Design and Analysis of Algorithms

L38: Reliaility Design Dynamic Programming

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - -Sec 5.1, 5.2, 5.4, **5.8**, 5.9
- Text book 1: Levitin
 - Sec 8.2-8.4
- RI: Introduction to Algorithms
 - Cormen et al.

Example Problem

- Example: consider you need to complete 4 number of assignments successfully to pass the course.
- Each assignment can be attempted multiple number of times.
- Probability of successful attempt at each assignment $P(a_1) = 0.8$, $P(a_2) = 0.9$, $P(a_3) = 0.85$, $P(a_4) = 0.75$
- Time (hrs) taken per attempt for each assignment $T(a_1) = 3h$, $T(a_2) = 5h$, $T(a_3) = 4h$, $P(a_4) = 2h$
- Total time (hrs) available to you for all 4 assignments 20 hours
- Problem: Define the number of attempts for each assignment so as to increase the pass probability

Example Problem

- Consider the number of attempts for each assignment are represented by n_1 , n_2 , n_3 , n_4 .
- The probability of success of ith assignment is $1 (1-p_i)^{n_i}$
- The probability of successfullly completing assignment $\Pi_{1\leq i\leq 4} \; (1-(1-p_i)^{n_i})$
- Goal:
 - Maximize $\Pi_{1 \le i \le 4} (1 (1 p_i)^{n_i})$
 - Subject to $\Sigma_{1 \leq i \leq 4}$ $t_i n_i \leq C$,
 - where c (e.g. =20) is max time available, and
 - time taken per attempt by ith assignment

Reliability Design

- Application: Problem with multiplicative optimization function.
- Problem: Design a system that is composed of n devices connected in series
 - Let r_i be the reliability of device D_i .
 - r_{i} is probability that D_{i} will function properly.
 - The reliability of entire system is Πr_1
 - When n is large (e.g. 10),
 - even though r_i is high e.g. 0.9,
 - the reliability of system is $(0.9)^{10}=0.348$
 - Thus, it is desirable to duplicate the devices
 - Multiple copies of same device parallelly connected
 - So as to increase overall reliability of the system.

Multiple Devices in Parallel

- If device D_i with a reliability probability of r_i ,
 - has $m_{\dot{1}}$ copies connected in parallel, then
 - probability that all of m_i devices will malfunction $(1-r_i)^{m_i}$
- Thus, reliability of machines at stage i is $1 (1 r_i)^{m_i}$
- Example: $r_i=0.99$, $m_i=2$, then reliability is 0.9999
- Assume that reliability at stage i is given by \emptyset_i (m_i)
 - it may also depend upon switching circuit as well

Reliability Design Problem

- Problem:
 - Use device duplication to maximize reliability
 - Under the constraint of total cost.
- Let $c_i>0$ be the cost of i^{th} device.
- Let c be the max cost allowed for the system.
- Thus, similar to knapsack problem, we can apply dynamic programming technique to solve reliability design problem

Reliability Design Problem: DP Approach

- Since each $c_i>0$, and $m_i>0$, then
 - Let u_i denotes the max number of ith device
 - Each device has to be used once.
 - The max value ui for ith device would be

$$u_{i} = (C - \Sigma_{1 \leq j \neq i \leq n} C_{j}) / C_{i} = [(C + C_{i} - \Sigma_{1 \leq j \leq n} C_{j}) / C_{i}]$$

- An optimal solution m₁, m₂, ..., m_n is the result of sequence of decisions.
- Let $f_i(x)$ represents the max value of $\prod_{1 \le i \le n} \emptyset_i(m_i)$ subject to the contraints

$$\Sigma_{1 \leq j \leq n} C_j m_j \leq x$$
, and $1 \leq m_j \leq u_j$, $1 \leq j \leq i$.

• The optimal solution then is $f_n(c)$

Reliability Design Problem: DP Approach

- The last decision for n^{th} device requires m_n to be chosen from $\{1, 2, 3, ..., u_n\}$.
- After the value m_n is chosen,
 - remaining decisions must be made w.r.t. $C-C_nm_n$.
 - The principle of optimality should be used.
- The recurrence relation becomes

$$f_n(c) = \max_{1 \le m_n \le u_n} \left\{ \phi_n(m_n) f_{n-1}(c - c_n m_n) \right\} \dots (2)$$

• for any $f_i(x)$, $i \ge 1$, the generalized equation is

$$f_i(x) = \max_{1 \le m_i \le u_i} \left\{ \phi_i(m_i) f_{i-1}(x - c_i m_i) \right\} \dots (3)$$

