb{Z}_n^*|$

Teorema 52

• Hp

$$-n, m \in \mathbb{N}$$

• Th

$$- [a] \in \mathbb{Z}_{mn}^* \iff [a] \in \mathbb{Z}_m^* \land [a] \in \mathbb{Z}_n^*$$

Teorema 53

• Hp

$$-m, n \in \mathbb{N} \mid MCD(m, n) = 1$$

$$-\varphi(m\cdot n) = \varphi(m)\cdot\varphi(n)$$

Teorema 54

• Hp

$$\begin{array}{ccc} - & p \in \mathbb{P} \\ - & k \in \mathbb{N} \mid k \ge 1 \end{array}$$

$$-\varphi(p^k) = p^{k-1}(p-1)$$

Teorema 55

$$-k \in \mathbb{N} \mid k \ge 1$$

$$-p_1,\ldots,p_k\in\mathbb{P}$$

$$-i_1, \ldots, i_k > 1$$

$$-i_1, \dots, i_k \ge 1$$

- $n \in \mathbb{N} \mid n = p_1^{i_1} \cdot \dots \cdot p_k^{i_k}$

• Th

$$-\varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Matrici

Definizione 23

- Matrici
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $\mathrm{Mat}_{m \times n}(\mathbb{K})$ è l'insieme delle matrici aventi m righe e n colonne a coefficienti in \mathbb{K}
- Vettori riga e vettori colonna
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $\forall A \in \mathrm{Mat}_{1 \times n}(\mathbb{K})$ $A = (x_1, \dots, x_n)$ è detto **vettore riga**

 - $\forall A \in \operatorname{Mat}_{1 \times n}(\mathbb{K})$ $A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ è detto **vettore riga** $\forall A \in \operatorname{Mat}_{m \times 1}(\mathbb{K})$ $A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ è detto **vettore colonna** $\forall A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ $\exists A^1, \dots, A^n \in \mathbb{K}^m$ vettori colonna e $A_1, \dots, A_m \in \mathbb{K}^n$ vettori riga $|A = (A^1, \dots, A^n) = \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$

Definizione 24

- Prodotto scalare
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \operatorname{Mat}_{1 \times n}(\mathbb{K})$

 - $B \in \operatorname{Mat}_{m \times 1}(\mathbb{K})$ $A \cdot B := \sum_{i=1}^{n} a_i \cdot b_i$

Teorema 56

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-m, n \in \mathbb{N} \{0\}$
- Th
 - $\operatorname{Mat}_{m \times n}(\mathbb{K})$ è uno spazio vettoriale

Teorema 57

• !!! WIP

Morfismi

Definizione 25

- Morfismo di gruppi
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $f: G \to H$
 - f morfismo di gruppi $\iff \forall x, y \in G \quad f(x \cdot y) = f(x) \cdot f(y)$
- Morfismo di anelli
 - $(A, +, \cdot), (B, +, \cdot)$ anelli
 - $f:A\to B$
 - f morfismo di anelli $\iff \forall x,y \in A \quad f(x+y) = f(x) + f(y) \land f(x \cdot y) = f(x) \cdot f(y)$
 - la stessa definizione si applica per morfismo di campi

Teorema 58

- Hp
 - $-(G,\cdot),(H,\cdot)$ gruppi
 - -1_G neutro per G
 - -1_H neutro per H
 - $-\ f:G\to H$ morfismo
- Th

$$- f(1_G) = 1_H$$

Teorema 59

- Hp
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $-\ 1_G$ neutro per G
 - -1_H neutro per H
 - $-f:G\to H$ morfismo
- Th

$$-\ f(g^{-1}) = f(g)^{-1}$$

Isomorfismi

Definizione 26

- Isomorfismo
 - f isomorfismo $\iff f$ morfismo e f bi
iettiva

- Hp
 - $-f:G\to H$ isomorfismo

• Th $-f^{-1}: H \to G$ isomorfismo

Teorema 61

• Hp $-z \in \mathbb{C} \mid z^n = 1 \text{ sono le radici } n\text{-esime di } 1$ $-\zeta := e^{i\frac{2\pi}{n}}$ $-H := \left\{\zeta^0, \zeta^1, \zeta^k, \dots, \zeta^{n-1}\right\} \text{ è l'insieme delle radici } n\text{-esime di } 1$ • Th $-(H,\cdot) \subset (\mathbb{C} - \{0\},\cdot) \text{ è un sottogruppo}$

Teorema 62

• Hp $-f:\mathbb{Z}_n\to H:[k]\to \zeta^k$ • Th $-f \text{ isomorfismo di gruppi } (\mathbb{Z}_n,+) \text{ e } (H,\cdot)$

Teorema 63

Hp

 (G,·) gruppo
 f: Z → G: n → gⁿ per qualche g ∈ G

 Th

 f morfismo di gruppi (Z, +) e (G,·)

Teorema 64

Hp

 f: Z → Z_n: k → [k]

 Th

 f morfismo di anelli (Z, +, ·) e (Z_n, +, ·)

