

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Processamento e Recuperação de Informação Querying

Departamento de Engenharia Informática Instituto Superior Técnico

1^o Semestre 2018/2019

Outline

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- 1 The Cosine Measure
- 2 Computing the Cosine Similarity
- Storing Document Norms
- 4 Reducing the Inverted Lists
- 5 Sorting the Ranked Documents

Bibliography

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Managing Gigabytes: Compressing and Indexing Documents and Images - 2nd edition Ian H. Witten, Alistair Moffat, Timothy C. Bell Morgan Kaufmann 2000

Outline

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- 1 The Cosine Measure
- Computing the Cosine Similarity
- Storing Document Norms
- 4 Reducing the Inverted Lists
- 5 Sorting the Ranked Documents

The Cosine Measure

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Similarity function

$$sim(d_j, q) = \frac{1}{W_d \times W_q} \times \sum_{i=1}^t w_{i,j} \times w_{i,q}$$

- W_d is the document norm
- W_q is the query norm
 - irrelevant for ranking
- $w_{i,j} = f_{i,j} \times idf_i$

Implementation problems

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- Processing the documents is unfeasible
- Processing the index is expensive
 - The index needs to store $f_{d,t}$
 - The inverted lists can be huge
- We need only the top r documents from a sorted list of N documents, where $r \ll N$

Outline

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- 1 The Cosine Measure
- 2 Computing the Cosine Similarity
- Storing Document Norms
- 4 Reducing the Inverted Lists
- 5 Sorting the Ranked Documents

An Example Inverted File

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Lexicon		
Num.	Term	Add.
1	best	0000
2	expedient	0024
3	government	0032
4	governs	0064
5	inexpedient	0800
6	least	8800
7	machines	0096
8	manufactured	0104
9	mass	0108
10	men	0116
11	purpose	0132
12	serve	0140
13	state	0156
14	wooden	0164

nverted File
Inverted list
(1;1),(2;1),(5;1)
(5;1)
(1;1),(2;1),(5;1),(6;1)
(1;1),(2;1)
(6;1)
(1;1)
(3;1)
(4; 1) (3; 1)
(3, 1)
(4; 1)
(3; 1), (4; 1)
(3; 1)
(4; 1)

Computing the Cosine Value

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- **1** Set *A* ← {}
- ② For each query term $t \in Q$
 - Stem t
 - Search the lexicon
 - \odot Get f_t and the address of I_t

 - **6** Read the inverted list I_t
 - **o** For each $(d, f_{d,t})$ pair in I_t

Set
$$A_d \leftarrow 0$$

Set $A \leftarrow A \cup \{A_d\}$

- **③** For each A_d ∈ A, set A_d ← A_d/W_d
- - Select d such that $A_d = \max\{A\}$
 - 2 Look up the address of d
 - Retrieve d
 - **3** Set $A \leftarrow A \{A_d\}$

Main Problems

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- How to efficiently obtain the document norms?
- How to efficiently process the inverted lists?
- How to efficiently select the top-*k* documents?

Outline

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- 1 The Cosine Measure
 - Computing the Cosine Similarity
 - Storing Document Norms
- 4 Reducing the Inverted Lists
- 5 Sorting the Ranked Documents

Storing the Document Norms

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

The problem

- All in memory: too expensive
 - E.g. $4 \times 10^9 \text{ docs} \Rightarrow 484\text{Gb}$
- All in disk: too slow
 - E.g. can take several seconds to read the norms

Storing the Document Norms

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

The problem

- All in memory: too expensive
 - E.g. $4 \times 10^9 \text{ docs} \Rightarrow 484\text{Gb}$
- All in disk: too slow
 - E.g. can take several seconds to read the norms

The solution

- Use approximations
- Read only selected document weights

Approximate Document Norms

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- Document norms are real numbers
 - Need 4 to 8 bytes of storage
- Real numbers can approximated by b-bit values

Approximate Document Norms

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

- Document norms are real numbers
 - Need 4 to 8 bytes of storage
- Real numbers can approximated by b-bit values

Approximate Norm

Using b bits to approximate x, such that $L \le x \le U$:

$$c = \left| \frac{x - L}{U - L + \epsilon} 2^b \right|$$

where c is the code for x.

An Example

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents Consider $10 \le x \le 18$, b = 2, $\epsilon = 0.1$:

• For x = 15.3:

$$c = \left\lfloor \frac{15.3 - 10}{18 - 10 + 0.1} \times 2^2 \right\rfloor = \lfloor 2.617 \rfloor = 2 = 10$$

• For x = 12.4:

$$c = \left\lfloor \frac{12.4 - 10}{8.1} \times 4 \right\rfloor = \lfloor 1.185 \rfloor = 1 = 01$$

• For x = 17.9:

$$c = \left| \frac{17.9 - 10}{8.1} \times 4 \right| = \lfloor 3.901 \rfloor = 3 = 11$$

Approximation Error

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

- The previous approximation assumes we are distributing the norms over equal sized-buckets
- However, some norms occur more frequently than others
 - Short documents are more frequent than long documents
 - Small values introduce higher error
- Thus, we need more precision for short documents

