Planche nº 27. Polynômes. Corrigé

Exercice nº 1

Soit $n \ge 2$.

$$a_n = \prod_{k=1}^{n-1} \frac{1}{2i} \left(e^{ik\pi/n} - e^{-ik\pi/n} \right) = \frac{1}{(2i)^{n-1}} \prod_{k=1}^{n-1} e^{ik\pi/n} \prod_{k=1}^{n-1} \left(1 - e^{-2ik\pi/n} \right).$$

Maintenant,

$$\prod_{k=1}^{n-1} e^{ik\pi/n} = e^{\frac{i\pi}{n}(1+2+\ldots+(n-1))} = e^{i\pi(n-1)/2} = \left(e^{i\pi/2}\right)^{n-1} = i^{n-1},$$

 $\mathrm{et}\;\mathrm{donc}\;\frac{1}{(2\mathfrak{i})^{n-1}}\prod_{k=1}^{n-1}e^{\mathfrak{i}k\pi/n}=\frac{1}{2^{n-1}}.\;\mathrm{Il}\;\mathrm{reste}\;\mathrm{\grave{a}}\;\mathrm{calculer}\;\prod_{k=1}^{n-1}\Big(1-e^{-2\mathfrak{i}k\pi/n}\Big).$

1ère solution. Les $e^{-2ik\pi/n}$, $1 \le k \le n-1$, sont les n-1 racines n-èmes de 1 distinctes de 1. Puisque $X^n-1=(X-1)\left(1+X+...+X^{n-1}\right)$, ce sont donc les n-1 racines deux deux distinctes du polynôme $1+X+...+X^{n-1}$. Par suite,

$$1 + X + ... + X^{n-1} = \prod_{k=1}^{n-1} \left(X - e^{-2ik\pi/n} \right) = P.$$

En particulier $\prod_{k=1}^{n-1} (1 - e^{-2ik\pi/n}) = P(1) = 1 + 1... + 1 = n.$

2ème solution. Pour $k \in [1, n-1]$, posons $z_k = 1 - e^{-2ik\pi/n}$. Les nombres z_k sont deux à deux distincts et non nuls. De plus, pour tout $k \in [1, n-1]$, $(1-z_k)^n = 1$. Les nombres z_k , $1 \le k \le n-1$, sont n-1 racines deux à deux distincts et non nulles du polynôme

$$(1-X)^{n} - 1 = (-1)^{n}X^{n} + (-1)^{n-1} {n \choose 1} X^{n-1} + \dots - {n \choose n-1} X + 1 - 1$$

= $-X ((-1)^{n-1}X^{n-1} + (-1)^{n-2}nX^{n-2} + \dots + n),$

et donc sont les n-1 racines deux à deux distinctes du polynôme $P=(-1)^{n-1}X^{n-1}+\ldots+n$ de degré n-1. D'après les relations entre coefficients et racines d'un polynôme scindé (obtenues en développant $\prod_{k=1}^{n-1}(X-z_k)$ puis en identifiant les coefficients avec ceux de $(-1)^{n-1}X^{n-1}+\ldots+n$)

$$\prod_{k=1}^{n-1} z_k = (-1)^{n-1} \frac{n}{(-1)^{n-1}} = n.$$

Finalement,

$$\forall n \geqslant 2, \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}.$$

Exercice nº 2

Soit $n \ge 2$. Tout d'abord

$$Q = (1 + X + \dots + X^n)' = \left(\frac{X^{n+1} - 1}{X - 1}\right)' = \frac{(n+1)X^n(X - 1) - \left(X^{n+1} - 1\right)}{(X - 1)^2} = \frac{nX^{n+1} - (n+1)X^n + 1}{(X - 1)^2}.$$

Ensuite, $\omega_0 = 1$ et donc, $Q(\omega_0) = 1 + 2 + ... + n = \frac{n(n+1)}{2}$. Puis, pour $1 \le k \le n-1$, $\omega_k \ne 1$ et donc, puisque $\omega_k^n = 1$,

$$Q(\omega_k) = \frac{n\omega_k^{n+1} - (n+1)\omega_k^n + 1}{(\omega_k - 1)^2} = \frac{n\omega_k - (n+1) + 1}{(\omega_k - 1)^2} = \frac{n}{\omega_k - 1}.$$

http://www.maths-france.fr

Par suite,

$$\prod_{k=0}^{n-1} Q(\omega_k) = \frac{n(n+1)}{2} \prod_{k=1}^{n-1} \frac{n}{\omega_k - 1} = \frac{n^n(n+1)}{2 \prod_{k=1}^{n-1} (\omega_k - 1)}.$$

$$\text{Mais, } X^n - 1 = (X - 1) \left(1 + X + ... + X^{n-1} \right) \text{ et d'autre part } X^n - 1 = \prod_{k=0}^{n-1} \left(X - e^{2ik\pi/n} \right) = (X - 1) \prod_{k=1}^{n-1} (X - \omega_k). \text{ On en deduit que } \prod_{k=1}^{n-1} (X - e^{2ik\pi/n}) = 1 + X + ... + X^{n-1}.$$

En particulier,
$$\prod_{k=1}^{n-1} (1-\omega_k) = 1+1^2+...+1^{n-1} = n \text{ ou encore } \prod_{k=1}^{n-1} (\omega_k-1) = (-1)^{n-1}n. \text{ Donc,}$$

$$\prod_{k=0}^{n-1} Q(\omega_k) = \frac{n^n(n+1)}{2} \frac{1}{(-1)^{n-1}n} = \frac{(-1)^{n-1}n^{n-1}(n+1)}{2}.$$

$$\forall n \geqslant 2, \ \prod_{k=0}^{n-1} Q(\omega_k) = \frac{(-1)^{n-1}n^{n-1}(n+1)}{2}.$$

Exercice nº 3

1) Soit $p \in \mathbb{N}$. Pour tout réel a,

$$e^{\mathfrak{i}(2p+1)\alpha} = (\cos\alpha + \mathfrak{i}\sin\alpha)^{2p+1} = \sum_{i=0}^{2p+1} \binom{2p+1}{j} \cos^{2p+1-j}\alpha (\mathfrak{i}\sin\alpha)^j$$

puis

$$\sin((2p+1)\alpha) = \operatorname{Im}\left(e^{\mathfrak{i}(2p+1)\alpha}\right) = \sum_{j=0}^{p} \binom{2p+1}{2j+1} \cos^{2(p-j)} \alpha (-1)^{j} \sin^{2j+1} \alpha.$$

Pour $1 \le k \le p$, en posant $a = \frac{k\pi}{2p+1}$, on obtient :

$$\forall k \in [\![1,p]\!], \ \sum_{j=0}^p \binom{2p+1}{2j+1} \cos^{2(p-j)} \left(\frac{k\pi}{2p+1}\right) (-1)^j \sin^{2j+1} \left(\frac{k\pi}{2p+1}\right) = 0.$$

Ensuite, pour $1 \leqslant k \leqslant p$, $0 < \frac{k\pi}{2p+1} < \frac{\pi}{2}$ et donc $\sin^{2p+1}\left(\frac{k\pi}{2p+1}\right) \neq 0$. En divisant les deux membres de (*) par $\sin^{2p+1}\left(\frac{k\pi}{2p+1}\right)$, on obtient :

$$\forall k \in [1,p], \ \sum_{j=0}^{p} (-1)^{j} \binom{2p+1}{2j+1} \operatorname{cotan}^{2(p-j)} \left(\frac{k\pi}{2p+1} \right) = 0.$$

Maintenant, les p nombres $\cot n^2 \frac{k\pi}{2p+1}$ sont deux à deux distincts. En effet, pour $1 \le k \le p$, $0 < \frac{k\pi}{2p+1} < \frac{\pi}{2}$. Or, sur $\left]0, \frac{\pi}{2}\right[$, la fonction $x \mapsto \cot n x$ est strictement décroissante et strictement positive, de sorte que la fonction $x \mapsto \cot n^2 x$ est strictement décroissante et en particulier injective.

