上海交通大學

SHANGHAI JIAO TONG UNIVERSITY

课程论文 COURSE PAPER

论文题目: 李代数表示论初步探究

学生姓名: 万俊成

学生学号: 516021910620

课程名称: 群与代数表示论

指导教师: 司梅

学院(系): 电子信息与电气工程学院

第一章 基本知识

1.1 李代数

我探究的是复数域 C 上有限维李代数的结构和表示论。本次的研究内容大多数参考了《李代数》(万哲先著)。此外,我也尽量和我们的课本《群与代数表示引论》(冯克勤著)关联。

李代数 首先需要了解复数域 \mathbb{C} 上有限维李代数的定义。假设 \mathbf{g} 是复数域 \mathbb{C} 上的有限维线性空间,并且 \mathbf{g} 作为环,其元素之间满足某个乘法运算 $[\cdot,\cdot]$,即对于 \mathbf{g} 中任意两元素 X, Y, $[X,Y] \in \mathbf{g}$ 。同时,该乘法运算 $[\cdot,\cdot]$ 满足三个条件:

- 1. 关于第一个变量的线性性: $\forall X_1, X_2, Y \in \mathbf{g}, \ \forall \lambda_1, \lambda_2 \in \mathbb{C}, \ [\lambda_1 X_1 + \lambda_2 X_2, Y] = \lambda_1[X_1, Y] + \lambda_2[X_2, Y].$
- 2. 反对称性: $\forall X, Y \in \mathbf{g}, [X, Y] = -[Y, X]$ 。
- 3. Jacobi 恒等式: $\forall X, Y, Z \in \mathbf{g}$, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0。由于李代数作为环不满足结合律,为非结合环。所以它和课本第三章 1.1.1 的定义是不同的。对于 Jacobi 恒等式这个的条件,上网了解到是为了李代数能确定李群的局域性质。由乘法运算的第二个条件得到李代数具有性质:
 - 4. $\forall X \in \mathbf{g}, [X, X] = 0$.

矩阵李代数 设 $GL(n,\mathbb{C})$ 是复数域 \mathbb{C} 上所有 $n \times n$ 矩阵的集合,其对于矩阵加法和数乘组成 \mathbb{C} 上的一个 n^2 维线性空间。定义乘法 $[\cdot,\cdot]$ 为: $\forall X,Y \in GL(n,\mathbb{C})$, [X,Y] = XY - YX。那么, $GL(n,\mathbb{C})$ 组成一个李代数。

单李代数 如果李代数 g 除了自身和 $\{0\}$ 这两个理想外,不再有其它的理想,那么称 g 是单李代数。易知,一维李代数是单李代数,维数大于 1 的交换李代数非单李代数。

1.2 其他定义

内导子 设 \mathbf{g} 由 r 个李代数组成,设 $A \in \mathbf{g}$,定义内导子 $\mathrm{ad}_{\mathbf{g}} A \in GL(r, \mathbb{C})$:

$$\mathrm{ad}_{\mathbf{g}}A(X) = [A,X], \quad X \in \mathbf{g}$$

那么, $ad_{\mathbf{g}}A$ 不仅仅是 \mathbf{g} 上的线性变换,而且满足条件:

$$\mathrm{ad}_{\mathbf{g}}A([X,Y]) = [\mathrm{ad}_{\mathbf{g}}A(X),Y] + [X,\mathrm{ad}_{\mathbf{g}}(Y)]$$

容易证明,从g中元素到内导子的映射:

$$A \longrightarrow ad_{\mathbf{g}}A$$

是一个同态映射。

Cartan 内积 定义 g 上的内积 (\cdot, \cdot) 如下所示:

$$(X, Y) = tr(ad_{\mathbf{g}}Xad_{\mathbf{g}}Y)$$

容易证明,内积(·,·)是一个对称双线性函数。研究者也称其为 Killing 型。

1.3 Cartan 子代数

设 \mathbf{g} 是李代数, \mathbf{h} 为它的某个幂零子代数。所有的线性变换 $\mathrm{ad}_{\mathbf{g}}H(H\in\mathbf{h})$ 组成一个 \mathbf{g} 上的幂零子代数,记为 $\mathrm{ad}_{\mathbf{g}}\mathbf{h}$ 。

