PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-314970

(43) Date of publication of application: 14.11.2000

(51)Int.CI.

G03G 5/06 CO8K 5/00 CO8L 69/00

G03G 5/05

(21)Application number: 11-125206

(71)Applicant: FUJI DENKI GAZO DEVICE KK

(22)Date of filing:

30.04.1999

(72)Inventor: TAKEUCHI MASARU

OKURA KENICHI **OMOKAWA SHINICHI**

(54) ELECTROPHOTOGRAPHIC PHOTORECEPTOR AND ELECTROPHOTOGRAPHIC DEVICE (57)Abstract:

PROBLEM TO BE SOLVED: To obtain a electrophotographic photoreceptor excellent in electrical characteristics in positive electrification and excellent in stability even in repetitive use by using a specified compound as a hole transport material.

SOLUTION: The electrophotographic photoreceptor has a monolayer type photosensitive layer containing at least a resin binder, an electric charge generating material, a hole transport material and an electron transferring material on an electrically conductive substrate directly or by way of an undercoat layer, and the hole transport material is a compound of formula I, wherein ArH1 is aryl which may have a substituent, ArH2 is phenylene which may have a substituent, naphthylene which may have a substituent or the like, RH1 is H, lower alkyl or the like, X is H, alkyl which may have a substituent or the like and Y is aryl which may have a substituent or a group of formula II or III. In the formulae II and III, RH1 has the same meaning as RH1 in the formula I, RH2 is H, lower

alkyl or the like, RH3 is H, halogen or the like, Z is H or aryl which may have a substituent and (m) and (n) are each an integer of 0-4.

LEGAL STATUS

[Date of request for examination]

06.05.2004

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

This Page Blank (uspto)

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

This Page Blank (uspto)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-314970 (P2000-314970A)

(43)公開日 平成12年11月14日(2000.11.14)

(51) Int.Cl.7		識別記号		FΙ			5	·-マコード(参考)
G03G	5/06	3 1 2		G 0	3 G 5/06		312	2H068
		3 1 3					3 1 3	4 J 0 0 2
		314					314	
							314A	
							314B	
			審査請求	朱龍朱	請求項の数17	OL	(全 56 頁)	最終質に続く

(21)出顧番号 特願平11-125206 (71)出願人 399045008

(17) Elight (17) E

 富士電機画像デバイス株式会社

 (22)出願日
 平成11年4月30日(1999.4.30)
 長野県松本市筑摩四丁目18番1号

(72)発明者 竹内 勝

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式会社内

(72)発明者 大倉 健一

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式会社内

(74)代理人 100088339

弁理士 篠部 正治

最終頁に続く

(54) 【発明の名称】 電子写真用感光体および電子写真装置

(57)【要約】

【課題】 電子輸送物質を含有する単層型感光層を有する電子写真用感光体において、正帯電における電気特性に優れ、繰り返し使用においても安定性に優れた電子写真用感光体および、これを備えた電子写真装置を提供する。

【解決手段】 導電性基体上に直接あるいは下引き層を 介して、少なくとも樹脂バインダーと電荷発生物質と正 孔輸送物質と電子輸送物質とを含有する単層型感光層を 有する電子写真用感光体において、該正孔輸送物質が下 記一般式 (HT1)

で表される構造式の化合物である。

【特許請求の範囲】

【請求項1】 導電性基体上に直接あるいは下引き層を介して、少なくとも樹脂バインダーと電荷発生物質と正 孔輸送物質と電子輸送物質とを含有する単層型感光層を 有する電子写真用感光体において、該正孔輸送物質が下 記一般式(HT1)

1

$$Ar^{H1}$$

$$C = CH - Ar^{H2} - N$$

$$X$$

$$(HT1)$$

(式(HT1)中、Ar^{H1} は置換基を有してもよいアリール基を表し、Ar^{H2} は置換基を有してもよいフェニレン基、ナフチレン基、ビフェニレン基、あるいはアントリレン基を表し、R^{H1} は水素原子、低級アルキル基または低級アルコキシ基を表し、Xは水素原子、置換基を有してもよいアルキル基または置換基を有してもよいアリール基を表し、Yは置換基を有してもよいアリール基、または下記一般式(HT1a)

(式(HT1a)中、 R^{H1} は前記と同じ意味を表す) あるいは下記一般式(HT1b)

$$(R^{H2})_m$$
 $CH=C$
 Z
 $(HT1b)$

RE7

(式(ET2)中、R^{E5} ~R^{E8} は、同一または異なって、水素原子、炭素数1~12のアルキル基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す)で表される構造式の化合物である請求項1記載の電子写真用感光体。

【請求項4】 電子輸送物質のうち少なくとも1種が、 下記一般式 (ET3) (式(HT1b)中、 R^{H2} は水素原子、低級アルキル基または低級アルコキシ基を表し、 R^{H3} は水素原子、ハロゲン原子、または低級アルキル基を表し、Z は水素原子、または置換基を有してもよいアリール基を表し、mおよびn は $0\sim4$ の整数を表す)で表される基を表す)で表される構造式の化合物であることを特徴とする電子写真用感光体。

2

【請求項2】 電子輸送物質のうち少なくとも1種が、下記一般式(ET1)

(式(ET1)中、 R^{E1} $\sim R^{E4}$ は、同一または異なって、水素原子、炭素数 $1\sim 12$ のアルキル基、炭素数 $1\sim 12$ のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハロゲン原子、炭素数 $1\sim 6$ のアルキル基、炭素数 $1\sim 6$ のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す)で表される構造式の化合物である請求項 1 記載の電子写真用感光体。

【請求項3】 電子輸送物質のうち少なくとも1種が、 下記一般式(ET2)

$$O = \bigcup_{R \in \mathbb{N}} O$$

$$(ET3)$$

(ET2)

(式(ET3)中、R^{E9}、R^{E10} は、同一または異なって、水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6

のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す)で表される構造式の 化合物である請求項1記載の電子写真用感光体。 【請求項5】 電子輸送物質のうち少なくとも1種が、 下記一般式(ET4)

(式(ET4)中、 R^{E11} 、 R^{E12} は、同一または異なって、水素原子、炭素数 $1\sim12$ のアルキル基、炭素数 $1\sim12$ のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。 $R^{E13}\sim R^{E17}$ は、同一または異なって、水素原子、ハロゲン原子、炭素数 $1\sim12$ のアルコキシ基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよい

フェノキシ基、ハロゲン化アルキル基を表し、また、2 つ以上の基が結合して環を形成してもよい。置換基は、 ハロゲン原子、炭素数1~6のアルキル基、炭素数1~ 6のアルコキシ基、水酸基、シアノ基、アミノ基、ニト ロ基、ハロゲン化アルキル基を表す)で表される構造式 の化合物である請求項1記載の電子写真用感光体。

【請求項6】 電子輸送物質のうち少なくとも1種が、下記一般式 (ET5)

(式 (ET5) 中の R^{E18} \sim R^{E21} は、同一または異なって、水素原子、炭素数 $1\sim12$ のアルキル基、炭素数 $1\sim12$ のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。 R^{E22} 、 R^{E23} は、同一または異なって、水素原子、炭素数 $1\sim12$ のアルキル基を表す。 R^{E24} \sim R^{E31} は、同一または異なって、水素原子、炭素数 $1\sim12$ のアルキル基、炭素数 $1\sim12$ のアルキル基、炭素数 $1\sim12$ のアルキル基、炭素数 $1\sim12$ のアルコキシ基、

