

Université Paul Sabatier

Analyse et commande des systèmes temps réel

- Synthèse d'une commande à retard -APPLICATION À UN PROCÉDÉ ÉLECTRO-MÉCANIQUE

Auteurs: Lucien RAKOTOMALALA David TOCAVEN

Encadrant: Carolina Albea-Sànchez

Table des matières

Introduction		1
1	Identification-Modélisation du système	2
2	Étude d'une commande Proportionnelle-dérivateur 2.1 Équivalence avec retour d'état instantané	3
3	Placement du spectre Fini	4
4	Étude d'un prédicteur de Smith	5
5	Implantation sur le procédé réel	6
A	Annexes	
\mathbf{T}	TITRE TITRE	
٨	nnovo 2 TITRE	a

Introduction

À partir de l'énoncé, nous avons définie le cahier des charges suivant :

- Il faut réaliser un asservissement en position angulaire.
- Il faut atteindre la consigne en moins de 8 secondes. $\Rightarrow T_m < 8s$
- Il ne doit pas y avoir d'oscillations.
- Il ne doit pas y avoir de dépassement de la consigne. $\Rightarrow \forall t \geq 0, V_g(t) \leq V_{ref}(t)$
- Il doit y avoir une erreur de position nulle. $t \to \infty, V_g(t) \to V_{ref}(t)$
- La commande doit rejeter Les perturbations de sortie de type échelon $(p(t) = p_0)$ en maximum 3 secondes.

1 Identification-Modélisation du système

- 1.1 Détermination de paramètres et du retard
- 1.2 Autres méthode
- 1.3 Modèle fréquentiel
- 1.4 Modèle espace d'état
- 1.5 Commandabilité et observabilité
- 1.6 Analyse de la boucle ouverte
- 1.7 Stabilité de la boucle fermée

Est-ce bien ces deux méthodes? (la troisième méthode supposée étant le pseudo-retard non traité en cours)

- 1.7.1 Delay-Sweeping
- 1.7.2 Stabilité 2D

2 | Étude d'une commande Proportionnelledérivateur

2.1 Équivalence avec retour d'état instantané

Pour une loi de commande PI avec comme polynôme $Q(p) = k_1 + k_2 p + ... + k_n p^n$ dans la boucle d'asservissement, nous pouvons écrire le développement suivant :

$$\begin{split} \frac{Y(p)}{E(p)} &= \frac{G(p)}{1 + Q(p)G(p)} \Leftrightarrow \frac{Y(p)}{E(p)} = \frac{Y(p)}{U(p) + Q(p)Y(p)} \\ &\Leftrightarrow \frac{1}{E(p)} = \frac{1}{U(p) + Q(p)Y(p)} \\ &\Leftrightarrow E(p) = U(p) + Q(p)Y(p) \\ &\Leftrightarrow U(p) = E(p) - Q(p)Y(p) \end{split}$$

Cette dernière ligne est la caractéristique d'un retour d'état, si et seulement si les états sont disponibles sur la sortie du système.

3 | Placement du spectre Fini

4 | Étude d'un prédicteur de Smith

5 | Implantation sur le procédé réel

Annexes

Annexe 1 - TITRE

Annexe 2 - TITRE