

2009 年全国大学生电子设计竞赛试题

参寒注意事项

- (1) 2009年9月2日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题; 高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。
- (2) 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。
- (3) 参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。
- (4) 每队严格限制 3 人, 开赛后不得中途更换队员。
- (5) 参赛队必须在学校指定的竞赛场地内进行独立设计和制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。
- (6) 2009年9月5日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。

光伏并网发电模拟装置 (A 题)

【本科组】

一、任务

设计并制作一个光伏并网发电模拟装置,其结构框图如图 1 所示。用直流稳压电源 $U_{\rm S}$ 和电阻 $R_{\rm S}$ 模拟光伏电池, $U_{\rm S}$ =60V, $R_{\rm S}$ =30 Ω ~36 Ω ; $u_{\rm REF}$ 为模拟电网电压的正弦参考信号,其峰峰值为 2V,频率 $f_{\rm REF}$ 为 45Hz~55Hz;T为工频隔离变压器,变比为 n_2 : n_1 =2:1、 n_3 : n_1 =1:10,将 $u_{\rm F}$ 作为输出电流的反馈信号;负载电阻 $R_{\rm L}$ =30 Ω ~36 Ω 。

图 1 并网发电模拟装置框图

二、要求

1. 基本要求

(1) 具有最大功率点跟踪(MPPT)功能: $R_{\rm S}$ 和 $R_{\rm L}$ 在给定范围内变化时, $使U_{\rm d} = \frac{1}{2}U_{\rm S}$,相对偏差的绝对值不大于 1%。

- (2) 具有频率跟踪功能: 当 f_{REF} 在给定范围内变化时,使 u_F 的频率 $f_F = f_{REF}$,相对偏差绝对值不大于 1%。
- (3) 当 R_S = R_L =30 Ω 时,DC-AC变换器的效率 $\eta \ge 60\%$ 。
- (4) 当 R_S = R_L =30 Ω 时,输出电压 u_o 的失真度THD \leq 5%。
- (5) 具有输入欠压保护功能,动作电压 $U_{d(th)}$ =(25±0.5) V_o
- (6) 具有输出过流保护功能,动作电流 $I_{0,(th)} = (1.5\pm0.2)$ A。

2. 发挥部分

- (1) 提高DC-AC变换器的效率,使 $\eta \ge 80\%$ ($R_S = R_L = 30\Omega$ 时)。
- (2) 降低输出电压失真度,使 $THD \leq 1\%$ ($R_S = R_L = 30\Omega$ 时)。
- (3) 实现相位跟踪功能: 当 f_{REF} 在给定范围内变化以及加非阻性负载时,均能保证 u_F 与 u_{REF} 同相,相位偏差的绝对值 \leq 5°。
- (4) 过流、欠压故障排除后,装置能自动恢复为正常状态。
- (5) 其他。

三、说明

- 1. 本题中所有交流量除特别说明外均为有效值。
- 2. Us采用实验室可调直流稳压电源,不需自制。
- 3. 控制电路允许另加辅助电源,但应尽量减少路数和损耗。
- **4.** DC-AC 变换器效率 $\eta = \frac{P_o}{P_d}$,其中 $P_o = U_{ol} \cdot I_{ol}$, $P_d = U_d \cdot I_d$ 。
- 5. 基本要求(1)、(2)和发挥部分(3)要求从给定或条件发生变化到电路 达到稳态的时间不大于 1s。
- 6. 装置应能连续安全工作足够长时间,测试期间不能出现过热等故障。
- 7. 制作时应合理设置测试点(参考图1),以方便测试。
- 8. 设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、 主要的测试结果。完整的电路原理图、重要的源程序和完整的测试结果 用附件给出。

四、评分标准

	项 目	主要内容	满分
设计报告	方案论证	比较与选择 方案描述	4
	理论分析与计 算	MPPT 的控制方法与参数计算 同频、同相的控制方法与参数计算 提高效率的方法 滤波参数计算	9
	电路与程序设计	DC-AC 主回路与器件选择 控制电路或控制程序 保护电路	9
	测试方案与测试结果	测试方案及测试条件 测试结果及其完整性 测试结果分析	5
	设计报告结构 及规范性	摘要 设计报告正文的结构 图标的规范性	3
	总分		30
基本要求	实际制作完成情况		50
	完成第(1)项		10
 发挥	完成第(2)项		5
及件	完成第(3)项		24
部分	完成第(4)项		5
	其他		6
	总分		50