Ces p nombres deux à deux distincts sont racines du polynôme $P = \sum_{j=0}^p (-1)^j \binom{2p+1}{2j+1} X^{p-j}$, qui est de degré p. Ce sont donc toutes les racines de P (ces racines sont par suite simples et réelles). D'après les relations entre les coefficients et les racines d'un polynôme scindé, on a :

$$\sum_{k=1}^{p} \cot^2 \frac{k\pi}{2p+1} = -\frac{-\binom{2p+1}{3}}{\binom{2p+1}{1}} = \frac{p(2p-1)}{3}.$$

puis,

$$\sum_{k=1}^p \frac{1}{\sin^2 \frac{k\pi}{2p+1}} = \sum_{k=1}^p \left(1 + \cot^2 \frac{k\pi}{2p+1}\right) = p + \frac{p(2p-1)}{3} = \frac{2p(p+1)}{3}.$$

2) Pour n entier naturel non nul donné, on a

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0,$$

et la suite $(u_n)_{n\in\mathbb{N}^*}$ est strictement croissante. De plus, pour $n\geqslant 2$,

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \sum_{k=2}^n \frac{1}{k^2} < 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 1 + 1 - \frac{1}{n} < 2,$$

ce qui reste vrai quand n = 1. La suite (u_n) est croissante et est majorée par 2. Par suite, la suite (u_n) converge vers un réel inférieur ou égal à 2.

3) Pour x élément de $\left[0, \frac{\pi}{2}\right]$, posons $f(x) = x - \sin x$ et $g(x) = \tan x - x$. f et g sont dérivables sur $\left[0, \frac{\pi}{2}\right]$ et pour x élément de $\left[0, \frac{\pi}{2}\right]$, $f'(x) = 1 - \cos x$ et $g'(x) = \tan^2 x$. f' et g' sont strictement positives sur $\left[0, \frac{\pi}{2}\right]$ et donc f et g sont strictement croissantes sur $\left[0,\frac{\pi}{2}\right]$. Comme f(0)=g(0)=0, on en déduit que f et g sont strictement positives sur $\left[0,\frac{\pi}{2}\right]$.

Donc, $\forall x \in \left]0, \frac{\pi}{2}\right[$, $0 < \sin x < x < \tan x$ et par passage à l'inverse $\forall x \in \left]0, \frac{\pi}{2}\right[$, $0 < \cot x < \frac{1}{x} < \frac{1}{\sin x}$ puis $\forall x \in \left[0, \frac{\pi}{2}\right], \cot^2 x < \frac{1}{x^2} < \frac{1}{\sin^2 x}$

 $\textbf{4)} \ \text{Pour } 1 \leqslant k \leqslant p, \ 0 < \frac{k\pi}{2p+1} < \frac{\pi}{2} \ \text{et donc cotan}^2 \frac{k\pi}{2p+1} < \left(\frac{2p+1}{k\pi}\right)^2 < \frac{1}{\sin^2 \frac{k\pi}{2p+1}}. \ \text{En sommant ces inégalités, on}$ obtient

$$\frac{p(2p-1)}{3} = \sum_{k=1}^{p} \cot^2 \frac{k\pi}{2p+1} < \sum_{k=1}^{p} \frac{(2p+1)^2}{\pi^2 k^2} < \sum_{k=1}^{p} \frac{1}{\sin^2 \frac{k\pi}{2p+1}} = \frac{2p(p+1)}{3},$$

puis

$$\frac{\pi^2 p(2p-1)}{3(2p+1)^2} < u_p = \sum_{k=1}^p \frac{1}{k^2} < \frac{2p(p+1)\pi^2}{3(2p+1)^2}.$$

Les membres de gauche et de droite tendent vers $\frac{\pi^2}{6}$ quand p tend vers l'infini et donc, d'après le théorème des gendarmes, la suite (u_p) tend vers $\frac{\pi^2}{6}$.

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice nº 4

- $\bullet \ X^6 7X^4 + 8X^3 7X + 7 = (X^6 + 8X^3 + 7) (7X^4 + 7X) = (X^3 + 1)(X^3 + 7) 7X(X^3 + 1) = (X^3 + 1)(X^3 7X + 7). \\ \bullet \ 3X^5 7X^3 + 3X^2 7 = 3X^2(X^3 + 1) 7(X^3 + 1) = (X^3 + 1)(3X^2 7). \ \mathrm{Donc},$

$$\mathrm{PGCD}\left(X^{6}-7X^{4}+8X^{3}-7X+7,3X^{5}-7X^{3}+3X^{2}-7\right)=\left(X^{3}+1\right)\mathrm{PGCD}\left(X^{3}-7X+7,3X^{2}-7\right).$$

Maintenant, pour $\varepsilon \in \{-1, 1\}$, $\left(\varepsilon\sqrt{\frac{7}{3}}\right)^3 - 7\left(\varepsilon\sqrt{\frac{7}{3}}\right) + 7 = -\varepsilon\frac{14}{3}\sqrt{\frac{7}{3}} + 7 \neq 0$.

Les polynômes $X^3 - 7X + 7$ et $3X^2 - 7$ n'ont pas de racines communes dans $\mathbb C$ et sont donc premiers entre eux. Par suite,

$$\mathrm{PGCD}\left(X^{6}-7X^{4}+8X^{3}-7X+7,3X^{5}-7X^{3}+3X^{2}-7\right)=X^{3}+1.$$

Soit $n \in \mathbb{N}$.

$$\begin{split} (X+1)^n-X^n-1 \ \mathrm{est} \ \mathrm{divisible} \ \mathrm{par} \ X^2+X+1 &\Leftrightarrow j \ \mathrm{et} \ j^2 \ \mathrm{sont} \ \mathrm{racines} \ \mathrm{de} \ (X+1)^n-X^n-1 \\ &\Leftrightarrow j \ \mathrm{est} \ \mathrm{racine} \ \mathrm{de} \ (X+1)^n-X^n-1 \\ &(\mathrm{car} \ (X+1)^n-X^{n-1} \ \mathrm{est} \ \mathrm{dans} \ \mathbb{R}[X]) \\ &\Leftrightarrow (j+1)^n-j^n-1=0 \Leftrightarrow (-j^2)^n-j^n-1=0. \end{split}$$

- $\begin{array}{l} \bullet \ \mathrm{Si} \ n \in 6\mathbb{Z}, \ (-j^2)^n j^n 1 = -3 \neq 0. \\ \bullet \ \mathrm{Si} \ n \in 1 + 6\mathbb{Z}, \ (-j^2)^n j^n 1 = -j^2 j 1 = 0. \\ \bullet \ \mathrm{Si} \ n \in 2 + 6\mathbb{Z}, \ (-j^2)^n j^n 1 = j j^2 1 = 2j \neq 0. \\ \bullet \ \mathrm{Si} \ n \in 3 + 6\mathbb{Z}, \ (-j^2)^n j^n 1 = -3 \neq 0. \\ \bullet \ \mathrm{Si} \ n \in 4 + 6\mathbb{Z}, \ (-j^2)^n j^n 1 = j^2 j 1 = 2j^2 \neq 0. \\ \bullet \ \mathrm{Si} \ n \in 5 + 6\mathbb{Z}, \ (-j^2)^n j^n 1 = -j j^2 1 = 0. \end{array}$

En résumé, $(X+1)^n - X^n - 1$ est divisible par $X^2 + X + 1$ si et seulement si n est dans $(1+6\mathbb{Z}) \cup (5+6\mathbb{Z})$.

Exercice nº 6

Soit P un polynôme non nul à coefficients réels. Pour tout réel x, on peut écrire

$$P(x) = \lambda \prod_{i=1}^{k} (x - a_i)^{\alpha_i} \prod_{j=1}^{l} ((x - z_j)(x - \overline{z_j}))^{\beta_j},$$

où λ est un réel non nul, k et l sont des entiers naturels, les α_i sont des réels deux à deux distincts, les α_i et les β_i des entiers naturels et les $(x-z_1)(x-\overline{z_1})$ des polynômes deux à deux premiers entre eux à racines non réelles.

Tout d'abord, pour tout réel x, $\prod_{j=1}^{n}((x-z_{j})(x-\overline{z_{j}}))^{\beta_{j}}>0$ (tous les trinômes du second degré considérés étant unitaires sans racines réelles.)

$$\mathrm{Donc},\ (\forall x\in\mathbb{R},\ P(x)\geqslant 0)\Leftrightarrow (\forall x\in\mathbb{R},\ \lambda\prod_{i=1}^k(x-\alpha_i)^{\alpha_i}\geqslant 0).$$

Ensuite, si $\forall x \in \mathbb{R}, \ P(x) \geqslant 0$, alors $\lim_{x \to +\infty} P(x) \geqslant 0$ ce qui impose $\lambda > 0$. Puis, si un exposant α_i est impair, P change de signe en a_i , ce qui contredit l'hypothèse faite sur P. Donc, $\lambda > 0$ et tous les α_i sont pairs. Réciproquement, si $\lambda > 0$ et si tous les α_i sont pairs, alors bien sûr, $\forall x \in \mathbb{R}, P(x) \geq 0$.

