现代数学前沿概览

yzy

2023年3月26日

前言

介绍了一些前沿的数学,我记了一些笔记。

目录

第一章	仿射 Wely 群,Painlevé 方程和 Drinfeld-Sokolov 系统	1
1.1	kdv 方程	1
1.2	Lie 代数和 Panlevé 方程	2
	1.2.1 Lie 代数	2
	1.2.2 Painlevé 方程	4
	1.2.3 仿射 Weyl 群	4
第二章	Ising 模型和磁铁的相变	5
2.1	背景	5
2.2	Ising 模型	5
	2.2.1 Tc 是多少	6
	2.2.2 Onsager -1/8 conjecture	6
2.3	Potts 模型	7
第三章	波的起源	8
3.1	背景	8
3.2	什么是波	9
3.3	等熵可压缩 Eular 方程和一维守恒律	9
第四章	无处不在的双曲性	11
4.1	引子	11

目录		II
4.2	Arnold cat's map	11
4.3	遍历 (Ergodicity)	12
4.4	Riemann 几何里的双曲性	12
	4.4.1 Jacobi 方程	12
4.5	Dehn Twist	13
	4.5.1 想法	13
	4.5.2 例子	13

第一章 仿射 Wely 群, Painlevé 方程和 Drinfeld-Sokolov 系统

报告人: 刘思齐老师

1.1 kdv 方程

什么是可积系统?

一类有很好的对称性的 PDE。

例 1.1.1.

$$\frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} + 6u \frac{\partial u}{\partial x} = 0$$

在 1950 年时,有人利用 Schrödinger 方程

$$-\phi'' + u\phi = \lambda\phi$$

化简了该方程。

即定义算子

$$L = -\frac{d^2}{dx^2} + u$$

将 kdv 方程改写为

$$L\phi = \lambda\phi$$

第一章 仿射 WELY 群,PAINLEVÉ 方程和 DRINFELD-SOKOLOV 系统2 记 $\Phi = \begin{pmatrix} \Phi \\ \Phi' \end{pmatrix}$ 则

$$\Phi = \begin{pmatrix} \Phi' \\ u\Phi - \lambda\Phi \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ u - \lambda & 0 \end{bmatrix} \Phi$$

Gelfand-Dickey Formula

Gelfand 利用**拟微分算子**将算子 L 改写为

$$L^{\frac{1}{2}} = \partial_x + a_1 \partial_x^{-1} + a_2 \partial_x^{-2} \cdots$$

记

$$A_n = L^{\frac{1}{2} + n}$$

再次考虑微分方程组的相容性条件

$$\begin{cases} L\Phi = \lambda \Phi \\ \phi_t = A_n \phi \end{cases}$$

这可以给出推广的 kdv 方程,即 $u(x,t_1,\cdots,t_n)$

如若令 $A_n = L^{\frac{m}{n+1}}$ 则上述方程组称为 Gelfand - Dickey 方程组,将其写成矩阵形式即

$$\Phi = \begin{bmatrix}
* & 1 & 0 & \cdots & 0 \\
* & * & 1 & 0 & \vdots \\
\vdots & * & * & \ddots & 0 \\
* & \cdots & * & \ddots & 1 \\
* & * & * & \cdots & *
\end{bmatrix} \Phi$$

1.2 Lie 代数和 Panlevé 方程

1.2.1 Lie 代数

定义 1.2.1 (Lie 代数). 给定域 $\mathbb C$ 上的线性空间 V, 定义运算

$$[]:V\times V\to V$$

第一章 仿射 WELY群, PAINLEVÉ 方程和 DRINFELD-SOKOLOV 系统3 满足以下三个性质

- 双线性性
- $[v,\omega] + [\omega,v] = 0$
- [[A, B], C] + [[B, C], A] + [[C, A], B] = 0

称运算为线性空间 V上的 Lie 代数

例 1.2.2 $(M_n(\mathbb{R})$ 上的 Lie 代数). 交换子

$$[A, B] = AB - BA$$

在这一问题中,我们主要研究 $SL_n(\mathbb{C})=\{A|A\in M_{n+1}(\mathbb{C},tr(A)=0)\}$ 上的 Lie 代数

