Elective II: VLSI Design

Code: CISM 402 Pritha Banerjee

Courtsey for slides: Debasis Mitra, NIT Durgapur

1

Exam Schedule

- Mid-Sem Exam: 30 marks
 - Tentative schedule:
 - 25/04/2011 30/04/2011
 - Syllabus:
 - Topics covered 1 week before the date of exam
- Class assignments: 30 marks
 - All assignments for a week should be submitted on the last working day of the next week

Resources

• Books:

- Naveed A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic Publishers
- M. Sarafzadeh and C. K. Wong, An introduction to VLSI Physical Design, The McGraw Hill Companies, Inc.
- S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World Scientific
- S. K. Lim, Practical Problems in VLSI Physical Design Automation, Springer
- Neil H.E. Weste and Kamran Eshraghian, *Principles of CMOS VLSI DESIGN A Systems Perspective*, Second edition, Addison Wesley, Chapter 1.

Introduction

 Study of theory and methodologies for designing a chip

3

Introduction

- Study of theory and methodologies for designing a chip
- Objective: packing more and more logic devices into smaller and smaller areas
- VLSI: Very Large Scale Integration of transistors in an IC (Integrated circuit)
- VLSI CAD (*Computer Aided Design*): study of algorithms and tools for aiding VLSI design

5

chip

• ASIC : Application Specific IC

Terminologies

- IC: combination of inter connected circuit element within a substrate
- Substrate: semiconductor material on which chip is fabricated
- Wafer: 10 cm (diameter)12 to 30 chips
- Feature size: minimum gate length of a transistor: 0.18µ
- Fabrication process : 0.18µ process, 200mm wafer

Evolution of Computer

Babbage Difference Engine: First Computer (1832)

25000 parts

7

Evolution of Computer

ENIAC: The First Electronic Computer (1943-1946)

Length = 80 ft

Height =8.5 ft

Floor area = 1500 sq ft

Weight = 30 tons

18000 vacuum tubes

70,000 resistors

140 kw of power

Evolution of Computer

ENIAC: The First Electronic Computer (1943-1946)

Audion (Triode), 1906, Lee De Forest

q

Foundation of IC Industry

First transistor (germanium), 1947

John Bardeen and Walter Brattain, Bell Laboratories

Foundation of IC Industry

First integrated circuit (germanium), 1958

Jack S. Kilby, Texas Instruments

11

Foundation of IC Industry

First integrated circuit (germanium), 1958

Jack S. Kilby, Texas Instruments

Jack S. Kilby (1923 - 2005)

Better late than never : Awarded Nobel prize in Physics in $_{12}$ 2000

Milestones of IC Industry

- 1947: Bardeen, Brattain & Shockly invented the transistor, foundation of the IC industry.
- 1952: SONY introduced the first transistor-based radio.
- 1958: Kilby invented integrated circuits (ICs).
- 1965: Moore's law.
- 1968: Noyce and Moore founded Intel.
- 1970: Intel introduced 1 K DRAM.

First transistor

First IC by Kilby

First IC by Noyce

13

Milestones of IC Industry

- 1971: Intel announced 4-bit 4004 microprocessors (2250 transistors).
- 1976/81: Apple II/IBM PC.
- 1985: Intel began focusing on microprocessor products.
- 1987: TSMC was founded (fabless IC design).
- 1991: ARM introduced its first embeddable RISC IP core (chipless IC design).

4004

IBM PC

14

Milestones of IC Industry

- 1996: Samsung introduced IG DRAM.
- 1998: IBM announces1GHz experimental microprocessor.
- 1999/earlier: System-on-Chip (SOC) methodology applications.
- An Intel P4 processor contains 42 million transistors (1 billion by 2005)
- Today, we produce > 30 million transistors per person (1 billion/person by 2008).
- Semiconductor/IC: #1 key field for advancing into 2000 (Business Week, Jan. 1995).

