

TMSCA HIGH SCHOOL MATHEMATICS TEST #3 © NOVEMBER 2, 2019

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are
 using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for
 accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 1. Evaluate: $12 \times 8 + 25 \div \left(\frac{1}{5}\right)^{-1} - \left(7^2 + 2\right)$

	(A) 48	(B) 50	(C) 52	(D) 54	(E) 56
2.	went to Academy Sp \$225.00, 3 pairs of so	orts and purchased s	hday. He plans to can some new hiking boots and 4 shirts for \$22.50 still have?	s for \$145.00, a new b	ackpack for
	(A) \$72.36	(B) \$74.46	(C) \$76.56	(D) \$78.66	(E) \$80.76
3.	If 40% of A is 60% of	of B, then A is what p	percent of B?		
	(A) 50%	(B) $66\frac{2}{3}\%$	(C) 75%	(D) $133\frac{1}{3}\%$	(E) 150%
4.	Which of the followi	ng points is not a sol	ution to $5x + 3y > 6$?		
	(A) (-4,9)	(B) (-2,6)	(C) (0,3)	(D) $(2,-1)$	(E) $(4,-5)$
5.	If $6x^2 + 11x + c = (3x^2 + 11x + c)$	(x-5)(ax+b), then a	+ b + c =	_•	
	(A) -26	(B) -18	(C) -9	(D) 6	(E) 14
6.		mean, median, range 41, 202, 288 and 133.	and mode of these nu	imber sense test score	s.
	(A) 721	(B) 725	(C) 729	(D) 733	(E) 737
7.	=	ary to $\angle B$ and $\angle B$ is $m\angle C = $	supplementary to ∠C	$C. \text{If } \mathbf{m} \angle \mathbf{A} = 3\mathbf{x} + 10 :$	and
	(A) 125°	(B) 130°	(C) 135°	(D) 140°	(E) 145°
8.			x-intercept at (5, 0). ne y-intercept of line I		point (4, 6)
	(A) $(0,2)$	$(B) \left(0,\frac{5}{2}\right)$	(C) $(0,3)$	$(\mathbf{D})\ \left(0,\frac{7}{2}\right)$	(E) $(0,4)$
9.	Simplify:	$\frac{2x^2 - 5x - 3}{3x^2 + 10x + 8} \left(3x^2 - 3x^2$	$\left(\frac{2x-8}{5x-3}\right)$		
	$(A) \frac{x-2}{x+2}$	$(B) \ \frac{x+2}{x-2}$	$(C) \frac{x+3}{x-3}$	$(D) \frac{2x-1}{2x+1}$	$(E) \ \frac{3x+4}{3x-4}$
			Copyright © 2019		

10. $f(x) = 3x^2 + 6$ and	$g(x) = \sqrt[4]{x}. \text{If } g(f(a))$	= 3 and $a > 0$, then a	=		
(A) 3	(B) 4	(C) 5	(D) 6	(E) 7	
11. $\frac{1}{6} + \frac{1}{10} + \frac{1}{15} + \frac{1}{21} + \frac{1}{21}$	$-\dots + \frac{1}{120} + \frac{1}{136} = \underline{\hspace{1cm}}$	•			
$(A) \ \frac{8}{17}$	(B) $\frac{28}{51}$	(C) $\frac{11}{17}$	(D) $\frac{33}{51}$	(E) $\frac{15}{17}$	
12. Find the sum of a	ll the prime numbers	between 100 and 130.			
(A) 551	(B) 595	(C) 660	(D) 724	(E) 789	
13. Which of the follo	owing is equivalent to	$(\sin x + \cos x)^2 + (\sin x)^2$	$(x-\cos x)^2$?		
(A) 0	(B) sin(2x)	(C) cos(2x)	(D) $\csc x + \sec x$	(E) 2	
_	0 infielders, 8 outfield night's game if he mu		-	•	
(A) 2160	(B) 105600	(C) 244000	(D) 317520	(E) 410240	
15. Richard's pool has developed a leak. A completely full pool will empty in 24 hours. His hose would completely fill the pool when empty in 10 hours before the pool started to leak. He did not use his pool for a few days and the pool is now empty. If he does not fix the leak, how long will it take him to fill the pool? (nearest minute)					
(A) 17 hr 9 min	(B) 17 hr 22 min	(C) 17 hr 35 min	(D) 17 hr 48 min	(E) 18 hr 1 min	
16. Cindy has a collection of 84 marbles that are red, green, blue or black. She has 9 more black ones than blue ones. She has 3 more blue ones than green ones. She has twice as many black ones as red ones. How many green marbles does Cindy have?					
(A) 16	(B) 18	(C) 20	(D) 22	(E) 24	
17. Consider the grap	oh of the ellipse with e	quation $9x^2 + 25y^2 +$	36x - 50y = 164. On	e of the vertices is	
(A) (-6,1)	(B) (-5,1)	(C) (-2,1)	(D) (3,1)	(E) (4,1)	
18. $\ln(x-4) + \ln(x-3)$	18. $\ln(x-4) + \ln(x-3) = \ln(3x-12)$. $x = $				
(A) no solution	(B) 4 only	(C) 6 only	(D) 4 and 6	(E) 6 and 8	

