MAT2002 – APPLICATIONS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS Module 3 – Lecture Notes

PARTICULAR SOLUTION – METHOD OF VARIATION OF PARAMETERS

Theorem1 (VARIATION OF PARAMETERS-I)

Consider the standard form of the non-homogeneous differential equation(DE)

$$y'' + py' + qy = r(x)$$

Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the associated homogeneous DE, and let $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$ be the Wronskian function of $y_1(x)$ and $y_2(x)$.

The particular solution of the non-homogeneous DE [1] has the form

$$y_p(x) = u(x)y_1(x) + v(x)y_2(x),$$

where u and v are given by

$$u(x) = -\int \frac{y_2(x)r(x)}{W} dx$$
 and $v(x) = \int \frac{y_1(x)r(x)}{W} dx$.

Theorem2 (VARIATION OF PARAMETERS-II)

Consider the general form of the non-homogeneous differential equation(DE)

$$a_1y'' + a_2y' + a_3y = f(x)$$
 [1]

Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the associated homogeneous DE, and let $W(y_1,y_2) = \begin{vmatrix} y_1 & y_2 \\ v_1' & v_2' \end{vmatrix} = y_1y_2' - y_1'y_2$ denote the Wronskian function of $y_1(x)$ and $y_2(x)$.

The particular solution of the non-homogeneous DE [1] has the form

$$y_n(x) = u(x)y_1(x) + v(x)y_2(x),$$

where u and v are given by

$$u(x) = -\int \frac{y_2(x)f(x)}{a_1W} dx$$
 and $v(x) = \int \frac{y_1(x)f(x)}{a_1W} dx$.

Prepared by Dr. V. Prabhakar, School of Advanced Sciences, VIT Chennai.

MAT2002 – APPLICATIONS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS Module 3 – Lecture Notes

Worked Example1:

Solve the differential equation $y'' - 2y' - 3y = 2e^x - 10sinx$.

Solution.

Step1: To find the complementary function

The auxiliary equation of the associated homogeneous equation is $m^2-2m-3=0 \Rightarrow m=-1,3$ Hence the complementary function is

$$y_c(x) = c_1 e^{-x} + c_2 e^{3x}$$
, where c_1 and c_2 are arbitrary constants.

Step2: To find the particular solution by the method of variation of parameters.

Let $y_1(x) = e^{-x}$ and $y_2(x) = e^{2x}$. The Wronskian function is given by $W = \begin{vmatrix} e^{-x} & e^{3x} \\ -e^{-x} & 3e^{3x} \end{vmatrix} = 4e^{2x}$ From the given DE, we have $r(x) = 2e^x - 10sinx$.

The particular solution is given by $y_n(x) = u(x)y_1(x) + v(x)y_2(x)$,

where u and v are given by $u(x) = -\int \frac{y_2(x)r(x)}{W} dx$ and $v(x) = \int \frac{y_1(x)r(x)}{W} dx$.

Now,
$$\frac{y_2(x)r(x)}{W} = \frac{e^{3x}[2e^x - 10sinx]}{4e^{2x}} = \frac{1}{2}[e^{2x} - 5e^x sinx].$$
Hence, $u(x) = -\int \frac{y_2(x)r(x)}{W} dx = -\int \frac{1}{2}[e^{2x} - 5e^x sinx] dx = -\frac{1}{2}\left[\frac{e^{2x}}{2} - 5\int e^x sinx dx\right]$

$$= -\frac{1}{2}\left[\frac{e^{2x}}{2} - 5\left(\frac{e^x}{2}\{sinx - cosx\}\right)\right] = -\frac{1}{4}e^{2x} + \frac{5}{4}e^x\{sinx - cosx\}$$

Also,
$$\frac{y_1(x)r(x)}{W} = \frac{e^{-x}[2e^x - 10sinx]}{4e^{2x}} = \frac{1}{4}[2e^{-2x} - 10e^{-3x}sinx].$$
 Hence,
$$v(x) = \int \frac{y_1(x)r(x)}{W} dx = \frac{1}{4}[-e^{-2x} - 10\int e^{-3x}sinxdx] = \frac{1}{4}\Big[-e^{-2x} - 10\Big(\frac{e^{-3x}}{10}\{-3sinx - cosx\}\Big)\Big]$$

$$= -\frac{1}{4}e^{-2x} + \frac{1}{4}e^{-3x}\{3sinx + cosx\}. \text{ Thus, we have}$$

$$u(x)y_1(x) = -\frac{1}{4}e^x + \frac{5}{4}\{sinx - cosx\} \text{ and } v(x)y_2(x) = -\frac{1}{4}e^x + \frac{1}{4}\{3sinx + cosx\}$$

Hence the particular solution is $y_p(x) = u(x)y_1(x) + v(x)y_2(x) = -\frac{1}{2}e^x + 2sinx - cosx$

Thus the general solution of the given DE is

$$y(x) = y_c(x) + y_p(x) = c_1 e^{-x} + c_2 e^{2x} - \frac{1}{2} e^x + 2\sin x - \cos x$$

Prepared by Dr. V. Prabhakar, School of Advanced Sciences, VIT Chennai.