MP* - Propriété de Borel-Lebesgue

Partout, E est un EVN de norme $||\cdot||$.

Rappel: Si K est une partie de E, un ouvert (relatif) de K est une partie P de K telle que:

 $\forall x \in P, \exists r > 0; (||y - x|| < r \text{ et } y \in P) \Longrightarrow y \in P, \text{ soit encore } B_K(x, r) \subset P \text{ en notant}$ $B_K(x,r) = B(x,r) \cap P.$

Les ouverts de K sont les $K \cap O$ avec O ouvert (de E).

Par exemple, dans \mathbb{R} , [0,1] est un ouvert de [0,2].

Le but est d'établir la propriété suivante, et d'en voir deux exemples d'utilisation.

Propriété 1: Borel-Lebesgue

Si K est un compact de E, pour toute famille $(U_i)_{i\in I}$ d'ouverts de K telle que $K=\bigcup_{i\in I}U_i$, alors il

existe un sous-ensemble fini J de I telle que $K \subset \bigcup U_i$.

En abrégé, si K est compact, de tout recouvrement ouvert de K on peut extraire un recouvrement fini.

Il en résulte la forme sans ouverts relatifs:

Si K est compact alors pour toute famille $(U_i)_{i\in I}$ d'ouverts telle que $K\subset\bigcup_i U_i$, alors il existe

un sous-ensemble fini J de I telle que $K \subset \bigcup U_i$, en appliquant l'énoncé précédent aux $V_i = U_i \cap K$.

Scindons la démonstration en plusieurs propriétés.

Propriété 2: Précompacité

Soit K un compact de E.

Soit r > 0. Alors il existe un sous-ensemble fini J de K telle que $K \subset \bigcup_{x \in J} B(x,r)$ (On a donc

$$K = \bigcup_{x \in J} B_K(x, r))$$

Démonstration

Soit K un compact de E.

Soit r > 0. Par l'absurde, supposons qu'il n'existe pas J fini comme voulu.

On se donne $x_0 \in K$.

Comme $K \not\subset B(x_0, r)$, on se donne $x_1 \in K \setminus B(x_0, r)$.

Puis, comme $K \not\subset B(x_0,r) \cup B(x_1,r)$, on se donne $x_1 \in K \setminus B(x_0,r) \cup B(x_1,r)$.

etc...
$$x_n \in K \setminus \bigcup_{i=0}^{n-1} B(x_i, r)$$

etc...
$$x_n \in K \setminus \bigcup_{i=0}^{n-1} B(x_i, r)$$
.

Si $p < n$, comme $x_n \in K \setminus \bigcup_{i=0}^{n-1} B(x_i, r)$, on se dofine $x_1 \in K \setminus D(x_0, r) \cup D(x_1, r)$.

Ainsi $\forall n \neq p$, $||x_n - x_r|| \geq r$, donc (x_n) ne peut admettre de valeur d'adhé

Ainsi $\forall n \neq p, ||x_n - x_r|| \geq r$, donc (x_n) ne peut admettre de valeur d'adhérence, ce qui contredit la compacité de K.

Propriété 3: Nombre de Lebesgue

Soit K un compact de E. Soit $(U_i)_{i\in I}$ une famille d'ouverts de K telle que $K=\bigcup_{i\in I}U_i$.

Alors il existe r > 0 tel que $\forall x \in K$, il existe $i \in I$ tel que $B_K(x,r) \subset U_i$.

Démonstration:

Par l'absurde, supposons qu'un tel r n'existe pas.

Alors, $\forall n \in \mathbb{N}^*$, comme r = 1/n ne convient pas, on peut se donner $x_n \in K$, tel que $\forall i$, $B_K(x_n, 1/n) \not\subset U_i$.

K étant compact, on extrait $x_{\phi(n)} \to x \in K$.

Comme $x \in K$, on peut se donner i tel que $x \in U_i$.

 U_i étant un ouvert de K, on se donne R > 0 tel que $B_K(x,R) \subset U_i$.

Alors pour n assez grand, $\frac{1}{\phi(n)} < R/2$ et $||x_{\phi(n)} - x|| < R/2$, et donc $B_K(x_{\phi(n)}, 1/\phi(n)) \subset B_K(x_{\phi(n)}, R/2) \subset B_K(x, R) \subset U_i$ ce qui contredit $\forall n, \forall i, B_K(x_n, 1/n) \not\subset U_i$.

Démonstration de la propriété 1:

On suppose K compact.

Soit $(U_i)_{i\in I}$ famille d'ouverts de K telle que $K=\bigcup U_i$.

On se donne r > 0 venant de la propriété 3. Pour tout $x \in K$, on se donne $i(x) \in I$ tel que $B_K(x,r) \subset U_{i(x)}$.

Par la propriété 2, soit J partie finie de K telle que $K = \bigcup_{x \in I} B_K(x, r)$.

Alors $K = \bigcup_{x \in I} U_{i(x)}$, union finie.

Un exemple d'utilisation: premier théorème de Dini.

Propriété 4:

Soit K un compact de E.

