Алгоритмы

- 1. Необходимый признак сходимости
- 2. Достаточные признаки сходимости
 - 2.1. 1й признак сравнения
 - 2.2. 2й признак сравнения
 - 2.3. Интегральный признак Коши
 - 2.4. Признак Даламбера
 - 2.5. Радикальный признак Коши
- 3. Проверка знакопеременного ряда на абсолютную и условную сходимость
- 4. Поиск области сходимости степенного функционального ряда

Приложение

Замечательные пределы
Ряды Дирихле
Гармонический ряд
Ряды с геометрической прогрессией

1. Необходимый признак сходимости (Достаточный признак расходимости) Алгоритм решения

$$\exists \sum_{n=n_0}^{\infty} U_n; n \in N.$$

1. Находим:

 $\lim_{n\to\infty}U_n$

Вариант 1

$$\lim_{n\to\infty}U_n=0$$

Выполняется необходимый признак сходимости ряда

Требуются дальнейшие исследования на сходимость/расходимость ряда

Ответ: Признак выполняется

Вариант 2

$$\lim_{n\to\infty}U_n\neq 0$$

Выполняется достаточный признак расходимости ряда

Ответ: Ряд расходится

2 Достаточные признаки сходимости 2.1. 1й признак сравнения

$$\exists \sum_{n=1}^{\infty} U_n; \ \forall U_n \geq 0; \ \& \ \exists \sum_{n=1}^{\infty} V_n; \ \forall \ V_n \geq 0; \ n \in \mathbb{N}.$$

$$U_n \leq V_n \ \forall \ n \in N$$

 Вариант 1
 Вариант 2

 Если V_n сходится, то сходится и U_n Если U_n расходится и V_n

2.2. 2й признак сравнения (предельный признак сравнения)

$$\exists \sum_{n=1}^{\infty} U_n; \ \forall U_n \geq 0; \ \& \ \exists \sum_{n=1}^{\infty} V_n; \ \forall V_n \geq 0; \ n \in \mathbb{N}.$$

$$\lim_{n\to\infty}\left(\frac{U_n}{V_n}\right)=Const\neq 0$$

 Вариант 1
 Вариант 2

 U_n и V_n U_n и V_n

 сходятся одновременно
 расходятся одновременно

Замечание 1 для рядов вида (многочленов):

$$\sum_{n=1}^{\infty} \frac{T_{m(n)}}{Q_{k(n)}}; \ \forall T_{m(n)} \geq 0; \ \forall Q_{k(n)} \geq 0; \ n \in \mathbb{N}.$$

 T_{m} – многочлен степени m;

 Q_{k} - многочлен степени k.

Для сравнения выбирают ряд Дирихле:

$$\sum_{n=1}^{\infty} \frac{1}{n^p},$$

где p = k - m.

Замечание 2:

если $p \leq 0$, то для исходного ряда не выполняется необходимое условие сходимости. Следовательно, исходный ряд расходится.

2.3. Интегральный признак Коши

$$\exists \sum_{n=n_0}^{\infty} U_n; \ U_n = f(n); \ n_0 \geq 1; \ \forall U_n \geq 0; n \in \mathbb{N}.$$

Алгоритм.

- 1. Записываем $U_n = f(n)$ как f(x).
- 2. Проверяем f(x) на промежутке $x \ge n_0$ на:
- 2.1 Непрерывность.
- 2.2 Положительность.
- 2.3 Монотонность, находим f'(x):

Вариант 1

Применяем

Вариант 2

Не применяем

4. Вычисляем интеграл:

$$\int_{n_0}^{+\infty} f(x) dx = \lim_{b \to \infty} \int_{n_0}^{b} f(x) dx$$

Вариант 1

$$\int_{n_0}^{+\infty} f(x) \, dx = Const$$

Ряд сходится

Вариант 2

$$\int_{n_0}^{+\infty} f(x) \, dx = +\infty$$

Ряд расходится

5. Записываем ответ:

Несобственный интеграл сходится, соответственно, исходный ряд тоже сходится Несобственный интеграл расходится, соответственно, исходный ряд тоже расходится

Замечание ко всем достаточным признакам сходимости

При записи решения обязательно должны быть фразы, комментарии решения:

в начале: "Применим ...признак..." (указать признак)

в конце: "По ...признаку... (исходный) ряд (ра)сходится"

ответ: "**Ряд (ра)сходится**"

2.4 Признак Даламбера

$$\exists \sum_{n=1}^{\infty} U_n; \ \forall U_n \geq 0; \ n \in N.$$

$$\exists \lim_{n\to\infty}\left(\frac{U_{n+1}}{U_n}\right)=q.$$

Вариант 1

q < 1

Ряд сходится

Вариант 2 $q > 1 \lor q = +\infty$

Вариант 3

q = 1

Нет ответа

Рекомендации по использованию Признака Даламбера:

Наличие (и/или):

- ✓ Факториала: n!
- \checkmark Показательной функции a^n

Факториал:

0! = 1! = 1

 $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n$

 $4! = 1 \cdot 2 \cdot 3 \cdot 4$

 $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$

 $6! = 4! \cdot 5 \cdot 6$

2.5 Радикальный признак Коши

$$\exists \sum_{n=1}^{\infty} U_n; \ \forall U_n \geq 0; \ n \in N.$$

$$\exists \lim_{n\to\infty} \sqrt[n]{U_n} = q.$$

Вариант 1

q < 1

Ряд сходится

Вариант 2Вариант 3 $q > 1 \lor q = +\infty$ q = 1Ряд расходитсяНет ответа

Рекомендации по использованию Радикального признака Коши:

Наличие степенной функции: $U_n^{\ an}$, где a=Const.

