Analísis Complejo

Hugo Del Castillo Mola

9 de enero de 2023

Índice general

	Análisis Complejo	3		
1.	Preliminares			
	1.1. El Plano Complejo	4		
	1.2. Función Exponencial	6		
	1.3. Función Logaritmo	8		
	1.4. Transformación de Möbius			
2.	Funciones Holomorfas	12		
	2.1. Derivación Compleja	12		
	2.2. Ecuaciones de Cauchy-Riemann			
	2.3. Función Inversa	16		
	2.4. Funciones Harmónicas			
	2.5. Aplicaciones Conformes	19		
3.	Integración Compleja	21		
	3.1. Integral de Funciones Complejas sobre Curvas	21		
	3.2. Teorema de Cauchy	24		
	3.3. Consecuencias Teorema Cauchy	29		
4.	Representación Analítica de las funciones holomorfas	32		
	4.1. Sucesiones y Series	32		
	4.2. Series de Potencias	34		
	4.3. Funciones Analíticas	36		
	4.4. Ceros de Funciones Analíticas	38		
5 .	Singularidades Aisladas	42		
	5.1. Series de Laurent	42		
	5.2. Singularidades Aisladas			
	5.3. Cálculo de Residuos	44		

6 .	Miscelanea			
	6.1.	Principio Del Argumento	46	
	6.2.	Teorema de Rouché	48	
	6.3.	Propiedades Funciones Armónicas	48	

Parte I Análisis Complejo

Capítulo 1

Preliminares

1.1. El Plano Complejo

Definición 1.1 (Plano Complejo). Definimos los números complejos como el conjunto $\mathbb{C}=\{(a,b):a,b\in\mathbb{R}\}$ junto con las operaciones suma y producto

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \cdot (c,d) = (ac-bd,bc+ad)$

Observación. $(\mathbb{C}, +, \cdot)$ es un cuerpo conmutativo.

- (I) La identidad de la suma es (0,0) y la identidad del producto es (1,0).
- (II) Se satisfacen la prorpiedad asociativa, la distributiba y la conmutativa.
- (III) Todo elemento distinto de cero tiene inverso en \mathbb{C} .

Observación. Consideramos los números reales $\mathbb R$ como el subconjunto de los números complejos $\mathbb C$ de la forma (a,0). Dado $(a,b)\in\mathbb C$ podemos escribir (a,b)=a(1,0)+b(0,1). Sea i=(0,1) entonces (a,b)=a+ib. Notese que $i=(0,1)\cdot(0,1)=(-1,0)\to 1\in\mathbb R$.

Observación. La parte real de $z=a+ib\in\mathbb{C}$ es a y se denota $\Re(z)=a$. La parte imaginaria de z es b y se denota $\Im(z)=b$.

Definición 1.2 (Módulo). Sea
$$z=a+ib\in\mathbb{C}$$
, el módulo de z es

$$|z| = \sqrt{a^2 + b^2}$$

Observación. El módulo de un número complejo es la distancia desde el punto del plano hasta el origen.

Definición 1.3 (Conjugado). Sea $z = a + ib \in \mathbb{C}$, el conjugado de z es

$$\overline{z} = a - ib$$

Observación. El conjugado de un número complejo es su simétrico respecto al eje de coordenadas.

Proposición 1.1. Se verifican las siguientes propiedades:

(I)
$$\overline{\overline{z}} = z \ y \ \overline{z} = z \Leftrightarrow z \in \mathbb{R}$$
.

(II)
$$z + \overline{z} = 2\Re(z)$$
 y $z - \overline{z} = 2\Im(z)$.

(III)
$$\overline{z+w} = \overline{z} + \overline{w}$$
 y $\overline{-z} = -\overline{z}$

(IV)
$$\overline{zw} = \overline{z} \cdot \overline{w}$$
 y si $z \neq 0$ entonces $\overline{z^{-1}} = \overline{z}^{-1}$

(v)
$$|z|^2 = z\overline{z} \ y \ z^{-1} = \frac{\overline{z}}{|z|^2}, \ \forall z \neq 0.$$

(VI)
$$|zw|=|z||w|$$
, $|\frac{z}{w}|=\frac{|z|}{|w|}$ si $(w\neq 0)$ y $|z|=|\overline{z}|$

(VII)
$$|z+w| \leq |z| + |w|$$
. Además, si $\exists t \geq 0: z=tw$ se tiene $|z+w| = |z| + |w|$.

Observación. El módulo permite definir una distancia en el plano complejo d(z,w)=|z-w|. De esta forma $\mathbb C$ y $\mathbb R$ son topológicamente iguales.

Definición 1.4 (Representación polar de un número complejo). Sea $z = a + ib \in \mathbb{C}$, z representa el punto (a,b) en el plano, cuya expresión en coordenadas polares es $(r\cos\theta, r\sin\theta)$. Y escribimos

$$z = r(\cos\theta + i\sin\theta) := re^{i\theta}$$

donde r = |z| y $\theta = \arg(z) = \arg(\frac{b}{a})$.

Observación. Si $-\pi < \theta < \pi$ lo llamamos argumento principal y se denota $\operatorname{Arg}(z)$. El conjunto de todos los posibles argumentos de z es $\{Arg(z) + 2k\pi : k \in \mathbb{Z}\}$.

Proposición 1.2. (I) $e^{i\theta}=e^{i(\theta+2k\pi)} \forall k \in \mathbb{Z}$.

(II)
$$|e^{i\theta}| = 1, |\overline{e^{i\theta}}| = e^{-i\theta} = (e^{i\theta})^{-1}.$$

(III)
$$e^{i(\theta+\sigma)} = e^{i\theta}e^{i\sigma}$$
.

(IV)
$$\arg(zw) = \arg(z) + \arg(w)$$
 y $\arg(\overline{z}) = \arg(z^{-1}) = -\arg(z)$

Proposición 1.3. Si
$$z = re^{i\theta}$$
 entonces $z^n = r^n e^{in\theta} = |z|^n e^{in \arg(z)}$.

Observación. Una raíz n-esima de un número complejo w es número z que cumple $z^n = w$. Si w = 0 la única raíz es 0, si $w \neq 0$ entonces por el Teorema Fundamental del Álgebra tenemos que hay n raíces distintas.

Sean $w=|w|e^{i\theta}$ y $z=|z|e^{i\alpha}$, tenemos que

$$|w|e^{i\theta} = |z|^n e^{in\alpha}$$

y por tanto $|z|=|w|^{\frac{1}{n}}$ y $e^{i\theta}=e^{in\alpha}$, lo cual implica que $n\alpha=\theta+2k\pi$ para $k\in\mathbb{Z}$. Los valores de α son

$$\frac{\theta}{n}, \frac{\theta+2\pi}{n}, \cdots, \frac{\theta+2\pi(n-1)}{n}$$

Proposición 1.4. Sea $w \in \mathbb{C}$ entonces w tiene n raíces n-simas distintas.

Observación. Estas n raíces son los vértices de un polígono regular de n lados inscritos en la circunferencia de centro 0 y radio $|w|^{\frac{1}{n}}$.

1.2. Función Exponencial

Definición 1.5 (Función polinómica). Sea $P: \mathbb{C} \to \mathbb{C}: z \mapsto a_0 + a_1z + \cdots + a_nz^n$ donde $a_0, \cdots, a_n \in \mathbb{C}$.

Observación. Como $f(z)=z^k$ es continua (de $\mathbb{R}^2\to\mathbb{R}^2$) se tiene que f es continua de $\mathbb{C}\to\mathbb{C}$.

Definición 1.6 (Función Exponencial). *Definimos la función exponencial como la solución de la ecuación diferencial*

$$f'(z) = f(z)$$

con el valor inicial f(0) = 1. Haciendo

$$f(z) = a_0 + a_1 z + \dots + a_n z^n + \dots$$

$$f'(z) = a_1 + 2a_2z + \dots + na_nz^{n-1} + \dots$$

se tiene que $a_{n-1}=na_n$ y $a_0=1$ y por inducción $a_n=\frac{1}{n!}$. La solución se denota

$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots$$

que es una serie convergente.

Proposición 1.5 (Propiedades Exponencial). *Se verfican las siguientes propiedades:*

- (I) Si $z \in \mathbb{R}$ entonces e^z coincide con la exponencial real.
- (II) $|e^z| = e^x \text{ y } \arg(e^z) = y$.
- (III) $e^{\overline{z}} = \overline{e^{\overline{z}}}$.
- (IV) $e^z \neq 0$ y $(e^z)^{-1} = e^{-z}$.
- (v) $e^{z+w} = e^z e^w, \forall z, w \in \mathbb{C}.$
- (VI) $e^{2k\pi i} = 1, \forall k \in \mathbb{Z}.$
- (VII) es periódica, $e^z = e^{z+2\pi i}$
- (VIII) es continua, Sea $(z_n)_{n\in\mathbb{N}}$ una sucesión de números complejos, si $z_n\xrightarrow[n\to\infty]{} z_0\Rightarrow e^{z_n}\xrightarrow[n\to\infty]{} e^{z_0}$.
 - (IX) No es inyectiva, exiten infinitos $z \in \mathbb{C}$ tal que $e^x = 1$.

Observación. En el plano la exponencial compleja transforma las rectas horizontales de la forma z=x+ib en semirectas de radio e^x y ángulo b. Y rectas verticales de la forma z=a+iy a circunferenciasde radio e^a y ángulo y.

Definición 1.7 (Funciones Trigonométricas). Se definene las funciones sen y cos como

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \ \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

Proposición 1.6 (Propiedades cos y sen). (I) Son funciones continuas.

(II) Sobre los números reales coinciden con las correspondientes funciones reales.

7

(III)
$$\cos(z) = \cos(-z)$$
 $y \sin(z) = -\sin(-z), \forall z \in \mathbb{C}$.

(IV)
$$\cos(z) = 0 \Leftrightarrow z = \frac{\pi}{2} + k\pi \ \text{y} \ \text{sen}(z) = 0 \Leftrightarrow z = k\pi \ \text{para} \ k \in \mathbb{Z}.$$

(v)
$$\forall z, w \in \mathbb{C}$$
, se tien $\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$ y $\sin(z+w) = \sin(z)\cos(w) + \sin(w)\cos(z)$.

(VI) El coseno y el seno son funciones periódicas de periodo 2π .

