计算机图形学实验报告 基于 Bezier 曲线的三维造型与渲染

张钰晖

 $2015011372,\,\mathrm{yuhui\text{-}zh}15@\mathrm{mails.tsinghua.edu.cn},\,185\text{-}3888\text{-}2881$

2017年6月25日

目录

1	问题	描述	2
2	\mathbf{Bez}	er 双三次曲面	4
	2.1	Bezier 曲线	4
	2.2	Bezier 曲面	4
	2.3	Bezier 曲面偏导数	5
	2.4	Bezier 曲面法向量	7
	2.5	Bezier 曲面求交	7
		2.5.1 生成网格法	8
		2.5.2 牛顿迭代法	8
		2.5.3 随机牛顿迭代法 1	0
		2.5.4 曲面剖分法	3
3	渲染	算法 1	4
	3.1	光线追踪 1	4
	3.2	路径跟踪	5
	3.3	渐进式光子映射	6
		3.3.1 初始半径 <i>r</i>	7
		3.3.2 半径收敛系数 α 1	9
		3.3.3 光子散播数 n	9

4	其他功能	22
	4.1 贴图	
	4.2 景深	. 22
	4.3 渲染加速	. 22
	4.3.1 AABB 包围盒	. 22
	4.3.2 KD 树	. 22
5	实验结果	23
6	实验心得	2 4
7	程序使用	2 5
	7.1 编译方式	. 25
	7.2 使用方式	. 25
	7.3 文件组织	
	7.4 代码结构	. 25

1 问题描述

本次作业可以认为分为两个环节,第一步是 Bezier 曲线的三维造型,第二步是图像渲染。 Bezier 曲线是由控制点组成的插值函数多项式,k 阶 Bezier 曲线由 (k + 1) 个控制点组成,Bezier 曲面可以由 Bezier 曲线旋转而得,也可以直接由二维的控制点组成。本实验中,我选择了比较有挑战性的双三次 Bezier 曲面,实现了直线与 Bezier 曲面的求交、Bezier 曲面法向的计算、Bezier 曲面生成 obj 网格等方法。

图 1: Bezier 双三次曲面

图像渲染是真实感图形学的重要部分,也是无数的学者研究了将近半个多世纪的问题。图像渲染有很多种算法,按照发展历史依次是光线投射、光线追踪、光子映射、渐进式光子映射,在本次作业中,我选择了近几年新提出的渐进式光子映射作为渲染引擎。

图 2: 图像渲染发展历史

下面,我将分两部分分别讲解 Bezier 双三次曲面与渐进式光子映射,以及贴图、景深、渲染加速的实现。

最终选题:

渲染算法:渐进式光子映射 (90%),曲面求交:双三次曲面求交 (40%),贴图 (10%), 景深 (10%),渲染加速 (5% 10%),共计 155% 160%。

2 Bezier 双三次曲面

2.1 Bezier 曲线

由于 Bezier 曲面的固定某一维度后将退化为 Bezier 曲线, 因此理解 Bezier 曲线是理解 Bezier 曲面的基石。Bezier 曲线是由控制点组成的曲线, k 阶 Bezier 曲线由 k+1 个控制点构成,可以认为曲线上每个点的值都是所有控制点的加权和。

$$P(t) = \sum_{i=0}^{n} B_{i,n}(t) P_{i}, t \in [0,1]$$

其中, $B_{i,n}(t)$ 是伯因斯坦多项式,
 $B_{i,n}(t) = C_{n}^{i} t^{i} (1-t)^{n-i}, i=0,...,n$
对三阶 Bezier 曲线,我们简化标记,
 $b_{0}(t) = (1-t)^{3}$
 $b_{1}(t) = 3t(1-t)^{2}$
 $b_{2}(t) = 3t^{2}(1-t)$
 $b_{3}(t) = t^{3}$

该数学表达式可以写成矩阵和向量相乘的形式。

还有另一种曲线求值的方式,被称为 De Casteljau 算法,该算法数值稳定,但计算消耗量略大,不再赘述,可以参考维基百科。

曲线求值实现的代码如下:

```
Vec3f evalBezierCurve(const Vec3f *P, const float &t) {
   float b0 = (1 - t) * (1 - t) * (1 - t);
   float b1 = 3 * t * (1 - t) * (1 - t);
   float b2 = 3 * t * t * (1 - t);
   float b3 = t * t * t;
   return P[0] * b0 + P[1] * b1 + P[2] * b2 + P[3] * b3;
}
```