Teorema 65

Hp

 n, m ∈ Z : n | m
 f : Z_m → Z_n : x (mod m) → x (mod n)

 Th

 f morfismo di anelli (Z_m, +, ·) e (Z_n, +, ·)

Teorema 66

Kernel e immagine

Definizione 27

- Kernel e immagine di gruppi
 - G, H gruppi
 - $f: G \to H$ morfismo
 - $\ker(f) := \{g \in G \mid f(g) = 1_H\}$ è detto kernel/nucleo di f
 - $\operatorname{im}(f) := \{ h \in H \mid \exists g \in G : f(g) = h \}$ è detta **immagine di** f
- Kernel e immagine di anelli
 - A, B gruppi
 - $f: A \to B$ morfismo
 - $\ker(f) := \{a \in A \mid f(a) = 0_B\}$ è detto **kernel/nucleo di** f
 - $\operatorname{im}(f) := \{b \in B \mid \exists a \in A : f(a) = b\}$ è detto immagine di f

Teorema 67

- Hp
 - -G, H gruppi
 - $-\ f:G\to H$ morfismo
- Th
 - $-\ker(f)\subset G$ è sottogruppo

Teorema 68

- Hp
 - -G, H gruppi
 - $-f:G\to H$ morfismo
- Th
 - $-\operatorname{im}(f)\subset G$ è sottogruppo

Teorema 69

- Hp
 - -G, H gruppi
 - $-f:G\to H$ morfismo
- Th
 - -f iniettiva $\iff \ker(f) = \{1_G\}$

- Hp
 - -A, B anelli
 - $-\ f:A\to B$ morfismo di anelli
- Th
 - $\ker(f)$ ideale

- Hp
 - -A, B anelli
 - $-\ f:A\to B$ morfismo di anelli
- Th
 - $-\operatorname{im}(f)$ sottoanello

Teorema 72

- Hp
 - $-f: \mathbb{Z} \to \mathbb{C} \{0\}: k \to \zeta^k$
 - fmorfismo di gruppi $(\mathbb{Z},+)$ e $(\mathbb{C}-\{0\},\cdot)$
 - -I(n) ideale generato da n !!! CONTROLLA SE SERVE QUESTA COSA
- Th
 - $-\ker(f) = I(n)$

Teorema 73

- Hp
 - -G, H gruppi
 - $f:G\to H$ morfismo
- Th
 - $-\ker(f)$ è sottogruppo normale

Numeri complessi

Definizione 28

- Insieme dei complessi
- $\mathbb{C}:=\left\{a+ib\mid a,b\in\mathbb{R},\ i:i^2=-1\right\}$ è l'insieme dei complessi $z\in\mathbb{C}\implies\left\{\begin{array}{l}a:=\operatorname{Re}(z)\\b:=\operatorname{Im}(z)\end{array}\right.$

Teorema 74

- Hp
 - $-a, b \in \mathbb{R}, z \in \mathbb{C} \mid z = a + ib$
 - $-c, d \in \mathbb{R}, w \in \mathbb{C} \mid w = c + id$
- Th
 - -z + w = (a+b) + i(c+d) $-z \cdot w = (ac - bd) + i(ad + bc)$

Definizione 29

- Coniugato
 - z = a + ib

• $\bar{z} := a - ib$ è il **coniugato** di z

Teorema 75

• Hp $-\ a,b\in\mathbb{R},z\in\mathbb{C}\mid z=a+ib$ $-c, d \in \mathbb{R}, w \in \mathbb{C} \mid w = c + id$

• Th
$$-\overline{z} + \overline{w} = \overline{z + w}$$

$$-\overline{z} \cdot \overline{w} = \overline{z \cdot w}$$

Teorema 76

• $\forall \theta \quad e^{i\theta} = \cos \theta + i \sin \theta$

Definizione 30

- Raggio
 - z = a + ib
 - $|z| := \sqrt{a^2 + b^2}$ è il **raggio** di z
 - è la distanza di z dall'origine nel piano di Gauss

Forma polare

• $\forall z \in \mathbb{C} - 0 \implies z = |z| \cdot e^{i\theta}$

Definizione 31

- $\arg(z) \subset \mathbb{R}$ è l'insieme delle soluzioni del sistema $\begin{cases} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{cases}$
- per definizione, $\arg(z) \implies \exists !\theta \mid 0 < \theta < 2\pi$ tale che θ sia soluzione del sistema, e questo prende il nome di Arg(z), detta soluzione principale

Teorema 77

- - $-(\mathbb{C},+,\cdot)$ è un gruppo
- - $(\mathbb{C}, +, \cdot)$ è un campo

- $|z \cdot w| = |z| \cdot |w|$ $\arg(z \cdot w) = \arg(z) + \arg(w)$

- $|z \cdot w| = |z| \cdot |w|$ ang $(z \cdot w) = \arg(z) + e^{-z}$ $|\overline{w}| = |w|$ arg $(\overline{w}) = -\arg(w)$ $|w^{-1}| = |w|^{-1}$ arg $(w^{-1}) = -\arg(w)$ $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ arg $\left(\frac{z}{w}\right) = \arg(z) \arg(w)$

