Article presentation

A. Ndiaye E. Songo

Bayesian Learning Rule

Motivation Principle

Applications o the Bayesian Learning Rule

The special case of ridge regression

Conclusion an Discussion

The Bayesian Learning Rule (2022)

M. E. Khan & H. Rue

Aminata Ndiaye & Edimah Songo M2 MASH

Outline

Article presentation

Dauphine | PSL₩

A. Ndiaye E. Songo

Bayesian Learning Rul

Motivation Principle

Applications the Bayesian Learning Rule

The special case o

Conclusion and Discussion

- Bayesian Learning Rule
 - Motivation
 - Principle
- Applications of the Bayesian Learning Rule
 - The special case of ridge regression
- 3 Conclusion and Discussion

Bayesian Learning Rule

Article presentation

Dauphine | PSL₩

A. Ndiaye E. Songo

Bayesian Learning Ru

Motivation Principle

Applications of the Bayesian Learning Rule

The special case o ridge regression

Conclusion and Discussion

Motivation

- Create a unified framework to derive established and new algorithms
- Improve existent algorithms (convergence speed)
- Find new algorithms

How we proceed?

- Optimize a Bayesian objective function
- Finding the posterior distribution of the parameters of interest
- Taking more information into account by using the natural gradient

Bayesian Learning Rule

Principle

Applications the Bayesian Learning Rule

The special case o ridge regression

Conclusion and Discussion

Bayesian Objective

$$q_*(heta) = rg \min_{oldsymbol{q}(heta)} \mathbb{E}_{oldsymbol{q}} \left[\sum_{i=1}^N \ell(y_i, f_{ heta}(x_i))
ight] + \mathbb{D}_{oldsymbol{\mathcal{KL}}}[oldsymbol{q}(heta) \parallel oldsymbol{p}(heta)]$$

Setting

- ullet $q\in\mathcal{Q}$ a set of regular and minimal exponential family
- $\lambda_{t+1} \leftarrow \lambda_t \rho_t \tilde{\nabla}_{\lambda} \left[\mathbb{E}_{q_t}[\bar{\ell}(\theta)] \mathcal{H}(q_t) \right]$

Steps

- Choice of posterior approximation (here in the exponential family)
- Choice of approximation method for natural gradient (ex: Delta Method, etc.)

Quadratic loss for some penalty term $\delta > 0$

$$\bar{\ell}(\theta) = \frac{1}{2} (y - X\theta)^T (y - X\theta) + \frac{1}{2} \delta \theta^T \theta$$
$$\theta^* = (X^T X + \delta I)^{-1} X^T y$$

Natural gradients in Ridge Regression

- Candidate posterior: $\mathcal{N}(m, S)$
- $\mu = E[T(\theta)]$
- Natural gradients:

$$\tilde{\nabla}_{\mu^{(1)}} E_q[\bar{\ell}(\theta)] = -X^T y$$
 and $\tilde{\nabla}_{\mu^{(2)}} E_q[\bar{\ell}(\theta)] = \frac{1}{2} (X^T X + \delta I) \mu^{(2)}$

• Solution: $\theta^* = m^* = (S^*)^{-1}X^T y = (X^TX + \delta I)^{-1}X^T y$

Conclusion

Article presentation

Dauphine | PSL®

A. Ndiaye E. Songo

Bayesian Learning Ru Motivation

Applications the Bayesian Learning Rule

The special case o ridge regression

Conclusion and Discussion

Article's takeaways

- Research possibilities new for state-of-the-art algorithms
- Only two choices are required (posterior and natural gradient approximations)

Drawbacks

- The article was at times difficult to understand
- Algorithms not necessarily optimal
 - Restriction to exponential families
 - Difficult to compute gradients
 - Topological instability

Potential solution to some issues

New research: Lie-Group Bayesian Learning Rule (2023)