置換基を有してもよいアリール基、ハロゲン化アルキル 基を表す。置換基は、ハロゲン原子、炭素数1~6のア ルキル基、炭素数1~6のアルコキシ基、水酸基、シア ノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表 す)で表される構造式の化合物である請求項1記載の電 子写真用感光体。

【請求項7】 電子輸送物質のうち少なくとも1種が、下記一般式(ET6)

$$R^{E32}$$
 R^{E34}
 R^{E34}
 R^{E36}
 R^{E35}
 R^{E35}
 R^{E36}
 R^{E35}

(式 (ET6) 中、R^{E32} ~R^{E35} は、同一または 40 異なって、水素原子、ハロゲン原子、シアノ基、アミノ 基、ニトロ基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール 基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。R^{E36} は水素原子、ハロゲン原子、シアノ基、アミノ基、ニトロ基、ベンゾキノンイミン、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハ 50

ロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す)で表される構造式の化合物である請求項1記載の電子写真用感光体。

【請求項8】 電子輸送物質のうち少なくとも1種が、 下記一般式 (ET7)

(式(ET7)中、RE37 ~RE41 は、同一または異なって、水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいフェノキシ基、ハロゲン化アルキル基を表す。RE42 ~RE49 は、水素原子または、ニトロ基を表し、そのうち少なくとも3つは、ニトロ基である。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す)で表される構造式の化合物である請求項1記載の電子写真用感光体。

【請求項9】 電子輸送物質のうち少なくとも1種が、

6

(式 (ET8) 中の R^{E50} は、置換基を有してもよいアルキル基、置換基を有してもよいアリール基を表し、 R^{E51} は、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、下記式 (ET8 a)

$$--$$
o $--$ R^{E52} (ET8a)

(RE52 は、置換基を有してもよいアルキル基、置換基を有してもよいアリール基を表す)で表される基を表し、置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す)で表される構造式の化合物である請求項1記載の電子写真用感光体。

【請求項10】 電子輸送物質のうち少なくとも1種が、下記一般式 (ET9)

(式 (ET9) 中、 R^{E53} $\sim R^{E65}$ は、同一または 異なって、水素原子、炭素数 $1\sim 6$ のアルキル基、炭素 数 $1\sim 6$ のアルコキシ基、アリール基、アラルキル基、 ハロゲン原子、ハロゲン化アルキル基を表す)で表され

る構造式の化合物である請求項1記載の電子写真用感光 体。

【請求項11】 電子輸送物質のうち少なくとも1種が、下記一般式(ET10)

(式 (ET10) 中、 R^{E66} $\sim R^{E73}$ は、同一または異なって、水素原子、炭素数 $1\sim6$ のアルキル基、炭素数 $1\sim6$ のアルコキシ基、アリール基、アラルキル基、ハロゲン原子、ハロゲン化アルキル基を表す)で表

される構造式の化合物である請求項1記載の電子写真用 感光体。

【請求項12】 電子輸送物質のうち少なくとも1種が、下記一般式(ET11)

7
$$R^{E79}$$
 R^{E80}
 R^{E81}
 R^{E85}
 R^{E86}
 R^{E77}
 $C = C$
 R^{E76}
 R^{E82}
 R^{E83}
 R^{E84}
 R^{E85}
 R^{E86}
 R^{E76}
 R^{E75}
(ET11)

(式 (ET11) 中、 R^{E74} 、 R^{E75} は、同一または異なって、シアノ基、アルコキシカルボニル基を表し、 R^{E76} は、水素原子、炭素数 $1\sim12$ のアルキル基、置換基を有してもよいアリール基を表す。 R^{E77} $\sim R^{E81}$ は、同一または異なって、水素原子、ハロゲン原子、炭素数 $1\sim12$ のアルキル基、アルコキシ基、置換基を有してもよいアリール基、ハロゲン化アルキル基、アルキル置換アミノ基を表す。 R^{E82} $\sim R^{E84}$ は、同一または異なって、水素原子、炭素数 $1\sim12$ のアルキル基を表し、 R^{E85} 、 R^{E86} は、同一または異なって、水素原子、ハロゲン原子、炭素数 $1\sim12$ の異なって、水素原子、ハロゲン原子、炭素数 $1\sim12$ の

アルキル基、置換基を有してもよいアリール基を表し、 Xは、硫黄原子または酸素原子を表し、nは、0または 1を表す。置換基は、ハロゲン原子、炭素数1~6のア ルキル基、炭素数1~6のアルコキシ基、水酸基、シア ノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表 す)で表される構造式の化合物である請求項1記載の電 子写真用感光体。

【請求項13】 電子輸送物質のうち少なくとも1種が、下記一般式(ET12)、(ET13)または(ET14)

(式(ET12)、(ET13)および(ET14) 中、 R^{E87} \sim R^{E90} は、同一または異なって、水素 40 原子または、ハロゲン原子を表し、 R^{E91} 、 R^{E92} は、同一または異なって、シアノ基、アルコキシカルボ ニル基を表し、 R^{E93} \sim R^{E97} は、水素原子、ハロ

ゲン原子、炭素数1~6のアルキル基、ニトロ基、シア ノ基を表す)で表される構造式の化合物である請求項1 記載の電子写真用感光体。

【請求項14】 電子輸送物質のうち少なくとも1種が、下記一般式(ET15)または(ET16)

(式(ET15)および(ET16)中、 R^{E98} ~ R^{E101} は、同一または異なって、水素原子または、ハロゲン原子を表し、 R^{E102} 、 R^{E103} は、同一または異なって、シアノ基、アルコキシカルボニル基を表し、 R^{E104} ~ R^{E108} は、同一または異なって、水素原子、ハロゲン原子、炭素数1~6のアルキル基、ニトロ基、シアノ基を表す)で表される構造式の化合物である請求項1記載の電子写真用感光体。

【請求項15】 電荷発生物質のうち少なくとも1種が、X型無金属フタロシアニンである請求項1~14のうちいずれか一項記載の電子写真用感光体。

【請求項16】 樹脂バインダーのうち少なくとも1種が、下記一般式(BD1)

(式 (BD1) 中、R^{B1} ~R^{B8} は、夫々、水素原子、炭素数1~6のアルキル基、置換基を有してもよいアリール基、シクロアルキル基、ハロゲン原子を表し、乙は、置換基を有してもよい炭素環を形成するのに必要な原子群を表す。置換基は、炭素数1~6のアルキル基、ハロゲン原子を表す)で表される構造単位を主要繰り返し単位として有するポリカーボネートである請求項1~15のうちいずれか一項記載の電子写真用感光体。

【請求項17】 請求項1~16のうちいずれか一項記 40 載の電子写真用感光体を備え、正帯電プロセスにて帯電 プロセスを行なうことを特徴とする電子写真装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真用感光体 およびその電子写真用感光体を用いた電子写真装置に関 する。

[0002]

【従来の技術】近年、電子写真用感光体は、有機光導電 材料を用いた有機電子写真用感光体が、無公害、低コス ト、材料選択の自由度より感光体特性を様々に設計できるなどの点から、数多く提案され実用化されている。

