Relational Algebra

COMP 3380 - Databases: Concepts and Usage

Department of Computer Science The University of Manitoba Fall 2006

COMP 3380 (Fall 2006), Leung

1

Relational Query Languages

- Query languages (QLs): Allow manipulation and retrieval of data from a DB
- * Relational model supports simple & powerful QLs:
 - Strong formal foundation based on logic
 - Allows for much optimization
- ❖ Query languages ≠ programming languages
 - QLs not intended to be used for complex calculations
 - QLs support easy & efficient access to large data sets

COMP 3380 (Fall 2006), Leung

Formal Relational Query Languages

- Two mathematical query languages form the basis for "real" languages (e.g., SQL), and for implementation:
 - Relational Algebra: User specifies what data is required & how to get those data
 - Procedural (or operational)
 - Very useful for representing execution plans
 - **Relational Calculus:** User specifies what data is required *without specifying how to get those data*
 - Declarative (i.e., non-procedural)

COMP 3380 (Fall 2006), Leung

3

Preliminaries

- * A query is applied to relation instances, and the result of a query is also a relation instance
 - Schemas of input relations for a query are fixed
 - The schema for the result of a given query is fixed
 Determined by definition of query language constructs
- ❖ Positional *vs.* named-attribute notation:
 - Positional notation easier for formal definitions, named-attribute notation more readable.
 - Both used in SQL

COMP 3380 (Fall 2006), Leung

Ŀ

Relational Algebra

- * Basic operations:
 - Selection (σ): Selects a subset of rows from a relation
 - **Projection** (π): Extracts wanted columns from a relation
 - Cartesian-product (x): Allows us to combine two relations
 - **Set-difference (-):** Returns the tuples that are in R1 but not in R2
 - **Union** (\cup): Returns the tuples that are in R1 or R2

COMP 3380 (Fall 2006), Leung

5

Relational Algebra

- Additional operations:
 - Intersection (∩)
 - Join (⋈)
 - Division (÷)
 - Rename (ρ)
 - Assignment (←)

Not essential, but (very) useful

 Since each operation returns a relation, operations can be *composed* (Algebra is "closed")

COMP 3380 (Fall 2006), Leung

Selection

- * **Selects rows** that satisfy the *selection condition*
- \bullet $\sigma_p(R)$ = {*t* | *t* ∈ *R* and *p*(*t*)} where *p* is a formula in propositional calculus consisting of terms connected by \land , \lor , or \neg . Each term is either
 - attr₁ op attr₂, or
 - attr op constant,

where *op* is one of =, \neq , >, \geq , <, \leq

COMP 3380 (Fall 2006), Leung

-

Selection

- * No duplicates in result
- Schema of result identical to schema of the (only) input relation
- Result relation can be the input for another relational algebra operation (Operator composition)
- ❖ E.g., consider *Acct* (*acctNum*, *branchName*, *bal*). Find all those tuples of *Acct* about the Vancouver branch:

 $\sigma_{branchName='Vancouver'}(Acct)$

COMP 3380 (Fall 2006), Leung

Example: Selection

❖ Relation *R*:

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 $\star \sigma_{A=B \wedge D > 5}(R)$:

•	Α	В	С	D
	α	α	1	7
	β	β	23	10

COMP 3380 (Fall 2006), Leung

9

Projection

- Projects columns, i.e., extracts only attributes that are in the *projection list*
- * $\pi_{A1, A2, ..., Ak}$ (*R*) where A1, A2, ..., A*k* are attributes in the relation *R*
- Useful when we do not want to retrieve unnecessary data, thereby reducing the query cost and/or hiding irrelevant data from the user
- Projection operator has to eliminate duplicates, since relations are sets

COMP 3380 (Fall 2006), Leung

Projection

- * *Schema* of result contains exactly the attributes in the projection list, with the same names that they had in the (only) input relation.
- ❖ E.g., consider Acct (acctNum, branchName, bal). List the account number and balance for each account (i.e., do not list the branchName attribute of Acct):

$$\pi_{acctNum, bal}$$
 (Acct)

COMP 3380 (Fall 2006), Leung

11

Example: Projection

❖ Relation *R*:

* $\pi_{A,C}(R)$:

