First analysis of Emmett' data

Joaquín Rapela*

December 9, 2022

1 Introduction

Here I use svGPFA (Duncker and Sahani, 2018) to explore the low dimensional structure of Emmett's switching-task recordings.

2 Methods

2.1 Data

I epoched the recordings from 0.2 seconds before to mouse entered the first port (port 2) to 0.2 seconds after it exited the last port (port 7).

I only used trial that were shorter than five seconds (257 trials out of 400 trial with correct sequences).

I only used neurons with a firing rater larger than 0.1 spikes/sec (230 out of 400 neurons).

2.2 svGPFA model

The svGPFA model estimates K latent variables in the form of Gaussian processes:

$$x_k^{(r)}(t) \sim GP(\mu_k(t), \kappa_k(t, t')) \quad k = 1, \dots, K$$

^{*}j.rapela@ucl.ac.uk

I concatenate the latent variables $x_k^{(r)}(t)$ into a latent vector $\mathbf{x}^{(r)}(t)$:

$$\mathbf{x}^{(r)}(t) = \begin{bmatrix} x_1^{(r)}(t) \\ \vdots \\ x_K^{(r)}(t) \end{bmatrix}$$
 (1)

The latent variables are combined linearly to produced the log pre-intensity, $\mathbf{h}^{(r)}(t) = [h_1^{(r)}(t), \dots, h_N^{(r)}(t)]^{\mathsf{T}}$, where $h_n^{(r)}(t)$ is the log pre-intensity of neuron n and trial r, for a total of N neurons:

$$\mathbf{h}^{(r)}(t) = C\mathbf{x}^{(r)}(t) + \mathbf{d} \tag{2}$$

The log pre-intensity of neuron n and trial r is exponentiated to produce the conditional intensity function of neuron n and trial r:

$$\lambda_n^{(r)}(t) = \exp(h_n^{(r)}(t)) \tag{3}$$

which can be interpreted as the instantaneous firing rate of neuron n and trial r at time t.

The conditional intensity function of neuron n in trial r is used to calculate the probability of spikes $\{t_{i,n}\}_{i=1}^{\Phi(n,r)}$ in a trial r of length τ :

$$P(\{t_{i,n}\}_{i=1}^{\Phi(n,r)}|\lambda_n^{(r)}(t)) = \exp\left(-\int_0^\tau \lambda_n^{(r)}(t)dt\right) \prod_{i=1}^{\Phi(n,r)} \lambda_n^{(r)}(t_{i,n})$$

3 Results

I arbitrarily set to 10 the number of latent variables (K in Eq. 1 of Duncker and Sahani, 2018)) of the svGPFA model. Figures 4-13 plot the orthonormalized latents for all trials. Figure 14 shows a scatter plot of orthonormalized latents 0, 1 and 2. Figures 15-30 plot intensity functions (Eq. 3), for all trials, of different neurons. Figure 32 plot the left singular vectors of the matrix C (Eq. 2), corresponding to the orthonormalized latents, and the offset vector d. Figure 33 displays the estimated lengthscale parameters of the squared exponential kernels of all latents.

4 Conclusions

The intensity functions if Figures 15-30 show diverse tunning of single cells. The majority of them fire more when the mouse enters the reward port 7 (e.g., neurons 1 (Figure 16), 2 (Figure 17), 4 (Figure 19), 6 (Figure 20), 7 (Figure 21), 17 (Figure 31)). Other neurons fire more when the mouse enters other ports (e.g., neurons 0 (Figure 15), 15 (Figure 29), 16 (Figure 30) fire more around port 1, neuron 3 (Figure 18) around por 3, neuron 12 (Figure 26) around porr 2).

Despite this diversity at the single cell level, the first three orthonormalized latents show a pattern at the population level (Figure 14). For most trials, there appears to be an extreme point around the time where the mouse pokes in a port.

In addition, in Fig. 14 trials are sorted systematically, possibly indicating some type of learning, or drift in neural activity.

References

Duncker, L. and Sahani, M. (2018). Temporal alignment and latent gaussian process factor inference in population spike trains. In *Advances in Neural Information Processing Systems*, pages 10445–10455.

List of Figures

1	Binned spikes and PSTH (red trace) for neurons 7 (top), 0	
	(middle) and 6 (bottom) tunned to port 7, 1 and 3, respec-	
	tively. Click on the image to access its interactive version	6
2	Lower bound vs iteration number. Click on the image to access	
	its interactive version.	7
3	Lower bound vs elapsed time. Click on the image to access its	
	interactive version.	8
4	Orthonormalized latent 0. Orange, red, green, blue and black	
	markers correspond to ports 2, 1, 6, 3 and 7, respectively.	
	Crosses and circles correspond to poke in and out, respectively.	9
5	Orthonormalized latent 1. Same format as in Figure 4. Click	
	on the image to access its interactive version	10

