

RULE 17.1(a) OR (b)

PCI/EP 0 3 / U 9 5 2 /

REC'D 15 SEP 2003

WIPO

PCT
The Patent Office
Concept House

Newport South Wales

NP10 800

Cardiff Road

PCTEP03/9527

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Philippins.

Dated

26 June 2003

BEST AVAILABLE COPY

... The second of the Department of Trade and Industry

The Patent Office

27HAY03 EE09882-1 000019 P01/7700 0.00-0311957.5

The Patent Office

2 3 MAY 2003

Cardiff Road Newport Gwent NP9 1RH

lequest for grant of a patent ee the notes on the back of this form. You can also t an explanatory leaflet from the Patent Office to 'lp you fill in this form)

2 3 MAY 2003

LONDO P034281GB

Your reference

Patent application number

(The Patent Office will fill in this part)

Full name, address and postcode of the or of each applicant (underline all surnames)

Bayer AG D-51368 Leverkusen Germany

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

Germany

8100414001.

0311957.5

Title of the invention

Heterocyclic derivatives

Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Carpmaels & Ransford

43 Bloomsbury Square London WC1A 2RA

Patents ADP number (if you know it)

83001 0

If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number.

Country

United Kingdom

Priority application number (if you know it)

0220961.7

Date of filing (day / month / year)

10.09.2002

If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

Is a statement of inventorship and of right to grant of a patent required in support of

uns request! (Answer Tes' if:

..., applicant named in part 3 is not an inventor, or

" an increase who is not named as an applicant, or

Yes

any named-applicant is a corporate body

See note (d))

Patents Form 1/77

Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form

Description

Claim(s)

Abstract

Drawing(s)

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

> Any other documents (please specify)

> > I/We request the grant of a patent on the basis of this application.

Signature

23.05.2003

Carpmaels & Ransford

Name and daytime telephone number of person to contact in the United Kingdom

Peter M. Johnston

020-7242 8692

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505. a)
- Write your answers in capital letters using black ink or you may type them. b)
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

Heterocyclic derivatives

The present invention relates to novel heterocyclic derivatives, processes for their preparation, and their use in medicaments, especially for the treatment of chronic obstructive pulmonary diseases.

The fibrous protein elastin, which comprises an appreciable percentage of all protein content in some tissues, such as the arteries, some ligaments and the lungs, can be hydrolysed or otherwise destroyed by a select group of enzymes classified as elastases. Human leukocyte elastase (HLE, EC 3.4.21.37), also known as human neutrophil elastase (HNE), is a glycosylated, strongly basic serine protease and is found in the azurophilic granules of human polymorphonuclear leukocytes (PMN). HNE is released from activated PMN and has been implicated causally in the pathogenesis of acute and chronic inflammatory diseases. HNE is capable of degrading a wide range of matrix proteins including elastin, and in addition to these actions on connective tissue HNE has a broad range of inflammatory actions including upregulation of IL-8 gene expression, oedema formation, mucus gland hyperplasia and mucus hypersecretion. Pulmonary diseases where HNE is believed to play a role include lung fibrosis, pneumonia, acute respiratory distress syndrome (ARDS), pulmonary emphysema, including smoking-induced emphysema, chronic obstructive pulmonary diseases (COPD) and cystic fibrosis. HNE has also been causally implicated in rheumatoid arthritis, atherosclerosis, brain trauma, cancer and related conditions in which neutrophil participation is involved. Thus, inhibitors of HLE activity can be potentially useful in the treatment of a number of inflammatory diseases, especially of chronic obstructive pulmonary diseases [R.A. Stockley, Neutrophils and protease/antiprotease imbalance, Am. J. Respir. Crit. Care 160, S49-S52 (1999)].

The synthesis of certain 6-methyl-1,4-diphenyl-3,4-dihydro-2(1H)-pyrimidinethione derivatives is described in J. Comb. Chem. 3, 624-630 (2001), J. Fluorine Chem. 90, 17-21 (1998) and Khim. Geterotsikl. Soedin. 9, 1223-1227 (1986) [Chem. Abstr. 107,

25

5

10

15

39737 (1987)]. A specific pharmacological activity of these compounds is not mentioned.

The present invention relates to compounds of the general formulas (I-A) and (I-B)

$$R^{1}$$
 R^{2}
 R^{1}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{8}
 R^{7}
 R^{7}
 R^{1}
 R^{8}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

wherein

5

10

15

20

A represents an aryl or heteroaryl ring,

R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

represents C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₆-C₁₀-arylaminocarbonyl, heteroarylcarbonyl, heteroarylcarbonyl, heteroaryl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy

15

20

25

30

carbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di- C_1 - C_4 -alkylamino-carbonyl, C_1 - C_4 -alkylcarbonylamino, amino, mono- and di- C_1 - C_4 -alkylamino, heteroaryl, heterocyclyl, tri- $(C_1$ - C_6 -alkyl)-silyl and cyano,

represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₂-C₆-alkenoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,

R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl, C₃-C₈-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino,

R^{6B} represents C₁-C₆-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonyloxy, aminocarbonyloxy, cyano, aryl, heteroaryl and heterocyclyl, wherein heteroaryl and heterocyclyl can be further substituted with one to two identical or different radicals selected from the group consisting of C₁-C₄-alkyl, hydroxy and oxo,

R⁷ represents halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

Y¹, Y², Y³ and Y⁴ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.

5

The compounds according to this invention can also be present in the form of their salts, hydrates and/or solvates.

Physiologically acceptable salts are preferred in the context of the present invention.

10

15

20

Physiologically acceptable salts according to the invention are non-toxic salts which in general are accessible by reaction of the compounds (I) with an inorganic or organic base or acid conventionally used for this purpose. Non-limiting examples of pharmaceutically acceptable salts of compounds (I) include the alkali metal salts, e.g. lithium, potassium and sodium salts, the alkaline earth metal salts such as magnesium and calcium salts, the quaternary ammonium salts such as, for example, triethyl ammonium salts, acetates, benzene sulphonates, benzoates, dicarbonates, disulphates, ditartrates, borates, bromides, carbonates, chlorides, citrates, dihydrochlorides, fumarates, gluconates, glutamates, hexyl resorcinates, hydrobromides, hydrochlorides, hydroxynaphthoates, iodides, isothionates, lactates, laurates, malates, maleates, mandelates, mesylates, methylbromides, methylnitrates, methylsulphates, nitrates, oleates, oxalates, palmitates, pantothenates, phosphates, diphosphates, polygalacturonates, salicylates, stearates, sulphates, succinates, tartrates, tosylates, valerates, and other salts used for medicinal purposes.

25

Hydrates of the compounds of the invention or their salts are stoichiometric compositions of the compounds with water, such as for example hemi-, mono-, or dihydrates.

30

<u>Solvates</u> of the compounds of the invention or their salts are stoichiometric compositions of the compounds with solvents.

15

نرح

The present invention includes both the individual enantiomers or diastereomers and the corresponding racemates or diastereomeric mixtures of the compounds according to the invention and their respective salts. In addition, all possible tautomeric forms of the compounds described above are included according to the present invention. The diastereomeric mixtures can be separated into the individual isomers by chromatographic processes. The racemates can be resolved into the respective enantiomers either by chromatographic processes on chiral phases or by resolution.

In the context of the present invention, the substituents, if not stated otherwise, in general have the following meaning:

Alkyl in general represents a straight-chain or branched hydrocarbon radical having I to 6, preferably I to 4 carbon atoms. Non-limiting examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, pentyl, isopentyl, hexyl, isohexyl. The same applies to radicals such as alkoxy, alkylthio, alkylamino, alkylcarbonyl, alkoxycarbonyl and alkoxycarbonylamino.

Alkoxy illustratively and preferably represents methoxy, ethoxy, n-propoxy, isopropoxy, tert-butoxy, n-pentoxy and n-hexoxy.

Alkenoxy illustratively and preferably represents allyloxy, but-2-en-1-oxy, pent-3-en-1-oxy und hex-2-en-1-oxy.

Aikylthio illustratively and preferably represents methylthio, ethylthio, n-propylthio, isopropylthio, tert.-butylthio, n-pentylthio and n-hexylthio.

Alkylcarbonyl in general represents a straight-chain or branched hydrocarbon radical having 1 to 6, preferably 1 to 4 carbon atoms which is bonded via a carbonyl group. Non-limiting examples include acetyl, n-propionyl, n-butyryl, isobutyryl, pivaloyl, n-nexanoyl.

10

15

20

25

30

Alkylcarbonylamino in general represents a straight-chain or branched hydrocarbon radical having 1 to 6, preferably 1 to 4 carbon atoms which has a carbonylamino (-CO-NH-) function at the position of attachment and which is bonded to the carbonyl group. Non-limiting examples include acetylamino, n-propionylamino, n-butyrylamino, isobutyrylamino, pivaloylamino, n-hexanoylamino.

Alkylcarbonyloxy in general represents a straight-chain or branched hydrocarbon radical having 1 to 6, preferably 1 to 4 carbon atoms which has a carbonyloxy (-CO-O-) function at the position of attachment and which is bonded to the carbonyl group. Non-limiting examples include acetyloxy, n-propionyloxy, n-butyryloxy, isobutyryloxy, pivaloyloxy, n-hexanoyloxy.

Cycloalkyl in general represents a cyclic saturated hydrocarbon radical having 3 to 8, preferably 3 to 6 carbon atoms. Non-limiting examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

<u>Cycloalkylcarbonyl</u> represents a cycloalkyl radical having 3 to 8, preferably 3 to 6 ring carbon atoms which is bonded via a carbonyl group, illustratively and preferably representing cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl and cycloheptylcarbonyl.

<u>Alkoxycarbonyl</u> illustratively and preferably represents methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, tert.-butoxycarbonyl, π-pentoxycarbonyl and n-hexoxycarbonyl.

Alkylamino represents an alkylamino radical having one or two (independently selected) alkyl substituents, illustratively and preferably representing methylamino, ethylamino, n-propylamino, isopropylamino, tert.-butylamino, n-pentylamino, n-hexylamino, N,N-dimethylamino, N,N-diethylamino, N-ethyl-N-methylamino, N-methyl-N-

10

15

20

25

n-propylamino, N-isopropyl-N-n-propylamino, N-tert.-butyl-N-methylamino, N-ethyl-N-n-pentylamino and N-n-hexyl-N-methylamino.

