Variables estadísticas, distribuciones conjuntas, marginales y condicionales

Mike Wiper

Departamento de Estadística

Universidad Carlos III de Madrid

Grado en Estadística y Empresa

Objetivo

$$\int p(x) dx = 1$$

$$p(x) = \int p(x, y) dy$$

$$p(x) = \int p(x|y) p(y) dy$$

Refamiliarizarnos con las variables estadísticas y la ley de la probabilidad total y el teorema de Bayes para variables

Variables aleatorias

Una variable aleatoria es una función que ascribe un valor (numérico) al resultado de un experimento.

Variables discretas

Para una variable discreta, X, tomando valores $x_1, x_2, ...$ se definen:

- La función de probabilidad o masa P(X = x) tal que $\sum_i P(X = x_i) = 1$.
- La función de distribución $F_X(x)$ tal que:

$$F_X(x) = P(X \le x) = \sum_{x_i < x} P(X = x_i).$$

• Los momentos: $E[g(X)] = \sum_i g(x_i)P(X = x_i)$.

Ejemplo: la distribución de Poisson

Una variable discreta, X, sigue una distribución de Poisson con parámetro $\lambda>0$ si

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} \quad \text{para } x = 0, 1, 2, \dots$$

Se tiene $E[X] = V[X] = \lambda$.

Variables continuas

Para una variable continua, Y, tomando valores $x \in \mathbb{R}$, se tiene:

• La función de distribución $F_Y(y)$ tal que:

$$F_Y(y) = P(Y \leq y).$$

• La función de densidad $f_Y(y) = \frac{dF(y)}{dy}$ tal que

$$\int_{-\infty}^{y} f_Y(y) \, dy = F_Y(y).$$

• Momentos: $E[g(Y)] = \int_{-\infty}^{\infty} g(y) f_Y(y) dy$.

Ejemplo: la distribución gamma

La variable continua, Y sigue una distribución gamma con parámetros lpha, eta > 0 si

$$f_Y(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}$$
 para $y > 0$

donde $\Gamma(\cdot)$ es la función gamma:

$$\Gamma(\alpha) = \int_0^\infty u^{\alpha-1} e^{-u} du$$
.

$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$
 y $\Gamma(\alpha)=(\alpha-1)!$ si α es un número entero.

$$E[Y] = \frac{\alpha}{\beta} \quad V[Y] = \frac{\alpha}{\beta^2}.$$

Distribuciones conjuntas

Para dos (o más) variables discretas, la distribución conjunta es la función P(X=x,Y=y) tal que

$$\sum_{x} \sum_{y} P(X = x, Y = y) = 1,$$

$$\sum_{x} P(X = x, Y = y) = P(Y = y), \quad \text{la distribución marginal de } Y,$$

$$\sum_{y} P(X = x, Y = y) = P(X = x), \quad \text{la distribución marginal de } X.$$

En el caso de variables continuas, sustituimos sus respectivos sumatorios por integrales.

Sea Y>0 una variable continua y $X\in\{0,1,2,...,\infty\}$ una variable discreta y definimos la distribución conjunta de X e Y:

$$f_{X,Y}(x,y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{y^{\alpha+x-1}e^{-(\beta+1)y}}{x!}, \text{ donde } \alpha, \beta > 0.$$

¿Cómo sabemos que es una distribución válida?

Sea Y>0 una variable continua y $X\in\{0,1,2,...,\infty\}$ una variable discreta y definimos la distribución conjunta de X e Y:

$$f_{X,Y}(x,y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{y^{\alpha+x-1}e^{-(\beta+1)y}}{x!}, \text{donde } \alpha, \beta > 0.$$

¿Cómo sabemos que es una distribución válida?

¿Es no negativa? ✓

Si sumamos sobre x e integramos sobre y, tiene que dar 1. extstyle extstyle

Distribuciones condicionales

La distribución condicional de una variable (discreta) X dada otra variable (discreta) Y es:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)},$$

suponiendo que P(Y = y) > 0.

La esperanza condicional de una función g(x, y) es

$$E[g(x,y)|Y = y] = \sum_{x} g(x,y)P(X = x|Y = y).$$

Sea $Y \sim \mathsf{Gamma}(\alpha, \beta)$ y $X|Y = y \sim \mathsf{Poisson}(y)$. Luego, por la ley de la multiplicación:

$$\begin{array}{lcl} f_{X,Y}(x,y) & = & P(X=x|Y=y)f_Y(y) \\ & = & \frac{y^x e^{-y}}{x!} \frac{\beta^\alpha}{\Gamma(\alpha)} y^{\alpha-1} e^{-\beta y} \\ & = & \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{y^{\alpha+x-1} e^{-(\beta+1)y}}{x!}, \end{array}$$

nuestra distribución conjunta anterior.

