

Function approximation and deep RL

• The policy, value function, model, and agent state update are all functions

• We want to learn these from experience (data).

• If there are too many states, we need to approximate. المرام ا

• This is often called deep reinforcement learning, when using neural networks to represent these functions. $\varphi(s,a) = \varphi(s,a)$

ivoise,, & value, is a cois

Large-Scale Reinforcement Learning

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10²⁰ states
 - Go: 10¹⁷⁰ states
 - Helicopter: continuous state space
 - Robots: real world
- How can we apply our methods for prediction and control?

Value Function Approximation

Value Function Approximation

- So far we mostly considered lookup tables
 - Every state s has an entry v(s)
 - Or every state-action pair s, a has an entry q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
 - Individual environment states are often not fully observable

Value Function Approximation

- Solution for large MDPs:
 - Estimate value function with function approximation

$$v_{\mathbf{w}}(s) \approx v_{\pi}(s)$$
 (or $v_{*}(s)$)
 $q_{\mathbf{w}}(s, a) \approx q_{\pi}(s, a)$ (or $q_{*}(s, a)$)

- Update parameter w (e.g., using MC or TD learning)
- Generalize to unseen states

Agent state

- When the environment state is not fully observable $(S_t^{env} \neq O_t)$
- Use the agent state: (with parameters ω)

$$\mathbf{s}_t = u_{\omega}(\mathbf{s}_{t-1}, A_{t-1}, O_t)$$

- Henceforth, S_t or S_t denotes the agent state
- Think of this as either a vector inside the agent, or, in the simplest case, just the current observation: $S_t=\mathcal{O}_t$

Function Classes

Classes of Function Approximation

- Tabular: a table with an entry for each MDP state
- State aggregation: Partition environment states (or observations) into a discrete set
- Linear function approximation
 - Consider fixed agent state update (e.g. $S_t = O_t$)
 - Fixed feature map $x: S \to \mathbb{R}^n$
 - Values are linear function of features: $v_w(s) = w^T x(s)$
 - Note: state aggregation and tabular are special cases of linear FA
- Differentiable function approximation
 - $v_w(s)$ is a differentiable function of w, could be non-linear
 - E.g., a convolutional neural network that takes pixels as input
 - Another interpretation: features are not fixed, but learnt

Classes of Function Approximation

- In principle, any function approximator can be used, but RL has specific properties:
 - Experience is not iid successive time-steps are correlated
 - Agent's policy affects the data it receives
 - Regression targets can be non-stationary
 - ...because of changing policies (which can change the target and the data!)
 - ...because of bootstrapping
 - ...because of non-stationary dynamics (e.g., other learning agents)
 - ...because the world is large (never quite in the same state)

Classes of Function Approximation

- Which function approximation should you choose? This depends on your goals.
 - Tabular: good theory but does not scale/generalize
 - Linear: reasonably good theory, but requires good features
 - Non-linear: less well-understood, but scales well. Flexible, and less reliant on picking good features first (e.g., by hand)
 - (Deep) neural nets often perform quite well, and remain a popular choice

Gradient-based Algorithms

Approximate Values By Stochastic Gradient Descent

• Goal: find w that minimize the difference between $v_w(s)$ and $v_\pi(s)$

$$J(\mathbf{w}) = \mathbb{E}_{S \sim d}[(v_{\pi}(S) - v_{\mathbf{w}}(S))^{2}]$$

Gradient descent:

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}) = \alpha \mathbb{E}_d(v_{\pi}(S) - v_{\mathbf{w}}(S)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S)$$

Stochastic gradient descent (SGD), sample the gradient:

$$\Delta \mathbf{w} = \alpha (G_t - v_{\mathbf{w}}(S_t)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)$$

Note: Monte Carlo return G_t is a sample for $v_{\pi}(s_t)$

Linear function approximation

Feature Vectors

Represent state by a feature vector

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$

- $x: S \to \mathbb{R}^n$ is a fixed mapping from state (e.g., observation) to features
- Short-hand: $x_t = x(S_t)$
- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear value function approximation

Approximate value function by a linear combination of features

$$v_{\mathbf{w}}(s) = \mathbf{w}^{\top} \mathbf{x}(s) = \sum_{j=1}^{n} \mathbf{x}_{j}(s) \mathbf{w}_{j}$$

Objective function ('loss') is quadratic in w

$$J(\mathbf{w}) = \mathbb{E}_{S \sim d}[(v_{\pi}(S) - \mathbf{w}^{\top} \mathbf{x}(S))^{2}]$$

- Stochastic gradient descent converges to the global optimum
- Update rule is simple

$$\nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t) = \mathbf{x}(S_t) = \mathbf{x}_t \qquad \Longrightarrow \qquad \Delta \mathbf{w} = \alpha (v_{\pi}(S_t) - v_{\mathbf{w}}(S_t)) \mathbf{x}_t$$

