Appendix A

Num	Name	PCA	MDS	t-SNE	UMAP	Isomap	LE	LLE	LAMP	NMF	LDA	FA	SAM
1	Rauber_EuroVis_2016 [34]	1.0		√ V		150mmp		1					57.1.11
2	Amorim_PacificVis_2016 [1]			V			-						
3	Guo_PacificVis_2014 [13]						-		V				
4	Zhou_PacificVis_2016 [50]		V				-						
5	Shen_PacificVis_2020 [36]		L V	/									
6	Yue_TVCG_2019 [45]												—
7	Natsukawa_TVCG_2020 [25]	/	/			/		-					—
8	Choo_TVCG_2013 [10]							√		/			-
9	Fujiwara_TVCG_2020 [12]			- √	,		-				-		
10	Han_TVCG_2018 [14]			,			-				-		
11	Kahng_TVCG_2017 [17]												—
12	Rauber_TVCG_2017 [17]												
		,	,										— ,
13	Bernard_TVCG_2017 [3]	√	√										
14	Pezzotti_TVCG_2016 [31]		,			,		,					
15	Cavallo_TVCG_2018 [7]	_ √	√	- √				√					
16	Stahnke_TVCG_2015 [38]		√	,									
17	Kwon_TVCG_2018 [21]	√	√										
18	Somarakis_TVCG_2019 [37]												
19	Yuan_TVCG_2013 [44]	√											
20	Cao_TVCG_2011 [5]												
21	Elzen_TVCG_2015 [39]	√	√	√									
22	Oesterling_TVCG_2012 [27]	√											
23	Krueger_TVCG_2019 [19]	√			✓								
24	Liu_TVCG_2018 [24]	√		✓									
25	Wang_TVCG_2017 [40]	√											
26	Kwon_TVCG_2019 [20]			√									
27	Han_TVCG_2015 [15]			√									
28	Bach_TVCG_2015 [2]		√										
29	Zhao_TVCG_2019 [49]			√									
30	Kim_TVCG_2016 [18]			√									
31	Zhao_TVCG_2019 [48]			V									
32	Cheng_TVCG_2016 [9]		V										
33	Li_TVCG_2019 [23]			√							√		
34	Wang_TVCG_2017 [41]	V	√	V							V		
35	Oesterling_TVCG_2010 [28]										V		
36	Pobitzer_TVCG_2012 [32]											√	
37	Favelier_TVCG_2018 [11]						V						
38	Bhattacharya_TVCG_2017 [4]					İ	V						
39	Rossl_TVCG_2011 [35]		✓							l			
40	Orban_TVCG_2018 [29]		\ \ \					1					
41	Yang_TVCG_2020 [43]	_ <u>`</u>	_ ·										
42	Park_TVCG_2019 [30]												
43	Chaudhuri_TVCG_2014 [8]	V		v				<u> </u>		 			
44	Zhao_TVCG_2020 [47]	L V	\ \ \			l							
45	Castermans_TVCG_2018 [6]		V				_	1			_		
46	Nocaj_TVCG_2012 [26]		V	V			_	1			_	_	
47	Zeng_TVCG_2019 [46]	_	_ v				_	-				_	
48	Xu_TVCG_2019 [40]						-	-	-	-	-	-	
49	Höllt_TVCG_2017 [16]						-	-		-	-	-	—
50	Lekschas_TVCG_2017 [22]					-	-	1			-	-	
50							-	-	-			-	—
51	Zhou_TVCG_2018 [51]												
Total		14	19	30	2	2	2	2	1	1	4	1	1

Table 1: Dimensionality reduction approaches used for visual cluster analysis

REFERENCES

- E. Amorim, E. V. Brazil, L. G. Nonato, F. Samavati, and M. C. Sousa. Multidimensional projection with radial basis function and control points selection. In 2014 IEEE Pacific Visualization Symposium, pp. 209–216. IEEE, 2014.
- [2] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Dragicevic. Time curves: Folding time to visualize patterns of temporal evolution in data. *IEEE transactions on visualization and computer graphics*, 22(1):559–568, 2015.