				0	
19. Consider the cur	rve with equation y :	$=6-2\sin 3\left(x-\frac{\pi}{6}\right). A$	maximum occurs who	en x =	
$(A) \frac{7\pi}{6}$	(B) $\frac{4\pi}{3}$	(C) $\frac{11\pi}{6}$	(D) $\frac{7\pi}{3}$	$(\mathbf{E}) \ \frac{5\pi}{2}$	
		ed from 1 to 20 and placed odds that this ball does			
(A) $\frac{11}{9}$	(B) $\frac{3}{2}$	(C) $\frac{13}{7}$	(D) $\frac{7}{3}$	(E) $\frac{17}{3}$	
21. The difference b	etween the 7 th hexag	onal number and the 7	th triangular number	is	
(A) 51	(B) 54	(C) 57	(D) 60	(E) 63	
22. The function y =	$= ax^4 + bx^2 + 6 \text{ has a}$	point of inflection at $\left(\begin{array}{c} \end{array} \right.$	$\frac{\sqrt{2}}{2}, \frac{7}{2} $. $\mathbf{a} - \mathbf{b} = \underline{}$	·	
(A) 4	(B) 6	(C) 8	(D) 10	(E) 12	
23. The sum of the o	coefficients of the 1 st	term and the 7 th term o	of the expansion of (22	$(x-3y)^6$ is	
(A) 769	(B) 781	(C) 793	(D) 805	(E) 817	
24. The graph of the polar equation $r = 3\cos(4\theta)$ is a/an					
(A) 3-petaled ros	e (B) cardioid	(C) 4-petaled rose	(D) lemniscate	(E) 8-petaled rose	
25. This mathematician was the daughter of George Boole and she is remembered for her work in 4-dimensional geometry.					
(A) Alicia Stott	(B) Freda Porter	(C) Lady Lovelace	(D) Emmy Noether	(E) Olga Olenik	
26. The 7 th term of a	an arithmetic sequen	ce is 9 and the 10 th terr	n is 18. Find the sum	of the first 15 terms.	
(A) 177	(B) 180	(C) 183	(D) 186	(E) 189	
	of a cone is 204.2 cm	n ² and the ratio of the d dth of a cm ³)	liameter to the height	is 5:6. Find the	
(A) 308.22 cm ³	(B) 310.20 cm ³	(C) 312.18 cm ³	(D) 314.16 cm ³	(E) 316.14 cm ³	
28. If $x - y = 5$ and $xy = 84$, then $x^3 - y^3 = $					
(A) 1385	(B) 1557	(C) 1728	(D) 1900	(E) 2071	

- 29. Let $f(x) = -2x^3 + 6x^2 4$. Find the x-intercept of the line tangent to the graph of f(x) when x = 2.1(nearest tenth)
 - (A) 4.8
- **(B)** 5.0
- (C) 5.2
- (D) 5.4
- (E) 5.6
- 30. Find the sum of all zeros of $f(x) = 2\sin^2(x) \sqrt{3}\sin(x)$ in the interval $0 \le x \le \pi$.
 - $(A) \frac{2\pi}{3}$
- (B) π
- (C) $\frac{4\pi}{3}$ (D) $\frac{5\pi}{3}$
- (E) 2π

- 31. If $f(x) = x^2 + 6x$ and g(x) = 3x 4, then $f(g'(2)) = \underline{\hspace{1cm}}$.
 - (A) 0
- **(B)** 15
- (C) 27
- (D) 36
- (E) 42
- 32. $2044_b 156_b + 303_b = 2161_b$. $3456_b =$ ______ base 10.
 - (A) 1156
- (B) 1202
- (C) 1234
- (D) 1266
- (E) 1304