COMP 3380 (Fall 2006), Leung

Union

- * $R \cup S$ takes two input relations R and S, which must be **union-compatible**
 - (i.e., same number of attributes &
 - "corresponding" attributes have the same domain), & returns a relation instance containing all tuples that occur in *R* or *S*
- $R \cup S = \{t \mid t \in R \text{ or } t \in S\}$
- * Schema of result identical to schema of input relations
- * E.g., consider *Depositor* (*custName*, *acctNum*) & *Borrower* (*custName*, *acctNum*). Find the names of all customers with an account or a loan (i.e., either an account or a loan, or both):

 $\pi_{custName}$ (Depositor) $\cup \pi_{custName}$ (Borrower)

COMP 3380 (Fall 2006), Leung

13

Example: Union

❖ Relations *R*, *S*:

Α	В	
α	1	
α	2	
β	1	
R		

 A
 B

 α
 2

 β
 3

 $\star R \cup S$:

COMP 3380 (Fall 2006), Leung

Intersection

- * $R \cap S$ takes two input relations R and S, which must be **union-compatible**, & returns a relation instance containing all tuples that occur in both R and S
- $R \cap S = \{t \mid t \in R \text{ and } t \in S\}$
- Schema of result identical to schema of input relations
- ❖ E.g., consider *Depositor* (*custName*, *acctNum*) & *Borrower* (*custName*, *acctNum*). Find the names of all customers with both an account and a

COMP 3380 (Fall 2006), Leung

15

Example: Intersection

 \star Relations R, S:

 $\begin{array}{c|c}
A & B \\
\hline
\alpha & 2 \\
\beta & 3 \\
\hline
S
\end{array}$

 $\star R \cap S$:

COMP 3380 (Fall 2006), Leung

Set Difference

- R S takes two input relations R and S, which must be **union-compatible**, & returns a relation instance containing all tuples that occur in *R* but not in *S*
- $R S = \{t \mid t \in R \text{ and } t \notin S\}$
- ❖ Schema of result identical to schema of input relations
- ❖ E.g., consider *Depositor* (custName, acctNum) & Borrower (custName, acctNum). Find the names of all customers with an account but not a

17

Example: Set Difference

 \star Relations R, S:

Α	В	
α	1	
α	2	
β	1	
R		

Α	В	
α	2	
β	3	
S		

❖ *R* − *S*:

Α	В
α	1
β	1

COMP 3380 (Fall 2006), Leung

Cartesian Product (or Cross Product)

- ❖ Pairs each row of *R* with each row of *S*
- $R \times S = \{t \mid q \mid t \in R \text{ and } q \in S\}$
- ❖ Result schema has 1 attr per attr of R and S, with attribute names "inherited" if possible.
- ❖ If schema(R) and schema(S) are not disjoint(→ ambiguous attribute names):
 - prefix attributes with the relation names, or
 - rename the attributes.

COMP 3380 (Fall 2006), Leung

19

Example: Cartesian Product

 \diamond Relations *R*, *S*:

A	В	
α	1	
β	2	
R		

Α	D	Ε	
α	10	а	
β	10	а	
β	20	b	
γ	10	b	
S			

 \star $T = R \times S$:

R.A	В	S.A	D	E
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

COMP 3380 (Fall 2006), Leung

Rename

- Allows us to name (& refer to) the results of RA expressions; allows us to refer to a relation by more than one name.
- ❖ Avoids ambiguity when the same relation appears in a query more than once
- ρ_Y (*E*) returns the expression *E* under the name *Y*
- E.g., $R \times \rho_{R'}(R)$
- * E.g., $\rho_{T(A, B, C, D, E)}(R \times S)$
- * NOTE: Formal RA does not have names for relations

COMP 3380 (Fall 2006), Leung

21

Join (or Natural Join)

- $R\bowtie S$ joins tuples in relations R and S
- ❖ An equi-join in which equalities are specified on *all* attrs having the same name in *R* & *S*
- Result schema similar to Cartesian-product, but only one copy of attributes for which equality is specified
- Fewer tuples than Cartesian-product, might be able to compute more efficiently

COMP 3380 (Fall 2006), Leung

Join (or Natural Join)

- * E.g., Consider R(A, B, C, D) & S(B, D, E).
 - Schema of $T = R \bowtie S$ is (A, B, C, D, E)
 - $T = R \bowtie S$

$$=\pi_{A,\,R.B,\,C,\,R.D,\,E}\left(\sigma_{R.B=S.B\,\wedge\,R.D=S.D}\left(R\;\mathsf{x}\;S\right)\right)$$

❖ <u>NOTE</u>: If there are *no common attributes* in relations P and Q, then $P \bowtie Q = P \times Q$.

