Companison Sort:

Comparison based sorting algorithms: Sorts the elements by comparing Pairs of them.

We can also interpret this as follows.

Suppose we have some objects, which are hidden in a box. The goal is to soot the objects based on their weight without any information except that obtained by Placing two weights on the scale and seeing which one is heavier.

	All the	e Algunithm	s we	have	Stu died	so far
ar.	Compan	ison suits.				
		_				
	<u>- I</u>	nsertion Si	ort			
	- M	lage Sort				
	- (Quick Sout				
	_ {	teap soit				
We	Know	that N	lerge S	Soit o	und Hear	Sout
Can	Soft	n numl	oens i	n 0(n bgn)	time.
					·	

In this class, we prove the following

Any comparison Sort must make $N(n \log n)$ Comparisons in the worst case to sort n elements.

ie., Merge soot and Heap sort are asymptotically Optimal and no Companison Sort exists that is faster by more than a Constant factor.

Main Result

Any comparison sort algorithm requires

I (nlogn) comparisons in the worst case.

The decision tree model:
We can view companison sost interms of
1
de cision trees
Full binary tree (every internal node has two children)
Children)
In decision tree each internal node corresponds
sit acmiai me marina i lace contains
to a Companison of Pair of elements.

Q: How insertion Sout works on A?

Example: $A = \{a_1, a_2, a_3\}$, Assume all a_i 's are distinct.

Number of leaves = 6

Height of the true = 3

Internal mode

Comparisons

Leafr

Sorted ordering of the input

root—to—leaf Path

algorithm execution

length of the Path

Running time

height of the tree

Worst case running time

A lower bound on the heights of all decision trees in which every permutation appears as a reachable leat in theretime a lower bound on the running time of any companison sort algorithm.

Sorting lower bound: In general, if the input has n numbers then the decision tree have n! leaves. Each leat is reachable from the most. Consider a decision tree of height In with I leaves comes ponding to a comparison sort on n elements. $n! \leq \lambda \leq 2^h$ h > log(n!) = N(nlogn)

Counting Sort: [Non-Comparison Sort]
Assumption: Each of the n input elements is
an integer in the range 0 to k, for some
integer K.
When $k = O(n)$, then couting sort runs in
$\Theta(n)$ time.

Idea	of	the	Algoritum:
------	----	-----	------------

Counting Sout algorithm determines
for each input element x, the number of
elements less than X and then Places
ox directly into its Position in the output array
Eg: if 12 elements are less than x then
or will be out 13th Position in the output

.

	(2)	
4-12-	-	

Algorithm

```
COUNTING-SORT(A, B, k)
       let C[0..k] be a new array
       for i = 0 to k
    3
           C[i] = 0
    4 for j = 1 to A.length
    5
           C[A[j]] = C[A[j]] + 1
       /\!\!/ C[i] now contains the number of elements equal to i.
       for i = 1 to k
           C[i] = C[i] + C[i-1]
      /\!/ C[i] now contains the number of elements less than or equal to i.
       for j = A.length downto 1
           B[C[A[j]]] = A[j]
_ 11
   12
           C[A[j]] = C[A[j]] - 1
```

Example:

k=5

B[1,...n] is the output array

$$C = \begin{bmatrix} 2 & 2 & 4 & 6 & 7 & 8 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 4 & 6 & 7 & 8 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 2 & 4 & 5 & 7 & 8 \end{bmatrix}$$

By Repeating the above Process, the final

Sorted output array B is

Running time

```
COUNTING-SORT(A, B, k)
    let C[0..k] be a new array -\Theta(1)
    for i = 0 to k
 2
         C[i] = 0
 3
    for j = 1 to A.length
 4
         C[A[j]] = C[A[j]] + 1 \quad \frac{1}{2} \quad \Theta(\mathbf{m})
 5
     // C[i] now contains the number of elements equal to i.
     for i = 1 to k
                                      1 0(K)
         C[i] = C[i] + C[i-1]
     /\!\!/ C[i] now contains the number of elements less than or equal to i.
 9
    for j = A.length downto 1
10
                                         \Theta(m)
         B[C[A[j]]] = A[j]
11
         C[A[j]] = C[A[j]] - 1
12
```

Total running time =
$$\Theta(1) + \Theta(k) + \Theta(n) + \Theta(k) + \Theta(n)$$

= $\Theta(k+n)$

It we have
$$k = O(n)$$
 then

running time is $\Theta(n)$.

Remarks:
- Counting Sort beats the lower bound N_(Mlagn)
– This is not a Companison Sort

Other Non-Compani	son soft Algorithms
Radine Sort	
100000	Refer to 8.3 88.4
Program Single	Coreman's text book.
Bucket Sost	

Stable Sort: A sorting algorithm is stable if two Objects with equal values appear in the same order in the sosted output as they appear in the input array. Insertion Sort, Merge Sort are Stable. 1 Quick Sort is not Stable Example 4 2 1 4 3 Pivot 2 4 1 4 3 2 1 4 9 2 1 3 4