Fondamenti di Elettronica per allievi INFORMATICI - AA 2004/2005

1º appello – 22 Febbraio 2005 – Parte 1

Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) ...

Esercizio 1. Si consideri il circuito raddrizzatore in Fig. 1.

- a) Ipotizzando C di valore nullo, rappresentare V_{out} in funzione del tempo su un grafico quotato (almeno due periodi; si assuma V_D =0.7V).
- b) Rappresentare la forma d'onda V_{out} assumendo una tensione di breakdown del diodo di V_{BD} =-9V. Qual è la minima V_{BD} per non mandare in breakdown il diodo?
- c) Sia V_{BD} =-40V e C=1 μ F. Rappresentare $V_{out}(t)$ e la corrente nella resistenza $I_R(t)$.
- d) Calcolare la massima corrente nel diodo.

Esercizio 2. Nel circuito di Fig. 2, il segnale di corrente è dato da I_{in} =1nA sin ω t.

- a) Studiare la polarizzazione del circuito ipotizzando l'interruttore aperto.
- b) Studiare la polarizzazione del circuito ipotizzando l'interruttore chiuso.
- c) Calcolare la funzione di trasferimento $V_{out,2}(s)/I_{in}(s)$ nelle condizioni del punto b).
- d) Rappresentare il modulo e la fase della funzione di trasferimento in un diagramma di Bode quotato.

 V_{in} =15Vsin ω t ω =10krad/s R=10k Ω

Fig. 2

$$\begin{split} &R_{1}{=}5k\Omega,\,R_{2}{=}3k\Omega,\,V_{DD}{=}4V\\ &V_{T}{=}0.5\,\,V,\,k{=}1mA/V^{2}\\ &R_{D}{=}R_{L1}{=}2\,k\Omega,\,R_{L2}{=}10\Omega\\ &C_{L}{=}1nF \end{split}$$

Esercizio 3. Si consideri il circuito inverter di Fig. 3.

- a) Tracciare le caratteristiche statiche $V_{\text{out}}(V_{\text{in}})$ e $I_{\text{out}}(V_{\text{in}})$ del circuito, quotandole.
- b) L'inverter pilota una porta con una capacità di 25fF. Calcolare il tempo di commutazione (al 90% della escursione totale) del segnale V_{out} quando in ingresso viene applicato un gradino 0V → 5V.
- c) Calcolare la potenza media dissipata dalla porta, con una frequenza di commutazione di $0.1f_{\rm CK}$.
- d) Per una irregolarità degli stadi a monte, il circuito viene pilotato con una tensione V_{in} =1.8V, costante. Calcolare la potenza dissipata.

Fig. 3

 $\begin{aligned} &V_{DD}\!\!=\!\!5V \\ &V_{Tn}\!\!=\!\!|V_{Tp}|\!\!=\!\!1V \\ &k_n\!\!=\!\!k_p\!\!=\!\!1~mA/V^2 \\ &f_{CK}\!\!=\!\!100MHz \end{aligned}$

Fondamenti di Elettronica per allievi INFORMATICI - AA 2004/2005

1º appello – 22 Febbraio 2005 – Parte 2

Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) ...

Esercizio 1. Il circuito in Fig. 4 è usato come Sample & Hold per un ADC a 8bit, caratterizzato da una dinamica di ingresso 0-5 V. Il segnale d'ingresso ha una dinamica 0-0.8V.

- a) Calcolare il valore di R₂ in modo che venga sfruttata tutta la dinamica dell'ADC per campionare e convertire il segnale di ingresso V_{in}.
- b) Si consideri la condizione $V_G=V_{GL}$. Determinare l'uscita V_{out1} a fronte di un gradino $0 \rightarrow 0.8V$ in ingresso.
- c) Calcolare il minimo SR del primo operazionale tale che V_{out1} nel punto precedente non sia limitata da SR.
- d) Calcolare l'errore di guadagno introdotto dal secondo operazionale, se esso ha un guadagno a anello aperto A_0 =60dB. Si esprima l'errore in unità LSB.
- e) Sia il tempo di hold T_H=200μs. Calcolare il minimo valore della capacità C tale che la diminuzione di V_{out2} per effetto della corrente di bias sia inferiore a LSB/2.
- f) Assumendo la capacità tra gate e drain del MOS C_{gd}=1.4pF e la capacità C=25nF, calcolare il massimo errore di iniezione di carica.
- g) Ipotizzando di disporre di un clock con frequenza f_{CK} =1MHz discutere con argomenti quantitativi quale ADC è in grado di convertire nel tempo di hold di 200 μ s. Si rappresenti lo schema interno del convertitore scelto.

Fig. 4

 $R_1=10K\Omega$, GBWP=1MHz, $V_{GL}=-5V$, $V_{GH}=10V$, $I_B=100nA$.

Esercizio 2. Si consideri il circuito in Fig. 5.

