Functional Requirements

Project Title: Thermal Imaging for Knee Pain Detection

1. Overview

This document outlines the functional requirements for a system that utilizes thermal imaging and data science techniques to detect and analyze knee pain. The system aims to provide accurate, non-invasive diagnostics and actionable insights for healthcare professionals.

2. Functional Requirements

2.1 Identify Key Functions and Features

1. Core Functions:

- Thermal Image Processing: Analyze images for abnormalities.
- Diagnostic Report Generation: Provide actionable insights and recommendations.
- o User Management: Manage accounts and access levels.
- Data Storage: Securely store patient and imaging data.

2. Advanced Features:

- o Al-Powered Analysis: Use machine learning to improve detection accuracy.
- Historical Data Comparison: Allow users to monitor patient progress.
- o Alerts and Notifications: Notify stakeholders of critical findings.

2.2 Use Case Documentation

1. Use Case 1: Upload and Analyze Thermal Images

- o **Pre-Conditions**: User has a valid account and access to the system.
- o Basic Flow:
 - 1. User uploads thermal images.
 - 2. System preprocesses and analyzes images.
 - 3. Results are displayed with insights.

Alternate Flows:

- Image upload fails due to incompatible format.
- Analysis is delayed due to server issues.
- o **Post-Conditions**: Analysis results are saved and accessible to the user.

2. Use Case 2: Generate Diagnostic Report

- o **Pre-Conditions**: Analysis is complete, and user requests a report.
- Basic Flow:
 - 1. User selects "Generate Report."
 - 2. System compiles data and creates a formatted report.
 - 3. Report is downloaded or emailed to the user.
- o **Post-Conditions**: Report is saved in the system for future reference.

2.3 User Stories

1. Healthcare Professional:

 "As a healthcare professional, I want to analyze patient images quickly so that I can provide timely diagnoses."

Acceptance Criteria:

- Upload and analysis completed within 5 seconds.
- Results include clear visuals and insights.

2. Patient:

 "As a patient, I want to view my diagnostic results securely so that I can track my treatment progress."

Acceptance Criteria:

- Results are accessible via a secure portal.
- Historical data is easy to compare.

2.4 Prioritization and Effort Estimation

- 1. High Priority:
 - Thermal Image Analysis (8 hours).

o Diagnostic Report Generation (6 hours).

2. Medium Priority:

- Historical Data Comparison (10 hours).
- o Alerts and Notifications (5 hours).

3. Low Priority:

Multilingual Support (15 hours).

3. Stakeholder Identification

1. Primary Stakeholders:

- Healthcare professionals.
- Patients.

2. Secondary Stakeholders:

- System administrators.
- Developers.

4. Stakeholder Engagement Process

- 1. Conduct interviews with healthcare professionals to gather detailed requirements.
- 2. Organize workshops with developers to brainstorm technical implementations.
- 3. Distribute surveys to patients to collect preferences on usability.

5. Existing Documentation Review

- Review business plans and project charters to align goals.
- Analyze similar systems to identify common requirements and gaps.

6. Functional and Non-Functional Requirements

1. Functional Requirements:

- Image upload and analysis.
- Report generation.
- User management.

2. Non-Functional Requirements:

- Performance: Analyze images within 5 seconds.
- o Security: End-to-end encryption for data.
- o Usability: Intuitive interface for non-technical users.

7. Use Case Analysis

- 1. Develop detailed use cases to describe interactions.
- 2. Include pre-conditions, basic and alternate flows, and post-conditions for each use case.

8. Deliverables

- 1. Fully functional thermal imaging analysis system.
- 2. Comprehensive use case documentation.
- 3. User manuals and training materials.