תרגיל 5־ כלים בחישוב גבולות

חדו"א: סדרות וטורים

1

יהא לוכיח את מספר נתון. בתרגיל זה נוכיח מספר c>1

$$\lim_{n\to\infty}c^{\frac{1}{n}}=1$$

מתקיים $n \in \mathbb{N}$ מתקיים באינדוקציה כי לכל $x \geq -1$ מתקיים .1

$$.(1+x)^n > 1+nx$$

בסיס האינדוקציה־ המקרה $\mathrm{n}=1$ הוא מיידי־ מה שצריך להוכיח הוא כי

$$1 + x = (1 + x)^1 \ge 1 + 1 \cdot x = 1 + x$$

וזה מתקיים תמיד.

 $(1+x)^n \geq 1+nx$ נתון מתקיים כי עבור $n \in \mathbb{N}$ נניח כי עבור

 $(1+x)^{n+1} \geq 1 + (n+1)x$ בעד האינדוקציה־ נוכיח את המקרה n+1 כלומר כי

$$(1+x)^{n+1}=(1+x)^n\cdot(1+x)$$
 בהנחת האינדוקציה
$$\geq (1+nx)\cdot(1+x)$$
 בכיוון ש־ $1+nx+x+nx^2\geq 1+(n+1)x$
$$nx^2\geq 0$$

כנדרש.

מתקיים כי n=3ו־גx=-4 ו־גx<-1 מתקיים כי

$$-27 = (1 + (-4))^3 < 1 + 3 \cdot (-4) = -11$$

- 2. יהא c<1+n מתקיים $n>n_0$ כך שלכל $n_0\in\mathbb{N}$ כלומר, אנו דורשים כי $\epsilon>0$ שרירותי. עלינו למצא $n>n_0\in\mathbb{N}$ כל שלכל $n>n_0$ בי שלכל לצורך כך מספיק לנו לדרוש כי $n>n_0\geq \frac{c-1}{\epsilon}$
 - מתקיים $n>n_0$ כך שלכל $n_0\in\mathbb{N}$ מתקיים הקודם הסעיף הסעיף לפי שרירותי. לפי שרירותי.

$$.c < 1 + n\varepsilon$$

ולכן $(1+\varepsilon)^{n}\geq 1+n\varepsilon$ כי אנו יודעים ש-0<0 שכיוון מכיוון לפי לפי אי־שוויון ברנולי, מכיוון

$$.c < 1 + n\varepsilon < (1 + \varepsilon)^n$$

ע"י הוצאת שורש π י משני אגפי המשוואה (שני האגפים חיוביים) נקבל כי

$$c^{\frac{1}{n}} < 1 + \varepsilon$$

כנדרש.

- $c=(c^{\frac{1}{n}})^n\leq 1^n=1$ איזשהו $c^{\frac{1}{n}}\leq 1^n$ ע"י העלאה בחזקת של אני האגפים מקבלים כי $c^{\frac{1}{n}}\leq 1$ ע"י העלאה בחזקת. c>1 איזשהו c>1
- 2. יהא $\varepsilon>0$ שרירותי. מסעיף ב' קיים $n>n_0\in\mathbb{N}$ כך שלכל $n_0\in\mathbb{N}$ מתקיים כי $\varepsilon>0$ שרירותי. מסעיף ב' קיים $n>n_0\in\mathbb{N}$ כמו כן, מסעיף ג' מקבלים כי $\varepsilon>0$ נובע כי לכל $n>n_0$ נובע כי לכל

$$\left|c^{\frac{1}{n}}-1\right|<\varepsilon$$

 $\lim_{n\to\infty} c^{\frac{1}{n}} = 1$ ומכאן הגבול

2

 $n_0\in\mathbb{N}$ יש $\epsilon>0$ אכן, לכל $\lim_{n\to\infty}|a_n|=0$ ראשית נשים לב כי העובדה ש־ $a_n=0$ גוררת את הגבול $\lim_{n\to\infty}|a_n|=0$ שי $|a_n|=0$ יש $|a_n|<1$ מתקיים כי $|a_n|<1$, ולכן גם $|a_n|<1$, ולכן גם שלכל

מתקיים $n \in \mathbb{N}$ אזי לכל ($n \in \mathbb{N}$ לכל לכל $|b_n| < M$ (כלומר b_n הוא חסם של M > 0 הוא

$$.-M|a_n| < b_n \cdot a_n < M|a_n|$$

 $(\lim_{n \to \infty} |a_n| = 0$ מכיוון שהסדרות באגף הימני והשמאלי ביותר מתכנסות ל־0 (לפי חשבון גבולות והעובדה ש־ $a_n b_n$ גם היא מתכנסת ל־0.