6	Orthonormalized latent 2. Same format as in Figure 4. Click	
	on the image to access its interactive version	11
7	Orthonormalized latent 3. Same format as in Figure 4. Click	
	on the image to access its interactive version	12
8	Orthonormalized latent 4. Same format as in Figure 4. Click	
	on the image to access its interactive version	13
9	Orthonormalized latent 5. Same format as in Figure 4. Click	
	on the image to access its interactive version	14
10	Orthonormalized latent 6. Same format as in Figure 4. Click	
	on the image to access its interactive version	15
11 12	Orthonormalized latent 7. Same format as in Figure 4. Click	
	on the image to access its interactive version	16
	Orthonormalized latent 8. Same format as in Figure 4. Click	
	on the image to access its interactive version	17
13	Orthonormalized latent 9. Same format as in Figure 4. Click	
	on the image to access its interactive version	18
14	Scatter plot of orthonormalized latents 0, 1 and 2. Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	19
15	Intensity function for neuron $n = 0$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	20
16	Intensity function for neuron $n = 1$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	21
17	Intensity function for neuron $n=2$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	22
18	Intensity function for neuron $n = 3$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version	23
19	Intensity function for neuron $n = 4$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	24
20	Intensity function for neuron $n = 6$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	25

21	Intensity function for neuron $n = 7$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	26
22	Intensity function for neuron $n = 8$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	27
23	Intensity function for neuron $n = 9$ ($\lambda_n(t)$, Eq. 3). Same for-	
	mat as in Figure 4. Click on the image to access its interactive	
	version.	28
24	Intensity function for neuron 10. Same format as in Figure 4.	
	Click on the image to access its interactive version	29
25	Intensity function for neuron 11. Same format as in Figure 4.	
	Click on the image to access its interactive version	30
26	Intensity function for neuron 12. Same format as in Figure 4.	
	Click on the image to access its interactive version	31
27	Intensity function for neuron 13. Same format as in Figure 4.	
	Click on the image to access its interactive version	32
28	Intensity function for neuron 14. Same format as in Figure 4.	
	Click on the image to access its interactive version	33
29	Intensity function for neuron 15. Same format as in Figure 4.	
	Click on the image to access its interactive version	34
30	Intensity function for neuron 16. Same format as in Figure 4.	
	Click on the image to access its interactive version	35
31	Intensity function for neuron 17. Same format as in Figure 4.	
	Click on the image to access its interactive version	36
32	Left singular vectors of the matrix C corresponding to the	
	orthonormalized latents, and offset vector \mathbf{d} , (Eq. 2). Click on	
	the image to access its interactive version.	37
33	Estimated lenghtscale parameters of the squared exponential	
	kernels of all latents. Click on the image to access its interac-	
	tive version.	38

Neuron 7, Trial-Averaged Spike Rate 5.586776

Figure 1: Binned spikes and PSTH (red trace) for neurons 7 (top), 0 (middle) and 6 (bottom) tunned to port 7, 1 and 3, respectively. Click on the image to access its interactive version.

Figure 2: Lower bound vs iteration number. Click on the image to access its interactive version.

Figure 3: Lower bound vs elapsed time. Click on the image to access its interactive version.

Figure 4: Orthonormalized latent 0. Orange, red, green, blue and black markers correspond to ports 2, 1, 6, 3 and 7, respectively. Crosses and circles correspond to poke in and out, respectively.

Figure 5: Orthonormalized latent 1. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 6: Orthonormalized latent 2. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 7: Orthonormalized latent 3. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 8: Orthonormalized latent 4. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 9: Orthonormalized latent 5. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 10: Orthonormalized latent 6. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 11: Orthonormalized latent 7. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 12: Orthonormalized latent 8. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 13: Orthonormalized latent 9. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 14: Scatter plot of orthonormalized latents 0, 1 and 2. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 15: Intensity function for neuron n=0 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 16: Intensity function for neuron n = 1 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 17: Intensity function for neuron n=2 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 18: Intensity function for neuron n=3 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 19: Intensity function for neuron n=4 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 20: Intensity function for neuron n=6 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 21: Intensity function for neuron n = 7 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 22: Intensity function for neuron n=8 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 23: Intensity function for neuron n = 9 ($\lambda_n(t)$, Eq. 3). Same format as in Figure 4. Click on the image to access its interactive version.

Figure 24: Intensity function for neuron 10. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 25: Intensity function for neuron 11. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 26: Intensity function for neuron 12. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 27: Intensity function for neuron 13. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 28: Intensity function for neuron 14. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 29: Intensity function for neuron 15. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 30: Intensity function for neuron 16. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 31: Intensity function for neuron 17. Same format as in Figure 4. Click on the image to access its interactive version.

Figure 32: Left singular vectors of the matrix C corresponding to the orthonormalized latents, and offset vector \mathbf{d} , (Eq. 2). Click on the image to access its interactive version.

Figure 33: Estimated lenghtscale parameters of the squared exponential kernels of all latents. Click on the image to access its interactive version.