УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Геометрија И-смер део 1: Вектори

Тијана Шукиловић

2. октобар 2023.

Слика 1: Еквивалентне усмерене дужи

Слика 1: Еквивалентне усмерене дужи

• примери векторских и скаларних величина

Слика 1: Еквивалентне усмерене дужи

- примери векторских и скаларних величина
- вектор представник

Слика 1: Еквивалентне усмерене дужи

- примери векторских и скаларних величина
- вектор представник
- \bullet нула вектор $\overrightarrow{0}$

Слика 1: Еквивалентне усмерене дужи

- примери векторских и скаларних величина
- вектор представник
- \bullet нула вектор $\vec{0}$
- супротан вектор

Слика 1: Еквивалентне усмерене дужи

- примери векторских и скаларних величина
- вектор представник
- нула вектор $\vec{0}$
- супротан вектор
- колинеарни вектори

Слика 1: Еквивалентне усмерене дужи

- примери векторских и скаларних величина
- вектор представник
- \bullet нула вектор $\vec{0}$
- супротан вектор
- колинеарни вектори
- копланарни вектори

Слика 1: Еквивалентне усмерене дужи

- примери векторских и скаларних величина
- вектор представник
- нула вектор $\vec{0}$
- супротан вектор
- колинеарни вектори
- копланарни вектори
- ullet скуп свих вектора \mathbb{V} , односно \mathbb{V}^n

Слика 2: Сабирање вектора

Слика 3: Множење вектора скаларом

Слика 4: Разлика вектора

Слика 5: Јединични вектор

Слика 6: Линеарна комбинација вектора

Пример

Пример 1

Доказати да је $\overrightarrow{AB} = \overrightarrow{DC}$ ако и само ако се дужи AC и BD полове.

Пример

Пример 1

Доказати да је $\overrightarrow{AB} = \overrightarrow{DC}$ ако и само ако се дужи AC и BD полове.

$$(\Longrightarrow) \overrightarrow{AB} = \overrightarrow{DC}, \quad AC \cap BD = \{S\}$$

$$\overrightarrow{AS} = \overrightarrow{AB} + \overrightarrow{BS} = \overrightarrow{DC} + \lambda \overrightarrow{SD}$$

$$= \overrightarrow{DS} + \overrightarrow{SC} + \lambda \overrightarrow{SD} = (1 - \lambda)\overrightarrow{DS} + \mu \overrightarrow{AS}$$

$$(1 - \mu)\overrightarrow{AS} = (1 - \lambda)\overrightarrow{DS} \implies \lambda = \mu = 1$$

$$\implies \overrightarrow{BS} = \overrightarrow{SD}, \ \overrightarrow{SC} = \overrightarrow{AS}$$

$$(\Longleftrightarrow) \overrightarrow{SB} = \overrightarrow{DS}, \ \overrightarrow{SC} = \overrightarrow{AS}$$

$$\overrightarrow{AB} = \overrightarrow{AS} + \overrightarrow{SB} = \overrightarrow{SC} + \overrightarrow{DS} = \overrightarrow{DC}$$

Линеарна (не)зависност вектора – обнављање

• линеарно независни вектори

$$\alpha_1 \overrightarrow{v_1} + \dots + \alpha_n \overrightarrow{v_n} = \overrightarrow{0} \implies \alpha_1 = \dots = \alpha_n = 0$$

Линеарна (не)зависност вектора – обнављање

• линеарно независни вектори

$$\alpha_1 \overrightarrow{v_1} + \dots + \alpha_n \overrightarrow{v_n} = \overrightarrow{0} \implies \alpha_1 = \dots = \alpha_n = 0$$

• линеарно зависни вектори

Линеарна (не)зависност вектора – обнављање

• линеарно независни вектори

$$\alpha_1 \overrightarrow{v_1} + \dots + \alpha_n \overrightarrow{v_n} = \overrightarrow{0} \implies \alpha_1 = \dots = \alpha_n = 0$$

• линеарно зависни вектори

Слика 7: Вектори одређени страницама троугла су линеарно зависни

Линеарна зависност и независност вектора

Теорема 1.1

Ненула вектори \overrightarrow{u} и \overrightarrow{v} су линеарно зависни ако и само ако су колинеарни.

Теорема 1.2

У равни постоје два линеарно независна вектора, а свака три вектора равни су линеарно зависна.

Теорема 1.3

У простору постоје три линеарно независна вектора, а свака четири вектора су линеарно зависна.

Примери

Пример 2

Слика 8: Да ли су вектори $\overrightarrow{AC_1}$ и \overrightarrow{BD} колинеарни?

