Algorithmische Zahlentheorie

gelesen von Prof. Dr. Werner Bley

Mitschrift von Stefan Albrecht

Ludwig-Maximilians-Universität München – Wintersemester 2025/26

Inhaltsverzeichnis

0	Übei	rblick	2
1	Line	are Algebra über $\mathbb Z$	3
	1.1	\mathbb{Z} -Moduln	3
	1.2	Hermitesche Normalform (HNF)	3
	1.3	Anwendungen	4
	1.4	Smith Normalform (SNF)	5

0 Überblick

Lecture 1 Oct 14, 2025

Sei K/\mathbb{Q} ein Zahlkörper, also eine endliche Körpererweiterung. Sei \mathcal{O}_K der ganze Abschluss von \mathbb{Z} in K, der sog. Ring der ganzen Zahlen von K

$$\begin{array}{ccc}
K & \longleftrightarrow & \mathcal{O}_K \\
 & & & \\
 & & & \\
\mathbb{Q} & \longleftrightarrow & \mathbb{Z}
\end{array}$$

 \mathcal{O}_K ist ein Dedekindring, d.h. noethersch, ganz abgeschlossen (=normal) und eindimensional, d.h. jedes nicht-Null-Ideal ist maximal.

Ein Ziel dieser Vorlesung wird sein, \mathcal{O}_K zu berechnen. \mathcal{O}_K ist ein freier \mathbb{Z} -Modul vom Rang n. Man will also $\omega_1, \ldots, \omega_n \in \mathcal{O}_K$ bestimmen, sodass $\mathcal{O}_K = \mathbb{Z}\omega_1 \oplus \ldots \oplus \mathbb{Z}\omega_n$. Dazu brauchen wir Algorithmen für endlich erzeugte \mathbb{Z} -Moduln (d.h. abelsche Gruppen).

Beispiel 0.1. (1) Sei $K = \mathbb{Q}(i) \supseteq \mathcal{O}_K = \mathbb{Z}[i]$. $\mathbb{Z}[i]$ ist euklidisch, also insbesondere ein Hauptidealring.

(2)
$$K = \mathbb{Q}(\sqrt{-5}) \supseteq \mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$$
 ist kein Hauptidealring.

Um zu untersuchen, wie "weit" \mathcal{O}_K davon entfernt ist, ein Hauptidealring zu sein, untersucht man

Definition 0.2. Die Klassengruppe eines Zahlkörpers ist $\operatorname{cl}_K := I_K/P_K$, wobei I_K die Gruppe der gebrochenen Ideale $\neq 0$ (mit dem Produkt von Idealen als Produkt), und P_K die Untergruppe der Hauptideale ist.

 \mathcal{O}_K ist ein Hauptidealring genau dann, wenn $\operatorname{cl}_K=1$. In der Algebraischen Zahlentheorie zeigt man, dass cl_K eine endliche Gruppe ist. Ein weiteres Ziel dieser Vorlesung wird sein, diese Klassengruppe zu berechnen, d.h. gemäß dem Elementarteilersatz $d_1\mid d_2\mid \ldots\mid d_r, d_i\in\mathbb{N}_{>1}$ mit $\operatorname{cl}_K\cong\mathbb{Z}/d_1\mathbb{Z}\oplus\ldots\mathbb{Z}/d_r\mathbb{Z}$.

Schließlich wollen wir die Einheitengruppe von \mathcal{O}_K berechnen.

Theorem 0.3 (Dirichlet). \mathcal{O}_K^{\times} ist eine endlich erzeugte abelsche Gruppe, d.h. es existiert eine Einheitswurzel ζ und $\varepsilon_1, \ldots, \varepsilon_r$ mit

$$\mathcal{O}_K^{\times} \ni u = \zeta^{k_0} \varepsilon_1^{k_1} \cdots \varepsilon_r^{k_r}$$

mit $k_1, \ldots, k_r \in \mathbb{Z}$ und $k_0 \in \mathbb{Z}/\operatorname{ord}(\zeta)$ eindeutig.