Posons $A = \sqrt{\lambda} \prod_{i=1} (x - a_i)^{\alpha_i/2}$. A est un élément de $\mathbb{R}[X]$ car $\lambda > 0$ et car les α_i sont des entiers pairs. Posons ensuite

 $Q_1 = \prod_{i=1}^l (x-z_j)^{\beta_j} \text{ et } Q_2 = \prod_{i=1}^l (x-\overline{z_j})^{\beta_j}. \ Q_1 \text{ admet après développement une écriture de la forme } Q_1 = B + iC \text{ où } B \text{ et } A_1 = A_2 + iC \text{ ou } B \text{ et } A_2 = A_3 + iC \text{ ou } B \text{ et } A_3 = A_3 + iC \text{ ou } B \text{ et$

C sont des polynômes à coefficients réels. Mais alors, $Q_2 = B - iC$ puis

$$P = A^2Q_1Q_2 = A^2(B + iC)(B - iC) = A^2(B^2 + C^2) = (AB)^2 + (AC)^2 = R^2 + S^2,$$

où R et S sont des polynômes à coefficients réels.

Exercice nº 7

Si P est de degré inférieur ou égal à 0, c'est clair. Sinon, posons $P=\sum_{k=0}^n\alpha_kX^k$ avec $n\in\mathbb{N}^*$ et $\alpha_n\neq 0$.

$$\begin{split} P(P(X)) - X &= P(P(X)) - P(X) + P(X) - X = \sum_{k=0}^{n} \alpha_k \left((P(X))^k - X^k \right) + (P(X) - X) \\ &= \sum_{k=1}^{n} \alpha_k \left((P(X))^k - X^k \right) + (P(X) - X). \end{split}$$

 $\text{Mais, pour } 1 \leqslant k \leqslant n, \ (P(X))^k - X^k) = (P(X) - X) \left((P(X))^{k-1} + X(P(X))^{k-2} + ... + X^{k-1} \right) \text{ est divisible par } P(X) - X \text{ et il en est donc de même de } P(P(X)) - X.$

Exercice nº 8

1) Posons $P = \sum_{i=0}^{l} a_i X_i$ où $l \ge 1$ et où les a_i sont des entiers relatifs avec $a_l \ne 0$. D'après la formule du binôme de Neuvron, il eviete des entiers relatifs K. $0 \le i \le l$, tels que

Newton, il existe des entiers relatifs $K_i,\,0\leqslant i\leqslant l,$ tels que

$$P(n + km) = \sum_{i=0}^{l} a_i(n + km)^i = \sum_{i=0}^{l} a_i(n^i + K_im) = \sum_{i=0}^{l} a_in^i + Km = m + Km = m(K+1),$$

où K est un entier relatif. P(n + km) est donc un entier relatif multiple de m = P(n).

2) Soit $P \in \mathbb{Z}[X]$ tel que $\forall n \in \mathbb{N}$, P(n) est premier.

Soit \mathfrak{n} un entier naturel donné et $\mathfrak{m}=P(\mathfrak{n})$ (donc, $\mathfrak{m}\geqslant 2$ et en particulier $\mathfrak{m}\neq 0$). Pour tout entier relatif k, $P(\mathfrak{n}+k\mathfrak{m})$ est divisible par \mathfrak{m} mais $P(\mathfrak{n}+k\mathfrak{m})$ est un nombre premier ce qui impose $P(\mathfrak{n}+k\mathfrak{m})=\mathfrak{m}$. Par suite, le polynôme $Q=P-\mathfrak{m}$ admet une infinité de racines deux à deux distinctes (puisque $\mathfrak{m}\neq 0$) et est donc le polynôme nul ou encore P est constant.

Par contraposition, si P non constant, il existe $n \in \mathbb{N}$ tel que P(n) n'est pas un nombre premier.

Exercice nº 9

1) Déjà, P_0 est dans E.

Soit n un naturel non nul. $P_n = \frac{1}{n!}(X+1)...(X+n)$ et donc, si k est élément de [-n, -1], $P_n(k) = 0 \in \mathbb{Z}$.

Si k est un entier positif, $P_n(k) = \frac{1}{n!}(k+1)...(k+n) = \binom{n+k}{n} \in \mathbb{Z}.$

Enfin, si k est un entier strictement plus petit que -n,

$$P_n(k) = \frac{1}{n!}(k+1)...(k+n) = (-1)^n \frac{1}{n!}(-k-1)...(-k-n) = (-1)^n \binom{-k-1}{n} \in \mathbb{Z}.$$

Finalement, $\forall k \in \mathbb{Z}, \ P_n(k) \in \mathbb{Z}, \ \text{ou encore} \ P_n(\mathbb{Z}) \subset \mathbb{Z}.$

- 2) Une combinaison linéaire à coefficients entiers relatifs des P_n est donc dans E.
- 3) Soit $P \in \mathbb{C}[X] \setminus \{0\}$ tel que $\forall k \in \mathbb{Z}$, $P(k) \in \mathbb{Z}$ (si P est nul, P est combinaison linéaire à coefficients entiers des P_k).

Puisque $\forall k \in \mathbb{N}$, $\deg(P_k) = k$, on sait que pour tout entier naturel \mathfrak{n} , tout polynôme non nul de degré inférieur ou égal à \mathfrak{n} s'écrit de manière unique comme combinaison linéaire des P_k , $0 \le k \le \mathfrak{n}$.

Soit $n = \deg(P)$. Il existe n+1 nombres complexes $a_0,..., a_n$ tels que $P = a_0P_0 + ... + a_nP_n$. Il reste à montrer que les a_i sont des entiers relatifs.

- La phrase « P(-1) est dans \mathbb{Z} » fournit : \mathfrak{a}_0 est dans \mathbb{Z} .
- La phrase « P(-2) est dans \mathbb{Z} » fournit : $\mathfrak{a}_0 \mathfrak{a}_1$ est dans \mathbb{Z} et donc \mathfrak{a}_1 est dans \mathbb{Z} .
- La phrase « P(-3) est dans \mathbb{Z} » fournit : $a_0 2a_1 + a_2$ est dans \mathbb{Z} et donc a_2 est dans \mathbb{Z} ...
- La phrase « P(-(k+1)) est dans \mathbb{Z} » fournit : $\mathfrak{a}_0 k\mathfrak{a}_1 + ... + (-1)^k\mathfrak{a}_k$ est dans \mathbb{Z} et si par hypothèse de récurrence, $\mathfrak{a}_0,...,\mathfrak{a}_{k-1}$ sont des entiers relatifs alors \mathfrak{a}_k l'est encore.

Tous les coefficients a_k sont des entiers relatifs et E est donc constitué des combinaisons linéaires à coefficients entiers relatifs des P_k .

Exercice nº 10

On prend $n \ge 2$ (sinon tout est clair).

 $Q = \left(X - e^{\mathrm{i}\,\alpha}\right)\left(X - e^{-\mathrm{i}\,\alpha}\right) \text{ est à racines simples si et seulement si } e^{\mathrm{i}\,\alpha} \neq e^{-\mathrm{i}\,\alpha} \text{ ou encore } e^{2\mathrm{i}\,\alpha} \neq 1 \text{ ou enfin, } \alpha \notin \pi \mathbb{Z}.$

1er cas. Si $\alpha \in \pi \mathbb{Z}$ alors, $P = 0 = 0 \times Q$.

2ème cas. Si $\mathfrak{a} \notin \pi \mathbb{Z}$, d'après la formule de MOIVRE

$$P\left(e^{i\alpha}\right) = \sin\alpha(\cos(n\alpha) + i\sin(n\alpha)) - \sin(n\alpha)(\cos\alpha + i\sin\alpha) + \sin((n-1)\alpha)$$
$$= \sin((n-1)\alpha) - (\sin(n\alpha)\cos\alpha - \cos(n\alpha)\sin\alpha) = 0.$$

Donc, $e^{i\alpha}$ est racine de P et de même, puisque P est dans $\mathbb{R}[X]$, $e^{-i\alpha}$ est racine de P. P est donc divisible par Q.

$$\begin{split} P &= P - P(e^{i\alpha}) = \sin\alpha\left(X^n - e^{in\alpha}\right) - \sin(n\alpha)\left(X - e^{i\alpha}\right) = \left(X - e^{i\alpha}\right)\left(\sin\alpha\sum_{k=0}^{n-1}X^{n-1-k}e^{ik\alpha} - \sin(n\alpha)\right) \\ &= \left(X - e^{i\alpha}\right)S. \end{split}$$

