Perform Exploratory Data Analysis to show features that contribute to Sale Price (SalePrice). Write a report on word document explaining your results. Use crosstab, groupby, pandas visualization, matplotlib, seaborn and plotly. (Paste your graphs on word document)

In [1]: ▶

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
import plotly.graph_objects as go
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

train=pd.read_csv('C:/Users/user/Downloads/train.csv')
train

Out[2]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandConto
0	1	60	RL	65.0	8450	Pave	NaN	Reg	- L
1	2	20	RL	80.0	9600	Pave	NaN	Reg	l
2	3	60	RL	68.0	11250	Pave	NaN	IR1	l
3	4	70	RL	60.0	9550	Pave	NaN	IR1	l
4	5	60	RL	84.0	14260	Pave	NaN	IR1	l
1455	1456	60	RL	62.0	7917	Pave	NaN	Reg	L
1456	1457	20	RL	85.0	13175	Pave	NaN	Reg	L
1457	1458	70	RL	66.0	9042	Pave	NaN	Reg	l
1458	1459	20	RL	68.0	9717	Pave	NaN	Reg	l
1459	1460	20	RL	75.0	9937	Pave	NaN	Reg	l

1460 rows × 81 columns

In [3]:

```
train.SalePrice.agg(['mean','std','max','min','count','median'])
```

Out[3]:

mean 180921.195890 std 79442.502883 max 755000.000000 min 34900.000000 count 1460.000000 median 163000.000000

In [4]:

train.describe(include='object').T

Out[4]:

	count	unique	top	freq
MSZoning	1460	5	RL	1151
Street	1460	2	Pave	1454
Alley	91	2	Grvl	50
LotShape	1460	4	Reg	925
LandContour	1460	4	Lvl	1311
Utilities	1460	2	AllPub	1459
LotConfig	1460	5	Inside	1052
LandSlope	1460	3	Gtl	1382
Neighborhood	1460	25	NAmes	225
Condition1	1460	9	Norm	1260
Condition2	1460	8	Norm	1445
BldgType	1460	5	1Fam	1220
HouseStyle	1460	8	1Story	726
RoofStyle	1460	6	Gable	1141
RoofMatl	1460	8	CompShg	1434
Exterior1st	1460	15	VinylSd	515
Exterior2nd	1460	16	VinylSd	504
MasVnrType	1452	4	None	864
ExterQual	1460	4	TA	906
ExterCond	1460	5	TA	1282
Foundation	1460	6	PConc	647
BsmtQual	1423	4	TA	649
BsmtCond	1423	4	TA	1311
BsmtExposure	1422	4	No	953
BsmtFinType1	1423	6	Unf	430
BsmtFinType2	1422	6	Unf	1256
Heating		6	GasA	
HeatingQC	1460	5	Ex	
CentralAir	1460	2	Υ	1365
Electrical	1459	5	SBrkr	
KitchenQual	1460	4	TA	
Functional		7	Тур	1360
FireplaceQu	770	5	Gd	380
GarageType	1379	6	Attchd	870

	count	unique	top	freq
GarageFinish	1379	3	Unf	605
GarageQual	1379	5	TA	1311
GarageCond	1379	5	TA	1326
PavedDrive	1460	3	Υ	1340
PoolQC	7	3	Gd	3
Fence	281	4	MnPrv	157
MiscFeature	54	4	Shed	49
SaleType	1460	9	WD	1267
SaleCondition	1460	6	Normal	1198

In [5]:

train.describe(include='object').iloc[:,0:6]

Out[5]:

	MSZoning	Street	Alley	LotShape	LandContour	Utilities
count	1460	1460	91	1460	1460	1460
unique	5	2	2	4	4	2
top	RL	Pave	Grvl	Reg	LvI	AllPub
freq	1151	1454	50	925	1311	1459

