

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

FACULTY OF EXACT SCIENCES DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BACHELOR THESIS

RHEA: A Reactive, Holistic, Extensible, Abstract Framework for Dataflow Programming

Orestis Melkonian

Supervisors: Panos Rondogiannis, Professor EKPA

Angelos Charalambidis, Researcher NCSR

ATHENS APRIL 2016

BACHELOR THESIS

RHEA: A Reactive, Holistic, Extensible, Abstract Framework for Dataflow Programming

Orestis Melkonian

A.M.: 1115201000128

SUPERVISORS: Panos Rondogiannis, Professor EKPA
Angelos Charalambidis, Researcher NCSR

ABSTRACT

Summary here

SUBJECT AREAS: Dataflow programming, Stream Processing

KEYWORDS: ΔΕΤΕΧ, κλάσσεις εγγράφων, πτυχιακές εργασίες, τμήμα πληροφορικής

και τηλεπικοινωνιών, πανεπιστήμιο αθηνών

"τὰ όντα ιέναι τε πάντα καὶ μένειν ουδέν" (all entities move and nothing remains still)
- Heraclitus

ACKNOWLEDGEMENTS

I would like to thank Angelos Charalambidis for his immensely helpful supervision and guidance throughout the whole period of 6 months that I was present in NCSR.

I would also like to thank Professor Panos Randogiannis for being a major influence in my current research interests through the undergraduate courses "Theory of Computation" and "Principles of Programming Languages", which cultivated a certain appeal to declarative languages, formal methods and generally abstraction.

CONTENTS

PR	ROLOGUE	10
1.	INTRODUCTION	11
1.1	Motivation 1.1.1 Declarative languages 1.1.2 Abstraction as a mean to overcome complexity 1.1.3 Data versus Computation	11 11
1.2	Dataflows in Robotics	11
1.3	Dataflows in Big Data	11
1.4	Structure	11
2.	BACKGROUND	12
2.1	Functional Reactive Programming	12
2.2	The Dataflow Computational Model	12
2.3	Stream processing	12
2.4	Flow-based programming	12
2.5	Model-driven architecture	12
2.6	Robotics	12
3.	APPROACH	13
3.1	Generality	13
3.2	Extensibility (Evaluation + Distribution)	13
3.3	The Reactive Streams Standard	13
4.	IMPLEMENTATION	14
4.1	General Documentation	14
5.	DEPLOYMENT	15
6.	OPTIMIZATION	16
7	IISE-CASES	17

7.1	Robot Hospital Guide	€.			•	•				•	•	•		•	•	•	•	 •	•	•	•	•	•	•	•	 	 17
7.2	Robot Control Panel																	 								 	 17
7.3	Camera Surveilance	•																 								 	 17
7.4	Hamming Numbers .																	 					•			 	 17
8.	RELATED WORK											-						 								 	 18
8.1	GoogleDataflow																	 								 	 18
8.2	TensorFlow																	 								 	 18
8.3	Akka																	 								 	 18
8.4	dispel4py																	 								 	 18
8.5	Flowstone																	 								 	 18
8.6	Spark																	 								 	 18
8.7	Naiad														•									•			 18
8.8	NoFlo														•									•			 18
9.	FUTURE WORK .																	 								 	 19
10.	CONCLUSIONS .																	 					•			 	 20
TEF	RMINOLOGY TABLI	E																 								 	 21
ABI	BREVIATIONS, INIT	ΊA	LS	A	N	D.	Α(CF	RO	N'	Y۱	/IS	.					 									 22

LIST OF FIGURES

LIST OF TABLES

PROLOGUE

This bachelor project is a continuation of my internship at the National Centre for Scientific Research "Demokritos", particularly in the Software and Knowledge Engineering Laboratory (SKEL).

The main task I was assigned was the implementation of a framework for robot programming using a dataflow approach. During that internship, I came to realize that my work could be easily generalized to cover a much broader application area than just robot software.

1. INTRODUCTION

- 1.1 Motivation
- 1.1.1 Declarative languages
- 1.1.2 Abstraction as a mean to overcome complexity
- 1.1.3 Data versus Computation
- 1.2 Dataflows in Robotics
- 1.3 Dataflows in Big Data
- 1.4 Structure

2. BACKGROUND

- 2.1 Functional Reactive Programming
- 2.2 The Dataflow Computational Model
- 2.3 Stream processing
- 2.4 Flow-based programming
- 2.5 Model-driven architecture
- 2.6 Robotics

3. APPROACH

- 3.1 Generality
- 3.2 Extensibility (Evaluation + Distribution)
- 3.3 The Reactive Streams Standard

4. IMPLEMENTATION

4.1 General Documentation

5. DEPLOYMENT

6. OPTIMIZATION

7. USE-CASES

- 7.1 Robot Hospital Guide
- 7.2 Robot Control Panel
- 7.3 Camera Surveilance
- 7.4 Hamming Numbers

8. RELATED WORK

- 8.1 GoogleDataflow
- 8.2 TensorFlow
- 8.3 Akka
- 8.4 dispel4py
- 8.5 Flowstone
- 8.6 Spark
- 8.7 Naiad
- 8.8 NoFlo

9. FUTURE WORK

10. CONCLUSIONS

TERMINOLOGY TABLE

A table of used scientific terms follows.

κλάσση	class
εντολή	command
περιβάλλον	environment

ABBREVIATIONS, INITIALS AND ACRONYMS

A table of all abbrevations used throughout the thesis follows [1].

FRP	Functional Reactive Programming
-----	---------------------------------

REFERENCES

[1] I. Freely, "A small paper," *The journal of small papers*, vol. -1, 1997. to appear.