

Ban học tập Khoa học & Kỹ thuật Thông tin

J

Ràng buộc toàn vẹn

Phát biểu chặt chẽ ràng buộc toàn vẹn (1.5đ)

Ngôn ngữ SQL

Thực hiện các truy vấn sau bằng ngôn ngữ SQL (6đ)

Phụ thuộc hàm & dạng chuẩn

Tìm khóa của lược đồ quan hệ & chứng minh dạng chuẩn (2.5đ)

Ràng buộc toàn vẹn

Một bài RBTV thường gặp

- R1: Giới tính của học viên chỉ là Nam hoặc Nữ
 - Nôi dung:

∀hv ∈ HOCVIEN: hv.Gioitinh ∈ {'Nam','N\vec{u}'}

- Bối cảnh: quan hệ HOCVIEN
- Bảng tầm ảnh hưởng:

R1	Thêm	Xóa	Sửa
HOCVIEN	+	_	+(Gioitinh)

Gồm 3 đặc trưng:

- Nội dụng
- Bối cảnh
- Bảng tầm ảnh hưởng

Mỗi đặc trưng có gì?

Nội dung

Mô tả chặt chẽ ý nghĩa của RBTV

Bối cảnh

Tập quan hệ có khả năng làm cho ràng buộc bị vi phạm khi thao tác trên chúng

Bảng tầm ảnh hưởng

Xác định khi nào tiến hành kiểm tra RBTV. Thao tác nào thực hiện có thể làm vi phạm ràng buộc toàn vẹn

Các loại ràng buộc

RBTV trên một quan hệ

 \forall hv \in HOCVIEN: hv.Gioitinh \in {'Nam','N \tilde{u} '}

∀gd ∈ GIANGDAY: gd.TUNGAY < gd.DENNGAY

 $\forall h_1, h_2 \in HOCVIEN$: Nếu $h_1 \neq h_2$ thì h_1 . Mah $v \neq h_2$. Mah $v \neq h_3$. Mah $v \neq h_4$.

 $\forall gv_1, gv_2 \in GIAOVIEN$:

Mucluong=gv₂.Mucluong

Ban học tập Khoa học & Kỹ thuật Thông tin

 $N\hat{e}u(gv_1.Hocvi=gv_2.Hocvi) \land (gv_1.Heso=gv_2.Heso)$ thì

Các loại ràng buộc

RBTV trên nhiều quan hệ

∀k ∈ KETQUATHI, ∃m ∈ MONHOC: k.Mamh = m.Mamh

Vkq ∈ KETQUATHI Nếu ∃gd ∈GIANGDAY, ∃hv ∈HOCVIEN: (gd.Malop=hv.Malop)∧(kq.Mamh=gd.Mamh) thì gd.Denngay < kq.Ngthi

 \forall kh \in KHACHHANG, kh.Doanhso = $\sum_{(hd \in HOADON: hd.Makh=kh.Makh)}$ (hd.Trigia)

Lưu ý về Bảng tầm ảnh hưởng

Một số quy định:

- Không được phép sửa giá trị của những thuộc tính khóa
- Thao tác thêm và xóa xét trên một bộ quan hệ. Thao tác sửa xét sửa từng thuộc tính trên bộ của quan hệ
- Trước khi thao tác thực hiện có thể làm vị phạm hay không thì CSDL phải thỏa RBTV trước

Ràng buộc Ri	Thêm	Xóa	Sửa
Quan hệ 1			
Quan hệ n			

Ký hiệu:

- + : thực hiện thao tác có thể làm vi phạm RBTV
- : thực hiện thao tác không thể làm vi phạm RBTV
- +(A) : có thể làm vi phạm RBTV khi sửa trên thuộc
- tính A
- -(*) : không vi phạm RBTV do thao tác không thực hiện đượcc

Ví dụ

Cho lược đồ cơ sở dữ liệu "Quản lý thẻ tài khoản" gồm các quan hệ như sau:

KhachHang(MaKH, HoTen, NgaySinh, DiaChi, SoDT, CMND)

TaiKhoan(SoTK, MaKH, MaLTK, NgayMo, SoDu, LaiSuat, TrangThai)

Yêu cầu:

Hãy phát biểu chặt chẽ ràng buộc toàn vẹn (bao gồm bối cảnh, nội dung, bảng tầm ảnh hưởng):

Khách hàng chỉ được mở tài khoản (SoTK) khi khách hàng có tuổi từ 14 trở lên.

