CORRIGÉ DM N°6 (E3A 2001)

Partie I

- 1. La fonction $t\mapsto \frac{\mathrm{e}^{-kt}}{\sqrt{t}}$ est continue sur $]0,+\infty[$. Au voisinage de 0, elle équivaut à $\frac{1}{\sqrt{t}}$, qui est positive et intégrable sur]0,1] et au voisinage de $+\infty$, elle est négligeable devant $\frac{1}{t^2}$, qui est positive et intégrable sur $[1,+\infty[$. Donc elle est intégrable sur $]0,+\infty[$.
- **2.** Le changement de variable $u=\sqrt{kt}$ (\mathscr{C}^1 -difféomorphisme de $]0,+\infty[$ sur lui-même) conduit à

$$J_k = \sqrt{\frac{\pi}{k}}$$

- 3. Analogue au 1.: la fonction $t \mapsto \frac{1}{\sqrt{t} \operatorname{ch} t}$ est continue sur $]0, +\infty[$; au voisinage de $0, \frac{1}{\sqrt{t} \operatorname{ch} t} \sim \frac{1}{\sqrt{t}}$, et au voisinage de $+\infty$, $\frac{1}{\sqrt{t_a} \ln t} \sim \frac{2e^{-t}}{\sqrt{t_a}} = o\left(\frac{1}{t^2}\right)$.
- a) Il suffit de remplacer cht par sa définition, et de multiplier numérateur et dénominateur par e^{-t} .
 - **b)** Sur $]0, +\infty[$, $0 < e^{-2t} < 1$, donc

$$\forall t > 0$$
, $\frac{1}{1 + e^{-2t}} = \sum_{n=0}^{+\infty} (-1)^k e^{-2kt}$

Donc

$$K = \frac{1}{\sqrt{\pi}} \int_0^{+\infty} \left(\sum_{k=0}^{\infty} \frac{(-1)^k e^{-(2k+1)t}}{\sqrt{t}} \right) dt$$

La série fournie par l'énoncé n'étant pas absolument convergente, il n'y a aucune chance de pouvoir appliquer le théorème habituel d'intégration terme à terme sur un intervalle non borné (convergence d'une série en norme 1). Il y a alors deux solutions possibles :

• 1ère solution : un calcul direct.

On écrit, pour $n \in \mathbb{N}$:

$$\sqrt{\pi}K = \int_0^{+\infty} \left(\sum_{k=0}^n (-1)^k \frac{e^{-(2k+1)t}}{\sqrt{t}} \right) dt + \int_0^{+\infty} \left(\sum_{k=n+1}^{+\infty} (-1)^k \frac{e^{-(2k+1)t}}{\sqrt{t}} \right) dt$$
$$= \sum_{k=0}^n \int_0^{+\infty} \left((-1)^k \frac{e^{-(2k+1)t}}{\sqrt{t}} \right) dt + \int_0^{+\infty} \left(\sum_{k=n+1}^{+\infty} (-1)^k \frac{e^{-(2k+1)t}}{\sqrt{t}} \right) dt$$

puisque la première somme est finie. Il s'agit donc de montrer que

$$\lim_{n \to \infty} \int_0^{+\infty} \left(\sum_{k=n+1}^{+\infty} (-1)^k \frac{e^{-(2k+1)t}}{\sqrt{t}} \right) dt = 0$$

Il s'agit du reste d'une série alternée vérifiant le critère spécial, donc

$$\left| \sum_{k=n+1}^{+\infty} (-1)^k \frac{e^{-(2k+1)t}}{\sqrt{t}} \right| \le \frac{e^{-(2n+3)t}}{\sqrt{t}}$$

On peut, ou bien utiliser le théorème de convergence dominée en majorant encore par $\frac{e^{-t}}{\sqrt{t}}$, ou bien écrire:

$$\left| \int_0^{+\infty} \left(\sum_{k=n+1}^{+\infty} (-1)^k \frac{\mathrm{e}^{-(2k+1)t}}{\sqrt{t}} \right) dt \right| \le \int_0^{+\infty} \left| \sum_{k=n+1}^{+\infty} (-1)^k \frac{\mathrm{e}^{-(2k+1)t}}{\sqrt{t}} \right| dt \le J_{2n+3} = \sqrt{\frac{\pi}{2n+3}}$$

1/5

qui tend bien vers 0 si n tend vers $+\infty$.

