

## INTERMEDIATE REPORT

## Windsor Pond Unit 1 Safety Analysis

For the period of March 2020

Submitted to

Dr. William Walters

As a part of

NucE431

by

Mohamed Bagahizel, Vincenzo Freschi, Maxmilian Stump



The Pennsylvania State University Department of Nuclear Engineering University Park, PA 16802 Date: April 3, 2020

# TABLE OF CONTENTS

|                                             | Page |
|---------------------------------------------|------|
| LIST OF FIGURES                             | 3    |
| LIST OF TABLES                              | 4    |
| NOMENCLATURE                                | 4    |
| CHAPTER 1. INTRODUCTION                     | 6    |
| CHAPTER 2. RESULTS AND DISCUSSION           | 8    |
| 2.1 Rodded and Un-rodded Fdh                | 8    |
| 2.2 MTC Calculations                        | 11   |
| 2.3 Rod Ejection                            | 13   |
| 2.4 Shut Down Margins                       | 16   |
| CHAPTER 3. SUMMARY AND FUTURE PLANS         | 20   |
| CHAPTER 4. QUESTIONS                        | 20   |
| APPENDIX A: ROD INSERTION LIMITS            | 22   |
| APPENDIX B: ANC INPUTS FOR EACH CALCULATION |      |
| REFERENCES                                  | 30   |

# LIST OF FIGURES

## Figure

| Figure: Windsor Pond Unit 1 E-SUM Edit from ANC Output Showcasing the Un-rodo<br>th Values Throughout Cycle 13 and Most Limiting Value                                                             | led<br>9    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure: Windsor Pond Unit 1 Cycle 13 Un-rodded Fdh Values Displayed as a Function arnup                                                                                                            | of 9        |
| Figure: Windsor Pond Unit 1 Cycle 13 Un-rodded 10000 MWD/MTU Burnup Step Co<br>Coded Fdh Map of Core.                                                                                              | olor<br>10  |
| Figure: Windsor Pond Unit 1 E-SUM Edit from ANC Output Showcasing the Rodded Values Throughout Cycle 13 and Most Limiting Value                                                                    | Fdh 10      |
| Figure: Windsor Pond Unit 1 Cycle 13 Rodded Fdh Values Displayed as a Function of Burnup                                                                                                           | ,<br>11     |
| Figure: Windsor Pond Unit 1 Cycle 13 Rodded 10000 MWD/MTU Burnup Step<br>Color Coded Fdh Map of Core                                                                                               | 11          |
| Figure: Windsor Pond Unit 1 Cycle 13 E-SEQ Edit Showcasing MTC Values Through Cycle and Highlighting Least Negative Value                                                                          | out 12      |
| Figure: Windsor Pond Unit 1 Cycle 13 E-SUM Edit Highlighting the Least Negative M Eigenvalues at 527 °F and 537 °F  Figure: Windsor Pond Unit 1 Cycle 13 Graph of MTC Values Throughout Cycle as a | ATC's 13    |
| Function of Burnup and Juxtaposed to Safety Limit.  Figure: Windsor Pond Unit 1 E-SRW Edit Showcasing BOC-HZP Max Ejected Rod V and Respective F <sub>O</sub> Value                                | _           |
| Figure: Windsor Pond Unit 1 E-SRW Edit Showcasing BOC-HFP Max Ejected Rod V and Respective $F_Q$ Value                                                                                             | Vorth<br>15 |
| Figure: Windsor Pond Unit 1 E-SRW Edit Showcasing EOC-HZP Max Ejected Rod V and Respective $F_Q$ Value                                                                                             | Worth 15    |
| Figure: Windsor Pond Unit 1 E-SRW Edit Showcasing EOC-HFP Max Ejected Rod V and Respective $F_Q$ Value                                                                                             | Vorth<br>16 |
| Figure: Windsor Pond Unit 1 Worst Stuck Rod at BOC Part 1 Figure: Windsor Pond Unit 1 Worst Stuck Rod at BOC Part 2 Figure: Windsor Pond Unit 1 Worst Stuck Rod at FOC Part 1                      | 18<br>18    |

| <ul><li>17 Figure: Windsor Pond Unit 1 Worst Stuck Rod at BOC Part 2</li><li>18 Figure: Windsor Pond Unit 1 BOC E-SUM Showcasing SDM Calculation Relevant Eigenvalues</li></ul> | 19<br>19  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 19 Figure: Windsor Pond Unit 1 EOC E-SUM Showcasing SDM Calculation Relevant                                                                                                    |           |
| Eigenvalues 20 Figure: Representation of the Behavior of the Six Eigenvalues Calculated to Attain the                                                                           | 20<br>SDM |
| 20 Figure. Representation of the Benavior of the Six Eigenvalues Calculated to Attain the                                                                                       | 21        |
| 21 Figure: Figure Control Rod Configuration Courtesy of Westinghouse                                                                                                            | 23        |
| 22 Figure: Rod Insertion Limits                                                                                                                                                 | 24        |
| 23 Figure: Rodded and Un-rodded Fdh Calculation                                                                                                                                 | 24        |
| 24 Figure: MTC Calculation                                                                                                                                                      | 25        |
| 25 Figure: HZP Rod Ejection Calculation at 0 Burnup                                                                                                                             | 25        |
| 26 Figure: HZP Rod Ejection Calculation at 14660 Burnup                                                                                                                         | 26        |
| 27 Figure: HFP Rod Ejection Calculation at 150 Burnup                                                                                                                           | 26        |
| 28 Figure: HFP Rod Ejection Calculation at 14660 Burnup                                                                                                                         | 27        |
| 29 Figure: Shut Down Margin Calculation at BOC                                                                                                                                  | 27        |
| 30 Figure: Shut Down Margin Calculation at EOC                                                                                                                                  | 28        |
| 31 Figure: Worst Stuck Rod Calculation                                                                                                                                          | 29        |
| LIST OF TABLES                                                                                                                                                                  |           |
| Гable                                                                                                                                                                           |           |
| Page                                                                                                                                                                            |           |
| 1 Table 1: Windsor Pond Unit 1 Rod Ejection Worth and F <sub>Q</sub> Limits for HZP and HFP                                                                                     | 6         |
| at BOC and EOC                                                                                                                                                                  |           |
| 2 Table 2: Windsor Pond Unit 1 Max Ejected Rod Worths and Respective F <sub>Q</sub> Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration    | 16        |
| 3 Table 3: Windsor Pond Unit 1 Cycle 13 Conservative and Unconservative SDMs, and Rod Uncertainties for BOC and EOC Compared to Safety Limits                                   | 20        |

### **NOMENCLATURE**

## **ENGLISH**

LP – Loading Pattern

RSAC - Reload Safety Analysis Checklist

HZP- Hot Zero Power

HFP- Hot Full Power

**BOC-Beginning of Cycle** 

EOC- End of Cycle

MTC – Moderator Temperature Coefficient

DTC – Doppler Temperature Coefficient

RILs – Rod Insertion Limits

ARO - All Rods Out

F<sub>Q</sub>- Peak Nodal Power Over Average Nodal Power

 $k-Neutron\ Multiplication\ Factor/Eigenvalue$ 

## **GREEK SYMBOLS**

ρ - reactivity

 $\Delta \rho$  -change in reactivity

### **CHAPTER 1: INTRODUCTION**

The report deals with the results from the safety analysis for Windsor Pond Unit 1's cycle 13 LP. To perform the safety analysis calculations, ANC software provided by Westinghouse was utilized, utilizing macroscopic parameters given to the group from Phoenix code outputs. It was found that the rodded Fdh was above the safety limit of 1.645, as the insertion of control bank 5 caused a suppression of the power profile in the major diagonal and a subsequent increase of the peaking factor in the periphery. MTC values at each burnup step throughout the cycle were all below the limit of 0.50 pcm/°F. The rod ejection worth and ejection subchannel peak power were below the limits in each core power level and cycle time tested. Shutdown margins were found to meet and exceed the limiting 1600 pcm both at BOC and EOC.

Following the design of the final LP, it is necessary to test the reload design's safety prior to any physical fuel transportation. Transient analysts perform a comprehensive analysis covering the entire spectrum of nuclear accidents, making many assumptions. Due to the time intensiveness of such calculations, this analysis cannot be repeated for every reload cycle. Westinghouse's RSAC method is thus employed to ensure that the transient analysts' calculations are bounding for the current LP. The method consists of confirming values assumed by transient analysists are within the prescribed limits. This both ensures that the analysis is bounding and that the core meets

NRC safety requirements. For the purpose of this course, it is required that the LP developed by the group be tested for maximum rodded Fdh peaking factor, MTC limits, rod ejection worth, and shutdown margins. During the calculations, the values will be tested at the most limiting core conditions, to ensure that the RSAC values are conservative and true even in the worst-case scenario.

The first safety check performed was the rodded Fdh. While the Fdh peaking factor, representing the enthalpy rise in a subchannel, had been determined at each ARO burnup step during the LP development step of this project, control rod insertions affect the neutron flux within the core. This shift in neutron flux will shift the power distribution in the core, and thus a Fdh higher than the ARO one can be attained with rods at their RILs. Fdh calculations are essential for the safe operation of a reactor, as values above the limits can cause increases in temperature and subsequent damage to fuel and cladding. For this calculation, the Fdh will be tested throughout the cycle with control rods at the RILs for HFP. The RILs are the maximum allowable insertion of control banks as a function of reactor power. The plot of RIL vs the fraction of reactor power is shown in figure x in appendix A, along with the RILs for HFP and HZP and control rod configuration for the core. For Windsor Pond Unit 1, the RILs for HFP consists of all control banks completely withdrawn, except for the lead control bank, number 5, which is inserted 25% (or 103 steps inserted for the purpose of ANC inputs). The limiting value for the rodded Fdh is the same as the un-rodded one: it must be less than 1.645.

The MTC values throughout the cycle were calculated during the previous step of LP development. Defined as the reactivity change of the core in pcm per °F change in moderator temperature, the MTC must be below 0.50 pcm/°F. The limit is allowed to be slightly positive, as the DTC

The rod ejection worth and ejected rod hot channel factor,  $F_Q$ , are the next calculations on the RSAC. These calculations deal with the Condition IV accident in which a mechanical failure of the pressure housing of a control rod leads to the ejection of the rod out of the core. This very

low probability accident leads to a large positive reactivity insertion into the core, which can cause rapid power increases, DNB, and fuel and clad temperature increases. To confirm the core RILs, pre-calculated by the transient analysts, the worth of the ejected rod,  $\Delta \rho(E)$ , and the peak power caused by the ejection, the  $F_Q$  peaking factor, must be within the RSAC limits. To ensure conformity to the RSAC limits, the rod ejection calculations must be performed at HZP and HFP, for both BOC and EOC. Additionally, to ensure conservative values are provided, the worst possible rod must be selected for ejection in this calculation. The limiting values for these calculations are given in table 1 below. Additionally, at HFP the attained  $F_Q$  value is given a 13% uncertainty due to transient xenon effects, and a 10% uncertainty is added to the maximum ejected rod worth, due to inherent rod worth uncertainty. At HZP, the  $F_Q$  uncertainty increases to 23% and the rod worth uncertainty to 12%, in order to consider part power effects.