Isosceles Trapezoid ABCD with area = 450 in^2

- 33. If BC = 20 in and AD = 30 in, then AB = ______. (nearest tenth of an inch)
 - (A) 17.5 in
- (B) 17.8 in
- (C) 18.1 in
- (D) 18.4 in
- (E) 18.7 in

- 34. Change 0.3404040... base 5 to a base 6 decimal.
 - (A) 0.3555...
- (B) 0.4202020...
- (C) 0.4333...
- (D) 0.4505050...
- (E) 0.5111...
- 35. The number 84 is classified as which of the following types of numbers?
 - I. abundant
- II. happy
- III. lucky
- IV. odious

- (A) III, IV only
- (B) II, III only

- (C) I, IV only (D) I, II, III only (E) I, II, III and IV
- 36. The sum of the positive integral divisors of 1800 = _____.
 - (A) 5875
- (B) 5925
- (C) 5960
- (D) 6025
- (E) 6045
- 37. Find the area of the region bounded by the curves $y_1 = 2x^2 8$ and $y_2 = -\frac{1}{2}x^2 + 8$. (nearest tenth)
 - (A) 54.0
- **(B)** 55.3
- (C) 56.6
- (D) 57.9
- (E) 59.2

38. When $f(x) = 2$	$x^3 + bx^2 + 4x - 5$ is div	ided by $(x-2)$, the re	emainder is 7. b =	·
(A) -1	(B) 2	(C) -3	(D) 4	(E) -5
	e O with a diameter of of sector AOC is			m∠AOC = 120°,
(A) 122.5 cm ²	(B) 124.6 cm ²	(C) 126.7 cm ²	(D) 128.8 cm ²	(E) 130.9 cm ²
40. What is the fif	th harmonic number?			
(A) 2.0333	(B) 2.1666	(C) 2.222	(D) 2.28333	(E) 2.3444
41. If $y^3 = -46 - 9$	$y^4 = -119 + 120i$	where $y = a + bi$, then	n a + b =	_•
(A) -1	(B) 1	(C) 3	(D) 5	(E) 7
42. Bob is 5 years	older than Judy. In 20	years, Judy will be $\frac{7}{8}$	of Bob's age. How o	ld is Judy?
(A) 10	(B) 12	(C) 15	(D) 18	(E) 20
$43. \begin{bmatrix} 2 & 1 & 3 \\ 6 & 2 & 4 \\ -1 & -2 & -3 \end{bmatrix}$	$ \begin{bmatrix} 5 \\ \mathbf{k} \\ 7 \end{bmatrix} = \begin{bmatrix} 28 \\ 52 \\ -20 \end{bmatrix} \qquad \mathbf{k} = 1 $			
(A) -5	(B) −3	(C) -1	(D) 1	(E) 3
44. Eliminate the j $x = -5t$ $y = 4 - 2t$	parameter and find the	x-intercept of the res	ulting rectangular equ	nation.
(A) -16	(B) -14	(C) -12	(D) -10	(E) -8
45. Find the sum o	of the integers that are	in the solution set for	$ 4x + 3 - 10 \le 13$ is	·
(A) -6	(B) 0	(C) 5	(D) 6	(E) 13
	time 86% free throw sl the probability that she	0 0	· · · · · · · · · · · · · · · · · · ·	-
(A) 0.70	(B) 0.72	(C) 0.74	(D) 0.76	(E) 0.78
47. What is the sur	m of the Fibonacci nun	nbers between 500 and	1 1000?	
(A) 1466	(B) 1513	(C) 1597	(D) 1644	(E) 1721

48. The function $f(x) = \frac{x^2 + 2x - 35}{x^2 - 25}$ has a removable discontinuity at x =_____.

_
— /

$$(B)$$
 -5

49. Consider the function, f(x), that fits the data in the table. f(3) =_____.

X	-2	-1	0	1	2
f(x)	-24	-1	4	3	8

(A) 18

$$(C)$$
 24

50. The circles $(x-2)^2 + (y+3)^2 = 36$ and $(x+4)^2 + (y-5)^2 = 49$ intersect in two points. Find the slope of the line that contains these two points.

$$(A) \frac{1}{4}$$

$$(\mathbf{B}) \ \frac{1}{3}$$

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) $\frac{3}{4}$

$$(\mathbf{D}) \ \frac{2}{3}$$

$$(E) \frac{3}{4}$$

52. Kermit Donuts offers glazed, chocolate, jelly, maple and Boston Crème donuts. Kevin purchased 12 donuts to take on the trip to region. How many different ways could he select 12 donuts?

