Teoría de conjuntos: Teorema del Ω

Teorema	Nombre
$A \cap U = A$	identidad de ∩
$A \cap \emptyset = \emptyset$	dominación ∩
$A \cap A = A$	idempotencia ∩
$A \cap B = B \cap A$	conmutatividad ∩
$(A \cap B) \cap C = A \cap (B \cap C)$	asociatividad ∩
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$distributividad \cap sobre \; \cup \\$
$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$	de Morgan de ∩
$A \cap (A \cup B) = A$	absorción de ∩ sobre ∪
$A \cap \overline{A} = \emptyset$	negación de ∩

Teoría de conjuntos: teoremas del u

Teorema	Nombre
$A \cup \emptyset = A$	identidad ∪
$A \cup U = U$	dominación ∪
$A \cup A = A$	idempotencia ∪
$A \cup B = B \cup A$	conmutatividad ∪
$(A \cup B) \cup C = A \cup (B \cup C)$	asociatividad ∪
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$distributividad \cup sobre \cap$
$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	de Morgan ∪
$A \cup (A \cap B) = A$	absorción ∪ sobre ∩
$A \cup \overline{A} = U$	negación ∪

Otros

Teorema	Nombre
$A = B \equiv (A \subseteq B) \land (B \subseteq A)$	Definición de igualdad
$A \subseteq B \equiv \overline{B} \subseteq \overline{A}$	subconjuntos complementos
$A = \overline{(\overline{A})}$	Doble complemento

Inclusión, \subseteq : A está incluido en B (A es subconjunto de B, o, A está contenido en B) si cada elemento de A pertenece a B

 $A \subseteq B \equiv \forall x : U | (x \in A \Longrightarrow x \in B)$

La Inclusión propia, ⊂ se define a partir de ellos: A está incluido propiamente en

B si A está incluido en B, pero no es igual a B. $A \subset B \equiv ((A \subseteq B) \land (A := B))$

Complemento: El complemento de un conjunto A, se denota A, y contiene todos los elementos de U que no están en A.

 $A = \{x : U | x \text{ no} \in A\}$

Diferencia: La diferencia de los conjuntos A y B, se denota $A \setminus B$, y contiene todos los elementos que están en A pero no están en B

 $A \setminus B = \{x : U | x \in A \land x \in B\}$

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a \mid a \in A : aRa$. Por ejemplo: $\geq : \mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si $\forall a, b | a, b \in A$: $aRb \implies bRa$. Por ejemplo: hermano: $Persona \leftrightarrow Persona$ tal que $hermano(a, b) \equiv "a$ es hermano de b"
- R es asimétrica si $\forall a, b | a, b \in A : aRb \implies \neg bRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es antisimétrica si $\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b$. Por ejemplo: $\subseteq : \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si $\forall a, b, c | a, b, c \in A : (aRb \land bRc) \implies aRc$. Por ejemplo: $|: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $a|b \equiv "a$ divide a b"

Relaciones de orden

- Una relación R: A ↔ A es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.

Sea R : A ↔ B una relación.

R es unívoca si todo elemento del dominio de definición de R está asociado con un único elemento en el codominio. Formalmente: R es unívoca si $\forall a \in A \ \forall b \ 1$, $b \ 2 \in B$: ((aRb 1 \land aRb 2) = \Rightarrow b 1 = b 2)

 ${\sf R}$ es total si el dominio de definición de ${\sf R}$ es igual al dominio de ${\sf R}.$ Formalmente: ${\sf R}$ es total si

 $\forall a \in A \exists b \in B : aRb$

R es una función parcial de A en B si R es unívoca. R es una función total de A en B si R es unívoca y total

¿Cuando es f T función? Cuando f es inyectiva ¿Cuando es f T total? Cuando f es sobreyectiva ¿Cuando es f T sobre? Cuando f es total Por lo tanto, si $f: A \to B$ es total, y biyectiva, entonces, f es invertible, y f T es total y biyectiva.