ESAME DI MECCANICA RAZIONALE

CORSO DI LAUREA IN ARCHITETTURA – INGEGNERIA ALMA MATER – UNIVERSITÀ DI BOLOGNA

17 Giugno 2024

ISTRUZIONI. Il tempo a disposizione per la risoluzione è di 120 minuti. È indicato il punteggio associato ad ogni domanda. Il voto minimo per l'accesso all'orale è 15/30.

Si consideri un riferimento cartesiano $O\hat{\imath}_1\hat{\imath}_2$ come in figura, orientato in modo che il versore di base $\hat{\imath}_2$ sia contrario alla forza peso. Due masse puntiformi, in P_1 e P_2 rispettivamente, sono vincolate a scorrere lungo l'asse \mathcal{Y} , corrispondente alla direzione $\hat{\imath}_2$, su lati opposti rispetto all'origine, dove è presente un fermo che non può essere attraversato. La massa più in alto, P_1 , ha valore $m_1 = m$, mentre quella più in basso, P_2 , ha valore $m_2 = 2m$. Ciascuna massa è collegata da un'asta rigida di lunghezza ℓ allo stesso punto materiale P_3 , avente massa pari a $m_3 = m$. Tale punto materiale è vincolato a scorrere, tramite un carrello ideale, lungo il semiasse positivo \mathcal{X} , orientato come $\hat{\imath}_1$. Infine, le masse in P_1 e P_2 sono ciascuna collegata all'origine da una molla ideale di lunghezza a riposo trascurabile e costante elastica k.

Usando come parametro lagrangiano per il sistema l'angolo θ in figura, si risponda alle seguenti domande.

- A Si calcoli il centro di massa del sistema. [5 pt]
- **B** Si calcolino i momenti d'inerzia del sistema secondo gli assi cartesiani \mathcal{X} , \mathcal{Y} e \mathcal{Z} , asse ortogonale al piano di direzione $\hat{\imath}_3 = \hat{\imath}_1 \wedge \hat{\imath}_2$. [6 pt]
- C Si determinino le configurazioni di equilibrio ordinarie e di confine del sistema e se ne studi la stabilità in funzione del parametro $\eta := \frac{mg}{k\ell}$. [12 pt]
- D Si calcoli il momento angolare del sistema rispetto all'origine e rispetto al centro di massa. [7 pt]

Anzitutto osserviamo che, per via dei vincoli, $\theta \in [0, \pi/2]$.

A Possiamo applicare la definizione osservando che le tre masse in P_1 , P_2 e P_3 hanno posizione individuata rispettivamente da

$$\overrightarrow{OP_1} = \ell \sin \theta \hat{\imath}_2, \quad \overrightarrow{OP_2} = -\ell \sin \theta \hat{\imath}_2, \quad \overrightarrow{OP_3} = \ell \cos \theta \hat{\imath}_1.$$

Allora il centro di massa è in

$$\overrightarrow{OG} = \frac{\overrightarrow{mOP_1} + 2\overrightarrow{mOP_2} + \overrightarrow{mOP_3}}{4m} = \frac{\ell\cos\theta}{4}\hat{\imath}_1 - \frac{\ell\sin\theta}{4}\hat{\imath}_2.$$

B I tre casi si studiano applicando direttamente la definizione $I_{\mathbb{R}} = \sum_{i} m_i d^2(P_i, \mathbb{R})$, ovvero

$$I_{\mathfrak{X}} = 3m(\ell \sin heta)^2, \qquad I_{\mathfrak{Y}} = m(\ell \cos heta)^2, \qquad I_{\mathfrak{Z}} = 3m(\ell \sin heta)^2 + m(\ell \cos heta)^2,$$

risultando il contributo di P_3 a $I_{\mathfrak{X}}$ nullo e il contributo di P_1 e P_2 a $I_{\mathfrak{Y}}$ nullo.

C L'energia potenziale del sistema si può scrivere come

$$V(\theta) = -mg\ell\sin\theta + k(\ell\sin\theta)^2 + \text{costante} = k\ell^2(-\eta\sin\theta + \sin^2\theta) + \text{costante}.$$

Cerchiamo le configurazioni di equilibrio ordinarie imponendo

$$\partial_{\theta}V(\theta) = k\ell^2 \cos\theta (2\sin\theta - \eta) = 0$$

che per $\theta \in (0, \pi/2)$ si annulla se $\sin \theta = \frac{\eta}{2}$, che ha soluzione per $0 \le \eta \le 2$: in questo caso si ottiene $\theta = \arcsin \frac{\eta}{2}$. Per studiarne la stabilità, calcoliamo la derivata seconda,

$$\partial_{\theta}^{2}V(\theta) = k\ell^{2} \left(\eta \sin \theta + 2(1 - 2\sin^{2}\theta) \right).$$

Per $\sin \theta = \frac{\eta}{2}$, questa quantità è pari a $\partial_{\theta}^2 V(\theta)|_{\theta = \arcsin \frac{\eta}{2}} = 2k\ell^2 \left(1 - \left(\frac{\eta}{2}\right)^2\right)$, che è sempre positiva quando $\eta < 2$, per cui la configurazione è sempre stabile, quando esiste, eccetto nel punto marginale $\eta = 2$.

