Regression Analysis – Covariance and Correlation

Do two random variables move together?

Covariance

Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

The covariance between two random variables measures the degree to which the two variables move together – it captures the linear relationship.

$$cov_{XY} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

n: sample size

 X_i : ith observation on variable X

 $ar{X}$ mean of the variable X

 Y_i : ith observation on variable Y

 \overline{Y} mean of the variable Y

Properties

- positive covariance: variables move together
- negative covariance: variables move in opposite directions
- covariance of variable with itself == variance

Covariance – Example and Pitfalls

9 5.00

10.11

X	1	2	3	4	5	6	7	8	9	
У	2	6	7	7	11	10	15	15	18	

$$cov_{XY} = \frac{(1-5.00)(2-10.11)+(2-5.00)(6-10.11)+...+(9-5.00)(18-10.11)}{9-1} = 13.75$$

Pitfalls

- actual value of covariance not meaningful
- can range from minus to plus infinity
- squared units

Correlation Coefficient

The correlation coefficient (r) measures the strength of the linear relationship (correlation) between two variables. It's the standardized covariance and is easier to interpret as values are between -1 and +1.

$$r_{XY} = \frac{covariance\ of\ X\ and\ Y}{(sample\ standard\ deviation\ of\ X)(sample\ standard\ deviation\ of\ Y)}$$

Correlation Coefficient (r)	Interpretation
r = 1	perfect positive correlation
0 < r < 1	Positive linear relationship
r = 0	no linear relationship
-1 < r < 0	negative linear relationship
r = -1	perfect negative correlation

Correlation Coefficient - Example

	•										
13.75	2.74	9	8	7	6	5	4	3	2	1	X
	5.16	18	15	15	10	11	7	7	6	2	У

$$r_{XY} = \frac{13.75}{2.74 * 5.16} = 0.973$$

→ almost perfect positive correlation

sample std

COV