

Cryptography and Information Theory

Brute Force and Cryptanalysis

Sang-Yoon Chang, Ph.D.

Module Objectives

1. Brute Force Attack

2. Cryptanalysis

3. Perfect Secrecy

Brute Force Attack

Attacker tries all possible keys until it finds the correct key

Attacker selects the keys (to try) randomly

Assume that attacker can distinguish the correct and the incorrect key after trials

Key Strength

Information Entropy

Key Strength

Brute Force Attack

With keys that are "n" bits long, there are 2ⁿ possible keys

Attacker can succeed in the attack in the 1st try (best case) or the last try (worst case; 2ⁿ tries)

On average, attacker will try 2ⁿ⁻¹ tries

Studying and analyzing the cryptosystem in order to effectively decipher the coded message without the key

Attacker can know which keys are more likely than others

Use the information to more quickly find the key

The non-uniform distribution of the key selection yields entropy reduction

Known-Plaintext Attack

Known-Plaintext Attack

Chosen-Plaintext Attack

Chosen-Plaintext Attack

Perfect Secrecy

Ciphertext provides no information about the plaintext without the key

Holds regardless of the attacker's computational capabilities

Cryptanalytically unbreakable

The key entropy is as great as the message entropy, even as the message grows

Achieves perfect secrecy

Practicality of One-Time Pad

Two challenges that limit its practicality:

- Key and randomness generation
- Key distribution and agreement

Practicality of One-Time Pad

Two challenges that limit its practicality:

- Key and randomness generation
- Key distribution and agreement

Examples of its use:

- Low-bandwidth applications (e.g., mission-critical messages)
- Cryptosystem design, e.g., key refresh