- L'objectif de la simplification des fonctions logiques est de :
  - réduire le nombre de termes dans une fonction
  - et de réduire le nombre de variables dans un terme

 Cela afin de réduire le nombre de portes logiques utilisées réduire le coût du circuit

- Plusieurs méthodes existent pour la simplification :
  - Méthodes algébriques
  - Méthodes graphiques : table de karnaugh



Examinons l'expression suivante :

$$A \cdot B + A \cdot \overline{B}$$

- Les deux termes possèdent les même variables. La seule différence est l'état de la variable B qui change.
- Si on applique les règles de simplification :

$$AB + A\overline{B} = A(B + \overline{B}) = A$$

Ces termes sont dites adjacents.



#### Exemples de termes adjacents

- Ces termes sont adjacents
  - $AB + \overline{A}B = B$
  - ABC + ABC = AC
  - ABCD + ABCD = ABD
- Ces termes ne sont pas adjacents
  - $AB + \overline{AB}$
  - ABC +  $\overline{ABC}$
  - ABCD +  $\overline{ABCD}$



#### Description de la table de Karnaugh

- •La méthode consiste à mettre en évidence par une méthode graphique (un tableau) tous les termes qui sont adjacents (qui ne différent que par l'état d'une seule variable).
- Une table de Karnaugh = table de vérité de 2º cases avec un changement unique entre 2 cases voisines
- La méthode peut s'appliquer aux fonctions logiques de 2, 3, 4, 5 et 6 variables.
- Les tableaux de Karnaugh comportent 2<sup>n</sup> cases (n: est le nombre de variables).



Description de la table de Karnaugh



Tableau à 2 variables



Tableau à 3 variables



Tableau à 4 variables



• Description de la table de Karnaugh à 5 variables





U = 0 U = 1



Description de la table de Karnaugh

| 0000 | 0100 | 1100 | 1000 |
|------|------|------|------|
| 0001 | 0101 | 1101 | 1001 |
| 0011 | 0111 | 1111 | 1011 |
| 0010 | 0110 | 1110 | 1010 |



#### Simplification graphique : Table de Karnaugh

- Il faut considérer le tableau de Karnaugh comme un hyper-cylindre, en imaginant que le bord gauche du tableau de Karnaugh est collé au bord droite et de même pour les bords inférieur et supérieur.
- Pour faire des simplifications, on effectue des regroupements retangulaires de taille 2<sup>n</sup> : (1, 2, 4, 8, 16,...)
- On peut utiliser une même case pour plusieurs groupements
- On doit prendre tous les 1 du tableau
- Les groupements de cases doivent être de taille maximale

Les groupes formés doivent être les moins nombreux possibles, mais ils doivent englober tous les 1 a intérêt à dessiner des rectangles les plus grands possibles.



#### Simplification graphique : Table de Karnaugh

Cette méthode est pratique jusqu'à 4 variables d'entrée, possible pour 5 et 6 mais au delà de 6 on utilise des programmes informatisés.

- Une fonction à n variables d'entrée un tableau de Karnaugh de **2**<sup>n</sup> cases codées en Gray (adjacent= binaire réflichi).
- A partir de table de vérité ou formes canoniques PDS ou expressions logiques quelconques, on peut établir le tableau de Karnaugh



Passage de la table de vérité à la table de Karnaugh

| Α | В | С | S   |                |
|---|---|---|-----|----------------|
| 0 | 0 | 0 | 0   | AB 00 01 11 10 |
| 0 | 0 | 1 | 0   | C 00 01 11 10  |
| 0 | 1 | 0 | 0   | 0              |
| 0 | 1 | 1 | 1 — | 1 1            |
| 1 | 0 | 0 | 0   |                |
| 1 | 0 | 1 | 1_  |                |
| 1 | 1 | 0 | 1 / |                |
| 1 | 1 | 1 | 1 / |                |

Passage de la forme canonique à la table de Karnaugh

• Si la fonction logique est donnée sous la SDP canonique, alors sa représentation est directe : chaque terme correspond à une seule case qui doit être mise à 1.

• Si la fonction logique est donnée sous la PDS canonique, alors sa représentation est directe : pour chaque terme lui correspond une seule case qui doit être mise à 0.



## Exemples

$$F1(A,B,C) = \sum (1,2,5,7)$$



$$F2(A,B,C) = \prod (0,2,6,3)$$



- 1. Remplir le tableau à partir de la table de vérité.
- 2. Faire des regroupements : des regroupements de 16,8,4,2,1
- 3. Les mêmes termes peuvent participer à plusieurs regroupements.
- 4. Dans un regroupement :
  - qui contient un seule terme on peut pas éliminer de variables.
  - Dans un regroupement qui contient deux termes on peut éliminer une variable (celle qui change d'état).
  - Dans un regroupement de 4 termes on peut éliminer deux variables
  - •

L'expression logique finale est la réunion (somme) des groupements après simplification et élimination des variables qui changent d'état.



#### Simplification graphique : Table de Karnaugh

Exemples de simplification

Regroupement de deux cases adjacentes



La réunion de deux cases adjacentes contenant 1 chacune élimine une seule variable cell change d'état en passant d'une case à l'autre.

|        |                | Fonct  |        |        |
|--------|----------------|--------|--------|--------|
| AB CD  | <u>CD</u> (00) | CD(01) | CD(11) | CD(10) |
| AB(00) | 1              | 0      | 1      |        |
| AB(01) | 1              | 0      | 0      | 0      |
| AB(11) | 1              | 1      | 1      |        |
| AB(10) | 1              | 0      | /1     | 1      |

Deux variables disparaissent quand on regroupe 4 cases adjacentes, on peut alors remplacer la somme des 4 cases (4 mintermes à 4 variables chacun) par un seul terme qui comporte que 2 variables uniquement.

