wichtige Gleichungen $\bullet |a+b| \leq |a|+|b|$

 $\bullet | |a| - |b|| \leq |a - b|$

∀n∈N: (1+x)ⁿ≥1+nx
 (x∈R n x≥-1)

 $\bullet |ab| = |a| \cdot |b|$

Binomialkoeffizienten

 $\binom{n}{k}$:= $\frac{n!}{k!(n-k)!}$

"Anzahl der k-elementisen Teilmengen einer Mense mit n Elementen"

 $\binom{n}{k}$ + $\binom{n}{k-1}$ = $\binom{n+1}{k}$

 $\binom{0}{0} = 1$ $\binom{n}{n} = \binom{n}{0} = 1$

 $a^{n+1} - b^{n+1} = \sum_{k=0}^{n} a^{n-k} b^{k}$

 $(\alpha + b)^n = \sum_{k=0}^n \binom{n}{k} \alpha^{n-k} b^k$

 $= \sum_{k=0}^{n} a^{k} b^{n-k}$

 $= \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}$

M = S = Sup(M) = max(M)

Ist Ø≠M⊆R nach oben beschränkt, so existict sup(M).

Verschiedene Mensen

Z := No U {-n | n EN}

 $Q := \left\{ \frac{P}{q} : P \in \mathbb{Z}, q \in \mathbb{N} \right\}$ "rationals Zahlen"

=) p Primzah (: Tp R Q

Rationale Exponenten

 $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$

 $\alpha^r \cdot \alpha^s = \alpha^{r+s}, (\alpha^r)^s = \alpha^{r+s}$

r = inf(M) = min(M)

tolsen und Konvergenz XCR Mense $\alpha: \mathbb{N} \to X$

X ist abzählbar (=) Es gibt eine Folge $(\alpha_n) \text{ in } \times \text{ mit}$ $\times = \{\alpha_1, \alpha_2, ...\}.$

2. B.: $\alpha_n = \frac{1}{n} (n \in \mathbb{N})$

Falls 4820

 $\lim_{n\to\infty} \frac{n}{c} = 7$

Für eine Folge (an) se: M:= {an, an ...}

wichtige Grenzwerte (c Konstante)

 $\lim_{n\to\infty} b^n = 0 \quad \text{für} \quad |b| < 1$

1 (m (-1) " existing to micht =) divergent

(an) ist (nach ober / nach unter) beschränlet

(=) M ist (nach ober /nach unter) beschränlet

(an) ist Konversent, run de Grenzvet Lim (an) existint

=> (an) ist diversent, when the Green ent wicht existint.

ist eine Folge in X

Xist überabzühlbar (=) X ist

nicht abzählbar.

= { x 6 R : |x-a|< E }

" E - Umgebus von a"

 $U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon)$

Grenzwert Witerien Monotoniekiterium (Un) is I monoton cadsecd/fallend und is nach oben/unter beschränkt $|x| = |x|^{p-1} |x|^{p-1$ => (an) is l konvergent Falls (an) beorvese & mit $\frac{C_{im}}{n \rightarrow \infty} (\alpha_{n}) = \alpha = 0 \quad \text{for } \frac{(n \rightarrow \infty)}{\alpha_{n}} \quad \text{for } \alpha$ $a_n := \frac{h}{h}, \quad \lim_{n \to \infty} \left(\frac{n}{h}\right) = 1$ an:= "(") = 1 $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \frac{1}{n} \approx 2,7$ Teil folgen Sei (a.) en Folse (h, n, n, ...) sei eine Folge in M mit n, < n, < n, < ... Mit b, = an (also b, = an, ...): (bk) ist in Telfolse voc (a)

Häufusswet XER ist HW H(an):= { < EIR: < ist Hw was an } (=) Es existint eine Teelfolge (a_{n_k}) mit $a_{n_k} \rightarrow \infty (k \rightarrow \infty)$ $a. B.: a_n = (-1)^n$ =) a_{2k} -> 1, => $\{-1, n\} \subseteq H(a_n)$ Ist $x \in \mathbb{R}$, so existing Folger (r_n) in \mathbb{Q} mit $(r_n) \xrightarrow{(n-\infty)} x$. Sci (an) I conveyont segen a und (ann) ein beliebige Tedholge: $a_{n_k} \stackrel{(k-\infty)}{\longrightarrow} a$ m EN ist niedrig for an, whi: Yn > m: Un > dm Für jede Folse un existint eine monotone Teilfolse Bolzaro - Weierstraß (a_n) see deschränke =) $H(a_n) \neq \emptyset$ => (a_{n_k}) exthält eine konvernte Tc: lfolge In diesem Fall gilt auch: 14 (a.) ist beschrönkb, sup H(an), int H(an) EH(an) L) max H (an) und min H (an) existiecon