Примери

Пример 2

Слика 9: Да ли су вектори $\overrightarrow{BC_1}$, $\overrightarrow{A_1D_1}$ и \overrightarrow{CD} копланарни?

• Векторски простор

- Векторски простор
- База векторског простора = максималан скуп линеарно независних вектора.

- Векторски простор
- База векторског простора = максималан скуп линеарно независних вектора.
- Димензија векторског простора = број елемената базе.

- Векторски простор
- База векторског простора = максималан скуп линеарно независних вектора.
- Димензија векторског простора = број елемената базе.

Последица 2.1

Димензија векторског простора вектора равни \mathbb{V}^2 је два. Сваки вектор $\overrightarrow{v} \in \mathbb{V}^2$ може да се напише у облику:

$$\vec{v} = x_1 \vec{e_1} + x_2 \vec{e_2},$$

где је $e = (\overrightarrow{e_1}, \overrightarrow{e_2})$ база векторског простора \mathbb{V}^2 .

- Векторски простор
- База векторског простора = максималан скуп линеарно независних вектора.
- Димензија векторског простора = број елемената базе.

Последица 2.1

Димензија векторског простора вектора равни \mathbb{V}^2 је два. Сваки вектор $\overrightarrow{v} \in \mathbb{V}^2$ може да се напише у облику:

$$\vec{v} = x_1 \vec{e_1} + x_2 \vec{e_2},$$

где је $e=(\overrightarrow{e_1},\overrightarrow{e_2})$ база векторског простора $\mathbb{V}^2.$

 $\overrightarrow{e_1}, \overrightarrow{e_2}$ – линеарно независни $\implies x_1, x_2 \in \mathbb{R}$ – јединствени.

Координате вектора

- База $e = (e_1, e_2)$ векторског простора \mathbb{V}^2 .
- Координате вектора $\overrightarrow{v} \in \mathbb{V}^2$ у бази e:

$$\left[\overrightarrow{v}\right]_e = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Координате вектора

- База $e = (e_1, e_2)$ векторског простора V^2 .
- Координате вектора $\overrightarrow{v} \in \mathbb{V}^2$ у бази e:

$$[\overrightarrow{v}]_e = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

• Лако се уопштава на произвољну димензију.

Пример (вежбе)

Пример 3

Дат је паралелограм ABCD. Нека је E средиште странице BC и S пресек дијагонала AC и BD. Одредити координате вектора \overrightarrow{BE} у бази $e = \left(\overrightarrow{AE}, \overrightarrow{AS}\right)$.

Слика 10:
$$\left[\overrightarrow{BE}\right]_e = ?$$

Координате тачке

- База $e = (e_1, \dots, e_n)$ векторског простора \mathbb{V} .
- ullet Фиксирана тачка $O\in\mathbb{E}$ назива се координатни почетак.
- O_e се назива координатним системом или репером простора \mathbb{E} .

Координате тачке

- База $e = (e_1, \dots, e_n)$ векторског простора \mathbb{V} .
- ullet Фиксирана тачка $O \in \mathbb{E}$ назива се координатни почетак.
- O_e се назива координатним системом или репером простора \mathbb{E} .

Дефиниција 2.1

Координате тачке $X \in \mathbb{E}$ у реперу Oe дефинишемо као координате вектора \overrightarrow{OX} у бази e:

$$[X]_{Oe} := [\overrightarrow{OX}]_e. \tag{1}$$

Веза координата вектора и тачака

У пракси се често користи чињеница да се координате вектора \overrightarrow{MN} добијају "одузимањем координате тачке M од координата тачке N."

Веза координата вектора и тачака

У пракси се често користи чињеница да се координате вектора \overrightarrow{MN} добијају "одузимањем координате тачке M од координата тачке N."

Коректност:

$$\begin{split} [\overrightarrow{MN}]_e &= [\overrightarrow{MO} + \overrightarrow{ON}]_e \\ &= [\overrightarrow{ON}]_e - [\overrightarrow{OM}]_e \\ &= [N]_{Oe} - [M]_{Oe}. \end{split}$$

Веза координата вектора и тачака

У пракси се често користи чињеница да се координате вектора \overrightarrow{MN} добијају "одузимањем координате тачке M од координата тачке N."

Коректност:

$$[\overrightarrow{MN}]_e = [\overrightarrow{MO} + \overrightarrow{ON}]_e$$
$$= [\overrightarrow{ON}]_e - [\overrightarrow{OM}]_e$$
$$= [N]_{Oe} - [M]_{Oe}.$$

Пример 4

Одредити координате темена паралелограма из Примера 3 у реперу Ae.

