1.- Una partícula es troba sotmesa a una força \vec{F} de mòdul constant i tangent a la trajectòria, en sentit oposat al moviment. La partícula es desplaça des del punt (0,0) fins al punt (1,1). Calculeu el treball realitzat per aquesta força en el camí y = x.

Solució: W =
$$-\sqrt{2}$$
F

2.- Una partícula es mou per una via amb la forma de la figura, és a dir, una zona central plana i horitzontal, de longitud 2 m, i els laterals elevats.

Considerem que només hi ha fregament a la zona central plana horitzontal, amb un coeficient de fregament cinètic igual a 0.2. Es deixa anar una partícula des del punt A (1 m per sobre del tros pla horitzontal), on s'aturarà finalment la partícula?

Solució: Ha recorregut 5 m per la zona plana. Ha anat i tornat i ha recorregut 1 m més.

3.- Es lliga un cos a l'extrem d'una corda de longitud R=1m, l'altre extrem està fixat a un punt O d' un pla inclinat, tal com s'indica a la figura. L'angle d'inclinació del pla és de 30° . La massa del cos és de 2 Kg, la seva velocitat en passar pel punt A és de 10 m/s i el coeficient de fregament amb el pla inclinat μ =0.1. Trobeu la velocitat del cos i la tensió de la corda quan passa pel punt B.

Solució: $V_B = 8.66 \text{ m/s}, T_B = 140.2 \text{ N}$

- 4.- La gràfica d'energia potencial adjunta està relacionada amb la molècula d'amoníac. Es demana:
 - a) El rang d'energies possible de la molècula d'amoníac.
 - b) Si la seva energia és E=U₀, descriu la seva cinemàtica.
 - c) Si l'energia de la molècula està compresa entre U_o i U_1 , és a dir, $U_o < E < U_1$, descriu la seva cinemàtica i les forces a que està sotmesa en funció de x.
 - d) Si la seva energia $E > U_1$, descriu la seva cinemàtica.

Solució: E ≥U_o

5.- La funció energia potencial corresponent a la força existent entre els àtoms d'una molècula diatòmica pot ser descrita aproximadament pel potencial de Leonard Jones:

$$U(x) = -\frac{a}{x^6} + \frac{b}{x^{12}} \qquad \text{ amb } x > 0$$

Es demana:

- a) Representar gràficament U(x)
- b) Trobar les posicions d'equilibri.
- c) Estudiar els possibles moviments d'aquesta molècula segons el valor de la seva energia mecànica.

Solució: Posició d'equilibri: $x_1 = \sqrt[6]{\frac{2 \text{ a}}{b}}$, punt d'equilibri estable.

6.- Una partícula està sotmesa a una força conservativa relacionada amb la funció d'energia potencial

$$U(x) = 3 x^2 - x^3$$

- a) Representeu gràficament U(x).
- b) Estudieu la direcció de la força en diverses zones.
- c) Discutiu els moviments possibles segons els diversos valors de l'energia total.
- d) Trobeu les posicions d'equilibri.

Solució: Posicions d'equilibri: x = 0 punt d'equilibri estable, x= 2 punt d'equilibri inestable.

7.- Una partícula de massa $m = 10^{-3}$ Kg es mou sobre l'eix de les x. L'energia potencial d'aquesta partícula és:

$$U(x) = -K \left[\left(\frac{2x_o}{x} \right) - \left(\frac{x_o}{x} \right)^2 \right]$$

sent K = 10^{-5} J i $x_0 = 10^{-2}$ m. Es demana calcular:

- a) La posició d'equilibri.
- b) L'energia potencial de la posició d'equilibri.

c) Si la partícula parteix de x_0 amb una velocitat inicial v_0 = 0.1 m/s, fins a quin valor de x arribarà?

Solució: Posició d'equilibri: x=x₀ punt d'equilibri estable, U(x₀) = - K, La partícula arribarà fins a $x=(2+\sqrt{2})\,10^{-2}$ m i fins a $x=(2-\sqrt{2})\,10^{-2}$ m

8.- Una partícula de massa m es mou sobre l'eix OX sota l'acció d'una força conservativa de tal manera que l'energia potencial ve donada per:

$$U(x) = 8 x^2 - 2 x^4$$

- a) Representeu gràficament la funció energia potencial.
- b) Analitzeu la cinemàtica de la partícula per diferents valors de l'energia total.
- c) Determineu els punts de retorn per E = 4 i per E = -4.

Solució: E= 4 \Rightarrow punts de retorn: $x = \pm \sqrt{2 \pm \sqrt{2}}$ E= -4 \Rightarrow punts de retorn: $x = \pm \sqrt{2 + \sqrt{6}}$