DATASET:

Train data contains columns: timestamp, underlying asset value, expiry, call, put strikes, and 41 anonymous features.

Test data contains columns: Timestamp(shuffled and masked), underlying asset value, call, put strikes and 41 anonymous features.

DATASET CLEANING AND PRE-PROCESSING:

- There are some negative values in the volatility columns, but volatility cannot be negative; therefore, I replaced the values with zeroes.
- Also, some volatility values are extremely high in value (probably outliers) which is not possible again, therefore I equated them to the maximum value in that column.
- I also made sure that there are no null values in train data.
- I scaled all the feature columns using StandardScaler from sklearn.preprocessing.
- I repeated the similar steps for test data, checked for any negative values and replaced (if any), checked for outliers in each column, and scaled all feature columns of test data

PLOTTING THE TRAIN DATA:

I plotted the values of the train data row-wise and column-wise, and here are the results I got:

Row-wise:

Clearly, the volatility values are following a smile shape/ U-shape, The Black-Scholes model assumes that the volatility of the underlying asset is constant over time and across all strike prices, so this is a real market scenario where black-scholes assumptions aren't true. The diagram below (taken from the internet) shows this pictorially.

INFERENCE FROM ROW PLOTTING:

Column-wise:

There is no proper pattern observed when the train data is plotted column-wise, here above is one of the result.

Correlation matrix:

DEVELOPING THE PREDICTIVE MODEL:

As it is evident from the Exploratory data analysis, there is **no linear correlation** between the **feature columns** and the **target columns**, there might be a non-linear or **complex relationship** between these tabular formatted values, therefore its a good sign for us to choose **Random forest model or an XG Boost model**, I cannot go for neural network because training with 1lakh+ samples will take lot of time which is not favourable in trading environments, I cannot use deep learning models related to time series like RNN/LSTM etc because the timestamps are masked and shuffled in test data, so it's **better to go with tree**

based ensembled methods (an advantage of these models are they are also robust to missing values and outliers).

But, as we saw that the volatility follows a smile / U-shaped curve, we might just need to build a model that best predicts the exact curve on the test data. So I can also try to fit cubic/quadratic splines to predict the volatility smile.

So, I tried out different tree based methods based on the above inferences from train data, like Random forest, XGBoost and similar methods like KNN, I also tried spline fitting and smoothing where there is a huge change in derivative of the curve, out of these i achieved best loss with Random forest regressor imputer, To enhance, I picked up **extra tree regressor model as imputer**, I ran it iteratively on test data, and that gave me the best loss out of all models. I chosed **Extra Tree regressors** because they have **high tree diversity** (more accurate results expected), they use **random splits** during split selection whereas Random forest uses best split for split selection, so they are **more accurate and faster** for imputation tasks. I **achieved rank 15**, and my best private score of 0.000001126 with extra tree regressor imputer model. (I didn't even use the given 25% values from test data).

THANK YOU FOR YOUR TIME!

REGARDS VAMSHI KRISHNA EMMADI 2025 UNDERGRAD, IIT KHARAGPUR