复半单李代数的分类

复半单李代数可以分解为单李代数的直和。而单李代数总共有以下九 种

$$\underbrace{A_n, B_n, C_n, D_n}_{Classical}, \underbrace{E_6, E_7, E_8, F_4, G_2}_{Exceptional}$$

对于前文提到的矩阵, 我们可以对其进行分解

$$\begin{bmatrix} * & 1 & 0 & \cdots & 0 \\ * & * & 1 & 0 & \vdots \\ \vdots & * & * & \ddots & 0 \\ * & \cdots & * & \ddots & 1 \\ * & * & * & \cdots & * \end{bmatrix} = \begin{bmatrix} * \\ * \\ * \\ * \\ * \end{bmatrix} + \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & \vdots \\ & & \ddots & 1 & 0 \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ * & 0 \\ & \ddots & \ddots \\ & & * & 0 \\ & & * & 0 \end{bmatrix}$$

上述分解即可扩展到其他的李代数。而对于我们研究的问题,注意到

$$\Phi = \begin{pmatrix} \Phi' \\ u\Phi - \lambda\Phi \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ u - \lambda & 0 \end{bmatrix} \Phi$$

中的 λ 可以取任何数,**即这矩阵的是无穷维李代数**。

第一章 仿射 WELY 群, PAINLEVÉ 方程和 DRINFELD-SOKOLOV 系统4

1.2.2 Painlevé 方程

Painlevé 方程形如

$$y = f(t, y, y')$$

其中 f 有理。

这样的方程共有 50 种, 其中 44 种可解, 剩下 6 种没有很好的解。对 Painlevé 方程, 人们发现了以下的性质。

$$\bar{y} = -y - \frac{\alpha + 0.5}{y' + y^2 + t/2}$$

满足 $P_{II}(\alpha+1)$

$$\bar{y} = -y + \frac{\alpha - 0.5}{y' - y^2 - t/2}$$

满足 $P_{II}(\alpha-1)$ 上述变换即由平面上的以下三种变换构成

$$\begin{cases} r: \alpha \to -\alpha \\ s: \alpha \to \alpha + 1 \\ s^{-1}: \alpha \to \alpha - 1 \end{cases}$$

它们生成 A_1 型仿射 Weyl 群。

1.2.3 仿射 Weyl 群

定义 1.2.3.

第二章 Ising 模型和磁铁的相变

报告人: 吴昊老师

2.1 背景

人们在研究磁铁的相变时发现当环境温度超过某一温度 T_c 时,磁铁的磁性全部消失,由此人们希望用一种模型来描述这一过程。

Ising 的老师 Lenz, 提出了 Ising 模型。

2.2 Ising 模型

定义 2.2.1 (Ising 模型). 对于 \mathbb{Z}^2 上的格点给定自旋 $\delta = \pm 1$. 定义哈密顿 \mathbb{Z}^1 \mathbb{Z}^1 \mathbb{Z}^2 上的格点给定自旋 $\delta = \pm 1$. 定义哈密顿 \mathbb{Z}^1 \mathbb{Z}^1 \mathbb{Z}^2 上的格点局围的同号量减去反号量,也即两倍的相邻格点反号数。

定义概率测度

$$\mu_{\beta}[0] \propto e^{-\frac{1}{T}H(\delta)}$$

关于 Ising 模型,有广泛的应用,例如,人们将每个小磁针比喻为某个村落中的村民,而将小磁针上、下的两种状态比喻成个体所具备的两种政治观点(例如对 A,B 两个不同候选人的选举),相邻小磁针之间的相互作用比喻成村民之间观点的影响。环境的温度比喻成每个村民对自己意见不坚

¹哈密顿量是所有粒子的动能的总和加上与系统相关的粒子的势能

持的程度。这样,整个 Ising 模型就可以建模该村落中不同政治见解的动态演化(即观点动力学 opinion dynamics)。在社会科学中,人们已经将 Ising模型应用于股票市场、种族隔离、政治选择等不同的问题。另一方面,如果将小磁针比喻成神经元细胞,向上向下的状态比喻成神经元的激活与抑制,小磁针的相互作用比喻成神经元之间的信号传导,那么,Ising 模型的变种还可以用来建模神经网络系统,从而搭建可适应环境、不断学习的机器(Hopfield 网络或 Boltzmann 机)

