Power Electronics Education Electronic Book

Welcome to PEEEB

Tutorial 3: Diode Rectifiers

Presenter: Dr. Firuz, Zare

www.peeeb.com

Tutorial3 1

Q1: A single-phase diode rectifier with R-C load is connected to a grid with 240 V and 50 Hz. Find C value to have 20V ripple on the output side when output power is 100 watts.

4 Cf DV VM - DV	Park V	aut	Vout	
R		I	Pout	
	Pout			
4 CfR Dr. Vn - DV	f = 90 Hz		200000000000000000000000000000000000000	
	0V 201			
. /				
DV (1+4RCf) = Vm				555
VM ->	Vn= 12 x 2	40		
1+4Rcf				
>?				555
				0.000

Presenter: Dr. Firuz Zare

www.peeeb.com

Tutorial3

Q2: A single-phase diode rectifier is connected to a pure inductive load in which the load current, lout is constant. Find the input current and its harmonics.

Presenter: Dr. Firuz Zare www.peeeb.com

$$an = \frac{2}{T} \int_{0}^{T} I_{out} \times l_{out} \left(\frac{2pt}{T}xn\right) dt + \frac{2}{T} \int_{T}^{T} \left(-I_{out}\right) \times l_{out} \left(\frac{2nt}{T}xn\right) dt$$

$$= \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T}xn\right) \int_{0}^{T} \frac{1}{T} \left(-2I_{out}\right) \times l_{out} \left(\frac{2nt}{T}xn\right) dt$$

$$= \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T}xn\right) \int_{0}^{T} \frac{1}{T} \left(-2I_{out}\right) \times l_{out} \left(\frac{2nt}{T}xn\right) dt$$

$$= \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T}xn\right) \int_{0}^{T} \frac{1}{T} \left(-2I_{out}\right) \times l_{out} \left(\frac{2nt}{T}xn\right) dt$$

$$= \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T}xn\right) \int_{0}^{T} \frac{1}{T} \left(-2I_{out}\right) \times l_{out} \left(\frac{2nt}{T}xn\right) dt$$

$$= \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T}xn\right) \int_{0}^{T} \frac{1}{T} \left(-2I_{out}\right) \times l_{out} \left(\frac{2nt}{T}xn\right) dt$$

$$= \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T}xn\right) \int_{0}^{T} \frac{1}{T} \left(-2I_{out}\right) \times l_{out} \left(\frac{2nt}{T}xn\right) dt$$

$$= \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T}xn\right) = \frac{2 I_{out}}{T} \times \left(\frac{2pt}{T$$

Presenter: Dr. Firuz Zare

www.peeeb.com

Tutorial3 5

$$b_{A} = \frac{1}{T} \int_{0}^{T} I_{add} + \sum_{n} \left(\frac{1\pi t}{T} + n\right) dt + \frac{1}{T} \int_{0}^{T} I_{add} + \sum_{n} \left(\frac{2\pi t}{T} + n\right) dt$$

$$= \frac{1}{T} \int_{0}^{T} I_{add} + \sum_{n} \left(\frac{1\pi t}{T} + n\right) \int_{0}^{T} \frac{2\pi (-1 + 1)}{T} \int_{0}^{T} \left(\frac{-T}{T} + n\right) dt$$

$$= \frac{1}{T} \int_{0}^{T} \left[e_{n} \left(\frac{2\pi T}{T} + n\right) - e_{n} \left(\frac{2\pi T}{T} + n\right) -$$

Tutorial3 6