1 Lineare Algebra über $\mathbb Z$

1.1 \mathbb{Z} -Moduln

Konvention Alle Z-Moduln sind endlich erzeugt, d.h. falls V ein Z-Modul ist, so gibt es v_1, \ldots, v_n mit $V \ni v = \sum_{i=1}^n a_i v_i$, $a_i \in \mathbb{Z}$.

Theorem 1.1 (Hauptsatz über endlich erzeugte abelsche Gruppen). Sei V ein endlich erzeugter Z-Modul.

- (1) $V_{tors} := \{v \in V \mid \exists a \in \mathbb{Z} \setminus \{0\} : av = 0\}$ ist eine endliche Gruppe und es gilt $V_{tors} \oplus \mathbb{Z}^r$; rg(V) := r heißt Rang von V. Mit anderen Worten: Es gibt $v_1, \ldots, v_n \in V$, so dass jedes $v \in V$ eine eindeutige Darstellung der Form $v = t + \sum_{i=1}^n a_i v_i$ mit $t \in V_{tors}$ und $a_i \in \mathbb{Z}$ hat.
- (2) Sei $W \subseteq V$ ein Untermodul. Dann ist W endlich erzeugt und es gilt $rg(W) \le rg(V)$.
- (3) Sei $W \subseteq V$ und V ein freier \mathbb{Z} -Modul. Dann ist auch W frei.
- (4) Falls $|V| < \infty$, so gibt es einen freien \mathbb{Z} -Modul $L \subseteq \mathbb{Z}^n$ für geeignetes $n \in \mathbb{N}$ mit $\mathbb{Z}^n/L \cong V$.

Beweis. Nur (4): Sei v_1, \ldots, v_n ein Erzeugendensystem von V. Dann ist

$$\pi: \mathbb{Z}^n \to V, \quad x \mapsto \sum_{i=1}^n x_i v_i$$

surjektiv. Sei $L := \ker \pi$, dann ist L frei nach (3), und nach dem Isomorphiesatz ist $\mathbb{Z}^n/L \cong V$.

Definition 1.2. Ein \mathbb{Z} -Gitter L ist ein torsionsfreier (endlich erzeugter) \mathbb{Z} -Modul, d.h. $L \cong \mathbb{Z}^{rg(L)}$.

Bemerkung 1.3. Sei L ein Gitter und $m = \operatorname{rg}(L)$. Sei v_1, \ldots, v_m eine \mathbb{Z} -Basis und $W \subseteq L$ ein Teilmodul. Dann kann W durch eine Matrix $M \in \mathbb{Z}^{m \times n}$ repräsentiert werden, d.h. die Spalten von M entsprechen Elementen von W.

Ziel ist es nun, eine standardisierte Form für solche Matrizen M zu finden.

1.2 Hermitesche Normalform (HNF)

Definition 1.4. Eine Matrix $M=(m_{ij})\in\mathbb{Z}^{m\times n}$ ist in HNF, falls es eine streng monoton wachsende Abbildung $f:\{r+1,\ldots,n\}\to\{1,\ldots,m\}$ mit $r\leq n$ gibt, die folgende Eigenschaften erfüllt:

- (a) Für $r+1 \le j \le n$ gilt $m_{f(j),j} \ge 1$, für i > f(j) ist $m_{ij} = 0$, und für k > j gilt $0 \le m_{f(j),k} < m_{f(j),j}$.
- (b) Die ersten r Spalten von M sind 0.

Konkret:

$$M = \begin{pmatrix} & & | * & * & * & * \\ & 0 & & | * & < * & \dots & \ddots \\ & 0 & & | 0 & * & < * & \\ & & | 0 & 0 & * & \end{pmatrix}$$

Beispiel 1.5. $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ korrespondiert zu $W = \langle \binom{1}{4}, \binom{2}{5}, \binom{3}{6} \rangle \subseteq \mathbb{Z}^2$. Durch elementare Spaltenumformungen (die nicht den Modul verändern) erhalten wir

$$M \to \begin{pmatrix} 2 & 3 & 1 \\ 5 & 6 & 4 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 4 \end{pmatrix} \to \begin{pmatrix} 2 & 1 & 1 \\ 2 & 4 & 1 \end{pmatrix} \to \begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

in HNF
$$(r = 1, f(2) = 1, f(3) = 2)$$

Bemerkung 1.6. Sei $n \ge m$ und $W \subseteq \mathbb{Z}^m$ von vollem Rang. Dann hat M eine HNF von der Form $(0 \mid A)$, wobei A eine obere Dreiecksmatrix mit positiven Diagonaleinträgen ist.

