

LE 6 / 7a – IBIS – Datenbanken

Relationenalgebra und einfache Abfragen in SQL

Angelehnt an Skript "Datenmodellierung und Datenmanagement", THM Mitwirkende Autoren: Prof. Dr. Guckert; Timo Péus, Dr. Thomas Farrenkopf, Melanie Vanderpuye, Prof. Dr. Grüne (2017)

Prof. Dr. Markus Grüne, FB03, Wirtschaftsinformatik

Inhalt

- Was ist Relationenalgebra
- Was ist SQL?
- Wie werden Abfragen in SQL formuliert?
- Wie sind die Ergebnisse zu interpretieren?

Relationenalgebra

Suchanfragen an die Relationen einer Datenbank können in der so genannten relationalen Algebra formuliert werden.

Hierfür stehen verschiedene Operatoren zur Verfügung, die auf Relationen angewendet jeweils wieder Relationen als Ergebnis liefern.

Es gibt zwei Typen von Operatoren:

- Mengenoperatoren (Durchschnitt, Vereinigung,...)
- spezielle Operatoren für Relationen (Projektion,...)

Wiederholung "Relation"

 $A_1,...,A_n$ seien Attribute mit den Domänen D_i =dom (A_i) . $R(A_1,...,A_n) \subseteq D_1 \times D_2 \times ... \times D_n$ heißt eine Relation von Grad n.

Ein Tupel aus R hat dann die Form $(r_1,...,r_n) \in R$ mit $r_i \in D_i$.

Eine Relation ist (also) eine Teilmenge eines kartesischen Produkts. Die relationalen Opertoren sind auf der Menge aller Tupel definiert.

R meint im Folgenden die Relation.

Operatoren der Relationenalgebra

Projektion π

Auswahl von Attributen

Selektion o

Auswahl von Tupeln

Vereinigung (Union) ∪

Ergebnismenge enthält alle Elemente der verknüpften Mengen.

Durchschnitt (Intersection) ∩

Differenz (Difference) \

Zeilen der einen Menge, die in der anderen nicht enthalten sind.

Umbenennen →

Attribut (oder Relation) erhält einen neuen Namen.

Verbund (Join) ⋈

Führt mehrere Tabellen zu einem Ergebnis zusammen. Umkehrung der Normalisierung (folgen im nächsten Kapitel).

	PNr	Titel	Nachname	Vorname	Gebdatum	SchulEintritt	Stufe
>	1	Dr.	Schmidt	Erika	1953-07-01	1978-08-01	Studiendirektorin
	2	NULL	Schön	Helmut	1948-01-07	1975-03-01	OberStudienrat
	3	NULL	Gliensmann	Jürgen	1968-06-06	1993-05-01	Studienrat
	4	NULL	Derwall	Jupp	1958-03-02	1984-06-01	Studienrat
	5	NULL	Nerz	Ottilie	1962-05-06	1990-05-06	Stduienrat
	6	NULL	Lukas	Laura	1979-01-09	2004-08-17	Studienrätin
	7	NULL	Meier	Horst	1959-04-04	1989-07-04	Oberstudienrat
	8	NULL	Müller	Gerd	1975-02-02	2004-09-14	Studienrat
	9	Dr.	Bauer	Renate	1965-05-01	1991-04-02	Studienrdirektor
	10	NULL	Hummel	Heinz	1969-02-02	1994-01-01	Studienrat
	12	NULL	Herberger	Sepp	1962-04-01	1987-08-01	Oberstudienrat
	13	NULL	Hörbiger	Christine	1963-05-01	1987-08-01	Oberstudienrätin

Zustand

Schema

Beispielrelation Schüler

	SNr	Nachname	Vorname	GebDatum	SchulEintritt	KNr
•	1	Rottenberg	Silke	1991-01-25	2001-08-01	8
	2	Angerer	Nadine	1997-11-10	2007-08-01	2
	3	Krahn	Annike	1994-07-01	2004-08-01	5
	4	Stegemann	Kerstin	1996-09-29	2006-08-01	3
	5	Zietz	Jennifer	1992-09-14	2002-08-01	7
	6	Gunther	Sarah	1992-01-25	2002-08-01	7
	7	Minnert	Sandra	1992-04-07	2002-08-01	7
	8	Hingst	Ariane	1998-07-25	2008-08-01	1
	9	Carlson	Britta	1997-03-03	2007-08-01	2
	10	Lingor	Renate	1994-10-11	2004-08-01	5
	11	Okoyino_d	Celia	1997-06-27	2007-08-01	2
	12	Garefrekes	Kerstin	1998-09-04	2008-08-01	1
	13	Wunderlich	Pia	1994-01-26	2004-08-01	5
	14	Grings	Inka	1997-10-31	2007-08-01	2
	15	Smisek	Sandra	1996-07-03	2006-08-01	3
	16	Prinz	Birgit	1996-10-25	2006-08-01	3
	17	Mittag	Ania	1994-05-16	2004- schue	eler - Ta

