85

fluid exiting the capillary to enter the interior space 612 of the liquid-to-liquid oxygenator through a second inlet 670. Advantageously, the capillary assembly 650 includes between its first and second ends a luer fitting 652 for securing the capillary in place upon being positioned within a lumen 654 passing through at least a portion of the injector housing 610 to the interior space 612. The capillary assembly advantageously may further include a support assembly (e.g., a rigid tube within which at least a portion of the capillary is disposed) proximate the second end of the assembly 650 to help maintain the capillary fluid outlet port in place within the interior space 612, and/or a strain relief assembly (e.g., a flexible tube within which at least a portion of the capillary is disposed) to help prevent excessive bending or kinking of the capillary.

IN THE DRAWINGS

Applicants propose to amend Figures 7A and 7D as indicated in red ink on the attached sheet for the Examiner's approval.

IN THE CLAIMS

Please cancel claims 1 and 51, without prejudice.

Please replace the text of claims 41, 68, and 69 with the following text:

41. (Amended) A method for forming a gas-enriched fluid comprising the acts of: providing a mixing chamber having a first inlet, a second inlet, and an outlet;

delivering a first fluid to the mixing chamber via the first inlet, wherein the first fluid enters the mixing chamber and flows vortically within the mixing chamber; and

delivering a second fluid having a liquid phase supersaturated with a gas to the mixing chamber via the second inlet to mix with the first fluid and form the gas-enriched fluid.

- 68. (Amended) A blood oxygenation method comprising the act of:
 extracorporeally mixing blood flowing vortically within a mixing chamber and an oxygen-supersaturated fluid to effect direct liquid-to-liquid oxygenation forming oxygen-enriched blood.
- 69. (Amended) The method, as set forth in claim 68, wherein the mixing chamber is a pressurizable chamber.