10

【0003】有機電子写真用感光体の感光層は、主として有機光導電材料を樹脂に分散した層からなり、電荷発生材料を樹脂に分散させた層(電荷発生層)と電荷輸送材料を樹脂に分散させた層(電荷輸送層)とを積層した積層構造や、電荷発生物質および電荷輸送物質を樹脂に分散させた単一の層からなる単層構造などが数多く提案されている。

【0004】中でも、感光層として電荷発生層の上に電荷輸送層を積層させた機能分離型を用いた感光体が、感光体特性や耐久性に優れていることから広く実用化されている。この機能分離型積層感光体に用いられる電荷輸送層には主として正孔輸送材料が用いられるため、負帯電プロセスに使用されているが、負帯電プロセスに使用される負極性コロナ放電は、正極性に比べて不安定であり、発生オゾン量も多いことから、感光体への悪影響や、使用環境への悪影響が問題となっている。

【0005】これらの問題点を解決するためには正帯電で使用できる有機電子写真用感光体が有効であり、現在、高感度の正帯電感光体が求められている。正帯電感光体としては、感光層として、正孔輸送層の上に電荷発生層を積層させたものや、電荷発生層の上に電子輸送層を積層させた機能分離型の感光体、または、同一層中に電荷発生物質と電荷輸送物質とを含有させた単層型感光体が数多く提案されているが、負帯電の機能分離型感光体と比較して、感度等の電気特性の面で劣るものが多かった。

【0006】そこで近年、特開平1-206349号公報、特開平4-360148号公報、電子写真学会誌Vo1.30,p266~273(1991)、特開平3-290666号公報、特開平5-92936号公報、Pan-Pacific Imaging Conference/Japan Hardcopy'98 July 15-17,1998 JAHALL,Tokyo,Japan 予稿集p207-210、特開平9-151157号公報、Japan Hardcopy'97 論文集1997年7月9日、10日、11日 JAホール(東京・大手町)p21-24、特開平5-279582号公報、特開平7-179775号公報、Japan Ha

rdcopy '92 論文集1992年7月6日、7日、8日 JAホール (東京・大手町) p173-176、特開平10-73937号公報等に、数多くの電子輸送物質やこれを用いた電子写真用感光体が提案、記載され、注目を浴びるようになってきている。さらには、単層型感光層中に、特開平5-150481号公報、特開平6-130688号公報、特開平9-281728号公報、特開平9-281728号公報、特開平9-281728号公報、特開平9-281728号公報、特開平9-281728号公報、特開平10-239874号公報に記載されているような正孔輸送物質および電子輸送物質を組み合わせて用いた感光体が高 10感度であるとして着目され、一部実用化されている。

[0007]

【発明が解決しようとする課題】しかしながら、上記の 単層型電子写真用感光体においては、初期の感度や残留 電位といった電気特性は良好であるものの、繰り返し使 用により電気特性が変化してしまうといった問題が依然 としてあり、即ち、未だ満足のいくものは得られていな いというのが現状であった。

【0008】そこで本発明の目的は、電子輸送物質を含有する単層型感光層を有する電子写真用感光体において、前記の欠点を除去し、正帯電における電気特性に優れ、繰り返し使用においても安定性に優れた電子写真用感光体および、これを備えた電子写真装置を提供することにある。

[0009]

【課題を解決するための手段】本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、少なくとも樹脂バインダー、電荷発生物質、正孔輸送物質、電子輸送物質(アクセプタ性化合物)を含有する単層型感光層を有する電子写真用感光体において、該正孔輸送物質を特30定化合物とすることにより、正帯電における電気特性の繰り返し安定性を向上させることができることを見出し、本発明を完成させるに至った。

【0010】即ち、本発明の電子写真用感光体は、導電性基体上に直接あるいは下引き層を介して、少なくとも樹脂バインダーと電荷発生物質と正孔輸送物質と電子輸送物質とを含有する単層型感光層を有する電子写真用感光体において、該正孔輸送物質が下記一般式(HT1)

$$Ar^{H1}$$

$$C = CH - Ar^{H2} - N$$

$$Y$$
(HT1)

(式(HT1)中、ArHI は置換基を有してもよいア

リール基を表し、ArH2 は置換基を有してもよいフェニレン基、ナフチレン基、ビフェニレン基、あるいはアントリレン基を表し、RH1 は水素原子、低級アルキル基または低級アルコキシ基を表し、Xは水素原子、置換基を有してもよいアルキル基または置換基を有してもよいアリール基を表し、Yは置換基を有してもよいアリー

12

ル基、または下記一般式(HTla)

(式 (HT 1 a) 中、R^{HI} は前記と同じ意味を表す)あるいは下記一般式 (HT 1 b)

$$(R^{H2})_m$$
 $CH=C$
 $(R^{H3})_n$
 $(HT1b)$

(式(HT1b)中、 R^{H2} は水素原子、低級アルキル基または低級アルコキシ基を表し、 R^{H3} は水素原子、ハロゲン原子、または低級アルキル基を表し、Z は水素原子、または置換基を有してもよいアリール基を表し、mおよびR は R^{H3} で表される基を表す)で表される構造式の化合物であることを特徴とするものである。

【0011】また、電子輸送物質のうち少なくとも1種が、下記一般式(ET1)~(ET16)で表されるアクセプタ性化合物であることが好ましい。

$$\begin{array}{c|c}
[0012] \\
 & RE1 \\
 & RE3 \\
 & RE4
\end{array}$$
(ET1)

式(ET1)中、R^{E1} ~R^{E4} は、同一または異なって、水素原子、炭素数1~12のアルキル基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

[0013]

$$0 \xrightarrow{RE5} CH - CH \xrightarrow{RE7} 0$$

$$RE6 \qquad RE8 \qquad (ET2)$$

式(ET2)中、R^{E5} ~R^{E8} は、同一または異なって、水素原子、炭素数1~12のアルキル基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハロゲン原子、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

[0014]

式(ET3)中、R^{E9}、R^{E10} は、同一または異なって、水素原子、炭素数 1~12のアルキル基、炭素数 1~12のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハロゲン原子、炭素数 1~6のアルキル基、炭素数 1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

[0015]

$$0 = \begin{array}{c} R^{E11} \\ 0 = \\ R^{E12} \end{array} \xrightarrow{R^{E13}} \begin{array}{c} R^{E14} \\ R^{E15} \\ R^{E17} \end{array} \xrightarrow{R^{E16}} (ET4)$$

20

式(ET4)中、R^{E11} 、R^{E12} は、同一または異なって、水素原子、炭素数 $1\sim12$ のアルキル基、炭素数 $1\sim12$ のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。R^{E13} ~R^{E17} は、同一または異なって、水素原子、ハロゲン原子、炭素数 $1\sim12$ のアルキル基、炭素数 $1\sim12$ のアルコキシ基、置換基を有してもよいアリール基、置換基

を有してもよいアラルキル基、置換基を有してもよいフェノキシ基、ハロゲン化アルキル基を表し、また、2つ以上の基が結合して環を形成してもよい。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

[0016]

