# Neither Contextuality nor Nonlocality Admits Catalysts

Martti Karvonen

University of Ottawa

INL 27.4.2022

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

lacktriangle there's no LOCC-protocol  $|\psi_1
angle 
ightarrow |\psi_2
angle$ 

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

- ▶ there's no LOCC-protocol  $|\psi_1\rangle \rightarrow |\psi_2\rangle$
- **b** but there is a LOCC-protocol  $|\psi_1\rangle\otimes|\phi\rangle\rightarrow|\psi_2\rangle\otimes|\phi\rangle$

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

- ▶ there's no LOCC-protocol  $|\psi_1\rangle \rightarrow |\psi_2\rangle$
- **b** but there is a LOCC-protocol  $|\psi_1\rangle\otimes|\phi\rangle\rightarrow|\psi_2\rangle\otimes|\phi\rangle$

More generally, in an arbitrary resource theory we'd speak of catalysis whenever there's three resources d, e, f such that

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

- ▶ there's no LOCC-protocol  $|\psi_1\rangle \rightarrow |\psi_2\rangle$
- **b** but there is a LOCC-protocol  $|\psi_1\rangle\otimes|\phi\rangle\rightarrow|\psi_2\rangle\otimes|\phi\rangle$

More generally, in an arbitrary resource theory we'd speak of catalysis whenever there's three resources d, e, f such that

ightharpoonup there's no free transformation  $e \rightarrow f$ 

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

- ▶ there's no LOCC-protocol  $|\psi_1\rangle \rightarrow |\psi_2\rangle$
- **b** but there is a LOCC-protocol  $|\psi_1\rangle\otimes|\phi\rangle\rightarrow|\psi_2\rangle\otimes|\phi\rangle$

More generally, in an arbitrary resource theory we'd speak of catalysis whenever there's three resources d, e, f such that

- ightharpoonup there's no free transformation  $e \rightarrow f$
- **b** but there is a free transformation  $d \otimes e \rightarrow d \otimes f$

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

- ▶ there's no LOCC-protocol  $|\psi_1\rangle \rightarrow |\psi_2\rangle$
- **b** but there is a LOCC-protocol  $|\psi_1\rangle\otimes|\phi\rangle\rightarrow|\psi_2\rangle\otimes|\phi\rangle$

More generally, in an arbitrary resource theory we'd speak of catalysis whenever there's three resources d, e, f such that

- ightharpoonup there's no free transformation  $e \rightarrow f$
- **b** but there is a free transformation  $d \otimes e \rightarrow d \otimes f$

If the resource theory is catalysis-free, this never happens.

Entanglement theory famously allows for catalysts: there are quantum states  $|\psi_1\rangle, |\psi_2\rangle$  and  $|\phi\rangle$  such that

- ▶ there's no LOCC-protocol  $|\psi_1\rangle \rightarrow |\psi_2\rangle$
- **b** but there is a LOCC-protocol  $|\psi_1\rangle\otimes|\phi\rangle\rightarrow|\psi_2\rangle\otimes|\phi\rangle$

More generally, in an arbitrary resource theory we'd speak of catalysis whenever there's three resources d, e, f such that

- ightharpoonup there's no free transformation  $e \rightarrow f$
- ▶ but there is a free transformation  $d \otimes e \rightarrow d \otimes f$

If the resource theory is catalysis-free, this never happens. Writing  $e \rightsquigarrow f$  for the existence of a free transformation, this is equivalent to saying that  $d \otimes e \rightsquigarrow d \otimes f$  implies  $e \rightsquigarrow f$  for any d, e, f.

