コンピュータ科学特別講義Ⅳ

Parallel Algorithm Design (#7)

Masato Edahiro June 29, 2018

Please download handouts before class from http://www.pdsl.jp/class/utyo2018/

Contents of This Class

Our Target

Understand Systems and Algorithms on "Multi-Core" processors

Schedule (Tentative)

- #1 April 6 (= Today) What's "Multi-Core"?
- #2 April 13 : Parallel Programming Languages (Ex. 1)
- April 20, 27, May 4, 11, 18: NO CLASS
- #3 May 25 : Parallel Algorithm Design
- #4 June 1 (Fri) : Laws on Multi-Core
- #5 June 8 : Examples of Parallel Algorithms (1) (Ex. 2)
- June 15: NO CLASS
- #6 June 22: Examples of Parallel Algorithms (2)
- #7 June 29: Examples of Parallel Algorithms (3)
- #8 July 6 : Examples of Parallel Algorithms (4)
- #9 July 13: Examples of Parallel Algorithms (5) (Ex. 3)
- (July 20)
- If you want to graduate in August, ask Edahiro asap.

Today's Topic

Parallel Prefix

 $X = \{x_1, x_2, ..., x_n\}$ を集合 Yに含まれる要素とする。また結合律を満たし、Yに関して閉じている二項演算 \otimes を考える。(ここでは交換律は条件としない)

Parallel Prefixとは次のn 個の $prefixを計算することである <math>x_1, x_1 \otimes x_2, x_1 \otimes x_2 \otimes x_3, ..., x_1 \otimes x_2 \otimes ... \otimes x_n$

- 結合律: $(x_i \otimes x_j) \otimes x_k = x_i \otimes (x_j \otimes x_k)$
- 交換律: $x_i \otimes x_j = x_j \otimes x_i$
- 閉じる: $x_i \otimes x_j$ もまた Yの要素
- めの例: 加算、積算、最大値、最小値、AND, OR, XORなど
- Lower bound = $\Omega(n)$

加算

X	4	3	6	2	1	5
p	4	7	13	15	16	21

最小值

X	4	3	6	2	1	5
p	4	3	3	2	1	1

逐次アルゴリズム

$$p_1=x_1$$
For $i=1$ to $n-1$ do
$$p_{i+1} = p_i \bigotimes x_{i+1}$$
End For

出力:
$$\{p_1, p_2, ..., p_n\}$$

コスト=プロセッサ数×時間複雑度 =
$$\Omega(n)$$

並列アルゴリズム

- セグメント $S_{i,j} = \{x_i, x_{i+1}, ..., x_j\}$
- セグメント $S_{i,j}$ に対する最後のprefix $S_{i,j}$: $S_{i,j} = x_i \otimes x_{i+1} \otimes \cdots \otimes x_j$
- Parallel Prefix $p_k = S_{1,k}$ (k = 1, ..., n)

Algorithm 1

• $\lceil \log_2 n \rceil$ steps, n processors (Cost= $O(n \log_2 n)$)

Algorithm 2 (1)

• $O(\log_2 n)$ time, $n/\log_2 n$ processors (Cost=O(n))

Algorithm 2 (2)

• $O(\log_2 n)$ time, $n/\log_2 n$ processors (Cost=O(n))

4. 各部分列で逐次アルゴリズムを適用 (O(log₂ n))

Maximum Sum Subsequence

• 要素列 $X = \langle x_1, x_2, ..., x_n \rangle$ が与えられているとき、 $x_u + x_{u+1} + ... + x_v$ が最も大きくなるような連続した部分列 $\langle x_u, x_{u+1}, ..., x_v \rangle$ に対応した添字 $u \ge v$ ($u \le v$) を求める

逐次アルゴリズム

```
Global Max←x<sub>0</sub>
u←0 // Start Index of Global Max Subsequence
v←0 // End Index of Global Max Subsequence
Current Max←x<sub>0</sub>
q←0 // Index of Current Subsequence
For i=0 to n-1 do
  If Current Max \geq 0 Then
    Current Max+Current Max+x;
  Else
    Current Max←x;
    q←i // Reset Index of Current Subsequence
  End Else
  If Current Max>Global Max Then
    Global Max←Current Max
    u←q
    v∠i
  End If
End For
```

i	X _i	Global_Max	u	V	Current_Max	q
0	5	5	0	0	5	0
1	3	8	0	1	8 (Max!)	0
2	-2	8	0	1	6	0
3	4	10	0	3	10 (Max!)	0
4	-6	10	0	3	4	0
5	-5	10	0	3	-1 (Reset!)	0
6	1	10	0	3	1	6
7	10	11	6	7	11 (Max!)	6
8	-2	11	6	7	9	6

並列アルゴリズム(1)

- 1. Parallel Prefix Sum $p_i = x_1 + x_2 + \cdots + x_i$ (for i = 1, ..., n)を計算
- 2. Parallel Postfix Maximum $m_i = \max(p_i, p_{i+1}, ..., p_n)$ (for i = 1, ..., n)を計算し、対応する添字 a_i を求める。すなわち、 $p_{a_i} = \max(p_i, p_{i+1}, ..., p_n)$
 - 交換律を満たす演算を用いて $X = \{x_1, x_2, ..., x_n\}$ に対するParallel postfix 計算は $\{x_n, x_{n-1}, ..., x_1\}$ に対するParallel prefix 計算と同じになる

