La théorie de la double descente

Emett Haddad ¹

27/06/2024

 $^{^{1}\}mathrm{Encadrants}\colon$ Nicolas Vayatis, Samuel Gruffaz

Plan

- Contexte
- Modèle linéaire avec features
- Résultats théoriques
 - Théorie modèle linéaire
 - Descente de gradient
 - Étude des valeurs singulières
 - Modèle linéaire pénalisé
- Appendice
 - Régression polynomiale
 - Perceptron Multicouche (MLP)
- Bibliographie

Contexte

Fonction cible

On pose $\mathcal{X} = \mathbb{R}^D$ l'espace de départ et $\mathcal{Y} = \mathbb{R}$ l'espace d'arrivée.

 \mathbf{X} et \mathbf{Y} sont des variables aléatoires tel que $(\mathbf{X},\mathbf{Y})\hookrightarrow\mathcal{P}.$

$$y^*: x \in \mathcal{X} \to \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim \mathcal{P}}(\mathbf{Y} | \mathbf{X} = x) \in \mathcal{Y}$$

Échantillons

Échantillon d'apprentissage $\mathcal{D} := \{(x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\}_{n=1}^N$ où

 $y_n := y^*(x_n) + \epsilon_n$, et les $x_n \hookrightarrow \mathbf{X}$ et $\epsilon_n \hookrightarrow \epsilon$ iid.

On modélise ici : $\mathbf{Y} = y^{\star}(\mathbf{X}) + \epsilon$ où ϵ représente le **bruit** tel que $\mathbb{E}(\epsilon|\mathbf{X}) = 0$, et $\mathbb{V}(\epsilon) = \sigma_{\epsilon}^2$.

Estimateur et risque

Estimateur

- Trouver un **estimateur** $\hat{y}: \mathcal{X} \to \mathcal{Y}$ tel que $\hat{y}(\mathbf{X}) \approx \mathbf{Y}$.
- $\hat{y} \in \mathcal{H}$ un espace de fonctions.

Vrai risque, risque empirique et excès de risque

Vrai risque et risque empirique: $\forall \hat{y} \in \mathcal{H}$

$$\mathcal{R}(\hat{y}) = \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim \mathcal{P}}((\mathbf{Y} - \hat{y}(\mathbf{X}))^2), \quad \hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}(x_i))^2$$

Excès de risque: $\forall \hat{y} \in \mathcal{H}$

$$\mathcal{E}(\hat{y}) = \mathcal{R}(\hat{y}) - \mathcal{R}(y^*)$$

Emett Haddad

Notion de Double Descente

Régime sous-paramétré: P < N et régime sur-paramétré: P > N Seuil d'interpolation: P = N

Notion de Double Descente:

On dit qu'il y a **double descente** quand l'erreur globale minimal dans le régime sur-paramétré est inférieur à celle dans le régime sous-paramétré et qu'on observe un maximum au seuil d'interpolation.

Modèles linéaire avec features

Modèle linéaire avec features

- $\mathcal{F} = \{f_i : \mathcal{X} \to \mathbb{R}, i \in \mathbb{N}\}$ ensemble de features.
- $X = [x_1, \dots, x_N]^T \in \mathcal{M}_{N,D}(\mathbb{R}), Y = [y_1, \dots, y_N]^T$
- $\forall x \in \mathcal{X}, \ \Phi_P(x) = [f_1(x), \cdots, f_P(x)]^T \text{ et}$ $Z = [\Phi_P(x_1), \cdots, \Phi_P(x_N)]^T = [f_j(x_i)] \in \mathcal{M}_{N,P}(\mathbb{R})$
- Risque empirique $\hat{\mathcal{R}}_{\mathcal{D}}(\hat{y}_{\beta}) = \frac{1}{N}||Y Z\beta||_2^2$
- $\forall x \in \mathcal{X}, \left[\hat{y}_{\hat{\beta}}(x) = \Phi_P^T(x)\hat{\beta}\right], \text{ pour } \hat{\beta} = Z^{\dagger}Y.$
- Modèle linéaire simple $f_i(x) = e_i(x)$, X = Z, P = D et $\hat{y}_{\hat{\beta}}(x) = x^T \hat{\beta}$.

