Lecture 4

Linear systems, passivity, and the circle criterion

4 - 1

Linear systems, passivity, and the circle criterion

- Summary of stability methods
- Lyapunov functions for linear systems
- Passive systems
- Passive linear systems
- The circle criterion
- Example

Summary of stability methods

Linearization method

$$\dot{x} = Ax$$
 is strictly stable, $A = \frac{\partial f}{\partial x}\Big|_{x=0}$ \Rightarrow $x = 0$ locally asymptotically stable

Lyapunov's direct method

V(x) p.d.

Invariant set theorems

$$\begin{array}{c} V(x) \text{ p.d.} \\ \dot{V}(x) \leq 0 \\ V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty \end{array} \qquad \begin{array}{c} \Omega = \{x \ : \ V(x) \leq V_0\} \text{ bounded} \\ \dot{V}(x) \leq 0 \text{ for all } x \in \Omega \\ \downarrow \end{array}$$

x(t) converges to the union of invariant sets contained in $\{x \ : \ \dot{V}(x) = 0\}$

Summary of stability methods

• Instability theorems analogous to Lyapunov's direct method, e.g.

$$\left. egin{array}{ll} V(x) \ \mathsf{p.d.} \\ \dot{V}(x) \ \mathsf{p.d.} \end{array} \right\} \quad \Longrightarrow \quad x=0 \ \mathsf{unstable}$$

• Lyapunov stability criteria are only sufficient, e.g.

$$\left. \begin{array}{c} V(x) \text{ p.d.} \\ \dot{V}(x) \not \leq 0 \end{array} \right\} \qquad \Longrightarrow \qquad x = 0 \text{ unstable} \\ \qquad \qquad \left(\text{some other } V(x) \text{ demonstrating stability may exist} \right)$$

Converse theorems

But no general method for constructing V(x)

4 - 3

Linear systems

- Systematic method for constructing storage function $V(x) = x^T P x$ $\dot{x} = Ax$ strictly stable \implies can always find constant matrix P so that $\dot{V}(x)$ is negative definite
- Only need consider symmetric P

$$\boldsymbol{x}^T \boldsymbol{P} \boldsymbol{x} = \tfrac{1}{2} \boldsymbol{x}^T \boldsymbol{P} \boldsymbol{x} + \tfrac{1}{2} \boldsymbol{x}^T \boldsymbol{P}^T \boldsymbol{x} = \tfrac{1}{2} \boldsymbol{x}^T \underbrace{\left(\boldsymbol{P} - \boldsymbol{P}^T\right)}_{\text{SYMMETRIC}} \boldsymbol{x}$$

• Need $\lambda(P) > 0$ for positive definite $V(x) = x^T P x$

$$P = U\Lambda U^T \qquad \text{eigenvector/value decomposition}$$

$$\downarrow \\ x^T P x = z^T \Lambda z \qquad z = U^T x$$

$$\downarrow \\ x^T P x \text{ positive definite}$$

$$\downarrow \text{for "P is positive definite"}$$

4 - 5

Linear systems

• How is P computed?

$$\begin{vmatrix}
\dot{x} = Ax \\
V(x) = x^T P x
\end{vmatrix} \implies \begin{aligned}
\dot{V}(x) &= x^T P \dot{x} + \dot{x}^T P x \\
&= x^T (PA + A^T P) x
\end{aligned}$$

 $\therefore x = 0$ is globally asymptotically stable if, for some Q:

$$PA + A^T P = -Q Q = Q^T > 0$$

Lyapunov matrix equation

• Pick Q > 0 and solve $PA + A^T P = -Q$ for P, then

$$\operatorname{Re} \big[\lambda(A) \big] < 0 \qquad \Longleftrightarrow \qquad \begin{array}{c} \text{unique solution for } P \\ \text{and } P = P^T > 0 \end{array}$$

Proof:

Example: Lyapunov matrix equation

Stable linear system
$$\dot{x}=Ax$$
: $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & -16 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \lambda(A) = -1 \pm i \sqrt{15}$

Solve $PA + A^TP = -Q$ for P:

$$Q_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow P_{1} = \begin{bmatrix} 0.33 & -0.5 \\ -0.5 & 4.25 \end{bmatrix} \qquad Q_{2} = \begin{bmatrix} 0.41 & -0.19 \\ -0.19 & 0.11 \end{bmatrix} \Rightarrow P_{2} = \begin{bmatrix} 0.12 & -0.21 \\ -0.21 & 1.67 \end{bmatrix}$$
*