Table 1: Windsor Pond Unit 1 Rod Ejection Worth and F<sub>Q</sub>Limits for HZP and HFP, at BOC and EOC

| Core Status | Rod Ejection Worth | F <sub>Q</sub> |
|-------------|--------------------|----------------|
| BOC, HFP    | 0.25%Δρ            | 5.25           |
| BOC, HZP    | 0.60%Δρ            | 15.0           |
| EOC, HFP    | 0.25%Δρ            | 5.25           |
| EOC, HZP    | 0.60%Δρ            | 26.25          |

Finally, the SDM need to be calculated to ensure that the operators always have enough negative reactivity insertions, in the form of control rods, to trip the reactor. The SDMs are particularly important in the eventuality of reactor casualties that lead to short-term positive reactivity

insertions in the core, such as steam-line break and boron dilution accidents. SDMs are calculated using a worst-case, but possible, scenario for reactor trips, to be discussed in depth in the appropriate section. For the purpose of this course, the SDMs are calculated at EOC and BOC, and must be greater than  $1.600\%\Delta\rho$ .

#### CHAPTER 2: RESULTS AND DISCUSSION

In this section, the results from LP's safety analysis will be shared and discussed. For each calculation sample inputs and other relevant information can be found in Appendix B. The calculations to be discussed in this section are rodded and un-rodded Fdh, MTC, Rod Ejection Worth, and SDM.

#### 2.1: Rodded and Un-rodded FDH

As discussed above, it is necessary to ensure compliance of Fdh limits both in the rodded and un-rodded core configuration. It is expected that the Fdh be below 1.645 for every core configuration and throughout the entirety of the cycle. For this purpose, the Fdh was calculated for both rodded and un-rodded configuration at each burnup step (consider only 150 MWD/MTU through EOC) with an HFP core configuration. Input file samples for both rodded and un-rodded ANC calculations are present in Appendix B. The results for the un-rodded calculations are given in figure 1, utilizing the E-SUM edit from ANC output. The most limiting Fdh value of 1.644 was found to occur at the 10000 MWD/MTU burnup step. As a means of better envisioning the Fdh value variations throughout the cycle, figure 2 showcases the un-rodded Fdh as a function of burnup. The location of this most limiting Fdh value in the core is shown in figure 3 below, by utilizing the C-FDH edit at the 10000 MWD/MTU step. It is thus found that the limiting Fdh value occurs in the assembly at 7,2 position. The rodded Fdh values are instead displayed in figure 4. The graphical representation in figure 5 showcases the rodded Fdh as a function of burnup. The most limiting value exceeds the 1.645 limit and also occurs during the 10000MWD/MTU step. Figure 6, showcases the assembly where the highest Fdh value occurs and it was found that the value also took place at 7,2 assembly. The explanation for this increase with RIL insertion can be found by analyzing the effect that the control banks have on the entire power profile. Looking at Appendix A, it can be seen that control bank 5 (using quarter core notation) has control rods at positions: 1,7; 3,3; 6,6; and 7,1. By analyzing the divergence points between figures 2 and 6, it is noticed that the rod insertions cause a marked suppression of the power profile along the main diagonal (looking at assembly 3,3 in both cases one notices the rodded Fdh is lessened by 0.122, with an overall decrease also in surrounding assemblies), whereas the effects due to the main axes control rods are less pronounced (only a decrease of 0.60 was found at assembly 7,1, while surrounding assemblies exhibited an increase in Fdh). Thus, the suppression of the power profile along the main diagonal caused an increase in power in the lower and upper octants of the core, increasing the power of the 7,1 assembly to the point that the Fdh surpassed the limits.

| E-SUM | SUMMARY OF | ANC | RUNS | END ( | )F | RUN |
|-------|------------|-----|------|-------|----|-----|
|       |            |     |      |       |    |     |

| NO | BU    | POWER | EIGEN    | BORO | CON   | T     | ΕN    | ΧE | SM | FQ    | FDH   | FZ    | AO/AS | ΙS  | 5   | 4   | 3   | 2   | 1   |
|----|-------|-------|----------|------|-------|-------|-------|----|----|-------|-------|-------|-------|-----|-----|-----|-----|-----|-----|
|    |       |       |          | PPM  | G/KG  | DEG-F | DEG-C |    |    |       |       |       |       | *   |     |     |     |     |     |
| 1  | 0     | 1.000 | 0.999997 | 1434 | 8.204 | 549.0 | 287.2 | DS | DS | 2.056 | 1.676 | 1.201 | 5.41  | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 2  | 150   | 1.000 | 1.000006 | 1090 | 6.231 | 549.0 | 287.2 | DP | DP | 1.928 | 1.634 | 1.142 | 0.58  | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 3  | 500   | 1.000 | 0.999995 | 1045 | 5.976 | 549.0 | 287.2 | DP | DP | 1.887 | 1.631 | 1.129 | -0.12 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 4  | 1000  | 1.000 | 0.999996 | 997  | 5.701 | 549.0 | 287.2 | DP | DP | 1.860 | 1.633 | 1.122 | -0.50 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 5  | 2000  | 1.000 | 0.999999 | 921  | 5.266 | 549.0 | 287.2 | DP | DP | 1.832 | 1.630 | 1.117 | -1.15 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 6  | 3000  | 1.000 | 1.000010 | 844  | 4.826 | 549.0 | 287.2 | DP | DP | 1.804 | 1.620 | 1.110 | -1.55 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 7  | 4000  | 1.000 | 1.000007 | 768  | 4.394 | 549.0 | 287.2 | DP | DP | 1.802 | 1.613 | 1.109 | -1.97 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 8  | 5000  | 1.000 | 1.000000 | 698  | 3.993 | 549.0 | 287.2 | DP | DP | 1.834 | 1.608 | 1.113 | -2.39 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 9  | 6000  | 1.000 | 0.999999 | 634  | 3.624 | 549.0 | 287.2 | DP | DP | 1.866 | 1.606 | 1.118 | -2.75 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 10 | 7000  | 1.000 | 0.999991 | 575  | 3.286 | 549.0 | 287.2 | DP | DP | 1.890 | 1.610 | 1.124 | -3.14 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 11 | 8000  | 1.000 | 1.000000 | 521  | 2.977 | 549.0 | 287.2 | DP | DP | 1.910 | 1.621 | 1.132 | -3.61 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 12 | 10000 | 1.000 | 0.999997 | 408  | 2.335 | 549.0 | 287.2 | DP | DP | 1.937 | 1.644 | 1.123 | -2.93 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 13 | 12000 | 1.000 | 1.000006 | 249  | 1.422 | 549.0 | 287.2 | DP | DP | 1.842 | 1.634 | 1.093 | -0.57 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 14 | 14000 | 1.000 | 0.999998 | 68   | 0.391 | 549.0 | 287.2 | DP | DP | 1.770 | 1.581 | 1.096 | -0.68 | 0 Y | 137 | 137 | 137 | 137 | 137 |
| 15 | 14660 | 1.000 | 0.999993 | 8    | 0.047 | 549.0 | 287.2 | DP | DP | 1.753 | 1.564 | 1.100 | -1.04 | 0 Y | 137 | 137 | 137 | 137 | 137 |

Figure 1: Windsor Pond Unit 1 E-SUM Edit from ANC Output Showcasing the Un-rodded Fdh Values Throughout Cycle 13 and Most Limiting Value



Figure 2: Windsor Pond Unit 1 Cycle 13 Un-rodded Fdh Values Displayed as a Function of Burnup

|   | Unrodded FI | DH    |       |       |       |       |       |       |       |       |  |
|---|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|   |             | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |  |
|   |             |       |       |       |       |       |       |       |       |       |  |
| 1 |             | 0.891 | 1.229 | 1.537 | 1.105 | 1.609 | 1.159 | 1.097 | 1.613 | 0.751 |  |
|   |             |       |       |       |       |       |       |       |       |       |  |
| 2 |             | 1.229 | 1.216 | 1     | 1.62  | 1.274 | 1.037 | 1.643 | 1.62  | 0.658 |  |
|   |             |       |       |       |       |       |       |       |       |       |  |
| 3 |             | 1.537 | 1.002 | 1.589 | 1.343 | 1.305 | 1.184 | 1.594 | 0.964 |       |  |
| 4 |             | 1.105 | 1.62  | 1.341 | 1.22  | 1.076 | 1.159 | 1.547 | 0.79  |       |  |
| 4 | •           | 1.103 | 1.02  | 1.541 | 1.22  | 1.070 | 1.135 | 1.347 | 0.75  |       |  |
| 5 |             | 1.609 | 1.321 | 1.303 | 1.078 | 1.062 | 1.205 | 1.404 | 0.671 |       |  |
|   |             |       |       |       |       |       |       |       |       |       |  |
| 6 |             | 1.159 | 1.038 | 1.188 | 1.166 | 1.204 | 1.361 | 0.797 |       |       |  |
|   |             |       |       |       |       |       |       |       |       |       |  |
| 7 |             | 1.097 | 1.644 | 1.597 | 1.553 | 1.408 | 0.795 |       |       |       |  |
|   |             |       |       |       |       |       |       |       |       |       |  |
| 8 |             | 1.613 | 1.62  | 0.981 | 0.801 | 0.675 |       |       |       |       |  |
| 9 |             | 0.752 | 0.66  |       |       |       |       |       |       |       |  |
| 9 |             | 0.732 | 0.00  |       |       |       |       |       |       |       |  |

Figure 3: Windsor Pond Unit 1 Cycle 13 Un-rodded 10000 MWD/MTU Burnup Step Color Coded Fdh Map of Core.

