ABOUT THE DATASET

The Census Household Amenities Dataset provides detailed information on housing conditions, basic infrastructure, and household amenities across Indian districts, segmented by rural and urban categories. It includes over 1200 district-level records covering housing quality (good, livable, dilapidated), access to facilities (cooking fuel, water source, electricity, latrines), and asset ownership (TVs, phones, radios, etc.). The data captures whether households have essential amenities and what materials are used in their construction (roof, floor, wall), alongside occupancy types and vacant housing statistics. This dataset enables granular analysis of socio-economic disparities, infrastructure gaps, and regional development patterns in India's housing landscape.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv("census-household-amenities.csv") # Replace with the actual filename
df.head(30)
```

_	id	census_year	state_name	state_code	district_name	district_code	hh_category	cond_house_all_total	cond_house_all_good	cond_
0	0	2011	Telangana	36	Adilabad	501	Rural	473949.0	273936.0	
1	1	2011	Telangana	36	Adilabad	501	Urban	177821.0	130927.0	
2	2	2011	Uttar Pradesh	9	Agra	118	Rural	367102.0	157199.0	
3	3	2011	Uttar Pradesh	9	Agra	118	Urban	305508.0	182940.0	
4	4	2011	Gujarat	24	Ahmadabad	438	Rural	228886.0	131552.0	
5	5	2011	Gujarat	24	Ahmadabad	438	Urban	1265770.0	955649.0	
6	6	2011	Maharashtra	27	Ahmadnagar	466	Rural	717718.0	445020.0	
7	7	2011	Maharashtra	27	Ahmadnagar	466	Urban	184030.0	136881.0	
8	8	2011	Mizoram	15	Aizawl	261	Rural	17157.0	10925.0	
9	9	2011	Mizoram	15	Aizawl	261	Urban	64755.0	53562.0	
10	10	2011	Rajasthan	8	Ajmer	86	Rural	294870.0	137572.0	
11	11	2011	Rajasthan	8	Ajmer	86	Urban	189061.0	134258.0	
12	12	2011	Maharashtra	27	Akola	467	Rural	247752.0	112373.0	
13	13	2011	Maharashtra	27	Akola	467	Urban	143383.0	89584.0	
14	I 14	2011	Kerala	32	Alappuzha	554	Rural	245849.0	153414.0	
15	15	2011	Kerala	32	Alappuzha	554	Urban	282426.0	188685.0	
16	3 16	2011	Uttar Pradesh	9	Aligarh	119	Rural	406432.0	158705.0	
17	17	2011	Uttar Pradesh	9	Aligarh	119	Urban	198180.0	108776.0	
18	3 18	2011	Madhya Pradesh	23	Alirajpur	639	Rural	121337.0	41105.0	
19	19	2011	Madhya Pradesh	23	Alirajpur	639	Urban	10410.0	7041.0	
20	20	2011	Uttar Pradesh	9	Allahabad	120	Rural	696236.0	324704.0	
21	1 21	2011	Uttar Pradesh	9	Allahabad	120	Urban	202317.0	134743.0	
22	2 22	2011	Uttarakhand	5	Almora	45	Rural	126476.0	93825.0	
23	3 23	2011	Uttarakhand	5	Almora	45	Urban	12781.0	10762.0	
24	24	2011	Rajasthan	8	Alwar	87	Rural	505266.0	287255.0	
25	25	2011	Rajasthan	8	Alwar	87	Urban	123647.0	86065.0	
26	26	2011	Haryana	6	Ambala	58	Rural	112525.0	57860.0	
27	27	2011	Haryana	6	Ambala	58	Urban	95546.0	65296.0	
28	3 28	2011	Uttar Pradesh	9	Ambedkar Nagar	121	Rural	321866.0	140780.0	
29	29	2011	Uttar Pradesh	9	Ambedkar Nagar	121	Urban	42591.0	20531.0	

30 rows × 149 columns

