Конспектировали: Ирина Долгалева и Дарья Краснова

1. Свойства многомерного нормального распределения

Случайный вектор u имеет многомерное нормальное стандартное распределение

$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \sim \mathcal{N}(0, I)$$

каждое $u_i \sim \mathcal{N}(0,1)$ и независимы. Такой вектор удовлетворяет ряду аксиом.

Аксиомы: 1. В любом ортонормальном базисе закон распределения вектора u одинаковый

- 2. u_i независимы
- 3. $Var(u_i) = 1$
- ↓ Из этих аксиом следует два важных текстовых свойства нормального распределения.

Свойства:. 1. Квадрат длины проекции вектора u на $V(\dim(V)=d)$ имеет $\sim \chi_d^2$ распределение

2. Квадраты длин проекции на V и W независимы, если $V \perp W$.

2. t — распределение

Классическое определение.

Случайная величина T

$$T = \frac{z}{\sqrt{\frac{\gamma_k}{k}}}$$

где $z \sim \mathcal{N}(0,1), \gamma_k \sim \chi_k^2$, имеет t-распределение с k степенями свободы, где z, γ_k — независимы.

Геометрическое определение.

Рассмотрим V — одномерное линейное подпространство, задаваемое вектором единичной длины v и ортогональное ему подпространство W размерности k:

$$V = \underset{\|v\|=1}{\operatorname{Lin}}(v), \dim(V) = 1$$

$$W = \operatorname{Col}(X), \dim(W) = k$$

Пусть u — вектор пространства \mathbb{R}^n , $\hat{u}_V=z\cdot v$ — проекция u на V,\hat{u}_W — проекция u на W,\hat{u}_{W+V} — проекция u на $W\oplus V$

 $V \perp W$

Тогда, случайная величина T

$$T = \frac{z}{\sqrt{\frac{\|\hat{u}_W\|^2}{dim(W)}}} = \operatorname{tg} \alpha \cdot \sqrt{dim(W)} \sim t(k)$$

имеет t-распределение с k степенями свободы, где α — угол между \hat{u}_W и \hat{u}_{W+V} .

Рассмотрим подпространство V+W:

v — нормаль (единичной длины) к $W \Rightarrow v \perp W$ \hat{u}_W — проекция вектора u на W; $\dim(W) = k \Rightarrow \|\hat{u}_W\|^2 \sim \chi_k^2$ Получаем эквивалентные определения.

3. \mathcal{F} — распределение

Классическое определение.

Случайная величина F

$$F = \frac{\gamma_a/a}{\gamma_b/b} \sim \mathcal{F}_{a,b},$$

имеет \mathcal{F} — распределение с (a,b) степенями свободы, где $\gamma_a \sim \chi_a^2, \gamma_b \sim \chi_b^2$ и γ_a, γ_b независимы.

Геометрическое определение.

Рассмотрим V — линейное подпространство размерности a и ортогональное ему подпространство W размерности b:

$$\dim(V) = a, \ \dim(W) = b$$

$$V \perp W$$

$$\dim(V) + \dim(W) \leq n \text{ Bce B } \mathbb{R}^n$$

Пусть u — вектор пространства $\mathbb{R}^n, u \sim \mathcal{N}(0, I)$. Тогда \hat{u}_V — проекция u на V, \hat{u}_W — проекция вектора u на W \hat{u}_{W+V} — проекция u на на $W \oplus V$

Тогда, случайная величина F

$$F = \frac{\|\hat{u}_V\|^2/\dim(V)}{\|\hat{u}_W\|^2/\dim(W)} = \operatorname{tg}^2\alpha \cdot \frac{\dim(W)}{\dim(V)} \sim \mathcal{F}\left(\dim(V),\dim(W)\right) = \mathcal{F}\left(a,b\right)$$

имеет $\mathcal{F}-$ распределение с $(\dim(V),\dim(W))$ степенями свободы, где $\alpha-$ угол между \hat{u}_W и \hat{u}_{W+V}

$$\hat{u}_V$$
 — проекция u на V ; $\dim(V)=a \ \Rightarrow \ \|\hat{u}_V\|^2 \sim \chi_a^2$ \hat{u}_W — проекция u на W ; $\dim(W)=b \ \Rightarrow \ \|\hat{u}_W\|^2 \sim \chi_b^2$

Получаем эквивалентные определения.

