

Room impulse response (RIR)

- Room response to sound propagation between a source and a receiver
- Key tool in architectural acoustics and spatial sound for virtual reality

Room impulse response (RIR)

- RIR is sound pressure measured in a reverberant room with an impulse
- Directional RIR can be measured with a spherical microphone array

RIR interpolation

 Either because of the low number of microphones or limited computational capacity, there is a need to interpolate RIRs

Proposal for RIR interpolation

II. Formulation of the regularized SFT

Continuous spherical Fourier transform (SFT) and inverse spherical Fourier transform (ISFT)

 The SFT and ISFT allows to express the RIRs as a linear combination of orthonormal basis functions on the sphere (e.g., spherical harmonics)

Infinite spherical harmonics

II. Formulation of the regularized SFT

Spherical discretization

Sample of sparse RIR

L microphones

- Frequency limit
- Uniform distribution: Interpolation error ✓
- No-uniform distribution: Interpolation error X X!

0.0

1111 Peru Section

II. Formulation of the regularized SFT

Regularized SFT

Interpolation based on the regularized SFT

- Frequency limit.
- Uniform distribution: Interpolation error ✓
- No-uniform distribution: Interpolation error ✓
- Random distribution: Interpolation error ✓

III. Evaluation of RIR interpolation

Initial Conditions

Room dimensions

4.62m wide, 3.84m long, 3m high.

Reverberation time: 0.2 s.

Sampling frequency: 16 kHz.

Number of samples in time: 3200.

Sparse grid

Radius: r = 8 cm

Random distribution, L = 49, 16.

Dense grid

Icosphere distribution, 162 microphones

III. Evaluation of RIR interpolation

RIR energy comparison

- In both cases, the energy remains concentrated within the first 100 ms
- Envelopes are very similar in the region of interest

Energy of the target RIRs

Energy of the interpolated RIRs

III. Evaluation of RIR

Interpolation error

III. Evaluation of RIR interpolation

Interpolation error

Number of microphones: L = 49

Max order: $N_{\text{max}} = 6$

Number of microphones: L = 16

Max order: $N_{\text{max}} = 3$

IV. Conclusions

 Regularized SFT based interpolation maintained the errors bounded at high-energy values in time

 Extensions to this work might include physics-based frameworks for the reconstruction of sound pressure fields

 Open-source library available at: https://github.com/AlarconGanoza/sphericalAcoustic

We invite you to use our library