Puis,

$$\begin{split} S &= S - S(e^{-i\alpha}) = \sin\alpha \sum_{k=0}^{n-1} e^{ik\alpha} \left(X^{n-1-k} - e^{-i(n-1-k)\alpha} \right) \\ &= \sin\alpha \left(X - e^{-i\alpha} \right) \sum_{k=0}^{n-2} e^{ik\alpha} \left(\sum_{j=0}^{n-2-k} X^{n-2-k-j} e^{-ij\alpha} \right) \\ &= \sin\alpha \left(X - e^{-i\alpha} \right) \sum_{k=0}^{n-2} \left(\sum_{j=0}^{n-2-k} X^{n-2-k-j} e^{i(k-j)\alpha} \right) = \sin\alpha \left(X - e^{-i\alpha} \right) \sum_{l=0}^{n-2} \left(\sum_{k+j=l} e^{i(k-j)\alpha} \right) X^{n-2-l} \\ &= \sin\alpha \left(X - e^{-i\alpha} \right) \sum_{l=0}^{n-2} \left(\sum_{k=0}^{l} e^{i(2k-l)\alpha} \right) X^{n-2-l} \end{split}$$

Maintenant,

$$\sum_{k=0}^l e^{\mathfrak{i}(2k-1)\alpha} = e^{-\mathfrak{i} l\alpha} \frac{1-e^{2\mathfrak{i}(l+1)\alpha}}{1-e^{2\mathfrak{i}\alpha}} = \frac{\sin((l+1)\alpha)}{\sin\alpha}.$$

Donc

$$S = \sin \alpha (X - e^{-i\alpha}) \sum_{l=0}^{n-2} \frac{\sin((l+1)\alpha)}{\sin \alpha} X^{n-2-l} = (X - e^{-i\alpha}) \sum_{l=0}^{n-2} \sin((l+1)\alpha) X^{n-2-l},$$

et finalement

$$P = (X - e^{\mathrm{i}\alpha})(X - e^{-\mathrm{i}\alpha}) \sum_{k=0}^{n-2} \sin((k+1)\alpha) X^{n-2-k} = (X^2 - 2X\cos\alpha + 1) \sum_{k=0}^{n-2} \sin((k+1)\alpha) X^{n-2-k}.$$

Exercice nº 11

Soit P un polynôme de degré n supérieur ou égal à 2.

Posons $P = \lambda(X - z_1)(X - z_2)...(X - z_n)$ où λ est un complexe non nul et les z_k des complexes pas nécessairement deux à deux distincts.

$$P' = \lambda \sum_{i=1}^{n} \left(\prod_{j \neq i} (X - z_j) \right) = \sum_{i=1}^{n} \frac{P}{X - z_i},$$

et donc

$$\frac{P'}{P} = \sum_{i=1}^{n} \frac{1}{X - z_i}.$$

Soit alors z une racine de P' dans \mathbb{C} . Si z est racine de P (et donc racine de P d'ordre au moins 2) le résultat est clair. Sinon,

$$0 = \frac{P'(z)}{P(z)} = \sum_{k=1}^{n} \frac{1}{z - z_k} = \sum_{i=1}^{n} \frac{\overline{z - z_k}}{|z - z_k|^2} = \overline{\sum_{k=1}^{n} \frac{z - z_k}{|z - z_k|^2}} \quad (*).$$

Pour $k \in [1, n]$, on pose $\lambda_k = \frac{\frac{1}{|z - z_k|^2}}{\sum_{j=1}^n |z - z_j|^2}$. Chaque λ_k est un réel strictement positif et de plus

$$\sum_{k=1}^{n} \lambda_k = \frac{\sum_{k=1}^{n} \frac{1}{|z - z_k|^2}}{\sum_{j=1}^{n} |z - z_j|^2} = 1.$$

En conjuguant les deux membres de l'égalité (*), on obtient $\left(\sum_{j=1}^{n} \frac{1}{|z-z_{j}|^{2}}\right) z = \sum_{k=1}^{n} \frac{1}{|z-z_{k}|^{2}} z_{k}$ et donc, $z = \sum_{j=1}^{n} \lambda_{k} z_{k}.$

Exercice nº 12

$$\begin{split} P &= X^6 - 2X^3\cos\alpha + 1 = \left(X^3 - e^{\mathrm{i}\alpha}\right)\left(X^3 - e^{-\mathrm{i}\alpha}\right) \\ &= \left(X - e^{\mathrm{i}\alpha/3}\right)\left(X - je^{\mathrm{i}\alpha/3}\right)\left(X - j^2e^{\mathrm{i}\alpha/3}\right)\left(X - e^{-\mathrm{i}\alpha/3}\right)\left(X - je^{-\mathrm{i}\alpha/3}\right)\left(X - j^2e^{-\mathrm{i}\alpha/3}\right) \\ &= \left(X^2 - 2X\cos\frac{\alpha}{3} + 1\right)\left(X^2 - 2X\cos\left(\frac{\alpha}{3} + \frac{2\pi}{3}\right) + 1\right)\left(X^2 - 2X\cos\left(\frac{\alpha}{3} - \frac{2\pi}{3}\right) + 1\right). \end{split}$$

Il reste à se demander : 1) si les facteurs précédents sont irréductibles sur \mathbb{R} et 2) si ces facteurs sont deux à deux distincts. Les trois facteurs de degré 2 ont un discriminant réduit du type $\Delta' = \cos^2 \alpha - 1 = -\sin^2 \alpha$ et Δ' est nul si et seulement si α est dans $\pi\mathbb{Z}$.

Les cas particuliers sont donc $(\frac{\alpha}{3}$ est dans $\pi\mathbb{Z}$ et donc $\alpha = 0$) et $(\frac{\alpha + 2\pi}{3}$ est dans $\pi\mathbb{Z}$ et donc $\alpha = \pi$) et $(\frac{\alpha - 2\pi}{3}$ est dans $\pi\mathbb{Z}$ ce qui n'a pas de solution dans $[0,\pi]$).

1er cas. Si a = 0.

$$P = (X^2 - 2X + 1)(X^2 + X + 1)(X^2 + X + 1) = (X - 1)^2(X^2 + X + 1)^2.$$

2ème cas. Si $a = \pi$, en remplaçant X par -X on obtient :

$$P = (X+1)^2(X^2 - X + 1)^2.$$

3ème cas. Si α est dans $]0,\pi[$, les trois facteurs de degré 2 sont irréductibles sur \mathbb{R} . D'autre part, $e^{i\alpha}$ et $e^{-i\alpha}$ sont distincts et donc n'ont pas de racine cubique en commun. Les trois facteurs de degré 2 sont deux à deux distincts. Dans ce cas,

$$P = \left(X^2 - 2X\cos\frac{\alpha}{3} + 1\right)\left(X^2 - 2X\cos\frac{\alpha + 2\pi}{3} + 1\right)\left(X^2 - 2X\cos\frac{\alpha - 2\pi}{3} + 1\right).$$

Exercice nº 13

Soit P un tel polynôme. -2 est racine de P+10 d'ordre au moins trois et donc racine de (P+10)'=P' d'ordre au moins deux.

De même, 2 est racine de P' d'ordre au moins deux et puisque P' est de degré 4, il existe un complexe λ tel que $P' = \lambda(X-2)^2(X+2)^2 = \lambda\left(X^2-4\right)^2 = \lambda\left(X^4-8X^2+16\right)$ et enfin, nécessairement,

$$\exists (\lambda, \mu) \in \mathbb{C}^2 / \ P = \lambda \left(\frac{1}{5} X^5 - \frac{8}{3} X^3 + 16X \right) + \mu \ \mathrm{avec} \ \lambda \neq 0.$$

Réciproquement, soit $P = \lambda \left(\frac{1}{5} X^5 - \frac{8}{3} X^3 + 16 X \right) + \mu \text{ avec } \lambda \neq 0.$

$$\begin{split} \text{P solution} &\Leftrightarrow \text{P} + 10 \text{ divisible par } (X+2)^3 \text{ et P} - 10 \text{ est divisible par } (X-2)^3 \\ &\Leftrightarrow \text{P}(-2) + 10 = 0 = \text{P}'(-2) = \text{P}''(-2) \text{ et P}(2) + 10 = 0 = \text{P}'(2) = \text{P}''(2) \\ &\Leftrightarrow \text{P}(-2) = -10 \text{ et P}(2) = 10 \\ &\Leftrightarrow \left\{ \begin{array}{l} \lambda \left(-\frac{32}{5} + \frac{64}{3} - 32 \right) + \mu = -10 \\ \lambda \left(\frac{32}{5} - \frac{64}{3} + 32 \right) + \mu = 10 \end{array} \right. \\ &\Leftrightarrow \mu = 0 \text{ et } \lambda \left(\frac{32}{5} - \frac{64}{3} + 32 \right) = 10 \\ &\Leftrightarrow \mu = 0 \text{ et } \lambda = \frac{75}{128} \end{split}$$

On trouve un et un seul polynôme solution à savoir $P=\frac{75}{128}\left(\frac{1}{5}X^5-\frac{8}{3}X^3+16X\right)=\frac{15}{128}X^5-\frac{25}{16}X^3+\frac{75}{8}X.$

Exercice nº 14

Les polynômes de degré inférieur ou égal à 0 solutions sont 0 et 1 car $\lambda = \lambda \times \lambda \Leftrightarrow \lambda \in \{0,1\}$.