#### Let

ightharpoonup d, e, f range over various correlations (contextual or not)

#### Let

- ightharpoonup d, e, f range over various correlations (contextual or not)
- $ightharpoonup d \otimes e$  denote having d and e independently side-by-side

#### Let

- ightharpoonup d, e, f range over various correlations (contextual or not)
- $ightharpoonup d \otimes e$  denote having d and e independently side-by-side
- $ightharpoonup d\leadsto e$  denote the existence of a transformation  $d\to e$  in the resource theory of contextuality

#### Let

- ightharpoonup d, e, f range over various correlations (contextual or not)
- $ightharpoonup d \otimes e$  denote having d and e independently side-by-side
- $ightharpoonup d\leadsto e$  denote the existence of a transformation  $d\to e$  in the resource theory of contextuality

#### Let

- ightharpoonup d, e, f range over various correlations (contextual or not)
- $ightharpoonup d \otimes e$  denote having d and e independently side-by-side
- $lackbox{ } d \leadsto e$  denote the existence of a transformation  $d \to e$  in the resource theory of contextuality

#### **Theorem**

If  $d\otimes e\leadsto d\otimes f$ , then  $e\leadsto f$ . Ditto for the resource theory of non-locality.

#### Let

- ightharpoonup d, e, f range over various correlations (contextual or not)
- $ightharpoonup d \otimes e$  denote having d and e independently side-by-side
- $lackbox{ } d \leadsto e$  denote the existence of a transformation  $d \to e$  in the resource theory of contextuality

#### **Theorem**

If  $d\otimes e\leadsto d\otimes f$ , then  $e\leadsto f$ . Ditto for the resource theory of non-locality.

#### Overview

▶ As the resource theory of contextuality we use that of

'A comonadic view of simulation and quantum resources' Abramsky, Barbosa, MK., Mansfield, LiCS 2019.

giving a formalization of the the wirings and prior-to-input-classical communication paradigm studied in physics.

<sup>&</sup>lt;sup>1</sup>or rather, a compatible subset of MP(d)

#### Overview

As the resource theory of contextuality we use that of 'A comonadic view of simulation and quantum resources'
Abramsky, Barbosa, MK., Mansfield, LiCS 2019.
giving a formalization of the the wirings and prior-to-input-classical communication paradigm studied in physics.

▶ The resource theory of non-locality: the n-partite version of the above

<sup>&</sup>lt;sup>1</sup>or rather, a compatible subset of MP(d)

### Overview

- As the resource theory of contextuality we use that of 'A comonadic view of simulation and quantum resources'
  Abramsky, Barbosa, MK., Mansfield, LiCS 2019.
  giving a formalization of the the wirings and prior-to-input-classical communication paradigm studied in physics.
- ▶ The resource theory of non-locality: the n-partite version of the above
- Proof idea: if you can catalyze once you can catalyze arbitrarily many times. For big enough n this implies that one needs only a compatible (and hence non-contextual) part of d.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>or rather, a compatible subset of MP(d)

## Formalising empirical data

#### A measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$ :

- $\triangleright$   $X_S$  a finite set of measurements
- Σ<sub>S</sub> a simplicial complex on X<sub>S</sub> faces are called the measurement contexts
- ▶  $O_S = (O_x)_{x \in X_S}$  for each  $x \in X_S$  a non-empty outcome set  $O_x$ . Joint outcomes over  $U \subseteq X_S$  denoted by  $\mathcal{E}_S(U)$ .

 $X = \{a_0, a_1, b_0, b_1\}, O_x = \{0, 1\}$ 

$$\Sigma = \downarrow \{ \{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\} \}.$$

## Formalising empirical data

### A measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$ :

- $\triangleright$   $X_S$  a finite set of measurements
- Σ<sub>S</sub> a simplicial complex on X<sub>S</sub> faces are called the measurement contexts
- ▶  $O_S = (O_x)_{x \in X_S}$  for each  $x \in X_S$  a non-empty outcome set  $O_x$ . Joint outcomes over  $U \subseteq X_S$  denoted by  $\mathcal{E}_S(U)$ .