כל אחת מהטענות בשאלה הכרחיות. אם $a_n=\frac{1}{n}$ ו־ת $a_n=(-1)^n\cdot n$ מקיימות כי a_n שואפת ל־0, אינה $a_n=(-1)^n\cdot n$ ו־ $a_n=(-1)^n\cdot n=(-1)^n$ אז $a_n=(-1)^n\cdot n=(-1)^n\cdot n=(-1)^n$ אז מתכנסת (אך לא ל־0) ו־ $a_n=(-1)^n$ מתכנסת (אך לא ל־0) ו־ $a_n=(-1)^n$ מתכנסת (אך לא ל־0) ו

3

$$\lim_{n\to\infty} \tfrac{n^5+3n+1}{n^6+24n^5-2n^3+11n} = \lim_{n\to\infty} \tfrac{n^5(1+\tfrac{3}{n^4}+\tfrac{1}{n^5})}{n^6(1+\tfrac{24}{n}-\tfrac{2}{n^3}+\tfrac{11}{n^5})} = \lim_{n\to\infty} \tfrac{1}{n} \cdot \tfrac{1+3\cdot\left(\tfrac{1}{n}\right)^4}{1+24\left(\tfrac{1}{n}\right)-2\left(\tfrac{1}{n}\right)^4+11\left(\tfrac{1}{n}\right)^5} = 0\cdot 1 = 0 \ .1$$

- מתכנסת $\frac{\sin(n)}{n}$ מתכנסת ל-2 גבול הסדרה $b_n=\sin(n)$ חסומה. לכן, לפי תרגיל 2 גבול הסדרה $\alpha_n=\frac{1}{n}$ מתכנסת ל-0.
 - $\lim_{n\to\infty} \frac{2^n+15}{3^n-\sin(n)} = \lim_{n\to\infty} \frac{\left(\frac{2}{3}\right)^n+\frac{15}{3^n}}{1-\frac{\sin(n)}{3^n}} = 0 \ .3$
 - ענים כי n>200 נשים לב כי לכל מתקיים מתקיים מ $C=\frac{100^{200}}{200!}$.4

$$.0 < \frac{100^n}{n!} = \frac{100^{200}}{200!} \cdot \frac{100}{201} \cdot \frac{100}{202} \cdot \ldots \cdot \frac{100}{n} \le C \cdot \left(\frac{100}{201}\right)^{n-200}$$

מכנסת ל-0. מכלל הסנדביץ, מקבלים כי הסדרה מתכנסת ביותר מתכנסת ל-0, מכלל הסנדביץ, מקבלים כי הסדרה באגף הימני ביותר מתכנסת ל-0.

4

מתקיים אי השוויון $n\in\mathbb{N}$ מראו כי לכל.

$$.4 \le \sqrt[n]{2^n + 3^n + 4^n} \le 4 \cdot \sqrt[n]{2}$$

הערה־ טענת התרגיל אינה נכונה כאשר n=1, ועדובר בטעות בתרגיל המקורי. אנו נוכיח את נכונות הטענה לכל $n\geq 2$.

n > 2 נשים לב כי לכל

$$\sqrt[n]{2^n + 3^n + 4^n} = \sqrt[n]{4^n \left(\frac{1}{2}\right)^n + \left(\frac{3}{4}\right)^n + 1} \le \sqrt[n]{4^n} \cdot \sqrt[n]{1 + \frac{1}{4} + \frac{9}{16}} \le 4\sqrt[n]{2}$$

 $\lim_{n\to\infty}\sqrt[n]{4^n+3^n+2^n}=4$ כי העובדה כי $\lim_{n\to\infty}4\cdot\sqrt[n]{2}=4$ מתרגיל 1, ומחשבון גבולות, אנו יודעים כי 2 $\lim_{n\to\infty}4\cdot\sqrt[n]{2}=4$ נובעת כעת מכלל הסנדביץ ומהסעיף הקודם.

* 5

סדרה $\left\{ a_{n}\right\} _{n=1}^{\infty}$ נתונה ע"י כלל הנסיגה

$$\begin{aligned} a_1 &= \sqrt{2} \\ .a_{n+1} &= \sqrt{2+a_n}, \end{aligned} \qquad n=2,3,\ldots$$

ואכן . $a_{n+1} < 2$ כי נוכיח כי $a_n < 2$ העובדה כי נניח באינדוקציה נניח ידועה. נניח אינדוקציה כי 1.

$$.\alpha_{n+1} = \sqrt{2+\alpha_n} < \sqrt{2+2} = \sqrt{4} = 2$$

 $.\alpha_n>2-2^{-n+1}$ מתקים $n\in\mathbb{N}$ לכל כי הוכיחו .2

נשתמש שוב באינדוקציה. עבור n=1 מתקיים כי

$$.\alpha_1 = \sqrt{2} \approx 1.414... > 1 = 2 - 2^0$$

נניח כי
$$a_n > 2 - 2^{-n+1}$$
 אז

$$\alpha_{n+1} = \sqrt{2+\alpha_n} > \sqrt{2(2-2^{-(n+1)+1})} = \sqrt{2}\sqrt{2-2^{-(n+1)+1}} > \sqrt{2-2^{-(n+1)+1}}\sqrt{2-2^{-(n+1)+1}} = 2-2^{-(n+1)+1}$$
כנדרש.

מתקיים $n\in\mathbb{N}$ מתקיים 3.

$$.2 - 2^{-n+1} < \alpha_n < 2$$

 $\lim_{n \to \infty} a_n = 2$ מכלל הסנדביץ' נובע כי