La media y varianza marginal

Supongamos que en nuestro ejemplo, queremos calcular E[X] y V[X].

ullet Suena complicado porqué en principio, tendríamos que evaluar la distribución marginal de X primero o computar a través de la distribución conjunta. Por ejemplo:

$$E[X] = \sum_{x} \int_{\infty}^{\infty} x f_{X,Y}(x,y) \, dy.$$

¿Existe una manera más fácil de hacer el cálculo?

La ley de las esperanzas iteradas

Para dos variables X e Y, la $ley\ de\ las\ esperanzas\ iteradas\ dice\ que$

$$E[X] = E[E[X|Y]].$$

▶ Demostración

Existe otra descomposición semejante para la varianza:

$$V[X] = E[V[X|Y]] + V[E[X|Y]].$$

. Demostración

$$E[X] = E[E[X|Y]]$$

= $E[Y]$ ¿Por qué?

$$E[X] = E[E[X|Y]]$$

= $E[Y]$ ¿Por qué?
= $\frac{\alpha}{\beta}$

$$E[X] = E[E[X|Y]]$$

$$= E[Y] \text{ iPor qué?}$$

$$= \frac{\alpha}{\beta}$$

$$V[X] = E[V[X|Y]] + V[E[X|Y]]$$

$$= E[Y] + V[Y]$$

$$= \frac{\alpha}{\beta} + \frac{\alpha}{\beta^2}$$

$$= \frac{\alpha(1+\beta)}{\beta^2}$$

La ley de la probabilidad total para variables

$$P(X = x) = \sum_{y} P(X = x | Y = y) P(Y = y)$$
 si Y es discreta,
 $P(X = x) = \int_{-\infty}^{\infty} P(X = x | Y = y) f_{Y}(y) dx$ si Y es continua.

El segundo caso es más interesante en la mayoría de aplicaciones.

Sea $X|Y \sim \mathsf{Poisson}(Y)$ con $Y \sim \mathsf{Gamma}(\alpha, \beta)$. Calculamos la distribución marginal de X.

$$P(X = x) = \int P(X = x | Y = y) f_Y(y) dy$$

$$= \int_0^\infty \frac{y^x e^{-y}}{x!} \frac{\beta^\alpha}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y} dy$$

$$= \frac{\beta^\alpha}{\Gamma(\alpha) x!} \int_0^\infty y^{\alpha + x - 1} e^{-(\beta + 1)y} dy$$

¿El integrando parece a una fórmula que hemos visto?

$$P(X = x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)x!} \int_{0}^{\infty} y^{\alpha^{*}-1} e^{-\beta^{*}y} dy$$

donde $\alpha^* = \alpha + x$, $\beta^* = \beta + 1$.

Mike Wiper

$$P(X = x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)x!} \int_{0}^{\infty} y^{\alpha^{*}-1} e^{-\beta^{*}y} dy$$

donde $\alpha^* = \alpha + x$, $\beta^* = \beta + 1$.

El integrando es otra distribución gamma sin su constante de integración.

Mike Wiper

$$P(X = x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)x!} \int_{0}^{\infty} y^{\alpha^{*}-1} e^{-\beta^{*}y} dy$$

donde $\alpha^* = \alpha + x$, $\beta^* = \beta + 1$.

El integrando es otra distribución gamma sin su constante de integración.

$$\begin{split} P(X=x) &= \frac{\beta^{\alpha}}{\Gamma(\alpha)x!} \frac{\Gamma(\alpha^*)}{\beta^{*\alpha^*}} \int_0^{\infty} \frac{\beta^{*\alpha^*}}{\Gamma(\alpha^*)} x^{\alpha^*-1} \mathrm{e}^{-\beta^*x} \, dy \\ &= \frac{\Gamma(\alpha^*)}{\Gamma(\alpha)x!} \frac{\beta^{\alpha}}{\beta^{*\alpha^*}} \\ &= \frac{\Gamma(\alpha+x)}{\Gamma(\alpha)x!} \left(1 - \frac{1}{\beta+1}\right)^{\alpha} \frac{1}{\beta+1} \quad \text{para } x = 0, 1, 2, \dots \end{split}$$

que es una distribución binomial negativa.