(VII)
$$\cos(z)^2 + \sin(z)^2 = 1, \forall z \in \mathbb{C}.$$

Demostración (ii). Veamos que si $z \in \mathbb{R}$ entonces la exponencial compleja coincide con la real

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} =$$

$$= \frac{1}{2} (\cos(x) + \sin(x) + \cos(-x) + i \sin(-x)) = \cos(x)$$

Demostración. (iv) $\cos(z) = 0 \Leftrightarrow e^{iz} + e^{-iz} = 0 \Leftrightarrow e^{iz}(e^{iz} + e^{-iz}) = e^{2iz} + 1 = 0 \Leftrightarrow e^{2iz} = -1 \Rightarrow z \in \mathbb{R}$. Si $y \neq 0$ entonces $e^{2iz} = e^{2ix-2y} \Rightarrow |e^{2iz}| \neq -1$.

Definición 1.8 (Función Tangente). A partir de las funciones seno y coseno se define la tangente,

$$\tan(z) = \frac{\sin(z)}{\cos(z)} = -i\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}}$$

Observación. Todas las funciones trigonométricas son funciones de e^{iz} .

Observación. También podemos definir las funciones

$$\operatorname{senh}(z) = \frac{e^z - e^{-z}}{2} y \cosh(z) = \frac{e^z + e^{-z}}{2}$$

1.3. Función Logaritmo

Definición 1.9 (Logaritmo). La función logaritmo se define como la inversas de la función exponencial,

$$\log : \mathbb{C} \setminus \{0\} \to \mathbb{C}$$

$$z \mapsto \log(z) = w$$

donde $\log(z) = w$ es la raíz de la ecuación $e^w = z$.

Observación. $e^z \neq 0, \forall z \in \mathbb{C} \Rightarrow el 0$ no tiene logaritmo.

Observación. Si $w = x + iy \neq 0$, $z = e^w = e^{x+iy}$ tiene soluciones

$$e^x = |z|, \ e^{iy} = \frac{w}{|w|}$$

donde la primera ecución tiene solución única $x = \log(|z|)$ y la segunda ecuación tiene inifinitas soluciones módulo 2π .

Observación. Distinguiendo la parte real y la parte imaginaria de w podemos escribir

$$z = \log(z) = \log|z| + i\arg(z)$$

dado que $e^{\log(z)} = e^{\log|z|}e^{i\arg(z)} = |z|e^{i\arg(z)} = z$.

Observación. La rama principal del logaritmo es

$$\text{Log } z = \log |z| + i \operatorname{Arg}(z), \quad z \neq 0$$

De esta manera, Log(z) es la inversa de e^w con valores en $-\pi < \Im w \leq \pi$.

Observación. Determinada la rama principal del logaritmo se tiene que

$$\log(z) = \log(z) + i\pi m, \quad m = 0, \pm 1, \pm 2, \cdots$$

para cualquier otra rama.

Definición 1.10 (Potencias). *Sea* $a, \alpha \in \mathbb{C}, a, \alpha \neq 0$

$$a^{\alpha} = e^{\alpha \log(a)}$$

Observación. Si $\alpha = 0 \Rightarrow a^0 = 1$.

Observación. En general, a^{α} tiene infinitos valores. Una excepción es $\alpha = n \Rightarrow a^n = e^{n \log(a)} = e^{\log(a)} \cdot \dots \cdot e^{\log(a)} = a \cdot \dots \cdot a$.

Proposición 1.7 (Propiedades Potencias). *El logaritmo verifica las siguientes propiedades:*

(I)
$$a^{-n} = \frac{1}{a^n}$$

(II) $a^{\alpha+\beta}=a^{\alpha}a^{\beta}$ solo si fijamos el valor de $\log(a)$

(III)
$$1 = e^{-2k\pi y}(\cos(2k\pi x) + i\sin(2k\pi x))$$
 donde $\alpha = x + iy$

Proposición 1.8. (I) $f(z) = a^z$ es continua en \mathbb{C}

(II) Sea $\alpha\in\mathbb{C}, f(z)=z^{\alpha}$ es continua en el dominio de la rama del logaritmo.

1.4. Transformación de Möbius

Definición 1.11 (Transformación de Möbius). Sean $a,b,c,d\in\mathbb{C}$ tal que $ad-bc\neq 0$. Entonces, a la función de la forma

$$S(z) = \frac{az+b}{cz+d}$$

se llama transfomación de Möbius.

Observación. S es continua en $\mathbb{C} \setminus \{-\frac{d}{c}\}$.

Proposición 1.9. La composición de transformaciones de Möbius es transformación de Möbius.

Proposición 1.10. $S: \mathbb{C} \setminus \{-\frac{d}{c}\} \to \mathbb{C} \setminus \frac{a}{c}$ es un homeomorfismo (biyectiva, S continua y S^{-1} continua) cuya inversa es

$$S^{-1}: z \mapsto \frac{dw - b}{a - cw}$$

Observación. $S \circ S^{-1}(z) = S^{-1} \circ S(z) = z$

Observación. Las transformaciones de Möbuis forman un grupo bajo la operación de composición de aplicaciones.

Definición 1.12 (Möbius Ampliada). Sea S la transfomación de Möbius tal que

$$S\left(-\frac{d}{c}\right) = \infty \quad \text{y} \quad S(\infty) = \frac{a}{c}, \quad \text{si } c \neq 0$$
$$S(\infty) = \infty, \quad \text{si } c = 0$$

Entoces, podemos definir $S: \mathbb{C}^* \to \mathbb{C}^*$.

Observación. La transfomación de Möbius ampliada también es homeomorfismo.

Teorema 1.1. Toda transfomación de Möbius es composición de homotecias, translaciones, inversiones y giros.

Observación. Toda transformación de Möbius se puede expresar apartir de homotecias, translaciones, inversiones y giros.

Teorema 1.2. Sean $z_0, z_1, z_2 \in \mathbb{C}^*, w_0, w_1, w_2 \in \mathbb{C}^*: z_i \neq z_j, w_i \neq w_j, \forall i \neq j$. Entonces, $\exists ! T(z)$ transformación de Möbius tal que $T(z_i) = w_i, \forall i \in \{0,1,2\}$.

Corolario 1.2.1. Si una transformación de Möbius tiene tres puntos fijos entonces es la identidad.

Corolario 1.2.2. Si dos transformaciones de Möbius coinciden en tres puntos entonces son la misma.

Teorema 1.3. Las transformaciones de Möbius transforman circunferencias de \mathbb{C}^* en circunferencias de \mathbb{C}^*

Capítulo 2

Funciones Holomorfas

2.1. Derivación Compleja

Definición 2.1 (Derivada). Sea $\Omega \subset \mathbb{C}$ abierto, $f : \mathbb{C} \to \mathbb{C}$, $z_0 \in \mathbb{C}$. Decimos que f es derivable si existe

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

Ejemplo. (I) f constante $\Rightarrow f'(z_0) = 0$.

(II)
$$f(z) = z \Rightarrow f'(z_0) = 1$$
.

(III)
$$f(z) = \overline{z} \Rightarrow \frac{\overline{z} - \overline{z_0}}{z - z_0} = \begin{cases} 1, & \text{si } z - z_0 \in \mathbb{R} \\ -1, & \text{si } z - z_0 \in i\mathbb{R} \end{cases} \Rightarrow \beta \lim_{z \to z_0} z \to z_0$$

Observación. La continuidad de una función compleja es equivalente a la continuidad de la parte real y la parte imaginaria. No pasa lo mismo con derivabilidad.

Proposición 2.1. Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ derivable en $z_0\in\Omega$. Entonces, f es continua en $z_0\in\Omega$.

Demostración. Sigue de la reglas de los limites

$$f(z) = f(z) + f(z_0) - f(z_0)$$

$$= f(z_0) + \frac{f(z) - f(z_0)}{z - z_0}(z - z_0)$$

$$\textit{donde} \xrightarrow[z-z_0]{f(z)-f(z_0)} \xrightarrow{z\to z_0} f'(z_0) \ \textit{y} \ (z-z_0) \xrightarrow[z\to z_0]{t\to z_0} 0 \Rightarrow f(z) \xrightarrow[z\to z_0]{t\to z_0} f(z_0)$$

Proposición 2.2. Sean $f,g:\Omega\subset\mathbb{C}\to\mathbb{C}$ derivables en $z_0\in\Omega$. Entonces,

(I) Si
$$\alpha, \beta \in \mathbb{C}$$
, $(\alpha f + \beta g)'(z_0) = \alpha f'(z_0) + \beta g'(z_0)$

(II)
$$(fg)'(z_0) = f(z_0)g'(z_0) + f'(z_0)g(z_0)$$
.

(III) Si
$$g(z_0) \neq 0$$
 entonces $(\frac{f}{g})'(z_0) = \frac{f'(z_0)g(z_0) + f(z_0)g'(z_0)}{g(z_0)^2}$.

Demostración.

Ejemplo. (I) $f(z) = z^n \Rightarrow f'(z) = nz^{n-1}, \forall z \in \mathbb{C}.$

- (II) Todo polinomio es derivable en \mathbb{C} .
- (III) $f(z) = \frac{1}{z}$ es derivable $\forall z \neq 0$.

Teorema 2.1 (Regla de la Cadena). Sean $\Omega_1, \Omega_2 \subset \mathbb{C}$ abiertos, $f: \Omega_1 \to \mathbb{C}$, $g: \Omega_2 \to \mathbb{C}$ tal que f es derivable en $f(z_0) \in \Omega_2$ y g es derivable en $z_0 \in \Omega_1$. Entonces, $(f \circ g)$ es derivable en $z_0 \in \Omega_1$ y $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$.

Demostración. Sea $G:\Omega_2\to\mathbb{C}:G(w)=\begin{cases} \frac{g(w)-g(f(z_0))}{w-f(z_0)}, w\neq f(z_0)\\ g'(f(z_0)), w=f(z_0) \end{cases}$ entonces, G está bien definida y $\lim_{w\to f(z_0)}\frac{g(w)-g(f(z_0))}{w-f(z_0)}=g'(z_0)\Rightarrow G$ esta continua en $f(z_0)$.

