

Impact of Big Data on SoC Design IP Design and SoC Integration

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

IP Design and SoC Integration

Ref: List of Semiconductor IP Vendors

Contents in a SoC

CPU Memory Logic 1/0 IP

More IPs are being Integrated in SoC Designs

Increased SoC Designs in the Products

Types of IP Designs

- Design type
 - Digital, Analog, MS
 - ex. DSP, PLL/DLL
- Function type
 - Lib./Module
 - Emb./Ext. Mem.
 - Conn./Interface
 - MCU (IoT)
 - DSP (data)
 - CPU/GPU etc

Verification IP and Design IP

Soft IP and Hard IP

- Soft IP
 - RTL codes to be sythsized
 - To match on target library
 - Needs to go through hardening process
- Hard IP
 - IP block or hardened
 - Fixed size and performance
 - Usually use "as is"

Processor IP - ARM Architecture

Architecture	Bit width	Cores designed by ARM Holdings	Cores designed by third parties	Cortex profile	References
ARMv1	32/26	ARM1			
ARMv2	32/26	ARM2, ARM3	Amber, STORM Open Soft Core ^[33]		
ARMv3	32/26	ARM6, ARM7			
ARMv4	32/26	ARM8	StrongARM, FA526		
ARMv4T	32	ARM7TDMI, ARM9TDMI			
ARMv5	32	ARM7EJ, ARM9E, ARM10E	XScale, FA626TE, Feroceon, PJ1/Mohawk		
ARMv6	32	ARM11			
ARMv6-M	32	ARM Cortex-M0, ARM Cortex-M0+, ARM Cortex-M1		Microcontroller	
ARMv7-M	32	ARM Cortex-M3		Microcontroller	
ARMv7E-M	32	ARM Cortex-M4, ARM Cortex-M7		Microcontroller	
ARMv7-R	32	ARM Cortex-R4, ARM Cortex-R5, ARM Cortex-R7		Real-time	
ARMv7-A	32	ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-A15, ARM Cortex-A17	Krait, Scorpion, PJ4/Sheeva, Apple A6/A6X	Application	
ARMv8-A	64/32	ARM Cortex-A53, ARM Cortex-A57, ^[34] ARM Cortex-A72 ^[35]	X-Gene, Nvidia Project Denver, AMD K12, Apple A7/A8/A8X, Cavium Thunder X [36][37][38]	Application	[39][40]
ARMv8.1-A	64/32	No announcements yet		Application	
ARMv8-R	32	No announcements yet		Real-time	[41][42]

IP Design & SoC Integration

● IP Verification & Design: Hard IP and Soft IP

- Analog IP & Digital IP: Interface & Interconnect Bus
- High-Speed IP: RF and Giga-bit data
- Discussion: Applications

Library Cells

- Layout
 - Extract, Abstract, Connectivity, GDSII (CIF), LEF
- Types of Cells [Physical shapes]
 - Standard Cells
 - I/O Pad Cells
 - Block "Mega" Cells: COT, Memory Cells, IP
- Other Types of Cells (no timing info)
 - Corner Cells
 - Filler Cells
 - Tie-Hi Cell, Tie-Lo Cell
 - Antenna Cells
 - Dummy Cells
- DSM and nm Cells
 - Decap cells
 - Low leakage cells (MSV)
 - Level Shifter Cells
 - Well-Tap Cells

表2-5标准单元逻辑电路两大类型:组合逻辑电路和时序逻辑电路

组合逻辑电路类型

类 型	种 类	特 征				
互补型	PUN, PDN	设计简单,用于静态				
反向型	INV, NAND, NOR	NAND 快于 NOR				
非反向型	BUF, AND, OR					
其它	MUX, XOR, TBUF, AOI/OAI	逻辑关系复杂				

时序逻辑电路类型

类 型	种 类	特 征
锁存器	Latch(例如:DLatch)	电平驱动,时序复杂
寄存器类	flip flop,register(例如:DFF), counter,memory (ROM,RAM)	前沿驱动,时钟控制

Types of Library Cells

um/nm	0.5	0.35	0.25	0.18	130	90	65
Standard Cells	100	150	200	500	1000	1000	1000
I/O, Blocks	yes	yes	yes	yes	yes	yes	yes
Antenna Cells	-			yes	yes	yes	yes
Decap Cells	-	-	-	yes	yes	yes	yes
Low Leakage	+	-	-	yes	yes	yes	yes
Level Shifter	-	-	-	-	yes	yes	yes
SRPG, Well-Tab	-	-	-	-	-	yes	yes

Standard Cell Design Flow

Standard Cell Structure

- MOS Structure Capacitance
 - $C_g = C_{ox} A = C_{ox} W L$
 - A = WL, The Active Gate Area
- Channel Capacitance
- Junction Capacitances

