Primer for Machine Learning

attilagk

Lazy8

Machine Learning is Everywhere

- pattern detection and recognition (iphone touch ID, face ID, word autocomplete, speech to text)
- history based recommendation (youtube, facebook, google search, amazon,...)
 - products for customers
 - customers for providers
- email filtering and classification (gmail)

Machine Learning and Artificial Intelligence

1950s [getting] machines to exhibit behavior, which if done by humans, would be assumed to involve the use of intelligence¹

now computational methods to automatically learn and to improve with experience²

ML³ statistical ("statistical learning")

Al analytical (knowledge, logic)

3 / 32

¹Arthur Samuel, 1983

²http://www.mlplatform.nl/what-is-machine-learning/

Machine Learning Now

- big data
 - data science, data mining, ...
 - myth: machine learning needs big data⁴
- fast computers
- emerging new methods
 - deep learning, reinfocement learning, ...

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- 3 explore data (EN, PR)
- formulate task (EN, ST)
- build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- 3 explore data (EN, PR)
- formulate task (EN, ST)
- 5 build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

skill set	-
EN	expert knowledge
ST	statistics
PR	programming
DSS	domain spec. softwa
HPC	high perf. comp.
LIB	ML libraries ^a
DOC	ĽΑΤΕΧ, Web

^aPython, R, Java, Julia, Scal

My Story with Machine Learning⁵

skill	2006	2017
expert knowledge	?	?
statistics	-	+
programming	-	+
domain spec. softw.	-	+
high perform. comp.	-	?
ML libraries	-	?
LATEX, Meb.	-	+

PLoS One. 2012;7(5):e36546.

⁵http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036546

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- explore data (EN, PR)
- formulate task (EN, ST)
- build models (EN, ST)
- of it/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

The "Home" Data

Useless except for demonstration

observation	input features / variables				output	
i	x_{i1}	x _{i2}		x_{ip}	Уi	
home	price/sqft	elevation		beds	city	
training data						
1	999	10		2	NY	
2	1939	0		2	NY	
:	:	:	:	:	:	
491	764	163		1	SF	
492	762	216		3	SF	
test data						
493	1196	40		2	?	
<u>:</u>	:	:	:	:	÷	

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- 3 explore data (EN, PR)
- formulate task (EN, ST)
- build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

Inspecting Dependencies among Variables

2 input features: 2D plots

All Inputs

- design project (EN, ST)
- collect and clean data (EN, PR, DSS, HPC)
- explore data (EN, PR)
- formulate task (EN, ST)
- build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

The "Home" Data

Useless except for demonstration

observation	input features / variables				output	
i	x_{i1}	x _{i2}		x_{ip}	Уi	
home	price/sqft	elevation		beds	city	
training data						
1	999	10		2	NY	
2	1939	0		2	NY	
:	:	:	:	:	:	
491	764	163		1	SF	
492	762	216		3	SF	
test data						
493	1196	40		2	?	
i	:	:	:	:	i i	

Tasks

- supervised learning: training and test data
 - prediction, classification
 - ★ pattern recognition
 - ★ business, medical, ... predictions & decisions
- unsupervised learning: only training data
 - structure discovery
 - ★ social, biol., tech. networks, associations,...
 - ★ probabilistic expert systems
 - hypothesis testing, feature subset selection
 - ★ research, marketing
 - matrix completion (imputation)
 - ★ recommendation systems

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- explore data (EN, PR)
- formulate task (EN, ST)
- build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- Interpret and report results (EN, ST, DOC)

Decision Tree is a Simple Model for Classification

A.k.a. CART: Classification And Regression Tree⁶

⁶https://web.stanford.edu/ĥastie/Papers/ESLII.pdf

Normal Model of Data $x_1, ..., x_N$ for Prediction/Inference

Normal distribution $\mathcal N$ with parameters μ, σ^2

Model for Unsupervised Prediction of Citation Influences⁷

attilagk Primer for Machine Learning Lazy8

18 / 32

 $^{^{7}}$ http://www.machinelearning.org/proceedings/icml2007/papers/257.pdf $\Rightarrow 9.90$

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- explore data (EN, PR)
- 4 formulate task (EN, ST)
- build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

Various Fitted Models Partitioning Input Space⁸

decision tree

generalized linear regression

K-means classifier

support vector machine

 8 https://web.stanford.edu/ \tilde{h} astie/Papers/ESLII.pdf

Fitting Decision Trees with R and rpart

Why R?

- created by and for biostatisticians
- functional language (like JavaScript)
- open source
- mature
- lots of machine learning packages
- R2D39

21 / 32

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

¹⁰https://attilagk.github.io/R-you-experienced/2017-10-16-fixed-and-mixed-models.html

Demo with "Visual Intro" 11

Observe progressive growth of tree!

attilagk Primer for Machine Learning Lazy8

23 / 32

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- explore data (EN, PR)
- formulate task (EN, ST)
- build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

Tree selection based on fit (error) and complexity (cp)

¹⁰https://attilagk.github.io/R-you-experienced/2017-

10-16-fixed-and-mixed-models.html

Lazy8

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

The optimal tree

10-16-fixed-and-mixed-models.html

¹⁰https://attilagk.github.io/R-you-experienced/2017-

Various Fitted Models Partitioning Input Space⁸

decision tree performs poorly

generalized linear regression

K-means classifier

support vector machine

 $^8 https://web.stanford.edu/\tilde{h}astie/Papers/ESLII.pdf$

- design project (EN, ST)
- 2 collect and clean data (EN, PR, DSS, HPC)
- explore data (EN, PR)
- 4 formulate task (EN, ST)
- build models (EN, ST)
- fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- apply best model to test data (PR, LIB)
- interpret and report results (EN, ST, DOC)

All Inputs

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

¹⁰https://attilagk.github.io/R-you-experienced/2017-10-16-fixed-and-mixed-models.html

at "the average of traning data"

at varying elevation

attilagk

31 / 32

at varying price/sqft and average (40m) elevation

at varying price/sqft and 30m elevation

Conclusion: Machine Learning and You

- understanding it
 - learn concepts not cooking
 - collaboration, interpretation
- doing it
 - ▶ Hello World! is easy but useless
 - obtaining skills takes years but then pays off
- Resources
 - The Elements of Statistical Learning https://web.stanford.edu/ñastie/Papers/ESLII.pdf
 - Machine Learning https://www.cs.ubc.ca/murphyk/MLbook/
 - An Introduction to R https://cran.r-project.org/doc/manuals/r-release/R-intro.html
 - https://attilagk.github.io/R-you-experienced

Conclusion: Machine Learning and You

- understanding it
 - learn concepts not cooking
 - collaboration, interpretation
- doing it
 - ▶ Hello World! is easy but useless
 - obtaining skills takes years but then pays off
- Resources
 - The Elements of Statistical Learning https://web.stanford.edu/hastie/Papers/ESLII.pdf
 - Machine Learning https://www.cs.ubc.ca/murphyk/MLbook/
 - An Introduction to R https://cran.r-project.org/doc/manuals/r-release/R-intro.html
 - https://attilagk.github.io/R-you-experienced

32 / 32