Soit P un polynôme de degré supérieur ou égal à 1 tel que $P(X^2) = P(X)P(X+1)$.

Soit α une racine de P dans \mathbb{C} . Alors, α^2 , α^4 , α^8 ..., sont encore racines de P. Mais, P étant non nul, P ne doit admettre qu'un nombre fini de racines. La suite $(\alpha^{(2^n)})_{n\in\mathbb{N}}$ ne doit donc prendre qu'un nombre fini de valeurs ce qui impose $\alpha=0$ ou $|\alpha|=1$ car si $|\alpha|\in]0,1[\cap]1,+\infty[$, la suite $(|\alpha^{(2^n)}|)$ est strictement monotone et en particulier les $\alpha^{(2^n)}$ sont deux à deux distincts.

De même, si α est racine de P alors $(\alpha-1)^2$ l'est encore mais aussi $(\alpha-1)^4$, $(\alpha-1)^8$..., ce qui impose $\alpha=1$ ou $|\alpha-1|=1$. En résumé,

$$\begin{aligned} (\alpha \ \mathrm{racine} \ \mathrm{de} \ P \ \mathrm{dans} \ \mathbb{C}) &\Rightarrow ((\alpha = 0 \ \mathrm{ou} \ |\alpha| = 1) \ \mathrm{et} \ (\alpha = 1 \ \mathrm{ou} \ |\alpha - 1| = 1)) \\ &\Rightarrow (\alpha = 0 \ \mathrm{ou} \ \alpha = 1 \ \mathrm{ou} \ |\alpha| = |\alpha - 1| = 1). \end{aligned}$$

 $\mathrm{Maintenant}, \ |\alpha| = |\alpha - 1| = 1 \Leftrightarrow |\alpha| = 1 \ \mathrm{et} \ |\alpha| = |\alpha - 1| \Leftrightarrow \alpha \in \mathscr{C}((0,0),1) \cap \mathrm{med}[(0,0),(1,0)] = \{-j,-j^2\}.$

Donc, si $P \in \mathbb{R}[X]$ est solution, il existe K, α , β , γ , K complexe non nul et α , β et γ entiers naturels tels que

$$P = KX^{\alpha}(X-1)^{\beta}(X+j)^{\gamma}(X+j^2)^{\gamma} = KX^{\alpha}(X-1)^{\beta}(X^2-X+1)^{\gamma}$$

 $(-j \text{ et } -j^2 \text{ devant avoir même ordre de multiplicité puisque } P \text{ est à coefficients réels}).$

Réciproquement, si $P = KX^{\alpha}(X-1)^{\beta}(X^2-X+1)^{\gamma}$.

$$\begin{split} P(X^2) &= KX^{2\alpha}(X^2-1)^{\beta}(X^4-X^2+1)^{\gamma} = KX^{2\alpha}(X^2-1)^{\beta}(X^4+2X^2+1-3X^2)^{\gamma} \\ &= KX^{2\alpha}(X-1)^{\beta}(X+1)^{\beta}(X^2-\sqrt{3}X+1)^{\gamma}(X^2+\sqrt{3}X+1)^{\gamma}, \end{split}$$

et

$$\begin{split} P(X)P(X+1) &= KX^{\alpha}(X-1)^{\beta}(X^2-X+1)^{\gamma}K(X+1)^{\alpha}X^{\beta}(X^2+X+1)^{\gamma} \\ &= K^2X^{\alpha+\beta}(X-1)^{\beta}(X+1)^{\alpha}(X^2-X+1)^{\gamma}(X^2+X+1)^{\gamma}. \end{split}$$

Par unicité de la décomposition en produit de facteurs irréductibles d'un polynôme non nul, P est solution si et seulement si P=0 ou K=1 et $\alpha=\beta$ et $\gamma=0$.

Les polynômes solutions sont 0 et les $(X^2-X)^{\alpha}$ où α est un entier naturel quelconque.

Exercice nº 15

a est solution du problème si et seulement si $X^5-209X+a$ est divisible par un polynôme de la forme $X^2+\alpha X+1$. La division euclidienne de $X^5-209X+a$ par $X^2+\alpha X+1$ s'écrit

$$X^{5} - 209X + \alpha = (X^{2} + \alpha X + 1)(X^{3} - \alpha X^{2} + (\alpha^{2} - 1)X - (\alpha^{3} - 2\alpha)) + (\alpha^{4} - 3\alpha^{2} - 208)X + \alpha + (\alpha^{3} - 2\alpha).$$

http://www.maths-france.fr

 $\begin{array}{l} \mathrm{Donc} \ \mathrm{a} \ \mathrm{est} \ \mathrm{solution} \ \Leftrightarrow \exists \alpha \in \mathbb{C} / \ \left\{ \begin{array}{l} \alpha^4 - 3\alpha^2 - 208 = 0 \\ \alpha = -\alpha^3 + 2\alpha \end{array} \right. \ \mathrm{Mais}, \\ \alpha^4 - 3\alpha^2 - 208 = 0 \ \Leftrightarrow \ \alpha^2 \in \{-13, 16\} \ \Leftrightarrow \ \alpha \in \left\{-4, 4, i\sqrt{13}, -i\sqrt{13}\right\} \end{array}$

et la deuxième équation fournit $a \in \{56, -56, 15i\sqrt{13}, -15i\sqrt{13}\}$.

Exercice nº 16

On note que $P(1) = 1 \neq 0$ et donc que l'expression proposée a bien un sens.

$$\sum_{k=1}^{5} \frac{a_k + 2}{a_k - 1} = \sum_{k=1}^{5} \left(1 + \frac{3}{a_k - 1} \right) = 5 - 3 \sum_{k=1}^{5} \frac{1}{1 - a_k} = 5 - 3 \frac{P'(1)}{P(1)} = 5 - 3 \times \frac{12}{1} = -31.$$

Exercice nº 17

Notons (S) le système proposé.

$$(S) \Leftrightarrow \begin{cases} x+y+z=1\\ \frac{xy+xz+yz}{xyz}=1 \end{cases} \Leftrightarrow \sigma_1=1, \ \sigma_2=\sigma_3=-4\\ \Leftrightarrow x, \ y \ \text{et } z \ \text{sont les trois solutions de l'équation} \ X^3-X^2-4X+4=0\\ \Leftrightarrow x, \ y \ \text{et } z \ \text{sont les trois solutions de l'équation} \ (X-1)(X-2)(X+2)=0\\ \Leftrightarrow (x,y,z) \in \{(1,2,-2),(1,-2,2),(2,1,-2),(2,-2,1),(-2,1,2),(-2,2,1)\} \end{cases}$$

Exercice nº 18

Le polynôme nul est solution. Un polynôme non nul de degré inférieur ou égal à 1 ne convient pas. Soit P un polynôme non nul solution de degré $n \ge 2$. Alors n = n - 1 + n - 2 et donc n = 3. Posons $P = aX^3 + bX^2 + cX + d$ avec $a \ne 0$.

$$\begin{split} P(2X) &= P'(X)P''(X) \Leftrightarrow 8\alpha X^3 + 4bX^2 + 2cX + d = (3\alpha X^2 + 2bX + c)(6\alpha X + 2b) \\ &\Leftrightarrow (18\alpha^2 - 8\alpha)X^3 + (18\alpha b - 4b)X^2 + (4b^2 + 6\alpha c - 2c)X + 2bc - d = 0 \\ &\Leftrightarrow 18\alpha^2 - 8\alpha = 18\alpha b - 4b = 4b^2 + 6\alpha c - 2c = 2bc - d = 0 \\ &\Leftrightarrow \alpha = \frac{4}{9} \mathrm{\ et\ } b = c = d = 0 \mathrm{\ (car\ } \alpha \neq 0). \end{split}$$

Les polynômes solutions sont 0 et $\frac{4}{9}X^3$.

Exercice nº 19

1) Puisque $a_0 \neq 0$, 0 n'est pas racine de P.

