Notes: cubic couplings in 3d

May 7, 2024

Scalar fields

The scalar Kaluza-Klein fluctuations of the SO(8, 4+m) exceptional field theory [1] are labelled by pair of indices $\Phi^{\alpha,\Sigma}$ [2], with α the index of non-compact generators of SO(8, 4+m) (or equivalently the fields within the 3d truncation) and Σ labelling the scalar harmonic \mathcal{Y}^{Σ} on S^3 . They transform in the symmetric vector representation $\binom{n}{2}, \binom{n}{2}; 0, 0$ of $SO(4)_{\text{gauge}} \times SO(4)_{\text{global}} \times SO(m)$. Under

$$SO(8, 4+m) \longrightarrow SO(4)_{gauge} \times SO(4)_{global} \times SO(m),$$
 (0.1)

the non-compact generators t_{α} of SO(8, 4 + m) decompose as

$$t_{\alpha} \longrightarrow (0,0;0,0) \oplus (1,0;0,0) \oplus (0,1;0,0) \oplus (1,1;0,0) \oplus (1/2,1/2;1/2,1/2) \oplus (1/2,1/2;0,0)^{(m)} \oplus (0,0;1/2,1/2)^{(m)},$$

$$(0.2)$$

where the exponent $^{(m)}$ indicates representations that transforms as vectors under SO(m). The other representations are SO(m) scalars. Then, the fluctuations $\Phi^{\alpha,\Sigma}$ are made of the following representations:

$$\alpha \otimes \Sigma \longrightarrow \left[(0,0;0,0) \oplus (1,0;0,0) \oplus (0,1;0,0) \oplus (1,1;0,0) \right. \\ + \left. \left(\frac{1}{2},\frac{1}{2};\frac{1}{2},\frac{1}{2} \right) \oplus \left(\frac{1}{2},\frac{1}{2};0,0 \right)^{(m)} \oplus \left(0,0;\frac{1}{2},\frac{1}{2} \right)^{(m)} \right] \otimes \left(\frac{n}{2},\frac{n}{2};0,0 \right) \\ + \left. \left[\left(\frac{n}{2},\frac{n}{2};0,0 \right) \right] \\ + \left[\left(\frac{(n-2)}{2},\frac{n}{2};0,0 \right) \oplus \left(\frac{n}{2},\frac{n}{2};0,0 \right) \oplus \left(\frac{(n+2)}{2},\frac{n}{2};0,0 \right) \right] \\ + \left[\left(\frac{n}{2},\frac{(n-2)}{2};0,0 \right) \oplus \left(\frac{n}{2},\frac{n}{2};0,0 \right) \oplus \left(\frac{(n+2)}{2},\frac{(n+2)}{2};0,0 \right) \right] \\ + \left[\left(\frac{(n-2)}{2},\frac{(n-2)}{2};0,0 \right) \oplus \left(\frac{(n-2)}{2},\frac{n}{2};0,0 \right) \oplus \left(\frac{(n-2)}{2},\frac{(n+2)}{2};0,0 \right) \\ + \left(\frac{n}{2},\frac{(n-2)}{2};0,0 \right) \oplus \left(\frac{(n+2)}{2},\frac{n}{2};0,0 \right) \oplus \left(\frac{(n+2)}{2},\frac{(n+2)}{2};0,0 \right) \right] \\ + \left[\left(\frac{(n-1)}{2},\frac{(n-1)}{2};\frac{1}{2},\frac{1}{2} \right) \oplus \left(\frac{(n-1)}{2},\frac{(n+1)}{2};\frac{1}{2},\frac{1}{2} \right) \right] \\ + \left[\left(\frac{(n-1)}{2},\frac{(n-1)}{2};\frac{1}{2},\frac{1}{2} \right) \oplus \left(\frac{(n-1)}{2},\frac{(n+1)}{2};\frac{1}{2},\frac{1}{2} \right) \right] \\ + \left[\left(\frac{(n-1)}{2},\frac{(n-1)}{2};0,0 \right)^{(m)} \oplus \left(\frac{(n-1)}{2},\frac{(n+1)}{2};0,0 \right)^{(m)} \\ + \left(\frac{(n+1)}{2},\frac{(n-1)}{2};0,0 \right)^{(m)} \oplus \left(\frac{(n+1)}{2},\frac{(n+1)}{2};0,0 \right)^{(m)} \right] \\ + \left[\left(\frac{n}{2},\frac{n}{2};\frac{1}{2},\frac{1}{2} \right)^{(m)} \right].$$

This corresponds to the scalars fields and Goldstone modes belonging to the level n in the Kaluza-Klein tower. The supermultiplets at level n are [3,4,2] (see tab. 1 for the notations)

$$S_{(2,0)}^{(n)} = [n+1, n+1]_{s} + [n+3, n+3]_{s} + [n+2, n+2]_{s}^{(m)} + [n+1, n+3]_{s} + [n+3, n+1]_{s}. (0.4)$$

