Électromagnétisme S10 Diélectriques I

Iannis Aliferis

Université Nice Sophia Antipolis

Diélectriques	2
Diélectriques (isolants)	. 3
Moment dipolaire électrique	4
Un vecteur pour décrire les dipôles	. 5
ou les distributions de charges	. 6
Les moments dipolaires s'additionnent	. 7
Dipôle électrique : potentiel et champ	8
Potentiel d'un dipôle éléctrique	. 9
Potentiel d'un dipôle élémentaire	
Champ électrique d'un dipôle	
Champ d'un dipôle élémentaire	
Champ d'un dipôle	
Le vecteur de polarisation	14
Polarisation de la matière	. 15
Charges de polarisation surfaciques	16
Des charges à la surface d'un diélectrique	. 17
Charges de polarisation volumiques	18
Des charges à l'intérieur d'un diélectrique	19

Diélectriques

Diélectriques (isolants)

- ▼ Les charges ne sont pas libres à se déplacer partout
- ▼ Tous les électrons sont liés aux atomes/molécules
- \blacktriangledown \neq conducteurs
- ▼ Intrinsèquement neutres

- lacktriangledown Quel est l'effet d'un champ $ec{E}$ extérieur?
 - 1. Création de dipôles induits (-q/+q) espacées de d : polarisation
 - 2. Effet proportionnel à la cause : $d \propto E_{\rm ext}$
 - 3. Alignement des dipôles permanents/induits \parallel à $ec{E}$
- ▼ Décrire les dipôles : [moment dipolaire électrique]
- ▼ Quel champ électrique?
- ▼ Quelles charges?

Moment dipolaire électrique

Un vecteur pour décrire les dipôles...

lacktriangle « Dipôle » : N=2 charges -q/+q séparées de d

▼ Moment dipolaire électrique :

$$|\vec{p} \triangleq qd\hat{u}_{-\rightarrow +}| = q(\vec{r}_{+} - \vec{r}_{-}) = \sum_{i=1}^{N} q_{i}\vec{r}_{i}$$
 (1)

5

... ou les distributions de charges

lacktriangle En général : N charges q_i à $ec{m{r}_i}$

$$\vec{p} = \sum_{i=1}^{N} q_i \vec{r_i} \stackrel{q_i = \pm q}{=} q \sum_{i: q_i = q} \vec{r_i} - q \sum_{i: q_i = -q} \vec{r_i} \stackrel{\sum_i q_i = 0}{=} q \frac{N}{2} (\vec{r_{c+}} - \vec{r_{c-}})$$

$$= \frac{N}{2} q D \hat{u_{c-\to c+}} = N_{\mathsf{dip}} q D \hat{u_{c-\to c+}}$$

lacktriangle Un « grand » dipôle : $\pm N_{
m dip}q$ aux barycentres des charges +/-

Les moments dipolaires s'additionnent

lacktriangle En général : N charges q_i à $ec{m{r_i}}$

▼ Regrouper les charges par dipôles :

$$\vec{\boldsymbol{p}} = \sum_{i=1}^{N} q_i \vec{\boldsymbol{r_i}} \stackrel{q_i = \pm q}{=} \sum_{j=1}^{N_{\sf dip}} q(\vec{\boldsymbol{r_{j+}}} - \vec{\boldsymbol{r_{j-}}}) = \sum_{j=1}^{N_{\sf dip}} \vec{\boldsymbol{p_{j}}}$$

Dipôle électrique : potentiel et champ

Potentiel d'un dipôle éléctrique

- Charge -q à z = -d/2 et +q à z = +d/2
- Moment dipolaire électrique : $\vec{p} = qd\hat{e}_z$
- **▼** Le potentiel $V(\vec{r})$ à $r \gg d$
- $V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_+} \frac{q}{r_-} \right) = \frac{1}{4\pi\epsilon_0} q \left(\frac{1}{r_+} \frac{1}{r_-} \right)$ $V(\vec{r}) = \sqrt{r^2 + \left(\frac{d}{2}\right)^2 2r\frac{d}{2}\cos\theta}$ $= r\sqrt{1 - \frac{d}{r}\cos\theta + \left(\frac{d}{2r}\right)^2} \stackrel{d \leqslant r}{\approx} r\sqrt{1 - \frac{d}{r}\cos\theta}$
- $abla \frac{1}{r_{+}} \approx \frac{1}{r} \left(1 \frac{d}{r} \cos \theta \right)^{-1/2}$

- ▼ $f(x) = (1-x)^{-1/2} \approx f(0) + f'(0)(x-0) = 1 + \frac{1}{2}x$ ▼ $\frac{1}{r_+} \approx \frac{1}{r} \left(1 + \frac{d}{2r}\cos\theta\right)$ ▼ $\frac{1}{r_-} \approx \frac{1}{r} \left(1 + \frac{d}{2r}\cos(\pi \theta)\right) = \frac{1}{r} \left(1 \frac{d}{2r}\cos\theta\right)$

$$V(r,\theta) \approx \frac{1}{4\pi\epsilon_0} q \frac{d}{r^2} \underbrace{\cos \theta}_{\hat{\boldsymbol{e}}_{\boldsymbol{z}} \cdot \hat{\boldsymbol{e}}_{\boldsymbol{r}}} = \boxed{\frac{1}{4\pi\epsilon_0} \frac{\vec{\boldsymbol{p}} \cdot \hat{\boldsymbol{e}}_{\boldsymbol{r}}}{r^2}}$$
(2)