根据已有的定理, 李代数 g 有直和分解:

$$\mathbf{g} = \sum_{\phi \in \Delta} \mathbf{g}_{\mathrm{ad}_{\mathbf{g}}\mathbf{h}}^{\phi}$$

其中 Δ 是 $ad_{g}h$ 的权的集合, 定义为:

 $\Delta = \{\phi \in \mathrm{ad}_{\mathbf{g}}\mathbf{h}$ 上的取复数值的函数: $Hv = \phi(H)v, \forall H \in \mathbf{h}\}$

而 $\mathbf{g}_{\mathrm{ad},\mathbf{h}}^{\phi}$ 称为权 ϕ 的权子空间,定义为:

$$\mathbf{g}_{\mathrm{ad}_{\mathbf{g}}\mathbf{h}}^{\phi} = \{ v \in \mathbf{g} : \exists n \in \mathbb{N}^+, s.t. (H - \phi(H)I)^n v = 0, \ \forall H \in \mathrm{ad}_{\mathbf{g}}\mathbf{h} \}$$

注意到,这里的这个权子空间很类似于高等代数中学的广义特征向量子空间,而且具有一些和广义特征向量子空间相同的性质。比如 $n=\dim \mathbf{g}_{\mathrm{adgh}}^{\phi}$ 即有 $(H-\phi(H)I)^nv=0$ 。

当满足下面的条件:

$$\mathbf{h} = \mathbf{g}_{\mathrm{ad}_{\mathbf{g}}\mathbf{h}}^0$$

我们称 h 为 g 的一个 Cartan 子代数。

1.4 李代数的表示

设 **g** 是某个李代数,V 是复数域上的有限维线性空间,从 **g** 映入 GL(V) 的一个同态 $\rho: X \to \rho(X)$ 称为李代数 **g** 的线性表示。两个李代数表示 ρ_1, ρ_2 称为等价,当且仅当存在可逆映射 P,满足 $\forall X \in \mathbf{g}, P\rho_1(X) = \rho_2(X)P$ 。同样类似本课程的内容,也有李代数表示的和:

$$\rho(X)(v_1 + v_2) = \rho_1(X)v_1 + \rho_2(X)v_2$$

Kronecker 积:

$$\rho(X)(v_1 \otimes v_2) = \rho_1(X)v_1 \otimes v_2 + v_1 \otimes \rho_2(X)v_2$$

另外,还有星表示或逆步表示:

$$(v, \rho^*(X)(v^*)) = -(\rho(X)v, v^*), \ v \in V, v^* \in V^*$$

第二章 典型李代数

这里大概介绍四种典型李代数,分别为 A_n , B_n , C_n , D_n 。它们均为矩阵李代数的子代数,同时也是单李代数,

$2.1 A_n$

矩阵李代数 $GL(n+1,\mathbb{C})$ 中所有迹为 0 的矩阵组成一个子代数,记为 A_n ,则有 $\dim A_n = n^2 + 2n$ 。此外, A_n 本身为 $GL(n+1,\mathbb{C})$ 的理想,因为, $\forall X \in GL(n+1,\mathbb{C})$, $\forall Y \in A_n \mathbb{I} tr([X,Y]) = tr(XY-YX) = tr(XY) - tr(YX) = 0$,从而 $[X,Y] \in A_n$ 。 $GL(n+1,\mathbb{C})$ 中所有迹为 0 的对角矩阵组成 A_n 的一个 n 维交换子代数 H_n 。具体的,设对角矩阵

$$\boldsymbol{H}_{\lambda_1,\dots,\lambda_m} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n+1} \end{bmatrix}, \quad s.t. \sum_{i=1}^{n+1} \lambda_i = 0$$

这样所有的 $H_{\lambda_1,\cdots,\lambda_{n+1}}$ 即为该 n 维交换子代数 H_n 。

以 E_{ik} 表示 i 行 k 列位置上的元素为 1,而其余位置的元素为 0 的矩阵,再今:

$$H_{\lambda_i - \lambda_k} = E_{ii} - E_{kk}, \quad (i \neq k)$$
$$E_{\lambda_i - \lambda_k} = E_{ik}, \quad (i \neq k)$$

那么,我们有:

$$A_n = \operatorname{span}(H_n \cup \{E_{\lambda_i - \lambda_k} : i \neq k, i, k = 1, 2, \cdots, n + 1\})$$