- [3] J. Bernard, M. Hutter, M. Zeppelzauer, D. Fellner, and M. Sedlmair. Comparing visual-interactive labeling with active learning: An experimental study. *IEEE transactions on visualization and computer graphics*, 24(1):298–308, 2017.
- [4] A. Bhattacharya, J. Weissenböck, R. Wenger, A. Amirkhanov, J. Kastner, and C. Heinzl. Interactive exploration and visualization using metatracts extracted from carbon fiber reinforced composites. *IEEE transactions on visualization and computer graphics*, 23(8):1988–2002, 2016.
- [5] N. Cao, D. Gotz, J. Sun, and H. Qu. Dicon: Interactive visual analysis of multidimensional clusters. *IEEE transactions on visualization and* computer graphics, 17(12):2581–2590, 2011.
- [6] T. Castermans, K. Verbeek, B. Speckmann, M. A. Westenberg, R. Koopman, S. Wang, H. Van Den Berg, and A. Betti. Solarview: low distortion radial embedding with a focus. *IEEE transactions on visualization and computer graphics*, 25(10):2969–2982, 2018.
- [7] M. Cavallo and Ç. Demiralp. Clustrophile 2: Guided visual clustering analysis. *IEEE transactions on visualization and computer graphics*, 25(1):267–276, 2018.
- [8] A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and R. Wenger. Exploring flow fields using space-filling analysis of streamlines. *IEEE transactions on visualization and computer graphics*, 20(10):1392–1404, 2014.
- [9] S. Cheng and K. Mueller. The data context map: Fusing data and attributes into a unified display. *IEEE transactions on visualization and computer* graphics, 22(1):121–130, 2015.
- [10] J. Choo, C. Lee, C. K. Reddy, and H. Park. Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization. *IEEE transactions on visualization and computer graphics*, 19(12):1992–2001, 2013.
- [11] G. Favelier, N. Faraj, B. Summa, and J. Tierny. Persistence atlas for critical point variability in ensembles. *IEEE transactions on visualization and* computer graphics, 25(1):1152–1162, 2018.
- [12] T. Fujiwara, N. Sakamoto, J. Nonaka, K. Yamamoto, K.-L. Ma, et al. A visual analytics framework for reviewing multivariate time-series data with dimensionality reduction. *IEEE Transactions on Visualization and Computer Graphics*, 2020.
- [13] H. Guo, F. Hong, Q. Shu, J. Zhang, J. Huang, and X. Yuan. Scalable lagrangian-based attribute space projection for multivariate unsteady flow data. In 2014 IEEE Pacific Visualization Symposium, pp. 33–40. IEEE, 2014.
- [14] J. Han, J. Tao, and C. Wang. Flownet: A deep learning framework for clustering and selection of streamlines and stream surfaces. *IEEE* transactions on visualization and computer graphics, 2018.
- [15] Q. Han, D. Thom, M. John, S. Koch, F. Heimerl, and T. Ertl. Visual quality guidance for document exploration with focus+ context techniques. *IEEE Transactions on Visualization and Computer Graphics*, 2019.
- [16] T. Höllt, N. Pezzotti, V. van Unen, F. Koning, B. P. Lelieveldt, and A. Vilanova. Cyteguide: Visual guidance for hierarchical single-cell analysis. IEEE Transactions on Visualization and Computer Graphics, 24(1):739–748, 2017.
- [17] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau. A cti v is: Visual exploration of industry-scale deep neural network models. *IEEE transactions on visualization and computer graphics*, 24(1):88–97, 2017.
- [18] M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist. Topiclens: Efficient multi-level visual topic exploration of large-scale document collections. *IEEE transactions on visualization and computer graphics*, 23(1):151–160, 2016.
- [19] R. Krueger, J. Beyer, W.-D. Jang, N. W. Kim, A. Sokolov, P. K. Sorger, and H. Pfister. Facetto: Combining unsupervised and supervised learning for hierarchical phenotype analysis in multi-channel image data. *IEEE trans*actions on visualization and computer graphics, 26(1):227–237, 2019.
