

CHIMIE NIVEAU SUPÉRIEUR ÉPREUVE 1

Mercredi 4 mai 2005 (après-midi)

1 heure

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

2205-6119 14 pages

Le tableau de la classification périodique des éléments

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
7		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
				29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
				27 Co 58,93	45 Rh 102,91	77 Ir 192,22	
				26 Fe 55,85	44 Ru 101,07	76 Os 190,21	
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21	
	Numéro atomique Élément	Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85	
	Numéro Élér	Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95	
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

I	
71 Lu 174,97	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67 Ho 164,93	99 Es (254)
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64	96
Gd	Cm
157,25	(247)
63 Eu 151,96	95 Am (243)
62 Sm 150,35	94 Pu (242)
61	93
Pm	N p
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	231,04
58	90
Ce	Th
140,12	232,04
- i-	**

1. L'équation de la combustion complète du butane est

$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$$

Quelle est la quantité (en mol) de dioxyde de carbone formée par la combustion complète de trois moles de butane ?

- A. 4
- B. 8
- C. 12
- D. 24
- 2. Quelle est la solution qui renferme la plus grande quantité (en mol) de soluté ?
 - A. 10,0 cm³ d'une solution de NaCl 0,500 mol dm⁻³
 - B. 20,0 cm³ d'une solution de NaCl 0,400 mol dm⁻³
 - C. 30,0 cm³ d'une solution de NaCl 0,300 mol dm⁻³
 - D. 40,0 cm³ d'une solution de NaCl 0,200 mol dm⁻³
- 3. Combien d'atomes d'oxygène y a-t-il dans 0,0500 mol de dioxyde de carbone ?
 - A. $3,01 \times 10^{22}$
 - B. $6,02 \times 10^{22}$
 - C. $6,02 \times 10^{23}$
 - D. $1,20 \times 10^{24}$
- 4. Combien d'électrons y a-t-il dans un ion ${}^{24}_{12}Mg^{2+}$?
 - A. 10
 - B. 12
 - C. 14
 - D. 22

5.	Con	abien y a-t-il d'électrons dans toutes les orbitales d d'un atome de xénon ?
	A.	10
	B.	18
	C.	20
	D.	36
6.		lle grandeur augmente à chaque fois d'une unité lorsqu'on se déplace de la gauche vers la droite du eau périodique, depuis l'élément lithium jusqu'à l'élément néon ?
	A.	le nombre de niveaux d'énergie électronique occupés
	B.	le nombre de neutrons dans l'isotope le plus courant
	C.	le nombre d'électrons dans l'atome
	D.	la masse atomique
7.	Que	ls sont les deux éléments qui réagissent le plus vivement lorsqu'ils sont mis en présence ?
	A.	le chlore et le lithium
	B.	le chlore et le potassium
	C.	l'iode et le lithium
	D.	l'iode et le potassium
8.	Que	lle est la caractéristique essentielle d'un ligand ?
	A.	une charge négative
	B.	un nombre impair d'électrons
	C.	la présence d'au moins deux atomes
	D.	la présence d'une paire d'électrons non liants

Que se passe-t-il lorsque le sodium et l'oxygène se com	ibinent?
---	----------

- A. Chaque atome de sodium gagne un électron.
- B. Chaque atome de sodium perd un électron.
- C. Chaque atome d'oxygène gagne un électron.
- D. Chaque atome d'oxygène perd un électron.
- **10.** Dans l'ethanol, C₂H₅OH(l), existent des liaisons covalentes, des liaisons hydrogène et des forces de van der Waals. Quelles sont les liaisons ou les forces rompues lorsque l'éthanol est vaporisé ?
 - A. uniquement les liaisons hydrogène
 - B. les liaisons covalentes et les liaisons hydrogène
 - C. les liaisons covalentes et les forces de van der Waals
 - D. les liaisons hydrogène et les forces de van der Waals
- 11. Quelle proposition décrit le mieux l'attraction qui s'exerce dans une liaison métallique ?
 - A. l'attraction entre les noyaux et les électrons
 - B. l'attraction entre les ions positifs et les électrons
 - C. l'attraction entre les ions positifs et les ions négatifs
 - D. l'attraction entre les protons et les électrons

