This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

ATENT ABSTRACTS OF APAN

(11)Publication number:

09-283153

(43)Date of publication of application: 31.10.1997

(51)Int.CI.

H01M 4/86 H01M 8/02

H01M 8/10

· (21)Application number: 08-111164

(71)Applicant: ISHIKAWAJIMA HARIMA HEAVY IND CO LT

(22)Date of filing:

09.04.1996

(72)Inventor: KAMATA HIROYUKI

TAKAHASHI KATSUMI

(54) SOLID HIGH MOLECULAR ELECTROLYTE FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent the deterioration of cell performance.

SOLUTION: Fluororesin 8 such as PTFE and the like having water repellent

effect is mixed into the electrode layer of an oxygen electrode 2 or a carbon paper board constituting a cell 7. Mixing amounts of the fluororesin

8 are arranged so as to change on a gas inlet side I and on a gas outlet side O. Since the water amount produced by an electrode reaction on the gas inlet side I is small, the amount of the fluororesin 8 is set to be small. Thereby, since the fluororesin not contributing the electrode reaction is little on the inlet side I, the effective area of the electrode are not allowed to be small so that cell performance is not caused to deteriorate. Since the mixing amount of the fluororein 8 is large on the outlet side O where the amount of produced water is large, water repellence is conducted so that the electrode reaction is not hindered.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-283153

(43)公開日 平成9年(1997)10月31日

(51) Int.Cl.*		識別記号	庁内整理番号	FΙ			技術表示箇所
H01M	4/86			H01M	4/86	M	
	8/02				8/02	E	
	8/10				8/10		

		審査請求	未請求 請求項の数2 FD (全 5 頁)		
(21)出願番号	特願平8 -111164	(71) 出願人	000000099 石川島播磨軍工業株式会社		
(22) 出顧日	平成8年(1996)4月9日	В	東京都千代田区大手町2丁目2番1号		
		(72)発明者	鎌田 博之		
			東京都江東区豊洲三丁目1番15号 石川島		
			播磨重工業株式会社技術研究所内		
		(72)発明者	高橋 克巳		
			東京都江東区豊洲三丁目1番15号 石川島		
			播磨重工業株式会社技術研究所内		
		(74)代理人	弁理士 坂本 光雄		

(54) 【発明の名称】 固体高分子電解質型燃料電池

(57)【要約】

【課題】 電池性能の低下を防止する。

【解決手段】 セル7を構成する酸素極2の電極層中や カーボンペーパー基板に、撥水効果をもつPTFE等の フッ素樹脂8を混合する。フッ素樹脂8の混合量を、ガ スの入口側「と出口側Oとで変化させるようにする。ガ ス入口側「では電極反応で生成される水の量は少ないの で、フッ素樹脂8の量を少なくする。これにより電極反 応に寄与しないフッ素樹脂が入口側「で少ないので、電 極の有効面積が小さくならず、電池性能を低下させると とがなくなる。生成される水の量が多くなる出口側Oで は、フッ素樹脂8の混合量が多いので、撥水が行われて 電極反応が阻害されることがなくなる。

【特許請求の範囲】

【請求項1】 固体高分子電解質膜の両面を酸素極と燃料極で挟んで重ね合わせるようにし、酸素極側に酸化剤ガスを供給すると共に、燃料極側に燃料ガスを供給するようにしてあるセルの酸素極を、電極層中や多孔質カーボンペーパーを基板として使用して作製している固体高分子電解質型燃料電池において、上記電極層中やカーボンペーパー基板のガス入口側とガス出口側でフッ素樹脂微粒子の混合量を変化させ、ガス入口側をガス出口側に比して少なくするようにしてなることを特徴とする固体 10 高分子電解質型燃料電池。

【請求項2】 固体高分子電解質膜の両面を酸素極と燃料極で挟んで重ね合わせるようにし、酸素極側に酸化剤ガスを供給すると共に、燃料極側に燃料ガスを供給するようにしてあるセルをセパレータを介し多層に積層してスタックとするようにし、且つ各セルの酸素極を、電極層中や多孔質カーボンペーパーを基板として使用して作製している固体高分子電解質型燃料電池において、上記各セルの酸素極の電極層中やカーボンペーパー基板のガス入口側とガス出口側でフッ素樹脂微粒子の混合量を変ではさせ、ガス入口側をガス出口側に比して少なくするようにし、更に、ガス流れ方向の上流側に位置するセルと下流側に位置するセルとで上記フッ素樹脂微粒子の混合量を変化させ、ガス流れ方向の上流側のセルへの混合量を下流側のセルへの混合量より少なくしてなることを特徴とする固体高分子電解質型燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は燃料の有する化学エネルギーを直接電気エネルギーに変換するエネルギー部 30 門で用いる燃料電池のうち、固体高分子電解質型燃料電池に関するものである。

