الجامعة المصرية للتعلم الإلكتروني الأهلية

GEN206 Discrete Mathematics

Section 2

Faculty of Information Technology Egyptian E-Learning University

Fall 2021-2022

1. Use truth tables to verify these equivalences.

a)
$$p \wedge T \equiv p$$

c)
$$p \wedge \mathbf{F} \equiv \mathbf{F}$$

e)
$$p \lor p \equiv p$$

 $p \wedge T$

0

р	pvF
1	1
0	0

р	p∨T	
1	1	
0	1	

p

0

р	p v p
1	1
0	0

b)
$$p \vee \mathbf{F} \equiv p$$

d)
$$p \vee T \equiv T$$

f)
$$p \wedge p \equiv p$$

р	p ^ F
1	0
0	0

р	p∧ p	
1	1	
0	0	

17. Use truth tables to verify the absorption laws.

a)
$$p \lor (p \land q) \equiv p$$

b)
$$p \land (p \lor q) \equiv p$$

a)
$$p \lor (p \land q) \equiv p$$

р	q	p ^q	pv(p∧q)
1	1	1	1
1	0	0	1
0	1	0	0
0	0	0	0

b)
$$p \land (p \lor q) \equiv p$$

р	q	pvq	pv(pvq)
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	0

11. Show that each of these conditional statements is a tautology by using truth tables. And without truth tables

a)
$$(p \land q) \rightarrow p$$

e)
$$\neg (p \rightarrow q) \rightarrow p$$

a)
$$(p \land q) \rightarrow p$$

р	q	p ^q	(p^q) -> p
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	1

Without truth table

Let
$$p \neq e$$

then $e \Rightarrow p \equiv \neg e \lor p$
So $\neg(p \land q) \lor p \equiv (\neg p \lor q) \lor p \equiv (\neg p \lor p) \lor \neg q \equiv True \lor \neg q \equiv True$

e)
$$\neg (p \rightarrow q) \rightarrow p$$

р	q	p⊸q	¬(p→q)	¬(p→q) →p
1	1	1	0	1
1	0	0	0	1
0	1	1	0	1
0	0	1	0	1

Without truth table

$$\neg(p \rightarrow q) \rightarrow p \equiv \neg(\neg p \lor q) \rightarrow p \equiv p \land \neg q \rightarrow p \equiv \neg(p \land \neg q) \lor p$$

$$\equiv \neg p \lor q \lor p \equiv (\neg p \lor p) \lor q \equiv (True) \lor q = True$$

Predicates and Quantifiers

- **2.** Let P(x) be the statement "The word x contains the letter a." What are these truth values?
 - a) $P(\text{orange}) \mathsf{T}$ b) $P(\text{lemon}) \mathsf{F}$

- c) $P(\text{true}) \vdash d) P(\text{false}) \top$

- **5.** Let *P*(*x*) be the statement "*x* spends more than five hours every weekday in class," where the domain for *x* consists of all students. Express each of these quantifications in English.
 - a) ∃xP(x)

b) ∀*xP*(*x*)

c) $\exists x \neg P(x)$

d) ∀x ¬P(x)

- (a) There exists a student that spends more than five hours every weekday in class.
- (b) All students spend more than five hours every weekday in class.
- (c) There exists a student that does not spend more than five hours every weekday in class.
- (d) All students do not spend more than five hours every weekday in class.

- 7. Translate these statements into English, where C(x) is "x is a comedian" and F(x) is "x is funny" and the domain consists of all people.
 - **a)** $\forall x (C(x) \rightarrow F(x))$ **b)** $\forall x (C(x) \land F(x))$
- - c) $\exists x (C(x) \to F(x))$ d) $\exists x (C(x) \land F(x))$

 - (a) All comedians are funny.
 - (b) Every person is a comedian and funny.
 - (c) There exists a person such that, if the person is a comedian, then the person is funny.
 - (d) There exists a person that is a comedian and funny.

- 11. Let P(x) be the statement " $x = x^2$." If the domain consists of the integers, what are these truth values?
 - **a**) P(0)

b) *P*(1)

c) P(2)

d) P(-1)

e) $\exists x P(x)$

 \mathbf{f}) $\forall x P(x)$

- (a) True
- (b) True
- (c) False
- (d) False
- (e) True
- (f) False

Thank You

