

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Prim's MST Algorithm

Example

 $[Purple\ edges = minimum\ spanning\ tree]$

(Compare to Dijkstra's shortest-path algorithm)

Prim's MST Algorithm

- Initialize $X = \{s\}$ [$s \in V$ chosen arbitrarily]
- $T = \emptyset$ [invariant: X = vertices spanned by tree-so-far T]
- While $X \neq V$
 - Let e = (u, v) be the cheapest edge of G with $u \in X$, $v \notin X$.
 - Add e to T
 - Add v to X.

While loop: Increase # of spanned vertices in cheapest way possible.

Correctness of Prim's Algorithm

Theorem: Prim's algorithm always computes an MST.

Part I: Computes a spanning tree T^* . [Will use basic properties of graphs and spanning trees] (Useful also in Kruskal's MST algorithm)

Part II: T^* is an MST. [Will use the "Cut Property"] (Useful also in Kruskal's MST algorithm)

Later: Fast $[O(m \log n)]$ implementation using heaps.