COMM1822

Term 2 2022

Assignment Project Exam Help

Week 3 Relational Modelling powcoder.com

Add WeChat/powcoder

Lecturer-in-Charge: Kam-Fung (Henry) Cheung

Email: kt.cheung@unsw.edu.au

Tutors: Theresa Tran (Tutor-in-Charge)

Liam Li Chen

Kathy Xu

PASS Leader: Srilekha Chandrashekara Kolaki

WARNING

This material ign been eproped and xannumented to you by or on behalf of the University of New South Wales in accordance with persion//138/(1) of the Copyright Act 1968 (Act).

The material in this communication may be subject to copyright ander the Actuary further communication or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice

Copyright

 There are some file-sharing websites that specialise in buying and selling academic work to and from university students.

Assignment Project Exam Help

If you upload your original work to these websites, and if another student downloads
 and presents it as their own either the collusion — even years after graduation.

Add WeChat powcoder

These file-sharing websites may also accept purchase of course materials, such as copies
of lecture slides and tutorial handouts. By law, the copyright on course materials,
developed by UNSW staff in the course of their employment, belongs to UNSW. It
constitutes copyright infringement, if not academic misconduct, to trade these
materials.

Acknowledgement of Country

UNSW Business School acknowledges the Bidjigal (Kensington campus) and Gadigal (City campus) the traditional custodians of the lands where each campus is located.

Assignt

We acknowledge all Aboriginal and Torres Straittp Islander Elders, past and present and their communities who have shared and practiced their teachings over thousands of years including downwards of the business practices.

We recognise Aboriginal and Torres Strait Islander people's ongoing leadership and contributions, including to business, education and industry.

Assignment Project Exam Help

orres Straittps://powcoder.compus/
and their
acticed their
including Add

we Chat powcoder (Kensington campus) and Gadigal (City campus)
the traditional custodians of the lands
including Add

we Chat powcoder (Kensington campus) and Gadigal (City campus)
the traditional custodians of the lands
including Add

UNSW Business School. (2022, May 7). *Acknowledgement of Country* [online video]. Retrieved from https://vimeo.com/369229957/d995d8087f

Agenda

Relational Database Modelling

- Definition relational model Relational model integrity

 Project Exam Help
- From ER diagram to tresational medelo from entities to
 - schema/tables)

Add WeChat powcoder

Mapping ER relationships in the relational model

Database Design: Overview

When designing database for an organisation, the processes are:

- ☐ Gather business requirement Project Exam Help
- □ Develop conceptual model using ER modelling technique (Weeks 1 and 2).
- ☐ Convert ER model to a set of relations in the relational model (Week 3).
- □ Normalise the relations to remove any ahomalies (Weeks 4 and 5).
- ☐ Implement the database by creating a table for each normalised relations.

Relational Model

- □ "A relational model represents data in a two-dimensional table called a relation."
- □ Relational model includes:
 - Relations: two-dimensional Signment Project Exam Help
 - Attributes: the column headers of a relation.
 - Tuples: the rows of a relation. https://powcoder.com
- □ The name of a relation (table) and its set of attributes (column headers) are called a schema for the relation.
 Add WeChat powcoder
- ☐ The set of schemas for all relations in a design is called a database schema (metadata).
- ☐ The data dictionary describes the database schema.
- ☐ Usually implemented in a **RDBMS** (relational database management system) such as **Oracle**.

Example of a Relational Model

- ☐ Relational schema for the relation "MOVIE"
 - MOVIE (TITLE, YEAR, LENGTH)
 Assignment Project Exam Help
- □ Relation https://powcoder.com
 - Every relation has a unique name.
 - Every attribute value is Atton We Chat powcoder
 - Every row is unique.
 - Attributes in tables have unique names.
 - The order of the columns is irrelevant.
 - The order of the rows is irrelevant.

Example of a Relational Model

FIGURE 3.2 AN EXAMPLE OF A SIMPLE RELATIONAL DATABASE Table name: PRODUCT Database name: Ch03_SaleCo Primary key: PROD_CODE Foreign key: VEND CODE PROD_CODE PROD_DESCRIPT PROD_PRICE | PROD_ON_HAND | VEND_CODE 001278-AB Claw hammer 12.95 23 232 235 123-21UUY Houselite chain saw, 16-in. bar 189.99 QER-34256 Sledge hammer, 16-lb. head 18.63 231 2.99 15 232 SRE-657UG Rat-tail file ZZX/3245Q Steel tape, 12-ft. length 6.79 235 __ link VEND_CONTACT VEND_AREACODE VEND_PHONE Table name: VENDOR 230 Shelly K. Smithson | 608 555-1234 Primary key: VEND_CODE 123-4536 224-2134 Foreign key: none 233 Candice Wallace 342-6567 615 123-3324 234 Arthur Jones

Use this format for your assignment!

