Exercices Mathématiques pour l'informatique II : Relations binaires

Relations binaires

- **Rb**1 Soient $A = \{1, 2, 3, 4\}$ et $B = \{1, 2, 3, 5\}$ deux ensembles. Ecrire explicitement les couples $(a, b) \in R_i$ dans les cas suivants :
 - (a) aR_1b si et seulement si a = b.
 - (b) aR_2b si et seulement si a+b=4.
 - (c) aR_3b si et seulement si a < b.
 - (d) aR_4b si et seulement si pgcd(a,b) = 1.
 - (e) aR_5b si et seulement si ppcm(a,b) = 2.
 - (f) aR_6b si et seulement si a|b.
- **Rb**2 Soient $A = \{0, 1, 2, 3\}$ et $B = \{0, 1, 2, 4\}$ deux ensembles. Représenter graphiquement les relations $R_i \subseteq A \times B$ dans les cas suivants :
 - (a) aR_1b si et seulement si a=b.
 - (b) aR_2b si et seulement si a-b=1.
 - (c) aR_3b si et seulement si $a \ge b$.
 - (d) aR_4b si et seulement si $a \equiv_2 b$.
 - (e) aR_5b si et seulement si $a \equiv_3 b$.
- **Rb**3 Soient $A = \{0, 2, 4\}$ et $B = \{1, 3, 5\}$ deux ensembles. Représenter graphiquement les relations $R_i \subseteq A \times B$ dans les cas suivants :
 - (a) aR_1b si et seulement si a=b.
 - (b) aR_2b si et seulement si a-b=1.
 - (c) aR_3b si et seulement si $a \ge b$.
 - (d) aR_4b si et seulement si $a \equiv_2 b$.
 - (e) aR_5b si et seulement si $a \equiv_3 b$.
 - (f) aR_6b si et seulement si $a \neq b$.
 - (g) aR_7b si et seulement si $a \not\equiv_2 b$.
- **Rb**4 Représenter graphiquement les relations $R_i \subseteq \mathbb{N} \times \mathbb{N}$ dans les cas suivants :
 - (a) aR_1b si et seulement si a=b.
 - (b) aR_2b si et seulement si a-b=2.
 - (c) aR_3b si et seulement si $a \geq b$.
 - (d) aR_4b si et seulement si a < b.

- (e) aR_5b si et seulement si $a \equiv_2 b$.
- (f) aR_6b si et seulement si $a \neq b$.
- **Rb**5 Déterminer si les relations suivantes, définies sur un ensemble de personnes, sont réflexives, symétriques, antisymétriques et/ou transitives.
 - (a) $(a, b) \in R_1$ ssi a est plus grand que b.
 - (b) $(a,b) \in R_2$ ssi a et b sont nés le même jour.
 - (c) $(a,b) \in R_3$ ssi a a le même prénom que b.
 - (d) $(a, b) \in R_4$ ssi a et b ont un grand-parent commun.
- **Rb**6 Déterminer si les relations suivantes, définies sur \mathbb{R} , sont réflexives, symétriques, antisymétriques et/ou transitives.
 - (a) $(a, b) \in R_1 \text{ ssi } a + b = 0.$
 - (b) $(a,b) \in R_2 \text{ ssi } a-b \in \mathbb{Q}$.
 - (c) $(a, b) \in R_3 \text{ ssi } a \cdot b \ge 0.$
 - (d) $(a,b) \in R_4 \text{ ssi } (a=1) \lor (b=1).$
- **Rb**7 Déterminer si les relations suivantes, définies sur \mathbb{Z} , sont réflexives, symétriques, antisymétriques et/ou transitives.
 - (a) $(a, b) \in R_1 \text{ ssi } a = b^2$.
 - (b) $(a,b) \in R_2 \text{ ssi } a \equiv_7 b.$
 - (c) $(a,b) \in R_3 \text{ ssi } a+1=b.$
 - (d) $(a, b) \in R_4 \text{ ssi } a \cdot b = 0.$
- **Rb**8 Soit $A = \{1, 2, 3, 4, 5\}$ un ensemble et $R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)\}$ une relation sur A. Calculer R^2 , R^3 , R^4 et R^5 . En déduire R^n , pour $n \ge 1$. Représenter R, R^2 par un graphe et R^3 par une matrice.
- **Rb**9 Prouver que si R est une relation réflexive (resp. symétrique), alors R^n ($n \ge 1$) est également réflexive (resp. symétrique).
- **Rb**10 Soit A un ensemble et $R \subseteq A^2$ une relation binaire sur A. On dit que R est *irréflexive* si et seulement si pour tout élément $a \in A$, a n'est pas en relation avec lui-même.
 - (a) Donner un exemple de relation irréflexive sur \mathbb{Z} .
 - (b) Toute relation non réflexive est-elle irréflexive? Justifier.
 - (c) Si R est irréflexive, R^{-1} est-elle irréflexive? Justifier.
 - (d) Si R est irréflexive, R^n est-elle irréflexive quel que soit $n \ge 1$? Justifier.

