

Agenda

- CONTEXTO
- PREGUNTA SMART
- Diccionario de datos
- Análisis Exploratorio
- Limpieza de Datos
- Análisis Estadístico (2)

Contexto

La pandemia de COVID-19 ha sido un reto sin precedentes para la salud pública global. A nivel mundial se han reportado "más de 767 millones de casos confirmados y más de 6,9 millones de muertes" hasta junio de 2023. La región de las Américas ha sido una de las más golpeadas con el 43% de las defunciones reportadas globalmente y más de 2.9 millones de defunciones hasta dicha fecha.

En Colombia la vacunación contra COVID-19 inició en febrero de 2021 dirigida inicialmente a grupos de riesgo y paulatinamente a la población general.

DATASET

Subconjunto de datos con información de 500.000 individuos vacunados de 4 ciudades de Colombia (Bogota, Cali, Medellin, Monteria).

NECESIDAD

Por recomendación de OMS, se busca estudiar diferencias epidemiológicas a nivel subnacional y las variaciones de la implementación de estrategias y políticas de vacunación.

Pregunta SMART

¿Existen diferencias significativas entre los individuos vacunados contra COVID-19 en 4 ciudades colombianas durante el periodo de 2021 a 2022 y sus desenlaces?

Specific: Se quiere saber si existen diferencias entre las personas que se vacunaron en las 4 ciudades colombianas.

Measurable: Se mide con pruebas estadísticas.

Action – oriented: Alcanzable con la información disponible y se motiva a realizar la investigación en otras ciudades o países.

Relevant: Se contribuye a la investigación con relación a las vacunas del COVID.

Time – bound: Se pretende estudiar en un plazo de 1 año.

Diccionario Datos

PersonaBasicaID: Se refiere al identificador de la persona vacunada, está totalmente anonimizado.

Sexo: El sexo de la persona vacuna.

Edad: Edad de la persona vacunada al momento de recibir la dosis.

FechaNacimiento: Corresponde a la fecha de nacimiento del individuo vacunado.

DepartamentoAplicacion: Departamento en donde recibo la dosis el individuo vacunado.

MunicipioAplicacion: Municipio en donde recibo la dosis el individuo vacunado.

Biológico: El biológico que se le aplico a la persona vacunada en cada una de las dosis.

FechaApliacion: Fecha cuando recibió la correspondiente dosis de la vacuna.

NumDosis: Indica cual dosis le fue suministrada a la persona vacunada.

CAC_VIH: Indica 1 si la persona vacunada tiene VIH, en caso contrario 0.

CAC_HTA: Indica 1 si la persona vacunada tiene Hipertensión Arterial, en caso contrario 0.

CAC_Diabetes: Indica 1 si la persona vacunada tiene Diabetes, en caso contrario 0.

CAC_PEH: Indica 1 si la persona vacunada tiene Enfermedades huérfanas, en caso contrario 0.

CAC_Cancer: Indica 1 si la persona vacunada tiene Cáncer, en caso contrario 0.

CAC_Artritis: Indica 1 si la persona vacunada tiene Artritis, en caso contrario 0.

Confirmado: Indica 1 si el individuo vacunado resulto positivo para COVID-19, en caso contrario 0.

FechaInicioSintomas: Es la fecha en la que el individuo resulto positivo.

ServicioMayorComplejidad: Indica 1 si la persona requirió internación en una entidad hospitalaria, 0 en caso contrario.

FechaIngresoServicioMayorComplejidad: Fecha en la que la persona fue internada en una entidad hospitalaria.

NDEstadoVital: Indica 1 si la persona falleció a causa del COVID-19, 0 en caso contrario.

NDFechaDefuncion: Fecha en la que la persona falleció por COVID-19.

EstadoAfiliacion: Es el estado de afiliación del individuo vacunado al Sistema General de Seguridad Social en Salud.

Regimen: Es el régimen del individuo vacunado.

Análisis Exploratorio

Estructura

Variables categoricas

Outliers

dtype: int64

Estandarización Fechas

DD-MM-YYYY

Valores Perdidos

Sexo 522 FechaNacimiento 68

FechaNacimiento 68 .mean()* Edad (Calculo y Discretizacion)

Normalización

05001 – Medellín 05 - Antioquia

. random.choice()

Análisis Exploratorio

Estructura

Variables categoricas

Outliers

Sexo Requiere Limpieza

Municipio Aplicación

Por naturaleza de los datos se omite Departamento

Biólogico

Class BiologicoTransformer - Estandarizar

BiológicoCasos confirmados que tienen Biológico

NumDosis

Class DosisTransformer - Estandarizar

NumDosis Casos confirmados con vacunación

Comorbilidades

Desenlaces

Análisis Exploratorio

Estructura

Variables categoricas

Outliers

	PersonaBasicalD	Edad	NumDosis	CAC_VIH	CAC_HTA	CAC_Diabetes	CAC_PEH	CAC_Cancer	CAC_Artritis	EdadAplicacion
count	1,134,483.00	1,134,483.00	1,134,483.00	1,134,483.00	1,134,483.00	1,134,483.00	1,134,483.00	1,134,483.00	1,134,483.00	1,134,483.00
mean	55,942,567.09	44.91	0.83	0.00	0.15	0.05	0.00	0.01	0.00	43.49
std	43,540,300.43	20.12	1.18	0.07	0.35	0.21	0.04	0.10	0.06	19.99
min	2.00	2.00	-2.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
25%	20,773,274.50	29.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.00
50%	41,547,199.00	44.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	42.00
75%	100,005,058.00	60.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	59.00
max	146,087,548.00	198.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	121.00

```
#funcion para encontrar IQR (rango intercuartil)
def find_outlier_IQR(df):
    q1=df.quantile(0.25)
    q3=df.quantile(0.75)
    IQR = q3-q1
    print(f'Q1: {q1}, Q3: {q3}, IQR: {IQR}')
    outliers = df[ ((df<(q1-1.5*IQR)) | (df>(q3+1.5*IQR))) ]
    return outliers
```

