Calculus II Review of integration basics

Todor Milev

2019

Outline

- Integration, Review
 - The Evaluation Theorem (FTC part 2)

Outline

- Integration, Review
 - The Evaluation Theorem (FTC part 2)
- Integration Techniques from Calc I, Review
 - Differential Forms, Review

Outline

- 1 Integration, Review
 - The Evaluation Theorem (FTC part 2)
- Integration Techniques from Calc I, Review
 - Differential Forms, Review
- 3 Integration and Logarithms, Review

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Antiderivatives

Definition (Antiderivative)

A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

Theorem (The Evaluation Theorem (FTC part 2))

If f is continuous on [a, b], then

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F is any antiderivative of f.

$$\int_{a}^{b} f(x)dx$$
 exists for any continuous (over $[a, b]$)

function f.

Theorem (The Evaluation Theorem (FTC part 2))

If f is continuous on [a, b], then

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F is any antiderivative of f.

Theorem

Let f be a continuous function on [a, b]. Then f is integrable over [a, b].

In other words, $\int_{a}^{b} f(x)dx$ exists for any continuous (over [a, b]) function f.

Theorem (The Evaluation Theorem (FTC part 2))

If f is continuous on [a, b], then

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F is any antiderivative of f.

Indefinite Integrals

- The Evaluation Theorem establishes a connection between antiderivatives and definite integrals.
- It says that $\int_a^b f(x) dx$ equals F(b) F(a), where F is an antiderivative of f.
- We need convenient notation for writing antiderivatives.
- This is what the indefinite integral is.

Definition (Indefinite Integral)

The indefinite integral of f is another way of saying the antiderivative of f, and is written $\int f(x)dx$. In other words,

$$\int f(x) dx = F(x) \qquad \text{means} \qquad F'(x) = f(x).$$

$$\int x^4 \mathrm{d}x = ?$$

$$\int x^4 dx = \frac{x^5}{5}$$

$$\int x^4 dx = \frac{x^5}{5} + C$$

$$\int x^4 dx = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

$$\int x^4 \mathrm{d}x = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

The indefinite integral represents a whole family of functions.

$$\int x^4 \mathrm{d}x = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

- The indefinite integral represents a whole family of functions.
- Example: the general antiderivative of $\frac{1}{x}$ is

$$F(x) = \begin{cases} \ln|x| + C_1 & \text{if} \quad x > 0\\ \ln|x| + C_2 & \text{if} \quad x < 0 \end{cases}$$

$$\int x^4 \mathrm{d}x = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

- The indefinite integral represents a whole family of functions.
- Example: the general antiderivative of $\frac{1}{x}$ is

$$F(x) = \begin{cases} \ln|x| + C_1 & \text{if} \quad x > 0\\ \ln|x| + C_2 & \text{if} \quad x < 0 \end{cases}$$

 We adopt the convention that the constant participating in an indefinite integral is only valid on one interval.

$$\int x^4 dx = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

- The indefinite integral represents a whole family of functions.
- Example: the general antiderivative of $\frac{1}{x}$ is

$$F(x) = \begin{cases} \ln|x| + C_1 & \text{if} \quad x > 0\\ \ln|x| + C_2 & \text{if} \quad x < 0 \end{cases}$$

- We adopt the convention that the constant participating in an indefinite integral is only valid on one interval.
- $\int \frac{1}{x} dx = \ln |x| + C$, and this is valid either on $(-\infty, 0)$ or $(0, \infty)$.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d} y}{\mathrm{d} x} \Delta x$
- $dy \approx \frac{dy}{dx} \Delta x$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d} y}{\mathrm{d} x} \Delta x$
- $dy = \frac{dy}{dx} dx$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d} y}{\mathrm{d} x} \Delta x$
- $dy = \frac{dy}{dx}dx$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{\mathrm{d} y}{\mathrm{d} x} \Delta x$
- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$
- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$
- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$
- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$
- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Expressions containing expression of the form d(something) are called differential forms.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$
- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Expressions containing expression of the form d(something) are called differential forms.

