

(19) RU (11) 2 007 491 (13) C1

(51) MПK⁵ C 22 C 29/02

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 4944693/02, 26.06.1991

(46) Дата публикации: 15.02.1994

(71) Заявитель: Конструкторско-технологическое бюро "Металлокерамика"

(72) Изобретатель: Петров С.С., Масхулия Л.Г., Орданьян С.С., Яковлев Ю.П.

(73) Патентообладатель: Конструкторско-технологическое бюро "Металлокерамика"

(54) СПЕЧЕННЫЙ ТВЕРДЫЙ СПЛАВ

(57) Реферат:

Изобретение относится к порошковой металлургии, в частности к спеченным твердым сплавам, применяемым в качестве режущего инструмента. Сущность изобретения: предложенный спеченный твердый сплав имеет следующий состав, об. % : карбид вольфрама 38,2 - 64,5; карбонитрид титана-ниобия состава

Ті $_{1-x}$ Nb $_x$ C $_{0.5}$ N $_{0.5}$ или карбонитрид циркония-ниобия состава Zr $_{1-x}$ Nb $_x$ C $_{0.5}$ N $_{0.5}$, где x = 0,2 - 0,3 21,5 - 38,2, вольфрам 1,3 - 3,4, кобальт - остальное, при отношении объемного содержания карбонитрида к карбиду вольфрама 1 : 1 - 1 : 3 и отношении объемного содержания вольфрама к карбонитриду 0,06 - 0,09. 2 табл.

⊃ ⊻

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 007 491 ⁽¹³⁾ C1

(51) Int. Cl.⁵ C 22 C 29/02

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 4944693/02, 26.06.1991

(46) Date of publication: 15.02.1994

- (71) Applicant:
 KONSTRUKTORSKO-TEKHNOLOGICHESKOE
 BJURO "METALLOKERAMIKA"
- (72) Inventor: PETROV S.S.,

 MASKHULIJA L.G., ORDAN'JAN S.S., JAKOVLEV
 JU.P.
- (73) Proprietor:
 KONSTRUKTORSKO-TEKHNOLOGICHESKOE
 BJURO "METALLOKERAMIKA"

(54) SINTERED SOLID ALLOY

(57) Abstract:

FIELD: powder metallurgy. SUBSTANCE: the claimed sintered solid alloy comprises (vol; %): 38.2-64.5 tungsten carbide; 21.5-38.2 titanium-niobium carbonitride having Ti $_{1\text{-x}}$ Nb $_{x}$ C0.5N0.5 or zirconium-niobium/carbonitride having

 $Zr_{1-x}Nb_xC_{0.5}N_{0.5}$ wherein X is 0.2-0.3; 1.3-3.4 tungsten; and cobalt, the balance. The carbonitride to tungsten carbide volume ratio is 1: 1-1: 3 and the tungsten to carbonitride volume ratio is 0.06: 0.09. EFFECT: improved properties of the alloy. 1 tbl

2 O

Изобретение относится к порошковой металлургии, а именно к спеченным твердым сплавам, применяемым в качестве режущего инструмента.

Известен спеченный твердый сплав, содержащий карбид (вольфрама, тантала, титана) и кобальт, в котором с целью повышения стойкости при резании путем уменьшения количества свободного углерода содержание углерода в карбиде равно 85-95% от стехиометрического (1).

Недостатком этого твердого сплава является нестабильность режущих свойств вследствие отклонения содержания углерода от расчетного при выжигании технологической связки и спекании в среде, содержащей углерод.

Наиболее близким по технической сущности и достигаемому результату является твердый сплав (2), выбранный в качестве прототипа, на основе карбида вольфрама, содержащий карбонитрид титана-ниобия состава Ті 1-хNb_xC_yN_z, где х= 0,2-0,3; у= 0,3-0,5, z= 0,45-0,7 при у+z= 0,9-1, а отношение объемного содержания карбонитрида титана-ниобия к объемному содержанию карбида вольфрама составляет 1: 1-1: 3 при следующем соотношении компонентов твердого сплава, мас. % :

Карбонитрид титана- ниобия 9,5-24,9 Кобалът 9,1-20,4 Карбид вольфрама Остальное.

Основным недостатком данного сплава является снижение стойкости при резании вследствие наличия в структуре сплава свободного углерода.

Целью изобретения является создание спеченного твердого сплав с повышенной стойкостью при резании.

Поставленная цель достигается тем, что в спеченный твердый сплав, содержащий карбид вольфрама, кобальт, карботнитрид титана-ниобия состава $Ti_{1-x}Nb_xC_{0,5}N_{0,5}$ (или карбонитрид циркония-ниобия состава $Zr_{1-x}Nb_xC_{0,5}N_{0,5})$, где x=0,2-0,3, при отношении объемного содержания карбонитрида титана-ниобия (ипи карбонитрида циркония-ниобия) к карбиду вольфрама 1: 1-1: 3, дополнительно вводится вольфрам при следующем соотношении компонентов, об. % : Карбид вольфрама 38,2-64,5 Карбонитрид титана- ниобия (или карбонит- рид циркония-ниобия) 21,5-38,2 Вольфрам 1,3-3,4 Кобальт Остальное

刀

причем отношение объемного содержания вольфрама к объемному содержанию карбонитрида титана-ниобия (или карбонитрида циркония-ниобия) равно 0,06-0,09.