[0002]

【従来の技術】固体高分子電解質型燃料電池は、100 で以下という低温で発電が行われ、出力密度が高く、低 温で作動するので、電池構成材料の劣化が少ないこと、 起動が容易であること等の長所があり、電気自動車、電 車、船舶等の発電システムに適用可能なものとして技術 開発が進められている。

【0003】とれまでに提案されている固体高分子電解質型燃料電池は、図4に一例の概略を示す如く、固体高分子電解質膜1の両面を白金Pt等の貴金属を触媒とする多孔質の酸素極(空気極)2と燃料極(水素極)3の両ガス拡散電極で挟んで重ね合わせてなるセル7をセバレータ4を介し積層してスタックとするようにし、各セパレータ4には、表裏両面にガス通路5と6を形成して、酸素極2側には酸化剤ガスO,をガス通路5を通して供給するようにし、又、燃料極3側には燃料ガスH,をガス通路6を通して供給するようにし、燃料極3では、

H, →2 H⁺ + 2 e ...・①
の反応が行われ、酸素極2 では
1/20, +2 H⁺ + 2 e → H, O ...②
の反応が行われ、全反応は、
H, + 1/20, → H, O ...③
となるようにしてある。

【0004】一般に、固体高分子電解質型燃料電池は、50~100℃程度の温度で運転されるが、固体高分子電解質膜1の乾燥による劣化を防止するため、及び上記式①②の電極反応を促進させるために、反応ガスとして加湿した水素及び酸素(又は空気)が供給されている。又、式②のように、酸素極2では発電に伴い水が生成されるが、その生成量は電池から取り出す電流が大きくなるに従い増加している。

【0005】このような状態では、電解質膜1は水が膜に吸収された状態になっているが、電解質膜1の燃料極3側が乾燥し、電極反応で水を生成する酸素極2側では水が過剰になり滞留してしまう可能性があり、その結果、電極の表面を水で覆ってしまう状況を招き易くなる。電極が水で覆われると、反応ガスの流れが阻害されて触媒層まで達することができなくなって電極反応が阻害され、電池出力が不安定となり、又、低下することになる。

【0006】従来では、上記のような状況を避けるために、図5に示す如く、電極触媒である白金Ptを担持したカーボンブラックCを主成分とする多孔質の酸素極2の電極層中に、撥水効果を持つPTFE(ポリテトラフルオロエチレン)等のフッ素樹脂8の微粒子を混合し、フッ素樹脂8にPt-C粒子をつなぐ結着剤の機能をも兼ねさせるようにして酸素極2の過剰な濡れを防止する方法や、図6に示す如く、上記図5に示す方法に更にPTFE等のフッ素樹脂の微粒子を担持して撥水化した多孔質のカーボンペーパー9を基板として使用して、フッ素樹脂8にカーボンペーパー9とPt-Cをつなぐ結着剤の役割をも兼ねさせるようにするとか、又、カーボンペーパー9の撥水化に加えてPt-Cの電極層中にもフッ素樹脂を混合するようにするとかの方法、等が採られている。

[0007]

40 【発明が解決しようとする課題】ところが、上記のよう に電極層中に撥水効果をもつPTFE等のフッ素樹脂8 の微粒子を混合したり、フッ素樹脂の微粒子を担持して 撥水化したカーボンペーパー9を使用した電極を用いて 構成した燃料電池の場合、水分が電池内に滯留しないように細心の注意をはらって供給ガスを加湿し、電池内の 温度を管理する必要があり、又、電極層中に導入された PTFE微粒子などのフッ素樹脂は、電極触媒としての 機能を持たないため、PTFE微粒子の混合によりそれ だけ電極の有効表面積を小さくしてしまい、又、カーボ 50 ンペーパー9に担持されたフッ素樹脂は電気抵抗を高く