式 (ET5) 中の R^{E18} \sim R^{E21} は、同一または異なって、水素原子、炭素数 $1\sim$ 1 2 のアルキル基、炭素数 $1\sim$ 1 2 のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。 R^{E22} 、 R^{E23} は、同一または異なって、水素原子、炭素数 $1\sim$ 1 2 のアルキル基を表す。 R^{E24} \sim R^{E31} は、同一または異なって、水素原子、炭素数 $1\sim$ または異なって、水素原子、炭素数 $1\sim$

12のアルキル基、炭素数1~12のアルコキシ基、置 換基を有してもよいアリール基、ハロゲン化アルキル基 を表す。置換基は、ハロゲン原子、炭素数1~6のアル キル基、炭素数1~6のアルコキシ基、水酸基、シアノ 基、アミノ基、ニトロ基、ハロゲン化アルキル基を表 す。

[0017]

14

式(ET6)中、R^{E32} ~R^{E35} は、同一または異なって、水素原子、ハロゲン原子、シアノ基、アミノ基、ニトロ基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、シクロアルキル基、置換基を有してもよいアラル基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、ベンジキノンイミン、炭素数1~12のアルキル基、置換基を有してもよいアラル基、シクロアルキル基、置換基を有してもよいアラルをル基、シクロアルキル基、置換基を有してもよいアラルキル基、ハロゲン化アルキル基を表す。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

[0018]

式 (ET7) 中、 R^{E37} \sim R^{E41} は、同一または異なって、水素原子、ハロゲン原子、シアノ基、ニトロ

基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、置換基を有してもよいアリール基、置換基を有してもよいフェノキシ基、ハロゲン化アルキル基を表す。R^{E42}~R^{E49}は、水素原子または、ニトロ基を表し、そのうち少なくとも3つは、ニトロ基である。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

16

[0019]

式 (ET8) 中のR^{E50} は、置換基を有してもよいアルキル基、置換基を有してもよいアリール基を表し、R^{E51} は、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、または、下記式(ET8a) ---O-R^{E52} (ET8a)

(RE52 は、置換基を有してもよいアルキル基、置換基を有してもよいアリール基を表す)で表される基を表し、置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

[0020]

式(ET9)中、 R^{E53} \sim R^{E65} は、同一または異なって、水素原子、炭素数 $1\sim6$ のアルキル基、炭素数 $1\sim6$ のアルコキシ基、アリール基、アラルキル基、ハ

ロゲン原子、ハロゲン化アルキル基を表す。

[0021]

式 (ET10) 中、 R^{E66} $\sim R^{E73}$ は、同一または 異なって、水素原子、炭素数 $1\sim6$ のアルキル基、炭素数 $1\sim6$ のアルコキシ基、アリール基、アラルキル基、

ハロゲン原子、ハロゲン化アルキル基を表す。 【 0 0 2 2 】

18

式 (ET11) 中、 R^{E74} 、 R^{E75} は、同一または異なって、シアノ基、アルコキシカルボニル基を表し、 R^{E76} は、水素原子、炭素数 $1\sim12$ のアルキル基、置換基を有してもよいアリール基を表す。 R^{E77} $\sim R^{E81}$ は、同一または異なって、水素原子、ハロゲン原子、炭素数 $1\sim12$ のアルキル基、アルコキシ基、置換基を有してもよいアリール基、ハロゲン化アルキル基、アルキル置換アミノ基を表す。 R^{E82} $\sim R^{E84}$ は、同一または異なって、水素原子、炭素数 $1\sim12$ のアル

キル基を表し、R^{E85} 、R^{E86} は、同一または異なって、水素原子、ハロゲン原子、炭素数1~12のアルキル基、置換基を有してもよいアリール基を表し、Xは、硫黄原子または酸素原子を表し、nは、0または1を表す。置換基は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、水酸基、シアノ基、アミノ基、ニトロ基、ハロゲン化アルキル基を表す。

[0023]

式(ET12)、(ET13)および(ET14)中、 R^{E87} \sim R^{E90} は、同一または異なって、水素原子または、ハロゲン原子を表し、 R^{E91} 、 R^{E92} は、同一または異なって、シアノ基、アルコキシカルボニル

基を表し、 R^{E93} \sim R^{E97} は、水素原子、ハロゲン原子、炭素数 $1\sim$ 6 のアルキル基、ニトロ基、シアノ基を表す。

[0024]

式(ET15)および(ET16)中、 R^{E98} $\sim R^{E101}$ は、同一または異なって、水素原子または、ハロゲン原子を表し、 R^{E102} 、 R^{E103} は、同一または異なって、シアノ基、アルコキシカルボニル基を表し、 R^{E104} $\sim R^{E108}$ は、同一または異なって、水素原子、ハロゲン原子、炭素数 $1\sim 6$ のアルキル基、ニトロ基、シアノ基を表す。

【0025】さらに、電荷発生物質のうち少なくとも1種が、X型無金属フタロシアニンであることが好ましい。

【0026】さらにまた、樹脂バインダーのうち少なくとも1種が、下記一般式(BD1)

(式(BD1)中、R^{B1} ~R^{B8} は、夫々、水素原子、炭素数1~6のアルキル基、置換基を有してもよいアリール基、シクロアルキル基、ハロゲン原子を表し、乙は、置換基を有してもよい炭素環を形成するのに必要な原子群を表す。置換基は、炭素数1~6のアルキル基、ハロゲン原子を表す)で表される構造単位を主要繰り返し単位として有するポリカーボネートであることが好ましい。

【0027】本発明の電子写真装置は、前記電子写真用 感光体を備え、正帯電プロセスにて帯電プロセスを行な うことを特徴とするものである。

【0028】本発明において、正帯電における電気特性の繰り返し安定性が向上する詳しいメカニズムは不明であるが、後述する実施例と比較例の対比から、結果として電気特性、繰り返し特性の向上につながることが分かった。

[0029]

【発明の実施の形態】以下、本発明の電子写真用感光体の実施の形態について、図面を参照しながら説明する。 <u>層構成</u> 図1は本発明の感光体の一実施例を示す概念的断面図であり、1は導電性基体、2は下引き層、3は感光層、4は保護層であり、下引き層と保護層は、必要に応じて設けることができる。本発明における感光層3は、電荷発生機能と電荷輸送機能とを有し、1つの層で両方の機能を有する単層型感光層である。

20

【0030】 導電性基体

導電性基体1は、感光体の電極としての役目と同時に他の各層の支持体ともなっており、円筒状、板状、フィルム状のいずれでもよく、材質的にはアルミニウム、ステンレス鋼、ニッケルなどの金属、あるいはガラス、樹脂などの上に導電処理を施したものでもよい。

【0031】下引き層

下引き層2は、必要に応じて設けることができ、樹脂を主成分とする層やアルマイト等の酸化皮膜等からなり、 導電性基体から感光層への不要な電荷の注入防止、基体 表面の欠陥被覆、感光層の接着性の向上等の目的で必要 に応じて設けることができる。

【0032】樹脂バインダーとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリアシ樹脂、メラミン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などを1種または、2種以上適宜組み合わせて使用することが可能である。また、分子量の異なる同種の樹脂を混合して用いてもよい。

【0033】また、樹脂バインダー中には、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸化物、窒化ケイ素、窒化アルミニウム等の金属窒化物金属酸化物微粒子、有機金属化合物、シランカップリング剤、有機金属化合物とシランカップリング剤から形成されたもの等を含有してもよい。これらの含有量は、層

