

## RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences
Third Year - Semester II Examination - September/ October 2014

## PHY 3212 - MEDICAL PHYSICS II

Answer any four (4) questions

Time: 2 hour

## Values of constants

| speed of light in a vacuum                          | $c = 3.00 \times 10^8 \text{ms}^{-1}$          |
|-----------------------------------------------------|------------------------------------------------|
| elementary charge                                   | $e = 1.60 \times 10^{-19} \text{C}$            |
| the Plank constant                                  | $h = 6.63 \times 10^{-34} \text{J s}$          |
| mass of electron                                    | $m_e = 9.11 \times 10^{-31} \text{kg}$         |
| mass of proton                                      | $m_p = 1.67 \times 10^{-27} \text{kg}$         |
| acceleration of free fall on<br>the Earth's surface | $g = 9.81 \mathrm{m  s^{-1}}$                  |
| electron volt                                       | $1 \text{ eV} = 1.60 \times 10^{-19} \text{J}$ |
| Reydberg constant                                   | $R_H = 1.097 \times 10^7 \text{m}^{-1}$        |

- 1. (a) Electromagnetic waves (photons) and sound waves can travel through solids, liquids and gases. Electromagnetic waves can also travel through a vacuum but sound waves cannot. Explain this difference and describe the difference between sound waves in a solid and in a liquid. [4]
  - (b) (i) What is acoustic impedance?

[2]

(ii) Describe how the principle of acoustic impedance, reflection and refraction can be applied to ultrasound.

[4]

(iii) In a pregnant woman, the bladder is between the outside of the body and the baby. A pregnant woman needs to have a bladder full of urine if she wishes to have a successful ultrasound scan of her baby. The principal contents of an 'empty' bladder are gaseous.

| With reference to the formula for reflection coefficient, explain why |     |
|-----------------------------------------------------------------------|-----|
| 'empty' bladder would an ultrasound scan unsuccessful.                | [4] |

- (iv) Give one reason why ultrasound might be preferred to a method involving a radioisotope for investigating the size of a body organ. [1]
- (c) Describe the Doppler effect in sound waves and how it is used to obtain flow characteristics of blood moving through the heart. [5]
- 2. Bundles of optical fibres are described as either coherent or non-coherent.
  - (a) (i) Describe how the fibres are arranged in each type of bundle and explain how the different designs determine their optical characteristics [3]
    - (ii) State an application for each type of bundle [2]
  - (b) The following figure shows the cross-section through a glass optical fibrewhich has a core of refractive index 1.50 and a surrounding cladding of refractive index 1.40.



- (i) Complete the path of the ray through the fibre and out at the other end.[2]
- (ii) Complete the graph below to show how the refractive index changes with the radial distance along the line ABCD in the figure. [3]

## RefractiveIndex



- (iii) Calculate the value of the angle of incidence, i° shown in the figure. [3]
- (iv) Calculate the critical angle, c for the boundary between the two types of glasses. [3]
- (c) State and explain whether the following changes in the optical fibre would increase or decrease the probability of light escaping from the fibre.
  - (i) Increasing the refractive index of the cladding [2]
  - (ii) Bending the fibre into a tighter curve [2]
- 3. (a) Electrons behave in two distinct ways. This is referred to as the duality of electrons.
  - (i) State what is meant by the duality of electrons [1]
  - (ii) Give one example of each type of behavior of electrons [2]
  - (b) A proton and an electron have the same velocity. The de Broglie wavelength of the electron is  $3.2 \times 10^{-8}$  m. Calculate
    - (ii) the velocity of the electron [2]

- (iii) the de Broglie wavelength of the proton [2]
- (c) (i) Using the postulates of Bohr's theory, show that the total energy of the electron in the  $n^{th}$  orbit of hydrogen atom is,

$$E_n = -\frac{m_e k_e^2 e^4}{2\hbar^2} \left(\frac{1}{n^2}\right)$$
  $n = 1, 2, 3, \dots \dots$ 

where,  $m_e$  is the mass of an electron,  $k_e$  is the Coulomb constant, e is the charge of an electron,  $\hbar = h/2\pi$  and h is the Plank's constant.

