Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Logistic Regression

Class Logistics and Agenda

- Logistics
 - A2 next assignment due!
 - Last chance for quiz!
 - Virtual team forming
- Agenda
 - DAISY Review, Town Hall
 - Logistic Regression
 - Solving
 - Programming
 - Finally some real python!

Common operations

DAISY

- Select u,v pixel location in image
- 2. Take histogram of gradient magnitudes in circle, across all orientations
- 3. Select more circles in a ring
- 4. Go to next ring, each combining all orientations
- 5. For each circle on ring, take another histogram
- 6. Repeat for more rings
- 7. Concat all histograms

Summary DAISY

Concatenate Histograms

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$

take normalized histogram of magnitudes

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \begin{bmatrix} \mathbf{G}_1^{\Sigma}(u,v), \dots, \mathbf{G}_H^{\Sigma}(u,v) \end{bmatrix}^{\top}$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0,v_0,R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)), \sim \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE

Town Hall

Matching versus Bag of Features

 Not a difference of vectors, but a percentage of matching points

SURF, ORB, SIFT, DAISY

Feature Matching

Matching test image to source dataset

- 1. Choose src image from dataset
- 2. Take keypoints of src image
- 3. Take keypoints of test image
- 4. For each kp in src:
 - 1. Match with closest kp in test
 - 2. How to define match?
- 5. Count number of matches between images
- 6. Determine if src and test are similar based on number of matches
- 7. Repeat for new src image in dataset
- 8. Once all images measured, choose best match as the target for the test image

match_descriptors

skinage.feature. match_descriptors (descriptors), descriptors2, metric=None, p=2, max_distance=inf, cross_check=True, max_ratio=1.0)

[source]

Brute-force matching of descriptors.

For each descriptor in the first set this matcher finds the closest descriptor in the second set (and vice-versa in the case of enabled cross-checking).

Solving Logistic Regression

Setting Up Binary Logistic Regression

From flipped lecture:

where g(.) is a sigmoid

How do you optimize iteratively?

- Objective Function: the function we want to minimize or maximize
- Update Formula: what update "step"can we take to optimize the objective function
- Parameters: what are the parameters of the model that we can change to optimize the objective function

Binary Solution for Update Equation

- Video Supplement (also on canvas):
 - https://www.youtube.com/watch?v=FGnoHdjFrJ8
- General Procedure:
 - Simplify L(w) with logarithm, I(w)

$$l(\mathbf{w}) = \sum_{i} \mathbf{y}^{(i)} \ln \left(g(\mathbf{w}^{T} \mathbf{x}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \ln \left(1 - g(\mathbf{w}^{T} \mathbf{x}^{(i)}) \right)$$

Take Gradient

$$\frac{\partial}{\partial w_j} l(\mathbf{w}) = -\sum_i \left(\mathbf{y}^{(i)} - g(\mathbf{w}^T \mathbf{x}^{(i)}) \right) x_j^{(i)}$$

Use gradient inside update equation for w

Binary Solution for Update Equation

Use gradient inside update equation for w

$$\frac{\partial}{\partial w_j} l(\mathbf{w}) = -\sum_i \left(\mathbf{y}^{(i)} - g(\mathbf{w}^T \mathbf{x}^{(i)}) \right) x_j^{(i)}$$

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\sum_{i=1}^{M} (y^{(i)} - g(\mathbf{w}^T \mathbf{x}^{(i)})) x_j^{(i)}}_{\text{gradient}}$$

Demo

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html

http://scikit-learn.org/stable/auto_examples/linear_model/ plot_iris_logistic.html

For Next Lecture

 Next time: More gradient based optimization techniques for logistic regression

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Optimization Techniques for Logistic Regression

Class Logistics and Agenda

- Agenda
 - Finish Logistic Regression
 - Numerical Optimization Techniques
 - Types of Optimization
 - Programming the Optimization

Whirlwind Lecture Alert

- Get an intuition, program it, maybe you don't follow every mathematical concept in lecture
- But you know how to approach it outside lecture

What do weights and intercept define?

