КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

 $\frac{\Phi$ ізичний факультет (назва факультету)

Кафедра _ядерної фізики та високих енергій

	РАМА НАВЧАЛЬНОЇ Пі 1'ютерні комплекси для фі	проботи Момот О.В. 2022 року СЦИПЛІНИ
	<u>енергій</u>	
	(повна назва навчальної дисципліни) Д ЛЯ СТУДЕНТІВ	
галузь знань	10 — Природничі науки (шифр і назва)	
спеціальність	(шифр і назва) 104 "Фізика та астрономія"	
	104 "Фізика та астрономія" (шифр і назва спеціальності)	
освітній рівень	МАГІ́СТР (молодший бакалавр, бакалавр, магістр)	
освітня програма	Ядерна енергетика (назва освітньої програми)	
вид дисципліни	вибіркова	
	Форма навчання	денна
	Навчальний рік	2022/2023
	Семестр	3
	Кількість кредитів ECTS	6
	Мова викладання, навчання та оцінювання	
	Форма заключного контролю	<u>українська</u>
Викладачі: кант. фізмат. дог		залік
(Науково-педагогічні праціві	<u>чики, які забезпечують викладання даної дисципліни у відповідне</u>	ому навчальному році)
	ave: ve 20 /20) «»20p.
	на 20/20 н.р(підпис, ПІБ, дата)) «»20p.
	на 20/20 н.р(підпис, ПІБ, дата)) «» 20p.

КИЇВ – 2022

Розробники: Р.В.Срмоленко, канд. фіз.-мат. наук, доцент кафедри ядерної фізики та високих енергій

3AТ 3ав.	ВЕРДЖ жафедт		ї фіз и	ки та високих ене	ргій
to	DEELS (nighting)	Min	_ (<u>Каденко І.М.</u> (прізвище та ініціали)	i i
Про	токол У	№ <u>14</u> від «	<u>03</u> » <u>че</u>	<u>ервня</u> 2022 р.	

Схвалено науково - методичною комісією фізичного факультету

Протокол від « <u>10</u> » <u>червня</u> 20)22 poi	ky № <u>11</u> / . 1	
Голова науково-методичної ко	місії	(тдпис)	(_Оліх. О.Я_) (прізвище та ініціали)
« <u></u> »2	021	_ року	

ВСТУП

- **1. Мета** дисципліни Метою дисципліни «Програмно-комп'ютерні комплекси для фізики високих енергій» ϵ надання студентам:
 - необхідних теоретичних відомостей з застосування технологій машинного навчання, нейроних мереж та штучного інтелекту в ядерно-фізичному експерименті;
 - практичних навичок роботи з підготовки даних, побудови архітектури та навчання нейронних мереж (під час виконання лабораторних робіт);
 - вміння досліджувати і проектувати архітектуру нейронної мережі для задач ядерно фізичного експерименту.

2. Попередні вимоги до опанування або вибору навчальної дисципліни:

- Успішне опанування основних курсів фізики: «Математичний аналіз», «Лінійна алгебра» «Механіка», «Молекулярна фізика», «Електрика», «Оптика».
- Вміти розв'язувати задачі з основних курсів фізики та математики.
- Володіти поглибленими навичками роботи на комп'ютері по пошуку інформації в мережі Інтернет.
- Студент повинен знати мову програмування Python його основні бібліотеки.

3. Анотація навчальної дисципліни:

Навчальна дисципліна "Програмно-комп'ютерні комплекси для фізики високих енергій" є складовою циклу професійної підготовки фахівців освітньо-кваліфікаційного рівня "магістр".