### An **empirical model** $e = \{e_{\sigma}\}_{{\sigma} \in \Sigma}$ on S:

- ▶ each  $e_{\sigma} \in \operatorname{Prob}(\mathcal{E}_{S}(\sigma))$  is a probability distribution over joint outcomes for  $\sigma$ .
- ▶ generalised no-signalling holds: for any  $\sigma, \tau \in \Sigma_S$ , if  $\tau \subseteq \sigma$ ,

$$e_{\sigma}|_{\tau}=e_{\tau}$$

| Α     |       | (0, 0)                      | ( <mark>0</mark> , 1) | (1, 0)      | (1, 1)      |
|-------|-------|-----------------------------|-----------------------|-------------|-------------|
| $a_0$ | $b_0$ | 1/2                         | 0                     | 0           | 1/2         |
| $a_0$ | $b_1$ | $\frac{1}{2}$ $\frac{1}{2}$ | 0                     | 0           | 1/2         |
| $a_1$ | $b_0$ | $^{1}/_{2}$                 | 0                     | 0           | $^{1}/_{2}$ |
| $a_1$ | $b_1$ | 0                           | $^{1}/_{2}$           | $^{1}/_{2}$ | 0           |

$$X = \{a_0, a_1, b_0, b_1\}, O_x = \{0, 1\}$$

$$\Sigma = \downarrow \{\{a_0, b_0\}, \{a_0, b_1\}, \{a_1, b_0\}, \{a_1, b_1\}\}.$$



An empirical model  $e = \{e_{\sigma}\}_{{\sigma} \in \Sigma}$  on a measurement scenario  $(X, \Sigma, O)$  is **non-contextual** if there is a distribution d on  $\prod_{x \in X} O_x$  such that, for all  ${\sigma} \in \Sigma$ :

$$d|_{\sigma} = e_{\sigma}.$$

An empirical model  $e = \{e_{\sigma}\}_{{\sigma} \in \Sigma}$  on a measurement scenario  $(X, \Sigma, O)$  is **non-contextual** if there is a distribution d on  $\prod_{x \in X} O_x$  such that, for all  ${\sigma} \in \Sigma$ :

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

An empirical model  $e = \{e_{\sigma}\}_{{\sigma} \in \Sigma}$  on a measurement scenario  $(X, \Sigma, O)$  is **non-contextual** if there is a distribution d on  $\prod_{x \in X} O_x$  such that, for all  ${\sigma} \in \Sigma$ :

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

An empirical model  $e = \{e_{\sigma}\}_{{\sigma} \in \Sigma}$  on a measurement scenario  $(X, \Sigma, O)$  is **non-contextual** if there is a distribution d on  $\prod_{x \in X} O_x$  such that, for all  ${\sigma} \in \Sigma$ :

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is **locally consistent** but **globally inconsistent**.

An empirical model  $e = \{e_{\sigma}\}_{{\sigma} \in \Sigma}$  on a measurement scenario  $(X, \Sigma, O)$  is **non-contextual** if there is a distribution d on  $\prod_{x \in X} O_x$  such that, for all  ${\sigma} \in \Sigma$ :

$$d|_{\sigma} = e_{\sigma}.$$

That is, we can **glue** all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell's and Kochen–Spekker's theorems is that there are behaviours arising from quantum mechanics that are contextual.





A deterministic map  $S \to T$  proceeds as follows:



A deterministic map  $S \rightarrow T$  proceeds as follows:

ightharpoonup map inputs of T (measurements) to inputs of S



A deterministic map  $S \rightarrow T$  proceeds as follows:

- ightharpoonup map inputs of T (measurements) to inputs of S
- ► run S



A deterministic map  $S \rightarrow T$  proceeds as follows:

- ightharpoonup map inputs of T (measurements) to inputs of S
- ► run S
- ightharpoonup map outputs of S (measurement outcomes) to outputs of T

A deterministic map  $(\pi, h): S \to T$  is given by:

A deterministic map  $(\pi, h): S \to T$  is given by:

▶ A simplicial function  $\pi: (X_T, \Sigma_T) \to (X_S, \Sigma_S)$ .

