Introduction to Machine Learning

Kernel Support Vector Machines

Varun Chandola

March 11, 2019

Outline

Contents

1	Support Vector Machines 1 1.1 SVM Learning 2 1.2 Kernel SVM 3
1	Support Vector Machines
	\bullet A hyperplane based classifier defined by ${\bf w}$ and b
	• Like perceptron
	• Find hyperplane with maximum separation margin on the training data
	\bullet Assume that data is linearly separable (will relax this later)
	- Zero training error (loss)
s	VM Prediction Rule $y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$
SI	VM Learning

- Input: Training data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$
- \bullet Objective: Learn w and b that maximizes the margin

1.1 SVM Learning

- SVM learning task as an optimization problem
- \bullet Find **w** and *b* that gives zero training error
- Maximizes the margin $\left(=\frac{2}{\|w\|}\right)$
- Same as minimizing $\|\mathbf{w}\|$

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, \dots, N.$

• Optimization with N linear inequality constraint

SVM Optimization

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, \dots, N.$

• Introducing Lagrange Multipliers, α_n , n = 1, ..., N

Rewriting as a (primal) Lagrangian

minimize
$$L_P(\mathbf{w}, b, \alpha) = \frac{\|\mathbf{w}\|^2}{2} + \sum_{n=1}^N \alpha_n \{1 - y_n(\mathbf{w}^\top \mathbf{x}_n + b)\}$$

subject to $\alpha_n \ge 0$ $n = 1, \dots, N$.

2

Solving the Lagrangian

• Set gradient of L_P to 0

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

• Substituting in L_P to get the dual L_D

Dual Lagrangian Formulation

1.2 Kernel SVM

Dot Product Formulation

- All training examples (\mathbf{x}_n) occur in $dot/inner\ products$
- Also recall the prediction using SVMs

$$y^* = sign(\mathbf{w}^{\top}\mathbf{x}^* + b)$$

$$= sign((\sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n)^{\top}\mathbf{x}^* + b)$$

$$= sign(\sum_{n=1}^{N} \alpha_n y_n \frac{(\mathbf{x}_n^{\top}\mathbf{x}^*)}{} + b)$$

- Replace the dot products with kernel functions
 - Kernel or non-linear SVM

References