

Scenario Week 4 (comp203p)

Ilya Sergey

scenario@cs.ucl.ac.uk

22-26 February 2016

The answer depends on the shape of the gallery.

The answer depends on the shape of the gallery.

Here just 1 guard is okay.

Art Gallery Problem

For a given gallery (polygon), find the *minimal* set of guards' positions, so together the guards can "see" the *whole* interior.

- Complexity-wise, harder than
 - SAT
 - Travelling salesman
 - Hamiltonian paths
 - Knapsack problem

Cheap-and-cheerful "almost" solutions

- Putting guard in each vertex
 - n guards for a polygon with n vertices

- Václav Chvátal's solution (1975)
 - ▶ based on triangulation, [n/3] guards;
 - Chvátal's theorem: this number is always sufficient and is in some cases necessary.

Chvátal's solution in practice

Scenario Week 4 (comp203p)

Art Gallery Competition

scenario@cs.ucl.ac.uk

Part I: Computing "good enough" set of guards

- 30 galleries of different shapes;
 - File with galleries: guards.pol (see Moodle page);
 - sizes of problems: small (<10) to large (\sim 300);
- Compute a complete set of guards for each one of them;
- Baseline Chvátal's boundary (cannot get worse than that);
- Grading: **30 points**, one per gallery, for any solution, which is not worse than the baseline.

Encoding of the problems (Part I)

guards.pol

- Polygon is "on the left"
- No holes inside

Encoding your solutions (Part 1)

Solution file:

Checking and submitting solutions

- Warning: double-precision floating-point arithmetic
 - all equalities are up to $\varepsilon = 0.000,000,000$, l
- Details on acceptance criteria are in the specification (on Moodle)
- Submit your solutions here (under Part I):

http://artgallery.cs.ucl.ac.uk

Solutions are accepted until 14:00 GMT 26/02/2016

Part 2: Checking a (flawed) set of guards

- 20 galleries of different shapes with sets of guards;
 - File with problems: check.pol (see Moodle page);
 - sizes of problems: small (<10) to gigantic (\sim 500);
- Find a *refutation* (a point within a polygon, not visible from the given guards) for *each* problem in the set;
- Any refutation will do.
- Grading: 20 points, one per problem/refutation.

Encoding of the problems (Part 2)

File with problems

check.pol

```
1: (0, 0), (2, 0), (2, 1), (1, 1), (1, 3), (0, 3); (0, 3), (1, 2)
2: (0, 0), (5, 0), (5, 2), (4.2312351, 1.234), (1, 1), (0, 2); (0, 2), (3, 1)
```

polygon vertices

guards

Encoding your solutions (Part 2)

Solution file:

```
team name
team's password

per-polygon refutations

tiger
1t671vecrskq

1: (1.56, 0.53)
2: (4.74, 1.53)
```

• Submit your solutions here (under Part 2):

http://artgallery.cs.ucl.ac.uk

Solutions are accepted until 14:00 GMT 26/02/2016

Part 3: Visualisation

- Implement a visualiser for galleries, guards and visibility:
 - drawing galleries;
 - · drawing visibility areas from specific guards;
 - · drawing refutations for incomplete guard sets.
- Grading: 15 points
- · Assessed by the organisers from 14:00 till 17:00, 26 Feb16
 - book a slot for your team!

Part 4: Implementation report

- Describe your implementation experience
 - language, algorithms, etc.
 - details in the specification (see Moodle)
- Grading: 15 points
- Submit electronically by 17:00, 26 Feb 2016 (one per team)

Part 5: The Competition!

- Compete with other teams for the best solutions in Part 1.
- Teams with all accepted solutions ranked amongst each other first.
- Check the score table http://artgallery.cs.ucl.ac.uk at for details
- Grading: up to 20 points.

Rank	Score
1	20
2-3	15
4-5	10
6-7	5
>7	0

Overall grading

Task	Max grade	
Computing "good enough" guard set	30	
Checking a flawed guard set	20	
Visualisation of the solutions	15	
Implementation report	15	
The Competition	20	

This week schedule

	Monday, 22 Feb	Tuesday, 23 Feb	Wednesday, 24 Feb	Thursday, 25 Feb	Friday, 26 Feb
10:00-11:00	ULU Malet Suite (Introductory lecture)	Roberts 421	Bedford Way LG04	Roberts 106	Roberts 421
11:00-13:00		Christopher Ingold XLG2 Auditorium	Chadwick B05 LT	Medawar G01 Lankester LT	Cruciform B404 - LT2
13:00-14:00	Lunch	Lunch		Lunch	Lunch
14:00-16:00	Cruciform B404 - LT2	Cruciform B304 - LT1	Birkbeck Clore Management Centre B01	Medawar G01 Lankester LT	Birkbeck Malet Street B36
16:00-18:00	Roberts 106	Cruciform B304 - LT1		Medawar G01 Lankester LT	Roberts G06 Sir Ambrose Fleming LT (Concluding lecture at 17: 00)

Helpdesk (green) = Time and locations where staff and/or TAs will be present so you could ask questions. Lectures (blue) = Introductory and concluding lectures

Good luck!