Theorem 1.7. Sei $M \in \mathbb{Z}^{m \times n}$. Dann gibt es eine eindeutig bestimmte Matrix B in HNF von der Form $B = (0 \mid H) = MU$, $U \in GL_n(\mathbb{Z})$

Beweis. Spaltentransformationen entsprechen Multiplikation von rechts mit Elementarmatrizen. Eindeutigkeit ist aufwendiger. \Box

Bemerkung 1.8. B ist eindeutig, U jedoch nicht!

1.3 Anwendungen

Ganzzahliges Bild von Matrizen Sei $M \in \mathbb{Z}^{m \times n}$. Dann sind die letzten n-r Spalten der HNF von M eine \mathbb{Z} -Basis des Bildes $\langle M \rangle_{\mathbb{Z}}$ von M.

Ganzzahliger Kern von Matrizen Sei wieder $M \in \mathbb{Z}^{m \times n}$

Theorem 1.9. Sei $B = (0 \mid H) = MU$ die HNF von M. Dann ist eine \mathbb{Z} -Basis von $\ker(M) \subseteq \mathbb{Z}^n$ durch die ersten r Spalten von U gegeben.

Beweis. Sei U_i die i-te Spalte von U, etc. Dann gilt $B_i = MU_i = 0$ für $1 \le i \le r$. D.h. $U_i \in \ker(M)$. Sei umgekehrt $X \in \ker(M)$. Sei $Y := U^{-1}X$, dann ist MX = 0 genau dann, wenn BY = 0. Löse sukzessive BY = 0 von unten nach oben. Es folgt: Die letzten n - r Einträge von Y sind 0, während die ersten r Einträge beliebig sind. D.h. X = UY ist eine Linearkombination der ersten r Spalten von U.

Beispiel 1.10. Wir wollen den Kern von $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ berechnen.

$$\begin{pmatrix} M \\ I_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{(132)} \begin{pmatrix} 2 & 3 & 1 \\ 5 & 6 & 4 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{s_1, s_2 - s_3} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 4 \\ -1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\frac{(132)}{\begin{pmatrix} 2 & 1 & 1 \\ 2 & 4 & 1 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}} \xrightarrow{s_1 - 2s_3, s_2 - 4s_3} \begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 1 \\ 1 & -5 & -1 \\ -2 & 4 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Folglich ist $ker(M) = \langle (1, -2, 1)^t \rangle$

Test auf Gleichheit von zwei \mathbb{Z} -Gittern in \mathbb{Z}^m Seien L_1, L_2 \mathbb{Z} -Gitter in \mathbb{Z}^m gegeben durch Oct 21, 2025 $A_1 \in \mathbb{Z}^{m \times n_1}$, $A_2 \in \mathbb{Z}^{m \times n_2}$. Sind $(0 \mid H_1)$, $(0 \mid H_2)$ die HNF von A_1 bzw. A_2 , dann ist $L_1 = L_2$ genau dann, wenn $H_1 = H_2$.

Summe von zwei \mathbb{Z} -Moduln in \mathbb{Z}^m Allgemeiner, sei $L \subset \mathbb{Q}^m$ ein \mathbb{Z} -Modul. Sei $d \in \mathbb{N}$ minimal mit $dL \subseteq \mathbb{Z}^m$. Unter der HNF von L versteht man das Paar (HNF(dL), d).

