Artificial Intelligence

Lecturer 10 – First Order Logic

Lecturers:

Dr. Le Thanh Huong Dr. Tran Duc Khanh Dr. Hai V. Pham

HUST

First Order Logic

- Syntax
- Semantic
- Inference
 - Resolution

First Order Logic (FOL)

- First Order Logic is about
 - Objects
 - Relations
 - Facts
- The world is made of objects
 - Objects are things with individual identities and properties to distinguish them
 - Various relations hold among objects. Some of these relations are functional
 - Every fact involving objects and their relations are either true or false

FOL

- Syntax
- Semantic
- Inference
 - Resolution

FOL Syntax

- Symbols
 - Variables: x, y, z,...
 - Constants: a, b, c, ...
 - □ Function symbols (with arities): f, g, h, ...
 - □ Relation symbols (with arities): p, r, r
 - □ Logical connectives: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
 - □ Quantifiers: ∃, ∀

FOL Syntax

- Variables, constants and function symbols are used to build terms
 - X, Bill, FatherOf(X), ...
- Relations and terms are used to build predicates
 - □ Tall(FatherOf(Bill)), Odd(X), Married(Tom,Marry), Loves(Y,MotherOf(Y)), ...
- Predicates and logical connective are used to build sentences
 - □ Even(4), \forall X. Even(X) \Longrightarrow Odd(X+1), \exists X. X > 0

FOL Syntax

- Terms
 - Variables are terms
 - Constants are terms
 - $\ \square$ If t_1, \ldots, t_n are terms and f is a function symbol with arity n then $f(t_1, \ldots, t_n)$ is a term

FOL Syntax

- Predicates
 - $\begin{tabular}{l} \square If $t_1,\ldots,\,t_n$ are terms and p is a relation symbol with arity n then $p(t_1,\ldots,\,t_n$) is a predicate \\ \end{tabular}$

FOL Syntax

Sentences

- True, False are sentences
- Predicates are sentences
- \Box If α, β are sentences then the followings are sentences

$$\exists x.\alpha, \forall x.\alpha, (\alpha), \neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$$

FOL Formal grammar

```
Sentence
                   ::= AtomicS | ComplexS
AtomicS
                   ::= True | False | RelationSymb(Term,...) | Term = Term
ComplexS
                          (Sentence) | Sentence Connective Sentence | ¬Sentence
                          Quantifier Sentence
Term
                        FunctionSymb(Term, . . .) | ConstantSymb | Variable
                   ::= \ \land \ | \ \lor \ | \ \rightarrow \ | \ \leftrightarrow
Connective
Quantifier
                   ::= ∀ Variable | ∃ Variable
Variable
                   ::= a | b | \cdots | x | y | \cdots
                  ::= A \mid B \mid \cdots \mid John \mid 0 \mid 1 \mid \cdots \mid \pi \mid \ldots
ConstantSymb
                   ::= F \mid G \mid \cdots \mid Cosine \mid Height \mid FatherOf \mid + \mid \ldots
FunctionSymb
RelationSymb
                   ::= P \mid Q \mid \cdots \mid Red \mid Brother \mid Apple \mid > \mid \cdots
```

FOL

- Syntax
- Semantic
- Inference
 - Resolution

FOL Semantic

- Variables
 - Objects
- Constants
 - Entities
- Function symbol
 - Function from objects to objects
- Relation symbol
 - Relation between objects
- Quantifiers

 - □ $\exists x.P$ true if P is true under some value of x □ $\forall x.P$ true if P is true under every value of x
- Logical connectives
 - Similar to Propositional Logic

