支持向量机应用

黄晟

huangsheng@cqu.edu.cn

办公室:信息大楼B701

A. SVM模型回顾

SVM的二分类问题

最大化分类间隔:

$$\vec{w} \cdot \vec{x} + b = +1$$
 $\max_{\gamma, w, b} \gamma \coloneqq \frac{2}{\|w\|}$

s. t.
$$y_i(w^Tx_i + b) \ge 1$$

等价于

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t.
$$y_i(w^Tx_i+b) \geq 1$$

$$\gamma = \gamma_{\rm pos} + \gamma_{\rm neg}$$

问题转化

• 拉格朗日乘子法: 原问题→对偶问题

原问题
$$p = \min_{w,b} \max_{\lambda \geq 0} \mathcal{L}(w, b, \lambda)$$
 约束复杂不好解!

对偶问题 $d = \max_{\lambda \geq 0} \min_{w,b} \mathcal{L}(w, b, \lambda)$

约束简单容易解! (等式约束完全就是无约束问题)

其中
$$\mathcal{L}(w,b,\lambda) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^m \lambda_i (1 - y_i(w^T x_i + b))$$

原问题 ≠ 对偶问题,但当KKT条件成立 ,原问题的解 = 对偶问题的解

对偶问题

• 对偶问题求解(分两步解): $\max_{\lambda \geq 0} \min_{\mathbf{w}, \mathbf{b}} \mathcal{L}(\mathbf{w}, \mathbf{b}, \lambda)$

$$- 先求 \mathcal{L}(\lambda) = \min_{\mathbf{w}, \mathbf{b}} \mathcal{L}(\mathbf{w}, \mathbf{b}, \lambda)$$
[1

- $再求 \max_{\lambda \geq 0} \mathcal{L}(\lambda)$ [2]
- 第一步—求解问题[1]: $\frac{\delta \mathcal{L}(w,b,\lambda)}{\delta w} = \mathbf{0}, \frac{\delta \mathcal{L}(w,b,\lambda)}{\delta b} = \mathbf{0}$
 - 得 $w = \sum_{i=1}^{m} \lambda_i y_i x_i$, $\sum_{i=1}^{m} \lambda_i y_i = 0$, 反代入 $\mathcal{L}(w, b, \lambda)$
 - 可得带约束目标函数 $\mathcal{L}(\lambda)$, s.t. $\lambda \geq 0$ 与 $\sum_{i=1}^{m} \lambda_i y_i = 0$

对偶问题

第二步—求解问题[2]: max L(λ)

$$\max_{\lambda} \mathcal{L}(\lambda) \coloneqq \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j x_i^T x_j$$

s. t.
$$\sum_{i=1}^{m} \lambda_i y_i = 0$$
 $i = 1, ..., m$

$$\lambda_i \geq 0$$
 $i = 1, ..., m$

- ① 把约束 $\sum_{i=1}^{m} \lambda_i y_i = 0$ 代入目标函数,化去 λ_i ,然后对所有 λ_i 。
- ② 检查 λ_i 约束情况,如不满足则讨论边界情况,给出最优 λ_i ,从而算出w与b。

求解b

- 解出λ后,利用公式可以非常容易算出w.
- 求解b:
 - 对偶问题等价需满足KKT条件:
 - 互补(选择)条件: $\lambda_i(y_i(w^Tx_i + b) 1) = 0$
 - $即 \lambda_i \neq 0$,则必有 $y_i(w^Tx_i + b) 1 = 0$
 - 则根据此关系可得: $b = y_i w^T x_i$

SMO(Sequential Minimal Optimization)

• SMO引入的动机:

- SVM本质任然是个多元规划问题,当 λ_i 数目非常多的时候,求解依然很耗时。

• **SMO**核心思想:

- 多元规划问题才分成多个简单规划问题进行迭代求解。

• SMO算法流程:

- ① 启发地选择一对**λ**作为优化参数,其他**λ**设为固定。
- ② 求解此二元规划问题,解出**λ**,更新**λ**参数列表并计算**w**与**b**。
- ③ 检查所有 λ是否满足KKT条件。
- ④ 如不满足,则跳转至步骤1,如满足,则输出w与b。

核化与软间隔SVM

• Standard:

$$\max_{\lambda} \mathcal{L}(\lambda) \coloneqq \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j x_i^{\mathsf{T}} x_j$$
s. t.
$$\sum_{i=1}^{m} \lambda_i y_i = 0, \quad \lambda_i \ge 0 \qquad i = 1, ..., m$$

• Kernelized:

$$\max_{\lambda} \mathcal{L}(\lambda) \coloneqq \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j K(x_i, x_j)$$
s. t.
$$\sum_{i=1}^{m} \lambda_i y_i = 0, \quad \lambda_i \ge 0 \qquad i = 1, ..., m$$

Soft margin:

$$\max_{\lambda} \mathcal{L}(\lambda) \coloneqq \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i \lambda_j y_i y_j x_i^{\mathsf{T}} x_j$$
s. t.
$$\sum_{i=1}^{m} \lambda_i y_i = 0, \quad C \ge \lambda_i \ge 0 \qquad i = 1, ..., m$$

B. 基于SVM的行人检测

Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005, 1: 886-893. (Google citation: 39301)

Histograms of oriented gradients for human detection CCFA

[PDF] inria.fr

N Dalal, B Triggs - 2005 IEEE computer society conference on ..., 2005 - ieeexplore.ieee.org
We study the question of feature sets for robust visual object recognition; adopting linear
SVM based human detection as a test case. After reviewing existing edge and **gradient** ...

☆ Save
□□ Cite Cited by 39301 Related articles All 93 versions

行人检测

- 行人检测(human detection/pedestrian detection)
 - 从图片或视频中检测行人目标,典型的二分类问题。
 - 一 计算机视觉的基础问题,应用十分广泛,如视觉导航、视频 监控、智能交通等领域。
 - 非常容易推广到其他检测问题,如人脸检测、车辆检测等。

行人检测流程

• 基本流程:

输入图片→选取候选窗口→特征提取→分类

→窗口融合→输出结果

proposals

HOG features

SVM Classification

Sliding window

• 输入图片→选取候选窗口

不同尺度图片下,利用滑动窗口 (Sliding window)法, 裁剪出一系列 128x64尺寸候选窗口(proposals)。

• • • • •

候选窗口集

HOG+SVM

Detection window Fusion

- 窗口融合的两种思路
 - 非极大值抑制(Non-Maximum Suppression, NMS)
 - 聚类 (Clustering)

(a) After multi-scale dense scan

(b) Fusion of multiple detections

Results

思考

- 实际问题的解决≠数据+机器学习
 - 多种机器学习技术相互配合
- 数学不好就没法从事机器学习研究与开发?
 - HOG+SVM+NMS基本没有什么高深数学知识
- 支持向量机只是一个分类器?

SVM权重局部最大正

SVM权重 局部最小负

练练手

求解P38页中的原始SVM优化问题。

提示: matlab function: quadprog.

利用SMO算法求解例子中的问题。

提示: SVM工具包---LIBSVM

- 在同一人工(或下载)数据集上比较逻辑回归与支持向量机分 类精度。
- 在SMO中,假设选定需要更新的变量为 λ_i 和 λ_j ,试求 λ_i 和 λ_j 的更新公式。
- 尝试Github寻找HOG算法结合SVM实现静态图片中的行人检测问题。