Seien L_1, L_2 \mathbb{Z} -Moduln gegeben durch $W_1, W_2 \in \mathbb{Q}^{m \times n_1}$. Seien $((0 \mid H_i), d_i)$ die HNF von L_i , i=1,2. Sei $D=\mathrm{kgV}(d_1,d_2)$ und betrachte die Matrix $(\frac{D}{d_1}H_1\mid \frac{D}{d_2}H_2)\in \mathbb{Z}^{m\times \dots}$ und berechne hiervon wieder die HNF $(0 \mid H)$. Dann sind die Spalten von H eine Basis von $D(L_1 + L_2)$, d.h. die Spalten von $\frac{1}{D}H$ sind eine \mathbb{Z} -Basis von $L_1 + L_2$.

Inklusionstest Seien L_1, L_2 zwei \mathbb{Z} -Moduln. Dann ist $L_1 \subseteq L_2$ genau dann, wenn $L_1 + L_2 =$ L_2 , was wir durch die letzten beiden Anwendungen testen kann. Alternativ löse man ein lineares Gleichungssystem über \mathbb{Z} . Das geht algorithmisch wie folgt: Ohne Einschränkung seien L_1, L_2 gegeben durch Matrizen $M_1 \in \mathbb{Z}^{m \times n_1}, M_2 \in \mathbb{Z}^{m \times n_2}$. Berechne die HNF $(0 \mid H)$ von M_2 , dann sind die Spalten von H eine \mathbb{Z} -Basis von L_2 , wir müssen also testen, ob jeder Erzeuger e von L_1 sich als ganzzahlige Linearkombination von dieser Basis schreiben lässt. DaH in HNF ist, lässt sich das Gleichungssystem Hx = e einfach schrittweise "von unten nach oben"auflösen.

Smith Normalform (SNF) 1.4

Sei G eine endliche abelsche Gruppe mit Erzeugendensystem g_1, \ldots, g_m . Dann ist die Abbildung $\pi: \mathbb{Z}^m \to G, e_i \mapsto g_i$ surjektiv, d.h. wir haben eine kurze exakte Sequenz

$$0 \to L := \ker \pi \to \mathbb{Z}^m \xrightarrow{\pi} G \to 0$$
,

d.h. $G \cong \mathbb{Z}^m/L$, wobei L ein volles Gitter ist (d.h. vollen Rang hat). Sei $A \in \mathbb{Z}^{m \times n}$ eine zu L korrespondierende Matrix, und $(0 \mid H)$ die HNF von A. Nach Bemerkung 1.6 ist H eine obere Dreiecksmatrix mit positiven Diagonaleinträgen.

Lemma 1.11.
$$det(H) = |\mathbb{Z}^m/L| = |G|$$
.

Beweis. Es reicht zu zeigen, dass $\sum_{i=1}^m k_i e_i$, $0 \le k_i \le h_{ii} - 1$ ein vollständiges Vertretersystem von \mathbb{Z}^m/L ist. Sei $a \in \mathbb{Z}^m$ gegeben. Man kann zu a ganzzahlige Vielfache der Spalten addieren. Tue dies so von unten nach oben so, dass in jedem Schritt $0 \le a_i + kh_{ii} < h_{ii}$. Also lässt sich jedes Element von \mathbb{Z}^m/L in der angegebenen Form darstellen.

Angenommen $\sum_{i=1}^{m} k_i e_i \equiv \sum_{i=1}^{m} k_i' e_i \mod L$ mit zwei Vektoren wie oben, lies wieder von unten nach oben $Hx = \sum_{i=1}^{m} (k_i - k_i') e_i$, um schrittweise $h_{ii} \mid k_i - k_i'$ zu sehen, was aufgrund von $0 \le k_i, k_i' < h_{ii}$ sofort $k_i = k_i'$ impliziert.

Bemerkung 1.12. Allgemeiner gilt $|\det(A)| = |\mathbb{Z}^n/\langle A \rangle_{\mathbb{Z}}|$ für $A \in \mathbb{Z}^{n \times n}$ invertierbar, da for die Hermitsche Normalform H von A gilt $|\det(H)| = |\det(A)|$ und $\mathbb{Z}^m/H = \mathbb{Z}^m/A$

Bisher haben wir nur Spaltentransformationen durchgeführt, also Rechtsmultiplikationen mit Elementarmatrizen, die die Erzeugenden von L ändern. Nun nutzen wir auch Zeilenumformungen, um die Erzeugenden von \mathbb{Z}^m (bzw. G) zu ändern, korrespondierend zu Linksmultiplikationen.