Alkylaminocarbonyl represents an alkylaminocarbonyl radical having one or two (independently selected) alkyl substituents, illustratively and preferably representing methylaminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, isopropylaminocarbonyl, tert.-butylaminocarbonyl, n-pentylaminocarbonyl, n-hexylaminocarbonyl, N.N-dimethylaminocarbonyl, N.N-diethylaminocarbonyl, N-ethyl-N-methylaminocarbonyl, N-isopropyl-N-n-propylaminocarbonyl, N-tert.-butyl-N-methylaminocarbonyl, N-ethyl-N-n-pentylamino-carbonyl and N-n-hexyl-N-methylaminocarbonyl.

Aryl represents a mono- to tricyclic aromatic carbocyclic radical having generally 6 to 14 carbon atoms, illustratively and preferably representing phenyl, naphthyl and phenanthrenyl. The same applies to radicals such as arylamino.

Heteroaryl per se and in heteroarylcarbonyl represents an aromatic mono- or bicyclic radical having generally 5 to 10 and preferably 5 or 6 ring atoms and up to 5 and preferably up to 4 heteroatoms selected from the group consisting of S, O and N, illustratively and preferably representing thienyl, furyl, pyrrolyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl, imidazolyl, pyridyl, pyrimidyl, pyridazinyl, indolyl, indazolyl, benzofuranyl, benzothiophenyl, quinolinyl, isoquinolinyl.

Heteroarylcarbonyl illustratively and preferably represents thienylcarbonyl, furyl-carbonyl, pyrrolylcarbonyl, thiazolylcarbonyl, oxazolylcarbonyl, isoxazolylcarbonyl, imidazolylcarbonyl, pyridylcarbonyl, pyrimidylcarbonyl, pyridazinylcarbonyl, indolylcarbonyl, indazolylcarbonyl, benzofuranylcarbonyl, benzothiophenylcarbonyl, quinolinylcarbonyl, isoquinolinylcarbonyl.

Heterocyclyl per se and in heterocyclylcarbonyl represents a mono- or polycyclic, preferably mono- or bicyclic, nonaromatic heterocyclic radical having generally 4 to

10 and preferably 5 to 8 ring atoms and up to 3 and preferably up to 2 heteroatoms and/or hetero groups selected from the group consisting of N, O, S, SO and SO₂. The heterocyclyl radicals can be saturated or partially unsaturated. Preference is given to 5- to 8-membered monocyclic saturated heterocyclyl radicals having up to two heteroatoms selected from the group consisting of O, N and S, such as illustratively and preferably tetrahydrofuranyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, perhydroazepinyl.

Heterocyclylcarbonyl illustratively and preferably represents tetrahydrofurancarbonyl, pyrrolidinecarbonyl, piperidinecarbonyl, morpholinecarbonyl, thiomorpholinecarbonyl, piperazinecarbonyl, perhydroazepinecarbonyl.

Halogen represents fluorine, chlorine, bromine and iodine.

When stated, that \underline{Y}^1 , \underline{Y}^2 , \underline{Y}^3 and \underline{Y}^4 represent CH or N, CH shall also stand for a ring carbon atom, which is substituted with a substituent \mathbb{R}^3 .

In another embodiment, the present invention relates to compounds of general formulas (I-A) and (I-B),

wherein

- A represents an aryl or heteroaryl ring,
- R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

5

10

10

15

20

represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₆-C₁₀-arylaminocarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonylamino, amino, mono- and di-C₁-C₄-alkylamino, heteroaryl, heterocyclyl and tri-(C₁-C₆-alkyl)-silyl,

R⁵ represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₂-C₆-alkenoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,

represents hydrogen, C₁-C₆-alkylcarbonyl, C₃-C₈-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino,

25 R^{6B} represents C₁-C₆-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, aryl, heteroaryl and heterocyclyl,

30 R⁷ represents halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to

three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

5

Y¹, Y², Y³ and Y⁴ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.

In another embodiment, the present invention relates to compounds of general formulas (I-A) and (I-B),

wherein

A represents a phenyl or pyridyl ring,

15

10

R¹, R² and R³ independently from each other represent hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl or trifluoromethoxy,

20

R⁴ represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl and mono-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₃-C₆-cycloalkyl, hydroxy, C₁-C₄-alkoxycarbonyl, amino, mono- or di-C₁-C₄-alkylamino, heteroaryl and heterocyclyl,

25

R⁵ represents methyl or ethyl,

30

R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl or C₃-C₆-cycloalkylcarbonyl, wherein C₁-C₆-alkylcarbonyl can be substituted with a radical selected from

the group consisting of C₃-C₆-cycloalkyl, hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino,

R^{6B} represents C₁-C₆-alkyl, which can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, phenyl, heteroaryl and heterocyclyl,

R⁷ represents halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, methyl or ethyl,

and

5

10

Y¹, Y², Y³ and Y⁴ each represent CH.

In another embodiment, the present invention relates to compounds of general formulas (I-A) and (I-B),

wherein

20 A represents a phenyl or a pyridyl ring,

R¹ and R³ each represent hydrogen,

R² represents fluoro, chloro, bromo, nitro or cyano,

R⁴ represents C₁-C₄-alkylcarbonyl or C₁-C₄-alkoxycarbonyl, wherein C₁-C₄-alkoxycarbonyl can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, mono- and di-C₁-C₄-alkylamino, heteroaryl and heterocyclyl,

R⁵ represents methyl,

30

- 12 -

- R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl or C₃-C₆-cycloalkylcarbonyl,
- R^{6B} represents C₁-C₄-alkyl, which can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, di-C₁-C₄-alkylamino, phenyl, pyridyl, imidazolyl, pyrrolidino and morpholino,
- R⁷ represents trifluoromethyl or nitro,
- 10 and

5

- Y^1 , Y^2 , Y^3 and Y^4 each represent CH.
- In another embodiment, the present invention relates to compounds according to general formulas (I-A) and (I-B), wherein A is phenyl or pyridyl.
 - In another embodiment, the present invention relates to compounds according to general formulas (I-A) and (I-B), wherein R¹ is hydrogen.
- In another embodiment, the present invention relates to compounds according to general formulas (I-A) and (I-B), wherein R² is cyano, especially wherein A is phenyl or pyridyl and R² is cyano located in para-position relative to the central dihydropyrimidinthione ring.
- In another embodiment, the present invention relates to compounds according to general formulas (I-A) and (I-B), wherein R³ is hydrogen.
 - In another embodiment, the present invention relates to compounds according to general formulas (I-A) and (I-B), wherein R^4 is C_1 - C_4 -alkoxycarbonyl, which can be substituted with dimethylamino, diethylamino, N-ethylmethylamino, pyrrolidino or piperidino, or wherein R^4 is C_1 - C_4 -alkylcarbonyl, especially methylcarbonyl.

In another embodiment, the present invention relates to compounds according to general formulas (I-A) and (I-B), wherein R⁵ is methyl.

In another embodiment, the present invention relates to compounds according to general formula (I-A), wherein R^{6A} is hydrogen.

In another embodiment, the present invention relates to compounds according to general formula (I-B), wherein R^{6B} is methyl, (1H-imidazol-2-yl)methyl, 2-(diethyl-amino)ethyl, 2-hydroxyethyl, 3-hydroxypropyl and 2-(1-pyrrolidinyl)ethyl.

In another embodiment, the present invention relates to compounds according to general formulas (I-A) and (I-B), wherein R⁷ is trifluoromethyl or nitro.

In another embodiment, the present invention relates to compounds of general formula (I-C)

wherein

10

20 Z represents CH or N, and R¹, R³ and R⁴ have the meaning indicated above.

In another embodiment, the present invention relates to compounds of general formula (I-E)

$$R^{1}$$
 R^{4}
 R^{4}
 R^{3}
 R^{3}
 CF_{3}
 $(I-E),$

wherein

5

10

Z represents CH or N,

R¹, R³ and R⁴ have the meaning indicated above, and

R^{6B} represents C₁-C₄-alkyl, which can be substituted with a radical selected from the group consisting of hydroxy, di-C₁-C₄-alkylamino, phenyl, pyridyl, imidazolyl, pyrrolidino and morpholino.

The compounds of the present invention, wherein R^{6A} in general formula (I-A) is hydrogen, can enolize into the corresponding mercaptoamidines:

The compounds of general formulas (I-A), (I-B), (I-C) and (I-E), respectively, can be synthesized by condensing compounds of general formula (II)

$$R^{1}$$
 A
 CHO (II),

wherein A, R¹ and R² have the meaning indicated above,

with compounds of general formula (III)

R⁴ O (III),

wherein R⁴ and R⁵ have the meaning indicated above,

and compounds of general formula (IV)

wherein R³, R⁷, and Y¹ to Y⁴ have the meaning indicated above,

in the presence of an acid either in a three-component / one-step reaction or sequentially to give compounds of the general formula (I-D)

$$R^{1}$$
 A
 R^{4}
 R^{5}
 NH
 R^{5}
 N
 S
 Y_{1}^{1}
 Y_{2}^{3}
 R^{7}
 R^{3}
 R^{3}
 R^{7}

5 wherein

A, R¹ to R⁵, R⁷, and Y¹ to Y⁴ have the meaning indicated above,

- optionally followed by reaction of the compounds of general formula (I-D) in the presence of a base either
 - [A] with compounds of the general formula (V)

$$R^{6A^*}-X^A$$
 (V),

15

wherein R^{6A} has the meaning of R^{6A} as indicated above, but does not represent hydrogen, and X^A represents a leaving group, such as halogen,

to give compounds of the general formula (I-A) or (I-C), respectively,

20

or

[B] with compounds of the general formula (VI)

10

15

20

25

R^{6B} – X^B (VI),

wherein R^{6B} has the meaning indicated above and X^B represents a leaving group, such as halogen, tosylate, mesylate or sulfate,

to give compounds of the general formula (I-B) or (I-E), respectively.

Suitable solvents for the process (II) + (III) + (IV) \rightarrow (I-D) are generally customary organic solvents which do not change under the reaction conditions. These include ethers such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, dioxan or tetrahydrofuran, ethyl acetate, acetone, acetonitrile, dimethylsulfoxide, dimethylformamide, or alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or t-butanol, or hydrocarbons such as pentane, hexane, cyclohexane, benzene, toluene or xylene, or halogeno-hydrocarbons such as dichloromethane, dichloroethane, trichloromethane or chlorobenzene. It is also possible to use mixtures of the above-mentioned solvents. Preferred for the process is tetrahydrofuran.

Suitable acids for the process (II) + (III) + (IV) \rightarrow (I-D) are generally inorganic or organic acids. These preferably include carboxylic acids, such as, for example, acctic acid or trifluoroacetic acid, sulfonic acids, such as, for example, methanesulfonic acid or p-toluenesulfonic acid, hydrochloric acid or phosphoric acids such as polyphosphoric acids. Preference is given to polyphosphoric acid ethyl ester or polyphosphoric acid trimethylsilyl ester. The acid is employed in an amount from 0.25 mol to 100 mol, relative to 1 mol of the compound of the general formula (III).