其中下标集合 $\{\lambda_i - \lambda_k : i \neq k, i, k = 1, 2, \cdots, n+1\}$ 中的每个元素称为 A_n 的根,如果 $n \geq 2$,固定一个根,则 A_n 的任意一个根都可以从该固定根和其他根逐次添加得到。 A_n 的结构公式如下(这不难由矩阵李代数的乘法运算定义 [X,Y] = XY - YX 得到):

$$\begin{split} [X_1,X_2] &= 0, \quad \text{对任意的} X_1, X_2 \in H_n \\ [H_{\lambda_1,\cdots,\lambda_{n+1}},E_{\alpha}] &= \alpha E_{\alpha}, \quad \text{对任一根} \alpha \\ [E_{\alpha},E_{-\alpha}] &= H_{\alpha}, \quad \text{对任一根} \alpha \\ \\ [E_{\alpha},E_{\beta}] &= \begin{cases} 0, \quad \ \, \ddot{\Xi}\alpha + \beta \text{不是根} \\ \pm E_{\alpha+\beta}, \quad \ \, \ddot{\Xi}\alpha + \beta \text{是根} \end{cases} \end{split}$$

2.2 B_n 、 C_n 和 D_n

设M是 $n \times n$ 矩阵,适合条件:

$$XM + MX' = 0 (2-1)$$

的所有 $n \times n$ 复系数矩阵 X 组成一个线性李代数,记为 $GL(n, M, \mathbb{C})$ 。如果 X, Y 为该李代数 $GL(n, M, \mathbb{C})$ 中元素,那么有 XM + MX' = 0 和 YM + MY' = 0,从而有:

$$[X,Y]M + M[X,Y]' = (XY - YX)M + M(XY - YX)'$$

$$= XYM - YXM + MY'X' - MX'Y'$$

$$= -XMY' + YMX' - YMX' + XMY'$$

$$= 0$$

当 M_1 合同于 M_2 时,设 $M_1 = TM_2T'$,那么有:

$$\begin{split} XM_1 + M_1 X' &= XTM_2 T' + TM_2 T' X' \\ &= T(T^{-1}XT)M_2 T' + TM_2 (T^{-1}XT)' T' \\ &= T[(T^{-1}XT)M_2 + M_2 (T^{-1}XT)'] T' \end{split}$$

从而 $GL(n, M_1, \mathbb{C})$ 和 $GL(n, M_2, \mathbb{C})$ 同构。

下面讨论 M 为可逆对称矩阵、可逆反对称矩阵两种情况。 当 M 为可逆对称矩阵时,M 或者合同于:

或者合同于:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & I_k \\ 0 & I_k & 0 \end{bmatrix}, \quad \leq n = 2k + 1$$
为奇数

记 n = 2k+1 是奇数时 $GL(n, M, \mathbb{C}) = B_k$,而 n = 2k 是偶数时 $GL(n, M, \mathbb{C}) = D_k$ 。 其中, B_k, D_k 均为 $GL(n, M, \mathbb{C})$ 的子代数。

当 M 为可逆反对称矩阵时,n 只能为偶数,设 n = 2k,那么任一可逆反对称矩阵合同于:

$$\begin{bmatrix} 0 & I_k \\ -I_k & 0 \end{bmatrix}$$

相应的代数称为辛代数,记为 C_k 。

首先, 令矩阵 S 为:

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & I_k \\ 0 & I_k & 0 \end{bmatrix}$$

将 $(n+1) \times (n+1)$ 的矩阵 X 作和 S 同样的分块:

$$X = \begin{bmatrix} a & u & v \\ w & A_{11} & A_{12} \\ z & A_{21} & A_{22} \end{bmatrix}$$

带入条件:

$$XS + SX' = 0$$

可以得到下面的约束:

$$a = 0$$
, $w = -v'$, $z = -u'$, $A_{11} = -A'_{22}$, $A_{12} = -A'_{12}$, $A_{21} = -A'_{21}$

从而有 B_n 的一般表达式:

$$\begin{bmatrix} 0 & u & v \\ -v' & A_{11} & A_{12} \\ -u' & A_{21} & -A'_{11} \end{bmatrix}, \quad A'_{12} = -A_{12}, \ A'_{21} = -A_{21}$$

