Mágneses erőtér

Köráram mágneses tere, mágneses dipólus és monopólus, Maxwell II. egyenlete, Ampère-törvény, Stokes-tétel

Mágneses dipólus

Mágneses dipólus

 (a) Elektromos dipólus. A középpontban az elektromos erővonal az elektromos dipólus-vektorral ellentétes irányú.

(b) Köráram, mint mágneses dipólus. A középpontban a mágneses erővonal a mágneses dipólusvektorral azonos irányú.

Mágneses dipólus

Mágneses monopólus

A mágneses erővonalak mindig zárt hurkot alkotnak!

Positive charge

Negative charge

MoEDAL (Monopole and Exotics Detector at the LHC)

Mágneses monopólus

A mágneses erővonalak mindig zárt hurkot alkotnak

$$abla \cdot {f B} = 0$$
 vagy ${
m div} {f B} = 0$

Maxwell II. egyenlete

$$\iint \mathbf{B} \, d\mathbf{A} = 0$$

$$abla \cdot {f B} = 0$$

Maxwell I. egyenlete:

$$\iint \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_0} \qquad \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

Ampère törvény

	Integrális alak	Differenciális alak
Maxwell I.	$ \iint \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_0} $	$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$
Maxwell II.	$\iint \mathbf{B} d\mathbf{A} = 0$	$ abla \cdot {f B} = 0$
Ampere-tv.	$\oint {f B} dl = \mu_0 I$	$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$

Elektromos áram mérése az űrplazmában 4 műhold mágneses mérései alapján

$$\mu_0 \cdot \mathbf{j_{avg}} = rot(\mathbf{B})$$

Egyenes vezető mágneses tere

Áramhurok mágneses tere

$$B = \frac{\mu_0 I}{2\pi R}$$

Szolenoid mágneses tere

$$B = N \frac{\mu_0 I}{2\pi R}$$

Toroid mágneses tere

Egyszerű elektromotor

Hangszóró