Soient p un entier relatif non nul et q un entier naturel non nul tels que $\mathrm{PGCD}(p,q)=1$ puis $r=\frac{p}{q}$.

$$\begin{split} P(r) &= 0 \Rightarrow a_n \frac{p^n}{q^n} + a_{n-1} \frac{p^{n-1}}{q^{n-1}} + \ldots + a_1 \frac{p}{q} + a_0 = 0 \Rightarrow a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} + a_0 q^n = 0 \\ &\Rightarrow \left\{ \begin{array}{l} a_n p^n = q \left(-a_{n-1} p^{n-1} - \ldots - a_1 p q^{n-2} - a_0 q^{n-1} \right) \\ a_0 q^n = p \left(-a_n p^{n-1} - a_{n-1} p^{n-2} q - \ldots - a_1 q^{n-2} \right) \end{array} \right. \end{split}$$

La première égalité montre que q divise $a_n p^n$. Mais q est premier à p et donc q est premier à p^n . D'après le théorème de Gauss, q divise a_n .

De même, la deuxième égalité montre que p divise a_0 .

2) 0 n'est pas racine de P.

Soit $r = \frac{p}{q}$, $(p \in \mathbb{Z}^*, q \in \mathbb{N}^*, PGCD(p,q) = 1)$ une éventuelle racine racine rationnelle de P. Alors, p divise 4 et q divise 12 et donc, p est élément de $\{\pm 1, \pm 2, \pm 4\}$ et q est élément de $\{1, 2, 3, 4, 6, 12\}$ ou encore r est élément de $\{\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}\}$.

Réciproquement, on trouve P $\left(\frac{2}{3}\right) = P\left(\frac{1}{4}\right) = 0$. P est donc divisible par $12\left(X - \frac{2}{3}\right)\left(X - \frac{1}{4}\right) = (3X - 2)(4X - 1) = 12X^2 - 11X + 2.$

$${\rm Plus\ pr\'{e}cis\'{e}ment},\ P = \left(12X^2 - 11X + 2\right)\left(X^2 + X + 2\right) = (3X - 2)(4X - 1)\left(X - \frac{-1 + i\sqrt{7}}{2}\right)\left(X - \frac{-1 - i\sqrt{7}}{2}\right).$$

Exercice nº 20

Pour $n \ge 0$, posons $P_n = (X-1)^{2n} - X^{2n} + 2X - 1$. $P_n(0) = P_n(1) = P_n\left(\frac{1}{2}\right) = 0$. P_n admet 0, 1 et $\frac{1}{2}$ pour racines et est donc divisible par $X(X-1)(2X-1) = 2X^3 - 3X^2 + X$.

Si n = 0 ou n = 1, le quotient est nul. Si n = 2, le quotient vaut -2.

Soit $n \ge 3$. On met successivement 2X - 1 puis X - 1 puis X en facteur :

$$\begin{split} P_n &= \left((X-1)^2 \right)^n - \left(X^2 \right)^n + (2X-1) = \left((X-1)^2 - X^2 \right) \sum_{k=0}^{n-1} (X-1)^{2k} X^{2(n-1-k)} + (2X-1) \\ &= (2X-1) \left(-\sum_{k=0}^{n-1} (X-1)^{2k} X^{2(n-1-k)} + 1 \right) = (2X-1) \left(-\sum_{k=1}^{n-1} (X-1)^{2k} X^{2(n-1-k)} + 1 - X^{2n-2} \right) \\ &= (2X-1) \left(-(X-1) \sum_{k=1}^{n-1} (X-1)^{2k-1} X^{2(n-1-k)} - (X-1) \sum_{k=0}^{2n-1} X^k \right) \\ &= (2X-1)(X-1) \left(-\sum_{k=1}^{n-1} (X-1)^{2k-1} X^{2(n-1-k)} - \sum_{k=0}^{2n-1} X^k \right) \\ &= (2X-1)(X-1) \left(-\left(\sum_{k=1}^{n-2} (X-1)^{2k-1} X^{2(n-1-k)} \right) - \left(\sum_{k=1}^{2n-1} X^k \right) - 1 - (X-1)^{2n-3} \right) \\ &= (2X-1)(X-1) \left(-\sum_{k=1}^{n-2} (X-1)^{2k-1} X^{2(n-1-k)} - \sum_{k=1}^{2n-1} X^k - \sum_{k=1}^{2n-3} (-1)^{2n-3-k} \binom{2n-3}{k} X^k \right) \\ &= X(2X-1)(X-1) \left(-\sum_{k=1}^{n-2} (X-1)^{2k-1} X^{2n-2k-3} - \sum_{k=1}^{2n-1} X^{k-1} - \sum_{k=1}^{2n-3} (-1)^{2n-3-k} \binom{2n-3}{k} X^{k-1} \right). \end{split}$$

Exercice nº 21

1)

$$\begin{split} 1 &= (X + (1 - X))^{2n - 1} = \sum_{k = 0}^{2n - 1} \binom{2n - 1}{k} X^k (1 - X)^{2n - 1 - k} \\ &= \sum_{k = 0}^{n - 1} \binom{2n - 1}{k} X^k (1 - X)^{2n - 1 - k} + \sum_{k = n}^{2n - 1} \binom{2n - 1}{k} X^k (1 - X)^{2n - 1 - k} \\ &= (1 - X)^n \sum_{k = 0}^{n - 1} \binom{2n - 1}{k} X^k (1 - X)^{n - 1 - k} + X^n \sum_{k = n}^{2n - 1} \binom{2n - 1}{k} X^{k - n} (1 - X)^{2n - 1 - k} \end{split}$$

 $\begin{aligned} & \text{Soient } U = \sum_{k=n}^{2n-1} \binom{2n-1}{k} X^{k-n} (1-X)^{2n-1-k} \text{ et } V = \sum_{k=0}^{n-1} \binom{2n-1}{k} X^k (1-X)^{n-1-k}. \ U \text{ et } V \text{ sont des polynômes tels que } \\ & UX^n + V(1-X)^n = 1. \ \text{De plus, pour } n \leqslant k \leqslant 2n-1, \ \deg \left(X^{k-n} (1-X)^{2n-1-k}\right) = k-n+2n-1-k = n-1 < n \text{ et donc } \\ & \deg(U) < n \text{ et de même pour } 0 \leqslant k \leqslant n-1, \ \deg \left(X^k (1-X)^{n-1-k}\right) = k+n-1-k = n-1 < n \text{ et deg}(V) < n. \end{aligned}$

$$\begin{split} 1 &= (X + (1 - X))^{n + m - 1} = \sum_{k = 0}^{n + m - 1} \binom{n + m - 1}{k} X^k (1 - X)^{n + m - 1 - k} \\ &= \sum_{k = 0}^{n - 1} \binom{n + m - 1}{k} X^k (1 - X)^{n + m - 1 - k} + \sum_{k = n}^{n + m - 1} \binom{n + m - 1}{k} X^k (1 - X)^{n + m - 1 - k} \\ &= (1 - X)^m \sum_{k = 0}^{n - 1} \binom{n + m - 1}{k} X^k (1 - X)^{n - 1 - k} + X^n \sum_{k = n}^{n + m - 1} \binom{n + m - 1}{k} X^{k - n} (1 - X)^{n + m - 1 - k}. \end{split}$$

$$\begin{aligned} & \text{Soient } U = \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} X^{k-n} (1-X)^{n+m-1-k} \text{ et } V = \sum_{k=0}^{n-1} \binom{n+m-1}{k} X^k (1-X)^{n-1-k}. \ U \text{ et } V \text{ sont des polynômes} \\ & \text{tels que } UX^n + V(1-X)^m = 1. \ \text{De plus, pour } n \leqslant k \leqslant n+m-1, \ \deg \left(X^{k-n} (1-X)^{n+m-1-k}\right) = k-n+n+m-1-k = m-1 < m \text{ et donc } \deg(U) < m \text{ et de même pour } 0 \leqslant k \leqslant n-1, \ \deg \left(X^k (1-X)^{n-1-k}\right) = k+n-1-k = n-1 < n \text{ et } \deg(V) < n. \end{aligned}$$

Soit $n \ge 2$ le degré de P.

- 1) a) Si P admet n racines réelles simples, le théorème de ROLLE fournit au moins n-1 racines réelles deux à deux distinctes pour P'. Mais, puisque P' est de degré n-1, ce sont toutes les racines de P', nécessairement toutes réelles et simples.
- b) Le résultat tombe en défaut si les racines de P ne sont pas toutes réelles. Par exemple, $P = X^3 1 = (X-1)(X-j)(X-j^2)$ est à racines simples dans $\mathbb C$ mais $P' = 3X^2$ admet une racine double.
- 2) Séparons les racines simples et les racines multiples de P. Posons $P = (X a_1)...(X a_k)(X b_1)^{\alpha_1}...(X b_l)^{\alpha_l}$ où les a_i et les b_j sont k+l nombres réels deux à deux distincts et les α_j des entiers supérieurs ou égaux à 2 (éventuellement k=0 ou l=0 et dans ce cas le produit vide vaut conventionnellement 1).

