Сводная таблица по математической статистике

Python для всех пунктов:

- 1. Двусторонний тест: $\mathbf{p\text{-}value} = 2 \cdot \min \left\{ \operatorname{r.cdf}(v_p), 1 \operatorname{r.cdf}(v_p) \right\}$, где \mathbf{r} распределение статистики, v_p значение расчётной статистики.
- 2. $\overline{X} = \text{np.mean}(x)$
- 3. $S_0 = \text{np.std}(x, ddof = 1), S_0^2 = \text{np.var}(x, ddof = 1)$

1. Одно распределение

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Гипотеза о матожидании	1. $X \sim N(\mu, \sigma^2)$ 2. σ^2 - известно	$\mu = \mu_0$	$\mu \neq \mu_0$	$z_p = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	Не отвергаем на уровне значимости α , если $1. \ z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ $2. \ \mu_0 \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ $3. \ \text{p-value} > \alpha$	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q = 1 - \alpha/2),$ 2. $p\text{-value} = 2 \cdot \left(1 - \text{norm.cdf}(\text{abs}(z_p))\right)$
Гипотеза о матожидании	1. $X \sim N(\mu, \sigma^2)$ 2. σ^2 - неизвестно	$\mu = \mu_0$	$\mu \neq \mu_0$	$t_p = t^{(n-1)} = \frac{\overline{X} - \mu_0}{S_0/\sqrt{n}} \sim T_{n-1}$	Не отвергаем на уровне значимости α , если $1. \ t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(n-1)}, t_{1-\frac{\alpha}{2}}^{(n-1)}\right),$ $2. \ \mu_0 \in \left(\overline{X} - t_{1-\frac{\alpha}{2}}^{(n-1)} \frac{S_0}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2}}^{(n-1)} \frac{S_0}{\sqrt{n}}\right)$ $3. \ \text{p-value} > \alpha$	1. $t_{1-\frac{\alpha}{2}}^{(n-1)} = \text{t.ppf}(df = n-1, q = 1-\alpha/2),$ 2. p-value = $2 \cdot \left(1 - \text{t.cdf}(\text{abs}(t_p), df = n-1)\right)$
Гипотеза о дисперсии	1. $X \sim N(\mu, \sigma^2)$ 2. μ - неизвестно	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$C_p = C^{(n-1)} = \frac{S_0^2(n-1)}{\sigma_0^2} \sim \chi_{n-1}^2$	Не отвергаем на уровне значимости α , если $1. \ C_p \in \left(C_{\frac{\alpha}{2}}^{(n-1)}, C_{1-\frac{\alpha}{2}}^{(n-1)}\right),$ $2. \ \sigma_0^2 \in \left(\frac{(n-1)S_0^2}{C_{1-\frac{\alpha}{2}}^{(n-1)}}, \frac{(n-1)S_0^2}{C_{\frac{\alpha}{2}}^{(n-1)}}\right)$ $3. \ \text{p-value} > \alpha$	1. $C_{\frac{\alpha}{2}}^{(n-1)}=\text{chi2.ppf}(df=n-1,q=\alpha/2),$ 2. $C_{1-\frac{\alpha}{2}}^{(n-1)}=\text{chi2.ppf}(df=n-1,q=1-\alpha/2),$ 3. p-value
Гипотеза о дисперсии	1. $X \sim N(\mu, \sigma^2)$ 2. μ - известно	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$C_p = C^{(n)} = \frac{\sum_{i=1}^n (x_i - \mu)^2}{\sigma_0^2} \sim \chi_n^2$	Не отвергаем на уровне значимости α , если $1. \ C_p \in \left(C_{\frac{\alpha}{2}}^{(n)}, C_{1-\frac{\alpha}{2}}^{(n)}\right),$ $2. \ \sigma_0^2 \in \left(\frac{\sum_{i=1}^n \left(x_i - \mu\right)^2}{C_{1-\frac{\alpha}{2}}^{(n-1)}}, \frac{\sum_{i=1}^n \left(x_i - \mu\right)^2}{C_{\frac{\alpha}{2}}^{(n-1)}}\right)$ $3. \ \text{p-value} > \alpha$	1. $C_{\frac{\alpha}{2}}^{(n-1)}=\text{chi2.ppf}(df=n-1,q=\alpha/2),$ 2. $C_{1-\frac{\alpha}{2}}^{(n-1)}=\text{chi2.ppf}(df=n-1,q=1-\alpha/2),$ 3. p-value
Асимптотическая гипотеза о матожидании	1. $X \sim \mathcal{F}$ 2. $D(x) = \sigma^2$ - известно 3. $n \to \infty \ (n \gg 0)$	$\mu = \mu_0$	$\mu \neq \mu_0$	$z_p = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \xrightarrow[n \to \infty]{d} N(0, 1)$	Не отвергаем на уровне значимости α , если 1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right)$, 2. $\mu_0 \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ 3. p-value $> \alpha$	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q = 1 - \alpha/2),$ 2. $p\text{-value} = 2 \cdot \left(1 - \text{norm.cdf}(\text{abs}(z_p))\right)$
Асимптотическая гипотеза о матожидании	1. $X \sim \mathcal{F}$ 2. $D(x) = \sigma^2$ - неизвестно 3. $n \to \infty \ (n \gg 0)$	$\mu = \mu_0$	$\mu \neq \mu_0$	$z_p = \frac{\overline{X} - \mu_0}{S_0 / \sqrt{n}} \xrightarrow[n \to \infty]{d} N(0, 1)$	Не отвергаем на уровне значимости α , если $1. \ z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ $2. \ \mu_0 \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{S_0}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{S_0}{\sqrt{n}}\right)$ $3. \ \text{p-value} > \alpha$	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q=1-\alpha/2),$ 2. $p\text{-value} = 2 \cdot \left(1 - \text{norm.cdf}(\text{abs}(z_p))\right)$
Bootstrap	1. $X \sim \mathcal{F}$ 2. n - небольшое	$\mu=\mu_0$ или $\sigma^2=\sigma_0^2$	$\mu eq \mu_0$ или $\sigma^2 eq \sigma_0^2$	Генерируем много выборок из данной одинаковой длины. Считаем для каждой них нужную статистику $\left(\overline{X_i}\right)$ или $\widehat{\sigma}_i^2$. Считаем квантили $q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}$ для выборки этих статистик.	$1. \ \mu_0 \left(\sigma_0^2 \right) \in \left(q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}} \right)$	 scipy.stats.bootstrap numpy.random.choice

