CMPT 404 — Cryptography and Protocols

Exercises on Public Key Cryptography. Due: Thursday, April 4th (at the beginning of the class)

- 1. (Simple RSA-based Signatures are not secure.) Consider the following simple signature schemes based on the RSA permutation, where signing is by decrypting/inverting the permutation: **Public key:** n = pq for p, q random primes, $e \in \mathbb{Z}_{\phi(n)}^*$, **Private key:** $d = e^{-1} \mod \phi(n)$ **Signing:** signature for m is $m^d \pmod n$ **Verifying:** to verify σ is a signature for m, verify that $m = \sigma^e$.
 - (a) Prove that this scheme is *not* a secure signature scheme.
 - (b) Prove that this scheme is insecure even if we consider a weaker definition of security where the attacker has to forge a message given to it as input. That is, the attacker first gets an input message m, during the attack can query the signing oracle only on messages $m' \neq m$ and at the end to succeed needs to output a valid signature for m.
- 2. Prove the following: if there exists a collision resistant hash function collection mapping n+1 bit strings into n bit strings, then there exists a collection mapping arbitrary length bit strings into n bit strings, also collision resistant.
- 3. Consider the following key exchange protocol:
 - Alice chooses $k, r \in \{0, 1\}^n$ at random, and sends $s = k \oplus r$ to Bob.
 - Bob chooses $t \in \{0,1\}^n$ at random and sends $u = s \oplus t$ to Alice.
 - Alice computes $w = u \oplus r$ and sends w to Bob.
 - Alice takes k as a key, and Bob takes $w \oplus t$ as a key.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e. either prove its security or show a concrete attack).

- 4. Suppose we have a set of blocks encrypted with the RSA scheme and we do not have the private key. Assume n = pq, e is the public key. Suppose also someone tells us they know one of the plaintext blocks has a common factor with n. Does this help us to break the scheme?
- 5. Fix n, and assume there exists an adversary Eve running in time T for which

$$\Pr[\mathsf{Eve}(x^e) = x] = 0.01,$$

where the probability is taken over random choice of $x \in \mathbb{Z}_n^*$. Show that it is possible to construct an adversary Eve' for which

$$\Pr[\mathsf{Eve}'(x^e) = x] = 0.99.$$

The running time T' of the new adversary should be polynomial in T and the size of n.

6. (Non malleability of CCA secure schemes.) An attractive way to perform a bidding is the following: the seller publishes a public key e. Each buyer sends through the net the encryption $\mathsf{E}_e(x)$ of its bid, and then the seller will decrypt all of these and award the product to the highest bidder.

One aspect of security we need from $E(\cdot)$ is that given an encryption $E_e(x)$, it will be hard for someone not knowing x to come up with $E_e(1.01 \cdot x)$ (otherwise bidder B could always take the bid of bidder A and make into a bid that is one per cent higher). You'll show that this property is also related to CCA security:

- (a) Show a CPA-secure public key encryption such that there is an algorithm that given e and a ciphertext $y = \mathsf{E}_e(x)$, converts y into a ciphertext y' that decrypts to
 - i. $1.01 \cdot x$, ii. (optional) x + 1.
- (b) Show that if E is CCA secure then there is no such algorithm.
- 7. Let $p \geq 3$ be a prime number, and let g be a primitive root modulo p. (These are public keys, known to all parties including the adversary.) Assume the discrete logarithm problem is hard. Consider the digital signature scheme $DS = (K; \mathsf{Sign}; \mathsf{Ver})$:

Key generation K: Choose $x, y \in \mathbb{Z}_p$ uniformly at random, and set $X = g^x$, $Y = g^y$. X, Y is a public key, x, y private.

```
Signing Sign(M):

z := y + xM \pmod{p},

return z.

Verification Ver(M; z):

if M \notin \mathbb{Z}_p then return 0

if g^z \equiv YX^M \pmod{p} then return 1

else return 0
```

- (a) Show that Ver(M; z) = 1 for any key-pair ((X; Y); (x; y)) that might be output by K, any message $M \in \mathbb{Z}_p$, and any z that might be output by Sign(M).
- (b) Show that this scheme is insecure with regard to Chosen Message attacks by presenting a practical adversary Eve. You should specify the adversary, state the number of oracle queries it makes, and justify the correctness of the adversary.
- 8. Let f be a one-way permutation. Consider the following signature scheme for messages in the set $\{1, \ldots, n\}$:
 - To generate keys, choose random $x \in \{0,1\}^n$ and set $y = f^n(x)$ (that is, f applied n times). The public key is y and the private key is x.
 - To sign message $i \in \{1, ..., n\}$, output $f^{n-i}(x)$ (where $f^0(x) = x$ by definition).
 - To verify signature σ on message i with respect to public key y, check whether $y = f^{i}(\sigma)$.
 - (a) Show that the above is not a secure (even one-time) signature scheme. Given a signature on a message i, for what messages j can an adversary output a forgery?
 - (b) Prove that no polytime adversary, given a signature on i can output a forgery on any message j > i except with negligible probability
 - (c) Suggest how to modify the scheme so as to obtain a one-time secure signature scheme.