Complex tori: Let LCC be a lattice, i.e. an additive subgroup of the torm $L = 72\omega_1 + 72\omega_2 = \{m\omega_1 + n\omega_2 \mid n, n \in \mathbb{Z}\}$ such that ω_1 and ω_2 are linearly independent over R. $(\omega_1 \neq 0, \omega_2 \neq 0 \text{ and } \omega_1/\omega_2 \notin R)$

By homework, LCC is a discrete subset.

The quotient group C/L has a topology:

Write π: C → C/L. Then UCC/L is open off π'll) isopon.

By homework, this topological space is homeomorphic to 5'x5', a toms.

This doesn't depend on which L we choose.

However, the complex structure (Riemann surface structure)

Does depend on L (it turns out).

Charts: Given $z_0 \in \mathbb{C}/L$, choose a preimage $\widetilde{z}_0 \in \pi^{-1}(\overline{z}_0) \subset \mathbb{C}$. Choose an open lisk $D(\widetilde{z}_0, \varepsilon)$ so small that no two elements of $D(\widetilde{z}_0, \varepsilon)$ differ by an element of L. Then $\pi|_{D(\widetilde{z}_0, \varepsilon)}: D(\widetilde{z}_0, \varepsilon) \to \pi(D(\widetilde{z}_0, \varepsilon))$ is a homeomorphim.

(Since bijective, continuous, open map)

Define a chart around z_0 as $(\pi(D(\vec{z}_0, \underline{z})), (\pi|_{D(\vec{z}_0, \underline{z})}))$

these chorts are pairwise compatible: The transition function is a translation by an element of L.

This example has several direct generalizations,

- A) X a Riemann surface, G a group acting by holomorphic automorphisms: G x X >> X.

 If action is properly discontinuous:

 (\forall x \in X)(\forall u \text{ open , } \text{2 \in U \text{ such that gU \n U \forall p =)} g= id.)}

 thu X/G naturally has the structure of a Riemann

 Surface

 E.y. X = C, G=L active by translation. X/G=C/L
- B) Con ansider \mathbb{C}^N/L where $L \cong \mathbb{Z} \vec{w_1} + \cdots + \mathbb{Z} \vec{w_{2N}}$ and $\{\vec{w_i}, \}_{i=1}^{2N}$ are linearly independent over \mathbb{R} . These are higher dimensional Complex tori; in fact, there is such a torus attached to any compact Premium surface,

the Tuestian (more on this towards end of course).

A 1d complex torns C/L is sometimes called a (complex) elliptic curve.

Projective spure, projective armes: last time we anstructed CP

$$CP' = \{ l \mid l \in \mathbb{C}^2 \text{ is } 1 - d \text{ subspace } \}$$

$$l = [z:w] \quad \text{where } (z,w) \in l \text{ is non-zero.}$$

$$U_0 = \{ [z:w] \mid z \neq 0 \} \quad (P_0: U_0 \rightarrow \mathbb{C} \quad P_0([z:w]) = \frac{W}{Z} \}$$

$$U_1 = \{ [z:w] \mid w \neq 0 \} \quad (P_1: U_1 \rightarrow \mathbb{C} \quad (P_1: [z:w]) = \frac{Z}{W} \}$$

$$Tousition function \quad T(\zeta) = \frac{1}{2} : \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C} \setminus \{0\}.$$

A completely analogous construction starts with C^{n+1} in stead of C^2 and produces an n-dimensional complex manifold CIP^n , the complex projective space.

CPn = { l | l c C n+1 is a 1-d subspace }

Any line L is $\mathbb{C} \cdot (z_0, \dots, z_n)$ for some $(\overline{z_0}, z_1, \dots, z_n) \neq \overline{0}$ in \mathbb{C}^{n+1} Denote this line $[z_0: \dots: z_n]$. Then $[z_0: z_1: \dots: z_n] = [z_0: z_1: \dots: z_n']$ iff $\exists \lambda \in \mathbb{C} \setminus \{0\}$ such that $\forall i \quad z_i' = \lambda z_i$.

Whether the i th coordinate is zero or not does not depend on choice of representative, so define for $0 \le i \le n$

 $\varphi_i: U_i \to \mathbb{C}^n$

$$\varphi_{i}\left(\left[\begin{smallmatrix} \frac{1}{2} & \frac{1$$

 $\varphi_{i}^{-1}(5_{0},5_{1},...,5_{i-1},5_{0+1},...,5_{n}) = [5_{0}:5_{1}:...:5_{i-1}:1:5_{i+1}:...:5_{n}]$

Transition map: U; nU; = {[Zo:Zi:":Zh] Zito and zito }

$$=\left(\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5},\frac{5}{5}\right)$$

as map $C^n \setminus \{5\} = 0\} \longrightarrow C^n \setminus \{5\} = 0\}$. Closely holomorphic.

n=2: CIP2 is complex projective plane.

