PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures

[Mathieu Carriere, Frederic Chazal, Yuichi Ike, Theo Lacombe, Martin Royer, Yuhei Umeda]

Thomas Gravier Blandine Gorce Laura Choquet

- 1.Introduction + Related Work
- 2.Paper Contributions
- 3. Network and Training
- 4.Results
- 5.Discussion

1. Introduction

Context: persistence diagrams are one of the main topological features, but they are difficult to use in machine learning pipeline due to the lack of structure of the space.

→ Solution: **vectorization** of the persistence diagrams

Related works:

- Real-valued functions on graphs
- Already existing vectorisation
- Deep Sets network [Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., & Smola, A.. Deep sets.]

Current limitations:

- Few trainable parameters
- Hard to know choose vectorisation for a specific task
- Kernel methods are not optimized in terms of computation times

1. Introduction

Solution proposed by the paper:

 \rightarrow A framework to learn the vectorisation adapted to the task generalizing some of the vectorisation already existing.

$$hks_{G,t}: \nu \mapsto \sum_{k=1}^{n} exp(-t\lambda_k)\psi_k(\nu)^2$$

Heat kernel signatures

PersLay: a new neural network layer

- 1. Introduction and related work
- 2. Paper contributions
- 3. Network and Training
- 4. Results
- 5. Discussion

2. Extended persistence diagram

Filtration with up and sub levels

Up level:

$$[G = (V, E)][G_{\alpha} = (V_{\alpha}, E_{\alpha})][V_{\alpha} = \{v \in V : f(v) \leq \alpha\}][E_{\alpha} = \{(v_{1}, v_{2}) \in E : v_{1}, v_{2} \in V_{\alpha}\}]$$

Sub level:

$$[X = (V, E)][X^{\alpha} = \{x \in X : f(x) \ge \alpha\}][E^{\alpha} = \{(x_1, x_2) \in E : x_1, x_2 \in X^{\alpha}\}]$$

 Ext_0^+ : \blacksquare Connected component

 $\operatorname{Ext}_1^-: \square \operatorname{Loop}$

Ord₀: Downward branch

 $Rel_1: \bigcirc Upward branch$

Legend with symbols

2. Heat Kernel Signatures on graphs

$$L_{\omega} = I - A^{-1/2}DA^{-1/2}$$

$$hks_{G,t}:
u\mapsto\sum_{k=1}^n exp(-t\lambda_k)\psi_k(
u)^2$$
 Eigenfunctions of the graph Laplacian

Eigenvalues of the graph Laplacian

Property:

- Stability w.r.t graph perturbation
- Stability w.r.t parameter t

$$d_B(Dg(G,t), Dg(G',t)) \le C(G,t)||W||_F$$

$$d_B(Dg(G,t), Dg(G,t')) \le 2|t-t'|$$

2. PersLay

any permutation invariant operation (sum, min...)

weight function (learnable)

point transformation function

Point transformation function:

Pour p un point du diagramme:

- Triangle point transformation: $\Lambda_p: t o \max\left\{0,\, y |t-x|
 ight\}$
- Gaussian point transformation: $\Gamma_p:\,t o exp\left(-\parallel p-t\parallel_2^2/\left(2\sigma^2
 ight)
 ight)$
- Line point transformation : $\mathbf{L}_\Delta:\, p\, o\langle p, e_\Delta
 angle\,+\,b_\Delta$

Example with a triangle point transformation:

- 1. Introduction and related work
- 2. Paper contributions
- 3. Network and Training
- 4. Results
- 5. Discussion

3. Network

Network:

- 2 layers (PersLay + Fully connected layer)

Hyperparameters set-up:

PersLay layer:

- op is the sum
- phi is the sum of the point transformation function

3. Choice of hyperparameters

How to set ω ?

Evolution of $t\mapsto Dg(G,t)$ for one graph from the MUTAD dataset

- 1. Introduction and related work
- 2. Paper Contributions
- 3. Network and Training
- 4. Results
- 5. Discussion

4. A proof of concept: Perslay results with AlphaComplex filtration

- ORBIT5K: Improve results compared to state-of-the-art method
- ORBIT100K: Capable of handling large-scale datasets where kernel method fail

Orbits generated by differents choice of r:

Dataset	PSS-K	PWG-K	SW-K	PF-K	PersLay
ORBIT5K	$72.38(\pm 2.4)$	$76.63(\pm 0.7)$	$83.6(\pm 0.9)$	$85.9(\pm0.8)$	$87.7 (\pm 1.0)$
ORBIT100K				,	\mid 89.2(\pm 0.3)

4. Results

Ablation studies:

- Choice of the grid size is not a key parameter however too large grid size lead to overfitting
- The best choice of point transformation differs from one dataset to another.
- The sum permutation operator give better results

		Grid size for trainable weights $w(p)$						
		None	2×2	5×5	10×10	20×20	50×50	
MUTAG	Train/Test acc (%)	92.3/88.9	91.1/88.8	91.7/89.6	92.3/89.9	93.7/88.3	94.1/87.7	
COLLAB	Train/Test acc (%)	76.5/75.3	78.6/75.8	79.0/76.2	80.0/ 76.5	83.5/73.9	94.0/71.3	

		Point transformation ϕ			Perm op		
		Gaussian	line	triangle	Sum	Max	
MUTAG	Train/Test acc (%)	92.5/89.7	89.2/84.2	91.5/85.0	92.3/89.5	91.9/87.4	
COLLAB	Train/Test acc (%)	79.7/75.3	79.9/ 76.1	79.4/74.7	80.0/ 76.4	78.8/75.0	

4. Results

Ablation studies:

- 1. Introduction and related work
- 2. Paper Contributions
- 3. Network and Training
- 4. Results
- 5. Discussion

5. Discussion

Conclusion:

- Great improvement to add the graph topology for classification
- Important value added with the extended diagram to capture loops geometry
- Vectorization with reduction of the computational cost

To go further:

- The paper focuses on graph only, an extension can be the utilisation of PersLay to other applications.

MERCI

6. Our implementation

Appendice:

The adjacency matrix A of a graph G with vertex set : $~V=\{v_1,v_2,...,v_n\}$

$$A := (\mathbf{1}_{(v_i, v_j) \in E})_{i,j}$$

Degree matrix :
$$D_{i,j} = \sum_j A_{i,j}$$

Results - comparing to top five graphs

Dataset	SV^1	RetGK* ²	FGSD ³	GCNN ⁴	GIN ⁵	PersLay	
						Mean	Max
REDDIT5K		56.1	47.8	52.9	57.0	55.6	56.5
REDDIT12K		48.7	7 <u>7 - 77</u>	46.6	<u></u>	47.7	49.1
COLLAB	-	81.0	80.0	79.6	80.1	76.4	78.0
IMDB-B	72.9	71.9	73.6	73.1	74.3	71.2	72.6
IMDB-M	50.3	47.7	52.4	50.3	52.1	48.8	52.2
COX2*	78.4	80.1	<u> </u>	<u> </u>	<u> </u>	80.9	81.6
DHFR*	78.4	81.5			_	80.3	80.9
MUTAG*	88.3	90.3	92.1	86.7	89.0	89.8	91.5
PROTEINS*	72.6	75.8	73.4	76.3	75.9	74.8	75.9
NCI1*	71.6	84.5	79.8	78.4	82.7	73.5	74.0
NCI109*	70.5	_	78.8	_	_	69.5	70.1

Learning the weights