Si $z \neq 0$, entonces

$$\frac{(g \circ f)(z) - (g \circ f)(z_0)}{z - z_0} =$$

$$= \frac{g(f(z)) - g(f(z_0))}{f(z) - f(z_0)} \cdot \frac{f(z) - f(z_0)}{z - z_0} =$$

$$= G(f(z)) \frac{f(z) - f(z_0)}{z - z_0}$$

$$\lim_{z \to z_0} G(f(z)) \frac{f(z) - f(z_0)}{z - z_0} =$$

$$= \lim_{z \to z_0} G(f(z)) \cdot \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =$$

$$= G'(f(z_0))f'(z_0).$$

Observación. $f: \Omega \to \mathbb{C}$ es derivable $\forall z \in \Omega$. Entonces, f es holomorfa en Ω .

2.2. Ecuaciones de Cauchy-Riemann

Notación. Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$

$$f(x,y) = (u(x,y), v(x,y)) = u(x,y) + iv(x,y),$$

donde $u, v : \mathbb{R}^2 \to \mathbb{R}^2$. Entonces, la matriz jacobiana de f es

$$J_f(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Nota. Queremos ver que significa qeu u,v sean diferenciables. Si derivamos f en $z_0 \in \Omega$ respecto de x y y, parte real y parte imaginaria respectivamente, obtenemos dos expresiones de $f'(z_0)$ que dan lugar a las ecuaciones de Cauchy-Riemann.

Teorema 2.2 (Ecuaciones Cauchy-Riemann). Sea $f: \Omega \subset \mathbb{C} \to \mathbb{C}$. Entonces $f'(z_0)$ existe $\Leftrightarrow f$ es diferenciable en $z_0 = (x_0, y_0) \in \mathbb{R}^2$ con

$$u_x = v_y, \ u_y = -v_x$$
 (Ecuaciones de C-R),

es decir, si $\exists u_x, u_y, v_x, v_y$, son continuas en Ω y satisfacen las ecuaciones, entonces f es analítica en Ω .

Demostración.

 (\Rightarrow) En el límite

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

sustituimos $z = x + iy_0$

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{u(x, y_0) + iv(x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{x - x_0}$$

$$= \frac{u(x, y_0) + u(x_0, y_0)}{x - x_0} + i \frac{v(x, y_0) - iv(x_0, y_0)}{x - x_0}$$

donde $\frac{f(z)-f(z_0)}{z-z_0} \xrightarrow{x \to x_0} f'(z_0)$ implica

$$\lim_{x \to x_0} \frac{u(x, y_0) + u(x_0, y_0)}{x - x_0} + i \frac{v(x, y_0) - iv(x_0, y_0)}{x - x_0}$$
$$= \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$$

De manera análoga, si $z = x_0 + iy$ entonces

$$\lim_{y \to y_0} \frac{u(x_0, y) + u(x_0, y_0)}{i(y - y_0)} + \frac{v(x_0, y) - v(x_0, y_0)}{(y - y_0)}$$

$$= \frac{1}{i} \frac{\partial u}{\partial y}(x_0, y_0) + \frac{\partial v}{\partial y}(x_0, y_0)$$

$$= -i \frac{\partial u}{\partial y}(x_0, y_0) + \frac{\partial v}{\partial y}(x_0, y_0).$$

Por tanto, $\exists f'(z_0)$ y tiene el mismo valor independientemente de como z se acerque a z_0

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

(←) A partir del teoremade Taylor

$$u(x+s,y+t) = u(x,y) + \frac{\partial u}{\partial x}(x,y)s + \frac{\partial u}{\partial y}(x,y)t + R(s,t)$$

donde $\frac{R(s,t)}{|h|} \xrightarrow{z \to z_0} 0$. También

$$v(x+s,y+t) = v(x,y) + \frac{\partial v}{\partial x}(x,y)s + \frac{\partial v}{\partial y}(x,y)t + G(s,t)$$

donde $\frac{G(s,t)}{|h|} \xrightarrow{z \to z_0} 0$. Entonces,

$$f(z+h) = f(z) + \frac{\partial u}{\partial x}(x,y)s + \frac{\partial u}{\partial y}(x,y)t + R(h)$$

$$+i\frac{\partial v}{\partial x}(x,y)s + i\frac{\partial v}{\partial y}(x,y)t + iG(h)$$
$$= f(z) + \left(\frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y)\right)h + R(h) + iG(h)$$

Entonces,

$$\frac{f(z+h) - f(z)}{h} = \left(\frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y)\right) + \frac{R(h) + iG(h)}{h}$$

Por tanto,

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

 $\exists f'(z_0) \text{ y es continua} \Rightarrow f(z) \text{ es anlítica.}$

Corolario 2.2.1. Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ holomorfa, Ω abierto. Entonces, $f'(z)=0, \forall z\in\Omega\Rightarrow f$ es constante.

Teorema 2.3. Si f(z) es diferenciable, entonces la matriz Jacobian $J_f: \mathbb{R}^2 \to \mathbb{R}^2$ tiene determinante

$$\det J_f(z) = |f'(z)|^2.$$

Demostración.

$$J_f(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Por tanto, el determinante es

$$\det J_f(x,y) = u_x v_y - u_y v_x$$

Si sustituimos las derivadas parciales de las ecuaciones de Cauchy nos queda

$$\det J_f(x,y) = u_x u_x + v_x v_x$$
$$= |u_x + iv_x|^2$$
$$= |f'(z)|^2$$

2.3. Función Inversa

Teorema 2.4 (Función Inversa). Sea $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ holomorfa, $z_0\in\Omega$ y $f'(z_0)\neq 0$. Entonces, existe un entorno $U\subset D:z_0\in U$ y un entorno de $V\subset\mathbb{C}:f(z_0)\in V$ tal que $f:U\to V$ es biyectiva y f^{-1} es holomorfa con

$$(f^{-1})'(f(z)) = \frac{1}{f'(z)}, z \in U.$$

Demostración.

Sea $J_f(x_0,y_0)$ la matriz Jacobiana de f en $z_0=(x_0,y_0)$, por el Teorema 2.3 $\det(J_f(z_0))=|f'(z_0)|^2\neq 0$. Entonces, podemos aplicar el Teorema de la Función Inversa Real ya que $J:\mathbb{R}^2\to\mathbb{R}^2$. Solo falta ver que $J_f(z)^{-1}$ cumple las ecuaciones de Cauchy-Riemann.

$$J_f(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Entonces la matriz Jacobiana invera es

$$(J_f(x,y))^{-1} = \frac{1}{\det(J_f)} \begin{pmatrix} v_y & -u_y \\ -v_x & u_x \end{pmatrix}$$

y la matriz Jacobiana de la función inversa

$$J_{f^{-1}}(x,y) = \begin{pmatrix} t_x & t_y \\ s_x & s_y \end{pmatrix}$$

Entonce,

$$t_x = \frac{1}{\det(J_f)} v_y = \frac{1}{\det(J_f)} u_x,$$

$$s_x = -\frac{1}{\det(J_f)} v_x = \frac{1}{\det(J_f)} u_y,$$

$$t_y = \frac{1}{\det(J_f)} v_x,$$

$$s_y = \frac{1}{\det(J_f)} v_y$$

las ecuaciones de Cauchy-Riemann se cumplen.

Ejemplo. Sea $w = \log z$ la rama principal del logaritmo. Entonces, w es continua y es la inversa de

$$z = e^w, \quad -\pi < w < \pi$$

Como e^w es holomorfa con $(e^w)' \neq 0$, podemos aplicar el Teorema de la Función Inversa. Por tanto, $\log z$ es holomorfa.

$$z = e^{\log z} \Rightarrow$$

$$1 = e^{\log z} \frac{d}{dz} (\log z) = z \frac{d}{dz} (\log z) \Rightarrow$$

$$\frac{d}{dz} (\log z) = \frac{1}{z}.$$

Observación. Toda rama del logaritmo difiere de la principal por una constante. Por tanto, tiene la misma derivada.

2.4. Funciones Harmónicas

Definición 2.2 (Ecuación de Laplace). La ecuación

$$\frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_m^2} = 0$$

se llama ecuación de Laplace.

Definición 2.3 (Laplaciano). El operador

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_m^2}$$

se llama Laplaciano.

Observación. La ecuación de Laplace se escribe $\Delta u = 0$.

Definición 2.4 (Función Armónica). Las funciones que satisfacen la ecuación de Laplace se llaman funciones armónicas. Sea $u:A\to\mathbb{R},\ u\in C^2$ tal que

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Teorema 2.5. Si f=u+iv es holomorfa y $u,v\in C^2$. Entonces, u y v son armónicas.

Observación. $u = \Re(f), v = \Im(f)$.

Demostración. content

Definición 2.5 (Conjugado Armónico). Sea $u:D\subset\mathbb{R}\to\mathbb{R}$ armónica y v armónica tal que f=u+iv es holomorfa. Entonces, decimos que v es el conjugado armónico.

Ejemplo. $f(z) = z^2$, $u = x^2 + y^2$, v = 2xy.

Teorema 2.6. Sea D un disco abierto o $D=\mathbb{R}^2$, $u:D\to\mathbb{R}$ armónica. Entonces, existe v armónica conjugada.

Ejemplo. Sea u(x,y) = xy tenemos que

$$\frac{\partial^2 xy}{\partial x}^2 = -\frac{\partial^2 xy}{\partial y}^2 = 0.$$

Resolviendo las ecuaciones de Cauchy-Riemann se tiene

$$\frac{\partial u}{\partial x} = y = \frac{\partial v}{\partial y}$$

Por tanto,

$$v(x,y) = \frac{y^2}{2} + h(x)$$

Ahora,

$$\frac{\partial u}{\partial y} = x = \frac{\partial v}{\partial x}$$

Entonces,

$$h(x) = -\frac{x^2}{2} + C$$

Por tanto,

$$f(x,y) = xy - i\left(\frac{x^2 + y^2}{2} + k\right)$$

Corolario 2.6.1. Toda función armónica es localmente la parte real de una función holomorfa.

2.5. Aplicaciones Conformes

Definición 2.6 (Vector Tangente). Sea $\gamma(t)=x(t)+iy(t)$, $0 \le t < 1$ una curva diferenciable parametrizada con $z_0=\gamma(0)$. Entonces,

$$\gamma'(0) = \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t} = x'(0) + iy'(0)$$

es el vector tangente a γ en z_0 .

