NATIONAL BUREAU OF STANDARDS REPORT

4591

SPECTROPHOTOMETRIC AND COLORIMETRIC

STUDY OF DISEASED

AND RUST RESISTING CEREAL CROPS

By

Harry J. Keegan,

John C. Schleter,

Wiley A. Hall, Jr.,

and

Gladys M. Haas

To

U. S. Department of the Air Force Aerial Reconnaissance Laboratory Wright Air Development Center Wright-Patterson Air Force Base, Ohio

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C.. and its major field laboratories in Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside back cover of this report.

WASHINGTON, D. C.

Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instruments. Magnetic Measurements. Process Technology. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Mineral Products. Ceramic Engineering. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Conditioning. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. Components and Techniques. Digital Circuitry. Digital Systems. Analogue Systems. Applications Engineering.

• Office of Basic Instrumentation

• Office of Weights and Measures

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services.

Radio Propagation Engineering. Frequency Utilization Research. Tropospheric Propagation Research.

Radio Standards. High Frequency Standards Branch: High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Microwave Standards Branch: Extreme High Frequency and Noise. Microwave Frequency and Spectroscopy. Microwave Circuit Standards.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

0201-20-2325

July, 1956

4591

SPECTROPHOTOMETRIC AND COLORIMETRIC

STUDY OF DISEASED

AND RUST RESISTING CEREAL CROPS

By

Harry J. Keegan, John C. Schleter, Wiley A. Hall, Jr., and

Gladys M. Haas
Photometry and Colorimetry Section
Optics and Metrology Division

To

U. S. Department of the Air Force Aerial Reconnaissance Laboratory Wright Air Development Center Wright-Patterson Air Force Base, Ohio

Air Force Contract No. AF 33(616) 52-21 Task Number 62104

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

The publication, reprinti unless permission is obtai 25, D. C. Such permission cally prepared if that a Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

t, is prohibited ds, Washington as been specififor its own use.

PREFACE

This is one of a series of NBS reports of spectrophotometric and colorimetric work done under NBS Project No. 0201-20-2325 entitled Color Reconnaissance Studies, financed by the Aerial Reconnaissance Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio; Air Force Contract No. 33(616) 52-21. The present report on cereal crop diseases was made in cooperation with the National Research Council, Committee on Plant and Crop Ecology, Division of Biology and Agriculture, Dr. Everett F. Davis, Executive Secretary; and with its Subcommittee on Crop Geography and Vegetation Analysis, under the chairmanship of Dr. Robert N. Colwell, Associate Professor of Forestry and Associate Silviculturist in the Experiment Station, Department of Forestry, University of California, Berkeley, California.

Harry J. Keegan Project Leader

SPECTROPHOTOMETRIC AND COLORIMETRIC STUDY OF DISEASED AND RUST RESISTING CEREAL CROPS

Harry J. Keegan, John C. Schleter, Wiley A. Hall, Jr., and Gladys M. Haas *

Abstract

This study involves the development of a method for the detection and for the evaluation of wheat rust and of other cereal crop diseases in the field by means of ground or aerial photography based on spectrophotometric and colorimetric analyses of specimens of healthy and diseased cereal crops.

To develop this method, measurements of the visible and the near infrared spectral directional reflectance, or spectral transmittance, of 30 specimens of diseased and non-diseased cereal crop plants and of 6 specimens of rust were made on a General Electric recording spectrophotometer for the spectral range 400 to 1080 millimicrons. Three of the samples of rust were measured for spectral transmittance and three for spectral directional reflectance. All of the 30 specimens of diseased and rust resisting cereal crop plants were measured for spectral directional reflectance; 14 specimens, of which nine were young wheat plants, two mature heads of wheat, and three young rye plants were grown in pots under controlled conditions at the Plant Industry Station, USDA, Beltsville, Maryland; the remaining 16 were the leaves, heads, and stalks of three species of wheat grown in the field at Stillwater, Oklahoma, and flown to Washington, D. C. for measurement at the National Bureau of Standards.

These spectrophotometric measurements have been illustrated and tables of data are included as well as graphs and tables of chromaticity coordinates, dominant wavelength, excitation purity, daylight reflectance, Munsell renotations, and ISCC-NBS (Inter-Society Color Council - National Bureau of Standards) color designations. In addition, color difference determinations in terms of the NBS unit of color difference have been made between the same parts of different plants and between diseased and non-diseased parts of the same plants.

^{*} Miss Haas is at present employed at the Mare Island Naval Shipyard, San Francisco, California.

Contents

		Page	
I.	Introduction	• 3	
II.	Material	. 4	
III.	Preparation of Specimens	. 4	
IV.	Spectrophotometric Measurements	. 5	
₹.	Spectrophotometric Results	. 5	
VI.	Colorimetric Computations	. 6	
VII.	Munsell Renotations and ISCC-NBS Color Designations	. 6	
VIII.	Color-Difference Computations	• 7	
IX.	Specimens Grown Under Controlled Conditions at Beltsville, Md.	. 7	
	Figures 1 to 17	• 8 to	41
	Tables I to IV	•42 to	45
	Appendix A	. 46	
	Appendix B	• 60	
x.	Field-Grown Specimens from Stillwater, Oklahoma	• 68	
	Figures 18 to 31	•69 to	96
	Tables V to VIII	•97 to	100
	Appendix C	• 101	
	Appendix D	• 113	
XI.	Discussion	• 120	
XII.	Conclusions	. 124	
XIII.	Bibliography	- 124	
	Appendix E	• 126	

I. Introduction

The overall objective of this Air Force investigation is stated as follows: "To develop by visible, near infrared, and near ultraviolet spectrophotometry, methods for the detection of objects from color reconnaissance; to study the colors, tonal contrast, and color separation necessary in aerial photography to yield maximum information; to determine the wavelength region at which the film manufacturer should strive to obtain maximum sensitivity to yield clear separation of an object from its adjacent area rather than to yield true color fidelity; to determine the characteristics required in a sensitized material for the rapid and accurate extraction of this information".

The present report results from work that began prior to the formulation of the objective of the Air Force investigation as stated above but which carried over beyond July 1, 1952 when the WADC-financed NBS Color Reconnaissance Studies project began. In April, 1952, the Committee on Plant and Crop Ecology of the National Research Council, Dr. E. F. Davis, Executive Secretary, invited the senior author to attend a conference to assist in the development of methods for the detection of wheat rust in a field of growing wheat. With the approval of the Director of the National Bureau of Standards, arrangements were made to perform preliminary spectrophotometric determinations on controlled specimens of rust-resisting young wheat plants and susceptible young wheat plants that had been manually inoculated with wheat rust. The results of these initial determinations appeared promising and further preliminary investigations were made resulting in the recommendations of the present method. The pertinent events leading to this investigation are listed in chronological order in Appendix E of this report (page 126). In 1954, the Air Force became interested in these studies and the present report is made possible by their support of this work.

To develop fully this method for the detection of wheat rust in a field of growing wheat it was necessary to measure the spectral directional reflectance for the visible and near infrared spectrum, 400 to 1080 millimicrons of a number of specimens of the ventral sides of leaves of young wheat plants that had been manually inoculated and of similar species of rust-resisting plants. Measurements were also made of potted plants that had been maintained with low and with excessive water; of wheat rusts for both spectral transmittance and spectral directional reflectance; of the inoculated heads of susceptible and resisting wheat plants; of the leaves of diseased and healthy rye plants; and of leaves, stalks, and heads of three species of field grown wheat.

Illustrations were prepared showing the results of these visible and near infrared spectral directional reflectance and spectral transmittance measurements, and computations were made from the visible spectral data of these 36 specimens to illustrate their colorimetric properties in terms of the CIE standard observer and coordinate system chromaticity coordinates and daylight reflectances, as well as in terms of the Munsell renotation color

system, the ISCC-NBS system of color designations, and in terms of the NBS unit of color difference.

It is believed that this type of information is a necessary step in the development of methods for the aerial detection and evaluation of wheat rust or of other types of cereal crop diseases.

The method of measurement and computation used in this report is that requested in the original project proposal quoted above and used in four of the previous seven reports issued under this project. $\lceil 1, 2, 3, 4 \rceil *$

II. Material

The specimens measured in these determinations are of five types:
(a) young wheat plants grown in pots under controlled conditions, (b) mature wheat plants grown under controlled conditions, (c) specimens of spores from plants grown under controlled conditions, (d) young rye plants grown in pots under controlled conditions, and (e) mature wheat plants grown in the field.

The specimens grown under controlled conditions ((a), (b), and (c) above) were produced at the USDA Plant Industry Station at Beltsville, Maryland, and brought to the NBS for measurements by Dr. H. A. Rodenhiser of the Beltsville Station. These specimens are further identified in Table I (page 42) Specimen Numbers 1 to 17.

The specimens of young rye plants grown under controlled conditions ((d) above) were presumably grown at Beltsville, Maryland, and were brought to the NBS for measurements by Dr. Robert N. Colwell. These specimens are further identified in Table I, Specimen Numbers 18 to 20.

The mature wheat plants grown in the field ((e) above) were delivered to the NBS for measurement by Dr. Colwell, who had the specimens flown to Washington, D. C. from the USDA, Plant Industry Station, located at Stillwater, Oklahoma. These specimens are further identified in Table V (page 97) Specimen Numbers 21 to 36.

The specimen designations used in this report are those given by either Dr. Colwell or Dr. Rodenhiser.

III. Preparation of Specimens

In order to study the spectrophotometric properties of the specimen plants, it was necessary to cut from these plants sections of leaves, stalks, and heads. The size of these cut specimens was such that it was necessary to form composite samples made from several pieces of the same or similar parts of the plant. In the case of the leaves and stalks, each sample to be measured consisted of four or five lengths of specimen mounted between clear

^{*} Numbers in brackets refer to bibliography on page 124 of this report.

microscope cover glasses. The heads of the plants were placed in a clear glass cell ordinarily used for the measurement of spectral transmittance of solutions, using enough heads to fill the cell. The spore specimens ((c) above), like the leaves and stalks, were placed between clear microscope cover glasses. The spore specimens prepared for the measurement of spectral transmittance of the spore consisted of a thin layer of specimen; the specimens of spore for the spectral directional reflectance measurements consisted of a thick layer of specimen.

When mounted in the spectrophotometer for measurement of spectral directional reflectance, all of the composite specimens between microscope cover glasses and in the glass cell were backed with black velvet on a wooden block.

IV. Spectrophotometric Measurements

Measurements of spectral directional reflectance for the visible and near infrared spectral ranges (400 to 1080 millimicrons) were made for 33 specimens on a General Electric recording spectrophotometer [5, 6]. Similar measurements of spectral transmittance were also made on three specimens of spore.

The measurements of spectral directional reflectance were made for the condition of included specular component of the reflected radiant energy. Slits of approximately 10 millimicrons of spectral width were used for the measurements in the visible spectrum, 400 to 750 millimicrons, and 20 millimicrons of spectral width for the near infrared spectrum, 730 to 1080 millimicrons.

V. Spectrophotometric Results

The results of the spectrophotometric measurements of spectral directional reflectance or spectral transmittance of this report are shown on the 22 Ozalid copies of the original recordings from the General Electric recording spectrophotometer. These Ozalid copies are a part of Appendices A and C of this report; eleven of them are the visible spectrum, 400 to 750 millimicrons, and eleven of them are for the near infrared spectrum, 730 to 1080 millimicrons.

Values of spectral directional reflectance or spectral transmittance were read at 10 millimicron intervals from 400 to 1080 millimicrons for each of the 72 determinations made on the 36 specimens. These 72 sets of spectrophotometric data are listed in Appendices B and D. Forty of these 72 sets of spectrophotometric data for the controlled wheat, rye, and spore specimens grown at Beltsville, Maryland, are illustrated in Figures 1, 2, 3, 4, 9, 10, and 15. The remaining 32 sets of spectrophotometric data for the field grown wheat specimens from Stillwater, Oklahoma, are illustrated in Figures 18, 19, 20, 21, 22, 23, 24, and 25.