可以看出 B_n 的维数 $\dim B_n = 2n^2 + n$ 。

和 A_n 一样,我们想探讨 B_n 的结构。我们仍然先从 B_n 的交换子代数 H_n 入手,设 $H_{\lambda_1,\cdots,\lambda_n}=\mathrm{diag}(0,\lambda_1,\lambda_2,\cdots,\lambda_n,-\lambda_1,-\lambda_2,\cdots,-\lambda_n)$ 。所有的 $H_{\lambda_1,\cdots,\lambda_n}$ 构成 n 维交换子代数 H_n 。再令:

$$\begin{split} E_{\lambda_{i}-\lambda_{k}} &= \begin{bmatrix} 0 & & \\ & E_{ik} & \\ & -E_{ki} \end{bmatrix}, \quad E_{-\lambda_{i}+\lambda_{k}} = \begin{bmatrix} 0 & & \\ & E_{ki} & \\ & -E_{ik} \end{bmatrix}, \quad i < k \\ E_{\lambda_{i}+\lambda_{k}} &= \begin{bmatrix} 0 & & \\ & 0 & \\ & & 0 \end{bmatrix}, \quad E_{-\lambda_{i}-\lambda_{k}} = \begin{bmatrix} 0 & & \\ & 0 & \\ & -E_{ik} + E_{ki} & 0 \end{bmatrix}, \quad i < k \\ E_{\lambda_{i}} &= \begin{bmatrix} 0 & e_{i} \\ -e'_{i} & 0 \\ & & 0 \end{bmatrix}, \quad E_{-\lambda_{i}} &= \begin{bmatrix} 0 & -e_{i} \\ & 0 \\ e'_{i} & & 0 \end{bmatrix}, \end{split}$$

$$H_{\lambda_i - \lambda_k} = \begin{bmatrix} 0 \\ E_{ii} - E_{kk} \\ -E_{ii} + E_{kk} \end{bmatrix}, \quad H_{\lambda_i + \lambda_k} = \begin{bmatrix} 0 \\ E_{ii} + E_{kk} \\ -E_{ii} - E_{kk} \end{bmatrix}, \quad i < k$$

$$H_{\lambda_i + \lambda_k} = \begin{bmatrix} 0 \\ E_{ii} \\ -E_{ii} \end{bmatrix}$$

其中 e_i 表示第 i 个分量为 1, 其余分量为 0 的 n 维向量。我们有:

$$B_n = \operatorname{span}(\bigcup_{i < k} E_{\pm \lambda_i \pm \lambda_k} \bigcup_i E_{\pm \lambda_i})$$

其中, $\pm \lambda_i \pm \lambda_k (i < k)$ 和 $\pm \lambda_i$ 称为 B_n 的根。类似 A_n 的结构规则, B_n 也有相同的结构公式。

对子代数于 C_n , D_n , 通过类似于 B_n 的分块矩阵讨论的方式,可以分别得到 其维数为 $\dim C_n = 2n^2 + n$, $\dim D_n = 2n^2 - n$ 。

以上介绍的四个典型的李代数 A_n, B_n, C_n, D_n 都是单代数。

定理 2.1 李代数 $A_n(n \ge 1)$, $B_n(n \ge 1)$, $C_n(n \ge 1)$, $D_n(n \ge 3)$ 都是单代数。

下面简要给出定理 2.1中 $A_n(n \ge 1)$ 是单代数的证明, $B_n(n \ge 1)$, $C_n(n \ge 1)$, $D_n(n \ge 3)$ 的证明同理。

证明 设 $I \neq A_n$ 的一个非 0 理想,我们需要证明 $I = A_n$ 。在 I 中任取一非 0 元素:

$$0 \neq A = A_0 + \sum_{\alpha \in \Sigma} \lambda_\alpha E_\alpha$$

其中 $A_0 \in H_n$ 而 Σ 表示 A_n 的所有根的集合。不妨假定有一个 $\lambda_\alpha \neq 0$; 不然 $0 \neq A = A_0 \in H_n$, 那么由 A_n 的结构公式可知, 存在 E_α 使得 $[A_0, E_\alpha] = \alpha_0 E_\alpha \neq 0$, 这样 $E_\alpha \in I$ 。

