Dionisio 1

Jeda Krisnell Dionisio

PHILOS 12A / DIS 102

GSI: Mathias Boehm

Problem Set #6

Exercise 6.26

The start of the proof is with two premises: $A \lor (B \land C)$ and $\neg B \lor \neg C \lor D$ with the goal of getting to $A \lor D$. By looking at the conclusion, it can be acknowledged that it is a disjunction, so in order to receive this end result, proof by cases is sufficient.

Beginning the proof is a subproof with the assumption being $\neg B$. A is reiterated through a subproof. Through another subproof is the assumption (B \land C). From there, there is another subproof with the assumption $\neg A$. Under this subproof, B can be a step, which proves a contradiction with the original assumption. Because of this, $\neg A$ is a valid step. After ruling \neg Elimination, $\neg \neg A$ turns into A. The next step would then be A \lor D by \lor Intro. This is the end of the $\neg B$ subproof.

Next would be \neg C. It essentially follows the same steps with except of substituting C for B. It would follow the reiteration, elimination, and intros. Because of this, the final steps for the \neg C subproof would be A \lor D by \lor Intro.

D is different. D is the assumption, and A V D is valid through V Intro. Because there is a A V D in all three cases, the final conclusion of A V D is proved.