En faisant tendre n vers $+\infty$, on obtient bien

$$K = \frac{1}{\sqrt{\pi}} \sum_{n=0}^{+\infty} (-1)^k J_{2k+1} = \sum_{n=0}^{+\infty} \frac{(-1)^k}{\sqrt{2k+1}}$$

• 2ème solution : utilisation du théorème de convergence dominée pour les séries.

On remarque que, pour t>0 fixé, la série $\sum_{k=0}^{\infty}\frac{(-1)^k\mathrm{e}^{-(2k+1)t}}{\sqrt{t}}$ vérifie le critère spécial sur les séries alternées. On peut donc majorer ses sommes partielles :

$$\left| \sum_{k=0}^{n} \frac{(-1)^{k} e^{-(2k+1)t}}{\sqrt{t}} \right| \le \frac{e^{-(2n+3)t}}{\sqrt{t}} \le \frac{e^{-t}}{\sqrt{t}} = \varphi(t)$$

avec ϕ continue et intégrable sur $]0,+\infty[$.

Le théorème de convergence dominée appliqué aux sommes partielles de la série permet alors de conclure.

5. La série de somme K est une série alternée qui vérifie les hypothèses du critère spécial. Sa somm est donc comprise entre deux sommes partielles consécutives et on aura en particulier :

$$1 - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{7}} < K < 1$$

ce qui implique l'inégalité de l'énoncé. sk

Partie II

6. a) Calcul à savoir faire! On écrit

$$\begin{split} \mathbf{A}_n(x) &= \mathscr{I}m\left(\sum_{k=0}^n \mathrm{e}^{ikx}\right) \\ &= \mathscr{I}m\left(\frac{1-\mathrm{e}^{i(n+1)x}}{1-\mathrm{e}^{ix}}\right) \qquad (x \in]0, \pi[\,,\,\,\mathrm{donc}\,\,\mathrm{e}^{ix} \neq 1) \\ &= \mathscr{I}m\left(\frac{\mathrm{e}^{i\frac{(n+1)x}{2}}}{\mathrm{e}^{i\frac{x}{2}}} \cdot \frac{-2i\sin\frac{(n+1)x}{2}}{-2i\sin\frac{x}{2}}\right) \\ &= \frac{\sin\frac{nx}{2}\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} \end{split}$$

On remarque qu'il en résulte $|A_n(x)| \le \frac{1}{|\sin \frac{x}{2}|} = \frac{1}{\sin \frac{x}{2}}$, puisque $\frac{x}{2} \in \left]0, \frac{\pi}{2}\right[$.

b) C'est ce qu'on appelle la *transformation d'Abel*. En remarquant que, si $k \ge 2$, $\sin(kx) = A_k(x) - A_{k-1}(x)$, on écrit

$$f_n(x) = A_1(x) + \sum_{k=2}^{n} \frac{A_k(x) - A_{k-1}(x)}{\sqrt{k}}$$

On sépare ensuite la somme en deux, et on fait un changement d'indice dans la deuxième somme. On obtient

$$f_n(x) = A_1(x) + \sum_{k=2}^n \frac{A_k(x)}{\sqrt{k}} - \sum_{k=1}^{n-1} \frac{A_k(x)}{\sqrt{k+1}}$$

On rassemble à nouveau (le terme où figure $A_n(x)$ reste à part)

$$f_n(x) = \sum_{k=1}^{n-1} A_k(x) \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) + \frac{A_n(x)}{\sqrt{n}}$$

Or $\left| \frac{A_n(x)}{\sqrt{n}} \right| \le \frac{1}{\sin \frac{x}{2} \sqrt{n}}$, qui tend bien vers 0 si n tend vers l'infini.

