

# Measurement and Instrumentation Laboratory (EE3P005)

# **EXPERIMENT-8**

**Study Characteristics of Thermistor** 

#### AIM OF THE EXPERIMENT:

To study the characteristics of Thermistor

#### **CIRCUIT DIAGRAM:**



#### **OBSERVATION:**

| Time Comin) | Ith (mA) | IR, min (mA) |
|-------------|----------|--------------|
| 0           | 1.84     | 53.2         |
| 1           | 1.99     | 53.6         |
| 62          | 1.93     | 53.6         |
| 3           | 2.04     | 53.6         |
| 4           | 2.06     | 53.6         |
| 5           | 2.09     | 53.6         |
| Color Color | 2.11     | 53.6         |
| ₹8          | 2.09     | 53.6         |
| 16          | 2.11     | 53.6         |
| 12          | 2.12     | 53.6         |
|             | 2.12     | 53.6         |
| 16          | 3.17     | 53.6         |
| 10          | 2.12     | 53.4         |

| Temperature (°C)                                                     | Ith (mA)                                                                                                              | Vth (v)                                                                                                       | RTH = Vth                                                                                     |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 28<br>30<br>35<br>40<br>45<br>55<br>60<br>65<br>70<br>85<br>90<br>95 | 1.05<br>1.12<br>1.39<br>1.73<br>2.77<br>2.77<br>3.45<br>3.99<br>5.65<br>6.8<br>7.68<br>8.9<br>10.99<br>13.45<br>17.55 | 9.11<br>9.08<br>9.07<br>9.04<br>9.018<br>8.97<br>8.94<br>8.88<br>8.74<br>8.66<br>8.55<br>8.42<br>8.32<br>8.21 | 8.67<br>8.125<br>6.53<br>5.24<br>3.98<br>3.25<br>2.24<br>1.29<br>1.13<br>0.97<br>0.62<br>0.46 |

#### **GRAPH:**





### **CONCLUSIONS**

Hence, we successfully studied the characteristics of the Thermistor by drawing plots between temperature, resistance, Voltages and currents.

#### **Applications:**

- > Measurement of Gas Composition.
- > Current-Limiting devices for circuit protection as replacement for fuse(PTC).
- ➤ Used in everyday appliances such as fire alarms, ovens and refrigerators.
- Manufacturing: Used as a circuit breaker i.e., if temperature becomes dangerouslyhigh the thermistor will cause a circuit break.
- ➤ HVAC Refrigeration Application: Here thermistors are used to measure building and control processes.

# **DISCUSSION**

#### 1. What is the objective of this experiment?

#### A. Objectives of the experiment are:

- > To study the I-V, T-R, V-I characteristics of Thermistor.
- > To observe the self- heating effect of current on the resistance of a thermistor.
- > To determine the variation in resistance with time of current in thermistor.

# 2. You studied another temperature detector RTD in another experiment. Please briefly compare difference in RTD and Thermistor?

#### A. Differences between RTD and Thermistor:

| S.No | RTD                                               | Thermistor                                                              |
|------|---------------------------------------------------|-------------------------------------------------------------------------|
| 1.   | It is a type of wire whose resistance             | It is a temperature sensitive resistor                                  |
|      | changes with change in the temperature            | whose resistance varies with temperature variation.                     |
| 2.   | It has a positive temperature quotient            | It has a negative temperature quotient                                  |
| 3.   | It has a low accuracy                             | It has a good accuracy                                                  |
| 4.   | It can be used for high temperatures up to 600°C. | It can be used only for lower temperatures ranging from -50°C to 130°C. |
| 5.   | Good Stability                                    | Less Stability                                                          |
| 6.   | Low amount of Self Heating                        | High Amount of Self Heating                                             |
| 7.   | Output Response is Slow                           | Output Response is Fast                                                 |
| 8.   | Resistivity is High                               | Resistivity is Low                                                      |
| 9.   | It is cheaper                                     | It is expensive                                                         |

1. Mathematically prove that Thermistor has a negative coefficient of resistance with temperature?

Variation of R with temperature is given by 
$$R = R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)} \rightarrow (1)$$

Thermal temparature coefficient,
$$\alpha_T = \frac{1}{R} \frac{dR}{dT}$$
Subtiting (1)
$$\alpha_T = \frac{1}{R} \frac{d}{dT} \left( R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)} \right) \left( -\frac{R}{T^2} \right)$$

$$\alpha_T = \frac{R_0}{R} e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)} \left( -\frac{R}{T^2} \right)$$

$$\alpha_T = \frac{R}{T^2}$$
Since,  $\beta$  and  $T^2$  are also positive,
$$\alpha_T \text{ is negative.}$$