Programleírás a Shortest routs II-höz

Feladat

Adott n város és m út közöttük. A feladat q lekérdezést feldolgozni, amelyekben meg kell határozni két adott város közötti legrövidebb út hosszát.

Bemenet

- Az első sor három egész számot tartalmaz: n, m és q: a városok, az utak és a lekérdezések száma.
- Ezután következik m sor, amelyek leírják az utakat. Minden sor három egész számot tartalmaz: a, b és c: van egy út az a és b városok között, amelynek hossza c. Minden út kétirányú.
- Végül következik q sor, amelyek leírják a lekérdezéseket. Minden sor két egész számot tartalmaz: a és b: határozd meg a legrövidebb út hosszát az a és b városok között.

Kimenet

Írd ki a legrövidebb út hosszát minden lekérdezésre. Ha nincs út, akkor írd ki -1-et.

Algoritmus és Program Működése

Főbb jellemzők:

- 1. Gráf reprezentációja:
 - Az algoritmus egy méretű mátrixban tárolja az egyes városok közötti távolságokat.
 - Ha nincs közvetlen kapcsolat két csúcs között, akkor a távolságot végtelennek (INF) tekintjük.
 - Az önhivatkozó utak (i → i) távolsága mindig 0.
- 2. Távolságok inicializálása:
 - A bemeneti utak alapján inicializálja a mátrixot.
- 3. Három ciklusos frissítés (dinamikus programozás):
 - Minden csúcspár közötti távolságot frissít azáltal, hogy megvizsgálja, lehet-e rövidebb út egy harmadik csúcson keresztül.
- 4. Kérdések megválaszolása:
 - Az algoritmus futtatása után az összes kérdésre gyorsan válaszolhatunk a kész távolságmátrix használatával.

A Program Működése

- 1. Bemenet feldolgozása:
 - o A felhasználótól várjuk a városok, utak és lekérdezések számát ().
 - o Az utak (a, b, c) és a lekérdezések (a, b) adatait beolvassuk.
- 2. Távolságmátrix létrehozása és inicializálása:
 - A kezdeti értékek alapján feltöltjük az méretű mátrixot, ahol minden út hossza INF, kivéve az önhivatkozásokat (0).
- 3. Az algoritmus futtatása:
 - Frissíti a mátrixot úgy, hogy minden csúcspár közötti legrövidebb távolságot meghatároz.
- 4. Kérdések megválaszolása:
 - Minden kérdésre megvizsgáljuk, hogy a-ból b -be vezető távolság létezik-e. Ha nem, akkor -1-et ad vissza.
- 5. Eredmény kiírása:
 - o Az összes kérdés eredményét egy listába gyűjti és kiírja.

Példa Bemenet és Kimenet

Bemenet:

442

125

237

3 4 3

412

13

2 4

Kimenet:

12

5

Magyarázat:

- Az $1 \rightarrow 3$ útvonal legrövidebb hossza: $1 \rightarrow 2 \rightarrow 3$ (5 + 7 = 12).
- A 2 \rightarrow 4 útvonal legrövidebb hossza: 2 \rightarrow 3 \rightarrow 4 (7 + 3 = 10).