- $\mathbf{Rb}11$ Soit $2^{\mathbb{Z}}$ l'ensemble des parties de \mathbb{Z} et R_1 la relation binaire définie par :
 - $R_1 = \{(X,Y) \in 2^{\mathbb{Z}} \times 2^{\mathbb{Z}} \mid \text{ il existe } f: X \to Y \text{ injective et telle que } \operatorname{dom}(f) = X\}$.
 - (a) Soit $X_1 = \{x \in \mathbb{Z} \mid x \equiv_3 1\}$, trouvez $Y_1 \in 2^{\mathbb{Z}}$ tel que $Y_1 \neq X_1$ et $(Y_1, X_1) \in R_1$.
 - (b) Soit $X_2 = \{x \in \mathbb{Z} \mid x \equiv_5 2\}$, trouvez $Y_2 \in 2^{\mathbb{Z}}$ tel que $Y_2 \neq X_2$ et $(X_2, Y_2) \in R_1$.
 - (c) La relation R_1 est-elle (i) réflexive? (ii) transitive? (iii) symétrique? (iv) antisymétrique?
- **Rb**12 Soit A un ensemble avec un seul élément. Déterminez si les affirmations suivantes sont vraies ou fausses. Justifiez votre réponse!
 - (a) Toute relation binaire $R \subseteq A \times A$ est transitive.
 - (b) Toute relation binaire $R \subseteq A \times A$ est réflexive.
 - (c) Toute relation binaire $R \subseteq A \times A$ est symétrique.
- $\mathbf{Rb}13$ Soit A un ensemble avec deux éléments. Déterminez si les affirmations suivantes sont vraies ou fausses. Justifiez votre réponse!
 - (a) Toute relation binaire $R \subseteq A \times A$ est transitive.
 - (b) Toute relation binaire $R \subseteq A \times A$ qui est réflexive est transitive.
 - (c) Toute relation binaire $R \subseteq A \times A$ qui est symétrique est transitive.
- ${f Rb}$ 14 Soit A un ensemble avec trois éléments. Dans chacun des cas suivants, donnez (si possible) un exemple :
 - (a) d'une relation binaire sur A transitive et symétrique.
 - (b) d'une relation binaire sur A transitive et non symétrique.
 - (c) d'une relation binaire sur A non transitive et symétrique.
 - (d) d'une relation binaire sur A non transitive et non symétrique.
- $\mathbf{Rb}15$ On considère les relations sur $\mathbb N$ définies ci-dessous :

$$\begin{split} R_{=} &= \{(a,b) \in \mathbb{N}^2 \mid a = b\} \; ; \; R_{\neq} = \{(a,b) \in \mathbb{N}^2 \mid a \neq b\} \; ; \; R_{<} = \{(a,b) \in \mathbb{N}^2 \mid a < b\} \; ; \\ R_{>} &= \{(a,b) \in \mathbb{N}^2 \mid a > b\} \; ; \; R_{\leq} = \{(a,b) \in \mathbb{N}^2 \mid a \leq b\} \; ; \; R_{\geq} = \{(a,b) \in \mathbb{N}^2 \mid a \geq b\}. \end{split}$$

Calculez les relations suivantes :

- (a) $R_{<} \circ R_{\geq}$ (b) $R_{<} \circ R_{\leq}$ (c) $R_{\leq} \circ R_{<}$ (d) $R_{\geq} \circ R_{>}$ (e) $R_{\leq} \circ R_{=}$ (f) $R_{=} \circ R_{<}$
- (g) $R_{\geq} \circ R_{\leq}$ (h) $R_{\leq} \circ R_{\geq}$ (i) $R_{\leq} \circ R_{>}$ (j) $R_{\leq} \circ R_{\neq}$ (k) $R_{>} \circ R_{<}$ (l) $R_{<} \circ R_{>}$
- (m) $R_{=} \circ R_{=}$ (n) $R_{\neq} \circ R_{\neq}$ (o) $R_{<} \circ R_{<}$ (p) $R_{\leq} \circ R_{\leq}$ (q) $R_{>} \circ R_{>}$ (r) $R_{\geq} \circ R_{\geq}$
- (m) $R_{=}^{n}$ quel que soit $n \in \mathbb{N}_{0}$ (n) $R_{<}^{n}$ quel que soit $n \in \mathbb{N}_{0}$
- (o) R_{\leq}^n quel que soit $n \in \mathbb{N}_0$

Rb16 Soit $k \in \mathbb{N}$ tel que $k \geq 2$, on considère la relation $R_k \subseteq \mathbb{Z}^2$ définie ci-dessous :

$$R_k = \{(a, b) \in \mathbb{Z}^2 \mid a \equiv_k b\}.$$

- (a) Quel que soient k_1 et k_2 , la relation $R_{k_1} \circ R_{k_2}$ est-elle réflexive?
- (b) Donnez si possible un couple $(a, b) \in \mathbb{Z}^2$ tel que $a \neq b$ et $(a, b) \in R_2 \circ R_3$.

