BLG311E – FORMAL LANGUAGES AND AUTOMATA

2013 SPRING

RECITEMENT 8

(Solutions for QUIZ 4)

- a) Design a PDA for the state transition diagram given on the right for n>0.
- **b)** Give execution of the PDA you designed for *aabbccabbbc*.

Note: The accepted state of the PDA must be the same as the final state (f) of the given state transition diagram.

Duration: 30 mins

Solution:

Format of the strings accepted by this PDA: $(a^n b^+ c^n)^+$, n > 0

Design of the PDA:

$$\begin{split} M &= (S, \Sigma, \Gamma, \Delta, s_0, F) \\ S &= \{q_0, q_1, q_2, q_3, f\}, \ \Sigma = \{a, b, c\}, \ \Gamma = \{a, c\}, \ s_0 = q_0, F = f \\ \Delta &= \{\underbrace{[(q_0, a, \Lambda), (q_1, ac)]}_{a}, \quad \rightarrow \text{ push } c \text{ to be able to check if the stack is empty} \\ \underbrace{\underbrace{[(q_1, a, \Lambda), (q_1, a)]}_{a^{n-1}}, \underbrace{[(q_1, b, \Lambda), (q_2, \Lambda)]}_{b}, \\ \underbrace{[(q_2, b, \Lambda), (q_2, \Lambda)]}_{b^*}, \underbrace{[(q_2, c, a), (q_3, \Lambda)]}_{c}, \\ \underbrace{[(q_3, c, a), (q_3, \Lambda)]}_{c^{n-1}}, \underbrace{[(q_3, a, c), (q_1, ac)]}_{(a^{n}b^+c^{n})^+}, \underbrace{[(q_3, \Lambda, c), (f, \Lambda)]}_{accept the word} \} \end{split}$$

Execution for the given word:

State	Таре	Stack	Transition Rule
q_0	aabbccabbbc	Λ	$[(q_0, a, \Lambda), (q_1, ac)]$
q_1	abbccabbbc	ас	$[(q_1,a,\Lambda),(q_1,a)]$
q_1	bbccabbbc	аас	$[(q_1,b,\Lambda),(q_2,\Lambda)]$
q_2	bccabbbc	аас	$[(q_2,b,\Lambda),(q_2,\Lambda)]$
q_2	ccabbbc	аас	$[(q_2,c,a),(q_3,\Lambda)]$
q_3	cabbbc	ас	$[(q_3,c,a),(q_3,\Lambda)]$
q_3	abbbc	С	$[(q_3, a, c), (q_1, ac)]$

q_1	bbbc	ас	$[(q_1,b,\Lambda),(q_2,\Lambda)]$
q_2	bbc	ас	$[(q_2,b,\Lambda),(q_2,\Lambda)]$
q_2	bc	ас	$[(q_2,b,\Lambda),(q_2,\Lambda)]$
q_2	С	ас	$[(q_2,c,a),(q_3,\Lambda)]$
q_3	Λ	С	$[(q_3, \Lambda, c), (f, \Lambda)]$
f	Λ	Λ	