A deterministic map  $(\pi, h) : S \to T$  is given by:

- ▶ A simplicial function  $\pi: (X_T, \Sigma_T) \to (X_S, \Sigma_S)$ .
- ▶ For each  $x \in X_T$ , a function  $h_x : O_{\pi(x)} \to O_x$ .

A deterministic map  $(\pi, h): S \to T$  is given by:

- ▶ A simplicial function  $\pi: (X_T, \Sigma_T) \to (X_S, \Sigma_S)$ .
- ▶ For each  $x \in X_T$ , a function  $h_x : O_{\pi(x)} \to O_x$ .

Simpliciality of  $\pi$  means that contexts in  $\Sigma_{\mathcal{T}}$  are mapped to contexts in  $\Sigma_{\mathcal{S}}$ .

### **Simulations**

Given d:T, e:S, a deterministic simulation  $d\to e$  is a deterministic map  $f:S\to T$  that transforms d to e.

### **Simulations**

Given d:T, e:S, a deterministic simulation  $d\to e$  is a deterministic map  $f:S\to T$  that transforms d to e.



### **Simulations**

Given d:T, e:S, a deterministic simulation  $d\to e$  is a deterministic map  $f:S\to T$  that transforms d to e.



For instance, the PR-box can be simulated from a liar's paradox on a triangle, by collapsing one edge to a point.

### **Simulations**

Given d:T, e:S, a deterministic simulation  $d\to e$  is a deterministic map  $f:S\to T$  that transforms d to e.

For instance, the PR-box can be simulated from a liar's paradox on a triangle, by collapsing one edge to a point.

But what if we want to

- (i) let a measurement of T to depend on a measurement protocol of S?
- (ii) use classical randomness?

Given a scenario  $S = \langle X_S, \Sigma_S, O_S \rangle$  we build a new scenario MP(S), where:

Given a scenario  $S = \langle X_S, \Sigma_S, O_S \rangle$  we build a new scenario MP(S), where:

measurements are the (deterministic) measurement protocols on S. A measurement protocol on S is either empty or consists of a measurement in  $x \in X_S$  and of a function from outcomes of x to measurement protocols on  $S|_{lk_x}$ 

Given a scenario  $S = \langle X_S, \Sigma_S, O_S \rangle$  we build a new scenario MP(S), where:

- measurements are the (deterministic) measurement protocols on S. A measurement protocol on S is either empty or consists of a measurement in  $x \in X_S$  and of a function from outcomes of x to measurement protocols on  $S|_{lk_x}$
- outcomes are the joint outcomes observed during a run of the protocol

Given a scenario  $S = \langle X_S, \Sigma_S, O_S \rangle$  we build a new scenario MP(S), where:

measurements are the (deterministic) measurement protocols on S. A measurement protocol on S is either empty or consists of a measurement in  $x \in X_S$  and of a function from outcomes of x to measurement protocols on  $S|_{lk_x}$ 

outcomes are the joint outcomes observed during a run of the protocol

measurement protocols are compatible if they can be combined consistently



An adaptive map S o T proceeds as follows:



An adaptive map  $S \rightarrow T$  proceeds as follows:

ightharpoonup map measurements of T to **measurement protocols** over S, i.e. measurements of MP(S)



An adaptive map  $S \to T$  proceeds as follows:

- ightharpoonup map measurements of T to **measurement protocols** over S, i.e. measurements of MP(S)
- **▶** run *S*



An adaptive map  $S \rightarrow T$  proceeds as follows:

- ightharpoonup map measurements of T to **measurement protocols** over S, i.e. measurements of MP(S)
- **▶** run *S*
- $\triangleright$  map outcomes of MP(S) to outputs of T

# Adaptive procedure with classical randomness



Requirement: c is noncontextual.

