Example 3.2.4 Return to the dice rolling experiment.

Let Y be the maximum that either die shows in a single roll: $Y(a,b) = \max(a,b)$.

For example, Y(3,5) = 5.

- (a) What is the range of Y?
- (b) What is P(Y = y) for each y in the range of Y?

(c) Find a formula for the probability distribution of Y.

Example 3.2.5 Check whether the function given by

$$f(x) = \frac{x+2}{25},$$

for x = 1, 2, 3, 4, 5 can serve as the probability distribution of a discrete random variable.

Probability distributions for a random variable, say X, may be represented graphically by means of a **probability histogram**.

Each rectangle corresponds to a value for X, its height is P(X = x), and its width is 1, so that the area of each rectangle equals P(X = x). The total area of the histogram is 1.

The probability histogram below is for the number of heads in 4 coin flips.

3.3 Cumulative Distribution

In many problems we are interested in the probability that the value of a random variable is less than or equal to (or "at most") some real number x. i.e. $P(X \le x)$.

If X is a discrete random variable with probability distribution f, the function given by

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$

for $x \in (-\infty, \infty)$, is called the **cumulative distribution of** X(also called the **distribution function**).

Example 3.3.1 Let X be the random variable that counts the number of heads in 4 coin flips.

$$f(2) = \frac{6}{16} while$$

$$F(2) = f(0) + f(1) + f(2) = \frac{1}{16} + \frac{4}{16} + \frac{6}{16} = \frac{11}{16}$$

The corresponding columns of the probability histogram are as follows:

Back to a previous example:

Example 3.3.2 Two socks are selected at random and removed in succession from a drawer containing five brown socks and three green socks.

Let X be the random variable that counts the number of brown socks selected.

We found these values earlier on:

Element of		
sample space	0	\boldsymbol{x}
BB	$\frac{20}{56}$	2
BG	$\frac{15}{56}$	1
GB	$\frac{15}{56}$	1
GG	$\frac{6}{56}$	0

The probability distribution f is given by

$$f(x) = \begin{cases} \frac{20}{56} & for \ x = 2\\ \frac{30}{56} & for \ x = 1\\ \frac{6}{56} & for \ x = 0 \end{cases}$$

Find F(0), F(1), F(2), and express the cumulative distribution (distribution function) F(x) as a piece-wise defined function.

Example 3.3.3 Suppose a random variable X has range $\{1, 2, 3, 4\}$. Define f by

$$f(1) = \frac{1}{4}$$
, $f(2) = \frac{1}{2}$, $f(3) = \frac{1}{8}$, $f(4) = \frac{1}{8}$

(a) Show that f is a valid probability distribution for X.

(b) Find the cumulative distribution (distribution function) for X.

Theorem 3.3.4 The cumulative distribution F(x) satisfies

- 1. $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.
- 2. If a < b then $F(a) \le F(b)$ for any $a, b \in \mathbb{R}$.

Theorem 3.3.5 If the range of a random variable X consists of the values $x_1 < x_2 < \cdots < x_n$, then $f(x_1) = F(x_1)$ and

$$f(x_i) = F(x_i) - F(x_{i-1})$$

for i = 2, 3, ..., n.

Let's see this on a probability histogram.

Example 3.3.6 The cumulative distribution for a discrete random variable X is given by

$$F(x) = \begin{cases} 0 & for \ x < -2 \\ \frac{4}{18} & for \ -2 \le x < -1 \\ \frac{7}{18} & for \ -1 \le x < 0 \\ \frac{12}{18} & for \ 0 \le x < 1 \\ 1 & for \ x \ge 1 \end{cases}$$

Find the probability distribution for X.

3.4 Continuous Random Variables

3.4.1 Probability Density Function (p.d.f)

On a 100 km stretch of rural road we are concerned with the possibility that a deer might cross.

We are interested in the probability that it will occur at a given location or stretch of the road. The sample space for this experiment consists of all points in the interval from 0-100.

Suppose the probability that a deer crosses in any stretch of road is the length of that section divided by 100.

So, from point a to point b with $0 \le a, b \le 100$, is the interval [a, b] and its length is given by b - a. So, its probability is

$$P([a,b]) = \frac{b-a}{100}.$$

The probability of any two or more non-overlapping intervals can be found by summing the probabilities of the connected components.

Thus the probability measure proposed here has non-negative values, assigns the entire sample space a probability of 1, and is countably additive; hence it satisfies our postulates of probability.

We have taken the sample space to be any point on this stretch of road, and the random variable X here is the function that assigns that point to a real number in the interval [0, 100]. This is an example of a **continuous random variable**.

We can give the probability that X lies within an interval by

$$P(a \le x \le b) = \frac{b-a}{100}$$

for a < b, however the probability that X is any single point is zero.

In the case of a continuous random variable, probabilities cannot simply be assigned to every outcome as is done with a discrete random variable.

