HOW TO PROTOTYPE (ALMOST) ANY CIRCUIT

from the perspective of designer and maker

by Yuxiang Cheng

Part 1

EE Speedrun

"All computing is physical."

-- Tom Igoe

We have all played with this

Parts

Vendors

- · Digike
- Mouse

and Modules

Evaluation Board

Connector

Power

Actuator

Vendor

- · Digike
- Mouse

Laws


```
V = I × R
Ohm's Law
P = V × I
Power Law

KVL & KCL
Kirchhoff's Laws
```

Simple & Practical

Complex & Theoretical

Focus on what matters for prototyping

MCU

"Arduino" or "microcontroller" = MCU Chip + Development Board + Peripherals

MCU Chips

ARM Cortex-M

- √ Industry standard
- √ Excellent tools
- √ Wide ecosystem
- * Complex setup
- ⊁ Higher cost

ESP32/ESP8266

- ✓ Built-in Wi-Fi/BT
- √ Low cost
- √ Easy to use
- X Power hungry
- X Limited I/O

RISC-V

- √ Open source
- √ Future-proof
- √ Customizable
- * Limited tools
- X Smaller ecosystem

AVR

- √ Simple & reliable
- ✓ Arduino compatible
- √ Low power
- X Limited performance
- ≯ 8-bit architecture

Development Boards

Seeed Studio Xiao

- Xiǎo 小, small!
- Researcher's favorite

ESP32 DevKits
(various vendors)

STM32 Nucleo/Discovery (STMicroelectronics)

Fabrication

1. Connectors

Plug-and-play modules with standard connectors. No soldering required. Perfect for quick concept validation and system testing.

2. Breadboards

Solderless prototyping with jumper wires. Rapid iteration and circuit testing. Great for learning and experimenting.

3. Proto & Perf Boards

Perforated boards for permanent prototypes. Proto boards have some traces, perf boards are blank. Requires soldering skills.

4. ?????

Something cool and mysterious...

Easy

Manufacturing

From prototype to production-ready PCB

Software

Arduino IDE

Beginner-friendly IDE with built-in libraries and examples. Perfect for learning and quick prototyping with Arduino boards.

[Arduino IDE Image]

PlatformIO

Professional multi-platform IDE with VS Code integration. Supports hundreds of boards and advanced debugging features.

[PlatformIO Image]

Keil

Industry-standard ARM development environment. Professional debugging tools and code optimization features.

[Keil Image]

Chip-Specific

STM32CubeIDE - Official STM32 development ESP-IDF - ESP32 native framework

MicroPython / CircuitPython

Python for microcontrollers with interactive REPL. Great for rapid prototyping and education.

Protocol

Choose based on: Distance, speed, power, complexity

Consider: Voltage levels, timing requirements,
error handling

Debug tools: Logic analyzers, protocol decoders, oscilloscopes

Networking

- Range considerations: Indoor vs outdoor, obstacles, interference
- Power trade-offs: Transmission power vs battery life
- Cost factors: Infrastructure, licensing, module prices
- Security: Encryption, authentication, network isolation

Part 2

Inputs and Outputs

and the cybernetic systems we rely on

Actuator

Output devices that convert electrical signals into physical actions

- Motors
- Electromagnets
- Servo Motor
- · Linear Motor
- Pneumatic actuators
- Hydraulic systems
- Thermal actuators
- Piezoelectric actuators
- Shape-changing material

Actuator

Electromagnetic Actuators

move and actuate

Motors

- AC motors
- Brushed DC motors
- BLDC motors
- · Linear motors

Electromagnets

- Push/Pull Solenoids
- Relay Coils
- * PCB magnets

Servo Motor

A servo motor is not just a motor, but a complete system that combines a motor with an encoder to provide feedback for precise position control.

Actuator

Photo-Actuators

show and display

• LED Arrays

• LCD Screens

• OLED Displays

• E-Paper Displays

Sensor

Input devices that convert physical phenomena into electrical signals

Environmental

· LiDAR sensors

. Thin-Film

• Ultrasonic sensors

· MEMS

• Hall effect sensors

Biometric

• Capacitive touch sensors

Sensor

Analog Sensors

basically family of weird resistors

Environmental

- Thermistor
- Chemresistor
- Photocell
- Gas Sensors

Thin-Film

- FSR (Force)
- Soft Piezo
- Strain Gauge
- and more
- Soft Potentiometer

Sensor

MEMS Sensors

Micro-Electro-Mechanical Systems

- IMU (Inertia Measuring Unit) Magnetometers

Pressure

• Microphone

• Barometric

• and many more

Biometric

Biometric

Biometric Sensors

identity verification and health monitoring

Bio-electric

- GSR (Galvanic Skin Response) EMG (Electromyography)
- PPG (Photoplethysmogram)
- EEG (Electroencephalography)

Identity & Access

- Camera (Facial recognition)
- Microphone (Voiceprint Recognition)

Part 3

Get ready for the Workshop

Your Kit

[Placeholder: Kit image]

Workshop kit overview and contents

Your Kit

[Placeholder: Kit form/details]

Detailed kit specifications and usage instructions

Warm-up

[Placeholder: Warm-up exercise image]

Initial hardware exercise (15 minutes)

Warm-up

[Placeholder: Warm-up exercise form/details]

Step-by-step instructions and requirements

Hard Mode

[Placeholder: Hard Mode challenge image]
Advanced challenge covering multiple topics (45 minutes)

Hard Mode

[Placeholder: Hard Mode challenge form/details]

Comprehensive project requirements and guidelines

System Diagram

[Placeholder: System diagram image] Hardware-web system and signal flow

System Diagram

[Placeholder: System diagram form/details]

Technical specifications and implementation details