2.2.1 Tc 是多少

我们会问临界温度是多少,这一问题依赖于网格选取。当网格为 Z^2 时, $T_c = \frac{2}{\log(1+\sqrt{2})},$ 其余的情况算不出解析解。

其次,临界态有什么样的性质?人们通过研究得出临界态具有共形不变性,也即局部保角保定向。人们在研究这一问题时定义了如下的关联函数描述其性质

$$E(\mu(\delta_1\cdots\delta_n))=f(z_1,\cdots,z_n)$$

进一步形成了一门学科: 共形场论 (conformal field theory, CFT)

2.2.2 Onsager -1/8 conjecture

人们在对 Ising 模型的研究过程中解决了如下的 Onsager ½ conjecture

命题 2.2.2. 划定一块正方形区域,区域边界上格点均为 +1,我们知道 $P(\mu[0](\delta=+1)) > P(\mu[0](\delta=-1))$,且 $E[(\mu(\delta=+1))] > 0$

当区域为全平面时, $E[(\mu(\delta=+1))] \rightarrow 0$,猜想即趋于 0 的速度是 $n^{-\frac{1}{8}}$

2.3 Potts 模型

从 Ising 模型还衍生出 Potts 模型,从中可以窥见统计物理、组合数学、算子代数和纽结理论如何发生关联。Potts 描述的是格点上的可能性一共有 $1,2,\cdots,q$ 共 q 种可能性。在这种情况下,我们也可以求出 \mathbb{Z}^2 格点的临界 温度是 $T_c=\frac{2}{\log(1+\sqrt{q})}$

第三章 波的起源

报告人: 于品

3.1 背景

F de Beaune(1601-1652) 的时代提出如何通过切线决定曲线, 其本质是 微积分问题; 后来到 Mersenne 提出弦振动的经验规律。

到 1747 年时, Jean Le Rond d'Alembert 提出弦振动的方程

$$-\partial_t^2 u + c^2 \partial_x^2 u = 0$$

这方程的解为

$$u(x,t) = f_{+}(x+t) + f_{-}(x-t)$$

他告诉人们弦振动的过程中有一个东西在传递,就是 f_{\pm}

来到 Eular 的时代,人们开始研究等熵可压缩 Eular 方程,也即

$$(\partial_t + v \cdot D)\rho = -\rho \cdot \text{div}v$$

$$(\partial_t + v \cdot D)v = -\rho^{-1}\nabla \cdot p$$

其中 $v(t, x_1, x_2, x_3)$ 为空气的速度场; $\rho(t, x_1, x_2, x_3)$ 为空气密度, $p = p(\rho)$ 为压强。

3.2 什么是波

我们先看 Maxwell 方程,

$$(\nabla^2 - \varepsilon_0 \mu_0 \partial_t^2) \mathbf{E} = 0$$
$$(\nabla^2 - \varepsilon_0 \mu_0 \partial_t^2) \mathbf{B} = 0$$

这表明 Maxwell 方程组背后的规律仍然是波动方程,也即电磁场的底层规律是波!

在这之前, Riemann 曾经研究过热传导, 在解决非均匀介质的热传导问题中, Riemann 遇到了障碍, 即他之后提出的曲率的概念。

100 年后, Einstein 希望将引力纳入狭义相对论, 并要求满足一些好的 性质 (Lorenz 协变性等等), 他和 Hilbert 写下的 Hilbert-Einstein 方程

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

利用一些黎曼几何的结论我们推导出

$$\Box_q R_{\alpha,\beta,\gamma,\delta} = 0$$

这就说明引力波是波。

下面解释什么是达朗贝尔算子 $\Box = \nabla_{\mu} \nabla^{\mu}$ 当它作用于标量场时,

$$\Box \phi = (\phi^{;\mu})_{;\mu} = (g^{\mu\nu}\phi_{;\nu})_{;\mu} = (g^{\mu\nu}\phi_{,\nu})_{;\mu} = \frac{1}{\sqrt{-g}}\partial_{\mu}\sqrt{-g}g^{\mu\nu}\partial_{\nu}\phi$$