2.2 Bezier 曲面

Bezier 曲面是 Bezier 曲线在二维上的延伸, k 阶 Bezier 曲面由 (k+1)*(k+1) 个控制点构成,可以认为曲面上每个点的值都是所有控制点的加权和。

图 3: Bezier 曲面

 $P(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i}^{n}(u) B_{j}^{m}(v) P_{ij}$ 其中, $B_{i,n}(t)$ 依然是伯因斯坦多项式, $B_{i,n}(t) = C_{n}^{i} t^{i} (1-t)^{n-i}, i=0,...,n$

因此, 我们可以将 Bezier 曲面求值化归为 2 次曲线求值问题, 先沿着 u 方向求值, 再沿着 v 方向求值。

曲面求值实现的代码如下:

```
Vec3f evalBezierPatch(const Vec3f *controlPoints, const float &u, const float &v)
{
    Vec3f uCurve[4];
    for (int i = 0; i < 4; ++i) uCurve[i] = evalBezierCurve(controlPoints + 4 * i, u);
    return evalBezierCurve(uCurve, v);
}</pre>
```

2.3 Bezier 曲面偏导数

对三阶 Bezier 曲面,曲面上 (u,v) 点的值为, $P(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)P_{ij}$ 其中, $b_0(t) = (1-t)^3$

```
b_1(t) = 3t(1-t)^2
b_2(t) = 3t^2(1-t)
b_3(t) = t^3
对上面的伯因斯坦基函数求导得到,
b_0'(t) = -3(1-t)^2
b_1'(t) = 3(1-t)^2 - 6t(1-t)
b_2'(t) = 6t(1-t) - 3t^2
b_{3}^{'}(t) = 3t^{2}
```

故对于 Bezier 曲线, 其导数即为 b' 的加权和。

对 u 方向求偏导数,可以先通过 v 分量生成相应的 Bezier 曲线,再通过 Bezier 曲线求导 的方式实现;对 v 方向求偏导数也是类似的,在这里略去数学推导。

曲面求偏导数实现的代码如下:

```
Vec3f dUBezier(const Vec3f *controlPoints, const float &u, const float &v)
  Vec3f P[4];
  Vec3f vCurve[4];
  for (int i = 0; i < 4; ++i) {
    P[0] = controlPoints[i];
     P[1] = controlPoints[4 + i];
    P[2] = controlPoints[8 + i];
     P[3] = controlPoints[12 + i];
     vCurve[i] = evalBezierCurve(P, v);
  }
  return -3 * (1 - u) * (1 - u) * vCurve[0] +
     (3 * (1 - u) * (1 - u) - 6 * u * (1 - u)) * vCurve[1] +
     (6 * u * (1 - u) - 3 * u * u) * vCurve[2] +
    3 * u * u * vCurve[3];
}
Vec3f dVBezier(const Vec3f *controlPoints, const float &u, const float &v)
 Vec3f uCurve[4];
  for (int i = 0; i < 4; ++i) {
     uCurve[i] = evalBezierCurve(controlPoints + 4 * i, u);
  return -3 * (1 - v) * (1 - v) * uCurve[0] +
     (3 * (1 - v) * (1 - v) - 6 * v * (1 - v)) * uCurve[1] +
     (6 * v * (1 - v) - 3 * v * v) * uCurve[2] +
    3 * v * v * uCurve[3];
```

2.4 Bezier 曲面法向量

由下图可以清晰地看出,曲面 (u,v) 点的法向量即为其偏导数的叉积,即 $N(u,v)=dU(u,v)\times dV(u,v)$

图 4: Bezier 曲面法向量

曲面法向量实现代码如下:

```
Vec3f normal(const Vec3f *controlPoints, const float &u, const float &v)
{
   Vec3f dU = dUBezier(controlPoints, u, v);
   Vec3f dV = dVBezier(controlPoints, u, v);
   return cross(dU, dV);
}
```

2.5 Bezier 曲面求交

Bezier 曲面求交问题是渲染能稳定运行的关键,由于 Bezier 曲面不具有平面、球、三角面简单的几何解析解法,如何设计一个数值稳定的算法直接影响了后期渲染的质量。

