Πέμπτη, 1 Μαρτίου 2018 8:41 πμ

Noptes Siavuetaireur

$$\eta = 1$$
, \mathbb{R}^{n}
:
 $-2\times$
 $\times +y$

a, b eR -> |a-b| = anberaen
Tun a, b.

$$\left\| \overrightarrow{V} \right\|_{2} = \sqrt{V_{1}^{2} + V_{2}^{2}}$$

$$\overrightarrow{V} = \left(V_{1}, V_{2} \right)$$

$$\gamma = 3$$
 $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

$$\eta = 100$$
, \mathbb{R}^{100}
, $\overline{V} = (V_1, V_2, \dots, V_{100})$

$$\eta = 100$$
 $| J |_{100} = \sqrt{\frac{5}{2}} \sqrt{\frac{2}{2}}$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{2}, \mathbb{R}^{3}$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{2}, \mathbb{R}^{3}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\times\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\cdot\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\cdot\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\cdot\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\cdot\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\cdot\|), \times \in \times)$$

$$\mathbb{R}^{n}$$

$$\|\cdot\|: \times \longrightarrow \mathbb{R}_{+} \qquad (\|\cdot\|), \times \longrightarrow \mathbb{$$

$$||x|| = 0 = ||x|| = 0$$
 $||x|| = 0 = ||x|| = 0$
 $||x|| = ||x|| = ||$

$$M = 2$$
, $\times = (\times_1, \times_2) = M \times M_1 = |\times_1| + |\times_2|$

$$||x+y||_{1} = ||x_{1}+y_{1}| + ||x_{2}+y_{2}| \le ||x_{1}|+||y_{1}| + ||x_{2}|+||y_{2}|| = ||x_{1}|+||x_{2}|| + ||y_{1}||_{1} + ||y_{1}||_{1}$$

 $||\cdot||_{\mathcal{S}}: \mathbb{R}^{n} \to \mathbb{R}_{+}$ $\times \mathbb{R}^{n} ||\times||_{\mathcal{S}} = \max_{1 \leq i \leq 2j} |\times_{i}|$

 $\gamma = 2$ $\times = (-3, 2)$ $\to \| \times \|_{\infty} = 3$ $\| \times \|_{1} = 5$ $\| \times \|_{2} = \sqrt{13}$

Oposeifre ou m. 1. la sua vopha.