Computational Genomics Prof. Ron Shamir & Prof. Roded Sharan

Prof. Ron Shamir & Prof. Roded Sharan School of Computer Science, Tel Aviv University

גנומיקה חישובית

' פרופ' רון שמיר ופרופ' רודד שרן ביה"ס למדעי המחשב,אוניברסיטת תל אביב

Lecture 4: Multiple alignment 13,15/11/12

Multiple Sequence Alignment

Reference:

Gusfield, Algorithms on Strings, Trees & Sequences Some slides from:

- Jones, Pevzner, USC Intro to Bioinformatics Algorithms http://www.bioalgorithms.info/
- S. Batzoglu, Stanford http://ai.stanford.edu/~serafim/C5262_2006/
- · Geiger, Wexler, Technion http://www.cs.technion.ac.il/~cs236522/
- Ruzzo, Tompa U. Washington CSE 590bi
- Poch, Strasbourg <u>www.inra.fr/internet/Projets/agroBI/PHYLO/Poch.ppt</u>

Multiple Alignment vs. Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Multiple Alignment vs. Pairwise Alignment

"Pairwise alignment whispers ...
multiple alignment shouts out loud"

Hubbard, Lesk, Tramontano, Nature Structural Biology 1996.

Multiple Alignment Definition

Input: Sequences S_1 , S_2 ,..., S_k over the same alphabet **Output:** Gapped sequences S'_1 , S'_2 ,..., S'_k of equal length

- 1. $|S'_1| = |S'_2| = \dots = |S'_k|$
- 2. Removal of spaces from S'_i gives S_i for all i

Example

$$S_I$$
=AGGTC

$$S_2$$
=GTTCG

$$S_3$$
=TGAAC

Example

```
qi|19923711|ref|NP 203523.2| MERL---ESELIRQSWRAVSRSPLEHGTVLFSRLFALEPSLLPLFQYNGRQFSSPEDCLSSPEFLDHIRKVMLVIDAAVT
                                                                                                             77
 gi|12584951|gb|aAg59898.1| MERP---ESELIROSWRAVSRSPLEHGTVLFSRLFALEPSLLPLFOYNGROFSSPEDCLSSPEFLDHIRKVMLVIDAAVT
                                                                                                             77
qi | 11967939|ref|NP 071859.1| MERP---ESELIRQSWRVVSRSPLEHGTVLFARLFALEPSLLPLFQYNGRQFSSPEDCLSSPEFLDHIRKVMLVIDAAVT
                                                                                                              77
                           MERP---EPELIROSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQMNCROFSSPEDCLSSPEFLDHIRKVMLVIDAAVT
                                                                                                              77
gi|10864065|ref|NP 067080.1|
gi|15387696|emb|CAC59975.1| MEKLSKDKELINGSWDSLGKNKVPHGVILFSKLFELDPELLNLFHYT-TNCGSTQDCLSSPEFLEHVTKVMLVIDAAVS
gi|15387694|emb|CAC59974.1| MEKLSSKDKELIRGSNDSLGKNKVPHGVILFSKLFELDPELLNLFHYT-TNCGSTQDCLSSPEFLEHVTKVMLVIDAAVS
gi|18859087|ref|NP_571928.1| MEKLSEKOKGLIKOSWESLGKNKVPHGIVLFTKLFELDPALLTLFSYS-TNCGDAPECLSSPEFLEHVTKVMLVIDAAVS
                      ruler 1.....10......20......30......40......50......60......70......80
                            ;;;** ;**;;* ;*****;****; ,**; ********; ,** ;*,; * ** ;*, ** ;*;***
qi|19923711|ref|NP_203523.2| NVEDLSSLEEYLATLGRKHRAVGVRLSSFSTVGESLLYMLEKCLGPDFTFATRTANSQLYGAVVQAMSRGND--GE----
                                                                                                            151
                           nvedlsslee<mark>ylatigrkhe</mark>avgvrlssestvgesllymleecigfdetpatrtansqlygavvqamsegnd--ge----
  gi|12584951|gb|AAG59898.1|
                                                                                                             151
                           NVEDLSSLEEYLTSLGRKHRAVGVRLSSFSTVGESLLYMLERCLGPDFTPATRTAWSRLYGAVVQAMSRGWD--GE----
gi|11967939|ref|NP 071859.1|
                                                                                                             151
                           NVEDLSSLEEYLASLGRKHRAVGVKLSSFSTVGESLLYMLEKCLGPAFTPATRAAWSOLYGAVVOAMSRGWD--GE----
                                                                                                             151
gi|10864065|ref|NP 067080.1|
                           HLDDLHSLEDFILINLGRKHQAVGVKPQSFAMVGESLLYMLQCSLGQAYTASLRQAWLNMYSVVVASMSRGWAKNGEDKAD
gi|15387696|emb|CAC59975.1|
                                                                                                             159
qi|15387694|emb|CAC59974.1| HLDDLHSLEDFLLNLGRKHQAVGVKPQSFAMVGESLLYMLQCSLGQAYTASLRQAWLNMYSVVVASMSRGWAKNGEDKAD
                                                                                                             159
                            HLDDLHTLEDFILINLGRKHQAVGVNTQSFALVGESLLYMIQSSLGFAYTTSLRQAWLTMYSIVVSAMTRGWAKNGEHKSN
gi|18859087|ref|NP_571928.1|
                                                                                                            159
```