这部分我耗了大量的心血研究和尝试各种算法,在此进行一一介绍。

2.5.1 生成网格法

求交一种最为简单的方式便是把 Bezier 曲面通过一些均匀的点,通过计算其值和法向量, 将曲面细分为网格(如矩形面片或三角面片)求交,这也是生成 obj 网格的原理。

代码原理较为简单,即曲面细化,但实现较为冗长,在此不再赘述,感兴趣的读者可以参 考代码。

图 5: 生成的 Utah 壶网格

这种方式将曲面转化为简单几何面,求交是数值稳定的。但是由于 Bezier 曲面的光滑型优于面片,故渲染时需要再次对法向量插值确保渲染出来的曲面色彩均匀。这种方法虽然数值稳定,但是为了保证精度需要生成很多的面片,速度会很慢,而且如果不进行法向量插值渲染出来的图效果也不均匀。

总体评价:实现难度2稳定性5速度2效果4

2.5.2 牛顿迭代法

对光线与曲面求交而言,设光线表达式为 C(t) = O + t * N,曲面表达式为 P(u,v),则交点即满足方程

$$F(t, u, v) = C(t) - P(u, v) = 0$$

可以使用牛顿迭代法求解。

牛顿迭代法是不动点迭代法的一种,是数值分析的基本内容,在此不再进行赘述,可以参考维基百科。

对多元函数的牛顿迭代法,欲求 F(x) = 0,其迭代公式可以写为 $x^{(i+1)} = x^{(i)} - J^{-1}F(x^{(i)})$

其中 J 为 Jacobi 矩阵,停止条件可以设为两次迭代差值的无穷范数小于 eps 或迭代次数 大于 maxiter。需要实现矩阵求逆。

牛顿迭代法是局部收敛的,其收敛性依赖于初值的选取,是数值敏感的,而且得到的解只是近似解,不是解析解。对该问题而言,很难选择一个合适的初值,故无法控制牛顿迭代法收敛性。假设曲面与光线有多个交点,初值没有选好,则牛顿法将变得数值不稳定,导致渲染出来的图惨不忍睹。

参见下图,左边的曲面和右边的曲面是完全一样的曲面,迭代初值完全相同,右边的曲面 求交完好,左边的曲面求交几乎全军覆没。

图 6: 牛顿迭代法的问题

由于牛顿迭代法严重依赖于初值的选取,因此我们可以先通过对 Bezier 曲面建立包围盒 大致确定交点位置再进行迭代,但笔者尝试过后发现对一些扭曲程度较高的曲面其仍然数值不 稳定。

但牛顿迭代法相对于生成网格法而言, 速度较快, 求交正常的话渲染较为均匀, 然而在渲

染中, 数值稳定性远远要比速度重要。

总体评价:实现难度3稳定性1速度3效果1

2.5.3 随机牛顿迭代法

正如前文所说,由于牛顿迭代法严重依赖于初值的选取,因此我们可以随机生成一些点(取的点数即为取样次数),从这些不同的点开始迭代,选出符合要求的且光走过距离最短的点。

但是由于其随机性,取样次数较高时(例如 20)对一些简单曲面应对良好,但笔者尝试过后发现对一些复杂的曲面拼合体其仍然数值不稳定。如下图著名的 Utah 壶,改变取样次数可以看出其噪点明显减少,说明求交准确度提高,但仍有噪点不可根除。如果不加随机过程的话,壶几乎全部渲染不出来,已经是一个较大的进步,但不能使人满意。

图 7: 渲染出来的左边的面片

图 8: 由 32 个 Bezier 曲面和 306 个控制点构成的 Utah 壶

图 9: 采样次数为 3 的随机牛顿迭代法

图 10: 采样次数为 10 的随机牛顿迭代法

图 11: 采样次数为 20 的随机牛顿迭代法

由于渲染时间正比于取样次数,取样次数很高的时候,渲染速度及其慢,而且效果也不是很好。

总体评价:实现难度4稳定性3速度1效果3

2.5.4 曲面剖分法

尝试到这里,看着这残缺不全的壶我已经感到绝望了。但是通过阅读教材我发现教材提供了一种四叉树的方式求交,即把曲面不断四分,直到每个曲面足够小为止,构成四叉树,然后对每个节点包围盒求交(对叶子用牛顿迭代法求交)。