| E-SU | M :   | SUMMAR | Y OF A | NC R  | UNS       |                |       |    |    |       |       | END   | OF RI | JN   |      |      |   |     |     |     |
|------|-------|--------|--------|-------|-----------|----------------|-------|----|----|-------|-------|-------|-------|------|------|------|---|-----|-----|-----|
| N0   | BU    | POWER  | EIG    |       | ORON CON  |                |       |    | SM | FQ    | FDH   | FZ    | A0/A9 | SI : | S 5  | 4    |   | 3   | 2   | 1   |
| 1    | 150   | 1.000  | 0.999  |       |           | DEG-F<br>549.0 |       |    | HD | 2.154 | 1.644 | 1.294 | 7.91  | * 0  | Y 16 | 3 13 | 7 | 137 | 137 | 137 |
| 2    |       | 1.000  |        |       |           |                |       |    | -  |       |       | 1.287 |       |      |      |      |   |     |     |     |
| 3    | 1000  | 1.000  | 0.9999 | 96 9  | 80 5.604  | 549.0          | 287.2 | RC | HD | 2.096 | 1.639 | 1.286 | 8.08  | 0    | Y 16 | 3 13 | 7 | 137 | 137 | 137 |
| 4    | 2000  | 1.000  | 0.9999 | 94 9  | 04 5.169  | 549.0          | 287.2 | RC | HD | 2.085 | 1.636 | 1.282 | 7.81  | 0    | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 5    | 3000  | 1.000  | 0.9999 | 95 8  | 27 4.73   | 549.0          | 287.2 | RC | HD | 2.072 | 1.627 | 1.281 | 8.10  | 0    | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 6    | 4000  | 1.000  | 0.9999 | 95 7  | 52 4.299  | 549.0          | 287.2 | RC | HD | 2.063 | 1.620 | 1.281 | 8.28  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 7    | 5000  | 1.000  | 1.0000 | 03 6  | 81 3.898  | 549.0          | 287.2 | RC | HD | 2.055 | 1.616 | 1.279 | 8.03  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 8    | 6000  | 1.000  | 1.0000 | 000 6 | 17 3.528  | 549.0          | 287.2 | RC | HD | 2.078 | 1.613 | 1.287 | 8.28  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 9    | 7000  | 1.000  | 1.0000 | 02 5  | 58 3.190  | 549.0          | 287.2 | RC | HD | 2.096 | 1.617 | 1.288 | 8.00  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 10   | 8000  | 1.000  | 0.9999 | 99 5  | 04 2.884  | 549.0          | 287.2 | RC | HD | 2.107 | 1.627 | 1.289 | 7.67  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 11   | 10000 | 1.000  | 1.0000 | 06 3  | 92 2.243  | 549.0          | 287.2 | RC | HD | 2.163 | 1.653 | 1.298 | 8.40  | 0    | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 12   | 12000 | 1.000  | 0.9999 | 96 2  | 30 1.313  | 549.0          | 287.2 | RC | HD | 2.102 | 1.646 | 1.269 | 8.00  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 13   | 14000 | 1.000  | 0.9999 | 95    | 48 0.277  | 549.0          | 287.2 | RC | HD | 2.001 | 1.594 | 1.251 | 7.97  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 14   | 14660 | 1.000  | 0.9999 | 99 -  | 12 -0.06  | 549.0          | 287.2 | RC | HD | 1.970 | 1.576 | 1.246 | 7.75  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |
| 15   | 14660 | 1.000  | 0.9999 | 98 -  | 12 -0.066 | 549.0          | 287.2 | RC | HD | 1.977 | 1.576 | 1.250 | 8.08  | 0 '  | Y 10 | 3 13 | 7 | 137 | 137 | 137 |

Figure 4: Windsor Pond Unit 1 E-SUM Edit from ANC Output Showcasing the Rodded Fdh Values Throughout Cycle 13 and Most Limiting Value.



Figure 5: Windsor Pond Unit 1 Cycle 13 Rodded Fdh Values Displayed as a Function of Burnup

|   | Rodded Fdh | 1     |       |       |       |       |       |       |       |       |
|---|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   |            | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|   |            |       |       |       |       |       |       |       |       |       |
| 1 |            | 0.898 | 1.235 | 1.544 | 1.117 | 1.631 | 1.168 | 1.037 | 1.595 | 0.751 |
| 2 |            | 1.235 | 1.217 | 0.994 | 1.629 | 1.289 | 1.044 | 1.651 | 1.615 | 0.661 |
|   |            |       |       |       |       |       |       |       |       |       |
| 3 |            | 1.544 | 0.993 | 1.467 | 1.318 | 1.312 | 1.202 | 1.616 | 0.971 |       |
|   |            |       |       |       |       |       |       |       |       |       |
| 4 |            | 1.117 | 1.631 | 1.316 | 1.204 | 1.086 | 1.178 | 1.575 | 0.803 |       |
| 5 |            | 1.631 | 1.337 | 1.308 | 1.088 | 1.055 | 1.185 | 1.415 | 0.679 |       |
|   |            |       |       |       |       |       |       |       |       |       |
| 6 |            | 1.168 | 1.045 | 1.207 | 1.186 | 1.184 | 1.268 | 0.77  |       |       |
| 7 |            | 1.037 | 1.653 | 1.619 | 1.581 | 1.419 | 0.768 |       |       |       |
|   |            |       |       |       |       |       |       |       |       |       |
| 8 |            | 1.595 | 1.616 | 0.988 | 0.813 | 0.683 |       |       |       |       |
|   |            |       |       |       |       |       |       |       |       |       |
| 9 |            | 0.751 | 0.663 |       |       |       |       |       |       |       |

Figure 6: Windsor Pond Unit 1 Cycle 13 Rodded 10000 MWD/MTU Burnup Step Color Coded Fdh Map of Core.

## 2.2 MTC Calculations

As discussed in the introduction, the MTC coefficient determines the reactor's reactivity response to a change in temperature. The most conservative values will be attained at HZP ARO,

as the increased reactivity due to lower temperatures at this configuration entails larger ppms of diluted boron in the system. While water has an inherent negative MTC, boron is a poison that absorbs neutrons, therefore its presence in the coolant will cause the MTC to be more positive. This is due to boron being diluted in water and sharing its host's variations in density (higher T  $\rightarrow$  density of B decreases  $\rightarrow$  less parasitic absorption  $\rightarrow$  increase in reactivity). To calculate the MTC, the change in reactivity between two different moderator temperatures must be calculated and divided by the difference between the moderator temperatures. A sample of the input ANC file utilized for the MTC job is showcased in Appendix B. The attained MTC values from this calculation are shown in figure 7 below through the E-SEQ edit of the ANC output file for the MTC job. Figure 8 contains the eigenvalues of the least negative MTC value, using the E-SUM edit of the above-mentioned job, which will be utilized to showcase the MTC calculation method shown in equation 1. Finally, figure 9 displays the MTC in graphical representation vs burnup and in juxtaposition to its safety limit of 0.50 pcm/F. As seen in figure's 7 and 9, all the MTC values meet the safety limit. The least negative value occurs at the 150 MWD/MTU burnup step, with a value of 0.102 pcm/F. This value is more negative than the limit by 0.398 pcm/F. To calculate this least negative MTC, the eigenvalues of the core must first be calculated through ANC at 537 F and 527 F. Then the change in reactivity can be calculated through the Westinghouse change in reactivity equation  $\rho = \ln(k_2/k_1) *100000$  pcm. Finally, by dividing the attained change in reactivity by the change in temperature (537  $^{\circ}F - 527 ^{\circ}F = 10 ^{\circ}F$ ), one attains the MTC value. In equation 1 below, utilizing the eigenvalues for cases 2 and 3 shown in figure 8, this calculation method is put into practice for the least negative MTC. The result is in accordance (with a negligible degree of reasonable error due to rounding) with the values attained in figure 7, showcasing the validity of the MTC job.

E-SEQ SUMMARY DATA FOR SEQUENCES

| MTC CALCUL | .ATION  |         |           |
|------------|---------|---------|-----------|
| PPM        | DEG-F   | GWD/MTU | PCM/DEG-F |
| 1589.491   | 532.009 | 0.000   | 0.049     |
| 1568.180   | 532.009 | 0.150   | 0.102     |
| 1522.949   | 532.009 | 0.500   | -0.176    |
| 1476.343   | 532.009 | 1.000   | -0.560    |
| 1397.677   | 532.009 | 2.000   | -1.309    |
| 1321.476   | 532.009 | 3.000   | -2.102    |
| 1249.354   | 532.009 | 4.000   | -2.963    |
| 1182.646   | 532.009 | 5.000   | -3.798    |
| 1121.453   | 532.009 | 6.000   | -4.562    |
| 1065.625   | 532.009 | 7.000   | -5.292    |
| 1014.956   | 532.009 | 8.000   | -5.982    |
| 911.505    | 532.009 | 10.000  | -7.583    |
| 765.170    | 532.009 | 12.000  | -9.857    |
| 591.852    | 532.009 | 14.000  | -12.281   |
| 532.764    | 532.009 | 14.660  | -13.080   |

Figure 7: Windsor Pond Unit 1 Cycle 13 E-SEQ Edit Showcasing MTC Values Throughout Cycle and Highlighting Least Negative Value.

SUMMARY OF ANC RUNS

E-SUM

NO BU POWER EIGEN BORON CON TIN
PPM G/KG DEG-F DEG-C
1 0 0.000 1.000004 1589 9.091 532.0 277.8
2 0 0.000 1.000034 1589 9.091 537.0 280.6
3 0 0.000 1.000029 1589 9.091 527.0 275.0
4 150 0.000 1.000005 1568 8.969 532.0 277.8
5 150 0.000 1.000035 1568 8.969 537.0 280.6
6 150 0.000 1.000025 1568 8.969 527.0 275.0

Figure 8: Windsor Pond Unit 1 Cycle 13 E-SUM Edit Highlighting the Least Negative MTC's Eigenvalues at 527 °F and 537 °F.

 $\frac{\ln \ln \left(\frac{1.000035}{1.000025}\right) * 100000 \ pcm}{100000} = 0.1 \frac{pcm}{^{\circ}F}$ MTC =(1) 2 0 10 12 14 16 -2 -4 MTC (pcm/0F) -8 -10 -12 MTC SAFETY LÍMIT -14

Figure 9: Windsor Pond Unit 1 Cycle 13 Graph of MTC Values Throughout Cycle as a Function of Burnup and Juxtaposed to Safety Limit.

