

Agenda

- —Introduction
- —Learning problem & linear classification
- —Linear models: regression & logistic regression
- Non-linear transformation, overfitting & regularization
- —Support Vector Machines and kernel learning
- —Neural Networks: shallow [and deep]
- —Theoretical foundation of supervised learning
- —Unsupervised learning

Machine Learning / Burkhardt Funk 27.11.2020

The idea behind neural nets

Combining perceptrons to realize Boolean operators

27.11.2020

Creating layers

The multilayer perceptron

27.11.2020

A powerful model

Target

8 perceptrons

16 perceptrons

The impact of layers

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	B A	B	

Source: Mark Hoogendoorn (VU Amsterdam)

A simple neural network

input **x**

hidden layers $1 \le l < L$

output layer l = L

The weight between two nodes

Machine Learning / Burkhardt Funk 27.11.2020

Mathematical form

$$w_{ij}^{(l)} \begin{cases} 1 \leq l \leq L & layers \\ 0 \leq i \leq d^{(l-1)} & inputs \\ 1 \leq j \leq d^{(l)} & outputs \end{cases}$$

$$x_{j}^{(l)} = \theta \left(s_{j}^{(l)} \right) = \theta \left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_{i}^{(l-1)} \right) \qquad -1 \qquad \qquad \text{hard threshold}$$
 Apply **x** to $x_{1}^{(0)} \cdots x_{d^{(0)}}^{(0)} \rightarrow x_{1}^{(0)} \rightarrow x$

Apply **x** to
$$x_1^{(0)} \cdots x_{d^{(0)}}^{(0)} \to x_1^L = h(\mathbf{x})$$

$$\theta(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

Vectorized version

layer ℓ parameters

signals in	$\mathbf{s}^{(\ell)}$	$d^{(\ell)}$ dimensional input vector
outputs	$\mathbf{x}^{(\ell)}$	$d^{(\ell)} + 1$ dimensional output vector
weights in	$\mathrm{W}^{(\ell)}$	$(d^{(\ell-1)}+1)\times d^{(\ell)}$ dimensional matrix
weights out	$W^{(\ell+1)}$	$(d^{(\ell)} + 1) \times d^{(\ell+1)}$ dimensional matrix

Forward Propagation

1:
$$\mathbf{x}^{(0)} \leftarrow \mathbf{x}$$

2: for $\ell = 1$ to L do

3:
$$\mathbf{s}^{(\ell)} \leftarrow (\mathbf{W}^{(\ell)})^T \mathbf{x}^{(\ell-1)}$$

4:
$$\mathbf{x}^{(\ell)} \leftarrow \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(\ell)}) \end{bmatrix}$$

5:
$$h(\mathbf{x}) = \mathbf{x}^{(L)}$$

[Initialization] [Forward Propagation]

[Output]

Machine Learning / Burkhardt Funk 27.11.2020

Applying stochastic gradient descent

All the weights
$$\mathbf{w} = \left\{ w_{ij}^{(l)} \right\}$$
 determine $h(\mathbf{x})$

Error on example (x_n, y_n) is

$$e(h(x_n), y_n) = e(\mathbf{w})$$

To implement SGD, we need the gradient

$$\nabla e(\mathbf{w})$$
: $\frac{\partial e(\mathbf{w})}{\partial w_{ij}^{(l)}}$ for all i, j, l

Remember the chain rule?

Computing
$$\frac{\partial e(\mathbf{w})}{\partial w_{ij}^{(l)}}$$

We can evaluate $\frac{\partial e(w)}{\partial w_{ij}^{(l)}}$ one by one: analytically or numerically

A trick for efficient computation:

$$\frac{\partial e(\mathbf{w})}{\partial w_{ij}^{(l)}} = \frac{\partial e(\mathbf{w})}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}}$$

We have
$$\frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}} = x_i^{(l-1)}$$
 We only need: $\frac{\partial e(\mathbf{w})}{\partial s_j^{(l)}} = \delta_j^{(l)}$

δ for the final layer

$$\delta_j^{(l)} = \frac{\partial e(\mathbf{w})}{\partial s_j^{(l)}}$$

For the final layer l = L and j = 1:

$$\delta_1^{(L)} = \frac{\partial e(\mathbf{w})}{\partial s_1^{(L)}}$$
$$e(\mathbf{w}) := (x_1^{(L)} - y_n)^2$$

$$x_1^{(L)} = \theta \ (s_1^{(L)})$$

$$\theta'(s) = 1 - \theta^2(s)$$
 for the tanh

Back propagation δ

$$\delta_i^{(l-1)} = \frac{\partial e(w)}{\partial s_i^{(l-1)}}$$

$$= \sum_{j=1}^{d^{(l)}} \frac{\partial e(\mathbf{w})}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial x_i^{(l-1)}} \times \frac{\partial x_i^{(l-1)}}{\partial s_i^{(l-1)}}$$

$$= \sum_{j=1}^{d^{(l)}} \delta_j^{(l)} \times w_{ij}^{(l)} \times \theta'(s_i^{(l-1)})$$

$$\delta_{i}^{(l-1)} = \left(1 - (x_{i}^{(l-1)})^{2}\right) \sum_{j=1}^{d(l)} w_{ij}^{(l)} \delta_{j}^{(l)}$$

Combing feedforward and backpropagation

Source: Mark Hoogendoorn (VU Amsterdam)

Backpropagation algorithm

Initialize all weights $w_{ij}^{(l)}$ at random

for
$$t = 0, 1, 2, ...$$
 do

Pick $n \in \{1, 2, ..., N\}$

Forward: Compute all $x_i^{(l)}$

Backward: Compute all $\delta_i^{(l)}$

Update the weights: $w_{ij}^{(l)} \leftarrow w_{ij}^{(l)} - \eta x_i^{(l-1)} \delta_j^{(l)}$

Iterate to the next step until it is time to stop

Return the final weights $w_{ij}^{(l)}$

A few words on the Backpropagation Algorithm

- Backpropagation Algorithm (BA) searches for weight values that minimize the total error of the network by iterative application of forward and backward pass
- Convergence is not guaranteed (e.g. learning rate too big or too small)
- —If BA convergences it is not guaranteed, that we reached the global minimum

A final word: neural networks for regression

—The backprop algorithm does not heavily depend on the activation function

—If we substitute the tanh(s) output node just by the linear function (s) something

magic happens

—Any continuous function can be approximated by an NN with 2 hidden layers

Deep Learning