The process is in general carried out in a temperature range from +20°C to +150°C, preferably from +60°C to +100°C.

10

15

25

30

The process is generally carried out at normal pressure. However, it is also possible to carry it out at elevated pressure or at reduced pressure (for example in a range from 0.5 to 5 bar).

Suitable solvents for the process (I-D) + (V) \rightarrow (I-A) / (I-C) are generally customary organic solvents which do not change under the reaction conditions. These include ethers such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, dioxan or tetrahydrofuran, ethyl acetate, acetone, acetonitrile, dimethylsulfoxide, dimethylformamide, or halogeno-hydrocarbons such as dichloromethane, dichloroethane, trichloromethane or chlorobenzene. It is also possible to use mixtures of the abovementioned solvents. Preferred for the process is tetrahydrofuran.

Suitable bases for the process (I-D) + (V) \rightarrow (I-A) / (I-C) are generally inorganic or organic bases. These preferably include cyclic amines, such as, for example, piperidine, pyridine or 4-N,N-dimethylaminopyridine, or (C₁-C₄)-trialkylamines, such as, for example, triethylamine or diisopropylethylamine. Preference is given to pyridine. The base is employed in an amount from 0.1 mol to 10 mol, preferably from 1 mol to 3 mol, relative to 1 mol of the compound of general formula (I-D).

The process is in general carried out in a temperature range from -20°C to +120°C, preferably from +0°C to +80°C, especially at room temperature.

The process is generally carried out at normal pressure. However, it is also possible to carry it out at elevated pressure or at reduced pressure (for example in a range from 0.5 to 5 bar).

Suitable solvents for the process $(I-D) + (VI) \rightarrow (I-B) / (I-E)$ are generally customary organic solvents which do not change under the reaction conditions. These include ethers such as diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, dioxan or tetrahydrofuran, ethyl acetate, acetone, acetonitrile, dimethylsulfoxide, dimethylformamide, or halogeno-hydrocarbons such as dichloromethane, dichloroethane, tri-

10

25

chloromethane or chlorobenzene. It is also possible to use mixtures of the abovementioned solvents. Preferred for the process is acetone.

Suitable bases for the process (I-D) + (VI) \rightarrow (I-B) / (I-E) are generally inorganic or organic bases. These preferably include alkali hydroxides, such as lithium, sodium or potassium hydroxide, alkali or alkaline-earth carbonates, such as sodium, potassium, calcium or caesium carbonate, alkali alkoxides, such as sodium or potassium methoxide, sodium or potassium ethoxide, or sodium or potassium tert.-butoxide, or cyclic amines, such as piperidine, pyridine or 4-N,N-dimethylaminopyridine, or (C_1 - C_4)-trialkylamines, such as triethylamine or diisopropylethylamine, or hydrides such as sodium hydride. Preference is given to potassium carbonate. The base is employed in an amount from 0.1 mol to 10 mol, preferably from 1 mol to 3 mol, relative to 1 mol of the compound of general formula (I-D).

- To enhance the reactivity of the compounds of general formula (VI) in cases where X^B is chloride or bromide, the process (I-D) + (VI) → (I-B) / (I-E) is preferably carried out in the presence of catalytic amounts of iodide sources, such as potassium iodide or tetrabutylammonium iodide.
- The process is in general carried out in a temperature range from 0°C to +150°C, preferably from +0°C to +80°C, especially at room temperature.

The process is generally carried out at normal pressure. However, it is also possible to carry it out at elevated pressure or at reduced pressure (for example in a range from 0.5 to 5 bar).

The compounds of the general formulas (II), (III), (IV), (V) and (VI) are known per se, or they can be prepared by customary methods.

The above-mentioned method can be illustrated by the following scheme:

The compounds according to the invention exhibit an unforeseeable, useful pharmacological and pharmacokinetic activity spectrum. They are therefore suitable for use as medicaments for the treatment and/or prophylaxis of disorders in humans and animals.

Surprisingly, the compounds of the present invention show human neutrophil elastase (HNE) inhibitory activity and are therefore suitable for the preparation of medicaments for the treatment of diseases associated with HNE activity. They may thus provide an effective treatment of acute and chronic inflammatory processes, such

10

æ A 30 200

5

10

15

20

25

as rheumatoid arthritis, atherosclerosis, and especially of acute and chronic pulmonary diseases, such as lung fibrosis, cystic fibrosis, pneumonia, acute respiratory distress syndrome (ARDS), in particular pulmonary emphysema, including smoking-induced emphysema, and chronic obstructive pulmonary diseases (COPD). They may also provide an effective treatment of brain trauma, cancer and other conditions in which neutrophil participation is involved.

The present invention further provides medicaments containing at least one compound according to the invention, preferably together with one or more pharmacologically safe excipient or carrier substances, and also their use for the above-mentioned purposes.

The active component can act systemically and/or locally. For this purpose, it can be applied in a suitable manner, for example orally, parenterally, pulmonally, nasally, sublingually, lingually, buccally, rectally, transdermally, conjunctivally, otically or as an implant.

For these application routes, the active component can be administered in suitable application forms.

Useful oral application forms include application forms which release the active component rapidly and/or in modified form, such as for example tablets (non-coated and coated tablets, for example with an enteric coating), capsules, sugar-coated tablets, granules, pellets, powders, emulsions, suspensions, solutions and aerosols.

Parenteral application can be carried out with avoidance of an absorption step (intravenously, intraarterially, intracardially, intraspinally or intralumbarly) or with

inclusion of an absorption (intramuscularly, subcutaneously, intracutaneously, percutaneously or intraperitoneally). Useful parenteral application forms include injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates and sterile powders.

10 .

15

20

25

30

Forms suitable for other application routes include for example inhalatory pharmaceutical forms (including powder inhalers, nebulizers), nasal drops/solutions, sprays; tablets or capsules to be administered lingually, sublingually or buccally, suppositories, ear and eye preparations, vaginal capsules, aqueous suspensions (lotions, shake mixtures), lipophilic suspensions, ointments, creams, milk, pastes, dusting powders or implants.

The active components can be converted into the recited application forms in a manner known per se. This is carried out using inert non-toxic, pharmaceutically suitable excipients. These include inter alia carriers (for example microcrystalline cellulose), solvents (for example liquid polyethylene glycols), emulsifiers (for example sodium dodecyl sulphate), dispersing agents (for example polyvinyl-pyrrolidone), synthetic and natural biopolymers (for example albumin), stabilizers (for example antioxidants such as ascorbic acid), colorants (for example inorganic pigments such as iron oxides) or taste and/or odor corrigents.

For human use, in the case of oral administration, it is recommendable to administer doses of from 0.001 to 50 mg/kg, preferably of 0.01 mg/kg to 20 mg/kg. In the case of parenteral administration, such as, for example, intravenously or via mucous membranes nasally, buccally or inhalationally, it is recommendable to use doses of 0.001 mg/kg to 0.5 mg/kg.

In spite of this, it can be necessary in certain circumstances to depart from the amounts mentioned, namely as a function of body weight, application route, individual behaviour towards the active component, manner of preparation and time or interval at which application takes place. It can for instance be sufficient in some cases to use less than the aforementioned minimum amount, while in other cases the upper limit mentioned will have to be exceeded. In the case of the application of larger amounts, it can be advisable to divide them into a plurality of individual doses spread through the day.

The percentages in the tests and examples which follows are, unless otherwise stated, by weight; parts are by weight. Solvent ratios, dilution ratios and concentrations reported for liquid/liquid solutions are each based on the volume.

A. Evaluation of physiological activity

The potential of the compounds of the invention to inhibit neutrophil elastase activity may be demonstrated, for example, using the following assays:

I. In vitro assays of human neutrophil elastase (HNE)

Assay contents

5

25

30

assay buffer: 0.1 M HEPES-NaOH buffer pH 7.4, 0.5 M NaCl, 0.1% (w/v) bovine serum albumin;

suitable concentration (see below) of HNE (18 U/mg lyophil., #20927.01, SERVA Electrophoresis GmbH, Heidelberg, Germany) in assay buffer;

suitable concentration (see below) of substrate in assay buffer;

suitable concentration of test compounds diluted with assay buffer from a 10 mM stock solution in DMSO.

Example A

20 In vitro inhibition of HNE using a fluorogenic peptide substrate (continuous read-out signal, 384 MTP assay format):

In this protocol, the elastase substrate MeOSuc-Ala-Ala-Pro-Val-AMC (#324740, Calbiochem-Novabiochem Corporation, Merck KGaA, Darmstadt, Germany) is used. The test solution is prepared by mixing 10 μl of test compound dilution, 20 μl of HNE enzyme dilution (final concentration 8 - 0.4 μU/ml, routinely 2.1 μU/ml) and 20 μl of substrate dilution (final concentration 1 mM - 1 μM, routinely 20 μM), respectively. The solution is incubated for 0 - 2 hrs at 37°C (routinely one hour). The fluorescence of the liberated AMC due to the enzymatic reaction is measured at 37°C (TECAN spectra fluor plus plate reader). The rate of increase of the fluorescence (ex. 395 nm, em. 460 nm) is proportional to elastase activity. IC₅₀ values are determined

by RFU-versus-[I] plots. K_m and $K_{m(app.)}$ values are determined by Lineweaver-Burk plots and converted to K_i values by Dixon plots.

The preparation examples had IC50 values within the range of 5 nM - 20 μ M in this assay. Representative data are given in Table 1:

Table 1

5

Example No.	IC ₅₀ [nM]
1.	13
3	9
4	23
6	70
7	10
9	40
12	100
14	10
15	5
19	30
29	10
31	80
33	20
58	12

10 Example B

In vitro inhibition of HNE using a fluorogenic, unsoluble elastin substrate (discontinuous read-out signal, 96 MTP assay format):

In this protocol the elastase substrate elastin-fluorescein (#100620, ICN Biomedicals GmbH, Eschwege, Germany) is used. The test solution is prepared by mixing 3 μl of test compound dilution, 77 μl of HNE enzyme dilution (final concentration

10

15

20

25

30

0.22 U/ml - 2.2 mU/ml, routinely 21.7 μU/ml) and 80 μl substrate suspension (final concentration 2 mg/ml). The suspension is incubated for 0 - 16 hrs at 37°C (routinely four hours) under slightly shaking conditions. To stop the enzymatic reaction, 160 μl of 0.1 M acetic acid are added to the test solution (final concentration 50 mM). The polymeric elastin-fluorescein is pulled down by centrifugation (Eppendorf 5804 centrifuge, 3.000 rpm, 10 min). The supernatant is transferred into a new MTP and the fluorescence of the liberated peptide fluorescein due to the enzymatic reaction is measured (BMG Fluostar plate reader). The rate of fluorescence (ex. 490 nm, em. 520 nm) is proportional to elastase activity. IC₅₀ values are determined by RFU-versus-[I] plots.