Soit $(f_n) \in \mathcal{C}(K, \mathbb{R})^{\mathbb{N}}$ convergeant simplement vers $f \in \mathcal{C}(K, \mathbb{R})$, et telle que $\forall x \in K$, $(f_n(x))_{n \in \mathbb{N}}$ est croissante.

Alors la convergence est uniforme.

Démonstration:

Par croissance, $\forall n, f_n \leq f$.

Soit $\varepsilon > 0$.

Pour tout $n \in \mathbb{N}$, soit $V_n = \{ y \in K ; f_n(y) > f(y) - \varepsilon \}.$

 $f_n - f \in \mathcal{C}(K, \mathbb{R})$ et $V_n = (f_n - f)^{-1}(] - \varepsilon, +\infty[)$, donc V_n est un ouvert de K.

Pour tout $y \in K$, par convergence simple, $f_n(y) > f(y) - \varepsilon$ pour n assez grand, donc $y \in V_n$. Ainsi $K = \bigcup V_n$.

Par propriété de Borel-Lebesgue, on peut extraire un recouvrement fini. Soient $n_1 < ... < n_k$ tels

que
$$K = \bigcup_{i=1}^{k} V_{n_i}$$
.

Par croissance de $(f_n(y))_n$ pour tout $y, V_n \subset V_{n+1}$. (V_n) est croissante.

Donc $K = V_{n_k}$.

On a donc $\forall y \in K$, $f_{n_k}(y) > f(y) - \varepsilon$. Mais alors, toujours par croissance, $\forall y \in K$, $\forall n \geq n_k$, $f_n(y) \geq f_{n_k}(y) > f(y) - \varepsilon$.

Comme $f_n(y) \leq f(y)$, on a donc $\forall y \in K$, $\forall n \geq n_k$, $f(y) \geq f_n(y) > f(y) - \varepsilon$, donc $\forall n \geq n_k$, $||f_n - f||_{\infty} \leq \varepsilon$, ce qui établit la convergence uniforme.

Une autre application: le théorème de Stone-Weierstrass.

C'est un résultat d'approximation uniforme bien plus général que le théorème de Weierstrass polynomial.

Propriété 5: Stone-Weierstrass

K est un compact de E.

Soit A une sous-algèbre de $F := \mathcal{C}(K, \mathbb{R})$ telle que:

- 1. A contient la fonction constante égale à 1.
- 2. $\forall x, y \in K$ tels que $x \neq y$, $\exists f \in A$; $f(x) \neq f(y)$.

Alors A est dense dans $(F, || \cdot ||_{\infty})$.

Le point 1 est en fait $\forall x \in K, \exists f \in A; f(x) \neq 0$, mais j'ai remplacé par une chose plus simple, toujours vraie dans les cas usuels d'application, et qui allège un peu la démonstration.

N'ayant pas encore vu la définition, A sous-algèbre signifie:

A est un sev de $\mathcal{C}(K,\mathbb{R})$, stable par produit $(\forall f,g\in A,fg\in A)$.

Démonstration:

A est l'adhérence de A pour $|| \cdot ||_{\infty}$.

étape 1: max et min

si $f, g \in A$, on note $\max(f, g) : x \mapsto \max(f(x), g(x))$ et de même pour min.

On a
$$\max(f,g) = \frac{f+g+|f-g|}{2}$$
, et $\min(f,g) = \frac{f+g-|f-g|}{2}$.

On a besoin de voir que $\overline{f}, g \in A \Longrightarrow \max(f, g) \in \overline{A}$ et $\min(f, g) \in \overline{A}$.

Comme A est une sous-algèbre, contenant 1, si $P \in \mathbb{R}[X]$, et $f \in A$, $P(f) \in A$ (notation abrégée pour $P \circ f$).

Soient $f, g \in A$. Par compacité et continuité, Im(|f-g|) est compact. On peut donc se donner $a \in \mathbb{R}^+$ tel que $Im(|f+g|) \subset [0,a]$.

Soit $\varepsilon > 0$.

Par théorème de Weierstrass, la valeur absolue étant continue sur le segment [0, a], on se donne

$$P \in \mathbb{R}[X]$$
 tel que $\forall x \in [0, a], |P(x) - |x|| \le \varepsilon$.
Soit $h = \frac{f + g + P(f - g)}{2}$. $h \in A$.

Alors
$$||h - \max(f, g)||_{\infty} = \frac{1}{2}|||f - g| - P(f - g)||_{\infty} \le \varepsilon/2.$$

Ainsi $\max(f,g) \in A$. Idem pour $\min(f,g)$.

Par applications successives, on a alors $\forall f_1, ..., f_n \in A, \max(f_1, ..., f_n)$ et $\min(f_1, ..., f_n)$ sont dans \overline{A} .

étape 2: le résultat

Soit $f \in F$.

Pour tous $x, y \in K$, avec $x \neq y$:

Si f(x) = f(y), notons $g_{x,y}: z \mapsto f(x)$ (constante). $g_{x,y} \in A$ car $1 \in A$, et A sev.

