$TD N^{\circ} 1$

Analyse convexe Calcul sous-différentiel

Exercice 1 – Enveloppe supérieure de fonctions convexes

Module A1, Proposition 10

Soit $\mathcal{I} \subset \mathbb{R}$ et $f_i : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe pour tout $i \in \mathcal{I}$. On définit l'enveloppe supérieure de la famille de fonctions $\{f_i\}_{i \in \mathcal{I}}$ comme étant la fonction

$$f: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & \sup_{i \in \mathcal{I}} f_i(x) \end{array} \right.$$

- (a) Soit $(x,y) \in \text{epi} f$. Montrer que
 - $\forall i \in \mathcal{I}, \qquad y \geq f_i(x)$
- (b) En déduire que
- $(x,y) \in \operatorname{epi} f \iff (x,y) \in \bigcap_{i \in \mathcal{I}} \operatorname{epi} f_i$
- (c) Justifier que epi f_i est convexe pour tout $i \in \mathcal{I}$.
- (d) Montrer que $\operatorname{epi} f$ est convexe. En déduire que f est convexe.

Exercice 2 – Fonction convexe non continue

On considère la fonction $f: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ définie par

$$\forall x \in \mathbb{R}, \qquad f(x) = \begin{cases} 0 & \text{si } x > 0 \\ 1 & \text{si } x = 0 \\ +\infty & \text{si } x < 0 \end{cases}$$

- (a) Quel est le domaine de f? La fonction f est-elle continue sur dom f?
- (b) Montrer que f est convexe.
- (c) Soit $x \in \text{dom } f$. Que vaut $\liminf_{y \to x} f(y)$?

On s'intéresse maintenant à la fonction suivante, appelée fermeture de f:

$$\forall x \in \mathcal{X}, \qquad \underline{f}(x) = \liminf_{y \to x} f(y)$$

- (d) Donner l'expression explicite de f. Que vaut son domaine?
- (e) Montrer que f est convexe.
- (f) Soit $x \in \text{dom } \underline{f}$. Que vaut $\liminf_{y \to x} \underline{f}(y)$?

Exercice 3 – Fonctions fortement convexes

Module A1, Propositions 14–16

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction for tement convexe de module α .

(a) Justifier que f est strictement convexe.

Soit $x^0 \in \mathcal{X}$. On introduit la fonction

$$g: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & f(x) - \frac{\alpha}{2} \, \|x - x^0\|^2 \end{array} \right.$$

5MASO1: Méthodes du premier ordre pour l'optimisation non lisse et non convexe

- (b) Montrer que g est convexe. En déduire que toute fonction fortement convexe est la somme d'une fonction convexe et d'une fonction quadratique.
- (c) En déduire que la somme d'une fonction convexe et d'une fonction fortement convexe, de module α , est fortement convexe, de module α .
- (d) On suppose que g est différentiable. Montrer que g admet une minorante affine.
- (e) En déduire que f est coercive, c'est-à-dire que

$$\lim_{\|x\| \to +\infty} f(x) = +\infty$$

Exercice 4 - Sous-différentiel de la norme

Soit \mathcal{X} un espace de Hilbert muni d'un produit scalaire noté $\langle \cdot, \cdot \rangle$, de norme associée $\| \cdot \|$.

- (a) Justifier que $\|\cdot\|$ est une fonction convexe.
- (b) Montrer que $\|\cdot\|$ est différentiable sur $\mathcal{X}\setminus\{0\}$, de gradient

$$\forall x \neq 0, \qquad \nabla \| \cdot \|(x) = \frac{x}{\|x\|}$$

- (c) Montrer que tout $p \in \mathcal{X}$ de norme inférieure ou égale à 1 est sous-gradient de $\|\cdot\|$ en 0.
- (d) Montrer que, si ||p|| > 1, alors

$$p \in \partial \| \cdot \| (0) \implies \|p\| \ge \|p\|^2$$

(e) En déduire que le sous-différentiel de la norme $\|\cdot\|$ est la boule unité fermée pour la même norme.

Exercice 5 – Sous-différentiel de Fréchet, limitant

Module A2, Propositions 9 & 10

TODO Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ une fonction de domaine non vide.

(a) On suppose que f est convexe. Montrer que

$$\forall x \in \mathcal{X}, \qquad \partial f(x) = \hat{\partial} f(x)$$

(b) On suppose que f est différentiable en $x^0 \in \mathcal{X}$. Montrer que

$$\hat{\partial} f(x^0) = \{ \nabla f(x^0) \}$$

(c) On suppose que f est continûment différentiable au voisinage de $x^0 \in \mathcal{X}$. Montrer que

$$\partial f(x) = \{\nabla f(x)\}\$$