Théorie des langages rationnels : THLR CM 6

Uli Fahrenberg

EPITA Rennes

S3 2022

Aperçu

Programme du cours

- Mots, langages
- Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation

Dernièrement : Automates finis

Définition

Un automate fini (à transitions spontanées) : $A = (\Sigma, Q, Q_0, F, \delta)$:

- ullet Σ : ensemble fini de symboles, Q : ensemble fini d'états
- $Q_0 \subseteq Q$: états initiaux, $F \subseteq Q$: états finaux
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: relation de transition
- on note $q \xrightarrow{a} r$ si $(q, a, r) \in \delta$

Définition (Sémantique de A)

- Un calcul dans $A: \sigma = q_1 \stackrel{a_1}{\longrightarrow} q_2 \stackrel{a_2}{\longrightarrow} \cdots \stackrel{a_{n-1}}{\longrightarrow} q_n$
- L'étiquette d'un calcul : $\lambda(\sigma) = a_1 a_2 \dots a_{n-1} \in \Sigma^*$
- Un calcul réussi : $q_1 \in Q_0$ et $q_n \in F$
- Le langage reconnu par A :

$$L(A) = {\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A}$$

Variants

Un automate fini (à transitions spontanées) : $A = (\Sigma, Q, q_0, F, \delta)$:

- Σ , Q ensembles finis, $q_0 \in Q$, $F \subseteq Q$,
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: la relation de transition

Définition

- A est sans transitions spontanées si $\delta \subseteq Q \times \Sigma \times Q$.
- A est complet si $\forall q \in Q : \forall a \in \Sigma : |\{r \in Q \mid (q, a, r) \in \delta\}| \ge 1$.
- A est déterministe si $\delta \subseteq Q \times \Sigma \times Q$, $|Q_0| = 1$ et $\forall q \in Q : \forall a \in \Sigma : |\{r \in Q \mid (q, a, r) \in \delta\} \leq 1$.

On les a vu dans l'ordre

- automates finis déterministes complets
- automates finis déterministes
- automates finis (sans transitions spontanées)
- automates finis (à transitions spontanées)

Variants

Un automate fini (à transitions spontanées) : $A = (\Sigma, Q, q_0, F, \delta)$:

- Σ , Q ensembles finis, $q_0 \in Q$, $F \subseteq Q$,
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: la relation de transition

Définition

- A est sans transitions spontanées si $\delta \subseteq Q \times \Sigma \times Q$.
- A est complet si $\forall q \in Q : \forall a \in \Sigma : |\{r \in Q \mid (q, a, r) \in \delta\}| \ge 1$.
- A est déterministe si $\delta \subseteq Q \times \Sigma \times Q$, $|Q_0| = 1$ et $\forall q \in Q : \forall a \in \Sigma : |\{r \in Q \mid (q, a, r) \in \delta\} \leq 1$.

On les a vu dans l'ordre

automates finis déterministes complets

DFA

- automates finis déterministes
- automates finis (sans transitions spontanées)

NFA

automates finis (à transitions spontanées)

 ε -NFA

Dernièrement : Langages reconnaissables

Définition

Un langage L est reconnaissable si \exists un automate fini A t.q. L = L(A).

syntaxe

sémantique

langages reconnaissables

|| ✓
langages reconnaissables
|| ?
langages reconnaissables
|| ?
langages reconnaissables

langages rationnelles

aut. finis à trans. spontanées

expressions rationnelles

5 minutes de réflexion

Vrai ou faux?

- $oldsymbol{0}$ $acc \in L(A)$
- \bigcirc acb $\in L(A)$
- \bigcirc abb $\in L(A)$

5 minutes de réflexion

Vrai ou faux?

$$\bigcirc$$
 acc $\in L(A)$

$$acb \in L(A)$$

$$oldsymbol{a}$$
 $abc \in L(A)$

$$\bigcirc$$
 abb $\in L(A)$

Des expressions rationnelles aux automates

Automates finis aux transitions spontanées

Définition (4.11)

Un automate fini à transitions spontanées est une structure $(\Sigma, Q, Q_0, F, \delta)$ où

- \bullet Σ est un ensemble fini de symboles,
- Q est un ensemble fini d'états.
- $Q_0 \subset Q$ est l'ensemble des états initiaux,
- $F \subseteq Q$ est l'ensemble des états finaux, et
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$ est la relation de transition.
- peut changer de l'état spontanément sans lire un symbole

Comment ça marche

Un automate fini à transitions spontanées : $A = (\Sigma, Q, Q_0, F, \delta)$:

- Σ , Q ensembles finis, $Q_0, F \subseteq Q$,
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: la relation de transition

On note $q \stackrel{a}{\longrightarrow} r$ si $(q, a, r) \in \delta$. \iff donc a peut être ε