VI. Colorimetric Computations

The spectral-directional-reflectance or spectral-transmittance data of each of the 36 specimens listed in Appendices B and D for the visible spectrum (400 to 750 millimicrons) were converted into terms of luminous reflectance or luminous transmittance, Y, and chromaticity coordinates, x and y, of the C.I.E. colorimetric system by integration according to the C.I.E. standard observer [7] for C.I.E. source C, representative of average daylight. In addition to the chromaticity coordinates, x and y, the dominant wavelength, Λ , and excitation purity, p, of each of the 36 specimens have been derived.

Dominant wavelength and excitation purity are alternative specifications, more or less suggestive of the appearance of the color and help to form a chromaticity specification sometimes more easily understood than the chromaticity coordinates, x and y. Dominant wavelength is defined as the wavelength corresponding to the intersection with the spectrum locus in the C.I.E. diagram of a straight line drawn through the neutral point (Source C), and the sample point. Excitation purity is defined as the ratio of the distance, in the C.I.E. diagram, between the neutral point and the sample point to the distance between the neutral point and the point on the spectrum locus representing the dominant wavelength of the specimen. Dominant wavelength thus indicates what part of the spectrum has to be mixed with the neutral standard to produce the unknown color, and the excitation purity indicates the degree of approach of the unknown color to the spectrum color so defined. The dominant wavelength and excitation purity of the specimens of this report were determined from chromaticity data by means of graphs showing the conversion of C.I.E. chromaticity data into these terms [8].

The chromaticity coordinates, daylight reflectance or daylight transmittance, dominant wavelength, and excitation purity are listed in Tables II and VI and in illustrations of segments of the C.I.E. chromaticity diagram at the end of each of the two type classifications of this report; namely specimens grown in pots under controlled conditions (Figures 5, 6, 11, 12, and 16) at Beltsville, Maryland, and field-grown specimens (Figures 26, 27, and 28) from Stillwater, Oklahoma.

VII. Munsell Renotations and ISCC-NBS Color Designations

From the above-mentioned determinations of C.I.E. chromaticity coordinates and daylight reflectances or daylight transmittances of the 36 specimens studied in this report, the Munsell renotations (H V/C) were obtained from graphs of conversion from the C.I.E. system to the Munsell renotation system [9]. These Munsell renotations were then converted into terms of the ISCC-NBS (Inter-Society Color Council - National Bureau of Standards) color designations [10]. Similarly, these renotations and color designations are listed in Tables III and VII and illustrated (Figures 7, 8, 13, 14, 17, 29, 30, and 31) in graphs under the respective type classifications.

WIII. Color Difference Computations

From the Munsell renotations of the 36 specimens, color differences in terms of the NBS unit of color difference (ΔE) were computed by means of the Godlove formula [11], as follows:

$$\Delta E_{\text{NBS}} = 5 \left[2C_1C_2\phi(H) + (\Delta C)^2 + (4\Delta V)^2 \right]^{1/2},$$

where $\phi(H) = 1 - \cos 3.6\Delta H$, and ΔH , ΔV , and ΔC refer to differences in Munsell hue, value, and chroma, respectively.

These color differences were computed between diseased and non-diseased parts of the similar plants, between plants having excessive and low water content, and between the specimens of spores. These results are listed in Tables IV and VIII under the respective type classifications.

IX. Specimens Grown Under Controlled Conditions at Beltsville, Maryland

All of the 20 specimens grown under controlled conditions at the USDA Plant Industry Station, Beltsville, Maryland, are considered in this part of this report. Seventeen of them, wheat plants growing in pots, were brought to the NBS for measurement by Dr. H. A. Rodenhiser. The three rye specimens, two potted and one unpotted, were brought to the NBS for measurement by Dr. R. N. Colwell. The specimen designations given by Dr. Rodenhiser or by Dr. Colwell, together with the specimen numbers arbitrarily assigned and used throughout this section of this report, are listed in Table I (page 42).

Figures 1, 2, 3, 4, 9, 10, and 15 show spectral directional reflectance curves or spectral transmittance curves of the specimens designated in the legends of the illustrations. The data used for these illustrations are taken from those shown in Appendix A and listed in Appendix B.

The chromaticity coordinates, dominant wavelength, and excitation purity of the specimens of these seven illustrations are shown in segments of the C.I.E. chromaticity diagram, for Source C, in Figures 5, 6, 11, 12, and 16. The data used for these illustrations are listed in Table II. Table II also lists the daylight reflectance or daylight transmittance of these 20 specimens.

The Munsell renotations of these same specimens are illustrated in the schematic diagrams of the "Ideal Munsell System" in Figures 7, 8, 13, 14, and 17. The data used for these illustrations are listed in Table III together with the corresponding ISCC-NBS color designations.

Determinations were made of color difference between the related specimens indicated in Table IV.

Figure 1. Visible and near infrared spectral directional reflectance of the leaves of five specimens of young wheat plants:

- (1) Leaves of SUWON 92, sprayed and inoculated
- (2) Leaves of SUWON 92, sprayed
- (3) Leaves of LEE, natural
- (4) Leaves of wheat, inoculated (species undesignated)
- (9) Leaves of wheat, inoculated (species undesignated)

Figure 2. Visible and near infrared spectral directional reflectance of the leaves of two specimens of young wheat plants:

- (5) Leaves of L. C. Susceptible, inoculated (excessive water)
- (6) Leaves of L. C. 15B Susceptible, inoculated (low water)

Figure 3. Visible and near infrared spectral directional reflectance of the leaves of two specimens of young wheat plants:

- (7) Middle leaves, 127-36-L Resistant, (low water)
- (8) Top leaves, 127-17-L Resistant, (excessive water)

Figure 4. Visible and near infrared spectral directional reflectance of the heads (fruit) of two specimens of mature wheat plants:

- (10) Mature heads (fruit), Resisting 36 4-16-52; 5-36-L, inoculated
- (11) Mature heads (fruit), LC 10/19; 38 4-23-52, inoculated

Figure 5. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of the leaves of five specimens of young wheat plants:

- (1) Leaves of SUWON 92, sprayed and inoculated
- (2) Leaves of SUWON 92, sprayed
- (3) Leaves of LEE, natural
- (4) Leaves of wheat, inoculated (species undesignated)
- (9) Leaves of wheat, inoculated (species undesignated)

and of the heads (fruit) of two mature wheat plants:

- (10) Mature heads (fruit), Resisting 36 4-16-52; 5-36-L, inoculated
- (11) Mature heads (fruit), LC 10/19; 38 4-23-52, inoculated

*

Figure 6. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of the leaves of four specimens of young wheat plants:

- (5) Leaves of L. C. Susceptible, inoculated (excessive water)
- (6) Leaves of L. C. 15B Susceptible, inoculated (low water)
- (7) Middle leaves, 127-36-L, Resistant, (low water)
- (8) Top leaves, 127-17-L Resistant, (excessive water)

Figure 7. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of the leaves of five specimens of young wheat plants:

- (1) Leaves of SUWON 92, sprayed and inoculated
- (2) Leaves of SUWON 92, sprayed
- (3) Leaves of LEE, natural
- (4) Leaves of wheat, inoculated (species undesignated)
- (9) Leaves of wheat, inoculated (species undesignated)

and of the heads (fruit) of two mature wheat plants:

- (10) Mature heads (fruit), Resisting 36 4-16-52; 5-36-L, inoculated
- (11) Mature heads (fruit), LC 10/19; 38 4-23-52, inoculated

Figure 8. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of the leaves of four specimens of young wheat plants:

- (5) Leaves of L. C. Susceptible, inoculated (excessive water)
- (6) Leaves of L. C. 15B Susceptible, inoculated (low water)
- (7) Middle leaves, 127-36-L Resistant, (low water)
- (8) Top leaves, 127-17-L Resistant, (excessive water)

Figure 9. Visible and near infrared spectral directional reflectance of three specimens of wheat rust:

- (12) Pure spore
- (13) Pure leaf rust
- (14) Pure stem rust

Figure 10. Visible and near infrared spectral transmittance of three specimens of wheat rust:

- (15) Pure spore 15B 5/13/52
- (16) Pure leaf rust
- (17) Pure stem rust

Figure 11. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of three specimens of wheat rust, obtained from spectral directional reflectance data:

- (12) Pure spore
- (13) Pure leaf rust
- (14) Pure stem rust

Figure 12. Segment of the C.I.E. chromaticity
diagram showing dominant wavelength, excitation
purity, and chromaticity coordinates, for Source C,
of three specimens of wheat rust, obtained from
spectral transmittance data:

- (15) Pure spore 15B 5/13/52
- (16) Pure leaf rust
- (17) Pure stem rust

Figure 13. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of three specimens of wheat rust, obtained from spectral directional reflectance data:

- (12) Pure spore
- (13) Pure leaf rust
- (14) Pure stem rust

Figure 14. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of three specimens of wheat rust, obtained from spectral transmittance data:

- (15) Pure spore 15B 5/13/52
- (16) Pure leaf rust
- (17) Pure stem rust

Figure 15. Visible and near infrared spectral directional reflectance of the leaves of three specimens of young rye plants:

- (18) Leaves of rye, diseased
- (19) Leaves of rye, non-diseased
- (20) Leaves of rye (unpotted plant)

Figure 16. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of the leaves of three specimens of young rye plants:

- (18) Leaves of rye, diseased
- (19) Leaves of rye, non-diseased
- (20) Leaves of rye (unpotted plant)

Figure 17. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of the leaves of three specimens of young rye plants:

- (18) Leaves of rye, diseased
- (19) Leaves of rye, non-diseased
- (20) Leaves of rye (unpotted plant)

Table I

List of the specimens raised at the U.S.D.A. Plant Industry Station at Beltsville, Maryland, and brought to the NBS by Dr. Rodenhiser.

Object No.	Specimen Designations
	Diseased and Rust Resisting Wheat Leaves
(1) (2) (3) (4) (5) (6) (7) (8) (9)	Leaves of SUWON 92, Sprayed and Inoculated Leaves of SUWON 92, Sprayed Leaves of LEE, Natural Leaves of Wheat, Inoculated (species undesignated) Leaves of L. C. Susceptible, Inoculated (excessive water) Leaves of L. C. 15 B Susceptible, Inoculated (low water) Middle Leaves, 127-36-L Resistant (low water) Top Leaves, 127-17-L Resistant (excessive water) Leaves of Wheat, Inoculated (species undesignated)
	Inoculated Heads of Susceptible and Resisting Wheat
(10) (11)	Mature Heads (fruit), Resisting 36 4-16-52; 5-36-L, Inocul Mature Heads (fruit), LC 10/19; 38 4-23-52, Inoculated
	Wheat Spore (reflectance)
(12) (13) (14)	Pure Spore (reflectance) Pure Leaf Rust (reflectance) Pure Stem Rust (reflectance)
	Wheat Spore (transmittance)
(15) (16) (17)	Pure Spore 15B 5/13/52 (transmittance) Pure Leaf Rust (transmittance) Pure Stem Rust (transmittance)
	Diseased and Rust Resisting Rye
(18) (19) (20)	Leaves of Rye, Diseased Leaves of Rye, Non-diseased Leaves of Rye (unpotted plant)

Table II
Specimens from Beltsville, Maryland

Chromaticity Coordinates, Daylight Reflectances, Dominant Wavelength and Excitation Purity for C.I.E. Source C of the Specimens Studied.

Specimen Number	Chromaticity Coordinates x y	Reflectance	Dominant Wavelength (mu)	Excitation Purity (%)	
(1) (2) (3) (4) (5)	0.353 0.362 .322 .358 .326 .365 .411 .384 .354 .374	17.2 19.2 8.8	576.7 562.6 564.0 583.4 574.0	23.6 14.4 17.4 45.1 27.2	
(6) (7) (8) (9) (10)	.397 .409 .340 .406 .316 .363 .368 .372 .355 .356	12.2 7.9 21.9	576.5 564.1 557.0 578.1 579.2	48.0 32.0 14.1 30.4 22.8	
(11) (12) (13) (14) (15)	.358 .353 .462 .388 .391 .348 .373 .347 .338 .315	6.6 14.4 15.9	581.4 588.0 590.4 587.6 625.	22.6 60.0 30.0 25.0 6.9	
(16) (17) (18) (19) (20)	.499 .420 .412 .361 .348 .376 .320 .359	0.8* 23.1 19.2	586.0 589.0 571.5 561.0 561.2	78.3 39.4 26.1 14.1 16.7	

^{*}Daylight transmittance, Y(%).