#### 2.3 Rod Ejection Worth

As discussed in the introduction, rod ejection is a serious accident and must be modeled to ensure operational safety of the reactor. What core designers must confirm that in the unlikely eventuality that a control rod initially placed at its RIL, the resulting ejected rod worth and hot channel factor F<sub>0</sub> do not exceed the limits placed by the transient analysts. Confirming that the analysts' calculations are bounding also confirms the RILs for the reactor. To attain conservative values for these two parameters and determine the most limiting value, they are calculated in four cases: at HZP-BOC, HFP-BOC, HZP-EOC, HFP-EOC. To perform the calculations, first base cases are calculated for the four instances in which the rod ejection values are to be calculated. In these base cases the HZP values will have no Xe in the system, whereas HFP cases will have equilibrium Xe. Next the model is unfolded to full core geometry, and, due to the milli-second to second range in which the accident takes place, adiabatic assumptions are assumed and moderator and doppler feedback are frozen during the transient. Next the control rods are set to the appropriate RILs, as shown in Appendix A. For HFP the RILs are all control banks completely withdrawn bar the lead control bank, number 5, which is inserted 25% (or 103 steps withdrawn). For HFP, control banks 5 and 4 are completely inserted (0 steps withdrawn), and control bank 3 is 60% inserted (54 steps withdrawn), while the remaining control banks are completely withdrawn. Finally, the control rods that are inserted at the RILs, found using the C-BNK edit in the output files, are checked for ejected worth using the STUCKROD command. The control rods checked at HFP are the ones at locations (in full core notation): 4,4; 7,7; and 9,3. For HZP more control banks are inserted and thus more control rods need to be checked. At this configuration, the rods checked are: 3,7; 4,4; 7,3; 7,7; 9,3; 9,5; and 9,9. The highest rod worth is then assumed to be the worst-case scenario and compared to the limit along with the highest F<sub>0</sub> values. Figures 10-13 showcase the maximum rod worth for each plant configuration tested through the E-SRW edit in the output files for the rod-ejection ANC job. The input ANC jobs are showcased in Appendix B.3. Table 2 showcases these values, comparing them to their respective limits and adding the appropriate uncertainties. As shown in the aforementioned table, every value is within the safety limits for rod ejection worth and F<sub>Q</sub> values. The highest rod worth occurs at EOC-HZP, and is control rod 4,4. The highest F<sub>0</sub> also occurs in this configuration.

```
STUCK ROD ( 9, 9)
DATE: 04/01/20 USER: group6
EJECT RODS IN FULL CORE
                                             ** ANC 8.11.8 ** REF BU= 0. REF TIME=
JOB: HZP_Rod_ JOB NUMBER: HZP_0742 MACHINE: Linux
                                                                                                                                0.0
                                                                                                CASE-0009
            STUCK ROD WORTH
E-SRW
            STUCK ROD EIGENVALUE
                                                                  FDH*U
                                                                            LOCATION
                                                                                                             LOCATION
                                             WORTH
                                                           FDH
                                                                                                  FQ
                                                                                                                             BU-FQ
                                                                                                                                              FXY
                                                                                                                                                         LOCATION
            BASE CASE
                                                                                 (3,5)
(3,5)
(5,3)
(3,5)
(10,2)
(13,3)
                   ( 3, 7) 1.00072
( 4, 4) 1.00222
( 7, 3) 1.00070
                                               71.7
                                                          2.932
                                                                    3.167
                                                                                                 3.776
                                                                                                                                            3.391
                                                                                                                                                       ( 4, 4,15)
( 5, 3,18)
( 7, 7,23)
( 10, 2, 3)
( 9, 5,23)
                                                                                                            (3, 5, 9)
(5, 3, 17)
(3, 5, 9)
                                              221.2
                                                          4.657
                                                                    5.029
                                                                                                 5.918
                                                                                                                                            4.974
                                               69.8
                                                          2.890
                                                                                                 3.717
                                                                                                                                            3.349
                   ( 7, 7) 1.00138
( 9, 3) 1.00088
( 9, 5) 1.00117
                                                                    2.899
2.729
2.616
                                                                                                 3.392
3.616
3.148
                                                                                                            (3,5,9)
(10,2,7)
(13,3,8)
                                              137.2
87.2
                                                         2.684
2.526
                                                                                                                                   0.
                                                                                                                                            3.280
                                                                                                                                            2.850
                                                          2.422
                                                                                                                                            2.760
                     9, 9) 1.00035
                                               34.9
                                                         1.986
                                                                    2.145
                                                                                       3)
                                                                                                 2.532
                                                                                                                                            2.071
            HIGHEST WORTH STUCK ROD
                                                              ( 4, 4), WITH WORTH OF
            IF MORE THAN TWO CONTROL RODS ARE DROPPED OR STUCK WITHIN A GIVEN CALCULATION, ADDITIONAL
            LOCATIONS DO NOT APPEAR IN THE ABOVE EDIT. THE USER SHOULD CONFIRM THIS VIA THE E-BNK EDIT.
            CORE RELATIVE POWER IS 0.00
            BORON CONCENTRATION IS 1379.1 PPM, 7.888 G/KG
            NUCLEAR UNCERTAINTY = 1.08
            CALCULATIONAL UNCERTAINTY = 1.00
```

Figure 10: Windsor Pond Unit 1 E-SRW Edit Showcasing BOC-HZP Max Ejected Rod Worth and Respective F<sub>Q</sub> Value

|       | ROD (9,3)<br>04/01/20 USER: group6<br>RODS IN FULL CORE |                                   |                                                                                                                  |                                                 | 115.0<br>9                          |          |
|-------|---------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|----------|
| E-SRW | STUCK ROD WORTH                                         |                                   |                                                                                                                  |                                                 |                                     |          |
|       | STUCK ROD EIGENVALUE                                    | WORTH FDH                         | FDH*U LOCATION                                                                                                   | FQ LOCATION                                     | BU-FQ FXY                           | LOCATION |
|       |                                                         | RODS ARE DROPP<br>IN THE ABOVE ED | 5 1.843 ( 7, 7)<br>4 1.819 (13, 3)<br>7, 7), WITH WORTH OF<br>PED OR STUCK WITHIN A (<br>DIT. THE USER SHOULD CO | 2.062 (3, 5,10)<br>2.062 (13, 3,10)<br>14.6 PCM | 250. 2.160<br>250. 1.990<br>ITIONAL | (7,7,23) |
|       | NUCLEAR UNCERTAINTY = 1                                 | 1.08                              |                                                                                                                  |                                                 |                                     |          |
|       | CALCULATIONAL UNCERTAINT                                | TY = 1.00                         |                                                                                                                  |                                                 |                                     |          |

Figure 11: Windsor Pond Unit 1 E-SRW Edit Showcasing BOC-HFP Max Ejected Rod Worth and Respective F<sub>Q</sub> Value

|       | ( ROD ( 9, 9)<br>04/01/20 USER: group6<br>F RODS IN FULL CORE                                                                                                                                                                                                |                                     | 3.11.8 ** REF BU=<br>JOB NUMBER: HZP_0742                                                         |             |           |                                 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------|-------------|-----------|---------------------------------|
| E-SRW | STUCK ROD WORTH                                                                                                                                                                                                                                              |                                     |                                                                                                   |             |           |                                 |
|       | STUCK ROD EIGENVALUE                                                                                                                                                                                                                                         | WORTH FDH                           | FDH*U LOCATION                                                                                    | FQ LOCATION | BU-FQ FXY | LOCATION                        |
|       | BASE CASE 1.00001 ( 3, 7) 1.00261 ( 4, 4) 1.00294 ( 7, 3) 1.00260 ( 7, 7) 1.00207 ( 9, 3) 1.00231 ( 9, 5) 1.00191 ( 9, 9) 1.00065  HIGHEST WORTH STUCK ROD  IF MORE THAN TWO CONTROL LOCATIONS DO NOT APPEAR  CORE RELATIVE POWER IS  BORON CONCENTRATION IS | RODS ARE DROPPE<br>IN THE ABOVE EDI | 4.660 ( 9, 2)<br>2.931 ( 9, 5)<br>1.944 ( 9, 7)<br>4, 4), WITH WORTH OF<br>ED OR STUCK WITHIN A G |             |           | (7,7,22)<br>(9,2,6)<br>(9,5,21) |
|       | NUCLEAR UNCERTAINTY = 1                                                                                                                                                                                                                                      | 1.08                                |                                                                                                   |             |           |                                 |
|       | CALCULATIONAL UNCERTAINT                                                                                                                                                                                                                                     | ΓY = 1.00                           |                                                                                                   |             |           |                                 |

Figure 12: Windsor Pond Unit 1 E-SRW Edit Showcasing EOC-HZP Max Ejected Rod Worth and Respective  $F_Q$  Value

| DATE: | ROD (9,3)<br>04/01/20 USER: group6<br>RODS IN FULL CORE                    |                                        | 8.11.8 ** REF BU=<br>JOB NUMBER: HFP_0740 |             |        |                         |                                        |
|-------|----------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|-------------|--------|-------------------------|----------------------------------------|
| E-SRW | STUCK ROD WORTH                                                            |                                        |                                           |             |        |                         |                                        |
|       | STUCK ROD EIGENVALUE                                                       | WORTH FDH                              | FDH*U LOCATION                            | FQ LOCATION | BU-FQ  | FXY                     | LOCATION                               |
|       | BASE CASE 1.00001<br>( 4, 4) 1.00013<br>( 7, 7) 1.00019<br>( 9, 3) 1.00018 | 12.7 1.663<br>18.2 1.613<br>17.2 1.758 | 1.742 (8,6)                               |             | 21399. | 2.070<br>1.980<br>2.330 | ( 4, 4,22)<br>( 7, 7,22)<br>( 9, 2,22) |
|       | HIGHEST WORTH STUCK ROD                                                    | IS (                                   | 7, 7), WITH WORTH OF                      | 18.2 PCM    |        |                         |                                        |
|       | IF MORE THAN TWO CONTROL<br>LOCATIONS DO NOT APPEAR                        |                                        |                                           |             |        |                         |                                        |
|       | CORE RELATIVE POWER IS                                                     | 1.00                                   |                                           |             |        |                         |                                        |
|       | BORON CONCENTRATION IS                                                     | -22.0 PPM,-0.12                        | 6 G/KG                                    |             |        |                         |                                        |
|       | NUCLEAR UNCERTAINTY = 1                                                    | 1.08                                   |                                           |             |        |                         |                                        |
|       | CALCULATIONAL UNCERTAINT                                                   | TY = 1.00                              |                                           |             |        |                         |                                        |

Figure 13: Windsor Pond Unit 1 E-SRW Edit Showcasing EOC-HFP Max Ejected Rod Worth and Respective  $F_Q$  Value

 $\label{thm:condition} \begin{tabular}{ll} Table 2: Windsor Pond Unit 1 Max Ejected Rod Worths and Respective $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Uncertainty and Compared to Safety Limits for Each Plant Configuration $F_Q$ Values with Added Value $F_Q$ Values with $$ 

| Core Status | Rod Ejection Worth Limit (%Δρ) | F <sub>Q</sub> Limit | Attained Rod Ejection Worth (%Δρ) | Attained F <sub>Q</sub> Values |
|-------------|--------------------------------|----------------------|-----------------------------------|--------------------------------|
| BOC, HZP    | 0.60                           | 15.0                 | 0.2477 (rod 4,4)                  | 7.2791(@ 3,5,9)                |
| BOC, HFP    | 0.25                           | 5.25                 | 0.0161 (rod 7,7)                  | 2.3515 (@ 3,5,10)              |
| EOC, HZP    | 0.60                           | 26.25                | 0.3277 (rod 4,4)                  | 12.1573 (@ 3,6,21)             |
| EOC, HFP    | 0.25                           | 5.25                 | 0.0200 (rod 7,7)                  | 2.2385 (@8, 3, 4)              |