Скаларни производ - обнављање

Дефиниција 3.1 (Скаларни производ)

$$\vec{v}, \vec{u} \in \mathbb{V}: \quad \vec{v} \cdot \vec{u} := |\vec{v}| |\vec{u}| \cos \angle (\vec{v}, \vec{u}),$$

Скаларни производ – обнављање

Дефиниција 3.1 (Скаларни производ)

$$\vec{v}, \vec{u} \in \mathbb{V}: \quad \vec{v} \cdot \vec{u} := |\vec{v}| |\vec{u}| \cos \angle (\vec{v}, \vec{u}),$$

Примене скаларног производа:

• Дужине:

$$|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}};$$

• Углови:

$$\angle(\overrightarrow{v}, \overrightarrow{u}) = \arccos \frac{\overrightarrow{v} \cdot \overrightarrow{u}}{|\overrightarrow{v}| |\overrightarrow{u}|}$$

Скаларни производ у ортонормираној бази

• Особине скаларног производа

Скаларни производ у ортонормираној бази

- Особине скаларног производа
- Ортонормирана база $e = (\overrightarrow{e_1}, \dots, \overrightarrow{e_n}) : \overrightarrow{e_i} \cdot \overrightarrow{e_j} = \delta_{ij}$.

Скаларни производ у ортонормираној бази

- Особине скаларног производа
- ullet Ортонормирана база $e=(\overrightarrow{e_1},\ldots,\overrightarrow{e_n}): \overrightarrow{e_i}\cdot\overrightarrow{e_j}=\delta_{ij}.$
- $\vec{v} = v_1 e_1 + v_2 e_2 + \ldots + v_n e_n$, $\vec{u} = u_1 e_1 + u_2 e_2 + \ldots + u_n e_n$:

$$\vec{v} \cdot \vec{u} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n$$

$$= (v_1, \dots, v_n) \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = [\vec{v}]_e^T \cdot [\vec{u}]_e$$

Оријентација равни

• Појам оријентације уводимо интуитивно. Ствар је договора шта називамо позитивном, а шта негативном оријентацијом.

Оријентација равни

 Појам оријентације уводимо интуитивно.
 Ствар је договора шта називамо позитивном, а шта негативном оријентацијом.

Слика 11: Троугао позитивне и негативне оријентације

Оријентација равни

• Појам оријентације уводимо интуитивно. Ствар је договора шта називамо позитивном, а шта негативном оријентацијом.

Слика 11: Троугао позитивне и негативне оријентације

• База $e = (\overrightarrow{OA}, \overrightarrow{OB})$ је позитивне оријентације, ако је троугао ОАВ позитивне оријентације.

Оријентација простора

Базе $e = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ је позитивне оријентације ако важи правило руке:

"ако испружени кажипрст руке представља вектор $\overrightarrow{e_1}$, средњи прст вектор $\overrightarrow{e_2}$, а палац вектор $\overrightarrow{e_3}$, онда је база $e=(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ позитивне оријентације".

Пример

Пример 5

Дата је коцка $ABCDA_1B_1C_1D_1$. Одредити оријентацију ортонормиране базе $e=(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}), \overrightarrow{e_1}=\overrightarrow{A_1B_1}, \overrightarrow{e_2}=A_1\overrightarrow{D_1},$ $\overrightarrow{e_3}=\overrightarrow{A_1A}$ ако је база $f=\left(\overrightarrow{BD},\overrightarrow{BA},\overrightarrow{BC_1}\right)$ позитивне оријентације.

Слика 12: Оријентација простора

Векторски производ - обнављање

Дефиниција 3.2 (Векторски производ)

 $\vec{v}, \vec{u} \in \mathbb{V}^3$: $\vec{v} \times \vec{u} := \vec{w}$, где је \vec{w} вектор који има:

- Интензитет: $|\overrightarrow{w}| = |\overrightarrow{v}| |\overrightarrow{u}| \sin \angle (\overrightarrow{v}, \overrightarrow{u});$
- Правац: $\vec{w} \perp \vec{v}$, \vec{u} ;
- Смер: База $(\vec{v}, \vec{u}, \vec{w})$ је позитивне оријентације.

Векторски производ - обнављање

Дефиниција 3.2 (Векторски производ)

 $\vec{v}, \vec{u} \in \mathbb{V}^3$: $\vec{v} \times \vec{u} := \vec{w}$, где је \vec{w} вектор који има:

- Интензитет: $|\vec{w}| = |\vec{v}| |\vec{u}| \sin \angle (\vec{v}, \vec{u});$
- Правац: $\vec{w} \perp \vec{v}$, \vec{u} ;
- Смер: База $(\vec{v}, \vec{u}, \vec{w})$ је позитивне оријентације.

