Compiladores – FIRST e FOLLOW (Gramáticas LL(1))

Carlos Henrique Vieira Marques Veeck Baseado na apresentação de Leopoldo Teixeira (IF688)

O que são FIRST e FOLLOW?

- Usados para construir parsers top-down preditivos (como LL(1)).
- Ajudam o parser a escolher qual produção aplicar, com base no próximo token de entrada.
- Também ajudam em tratamento de erros.

FIRST(α)

- Conjunto de terminais que podem iniciar uma derivação da string α.
- Se α pode gerar ϵ (vazio), então $\epsilon \in FIRST(\alpha)$.

Regras para calcular FIRST(X):

- 1. Se X é terminal \rightarrow FIRST(X) = { X }
- 2. Se $X \to \varepsilon \to \varepsilon \in FIRST(X)$
- 3. Se $X \rightarrow Y_1Y_2...Y\Box$:
 - ∘ Se ε ∉ FIRST(Y₁), então FIRST(Y₁) ⊆ FIRST(X)
 - ∘ Se ϵ ∈ FIRST(Y₁), então FIRST(X) inclui:
 - FIRST(Y_1) { ϵ } U FIRST($Y_2Y_3...Y_{\square}$)
 - Se $\varepsilon \in FIRST(Yj)$ para todo $j \to \varepsilon \in FIRST(X)$

FOLLOW(A)

 Conjunto de terminais que podem aparecer imediatamente após o não-terminal A em alguma derivação. Se A pode ser o último símbolo de uma produção → \$ ∈ FOLLOW(A)

Regras para calcular FOLLOW(A):

- 1. $\$ \in FOLLOW(S)$, onde S é o símbolo inicial.
- 2. Se A $\rightarrow \alpha$ B β , então tudo de FIRST(β), exceto ϵ , vai para FOLLOW(B).
- 3. Se A \rightarrow α B ou A \rightarrow α B β e ϵ \in FIRST(β), então tudo de FOLLOW(A) vai para FOLLOW(B).

Exemplo de gramática:

 $\mathsf{S} \to \mathsf{aABe}$

 $A \rightarrow bK$

 $K \rightarrow bcK \mid \epsilon$

 $B \rightarrow d$

FIRST:

- FIRST(S) = { a }
- FIRST(A) = { b }
- FIRST(K) = { b, ε }
- FIRST(B) = { d }

FOLLOW:

- FOLLOW(S) = { \$ }
- FOLLOW(A) = { d }
- FOLLOW(K) = { d }
- FOLLOW(B) = { e }

Gramáticas LL(1)

• Uma gramática é LL(1) se o parser pode decidir a produção a ser usada olhando apenas 1 token de lookahead.

• Não pode haver ambiguidade nem recursão à esquerda.

Tabela Preditiva LL(1)

- Tabela M[A, a] indica qual produção usar para não-terminal A com símbolo de entrada a.
- Construção:
 - $\quad \ \ \, \text{Para cada produção A} \rightarrow \alpha\text{:} \\$
 - Para cada terminal $a \in FIRST(\alpha)$, adicione $A \rightarrow \alpha$ em M[A, a]
 - Se $\varepsilon \in FIRST(\alpha)$, para cada b $\in FOLLOW(A)$, adicione A $\rightarrow \alpha$ em M[A, b]
- Células vazias indicam erro.

Parsing LL(1) sem recursão

- Utiliza pilha explícita e tabela preditiva.
- Algoritmo:
 - 1. Inicialize a pilha com \$ e o símbolo inicial \$.
 - 2. Leia o primeiro token da entrada.
 - 3. Enquanto o topo da pilha ≠ \$:
 - Se topo == token → consome token e desempilha.
 - Se topo é terminal \neq token \rightarrow erro.
 - Se topo é não-terminal:
 - Consulte M[topo, token]:
 - Se erro \rightarrow erro.

■ Se produção $A \to Y_1Y_2...Y_1 \to desempilha$ e empilha $Y_1...Y_1$.

Exemplo de Gramática LL(1):

$$\begin{array}{ll} \mathsf{E} & \to \mathsf{T} \, \mathsf{E}' \\ \mathsf{E}' & \to + \mathsf{T} \, \mathsf{E}' \, | \, \epsilon \\ \mathsf{T} & \to \mathsf{F} \, \mathsf{T}' \\ \mathsf{T}' & \to * \, \mathsf{F} \, \mathsf{T}' \, | \, \epsilon \\ \mathsf{F} & \to (\mathsf{E}) \, | \, \mathsf{id} \end{array}$$

FIRST

Objetivo: identificar com quais terminais uma derivação pode começar.

Regras:

- 1. Se a produção começa com um **terminal**, ele entra no FIRST.
- 2. Se começa com um **não-terminal**, adicione os símbolos do **FIRST desse não-terminal** (exceto ε).
 - Se esse FIRST contém ε, continue verificando os próximos símbolos da produção.
- 3. Se toda a produção pode gerar ε, então ε entra no FIRST.

FOLLOW

Objetivo: identificar quais terminais podem aparecer imediatamente após um não-terminal.

Regras:

- 1. Para o símbolo inicial (ex: S), o símbolo \$ sempre entra no FOLLOW(S).
- 2. Em uma produção A → αBβ, adicione ao FOLLOW(B):
 - Todos os símbolos de FIRST(β) (exceto ε).
- 3. Se β pode derivar ϵ (ou se B é o último da produção),

o então **tudo de FOLLOW(A)** entra no FOLLOW(B).