Definición 2.7 (Ángulo entre dos curvas). Definimos el ángulo entre dos curvas en z_0 como el ángulo entre sus vectores tangentes en z_0

Teorema 2.7. Sea $\gamma:[0,1]\to\mathbb{C}$ una curva diferenciable parametrizada con $z_0=\gamma(0)$ y sea f(z) una función diferenciable en z_0 . Entonces la tangente de la curva $f(\gamma(t))$

$$(f \circ \gamma)'(0) = f'(z_0)\gamma'(0).$$

Definición 2.8 (Función Conforme). Sea $f:A\subset\mathbb{R}^2\to\mathbb{R}^2$ diferenciable y sean para dos curvas γ_1,γ_2 con $\gamma_1(0)=\gamma_2(0)=z_0$. Si $(f\circ\gamma_1)'(z_0)\neq 0$ y $(f\circ\gamma_2)(z_0)\neq 0$, y

$$\langle \gamma_1(z_0), \gamma_2(z_0) \rangle = \langle (f \circ \gamma_1)'(z_0), (f \circ \gamma_2)'(z_0) \rangle$$

entonces, decimos que f es conforme en z_0 .

Observación. Una función conforme $f:D\to V$ es una función diferenciable con derivadas parciales continuas que es conforme $\forall z\in D$ e inyectiva.

Teorema 2.8. Si f(z) es diferenciable en z_0 y $f'(z_0) \neq 0$, entonces f(z) es conforme en z_0 .

Ejemplo. La función $f(z)=z^2$ es un aplicación conforme de $\{\Re z>0\}$ a $\mathbb{C}\setminus (-\infty,0]$. Si $z_0=r_0\cdot e^{i\theta_0}$, entonces $f(z_0)=r_0^2\cdot e^{i2\theta_0}$.

Capítulo 3

Integración Compleja

3.1. Integral de Funciones Complejas sobre Curvas

Definición 3.1 (Integral). Sea $h:[a,b]\subset\mathbb{R}\to\mathbb{C}$ un función compleja de una variable real y sean u,v sus partes real e imaginaria respectivamente tal que h(t)=u(t)+iv(t). Suponemos que u,v son continuas. Entonces, llamamos la integral de h

$$\int_{a}^{b} h(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt,$$

donde las integrales de u y v tienen el sentido usual de cálculo unidimensional.

Proposición 3.1. *Sea* $f : \omega \subset \mathbb{C} \to \mathbb{C}$ *. Entonces,*

$$\left| \int_{\alpha}^{\beta} f(t)dt \right| \leq \int_{\alpha}^{\beta} |f(t)|dt.$$

Definición 3.2. Sea f continua y definida en un conjunto abierto $A \subset \mathbb{C}$, $\gamma:[a,b] \to \mathbb{C}$ una curva diferenciable a trozos tal que $\gamma([a,b]) \subset A$.

Entonces,

$$\int_{\gamma} f = \int_{\gamma} f(z)dz = \sum_{i=0}^{n-1} \int_{a_i}^{a_{i-1}} f(\gamma(t))\gamma'(t)dt$$

es la integral de línea de f a lo largo de γ .

Proposición 3.2. Sea f(z) = u(x,y) + iv(x,y), entonces

$$\int_{\gamma} f = \int_{\gamma} [u(x,y)dx - v(x,y)dy] + i \int_{\gamma} [u(x,y)dy + v(x,y)dx]$$

Demostración.

$$f(\gamma(t))\gamma'(t) = [u(x(t), y(t)) + iv(x(t), y(t))] \cdot [x'(t) + iy'(t)]$$

= [u(x(t),y(t))x'(t)-v(x(t),y(t))y'(t)]+i[v(x(t),y(t))x'(t)+u(x(t),y(t))y'(t)] donde integrado sobre $[a_i,a_{i+1}]$ tenemos la expresión requerida.

Definición 3.3 (Reparametrización). Sea $\gamma:[a,b]\to\mathbb{C}$ una curva diferenciable a trozos. Una curva diferenciable a trozos $\overline{\gamma}[\overline{a},\overline{b}]\to\mathbb{C}$ se llama reparametrización de γ si $\exists \alpha:[a,b]\to[\overline{a},\overline{b}]$ con $\alpha'(t)>0, \alpha(a)=\overline{a}$ y $\alpha(b)=\overline{b}$ tal que $\gamma(t)=\overline{\gamma}(\alpha(t))$.

Proposición 3.3. Si $\overline{\gamma}$ es una reparametrización de γ , entonces

$$\int_{\gamma} f = \int_{\overline{\gamma}} f$$

para $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ donde $\gamma([a,b])\subset\Omega$.

Proposición 3.4. Sean f, g funciones continuas, $c_1, c_2 \in \mathbb{C}$, $\gamma_1, \gamma_2, \gamma$ curvas diferenciables, entonces

(I)
$$\int_{\gamma} (c_1 f + c_2 g) = c_1 \int_{\gamma} f + c_2 \int_{\gamma} g$$

(II)
$$\int_{-\gamma} f = -\int_{\gamma} f$$
,

(III)
$$\int_{\gamma_1 + \gamma_2} f = \int_{\gamma} f + \int_{\gamma} f.$$

Teorema 3.1. Sea γ un curva diferenciable a trozos. Si h(z) es una función continua en γ , entonces

$$\Big| \int_{\gamma} h(z) dz \Big| \le \int_{\gamma} |h(z)| |dz|.$$

Además, si γ tiene longitud L y $|h(z)| \leq M$ en γ , entonces

$$\Big| \int_{\gamma} h(z) dz \Big| \le ML.$$

Observación. $\int_{\gamma} |h(z)| |dz| = \int_a^b |f(\gamma(t))| |\gamma'(t)| dt$.

Demostración. Sea $g:[a,b]\to\mathbb{C}$, entonces

$$\Re\left(\int_{a}^{b} g(t)dt\right) = \int_{a}^{b} \Re(g(t))dt$$

dado que $\int_a^b g(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt = u(t) + iv(t)$.

Sea $\int_a^b g(t)dt = re^{i\theta}$, entonces $r = \int_a^b e^{-i\theta}g(t)dt$

$$\Rightarrow r = \Re(r) = \int_{-\pi}^{b} \Re(e^{-i\theta}g(t))dt$$

como $\Re(e^{-i\theta}g(t))\leq |e^{-i\theta}g(t)|=|g(t)|,\,$ ya que $|e^{-i\theta}|=1$, entonces tenemos que $\int_a^b\Re(e^{-i\theta}g(t))dt\leq \int_a^b|g(t)|dt$

$$\Rightarrow \left| \int_a^b g(t)dt \right| = r \le \int_a^b |g(t)|dt.$$

Y usando |zz'| = |z||z'| tenemos que

$$|\int_{\gamma} f| = |\int_{a}^{b} f(\gamma(t))\gamma'(t)dt| \le \int_{a}^{b} |f(\gamma(t))\gamma'(t)|dt = \int_{a}^{b} |f(\gamma(t))||\gamma'(t)|dt$$

Teorema 3.2 (Fundamental del Cálculo). Sea $\gamma:[0,1]\to\mathbb{C}$ una curva diferenciable a trozos, $\Omega\subset\mathbb{C}$ abierto tal que $\gamma([0,1])\subset\Omega$, $F:\Omega\to\mathbb{C}$ función holomorfa con F' continua. Entonces,

$$\int_{\gamma} F'(z)dz = F(\gamma(1)) - F(\gamma(0))$$

Observación. Si $\gamma(0)=\gamma(1)$, entonces $\int_{\gamma}F'(z)dz=0$

Demostración.

$$\int_{\gamma} F'(z)dz = \int_{0}^{1} F'(\gamma(t))\gamma'(t)dt = \int_{0}^{1} (F \circ \gamma)'(t)dt = F(\gamma(1)) - F(\gamma(0))$$

Corolario 3.2.1. Si γ es una curva cerrada, entonces

$$\int_{\gamma} f(z)dz = 0$$

Teorema 3.3. Si $\Omega \subset \mathbb{C}$ es abierto convexo, y $f:\Omega \to \mathbb{C}$ es continua, entonces f tiene primitica en Ω si y solo si

$$\int_{\partial T} f(z)dz = 0$$

para $T \subset \Omega$ triángulo.

Demostración. content

3.2. Teorema de Cauchy

Definición 3.4 (Teorema de Green). Sea $D \subset \mathbb{C}$ abierto conexo acotado tal que ∂D es una una curva cerrada y simple, Ω abierto tal que $\overline{D} \subset \Omega$ y

 $P,Q:\Omega \to \mathbb{R}$ de clase C^1 . Entonces,

$$\int_{\partial D^{+}} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Teorema 3.4 (Cauchy). Sea $D \subset \mathbb{C}$ abierto conexo acotado tal que su frontera es una curva simple cerrada, Ω abierto tal que $\overline{D} \subset \Omega$, $f: \Omega \to \mathbb{C}$ función holomorfa en D tal que f' es continua. Entonces,

$$\int_{\partial D} f(z)dz = 0$$

Observación. La conclusión del teorema de Cauchy también se cumple si asumimos solo que f es continua en un disco D y holomorfa en $D \setminus \{z_1\}$ donde $z_1 \in D$.

Demostración. Sea f = u + iv,

$$\int_{\gamma} f = \int_{\gamma} f(z)dz$$

$$= \int_{\gamma} (u+iv)(dx+dy)$$

$$= \int_{\gamma} (udx-vdy) + i \int_{\gamma} (udy+vdx)$$

donde aplicando el teorema de Green, tenemos que

$$\int_{\gamma} f = \iint_{A} \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dx dy + i \iint_{A} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dx dy$$

a partir de las ecuaciones de Cauchy-Riemann ambos términos son nulos.

Teorema 3.5 (Fórmula Integral de Cauchy). Sea $D \subset \mathbb{C}$ abierto, conexo y acotado tal que ∂D es una curva simple cerrada, Ω abierto tal que $\overline{D} \subset \Omega$. Sea $f:\Omega \to \mathbb{C}$ un función holomorfa tal que f' es continua. Entonces,

$$f(z) = \frac{1}{2\pi i} \int_{\partial D^+} \frac{f(w)}{w - z} dw, \quad \forall z \in D$$

Demostración. Sea $z \in D, \epsilon > 0, D_{\epsilon} = D \setminus \{|w-z| \le \epsilon\}$. La frontera ∂D^+ es la unión de ∂D y $\{|w-z| = \epsilon\}$ con orientación positiva.