In [6]: ▶

```
train.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1460 entries, 0 to 1459 Data columns (total 81 columns): # Column Non-Null Count Dtype _ _ _ _ _ _ 0 Ιd 1460 non-null int64 1 MSSubClass 1460 non-null int64 2 MSZoning 1460 non-null object 3 LotFrontage float64 1201 non-null 4 LotArea 1460 non-null int64 object 5 Street 1460 non-null 6 Alley 91 non-null object 7 LotShape 1460 non-null object 8 LandContour 1460 non-null object 9 object Utilities 1460 non-null 10 LotConfig 1460 non-null object 11 LandSlope 1460 non-null object 12 Neighborhood 1460 non-null object object 13 Condition1 1460 non-null 14 Condition2 1460 non-null object 15 BldgType 1460 non-null object 16 HouseStyle 1460 non-null object 17 OverallQual 1460 non-null int64 18 OverallCond 1460 non-null int64 19 YearBuilt 1460 non-null int64 int64 20 YearRemodAdd 1460 non-null RoofStyle 21 1460 non-null object 22 RoofMat1 1460 non-null object 23 Exterior1st 1460 non-null object 24 object Exterior2nd 1460 non-null 25 MasVnrType 1452 non-null object 26 MasVnrArea 1452 non-null float64 27 ExterQual 1460 non-null object 28 ExterCond 1460 non-null object 29 object Foundation 1460 non-null 30 BsmtOual 1423 non-null object 31 BsmtCond 1423 non-null object 32 BsmtExposure 1422 non-null object 33 BsmtFinType1 1423 non-null object 34 BsmtFinSF1 1460 non-null int64 35 BsmtFinType2 1422 non-null object 36 int64 BsmtFinSF2 1460 non-null 37 BsmtUnfSF 1460 non-null int64 38 TotalBsmtSF 1460 non-null int64 39 1460 non-null object Heating 40 object HeatingQC 1460 non-null 41 object CentralAir 1460 non-null 42 Electrical 1459 non-null object 43 1stFlrSF 1460 non-null int64 44 2ndFlrSF 1460 non-null int64 45 LowQualFinSF 1460 non-null int64 46 GrLivArea 1460 non-null int64 47 **BsmtFullBath** 1460 non-null int64 48 BsmtHalfBath 1460 non-null int64 49 **FullBath** int64 1460 non-null

1460 non-null

int64

HalfBath

00/22, 1	1.72 / (W)		,				
51	BedroomAbvGr	1460 non-null	int64				
52	KitchenAbvGr	1460 non-null	int64				
53	KitchenQual	1460 non-null	object				
54	TotRmsAbvGrd	1460 non-null	int64				
55	Functional	1460 non-null	object				
56	Fireplaces	1460 non-null	int64				
57	FireplaceQu	770 non-null	object				
58	GarageType	1379 non-null	object				
59	GarageYrBlt	1379 non-null	float64				
60	GarageFinish	1379 non-null	object				
61	GarageCars	1460 non-null	int64				
62	GarageArea	1460 non-null	int64				
63	GarageQual	1379 non-null	object				
64	GarageCond	1379 non-null	object				
65	PavedDrive	1460 non-null	object				
66	WoodDeckSF	1460 non-null	int64				
67	OpenPorchSF	1460 non-null	int64				
68	EnclosedPorch	1460 non-null	int64				
69	3SsnPorch	1460 non-null	int64				
70	ScreenPorch	1460 non-null	int64				
71	PoolArea	1460 non-null	int64				
72	PoolQC	7 non-null	object				
73	Fence	281 non-null	object				
74	MiscFeature	54 non-null	object				
75	MiscVal	1460 non-null	int64				
76	MoSold	1460 non-null	int64				
77	YrSold	1460 non-null	int64				
78	SaleType	1460 non-null	object				
79	SaleCondition	1460 non-null	object				
80	SalePrice	1460 non-null	int64				
dtyp		int64(35), obje	ct(43)				
memo	memory usage: 924.0+ KB						

In [7]: ▶

```
train.columns
```

Out[7]:

```
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
        'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
        'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
        'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAd
d',
        'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
        'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
        'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
        'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBat
h',
        'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
        'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageTyp
е',
        'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQua
1',
        'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
        'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
        'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
        'SaleCondition', 'SalePrice'],
      dtype='object')
```

In [8]: ▶

train.nunique()

Out[8]:

Id	1460
MSSubClass	15
MSZoning	5
LotFrontage	110
LotArea	1073
	• • •
MoSold	12
YrSold	5
SaleType	9
SaleConditio	on 6
SalePrice	663
Length: 81,	dtype: int64

In [123]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='MSZoning',y='SalePrice',data=train)
plt.title('MSZoning Vs SalePrice',fontsize=18,color='b')
plt.xlabel('MSZoning',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('MSZoning')['SalePrice'].mean()
```

Out[123]:

MSZoning

C (all) 74528.000000 FV 214014.061538 RH 131558.375000 RL 191004.994787 RM 126316.830275

Name: SalePrice, dtype: float64

In [9]: ▶

```
trn=train.select_dtypes(include=['float','int'])
trn1=trn.loc[:,trn.nunique()<=10]
trn1.nunique()</pre>
```

Out[9]:

OverallQual	10
OverallCond	9
BsmtFullBath	4
BsmtHalfBath	3
FullBath	4
HalfBath	3
BedroomAbvGr	8
KitchenAbvGr	4
Fireplaces	4
GarageCars	5
PoolArea	8
YrSold	5
dtype: int64	

In [10]: ▶

```
for h in trn1.columns:
    plt.figure(figsize=(15,6))
    sb.barplot(x=h,y='SalePrice',data=train);
```


Type $\it Markdown$ and LaTeX: $\it \alpha^2$

In [12]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='OverallQual',y='SalePrice',data=train)
plt.title('OverallQual Vs SalePrice',fontsize=18,color='b')
plt.xlabel('OverallQual',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('OverallQual')['SalePrice'].mean()
```

Out[12]:

OverallQual

1 50150.000000 2 51770.333333 3 87473.750000 4 108420.655172 5 133523.347607 6 161603.034759 7 207716.423197 8 274735.535714 9 367513.023256 10 438588.388889


```
In [13]:
plt.figure(figsize=(14,4))
sb.barplot(x='OverallCond',y='SalePrice',data=train)
plt.title('OverallCond Vs SalePrice',fontsize=18,color='b')
plt.xlabel('OverallCond',fontsize=18,color='k')
plt.ylabel('SalePrice', fontsize=18, color='k');
train.groupby('OverallCond')['SalePrice'].mean()
Out[13]:
OverallCond
      61000.000000
1
2
     141986.400000
3
     101929.400000
4
     120438.438596
5
     203146.914738
6
     153961.591270
7
     158145.487805
Я
     155651.736111
9
     216004.545455
Name: SalePrice, dtype: float64
                                OverallCond Vs SalePrice
  250000
   200000
In [14]:
plt.figure(figsize=(14,4))
sb.barplot(x='BsmtFullBath',y='SalePrice',data=train);
plt.title('BsmtFullBath Vs SalePrice',fontsize=18,color='b')
plt.xlabel('BsmtFullBath',fontsize=18,color='k')
plt.ylabel('SalePrice', fontsize=18, color='k');
train.groupby('BsmtFullBath')['SalePrice'].mean()
Out[14]:
```

BsmtFullBath

2

165521.640187

202522.918367 1

213063.066667 3 179000,000000

In [15]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='FullBath',y='SalePrice',data=train);
plt.title('FullBath Vs SalePrice',fontsize=18,color='b')
plt.xlabel('FullBath',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('FullBath')['SalePrice'].mean()
```

Out[15]:

FullBath

0 165200.888889 1 134751.440000 2 213009.825521 3 347822.909091

In [49]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='HalfBath',y='SalePrice',data=train);
plt.title('HalfBath Vs SalePrice',fontsize=18,color='b')
plt.xlabel('HalfBath',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('HalfBath')['SalePrice'].mean()
```

Out[49]:

HalfBath

0 162534.884995 1 212721.960748 2 162028.916667

Name: SalePrice, dtype: float64

In [53]:

train.HalfBath.unique()

Out[53]:

array([1, 0, 2], dtype=int64)

In [54]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='BedroomAbvGr',y='SalePrice',data=train);
plt.title('BedroomAbvGr Vs SalePrice',fontsize=18,color='b')
plt.xlabel('BedroomAbvGr',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('BedroomAbvGr')['SalePrice'].mean()
```