## General simulations

Given empirical models e and d, a **simulation** of e by d is a deterministic simulation

$$\mathsf{MP}(d\otimes c) o e$$

for some noncontextual model c.

### General simulations

Given empirical models e and d, a **simulation** of e by d is a deterministic simulation

$$\mathsf{MP}(d \otimes c) \to e$$

for some noncontextual model c.

The use of the noncontextual model c is to allow for classical randomness in the simulation.

### General simulations

Given empirical models e and d, a **simulation** of e by d is a deterministic simulation

$$\mathsf{MP}(d \otimes c) \to e$$

for some noncontextual model c.

The use of the noncontextual model c is to allow for classical randomness in the simulation.

We denote the existence of a simulation of e by d as  $d \rightsquigarrow e$ , read "d simulates e".

The convertibility relation  $\leadsto$  results in a resource theory of contextuality with nice properties:

► Expressive enough to capture less formally defined transformations in the literature (in the single-shot exact case)

The convertibility relation  $\leadsto$  results in a resource theory of contextuality with nice properties:

- ► Expressive enough to capture less formally defined transformations in the literature (in the single-shot exact case)
- Added precision can help with new results

The convertibility relation  $\leadsto$  results in a resource theory of contextuality with nice properties:

- Expressive enough to capture less formally defined transformations in the literature (in the single-shot exact case)
- Added precision can help with new results
- Contextual fraction is a monotone

The convertibility relation  $\leadsto$  results in a resource theory of contextuality with nice properties:

- Expressive enough to capture less formally defined transformations in the literature (in the single-shot exact case)
- Added precision can help with new results
- Contextual fraction is a monotone
- ► Contextuality is equivalent to insimulability from a trivial model. Variants for logical and strong contextuality.

Theorem (No-catalysis)

If  $d \otimes e \rightsquigarrow d \otimes f$  then  $e \rightsquigarrow f$ 

## Theorem (No-catalysis)

If  $d \otimes e \rightsquigarrow d \otimes f$  then  $e \rightsquigarrow f$ 

Proof.

First step — reduce to the deterministic case:

### Theorem (No-catalysis)

If  $d \otimes e \rightsquigarrow d \otimes f$  then  $e \rightsquigarrow f$ 

### Proof.

#### First step — reduce to the deterministic case:

If  $d \otimes e \rightsquigarrow d \otimes f$ , then there is a deterministic simulation  $MP(d \otimes e \otimes c) \rightarrow d \otimes f$  for some non-contextual c.

### Theorem (No-catalysis)

If  $d \otimes e \rightsquigarrow d \otimes f$  then  $e \rightsquigarrow f$ 

#### Proof.

#### First step — reduce to the deterministic case:

If  $d \otimes e \rightsquigarrow d \otimes f$ , then there is a deterministic simulation  $MP(d \otimes e \otimes c) \rightarrow d \otimes f$  for some non-contextual c. Setting  $g := e \otimes c$  we thus have a deterministic map  $MP(d \otimes g) \rightarrow d \otimes f$ .

### Theorem (No-catalysis)

If  $d \otimes e \rightsquigarrow d \otimes f$  then  $e \rightsquigarrow f$ 

#### Proof.

First step — reduce to the deterministic case:

If  $d \otimes e \rightsquigarrow d \otimes f$ , then there is a deterministic simulation  $\mathsf{MP}(d \otimes e \otimes c) \to d \otimes f$  for some non-contextual c. Setting  $g := e \otimes c$  we thus have a deterministic map  $\mathsf{MP}(d \otimes g) \to d \otimes f$ .

