Fonctions discriminantes linéaires

Christine Sénac (slides manuscrits de R.André-Obrecht) M1 Informatique

1

Classification Binaire

- Données : quelques éléments (textes) qui appartiennent à deux classes différentes
 - classe 1 (+1 •) et classe 2 (-1 •)
 - classe positive (+1 *) et classe négative (-1 *)
- Tâche: entrainer un classifieur sur ces données (dites d'apprentissage) puis prédire la classe d'un nouvel élément (nouveau texte)
- Géométriquement : trouver une séparation entre les deux classes

3

Séparation Linéaire / Non Linéaire

Données séparables linéairement

Si tous les points associés aux données peuvent être séparés correctement par une frontière linéaire (hyperplan)

Données séparables linéairement

5

Données non séparables linéairement

Données non séparables linéairement

7

Cas de 2 classes

Exemple dans R²

Fonction coût (liée aux erreurs) à minimiser

$$J(w) = \sum_{q \in Q} (-\delta_q w^{\frac{1}{q}})$$

$$J(\omega) > 0$$
 si even
 $J(\omega) = 0$ som even

Minimiser J(w)

Algorithme de Descente du gradient

BATCH L'hyperplan est mis à jour après traitement de

TOUTES les données

Regle du Perception (batch)

Wn+1 = Wn + In \ y malclanso (wn)

Theoreme. Si les classes sont lineavement separables, la règle de mise à jour converge en un nombe fini d'éterations (An=C)

Minimum global ssi séparation linéaire

ON LINE L'hyperplan est mis à jour après traitement de CHAQUE donnée

Algorithme de Rosenblett (1958).

I teration sur les observations

Si yn mal dané

What = Wh + In by yn

Sinon

What = Wh

(déplacement programif de H).

Red points belong to the positive class, blue points belong to the negative class

-0.5

-0.5

-0.5

-0.5

0.5

13

Batch Perceptron Algorithm

```
Given: training examples (\mathbf{x}_i, y_i), i = 1,...,N

Let \mathbf{w} \leftarrow (0,0,0,...,0)

do

delta \leftarrow (0,0,0,...,0)
for i = 1 \text{ to } N \text{ do}
u_i \leftarrow \mathbf{w} \cdot \mathbf{x}_i
\text{if } y_i \cdot u_i \leq 0
delta \leftarrow delta - y_i \cdot x_i
delta \leftarrow delta / N
\mathbf{w} \leftarrow \mathbf{w} - \eta \text{ delta}
\mathbf{v} \leftarrow \mathbf{v} - \eta \text{ delta}
```

Simplest case: $\eta = 1$ and don't normalize – 'Fixed increment perceptron'

Algorithme du Perceptron

Perceptron: Analyse

- Progressif : s'adapte toujours aux nouvelles données
- Avantages
 - Simple et efficace
 - Garantie d'apprendre un problème linéairement séparable (convergence, optimum global)

15

- Limitations
 - Seulement séparations linéaires
 - Converge seulement pour données séparables
 - Pas très efficace dès qu'il y a trop de descripteurs

Algorithme du

Plus la marge est grande plus la classification est fiable