53. A right triangle has legs with lengths 9 and 40. Find the area of the inscribed circle. (nearest tenth)

54. In how many distinct ways can 4 of the letters of ODESSA be arranged to form a 4 letter code?

55. Ray inherited \$120,000 from his grandmother and he wisely decided to place the money in 3 savings accounts. He placed \$40,000 into an account that earns 4.5% annual interest compounded quarterly and he placed \$50,000 into an account that earns 6.25% annual interest compounded monthly. He placed the rest in an account that earns 3.6% annual interest compounded quarterly. At the end of 7 years, how much interest will he have earned?

(A) \$50,077.44

56. Let
$$g(x) = \frac{4x-7}{9-2x}$$
. $g'(4) = \underline{\hspace{1cm}}$.

57. Evaluate:
$$\int_{-a}^{a} (4x^5 - 3x^3 + 5x) dx$$

- (A) 0
- (B) $6a^6 6a^4 + 6a^2$ (C) $4a^4 3a^2$ (D) $2a^2$ (E) $22a^4 18a^2$

58. How many non-negative proper fractions in lowest terms have a denominator of 72?

- (A) 20
- **(B)** 24
- (C) 28
- (D) 32
- (E) 36

59. Let $f(x) = \frac{x^2 - 6x + 4}{x - 2}$ and let s(x) be the slant asymptote of the graph of f(x). s(9) =_____.

- (A) 3
- **(B)** 4
- (C) 5

(D) 6

(E) 7

60. A hoot owl is perched on the edge of the roof of the tallest building in Tenaha. He spots a mouse on the ground 280 feet from the base of the building. The angle of depression from the owl to the mouse is 22.5°. How tall is the tallest building in Tenaha? (nearest foot)

- (A) 104 ft
- (B) 108 ft
- (C) 112 ft
- (D) 116 ft
- (E) 120 ft

2019 – 2020 TMSCA High School Mathematics Test # 3 Answer Key

1. B	21. E	41. A
2. C	22. C	42. C
3. E	23. C	43. B
4. E	24. E	44. D
5. A	25. A	45. A
6. D	26. B	46. D
7. E	27. D	47. C
8. D	28. A	48. D
9. A	29. C	49. E
10. C	30. E	50. E
11. B	31. C	51. C
12. C	32. D	52. D
13. E	33. E	53. B
14. D	34. C	54. C
15. A	35. C	55. E
16. B	36. E	56. E
17. D	37. A	57. A
18. C	38. C	58. B
19. B	39. C	59. C
20. D	40. D	60. D

19-20 TMSCA HSMA Test # 3 Selected Solutions

2.
$$600 - (\pi 45 + 225 + 3(7.85) + 4(22.50))(1.0825) = 76.56$$

4.
$$y > -\frac{5}{3}x + 2$$

5.
$$(3x-5)(2x+7) = 6x^2 + 11x - 35$$

 $a+b+c=-26$
6. $\overline{x} = 192$, $M = 184$, $R = 155$, $m = 202$

6.
$$\overline{x} = 192$$
, M = 184, R = 155, m = 202

8.
$$y-6 = \frac{5}{8}(x-4)$$

 $y = \frac{5}{8}x + \frac{7}{2} \rightarrow \left(0, \frac{7}{2}\right)$

 $m = -\frac{8}{5}, m_p = \frac{5}{8}$

10.
$$\sqrt[4]{3a^2 + 6} = 3$$
 11. $\frac{15}{17} - \frac{1}{3} = \frac{28}{51}$

11.
$$\frac{15}{17} - \frac{1}{3} = \frac{28}{51}$$

12.
$$101+103+107+109+113+127=660$$

$$\sin^2(x) + 2\sin(x)\cos(x) + \cos^2(x) +$$

14.
$$\frac{{}_{10}C_{4} \cdot {}_{8}C_{3} \cdot 3 \cdot 9}{317,520}$$
 15. $t = 17\frac{1}{7}$

