

Projeto 1 - Link PTP com RadioMobile

Sistemas de Telecomunicações

Matheus Pires Salazar Rhenzo Hideki Silva Kajikawa

23 de Abril de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1. Introdução	3
1.1. Detalhes do Enlace Planejado	
2. Desenvolvimento	
2.1. Definindo os Pontos do Enlace	4
2.2. Especificações do Enlace	7
2.3. Definindo os Equipamentos	
2.4. Estabilidade do enlace	
2.5. Viabilidade	
2.5.1. Operar Siklu EtherHaul-2200FX	9
2.5.2. Operar AF-5U	9
2.6. Simulação do enlace	
2.6.1. Resultados da Simulação do Siklu EtherHaul-2200FX	10
2.6.2. Resultados da Simulação do AF-5U	
3 Referências	

1. Introdução

O objetivo deste projeto é realizar o planejamento de um link ponto a ponto (PTP) utilizando o software RadioMobile. O projeto consiste em determinar a viabilidade do link entre dois pontos, considerando fatores como distância, ganho de antena, potência do transmissor e condições atmosféricas.

Este trabalho busca criar um cenário realista que justifique a implementação do enlace, sendo tangível e factível, com o objetivo de solucionar um possível problema. O enlace será ponto a ponto, com possibilidade de expansão para ponto multiponto, preferencialmente em ambientes outdoor, utilizando equipamentos reais.

Além disso, será considerado o orçamento necessário, incluindo o preço dos equipamentos e a mão de obra, para garantir um link mínimo de 3 km com uma taxa de confiabilidade de pelo menos 85%. O projeto também analisará os cenários ao redor da rede e suas aplicabilidades, criando uma necessidade ou identificando uma existente.

Serão avaliados os materiais obrigatórios e recomendados, análise de custo operacional, configurações necessárias, e aspectos como marketing B2B ou B2C, gerenciamento, implantação com especificações do enlace e conformidade com órgãos regulatórios, O&M, obras, financeiro, sustentabilidade, suporte e análise geográfica da região. Por fim, será verificado se o cenário proposto é cabível e útil.

1.1. Detalhes do Enlace Planejado

O enlace a ser projetado apresenta as seguintes características principais:

- Tipo de enlace: Ponto a Ponto (PTP)
- Distância mínima entre os pontos: 3 km
- Taxa de confiabilidade esperada: Pelo menos 85%

2. Desenvolvimento

O desenvolvimento do projeto será dividido em várias etapas, incluindo a análise do cenário, a escolha dos equipamentos, o planejamento do enlace e a implementação. A seguir, apresentamos um resumo de cada etapa.

2.1. Definindo os Pontos do Enlace

A análise do cenário envolve a identificação dos pontos de transmissão e recepção, bem como a avaliação das condições geográficas da região. Para isso, utilizamos o software RadioMobile, que permite simular o enlace e avaliar sua viabilidade. A figura a seguir mostra um dos pontos cadidatos que foi analisado.

Figura 1: Primeiro ponto selecionado.

Fonte: Elaborada pelo autor

Figura 2: Fotografia do primeiro local.

Fonte: Elaborada pelo autor

A figura é um ponto onde existe uma torre já existente, que pode ser utilizada para a instalação do enlace. A torre está localizada em uma região com boa visibilidade e acesso, o que facilita a instalação dos equipamentos. A seguir, apresentamos a análise do segundo ponto candidato, que também foi considerado para o enlace.

Figura 3: Segundo ponto selecionado.

Fonte: Elaborada pelo autor

Figura 4: Fotografia do segundo local.

Fonte: Elaborada pelo autor

A UniPRF é um local estratégico para a segurança pública, sendo um centro de formação e capacitação de profissionais da área. A instalação do enlace neste local não apenas atenderia às necessidades de comunicação da instituição, mas também criaria um enlace de redundância, aumentando a confiabilidade da rede.

Além disso, a localização da UniPRF apresenta características favoráveis para a instalação do enlace, como a presença de infraestrutura existente e uma posição geográfica que facilita a propagação do sinal. A seguir, apresentamos uma tabela comparativa entre os dois pontos candidatos, destacando os principais fatores considerados na análise.

