a) Sei $f(z) \in \mathbb{R}$ für $z \in U \cap \mathbb{R}$. Damit haben wir $z = \overline{z} \in U \cap \mathbb{R}$. Daraus sehen wir, dass $f(z) = f(\overline{z}) \in \mathbb{R}$ für $z \in U \cap \mathbb{R}$ gilt. Also

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k = \overline{f(z)} = \sum_{k=0}^{\infty} \overline{a_k} (\overline{z} - \overline{z_0})^k = \sum_{k=0}^{\infty} \overline{a_k} (z - \overline{z_0})^k.$$

Dementsprechend muss $a_k, z_0 \in \mathbb{R}$ gelten. Wir sehen, dass $f(z) = \overline{f(\overline{z})}$ gilt für alle $z \in U$:

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k = \overline{\sum_{k=0}^{\infty} a_k (z - z_0)^k} = \overline{\sum_{k=0}^{\infty} a_k (\overline{z} - z_0)^k} = \overline{f(\overline{z})}.$$

b) Folgt entweder aus i) und $-if(z) = \tilde{f}(z)$ oder genauer: für $z \in U \cap \mathbb{R}$ haben wir

$$-\sum_{k=0}^{\infty} a_k (z-z_0)^k = -f(z) = \overline{f(z)} = \sum_{k=0}^{\infty} \overline{a_k} (z-z_0)^k = \sum_{k=0}^{\infty} \overline{a_k} (z-\overline{z_0})^k,$$

also $z_0 \in \mathbb{R}$ sowie $a_k \in i\mathbb{R}$. Für $z \in U$ folgt somit

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k = \overline{\sum_{k=0}^{\infty} a_k (z - z_0)^k} = -\overline{\sum_{k=0}^{\infty} a_k (\overline{z} - z_0)^k} = -\overline{f(\overline{z})}.$$