Dado que $\frac{f(w)}{w-z}$ es holomorfa para $w\in D_\epsilon$, por el teorema de Cauchy tenemos

 $\int_{\partial D^+} \frac{f(w)}{w - z} dw = 0$

separando la frontera e invirtiendo la orientación se tiene

$$\Rightarrow \int_{|w-z|=\epsilon} \frac{f(w)}{w-z} dw = \int_{\partial D} \frac{f(w)}{w-z} dw$$

si escribimos $w=z+\epsilon e^{i\theta}, dw=i\epsilon e^{i\theta}dw$, obtenemos

$$\int_0^{2\pi} f(z + \epsilon e^{i\theta}) \frac{d\theta}{2\pi} = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w - z} dw$$

por el teorema del valor medio para la funciones armónicas, la integral de la izquierda coincide con f(z).

Teorema 3.6 (Fórmula Integral de Cauchy para las Derivadas). Sea $D \subset \mathbb{C}$ abierto, conexo y acotado talque ∂D es una curva simple cerrada, $\Omega \subset \mathbb{C}$ abierto tal que $\overline{D} \subset \Omega$, $f: \Omega \to \mathbb{C}$ función holomorfa tal que f' es continua. Entonces,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial D^+} \frac{f(w)}{(w-z)^{n+1}} dw, \quad \forall z \in D, \forall n \in \mathbb{N}.$$

es decir, f tiene derivada de orden n, $\forall n \in \mathbb{N}$.

Demostración. Sea $z \in D$ entonces $dist(z,\partial D) = r > 0$, f continua en $\partial D \Rightarrow \exists M > 0: |f(w)| < M, \forall w \in \partial D \text{ y } |\frac{1}{w-z}| \leq \frac{1}{r}$

$$\left|\frac{f(w)}{w-z}\right| \le \frac{M}{r}, \quad \forall w \in \partial D$$

y dado que $\frac{d}{dz}(\frac{f(w)}{w-z})=\frac{f(w)}{w-z}^2$ entonces, por el teorema de derivación bajo el

signo integral tenemos que

$$f'(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^2} dz$$

donde usando inducción y el teorema de derivación bajo el signo integral podemos ver que se cumple para las derivadas de orden n.

Corolario 3.6.1. Sea $f: \Omega \to \mathbb{C}$ es holomorfa. Entonces, f es infinitamente derivable y sus derivadas son holomorfas en Ω .

Demostración. Fórmula integral de Cauchy para las derivadas $\Rightarrow f^{(n)}(z)$ es derivable $\forall n \in \mathbb{N}$, entonces $f^{(n)}(z)$ es continua. Por tanto, $f^{(n)}(z)$ es holomorfa $\forall n \in \mathbb{N}$.

Teorema 3.7 (Morera). Sea $f:\Omega\to\mathbb{C}$ función continua y $\int_{\partial T}f(z)dz=0, \forall T\subset\Omega$ triángulo. Entonces, f es infinitamente derivable.

Observación. Sea $f: \Omega \to \mathbb{C}$ continua tal que

$$\int_{\gamma} f(z)dz = 0$$

para toda curva cerrada γ en Ω . Entonces, f=F' es holomorfa en Ω y existe F holomorfa en Ω .

Demostración. (Teorema fundamental del cálculo) $\Rightarrow f$ tiene primitiva, es decir, $\exists F: f=F', F$ holomorfa en D y F'=f continua. Entonces, por el corolario anterior F infinitamente derivable $\Rightarrow F'$ infinitamente derivable.

Teorema 3.8 (Goursat). Sea $\Omega \subset \mathbb{C}$ abierto, $f : \Omega \to \mathbb{C}$ función continua en Ω . Entonces, f es holomorfa en Ω .

Observación. El teorema de Goursat establece que la hipótesis de f' continua en el teorema de Cauchy es redundante.

Demostración. Esta demostración se basa en el teorema de Morera. Sea T un triángulo cerrado en D. Subdividimos T en cuatro subtriángulos iguales. Como la integral de f(z) alrededor de ∂T es la suma de las integrales a lo largo de los subtriángulos, hay almenos un subtriángulo T_1 tal que

$$\left| \int_{\partial T_1} f(z) dz \right| \ge \frac{1}{4} \left| \int_{\partial T} f(z) dz \right|$$

Ahora, subdividimos T_1 en cuatro subtriángulos iguales y repetimos el proceso. De manera inductiva obtenemos una sucesión de triángulos encajados $\{T_n\}_{n\in\mathbb{N}}$ tal que

$$\left| \int_{\partial T_n} f(z) dz \right| \ge \frac{1}{4} \left| \int_{\partial T_{n-1}} f(z) dz \right| \ge \dots \ge \frac{1}{4^n} \left| \int_{\partial T} f(z) dz \right|$$

Dado que $\{T_n\}_{n\in\mathbb{N}}$ es decreciente y $\operatorname{diam}(T_n) \xrightarrow{n\to\infty} 0$, $T_n \xrightarrow{n\to\infty} z_0 \in D$. Y dado que f(z) es diferenciable en z_0

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| \le \epsilon_n . z \in T_n$$

donde $\epsilon_n \xrightarrow{n \to \infty} 0$. Sea L la longitud de ∂T . Entonces, la longitud de T_n es $\frac{L}{2n}$. Si $z \in T_n$ entonces

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| \le \epsilon_n |z - z_0| \le 2\epsilon_n \frac{L}{2^n}$$

Por el toerema de Cauchy y la estimación de Cauchy

$$\left| \int_{\partial T_n} f(z)dz \right| = \left| \int_{\partial T_n} df(z) - f(z_0) - f'(z_0)(z - z_0) \right| \le 2\epsilon_n \frac{L}{2^n} \cdot \frac{L}{2^n} = \frac{2L^2 \epsilon_n}{4^n}$$

$$\Rightarrow \left| \int_{\partial T} f(z)dz \right| \le 4^n \left| \int_{\partial T_n} f(z)dz \right| \le 2L^2 \epsilon_n$$

Como $\epsilon_n \xrightarrow{n \to \infty} 0$, entonces

$$\int_{\partial T} f(z)dz = 0$$

Por el Teorema de Morera f(z) es holomorfa.

Teorema 3.9 (Cauchy-Goursat). Sea $D\subset \mathbb{C}$ abierto, conexo y acotado tal que ∂D es una curva simple cerrada, $\Omega\subset \mathbb{C}$ abierto tal que $\overline{D}\subset \Omega, f:\Omega\to \mathbb{C}$ holomorfa. Entonces,

$$\int_{\partial D^+} f(z)dz = 0$$

Definición 3.5 (Simplemente Conexo). Sea $\Omega \subset \mathbb{C}$ abierto y conexo. Entonces, si $\mathbb{C}^* \setminus \Omega$ es conexo, decimos que Ω es simplemente conexo.

Observación. $\Omega \subset \mathbb{C}$ conexo es simplemente conexo si $\forall \gamma \in \Omega$ curva cerrada es homotópica.

Proposición 3.5. Una curva que se puede transformar en un punto es una curva homótopa.

Teorema 3.10 (Cauchy Homotópico). Sea $\Omega \subset \mathbb{C}$ simplemente conexo, $f:\Omega \to \mathbb{C}$ holomorfa y $\gamma \subset \Omega$ curva cerrada simple. Entonces,

$$\int_{\gamma} f(z)dz = 0$$

Demostración. Ω simplemente conexo $\Rightarrow \gamma$ es homotópica a una curva constante $\lambda(t)=z_0, \forall t\Rightarrow \int_{\gamma}f=\int_{\lambda}f=0.$

3.3. Consecuencias Teorema Cauchy

Teorema 3.11 (Designaldades de Cauchy). Sea $\Omega \subset \mathbb{C}$, $D = \overline{D}(z_0, R) \subset \Omega$, f holomorfa en D. Si $|f(z)| \leq M, \forall z \in \partial D$, entonces

$$|f^{(k)}(z_0)| \le \frac{k!}{R^k} M, \ \forall k \in \mathbb{N}$$

Demostración. Por el teorema de Cauchy

$$f_{(k)}(z_0) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{k+1}} dw$$

$$\Rightarrow |f^{(k)}(z_0)| = \frac{k!}{2\pi} \Big| \int_{\gamma} \frac{f(w)}{(w - z_0)^{k+1}} dw \Big|$$

Ahora,

$$\left| \frac{f(w)}{(w - z_0)^{k+1}} \right| \le \frac{M}{R^{k+1}}$$

dado que $|w-z_0|=R, \forall w\in \partial D.$ Entonces,

$$|f^{(k)}(z_0)| \le \frac{k!}{2\pi} \cdot \frac{M}{R^{k+1}} \cdot L$$

donde L es la longitud de γ .

Teorema 3.12 (Liouville). Sea f entera. Si $\exists M > 0 : |f(z)| \leq M, \forall z \in \mathbb{C}$, entonces f es constante.

Demostración. Por las desigualdades de Cauchy con k=1, $\forall z_0 \in \mathbb{C}$ se tiene que

 $|f'(z_0)| \le \frac{M}{R},$

Entonces, si $R \to \infty$ tenemos que

$$\frac{M}{R} \xrightarrow{R \to \infty} 0$$

Por tanto, $|f'(z_0)| = 0 \Rightarrow f'(z_0) = 0 \Rightarrow f$ es constante.

Teorema 3.13 (Teorema Fundamental del Álgebra). Sea $a_0, \dots, a_n \in \mathbb{C}$, $n \geq 1$, $a_n \neq 0$, $P(z) = a_0 + a_1 z + \dots + a_n z^n$. Entonces, $\exists z_0 \in \mathbb{C} : P(z_0) = 0$.

Demostración. Sea $p(z_0) \neq 0, \forall z_0 \in \mathbb{C}$. Entonces, $f(z) = \frac{1}{P(z)}$ es entera $\Rightarrow f(z)$ no es constante dado que $a_n \neq 0$. Basta ver que, por el teorema de Liouville, que f(z) es acotada.

