CS1512 Foundations of Computing Science 2

Tutorial Solutions: Week 4

1.

If someone tells you that the probability of event X happening is y (i.e. P(X) = y), what are the possible sources of y?

Possible sources are:

- 'a priori': if it is believed that you can generate a sufficiently good model purely from theoretical considerations (e.g. fair dice);
- experiment: if a large number of experiments have been carried out;
- belief: i.e. subjective estimate

2.

A fair coin is tossed 4 times. How many possible outcomes are there for this experiment? List them, writing 'H' for heads and 'T' for tails. What is the probability of getting:

- (a) 4 heads?
- (b) no heads?
- (c) exactly 3 heads?
- (d) at least 3 heads?
- (e) a run of 3 or more heads (that is, 3 or more in a row)?
- (f) at least 2 tails?

Let X be the number of heads minus the number of tails. For each value k of the random variable X write down the probability P(X = k).

There are $2 \times 2 \times 2 \times 2 = 2^4 = 16$ outcomes. The sample space has 16 elements, namely:

НННН	HHHT	HHTH	HHTT
HTHH	HTHT	HTTH	HTTT
THHH	THHT	THTH	THTT
TTHH	TTHT	TTTH	TTTT

Assumption: All 16 outcomes are equally likely

- (a) Probability is 1/16.
- (b) Again 1/16.
- (c) This event, as a subset of the sample space above, has 4 elements. The probability is 4/16 = 1/4.
- (d) Just by counting, we get probability 5/16 or add (a) and (c).
- (e) Here it is certainly best to look at the list above and count. We have {HHHH, HHHT, THHH}. Probability is 3/16.
- (f) Probability is 11/16.

Let X be the number of heads minus the number of tails. For each value k of the random variable X write down the probability P(X = k).

The possible values for the difference are:

- -4 0 heads and 4 tails
- -2 1 head and 2 tails
- 0 2 heads and 2 tails
- 2 3 heads and 1 tail
- 4 4 heads and 0 tails

By counting, the probability distribution for the random variable *X* is:

$$k$$
 | -4 -2 0 2 4
| $P(X=k)$ | 1/16 1/4 3/8 1/4 1/16

3.

A bag contains 2 red balls, 3 white balls and 5 blue balls. A ball is withdrawn, its colour noted, replaced, and a second ball is drawn. What is the probability of a red ball being drawn followed by a blue ball? What is the probability of getting a red ball and a blue ball if the order in which they are drawn is not taken into account? What are the two probabilities if the first ball is **not** replaced?

a. Red ball followed by blue ball, with replacement, order is important:

Second ball

First ball

Oun										
	r	r	W	W	W	b	b	b	b	b
r	rr	rr	rw	rw	rw	rb	rb	rb	rb	rb
r	rr	rr	rw	rw	rw	rb	rb	rb	rb	rb
W	wr	wr	ww	ww	ww	wb	wb	wb	wb	wb
W	wr	wr	ww	ww	ww	wb	wb	wb	wb	wb
W	wr	wr	WW	WW	WW	wb	wb	wb	wb	wb
b	br	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb	bb

Look for number of rb's = 10; total number of possibilities = 100 Probability = 10/100 = 1/10

Could also compute from P(rb) = P(r)*P(b) = 2/10 * 5/10 (since trials are independent)

b. Red ball and blue ball, with replacement, order is not important:

Same table

Look for number of rb's and br's = 10 + 10; total number of possibilities = 100Probability = 20/100 = 2/10

Could also compute from $P(rb) = P(r) \cdot P(b) + P(b) \cdot P(r) = 2/10 \cdot 5/10 + 5/10 + 2/10$

c1. Red ball followed by blue ball, without replacement, order is important:

Second ball

First ball

	r	W	W	W	b	b	b	b	b
r	rr	rw	rw	rw	rb	rb	rb	rb	rb
r	rr	rw	rw	rw	rb	rb	rb	rb	rb
W	wr	WW	WW	ww	wb	wb	wb	wb	wb
W	wr	WW	WW	ww	wb	wb	wb	wb	wb
W	wr	WW	WW	ww	wb	wb	wb	wb	wb
b	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	bw	bw	bw	bb	bb	bb	bb	bb
b	br	bw	bw	bw	bb	bb	bb	bb	bb

Look for number of rb's = 10; total number of possibilities = 90 Probability = 10/90 = 1/9Could also compute from P(rb) = P(r)*P(b|r) = 2/10 * 5/9 (since trials

Could also compute from P(rb) = P(r) * P(b|r) = 2/10 * 5/9 (since trials are not independent)

c2. Red ball and blue ball, without replacement, order is not important:

rb and br are exclusive, so probability of either rb or br is the sum of the two. We already have P(rb); get P(br) similarly:

Second ball

First ball

	r	r	W	W	W	b	b	b	b
r	rr	rr	rw	rw	rw	rb	rb	rb	rb
r	rr	rr	rw	rw	rw	rb	rb	rb	rb
W	wr	wr	ww	ww	ww	wb	wb	wb	wb
W	wr	wr	ww	ww	WW	wb	wb	wb	wb
W	wr	wr	ww	ww	WW	wb	wb	wb	wb
b	br	br	bw	bw	bw	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb
b	br	br	bw	bw	bw	bb	bb	bb	bb

Look for number of br's = 10; total number of possibilities = 90 Probability = 10/90 = 1/9

Could also compute from P(br) = P(b) * P(r|b) = 5/10 * 2/9

$$P(r,b) = P(rb) + P(br) = 2/9$$

4.

What is the probability of getting a total score of 3 from throwing two dice? Of getting 5? Of getting 7? 9? 11? What is the probability of getting a total score which is odd.

	1	2	3	4	5	6	
1	2	3	4	5	6	7	
2	3	4	5	6		8	
3	4	5	6	7	8	9	
4	5	6	7	8	9	10	
5	6	7	8	9	10	11	
6	7	8	9	10	11	12	

$$p(3) = 2/36$$

$$p(5) = 4/36$$

$$p(7) = 6/36$$

$$p(9) = 4/36$$

$$p(11) = 2/36$$

$$p(3 \text{ or } 5 \text{ or } 7 \text{ or } 9 \text{ or } 11) = p(3) + p(5) + p(7) + p(9) + p(11) = \frac{1}{2}$$

5.

Three cards are drawn at random without replacement from a well=shuffled pack of 52 cards. What is the probability that they are:

- all spades?
- all Aces?

Probability of three spades:

```
p(S) = 13/52 (13 spades in the pack)

p(S|S) = 12/51

p(S|S \text{ and } S) = 11/50

p(S \text{ and } S \text{ and } S) = p(S!S \text{ and } S) *p(S|S) *p(S)

= 11/50 * 12/51 * 13/52

= 11/850 (after simplification)
```

Probability of three Aces = 4/52 * 3/51 2/50 = 3/16575