Interior Point Methods

Yi Zhang

- Interior point method: basic idea
- Log barrier function
- Central path
- Barrier (interior point) method
- A hierarchy of convex optimization

- Interior point method: basic idea
- Log barrier function
- Central path
- Barrier (interior point) method
- A hierarchy of convex optimization

Inequality constrained minimization

Convex program with inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$,

- $f_0, \ldots, f_m : \mathbf{R}^n \to \mathbf{R}$ convex, twice differentiable
- $A \in \mathbf{R}^{p \times n}$ with rank p < n
- An optimal x* exists

Basic idea: how to solve?

Recall 1: equality constrained QP

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Ax = b$,

KKT conditions

$$Ax^* = b, \qquad Px^* + q + A^T \nu^* = 0,$$

Directly solve

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^{\star} \\ \nu^{\star} \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right].$$

Basic idea: how to solve?

- Recall 2: Newton's method with equality constraints
 - A quadratic approximation at current x

minimize
$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v$$
 subject to
$$A(x+v) = b$$

• Solve v (i.e., Δx)

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

- Need line search, since \widehat{f} is an approximation
- What if starting with an infeasible x?

Basic idea: how to solve?

Convex program with inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$,

- Decompose into a sequence of equality constrained problem
- Each solved by Newton's method with equality constraints

- Interior point method: basic idea
- Log barrier function
- Central path
- Barrier (interior point) method
- A hierarchy of convex optimization

Reformulate inequality constraints

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where

$$I_{-}(u) = \begin{cases} 0 & u \le 0 \\ \infty & u > 0. \end{cases}$$

But indicator function is difficult to optimize

- An alternative: $-(1/t)\log(-u)$
 - A smooth approximation to I_{-}
 - Improves as $t \to \infty$

Approximation by log barrier function

minimize
$$f_0(x) + \sum_{i=1}^m -(1/t)\log(-f_i(x))$$

subject to $Ax = b$.

- Log barrier function $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$
 - Convex
 - Twice differentiable

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Approximation by log barrier function

minimize
$$f_0(x) + \sum_{i=1}^m -(1/t)\log(-f_i(x))$$

subject to $Ax = b$.

• Log barrier function $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$ minimize $f_0 + (1/t)\phi$

Rewrite (for a fixed t > 0)

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

Solve a sequence of problems

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

- Increase t step by step
- Why not a large t at the beginning?
 - Difficult to solve via Newton's method

- Interior point method: basic idea
- Log barrier function
- Central path
- Barrier (interior point) method
- A hierarchy of convex optimization

Central Path

For any t > 0, define x*(t) as the solution to:

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

Central path is the set:

$$\{x^{\star}(t) \mid t > 0\}$$

Example: an LP with inequality

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i, \quad i = 1, \dots, 6$

Central Path: Dual points

For any t > 0, define x*(t) as the solution to:

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

- x*(t) is feasible to original problem
 - Not optimal
 - Leads to a dual feasible point v*(t)
 - But duality gap for x*(t) is bounded: m/t!
 - Useful as stop criteria ©

KKT interpretations of Central Path

Consider the problem for a fixed t:

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

KKT conditions (see textbook)

$$Ax = b, \quad f_i(x) \leq 0, \quad i = 1, \dots, m$$

$$\lambda \geq 0$$

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

$$-\lambda_i f_i(x) = 1/t, \quad i = 1, \dots, m.$$

- Only one difference to KKT for original problem
 - Converge to original problem as $t \to \infty$

Force field interpretations

Consider for a t > 0 (ignoring Ax=b)

minimize
$$tf_0(x) - \sum_{i=1}^m \log(-f_i(x))$$

- $tf_0(x)$: potential with the force $F_0(x) = -t\nabla f_0(x)$
- $-\log(-f_i(x))$: potential with the force

$$F_i(x) = (1/f_i(x))\nabla f_i(x)$$

Force balance at optimal x*(t)

$$F_0(x^*(t)) + \sum_{i=1}^m F_i(x^*(t)) = 0$$

Force field for LP

Consider the LP

- Interior point method: basic idea
- Log barrier function
- Central path
- Barrier (interior point) method
- A hierarchy of convex optimization

given strictly feasible x, $t:=t^{(0)}>0$, $\mu>1$, tolerance $\epsilon>0$. repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase $t. \ t := \mu t$.
 - Solve for a sequence of t
 - Update (inner loops): Newton's, warm starting
 - μ : large \rightarrow fewer outer loops, more inner loops

- Interior point method: basic idea
- Log barrier function
- Central path
- Barrier (interior point) method
- A hierarchy of convex optimization

A hierarchy of convex optimization

- QP with equality constraints
 - Directly solve via KKT conditions
- Convex prog. with equality constraints
 - Form a quadratic approximation at x
 - Solve the approximation (Newton's with equality)
 - Line search along the Newton step
- Interior point method
 - Form a sequence of equality constrained problems
 - Newton's method with equality constraints

Thanks

