Overview of Inference in First-Order Logic

Chapter 9

Outline

- Reducing first-order inference to propositional inference
- Lifting inference in propositional logic to first-order logic.
 - Unification
 - Resolution

Two Approaches for Inference in FOL

Propositionalisation:

- Treat a first-order sentences as a template.
- Instantiating all variables with all possible constants gives a set of ground propositional clauses.
- Apply efficient propositional solver, e.g. SAT.

Two Approaches for Inference in FOL

Propositionalisation:

- Treat a first-order sentences as a template.
- Instantiating all variables with all possible constants gives a set of ground propositional clauses.
- Apply efficient propositional solver, e.g. SAT.

Lifted Inference:

- Generalize propositional methods to 1st-order methods.
- Issue: dealing with variables and quantifiers
- Rule of inference: resolution
- Unification: instantiate variables where necessary.

Propositionalisation

- Easy case: A finite world in which all individuals have names
 - E.g. the wumpus world
 - But also many planning, scheduling, etc. problems

Propositionalisation

- Easy case: A finite world in which all individuals have names
 - E.g. the wumpus world
 - But also many planning, scheduling, etc. problems
- Idea:
 - Replace a universally-quantified sentence with all of its instances
 - Replace an existentially-quantified sentence with a disjunction of its instances

Propositionalisation

- Easy case: A finite world in which all individuals have names
 - E.g. the wumpus world
 - But also many planning, scheduling, etc. problems
- Idea:
 - Replace a universally-quantified sentence with all of its instances
 - Replace an existentially-quantified sentence with a disjunction of its instances
- A formula (KB, etc.) with no variables is called ground
- Inference procedure:
 - Ground the KB and the query, and
 - run an inference procedure for propositional logic.

Universals

```
• E.g., \forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)
yields
King(John) \land Greedy(John) \Rightarrow Evil(John)
King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
King(car_{54}) \land Greedy(car_{54}) \Rightarrow Evil(car_{54})
...
```

Existentials

• E.g., $\exists x \; Likes(John, x)$ yields $Likes(John, John) \lor Likes(John, Richard) \lor \cdots \lor Likes(John, car₅₄) \lor \cdots$

Existentials

E.g., ∃x Likes(John, x)
 yields

 $Likes(John, John) \lor Likes(John, Richard) \lor \cdots \lor Likes(John, car₅₄) \lor \ldots$

Q: What does "Everyone likes someone" look like?

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x)
King(John), \; Greedy(John), \; Brother(Richard, John)
```

- Instantiating the universal sentence in all possible ways, we get
 King(John) ∧ Greedy(John) ⇒ Evil(John)
 King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
 King(John), Greedy(John), Brother(Richard, John)
- The new KB is propositionalized.
- Proposition symbols are King(John), Greedy(John), Brother(John, Richard), Brother(John, John), etc.

Problems with propositionalization

- Usually generates lots of irrelevant sentences.
- E.g., consider:

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x),

\forall y \; Greedy(y),

King(John), \; Brother(Richard, John)
```

- For query Evil(John), propositionalization produces lots of facts (like Greedy(Richard)) that are irrelevant
- k-ary predicate and n constants $\Rightarrow n^k$ instances

Problems with propositionalization

- Usually generates lots of irrelevant sentences.
- E.g., consider:

```
\forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x),

\forall y \; Greedy(y),

King(John), \; Brother(Richard, John)
```

- For query Evil(John), propositionalization produces lots of facts (like Greedy(Richard)) that are irrelevant
- k-ary predicate and n constants $\Rightarrow n^k$ instances
- However, many recent Al applications use propositionalization for FO KBs over a finite domain.
 - Has led to work in intelligent grounding.
- Can make propositionalization work for arbitrary FO theories
 - See text for more

General FOL: Dealing with Variables

Consider the KB:

```
\{ \ \forall x (Grad(x) \Rightarrow Student(x)), \ \ \forall y (Student(y) \Rightarrow Happy(y)), \ Grad(ZeNian), \ \ UGrad(Andrei) \ \}
```

- Intuitively Happy(ZeNian) is inferrable.
 - This requires instantiating x and y to ZeNian.
- For such a deduction Andrei is irrelevant.

