# Art Class II

#### Time and Memory Limits: 1 second, 1 GB

You and your classmates were being a little too rowdy during art class this morning and have made a bit of a mess.

There's a large, usually blank wall at the back of the classroom. Unfortunately, the class (mostly you, honestly) have made N holes in the wall. The **i**th hole is located  $\mathbf{x_i}$  centimetres from the left edge of the wall, and  $\mathbf{y_i}$  centimetres from the bottom edge of the wall.

You and your class have decided to create a single large poster to put on the wall to cover the holes.

To be as inconspicuous as possible, your poster should be:

- rectangular in shape
- hung so its sides are parallel to the edges of the wall
- large enough to cover all of the holes.

Note that a hole on the very edge of the poster will still be hidden (seems like your teacher forgot their glasses today).

You don't have a lot of time before the teacher returns, so you've decided to write a program that will tell you the area of the smallest poster that will cover all the holes.

### Input

- The first line of input contains the single integer **N**.
- The next N lines describe the location of the holes. The ith line contains the two integers  $x_i$  and  $y_i$ .

#### Output

Your program should output a single integer, the area (in square centimetres) of the smallest poster that will cover all the holes.

| Sample Input 1  | Sample Input 2  | Sample Input 3  |
|-----------------|-----------------|-----------------|
| 5               | 4               | 2               |
| 2 3             | 4 4             | 2 1             |
| 3 1             | 3 3             | 3 1             |
| 4 2             | 5 5             |                 |
| 4 4             | 1 1             |                 |
| 6 1             |                 |                 |
|                 |                 |                 |
| Sample Output 1 | Sample Output 2 | Sample Output 3 |
| 12              | 16              | 0               |

## Explanation

Each of the sample cases are illustrated below. Note that in the third sample input, the holes can be covered by an infinitely thin poster with a height of zero. The area of this poster is zero.







### Subtasks & Constraints

For all test cases:

- $\bullet \ 2 \leq N \leq 100\,000.$
- $1 \le x_i \le 10\,000$ , for all i.
- $1 \leq y_i \leq 10\,000, \, \mathrm{for \,\, all} \,\, i.$

#### Additionally:

- For Subtask 1 (40 points),  $\mathbf{N} = \mathbf{2}$ .
- For Subtask 2 (40 points),  $\mathbf{x_i} = \mathbf{y_i}$ , for all **i**. See Sample Input 2 for an example.
- For Subtask 3 (20 points), no special constraints apply.