In this equation, we have assigned a geometric shape to each of these supermultiplets. We use in the following these shapes to identify the multiplet to which each representation in eq. (0.3) belongs:

$$\alpha \otimes \Sigma \longrightarrow \left[\frac{(n/2, n/2; 0, 0)}{(n-2)/2, n/2; 0, 0} \oplus \frac{(n/2, n/2; 0, 0)}{(n/2, n/2; 0, 0)} \oplus \frac{((n+2)/2, n/2; 0, 0)}{(n/2, (n+2)/2; 0, 0)} \right]$$

$$\oplus \left[\frac{(n/2, (n-2)/2; 0, 0)}{(n-2)/2, (n-2)/2; 0, 0} \oplus \frac{(n/2, n/2; 0, 0)}{(n/2, n/2; 0, 0)} \oplus \frac{((n-2)/2, (n-2)/2; 0, 0)}{(n/2, (n+2)/2; 0, 0)} \oplus \frac{((n-2)/2, (n-2)/2; 0, 0)}{(n/2, (n+2)/2; 0, 0)} \oplus \frac{((n-2)/2, (n-2)/2; 0, 0)}{(n/2, (n+2)/2; 0, 0)} \oplus \frac{((n+2)/2, (n-2)/2; 0, 0)}{(n-2)/2, (n-2)/2; 0, 0)} \oplus \frac{((n+2)/2, (n-2)/2; 0, 0)}{((n-2)/2, (n-2)/2; 0, 0)} \oplus \frac{((n+2)/2, (n-2)/2; 0, 0)}{((n-2)/2, (n-2)/2; 0, 0)} \oplus \frac{((n-2)/2, (n-2)/2; 0, 0)$$

Representations to which no shape has been assigned may belong to multiple multiplets (ce: This needs to be fixed). Underlined representations are Goldstone modes (or potential Goldstone modes if the line is dashed and not solid).

References

- [1] O. Hohm, E. T. Musaev, and H. Samtleben, O(d+1,d+1) enhanced double field theory, JHEP 10 (2017) 086, [arXiv:1707.06693].
- [2] C. Eloy, Kaluza-Klein spectrometry for AdS₃ vacua, SciPost Phys. **10** (2021), no. 6 131, [arXiv:2011.11658].
- [3] S. Deger, A. Kaya, E. Sezgin, and P. Sundell, Spectrum of D=6, N=4b supergravity on AdS in three-dimensions x S**3, Nucl. Phys. B **536** (1998) 110–140, [hep-th/9804166].
- [4] J. de Boer, Six-dimensional supergravity on S**3 x AdS(3) and 2-D conformal field theory, Nucl. Phys. B 548 (1999) 139-166, [hep-th/9806104].

$\Delta_{ m L}$	$\Delta_{ m R}$	Δ	s	$SO(4)_{gauge}$	$SO(4)_{global}$
Spin-1 multiplet $[k+1,k+1]_{\mathrm{s}}$					
k/2	k/2	k	0	(k/2, k/2)	(0,0)
k/2	(k+1)/2	k + 1/2	1/2	$\left(k/2,(k-1)/2\right)$	(0, 1/2)
(k+1)/2	k/2	k + 1/2	-1/2	$\big((k-1)/2,k/2\big)$	(1/2, 0)
(k+1)/2	(k+1)/2	k+1	0	$\big((k-1)/2,(k-1)/2\big)$	$\big(1/2,1/2\big)$
k/2	(k+2)/2	k+1	1	$\big(k/2,(k-2)/2\big)$	(0,0)
(k+2)/2	k/2	k+1	-1	$\big((k-2)/2,k/2\big)$	(0,0)
(k+1)/2	(k+2)/2	k + 3/2	1/2	((k-1)/2,(k-2)/2)	(1/2,0)
(k+2)/2	(k+1)/2	k + 3/2	-1/2	((k-2)/2,(k-1)/2)	(0,1/2)
(k+2)/2	(k+2)/2	k+2	0	((k-2)/2,(k-2)/2)	(0,0)
Spin-2 multiplet $[p,p+2]_{ m s}$					
(p-1)/2	(p+1)/2	p	1	$\bigl((p-1)/2,(p+1)/2\bigr)$	(0,0)
(p-1)/2	(p+2)/2	p + 1/2	3/2	$\big((p-1)/2,p/2\big)$	(0,1/2)
p/2	(p+1)/2	p + 1/2	1/2	$\bigl((p-2)/2,(p+1)/2\bigr)$	(1/2, 0)
p/2	(p+2)/2	p+1	1	$\bigl((p-2)/2,p/2\bigr)$	$\big(1/2,1/2\big)$
(p-1)/2	(p+3)/2	p+1	2	$\bigl((p-1)/2,(p-1)/2\bigr)$	(0,0)
(p+1)/2	(p+1)/2	p+1	0	((p-3)/2,(p+1)/2)	(0,0)
p/2	(p+3)/2	p+3/2	3/2	$\big((p-2)/2,(p-1)/2\big)$	(1/2, 0)
(p+1)/2	(p+2)/2	p+3/2	1/2	$\left((p-3)/2,p/2\right)$	(0,1/2)
(p+1)/2	(p+3)/2	p+2	1	$\big((p-3)/2,(p-1)/2\big)$	(0,0)

Tab. 1 Spin-1 $[k+1,k+1]_s$ and spin-2 $[p,p+2]_s$ multiplets of $SU(2|1,1)_L \times SU(2|1,1)_R$, for $k \geq 2$ and $p \geq 3$ [4]. The SO(4) representations are given by a couple of SU(2) spins. The conjugate spin-2 multiplet $[p+2,p]_s$ is obtained by inverting Δ_L with Δ_R , taking the opposite spin -s and exchanging the SU(2) spins inside each $SO(4)_{gauged}$ and $SO(4)_{global}$ representations. Taken from ref. [2].