II. In vitro PMN elastolysis assay

This assay is used to determine the elastolytic potential of human polymorphonuclear cells (PMNs) and assess the proportion of degradation due to neutrophil elastase [cf. Z.W. She et al., Am. J. Respir. Cell. Mol. Biol. 9, 386-392 (1993)].

Tritiated elastin, in suspension, is coated on to a 96 well plate at 10 μg per well. Test and reference [ZD-0892 (J. Med. Chem. 40, 1876-1885, 3173-3181 (1997), WO 95/21855) and α1 protease inhibitor (α1PD)] compounds are added to the wells at the appropriate concentrations. Human PMNs are separated from peripheral venous blood of healthy donors and resuspended in culture media. The neutrophils are added to the coated wells at concentrations ranging between 1 x 10⁶ to 1 x 10⁵ cells per well. Porcine pancreatic elastase (1.3 μM) is used as a positive control for the assay, and α1PI (1.2 μM) is used as the positive inhibitor of neutrophil elastase. The cellular control is PMNs without compound at each appropriate cell density. The cells plus compounds are incubated in a humidified incubator at 37°C for 4 hours. The plates are centrifuged to allow the harvest of cell supernatant only. The supernatant is transferred in 75 μl volumes to corresponding wells of a 96 well LumaplateTM (solid scintillant containing plates). The plates are dried until no liquid is visible in the wells and read in a beta counter for 3 minutes per well.

Elastolysis of the 3H -elastin results in an increase in counts in the supernatant. An inhibition of this elastolysis shows a decrease, from the cellular control, of tritium in the supernatant. $\alpha 1PI$ gave $83.46 \pm 3.97\%$ (mean \pm s.e.m.) inhibition at $1.2 \mu M$ (n = 3 different donors at 3.6×10^5 cells per well). IC₅₀ values were obtained for the reference compound ZD-0892 of 45.50 ± 7.75 nM (mean \pm s.e.m.) (n = 2 different donors at 3.6×10^5 cells per well).

Given that ZD-0892 is a selective inhibitor of PMN elastase along with the data from α 1PI inhibition, these results indicate that the majority of elastin degradation by PMNs is due to the release of neutrophil elastase, and not to another elastolytic enzyme such as matrix metalloproteases (MMPs). The compounds of this invention were evaluated for their inhibitory activity in this HNE-dependent model of neutrophil elastolysis.

15

10

5

III. In vivo model of acute lung injury in the rat

Instillation of human neutrophil elastase (HNE) into rat lung causes acute lung damage. The extent of this injury can be assessed by measuring lung haemorrhage.

20

25

30

Rats are anaesthetised with Hypnorm/Hypnovel/water and instilled with HNE or saline delivered by microsprayer into the lungs. Test compounds are administered by intravenous injection, by oral gavage or by inhalation at set times prior to the administration of HNE. Sixty minutes after the administration of elastase animals are killed by an anaesthetic overdose (sodium pentobarbitone) and the lungs lavaged with 2 ml heparinised phosphate buffered saline (PBS). Bronchoalvcolar lavage (BAL) volume is recorded and the samples kept on ice. Each BAL sample is centrifuged at 900 r.p.m. for 10 minutes at 4-10°C. The supernatant is discarded and the cell pellet resuspended in PBS and the sample spun down again. The supernatant is again discarded and the cell pellet resuspended in 1 ml 0.1% cetyltrimethylammonium bromide (CTAB) / PBS to lyse the cells. Samples are frozen until blood

content is assayed. Prior to the haemorrhage assay the samples are defrosted and mixed. 100 µl of each sample are placed into a separate well of a 96 well flat-bottomed plate. All samples are tested in duplicate. 100 µl 0.1% CTAB/PBS is included as a blank. The absorbance of the well contents is measured at 415 nm using a spectrophotometer. A standard curve is constructed by measuring the OD at 415 nm of different concentrations of blood in 0.1% CTAB/PBS. Blood content values are calculated by comparison to the standard curve (included in each plate) and normalised for the volume of BAL fluid retrieved.

The compounds of this invention were evaluated intravenously, orally or by inhalation for their inhibitory activity in this model of HNE-induced haemorrhage in the rat.

B. Examples

Abbreviations:

DMF N,N-dimethylformamide

DMSO dimethylsulfoxide

EI electron-impact ionisation (for MS)

ESI electro-spray ionisation (for MS)

h hour(s)

HPLC high pressure liquid chromatography

LC-MS liquid chromatography coupled with mass spectroscopy

MS mass spectroscopy

NMR nuclear magnetic resonance

of th. of theoretical (yield)

RP reverse phase (for HPLC)

R_t retention time (for HPLC)

THF tetrahydrofuran

General methods:

All reactions were carried out under an argon atmosphere unless otherwise noted. Solvents were used as purchased from commercial sources without further purification. 'Silica gel' or 'Silica' refers to Silica gel 60 (0.040 mm-0.063 mm) from Merck KGaA company, Germany. Compounds purified over preparative HPLC were purified over a RP18-column with acetonitrile and water as the eluent, using a 1:9 to 9:1 gradient.

5

-30 -

LC-MS and HPLC methods:

Method 1:

Instrument: Micromass Platform LCZ, HP1100; Column: Symmetry C18, 50 mm x 2.1 mm, 3.5 μ m; Eluent A: water + 0.05% formic acid, Eluent B: acetonitrile + 0.05% formic acid; Gradient: 0.0 min 90% A \Rightarrow 4.0 min 10% A \Rightarrow 6.0 min 10% A; Oven: 40°C; Flow: 0.5 ml/min; UV-detection: 208-400 nm.

Method 2:

Instrument MS: Micromass ZQ; Instrument HPLC: Waters Alliance 2790; Column: Uptisphere HDO, 50 mm x 2.0 mm, 3.0 μm; Eluent A: water + 0.05% formic acid, Eluent B: acetonitrile + 0.05% formic acid; Gradient: 0.0 min 5% B → 2.0 min 40% B → 4.5 min 90% B → 5.5 min 90% B; Temperature: 45°C; Flow: 0.75 ml/min; UV-detection: 210 nm.

15

20

5

Method 3:

Instrument: Micromass Platform LCZ, HP1100; Column: Grom-Sil 120 ODS-4 HE, 50 mm x 2.0 mm, 3 μ m; Eluent A: water + 0.05% formic acid, Eluent B: acetonitrile + 0.05% formic acid; Gradient: 0.0 min 100% A \rightarrow 0.2 min 100% A \rightarrow 2.9 min 30% A \rightarrow 3.1 min 10% A \rightarrow 4.5 min 10% A; Temperature: 55°C; Flow: 0.8 ml/min; UV-detection: 208-400 nm.

Method 4:

Instrument: Micromass Quattro LCZ with HPLC Agilent Series 1100; Column:

Uptisphere HDO, 50 mm x 2.0 mm, 3 μm; Eluent A: 1 l water + 1 ml 50% formic acid, Eluent B: 1 l acetonitrile + 1 ml 50% formic acid; Gradient: 0.0 min 100% A → 0.2 min 100% A → 2.9 min 30% A → 3.1 min 10% A → 4.5 min 10% A; Temperature: 55°C; Flow: 0.8 ml/min; UV-detection: 208-400 nm.

Method 5:

Instrument MS: Micromass ZQ; Instrument HPLC: Waters Alliance 2790; Column: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μ m; Eluent B: acetonitrile + 0.05% formic acid, Eluent A: water + 0.05% formic acid; Gradient: 0.0 min 5% B \rightarrow 2.0 min 40% B \rightarrow 4.5 min 90% B \rightarrow 5.5 min 90% B; Temperature: 45 °C; Flow: 0.0 min 0.75 ml/min \rightarrow 4.5 min 0.75 ml/min \rightarrow 5.5 min 1.25 ml/min; UV-detection: 210 nm.

Method 6:

5

15

20

Instrument MS: Micromass ZQ; Instrument HPLC: HP 1100 Series; UV DAD; Column: Grom-Sil 120 ODS-4 HE, 50 mm x 2 mm, 3.0 μm; Eluent A: water + 500 μl 50% formic acid / l, Eluent B: acetonitrile + 500 μl 50% formic acid / l; Gradient: 0.0 min 0% B → 2.9 min 70% B → 3.1 min 90% B → 4.5 min 90% B; Temperature: 50°C; Flow: 0.8 ml/min; UV-detection: 210 mm.

Method 7:

Instrument: Micromass Platform LCZ with HPLC Agilent Series 1100; Column: Grom-Sil 120 ODS-4 HE, 50 mm x 2.0 mm, 3 μ m; Eluent A: 1 l water + 1 ml formic acid (50%), Eluent B: 1 l acetonitrile + 1 ml formic acid (50%); Gradient: 0.0 min 100% A \rightarrow 0.2 min 100% A \rightarrow 2.9 min 30% A \rightarrow 3.1 min 10% A \rightarrow 4.5 min 10% A; Temperature: 55°C; Flow: 0.8 ml/min; UV-detection: 208-400 nm.

Method 8:

Instrument: Micromass TOF-MUX-Interface quadruple parallel injection with HPLC

Waters 600; Column: Uptisphere HDO, 50 mm x 2.0 mm, 3.0 μm; Eluent A: 1 l

water + 1 ml formic acid (50%), Eluent B: 1 l acetonitrile + 1 ml formic acid (50%);

Gradient: 0.0 min 100% A → 0.2 min 100% A → 2.9 min 30% A → 3.1 min 10% A

→ 4.5 min 10% A → 4.6 min 100% A → 6.5 min 100% A; Temperature: room temperature; Flow: 0.8 ml/min; UV-detection: 210 nm.

Preparation Examples:

Example 1

5

10

15

4-{5-Acetyl-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-4-pyrimidinyl}benzonitrile

3-Trifluoromethylphenyl thiourea (200 mg, 0.91 mmol), 4-cyanobenzaldehyde (238.2 mg, 1.82 mmol) and 2,4-pentanedione (181.9 mg, 1.82 mmol) are dissolved in 5 ml THF. Ethyl polyphosphate (0.30 g) is added and the reaction mixture is stirred at reflux temperature overnight. After cooling to room temperature, the reaction is quenched with 10 ml of water and extracted with 10 ml ethyl acetate (2 x). The combined organic layers are dried with sodium sulfate and the solvent is removed in vacuo. The product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 53 mg (14% of th.)