Out[54]:

8

BedroomAbvGr

0 221493.166667 1 173162.420000 2 158197.659218 3 181056.870647 4 220421.253521 5 180819.047619 6 143779.000000

200000.000000

In [55]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='KitchenAbvGr',y='SalePrice',data=train);
plt.title('KitchenAbvGr Vs SalePrice',fontsize=18,color='b')
plt.xlabel('KitchenAbvGr',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('KitchenAbvGr')['SalePrice'].mean()
```

Out[55]:

KitchenAbvGr

0 127500.000000 1 183388.790230

2 131096.153846

3 109500.000000

In [56]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='Fireplaces',y='SalePrice',data=train);
plt.title('Fireplaces Vs SalePrice',fontsize=18,color='b')
plt.xlabel('Fireplaces',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('Fireplaces')['SalePrice'].mean()
```

Out[56]:

Fireplaces

0 141331.482609

1 211843.909231

2 240588.539130

3 252000.000000

In [57]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='GarageCars',y='SalePrice',data=train);
plt.title('GarageCars Vs SalePrice',fontsize=18,color='b')
plt.xlabel('GarageCars',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('GarageCars')['SalePrice'].mean()
```

Out[57]:

GarageCars

0 103317.283951
1 128116.688347
2 183851.663835
3 309636.121547

4 192655.800000

In [59]: ▶

```
plt.figure(figsize=(14,4))
sb.barplot(x='PoolArea',y='SalePrice',data=train);
plt.title('PoolArea Vs SalePrice',fontsize=18,color='b')
plt.xlabel('PoolArea',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('PoolArea')['SalePrice'].mean().round(2)
```

Out[59]:

738

PoolArea 0 180404.66 480 160000.00 512 235000.00 519 250000.00 555 745000.00 576 171000.00 648 181000.00

Name: SalePrice, dtype: float64

274970.00

In [61]:

train.YrSold.value_counts().plot.pie(autopct='%1.1f%%');

In [62]:

```
plt.figure(figsize=(14,4))
sb.barplot(x='YrSold',y='SalePrice',data=train);
plt.title('YrSold Vs SalePrice',fontsize=18,color='b')
plt.xlabel('YrSold',fontsize=18,color='k')
plt.ylabel('SalePrice',fontsize=18,color='k');
train.groupby('YrSold')['SalePrice'].mean().round(2)
```

Out[62]:

YrSold 2006 182549.46 2007 186063.15 2008 177360.84 2009 179432.10 2010 177393.67

In [126]: ▶

```
t=train.select_dtypes(include='object')
```

Out[126]:

MSZoning	5
Street	5 2
Alley	2
LotShape	4
LandContour	4
Utilities	2
LotConfig	5
LandSlope	5 3
Neighborhood	25
Condition1	9
Condition2	8
BldgType	5
HouseStyle	8
RoofStyle	6
RoofMatl	8
Exterior1st	15
Exterior2nd	16
MasVnrType	4
ExterQual	4
ExterCond	5
Foundation	6
BsmtQual	4
BsmtCond	4
BsmtExposure	4
BsmtFinType1	6
BsmtFinType2	6
Heating	6
HeatingQC	5
CentralAir	2
Electrical	5 4
KitchenQual	4
Functional	7
FireplaceQu	5 6
GarageType	
GarageFinish	3
GarageQual	5
GarageCond	5 5 3 3 4
PavedDrive	3
PoolQC	3
Fence	
MiscFeature	4
SaleType	9
SaleCondition	6
dtype: int64	

```
In [127]: ▶
```

```
for h in t.columns:
    plt.figure(figsize=(15,4))
    sb.barplot(x=h,y='SalePrice',data=train)
```



```
In [24]:
```

```
trn=train.select_dtypes(include=['float','int'])
trn1=trn.loc[:,trn.nunique()>10]
trn1.nunique()
```

```
In [25]:
```

```
for k in trn1.columns:
   plt.figure(figsize=(15,4))
   sb.boxplot(x=k,y='SalePrice',data=train);
```


In [26]: ▶