FOL Semantic

- Interpretation (D,σ)
 - □ D is a set of objects, called *domain* or *universe*

 - C^D is a member of D for each constant C

 - □ R^D is a relation over Dⁿ for each relation symbol R with arity n

FOL Semantic

• Given an interpretation (D, σ), semantic of a term/sentence α is denoted

$$[\alpha]_a^D$$

Interpretation of terms

$$\llbracket x \rrbracket_{\sigma}^{\mathcal{D}}$$
 := $\sigma(x)$
 $\llbracket C \rrbracket_{\sigma}^{\mathcal{D}}$:= $C^{\mathcal{D}}$
 $\llbracket F(t_1, \dots, t_n) \rrbracket_{\sigma}^{\mathcal{D}}$:= $F^{\mathcal{D}}(\llbracket t_1 \rrbracket_{\sigma}^{\mathcal{D}}, \dots, \llbracket t_n \rrbracket_{\sigma}^{\mathcal{D}})$

FOL Semantic

Interpretation of sentence

```
 \begin{split} & [\![R(t_1,\ldots,t_n)]\!]^{\mathcal{D}}_{\sigma} &:= \quad True & \text{iff} \quad \langle [\![t_1]\!]^{\mathcal{D}}_{\sigma},\ldots, [\![t_n]\!]^{\mathcal{D}}_{\sigma} \rangle \in R^{\mathcal{D}} \\ & [\![\neg\varphi]\!]^{\mathcal{D}}_{\sigma} &:= \quad True/False & \text{iff} \quad [\![\varphi]\!]^{\mathcal{D}}_{\sigma} = False/True \\ & [\![\varphi_1 \vee \varphi_2]\!]^{\mathcal{D}}_{\sigma} &:= \quad True & \text{iff} \quad [\![\varphi_1]\!]^{\mathcal{D}}_{\sigma} = True \text{ or } [\![\varphi_2]\!]^{\mathcal{D}}_{\sigma} = True \\ & [\![\exists x \; \varphi]\!]^{\mathcal{D}}_{\sigma} &:= \quad True & \text{iff} \quad [\![\varphi]\!]^{\mathcal{D}}_{\sigma'} = True \text{ for some } \sigma' \text{ the} \\ & [\![\varphi_1 \wedge \varphi_2]\!]^{\mathcal{D}}_{\sigma} &:= \quad [\![\neg(\neg\varphi_1 \vee \neg\varphi_2)]\!]^{\mathcal{D}}_{\sigma} \\ & [\![\varphi_1 \to \varphi_2]\!]^{\mathcal{D}}_{\sigma} &:= \quad [\![\neg\varphi_1 \vee \varphi_2]\!]^{\mathcal{D}}_{\sigma} \\ & [\![\varphi_1 \to \varphi_2]\!]^{\mathcal{D}}_{\sigma} &:= \quad [\![(\varphi_1 \to \varphi_2) \wedge (\varphi_2 \to \varphi_1)]\!]^{\mathcal{D}}_{\sigma} \\ & [\![\forall x \varphi]\!]^{\mathcal{D}}_{\sigma} &:= \quad [\![\neg\exists x \; \neg\varphi]\!]^{\mathcal{D}}_{\sigma} \end{split}
```

Example

- Symbols
 - Variables: x,y,z, ...
 - Constants: 0,1,2, ...
 - Function symbols: +,*
 - Relation symbols: >, =
- Semantic
 - Universe: N (natural numbers)
 - The meaning of symbols
 - Constants: the meaning of 0 is the number zero, ...
 - Function symbols: the meaning of + is the natural number addition, ...
 - Relation symbols: the meaning of > is the relation greater than, ...

FOL Semantic

- Satisfiability
 - \Box A sentence lpha is satisfiable if it is true under some interpretation (D, σ)
- Model

 - □ Then we write (D, σ) |= α
- A sentence is valid if every interpretation is its mode
- A sentence α is valid in D if (D, σ) |= α for all σ
- A sentence is unsatisfiable if it has no model

Example

- Consider the universe N of natural numbers
 - $\exists x.x+1>5$ is satisfiable
 - $\forall x.x+1>0$ is valid is N
 - $\exists x.2x+1=6$ is unsatisfiable