Central Limit Theorem

•••

11 Monday 2019 PLSC 309

Roadmap

- 1. Law of large numbers (sample converges to population as sample gets larger)
- 2. What happens to distributions of sums?
 - a. Bernoulli sums
 - b. Random walk
 - c. Exponential sums
 - d. Poisson sums
- 3. CLT

Respondent	Age
1	20
2	18
3	22
4	23
5	17
6	21
7	20

Sample	Mean
1	20.14

Respondent	Age
8	22
9	19
10	24
11	16
12	20
13	18
14	21

Sample	Mean
1	20.14
2	20

Respondent	Age
15	18
16	22
17	19
18	21
19	19
20	23
21	20

Sample	Mean
1	20.14
2	20
3	20.28

Respondent	Age
22	23
23	16
24	18
25	22
26	23
27	17
28	19

Sample	Mean
1	20.14
2	20
3	20.28
4	19.71

Respondent	Age
29	18
30	21
31	20
32	23
33	19
34	21
35	22

Sample	Mean
1	20.14
2	20
3	20.28
4	19.71
5	20.57

As N increases, mean of X approaches E(X)

$$\sum (X_i = outcome) / N = P(X = outcome)$$
As $N \to \infty$

What are asymptotics?

• As a function gets infinitely large it approaches infinity

Bernoulli Distribution

 $X \sim Bernoulli(p)$

Series of bernoulli trials

Binomial distribution is a sum of Bernoullis

- If X is a series of Bernoulli trials, each X_i is a 0 or 1
 - $\circ \quad X = \{0, 1, 0, 1, 1, 0, 1, 0, 0\}$
- A binomial trial is predicting *k* successes out of n trials
- So a binomial expected value is just the sum of a Bernoulli variable
 - $\circ \qquad k = \sum (X)$
 - \circ k = np = E(X)

Sum of n Bernoulli trials

Normal approximation to binomial

Random walks

- For an N dimensional space
- Move some fixed distance *b*
- With direction a random variable p

Random walks

One dimensional random walk

• Move one integer with probability *p* for either direction

Distance from start for random walk

Distance from start for random walk

Distance from start for random walk

Why is this useful?

D = distance from center

P(D < -100) = 2.92%

Why is this useful?

D = distance from center

$$P(D < -100) = 3\%$$

Exponential sums

Exponential sums

Poisson sums

Poisson sums

Poisson sums

Central Limit Theorem

For any i.i.d. variables, given a large enough sample size, any sums drawn from those variables will be normally distributed.

What is i.i.d.?

- Stands for Independently and Identically Distributed
 - Independent: the value of one observation does not affect the other
 - Identically distributed: all variables are generated by the same distribution
- Practically, we are way more concerned about independence than identically distributed

Central Limit Theorem

Given a large enough sample size, the sample means will be normally distributed.

Central Limit Theorem

Normal distribution

$$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Changing normal parameters

Standardizing distributions

- Take two sets of data from the same distribution
- Two parts of standardization
 - Centering data (lining up E(X))
 - Scaling data (line up the variance)
- Standardized variables have mean 1, variance 0

Centering variables

X - mean(X)

Centering variables

Scaling Variables

X / sqrt(Var(X))

Scaling formula / z-score

$$z=rac{x-\mu}{\sigma}$$
 $\mu={
m Mean}$ $\sigma={
m Standard\ Deviation}$

Use of z-scores

- Z-scores allow us to determine the probability of only a single observation
 - If you assume the normal distribution
- Mean of 0 and Variance of 1 provided simple interpretation

Interpretation of z-score

Interpretation of z-score

- \bullet -1 < z < 1
 - o 68% chance
- \bullet -2 < z < 2
 - o 95% chance
- -3 < z < 3
 - o 99.7% chance

Let's take a step back

Use of the normal

- If we are interested in the mean of a sample with sufficient size all we need is...
 - Expected Value (mean)
 - Variance (standard deviation)
- ...and we can assign it a probability
 - Answer questions whether something changed in the population or random chance.
- We don't need to know the distribution of our data, or anything else about the population

Z-scores in action

After opening a new school, a city wants to determine if the new school is performing well. The average school in the district has a graduation rate of 74%, with a standard deviation of 8%. The new school's graduation rate is 82%.

$$z = x - mean(x) / stdev(x)$$

$$z = (.82 - .74) / .08 = -1$$

Review

- Assuming i.i.d, any type of sums drawn from any type of distribution will be normally distributed, given a large enough sample
- Z-scores rescale distributions to have:
 - \circ E(X) = 0
 - \circ Var(X) = 1
- Z-scores allow us to determine probability *without* knowing what distribution it came from