Multiple sequence alignment of 7 neuroglobins using clustalx

Protein Phylogenies - Example

Motivation again

- Common structure, function or origin may be only weakly reflected in sequence multiple comparisons may highlight weak signals
- Major uses:
 - Identify and represent protein families
 - Identify and represent conserved sequence or structure elements (e.g. domains)
 - Deduce evolutionary history

MSA: central role in biology

<u>Hierarchical function annotation:</u>
homologs, domains, motifs

Structure comparison, modelling

Interaction networks

Scoring alignments

- Given input seqs. S_1 , S_2 ,..., S_k find a multiple alignment of optimal score
- Scores preview:
 - Sum of pairs
 - Consensus
 - Tree

Sum of Pairs score

Def: Induced pairwise alignment A pairwise alignment induced by the multiple alignment

Example:

```
x: AC-GCGG-Cy: AC-GC-GAGz: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```


$$S(M) = \Sigma_{k < l} \sigma(S'_k, S'_l)$$

SOP Score Example

Consider the following alignment:

Scoring scheme: match - 0

mismatch/indel - -1

SP score: -3-5-4=-12

Alignments = Paths

· Align 3 sequences: ATGC, AATC, ATGC

Alignment Paths

x coordinate

Alignment Paths

· Align 3 sequences: ATGC, AATC, ATGC

0	1	1	2	3	4
	Α		Т	G	С
0	1	2	3	3	4
	Α	Α	Т		С

x coordinate

y coordinate

-- A T G C

Alignment Paths

0	1	1	2	3	4
	Α		Т	G	С
0	1	2	3	3	4
	Α	Α	Т		С
0	0	1	2	3	4
		Α	Т	G	С

x coordinate

y coordinate

z coordinate

Resulting path in (x,y,z) space:

$$(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D
 "Manhattan Cube",
 with each axis
 representing a
 sequence to align
- For global alignments, go from source to sink

2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph

2-D cell versus 2-D Alignment Cell

In **2-D**, 3 edges in each unit square

In 3-D, 7 edges in each unit cube

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

•
$$s_{i,j,k} = \max \begin{cases} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k-1} + \delta(v_i, w_j, u_k) \\ s_{i,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k} + \delta(v_i, v_j, u_k) \\ s_{i-1,j,k} + \delta(v_i, v_j, u_k) \\ s_{i,j-1,k} + \delta(v_i, v_j, u_k) \\ s_{i,j-1,k} + \delta(v_i, v_j, u_k) \end{cases}$$
 edge diagonal: two indels

• $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Running Time

- For 3 sequences of length n, the run time is $O(n^3)$
- For k sequences, build a k-dimensional cube, with run time $O(2^k n^k)$ [another 2^k factor for affine gaps]
- · Impractical for most realistic cases
- NP-hard (Elias'03 for general matrices)

Minimum cost - SOP

We use min cost instead of max score

→ Find alignment of minimal cost

Assumption (for the approx. algs to follow):

the cost function δ is a distance function

- $\delta(x,x) = 0$ (also for gaps)
- $\delta(x,y) = \delta(y,x) \ge 0$
- $\delta(x,y) + \delta(y,z) \ge \delta(x,z)$ (triangle inequality)

Forward Dynamic Programming

- An alternative approach to DP for pairwise (and multiple) alignment:
- D(v) opt value of path source $\rightarrow v$
- p(w) best-yet solution of path source $\rightarrow w$
- When D(v) is computed, send its value forward on the arcs from $v \rightarrow w$: $p(w)=min\{p(w),D(v)+cost(v,w)\}$
- Once p(w) has been updated by all incoming edges - that value is optimal; set as D(w)

Forward Dynamic Programming (2)

- Maintain a queue of nodes whose D is not set yet
- For the node w at the head of the queue: Set $D(w) \leftarrow p(w)$ and remove
- \forall out-neighbor x of w update p; if x is not in the queue add it at the end
 - Breaking ties lexicographically
 - Only x-s with some forward transmission are added to the queue
- Same complexity as the regular (backwards) DP

Faster DP Algorithm for MultiAlign Carillo-Lipman 88

- Use forward DP.
- · We'll demonstrate on three sequences
