Learning Relational Features with Backward Random Walks

Ni Lao, Google Inc., <u>nlao@google.com</u>
Einat Minkov, University of Haifa, <u>einatm@is.haifa.ac.il</u>
William W. Cohen, Carnegie Mellon University, <u>wcohen@cs.cmu.edu</u>

Knowledge Base Inference Coordinate Term Extraction

Example Inference rules

 $AthletePlaysForTeam(s,z) \land \textit{TeamPlaysInLeague}(z,t) \\ \rightarrow \textit{AthletePlaysForLeague}(s,t)$

Constant path	Interpretation		
r=athletePlaysInLeague			
$P(mlb \rightarrow t; \phi)$	Bias toward MLB.		
$P(boston_braves \rightarrow t;$	The leagues played by		
$\langle athletePlaysForTeam^{-1},$	Boston Braves university		
$athletePlaysInLeague\rangle)$	team members.		
r=competes With			
$P(google \rightarrow t; \phi)$	Bias toward Google.		
$P(google \rightarrow t;$	Companies which compete		
(competesWith, competesWith) with Google's competitors.		
r=teamPlaysInLeague			
$P(ncaa \rightarrow t; \phi)$	Bias toward NCAA.		
$P(boise_state \rightarrow t;$	The leagues played by Boise		
$\langle teamPlaysInLeague \rangle)$	State university teams.		

$P(s \rightarrow t; W^{-1}, conj_and^{-1}, W, W^{-1}, conj_and, W)$
$P(s \to t; W^{-1}, nn, W, W^{-1}, appos^{-1}, W)$
$P(s \to t; W^{-1}, appos, W, W^{-1}, appos^{-1}, W)$

Constant path	Interpretation
$P(said \leftarrow t; W^{-1}, nsubj, W)$	The subjects of 'said' or 'say'
$P(says \leftarrow t; W^{-1}, nsubj, W)$	are likely to be a person name.
$P(vbg \leftarrow t; POS^{-1}, nsubj, W)$	Subjects, proper nouns, and
$P(nnp \leftarrow t; POS^{-1}, W)$	nouns with apposition or
$P(nn \leftarrow t; POS^{-1}, appos^{-1}, W)$	possessive constructions, are
$P(nn \leftarrow t; POS^{-1}, poss, W)$	likely to be person names.

Path Ranking Algorithm

Path-Constrained Random Walks

Distant Supervision

Path Finding Time

Prediction Quality

Main Results

	KB inference		NE extraction	
	Time	MAP	Time	MAP
RWR	25.6	0.429	7,375	0.017
FOIL	18918.1	0.358	366,558	0.167
PRA	10.2	0.477	277	0.107
CoR-PRA-no-const	16.7	0.479	449	0.167
$CoR-PRA-const_2$	23.3	0.524	556	0.186
$CoR-PRA-const_3$	27.1	0.530	643	0.316

Combine Forward & Sackward Random Walks

$$P(s \to t; \pi) = \sum_{z} P(s \to z; \pi') P(z \to t; r)$$

$$P(t \leftarrow s; \pi) = \sum_{z} P(t \leftarrow z; \pi'^{-1}) P(z \leftarrow s; r^{-1})$$

Algorithm

end for

end for

Algorithm 1 Cor-PRA Feature Induction ¹ **Input** training queries $\{(s_i, G_i)\}, i = 1...n$ for each query (s, G) do 1. Path exploration (i). Apply *path-finding* to generate paths \mathcal{P}_s up to length ℓ that originate at s_i . (ii). Apply path-finding to generate paths \mathcal{P}_t up to length ℓ that originate at every $t_i \in G_i$. 2. Calculate random walk probabilities: for each $\pi_s \in \mathcal{P}_s$: do compute $P(s \to x; \pi_s)$ and $P(s \leftarrow x; \pi_s^{-1})$ end for for each $\pi_t \in \mathcal{P}_t$: do compute $P(G \to x; \pi_t)$ and $P(G \leftarrow x; \pi_t^{-1})$ end for 3. Generate constant paths candidates: for each $(x \in N, \pi \in \mathcal{P}_t)$ with $P(G \to x | \pi_t) > 0$ do propose path feature $P(c \leftarrow t; \pi_t^{-1})$ setting c = x, and update its statistics by coverage += 1. end for for each $(x \in N, \pi \in \mathcal{P}_t)$ with $P(G \leftarrow x | \pi_t^{-1}) > 0$ propose $P(c \to t; \pi_t)$ setting c = x and update its statistics by coverage += 1end for 4. Generate long (concatenated) path candidates: for each $(x \in N, \pi_s \in \mathcal{P}_s, \pi_t \in \mathcal{P}_t)$ with $P(s \rightarrow$ $x|\pi_s) > 0$ and $P(G \leftarrow x|\pi_t^{-1}) > 0$ do propose long path $P(s \to t; \pi_s.\pi_t^{-1})$ and update its statistics by coverage += 1, and precision += $P(s \to x | \pi_s) P(G \leftarrow x | \pi_t^{-1}) / n.$ end for for each $(x \in N, \pi_s \in \mathcal{P}_s, \pi_t \in \mathcal{P}_t)$ with $P(s \leftarrow$ $x|\pi_s^{-1}| > 0$ and $P(G \to x|\pi_t) > 0$ do propose long path $P(s \leftarrow t; \pi_t.\pi_s^{-1})$ and update its statistics by coverage += 1, and precision += $P(s \leftarrow x | \pi_s^{-1}) P(G \rightarrow x | \pi_t) / n.$