Emett Haddad Double Descente

6/17

Théorie modèle linéaire

On considère: $\Phi_P(x) = [f_1(x), \cdots, f_P(x)]^T$ où $f_p : \mathbb{R}^D \to \mathbb{R}$ et $\hat{y}(x) = \Phi_P^T(x)\hat{\beta}$. Avec $(f,g)_X = \sum_{n=1}^N f(x_n)g(x_n)$, $\{f,g\} = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta})\overline{g(e^{i\theta})}$ et $\forall z \in \mathbb{C}, G_P^T(z) = \sum_{p=1}^P f_p(x)z^p$.

Théorème: Expressions de l'estimateur

Dans le cas linéaire c.à.d tel que $\hat{y}(x) = \Phi_P^T(x)\hat{\beta}$ nous avons:

$$\forall x \in \mathcal{X}, \ \hat{y}(x) = [f_1(x), \cdots, f_P(x)][(f_i, f_j)_X]^{\frac{1}{2}} \begin{bmatrix} (f_1, y)_X \\ \vdots \\ (f_P, y)_X \end{bmatrix}$$
(1)

$$\forall x \in \mathcal{X}, \ \hat{y}(x) = ([\{G_P^{x_i}, G_P^{x_j}\}]^{\frac{1}{4}} [\{G_P^{x}, G_P^{x_j}\}])^T Y$$
 (2)

Théorème: Décroissance du paramètre $\hat{\beta}$

Dans le régime sur-paramétré, $||\hat{\beta}_P||_2$ est décroissante à partir du moment où le rang de la matrice Z_P devient maximal i.e $rg(Z_P) = N$.

◆□▶ ◆□▶ ◆草▶ ◆草▶ 草 めぬぐ

7/17

Emett Haddad Double Descente 27/06/2024

Théorème modèle linéaire quasi-isotropique

Conjecture: Limite du quotient de matrices aléatoires suivant une distribution orthonormée

$$\lim_{N \rightarrow +\infty, \frac{P}{N} \rightarrow \gamma, \frac{E}{N} \rightarrow \delta} \frac{1}{\min(P, N)} \mathrm{tr}[\mathbf{Z}_{\mathrm{E}} \mathbf{Z}_{\mathrm{E}}^{\mathrm{T}} (\mathbf{Z}_{\mathrm{P}} \mathbf{Z}_{\mathrm{P}}^{\mathrm{T}})^{\frac{1}{4}}] \Big] = \Big| \frac{1 - \delta}{1 - \gamma} \Big|$$

Théorème: Expression de l'excès de risque moyen asymptotique, cas du rang maximal

En prenant pour hypothèse la conjecture précédente. Et en supposant de plus que les $f_j(x_i)$ sont indépendants deux à deux. On pose $\mathcal{E}_{moyen}(\hat{y}) := \mathbb{E}_{\beta^{\star}, \epsilon_n}(\mathcal{E}(\hat{y}, \beta^{\star}))$.

En supposant : $\mathbb{E}(\beta^{\star}\beta^{\star T}) = \frac{||\beta^{\star}||_2^2}{E}I_E$, $rg(Z_P) = min(P, N)$, et \mathcal{F} features orthonormées par rapport à \mathbf{X} .

$$\overline{\mathcal{E}}(\gamma,\delta) := \lim_{N \to +\infty, \frac{P}{N} \to \gamma, \frac{E}{N} \to \delta} \mathcal{E}_{moyen}(\hat{y}_{\hat{\beta}}) \tag{3}$$

$$\overline{\mathcal{E}}(\gamma,\delta) = \sigma_{\phi}^2 \left[1 + \frac{\min(\gamma,1)}{\delta} \left(-2 + \left| \frac{1-\delta}{1-\gamma} \right| \right) \right] \cdot ||\beta^{\star}||_2^2 + \sigma_{\epsilon}^2 \frac{\min(\gamma,1)}{|1-\gamma|}$$
 (4)

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Emett Haddad Double Descente 27/06/2024 8

Justification expérimentale de la conjecture

Ici
$$\gamma = \lim_{N \to +\infty} \frac{P}{N}$$
 et $\delta = \lim_{N \to +\infty} \frac{E}{N}$.