Ví dụ

• Nội dung:

∀ tk ∈ TaiKhoan, ∃ kh ∈ KhachHang: tk.NgayMo – kh.NgaySinh >= 14

- Bối cảnh: KhachHang, TaiKhoan
- Bảng tầm ảnh hưởng:

R1	Thêm	Xóa	Sửa
KhachHang	-	-	+(NgaySinh)
TaiKhoan	+	-	+ (NgayMo)

Ngôn ngữ SQL

Định nghĩa dữ liệu

- Tạo bảng (Create Table)
- Sửa bảng (Alter Table)
- Xóa bảng (Drop Table)
- Ràng buộc (Constraint)
- Trigger

Thao tác dữ liệu

- Thêm (Insert)
- Xóa (Delete)
- Sửa (Update)
- Lấy dữ liệu (Select)

Dạng 1: Truy vấn lấy dữ liệu tất cả

SELECT * FROM <tên bảng> hoặc SELECT <danh sách cột> FROM

<tên bảng>

Dạng 2: Truy vấn dữ liệu có điều kiện

SELECT <danh sách cột> FROM
<tên bảng>
WHERE <điều kiện>

Dạng 3: Truy vấn dữ liệu có kết bảng

```
SELECT <danh sách cột>
FROM <tên bảng 1>
INNER JOIN <tên bảng 2> ON <tên bảng 1>.<mã
khoá ngoại> = <tên bảng 2>.<mã khoá chính>
[WHERE <điều kiện>]
```

Các phép kết:

- INNER JOIN: kết bằng
- LEFT OUTER JOIN: Kết mở rộng về bên trái
- RIGHT OUTER JOIN: Kết mở rộng về bên phải

Dạng 4: Truy vấn dữ liệu có sắp xếp

SELECT <danh sách tên cột> FROM <tên bảng>
[WHERE <điều kiện>]
ORDER BY <danh sách cột cần sắp xếp>

ASC hoặc DESC

Trong đó : ASC là sắp xếp tăng dần

DESC là sắp xếp giảm dần

Dạng 5: Truy vấn sử dụng các hàm gom nhóm

```
SELECT <các hàm gom nhóm> FROM <tên bảng>
[WHERE <điều kiện>]
GROUP BY <tên cột 1>, <tên cột 2>, ...
```

- Các hàm gom nhóm: COUNT(), AVG(), MAX(), MIN(), SUM()
- Lưu ý: Các thuộc tính trong mệnh đề SELECT (trừ các hàm kết hợp) phải xuất hiện trong mệnh đề GROUP BY

Dạng 6: Truy vấn sử dụng hội – giao – trừ

```
SELECT <danh sách cột 1> FROM <tên bảng>
[WHERE <điều kiện 1>]
UNION (hội) | INTERSECT (giao) | EXCEPT (trừ)
SELECT <danh sách cột 2> FROM <tên bảng>
[WHERE <điều kiện 2>]
```

Lưu ý: Để sử dụng các phép hội giao trừ thì 2 quan hệ phải

khả hợp, tức là <danh sách cột 1> = <danh sách cột 2>

Dạng 7: Truy vấn lồng

```
SELECT <danh sách cột> FROM <tên bảng>
WHERE <so sánh tập hợp> (
SELECT <danh sách cột> FROM <tên bảng>
WHERE <điều kiện>
)
```

<so sánh tập hợp>: ALL, IN, NOT, ANY, EXISTS,
NOT EXISTS.

Dạng 8: Truy vấn lồng tương quan

```
SELECT <danh sách cột> FROM <tên bảng> AS OB1
WHERE <so sánh tập hợp> (
SELECT <danh sách cột> FROM <tên bảng> AS OB2
WHERE OB1.<tên cột> = OB2.<tên cột>
)
```

<so sánh tập hợp>: ALL, IN, NOT, ANY, EXISTS,
NOT EXISTS.

Dạng 9: Truy vấn dùng bảng "con" (inner aggregate)

```
SELECT <danh sách cột 1> FROM (
SELECT <danh sách cột 2> FROM <tên bảng>
WHERE <điều kiện>
) AS <tên bảng con>
```


Dạng 10: Phép chia

Tìm <đối tượng 1> đã ... tất cả <đối tượng 2>

Cần xác định:

Đối tượng 1 (MaDT1,...)

Đối tượng 2 (MaDT2,...)

Quan hệ Đối tượng 1 và Đối tượng 2 (MaDT1, MaDT2,...)