- $f_{12}(i,j)$ = opt pairwise alignment score of suffixes $S_1(i+1,...n_1)$, $S_2(j+1,...n_2)$, etc.
- Key idea: if \exists a known soln of cost z, if $D(i,j,k)+f_{12}(i,j)+f_{13}(i,k)+f_{23}(j,k)>z$
- \rightarrow Do not send D(i,j,k) forward
- Guarantees opt soln no improved time bound, but often saves a lot in practice.

An approximation algorithm Gusfield 93

- Compute a center string, minimizing the sum of pairwise distances to the other strings
- · Use it as a "pivot" for the alignment

D(S,T) - cost of minimum global alignment between S and T

The Center Star algorithm

Input: Γ - set of k strings $S_1, ..., S_k$.

- 1. Find the string $S^* \in \Gamma$ (center) that minimizes $\sum_{S \in \Gamma \setminus \{S^*\}} D(S^*, S)$
- 2. Denote $S_1 = S^*$ and the rest of the strings as $S_2^{S \in \overline{\Gamma \setminus \{S^*\}}}$, S_k
- 3. Iteratively add $S_2, ..., S_k$ to the alignment as follows:
 - a. Suppose $S_1, ..., S_{i-1}$ are already aligned as $S'_1, ..., S'_{i-1}$
 - b. Optimally align S_i to S'_1 to produce S'_i and S''_1 aligned
 - c. Adjust $S'_2, ..., S'_{i-1}$ by adding spaces where spaces were added to S''_1
 - d. Replace S'_1 by S''_1

Inheriting gaps

x: AGAC

y: ATGA

z: ATGGA

← center

1: y: ATGA-

x: A-GAC

2: y: ATG-A

Z: ATGGA

y: ATG-A-

x: A-G-AC

Z: ATGGA-

Running time

- Choosing S_1 execute DP for all sequence-pairs $O(k^2n^2)$
- Adding S_i to the alignment execute DP for S_i , S'_I $O(i \cdot n^2)$. (In the i^{th} stage the length of S'_I can be up-to $i \cdot n$)

$$\sum_{i=1}^{k-1} O(i \cdot n^2) = O(k^2 n^2)$$
total complexity

Approximation ratio

- M* An optimal alignment
- M The alignment produced by this algorithm
- d(i,j) The distance M induces on the pair S_i, S_j

 $v(M) = \sum_{i=1}^{k} \sum_{\substack{j=1 \ i \neq i}}^{k} d(i, j) = 2 \sum_{i < j} d(i, j)$

•recall D(S,T) - min cost of alignment between S and T

For all $i: d(1,i)=D(S_1,S_i)$

(we perform optimal alignment between S'_1 and S_i and $\delta(-,-)=0$)

Approximation ratio (2)

Triangle inequality + symmetry

$$v(M) = \sum_{i=1}^{k} \sum_{\substack{j=1 \ j \neq i}}^{k} d(i, j) \le \sum_{i=1}^{k} \sum_{\substack{j=1 \ j \neq i}}^{k} (d(1, i) + d(1, j))$$

$$= 2(k-1)\sum_{l=2}^{k} d(1,l) = 2(k-1)\sum_{l=2}^{k} D(S_1, S_l)$$

$$v(M^*) = \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k d^*(i, j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j) \ge \sum_{\substack{j=1 \\ j \neq i}}^k D(S_i, S_j)$$

$$\geq \sum_{i=1}^{k} \sum_{j=2}^{k} D(S_1, S_j) = k \sum_{j=2}^{k} D(S_1, S_j)$$

$$\frac{v(M)}{v(M^*)} \le \frac{2(k-1)}{k} \le 2$$

Definition of S_1 :

$$\forall i: \sum_{j=2}^{k} D(S_1, S_j) \leq \sum_{\substack{j=1\\j \neq i}}^{k} D(S_i, S_j)$$

CG @ Ron Shamir

Theorem (Gusfield 93)

- We have proved:
- The center star algorithm is a polynomial algorithm that guarantees a solution at most twice the optimum.

- "a 2-approximation"
- · "an approximation ratio of 2"

Steiner/consensus string

- Input: Γ set of k strings $S_1, ..., S_k$.
- D(X,Y) score of aligning X, Y.
- S arbitrary sequence (unrelated to Γ)
- The consensus error of S relative to Γ : $E(S) = \Sigma_{i \le k} D(S, S_i)$
- S* is an optimal Steiner string for Γ if it minimizes E(S)
- · Different objective function linear no of terms
- No direct relation to multialign! (for now)

Optimal Steiner String: Approximation

Thm: Assume D satisfies triangle ineq. Then $\exists S \in \Gamma$ that gives a 2-approximation.

Pf: Pick $S \in \Gamma$

$$E(S) = \sum_{S \neq S_i} D(S, S_i) \leq \sum_{S \neq S_i} \left(D(S, S^*) + D(S^*, S_i) \right)$$

$$= (k-2)D(S,S^*) + D(S,S^*) + \sum_{S_i \neq S} D(S^*,S_i)$$

$$= (k-2)D(S,S^*) + E(S^*)$$

$$E(S^*) = \sum_{S_i \in \Gamma} D(S^*, S_i) \ge k \cdot D(S, S^*)$$

Consensus string from MA

 The consensus string of a MA is obtained by taking the most frequent character in each position