Definition 1.13. Eine quadratische Matrix $B \in \mathbb{Z}^{m \times m}$ ist in *Smith Normalform* (SNF), falls Beine Diagonalmatrix ist, mit $b_{ii} \ge 0$ für alle i und $b_{i+1,i+1} \mid b_{ii}$ für $i = 1, \dots, m-1$.

Theorem 1.14 (Elementarteilersatz). Sei $A \in \mathbb{Z}^{m \times m}$ mit $\det(A) \neq 0$. Dann lässt sich A eindeutig durch Zeilen- und Spaltenumformungen in SNF überführen, d.h. gibt es genau eine Matrix $S \in \mathbb{Z}^{m \times m}$ in SNF, sodass es $U, V \in \mathrm{GL}_n(\mathbb{Z})$ gibt mit S = UAV.

Korollar 1.15. Mit der Notation zu Beginn dieses Abschnitts sei $S = diag(b_1, ..., b_m)$ die SNF von H. Dann gilt

$$G \cong \mathbb{Z}^m/\langle S \rangle_{\mathbb{Z}} \cong \bigoplus_{i=1}^m \mathbb{Z}/b_i\mathbb{Z}.$$

Die sogenannten Invariantenteiler b_i bestimmen G eindeutig bis auf Isomorphie.

Zusammengefasst können wir also nun einen Algorithmus zur Bestimmung des Isomorphietyps einer endlichen abelschen Gruppe G (z.B. $G = \operatorname{cl}_K$) angeben:

Algorithm 1: Isomorphietyp einer endlichen abelschen Gruppe

Input: Ein Erzeugendensystem g_1, \ldots, g_m ,

Eine Approximation d von |G| mit $|G| \le d < 2|G|$.

- 1 Sei $\pi: \mathbb{Z}^m \to G$, $e_i \to g_i$ wie oben. Sei $L := \ker \pi$.
- 2 Bestimme viele Relationen, d.h. Elemente $x \in L$. Bilde eine Matrix $M \in \mathbb{Z}^{m \times n}$ mit diesen Relationen als Spaltenvektoren.
- 3 Berechne $HNF(M) = (0 \mid H)$.
- 4 Falls det(H) = 0 oder det(H) > d, gehe zurück zu 2 und finde mehr Relationen.
- 5 Berechne die SNF von H und lies die Invariantenteiler ab.

Sobald in Schritt $4 \det(H) \neq 0$ gilt, ist H eine Untergruppe von L von endlichem Index. Ist $L \neq H$, dann ist der Index mindestens 2, also $\det(H) \geq 2|G| > d$. Ist also $\det(H) \leq d$, dann ist die volle Gruppe gefunden und man kann mit der SNF fortfahren. Damit ist der Algorithmus korrekt. Natürlich bleibt unklar, wie man ein solches d und Relationen wie in Schritt 2 effizient finden kann, was auch davon abhängt, was über die Gruppe bekannt ist.

Beispiel 1.16. $K = \mathbb{Q}(\sqrt{-6}) \supseteq \mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$. Wegen $-2 \cdot 3 = \sqrt{-6}^2$ ist \mathcal{O}_K kein Hauptidealring, also ist $|\operatorname{cl}_K| \ge 2$. Sei $\mathfrak{p}_2 = \langle 2, \sqrt{-6} \rangle$, $\mathfrak{p}_3 = \langle 3, \sqrt{-6} \rangle$. Aus der Minkowski-Theorie folgt, dass $[\mathfrak{p}_2]$ und $[\mathfrak{p}_3]$ die Gruppe cl_K erzeugen. Man rechnet nach, dass $(2) = \mathfrak{p}_2^2$, $(3) = \mathfrak{p}_3^2$ und $(\sqrt{-6}) = \mathfrak{p}_2\mathfrak{p}_3$. Das liefert die Matrix von Relationen

$$M = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} \xrightarrow{HNF} \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