Here:

- \star any choice of Q > 0 gives P > 0 (since A is strictly stable)
- \star but not every P>0 gives Q>0

4 - 7

Passive systems

- Systematic method for constructing storage functions
- Input-output representation of system:

The system is passive if

$$\dot{V} = yu - g \quad \text{ for some } V(t) \geq 0, \quad g(t) \geq 0$$

also the system is dissipative if
$$\int_0^\infty yu\,dt \neq 0 \implies \int_0^\infty g\,dt > 0$$

• Motivated by electrical networks with no internal power generation

Passive systems

Passivity is useful for determining storage functions for feedback systems

• Closed-loop system with passive subsystems S_1 , S_2 :

$$S_1: V_1 \ge 0 \quad \dot{V}_1 = y_1 u_1 - g_1$$

 $S_2: V_2 \ge 0 \quad \dot{V}_2 = y_2 u_2 - g_2$

$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= y_1 (-y_2) + y_2 y_1 - g_1 - g_2$$

$$= -g_1 - g_2$$

$$< 0$$

 $\implies V = V_1 + V_2$ is a Lyapunov function for the closed-loop system if V is a p.d. function of the system state

4 - 9

Interconnected passive systems

Parallel connection:

$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= (y_1 + y_2)u - g_1 - g_2$$

$$= yu - g_1 - g_2$$

$$\downarrow \downarrow$$

Overall system from \boldsymbol{u} to \boldsymbol{y} is passive

• Feedback connection:

$$V_1 + V_2 \ge 0$$

 $\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$
 $= y(u - y_2) + y_2 y - g_1 - g_2$
 $= yu - g_1 - g_2$

Overall system from \boldsymbol{u} to \boldsymbol{y} is passive

Passive linear systems

$$\mbox{Transfer function}: \quad \frac{Y(s)}{U(s)} = H(s)$$

- H is passive if and only if
 - (i). $\operatorname{Re}(p_i) \leq 0$, where $\{p_i\}$ are the poles of H(s)
 - (ii). $\operatorname{Re}[H(j\omega)] \geq 0$ for all $0 \leq \omega \leq \infty$
 - \star H must be stable, otherwise $V(t) = \int_0^t yu\,dt$ is not defined for all u
 - * From Parseval's theorem:

$$\operatorname{Re}[H(j\omega)] \ge 0 \quad \iff \quad \int_0^t yu \, dt \ge 0 \text{ for all } u(t) \text{ and } t$$

frequency domain criterion for passivity

• H is dissipative if and only if $Re(p_i) \leq 0$ and

$$\mathrm{Re}\big[H(j\omega)\big]>0$$
 for all $0\leq\omega<\infty$

4 - 11

Linear system + static nonlinearity

H linear: $\frac{Y(s)}{U(s)} = H(s)$

 ϕ static nonlinearity: $z=\phi(y)$

What are the conditions on H and ϕ for closed-loop stability?

- A common problem in practice, due to e.g.
 - * actuator saturation (valves, dc motors, etc.)
 - ⋆ sensor nonlinearity
- Determine closed-loop stability given:

$$\phi$$
 belongs to sector $\left[a,b\right]$

"Absolute stability problem"

Linear system + static nonlinearity

• Aizerman's conjecture (1949):

Closed-loop system is stable if stable for $\phi(y) = ky$, $a \le k \le b$ false (necessary but not sufficient)

• Sufficient conditions for closed-loop stability:

Popov criterion (1960) Circle criterion $\}$ based on passivity

- The passivity approach:

 - - (1) & (2) $\implies \dot{V} \leq -x^T Q x$ $\implies x = 0$ is globally asymptotically stable

4 - 13

Circle criterion

Use loop transformations to generalize the approach for $\begin{cases} H \text{ not passive } \\ \phi \not \in [0, \infty) \end{cases}$

 $\phi \in [a,b]$ a,b arbitrary

$$\phi \in [a, b] \implies \phi' \in [0, \infty]$$

$$H'(j\omega) = \frac{H(j\omega)}{1 + aH(j\omega)} + \frac{1}{b - a}$$

Circle criterion

To make $H'(j\omega)=\frac{H(j\omega)}{1+aH(j\omega)}+\frac{1}{b-a}$ dissipative, need:

(i).
$$H'$$
 stable $\iff \frac{H(j\omega)}{1+aH(j\omega)}$ stable \updownarrow

Nyquist plot of $H(j\omega)$ goes through ν anti-clockwise encirclements of -1/a as ω goes from $-\infty$ to ∞