7. D'après la question précédente, il suffit de montrer que la série $\sum A_k(x) \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right)$ converge. Or :

$$\left| A_k(x) \left(\frac{1}{\sqrt{k+1}} - \frac{1}{\sqrt{k}} \right) \right| \le \frac{1}{\sin \frac{x}{2}} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right)$$

et par « télescopage », la série $\sum \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right)$ converge.

La série $\sum A_k(x) \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right)$ est donc absolument convergente, ce qui permet de conclure.

8. a) On a
$$f_{2n}\left(\frac{\pi}{4n}\right) - f_n\left(\frac{\pi}{4n}\right) = \sum_{k=n+1}^{2n} \frac{\sin\left(k\frac{\pi}{4n}\right)}{\sqrt{k}}$$
.

Si $n \le k \le 2n$, alors $\frac{\pi}{4} \le k \frac{\pi}{4n} \le \frac{\pi}{2}$, donc $\sin\left(k \frac{\pi}{4n}\right) \ge \frac{1}{\sqrt{2}}$. D'autre part, $\frac{1}{\sqrt{k}} \ge \frac{1}{\sqrt{2n}}$. Donc

$$f_{2n}\left(\frac{\pi}{4n}\right) - f_n\left(\frac{\pi}{4n}\right) \geqslant n \times \frac{1}{2\sqrt{n}} = \frac{1}{2}\sqrt{n}$$

b) Si la suite $(f_n)_{n\geq 1}$ convergeait uniformément sur $]0,\pi[$, alors $(f_{2n}-f_n)$ convergerait uniformément vers 0. Or, en notant $\|\cdot\|_{\infty}$ la norme de la convergence uniforme sur $]0,\pi[$,

$$\left| f_{2n} \left(\frac{\pi}{4n} \right) - f_n \left(\frac{\pi}{4n} \right) \right| \le \| f_{2n} - f_n \|_{\infty}$$

et la question précédente montre que $\lim_{n\to\infty}\left(f_{2n}\left(\frac{\pi}{4n}\right)-f_n\left(\frac{\pi}{4n}\right)\right)=+\infty$. Donc $\lim_{n\to+\inf ty}\|f_{2n}-f_n\|_{\infty}=+\infty$, donc la convergence n'est pas uniforme sur $]0,\pi[$.

On pouvait aussi dire que, d'après la question précédente, la suite (f_n) ne vérifie pas le critère de Cauchy uniforme.

a) La fonction $g: t \mapsto |e^{ix-t} - 1|$ est continue sur $[0, +\infty[$. Étant positive, elle a les mêmes variations que son carré. Posons $h(t) = |e^{ix-t} - 1|^2$. On trouve sans peine 9.

$$h(t) = e^{-2t} - 2e^{-t}\cos x + 1$$

h est de classe \mathscr{C}^1 et $h'(t) = 2e^{-t}(\cos x - e^{-t})$. Si $x \in \left[\frac{\pi}{2}, \pi\right[$, alors h' est négative sur $[0, +\infty[$. Si $x \in \left[0, \frac{\pi}{2}\right]$, h' s'annule et change de signe pour $t = -\ln \cos x$, valeur qui est bien positive. La valeur de h en ce point est

$$h(-\ln\cos x) = \cos^2 x - 2\cos^2 x + 1 = \sin^2 x$$

Finalement, le tableau de variations de g est (en remarquant que $\sin x > 0$),

$$- \operatorname{Cas} x \in \left[\frac{\pi}{2}, \pi\right[$$

t	0		$+\infty$
g(t)	$ e^{ix}-1 $	<u></u>	1

$$-\operatorname{Cas} x \in \left]0, \frac{\pi}{2}\right[$$

t	0	$-\ln\cos x$	+∞
g(t)	$ e^{ix}-1 $	$\sin x$	> 1

b) Ce qui précède montre que $|e^{-ixt} - 1| \ge 1$ si $x \in \left[\frac{\pi}{2}, \pi\right[$, et que $|e^{-ixt} - 1| \ge \sin x > 0$ si $x \in \left[0, \frac{\pi}{2}\right[$. En tout cas,

$$\forall t \in [0, +\infty[$$
 $\left| \frac{e^{-t}}{\sqrt{t}(1 - e^{-ixt})} \right| \leq \frac{Ce^{-t}}{\sqrt{t}}$

où $C = \frac{1}{\sin x}$ ou 1 selon les cas, ne dépend pas de t. L'intégrabilité en résulte sans peine.