Sea M>0, a partir de P(z) por la desigualdad triangular

$$|P(z)| \ge |a_n||z|^n - |a_0| - \dots - |a_{n-1}||z|^{n-1}$$

Sea $a = |a_0| + \cdots + |a_{n-1}|$. Si z > 1 entonces

$$|P(z)| \ge |z|^{n-1} \left(|a_n||z| - \frac{|a_0|}{|z|^{n-1}} - \frac{|a_1|}{|z|^{n-2}} - \dots - \frac{|a_{n-1}|}{1} \right)$$

$$\geq |z|^{n-1}(|a_n||z|-a)$$

Sea $K=\max\{1,\frac{M+a}{|a_n|}\}$ entonces, si $|z|>K\Rightarrow |P(z)|\geq M.$ Por tanto, si $|z|>K\Rightarrow \frac{1}{|P(z)|}<\frac{1}{M}.$ Pero si z es tal que $|z|\leq K$, entonces $\frac{1}{P(z)}$ es acotada y en valor absoluto por que es continua, es decir, $\exists L>0:\frac{1}{|P(z)|}<\max\{\frac{1}{M},L\}\Rightarrow |f(z)|$ es acotada en $\mathbb C.$

Capítulo 4

Representación Analítica de las funciones holomorfas

Nota. Si f holomorfa se puede representar localmente como una serie de potencias convergente, en particular, una serie de Taylor.

4.1. Sucesiones y Series

Definición 4.1 (Sucesión Convergente). Sea $\{z_n\}_{n\in\mathbb{N}}$ una sucesión de numeros complejos. Entonces, si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : |z_n - z_0| < \epsilon, \quad \forall n \ge N,$$

decimos que $\{z_n\}_{n\in\mathbb{N}}$ converge a z_0 y lo denotamos $z_n\xrightarrow{n\to\infty}z_0$.

Definición 4.2 (Serie Convergente). Sea $\sum_{n=1}^{\infty} a_n$ una serie de números complejos. Entonces, si la sucesión de sumas parciales

$$s_n = \sum_{k=1}^n a_k$$

converge a S, decimos que la serie $\sum_{n=1}^{\infty} a_n$ converge a S y lo denotamos $\sum_{n=1}^{\infty} a_n = S$.

; AÑADIR TEST CONVERGENCE?

Proposición 4.1. Sea $\{z_n\}_{n\in\mathbb{N}}$ una sucesión de números complejos. Entonces,

$$z_n \xrightarrow{n \to \infty} z_0 \Leftrightarrow \begin{cases} \Re(z_n) \xrightarrow{n \to \infty} \Re(z_0) \\ \Im(z_n) \xrightarrow{n \to \infty} \Im(z_0) \end{cases}$$

Definición 4.3 (Convergencia absoluta). Sea $\sum_{n=1}^{\infty} a_n$ una serie. Entonces, si $\sum_{n=1}^{\infty} |a_n|$ converge, decimos que $\sum_{n=1}^{\infty} a_n$ converge absolutamente.

Observación. $\sum_{n=1}^{\infty} a_n$ converge absolutamente $\Rightarrow \sum_{n=1}^{\infty} a_n$ converge.

Proposición 4.2 (Producto de Series). Sean $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ series con $a_n, b_n \in \mathbb{R}, \forall n \in \mathbb{N}$. Si

$$c_n = \sum_{k=0}^{n} b_{n-k} a_k$$

entonces,

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=1}^{\infty} a_n\right) \cdot \left(\sum_{n=1}^{\infty} b_n\right)$$

Proposición 4.3. Sean $\sum_{n=0}^{\infty} a_n, \sum_{n=0}^{\infty} b_n$ series con $a_n, b_n \in \mathbb{R}, \forall n \in \mathbb{N}$ abosolutamente convergentes. Entonces, $\sum_{n=0}^{\infty} c_n$ es absolutamente convergente.

Definición 4.4 (Convergencia Puntual). Sea $f, f_n : \Omega \to \mathbb{C}$ funciones, $\{f_n\}_{n\in\mathbb{N}}$ sucesión de funciones tal que $f_n(z) \xrightarrow{n\to\infty} f(z), \forall z\in\Omega$. Entonces, $\{f_n\}_{n\in\mathbb{N}} \xrightarrow{n\to\infty} f$ puntualmente.

Observación. $\sum f_n(z) \xrightarrow{n \to \infty} f(z), \forall z \in \Omega \Rightarrow \sum f_n \xrightarrow{n \to \infty} f(z)$

Definición 4.5 (Convergencia Uniforme). Sea $f, f_n : \Omega \subset \mathbb{C} \to \mathbb{C}$ funciones, $\{f_n\}_{n\in\mathbb{N}}$ sucesión de funciones. Entonces, si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : |f_n(z) - f(z)| < \epsilon, \quad \forall n \ge N, \forall z \in \Omega,$$

decimos que $\{f_n\}_{n\in\mathbb{N}}$ converge converge uniformemente y lo denotamos $\{f_n\}_{n\in\mathbb{N}} \xrightarrow{n\to\infty} f$ uniformemente.

Observación. $N(\epsilon) \in \mathbb{N}$ no depende de $z \in \Omega$

Proposición 4.4. Sea $f, f_n : \Omega \subset \mathbb{C} \to \mathbb{C}$ funciones, $\{f_n\}_{n \in \mathbb{N}}$ sucesión de funciones tal que $\{f_n\}_{n \in \mathbb{N}} \xrightarrow{n \to \infty} f$ uniformemente en Ω . Entonces,

 f_n continua $\forall n \in \mathbb{N} \Rightarrow f$ continua

Observación. f no es continua $\Rightarrow \{f_n\}$ no converge uniformemente.

Teorema 4.1 (Weierstrass). Sea $f_n:\Omega\subset\mathbb{C}\to\mathbb{C}$ tal que

$$\exists M_n : |f_n(z)| \le M_n, \quad \forall n \in \mathbb{N}, \forall z \in \Omega.$$

Si $\sum_{n=1}^{\infty} M_n$ converge, entonces $\sum_{n=1}^{\infty} f_n$ converge uniformemente en Ω .

Observación. $\sum_{n=1}^{\infty} f_n$ converge uniformemente en $\Omega \Rightarrow \sum_{n=1}^{\infty} |f_n|$ converge uniformemente en Ω (convergencia absoluta de $\sum f_n$).

Teorema 4.2. Sea $\Omega \subset \mathbb{C}$ abierto, $f, f_n : \Omega \to \mathbb{C}$ funciones, $\{f_n\}_{n \in \mathbb{N}}$ sucesión de funciones tal que $\{f_n\}_{n \in \mathbb{N}} \xrightarrow{n \to \infty} f$ uniformemente en Ω y f_n holomorfa $\forall n \in \mathbb{N}$. Entonces, f es holomnorfa.

Demostración. f_n holomorfa $\xrightarrow{T.Cauchy}$ $\int_{\partial T} f_n(z) dz = 0$ y

$$\int_{\partial T} f_n(z) dz \xrightarrow{n \to \infty} \int_{\partial T} f(z) dz$$

 $\Rightarrow \int_{\partial T} f(z) dz = 0 \Rightarrow f$ holomorfa.

Corolario 4.2.1. Si $\{f_n\} \xrightarrow{n \to \infty} f$ uniformemente en K compacto $\forall K \subset \Omega$, también se cumple el teorema anterior.

4.2. Series de Potencias

Definición 4.6 (Serie de Potencias). Sean a_1, a_2, \cdots tal que $a_i \in \mathbb{C}, \forall i, z_0 \in \mathbb{C}$. Entonces,

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

es una seríe de potencias.

Observación. Sea $w=z-z_0$ entonces $\sum_{n=0}^{\infty}a_n(z_0)^n=\sum_{n=0}^{\infty}a_nw^n$ es la traslación de la serie.

Teorema 4.3. Sea $\sum_{n=0}^{\infty} a_n z^n$. Entonces, $\exists ! R \geq 0$ tal que

- (I) $\sum_{n=0}^{\infty} a_n z^n$ converge absolutamente en D(0,R),
- (II) $\sum_{n=0}^{\infty} a_n z^n$ no converge si |z| > R,
- (III) $R>0 \Rightarrow \forall r\in (0,R), \sum_{n=0}^{\infty}a_nz^n$ converge uniformemente en $\overline{D}(0,R)$.

Además, $R^{-1} = \limsup |a_n|^{\frac{1}{n}}$

Demostración. content

Notación.

- R es el radio de convergencia,
- D(0,R) es el disco de convergencia.

Proposición 4.5 (Criterio del Cociente). Sea $\sum_{n=0}^{\infty} a_n z^n$ una serie de potencias. Si

 $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$

existe, entonces es igual a R, el radio de convergencia.

Ejemplo.

- (I) $\sum_{n=0}^{\infty} z^n$ tiene R=1 ya que $a_n=1\Rightarrow \lim_{n\to\infty} |\frac{a_n}{a_{n+1}}|=1$.
- (II) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ tiene $R=+\infty$ ya que $a_n=\frac{1}{n!}\Rightarrow |\frac{a_n}{a_{n+1}}|=n+1 \xrightarrow{n\to\infty} \infty$.
- (III) $\sum_{n=0}^{\infty} z^n n!$ tiene radio de convergencia R=0 ya que $\left|\frac{a_n}{a_{n+1}}\right|=\frac{1}{n+1} \xrightarrow{n\to\infty}$

4.3. Funciones Analíticas

Teorema 4.4 (Derivada de Serie de Potencias). Sea $f:D(a,R)\to\mathbb{C}$ tal que

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

con R radio de convergencia. Entonces, f es analítica y

$$f'(z) = \sum_{n=1}^{\infty} n a_n (z-a)^{n-1}$$

tiene el mismo radio de convergencia y los coeficientes vienen dados por

$$a_n = \sum \frac{f^{(n)}(a)}{n!}.$$

Demostración. Supongamos que a=0. Sea $g:D(0,R)\to\mathbb{C}$ tal que

$$g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}.$$

Queremos ver que $g(z)=f'(z), \forall z\in D(0,R).$ Sea $z_0\in D(0,R)$ y r>0 tal que $D(z_0,2r)\subset D(0,R).$ Si $z\in D(z_0,r)$ entonces

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{1}{z - z_0} \sum_{n=1}^{\infty} a_n (z^n - z_0^n)$$

$$= a_1 + \sum_{n=2}^{\infty} a_n (z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1})$$

donde $z^n-z_0^n=(z-z_0)(z^{n-1}+z_0z^{n-2}+\cdots z_0^{n-1}).$ Entonces, tomado límites

$$f'(z) = a_1 + \lim_{z \to z_0} \sum_{n=2}^{\infty} a_n (z^{n-1} + z^{n-2} z_0 + \dots + z_0^{n-1})$$

$$= a_1 + \sum_{n=2}^{\infty} a_n (z_0^{n-1} + z_0^{n-2} z_0 + \dots + z_0^{n-1})$$

$$= \sum_{n=1}^{\infty} n a_n z_0^{n-1} = g(z_0)$$

dado que la serie converge uniformemente por ser función continua.

