Big Bang Nucleosynthesis

[Supplement to Lecture VII]

⁴He

- Prediction: Y = 0.2482±0.0003±0.0006
- Usually estimate He abundance from H II region spectra (H I and He I recombination lines).
 - Determine temperature (self-consistent or using [O III]).
 - Model collisional excitation, fluorescence.
 - Optical depth effects. He I 2³S₁ is metastable.
 - Model reddening.
 - Model stellar He I absorption.
 - Ionization correction factors (H II and He I can coexist).
 - Extrapolate to zero metallicity to get primordial value.
- Major recent development is NIR spectroscopy to get 1.08 μm line as a density diagnostic.

Spectrum Of Extragalctic H II Region Showing Helium Lines [LBT (optical) + VLT (NIR)]

5

 $0.232 < Y_p < 0.258$ Olive & Skillman 2004 ApJ 617,29

He Abundances

Measured from H II Regions

0.2551 ± 0.0022 Izotov et al. (2014)

0.2449 ± 0.0040 Aver et al. (2015)

0.2446 ± 0.0029 Peimbert et al. (2016)

Measured from recombination (CMB anisotropies)

0.241 ± 0.025 Planck 2018 VI

0.246 \pm 0.035 Planck 2018 VI (allowing N_v free)

Theory

 0.2470 ± 0.0002 (with Planck $\Omega_{\rm b}h^2$)

^{*} Determinations are only marginally consistent with each other.

Examples of Deuterium Measurements

Location	D/H (ppm)	Method
Earth	150	
Venus	16000±2000	Mass spec. Donahue et al 1982
Mars	900±400	IR lines (HDO/H ₂ O) Owen et al 1988
Jupiter	22—50 50±20	IR lines (CH_3D/CH_4) Kunde et al 1982 Mass spec. Niemann et al 1996
Saturn	4—29	IR lines (CH ₃ D/CH ₄) Courtin et al 1984
Local ISM	~ 7 – 20	Absorption lines in stellar spectra. Depends on line of sight; see tabulation by Linsky et al 2006
Lyman-α absorbers	25.3±0.4	H vs D Lyman absorption lines in QSO spectra, Cooke et al. 2014

Warnings on D/H

 Not all D/H is the primordial value, or even that at the formation of the solar system.

Problems:

- Astration: burning of D to ³He etc. in stars.
- Chemical fractionation: At low temperatures D binds more tightly to molecules than H due to vibrational zero point energy.

$$XH^+ + D \rightarrow XD^+ + H$$

Fractionation due to depth of planetary gravity well.
 (This is why Jupiter was once used for BBN D/H.)

Intergalactic D/H

- Probably most reliable method is low-metallicity quasar absorption line systems.
 - Little processing by stars
 - Less opportunity to hide deuterium in molecules or dust grains
- Reduced mass of e⁻D⁺ is greater than e⁻p⁺ by 1 part in 3600, rescaling all hydrogenic energy levels. Equivalent to velocity shift of c/3600 = 80 km/s.
- Absorber value 25.3±0.4 ppm agrees with predicted 25.8±0.4 ppm.

Spectrum of SDSS J1358+6522

H vs. D Lines in the absorber

³He

- Difficulties:
 - Can be both produced and destroyed in stars.
 - No IGM measurement.
- Most(?) accepted measurement is 3 He $^{+}$ hyperfine line (λ =3.46cm) low-metallicity H II regions. Bania et al (2002) find 3 He/H < 15 ppm.
 - Directly observed 11±2 ppm, argue that stars would lead to net increase in ³He.
- Predicted from WMAP baryon abundance: 3 He/H = 10.5±0.3±0.3 ppm.

- Aside: Jupiter atmosphere ratio 3 He: 4 He = $(1.1\pm0.2)\times10^{-4}$ [Niemann et al 1996].

Lithium

- Can be measured in low-metallicity stars.
 - Two multiplets available for Li I: 6708Å (2s—2p)
 and 6104Å (2p—3d).
 - ⁷Li destroyed at high T, ⁷Li + p \rightarrow 2⁴He. Avoid lowmass stars due to deep convective zone.
 - Slight isotope shift of ⁶Li vs. ⁷Li.
- Li can also be produced via cosmic rays:
 - Spallation of CNO elements (also gives Be, B)
 - ⁴He + ⁴He collisions at low energies.

Li abundance evolution

The Lithium Problem(s)

- 7 Li: Predicted $(4.7\pm0.7)\times10^{-10}$.
 - See update from Cyburt et al. 2016.
- Observations give lower values
 - e.g. $(1.1-1.5) \times 10^{-10}$ from Asplund et al. 2006.
 - Other determinations are typically $(1-2)\times10^{-10}$.
- ⁶Li: there have been reports of a plateau at ~6×10⁻¹², although now mostly interpreted as due to line asymmetry from convection.
- Unclear whether ⁷Li problem indicates new physics, versus our understanding of stellar evolution.