• $z^n = |z|^n e^{in\theta}$ $\arg(z^n) = n \arg(z)$

Permutazioni

Definizione 32

- Permutazioni
 - \bullet X insieme
 - $S_X := \{f \mid f: X \to X \text{ biiettiva } \}$ è l'insieme delle permutazioni di X
 - $X = \{1, \dots, n\} \implies S_n$ è detto gruppo simmetrico di n

Teorema 80

- Hp $-S_X := \{f \mid f: X \to Y \text{ bijettiva } \}$
- Th $-(S_X, \circ)$ è un gruppo, non abeliano se $|X| \geq 3$

Definizione 33

- Ciclo di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_n$

•
$$\exists 1 \leq i_1, \ldots, i_d \leq n \in \mathbb{N} \mid \begin{cases} \sigma(i_1) = i_2 \\ \sigma(i_2) = i_3 \end{cases} \implies i_1, \ldots, i_n \text{ costituiscono un}$$
 ciclo di σ

Teorema 81

• Hp
$$\begin{array}{c} -n \in \mathbb{N} \\ -\sigma \in S_n \\ -1 \leq i < n \in \mathbb{N} \\ -I(\sigma,i) := \{n \in \mathbb{Z} \mid \sigma^n(i) = i\} \end{array}$$
• Th
$$-(I(\sigma,i),+) \subset (\mathbb{Z},+) \text{ è un ideale}$$

Teorema 82

• Hp - !!! RISCRIVI TUTTO $-I(\sigma,i)$ è **ideale principale** in \mathbb{Z} generato da I(d), dove d è la lunghezza del ciclo di i, quindi $I(\sigma,i)=I(d)$ $\longrightarrow d \in I(\sigma,i)$

Teorema 83

 $-n \in \mathbb{N}$

 $-\ \sigma \in S_n \mid \sigma = \gamma_1 \dots \gamma_k$ sia la sua decomposizione in cicli

 $-d_j := \text{lunghezza di } \gamma_j \quad \forall j \in [1, k]$

 $-m := \operatorname{mcm}(d_1, \dots, d_k)$

 $-I(\sigma) := \{ n \in \mathbb{Z} \mid \sigma^n = \mathrm{id} \}$

• Th

$$-o(\sigma)=m$$

Trasposizioni

Definizione 34

- Trasposizione
 - $n \in \mathbb{N}$
 - $i, j \in \mathbb{N} \mid 1 \le i < j \le n$
 - $k \in [1, n]$
 - $\tau_{i,j} \in S_n \mid \tau_{i,j} = \begin{cases} j & k = i \\ i & k = j \\ k & k \neq i, j \end{cases}$ è detta **trasposizione**, ovvero una permutazione

che inverte esclusivamente due elementi tra loro $-\tau_{i,j}^2 = \mathrm{id} \iff \tau_{i,j} = \tau_{i,j}^{-1}$

- Trasposizione adiacente
 - $n \in \mathbb{N}$
 - $i, j \in \mathbb{N} \mid 1 \le i < j \le n \land j = i + 1$
 - $\tau_{i,j} = \tau_{i,i+1}$ è detta **trasposizione adiacente**, poiché inverte esclusivamente due elementi, adiacenti, tra loro

- Hp
 - $-n \in \mathbb{N}$
 - $-\sigma \in S_n$
- Th
 - $-\exists 1 \leq i_1, \ldots, i_k < n \mid \sigma = \tau_{i_1, i_1+1} \ldots \tau_{i_k, i_k+1}$, quindi ogni permutazione può essere riscritta come composizione di trasposizioni adiacenti

Segno

Definizione 35

- Segno di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_n$
 - $\mathrm{Inv}(\sigma) := \{(i,j) \mid 1 \leq i < j < n : \sigma(i) > \sigma(j)\}$ è l'insieme delle inversioni di σ
 - $\operatorname{sgn}(\sigma) := (-1)^{|\operatorname{Inv}(\sigma)|} = \begin{cases} +1 & |\operatorname{Inv}(\sigma)| \equiv 0 \pmod{2} \\ -1 & |\operatorname{Inv}(\sigma)| \equiv 1 \pmod{2} \end{cases} \implies \sigma \text{ pari } \iff \operatorname{sgn}(\sigma) = +1 \\ \operatorname{sgn}(\operatorname{id}) = (-1)^0 = 1, \text{ in quando la funzione identità non ha inversioni}$

Teorema 85

- Hp $-n \in \mathbb{N}$ $-A := \{ \sigma \in S \mid \sigma \text{ paril} \}$
- $-A_n := \{ \sigma \in S_n \mid \sigma \text{ pari} \}$ Th
 - $-A_n \subset S_n$ è un sottogruppo, detto gruppo alterno di ordine n