Définition

- Un calcul dans A est une séquence $\sigma = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} q_n$.
- L'étiquette d'un calcul comme ci-dessus est

$$\lambda(\sigma) = a_1 a_2 \dots a_{n-1} \in \Sigma^*.$$

- Un calcul comme ci-dessus est réussi si $q_1 \in Q_0$ et $q_n \in F$.
- Le langage reconnu par A est $L(A) = \{\lambda(\sigma) \mid \sigma \text{ calcul réussi dans } A\}.$
- note $a \varepsilon b \varepsilon a \varepsilon b = abab$, par exemple

Théorème de Kleene

Théorème (Kleene)

Un langage $L \subseteq \Sigma^*$ est rationnel ssi il est reconnaissable.

syntaxe

aut. finis dét. complets

 \cap

aut, finis déterministes

 \cap

automates finis

aut. finis à trans. spontanées

expressions rationnelles

sémantique

langages reconnaissables

|| 🗸

langages reconnaissables

II ?

langages reconnaissables

|| !

langages reconnaissables

langages rationnelles

Fin à la spontanéité

Lemme

Pour tout automate fini à transitions spontanées A il existe un automate fini A' tel que L(A') = L(A).

• on note $q \xrightarrow{\varepsilon} r$ si il existe une suite $q \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} r$ de transitions spontanées

- Soit $A = (\Sigma, Q, Q_0, F, \delta)$.
- **②** On construit $A' = (\Sigma, Q', Q'_0, F', \delta')$ comme suit :
- $Q' = Q, Q'_0 = Q_0,$

- **o** Maintenant il faut démontrer que, en fait, L(A') = L(A).

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e = \emptyset$, alors soit $A(e) = \longrightarrow \bigcirc$ (sans transitions).

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- ② On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- lacktriangledown Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).
- **5** Si $e = \varepsilon$, alors soit $A(e) = \varepsilon$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ \bigcirc (sans transitions).

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ \bigcirc (sans transitions).
- **o** Si $e = a \in \Sigma$, alors soit A(e) =

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

- Soit e une expression rationnelle.
- On construit, par induction structurelle, un automate fini A(e) à transitions spontanées tel que L(A(e)) = L(e).
- Nos automates vont être pures, avec un unique état initial sans transitions entrantes et symétriquement pour l'état final.
- \bigcirc Si $e=\varnothing$, alors soit $A(e)=\longrightarrow\bigcirc$ (sans transitions).

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

O Si $e = e_1 e_2$, alors prenons $A(e_1) = \longrightarrow i_1 \longrightarrow Q_1 \longrightarrow f_1 \longrightarrow et$ $A(e_2) = \longrightarrow i_2 \longrightarrow Q_2 \longrightarrow f_2 \longrightarrow et$ construisons $A(e) = \longrightarrow i_1 \longrightarrow Q_1 \longrightarrow f_2 \longrightarrow$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

$$\text{ Si } e = e_1 + e_2, \text{ alors prenons } A(e_1) = \longrightarrow \overbrace{i_1} \longrightarrow \overbrace{Q_1} \longrightarrow \overbrace{f_1} \longrightarrow \\ \text{ et } A(e_2) = \longrightarrow \overbrace{i_2} \longrightarrow \overbrace{Q_2} \longrightarrow \overbrace{f_2} \longrightarrow \\ \text{ et construisons }$$

$$A(e) =$$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

 $\text{ Si } e = e_1 + e_2, \text{ alors prenons } A(e_1) = \longrightarrow \overbrace{i_1} \longrightarrow \overbrace{Q_1} \longrightarrow \overbrace{f_1} \longrightarrow \\ \text{ et } A(e_2) = \longrightarrow \overbrace{i_2} \longrightarrow \overbrace{Q_2} \longrightarrow \overbrace{f_2} \longrightarrow \\ \text{ et construisons }$

$$A(e) = \underbrace{-i}_{\varepsilon} \underbrace{i_{1}}_{\varphi_{1}} \underbrace{-i_{2}}_{Q_{2}} \underbrace{-i_{2}}_{\varphi_{2}} \underbrace{-i_{2}}_{\varphi$$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

ullet Si $e=e_1^*$, alors prenons $A(e_1)=$ \longrightarrow $egin{array}{c} i_1 \\ \longrightarrow & Q_1 \\ \longrightarrow$

$$A(e) =$$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

$$A(e) = \longrightarrow i \longrightarrow i_1 \longrightarrow Q_1 \longrightarrow f_1 \longrightarrow f$$

Lemme (Thompson)

Pour toute expression rationnelle e il existe un automate fini à transitions spontanées A tel que L(e) = L(A).

Démonstration (suite).

$$A(e) = \longrightarrow_{i} \xrightarrow{\varepsilon} \stackrel{i_1}{\longrightarrow} Q_1 \xrightarrow{\varepsilon} f_1 \xrightarrow{\varepsilon} f$$

• Maintenant il faut démontrer que L(A(e)) = L(e) en chaque cas.

Exercice

Utiliser l'algorithme de Thompson pour convertir l'expression rationnelle $a(b^*a + b)$ en automate fini à transitions spontanées.