▶ DBN

El teorema de Bayes para variables

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

$$= \frac{P(X = x | Y = y)P(Y = y)}{\sum_{i} P(X = x | Y = y_{i})P(Y = y_{i})}$$

$$f_{Y|X}(y | X = x) = \frac{P(X = x | Y = y)f_{Y}(Y = y)}{P(X = x)}$$

$$= \frac{P(X = x | Y = y)f_{Y}(Y = y)}{\int_{-\infty}^{\infty} P(X = x | Y = y)f_{Y}(y) dy}$$

En nuestro ejemplo:

$$f_{Y|X}(y|x) = \frac{P(X = x|Y = y)f_Y(Y = y)}{P(X = x)}$$

$$= \frac{\frac{y^x e^{-y}}{x!} \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}}{\frac{\Gamma(\alpha + x)}{\Gamma(\alpha) x!} \left(1 - \frac{\beta}{\beta + 1}\right)^x \frac{\beta}{\beta + 1}^{\alpha}}$$

$$= \frac{(\beta + 1)^{\alpha + x}}{\Gamma(\alpha + x)} y^{\alpha + x - 1} e^{-(\beta + 1)y}$$

¿Qué distribución es?

En nuestro ejemplo:

$$f_{Y|X}(y|x) = \frac{P(X = x|Y = y)f_Y(Y = y)}{P(X = x)}$$

$$= \frac{\frac{y^x e^{-y}}{\Gamma(\alpha)} \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}}{\frac{\Gamma(\alpha + x)}{\Gamma(\alpha) x!} \left(1 - \frac{\beta}{\beta + 1}\right)^x \frac{\beta}{\beta + 1}^{\alpha}}$$

$$= \frac{(\beta + 1)^{\alpha + x}}{\Gamma(\alpha + x)} y^{\alpha + x - 1} e^{-(\beta + 1)y}$$

¿Qué distribución es?

$$Y|X = x \sim \mathsf{Gamma}(\alpha + x, \beta + 1).$$

Resumen y siguiente sesión

En esta sección hemos repasado algunos de los cálculos necesarios para evaluar distribuciones conjuntas, condicionales y marginales.

En la siguiente sesión vamos a recordar las características de la inferencia frecuentista.

Apéndice: demostración de la ley de esperanzas iteradas

Supongamos que X e Y son continuas. Entonces:

$$E[X] = \int x f_X(x) dx$$

$$= \int x \int f_{X,Y}(x,y) dy dx$$

$$= \int \int x f_{X|Y}(x|y) f_Y(y) dy dx$$

$$= \int \left\{ \int x f_{X|Y}(x|y) dx \right\} f_Y(y) dy$$

$$= \int E[X|Y = y] f_Y(y) dy$$

$$= E[E[X|Y]]$$

Estadística y Empresa

Apéndice: demostración de descomposición de la varianza

Supongamos que X e Y son continuas. Entonces:

$$V[X] = \int (x - E[X])^{2} f_{X}(x) dx$$

$$= \int \int (x - E[X])^{2} f_{X|Y}(x|y) f_{Y}(y) dy dx$$

$$= \int \left\{ \int (x - E[X|y] + E[X|y] - E[X])^{2} f_{X|Y}(x|y) dx \right\} f_{Y}(y) dy$$

$$= \int \left\{ \int (x - E[X|y])^{2} f_{X|Y}(x|y) dx \right\} f(y) dy$$

$$+ 2 \int \left\{ \int (x - E[X|y]) (E[X|y] - E[X]) f_{X|Y}(x|y) dx \right\} f_{Y}(y) dy$$

$$+ \int \left\{ \int (E[X|y] - E[X])^{2} f_{X|Y}(x|y) dx \right\} f_{Y}(y) dy$$

$$V[X] = \int V[X|y] f_Y(y) \, dy +$$

$$2 \int (E[X|y] - E[X]) \left\{ \int (x - E[X|y]) f_{X|Y}(x|y) \, dx \right\} f_Y(y) \, dy +$$

$$\int (E[X|y] - E[X])^2 f_Y(y) \, dy$$

$$= E[V[X|Y]] + 0 + \int (E[X|y] - E[E[X|Y]])^2 f_Y(y) \, dy$$

$$= E[V[X|Y]] + V[E[X|Y]]$$

Apéndice: la distribución binomial negativa

Una variable discreta, X, sigue una distribución binomial negativa con parámetros r > 0 y 0 si:

$$P(X = x) = \frac{\Gamma(r + x)}{\Gamma(r)x!} (1 - p)^r p^x$$
 para $x = 0, 1, 2, ...$

Cuando $r \in \{0, 1, 2, ...\}$ se tiene:

$$P(X=x)=\left(\begin{array}{c}x+r-1\\x\end{array}\right)(1-p)^rp^x.$$

Se tiene $E[X] = r \frac{\rho}{1-\rho}$ y $V[X] = r \frac{\rho}{(1-\rho)^2}$.