

COPIE INTERNE 21/08/2025

Dr SCLAFANI Francesco INSTITUT BORDET RUE MEYLEMEERSCH, 90

1070 BRUXELLES

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

Directrice de Service Pr Myriam Remmelink

Equipe Médicale Dr Nicolas de Saint Aubain

Pr Nicky D'Haene Dr Maria Gomez Galdon Dr Chirine Khaled Pr Denis Larsimont Pr Laetitia Lebrun Dr Calliope Maris Pr Jean-Christophe Noël Dr Anne-Laure Trépant Dr Marie Van Eycken Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

> Secrétariat Médical T. +32 (0)2 541 73 23

+32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15

Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be PATIENT:

ID:

Réf. Externe: EXAMEN: 25EM02040

Prélevé le 19/05/2025 à 19/05/2025 08:30 Prescripteur: Dr SCLAFANI Francesco

Reçu le 23/05/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE MUTATIONS DANS 50 GENES IMPLIQUES DANS LE CANCER (CANCER PANEL)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25BB07153-1.1

Date du prélèvement : 19/05/2025

Origine du prélèvement : Bordet

Type de prélèvement : métastase hépatique d'un adénocarcinome peu différencié (origine

pancréatique ou cholangiocarcinome)

II. Evaluation de l'échantillon

- % de cellules tumorales : 50%
- Qualité du séquençage : Optimale (coverage moyen > 1000x)
- Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (Point III.)
- Commentaires:/

III. Méthodologie (effectué par : MAGU, NIDH)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de mutations dans 50 gènes liés au cancer :

Gene	RefSeq	Exons testés	Exons Non Contributif (coverage < 250x)*	Gene	RefSeq	Exons testés	Exons Non Contributif (coverage < 250x)*
ABL1	NM_005157	4-6, 7		IDH2	NM_002168	4	
AKT1	NM_05163	3, 7		JAK2	NM_004972	14	
ALK	NM_004304	23, 25		JAK3	NM_000215	4, 13, 16	
APC	NM_000038	16		KDR	NM_002253	6, 7, 11, 19, 21, 26, 27, 30	
ATM	NM_000051	8, 9, 12, 17, 26, 34, 35, 36, 39, 50, 54-56, 59, 61, 63		KIT	NM_000222	2, 9-11, 13-15, 17, 18	
BRAF	NM_004333	11, 15		KRAS	NM_033360	2-4	
CDH1	NM_004360	3, 8, 9		MET	NM_001127500	2, 11, 14, 16, 19	
CDKN2A	NM_000077	2		MLH1	NM_000249	12	
CSF1R	NM_005211	7, 22		MPL	NM_005373	10	
CTNNB1	NM_001904	3		NMP1	NM_002520	11	
EGFR	NM_005228	3, 7, 15, 18-21		NOTCH1	NM_017617	26, 27, 34	
ERBB2	NM_004448	19-21		NRAS	NM_002524	2-4	
ERBB4	NM_005235	3, 4, 6-9, 15, 23		PDGFRA	NM_006206	12, 14, 15, 18	
EZH2	NM_004456	16		PIK3CA	NM_006218	1, 4, 6, 7, 9, 13, 18, 20	
FBXW7	NM_033632	5, 8-11		PTEN	NM_000314	1, 3, 5-8	
FGFR1	NM_023110	4, 7		PTPN11	NM_002834	3, 13	
FGFR2	NM_022970	7, 9, 12		RB1	NM_000321	4, 6, 10, 11, 14, 17, 18, 20-22	
FGFR3	NM_000142	7, 9, 14, 16, 18		RET	NM_020975	10, 11, 13, 15, 16	
FLT3	NM_004119	11, 14, 16, 20		SMAD4	NM_005359	3-6, 8-12	
GNA11	NM_002067	5		SMARCB1	NM_003073	2, 4, 5, 9	
GNAQ	NM_002072	5		SMO	NM_005631	3, 5, 6, 9, 11	
GNAS	NM_000516	8, 9		SRC	NM_005417	14	
HNF1A	NM_000545	3, 4		STK11	NM_000455	1, 4-6, 8	
HRAS	NM_005343	2, 3		TP53	NM_000546	2, 4-8, 10	
IDH1	NM 005896	4		VHL	NM_000551	1-3	

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

Sensibilité: la technique utilisée détecte une mutation si l'échantillon contient > 4% d'ADN mutant. Seules les mutations rapportées dans COSMIC et avec une fréquence supérieure à 4% et un variant coverage >30x sont rapportées

IV. Résultats

Liste des mutations détectées :

Gène	Exon	Mutation	Coverage	% d'ADN muté						
Mutations avec impact clinique potentiel										
PIK3CA	20	p.H1047R	1999	18%						

V. Discussion

Les mutations du gène PIK3CA sont fréquentes dans de nombreux type de cancers. Elles sont particulièrement fréquentes dans les carcinomes colorectaux (30%), les carcinomes urothéliaux (30%), les carcinomes gastriques (20%), les adénocarcinomes œsogastriques (7%), les cholangiocarcinomes (4-7%) et les carcinomes épidermoïdes pulmonaires (15%). Il existe des essais cliniques avec des thérapies ciblant la voie PI3K/mTOR. Leur efficacité n'est cependant pas encore avérée. Alors que la FDA a approuvé l'utilisation de l'alpelisib (inhibiteur alpha-selective PI3-kinase) en combinaison avec le fulvestrant (Estrogen Receptor (ER)-antagonist) et l'utilisation du capivasertib (pan-AKT kinase inhibiteur) en combinaison avec le fulvestrant pour le traitement des patients avec un cancer du sein ER+/HER2- avec certaines mutations du gène PIK3CA et a approuvé l'utilisation du inavolisib (alpha-isoform selective PI(3)-kinase inhibitor) en combinaison avec le palbociclib et le fulvestrant pour le traitement des patients avec un cancer du sein métastatique ER+/HER2- avec une mutation oncogénique du gène PIK3CA, leur utilité clinique pour les patients avec un autre cancer est indéterminé.

cbioportal.org Samuels Y et al., Science 2004, 304 :554 Clarke PA and Workman P, J Clin Oncol 2012, 30 :331-33

VI. Conclusion: (MAGU le 04/06/2025)

Absence de mutation détectée dans le gène KRAS. Absence de mutation détectée dans le codon R132 du gène IDH1. Présence de la mutation H1047R du gène PIK3CA.

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB:

 $\frac{https://www.hubruxelles.be/sites/default/files/2024-03-04_demande\%20analyse\%20anapath\%20cytologie\%20v3.pdf}{https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11\%20Demande\%20de\%20biologie\%20mol\%C3\%A9culaire-IPD\%20v1.doc$

Dr N D'HAENE

Dr REMMELINK MYRIAM