Dạng 10: Phép chia

```
SELECT <danh sách cột> FROM <tên bảng đối tượng 1> AS OB1
WHERE NOT EXISTS
SELECT <danh sách cột> FROM <tên bảng đối tượng 2> AS OB2
WHERE <điều kiện> AND NOT EXISTS
SELECT * FROM <tên bảng quan hệ đối tượng 1 và 2> AS OB3
WHERE OB2. < khoá chính > = OB3. < khó a ngoại > and OB3. < khoá
ngoai> = OB1.<khoá chính>
```


Cú pháp câu truy vấn SELECT

```
SELECT <cột 1>, <cột 2>, ....
FROM <tên bảng>
WHERE <điều kiện>
ORDER BY <tên cột> ASC | DESC
GROUP BY <tên cột 1>, <tên cột 2>, ....
HAVING <điều kiện>
```

Lưu ý:

- Mệnh đề HAVING sử dụng cho các hàm gom nhóm
- ASC Sắp xếp tăng dần, DESC sắp xếp giảm dần

Phụ thuộc hàm & dạng chuẩn

PHŲ THUỘC HÀM

X,Y là hai tập thuộc tính trên quan hệ R

r₁, r₂ là 2 bộ bất kỳ trên R

Ta nói X xác định Y, ký hiệu X → Y, nếu và chỉ nếu

$$r1[X] = r2[X] thi r1[Y] = r2[Y]$$

X → Y là một phụ thuộc hàm, hay Y phụ thuộc X.

HỆ LUẬT AMSTRONG

- Với X, Y, Z, W ⊆ U. Phụ thuộc hàm có các tính chất sau:
- 1) Tính phản xạ: Nếu Y \subseteq X thì X \rightarrow Y
- 2) Tính tăng trưởng: $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
- 3) Tính bắc cầu: $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- 4) Tính kết hợp: $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$
- 5) Tính phân rã: $\{X \rightarrow YZ, X \rightarrow Y\} \models X \rightarrow Z$
- 6) Tính tựa bắc cầu: $\{X \rightarrow Y, YZ \rightarrow W\} \models XZ \rightarrow W$

BAO ĐÓNG

Bao đóng của tập phụ thuộc hàm

Bao đóng của tập phụ thuộc hàm F, ký hiệu F⁺ là tập tất cả các phụ thuộc hàm được suy ra từ F.

Nếu $F = F^+$ thì F là họ đầy đủ của các phụ thuộc hàm.

BAO ĐÓNG

Cho lược đồ quan hệ R(A, B, C, D, E,

G, H) và tập phụ thuộc hàm

 $F=\{f1: B \rightarrow A, f2: DA \rightarrow CE,$

f3: D \rightarrow H, f4: GH \rightarrow C, f5: AC \rightarrow D}

Tìm AC+?

 $AC^{+} = ACDE (f2)$

 $AC^{+} = ACDEH (f3)$

Ban học tập Khoa học & Kỹ thuật Thông tin

 $AC^+ = AC$

BAO ĐÓNG

Ban học tập Khoa học & Kỹ thuật Thông tin

 $BE^+ = BE$

 $BE^+ = BEG (f3)$

 $BE^+ = BEGAH$ (f6)

 $BE^{+} = BEGAHC (f4)$

Vì AC \subseteq BE⁺ nên BE \rightarrow AC \in F⁺

Cho lược đồ quan hệ Q(ABCDEGH)

có tập phụ thuộc hàm:

 $F = \{f1: DG \rightarrow BE; f2: AD \rightarrow CH; f3:$

 $E \rightarrow G$; f4: AE \rightarrow C; f5: AG \rightarrow B; f6:

KHOÁ

Định nghĩa

Cho lược đồ quan hệ Q(A1, A2, ..., An), Q⁺ là tập thuộc tính của quan hệ Q, F là tập phụ thuộc hàm trên Q, K là tập con của Q⁺. Khi đó K gọi là một khóa của Q nếu:

(i)
$$K^+ = Q^+$$

(ii) Không tồn tại $K' \subset K$ sao cho $K'^+ = Q^+$

Thuộc tính A được gọi là thuộc tính khóa nếu

 $A \in K$, trong đó K là khóa của Q. Ngược lại thuộc tính A được gọi là thuộc tính không khóa.

K" được gọi là siêu khóa nếu $K \subseteq K$ ".