Prediction algorithms

- We can't update towards the true value function $v_{\pi}(s)$
- We substitute a target for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w}_t = \alpha (\mathbf{G}_t - v_{\mathbf{w}}(s)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(s)$$

• For TD, the target is the TD target $R_{t+1} + \gamma v_w(S_{t+1})$

$$\Delta \mathbf{w}_t = \alpha(\mathbf{R}_{t+1} + \gamma \mathbf{v}_{\mathbf{w}}(\mathbf{S}_{t+1}) - \mathbf{v}_{\mathbf{w}}(\mathbf{S}_t)) \nabla_{\mathbf{w}} \mathbf{v}_{\mathbf{w}}(\mathbf{S}_t)$$

• TD(
$$\lambda$$
):
$$\Delta \mathbf{w}_t = \alpha (G_t^{\lambda} - v_{\mathbf{w}}(S_t)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)$$
$$G_t^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) v_{\mathbf{w}}(S_{t+1}) + \lambda G_{t+1}^{\lambda} \right)$$

Monte-Carlo with Value Function Approximation

- The return G_t is an unbiased sample of $v_{\pi}(s)$
- Can therefore apply "supervised learning" to (online) "training data":

$$\{(S_0, G_0), \ldots, (S_t, G_t)\}$$

For example, using linear Monte-Carlo policy evaluation

$$\Delta \mathbf{w}_t = \alpha (\mathbf{G}_t - v_{\mathbf{w}}(S_t)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)$$
$$= \alpha (\mathbf{G}_t - v_{\mathbf{w}}(S_t)) \mathbf{x}_t$$

- Linear Monte-Carlo evaluation converges to the global optimum
- Even when using non-linear value function approximation it converges (but perhaps to a local optimum)

Control with value-function approximation

Control with Value Function Approximation

Policy evaluation **Approximate** policy evaluation, $q_{\mathbf{w}} \approx q_{\pi}$

Policy improvement E.g., ϵ -greedy policy improvement

Action-Value Function Approximation

- Approximate the action-value function $q_w(s, a) \approx q_{\pi}(s, a)$
- For instance, with linear function approximation with state-action features

$$q_{\mathbf{w}}(s, a) = \mathbf{x}(s, a)^{\mathsf{T}}\mathbf{w}$$

Stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (q_{\pi}(s, a) - q_{\mathbf{w}}(s, a)) \nabla_{\mathbf{w}} q_{\mathbf{w}}(s, a)$$
$$= \alpha (q_{\pi}(s, a) - q_{\mathbf{w}}(s, a)) \mathbf{x}(s, a)$$

Action-Value Function Approximation (Alternative)

- Approximate the action-value function $q_w(s, a) \approx q_{\pi}(s, a)$
- For instance, with linear function approximation with state features

$$\mathbf{q_w}(s) = \mathbf{W}\mathbf{x}(s) \qquad (\mathbf{W} \in \mathbb{R}^{m \times n}, \ \mathbf{x}(s) \in \mathbb{R}^n \implies \mathbf{q} \in \mathbb{R}^m)$$

$$q_{\mathbf{w}}(s, a) = \mathbf{q_w}(s)[a] = \mathbf{x}(s)^{\mathsf{T}}\mathbf{w}_a \qquad (\text{where } \mathbf{w}_a = \mathbf{W}_a^{\mathsf{T}})$$

Action-Value Function Approximation

- Should we use action-in, or action-out?
 - Action in: $q_w(s, a) = w^T x(s, a)$
 - Action out: $q_w(s) = Wx(s)$ such that $q_w(s, a) = q_w(s)[a]$
- One reuses the same weights, the other the same features
- Unclear which is better in general
- If we want to use continuous actions, action-in is easier
- For (small) discrete action spaces, action-out is common (e.g., DQN)

Deep reinforcement learning

RL with Function Approximation

- Linear value function approximators assume value function is a weighted combination of a set of features, where each feature a function of the state
- Linear VFA often works well given the right set of features
- But can require carefully hand designing that feature set
- An alternative is to use a much richer function approximation class that is able to directly go from states without requiring an explicit specification of features

Neural Networks as Function Approximators

- It is possible to use deep neural networks for function approximations.
- Deep networks are clearly more powerful and can model more complex environments.