在三维欧氏空间中, $\nabla^2 \equiv \partial_x^2 + \partial_y^2 + \partial_z^2$

$$\nabla^{2} = \frac{1}{r^{2}} \partial_{r} \left(r^{2} \partial_{r} \right) + \frac{1}{r^{2} \sin \theta} \partial_{\theta} \left(\sin \theta \partial_{\theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \partial_{\phi}^{2}$$

$$\nabla^{2} = \frac{1}{r} \partial_{r} \left(r \partial_{r} \right) + \frac{1}{r^{2}} \partial_{\phi}^{2} + \partial_{z}^{2} \quad \text{(cylindrical coordinates)}$$

3.3 等熵可压缩 Eular 方程和一维守恒律

Riemann 研究这个问题的时候提出了 Riemann 问题,管内气体扩散的问题,他给出了四个解,并定义了什么是激波和稀疏波。在一维的情况下,

第三章 波的起源 10

这些解都很容易给出,在高维就不那么容易。困难的地方在于高维的几何和低维并不相同,稀疏波沿面传播。但我们仍然能做一些计算。通过类比光锥得到"声锥",在这上面定义新的度量得到和广义相对论类似的规律。

不同的波的背后都是不同的几何——于品老师如是说。

第四章 无处不在的双曲性

报告人: 薛金鑫老师

4.1 引子

在微分方程里, 如果我们考察以下的微分方程

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

上述两个微分方程的相图为圆和双曲,其稳定性分别为压缩和扩张。这种反对称的特性蕴含了双曲性。

4.2 Arnold cat's map

指的是

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

行列式为 1, trace=3, 特征值为 $\lambda_{1,2}=\frac{3\pm\sqrt{5}}{2}$, 即 $\lambda_1>1>\lambda_2$ 给出的两个特征向量在环面 (torus) 上正交,分别与之平行的向量产生叶状结构。

4.3 遍历 (Ergodicity)

如果 f 是遍历的,则 $vol(S\Delta f^{-1}(S))=0$,且 vol(S)=0 或 vol(S)=vol(M),其中 $S\subset M$ 均为流形。

直观来讲就是S在f下的像必须和S有不重叠的部分。

定义了什么是遍历性, 我们有以下定理

定理 4.3.1.

$$\frac{1}{n} \sum_{k=0}^{n-1} \phi \circ f^k(x) \longleftarrow \frac{1}{vol(M)} \int \phi(x) dVol$$

即"时间平均"等于"空间平均"。 ϕ 为观测量。这定理类似于大数定律 (Law of Large Number),用于描述一个确定性系统。

由此,一个多次迭代的系统是没办法预测的,这也就是三体问题的困难之处。

现在,我们知道什么是 hyperbolic 了,即扩张性,能将系统的误差放大。

4.4 Riemann 几何里的双曲性

这里体现在 Riemann 对曲率的研究。黎曼对曲面按曲率分了类,曲率为 0 即环 (抛物),为 1 即球 (椭圆),为-1 即其他 (双曲)。

4.4.1 Jacobi 方程

$$x'' + Kx = 0, \quad K = 0, 1, -1$$

对应的解也能显示出双曲的特性。

4.5 Dehn Twist

4.5.1 想法

Dehn Twist 是二维流形上的自同构, 主要是在二维的可定向带边流形上。

4.5.2 例子

By extending to the torus the twisting map of the annulus, through the homeomorphisms

$$(e^{i\theta},t) \mapsto (e^{i(\theta+2\pi t)},t)$$

of the annulus to an open cylinder to the neighborhood of, yields a Dehn twist of the torus by a. 1. Proposition: The equation $z^4 + 6z - 1 = 0$ has exactly two roots in the right half-plane.

Proof: Let C be the circle of radius 2 centered at the origin, and let $f(z) = z^4$ and g(z) = 6z - 1. Then $|g(z)| \le 11$ for all z on C, and |f(z)| = 16 when $z = 2e^{i\theta}$, $0 \le \theta \le \pi/4$. Therefore, |f(z)| > |g(z)| on C, and by Rouche's Theorem, we know that f(z) and f(z) + g(z) have the same number of zeros inside C.

