НУЛП, САПР, СПК		Тема	Оцінка:	Підпис:	
КНСП-11	3				
Янчук Н. Ю.		Комбінаторна оптимізація за допомогою еволюційних			
Варіант 10					
Методи нечіткої логіки		методів	Викладач:	цач:	
та			Кривий Р. 3.		
еволюційні алгоритми					

Мета: ознайомитися з основними теоретичними відомостями, вивчити еволюційні оператори схрещування та мутації, що використовуються при розв'язуванні задач комбінаторної оптимізації.

Теоретичні відомості

При використанні методів еволюційного пошуку для розв'язку задач комбінаторної оптимізації, як правило, застосовуються негомологічні числові хромосоми, тобто такі хромосоми, гени яких можуть приймати значення в заданому інтервалі. При цьому інтервал однаковий для всіх генів, але в хромосомі не може бути двох генів з однаковим значенням.

Комбінаторні задачі оперують із дискретними структурами або розміщенням об'єктів, незначні зміни яких часто викликають стрибкоподібну зміну показників якості (фітнесс- функції). Традиційні оператори еволюційні оператори, що генерують нових нащадків, не можуть бути застосовані при використанні негомологічних хромосом, оскільки внаслідок виконання таких операторів генеруються нащадки, що містять однакові гени і тому не можуть бути інтерпретовані при розв'язку комбінаторної задачі. Тому для розв'язку задач комбінаторної оптимізації були розроблені спеціальні генетичні оператори, що не створюють неприпустимих рішень.

Завдання

Розробити за допомогою пакету Matlab програмне забезпечення для вирішення задачі комівояжера. Параметри еволюційного методу обрати з таблиці 1 відповідно до варіанту.

No	Еволюційні оператори			
	Схрещування	Мутація		
10	позиційно впорядковуюче	інвертування із зсувом		

Хід роботи

Для виконання завдання була використана функція да пакету Matlab, і реалізовано власні функції мутації та схрещування, згідно з варіантом для

розвязу задачі комівояжера з чотирьма, п'ятьма і шістьма містами (рис. 1,3,5 відповідно).

Функція схрещування

```
function [xover_kids] = crossover( par-
                                                        end
ents for crossover, options, nvars, Fitness-
                                                        for j=1:1:position
Fcn, ...
                                                           pp1(counter)=p1(j);
  unused, this population)
                                                           counter=counter+1;
xover kids = zeros(length(parents for cross-
over)/2. nvars):
                                                        for j=1:1:position
position = 2; %позиція гену для
                                                           for jj=1:1:nvars
схрещування
                                                             if (pp1(j)==child(j))
for i = 1:2:length(parents_for_crossover)-1
                                                                pp1(jj)=0;
  p1 = this_population(parents_for_crosso-
                                                             end
ver(i), :);
                                                           end
  p2 = this population(parents for crosso-
                                                        end
ver(i+1), :);
  child=zeros(1,nvars);
                                                        for j=1:1:nvars
  for j=1:1:position
                                                           if(pp1(j) \sim = 0)
     child(j)=p2(j);
                                                             position=position+1;
                                                             child(position)=pp1(j);
  pp1=zeros(1,nvars);
  counter=1:
  tamporalPtr=position+1:
                                                        xover kids((i+1)/2,:) = child;
  for j=tamporalPtr:1:nvars
                                                      end
     pp1(counter)=p1(j);
                                                      end
     counter=counter+1;
      Функція мутації
function [ mutant ] = mutation( hromosom to mutate, options, nvars, ...
fitness fcn, state, this score, population)
current_hromosome=population(hromosom_to_mutate, :);
shift = randi(nvars);
mutant = zeros(1, nvars);
for i=1:1:nvars
   if(i+shift<=nvars)
     mutant(i+shift)=current hromosome(i);
     mutant(i+shift-nvars)=current hromosome(i);
   end
end\
end
```

Відповідно до виконання програми відтворено оптимальні маршрути. (рис 2, 4, 6 відповідно).

Рис. 1. Постановка задачі з чотирьма містами

Результат виконпння функції пошуку маршруту:

The best hromosome:

1 4 3 2

The number of generations was : 51 The best function value found was : 7

Last generation:

1	4	3	2	=>	7
1	4	3	2	=>	7
1	4	3	2	=>	7
4	2	3	1	=>	12

Рис. 2. Розв'язок задачі з чотирьма містами

Рис. 3. Постановка задачі з п'ятьма містами

Результат виконпння функції пошуку маршруту:

The best hromosome: 4 5 3 1 2

The number of generations was : 63 The best function value found was : 18

Last generation:

4	5	3	1	2	=>	18
4	5	1	2	3	=>	25
1	2	4	5	3	=>	25
4	5	3	1	2	=>	18
4	5	3	1	2	=>	18

Рис. 4. Розв'язок задачі з п'ятьма містами

Рис. 5. Постановка задачі з шістьма містами

Результат виконпння функції пошуку маршруту:

The best hromosome: 2 4 1 3 6 5

The number of generations was : 68 The best function value found was : 20

Last generation:

2	4	1	3	6	5	=>	20
2	4	1	5	3	6	=>	26
2	4	1	3	6	5	=>	20
2	4	1	3	6	5	=>	20
3	6	5	2	4	1	=>	24
4	1	3	6	5	2	=>	25

Рис. 5. Розв'зок задачі з шістьма містами

Висновок

На відміну від класичних методів розв'язання задачі комівояжера, використовуючи генетичні алгоритми, ми зразу отримуємо декілька оптимальних варіантів. Але такий підхід не гарантує, що результат є найоптимальніший. Чотири з десяти запусків пргграми показують оптимальні рішення задачі комівояжера