

Trigonometric Ratios Ex 5.3 Q13

Answer:

We have: $\sec\theta = \csc60^{\circ}$ where θ is positive acute angle

$$\Rightarrow$$
 cosec $(90^{\circ} - \theta)$ = cosec 60°

$$\Rightarrow 90^{\circ} - \theta = 60^{\circ}$$

$$\Rightarrow \theta = 30^{\circ}$$

Now we have to find $2\cos^2\theta - 1$

Put
$$\theta = 30^{\circ}$$

$$=2\times\cos^230^\circ-1$$

$$=2\times\left(\frac{\sqrt{3}}{2}\right)^2-1$$

$$=2\times\frac{3}{4}-1$$

$$=\frac{1}{2}$$

Hence the value of $2\cos^2\theta - 1$ is $\boxed{\frac{1}{2}}$

Trigonometric Ratios Ex 5.3 Q14

Answer:

We have: $\cos 2\theta = \sin 4\theta$

Given in question $\,2 heta\,$ and $\,4 heta\,$ are acute angles. We have to find $\, heta\,$

Now we have

$$\cos 2\theta = \sin 4\theta$$

$$\Rightarrow \sin(90^\circ - 2\theta) = \sin 4\theta$$

$$\Rightarrow 90^{\circ} - 2\theta = 4\theta$$

$$\Rightarrow 6\theta = 90^{\circ}$$

Therefore $\theta = 15^{\circ}$

Trigonometric Ratios Ex 5.3 Q15

Answer:

We have: $\sin 3\theta = \cos \left(\theta - 6^{\circ}\right)$ where 3θ and $\left(\theta - 6^{\circ}\right)$ are acute angles

We have to find heta

Now we proceed as to find heta

$$\sin 3\theta = \cos(\theta - 6^\circ)$$

$$\Rightarrow \sin 3\theta = \sin \left[90^{\circ} - \left(\theta - 6^{\circ} \right) \right]$$

$$\Rightarrow 3\theta = 90^{\circ} - \theta + 6^{\circ}$$

$$\Rightarrow 4\theta = 96^{\circ}$$

Therefore $\theta = 24^{\circ}$

****** END ******