- Recall $\Delta y, \Delta x$ stand for change of x, y. Recall: $\Delta y \approx \frac{dy}{dx} \Delta x$
- $dy = \frac{dy}{dx} dx = dy$
- If we substitute Δy by the formal expression dy and Δx by the formal expression dx, the expression dx appears to "cancel" to give a formal identity.
- Define the differential d and the differential forms dx, d(f(x)) by requesting that d and dx satisfy the transformation law

$$d(f(x)) = f'(x)dx$$

for any differentiable function f(x). In abbreviated notation:

$$df = f' dx$$

Expressions containing expression of the form d(something) are called differential forms.

df(x) = f'(x) dx.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.

- df(x) = f'(x)dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.

- df(x) = f'(x)dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.

- df(x) = f'(x) dx.
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.

- df(x) = f'(x)dx. • On the previous
- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.

 \bullet df(x) = f'(x)dx.

- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.
- Do not confuse differentials with derivatives.

$$df(x) = f'(x)$$

 \bullet df(x) = f'(x)dx.

- - On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
 - The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.
- Do not confuse differentials with derivatives.

 \bullet df(x) = f'(x) dx.

- On the previous slide we stated the differential d and the differential forms dx, df(x) are formal expressions related by a transformation law.
- The precise definitions of differential forms and differentials are outside of the scope of Calculus I and II.
- Differential forms "encode" linear approximations which in turn "encode" "infinitesimal" lengths of segments.
- Courses such as "Integration and Manifolds" or "Differential geometry" usually give precise definitions and fill in the details.
- Nonetheless, what we studied is completely sufficient for practical purposes and carrying out computations.
- Do not confuse differentials with derivatives. The correct equality is this.

$$df(x) = f'(x) \qquad df(x) = f'(x)dx$$

• $\int_{a}^{b} f(x) dx$ is the definite integral of f.

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx =$ corresponding anti-derivative.

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- • ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx =$ corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- • ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).
- dx "encodes" the base length of "infinitesimally small" approximating rectangle

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).
- dx "encodes" the base length of "infinitesimally small" approximating rectangle, f(x) is the height.

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).
- dx "encodes" the base length of "infinitesimally small" approximating rectangle, f(x) is the height.
- f(x)dx is a differential form as discussed already.

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx =$ corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).
- dx "encodes" the base length of "infinitesimally small" approximating rectangle, f(x) is the height.
- f(x)dx is a differential form as discussed already.
- We postponed a formal definition of differential form to another course, but we showed how to compute with those.

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).
- dx "encodes" the base length of "infinitesimally small" approximating rectangle, f(x) is the height.
- f(x)dx is a differential form as discussed already.
- We postponed a formal definition of differential form to another course, but we showed how to compute with those.
- This is consistent: integrals of equal differential forms are equal

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx$ = corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).
- dx "encodes" the base length of "infinitesimally small" approximating rectangle, f(x) is the height.
- f(x)dx is a differential form as discussed already.
- We postponed a formal definition of differential form to another course, but we showed how to compute with those.
- This is consistent: integrals of equal differential forms are equal

- $\int_{a}^{b} f(x) dx$ is the definite integral of f.
- $\int f(x)dx =$ corresponding anti-derivative.
- ∫ stands for the limit of a Riemann sum (sum of approximating rectangles).
- dx "encodes" the base length of "infinitesimally small" approximating rectangle, f(x) is the height.
- f(x)dx is a differential form as discussed already.
- We postponed a formal definition of differential form to another course, but we showed how to compute with those.
- This is consistent: integrals of equal differential forms are equal (follows from Net Change Theorem (subst. rule)).

 All rules for computing with derivatives have analogues for computing with differential forms.

- All rules for computing with derivatives have analogues for computing with differential forms.
- The rules for computing differential forms are a direct consequence of the corresponding derivative rules and the transformation law d(f(x)) = f'(x)dx.

