Quantum Computing - Assignment 3

Kishlaya Jaiswal

November 18, 2020

Exercise 1

Let $|\psi\rangle_{AB} \in H_A \otimes H_B$ be a pure state. Assume wlog $dim(H_A) \geq dim(H_B) = m$. By Schmidt decomposition there exist orthonormal bases $\{u_i \mid i \leq m\} \subset H_A$ and $\{v_i \mid i \leq m\} \subset H_B$ such that

$$|\psi\rangle_{AB} = \sum_{i} \alpha_i |u_i\rangle \otimes |v_i\rangle$$

Claim $|\psi\rangle_{AB}$ is entangled iff more than one Schmidt coefficients $\{\alpha_i \mid i \leq m\}$ are non-zero

Proof. Firstly, it is clear that at least one Schmidt coefficient is non-zero because otherwise $|\psi\rangle_{AB}=0$ is not a valid pure state.

So suppose exactly one Schmidt coefficient α_i is non-zero, then

$$|\psi\rangle_{AB} = \alpha_i |u_i\rangle_A \otimes |v_i\rangle_B$$

is a product state.

Conversely, suppose more than one Schmidt coefficient is non-zero, say α_i and α_j where $i \neq j$. We need to show that $|\psi\rangle_{AB}$ is entangled. For the sake of contradiction assume that $|\psi\rangle_{AB} = |\phi\rangle_A \otimes |\varphi\rangle_B$ is a product state. Then we have

$$\begin{split} |\phi\rangle_{A}\otimes|\varphi\rangle_{B} &= \sum_{i}\alpha_{i}\left|u_{i}\right\rangle\otimes\left|v_{i}\right\rangle \\ \Longrightarrow &\left(\left\langle u_{i}\right|\otimes\left\langle v_{i}\right|\right)\left(\left|\phi\right\rangle_{A}\otimes\left|\varphi\right\rangle_{B}\right) = \left(\left\langle u_{i}\right|\otimes\left\langle v_{i}\right|\right)\left(\sum_{i}\alpha_{i}\left|u_{i}\right\rangle\otimes\left|v_{i}\right\rangle\right) \\ \Longrightarrow &\left\langle u_{i}|\phi\rangle\left\langle v_{i}|\varphi\right\rangle = \alpha_{i} \end{split}$$

Similarly, $\langle u_j | \phi \rangle \langle v_j | \varphi \rangle = \alpha_j$. Furthermore,

$$\begin{split} |\phi\rangle_A\otimes|\varphi\rangle_B &= \sum_i \alpha_i\,|u_i\rangle\otimes|v_i\rangle\\ \Longrightarrow &\left(\left\langle u_i\right|\otimes\left\langle v_j\right|\right)\left(\left.|\phi\rangle_A\otimes\left|\varphi\rangle_B\right.\right) = \left(\left\langle u_i\right|\otimes\left\langle v_j\right|\right)\left(\sum_i \alpha_i\,|u_i\rangle\otimes|v_i\rangle\right)\\ \Longrightarrow &\left\langle u_i|\phi\rangle\left\langle v_j|\varphi\right\rangle = 0 \end{split}$$

Thus, we get $\alpha_i \alpha_j = \langle u_i | \phi \rangle \langle v_i | \varphi \rangle \langle u_j | \phi \rangle \langle v_j | \varphi \rangle = 0$. That is both α_i and α_j can't be non-zero, leading us to a contradiction.

Exercise 2

Proof. We will prove that Trace is a commutative operator, that is Tr(AB) = Tr(BA)

$$\begin{split} \operatorname{Tr}(AB) &= \sum_{i} \left\langle i \right| AB \left| i \right\rangle \\ &= \sum_{i} \left\langle i \right| A \left(\sum_{j} \left| j \right\rangle \left\langle j \right| \right) B \left| i \right\rangle \\ &= \sum_{i} \sum_{j} \left\langle i \right| A \left| j \right\rangle \left\langle j \right| B \left| i \right\rangle \\ &= \sum_{j} \sum_{i} \left\langle j \right| B \left| i \right\rangle \left\langle i \right| A \left| j \right\rangle \\ &= \sum_{j} \left\langle j \right| B \left(\sum_{i} \left| i \right\rangle \left\langle i \right| \right) A \left| j \right\rangle \\ &= \sum_{j} \left\langle j \right| BA \left| j \right\rangle \\ &= \operatorname{Tr}(BA) \end{split}$$

