Polynômes annulateurs

Exercice 1 **

CCP PSI 2015

L'endomorphisme

$$\varphi: \left\{ \begin{array}{ccc} \mathcal{M}_2(\mathbb{R}) & \longrightarrow & \mathcal{M}_2(\mathbb{R}) \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \longmapsto & \begin{pmatrix} d & a \\ b & c \end{pmatrix} \right.$$

est-il diagonalisable?

Exercice 2 ★★

CCP MP 2018

Soient x un nombre réel et E_x l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{R})$ vérifiant $M^2 + M + xI_n = 0$.

- **1.** Si $x \neq 0$, montrer qu'une matrice $M \in E_x$ est inversible et exprimer son inverse. Quelles sont les matrices inversibles appartenant à E_0 ?
- **2.** Pour quelles valeurs de x tous les éléments de E_x sont ils diagonalisables dans $\mathcal{M}_n(\mathbb{R})$?
- 3. Déterminer l'ensemble T des traces des éléments de E_{-2} . Quel est son cardinal?

Exercice 3 ★★★

Soient u et v deux endomorphismes diagonalisables d'un \mathbb{K} -espace vectoriel de dimension finie \mathbb{E} tels que $u \circ v = v \circ u$. Montrer que u et v diagonalisent dans une base commune.

Exercice 4 ★

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que si A est diagonalisable, alors A^T l'est aussi.

Exercice 5 ★★★

Soient u et v deux endomorphismes trigonalisables d'un \mathbb{K} -espace vectoriel E de dimension finie tels que $u \circ v = v \circ u$. Montrer que u et v trigonalisent dans une base commune.

Exercice 6 ★★

CCINP (ou CCP) MP 2019

Soit $n \ge 2$ entier. On considère $\mathcal{M}_n(\mathbb{R})$ telle que $A^2 = I_n$ et $A \ne \pm I_n$.

- **1.** Montrer que $tr(A) \equiv n[2]$.
- **2.** Montrer que $|\operatorname{tr}(A)| \le n 2$.

Exercice 7 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Soit l'endomorphisme

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathbf{M} & \longmapsto & \mathbf{M} + \mathrm{tr}(\mathbf{M})\mathbf{I}_n \end{array} \right.$$

Déterminer les valeurs propres de u, ainsi que les espaces propres associés.

Exercice 8

1. Déterminer toutes les matrices A de $\mathcal{M}_2(\mathbb{R})$ telles que

$$A^2 - 3A + 2I_2 = 0$$

2. Déterminer toutes les matrices A de $\mathcal{M}_2(\mathbb{R})$ telles que

$$A^3 - 8A^2 + 21A - 18I_2 = 0$$

Exercice 9 ★

TPE MP 2010

Déterminer les $n \in \mathbb{N}^*$ pour lesquels il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^3 - M^2 - M - 2I_n = 0$ et tr(M) = 0.

Exercice 10 ★★

Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $M^5 = M^2$ et $\mathrm{tr}(M) = n$.

Exercice 11

Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie et $P \in \mathbb{K}[X]$ un polynôme unitaire annulateur de u. La décomposition de P en facteurs irréductibles unitaires s'écrit $P = \prod_{i=1}^r P_i$. Pour $i \in [1, r]$, on pose $N_i = \operatorname{Ker} P_i(u)$.

Soit F un sous-espace vectoriel de E stable par u. Montrer que $F = \bigoplus_{i=1}^{r} F \cap N_i$.

Exercice 12 TPE-EIVP PSI 2017

Soient A, B, C dans $\mathcal{M}_n(\mathbb{R})$ telles que C = A + B, C^2 = 2A + 3B, C^3 = 5A + 6B. A et B sont-elles diagonalisables?

Exercice 13 ***

Soient E un \mathbb{K} -espace vectoriel, $f \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$ tel que P(f) = 0, P(0) = 0 et $P'(0) \neq 0$. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Exercice 14 ★★

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que rg(A) est pair.

Polynôme minimal

Exercice 15 ★★

CCINP (ou CCP) PSI 2021

On définit : $\forall m \in \mathbb{R}$, $A_m = \begin{pmatrix} -m-1 & m & 2 \\ -m & 1 & m \\ -2 & m & 3-m \end{pmatrix}$. Déterminer le polynome minimal de

 A_m .

Exercice 16

CCINP (ou CCP) MP 2021

Soit n un entier supérieur ou égal à 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^n = I_n$ et telle que la famille $(I_n, A, A^2, \dots, A^{n-1})$ soit libre. Montrer que $\mathrm{tr}(A) = 0$.

Exercice 17 ENS MP 2011

- 1. Soit A une matrice inversible réelle. Exprimer le polynôme minimal de A^{-1} en fonction de celui de A.
- **2.** Soit A une matrice orthogonale réelle telle que 1 et −1 ne soient pas racines de son polynôme minimal. Montrer que A et A⁻¹ ont même polynôme minimal. Montrer que le degré de ce polynôme minimal est pair.

Exercice 18

Soient E un K-espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$ tels que $f \circ g - g \circ f = f$.

- **1.** Montrer que $f^n \circ g g \circ f^n = nf^n$ pour tout $n \in \mathbb{N}$.
- **2.** En déduire que $P(f) \circ g g \circ P(f) = f \circ P'(f)$ pour tout $P \in K[X]$.
- **3.** Montrer que f est nilpotent.