並列アルゴリズム(2)

- 3. $x_u + x_{u+1} + \cdots + x_v = p_v p_u + x_v$ residual ため、u からはじまるmaximum sum subsequence $(t, \max(p_n, p_{n+1}, ..., p_n)$ $p_{y} + x_{y} = m_{y} - p_{y} + x_{y} \ge 5$ それゆえ、 $m_{\mu^*} - p_{\mu^*} + x_{\mu^*} \ge m_{\mu} - p_{\mu} + x_{\mu}$ $(1 \leq \forall u \leq n)$ となる u^* を求めることにより、 u^* から a_{u^*} がMaximum Sum Subsequence と なる
 - すべてのuに対する" $m_u p_u + x_u$ "の計算は容易に並列化可能。 u^* はreductionにより求まる

Algorithm 2を用いてp_iを計算せよ

i	X _i			
0	5			
1	3			
2	-2			
3	4			
4	-6			
5	-5			
6	1			
7	10			
8	-2			

Maximum Sum Subsequenceを求めよ

(Algorithm 2を使う必要はない)

i	x _i	p _i	m _i	a _i	m _i -p _i +x _i

Array Packing

 データの配列が与えられており、その一部が マークされている。このとき、マークされている データがマークされていないデータより前になる ように並び替える

- 逐次アルゴリズム
 - マークされている要素に0を、されていない要素に1 を付け、O(n) の整数ソートアルゴリズムを使う
- Parallel Prefix Sumを用いた並列アルゴリズム

Array Packing問題に対する並列アルゴリズム

- 1. マークされている要素に1を、されていない要素に0を付け、Parallel Prefix Sumを用いると、出力配列においてマークされている要素の場所が計算できる
- 2. マークされていない要素に1を、されている要素に0を付け、Parallel Postfix Sumを用いると、出力配列においてマークされている要素の後ろから数えた場所が計算できる
- 3. 各要素を出力配列に並列に転送する

Segmented Broadcasting

セグメント化された集団にデータをブロードキャストする

Item Index x _i	0	1	2	3	4	5	6	7	8	9
Leader	1	0	0	\bigcap	0	\bigcap	\bigcap	0	0	0
Data (x _i)	18	22	4	36	-3	72	28	10	54	0
	X	<u> </u>	1	X			X	Ζ,	ナノ	T

Item Index x _i	0	1	2	3	4	5	6	7	8	9
Leader	1	0	0	1	0	1	1	0	0	0
Data	18	22	4	36	-3	72	28	10	54	0
Leader Index	0	0	0	3	3	5	6	6	6	6
Leader Data	18	18	18	36	36	72	28	28	28	28

Segmented Broadcastingに対する並列アルゴリズム

• 各要素 x_i に対し、「リーダー」であればデータ (i,x_i) を付加。それ以外は $(-1,x_i)$ を付加する

• Prefix演算⊗を以下のように定める

$$(i,a) \otimes (j,b) =$$

$$\begin{cases} (i,a) & \text{if } i > j; \\ (j,b) & \text{otherwise} \end{cases}$$

• これにより、Segmented Broadcastingは Parallel Prefix により解ける

Algorithm 2を用いてSegmented Broadcastingを求めよ

Ind ex	Lea der	Dat a			
0	1	18			
1	0	22			
2	0	4			
3	1	36			
4	0	-3			
5	1	72			
6	1	28			
7	0	10			
8	0	54			
9	0	0			

Point Domination Query

- $2点(x_1,y_1)$ 、 (x_2,y_2) に対し、 $x_1 > x_2$ かつ $y_1 > y_2$ である場合、 (x_1,y_1) は (x_2,y_2) を支配するという
- 与えられた点集合に対し、他の点に支配されない点 の集合を求める

Point Domination Queryに対する並列アルゴリズム

• yに対する最大値をprefix演算とし、Parallel <u>Postfix</u> Computationを用いる

Overlapping Line Segments

1. Coverage Query

- x軸上に線分集合と区間(A,B)が与えられる。これに対し、区間が線分に完全に含まれるか調べる
- x座標は昇順に与えられるものとする

Coverage Queryに対する並列アルゴリズム

- 左端点を1、右端点を-1とするデータを考える
 - 2つ以上の端点が同じx座標を持つときには、左端点の方を先に処理する
- parallel prefix sumを使う

point	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
record	1	1	1	-1	-1	-1	1	-1
prefix	1 .	2	3	2	1	0	1 .	0
	F	4					F	3

Overlapping Line Segments

2. Maximum Overlapping Point

- x軸上に線分集合が与えられる。もっとも多くの 線分に含まれる点を求める
- 2つ以上の端点が同じx座標を持つときには、左端点の方を先に処理する
 - 1. x_iを被覆する線分数c_iを求める
 - 2. c_iを最大化するi を求める