Relational schema:

PRODUCT (Prod_Code, Prod_Descript, Prod_Price, Prod_On_Hand, Vend_Code)

Add We Chat powcoder

VENDOR (<u>Vend_Code</u>, Vend_Contact, Vend_AreaCode, Vend_Phone)

TABLE 3.6

A SAMPLE DATA DICTIONARY

TABLE NAME	ATTRIBUTE NAME	CONTENTS	TYPE	FORMAT	RANGE	REQUIRED	PK OR FK	FK REFERENCED TABLE
CUSTOMER	CUS_CODE	Customer account code	CHAR(5)	99999	10000-99999	Υ	PK	
	CUS_LNAME	Customer last name	VARCHAR(20)	Xxxxxxxx		Υ		
	CUS_FNAME	Customer first name	VARCHAR(20)	Xxxxxxxx		Υ		
	CUS_INITIAL	Customer initial	CHAR(1)	Х				
	CUS_RENEW_DATE	Customer insurance	t Proje	dd-mmm-yyyy	m Helr)		
	AGENT_CODE	Agent code	CHAR(3)	999	1		FK	AGENT
AGENT	AGENT_CODE	Agent code	CHAR(3)	999		Υ	PK	
	AGENT_AREACODE	Agent area todings	19APWCO	der.co	m	Υ		
	AGENT_PHONE	Agent telephone number	CHAR(8)	999–9999		Υ		
	AGENT_LNAME	Agent last name	YAICH AR(20)	*********	der	Υ		
	AGENT_YTD_SLS	Agent year-to-date sales	NUMBER(9,2)	POWC	/uci			

FK	= Foreign key
PK	= Primary key
CHAR	= Fixed character length data (1 – 255 characters)
VARCHAR	= Variable character length data (1 – 2,000 characters)
NUMBER	= Numeric data. NUMBER (9,2) is used to specify numbers with up to nine digits, including two digits to the right of the decimal place. Some RDBMS permit the use of a MONEY or CURRENCY data type.

ANSI/ISO SQL Data Types

Data Type	Description
CHAR	Fixed-length character strings ignment Project Exam Help variable-length character strings
VARCHAR ASS	Variable-length character strings
INTEGER	Integer numbers der.com Fixed-length bit string (bit array)
BIT	Fixed-length bit string (bit array)
NUMERIC	Action We Charact powcoder
FLOAT	Floating point numbers
DATE	Calendar date
TIME	Clock time
TIMESTAMP	Date and time

Relational Database Keys

Example: STUDENT(<u>zID</u>, FName, LName, PassportNum)

e.g., zID, PassportNum, {zID, FName}, {zID, LName}, {zID, PassportNum}, ..., {zID, FName,

TABLE 3.3 LName, PassportNum} (as long as the attribute(s) can uniquely identifies each row)

Assignment Project Exam Help

RELATIONAL DATABASE KEYS

KEY TYPE	DEFINITION https://powcoder.com
Superkey	An attribute or combination of attributes that uniquely identifies each row in a table
Candidate key e.g., zID or PassportNum	A minimal (irreducible) sweeter happerkey that defenot contain a subset of attributes that is itself a superkey
Primary key e.g., zID	A <u>candidate</u> key selected to uniquely identify all other attribute values in any given row; cannot contain null entries
Foreign key	An attribute or combination of attributes in one table whose values <u>must either match the</u> <u>primary key in another table or be null</u>
Secondary key	An attribute or combination of attributes used strictly for data retrieval purposes

e.g., PassportNum

Integrity

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Integrity Rules

Three basic types of database integrity constraints:

- Assignment Project Exam Help

 1) Entity integrity: Requiring each row in a table to have a different primary key value. https://powcoder.com
- Referential integrity: Requiring the existence of a corresponding primary key in another table for any foreign key value.
- Domain integrity: Restricting data in a column to its predefined data types.