し電極からの集電を阻害してしまうマイナス効果をもっ ている。

【0008】実際に、燃料電池では、水の滞留はセルの 面内でも、又、スタックのセル毎でも一様ではなく、ガ スの流れ方向の下流側、すなわち、ガス出口側に多く溜 る傾向にあり、又、ガスの流れ方向の下流側のセルに多 く溜る傾向にあるが、従来ではフッ素樹脂微粒子が全面 にわたり一様に混合されていて均一に撥水化された電極 層としてあり、又、電極層の基板となるカーボンペーパ ー9を使用したものであるため、ガスの流れ方向の上流 10 側では水の滞留が少ないにもかかわらずフッ素樹脂成分 が過剰となって電池の性能を必要以上に低下させてしま うおそれがあり、又、スタックの場合は、ガスの流れ方 向の上流側となるセルで電池性能を必要以上低下させる おそれがある。

【0009】そこで、本発明は、撥水効果をもつフッ素 樹脂を混合した電極層や電極層の基板となるカーボンペ ーパーを使用した電極を備えた固体高分子電解質型燃料 電池において、電池性能を低下させることがないように しようとするものである。

[0010]

【課題を解決するための手段】本発明は、上記課題を解 決するために、固体高分子電解質膜の両面を酸素極と燃 料極で挟んで重ね合わせるようにし、酸素極側に酸化剤 ガスを供給すると共に、燃料極側に燃料ガスを供給する ようにしてあるセルの酸素極を、電極層中や多孔質カー ボンペーパーを基板として使用して作製している固体高 分子電解質型燃料電池において、上記電極層中やカーボ ンペーパー基板のガス入口側とガス出口側でフッ素樹脂 微粒子の混合量を変化させ、ガス入口側をガス出口側に 比して少なくするようにしてなる構成とする。

【0011】酸素極の電極面内でガスの入口側を出口側 に比してフッ素樹脂の濃度を薄くすることから、水分の 溜る量が少ないところにはファ素樹脂の量が少なくて電 池の性能低下を抑えることができ、水が多く溜る出口側 ではフッ素樹脂の量が多いので、撥水効果があり、水分 の管理を容易に行うことができる。

【0012】又、燃料電池スタックの各セル毎にガス入 口側に比してガス出口側の方のフッ素樹脂の混合量を多 くするようにすると共に、ガスの流れ方向の下流側のセ 40 ルから上流側のセルの順にガス出口側のフッ素樹脂の混 合量を徐々に少なくするように変化させるようにする と、ガス流れ方向の上流側に位置するセルでは性能の低 下を抑えることができることになる。

[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照して説明する。

【0014】図1は本発明の実施の一形態を示すもの で、図4に示す如くセル7を構成する固体高分子電解質

してある構成の単セル7において、図5に示す如く電解 質膜1上に電極触媒としての白金Ptを担持させたカー ボンブラックCにPTFE等のフッ素樹脂8の微粒子を 混合させるようにしたり、図6に示す如く更に電極層の 基板となるフッ素樹脂を担持したカーボンペーパー9を 使用した酸素極2でセル7を作製するときに、図5及び 図6 に示す如くカーボンブラックCを主成分とする多孔 質電極層中に混合されるPTFE等のフッ素樹脂8の微 粒子や、カーボンペーパー9に担持されるフッ素樹脂の 混合量を、ガス通路5に流される酸化剤ガス0,の入口 側Iと出口側Oとで変化させるようにする。この場合、 ガスの入口側Iからガスの出口側Oにかけて徐々にフッ 素樹脂8の微粒子の混合量を多くして、出口側0が最も 多く、入口側1の入口部ではほとんど混合されていない ようにし、図1に示す如くフッ素樹脂8の微粒子の濃度 を出口側〇で濃くなるように混合させるようにする。

【0015】酸素極2側に供給された酸化剤ガス〇、は 入口側 I から矢印の如くガス通路に沿い流されて出口側 〇から排出されるが、この間に、

1/20, $+2H+2e\rightarrow H$, O の電極反応が行われて水を生成するが、生成した水分 は、ガスの入口側 I から出口側 O に運ばれるので出口側 の方が水分量が多くなる。

【0016】本発明では、ガスの入口側1よりも出口側 〇の方にフッ素樹脂の混合量が多くしてあるので、ガス の入口側 I では、電極触媒としての機能をもたず、又 電極からの集電を阻害してしまうというマイナス効果の あるPTFE等のフッ素樹脂の量が少ないので、それだ け電池性能を必要以上に低下させることを防止できる。 水の発生が最も多いガスの出口側〇では、ファ素樹脂微 粒子の混合量が多くしてあるので、撥水化がなされ、電 極反応が水により阻害されることがなくなる。

【0017】なお、ガスの入口側 I と出口側 Oでのフッ 素樹脂微粒子の混合量の比率は、供給される加湿ガスの 水分の量によっても変動するものであり、各種の条件に よって決定するようにする。