LC-MS (method 1): $R_t = 4.48 \text{ min.}$

MS (ESIpos): $m/z = 416 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): δ = 10.32 (d, 1H); 7.93 (d, 2H); 7.43-7.84 (m, 6H); 5.48 (d, 1H); 2.26 (s, 3H); 1.99 (s, 3H) ppm.

Example 2

Methyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate

5

10

15

3-Trifluoromethylphenyl thiourea (200 mg, 0.91 mmol), 4-cyanobenzaldehyde (238.2 mg, 1.82 mmol) and methyl acetoacetate (211 mg, 1.82 mmol) are dissolved in 5 ml THF. Ethyl polyphosphate (0.30 g) is added and the reaction mixture is stirred at reflux temperature overnight. After cooling to room temperature, the reaction is quenched with 10 ml of water and extracted with 10 ml ethyl acetate (2 x). The combined organic layers are dried with sodium sulfate and the solvent is removed *in vacuo*. The product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 315 mg (80% of th.)

LC-MS (method 1): $R_t = 4.70 \text{ min.}$

MS (ESIpos): $m/z = 432 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 10.24$ (d, 1H); 7.92 (d, 2H); 7.54-7.83 (m, 6H); 5.40 (d, 1H); 3.63 (s, 3H); 2.06 (s, 3H) ppm.

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate

5

10

3-Trifluoromethylphenyl thiourea (3.00 g, 13.6 mmol), 4-cyanobenzaldehyde (3.57 g, 27.3 mmol) and ethyl acetoacetate (3.55 g, 27.3 mmol) are dissolved in 50 ml THF. Ethyl polyphosphate (4.50 g) is added and the reaction mixture is stirred at reflux temperature overnight. After cooling to room temperature, it is quenched with 50 ml of water and extracted with 100 ml ethyl acetate (2 x). The combined organic layers are dried with sodium sulfate and the solvent is removed *in vacuo*. The product is purified via preparative HPLC (RP18-column; eluent; acetonitrile-water, gradient 10:90 to 90:10).

15 Yield: 3.15 g (52% of th.)

LC-MS (method 2): $R_t = 4.10$ min.

MS (ESIpos): $m/z = 446 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): δ = 10.18 (d, 1H); 7.92 (d, 2H); 7.45-7.82 (m, 6H); 5.40 (d, 1H); 4.08 (q, 2H); 2.05 (s, 3H); 1.12 (t, 3H) ppm.

4-(4-Cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetra-hydro-5-pyrimidinecarboxamide

5

10

3-Trifluoromethylphenyl thiourea (200 mg, 0.91 mmol), 4-cyanobenzaldehyde (238.2 mg, 1.82 mmol) and 3-oxobutanamide (183 mg, 1.82 mmol) are dissolved in 5 ml THF. Ethyl polyphosphate (0.30 g) is added and the reaction mixture is stirred at reflux temperature overnight. After cooling to room temperature, it is quenched with 10 ml of water and extracted with 10 ml ethyl acetate (2 x). The combined organic layers are dried with sodium sulfate and the solvent is removed *in vacuo*. The product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

15 Yield: 29 mg (8% of th.)

LC-MS (method 1): $R_t = 4.35$ min.

MS (ESIpos): $m/z = 417 (M+H)^+$

¹H-NMR (200 MHz, DMSO-d₆): δ = 9.86 (d, 1H); 7.93 (d, 2H); 7.76 (d, 1H); 7.67 (t, 1H); 7.24-7.62 (m, 4H); 7.59 (d, 2H); 5.40 (d, 1H); 1.74 (s, 3H) ppm.

4-(4-Cyanophenyl)-N,6-dimethyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxamide

5

10

3-Trifluoromethylphenyl thiourea (200 mg, 0.91 mmol), 4-cyanobenzaldehyde (238.2 mg, 1.82 mmol) and N-methyl-3-oxobutanamide (299 mg, 1.82 mmol) are dissolved in 5 ml THF. Ethyl polyphosphate (0.30 g) is added and the reaction mixture is stirred at reflux temperature overnight. After cooling to room temperature, the reaction is quenched with 10 ml of water and extracted with 10 ml ethyl acetate (2 x). The combined organic layers are dried with sodium sulfate and the solvent is removed *in vacuo*. The product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

15 Yield: 104 mg (27% of th.)

LC-MS (method 1): $R_t = 4.10$ min.

MS (ESIpos): $m/z = 431 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): δ = 9.89 (d, 1H); 7.93 (d, 2H); 7.54 (d, 2H); 7.38-8.12 (m, 5H); 5.36 (d, 1H); 2.59 (d, 3H); 1.66 (s, 3H) ppm.

Example 6 -

4-(4-Cyanophenyl)-N,N,6-trimethyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxamide

5

10

3-Trifluoromethylphenyl thiourea (200 mg, 0.91 mmol), 4-cyanobenzaldehyde (238.2 mg, 1.82 mmol) and N,N-dimethyl-3-oxobutanamide (235 mg, 1.82 mmol) are dissolved in 5 ml THF. Ethyl polyphosphate (0.30 g) is added and the reaction mixture is stirred at reflux temperature overnight. After cooling to room temperature, it is quenched with 10 ml of water and extracted with 10 ml ethyl acetate (2 x). The combined organic layers are dried with sodium sulfate and the solvent is removed in vacuo. The product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

15 Yield: 270 mg (67% of th.)

LC-MS (method 1): $R_t = 4.20 \text{ min.}$

MS (ESIpos): $m/z = 445 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): δ = 9.77 (d, 1H); 7.92 (d, 2H); 7.54 (d, 2H); 7.49-7.83 (m, 4H); 5.19 (br. s, 1H); 3.33 (s, 3H); 2.78 (s, 3H); 1.43 (s, 3H) ppm.

Ethyl 4-(4-cyanophenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 1000 mg, 2.24 mmol), iodomethane (350.5 mg, 2.47 mmol) and potassium carbonate (341 mg, 1.82 mmol) are dissolved in 20 ml acetone. The reaction mixture is stirred at room temperature overnight and the solvent is removed *in vacuo*. The product is purified by column chromatography (silica gel; eluent: cyclohexane-ethyl acetate, gradient 90:10 to 50:50).

Yield: 998 mg (97% of th.)

LC-MS (method 3): $R_t = 4.20$ min.

15 MS (ESIpos): $m/z = 460 (M+H)^+$

¹H-NMR (200 MHz, DMSO-d₆): δ = 7.85 (d, 2H); 7.69-7.94 (m, 4H); 7.60 (d, 2H); 5.76 (s, 1H); 4.04 (q, 2H); 2.14 (s, 3H); 2.01 (s, 3H); 1.11 (t, 3H) ppm.

5

10

15

Methyl 4-(4-cyanophenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoromethyl)-phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

Ethyl 4-(4-cyanophenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate (Example 7; 100 mg, 0.22 mmol) and sodium methoxide (117.6 mg, 2.18 mmol) are dissolved in 5 ml methanol and stirred at reflux temperature for 3 h. The reaction is quenched with 10 ml of water and the aqueous phase is extracted with 10 ml methylene chloride (2 x). After drying with sodium sulfate, the solvent is removed in vacuo and the product is purified by column chromatography (silica gel; eluent: cyclohexane-ethyl acetate, gradient 90:10 to 50:50).

Yield: 60 mg (62% of th.)

LC-MS (method 2): $R_t = 4.27$ min.

MS (ESIpos): $m/z = 446 (M+H)^{+}$.

Ethyl 4-(4-cyanophenyl)-6-methyl-2-(ethylsulfanyl)-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 100 mg, 0.22 mmol), iodoethane (38.5 mg, 0.25 mmol) and potassium carbonate (34.1 mg, 0.25 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent is removed in vacuo and the product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 62 mg (58% of th.)

LC-MS (method 2): $R_t = 4.67$ min.

15 MS (ESIpos): $m/z = 474 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 7.85$ (d, 2H); 7.68-7.94 (m, 4H); 7.60 (d, 2H); 5.75 (s, 1H); 4.03 (q, 2H); 2.74 (m, 2H); 2.01 (s, 3H); 1.11 (t, 3H); 1.01 (t, 3H) ppm.

Ethyl 4-(4-cyanophenyl)-6-methyl-2-(propylsulfanyl)-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 100 mg, 0.22 mmol), 1-iodopropane (42.0 mg, 0.25 mmol) and potassium carbonate (34.1 mg, 0.25 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent is removed *in vacuo* and the product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 45 mg (41% of th.)

LC-MS (method 3): $R_t = 4.45$ min.

15 MS (ESIpos): $m/z = 488 (M+H)^{+}$.

Ethyl 4-(4-cyanophenyl)-6-methyl-2-(butylsulfanyl)-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 100 mg, 0.22 mmol), 1-iodobutane (45.0 mg, 0.25 mmol) and potassium carbonate (34.1 mg, 0.25 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent is removed in vacuo and the product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 53 mg (47% of th.)

LC-MS (method 3): $R_t = 4.58$ min.

15 MS (ESIpos): $m/z = 402 (M+H)^{+}$.

Ethyl 4-(4-cyanophenyl)-6-methyl-2-[(4-pyridinylmethyl)sulfanyl]-1-[3-(trifluoro-methyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 100 mg, 0.22 mmol), 4-(bromomethyl)pyridine hydrobromide (62.5 mg, 0.25 mmol), N,N,N-tributyl-1-butan-aminium iodide (7 mg, 0.03 mmol) and potassium carbonate (65.2 mg, 0.47 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent is removed *in vacuo* and the product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 34 mg (28% of th.)

15 LC-MS (method 3): $R_t = 3.92 \text{ min.}$

MS (ESIpos): $m/z = 537 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): δ = 8.34 (m, 2H); 7.89 (m, 2H); 7.82 (d, 2H); 7.72 (m, 2H); 7.57 (d, 2H); 7.53 (m, 1H); 7.13 (dd, 1H); 5.78 (s,1H); 3.94-4.14 (m, 4H); 2.00 (s, 3H); 1.10 (t, 3H) ppm.

Ethyl 4-(4-cyanophenyl)-6-methyl-2-[(3-pyridinylmethyl)sulfanyl]-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 100 mg, 0.22 mmol), 3-(chloromethyl)pyridine hydrochloride (40.5 mg, 0.25 mmol), N,N,N-tributyl-1-butan-aminium iodide (7 mg, 0.03 mmol) and potassium carbonate (65.2 mg, 0.47 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent is removed *in vacuo* and the product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 25 mg (21% of th.)