 ${f Rb}17$ Soit V un ensemble de villes du monde. On considère les différentes relations binaires sur V définies ci-dessous :

- $(v_1, v_2) \in R_A$ si et seulement si la ville v_2 est accessible de la ville v_1 en avion.
- $(v_1, v_2) \in R_B$ si et seulement si la ville v_2 est accessible de la ville v_1 en bateau.
- $(v_1, v_2) \in R_T$ si et seulement si la ville v_2 est accessible de la ville v_1 en train.
- $(v_1, v_2) \in R_1$ si et seulement si la ville v_2 est accessible de la ville v_1 en moins d'une heure, en utilisant tous les moyens de transports possibles.
- $(v_1, v_2) \in R_2$ si et seulement si la ville v_2 est accessible de la ville v_1 en moins de deux heures, en utilisant tous les moyens de transports possibles.

A partir des relations ci-dessus, construisez les relations suivantes :

- (a) $S_1 \subseteq V^2$ telle que $(v_1, v_2) \in S_1$ si et seulement si la ville v_2 est accessible de la ville v_1 en moins d'une heure en n'utilisant que le train.
- (b) $S_1 \subseteq V^2$ telle que $(v_1, v_2) \in S_1$ si et seulement si la ville v_2 est accessible de la ville v_1 en n'utilisant pas l'avion.
- (c) $S_1 \subseteq V^2$ telle que $(v_1, v_2) \in S_1$ si et seulement si la ville v_2 est accessible de la ville v_1 en moins de deux heures en n'utilisant pas le bateau.

A votre avis, les affirmations suivantes sont-elles toujours vraies (quel que soit V). Justifiez votre réponse.

- (d) R_A est une relation symétrique.
- (e) R_A est une relation transitive.
- (f) R_1 est une relation symétrique.
- (g) R_1 est une relation transitive.
- (h) $R_1 \subseteq R_2$.

Dans le cas où $V = \{Moscou, New York, Flat island\}$, et où Flat island est une petite île déserte (sans aéroport) proche de l'île Maurice.

- (i) En faisant appel à votre bon sens, représentez sur un même graphe les relations R_A , R_B et R_T .
- **Rb**18 Soit A un ensemble et $R \subseteq A \times A$ une relation binaire sur A, est-il toujours vrai que $R \circ R^{-1} = R^{-1} \circ R$? Justifiez votre réponse.

Relations fonctionnelles

- Rf1 Parmi les relations suivantes, lesquelles sont fonctionnelles?
 - (a) $\{(x,y) \in \mathbb{R}^2 \mid y = |x|\}.$
 - (b) $\{(x,y) \in \mathbb{R}^2 \mid y = x^2\}.$
 - (c) $\{(x,y) \in \mathbb{R}^2 \mid x = |y|\}.$
 - (d) $\{(x,y) \in \mathbb{R}^2 \mid y^2 = x\}.$
 - (e) $\{(x,y) \in \mathbb{R}^2 \mid y^2 = x^2\}.$
 - (f) $\{(x,y) \in \mathbb{R}^2 \mid y^3 = x^3\}.$
 - (g) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$
 - (h) $\{(x,y) \in \mathbb{R}^2 \mid x \cdot y = 1\}.$
 - (i) $\{(x,y) \in \mathbb{R}^2 \mid 3x + 2y = 7\}.$
 - (i) $\{(x,y) \in \mathbb{N}^2 \mid y = |x|\}.$
 - (k) $\{(x,y) \in \mathbb{N}^2 \mid y = x^2\}.$
 - (1) $\{(x,y) \in \mathbb{N}^2 \mid x = |y|\}.$
 - (m) $\{(x,y) \in \mathbb{N}^2 \mid y^2 = x^2\}.$
 - (n) $\{(x,y) \in \mathbb{N}^2 \mid y^2 = x\}.$
- **Rf**2 En fonction des paramètres $a, b, c \in \mathbb{R}$, déterminez quand la relation $R \subseteq \mathbb{R}^2$ est fonctionnelle, où $R = \{(x, y) \in \mathbb{R}^2 \mid ax + by = c\}$.
- $\mathbf{Rf}3$ Donner un exemple de relation fonctionnelle sur $\mathbb N$ qui est réflexive.
- $\mathbf{Rf}4$ Donner un exemple de relation fonctionnelle sur $\mathbb N$ qui est symétrique.
- \mathbf{Rf} 5 Soit A un ensemble avec deux éléments.
 - (a) Combien y-a-t-il de relations binaires différentes sur A?
 - (b) Donnez toutes les relations fonctionnelles sur A.
 - (c) Donnez toutes les relations fonctionnelles sur A qui sont symétriques.
 - (d) Donnez toutes les relations fonctionnelles sur A qui sont réflexives.
- Rf6 Prouvez que la composition de deux relations fonctionnelles est une relation fonctionnelle.
- **Rf**7 Donnez si possible un exemple d'ensemble A, de relations R_1 et R_2 telles que ni R_1 , ni R_2 n'est fonctionnelle, mais $R_1 \circ R_2$ est fonctionnelle.
- Rf8 Soit A un ensemble, $f: A \to A$ une fonction injective. On sait que la relation $R_f = \{(x,y) \mid y = f(x)\}$ est une relation fonctionnelle (vous ne devez pas le montrer).
 - (a) Prouvez que ${\cal R}_f^{-1}$ est également une relation fonctionnelle.
 - (b) La relation R_f^{-1} reste-t-elle fonctionnelle si f n'est pas injective?