KHOÁ

Ví dụ: Cho lược đồ quan hệ Q(ABCDEGH) có tập phụ thuộc hàm: F = {f1: DG→BE; f2: AD→CH; f3: E→G; f4: AE→C; f5: AG→B; f6:

 $EG \rightarrow AH$

Tìm tất cả khoá của Q?

 $N = \{D\}$

 $D = \{B, C, H\}$

 $TG = \{A, E, G\}$

Vì $D^+ = D \neq Q^+$ nên D không là khoá

Ví dụ: Cho lược đồ quan hệ Q(ABCDEGH) có tập phụ thuộc hàm:

 $F = \{f1: DG \rightarrow BE; f2: AD \rightarrow CH; f3: E \rightarrow G; f4: AE \rightarrow C; f5: AG \rightarrow B; f6: AG \rightarrow AG \rightarrow B; f6: AG \rightarrow B; AG \rightarrow B; f6: AG \rightarrow B; AG \rightarrow B; f6: AG \rightarrow B; A$

 $EG \rightarrow AH$

Tìm tất cả khoá của Q?

TG_i	$X_i = N \cup TG_i$	X_i^+	KL
	D	D	
Α	DA	DACH	
E	DE	DEGBAHC = Q ⁺	KHOÁ
G	DG	DGBEAHC = Q ⁺	KHOÁ
AE	DAE		SK
AG	DAG		SK
EG	DEG		SK
AEG	DAEG		SK

Kết luận: tập khoá S = {DE, DG}

DẠNG CHUẨN 1 (1NF)

Dạng chuẩn 1 (1NF)

Lược đồ Q ở dạng chuẩn 1 nếu mọi thuộc tính đều mang giá trị nguyên tố.

Giá trị nguyên tố là giá trị không phân nhỏ được nữa.

Các thuộc tính đa trị (multi-valued), thuộc tính đa hợp (composite) không là nguyên tố.

DẠNG CHUẨN 2 (2NF)

Lược đồ Q ở dạng chuẩn 2 nếu thoả:

(1) Q đạt dạng chuẩn 1

(2) Mọi thuộc tính không khóa của Q đều phụ thuộc đầy đủ vào khóa.

DẠNG CHUẨN 2 (2NF)

Kiểm tra dạng chuẩn 2

Bước 1: Tìm mọi khóa của Q

Bước 2: Với mỗi khóa K, tìm bao đóng của tập tất cả các tập con thực sự S_i của K

Bước 3: Nếu tồn tại bao đóng S_i^+ chứa thuộc tính không khóa thì Q không đạt dạng chuẩn 2, ngược lại Q đạt dạng chuẩn 2.

Lưu ý: Nếu khoá chỉ có một thuộc tính thì đạt dạng chuẩn 2.

DẠNG CHUẨN 2 (2NF)

<u>Ví dụ</u>: Cho lược đồ quan hệ Q(ABCDEGH) có tập phụ thuộc hàm:

 $EG \rightarrow AH$

Lược đồ quan hệ (Q, F) có đạt dạng chuẩn 2 không? Giải thích.

 $S = \{DE, DG\}$

Xét E \rightarrow G ta thấy E ⊂ DE \Rightarrow G không phụ thuộc đầy đủ vào khoá.

⇒ Q không đạt dạng chuẩn 2.

DẠNG CHUẨN 3 (3NF)

Quan hệ Q được gọi là thuộc dạng chuẩn 3 nếu:

- Q thuộc dạng chuẩn 2.
- Mọi thuộc tính không khóa của Q không phụ thuộc bắc cầu vào khóa chính của Q

Hoặc:

Lược đồ Q ở dạng chuẩn 3 nếu mọi phụ thuộc hàm X → A ∈ F⁺, với A ∉ X đều có:

- (1) X là siêu khóa, hoặc
- (2) A là thuộc tính khóa

DẠNG CHUẨN 3 (3NF)

Kiểm tra dạng chuẩn 3

Bước 1: Tìm mọi khóa của Q

Bước 2: Phân rã vế phải của mọi phụ thuộc hàm trong F để tập F trở thành tập phụ thuộc hàm có vế phải một thuộc tính

Bước 3: Nếu mọi phụ thuộc hàm X → A ∈ F, mà A ∉ X đều thỏa

(1) X là siêu khóa (vế trái chứa một khóa), hoặc

(2) A là thuộc tính khóa (vế phải là tập con của khóa)

thì Q đạt dạng chuẩn 3, ngược lại Q không đạt dạng chuẩn 3.