#### 2.4 Shutdown Margins

As described in the introduction, SDM is the amount of reactivity by which the core would be subcritical at HZP after a reactor trip, while assuming no changes in boron or xenon concentrations, and that the highest worth rod is unable to be inserted. It is essential to have a shutdown margin to ensure that the core can be shut down even in the eventuality of a steam line rupture or boron dilution accident. The SDM can thus be defined as the available control rod worth minus the total power defect assuming core was overpowered and with rods at RILs during standard operation, which is the worst-case situation for a power trip. The power defect is defined as the amount of positive reactivity inserted into the core by the trip to HZP. The phenomena that contribute to the power defect are: MTC, DTC, and flux redistribution effect. During the reactor trip, the moderator experiences a rapid decrease in temperature. Due to the negative MTC, the decrease in temperature leads to a positive reactivity insertion. A similar phenomenon takes place within the fuel, as a decrease in fuel temperature (fuel temperature is a function of power) leads to a sharpening of the U-238 and Pu-240 resonance absorption peaks, and thus a positive reactivity insertion (this is accounted by the DTC). Finally, the trip causes a change in the axial flux shape. During steady operations, the flux peak is driven to the bottom of the core by the enthalpy rise in the subchannels (higher reactivity in colder bottom). At HZP, this enthalpy rise disappears and thus the flux peak moves to the top of the core as it is less depleted than the bottom. This change in flux shape, called the flux redistribution effect, also adds a positive reactivity insertion to the system. Having defined the phenomena that contribute to power defect, it is also worth noting that, following the trip to HZP, the void effects of bubbles in the boiling moderator can disappear due to the temperature change. Thus 50 pcm are removed to account for coolant void disappearance. Another variable to be calculated is the control rod worth, which is to be reduced by 10% for a more conservative value.

Prior to beginning SDM calculations the control rod with the highest worth must be determined and utilized for the 5<sup>th</sup> eigenvalue, in which all rods are inserted except for the worst stuck rod determined in this step.

Thus, in order to calculate the SDM, which will be calculated at BOC and EOC, 6 eigenvalues are necessary:

- 1. k<sub>1</sub>, the first eigenvalue, is calculated based on the ARO base case at the appropriate burnup (either BOC or EOC)
- 2.  $k_2$  is calculated after inserting the control rods at the appropriate HFP RILs
- 3. k<sub>3</sub> is attained after setting the relative core power to 105%, which causes a decrease in core reactivity, thus lessening the SDM. Additionally, the power is skewed to the top while Xe is skewed to the bottom. This accentuates the afore-described flux redistribution effect on the power defect, increasing its positive reactivity insertion at the next step.
- 4.  $k_4$  is determined after stopping the Xe and B concentrations from changing and changing the plant configuration to HZP. This is the first step in simulating the reactor trip.
- 5.  $k_5$  is calculated at ARI.
- 6. k<sub>6</sub> removes the afore-calculated worst stuck rod.

The unconservative SDM can then be calculated by calculating the change in reactivity between  $k_3$  and  $k_6$  using the same Westinghouse equation used to determine the MTC in section 2.2. Then the rod worth uncertainty is attained by multiplying the rod worth, which is the change in reactivity between  $k_4$  and  $k_6$ , by 10%. Finally, the conservative SDM will be equal to the unconservative SDM minus the rod worth uncertainty and coolant void pcm. Figures 14-17 showcase the worst stuck rod calculations performed prior to the SDM calculations. The calculation needed to be split into two cases due to exceeding the maximum

line length in ANC caused it to crash. The worst stuck rod for both BOC and EOC was found to be the rod at position 3,5, with a reactivity worth of 1014.4 pcm at BOC and of 1596.1 at EOC. Figures 18 and 19 showcases the six eigenvalues used in the SDM calculations for BOC and EOC respectively. Table 3 showcases the attained SDMs for BOC and EOC compared to their limit of 1.600%Δp. Equations 2, 3, and 4 contain sample calculations of the SDM for the most limiting case at EOC. The attained SDM were found to meet and exceed the safety limits, while the most limiting case, found at EOC, was confirmed in equation 4.

|  | E-SRW | STUCK | ROD | WORTH |
|--|-------|-------|-----|-------|
|--|-------|-------|-----|-------|

| STUCK ROD | EIGENVALUE | WORTH  | FDH    | FDH*U  | LOCATION | FQ     | LOCATION   | BU-FQ  | FXY    | LOCATION   |
|-----------|------------|--------|--------|--------|----------|--------|------------|--------|--------|------------|
| BASE CASE | 0.93284    |        |        |        |          |        |            |        |        |            |
| (2,       | 8) 0.93592 | 328.9  | 7.494  | 8.094  | (2,8)    | 10.200 | (2, 8,18)  | 217.   | 8.070  | (2, 8, 2)  |
| (3,       | 5) 0.94236 | 1014.4 | 15.290 | 16.514 | (3,5)    | 21.683 | (3, 5, 18) | 239.   | 15.870 | (3, 5, 9)  |
| (3,       | 7) 0.93634 | 374.5  | 6.977  | 7.535  | (3,6)    | 9.782  | (3, 6, 19) | 218.   | 7.680  | (3, 6, 2)  |
| (4,       | 4) 0.94070 | 838.9  | 12.887 | 13.917 | (4, 4)   | 18.609 | (4, 4, 19) | 222.   | 13.972 | (4, 4, 23) |
| (4,       | 6) 0.94082 | 850.9  | 10.162 | 10.975 | (4,5)    | 14.803 | (4, 5, 19) | 18982. | 10.560 | (3, 6, 23) |
| (4,       | 8) 0.93405 | 128.9  | 3.889  | 4.200  | (4,5)    | 5.666  | (4, 5, 19) | 15752. | 3.960  | (4, 5, 10) |
| (5,       | 3) 0.94223 | 1001.5 | 15.174 | 16.388 | (5, 3)   | 21.623 | (5, 3, 18) | 238.   | 15.710 | (5, 3, 8)  |
| (5,       | 5) 0.93295 | 11.1   | 2.974  | 3.212  | (5, 4)   | 4.311  | (5, 4, 19) | 15615. | 3.030  | (4, 5, 9)  |
| (5,       | 7) 0.93727 | 473.7  | 6.332  | 6.838  | (4,5)    | 9.349  | (4, 5, 19) | 15752. | 6.447  | (4, 5, 14) |
| (6,       | 4) 0.94065 | 833.8  | 10.076 | 10.882 | (5, 4)   | 14.839 | (5, 4, 19) | 18830. | 10.497 | (6, 3, 23) |
| (6,       | 6) 0.93755 | 502.8  | 6.899  | 7.450  | (5, 4)   | 10.191 | (5, 4, 19) | 15615. | 7.023  | (5, 4, 15) |
| (6,       | 8) 0.93438 | 164.0  | 3.918  | 4.232  | (4,5)    | 5.709  | (4, 5, 19) | 15752. | 3.990  | (4, 5, 13) |
|           |            |        |        |        |          |        |            |        |        |            |

HIGHEST WORTH STUCK ROD IS (3, 5), WITH WORTH OF 1014.4 PCM

IF MORE THAN TWO CONTROL RODS ARE DROPPED OR STUCK WITHIN A GIVEN CALCULATION, ADDITIONAL LOCATIONS DO NOT APPEAR IN THE ABOVE EDIT. THE USER SHOULD CONFIRM THIS VIA THE E-BNK EDIT.

CORE RELATIVE POWER IS 0.00

BORON CONCENTRATION IS 1089.5 PPM, 6.231 G/KG

Figure 14: Windsor Pond Unit 1 Worst Stuck Rod at BOC Part 1

| F_SRW | STUCK | ROD | WORTH |
|-------|-------|-----|-------|

| STUCK ROD EIGENVALUE    | WORTH | FDH   | FDH*U    | LOCATION    | FQ    | LOCATION    | BU-FQ  | FXY   | LOCATION   |
|-------------------------|-------|-------|----------|-------------|-------|-------------|--------|-------|------------|
| BASE CASE 0.93284       |       |       |          |             |       |             |        |       |            |
| (7,3)0.93619            | 357.6 | 6.746 | 7.285    | (6,3)       | 9.540 | (6, 3, 19)  | 217.   | 7.498 | (6, 3, 23) |
| (7, 5) 0.93735          | 481.4 | 6.357 | 6.865    | (5, 4)      | 9.413 | (5, 4, 19)  | 15615. | 6.473 | (5, 4, 17) |
| (7, 7) 0.93446          | 172.8 | 4.177 | 4.511    | (5, 4)      | 6.098 | (5, 4, 19)  | 15615. | 4.253 | (5, 4, 17) |
| (8, 2) 0.93577          | 313.6 | 7.255 | 7.835    | (8, 2)      | 9.932 | (8, 2, 18)  | 217.   | 7.780 | (8, 2, 2)  |
| (8, 4) 0.93405          | 129.0 | 3.887 | 4.198    | (5, 4)      | 5.673 | (5, 4, 19)  | 15615. | 3.956 | (5, 4, 18) |
| (8, 6) 0.93437          | 163.6 | 3.904 | 4.217    | (5, 4)      | 5.695 | (5, 4, 19)  | 15615. | 3.975 | (5, 4, 16) |
| (8, 8) 0.93344          | 63.5  | 2.944 | 3.179    | (5, 4)      | 4.277 | (5, 4, 19)  | 15615. | 3.000 | (4, 5, 9)  |
| (9, 1) 0.93288          | 4.2   | 2.751 | 2.971    | (5, 4)      | 3.984 | (5, 4, 19)  | 15615. | 2.802 | (5, 4, 11) |
| (9, 3) 0.93405          | 128.9 | 3.340 | 3.607    | (13, 4)     | 4.839 | (13, 4, 19) | 15752. | 3.690 | (9, 2, 2)  |
| (9, 5) 0.93433          | 158.6 | 3.346 | 3.614    | (13, 4)     | 4.868 | (5, 4, 19)  | 15615. | 3.655 | (9, 5, 23) |
| (9, 7) 0.93347          | 66.6  | 2.901 | 3.134    | (5, 4)      | 4.212 | (5, 4, 19)  | 15615. | 2.960 | (5, 4, 10) |
| (9, 9) 0.93325          | 43.7  | 2.649 | 2.861    | (5,4)       | 3.843 | (5, 4,19)   | 15615. | 2.700 | (4,5,8)    |
| HIGHEST WORTH STUCK ROD | IS    | (7    | . 5). WI | TH WORTH OF | 481.4 | PCM         |        |       |            |

IF MORE THAN TWO CONTROL RODS ARE DROPPED OR STUCK WITHIN A GIVEN CALCULATION, ADDITIONAL LOCATIONS DO NOT APPEAR IN THE ABOVE EDIT. THE USER SHOULD CONFIRM THIS VIA THE E-BNK EDIT.