Now we need to find the number of zeros of f(z) + g(z) inside C. On the real axis, we have $f(z) + g(z) = z^4 + 6z - 1$. Since the derivative of this function is $4z^3 + 6$, we know that it has exactly one minimum at $z = \sqrt[3]{-3/2}$. Because f(z) + g(z) is negative at this minimum, we know that f(z) + g(z) has exactly one real root, which is in the right half-plane. Thus, f(z) + g(z) has exactly one zero inside C. Since f(z) has four zeros inside C, it follows that $z^4 + 6z - 1 = 0$ has exactly two roots in the right half-plane.

2. Proposition: Every non-constant polynomial P(z) has at least one zero in the complex plane.

Proof: Let C be the circle of radius R centered at the origin, where R is chosen to be larger than the modulus of all the coefficients of P(z). Let f(z) = P(z) and g(z) = z. Then |g(z)| = R for all z on C, and $|f(z)| \ge |a_n|R^n - |a_{n-1}|R^{n-1} - \cdots - |a_0|$ for all z on C, where a_n is the leading coefficient of P(z).

If n is even, then |f(z)| > |g(z)| for all z on C, and so f(z) and f(z)+g(z) have the same number of zeros inside C by Rouche's Theorem. Since f(z) = P(z) has an even number of zeros inside C (counting multiplicities), it follows that f(z) + g(z) = P(z) + z has at least one zero inside C, and hence P(z) has at least one zero in the complex plane.

If n is odd, then $|f(z)| \ge |a_n|R^n - (|a_{n-1}|R^{n-1} + \cdots + |a_0|)$ for all z on C. If z lies on the positive real axis, then f(z) has the same sign as a_n , and |f(z)| is minimized when z = R. Hence, |f(z)| > |g(z)| on the upper half-plane, and |f(z)| < |g(z)| on the lower half-plane. By Rouche's Theorem, P(z) and P(z) + z have the same number of zeros in the upper half-plane (where f(z) dominates over g(z)), so it suffices to show that P(z) + z has at least one zero in the upper half-plane.

Consider the function h(z) = P(-z) - z. Then h(z) is odd and $|h(z)| \ge |a_n|R^n - (|a_{n-1}|R^{n-1} + \cdots + |a_0|)$ on the negative real axis. Thus, the conditions of Rouche's Theorem are satisfied on the semi-circle of radius R in the lower half-plane, and so h(z) and P(-z) have the same number of zeros in the lower half-plane. But P(-z) has at least one zero in the lower half-plane (since P(z) has at least one zero in the upper half-plane), so it follows that h(z) has at least one zero in the lower half-plane, which means that P(z) + z has at least one zero in the upper half-plane. Therefore, every non-constant polynomial has at least one zero in the complex plane.

3. Proposition: Every non-constant polynomial P(z) has finitely many

zeros in the complex plane.

Proof: Let C be the circle of radius R centered at the origin, where R is chosen to be larger than the modulus of all the coefficients of P(z). Then |P(z)| is bounded below by $|a_n|R^n - (|a_{n-1}|R^{n-1} + \cdots + |a_0|)$ on C, where a_n is the leading coefficient of P(z). Choose $\epsilon > 0$ such that $|a_n|R^n - (|a_{n-1}|R^{n-1} + \cdots + |a_0|) > \epsilon$ whenever $|z| \geq R$.

Let f(z) = P(z) and $g(z) = \epsilon z$. Then |g(z)| > |f(z)| for |z| = R, and $|g(z)| \ge \epsilon R$ for all z on C, so |f(z)| > |g(z)| on C when |z| = R. Therefore, by Rouche's Theorem, P(z) and $P(z) + \epsilon z$ have the same number of zeros inside C.

Note that $P(z) + \epsilon z$ has a unique root of maximum modulus, which we will assume is in the upper half-plane. If there were infinitely many solutions of the equation $P(z) + \epsilon z = 0$ in the upper half-plane, then their accumulation point would also be a solution, which contradicts the assumption that $P(z) + \epsilon z$ has a unique root of maximum modulus in the upper half-plane. Therefore, $P(z) + \epsilon z$ has finitely many zeros in the complex plane, and hence P(z) also has finitely many zeros.