			Created with OSdag
Company Name	Aker Solutions	Project Title	Set 2.2
Group/Team Name	Aker Solutions	Subtitle	
Designer	Vishal Nalwar	Job Number	Set 2.2
Date	06 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Conclusion	
Finplate	Pass
Finplate	
Connection Properties	
Connection	
Connection Title	Single Finplate
Connection Type	Shear Connection
Connection Category	
Connectivity	Column flange-Beam web
Beam Connection	Bolted
Column Connection	Welded
Loading (Factored Load)	
Shear Force (kN)	200
Components	
Column Section	ISSC 200
Material	Fe 410
Beam Section	ISMB 400
Material	Fe 410
Hole	STD
Plate Section	250X80X16
Thickness (mm)	16
Width (mm)	80
Depth (mm)	250
Hole	STD
Weld	
Туре	Double Fillet
Size (mm)	13
Bolts	
Туре	HSFG
Grade	8.8
Diameter (mm)	12
Bolt Numbers	7
Columns (Vertical Lines)	1
Bolts Per Column	7
Gauge (mm)	0
Pitch (mm)	31
End Distance (mm)	30
Edge Distance (mm)	30
Assembly	1

	,	

			Created with OSdag
Company Name	Aker Solutions	Project Title	Set 2.2
Group/Team Name	Aker Solutions	Subtitle	
Designer	Vishal Nalwar	Job Number	Set 2.2
Date	06 /06 /2016	Method	Limit State Design (No Earthquake Load)

Design Check			
Check	Required	Provided	Remark
Bolt shear capacity (kN)		V_{dsb} = (800*0.6126*12*12)/($\sqrt{3}$ *1.25*1000) = 31.223 [cl. 10.3.3]	
Bolt bearing capacity (kN)		V_{dpb} = (2.5*0.519*12*8.9*410)/(1.25*1000) = 45.452 [cl. 10.3.4]	
Bolt capacity (kN)		Min (31.223, 45.452) = 31.223	
No. of bolts	200/31.223 = 6.4	7	Pass
No.of column(s)	≤ 2	1	
No. of bolts per column		7	
Bolt pitch (mm)	≥ 2.5* 12 = 30, ≤ Min(32*8.9, 300) = 285 [cl. 10.2.2]	31	Pass
Bolt gauge (mm)	\geq 2.5*12 = 30, \leq Min(32*8.9, 300) = 285 [cl. 10.2.2]	0	
End distance (mm)	≥ 1.7*13 = 22.1, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	30	Pass
Edge distance (mm)	≥ 1.7*13 = 22.1, ≤ 12*8.9 = 106.8 [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	≥ 200	V _{db} = 467	Pass
Plate thickness (mm)	(5*200*1000)/(250*250) = 16.0 [Owens and Cheal, 1989]	16	Pass
Plate height (mm)	≥ 0.6*400=240.0, ≤ 400-16-14- 10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	250	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	(2*31.223*31 ²)/(31*1000) = 11.99	$M_{\rm d} = (1.2*250*Z)/(1000*1.1) = 45.45$ [cl. 8.2.1.2]	Pass
Effective weld length (mm)		250-2*16 = 218	
Weld strength (kN/mm)	$\sqrt{[(11990*6)/(2*218^2)]^2}$ + $[200/(2*218)]^2$ = 0.885	f_V = (0.7*13*410)/($\sqrt{3}$ *1.25) = 2.121 [cl. 10.5.7]	Pass
Weld thickness (mm)	Max((0.885*1000*√3* 1.25)/(0.7 * 410),16* 0.8) = 12.8 [cl. 10.5.7, Insdag Detailing Manual,	13	Pass

2002]	

			Created with OSdag
Company Name	Aker Solutions	Project Title	Set 2.2
Group/Team Name	Aker Solutions	Subtitle	
Designer	Vishal Nalwar	Job Number	Set 2.2
Date	06 /06 /2016	Method	Limit State Design (No Earthquake Load)

			Created with OSdag
Company Name	Aker Solutions	Project Title	Set 2.2
Group/Team Name	Aker Solutions	Subtitle	
Designer	Vishal Nalwar	Job Number	Set 2.2
Date	06 /06 /2016	Method	Limit State Design (No Earthquake Load)

Additional Comments	Connection Design adequacy check	
---------------------	----------------------------------	--