Exercice 19 **

CCINP (ou CCP) PSI 2021

Soit A =
$$\begin{pmatrix} 1 & 2 & \cdots & n \\ 2 & & & \\ \vdots & & (0) & & \\ n & & & \end{pmatrix}$$
, où $n \ge 3$.

- 1. Quel est le rang de A? la dimension du noyau de A?
- **2.** La matrice A est-elle diagonalisable?
- **3.** Quelle est la multiplicité de la valeur propre 0?
- **4.** Montrer qu'il existe $\lambda \in]1, +\infty[$ tel que $Sp(A) = \{0, \lambda, 1 \lambda\}.$
- **5.** Déterminer un polynôme annulateur de A de degré 3.

Exercice 20 ★★

On considère un entier $n \ge 2$. Soit l'endomorphisme

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathbf{M} & \longmapsto & \mathbf{M} + \mathrm{tr}(\mathbf{M})\mathbf{I}_n \end{array} \right.$$

- 1. Déterminer un polynôme annulateur de u de degré 2.
- **2.** *u* est-il diagonalisable?
- 3. Déterminer le polynôme minimal et le polynôme caractéristique de u.

Exercice 21 ★★

CCINP (ou CCP) PSI 2021

Soient
$$A \in \mathcal{M}_n(\mathbb{R})$$
 et $B = \begin{pmatrix} A & A \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$.

- 1. Donner le rang de B en fonction du rang de A.
- **2.** Montrer que, pour tout $P \in \mathbb{R}[X]$,

$$P(B) = \begin{pmatrix} P(A) & P(A) \\ 0 & 0 \end{pmatrix} + P(0) \begin{pmatrix} 0 & -I_n \\ 0 & I_n \end{pmatrix}$$

3. On suppose que A est diagonalisable. Montrer que B l'est aussi, et donner ses valeurs propres.

Exercice 22 ★★

Matrice compagnon

Soient
$$(a_0, \dots, a_{n-1}) \in \mathbb{K}^n$$
 et $A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$.

- 1. Montrer que $\chi_A = X^n + \sum_{k=0}^{n-1} a_k X^k$.
- **2.** Montrer que $\pi_A = \chi_A$.
- **3.** Déterminer les sous-espaces propres de A^{T} .

Exercice 23

Endomorphismes cycliques

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$.

- 1. **a.** Pour $x \in E$, on note $I_{u,x} = \{P \in \mathbb{K}[X], P(u)(x) = 0_E\}$. Montrer que pour tout $x \in E$, $I_{u,x}$ est un idéal de $\mathbb{K}[x]$. On note $\pi_{u,x}$ son unique générateur unitaire. Justifier que $\pi_{u,x}$ divise π_u .
 - **b.** Pour $x \in E$, on note $E_{u,x} = \{P(u)(x), P \in \mathbb{K}[X]\}$. Montrer que pour tout $x \in E$, $E_{u,x}$ est un sous-espace vectoriel de E et que $(u^k(x))_{0 \le k \le \deg \pi_{u,x}-1}$ en est une base. En déduire la dimension de $E_{u,x}$.
 - **c.** Montrer que $E_{u,x}$ est stable par E et que $\pi_{u_{|E_{u,x}}} = \pi_{u,x}$.
- 2. Soient x_1, \dots, x_p tels que les polynômes $\pi_{u, x_1}, \dots, \pi_{u, x_p}$ soient deux à deux premiers entre eux. On pose $x = \sum_{i=1}^p x_i$ et $P = \prod_{i=1}^p \pi_{u, x_i}$.
 - **a.** Montrer que $\pi_{u,x}$ divise P.
 - **b.** Montrer que les sous-espaces vectoriels E_{x_1}, \dots, E_{x_n} sont en somme directe.
 - **c.** En déduire que $\pi_{u,x} = P$ et $E_{u,x} = \bigoplus_{i=1}^{p} E_{u,x_i}$.
- 3. En considérant la décomposition en facteurs irréductibles de π_u , montrer à l'aide de la question précédente qu'il existe $x \in E$ tel que $\pi_{u,x} = \pi_u$.
- **4.** Montrer que les conditions suivantes sont équivalentes.
 - (i) $\pi_u = \chi_u$.
 - (ii) Il existe $x \in E$ tel que $E_{u,x} = E$.
 - (iii) Il existe une base de E dans laquelle la matrice de u est de la forme

$$\begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

On dit dans ce cas que *u* est un endomorphisme *cyclique*.

Exercice 24 ★

Soient un entier $n \ge 2$ et $U \in \mathcal{M}_n(\mathbb{K})$ dont tous les coefficients valent 1.

- 1. Déterminer le polynôme minimal de U.
- 2. Réduire U.

Exponentielles

Exercice 25

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que $\exp(A)^T = \exp(A^T)$.
- **2.** On suppose A symétrique dans cette question. Montrer que exp(A) est également symétrique.
- **3.** Montrer que det(exp(A)) > 0.
- **4.** On suppose A antisymétrique dans cette question. Montrer que $\exp(A) \in SO_n(\mathbb{R})$.

Exercice 26 ★

Soit A =
$$\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
. Calculer exp(A) de deux manières.

Exercice 27 ★

Soit A =
$$\begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$$
. Calculer exp(A) de deux manières.

Exercice 28 **

Soit $u \in \mathcal{L}(E)$ nilpotent où E est un espace vectoriel de dimension finie. Montrer que $\operatorname{Ker}(\exp(u) - \operatorname{Id}_E) = \operatorname{Ker}(u)$ et $\operatorname{Im}(\exp(u) - \operatorname{Id}_E) = \operatorname{Im}(u)$.