那么,可以假设有一个 $\lambda_{\alpha} \neq 0$,由 $A \in I$ 可以得到:

$$[H,\cdots,[H,[H,A]]\cdots](r$$
个括号 $)=\sum_{\alpha\in\Sigma}\lambda_{\alpha}\alpha^{r}E_{\alpha}\in I,\quad r=1,2,\cdots$

将不同的 r 对应的式子乘以某个范德蒙德行列式 $V(\lambda_1^0,\cdots,\lambda_n^0)$ 中 α^r 的代数 余子式,然后相加,可以得到 $V(\lambda_1^0,\cdots,\lambda_n^0)\lambda_\alpha E_\alpha\in I$ 。从而推出 $E_\alpha\in I$ 。

第三章 一个三维单李代数的表示

3.1 三维单李代数

设 \mathbf{g}_3 是 3×3 的复系数反对称矩阵组成的一个三维单代数,那么 $\dim \mathbf{g}_3 = 3$ 。 其中一组基为:

$$M_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad M_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

对应的结构公式为:

$$[M_1, M_2] = M_3, \quad [M_2, M_3] = M_1, \quad [M_3, M_1] = M_2$$

下面,令:

$$H = iM_3$$
, $E_1 = i(M_1 + iM_2)$, $E_{-1} = i(M_1 - iM_2)$

则有:

$$[H, E_1] = E_1, \quad [H, E_{-1}] = -E_{-1}, \quad [E_1, E_{-1}] = 2H$$

我认为,这里是为了将原本的基 M_1, M_2, M_3 进行变换,得到新的基 H, E_1, E_{-1} 。 在新的基下,能够更加方便地研究 \mathbf{g}_3 的代数表示。

容易证明, $\mathbf{h} = \{H\}$ 是 \mathbf{g}_3 的一个 Cartan 子代数(因为和 E_1 , E_2 作用后不为 0)。 \mathbf{h} 的两个根是 λ 和 $-\lambda$,即

$$[\lambda H, E_1] = \lambda E_1, \quad [\lambda H, E_{-1}] = -\lambda E_{-1}$$

而相应的根向量为 E_1 和 E_{-1} 。

3.2 g₃ 的表示

我们想要研究 \mathbf{g}_3 的表示。假设 (V, ρ) 是 \mathbf{g}_3 的某个表示,我们把 $\rho(H)$ 的特征根称为 ρ 的权,而 $\rho(H)$ 的非零特征向量称为 ρ 的权向量。首先,我们有:

引理 3.1 设 v 是 ρ 的一个权向量,相应于权 m,即有 $\rho(H)v = mv$ 。如果 $\rho(E_1)v \neq 0$,则 $\rho(E_1)v$ 是相应于权 m+1 的权向量;如果 $\rho(E_{-1})v \neq 0$,则 $\rho(E_{-1})v$ 是相应于权 m-1 的权向量。

证明 $\rho(H)(\rho(E_1)v) = \rho([H, E_1])v + \rho(E_1)(\rho(H)v) = \rho(E_1)v + \rho(E_1)mv = (m+1)\rho(E_1)v$

$$\rho(H)(\rho(E_{-1})v) = \rho([H,E_{-1}])v + \rho(E_{-1})(\rho(H)v) = -\rho(E_{-1})v + \rho(E_{-1})mv = (m-1)\rho(E_{-1})v$$

因为 V 是有限维的,所以根据上述引理,知道 ρ 总有一个权向量 v 满足 $\rho(E_1)v=0$ 。设该权向量 v 的权为 j,记 $v=v_i$,那么有

$$\rho(H)v_j = jv_j$$

今:

$$v_{j-1} = \rho(E_{-1})v_j, \quad v_{j-2} = \rho(E_{-1})v_{j-1}, \quad \cdots$$

从而,类似上面的证明,可以得到:

$$\rho(E_1)v_m = (j - m)(j + m + 1)v_{m+1}$$

$$\rho(E_1) v_{m-1} = (j-m+1)(j+m) v_m$$

设j'是第一个数,使:

$$v_{i'} \neq 0$$
 并且 $\rho(E_{-1})v_{i'} = v_{i'-1} = 0$

那么,也就有:

