电工技术与电子技术

第1章 电路的基本概念和基本定律

主讲教师: 王香婷 教授

基尔霍夫定律及其应用

主讲教师: 王香婷 教授

基尔霍夫定律及其应用

主要内容:

专有名词,基尔霍夫电流定律、基尔霍夫电压定律。

重点: 基尔霍夫定律的熟练应用。

难点: 应用基尔霍夫电压定律列写电压方程时正负号的确定。

基尔霍夫(1824~1887)

德国物理学家

1845年,德国物理学家基尔霍夫提出了 求解复杂电路的基尔霍夫定律,他被称为 "电路求解大师"。

基尔霍夫定律

基尔霍夫电流定律(KCL) 基尔霍夫电压定律(KVL)

基尔霍夫定律及其应用

1. 几个名词

支路: 电路中的每一个分支。

一条支路流过一个电流,称为支路电流。

结点: 三条或三条以上支路的联接点。

回路:由支路组成的闭合路径。

网孔: 内部不含支路的回路。

2. 基尔霍夫电流定律(KCL)

(1) 定律

在任一瞬间,流向任一结点的电流等于流出该结点的电流。

即:
$$\sum I_{\lambda} = \sum I_{\perp}$$
 或: $\sum I = 0$ (流入取 "+", 流出取 "-")

对结点 a: $I_1 + I_2 = I_3$

或
$$I_1 + I_2 - I_3 = 0$$

实质: 电流连续性的体现。

例: 若
$$I_1 = 9A$$
, $I_2 = -2A$, $I_4 = 8A$ 。求: $I_3 = ?$

注: 列方程前,在电路图上标注电流参考方向。

(2) 推广

KCL可以推广应用于包围部分电路的任一假设的闭合面。

任意封闭曲线(曲面)都可以视为广义节点。

3. 基尔霍夫电压定律(KVL)

(1) 定律

在任一瞬间,从回路中任一点出发,沿回路循行一周,则在这个方向上电位升之和等于电位降之和。即: $\sum E = \sum IR$

项前符号的确定:

若E、I参考方向与回路循行方向相同时取正号,相反时则取负号。

对回路1:
$$I_1R_1 + I_3R_3 = E_1$$

对回路2:
$$I_2R_2 + I_3R_3 = E_2$$

3. 基尔霍夫电压定律(KVL)

(1) 定律

对回路1: $E_1 = I_1 R_1 + I_3 R_3$

对回路2: $I_2R_2+I_3R_3=E_2$

或 $I_2R_2+I_3R_3-E_2=0$

在任一瞬间,沿任一回路循行方向,回路中各段电压的代数和恒等于零。即: $\sum U = 0$

项前符号的确定:

如果规定电位降取正号,则电位升就取负号。

(2) 推广

KVL同样可以推广应用到假想的回路。

对回路1:

$$\sum E = \sum IR$$

$$E_2 = U_{\rm BE} + I_2 R_2$$

$$\sum U = 0$$

$$I_2R_2 - E_2 + U_{BE} = 0$$

注意:列KVL方程前标注回路循行方向。

例 2: 图中若 $U_1 = -2 \text{ V}$, $U_2 = 8 \text{ V}$, $U_3 = 5 \text{ V}$, $U_5 = -3 \text{ V}$, $R_4 = 2 \Omega$, 求电阻 R_4 两端的电压及流过它的电流。

解: 电阻 R_4 两端电压及流过它的电流 I 的参考方向如图示。 选回路循行方向如图所示。

列写回路的 KVL方程

$$U_1 + U_2 - U_3 - U_4 + U_5 = 0$$

代入数据,有

$$(-2) + 8 - 5 - U_4 + (-3) = 0$$

$$U_4 = -2 \mathrm{V}$$

$$U_{4} = -IR_{4}$$

$$I = 0.5 A$$

小结

1. 基尔霍夫电流定律(KCL)

$$\Sigma I_{\lambda} = \Sigma I_{H}$$
 或 $\Sigma I = 0$ (标注电流的参考方向)

2. 基尔霍夫电压定律(KVL)

$$\Sigma E = \Sigma IR$$
 或 $\Sigma U = 0$ (标注回路的循行方向)
注意正负号选择。