ΦΥΣ 112

Ενδιάμεση Εξέταση: 21-Οκτωβρίου-2021

Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας).

Ονοματεπώνυμο	Αριθμός Ταυτότητας

Απενεργοποιήστε τα κινητά σας.

Το δοκίμιο περιέχει 6 ασκήσεις και θα πρέπει να απαντήσετε σε όλες. Η μέγιστη συνολική βαθμολογία της εξέτασης είναι 120 μονάδες.

ΧΡΗΣΙΜΟΠΟΙΕΙΣΤΕ ΜΌΝΟ ΤΙΣ ΣΕΛΙΔΕΣ ΠΟΥ ΣΑΣ ΔΙΝΟΝΤΑΙ ΚΑΙ ΜΗΝ ΚΟΨΕΤΕ ΟΠΟΙΑΔΗΠΟΤΕ ΣΕΛΙΔΑ

Η διάρκεια της εξέτασης είναι 120 λεπτά. Καλή Επιτυχία!

Μέρος Α	
Άσκηση	Βαθμός
1η (15μ)	
$2^{\eta} (15\mu)$	
3η (15μ)	
$4^{\eta} (20 \mu)$	
5η (25μ)	
6η (30μ)	
Σύνολο	

Τύποι που μπορούν να φανούν χρήσιμοι

Ηλεκτροστατική:

$$\vec{F}_{12} = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2} \hat{r} \qquad \vec{E} = \frac{\vec{F}}{q_0} \qquad V = \frac{U}{q_0} \qquad \sigma \eta \mu \varepsilon \iota \alpha \kappa \acute{o} \ \varphi o \rho \tau \acute{o} : \vec{E} = \frac{q}{4\pi \varepsilon_0 r^2} \hat{r}, \quad V = \frac{q}{4\pi \varepsilon_0 r}$$

 $\delta \iota \pi ο \lambda \iota \kappa \acute{\eta} \ \rho o \pi \acute{\eta} \colon \vec{p} = q \vec{L} \quad \rho o \pi \acute{\eta} \ \sigma \varepsilon \ \delta \acute{\iota} \pi o \lambda o \colon \ \vec{\tau} = \vec{p} \times \vec{E} \quad \ \delta \upsilon \nu . \ \varepsilon \nu \acute{\varepsilon} \rho \gamma \varepsilon \iota \alpha \colon U = -\vec{p} \cdot \vec{E} + U_0$

$$U_{12} = \frac{q_1q_2}{4\pi\varepsilon_0 r} \qquad W_E = -\Delta U = -W_{\varepsilon\xi.} \qquad \text{sunscending katanomia: } E = \int \frac{dq}{4\pi\varepsilon_0 r^2} \hat{r}$$

$$\phi = \int_{S} \vec{E} \cdot \hat{n} dA \qquad \phi_{tot} = \oint_{S} \vec{E} \cdot \hat{n} dA = \oint_{S} \vec{E} \cdot \hat{n} dA = \frac{Q_{\varepsilon\sigma.}}{\varepsilon_{0}} \qquad \alpha \sigma v v \acute{\varepsilon} \chi \varepsilon \iota \alpha : E_{n^{+}} - E_{n^{-}} = \frac{\sigma}{\varepsilon_{0}}$$

Πεδίο άπειρης γραμμικής κατανομής: $E_R=rac{2k\lambda}{R}=rac{1}{4\pi arepsilon_0}rac{\lambda}{R}$

Πεδίο στον άξονα φορτισμένου δακτυλίου: $E_z = \frac{kQz}{(z^2 + a^2)^{3/2}}$

Πεδίο στον άξονα φορτισμένου δίσκου:
$$E_z = sign(z) \; \frac{\sigma}{2\varepsilon_0} \left[1 - \left(1 + \frac{R^2}{z^2} \right)^{1/2} \right]$$

Πεδίο επιπέδου άπειρων διαστάσεων: $E_z=sign(z)~rac{\sigma}{2arepsilon_0}$

Πεδίο λεπτούυ σφαιρικού κελύφους:
$$E_r = \frac{1}{4\pi \varepsilon_0} \; \frac{Q}{r^2} \quad r > R$$

$$E_r = 0 \qquad \qquad r < R$$

$$\Delta \iota \alpha \phi o \rho \acute{\alpha} \, \delta \upsilon \nu \alpha \mu \iota \kappa o \acute{\upsilon} : \Delta V = V_b - V_a = \frac{\Delta U}{q_0} = - \int_a^b \vec{E} \cdot d\vec{l} \qquad \qquad \vec{E} = - \vec{\nabla} V$$

Χωρητικότητα:

$$C=rac{Q}{V}$$
 $Eπίπεδος Πυκνωτής: $C=rac{arepsilon_0 A}{d}$, $V=Ed$ $U_C=rac{1}{2}QV=rac{1}{2}CV^2=rac{1}{2}rac{Q^2}{C}$$

Συνδεσμολογία: $\pi \alpha \rho \dot{\alpha} \lambda \lambda \eta \lambda \eta$: $C_P = C_1 + C_2 + \cdots$ Σε σειρά: $\frac{1}{C_\Sigma} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$