```
df.shape
```

→ (1280, 149)

STEP 1: MISSING VALUE SUMMARY

missing = df.isnull().sum()

 $missing_pct = (missing / len(df)) * 100$

missing_df = pd.DataFrame({'Missing Values': missing, 'Percentage': missing_pct})

 $\mbox{\#}$ Show all columns that have any missing values

missing_df[missing_df['Missing Values'] > 0]

₹		Missing Values	Percentage
	cond_house_all_total	12	0.9375
	cond_house_all_good	12	0.9375
	cond_house_all_livable	12	0.9375
	cond_house_all_delapidated	12	0.9375
	cond_house_res_total	12	0.9375
	occup_hosp_dispen	12	0.9375
	occup_fact_workshop_workshed	12	0.9375
	occup_worship_place	12	0.9375
	occup_oth_non_residen	12	0.9375
	occup_lockd_cen_house	12	0.9375
	142 rows × 2 columns		

We find out 0.94 percent of data is missing i.e so we decide to drop the rows with missing columns deleting less than 1 percent of our dataset.

Nature of the Dataset: The dataset contains numerical columns that represent the count of houses used for various specific purposes — such as:

Hospitals/dispensaries

Worship places

Workshops/factories

Non-residential use, etc.

These are discrete, non-negative integers indicating the number of houses used for each category in each district. Why Mean/Median/Mode Are Not Appropriate:

Technique Why We Didn't Use It

Mean: Averages would produce non-integer values, which don't make sense for house counts

Median: Similar to mean, it might give misleading values when most entries are 0

Mode: Mode could return irrelevant or non-representative values if the data is sparse

Why We Used dropna

Logical Interpretation: A missing value in these columns likely means zero houses were reported for that use in that district — not that the data is unknown.

Preserves Integrity of Analysis: Filling with 0 ensures we're not inflating the count or introducing bias.

Prevents Errors in Aggregation: Leaving them as NaN would interfere with summing, grouping, and plotting operations.

```
# Drop rows with any missing values

df_clean = df.dropna()

# Check result

print(f"Remaining rows: {len(df_clean)}")

The Remaining rows: 1268

# Select only numeric columns

numeric_df = df_clean.select_dtypes(include=['float64', 'int64'])

# Calculate standard deviation and pick top 30 most varying columns

top30_cols = numeric_df.std().sort_values(ascending=False).head(30).index

corr_matrix = numeric_df[top30_cols].corr()

# Plot heatmap
```

```
plt.figure(figsize=(15, 12))
sns.heatmap(corr_matrix, cmap='coolwarm', annot=False, linewidths=0.5, square=True)
plt.title("Correlation Heatmap - Top 30 Most Varying Features", fontsize=16)
plt.tight_layout()
plt.show()
```



```
# Select numeric columns
numeric_df = df_clean.select_dtypes(include=['float64', 'int64'])
# Compute correlation matrix
corr_matrix = numeric_df.corr()
```

Flatten matrix

```
corr_pairs = corr_matrix.unstack().reset_index()
corr_pairs.columns = ['Feature 1', 'Feature 2', 'Correlation']

# Remove self-correlations
filtered = corr_pairs[corr_pairs['Feature 1'] != corr_pairs['Feature 2']]

# Remove duplicate pairs (like (A,B) and (B,A))
filtered['Pair'] = filtered.apply(lambda row: tuple(sorted([row['Feature 1'], row['Feature 2']])), axis=1)
filtered = filtered.drop_duplicates(subset='Pair').drop(columns='Pair')

# Get top 15 positive
top_pos = filtered[filtered['Correlation'] > 0].sort_values(by='Correlation', ascending=False).head(15)

# Get top 15 negative
top_neg = filtered[filtered['Correlation'] < 0].sort_values(by='Correlation', ascending=True).head(5)

