	NAME		UCID	
--	------	--	------	--

- 1. Answer all four questions. Maximum mark is 18.
- 2. For multiple-choice questions, indicate the correct answer. There may be more than one correct answer, in which case indicate all correct answers.
- 3. Show your work as much as possible, within time and space constraints.
- 4. Only this one sheet of paper will be collected and graded
- 1. The iv characteristics of a diode D are drawn below. On the same axes, add the **reverse** characteristics of a second diode whose breakdown voltage is larger than that of D and whose reverse saturation current is smaller than that of D (2 marks)

2. The circuit below uses ideal diodes D1 and D2 with cut-in voltages 0.3 V and 0.7 V, respectively. The input is a 1 V peak-to-peak triangle wave as shown. Fill in the boxes (2 marks)

3. In the circuit below, V_1 and V_2 are voltage sources, V_X is a measurement, D1 is forward biased and D2 is reverse biased. Fill in the table (2 marks)

	True	False	Not enough information
D3 is forward biased	0	0	\bigcirc
$V_X > V_1$	\bigcirc	\bigcirc	\bigcirc
$V_X > V_2$	\bigcirc	\bigcirc	\bigcirc
$V_1 > V_2$	\bigcirc	\bigcirc	\bigcirc

- 4. In the circuit below, both diodes have a cut-in voltage of 0.3 V. (12 marks)
- (a) Find expressions for v_o
- (b) At what value(s) of v_i is $i_o = 0$?

NAME	UCID	
------	------	--

- 1. Answer all four questions. Maximum mark is 18.
- 2. For multiple-choice questions, indicate the correct answer. There may be more than one correct answer, in which case indicate all correct answers.
- 3. Show your work as much as possible, within time and space constraints.
- 4. Only this one sheet of paper will be collected and graded
- 1. The iv characteristics of a diode D are drawn below. On the same axes, add the **reverse** characteristics of a second diode whose breakdown voltage is smaller than that of D and whose reverse saturation current is larger than that of D (2 marks)

2. The circuit below uses ideal diodes D1 and D2 with cut-in voltages 0.7 V and 0.3 V, respectively. The input is a 1 V peak-to-peak triangle wave as shown. Fill in the boxes (2 marks)

3. In the circuit below, V_1 and V_2 are voltage sources, V_X is a measurement, D1 is reverse biased and D2 is forward biased. Fill in the table (2 marks)

	True	False	Not enough information
D3 is forward biased	0	0	\bigcirc
$V_X > V_1$	\bigcirc	\bigcirc	\bigcirc
$V_X > V_2$	\bigcirc	\bigcirc	\bigcirc
$V_1 > V_2$	\bigcirc	\bigcirc	\bigcirc

- 4. In the circuit below, both diodes have a cut-in voltage of 0.7 V. (12 marks)
- (a) Find expressions for v_o
- (b) At what value(s) of v_i is $i_o = 0$?

