Step 1, Data Preprocessing and Exploratory Data Analysis:

We import the 'movie_metadata.csv' data.

There are 28 columns. We need to select the most useful features to do the visualization and prediction.

First, keep the numerical columns, drop the non-numerical and non-related columns, or we should assume the value to those columns, for example color (0/1), language (0/1), 'plot_keywords' and country.

Second, some columns like director_name, actor_2_name, actor_1_name are either difficult to get the patterns or related to other columns like 'director_facebook_likes', 'actor_2_facebook_likes' and 'actor_1_facebook_likes'. So we could remove those colums.

Third, the movie_imdb_link, movie_title should be removed for the purpose of predicting the movie rating.

Finally, some columns are numerical but useless in prediction, like 'duration', 'facenumber_in_poster', 'title_year'.

Step 2, visualization:

Step 3, Simple Linear Regression:

Step 4, K Nearest Neighbor:

So K = 9 is a better choice.

Step 5, Neural Network:

	precision	recall	f1-score	support
0 1	0.84 0.71	0.91 0.58	0.87 0.64	689 281
accuracy macro avg weighted avg	0.78 0.80	0.74	0.81 0.75 0.80	970 970 970

The precision, recall and f1-score seem good, Neural Network is a good model for prediction.