1. Implement the MIPS register file that reads simultaneously from two registers and write into one register.

Main module should be called "RegisterFile".

Entity should look as follows:

read_sel1 : in std_logic_vector(4 downto 0)
read_sel2 : in std_logic_vector(4 downto 0)
write_sel : in std_logic_vector(4 downto 0)

write_ena: in std_logic

clk: in std logic

write_data: in std_logic_vector(31 downto 0)
data1:out std_logic_vector(31 downto 0)
data2: out std_logic_vector(31 downto 0)

Test before submit (attached test case).

2. Implement 32 bit full ALU.

Main module should be called "ALU" ALU functional specifications:

ALUOp	Function
0000	AND
0001	OR
0010	ADD
0110	SUB

ALU RTL should match the desired RTL (refer to lab06). Entity should look as follows:

data1 : in std_logic_vector(31 downto 0)
data2 :in std_logic_vector(31 downto 0)
aluop : in std_logic_vector(3 downto 0)

cin: in std logic

dataout: out std logic vector(31 downto 0)

cflag:out std_logic
zflag: out std_logic
oflag:out std_logic

Test before submit (attached test case).

Delivery method:

Will announced soon ©

Computer Architectures – Milestone 1

2020

Deadline: Thursday, 09 April, 2020 23:59.

Good luck!