Topic: Basic Probability, Conditional Probability, Hypothesis Testing

source code https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Dataset---Data-Science.git (https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Tetsing--Titanic-Dataset---Data-Science.git (https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Tetsing--Titanic-Dataset---Data-Science.git (https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Tetsing--Titanic-Dataset---Data-Science.git (https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Tetsing--Titanic-Dataset---Data-Science.git (https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Tetsing--Titanic-Dataset---Data-Science.git (https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Tetsing--Titanic-Dataset---Data-Science.git (<a href="https://github.com/nitishbuzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-and-Hypothesis-Buzzpro/Statistics-Buzzpro/Statistics-Buzzpro/

Task 1

- Load the Titanic dataset using Python and analyze thefollowing probabilities:
- 2 Probability of surviving or not surviving.
- 3 Probability of being male, and female.
- 4 Probability of being in first class, second class or the third class. (Pclass column)

Out[4]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
	4										>

In [5]: | 1 | df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
11 C3 (C4/2) 1 (C4/E) 1 1 (F)							

dtypes: float64(2), int64(5), object(5)

memory usage: 66.2+ KB

In [6]: | 1 | df.describe()

Out[6]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [7]: 1 df.describe(include=object)

Out[7]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Braund, Mr. Owen Harris	male	347082	B96 B98	S
freq	1	577	7	4	644

```
1 | # Probability of surviving or not surviving.
 In [8]:
           2 total_persons = df['Survived'].count()
           3 count_Surviving = (df['Survived'] == 1).sum()
           4 Probability_surviving = count_Surviving / total_persons
           5 | Probability_not_surviving = 1 - Probability_surviving
             print('Probabilty of surving:',round(Probability_surviving,2))
             print('Probabilty of not surving:',round(Probability_not_surviving,2))
         Probabilty of surving: 0.38
         Probabilty of not surving: 0.62
 In [9]:
           1 # Probability of being male, and female
           2 total_persons = df['Sex'].count()
           3 count_male = (df['Sex'] == 'male').sum()
          4 Probability_male = count_male / total_persons
           5 Probability_female = 1 - Probability_male
             print('Probabilty of male:',round(Probability_male,2))
             print('Probabilty of female:',round(Probability_female,2))
         Probabilty of male: 0.65
         Probabilty of female: 0.35
In [10]:
          1 # Probability of being in first class, second class or the third class.
           2 total_persons = df['Pclass'].count()
           3 count_first_class = (df['Pclass'] == 1).sum()
           4 | count_second_class = (df['Pclass'] == 2).sum()
           5 count_third_class = (df['Pclass'] == 3).sum()
           6 | Probability_first_class = count_first_class / total_persons
             Probability_second_class = count_second_class / total_persons
          7
          8 Probability third class = count third class / total persons
             print('Probabilty of first_class:',round(Probability_first_class,2))
             print('Probabilty of second_class:',round(Probability_second_class,2))
             print('Probabilty of third_class:',round(Probability_third_class,2))
         Probabilty of first_class: 0.24
         Probabilty of second_class: 0.21
         Probabilty of third_class: 0.55
 In [ ]:
```

Task 2

```
Calculate the following conditional probabilities:
Probability of surviving given that the passenger is male or female.
Probability of surviving given that the passenger is in first class, second class, and third class respectively.
```

Probability of surviving given that the passenger is male or female is: 0.

```
In [12]:
             #Probability of surviving given that the passenger is in first class, s
             number_surv_first = df[(df['Survived'] == 1) & (df['Pclass'] == 1)]['Pa
             number_first = df[(df['Pclass'] == 1)]['PassengerId'].count()
             prob_surv_first = number_surv_first/number_first
           5
             print('Probability of surviving given that the passenger is in first cl
             number_surv_second = df[(df['Survived'] == 1) & (df['Pclass'] == 2)]['P
           7
             number_second = df[(df['Pclass'] == 2)]['PassengerId'].count()
          9
             prob_surv_second = number_surv_second /number_second
             print('Probability of surviving given that the passenger is in second c
          10
          11
             number_surv_third = df[(df['Survived'] == 1) & (df['Pclass'] == 3)]['Pa
          12
          13
             number_third = df[(df['Pclass'] == 3)]['PassengerId'].count()
             prob_surv_third = number_surv_third /number_third
             print('Probability of surviving given that the passenger is in third cl
```