Observación. $f^{(n)}(z) = n! a_n + \sum_{k=n+1}^{\infty} k(k-1)(k-2) \cdots (k-n+1)(z-z_0)^{k-n}$ **Observación.** Las funciones holomorfas son analíticas.

Teorema 4.5 (Taylor). Sea $\Omega \subset \mathbb{C}$, $f:\Omega \to \mathbb{C}$ holomorfa, $z_0 \in \Omega$ y $D(z_0,R) \subset \mathbb{C}$. Entonces,

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

converge en $D(z_0,r)$ con $r \geq R$ y

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad \forall z \in D(z_0, R)$$

Demostración. Sea $D = D(z_0, R)$. Por la fórmula integral de Cauchy

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w - z} dw$$

Queremos usar la serie geométrica para expandir el integrando como una serie de potencias en $z-z_0$. Como $z\in D$ y $w\in \partial D$, entonces

$$\left| \frac{z - z_0}{w - z_0} \right| < 1$$

donde

$$\frac{1}{w-z} = \frac{1}{w-z_0} \frac{1}{1 - \frac{z-z_0}{w-z_0}}$$
$$= \frac{1}{w-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^n$$

por tanto,

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \left[\frac{f(w)}{w - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n \right] dw$$

$$= \frac{1}{2\pi i} \int_{\partial D} \left[\sum_{n=0}^{\infty} \frac{f(w)(z-z_0)^n}{(w-z_0)^{n+1}} \right] dw$$

Ahora, la serie

$$\sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n$$

converge uniformemente en D y $\frac{f(w)}{w-z_0}$ es continua en $\partial D \Rightarrow$ está acotada, entonces la serie

$$\sum_{n=0}^{\infty} \frac{f(w)(z-z_0)^n}{(w-z_0)^{n+1}}$$

converge uniformemente en ∂D tal que

$$\sum_{n=0}^{\infty} \frac{f(w)(z-z_0)^n}{(w-z_0)^{n+1}} = \frac{f(w)}{w-z}$$

Por tanto,

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)(z - z_0)^n}{(w - z_0)^{n+1}} dw$$
$$= \sum_{n=0}^{\infty} \left[(z - z_0)^n \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{(w - z_0)^{n+1}} dw \right]$$
$$= \sum_{n=0}^{\infty} \left[(z - z_0)^n \frac{f^{(n)}(z_0)}{n!} \right]$$

Corolario 4.5.1. Sea $\Omega \subset \mathbb{C}, f: \Omega \to \mathbb{C}$ holomorfa. Entonces, $\forall z_0 \in \Omega$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad \forall z \in D(z_0, R)$$

donde $R = \operatorname{dist}(z_0, \partial \Omega)$

Ejemplo. hacer ejemplos e^z y $\log(1+z)$

4.4. Ceros de Funciones Analíticas

Definición 4.7 (Identicamente Nula). Sea $f: \Omega \to \mathbb{C}$ holomorfa, $z_0 \in \Omega$. Entonces,

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad |z - z_0| < r$$

Si $f^{(n)}(z_0) = 0, \forall n \in \mathbb{N}$, entonces

$$f(z) = 0, \quad \forall z \in D(z_0, r)$$

y decimos que f(z) es identicamente nula en $D(z_0, r)$. Si por el contrario,

$$\exists n \in \mathbb{N} : f^{(n)}(z_0) \neq 0.$$

Distinguimos dos casos

- Si n = 0, entonces $f(z_0) \neq 0$.
- Si n > 0, entonces $f(z_0) = \cdots = f^{(n-1)}(z_0) = 0$ y $f^{(n)}(z_0) \neq 0$. En este caso decimos que f tiene un cero de orden n en z_0 .

Además, en el último caso $\exists \varphi(z)$ holomorfa en $D(z_0,r)$ con $\varphi(z_0) \neq 0$ y

$$f(z) = (z - z_0)^n \varphi(z), \quad \forall z \in D(z_0, r)$$

 $y \exists \rho > 0 : f(z) = 0, \forall z \in D(z_0, \rho).$

Corolario 4.5.2. Sea $\Omega \subset \mathbb{C}$ abierto, $z_0 \in \Omega$, $f : \Omega \to \mathbb{C}$ analítica. Si $f^{(k)}(z_0) = 0, \forall k \in \mathbb{Z}^+$, entonces $f(z) = 0, \forall z \in \Omega$.

Demostración. Sea $G=\{z\in\Omega: f^{(n)}(z)=0, \forall n\geq 0\}$. Entonces, $z_0\in G\Rightarrow G\neq\emptyset$. Luego, $\forall z\in G, \exists r>0: D(z,r)\subset\Omega$ tal que

$$f(w) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z)}{n!} (w-z)^n = 0, \quad \forall w \in D(z,r)$$

entonces, $D(z,r) \subset G \Rightarrow G$ abierto. Ahora,

$$G = \bigcap_{n=0}^{\infty} \{ z \in \Omega : f^{(n)}(z) = 0 \}$$

la intersección de cerrados es cerrado \Rightarrow G es cerrado. Por tanto, G abierto y cerrado no vacío \Rightarrow $G = \Omega$.

Observación. G cerrado en Ω , cerrado relativo.

Teorema 4.6 (Principio de Identidad). Sean f y g holomorfas en A. Suppongamos que $\exists \{z_n\}_{n\in\mathbb{N}}\subset A$ sucesión de puntos distintos tal que $z_n\xrightarrow{n\to\infty} z_0\in A$, y $f(z_n)=g(z_n), \forall n\in\mathbb{N}$. Entonces, $f(z)=g(z), \forall z\in A$.

Demostración. Suponemos que g=0. sea $\{z_n\}_{n\in\mathbb{N}}\subset\Omega:z_i\neq z_j, \forall i\neq j$ y $z_n\xrightarrow{n\to\infty}z_0\in\Omega$. Entonces, $f(z_n)=0, \forall n\in\mathbb{N}\Rightarrow f(z_0)=0$. Sea m el orden del cero z_0 . Si desarrollamos f en z_0

$$f(z) = \sum_{k=m}^{\infty} a_k (z - z_0)^k = (z - z_0)^m \cdot h(z)$$

donde h es holomorfa y $h(z_0) = a_m \neq 0$. Entonces, $\exists r > 0 : h(z) \neq 0, \forall z \in D(z_0, r)$. Por tanto,

$$f(z_n) = (z_n - z_0)^m h(z_n) \neq 0$$

es una contradicción.

Teorema 4.7 (de La Aplicación Abierta). Sea $\Omega \subset \mathbb{C}$ abierto. Sea $f:\Omega \to \mathbb{C}$ holomorfa no constante. Entonces, f es abierta.

Demostración. Basta ver que $f(\Omega)$ es abierto. Por el Principio de Identidad, los ceros de f' son aislados. Entonces,

$$\Omega = (\Omega \setminus \{z_n\}_{n \in \mathbb{N}}) \cup D_1 \cup D_2 \cdots$$

donde $\{z_n\}_{n\in\mathbb{N}}$ son los ceros de f' y D_n son los discos centrados en z_n . Por tanto, $f'(z) \neq 0, \forall z \in \Omega \setminus \{z_n\}_{n\in\mathbb{N}} \xrightarrow{T.F.I.} f(\{\Omega \setminus \{z_n\}_{n\in\mathbb{N}}\})$ es abierto. Como $f(D_n)$ es abierto $\forall n \in \mathbb{N}$, entonces $f(\Omega)$ es abierto.

Teorema 4.8 (Principio del Módulo Máximo). Sea $\Omega \subset \mathbb{C}$ abierto conexo. Sea $f:\Omega \to \mathbb{C}$ holomorfa. Si $\exists a \in \Omega: |f(a)| \geq |f(z)|, \forall z \in \Omega$, entonces f constante.

Demostración. Si f no es constante, entonces $f(\Omega)$ es abierto, pero $f(a) \not\in f(\Omega)$, es una contradicción.

Capítulo 5

Singularidades Aisladas

5.1. Series de Laurent

Teorema 5.1. Sea $0 \le r_1 < r_2$, $z_0 \in \mathbb{C}$. Consideramos la región $A = \{z \in \mathbb{C} : r_1 < |z - z_0| < r_2\}$ donde puede ser $r_1 = 0$ o/y $r_2 = \infty$. Sea f analítica en A. Entonces,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

donde ambas series convergen absolutamente en A y uniformemente en $B_{\rho_1,\rho_2}=\left\{z: \rho_1\leq |z-z_0|\leq \rho_2\right\}$ donde $r_1<\rho_1<\rho_2< r_2$. Esta serie se llama serie de Laurent alrededor de z_0 en la corona circular A.

Si γ es un círculo alrededor de z_0 con radio r, donde $r_1 < r < r_2$, entonces los coeficientes vienen dados por

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw, \quad n \in \{0, 1, \dots\}$$

$$b_n = \frac{1}{2\pi i} \int_{\gamma} f(w)(w - z_0)^{n-1} dw, \quad n \in \{1, 2, \dots\}$$

Observación. Si escribimos $b_n = a_{-n}$, entonces la fórmula cubre ambos casos **Observación.** La serie de Laurent es única.

Demostración. content

5.2. Singularidades Aisladas

Definición 5.1 (Singularidades Aisaladas). Caso de la serie de Laurent con $r_1=0$. En este caso, f es analítica en $D(z_0,r_2)\setminus\{z_0\}=\{z:0<|z-z_0|< r_2\}$. Decimos que z_0 es singularidad aislada. Podemos expandir la serie de Laurent de la siguient forma:

$$f(z) = \dots + \frac{b_n}{(z - z_0)^n} + \dots + \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

donde $0 < |z - z_0| < r_2$.