Idea: Try to limit instantiation of variables to *useful* instances.

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:

$$\forall x (Grad(x) \Rightarrow Student(x)), \qquad Grad(ZeNian)$$

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:

```
\forall x (Grad(x) \Rightarrow Student(x)), \qquad Grad(ZeNian)
```

• To obtain *Student*(*ZeNian*) we have the following steps:

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:

$$\forall x (Grad(x) \Rightarrow Student(x)), \qquad Grad(ZeNian)$$

- To obtain *Student*(*ZeNian*) we have the following steps:
 - Figure out how to make Grad(x) and Grad(ZeNian) the same.
 - This is easy: Bind x to ZeNian.

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:

$$\forall x (Grad(x) \Rightarrow Student(x)), \qquad Grad(ZeNian)$$

- To obtain *Student*(*ZeNian*) we have the following steps:
 - Figure out how to make Grad(x) and Grad(ZeNian) the same.
 - This is easy: Bind x to ZeNian.
 - Substituting, we get the rule instance:
 Grad(ZeNian) ⇒ Student(ZeNian).

- If two formulas can be made the same by substitutions of variables, they are said to be *unified*
- Unification is the process of making 2 formulas (terms, etc) the same by finding an appropriate substitution for variables.
- Consider:

$$\forall x (Grad(x) \Rightarrow Student(x)), \qquad Grad(ZeNian)$$

- To obtain *Student*(*ZeNian*) we have the following steps:
 - Figure out how to make Grad(x) and Grad(ZeNian) the same.
 - This is easy: Bind x to ZeNian.
 - Substituting, we get the rule instance: $Grad(ZeNian) \Rightarrow Student(ZeNian)$.
 - Can now derive Student(ZeNian).

α	eta	$\mid heta \mid$
Knows(John, x)	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, OJ)	

α	β	$\mid heta$
		$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, OJ)	

α	eta	$\mid heta$
	,	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, OJ)	

α	β	$\mid heta$
	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/Jane\}$ $\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	${y/John},$
		x/Mother(John)
Knows(John, x)	Knows(x, OJ)	

Look for substitution θ such that $\alpha\theta = \beta\theta$

α	β	$\mid heta$
	Knows(John, Jane)	$\{x/Jane\}$ $\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	${y/John},$
		x/Mother(John)
Knows(John, x)	Knows(x, OJ)	fail

Problem: Can't substitute both *John* and OJ for x at the same time.

Solution: Standardize variables apart:

• Replace Knows(x, OJ) with Knows(y, OJ)

Reasoning and Unification

- Unification lets us work with both universally quantified variables and arbitrary terms.
- We can use unification in rules such as: $Parent(x,y) \land Parent(y,z) \Rightarrow GrandParent(x,z)$ where the variables are taken as being universally quantified.
- Then forward chaining and backward chaining with unification can be defined for such rules.
- For backward chaining, following one line of development, one ends up with the programming language Prolog.

Resolution: Brief summary

- Resolution can be used in the first-order case (where it forms the basis for much of theorem proving)
- Full first-order version:

$$\frac{\ell_1 \vee \mathit{C}_1, \quad \ell_2 \vee \mathit{C}_2}{(\mathit{C}_1 \vee \mathit{C}_2)\theta} \qquad \text{ where } \ell_1 \theta = \neg \ell_2 \theta.$$

For example,

$$\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Ken)}$$
 with $\theta = \{x/Ken\}$

• For details see the text or CMPT 411.

Inference in FOL

For KB and query α :

- Convert $KB \wedge \neg \alpha$ to CNF.
 - This is trickier than in propositional logic, since we have to deal with variables and quantifiers.
- Apply resolution steps to $CNF(KB \land \neg \alpha)$
 - No longer guaranteed to terminate if satisfiable
 - FOL is undecidable
- Complete for FOL

Summary

- Propositionalization
 - Grounding approach: reduce all sentences to PL and apply propositional inference techniques.
- FOL/Lifted inference techniques
 - Propositional techniques + Unification.
 - Generalized Modus Ponens
 - Resolution-based inference.
- Many other aspects of FOL inference not discussed in class