Probability of surviving given that the passenger is in first class: 0.6

Probability of surviving given that the passenger is in second class: 0.47

Probability of surviving given that the passenger is in third class: 0.2

4

```
In [ ]: 1
```

Task 4

```
Compute the joint probabilities of the following events:
Being a male and surviving
Being a female and surviving
Being in first class and surviving
Being in second class and surviving
Being in third class and surviving
Explain all the Results.
```

```
In [13]:  # Being a male and surviving
2  count_male_surv = df[(df['Sex'] == 'male') & (df['Survived']==1)]['Pass
3  count_passengers = df['PassengerId'].count()
4  jointprob_male_surv = count_male_surv/count_passengers
5  print('Being a male and surviving : ',round(jointprob_male_surv,2))
6  print("Explaination : Out of all the passanger if a passanger is selec
```

Being a male and surviving: 0.12 Explaination: Out of all the passanger if a passanger is selected at ran dom then the probality that the passanger is a male & who has survived is 0.12

Being a female and surviving : 0.12

Explaination : Out of all the passanger if a passanger is selected at ran dom then the probality that the passanger is a female & who has survived i s 0.12

Being in first class and surviving: 0.15

Explaination : Out of all the passanger if a passanger is selected at ran dom then the probality that the passanger is a first class & who has survived is 0.15

Being in second class and surviving: 0.1

Explaination : Out of all the passanger if a passanger is selected at ran dom then the probality that the passanger is a second class & who has survived is 0.1

```
In [17]:  # Being in third class and surviving
count_third_surv = df[(df['Pclass'] == 3) & (df['Survived']==1)]['Passe
count_passengers = df['PassengerId'].count()
d jointprob_third_surv = count_third_surv/count_passengers
print('Being in third class and surviving : ',round(jointprob_third_surv)
print("Explaination : Out of all the passanger if a passanger is select)
```

Being in third class and surviving: 0.13

Explaination: Out of all the passanger if a passanger is selected at ran dom then the probality that the passanger is a third class & who has survived is 0.13

```
In [ ]: 1
```

Task 5

- 1 Calculate the conditional probability of survival given that the passenger is an adult (age greater than or equal to 18).
- 2 Calculate the conditional probability of survival given that the passenger is a child (age less than 18).
- Determine if survival and passenger class are independent events. Calculate the probability of surviving in each class and compare it with the overall survival rate.

the conditional probability of survival given that the passenger is an adult (age greater than or equal to 18) 0.38

the conditional probability of survival given that the passenger is a chil d (age less than 18) 0.54

```
In [74]:
             # Determine if survival and passenger class are independent events. Cal
             prob_survival = df[(df['Survived']==1)]['PassengerId'].count()/df['Pass
             if (jointprob_first_surv + jointprob_second_surv + jointprob_third_surv
          4
                 print("survival and passenger class are independent events")
           6 else:
           7
                  print("survival and passenger class are not independent events")
          8
             print('\n')
             print("probability of surviving in first class: ",round(prob_surv_first
             print("probability of surviving in second class: ",round(prob_surv_seco
          10
             print("probability of surviving in third class: ", round(prob_surv_thir
          11
          12
             print('\n')
          13
             if prob_surv_first + prob_surv_second + prob_surv_third == prob_surviva
          14
                 print("compare it with the overall survival rate: independent event
          15
             else:
                 print("compare it with the overall survival rate: not independent e
          16
```

survival and passenger class are independent events

```
probability of surviving in first class: 0.63 probability of surviving in second class: 0.47 probability of surviving in third class: 0.24
```

compare it with the overall survival rate: not independent events

Task 6 - Hypothesis Testing

Hypothesis: The survival rate of male passengers is equal to the survival rate of female passengers.

Hypothesis: The survival rate of passengers in firstclass is higher than the survival rate of passengers in third class.

Perform a hypothesis test to validate or reject the null hypothesis in each scenario. Use appropriate statistical tests, such as chi-square test or t-test, to analyze the data and calculate the p-values. Provide a conclusion for each hypothesis test, indicating whether the null hypothesis should be accepted or rejected.

1) Hypothesis: The survival rate of male passengers is equal to the survival rate of female passengers.

1 Hypothesis formulation

Null Hypotheis: The survival rate of male passengers is equal to the survival rate of female passengers