を形成できる範囲で任意に設定することができる。

【0034】樹脂を主成分とする下引き層の場合、電荷 輸送性の付与、電荷トラップの低減等を目的として、正 孔輸送物質または電子輸送物質を含有させることができ る。かかる正孔輸送物質および電子輸送物質の含有量 は、下引き層の固形分に対して、0.1~60重量%、 好適には5~40重量%である。更に、必要に応じて、 電子写真特性を著しく損なわない範囲でその他公知の添 加剤を含有させることもできる。

る種類の層を二層以上積層させて用いてもよい。尚、下 引き層の膜厚は、下引き層の配合組成にも依存するが、 繰り返し連続使用したとき残留電位が増大するなどの悪 影響が出ない範囲で任意に設定することができ、好まし くは、 $0.1\sim10\mu m$ である。

【0036】感光層

感光層3は、主として樹脂バインダーと、電荷発生物質 と、正孔輸送物質と、電子輸送物質とからなる単層構造 である。

【0037】本発明においては、正孔輸送物質として、

前記一般式(HT1)で表される構造式の化合物を用い る。また、ヒドラゾン化合物、ピラゾリン化合物、ピラ ゾロン化合物、オキサジアゾール化合物、オキサゾール 化合物、アリールアミン化合物、ベンジジン化合物、ス チルベン化合物、スチリル化合物、ポリビニルカルバゾ ール、ポリシラン等の正孔輸送物質を併用することがで き、これら正孔輸送物質を1種または2種以上組み合わ せて使用することが可能である。前記一般式 (HT1) で表される構造式の化合物の具体例としては、例えば以 【0035】下引き層は、一層でも用いられるが、異な 10 下の(HT1-1)~(HT1-70)に示す構造式の 化合物が挙げられ、また、その他の正孔輸送物質の具体 例としては、以下の (HT-1) ~ (HT-61) に示 す構造式の化合物が挙げられるが、本発明はこれらに限 定されるものではない。尚、正孔輸送物質の含有量は、 感光層の固形分に対して5~80重量%、好ましくは1 0~60重量%である。好ましくは、用いる正孔輸送物 質の半分以上が前記一般式(HT1)で表される構造式 の化合物である。

[0038]

30

20

24

$$C = CH - CHT1 - 7)$$

$$C = CH - CHT1 - 7)$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

$$C=CH-N$$
 CH_2-N

[0039]

26

$$H_3C$$
 $C=CH$
 H_3C
 H_3C
 H_3C
 H_3C

[0040]

[0041]

40

[0042]

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \\ \text{(HT1-42)}$$

$$CH_5$$
 $CH=CH$
 $(HT1-44)$

$$CI$$
 $C=CH$
 $(HT1-47)$

[0043]

40

$$\begin{array}{c|c} CH_3 & H \\ \hline \\ C=CH- \\ \hline \\ (HT1-51) & CH_3 \\ \hline \\ (HT1-56) \\ \end{array}$$

[0044]

[0045]

40

37

[0046]

[0047]

[0048]

$$\begin{array}{c|c} & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$CH_3$$
— $CH=C$
 $(HT-52)$

[0049]

【0050】電子輸送物質としては、前記一般式(ET 1)~(ET16)で表される化合物が好適であるが、 その他にも、無水琥珀酸、無水マレイン酸、ジブロム無 水琥珀酸、無水フタル酸、3-ニトロ無水フタル酸、4 ーニトロ無水フタル酸、無水ピロメリット酸、ピロメリ ット酸、トリメリット酸、無水トリメリット酸、フタル イミド、4-ニトロフタルイミド、テトラシアノエチレ ン、テトラシアノキノジメタン、クロラニル、ブロマニ

フルオレノン、トリニトロチオキサントン、ジニトロベ ンゼン、ジニトロアントラセン、ジニトロアクリジン、 ニトロアントラキノン、ジニトロアントラキノン、チオ ピラン系化合物、キノン系化合物、ベンゾキノン系化合 物、ジフェノキノン系化合物、ナフトキノン系化合物、 アントラキノン系化合物、ジイミノキノン系化合物、ス チルベンキノン系化合物等の電子輸送物質(アクセプタ 性化合物)を使用することができ、これら電子輸送物質 ル、o-ニトロ安息香酸、マロノニトリル、トリニトロ 50 を1種または2種以上組み合わせて使用することが可能

れるが、本発明はこれらに限定されるものではない。

1~50重量%、好適には5~40重量%である。

尚、電子輸送物質の含有量は、感光層の固形分に対して

(ET1 - 16)

である。上記一般式 (ET1) \sim (ET16) で表される化合物の具体例としては、以下の (ET1-1) \sim (ET16-16) に示す構造式の化合物が挙げられ、その他の電子輸送物質の具体例としては、以下の (ET-1) \sim (ET-42) に示す構造式の化合物が挙げら

[0052]

(ET1 - 8)

49

[0053]

52

$$\begin{array}{c|c}
 & CH_2 \\
 & CH_$$

[0054]

53

[0055]

$$H_3C$$
 $O = CH-N=N$
 $O = CH-N$

$$H_3C$$
 $O = CH - N = N - CH_3$
 $ET4 - 18$

$$O = CH - N = N - CI$$
 (ET4 – 26)

$$H_3C$$
 $O=CH-N=N-CI(ET4-19)$
 H_3C

$$CI(ET4-19)$$
 $O = CH-N=N$ F F $(ET4-27)$

$$H_3C$$
 $O=CH-N=N-CI$
 $ET4-20$

$$CI$$
 $(ET4-20)$
 $O=CH-N=N-CP$
 $-Br$ $(ET4-28)$

$$H_3C$$
 $O = CH - N = N - F$
 $ET4 - 21$

$$(ET4 - 21)$$
 $O = CH - N = N - CI (ET4 - 29)$

$$F_3$$
C F_3 C F_3 C F_4 C F_5 C

$$H_3C$$
 $O = CH-N=N-CF_3$
 $(ET4-23)$

$$CF_3$$
 $(ET4-23)$
 $O=CH-N=N-CF_3$
 $(ET4-31)$

$$H_3C$$
 $O \longrightarrow CH-N=N$
 $(ET4-24)$
 $O \longrightarrow CH_2$
 $O \longrightarrow CH-N=N$
 H_3CO

[0056]

58

$$O \longrightarrow CH-N=N-CH_2 \longrightarrow N=N-CH=0$$
 (ET5 - 1)

$$\begin{array}{c|c} CH_3 & -N=N-CH \\ \hline CH_3 & -N=N-CH \\ \hline CH_3 & -N=N-CH \\ \hline \end{array}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\$$

$$\begin{array}{c|c}
CI & CH_3 & CI \\
CH_3 & CH_4 & CH_5 & CH_5
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CI \\
CH_3 & CH_5 & CH_5
\end{array}$$

$$\begin{array}{c|c}
CH & CH_5 & CH_5
\end{array}$$

$$\begin{array}{c|c} & & & \\ \hline O = & -CH-N=N-CH= & -CH-S \\ \hline & & & -N=N-CH= & -CH-S \\ \hline & & &$$

[0057]

[0058]

50

[0059]

(ET7 - 2)

63

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2

64

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$C_2H_5$$
 O_2N
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$C_2H_5$$
 C_2H_5
 C

