A TUTORIAL: VARIATIONAL AUTOENCODERS

Ben Herbst

MML, 10 November 2017

References:

- Carl Doersch. Tutorial on Variational Autoencoders
- Ulrich Paquet. Deep Learning Indaba, Wits
- \bullet Kingma and Welling. Auto-Encoding Variational Bayes
- Aurélien Géron. Hands-On Machine Learning with Scikit-Learn & Tensorflow

PROBLEM

• Given unlabelled data:

$$\mathbf{x}^{(j)} \sim p(\mathbf{x}), \quad j = 1, \dots, n$$

generated by an unknown, and unknowable, distribution $p(\mathbf{x})$.

- Problem: Build a generative model from the data
- Tough infinite number of possibilities

Data points of the MNIST data set

GENERATING DIGITS: GMM

Mixture Component Means

91390

GMM Generated Samples

IDEA I: LATENT VARIABLE

Generative models need to learn complicated dependencies between the different dimensions (pixels). This is hard.

 \bullet With latent variable z, the model becomes

$$p(x,z) = p_{\theta}(x|z)p(z)$$

• Ancestral sampling

$$z^{(\ell)} \sim p(z)$$

 $x^{(\ell)} \sim p_{\theta}(x|z^{(\ell)})$

- ullet Sample the latent variable z decide which digit to generate
- Each meaningful data value should correspond to a latent variable
- Latent variable is an efficient, compact representation of the data
- Leads to a general, powerful framework for generative models
- Ill-posed problem Infinite number of choices for p(x, z)

NEED TO MAKE ASSUMPTIONS!

How do we do it?

- Need both the prior p(z) as well as the likelihood $p_{\theta}(x|z)$.
- Choose Prior

$$p(z) = \mathcal{N}(z|0, I)$$

- p(z) has no parameters to learn!
- Learn $p_{\theta}(x|z)$ from the data
- How is this even possible?
- ullet Each sample $z \sim p(z)$ has to correspond to a meaningful observation

This is exactly what we are going to Do!

LEARNING FROM DATA

• Relate $p_{\theta}(x|z)$ to (unknown) model p(x)

$$p(x) = \int p_{\theta}(x|z)p(z)dz$$
$$= \mathbb{E}_{p(z)}[p_{\theta}(x|z)]$$

• Since we have samples from p(x), perhaps we can calculate likelihood, or

$$\mathbb{E}_{p(x)} \left[\mathbb{E}_{p(z)} \left[p_{\theta}(x|z) \right] \right]$$

Progress: A relationship between latent variable z and the data produced by p(x)

- Cannot relate any latent sample to any specific observation this is unsupervised learning
- Need to relate two distributions, p(z) and p(x|z)

Choosing $p_{\theta}(x|z)$

Choosing $p_{\theta}(x|z)$ — WOW??

• For binary images, **pixel-wise**, choose Bernoulli distribution

$$p_{\theta}(x|z) = \rho^{x}(1-\rho)^{1-x}, x \in \{0,1\}$$

• For grayscale images, **pixel-wise**, choose

$$p_{\theta}(x|z) = \begin{cases} \frac{\ln(\frac{\rho}{1-\rho})}{2\rho-1} \rho^x (1-\rho)^{1-x}, & \rho \neq \frac{1}{2} \\ 1, & \rho = \frac{1}{2} \end{cases}, \quad x \in [0,1]$$

• Gausian, **pixel-wise**

$$p_{\theta}(x|z) = \mathcal{N}(x|\mu, \sigma^2)$$

What happened to z, and what exactly are the parameters?

IDEA II: $\rho = f_{\phi}(z)$

RECAP

• Want to sample from latent variable

$$z^{(\ell)} \sim p(z)$$
 $x^{(\ell)} \sim p_{\theta}(x|z^{(\ell)})$

- Specify $p(z) = \mathcal{N}(z|0, I)$.
- Specify $p_{\theta}(x|z)$, pick one
- Somehow this should allow us to produce more samples approximate p(x)

Map z to x through a deterministic function

- Choosing $p_{\theta}(x|z)$ as Bernoulli: $\rho = f_{\phi}(z)$, i.e. $p_{\theta}(x|z) = \text{Be}\left(x|\rho(z)\right)$
- Choosing $p_{\theta}(x|z)$ Gaussian: $\mu = \mu_{\phi}(z), \ \sigma = \sigma_{\phi}(z).$

EXAMPLE

Deterministic map

$$z \sim \mathcal{N}(z|0, I)$$
 $x = z/10 + z/||z||$

Good idea to map p(z) to p(x|z) through deterministic function

HARD TO DIRECTLY LEARN THE NONLINEAR MAP

- Need to fully, and simultaneously sample from both spaces hard
- Recall: Not possible to relate sample $z \sim p(z)$ with any observation
- Hard to find good objective function

GO BY THIS INDIRECTLY

IDEA III: SAMPLE FROM POSTERIOR

Posterior: p(z|x)

 \bullet Conditioning on known samples of x, constrains the distributions over the latent variable z

But, p(z|x) is not tractable!!