 $(\nu = \text{no. poles of } H(j\omega) \text{ in RHP})$

(ii).
$$\operatorname{Re} \big[H'(j\omega) \big] > 0 \iff \left\{ \begin{array}{ll} H(j\omega) \text{ lies outside } \frac{D(a,b)}{D(a,b)} & \text{if } ab > 0 \\ H(j\omega) \text{ lies inside } \frac{D(a,b)}{D(a,b)} & \text{if } ab < 0 \end{array} \right.$$

4 - 15

Graphical interpretation of circle criterion

x = 0 is globally asymptotically stable if:

$$\star 0 < a < b$$

 $H(j\omega)$ lies in shaded region and does ν anti-clockwise encirclements of D(a,b)

 $H(j\omega)$ lies in shaded region and $\nu=0$ (can't encircle -1/a)

 $H(j\omega)$ lies in shaded region and $\nu=0$ (can't encircle -1/a)

 $-H(j\omega)$ lies in shaded region and does ν anti-clockwise encirclements of D(-b,-a)

Circle criterion

• Circle criterion is equivalent to Nyquist criterion for a = b > 0

$$\uparrow \\ \mbox{then } D(a,b) = -\frac{1}{a} \mbox{ (single point)}$$

- ullet Circle criterion is only sufficient for closed-loop stability for general a,b
- ullet Results apply to time-varying static nonlinearity: $\phi(y,t)$

4 - 17

Example: Active suspension system

Active suspension system for high-speed train:

$$Q = \phi(u)$$
$$\dot{x}_a = Q/A$$

 $u: \mathsf{valve} \mathsf{input} \mathsf{signal}$

 ${\cal Q}:$ flow rate

 ϕ : valve characteristics, $\phi \in [0.005, 0.1]$

A: actuator working area

• Force exerted by suspension system on carriage body: F_{susp}

$$F_{\text{susp}} = k(x_a - x) + c(\dot{x}_a - \dot{x})$$

$$= \left(k \int_0^t Q \, dt + cQ\right) / A - kx - c\dot{x}, \qquad Q = \phi(u)$$

• Design controller to compensate for the effects of (constant) unknown load on displacement x despite uncertain valve characteristics $\phi(u)$.

Active suspension system contd.

Dynamics:

$$F_{\text{susp}} - F = m\ddot{x}$$

$$\implies m\ddot{x} + c\dot{x} + kx = \left(k \int^{t} Q \, dt + cQ\right)/A - F, \qquad Q = \phi(u)$$

F: unknown load on suspension unit m: effective carriage mass

Transfer function model:

$$X(s) = \frac{cs+k}{ms^2+cs+k} \cdot \frac{Q(s)}{As} - \frac{F}{ms^2+cs+k} \qquad Q = \phi(u)$$

• Try linear compensator C(s):

4 - 19

Active suspension system contd.

ullet For constant F, we need to stabilize the closed-loop system:

static nonlinearity: $\phi \in [0.005, 0.1]$

• P+D compensator (no integral term needed):

$$C(s) = K(1 + \alpha s)$$
 \Longrightarrow $H(s) = \frac{K(1 + \alpha s)(cs + k)}{As(ms^2 + cs + k)}$
 $H \text{ open-loop stable } (\nu = 0)$

• From the circle criterion, closed-loop (global asymptotic) stability is ensured if:

$$H(j\omega)$$
 lies outside $D(0.005, 0.1)$

sufficient condition: $\operatorname{Re} \big[H(j\omega) \big] > -10$

Active suspension system contd.

• Nyquist plot of $H(j\omega)$ for K=1 and $\alpha=0,0.2,0.4,0.8$:

• To maximize gain margin:

choose
$$\alpha=0.2$$

$$K\leq 10/3.4=2.94$$

 \leftarrow allows for largest K

4 - 21

Summary

At the end of the course you should be able to do the following:

- Understand the basic Lyapunov stability definitions (lecture 1)
- Analyse stability using the linearization method (lecture 2)
- Analyse stability by Lyapunov's direct method (lecture 2)
- Determine convergence using Barbalat's Lemma (lecture 3)
- Understand how invariant sets can determine regions of attraction (lecture 3)
- Construct Lyapunov functions for linear systems and passive systems
 (lecture 4)
- Use the circle criterion to design controllers for systems with static nonlinearities (lecture 4)