Homogeneous polynomials: (at $F(z_0, z_1, ..., z_n)$ be a polynomial in n+1 variables. It is a function on \mathbb{C}^{n+1} , but not a faction on \mathbb{C}^{n+1} , since it may not be constant on lines $\mathbb{C}\mathbb{C}^{n+1}$!

Suppose F is homogeneous of degree d. This means the sum of the exponents in each term is d: eg 20 + 2,22 + 2021223 (d=4)

Then $F(\lambda z_0, \lambda z_1, ..., \lambda z_n) = \lambda^d F(z_0, z_1, ..., z_n)$ any $\lambda \in C^{(s)}$. So $F(z_0, z_1, ..., z_n) = 0 \iff F(\lambda z_0, \lambda z_1, ..., \lambda z_n)$.

If Franshes at a point it ranishs on the line through that point. so it make sense to define

 $V(F) = \{ [z_0; z_1; \dots; z_n] \} F(z_0, z_1, \dots, z_n) = 0 \} C \mathbb{CP}^n$ this is the locus of zeros of F.

A subset of CIPh obtained as $V(F_1) \cap V(F_2) \cap \dots \cap V(F_r)$ for F_1, F_2, \dots, F_r homogeneous polynomials (of various degrees) is called a complex projective variety.

If this set is a manifold, we call it smooth. If n=2, $V(F) \subset \mathbb{CP}^2$ is a projective plane when smooth, it is a Riemann surface.

Affile charts, Lehrmogenization.

let $F(z_0,z_1,...,z_n)$ be homogeneous of degree d. $V(F) = \mathbb{CP}^n$.

Choose $i \in 0 \le i \le n$, and consider the chart $U_i = \{[z_0, ..., z_n] \mid z_i \ne 0\}$ $(\{i: U_i \rightarrow C^n \text{ is an affine clust.}$

if (50,51,..., Si-1, Si+1,..., Sn) denote coords on C", then the equation $F(z_0,z_1,...,z_n)=0$ goes over to

 $f_i(s_0,...,s_n) = F(s_0,s_1,...,s_{i-1},l,s_{i+1},...,s_n) = 0$

where $f_i: \mathbb{C}^n \to \mathbb{C}$ is a polynomial. The indersection $V(F) \cap U_i$ is there for essentially the affine variety $V(f_i) = \frac{2}{3} \cdot f_i = 0.5 \subset \mathbb{C}^n$.

-) To get affine equation (in ith chart), replace zi with 1. <- (dehamogenization)

The projective variety V(F) is smooth iff all of the affine varieties $V(f_i) \subset \mathbb{C}^n$ (0 $\leq i \leq n$) defined by the dehanogenizations me snoth

V(F) smooth => Y O sish V(fi) smooth.

By implicit function theorem,

 $V(f_i)$ smooth \iff at every point of $V(f_i)$, some partial $\frac{\partial f_i}{\partial S_k} \neq 0$.

Lemma (Gf Lemma I.3.5) V(F) is smooth iff the only solution to the system of n+2 equations in n+1 variables $\begin{cases} F=0 & \exists F=0 \\ \exists Z_i \end{cases} (0 \leq i \leq n) \end{cases}$ is $(Z_0,Z_1,...,Z_n)=(0,0,...,0).$

Put another way, $V(F) \subset \mathbb{CP}^N$ is smooth as long as the affine variety $2 \neq = 0$? $\subset \mathbb{C}^{n+1}$ is smooth except at the origin.

example: $F = x^2 + y^2 + z^2$ $\frac{\partial F}{\partial x} = 2x$ $\frac{\partial F}{\partial y} = 2y$ $\frac{\partial F}{\partial z} = 2z$ All vanish only at $(x,y,z)=0 \Rightarrow \{(x,y,z) \mid x^2 + y^2 + z^2 = x^2 \in \mathbb{CP}^2$ is smooth.

So this is a Riemann surface.

 $F = y^2 + -x^3$. $\frac{\partial F}{\partial x} = -3x^2$, $\frac{\partial F}{\partial y} = 2y^2$, $\frac{\partial F}{\partial z} = y^2$ All vanish if x = y = 0, so $V(F) \subset \mathbb{CP}^2$ is singular at $[0:0:1] \in \mathbb{CP}^2$. In affine chart where z = 1,

the affine equation is $y^2 = x^3$

This cove has a cusp.