

SCC.121: ALGORITHMS AND COMPLEXITY Sentinel and Binary Search Algorithms

Emma Wilson e.d.wilson1@lancaster.ac.uk

Today's Lecture

Aim: Look at searching algorithms sentinel search and binary search and their time complexity. Introduce asymptotic analysis and the growth of functions.

Learning objectives:

- Know how sentinel and binary search work and be able to estimate their time complexity
- To know what is meant by the growth rate of functions and be able to determine the order of growth of simple functions

Outline

- Linear Search vs Sentinel Search
- Binary Search
- Introduction to growth of functions

Outline

- Linear Search vs Sentinel Search
- Binary Search
- Introduction to growth of functions

Linear Search

The overall program time (Worst case)?

• T(N) = 3N+3

```
int isInArray(int theArray[], int N, int iSearch) {  01 \rightarrow 1 \text{ o2} \rightarrow \text{N+1 o3} \rightarrow \text{N} \\ \text{for (int i = 0; i < N; i++)} \\ \text{o4} \rightarrow \text{N} \\ \text{if (theArray[i] == iSearch)} \\ \text{return 1; } 05 \rightarrow 0 \\ \text{return 0; } 06 \rightarrow 1 \\ \}
```

Sentinel Search

When a linear search is performed on an array of size N
then in the worst case a total of (N + 1) comparisons are
made for the index of the element to be compared so that
the index is not out of bounds of the array.

 Sentinel search is a type of Linear search where the number of comparisons is reduced as compared to the linear search.

Sentinel Search

iSearch 6 The number we are looking for in the array

☐ Check if iSearch is not at the end of theArray. Then, replace the number at the end of array with iSearch

	0	1	2	3	4	5	6	7	8	9
theArray	5	17	6	13	28	1	3	6	44	6

☐ Perform Linear Search

iSearch

Sentinel Search


```
int isInSentinel(int theArray[], int N, int iSearch)
       if (theArray[N-1] == iSearch)
              return 1;
       theArray[N-1] = iSearch;
       for (int i=0; i++) {
              if (theArray[i] == iSearch)
                     return (i < (N-1));
```

slido

How many times do we execute i++ in sentinel search in the worst case?

Sentinel Search (worst case)


```
int isInSentinel(int theArray[], int N, int iSearch)
        if (theArray[N-1] == iSearch) 01 \rightarrow 1
                 return 1; 02 \rightarrow 0
        theArray[N-1] = iSearch; 03 \rightarrow 1
            04 \rightarrow 1 04 \rightarrow N-1
        for (int i=0; i++) {
                  if (theArray[i] == iSearch) 04 \rightarrow N
                          return (i < (N-1)); _{05} \rightarrow 1
```

Compare Linear vs. Sentinel Search


```
int isInSentinel(int theArray[], int N,
int iSearch)
{
    if (theArray[N-1] == iSearch)
        return 1;
    theArray[N-1] = iSearch;
    for (int i=0;  ; i++)
    {
        if (theArray[i] == iSearch)
            return (i < (N-1));
     }
}</pre>
```

- Which one is better?
 - Count the number of instructions
 - Linear: 3N+3 (Worst-case)
 - Sentinel: 2N+3 (Worst-case)
 - Both searches have linear time complexity

Linear vs Sentinel Search: Actual Runtimes (worst case)

Outline

- Linear Search vs Sentinel Search
- Binary Search
- Growth of functions

- Binary search works on <u>sorted arrays</u>
- Locates a target value in a sorted array by successively eliminating half of the array from consideration
- Let's assume your given the below array and iSearch = 33

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

$$mid = \frac{(hi + lo)}{2}$$

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

$$mid = \frac{(hi + lo)}{2}$$

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

$$mid = \frac{(hi + lo)}{2}$$

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

$$mid = \frac{(hi + lo)}{2}$$

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

- Locates a target value in a <u>sorted</u> array by successively eliminating <u>half</u> of the array from consideration.
- Let's assume your given the below array and iSearch = 33

