

캡스톤 디자인 5조 어시스트

02

03

프로젝트 목표

진행 상황

계획 및 제한요소

02

03

프로젝트 목표

진행 상횡

계획 및 제한요소

01 프로젝트 목표

asi - 핵심 아이디어

악성행위 의심 영역 하이라이팅

asi - 웹 서비스

<파일 업로드 시각화 안>

asi - 웹 서비스

<분석 결과 시각화 안>

03

프로젝트 목표

진행 상황

계획 및 제한요소

데이터 수집

kaggle

microsoft malware prediction

바이트 파일:10,868개

어셈블리 파일: 21,738개

총 21,738개

정상 파일:10,000개

악성 파일: 10,000개

2017년 ~2019년

시스템 DLL 파일 STEAM사 게임 인스톨러

니모닉 추출


```
55
10001180:
                                    push
                                          %ebp
                                           %esp,%ebp
10001181:
              8b ec
                                          $0xffffffff
10001183:
10001185:
              68 21 80 00 10
                                          $0x10008021
1000118a:
              64 a1 00 00 00 00
                                          %fs:0x0,%eax
                                    mov
10001190:
                                          %eax
                                    push
                                          $0x8,%esp
10001191:
              83 ec 08
                                          0x10024000,%eax
10001194:
              a1 00 40 02 10
                                          %ebp,%eax
10001199:
              33 c5
              89 45 f0
                                          %eax,-0x10(%ebp)
1000119b:
                                    mov
1000119e:
              53
                                          %ebx
                                    push
                                          %esi
1000119f:
                                    push
100011a0:
                                          %edi
                                    push
100011a1:
                                          %eax
                                         -0xc(%ebp),%eax
              8d 45 f4
100011a2:
                                          %eax,%fs:0x0
100011a5:
              64 a3 00 00 00 00
                                    mov
                                          $0x14
100011ab:
              6a 14
                                    push
100011ad:
              6a 0c
                                    push
                                          $0xc
100011af:
              ff 15 44 b2 01 10
                                         *0x1001b244
              83 c4 08
                                          $0x8,%esp
100011b5:
                                          %eax,-0x14(%ebp)
100011b8:
              89 45 ec
                                   mov
                                          %eax,%ecx
100011bb:
                                          $0x0,-0x4(%ebp)
100011bd:
              c7 45 fc 00 00 00 00
                                    call 0x10001690
100011c4:
              e8 c7 04 00 00
```

parser python, IDA

push mov push push mov push sub mov xor mov push push push push lea mov push push call add mov mov movl call

File

Assembly code

Mnemonic

단어 임베딩

Word2Vec

유사한 단어를 가까운 공간에 사상

7

CBOW

주변 단어로 중간 단어 예측

중간 단어로 주변 단어 예측

단어의 부분이 일치하면 유사하다고 판단

단어 임베딩

실험 조건 gensim 라이브러리 사용

- **10** 원도우 크기:10
- **02** 최소 단어 수:50

○3 에폭:10

04 학습률: 0.002

⑤ 특징 벡터 차원 : 8/16/32/64/128

mov jmp add pop push

단어 임베딩

실험 결과

SkipGram

특징 벡터 차원 : 8/16/32/64/128

특징 벡터 차원 : 32

특징 벡터 차원: 64

오토 인코더

대표적 비지도 학습법 입력 값과 출력 값을 같게 함

실험 조건

- ◎ 임계점: 0.1
- **핵 벡터 크기:16 / 64**
- 03 신경망: GRU / LSTM
- 04 MAE(mean absoulte error) 가 크면 이상탐지

신경망 구조

실험 결과 - 손실값

실험 결과 - 이상탐지

악성이 정상보다 2배 이상 이상탐지 됨

검증 방법 제안 - 검색 엔진 활용

검증 방법 제안 - 검색 엔진 활용

악성 파일의 비율이 한계 값보다 클 경우 →√//>> 모델 판정 신뢰

02 진행 상황

웹 구현

02

웹 구현 - 업로드

드래그 & 드롭 방식

웹 구현 - 업로드 완료

웹 구현 - 프로젝트 개요 페이지

02

03

프로젝트 목표

진행 상횡

계획 및 제한요소

계획

구현 계획

단어 임베딩 실험 신경망 실험

검색엔진 실험 악성코드 보고서 분석

분석 결과 페이지 결과 다운로드 페이지

제한 요소

모델 학습 >>> 고사양 PC 요구

학교 제공 GPU 서버 >>> 현실적 사용 불가

월별 구현 계획

항목	세부내용	1월	2월	3월	4월	5월	6월
요구사항분석	요구 분석	⊗					
	SRS 작성	⊗					
관련분야연구	딥러닝 기술 연구		⊗	⊗			
	관련 논문 동향조사		Ø	⊗			
설계	시스템 설계				()	()	
구현	코딩 및 모듈 테스트				()	()	
테스트	시스템 테스트						⊗

팀원 별 역할 분담

크롤러 & 파서 개발 신경망 구현 및 튜닝 웹 백엔드 ELK 구축

디자인 웹 UI/UX 기획 ELK 구축

논문 동향조사 제안서 및 보고서 작성 신경망 구현 및 튜닝

정상파일 크롤러 개발 신경망 구현 및 튜닝

자료 조사 문서작업 보조 웹 프론트 개발

opcode 파서 개발 웹 프론트 개발

