Sciences

Chapitre 3 - Précision des systèmes

Application

Application

Savoirs et compétences :

On considère le schéma-blocs suivant.

gain du capteur est de $a = 2 \text{V rad}^{-1} \text{ s.}$

On considère que $C(p) = K_P$ et que $C_r(p) = 0$.

Question 1 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_P$ et que $C_r(p)$ est une perturbation de type échelon.

Question 2 Déterminer l'écart statique et l'écart de traî-

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p) = 0$.

Question 3 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p)$ est une perturbation de type échelon.

Question 4 Déterminer l'écart statique et l'écart de traînage.

1

Chapitre 3 – Précision des systèmes

Sciences

Application Corrigé

Application

Savoirs et compétences .

On considère le schéma-blocs suivant.

On a $H_r(p) = K_r \frac{1 + 0,492p}{1 + 10,34p + 5,1p^2}$ et $K_r = 0,37 \, \text{rad} \, \text{s}^{-1} \, \text{N}^{-1} \, \text{m}^{-1}$. $H_m(p) = \frac{0,5}{\left(1 + 10p\right)\left(1 + 0,5p\right)}$. Le gain du capteur est de $a = 2 \, \text{V} \, \text{rad}^{-1} \, \text{s}$.

On considère que $C(p) = K_P$ et que $C_r(p) = 0$.

Question 1 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p$ et que $C_r(p)$ est une perturbation de type échelon.

Question 2 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p) = 0$.

Question 3 Déterminer l'écart statique et l'écart de traînage.

On considère que $C(p) = K_p + \frac{1}{T_i p}$ et que $C_r(p)$ est une perturbation de type échelon.

Question 4 Déterminer l'écart statique et l'écart de traînage.