Integrity Rules

TABLE 3.4

INTEGRITY RULES

ENTITY INTEGRITY	DESCRIPTION
Requirement	All primary key entries are unique, and no part of a primary key may be null. S19111617616 Ct
Purpose	Eactorow will have a unique identity, and foreign key values can properly reference primary key values.
Example	No Invelogen have oduplicated unbernorm it be null; in short, all invoices are uniquely identified by their invoice number.
REFERENTIAL INTEGRITY	DESCRIPTION
Requirement	A foreign Cey My Coe Italic app WC and as it is not a part of its table's primary key, or an entry that matches the primary key value in a table to which it is related; (every non-null foreign key value <i>must</i> reference an <i>existing</i> primary key value).
Purpose	It is possible for an attribute <i>not</i> to have a corresponding value, but it will be impossible to have an invalid entry; the enforcement of the referential integrity rule makes it impossible to delete a row in one table whose primary key has mandatory matching foreign key values in another table.
Example	A customer might not yet have an assigned sales representative (number), but it will be impossible to have an invalid sales representative (number).

Referential Integrity Example

FIGURE 3.3 AN ILLUSTRATION OF INTEGRITY RULES

Table name: CUSTOMER Database name: Ch03_InsureCo

Primary key: CUS_CODE Foreign key: AGENT_CODE

	,•				
CUS ADDRES	10051914946	COSTEN WAR	orect	EUS YREDIEM TO ATE	CODE
10010	Ramas	Alfred	AJ	05-Apr-2018	502
10011	Dunne	Leona	K	16-Jun-2018	501
10012	Smith	Kathy	W	29-Jan-2019	502
10013	ohttps	Paul DOV	VCOGE	1.CQ4dq-2018	
10014	Orlando	Myron		28-Dec-2018	501
10015	O'Brian	Amy	В	22-Sep-2018	503
10016	Brown	Tables C	hatno	25 Mai - 2019	502
10017	v∕villiams	George	jiai pi	7 W C 19-54-5048	503
10018	Farriss	Anne	G	03-Dec-2018	501
10019	Smith	Olette	K	14-Mar-2019	503

Table name: AGENT (only five selected fields are shown)

Primary key: ACENT_CODE

Foreign key: none

AGENT_CODE	AGENT_AREACODE	AGENT_PHONE	AGENT_LNAME	AGENT_YTD_SLS
501	713	228-1249	Alby	132735.75
502	615	882-1244	Hahn	138967.35
503	615	123-5589	Okon	127093.45

From Conceptual Model to Relational Model Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Conceptual Model to Relational Model

ER Model -> Relational Model -> Database

Conceptual Model to Relational Model

In general, each entity will be converted to a relation. The attributes of the entity become the attributes of relation.

Assignment Project Exam Help

Eliminate composite and multi-valued attributes.

- ☐ Translate each entity into a relation (table).
- ☐ Translate appropriate Acidtion Ships into colerelation (others might just be a FK link).

Mapping Entities

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Mapping Entities

Map all regular entities to relations.

Mapping Composite Attributes

Mapping Multi-Valued Attributes

Mapping 1:1 Relationships

ER relationship is expressed through FK reference.

Mapping Weak Entities

ER relationship is expressed through FK reference (FK also a PK).

Mapping 1:M Relationships

Mapping an M:N Relationship

ER relationship forms a relation in itself.

Mapping 1:1 Recursive Relationships

ER relationship forms a relation in itself.

MARRIAGE (Emp_ID1, Emp_ID2, Date)
EMPLOYEE (Emp_ID, Emp_Name, DofB, ...)

Mapping 1:M Recursive Relationships

EMPLOYEE (Emp_ID, EmpName, DeptID, DOB, Manager_ID)

Mapping M:N Recursive Relationships

COURSE (Course_ID, Course_Name, ...)
PREREQUISITE (Course_ID, PrerequisiteCourse_ID, ...)

ER relationship forms a relation in itself.

Mapping Super/Subtype Relations (1)

EMPLOYEE (EmplD, Name, DofB, FlightNo, FlightHrs, SkillType, Salary, HourlyRate, ContractNo)

Create only one relation (for the supertype). Or...