```
• S*: AC-GC-GAG
• X: AC-GCGG-C
• Y: AC-GC-GAG
• Z: GCCGA-GAG
• U: AC-T-GGCA
• V: -CAGT-GAG
• W: AC-GC-GAG
```

Consensus multiple alignment

Thm: opt soln of consensus MA = Steiner string (up to spaces)

Tree Multiple Alignment

- Input: Tree T, a string for each leaf
- Phylogenetic (also Tree) alignment for T: Assignment of a string to each internal node

- · Score (weighted) sum of scores along edges
- Goal: find tree alignment of optimal score
- Consensus = tree alignment where T is a star,

Tree MA - complexity

- NP-hard
- Poly time approximations:
 - 2-approximation
 - Better approximation with more time (PTAS)

Lifted alignment

 The seq. label at every internal node is lifted from one of its children

A 2-approximation to Tree MSA [Jiang, Wang, Lawler 1996]

- Assumes triangle inequality
- (non constructively) Transform an optimal tree T^* to a lifted alignment T^L :
 - At each internal node v, assign seq. of a child that is closest to the optimal label of v

· Claim: T^L has at most twice the distance

Pf sketch: $cost(T^{L}) \le 2 cost(T^{*})$

- In T^L , take e=(v,w), v=Pa(w) with labels S_j for v, S_i for w, $S_i \neq S_j$
 - $D(S_j,S_i) \le D(S_j,S_v^*) + D(S_v^*,S_i) \le 2D(S_i,S_v^*)$ (why?)
 - Path Pe from leaf labeled Si up to v has cost:
 - $D(S_j, S_i)$ in T^L
 - At least D(S*,,Si) in T*
- Paths $\{P_e\}$ are edge disjoint and cover all nonzero edges in T^L

Dynamic Programming alg for optimal lifted alignment

• d(v,S) - distance of the best lifted alignment of T_v s.t. string S is assigned to node v

$$d(v,S) = \Sigma_w \min_T [D(S,T)+d(w,T)]$$

here w - child of v, T - string at a leaf of T_w

- · Complexity: k = no of leaves, tot length N
 - Compute all pairwise leaf distances in $O(N^2)$
 - Computation per internal node: O(k2)
 - $\rightarrow O(N^2+k^3)$ (can do $O(N^2+k^2)$)

Wrapping up lifted alignment

- ∃ a lifted alignment that is ≤ 2 OPT
- We can find the min cost lifted alignment in poly time
- That alignment is also ≤ 2 OPT

 → Thm: lifted alignment alg gives a poly-time 2-approximation to Tree Alignment

Profile Representation of MA

- Alternatively, use log odds:
- p_i(a) = fraction of a's in col i
- p(a) = fraction of a's overall
- $\log p_i(a)/p(a)$

P S	Probe		Profile															Gap Ope	Gap Exter				
tion	276 276 246 214 188 159 - 98		с	D	E		G	п	I	ĸ	L	н	H	P	Q	R	g	7	v	w	T	A S	<u>\$</u>
1 2 3 4 5 6 7 8 9 10 11 2 11 11 11 11 11 11 11 11 11 11 11 1	TTT. REQUESTRATE TO SERVE TO S	15 16 11 12 17 -5 15 32 16 6 27 32 19 15 -19 13 13 10 5 8 7 6 -1 7 9 0 6 17 9 9	-3 -8 -16 -16 -20 -3 142 -13 -7 -15 -3 -1 142 -13 -17 -3 -17 -3 -6 -18 -18 -10 -12 -7 -7 -7 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	12 22 23 13 9 -23 6 40 25 9 40 43 5 -48 40 9 9 -46 11 9 13 7 9 13 7 9 12 12 12 12 12 12 14 14 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	13 24 27 13 8 -19 8 -22 11 37 30 5 -49 31 9 8 -34 10 9 13 6 7 7 16 11 22 11 22 11 11 12 12 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	-8 -14 -15 -12 57 -2 -10 -24 -26 -31 0 -10 -25 -13 -3 -9 -13 -20 