Figure: Conjecture

Figure: Expérience numérique pour loi normale standard et N = 500

40.44.41.41.1.000

Emett Haddad Double Descente 27/06/2024 9 / 17

Modèle linéaire quasi-isotropique

Figure: Modèle linéaire précèdent, avec $\epsilon = 0$

Figure: Différence entre les modèles de Belkin [1] et E. Haddad

◆ロト ◆問 ト ◆ 臣 ト ◆ 臣 ・ 夕 Q ○

Emett Haddad Double Descente

Descente de gradient

Remarque:

Décomposition de l'erreur: Si l'on suppose ici que le bruit est nul i.e. $\epsilon_n=0$.

$$\sigma_{\Phi}^{-2} \mathcal{E}(\hat{y}_{\hat{\beta}_t}, \beta^{\star}) = ||\hat{\beta}_t - \beta^{\star}||_2^2 = ||\hat{\beta}_t - \hat{\beta}||_2^2 + 2\mathrm{tr}[(\hat{\beta}_t - \hat{\beta})^{\mathrm{T}}(\hat{\beta} - \beta^{\star})] + ||\hat{\beta} - \beta^{\star}||_2^2$$

Théorème: Descente de gradient à pas constant par morceaux

On suppose que $\hat{\beta}_0=0$ et avec t_1,\cdots,t_r changements de pas de descente de gradient. Alors, avec $t_{r+1} := t > t_r$:

$$\hat{\beta} - \hat{\beta}_t = V \begin{bmatrix} \Sigma_R^{-1} \prod_{j=0}^r (I_R - \alpha_j' \Sigma_R^2)^{t_{j+1} - t_j} & 0\\ 0 & 0 \end{bmatrix} U^T Y$$
 (5)

Corollaire: Approximation par descente de gradient à pas variable

Dans le cas où $\hat{\beta}_0=0$ et $\max({\alpha_{\rm j}}')<{\sigma_{\rm max}}^{-2}$, en notant $t_{r+1}:=t>t_r$ on a:

$$\sigma_{max}^{-1} \prod_{i=0}^{r} (1 - \underline{\alpha_j}' \sigma_{max}^2)^{t_j + 1 - t_j} ||Y||_2 \leq ||\hat{\beta}_t - \hat{\beta}||_2 \leq \sigma_{min}^{-1} \prod_{i=0}^{r} (1 - \underline{\alpha_j}' \sigma_{min}^2)^{t_j + 1 - t_j} ||Y||_2$$

Emett Haddad 11 / 17

Étude asymptotique des valeurs singulières

[&]quot;On the limit of the largest eigenvalue" [4] et "Marchenko–Pastur distribution" [2] pour $N \to +\infty$ et $P \setminus N \to \gamma$. Dans le cadre de notre base de features orthonormées,en notant $\mathbb{V}(\Phi_P(x)) = \sigma_\Phi^2 [1, \cdots, 1]^T$, on a alors $\sigma_{min} \simeq \sigma_\Phi |\sqrt{P} - \sqrt{N}|$ qui présente bien une courbe en U, et $\sigma_{max} \simeq \sigma_\Phi |\sqrt{P} + \sqrt{N}|$.