Rule name: product rule.

Differential rule

Derivative rule
$$(fg)' = f'g + fg'$$

Rule name: product rule.

Differential rule
$$d(fg) = gdf + fdg$$

Derivative rule
$$(fg)' = f'g + fg'$$

Let c be a constant. Rule name: constant derivative rule.

Differential rule
$$d(fg) = gdf + fdg$$

Derivative rule
$$(fg)' = f'g + fg'$$

 $(c)' = 0$

Let c be a constant. Rule name: constant derivative rule.

Differential rule
$$d(fg) = gdf + fdg$$

 $dc = 0$

Derivative rule
$$(fg)' = f'g + fg'$$

 $(c)' = 0$

Differential rule
$$d(fg) = gdf + fdg$$

$$dc = 0$$

Derivative rule

$$(fg)' = f'g + fg'$$

 $(c)' = 0$
 $(cf)' = cf'$

Differential rule
$$d(fg) = gdf + fdg$$
$$dc = 0$$
$$d(cf) = c df$$

Derivative rule

$$(fg)' = f'g + fg'$$

 $(c)' = 0$
 $(cf)' = cf'$

sum rule.

Differential rule
$$d(fg) = gdf + fdg$$
 $dc = 0$ $d(cf) = c df$

Derivative rule

$$(fg)' = f'g + fg'$$

 $(c)' = 0$
 $(cf)' = cf'$
 $(f+g)' = f' + g'$

Let c be a constant. Rule name: sum rule.

Differential rule
$$\begin{aligned} \mathsf{d}(fg) &= & g \mathsf{d} f + & f \mathsf{d} g \\ \mathsf{d} c &= 0 \\ \mathsf{d}(cf) &= c & \mathsf{d} f \\ \mathsf{d}(f+g) &= & \mathsf{d} f + & \mathsf{d} g \end{aligned}$$

Derivative rule

$$(fg)' = f'g + fg'$$

 $(c)' = 0$
 $(cf)' = cf'$
 $(f+q)' = f'+q'$

chain rule.

Differential rule $\begin{array}{ll} \mathsf{d}(fg) = & g\mathsf{d}f + & f\mathsf{d}g \\ \mathsf{d}c = 0 & \\ \mathsf{d}(cf) = c & \mathsf{d}f \\ \mathsf{d}(f+g) = & \mathsf{d}f + & \mathsf{d}g \end{array}$

Derivative rule

$$(fg)' = f'g + fg'$$

 $(c)' = 0$
 $(cf)' = cf'$
 $(f+g)' = f' + g'$
 $(f(g(x)))' = f'(g(x))g'(x)$

Let c be a constant. Rule name: chain rule.

Differential rule d(fg) = gdf + fdgdc = 0d(cf) = c dfd(f+g) = df + dgdf(g(x)) = f'(g(x))dg(x)df(g) = f'(g)dg

rule Derivative rule
$$\begin{array}{ll} g df + f dg & (fg)' = f'g + fg' \\ (c)' = 0 \\ c & df & (cf)' = cf' \\ = & df + dg & (f+g)' = f' + g' \\ = & f'(g(x)) dg(x) \\ = & f'(g(x)) g'(x) dx & (f(g(x)))' = f'(g(x)) g'(x) \end{array}$$

 $(x^n)' = nx^{n-1}$

Differential rule

Let c be a constant. Rule name:

power rule.

$$egin{array}{ll} \operatorname{d}(fg) &=& g \operatorname{d} f + f \operatorname{d} g \ \operatorname{d} c &= 0 \ \operatorname{d}(cf) &=& c & \operatorname{d} f \ \operatorname{d}(f+g) &=& \operatorname{d} f + \operatorname{d} g \ \operatorname{d} f(g(x)) &=& f'(g(x)) \operatorname{d} g(x) \ &=& f'(g(x)) g'(x) \operatorname{d} g \ \operatorname{d} f(g) &=& f'(g) \operatorname{d} g \end{array}$$

rule Derivative rule
$$gdf + fdg \qquad (fg)' = f'g + fg'$$

$$(c)' = 0$$

$$c \quad df \qquad (cf)' = cf'$$

$$= \quad df + \quad dg \qquad (f+g)' = f' + g'$$

$$= \quad f'(g(x))dg(x)$$

$$= \quad f'(g(x))g'(x)dx \qquad (f(g(x)))' = f'(g(x))g'(x)$$

power rule.