IDEA IV: APPROXIMATION OF POSTERIOR

Approximate p(z|x) which is intractable with $q_{\phi}(z|x)$ which can be computed

Error in the approximation, Kullback-Leibler divergence

$$\begin{split} \mathrm{KL}[q_{\phi}(z|x)||p(z|x)] &= & \mathbb{E}_{q_{\phi}(z|x)} \left[\ln q_{\phi}(z|x) - \ln p(z|x) \right] \\ &= & - \int q_{\phi}(z|x) \ln \left[\frac{p(z|x)}{q_{\phi}(z|x)} \right] dz \\ &\geq & 0 \end{split}$$

- Equality iff $q_{\phi}(z|x) = p(z|x)$.
- Apply Bayes' rule

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

THE MIRACLE: THE EVIDENCE LOWER BOUND (ELBO)

Applying Bayes' rule to the KL-divergence

$$\mathrm{KL}[q_{\phi}(z|x)||p(z|x)] = \ln p(x) - \mathbb{E}_{q_{\phi}(z|x)} \left[\ln p_{\theta}(x|z) \right] + \mathrm{KL}[q_{\phi}(z|x)||p(z)]$$

or

$$\ln p(x) = \underbrace{\mathbb{E}_{q_{\phi}(z|x)} \left[\ln p_{\theta}(x|z) \right] - \text{KL}[q_{\phi}(z|x)||p(z)]}_{\text{ELBO}} + \text{KL}[q_{\phi}(z|x)||p(z|x)]$$

$$= \underbrace{\text{KL}[q_{\phi}(z|x)||p(x,z)]}_{\text{ELBO}} + \text{KL}[q_{\phi}(z|x)||p(z|x)]$$

• Recall: Started with

$$p(x) = \mathbb{E}_{p(z)}[p_{\theta}(x|z)]$$

WORKING THE MIRACLE

Applying Bayes' rule to the KL-divergence

$$\ln p(x) = \text{ELBO} + \text{KL}[q_{\phi}(z|x)||p(z|x)]$$

 $\geq \text{ELBO}$

• In order to minimize $\mathrm{KL}[q_{\phi}(z|x)||p(z|x)]$

MAXIMIZE

$$ELBO = \mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)] - KL[q_{\phi}(z|x)||p(z)]$$

This does the following:

- I. Pushes $q_{\phi}(z|x)$ closer to intractable p(z|x)
- II. Pushes $q_{\phi}(z|x)$ closer to p(z) want to sample from p(z)!
- III. Maximize the expected value of $\ln p_{\theta}(x|z)$ maximum likelihood

DISSECTING ELBO

Minimize negative ELBO, i.e. minimize

$$-\mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)] + \text{KL}[\ln q_{\phi}(z|x)||p(z)]$$

- Choose $p(z) = \mathcal{N}(z|0, I)$
- Choose $q_{\phi}(z|x) = \mathcal{N}\left(z|\mu(x), \sigma^2(x)\right)$ yet to be explained
- Straightforward calculation shows that

$$KL[\ln q_{\phi}(z|x)||p(z)] = \frac{1}{2} \left[-1 - \ln \sigma^{2}(x) + \sigma^{2}(x) + \mu^{2}(x) \right]$$

• Use Monte Carlo sampling to evaluate $-\mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)] = -\int q_{\phi}(z|x) \ln p_{\theta}(x|z) dz$ For $z^{(\ell)} \sim q_{\phi}(z|x), \quad \ell = 1, \dots, m$,

$$-\mathbb{E}_{q_{\phi}(z|x)}[\ln p_{\theta}(x|z)] \approx \frac{1}{m} \sum_{\ell=1}^{m} p_{\theta} \left(x|z^{(\ell)} \right)$$

• In practice use m=1

PUTTING IT ALL TOGETHER

Given an observation \mathbf{x} , do

- Encoder: $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}\left(z|\mu(\mathbf{x}), \sigma^2(\mathbf{x})\right)$
- Sample: $\mathbf{z}^{(\ell)} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$
- Decoder: $\rho = \rho(\mathbf{z})$
- Cross entropy: $-\ln p_{\theta}(x|\mathbf{z}) = -x \ln \rho(\mathbf{z}) (1-x) \ln(1-\rho(\mathbf{z}))$ (This is for each dimension of \mathbf{x} , e.g. for each pixel)
- The vector ρ is the output image