DẠNG CHUẨN 3 (3NF)

<u>Ví dụ</u>: Cho lược đồ quan hệ Q(ABCDEGH) có tập phụ thuộc hàm: $F = \{f1: DG \rightarrow BE; f2: AD \rightarrow CH; f3: E \rightarrow G; f4: AE \rightarrow C; f5: AG → B; f6:$

 $EG \rightarrow AH$

Lược đồ quan hệ (Q, F) có đạt dạng chuẩn 3 không? Giải thích.

 $S = \{DE, DG\}$

Xét PTH AE \rightarrow C:

- AE không phải là siêu khoá.
- C không phải là thuộc tính khoá.
- ⇒ Q không đạt dạng chuẩn 3.

DẠNG CHUẨN BOYCE CODD (BCNF)

Lược đồ Q ở dạng chuẩn BC nếu mọi phụ thuộc hàm $X \rightarrow A$ $\in F^+$, với $A \notin X$ đều có X là siêu khóa.

Kiểm tra dạng chuẩn BCNF

Bước 1: Tìm mọi khóa của Q

Bước 2: Phân rã vế phải của mọi phụ thuộc hàm trong F để tập F trở thành tập phụ thuộc hàm có vế phải một thuộc tính

Bước 3: Nếu mọi phụ thuộc hàm $X \to A \in F$, mà $A \notin X$ đều thỏa X là siêu khóa (vế trái chứa một khóa), thì Q đạt dạng chuẩn BC, ngược lại Q không đạt dạng chuẩn BC.

DẠNG CHUẨN BOYCE CODD (BCNF)

<u>Ví dụ</u>: Cho lược đồ quan hệ Q(ABCDEGH) có tập phụ thuộc hàm:

 $F = \{f1: DG \rightarrow BE; f2: AD \rightarrow CH; f3: E \rightarrow G; f4: AE \rightarrow C; f5: AG \rightarrow B; f6: AG \rightarrow AG \rightarrow B; f6: A$

EG→AH}

Lược đồ quan hệ (Q, F) có đạt dạng chuẩn 3 không? Giải thích.

 $S = \{DE, DG\}$

Xét PTH AE→C, ta thấy AE không là siêu khoá

⇒ Q không đạt dạng chuẩn Boyce Codd

GIẢI ĐỀ THI (Đề 1 năm 2017-2018)

Câu 2: (2.5 điểm) Cho lược đồ quan hệ Q(ABCDEGH) có tập phụ thuộc hàm:

- $F = \{f1: A \rightarrow C; f2: AB \rightarrow DG; f3: BC \rightarrow AH; f4: BG \rightarrow DE; f5: AG \rightarrow E; f6: CG \rightarrow H\}$
- 1. Chứng minh: $BC \rightarrow DG \in F+(1 \text{ diễm})$
- 2. Lược đồ quan hệ (Q, F) có đạt dạng chuẩn 2 không? Giải thích. (1.5 điểm)

$$BC^+ = BC$$

= BC

 $BC^+ = BCAH (f3)$

 $BC^{+} = BCAHDG (f2)$

BC⁺ = BCAHDGE (f4)

Vì DG ⊆ BC⁺ nên BC→DG ∈ F⁺

GIÁI ĐỀ THI (ĐỀ 1 năm 2017-2018)

Câu 2: (2.5 điểm) Cho lược đồ quan hệ Q(ABCDEGH) có tập phụ thuộc hàm:

- $F = \{f1: A \rightarrow C; f2: AB \rightarrow DG; f3: BC \rightarrow AH; f4: BG \rightarrow DE; f5: AG \rightarrow E; f6: CG \rightarrow H\}$
- 1. Chứng minh: $BC \rightarrow DG \in F + (1 \text{ điểm})$
- 2. Lược đồ quan hệ (Q, F) có đạt dạng chuẩn 2 không? Giải thích. (1.5 điểm)

$$N = \{B\}$$

$$D = \{D, E, H\}$$

$$TG = \{A, C, G\}$$

Vì $B^+ = B \neq Q^+$ nên B không là khoá.

TG_i	$X_i = N \cup TG_i$	X_i^+	KL
	В	В	
А	ВА	BADGCHE = Q ⁺	KHOÁ
С	ВС	BCAHDGE = Q ⁺	KHOÁ
G	BG	BGDE	
AC	BAC		SK
AG	BAG		SK
CG	BCG		SK
ACG	BACG		SK

Kết luận: Tập khoá S = {BA, BC}

Thanks,

Do you have any questions?

Ask us
facebook.com/BHTKHKTTT