Outliers

Limpieza de Datos

Estandarización

.str.replace()

Sexo
FEMENINO 54.51%
MASCULINO 45.47%
NO DEFINIDO 0.03%
INDEFINIDO 0.0%

Sexo
FEMENINO 54.51%
MASCULINO 45.47%
INDEFINIDO 0.03%

dtype: object

dtype: object

Imputación

.random.choice()

Sexo
FEMENINO 618081
INDEFINIDO 291
MASCULINO 515550
Name: Sexo, dtype: int64

Sexo
FEMENINO 618349
INDEFINIDO 291
MASCULINO 515770
Name: Sexo, dtype: int64

```
df['Sexo'].unique()
array(['MASCULINO', 'FEMENINO', nan, 'NO DEFINIDO', 'INDEFINIDO'],
       dtype=object)
valores nulos por columna = df.isna().sum()
columnas con valores no nulos = valores nulos por columna[valores nulos por columna != 0]
print(columnas con valores no nulos)
Sexo
          488
dtype: int64
# Calcula la distribución de los valores existentes en la columna 'Sexo'
sexo distribution = df['Sexo'].value counts(normalize=True)
# Imputa los valores NaN en función de la distribución
df['Sexo'].fillna(pd.Series(np.random.choice(sexo distribution.index, p=sexo distribution.values, size=len(df))), inplace=True)
# Verifica que los valores NaN se hayan reemplazado correctamente
print(df['Sexo'].unique())
['MASCULINO' 'FEMENINO' 'INDEFINIDO']
```

Análisis Estadístico

Caso 1 : Relación entre edad y desenlace.

Caso 2: Relación entre desenlace y sexo.

Caso 1 : Relación edad - desenlace

CONFIRMADO

CONFIRMADO

Población: Confirmado Positivo Estadístico SW= 0.9806710481643677, Valor-p= 0.0 Estadístico AD= 1803.0124239556608, Valor crítico (sign. 5%)= 0.787

Población: No Confirmado positivo

Estadístico SW= 0.985482931137085, Valor-p= 0.0

Estadístico AD= 4039.2869605114684, Valor crítico (sign. 5%)= 0.787

Normalidad: Rechazo Hipotesis de normalidad

Estadístico W= 7592.293172863293, Valor-p= 0.0

Homogeneidad de Varianza: Rechazo Hipotesis de homogeneidad

Prueba U de Mann-Whitney

Estadístico W= 22637133770.5, Valor-p= 3.740289196574841e-217

Se Rechaza la hipótesis, por tanto hay diferencia suficiente evidencia para decir que hay diferencia entre confirmados y no confirmados.

Caso 1 : Relación edad - desenlace

HOSPITALIZADO

HOSPITALZIADO

Población: Hospitalizado

Estadístico SW= 0.9816091060638428, Valor-p= 0.0

Estadístico AD= 837.409109200089, Valor crítico (sign. 5%)= 0.787

Población: No Hospitalizado

Estadístico SW= 0.9861602783203125, Valor-p= 0.0

Estadístico AD= 4321.834139822866, Valor crítico (sign. 5%)= 0.787

Normalidad: Rechazo Hipotesis de normalidad

Estadístico W= 6599.015596648111, Valor-p= 0.0

Estadístico t= 3.925659380989586, Valor-p= 8.65238266075685e-05

Homogeneidad de Varianza: Rechazo Hipotesis de homogeneidad

Prueba U de Mann-Whitney

Estadístico W= 13029501818.0, Valor-p= 2.85443841538703e-110

Se Rechaza la hipótesis , por tanto, hay diferencia significativa entre hospitalizados y no hospitalziados

Caso 1 : Relación edad - desenlace

MUERTE

Prueba U de Mann-Whitney

Estadístico W= 10688816539.0, Valor-p= 0.0

Se Rechaza la hipótesis , por tanto, hay diferencia significativa entre Fallecidos y no Fallecidos.

Análisis Estadístico

Caso 1 : Relación entre edad y desenlace.

CONFIRMADO

Prueba χ²

Estadístico X^2= 390.79136348682846, Valor-p= 5.566688434622782e-87

Se tiene suficiente evidencia para determinar que SI HAY relación entre el desenlace CONFIRMADO y el sexo

Caso 2 : Relación Desenlace - Sexo

CONFIRMADO

HOSPITALIZADO

Estadístico X^2= 185.82159909819887, Valor-p= 2.596796354035364e-42

Se tiene suficiente evidencia para determinar que SI HAY relación entre el desenlace Hospitalizado y el sexo

Caso 2 : Relación Desenlace - Sexo

HOSPITALIZADO

FALLECIDO

Prueba χ²

Estadístico X^2= 110.86741449407229, Valor-p= 6.326337054430855e-26

Se tiene suficiente evidencia para determinar que SI HAY relación entre el desenlace Fallecido y Sexo

Caso 2 : Relación Desenlace - Sexo

FALLECIDO

Conclusión

¿Existen diferencias significativas entre los individuos vacunados contra COVID-19 en 4 ciudades colombianas durante el periodo de 2021 a 2022 y sus desenlaces?

¡Muchas Gracias!