$$\frac{\mathsf{t}}{10} - \frac{\mathsf{t}}{24} = 1$$

13.
$$\sin^2(x) - 2\sin(x)\cos(x) + \cos^2(x)$$

 $\sin^2(x) + \cos^2(x) = 1$

$$14. \frac{10^{\circ} 4^{\circ} 8^{\circ}}{317,520}$$

15.
$$t = 17\frac{1}{7}$$

17 hr 9 min

$$R + G + B + X = 84$$

$$R+G+B+X=84$$
 $9x^2+36x+25y^2-50y=164$
 $X=B+9$ $9(x+2)^2+25(y-1)^2=225$

16.
$$B = G + 3$$

$$X = 2R$$

2(1) = 2

$$G = 18$$

17.
$$\frac{(x+2)^2}{25} + \frac{(y-1)^2}{9} = 1$$
$$-2+5=3 \rightarrow (3,1)$$

$$\frac{20.}{6} = \frac{7}{3}$$

$$21. 91 - 28 = 63$$

$$y'' = 12ax^2 + 2b = 0$$

$$12a\left(\frac{1}{2}\right) + 2b = 0$$

$$9 + 3d = 18$$
, $d = 3$

$$9 = a_1 + 6(3), a_1 = -9$$

22.
$$\frac{7}{2} = a\left(\frac{1}{4}\right) + b\left(\frac{1}{2}\right) + 6$$
 26. $a_{15} = -9 + 14(3) = 33$

$$a_{15} = -9 + 14(3) = 33$$

 $S = \left(\frac{15}{2}\right)(-9 + 33) = 180$

$$204.2 = \pi RL$$

$$\frac{R}{H} = \frac{5}{12}$$

27.
$$R^2 + H^2 = L^2$$

$$V = \left(\frac{1}{3}\right)\pi\left(5^2\right)\left(12\right)$$

$$V = 314.16$$

$$y = -1.26x + 6.584$$

a = 2, b = -62 - -6 = 8

29.
$$0 = -1.26x + 6.584$$

$$x = 5.2$$

$$g'(2) = 3$$

$$30. \ 0 + \frac{\pi}{3} + \frac{2\pi}{3} + \pi$$

$$31. \ f(3) = 3^2 + 6(3)$$

$$32. \ \frac{b = 7}{1266}$$

$$33. \ h = 18$$

$$g'(2) = 3$$

31. $f(3) = 3^2 + 6(3)$

32.
$$b = 7$$
1266

$$450 = \left(\frac{1}{2}\right) h\left(20 + 30\right)$$

33.
$$h = 18$$

$$5^2 + 18^2 = L^2$$

$$L = 18.7$$

$$34. \frac{35}{50} = .4333... \quad 36. \ (15)(13)(31) \quad 37. \int_{-2.5298221281}^{2.5298221281} (y_2 - y_1) dx = 54.0 \quad 39. \left(\frac{120}{360}\right) \cdot \pi \cdot 11^2 = 126.7$$

$$40. \ \, \begin{array}{l} 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \\ 2.28333... \end{array} \qquad \begin{array}{l} 41. \ \frac{-119 + 120i}{-46 - 9i} = 2 - 3i \\ 2 - 3 = -1 \end{array} \qquad \begin{array}{l} B = J + 5 \\ 42. \ J + 20 = \frac{7}{8} \big(B + 20 \big) \\ B = 20, \ J = 15 \end{array} \qquad \begin{array}{l} 10 + k + 21 = 28 \\ k = -3 \end{array}$$

$$t = -\frac{x}{5}$$

$$44. \quad y = 4 - 2\left(-\frac{x}{5}\right)$$

$$0 = 4 + \frac{2}{5}x$$

$$x = -10$$

$$-\frac{13}{2} \le x \le 5$$

$$45. \quad -6 \to 5$$

$$-6$$

$$46. \quad \frac{\text{binomial Cdf}(18, .86, 15, 18)}{.76}$$

$$47. \quad 610 + 987 = 1597$$

$$48. \frac{(x+7)(x-5)}{(x+5)(x-5)} \qquad 49. \frac{y=2x^3-3x^2+4}{y(3)=31} \qquad 50. \frac{-2+a=b}{50.16y=12x+15} \qquad 10y-8 \qquad a+b=6 \\ 50. 16y=12x+15 \qquad 51. a=4, b=2, \\ y=\frac{3}{4}x+\frac{15}{16} \qquad c=8, d=14$$

$$c = 41$$

$$52. \ _{16}C_{12} = 1820$$

$$53. \ r = \frac{(9)(40)}{9+40+41}$$

$$r = 4$$

$$A = \pi \cdot 4^2 = 50.3$$

$$5 \cdot 4 \cdot 3 \cdot 2 = 120$$

$$54. \ _{4}C_{2} \cdot 4 \cdot 3 = 72$$

$$120 + 72 = 192$$

$$24$$

$$56. \ g'(4) = 22$$

$$58. \ 72\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)$$

59.
$$\frac{s(x) = x - 4}{s(9) = 5}$$
 60. $\tan(22.5^\circ) = \frac{h}{280}$