¿Qué vamos a ver?

- Cómo se conectan los sistemas informáticos entre sí
 - Arquitectura cliente/servidor
 - Modelos de conexión de sistemas
 - Responsabilidades por modelo y capa
- Cómo funciona Internet
 - Red de redes
 - Direccionamiento en redes e Internet
 - Orientándose en una red
- Cómo hablamos con un servidor web
 - Peticiones y respuestas, CORS, API REST
 - Lanzar peticiones HTTP

Arquitectura cliente/servidor

Modelos de conexión de sistemas

Сара	OSI	TCP/IP	PDU	Dispositivos	Protocolos y especificaciones
7	Aplicación		Datos	Firewall/Proxy	HTTP/HTTPS, DNS, DHCP, FTP, LDAP, RTP, SSH, SMTP, POP, IMAP, TLS/SSL
6	Presentación	Aplicación			
5	Sesión				
4	Transporte	Transporte	Segmentos	Firewall	TCP, UDP
3	Red	Internet	Paquetes	Router	IPv4, IPv6, ICMP, ICMPv6, IPSec
2	Enlace	Acceso al medio	Frames	NIC, Switch	MAC, ARP, NDP, Ethernet, PPP, DSL, Fibra, L2TP, WiFi
1	Física (medios)		Bits	NIC, Hub	

Responsabilidades por modelo y capa

Aplicación

- Aplicación: protocolos y servicios que median con el usuario
- Presentación: los datos se traducen (MIME), se encriptan/desencriptan, se comprimen/descomprimen
- Sesión: gestión de la conexión entre procesos de usuario (sincronización)

Transport

- Cada aplicación se comunica por un puerto de forma simultánea
- o Fiabilidad de la transmisión
- Estrategias de conexión (negociación en tres pasos, sin conexión)

Internet

- o Buscar el mejor camino para transmitir los paquetes entre nodos (routing)
- Mantener la calidad del servicio (QoS)
- Direccionamiento lógico (IP)

Acceso al medio

- Problemas de hardware
- Control de flujo (ancho de banda)
- Control de errores en la transmisión
- Direccionamiento físico (MAC)

Internet: una red de redes

- Redes y subredes
 - LAN y WAN
 - Máscara de red
 - IP pública y privada
 - IP estáticas y dinámicas (DHCP)
- ISP (Internet Service Provider)
 - Last mile infrastructure
 - Nos asigna una IP pública (dinámica)
 - Default gateway
 - NAT (network address translation)
 - Caché DNS

Direccionamiento en redes e Internet

- Direccionamiento físico
 - o MAC (48-bits): AC-16-2D-02-C8-19
- Direccionamiento lógico
 - o IPv4 (32-bit): 255.255.255.255
 - IPv6 (128-bit): F704:0000:0000:0000:3458:79A2:D08B:4320
 - Subnet mask:
 - Classfull: 192.168.40.55 \rightarrow 255.255.248.0
 - Classless (CDIR): 192.168.40.0/21
- Direcciones de Internet
 - URI/URL (Uniform Resource Locator): protocolo + host:puerto + path + recurso + query + segment
- Dominios de Internet
 - DNS (Domain Name Server)

Orientándose en una red (I)

NIC Router

```
$ ipconfig
Configuración IP de Windows
Adaptador de Ethernet Ethernet:
  Sufijo DNS específico para la conexión. . : home
  Vinculo: dirección IPv6 local. . . : fe80::753c:fda4:d07b:c229%3
  Dirección IPv4. . . . . . . . . . . . . : 192.168.1.129
  Puerta de enlace predeterminada . . . . : 192.168.1.1
Adaptador de Ethernet Conexión de red Bluetooth:
  Estado de los medios. . . . . . . . : medios desconectados
  Sufijo DNS específico para la conexión. . :
Adaptador de Ethernet vEthernet (Default Switch):
  Sufijo DNS específico para la conexión. . :
  Vinculo: dirección IPv6 local. . . : fe80::41db:798a:6906:3a46%18
  Puerta de enlace predeterminada . . . . . :
```

Network

Local IPv4 Address	192.168.1.1		
Local Subnet Mask	255.255.255.0		
Local Ethernet Mac address	D0:6E:DE:1B:85:82		
Public IPv4 Address	100.110.13.172		
Public Subnet Mask	255.255.0.0		
ipv4Duration	2d 11h01m51s		
Default Gateway	100.110.0.1		
Primary DNS Server	212.231.6.7		
SecondaryDNSServer	46.6.113.34		

Orientándose en una red (II)

Ping

```
$ ping google.com

Haciendo ping a google.com [172.217.17.14] con 32 bytes de datos:
Respuesta desde 172.217.17.14: bytes=32 tiempo=3ms TTL=57
Respuesta desde 172.217.17.14: bytes=32 tiempo=3ms TTL=57
Respuesta desde 172.217.17.14: bytes=32 tiempo=3ms TTL=57
Respuesta desde 172.217.17.14: bytes=32 tiempo=7ms TTL=57

Estadísticas de ping para 172.217.17.14:
    Paquetes: enviados = 4, recibidos = 4, perdidos = 0
    (0% perdidos),
Tiempos aproximados de ida y vuelta en milisegundos:
    Mínimo = 3ms, Máximo = 7ms, Media = 4ms
```

Trace route

```
$ tracert google.com
Traza a la dirección google.com [172.217.17.14]
sobre un máximo de 30 saltos:
                        <1 ms HOME [192.168.1.1]
                3 ms
                         4 ms 100,110,0,1
                         3 ms 10.14.1.65
                3 ms
                         3 ms 10.14.246.10
                2 ms
                         2 ms 10.14.2.14
                3 ms
                         3 ms 72.14.194.132
                4 ms
                         3 ms 172.253.50.43
                3 ms
                         3 ms 74.125.253.199
                         3 ms mad07s09-in-f14.1e100.net [172.217.17.14]
                2 ms
Traza completa.
```

El servidor web

- Protocolos
 - Capa de transporte
 - **TCP** (Transmission Control Protocol)
 - **UDP** (User Datagram Protocol)
 - o Capa de Aplicación
 - **HTTP** (HyperText Transfer Protocol)
- Peticiones y respuestas HTTP
 - Métodos
 - Cabeceras
 - Estado
 - Cookies
- CORS
- API REST

Lanzar peticiones HTTP

CURL

```
$ curl --location --request PUT 'https://jsonplaceholder.typicode.com/posts/1' \
> --header 'Content-Type: application/json' \
> --data-raw '{
        "userId": 1,
        "title": "Modified",
        "body": "Modified"
> } '{
        "userId": 1,
        "ititle": "Modified"
        "oserId": 1,
        "ititle": "Modified",
        "body": "Modified",
        "body": "Modified",
        "id": 1
}
```

Postman