```
for k in trn1.columns:
    plt.figure(figsize=(15,4))
    sb.scatterplot(x=k,y='SalePrice',data=train);
  700000
  600000
  400000
  200000
  100000
  600000
  500000
  300000
  200000
In [102]:
plt.figure(figsize=(18,6))
sb.scatterplot(x="GarageArea",y='SalePrice',data=train);
plt.title('GarageArea Vs SalePrice',fontsize=18,color='m');
```



```
In [101]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="LotFrontage",y='SalePrice',data=train);
plt.title('LotFrontage Vs SalePrice',fontsize=18,color='m');
```



```
In [103]: ▶
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="LotArea",y='SalePrice',data=train);
plt.title('LotArea Vs SalePrice',fontsize=18,color='m');
```



```
In [104]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="YearBuilt",y='SalePrice',data=train);
plt.title('YearBuilt Vs SalePrice',fontsize=18,color='m');
```



```
In [105]: ▶
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="YearRemodAdd",y='SalePrice',data=train);
plt.title('YearRemodAdd Vs SalePrice',fontsize=18,color='m');
```



```
In [106]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="MasVnrArea",y='SalePrice',data=train);
plt.title('MasVnrArea Vs SalePrice',fontsize=18,color='m');
```



```
In [107]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="BsmtFinSF1",y='SalePrice',data=train);
plt.title('BsmtFinSF1 Vs SalePrice',fontsize=18,color='m');
```


In [108]: ▶

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="BsmtFinSF2",y='SalePrice',data=train);
plt.title('BsmtFinSF2 Vs SalePrice',fontsize=18,color='m');
```


In [109]:

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="TotalBsmtSF",y='SalePrice',data=train);
plt.title('TotalBsmtSF Vs SalePrice',fontsize=18,color='m');
```



```
In [110]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="BsmtUnfSF",y='SalePrice',data=train);
plt.title('BsmtUnfSF Vs SalePrice',fontsize=18,color='m');
```



```
In [111]: ▶
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="1stFlrSF",y='SalePrice',data=train);
plt.title('1stFlrSF Vs SalePrice',fontsize=18,color='m');
```



```
In [112]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="2ndFlrSF",y='SalePrice',data=train);
plt.title('2ndFlrSF Vs SalePrice',fontsize=18,color='m');
```



```
In [113]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="LowQualFinSF",y='SalePrice',data=train);
plt.title('LowQualFinSF Vs SalePrice',fontsize=18,color='m');
```



```
In [114]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="GrLivArea",y='SalePrice',data=train);
plt.title('GrLivArea Vs SalePrice',fontsize=18,color='m');
```



```
In [115]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="GarageYrBlt",y='SalePrice',data=train);
plt.title('GarageYrBlt Vs SalePrice',fontsize=18,color='m');
```



```
In [116]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="WoodDeckSF",y='SalePrice',data=train);
plt.title('WoodDeckSF Vs SalePrice',fontsize=18,color='m');
```



```
In [117]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="OpenPorchSF",y='SalePrice',data=train);
plt.title('OpenPorchSF Vs SalePrice',fontsize=18,color='m');
```



```
In [118]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="EnclosedPorch",y='SalePrice',data=train);
plt.title('EnclosedPorch Vs SalePrice', fontsize=18, color='m');
```



```
In [119]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="3SsnPorch",y='SalePrice',data=train);
plt.title('3SsnPorch Vs SalePrice',fontsize=18,color='m');
```


In [120]: ▶

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="ScreenPorch",y='SalePrice',data=train);
plt.title('ScreenPorch Vs SalePrice',fontsize=18,color='m');
```


In [121]:

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="MiscVal",y='SalePrice',data=train);
plt.title('MiscVal Vs SalePrice',fontsize=18,color='m');
```



```
In [122]:
```

```
plt.figure(figsize=(18,6))
sb.scatterplot(x="MoSold",y='SalePrice',data=train);
plt.title('MoSold Vs SalePrice',fontsize=18,color='m');
```


In []:	H