COMP 3380 (Fall 2006), Leung

23

Example: Join (1)

 \star Relations R, S:

Α	В	С	D
α α δ	1 1 2	α γ β	a a b
R			

B D E

1 a α
1 a γ
2 b δ

 $\star T = R \bowtie S$:

Α	В	С	D	Ε
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

COMP 3380 (Fall 2006), Leung

Example: Join (2)

 \star Relations R, S:

Α	В	С	D		
α 1 α a					
β	2	γ	а		
γ	4	β	b		
α	1	γ	а		
δ	2	β	b		
R					

В	D	Ε	
1	а	α	
3	а	β	
1	а	γ	
2	b	δ	
3	b	\in	
S			

 \star $T = R \bowtie S$:

Α	В	С	D	Ε
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

COMP 3380 (Fall 2006), Leung

25

Relaxations of (Natural) Join: Equi-Join & Condition Join

- * Join (or natural join):
 - An equi-join in which equalities are specified on all attributes having the same name in R & S
- * Equi-join:
 - A special case of condition join where *cond* contains only equalities
 - E.g., $U = R \bowtie_B S = \pi_{A, R.B, C, R.D, S.D, E} (\sigma_{R.B=S.B} (R \times S))$
- * Condition join (aka theta-join):
 - $R \bowtie_{cond} S = \sigma_{cond} (R \times S)$
 - E.g., $V = R \bowtie_{R.B < S.B} S = \pi_{A, R.B, C, R.D, S.B, S.D, E} (\sigma_{R.B < S.B} (R \times S))$

COMP 3380 (Fall 2006), Leung

Extensions of (Inner) Join: Outer Joins

- Extension of (inner) joins that avoids loss of information.
- Compute the inner join & then add tuples from one relation that do not match tuples in the other relation to the result of the join.
- ***** Variations:
 - Left outer join (⊃⋈)
 - Right outer join (►)
 - (Full) outer join (⊃)

COMP 3380 (Fall 2006), Leung

27

Example: Outer Joins

 \star Relations *R*, *S*:

Α	В	
α	1	
β	2	
γ	3	
R		

 $\begin{array}{c|cc}
A & C \\
\hline
\beta & b \\
\gamma & c \\
\delta & d \\
\hline
S
\end{array}$

 $* R \bowtie S$:

Α	В	С
βγ	2 3	b c

 $R \supset S$:

Α	В	С	,
α β γ	1 2 3	NULL b c	1

 $R \bowtie S$:

3

;	Α	В	С
	$\begin{array}{c} \alpha \\ \beta \\ \gamma \\ \delta \end{array}$	1 2 3 NULL	NULI b c d

 $R \supset \subset S$:

COMP 3380 (Fall 2006), Leung

Division

- Suited to queries that include the phrase "for all" (e.g., "find boats that are reserved by all sailors")
- $R \div S = \{ t \mid t \in \pi_{schema(R-S)}(R) \land \forall u \in S \ (tu \in R) \}$
 - $R \div S = \{ \langle x \rangle \mid \forall y \in S (\exists \langle x, y \rangle \in R) \}$
 - i.e., $R \div S$ contains all x tuples (boats in the answer) such that for *every* y tuple (every sailor) in S, there is an xy tuple (a reservation made by sailor y on boat x) in R
 - i.e., If the set of *y* values (sailors) associated with an *x* value (boat) in *R* contains all *y* values in *S* (i.e., boat *x* reserved by all sailors), then the *x* value is in *R* ÷ *S*
- ❖ In general, x and y can be any lists of attrs; y is the list of attrs in S, and $x \cup y$ is the list of attrs of R.