Relations d'équivalence

- Re1 Parmi les relations suivantes sur $\{1, 2, 3\}$, lesquelles sont des relations d'équivalence?
 - (a) $R_1 = \{(1,1), (2,2), (3,3)\}.$
 - (b) $R_2 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}.$
 - (c) $R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}.$
 - (d) $R_4 = \{(1,1), (3,3), (1,3), (3,1)\}.$
 - (e) $R_5 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2), (1,3), (3,1)\}.$
- Re2 Parmi les relations binaires sur un ensemble de personnes de l'exercice Rb5, lesquelles sont des relations d'équivalence?
- **Re**3 Parmi les relations binaires sur \mathbb{R} de l'exercice **Rb**6, lesquelles sont des relations d'équivalence?
- $\mathbf{Re}4$ Parmi les relations binaires sur \mathbb{Z} de l'exercice $\mathbf{Rb}7$, lesquelles sont des relations d'équivalence?
- **Re**5 Décrire la partition engendrée par la relation d'équivalence sur \mathbb{Z} définie par $R = \{(a,b) \mid a \equiv_5 b\}$.
- **Re**6 Prouver que si R est une relation d'équivalence, c'est aussi le cas de R^{-1} .
- Re7 Représentation des rationnels. Pour éviter de représenter le rationnel $\frac{1}{3}$ par 0.3333..., on peut l'encoder via le couple (1,3). Cependant, cette représentation comporte un inconvénient. En effet, par exemple, les couples (1,3) et (2,6) représentent le même rationnel $(\frac{1}{3} = \frac{2}{6})$. Donner une relation d'équivalence sur $\mathbb{Z} \times \mathbb{N}_0$ qui permet de régler ce problème. Que représente alors le quotient de $\mathbb{Z} \times \mathbb{N}_0$ par cette relation d'équivalence?
- $\mathbf{Re}8$ Soit $A=\mathbb{Z}^2$ et R la relation binaire sur \mathbb{Z}^2 définie par :

$$R = \{((a_1, b_1), (a_2, b_2)) \mid a_1 + b_1 = a_2 + b_2\}.$$

- (a) Prouver que R est une relation d'équivalence.
- (b) Représenter la classe d'équivalence de (1, 1).
- (c) Calculer le quotient de \mathbb{Z}^2 par R.
- $\mathbf{Re}9$ Soit $A=\mathbb{R}^2$ et R la relation binaire sur \mathbb{R}^2 définie par :

$$R = \{((x_1, y_1), (x_2, y_2)) \mid x_1 \cdot y_1 = x_2 \cdot y_2\}.$$

- (a) Prouver que R est une relation d'équivalence.
- (b) Représenter la classe d'équivalence de (0,0).
- (c) Représenter la classe d'équivalence de (1, 1).
- (d) Calculer le quotient de \mathbb{R}^2 par R.

Re
10 Soit $A = \mathbb{R}[x]$ l'ensemble des polynômes à coefficients réels, défini par :

$$\mathbb{R}[x] = \{a_n x^n + \dots + a_0 \mid n \in \mathbb{N} \text{ et } a_i \in \mathbb{R} \text{ pour } 0 \le i \le n\}.$$

(a) On considère la relation binaire R_1 sur $\mathbb{R}[x]$ définie par :

$$R_1 = \{(p_1, p_2) \mid p_1(0) = p_2(0)\}.$$

- i. Prouver que R_1 est une relation d'équivalence.
- ii. Calculer le quotient de $\mathbb{R}[x]$ par R_1 .
- (b) On considère la relation binaire R_2 sur $\mathbb{R}[x]$ définie par :

$$R_2 = \{(p_1, p_2) \mid p_1(i) = p_2(i), \text{ où } i^2 = -1\}.$$

- i. Prouver que R_2 est une relation d'équivalence.
- ii. Calculer le quotient de $\mathbb{R}[x]$ par R_2 .
- **Re**11 On considère la relation binaire $R \subseteq \mathbb{Z}^2$ définie par $(a,b) \in R$ si et seulement si $a^2 = b^2$.
 - (a) Prouver que R est une relation d'équivalence sur \mathbb{Z} .
 - (b) Calculer la classe d'équivalence de 0 pour R.
 - (c) Calculer la classe d'équivalence de 2 pour R.
 - (d) Calculer le quotient de \mathbb{Z} par R.
- **Re**12 La relation $R = \{(X, Y) \mid X, Y \subseteq \mathbb{N} \text{ et } X \cap Y \neq \emptyset\}$ est-elle une relation d'équivalence sur les parties non-vides de \mathbb{N} ?
- **Re**13 La relation $R_2 = \{(X, Y) \mid X, Y \subseteq \mathbb{N} \text{ et } X \cup Y \neq \emptyset\}$ est-elle une relation d'équivalence sur les parties non-vides de \mathbb{N} ?
- **Re**14 Soit $F = \{f : \mathbb{R} \to \mathbb{R} \mid \text{dom}(f) = \mathbb{R}\}$. Pour tout $f, g \in F$, on définit la relation binaire $\sim \text{sur } F$ de la façon suivante :

$$f \sim g \quad \Leftrightarrow \quad \exists A \in \mathbb{N}, \ \forall x \in \mathbb{R} \quad (|x| > A \Rightarrow f(x) = g(x)).$$

- (a) Donnez deux fonctions $f, g \in F$ telles que $f \neq g$ et $f \sim g$.
- (b) La relation \sim est-elle une relation d'équivalence sur F ?
- Re15 Décidez si l'affirmation suivante est vraie ou fausse.

