

The position of a particle moving on an x axis is given by $x = 4 + 7 t - t^2$, with x in (m) and t in (s). The velocity at 3 s is:

RULES FOR THE SIGN OF x-VELOCITY

TABLE 2.1 Rules for the Sign of *x*-Velocity

If x-coordinate is:	$\dots x$ -velocity is:
Positive & increasing (getting more positive)	Positive: Particle is moving in +x-direction
Positive & decreasing (getting less positive)	Negative: Particle is moving in – <i>x</i> -direction
Negative & increasing (getting less negative)	Positive: Particle is moving in +x-direction
Negative & decreasing (getting more negative)	Negative: Particle is moving in $-x$ -direction

Note: These rules apply to both the average x-velocity v_{av-x} and the instantaneous x-velocity v_x (to be discussed in Section 2.2).

Average Velocity

disPlacement 1x
Atime

Change of Velocity ACCELERATION during time

Average acceleration

ins+antaneous acceleration

RULES FOR THE SIGN OF X-ACCELERATION

TABLE 2.3	Rules for	the	Sign	of
x-Accelerat	ion			

If x-velocity is:	x-acceleration is:
Positive & increasing (getting more positive)	Positive: Particle is moving in +x-direction & speeding up
Positive & decreasing (getting less positive)	Negative: Particle is moving in +x-direction & slowing down
Negative & increasing (getting less negative)	Positive: Particle is moving in —x-direction & slowing down
Negative & decreasing (getting more negative)	Negative: Particle is moving in —x-direction & speeding up

Note: These rules apply to both the average x-acceleration a_{av-x} and the instantaneous x-acceleration a_x .