Computer Vision I Basics of Image Processing Part 1

Carsten Rother

28/10/2014

Link to lectures

Slides of Lectures and Exercises will be online:

```
http://www.inf.tu-dresden.de/index.php?node id=2091&ln=de
(on our webpage > teaching > Computer Vision 1)
```

No lecture on 28.11.2014

Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4) main focus
 - Linear filtering
 - Non-linear filtering
- Multi-scale image representation (ch. 3.5)
- Edges detection and linking (ch. 4.2)
- Line detection and vanishing point detection (ch. 4.3)
- Interest Point detection (ch. 4.1.1)

What is an Image

• We can think of the image as a function:

$$I(x,y), I: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

- For every 2D point (pixel) it tells us the amount of light it receives
- The size and range of the sensor is limited:

$$I(x,y), \qquad I:[a,b]\times[c,d]\to[0,m]$$

Colour image is then a vector-valued function:

$$I(x,y) = \begin{pmatrix} I_R(x,y) \\ I_G(x,y) \\ I_B(x,y) \end{pmatrix}, \qquad I: [a,b] \times [c,d] \to [0,m]^3$$

 Comment, in most lectures we deal with grey-valued images and extension to colour is "obvious"

Images as functions

[from Steve Seitz]

Digital Images

- We usually do not work with spatially continuous functions, since our cameras do not sense in this way.
- Instead we use (spatially) discrete images
- Sample the 2D domain on a regular grid (1D version)

Intensity/color values usually also discrete.

Quantize the values per channel (e.g. 8 bit per channel)

Comment on Continuous Domain / Range

 There is a branch of computer vision research ("variational methods"), which operates on continuous domain for input images and output results

 Continuous domain methods are typically used for physics-based vision: segmentation, optical flow, etc. (we may consider this

briefly in later lectures)

- Continues domain methods then use different optimization techniques, but still discretize in the end.
- In this lecture and other lectures we mainly operate in discrete domain and discrete or continuous range for output results

Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4) main focus
 - Linear filtering
 - Non-linear filtering
- Multi-scale image representation (ch. 3.5)
- Edges detection and linking (ch. 4.2)
- Line detection and vanishing point detection (ch. 4.3)
- Interest Point detection (ch. 4.1.1)

Point operators

• Point operators work on every pixel independently:

$$J(x,y) = h(I(x,y))$$

- Examples for *h*:
 - Control contrast and brightness; $h(z) = az^b + c$

original

Contrast enhanced

Example

Figure 3.2 Some local image processing operations: (a) original image along with its three color (per-channel) histograms; (b) brightness increased (additive offset, b=16); (c) contrast increased (multiplicative gain, a=1.1); (d) gamma (partially) linearized ($\gamma=1.2$); (e) full histogram equalization; (f) partial histogram equalization.

Example for Point operators: Gamma correction

Inside cameras:

 $h(z)=z^{1/\gamma}$ where often $\gamma=2.2$ (called gamma correction) "makes image brighter"

In (old) CRT monitors An intensity z is perceived as: $h(z) = z^{\gamma}$ ($\gamma = 2.2$ typically) "perceive image as darker"

<u>Today:</u> even with "linear mapping" monitors, it is good to keep the gamma corrected image. Since human vision is more sensitive in dark areas.

Important: for many tasks in vision, e.g. estimation of a normal, it is good to run $h(z) = z^{\gamma}$ to get to a linear function

Example for Point Operators: Alpha Matting

Foreground *F*

Background B

Matte α (amount of transparency)

Composite C

$$C(x,y) = \alpha(x,y)F(x,y) + (1 - \alpha(x,y))B(x,y)$$

Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4) main focus
 - Linear filtering
 - Non-linear filtering
- Multi-scale image representation (ch. 3.5)
- Edges detection and linking (ch. 4.2)
- Line detection and vanishing point detection (ch. 4.3)
- Interest Point detection (ch. 4.1.1)

Linear Filters / Operators

- Properties:
 - Homogeneity: T[aX] = aT[X]
 - Additivity: T[X + Y] = T[X] + T[Y]
 - Superposition: T[aX + bY] = aT[X] + bT[Y]
- Example:
 - Convolution
 - Matrix-Vector operations

Convolution

- Replace each pixel by a linear combination of its neighbours and itself.
- 2D convolution (discrete)

$$g = f * h$$

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

95	116	125	129	132
92	110	120	126	132
86	104	114	124	132
78	94	108	120	129
69	83	98	112	124
60	71	85	100	114
	92 86 78 69	92 110 86 104 78 94 69 83	92 110 120 86 104 114 78 94 108 69 83 98	86 104 114 124 78 94 108 120 69 83 98 112

smaller output?

image
$$f(x,y)$$

filter (kernel)
$$h(x, y)$$

filtered image
$$g(x, y)$$

$$g(x,y) = \sum_{k,l} f(x-k,y-l)h(k,l)$$

"the image f is implicitly mirrored"

Convolution

- Linear $h * (f_0 + f_1) = h * f_0 + h * f_1$
- Associative (f * g) * h = f * (g * h)
- Commutative f * h = h * f
- Shift-Invariant g(x,y) = f(x+k,y+l) (for a neighborhood k,l) $\leftrightarrow (h*g)(x,y) = (h*f)(x+k,y+l)$

(it means "behaves everywhere the same, i.e. it does not depend on the position in the image.")