Заметим, что t-статистика — это частный случай \mathcal{F} -статистики:

$$T^2 = F, \dim(V) = a = 1$$

4. Связь ${\mathcal F}$ распределения и эконометрических моделей

Теорема. Рассмотрим задачу регрессии и предположим:

- 1. Предполагаем $y = X\beta + u$.
- 2. Оцениваем:
 - а) длинную модель $\hat{y}^L = X \hat{\beta}^L$ (верная модель)

$$\min_{\hat{\beta}^L} \sum_{i=1}^n \left(y_i - \hat{y}_i^L \right)^2$$

б) короткую модель $\hat{y}^S = X \hat{\beta}^S$ (считаем, что последние d коэффициента — нулевые)

$$\min_{\hat{\beta}^{S}} \sum_{i=1}^{n} (y_i - \hat{y}_i^{S})^2$$

$$\hat{\beta}_k = \hat{\beta}_{k-1} = \dots = \hat{\beta}_{k-d+1} = 0$$

- 3. Стандартные предпосылки
 - а) X полного ранга, неслучайная
 - б) $u \sim \mathcal{N}(0, \sigma^2 I) \equiv u_i \sim \mathcal{N}(0, \sigma^2), u_i$ независимы
- 4. Проверяем гипотезу

 H_0 : Верна короткая модель H_A : Короткая модель не верна

To,

1.
$$\frac{RSS_L}{\sigma^2} \sim \chi_{n-k_L}^2$$

Если верна H_0 :

2.
$$\frac{RSS_S - RSS_L}{\sigma^2} \sim \chi^2_{k_L - k_S}$$

3. RSS_L и $(RSS_S - RSS_L)$ — независимы

4.
$$\frac{(RSS_S - RSS_L)/k_L - k_S)}{RSS_L/(n - k_L)} \sim \mathcal{F}_{k_L - k_S, n - k_L}$$

Доказательство.

1.
$$\hat{u}=(I-H)y=(I-H)(X\beta+u)=[(I-H)X\beta=0]=(I-H)u\Rightarrow$$
 \hat{u}_L — проекция вектора u на $\mathrm{Col}^\perp(X_L),\ \dim(\mathrm{Col}^\perp(X_L))=n-k_L\Rightarrow$ $RSS_L=\|\hat{u}_L\|^2$ — квадрат длины проекции u на $(n-k_L)$ -мерное подпространство

2. Теперь дополнительно предположим, что еще верна короткая модель (опускаем регрессоры, отвечающие за нулевые компоненты)

$$X = \begin{bmatrix} 1 & x_1 & z_1 & q_1 & w_1 \\ 1 & x_2 & z_2 & q_2 & w_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & z_n & q_n & w_n \end{bmatrix} \Rightarrow X_S = \begin{bmatrix} 1 & x_1 & z_1 \\ 1 & x_2 & z_2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & z_n \end{bmatrix}$$

$$RSS_S - RSS_L = \|\hat{u}_S\|^2 - \|\hat{u}_L\|^2 = \|\hat{y}_S - \hat{y}_L\|^2 = \sum_{i=1}^n (\hat{y}_i^S - \hat{y}_i^L)^2$$

 $(\hat{y}_i^S - \hat{y}_i^L)$ — проекция y на $\mathrm{Col}\, X_L \cap \mathrm{Col}^\perp\, X_S$ (ортогональное дополнение X_S в подпространстве X_L)

$$\dim(\operatorname{Col} X_L \cap \operatorname{Col}^{\perp} X_S) = \dim(\operatorname{Col} X_L) - \dim(\operatorname{Col}^{\perp} X_S) = k_L - k_S \Rightarrow \frac{RSS_S - RSS_L}{\sigma^2} \sim \chi^2_{k_L - k_S}$$

3. RSS_L и $(RSS_S - RSS_L)$ — независимы, поскольку они ортогональны

4.
$$\frac{(RSS_S - RSS_L)/(\sigma^2(k_L - k_S))}{RSS_L/(\sigma^2(n - k_L))} = \frac{(RSS_S - RSS_L)/(k_L - k_S)}{RSS_L/(n - k_L)} \sim \mathcal{F}_{k_L - k_S, n - k_L}$$

5. Матрица-мать всех регрессий

Пусть дана матрица X:

$$X = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \vdots & x_k \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix};$$

Она состоит из центрированных векторов-столбцов x_j таких, что $\overline{x}_j = 0$ и $\sum_{i=1}^n x_{ij} = 0$. Тогда матрицы W и M определяются как:

$$W = X^T X; M = W^{-1}$$

Что же находится в матрице M?