Binary Search Algorithm (an iterative implementation)


```
boolean isInBinary(int[] theArray, int N, int iSearch)
     int lo = 0;
     int hi = N - 1;
     int mid = 0;
     while (hi >= lo) {
          mid = (lo + hi)/2; //round to higher integer
          if (theArray[mid] == iSearch)
               return true;
          else if (theArray[mid] < iSearch)</pre>
               lo = mid + 1;
          else
               hi = mid - 1;
     return false;
```

Binary Search Questions

- What is the time complexity in the Worst-case?
- What is the time complexity in the Best-case?

Binary Search Algorithm (an iterative implementation)


```
boolean isInBinary(int[] theArray, int N, int iSearch)
     int lo = 0; ^{01}
     int hi = N - 1; 02
     int mid = 0; _{03}
     while (hi >= lo) 9^4
          mid = (lo + hi)/2; //round to higher integer o5
          if (theArray[mid] == iSearch) o6
               return true; o7
          else if (theArray[mid] < iSearch) 08
               lo = mid + 1; o9
                                          Worst Case:
          else
               hi = mid - 1; o10

    iSearch is not in the array

    o6 always false

     return false; o11

    Assume o8 always false
```

Binary Search (Worst Case)

Try out for an array size: here try $N=2^6=64$

	lo	hi	mid
Initially	0	63	0
After 1 st search	0	31	32
After 2 nd search	0	15	16
After 3 rd search	0	7	8
After 4 th search	0	3	4
After 5 th search	0	1	2
After 6 th search	0	0	1
After 7 th search	0	-1	0

- Here $N = 2^6 = 64$
- Or equivalently $7 = \log_2 64 + 1 = \log_2 N + 1$
- So, we go around the loop $log_2N + 1$ times
- Each time around the loop o4, o5,o6,o8 and o10 are implemented
- o4 is implemented one additional time
- o1, o2, o3 and o11 are implemented once Total time complexity in worst case
- T(N) = o1+o2+o3+o4+o5+o6+o8+o10+o11
- $T(N) = 1+1+1+5*(1+\log_2 N) + 1+1$
- $T(N) = 10+5 \log_2 N$

Binary Search Algorithm


```
boolean isInBinary(int[] theArray, int N, int iSearch)
     int lo = 0;
     int hi = N - 1;
     int mid = 0;
     while (hi >= lo) {
          mid = (lo + hi)/2; //round to higher integer
          if (theArray[mid] == iSearch)
               return true;
          else if (theArray[mid] < iSearch)</pre>
               lo = mid + 1;
          else
               hi = mid - 1;
     return false;
```

slido

What is the time complexity class of Binary Search Algorithm in the best case?

Binary Search Questions

- What is the time complexity in the Worst-case?
 - Logarithmic: $T(N) = C_1 + C_2 \log N$
- What is the time complexity in the Best-case?
 - Constant: $T(N) = C_1$

Linear, Sentinel and Binary Search Summary

- Sentinel search and Linear search algorithms are both linear in worstcase scenario, but Sentinel search requires executing fewer operations
- Binary search algorithm is more efficient comparing to Linear and Sentinel Search algorithms (Binary logarithmic in worst case), but the input array should be sorted
- Actual values of constants generally unimportant (except in specific circumstances)
- What we really care about is behaviour as the size of our input increases
 - asymptotic behaviour

Outline

- Linear Search vs Sentinel Search
- Binary Search
- Introduction to growth of functions

The Growth of Functions

- For example, let us assume two algorithms A and B that solve the same class of problems
- The time complexity of **A** is T(n) = 5000n, the one for **B** is $T(n) = 1.1^n$ for an input with n elements
- Which algorithm is better?

