Machine Learning Introduction

Machine Learning Introduction

- 1. What is ML? Type of Learnings
- 2. Basic ML concepts
- 3. Supervised Learning
- 4. Unsupervised Learning
- 5. Other Common Terminologies

1. Machine Learning

 Getting computers to program themselves

(Writing software is the bottleneck, let the data do the work instead)

Traditional Programming

Machine Learning

Data we have decide algorithms we use

Types of Machine Learning

Type of Learning - Supervised Learning

- Where a program is "trained" on a pre-defined dataset.
- Example: Using a training set of human tagged positive, negative and neutral tweets to train a sentiment analysis classifier. (Classification)

Type of Learning - Unsupervised Learning

- Where a program, given a dataset, can automatically find patterns and relationships in that dataset.
- Example: Analyzing a dataset of emails and automatically grouping related emails by topic with no prior knowledge or training. (Clustering)

Or: Find similarities of people sitting here now.

Type of Learning - Reinforcement Learning

Learning what to do and how to map situations to actions. Example:
 AlphaGo Zero (Zero developed its Go skills by competing against itself)

- 1. What is Machine Learning: Recap
- ML is how we use data to build programs
- Basically, there are 3 types of ML: Supervised,
 Unsupervised, Reinforcement

2. ML Concepts: Case study

To find the best parameters:

as possible.

- 1. Choose a knowledge presentation
- 2. Define a cost function, or loss function, that measures how inaccurate our model's predictions are.3. Find the parameters that minimize loss, i.e. make our model as accurate

$$Y = f(X) + \epsilon$$
 $\hat{y} = \beta_0 + \beta_1 * x + \epsilon$

Example: Linear Regression

ML Concepts - Cost function/ Gradient Descent

$$Cost = \frac{\sum_{1}^{n} ((\beta_{1}x_{i} + \beta_{0}) - y_{i}))^{2}}{2 * n}$$

How to minimize the cost?
=> We use optimization
algorithms
The most common one is
Gradient Descent (First-order optimization algorithm)

ML Concepts - 3 key components

- Representation: how to represent knowledge (decision trees, rules, graphical models, neural networks, support vector machines, model ensembles ...).
- **Evaluation**: the way to evaluate candidate programs (hypotheses). (accuracy, prediction and recall, squared error, likelihood, posterior probability, cost, margin, entropy k-L divergence ...).
- Optimization: the way candidate programs are generated (convex optimization, constrained optimization).

2. ML Concepts: Recap

- A ML algorithm can be constructed using 3 components: representation, evaluation and optimization
- Given a problem, to build an Al program, we first choose a representation, then a way to evaluate performance, and finally, how to optimize our program

3. Supervised Learning

To learn a function f mapping between input and output

$$Y = f(X) + \epsilon$$

Regression: predict a continuous numerical value.

How much will that house sell for?

Classification: assign a label. Is this a picture of a cat or a dog?

Supervised Learning: Classification

SVM: Support Vector Machine

Logistic Regression: quite tricky to understand at the beginning

$$g(z) = \frac{1}{1 + e^{-z}}$$
 with
 $z = f(x) = w_0 + w_1 x_1 + ... + w_n x_n$

Logistic Regression: 1 Feature

Supervised Learning: Classification

Decision Tree with Titanic data

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Source: Kaggle

4. Unsupervised Learning

- Clustering: k-means, hierarchical clustering, Latent Dirichlet Allocation
- Data Compression: Principal Component Analysis (PCA),
 Singular-Value Decomposition (SVD)

PCA / SVD looks for a low-dimensional representation of the observations that explains a good fraction of the variance

Clustering looks for homogeneous subgroups among the observations.

Unsupervised Learning

LDA and Topic Modelling: there are some latent topics of documents that are not observed. Each document has a distribution over these topics

Trig/Family/Inspiration: family, web, mail, god, son, from, congratulations, children, life, child, down, trig, baby, birth, love, you, syndrome, very, special, bless, old, husband, years, thank, best, ...

Wildlife/BP Corrosion: game, fish, moose, wildlife, hunting, bears, polar, bear, subsistence, management, area, board, hunt, wolves, control, department, year, use, wolf, habitat, hunters, caribou, program, denby, fishing, ...

Energy/Fuel/Oil/Mining: energy, fuel, costs, oil, alaskans, prices, cost, nome, now, high, being, home, public, power, mine, crisis, price, resource, need, community, fairbanks, rebate, use, mining, villages, ...

Gas: gas, oil, pipeline, agia, project, natural, north, producers, companies, tax, company, energy, development, slope, production, resources, line, gasline, transcanada, said, billion, plan, administration, million, industry, ...

Education/Waste: school, waste, education, students, schools, million, read, email, market, policy, student, year, high, news, states, program, first, report, business, management, bulletin, information, reports, 2008, quarter

Presidential Campaign/Elections: mail, web, from, thank, you, box, mccain, sarah, very, good, great, john, hope, president, sincerely, wasilla, work, keep, make, add, family, republican, support, doing, p.o

Unsupervised Learning

PCA and Curse of Dimensionality

Use of PCA (<u>Principal Component Analysis</u>)

Picture from http://www.nlpca.org/pca_principal_component_analysis.html

InSilico Seminar Slides: Interpret PCA plots

3. and 4. Supervised and Unsupervised Learning Recap

- The number of algorithms for both is big
- For a problem, there are many algorithms that can be used => try and error.

5. ML Terminologies - Overfit/Underfit

To learn a function f mapping between input and output

Source: Coursera's ML course, taught by Andrew Ng

ML Terminologies - Cross Validation

Used for Model checking: to determine the performance of models

	◄ Total Number of Dataset — ▶	
Experiment 1		
Experiment 2		Training
Experiment 3		Training
Experiment 4		Validation
Experiment 5		

ML Terminologies - Batch/Online/Mini-batch

Given a training dataset of 1M samples:

- Full-batch learning: process all at once.
- Online-learning where for every iteration we randomly pick a training case
- Mini-batch learning where for every iteration we randomly pick 100 training cases

ML Terminologies - Ensemble Models

Ensemble is combining many different independent machine learning models

- Bagging: create subsets of training data set. Then, build a classifier for each subset.
- Boosting: Train a model on a set of data that is incorrectly predicted by previous models.
- Stacking: train a model based on output from other models

Thank you!

Q & A