

REINFORCEMENT LEARNING IN CONFIGURABLE CONTINUOUS ENVIRONMENTS

Alberto Maria Metelli, Emanuele Ghelfi and Marcello Restelli

{albertomaria.metelli, marcello.restelli}@polimi.it, emanuele.ghelfi@mail.polimi.it

PROBLEM

Markov Decision Process (MDP, Puterman, 2014) Agent (policy) reward R_{t+1} Environment state S_{t+1}

• Learn the policy parameters θ under the fixed environment p:

 $S_0 \sim \mu$, $A_t \sim \pi_{\theta}(\cdot|S_t)$, $S_{t+1} \sim p(\cdot|S_t, A_t)$

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta} \in \Theta} J(oldsymbol{ heta}) = \mathbb{E}\left[\sum_{t=0}^{+\infty} \gamma^t R_{t+1}\right]$$

Configurable Markov Decision Process (Conf-MDP, Metelli et al., 2018)

 $S_0 \sim \mu, \ A_t \sim \pi_{\boldsymbol{\theta}}(\cdot|S_t), \ S_{t+1} \sim p_{\boldsymbol{\omega}}(\cdot|S_t, A_t)$

• Learn the policy parameters θ together with the environment configuration ω :

$$m{ heta}^*, m{\omega}^* = rg \max_{m{ heta} \in \Theta, \, m{\omega} \in \Omega} J(m{ heta}, m{\omega}) = \mathbb{E} \left[\sum_{t=0}^{+\infty} \gamma^t R_{t+1} \right]$$

RELATIVE ENTROPY MODEL POLICY SEARCH (REMPS)

-Optimization-

- π_{θ} and p_{ω} induce a stationary distribution $d_{\pi_{\theta},p_{\omega}}$
- Goal: find a new stationary distribution d' in a *trust* region centered in $d_{\pi_{\theta},p_{\omega}}$ (PRIMAL_{κ}):

$$\max_{\boldsymbol{d'}} J_{\boldsymbol{d'}} = \mathbb{E}_{S,A,S'\sim\boldsymbol{d'}} [r(S,A,S')]$$
s.t. $D_{\mathrm{KL}}(\boldsymbol{d'}||d_{\pi_{\boldsymbol{\theta}},\boldsymbol{p_{\boldsymbol{\omega}}}}) \leq \kappa$

- $\kappa > 0$ defines the trust region in KL-divergence
- We solve the dual problem (DUAL $_{\kappa}$) in the Lagrange multiplier η :

$$\min_{\boldsymbol{\eta} \in [0,+\infty)} \boldsymbol{\eta} \log \mathop{\mathbb{E}}_{S,A,S' \sim d_{\pi_{\boldsymbol{\theta}}, \boldsymbol{p_{\boldsymbol{\omega}}}}} \left[\exp \left(\frac{1}{\boldsymbol{\eta}} r(S,A,S') + \kappa \right) \right]$$

• d' exponentially reweighs the probability of each (s,a,s') by the reward r(s,a,s')

$$d'(s, a, s') \propto d_{\pi_{\theta}, p_{\omega}}(s, a, s') \exp\left(\frac{1}{\eta}r(s, a, s')\right)$$

• When using samples $\{(s_i, a_i, s_i', r_i)\}_{i=1}^N$ we minimize the empirical version of $DUAL_{\kappa}$

Projection-

- d' might fall outside the space of representable stationary distribution, given $\Theta \times \Omega$
- Goal: perform a moment projection onto $\Theta \times \Omega$:
- project the stationary distribution (PROJ $_d$)

$$\min_{\boldsymbol{\theta'} \in \Theta, \boldsymbol{\omega'} \in \Omega} D_{\mathrm{KL}} \left(\boldsymbol{d'} \| d_{\pi_{\boldsymbol{\theta'}}, \boldsymbol{p_{\boldsymbol{\omega'}}}} \right)$$

- project the state kernel (PROJ $_{p\pi}$)

$$\min_{\boldsymbol{\theta'} \in \Theta, \boldsymbol{\omega'} \in \Omega} \mathbb{E}_{S \sim \boldsymbol{d'}} \left[D_{\mathrm{KL}} \left(\boldsymbol{p'}^{\boldsymbol{\pi'}} (\cdot | S) \| \boldsymbol{p_{\omega'}}^{\boldsymbol{\pi_{\theta'}}} (\cdot | S) \right) \right]$$

