

GABARITO QUÍMICA

Questão 1

Uma estação de rádio transmite em 98,4 MHz.

Determine o comprimento de onda do sinal emitido pela estação.

Questão 2

Um átomo de hidrogênio emite radiação com $n_1 = 2$ e $n_2 = 5$.

Determine o comprimento de onda da radiação emitida.

Questão 3

Apresente a configuração eletrônica do estado fundamental e os números quânticos do orbital atômico mais energético o átomo de arsênio.

Questão 4

Considere os íons: S^{2-} , Cl^- , P^{3-} .

Ordene os íons em função de seu raio iônico.

Questão 5

Considere os pares de elementos

- 1. Boro e carbono.
- 2. Fósforo e arsênio.

Compare a afinidade eletrônica dos elementos de cada par.

Questão 6

Considere as equações simplificadas.

- 1. $KClO_3(s) \longrightarrow KCl(s) + O_2(g)$
- 2. $KClO_3(l) \longrightarrow KCl(s) + KClO_4(g)$
- 3. $N_2H_4(aq) + I_2(aq) \longrightarrow HI(aq) + N_2(g)$
- 4. $P_4O_{10}(s) + H_2O(l) \longrightarrow H_3PO_4(l)$

Apresente a equação química balanceada para cada equação simplificada.

Questão 7

O dióxido de carbono pode ser removido dos gases emitidos por uma usina termelétrica combinando-o com uma emulsão de silicato de cálcio em água:

$$2 \operatorname{CO}_2(g) + \operatorname{H}_2 \operatorname{O}(1) + \operatorname{CaSiO}_3(s) \longrightarrow \operatorname{SiO}_2(s) + \operatorname{Ca}(\operatorname{HCO}_3)_2(\operatorname{aq})$$

Determine a massa de CaSiO₃ necessária para reagir completamente com 0,3 kg de dióxido de carbono.

Questão 8

Quando $0,24\,\mathrm{g}$ de aspirina (um composto de carbono, hidrogênio e oxigênio) é queimado, formam-se $0,52\,\mathrm{g}$ de dióxido de carbono e $0,094\,\mathrm{g}$ de água.

Determine a alternativa com a fórmula empírica da aspirina.

Questão 9

Alguns mergulhadores estão explorando um naufrágio e desejam evitar a narcose associada à respiração de nitrogênio sob alta pressão. Eles passaram a usar uma mistura de neônio-oxigênio que contém 141 g de oxigênio e 335 g de neônio. A pressão nos tanques de gás é 50 atm.

Determine a pressão parcial de oxigênio nos tanques.

Questão 10

A nitroglicerina é um líquido sensível ao choque, que detona pela reação:

$$C_3H_5(NO_3)_3(l) \longrightarrow N_2(g) + H_2O(g) + CO_2(g) + O_2(g)$$

 $\textbf{Determine} \ o \ volume \ total \ de \ gases \ produzido, \ em \ 88,5 \ kPa \ e \ 175 \ ^{\circ}C, \ na \ detonação \ de \ 454 \ g \ de \ nitroglicerina.$