The Growth of Functions

Comparison: time complexity of algorithms A and B

Input Size	Algorithm A	Algorithm B		
n	T(n) = 5,000n	T(n)=1.1 ⁿ		
10	50,000	3		
100	500,000	13,781		
1,000	5,000,000	2.5x10 ⁴¹		
1,000,000	5x10 ⁹	4.8x10 ⁴¹³⁹⁸		

slido

The time complexity of A is T(n) = 5000n, the one for B is $T(n) = 1.1^n$ for an input with n elements, Which algorithm is better?

The Growth of Functions

- This means that algorithm B <u>cannot</u> be used for large inputs, while algorithm A is still feasible
- So what is important is the growth of the time complexity functions
- The growth of time complexity with increasing input size 'n' is a suitable measure for the comparison of algorithms

The Growth of Functions (Table)

					n		
Order of Growth	Function	10	100	1,000	10,000	100,000	1,000,000
	1	1	1	1	1	1	1
	log₂n	3	6	9	13	16	19
	n	10	10 ²	10 ³	104	105	10 ⁶
	n * log ₂ n	30	664	9,965	10 ⁵	10 ⁶	10 ⁷
	n ²	10 ²	104	106	108	10 10	10 12
	n ³	10 ³	10 ⁶	10 ⁹	1012	10 15	10 18
0 1	2 ⁿ	10 ³	1030	1030	1 103,0	10 10 30,	103 10 301,030

The Growth of Functions (Plot)

The Growth of Functions (Summary)

c is a constant 0 < c < 1

$$\log n < n^c < n < n \log n < n^2 < n^3 \dots < 2^n < 3^n < \dots < n!$$

For example: $\sqrt{n} = n^{\frac{1}{2}}$

Growth rate of functions

Listed from slowest to fastest growth:

- 1 → Constant growth
- log n → Logarithmic growth
- $n^c \rightarrow$ where 0<c<1
- **n** → Linear growth
- n log n
- n² \rightarrow Quadratic growth
- n² log n
- n³ → Cubic growth
- n^c → Polynomial growth (c is a constant number)
- $2^n \rightarrow$ Exponential growth
- $3^n \rightarrow$ Exponential growth
- $c^n \rightarrow$ Exponential growth (c is a constant number)
- n! -> Factorial growth

Constant $\langle log \ n \prec n^c \ (0 < c < 1) \prec n \prec n \ log \ n \prec n^2 \prec n^3 \dots \prec 2^n \prec 3^n \prec \dots \prec n!$

•
$$T_1(n) = (1.5)^n$$

•
$$T_2(n) = 8n^3 + 17 n^2 + 11$$

•
$$T_3(n) = \log(n)$$

•
$$T_4(n) = 2^n$$

•
$$T_5(n) = \log(\log(n))$$

•
$$T_6(n) = n^2 \log(n)$$

•
$$T_7(n) = 2^n(n^2 + 1)$$

•
$$T_8(n) = 100000$$

•
$$T_9(n) = n!$$

•
$$T_8(n) = 100000$$

•
$$T_5(n) = \log(\log(n))$$

•
$$T_3(n) = \log(n)$$

•
$$T_6(n) = n^2 \log(n)$$

•
$$T_2(n) = 8n^3 + 17 n^2 + 11$$

•
$$T_1(n) = (1.5)^n$$

•
$$T_4(n) = 2^n$$

•
$$T_7(n) = 2^n(n^2 + 1)$$

•
$$T_9(n) = n!$$

slido

Please download and install the Slido app on all computers you use

Audience Q&A

Summary

Today's lecture: focused on sentinel and binary search algorithms and their time complexity. Introduced the growth of functions

- Sentinel search and Linear search algorithms are both linear in worst-case scenario, but Sentinel search requires executing fewer operations
- Binary search algorithm is more efficient comparing to Linear and Sentinel Search algorithms, but the input array should be sorted
- In most cases the growth of time complexity with increasing input size 'n' is a suitable measure for the comparison of algorithms.

 Useful to know the order in which simple functions grow!

Next Lecture: Asymptotic analysis and Big-O notation