15 LC-MS (method 2): $R_t = 3.93$ min.

MS (ESIpos): $m/z = 537 (M+H)^{+}$.

5

10

15

Ethyl 4-(4-cyanophenyl)-2-{[2-(diethylamino)ethyl]sulfanyl}-6-methyl-1-[3-(tri-fluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 100 mg, 0.22 mmol), N-(2-bromoethyl)-N,N-diethylamine hydrobromide (64.5 mg, 0.25 mmol), N,N,N-tributyl-1-butanaminium iodide (7 mg, 0.03 mmol) and potassium carbonate (65.2 mg, 0.47 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight.

The solvent is removed *in vacuo* and the product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 15 mg (12% of th.)

LC-MS (method 2): $R_t = 3.17$ min.

MS (ESIpos): $m/z = 545 (M+H)^{+}$.

Ethyl 4-(4-cyanophenyl)-2-[(1H-imidazol-2-ylmethyl)sulfanyl]-6-methyl-1-[3-(tri-fluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 3; 100 mg, 0.22 mmol), 2-(bromomethyl)-1H-imidazole hydrobromide (64.5 mg, 0.25 mmol), N,N,N-tributyl-1-butan-aminium iodide (7 mg, 0.03 mmol) and potassium carbonate (65.2 mg, 0.47 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent is removed by distillation *in vacuo* and the product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 13 mg (11% of th.)

15 LC-MS (method 3): $R_t = 3.74$ min.

MS (ESIpos): $m/z = 526 (M+H)^{+}$.

2-Cyanoethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate

dioxane. To this solution are added 4-cyanobenzaldehyde (5.95 g, 45.4 mmol), 3-trifluoromethylphenyl thiourea (5 g, 22.7 mmol) and 2-cyanoethyl acetoacetate (6.4 g, 45.4 mmol). The reaction mixture is stirred at 80°C for 3 hours. After evaporation of the dioxane solvent, the residue is dissolved in ethyl acetate and washed with saturated aqueous sodium bicarbonate solution, 38% sodium bisulfite solution and saturated sodium chloride solution. After drying with magnesium sulfate and evaporating off the solvent, the residue is dissolved in 15 ml methanol and purified by preparative HPLC (column: Kromasil 100 C 18 5 μm, 30 mm x 150 mm; precolumn: Gromsil ODS 4 HE 15 μm, 10 mm x 20 mm; flow rate: 66 ml/min; solvent A: acetonitrile, solvent B: water; gradient: 0 min 10% A, 3 min 10% A, 11 min 90% A, 13 min 90% A, 13.2 min 10% A, 15 min 10% A; wavelength:

220 nm; injection volume: approx. 2000 µl; number of injections: 12). The product

containing fractions are combined and concentrated in vacuo.

Under argon, trimethylsilyl polyphosphate (10.6 g) is dissolved in 75.7 ml absolute

Yield: 7.73 g (72.3% of th.)

MS (ESIpos): $m/z = 471 (M+H)^{+}$

5

10

15

20

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 10.3$ (d, 1H); 7.9 (d, 2H); 7.4-7.8 (m, 6H); 5.4 (d, 1H); 4.25 (m, 2H); 2.9 (tr, 2H); 2.1 (s, 3H) ppm.

In analogy to the procedure of Example 16, the following compounds are prepared:

5

ExNo.	Structure	Starting	Yield	Mass
		materials	[%]	[M+H] ⁺
17	H ₃ C NH S	4-cyano- benzaldehyde; 3-chlorophenyl thiourea; ethyl acetoacetate	71	412
18	H ₃ C NH H ₃ C NS	3-nitro- benzaldehyde; 3-trifluoro- methylphenyl thiourea; ethyl acetoacetate	74	466

4-(4-Cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetra-hydropyrimidine-5-carboxylic acid

5

2-Cyanoethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 16; 47 mg, 0.1 mmol) is dissolved in 0.5 ml dioxane. After addition of 1,8-diazabicyclo[5.4.0]undec-7-ene
(15 μl, 15 mg, 0.1 mmol), the reaction mixture is stirred at room temperature for 3 hours. The reaction mixture is diluted with 1 N hydrochloric acid and extracted with ethyl acetate. After drying with magnesium sulfate and evaporating off the solvent, the residue is purified by preparative HPLC (column: Nucleosil 100-5 C 18 Nautilus 20 mm x 50 mm, 5 μm; solvent A: acetonitrile, solvent B: water + 0.1% formic acid; flow rate: 25 ml/min; gradient: 0 min 10% A, 2 min 10% A, 6 min 90% A, 7 min 90% A, 7.1 min 10% A, 8 min 10% A; wavelength: 220 nm; injection volume: approx. 550 μl; number of injections: 1). The product containing fractions are combined and concentrated in vacuo.

Yield: 7.73 g (72.3 % of th.)

20 MS (EI): $m/z = 417 (M+H)^+$

LC-MS (method 1): $R_t = 4.2 \text{ min.}$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 12.8$ (broad s, 1H); 10.15 (d, 1H); 7.9 (d, 2H); 7.4-7.8 (m, 6H); 5.4 (d, 1H); 2.1 (s, 3H) ppm.

Example 20

5 4-{5-(1-Hydroxyethyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-4-pyrimidinyl}benzonitrile

4-{5-Acetyl-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-4-pyrimidinyl}benzonitrile (Example 1; 100 mg, 0.24 mmol) is dissolved in 3 ml methanol, and sodium borohydride (10 mg, 0.26 mmol) is added. After stirring at room temperature for 1 h, the crude mixture is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10) to give the product as a 1.6:1-mixture of the two diastereomers.

Yield: 86 mg (86% of th.)

LC-MS (method 4): $R_t = 4.10$ min.

MS (ESIpos): $m/z = 418 (M+H)^{+}$.

5

10

15

Ethyl 4-(4-cyano-2-methylphenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate

4-Cyano-2-methylbenzaldehyde (200 mg, 1.38 mmol), 3-trifluoromethylphenyl thiourea (276 mg, 1.25 mmol), ethyl 3-oxobutanoate (179 mg, 1.38 mmol) and trimethylsilyl polyphosphate (225 mg) in 5 ml THF are stirred overnight at reflux temperature. The reaction mixture is cooled to room temperature, and after addition of 20 ml 0.5 M hydrochloric acid the aqueous phase is extracted with ethyl acetate (2 x 20 ml). The combined organic layers are washed with saturated aqueous sodium carbonate solution and dried with sodium sulfate. The solvent is removed in vacuo

and the crude product is purified via preparative HPLC (RP18-column; eluent: aceto-

nitrile-water, gradient 10:90 to 90:10).

Yield: 320 mg (56% of th.)

LC-MS (method 5): $R_t = 4.32 \text{ min.}$

MS (ESIpos): $m/z = 460 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 10.09$ (d, 1H); 7.63-7.86 (m, 7H); 5.61 (d, 1H);

20 3.97 (q, 2H); 2.56 (s, 3H); 2.08 (s, 3H); 1.00 (t, 3H) ppm.

4-{5-Acetyl-6-methyl-3-propionyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-4-pyrimidinyl}benzonitrile

5

10

4-{5-Acetyl-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-4-pyrimidinyl}benzonitrile (Example 1; 100 mg, 0.24 mmol) is dissolved in 3 ml THF. After addition of pyridine (21 mg, 0.26 mmol) and propancyl chloride (22 mg, 0.24 mmol), the reaction mixture is stirred at room temperature overnight and is then quenched with 10 ml water. After extraction with ethyl acetate (2 x 10 ml), the organic layer is dried with sodium sulfate, and the crude product is purified via flash chromatography on silica gel using a gradient of cyclohexane/ethyl acetate.

Yield: 78 mg (69% of th.)

15 LC-MS (method 6): $R_t = 4.23$ min.

MS (ESIpos): $m/z = 472 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 7.44$ -7.97 (m, 8H); 6.66 (s, 1H); 3.28 (m, 1H); 2.87 (m, 1H); 2.45 (s, 3H); 2.09 (s, 3H); 1.17 (t, 3H) ppm.

In analogy to the procedure of Example 22, the following compounds are prepared:

ExNo.	- Structure	Starting	Yield	R _i [min]	Mass
	<u>.</u>	materials	[%]	(method)	[M+H] ⁺
23	H ₃ C N S	Example 1; cyclopropyl carbonyl chloride	74	4.22 (6)	484
24	H ₃ C N S	Example 1; cyclopentyl- acetyl chloride	74	4.73 (6)	526
25	H ₃ C N S	Example 1; cyclobutyl carbonyl chloride	42 .	4.44 (6)	498

ExNo.	Structure	Starting	Yield	Rt [min]	Mass
FX-140.		materials	[%]	(method)	[M+H] ⁺
26	H ₃ C O CH ₃	Example 3; propanoyl chloride	68	4.30 (7)	502
27	H ₃ C N S	Example 3; cyclopropyl carbonyl chloride	70	4.30 (7)	514
28	CH ₃ O O O O O O O O O O O O O O O O O O O	Example 3; cyclopentyl- acetyl chlorid	61 le	4.60 (7	556

ExNo.	Structure	Starting	Yield	Rt [min]	Mass
	·	materials	[%]	(method)	[M+H] ⁺
29	CH ₃ O O O O O O O O O O O O O O O O O O O	Example 3; cyclobutyl carbonyl chloride	59	4.40 (7)	528

4-{5-Acetyl-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoromethyl)phcnyl]-1,4-dihydro-4-pyrimidinyl}benzonitrile

4-{5-Acetyl-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-4-pyrimidinyl}benzonitrile (Example 1; 100 mg, 0.24 mmol), 1-iodomethane (38.0 mg, 0.27 mmol) and potassium carbonate (34.1 mg, 0.25 mmol) are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent is removed *in vacuo*

5

and the crude product is purified via preparative HPLC (RP18-column; eluent: aceto-nitrile-water, gradient 10:90 to 90:10).

Yield: 67 mg (65% of th.)

LC-MS (method 4): $R_t = 4.30$ min.

5 MS (ESIpos): $m/z = 430 (M+H)^{+}$ ¹H-NMR (200 MHz, DMSO-d₆): $\delta = 7.55-7.96 (m, 8H)$; 5.85 (s, 1H); 2.19 (s, 3H); 2.16 (s, 3H); 1.98 (s, 3H) ppm.