La relation binaire $R \subseteq \mathbb{Z}^2$ définie par $R_1 = \{(a, b) \in \mathbb{Z}^2 \text{ tel qu'il existe } p \text{ premier où } p|a \text{ et } p|b\}$ est une relation d'équivalence.

- **Re**16 On considère la relation $R \subseteq \mathbb{Z}^2$ définie par $R = \{(a, b) \in \mathbb{Z}^2 \mid a + b \text{ est pair}\}.$
 - (a) Montrez que R est une relation d'équivalence.
 - (b) Décrivez les classes d'équivalences de ${\cal R}.$

Re17 Soit S l'ensemble des fonctions de \mathbb{Z} dans \mathbb{Z} , i.e. $S = \{f : \mathbb{Z} \to \mathbb{Z} \mid \text{dom}(f) = \mathbb{Z}\}$. Et $R_2 \subseteq S^2$ la relation binaire définie par :

$$(f,g) \in R_2$$
 si et seulement si $\{x \in \mathbb{Z} \mid f(x) \neq g(x)\}$ est fini.

- (a) Donnez deux fonctions $f \neq g \in S$ telles que $(f, g) \in R_2$.
- (b) Prouvez que R_2 est une relation d'équivalence sur S.
- (c) Soit f_0 la fonction définie par $f_0(x) = 0$ pour tout $x \in \mathbb{Z}$. On note $[f_0]$ la classe d'équivalence de f_0 pour R_2 . Prouvez qu'il existe une fonction injective $F : \mathbb{Z} \to [f_0]$.

Relations d'ordre

Ro1 Parmi les relations suivantes sur $\{1, 2, 3\}$, lesquelles sont des relations d'ordre?

- (a) $R_1 = \{(1,1), (2,2), (3,3)\}.$
- (b) $R_2 = \{(1,1), (2,2), (3,3), (1,2), (1,3)\}.$
- (c) $R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}.$
- (d) $R_4 = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}.$
- (e) $R_5 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}.$

Ro2 Soit (A, R) est un ensemble ordonné, prouver que (A, R^{-1}) est un ensemble ordonné.

Ro3 Trouver deux éléments comparables et deux éléments incomparables dans les deux ensembles partiellement ordonnés ci-dessous :

$$(2^{\{0,1,2\}},\subseteq)$$
 ; $(\{1,2,4,6,8\},|)$.

 $\mathbf{Ro}4$ Soit R une relation binaire sur \mathbb{N}^2 définie par :

$$(a_1,b_1)R(a_2,b_2)$$
 si et seulement si $(a_1 \leq a_2) \wedge (b_1 \leq b_2)$.

Prouver que R est un relation d'ordre sur \mathbb{N}^2 . Cette relation d'ordre est-elle totale? Justifier. Représenter l'ensemble des couples $(a, b) \in \mathbb{N}^2$ tels que (a, b)R(3, 4), ainsi que l'ensemble des couples $(a, b) \in \mathbb{N}^2$ tels que (3, 4)R(a, b).

Ro5 A chaque naturel $n \in \mathbb{N}$, on peut associer son écriture en base 2 (par exemple $5 = (101)_2$). On suppose 0 < 1, classer selon l'ordre lexicographique les éléments suivants :

$$0, 01, 101, 1101, 1011, 1001, 1000, 1010.$$

Associer à chaque élément ci-dessus le naturel qu'il représente en base 2. Comparer l'ordre naturel sur \mathbb{N} et l'ordre lexicographique sur les représentations en base 2 des naturels.

Ro6 Tracer les diagrammes de Hasse des ensembles ordonnés ci-dessous :

$$(\{1,2,3,4,5,6\},|)\;;\;(\{2,3,5,7,11\},|)\;;\;(\{1,2,4,8,16\},|)\;;\;(\{1,3,5,7,15,30,35\},|).$$

- Ro7 Répondre aux questions suivantes pour chacun des ordres partiels représentés par les diagrammes ci-dessous :
 - 1. Trouver les éléments maximaux.
 - 2. Trouver les éléments minimaux.
 - 3. Existe-t-il un maximum?
 - 4. Existe-t-il un minimum?
 - 5. Trouver les bornes sup. de $\{a, b, c\}$.
- 6. Trouver le supremum de $\{a, b, c\}$.
- 7. Trouver les bornes inf. de $\{f, g, h\}$.
- 8. Trouver l'infimum de $\{f, g, h\}$.
- 9. Trouver les bornes sup. de $\{f, g, h\}$.
- 10. Trouver le supremum de $\{f, g, h\}$.