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	11 22 75 11 -21 8 19 15 25 6 6 19 31 0 12 -33 14 10 5 5 2 2 2 3 3 1 1 3 1 1 3 1 3 1 1 1 1 1 1 1	4 8 2 2 8 9 10 4 7 12 21 14 3 4 7 12 1 1 7 3 4 4 7 9 10 16 5 5 7 7 -10 4 18 10 4 5 2 7 1 1 5 2 1	10 4 6 20 20 29 3 1 -7 9 29 -1 2 4 10 6 5 9 1 4 0 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 8 15 31 8 -20 31 12 5 -51 11 35 -35 11 14 29 14 37 -39 24 11 19 15 25	2 -1 -0 3 29 14 -73 -8 -1 5 -73 -10 -7 62 17 -2 4 -1 4 9 5 7 -6 -6 -8 10 1 2 7 -1 16	62 31 17 10 14 -53 -3 -9 -53 -53 27 50 10 13 3 15 8 92 95 -18 4 10 127 27 27 27 27 27 27 27 27 27 27 27 27 2	11 15 17 16 12 -3 -25 13 24 26 7 -25 27 13 -19 15 11 21 21 21 21 21 21 21 21 21 21 21 21	9 8 8 28 -24 17 9 21 6 12 15 9 9 8 13 -36 12 8 11 4 3 4 3 2 16 11 16 11 16 11 16 16 16 16 16 16 16	7 16 35 11 -20 6 -53 24 17 4 -53 21 18 -36 6 8 18 7 9 5 5 4 4 21 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	14 212 -18 4 -27 16 15 4 -6 5 -27 30 20 -25 8 7 25 117 5 5 4 -19 33 33 33 33 35 36 15 15 16	14 15 8 127 -5 128 20 11 16 29 12 78 18 127 -10 15 14 15 15 17 -2 2 11 15 12 12 12 13 14 15 15 16 16 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	32 137 152 -56 285 150 122 -103 223 116 -148 -26 1112 -75	12 9 0 13 8 25 30 2 2 3 10 10 30 4 16 12 10 3 3 -1 7 8 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	-22 -30 -19 -21 38 -27 -129 -26 -3 -42 -59 -129 -38 5-1 63 -17 -10 -6 2 -7 -5 23 0 10 -15 -15 -10 -15 -12 -12	-8 -12 -11 -12 -15 -8 101 -18 -11 -10 -16 -11 -10 -15 -2 101 -16 -15 -2 101 -16 -15 -2 101 -16 -15 -15 -2 101 -16 -15 -15 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	25 25 100 100 100 100 24 24 24 100 28 100 100 100 100 100 100 100 100 100 10	25 25 100 100 100 100 100 100 24 24 24 100 28 100 100 100 100 100 100 100 100 100 10

Fig. 2. Profile of the Xenopus laevis transcription factor TFIIIA zinc finger. The eight repeats of the zinc finger sequence that form the probe are shown descending vertically at the left, labeled with the positions where they occur in the complete sequence. Insertions made to align the sequences are shown as periods. The profile calculated by PROFILEMAKE is shown in the box. The rows correspond to the positions in the aligned sequences, and the columns contain the score for each possible amino acid residue when aligned at that position. The position-specific gap penalties are given in the two right-hand columns. The consensus sequence is shown immediately to the left of the box, and represents the highest scoring column at each row in the profile. In other words, the consensus residue is the amino acid that would receive the highest score when aligned with that position in the

Aligning a sequence to a profile

- Key in pairwise alignment is scoring two positions x,y: $\sigma(x,y)$
- For a letter x and a column C in a profile, $\sigma(x,C)$ =value of x in col. C
- Invent a score for $\sigma(x,-)$
- · Run the DP alg for pairwise alignment

Aligning alignments

- Given two alignments, how can we align them?
- Hint: use DP on the corresponding profiles.