Cross section of CMOS

Standard Cell Layout

e.g. Inverter Layout

- Combinational logic cells
 - INV, BUF, TR (Transmission Gate)
 - NAND, AND
 - NOR, OR
- Complex logic cells
 - AOI (AND-OR-INV)
 - OAI (OR-AND-INV)
 - AOAI (AND-OR-AND-INV)
 - OAOI (OR-AND-OR-INV)
- Sequential logic cells
 - Registers, F/F

Physical Data

Layout of Other Cells (no timing info)

- Antenna Cells
 - diodes
- Corner Cells
 - contain VDD/VSS;
 - no signal pins
- Filler Cells:
 - standard core filler and I/O filler cells;
 - contain VDD/VSS, no signal pins;
 - contain substrate layers
- Cover Macro and Dummy Cells
 - Preview, Gate Array

I/O Pad Design

- Type: Input, Output, In/Out (Tri-state)
- ESD Models: HBM, MM, CDM

ESD Protection in I/O Pad

SRAM

6T-SRAM and 4T+2R SRAM

Flash Structure - NOR, NAND

NOR flash memory wiring and structure on silicon

Memory Design - DDRx/LPDDRx

- Volatile
 - RAM: DRAM(DDR SDRAM)/SRAM
- Non-volatile
 - ROM: PROM/EPROM/EEPROM
 - NVRAM: Flash/nvSRAM/FeRAM/...
- Mobile DDR & Low Power Application
 - Hard Block vs Soft Block

Memory Design – Flash and SSD

NVRAM Flash Memory: NOR/NAND

IP Design & SoC Integration

- IP Verification & Design: Hard IP and Soft IP
- Common & General IPs: Standard Cells, I/O, Memory

- Analog IP & Digital IP: Interface & Interconnect Bus
- High-Speed IP: RF and Giga-bit data
- Discussion: Applications

PLL, Phase-locked loop

- A <u>control system</u> output <u>signal</u> whose <u>phase</u> is related to that of an input signal
- An <u>electronic circuit</u> consisting of a variable frequency <u>oscillator</u> and a <u>phase detector</u>
- Bringing the output signal back toward the input signal for comparison is called a <u>feedback loop</u>

- Variations
 - APLL, DPLL, ADPLL, SPLL, NPLL

ADC and **DAC**

- Concept
 - Resolution
 - Accuracy
 - Jitter
 - Sampling rate

- Types of ADC
 - SAR ADC

- Pipeline ADC
- Sigma-delta ADC
- Applications
 - Medical
 - Industry control
 - Automotives
 - Communications
 - Instrumentations

Other Typical A/D

- MIPI, Mobile Industry Processor Interface (Alliance)
 - 2003: <u>ARM</u>, <u>Intel</u>, <u>Nokia</u>, <u>Samsung</u>, STM and TI
- Audio Codec
 - SW to compress/decompress digital audio data; high-fidelity
 - HW to encode/decode with ADC/DAC, e.g. used in sound cards
- AFE
 - a set of analog signal conditioning circuitry that uses sensitive analog amplifiers, often Op Amp, Filters, st ASICs
 - TI, Atmel, ADI
- PLC (Power-line communication) Chip
 - narrowband PLC (3-500kHz, up to 100 kbps, km range)
 - broadband PLC (1.8-250MHz, 100s Mbps, shorter range)

RF, EHF and mmW

- LNA, Low noise amp.
- Mixer
- VCO
- PLL
- Bluetooth, V4.2 (2014)
 - PANs, 2.4-2.485GHz
- ZigBee
 - 0.784-2.4GHz
 - 20-250kbps, 10-100m
- NFC
 - 13.56MHz, 106-424kbps
 - card emul.,R/W; p2p
- EHF, Extremely high freq.

- 30-300 GHz [10-1mm Wave]
- 57-64 GHz: O₂ res./ 77 GHz
- 60 GHz/WiGig Gbps Data
 - Wi-Fi 802.11ad, V band, 7Gbps
 - 5G mobile phones
- 0.1-10 THz NDE tech
- GPS, USA, 1.57542/1.22760 GHz
- BEIDOU ,China
- IRNSS, Indian
- Galileo, European
- GLONASS, Russion

LVDS, Low-voltage differential signaling Introduced in 1994, a tech standard: RX/TX

- it specifies electrical characteristics of a
 - differential, serial communications protocol
- low power, low V and high speed
- widely used in many areas: digital, IoT