- Ro8 Donner un ensemble ordonné avec un maximum mais pas de minimum.
- **Ro**9 Déterminer si $(\mathbb{N}_0, |)$ a un maximum? un minimum?
- Ro10 Déterminer si les ensembles ordonnés suivants sont des treillis :

$$(\{1,3,6,9,12\},|)\;;\;(\{1,5,25,125\},|)\;;\;(\mathbb{Z},\leq).$$

- ${f Ro}11~$ Prouver que tout sous-ensemble fini non vide d'un treillis a un infimum et un supremum.
- ${f Ro}12$ Prouver que tout ordre total est un treillis.
- ${f Ro}13$ Déterminer si les diagrammes de Hasse ci-dessous représentent un treillis.

- **Ro**14 Prouver que si (A, R) est un treillis, alors (A, R^{-1}) est aussi un treillis.
- Ro15 Prouver que tout treillis fini a un maximum et un minimum.
- Ro16 Donner un exemple de treillis infini sans maximum, ni minimum.
- Ro17 Donner un exemple de treillis infini avec un maximum et sans minimum.
- Ro18 Donner un exemple de treillis infini sans maximum mais un minimum.
- Ro19 Donner un exemple de treillis infini avec un maximum et un minimum.
- $\mathbf{Ro}20$ Vérifier que \mathbb{N}^2 muni de l'ordre lexicographique forme un ensemble bien ordonné.
- Ro21 Trouver un ordre total compatible avec l'ordre de division sur {1, 2, 3, 6, 8, 12, 24, 36}.
- Ro22 Trouver un ordre total compatible avec les ordres donnés par les diagrammes de Hasse de la question Ro13.
- **Ro**23 Soit A un ensemble et $\leq A^2$ une relation binaire sur A. On dit que \leq est un *pré-ordre* sur A si elle est réflexive et transitive.
 - (a) Donner un exemple de pré-ordre qui n'est pas un ordre.
 - (b) Soit A un ensemble et \leq un pré-ordre sur A. Prouver que la relation binaire \sim définie ci-dessous est une relation d'équivalence sur A:

$$\sim = \{(a, b) \mid (a \preccurlyeq b) \land (b \preccurlyeq a)\}.$$

(c) On définit la relation binaire \leq sur le quotient de A par \sim de la façon suivante :

$$[a] \leq [b]$$
 si et seulement si $a \preccurlyeq b$

Prouver que \leq est bien définie (i.e. $\forall x \in [a], \ \forall y \in [b] \ ([a] \leq [b]) \Rightarrow (x \leq y)$).

- (d) Prouver que \leq est une relation d'ordre sur le quotient de A par \sim .
- **Ro**24 Représenter le diagramme de Hasse d'un ensemble ordonné fini qui possède un minimum mais pas de maximum et qui possède trois éléments a_1 , a_2 , a_3 tels que sup $\{a_1, a_2, a_3\}$ n'existe pas. Un tel ensemble peut-il être un treillis?

Ro25 Soit $C = \{f : \mathbb{R} \to \mathbb{R} \mid \text{dom}(f) = \mathbb{R}\}$ et R la relation binaire définie par :

$$R = \{ (f, g) \in C \times C \mid \forall x \in \mathbb{R} \ f(x) \le g(x) \}.$$

- (a) Donner deux fonctions $f, g \in C$ telles que $(f,g) \in R$.
- (b) Prouver que R est une relation d'ordre sur C.
- (c) R est-elle une relation d'ordre totale?

Ro26 Tracer le diagramme de Hasse de $(2^{\{2,3,5\}}, \subseteq)$.

Ro27 Soit $C = \{f : \mathbb{R} \to \mathbb{R} \mid \text{dom}(f) = \mathbb{R}\}$ et R_2 la relation binaire définie par :

$$R_2 = \{ (f, g) \in C \times C \mid \forall x \in \mathbb{Z} \ f(x) \le g(x) \}.$$

- (a) Donner deux fonctions $f, g \in C$ telles que $(f, g) \in R_2$.
- (b) R_2 est-elle une relation d'ordre sur C?

 $\mathbf{Ro}28$ Déterminer si la relation binaire $R_3\subseteq\mathbb{Z}^2\times\mathbb{Z}^2$ définie ci-dessous est une relation d'ordre :

$$(a_1,b_1)R_3(a_2,b_2)$$
 si et seulement si $(a_1 \leq a_2)$ ou $(b_1 \leq b_2)$.

Ro29 Décider si l'affirmation suivante est vraie ou fausse. Justifier.

Soit A un ensemble, un pré-ordre sur A est une relation binaire réflexive et transitive. Tout pré-ordre sur A est aussi un ordre sur A.

Ro30 La relation $R_1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 \leq y^2\}$ définit-elle un ordre sur \mathbb{R} ?

Ro31 Soit $E = \{0, 1\}^3$ et R_3 une relation binaire sur E définie par :

$$(a_1, b_1, c_1)R_3(a_2, b_2, c_2)$$
 si et seulement si $a_1 \le a_2$ et $b_1 \le b_2$ et $c_1 \le c_2$.

- (a) Prouver que R_3 est un ordre sur E et tracer le diagramme de Hasse de (E, R_3) .
- (b) L'ensemble ordonné (E, R_3) possède-t-il un maximum?
- **Ro**32 Si $X \neq \emptyset$ est un ensemble fini, on note 2^X l'ensemble des parties de X. Etant donné $A \in 2^X$, on note |A| le nombre d'éléments de A. Soit $R_X \subseteq 2^X \times 2^X$ la relation binaire définie par :

$$(A, B) \in R_X$$
 si et seulement si $|A| \le |B|$, où $A, B \in 2^X$.