Pentium 4

Scanner-on-chip

Blue tooth technology

15

Gordon Moore: 1965

- Predicted that the number of transistors integrated on a die would grow exponentially (doubling every 12 to 18 months)
- Million transistors/chip barrier crossed in the 1980s
 - 42 Million, 2 GHz clock, 0.18 m m CMOS technology (Intel P4) - 2001
 - 140 Million transistor (HP PA-8500)

Moore's law in Microprocessors

Courtesy, Intel

17

Semiconductor Technology Minimum Feature Size

18

How small are transistors

Courtesy: Intel

19

History of IC (Integrated Chip)

Year	Technology	# of transistors	Products
1947	Invention of transistor	1	-
1950	discrete components	1	Junction transistor, Diode
1961	SSI	10	logic gate, flip-flops
1966	MSI	10^2 - 10^3	counters, mux, adders
1971	LSI	10^3 - 20×10^3	8088, RAM, ROM
1980	VLSI	20×10^3 - 10^6	$16/32~\mu$ processor, DRAM
1990	ULSI	10^6 - 6×10^6	ASIC
2000	GSI	$10 - 20 \times 10^6$	DSP
2010	nano meter	$5-10 \times 10^{9}$	System-on chip

Processor Power trends

21

Processor Power density increase

VLSI Design Cycle System specifications Functional design (o/p:timing diagram, relationship between blocks/subblocks) $\mathbf{F} = (\mathbf{AB} + \mathbf{C}) * (\mathbf{D} + \mathbf{E}(\mathbf{X} + \mathbf{Y})),$ Logic design/RYL(o/p : RTL and G = XY + ADboolean expn) Circuit design (\(\forall /p: CMOS \) transistor, R, C) Physical design (deals with geometric structures) Design Verifivation (deals with DRC_and Circuit Extraction) DIP (Dual Inline Package) PGA (Pin Grid Array) Fabrication, Packaging, Testing, Debugging (die/chip on wafer)

VLSI Design Cycle

ATPG

Testing

Physical Design Flow

25

Physical Design Flow

2υ

Different Design Views

Design Styles

- Full-Custom Design
- Standard Cell
- Gate Array
- FPGA
- System-on-Chip (SOC)

Full Custom Design Style

- Designers can control the shape of all mask patterns.
- Designers can specify the design up to the level of individual transistors.

Standard Cell Design Style

• Selects pre-designed cells (of same height) to implement

logic

Gate Array Design Style

- Prefabricates a transistor array
- Needs wiring customization to implement logic

31

FPGA Design Style

Logic and interconnects both prefabricated

System on chip

Comparison of Design Styles

	Full- Custom	Standard	Gate	FPGA
	Custom	Cell	Array	_
C-11 -:	variable	fixed	fixed	fixed
Cell size	variable	height		IIACG
a	variable	variable	fixed	program-
Cell type				mable
Cell	voni alela	in row	fixed	fixed
placement	variable			
Inter-	variable	variable	variable	program-
connections	variable			mable
Fabrication	Fabrication all layers		routing	no layer
layers	an layers	all layers	layers only	no layer
Area	compact	compact to	moderate	lorgo
Alca	Compact	moderate		large

Comparison of Design Styles

	Full-	Standard	Gate	
	Custom	Cell	Array	FPGA
Performance	high	high to moderate	moderate	low
Design cost	high	medium	medium	low
Time-to- market	long	medium	medium	short

35

Design Style Trade-offs

Comparison of Design Styles

Specific design styles shall require specific CAD tools

37

VLSI Physical Design Automation

Objective:

- study of algorithms and data structures related to physical design process
- Optimal arrangement of devices on plane & Efficient interconnection scheme
 - Performance of chip
 - Size of chip
 - Power
- Develop time efficient CAD tool

How to solve?

Type of objects: geometric objects- line, rectangles Algorithms: graph theoretic, combinatorial optimization,

 Constraints are problem dependent (electrical requirement)

39

Design Entry for IC design

- Register transfer level (RTL) is a level of abstraction to describe operation of a synchronous digital circuit.
 - flow of signals (or transfer of data) between hardware registers,
 - logical operations performed on those signals.
- Hardware Description Languages (HDLs): Verilog and VHDL
 - create high-level representations of a circuit,
 - lower-level representations and ultimately actual wiring can be derived.

Elective II: VLSI Design

VHDL

Very High Speed Integrated Circuit H/W Description Language

entity ff is

٦.

Port (D : in STD_LOGIC;

Begin

Q : out STD_LOGIC;

process(clk)

clk : in STD_LOGIC);

begin

end ff;

if clk'event and clk ='1' then

architecture Behavioral of ff is

 $Q \leq D;$

end if;

end process;

end Behavioral;

Elective II: VLSI Design