以最大差额同行或同列的最小运价为准,用其所在行的产量,最大限度满足所在列的需求。即 西部余下的8吨全部运送到丁,运费8*6=48;西部产量用完,删除西部这一行,丁余下的需 求为6。

(3) 找到最大差额为丁的列差 2, 第二次重复

	甲	丙	丁	产量	行差
东部	4	4	11	16	0
中部	2	3	9	10	1
需求量	8	12	余 6		
列差	2	1	2		

以最大差额同行或同列的最小运价为准,用其所在行的产量,最大限度满足所在列的需求。即中部的10吨运送6吨到丁,运费6*9=54;丁的需求全部满足,删除丁这一列,中部产量余4。

(4) 找到最大差额为甲的列差 2, 第三次重复

	甲	丙	产量	行差
东部	4	4	16	0
中部	2	3	余 4	1
需求量	8	12		\(\rangle '\)
列差	<mark>2</mark>	1)

以最大差额同行或同列的最小运价为准,用其所在行的产量,最大限度满足所在列的需求。即中部余下的4吨运送到甲,运费4*2=8;中部产量用完,删除这一行,甲的需求剩余4。

	甲	丙	产量	行差
东部	4	4	16	0
需求量	余 4	-12		
列差	2	1		

总结所有运价,将所有运价求和: 西部运送 14 吨到乙,每吨运价 5,14*5=70;西部运送 8 吨到丁,每吨运价 6,8*6=48;中部运送 6 吨到丁,每吨运价 9,6*9=54;中部运送 4 吨到甲,每吨运价 2,4*2=8;东部运送 4 吨到甲,每吨运价 4,4*4=16;东部运送 12 吨到丙,每吨运价 4,12*4=48;70+48+54+8+16+48=244。

解法 2: 有一种更简单的方法:

从左到右,依次取最小运价满足甲、乙、丙的需求,剩余的产量给丁。

	甲	乙	丙	丁	产量	
东部	4	12	4	11	16	余 4
中部	<u>2</u>	10	3	9	10	余 2
西部	8	<mark>5</mark>	11	6	22	余 8
需求量	8	14	12	14		

中部产量满足甲的需求 8,剩余 2,运价 8*2=16;

西部产量满足乙的需求 14, 剩余 8, 运价 14*5=70;

东部产量满足丙的需求 12, 剩余 4, 运价 12*4=48;

东部、中部、西部剩余的产量全部给丁,运价为: 4*11+9*2+8*6=110;

总运价: 16+70+48+110=244。

4. 指派问题(匈牙利算法)

试题 1-【2010 年下半年】

某项目有 $I \times II \times III \times IV$ 四项不同任务,恰有甲、乙、丙、丁四个人去完成各项不同的任务.由