Teorema 86

- Hp $-n\in \mathbb{N}\\ -\sigma\in S_n\mid \sigma=\tau_1\dots\tau_k \text{ dove } \forall j\in [1,k]\quad \tau_j=\tau_{j,j+1}, \text{ dunque tutte le trasposizioni sono adiacenti}$
- Th $sgn(\sigma) = (-1)^k$

Teorema 87

- Hp $\begin{array}{l} -n \in \mathbb{N} \\ -\sigma, \sigma' \in S_n | \left\{ \begin{array}{l} \sigma = \tau_1 \dots \tau_k \\ \sigma' = \tau'_1 \dots \tau'_h \end{array} \right., \text{ dove ogni trasposizione è adiacente}$
- Th $-\operatorname{sgn}(\sigma\sigma') = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma')$

- Hp $-n \in \mathbb{N}$
- $-\sigma \in S_n$ Th $-\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$

• Hp
$$\begin{array}{l}
-n \in \mathbb{N} \\
-\sigma, \sigma' \in S_n \\
-\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}
\end{array}$$
• Th
$$-\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma)$$

Teorema 90

• Hp
$$\begin{array}{l} -n \in \mathbb{N} \\ -\sigma, \sigma' \in S_n \mid \sigma := \gamma_1 \dots \gamma_k, \sigma' := \gamma_1' \dots \gamma_h' \\ -\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}, \text{ che costituisce dunque la relazione di coniugio} \end{array}$$
• Th
$$\begin{array}{l} k = h \\ d = d_1' \\ \vdots \\ d_k = d_h' = d_k' \end{array}$$
del ciclo γ_j' \(\text{ del lunghezza del ciclo } \gamma_j \text{ e d'}_j \text{ è la lunghezza} \)

Teorema 91

• Hp
$$\begin{array}{l}
-n \in \mathbb{N} \\
-\sigma \in S_n \mid \sigma := \gamma_1 \dots \gamma_k
\end{array}$$
• Th
$$-\operatorname{sgn}(\sigma) = (-1)^{n-k}$$

Polinomi

Definizione 36

- Polinomi

 - $a(x):=\sum_{k=0}^n a_k x^k=a_0 x^0+\ldots+a_n x^n$ è un polinomio $\mathbb{K}[x]:=\{a_0 x^0+\ldots+a_n x^n\mid a_0,\ldots,a_n\in\mathbb{K}\}$ è l'insieme dei polinomi a
 - $p(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ è detto **polinomio monico** \iff $a_n = 1$

• **Hp**

$$- (\mathbb{K}, +, \cdot) \text{ anello}$$

$$(\mathbb{K}[x],+,\cdot)$$
è un anello

Definizione 37

- Grado del polinomio
 - \mathbb{K} campo

 - $a(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ $\deg(a(x)) := \begin{cases} n & a(x) \neq 0 \\ -\infty & a(x) = 0 \end{cases}$

Teorema 93

- Hp
 - \mathbbm{K} campo
 - $-a(x),b(x) \in \mathbb{K}[x]$

$$- \deg(a(x) \cdot b(x)) = \deg(a(x)) + \deg(b(x))$$

Teorema 94

- Hp
 - \mathbb{K} campo
- $-a(x) \in \mathbb{K}[x] \mid \deg(a(x)) \ge 1$
- Th

$$- \not\exists a^{-1}(x) \in \mathbb{K}[x]$$

Teorema 95

- Hp
 - \mathbb{K} campo

$$- \mathbb{K}[x]^* = \mathbb{K}^* \subset \mathbb{K}[x]$$

Teorema 96

- Hp
 - − K campo
- Th
 - $\mathbb{K}[x]$ è un dominio

Definizione 38

- Radici di un polinomio
 - K campo
 - $p(x) \in \mathbb{K}[x]$
 - $\{c \in \mathbb{K} \mid p(c) = 0\}$ è l'insieme delle radici di p(x)

• Hp $- \mathbb{K} \text{ campo}$ $- p(x) \in \mathbb{K}[x]$ $- c \in \mathbb{K}$ • Th $- p(c) = 0 \iff x - c \mid p(x)$

Teorema 98

• Hp $- \mathbb{K} \text{ campo}$ $- p(x) \in \mathbb{K}[x]$ $- n := \deg(p(x))$ • Th $- |\{c \in \mathbb{K} \mid p(c) = 0\}| \le n$

Teorema 99

• Hp $- \mathbb{K} \text{ campo}$ $- I \subset \mathbb{K}[x] \text{ ideale}$ • Th - I è un ideale principale

Teorema 100

• **Hp** $- \mathbb{K} \text{ campo}$ $- I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] \text{ ideali}$ $- \exists d(x) \in \mathbb{K}[x] \mid I(a_1(x), \dots, a_n(x)) = I(d(x))$ • **Th** $- d(x) = \text{MCD}(a_1(x), \dots, a_n(x))$

Teorema 101

• Hp $- \mathbb{K} \text{ campo} \\ - I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] \text{ ideali} \\ - \exists m(x) \in \mathbb{K}[x] \mid I(a_1(x)) \cap \dots \cap I(a_1(x)) = I(m(x))$ • Th $- m(x) = \text{mcm}(a_1(x), \dots, a_n(x))$