c) La fonction $t \mapsto \frac{e^{ix-t} - (e^{ix-t})^{n+1}}{\sqrt{t}(1 - e^{ix-t})}$ est intégrable sur $]0, +\infty[$ car

$$\left| \frac{e^{ix-t} - (e^{ix-t})^{n+1}}{\sqrt{t}(1 - e^{ix-t})} \right| \le \frac{2e^{-t}}{\sqrt{t}|1 - e^{ix-t}|}$$

qui est intégrable d'après le (b).

On reconnaît dans cette expression la somme partielle d'une série géométrique. Plus précisément,

$$\frac{e^{ix-t} - (e^{ix-t})^{n+1}}{\sqrt{t}(1 - e^{ix-t})} = \frac{1}{\sqrt{t}} \sum_{k=1}^{n} (e^{ix-t})^k$$

Donc (la somme est finie)

$$\int_0^{+\infty} \frac{e^{ix-t} - (e^{ix-t})^{n+1}}{\sqrt{t}(1 - e^{ix-t})} dt = \int_0^{+\infty} \sum_{k=1}^n \frac{(e^{ix-t})^k}{\sqrt{t}} dt = \sum_{k=1}^n e^{ikx} J_k = \sum_{k=1}^n e^{ikx} \sqrt{\frac{\pi}{k}}$$

dont la partie imaginaire est bien $\sqrt{\pi}f_n(x)$.

d) Quand n tend vers $+\infty$, $\frac{e^{ix-t} - (e^{ix-t})^{n+1}}{\sqrt{t}(1-e^{ix-t})}$ tend vers $\frac{e^{ix-t}}{\sqrt{t}(1-e^{ix-t})}$. Vérifions les hypothèses du théorème de convergence dominée :

$$\forall t \in]0, +\infty[\quad \forall n \in \mathbb{N} \quad \left| \frac{\mathrm{e}^{ix-t} - (\mathrm{e}^{ix-t})^{n+1}}{\sqrt{t}(1 - \mathrm{e}^{ix-t})} \right| \leq \frac{\mathrm{e}^{-t} + \mathrm{e}^{-(n+1)t}}{\sqrt{t}|1 - \mathrm{e}^{ix-t}|} \leq \frac{2\mathrm{e}^{-t}}{\sqrt{t}|1 - \mathrm{e}^{ix-t}|}$$

qui est continue et, d'après (b), intégrable sur $]0, +\infty[$. Le théorème de convergence dominée s'applique donc, et (compte tenu en plus de la continuité de Im),

$$\lim_{n \to +\infty} f_n(x) = \frac{1}{\sqrt{\pi}} \mathscr{I}m \left(\int_0^{+\infty} \frac{e^{ix-t}}{\sqrt{t}(1 - e^{ix-t})} dt \right)$$

On peut aussi majorer directement $\left| \int_0^{+\infty} \frac{(\mathrm{e}^{ix-t})^{n+1}}{\sqrt{t}(1-\mathrm{e}^{ix-t})} \, dt \right| \text{ et vérifier que cette expression tend vers } 0$ si n tend vers $+\infty$.

En multipliant haut et bas par le conjugué $\overline{1 - e^{ix-t}}$, on obtient

$$\frac{e^{ix-t}}{\sqrt{t}(1-e^{ix-t})} = \frac{e^{ix-t}(1-e^{-ix-t})}{\sqrt{t}(1+e^{-2t}-2e^{-t}\cos x)} = \frac{(e^{ix-t}-e^{-2t})}{\sqrt{t}(1+e^{-2t}-2e^{-t}\cos x)}$$

dont la partie imaginaire est $\frac{\mathrm{e}^{-t}\sin x}{\sqrt{t}(1+\mathrm{e}^{-2t}-2\mathrm{e}^{-t}\cos x)}=\frac{\sin x}{2\sqrt{t}(\mathrm{ch}\,t-\cos x)}$. On a bien le résultat annoncé.