$$\rho(E_1)v_{j'-1} = (j-j'+1)(j+j') = 0$$

由于 $j-j'+1 \ge 1$,所以有 j+j'=0。这样,权值 j 为非负整数或者半整数。(因为 j'=j 减去某个非负整数)。更进一步,可以证明:

$$v_j, v_{j-1}, \cdots, v_{-j}$$

生成 ρ 的一个不可约不变子空间。这即为下述定理。

定理 3.2 设 ρ 是 \mathbf{g}_3 的一个不可约表示,表示空间为 V,于是 $\dim V = 2j+1$,其中 j 为非负整数或半整数的权值,满足 $\rho(H)v_j = jv_j$ 而 $\rho(E_1)v_j = 0$,而且我们可以在 V 中选一组基 $v_j, v_{j-1}, \cdots, v_{-j}$ 使得:

$$\begin{split} \rho(H)\upsilon_{m} &= m\upsilon_{m} \\ \rho(E_{-1})\upsilon_{m} &= \upsilon_{m-1} \\ \rho(E_{1})\upsilon_{m} &= (j-m)(j+m+1)\upsilon_{m+1} \end{split}$$

对于 $m = j, j - 1, \dots, -j$, 其中 $v_{j+1} = v_{-j-1} = 0$ 。

证明 首先,容易知道 V 在 ρ 的作用下不变。其次,假设 V' 是 V_j 在 ρ 的作用下不变的子空间,设 $V' \neq 0$,那么 $\rho(H)$ 在 V' 中一定有一个特征值 $k \in \{j, j-1, \cdots, -j\}$ 。因为 V 中 $\rho(H)$ 的特征值都是单的,故 V' 一定含有 v_k ,那么利用上面的三个公式,可以推出 $v_j, v_{j-1}, \cdots, v_{-j}$ 都属于 V',即为 V' = V。这边证明了 V 的不可约性。

这时,我们称 j 为不可约表示 ρ 的首权(首个基在 $\rho(H)$ 下的权值)。因此, \mathbf{g}_3 的两个不可约表示等价,当且仅当它们有相同的首权。

反过来,同样可以根据首权 j 来定义不可约表示。

定理 3.3 任给一个非负整数或者半整数 j,可以按照定理3.2中的公式来定义 \mathbf{g}_3 的一个不可约表示 ρ ,其首权为 j。

证明 首先, 当 ρ 满足定理3.2中的公式时, 可以验证如下结果:

$$\begin{split} [\rho(H), \rho(E_1)] &= \rho(E_1) \\ [\rho(H), \rho(E_{-1})] &= -\rho(E_{-1}) \\ [\rho(E_1), \rho(E_{-1})] &= 2\rho(H) \end{split}$$

这证明了 ρ 确实是 \mathbf{g}_3 的一个表示(满足同态性质)。又由定理3.2中关于V不可约性的证明,说明 ρ 是不可约表示。

上述的定理3.2和定理3.3可以用来求解 \mathbf{g}_3 的不可约表示的问题。记 V_j , (ρ_j) 为 \mathbf{g}_3 的首权为 j 的不可约表示。由上述讨论知道, ρ_j 是 2j+1 级的表示。

通过定理3.2可以得到下述推论:

推论 3.4 设 v 为 V_i 中权威 r 的向量。设 p 为使得 $\rho_j(E_{-1})^p v \neq 0$ 的最大非负整数, q 为使得 $\rho_j(E_1)^q v \neq 0$ 的最大非负整数,那么有 2r = -(q-p),并且 p+q=2j。此外, $\rho_j(E_{-1})^i \rho_j(E_1)^q v \neq 0$,($0 \leq i \leq p+q$) 而 $\rho_j(E_{-1})^i \rho_j(E_1)^q v$ 是属于权 r+q-i 的向量。

证明 因为 $\rho_j(H)$ 的特征根都是单的,所以 v 与 v_r 线性相关,因此不妨设 $v = v_r$ 。根据定理3.2中的公式知道,如果 $\rho_j(E_1)^i v_r \neq 0$,则有 $\rho_j(E_1)^i v_r$ 属于权 r+i,因此与 v_{r+i} 线性相关。于是,由 $\rho_j(E_1)\rho_j(E_1)^q v_r = 0$ 推出 r+q=j。同理,有 r-q=-j,将 r+q=j 与 r-p=-j 相加得到 2r=-(q-p),相减得到 p+q=2j。

