Variational Quantum Algorithms (VQA)

and its application in Quantum Neural Networks (QNNs)

> Team 10 AQC III - Final Project

Supervisor Professor Pramey Upadhyaya

Introduction

- Problem Statement: Currently, quantum systems are constrained by number of qubits and noise; limiting circuit depth
- •VQAs are a strategy that take advantage of current Noisy Intermediate-Scale Quantum (NISQ) computers with a classical optimizer to address these constraints

The main elements of most VQAs consist of:

- Cost Functions
- Ansatzes
- Gradients
- Optimizers

References:

M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R. McClean, K. Mitarai, X. Yuan, L. Cincio, P.J. Coles, Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021). https://doi.org/10.1038/s42254-021-00348-9

M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J Coles, Variational quantum state eigensolver, arXiv preprint arXiv:2004.01372 (2020)

Torlai, G., Mazzola, G., Carleo, G., & Mezzacapo, A. (2020). Precise measurement of quantum observables with neural-network estimators. Physical Review Research, 2(2), 022060

Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., ... & Tennyson, J. (2022). The variational quantum eigensolver: a review of methods and best practices. Physics Reports, 986, 1-128.

Li, W., Lu, Z. D., & Deng, D. L. (2022). Quantum neural network classifiers: A tutorial. SciPost Physics Lecture Notes, 061

Bergholm, Ville, et al. "Pennylane: Automatic Differentiation of Hybrid Quantum-Classical Computations." ArXiv.org, 29 July 2022, https://arxiv.org/abs/1811.04968

Broughton, Michael, et al. "TensorFlow Quantum: A Software Framework for Quantum Machine Learning." ArXiv.org, 26 Aug. 2021, https://arxiv.org/abs/2003.02989.

"Variational Algorithms." Qiskit Textbook, https://learn.qiskit.org/course/algorithm-design/variational.

Ganguly, Santanu. "7." Quantum Machine Learning: An Applied Approach: The Theory and Application of Quantum Machine Learning in Science and Industry, Apress, United States, 2022.

Quantum Neural Network

Optimizer: Gradient-descent with learning rate γ

rate γ

Classical Neural Network	
$f(x,\theta)$ $= f\left(f\left(w_{ij}^2.f\left(w_{ij}^1.x_j + b_1\right)\right) + b_n\right),$ where $\theta = Wx + b$,	a) Ansatz : Ample encoding $U(\theta) = U_L(\theta_L)$ $U_i(\theta_i)$ where: $V(x) = V_M(x_M)$ b) Measurement Rotation angles $M = \langle v \rangle$
abla	$C(0) = \nabla [i]$

Implementation of QNN Classifier

Optimizer: Gradient-descent with learning

olitude encoding (kernel methods), Block- $U_{L-1}(\theta_{L-1})...U_1(\theta_1)$ (Variational circuit) : $R_x(\theta)$, $R_y(\theta)$, $R_z(\theta)$, CNOT, CZ, θ is Rotation angles $V_{M-1}(x_{M-1})...V_1(x_1)$ (Feature Map) nt of Observables: Expectation values, s estimation $\langle \psi_0 | V^{\dagger}(x^{(i)}) U^{\dagger}(\theta) x^{\dagger} x U(\theta) V(x) | \psi_0 \rangle$ $C(\theta) = \sum_{i} \left[y^{(i)} - \langle \psi_0 | V^{\dagger}(x^{(i)}) U^{\dagger}(\theta) A U(\theta) V(x^{(i)}) | \psi_0 \rangle \right]^2$ $C(\theta) = \sum |f(x; \theta) - y|^2$ Cost function: Mean square error **Cost function**: Mean square error $\theta^{t+1} = \theta^t - \gamma \nabla_{\theta} C$ $\theta^{t+1} = \theta^t - \gamma \nabla_{\theta} C$