P s'annule déjà en k+l nombres réels deux à deux distincts et le théorème de ROLLE fournit k+l-1 racines réelles deux à deux distinctes et distinctes des α_i et des b_j . D'autre part, les b_j sont racines d'ordre α_j de P et donc d'ordre α_j-1 de P'. On a donc trouvé un nombre de racines (comptées en nombre de fois égal à leur ordre de multiplicité) égal

$$\text{à } k+l-1+\sum_{j=1}^l(\alpha_j-1)=k+\left(\sum_{j=1}^l\alpha_j\right)-1=n-1 \text{ racines r\'eelles et c'est fini}.$$

Exercice nº 23

Pour k élément de $\{-3, -2, -1, 1, 2, 3\}$, posons $x_k = \sin\frac{k\pi}{7}$ (les x_k sont deux à deux opposés). Il faut calculer les coefficients du polynôme

$$\begin{split} P &= \left(X - \sin\frac{\pi}{7}\right) \left(X - \sin\frac{2\pi}{7}\right) \left(X - \sin\frac{3\pi}{7}\right) \left(X + \sin\frac{\pi}{7}\right) \left(X + \sin\frac{2\pi}{7}\right) \left(X + \sin\frac{3\pi}{7}\right) \\ &= \left(X^2 - \sin^2\frac{\pi}{7}\right) \left(X^2 - \sin^2\frac{2\pi}{7}\right) \left(X^2 - \sin^2\frac{3\pi}{7}\right) \\ &= \left(X^2 - \frac{1}{2}\left(1 - \cos\frac{2\pi}{7}\right)\right) \left(X^2 - \frac{1}{2}\left(1 - \cos\frac{4\pi}{7}\right)\right) \left(X^2 - \frac{1}{2}\left(1 - \cos\frac{6\pi}{7}\right)\right) \\ &= \frac{1}{8}Q\left(-2X^2 + 1\right) \end{split}$$

où
$$Q(Y) = \left(\cos\frac{2\pi}{7} - Y\right) \left(\cos\frac{4\pi}{7} - Y\right) \left(\cos\frac{8\pi}{7} - Y\right).$$

Posons $\omega = e^{2i\pi/7}$.

$$\begin{split} \cos\frac{2\pi}{7}\cos\frac{4\pi}{7}\cos\frac{6\pi}{7} &= \frac{1}{8}\left(\omega + \omega^{6}\right)\left(\omega^{2} + \omega^{5}\right)\left(\omega^{3} + \omega^{4}\right) = \frac{1}{8}\left(\omega^{6} + \omega^{7} + \omega^{9} + \omega^{10} + \omega^{11} + \omega^{12} + \omega^{14} + \omega^{15}\right) \\ &= \frac{1}{8}\left(\omega^{6} + 1 + \omega^{2} + \omega^{3} + \omega^{4} + \omega^{5} + 1 + \omega\right) = \frac{1}{8}. \end{split}$$

Puis,

$$\cos\frac{2\pi}{7}\cos\frac{4\pi}{7} + \cos\frac{2\pi}{7}\cos\frac{6\pi}{7} + \cos\frac{6\pi}{7}\cos\frac{4\pi}{7} = \frac{1}{4}\left(\left(\omega + \omega^{6}\right)\left(\omega^{2} + \omega^{5}\right) + \left(\omega + \omega^{6}\right)\left(\omega^{3} + \omega^{4}\right) + \left(\omega^{3} + \omega^{4}\right)\left(\omega^{2} + \omega^{5}\right)\right)$$

$$= \frac{1}{4}\left(2\omega + 2\omega^{2} + 2\omega^{3} + 2\omega^{4} + 2\omega^{5} + 2\omega^{6}\right) = \frac{-2}{4} = -\frac{1}{2}.$$

Enfin,

$$\begin{split} \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7} &= \frac{1}{2}\left(\omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6\right) = -\frac{1}{2} \end{split}$$
 Donc, $Q = \frac{1}{8} - \left(-\frac{1}{2}\right)Y + \left(-\frac{1}{2}\right)Y^2 - Y^3 = \frac{1}{8}\left(-8Y^3 - 4Y^2 + 4Y + 1\right) \text{ puis,} \\ P &= \frac{1}{64}\left(-8\left(-2X^2 + 1\right)^3 - 4\left(-2X^2 + 1\right)^2 + 4\left(-2X^2 + 1\right) + 1\right) = \frac{1}{64}\left(64X^6 - 112X^4 + 56X^2 - 7\right). \end{split}$

Une équation du 6ème degré dont les solutions sont les $\sin\frac{k\pi}{7}$, $k \in \{-3, -2, -1, 1, 2, 3\}$ est $64x^6 - 112x^4 + 56x^2 - 7 = 0$.

Maintenant, si $r = \frac{p}{q}$ (p entier relatif non nul, q entier naturel non nul, p et q premiers entre eux) est une racine rationnelle de cette équation, alors p divise -7 et q divise 64 et donc p est élément de $\{1, -1, 7, -7\}$ et q est élément de $\{1, 2, 4, 8, 16, 32, 64\}$. Réciproquement, on vérifie qu'aucun des rationnels r obtenu n'est racine de P et donc les racines de P sont irrationnelles.

Exercice nº 24

Si (x, y, z) est solution du système proposé noté (S), alors x, y et z sont deux à deux distincts. En effet, si par exemple x = y alors $7 = y^2 + yz + z^2 = x^2 + xz + z^2 = 13$ ce qui est impossible. Donc,

(S)
$$\Leftrightarrow$$

$$\begin{cases} y^3 - z^3 = 7(y - z) \\ z^3 - x^3 = 13(z - x) \\ x^3 - y^3 = 3(x - y) \end{cases}.$$

En additionnant les trois équations, on obtient -10x + 4y + 6z = 0 ou encore -5x + 2y + 3z = 0. Donc,

$$(S) \Leftrightarrow \begin{cases} y = \frac{1}{2}(5x - 3z) \\ \left(\frac{1}{2}(5x - 3z)\right)^{2} + \frac{1}{2}(5x - 3z)z + z^{2} = 7 \\ z^{2} + zx + x^{2} = 13 \\ x^{2} + \frac{1}{2}(5x - 3z)x + \left(\frac{1}{2}(5x - 3z)\right)^{2} = 3 \end{cases} \Leftrightarrow \begin{cases} y = \frac{1}{2}(5x - 3z) \\ 25x^{2} - 20xz + 7z^{2} = 28 \\ z^{2} + zx + x^{2} = 13 \\ 39x^{2} - 36xz + 9z^{2} = 12 \end{cases}$$
$$\Leftrightarrow \begin{cases} y = \frac{1}{2}(5x - 3z) \\ xz = 13 - x^{2} - z^{2} \\ 25x^{2} - 20(13 - x^{2} - z^{2}) + 7z^{2} = 28 \\ 13x^{2} - 12(13 - x^{2} - z^{2}) + 3z^{2} = 4 \end{cases} \Leftrightarrow \begin{cases} y = \frac{1}{2}(5x - 3z) \\ xz = 13 - x^{2} - z^{2} \\ 5x^{2} + 3z^{2} = 32 \end{cases}$$

Soit (S') le système formé des deux dernières équations. On note que x = 0 ne fournit pas de solution et donc

$$(S') \Leftrightarrow \begin{cases} z^2 = \frac{1}{3} (32 - 5x^2) \\ xz = 13 - x^2 - \frac{1}{3} (32 - 5x^2) \end{cases} \Leftrightarrow \begin{cases} z = \frac{2x^2 + 7}{3x} \\ \frac{(2x^2 + 7)^2}{9x^2} = \frac{1}{3} (32 - 5x^2) \end{cases}$$

La deuxième équation s'écrit $(2x^2+7)^2=3x^2\left(32-5x^2\right)$ puis $19x^4-68x^2+49=0$ puis $x^2=\frac{34\pm15}{19}$ D'où les solutions x=1 ou $x=\sqrt{\frac{49}{19}}$ ou $x=-\sqrt{\frac{49}{19}}$. Les quatre triplets solutions du système : $(1,-2,3), (-1,2,-3), \left(\frac{7}{\sqrt{19}},\frac{1}{\sqrt{19}},\frac{11}{\sqrt{19}}\right)$ et $\left(-\frac{7}{\sqrt{19}},-\frac{11}{\sqrt{19}},-\frac{11}{\sqrt{19}}\right)$.