2205-6119 Tournez la page

12.	Que	lle est la proposition correcte à propos des liaisons multiples entre atomes de carbone ?
	A.	Les liaisons doubles sont formées par deux liaisons π .
	B.	Les liaisons doubles sont plus faibles que les liaisons simples.
	C.	Les liaisons π sont formées par le recouvrement d'orbitales s.
	D.	Les liaisons π sont plus faibles que les liaisons sigma.
13.		ni les propositions suivantes, relatives au diamant, au graphite et à un fullerène C_{60} , quelles son es qui sont correctes ?
		I. Des trois substances, c'est le diamant qui est le plus mauvais conducteur électrique.
		II. Dans le graphite et dans le fullerène C_{60} , les atomes sont hybridés ${\rm sp}^2$.
		III. Dans le diamant et dans le fullerène C_{60} , les atomes sont disposés en hexagones.
	A.	I et II uniquement
	B.	I et III uniquement
	C.	II et III uniquement
	D.	I, II et III
14.	(en	masse donnée d'un gaz idéal occupe un volume de 800 cm³ dans certaines conditions. La pressior kPa) et la température (en K) sont toutes deux doublées. Que vaut le volume du gaz après ces ifications, les autres conditions restant inchangées ?
	A.	200 cm ³
	B.	800 cm ³
	C.	1600 cm ³
	D.	3200 cm ³

- 15. Parmi les propositions suivantes, lesquelles sont correctes en ce qui concerne une réaction endothermique ?
 - I. Le système absorbe de la chaleur.
 - II. La variation d'enthalpie est positive.
 - III. La somme des enthalpies de liaisons des réactifs est supérieure à celle des produits.
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- **16.** L'enthalpie moyenne de liaison de la liaison C—H vaut 412 kJ mol⁻¹. Parmi les transformations suivantes, quelle est celle dont la variation d'enthalpie est la plus proche de cette valeur ?
 - A. $CH_4(g) \rightarrow C(s) + 2H_2(g)$
 - B. $CH_4(g) \rightarrow C(g) + 2H_2(g)$
 - C. $CH_4(g) \rightarrow C(s) + 4H(g)$
 - D. $CH_4(g) \rightarrow CH_3(g) + H(g)$
- 17. À la température ambiante, une certaine quantité de chlore gazeux se trouve dans un récipient de volume déterminé. Quelle modification entraînera une diminution d'entropie ?
 - A. l'addition d'une faible quantité d'hydrogène
 - B. l'addition d'une faible quantité de chlore
 - C. le refroidissement du récipient
 - D. l'exposition du récipient à la lumière solaire

- 18. À quel type de réaction se réfère-t-on pour définir la variation d'enthalpie standard de formation ?
 - A. la formation d'un composé à partir de ses éléments
 - B. la formation d'un cristal à partir de ses ions
 - C. la formation d'une molécule à partir de ses atomes
 - D. la formation d'un composé à partir d'autres composés
- **19.** La réaction entre le carbonate de calcium et l'acide chlorhydrique dans un récipient ouvert peut être représentée par l'équation suivante :

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

Lesquelles des grandeurs ci-dessous pourrait-on utiliser pour mesurer la vitesse de cette réaction ?

- I. la masse du récipient et de son contenu
- II. le pH du mélange réactionnel
- III. le volume de dioxyde de carbone produit
- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III
- **20.** L'expression de la vitesse d'une réaction déterminée est la suivante :

$$Vitesse = k[P][Q]$$

Dans quelle unité *k* peut-elle s'exprimer ?

- A. mol⁻² dm⁶ min⁻¹
- $B. \qquad mol^{-1} \, dm^3 \, min^{-1}$
- $C. \qquad mol\,dm^{-3}\,\,min^{-1}$
- D. $mol^2 dm^{-6} min^{-1}$

- **21.** Parmi les propositions suivantes, quelle est celle qui est correcte à propos du comportement d'un catalyseur au cours d'une réaction réversible ?
 - A. Il diminue la variation d'enthalpie de la réaction directe.
 - B. Il augmente la variation d'enthalpie de la réaction inverse.
 - C. Il diminue l'énergie d'activation de la réaction directe.
 - D. Il augmente l'énergie d'activation de la réaction inverse.
- 22. La fabrication du trioxyde de soufre peut être représentée par l'équation suivante :

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H^{\oplus} = -197 \text{ kJ mol}^{-1}$.

