

Trabajo Práctico II

SIMD

Organización del Computador II Primer Cuatrimestre de 2015

Integrante	LU	Correo electrónico
Alejandro Mignanelli	609/11	minga_titere@hotmail.com
Facuuuuu	XXX/xx	chabooooon@hotmail.com
Iaaaaaaan	XXX/xx	me_la_super_como@gmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA

Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

Resumen

En el presente trabajo se describe la problemática de procesar información de manera eficiente cuando los mismos requieren:

- 1. Transferir grandes volúmenes de datos.
- 2. Realizar las mismas instrucciones sobre un set de datos importante.

Índice

1.	Diferencias	4
2.	Objetivos generales	5
3.	Preámbulo	6
	3.1. Calidad de las Mediciones	6
4.	Experimentación	8
	4.1. Desensamblado de código C y Optimización	8
5.	Cropflip	9
	5.1. Diferencias de performance en Cropflip	9
	5.1.1. Resultados	9
	5.1.2. Conclusiones	9
	5.2. cpu vs. bus de memoria en Cropflip	10
	5.2.1. Resultados	10
	5.2.2. Conclusiones	10
6.	Sierpinski	11
	6.1. Idea general del algoritmo	11
	6.2. Diferencias de performance en Sierpinski	12
	6.2.1. Resultados	12
	6.2.2. Conclusiones	12
	6.3. CPU vs. Bus de memoria en Sierpinski	13
	6.3.1. Resultados	13
	6.3.2. Conclusiones	13
7.	Bandas	14
	7.1. Idea general del algoritmo	14
	7.2. Diferencias de performance en Bandas	15
	7.2.1. Resultados	16
	7.2.2. Conclusiones	16
	7.3. Saltos condicionales	17
	7.3.1. Resultados	17
	7.3.2. Conclusiones	17

Sección ÍNDICE

8.	Motion Blur	18
	8.1. Idea general del algoritmo	18
	8.2. Diferencias de performance en Motion Blur	19
	8.2.1. Resultados	19
	8.2.2. Conclusiones	19
9.	Conclusiones y trabajo futuro	20

1. Objetivos generales

2. Preámbulo

2.1. Calidad de las Mediciones

3. Experimentación

4. Blur

- 4.1. Diferencias de performance en Blur
- 4.1.1. Resultados
- 4.1.2. Conclusiones

5. Merge

- 5.1. Idea general del algoritmo
- 5.2. Diferencias de performance en Merge
- 5.2.1. Resultados
- 5.2.2. Conclusiones

6. HSL

- 6.1. Idea general del algoritmo
- 6.2. Diferencias de performance en HSL
- 6.2.1. Resultados
- 6.2.2. Conclusiones

7. Conclusiones y trabajo futuro