- a) Rappresentare la caratteristica (V_{in}-V_{outl}) del trigger, specificando le soglie di commutazione.
- b) Si applichi in ingresso un'onda sinusoidale $V_{in}(t)=2V\sin\omega t$, con $f=\omega/2\pi=1kHz$. Determinare l'andamento dell'uscita V_{out1} .
- c) Determinare l'uscita V_{out2} in risposta al segnale del punto b), assumendo V_D=0.7V per entrambi i diodi.
- d) La resistenza R_3 viene aumentata a $12k\Omega$. Si discuta l'effetto sull'andamento V_{out2} in risposta alla sinusoide del punto b).
- e) Tracciare l'andamento di V_{out2} a regime nelle condizioni del punto d).

 $R_1 = 10K\Omega, R_2 = 20K\Omega, R_3 = R_4 = 10k\Omega, V_{DD} = 5V, V_{SS} = -5V, C = 50nF$

Fig. 5

SOLVZIONI TEMA D'ESAME DI FONDAMENTI DI ELETTRONICA 22 FEBBRAID 2005 PARTE 1 Es.1 Vo =0.7 V= 1.256 Mg 1 = \frac{\omega}{27} = 1591 Hz => T = \frac{1}{f} = 628 \mus 0.7 V = 15 V. sinuto => to = 4.66 ps b) -9V = 15V simuty => t1 = 378 ps

Minima VBA =-15V

Es. 2
a)
$$V_{GS} = \frac{R_2}{R_4 + R_2} \cdot V_{\Delta \Delta} = 1.5V$$

I potes: r_{DS} sature

 $\Rightarrow I_{DS} = K (V_{4S} - V_7)^2 = 1 m_A$
 $\Rightarrow V_{DS} = V_{\Delta \Delta} - I_{DS} \cdot R_{\Delta} = 2V$
 $R_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow 170S$ sature

b) $V_{GS} = 1.5V$

I potes: $r_{DS} = K (V_{GS} - V_7)^2 = 1 m_A$
 $\Rightarrow I_{\Delta S} = K (V_{GS} - V_7)^2 = 1 m_A$
 $\Rightarrow V_{DS} = V_{DD} - I_{DS} \cdot R_{\Delta} | R_{L1} = 3V$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} | R_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{QS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{CS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{CS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{CS} - V_7 \Rightarrow r_{DS} = r_{\Delta} |$
 $r_{OIChe} \cdot V_{DS} > V_{$

Considerando una spersata:

1. primo tralto a corrente costante I (t1)

2. secondo tralto con scarica espanendile (t2)

$$t_1 = \frac{C\Delta V}{I} = \frac{25 f F \cdot (5V - 4V)}{16 mA} = 1.56 ps$$

te: 10%. VAS = 4Vee - t2/2 con T = Reg. C

Reg =
$$\frac{4V}{16mA} = 250 \Omega$$
 => $t = 6.25ps$
=> $t_2 = 12.9ps$
 $\frac{5V}{4V} = \frac{14.5ps}{t_1}$
0.5V => $t = t_1 + t_2 = 14.5ps$

$$\frac{E3.1}{a} = 1 + \frac{R_2}{R_1} = 0.8V \cdot \left(1 + \frac{R_2}{R_1}\right) = 5V$$

$$= R_2 = 52.5 \text{ K}\Omega$$

b) La risposta al gradimo sani a singolo polo a causa della fumisione di trasferimento dell' Opting [A(5)].

Gid = 1+ R2 = 6.25; Gloop = - R1 A(s)

Gop = - Georp Gid = A(s)

Gop = A(S)

God = 6.25

Log f

GBWP

GBND = f_p . Gid $\Rightarrow f_p = 160$ KHz $\Rightarrow z = \frac{1}{2\pi f_p} = \frac{1}{994} ms$

T = 994 MS > t

c) Minimo SR = 5V = 5.03 V/15

$$E = \frac{1}{1 - Gloop} = \frac{1}{1 + A_0} \approx \frac{1}{A_0} = 0.1\% \Rightarrow 5mV$$

$$Gloop = -A_0$$

$$LSB = \frac{5V}{2^S} = 19.5 mV$$

$$E = \frac{5mV}{19.5 mV} = 25.6\% LSB$$

$$E = \frac{5mV}{19.5 mV} = 25.6\% LSB$$

$$E = \frac{C \cdot AV}{T_H} = I_B \Rightarrow C = \frac{I_B \cdot T_H}{\frac{LSB}{2}} = 2.05 mF$$

1)
$$V_{injection} = \Delta V \cdot \frac{C_{gd}}{C_{gd} + C} = 839 \, \mu V = 4.3 \% \, LSB$$

$$15V$$

C) Il condensatore C viene Euricato e scaricato
a consente costante:

$$I = \frac{5V - 0.7V}{R_3} = 0.430 \text{ mA}$$

Pindenza:
$$\frac{dV}{dt} = \frac{I}{C} = 8600 \text{ V}$$

In un semiperiodo:
$$\Delta V = \frac{dV}{dt} \cdot \frac{7}{2} = 4.3V$$

Pendenza up:
$$\frac{dV}{dt}|_{up} = \frac{5V-0.7V}{C}$$

Pendenza down: $\frac{dV}{dt}|_{down} = \frac{5V-0.7V}{C} = 7166 \text{ Y}$

In scarica:
$$\Delta V = \frac{dV}{dt} |_{down} T_2 = 3.58 V$$

