ASIGNATURA: Estructuras Discretas

ALUMNO: Murrieta Villegas Alfonso

GRUPO: 5 Formu_núm.: 1

FECHA: 27/02/2019

▶ Equivalencias

$$A \Leftrightarrow B \iff (A \to B) \land (B \to A)$$

1 Doma de Productos 11

i producto de sumas 10

1 Compuertas I-A -DO- Not

A-B = ANO 1. A+B = 0- 6R

► Mapas k

00,01,11,10

000,001,011,010,110,111,101,100

Propie dades

- · 77 P <=>P
- · P v P < => P} I denpotencia
- · PNQ <=>QNP}conmutativa · PVQ <=>QVP
- · P v(QvR) <=>(PvQ) v R) Aso · P N(QNR) <= XPNQ) N R) Aso

- · P v(Q NR) <=> (P v a) N (P v R) }) . oto buting ·PN(QVR) <=>(PAQ) V(PAR)
- ·P N ¬P <=> F } complemento
 - ·PNF <=>P] Identidod

 - ·PyT <=>T} Pominancia
 - ·P / F <=>F

Reglas del antecedente Regla $7 \stackrel{\mathbf{S}}{\Rightarrow} : \operatorname{Si} \alpha, \beta \Rightarrow X, \gamma, \text{ entonces} \quad \alpha, 7X, \beta \Rightarrow \gamma.$ Regla $\wedge \Rightarrow$: Si X, Y, α , $\beta \Rightarrow \gamma$, entonces α , X \wedge Y, $\beta \Rightarrow \gamma$. Regla $V \Rightarrow : Si X, \alpha, \beta \Rightarrow \gamma y Y, \alpha, \beta \Rightarrow \gamma$, entonces $\alpha, X \vee Y, \beta \Rightarrow \gamma$. $\text{Regla} \rightarrow \Rightarrow : \text{Si } Y, \, \alpha, \, \beta \ \Rightarrow \gamma \ y \ \alpha, \, \beta \ \Rightarrow \ X, \, \gamma, \, \text{entonces} \quad \alpha, \ X \rightarrow Y, \, \beta \ \Rightarrow \ \gamma.$ Regla \Rightarrow : Si X, Y, α , $\beta \Rightarrow \gamma$ y α , $\beta \Rightarrow$ X, Y, γ , entonces α , X \Rightarrow Y, $\beta \Rightarrow \gamma$. Reglas del consecuente Regla \Rightarrow 7: Si X, $\alpha \Rightarrow \beta$, γ , entonces $\alpha \Rightarrow \beta$, 7X, γ . $\text{Regla} \Rightarrow \land: \text{Si } \alpha \Rightarrow X, \beta, \ \gamma \ \text{y} \ \alpha \Rightarrow Y, \beta, \ \gamma, \ \text{entonces} \ \alpha \Rightarrow \beta \ , \ X \land Y, \ \gamma.$ Regla \Rightarrow v : Si $\alpha \Rightarrow$ X, Y, β , γ , entonces $\alpha \Rightarrow \beta$, X v Y, γ . Regla $\Rightarrow \Rightarrow$: Si X, $\alpha \Rightarrow Y$, β , γ , entonces $\alpha \Rightarrow \beta$, $X \rightarrow Y$, γ . Regla $\Rightarrow \rightleftharpoons$: Si X, $\alpha \Rightarrow Y$, β , γ y Y, $\alpha \Rightarrow X$, β , γ entonces $\alpha \Rightarrow \beta$, $X \rightleftharpoons Y$, γ .

Tabla IV. Reglas para Prueba Automática de Teoremas, PAT