Posons $P = X^4 - 4X^3 - 36X^2 + \lambda X + \mu$.

$$\begin{split} (\lambda,\mu) \text{ solution} &\Leftrightarrow \exists (\alpha,r) \in \mathbb{C}^2 / \text{ les racines de P soient } \alpha, \alpha+r, \alpha+2r, \alpha+3r \\ &\Leftrightarrow \exists (\alpha,r) \in \mathbb{C}^2 / \begin{cases} \sigma_1 = 4 \\ \sigma_2 = -36 \\ \sigma_3 = -\lambda \\ \sigma_4 = \mu \end{cases} \\ &\Leftrightarrow \exists (\alpha,r) \in \mathbb{C}^2 / \begin{cases} 4\alpha + 6r = 4 \\ \alpha(3\alpha + 6r) + (\alpha+r)(2\alpha+5r) + (\alpha+2r)(\alpha+3r) = -36 \\ \sigma_3 = -\lambda \\ \sigma_4 = \mu \end{cases} \\ &\Leftrightarrow \exists (\alpha,r) \in \mathbb{C}^2 / \begin{cases} 2\alpha + 3r = 2 \\ 6\alpha^2 + 18r\alpha + 11r^2 = -36 \\ \sigma_3 = -\lambda \\ \sigma_4 = \mu \end{cases} \\ &\Leftrightarrow \exists (\alpha,r) \in \mathbb{C}^2 / \begin{cases} \alpha = 1 - \frac{3}{2}r \\ 6\left(1 - \frac{3}{2}r\right)^2 + 18\left(1 - \frac{3}{2}r\right)r + 11r^2 = -36 \\ \sigma_3 = -\lambda \\ \sigma_4 = \mu \end{cases} \\ &\Leftrightarrow \exists (\alpha,r) \in \mathbb{C}^2 / \begin{cases} -\frac{5}{2}r^2 + 42 = 0 \\ \alpha = 1 - \frac{3}{2}r \\ \sigma_3 = -\lambda \\ \sigma_4 = \mu \end{cases} \end{split}$$

D'où la solution (les deux valeurs opposées de r fournissent évidemment la même progression arithmétique) $r=2\sqrt{\frac{21}{5}}$ puis $\alpha=1-3\sqrt{\frac{21}{5}}$ puis les racines $z_1=1-3\sqrt{\frac{21}{5}}$, $z_2=1-\sqrt{\frac{21}{5}}$, $z_3=1+\sqrt{\frac{21}{5}}$ et $z_4=1+3\sqrt{\frac{21}{5}}$, obtenues pour

$$\mu = z_1 z_2 z_3 z_4 = \left(1 - 3\sqrt{\frac{21}{5}}\right) \left(1 - \sqrt{\frac{21}{5}}\right) \left(1 + \sqrt{\frac{21}{5}}\right) \left(1 + 3\sqrt{\frac{21}{5}}\right) = \left(1 - 9 \times \frac{21}{5}\right) \left(1 - \frac{21}{5}\right) = \frac{2944}{25},$$

et

$$\begin{split} \lambda &= \left(1 - 3\sqrt{\frac{21}{5}}\right) \left(1 - \frac{21}{5}\right) + \left(1 - 9 \times \frac{21}{5}\right) \left(1 - \sqrt{\frac{21}{5}}\right) + \left(1 - 9 \times \frac{21}{5}\right) \left(1 + \sqrt{\frac{21}{5}}\right) + \left(1 - \frac{21}{5}\right) \left(1 + 3\sqrt{\frac{21}{5}}\right) \\ &= 2\left(1 - \frac{21}{5}\right) + 2\left(1 - 9 \times \frac{21}{5}\right) = 2\left(2 - 10\frac{21}{5}\right) = -80 \end{split}$$

Exercice nº 26

L'équation proposée admet deux solutions inverses l'une de l'autre si et seulement si il existe deux complexes $\mathfrak a$ et $\mathfrak b$ tels que

$$X^4 - 21X + 8 = (X^2 + aX + 1)(X^2 + bX + 8) = X^4 + (a + b)X^3 + (9 + ab)X^2 + (8a + b)X + 8 (*)$$
 (*) \Leftrightarrow b = -a et ab = -9 et 8a + b = -21 \Leftrightarrow a = -3 et b = 3. Ainsi,

$$X^4 - 21X + 8 = \left(X^2 - 3X + 1\right)\left(X^2 + 3X + 8\right) = \left(X - \frac{3 + \sqrt{5}}{2}\right)\left(X - \frac{3 - \sqrt{5}}{2}\right)\left(X - \frac{-3 + i\sqrt{23}}{2}\right)\left(X - \frac{-3 - i\sqrt{23}}{2}\right).$$

Pour $n \in \mathbb{N}$, posons $S_n = x_1^n + x_2^n + x_3^n$. On veut calculer S_4 .

Pour $i \in \{1,2,3\}$, on a $x_i^3 + 2x_i - 1 = 0$ et donc $x_i^4 + 2x_i^2 - x_i = 0$. En additionnant ces trois égalités, on obtient $S_4 + 2S_2 - S_1 = 0$ et donc

$$S_4 = -2S_2 + S_1 = -2\left((x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)\right) + (x_1 + x_2 + x_3)$$

$$= -2\left(\sigma_1^2 - 2\sigma_2\right) + \sigma_1 = -2(-2 \times 2) = 8.$$

$$x_1^4 + x_2^4 + x_3^4 = 8.$$

Exercice nº 28

Soit P un polynôme à coefficients complexes de degré 4. On suppose P unitaire sans perte de généralité. On note z_1 , z_2 , z_3 et z_4 les racines de P dans \mathbb{C} .

Si z_1 , z_2 , z_3 et z_4 forment un parallélogramme, notons α le centre de ce parallélogramme. Les racines de P s'écrivent alors z_1 , z_2 , $z_\alpha - z_1$, $z_\alpha - z_2$ et si $Q = P(X + \alpha)$ alors $Q(-\alpha + z_1) = Q(\alpha - z_1) = Q(-\alpha + z_2) = Q(\alpha - z_2) = 0$. Les racines du polynôme Q sont deux à deux opposées, ce qui équivaut à dire que le polynôme Q est bicarré ou encore de la forme $X^4 + \alpha X^2 + \beta$ ou enfin que

$$P = (X - \alpha)^4 + \alpha(X - \alpha)^2 + \beta.$$

Mais alors α est racine de $P' = 4(X - \alpha)^3 + 2\alpha(X - \alpha)$ et de $P^{(3)} = 24(X - \alpha)$.

Réciproquement, si P' et P⁽³⁾ ont une racine commune α . P⁽³⁾ est de degré 1 et de coefficient dominant 24 et donc P⁽³⁾ = 24(X- α) puis en intégrant P" = 12(X- α)² + λ puis P' = 4(X- α)³ + λ (X- α) + μ . La condition α est racine de P' fournit μ = 0 et donc P = (X- α)⁴ + α (X- α)² + β . Donc, le polynôme Q = P(X+ α) est bicarré et ses racines sont deux à deux opposées et donc de la forme Z₁ = α -z₁, Z₂ = z1- α , Z₃ = α -z₂, Z₄ = z₂- α et on a bien Z₁-Z₃ = Z₄-Z₂.

Exercice nº 29

Soit
$$P = \prod_{k=0}^{n-1} (X - \omega_k) = X^n - 1$$
 (où $\omega_k = e^{2ik\pi/n}$)

1)
$$\prod_{k=0}^{n-1} \left(1 + \frac{2}{2 - \omega_k} \right) = \frac{\prod_{k=0}^{n-1} (4 - \omega_k)}{\prod_{k=0}^{n-1} (2 - \omega_k)} = \frac{P(4)}{P(2)} = \frac{4^n - 1}{2^n - 1} = 2^n + 1.$$

$$\forall n \in \mathbb{N}^*, \ \prod_{k=0}^{n-1} \left(1 + \frac{2}{2 - \omega_k}\right) = 2^n + 1.$$

2)

$$\begin{split} \prod_{k=0}^{n-1} \left(\omega_k^2 - 2\omega_k \cos \alpha + 1 \right) &= \prod_{k=0}^{n-1} \left(e^{i\alpha} - \omega_k \right) \left(e^{-i\alpha} - \omega_k \right) = P(e^{i\alpha}) P(e^{-i\alpha}) = (e^{in\alpha} - 1)(e^{-in\alpha} - 1) \\ &= 2 - e^{in\alpha} - e^{-in\alpha} = 2(1 - \cos n\alpha). \end{split}$$

$$\forall n \in \mathbb{N}^*, \, \forall \alpha \in \mathbb{R}, \, \prod_{k=0}^{n-1} \left(\omega_k^2 - 2\omega_k \cos \alpha + 1\right) = 2(1-\cos n\alpha).$$