Differential rule Derivative rule
$$d(fg) = gdf + fdg \qquad (fg)' = f'g + fg'$$

$$dc = 0 \qquad (c)' = 0$$

$$d(cf) = c \quad df \qquad (cf)' = cf'$$

$$d(f+g) = df + dg \qquad (f+g)' = f' + g'$$

$$df(g(x)) = f'(g(x))dg(x) \qquad (f(g(x)))' = f'(g(x))g'(x)$$

$$df(g) = f'(g)dg$$

$$dx^n = nx^{n-1}dx \qquad (x^n)' = nx^{n-1}$$

exponent derivative rule.

Differential rule Derivative rule
$$d(fg) = gdf + fdg \qquad (fg)' = f'g + fg'$$

$$dc = 0 \qquad (c)' = 0$$

$$d(cf) = c \quad df \qquad (cf)' = cf'$$

$$d(f+g) = df + dg \qquad (f+g)' = f' + g'$$

$$df(g(x)) = f'(g(x))dg(x)$$

$$= f'(g(x))g'(x)dx \qquad (f(g(x)))' = f'(g(x))g'(x)$$

$$df(g) = f'(g)dg$$

$$dx^n = nx^{n-1}dx \qquad (x^n)' = nx^{n-1}$$

$$(e^x)' = e^x$$

exponent derivative rule.

Differential rule Derivative rule
$$d(fg) = gdf + fdg \qquad (fg)' = f'g + fg'$$

$$dc = 0 \qquad (c)' = 0$$

$$d(cf) = c \quad df \qquad (cf)' = cf'$$

$$d(f+g) = df + dg \qquad (f+g)' = f' + g'$$

$$df(g(x)) = f'(g(x))dg(x)$$

$$= f'(g(x))g'(x)dx \qquad (f(g(x)))' = f'(g(x))g'(x)$$

$$df(g) = f'(g)dg$$

$$dx^n = nx^{n-1}dx \qquad (x^n)' = nx^{n-1}$$

$$de^x = e^xdx \qquad (e^x)' = e^x$$

Differential rule Derivative rule
$$d(fg) = gdf + fdg \qquad (fg)' = f'g + fg'$$

$$dc = 0 \qquad (c)' = 0$$

$$d(cf) = c \quad df \qquad (cf)' = cf'$$

$$d(f+g) = df + dg \qquad (f+g)' = f' + g'$$

$$df(g(x)) = f'(g(x))dg(x)$$

$$= f'(g(x))g'(x)dx \qquad (f(g(x)))' = f'(g(x))g'(x)$$

$$df(g) = f'(g)dg$$

$$dx^n = nx^{n-1}dx \qquad (x^n)' = nx^{n-1}$$

$$de^x = e^xdx \qquad (e^x)' = e^x$$

$$(\sin x)' = \cos x$$

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$
 $dc = 0$ $(c)' = 0$
 $d(cf) = c df$ $(cf)' = cf'$
 $d(f+g) = df + dg$ $(f+g)' = f' + g'$
 $df(g(x)) = f'(g(x))dg(x)$
 $= f'(g(x))g'(x)dx$ $(f(g(x)))' = f'(g(x))g'(x)$
 $df(g) = f'(g)dg$
 $dx^n = nx^{n-1}dx$ $(x^n)' = nx^{n-1}$
 $de^x = e^xdx$ $(e^x)' = e^x$
 $d\sin x = \cos xdx$ $(\sin x)' = \cos x$