因为叶片表示的曲面足够小,所以牛顿迭代法数值稳定,即使初值选取不好也基本能收敛 到解。但是这个算法一是要实现一颗四叉树,代码便会显得很冗长,二是这样剖分下去速度也 不一定会很快,如果当前节点的包围盒不与光线相交,该当前节点代表的曲面便没有必要继续 剖分下去。

因此,我想出了一种更为简单的方式,直接采用队列。对当前节点代表的曲面,四分后对每个 1/4 曲面,用包围盒判断是否相交,如果相交加入队列,否则弃之。这样深度优先搜索下去,直到队列首元素表示的曲面足够小为之。这时对队列中的所有元素(可以保证所有元素代表的曲面都足够小)——采用牛顿法求交,选出光走过距离最小的面片即可。

在实现过程中, 要注意两个细节。

- 一是包围盒的实现,对 Bezier 曲面来说,由于其具有凸包性,直接记录 AABB 包围盒的 $\max(x, y, z)$ 和 $\min(x, y, z)$ 即可,然后用 Slabs 算法快速判断光线是否与其相交,提高程序运行速度。
- 二是四分曲面需要使用 De Casteljau 算法,而不是直接等距离四分,如果直接等距离四分则曲面不再是原曲面,故渲染出来的图将是不均匀的面片。

经过这一系列的重构,一个完整而漂亮的 Utah 壶终于展现在了我的眼前。而且由于在大部分情况下,曲面与光线只有一个交点,这样迭代的时间复杂度仅仅只有 O(logn),并且是和包围盒判断求交,其速度又远远快于牛顿法。只有最后一步需要牛顿迭代法,此时面片足够小,牛顿迭代法是稳定安全的,收敛也非常快。

图 12: 完整的 Utah 壶

故整体速度有了质的飞跃,在 PPM 引擎下,在场景中放入 Utah 壶 (32 个 Bezier 面片),每轮 500W 光子,3 小时便可以运行6 轮,这再一次让我感受到算法的力量。

总体评价:实现难度5稳定性5速度5效果5

3 渲染算法

正如引言所描述的那样, 渲染算法一直是一代计算机图形学科学家的研究的核心。我将从 光线追踪讲起, 谈到路径跟踪, 再到光子映射, 最后谈到最终所使用的渐进式光子映射算法。 由于前三个不是本文的重点, 故只大致介绍原理, 而且渐进式光子映射算法需要用到光线跟踪, 必须对其有大致的了解。

3.1 光线追踪

光线追踪(Ray Tracing)是一种最为经典的渲染算法,其原理大致描述如下:

- (1) 要得到屏幕上像素 P 的颜色,从视点发出一条经过 P 的光线,找到与场景中物体的第一个交点 Q,交点 Q 的颜色就是像素 P 的颜色。求出物体上 Q 点的颜色,便也就求得了像素 P 的颜色。
 - (2)场景中所有的光源对 Q 的颜色有影响(直接光照),场景中其他物体对光源发出的

光线进行反射或是折射(间接光照),经过反射或折射后再次发射的光线同样对Q的颜色有影响。这些因素确定了交点Q的颜色。

(3)产生间接光照的物体表面的颜色同样是需要求解的,只需要递归追踪打在Q点上的光线即可,在算法的每一步追溯这条光线,对最后得到的效果与直接光照做一叠加,便可以求得Q点的颜色。

图 13: 光线追踪原理

光线追踪的主要瓶颈在于:

- (1)漫反射入射光线无法追踪。
- (2)物体表面的多种属性难以模拟。

第一个问题可以采取 Phong 模型解决, Phong 模型只考虑漫反射物体与光源的位置, 且模拟效果比较理想, 是一种经典的方法, 在此不再赘述。

综合评价:实现难度2速度5效果3

3.2 路径跟踪

路径追踪(Path Tracing)是一种基于光线跟踪的改进算法,和光线追踪有很大的类似之处,主要是基于光线追踪的两大问题进行改进:

(1)漫反射入射光线无法追踪

在路径追踪中,通过大量的随机模拟,每次在表面 Q 随机选定一个方向作为追踪的方向。 我们对每个像素做充足的采样,并对采样的结果取平均值,从而模拟出较为真实的漫反射效果。 (2)物体表面的多种属性难以模拟

在路径追踪中,假设物体的表面属性为 70% 漫反射 +30% 镜面反射,在每次递归时,以 70% 的概率追踪漫反射光线(追踪的时候在每一个被追踪的物体表面随机取一个追踪的方向),以 30%的概率进行镜面反射追踪即可。

