ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ТЕСТ ПО МАТЕМАТИКА – 04 юли 2016 г. ВАРИАНТ ВТОРИ

ПЪРВА ЧАСТ

Всяка от следващите 20 задачи има само един верен отговор. Преценете кой от предложените пет отговора на съответната задача е верен. Върху талона за отговори от теста (последната страница) заградете с овал и нанесете кръстче върху тази буква, която считате, че съответства на правилния отговор. Например

За всеки верен отговор получавате по 1 точка. За грешен или непопълнен отговор, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

1. Стойността	на израза $\left(\frac{1}{\sqrt{2}}\right)$	$\int_{0}^{2} + \left(-3^{3}\right)^{-\frac{1}{3}} e:$		
a) $\frac{7}{3}$,	б) $\frac{5}{3}$,	в) -1,	Γ) $\frac{1}{6}$,	д) $\frac{17}{9}$

- 2. Средното аритметично на 30 числа е 50. Ако всяко от числата се намали с 10, то средното им аритметично ще е равно на:
 - а) 45, б) 40, в) 35, г) 30, д) 20.
- 3. Броят на корените на уравнението $\sqrt{3x^2 11x} = 2$, които са корени и на уравнението $\sqrt{x} + \sqrt{5 x} = 3$, е: а) нито един, б) един, в) два, г) три, д) четири.
- 4. Стойността на израза $\log_2 1024 + \lg 0.1 + 3^{\log_3 5}$ е: a) 16, б) 15, в) 14, г) 12, д) 11.
- 5. Ако числата x_1 и x_2 са корени на уравнението $x^2+6x+4=0$, то стойността на израза $3\sqrt{x_1x_2}-x_1^2-x_2^2$ е: a) -22, б) -38, в) 12, г) 34, д) 0.
- 6. Сборът на първите десет члена на аритметична прогресия е 20. Ако разликата на прогресията е d = -4, то първият член на тази прогресия е: а) 20, б) 28, в) 91, г) 92, д) -80.

стойността	. на израза $\left(\frac{a_8}{a_6} + \frac{a_{12}}{a_9}\right)$	е равна на	a:	
a) 0,48,	6) 0,048,	B) $\frac{\sqrt{6}}{5}$,	Γ) $2\sqrt[3]{6}$,	д) $\frac{\sqrt[3]{6}}{5}$.
	ески ред се състои е е 2, а медианата ва члена е:			
a) 5,25,	6) 15,75,	в) 48,	г) 24,	д) 12.
9. Различните са на брой:	е начини, по които	могат да седі	нат б човека око	оло кръгла маса
a) 820,	б) 120,	в) 36,	г) 12,	д) б.
	ма 3 зелени, 2 чо чин от кутията се и червена е:	-	_	
a) $\frac{5}{}$	$6)\frac{1}{3}$,	B) $\frac{5}{}$.	Γ) $\frac{4}{}$.	$\pi \frac{8}{1}$
9,	3,	⁻ / 18 '	- 9 '	~ 9 .
	онното множество н		•	,
a) $(-2;2)$,	6) (0;1) \cup (1;2),	B) $(1;2]$,	$_{\Gamma})$ $(2;\infty)$,	$ д) \varnothing $
	$\lim_{x \to \infty} \frac{\sqrt{9x^2 - x + 7}}{3x + 8} e p$ 6) $\frac{\sqrt{7}}{8}$,		Γ) $-\frac{1}{8}$,	д) 1.
13.Стойността	а на израза $\frac{1}{2}(\cos 20$	$0^{\circ} + \cos 60^{\circ}$) sin	n10°e:	
a) $\frac{1}{4}$,	6) $\frac{1}{8}$,	$\mathrm{B)}\;\frac{\sqrt{3}}{4}\;,$	Γ) $\frac{1}{8} + \sin 10^{\circ}$,	д) $\frac{1}{2}\sin 10^{\circ}$.

14. Ако $\cos \alpha = -\frac{3}{5}$ и $\alpha \in \left(\frac{\pi}{2}; \pi\right)$, то числото $\cot \frac{\alpha}{2}$ е равно на:

a) $\frac{1}{3}$, б) $-\frac{1}{3}$, в) $\frac{1}{2}$, г) $-\frac{1}{2}$, д) $\frac{3}{2}$.