General Purpose External Connection BUS

Full-featured USB 3.1 type-C cable wiring									
Type-C plug 1			Т	Type-C plug 2					
Pin	Name	Wire color	Name	Description Pin		Name			
Shell	Shield	Braid	Shield	Cable external braid	Shell	Shield			
A1, B1, A12, B12	GND	Tin-plated	GND_PWRrt1 GND_PWRrt2	Ground for power return	A1, B1, A12, B12	GND			
A4, B4, A9, B9	V _{BUS}	Red	PWR_V _{BUS} 1 PWR_V _{BUS} 2	V _{BUS} power	A4, B4, A9, B9	V _{BUS}			
B5	V _{CONN}	Yellow	PWR_V _{CONN}	V _{CONN} power	B5	V _{CONN}			
A5	СС	Blue	СС	Configuration channel	A5	СС			
A6	Dp1	White	UTP_Dp	Unshielded twisted pair, positive	A6	Dp1			
A7	Dn1	Green	UTP_Dn	Unshielded twisted pair, negative	A7	Dn1			
A8	SBU1	Red	SBU_A	Sideband use A	B8	SBU2			
B8	SBU2	Black	SBU_B	Sideband Use B	A8	SBU1			
A2	SSTXp1	Yellow *	SDPp1	Shielded differential pair #1, positive	B11	SSRXp1			
A3	SSTXn1	Brown *	SDPn1	Shielded differential pair #1, negative	B10	SSRXn1			
B11	SSRXp1	Green *	SDPp2	Shielded differential pair #2, positive	A2	SSTXp1			
B10	SSRXn1	Orange *	SDPn2	Shielded differential pair #2, negative	A3	SSTXn1			
B2	SSTXp2	White *	SDPp3	Shielded differential pair #3, positive	A11	SSRXp2			
B3	SSTXn2	Black *	SDPn3	Shielded differential pair #3, negative	A10	SSRXn2			
A11	SSRXp2	Red *	SDPp4	Shielded differential pair #4, positive	B2	SSTXp2			
A10	SSRXn2	Blue *	SDPn4	Shielded differential pair #4, negative	B3	SSTXn2			
* Wire colors for differential pairs are not mandated									

通用外设连接总线

USB 2.0/3.0/3.1

USB Type-C (Lightning)

I/O and Interfaces

- Logic I/O
- •12C
- GPIO
- USB, Type-C
- HTMI/DP
- RapidIO
 - Logic, Trans,
 - Physical : PHY (PCS/PMA, MII)
- PCIe
- Ethernet

IP Design & SoC Integration

- IP Verification & Design: Hard IP and Soft IP
- Common & General IPs: Standard Cells, I/O, Memory
- Analog IP & Digital IP: Interface & Interconnect Bus
- High-Speed IP: RF and Giga-bit data
- Discussion: Applications

Design IP for Advanced SoC

High-Speed IP Technology

- 6Gb/s SATA
 - SATA 1.0: 1.5Gb/s, 150MB/s
 - SATA 2.0: 3Gb/s, 300MB/s
 - SATA 3.0: 6Gb/s, 600MB/s
 - SATA 3.1
 - SATA 3.2: 16Gb/s, 1969MB/s
- ●10GbE
 - IEEE 802.3ae-2002

Optical fiber over SONET/SDH

- Ethernet family of LAN tech
 - 10Mb/s, 100Mb/s,
 - 1Gb/s, 10Gb/s
 - 25Gb/s, 40 & 100Gb/s
 - 400Gb/s & 1Tb/s

High-Speed DDRx BUS

- DDR = DDR SDRAM
- DDR1, DDR2, LPDDR2, DDR3, LPDDR3, DDR4

SerDes and USB

- 4 Architectures
- Parallel clock SerDes
- Embedded clock SerDes
- 8b/10b SerDes
- Bit interleaved SerDes
- Key Parameters
 - Inputs and Outputs
 - Rates and Test functions
 - Clock functions
 - Power, temperature

- Reliability
- USB 1.x/2.0/3.0/3.1
- USB Type-C

USB Type-C

- 24 pin, Spec 1.0, Aug. 2014
- replacing various Type-B and Type-A connectors ...
- True Plug'n Play; 10 Gbps, up to 100W!

RapidIO

- SerDes and PCS
- DDRx

Interface IPs

- SATA
 - **1.**0/2.0/3.0
- PCle
 - 1.0a/1.1/2.0/2.1
 - 3.x/4.0

- HDMI
 - **1.0-1.2/1.3/1.4/2.0**
- DP by VESA

IP Design & SoC Integration

- IP Verification & Design: Hard IP and Soft IP
- Common & General IPs: Standard Cells, I/O, Memory
- Analog IP & Digital IP: Interface & Interconnect Bus
- High-Speed IP: RF and Giga-bit data
- Discussion: Applications

IP Design and Silicon Proven

- Design IP
 - IP Design Houses
 - EDA Vendors
- Verification IP
 - EDA Vendors
 - Self Development
- - ARM
 - Distributors
- - T.O. and Tested
 - Many Adoptions

Summary and Discussion

- Advantages/disadvantages btw/ Hard/Soft IP
- Standard IP types of
- •Analog/Digital IP to buy or to design?
- RF/High-Speed, which one is harder to design?
- SoC and IP Design Integration