2. Два распределения

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Гипотеза о разности маг	го-	$\mu_x - \mu_y = \mu$	$\mu_x - \mu_y \neq \mu_0$	$\Delta = \frac{X}{\Delta} - Y,$	Не отвергаем на уровне значимости α , если	См. аналогичное выше, p-value
жиданий связанных пар	1. $X \sim N(\mu_x, \sigma_x^2)$			$z_p = \frac{\Delta - \mu_0}{D(\overline{\Delta})} \sim N(0, 1),$	1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right)$,	
	2. $Y \sim N(\mu_y, \sigma_y^2)$			Статистика $\Delta = \frac{X - Y}{z_p},$ $z_p = \frac{\overline{\Delta} - \mu_0}{D(\overline{\Delta})} \sim N(0, 1),$ $z_p = \frac{\overline{X} - \overline{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2 + \sigma_y^2}{n}}} \sim N(0, 1)$	1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ 2. $\mu_0 \in \left(\overline{\Delta} - z_{1-\frac{\alpha}{2}}D(\overline{\Delta}), \overline{\Delta} + z_{1-\frac{\alpha}{2}}D(\overline{\Delta})\right)$	
	$3. \ n=n_x=n_y$			$oldsymbol{V} = n$	3. p-value $> \alpha$	
	4. σ_x^2, σ_y^2 — известно					
Гипотеза о разности ма	го-	$\mu_x - \mu_y = \mu$	$\mu_x - \mu_y \neq \mu_0$	$\Delta = X - Y,$ $t_p = \frac{\overline{\Delta} - \mu_0}{S_0(\Delta)/\sqrt{n}} \sim T_{n-1}$	Не отвергаем на уровне значимости α , если	См. аналогичное выше, p-value
жиданий связанных пар	1. $X \sim N(\mu_x, \sigma_x^2)$			$t_p = \frac{\Delta - \mu_0}{S_0(\Delta)/\sqrt{n}} \sim T_{n-1}$	1. $t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(n-1)}, t_{1-\frac{\alpha}{2}}^{(n-1)}\right)$,	
	2. $Y \sim N(\mu_y, \sigma_y^2)$				1. $t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(n-1)}, t_{1-\frac{\alpha}{2}}^{(n-1)}\right),$ 2. $\mu_0 \in \left(\overline{\Delta} \pm t_{1-\frac{\alpha}{2}}^{(n-1)} \frac{S_0(\Delta)}{\sqrt{n}}\right)$	
	$3. \ n = n_x = n_y$,	
	4. σ_x^2, σ_y^2 – неизвестно				3. p-value $> \alpha$	
Гипотеза о разности маг	го-	$\mu_x - \mu_y = \mu$	$\mu_x - \mu_y \neq \mu_0$	$z_p = \frac{\overline{X} - \overline{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \sim N(0, 1)$	Не отвергаем на уровне значимости α , если	См. аналогичное выше, p-value
жиданий	1. $X \sim N(\mu_x, \sigma_x^2)$			$\sqrt{rac{\sigma_x^2}{n_x} + rac{\sigma_y^2}{n_y}}$	1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right)$,	
	2. $Y \sim N(\mu_y, \sigma_y^2)$				1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ 2. $(\mu_x - \mu_y) \in \left(\overline{X} - \overline{Y} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}\right)$	
	$2. \ Y \sim N(\mu_y, \sigma_y^2)$ $3. \ \sigma_x^2, \sigma_y^2$ — известно				$2. (\mu_x - \mu_y) \in \left(\overline{X} - \overline{Y} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y}{n_y}}\right)$	
					3. p-value $> \alpha$	