CORE RELATIVE POWER IS 0.00

BORON CONCENTRATION IS 1089.5 PPM, 6.231 G/KG

Figure 15: Windsor Pond Unit 1 Worst Stuck Rod at BOC Part 2

```
E-SRW
       STUCK ROD WORTH
        STUCK ROD EIGENVALUE WORTH
                                          FDH FDH*U LOCATION
                                                                      FQ
                                                                              LOCATION
                                                                                          BU-FQ
                                                                                                      FXY
                                                                                                              LOCATION
        BASE CASE
                    0.92527
             ( 2, 8) 0.93788
                                1353.6 16.572 17.898
                                                          (2, 8)
                                                                    38.052
                                                                             (2, 8, 21)
                                                                                          19439.
                                                                                                    16.972
                                                                                                             (2, 8, 18)
                                                          (3, 5)
(3, 7)
(4, 4)
              (3,5) 0.94016
                                1596.1
                                        18.580
                                                20.066
                                                                     41.645
                                                                             (3, 5,21)
                                                                                          18582.
                                                                                                    18.972
                                                                                                             (3, 5, 14)
              (3, 7) 0.94015
                                                                     37.389
                                                                              (3, 7,21)
                                                                                                    16.660
                                                                                                             (3, 7,18)
                                1594.9
                                        16.304 17.608
                                                                                          16907.
              (4,4) 0.93874
                                1444.9
                                        17.061 18.425
                                                                     37.542
                                                                                                    17.620
                                                                                          17861.
                                                                              (4, 4,21)
                                                                                                             (4, 4, 8)
                                        11.765 12.706
               4, 6) 0.93484
                                                                                                    12.007
                                942.8
                                                          (3,6)
                                                                     27,271
                                                                              (3, 6,21)
                                                                                          18646.
                                                                                                             (3, 6, 19)
                                         4.895
                                                 5.287
                                                                                          18958.
               4, 8) 0.92753
                                244.0
                                                            3, 8)
                                                                     11.387
                                                                              (3, 8,21)
                                                                                                    5.009
                                                                                                             (3, 6, 18)
               5, 3) 0.94013
                                1593.3
                                        18.585 20.072
                                                            5, 3)
                                                                     41.514
                                                                              (5, 3, 21)
                                                                                          18566.
                                                                                                    19.010
                                                                                                             (5, 3, 11)
               5, 5) 0.92563
                                 38.6
                                        3.016
                                                3.257
                                                          (3, 6)
                                                                     6.894
                                                                              (3, 6,21)
                                                                                          18646.
                                                                                                    3.082
                                                                                                             (3, 6, 17)
               5, 7) 0.92817
                                 312.4
                                         5.323
                                                 5.749
                                                          (3, 6)
                                                                     12.270
                                                                              (3, 6, 21)
                                                                                          18646.
                                                                                                     5.439
              (6, 4) 0.93399
                                 937.6
                                        11.712 12.649
                                                          (6, 3)
                                                                     27.231
                                                                             (6, 3, 21)
                                                                                          18620.
                                                                                                    11.954
                                                                                                            (6, 3,19)
              (6,6)0.92787
                                                          (3,6)
                                                                             (3, 6,21)
                                                                                                             (5, 4,23)
                                 279.8
                                         4.696
                                                 5.072
                                                                     10.810
                                                                                          18646.
                                                                                                    4.892
                                                                                                    3.784
             (6, 8) 0.92703
                                 189.4
                                         3.699
                                                 3.995
                                                                     8.430
                                                                             (3, 6, 21)
                                                                                          18646.
                                                                                                            (3, 6, 17)
        HIGHEST WORTH STUCK ROD
                                 IS
                                            ( 3, 5), WITH WORTH OF
                                                                     1596.1 PCM
         IF MORE THAN TWO CONTROL RODS ARE DROPPED OR STUCK WITHIN A GIVEN CALCULATION, ADDITIONAL
         LOCATIONS DO NOT APPEAR IN THE ABOVE EDIT. THE USER SHOULD CONFIRM THIS VIA THE E-BNK EDIT.
```

CORE RELATIVE POWER IS 0.00

BORON CONCENTRATION IS 0.0 PPM, 0.000 G/KG

BORON CONCENTRATION IS 0.0 PPM, 0.000 G/KG

Figure 16: Windsor Pond Unit 1 Worst Stuck Rod at EOC Part 1

| E-SRW | STUCK ROD WORTH                                    |        |        |          |             |        |             |        |        |             |
|-------|----------------------------------------------------|--------|--------|----------|-------------|--------|-------------|--------|--------|-------------|
|       | STUCK ROD EIGENVALUE                               | WORTH  | FDH    | FDH*U    | LOCATION    | FQ     | LOCATION    | BU-FQ  | FXY    | LOCATION    |
|       | BASE CASE 0.92527                                  |        |        |          |             |        |             |        |        |             |
|       | (7, 3) 0.94006                                     | 1585.7 | 16.248 | 17.547   | (7,3)       | 37.195 | (7, 3, 21)  | 16866. | 16.608 | (7, 3, 18)  |
|       | (7, 5) 0.92822                                     | 317.6  | 5.351  | 5.779    | (6, 3)      | 12.330 | (6, 3,21)   | 18620. | 5.467  | (6, 3,18)   |
|       | (7,7)0.92691                                       | 176.3  | 3.512  | 3.793    | (3,6)       | 8.024  | (3, 6,21)   | 18646. | 3.592  | (3, 6, 18)  |
|       | (8, 2) 0.93783                                     | 1348.5 | 16.557 | 17.881   | (8, 2)      | 37.993 | (8, 2,21)   | 19435. | 16.962 | (8, 2, 18)  |
|       | (8, 4) 0.92755                                     | 245.6  | 4.914  | 5.307    | (8, 3)      | 11.426 | (8, 3,21)   | 18968. | 5.023  | (8, 3,21)   |
|       | (8,6)0.92703                                       | 189.3  | 3.690  | 3.985    | (6,3)       | 8.406  | (6, 3,21)   | 18620. | 3.776  | (6, 3, 17)  |
|       | (8,8) 0.92568                                      | 43.9   | 2.566  | 2.771    | (3,6)       | 5.829  | (3, 6,21)   | 18646. | 2.625  | (3, 6, 17)  |
|       | (9, 1) 0.92545                                     | 19.7   | 2.662  | 2.875    | (12, 3)     | 6.049  | (12, 3, 21) | 16650. | 2.724  | (12, 3, 17) |
|       | (9,3)0.93041                                       | 553.6  | 8.429  | 9.103    | (9, 2)      | 19.819 | (9, 2,21)   | 18639. | 8.679  | (9, 2,20)   |
|       | (9,5)0.92770                                       | 261.6  | 4.253  | 4.593    | (9,5)       | 9.756  | (9,5,21)    | 19458. | 4.323  | (9,5,22)    |
|       | (9,7)0.92606                                       | 85.0   | 2.717  | 2.935    | (12, 3)     | 6.163  | (12, 3, 21) | 18646. | 2.779  | (12, 3, 17) |
|       | (9,9)0.92556                                       | 30.8   | 2.380  | 2.571    | (12, 3)     | 5.402  | (12, 3,21)  | 18646. | 2.435  | (12, 3,17)  |
|       | HIGHEST WORTH STUCK ROL                            | ) IS   | ( 7    | , 3), WI | TH WORTH OF | 1585.7 | PCM         |        |        |             |
|       | IF MORE THAN TWO CONTRO<br>LOCATIONS DO NOT APPEAR |        |        |          |             |        |             |        |        |             |
|       | CORE RELATIVE POWER IS                             | 0.00   |        |          |             |        |             |        |        |             |

Figure 17: Windsor Pond Unit 1 Worst Stuck Rod at EOC Part 2

| E-SUM |     | SUMMARY | Y OF ANC | RUNS |       |       |             |    |     |        |        | END    | O OF RU | JN   |       |     |     |     |     |        |                    |
|-------|-----|---------|----------|------|-------|-------|-------------|----|-----|--------|--------|--------|---------|------|-------|-----|-----|-----|-----|--------|--------------------|
| NO    | BU  | POWER   | EIGEN    |      | N CON |       | IN<br>DEG-C |    | SM  | FQ     | FDH    | FZ     | AO/AS   | SI S | 5 5   | 4   | 3   | 2   | 1   | FILEID | TITLE              |
| 1     | 150 | 1 000   | 1.000007 |      |       |       |             |    | LID | 1 020  | 1 635  | 1 1/12 | 0 55    | 0 1  | / 127 | 127 | 127 | 127 | 127 |        | K1 - BOL BASE CASE |
| 1     | מכד | 1.000   | 1.000007 | 1090 | 0.231 | 549.6 | 20/.2       | пυ | пυ  | 1.920  | 1.055  | 1.142  | 0.55    | 0 1  | 13/   | 12/ | 12/ | 12/ | 13/ |        | KI - BUL BASE CASE |
| 2     | 150 | 1.000   | 0.998315 | 1090 | 6.231 | 549.0 | 287.2       | HD | HD  | 2.144  | 1.645  | 1.252  | -12.77  | 0 Y  | 103   | 137 | 137 | 137 | 137 |        | K2 INSERT RODS T   |
| 3     | 150 | 1.050   | 0.998064 | 1090 | 6.231 | 549.9 | 287.7       | RC | HD  | 2.157  | 1.640  | 1.299  | 8.35    | 0 Y  | 103   | 137 | 137 | 137 | 137 |        | K3 - OVER-TEMP AT  |
| 4     | 150 | 0.000   | 1.013429 | 1090 | 6.231 | 532.0 | 277.8       | HD | HD  | 2.923  | 1.737  | 1.662  | 39.94   | 0 Y  | 103   | 137 | 137 | 137 | 137 |        | K4 - ZERO POWER, A |
| 5     | 150 | 0.000   | 0.935238 | 1090 | 6.231 | 532.0 | 277.8       | HD | HD  | 5.344  | 2.723  | 1.934  | 54.24   | 0 Y  | 0     | 0   | 0   | 0   | 0   |        | K5 - ZERO POWER, A |
| 6     | 150 | 0.000   | 0.944687 | 1090 | 6.231 | 532.0 | 277.8       | HD | HD2 | 29.054 | 15.220 | 1.904  | 53.13   | 0 Y  | 0     | 0   | 0   | 0   | 0   |        | K6 - ZERO POWER, N |