Χωρητικότητα σφαιρικού αγωγού: $C=4\pi\varepsilon_0R$ κυλινδρικού: $C=\frac{2\pi\varepsilon_0L}{\ln(R_2/R_1)}$

Διηλεκτρικά: $C_k = kC_0$ διαπερατότητα: $\varepsilon = k\varepsilon_0$ ηλεκτρικό πεδίο: $E = \frac{E_0}{k}$

Αντίσταση:

$$R = \frac{V}{I}$$
 $I = \frac{\Delta q}{\Delta t}$ $R = \frac{\rho L}{A}$ $I = \frac{\Delta Q}{\Delta t} = qnAv_d$ $\vec{J} = qn\vec{v}_d$

$$P = IV = I^2 R = \frac{V^2}{R}$$

Συνδεσμολογία: π αράλληλη: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$ σειρά: $R = R_1 + R_2 + \cdots$

Κυκλώματα:

$$\begin{split} \sum \Delta V &= 0 & \sum I_{\varepsilon \iota \sigma.} = \sum I_{\varepsilon \xi.} \\ q(t) &= q_{\infty} \left(1 - e^{-t/\tau} \right) & q(t) &= q_0 e^{-t/\tau} & I(t) &= I_0 e^{-t/\tau} & \tau &= RC \end{split}$$

Σταθερές και μετατροπές μονάδων:

$$\varepsilon_0 = 8.85 \times 10^{-12} \, C^2 / Nm^2 \qquad \quad K_e = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \, C / Nm^2 \qquad \quad e = 1.60 \times 10^{-19} C$$

<u>Άσκηση 1</u> [15μ]

Το παρακάτω σχήμα δείχνει ένα κύκλωμα το οποίο αποτελείται από μια πηγή δυναμικού με δυναμικό ΔV εκατέρωθεν των πόλων της και τρεις πανομοιότυπους λαμπτήρες. Σε όλες τις απαντήσεις σας, εξηγήστε το σκεπτικό σας με μία ή δύο προτάσεις.

- (α) Ποιος από τους λαμπτήρες θα φωτοβολεί περισσότερο ή όλοι θα φωτοβολούν με την ίδια λαμπρότητα; [**5**μ]
- (β) Υποθέστε ότι ο λαμπτήρας 2 αντικαθίσταται με έναν άλλο με τη διπλάσια κατανάλωση ισχύος. Ποια θα είναι τώρα η λαμπρότητα των λαμπτήρων 1 και 3 σε σχέση με αυτή που είχαν πριν την αντικατάσταση του λαμπτήρα 2; Μεγαλύτερη, μικρότερη ή δεν θα κάνει κάποια διαφορά; [10μ]

<u>Άσκηση 2</u> [15μ]

Θεωρήστε τη διάταξη με τα σημειακά φορτία του διπλανού $\mbox{σχήματος, όπου 2 αρνητικά φορτία} - Q_0 και ένα θετικό φορτίο \\ + Q_0 \mbox{σχηματίζουν ένα ισόπλευρο τρίγωνο στο x-$y επίπεδο. }$

- (α) Ποια είναι η διεύθυνση και το μέτρο της δύναμης στο θετικό φορτίο $+Q_0$ συναρτήσει των μεγεθών που δόθηκαν; $[\mathbf{5}\mathbf{\mu}]$
- (β) Ποια είναι η διεύθυνση και το μέτρο του ηλεκτρικού πεδίου -Q₀ στο σημείο x_0 που βρίσκεται στο μέσο της απόστασης μεταξύ των δύο αρνητικών φορτίων; [3μ]

<u>Άσκηση 3</u> [15μ]

Παρακάτω φαίνεται η διατομή μιας αγώγιμης σφαίρας ακτίνας R/2, η οποία περιβάλλεται από

ένα λεπτό αγώγιμο κέλυφος ακτίνας R. Η εσωτερική σφαίρα είναι φορτισμένη με φορτίο $+Q_0$ και το σφαιρικό κέλυφος έχει φορτίο $-Q_0$.

- (α) Σχεδιάστε την κατανομή φορτίου στην εσωτερική σφαίρα. [2μ]
- (β) Χρησιμοποιώντας τον νόμο του Gauss, βρείτε την ένταση του ηλεκτρικού πεδίου E(r) συναρτήσει του r στο διάστημα r=0 και r>R, όπου r είναι η απόσταση από το κέντρο της σφαίρας. $[\mathbf{9}\mathbf{\mu}]$

(γ) Στο σχήμα που σας δίνεται, δείξτε τη λύση στο ερώτημα (β) χρησιμοποιώντας ηλεκτρικές γραμμές. [4μ]

<u>Άσκηση 4</u> [20μ]

Το διπλανό σχήμα δείχνει ένα λεπτό σφαιρικό κέλυφος ακτίνας R_0 το οποίο είναι φορτισμένο με φορτίο Q>0. Μπορείτε να αγνοήσετε το πάχος του κελύφους.

