

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

CLAIMS AS FILED IN PRELIMINARY AMENDMENT 0Z 49365

1. A cyclohexenonequinolinoyl derivative of the formula I

where:

R¹ is hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxyiminomethyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, N-(C₁-C₆-alkyl)aminosulfonyl, N, N-di-(C₁-C₆-alkyl) aminosulfonyl, N-(C₁-C₆-alkylsulfonyl)amino, N-(C₁-C₆-haloalkylsulfonyl)amino, N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino, N-(C₁-C₆-alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino, phenoxy, heterocyclyoxy, phenylthio or heterocyclthio, where the four last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the following substituents : nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R², R³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

R⁴ is a compound IIa or IIb

IIa

IIb

where

R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:
nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁶ is nitrol, halogen, cyano, C₁-C₆-alkyl,
C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,
di-(C₁-C₆-alkylthio)methyl,
(C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl,
C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,
C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,
C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,
C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,
C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,
C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or
C₁-C₆-haloalkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon,

together form an -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- or -S-(CH₂)_n chain which may be substituted by one to three radicals from the following group:

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon,

together form a -(CH₂)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon,

together form a methylidene group which may be substituted by one or two radicals

from the following group:

halogen, hydroxyl, formyl, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

or

two radicals R⁶, which are linked to the same carbon,
together with this carbon form a carbonyl group;

or

two radicals R⁶, which are linked to different carbons,
together form a -(CH₂)_n chain which may be substituted by one to three radicals from
the following group:
halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, hydroxyl or C₁-C₆-alkoxycarbonyl;

R⁷ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl,
C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cyloalkyl,
C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl,
C₂-C₆-alkynylcarbonyl, C₃-C₆-cyloalkylcarbonyl,
C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl,
C₃-C₆-alkynyloxycarbonyl,
(C₁-C₂₀-alkylthio)carbonyl,
C₁-C₆-alkylaminocarbonyl,
C₃-C₆-alkenylaminocarbonyl,
C₃-C₆-alkynylaminocarbonyl,
N,N-di-(C₁-C₆-alkyl)aminocarbonyl,
N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl) aminocarbonyl ,
N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkyl) aminocarbonyl ,
N-(C₁-C₆-alkoxy)-
N-(C₁-C₆-alkyl) aminocarbonyl , N-(C₃-C₆-alkenyl)-
N-(C₁-C₆-alkoxy) aminocarbonyl , N-(C₃-C₆-alkynyl)-
N-(C₁-C₆-alkoxy) aminocarbonyl, di-(C₁-C₆-alkyl)-

202407069260

aminothiocarbonyl, C_1-C_6 -alkylcarbonyl- C_1-C_6 -alkyl,

C_1-C_6 -alkoxyimino- C_1-C_6 -alkyl,

$N-(C_1-C_6\text{-alkylamino})$ imino- C_1-C_6 -alkyl or

$N,N\text{-di-(}C_1-C_6\text{-alkylamino)}$ imino- C_1-C_6 -alkyl, where

the above-mentioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di-(C_1-C_4 -alkyl)amino, C_1-C_4 -alkylcarbonyl,

C_1-C_4 -alkoxycarbonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, di-(C_1-C_4 -alkyl)amino- C_1-

C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl, di-(C_1-C_4 -

alkyl)aminocarbonyl, aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;

phenyl, heterocycl, phenyl- C_1-C_6 -alkyl, heterocycl- C_1-C_6 -alkyl, phenylcarbonyl- C_1-

C_6 -alkyl, heterocyclcarbonyl- C_1-C_6 -alkyl, phenylcarbonyl, heterocyclcarbonyl,

phenoxy carbonyl, heterocyclloxy carbonyl, phenoxythiocarbonyl,

heterocyclloxythiocarbonyl, phenoxy- C_1-C_6 -alkylcarbonyl, heterocyclloxy- C_1-C_6 -

alkylcarbonyl, phenylarminocarbonyl, $N-(C_1-C_6\text{-alkyl})$ - $N-(phenyl)$ arminocarbonyl,

heterocyclarminocarbonyl, $N-(C_1-C_6\text{-alkyl})$ - $N-(heterocycl)$ arminocarbonyl, phenyl-

C_2-C_6 -alkenylcarbonyl or heterocycl- C_2-C_6 -alkenylcarbonyl, where the phenyl and

the heterocycl radical of the 20 last-mentioned substituents may be partially or fully

halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -halogenalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