Alternative Hypothesis: The survival rate of male passengers is not equal to the survival rate of female passengers

chi-square test

```
In [54]:
             # Prepare contingency table
             contingency_table = pd.crosstab(df['Sex'], df['Survived'])
          4 #choosing significance level
          5
             significance_level = 0.05
          6
          7 #Perform chi-square test
          8 | chi2, p_value, dof, expected = chi2_contingency(contingency_table)
          10 print("Chi-square statistic:", chi2)
          print("p-value:", p)
             print("Degrees of freedom:", dof)
          print("Expected frequencies:")
          14 print(expected)
          15 print('\n')
          16 if p_value < significance_level:</pre>
                 print("Reject : Null Hypothesis")
          17
                 print("Accept : Alternative Hypothesis : The survival rate of male
          18
          19 else:
                 print("Accept : Null Hypothesis")
          20
                 print("Reject : Alternative Hypothesis : The survival rate of male
          21
         Chi-square statistic: 260.71702016732104
         p-value: 1.1973570627755645e-58
         Degrees of freedom: 1
         Expected frequencies:
         [[193.47474747 120.52525253]
          [355.52525253 221.47474747]]
         Reject : Null Hypothesis
         Accept : Alternative Hypothesis : The survival rate of male passengers is
```

not equal to the survival rate of female passengers

Two-proportion z-test

```
In [49]:
             # Prepare contingency table
             contingency_table = pd.crosstab(df['Sex'], df['Survived'])
           4 #choosing significance level
           5
             significance_level = 0.05
           7 # Number of successes (survivors) and number of trials (total passenger
           8 | successes = list(contingency_table[1])
           9 trials = list(contingency_table[0] + contingency_table[1])
          10
          11 # Perform two-proportion z-test
             z_score,p_value = sm.stats.proportions_ztest(successes,trials)
          12
          13 print('z_score',z_score)
          14 | print('p_value',p_value)
          15
          16 | if p value < significance level:
          17
                 print("Reject : Null Hypothesis")
                 print("Accept : Alternative Hypothesis : The survival rate of male
          18
          19 else:
                  print("Accept : Null Hypothesis")
          20
          21
                  print("Reject : Alternative Hypothesis : The survival rate of male
         z score 16.218833930670097
         p value 3.7117477701134797e-59
         Reject : Null Hypothesis
         Accept : Alternative Hypothesis : The survival rate of male passengers is
         not equal to the survival rate of female passengers
 In [ ]:
```

2) Hypothesis: The survival rate of passengers in firstclass is higher than the survival rate of passengers in third class.

```
1 Hypothesis formulation
```

Null Hypotheis: The survival rate of passengers in first class is equal to or lower than the survival rate of passengers in third class.

Alternative Hypothesis: The survival rate of passengers in first class is higher than the survival rate of passengers in third class

chi-square test

```
In [68]:
             # Prepare contingency table
             contingency_table = pd.crosstab(df[(df['Pclass']==1) | (df['Pclass']==3)
           4 #choosing significance level
           5
             significance_level = 0.05
           6
           7 #Perform chi-square test
           8 | chi2, p_value, dof, expected = chi2_contingency(contingency_table)
          10 print("Chi-square statistic:", chi2)
          print("p-value:", p_value)
             print("Degrees of freedom:", dof)
          13 print("Expected frequencies:")
          14 print(expected)
          15 print('\n')
          16 if p_value < significance_level:</pre>
                 print("Reject : Null Hypothesis")
          17
                 print("Accept : Alternative Hypothesis : The survival rate of passe
          18
          19 else:
                 print("Accept : Null Hypothesis")
          20
          21
                 print("Reject : Alternative Hypothesis : The survival rate of passe
         Chi-square statistic: 95.89348388920357
         p-value: 1.2123375217498223e-22
```

p-value: 1.2123375217498223e-22

Degrees of freedom: 1

Expected frequencies:

[[138.09335219 77.90664781]

[313.90664781 177.09335219]]

Reject : Null Hypothesis

Accept: Alternative Hypothesis: The survival rate of passengers in first

class is higher than the survival rate of passengers in third class

Two-proportion z-test

Reject : Null Hypothesis

```
In [71]:
             # Prepare contingency table
           contingency_table = pd.crosstab(df[(df['Pclass']==1) | (df['Pclass']==3)
          4 #choosing significance level
          5 significance_level = 0.05
          7 # Number of successes (survivors) and number of trials (total passenger
          8 | successes = list(contingency_table[1])
          9 trials = list(contingency_table[0] + contingency_table[1])
          10
          11 # Perform two-proportion z-test
          12 z_score,p_value = sm.stats.proportions_ztest(successes,trials)
          13
             print('z_score',z_score)
          14 print('p_value',p_value)
          15 | print('\n')
          16 if p_value < significance_level:</pre>
          17
                 print("Reject : Null Hypothesis")
          18
                 print("Accept : Alternative Hypothesis : The survival rate of passe
          19 else:
                 print("Accept : Null Hypothesis")
          20
                 print("Reject : Alternative Hypothesis : The survival rate of passe
          21
         z score 9.87753617661869
         p_value 5.209807780351272e-23
```

Accept : Alternative Hypothesis : The survival rate of passengers in first

class is higher than the survival rate of passengers in third class