Teorema 102

• Hp - \mathbb{K} campo - $a_1(x), \dots, a_n(x) \in \mathbb{K}[x]$ - $c \in \mathbb{K}$

-
$$d(x) := MCD(a_1(x), \dots, a_n(x))$$

• Th
- $a_1(c) = \dots = a_n(c) = 0 \iff d(c) = 0$

• Hp $- \mathbb{K} \text{ campo}$ $- p(x) \in \mathbb{K}[x]$ • Th

 $-p(x) \in \mathbb{K}[x]$ irriducibile $\iff p(x)$ primo

- Teorema 104
 - Hp $\mathbb{K} \text{ campo}$ $p(x) \in \mathbb{K}[x] \{0\}$ Th $\exists ! q_1(x), \dots, q_k(x) \in \mathbb{K}[x] \text{ irriducibili e monici, } c \in \mathbb{K} \{0\} \mid p(x) = c \cdot q_1(x) \cdot \dots \cdot q_k(x)$ in particolare, i polinomi sono unici a meno di un riordinamento

Teorema 105

- Hp $\mathbb{K} \text{ campo}$ $p(x) \in \mathbb{K}[x]$ Th $p(x) \text{ irriducibile } \iff \deg(p(x)) = 1$
- Teorema 106
 - Hp $-p(x)\in\mathbb{R}[x]$ Th $-p(x) \text{ irriducibile } \iff \deg(p(x))=1 \text{ oppure } \deg(p(x))=2\land\Delta<0$

Teorema 107

• **Hp** $-a_0, ..., a_n \in \mathbb{Z} \mid a_0, a_n \neq 0$ $-p(x) \in \mathbb{Z}[x] \mid p(x) = a_0 + ... + a_n x^n$ $-a, b \in \mathbb{Z} \mid \text{MCD}(a, b) = 1$ $-p(\frac{a}{b}) = 0$ • **Th** $-a \mid a_0 \land b \mid a_n$

Teorema 108

• !!! MANCA UN TEOREMA ENORME

Relazioni

Definizione 39

- Relazioni
 - S insieme
 - ogni elemento $R \subseteq S \times S$ è una **relazione** su S
- Relazione riflessiva
 - S insieme
 - R relazione in $S \times S$
 - R riflessiva $\iff \forall x \in R \quad (x,x) \in R$
- Relazione simmetrica
 - S insieme
 - R relazione in $S \times S$
 - R simmetrica $\iff \forall x, y \in R \ (x, y) \in R \implies (y, x) \in R$
- Relazione transitiva
 - S insieme
 - R relazione in $S \times S$
 - R transitiva $\iff \forall x,y,z \in R \quad (x,y) \in R \wedge (y,z) \in R \implies (x,z) \in R$
- Relazione antisimmetrica
 - S insieme
 - R relazione in $S \times S$
 - R transitiva $\iff \forall x,y \in R \quad (x,y) \in R \land (y,x) \in R \implies x=y$
- Relazione totale
 - S insieme
 - R relazione in $S \times S$
 - R totale $\iff \forall x,y \in R \quad (x,y) \in R \lor (y,x) \in R$
- Relazione di equivalenza
 - S insieme
 - R relazione in $S \times S$
 - R è una relazione di equivalenza \iff R riflessiva, simmetrica e transitiva
- Ordine parziale
 - S insieme
 - R relazione in $S \times S$
 - R ordine parziale $\iff R$ riflessiva, transitiva e antisimmetrica
- Ordine totale
 - \bullet S insieme
 - R relazione in $S \times S$
 - R ordine totale \iff R ordine parziale in cui vale la totalità

- Hp $\begin{array}{ccc} -& m,n\in \mathbb{N} \\ & -& m\mid n\iff \exists p\in \mathbb{N}\mid mp=n \end{array}$ Th
- | è ordine parziale

Teorema 110

- Hp $-a,b\in\mathbb{Z}\\ -a\equiv b\ (\mathrm{mod}\ n)\iff m\mid b-a\ \grave{\mathrm{e}}\ \mathrm{detta}\ \mathrm{congruenza}\ \mathrm{modulo}\ n$ Th

Teorema 111

• Hp $-x,y\in\mathbb{Z}\mid x\equiv y\ (\mathrm{mod}\ n)$ $-d\in\mathbb{Z}:d\mid n$ • Th $-x\equiv y\ (\mathrm{mod}\ d)$

 $-\equiv$ è una relazione di equivalenza

Teorema 112

• Hp $-n \in \mathbb{N}$ $-[a], [b] \in \mathbb{Z}_n$ -d := MCD(a, n)• Th $-d \nmid b \implies \nexists [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod n$ $-d \mid b \implies \forall [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod n \quad x \text{ è anche tale che } \frac{a}{d}x \equiv \frac{b}{d} \pmod \frac{n}{d}$