Reliability Design Problem: DP Approach

- Initial value (when no device is used, reliability is 1) $f_0(x) = 1 \ \forall x$, $0 \le x \le c$.
- Let $S^{\underline{i}}$ consists of tuples of the form (f, x), where $f = f_{\underline{i}}(x)$
- There is at most one tuple for each different x,
 - that results from a sequence of decisions m_1 , ..., m_n .
- The dominance rule is
 - (f_1, x_1) dominates (f_2, x_2) iff $f_1 \ge f_2$ and $x_1 \le x_2$.
- The dominated tuples can be discarded from Si.

Consider 3 devices with their costs and reliabilities as

$$-c_1=30, c_2=15, c_3=20, r_1=0.9, r_2=0.8, r_3=0.5$$

- The max system cost is c=105
- Computation for designing the system:

$$\Sigma c_i = 30+15+20=65$$
 $u_1 = (105+30-65)/30=70/30=2$
 $u_2 = (105+15-65)/15=55/15=3$
 $u_3 = (105+20-65)/20=60/20=3$

- Consider the decision sequence m_1 , m_2 and m_3 .
- Starting from tuple S0={ (1,0)},
 - compute S^{\pm} from $S^{\pm-1}$ by trying out all possible values for m_{\pm} and combining the results.

- Let S^{i}_{j} represent all tuples obtainable from S^{i-1} by choosing $m_{i}=j$. Thus
- For device D_1 , $u_1=2$, possible values for m_1 are 1, 2

```
S_{1}=\{(0.9,30)\}

S_{2}=\{(0.9,30),(1-(1-0.1)^{2},30*2)\}=

=\{(0.9,30),(0.99,60)\}

S_{1}=\{(0.9*0.8,30+15),(0.99*0.8,60+15)\}

=\{(0.72,45),(0.792,75)\}

S_{2}=\{(0.9*(1-(1-0.2)^{2},30+15*2)

=\{(0.9*0.96,30+30)\}

=\{(0.864,60)\}
```

The tuple value (0.99*0.96,60+30) = (0.9504.90) is eliminated as left with cost of 15, which is not enough for D₃

Continuing

```
S^{2}_{3}={ (0.9*(1-(1-0.2)<sup>3</sup>, 30+15*3)
={ (0.9*0.992, 30+45) }
={ (0.8928, 75) }
```

The tuple value (0.99*0.992,60+45) = (0.98208,105) is eliminated as left with cost of 0, which is not enough for D₃

• Combining S_{1} , S_{2} , and S_{3} , we get

```
S^{2}_{1}=\{(0.72,45), (0.792,75)\}

S^{2}_{2}=\{(0.864,60)\}

S^{2}_{3}=\{(0.8928,75)\}

S^{2}=\{(0.72,45), (0.864,60), (0.8928,75)\}
```

The tuple value (0.792,75) is eliminated as it is dominated by (0.864,60) using dominance rule

```
0.864 \ge 0.792, and 60 \le 75
```

Continuing

```
S_{31} = \{ (0.9*0.8*0.5, 30+15+20), \\ (0.9*0.96*0.5, 30+15*2+20), \\ (0.9*0.992*0.5, 30+15*3+20) \} \\ = \{ (0.36, 65), \{0.432, 80), (0.4464, 95) \} \} \\ S_{32} = \{ (0.9*0.8*0.75, 30+15+20*2), \\ (0.9*0.96*0.75, 30+15*2+20*2) \} \\ = \{ (0.54, 85), (0.648, 100) \} \\ S_{33} = \{ (0.9*0.8*0.875, 30+15+20*3) \} \\ = \{ (0.63, 105) \}
```

• Combining S_{1} , S_{2} , and S_{3} , we get

```
S<sup>3</sup>={ (0.36,65), (0.432,80), (0.54,85), (0.648,100) } Note: Other values are dominated.
```

• The best design is (0.648, 100) i.e. $m_1=1$, $m_2=2$, $m_3=2$

Summary

- Understanding reliability
- Reliability in stages
- Overall summary of DP
 - Principle of optimality
 - Multi-stage graphs
 - Transitive closure: Warshall's algorithm
 - All pair shortest path: Floyd's algorithm
 - Optimal binary search trees
 - Knapsack problem
 - Bellman-Ford algorithm
 - Traveling Sales Person problem
 - Reliability design