Sample LATEXDocument with a Figure

G V V Sharma*

Consider a triangle with vertices,

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} \tag{1}$$

I. Vectors

Parameter	Value	Description
m _{AB}	$\begin{pmatrix} -7 \\ 5 \end{pmatrix}$	Direction vec of AB
m _{BC}	$\binom{5}{3}$	Direction vec of BC
m _{CA}	$\begin{pmatrix} 2 \\ -8 \end{pmatrix}$	Direction vec of CA
A - B	5.831	Lenght of AB
B - C	5.831	Lenght of BC
C - A	5.831	Lenght of CA
	3	non-collinear
n _{AB}	$\binom{5}{7}$	AB
c _{AB}	-13	
n _{BC}	$\begin{pmatrix} 3 \\ -5 \end{pmatrix}$	ВС
c _{BC}	-17	
n _{CA}	$\begin{pmatrix} -8 \\ -2 \end{pmatrix}$	CA
c _{CA}	-16	
Area	23	Area of $\triangle ABC$
cos(A)	0.761	cosine of $\angle A$
cos(B)	0.398	cosine of $\angle B$
cos(C)	0.291	cosine of $\angle C$

Fig. I.1. Triangle generated using python

Fig. II.2. Medians generated using python

II. MEDIAN

Parameter	Value	Description
D	$\begin{pmatrix} -1.5 \\ 2.5 \end{pmatrix}$	Midpoint AB
Е	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	Midpoint BC
F	$\begin{pmatrix} 0.5 \\ -1.5 \end{pmatrix}$	Midpoint CA
n _{AD}	$\begin{pmatrix} 6.5 \\ 4.5 \end{pmatrix}$	AD
c _{AD}	1.5	
n _{BE}	$\begin{pmatrix} -1 \\ -6 \end{pmatrix}$	BE
c _{BE}	-2	
n _{CF}	$\begin{pmatrix} -5.5 \\ 1.5 \end{pmatrix}$	CF
c_{CF}	0.5	
G	$\begin{pmatrix} -0\\0.333 \end{pmatrix}$	Centroid
$\frac{BG}{GE}$		Ratio of BG and GE
$\frac{CG}{GF}$	2	Ratio of CG and GF
$\begin{array}{c} \underline{BG} \\ \underline{GE} \\ \\ \underline{CG} \\ \underline{GF} \\ \\ \underline{CG} \\ \underline{GF} \end{array}$	1	Ratio of CG and GF
	2	A, D, G collinear
A - F	(3.5)	Direction vec of AF
$\mathbf{E} - \mathbf{D}$	$\left[\left(-2.5 \right) \right]$	Direction vec of ED
	TÁBLE II.2	1

CENTROID

III. ALTITUDE

Parameter	Value	Description
D ₁	$\begin{pmatrix} -1.059 \\ 2.764 \end{pmatrix}$	altitude foot from A
E ₁	$\binom{1.412}{2.353}$	altitude foot from B
\mathbf{F}_1	$\begin{pmatrix} -2.108 \\ -0.351 \end{pmatrix}$	altitude foot from C
$n_{\mathrm{AD_1}}$	$\binom{5}{3}$	AD_1
c_{AD_1}	3	
n _{BE1}	$\begin{pmatrix} 2 \\ -8 \end{pmatrix}$	BE_1
c_{BE_1}	-16	
n _{CF1}	$\begin{pmatrix} -7 \\ 5 \end{pmatrix}$	CF_1
c _{CF1}	13	
Н	$\begin{pmatrix} -0.522\\ 1.870 \end{pmatrix}$	Orthocenter

TABLE III.3 ORTHOCENTER

Fig. III.3. Altitudes generated using python

IV. PERPENDICULAR BISECTOR

n_{OA}	$\begin{pmatrix} -3.56 \\ -2.74 \end{pmatrix}$	Direction vec of OA
n _{OB}	(1.43) (4.26)	Direction vec of OB
n _{OC}	(4.43) -0.74)	Direction vec of OC
0	$\begin{pmatrix} 0.261 \\ -0.435 \end{pmatrix}$	Circumcenter
n _{OD}	$\begin{pmatrix} 7 \\ -5 \end{pmatrix}$	OD
c_{OD}	4	
n _{OE}	$\begin{pmatrix} -5 \\ -3 \end{pmatrix}$	OE
\mathbf{c}_{OE}	0	
n _{OF}	$\begin{pmatrix} -2\\8 \end{pmatrix}$	OF
c_{OF}	-4	
A - O		Norm of OA
B - O		Norm of OB
C - O	4.496	Norm of OC
R		Circumradius
∠BAC	40.42°	Angle ∠BAC
∠BOC	80.85°	Angle ∠BOC
	TADIE IV/	

TABLE IV.4 CIRCUMCENTER

Fig. IV.4. Perpendicular bisectors generated using python

Fig. IV.4. Circumcircle generated using python

V.	ANGULAR	BISECTOR

n _{IA}	(1.551) (1.056) 0.429	IA
n _{IB}	$\begin{pmatrix} 0.066 \\ 1.671 \end{pmatrix}$	IB
c_{IB}	1.404	
n _{IC}	$\begin{pmatrix} 1.484 \\ -0.615 \end{pmatrix}$	IC
$\mathbf{c}_{\mathbf{IC}}$	-0.975	
I	$\begin{pmatrix} -0.30\\ 0.85 \end{pmatrix}$	Incenter
D_3	$\begin{pmatrix} -1.35 \\ 2.59 \end{pmatrix}$	POC with AB
\mathbf{E}_3	$\begin{pmatrix} 1.66 \\ 1.34 \end{pmatrix}$	POC with BC
F ₃	$\begin{pmatrix} -1.48 \\ -0.80 \end{pmatrix}$	POC with CA
$ \mathbf{D}_3 - \mathbf{O} $		Norm of OD ₃
$ \mathbf{E}_3 - \mathbf{O} $		Norm of OE_3
$ \mathbf{F_3} - \mathbf{O} $	2.03	Norm of <i>OF</i> ₃
r		Inradius
∠BAI		Angle ∠ <i>BAI</i>
∠CAI	20.21°	Angle ∠CAI
$\begin{aligned} E_3 - O \\ F_3 - O \\ r \\ \angle \textit{BAI} \end{aligned}$		Norm of OE_3 Norm of OF_3 Inradius Angle $\angle BAI$

TABLE V.5 Incircle

Fig. V.5. Incircle generated using python