Emett Haddad Double Descente 27/06/2024 12 / 17

Régression pénalisée optimale

Définition: Régression pénalisée, et régression pénalisée optimale

- Risque empirique pénalisé $\hat{\mathcal{R}}_{\mathcal{D},\lambda}(\hat{y}_{\beta}) = ||Y Z\beta||_2^2 + \lambda ||\beta||_2^2$ où $\lambda > 0$.
- $\bullet \ \forall x \in \mathcal{X}, \ \hat{y}_{\hat{\beta}_{\lambda}}(x) = \Phi_P^T(x) \hat{\beta}_{\lambda}, \ \text{pour} \ \hat{\beta}_{\lambda} = (Z^T Z + \lambda I_P)^{-1} Z^T Y.$
- $\bullet \ \ \text{On pose } \lambda_{D,N}^{opt} := \underset{\lambda > 0}{\operatorname{argmin}} \ \overline{\mathcal{R}}(\hat{\beta}_{\lambda}) \ \text{où} \ \overline{\mathcal{R}}(\hat{\beta}_{\lambda}) = \mathbb{E}_{\mathcal{D}}(\mathcal{R}(\hat{\beta}_{\lambda})), \ \text{avec D et N fixés}.$

Ce qui fixe $\hat{\beta}_{D,N}^{opt} := \hat{\beta}_{\lambda_{D,N}^{opt}}$.

Théorème: Expression du paramètre optimal et décroissance du risque , Nakkiran et al. [3]

Dans le cadre linéaire simple, avec $\mathbf{X} \sim \mathcal{N}(0, I_D)$ et $P \in \mathcal{O}_{P,D}(\mathbb{R})$:

On note
$$\tilde{\sigma}^2_{\epsilon} = \sigma^2_{\epsilon} + \frac{P-D}{P} ||\beta^{\star}||_2^2$$

Avec:
$$y^*(x) = x^T \beta^*$$
, on a: $\forall \lambda \geq \lambda_D^{opt} = \frac{D\sigma_{\epsilon}^2}{||\beta^*||_2^2}, \ \overline{\mathcal{R}}(\hat{\beta}_{N,\lambda}) \geq \overline{\mathcal{R}}(\hat{\beta}_{N+1,\lambda})$

$$\mathrm{Avec}:\, \boldsymbol{y}^{\star}(\boldsymbol{x}) = (P\boldsymbol{x})^T \boldsymbol{\beta}^{\star} \,\,,\,\, \mathrm{on}\,\, \mathbf{a}:\, \forall \lambda \geq \lambda_{D,P}^{opt} = \frac{P^2 \hat{\sigma}_{\epsilon}^2}{D||\boldsymbol{\beta}^{\star}||_2^2},\,\, \overline{\mathcal{R}}(\hat{\beta}_{D,\lambda}) \geq \overline{\mathcal{R}}(\hat{\beta}_{D+1,\lambda})$$

4 D > 4 D > 4 E > 4 E > E 9 4 C

 Emett Haddad
 Double Descente
 27/06/2024
 13 / 17

Merci de votre écoute

Régression polynomiale

Figure: Résultats

On observe que le phénomène de double descente survient, que l'on commence par fixer N et faire varier P ensuite (premier exemple) ou au contraire, que l'on commence par fixer P et faire varier N ensuite \longrightarrow \bigcirc \bigcirc

Perceptron Multicouche (MLP)

Figure: Graphe de la MSE d'un algorithme MLP.

Emett Haddad Double Descente 27/06/2024 16 / 17

Bibliographie I

- [1] Mikhail Belkin, Daniel Hsu, and Ji Xu. "Two models of double descent for weak features". In: SIAM Journal on Mathematics of Data Science 2.4 (2020), pp. 1167–1180.
- [2] Ilja Kuzborskij et al. "On the role of optimization in double descent: A least squares study". In: Advances in Neural Information Processing Systems 34 (2021), pp. 29567–29577.
- [3] Preetum Nakkiran et al. "Optimal regularization can mitigate double descent". In: arXiv preprint arXiv:2003.01897 (2020).
- [4] Yong-Qua Yin, Zhi-Dong Bai, and Pathak R Krishnaiah. "On the limit of the largest eigenvalue of the large dimensional sample covariance matrix". In: *Probability theory and related fields* 78 (1988), pp. 509–521.

17 / 17

Emett Haddad Double Descente