# Combine
mixed_corrs = pd.concat([top_pos, top_neg], ignore_index=True)

# Show result
mixed_corrs

$\frac{T}{T}$ /tmp/ipython-input-10-1779176016.py:15: SettingWithCopyWarning:</pre>
```

/tmp/ipython-input-10-1779176016.py:15: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas.docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc filtered['Pair'] = filtered.apply(lambda row: tuple(sorted([row['Feature 1'], row['Feature 2']])), axis=1)

	Feature 1	Feature 2	Correlation
0	fc_other	kf_no_o_k	1.000000
1	cond_house_all_total	fc_no_cooking	1.000000
2	cond_house_res_oth_total	occup_res	0.999894
3	cond_house_res_total	num_occup_cen_house	0.999893
4	cond_house_all_delapidated	cond_house_res_delapidated	0.999781
5	cond_house_all_good	cond_house_res_good	0.999714
6	cond_house_res_total	fc_no_cooking	0.999342
7	cond_house_all_total	cond_house_res_total	0.999342
8	fc_no_cooking	num_occup_cen_house	0.999196
9	cond_house_all_total	num_occup_cen_house	0.999196
10	cond_house_all_livable	cond_house_res_livable	0.998799
11	aa_none	num_vacant_cen_house	0.997778
12	cond_house_all_total	num_vacant_cen_house	0.995218
13	fc_no_cooking	num_vacant_cen_house	0.995218
14	num_vacant_cen_house	num_occup_cen_house	0.994479
15	district_code	mof_burnt_brick	-0.319625
16	state_code	mof_burnt_brick	-0.302699
17	district_code	mor_burnt_brick	-0.278526
18	state_code	mor_burnt_brick	-0.277213
19	district_code	mor_stone_slate	-0.228961

Here you go — properly numbered, decoded, and ready to copy-paste into your report or notebook:

▲ Top 15 Positive Correlations (with short feature name meanings)

1)fc_other \leftrightarrow kf_no_o_k fc_other: House uses "Other" type of fuel kf_no_o_k: No kitchen or cooking space in the house \rightarrow Households using other/unidentified fuels tend to lack proper kitchen setups — unsafe and informal cooking.

2)cond_house_all_total \leftrightarrow fc_no_cooking cond_house_all_total: Total number of houses in all conditions fc_no_cooking: Houses with no cooking facility \rightarrow More houses overall means more houses without cooking facilities — infrastructure not keeping up with volume.

3)cond_house_res_oth_total \leftrightarrow occup_res cond_house_res_oth_total: Other residential houses (e.g., temporary, unconventional) occup_res: Houses occupied for residence \rightarrow These alternate houses are usually occupied – the distinction is often technical.

4)cond_house_res_total \leftrightarrow num_occup_cen_house cond_house_res_total: Total residential houses num_occup_cen_house: Occupied census houses \rightarrow More houses built \rightarrow more get occupied - a direct and expected link.

5)cond_house_all_delapidated \leftrightarrow cond_house_res_delapidated cond_house_all_delapidated: Total dilapidated houses cond_house_res_delapidated: Dilapidated houses used for residence \rightarrow Many bad-condition houses are still in use — signs of housing distress.

6)cond_house_all_good ↔ cond_house_res_good cond_house_all_good: All good-condition houses cond_house_res_good: Good residential houses → Most well-maintained buildings are lived in — very few good-condition non-residential buildings.

7)cond_house_res_total \leftrightarrow fc_no_cooking cond_house_res_total: Total residential houses fc_no_cooking: No cooking facility \rightarrow Residential construction doesn't guarantee kitchen access — a quality vs quantity gap.

8)cond_house_all_total \leftrightarrow cond_house_res_total cond_house_all_total: Total houses cond_house_res_total: Total residential houses \to Nearly all houses are for residence — shows census coverage is primarily residential.

9)fc_no_cooking \leftrightarrow num_occup_cen_house fc_no_cooking: No cooking facility num_occup_cen_house: Occupied houses \rightarrow Even occupied homes often lack cooking facilities — poor living standards.

10)cond_house_all_total \leftrightarrow num_occup_cen_house cond_house_all_total: Total houses num_occup_cen_house: Occupied census houses \rightarrow More houses = more occupancy — just a size effect.

11)cond_house_all_livable ↔ cond_house_res_livable cond_house_all_livable: Livable condition (total) cond_house_res_livable: Livable residential houses → Almost all livable houses are used for residence — expected.

12)aa_none ↔ num_vacant_cen_house aa_none: Houses with no household assets (TV, phone, etc.) num_vacant_cen_house: Vacant census houses → Places with asset-less homes also show more vacancy — hinting at poor resource allocation or affordability gap.

13)cond_house_all_total \leftrightarrow num_vacant_cen_house cond_house_all_total: Total houses num_vacant_cen_house: Vacant houses \rightarrow More housing stock also means more unused houses — quantity doesn't imply utilization.

14)fc_no_cooking \leftrightarrow num_vacant_cen_house fc_no_cooking: No cooking facility num_vacant_cen_house: Vacant houses \rightarrow Vacant homes often don't have kitchens — they're possibly incomplete or abandoned.

15)num_vacant_cen_house ↔ num_occup_cen_house num_vacant_cen_house: Vacant houses num_occup_cen_house: Occupied houses → Larger districts have more of both — higher housing stock overall.

▼ Top 5 Negative Correlations

16)district_code ↔ mof_burnt_brick mof_burnt_brick: Floor made of burnt brick → As district code increases (possibly geographic shift), burnt brick floors decrease — regional construction style shift.

17)state_code ↔ mof_burnt_brick state_code: State ID → Higher-coded states (likely east/south) use less burnt brick flooring. district_code ↔ mor_burnt_brick mor_burnt_brick: Roof made of burnt brick → Burnt brick roofs are more common in early-coded (possibly northern) districts

18) state_code \leftrightarrow mor_burnt_brick mor_burnt_brick: Roof made of burnt brick \rightarrow States differ in roofing materials — could be due to culture or availability.

19)district_code \leftrightarrow mor_stone_slate mor_stone_slate: Roof made of stone or slate \rightarrow Slate/stone roofs are negatively correlated with district number — possibly mountainous or older regions.

A clustered heatmap helps you visually verify the strongest positive/negative relationships and spot groupings among features.

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(12, 6))
sns.barplot(data=df, x='state_name', y='cond_house_all_total')
plt.xticks(rotation=90)
plt.title('Total Households in Each State')
plt.ylabel('No. of Households')
plt.xlabel('State')
plt.tight_layout()
plt.show()
```


