

White Wine Quality

group WOE Ran Huang, Zitong Zeng, Tian Qi, Randy Ma

Data Overview

- The data is Vinho Verde* white wine samples from Portugal.
- The goal of this project is to determine wine quality based on the chemical features (Cortez et al., 2009)
 - Input variable: based on physicochemical tests
 - Output variable: based on sensory data, median of at least 3 evaluations made by wine experts

Features

- Fixed acidity
- Volatile acidity
- Citric acid
- Residual sugar
- Chlorides
- Free sulfur dioxide
- Total sulfur dioxide
- Density
- PH
- Sulphates
- Alcohol

Labels and Encoding

- Quality is represented by scores ranging from 0 to 10
- 0 is the worst and 10 is the best
- Relabel:
 - score under 5 → "Low"
 - score above 6 → "High"
 - score of 5 and 6 → "Medium"

Data Distribution and Encoding

- Score under 5 → "Low"
- score above 6 → "High"
- o score of 5 and 6 → "Medium"

Correlation Matrix of Features

fixed acidity -	1	-0.023	0.29	0.089	0.023	-0.049	0.091	0.27	-0.43	-0.017	-0.12	-0.11
volatile acidity -	-0.023	1	-0.15	0.064	0.071	-0.097	0.089	0.027	-0.032	-0.036	0.068	-0.19
citric acid	0.29	-0.15	1	0.094	0.11	0.094	0.12	0.15	-0.16	0.062	-0.076	-0.0092
residual sugar -	0.089	0.064	0.094	1	0.089	0.3	0.4	0.84	-0.19	-0.027	-0.45	-0.098
chlorides -	0.023	0.071	0.11	0.089	1	0.1	0.2	0.26	-0.09	0.017	-0.36	-0.21
free sulfur dioxide -	-0.049	-0.097	0.094	0.3	0.1	1	0.62	0.29	-0.00062	0.059	-0.25	0.0082
total sulfur dioxide -	0.091	0.089	0.12	0.4	0.2	0.62	1	0.53	0.0023	0.13	-0.45	-0.17
density -	0.27	0.027	0.15	0.84	0.26	0.29	0.53	1	-0.094	0.074	-0.78	-0.31
pH -	-0.43	-0.032	-0.16	-0.19	-0.09	-0.00062	0.0023	-0.094	1	0.16	0.12	0.099
sulphates -	-0.017	-0.036	0.062	-0.027	0.017	0.059	0.13	0.074	0.16	1	-0.017	0.054
alcohol -	-0.12	0.068	-0.076	-0.45	-0.36	-0.25	-0.45	-0.78	0.12	-0.017	1	0.44
quality -	-0.11	-0.19	-0.0092	-0.098	-0.21	0.0082	-0.17	-0.31	0.099	0.054	0.44	1
	fixed acidity -	volatile acidity -	citric acid -	residual sugar -	chlorides -	free sulfur dioxide –	total sulfur dioxide –	density -	౼	sulphates -	alcohol -	quality -

-0.9

- 0.6

- 0.3

- 0.0

Modeling Process

Validation Accuracy

accuracy

Mean cross-validated score (accuracy) of the best estimator

Random Forest performs the best on validation

RF on Testing Accuracy

		precision	recall	f1-score	support
	0	0.79	0.61	0.69	209
	1	0.57	0.11	0.19	35
	2	0.86	0.95	0.90	736
micro	avg	0.85	0.85	0.85	980
macro	avg	0.74	0.56	0.59	980
weighted	avg	0.84	0.85	0.83	980

The RF model accuracy on Test data is 0.8469387755102041

RF Confusion Matrix

Confusion Matrix

Of Random Forest

	Predicted	GOOD	LOW	MEDIUM
Actual	GOOD	128	0	81
	LOW	0	4	31
	MEDIUM	35	3	698

Resample

The data is significantly imbalanced, so we decided to resample to improve accuracy on low and high

LOW 148 LOW 1500

MEDIUM 2919 MEDIUM 1500

GOOD 851 GOOD 1500

Similar Process

Validation Accuracy

accuracy

Mean cross-validated score (accuracy) of the best estimator (using resampled data)

Random Forest is still the best. SVM also performs well with resampled data.

RF Confusion Matrix

RF acc on test data BEFORE resampling: 84.69%

	Predicted	GOOD	LOW	MEDIUM
Actual	GOOD	128	0	81
	LOW	0	4	31
	MEDIUM	35	3	698

RF acc on test data AFTER resampling: 73.87%

5	Predicted	GOOD	LOW	MEDIUM
Actual	GOOD	174	0	35
	LOW	2	11	22
	MEDIUM	151	46	539

RF vs. SVM

RF acc on test data AFTER resampling: 73.87%

	Predicted	GOOD	LOW	MEDIUM
Actual	GOOD	174	0	35
	LOW	2	11	22
	MEDIUM	151	46	539

SVM acc on test data **AFTER** resampling: 78.88%

	Predicted	GOOD	LOW	MEDIUM
Actual	GOOD	106	4	99
	LOW	0	7	28
	MEDIUM	49	27	660

Reference

http://www3.dsi.uminho.pt/pcortez/wine/

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.