$$= \left(\frac{2}{5}x_1 + \frac{1}{5}x_2\right)\mathbf{v}_1 + \left(-\frac{3}{5}x_1 - \frac{1}{5}x_2\right)\mathbf{v}_2$$

Así, de (5.6.1),

$$c_1 = \frac{2}{5}x_1 + \frac{1}{5}x_2$$
$$c_2 = -\frac{3}{5}x_1 - \frac{1}{5}x_2$$

0

$$(\mathbf{x})_{B_2} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{5}x_1 - \frac{1}{5}x_2 \\ -\frac{3}{5}x_1 + \frac{1}{5}x_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Por ejemplo, si $(\mathbf{x})_{B_1} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, entonces

$$(\mathbf{x})_{B_2} = \begin{pmatrix} \frac{2}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{2}{5} \\ -\frac{13}{5} \end{pmatrix}$$

Verificación.

$$\frac{2}{5}\mathbf{v}_1 - \frac{13}{5}\mathbf{v}_2 = \frac{2}{5}\binom{1}{3} - \frac{13}{5}\binom{-1}{2} = \binom{\frac{2}{5} + \frac{13}{5}}{\frac{6}{5} - \frac{26}{5}} = \binom{3}{-4} = 3\binom{1}{0} - 4\binom{0}{4}$$

 $=3\mathbf{u}_1-4\mathbf{u}_2$

La matriz $A = \begin{pmatrix} \frac{2}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{1}{5} \end{pmatrix}$ se denomina **matriz de transición** de B_1 a B_2 , y se ha demostrado que

$$(\mathbf{x})_{B_2} = A(\mathbf{x})_{B_1}$$
 (5.6.4)

En la figura 5.4 se ilustran las dos bases $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ y $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$.

Es sencillo generalizar este ejemplo. Sin embargo, antes es necesario ampliar la notación. Sean $B_1 = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ y $B_2 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ dos bases para un espacio vectorial real V de dimensión n. Sea $\mathbf{x} \in V$. Entonces \mathbf{x} se puede escribir en términos de ambas bases:

$$\mathbf{x} = b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2 + b_n \mathbf{u}_n \tag{5.6.5}$$

у

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_n \mathbf{v}_n \tag{5.6.6}$$

donde las b_i y c_i son números reales. Así, $(\mathbf{x})_{B_1} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ denota la representación de \mathbf{x} en

Matriz de transición