Demo

05. Logistic Regression.ipynb

"Finish"

Programming

Vectorization

Regularization

Multi-class extension

Other Tutorials:

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html

http://scikit-learn.org/stable/auto_examples/linear_model/ plot_iris_logistic.html

Demo Lecture

06. Optimization

Scratch Paper

Back Up Slides

Last time

$$p(y^{(i)} = 1 \mid x^{(i)}, w) = \frac{1}{1 + \exp(w^T x^{(i)})}$$

$$l(w) = \sum_{i} (y^{(i)} \ln[g(w^{T} x^{(i)})] + (1 - y^{(i)})(\ln[1 - g(w^{T} x^{(i)})]))$$

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\sum_{i=1}^{m} (y^{(i)} - g(x^{(i)})) x_j^{(i)}}_{\text{gradient}}$$

$$w \leftarrow w + \eta \sum_{i=1}^{M} (y^{(i)} - g(x^{(i)}))x^{(i)}$$

$$w \leftarrow w + \eta \left[\underbrace{\nabla l(w)_{old}}_{\text{old gradient}} - C \cdot 2w \right]$$

programming \sum_i (yi-g(xi))xi
gradient = np.zeros(self.w_.shape) # set
for (xi,yi) in zip(X,y):
 # the actual update inside of sum
 gradi = (yi - self.predict_proba(xi,
 # reshape to be column vector and ad
 gradient += gradi.reshape(self.w_.sh

return gradient/float(len(y))

def get gradient(self,X,y):

Professor Eric C. Larson

Optimization: gradient descent

What we know thus far:

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\left[\left(\sum_{i=1}^{M} (y^{(i)} - g(x^{(i)}))x_j^{(i)}\right) - C \cdot 2w_j\right]}_{\nabla l(w)}$$

$$w \leftarrow w + \eta \nabla l(w)$$

25

Line Search: a better method

Line search in direction of gradient:

$$\eta \leftarrow \arg\max_{\eta} \sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)})^2 - C \cdot \sum_{j} w_j^2$$

$$v \leftarrow w + \eta \nabla l(w)$$

$$w \leftarrow w + \eta \nabla l(w)$$

$$w \leftarrow w + \eta \nabla l(w)$$
best step?

Revisiting the Gradient

How much computation is required (for gradient)?

$$\sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)})x^{(i)} - 2C \cdot w$$

$$M = \text{number of instances}$$

$$N = \text{number of features}$$

Self Test: How many multiplies per gradient calculation?

- A. M*N+1 multiplications
- B. (M+1)*N multiplications
- C. 2N multiplications
- D. 2N-M multiplications

Stochastic Methods

How much computation is required (for gradient)?

$$\sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)}) x^{(i)} - 2C \cdot w$$

Per iteration:

(M+1)*N multiplications 2M add/subtract

i chosen at random

Per iteration:

N+1 multiplications 1 add/subtract

28

06. Optimization.ipynb

Demo

Gradient Descent (with line search)

Stochastic Gradient Descent

Hessian

Quasi-Newton Methods

Multi-processing

For Next Lecture

- Next time: SVMs via in class assignment
- Next Next time: Neural Networks

Can we do better than the gradient?

Assume function is quadratic:

function of one variable:

$$w \leftarrow w - \left[\frac{\partial^2}{\partial w}l(w)\right]^{-1} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{derivative}}$$

will solve in one step!

what is the second order derivative for a multivariate function?

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Hessian

Assume function is quadratic:

function of one variable:

$$\mathbf{H}[l(w)] = \begin{bmatrix} \frac{\partial^2}{\partial w_1} l(w) & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_N} l(w) \\ \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_1} l(w) & \frac{\partial^2}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_N} l(w) \\ \vdots & & & \vdots \\ \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_1} l(w) & \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial^2}{\partial w_N} l(w) \end{bmatrix}$$

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Newton Update Method

Assume function is quadratic (in high dimensions):

$$w \leftarrow w - \left[\underbrace{\frac{\partial^2}{\partial w} l(w)}^{-1} \underbrace{\frac{\partial}{\partial w} l(w)}_{\text{derivative}}\right]^{-1}$$
inverse 2nd deriv

$$w \leftarrow w + \eta \cdot \underbrace{\mathbf{H}[l(w)]^{-1}}_{\text{inverse Hessian}} \cdot \underbrace{\nabla l(w)}_{\text{gradient}}$$