Décidez si les affirmations suivantes sont vraies ou fausses.

- (a) Quel que soit $X \neq \emptyset$ ensemble fini, la relation R_X est une relation d'ordre.
- (b) Quel que soit $X \neq \emptyset$ ensemble fini, la relation R_X n'est **pas** une relation d'ordre.
- (c) Quel que soit $X \neq \emptyset$ ensemble fini, la relation R_X n'est **pas** une relation d'équivalence.

Ro33 Soit l'ensemble $E = \{0, 1, 2\}$, on munit E^2 de la relation binaire R_2 définie par :

$$R_2 = \{((a_1, b_1), (a_2, b_2)) \in E^2 \times E^2 \mid a_1 \le a_2 \text{ et } b_1 \le b_2\}.$$

- (a) Prouvez que la relation R_2 est une relation d'ordre sur E^2 .
- (b) Tracez le diagramme de Hasse de (E^2, R_2) .
- Ro34 Soit $\Sigma = \{a, b\}$. Un mot fini de longueur n sur Σ est une fonction $w : \{0, \ldots, n-1\} \to \Sigma$. Dans ce cas, on note Dom(w) l'ensemble $\{0, \ldots, n-1\}$ et Σ^* l'ensemble des mots finis sur Σ . Un mot infini sur Σ est une fonction $w : \mathbb{N} \to \Sigma$. Dans ce cas, on note Dom(w) l'ensemble \mathbb{N} et Σ^ω l'ensemble des mots infinis sur Σ . On dira qu'un mot w_1 (fini ou infini) est un sous-mot d'un mot w_2 (fini ou infini) si et seulement si les deux conditions suivantes sont satisfaites :

- $Dom(w_1) \subseteq Dom(w_2)$;
- il existe $F: Dom(w_1) \to Dom(w_2)$ telle que F est strictement croissante 1 et $w_1(n) = w_2(F(n))$, pour tout $n \in Dom(w_1)$.

On note $w_1 \leq w_2$ si w_1 est un sous-mot de w_2 .

(a) On considère les mots finis $w_1:\{0,\ldots,3\}\to \Sigma$ et $w_2:\{0,\ldots,5\}\to \Sigma$ définis ci-dessous.

$$w_1(n) = \begin{cases} a & \text{si } n = 0, 1 \\ b & \text{si } n = 2, 3 \end{cases}$$
; $w_2(n) = \begin{cases} a & \text{si } n = 0, 2, 4 \\ b & \text{si } n = 1, 3, 5 \end{cases}$

Le mot w_1 peut être représenté par la suite $w_1(0) \dots w_1(3) = aabb$ et le mot w_2 par la suite $w_2(0) \dots w_2(5) = ababab$. Montrer que w_1 est un sous-mot de w_2 (i.e., $w_1 \leq w_2$).

- (b) Donner (si possible) un mot fini $w_1 \in \Sigma^*$ et un mot infini $w_2 \in \Sigma^\omega$ tels que $w_1 \leq w_2$.
- (c) Donner (si possible) un mot infini $w_1 \in \Sigma^{\omega}$ et un mot fini $w_2 \in \Sigma^*$ tels que $w_1 \leq w_2$.
- (d) La relation \leq est-elle un ordre sur Σ^* ?
 - Si oui, s'agit-il d'un ordre total?
 - Si non, trouver un sous-ensemble infini de Σ^* totalement ordonné par \preceq .
- (e) La relation \leq est-elle un ordre sur Σ^{ω} ?
 - Si oui, s'agit-il d'un ordre total?
 - Si non, trouver un sous-ensemble infini de Σ^{ω} totalement ordonné par \leq .
- (f) On note a^{ω} (resp. b^{ω}) le mot infini $w: \mathbb{N} \to \Sigma$ tel que w(n) = a (resp. b) pour tout $n \in \mathbb{N}$. On note $(ab)^{\omega}$ le mot infini $w: \mathbb{N} \to \Sigma$ tel que w(n) = a si n est pair et w(n) = b si n est impair. La relation \preceq est-elle un ordre sur l'ensemble $X = \{a, b, a^{\omega}, b^{\omega}, (ab)^{\omega}\}$?
 - Si oui, tracer le diagramme de Hasse associé à (X, \preceq) .
 - Si non, donner un sous-ensemble de X, contenant 3 éléments, sur lequel \leq est un ordre.

On note $w_1 \sim w_2$ si et seulement si $w_1 \leq w_2$ et $w_2 \leq w_1$.

- (g) La relation \sim est-elle une relation d'équivalence sur Σ^* ?
 - Si oui, calculer la classe d'équivalence du mot aabb.
 - Si non, donner un sous-ensemble infini de Σ^* sur lequel \sim est une relation d'équivalence.
- (h) La relation \sim est-elle une relation d'équivalence sur Σ^{ω} ?
 - Si oui, déterminer si la classe d'équivalence du mot a^{ω} est finie ou infinie.
 - Si non, donner un sous-ensemble infini de Σ^{ω} sur lequel \sim est une relation d'équivalence.

