1 Background

1.1 Predictive Shrinkage

Suppose we are given an $n \times p$ centered data matrix X and an $n \times 1$ vector of responses Y—the pair (X,Y) constitutes the training data. Assume the linear model $Y_i = \alpha + (\beta^*)^{\mathsf{T}} X_i + \varepsilon_i$, where $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,\sigma^2)$. Define the ordinary least squares (OLS) estimate

$$(\widehat{\alpha}, \widehat{\beta}) := \arg\min_{\alpha, \beta} \left\{ \|Y - \mathbf{1}\alpha - X\beta\|_2^2 \right\},\tag{1}$$

given by
$$\widehat{\alpha} = \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 and $\widehat{\beta} = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} (Y - \overline{Y} \mathbf{1}).$ (2)

If we have test data $x \sim (0, \Sigma)$ and $y = \alpha + x^{\mathsf{T}} \beta^* + \varepsilon$, the OLS prediction is $\widehat{y} = \widehat{\alpha} + \widehat{\beta}^{\mathsf{T}} x$. The bias-variance decomposition of prediction mean square error (PMSE) is

$$\mathbb{E}\left[(y-\widehat{y})^2\right] = \left(1 + \frac{1}{n}\right)\sigma^2 + \mathbb{E}\left[(\beta^* - \widehat{\beta})^\mathsf{T}\Sigma(\beta^* - \widehat{\beta})\right]$$
(3)

$$= \left(1 + \frac{p+1}{n} + \frac{1}{n} \operatorname{tr}\left(\mathbb{E}\left[\left(\Sigma - S\right) S^{-1}\right]\right)\right) \sigma^{2},\tag{4}$$

where $S = n^{-1}X^{\mathsf{T}}X$. If the design of the training set is fixed (so S is constant) and we assume the test set follows the distribution of the training set in the sense that $\Sigma = S$, then the last term vanishes and so the PMSE is $\left(1 + \frac{1}{n} + \frac{p}{n}\right)\sigma^2$. Alternatively, if the rows X_i of X are all i.i.d. $\mathcal{N}(0,\Sigma)$, then nS is a Wishart matrix, and so $\mathbb{E}\left[(nS)^{-1}\right] = \frac{\Sigma^{-1}}{\nu}$ where $\nu = n - p - 1$, yielding a larger overall PMSE of $\left(1 + \frac{1}{n} + \frac{p}{\nu}\right)\sigma^2$.

Under the first set of assumptions, where $\Sigma = S$ exactly, we can write the last term in equation (3) as $\mathbb{E}\left[(\beta^* - \widehat{\beta})^\mathsf{T}\Sigma(\beta^* - \widehat{\beta})\right] = \mathbb{E}\left[\|\widehat{\xi} - \xi\|_2^2\right]$, where $\widehat{\xi} = \Sigma^{1/2}\widehat{\beta} \sim \mathcal{N}(\xi^*, (\sigma^2/n)I_p)$ and $\xi^* = \Sigma^{1/2}\beta^*$. This is a normal-means estimation problem, so when p > 2 we can achieve lower MSE $\mathbb{E}\left[\|\widehat{\xi} - \xi^*\|_2^2\right] < \mathbb{E}\left[\|\widehat{\xi} - \xi^*\|_2^2\right]$ with the James-Stein estimate

$$\widetilde{\xi} = \left(1 - \frac{(p-2)(\widehat{\sigma}^2/n)\nu}{(\nu+2)\|\widehat{\xi}\|_2^2}\right)\widehat{\xi},\tag{5}$$

yielding the shrunk regression coefficients $\widetilde{\beta} = \widehat{K}\widehat{\beta}$, where $\widehat{K} = \left(1 - \frac{(p-2)(\widehat{\sigma}^2/n)\nu}{(\nu+2)\widehat{\beta}^{\mathsf{T}}S\widehat{\beta}}\right)$. It follows that $\widetilde{y} = \widehat{\alpha} + \widehat{K}\widehat{\beta}$ has strictly better PMSE than OLS \widehat{y} . Since $\widehat{K} < 1$ we are left to conclude that the OLS predictions on held-out data were too large in magnitude. Pre-shrunk predictors of this form were first studied by Copas (1983), who also provided the Stein-shrinkage interpretation.

Another form of shrinkage is ridge regression

$$(\widehat{\alpha}, \widehat{\beta}(\lambda)) := \arg\min_{\alpha, \beta} \left\{ \|Y - \mathbf{1}\alpha - X\beta\|_2^2 + \lambda \|\beta\|_2^2 \right\},\tag{6}$$

given by
$$\widehat{\alpha} = \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 and $\widehat{\beta}(\lambda) = (X^{\mathsf{T}}X + \lambda I_p)^{-1} X^{\mathsf{T}}(Y - \overline{Y}\mathbf{1}).$ (7)

In particular, $\widehat{\beta}(0) = \widehat{\beta}$ is OLS and $\lim_{\lambda \uparrow \infty} \widehat{\beta}(\lambda) = 0$. Note $\widehat{\beta}(\lambda) = (X^\mathsf{T} X + \lambda I_p)^{-1} (X^\mathsf{T} X) \widehat{\beta}$ shrinks $\widehat{\beta}$ towards zero in a manner that accounts for the variability in the covariates X. For $\lambda > 0$ it is not the case that $\widehat{\beta}(\lambda) = K \widehat{\beta}$ for some K, which is to say the family of estimators $\widetilde{\beta}(K,\lambda) = K \widehat{\beta}(\lambda)$ is not overparametrized. We allow any K > 0, since for λ large, $\widehat{\beta}(\lambda)$ tends to overshrink. The estimator minimizes the following loss functions:

$$\widetilde{\beta}(K,\lambda) := \arg\min_{\beta} \left\{ \|K(Y - \mathbf{1}\overline{Y}) - X\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2} \right\}$$
(8)

$$= \arg\min_{\beta} \left\{ \|Y - \mathbf{1}\overline{Y} - X\beta\|_{2}^{2} + \frac{\lambda}{K} \|\beta\|_{2}^{2} + (K^{-1} - 1)\|X\beta\|_{2}^{2} \right\}. \tag{9}$$

The first minimization performs ridge regression on the centered design X and shrunk (or inflated) centered responses $K(Y - \mathbf{1}\overline{Y})$. The second is like ridge with an additional penalty. If K < 1 then $(K^{-1} - 1)\|X\beta\|_2^2$ penalizes large $X\beta$, and if K > 1 it penalizes small $X\beta$.

When $\lambda > 0$, the ridge regression estimate $\widehat{\beta}(\lambda)$ is biased, but has the advantage of being well-defined even in the high dimensional case n < p. Whether we can benefit from the additional pre-factor K depends on how reliably we can detect whether we need to inflate or shrink. In the case where β^* is known to be sparse, we can ask the same set of questions about the magnitude of our predictions after Lasso, where the regularization term in (6) is replaced with $\lambda \|\beta\|_1$. We start with simulation studies to get a sense of in what cases we can significantly improve predictions by including K.