Построим регрессию x_1 на x_1, x_2, \ldots, x_k . Тогда:

$$\hat{x}_1 = \hat{\alpha}_2 x_2 + \hat{\alpha}_3 x_3 + \ldots + \hat{\alpha}_k x_k$$

$$\tilde{x}_1 = x_1 - (\hat{\alpha}_2 x_2 + \hat{\alpha}_3 x_3 + \ldots + \hat{\alpha}_k x_k)$$

Упражнение: доказать, что:

$$\begin{cases} \langle \tilde{x}_1, x_2 \rangle = 0 \\ \langle \tilde{x}_1, x_3 \rangle = 0 \\ \vdots \\ \langle \tilde{x}_1, x_k \rangle = 0 \end{cases}$$

Доказательство.

Доказательство следует напрямую из картинки:

Вектор \tilde{x}_1 ортогонален линейной оболочке $lin(x_2,...,x_k)$, а значит ортогонален всем векторам, лежащим в ней. Получаем требуемое.

Пользуясь этим знанием, посчитаем, чему равно $\langle \tilde{x}_1, x_1 \rangle$:

$$\langle \tilde{x}_1, x_1 \rangle = \langle \tilde{x}_1, \tilde{x}_1 + (\hat{\alpha}_2 x_2 + \hat{\alpha}_3 x_3 + \ldots + \hat{\alpha}_k x_k) \rangle = \langle \tilde{x}_1, \tilde{x}_1 \rangle = \|\tilde{x}_1\|^2$$

Введем неожиданную нормировку:

$$\check{x}_1 = \frac{\tilde{x}_1}{\|\tilde{x}_1\|^2},$$

где \tilde{x}_1 — остаток от регрессии x_1 на x_2, x_3, \ldots, x_k , $\|\tilde{x}_1\|^2$ — квадрат длины вектора остатков \tilde{x}_1 . Почему была выбранна именно такая нормировка? Потому что хотели подобрать такую нормировку, двукратное применение которой к вектору v давало бы сам вектор v:

$$v \xrightarrow{g} \frac{v}{\|v\|^2}; g\left(g\left(v\right)\right) = v$$

Например,

$$\begin{pmatrix} 0 \\ 5 \end{pmatrix} \xrightarrow{g} \begin{pmatrix} 0 \\ \frac{1}{5} \end{pmatrix} \xrightarrow{g} \begin{pmatrix} 0 \\ 5 \end{pmatrix}$$

Покажем, что нормировка действительно удовлетворяет приведенному выше свойству для любого вектора v:

$$g(g(v)) = \frac{v/\|v\|^2}{\|v/\|v\|^2\|^2} = \frac{v/\|v\|^2}{1/\|v\|^2 \cdot \|v\|^2} = v$$

Аналогично, запишем формулу неожиданной нормировки для вектора остатков \tilde{x}_2 :

$$\check{x}_2 = \frac{\tilde{x}_2}{\|\tilde{x}_2\|^2},$$

где \tilde{x}_2 — остаток от регрессии x_2 на x_1, x_3, \ldots, x_k , $\|\tilde{x}_2\|^2$ — квадрат длины вектора остатков \tilde{x}_2 . Из векторов $\check{x}_1, \check{x}_2, \ldots, \check{x}_k$ можно составить матрицу \check{x} :

$$\dot{x} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \dot{x}_1 & \dot{x}_2 & \dots & \dot{x}_k \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Таким обраом, матрица \check{x} — это матрица странным образом отнормированных остатков в k регрессиях.

Как выглядит ковариационная матрица этих остатков? Для этого поймем, чему равна матрица $\check{x}^T\check{x}$.