Teorema 113

- Hp $-G \text{ gruppo} \\ -g,h \in G \\ -g \sim h \iff \exists a \in G \mid h=a \cdot g \cdot a^{-1} \text{ è detta } relazione \ di \ coniugio }$ Th
- $-\sim$ è una relazione di equivalenza

Partizioni

Definizione 40

• Partizione

- \bullet X insieme
- \bullet I insieme di indici
- $\forall i \in I \quad X_i \subset X$
- $X = \coprod X_i$

- Hp
 - − G gruppo
- Th

$$- \ \forall x,y \in G \quad x \nsim y \iff [x] \cap [y] = \varnothing \lor x \sim y \iff [x] = [y]$$

Teorema 115

- Hp
 - G gruppo
 - $-\sim$ è una relazione di equivalenza in G

$$-\sim$$
induce una partizione di $G,$ dunque $G=\coprod_{[x]\in X/\sim}[x]$

Classi laterali

Teorema 116

- Hp
 - G gruppo
 - $-H \subset G$ sottogruppo
 - $-x,y\in G$
- Th
 - $-x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza

Definizione 41

- · Classi laterali
 - (G, \cdot) gruppo
 - $(H, \cdot) \subset (G, \cdot)$ sottogruppo

 - $\forall x,y \in G$ $x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza $\forall x,y \in G$ $x \sim_D y \iff xy^{-1} \in H$ è una relazione di equivalenza

 - $[x] = \{y \in G \mid y \sim_S x\}$ è detta classe laterale sinistra
 - $[x] = \{y \in G \mid y \sim_D x\}$ è detta classe laterale destra
 - $G/H := \{[x] \mid x \in G\}$ è l'insieme delle classi laterali sinistre o destre

Teorema 117

• Hp

```
- (\mathbb{Z}, +) \text{ anello}
- n \in \mathbb{N}_{\geq 2}
- I(n) := \{nk \mid k \in \mathbb{Z}\}
- a, b \in \mathbb{Z}
• Th
- a \sim_S b \iff a \equiv b \pmod{n}
```

• **Hp**

$$- G \text{ gruppo} \\
 - H \subset G \text{ sottogruppo} \\
 - x \in G \\
 - [x] = \{y \in G \mid y \sim_S x\}$$
• **Th**

$$- xH := \{xh \mid h \in H\} = [x]$$

Teorema 119

Teorema 120

```
• Hp
-G \text{ gruppo}
-H \subset G \text{ sottogruppo}
-+: G/H \times G/H \to G/H
• Th
-(G/H,+) \text{ è gruppo abeliano}
```

Spazi Vettoriali

Definizione 42

- Spazio vettoriale
 - K campo
 - $x \in \mathbb{K}$ è detto scalare
 - V è **spazio vettoriale su** $\mathbb{K} \iff (V,+)$ gruppo abeliano, è ben definita un'operazione di $\cdot: K \times V \to V$ che ammetta elemento neutro, inoltre $\forall s,t \in \mathbb{K}, v \in V$ $s \cdot (t \cdot v) = (s \cdot t) \cdot v, (s+t) \cdot v = s \cdot v + t \cdot v$ e infine $\forall s \in \mathbb{K}, v, w \in V$ $s \cdot (v+w) = s \cdot v + s \cdot w$
 - $x \in V$ è detto **vettore**

- Hp
 - $-n \in \mathbb{N}$
 - − K campo
- Th
 - $-\mathbb{K}^n$ spazio vettoriale su \mathbb{K}

Definizione 43

- Sottospazio vettoriale
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - W è sottospazio vettoriale di $V\iff (W,+)\subset (V,+)$ sottogruppo, e $\forall w\in W, \lambda\in \mathbb{K} \quad \lambda\cdot w\in W$

Definizione 44

- Span di vettori
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - span $(v_1,\ldots,v_n):=\{\lambda_1v_1+\ldots+\lambda_nv_n\mid \lambda_1,\ldots,\lambda_n\in\mathbb{K}\}$, ovvero l'insieme delle combinazioni lineari degli v_1,\ldots,v_n

Teorema 122

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo
 - -V spazio vettoriale su \mathbb{K}
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-\operatorname{span}(v_1,\ldots,v_n)$ è un sottospazio vettoriale di V

Definizione 45

- Vettori generatori
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - v_1, \ldots, v_n sono **generatori di** $V \iff \operatorname{span}(v_1, \ldots, v_n) = V$
 - equivalentemente, ogni altro vettore in V è una combinazione lineare degli v_1, \dots, v_n
- Indipendenza lineare
 - $n \in \mathbb{N}$

- K campo
- V spazio vettoriale su \mathbb{K}
- $v_1, \ldots, v_n \in V$
- v_1, \ldots, v_n sono **linearmente indipendenti** se e solo se $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0_V \iff \lambda_1 = \ldots = \lambda_n = 0_K$
 - equivalentemente, nessuno degli v_1,\ldots,v_n è combinazione lineare degli altri

