Cloud Security and Privacy

Causes of Problems

- Most security problems stem from:
 - Loss of control
 - Lack of trust (mechanisms)
 - Multi-tenancy
- These problems exist mainly in 3rd party management models
 - Self-managed clouds still have security issues, but not related to above

Loss of Control in the Cloud

- Consumer's loss of control
 - Data, applications, resources are located with provider
 - User identity management is handled by the cloud
 - User access control rules, security policies and enforcement are managed by the cloud provider
 - Consumer relies on provider to ensure
 - Data security and privacy
 - Resource availability
 - Monitoring and repairing of services/resources

Lack of Trust in the Cloud

- Trusting a third party requires taking risks
- Defining trust and risk
 - Opposite sides of the same coin
 - People only trust when it pays (Economist's view)
 - Need for trust arises only in risky situations
- Hard to balance trust and risk

Multi-tenancy Issues in the Cloud

- Conflict between tenants opposing goals
 - Tenants share a pool of resources and have opposing goals
- How does multi-tenancy deal with conflict of interest?
 - Can tenants get along together and 'play nicely' ?
 - If they can't, can we isolate them?
- How to provide separation between tenants?
- Cloud Computing brings new threats
 - Multiple independent users share the same physical infrastructure
 - Thus an attacker can legitimately be in the same physical machine as the target

Taxonomy of Fear

Confidentiality

- Fear of loss of control over data
 - Will the sensitive data stored on a cloud remain confidential?
 - Will cloud compromises leak confidential client data
- Will the cloud provider itself be honest and won't peek into the data?

Integrity

- How do I know that the cloud provider is doing the computations correctly?
- How do I ensure that the cloud provider really stored my data without tampering with it?

Availability

- Will critical systems go down at the client, if the provider is attacked in a DoS attack?
- What happens if cloud provider goes out of business?
- Would cloud scale well-enough?
- Often-voiced concern
 - Although cloud providers argue their downtime compares well with cloud user's own data centers

- Privacy issues raised via massive data mining
 - Cloud now stores data from a lot of clients, and can run data mining algorithms to get large amounts of information on clients
- Increased attack surface
 - Entity outside the organization now stores and computes data
 - Attackers can now target the communication link between cloud provider and client
 - Cloud provider employees can be phished

- Auditability and forensics (out of control of data)
 - Difficult to audit data held outside organization in a cloud
 - Forensics also made difficult since now clients don't maintain data locally
- Legal dilemma and transitive trust issues
 - Who is responsible for complying with regulations?
 - If cloud provider subcontracts to third party clouds, will the data still be secure?

- Security is one of the most difficult task to implement in cloud computing.
 - Different forms of attacks in the application side and in the hardware components
- Attacks with catastrophic effects only needs one security flaw

Threat Model

- A threat model helps in analyzing a security problem, design mitigation strategies, and evaluate solutions
- Steps:
 - Identify attackers, assets, threats and other components
 - Rank the threats
 - Choose mitigation strategies
 - Build solutions based on the strategies

Threat Model

- Basic components
 - Attacker modeling
 - Choose what attacker to consider
 - insider vs. outsider?
 - single vs. collaborator?
 - Attacker capabilities
 - Attacker goals
 - motivation
 - Disruption, damage, profit, revenge, ...
 - Vulnerabilities / threats

What is the issue?

- The core issue here is the levels of trust
 - Many cloud computing providers trust their customers
 - Each customer is physically mixing its data with data from anybody else using the cloud while logically and virtually you have your own space
 - The way that the cloud provider implements security is typically focused on the fact that those outside of their cloud are evil, and those inside are good.
- But what if those inside are also evil?

Attacker Capability: Malicious Insiders

At client

- Learn passwords/authentication information
- Gain control of the VMs

At cloud provider

- Log client communication
- Can read unencrypted data
- Can possibly peek into VMs, or make copies of VMs
- Can monitor network communication, application patterns
- Why?
 - Gain information about client data
 - Gain information on client behavior
 - Sell the information or use itself

Attacker Capability: Outside attacker

What?

- Listen to network traffic (passive)
- Insert malicious traffic (active)
- Probe cloud structure (active)
- Launch DoS

Goal?

- Intrusion
- Network analysis
- Man in the middle

Data Security and Storage

- Several aspects of data security, including:
 - Data-in-transit
 - Confidentiality + integrity using secured protocol
 - Confidentiality with non-secured protocol and encryption
 - Data-at-rest
 - Generally, not encrypted, since data is mixed with other users' data
 - Encryption if it is not associated with applications?
 - But how about indexing and searching?
 - Processing of data, including multitenancy
 - For any application to process data

Data Security and Storage (cont.)

Data lineage

- Knowing when and where the data was located within cloud is important for audit/compliance purposes
- e.g., Amazon AWS
 - Store <d1, t1, ex1.s3.amazonaws.com>
 - Process <d2, t2, ec2.compute2.amazonaws.com>
 - Restore <d3, t3, ex2.s3.amazonaws.com>

Data provenance

- Computational accuracy (as well as data integrity)
- E.g., financial calculation: sum ((((2*3)*4)/6) 2) = 2.00?

What is Privacy?

- The concept of privacy varies widely among (and sometimes within) countries, cultures, and jurisdictions.
- It is shaped by public expectations and legal interpretations;
- Privacy rights or obligations are related to the collection, use, disclosure, storage, and destruction of personal data
- Privacy is about the accountability of organizations to data subjects, as well as the transparency to an organization's practice around personal information.

What Are the Key Privacy Concerns?

- Typically mix security and privacy
- Some considerations to be aware of:
 - Storage
 - Retention
 - Destruction
 - Auditing, monitoring and risk management
 - Privacy breaches
 - Who is responsible for protecting privacy?

Security Issues in the Cloud

- In theory, minimizing any of the issues would help:
 - Third Party Cloud Computing
 - Loss of Control
 - Take back control
 - Data and apps may still need to be on the cloud
 - But can they be managed in some way by the consumer

Lack of trust

- Increase trust (mechanisms)
 - Technology
 - Policy, regulation
 - Contracts (incentives)

Multi-tenancy

- Private cloud
- Strong separation

Third Party Cloud Computing

- Confidentiality issues
- Malicious behavior by cloud provider
- Known risks exist in any industry practicing outsourcing
- Provider and its infrastructure needs to be trusted

New Vulnerabilities & Attacks

- Threats arise from other consumers
- Due to the refinement of how physical resources can be transparently shared between VMs
- Such attacks are based on placement and extraction
- A customer VM and its opponent can be assigned to the same physical server
- Adversary can penetrate the VM and violate customer confidentiality

Minimize Loss of Control: Monitoring

- Provide mechanisms that enable the provider to act on attacks he can handle.
 - infrastructure remapping
 - create new or move existing fault domains
 - shutting down offending components or targets
 - and assisting tenants with porting if necessary
 - Repairs
- Provide mechanisms that enable the consumer to act on attacks that he can handle
 - application-level monitoring
 - RAdAC (Risk-adaptable Access Control)
 - VM porting with remote attestation of target physical host
 - Provide ability to move the user's application to another cloud

Conclusion

- Cloud computing is sometimes viewed as a reincarnation of the classic mainframe client-server model
 - However, resources are ubiquitous, scalable, highly virtualized
 - Contains all the traditional threats, as well as new ones
- In developing solutions to cloud computing, security issues may identify the problems and approaches in terms of
 - Loss of control
 - Lack of trust
 - Multi-tenancy problems