J. newlon'

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of

J. newlon'

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

$$H[k,j] = \frac{\partial}{\partial N_{k}} \left(\frac{1}{2} \left(y^{(i)} - g(x^{(i)}) \right) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(\frac{\partial}{\partial N_{k}} \left(\frac{\partial}{\partial N_{k}} \left(\frac{\partial}{\partial N_{k}} \left(y^{(i)} - g(x^{(i)}) \right) \chi_{j}^{(i)} \right) \right)$$

$$= \frac{\partial}{\partial N_{k}} \frac{\partial}{\partial N_{k}} \left(\frac{\partial}{\partial N_{k}} \left(y^{(i)} - \frac{\partial}{\partial N_{k}} g(x^{(i)}) \chi_{j}^{(i)} \right) \right)$$

$$= \frac{\partial}{\partial N_{k}} \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \right) \frac{\partial}{\partial N_{k}} \left(y^{(i)} \chi_{j}^{(i)} \chi_{j}^{(i)} \chi_{j}^{(i)} \chi_{j}^{(i)} \right) \frac{\partial$$

The Hessian for Logistic Regression

 The hessian is easy to calculate from the gradient for logistic regression

$$\mathbf{H}_{j,k}[l(w)] = -\sum_{i=1}^{M} g(x^{(i)})(1 - g(x^{(i)})x_k^{(i)}x_j^{(i)} + \sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)})x_j^{(i)}$$

$$\mathbf{H}[l(w)] = X^T \cdot \operatorname{diag}[g(x^{(i)})(1 - g(x^{(i)}))] \cdot X + X \cdot y_{diff}$$

$$w \leftarrow w + \eta[X^T \cdot \operatorname{diag}[g(x^{(i)})(1 - g(x^{(i)}))] \cdot X]^{-1} \cdot X \cdot y_{diff}$$

$$37$$

Newton's method

Problems with Newton's Method

- Quadratic isn't always a great assumption:
 - highly dependent on starting point
 - jumps can get really random!
 - near saddle points, inverse hessian unstable
 - hessian not always invertible...
 - or invertible with correct numerical precision

The solution: quasi Newton methods

- In general:
 - approximate the Hessian with something numerically sound and efficiently invertible
 - back off to gradient descent when the approximate hessian is not stable
 - use momentum to update approximate hessian
- A popular approach: use Broyden-Fletcher-Goldfarb-Shanno (BFGS)
 - which you can look up if you are interested ...

https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno algorithm

BFGS

$$\mathbf{H}_0 = \mathbf{I}$$
 init

$$p_k = -\mathbf{H}_k^{-1} \nabla l(w_k)$$

get update direction

find next w

$$w_{k+1} \leftarrow w_k + \eta \cdot p_k$$

get scaled direction $s_k = \eta \cdot p_k$

$$v_k = \nabla l(w_{k+1}) - \nabla l(w_k)$$

approx gradient change

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \underbrace{\frac{v_k v_k^T}{v_k^T s_k}}_{\text{approx. Hessian}} - \underbrace{\frac{\mathbf{H}_k s_k s_k^T \mathbf{H}_k}{s_k^T \mathbf{H}_k s_k}}_{\text{momentum}}$$

update Hessian and inverse Hessian approx

$$\mathbf{H}_{k+1}^{-1} = \mathbf{H}_{k}^{-1} + \frac{(s_{k}^{T}v_{k} + \mathbf{H}_{k}^{-1})(s_{k}s_{k}^{T})}{(s_{k}^{T}v_{k})^{2}} - \frac{\mathbf{H}_{k}^{-1}v_{k}s_{k}^{T} + s_{k}v_{k}^{T}\mathbf{H}_{k}^{-1}}{s_{k}^{T}v_{k}}$$

k = k + 1 increment k and repeat

invertibility of H well defined / only matrix operations

06. Optimization.ipynb

Demo

BFGS (if time) parallelization