#### Simplification graphique : Table de Karnaugh

Exemples de simplification

Regroupement de deux cases adjacentes



La réunion de deux cases adjacentes contenant 1 chacune élimine une seule variable cell change d'état en passant d'une case à l'autre.

Regroupement de 4 cases adjacentes



|        |                | Fonct  | Fonction F <sub>3</sub> |        |  |
|--------|----------------|--------|-------------------------|--------|--|
| AB CD  | <u>CD</u> (00) | CD(01) | CD(11)                  | CD(10) |  |
| AB(00) | <b>1</b>       | 0      | 1                       | 1/     |  |
| AB(01) | 1              | 0      | 0                       | 0      |  |
| AB(11) | 1              | 1      | 1                       |        |  |
| AB(10) | 1              | 0      | /1                      | 1      |  |

F<sub>3(A,B,C,D)</sub>=CD+AB+BC

Deux variables disparaissent quand on regroupe 4 cases adjacentes, on peut alors remplacer la somme des 4 cases (4 mintermes à 4 variables chacun) par un seul terme qui comporte que 2 variables uniquement.

Regroupement de 8 cases adjacentes

|        |                | Fonct  | Fonction F <sub>4</sub> |        |  |  |  |  |
|--------|----------------|--------|-------------------------|--------|--|--|--|--|
| AB     | <u>CD</u> (00) | CD(01) | CD(11)                  | CD(10) |  |  |  |  |
| AB(00) | 1              | 0      | 0                       | /1     |  |  |  |  |
| AB(01) | 1              | 0      | 0                       | 1      |  |  |  |  |
| AB(11) | 1              | 0      | 0                       | 1      |  |  |  |  |
| AB(10) | 1/             | 0      | 0                       | \1     |  |  |  |  |
|        |                |        | _                       |        |  |  |  |  |

 $F_{4(A,B,C,D)}=D$ 

- En effectuant ainsi les groupements, on élimine les variables qui changent d'état et on conserve celles qui restent fixes

ABC + ABC = BC



$$F(A,B,C) = AB + AC + BC$$



Exemple: 3 variables



$$F(A,B,C) = ?$$



#### Exemple: 3 variables





Exemple: 4 variables







Exemple: 4 variables



$$F(A,B,C,D) = A\overline{B} + \overline{B}\overline{D} + \overline{B}CL$$





## Exercices

Trouver la forme simplifiée des fonctions pour les deux tables suivantes :



| AB |    |    |    |    |
|----|----|----|----|----|
| CD | 00 | 01 | 11 | 10 |
| 00 | 1  |    | 1  | 1  |
| 01 |    |    |    |    |
| 11 |    |    |    |    |
| 10 | 1  | 1  | 1  | 1  |



#### Exercice 2

A partir de la table de Karnaugh:

- 1) Trouver les formes SDP et PDS canoniques
- 2) La fonction logique simplifiee

| ab | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| cd |    |    |    |    |
| 00 | 1  | 1  | 1  | 1  |
| 01 | 0  | 0  | 0  | 0  |
| 11 | 0  | 0  | 0  | 0  |
| 10 | 1  | 1  | 1  | 1  |
|    |    |    |    |    |



## Exercice 3

| N   |     | a b |     |    |    |  |
|-----|-----|-----|-----|----|----|--|
|     |     | 0 0 | 0 1 | 11 | 10 |  |
| c d | 0 0 | 1   | 1   | 1  | 1  |  |
|     | 0 1 | 1   | 1   | 1  | 1  |  |
|     | 11  | 0   | 1   | 1  | 0  |  |
|     | 10  | 0   | 1   | 1  | 0  |  |

| N   |     | a b |     |    |    |
|-----|-----|-----|-----|----|----|
|     |     | 0 0 | 0 1 | 11 | 10 |
|     | 0 0 | 1   | 1   | 1  | 1  |
| c d | 0 1 | 1   | 1   | 1  | 1  |
| cu  | 11  | 0   | 1   | 1  | 0  |
|     | 10  | 0   | 1   | 1  | 0  |

| N   |     | a b |     |    |    |  |
|-----|-----|-----|-----|----|----|--|
|     |     | 0 0 | 0 1 | 11 | 10 |  |
|     | 0 0 | 1   | 1   | 1  | 1  |  |
| c d | 0 1 | 1   | 1   | 1  | 1  |  |
| cu  | 11  | 0   | 1   | 1  | 0  |  |
|     | 1 0 | 0   | 1   | 1  | 0  |  |

$$N = b + \bar{c}$$



### Commentaires

- Pour faire l'étude d'une foction logiue et la réalisation d'un circuit il faut suivre le étapes suivantes :
  - Il faut définir les variables d'entrée.
  - Il faut définir les variables de sortie.
  - Etablir la table de vérité.
  - Ecrire les équations algébriques des sorties ( à partir de la table de vérité ).
  - Definir les formes canoniques.
  - Effectuer des simplifications (algébrique ou par Karnaugh).
  - Faire le schéma avec un minimum de portes logiques.