La configurazione di confine $\theta = \pi/2$ ammette spostamenti virtuali $\delta\theta < 0$: possiamo quindi studiare la variazione del potenziale $\delta U = \partial_{\theta} V(\theta)|_{\theta = \frac{\pi}{2}} \delta\theta$ al primo ordine e valutare se $\delta V \leq 0$ in questo punto. Essendo $\partial_{\theta} V(\theta)|_{\theta = \frac{\pi}{2}} = 0$, la posizione è di equilibrio per il principio dei lavori virtuali. Per capire se è di equilibrio stabile o instabile, occorre studiare se la funzione cresce o decresce per $\delta\theta < 0$: ciò si vede guardando gli ordini superiori, ovvero scrivendo

$$\delta V = \partial_{\theta} V(\theta)|_{\theta = \frac{\pi}{2}} \delta \theta + \frac{1}{2} \partial_{\theta}^{2} V(\theta)|_{\theta = \frac{\pi}{2}} (\delta \theta)^{2} + \dots$$

Il primo termine è nullo, mentre $\partial_{\theta}^2 V(\theta)|_{\theta=\frac{\pi}{2}} = k\ell^2(\eta-2)$, che è positivo per $\eta>2$: in questo regime, quindi, la configurazione $\theta=\frac{\pi}{2}$ è un minimo locale, ed è quindi stabile, mentre per $\eta<2$ è un massimo locale, ed è quindi instabile; per $\eta=2$ è un punto marginale.

Esiste infine una seconda configurazione di confine corrispondente a $\theta=0$. Per valutare se questa configurazione è di equilibrio, osserviamo che, in virtù del principio dei lavori virtuali, in tale configurazione possiamo avere solo $\delta\theta>0$. Essendo $\partial_{\theta}V|_{\theta=0}=-\eta k\ell^2<0$, $\delta V=\partial_{\theta}V|_{\theta=0}\delta\theta<0$ per cui la configurazione non è di equilibrio.

D E possibile rispondere al quesito applicando la definizione. Da quanto detto sopra, le velocità dei tre punti sono

$$\vec{v}_1 = \ell \dot{\theta} \cos \theta \hat{\imath}_2, \quad \vec{v}_2 = -\ell \dot{\theta} \cos \theta \hat{\imath}_2, \quad \vec{v}_3 = -\ell \dot{\theta} \sin \theta \hat{\imath}_1.$$

Osservando che $\overrightarrow{OP_i} \parallel \vec{v_i}$, il momento angolare del sistema rispetto all'origine è nullo, dato che $\vec{L}_O = \sum_{i=1}^3 m_i \overrightarrow{OP_i} \wedge \vec{v_i} = \vec{0}$, che è quindi una somma di vettori

nulli. Il momento angolare rispetto al centro di massa è invece

$$\begin{split} \overrightarrow{L} &= (\overrightarrow{OP_1} - \overrightarrow{OG}) \wedge (m\vec{v_1}) + (\overrightarrow{OP_2} - \overrightarrow{OG}) \wedge (2m\vec{v_2}) + (\overrightarrow{OP_3} - \overrightarrow{OG}) \wedge (m\vec{v_3}) \\ &= -m\overrightarrow{OG} \wedge (\vec{v_1} + 2\vec{v_2} + \vec{v_3}) = -m\ell\dot{\theta} \left(\frac{\cos\theta}{4}\hat{\imath}_1 - \frac{\sin\theta}{4}\hat{\imath}_2\right) \wedge (-\sin\theta\hat{\imath}_1 - \cos\theta\hat{\imath}_2) \\ &= \frac{m\ell\dot{\theta}}{4}\hat{\imath}_3. \end{split}$$

dove, nel secondo rigo, abbiamo usato che $\vec{v}_i \parallel \overrightarrow{OP_i}$. Alternativamente, si può usare il fatto che $\vec{L}_O = \vec{L} + \overrightarrow{OG} \wedge \vec{Q}$ e quindi $\vec{L} = -\overrightarrow{OG} \wedge \vec{Q}$ che è proprio la formula sopra dato che $\vec{Q} = m\vec{v}_1 + 2m\vec{v}_2 + m\vec{v}_3$.