Second step—if you can catalyze once, you can do so many times:

### Theorem (No-catalysis)

If  $d \otimes e \rightsquigarrow d \otimes f$  then  $e \rightsquigarrow f$ 

#### Proof.

#### First step — reduce to the deterministic case:

If  $d \otimes e \leadsto d \otimes f$ , then there is a deterministic simulation  $MP(d \otimes e \otimes c) \to d \otimes f$  for some non-contextual c. Setting  $g := e \otimes c$  we thus have a deterministic map  $MP(d \otimes g) \to d \otimes f$ . Second step—if you can catalyze once, you can do so many times: we can get

deterministic simulations  $\mathsf{MP}(d\otimes (g^{\otimes n}))\to d\otimes (f^{\otimes n})$  for any n

### Theorem (No-catalysis)

If  $d \otimes e \rightsquigarrow d \otimes f$  then  $e \rightsquigarrow f$ 

#### Proof.

#### First step — reduce to the deterministic case:

If  $d \otimes e \rightsquigarrow d \otimes f$ , then there is a deterministic simulation  $MP(d \otimes e \otimes c) \to d \otimes f$  for some non-contextual c. Setting  $g := e \otimes c$  we thus have a deterministic map  $MP(d \otimes g) \to d \otimes f$ . **Second step—if you can catalyze once, you can do so many times**: we can get deterministic simulations  $MP(d \otimes (g^{\otimes n})) \to d \otimes (f^{\otimes n})$  for any n so that the i-th copy of f uses f and the f-th copy of f, but otherwise the copies of f are simulated similarly.

#### Cont.

**Final step—things needed from** d **are compatible**: as the underlying map is simplicial, questions asked from d when simulating different copies of f are always compatible.

#### Cont.

**Final step—things needed from** d are **compatible**: as the underlying map is simplicial, questions asked from d when simulating different copies of f are always compatible. Considering big enough n, this means that the set of all possible behaviours in d needed for the simulation forms a compatible subset of MP(d).

#### Cont.

**Final step—things needed from** d are **compatible**: as the underlying map is simplicial, questions asked from d when simulating different copies of f are always compatible. Considering big enough n, this means that the set of all possible behaviours in d needed for the simulation forms a compatible subset of MP(d). Join all of these to a single measurement protocol over d

#### Cont.

**Final step—things needed from** d are **compatible**: as the underlying map is simplicial, questions asked from d when simulating different copies of f are always compatible. Considering big enough n, this means that the set of all possible behaviours in d needed for the simulation forms a compatible subset of MP(d). Join all of these to a single measurement protocol over d and simulate 1st copy of f by first measuring this single measurement of MP(d) and then proceeding to the 1st copy of g.

#### Cont.

**Final step—things needed from** d are **compatible**: as the underlying map is simplicial, questions asked from d when simulating different copies of f are always compatible. Considering big enough n, this means that the set of all possible behaviours in d needed for the simulation forms a compatible subset of  $\mathsf{MP}(d)$ . Join all of these to a single measurement protocol over d and simulate 1st copy of f by first measuring this single measurement of  $\mathsf{MP}(d)$  and then proceeding to the 1st copy of g. This results in a deterministic simulation  $\mathsf{MP}(d'\otimes g)\to f$ , where d' has a single measurement (representing the whole  $\mathsf{MP}$  over d) and is thus noncontextual.

We think of the resource theory of non-locality as an n-partite version of that of contextuality:

We think of the resource theory of non-locality as an n-partite version of that of contextuality: an object is a model  $e: \bigotimes_{i=1} S_i$  over an n-partite scenario,

We think of the resource theory of non-locality as an n-partite version of that of contextuality: an object is a model  $e: \bigotimes_{i=1} S_i$  over an n-partite scenario, and a simulation  $d \to e$  is an n-tuple of adaptive maps that, taken together, transform d to e.

We think of the resource theory of non-locality as an n-partite version of that of contextuality: an object is a model  $e: \bigotimes_{i=1} S_i$  over an n-partite scenario, and a simulation  $d \to e$  is an n-tuple of adaptive maps that, taken together, transform d to e.

In the deterministic case:



We think of the resource theory of non-locality as an n-partite version of that of contextuality: an object is a model  $e: \bigotimes_{i=1} S_i$  over an n-partite scenario, and a simulation  $d \to e$  is an n-tuple of adaptive maps that, taken together, transform d to e. In the deterministic case:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c$$

in the randomness-assisted case



where c is local. This captures the LOSR-paradigm.