Figure 18: Windsor Pond Unit 1 BOC E-SUM Showcasing SDM Calculation Relevant Eigenvalues

| E-SU | IM    | SUMMAR | Y OF ANC | RUNS |       |      |         |    |     |         |        | ENI   | O OF RU | IN  |     |     |     |     |     |        |             |          |
|------|-------|--------|----------|------|-------|------|---------|----|-----|---------|--------|-------|---------|-----|-----|-----|-----|-----|-----|--------|-------------|----------|
| NO   | BU    | POWER  | EIGEN    | BORO | N CON |      | TIN     | ΧE | SM  | FQ      | FDH    | FZ    | AO/AS   | I S | 5   | 4   | 3   | 2   | 1   | FILEID | TITLE       |          |
|      |       |        |          | PPM  | G/KG  | DEG- | F DEG-C |    |     |         |        |       |         | *   |     |     |     |     |     |        |             |          |
| 1    | 14660 | 1.000  | 1.000747 | 0    | 0.000 | 549. | 0 287.2 | HD | HD  | 1.756   | 1.563  | 1.103 | -1.23   | 0 Y | 137 | 137 | 137 | 137 | 137 |        | K1 - BOL BA | ISE CASE |
| 2    | 14660 | 1.000  | 0.997743 | 0    | 0.000 | 549. | 0 287.2 | HD | HD  | 2.209   | 1.565  | 1.390 | -21.39  | 0 Y | 103 | 137 | 137 | 137 | 137 |        | K2 INSERT   | RODS T   |
| 3    | 14660 | 1.050  | 0.997851 | 0    | 0.000 | 549. | 9 287.7 | RC | HD  | 1.975   | 1.572  | 1.252 | 8.06    | 0 Y | 103 | 137 | 137 | 137 | 137 |        | K3 - OVER-T | EMP AT   |
| 4    | 14660 | 0.000  | 1.023816 | 0    | 0.000 | 532. | 0 277.8 | HD | HD  | 3.659   | 1.723  | 2.016 | 62.84   | 0 Y | 103 | 137 | 137 | 137 | 137 |        | K4 - ZERO P | OWER, A  |
| 5    | 14660 | 0.000  | 0.929738 | 0    | 0.000 | 532. | 0 277.8 | HD | HD  | 6.502   | 2.433  | 2.656 | 78.42   | 0 Y | 0   | 0   | 0   | 0   | 0   |        | K5 - ZERO P | OWER, A  |
| 6    | 14660 | 0.000  | 0.944724 | 0    | 0.000 | 532. | 0 277.8 | HD | HD4 | 19.4131 | 18.622 | 2.627 | 77.97   | 0 Y | 0   | 0   | 0   | 0   | 0   |        | K6 - 7FRO P | OWFR. N  |

Figure 19: Windsor Pond Unit 1 EOC E-SUM Showcasing SDM Calculation Relevant Eigenvalues

Table 3: Windsor Pond Unit 1 Cycle 13 Conservative and Unconservative SDMs, and Rod Uncertainties for BOC and EOC Compared to Safety Limits

| Plant         | SDM            | Rod Uncertainty | SDM conservative | Safety Limit |  |
|---------------|----------------|-----------------|------------------|--------------|--|
| Configuration | unconservative | %Δρ             | %Δρ              | %Δρ          |  |
|               | %Δρ            |                 |                  |              |  |
| BOC           | 5.4963         | 0.7024          | 4.74392          | 1.6          |  |
| EOC           | 5.4711         | 0.804           | 4.6171           | 1.6          |  |

$$SDM_{unconservative} = \ln \ln \left(\frac{0.997851}{.944724}\right) * 100 = 5.4711\%\Delta\rho$$
(2)  

$$Rod\ Uncertainty = 0.1 * \ln \ln \left(\frac{1.023816}{0.944724}\right) * 100 = 0.804\%\Delta\rho$$
(3)  

$$SDM_{conservative} = 5.711 - 0.804 = 4.6171$$
(4)

#### **CHAPTER 3: SUMMARY AND FUTURE PLANS**

As seen above all the safety requirements set by Westinghouse were met, except the rodded Fdh. The reason the Fdh was above the safety limits is described in the Fdh section.

The next step in the core design process to complete the operation data calculations for the Windsor Pond Unit 1.

## **CHAPTER 4: QUESTIONS**

1. What is the relationship between power distribution and rodworth?

Rodworth is affected by the power distribution, as regions with higher power entail a higher neutron flux (and vice versa). This means that the rods will be more effective in high power regions as the reaction rate for neutron absorption will increase with the flux (R = Flux\*Macroscopic Absorption Cross Section of boron, assuming a boron control rod).

#### 2. What are RILs? Which calculations use RILs and why?

RIL stands for rod insertion limits and they are the maximum amount the rods can be inserted at any power level. Rodded Fdh and SDM use RILs. During rodded Fdh calculations, the rods are inserted at RILs to modify the neutron flux, and thus the power distribution. As discussed in section 2.1, this can lead to a suppression of the power distribution in one region while increasing it in another one. This phenomenon can lead to a higher Fdh than the un-rodded configuration. In the SDM calculations, the rods are inserted at the RILs to insert a negative reactivity into the system and diminish the SDM.

# 3. Describe the steps to perform a shutdown margin calculation. Describe each component of the calculation and whether it increases or decreases reactivity.

The shutdown margin calculation steps are described in detail in section 2.4. In short, there are six components. K1 is the ARO base case at BOC or EOC. K2 is when the rods are at insertion limits and reactivity decreases in this step. K3 is calculated so with a relative power of 105% and an axial power skew to the top of the core. Reactivity decreases in this step. At K4 the plant is set to HZP ARO and the reactivity rises sharply. The sharp rise in reactivity can be explained by the negative MTC. At K5 all the rods are in the core and the reactivity decreases significantly. In K6, we remove the worst stuck rod from the core which in turn slightly increases reactivity. The reason for removing the worst stuck rod is to satisfy requirements by the NRC. The difference in reactivity between K3 and K6 is the unconservative SDM. To attain a more conservative SDM, void effects and rod uncertainty (found by finding the change in reactivity between k4 and k5) are subtracted from the



Figure 20: Representation of the Behavior of the Six Eigenvalues Calculated to Attain the SDM

# 4. Why do we reconstruct (i.e. skew) xenon in some calculations (in ANC, DEPLETE=RCXE)?

Xenon was skewed in the Rodded Fdh and the SDM calculations. We skew xenon to the bottom, in order to further emphasize the axial power skew. In the Rodded Fdh calculations, this leads to overemphasizing the control rod effects on the axial flux shape. In the SDM calculation this emphasizes the flux redistribution effect on the power defect. According to Westinghouse, flux redistribution refers to the reactivity due to flux axially peaking at the top of the core in HZP condition. During operation, the enthalpy rise in the core causes a modest flux tilt towards the bottom of the core. This means that the fuel at the top of the core is less depleted. When the reactor is at HZP conditions, the enthalpy rise disappears, and the neutron flux distribution is shifted to the top of the core which is more reactive. The reactivity change due to the axial burnup variation is accounted for by the redistribution factor.

#### 5. Define power defect. Describe how it changes during the cycle and why.

Power defect is the positive reactivity insertion caused by a decrease in power, and the subsequent decrease in both fuel and moderator temperature. In the context of this safety analysis report, the power defect consists of the increase in reactivity from the reactor trip from HFP to HZP. There are four main contributing factors to the power defect: DTC, MTC, flux redistribution effect, and disappearance of coolant voids. The DTC and MTC cause a positive reactivity insertion when going from HFP to HZP due to decreases in fuel and moderator temperatures respectively. The trip also causes a change in the axial flux shape.

During steady operations, the flux peak is driven to the bottom of the core by the enthalpy rise in the subchannels (higher reactivity in colder bottom). At HZP, this enthalpy rise disappears and thus the flux peak moves to the top of the core as it is less depleted than the bottom. This change in flux shape, called the flux redistribution effect, also adds a positive reactivity insertion to the system. Finally, the disappearance of coolant voids at HZP, caused by bubbles in the boiling moderator, causes another positive reactivity insertion that contributes to the power defect. The power defect increases throughout the cycle, as the difference in depletion of the top and bottom of the assemblies further exacerbates the flux redistribution effect.

#### APPENDIX A: ROD INSERTION LIMIT

In Windsor Pond Unit 1, control rods are split into 5 control banks (1 through 5) and 2 banks dedicated solely to plant trips (A and B). The plant's control rod configuration is showcased in figure 21.

The RILs, calculated by the transient analyst and limited by rod ejection accidents, are calculated as a function of reactor fraction power. The RILs vs Fraction of Rated Thermal Power graph provided below (figure 22) allows one to determine the RILs at each power level. For the purpose of the safety calculations provided in this report, the RILs at HFP and HZP need to be determined.

For HFP (1.0 fraction of rated thermal power), the RILs consist of all control banks, except the lead one, completely withdrawn. The lead control bank, control bank 5, can be inserted for a maximum 25%, or 34 steps inserted (103 withdrawn for ANC inputs).

For HZP (0 fraction of rated thermal power), the RILs consist of control banks 5 and 4 being completely inserted, and control bank 3 inserted 60% into the core, or 83 steps inserted (54 steps withdrawn).