Now Tr(A(BC)) = Tr((BC)A) and Tr(B(CA)) = Tr((CA)B). Since matrix multiplication is associative we get Tr(ABC) = Tr(BCA) = Tr(CAB)

$$\operatorname{Tr}_{B}(\left|x_{1}\right\rangle\left\langle x_{2}\right|_{A}\otimes\left|y_{1}\right\rangle\left\langle y_{2}\right|_{B})=\sum_{i}I_{A}\otimes\left\langle i\right|_{B}\left(\left|x_{1}\right\rangle\left\langle x_{2}\right|_{A}\otimes\left|y_{1}\right\rangle\left\langle y_{2}\right|_{B}\right)I_{A}\otimes\left|i\right\rangle_{B}$$

Using the rule $(A \otimes B).(C \otimes D) = AB \otimes CD$, we get

$$\begin{split} \operatorname{Tr}_{B}(|x_{1}\rangle \left\langle x_{2}|_{A} \otimes |y_{1}\rangle \left\langle y_{2}|_{B}\right) &= \sum_{i} |x_{1}\rangle \left\langle x_{2}|_{A} \otimes \left\langle i|_{B} |y_{1}\rangle \left\langle y_{2}|_{B} |i\rangle_{B} \right. \\ &= \left|x_{1}\rangle \left\langle x_{2}|_{A} \otimes \sum_{i} \left\langle i|_{B} |y_{1}\rangle \left\langle y_{2}|_{B} |i\rangle_{B} \right. \\ &= \left|x_{1}\rangle \left\langle x_{2}|_{A} \otimes \operatorname{Tr}(|y_{1}\rangle \left\langle y_{2}|_{B}\right) \\ &= \left|x_{1}\rangle \left\langle x_{2}|_{A} \otimes \operatorname{Tr}(\left\langle y_{2}|y_{1}\rangle\right) \right. \text{(Trace is commutative)} \\ &= \left|x_{1}\rangle \left\langle x_{2}|_{A} \left\langle y_{2}|y_{1}\right\rangle \end{split}$$

Exercise 3

Let $N: \mathcal{L}(H) \to \mathcal{L}(H)$, $N(\rho) = (1-p)\rho + pZ\rho Z$. We will show that N is a quantum channel, that is N is a linear, trace-preserving and completely positive operator.

Claim N is linear

Proof.

$$N(\rho_1 + \lambda \rho_2) = (1 - p)(\rho_1 + \lambda \rho_2) + pZ(\rho_1 + \lambda \rho_2)Z$$

$$= (1 - p)(\rho_1) + (1 - p)(\lambda \rho_2) + pZ(\rho_1)Z + pZ(\lambda \rho_2)Z$$

$$= ((1 - p)\rho_1 + pZ\rho_1Z) + \lambda((1 - p)\rho_2 + pZ\rho_2Z)$$

$$= N(\rho_1) + \lambda N(\rho_2)$$

Claim N is trace preserving

Proof.

$$\begin{aligned} \operatorname{Tr}(N(\rho)) &= \operatorname{Tr}((1-p)\rho + pZ\rho Z) \\ &= (1-p)\operatorname{Tr}(\rho) + p\operatorname{Tr}(Z\rho Z) \\ &= (1-p)\operatorname{Tr}(\rho) + p\operatorname{Tr}(Z^2\rho) \\ &= (1-p)\operatorname{Tr}(\rho) + p\operatorname{Tr}(\rho) \\ &= \operatorname{Tr}(\rho) \end{aligned}$$

Claim $\forall E, \operatorname{Id}_E \otimes N : \mathcal{L}(H_E \otimes H) \to \mathcal{L}(H_E \otimes H)$ is a positive operator

Proof. Let $\theta \in \mathcal{L}(H_E \otimes H)$ be any PSD matrix. Want to show that $(\mathrm{Id}_E \otimes N)(\theta)$ is also PSD matrix. Since θ is a PSD matrix, we have $\forall x \ \langle x | \theta | x \rangle \geq 0$

Identify $\mathscr{L}(H_E \otimes H) \cong \mathscr{L}(H_E) \otimes \mathscr{L}(H)$ and fix any basis $\{\sigma_i \mid i \leq m\}$ for $\mathscr{L}(H_E)$ and $\{\rho_j \mid j \leq n\}$ for $\mathscr{L}(H)$, then $\theta = \sum_{i,j} c_{ij} (\sigma_i \otimes \rho_j)$ for some $c_{ij} \in \mathbb{C}$.

$$(\operatorname{Id}_E \otimes N)(\theta) = \sum_{i,j} c_{ij} (\operatorname{Id}_E \otimes N)(\sigma_i \otimes \rho_j) = \sum_{i,j} c_{ij} \sigma_i \otimes N(\rho_j)$$

$$\langle x|\operatorname{Id}_{E} \otimes N(\theta)|x\rangle = \sum_{i,j} c_{ij} \langle x|\sigma_{i} \otimes N(\rho_{j})|x\rangle$$
$$= \sum_{i,j} c_{ij} (1-p) \langle x|\sigma_{i} \otimes \rho_{j}|x\rangle + \sum_{i,j} c_{ij} p \langle x|\sigma_{i} \otimes Z\rho_{j}Z|x\rangle$$