Unendliche Reihen

For eine folge (a_n) wird $a_n + a_n + a_n + a_n = s_n = \sum_{n=0}^{\infty} a_n$

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \left(|x| < 1 \right)$$

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+n}}{n}$$
 ist leaversent

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+2}}{n}$$
 is the loop versus t

$$E(x)^{-1}$$

Exponentialreihe

$$E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad F(x) > 1 \quad \text{fells } x > 0$$

$$E(x) := \frac{2}{n!} \qquad e(x) > 7 \quad \text{fells } x > 0, E(x) > 0, \text{ fells } x \in \mathbb{R}$$

$$e(x) = \frac{2}{n!} \qquad e(x) = \frac{2}{n!} \qquad e(x$$

Monotonie kriterium

Sind alle and o und ist (sn) beschänlet, so ist on le onverent

Cauchy laiterium

E an ist known versent

(=) ∀ E > 0 ∃ no E NV ∀ m > n ≥ no: | ∑ a k | < €

Ist $\sum_{n=1}^{\infty} a_n$ learveryent =) $a_n \rightarrow 0$ $(n-\infty)$ in the c=1Analog: Gilt $a_n \rightarrow 0$ $(n-\infty)$ =) $\sum_{n=1}^{\infty} a_n$ divergent

Leidnizkriteium

 (b_n) sei eine Folge mit $-(b_n)$ ist monoton fellend $b_n \rightarrow 0 \ (n \rightarrow \infty)$

Dann: \(\frac{\infty}{\infty} (-1)^{n+1} \dots \), ist konversent

Majoranten kiteium

Gilt la, 1 & b, ffa. n & M und ist \(\subsect b_n \) konversent

=) E an konveriet absolut

Minoranten kiterium

Gilt an 2 b 20 ffa. n ENV und ist \sum_{n=n}^{\infty} b_n divergent

=) I an diverse t

Worsellerite ium

Definice: cn = "Tan"

1st (cn) unberchränkt => 2 an ist diverant

[Ist (Cn) beschränkt, definite d:= lim sup (n

Falls: $\alpha < 1 \Rightarrow \sum_{n=1}^{\infty} \alpha_n \text{ is} \lambda \text{ absolut leonvagant}$ $\alpha > 1 \Rightarrow \sum_{n=1}^{\infty} \alpha_n \text{ is} \lambda \text{ divergent}$

(x = 1 =) ??)

Quotientenkriterium Es se: a, 7 0 fa nEN.

Definite $C_n := \frac{d_{n+1}}{a}$

1st Cn > n ffa. n E IV, so ist 2 an divergent

Size (Cn) beschränkt, & := lim sup Cn, B:= lim int n-soo (n.

 $- |st \propto 27 \implies \sum_{n=1}^{\infty} \alpha_n \text{ is } d \text{ solut leonveyen } b$ $|st \beta\rangle \gamma \implies \sum_{n=1}^{\infty} \alpha_n \text{ is } d \text{ divesent}$

=) Es sei $a_n \neq 0$ ffa. $n \in \mathbb{N}$, $C_n := \frac{|a_{n+1}|}{|a_n|}$, C_n sei konvegent, $\alpha := \lim_{n\to\infty} C_n$