Пусть $c_{11}-(1,1)$ элемент матрицы $\check{x}^T\check{x}$, а $c_{12}-(1,2)$ элемент. Тогда:

$$c_{11} = \langle \check{x}_1, \check{x}_1 \rangle = \|\check{x}_1\|^2 = \left\| \frac{\tilde{x}_1}{\|\tilde{x}_1\|^2} \right\|^2 = \frac{1}{\|\tilde{x}_1\|^2} = \frac{1}{RSS_1}$$
$$c_{12} = \langle \check{x}_1, \check{x}_2 \rangle = \frac{1}{\|\tilde{x}_1\|^2} \cdot \frac{1}{\|\tilde{x}_2\|^2} \langle \tilde{x}_1, \tilde{x}_2 \rangle$$

Для того, чтобы найти $\langle \tilde{x}_1, \tilde{x}_2 \rangle$, выпишем, чему они равны в явном виде:

$$\tilde{x}_1 = x_1 - (\hat{\alpha}_2 x_2 + \hat{\alpha}_3 x_3 + \ldots + \hat{\alpha}_k x_k)$$

$$\tilde{x}_2 = x_2 - (\hat{\beta}_1 x_1 + \hat{\beta}_3 x_3 + \ldots + \hat{\beta}_k x_k)$$

Тогда $\langle \tilde{x}_1, \tilde{x}_2 \rangle$ можно представить двумя способами (заменяя \tilde{x}_1 или \tilde{x}_2):

1.
$$\langle \tilde{x}_1, \tilde{x}_2 \rangle = \langle x_1 - (\hat{\alpha}_2 x_2 + \hat{\alpha}_3 x_3 + \ldots + \hat{\alpha}_k x_k), \tilde{x}_2 \rangle = -\hat{\alpha}_2 \langle \tilde{x}_2 \rangle = -\hat{\alpha}_2 \|\tilde{x}_2\|^2$$

2.
$$\langle \tilde{x}_1, \tilde{x}_2 \rangle = \langle \tilde{x}_1, x_2 - (\hat{\beta}_1 x_1 + \hat{\beta}_3 x_3 + \ldots + \hat{\beta}_k x_k) \rangle = -\hat{\beta}_1 \langle \tilde{x}_1, \tilde{x}_1 \rangle = -\hat{\beta}_1 \|\tilde{x}_1\|^2$$

При этом мы пользовались тем, что:

$$\tilde{x}_1 \perp x_2, x_3, \ldots, x_k$$

$$\tilde{x}_2 \perp x_1, x_3, \ldots, x_k$$

Вернемся к нахождению c_{12} :

$$c_{12} = \langle \check{x}_1, \check{x}_2 \rangle = \frac{1}{\|\tilde{x}_1\|^2} \cdot \frac{1}{\|\tilde{x}_2\|^2} \langle \tilde{x}_1, \tilde{x}_2 \rangle = \frac{-\hat{\beta}_1}{\|\tilde{x}_2\|^2} = \frac{-\hat{\alpha}_2}{\|\tilde{x}_1\|^2}$$

Таким образом, бесплатно получили следующее:

$$\frac{\text{(коэффициент при }x_2\text{ в регрессии }x_1\text{ на ост.)}}{RSS_1} = \frac{\text{(коэффициент при }x_1\text{ в регрессии }x_2\text{ на ост.)}}{RSS_2}$$

Упражнение: доказать, что $\check{x}^TX = I$.

Доказательство.

Для этого найдем (1,1) и (1,2) элементы матрицы $\check{x}^TX = I$:

$$b_{11} = \langle \check{x}_1, x_1 \rangle = \left\langle \frac{\tilde{x}_1}{\|\tilde{x}_1\|^2}, x_1 \right\rangle = \langle \tilde{x}_1, x_1 \rangle \cdot \frac{1}{\|\tilde{x}_1\|^2} = \langle \tilde{x}_1, \tilde{x}_1 \rangle \cdot \frac{1}{\|\tilde{x}_1\|^2} = 1$$

$$b_{12} = \langle \check{x}_1, x_2 \rangle = \langle \tilde{x}_1, x_2 \rangle \cdot \frac{1}{\|\tilde{x}_1\|^2} = 0$$

Упражнение: пусть

$$W = X^T X$$

$$M = \check{x}^T \check{x}$$

Доказать, что $M\cdot W=I$ (то есть $M=W^{-1}$).

П

Доказательство.