Remarque : pour $x = \frac{\pi}{2}$, on retrouve le résultat du 4.b.

- e) Comme $x \in]0, \pi[$, $\sin x > 0$, et $\operatorname{ch} t > 1 \ge q \cos x$. La fonction à intégrer est donc continue, positive et non nulle; il en résulte f(x) > 0.
- f) $f\left(\frac{\pi}{2}\right) = \frac{1}{2\sqrt{\pi}} \int_0^{+\infty} \frac{dt}{\sqrt{t} \cot t}$.

On a ch $t > \frac{e^t}{2}$, d'où $f(x) < \frac{1}{\sqrt{\pi}} J_1 = 1$. Par ailleurs, sur $]0, +\infty[$, ch $t - e^t = -\sinh t < 0$, donc $f(x) > \frac{1}{2\sqrt{\pi}} J_1 = \frac{1}{2}$.

On retrouve le résultat de la question 5.

Partie III

10. a) Analogue à la question 3.

b) On écrit
$$\int_0^{+\infty} \frac{dt}{\sqrt{t}(\cosh t - \cos(2x))} = \int_0^{+\infty} \frac{dt}{\sqrt{t}(\cosh t + 2\sin^2 x - 1)}$$
. Puis on pose $t = 2u$:

$$f(2x) = \frac{\sin 2x}{2\sqrt{\pi}} \int_0^{+\infty} \frac{2 \, du}{\sqrt{2u}(\cosh(2u) - 1 + 2\sin^2 x)}$$

Il faut exprimer ch 2u - 1. La formule n'est pas au programme, mais on la retrouve facilement :

$$\operatorname{ch}(2u) - 1 = \frac{e^{2u} + e^{-2u} - 2}{2} = \frac{(e^u - e^{-u})^2}{2} = 2\operatorname{sh}^2 u$$

et on obtient bien la formule proposée.

11. $x \mapsto \sin 2x$ est évidemment continue sur $]0,+\infty[$. Par ailleurs, $\sinh^2 u + \sin^2 x > 0$, donc la fonction $\phi:(u,x)\mapsto \frac{1}{\sqrt{u}(\sinh^2 u + \sin^2 x)}$ est continue sur $]0,+\infty[\times]0,\frac{\pi}{2}[$. Soit $a\in]0,\frac{\pi}{2}[$. Alors

$$\forall u \in]0, +\infty[\quad \forall x \in \left[a, \frac{\pi}{2} \right[\quad 0 \le \varphi(u, x) \le \frac{1}{\sqrt{u}(\operatorname{sh}^2 u + \sin^2 a)} \right]$$

Cette dernière fonction est clairement intégrable sur $]0,+\infty[$. L'hypothèse de domination locale est donc vérifiée. Il résulte du théorème de continuité d'une intégrale à paramètres (les autres hypothèses sont faciles à vérifier, mais il fallait les écrire) que $x\mapsto f(2x)$ est continue sur $]0,\frac{\pi}{2}[$, donc que f est continue sur $]0,\pi[$.

12. On procède de même, mais on domine en outre la dérivée partielle par rapport à x:

$$\frac{\partial \varphi}{\partial x} = -\frac{2\sin x \cos x}{\sqrt{u}(\sinh^2 u + \sin^2 x)^2}$$

qu'on domine sur $]0,+\infty[\times[a,\frac{\pi}{2}[[par \frac{1}{\sqrt{u}(\sinh^2 u + \sin^2 a)^2}, fonction intégrable sur]0,+\infty[.$

On applique le théorème de dérivation sous le signe \int sur un intervalle non compact, et f apparaît alors comme le produit de deux fonctions de classe \mathscr{C}^1 .

Rem : on pouvait bien sûr répondre directement à la question 12, ce qui impliquait le résultat de la question 11!