But we can re-write

$$\sigma \otimes Z \rho Z = (I_E \otimes Z)(\sigma \otimes \rho)(I_E \otimes Z)$$
$$\implies \langle x | \sigma \otimes Z \rho Z | x \rangle = \langle y | \sigma \otimes \rho | y \rangle$$

where $|y\rangle = (I_E \otimes Z)|x\rangle$ (because $I_E \otimes Z$ is Hermitian). Hence we get

$$\langle x|\operatorname{Id}_{E}\otimes N(\theta)|x\rangle = (1-p)\sum_{i,j}c_{ij}\langle x|\sigma_{i}\otimes\rho_{j}|x\rangle + p\sum_{i,j}c_{ij}\langle y|\sigma_{i}\otimes\rho_{j}|y\rangle = (1-p)\langle x|\theta|x\rangle + p\langle y|\theta|y\rangle \geq 0$$

that is N is a completely positive operator.

We begin by noting the following relations:

$$ZXZ = -X$$
, $ZYZ = -Y$

because

$$\bullet \ ZXZ \left| 0 \right\rangle = ZX \left| 0 \right\rangle = Z \left| 1 \right\rangle = - \left| 1 \right\rangle = -X \left| 0 \right\rangle \ \text{and} \ ZXZ \left| 1 \right\rangle = -ZX \left| 1 \right\rangle = -Z \left| 0 \right\rangle = - \left| 0 \right\rangle = -X \left| 1 \right\rangle$$

•
$$ZYZ |0\rangle = ZY |0\rangle = iZ |1\rangle = -i |1\rangle = -Y |0\rangle$$
 and $ZYZ |1\rangle = -ZY |1\rangle = iZ |0\rangle = i |0\rangle = -Y |1\rangle$

Thus, we get N(X) = (1 - p)X + pZXZ = (1 - 2p)X and N(Y) = (1 - p)Y + pZYZ = (1 - 2p)Y and N(Z) = (1 - p)Z + pZZZ = Z. Hence

$$\begin{split} N\left(\frac{1}{2}(I + r_xX + r_yY + r_zZ)\right) &= \frac{1}{2}(N(I) + r_xN(X) + r_yN(Y) + r_zN(Z)) \\ &= \frac{1}{2}(I + r_x(1 - 2p)X + r_y(1 - 2p)Y + r_zZ) \end{split}$$

Exercise 4

Claim Let A be any linear operator over a \mathbb{C} -vector space, then we can write A=B+iC for some B,C Hermitian operators

Proof. Consider
$$B = (A + A^{\dagger})/2$$
 and $C = (A - A^{\dagger})/2i$ then $A = B + iC$ is clear.
Moreover, $B^{\dagger} = (A^{\dagger} + A)/2 = B$ and $C^{\dagger} = -(A^{\dagger} - A)/2i = C$, as desired.

Claim Let A be a Hermitian operator then $\forall v, \langle v|A|v \in \mathbb{R}$

Proof. Using spectral theorem, we know that there exists an orthonormal eigenbasis $\{v_i \mid i \leq n\}$ such that $Av_i = \lambda_i v_i$ where $\lambda_i \in \mathbb{R}, \forall i \leq n$

Now for any v, write $v = \sum_i c_i v_i$ and then

$$\langle v|A|v\rangle = \sum_{i} |c_{i}|^{2} \lambda_{i} \in \mathbb{R}$$

Claim Let A be any linear operator over a \mathbb{C} -vector space such that $\forall v, \langle v|A|v \rangle \in \mathbb{R}$. Then A is a Hermitian operator.

Proof. We write A = B + iC with B, C Hermitian. Since B, C are Hermitian, $\langle v|B|v\rangle \in \mathbb{R}$ and $\langle v|C|v\rangle \in \mathbb{R}$. Therefore $\forall v$

$$\langle v|A|v\rangle = \langle v|B|v\rangle + i\langle v|C|v\rangle \in \mathbb{R} \implies \langle v|C|v\rangle = 0$$

Hence $C = 0 \implies A = B$ which is Hermitian.

Finally, let A be a positive operator, which means $\forall v, \langle v|A|v \rangle \geq 0$. That is $\forall v, \langle v|A|v \rangle \in \mathbb{R}$. Using above claim, we get that A is Hermitian.