Sparse approximation to discriminant projection learning and application to image classification

Yu et al., 2019, Pattern Recognition

➤ Topic

- Subspace learning for classification: $Z = WX \ (m \times n) = (m \times d) \times (d \times n)$
- LDA-based (discriminant projection): within-class covariance S_W , between-class covariance S_B

> Problems

- · Absence of a sparse solution
- HDLSS (high-dimensional, low sample size) problem

Motivation

- · Embedding a feature selection framework into subspace learning
- A new optimization formulation to avoid singularity problem
- Proposed method: SADPL
 (Sparse Approximation to Discriminant Projection Learning)
 - [Proposition 1] (Gaynanova et al., 2016) There exists a low-rank matrix A such that $S_R = AA^T$ and k-th column of A is

$$A_{k} = \frac{\sqrt{n_{k+1}} \left(\sum_{r=1}^{k} n_{r} \left(u^{r} - u^{k+1} \right) \right)}{\sqrt{n} \sqrt{\sum_{r=1}^{k} n_{r} \sum_{r=1}^{k+1} n_{r}}}$$

where $k = 1, \dots, C - 1$

- [Proposition 2] There exists an orthogonal matrix Q such that $(S_W + S_B)^{-1}AQ$ is the eigenvectors-matrix of $S_W^{-1}S_B$
- [Proposition 3] For any orthogonal matrix Q,

$$||P^{T}y - P^{T}x||_{2}^{2} = (y - x)^{T}PP^{T}(y - x)$$

= $(y - x)^{T}PQQ^{T}P^{T}(y - x) = ||(PQ)^{T}y - (PQ)^{T}x||_{2}^{2}$

where *P* is a projection matrix $P \in \mathbb{R}^{d \times (C-1)}$

Error function

$$\min_{P} \frac{1}{2} \| (S_W + S_B)^{1/2} P - (S_W + S_B)^{-1/2} A \|_F^2$$

$$= \min_{P} \frac{1}{2} Tr(P^T S_W P) + \frac{1}{2} \| A^T P - I \|_F^2$$

• *F*-norm regularizer

$$||P||_F = \sqrt{\sum_{i=1}^d ||P^i||_2^2} = \sqrt{\sum_{j=1}^{C-1} ||P_j||_2^2}$$

where P^i and P_i are i-th row and j-th column of P, respectively

• L_{2.1}-norm regularizer

$$||P||_{2,1} = \sum_{i=1}^{d} ||P^{i}||_{2} = \sum_{i=1}^{d} \sqrt{\sum_{j=1}^{C-1} P_{ij}^{2}}$$

· Convex optimization problem

$$\underset{P}{\operatorname{argmin}} J(P) = \frac{1}{2} Tr(P^{T} S_{W} P) + \frac{1}{2} ||A^{T} P - I||_{F}^{2} + \frac{\lambda_{1}}{2} ||P||_{F}^{2} + \lambda_{2} ||P||_{2,1}$$

$$\frac{\partial J(P)}{\partial P} = S_{W} P + A(A^{T} P - I) + \lambda_{1} P + \lambda_{2} B P$$

$$P = (S_{W} + AA^{T} + \lambda_{1} I + \lambda_{2} B)^{-1} A$$

where B is a diagonal matrix with $B_{i,i} = \frac{1}{2\|P^i\|_2}$

• Since *B* is dependent of *P*,

Algorithm 1 SADPL algorithm.

Input: $\mathbf{X} \in \mathbb{R}^{d \times n}$, λ_1 and λ_2 .

Output: $\mathbf{P} \in R^{d \times C - 1}$.

- 1: Compute within-class scatter matrix $\mathbf{S}_{\mathbf{W}}$ and between-class scatter matrix $\mathbf{S}_{\mathbf{B}}$;
- 2: Compute the matrix **A** based on Proposition 1;
- 3: Initialize t = 0;
- 4: Initialize B_0 ;
- 5: while Not convergent do
- 6: $\mathbf{P}^{[t+1]} = (\mathbf{S}_{\mathbf{W}} + \mathbf{A}\mathbf{A}^T + \lambda_1 \mathbf{I} + \lambda_2 \mathbf{B}^{[t]})^{-1}\mathbf{A};$
- 7: Update $\mathbf{B}^{[t+1]}$, here the *i*th diagonal element $B_{i,i}^{[t+1]} = 1/2 \| (\mathbf{p}^{[t+1]})^i \|_2$;
- 8: t = t + 1;
- 9: end while
- [Theorem 1] In Algorithm 1, the value of J(P) monotically decreases along with the iteration

> Experiments

- 5 image databases
- 1NN classification after projection
- Sample results

Table 3

Classification accuracies for different approaches on the KTH-TIPS texture database (Mean \pm STD (%)).

Method	$T_s = 20$	$T_s = 30$	$T_s=40$
PCA LDA LPP LSDA SRDA	75.33 ± 3.27 80.83 ± 1.70 81.92 ± 2.24 45.67 ± 7.59 82.78 ± 1.67	79.92 ± 2.62 84.83 ± 2.69 86.08 ± 2.32 42.12 ± 2.12 86.25 ± 2.43	82.88 ± 2.71 87.47 ± 2.59 88.08 ± 2.11 33.08 ± 11.82 88.14 + 2.36
RILDA SRRS LLDA SADPL	48.43 ± 14.33 75.91 ± 2.98 75.80 ± 3.15 84.37 ± 2.36	57.33 ± 13.31 80.92 ± 2.74 79.87 ± 2.57 88.62 ± 2.15	58.75 ± 11.14 84.57 ± 2.66 85.61 ± 2.71 90.41 ± 2.26

· Effect of regularization terms

Table 6Classification accuracies of SADPL under different regularization terms (%).

Database	FRGC	2D+3D	KTH-TIPS	COIL-20	CIFAR-10
Adding F -norm Without F -norm Using l_1 -norm	99.33	99.28	88.62	99.32	91.25
	99.07	96.57	86.37	93.14	91.08
	99.27	99.28	88.59	99.31	91.20

> References

- Gaynanova et al., 2016, Simultaneous sparse estimation of canonical vectors in the $p \gg n$ setting (Proposition 1)
- Turk and Pentland, 1991, Eigenfaces for recognition (PCA)
- Belhumeur et al., 1997, Eigenfaces vs. fisherfaces: recognition using class specific linear projection (LDA)
- Cai et al., 2008, SRDA: an efficient algorithm for large-scale discriminant analysis (SRDA)

- Lai et al., 2017, Rotational invariant dimensionality reduction algorithms (RILDA)
- Cai et al., 2007, Locality sensitive discriminant analysis (LSDA)
- He and Niyogi, 2003, Locality preserving projections (LPP)
- Fan et al., 2011, Local linear discriminant analysis framework using sample neighbors (LLDA)
- Li and Fu, 2016, Learning robust and discriminative subspace with low-rank constraints (SRRS)