Table III

Specimens from Beltsville, Maryland

Munsell Renotations and ISCC-NBS Color Designations of the Specimens Studied.

Specimen Number	Munsell Renotation	ISCC-NBS Color Designation
(1) (2) (3) (4) (5)	4.2Y 4.8/2.0 6.6GY 4.7/2.0 6.1GY 4.9/2.2 9.3YR 3.4/3.4 8.5Y 3.4/1.9	Light grayish olive Grayish yellow green Grayish yellow green Dark yellowish brown Grayish olive
(6) (7) (8) (9) (10)	5.0Y 3.7/3.5 5.8GY 4.0/3.4 8.2GY 3.3/2.1 2.7Y 5.2/2.9 0.6Y 7.1/2.7	Moderate olive Moderate olive green Dark grayish green Light olive brown Light grayish yellowish brown
(11) (12) (13) (14) (15)	9.1YR 6.5/2.7 6.3YR 3.0/4.9 2.8YR 4.3/3.4 4.5YR 4.5/2.7 N 0.2/	Light grayish yellowish brown Moderate brown Moderate reddish brown Light grayish reddish brown Black
(16) (17) (18) (19) (20)	8.4YR 2.7/5.9 N 0.7/ 0.5GY 5.4/2.5 7.2GY 4.9/2.1 6.9GY 4.6/2.3	Deep yellowish brown Black Light grayish olive Grayish yellow green Grayish yellow green

Table IV
Specimens from Beltsville, Maryland

Color Differences Computed from the Godlove Color-Difference Formula Between the Specimens Indicated.

	fference Specimens ber	Color Differenc			
Reference	Comparison	ΔE			
(1)	(2)	7.9			
(3)	(1)	8.0			
(3)	(2)	4.1			
(3)	(4)	33.6			
(3)	(9)	12.4			
(3)	(5)	15.3			
(7)	(6)	13.0			
(7)	(8)	15.6			
(10)	(11)	12.1			
(12)	(13)	27.4			
(12)	(14)	32.0			
(15)	(16)	58.1			
(15)	(17)	10.0			
(19)	(18)	11.3			
(19)	(20)	6.1			

Appendix A

Ozalid copies of the original recordings of spectral directional reflectance or of spectral transmittance of the 20 specimens of wheat or rye plants grown under controlled conditions at Beltsville, Md., and of spore made on a General Electric recording spectrophotometer.

Index to Appendix A

GE	Graph	Sheet	Serial
----	-------	-------	--------

	N	umber		
Specimen	Visible	Near Infrared	Curve	Date
Number	Spectrum	Spectrum	Number	Measured
				•
(1)	GE II- 964	GE II- 965	1	5- 7-52
(2)	- 964	- 965	2	5- 7-52
(3)	- 964	- 965	3	5- 7-52
(4)	- 969	- 970	4,5; and 4	5-15-52
(5)	- 972	- 971	1	5-16-52
(6)	- 972	- 971	2	5-16-52
(7)	- 972	- 971	3	5-16-52
(8)	- 972	- 971	4	5-16-52
(9)	- 986	- 987	1	6- 3-52
(10)	- 986	- 987	6	6- 3-52
(11)	- 986	- 987	7	6- 3 - 52
(12)	- 969	- 970	6; and 5	5 - 15 - 52
(13)	- 986	- 987	3	6- 3-52
(14)	- 986	- 987	5	6 - 3 - 52
(15)	- 973	- 974	1	5-26-52
(16)	- 986	- 987	2	6- 3-52
(17)	- 987	- 987	4	6- 3-52
(18)	- 1376	- 1377	1	1-19-54
(19)	- 1376	- 1377	2	1-19-54
(20)	- 1376	- 1377	3	1-19-54

Appendix B

Tables of spectral data on the 20 specimens read from the spectrophotometric curves of Appendix A.

Diseased and Rust Resisting Wheat (From Beltsville, Maryland)

Spectral Directional Reflectance of the Leaves of the Indicated Wheat Specimens for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-964 and 965)

(1) Leaves of SUWON 92

(2) Leaves of SUWON 92

(3) Leaves of LEE

Sprayed and Inoculated			Sprayed			Natural					
Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	R_{λ}
400 10 20 30 40	0.118 .120 .122 .122 .120	750 60 70 80 90	0.516 .539 .551 .560 .568	400 10 20 30 40	0.126 .128 .130 .130 .129	750 60 70 80 90	0.590 .622 .636 .6144 .646	400 10 20 30 40	0.134 .136 .136 .136	750 60 70 80 90	0.594 .622 .636 .642 .644
450 60 70 80 90	.120 .120 .120 .120	800 10 20 30 40	.576 .584 .590 .596 .602	450 60 70 80 90	.130 .130 .129 .128	800 10 20 30 40	. 648 . 648 . 648 . 647	450 60 70 80 90	.136 .136 .136 .136	800 10 20 30 40	.644 .646 .646 .646
500 10 20 30 40	.126 .131 .146 .172 .192	850 60 70 80 90	.608 .614 .620 .624 .629	500 10 20 30 40	.130 .139 .159 .186 .202	60 70	.646 .646 .646	500 10 20 30 40	.140 .152 .176 .207 .225	850 60 70 80 90	.646 .647 .648 .648
550 60 70 80 90	.204 .208 .205 .198 .195	900 10 20 30 40	.633 .636 .639 .642	550 60 70 80 90	.206 .204 .190 .174 .162	900 10 20 30 40	.644 .643 .642 .638	550 60 70 80 90	.230 .229 .214 .194 .182	900 10 20 30 40	.650 .650 .651 .650
600 10 20 30 40	.195 .195 .194 .194	950 60 70 80 90	.639 .634 .630 .630	600 10 20 30 40	.156 .151 .144 .140 .136	950 60 70 80 90	.634 .625 .616 .614	600 10 20 30 40	.175 .170 .160 .156	950 60 70 80 90	.638 .628 .618 .613
650 60 70 80 90	.190 .188 .185 .186	20 30	.634 .640 .646 .651	650 60 70 80 90	.128 .124 .118 .116 .121	20	.618 .622 .627 .632 .636	650 60 70 80 90	.140 .134 .128 .124 .132	20	.616 .622 .627 .632
700 10 20 30 40	.243 .307 .372 .438 .486	70	.662 .663 .665 .666	700 10 20 30 40	.169 .250 .344 .449 .534	7 0 80	.639 .641 .644	700 10 20 30 40	.188 .275 .366 .465	70	.639 .641 .644

Diseased and Rust Resisting Wheat (From Beltsville, Maryland)

Spectral Directional Reflectance of the Leaves of the Indicated Wheat Specimens for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-969, 970, 971, and 972.)

(4) Leaves of Wheat (5) Leaves of L.C. (6) Leaves of L.C. 15B Inoculated Susceptible, Inoculated Susceptible, Inoculated (species undesignated) (excessive water) (low water) Wave Wave Wave Wave Wave Wave R_{λ} R_{λ} Length R_{λ} R_{λ} R_{λ} R_{λ} Length Length Length Length Length mu mu mp ML mu mu 0.471 750 400 0.032 0.391 400 0.043 750 400 750 0.421 0.032 10 .035 60 .418 10 .047 60 .504 10 .035 60 .436 .524 20 .437 20 .050 70 .037 70 20 .450 .038 70 80 .453 .051 30 .038 80 .534 . 464 30 30 .040 80 .544 40 .039 90 .469 40 .051 90 40 .476 .040 90 450 .039 800 .483 450 .052 .550 450 800 .040 800 .488 60 .040 .498 .052 .556 10 60 10 60 .041 .500 10 70 .040 20 .512 .051 .563 70 20 70 .041 20 .510 .040 .524 .051 .568 80 30 80 30 80 .042 30 .520 .041 .539 .052 90 40 90 40 .572 90 . 044 40 .531 500 .043 850 .552 500 .576 .054 850 500 .047 850 .541 .046 60 .564 .056 .581 10 10 60 10 .054 60 .550 20 .054 70 .576 20 .066 .586 .559 70 20 .070 70 •068 .587 .081 .589 30 80 30 80 30 .094 80 ·568 .082 40 90 .597 40 .094 90 .592 40 ·575 .110 90 550 550 .596 550 .091 900 .606 .100 900 .582 .120 900 .615 .600 60 .096 10 60 .100 60 .590 10 .124 10 70 .100 20 .624 70 .094 20 .600 70 .121 20 .596 .632 .089 .601 .600 80 .102 30 80 30 80 .118 30 .638 .600 90 .106 70 .086 90 .116 90 70 40 .603 600 950 .644 600 .086 950 .599 600 950 .112 .118 .603 60 .648 .085 60 .592 60 .600 10 .117 10 10 .118 .589 .651 20 .122 .084 70 20 70 20 .118 70 .600 30 .128 80 .656 .084 .588 30 80 30 .120 80 .600 40 .133 90 .660 40 .084 90 40 .591 .119 90 .605 650 .664 650 .082 1000 .594 650 .137 .114 1000 .610 1000 60 .142 10 .669 60 .082 10 .600 60 .112 10 .618 .146 20 .675 .081 20 .605 20 . 625 70 70 70 .109 .153 .679 .610 80 80 .082 30 80 .110 30 .632 30 90 .167 40 .683 90 .088 40 .614 90 .134 40 .635 1050 .686 700 .198 700 .119 1050 .618 700 .192 1050 .641 .237 60 .691 .172 .620 10 10 60 10 .252 60 .644 .279 .693 20 .250 .625 .646 70 20 70 20 .311 70 .341 .325 .694 30 80 80 .626 .359 .648 30 30 80

.419

70

.396

70

40

.360

Diseased and Rust Resisting Wheat (From Beltsville, Maryland)

Spectral Directional Reflectance of the Leaves of the Indicated Wheat Specimens for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-971, 972, 986, and 987.)

(7) Middle Leaves, 127-36-L (8) Top Leaves, 127-17-L (9) Leaves of Wheat
Resistant Resistant Inoculated
(low water) (excessive water) (species undesignated)

(IOW Water)				(excessive water)				(species undesignated)				
Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	R_{λ}	Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	\mathbf{R}_{λ}	Wave Length mu	R_{λ}	
100 10 20 30 40	0.048 .054 .060 .062 .064	750 (60 70 80 90	•524 •544 •552 •558 •562	400 10 20 30 40	0.044 .050 .056 .058	750 60 70 80 90	•532 •568 •586 •596 •602	10 20 30 40	0.108 .112 .117 .122 .126	750 60 70 80 90	0.492 .502 .511 .520 .528	
450 60 70 80 90	.064 .065 .065 .065	800 10 20 30 40	•565 •568 •570 •572 •574	450 60 70 80 90	.060 .060 .060 .060	800 10 20 30 40	.606 .609 .612 .614	450 60 70 80 90	.128 .132 .134 .136 .138	800 10 20 30 40	•535 •544 •550 •556 •561	
500 10 20 30 40	.070 .084 .112 .141 .155	850 60 70 80 90	• 575 • 576 • 578 • 580 • 580	500 10 20 30 40	.060 .064 .074 .090 .098	850 60 70 80 90	.616 .618 .620 .621	500 10 20 30 40	.142 .150 .168 .194 .218	850 60 70 80 90	.567 .572 .576 .581 .584	
550 60 70 80 90	.160 .158 .142 .124 .112	900 10 20 30 40	.581 .582 .582 .582	550 60 70 80 90	.100 .096 .086 .076	900 10 20 30 40	.623 .624 .624 .624	550 60 70 80 90	.235 .246 .250 .248 .248	900 10 20 30 40	•588 •591 •594 •596 •598	
600 10 20 30 40	.106 .100 .091 .086 .080	950 60 70 80 90	•579 •574 •570 •570	600 10 20 30 40	.068 .064 .061 .059	950 60 70 80 90	.616 .611 .606 .604	600 10 20 30 40	.250 .250 .248 .250 .249	950 60 70 80 90	•599 •598 •598 •599 •600	
650 60 70 80 90	.070 .063 .056 .054 .074	1000 10 20 30 40	•576 •580 •585 •588 •591	650 60 70 80 90	.054 .051 .050 .050	1000 10 20 30 40	.610 .614 .618 .623	650 60 70 80 90	.241 .234 .224 .221 .241	1000 10 20 30 40	.602 .606 .608 .612 .614	
700 10 20 30 40	.150 .250 .346 .434 .492	1050 60 70 80	•595 •599 •600 •604	700 10 20 30 40	.086 .152 .249 .366 .465	1050 60 70 80	.630 .631 .632 .634	700 10 20 30 40	.304 .370 .424 .458 .478	1050 60 70 80	.616 .618 .620 .620	

Diseased and Rust Resisting Wheat (From Beltsville, Maryland)

Spectral Directional Reflectance of the Heads of the Indicated Wheat Specimens for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-986 and 987.)