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

$$\begin{array}{c|c}
F & F \\
F & N \\
O_2N & NO_2
\end{array} (ET7-12)$$

[0060]

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

66

$$O_2N$$
 NO_2
 $(ET7-21)$

$$O_2N$$
 N
 NO_2
 $(ET7-22)$

$$O_2N$$
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 O_2N
 NO_2
 NO_2
 NO_2

[0061]

$$CI$$
 CI
 CI
 O_2N
 NO_2
 O_2N
 O_2N
 O_2N
 O_2N

NO₂

$$CH_2$$

$$(ET7 - 30)$$
 O_2N
 NO_2

$$O_2N$$
 N
 NO_2
 NO_2
 NO_2
 NO_2

[0062]

68

$$O_2N$$
 O_2
 O_2
 O_2
 O_2
 O_2
 O_2

40

[0063]

71

[0064]

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 N
 NO_2
 O_2N
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

$$CH_3O$$
 N
 O_2N
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

40

(38)

73

(ET8 – 1)

(ET8 - 9)

74

(ET8 - 2)

(ET8 - 10)

(ET8 - 3)

(ET8 – 11)

(ET8 - 4)

(ET8 – 12)

(ET8 - 5)

(ET8 - 13)

(ET8-6)

(ET8 - 14)

(ET8 - 7)

[0065]

76

$$(H_3C)_2HC \longrightarrow CH_3$$

$$(ET9-3)$$

$$(ET9-4)$$

$$(H_3C)_2HC \xrightarrow{\text{CH}_3} (ET9-6)$$

$$C_2H_5 \xrightarrow{\text{C}_3} (ET9-6)$$

[0066]

[0067]

80

[0068]

$$CH = C$$
 $CH = C$
 $COOC_2H_5$
 $CH = C$
 $COOC_2H_5$

$$O_2N$$
 CH=C CN (ET12 - 3)

$$H_3C$$
 $CH = C$ CN $COOC_2H_5$ $CT12 - 5$

$$CH = C CN$$

$$COOC_2H_5$$

$$(ET12 - 13)$$

NC
$$\sim$$
 CH=C \sim CN \sim CH=C \sim CN \sim CH=C \sim COOC₂H₅ \sim COOC₂H₅ \sim CET12 \sim 15)

[0069]

[0070]

[0071]

$$O_2N$$
 — O_2N — O

$$O_2N - \bigcirc O_2N - \bigcirc O$$

$$\begin{array}{c}
O \\
S \\
O \\
O \\
O \\
Er
\end{array}$$

$$\begin{array}{c}
CN \\
CN \\
CN \\
(ET15 - 4)
\end{array}$$

$$\begin{array}{c|c} O & \text{Br} \\ \hline O & \text{CN} \\ \hline O & \text{CH} \\ \hline O & \text{CN} \\ \hline O & \text{CH} \\ \hline O & \text{COOC}_2\text{H}_5 \\ \hline O & \text{CT}_15-12) \\ \end{array}$$

$$H_3C - \bigcirc O - \bigcirc CH = C - \bigcirc CN - \bigcirc CH = C - \bigcirc CN - \bigcirc CH = C - \bigcirc CN - \bigcirc CH = C - \bigcirc COOC_2H_5$$
(ET15 - 5)

$$\begin{array}{c}
O \\
S \\
O \\
O
\end{array}$$

$$\begin{array}{c}
CN \\
COOC_2H_5
\end{array}$$
(ET15 - 13)

$$\begin{array}{c} O_2N- \\ O_2N- \\ O_3N- \\ O_4N- \\ O_5N- \\$$

[0072]

[0073]

Br Br Br Br ET - 3

(ET-9)

| (ET – 4)

н₃со СН₃ (ET − 11)

 $\begin{array}{c} \text{NC} & \begin{array}{c} O \\ \text{NC} \end{array} & \begin{array}{c} CI \\ \end{array} & \begin{array}{c} CI \end{array} & \begin{array}{c} CT \\ \end{array}$

 $_{\text{HaC}}$ $\stackrel{\text{O}}{\longleftrightarrow}$ $^{\text{CH}_3}$ (ET-7)

(ET - 19)

[0074]

【0075】電荷発生物質としては、フタロシアニン顔 料、ナフタロシアニン顔料、アゾ顔料、アントラキノン やアントアントロンのような多環キノン顔料、ペリレン 顔料、ペリノン顔料、スクアリリウム色素、アズレニウ ム色素、チアピリリウム色素、シアニン色素、キナクリ ドン色素等を用いることができ、また、これらの顔料や 色素を組み合わせて用いてもよい。特にアゾ顔料として 50 シアニンが好ましく、さらには、X型無金属フタロシア

は、ジスアゾ顔料、トリスアゾ顔料、アントアントロン 顔料としては、3、9-ジブロモアントアントロン、ペ リレン顔料としては、N, N'ービス (3, 5ージメチ ルフェニル) -3, 4:9, 10-ペリレンビス (カル ボキシイミド)、フタロシアニン系顔料としては、無金 属フタロシアニン、銅フタロシアニン、チタニルフタロ

(ET - 36)

ニン、τ型無金属フタロシアニン、ξ型銅フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、Y型チタニルフタロシアニン、サ開平8-209023号公報に記載のCuKα: X型回折スペクトルにてブラッグ角2θが9.6°を最大ピークとするチタニルフタロシアニンが好ましい。かかる電荷発生物質の含有量は、感光層の固形分に対して、0.1~20重量%、好適には、0.5~10重量%である。

【0076】樹脂バインダーとしては、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポ

リスルホン樹脂、メタクリル酸エステルの重合体および これらの共重合体などを適宜組み合わせて使用すること が可能である。特には、ビスフェノール2型ポリカーボ ネートに代表されるような、前記一般式 (BD1) で表 される構造単位に主要繰り返し単位として有するポリカ ーボネートが好適であり、具体例としては、以下の(B D1-1) ~ (BD1-16) に示す構造単位を主要繰 り返し単位として有するポリカーボネートが挙げられ る。また、その他にも、以下の(BD-1)~(BD-6) に示す構造単位の1種または2種以上を主要繰り返 し単位として有するポリカーボネート樹脂や、ポリエス テル樹脂が適しているが、本発明はこれらに限定される ものではない。また、これらの樹脂を1種または2種以 上混合して用いてもよい。また、分子量の異なる同種の 樹脂を混合して用いてもよい。尚、樹脂バインダーの含 有量は、感光層の固形分に対して10~90重量%、好 適には20~80重量%である。

[0077]

20

30

40

[0078]

$$-\mathbf{o} - \mathbf{c} -$$

$$-\mathbf{o} \longrightarrow \begin{matrix} \mathbf{c} \\ \mathbf{c}$$

【0079】感光層3の膜厚は実用的に有効な表面電位 を維持するためには、3~100μmの範囲が好まし く、より好適には10~50μmである。

【0080】これらの感光層中には、耐環境性や有害な 光に対する安定性を向上させる目的で、酸化防止剤や光 安定剤等の劣化防止剤を含有させることもできる。この ような目的に用いられる化合物としては、トコフェロー ルなどのクロマノール誘導体およびエステル化化合物、 ポリアリールアルカン化合物、ハイドロキノン誘導体、 エーテル化化合物、ジエーテル化化合物、ベンゾフェノ ン誘導体、ベンゾトリアゾール誘導体、チオエーテル化 合物、フェニレンジアミン誘導体、ホスホン酸エステ ル、亜リン酸エステル、フェノール化合物、ヒンダード フェノール化合物、直鎖アミン化合物、環状アミン化合 40 ルホキシド等のスルホキシド類、テトラヒドロフラン、 物、ヒンダードアミン化合物等が挙げられる。