Reducing the Relative Error

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Geometric-sized buckets

Using b bits to approximate x, such that $L \le x \le U$:

$$B = \left(\frac{U+\epsilon}{L}\right)^{2^{-b}}$$

$$c = f(x) = \lfloor \log_B(x/L) \rfloor = \lfloor \frac{\log(x/L)}{\log B} \rfloor$$

Range of values for x:

$$g(c) \leq x < g(c+1)$$

where

$$g(c) = L \cdot B^c$$

An Example

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents Consider $10 \le x \le 18$, b = 2, $\epsilon = 0.1$:

$$B = \left(\frac{18.1}{10.0}\right)^{2^{-2}} = 1.160$$

If x = 15.3:

$$c = f(15.3) = \lfloor \log_{1.16}(15.3/10.0) \rfloor = 2 = 10$$

Range for c = 2:

$$13.456 \le x < 15.610$$

Using the Approximate Weights

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

 $\text{Set } A_d \leftarrow A_d/g(c_d)$

- **②** Set $H \leftarrow \text{top } r \text{ values of } A_d$
- - lacktriangle Read W_d from disk
 - Q Get the address of document d
- - - lacktriangle Read W_d from disk
 - $② Set A_d \leftarrow A_d \cdot g(c_d)/W_d$
 - If $A_d > \min\{H\}$ then Set $H \leftarrow H - \{\min\{H\}\} + \{A_d\}$ Get address of document d

Outline

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

1 The Cosine Measure

2 Computing the Cosine Similarity

3 Storing Document Norms

4 Reducing the Inverted Lists

Storing the Accumulators

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked

- One accumulator per document may be too expensive
- Solution: use pruning strategies
- Example:
 - Process terms with higher weights first
 - Stop creating accumulators when weight is below a threshold

Frequency-Sorted Indexes

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

• Order the inverted lists by $f_{d,t}$, followed by d

$$\langle 5; (1,2), (2,2), (3,5), (4,1), (5,2) \rangle$$
 \downarrow
 $\langle 5; (3,5), (1,2), (2,2), (5,2), (4,1) \rangle$

 Advantage: allows easy access to the most important terms

Storing Frequency-Sorted Lists

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Documents are grouped by frequencies

$$\begin{array}{c} \langle 5; (3,5), (1,2), (2,2), (5,2), (4,1) \rangle \\ & \qquad \qquad \downarrow \\ \langle (5,1:3), (2,3:1,2,5), (1,1:4) \rangle \end{array}$$

- d-gap coding can be used within each block
- frequency gaps can also be coded

Storing Frequency-Sorted Lists

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents Documents are grouped by frequencies

$$\begin{array}{c} \langle 5; (3,5), (1,2), (2,2), (5,2), (4,1) \rangle \\ & \qquad \qquad \downarrow \\ \langle (5,1:3), (2,3:1,2,5), (1,1:4) \rangle \end{array}$$

- d-gap coding can be used within each block
- frequency gaps can also be coded

Processing the Lists

- 1 Lists are processed in parallel, one block at a time
- $oldsymbol{\circ}$ The block with the highest TF imes IDF value is always processed first

Processing Frequency-Sorted Indexes

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Advantages

- More accuracy: if a cut threshold is used, the lost documents will have small importance
- Less processing: the larger blocks (which are those with low frequencies) have a smaller chance of being processed
- Less disk transfer: lists can be read one block at a time
- No loss in retrieval effectiveness: experiments show that it does not loose and sometimes improves the results

Drawback

May not appropriate for Boolean queries (why?)

Outline

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents 1 The Cosine Measure

2 Computing the Cosine Similarity

Storing Document Norms

4 Reducing the Inverted Lists

Sorting the Ranked Documents

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

The problem

- Sorting all documents requires $N \log N$ operations
 - For large collections this implies several seconds
- However: we are only interested in the k top documents, where $k \ll N$

Sorting the Ranked Documents

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

The problem

- Sorting all documents requires N log N operations
 - For large collections this implies several seconds
- However: we are only interested in the k top documents, where $k \ll N$

The solution

Use a heap data structure

Selecting the Top *r* documents

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

2 For
$$1 < d < r$$

$$\bullet \ \mathsf{Set} \ A_d \leftarrow A_d / W_d$$

Build H into a heap

• Set
$$A_d \leftarrow A_d/W_d$$

5 For
$$1 < i < r$$

• Select
$$d$$
 such that $A_d = \max\{H\}$

3 Set
$$H \leftarrow H − \{A_d\}$$

Algorithm Complexity

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Worst case

$$2r + (N-r) + 2(N-r)\log r + r\log r$$

Expected value

$$2r + N + 1.4r \log r \log(N/r) + r \log r$$

Algorithm Complexity

Processamento e Recuperação de Informação

The Cosine Measure

Measure Computing the Cosine

Similarity Storing

Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Worst case

$$2r + (N-r) + 2(N-r)\log r + r\log r$$

Expected value

$$2r + N + 1.4r \log r \log(N/r) + r \log r$$

Example

For N = 1000000 and r = 100:

• Full sort: 20 000 000 comparisons

• Heap: 1013000 comparisons

Processamento e Recuperação de Informação

The Cosine Measure

Computing the Cosine Similarity

Storing Document Norms

Reducing the Inverted Lists

Sorting the Ranked Documents

Questions?