- project the policy and model separately (PROJ $_{\pi,p}$)

$$\min_{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{S \sim \boldsymbol{d'}} [D_{\mathrm{KL}} (\boldsymbol{\pi'}(\cdot|S) \| \boldsymbol{\pi_{\theta'}}(\cdot|S))]
\min_{\boldsymbol{\omega} \in \Omega} \mathbb{E}_{S,A \sim \boldsymbol{d''}} [D_{\mathrm{KL}} (\boldsymbol{p'}(\cdot|S,A) \| \boldsymbol{p_{\omega'}}(\cdot|S,A))]
\boldsymbol{\omega} \in \Omega S,A \sim \boldsymbol{d''} [D_{\mathrm{KL}} (\boldsymbol{p'}(\cdot|S,A) \| \boldsymbol{p_{\omega'}}(\cdot|S,A))]$$

• When using samples $\{(s_i, a_i, s_i', r_i)\}_{i=1}^N$ we minimize the log-likelihood employing importance sampling (Owen, 2013)

----Approximate Transition Model-----

• In the projection phase, we can use an *approx-imate transition model* \hat{p} learned from samples $\{(s_i, a_i, s_i', \omega_i)\}_{i=1}^N$ instead of the real one

$$\max_{\widehat{\boldsymbol{p}} \in \widehat{\mathcal{P}}_{\Omega}} \frac{1}{N} \sum_{i=1}^{N} \log \widehat{\boldsymbol{p}}(s_i'|s_i, a_i, \boldsymbol{\omega}_i),$$

• \hat{p} can be any model approximator (e.g., neural network, Gaussian process)

THEORETICAL ANALYSIS

• Goal: bound the performance of the stationary distribution d' obtained with infinite samples and the performance of $(\pi_{\widetilde{\theta}'}, p_{\widetilde{\omega}'})$ obtained after projection using N i.i.d. samples

$$J_{d'} - J(\widetilde{\theta}', \widetilde{\omega}') \leq \sqrt{2} r_{\max} \sup_{d: D_{\mathrm{KL}}(d' \| d_{\pi_{\theta}, p_{\omega}}) \leq \kappa} \inf_{\overline{\theta} \in \Theta, \overline{\omega} \in \Omega} \sqrt{D_{\mathrm{KL}}(d \| d_{\pi_{\overline{\theta}}, p_{\overline{\omega}}})} + \widetilde{\mathcal{O}}\left(\sqrt{\frac{v \log \frac{2eN}{v} + \log \frac{8}{\delta}}{v}}\right)$$

Approximation Error: due to the finite capacity of the parametric space $\Theta \times \Omega$, depends also on the threshold κ

Estimation Error: due to the finite samples N, depends also on the pseudo-dimension v (Cortes et al., 2013)

MOTIVATION AND CONTRIBUTIONS

- Existing approaches (SPMI, Metelli et al., 2018):
- work in finite state-actions spaces only
- require the full knowledge of the environment dynamics

How to solve continuous Conf-MDPs without the knowledge of the exact dynamics?

- REMPS is able to learn in continuous Conf-MDPs and can be equipped with an approximate transition model
- REMPS alternates optimization and projection phases
- Inspired to trust region methods (Peters et al., 2010)
- We provide a *finite-sample analysis* for the single step
- We *empirically* evaluate REMPS on Conf-MDPs

REFERENCES

- C. Cortes, S. Greenberg, and M. Mohri. Relative deviation learning bounds and generalization with unbounded loss functions. *arXiv preprint arXiv:1310.5796*, 2013.
- A. M. Metelli, M. Mutti, and M. Restelli. Configurable markov decision processes. In 35th International Conference on Machine Learning, volume 80, pages 3491–3500. PMLR, 2018.
- A. B. Owen. *Monte Carlo theory, methods and examples.* 2013.
- J. Peters, K. Mülling, and Y. Altun. Relative entropy policy search. In *AAAI*, pages 1607–1612. Atlanta, 2010.
- M. L. Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley & Sons, 2014.

G(PO)DMP

Optimal