Para referência, os pontos foram colocados das seguintes formas dentro do Radio-Mobile:

Nome	Longitude	Latitude	Zoom	Elevação
Norte da Ilha - Site	-27.44000118	-48.41947732	14	71.80
UNI PRF	-27.45752611	-48.45986787	15	10.30

2.2. Especificações do Enlace

A especificação do enlace envolve a definição dos equipamentos a serem utilizados, incluindo antenas, transmissores e receptores. Para isso, consideramos as características dos pontos selecionados e as condições geográficas da região. Logo abaixo temos a imagem da distância do enlace baseado no google maps. Como é possivel ver, a distância entre os dois pontos é de aproximadamente 4,4 km, distância é adequada para o projeto.

Figura 5: Distância entre pontos.

Fonte: Elaborada pelo autor

Desconsiderando esta a zona de fresnel pois não representa o elance real, apenas um exemplo para vizualizar geografia do local escolhido. Logo abaixo é possivel vizualizar a imagem.

Figura 6: Geografia entre pontos.

Fonte: Elaborada pelo autor

2.3. Definindo os Equipamentos

A escolha dos equipamentos é uma etapa crucial no planejamento do enlace. Para garantir a viabilidade do projeto, consideramos fatores como ganho de antena, potência do transmissor e frequencia de operação. A seguir, apresentamos uma tabela com as especificações dos equipamentos propostos junto as suas frequencias de operação e outros dados.

Nome	Frequen-	Alcance	Potência	ganho da	Limiar Rx	Th-	Preço
	cia (GHz)	(km)	de trans-	antena	(dBm)	roughput	
			missão	(dBi)		(Gbps)	
			(Watts)				
EH2200FX	70/80	6.9	13	43/50	-71	1/2	\$3700.00
AF-5U	5.7/6.2	100+	1	23	-95/-57	1.2+	\$999

EH2200FX é ideal para enlaces de curta distância com alta capacidade de transmissão, sendo adequado para cenários onde a largura de banda é crítica. No entanto, o custo elevado pode ser um fator limitante.

Já AF-5U é mais acessível e oferece um alcance significativamente maior. No entanto, o ganho da antena e a potência de transmissão são inferiores ao EH2200FX, o que pode impactar a qualidade do enlace em cenários de alta interferência.

2.4. Estabilidade do enlace

EH-2200FX (E-band 71-76/81-86 GHz):

- Opera em faixa licenciada, com feixe de antena muito estreito ("pencil beam"), praticamente livre de interferência externa.
- Atenuação atmosférica aproximadamente de 1.2 a 0.4 dB/km em E-band e link budget de até 179 dB (250 MHz) suportam enlaces de até 6,9 km com antenas de 43 dBi.
- Sensibilidade de recepção efetiva em torno de −60 dBm (com antena de 31cm, 43 dBi e canal de 250 MHz) mantém margem no link de 176−179 dB.

AF-5U (5.725-6.200 GHz)

• Opera em faixa não licenciada, com EIRP configurável até +50 dBm EIRP; ATPC e modulação adaptativa xRT reduzem interferência e maximizam qualidade do enlace.

- Antena integrada split de 23 dBi (TX/RX) e sensibilidade de −95 a −57 dBm (dependendo da modulação e largura de canal) garantem enlace estável mesmo em ambientes com ruído moderado .
- Links ponto a ponto de 100+ km indicam folga de margem para 4,4 km, com baixa atenuação atmosférica na faixa de 5 GHz.

2.5. Viabilidade

Para avaliar a viabilidade econômica do projeto, consideramos o custo dos equipamentos e a mão de obra necessária para a instalação do enlace. Para isso irémos fazer uma análise separa por equipamento e a mão de obra necessária e também outros custos que podem ser necessários para a instalação do enlace.

2.5.1. Operar Siklu EtherHaul-2200FX

Operar um elance com o Siklu EtherHaul-2200FX envolve custos de aquisição, instalação e manutenção. O preço do equipamento é elevado, mas oferece alta capacidade de transmissão e baixa latência. A instalação requer mão de obra especializada e pode incluir custos adicionais com infraestrutura, como torres e cabos. A manutenção regular é essencial para garantir o desempenho ideal do enlace. A tabela abaixo apresenta uma estimativa de custos para a operação do Siklu EtherHaul-2200FX, considerando os principais fatores envolvidos.

Descrição	Valor Unitário (R\$)	Quantidade	Total (R\$)
Equipamentos	21032.28	2	42064.56
Licenciamento	127.04	1	127.04
Instalação	13177.78	1	13177.78
Torre (mensal)	1200-4000	12	14400-48000/ano
Energia (anual)	452	1	452/ano
Licenças ANATEL (anual)	25.48	1	25.48/ano

O custo de despesa de capital é de um total de R\$55374,82 ou seja os custos de equipamentos e instalação, enquanto o custo de operação gira em torno de R\$ 15477-48477 por ano, considerando a manutenção , custo de energia e licenças.