【0081】また、感光層中には、形成した膜のレベリ ング性の向上や潤滑性の付与を目的として、シリコーン オイルやフッ素系オイル等のレベリング剤を含有させる こともできる。

【0082】更に、摩擦係数の低減、潤滑性の付与等を 目的として、酸化ケイ素(シリカ)、酸化チタン、酸化 亜鉛、酸化カルシウム、酸化アルミニウム (アルミ ナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウ ム、硫酸カルシウム等の金属硫化物、窒化ケイ素、窒化 50 100

アルミニウム等の金属窒化物金属酸化物微粒子、また は、4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ 素系クシ型グラフト重合樹脂等を含有してもよい。

【0083】更にまた、必要に応じて、電子写真特性を 著しく損なわない範囲でその他公知の添加剤を含有させ ることもできる。公知の添加剤としては、例えば、特開 平3-75754号公報に記載されているビフェニル化 合物が挙げられる。

【0084】保護層

保護層4は、耐刷性を向上させること等を目的とし、必 要に応じ設けることができ、樹脂バインダーを主成分と する層や、アモルファスカーボン等の無機薄膜からな る。また樹脂バインダー中には、導電性の向上や、摩擦 係数の低減、潤滑性の付与等を目的として、酸化ケイ素 (シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、 酸化アルミニウム(アルミナ)、酸化ジルコニウム等の 金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫 化物、窒化ケイ素、窒化アルミニウム等の金属窒化物金 属酸化物微粒子、または、4フッ化エチレン樹脂等のフ ッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等を 含有してもよい。

【0085】更に、電荷輸送性を付与する目的で、上記 感光層に用いられる正孔輸送物質、電子輸送物質を含有 させたり、形成した膜のレベリング性の向上や潤滑性の 付与を目的として、シリコーンオイルやフッ素系オイル 等のレベリング剤を含有させることもできる。また、必 要に応じて、電子写真特性を著しく損なわない範囲で、 その他公知の添加剤を含有させることもできる。

【0086】形成方法

前記下引き層2、感光層3および保護層4を塗布により 形成する場合には、上記構成材料を適当な溶剤とともに 溶解分散させて塗布液を作製し、適当な塗布方法にて塗 布し、乾燥すればよい。

【0087】上記溶剤としては、主としてメタノール、 エタノール、n-プロパノール、i-プロパノール、n ーブタノール、ベンジルアルコール等のアルコール類、 アセトン、メチルエチルケトン、メチルイソブチルケト ン、シクロヘキサノン等のケトン類、ジメチルホルムア ミド、ジメチルアセトアミド等のアミド類、ジメチルス ジオキサン、ジソキソラン、ジエチルエーテル、メチル セロソルブ、エチルセロソルブ等の環状または直鎖状の エーテル類、酢酸メチル、酢酸エチル、酢酸n-ブチル 等のエステル類、塩化メチレン、クロロホルム、四塩化 炭素、ジクロロエチレン、トリクロロエチレン等の脂肪 族ハロゲン化炭化水素類、リグロイン等の鉱油、ベンゼ ン、トルエン、キシレン等の芳香族炭化水素類、クロロ ベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化 水素類などが用いられ、これらを2種以上混合して用い てもよい。

【0088】上記塗布液分散溶解方法としては、主とし てペイントシェーカー、ボールミル、ダイノーミルなど のビーズミル、超音波分散等の公知の方法を用いること ができ、また、上記塗布方法としては、主として浸漬塗 布法、シールコート、スプレー塗布法、バーコート、ブ レードコート等の公知の方法を用いることができる。

【0089】また、上記乾燥における乾燥温度および乾 燥時間は、使用溶媒の種類や製造コスト等に鑑みて適当 に設定することができるが、好ましくは乾燥温度が室温 範囲内で設定する。より好ましくは、溶媒の沸点から沸 点+80℃の間の範囲内である。また、この乾燥は、通

常、常圧または減圧下にて、静止あるいは送風下で行わ

102

[0090]

【実施例】以下に、本発明を、実施例に基づいて詳細に 説明する。

実施例1

電気特性評価用として板状感光体、印字評価用としてド ラム状感光体(30φ)を作製した。アルミニウム板お よびアルミニウム素管上に夫々以下の組成の下引き層溶 以上200℃以下で、乾燥時間10分以上2時間以下の 10 液を浸漬塗工し、100℃で60分間乾燥して膜厚0. 3μmの下引き層を形成した。

> 塩化ビニルー酢酸ビニル共重合体 (SOLBIN C:日本化学 (株) 製) メチルエチルケトン

【0091】次に、以下の組成の材料を配合し、ダイノ 層上にこの分散液を浸漬塗工し、100℃で60分間乾 ーミルにて単層型感光層分散液を作製して、上記下引き 燥して膜厚25μmの単層型感光層を形成した。

> 電荷発生物質 :X型無金属フタロシアニン 2部 :前記式(HT1-17)の化合物 正孔輸送物質 50部 電子輸送物質 :前記式(ET1-8)の化合物 30部 酸化防止剤 : BHT 5 部

> シリコーンオイル: KF-50 (信越化学工業 (株) 製) 0.1部 バインダー樹脂 : ビスフェノール2型ポリカーボネート樹脂

> > [前記式(BD1-1)を構造単位とする樹脂]

(パンライトTS2020: 帝人化成(株) 製) 120部

塩化メチレン 以上のようにして電子写真用感光体を作製した。

800部

30部

970部

【0092】 実施例2~16および比較例1~14

実施例1で使用した感光層分散液の組成のうち、正孔輸 送物質、電子輸送物質を以下の表1および2に示す化合 物に代えた以外は実施例1と同様にして、夫々感光体を 作製した。

[0093]

【表1】

40

30

	正孔輪送物質	電子輸送物質
実施例1	(HT1 – 17)	(ET1 – 8)
実施例2	(HT1 – 17)	(ET2 – 11)
実施例3	(HT1 – 17)	(ET3 – 2)
実施例4	(HT1 – 17)	(ET4 – 5)
実施例5	(HT1 – 17)	(ET5 – 1)
実施例6	(HT1 – 17)	(ET6 — 19)
実施例7	(HT1 – 17)	(ET7 – 6)
実施例8	(HT1 – 17)	(ET8 — 12)
実施例9	(HT1 – 17)	(ET9 – 2)
実施例10	(HT1 – 17)	(ET10 – 1)
実施例11	(HT1 – 17)	(ET11 – 2)
実施例 12	(HT1 – 17)	(ET13 – 3)
実施例 13	(HT1 - 17)	(ET15 — 2)
実施例 14	(HT1 – 44)	(ET1 – 11)
実施例 15	(HT1 – 44)	(ET2 – 8)
実施例 16	(HT1 - 44)	(ET4 – 5)

[0094]