Que se passe-t-il lorsqu'un catalyseur est ajouté à ce mélange réactionnel à l'équilibre ?

- A. La vitesse de la réaction directe augmente et celle de la réaction inverse diminue.
- B. Les vitesses des réactions directe et inverse augmentent toutes les deux.
- C. La valeur de ΔH^{\ominus} augmente.
- D. Le rendement en trioxyde de soufre augmente.
- 23. Un récipient scellé est à demi rempli d'eau à la température ambiante. On élève la température du récipient et on laisse l'équilibre se rétablir. Parmi les propositions suivantes, quelle est celle qui est correcte une fois l'équilibre rétabli à la température supérieure ?
 - A. La vitesse de vaporisation est supérieure à la vitesse de condensation.
 - B. La quantité de vapeur d'eau est supérieure à la quantité d'eau liquide.
 - C. La quantité de vapeur d'eau est supérieure à celle qui existait à la température plus basse.
 - D. La vitesse de condensation est supérieure à la vitesse de vaporisation.

- **24.** Parmi les méthodes proposées, quelles sont celles qui permettront d'opérer la distinction entre des solutions équimolaires d'une base forte et d'un acide fort ?
 - I. Ajouter du magnésium à chacune des solutions et observer la formation de bulles de gaz.
 - II. Ajouter une solution d'hydroxyde de sodium à chacune des solutions et mesurer la variation de température.
 - III. Inclure chacune des solutions dans un circuit électrique comportant une source de courant et une lampe et estimer l'intensité lumineuse émise par la lampe.
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- 25. L'équation de la réaction entre l'acide nitrique et l'acide sulfurique est la suivante :

$$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$

Selon la théorie de Brønsted-Lowry, quelles sont les espèces qui se comportent comme des acides dans cette réaction ?

- A. H_2SO_4 et HNO_3
- B. H_2SO_4 et $H_2NO_3^+$
- C. HNO_3 et $H_2NO_3^+$
- D. $H_2NO_3^+$ et HSO_4^-
- **26.** Quelles sont les valeurs correctes à propos d'une solution de NaOH de concentration 0,010 mol. dm⁻³ à 298 K?

$$(K_{\rm w} = 1.0 \times 10^{-14} \,\text{mol}^2 \,\text{dm}^{-6} \,\text{à}\, 298 \,\text{K})$$

- A. $[H^+] = 1.0 \times 10^{-2} \text{ mol dm}^{-3}$ et pH = 2.00
- B. $[OH^{-}] = 1.0 \times 10^{-2} \text{ mol dm}^{-3}$ et pH = 12.00
- C. $[H^+] = 1.0 \times 10^{-12} \text{ mol dm}^{-3}$ et pOH = 12.00
- D. $[OH^{-}] = 1.0 \times 10^{-12} \text{ mol dm}^{-3}$ et pOH = 2.00

- **27.** Parmi les solutions suivantes, toutes à la concentration de 0,10 mol. dm⁻³, quelle est celle qui a la valeur de pH la plus élevée ?
 - A. HCl(aq)
 - B. $MgCl_2(aq)$
 - C. NaCl(aq)
 - D. AlCl₃(aq)
- 28. Parmi les propositions suivantes, relatives aux indicateurs, quelle est celle qui est toujours correcte ?
 - A. Le milieu de la zone de virage se situe à pH = 7.
 - B. L'étendue de pH couverte par la zone de virage est plus grande pour les indicateurs ayant des valeurs de pK_a plus élevées.
 - C. La couleur rouge de l'indicateur indique une solution acide.
 - D. La valeur du pK_a d'un indicateur se situe dans l'étendue de pH correspondant à sa zone de virage.
- 29. Quels sont les nombres d'oxydation des éléments représentés dans l'acide sulfurique, H₂SO₄ ?

