STOKES' THEOREM

- Stokes' Theorem
- Calculating Flux and Line Integrals
- Irrotational Vector Fields

STOKES' THEOREM

CURL FORM OF GREEN'S THEOREM

THEOREM

Let $U\subseteq \mathbb{R}^2$ have regular boundary curve C. For any vector field on \mathbb{R}^3 of the form $\overrightarrow{\mathbf{F}}=(P,Q,0)$ we have

$$\iint_{U} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} dA = \int_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds$$

$$\rightarrow$$

STOKES' THEOREM

THEOREM

Let $S\subseteq \mathbb{R}^3$ be a regular surface with unit normal $\overrightarrow{\mathbf{N}}$ and regular boundary curve $\partial S=C$.

For any vector field $\overrightarrow{\mathbf{F}}$ on \mathbb{R}^3 we have

$$\iint_{S} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} dA = \int_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds$$

$$ullet S = \{x^2 + y^2 + z^2 = 1, z \geq 0\}$$

•
$$C = \{x^2 + y^2 = 1, z = 0\}$$

$$oldsymbol{\stackrel{
ightarrow}{f F}}=(-y,0,x)$$

CALCULATING FLUX AND LINE INTEGRALS

SURFACE INDEPENDENCE

THEOREM

The flux of a curl is independent of the surface. It depends only on the boundary curve.

$$F = (x, 2xy, x + y)$$

hemisphere

$$\{x^2+y^2+(z-1)^2=1, z\geq 1\}$$

• capped cylinder $C \cup D$:

$$lacksquare C = \{x^2 + y^2 = 1, 1 \le z \le 2\}$$

$$D = \{x^2 + y^2 \le 1, z = 2\}$$

ullet boundary S the unit circle in the z=1 plane

Calculate
$$\int_C z dx + x dy + y dz$$

where
$$C$$
 is the triangle with vertices $(0,0,1)$, $(3,0,-2),(0,1,2).$

IRROTATIONAL VECTOR FIELDS

IRROTATIONAL VECTOR FIELDS

DEFINITION

A vector field $\overrightarrow{\mathbf{F}}$ is called **irrotational** if $\operatorname{curl} \overrightarrow{\mathbf{F}} = 0$.

IRROTATIONAL VECTOR FIELDS

THEOREM

The following are equivalent

- $oldsymbol{1}.\, \mathbf{F}^{'}$ is irrotational
- 2. $\overrightarrow{\mathbf{F}}$ is conservative: work around any loop is 0
- 3. On simply connected domains $\overrightarrow{\mathbf{F}} =
 abla f$

 $\overrightarrow{\mathbf{F}} = (x,y,z)$ is the gradient of $f = rac{x^2}{2} + rac{y^2}{2} + rac{z^2}{2}$