7. Ако редицата с общ член $\,a_{\scriptscriptstyle n}\,$ е геометрична прогресия с частно $\,q=0,2\,$, то

15. Стойността	на производнат	а на функцията	$f(x) = 2\cos 2x + \frac{1}{2}\cos 2x +$	$+\pi_{B} x = \frac{\pi}{6} e$:	
a) $-2\sqrt{3}$,	6) $2\sqrt{3}$,	$_{\mathrm{B}})$ $-\sqrt{3}$,	Γ) $\sqrt{3}$,		
взаимно пер	пендикулярни.,	оиъгълник е 6 <i>сп</i> Дължината на тр в) 9,	етата медиана в	сантиметри е:	
14 <i>ст</i> . Лице	ето на ромба е:	ромб е 5 <i>ст</i> , а			
a) $96 cm^2$,	6) $12\sqrt{2} \ cm^2$,	B) $12 cm^2$,	Γ) $20 cm^2$,	д) $24 cm^2$.	
		писан прав кръго			
образувател	ини на осното м	лу сечение. Ако	$\cos \gamma = -\frac{4}{5} , \text{ To}$	о радиусът на	
основата на а) 20 ст,	конуса е: б) 7,5 <i>cm</i> ,	в) 9 ст,	г) 10 <i>cm</i> ,	д) 5 <i>cm</i> .	
19. Около основата на правилна триъгълна пирамида е описана окръжност с радиус $2\sqrt{3}$ <i>ст.</i> Околните стени сключват с основата ъгъл с големина α . Обемът на пирамидата в cm^3 е:					
a) $3\sqrt{3} \operatorname{tg} \alpha$,	6) $\frac{\sqrt{3}}{3}$ tg α ,	B) $3\sqrt{3}\sin\alpha$,	Γ) $9\sqrt{3}$ tg α ,	д) $9 \operatorname{tg} \alpha$.	
-		равнение $kx^2 + 2k$ аметър k в интер		отрицателни за	
a) $\left[\frac{1}{3}; \frac{1}{2}\right)$,	$6) \left[0; \frac{1}{2}\right),$	B) $\left[\frac{1}{3};\infty\right)$,	Γ) $\left(\frac{1}{3}; \frac{1}{2}\right)$,	$ \Pi $ $\left(0; \frac{1}{3}\right)$.	
		ВТОРА ЧАСТ	_		
отговорите от съответната получен и обос	п теста (послед задача запишет нован верен отг	а без избираем ната страница) о само отговора, овор получавате ки не се дават и п	в празното поле който сте полу по 2 точки. За г	за отговор на ⁄чили. За всеки	
21. Да се реши					
	$\frac{3^{2x}-21}{3^x-3}=10.$				

22. Да се реши уравнението:

$$\lg(x-4) + \lg(x-8) = \lg 8$$
.

23. Да се реши неравенството:

$$\frac{4}{\left|x-1\right|} - \frac{1}{\left|x-2\right|} \le 0.$$

24. Да се намерят целите решения на неравенството:

$$\frac{x-2}{x^2-9x+14} \le -\frac{2}{13}$$

- 25. Да се реши системата: $(x-y)(x^2-y^2)=45$, x+y=5.
- 26. Библиотекар подрежда по случаен начин 10 книги в редица. Ако точно три са с червена подвързия, каква е вероятността те да са подредени една до друга?
- 27. Върху графиката на функцията $f(x)=x^3+x^2+4$ е избрана т. A с абциса x=-1. Да се намери ординатата на т. A и големината на ъгъла, който сключва допирателната на f(x) в т. A с положителната посока на остта Ox.
- 28. Да се реши тригонометричното уравнение:

$$4(1+\cos x)\sin^2\frac{x}{2} = 3\sin x + 2$$
.

- 29. В правоъгълен $\triangle ABC$ ($\angle ACB = 90^\circ$) са дадени BC = a и $\angle CAB = 60^\circ$. Точките M и N лежат съответно на BC и AB, така че около четириъгълника ANMC може да се опише окръжност. Да се намери периметърът на $\triangle NMB$, ако лицето му е 4 пъти по-малко от това на $\triangle ABC$.
- 30. Да се намерят стойностите на реалния параметър a , за които функцията $f(x) = \frac{1}{ax^2 \sqrt{8}x + 3a + 1}$ е дефинирана за всяко реално число x .

ВРЕМЕ ЗА РАБОТА 4 АСТРОНОМИЧЕСКИ ЧАСА

Драги кандидат-студенти, попълвайте внимателно отговорите на задачите от теста <u>само върху талона за отговор (последната страница)!</u>

НА ВСИЧКИ КАНДИДАТ-СТУДЕНТИ ПОЖЕЛАВАМЕ УСПЕХ!

ОТГОВОРИ НА ВАРИАНТ ВТОРИ на ТЕСТ ПО МАТЕМАТИКА – 04 юли 2016 г. за КАНДИДАТ-СТУДЕНТИ от ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ПЪРВА ЧАСТ

1 б	2 б	3 б	4 в	5 a	6 a	7д	8 г	9 б	10 г
11 б	12 д	13 б	14 в	15 a	16 в	17 д	18 в	19 д	20 a

ВТОРА ЧАСТ

21.
$$x = 0$$
, $x = 2$

22.
$$6+2\sqrt{3}$$

23.
$$x \in \left[\frac{9}{5}; 2\right) \cup \left(2; \frac{7}{3}\right]$$

26.
$$\frac{1}{15}$$

27. 4,
$$\frac{\pi}{4}$$

28.
$$\left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi \right\}$$

29.
$$\frac{a(1+\sqrt{3})}{2}$$

30.
$$a \in (-\infty; -1) \cup \left(\frac{2}{3}; \infty\right)$$