Слика 13: $|\overrightarrow{v} \times \overrightarrow{u}| = P_{(\overrightarrow{v}, \overrightarrow{u})}$

Векторски производ у ортонормираној бази

• Особине векторског производа

Векторски производ у ортонормираној бази

- Особине векторског производа
- $e = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ ортонормирана база позитивне оријентације

×	$\vec{e_1}$	$\overrightarrow{e_2}$	$\overrightarrow{e_3}$
$\overrightarrow{e_1}$	$\overrightarrow{0}$	$\overrightarrow{e_3}$	$-\overrightarrow{e_2}$
$\overrightarrow{e_2}$	$-\vec{e_3}$	$\overrightarrow{0}$	$\overrightarrow{e_1}$
$\overrightarrow{e_3}$	$\overrightarrow{e_2}$	$-\overrightarrow{e_1}$	$\overrightarrow{0}$

Матрична репрезентација векторског множења

•
$$\vec{v} = v_1 e_1 + v_2 e_2 + v_3 e_3$$
, $\vec{u} = u_1 e_1 + u_2 e_2 + u_3 e_3$

$$\vec{v} \times \vec{u} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \end{vmatrix}.$$

Матрична репрезентација векторског множења

 $\vec{v} = v_1 e_1 + v_2 e_2 + v_3 e_3, \ \vec{u} = u_1 e_1 + u_2 e_2 + u_3 e_3$

$$\vec{v} \times \vec{u} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \end{vmatrix}.$$

• Множење вектором \vec{v} , $[\vec{v}]_e = (v_1, v_2, v_3)$:

$$\overrightarrow{v} \times \overrightarrow{u} := v_{\times} \cdot [\overrightarrow{u}]_{e}$$

$$= \begin{pmatrix} 0 & -v_{3} & v_{2} \\ v_{3} & 0 & -v_{1} \\ -v_{2} & v_{1} & 0 \end{pmatrix} \cdot \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$$

Матрична репрезентација векторског множења

• $\vec{v} = v_1 e_1 + v_2 e_2 + v_3 e_3$, $\vec{u} = u_1 e_1 + u_2 e_2 + u_3 e_3$

$$\vec{v} \times \vec{u} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \end{vmatrix}.$$

• Множење вектором \vec{v} , $[\vec{v}]_e = (v_1, v_2, v_3)$:

$$\overrightarrow{v} \times \overrightarrow{u} := v_{\times} \cdot [\overrightarrow{u}]_{e}$$

$$= \begin{pmatrix} 0 & -v_{3} & v_{2} \\ v_{3} & 0 & -v_{1} \\ -v_{2} & v_{1} & 0 \end{pmatrix} \cdot \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$$

• Проверити!

$$A, B, C \in \mathbb{E}^2$$
: $A(a_1, a_2, 0), B(b_1, b_2, 0), C(c_1, c_2, 0)$:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} b_1 - a_1 & b_2 - a_2 \\ c_1 - a_1 & c_2 - a_2 \end{vmatrix} \overrightarrow{e_3} =: D_{ABC} \overrightarrow{e_3}.$$

$$A, B, C \in \mathbb{E}^2$$
: $A(a_1, a_2, 0), B(b_1, b_2, 0), C(c_1, c_2, 0)$:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} b_1 - a_1 & b_2 - a_2 \\ c_1 - a_1 & c_2 - a_2 \end{vmatrix} \overrightarrow{e_3} =: D_{ABC} \overrightarrow{e_3}.$$

$$\bullet \ P_{\triangle ABC} = \frac{1}{2} |D_{ABC}|;$$

$$A, B, C \in \mathbb{E}^2$$
: $A(a_1, a_2, 0), B(b_1, b_2, 0), C(c_1, c_2, 0)$:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} b_1 - a_1 & b_2 - a_2 \\ c_1 - a_1 & c_2 - a_2 \end{vmatrix} \overrightarrow{e_3} =: D_{ABC} \overrightarrow{e_3}.$$

- $P_{\triangle ABC} = \frac{1}{2} |D_{ABC}|;$
- A, B, C колинеарне $\iff D_{ABC} = 0$;

$$A, B, C \in \mathbb{E}^2$$
: $A(a_1, a_2, 0), B(b_1, b_2, 0), C(c_1, c_2, 0)$:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} b_1 - a_1 & b_2 - a_2 \\ c_1 - a_1 & c_2 - a_2 \end{vmatrix} \overrightarrow{e_3} =: D_{ABC} \overrightarrow{e_3}.$$

