

Markov Models

Applied to Anomaly Detection

By Saab Group

The paper

Information Sciences

Volume 411, October 2017, Pages 52-65

Anomaly detection based on a dynamic Markov model

Huorong Ren a, b, Zhixing Ye Aa, b , Zhiwu Li c, a

https://doi.org/10.1016/j.ins.2017.05.021

Get rights and content

What is a Markov Model?

- In probability theory, a Markov model is a stochastic model **used to** model randomly changing systems.
- It is assumed that **future states depend only on the current state**, not on the events that occurred before it (that is, it assumes the Markov property).

What is a Markov Model?

What is a Markov Model?

Why is this helpful in anomaly detection?

- P(sunny|cloudy) = 0.3
- P(rainy | rainy) = 0.4

• P(rainy|sunny) = 0.1

Why is this helpful in anomaly detection?

- P(sunny|cloudy) = 0.3
- P(rainy | rainy) = 0.4
- P(cloudy|sunny) = 0.1

ANOMRLY DETECTED

Transitions

And... if we have other interesting features?

- We can partitionate them and classify them
- E.g:

So what's the average speed of a sailboat? **Most sailboats cruise at a speed of 4-6 knots (4.5-7 mph)**, with a top speed of 7 knots (8 mph or 13 km/h). Larger racing yachts can easily reach speeds up to 15 knots (17 mph or 28 km/h), with an average cruising speed between 6-8 knots (7-9 mph). Cruising speeds of over 8 knots are uncommon.

- We can partitionate them and classify them
- E.g:

So what's the average speed of a sailboat? **Most sailboats cruise at a speed of 4-6 knots (4.5-7 mph)**, with a top speed of 7 knots (8 mph or 13 km/h). Larger racing yachts can easily reach speeds up to 15 knots (17 mph or 28 km/h), with an average cruising speed between 6-8 knots (7-9 mph). Cruising speeds of over 8 knots are uncommon.

0 km/h

30 km/h

- We can partitionate them and classify them
- E.g:

So what's the average speed of a sailboat? **Most sailboats cruise at a speed of 4-6 knots (4.5-7 mph)**, with a top speed of 7 knots (8 mph or 13 km/h). Larger racing yachts can easily reach speeds up to 15 knots (17 mph or 28 km/h), with an average cruising speed between 6-8 knots (7-9 mph). Cruising speeds of over 8 knots are uncommon.

0 km/h

30 km/h

fast

slow

normal

We can partitionate them and classify them.

• Now each classification is a substate of the measurement, so that for speed we have both slow, normal and fast sub-states.

- Position could be partitioned into **suspicious** and **non-suspicious** according to the history of anomalies detected in a certain port.
- The direction can also be partitioned (we Will see it in the following slides).

• So if we use in out model 3 states representing the speed, 2 states representing the position and 5 states representing the direction, there Will be:

$$\binom{10}{3} = 120 \text{ states}$$

• So if we use in out model 3 states representing the speed, 2 states representing the position and 5 states representing the direction, there Will be:

$$\binom{10}{3} = 120 \text{ states}$$

• This might be too much (or not)

More Data

More information per state

An example focusing only in direction

• We can extract much more features (depends on the data)

Basic Model

EXTREMELY LOW

Basic Model

What could we extract from thε

Basic Model

Finally...

If there is a transition from x1 to x5:

WE ARE JUST IN FRONT OF AN

Implementation

Finally...

Once defined the states, we can compute probabilities of transition between one state to another and represent them on a matrix

Transition Probability Matrix

	_ 1	2		n _
	$\lceil a_{11} \rceil$	a_{12}		$a_{1m{n}}$
2	a_{21}	a_{22}		$a_{2oldsymbol{n}}$
3	a_{31}	a_{32}		$a_{3{\color{blue} n}}$
:	:	•	•	:
m	a_{m1}	a_{m2}		a_{mn}

 a_{ij} = Probability of transition from i to j

Idea:

- Get the probability values from a training set
- Evaluate the model with the test set
 - Whenever a transition happen, check
 the probability of that to have ocurred and
 if it is under a tested threshold → ANOMALY

Also Interesting

- □ Problem
 - ☐ Speed and size of the ships should get evaluated in conjunction.
 - Higher speeds are supossed to be adopted by smaller ships
 - High speeds are not anomalous for big ships
- ☐ Markov Models allow us to evaluate speed and length together
 - ☐ Given a range of posible values for speed and length, we can partitionate both so that given a **transition pair**

 $(speed1, length) \rightarrow (speed1, length)$

Initially: $(100 \text{km/h}, 500 \text{m}) \rightarrow \rightarrow \text{(type 7, type 5)} \rightarrow \text{STATE 4}$

Finally: $(20 \text{ km/h}, 500 \text{m}) \rightarrow \rightarrow \text{(type 4, type 5)} \rightarrow \text{STATE 7}$

SO

STATE 4 to STATE 7