3. Алгоритм проверки знакопеременного ряда на абсолютную и условную сходимость

З знакопеременный ряд:

$$U_1 + U_2 + \dots + U_n + \dots = \sum_{n=1}^{\infty} U_n; n \in \mathbb{N}.$$

- 1. Проверка на абсолютную сходимость.
- 1.1. Записываем абсолютный ряд:

$$\sum_{n=1}^{\infty} |U_n|.$$

1.2. Исследуем $\sum_{n=1}^{\infty} |U_n|$ на абсолютную сходимость (применяем один из достаточных признаков сходимости):

Вариант 1

 $\sum_{n=1}^{\infty} |U_n|$.сходится,

Ответ:

ряд сходится абсолютно

Вариант 2

 $\sum_{n=1}^{\infty} |U_n|$.расходится

Проверяем на условную сходимость

- 2. Проверка на условную сходимость (применяем признак Лейбница).
- 2.1. Условие 1: $\lim_{n\to\infty} |U_n| = 0$.

Вариант 1

$$\lim_{n\to\infty}|U_n|=0.$$

Проверяем признак 2

Вариант 2

$$\lim_{n\to\infty}|U_n|\neq 0.$$

Ответ: исходный ряд расходится

2.2. Условие 2: $|U_n| > |U_{n+1}|$.

Вариант 1

Выполняется

Ответ:

ряд сходится условно

Вариант 2

Не выполняется

Требуются дальнейшие исследования ряда на сходимость/расходимость

4. Поиск области сходимости степенного функционального ряда

Э степенной функциональный ряд:

$$\sum_{n=1}^{\infty} U_n(x) = \sum_{n=1}^{\infty} a_n (x - x_0)^n;$$

 a_0 , a_1 , a_2 , a_n - постоянные числа, коэффициенты ряда

Алгоритм

- 1. Определяем x_0 центр сходимости
- 2. Записываем абсолютный ряд:

$$\sum_{n=1}^{\infty} |a_n(x-x_0)^n|.$$

3. По признаку Даламбера или радикальному признаку Коши находим:

Признак Даламбера

$$\exists \lim_{n\to\infty} \left(\frac{U_{n+1}}{U_n}\right)$$

Радикальный признак Коши

$$\exists \lim_{n\to\infty} \sqrt[n]{U_n}$$

4. Определяем R

Вариант 1

$$\lim_{n\to\infty}\left(\frac{U_{n+1}}{U_n}\right)\neq 0; \vee \lim_{n\to\infty}\sqrt[n]{U_n}\neq 0.$$

Продолжаем исследование ряда

Вариант 2

$$\lim_{n o \infty} \left(\frac{U_{n+1}}{U_n} \right)
eq 0; \lor \lim_{n o \infty} \sqrt[n]{U_n}
eq 0.$$
 $\lim_{n o \infty} \left(\frac{U_{n+1}}{U_n} \right) = 0; \lor \lim_{n o \infty} \sqrt[n]{U_n} = 0.$ Ответ:

 $\frac{\mathsf{Oтвет}}{(-\infty; +\infty)}$ - область сходимости

- 5. Ищем область сходимости, записываем: $\lim < 1$
- 6. Записываем неравенство: $x_0 R < x < x_0 + R$;
- 7. Определяем интервал сходимости $(x_0 R; x_0 + R);$
- R радиус сходимости степенного ряда.
- 8. Исследуем концы интервала сходимости на сходимость.
- 8.1 Первым рекомендуется исследовать конец интервала, содержащий знакоположительный ряд.
- 8.2 На концах интервала нельзя применять признак Даламбера или радикальный признак Коши (пределы будут равны 1).
- 9. Записываем ответ: область сходимости.

Приложение

Замечательные пределы

1.
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
; 2. $\lim_{x\to \infty} \left(1 + \frac{1}{x}\right)^x = e$

Ряды Дирихле

$$\sum_{n=1}^{\infty} \frac{1}{n^p}; \ p = Const; \ p \in R; \ n \in N.$$

Вариант 1

p > 1

Ряд сходится

Вариант 2

 $p \leq 1$

Ряд расходится

Гармонический ряд

$$\sum_{n=1}^{\infty} \frac{1}{n}; n \in \mathbb{N}.$$

Ряд расходится

Ряды с геометрической прогрессией

$$\sum_{n=1}^{\infty} b \cdot q^{n-1}; \ b = Const \neq 0; \ b \in R; \ n \in N.$$

Вариант 1

 $|q| < 1; \; q = Const; \; q \in R.$ $|q| \ge 1; \; q = Const; \; q \in R.$

Ряд сходится

Вариант 2

Ряд расходится