1

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Гипотеза о разности мато жиданий	1. $X \sim N(\mu_x, \sigma^2)$ 2. $Y \sim N(\mu_y, \sigma^2)$ 3. $\sigma^2 = \sigma_x^2 = \sigma_y^2$ – неизвестно	$\mu_x - \mu_y = \mu_0$	$\mu_x - \mu_y \neq \mu_0$	$\widehat{\sigma}^{2} = \frac{S_{0}^{2}(X)(n_{x}-1) + S_{0}^{2}(Y)(n_{y}-1)}{n_{x} + n_{y} - 2}$ $t_{p} = \frac{\overline{X} - \overline{Y} - (\mu_{x} - \mu_{y})}{\widehat{\sigma}\sqrt{\frac{1}{n_{x}} + \frac{1}{n_{y}}}} \sim T_{n_{x}+n_{y}-2}$	Не отвергаем на уровне значимости α , если 1. $t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(n_x+n_y-2)}, t_{1-\frac{\alpha}{2}}^{(n_x+n_y-2)}\right)$, 2. $(\mu_x-\mu_y)\in\left(\overline{X}-\overline{Y}\pm t_{1-\frac{\alpha}{2}}^{(n_x+n_y-2)}\hat{\sigma}\right)$ 3. p-value $>\alpha$	1. $t_{1-\frac{\alpha}{2}}^{(n_x+n_y-2)} = \text{t.ppf}(q=1-\alpha/2, df=n_x+n_y-2),$ 2. p-value = $2 \cdot \left(1 - \text{t.cdf}(\text{abs}(t_p), df=n_x+n_y-2)\right),$ 3. scipy.stats.ttest_ind
Гипотеза о равенстве мато- жиданий. Тест Уэлча	1. $X \sim N(\mu_x, \sigma_x^2)$ 2. $Y \sim N(\mu_y, \sigma_y^2)$ 3. σ_x^2, σ_y^2 – неизвестно	$\mu_x - \mu_y = 0$	$\mu_x - \mu_y \neq 0$	$t_p = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\widehat{\sigma}_x^2}{n_x} + \frac{\widehat{\sigma}_y^2}{n_y}}} \sim T_{\widehat{d}}$ $\left(\frac{\widehat{\sigma}_x^2}{n_x} + \frac{\widehat{\sigma}_y^2}{n_y}\right)^2$ $\frac{\widehat{d}}{n_x^4} = \frac{\widehat{\sigma}_x^4}{n_x^2(n_x - 1)} + \frac{\widehat{\sigma}_y^4}{n_y^2(n_y - 1)}$	Не отвергаем на уровне значимости α , если $1. \ t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(\widehat{d})}, t_{1-\frac{\alpha}{2}}^{(\widehat{d})}\right),$ $2. \ 0 \in \left(\overline{X} - \overline{Y} \pm t_{1-\frac{\alpha}{2}}^{(\widehat{d})} \sqrt{\frac{\widehat{\sigma}_x^2}{n_x} + \frac{\widehat{\sigma}_y^2}{n_y}}\right)$ $3. \ \text{p-value} > \alpha$	1. $t_{1-\frac{\alpha}{2}} = \text{t.ppf}(q = 1 - \alpha/2, df = d),$ 2. p-value = $2 \cdot \left(1 - \text{t.cdf}(\text{abs}(t_p), df = d)\right)$ 3. scipy.stats.ttest_ind(equal_var=Flase)
Гипотеза об отношении дисперсий	1. $X \sim N(\mu_x, \sigma_x^2)$ 2. $Y \sim N(\mu_y, \sigma_y^2)$ 3. σ_x^2, σ_y^2 – неизвестно	$\frac{\sigma_x^2}{\sigma_y^2} = 1$	$\frac{\sigma_x^2}{\sigma_y^2} \neq 1$	$f_p = \frac{\widehat{\sigma_x^2}}{\widehat{\sigma_y^2}} \sim F_{n_x - 1, n_y - 1}$	Не отвергаем на уровне значимости α , если $1. \ f_p \in \left(f_{\frac{\alpha}{2}}^{(n_x-1,n_y-1)}, f_{1-\frac{\alpha}{2}}^{(n_x-1,n_y-1)}\right),$ $2. \ \text{p-value} > \alpha$	1. $f_{\frac{\alpha}{2}}^{(n_x-1,n_y-1)} = \text{f.ppf}(dfn = n_x - 1, dfd = n_y - 1, q = a/2),$ 2. $f_{1-\frac{\alpha}{2}}^{(n_x-1,n_y-1)} = \text{f.ppf}(dfn = n_x - 1, dfd = n_y - 1, q = 1 - a/2),$ 3. p-value