综合评价:没有实现,故不进行评价

3.3 渐进式光子映射

渐进式光子映射 (Progressive Photon Mapping) 是近几年比较流行的算法,其原理大致描述如下:

- (1)通过光线追踪,建立整个场景的碰撞点,记录碰撞点的各种信息,并使用碰撞点图(KDTree)存储这些点。
- (2)使用光子发射器从光源发射指定多个光子,每当光子碰到漫反射表面,就在碰撞点图中询问光子位置是否在碰撞点半径内部,如果是,则将光子信息存入,否则丢弃光子。光子信息的存入实际上就是指将光子的能量加到碰撞点的属性上。
 - (3)顺序扫描碰撞点图,根据公式更新碰撞点的各项信息值。

 $k = \frac{N + \alpha M}{N + M} R^2 * = k \Phi * = k N + = M M = 0$

N 为累计光子数,M 为该轮新增光子数, R^2 为碰撞点半径, Φ 为累计光通量, α 为半径 收敛系数

(4) 重复执行(2)(3) 若干轮后(详见下文参数选择),对图像进行渲染,根据每个像素对应的碰撞点,及各碰撞点累计光子数,便可以得到该像素点的颜色。

图 14: 光子映射部分原理

使用渐进式光子映射作为渲染算法,渲染效果非常出众,可以实现很多路径追踪实现不出来的效果,缺点是渲染非常慢,必须发射足够多的光子噪点才能收敛,不能作为实时渲染算法。另外,bug 非常难调试,只能一遍又一遍读代码以及逐个像素点 debug。

综合评价:实现难度5速度1效果5

值得注意的是, 渐进式光子映射模型参数的选择是个很有技巧的问题。

3.3.1 初始半径 r

初始半径 r 小,则噪点起初很平均,起初收敛速度快,但最后噪点很难被完全消除。 初始半径 r 大,则噪点起初会成黑块,起初收敛速度慢,但最后噪点基本全部被消除。 下面这两幅图可以清晰地看出这个关系,两张图光子散播数均足够大,确保已收敛。

图 15: 初始半径为 0.5

图 16: 初始半径为 1.0

在最终程序中,初始半径选择了 1.2 (这个和图片建模的空间大小有关,图中空间尺寸约为 $100\mathrm{x}100\mathrm{x}100$)

3.3.2 半径收敛系数 α

半径收敛系数 α 小,采样半径收缩快,收敛速度快,但图片噪声较大。 半径收敛系数 α 大,采样半径收缩慢,收敛速度慢,渲染结果较精细。 在最终程序中,半径收敛系数选择了 0.7

3.3.3 光子散播数 *n*

理论上、光子散播次数越大、每次散播光子数越多、图片噪声越小、渲染越精细、但所耗时间也越长。

下面这五张图可以清晰地看出这个关系,但由于初始采样半径设置太小,故最后噪点较重, 且无法继续收敛。

图 17: 10 万光子

图 18: 500 万光子

图 19: 1000 万光子

图 20: 1500 万光子

图 21: 2000 万光子

在最终程序中,每轮散播 500 万个光子,散播 5 轮后基本图像噪声不再有明显减小。

4 其他功能

4.1 贴图

贴图的本质就是建立起三维坐标 (x, y, z)-> 平面坐标 (u, v) 的映射关系,球面贴图根据球坐标系进行映射,平面贴图根据三维坐标系进行映射,Bezier 曲面贴图根据曲面控制系数进行映射即可。

最终贴图效果详见效果图。

4.2 景深

景深的本质是对相机的模拟,对光线的出发点在光圈上做随机扰动,并保证光线通过焦平 面上。由于随机扰动采样,开启景深后渲染时间会大幅增加。

最终景深效果详见效果图。

4.3 渲染加速

在整个算法流程中两个地方用到了数据结构进行渲染加速。

4.3.1 AABB 包围盒

AABB 包围盒用于在 Bezier 曲面求交中实现加速,由于曲面的凸包性质,直接记录 16 个控制点的最大 x,y,z 和最小 x,y,z 六个参数,然后用 Slabs 算法求交,大大降低计算成本。