QNN Libraries

O PyTorch

PENNYLANE

Modeling

2. Optimization

$$\begin{split} &f(x,\theta)\\ &=f\left(...f\left(w_{ij}^2.f\left(w_{ij}^1.x_j+b_1\right)\right)...+b_n\right),\\ &\text{where } &\theta=Wx+b, \end{split}$$

a) **Ansatz**: Amplitude encoding (kernel methods), Blockencoding

 $\mathbf{U}(\theta) = U_L(\theta_L)U_{L-1}(\theta_{L-1})...U_1(\theta_1)$ (Variational circuit) $\mathbf{U}_i(\theta_i) : R_{\chi}(\theta), R_{\chi}(\theta), R_{\chi}(\theta), CNOT, CZ,$ where: θ is Rotation angles

 $V(x) = V_M(x_M)V_{M-1}(x_{M-1})...V_1(x_1)$ (Feature Map)

b) Measurement of Observables: Expectation values,

Rotation angles estimation

$$M = \langle \psi_0 | V^{\dagger} (x^{(i)}) U^{\dagger}(\theta) x^{\dagger} x U(\theta) V(x) | \psi_0 \rangle$$

$$C(\theta) = \sum_{x} |f(x; \theta) - y|^2$$

Cost function: Mean square error

$$\theta^{t+1} = \theta^t - \gamma \nabla_{\theta} C$$

Optimizer: Gradient-descent with learning

rate γ

$$C(\theta) = \sum_{i} \left[y^{(i)} - \langle \psi_0 | V^{\dagger}(x^{(i)}) U^{\dagger}(\theta) A U(\theta) V(x^{(i)}) | \psi_0 \rangle \right]^2$$

Cost function: Mean square error

$$\theta^{t+1} = \theta^t - \gamma \nabla_{\theta} C$$

Optimizer: Gradient-descent with learning rate γ

QNN Libraries

PENNYLANE

Implementation of QNN Classifier

GitHub Link: https://github.com/imanzabet/AQC/blob/main/Qiskit QNN Classifier.ipynb

Core ideas and methods involved: applications & challenges/solutions

Applications

Dynamical Simulation Compilation Quantum Classifiers Variational Quantui Machine Algorithms Condensed Generative Matter Models Mathematica **New Frontiers** Applications Quantum Information Systems of Equations Quantum Metrology Factoring Principal Components Quantum Foundations

Quantum Chemistry: Finding Ground & Excited States

VQSE: Condensed Matter Physics

M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J Coles, **Variational quantum state** eigensolver, arXiv preprint arXiv:2004.01372 (2020)

Challenges/Solutions

Trainability: Barren plateaus

Accuracy: Quantum Error Mitigation

Efficiency: Expectation Value Estimation

Torlai, G., Mazzola, G., Carleo, G., & Mezzacapo, A. (2020). Precise measurement of quantum observables with neural-network estimators. *Physical Review Research*, *2*(2), 022060.

Core ideas and methods involved: applications & challenges/solutions

Applications

Quantum Chemistry: Finding Ground & Excited States

VQSE: Condensed Matter Physics

M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J Coles, Variational quantum state eigensolver, arXiv preprint arXiv:2004.01372 (2020)

Challenges/Solutions

Trainability: Barren plateaus

Accuracy: Quantum Error Mitigation

Efficiency: Expectation Value Estimation

Torlai, G., Mazzola, G., Carleo, G., & Mezzacapo, A. (2020). Precise measurement of quantum observables with neural-network estimators. *Physical Review Research*, *2*(2), 022060.

Bergholm, Ville, et al. "Pennylane: Automatic Differentiation of Hybrid Quantum-Classical Computations." *ArXiv.org*, 29 July 2022, https://arxiv.org/abs/1811.04968.

Broughton, Michael, et al. "TensorFlow Quantum: A Software Framework for Quantum Machine Learning." *ArXiv.org*, 26 Aug. 2021, https://arxiv.org/abs/2003.02989.

Ongoing Research

- -Chemistry and Material Science
- Nuclear and Particle Physics
- -Optimization and Machine Learning
 - Quantum Neural Networks vs Classical

Giving Greater Access to QNNS:

Pennylane:

https://pennylane.ai/

Tensorflow Quantum:

https://www.tensorflow.org/quantum