Example 31

10 Ethyl 4-(4-cyano-2-methylphenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoro-methyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

Ethyl 4-(4-cyano-2-methylphenyl)-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (Example 21; 100 mg, 0.22 mmol),
1-iodomethane (34.0 mg, 0.24 mmol) and potassium carbonate (34.1 mg, 0.25 mmol)
are dissolved in 3 ml acetone and stirred at room temperature overnight. The solvent
is removed *in vacuo* and the crude product is purified via preparative HPLC (RP18column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 78 mg (76% of th.)

LC-MS (method 3): $R_t = 4.70 \text{ min.}$

MS (ESIpos): $m/z = 474 (M+H)^{+}$.

Example 32

5

Acetic acid 2-[5-acetyl-4-(4-cyanophenyl)-6-methyl-1-[3-(trifluoromethyl)phenyl]-1,4-dihydropyrimidine-2-ylsulfanyl]-ethyl ester

To a solution of 2-bromoethyl acetate (37.6 mg, 0.23 mmol) in 500 μl DMF are added potassium carbonate (82.9 mg, 0.6 mmol) and 4-{5-acetyl-6-methyl-2-thioxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro-4-pyrimidinyl} benzonitrile (Example 1; 62.3 mg, 0.15 mmol). The reaction mixture is shaken for 15 hours, filtered and purified by preparative HPLC (column: Nucleosil 100-5 C 18 Nautilus 20 mm x 50 mm, 5 μm; solvent A: acetonitrile, solvent B: water + 0.1% formic acid; flow rate: 25 ml/min; gradient: 0 min 10% A, 2 min 10% A, 6 min 90% A, 7 min 90% A, 7.1 min 10% A, 8 min 10% A; wavelength: 220 nm; injection volume: approx. 550 μl; number of injections: 1). The product containing fractions are combined and concentrated *in vacuo*.

Yield: 0.6 mg (0.8% of th.)

20 LC-MS (method 3): $R_t = 4.38 \text{ min.}$ MS (ESIpos): $m/z = 502 \text{ (M+H)}^+$. In analogy to the procedure of Example 32, the following compounds are prepared:

ExNo.	Structure	Starting	Yield	Rt [min]	Mass
		· materials	[%]	(method)	[M+H]*
33	H ₃ C N S	Example 17; carbamic acid 3-bromo- propyl ester	20.3	3.95 (7)	513
34	H ₃ C O H ₃ C P F F	Example 3; 1-(2-chloro- ethyl)- pyrrolidine hydrochloride	3.3	3.19 (7)	543
35	H ₃ C O H ₃ C CI	Example 17; 1-(2-chloro- ethyl)- pyrrolidine hydrochloride	3.8	3.16 (7)	509

ExNo.	Structure	Starting	Yield	R _t [min]	Mass
-	-	materials	[%]	(method)	[M+H]
36	H,c O H,c N S	Example 17; 4-(2-chloro- ethyl)- morpholine hydrochloride	3.8	3.14 (7)	525
37	H,C OH	Example 17; 3-bromo- propan-1-ol	34.5	4.02 (8)	470
38	H ₃ C OH	Example 3; 2-bromo- ethanol	25.9	4.3 (7)	474
39	H,C OH	Example 3; 3-bromo- propan-1-ol	18.5	4.29 (3)	504

ExNo.	Structure	Starting materials	Yield [%]	R _t [min] (method)	Mass [M+H] ⁺
40	H ₃ C N S P P	Example 1; 2-bromo- N,N-diethyl- acetamide	37.8	4.24 (3)	529
41	H ₃ C N S N CH ₃	Example 17; 2-chloro- methyl-1- methyl-1 <i>H</i> - imidazole hydrochloride	54.1	3.59 (3)	506
42	H ₃ C O H ₃ C O H ₃ C O F F	Example 3; 2-bromoethy acetate	1 16.	3 4.49 (3	532
43	H ₃ C N S O	Example 3; bromoacetic	1	5.5 3.94 ((7) 504

ExNo.	Structure	Starting	Yield	R _t [min]	Mass
		materials	[%]	(method)	[M+H] ⁺
44	H ₃ C O H ₃ CH ₃	Example 17; iodomethane	37.6	4.44 (3)	426
45	H ₃ C O CN	Example 3; bromo- acetonitrile	49.5	3.71 (3)	485
46	H ₃ C O CH ₃	Example 3; 2-chloro- methyl-1- methyl-1 <i>H</i> - imidazole hydrochloride	40.8	3.13 (7)	540
47	H ₃ C N S	Example 3; carbamic acid 3-bromo- propyl ester	14.6	3.94 (7)	547

ExNo.	Structure	Starting	Yield	R _t [min]	Mass
E.X140.		materials	[%]	(method)	[M+H] ⁺
48	H ₃ C OH	Example 17; 2-bromo- ethanol	33.6	4.21 (3)	456
49	H ₃ C O N S N N N N N N N N N N N N N N N N N	Example 3; 6-chloro- methyl-1 <i>H</i> - pyrimidine- 2,4-dione	53.8	3.75 (7)	570
50	H ₃ C N CH ₃	Example 1; iodoethane	24.0	4.05 (7)	444
51	H ₃ C O CH ₃	Example 3; 2-bromopropionitrile	13.	3 3.75 (3	499

ExNo.	- Structure .	Starting	Yield	R _t [min]	Mass
	-	materials	[%]	(method)	[M+H] ⁺
52	H ₃ C O H ₃ C O CN	Example 3; 2-bromo- N,N-diethyl- acetamide	51.3	4.45 (3)	559
53	H ₃ C CH ₃	Example 3; 2-bromo- N-methyl- acetamide	59.4	3.9 (7)	517
54	H ₃ C N H ₃ C CH ₃	Example 3; 4-chloro- methyl-3,5- dimethyl- isoxazole	60.1	4.22 (7)	555

ExNo.	Structure	Starting.	Yield	Rt [min]	Mass
	· .	materials .	[%]	(method)	[M+H] ⁺
55	H ₃ CH ₃	Example 1; 4-chloro- methyl-2- methyl- thiazole hydrochloride	5.4	3.96 (7)	527
56	H ₃ C CH ₃	Example 1; 4-chloro- methyl-3,5- dimethyl- isoxazole	21.6	4.02 (7)	525

5

10

15

4-(4-Cyanophenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylic acid

Methyl 4-(4-cyanophenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoromethyl)-.

phenyl]-1,4-dihydro-5-pyrimidinecarboxylate (Example 8; 9.51 g, 21.4 mmol) is dissolved in 175 ml THF/ethanol/water (10:5:1). Potassium hydroxide (3.59 g, 64.1 mmol) is added, and the reaction mixture is stirred overnight. The reaction mixture is diluted with 100 ml of water, and the aqueous phase is washed with diethyl other. The resulting aqueous phase is acidified to pH 1 with hydrochloric acid, and the resulting precipitate is filtered off, dissolved in ethyl acetate and washed with water. After drying with sodium sulfate, the solvent is removed *in vacuo* to give the product.

Yield: 655 mg (7% of th.)

LC-MS (method 5): $R_1 = 3.77 \text{ min.}$

MS (ESIpos): $m/z = 432 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 12.32$ (broad s, 1H); 7.52-7.98 (m, 8H); 5.75 (s,

20 1H); 2.15 (s, 3H); 2.02 (s, 3H) ppm.

2-(Diethylamino)ethyl 4-(4-cyanophenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(tri-fluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylate

5

10

15

4-(4-Cyanophenyl)-6-methyl-2-(methylsulfanyl)-1-[3-(trifluoromethyl)phenyl]-1,4-dihydro-5-pyrimidinecarboxylic acid (Example 57; 100 mg, 0.23 mmol) is dissolved in 3 ml acetone. Potassium carbonate (67 mg, 0.49 mmol), N-(2-bromoethyl)-N,N-diethylamine hydrobromide (67 mg, 0.25 mmol) and N,N,N-tributyl-1-butan-aminium iodide (~ 5 mg) are added, and the reaction mixture is stirred at room temperature for 4 hours. The solvent is removed *in vacuo*, ethyl acetate is added and after extraction with 1 N sodium hydroxide solution, the organic layer is dried and the solvent is evaporated. The crude product is purified via preparative HPLC (RP18-column; eluent: acetonitrile-water, gradient 10:90 to 90:10).

Yield: 90 mg (73% of th.)

LC-MS (method 5): $R_t = 3.00 \text{ min.}$

MS (ESIpos): $m/z = 531 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 7.55-7.98$ (m, 8H); 5.78 (s, 1H); 4.07 (t, 2H);

2.62 (t, 2H); 2.41-2.58 (m, 4H); 2.15 (s, 3H); 2.03 (s, 3H); 0.91 (t, 6H) ppm.

In analogy to the procedure of Example 58, the following compounds are prepared:

ExNo.	Structure	Starting	Yield	R _t [min]	Mass
		materials	[%]	(method)	[M+H]
59	H ₃ C N S CH ₃	Example 57; 1-(2-chloro- ethyl)- pyrrolidine hydrochloride	43	3.80 (4)	513
60	H ₃ C N S CH ₃	Example 57; ethyl bromo- acetate	42	4.50 (4)	518
61	H ₃ C N O H ₃ C N S CH ₃	Example 57; 2-chloro- N-ethyl- N-methyl- ethanamine hydrochloride	48	3.70 (4)	517

ExNo.	Structure	Starting materials	Yield [%]	R _t [min] (method)	Mass [M+H] ⁺
62	CN ON ON ON ON ON ON ON SCH ₃	Example 57;	46	3.80 (4)	543
63	H ₃ C N S CH ₃	Example 57; methyl chloroacetate	71	4.10 (7)	504

C. Operative examples relating to pharmaceutical compositions

The compounds according to the invention can be converted into pharmaceutical preparations as follows:

Tablet:

5

20

25

Composition:

100 mg of the compound of Example 1, 50 mg of lactose (monohydrate), 50 mg of maize starch (native), 10 mg of polyvinylpyrrolidone (PVP 25) (from BASF, Ludwigshafen, Germany) and 2 mg of magnesium stearate.

Tablet weight 212 mg, diameter 8 mm, curvature radius 12 mm.

15 Preparation:

The mixture of active component, lactose and starch is granulated with a 5% solution (m/m) of the PVP in water. After drying, the granules are mixed with magnesium stearate for 5 min. This mixture is moulded using a customary tablet press (tablet format, see above). The moulding force applied is typically 15 kN.

Orally administrable suspension:

Composition:

1000 mg of the compound of Example 1, 1000 mg of ethanol (96%), 400 mg of Rhodigel (xanthan gum from FMC, Pennsylvania, USA) and 99 g of water.

A single dose of 100 mg of the compound according to the invention is provided by 10 ml of oral suspension.