Mapping Super/Subtype Relations (2)

PILOT (P_EmpID, Name, DofB, FlightNo, FlightHrs)

MECHANIC (M_EmpID, Name, DofB, SkillType, Salary)

ACCOUNTANT (A_Emp_ID, Name, DofB, HourlyRate, ContractNo)

Mapping Super/Subtype Relations (3)

EMPLOYEE (EmplD, Name, DofB, EmpType) **PILOT** (P EmplD, FlightNo, FlightHrs) **MECHANIC** (M EmplD, SkillType, Salary) **ACCOUNTANT** (A EmplD, HourlyRate, ContractNo)

Create separate relations for each subtype and the supertype.

Header – Details Relationship

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Referential Integrity May Bring in Cascading Integrity

FIGURE 3.29 A SMALL INVOICING SYSTEM

Table name: CUSTOMER Primary key: CUS_CODE Foreign key: none

Database name: Ch03_SaleCo

CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE
10010	Ramas	Alfred	A	615	844-2573
10011	Dunne	Leona	K	713	894-1238
10012	Smith	Kathy	₩	615	894-2285
10013	Olowski	Paul	F	615	894-2180
10014	Orlando	Myron		615	222-1672
10015	O'Brian	Amy	В	713	442-3381
10016	Brown	James	G	615	297-1228
10017	√Villiams	George		615	290-2556
10018	Farriss	Anne	G	713	382-7185
10019	Smith	Olette	K	615	297-3809

Table name: INVOICE Primary key: INV_NUMBER Foreign key: CUS_CODE Table name: LINE

Primary key: INV_NUMBER + LINE_NUMBER Foreign key: INV_NUMBER, PROD_CODE

INV_NUMBER | LINE_NUMBER | PROD_CODE | LINE_UNITS | LINE_PRICE

1001	1	123-21UUY	1	189.99
1001	2	SRE-657UG	3	2.99
1007	- D	OER-34256	_2	18.63
100	$ C_2X_1$	Z. X/ 124 5G		6.79
1003	2	SRE-657UG	1	2.99
1003	3	001278-AB	1	12.95
1004	1	001278-AB	1	12.95
1004	2	SRE-657UG	2	2.99
1				
COA	er c	om.		
COU		OIII		
	1001 1002 1003 1003 1004 1004		1001 2 SRE-657UG 1001 EX SRE-657UG 1003 2 SRE-657UG 1003 3 001278-AB 1004 1 001278-AB	1001 2 SRE-657UG 3 1001 EX1 SRE-657UG He 1003 3 301278-AB 1 1004 1 1001278-AB 1 1004 2 SRE-657UG 2

1003 10012 08-Mar-18 1004 10011 09-Mar-18

INV_NUMBER | CUS_CODE | V_PATE

10014 0 Ma -(b)

10011 08-Mar-18

Table name: PRODUCT
Primary key: PROD_CODE

Foreign key: none

1001

1002

PROD_CODE	PROD_DESCRIPT	PROD_PRIME	PRO ON HAND	TEND_CODE		powcoder	
001278-AB	Claw hammer	1/4	2.	$\mathcal{M} \boldsymbol{\triangle}$	hat	nowcoder	•
123-21UUY	Houselite chain saw, 16-in. bar	169.99	Luu 4	235		poweduci	
QER-34256	Sledge hammer, 16-lb. head	18.63		231		*	
SRE-657UG	Rat-tail file	2.99	15	232			
ZZX/3245Q	Steel tape, 12-ft. length	6.79	8	235			

FIGURE 3.30 THE RELATIONAL DIAGRAM FOR THE INVOICING SYSTEM

Summary of Most Important Rules

- ☐ ER entity types become relational schemata (relations).
- □ ER relationships become relational schemata OR references with FKs in the schemata/tables. Assignment Project Exam Help
- □ ER attributes of an entity type become attribute replumn headers in the schemata.
- ☐ Entity instances are the rows (tuples, teleptional firstances) in the actual tables.
- ☐ Connectivity and cardinality are indirectly expressed through existence of schema, references with FKs, number of rows going into any particular relation, settings such as NOT NULL for the FK columns in the data dictionary, etc.

Recap: W3 Learnings

- **Relational Database Modelling**
 - Definition relational model.
 Relational model integrity.

 - From ER diagram tohtetational model from entity types and entity instances to schemata and tables).
 Mapping specific ER relationships to a relational model.

Questions

Source: ealt.ca

Please email your question(s) to kf.cheung@unsw.edu.au!