下面的定理解决了寻求 g3 的一切表示的问题。

定理 3.5 g₃ 的任一表示皆完全可约。

证明 首先, 引进 \mathbf{g}_3 的表示 ρ 的 Casimir 算子:

$$\begin{split} \rho(G) &= -\frac{1}{2}(\rho(M_1)^2 + \rho(M_2)^2 + \rho(M_3)^2) \\ &= \frac{1}{4}(\rho(E_1)\rho(E_{-1}) + \rho(E_{-1})\rho(E_1)) + \frac{1}{2}\rho(H)^2 \end{split}$$

容易验证, $\rho(G)$ 与 $\rho(\mathbf{g}_3)$ 中每个线性变换皆交换。因此,如果 ρ 是不可约表示,则根据 Schur 引理, $\rho(G)$ 是恒同变换的倍数。特别的,如果 ρ_j 是首权为 j 的不可约表示,则有:

$$\rho_j(G) = \frac{1}{2}j(j+1)I$$

实际上:

$$\begin{split} \rho_j(G)v_m &= [\frac{1}{4}(\rho_j(E_1)\rho_j(E_{-1}) + \rho_j(E_{-1})\rho_j(E_1)) + \frac{1}{2}\rho_j(H)^2]v_m \\ &= \frac{1}{4}\rho_j(E_1)v_{m-1} + \frac{1}{4}\rho_j(E_{-1})(j-m)(j+m+1)v_{m+1} + \frac{1}{2}m^2v_m \\ &= \frac{1}{4}(j-m+1)(j+m)v_m + \frac{1}{4}(j-m)(j+m+1)v_m + \frac{1}{2}m^2v_m \\ &= \frac{1}{2}j(j+1)v_m, \quad (m=j,j-1,\cdots,-j) \end{split}$$

即证。

引理 3.6 如果 \mathbf{g}_3 的一个表示 ρ 恰好包含两个不可约表示,即 ρ 的表示空间 V 包含有两个不可约的不变子空间, V_0 和其对应的商空间 V/V_0 ,那么 V 有不变子空间 V' 存在,使得 V 可以分解为 V_0 和 V' 的直和: $V = V_0 \oplus V'$ 。

该引理的证明颇有几分复杂,这里暂时略去。主要是对于两个不可约表示 ρ_j , $\rho_{j'}$ 中 j=j'与 $j\neq j'$ 进行讨论。

这里指出,可以通过引理3.6来证明定理3.2。

证明 设 ρ 是**g**₃的一个表示,表示空间为V,再设 V_0 是 ρ 的一个不可约不变子空间。假定定理3.2对于维数较V低的表示空间成立,那么有:

$$V/V_0 = \bar{V}_1 + \bar{V}_2 + \cdots + \bar{V}_m$$

其中 $\bar{V}_1, \bar{V}_2, \cdots, \bar{V}_m$ 都是 V/V_0 的不可约不变子空间。以 U_i 表示 V 中向量在自然 同态:

$$V \rightarrow V/V_0$$

之下映到 \bar{V}_i 去的那些向量所构成的子空间,则有:

$$U_i/V_0 = \bar{V}_i$$

于是,根据引理3.6, U_i 有不可约不变子空间 V_i 使得

$$U_i = V_0 + V_i$$

那么:

$$V = V_0 + V_1 + V_2 + \dots + V_m$$

这就证明了 ρ 是完全可约的。

上述推论3.4可以通过如下的推广。证明方式类似于推论3.4,只需要通过定理将表示 ρ 分解成不可约表示的和,然后根据定理将每个不可约表示和 ρ_j 等价即可。

引理 3.7 设 ρ 是 \mathbf{g}_3 的一个表示,则 ρ 的权都是整数或半整数。设 v 是 ρ 的表示空间 V 中属于权 r 的一个向量。如果以 p 表示最大非负整数使得 $\rho(E_{-1})^p v \neq 0$,而以 q 表示最大非负整数使得 $\rho(E_1)^q v \neq 0$,那么有 2r = -(q-p)。此外, $\rho(E_{-1})^i \rho(E_1)^q v \neq 0$, $0 \leq i \leq p+q$ 而 $\rho(E_{-1})^i \rho(E_1)^q v$ 是属于权 r+q-i 的向量。