Due: Oct 31, 2022 by 11:59 pm

Name (Printed): Peter Rauscher

Pledge and Sign: I pledge my honor that I have abided by the Stevens Honor System

Peter Rauscher

Upload solutions to Gradescope by the due date. Assign solution pages to corresponding problems. You need to pledge and sign on the cover page of your solutions. You may use this page as the cover page.

Legibility, organization of the solution, and clearly stated reasoning where appropriate are all important. Points will be deducted for sloppy work or insufficient explanations.

1. Consider the vectors
$$\mathbf{b} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$
, $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- (a) [6 pts.] Find the projection \mathbf{p} of \mathbf{b} onto the subspace spanned by \mathbf{a}_1 and \mathbf{a}_2 .
- (b) [4 pts.] Find the error vector $\mathbf{e} = \mathbf{b} \mathbf{p}$, and verify that it is orthogonal to both \mathbf{a}_1 and \mathbf{a}_2 by computing the corresponding dot products.

$$|\hat{a}\rangle = |\hat{a}\rangle = |$$

2)
$$\begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 8 & 20 \end{bmatrix}$$

ATA $\hat{x} = A^{T} \cdot b$

ATA $\hat{x} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ 6 & 14 \end{bmatrix}$

AT $\hat{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 8 \\ 20 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 37 \\ 84 \\ 39 \end{bmatrix}$

So, $\begin{bmatrix} 1 & 6 \\ 6 & 14 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 6 & 2 & 37 \end{bmatrix} = \begin{bmatrix} 37 \\ 84 \\ 6 & 4 \end{bmatrix}$
 $12 + 66 = 37 + 62 + 140 = 84$
 $162 + 7(37 - 42) = 84$
 $162 + 7(37 - 42) = 252$
 $162 + 7(37 - 42) = 252$
 $162 + 7(37 - 42) = 252$
 $163 + 7(37 - 42) = 252$

So the best-fitting line is

 $163 + 16$

3)
$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = a = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 0 \\ 0 &$

$$63.6^{1} = (\frac{1}{12})(\frac{1}{12}) + 0 + 0 + 0 = 0$$
 $63.6^{1} = (\frac{1}{12})(-\frac{1}{12}) + 0 + (\frac{1}{12})(\frac{1}{12}) = 0$
 $63.6^{2} = (\frac{1}{12})(-\frac{1}{12}) + 0 + (\frac{1}{12})(\frac{1}{12}) = 0$
 $63.6^{2} = (\frac{1}{12})(-\frac{1}{12}) + 0 + (\frac{1}{12})(\frac{1}{12}) = 0$
 $63.6^{2} = (\frac{1}{12})(-\frac{1}{12}) + 0 + (\frac{1}{12})(\frac{1}{12}) = 0$
 $63.6^{2} = (\frac{1}{12})(-\frac{1}{12}) + 0 + (\frac{1}{12})(\frac{1}{12}) = 0$