IIITDM KANCHEEPURAM

MA1001 Differential Equations

Problem Set 4

1. By eliminating the constants c_1 and c_2 , find the differential equation of each the following 2-parameter families of curves:

(a) $y = c_1 x + c_2 x^2$; (b) $y = c_1 x + c_2 \sin x$.

2. Consider the functions $f(x) = x^3$ and $g(x) = x^2|x|$ on the interval [-1,1].

(a) Show that their Wronskian is identically zero on [-1, 1].

(b) Show that f(x) and g(x) are not linearly dependent.

(c) Do (a) and (b) contradict a result (figure out the result and state it) known to you? If not, why not?

3. The equation $(1-x^2)y'' - xy' - a^2y = 0$ has $y = e^{a\sin^{-1}x}$ as one solution. Find the general solution.

4. $y = e^{-x^2}$ is a solution of the differential equation $xy'' + \alpha y' + \beta x^3 y = 0$ for some real numbers α and β . Find α and β .

5. Solve the following differential equations:

(a)
$$\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} = 0;$$
 (b) $\frac{d^4y}{dx^4} - y = 0;$ (c) $\frac{d^4y}{dx^4} + y = 0.$

(b)
$$\frac{d^4y}{dx^4} - y = 0;$$

(c)
$$\frac{d^4y}{dx^4} + y = 0$$
.

6. The equation $x^2y'' + pxy' + qy = 0$ is called Euler's equidimensional equation. Show that the change of independent variable given by $x = e^z$ transforms it into an equation with constant coefficients. Apply this technique to find the general solution of $x^2y'' +$ 3xy' + 10y = 0.