R^8, R^9 are C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl, C_3-C_6 -alkynyl, C_3-C_6 -haloalkynyl,

C_3-C_6 -cycloalkyl, hydroxyl, C_1-C_6 -alkoxy, amino, C_1-C_6 -alkylamino, C_1-C_6 -

haloalkylamino, di-(C_1-C_6 -alkyl)amino or di-(C_1-C_6 -haloalkyl)amino, where the

abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully

halogenated and/or may carry one to three of the following groups:

cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di-(C_1-C_4 -alkyl)amino, C_1-C_4 -alkylcarbonyl,

C_1-C_4 -alkoxycarbonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, di-(C_1-C_4 -alkyl)amino- C_1-

C_4 -alkoxycarbonyl,

hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl, di-(C_1-C_4 -alkyl)aminocarbonyl,

aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;

phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R¹⁰ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, hydroxyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, amino, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino or C₁-C₆-alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group: cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄-alkyl)amino, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, C₁-C₄-alkylaminocarbonyl, di-(C₁-C₄-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl; phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl or heterocyclyl-C₁-C₆-alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R¹¹,R¹² are C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or C₁-C₆-alkylcarbonyl;

l is 0 to 6;

m is 2 to 4;

n is 1 to 5;

p is 2 to 5;

and their agriculturally useful salts.

2. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 where

R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹ or N-

bonded heterocycll which may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

3. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where R⁵ is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocycll which may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

4. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where

R⁷ is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl,

C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy-C₁-C₆-alkylcarbonyl, where the phenyl radical of the three last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R¹⁰ is C₁-C₆-alkyl or C₁-C₆-alkoxy;

R¹¹ is C₁-C₆-alkyl.

5. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where

R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl, di-(C₁-C₆-alkylthio)methyl, (C₁-C₆-alkoxy)(C₁-C₆-alkylthio)-methyl, hydroxyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or C₁-C₆-haloalkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon, together form an -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- or -S-(CH₂)_n chain which may be substituted by one to three radicals from the following group :

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

two radicals R⁶, which are linked to the same carbon, together form a -(CH₂)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to

four radicals from the following group :

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl ;

or

two radicals R⁶, which are linked to the same carbon, together with this carbon form a carbonyl group.

6. A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

where the variables R¹ to R³, R⁶ and 1 are each as defined in claim 1, with a halogenating agent.

7. A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

where the variables R¹ to R³, R⁶ and 1 are each as defined in claim 1, with a compound of the formula IV α , IV β , IV γ , IV δ or IV ε ,

L ¹ -R ⁷	L ¹ -SO ₂ R ⁸	L ¹ -PR ⁸ R ⁹	L ¹ -POR ⁸ R ⁹	L ¹ -PSR ⁸ R ⁹
(IV α)	(IV β)	(IV γ)	(IV δ)	(IV ε)

where the variables R⁷ to R⁹ are each as defined in claim 1 and L¹ is a nucleophilically replaceable leaving group.

8. A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = OR⁷, SR⁷, POR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (= I where R⁵ = halogen, OSO₂R⁸),

and/or

I where R⁵= halogen or OSO₂R⁸

where the variables R¹ to R³, R⁶ and 1 are each as defined in claim 1, with a compound of the formula V_α, V_β, V_γ, V_δ, V_ε, V_η, V_θ,

HOR ⁷	HSR ⁷	HPOR ⁸ R ⁹	HNR ¹⁰ R ¹¹	HONR ¹¹ R ¹²
(V _α)	(V _β)	(V _γ)	(V _δ)	(V _ε)
H(N-linked heterocyclyl)			H(ON-linked heterocyclyl)	
V _η			V _θ	

where the variables R⁷ to R¹² are each as defined in claim 1, if appropriate in the presence of a base.

9. A process for preparing compounds of the formula I as claimed in claim 1, where R⁵ = SOR⁸, SO₂R⁸, which comprises reacting a compound of the formula Iβ (=I where R⁵ = SR⁸),

and/or

I where R⁵ = SR⁸

where the variables R¹ to R⁸ and 1 are each as defined in claim 1, with an oxidizing agent.

10. A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 and auxiliaries which are customarily used for formulating crop protection agents.

11. A process for preparing compositions as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are customarily used for formulating crop protection agents.

12. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 to act on plants, their habitat and/or on seeds.

13. The use of cyclohexenonequinolinoyl derivatives of the formula I or their agriculturally useful salts as claimed in claim 1 as herbicides.

SEARCHED
INDEXED
COPIED
SERIALIZED
FILED