- 70 -

Preparation:

The Rhodigel is suspended in ethanol and the active component is added to the suspension. The water is added with stirring. Stirring is continued for about 6h until the swelling of the Rhodigel is complete.

We claim

1. Compounds of the general formulas (I-A) and (I-B)

$$R^{1}$$
 A
 R^{1}
 A
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{8B}
 R^{3}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{1}
 R^{2}
 R^{5}
 R^{5}

wherein

5

10

15

20

A represents an aryl or heteroaryl ring,

R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

R⁴ represents C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₆-C₁₀-arylaminocarbonyl, heteroarylcarbonyl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl,

R5

hydroxycarbonyl, aminocarbonyl, mono- and di- C_1 - C_4 -alkylamino-carbonyl, C_1 - C_4 -alkylcarbonylamino, amino, mono- and di- C_1 - C_4 -alkylamino, heteroaryl, heterocyclyl, tri- $(C_1$ - C_6 -alkyl)-silyl and cyano,

5

represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₂-C₆-alkenoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,

10

R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl, C₃-C₈-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino,

20

15

R^{6B} represents C₁-C₆-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonyloxy, aminocarbonyloxy, cyano, aryl, heteroaryl and heterocyclyl, wherein heteroaryl and heterocyclyl can be further substituted with one to two identical or different radicals selected from the group consisting of C₁-C₄-alkyl, hydroxy and oxo.

25

R⁷ represents halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further sub-

stituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

 R^4

5

Y¹, Y², Y³ and Y⁴ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.

2. Compounds of general formulas (I-A) and (I-B) according to Claim 1,
wherein

A represents an aryl or heteroaryl ring,

15

R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

20

represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₆-C₁₀-arylaminocarbonyl, heteroarylcarbonyl, heteroaryl, heterocyclylcarbonyl, heteroaryl, heterocyclyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be further substituted with one to three identical or different radicals selected from the group consisting of C₃-C₈-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonylamino, amino, mono- and di-C₁-C₄-alkylamino, heteroaryl, heterocyclyl and tri-(C₁-C₆-alkyl)-silyl,

25

R⁵ represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C1-C6-alkoxy, C2-C6-alkenoxy, C1-C6-alkylthio, amino, mono- and di-C1-C6-alkylamino, arylamino, hydroxycarbonyl, C_1 - C_6 -alkoxycarbonyl and the radical -O- C_1 - C_4 -alkyl-O- C_1 - C_4 -alkyl,

 R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl, C₃-C₈-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, monoor di-C₁-C₄-alkylaminocarbonyl, wherein C1-C6-alkylcarbonyl, C1-C6-alkoxycarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₁-C₈cycloalkyl, hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄alkylamino,

R^{6B} represents C1-C6-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, aryl, heteroaryl and heterocyclyl,

 R^7 represents halogen, nitro, cyano, C1-C6-alkyl, hydroxy or C1-C6alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

Y¹, Y², Y³ and Y⁴ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.

Compounds of general formulas (I-A) and (I-B) according to Claim 1 or 2, 30 3. wherein

5

10

15

20

Le A 36 266-GB01

- A represents a phenyl or pyridyl ring,
- R¹, R² and R³ independently from each other represent hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl or trifluoromethoxy,
- R⁴ represents C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- or di-C₁-C₄-alkylaminocarbonyl or cyano, wherein C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl and mono-C₁-C₄-alkylaminocarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of C₃-C₆-cycloalkyl, hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, amino, mono- or di-C₁-C₄-alkylamino, heteroaryl and heterocyclyl,
- R⁵ represents methyl or ethyl,
- R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl or C₃-C₆-cycloalkylcarbonyl, wherein C₁-C₆-alkylcarbonyl can be substituted with a radical selected from the group consisting of C₃-C₆-cycloalkyl, hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino,
- R^{6B} represents C₁-C₆-alkyl, which can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, mono- and di-C₁-C₄-alkylamino, phenyl, heteroaryl and heterocyclyl,
- R⁷ represents halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, methyl or ethyl,

30

5

10

15

20

25

and

Y¹, Y², Y³ and Y⁴ each represent CH.

- 4. Compounds of general formulas (I-A) and (I-B) according to Claim 1, 2 or 3, wherein
 - A represents a phenyl or a pyridyl ring,
 - R¹ and R³ each represent hydrogen,
- 10 R² represents fluoro, chloro, bromo, nitro or cyano,
 - R⁴ represents C₁-C₄-alkylcarbonyl or C₁-C₄-alkoxycarbonyl, wherein C₁-C₄-alkoxycarbonyl can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, mono- and di-C₁-C₄-alkylamino, heteroaryl and heterocyclyl,
 - R⁵ represents methyl,
 - R^{6A} represents hydrogen, C₁-C₆-alkylcarbonyl or C₃-C₆-cycloalkyl-carbonyl,
 - R^{6B} represents C₁-C₄-alkyl, which can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, amino, di-C₁-C₄-alkylamino, phenyl, pyridyl, imidazolyl, pyrrolidino and morpholino,
 - R⁷ represents trifluoromethyl or nitro,

and

Y¹, Y², Y³ and Y⁴ each represent CH.

30

5

15

20

10

- 5. Compounds of general formulas (I-A) and (I-B) according to at least one of Claims 1 to 4, wherein A is phenyl or pyridyl.
- 5 6. Compounds of general formulas (I-A) and (I-B) according to at least one of Claims 1 to 5, wherein R¹ is hydrogen.
 - 7. Compounds of general formulas (I-A) and (I-B) according to at least one of Claims 1 to 6, wherein R² is cyano.
 - 8. Compounds of general formulas (I-A) and (I-B) according to at least one of Claims 1 to 7, wherein R³ is hydrogen.
- 9. Compounds of general formulas (I-A) and (I-B) according to at least one of Claims 1 to 8, wherein R⁴ is C₁-C₄-alkoxycarbonyl, which can be substituted with dimethylamino, diethylamino, N-ethylmethylamino, pyrrolidino or piperidino, or wherein R⁴ is C₁-C₄-alkylcarbonyl.
- 10. Compounds of general formulas (I-A) and (I-B) according to at least one of Claims 1 to 9, wherein R⁵ is methyl.
 - 11. Compounds of general formulas (I-A) and (I-B) according to at least one of Claims 1 to 10, wherein R⁷ is trifluoromethyl or nitro.
- 25 12. Compounds of general formula (I-A) according to at least one of Claims 1 to 11, wherein R^{6A} is hydrogen.
 - 13. Compounds of general formula (I-B) according to at least one of Claims 1 to 11, wherein R^{6B} is methyl, (1H-imidazol-2-yl)methyl, 2-(diethylamino)cthyl, 2-hydroxyethyl, 3-hydroxypropyl and 2-(1-pyrrolidinyl)ethyl.

14. Compounds of general formula (I-C)

$$R^{4}$$
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{3}
 CF_{3}
 $(I-C)$

wherein

5

10

- Z represents CH or N, and R¹, R³ and R⁴ have the meaning indicated in Claims 1 to 12.
- 15. Compounds of general formula (I-E)

R¹

$$R^{\frac{1}{4}}$$
 $R^{\frac{1}{4}}$
 $R^{\frac{1}{4}}$

R³ CF.

wherein

Z represents CH or N,

15

 R^1 , R^3 and R^4 have the meaning indicated above, and

wherein R³, R⁷, and Y¹ to Y⁴ have the meaning indicated in Claims 1 to 15,

in the presence of an acid either in a three-component / one-step reaction or sequentially to give compounds of the general formula (I-D)

$$R^{1}$$
 A
 R^{4}
 NH
 R^{5}
 N'
 S
 Y_{1}^{1}
 Y_{2}^{3}
 R^{7}
 R^{3}
 R^{7}

wherein

A, R¹ to R⁵, R⁷, and Y¹ to Y⁴ have the meaning indicated in Claims 1 to 15,

optionally followed by reaction of the compounds of general formula (I-D) in the presence of a base either

[A] with compounds of the general formula (V)

$$R^{6A*}-X^{A}$$
 (V),

10

wherein $R^{6A^{\bullet}}$ has the meaning of R^{6A} as indicated in Claims 1 to 15, but does not represent hydrogen, and X^{A} represents a leaving group, such as halogen,

5

15

25

30

to give compounds of the general formula (I-A) or (I-C), respectively,

or

10 [B] with compounds of the general formula (VI)

$R^{6B}-X^{B}$ (VI),

wherein R^{6B} has the meaning indicated in Claims 1 to 15, and X^{6} represents a leaving group, such as halogen, tosylate, mesylate or sulfate,

to give compounds of the general formula (I-B) or (I-E), respectively.

- 20 17. The composition containing at least one compound of general formula (I-A) or (I-C), as defined in Claims 1 to 12 and 14, and a pharmacologically acceptable diluent.
 - 18. A composition according to Claim 17 for the treatment of acute and chronic inflammatory processes.
 - 19. The process for the preparation of compositions according to Claim 17 and 18 characterized in that the compounds of general formula (I-A) or (I-C), as defined in Claims 1 to 12 and 14, together with customary auxiliaries are brought into a suitable application form.

- 20. Use of the compounds of general formula (I-A) or (I-C), as defined in Claims 1 to 12 and 14, for the preparation of medicaments.
- 21. Use according to Claim 20 for the preparation of medicaments for the treatment of acute and chronic inflammatory processes.
 - 22. Use according to Claim 21, wherein the process is chronic obstructive pulmonary disease.
- The composition containing at least one compound of general formula (I-B) or (I-E), as defined in Claims 1 to 11, 13 and 15, and a pharmacologically acceptable diluent.
- 24. A composition according to Claim 23 for the treatment of acute and chronic inflammatory processes.
 - 25. The process for the preparation of compositions according to Claim 23 and 24 characterized in that the compounds of general formula (I-B) or (I-E), as defined in Claims 1 to 11, 13 and 15, together with customary auxiliaries are brought into a suitable application form.
 - 26. Use of the compounds of general formula (I-B) or (I-E), as defined in Claims 1 to 11, 13 and 15, for the preparation of medicaments.
- 25 27. Use according to Claim 26 for the preparation of medicaments for the treatment of acute and chronic inflammatory processes.
 - 28. Use according to Claim 27, wherein the process is chronic obstructive pulmonary disease.

20

29. Process for controlling chronic obstructive pulmonary disease in humans and animals by administration of a neutrophil elastase inhibitory amount of at least one compound according to any of Claims 1 to 15.

Heterocyclic derivatives

Abstract

The invention relates to novel heterocyclic derivatives, processes for their preparation, and their use in medicaments, especially for the treatment of chronic obstructive pulmonary diseases.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

4
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
D

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.