Введение такого количества вольфрама, образующего со свободным углеродом карбид вольфрама, уменьшает наличие в структуре сплава свободного углерода, появляющегося в результате выгорания технологической связи и спекания сплава в среде, содержащей углерод, являющегося дефектом структуры и снижающего стойкость при резании.

Введение вольфрама < 1,3 об. % не приводит к достижению поставленной цели, так как количество вольфрама недостаточно для связывания свободного углерода. Введение вольфрама > 3,4 об. % приводит к

появлению фазы W $_2$ C, также являющейся дефектом структуры и снижающей стойкости при резании.

При отношении объемного содержания вольфрама к объемному содержанию карбонитрида титана-ниобия (карбонитрида циркония-ниобия) 0,06-0,09 обеспечивается наиболее полное связывание свободного углерода с наименьшей вероятностью образования фазы W₂C.

Сопоставительный анализ с аналогом и прототипом позволяет сделать вывод, что заявленный твердый сплав отличается от известных введением нового компонента и новым соотношением компонентов в об. % . Таким образом, заявленное техническое решение соответствует критерию "новизна". Анализ известных сплавов показал, что предложенный твердый сплав при данном составе и соотношении компонентов обеспечивает достижение новых свойств, а именно, повышение стойкости при резании за счет уменьшения свободного углерода в структуре сплава путем связывания его вольфрамом, что позволяет сделать вывод о соответствии заявленного решения критерию "существенные отличия".

Пример. Твердый сплав получили путем совместного помола исходных компонентов шихты в вибромельнице в течение 60 ч в спирте шарами из сплава ВК8. После сушки и пластифицирования смесь протирали на сите, а прессовали образцы усилием 100 МПа и спекали их в среде азота в интервале температур 1773-1923 К.

В табл. 1 приведены некоторые составы предложенного твердого сплава, а также два состава прототипа, при крайних значениях компонентов и данные по содержанию свободного углерода в сплавах.

В табл. 2 приведены результаты испытаний режущих свойств сплавов. Обрабатываемый материал - сталь 08X18H10T. Режим резания: подача - 0,11 об/мин, глубина резания - 0;25 мм, скорость резания 40-50, 65-85, 110-130, 170-190, 240-260 м/мин. (56) Патент Японии 5510659, кл. С 22 С 29/00, 1980.

Заявка Японии N 5710940, кл. С 22 С 29/00, 1982.

Формула изобретения:

СПЕЧЕННЫЙ ТВЕРДЫЙ СПЛАВ, содержащий карбид вольфрама, карбонитрид тугоплавкого метапла - ниобия и кобальт, отличающийся тем, что он дополнительно содержит вольфрам, а в качестве карбонитрида он содержит карбонитрид титана-ниобия состава ТiNb $_{\rm x}$ C_{0.5}N_{0.5} или карбонитрид циркония-ниобия состава Zr Nb C N где x = 0,2 - 0,3, при

Nb C N , 1 $4e \times = 0.2 - 0.3$, при

следующем соотношении компонентов, об. % :

Карбид вольфрама 38,2 - 64,5 Карбонитрид титана - ниобия или карбонитрид циркония - ниобия 21,5 - 38,2 Вольфрам 1,3 - 3,4

Кобальт Остальное

при соотношении объемных содержаний карбонитрида и карбида вольфрама 1 : (1 - 3) и отношении объемных содержаний вольфрама и карбонитрида 0,06 - 0,09.

-3

45

55

60

•
C
U
~
_
6
_
4
/
0
0
C
\supset
2

Пример			Coner	3.00000			. 18	Блица	
•	карбо-	карбо-	карбид	кобальт	ипонентов вольф-		T =		_
İ	нитрид	нитрид	вольфра-	l	,	Отноше-	Отноше	C CB.,	
	титана-	1	1	}	рам	ние	ние	мас.%	
	i	цирко-	ма			вольф-	карбо-		
	ниобия	ния-нио-	i			рам	нитрид		
		бия			٦,	карбо-	карбид	-	
						нитрид	вольфра-		
1 (прото-							ма		
тип)	21,5	-	64,5	14	_				1
2	21,5	-	64.5	13.3	0.0		1:3	0,23	I
3.	21,5	_	64,5		8,0	0,04	1:3	0.2	ı
4	- 110	24.5	1	12,7	1,3	0.06	1:3	80,0	ļ
5		21,5	64,5	12,7	1,3	0.06	1:3	0,10	I
б(прото-	-	21,5	64,5	12,2	1.8	80,0	1:3	0.06	
тип)	38.2	-	38,2	23.6		·			
7	38,2	_	38,2			_	. 1:1	0,27	
8		38,2	1	20,2	3.4	0,09	1:1	0,05	
9		,	38,2	20.2	3,4	0.09	1:1	0.07	
3		38,2	38,2	19,6	4.0	_0,1	1:1	0.02	1

		јаблица 2
Пример	Средняя стойкость до ленточ-	Коэффициент стойкости от-
1 (прототип)	ки износа 1,5 мм, мин 62	носительно прототипа 1,0
2	62	1.0
3	78	1.26
5	81 80	1,31
6 (прототип)	75	1,3 1,0
7 .	93	1,24
8 9	95	1,27
	74	0.9

R □

N

ဂ