 $H=\begin{pmatrix} 2&1\\0&1\end{pmatrix}$ hat Determinante 2, erfüllt also das Abbruchkriterium. Wir bringen die Matrix leicht in SNF $\begin{pmatrix} 2&0\\0&1\end{pmatrix}$, d.h. $\operatorname{cl}_K\cong\mathbb{Z}/2\mathbb{Z}$. Wenn man in jedem Schritt die Umformungen protokolliert, erhält man zusätzlich Informationen über minimale Erzeuger und Relationen von cl_K (was in diesem Beispiel natürlich trivial ist).

Lecture 3 ne Oct 28, 2025

Sei K/\mathbb{Q} ein Zahlkörper und $0 \neq \mathfrak{a} \subseteq \mathcal{O}_K$ ein Ideal. Dann ist $(\mathcal{O}/\mathfrak{a})^{\times}$ eine endliche abelsche Gruppe, die wir verstehen wollen. Schreibe $\mathfrak{a} = \mathfrak{p}_i^{e_i} \cdots \mathfrak{p}_r^{e_r}$ für paarweise verschiedene Primideale \mathfrak{p}_i . Nach dem Chinesischen Restsatz ist

$$\mathcal{O}_K^{\times} \cong (\mathcal{O}_K/\mathfrak{p}_1^{e_1})^{\times} \times \cdots \times (\mathcal{O}_K/\mathfrak{p}_r^{e_r})^{\times}.$$

Also genügt es, $(\mathcal{O}_K/\mathfrak{p}^e)^{\times}$ als abelsche Gruppe zu bestimmen. Gehe dazu wiefolgt vor: Betrachte die exakte Sequenz

$$1 \to (1 + \mathfrak{p})/(1 + \mathfrak{p}^e) \to (\mathcal{O}_K/\mathfrak{p}^e)^{\times} \to (\mathcal{O}_K/\mathfrak{p})^{\times} \to 1.$$

Dabei ist $\mathfrak{O}_K/\mathfrak{p}$ ein Körper, also die Einheitengruppe zyklisch; wir brauchen einen Erzeuger. Auf der anderen Seite ist

$$1 \to (1 + \mathfrak{p}^2)/(1 + \mathfrak{p}^e) \to (1 + \mathfrak{p})/(1 + \mathfrak{p}^e) \to \underbrace{(1 + \mathfrak{p})/(1 + \mathfrak{p}^2)}_{\cong \mathfrak{p}/\mathfrak{p}^2} \to 1$$

exakt, wobei $\varphi: \mathfrak{p}/\mathfrak{p}^2 \to (1+\mathfrak{p})/(1+\mathfrak{p}^2)$ gegeben ist durch $[x] \mapsto [1+x]$: Das ist eindeutig eine Bijektion, und

$$\varphi([x] + [y]) = \varphi([x + y]) = [1 + x + y] = [1 + x + y + xy] = \varphi([x])\varphi([y]).$$

Weiter ist $\mathfrak{p}/\mathfrak{p}^2$ durch die Berechnung von \mathbb{Z} -Basen bestimmbar. Nun können wir iterativ fortfahren: In der exakten Sequenz

$$1 \to (\mathfrak{p}^4)/(1+\mathfrak{p}^e) \to (1+\mathfrak{p}^2)/(1+\mathfrak{p}^e) \to (1+\mathfrak{p}^2)/(1+\mathfrak{p}^4) \to 1,$$

wobei der Quotient wie oben isomorph zu der berechenbaren Gruppe $\mathfrak{p}^2/\mathfrak{p}^4$ ist, etc. Somit lassen sich schrittweise alle äußeren Terme der obigen exakten Sequenzen berechnen, und es bleibt die Frage, wie sich diese Terme zusammensetzen lassen.

