Projekt – Homelab

Spis treści

Cel projektu:	2
Wprowadzenie	3
Architektura fizyczna:	3
Architektura logiczna i VLAN-y	4
Usługi sieciowe	4
Wirtualizacja i kontenery	5
Usługi DevOps i CI/CD	6
Aplikacje webowe i bazy danych	6
Bezpieczeństwo i kopie zapasowe	6
Monitoring i diagnostyka	7
Zarządzanie infrastrukturą	
Rozwój i integracje Al	

Cel projektu:

Wdrożenie serwerowni do utrzymania aplikacji z użyciem klastra HA.

Wprowadzenie

Cel dokumentacji

- Opis aktualnej infrastruktury IT, jej elementów oraz zastosowanych technologii.
- Zdefiniowanie sposobu komunikacji pomiędzy poszczególnymi komponentami sieci.
- Udokumentowanie procesów wdrożeń i utrzymania środowiska (CI/CD, kopie zapasowe, zarządzanie konfiguracją).

Zakres

- Opis fizycznej topologii (sprzęt) i logicznej topologii (VLAN, podsieci, usługi).
- Omówienie technologii wirtualizacji (Proxmox, Docker, Kubernetes) i usług sieciowych (DNS, DHCP, VPN, Firewall).
- Opis usług wspierających rozwój oprogramowania i automatyzację (Jenkins, Ansible, GitHub Actions).
- Informacje dotyczące bezpieczeństwa (AD, SSL, RAID, firewall, segmentacja).

Architektura fizyczna:

Router

- Urządzenie brzegowe zapewniające dostęp do Internetu i routing w sieci LAN.
- Dedykowany sprzęt (router ISP) oraz wirtualna maszyna (pfSense) działająca w roli bramy domyślnej dla maszyn wirtualnych.

Switch Cisco (SG200-26)

- Model: SG200-26 26-Port Gigabit
- Adres IP zarządzania: 192.168.1.254
- Odpowiedzialny za rozdzielanie ruchu w sieci LAN i obsługę VLAN-ów.

Serwer NAS

- IP: 192.168.1.8
- Uruchomione usługi: NFS, backup dla Proxmoxa, przechowywanie plików.
- Konfiguracja RAID (zależnie od Twoich ustawień, np. RAID 5/6/10) dla zwiększenia bezpieczeństwa danych.

Serwery (Proxmox Cluster)

- Serwer Master: IP: 192.168.1.100, Virtual IP: 192.168.2.1
- Serwer Slave: IP: 192.168.1.6, Virtual IP: 192.168.2.2
- Działają w klastrze Proxmox (High Availability).

Raspberry Pi

- IP: 192.168.1.11
- Usługi: NGINX (np. reverse proxy, serwer aplikacji web, Home Assistant).

UPS

Zapewnia zasilanie awaryjne dla krytycznych elementów sieci (serwery, NAS, router).

Architektura logiczna i VLAN-y

1. Podsieci

- Główna podsieć LAN: 192.168.1.0/24
- Podsieć dla maszyn wirtualnych (pula DHCP pfSense): 192.168.2.0/24 (np. 192.168.2.10–192.168.2.100).
- (Ewentualnie) dodatkowe VLAN-y dla IoT, strefy DMZ, kamer IP itp. zależnie od potrzeb.
- 2. VLAN-y (przykładowa propozycja)
 - o VLAN 10: Sieć produkcyjna (serwery i urządzenia główne, 192.168.1.0/24).
 - VLAN 20: Maszyny wirtualne, strefa DMZ, testy (192.168.2.0/24).
 - VLAN 30: IoT (urządzenia Raspberry Pi, Home Assistant itp.), jeśli chcesz je odseparować.

3. Routing miedzy VLAN-ami

- Realizowany przez pfSense (zainstalowane jako VM na Proxmox) lub przez główny router.
- Możliwe reguły firewall ograniczające dostęp z VLAN-u IoT do sieci produkcyjnej.

Usługi sieciowe

1. pfSense (VM)

- Usługi:
 - DHCP rozdaje adresy w 192.168.2.0/24.

- DNS (BIND, AD Guard lub DNS Resolver pfSense) z możliwością split-DNS.
- VPN konfiguracja połączeń zdalnych (np. OpenVPN/IPsec/WireGuard).
- Firewall główna zapora ruchu na granicy VLAN-ów i Internetu.

2. Windows Server (jeśli występuje)

- Rola w infrastrukturze: kontroler domeny Active Directory, DNS, DHCP (jeżeli nie pfSense).
- o Zarządzanie użytkownikami i grupami AD, integracja z usługami, Single Sign-On.

3. Linux

- Dystrybucje serwerowe (Debian/Ubuntu/CentOS) z rolami:
 - DNS (BIND) alternatywnie do pfSense/Windows Server.
 - Monitoring (Zabbix, Nagios) w Twoim przypadku Zabbix w Dockerze.
 - Kali Linux testy penetracyjne i audyty bezpieczeństwa (opcjonalnie w VM).

4. AD Guard

- o Filtrowanie reklam i złośliwych domen w sieci lokalnej.
- Może być zainstalowane na Raspberry Pi lub jako kontener Docker.