3. Критерии сравнения

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Критерий Пирсона (χ^2) о согласии	$1. \ X \sim \mathcal{F}_x$ $2. \ \mathcal{F}_0$ — дискретное.	$\mathcal{F}_x = \mathcal{F}_0$	$\mathcal{F}_x eq \mathcal{F}_0$	Для каждого значения a_i имеем частоту/количество (ν_i) в данной выборке и теоретическую вероятность p_i . $\rho = \sum_{i=1}^k \frac{(\nu_i - np_i)^2}{np_i} \xrightarrow[n \to \infty]{H_0} \chi_{k-1}^2$	Hе отвергаем на уровне значимости α , если 1. p-value $> \alpha$	1. $\text{p-value} = 2 \cdot \text{chi2.cdf}(\rho, df = n - 1)$
Критерий Колмогорова о согласии	1. $X \sim \mathcal{F}_x$ 2. \mathcal{F}_0 – непрерывное.	$\mathcal{F}_x = \mathcal{F}_0$	$\mathcal{F}_x eq \mathcal{F}_0$	$\widehat{F}_n(x)$ – эмпирическая функция распределения, $F_0(x)$ – функция распределения \mathcal{F}_0 . $D_n = \sup_x \left \widehat{F}_n(x) - F_0(x) \right ,$ $k_p = \sqrt{n} D_n \xrightarrow[n \to \infty]{d} \eta \sim \mathcal{K}(y)$ – функция распределения Колмогорова.	1 k < k.	 scipy.stats.ksone scipy.stats.ks_1samp scipy.stats.kstest
Критерий Колмогорова- Смирнова об однородности		$\mathcal{F}_x = \mathcal{F}_y$	$\mathcal{F}_x eq \mathcal{F}_y$	$\widehat{F}_{n_x}(x), \widehat{F}_{n_y}(x)$ — эмпирические функции распределения. $ks_p = \sqrt{\frac{n_x n_y}{n_x + n_y}} \sup_x \left \widehat{F}_{n_x}(x) - \widehat{F}_{n_y}(x) \right \ ks_p \xrightarrow[n_x,n_y \to \infty]{d} \eta \sim \mathcal{K}(y)$ — функция распределения Колмогорова.	Не отвергаем на уровне значимости α , если $1.\ ks_p \leq K_{1-\alpha},$ $2.\ \text{p-value} > \alpha$	 scipy.stats.ksone scipy.stats.ks_2samp
Критерий Пирсона (χ^2) о независимости	Объекты имеют пары из категорий (x_i, y_i) . Всего X имеет s категорий, Y имеет k категорий.			$ u_{ij}$ - частоты пары категорий $(a_i,b_j) \sim (X,Y)$. $n_{iullet} = \sum_{j=1}^k u_{ij}, \ n_{ullet} = \sum_{i=1}^s u_{ij}$ $\gamma = \sum_{i=1}^s \sum_{j=1}^k \frac{\left(u_{ij} - \frac{n_{iullet} n_{ullet}}{n}\right)^2}{\frac{n_{iullet} n_{ullet}}{n}} \sim \chi^2_{(s-1)(k-1)}$	Не отвергаем на уровне значимости α , если $1. \ \gamma \in (0, C_{1-\alpha}^{(s-1)(k-1)}),$ $2. \ \text{p-value} > \alpha$	 scipy.stats.contingency.crosstab pandas.crosstab scipy.stats.chi2_contingency (correction = False)
Коэффициент корреляции Спирмена	Объекты имеют пары из порядковых (ранговых) переменных (r_i, k_i) .	X, Y - незави- симые		$S = \sum_{i=1}^{n} (r_i - k_i)^2 \in \left[0, \frac{n^3 - n}{3}\right]$ $\rho = 1 - \frac{6S}{n^3 - n} \in [-1, 1]$ $\rho_p = \sqrt{n - 1}\rho \xrightarrow[H_0]{n \to \infty} N(0, 1)$	Не отвергаем на уровне значимости α , если $1. \ \rho_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ $2. \ \text{p-value} > \alpha$	 scipy.stats.spearmanr p-value

Красный текст – ссылка в этом документе. Синий текст – ссылка на страницу в интернете.