

Name:

- 1. (15 points) In class, we discussed iterative schemes based on a specific **splitting** of an $n \times n$ matrix A to solve the linear system $A\mathbf{x} = \mathbf{b}$.
 - (a) (5 points) If A = M N, then show that the following schemes are equivalent:

$$M\mathbf{x}_{k+1} = N\mathbf{x}_k + \mathbf{b};$$

 $\mathbf{x}_{k+1} = (\mathbb{I} - M^{-1}A)\mathbf{x}_k + M^{-1}\mathbf{b}, \text{ where } \mathbb{I} \text{ is the } n \times n \text{ identity matrix};$
 $\mathbf{x}_{k+1} = \mathbf{x}_k + M^{-1}\mathbf{r}_k, \text{ where } \mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k.$

(b) (10 points) A totally **equivalent splitting** of A that we discussed is of the form: A = L + U + D. Note that, L is **strictly** lower triangular, U **strictly** upper triangular and D diagonal. This way, the Jacobi method reads

$$\mathbf{x}_{k+1} = R_J \mathbf{x}_k + D^{-1} \mathbf{b},$$

with R_J the Jacobi iteration matrix $R_J = -D^{-1}(L+U)$.

If A is **strictly diagonally dominant**, show that the Jacobi iteration matrix satisfies

$$||R_J||_{\infty} < 1.$$

Note that if this condition holds, then the Jacobi method converges for **any** initial vector \mathbf{x}_0 .

Hints:

- An $n \times n$ matrix A is strictly diagonally dominant if $|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$ holds.
- Note that if A is an $n \times n$ matrix, then $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$.
- 2. (a) (10 points) Find by hand the eigenvalues, eigenvectors and spectral radius of the following matrices:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

You may use MATLAB's eig command to verify your answers. Furthermore, you can find the spectral radius of a matrix easily using MATLAB by typing max(abs(eig)).

(b) (15 points) Find **all** the values of a and b for which the matrix

$$A = \begin{bmatrix} a & 1 & 1+b \\ 1 & a & 1 \\ 1-b^2 & 1 & a \end{bmatrix}$$

is symmetric positive definite.

3. (30 points) The linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

has the unique solution $\mathbf{x} = [1 \ 1]^T$.

- (a) (10 points) Determine by hand the $R_J = -D^{-1}(L+U)$ and $R_{GS} = -(L+D)^{-1}U$, that is, the Jacobi and Gauss-Seidel iteration matrices, respectively (of course you may use MATLAB to **verify** your answers).
- (b) (5 points) Find the ∞ -norm and spectral radius of R_J and R_{GS} .
- (c) (15 points) Perform **5 iterations** of both Jacobi and Gauss-Seidel methods using $\mathbf{x}_0 = [0\ 0]^T$. For each present your results in a table with the following format:
 - column 1: k (iteration step)
 - column 2: $x_1^{(k)}$ (1st component of the computed solution vector at step k)
 - column 3: $x_2^{(k)}$ (2nd component of the computed solution vector at step k)
 - column 4: $||e^{(k)}||_{\infty}$ (error norm at step k)
 - column 5: $||e^{(k)}||_{\infty}/||e^{(k-1)}||_{\infty}$ (ratio of successive error norms at step k).

Which method is converging faster? Attach any of your codes and **justify your** answer.

4. (20 points) Employ the Successive Over-Relaxation (SOR) method to solve the linear system

$$2x_1 - x_2 = 5,$$

$$-x_1 + 2x_2 - x_3 = -2,$$

$$-x_2 + 2x_3 = 2,$$

with $\omega = 1.3$ and initial vector $\mathbf{x}_0 = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}^T$. Stop the iterations when $\|\mathbf{r}_k\|_2 \leq \text{tol } \|\mathbf{b}\|_2$ holds with tol = 10^{-10} . Provide your MATLAB code and output which includes the solution.

5. (20 points) Assume that $\omega \in [0.5, 1.8]$ and notice that the case with $\omega < 1$ corresponds to the Successive **Under**-Relaxation and $\omega > 1$ to SOR. Also, when $\omega = 1$, this is the original Gauss-Seidel method.

Make a graph of the spectral radius of the iteration matrix:

$$R_{SOR} = (\omega L + D)^{-1} \left[(1 - \omega) D - \omega U \right],$$

for the matrix A given in Question 4 as a function of ω . What is the **optimal value** of ω here, i.e., $\omega_{\rm opt}$? **Verify your answer** by running your code developed in Question 4 for $\omega = \omega_{\rm opt}$. Include its output together with the figure for $\rho(R_{SOR})$ as a function of ω and the code producing it.

6. (20 points) Use your codes developed for the **Jacobi**, **Gauss-Seidel**, and **SOR** (with $\omega = 1.1$) iterative methods to solve the following linear system of equations:

$$\begin{bmatrix} 7 & 1 & -1 & 2 \\ 1 & 8 & 0 & -2 \\ -1 & 0 & 4 & -1 \\ 2 & -2 & -1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \\ 4 \\ -3 \end{bmatrix}.$$

Stop the iterations when $\|\mathbf{r}_k\|_2 \leq \text{tol } \|\mathbf{b}\|_2$ holds with tol = 10^{-10} . As per the initial guess (for **all** methods), use the **zero** vector, i.e., $\mathbf{x}_0 = [0\,0\,0\,0]^T$. Make a graph in a **semilog scale** showcasing the $\|\mathbf{r}_k\|_2$ against the number of iterations k in each case and compare your findings. Include **all** your codes, MATLAB output and solution.

7. (20 points) Implement the Conjugate Gradient (CG) method in MATLAB (or in any other scientific programming language). To do so, write an m-file my_cg.m, the first line of which should be:

Test your code with the linear system given by

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ -2 \\ 2 \end{bmatrix},$$

using initial vector $\mathbf{x}_0 = [0\ 0\ 0]^T$. Stop the iterations when $\langle \mathbf{r}_k, \mathbf{r}_k \rangle \leq \mathrm{tol}^2 \langle \mathbf{b}, \mathbf{b} \rangle$ holds and $\mathrm{tol} = 10^{-10}$. Include **all** your codes and MATLAB output.

Date: March 5, 2020

Mathematics Department, California Polytechnic State University, San Luis Obispo, CA 93407-0403, USA *Email address*: echarala@calpoly.edu

Copyright © 2020 by Efstathios Charalampidis. All rights reserved.