Satisfiability Checking 25 The cylindrical algebraic decomposition method II

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 22/23

25 The cylindrical algebraic decomposition method II

1 What is a cylindrical algebraic decomposition?

2 Computing cylindrical algebraic decompositions for $\mathbb R$

3 Computing cylindrical algebraic decompositions for \mathbb{R}^n

25 The cylindrical algebraic decomposition method II

1 What is a cylindrical algebraic decomposition?

2 Computing cylindrical algebraic decompositions for \mathbb{R}

3 Computing cylindrical algebraic decompositions for \mathbb{R}^n

25 The cylindrical algebraic decomposition method II

1 What is a cylindrical algebraic decomposition?

2 Computing cylindrical algebraic decompositions for $\mathbb R$

3 Computing cylindrical algebraic decompositions for \mathbb{R}^n

Reminder: CAD definition

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

The projected CAD cells in $\mathbb R$ are:

$$(-\infty, \xi_1), \{\xi_1\}, (\xi_1, \xi_2), \{\xi_2\}, (\xi_2, \xi_3), \{\xi_3\}, (\xi_3, \xi_4), \{\xi_4\}, (\xi_4, \infty)$$

Reminder

A CAD for P is a

- decomposition of \mathbb{R}^n
- which is cylindrical,

- semi-algebraic,
- and its cells are P-sign-invariant.

Variable ordering

- Let x_1, \ldots, x_n be variables.
- CAD assumes a static variable order.
- We will use $x_1 < x_2 < \ldots < x_n$.
- When we use other variables (e.g. x, y), we will explicitly fix the order.

CAD for multivariate polynomials

Motivation: Delineability

Variable order: x < y

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

P-delineable regions:

- $(2-\frac{\sqrt{2}}{2},2+\frac{\sqrt{2}}{2})$
- $2 \frac{\sqrt{2}}{2} , \{2 + \frac{\sqrt{2}}{2} \}$
- $(1,2-\frac{\sqrt{2}}{2}), (2+\frac{\sqrt{2}}{2},3)$

- **1**, {3}
- $-\infty,1)$, $(3,\infty)$

Delineability

Definition

P is delineable on R if for each $1 \le i, j \le m$ with $i \ne j$, for all $a \in R$

- 1 the number of roots of $p_i(a, x_n)$ is constant,
- 2 the number of different roots of $p_i(a, x_n)$ is constant, and
- 3 the number of common roots of $p_i(a, x_n)$ and $p_j(a, x_n)$ is constant.

CAD projection

Let $P = \{p_1, \dots, p_m\} \subset \mathbb{Q}[x_1, \dots, x_n]$ where $n \geq 2$ and $m \geq 1$.

Definition

A mapping

$$\operatorname{proj}: 2^{\mathbb{Q}[x_1, \dots, x_n]} \longrightarrow 2^{\mathbb{Q}[x_1, \dots, x_{n-1}]}$$

is called a CAD-Projection if any $\operatorname{proj}(P)$ -sign-invariant region $R \subseteq \mathbb{R}^{n-1}$ is P-delineable.

Remarks

■ Usually, $|\text{proj}(P)| = |P|^2$. Thus, projecting recursively up to the univariate case is in $\mathcal{O}(|P|^{2^{n-1}})$.

Where must be cylinder boundaries?

There are three types of projections, with the following informal role:

- resultant of two polynomials: its roots cover (projections of) common roots of the different polynomials ('crossing points')
- 2 discriminant of a polynomial: whose roots cover (projections of) changes in the number and order of roots of a single polynomial ("turn arounds")
- 3 coefficients: whose roots cover (projections of) divergence points (at singularities of the polynomials)

The resultant of
$$-x^2 + y + 1$$

and $-x + 2y - 2$ in y is
$$2x^2 - x - 4$$
, which has roots
at $\frac{1}{4} \pm \frac{\sqrt{33}}{4}$.
$$y = x^2 - 1$$

$$y = \frac{x+2}{2}$$

$$x^2 - 1 = \frac{x+2}{2}$$

$$x^2 - x - 4 = 0$$

Variable oder: x < y

The discriminant of $x^2 + y^2 - 1$ in y is $-4x^2 + 4$, which has two roots at -1 and +1.

Variable oder: x < y

The leading coefficient of xy - 1 in y is x, which has a single root at 0.

xy - 1 = 0

CAD projection: Example

Variable order: x < y

$$P = \begin{pmatrix} (x-2)^2 + \\ (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

Projection

$$proj(P) = \{x^2 - 4x + 3, \\
1, \\
-4x + x^2 + \frac{7}{2}, \\
1, \\
-1\}$$

...and its real roots

discriminant of 1st poly discriminant of 2nd poly resultant of polys leading coeff of 1st poly

leading coeff of 2nd poly

The CAD sample construction in a nutshell

CAD sample construction ("lifting"): Example

Variable order: x < y

$$P = \begin{pmatrix} (x-2)^2 + (y-2)^2 - 1, \\ x - y \end{pmatrix}$$

One-dimensional samples for proj(P)

$$\{1, 2 - \frac{\sqrt{2}}{2}, 2 + \frac{\sqrt{2}}{2}, 3\}$$

 $\{0.5, 1.135, 2, 2.835, 3.5\}$

Extending samples to \mathbb{R}^2 (example at x=2)

- $(2-2)^2 + (y-2)^2 1 = (y-2)^2 1$ is now univariate and has roots at y = 1 and y = 3, yields samples (2,1) and (2,3),
- \blacksquare 2 y has a root at y = 2, yields sample (2,2).

Variable order: x < y

Variable order: x < y

Variable order: x < y

$$xy - 1 = 0$$

7 cells

Learning target

- What is a cylindrical algebraic decomposition for a set of polynomials?
- How to compute it for the univariate case?
- What is delineability?
- Given a graphical representation of the real roots of some polynomials, how to illustrate their CAD and the generated samples graphically?