Курс «Програмно-комп'ютерні комплекси для фізики високих енергій» дозволить значно покращити професійну підготовку студентів кафедри ядерної фізики, що пов'язано з тим, що студенти будуть:

- знати принципи принципи побудови нейронних мереж та алгоритми і методи їх навчання.
- вміти готувати данні для навчання та перевірки нейронних мереж;
- Знати архітектурні основи будови нейронних мереж
- Виконувати архітектурні налаштування для режимів тренування та передбачення в нейронних мережах.
- **4.** Завдання (навчальні цілі) Спецкурс "Програмно-комп'ютерні комплекси для фізики високих енергій" дозволить студентам оволодіти навичками, які дозволять проектувати архітектури нейроних мереж таорганізоовувати їх навчання для задач ядерно фізичного експерименту.

5. Результати навчання за дисципліною:

Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)		Методи викладання і	Методи	Відсоток у підсумковій
Код	Результат навчання	навчання	оцінювання	оцінці з дисципліни
1.1	Знати принципи побудови нейроних	лекція	тест	50
	мереж, основні архітектури,			
	принципи підготовки даних, навчання			
	та оцінки отриманого результату			
2.1	Практичні навички з побудови та	Лабораторні	тест	50

.

навчання нейронних мереж.	роботи	

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін)

Результати навчання дисциплі	ни 1 1	2.1
Програмні результати навчання	1.1	2.1
Знання основних принципів побудови ядерно фізично	рго +	
експерименту		
Вміти вибирати архітектуру мережі		+
Виконувати навчання нейронної мережі		+

8. Схема формування оцінки:

8.1 Форми оцінювання студентів: (зазначається перелік видів робіт та форм їх контролю / оцінювання із зазначенням Міп. — рубіжної та Мах. кількості балів чи відсотків)

- семестрове оцінювання:
 - 1. Опитування при проведенні лекційних занять (максимум 50 балів).
 - 2. Лабораторні роботи (максимум 50 балів).
- Підсумкове оцінювання у формі іспиту (підсумкова кількість балів з дисципліни (максимум 100 балів), яка визначається як сума (проста або зважена) балів за систематичну роботу впродовж семестру. Іспит виставляється за результатами роботи студента впродовж усього семестру.

	Семестрова кількість балів	ПКР (підсумкова контрольна робота) чи/або залік	Підсумкова оцінка
Мінімум	40	20	60
Максимум	100	40	100

8.2 Організація оцінювання:

Шкала відповідності

Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно з можливістю повторного складання / Fail	35-59
Незадовільно з обов'язковим повторним вивченням дисципліни / Fail	0-34
Зараховано / Passed	60-100
He зараховано / Fail	0-59

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ

		Кількість годин		
№ п/п	Назва теми	Лекції та практичні заняття	Самостійн а робота	
1.	Вступ. Поняття штучного інтелекту. Історія розвитку технологій машинного навчання та	6	6	
2.	комп'ютерного зору. Лінійний класифікатор. SoftMax	6	6	
3.	Метод зворотнього розповсюдження при навчання нейронної мережі. (BackPropagation)	6	6	
4.	Методи підготовки даних для навчання нейронної мережі. Аргументація даних.		6	
5.	Функції втрат для навчання нейронної мережі (loss). Методи вибору.	6	6	
6.	Згорткові нейронні мережі. Принципи побудови.	6	6	
7.	Фреймвоки для побудови нейронних мереж.	6	6	
8.	Рекурсивні нейроні мережі	6	6	
9.	Мережі Гана.	6	6	
10.	Приклади застосування нейроних мереж у фізиці високих енергій	6	6	
	ВСЬОГО	60	60	

Загальний обсяг 90 год., в тому числі:

Лекцій — 30 год. Семінари — 0 год. Практичні заняття — 30 год. Лабораторні заняття — 0 год. Тренінги — 0 год. Консультації — 0 год. Самостійна робота — 0 год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА¹:

- 1. Deep Learning. deeplearningbook.org
- 2. Practical Deep Learning for Coders. https://www.fast.ai/
- 3. CS231n: Convolutional Neural Networks for Visual Recognition. cs231n.stanford.edu

1