COMP 3380 (Fall 2006), Leung

29

Division

- * Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially)
- ❖ <u>Idea</u>: For R ÷ S, compute all x values that are not "disqualified" by some y value in S.
 - x value is disqualified if by attaching y value from S, we obtain an xy tuple that is not in R.
 - $R \div S = \pi_x(R) \pi_x((\pi_x(R) \times S) R)$

COMP 3380 (Fall 2006), Leung

Example: Division (1)

E.g., consider Sailors(<u>sID</u>, sName, rating, age) & Reserves(<u>sID</u>, <u>bID</u>, <u>rDate</u>). Find IDs of the boats who have reserved all sailors:

- = { $\langle bID \rangle$ | $\forall sID \in \pi_{sID}(Sailors)$ ($\exists \langle sID, bID \rangle \in \pi_{sID, bID}(Reserves)$)}
- The result contains the ID of each boat *x* such that for *every* sailor *y* in *Sailors*, there is a reservation on boat *x* made by sailor *y* in *Reserves*.
- If the set of sIDs associated with any bID in Reserves contains all the sIDs in Sailors (i.e., a boat reserved by all sailors), then such a bID is in the result of the division $\pi_{SID, \, bID}$ (Reserves) $\div \pi_{SID}$ (Sailors).
- In other words, bID is disqualified if by attaching sID from Sailors, we obtain a <sID, bID> tuple that is not in Reserves:

 $\pi_{sID, bID}$ (Reserves) $\div \pi_{sID}$ (Sailors)

= $\pi_{bID}(Reserves)$ - $\pi_{bID}((\pi_{sID}(Sailors) \times \pi_{bID}(Reserves))$ - $\pi_{sID,bID}(Reserves))$

COMP 3380 (Fall 2006), Leung

31

Example: Division (2)

E.g., consider Boats (bID, bName, color) & Reserves (sID, bID, rDate). Find IDs of the sailors who have reserved all boats:

- $\begin{array}{l} \boldsymbol{\pi_{sID,\,bID}\left(Reserves\right)} \div \boldsymbol{\pi_{bID}\left(Boats\right)} \\ = \left\{t \mid t \in \boldsymbol{\pi_{sID}\left(Reserves\right)} \land \forall u \in \boldsymbol{\pi_{bID}\left(Boats\right)} \left(tu \in \boldsymbol{\pi_{sID,\,bID}\left(Reserves\right)}\right)\right\} \end{array}$ $= \{ <\!\! sID\!\! > \mid \ \forall \ bID \in \pi_{bID}(Boats) \ (\exists <\!\! sID, \ bID\!\! > \in \pi_{sID, \ bID}(Reserves)) \}$
- The result contains the ID of each sailor *x* such that for *every* boat *y* in *Boats*, there is a reservation made by sailor *x* on boat *y* in *Reserves*.
- If the set of bIDs associated with any sID in Reserves contains all the bIDs in Boats (i.e., a sailor reserved all boats), then such an sID is in the result of the division $\pi_{sID, bID}$ (*Reserves*) ÷ π_{bID} (*Boats*).
- In other words, sID is *disqualified* if by attaching bID from *Boats*, we obtain a <sID, bID> tuple that is not in *Reserves*:

 $\pi_{sID, bID}$ (Reserves) $\div \pi_{bID}$ (Boats)

= $\pi_{sID}(Reserves)$ - $\pi_{sID}((\pi_{sID}(Reserves) \times \pi_{bID}(Boats))$ - $\pi_{sID,bID}(Reserves))$

COMP 3380 (Fall 2006), Leung

Example: Division (5)

 \star Relations *R*, *S*:

Α	В	С	D	E	D E
 α	а	α	а	1	a 1
 α	а	γ	а	1	b 1
α	а	γ	b	1	S
 β	а	γ	а	1	
 β	а	γ	b	3	
γ	а	γ	а	1	
 γ	а	γ	b	1	Group by ABC,
 γ	а	β	b	1	find the grps having all DE
		R			

COMP 3380 (Fall 2006), Leung

35

Examples: Division (3-5)

- **❖** E.g., Consider R (*sno*, *pno*) & S (*pno*). Schema of $T = R \div S$ is (**sno**)

 - $T = R \div S = \pi_{sno}(R) \pi_{sno}((\pi_{sno}(R) \times S) R)$
- **❖** E.g., Consider R (A, B) & S (B).