• Base di uno spazio vettoriale

- $n \in \mathbb{N}$
- K campo
- V spazio vettoriale su \mathbb{K}
- $v_1, \ldots, v_n \in V$
- v_1, \ldots, v_n sono una base di $V \iff v_1, \ldots, v_n$ sono generatori di V e linearmente indipendenti
- n è detta cardinalità della base di V

Teorema 123

- Hp
 - $-n \in \mathbb{N}$
 - − K campo
 - $-e_1 := (1, 0, \dots, 0), \dots, e_n := (0, \dots, 0, 1) \in \mathbb{K}^n$
- Th
 - $-e_1,\ldots,e_n$ sono una base di \mathbb{K}^n , ed è detta base canonica

Teorema 124

- Hp
 - $-n \in \mathbb{N}$
 - \mathbb{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-v_1,\ldots,v_n$ linearmente indipendenti $\iff v_1,\ldots,v_{n-1}$ linearmente indipendenti $\land v_n \notin \operatorname{span}(v_1,\ldots,v_{n-1})$

Teorema 125

- Hp
 - $-m, k \in \mathbb{N}$
 - \mathbb{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-w_1,\ldots,w_m\in V$
 - $-v_1,\ldots,v_k\in\operatorname{span}(w_1,\ldots,w_m)\mid v_1,\ldots,v_k$ linearmente indipendenti
- Th
 - $-k \leq m$

Teorema 126

• Hp

```
\begin{array}{l} -n,m\in\mathbb{N}\\ -\mathbb{K} \text{ campo}\\ -V \text{ spazio vettoriale su }\mathbb{K}\\ -w_1,\ldots,w_m\in V\mid w_1,\ldots,w_m \text{ base di }V\\ -v_1,\ldots,v_n\in V\mid v_1,\ldots,v_n \text{ base di }V \end{array}
```

• Th

-n=m, il che implica che la cardinalità delle basi di uno spazio vettoriale è unica

Definizione 46

- Dimensione di uno spazio vettoriale
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $\dim(V)$ è detta **dimensione di** V, ed è la cardinalità delle basi di V

Teorema 127

```
• Hp
```

 $-n \in \mathbb{N}$

 $- \mathbb{K}$ campo

- V spazio vettoriale su $\mathbb K$

$$-v_1,\ldots,v_n\in V$$

• Th

 $-v_1,\ldots,v_n$ base di $V\iff \forall v\in V\quad \exists!\lambda_1,\ldots,\lambda_n\in\mathbb{K}\mid v=\lambda_1v_1+\ldots+\lambda_nv_n$

Applicazioni lineari

Definizione 47

- Applicazioni lineari
 - K campo
 - V e W spazi vettoriali su \mathbb{K}
 - $f:V\to W$ morfismo di spazi vettoriali $\iff \forall x,y\in V$ f(x+y)=f(x)+f(y) e $\forall v\in V,\lambda\in\mathbb{K}$ $f(\lambda k)=\lambda f(v)$
 - un morfismo su spazi vettoriali è detto anche **applicazione lineare** o **trasformazione lineare**

- Hp
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-n := \dim(V)$
- Th
 - $-V \cong \mathbb{K}^n$

• !!! QUI C'È UN BUCONE

Teorema 130

- Hp
 - $\mathbb{K} \text{ campo}$
 - W spazio vettoriale su \mathbb{K}
 - $-n := \dim(W)$
 - $-k \in \mathbb{N} \mid k < n$
 - $-w_1,\ldots,w_k\in W$ linearmente indipendenti
- Th
 - $-\exists w_{k+1},\ldots,w_n\in W\mid w_1,\ldots,w_n$ è una base di W

Teorema 131

- Hp
 - $\mathbb{K} \text{ campo}$
 - W spazio vettoriale su $\mathbb K$
 - $-n := \dim(W)$
 - $-m \in \mathbb{N} \mid m \geq n$
 - $-\ w_1, \ldots, w_m \in W \mid w_1, \ldots, w_m$ generatori di W
- Th
 - $-\exists 1 \leq i_1, \ldots, i_n \leq m \mid w_{i_1}, \ldots, w_{i_n}$ è una base di W

Teorema 132

- Hp
 - − K campo
 - Wspazio vettoriale su $\mathbb K$
 - $-n := \dim(W)$
 - $-w_1,\ldots,w_n\in W$
- Th
 - $-w_1,\ldots,w_n$ linearmente indipendenti $\iff w_1,\ldots,w_n$ generatori di W

Teorema 133

- Hp
 - − K campo
 - Wspazio vettoriale su $\mathbb K$
 - $-U,V\subset W$ sottospazi vettoriali
- Th
 - $-\dim(U+V) = \dim(U) + \dim(V) \dim(U \cap V)$

Teorema fondamentale dell'algebra

• Hp

-
$$\mathbb{K}$$
 campo
- $p(x) \in \mathbb{K}[x] \mid p(x) = a_0 x^0 + \ldots + a_n x^n$
• Th
- $\exists z \in \mathbb{C} \mid p(z) = 0$