[3]

- (ii) Using the equation in part (i), obtain the expression for **the wavelength** of a spectral line of hydrogen atom. [3]
- (iii) A photon is emitted when a hydrogen atom undergoes a transition from the n = 5 state to the n = 3 state. Calculate the energy and the wavelength of the emitted photon. [3]
- (iii) Figure bellow shows **some** of the electron energy levels in the hydrogen atom

| - 0.54 eV   | E |
|-------------|---|
| - 1.5 eV —— | с |
|             |   |
| - 3.4 eV    | В |

- 13.6 eV A

- (I) Explain why energy levels are given negative energy values. [2]
- (II) A hydrogen atom is excited so that its electron is raised to level C. It falls back to the ground state in two stages with the emission of

|    |     |       | twophotons of different wavelengths. Calculate the wavelength of photon with the shortest wavelength.                                                                               | `the [2]    |
|----|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4. | con | nplex | ic Resonance Imaging (MRI) is a powerful diagnostic tool requiring analysis of data based on atoms in the human body which have need nuclear magnetic resonance (NMR)               |             |
|    | (a) | Des   | scribe the nuclear magnetic resonance phenomenon.                                                                                                                                   | [4]         |
|    | (b) | aro   | e component in the magnetic resonance system requires a current of and 700 A to flow. Name this component and state the main design feat accorporates to reduce power losses.       | ture<br>[2] |
|    | (c) | -     | plain why each of the following must be removed before undergoing and scan:                                                                                                         |             |
|    |     | (i)   | A credit card                                                                                                                                                                       | [1]         |
|    |     | (ii)  | Gold chain                                                                                                                                                                          | [1]         |
|    | (d) | (i)   | Derive the Larmor equation,                                                                                                                                                         |             |
|    |     |       | $f_L = \left(\frac{\gamma}{2\pi}\right) B_0$                                                                                                                                        |             |
|    |     |       | where, $f_L$ is the Lamor frequency, $\gamma$ is the gyromagnetic ratio and $B_0$ the magnetic field.                                                                               | is<br>[2]   |
|    |     | (ii)  | The static magnetic field on a MRI machine is 1.7 T. What is the Larr frequency of the protons? [Take the gyromagnetic ratio of the hydrogenucleus to be 42.5 MHz T <sup>-1</sup> ] |             |
|    | (e) | (i)   | Explain the relaxation process                                                                                                                                                      | [3]         |
|    |     | (ii)  | Define T <sub>I</sub> relaxation                                                                                                                                                    | [1]         |
|    |     | (iii) | Define $T_2$ relaxation                                                                                                                                                             | [1]         |

- (f) Explain two advantages of using MRI scan rather than X-ray to investigate a possible brain tumor.
- 5. (a) The diagram of the main components in a gas laser.



- (i) With reference to laser action, define the term "population inversion" [2]
- (ii) Explain function of the reflectors at either end of the laser and why it is vital for laser action. [3]
- (iii) What are the two necessary conditions for obtaining coherent light from stimulated emission [3]
- (iii) Explain the action of laser in terms of population inversion and stimulated emission [4]
- (b) Ultrasound is typically produced and detected by a piezoelectric transducer.
  - (i) What is piezoelectric effect

[3]

(ii) In an ultrasound A-scan, a single transducer can be used both to send and receive pulses of ultrasound. K L M

The diagram shows a lateral cross-section through part of the abdomen (not to scale)

(I) What is X and what is its function?



[2]

(II) Calculate the time delay between sending out a signal pulse and receiving its echo from interface K. (Speed of ultrasound in soft tissue = 1500 m s<sup>-1</sup>) [3]