

Mobile Robots Mandatory Assignment (SoSe 2024)

Objectives

- To navigate the robot from a starting point to the desired goal pose through a collision-free trajectory while adhering to the constraints.
- To investigate different parameter tunings in the resultant trajectories in both PRM and RRT global path planning methods.

Global Path Planning

- Probabilistic Roadmap Planner (PRM)
- ➤ Multi-Query Sampling Based Planner

- Rapidly Exploring Random Tree (RRT)
- ➤ Single-Query Sampling Based Planner

Instantiating ROS publisher and subscriber

- ROS publisher -> cmd_vel (velocity publisher)
- ROS subscriber → odom (current pose)
- ROS subscriber -> move_base_simple/goal (goal subscriber)

Load the Map

Probabilistic Roadmap Planner (PRM)

• Parameters tuned: Number of sampled nodes (50, 100, 200, 500) and

Maximum Connection Distance

Effect of Number of Nodes and Maximum Connection Distance in PRM

of Nodes = 500, Maximum Connection Distance = 1.5

Bonus: When Number of Nodes = 750, and Maximum Connection Distance is Increased to 3

Rapidly Exploring Random Trees

• Parameter tuned: Maximum Connection Distance and Minimum Turning

Rate (Radius)

Effect of Maximum Connection Distance in RRT

The robot couldn't reach the goal pose as it collides with the wall (No Animation Video)

Effect of Minimum Turning Rate (Radius) in RRT

How Velocity is Generated?

```
% Get pose
[msg,~,~] = odomSub.receive(rx_timeout);
curpose = msg2pose(msg);

% Take last velocity
v = msg.Twist.Twist;
curvel = [v.Linear.X, v.Angular.Z];

% Generate new vel commands with teb
tic;
[velcmds,tstamps,curpath,info] = step(teb,curpose,curvel);
toc;
```

```
The msg receives the odomSub subscriber, it is then converted to curpose using the function msg2pose
```

The velocity is extracted from the msg.Twist.Twist.

Twist message is used to command the robot
movement, that consists of 'Linear' and 'Angular' field.

```
velcmds
velcmds =
   -0.2256
            -0.3671
   -0.3599
             -0.6289
   -0.2115
            -0.8267
   0.0210
             -1.0124
   0.2096
            -1.2104
   0.3549
            -1.0819
             -0.9109
   0.5000
   0.5000
             -0.6393
   0.5000
             -0.5327
   0.5000
             -0.4097
   0.5000
             -0.2810
             -0.1506
   0.5000
   0.5000
             -0.0210
              0.1076
   0.5000
   0.5000
              0.2378
   0.5000
              0.3732
   0.5000
              0.3732
```

```
cmd_vel.Linear.X = velcmds(1,1);
cmd_vel.Angular.Z = velcmds(1,2);
velPub.send(cmd_vel);
```

velcmds(1,1) corresponds to the first column of velcmds, indicating the linear velocity along x-direction. velcmds(1,2) corresponds to the second column of velcmds, indicating the angular velocity along z-direction.

Observations

For PRM

- \rightarrow Due to random sampling of nodes \rightarrow Sometimes the robot may not navigate itself properly.
- > Number of Nodes and Maximum Connection Distance between nodes must be tuned together properly

	Large Connection Distance between Nodes	Small Connection Distance between Nodes
High Number of Nodes Sampled	More feasible and shorter path, but less smooth path	More feasible and smoother path, but high computational cost
Low Number of Nodes Sampled	Able to find paths quickly, but might not able to find feasible ones	Reduces computational load but hard to find feasible path due to limited connectivity

➤ Additionally, by using PRM, it will sometimes sample the nodes near the corner. Shortest Path will likely pass by the corners of obstacles → Nachteil: Risk of Collision!

Observations (Part 2)

For RRT

- > The robot is able to reach the desired goal pose faster with smoother trajectories.
- ➤ Minimum turning rate (radius) of robot can be tuned → Path that is compliant to the robot kinematic can be constructed.

If the Minimum Turning Radius is set LOW	If the Minimum Turning Radius is set HIGH
Shorter Paths can be generated (More direct path)	Longer paths will be generated (Usually result in indirect turns)