Definición 5.2. Si f es analítica en $D(z_0, R) \setminus \{z_0\}, R > 0$, entonces z_0 es una singularidad aislada.

- (I) $\forall j \in J \setminus F, b_j = 0, F$ finito, entonces z_0 es un polo de f. Sea $j_0 = \max\{j \in J : b_j \neq 0\}$. Entonces z_0 es un polo de orden j_0 .
- (II) $\forall j \in J, b_j \neq 0$, entonces z_0 es una singularidad esencial.
- (III) $\forall j \in J, b_j = 0$, entonces z_0 es una singularidad evitable.

Observación. f tiene un polo en z_0 si y solo si la serie de Laurent en $D(z_0, R) \setminus \{z_0\}$ es de la forma

$$\frac{b_k}{(z-z_0)^k} + \dots + \frac{b_1}{z-z_0} + a_0 + a_1(z-z_0) + \dots$$

la parte de los b's se llama parte principal.

Observación. Si f tiene una singularidad evitable, entonces la serie de Laurent es de la forma

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

que es una serie convergente. f tiene una singularidad evitable en z_0 si y solo f se puede definir en z_0 tal que f es analítica en z_0 .

Proposición 5.1. Sea f analítica en A, z_0 singularidad aislada.

- (I) z_0 tiene una singularidad evitable si y solo si se da una de las siguentes condiciones
 - a) f es acotada en $D(z_0,R)\setminus\{z_0\}$.

- b) $\exists \lim_{z\to z_0} f(z)$.
- c) $\exists \lim_{z \to z_0} (z z_0) \cdot f(z) = 0$
- (II) z_0 es un polo simple $\Leftrightarrow \exists \lim_{z \to z_0} (z z_0) \cdot f(z) \neq 0$
- (III) z_0 es un polo de orden $\leq k$ o una singularidad evitable \Leftrightarrow se cumple una de las siguientes
 - a) $\exists M>0, k\geq 1: |f(z)|\leq rac{M}{|z-z_0|^k}$ en $D(z_0,R)\setminus\{z_0\}.$
 - b) $\lim_{z\to z_0} (z-z_0)^{k+1} \cdot f(z) = 0.$
 - c) $\exists \lim_{z \to z_0} (z z_0)^k f(z)$.
- (IV) z_0 es un polo de orden $k \geq 1 \Leftrightarrow \exists \phi: U \to \mathbb{C}$ donde $U \setminus (z_0) \subset A, \phi(z_0) \neq 0$ y

$$f(z) = \frac{\phi(z)}{(z - z_0)^k}, \quad \forall z \in U, z \neq z_0$$

Demostración. content

Teorema 5.2 (de Picard). Sea f con singularidad esencial en z_0 y U entorno de z_0 tal que $z_0 \notin U$. Entonces, $\forall w \in \mathbb{C}$, execepto quizás un punto, f(z) = w tiene infinitas soluciones en z en U.

Teorema 5.3 (Casorati-Weierstrass). Sea f con singularidad esencial en z_0 y $w \in \mathbb{C}$. Entonces, $\exists \{z_n\}_{n \in \mathbb{N}} \subset \mathbb{C}$ tal que $z_n \xrightarrow{n \to \infty} z_0$ y $f(z_n) \xrightarrow{n \to \infty} w$.

5.3. Cálculo de Residuos

Nota. Si f tiene una singularidad aislada en z_0 , entonces f admite desarrollo de Laurent en un entrono $U \setminus \{z_0\}$ de z_0

$$f(z) = \cdots + \frac{b_2}{(z - z_0)^2} + \frac{b_1}{(z - z_0)} + a_0 + a_1(z - z_0) + \cdots$$

donde $b_1 = \text{Res}(f, z_0)$ es el residuo de f en z_0

Proposición 5.2. Sea f con singularidad aislada en z_0 y sea $k \geq 0$ el menor entero tal que $\exists \lim_{n \to \infty} (z - z_0) f(z)$. Entonces, f(z) tiene un polo de orden k en z_0 . Sea $\phi(z) = (z - z_0) f(z)$, entonces ϕ se puede definir unicamente en z_0 tal que ϕ es analítica en z_0 y

Res
$$(f, z_0) = \frac{\phi^{(k-1)}(z_0)}{(k-1)!}$$

Teorema 5.4 (de los Residuos). Sea $\Omega \subset \mathbb{C}$ simplemente conexo, $\{z_1, \dots, z_N\} \subset \Omega$, $f: \Omega \setminus \{z_1, \dots, z_N\} \to \mathbb{C}$ holomorfa, $\{z_1, \dots, z_N\}$ singularidades. Entonces,

$$\int_{\gamma^+} f(z)dz = 2\pi \sum_{k=1}^n \operatorname{Res}(f, z_k)$$

Definición 5.3 (Residuos en el Infinito). Sea $F(z)=f(\frac{1}{z}).$ Entonces, decimos que

- (I) f tiene un polo de orden k en ∞ si F tiene un polo de orden k en 0,
- (II) f tiene un zero de orden k en ∞ si F tiene un zero de orden k en 0,
- (III) $\operatorname{Res}(f, \infty) = -\operatorname{Res}(\frac{1}{z^2}F(z), 0).$

Proposición 5.3. Si a es un polo de orden m de f, entonces

Res
$$(f, a) = \frac{g^{(m-1)}(a)}{(m-1)!}$$

donde $g(z) = (z - a)^m f(z)$

Capítulo 6

Miscelanea

6.1. Principio Del Argumento

Nota (Integral Logarítmica). Sea f holomorfa en Ω , γ una curva en Ω tal que $f(z) \neq 0$ en γ , entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} dlog(f(z))$$

es la integral logarítmica de f(z) a lo largo de γ y mide el cambio de $\log(z)$ a lo largo de la curva γ .

Nota (Derivada Logarítmica). Sea $f: \Omega \to \mathbb{C}$ tal que $f(z) \neq 0$ en Ω . Entonces, $\log(f(z)): \Omega \to \mathbb{C}$ es holomorfa en Ω y

$$\log(f(x))' = \frac{f'(z)}{f(z)}$$

Proposición 6.1. Sea $f:\Omega\to\mathbb{C}$ tal que $f(z)\neq 0$ en Ω . Entonces, los ceros de f son singularidades aisladas de la derivada logarítmica. En particular, los ceros de f son polos de la derivada logarítmica.

Demostración. Suponemos que a es un cero de orden m de f. Entonces,

$$f(z) = (z - a)^m g(z)$$

donde g es holomorfa y $g(a) \neq 0$. Ahora,

$$f'(z) = m(z - a)^{m-a}g(z) + (z - a)^m g'(z)$$

$$\Rightarrow \frac{f'(z)}{f(z)} = \frac{m}{z-a} + \frac{g'(z)}{g(z)}, \quad \forall z \neq a.$$

Por tanto, a es un polo simple de la derivada logarítmica y

$$\operatorname{Res}\left(\frac{f'}{f},a\right) = m.$$

Definición 6.1 (Meromorfa). Una función $f:\Omega\to\mathbb{C}$ es meromorfa si es holomorfa salvo en los polos.

Observación. Si f tiene infinitos polos en Ω acotado, entonces estos se acumulan en la frontera. En este caso, se puede elegir $\Omega' \subset \Omega$ tal que el número de polos en Ω' es finito.

Proposición 6.2. Sea $f: \Omega \to \mathbb{C}$ tal que $f \neq 0$ en Ω y $a \in \Omega$ un polo de orden m de f. Entonces, a es un polo de la derivada logarítmica de f y es de orden -m.

Demostración. Sea f con un polo en a, entonces

$$f(z) = \frac{g(z)}{(z-a)^m}$$

en un entorno de a en Ω , donde g es holomorfa en un entorno de a y $g(a) \neq 0$. Ahora,

$$\frac{f'(z)}{f(z)} = \frac{-m(z-a)^{-m-1}g(z) + (z-a)^{-m}g'(z)}{(z-a)^{-m}g(z)}$$
$$= -\frac{m}{z-a} + \frac{g'(z)}{g(z)}$$

Por tanto, a es polo simple de $\frac{f'(z)}{f(z)}$ y $\operatorname{Res}(\frac{f'}{f}, a)$.

Teorema 6.1 (Principio del Argumento). Sea Ω simplemente conexo, $f:\Omega\to\mathbb{C}$ melomorfa, $\gamma\subset\Omega$ curva cerrada simple que no pasa por ningún cero y ningún polo de f. Entonces,

$$\int_{\mathcal{C}} \frac{f'(z)}{f(z)} dz = 2\pi i (Z_f - P_f)$$

donde Z_f es el número de ceros de f dentro de γ y P_f es el número de polos de f dentro de γ , contadas con su multiplicidad.

Nota (Interpretación del Principio el Argumento). VER QUE

$$2\pi(Z_f - P_f) = \Delta_{\gamma} \arg(f)$$

6.2. Teorema de Rouché

Teorema 6.2 (Rouche). Sea Ω abierto simplemente conexo, f,g holomorfas salvo en Ω salvo en los ceros y los polos, γ curva cerrada en Ω que no pasa por ningún cero o polo de f,g. Si

$$|g(z)| < |f(z)|, \quad \forall z \in \gamma,$$

entonces se tiene que

- (I) $\Delta \arg(f) = \Delta \arg(g)$,
- (II) $Z_f P_f = Z_g P_g$.

Demostración. content

6.3. Propiedades Funciones Armónicas

Proposición 6.3. Sea D un disco abierto, u(x,y) un función armónica en D. Entonces, $\exists v(x,y)$ función en D tal que u+iv es analítica en D.

Teorema 6.3 (Principio del Máximo). Sea $D \subset \mathbb{R}^2$ abierto conexo, $u: D \to \mathbb{R}$ armónica en D. Si $\exists z_0 \in D: u(z) \leq u(z_0)$, $\forall z \in D$, entonces u es constante.

Demostración. content

Teorema 6.4 (Principio del Mínimo). Sea $D \subset \mathbb{R}^2$ abierto, conexo y acotado, $u:D \to \mathbb{R}$ armónica tal que u se puede extender con continuidad a

la
$$\partial D$$
. Si $\exists m, M: m \leq u(z) \leq M, \forall z \in \partial D$, entonces
$$m \leq u(z) \leq M, \quad \forall z \in D$$