- [20] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon, J. Sun, and J. Choo. Retainvis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records. *IEEE transac*-

- tions on visualization and computer graphics, 25(1):299-309, 2018.
- [21] B. C. Kwon, B. Eysenbach, J. Verma, K. Ng, C. De Filippi, W. F. Stewart, and A. Perer. Clustervision: Visual supervision of unsupervised clustering. *IEEE transactions on visualization and computer graphics*, 24(1):142–151, 2017.
- [22] F. Lekschas, B. Bach, P. Kerpedjiev, N. Gehlenborg, and H. Pfister. Hipiler: visual exploration of large genome interaction matrices with interactive small multiples. *IEEE transactions on visualization and computer graphics*, 24(1):522–531, 2017.
- [23] Z. Li, C. Zhang, S. Jia, and J. Zhang. Galex: Exploring the evolution and intersection of disciplines. *IEEE transactions on visualization and* computer graphics, 26(1):1182–1192, 2019.
- [24] S. Liu, P.-T. Bremer, J. J. Thiagarajan, V. Srikumar, B. Wang, Y. Livnat, and V. Pascucci. Visual exploration of semantic relationships in neural word embeddings. *IEEE transactions on visualization and computer graphics*, 24(1):553–562, 2017.
- [25] H. Natsukawa, E. R. Deyle, G. M. Pao, K. Koyamada, and G. Sugihara. A visual analytics approach for ecosystem dynamics based on empirical dynamic modeling. *IEEE Transactions on Visualization and Computer Graphics*, 2020.
- [26] A. Nocaj and U. Brandes. Organizing search results with a reference map. IEEE Transactions on Visualization and Computer Graphics, 18(12):2546–2555, 2012.
- [27] P. Oesterling, C. Heine, G. H. Weber, and G. Scheuermann. Visualizing nd point clouds as topological landscape profiles to guide local data analysis. *IEEE Transactions on Visualization and Computer Graphics*, 19(3):514– 526, 2012.
- [28] P. Oesterling, G. Scheuermann, S. Teresniak, G. Heyer, S. Koch, T. Ertl, and G. H. Weber. Two-stage framework for a topology-based projection and visualization of classified document collections. In 2010 IEEE Symposium on Visual Analytics Science and Technology, pp. 91–98. IEEE, 2010.
- [29] D. Orban, D. F. Keefe, A. Biswas, J. Ahrens, and D. Rogers. Drag and track: A direct manipulation interface for contextualizing data instances within a continuous parameter space. *IEEE transactions on visualization* and computer graphics, 25(1):256–266, 2018.
- [30] J. H. Park, S. Nadeem, S. Boorboor, J. Marino, and A. E. Kaufman. Cmed: Crowd analytics for medical imaging data. *IEEE transactions on visualization and computer graphics*, 2019.
- [31] N. Pezzotti, B. P. Lelieveldt, L. van der Maaten, T. Höllt, E. Eisemann, and A. Vilanova. Approximated and user steerable tsne for progressive visual analytics. *IEEE transactions on visualization and computer graphics*, 23(7):1739–1752, 2016.
- [32] A. Pobitzer, A. Lež, K. Matković, and H. Hauser. A statistics-based dimension reduction of the space of path line attributes for interactive visual flow analysis. In 2012 IEEE Pacific Visualization Symposium, pp. 113–120. IEEE, 2012.
- [33] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing the hidden activity of artificial neural networks. *IEEE transactions on visualization and computer graphics*, 23(1):101–110, 2016.
- [34] P. E. Rauber, A. X. Falcão, A. C. Telea, et al. Visualizing time-dependent data using dynamic t-sne. 2016.
- [35] C. Rossl and H. Theisel. Streamline embedding for 3d vector field exploration. *IEEE Transactions on Visualization and Computer Graphics*, 18(3):407–420, 2011.
- [36] Q. Shen, Y. Wu, Y. Jiang, W. Zeng, K. Alexis, A. Vianova, and H. Qu. Visual interpretation of recurrent neural network on multi-dimensional time-series forecast. In 2020 IEEE Pacific Visualization Symposium (Pacific Vis), pp. 61–70. IEEE, 2020.