Ocnn: 2 an isd aliverent, Falls 211

Ocnn: Pan isd diverent, Falls 211

< leine Ausseze > Falls d = 1

Cauchyprodukt

Für zu: Reibe
$$\sum_{n=0}^{\infty} a_n$$
 and $\sum_{n=0}^{\infty} b_n$ wird definit dür $n \in \mathbb{N}$:
$$C := \sum_{n=0}^{\infty} a_n b_{n-n} = \sum_{n=0}^{\infty} a_{n-n} b_n$$

$$C_n := \sum_{k=0}^n \alpha_k b_{n-k} = \sum_{k=0}^n \alpha_{n-k} b_k$$

=)
$$\sum_{n=0}^{\infty} c_n$$
 is a cobsolut boundant und $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n)$

$$+ u_{h} o_{o} = Cauch$$

Terminologia

 $\sum_{h=1}^{\infty} a_h \text{ ist absolut konvergent} \stackrel{(=)}{=} \sum_{h=1}^{\infty} |a_h| \text{ ist honvergent} \quad \text{(stirle also now honvergent)}$ in diesen Fall: $\sum_{h=1}^{\infty} |a_h| \leq \sum_{h=1}^{\infty} |a_h|$

q: N -> N sei eine Bijektion

Mit bn := ap(n) ist (bn) non cine Umorchoung von (an)

Ist an Konvegent, so ist on konvegent, ist an absolut Konvegent, so ist on absolut konvegent

Eine Reihe de Form

Definier dazu

und
$$r := \begin{cases} 0, & \text{fals } \rho = \infty \\ \infty, & \text{falls } \rho = 0 \\ \frac{1}{\rho}, & \text{falls } \rho \in (0, \infty) \end{cases} = \frac{1}{\rho}$$

r ist de Konvergenzvadius de Potenzreihe

De nachdem wie x light lossen sich aussagen tretten:

Falls an \$0 ffa neW ist und (| and) | konvesiert, hab die Potenareile = an (x-x0) der Konvesierredius

$$L := \lim_{n \to \infty} \left| \frac{a_n}{a_{n+2}} \right|$$

Cosinus $\cos : \mathbb{R} - s \mathbb{R} \xrightarrow{\infty} \sin (s) := \mathbb{R} \xrightarrow{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ $\sin (x) := \mathbb{E} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$ $\forall x, y \in \mathbb{R} : \sin(x+y) = \sin(x) \cdot \cos(y) + \cos(x) \cdot \sin(y)$ $\cos(x+y) = \cos(x) \cdot \cos(y) - \sin(x) \cdot \sin(y)$ $\cos(x+y) = \sin(x) \cdot \cos(y) - \sin(x) \cdot \sin(y)$ $\cos(x+y) = \cos(x) \cdot \cos(y) - \sin(x) \cdot \sin(y)$ $\cos(x+y) = \cos(x) \cdot \cos(y) - \sin(x) \cdot \sin(y)$

q-adische Entwicklung

Für xER existint eine größter LEZ mit K≤x<k+1 [x]:= k "Gauß-Klammern"

Sei q & N \ {1}

Sci (yn) eine Folge mit yo ENO und yn E {0, 7, ..., q-1} $\Rightarrow \quad \gamma_0, \ \gamma_1 \gamma_2 \gamma_3 \gamma_4 \dots := \sum_{n=0}^{\infty} \frac{\gamma_n}{q^n}$

heißt ein gradischer Bruch

For jedes a ER is) thre op-adiscle Entricklus eindertis bestimmt

Dezimel entrickling

or = 10:

Onalent wicklong of = 2:

Grenzwerte bei Funktionen

 $D \subseteq IR$ and $X_0 \in IR$. X_0 ist Häckursponkt von D, when $E: X_0 \in IR$ in $O \setminus \{x_0\}$ existint mit $X_0 \longrightarrow X_0$

Xo : of HP von 0 (=) YE >0: UE(xo) n(D\ {xo}) Z Ø

 $D_{\delta} := \mathcal{U}_{\delta}(x_{o}) \cap (D \setminus \{x_{o}\})$

fig: D -> R Fullationer

I s g and M, rem silt: f(x) s g(x) (x & M).

Grenzute

 $\lim_{X\to X_0} f(x) = \alpha$ ←> ∀€>0 ∃\$>0 ∀x € Os(x₀): $|f(x) - \alpha| < \varepsilon$.

(im f(x) existint

Cauchykriterium

Sei DEIR, x. Härtryspulkt von D und 5: D -> IR eine Funktion

 $\lim_{x\to x_0} g(x) = \infty \quad (=) \quad \text{For jede Folge} \quad (x_n) \text{ in } D \setminus \{x_0\} \text{ mit}$ $x_n \to x_0 \quad g(t) : g(x_n) \to \infty$