Therefore a **continuous random variable** must be accompanied by a **probability density function** in order to compute probabilities.

A positive-valued function f defined on \mathbb{R} is call a **probability** density function for continuous random variable X, if and only if

$$P(a \le X \le b) = \int_{a}^{b} f(x) \ dx$$

for any $a, b \in \mathbb{R}$ with $a \leq b$. These are also called "**p.d.f**'s" for short.

In the deer crossing example, the p.d.f. for X is $f(x) = \frac{1}{100}$. For example

$$P(35 \le X \le 50) = \int_{35}^{50} \frac{1}{100} dx$$
$$= \frac{x}{100} \Big|_{35}^{50} = \frac{50 - 35}{100} = \frac{15}{100}.$$

Notice that f(r) does not give the probability that X = r.

Let X be a continuous random variable. By properties of integrals it follows that

Theorem 3.4.1 If $a, b \in \mathbb{R}$ with $a \leq b$ then

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b).$$

From the postulates of probability we obtain the following result:

Theorem 3.4.2 A function f can serve as a probability density function for X only if it satisfies

- 1. $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- $2. \int_{-\infty}^{\infty} f(x) \ dx = 1.$

Example 3.4.3 If X has probability density function

$$f(x) = \begin{cases} k \cdot e^{-3x} & for \ x > 0 \\ 0 & elsewhere \end{cases}$$

find k and $P(0.5 \le X \le 1)$.

First we need to find what k is.

Since f is given to be a probability density function, it satisfies Condition 2 of the previous theorem.

Solve for k using Condition 2. from the theorem.

$$1 = \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{\infty} k \cdot e^{-3x} \, dx$$

$$= \lim_{c \to \infty} k \left. \frac{e^{-3x}}{(-3)} \right|_{0}^{c}$$

$$= \lim_{c \to \infty} k \frac{e^{-3c}}{(-3)} - k \frac{e^{-3(0)}}{(-3)}$$

$$= \frac{k}{3}. \qquad \text{(since } \lim_{r \to \infty} e^{-r} = 0\text{)}$$

Thus k = 3. Now we can compute

$$P(0.5 \le X \le 1) = \int_{0.5}^{1} f(x) \, dx = \int_{0.5}^{1} 3e^{-3x} \, dx = -e^{-3x} \Big|_{0.5}^{1}$$
$$= -e^{-3} - (-e^{-1.5}) \approx 0.1733$$

Graph of $3e^{-3x}$ is given below.

The shaded area denotes $P(0.5 \le X \le 1)$.

3.4.2 Cumulative Distribution Function of a Continuous Random Variable

Let X is a continuous random variable with probability density function f. Then the function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

for all $x \in \mathbb{R}$, is called the **cumulative distribution function of** X.

Example 3.4.4 Random variable X with p.d.f. $f(x) = -x^2 + \frac{4}{3}$ for $0 \le x \le 1$ and 0 elsewhere. (p.d.f. plotted in red)

Cumulative distribution function is $F(x) = \int_{-\infty}^{x} f(t) dt$.

Shade the areas representing the values F(0.5) and F(0.75) respectively.

From the properties of integrals we have the following.

Theorem 3.4.5 If continuous random variable X has probability density function f(x) and cumulative distribution function F(x) then

$$P(a \le X \le b) = F(b) - F(a)$$

for any $a, b \in \mathbb{R}$ with $a \leq b$, and

$$f(x) = \frac{d}{dx}F(x)$$

where the derivative exists.

Using the previous example with p.d.f. $f(x) = -x^2 + \frac{4}{3}$ for $0 \le x \le 1$, and 0 elsewhere, we have:

$$P(0.25 \le X \le 0.75) = F(0.75) - F(0.25)$$

Let's see this considering the relevant shaded areas on the corresponding graphs.

The cumulative distribution function is

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} -t^{2} + \frac{4}{3} dt = \dots$$

and its derivative is the probability density function

$$\frac{d}{dx}F(x) = \frac{d}{dx}\left(-\frac{x^3}{3} + \frac{4x}{3}\right) = \dots$$

Example 3.4.6 Find the cumulative distribution function F(x) for

$$f(x) = \begin{cases} 3e^{-3x} & for \ x > 0 \\ 0 & elsewhere \end{cases}$$

and use it to evaluate $P(0.5 \le X \le 1)$.

For x > 0 we have

$$F(x) = \int_{-\infty}^{\infty} f(t) dt = \int_{0}^{x} 3e^{-3t} dt = -e^{-3t} \Big|_{0}^{x} = -e^{-3x} + 1.$$

For $x \le 0$, f(x) = 0.

So,

$$F(x) = \begin{cases} 0 & \text{for } x \le 0\\ 1 - e^{-3x} & \text{for } x > 0 \end{cases}$$

Then using the theorem,

$$P(0.5 \le X \le 1) = \dots$$