- $\bullet \ P_{\triangle ABC} = \frac{1}{2} |D_{ABC}|;$
- A, B, C колинеарне $\iff D_{ABC} = 0$;
- $\triangle ABC$ позитивно оријентисан ако $D_{ABC} > 0$.

$$A, B, C \in \mathbb{E}^2$$
: $A(a_1, a_2, 0), B(b_1, b_2, 0), C(c_1, c_2, 0)$:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} b_1 - a_1 & b_2 - a_2 \\ c_1 - a_1 & c_2 - a_2 \end{vmatrix} \overrightarrow{e_3} =: D_{ABC} \overrightarrow{e_3}.$$

Важи:

- $\bullet \ P_{\triangle ABC} = \frac{1}{2} |D_{ABC}|;$
- A, B, C колинеарне $\iff D_{ABC} = 0;$
- $\triangle ABC$ позитивно оријентисан ако $D_{ABC} > 0$.

Пример 6

Одредити површину $\triangle ABC$, A(1,3), B(4,0), C(2,3). Да ли је троугао позитивне оријентације?

Теорема 3.1

Тачка P припада троуглу ABC ако и само ако: $sign(D_{ABP}) = sign(D_{BCP}) = sign(D_{CAP}).$

Теорема 3.1

Тачка P припада троуглу ABC ако и само ако: $sign(D_{ABP}) = sign(D_{BCP}) = sign(D_{CAP})$.

Пример 7

Да ли тачка P(3,2) припада $\triangle ABC$ из Примера 6?

Тачке C и D са исте стране праве p ако и само ако су троуглови ABC и $ABD,\ A,B\in p,$ истих оријентација:

$$sign(D_{ABC}) = sign(D_{ABD}).$$

Слика 15: Тачке са исте/разних стране праве

Пример 8

Које се од тачака D(1,2), E(4,-5), F(-7,3) налазе са исте стране праве AB, A(2,-4), B(1,-1), као и тачка C(1,1)?

Мешовити производ – обнављање

Дефиниција 3.3 (Мешовити производ)

 $\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w} \in \mathbb{V}^3 : \quad [\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}] := (\overrightarrow{v} \times \overrightarrow{u}) \cdot \overrightarrow{w}.$

Слика 16: $|[\vec{v}, \vec{u}, \vec{w}]| = V_{(\vec{v}, \vec{u}, \vec{w})}$

Мешовити производ у ортонормираној бази:

$$[\vec{v}, \vec{u}, \vec{w}] = \left| \begin{array}{ccc} v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{array} \right|.$$

Мешовити производ у ортонормираној бази:

$$[\vec{v}, \vec{u}, \vec{w}] = \begin{vmatrix} v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

• Особине мешовитог производа

Мешовити производ у ортонормираној бази:

$$[\vec{v}, \vec{u}, \vec{w}] = \begin{vmatrix} v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

• Особине мешовитог производа

Последица 3.1

Вектори $\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}$ су линеарно независни ако и само ако:

$$[\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}] \neq 0.$$

Мешовити производ у ортонормираној бази:

$$[\vec{v}, \vec{u}, \vec{w}] = \begin{vmatrix} v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

• Особине мешовитог производа

Последица 3.1

Вектори $\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}$ су линеарно независни ако и само ако:

$$[\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}] \neq 0.$$

Последица 3.2

Вектори $(\vec{v}, \vec{u}, \vec{w})$ простора, чине базу позитивне оријентације ако је $[\vec{v}, \vec{u}, \vec{w}] > 0$, а негативне оријентације ако је $[\vec{v}, \vec{u}, \vec{w}] < 0$.

Примене мешовитог производа

Запремина тетраедра $ABCA_1$ једнака је шестини запремине паралеленинеда одређеног векторима \overrightarrow{AB} , \overrightarrow{AC} и $\overrightarrow{AA_1}$.

Слика 17: Подела тростране призме на три пирамиде истих запремина

Примене мешовитог производа

Запремина тетраедра $ABCA_1$ једнака је шестини запремине паралеленинеда одређеног векторима \overrightarrow{AB} , \overrightarrow{AC} и $\overrightarrow{AA_1}$.

Слика 17: Подела тростране призме на три пирамиде истих запремина

Пример 9

Одредити запремину тетраедра чија су темена A(1,0,0), B(3,4,6), C(0,1,0), D(1,1,3).