

Foundation Models-01

Ruibo Tu, 2024 Sep. 23rd

Foundation Models

"Gigantic pre-trained models
Trained on enormous data
Used in a few-/zero-shot manner"

N	Ayt	to	ken	prec	lict	tion
IN		LU	NGI I	PIEC		

Language

- GPT-4
- Gemini2
- LLaMA3

•

Masked prediction

Vision

- SAM
- MAE
- Dino2

•

Bi-modal

- GPT-4V
- CLIP
- •

Limitations of FMs

- Not world models: (Mechanisms, states)
 - Observational data (<u>no interventional data, experimentation</u>)
 - Hallucination: confidently wrong results, sounds well but wrong

GPT limitation:

- Cannot modify autoregressively generated results (<u>OpenAI-o1</u>)
- Small working memory (<u>CoT: More computation for relaxing the constraint</u>)

Challenges:

- 1. Reasoning: No aware of structural/causal dependencies among factors
- 2. Planning: Incremental planning , no hierarchical / long-term planning

"Predicting consequences of actions requires to capturing causal relationships correctly"

Unknown: FMs.

"Many tasks are based on table understanding" <u>Under-explored: FMs.</u>

Data are very likely in the form of tables

Tables are everywhere

Spreadsheets, documents, web (pages), databases, ...

Goal: Building a foundation model for data scientists and ML engineers

Tabular data

- Missing data imputation
- Feature selection
- Root cause analysis
- A/B testing
- Anomaly detection
- ML-based Predictive analysis
- Causal discovery
- Potential outcome prediction

SOTA Tabular Tasks

Predictive

Generative

Understanding

A: ...

SOTA Tabular Methods

Encoder-Decoder: Generic representation learning

- Self-supervised learning, contrastive learning
- BERT

Only-**Decoder**: Generative tasks as the general objective

- Predict next token
- GPT
- Diffusion models

Challenges

	C1	C2	C 3
R1		1.68	
R2	Healthy	1.75	Very Satisfied
R3	NULL	1.98	
R4		2.01	

	C1	C2	C 3
R1		3.01	
R2	Sick	2.22	Satisfied
R3	NULL	2.01	
R4		2.91	

	C2	C 3	C4
R1	1.68		
R2	1.75	Very Satisfied	Male
R3	1.98		
R4	2.01		

- 1. Practical challenges
 - Transformer structure
 - Mixed data type
 - Missing values
- 2. Structural dependencies
 - Prior: Causal relationships
 - Domain / Distribution shift
 - Cross-table reasoning
 Open problems

"How to enable FMs to capture (causal) structural information"

Order of an image

Order of an sentence

Order of a table

Col. order

	C1	C2	C3
R1		1.68	
R2	Healthy	1.75	Very Satisfied
R3	NULL	1.98	
R4		2.01	

	C1	C3	C2
R1			1.68
R2	Healthy	Very Satisfied	1.75
R3	NULL		1.98
R4			2.01

	C1	C2	C3
R1		1.68	
R2	Healthy	1.75	Very Satisfied
R4		2.01	
R3	NULL	1.98	

The same table

Graph + Table

Causal graph

Social-Network graph

(Causal) Structure-Aware Foundation Models

"Our benchmarks For LLMs and other generative models"

LLM Benchmarks

- 1. Common Benchmarks: well regularized
 - Conversational, arithmetic math, competition coding tests
- 2. Tuned for a better number
 - Skills in real-world applications?

A benchmark for causal reasoning and decision making

Causal reasoning ability is the core for <u>Reasoning</u> and <u>Decision-making</u>

- Numerical and mathematical reasoning
- Applications:
 - Agent, Healthcare, Education ...

Work 1: A benchmark for causal reasoning and decision-making

Causal graphs -> **Adjacency matrix**

Given a graph among V1, V2, V3, and V4. Graph has the following directed edges: V1 -> V2, V1 -> V3, V2 --> V4. V3 --> V4.

Question: What is the adjacency matrix? or What are the neighbor nodes of V2?

Causal graphs -> **D-separations**

Given a graph among V1, V2, V3, and V4. Graph has the following directed edges: V1 -> V2, V1 -> V3, V2 --> V4, V3 --> V4.

Question: Is V2 d-separated from V3 given V1? Are V2 and V3 the parents

Causal graphs -> Causal directions

Given a graph among V1, V2, V3, and V4. Graph has the following directed edges: V1 -> V2, V1 -> V3, V2 --> V4, V3 --> V4.

Question: Does V2 cause V1?

Tables -> Adiacency matrix

The corresponding tabular data is I V1 | V2 | V3 | V4 | \n | ----- | ------- | \n | 0.41 | 0.2 | 0.21 | 0.63 | \n | 1.21 | 0.6 | 0.62 | 1.81 |.

Question: What is the adjacency matrix?

Tables -> **D-separations**

The corresponding tabular data is I V1 | V2 | V3 | V4 | \n | ----- | ------- | \n | 0.41 | 0.2 | 0.21 | 0.63 | \n | 1.21 | 0.6 | 0.62 | 1.81 |.

Question: Is V2 d-separated from V3 aiven V1?

Tables -> Causal directions

The corresponding tabular data is I V1 | V2 | V3 | V4 | \n | ------ | -------- | \n | 0.41 | 0.2 | 0.21 | 0.63 | \n | 1.21 | 0.6 | 0.62 | 1.81 |.

Question: Does V2 cause V1?

Causal graphs + Tables -> **Counterfactural distributions**

Given a graph among V1, V2, V3, and V4. Graph has the following directed edges: V1 -> V2, V1 -> V3, V2 --> V4, V3 --> V4.

The corresponding tabular data is | V1 | V2 | V3 | V4 | \n | ----- | ------- | \n | 0.41 | 0.2 | 0.21 | 0.63 | \n | 1.21 | 0.6 | 0.62 | 1.81 |.

Question: Given a new observation, V1 = 0.1, V2 = 0.3. V3=4, V4=0.1, V5= 0.2, what is the counterfactual distribution of all variables when the intervention value of

Causal graphs + Tables -> Interventional distributions

Given a graph among V1, V2, V3, and V4. Graph has the following directed edges: V1 -> V2, V1 -> V3, V2 --> V4, V3 --> V4.

The corresponding tabular data is I V1 I V2 I V3 I V4 I \n I ----- | \n | 0.41 | 0.2 | 0.21 | 0.63 | \n | 1.21 | 0.6 | 0.62 | 1.81 |.

Question: What is the interventional distribution of all variables when the intervention value of V2 is 0.3.

Work 2: A benchmark for evaluating tabular synthesis model capability for preserving causal information

- Diffusion-based
- LLM-based

Part 2

"Decision-making of FMs (agents)"

Agents (RL)

Agents

Interactions

Environments

Dialogue Agent

QA, conversation

Human

Game Agent

APIs

Text, Video Games

Goal: Robust agents learn causal world models

"Predict consequences of actions"

Minimum requirement for generalization

- Efficiency: Sample quality and efficiency
- Effectiveness: generalization

"Only interacting with the world and causal discovery can get causal information."

Knowledge about the world

Agents with a causal world model

Model-based RL

Causal (SCM)-based

Causal-aware FM agents

Non-causal FM agents

- 1. Augmenting memories and hard drives
- 2. Iterative prompts with in/external feedbacks
- 3. Combine with planning methods
- 4. On/offline fine-tuning

"Causal-aware FMs for Reasoning and decision-making"

Thank you for listening!