- Can be written in Matrix form: g = H f
- Correlation (not mirrored filter):

$$g(x,y) = \sum_{k,l} f(x+k,y+l)h(k,l)$$

Examples

• Impulse function: $f = f * \delta$

• Box Filter:

 $\frac{1}{9} \cdot \begin{array}{|c|c|c|c|c|}
\hline
1 & 1 & 1 \\
\hline
1 & 1 & 1 \\
\hline
1 & 1 & 1
\end{array}$

Original Image

Box-filtered image

Application: Noise removal

- Noise is what we are not interested in: sensor noise (Gaussian, shot noise), quantisation artefacts, light fluctuation, etc.
- Typical assumption is that the noise is not correlated between pixels
- Basic Idea: neighbouring pixel contain information about intensity

2	3	3		2	3	3
3	20	2	\rightarrow	3	3	2
3	2	3		3	2	3

Noise removal

The box filter does noise removal

Box filter takes the mean in a neighbourhood

Noise

Pixel-independent
Gaussian noise added

1	1	1	1
$\frac{1}{1}$.	1	1	1
9	1	1	1

Filtered Image

Derivation of the Box Filter

- y_r is true gray value (color)
- x_r observed gray value (color)
- Noise model: Gaussian noise:

$$p(x_r|y_r) = N(x_r; y_r, \sigma) \sim \exp\left[-\frac{||x_r - y_r||^2}{2\sigma^2}\right]$$

Derivation of Box Filter

Further assumption: independent noise

$$p(x|y) \sim \prod_{r} \exp\left[-\frac{\left||x_r - y_r|\right|^2}{2\sigma^2}\right]$$

Find the most likely solution for the true signal *y*Maximum-Likelihood principle (probability maximization):

prior likelihood

$$y^* = argmax_y \ p(y|x) = argmax_y \frac{p(y)p(x|y)}{p(x)}$$
posterior

p(x) is a constant (drop it out), assume (for now) uniform prior p(y). So we get:

$$p(y|x) = p(x|y) \sim \prod_{x} \exp[-\frac{||x_r - y_r||^2}{2\sigma^2}]$$

Derivation of Box Filter

Assumption: not uniform prior p(y) but ... in a small vicinity $W(r) \subset D$ the "true" signal y_r is nearly constant

Maximum-a-posteriori:

$$p(y|x) \sim \prod_{r} \left[\exp\left[-\frac{\left||x_{r'} - y_r|\right|^2}{2\sigma^2}\right] \right]$$

Only one y_r in a window W(r)

For one pixel r:

$$y_r^* = argmax_{y_r} \prod_{r' \in W(r)} \exp\left[-\frac{\left||x_{r'} - y_r|\right|^2}{2\sigma^2}\right]$$

take neg. logarithm:

$$y_r^* = argmin_{y_r} \sum_{r' \in W(r)} \frac{\left| |x_{r'} - y_r| \right|^2}{2\sigma^2}$$

Derivation of Box Filter

How to do the minimization (factor $1/2\sigma^2$ is irrelevant):

$$y_r^* = argmin_{y_r} \sum_{r' \in W(r)} ||x_{r'} - y_r||^2$$

Take derivative and set to 0:

$$F(y_r) = \sum_{r' \in W(r)} \left| |x_{r'} - y_r| \right|^2$$

$$\frac{\partial F}{\partial y_r} = 2\sum_{r'} (x_{r'} - y_r) = 2\sum_{r'} x_{r'} - |W| \cdot y_r = 0$$

$$y_r^* = \frac{1}{|W|} \sum_{r'} x_{r'}$$
 (the average)

Box filter is optimal under pixel-independent, Gaussian Noise and constant signal in window

Gaussian (Smoothing) Filters

- Nearby pixels are weighted more than distant pixels
- Isotropic Gaussian (rotational symmetric)

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Original Image

Gaussian-filtered image

Box-filtered image

Gaussian Filter

Input: constant grey-value image

Handling the Boundary (Padding)

Gaussian for Sharpening

Sharpen an image by amplifying what "smoothing removes":

$$g = f + \gamma (f - h_{blur} * f)$$

original

sharpened

How to compute convolution efficiently?

- Separable filters (next)
- Fourier transformation (wait 2 lectures)
- Integral Image trick (see exercise)

Important for later (integral Image trick):

- Naive implementation would be O(Nw) where w is the number of elements in box filter
- The Box filter (mean filter) can be computed in O(N).

