Esempio di I prova in itinere di FONDAMENTI DI AUTOMATICA

Oltre ai necessari articoli di cancelleria (penna, matita, etc.) si può utilizzare **solo** una calcolatrice non programmabile. Non si possono, in particolare, tenere fotocopie di alcun tipo, appunti, quaderni, etc. Inoltre, ciascuna Studentessa e ciascuno Studente deve svolgere la prova per proprio conto e può comunicare SOLO con il personale di sorveglianza per tutta la durata della prova.

Durata della prova: 80 minuti.

• Domanda 1. Si consideri un sistema lineare la cui matrice di stato è

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

e sia \mathcal{M}_A l'insieme dei modi del sistema. Si ha:

- 1. $\mathcal{M}_A = \{1\};$
- 2. $\mathcal{M}_A = \{1, t\};$
- 3. $\mathcal{M}_A = \{1, t, t^2\};$
- 4. nessuna delle precedenti risposte è corretta.
- **Domanda 2.** Si consideri un sistema Σ di funzione di trasferimento $W(s) = \frac{s-1}{s^2-K}$ dove K è un parametro reale.
 - 1. Σ è BIBO stabile per ogni K < 0;
 - 2. Σ è BIBO stabile se solo se K=1;
 - 3. Qualunque sia il valore del parametro reale K, Σ non è BIBO stabile;
 - 4. nessuna delle precedenti risposte è corretta.

• **Domanda 3.** Si consideri lo schema a catena chiusa rappresentato in figura

Indicando con W(s) la funzione di trasferimento da y_0 a y e con $W_d(s)$ la funzione di trasferimento da d a y, si ha:

- 1. se C(s) e G(s) sono BIBO stabili allora di sicuro lo sono anche W(s) e $W_d(s)$;
- 2. anche se C(s) e G(s) non sono BIBO stabili è possibile che W(s) sia BIBO stabile;
- 3. se G(s) è la funzione di trasferimento di un sistema che non è semplicemente stabile allora W(s) non può essere BIBO stabile;
- 4. nessuna delle precedenti risposte è corretta.

ullet Domanda 4. Si consideri un circuito elettrico con la struttura rappresentata in figura, dove R e C sono parametri positivi costanti.

Si consideri la tensione u(t) come ingresso del filtro e la tensione y(t) (a morsetti di uscita aperti) come uscita. Sia H(s) la funzione di trasferimento del filtro. Si ha:

- $1. H(s) = \frac{RC}{1 + sRC};$
- 2. $H(s) = \frac{1}{1 + sRC}$;
- 3. $H(s) = \frac{1+sRC}{s+1}$;
- 4. nessuna delle precedenti risposte è corretta.

• Domanda 5. Si consideri un sistema lineare di funzione di trasferimento

$$H(s) = \frac{1}{(s+1)(s+2)}$$

e sia \mathcal{M}_A l'insieme dei modi del sistema. Si può concludere che:

- 1. $e^t \in \mathcal{M}_A$;
- 2. $e^t \notin \mathcal{M}_A$;
- 3. $te^{-t} \notin \mathcal{M}_A$;
- 4. nessuna delle precedenti risposte è corretta.

• **Domanda 6.** Si consideri lo schema a catena chiusa rappresentato in figura dove

$$C(s) := \frac{K}{s}, \quad K > 0,$$
 e $G(s) = \frac{1}{s+4}.$

Siano $y_0 = 1(t)$ e $d(t) = \alpha \cdot 1(t)$ con α costante reale. Sia, infine, y_r il valore di regime dell'uscita del sistema a catena chiusa. Si ha:

- 1. per qualunque valore delle costanti reali α e K > 0, $y_r = 1 + \alpha$;
- 2. per qualunque valore delle costanti reali α e K > 0, $y_r = 1$;
- 3. y_r non esiste o non è finito;
- 4. nessuna delle precedenti risposte è corretta.

• Domanda 7. Si consideri il sistema lineare

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$$

dove

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad c = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \qquad d = 0.$$

Sia W(s) la funzione di trasferimento del sistema. Si ha:

1.

$$W(s) = \frac{s^3}{(s+1)^3}$$

2.

$$W(s) = \frac{s^3}{(s-1)^3}$$

3.

$$W(s) = \frac{1}{(s-1)^3}$$

4. nessuna delle precedenti risposte è corretta.

• Domanda 8. Si consideri il polinomio

$$P(s) = (s+1)(s+2)(s+3)(s+4) + k$$

dove k è un parametro reale. Si ha:

- 1. qualunque sia il valore del parametro reale k, P(s) non è un polinomio di Hurwitz;
- 2. esistono valori del parametro reale k per i quali tutti gli zeri di P(s) hanno parte reale minore di -3/4.
- 3. se k < 0 allora tutti gli zeri di P(s) hanno parte reale minore di -3/4;
- 4. nessuna delle precedenti risposte è corretta.

- **Domanda 9.** Si consideri un polinomio monico P(s) e la relativa tabella di Routh. Si ha:
 - 1. se, nel costruire la tabella, un elemento della prima colonna risulta nullo, allora di sicuro P(s) ha almeno uno zero sull'asse immaginario;
 - 2. se un qualunque elemento della tabella è negativo allora di sicuro P(s) non è un polinomio di Hurwitz;
 - 3. se il prodotto degli elementi della prima colonna della tabella è positivo allora di sicuro P(s) è un polinomio di Hurwitz;
 - 4. nessuna delle precedenti risposte è corretta.
- **Domanda 10.** Si consideri un sistema lineare di funzione di trasferimento W(s) e sia A la sua matrice di stato.

Si ha:

- 1. se l'uscita del sistema è nulla per ogni ingresso e per ogni stato iniziale, allora non può accadere che il sistema sia semplicemente ma non asintoticamente stabile;
- 2. se A è diagonalizzabile allora W(s) non può avere poli doppi;
- 3. se A è diagonalizzabile allora tutti i modi del sistema appaiono con combinatore non nullo nella risposta impulsiva del sistema;
- 4. nessuna delle precedenti risposte è corretta.