^{1.} On dit qu'une fonction $f : \mathbb{N} \to \mathbb{N}$ est strictement croissante si et seulement si $\forall x, y \in \mathbb{N}$ $x < y \Rightarrow f(x) < f(y)$.

Ro35 On fixe $\mathcal{U} = \mathcal{P}(\mathbb{N})$ (l'ensemble des sous-ensembles de \mathbb{N}) comme espace universel (aussi appelé espace ambiant). On définit les quatre ensembles suivants :

$$\mathcal{A} = \{ X \subseteq \mathbb{N} \text{ tq } \exists n \in \mathbb{N} |X| \le n \} \quad , \quad \mathcal{B} = \mathcal{A}^c \quad ,$$

$$\mathcal{C} = \{ X \subseteq \mathbb{N} \text{ tq } X^c \in \mathcal{A} \} \quad , \quad \mathcal{D} = \{ \{ x \in \mathbb{N} \text{ tq } 0 \le x \le n \} \text{ tq } n \in \mathbb{N} \}.$$

On définit également deux relations binaires $\mathcal{R}_1, \mathcal{R}_2 \subseteq \mathcal{U} \times \mathcal{U}$:

$$X\mathcal{R}_1Y$$
 ssi il existe une injection $f: X \to Y$ (avec dom $(f) = X$), $X\mathcal{R}_2Y$ ssi il existe une bijection $f: X \to Y$ (avec dom $(f) = X$).

Déterminez si les affirmations suivantes sont vraies ou fausses.

- (a) L'ensemble \mathcal{B} est inclus à l'ensemble \mathcal{C} .
- (b) L'ensemble \mathcal{C} est inclus à l'ensemble \mathcal{B} .
- (c) La formule $\exists x \in \mathbb{N} \ \forall X \in \mathcal{C} \ x \in X$ est une tautologie.
- (d) Il existe une fonction injective $F_1: \mathbb{N} \to \mathcal{A}$ (avec dom $(F_1) = \mathbb{N}$).
- (e) Il existe une fonction injective $F_2: \mathbb{N} \to \mathcal{B}$ (avec dom $(F_2) = \mathbb{N}$).
- (f) \mathcal{R}_1 est une relation réflexive et transitive sur \mathcal{U} .
- (g) \mathcal{R}_2 est une relation réflexive et transitive sur \mathcal{U} .
- (h) \mathcal{R}_1 est une relation d'équivalence sur \mathcal{A} .
- (i) \mathcal{R}_2 est une relation d'équivalence sur \mathcal{B} .
- (j) \mathcal{R}_1 est une relation d'ordre sur \mathcal{D} .
- (k) \mathcal{R}_2 est une relation d'ordre sur \mathcal{A} .
- (l) \mathcal{R}_2 est une relation d'ordre sur \mathcal{B} .

Ro36 Soit $S = \{(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}\}$, l'ensemble des suites réelles. On définit quatre relations binaires $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$ et \mathcal{R}_4 sur S de la façon suivante :

$$(x_n)_{n\in\mathbb{N}} \mathcal{R}_1 (y_n)_{n\in\mathbb{N}} \quad \text{ssi} \quad \forall n\in\mathbb{N} \quad x_n \leq y_n;$$

$$(x_n)_{n\in\mathbb{N}} \mathcal{R}_2 (y_n)_{n\in\mathbb{N}} \quad \text{ssi} \quad \exists n\in\mathbb{N} \quad x_n \leq y_n;$$

$$(x_n)_{n\in\mathbb{N}} \mathcal{R}_3 (y_n)_{n\in\mathbb{N}} \quad \text{ssi} \quad \exists n_0\in\mathbb{N} \ \forall n\geq n_0 \quad x_n\leq y_n;$$

$$(x_n)_{n\in\mathbb{N}} \mathcal{R}_4 (y_n)_{n\in\mathbb{N}} \quad \text{ssi} \quad \exists n_0\in\mathbb{N} \ \forall n\geq n_0 \quad x_n=y_n.$$

Les relations \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 et \mathcal{R}_4 sont-elles (i) réflexives? (ii) transitives? (iii) symétriques? (iv) antisymétriques?

Ro37 Soit $\mathcal{Q} = \{(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{Q}\}$, l'ensemble des suites rationnelles. On définit la relation binaire \mathcal{R} sur \mathcal{Q} de la façon suivante :

$$(x_n)_{n\in\mathbb{N}} \mathcal{R}(y_n)_{n\in\mathbb{N}}$$
 ssi la suite $(x_n-y_n)_{n\in\mathbb{N}}$ converge vers 0.

- (a) Donnez deux suites rationnelles $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ telles que $(x_n)_{n\in\mathbb{N}}$ \mathcal{R} $(y_n)_{n\in\mathbb{N}}$ et $x_n \neq y_n$ pour tout $n \in \mathbb{N}$.
- (b) La relation \mathcal{R} est-elle (i) un ordre sur \mathcal{Q} ? (ii) une relation d'équivalence sur \mathcal{Q} ?