Notation: Im folgenden sei \mathcal{A} stets eine abelsche Gruppe und $A=(\alpha_1,\ldots,\alpha_r)$ mit $\alpha_i\in\mathcal{A}$ Erzeuger. Ist $X\in\mathbb{Z}^r$, dann ist $AX=\sum_{i=1}^r x_i\alpha_i\in\mathcal{A}$ oder $\prod_{i=1}^r \alpha_i^{x_i}\in\mathfrak{A}$. Genauso für $M\in\mathbb{Z}^{r\times k}$ setzen wir $AM=(\beta_1,\ldots,\beta_k)$ mit $\beta_j=\sum_{i=1}^r m_{ij}\alpha_i$ oder $\prod_{i=1}^r \alpha_i^{m_{ij}}$.

Definition 1.17. Sei \mathcal{A} eine endlich erzeugte abelsche Gruppe und $G=(g_1,\ldots,g_r), g_i\in\mathcal{A}$. Sei $M\in\mathbb{Z}^{r\times k}$. Dann ist (G,M) ein *System von Erzeugenden und Relationen*, falls für jedes $\alpha\in\mathcal{A}$ es ein $X\in\mathbb{Z}^r$ gibt mit $GX=\alpha$, und $GX=1_{\mathcal{A}}$ genau dann der Fall ist, wenn X=MY für ein geeignetes $Y\in\mathbb{Z}^k$ ist.

Insbesondere gilt dann: $GM=(1,\ldots,1)$. Mit anderen Worten: (G,M) definieren eine *Präsentation*, also eine exakte Sequenz $\mathbb{Z}^k \xrightarrow{M} \mathbb{Z}^r \xrightarrow{G} \mathcal{A} \to 1$

Definition 1.18. Sei A eine endlich erzeugte abelsche Gruppe und (A, D) ein System von Erzeugenden und Relationen. Man sagt (A, D) ist in SNF, falls D in SNF ist.

Wir wiederholen den Algorithmus zur Berechnung von \mathcal{A} in SNF, falls $|\mathcal{A}| < \infty$:

Algorithm 2: Smith-Normalform von Präsentationen

Input: (G, M) ein System von Erzeugenden und Relationen

Output: (A, D) eine SNF für A,

Eine Matrix U_A zur Berechnung von diskreten Logarithmen

- 1 Berechne die HNF $(0 \mid H)$ von M. Dann ist H eine obere Dreiecksmatrix mit positiven Diagonaleinträgen.
- 2 Berechne $U, V \in GL_r(\mathbb{Z}), r = |G|$, mit $UHV = D' = \operatorname{diag}(d_1, \dots, d_n, 1, \dots, 1)$ in SNF. Dann gilt $(\beta_1, \dots, \beta_r) = GH$ genau dann, wenn

$$(\beta_1,\ldots,\beta_r)V = GU^{-1}UHV = GU^{-1}D,$$

d.h. Setze also $A' := (\alpha'_1, \ldots, \alpha'_r) := GU^{-1}$

- 3 Lösche triviale Komponenten: Sei $D = \operatorname{diag}(d_1, \ldots, d_n)$ und $A = (\alpha'_1, \ldots, \alpha'_n)$. Weiter ist U_a die Matrix der ersten n Zeilen von U.
- 4 Gib (A, D) und U_a aus.

Bemerkung 1.19. Mit der Notation des Algorithmus' gilt $AU_a = G$.

Erläuterung zu diskreten Logarithmen: Sei (A, D) eine Präsentation für $\mathcal{A}, |\mathcal{A}| < \infty$. Falls $\alpha \in \mathcal{A}$, so gibt es $x_1, \ldots, x_n \in \mathbb{Z}$ mit $\alpha = \prod_{i=1}^n \alpha_i^{x_i}$. Die x_i sind eindeutig modulo d_i , z.B. $0 \le x_i < d_i$. $(x_1, \ldots, x_n)^t$ heißt diskreter Logarithmus von α bezüglich A.