【0018】次に、図2は本発明の他の実施の形態を示 すもので、セル7をセパレータ4を介し多層に積層して スタックとした構成において、電極層中やカーボンベー パーに混合するフッ素樹脂微粒子の量を、ガスの流れ方 向の上流側に位置するセル7の酸素極2とガスの流れ方 向下流側に位置するセル7の酸素極2とで変化させ、上 流側に位置するセルの酸素極2の方を少なくするように し、且つ各セル毎に、図1のようにガスの入口側 [と出 口側Oとでも混合量を変化させ、出口側Oに比して入口 側「の混合量を少なくするようにしたものである。

【0019】 このようにすれば、多層に積層されてガス の流れ方向の上流側に位置するセルから下流側に位置す るセル毎に行われる電極反応により発生する水を有効に 膜1を酸素極2と燃料極3で両面から挟持させるように 50 撥水できて、電極反応が支障なく行われ、水の滞留の可

10

能性が少ない上流側では、ファ素樹脂の混合量が少なく て必要以上の電池性能の低下も防止できる。

[0020]

【実施例】次に、本発明者等の行った実験結果について 説明する。

【0021】先ず、電解質としてデュポン社製Nafi on117[™]を使用し、電極触媒として白金Ptを20 重量%担持したカーボンブラックを使用し、更に、電極 基板として多孔質カーボンペーパーを使用した。

【0022】これに撥水材としてのPTFE微粒子を、 電極層中にはガス出口側に約20重量%、ガス入口側に 約5重量%の混合量とし、又、カーボンペーパーにはガ ス出口側に約40重量%、ガス入口側に約20重量%の 混合量として酸素極を作製してなる本発明によるセルの 場合Aと、撥水材としてのPTFE微粒子を、電極層中 には約20重量%を一様に混合し、又、カーボンペーパ ーには約40重量%を一様に混合して酸素極を作製して なる従来方式のセルの場合B発電試験の条件として、電 池温度を70℃とし、反応ガスとして酸素及び水素を使 用し、ガスの加湿はセル入口前に設置したガラス製のパ 20 ブラーを使用して、酸素を60℃、水素を80℃にて加 湿したものを反応ガスとしてセルに供給し、発電を行っ た。

【0023】その結果、図3に単セルの発電特性の一例 を示す如く、電流密度の高いところで本発明によるセル の場合Aは安定した性能を示し、酸素極の濡れによる性 能低下を防止できることがわかった。

[0024]

【発明の効果】以上述べた如く、本発明の固体高分子電 解質型燃料電池によれば、単セルの場合は酸素極の電極 30 層中や電極基板のガス入口側へのフッ素樹脂の微粒子の 混合量をガス出口側への混合量よりも少なくするように 混合量を変化させるようにしているので、電極反応で発 生する水の量が多くなるガス出口側では発生した水の撥 水化が行われて水により電極反応が阻害されることがな*

*く、又、ガス入口側では、電極反応に寄与しないフッ素 樹脂の量が少ないことから電極の有効表面積を広くでき て必要以上に電池性能を低下させることを防止できて、 安定した電池性能を維持することができる。

6

【0025】又、スタックとした場合には、各セル毎に ガスの入口側よりも出口側へのフッ素樹脂微粒子の混合 量を多くした状態において、ガスの流れ方向の上流側の セルへのフッ素樹脂微粒子の混合量を下流側のセルへの 混合量より少なくするように混合量を変化させることに より、スタック全体として電池性能の低下を防止でき る。

【図面の簡単な説明】

- 【図1】本発明の実施の一形態を示す概略図である。
- 【図2】本発明の実施の他の形態を示す概略図である。
- 【図3】本発明におけるセルと従来方法で作製したセル との発電特性を示す図である。
- 【図4】固体高分子電解質型燃料電池の断面図である。
- 【図5】固体高分子電解質膜上の電極層中にフッ素樹脂 を混合した状態を示す従来の酸素極の詳細図である。
- 【図6】図5のものに多孔質カーボンペーパーを基板と して使用した状態を示す従来の酸素極の詳細図である。 【符号の説明】
- 固体高分子電解質膜
- 2 酸素極
- 3 燃料極
- 4 セパレータ
- 5 ガス通路
- 6 ガス诵路
- 7 セル
- 8 フッ素樹脂
 - 9 カーボンペーパー
 - C カーボンブラック
 - O, 酸化剤ガス
 - H, 燃料ガス

【図1】 【図2】 【図3】 2 200 電速密度 (mAcm²)