 Schema of $T = R \div S$ is (A)

 $T = R \div S = \pi_A(R) \pi_A((\pi_A(R) \times S) R)$
- **❖** E.g., Consider *R* (*A*, *B*, *C*, *D*, *E*) & *S* (*D*, *E*).
 Schema of $T = R \div S$ is (**A**, **B**, **C**)
 $T = R \div S = \pi_{A,B,C}(R) \pi_{A,B,C}((\pi_{A,B,C}(R) \times S) R)$

COMP 3380 (Fall 2006), Leung

- Consider the following 3 relations:
 - *Sailors* (<u>sID</u>, sName, rating, age)
 - Boats (<u>bID</u>, bName, color)
 - Reserves (<u>sID</u>, <u>bID</u>, <u>rDate</u>)
- ❖ *S1* is an instance of *Sailor*, *R1* is an instance of *Reserves*
- ❖ Retrieve rows about sailors with rating > 8:

$$\sigma_{rating>8}$$
 (S1)

Find all sailor names & ratings:

$$\pi_{sName, \ rating} (S1)$$

Find only the ages of sailors:

$$\pi_{age}$$
 (S1)

COMP 3380 (Fall 2006), Leung

37

More Examples

❖ Compute the names & ratings of 8⁺-rated sailors:

$$\pi_{sName, rating} (\sigma_{rating \geq 8} (S1))$$

- Suppose there is another instance of Sailor (say, S2)
- * Retrieve rows about sailors in either *S1* or *S2*:

$$S1 \cup S2$$

* Retrieve rows about sailors in both *S1* and *S2*:

$$S1 \cap S2$$

* Retrieve rows about sailors in *S1* but not in *S2*:

$$S1 - S2$$

COMP 3380 (Fall 2006), Leung

* Pair each tuple of sailors with each tuple of reserves:

❖ Find all sailors who have reserved boats:

$$S1 \bowtie R1$$

❖ Find names of sailors who have reserved boat #103:

$$\pi_{sName}$$
 ($\sigma_{bID=103}$ (S1 \bowtie R1))

* Find names of sailors who have reserved a red boat:

$$\pi_{sName}$$
 ($\sigma_{color='red'}(B1)\bowtie R1\bowtie S1$)

COMP 3380 (Fall 2006), Leung

39

More Examples

Find names of sailors who have reserved a red or a green boat:

$$\pi_{\textit{sName}} \left(\sigma_{\textit{color='red'} \, \vee \, \textit{color='green'}} \left(\textit{B1} \right) \bowtie \, \textit{R1} \bowtie \, \textit{S1} \right)$$

or

$$\pi_{sName} (\pi_{sID} ([\sigma_{color='red'}(B1) \cup \sigma_{color='green'}(B1)] \bowtie R1) \bowtie S1)$$

or

$$\pi_{sName} (S1 \bowtie [\pi_{sID} (\sigma_{color='red'} (B1) \bowtie R1) \\ \cup \pi_{sID} (\sigma_{color='green'} (B1) \bowtie R1)])$$

COMP 3380 (Fall 2006), Leung

Find names of sailors who have reserved a red and a green boat:

$$\pi_{sName}(S1 \bowtie [\pi_{sID} (\sigma_{color='red'}(B1) \bowtie R1))$$

$$\cap \pi_{sID} (\sigma_{color='green'}(B1) \bowtie R1)])$$

How about the following?

$$\pi_{sName} \left(\sigma_{color='red' \land color='green'} \left(B1 \right) \bowtie R1 \bowtie S1 \right)$$

How about the following?

$$\pi_{sName} (\pi_{sID} [\sigma_{color='red'}(B1) \cap \sigma_{color='green'}(B1)]$$
 $\bowtie R1 \bowtie S1)$

COMP 3380 (Fall 2006), Leung

41

More Examples

Find names of sailors who have reserved a red but not a green boat:

$$\pi_{sName} (S1 \bowtie [\pi_{sID} (\sigma_{color='red'} (B1) \bowtie R1) - \pi_{sID} (\sigma_{color='green'} (B1) \bowtie R1)])$$

How about the following?

$$\pi_{sName}$$
 ($\sigma_{color='red' \land color\neq'green'}$ (B1) \bowtie R1 \bowtie S1)