Differential rule Derivative rule
$$d(fg) = gdf + fdg \qquad (fg)' = f'g + fg'$$

$$dc = 0 \qquad (c)' = 0$$

$$d(cf) = c \quad df \qquad (cf)' = cf'$$

$$d(f+g) = df + dg \qquad (f+g)' = f' + g'$$

$$df(g(x)) = f'(g(x))dg(x)$$

$$= f'(g(x))g'(x)dx \qquad (f(g(x)))' = f'(g(x))g'(x)$$

$$df(g) = f'(g)dg$$

$$dx^n = nx^{n-1}dx \qquad (x^n)' = nx^{n-1}$$

$$de^x = e^x dx \qquad (e^x)' = e^x$$

$$d\sin x = \cos x dx \qquad (\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

Differential rule Derivative rule
$$d(fg) = gdf + fdg \qquad (fg)' = f'g + fg'$$

$$dc = 0 \qquad (c)' = 0$$

$$d(cf) = c \quad df \qquad (cf)' = cf'$$

$$d(f + g) = df + dg \qquad (f + g)' = f' + g'$$

$$df(g(x)) = f'(g(x))dg(x)$$

$$= f'(g(x))g'(x)dx \qquad (f(g(x)))' = f'(g(x))g'(x)$$

$$df(g) = f'(g)dg$$

$$dx^n = nx^{n-1}dx \qquad (x^n)' = nx^{n-1}$$

$$de^x = e^x dx \qquad (e^x)' = e^x$$

$$d\sin x = \cos x dx \qquad (\sin x)' = \cos x$$

$$d\cos x = -\sin x dx \qquad (\cos x)' = -\sin x$$

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$ $dc = 0$ $(c)' = 0$ $d(cf) = c df$ $(cf)' = cf'$ $d(f+g) = df + dg$ $(f+g)' = f' + g'$ $df(g(x)) = f'(g(x))dg(x)$ $= f'(g(x))g'(x)dx$ $(f(g(x)))' = f'(g(x))g'(x)$ $df(g) = f'(g)dg$ $(x^n) = nx^{n-1}dx$ $(x^n)' = nx^{n-1}$ $de^x = e^x dx$ $(e^x)' = e^x$ $d\sin x = \cos x dx$ $(\sin x)' = \cos x$ $d\cos x = -\sin x dx$ $(\ln x)' = \frac{1}{x}$

Differential rule
$$d(fg) = gdf + fdg$$
 $(fg)' = f'g + fg'$ $dc = 0$ $(c)' = 0$ $d(cf) = c df$ $(cf)' = cf'$ $d(f+g) = df + dg$ $(f+g)' = f' + g'$ $df(g(x)) = f'(g(x))dg(x)$ $= f'(g(x))g'(x)dx$ $(f(g(x)))' = f'(g(x))g'(x)$ $df(g) = f'(g)dg$ $dx^n = nx^{n-1}dx$ $(x^n)' = nx^{n-1}$ $de^x = e^x dx$ $(e^x)' = e^x$ $d\sin x = \cos x dx$ $(\sin x)' = \cos x$ $d\cos x = -\sin x dx$ $(\cos x)' = -\sin x$ $d\sin x = \frac{1}{x}dx$ $(\ln x)' = \frac{1}{x}$

Integration by parts.

Integration is linear.

Substitution rule.

Corresponding integration rules. Integration rules justified via the

Fundamental Theorem of Calculus

We recall from previous slides that

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln|x|) = \frac{1}{x}.$$

This formula has a special application to integration:

Theorem (The Integral of 1/x)

$$\int \frac{1}{x} dx = \ln|x| + C.$$

We recall from previous slides that

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln|x|) = \frac{1}{x}.$$

This formula has a special application to integration:

Theorem (The Integral of 1/x)

$$\int \frac{1}{x} dx = \ln|x| + C.$$

This fills in the gap in the rule for integrating power functions:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \qquad n \neq -1.$$

Now we know the formula for n = -1 too.