Observation:

States like West Bengal, Maharashtra, and Uttar Pradesh have the highest number of households, whereas smaller states and union territories such as Lakshadweep and Andaman & Nicobar Islands have significantly fewer households.

Insight:

This indicates that housing policies and infrastructure programs should be prioritized in states with larger populations to address the higher demand for housing and related amenities.

```
urban_rural = df.groupby(["state_name", "hh_category"])[["cond_house_all_good", "cond_house_all_livable", "cond_house_all_delapidated"]].sum
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(14,6))
sns.barplot(x="state_name", y="cond_house_all_good", hue="hh_category", data=urban_rural)
plt.title("Good Housing: Urban vs Rural by State")
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()
```


state_name

Observation:

Urban regions generally have a higher number of good-condition houses compared to rural areas, except in states like Uttar Pradesh and Bihar, where rural housing dominates due to their larger rural populations.

Insight:

The disparity between urban and rural housing quality highlights the need for rural infrastructure development to bridge the housing condition gap between these regions.

print(df.columns)

```
'cond_house_all_good', 'cond_house_all_livable',
           'occup_res', 'occup_res_cum_otheruse', 'occup_shop_off',
           'occup_sch_coll', 'occup_hot_lodg_guesthoose', 'occup_hosp_dispen',
           'occup fact workshop workshed', 'occup worship place',
           'occup_oth_non_residen', 'occup_lockd_cen_house'],
          dtype='object', length=149)
state_df = df.groupby('state_code').agg({
    'fc_no_cooking': 'mean',
    'kf_no_o_k': 'mean'
}).reset_index()
state_df = state_df.sort_values('fc_no_cooking', ascending=False)
plt.figure(figsize=(14,6))
sns.barplot(x='state_code', y='fc_no_cooking', data=state_df, palette='Reds_d')
plt.ylabel('Fraction of houses without cooking facility')
plt.xlabel('State code')
plt.title('State-wise % of Houses with No Cooking Facility')
plt.show()
```

/tmp/ipython-input-22-81441910.py:9: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legenc sns.barplot(x='state_code', y='fc_no_cooking', data=state_df, palette='Reds_d')

Observation:

States such as Maharashtra, Uttar Pradesh, and West Bengal have a high fraction of houses without cooking facilities, while smaller states and UTs like Sikkim and Goa have relatively lower percentages.

This suggests that regions with larger populations may face infrastructure gaps in providing basic amenities, emphasizing the need for targeted policies to improve cooking facilities in high-deficit states.

```
plt.figure(figsize=(8,6))
sns.regplot(x='fc_other', y='kf_no_o_k', data=df, scatter_kws={'alpha':0.5})
plt.xlabel('Fraction using Other fuel (fc_other)')
plt.ylabel('Fraction houses with no kitchen (kf_no_o_k)')
plt.title('fc_other vs kf_no_o_k: Fuel type vs Kitchen absence')
plt.show()
```


Observation:

The scatter plot shows a near-perfect linear correlation between the fraction of houses using "other fuel" and the fraction of houses without a kitchen, indicating a very strong positive relationship.