(10) Mature Heads (Fruit) (11) Mature Heads (Fruit) LC 10/19; 38 4-23-52 Resisting 36 4-16-52; 5-36-L Inoculated Inoculated Wave Wave Wave Wave Length R_{λ} Length R_{\lambda} Length R_{λ} Length R_{\lambda} mp MT mu mu 750 0.598 400 0.168 750 0.658 400 0.149 .667 .608 .191 .166 60 60 10 10 .674 20 .186 20 .224 70 70 .616 .255 .678 .206 80 .623 30 80 30 .282 90 .682 40 .222 90 .630 40 .636 450 .305 800 .687 450 .236 800 .250 .642 . 324 .691 60 60 10 10 .261 .694 20 .648 70 . 340 20 70 .272 .652 80 - 354 30 .697 80 30 .284 .657 90 .365 40 .700 90 40 850 .662 .376 850 .702 500 .294 500 .386 .305 60 .666 10 60 10 .704 20 .398 20 .316 70 .670 70 .706 .408 80 .708 30 .328 80 .672 30 .708 .340 .674 40 .420 90 40 90 550 550 .434 .709 .352 900 .676 900 .449 .366 60 10 .676 60 10 .707 .463 .380 20 .678 70 20 .706 70 .394 .680 80 .472 .706 80 30 30 .408 .682 90 ,490 40 .708 90 40 .505 950 .684 950 600 .420 600 .708 .518 .434 60 .683 10 60 .706 10 .448 20 .530 .702 20 .681 70 70 .460 .678 30 .541 80 .699 30 80 40 .550 .694 .471 .676 90 40 90 650 650 .484 .674 .560 1000 .692 1000 .570 .692 60 .494 .676 60 10 10 .580 20 .694 70 .507 20 .676 70 .590 .520 .680 80 30 .694 80 30 •533 .680 90 .604 40 .696 90 40 .682 1050 .698 .546 1050 700 .616 700 .628 .558 . 684 .698 10 60 10 60 .686 20 .570 20 .636 70 .703 70 .580 .688 .643 80 30 80 30 .704

40

.652

.590

40

Wheat Rust Spore (From Beltsville, Maryland)

Spectral Directional Reflectance of Specimens of the Indicated Wheat Rust Spore for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II-969, 970, 986, and 987.)

(12) Pu	re Spor	e	(13)	Pure	Leaf Ru	st	(14) Pure Stem Rust				
Wave Length mu	n R _λ	Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	n R _λ	Wave Length mu	R_{λ}	Wave Length mu	n R _λ	Wave Length Mu	n R _λ	
400 10 20 30 40	0.023 .023 .022 .022	750 60 70 80 90	0.284 .302 .319 .334 .350	400 10 20 30 40	0.094 .093 .092 .092	750 60 70 80 90	0.377 .392 .404 .418 .430	400 10 20 30 40	0.108 .109 .109 .109	750 60 70 80 90	0.366 .379 .390 .403 .415	
450 60 70 80 90	.021 .021 .021 .021	800 10 20 30 40	.367 .383 .401 .417 .433	450 60 70 80 90	.091 .090 .090 .090	800 10 20 30 40	.444 .458 .474 .486	450 60 70 80 90	.108 .108 .107 .108	800 10 20 30 40	.426 .440 .451 .464 .476	
500 10 20 30 40	.023 .023 .029 .042 .053	850 60 70 80 90	.449 .465 .480 .495	500 10 20 30 40	.090 .090 .091 .099	850 60 70 80 90	•515 •531 •544 •558 •570	500 10 20 30 40	.111 .112 .118 .132 .145	850 60 70 80 90	.490 .501 .514 .524	
550 60 70 80 90	.061 .068 .075 .081	900 10 20 30 40	.522 .536 .548 .561 .572	550 60 70 80 90	.136 .149 .159 .168 .178	900 10 20 30 40	.584 .598 .611 .623 .634	550 60 70 80 90	.155 .161 .169 .176	900 10 20 30 40	•545 •556 •566 •576 •586	
600 10 20 30 40	.097 .105 .116 .126 .135	950 60 70 80 90	.584 .594 .604 .614	600 10 20 30 40	.188 .198 .209 .221	950 60 70 80 90	.645 .654 .665 .675 .685	600 10 20 30 40	.194 .201 .212 .221 .232	950 60 70 80 90	.594 .602 .610 .619	
650 60 70 80 90	.146 .157 .169 .182 .194	1000 10 20 30 40	.628 .636 .646 .651 .657	650 60 70 80 90	.244 .256 .270 .284 .295	1000 10 20 30 40	.692 .702 .710 .716	650 60 70 80 90	.244 .255 .266 .278 .290	1000 10 20 30 40	.630 .636 .641 .645	
700 10 20 30 40	.207 .222 .238 .253 .269	1050 60 70 80	.658 .663 .664 .668	700 10 20 30 40	.309 .323 .336 .352 .364	1050 60 70 80	·727 ·731 ·735 ·741	700 10 20 30 40	.304 .316 .330 .342 .355	1050 60 70 80	.654 .656 .660 .664	

Wheat Rust Spore (From Beltsville, Maryland)

Spectral Transmittance of Specimens of the Indicated Wheat Rust Spore for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II - 973, 974, 986, and 987.)

(15		Spore	15B	(16)	Pure	Leaf R	ust	(17) Pure	Stem R	ıst
Wave Length		/13/52 Wave Length mu	ι Тλ	Wave Length	τλ	Wave Lengti mu	h Τ _λ	Wave Lengt	h T _{\lambda}	Wave Lengti	h Τ _λ
400 10 20 30 40	0.003 .003 .003 .003	750 60 70 80 90	0.014 .015 .016 .018	400 10 20 30 40	0.012 .011 .010 .009 .008	750 60 70 80 90	0.134 .144 .146 .148 .150	400 10 20 30 40	0.005 .005 .005 .005	750 60 70 80 90	0.032 .034 .036 .038
450 60 70 80 90	.003 .003 .003 .002	800 10 20 30 40	.021 .023 .025 .027	450 60 70 80 90	.008 .008 .008 .008	800 10 20 30 40	.151 .153 .155 .156 .158	450 60 70 80 90	.001 .001 .001	800 10 20 30 40	.041 .044 .046 .048
500 10 20 30 40	.002 .002 .002 .002	850 60 70 80 90	.031 .033 .035 .037 .039	500 10 20 30 40	.008 .008 .010 .020	850 60 70 80 90	.160 .161 .162 .164 .164	500 10 20 30 40	.005 .005 .005 .006	850 60 70 80 90	.051 .053 .055 .056 .058
550 60 70 80 90	.003 .003 .003 .003	900 10 20 30 40	.041 .042 .044 .046	550 60 70 80 90	.056 .064 .070 .074	900 10 20 30 40	.166 .166 .167 .168	550 60 70 80 90	.008 .009 .009 .010	900 10 20 30 40	.060 .061 .062 .064
600 10 20 30 40	.003 .003 .004 .004	950 60 70 80 90	.049 .050 .052 .053	600 10 20 30 40	.082 .086 .090 .094 .096	950 60 70 80 90	.169 .170 .170 .170	600 10 20 30 40	.011 .012 .013 .014	950 60 70 80 90	.066 .066 .068 .068
650 60 70 80 90	.004 .005 .006 .006	1000 10 20 30 40	.055 .055 .057 .058	650 60 70 80 90	.100 .104 .106 .110	1000 10 20 30 40	.170 .171 .171 .171 .172	650 60 70 80 90	.016 .018 .019 .020	1000 10 20 30 40	.070 .070 .071 .071
700 10 20 30 40	.008 .009 .010 .011	1050 60 70 80	.059 .060 .062 .064	700 10 20 30 40	.116 .119 .121 .130 .132	1050 60 70 80	.170 .170 .170 .171	700 10 20 30 40	.024 .026 .028 .029	1050 60 70 80	.071 .071 .071

Diseased and Rust Resisting Rye (From Beltsville, Maryland)

Spectral Directional Reflectance of the Leaves of the Indicated Rye Specimens for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix A; GE Graph Sheets Serial No. GE II - 1376 and 1377.)

(18) Leaves of Rye Diseased				(19)		es of R		(20) Leaves of Rye (unpotted plant)			
Wave Length mu	R_{λ}	Wave Length mu	R _{\lambda}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R _{\lambda}	Wave Lengti mu	h R _λ
400 10 20 30 40	0.140 .140 .140 .140	750 60 70 80 90	0.556 .565 .571 .575	400 0 10 20 30 40	.144 .145 .144 .144	750 60 70 80 90	0.596 .608 .614 .616	400 10 20 30 40	0.116 .118 .118 .117 .116	750 60 70 80 90	0.688 .721 .736 .743 .746
450 60 70 80 90	.141 .142 .144 .144 .146	800 10 20 30 40	.584 .587 .590 .594	450 60 70 80 90	.144 .144 .144	800 10 20 30 40	.620 .620 .620 .620	450 60 70 80 90	.116 .116 .116 .116	800 10 20 30 40	.748 .749 .750 .750
500 10 20 30 40	.154 .172 .202 .236 .256	850 60 70 80 90	.600 .602 .604 .608	500 10 20 30 40	.146 .159 .186 .214	850 60 70 80 90	.620 .620 .620 .620	500 10 20 30 40	.119 .130 .155 .184 .195	850 60 70 80 9 0	.749 .749 .749 .749
550 60 70 80 90	.266 .269 .259 .246 .239	900 10 20 30 40	.612 .614 .616 .616	550 60 70 80 90	.230 .224 .206 .188 .178	900 10 20 30 40	.620 .620 .620 .620	550 60 70 80 90	.198 .193 .176 .159	900 10 20 30 40	.748 .746 .744 .739
600 10 20 30 40	.235 .230 .223 .221 .214	950 60 70 80 90	.614 .612 .612 .614	600 10 20 30 40	.174 .166 .160 .156	950 60 70 80 90	.614 .612 .612 .614	600 10 20 30 40	.144 .138 .131 .128 .123	950 60 70 80 90	.716 .703 .698 .698
650 60 70 80 90	.200 .191 .180 .179 .219	1000 10 20 30 40	.621 .626 .630 .634 .638	650 60 70 80 90	.142 .136 .132 .131 .150	1000 10 20 30 40	.620 .624 .628 .631 .634	650 60 70 80 90	.116 .110 .106 .105 .121	1000 10 20 30 40	.709 .716 .724 .730 .735
700 10 20 30 40	•314 •398 •464 •516 •541	1050 60 70 80	.641 .642 .645 .646	700 10 20 30 40	.219 .311 .410 .506	1050 60 70 80	.638 .640 .642 .642	700 10 20 30 40	.192 .288 .400 .530	1050 60 70 80	•739 •741 •742 •742

I. Field-Grown Specimens from Stillwater, Oklahoma

All of the 16 specimens from field-grown wheat plants grown at the USDA Plant Industry Station, Stillwater, Oklahoma, are considered in this part of this report. These specimens were from fields photographed from a plane a day or two previous to the date received at the NBS. The specimens were flown from Stillwater, Oklahoma, to Washington, D. C., and were brought to the NBS for measurement by Dr. R. N. Colwell on May 29, 1952. The specimen designations given by Dr. Colwell, together with the specimen numbers used throughout this section of this report are listed in Table V.

Figures 18 through 25 show the spectral-directional-reflectance curves of the specimens designated in the legends of the illustrations. The data used for these illustrations are taken from those shown in Appendix C and listed in Appendix D.

The chromaticity coordinates, dominant wavelength, and excitation purity of the specimens of these eight illustrations are shown in segments of the C.I.E. chromaticity diagram, for Source C, in Figures 26 through 28. The data used for these illustrations are listed in Table VI. Table VI also lists the daylight reflectance of the 16 specimens.