(α) Βρείτε το ηλεκτρικό πεδίο που δημιουργείται από το φορτισμένο κέλυφος συναρτήσει της απόστασης r από το κέντρο του. Προσδιορίστε το ηλεκτρικό πεδίο E(r) τόσο για $r < R_0$ όσο και για $r > R_0$. $[7\mu]$

(β) Προσδιορίστε το αντίστοιχο ηλεκτρικό δυναμικό V(r) συναρτήσει του r με σημείο αναφοράς $V(r=0)=0. \ [\mathbf{6}\mathbf{\mu}]$

(γ) Στο γράφημα, σχεδιάστε την ηλεκτροστατική δυναμική ενέργεια U(r) για ένα αρνητικό σημειακό φορτίο $q_0 < 0$ στο πεδίο που δημιουργείται από το σφαιρικό κέλυφος. [7 μ]

<u>Άσκηση 5</u> [25μ]

Στο παρακάτω σχήμα φαίνεται η διατομή δύο μεγάλων παράλληλων πλακών που είναι φορτισμένες με φορτίο +Q (επάνω +Q πλάκα) και -Q (κάτω πλάκα). Κάθε πλάκα έχει εμβαδό A. Κατακόρυφα ανάμεσα στις δύο πλάκες υπάρχει ένα μικρό σωματίδιο μάζας m και φορτίου q.

Το σωματίδιο αιωρείται στη θέση d/2, οπότε η δύναμη της βαρύτητας, F=-mg, εξισορροπείται από την ηλεκτροστατική δύναμη.

- (α) Βρείτε το ηλεκτρικό πεδίο το οποίο αναπτύσσεται μεταξύ των δύο επίπεδων πλακών. [8μ]
- (β) Ποια είναι πρόσημο του φορτίου q του σωματιδίου; [1μ]
- (γ) Προσδιορίστε το φορτίο *q* συναρτήσει των ποσοτήτων που δίνονται. Αγνοήστε φαινόμενα μεταβολής του ηλεκτρικού πεδίου στις άκρες των πλακών. [**4**μ]
- (δ) Σχεδιάστε την ηλεκτρική δυναμική ενέργεια U_E του φορτισμένου σωματιδίου συναρτήσει του y στο διάστημα y=0 έως y=d, υποθέτοντας $U_E=0$ στο y=0. [4μ]
- (ε) Σχεδιάστε την δυναμική ενέργεια U_T του σωματιδίου συναρτήσει του y στο διάστημα y=0 έως y=d. [4μ]
- (στ) Σχεδιάστε το ηλεκτρικό δυναμικό V μεταξύ των πλακών (αγνοήστε το φορτίο q) στο διάστημα y=0 έως y=d. [4μ]

<u>Άσκηση 6</u> [30μ]

Θεωρήστε έναν επίπεδο πυκνωτή χωρητικότητα C_0 . Ο πυκνωτής φορτίζεται με φορτίο Q συνδεόμενος με πηγή δυναμικού ΔV αμελητέας εσωτερικής αντίστασης. Κατόπιν ο πυκνωτής αποσυνδέεται από την πηγή ενώ εξακολουθεί να έχει φορτίου Q και η απόσταση μεταξύ των οπλισμών του διπλασιάζεται.

- (α) Αποδείξτε τη σχέση που δίνει την χωρητικότητα ενός επίπεδου πυκνωτή με εμβαδόν επιφάνειας Α σε απόσταση d μεταξύ τους. [10μ]
- (β) Ποια είναι η διαφορά δυναμικού μεταξύ των οπλισμών του όταν έχει διπλασιαστεί η μεταξύ τους απόσταση; [3μ]
- (γ) Ποια είναι η ποσότητα της ηλεκτρικής ενέργειας που είναι αποθηκευμένη στον πυκνωτή όταν οι οπλισμοί του έχουν μετακινηθεί; [**3**μ]
- (δ) Εξηγήστε πως διατηρείται η ενέργεια όταν οι οπλισμοί έχουν απομακρυνθεί. [3μ]
- (ε) Αν η πηγή δυναμικού δεν είχε αποσυνδεθεί πριν μετακινηθούν οι οπλισμοί. Πόση θα ήταν η ενέργεια που θα είχε αποθηκευτεί στον πυκνωτή στην περίπτωση αυτή όταν διπλασιάζονται η απόσταση μεταξύ των οπλισμών του; [3μ]
- (στ) Θεωρήστε τώρα ότι ένα διηλεκτρικό υλικό, διηλεκτρικής σταθεράς k=2 εισέρχεται ανάμεσα στους οπλισμούς του πυκνωτή. Πως μεταβάλλεται η ενέργεια που είναι αποθηκευμένη στον πυκνωτή όταν εισέλθει το διηλεκτρικό; $[3\mu]$

2d

d

(ζ) Χρησιμοποιώντας το διπλανό σχήμα, κάντε το γράφημα του ηλεκτρικού δυναμικού μεταξύ των οπλισμών του πυκνωτή συναρτήσει της μεταξύ τους απόστασης x για x=0 και x=2d. Σε ποια τιμή του x επιλέγεται να θέσετε V=0; [$\mathbf{5}$ $\boldsymbol{\mu}$]