Insight:

This implies that in areas where alternative fuel use is high, kitchen absence is also significantly prevalent, highlighting a strong link between fuel access and housing infrastructure.

```
quality = df.groupby('state_code').agg({
    'cond_house_res_delapidated': 'mean',
    'cond_house_res_livable': 'mean',
    'cond_house_res_good': 'mean'
}).reset_index().melt(id_vars='state_code', var_name='condition', value_name='fraction')

plt.figure(figsize=(14,6))
sns.barplot(x='state_code', y='fraction', hue='condition', data=quality, palette='muted')
plt.ylabel('Fraction of residential houses')
plt.xlabel('State code')
plt.title('State-wise Housing Condition Distributions')
plt.legend(title='Condition')
plt.show()
```

₹

State-wise Housing Condition Distributions

Observation

The graph displays the state-wise distribution of residential housing conditions categorized into Good, Livable, and Dilapidated. States like Maharashtra (27), West Bengal (19), and Karnataka (28) have a significantly higher number of good-condition houses compared to other states. However, states such as Uttar Pradesh (9) and Bihar (10) show a notable presence of livable and dilapidated houses, highlighting disparities in housing quality. Smaller states and union territories reflect relatively balanced but lower housing counts across all categories.

Insight

This chart underscores a clear housing quality gap between states. While developed states like Maharashtra and Karnataka lead in good-condition housing, states with large populations, such as Uttar Pradesh and Bihar, face quality challenges with a considerable share of substandard housing. This calls for targeted housing improvement programs and infrastructure investments in these regions to enhance living conditions and reduce the reliance on livable or dilapidated housing.

```
features = ['fc_no_cooking', 'fc_other', 'num_vacant_cen_house']
state_multi = df.groupby('state_code')[features].mean().reset_index()

state_multi = state_multi.melt(id_vars='state_code', var_name='feature', value_name='value')

plt.figure(figsize=(14,6))
sns.barplot(x='state_code', y='value', hue='feature', data=state_multi)
plt.ylabel('Mean Fraction / Count')
plt.xlabel('State code')
plt.title('State-wise Comparison: No Cooking / Other Fuel / Vacant Houses')
plt.legend(title='Feature')
plt.show()
```

₹

Observation

The chart compares three features across states: houses with no cooking facilities (fc_no_cooking), houses using other fuel types (fc_other), and vacant houses (num_vacant_cen_house). States like West Bengal (19), Maharashtra (27), and Bihar (10) exhibit high counts across all three features, with vacant houses being especially prominent. States such as Uttar Pradesh (9) and Gujarat (24) also show a significant number of households lacking proper cooking facilities. Meanwhile, smaller states and union territories have considerably lower values in all three categories.

Insight

This visualization highlights a strong correlation between poor amenities and housing vacancy. States with many houses lacking proper cooking facilities or using alternative fuels also tend to have higher vacancy rates, indicating inadequate living conditions as a potential cause for abandonment. Targeted improvements in basic amenities like kitchens and clean fuel access, especially in states such as West Bengal, Maharashtra, and Bihar, could reduce vacancy rates and improve overall housing utilization.

Ask ChatGPT

```
occupancy = df.groupby('state_code').agg({
    'num_occup_cen_house': 'sum',
    'num_vacant_cen_house': 'sum'
}).reset_index()

occupancy = occupancy.melt(id_vars='state_code', var_name='status', value_name='count')

plt.figure(figsize=(14,6))
sns.barplot(data=occupancy, x='state_code', y='count', hue='status', palette='Set2')
plt.title("State-wise: Occupied vs Vacant Census Houses")
plt.xlabel("State Code")
plt.ylabel("Number of Houses")
plt.legend(title="House Status")
plt.show()
```


Insight

The data highlights a serious mismatch between housing availability and utilization. High vacancy levels in states like Uttar Pradesh, Bihar, and Maharashtra may indicate issues such as poor housing quality, affordability barriers, or unequal distribution of housing. Meanwhile, states with smaller populations show balanced occupancy and vacancy levels. Addressing these gaps will require targeted policies focusing on affordable housing programs, urban planning improvements, and rehabilitation of unoccupied homes to ensure effective housing utilization.

```
housing_quality = df.groupby('state_code').agg({
    'cond_house_res_good': 'sum',
    'cond_house_res_delapidated': 'sum'
}).reset_index()
housing_quality = housing_quality.melt(id_vars='state_code', var_name='condition', value_name='count')
```