IN EACH CASE WE NEED TO LEARN A NONLINEAR FUNCTION, THAT

I. maps
$$\mathbf{x}^{(k)} \sim p(\mathbf{x})$$
 to $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(k)})$

II. maps
$$\mathbf{z}^{(\ell)} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$$
 to $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z}^{(\ell)})$

Quite miraculously this also maps $z \sim \mathcal{N}(z|0, I)$ to $x \sim p(x)$

IDEA V: NEURAL NETWORK

- Make use of the universal function approximator property of neural networks
- Use a neural network to calculate the function that

I. maps $x^{(k)} \sim p(x)$ to $z \sim q_{\phi}(z|x^{(k)})$

II. maps $z^{(\ell)} \sim q_{\phi}(z|x^{(k)})$ to $x \sim p_{\theta}(x|z^{(\ell)})$.

AUTOENCODER

• Objective function

$$C(\phi) = \underbrace{-x \ln \rho_{\phi}(z^{(\ell)}) - (1-x) \ln(1-\rho_{\phi}(z^{(\ell)}))}_{\text{reconstruction loss}} + \underbrace{\frac{1}{2} \left[-1 - \ln \sigma_{\phi}^2(x) + \sigma_{\phi}^2(x) + \mu_{\phi}^2(x) \right]}_{\text{latent loss}}$$

Take mean over all pixels, over each mini-batch

• Solve using gradient descent

BIG PROBLEM!!

BIG PROBLEM

• Sampling

$$z^{(\ell)} \sim q_{\phi}(z|x) = \mathcal{N}(z|\mu_{\phi}(x), \sigma_{\phi}^2(x))$$

is no good.

• Another look at the objective function

$$C(\phi) = -x \ln \rho_{\phi}(z^{(\ell)}) - (1-x) \ln(1-\rho_{\phi}(z^{(\ell)})) + \frac{1}{2} \left[-1 - \ln \sigma_{\phi}^{2}(x) + \sigma_{\phi}^{2}(x) + \mu_{\phi}^{2}(x) \right]$$

The samples $z^{(\ell)}$ depend on the parameters that we need to optimize.

BUT THEY ARE HIDDEN FROM THE OBJECTIVE FUNCTION!!

CANNOT TAKE A GRADIENT THROUGH RANDOM SAMPLES

IDEA VI: REPARAMETERIZATION TRICK

Sample $\epsilon^{(\ell)} \sim \mathcal{N}(\epsilon|0,1)$ and set

$$z^{(\ell)} = \mu_{\phi}(x) + \epsilon^{(\ell)} \sigma_{\phi}(x)$$

Tensorflow code: Autoencoder

```
n_{inputs} = 28 * 28
n hidden1 = 500
n hidden2 = 500
n_hidden3 = 20 # codings
n_{hidden4} = n_{hidden2}
n hidden5 = n hidden1
n_outputs = n_inputs
learning_rate = 0.001
X = tf.placeholder(tf.float32, [None, n_inputs])
hidden1 = my_dense_layer(X, n_hidden1)
hidden2 = my_dense_layer(hidden1, n_hidden2)
hidden3_mean = my_dense_layer(hidden2, n_hidden3, activation=None)
hidden3_gamma = my_dense_layer(hidden2, n_hidden3, activation=None)
noise = tf.random_normal(tf.shape(hidden3_gamma), dtype=tf.float32)
hidden3 = hidden3_mean + tf.exp(0.5 * hidden3_gamma) * noise
hidden4 = my_dense_layer(hidden3, n_hidden4)
hidden5 = my_dense_layer(hidden4, n_hidden5)
logits = my_dense_layer(hidden5, n_outputs, activation=None)
outputs = tf.sigmoid(logits)
```

TENSORFLOW CODE: COST FUNCTION

Tensorflow code: Train and generate digits

```
n_{digits} = 60
n_{epochs} = 50
batch size = 150
with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        n_batches = mnist.train.num_examples // batch_size
        for iteration in range(n_batches):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(training_op, feed_dict={X: X_batch})
        loss_val, reconstruction_loss_val, latent_loss_val = sess.run([loss,
         reconstruction_loss, latent_loss], feed_dict={X: X_batch})
    codings_rnd = np.random.normal(size=[n_digits, n_hidden3])
    outputs_val = outputs.eval(feed_dict={hidden3: codings_rnd})
```

