Pierwsze laboratorium z przedmiotu Wprowadzenie do sztucznej inteligencji

Autor Łukasz Jaremek 310710

Data październik 2021

Użyte technologie

Język: Python 3.8.8

Biblioteki ponad standardowe: matplotlib 3.4.2 scipy 1.6.3

Metoda najszybszego wzrostu

Problem:

Znajdowanie minimum funkcji przy pomocy gradientu.

Gradient wymaga znajomości pierwszych pochodnych funkcji, więc zostaną one policzone. Dodatkowo, aby mieć pewność poprawności wyznaczania minimum funkcji, policzymy lokalizację tego punktu.

Wzór funkcji:

$$f(x, y) = (x + 2y - 7)^{2} + (2x+y - 5)^{2}, x \in [-5, 5] \quad y \in [-5, 5]$$

$$f(x, y) = (x^{2} + 4y^{2} + 49 + 4xy - 14x - 28y) + (4x^{2} + y^{2} + 25 + 4xy - 20x - 10y) =$$

$$= 5x^{2} + 5y^{2} + 8xy - 34x - 38y + 74$$

Liczenie minimum funkcji:

Liczenie pochodnych:

Pochodna po x: Pochodna po y:

fx(x, y) = 10x + 8y - 34 fy(x, y) = 10y + 8x - 38

Pochodna po x po x: Pochodna po y po y:

fxx(x, y) = 10 fyy(x, y) = 10

Pochodna po x po y: Pochodna po y po x:

fxy(x, y) = 8 fyx(x, y) = 8

Liczenie punktów podejrzanych o bycie ekstremum:

$$\begin{cases} fx(x, y) = 0 \\ fy(x, y) = 0 \end{cases}$$
$$\begin{cases} 10x + 8y - 34 = 0 \\ 10y + 8x - 38 = 0 \end{cases}$$
$$\begin{cases} x = 1 \\ y = 3 \end{cases}$$

Punkt podejrzany o bycie ekstremum: (x, y) = (1, 3)

Sprawdzanie czy punkt jest ekstremum, jeśli tak, to jakim:

$$W = \begin{vmatrix} 10 & 8 \\ 8 & 10 \end{vmatrix} = 100 - 64 = 36 > 0 \Rightarrow minimum \, lokalne$$

Znając już zoptymalizowany wzór funkcji oraz minimum lokalne, sprawdźmy jak wygląda wykres funkcji.

czerwone kółko z kropką to punkt (x, y) = (1, 3)

Następnie przy pomocy gradientu obliczamy punkty coraz bliższe minimum zgodnie ze wzorem:

```
end_x = 1

end_y = 3

x = random_float(-5, 5)

y = random_float(-5, 5)

while not stop:

dx, dy = gradient(x, y)

x = x - dx*B

y = y - dy*B

stop = \sqrt{((x-end_x)^2 + (y-end_y)^2)} > epsilon
```

Zaznaczając na żółto pseudolosowy punkt startowy oraz na biało wszystkie kolejne kroki otrzymujemy następujący wynik:

Przy takich parametrach B oraz epsilon obliczam średni czas znalezienia minimum funkcji oraz średnią liczba iteracji, potrzebnych do jego odnalezienia - 10 000 prób.

Średni czas: 0.00065 sekundy Średnia liczba iteracji: 256 Sprawdzam, jak wygląda średnia liczba iteracji przy zmianie parametru B. W badaniu nie uwzględniam czasu ponieważ zawsze był on zbyt mały, aby dało się go zbadać.

B = 0.1	Epsilon = 0.01	B = 0.001	Epsilon = 0.1
Iteracje: 26		Iteracje: 2593	

Przykładowy wykres:

Zmiana B jest bardzo zauważalna, im większy tym większy jest "rozrzut" kolejnych kroków, natomiast im mniejszy tym są one coraz bliżej siebie oraz wyraźnie rośnie ich liczba.

Metoda Newtona-Raphsona

Problem:

Znajdowanie minimum funkcji przy pomocy gradientu oraz auto-kalibracji parametru B. Wcześniejsza metoda posiadała stanowczą wadę w postaci parametru, który trzeba było samodzielnie kalibrować. Problem ten rozwiązuje Metoda Stycznych, która parametr B zastępuje odwróconym Hesjanem funkcji f.

Obliczanie Hesjanu:

Hesjan:

$$H = \begin{vmatrix} fxx & fxy \\ fxy & fyy \end{vmatrix}$$

Żeby wyznaczyć odwrotność macierzy 2x2 należy sprawdzić czy jej wyznacznik jest niezerowy,

$$H = \begin{vmatrix} 10 & 8 \\ 8 & 10 \end{vmatrix} = 100 - 64 = 36 > 0$$

Teraz korzystając ze wzoru na odwracanie macierzy 2x2 obliczam:

$$H^{-1} = \frac{1}{\det(H)} \cdot \begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$$

$$H^{-1} = \frac{1}{36} \cdot \begin{vmatrix} 10 & -8 \\ -8 & 10 \end{vmatrix} = \begin{vmatrix} \frac{5}{18} & \frac{-2}{9} \\ \frac{-2}{9} & \frac{5}{18} \end{vmatrix}$$

Posiadając już tą daną korzystam z algorytmu:

```
end_x = 1

end_y = 3

x = random_float(-5, 5)

y = random_float(-5, 5)

while not stop:

grad = gradient(x, y)

x, y += H^{-1*}grad

stop = \sqrt{((x-\text{end}_x)^2+(y-\text{end}_y)^2)}>epsilon
```

Sprawdzam, jak zachowuje się algorytm dla różnych parametrów B:

Na podstawie powyższych wykresów można stwierdzić, że im mniejsze B, tym mniejszymi krokami zbliżamy się do minimum. Przy B = 1 osiągamy idealne trafienie (liczba kroków zawsze = 1), wynika to z faktu, że hesjan jest w rzeczywistości auto-korektującym się parametrem B. Natomiast gdy B > 1 i coraz większe, tym robią się coraz większe "przeskoki" nad punktem minimum. Dla B = 2 komputer nie był w stanie znaleźć punkt minimalny.

Wnioski z laboratorium

Każda z metod jest w czymś lepsza lub gorsza od drugiej, w poniższej tabeli zamieściłem porównanie obu:

Metoda najszybszego wzrostu	Metoda Newtona	
Łatwa matematyka	Trudniejsza matematyka	
Okrężna droga do punktu minimum	Prosta droga do punktu minimum	
Nawet setki skoków do punktu minimum	Jeden skok do punktu minimum	
Parametr B wymagający kalibracji	Hesjan, który zastępuje parametr B	

Jak widać, jedyną a zarazem największą zaletą pierwszej metody jest prosta matematyka, co za tym idzie, implementacja jest bardzo prosta i szybka, niestety przez swoją prostotę jest nieoptymalny więc będzie złym rozwiązaniem dla osób, które potrzebują wysokiej wydajności. Trzeba jednak spojrzeć na te wnioski z dystansem, ponieważ badania zostały przeprowadzone na jednej, a do tego dość prostej funkcji, co nie jest odpowiednim zbiorem danych aby wysunąć ostateczną opinię.