How about the following?

$$\pi_{sName} (\pi_{sID} [\sigma_{color='red'}(B1) - \sigma_{color='green'}(B1)]$$
 $\bowtie R1 \bowtie S1)$

COMP 3380 (Fall 2006), Leung

Find IDs of sailors who have reserved all boats:

$$\pi_{sID, bID}(R1) \div \pi_{bID}(B1)$$

Find names of sailors who have reserved all boats:

$$\pi_{sName} (S1 \bowtie (\pi_{sID, \ bID}(R1) \div \pi_{bID}(B1)))$$

COMP 3380 (Fall 2006), Leung

43

Modification of the DB

- The content of the DB may be modified using the following operations:
 - Insertion
 - Deletion
 - Update
- ❖ All these operations can be expressed using the assignment operator (←)

COMP 3380 (Fall 2006), Leung

Insertion

- ❖ To insert data into a relation, we either:
 - specify a tuple to be inserted, or
 - write a query whose result is a set of tuples to be inserted
- In RA, an insertion is expressed by:

$$R \leftarrow R \cup E$$

where *R* is a relation and *E* is a RA expression.

❖ The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.

COMP 3380 (Fall 2006), Leung

45

Example: Insertion

- ❖ Consider Acct (acctNum, branchName, bal) & Depositor (custName, acctNum).
- ❖ Insert information into the DB specifying that Smith has \$1200 in account A973 at the Vancouver branch.

 $Acct \leftarrow Acct \cup \{('A973', 'Vancouver', 1200)\}$ $Depositor \leftarrow Depositor \cup \{('Smith', 'A973')\}$

COMP 3380 (Fall 2006), Leung

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- ❖ A deletion is expressed in RA by:

$$R \leftarrow R - E$$

where *R* is a relation and *E* is a RA query.

COMP 3380 (Fall 2006), Leung

47

Example: Deletion

- * Consider Acct (acctNum, branchName, bal) & Loan (loanNum, branchName, amt).
- Delete all account records in the Toronto branch

$$Acct \leftarrow Acct - \sigma_{branchName = 'Toronto'}(Acct)$$

 Delete all loan records with amount in the range of \$0 to \$50

$$Loan \leftarrow Loan - \sigma_{amt \geq 0 \ \land \ amt \leq 50} \ (Loan)$$

COMP 3380 (Fall 2006), Leung

Update

- ❖ A mechanism to change a value in a tuple without charging *all* values in the tuple
- $R \leftarrow \pi_{F1, F2, ..., Fk} (R)$
- * Each F_i is either
 - the *i*-th attribute of *R* (if the *i*-th attribute is not updated), or
 - an expression, involving only constants and the attributes of *R*, which gives the new value for the attribute *F_i* (if the attribute *F_i* is to be updated)

COMP 3380 (Fall 2006), Leung

49

Example: Update

- ❖ Consider *Acct* (acctNum, branchName, bal).
- Make interest payments by increasing all balances by 5%

 $Acct \leftarrow \pi_{acctNum, branchName, bal*1.05} (Acct)$

⋄ Other Notation: $\delta_{bal \leftarrow bal^*1.05}$ (*Acct*)

COMP 3380 (Fall 2006), Leung

Example: Update

- Consider Acct (acctNum, branchName, bal).
- Pay all accounts with balances over \$10,000 a 6% interest and pay all others 5%

$$Acct \leftarrow \pi_{acctNum, branchName, bal*1.06} (\sigma_{bal>10000} (Acct))$$

 $\cup \pi_{acctNum, branchName, bal*1.05} (\sigma_{bal\leq10000} (Acct))$

* Other Notation:

$$\mathbf{\delta}_{bal \leftarrow bal^*1.06} \left(\sigma_{bal > 10000} \left(Acct \right) \right)$$

$$\mathbf{\delta}_{bal \leftarrow bal^*1.05} \left(\sigma_{bal \leq 10000} \left(Acct \right) \right)$$

COMP 3380 (Fall 2006), Leung

51

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra (RA) is more operational; useful as internal representation for query evaluation plans.
- * Several ways of expressing a given query; a query optimizer should choose the most efficient version.

COMP 3380 (Fall 2006), Leung