Probability Theory for EOR

Discrete v.s. Continuous random variables

Discrete v.s. Continuous random variables: differences and connections

Probability Theory for EOR 2 of 9

Real-valued random variables $ CDF \mathbb{P}(Z \leq z) PMF/PDF Expectation \mathbb{E}Z$			
	$CDF \mathbb{P}(Z \leq z)$	PIVIF/PDF	Expectation EZ
Discrete $R(X) = supp(X) =$	Step function $F(x)$	$p_X(x_i) = F(x_i) - F(x_{i-1})$	$\sum_{\substack{x_i \in R(x); \\ x_i \leq x}} x_i \Delta F(x_i)$
$\{x_1 < . < x_n < .\}$	increase from 0 to 1	$=F(x_i)-\lim_{s\uparrow x_i}F(s)$	$\sum_{\substack{x_i < x_{i+1} \\ x_i < x_{i+1}}}^{x_i < x_{i+1}} x_i p_X(x_i)$
$R(X) = \emptyset.$	Jumps	$F(x) = \sum_{\substack{x_i \in R(x): \\ x_i \leq x}} p_X(x_i)$	7 ~7+1
		$p_X(x) \ge 0; \sum_{x_i \in R(X)} p_X(x_i) = 1$	$(\sum_{n=0}^{\infty} G_X(n))$
Continuous $R(Y) = supp(Y)$	Continuous $F(y)$	$f_Y(y) = F'(y)$ $= \lim_{s \to y} \frac{F(y) - F(s)}{y - s}$	$\int_{R(Y)} y dF(y)$
$R(Y) \neq \emptyset$, e.g. (a, b)	increase from 0 to 1 No jumps differentiable	$F(y) = \int_{s < y} f_Y(s) ds$	$\int_{R(Y)} y f(y) dy$
		$f_Y(y) \ge 0; \ \int_{R(Y)} f_Y(y) dy = 1$	$\left(\int_0 G_Y(y)dy\right)$

Let X be a **non-negative integer-valued** r.v. then if its expectation exists

$$\mathbb{E}X=\sum_{i=0}^{\infty}G_X(i)$$

where G_X is the survival function of X such that $G_X(x) = 1 - F_X(x)$.

► Proof:

$$X = I_{\{X \ge 1\}} + \dots + I_{\{X \ge n\}} + \dots = \sum_{i \in \mathbb{N}_+} I_{\{X \ge i\}}.$$

The above holds true since X and $\sum_{i\in\mathbb{N}_+}I_{\{X\geq i\}}$ are the same function from S to the set of non-negative integers.

Linearity of expectation, fundamental bridge, and the fact that $\{X > i\} = \{X > i - 1\}, i \in \mathbb{N}_{+}$ give

$$\begin{array}{l} EX = E \sum_{i=1}^{\infty} I_{\{X \ge i\}} = \\ \sum_{i=1}^{\infty} EI_{\{X \ge i\}} = \sum_{i=1}^{\infty} P(X \ge i) = \\ \sum_{i=0}^{\infty} P(X > i) = \sum_{i=0}^{\infty} G_X(i). \end{array}$$

Let X be a non-negative REAL-valued (either discrete or continuous) r.v. then if its expectation exists

$$\mathbb{E}X=\int_0^\infty G_X(s)ds$$

where G_X is the survival function of X such that $G_X(x) = 1 - F_X(x)$.

► Proof:

$$X = \int_0^\infty I_{\{X > t\}} dt.$$

The above holds true since X and $\int_0^\infty I_{\{X>t\}} dt$ are the same function from S to the set of non-negative real values:

when X(s) = x, $\int_0^\infty I_{\{X(s)>t\}} dt = \int_0^\infty I_{\{x>t\}} dt = x$ since $I_{\{x>t\}} = 1$ only for $t \in [0, x]$.

Linearity of expectation, fundamental bridge give

$$EX = E \int_0^\infty I_{\{X > t\}} dt = \int_0^\infty EI_{\{X > t\}} dt = \int_0^\infty P(X > t) dt = \int_0^\infty G_X(s) ds.$$

Discussions via problems

I. what is the probability of $\{Z = z\}$?

X follows Bern(0.5) with
$$p_X(0) = p_X(1) = 1/2$$
.

- The support of X is $\{0,1\}$ (Finitely many, at most countably infinite).
- ► P(X = x) = 1/2 for $x \in \{0, 1\}$, 0 otherwise.

$$X \text{ has } f_X(x) = 1, x \in [0, 1].$$

► The support of *X* is [0,1] (Infinitely many, uncountably infnite).

►
$$P(X = x) = 0$$
 for $x \in \mathbb{R}$. Since $P(X = x) = \lim_{\delta \downarrow 0} \int_{x-\delta}^{x+\delta} f_X(s) ds = 0$.

Uncountably many possible values, so it is of zero probability that you choose a specific number. True for all continuous r.v.'s

However, you could get outcomes in a neighborhood closer to the number $B_{\epsilon}(x) = (x - \epsilon, x + \epsilon) \subseteq [0, 1]$ (ϵ is an arbitrary and a very small positive number):

$$P(X \in (x - \epsilon, x + \epsilon))$$

= $\int_{x - \epsilon}^{x + \epsilon} f_X(s) ds = 2\epsilon$.

I. uncountably many possible values, so it is of zero probability that you get a specific number. True for all continuous r.v.'s

Probability Theory for EOR 7 of 9

II. what is the probability of $\{Z_1 < Z_2 < Z_3\}$?

$$X_i$$
, $i = 1, 2, 3$ follows i.i.d.
Bern(1/2) with mass (PMF)
 $p(0) = p(1) = 1/2$.

- ► $P(Z_1 < Z_2 < Z_3) = 0.$
- ► At least two of them would be equal to each other.

$$X_i$$
 i.i.d. with density (PDF) $f(x) = 1, x \in [0, 1]$.

- First note that $X_i X_j$, $i \neq j$ is also a continuous r.v. and thus $P(X_i = X_j) = P(X_i X_j = 0) = 0$.
- Any two of them will be equal to each other with zero probability.
- ► Then one of the arbitrary order must happen $X_{a_1} < X_{a_2} < X_{a_3}$ for any permutations a_1, a_2, a_3 of 1, 2, 3, and by symmetry

$$P(X_{a_1} < X_{a_2} < X_{a_3}) = \frac{1}{3!}.$$

Can be extended to cases of *n* i.i.d. continuous r.v.'s.

$$P(X_{a_1} < X_{a_2} < X_{a_3} < \dots < X_{a_n}) = \frac{1}{n!}.$$

II. X_i i.i.d. from a continuous distribution, then

$$P(X_{a_1} < X_{a_2} < X_{a_3} < \cdots < X_{a_n}) = \frac{1}{n!}.$$

for any permutations $a_1, a_2, a_3, \dots, a_n$ of $1, 2, 3, \dots, n$.