O equipamento Siklu EtherHaul-2200FX é ideal para aplicações que exigem alta capacidade de transmissão e baixa latência, como serviços de internet de alta velocidade, transmissão de vídeo em tempo real e aplicações críticas em ambientes urbanos.

2.5.2. Operar AF-5U

Agora uma análise do enlace com o AF-5U, que é um equipamento mais acessível e oferece um alcance significativamente maior. O custo de aquisição do AF-5U é menor em comparação ao Siklu EtherHaul-2200FX, o que torna o projeto mais viável economicamente. A instalação também requer mão de obra especializada, mas os custos adicionais com infraestrutura podem ser menores devido à flexibilidade do equipamento. A tabela abaixo apresenta uma estimativa de custos para a operação do AF-5U, considerando os principais fatores envolvidos.

Descrição	Valor Unitário (R\$)	Quantidade	Total (R\$)
Equipamentos	6599.99	2	13199.98
Licenciamento	0	0	0
Instalação	13177.78	1	13177.78
Torre (mensal)	1200-4000	12	14400-48000/ano
Energia (anual)	452	1	452/ano
Licenças ANATEL (anual)	0	0	0

O custo de despesa de capital é de um total de R\$26377,76 ou seja os custos de equipamentos e instalação, enquanto o custo de operação gira em torno de R\$ 14852-48452 por ano, considerando a manutenção , custo de energia e licenças.

2.6. Simulação do enlace

A simulação do enlace foi realizada utilizando o software RadioMobile, que permite avaliar a viabilidade do enlace considerando fatores como ganho de antena, potência do transmissor e condições atmosféricas. A seguir, apresentamos os resultados da simulação para os dois equipamentos considerados. Os pontos podem ser visualizados na imagem abaixo, onde é possivel ver a distancia entre os dois pontos.

Figura 7: Simulação do enlace.

Fonte: Elaborada pelo autor

2.6.1. Resultados da Simulação do Siklu EtherHaul-2200FX

A simulação do enlace utilizando o Siklu EtherHaul-2200FX apresentou os seguintes resultados: Abaixo temos os resultados da simulação do Siklu EtherHaul-2200FX, onde é possivel ver a performance do enlace, a propagação e o sistema de radio.

Distance	4.436 km
----------	----------

Precision	10.0 m
Frequency	71000.000 MHz
Equivalent Isotropically Radiated Power	4456.255 W
System gain	166.09 dB
Required reliability	90%
Received Signal	-63.78 dBm
Received Signal	144.90 μV
Fade Margin	6.32 dB

Free space loss	142.37 dB
Obstruction loss	0.89 dB
Forest loss	0.00 dB
Urban loss	0.00dB
Statistical loss	16.51 dB
Total path loss	159.77 dB

TX power	36.99 dBm
TX line loss	0.50 dB
TX antenna gain	30.00 dBi
RX antenna gain	30.00 dBi
RX line loss	0.50 dB
RX sensitivity	-70.10 dBm

Aqui é possível ver a imagem do link:

Figura 8: Simulação do enlace.

Fonte: Elaborada pelo autor

2.6.2. Resultados da Simulação do AF-5U

A simulação do enlace utilizando o AF-5U apresentou os seguintes resultados:

Abaixo temos os resultados da simulação do AF-5U, onde é possivel ver a performance do enlace, a propagação e o sistema de radio.

Distance	4.436 km
----------	----------

Precision	10.0 m
Frequency	5725.000 MHz
Equivalent Isotropically Radiated Power	889.140 W
System gain	149.90dB
Required reliability	95%
Received Signal	-55.35 dBm
Received Signal	382.44 μV
Fade Margin	12.57 dB

Free space loss	120.50 dB
Obstruction loss	-4.47 dB
Forest loss	0.00 dB
Urban loss	0.00dB
Statistical loss	21.31 dB
Total path loss	137.34 dB

TX power	36.99 dBm
TX line loss	0.50 dB
TX antenna gain	23.00 dBi
RX antenna gain	23.00 dBi
RX line loss	0.50 dB
RX sensitivity	-67.92 dBm

Aqui é possível ver a imagem do link:

Figura 9: Simulação do enlace.

Fonte: Elaborada pelo autor

3. Referências