Figure 21: Windsor Pond Unit 1 Control Rod Configuration Courtesy of Westinghouse

## APPENDIX B: ANC INPUTS FOR EACH CALCULATION

## Appendix B.1: Rodded and Un-rodded Fdh calculations



Figure 22: Windsor Pond Unit 1 Rod Insertion Limits as a Function of Fraction of Core Rated Thermal Power Courtesy of Westinghouse

```
TITLE =150 Burnup

/ DATABANK INFORMATION

/
RITEID = SL213_BE02
RITEUNIT = 1.00 /
BORONCON = 900.3046 /
DELTABU=150
TAPEDIT = 0.00 /
```

Figure 23: Rodded and Un-rodded Fdh Calculation

## **Appendix B.2: Temperature Coefficient Calculations**

```
TITLE= MTC CALCULATION
READID= SL213_BE03
READUNIT= 1.0
DEPLETE=HDALL,NAXE
DELTIME=0
TMODCOEF=5
RELPOW=0
END
```

Figure 24: MTC Calculation

## **Appendix B.3: Rod Ejection Calculations**

```
TITLE = HZP BOL ROD EJECTION

READID = SL213_BE01/ READ IN 0 MWD/MTU BURNUP STEP

READUNIT = 1.0/ READ IN DATABANK NUMBER

DELTABU = 0/ BURNUP DOES NOT CHANGE

RELPOW = 0/ SET POWER TO HZP

END

TITLE = UNFOLD TO FULL CORE RODS AT RIL

RODSTEP = 137,137, 54,0, 0/ SET RODS TO HZP RIL

UNFOLD = FULL/ UNFOLD TO FULL

END

TITLE = EJECT RODS IN FULL CORE

STUCKROD = 7/ NUMBER OF EJECTED RODS

FEEDBACK = 2/ FREEZE ALL (MOD. & DOP.) FEEDBACK

KSURCH = 0/ TURN OFF CRITICALITY SEARCH

BANKSEQ = 0307, 0404, 0703, 0707, 0903, 0905, 0909/

END
```

Figure 25: HZP Rod Ejection Calculation at 0 Burnup

```
TITLE = HZP BOL ROD EJECTION

READID = SL213_BE15/ READ IN 14640 MWD/MTU BURNUP STEP

READUNIT = 1.0/ READ IN DATABANK NUMBER

DELTABU = 0/ BURNUP DOES NOT CHANGE

RELPOW = 0/ SET POWER TO HZP

BORONCON = 0.0 / SET BORON CONCENTRATION TO 0 AT EOC

END

TITLE = UNFOLD TO FULL CORE RODS AT RIL

RODSTEP = 137,137, 54,0, 0/ SET RODS TO HZP RIL

UNFOLD = FULL/ UNFOLD TO FULL

END

TITLE = EJECT RODS IN FULL CORE

STUCKROD = 7/ NUMBER OF EJECTED RODS

FEEDBACK = 2/ FREEZE ALL (MOD. & DOP.) FEEDBACK

KSURCH = 0/ TURN OFF CRITICALITY SEARCH

BANKSEQ = 0307, 0404, 0703, 0707, 0903, 0905, 0909/ DEF:
```

Figure 26: HZP Rod Ejection Calculation at 14660 Burnup

| TITLE<br>READID | = HFP BOL ROD EJECTION<br>= SL213_BE02/ READ IN 150 MWD/MTU BURNUP STEP |
|-----------------|-------------------------------------------------------------------------|
| READUNIT        | = 1.0/ READ IN DATABANK NUMBER                                          |
| DELTABU         | = 0/ BURNUP DOES NOT CHANGE                                             |
| DEPLETE         | = EQXE/ HOLD ALL, EQUILIBRIUM XE                                        |
| END             |                                                                         |
| TITLE           | = UNFOLD TO FULL CORE RODS AT RIL                                       |
| RODSTEP         | = 137,137,137,137,103/ SET RODS TO HFP RIL                              |
| UNFOLD          | = FULL/ UNFOLD TO FULL                                                  |
| END             |                                                                         |
| TITLE           | = EJECT RODS IN FULL CORE                                               |
| STUCKROD        | = 3/ NUMBER OF EJECTED RODS                                             |
| FEEDBACK        | = 2/ FREEZE ALL (MOD. & DOP.) FEEDBACK                                  |
| KSURCH          | = 0/ TURN OFF CRITICALITY SEARCH                                        |
| BANKSEQ         | = 0404, 0707, 0903/ DEFINE YOUR EJECTED RODS /                          |
| END             |                                                                         |

Figure 27: HFP Rod Ejection Calculation at 150 Burnup

```
TITLE = HFP BOL ROD EJECTION
READID
          = SL213 BE15/ READ IN 14640 MWD/MTU BURNUP STEP
READUNIT = 1.0/ READ IN DATABANK NUMBER
DELTABU = 0/ BURNUP DOES NOT CHANGE
BORONCON = 0.0 /
DEPLETE = EQXE/ HOLD ALL, EQUILIBRIUM XE
END
TITLE = UNFOLD TO FULL CORE RODS AT RIL
RODSTEP = 137,137,137,137,103/ SET RODS TO HFP RIL
UNFOLD = FULL/ UNFOLD TO FULL
END
TITLE = EJECT RODS IN FULL CORE
STUCKROD = 3/ NUMBER OF EJECTED RODS
FEEDBACK = 2/ FREEZE ALL (MOD. & DOP.) FEEDBACK
KSURCH = 0/ TURN OFF CRITICALITY SEARCH
BANKSEQ = 0404, 0707, 0903/ DEFINE YOUR EJECTED RODS AS
END
```

Figure 28: HFP Rod Ejection Calculation at 14660 Burnup

## **Appendix B.4: Shut Down Margin Calculations**

```
= K1 - BOL Base Case at Power, ARO
READID = SL213 BE02/ READ IN 150 MWD/MTU BURNUP STEP
READUNIT = 1.0/ READ IN DATABANK NUMBER
DELTABU = 0/ BURNUP DOES NOT CHANGE
KSURCH = 0/ TURN OFF CRITICALITY SEARCH
TITLE
        = K2 - Insert Rods to RIL
RODSTEP = 137,137,137,137,103/ SET RODS TO HFP RIL
FND
        = K3 - Over-Temp at Power, ARO, Xe Skewed
RELPOW = 1.05/ INCREASE POWER TO 105%
DEPLETE = RCXE/ RE-CONSTRUCT XENON
DELXE = -30/ INITIAL GUESS FOR XENON
AOSURCH = DELXE, 8.05, 0.05/ SEARCH ON DELXE, SET AO TO MAX POSITIVE, SET CONVERGENCE
TITLE = K4 - Zero Power, ARO, Xe Skewed
RELPOW = 0/ SET POWER TO HZP
AOSURCH = 0/ TURN OFF THE AO SEARCH
DEPLETE = HDALL/ HOLD ALL
        = K5 - Zero Power, ARI, Full core, Xe Skewed
UNFOLD = FULL/ UNFOLD TO FULL
RODSTEP = 0,0,0,0,0,0,0/ FULLY INSERT ALL RODS
TITLE
        = K6 - Zero Power, N-1, Full core, Xe Skewed
STUCKROD = 1/ SET EQUAL TO ONE
BANKSEQ = 0305/ DEFINE YOUR WSR AS XXYY
```

Figure 29: Shut Down Margin Calculation at BOC

```
TITLE = K1 - BOL Base Case at Power, ARO
READID = SL213_BE15/ READ IN 14660 MWD/MTU BURNUP STEP
 READUNIT = 1.0/ READ IN DATABANK NUMBER
DELTABU = 0/ BURNUP DOES NOT CHANGE
BORONCON = 0/
KSURCH = 0/ TURN OFF CRITICALITY SEARCH
TITLE = K2 - Insert Rods to RIL
RODSTEP = 137,137,137,137,103/ SET RODS TO HFP RIL
FND
 TITLE = K3 - Over-Temp at Power, ARO, Xe Skewed RELPOW = 1.05/ INCREASE POWER TO 105%
DEPLETE = RCXE/ RE-CONSTRUCT XENON
DELXE = -30/ INITIAL GUESS FOR XENON
AOSURCH = DELXE,8.05,0.05/ SEARCH ON DELXE, SET AO TO MAX POSITIVE, SET CONVERGENCE
END
TITLE = K4 - Zero Power, ARO, Xe Skewed
RELPOW = 0/ SET POWER TO HZP
 AOSURCH = 0/ TURN OFF THE AO SEARCH
 DEPLETE = HDALL/ HOLD ALL
TITLE = K5 - Zero Power, ARI, Full core, Xe Skewed UNFOLD = FULL/ UNFOLD TO FULL
RODSTEP = 0,0,0,0,0,0,0/ FULLY INSERT ALL RODS
END
 TITLE = K6 - Zero Power, N-1, Full core, Xe Skewed STUCKROD = 1/ SET EQUAL TO ONE
 BANKSEQ = 0305/ DEFINE YOUR WSR AS XXYY
```

### Figure 30: Shut Down Margin Calculation at EOC

```
= BOL BASE CASE
TITLE
         = SL213_BE02/ READ IN 150 MWD/MTU BURNUP STEP
READUNIT = 1.0/ READ IN DATABANK NUMBER
DELTABU = 0/ BURNUP DOES NOT CHANGE
RELPOW = 0/ SET POWER TO HZP
KSURCH = 0/ TURN OFF CRITICALITY SEARCH
TITLE = ARI UNFOLD
UNFOLD = FULL/ UNFOLD TO FULL
RODSTEP = 0,0,0,0,0,0,0/ FULLY INSERT ALL RODS
TITLE
        = BOL 3D WSR SEARCH
STUCKROD = 12/NUMBER OF WSRs
BANKSEQ = 0208,0305,0307,0404,0406,0408,0503,0505,0507,0604,0606,0608/
END
TITLE
        = BOL 3D WSR SEARCH
STUCKROD = 12/NUMBER OF WSRs
BANKSEQ = 0703,0705,0707,0802,0804,0806,0808,0901,0903,0905,0907,0909/
END
TITLE
         = BOL BASE CASE
READID = SL213_BE15/ READ IN 14660 MWD/MTU BURNUP STEP
READUNIT = 1.0/ READ IN DATABANK NUMBER
DELTABU = 0/ BURNUP DOES NOT CHANGE
BORONCON = 0/ Setting BORON CONCENTRATION TO 0 IN EOC
RELPOW = 0/ SET POWER TO HZP
KSURCH = 0/ TURN OFF CRITICALITY SEARCH
FND
       = ARI UNFOLD
TITLE
UNFOLD = FULL/ UNFOLD TO FULL
RODSTEP = 0,0,0,0,0,0,0/ FULLY INSERT ALL RODS
TITLE
        = BOL 3D WSR SEARCH
STUCKROD = 12/NUMBER OF WSRs
BANKSEQ = 0208,0305,0307,0404,0406,0408,0503,0505,0507,0604,0606,0608/
FND
TITLE
        = BOL 3D WSR SEARCH
STUCKROD = 12/NUMBER OF WSRs
BANKSEQ = 0703,0705,0707,0802,0804,0806,0808,0901,0903,0905,0907,0909/
```

Figure 31: Worst Stuck Rod Calculation

### **REFERENCES**

- Andrew Shaffer, NUC E 431W Guest Lecture, 4-01-Overview 2020
- Group 6. (2020). ANC. Westinghouse
- NUC E 431W Lectures on Safety Calculations
- Penn State Core Design Project. Westinghouse. 2017
- Corey Prumo, NUC E 431W Guest Lecture, Westinghouse Lecture 4-1 Safety Calculations
- How to Fuel Manage Windsor Pond by Prumo, C. M. (2020, 02, 12). How to Fuel Manage Windsor Pond. Westinghouse.