Wirtualizacja i kontenery

1. Proxmox

- o Klastrowanie (HA) serwer Master (192.168.1.100) i Slave (192.168.1.6).
- Przykładowe VM: pfSense, Windows Server, Linux (bazy danych, Jenkins, GitLab/GitHub Actions runner itp.).
- Kontenery LXC szybsza wirtualizacja lekkich usług.

2. Docker

- Uruchomiony na klastrze Proxmox (lub dedykowany węzeł Docker).
- o Kontenery:
 - Zabbix monitoring.
 - NGINX front-end/proxy dla aplikacji webowych.
 - Baza danych (MySQL/PostgreSQL) przechowywanie danych aplikacji i Zabbixa.

3. Kubernetes (k8s)

- Opcjonalnie wykorzystywany do orkiestracji kontenerów.
- Może działać na klastrze Proxmox jako węzeł z kilkoma workerami.
- Ułatwia skalowanie i zarządzanie usługami kontenerowymi.

Usługi DevOps i CI/CD

1. Jenkins

- Zainstalowany w VM lub kontenerze Docker.
- Używany do automatyzacji procesów build/test/deploy aplikacji.

2. Ansible

- Zarządzanie konfiguracją serwerów i kontenerów.
- Playbooki do szybkiego wdrażania usług, konfigurowania systemów i patchowania.

3. GitHub Actions

- Alternatywa lub uzupełnienie dla Jenkins.
- o CI/CD w chmurze GitHub, integracja z repozytoriami kodu.
- Może współpracować z infrastrukturą on-premise (self-hosted runners).

Aplikacje webowe i bazy danych

1. LAMP/LEMP stack

- NGINX/Apache: hosting stron i aplikacji (Raspberry Pi, kontenery w Dockerze).
- MySQL/PostgreSQL: bazy danych dla Zabbixa, aplikacji webowych.
- PHP/Python: środowisko uruchomieniowe dla aplikacji.

2. NGINX na Raspberry Pi

- Może pełnić rolę reverse proxy lub serwera statycznych treści.
- Możesz dodać certyfikaty SSL (np. Let's Encrypt).

Bezpieczeństwo i kopie zapasowe

1. Firewall

o PfSense (policy-based routing, NAT, VPN, blokady ruchu przychodzącego).

o Dodatkowe reguły na Switchu Cisco (ACL) lub Routerze (jeśli wspiera).

2. SSL/TLS

- Certyfikaty SSL wystawiane przez Let's Encrypt (lub własne CA, zależnie od potrzeb).
- Wykorzystanie protokołów HTTPS i zabezpieczenie panelu administracyjnego (Proxmox, pfSense).

3. Active Directory

- Zarządzanie użytkownikami, politykami grup (GPO), uwierzytelnianiem do stacji roboczych, serwerów, usług.
- o Integracja AD z Jenkins, Docker Registry itp. (jeśli wymaga loginu domenowego).

4. Kopie zapasowe (NAS, NFS)

- Serwer NAS: 192.168.1.8, usługi NFS jako storage dla VM Proxmoxa.
- o Regularne snapshoty maszyn wirtualnych w klastrze Proxmox.
- o Kopie zapasowe plików i baz danych na NAS (lub w chmurze).

5. RAID

o Konfiguracja RAID (w NAS lub w serwerach) zapewniająca redundancję dysków.

Monitoring i diagnostyka

1. Zabbix

- o Kontener Docker (komponenty: Zabbix Server, Zabbix Frontend, Agent).
- Monitorowanie:
 - Hosty fizyczne (Serwery Proxmox, NAS, Raspberry Pi).
 - Usługi sieciowe (ping, HTTP, SNMP).
 - Wskaźniki wydajności (CPU, RAM, obciążenie sieci).

2. Logi systemowe

- Centralizacja logów (np. w Elastic Stack lub syslog na dedykowanej VM).
- Analiza logów pod kątem bezpieczeństwa i błędów.

3. Testy penetracyjne (Kali Linux)

- Analiza bezpieczeństwa sieci, usług, aplikacji.
- Audyty i raporty poprawek.

Zarządzanie infrastrukturą

1. Ansible

- o Playbooki do automatyzacji konfiguracji serwerów Proxmox, Docker, pfSense.
- Możliwa integracja z Jenkins (uruchamianie playbooków po zatwierdzeniu zmian w repozytorium).

2. CI/CD

- Pipeline'y w Jenkins lub GitHub Actions do wdrażania aplikacji na środowisko testowe/produkcyjne.
- Integracja z Docker (budowa obrazów), Kubernetes (deployment), serwerem NAS (przechowywanie artefaktów).

3. Git

- o Repozytoria kodu i konfiguracji (GitHub/GitLab lub serwer lokalny Git).
- o Kontrola wersji skryptów Ansible, definicji Jenkins pipeline, Dockerfile itp.

Rozwój i integracje Al

1. **Al**

- Możliwe wykorzystanie modeli AI/ML do analizy logów (np. anomalii w ruchu sieciowym) lub wsparcia projektów.
- Kontenery z frameworkami AI (PyTorch, TensorFlow) przydatne w środowiskach testowych.

2. Integracja z Home Assistant

 Inteligentna automatyka domowa, uczenie maszynowe w celu optymalizacji zużycia energii, planowania zadań.