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \to d \otimes f$  produces an *n*-partite simulation  $e \to f$ , proving the theorem for non-locality.

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \to d \otimes f$  produces an *n*-partite simulation  $e \to f$ , proving the theorem for non-locality.

In fact, the proof shows more: if  $\ensuremath{\mathcal{X}}$  is a class of models that

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \to d \otimes f$  produces an *n*-partite simulation  $e \to f$ , proving the theorem for non-locality.

In fact, the proof shows more: if  $\mathcal{X}$  is a class of models that (i) contains all non-contextual models and

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \to d \otimes f$  produces an *n*-partite simulation  $e \to f$ , proving the theorem for non-locality.

In fact, the proof shows more: if  $\mathcal{X}$  is a class of models that (i) contains all non-contextual models and (ii) is closed under  $\otimes$ , then

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \to d \otimes f$  produces an *n*-partite simulation  $e \to f$ , proving the theorem for non-locality.

In fact, the proof shows more: if  $\mathcal{X}$  is a class of models that (i) contains all non-contextual models and (ii) is closed under  $\otimes$ , then one can define  $\mathcal{X}$ -assisted simulations  $d \to e$  as deterministic simulations  $\mathsf{MP}(d \otimes x) \to e$  where  $x \in \mathcal{X}$ .

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \to d \otimes f$  produces an *n*-partite simulation  $e \to f$ , proving the theorem for non-locality.

In fact, the proof shows more: if  $\mathcal{X}$  is a class of models that (i) contains all non-contextual models and (ii) is closed under  $\otimes$ , then one can define  $\mathcal{X}$ -assisted simulations  $d \to e$  as deterministic simulations  $\mathsf{MP}(d \otimes x) \to e$  where  $x \in \mathcal{X}$ . Write  $d \leadsto_{\mathcal{X}} e$  for the existence of such a simulation.

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \to d \otimes f$  produces an *n*-partite simulation  $e \to f$ , proving the theorem for non-locality.

In fact, the proof shows more: if  $\mathcal{X}$  is a class of models that (i) contains all non-contextual models and (ii) is closed under  $\otimes$ , then one can define  $\mathcal{X}$ -assisted simulations  $d \to e$  as deterministic simulations  $\mathsf{MP}(d \otimes x) \to e$  where  $x \in \mathcal{X}$ . Write  $d \leadsto_{\mathcal{X}} e$  for the existence of such a simulation.

#### **Theorem**

For any such  $\mathcal{X}$ ,  $d \otimes e \leadsto_{\mathcal{X}} d \otimes f$  if and only if  $e \leadsto_{\mathcal{X}} f$ 

For a minor variant of the previous proof, an *n*-partite simulation  $d \otimes e \rightarrow d \otimes f$  produces an *n*-partite simulation  $e \rightarrow f$ , proving the theorem for non-locality.

In fact, the proof shows more: if  $\mathcal{X}$  is a class of models that (i) contains all non-contextual models and (ii) is closed under  $\otimes$ , then one can define  $\mathcal{X}$ -assisted simulations  $d \to e$  as deterministic simulations  $\mathsf{MP}(d \otimes x) \to e$  where  $x \in \mathcal{X}$ . Write  $d \leadsto_{\mathcal{X}} e$  for the existence of such a simulation.

#### Theorem

For any such  $\mathcal{X}$ ,  $d \otimes e \leadsto_{\mathcal{X}} d \otimes f$  if and only if  $e \leadsto_{\mathcal{X}} f$ 

Thus we can't use a PR box as a catalyst, even if we can freely use quantum correlations.

Questions...

?

MK, "Neither Contextuality nor Nonlocality Admits Catalysts" (2021), Phys. Rev. Lett. 127, 160402 arXiv:2102.07637