	Hydrogène	Soufre	Oxygène
A.	+1	+6	-2
B.	+1	+4	-2
C.	+2	+1	+4
D.	+2	+6	-8

2205-6119 Tournez la page

30. Une pile électrochimique est réalisée à l'aide de demi-éléments au cuivre et au zinc. La réaction qui actionne cette pile est la suivante :

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
.

Quelle est la proposition correcte à propos de cette pile lorsqu'elle débite un courant ?

- A. Des électrons sont perdus par les atomes de zinc.
- B. La masse de l'électrode de cuivre diminue.
- C. Des électrons circulent du demi-élément au cuivre vers le demi-élément au zinc.
- D. Des ions négatifs migrent à travers le pont salin du demi-élément au zinc vers le demi-élément au cuivre.
- **31.** L'équation **non pondérée** de la transformation du dioxyde de soufre en acide sulfurique est fournie ci-dessous.

$$\underline{\hspace{1cm}} SO_2 + \underline{\hspace{1cm}} H_2O \rightarrow \underline{\hspace{1cm}} H_2SO_4$$

Quelles autres espèces faut-il faire intervenir dans cette équation pour la pondérer et dans quel membre de l'équation doivent-elles figurer ?

- A. H⁺ et e⁻ dans le membre de gauche
- B. H⁺ dans le membre de gauche et e⁻ dans le membre de droite
- C. H⁺ dans le membre de droite et e⁻ dans le membre de gauche
- D. H⁺ et e⁻ dans le membre de droite
- 32. Quelle est la caractéristique de l'électrode standard à hydrogène ?
 - A. de l'hydrogène gazeux sous la pression de 1,01×10⁵ Pa (1 atm)
 - B. de l'acide sulfurique $1,0 \text{ mol dm}^{-3}$
 - C. une température de 273 K
 - D. une électrode en magnésium.

- **33.** Quel couple de facteurs affecte la quantité (en mol) de chlore produite lors de l'électrolyse d'une solution aqueuse de chlorure de sodium ?
 - A. l'intensité du courant et la température
 - B. la température et la concentration en ions chlorures
 - C. la concentration en ions chlorures et la durée de l'électrolyse
 - D. la pression et la durée de l'électrolyse
- 34. Quel composé appartient à la même série homologue que le 1-chloropropane?
 - A. le 1-chloropropène
 - B. le 1-chlorobutane
 - C. le 1-bromopropane
 - D. le 1,1-dichloropropane
- **35.** Quelle formule représente correctement le pentane ?
 - A. CH₃CH₂CHCH₂CH₃
 - B. (CH₃CH₂)₂CH₃
 - C. $CH_3(CH_2)_3CH_3$
 - D. $CH_3(CH_3)_3CH_3$
- **36.** Quel est le produit organique formé lors de la réaction entre l'éthanol et l'acide éthanoïque ?
 - A. CH₃CHO
 - B. CH₃COOCH₃
 - C. CH₃CH₂COOCH₃
 - D. CH₃COOCH₂CH₃

37.	Le propanal, CH_3CH_2CHO ($M_r = 58$), subit une fragmentation complète dans un spectromètre de masse À quelle valeur de m/z correspond la raie la plus intense de son spectre de masse ?				
	A.	15			
	B.	29			
	C.	43			
	D.	58			
38.	Que	lle est la proposition correcte à propos de la réaction entre le méthane et le chlore ?			
	A.	Elle implique une rupture hétérolytique et des ions Cl ⁻ .			
	B.	Elle implique une rupture hétérolytique et des radicaux Cl.			
	C.	Elle implique une rupture homolytique et des ions Cl ⁻ .			
	D.	Elle implique une rupture homolytique et des radicaux Cl•.			
39.	Que	lle formule correspond à un halogénoalcane secondaire ?			
	A.	CH ₃ CH ₂ CH ₂ CH ₂ Br			
	B.	CH ₃ CHBrCH ₂ CH ₃			
	C.	(CH ₃) ₂ CHCH ₂ Br			
	D.	$(CH_3)_3CBr$			
40.	Que	l composé est converti en butanal sous l'effet d'une solution acidifiée de dichromate de potassium ?			
	A.	le butan-1-ol			
	B.	le butan-2-ol			
	C	la butanone			

D.

l'acide butanoïque