The Munsell renotations of these same specimens are illustrated in the schematic diagrams of the "Ideal Munsell System" in Figures 29 through 31. The data used for these illustrations are listed in Table VII together with the corresponding ISCC-NBS color designations.

Determinations were made of color difference between the related specimens indicated in Table VIII.

Figure 18. Visible and near infrared spectral directional reflectance of the leaves of two specimens of mature, field-grown, wheat plants:

- (21) Leaves of WESTAR, Section 2, Field C, High rust severity
- (24) Leaves of WESTAR, Section 2, Field C, Low rust severity

Figure 19. Visible and near infrared spectral directional reflectance of the heads (fruit) of two specimens of mature, field-grown, wheat plants:

- (22) Heads of WESTER, Section 2, Field C, High rust severity
- (25) Heads of WESTAR, Section 2, Field C, Low rust severity

Figure 20. Visible and near infrared spectral directional reflectance of the stalks of two specimens of mature, field-grown, wheat plants:

- (23) Stalks of WESTAR, Section 2, Field C, High rust severity
- (26) Stalks of WESTAR, Section 2, Field C, Low rust severity

Figure 21. Visible and near infrared spectral directional reflectance of the heads (fruit) of two specimens of mature, field-grown, wheat plants:

- (27) Heads of WICHITA, Section 5, Field D, High rust severity
- (29) Heads of WICHITA, Section 5, Field D, Low rust severity

Figure 22. Visible and near infrared spectral directional reflectance of the stalks of two specimens of mature, field-grown, wheat plants:

- (28) Stalks of WICHITA, Section 5, Field D, High rust severity
- (30) Stalks of WICHITA, Section 5, Field D, Low rust severity

Figure 23. Visible and near infrared spectral directional reflectance of the leaves of two specimens of mature, field-grown, wheat plants:

- (31) Leaves of BLUE JACKET, Section 9, Field D
- (34) Leaves of BLUE JACKET, Section 11, Field D

Figure 24. Visible and near infrared spectral directional reflectance of the heads (fruit) of two specimens of mature, field-grown, wheat plants:

- (32) Heads of BLUE JACKET, Section 9, Field D
- (35) Heads of BLUE JACKET, Section 11, Field D

Figure 25. Visible and near infrared spectral directional reflectance of the stalks of two specimens of mature, field-grown, wheat plants:

- (33) Stalks of BLUE JACKET, Section 9, Field D
- (36) Stalks of BLUE JACKET, Section 11, Field D

Figure 26. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of the leaves, heads, and stalks, of two specimens of mature, field grown, wheat plants:

- (21) Leaves of WESTAR, Section 2, Field C, High rust severity
- (22) Heads of WESTAR, Section 2, Field C, High rust severity
- (23) Stalks of WESTAR, Section 2, Field C, High rust severity
- (24) Leaves of WESTAR, Section 2, Field C, Low rust severity
- (25) Heads of WESTAR, Section 2, Field C, Low rust severity
- (26) Stalks of WESTAR, Section 2, Field C, Low rust severity

Figure 27. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of the heads and stalks of two specimens of mature, field-grown, wheat plants:

- (27) Heads of WICHITA, Section 5, Field D, High rust severity
- (28) Stalks of WICHITA, Section 5, Field D, High rust severity
- (29) Heads of WICHITA, Section 5, Field D, Low rust severity
- (30) Stalks of WICHITA, Section 5, Field D, Low rust severity

Figure 28. Segment of the C.I.E. chromaticity diagram showing dominant wavelength, excitation purity, and chromaticity coordinates, for Source C, of the leaves, heads, and stalks, of two specimens of mature, field-grown, wheat plants:

- (31) Leaves of BLUE JACKET, Section 9, Field D
- (32) Heads of BLUE JACKET, Section 9, Field D
- (33) Stalks of BLUE JACKET, Section 9, Field D
- (34) Leaves of BLUE JACKET, Section 11, Field D
- (35) Heads of BLUE JACKET, Section 11, Field D
- (36) Stalks of BLUE JACKET, Section 11, Field D

Figure 29. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of the leaves, heads, and stalks, of two specimens of mature, field-grown, wheat plants:

- (21) Leaves of WESTAR, Section 2, Field C, High rust severity
- (22) Heads of WESTAR, Section 2, Field C, High rust severity
- (23) Stalks of WESTAR, Section 2, Field C, High rust severity
- (24) Leaves of WESTAR, Section 2, Field C, Low rust severity
- (25) Heads of WESTAR, Section 2, Field C, Low rust severity
- (26) Stalks of WESTAR, Section 2, Field C, Low rust severity

Figure 30. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of the heads and stalks of two specimens of mature, field-grown, wheat plants:

- (27) Heads of WICHITA, Section 5, Field D, High rust severity
- (28) Stalks of WICHITA, Section 5, Field D, High rust severity
- (29) Heads of WICHITA, Section 5, Field D, Low rust severity
- (30) Stalks of WICHITA, Section 5, Field D, Low rust severity

Figure 31. Schematic illustration of the vertical and horizontal projections of the "ideal" Munsell system showing the Munsell Value (upper diagram) plotted against the Munsell Hue and Chroma points projected from the lower diagram of the leaves, heads, and stalks, of two specimens of mature, field-grown, wheat plants:

- (31) Leaves of BLUE JACKET, Section 9, Field D
- (32) Heads of BLUE JACKET, Section 9, Field D
- (33) Stalks of BLUE JACKET, Section 9, Field D
- (34) Leaves of BLUE JACKET, Section 11, Field D
- (35) Heads of BLUE JACKET, Section 11, Field D
- (36) Stalks of BLUE JACKET, Section 11, Field D

Table V

List of the specimens raised at Stillwater, Oklahoma, and brought to the NBS by Dr. Colwell on May 29, 1952.

Object Number	Specimen Designations
(21)	Leaves of WESTAR, Section 2, Field C, High Rust Severity
(22) (23)	Heads of WESTAR, Section 2, Field C, High Rust Severity Stalks of WESTAR, Section 2, Field C, High Rust Severity
(24)	Leaves of WESTAR, Section 2, Field C, Low Rust Severity
(25)	Heads of WESTAR, Section 2, Field C, Low Rust Severity
(26)	Stalks of WESTAR, Section 2, Field C, Low Rust Severity
(27)	Heads of WICHITA, Section 5, Field D, High Rust Severity
(28)	Stalks of WICHITA, Section 5, Field D, High Rust Severity
(29)	Heads of WICHITA, Section 5, Field D, Low Rust Severity
(30)	Stalks of WICHITA, Section 5, Field D, Low Rust Severity
(31)	Leaves of BLUE JACKET, Section 9, Field D
(32)	Heads of BLUE JACKET, Section 9, Field D
(33)	Stalks of BLUE JACKET, Section 9, Field D
(34)	Leaves of BLUE JACKET, Section 11, Field D
(35)	Heads of BLUE JACKET, Section 11, Field D
(36)	Stalks of BLUE JACKET, Section 11, Field D

Table VI
Specimens from Stillwater, Oklahoma

Chromaticity Coordinates, Daylight Reflectances, Dominant Wavelength and Excitation Purity for C.I.E. Source C of the Specimens Studied.

Specimen Number	Chroma Coordin		Daylight Reflectance Y(%)	Dominant Wavelength (mu)	Excitation Purity (%)
(21)	0.364	0.367	22.9	578.5	28.0
(22)	•339	•370	20.3	569.4	22.1
(23)	•329	•365	17.8	565.8	18.0
(24)	•330	•363	18.9	566.4	17.9
(25)	•342	•371	20.9	570.3	23.1
(26)	•336	.378	20.9	566.4	23.4
(27)	•357	.373	26.0	575.0	27.8
(28)	•376	.387	43.5	576.6	36.8
(29)	•343	.372	23.3	570.6	23.7
(30)	•334	.370	20.6	567.2	20.9
(31)	•340	•369	21.0	570.0	22.2
(32)	•342	•374	20.4	569.8	24.0
(33)	•330	•367	19.0	566.0	18.9
(34)	•338	•366	18.8	569.9	20.8
(35)	•342	•375	21.7	569.6	24.3
(36)	.328	.363	17.8	565.6	17.2

Table VII

Specimens from Stillwater, Oklahoma

Munsell Renotations and ISCC-NBS Color Designations of the Specimens Studied

Specimen Number	Munsell Renotation	ISCC-NBS Color Designation
(21) (22) (23) (24) (25)	2.4Y 5.3/2.3 2.4GY 5.1/2.2 5.3GY 4.8/2.1 4.9GY 4.9/2.0 1.5GY 5.1/2.3	Light olive brown Grayish yellow green Grayish yellow green Grayish yellow green Light grayish olive
(26) (27) (28) (29) (30)	4.9GY 5.1/2.6 5.9Y 5.6/2.6 4.0Y 7.0/4.2 1.3GY 5.4/2.4 4.3GY 5.1/2.3	Grayish yellow green Light grayish olive Grayish yellow Light grayish olive Grayish yellow green
(31) (32) (33) (34) (35)	1.7GY 5.1/2.2 2.0GY 5.1/2.4 5.2GY 4.9/2.2 1.6GY 4.9/2.0 2.3GY 5.2/2.4	Light grayish olive Grayish yellow green Grayish yellow green Light grayish olive Grayish yellow green
(36)	5.4GY 4.8/2.0	Grayish yellow green

Table VIII

Specimens from Stillwater, Oklahoma

Color Differences Computed from the Godlove Color-Difference Formula between the Specimens Indicated.

Between Num	Specimens aber Comparison	Color Difference \$\Delta E\$
reletence	Compar 13011	<u> </u>
(24)	(21)	11.6
(25)	(22)	0.8
(26)	(23)	6.5
(21)	(22)	8.0
(21)	(23)	13.3
(24)	(25)	4.8
(24)	(26)	5.0
(27)	(29)	5.9
(28)	(30)	40.4
(31)	(34)	4.1
(32)	(35)	2.0
(33)	(36)	2.2
(31)	(32)	1.0
(31)	(33)	4.6
(34)	(35)	6.3
(34)	(36)	3.1

Appendix C

Ozalid copies of the original spectrophotometric recordings of the 16 field-grown specimens of wheat from Stillwater, Oklahoma, made on a General Electric recording spectrophotometer.

Index to Appendix C

GE	Graph	Sheet	Serial
	3.7	9	

	Nur			
Specimen Number	Visible Spectrum	Near Infrared Spectrum	Curve Number	Date Measured
(21)	GE II- 975	GE II- 976	1	5-29-52
(22)	- 980	- 977	1	5-29-52
(23)	- 979	- 978	1	5-29-52
(24)	- 975	- 976	2	5-29 - 52
(25)	- 980	- 977	2	5-29-52
(26)	- 979	- 978	2	5-29-52
(27)	- 981	- 982	1	5-29-52
(28)	- 981	- 982	2	5-29-52
(29)	- 981	- 982	3	5-29-52
(30)	- 981	- 982	4	5-29-52
(31)	- 984	- 983	1	5-29-52
(32)	- 984	- 983	2	5-29-52
(33)	- 984	- 983	3	5-29-52
(34)	- 984	- 983	4	5-29-52
(35)	- 984	- 983	5	5-29-52
(36)	- 984	- 983	6	5-29-52

Appendix D

Tables of spectral directional reflectance read from the spectrophotometric curves of Appendix C.

Spectral Directional Reflectance of the Indicated Parts of Field Infected Mature Wheat Crops for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II - 975, 976, 977, 978, 979, and 980.)