Zustand

Schema

Projektion

Eine Projektion stellt nur bestimmte Attribute einer Relation dar. $\pi_{\text{Attributliste}}(R)$

Schreibweise/Symbol: $\pi_{Nachname,Vorname}$ (Lehrer)

	nachname	vorname
•	Schmidt	Erika
	Schön	Helmut
	Gliensmann	Jürgen
	Derwall	Jupp
	Nerz	Ottilie
	Lukas	Laura
	Meier	Horst
	Müller	Gerd
	Bauer	Renate
	Hummel	Heinz

Selektion

Die Selektion liefert eine Teilmenge der Tupel der Relation. Schreibweise/Symbol:

$$\sigma_{\text{}}(R)$$

	PNr	Titel	Nachname	Vorname	Gebdatum	SchulEintritt	Stufe
•	1	Dr.	Schmidt	Erika	1953-07-01	1978-08-01	Studiendirektorin

Vereinigung, Durchschnitt und Differenz

Vereinigung (union), Durchschnitt (intersection) und Differenz (difference) entsprechen den bekannten Verknüpfungen auf Mengen. Die Relationen müssen dafür kompatibel sein: Gleicher Grad und gleiche Domänen der Attribute.

 $\pi_{\mathsf{Nachname},\mathsf{Vorname}}(\mathsf{Lehrer}) \cup \pi_{\mathsf{Nachname},\mathsf{Vorname}}(\mathsf{Schüler})$

Ausdrücke in der Algebra

Die Operatoren können hintereinander ausgeführt werden. Dies ist möglich, da die Ergebnisse ja jeweils wieder Relationen sind.

$$\pi_{\text{Nachname.Vorname}}$$
 ($\sigma_{\text{Vorname="Erika"}}$ (Lehrer))

	nachname	vorname
•	Schmidt	Erika

$$\sigma_{Vorname="Erika"}(\pi_{Nachname, Vorname}(Lehrer))$$

?

Umbenennen

Komplexe algebraische Ausdrücke können mit Hilfe des Operators für das Umbenennen vereinfacht werden.

Schreibweise / Symbol:

$$\mathsf{S}_{\mathsf{attr}_{1}\mathsf{_neu},\ldots,\,\mathsf{attr}_{n}\mathsf{_neu}} \longleftarrow \mathsf{R}_{\mathsf{attr}_{1}\mathsf{_alt},\ldots,\,\mathsf{attr}_{n}\mathsf{_alt}}$$

Neuer Name für Relation und Attribute

Diese Relation heißt jetzt S

 $S_{nname,vname} \leftarrow \pi_{nachname,vorname}$ (Lehrer)

	nachname	vorname
•	Schmidt	Erika
	Schön	Helmut
	Gliensmann	Jürgen
	Derwall	Jupp
	Nerz	Ottilie
	Lukas	Laura
	Meier	Horst
	Müller	Gerd

SQL als Standardabfragesprache

SQL ist standardisiert (DIN und ISO).

Datenbanksysteme am Markt entsprechen mehr oder weniger den Richtlinien. DML und DDL sind weitgehend einheitlich.

Starke Abweichungen zwischen verschiedenen Produkten

- bei den Spaltenfunktionen und im Bereich der DCL.
- Umsetzung von Prozeduren (Abläufe von Anweisungen, gespeichert unter einem Namen, zu behandeln wie ein eigener Befehl).

SQL

14

Alle Ausdrücke der Relationenalgebra können auch in SQL formuliert und ausgeführt werden.

Lesende Datenbankabfragen werden mit *Select*-Statements durchgeführt:

- Selektion = Welche Sätze möchte ich sehen?
 (Auswahl von Zeilen)
- Projektion = Welche Attribute m\u00f6chte ich sehen?
 (Auswahl von Attributen)

Einfaches Select

SELECT [<Liste von Spalten>, *] π

FROM <tabelle>

WHERE <booksenser Ausdruck auf Spalten>

```
SELECT *

FROM LEHRER;

SELECT NACHNAME

FROM LEHRER

WHERE SCHULEINTRITT>"1997-11-01";
```

Für die WHERE-Klausel Spalten stehen typabhängige Vergleichsoperatoren bereit. Vergleiche können mit boolschen Operatoren verknüpft werden.

