

Understanding the Security Benefits and Overheads of **Emerging Industry Solutions to DRAM Read Disturbance**

Contact Info

Geraldo Oliveira Oğuzhan Canpolat A. Giray Yağlıkçı Ataberk Olgun Oğuz Ergin Onur Mutlu

Full Paper

1. DRAM Background

DRAM Organization bitline DRAM Cell **Row Buffer** DRAM Bank DRAM Chip \blacksquare \blacksquare \blacksquare SA_{N-1} wordline (wl) Sense Amplifiers (SAs)

50K

Minimum hammer count needed to induce the first read disturbance bitflip

2. Cutting Edge Industry Solutions

Preventive Refresh in DDR5 Specifications

Preventive refresh is a **blocking** operation

Memory controller sends an RFM command to allow time for preventive refreshes

Periodic Refresh Management (PRFM)

Memory controller **periodically** issues RFM commands

Per Row Activation Counting (PRAC)

DRAM chip **tracks** row activations for each row and **requests** RFMs by sending **back-off** signals

PRF

issues RFM

PRAC

back-off

PRAC+PRFM

PRAC-Optimistic

and with back-offs

Memory controller **periodically**

Memory controller issues N RFMs each with

Memory controller issues RFM **periodically**

PRAC-4 with **no** change in DRAM timing

3. Per Row Activation Counting (PRAC) [JEDEC, JESD79-5C, April 2024]

4. Performance Evaluation

Cycle-level simulations using Ramulator 2.0 [Luo+, CAL 2023] DRAMPower [Chandrasekar+, DATE 2013]

150K

System Configuration:

Processor

100K

4 cores, 4.2GHz clock frequency,

4-wide issue, 128-entry instruction window **DRAM**

DDR5, 1 channel, 2 rank/channel, 8 bank groups x 4 banks x 64K rows

Memory Ctrl.

64-entry read and write requests queues,

FR-FCFS scheduling with a column cap of 4 Last-Level Cache 8 MiB (4-core)

Workloads:

60 mixes from SPEC CPU2006, SPEC CPU2017, TPC, MediaBench, and YCSB

Graphene PARA PRAC-4 PRAC+PRFM PRFM PRAC-1 PRAC-Optimistic ____ Hydra Normalized Weighted Speedup 512 1024 20 RowHammer Threshold (N_{RH})

parameters

5. Key Observations

Back-Off Threshold (# of ACTs per row)

Timing parameter changes for DDR5-3200AN speed bin [JEDEC JESD79-5C, April 2024]

6. Open-Source

Lower is worse

Simulator is available online

https://github.com/ **CMU-SAFARI/ramulator2**

7. A New Attack Vector

Access pattern to trigger **most** back-offs with **fewest** activations possible by targeting a single row

Mathematical worst-case analysis

at the RowHammer threshold of 20: Hogs up to 79% of DRAM throughput

Cycle-level simulation results:

Degrades system performance by up to **98%** (94% on average)

8. Conclusion and Future Work

- The first **rigorous security** and **performance** analyses of PRAC
- •RowHammer-safe for thresholds > 20
- Non-negligible overheads for modern chips
- Poorly scales with worsening RowHammer vulnerability
- •Memory performance attacks can exploit PRAC

Future work:

More research is needed to improve PRAC by tackling

- increased DRAM access latencies
- •increasing performance loss as RowHammer worsens
- memory performance attacks exploiting PRAC