Se	ection	of West 2, Fiel st Seven	Ld C	(22) Heads of Westar Section 2, Field C High Rust Severity				(23) Stalks of Westar Section 2, Field C High Rust Severity			
Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}
10 20 30 40	0.110 .117 .124 .129 .134	750 60 70 80 90	0.498 .509 .519 .528 .536	400 10 20 30 40	0.100 .106 .114 .121 .128	750 60 70 80 90	0.573 .600 .614 .622 .626	400 10 20 30 40	0.100 .104 .112 .119 .124	750 60 70 80 90	0.635 .663 .678 .685 .688
450 60 70 80 90	.140 .146 .150 .156 .160	800 10 20 30 40	.545 .554 .562 .570 .578	450 60 70 80 90	.135 .140 .142 .145	800 10 20 30 40	.630 .632 .634 .634	450 60 70 80 90	.126 .128 .130 .130	800 10 20 30 40	.690 .690 .691 .692
500 10 20 30 40	.166 .176 .190 .208 .224	850 60 70 80 90	.585 .591 .598 .603	500 10 20 30 40	.155 .169 .189 .210	850 60 70 80 90	.634 .633 .633 .632	500 10 20 30 40	.134 .144 .164 .189 .204	850 60 70 80 90	.692 .692 .692 .692
550 60 7 0 80 90	.236 .244 .250 .251 .256	900 10 20 30 40	.614 .619 .623 .626	550 60 70 80 90	.229 .230 .223 .212 .206	900 10 20 30 40	.631 .629 .626 .622	550 60 70 80 90	.209 .207 .196 .180	900 10 20 30 40	.692 .692 .692 .691
600 10 20 30 40	.260 .264 .265 .270 .270	950 60 70 80 90	.634 .636 .639 .642	600 10 20 30 40	.202 .199 .191 .189	950 60 70 80 90	.602 •586 •572 •565 •563	600 10 20 30 40	.166 .162 .156 .151 .148	950 60 70 80 90	.684 .677 .670 .668
650 60 70 80 90	.265 .262 .260 .266 .294	1000 10 20 30 40	.648 .652 .654 .658	650 60 70 80 90	.175 .166 .154 .150	1000 10 20 30 40	.566 .570 .578 .586	650 60 70 80 90	.140 .135 .128 .126 .136	1000 10 20 30 40	.670 .674 .678 .681
700 10 20 30 40	.350 .399 .438 .465 .484	1050 60 70 80	.661 .664 .666	700 10 20 30 40	.230 .300 .380 .458 .528	1050 60 70 80	.598 .601 .606 .608	700 10 20 30 40	.190 .279 .385 .492 .579	1050 60 70 80	.690 .692 .695 .697

Spectral Directional Reflectance of the Indicated Parts of Field Infected Mature Wheat Crops for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II -975, 976, 977, 978, 979, and 980.)

(24) Leaves of Westar Section 2, Field C Low Rust Severity

(25) Heads of Westar Section 2, Field C Low Rust Severity (26) Stalks of Westar
Section 2, Field C
Low Rust Severity

	011 1000	O DC VCI .			2011 114250 250 154 153			Don itase bo toring			
Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	\mathbb{R}_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R _{\lambda}
400 10 20 30 40	0.114 .116 .122 .129 .134	750 60 70 80 90	0.598 .624 .639 .646 .650	400 10 20 30 40	0.100 .106 .114 .122 .130	750 60 70 80 90	0.575 .600 .614 .622 .626	400 10 20 30 40	0.104 .108 .116 .124 .130	750 60 70 80 90	0.670 .695 .708 .714 .716
450 60 70 80 90	.136 .138 .138 .139	800 10 20 30 40	.653 .656 .658 .660	450 60 70 80 90	.136 .142 .146 .148	800 10 20 30 40	.630 .632 .634 .634	450 60 70 80 90	.134 .136 .138 .139	800 10 20 30 40	.718 .719 .720 .720
500 10 20 30 40	.145 .156 .176 .200 .214	850 60 70 80 90	.664 .665 .666 .668	500 10 20 30 40	.158 .172 .192 .214 .226	850 60 70 80 90	.634 .633 .633	500 10 20 30 40	.146 .162 .191 .225 .244	850 60 70 80 90	.720 .720 .720 .720 .720
550 60 70 80 90	.220 .218 .206 .192 .184	900 10 20 30 40	.670 .670 .671 .672	550 60 70 80 90	.234 .236 .230 .220 .214	900 10 20 30 40	.631 .629 .626 .620	550 60 70 80 90	.250 .250 .234 .214 .201	900 10 20 30 40	.720 .720 .719 .717 .714
600 10 20 30 40	.180 .176 .169 .166	950 60 70 80 90	.670 .666 .664 .665	600 10 20 30 40	.210 .206 .200 .198 .194	950 60 70 80 90	.600 .582 .566 .558	600 10 20 30 40	.195 .189 .179 .174 .168	950 60 70 80 90	.708 .700 .691 .688
650 60 70 80 90	.153 .146 .140 .138 .154	1000 10 20 30 40	.666 .670 .673 .675	650 60 70 80 90	.184 .176 .164 .160	1000 10 20 30 40	.560 .566 .574 .582	650 60 70 80 90	.156 .148 .136 .132	1000 10 20 30 40	.690 .694 .700 .704
700 10 20 30 40	.216 .295 .384 .480 .552	1050 60 70 80	.681 .682 .682 .684	700 10 20 30 40	.240 .316 .396 .470 .532	1050 60 70 80	.598 .601 .606 .608	700 10 20 30 40	.224 .330 .441 .540 .622	1050 60 70 80	.714 .716 .719 .720

Spectral Directional Reflectance of the Indicated Parts of Field Infected Mature Wheat Crops for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II - 981 and 982.)

(27) Heads of Wichita (28) Stalks of Wichita

(21)	Section	n 5, Fie	eld D		Secti	on 5, F Rust Se	
Wave Length mu	n R _{\lambda}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	n R _λ
400 10 20 30 40	0.104 .112 .126 .138 .149	750 60 70 80 90	.514 .514 .519 .524 .528	400 10 20 30 40	0.108 .122 .154 .188 .212	750 60 70 80 90	0.719 .726 .728 .730 .732
450 60 70 80 90	.157 .164 .171 .175 .180	800 10 20 30 40	534536540542544	450 60 70 80 90	.228 .238 .248 .252 .257	800 10 20 30 40	732734734735
500 10 20 30 40	.189 .205 .227 .250	850 60 70 80 90	•546 •548 •550 •552 •553	500 10 20 30 40	.270 .298 .344 .399 .441	850 60 70 80 90	.736 .736 .736 .736
550 60 7 0 80 90	.276 .284 .286 .284 .283	900 10 20 30 40	553552552550548	550 60 70 80 90	.469 .488 .496 .496	900 10 20 30 40	736736736735734
600 10 20 30 40	. 284 . 283 . 280 . 278 . 276	950 60 70 80 90	.541 .531 .520 .514 .512	600 10 20 30 40	.500 .499 .494 .492 .488	950 60 70 80 90	.732 .729 .726 .724
650 60 70 80 90	.264 .255 .239 .234 .264	1000 10 20 30 40	.514 .518 .524 .530 .536	650 60 70 80 90	.469 .450 .420 .410 .461	1000 10 20 30 40	.724 .726 .728 .732 .735
700 10 20 30 40	.338 .404 .453 .479	1050 60 70 80	.542 .546 .550 .554	700 10 20 30 40	.562 .634 .674 .700 .712	1050 60 70 80	.736 .736 .739 .740

Spectral Directional Reflectance of the Indicated Parts of Field Infected Mature Wheat Crops for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II - 981 and 982.)

Heads of Wichita (30)Stalks of Wichita Section 5, Field D Section 5, Field D Low Rust Severity Low Rust Severity Wave Wa ve Wave Wave Length R_{\lambda} Length R_{λ} R_{λ} Length Length R_{\lambda} mu mu mu mu 0.574 400 750 750 0.664 0.114 400 0.104 .593 60 10 .120 10 .112 60 .691 .604 20 .130 70 20 .121 70 .706 30 .138 80 .610 30 .130 80 .712 40 .144 90 .61.6 40 .136 90 . 715 450 .150 800 .619 450 .140 800 .716 .155 60 .622 60 .143 10 10 .718 .158 70 20 .624 70 -144 20 .719 .626 80 .160 30 .144 80 30 .720 90 .163 .625 90 40 .146 40 .720 500 .172 850 .625 500 .150 850 .720 .188 .626 10 60 .163 10 60 .720 20 .213 70 .627 20 .186 70 .720 30 .238 .628 30 .218 80 80 .720 . 254 90 .626 40 40 .236 90 .720 550 .262 .625 550 . 244 900 900 .719 60 . 264 .623 60 . 244 .71.8 10 10 70 .258 20 .620 70 .231 20 .718 80 .248 .616 30 80 .214 30 .716 90 .239 40 .608 90 .201 .711 40 .236 950 .596 600 600 950 .196 .705 .578 10 .231 60 10 .190 60 .696 .562 .686 20 . 224 70 20 .182 70 .554 30 .220 80 .680 30 .178 80 .551 40 .214 90 .172 90 .675 40 650 650 .202 1000 -554 .161 .676 1000 60 .192 10 •560 60 .154 .687 10 .566 70 .178 20 70 .145 20 .692 .576 .141 80 .172 30 80 30 .699 90 .194 .583 90 .154 40 40 . 703 .588 700 -264 1050 700 .220 1050 .708 10 ·339 60 •595 10 .318 60 .711 20 .414 .600 20 .425 70 70 .712 30 .484 80 30 **.**530 .602 80 .714 40 .539 40 .613

Spectral Directional Reflectance of the Indicated Parts of Field Infected Mature Wheat Crops for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II - 983 and 984.)

(31) Leaves of Blue Jacket (32) Heads of Blue Jacket (33) Stalks of Blue Jacket Section 9, Field D Section 9, Field D

	SEC OT OF	1 79 11	era n	-	DEC 01	011 79 1	Tera D	-	Dec of	OII 79 F	TeTa D
Wave Length mu	R _{\lambda}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}
400 0 10 20 30 40	.106 .114 .122 .130 .136	750 60 70 80 90	0.593 .630 .644 .653 .660	400 10 20 30 40	0.098 .103 .110 .118 .125	750 60 70 80 90	0.541 •563 •575 •582 •587	400 (10 20 30 40	.104 .114 .122 .129	750 60 70 80 90	0.653 .676 .691 .698
450 60 70 80 90	.140 .144 .146 .148 .150	800 10 20 30 40	.666 .670 .676 .680	450 60 70 80 90	.130 .136 .138 .140 .144	800 10 20 30 40	.591 .596 .598 .600	450 60 70 80 90	.134 .136 .138 .139	800 10 20 30 40	.702 .704 .706 .706
500 10 20 30 40	.155 .169 .192 .216	850 60 70 80 90	.688 .692 .695 .698	500 10 20 30 40	.150 .168 .189 .211 .224	850 60 70 80 90	.604 .606 .606 .609	500 10 20 30 40	.146 .158 .180 .204 .216	850 60 70 80 90	.708 .708 .709 .710
550 60 70 80 90	.240 .240 .232 .220 .213	900 10 20 30 40	.702 .705 .706 .708	550 60 70 80 90	.230 .230 .224 .214 .208	900 10 20 30 40	.608 .606 .605 .602	550 60 70 80 90	.221 .219 .206 .192 .184	900 10 20 30 40	.710 .710 .710 .710 .709
600 10 20 30 40	.210 .205 .199 .196 .192	950 60 70 80 90	.710 .707 .705 .704 .706	600 10 20 30 40	.206 .200 .194 .190 .186	950 60 70 80 90	•584 •569 •555 •548 •546	600 10 20 30 40	.180 .175 .168 .164 .160	950 60 70 80 90	.706 .701 .696 .694
650 60 70 80 90	.180 .172 .162 .161 .183	1000 10 20 30 40	.708 .711 .714 .718 .720	650 60 70 80 90	.176 .166 .152 .150 .174	1000 10 20 30 40	.550 .556 .564 .572 .580	650 60 70 80 90	.152 .146 .138 .135 .150	1000 10 20 30 40	.695 .698 .700 .704 .708
700 10 20 30 40	.254 .334 .411 .497 .556	1050 60 70 80	.723 .724 .723 .725	700 10 20 30 40	.238 .309 .384 .454 .507	1050 60 70 80	•586 •592 •594 •596	700 10 20 30 40	·210 ·300 ·413 ·511 ·598	1050 60 70 80	.708 .710 .714 .715

Spectral Directional Reflectance of the Indicated Parts of Field Infected Mature Wheat Crops for the Visible and Near Infrared Spectrum, 400 to 1080 Millimicrons. (See Appendix C; GE Graph Sheets Serial No. GE II - 983 and 984.)

