成都理工大学 2019—2020 学年

第二学期《高等数学 I、Ⅱ》(下)考试试卷(A卷)

大题	_	=	三	四	总分
得分					

一、填空题(每题3分,共30分)得分

- 1、函数 $z = x^y$ 在点 P(1, 2) 处的方向导数 $\frac{\partial z}{\partial l}$ 的最大值是 ______。
- 2、将 xOz 坐标面上的抛物线 $z=3x^2$ 绕 z 轴旋转一周所得的旋转曲面方程为_____。
- 3、级数 $\sum_{n=1}^{\infty} \frac{1}{n2^n} x^n$ 的收敛域为_____。
- 4、设函数 $f(x) = \begin{cases} e^x & -\pi \le x < 0 \\ x 3 & 0 \le x \le \pi \end{cases}$ 的傅里叶级数的和函数为 S(x),则

$$S(0) =$$

5、设函数
$$F(x,y) = \int_0^{xy} \frac{\cos t}{1+t^2} dt$$
,则 $\frac{\partial F}{\partial x}\Big|_{(0,2)} =$ ________。

6、二重积分
$$\int_0^{\pi} dx \int_x^{\pi} \frac{\sin y}{y} dy =$$
______。

7、设Σ为球面
$$x^2 + y^2 + z^2 = R^2$$
,则 $\iint_{\Sigma} (x + y + z)^2 dS = =$ _____。

8、
$$L$$
为上半圆周 $x^2 + y^2 = 1$, $y \ge 0$ 沿逆时针方向的 积分 $\int_{\mathcal{L}} (xy^2 + 1) dx + x^2 y dy = _____.$

9、已知
$$(axy^2 - ycosx)dx + (x^2y - sinx)dy$$
 是某一函数 $u(x, y)$ 的全微分,则 $a = ____$ 。

10、L为上半圆周 $x^2 + y^2 = 1$ 及x轴所围成的的整个边界,

则
$$\oint_L (e^{\sqrt{x^2+y^2}}-xy)ds=$$
_______。

二、单项选择题(每题3分,共30分)

得 分

11、设
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}$$
 ,则 $f(x,y)$ 在点 $(0, 0)$ 处()。

- (A) 不连续,偏导数存在;(B) 不连续,偏导数不存在;(C) 连续,偏导数不存在;(D) 连续,偏导数存在;

12、设函数 z = f(x, y) 在点 (x_0, y_0) 处存在对x, y 的偏导数,则 $f_x'(x_0, y_0) = 0$

(A)
$$\lim_{\Delta x \to 0} \frac{f(x_0, y_0) - f(x_0 - \Delta x, y_0)}{\Delta x}$$

(B)
$$\lim_{\Delta x \to 0} \frac{f(x_0 - 2\Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

(C)
$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x}$$

(D)
$$\lim_{x \to x_0} \frac{f(x, y) - f(x_0, y_0)}{x - x_0}$$

13、设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数中必收敛的级数为().

(A)
$$\sum_{n=1}^{\infty} u_n^2$$
 (B) $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ (C) $\sum_{n=1}^{\infty} |u_n|$ (D) $\sum_{n=1}^{\infty} (u_n + \frac{1}{n})$

14、极限
$$\lim_{(x,y)\to(1,1)} \frac{\sin(x^2+2xy-3y^2)}{x^2-y^2} = ($$
)。

- (A) 1
- (B) 2
- $(C) \quad 0 \qquad \qquad (D) \quad \infty$

- **15、**z = f(x, y) 在 (x_0, y_0) 取得极小值,那么在点 (x_0, y_0) 必有()。
 - (A) $f_{x}' = f_{y}' = 0$

- (B) $f_{xv}^{"^2} f_{xx}^{"^2} f_{vv}^{"^2} < 0 \coprod f_{xx}^{"^2} > 0$
- (C) $f(x,y_0)$ 在 x_0 取得极小值 (D) 以上答案都不对
- 16、已知函数 $f(xy,x+y) = x^2 + y^2 + xy$,则 $\frac{\partial f(x,y)}{\partial x}$, $\frac{\partial f(x,y)}{\partial y}$ 分别为(
 - (A) 2y, -1

(B) 2x, -1

(C) -1.2v

- (D) $2x + v \cdot 2v + x$
- 17、设 f(x,y) 为连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ 等于 ()。

 - (A) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x,y) dy$ (B) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy$
 - (C) $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{0}^{\sqrt{1-y^2}} f(x,y) dx$ (D) $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{0}^{\sqrt{1-y^2}} f(x,y) dx$
- **18、**已知函数 f(x,y)在点(0,0)和某个邻域内连续,且

$$\lim_{\substack{x\to 0\\ y\to 0}} \frac{f(x,y)}{1-\cos(x^2+y^2)} = 1$$
, [1] ().

- (A) 点(0,0) 不是 f(x,y) 的极值点;
- (B) 点(0,0)是 f(x, v)的极小值点;
- (C) 无法判断点(0,0)是否是 f(x,v)的极值点;
- (D) 点(0,0)是 f(x, y)的极大值点;

19、
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$
 在 $(-\infty, +\infty)$ 的和函数是 ()。

$$(A) e^{-x^2}$$

(A)
$$e^{-x^2}$$
 (B) e^{x^2} (C) $-e^{x^2}$ (D) $-e^{-x^2}$

$$(\mathbf{C}) - e^{x^2}$$

(D)
$$-e^{-x^2}$$

20、设区域 Ω 由曲面 $z = x^2 + v^2$ 和 $z^2 = x^2 + v^2$ 所围成,三重积分 $\iiint_{\Omega} f(x^2 + y^2 + z^2) dv$ 在柱面坐标系下可化为 ()。

(A)
$$\int_0^{2\pi} d\theta \int_0^1 d\rho \int_{\rho}^{\rho^2} f(\rho^2 + z^2) dz$$

(A)
$$\int_0^{2\pi} d\theta \int_0^1 d\rho \int_{\rho}^{\rho^2} f(\rho^2 + z^2) dz$$
 (B) $\int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_{\rho^2}^{\rho} f(\rho^2 + z^2) dz$

(C)
$$\int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_\rho^{\rho^2} f(\rho^2 + z^2) dz$$

(C)
$$\int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_{\rho}^{\rho^2} f(\rho^2 + z^2) dz$$
 D, $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_{\rho^2}^{\rho} f(\rho^2 + z^2) dz$ L 为

三、计算题(每题8分,共16分) 得分

21、求曲线 $\begin{cases} 2x^2 - y^2 = z \\ y = x \end{cases}$ 在原点处的切线和法平面方程。

22、设函数 $z = f(x-y,x^2+y^2)$,且 f(u,v) 具有连续的二阶偏导数,

求
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial^2 z}{\partial x \partial y}$ 。

四、解答题(每题8分,共24分)

23. 计算曲面积分 $\iint_{\Sigma} (x+y+z) dS$, 其中曲面 Σ 以 A (1, 0, 0),

B(0, 1, 0), C(0, 0, 1) 为顶点的三角形平面区域。

24. 求 $\iint_{\Sigma} x dy dz - y dz dx + (z+1) dx dy$, 其中, Σ 为半球面

 $x^2 + y^2 + z^2 = R^2$, $z \ge 0$ 的上侧即曲面的方向与z轴的正向夹角为锐角。

25. 将函数 $f(x) = \frac{1}{x}$ 展开为(x-3)的幂级数。