【表2】

	正孔輸送物質	電子輸送物質
比較例1	(HT - 17)	(ET1 – 8)
比較例2	(HT – 17)	(ET2 – 11)
比較例3	(HT – 17)	(ET3 – 2)
比較例4	(HT – 17)	(ET4 – 5)
比較例5	(HT – 17)	(ET5 – 1)
比較例6	(HT – 17)	(ET6 – 19)
比較例7	(HT – 17)	(ET7 – 6)
比較例8	(HT – 17)	(ET8 — 12)
比較例9	(HT – 17)	(ET9 – 2)
比較例 10	(HT – 17)	(ET10 – 1)
比較例11	(HT – 17)	(ET11 – 2)
比較例12	(HT – 17)	(ET13 – 3)
比較例13	(HT - 17)	(ET15 – 2)
比較例14	(HT1 – 17)	なし

【0095】 実施例1~16および比較例1~14の評

電気特性評価として、板状感光体を用い、(株)川口電 50 機製作所製静電複写紙試験装置EPA-8100にて、

106

以下のようにして評価を行った。

【0096】まず、温度23 $^{\circ}$ 、50%RHの環境下で、暗所にて表面電位を約+600 $^{\circ}$ に帯電させ、その後露光までの5秒間の表面電位の保持率を、以下の式に従って求めた。

保持率
$$Vk5$$
 (%) = $\frac{V5}{V0} \times 100$

V0: 帯電直後の表面電位

V5:5秒後(露光開始時)の表面電位

【0097】次に、同様に表面電位を約+600Vに帯電させ、ハロゲンランプの光をフィルターにて780nmに分光した 1.0μ W/cm²の単色光を5秒間露光して、表面電位が半分(+300V)になるのに要する露光量を感度 $E_{1/2}$ (μ J/cm²)として求め、露

光後5秒後の表面電位を残留電位Vr(V)として求めた。

【0098】また、実際の印字による耐久性の評価として、ドラム状感光体をブラザー社製レーザープリンター HL-730に装着し、温度24℃、48%RHの環境 下で、表面電位Vo(V)および露光部電位VI(V) を測定し、初期電位を評価した。更に、印字率約5%の 画像を5千枚印刷して、5千枚後、再び表面電位Vo (V)および露光部電位VI(V)を測定して、5千枚

【0097】次に、同様に表面電位を約+600Vに帯 10 印字後の電位を同様に評価した。これらの評価結果を以電させ、ハロゲンランプの光をフィルターにて780n 下の表3および4に示す。

[0099]

【表3】

(μ J / c m²) とし(水め、路							
	EPA - 8100による電気特性			HL - 730 による電位評価			
	保持率	感度	残留電位 Vr(V)	初期画像		5千枚後	
	Vk5(%)	E _{1/2} (μJ/cm ²)		Vo (V)	VI (V)	Vo (V)	VI (V)
実施例1	86.9	0.43	75	975	450	960	46 5
実施例2	85.8	0.42	68	965	450	955	460
実施例3	87.5	0.49	83	985	460	965	455
実施例4	85.7	0.46	73	960	455	960	475
実施例5	80.8	0.58	101	935	480	945	510
実施例6	85.7	0.48	83	965	460	945	485
実施例7	88.1	0.54	99	990	475	950	490
実施例8	84.9	0.45	77	960	455	950	475
実施例9	87.0	0.53	94	970	475	940	490
実施例 10	85.0	0.50	86	960	460	965	475
実施例 11	90.1	0.52	90	990	475	970	480
実施例 12	86.9	0.55	98	975	475	980	505
実施例 13	84.3	0.57	100	955	480	940	500
実施例 14	85.2	0.45	79	960	455	935	450
実施例 15	86.1	0.45	74	965	450	940	460
実施例 16	89.1	0.47	76	980	455	975	470

[0100]

【表4】

	EPA - 8100による電気特性			HL - 730 による電位評価			
	保持率	被 感度		初期画像		5千枚後	
	Vk5(%) (μ J/cm ²)	Ε _{1/2} (μJ/cm ²)	Vr(Y)	Vo (V)	VI (V)	Vo (V)	VI (V)
比較例1	84.9	0.44	73	960	455	825	460
比較例2	83.5	0.44	70	950	450	845	470
比較例3	86.0	0.51	75	965	460	860	465
比較例4	83.5	0.46	75	955	455	890	495
比較例5	78.4	0.55	99	925	480	795	485
比較例6	82.1	0.50	85	945	465	885	505
比較例7	85.0	0.56	96	965	480	830	490
比較例8	80.3	0.47	80	935	455	845	470
比較例9	84.4	0.54	93	955	475	850	500
比較例 10	82.7	0.52	91	945	470	885	535
比較例11	87.1	0.55	93	970	470	820	465
比較例 12	83.9	0.58	101	960	480	900	550
比較例 13	80.8	0.59	101	935	485	845	510
比較例 14	89.0	1.34	157	980	555	775	575

【0101】上記表3および4の結果から分かるように、正孔輸送物質として前記一般式(HT1)で表される構造式の化合物を用いた実施例1~16の電子写真用感光体は、各実施例に対応する比較例の電子写真用感光体に比べて5千枚印字後の表面電位Vo、露光部電位V 30 Iともに安定しており、優れた繰り返し特性を有していることが分かった。

[0102]

【発明の効果】以上のように、本発明によれば、導電性 基体上に、直接あるいは下引き層を介して、少なくとも 樹脂バインダーと、電荷発生物質と、正孔輸送物質と、 電子輸送物質(アクセプタ性化合物)とを含有する単層 型感光層を有する電子写真用感光体において、該正孔輸 送物質に前記一般式 (HT1) で表される構造式の化合物を用いることにより、繰り返し安定性に優れた電子写真用感光体を得ることができる。また、これらの感光体は、電子写真方式を用いたプリンター、複写機、FAX等に有用である。

【図面の簡単な説明】

【図1】本発明の感光体を示す模式的断面図である。 【符号の説明】

- 1 導電性基体
- 2 下引き層
- 3 感光層
- 4 保護層

【図1】

フロントページの続き

(51) Int.C1. ⁷		識別記号	FI		テーマコード(参考)
G 0 3 G	5/06	3 1 5	G 0 3 G	5/06	3 1 5 B
					3 1 5 Z
		3 1 9			3 1 9
		3 4 1			3 4 1
		3 4 5			3 4 5 Z
		3 7 1			3 7 1
C 0 8 K	5/00		C 0 8 K	5/00	
C 0 8 L	69/00		C 0 8 L	69/00	
G 0 3 G	5/05	1 0 1	G 0 3 G	5/05	101

(72)発明者 面川 真一

神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2HO68 AA13 AA19 AA20 AA31 BA12

BA14 BA16 BA38 BA42 BA44

BB25 FA01 FC02

4J002 BB031 BB121 BC031 BD041 BE021 BE061 BF021 BG001 BC051 BQ002 CC181 CD001

CF001 CF161 CG011 CG031

CKO21 CLOO1 CMO22 CNO31

CP001 CP012 EA068 EE057

EE058 EH127 EH137 EL067

EL137 EN066 EN076 EN126

EQ017 EQ018 ER006 ER007

ES007 ET007 ET008 EU018

EU037 EU126 EU137 EU216

EV217 EV307 FD098 GP00

GSOO HAO5