Exact si $d \to 0$ et qd constant : dipôle élémentaire

Champ électrique d'un dipôle

$$egin{align} V(ec{m{r}}) &pprox rac{1}{4\pi\epsilon_0} rac{q d\cos heta}{r^2} \;,\; r\gg d \ & ec{m{E}}(ec{m{r}}) = - \overrightarrow{m{grad}} \, V(ec{m{r}}) \ \end{aligned}$$

$$\overrightarrow{\operatorname{grad}}\,V = \frac{\partial V}{\partial r}\hat{\boldsymbol{e}}_r + \frac{1}{r}\frac{\partial V}{\partial \theta}\hat{\boldsymbol{e}}_\theta + \frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi}\hat{\boldsymbol{e}}_\phi$$

donc:

$$\vec{E}(r,\theta) \approx \frac{1}{4\pi\epsilon_0} \left(2 \frac{qd\cos\theta}{r^3} \hat{e}_r + \frac{qd\sin\theta}{r^3} \hat{e}_{\theta} \right)$$

$$= \frac{1}{4\pi\epsilon_0} \frac{p}{r^3} (2\cos\theta \hat{e}_r + \sin\theta \hat{e}_{\theta})$$
(3)

lacktriangle Exact si d o 0 et qd constant : dipôle élémentaire

11

Champ d'un dipôle élémentaire Lignes de champ électrique (dipôle élémentaire horizontal) Auteur : François Le Maître / CC-BY-SA

Le vecteur de polarisation

Polarisation de la matière

▼ « Polarisation » : se réfère aux dipôles (induits ou permanents)

lacktriangle Vue microscopique : $ec{m{p}} = \sum_i q_i ec{m{r_i}}$ [moment dipolaire électrique]

- lacktriangledown Vue macroscopique : $\Delta \mathcal{V}
 ightarrow 0$ contient $N_{
 m dip} pprox 10^3$ dipôles!
- lacktriangle Vecteur de polarisation $ec{P}$:

$$\vec{P}(\vec{r}) \triangleq \lim_{\Delta \mathcal{V} \to 0} \frac{1}{\Delta \mathcal{V}} \vec{p} \quad (C \,\mathrm{m} \,\mathrm{m}^{-3} = C \,\mathrm{m}^{-2})$$
 (4)

densité volumique du moment dipolaire électrique

16

Charges de polarisation surfaciques

16

Des charges à la surface d'un diélectrique

lacktriangle Moment dipolaire d'un petit volume, où $ec{m{P}}(ec{m{r}}) = P \hat{m{e}}_{m{z}}$ constant :

$$\vec{\boldsymbol{p}} = \int_{\Delta \mathcal{V}} \vec{\boldsymbol{P}}(\vec{\boldsymbol{r}}) \, \mathrm{d}\mathcal{V} = \vec{\boldsymbol{P}} \Delta \mathcal{V} = \vec{\boldsymbol{P}} \Delta a \Delta z = (P \Delta a) \Delta z \hat{\boldsymbol{e}}_z = q d \hat{\boldsymbol{u}}_{- \to +}$$

- lacktriangle Charges $\pm P\Delta a$ espacées de Δz ; charges par surface $\pm P$
- $lackbr{\Psi}$ En général $ec{m{P}} = P_n \hat{m{n}} + P_t \hat{m{t}} = (ec{m{P}} \cdot \hat{m{n}}) \hat{m{n}} + (ec{m{P}} \cdot \hat{m{t}}) \hat{m{t}}$

$$\rho_{s \text{ pol}} = \vec{P} \cdot \hat{n} \quad (\text{C m}^{-2})$$

- **▼** Charges de *polarisation*, liées à la matière (\neq libres)
- ▼ [charges polarisation volumiques]

Charges de polarisation volumiques

Des charges à l'intérieur d'un diélectrique

- ▼ Polarisation homogène : pas de charges à l'intérieur du diélectrique
- ▼ Polarisation inhomogène : apparition de charges liées à la matière

$$\begin{split} Q_{\rm int} &= -Q_{\rm ext} = -\oint_S \vec{\boldsymbol{P}} \cdot \hat{\boldsymbol{n}} \; \mathrm{d}S \; \text{[charges polarisation surfaciques]} \\ Q_{\rm int} &= \int_{\mathcal{V}} \rho_{\rm pol} \, \mathrm{d}\mathcal{V} = -\int_{\mathcal{V}} \mathrm{div} \, \vec{\boldsymbol{P}} \; \mathrm{d}\mathcal{V} \; \text{[th\'eor\`eme divergence]} \end{split}$$

$$\rho_{\mathsf{pol}} = -\mathsf{div}\,\vec{\boldsymbol{P}} \quad (\mathrm{C}\,\mathrm{m}^{-3}) \tag{6}$$

▼ Charges de *polarisation*, liées à la matière (≠ libres)

10