1	1	1	1
$\frac{1}{0}$.	1	1	1
9	1	1	1

image

filter (kernel)

filtered image

$$g(x,y) = \sum_{k,l} f(x-k,y-l)h(k,l)$$

Separable filters

For some filters we have: $f * h = f * (h_x * h_y)$

Where h_{χ} , h_{γ} are 1D filters.

Example Box filter:

$$h_{x} * h_{y}$$

$$\frac{1}{9} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} * \frac{1}{3} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Now we can do two 1D convolutions:

$$f * h = f * (h_x * h_y) = (f * h_x) * h_y$$

Naïve implementation for 3x3 filter: 9N operations versus 3N+3N operations

Can any filter be made separable?

Note:
$$\frac{h_{\chi}*h_{y}}{9} \cdot \frac{h_{\chi}}{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}} = \frac{1}{3} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{1}{1} = \frac{1}{3} \cdot \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{1}{1} \cdot \frac{1}{1}$$

Apply SVD to the kernel matrix:

$$egin{aligned} oldsymbol{A} &=& \left[egin{aligned} u_0 & & & & \ & & & \ & & & \ \end{array}
ight] \left[egin{aligned} \sigma_0 & & & \ & \ddots & \ & & \ \hline & \ddots & \ & \ \hline & v_{p-1}^T \end{array}
ight] \left[egin{aligned} rac{v_0^T}{\cdots} \ \hline rac{v_{p-1}^T}{v_{p-1}^T} \end{array}
ight] \ &=& \sum_{j=0}^{p-1} \sigma_j u_j v_j^T, \end{aligned}$$

If all σ_i are 0 (apart from σ_0) then it is separable.

Example of separable filters

	1	2	1
$\frac{1}{16}$	2	4	2
	1	2	1

	1	4	6	4	1
	4	16	24	16	4
$\frac{1}{256}$	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

	-1	0	1
$\frac{1}{8}$	-2	0	2
	-1	0	1

$$\frac{1}{K}$$
 $\boxed{1 \mid 1 \mid \cdots \mid 1}$

$$\frac{1}{4}$$
 1 2 1

$$\frac{1}{16}$$
 1 4 6 4 1

$$\frac{1}{2}$$
 -1 0 1

$$\frac{1}{2} \ 1 \ -2 \ 1$$

- (a) box, K = 5
- (b) bilinear

(c) "Gaussian"

(d) Sobel

(e) corner

Half-way break

3 minutes break

Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4) main focus
 - Linear filtering
 - Non-linear filtering
- Multi-scale image representation (ch. 3.5)
- Edges detection and linking (ch. 4.2)
- Line detection and vanishing point detection (ch. 4.3)
- Interest Point detection (ch. 4.1.1)

Non-linear filters

- There are many different non-linear filters.
 We look at the following selection:
 - Median filter
 - Bilateral filter and Guided Filter
 - Morphological operations

Shot noise (Salt and Pepper Noise) - motivation

Original + shot noise

Gaussian filtered

Median filtered

Another example

Median Filter

Replace each pixel with the median in a neighbourhood:

Median filter: order the values and take the middle one

- No strong smoothing effect since values are not averaged
- Very good to remove outliers (shot noise)

Used a lot for post processing of outputs (e.g. optical flow)

Median Filter: Derivation

Reminder: for Gaussian noise we did solve the following ML problem

$$y_r^* = argmax_{y_r} \prod_{r' \in W(r)} \exp\left[-\frac{\left||x_{r'} - y_r|\right|^2}{2\sigma^2}\right] = argmin_{y_r} \sum_{r' \in W(r)} \left||x_{r'} - y_r|\right|^2 = 1/|W| \sum_{r' \in W(r)} x_r$$

$$p(y|x)$$
median mean

Does not look like a Gaussian distribution

For Median we solve the following problem:

$$y_r^* = argmax_{y_r} \prod_{r' \in W(r)} \exp\left[-\frac{|x_{r'} - y_r|}{2\sigma^2}\right] = argmin_{y_r} \sum_{r' \in W(r)} |x_{r'} - y_r| = Median(W(r))$$

Due to absolute norm it is more robust

Median Filter Derivation

Optimal solution is the median of all values

minimize the following:

$$F(y_r) = \sum_{r' \in W(r)} |x_{r'} - y_r|$$

Problem: not differentiable ⊗,

good news: it is convex ©

Motivation – Bilateral Filter

Original + Gaussian noise

Gaussian filtered

Edge over-smoothed

Bilateral filtered

Edge not over-smoothed

Bilateral Filter – in pictures

Bilateral Filter – in equations

Filters looks at: a) distance to surrounding pixels (as Gaussian) b) Intensity of surrounding pixels

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)} \qquad \text{Linear combination}$$

$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right)$$
 Same as Gaussian filter Consider intensity

Problem: computation is slow O(Nw); approximations can be done in O(N)Comment: **Guided filter** (see later) is similar and can be computed exactly in O(N)

See a tutorial on: http://people.csail.mit.edu/sparis/bf_course/

Application: Bilateral Filter

Cartoonization

Bilateral Filter

HDR compression (Tone mapping)