4.3.2 KD 树

KD 树是一种分割 K 维数据空间的数据结构,主要应用于多维空间关键数据的搜索,本程序中用 KD 树记录碰撞节点的信息实现加速。

加速算法详见代码。

5 实验结果

图 22: 最终效果图

从图中,我们不仅可以看出渐进式光子映射较为漂亮的渲染效果,而且可以清晰地看出景深(紫色折射玻璃球、红色折射玻璃球),贴图(青花瓷漫反射加镜面反射大球、地板、天花板、前后左右的墙)等效果,并且由于景深本身就是多次采样,所以也有一定的抗锯齿成分(所有球边缘)。

图 23: 改变了景深的效果图

6 实验心得

中小学时代玩 3D 游戏的时候,比如经典的单机游戏仙剑奇侠传,我的心中一直有一个疑问,这些场景到底是怎么渲染出来的?物体到底是怎么构成的?为什么能做出来和真实世界一致的东西?这也是我修计算机图形学的最重要的原因,感谢这次作业,让我真真正正明白了光线跟踪、路径追踪、光子映射、渐进式光子映射的原理,算是入了图形学世界的大门。

从写 Bezier 曲面求交的过程中,我补了很多数学知识,改了很多次算法,最终实现了四分求交稳定而快速的算法,这让我感受到了算法的力量。

从光线跟踪到渐进式光子映射,渲染效果有了很大的进步,但是这是时间代价换来的,光 线跟踪可以在短短几秒跑出结果的图,渐进式光子映射需要几千倍的时间才能稳定,做出精美 的画面,我想这也是为什么渐进式光子映射算法无法做成游戏引擎的原因——无法实现实时渲 染。

同时学习了抗锯齿、阴影、软阴影、景深、贴图、凹凸贴图等技术后,尽管我没有时间全部实现,但这些概念让我更加深入理解了游戏中的原理,

这个大作业是我本学期完成所耗时间最长的作业,在期中过后开始从光线追踪调起,调过之后先改了一部分光子映射,后来发现渐进式光子映射和光子映射实现原理较为类似,就开始彻底重构为渐进式光子映射,由于平常时间断断续续,一直到十四五周代码仍有些许 Bug, 渲染效果也不是很理想。

本次大作业具有算法复杂、工程量大、Bug 难调等诸多特点,在此感谢和我一起搜集资料、研读渐进光子映射算法的同学,在此感谢认真听了我的曲面求交算法后告诉我四分区面必须用 De Casteljau 算法的同学,在此感谢看到我渲染图给我提出问题的同学,在此感谢在我迷茫时给我鼓励的同学,在此感谢每天提醒我身体最要紧的父母,在此感谢助教对我问题认真的答疑,感谢所有帮助我的人!

7 程序使用

7.1 编译方式

注意:编译本工程前需要配置 C++ opencv 和 eigen 的库。 本工程内含 Makefile 文件, 在终端中输入 make 即可。

7.2 使用方式

在终端中输入./main 即开始渲染,第一步光线跟踪大约耗时 5 分钟,之后进行无限轮的渐进式光子映射过程,每一轮大约耗时 45 分钟,每轮结束都会更新 update.jpg 文件。

7.3 文件组织

- code 文件夹下为源代码、贴图文件和 makefike 文件
- picture 文件夹下为渲染结果
- obj 文件夹下为双三曲面生成的 obj 文件
- result.pdf 为说明文档

7.4 代码结构

- Vec3.h 内含三维 double 向量 Vec3 类

- Object.h 内含物品 Object 基类、球面 Sphere 类、平面 Plane 类、双三次曲面 Bezier 类、包围盒 AABB 类
 - Light.h 内含光源 Light 基类和点光源 DirectionalLight 类
 - Camera.h 内含相机 Camera 类
 - HitPoint.h 内含光子 Photon 类和撞击点 HitPoint 类
 - KdTree.h 内含 Kd 树节点 KdNode 类和 Kd 树 KdTree 类
 - Scene.h 内含场景 Scene 类
 - Texture.h 内含贴图 Texture 类
 - PPM.h 内含渐进式光子映射 PPM 类
 - teapotdata.h 内含双三曲面 Utah 壶控制点数据
 - Object.cpp 内含各种物体求交算法
 - KdTree.cpp 内含 Kd 树各种算法
 - PPM.cpp 内含光线追踪与渐进式光子映射算法
 - main.cpp 内含场景布局与程序的人口

参考文献

- [1] 计算机图形学, 胡事民, 2017.
- [2] 计算机图形学第二次习题课, 杨晟, 2017.
- [3] 各种论文、博客、网站, 2017.