Beispiel 1.20. Sei (A, M) eine Präsentation von $\mathcal{A} = \langle g_1, g_2, g_3 \rangle_{\mathbb{Z}}$, wobei $A = (g_1, g_2, g_3)$ und

$$M = \begin{pmatrix} 3 & -6 & 9 \\ 3 & 5 & 9 \\ 1 & 4 & 4 \end{pmatrix}.$$

Man berechnet die Smith-Normalform als

$$UHV = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 4 & -3 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad U^{-1} = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad V = \begin{pmatrix} 4 & 0 & -3 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

Wir haben also neue Relationen

$$MV = \begin{pmatrix} 3 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

entsprechend $g_1^3g_2^3=1=g_1^3g_2^4=g_3$, und neue Erzeugende

$$A' = GU^{-1} = (g_1g_2, g_1^3g_2^4), g_3) = (g_1g_2, 1, 1),$$

also ist unsere neue Präsentation $A = (g_1g_2)$, D = (3) und $U_a = (4, -3, 0)$. Wir überprüfen $AU_a = ((g_1g_2)^4, (g_1g_2)^{-3}, 1) = (g_1, g_2, g_3) = G$.

Sprechweisen: Sei \mathcal{A} eine endliche abelsche Gruppe. Wir sagen, \mathcal{A} ist effektiv berechnet, wenn

- (a) wir für A eine SNF (A, D) haben, und
- (b) wir einen effektiven Algorithmus zur Lösung des Diskreten Logarithmus-Problems haben, d.h. zu $\alpha \in \mathcal{A}$ berechne $X \in \mathbb{Z}^{|A|}$ mit $\alpha = AX$.

Sei $\psi: \mathcal{A} \to \mathcal{B}$ ein Homomorphismus von endlichen abelschen Gruppen mit Präsentationen $(A, D_{\mathcal{A}}), (B, D_{\mathcal{B}})$. Dann heißt ψ effektiv berechnet, wenn

- (a) Zu $\alpha \in \mathcal{A}$ kann $\psi(\alpha)$ in der Form $\psi(\alpha) = BY$ mit effektiv berechenbarem $Y \in \mathbb{Z}^{|B|}$ geschrieben werden, und
- (b) Zu $\beta \in \psi(A)$ kann $\alpha \in A$ mit $\psi(\alpha) = \beta$ effektiv berechnet werden.

Wir brauchen noch einen Algorithmus zur Berechnung von Quotienten: Sei

$$\mathcal{A} \xrightarrow{\psi} \mathcal{B} \xrightarrow{\varphi} \mathcal{C} \to 1$$

exakt, wobei $\mathcal{A}, \mathcal{B}, \psi$ und φ effektiv berechnet seien. Ziel ist es, eine SNF $(C, D_{\mathcal{C}})$ von \mathcal{C} zu bestimmen.

Algorithm 3: Effektive Berechnung von Quotienten

Input: effektiv berechenbare $\mathcal{A}, \mathcal{B}, \varphi, \psi$ wie oben

Output: Effektive Berechenbarkeit von $\mathcal C$

- 1 Sei $B' = \varphi(B)$. Dann ist B' ein Erzeugendensystem für C.
- 2 Sei $V \in \mathbb{Z}^{B'}$ eine Relation, d.h. $B'V = 1_{\mathcal{C}}$. Es gilt

$$\begin{split} B'V &= 1_{\mathcal{C}} \Longleftrightarrow 1_{\mathcal{C}} = \varphi(B)V = \varphi(BV) \Longleftrightarrow BV \in \ker(\varphi) = \operatorname{im}(\psi) \\ &\iff BV = \psi(A)X \quad \text{für ein } X \in \mathbb{Z}^{|A|}. \end{split}$$

Da ψ effektiv berechnet ist, kann man $P \in \mathbb{Z}^{|B| \times |A|}$ mit $\psi(A) = BP$. Also $B'V = 1_{\mathcal{C}} \iff V - PX \in \operatorname{im}(D_{\mathcal{B}}) \iff V \in \operatorname{im}(P \mid D_{\mathcal{B}})$. Also ist $(B', (P \mid D_{\mathcal{B}}))$ ein System von Erzeugern und Relationen von C.

3 Berechne davon die SNF $(C, D_{\mathcal{C}})$ und erhalte von Algorithmus 2 die Matrix U_a . Damit lässt sich das DL-Problem lösen.