C++

1.0

Generated by Doxygen 1.9.7

	Ē

1 File Index	1
1.1 File List	1
2 File Documentation	3
2.1 cdc.c File Reference	3
2.1.1 Detailed Description	3
2.2 cdc.c	5
Index	7

Chapter 1

File Index

1.1 File List

Here is a list	t of all files with brief descriptions:	
cdc.c		
	Desconto Racional por Dentro	3

2 File Index

Chapter 2

File Documentation

2.1 cdc.c File Reference

Desconto Racional por Dentro.

2.1.1 Detailed Description

Desconto Racional por Dentro.

A fórmula para atualizar o preço no instante da compra, levando em conta a remuneração aplicada a cada prestação, $R=\frac{x}{p}$, é:

$$x_{atualizado} = A = \frac{x}{p} \frac{(1+t)^p - 1}{t(1+t)^{(p-1)}} = x \times \frac{(1+t)}{(p*CF)}, \ CF = \frac{t}{1 - (1+t)^{-p}}.$$

O preço atualizado, A, voltando cada parcela, R, para o tempo inicial, é a soma de uma P.G. de razão $q = \frac{1}{(1+t)}$ e cujo primeiro termo é q:

$$A = R[(1+t)^{-1} + (1+t)^{-2} + \dots + (1+t)^{-n}]$$

$$A = Rq \frac{(1-q^n)}{1-q},$$

$$A = Rq \frac{(1 - \frac{1}{(1+t)^n})}{(1 - \frac{1}{(1+t)})}$$

$$= Rq \frac{((1+t)^n - 1)}{(1+t)^n} \frac{(1+t)}{t}$$

$$A = R \frac{(1+t)^n - 1}{t(1+t)^n}$$

$$= R \frac{(1 - (1+t)^{-n})}{t} \Rightarrow$$

$$R = A \frac{t}{(1 - (1+t)^{-n})}$$

$$= A \times CF$$

$$A = R \frac{1}{CF}$$

File Documentation

onde $R = \frac{x}{p}$ é o valor de cada parcela.

Como, neste exercício, a primeira parcela é paga no ato da compra, na realidade, n=p-1 e deve-se somar $R=\frac{x}{p}$ (a entrada):

$$A = R(1 + \frac{q(1 - q^{(p-1)})}{(1 - q)}).$$

Fazendo-se as substituições necessárias, chega-se a fórmula usada no programa:

$$q\frac{\left(1-\frac{1}{(1+t)^{(p-1)}}\right)}{\left(1-\frac{1}{(1+t)}\right)} = q\frac{\left((1+t)^{(p-1)}-1\right)}{(1+t)^{(p-1)}}\frac{(1+t)}{t}$$

$$\frac{1}{(1+t)}((1+t)^{(p-1)}-1)\frac{(1+t)}{t(1+t)^{(p-1)}} = \frac{(1+t)^{(p-1)}-1}{t(1+t)^{(p-1)}} \Rightarrow (somando\ 1)$$

$$1+\frac{(1+t)^{(p-1)}-1}{t(1+t)^{(p-1)}} = \frac{t(1+t)^{(p-1)}+(1+t)^{(p-1)}-1}{t(1+t)^{(p-1)}}$$

$$\frac{(t+1)(1+t)^{(p-1)}-1}{t(1+t)^{(p-1)}} = \frac{(1+t)^{p}-1}{t(1+t)^{(p-1)}} = \frac{(1+t)-(1+t)^{-(p-1)}}{t} \Rightarrow (recolocando\ R)$$

$$R(1+t)\frac{(1-(1+t)^{-p})}{t} = R\frac{(1+t)}{CF}$$

Nota: Achar a taxa "t" que produz o preço à vista "y" requer o método de Newton:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$y = \frac{x}{p} \frac{(c-1)}{tb},$$

$$f(t) = ytb - \frac{x}{p}(c-1)$$

$$f'(t) = y(b+t(p-1)a) - xb$$

onde $a=(1+t)^{(p-2)}, b=(1+t)^{(p-1)}, c=(1+t)^p$ e o problema é equivalente a encontrar um zero da função f

$$t_{n+1} = t_n - \frac{f(t)}{f'(t)}, t_o = \frac{x}{y}$$

A função é decrescente e converge para t quando $n{ o}\infty$.

Para o caso de não haver entrada:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$y = \frac{x}{p} \frac{(1-a)}{t},$$

$$f(t) = yt - \frac{x}{p} (1-a)$$

$$f'(t) = y - xb$$

onde
$$a=(1+t)^{-p}, b=\frac{a}{1+t}$$

Author

Paulo Roma

Since

24/10/2023

Definition in file cdc.c.

2.2 cdc.c 5

2.2 cdc.c

Go to the documentation of this file. $\tt 00001$

6 File Documentation

Index

cdc.c, 3