Si $f(x) \neq f(y)$: il existe $h \in A$ telle que $h(x) \neq h(y)$. Notons $g_{x,y} = ah + b$ avec $a, b \in \mathbb{R}$ tels que $g_{x,y}(x) = f(x)$ et $g_{x,y}(y) = f(y)$. (calcul de a, b trivial). $g_{x,y} \in A$ car A sev.

Soit $\varepsilon > 0$.

A $x \in K$ fixé: Notons pour tout y, $V_y = \{t \in K \mid f(t) + \varepsilon > g_{x,y}(t)\}$. $V_y = (g_{x,y} - f)^{-1}(] - \varepsilon, +\infty[)$ est un ouvert de K. Pour tout $y \in K$, $y \in V_y$ puisque $g_{x,y}(y) = f(y)$. Ainsi $\bigcup_{y \in K} V_y = K$.

Par propriété de Borel-Lebesgue, on peut se donner $y_1, ..., y_n \in K$ tels que $K = \bigcup_{i=1}^n V_{y_i}$.

Notons $h_x = \min(g_{x,y_1}, ..., g_{x,y_n}). h_x \in A.$

Si $t \in K$, t appartient à un V_{y_i} , donc $g_{x,y_i}(t) < f(t) + \varepsilon$, donc $h_x(t) < f(t) + \varepsilon$.

De plus, $g_{x,y_i}(x) = x$, donc $h_x(x) = f(x)$.

On se donne $W_x \in A$ telle que $||W_x - h_x||_{\infty} \le \varepsilon$. On a alors $W_x(x) \ge f(x) - \varepsilon$, et $W_x \le f + 2\varepsilon$.

Maintenant, si $x \in K$, soit $U_x = \{t \in K \mid W_x(t) > f(t) - 2\varepsilon\}$. C'est un ouvert de K. $x \in U_x$, donc $K = \bigcap_{x \in K} U_x$.

Par propriété de Borel-Lebesgue, on se donne $x_1, ..., x_k$ tels que $\bigcap_{i=1}^k U_{x_i} = K$.

Soit $\phi = \max(W_{x_1}, ..., W_{x_k}).$

 $\phi \in \bar{A}$.

 $\forall i, W_{x_i} < f + 2\varepsilon, \text{ donc } \phi < f + 2\varepsilon.$

De plus, $\forall t \in U_{x_i}, W_{x_i}(t) > f - 2\varepsilon$, donc $\phi(t) > f(t) - 2\varepsilon$. Ainsi, $\forall t \in K, \ \phi(t) > f - 2\varepsilon$.

Donnons nous $q \in A$ tel que $||q - \phi||_{\infty} \le \varepsilon$.

Alors $f - 3\varepsilon \le q \le f + 3\varepsilon$, et $||f - q||_{\infty} \le 3\varepsilon$.

Cas complexe:

Propriété 6: Stone-Weierstrass complexe

K est un compact de E.

Soit A une sous-algèbre de $F := \mathcal{C}(K, \mathbb{C})$ telle que:

- 1. A contient la fonction constante égale à 1.
- 2. $\forall x, y \in K$ tels que $x \neq y$, $\exists f \in A$; $f(x) \neq f(y)$.
- 3. $f \in A \Longrightarrow \overline{f} \in A$.

Alors A est dense dans $(F, || \cdot ||_{\infty})$.

Démonstration:

Notons $B = \{ f \in A \mid f \text{ est à valeurs réelles} \}.$

B est une sous-algèbre de F, qui contient 1.

Si $x \neq y$: Soit $h \in A$ telle que $h(x) \neq h(y)$. Alors $Re(h)(x) \neq Re(h(y))$ ou $Im(h)(y) \neq Im(h)(x)$.

Mais $Re(h) = (h + \overline{h})/2 \in A$, donc $Re(h) \in B$, et $Im(h) = (h - \overline{h})/(2i) \in A$, donc $Im(h) \in B$.

Ainsi la propriété 5 s'applique à B. B est dense dans $(\mathcal{C}(K,\mathbb{R}),||\cdot||_{\infty})$.

Alors, si $f = Re(f) + i\Im(f) \in \mathcal{C}(K,\mathbb{C})$, en prenant $g,h \in B$ à moins de ε de Re(f) et Im(f), $g + ih \in A$ est à moins de 2ε de f.

Un exemple d'application:

Propriété 7:

Soit K un compact de \mathbb{R}^n et $f \in \mathcal{C}(K, \mathbb{K})$, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Si $\varepsilon > 0$, il existe $P \in \mathbb{K}[X_1, ..., X_n]$ tel que $||P - f||_{\infty, K} \le \varepsilon$.

Démonstration:

Soit A l'ensemble des fonctions polynomiales à n variables sur K, à valeurs dans \mathbb{K} .

A est une sous-algèbre de $\mathcal{C}(K,\mathbb{K})$, stable par conjugaison si $\mathbb{K}=\mathbb{C}$.

 $1 \in A$.

Si $a = (a_1, ..., a_n)$ et $b = (b_1, ..., b_n)$ sont dans K et distincts: on se donne i tel que $a_i \neq b_i$.

Alors $f:(x_1,...,x_n)\mapsto x_i\in A$, et $f(a)\neq f(b)$.

Ainsi le théorème de Stone-Weierstrass s'applique.