Teorema della divisione euclidea con il resto

• Hp
$$-m\in\mathbb{Z}\\ -n\in\mathbb{Z}-\{0\}$$
• Th
$$-\exists!\ q,r\in\mathbb{Z}\mid m=nq+r\quad 0\leq r< n$$

Teorema 134

- Hp $\mathbb{K} \text{ campo} \\ a(x), b(x) \in \mathbb{K}[x] \mid b(x) \neq 0$ Th
 - $\exists ! q(x), r(x) \in \mathbb{K}[x] \mid a(x) = b(x) \cdot q(x) + r(x) \quad \deg(r(x)) < \deg(b(x)), \text{ che è detto}$ teorema della divisione con il resto tra polinomi

Teorema di Lagrange

Teorema fondamentale dell'aritmetica

• Hp
$$-a,b\in\mathbb{N}$$
 • Th
$$-\operatorname{mcm}(a,b)\cdot\operatorname{MCD}(a,b)=a\cdot b$$

Teorema cinese dei resti

Teorema 135

• Hp $-a_1, \dots, a_n \ge 2 \in \mathbb{Z} \mid \text{MCD}(a_i, a_j) = 1 \quad \forall i, j \in [1, n] : i \ne j$ $-m := \text{mcm}(a_1, \dots, a_n)$ • Th $-m = a_1 \cdot \dots \cdot a_n$

Teorema 136

• Hp
$$-n \in \mathbb{N}$$

$$-a_1, \dots, a_n \in \mathbb{Z}_{n \geq 2}$$

$$-m := \operatorname{mcm}(a_1, \dots, a_n)$$
• Th
$$-\exists \phi \mid \phi : \mathbb{Z}_m \to \mathbb{Z}_{a_1} \times \dots \times \mathbb{Z}_{a_n} : x \pmod{m} \to (x \pmod{a_1}, \dots, x \pmod{a_n})$$

$$-\phi \text{ è una funzione ben definita, ed è iniettiva}$$

Teorema 137

• Hp
$$-k \in \mathbb{N} \\ -n_1, \dots, n_k \in \mathbb{N} - \{0\} \mid \forall i, j \in [1, k] \quad i \neq j \implies \mathrm{MCD}(n_i, n_j) = 1 \\ -N := \mathrm{mcm}(n_1, \dots, n_k) \\ -[a] \in \mathbb{Z}_N^* \\ -o := o([a]) \text{ in } \mathbb{Z}_N^* \\ -\forall h \in [1, k] \quad o_h := o([a]) \text{ in } \mathbb{Z}_{n_h}^* \\ \bullet \quad \mathbf{Th} \\ -o = \mathrm{mcm}(o_1, \dots, o_k)$$

Teorema del binomio di Newton

• **Hp** -A anello commutativo $-a, b \in A$ $-n \in \mathbb{N}$ • **Th** $-(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Teorema 138

• !!! NON HO CAPITO UN CAZZO

Piccolo teorema di Fermat

• Hp
$$-p \in \mathbb{P} \\ -a \in \mathbb{Z}$$
• Th
$$-a^p \equiv a \pmod{p}$$

Teorema 139

• Hp
$$-p \in \mathbb{P} \\ -[a] \in \mathbb{Z}_p - \{0\}$$
• Th
$$-[a]^{-1} = [a]^{p-2}$$

Teorema 140

• Hp
$$-p \in \mathbb{P}$$
 • Th
$$-\prod_{0 < a < p} (x-a) \equiv x^{p-1} - 1 \pmod{p}$$

Teorema 141

• !!! NON HO CAPITO UN CAZZO

Teorema di Eulero

• Hp
$$-a,n\in\mathbb{N}\mid\mathrm{MCD}(a,n)=1$$
 • Th
$$-a^{\varphi(n)}\equiv 1\ (\mathrm{mod}\ n)$$

Teorema fondamentale di isomorfismo

• Hp
$$-A, B \text{ anelli} \\ -f: A\to B \text{ morfismo di anelli}$$
• Th
$$-A/\text{ker}(f)\cong \text{im}(f), \text{ ovvero } \exists \varphi \mid \varphi: A/\text{ker}(f)\to \text{Im}(f): [a]\to f(a) \text{ isomorfismo di anelli}$$

- Hp
 - -G,H gruppi
 - $-\ f:G\to H$ morfismo di gruppi
- - $G/\mathrm{ker}(f)\cong\mathrm{im}(f),$ o alternativamente $\exists\varphi\ |\ \varphi:G/\mathrm{ker}(f)\to\mathrm{Im}(f):[g]\to f(g)$ isomorfismo di gruppi

Teorema di Cauchy

- **Hp**
 - $\begin{array}{c} -G \text{ gruppo finito} \\ -p \in \mathbb{P} \end{array}$

 - -p|G|
- - $\exists g \in G \mid o(g) = p$

- Hp
 - -G gruppo |G| = 4
- Th
 - $-G \cong \mathbb{Z}_4$ oppure $G \cong K_4$