List of useful formulae

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau$$

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

$$f(t) = a_0 + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{2n\pi t}{T}\right) + b_n \sin\left(\frac{2n\pi t}{T}\right) \right]$$

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$X(\omega) = 2\int_{0}^{\infty} x(t) \cos \omega t dt$$

$$X(\omega) = -j2\int_{0}^{\infty} x(t) \sin \omega t dt$$

$$\cos(x)\cos(y) = \frac{1}{2}[\cos(x-y) + \cos(x+y)] \qquad \sin(x)\sin(y) = \frac{1}{2}[\cos(x-y) - \cos(x+y)]$$

$$\sin(x)\cos(y) = \frac{1}{2}[\sin(x-y) + \sin(x+y)] \qquad \cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

Fourier Transform Pairs

Signal	Fourier Transfrom	
$e^{j\omega_o t}$	$2\pi\delta(\omega - \omega_o)$	
$\cos \omega_o t$	$\pi[\delta(\omega + \omega_o) + \delta(\omega - \omega_o)]$	
$\sin \omega_o t$	$j\pi[\delta(\omega+\omega_o)$ - $\delta(\omega-\omega_o)]$	
1	$2\pi\delta(\omega)$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_o)$	$e^{-j\omega t_o}$	
$e^{-at}u(t), a>0$	$\frac{1}{a+j\omega}$	
$x(t) = \begin{cases} 1, & t < \tau \\ 0, & t > \tau \end{cases}$	$\frac{2\sin\omega\tau}{\omega} = 2\tau\sin c(\omega\tau)$	
$\frac{\sin \omega_c t}{\pi t} = \frac{\omega_c}{\pi} \sin c(\omega_c t)$	$X(\omega) = \begin{cases} 1, & \omega < \omega_c \\ 0, & \omega > \omega_c \end{cases}$	
$\sum_{n=-\infty}^{\infty} \mathcal{S}(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi k}{T} \right)$	

<u>Properties of Fourier Transform</u>

Property	Aperiodic signal, $x(t)$	Fourier Transfrom, $X(\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(\omega) + bX_2(\omega)$
Time Shifting	$x(t-t_o)$	$e^{-j\omega t_o}X(\omega)$
Frequency Shifting	$e^{j\omega_o t}x(t)$	$X(\omega - \omega_o)$
Time Scaling	x(at)	$\frac{1}{a}X\left(\frac{\omega}{a}\right)$
Differentiation in Time	$\frac{dx(t)}{dt}$	$j\omega X(\omega)$
Differentiation in Frequency	tx(t)	$j\frac{dX(\omega)}{d\omega}$
Integration in time	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$
Convolution	x(t)* $h(t)$	$X(\omega).H(\omega)$
Multiplication in time	x(t).h(t)	$\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\lambda)H(\omega-\lambda)d\lambda$
Parseval's Theorem	$E = \int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$	

Properties of Laplace Transform

Property	Transform Property
Linearity	$ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s).$
Time shift	$x(t-t_o) u(t-t_o) \leftrightarrow X(s)e^{-st_o}, t_o > 0$
Multiplication by a complex exponential	$x(t)e^{s_o t} \leftrightarrow X(s-s_o)$
Time scaling	$x(at) \leftrightarrow X(s/a)/ a $
Differentiation in time domain	$\frac{dx(t)}{dt} \leftrightarrow sX(s) - x(0)$
	$\frac{d^2x(t)}{dt^2} \leftrightarrow s^2X(s) - sx(0) - \left. \frac{dx(t)}{dt} \right _{t=0}$
Differentiation in s domain	$t^{n}x(t) \longleftrightarrow \frac{d^{n}X(s)}{ds^{n}}(-1)^{n}$
Integration	$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \frac{1}{s}X(s)$
Convolution in time domain	$x(t)*h(t) \leftrightarrow X(s).H(s)$
Initial value theorem	$x(0) = \lim_{s \to \infty} sX(s)$
Final value theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$
(if $x(t)$ has a finite value as $t \to \infty$)	

Laplace Transform pairs

Signal

Unit step: u(t)

Unit impulse: $\delta(t)$

Unit ramp: tu(t)

 $e^{-at}u(t)$

 $t^n e^{-at} u(t)$

 $(\cos \omega_o t)u(t)$

 $(\sin \omega_o t)u(t)$

 $(e^{-at}\cos\omega_o t)u(t)$

 $(e^{-at}\sin\omega_o t)u(t)$

 $(t\cos\omega_o t)u(t)$

 $(t\sin\omega_o t)u(t)$

Transform

 $\frac{1}{s}$

1

 $\frac{1}{s^2}$

 $\frac{1}{s+a}$

 $\frac{n!}{\left(s+a\right)^{n+1}}$

 $\frac{s}{\left(s^2 + \omega_o^2\right)}$

 $\frac{\omega_o}{\left(s^2 + \omega_o^2\right)}$

 $\frac{s+a}{\left(\left(s+a\right)^2+{\omega_o}^2\right)}$

 $\frac{\omega_o}{\left(\left(s+a\right)^2+{\omega_o}^2\right)}$

 $\frac{s^2 - {\omega_o}^2}{\left(s^2 + {\omega_o}^2\right)^2}$

 $\frac{2\omega_o s}{\left(s^2 + \omega_o^2\right)^2}$