```
x GGGCACTGCAT
y GGTTACGTC-- Alignment 1 y GGTTACGTC--
z GGGAACTGCAG
w GGACGTACC--
w GGACGTACC-- Alignment 2 v GGACCT----
v GGACCT----
```


Profile-profile scoring

- · Fix a position in the alignment
 - p_i prob (i in 1st profile); q_i in 2nd profile
- Expected score: $\Sigma_{ij} p_i q_j s_{ij}$
- Euclidean distance
- Pearson correlation
- KL-divergence (relative entropy)
- •

Multiple Alignment: Greedy Heuristic

 Choose most similar pair of sequences and combine into a profile, thereby reducing alignment of k sequences to an alignment of k-1 sequences/profiles. Repeat

Progressive Alignment

 A variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.

Progressive alignment

Decisions

- (1) Order of alignments
- (2) Alignment of sequence to group (only), or allow group to group
- (3) Method of alignment, and scoring function

Guide tree

Overview

- (1) Calculate distances between all pairs of sequences by pairwise alignment; convert raw alignment scores to approximate pairwise "distances".
- (2) Construct guide tree from the distance matrix by using a tree building (clustering) alg.
- (3) Starting from first node added to the tree, align the child nodes (which may be two sequences, a sequence and an alignment, or two alignments). Repeat for all other nodes in the order that they were added to tree, until all sequences have been aligned.

sequence-to-group

Best pairwise alignment determines alignment to group

sequence-to-group

Best pairwise alignment determines alignment to group

sequence-to-group

Best pairwise alignment determines alignment to group

A space in the grey seq in this column is encouraged because it has no cost

sequence-to-group

Best pairwise alignment determines alignment to group

sequence-to-group

Best pairwise alignment determines alignment to group

group-to-group

Best pairwise alignment determines alignment of groups

group-to-group

Best pairwise alignment determines alignment of groups

group-to-group

Best pairwise alignment determines alignment of groups

"Once a gap, always a gap".

Encourages gaps to occur in same columns in subsequent alignments.

This early version of progressive alignment is based on pairwise alignments. Later methods use profile-profile alignments.

ClustalW

Thompson, Higgins, Gibson 94

- · Popular multiple alignment tool today
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build guide tree
 - 3.) Progressive alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each pair of sequences, giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

Step 2: Guide Tree

 Use the similarity method to create a guide tree by applying some clustering method*

 Guide tree roughly reflects evolutionary relations

 *ClustalW uses the neighbor-joining method (to be described later in the course)

Step 2: Guide Tree (cont'd)

Cal cul ate:

```
v_{1, 3} = alignment (v_1, v_3)

v_{1, 3, 4} = alignment ((v_{1, 3}), v_4)

v_{1, 2, 3, 4} = alignment ((v_{1, 3, 4}), v_2)
```


Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Using the guide tree, add in the most similar pair (seq-seq, seq-prof or prof-prof)
- · Insert gaps as necessary
- Many ad-hoc rules: weighting, different matrices, special gap scores....

FOS_RAT
FOS_MOUSE
FOSB_MOUSE
FOSB_HUMAN

Multiple Alignment: History

1975 Sankoff

Formulated multiple alignment problem and gave dynamic programming solution

1988 Carrillo-Lipman

Branch and Bound approach for MSA

1990 Feng-Doolittle

Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW ← > 40K citations!

Most popular multiple alignment program

1998 Morgenstern et al. - DIALIGN

Segment-based multiple alignment

2000 Notredame-Higgins-Heringa-T-coffee

Using the library of pairwise alignments

2004 MUSCLE

2005 ProbCons

2011 Clustal Omega