- [37] A. Somarakis, V. Van Unen, F. Koning, B. P. Lelieveldt, and T. Höllt. Imacyte: Visual exploration of cellular microenvironments for imaging mass cytometry data. *IEEE transactions on visualization and computer* graphics, 2019
- [38] J. Stahnke, M. Dörk, B. Müller, and A. Thom. Probing projections: Interaction techniques for interpreting arrangements and errors of dimensionality reductions. *IEEE transactions on visualization and computer graphics*, 22(1):629–638, 2015.
- [39] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reducing snapshots to points: A visual analytics approach to dynamic network exploration. *IEEE transactions on visualization and computer graphics*, 22(1):1–10, 2015.
- [40] B. Wang and K. Mueller. The subspace voyager: exploring highdimensional data along a continuum of salient 3d subspaces. *IEEE trans*-

- actions on visualization and computer graphics, 24(2):1204-1222, 2017.
- [41] Y. Wang, K. Feng, X. Chu, J. Zhang, C.-W. Fu, M. Sedlmair, X. Yu, and B. Chen. A perception-driven approach to supervised dimensional-ity reduction for visualization. *IEEE transactions on visualization and computer graphics*, 24(5):1828–1840, 2017.
- [42] K. Xu, Y. Wang, L. Yang, Y. Wang, B. Qiao, S. Qin, Y. Xu, H. Zhang, and H. Qu. Clouddet: Interactive visual analysis of anomalous performances in cloud computing systems. *IEEE transactions on visualization and* computer graphics, 26(1):1107–1117, 2019.
- [43] Y. Yang, M. Cordeil, J. Beyer, T. Dwyer, K. Marriott, and H. Pfister. Embodied navigation in immersive abstract data visualization: Is overview+detail or zooming better for 3d scatterplots? *IEEE Transactions on Visualization and Computer Graphics*, 2020.
- [44] X. Yuan, D. Ren, Z. Wang, and C. Guo. Dimension projection matrix/tree: Interactive subspace visual exploration and analysis of high dimensional data. *IEEE Transactions on Visualization and Computer Graphics*, 19(12):2625–2633, 2013.
- [45] X. Yue, J. Bai, Q. Liu, Y. Tang, A. Puri, K. Li, and H. Qu. sportfolio: Stratified visual analysis of stock portfolios. *IEEE Transactions on Visualization and Computer Graphics*, 26(1):601–610, 2019.
- [46] H. Zeng, X. Wang, A. Wu, Y. Wang, Q. Li, A. Endert, and H. Qu. Emoco: Visual analysis of emotion coherence in presentation videos. *IEEE transactions on visualization and computer graphics*, 26(1):927–937, 2019.
- [47] J. Zhao, M. Fan, and M. Feng. Chartseer: Interactive steering exploratory visual analysis with machine intelligence. *IEEE Transactions on Visual*ization and Computer Graphics, 2020.
- [48] J. Zhao, M. Karimzadeh, L. S. Snyder, C. Surakitbanharn, Z. C. Qian, and D. S. Ebert. Metricsvis: A visual analytics system for evaluating employee performance in public safety agencies. *IEEE Transactions on Visualization and Computer Graphics*, 26(1):1193–1203, 2019.
- [49] X. Zhao, Y. Wu, D. L. Lee, and W. Cui. iforest: Interpreting random forests via visual analytics. *IEEE transactions on visualization and computer* graphics, 25(1):407–416, 2018.
- [50] F. Zhou, J. Li, W. Huang, Y. Zhao, X. Yuan, X. Liang, and Y. Shi. Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data. In 2016 IEEE Pacific Visualization Symposium (Pacific Vis), pp. 128–135. IEEE, 2016.
- [51] Z. Zhou, L. Meng, C. Tang, Y. Zhao, Z. Guo, M. Hu, and W. Chen. Visual abstraction of large scale geospatial origin-destination movement data. *IEEE transactions on visualization and computer graphics*, 25(1):43–53, 2018.