(34) Leaves of Blue Jacket (35) Heads of Blue Jacket
Section 11, Field D Section 11, Field D Section 11, Field D

Wave Length mµ	R _{\lambda}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}	Wave Length mu	R_{λ}
10 20 30 40	0.106 .111 .116 .124 .125	750 0 60 70 80 90	.625 .635 .643	100 (100 (100 (100 (100 (100 (100 (100	.106 .111 .116 .124 .130	750 60 70 80 90	0.582 .600 .616 .624	400 10 20 30 40	0.098 .103 .110 .118 .125	750 60 70 80 90	.622 .650 .664 .671
450 60 70 80 90	.128 .131 .132 .132 .134	800 10 20 30 40	.650 .658 .664 .670	450 60 70 80 90	.138 .144 .146 .148 .151	800 10 20 30 40	.634 .638 .640 .642 .642	450 60 70 80 90	.128 .131 .132 .132 .134	800 10 20 30 40	.676 .678 .679 .680
500 10 20 30 40	.139 .150 .170 .194 .208	850 60 70 80 90	.680 .685 .690 .694	500 10 20 30 40	.161 .178 .202 .226 .240	850 60 70 80 90	. 643 . 646 . 646 . 646	500 / 10 20 30 40	.139 .150 .169 .190 .202	850 60 70 80 90	.681 .682 .682 .683
550 60 70 80 90	.216 .216 .208 .198 .190	900 10 20 30 40	.700 .704 .706 .709	550 60 70 80 90	.246 .246 .239 .227 .220	900 10 20 30 40	.645 .644 .642 .638 .629	550 60 70 80	.206 .204 .193 .180 .171	900 10 20 30 40	.684 .684 .683 .681
600 10 20 30 40	.186 .182 .176 .174 .169	950 60 70 80 90	.706 .701 .698 .696	600 10 20 30 40	.216 .211 .204 .200 .196	950 60 70 80 90	.615 .596 .578 .570	600 10 20 30 40	.168 .164 .156 .154	950 60 70 80 90	.678 .672 .666 .664
650 60 70 80 90	.158 .151 .143 .142	1000 10 20 30 40	.700 .706 .710 .715 .720	650 60 70 80 90	.184 .174 .160 .155 .182	1000 10 20 30 40	.572 .580 .589 .596 .608	650 60 70 80 90	.143 .138 .130 .128 .141	1000 10 20 30 40	.666 .670 .674 .678
700 10 20 30 40	•229 •310 •394 •473 •533	1050 60 70 80	.722 .726 .726 .728	700 10 20 30 40	.254 .334 .412 .484 .542	1050 60 70 80	.614 .620 .627 .629	700 10 20 30 40	.194 .278 .382 .484 .570	1050 60 70 80	.682 .684 .685 .686

XI. Discussion

The spectrophotometry of diseased and healthy cereal crops shows that the spectral directional reflectance of the diseased wheat and rye plants differ from that of healthy wheat and rye plants in two regions of the 400 to 1080 millimicron spectrum studied; namely, 600 to 700 millimicrons in the visible spectrum, and 750 to 900 millimicrons in the near infrared spectrum. The average spectral directional reflectances of the diseased wheat specimens behind a cover glass were found to be 0.228 at 650 millimicrons and 0.565 at 800 millimicrons. Those for the healthy specimens were found to be 0.145 and 0.655, respectively. After subtracting 0.080 from each of these values to correct for light reflected from the cover glass, we find the reflectance ratio, diseased to healthy, to be 2.25 at 650 millimicrons and 0.85 at 800 millimicrons.

These differences are more prominent for the leaves of the young wheat plants, the leaves of the young rye plants, the leaves of Westar, and the heads of Wichita (Figures 1, 2, 3, 15, 18, and 21) than for the stalks of Westar and Wichita, and the leaves, heads and stalks of Blue Jacket. These latter do not show the crossing over of the curves of high and low severity of infestation at wavelength 730 millimicrons (Figures 20, 22, 23, 24, and 25).

Both of the young wheat plants of the susceptible variety kept at low and at excessive water content showed signs of disease (Figure 2), with the plant kept at low water content showing the more advanced degree. No evidence of disease was indicated in either of the young wheat plants of the resisting variety (Figure 3), one kept at low, the other at excessive water. These plants behaved as any other plant would when allowed to dry [1]. Similarly, the unpotted rye plant with soil around its roots and wrapped in wet paper showed the same characteristics as the wheat plant kept at excessive water content and with no signs of disease (Figure 15).

The detection of diseased wheat heads in the early stages of maturity is quite similar to detection of diseased leaves as may be seen by comparing Figure 21 for the heads of Wichita for high and for low rust severity with Figures 1, 2, 3, 15, and 18. Note that the chlorophyll absorption band at 670 millimicrons is weaker for the plants having high rust severity, regardless of whether the leaves or the heads are considered. Similarly, both leaves and heads of the plants having high rust severity show a decreased reflectance in the infrared (750 to 900 millimicrons) region of the spectrum which like the weakening of the chlorophyll band corresponds to highly increased numbers of spores on the plant (see Figure 9 for the spectral directional reflectance of spores alone). On the other hand, this pattern of reflectance changes fails to appear in the measurements (Figure 4) of the cultured plants from Beltsville, Maryland. From the absence of the chlorophyll bands in Figure 4 and from the much lessened absorption bands for water at 980 millimicrons, it is apparent that the heads of these cultured plants are over-ripe and dried out compared to the specimens of heads of Wichita whose reflectances are shown in Figure 21. Nevertheless, the inoculated heads of the over-ripe susceptible plants show decreased reflect-

ance throughout the spectrum compared to rust-resisting plants quite consistent with the presence of increased numbers of spores on the plant structure. Although the spectral directional reflectance of the spores alone is superficially similar to that of the rust-resisting over-ripe wheat heads in that there is a regular increase in reflectance with wavelength, this increase starts at a longer wavelength (520 millimicrons) for the spores than it does for the over-ripe wheat heads (less than 400 millimicrons) and corresponds to the more reddish color of the spores (compare in Table III light grayish reddish brown with light grayish yellowish brown).

The spectral directional reflectance curve of rust spore (Figure 9) shows the extreme position of change that a leaf, stem or head may reach if fully covered with spore. While possibly not significant, the spectral-transmittance curve of the leaf rust spore (Figure 10) shows greater structure than the stem rust spore or of the pure spore specimens. Leaf rust spore absorbs strongly in the 400 to 520 millimicron region of the spectrum and transmits somewhat between 530 and 1080 millimicrons while the other two spore specimens absorb more strongly throughout the visible spectrum and transmit only slightly in the near infrared spectrum. This could be explained by the fact that the leaf rust spores have finer grains than the stem rust spores and a uniform thin sample of leaf rust could be obtained. Stem rust spores did not spread well enough to obtain a sufficiently uniform thin specimen.

All of the C.I.E. chromaticity diagrams show the leaves of the diseased plants to be redder than the leaves of the healthy plants (Figures 5, 6, 16, and 26). The chromaticity points for the leaves of the healthy plants plotted between dominant wavelengths 557 and 567 millimicrons; the diseased plants, between 571 and 584 millimicrons; and the spore specimens, between 587 and 591 millimicrons. The excitation purities and daylight reflectances of the leaves of the diseased and healthy plants were essentially the same.

The charts showing these data in terms of the Munsell renotations (Figures 7, 8, 17, and 29) likewise indicate this clear-cut division of the leaf colors. The leaves of the healthy specimens are shown to have Munsell hues between 9GY and 4GY; the diseased plants, between 1GY and 9YR; and the spore specimens, between 7YR and 2YR. The ISCC-NBS color designations center about grayish yellow green for the leaves of the healthy plants; grayish olive, for the leaves of the diseased plants; and moderate brown, for the spore specimens. The designation of this disease as rust is thus seen to be quite apt.

The color differences computed between the various pairs of diseased and healthy specimens show that the leaves of healthy wheat or rye plants vary among individual species by less than one NBS unit of color difference while differences between the leaves and stalks of diseased and healthy plants vary between 8 and 40 or more NBS units of color difference depending upon the degree of severity of rust infestation. Large color differences such as these should be readily detectable by ordinary color photography.

Differences between the heads and the stalks of diseased and healthy plants vary erratically. The heads of Westar, Blue Jacket, and Wichita show differences between specimens of high and of low rust severity of 0.8, 2.0, and 6.5 NBS units of color difference respectively, while the heads of the susceptible and resisting controlled plants showed color differences of 12.1 NBS units of color difference. Similarly, the stalks of Blue Jacket, Westar, and Wichita for high and low rust severity showed differences of 2.2, 6.5, and 40.4 NBS units of color difference. In contrast to these differences, those obtained for the leaves of the diseased and of the healthy plants varied much more consistently; that is, Blue Jacket, 4.1, Westar, 11.6, Rye 11.3, and Suwan, 7.9 NBS units of color difference.

In order to photograph with maximum brightness contrast these differences between diseased and healthy plants within the visible spectrum on black-and-white film, it is necessary to eliminate all of the spectrum except that portion exhibiting the greatest difference (600 to 700 millimicrons). This may be accomplished by using panchromatic film combined with an orangered filter. The panchromatic film serves a dual role, first, as receiver for the desired spectral range (600 to 700 millimicrons), and second, as eliminator of undesired energy in the far-red and infra-red parts of the spectrum (wavelengths greater than 700 millimicrons) in which the film is insensitive. orange-red glass or gelatin filter serves to absorb the undesired radiant energy of wavelengths less than 600 millimicrons. Suggested glass filters, available for this purpose from Coming Glass Works, Corning, N. Y., are Color Spec. Nos. 2-61 and 2-62 (Glass Code 2412 and 2418, respectively) in standard thicknesses of about 3.0 mm. Alternatively, Wratten filter 29, or possibly 24, 25a, or 26, available from Eastman Kodak Company, Rochester, N. Y., may be used.

In order to photograph with maximum brightness contrast these differences between diseased and healthy plants within the infrared spectrum, it is necessary to eliminate all of the spectrum except that portion exhibiting the second greatest difference (750 to 900 millimicrons). This may be accomplished by using so-called infrared photographic film combined with a deep red filter. The infrared film serves a dual role, first, as receiver for the desired spectral range (750 to 900 millimicrons), and, second, as eliminator of the radiant energy of wavelength greater than 900 millimicrons to which the film is relatively insensitive. The deep red filter of glass or gelatin serves to absorb the undesired radiant energy of wavelength less than 750 millimicrons. Suggested filters are Wratten filter 87 or Corning glass code 2540, Color Spec. No. 7-56, in standard thickness of approximately 3.0 mm.

The healthy plants will appear dark on the photographic print from the film taken in the 600 to 700 millimicron region of the spectrum and the diseased plants will appear lighter. The lightness contrast will depend upon the degree of infestation. On the photographic film taken in the 750 to 900 millimicron region of the spectrum, the healthy plants will appear light and the diseased plants darker. In this case, the greater the degree of infestation, the darker will be the rendition.

Information on the spectrophotometric behavior of the controlled plants from Beltsville, Maryland, was orally given to Lt. Comdr. R. N. Colwell prior to the U. S. Navy flight (May 1952) over the wheat fields of Stillwater, Oklahoma, together with proposed methods for the isolation of the two regions of the spectrum discussed above. After the Stillwater flight, spectrophotometric data on the leaves of Westar wheat from Stillwater were obtained (May 29, 1952) and were given to Comdr. Colwell on the same day. These methods and data were presented by him at various meetings in 1952 (see Chronology, Appendix E), and by Keegan [12] before the 19th Meeting of the American Society of Photogrammetry in January 1953.

The results of examining the photographs taken on these Stillwater flights are summarized in a report [13] of the U. S. Naval Photointerpretation Center, signed by L. W. Keith, officer-in-charge, as follows (page 3): "The tonal comparison on the panchromatic film with both the 12 and 25A filters shows some promise. However, in this test area the infrared film was not of much value." This result, though disappointing for the infrared film, was not entirely unanticipated; note that the average contrast at 800 millimicrons is only 15% compared to 125% at 650 millimicrons (Suwon, Figure 1; Westar, Figure 18).