Из предыдущей части лекции известно, чему равны матрицы M и W:

$$M = \begin{bmatrix} \frac{1}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} & \frac{-\hat{\alpha}_2}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} & \frac{-\hat{\alpha}_3}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} & \dots \\ \frac{-\hat{\beta}_1}{\langle \tilde{x}_2, \tilde{x}_2 \rangle} & \frac{1}{\langle \tilde{x}_2, \tilde{x}_2 \rangle} & \frac{-\hat{\beta}_3}{\langle \tilde{x}_2, \tilde{x}_2 \rangle} & \vdots \\ \frac{-\hat{\gamma}_1}{\langle \tilde{x}_3, \tilde{x}_3 \rangle} & \frac{-\hat{\gamma}_2}{\langle \tilde{x}_3, \tilde{x}_3 \rangle} & \ddots & \vdots \\ \vdots & \vdots & \dots & \frac{1}{\langle \tilde{x}_k, \tilde{x}_k \rangle} \end{bmatrix}$$

$$W = \begin{bmatrix} \langle x_1, x_1 \rangle & \langle x_2, x_1 \rangle & \dots \\ \langle x_1, x_2 \rangle & \dots & \dots \\ \vdots & \ddots & \vdots \\ \langle x_1, x_k \rangle & \dots & \dots \end{bmatrix}$$

Найдем элтемент a_{11} и $a_{12}-(1,1)$ и (1,2) элементы матрицы $M\cdot W$:

$$a_{11} = \frac{\langle x_1, x_1 \rangle}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} - \frac{\hat{\alpha}_2 \langle x_1, x_2 \rangle}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} - \dots - \frac{\hat{\alpha}_k \langle x_1, x_k \rangle}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} = \frac{1}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} \Big(\langle x_1, x_1 \rangle - \hat{\alpha}_2 \langle x_1, x_2 \rangle - \dots - \hat{\alpha}_k \langle x_1, x_k \rangle \Big)$$

Воспользуемся двумя равенствами:

1.
$$x_1 - (\hat{\alpha}_2 x_2 + \hat{\alpha}_3 x_3 + \ldots + \hat{\alpha}_k x_k) = \tilde{x}_1$$

2.
$$\langle \tilde{x}_i, x_i \rangle = \langle \tilde{x}_i, \tilde{x}_i \rangle$$

Поэтому:

$$a_{11} = \frac{\langle x_1, \tilde{x}_1 \rangle}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} = 1$$

Hаходим a_{12} :

$$a_{12} = \frac{1}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} \Big(\langle x_2, x_1 \rangle - \hat{\alpha}_2 \langle x_2, x_2 \rangle - \ldots - \hat{\alpha}_k \langle x_2, x_k \rangle \Big) = \frac{\langle x_2, \tilde{x}_1 \rangle}{\langle \tilde{x}_1, \tilde{x}_1 \rangle} = 0,$$

так как $\langle x_2, \tilde{x}_1 \rangle = 0$, потому что остаток от регрессии x_1 на x_2, x_3, \dots, x_k ортогонатен x_2, x_3, \dots, x_k . Аналогично можно найти все элементы этой матрицы. Таким образом, получили, что $M \cdot W = I$.

$$M = W^{-1} = \begin{bmatrix} \frac{1}{RSS_1} & \frac{-\hat{\alpha}_2}{RSS_1} & \dots & \frac{-\hat{\alpha}_k}{RSS_1} \\ \frac{-\hat{\beta}_1}{RSS_2} & \frac{1}{RSS_2} & \frac{-\hat{\beta}_3}{RSS_2} & \vdots \\ \frac{-\hat{\gamma}_1}{RSS_3} & \frac{-\hat{\gamma}_2}{RSS_3} & \ddots & \vdots \\ \vdots & \vdots & \dots & \frac{1}{RSS_k} \end{bmatrix} = \begin{bmatrix} \frac{1}{RSS_1} & \frac{-\hat{\beta}_1}{RSS_2} & \frac{-\hat{\gamma}_1}{RSS_2} & \dots \\ \frac{-\hat{\alpha}_2}{RSS_1} & \frac{1}{RSS_2} & \frac{-\hat{\gamma}_2}{RSS_3} & \vdots \\ \frac{-\hat{\alpha}_3}{RSS_3} & \frac{-\hat{\beta}_3}{RSS_2} & \ddots & \vdots \\ \vdots & \vdots & \dots & \frac{1}{RSS_k} \end{bmatrix}$$