Column Name	Datatype	PK NN
PNr	INT(11)	J
Titel	CHAR(20)	
Nachname	CHAR(20)	
Vorname	CHAR(20)	
Gebdatum	DATE	
SchulEintritt	DATE	
Stufe	CHAR(20)	

Alle Spalten, keine Einschränkung

Projektion auf 2 Spalten, Keine Einschränkung

SELECT Nachname, Gebdatum FROM lehrer;

Column Name	Datatype	PK NN	
PNr	INT(11)	J	
Titel	CHAR(20)		
Nachname	CHAR(20)		
Vorname	CHAR(20)		>
Gebdatum	DATE		
SchulEintritt	DATE		
Stufe	CHAR(20)		

Projektion auf 2 Spalten, mit Selektion

Sortieren

- Die Resultate einer SQL-Abfrage sind Mengen und besitzen daher keine festgelegte Sortierreihenfolge.
- Mit Hilfe eines Sortierzusatzes ORDER BY kann die Ergebnismenge sortiert werden.

```
SELECT *
FROM lehrer
ORDER BY nachname;

SELECT vorname, nachname
FROM lehrer
ORDER BY 2 ASC;
```

Sortiere nach 2. Spalte der Ergebnismenge

```
SELECT DISTINCT vorname
FROM schueler
ORDER BY 1 DESC
```

Keine Duplikate, also eine echte Menge

ASC=Ascending DESC=Descending

Spaltenfunktionen

- In einer SQL-Abfrage k\u00f6nnen auf die Spalten so genannten Spaltenfunktionen angewendet werden.
- Beispiel: Extraktion des Jahres bei einer Spalte mit Wertebereich Date.

```
SELECT NACHNAME

FROM LEHRER

WHERE YEAR (SCHULEINTRITT) > 1970;
```


Liste von Spaltenfunktionen (MySQL)

Verknüpfung von Spalten mit typgerechten Operatoren

z.B. spalte1+spalte2, spalte1/365

Numerische Operationen

z.B. truncate(n,d)

Datumsoperationen DAY, MONTH, YEAR, ADDDATE,

z.B. YEAR(GEBDATUM), DATEDIFF(datum1,datum2)

Zeichenketten: Substring, Konkatenation,...

z.B. SUBSTR(Nachname, 1, 1)

Beispiel

Kurz vor der Pension...

```
SELECT nachname, YEAR(NOW())-YEAR(gebdatum)
FROM lehrer
WHERE YEAR(NOW())-YEAR(gebdatum)>50;
```

Initialen

```
SELECT
CONCAT(SUBSTR(vorname, 1, 1), '.', SUBSTR(nachname, 1, 1))
FROM lehrer;
```

Für NOW() können wir auch die Konstante CURRENT_TIMESTAMP verwenden! Für das aktuelle Datum stehen CURDATE() und CURRENT_DATE zur Verfügung.

Bedingungen

Vergleichsoperatoren

Boolsche Operatoren

AND, OR

Bereichsprüfungen

<wert> BETWEEN <wert> AND <wert>

Mustervergleiche

<wert> like "MUSTER%", <wert> like "MUSTER_"

Elementprüfung

<wert> in (<wert>,<wert>,...,<wert>)

<wert> ist Attribut oder Konstante
% Wildcard (entspricht: .*)
_ Wildcard (entspricht: .)
Können mit \ maskiert werden.

Beispiel

```
select * from lehrer
where nachname like "M%";
select * from lehrer
where nachname like "M ier";
select * from lehrer
where year (gebdatum) between 1960 and 1967;
select * from lehrer
where year (gebdatum) in (1960, 1961, 1962);
```

Behandlung von NULL

- Der Wert NULL steht für einen undefinierten Wert. Er kann daher nicht mit anderen Werten verglichen werden.
- Für die Selektion muss daher die IS NULL-Klausel genutzt werden.

Alle Lehrer, die keinen akademischen Titel haben

```
SELECT nachname
FROM lehrer
WHERE titel = NULL;
```

SELECT nachname
FROM lehrer
WHERE titel IS NULL;

Negation: IS NOT NULL

Achtung: hier gibt es keinen Fehler, sondern eine fälschlicherweise leere Ergebnismenge

Mengenoperationen

Die Vereinigung zweier Ergebnismengen erfolgt mit dem UNION-Operator. Die Ergebnisse müssen die gleiche Struktur (d.h. die gleichen Spalten) besitzen!

Für Differenz und Durchschnitt gibt es keine SQL-Anweisung! Sie können mit Hilfe so genannter Subselects realisiert werden (kommt später).

Personenliste

```
SELECT nachname, vorname, gebdatum FROM lehrer
UNION
SELECT nachname, vorname, gebdatum FROM schueler;
```

Das ist eine Menge! Sie enthält keine Duplikate, die aus der Vereinigung resultieren!

Rename

- Auch SQL erlaubt das Umbenennen von Attributen.
- Hierzu wird in der Projektion einfach hinter dem Attributnamen das Schlüsselwort AS gefolgt vom neuen Namen angegeben.

SELECT nachname as nname FROM lehrer;

Lernziel / Fragen

Umgang mit der Relationenalgebra sowie einfache SQL-Abfragen.

Was ist die Relationenalgebra?

Was ist SQL?

Wie werden Abfragen formuliert?

Wie sind deren Ergebnisse zu interpretieren?