Generalization

Using function approximation to help scale up to making decisions in really large domains

Deep Reinforcement Learning

- Use deep neural networks to represent
 - Value, Q function
 - Policy
 - Model

Optimize loss function by stochastic gradient descent (SGD)

Deep Q-Networks (DQN)

Represent state-action value function by Q-network with weights w

$$\hat{Q}(s, a; \mathbf{w}) \approx Q(s, a)$$

Recall: Model free control

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return G_t as a substitute target

$$\Delta \mathbf{w} = \alpha (G_t - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

For SARSA instead use a TD target

$$\Delta \mathbf{w} = \alpha(\mathbf{r} + \gamma \hat{Q}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}; \mathbf{w}) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(\mathbf{s}_t, \mathbf{a}_t; \mathbf{w})$$

For Q-learning

$$\Delta \mathbf{w} = \alpha(r + \gamma \max_{a} \hat{Q}(s_{t+1}, a; \mathbf{w}) - \hat{Q}(s_t, a_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_t, a_t; \mathbf{w})$$

Doing deep RL in Atari

DQNs in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step
- Network architecture and hyperparameters fixed across all games

DQNs in Atari

- Q-learning converges to the optimal Q*(s, a) using table lookup representation.
- In value function approximation Q-learning, we can minimize MSE loss by stochastic gradient descent using a target Q estimate instead of true Q (as we saw with linear VFA)
- But Q-learning with VFA can diverge
- Two of the issues causing problems:
 - Correlations between samples
 - Non-stationary targets
- Deep Q-learning (DQN) addresses these challenges by
 - Experience replay
 - Fixed Q-targets

DQNs: Experience Replay

To help remove correlations, store dataset (called a replay buffer) D from

prior experience

$$egin{array}{c} s_1, a_1, r_2, s_2 \ s_2, a_2, r_3, s_3 \ s_3, a_3, r_4, s_4 \ & \dots \ \hline s_t, a_t, r_{t+1}, s_{t+1} \ \end{array}
ightarrow s, a, r, s'$$

- To perform experience replay, repeat the following:
 - $(s, a, r, s') \sim D$: sample an experience tuple from the dataset
 - Compute the target value for the sampled s: $r + \gamma \max_{a'} \hat{Q}(s', a'; w)$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(\mathbf{r} + \gamma \max_{\mathbf{a}'} \hat{Q}(\mathbf{s}', \mathbf{a}'; \mathbf{w}) - \hat{Q}(\mathbf{s}, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(\mathbf{s}, \mathbf{a}; \mathbf{w})$$

Problem

Can treat the target as a constant scalar, but the weights will get updated on the next round, changing the target value

DQNs: Fixed Q-Targets

- To help improve stability, fix the target weights used in the target calculation for multiple updates
- Target network uses a different set of weights than the weights being updated
- Let parameters w^- be the set of weights used in the target, and w be the weights that are being updated
- Slight change to computation of target value:
 - $(s, a, r, s') \sim D$: sample an experience tuple from the dataset
 - Compute the target value for the sampled s: $r + \gamma \max_{a'} \hat{Q}(s', a'; w^{-})$
 - Use stochastic gradient descent to update the network weights

$$\Delta \mathbf{w} = \alpha(\mathbf{r} + \gamma \max_{\mathbf{a}'} \hat{Q}(\mathbf{s}', \mathbf{a}'; \mathbf{w}^{-}) - \hat{Q}(\mathbf{s}, \mathbf{a}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(\mathbf{s}, \mathbf{a}; \mathbf{w})$$


```
FINE
                                                                                                                CL(S, an) = (1) acton
1: Input C, \alpha, D = \{\}, Initialize w, w^- = w, t = 0
2: Get initial state s<sub>0</sub>
3: loop
         Sample action a_t given \epsilon-greedy policy for current \hat{Q}(s_t, a; w)
5:
         Observe reward r_t and next state s_{t+1}
         Store transition (s_t, a_t, r_t, s_{t+1}) in replay buffer D
         Sample random minibatch of tuples (s_i, a_i, r_i, s_{i+1}) from D
                                                                                                                         for j in minibatch do
9:
             if episode terminated at step i + 1 then
10:
                    y_i = r_i
11:
12:
               else
                 \mathbf{y}_i = r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a'; \mathbf{w}^-)
13:
14:
               end if
               Do gradient descent step on (y_i - \hat{Q}(s_i, a_i; \mathbf{w}))^2 for parameters \mathbf{w}: \Delta \mathbf{w} = \alpha(y_i - \hat{Q}(s_i, a_i; \mathbf{w})) \nabla_{\mathbf{w}} \hat{Q}(s_i, a_i; \mathbf{w})
15:
          end for
16:
          t = t + 1
          if mod(t,C) == 0 then
18:
          end if
20: end loop
```

DQN Summary

- DQN uses experience replay and fixed Q-targets
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- Sample random mini-batch of transitions (s, a, r, s') from D
- Compute Q-learning targets w.r.t. old, fixed parameters w⁻
- Optimizes MSE between Q-network and Q-learning targets
- Uses stochastic gradient descent

DQN

1 network, outputs Q value for each action

Results

Game	Linear	Deep	DQN w/	DQN w/	DQN w/replay
		Network	fixed Q	replay	and fixed Q
Breakout	3	3	10	241	317
Enduro	62	29	141	831	1006
River Raid	2345	1453	2868	4102	7447
Seaquest	656	275	1003	823	2894
Space	301	302	373	826	1089
Invaders	301	302	3/3	020	1009