A second test of the recommended film-filter combinations was made on August 14, 1952. Aerial photographs were made of 7 plots (5 rows of plants per plot) of wheat growing at the Plant Industry Station, USDA, Langdon, North Dakota. The infestation of each plot with the pathogen, Puccinia graminis tritici, which causes black stem rust of wheat, was recorded, and the record indicates infestations varying from 5% to 80%. The results of examining the photographs taken on these Langdon flights was summarized in the Keith report [13] as follows (page 4): "The plots of high rust incidence showed up very clearly on infrared and color photography. The prints from panchromatic film with minus blue filter showed various tones of gray but the differences were not confined to either diseased or healthy wheat. The same applied to the coverage using panchromatic film with 25A filter."

Two comments may be made on this summary. In the first place the photographs accompanying the report [13] seem to show that both of the recommended film-filter combinations are successful, and indeed the distinctions on the photograph taken by means of panchromatic film with filter 25A are clearer than those taken on infrared film with filter 89A. In other words we see the results of this test as confirming our choices of film-filter combinations based on wheat plants (Westar) of a probably different variety infested with a different pathogen, Puccinia triticina, which causes leaf rust of wheat rather than black stem rust, and this apparent confirmation suggests that the spectral characteristics of the wheat plants growing in Langdon are closely those of the Stillwater plants. On the other hand, if the summary (which may be based on better prints) is really correct, then failure of our first-choice filter-film combination may simply be an indication that the Langdon plants differ in spectral character importantly from the Stillwater plants.

It may be noted in passing that the graph of the spectral data included in the Keith report, subsequently copied in a paper by Truesdell [14], although intended to be identical with Figure 18 of the present report, actually contained serious errors of transcription as noted in Truesdell's second paper [14].

These two attempts to utilize film-filter combinations indicated by spectrophotometric studies of wheat plants, though obviously not conclusive, nevertheless indicate that the method of detecting rust-infected wheat fields by aerial photography has considerable promise. Extensive additional field tests should be made by color photography and by black-and-white photography with film-filter combinations precisely in accord with those indicated by spectrophotometry for the particular plants and pathogens involved. Colwell [15, 16] has undertaken some of these needed field tests and presented a number of his new photographs at the National Bureau of Standards on August 19, 1954.

XII. Conclusions

- 1. All specimens studied, both wheat and rye, indicate that plants infected with wheat rust are redder than non-infected plants of the same kind.
- 2. The diseased and non-diseased rye specimens showed the same kinds of differences as diseased and non-diseased wheat specimens.
- 3. The spectral regions within which the ratio of spectral reflectance of the diseased specimens to that for the healthy specimens was greatest is 600 to 700 millimicrons, and that within which it is next greatest is 750 to 900 millimicrons.
- 4. For the most certain detection of wheat rust by black-and-white aerial photography, a combination of filters and photographic film maximally sensitive within the spectral range (600 to 700 millimicrons) is indicated.

XIII. Bibliography

- [1] H. J. Keegan, J. C. Schleter, and W. A. Hall, Jr., Spectrophotometric and colorimetric change in the leaf of a white oak tree under conditions of natural drying and excessive moisture, NBS Report No. 4322 to WADC, September, 1955.
- [2] H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric study of foliage stored in covered metal containers, NBS Report 4370 to WADC, November, 1955.
- [3] H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric study of the fading of dyed papers and cardboards under natural daylight, NBS Report 1438 to WADC, December, 1955.

- [4] H. J. Keegan, J. C. Schleter, W. A. Hall, Jr., and G. M. Haas, Spectrophotometric and colorimetric record of some leaves of trees, vegetation, and soil, NBS Report 4528, April, 1956.
- [5] A. C. Hardy, A new recording spectrophotometer, J. Opt. Soc. Am. 25, 305 (1935); also A. C. Hardy, History of the design of the recording spectrophotometer, J. Opt. Soc. Am. 28, 360 (1938).
- [6] J. L. Michaelson, Construction of the General Electric recording spectrophotometer, J. Opt. Soc. Am. 28, 365 (1938).
- [7] Proceedings, Eighth Session, Commission Internationale de l'Eclairage, Cambridge, England, pp 19 to 29, September, 1931.
- [8] A. C. Hardy, Handbook of colorimetry, Cambridge, Mass., Technology Press, 1936.
- [9] S. M. Newhall, D. Nickerson, and D. B. Judd, Final report of the OSA subcommittee on the spacing of the Munsell colors, J. Opt. Soc. Am. 33, 385 (1943).
- [10] K. L. Kelly and D. B. Judd, The ISCC-NBS method of designating colors and a dictionary of color names, NBS Circular C553, November 1955.
- [11] I. H. Godlove, Improved color-difference formula with applications to the perceptibility and acceptability of fading, J. Opt. Soc. Am. 41, 760 (1951).
- [12] H. J. Keegan and J. C. Schleter, Use of reflection spectra for photointerpretation purposes, Photogrammetric Engineering XIX, 107 (1953).
- [13] L. W. Keith, Aerial photographic interpretation of diseased and healthy cereal crops, Report No. 102-53, U. S. Naval Photo. Interpretation Center, Washington 25, D. C., January 30, 1953.
- P. E. Truesdell, Report of unclassified military terrain studies section, Photogrammetric Engineering XIX, 468 (1953). Also, Photogrammetric Engineering XIX, 851 (1953).
- [15] R. N. Colwell, A systematic analysis of some factors affecting photographic interpretation, Photogrammetric Engineering XX, 433 (1954).
- [16] R. N. Colwell, Determining the prevalence of certain cereal crop diseases by means of aerial photography (in press) 1956.

Appendix E

Chronology of pertinent events in these investigations from the first meeting in which NBS personnel participated in April 1952 to the preparation of the present report in July 1956.

- April 2, 1952. Meeting to initiate this study called by Dr. Everett F. Davis, Executive Secretary, Committee on Plant and Crop Ecology, National Research Council. Meeting held in the laboratory of Dr. Robert B. Withrow, Director, Division of Radiation of Organisms, Smithsonian Institution, Washington, D. C. Those present were: Dr. E. F. Davis, Dr. R. B. Withrow, Mrs. R. B. Withrow, Miss B. B. Britton, Dr. H. T. O'Neill, Lt. Cmdr. R. N. Colwell, Mr. R. C. Heller, Mr. R. H. Moyer, Dr. W. S. Benninghoff, and Mr. H. J. Keegan.
- May 1, 1952. The second planning meeting was held in Dr. Davis' offices in the Dupont Circle Building, Washington, D. C. Those present were:

 Dr. E. F. Davis, Miss B. B. Britton, Lt. Cmdr. R. N. Colwell, Lt. J. W. Hallstead (USN), Mr. R. H. Moyer, Dr. L. O. Quam, Dr. R. B. Withrow, Dr. H. A. Rodenhiser, and Mr. H. J. Keegan. At this meeting, a National Research Council memo, dated May 1, 1952, entitled, "Guide to photography and field work" was prepared by Lt. Cmdr. Colwell, Mr. Keegan, and Dr. Rodenhiser on flight instructions, spectrophotometry, and plant culture, respectively.
 - May 7, 1952. Initial spectral directional reflectance curves were made on some of Dr. Rodenhiser's young wheat plants, that were grown in pots under controlled conditions at Beltsville, Maryland, which he brought to the NBS for measurement.
 - May 15, 16, and 26, 1952. Additional specimens of cut wheat leaves and pure spore were brought from Beltsville for measurement at the NBS.
 - May 29, 1952. Lt. Cmdr. Colwell brought to the NBS for measurement, specimens of diseased and rust-resisting field-grown wheat plants flown to Washington, D. C. from Stillwater, Oklahoma. Spectrophotometric curves of the leaves of specimens of Westar wheat having high and low rust severity were given to Lt. Cmdr. Colwell after the completion of the measurements that day.
 - June 3, 1952. Additional specimens of cut wheat leaves from inoculated plants and specimens of pure stem and leaf rust were brought to the NBS for measurement by Dr. Rodenhiser and Dr. C. V. Lowther.
 - September 3, 1952. Spectrophotometric curves of the heads and stalks of high and low rust severity Westar wheat plants were given to Lt. Cmdr. Colwell for his talk before the Optics Division, Armed Services Research and Development Board.

- September 5, 1952. Lt. Cmdr. Colwell informally presented the data obtained on May 29, 1952, together with photographs of fields of growing wheat, to the members of the Seventh Congress of the International Society of Photogrammetry, sponsored by the American Society of Photogrammetry, at the Shoreham Hotel, Washington, D. C.
- September 7, 1952. Lt. Cmdr. Colwell presented the same material to the NRC Committee on Plant and Crop Ecology, Dr. R. E. Cleland, Chairman, at Cornell University, Ithaca, N. Y.
- December 1, 1952. Mr. Keegan was thanked by the Executive Secretary, Dr. E. F. Davis, by letter, for the "spectral analysis of the plant materials from Beltsville, and those involved in photographic work done this summer in Oklahoma". The whole matter was dropped temporarily with the following statement "while the resulting interpretation by the Subcommittee on Crop Geography and Vegetation Analysis was not altogether conclusive, it has given a good indication of the present limitations in this field, and the value of continuing research".
- January 16, 1953. H. J. Keegan presented a paper at the Nineteenth annual meeting of the American Society of Photogrammetry on the "Use of reflection spectra for photointerpretation purposes" by H. J. Keegan and J. C. Schleter. The abstract of this paper was published in Photogrammetric Engineering XIX, 107 (1953).
- January 30, 1953. Cmdr. L. W. Keith, Officer in charge, U. S. Naval Photographic Interpretation Center (U. S. Naval Receiving Station, Washington 25, D. C.), issued Report No. 102-53 "Aerial photographic interpretation of diseased and healthy cereal crops". (This report contains a graph of the spectral directional reflectance of the leaves of Westar based on NBS measurements but with wrong labeling of the wavelength scale).
- June, 1953. In the issue of Photogrammetric Engineering (vol. XIX, 468 to 472) there appeared a "Report of unclassified military terrain studies section" by Page E. Truesdell, U. S. Navy Photographic Interpretation Center, Washington, D. C. This report was a part of the report of the Photo Interpretation Committee of the American Society of Photogrammetry. This paper contained the spectral directional reflectance curves of the leaves of Westar wheat plants, having high and low rust severity, that had been given to Lt. Cmdr. Colwell on May 29, 1952. The wrongly labeled graph from the Keith report was used for this illustration. The error was drawn to the attention of Mr. Truesdell by telephone on August 17, 1953, who arranged to have the corrected graph published (Photogrammetric Engineering, XIX, 851; December, 1953).
- November 20, 1953. At a closed meeting in the Pentagon, Dr. Colwell again presented the series of photographs which were taken over Stillwater, Oklahoma, on May 27 or 28, 1952, Langdon, North Dakota, on August 14, 1952, and over Davis, California, in the fall of 1953.
- January 19, 1954. Drs. Colwell and Davis brought specimens of diseased and non-diseased rye plants to the NBS for spectrophotometric measurements

- to see if rye plants infected with rust behaved in the same way as wheat plants infected with rust.
- March 12, 1954. Messrs. W. Paul Brandenburg and H. J. Keegan met with Dr. Davis in his offices in the Dupont Circle Building, Washington, D. C. to discuss the continuation of the work of the subcommittee on Crop Geography and Vegetation Analysis, by Dr. Colwell, Associate Professor of Forestry, University of California, Berkeley, California.
- March 31, 1954. The Committee on Plant and Crop Ecology of the National Research Council was terminated.
- May 26, 1954. Dr. Colwell agreed to continue his studies of this method of photointerpretation with support by WADC.
- August 19, 1954. Dr. Colwell presented his aerial photographs taken with color, black and white, infrared, and camouflage detecting films at a meeting at the NBS. Those present: Messrs. Brandenburg, Jacocks, and Warren of WADC; Dr. Judd, Messrs. Keegan, Schleter, and Denne of NBS.
- December 31, 1954. A looseleaf notebook containing the pre-publication draft of a paper entitled "The identification of cereal crop diseases on aerial photographs", by Dr. R. N. Colwell was received.
- May 4, 1955. The notebook and pre-publication paper by Dr. Colwell, received at the NBS December 31, 1954, was returned to him at his request.
- March 27, 1956. Dr. Colwell gave Mr. Keegan a "ditto" copy of his paper "Determining the prevalence of certain cereal crop diseases by means of aerial photography" for review.

