Algebraic Topology I PS 8

Mathieu Wydra

December 8, 2023

1. Denote $X = \mathbb{R}P^{\infty}$ and note that $\Sigma^n X$ is n-connected.

First let us do the case n=0, then $\pi_1(X)=\mathbb{F}_2$ and $\pi_1(A\vee B)\cong \pi_1(A)*\pi_1(B)$. So \mathbb{F}_2 must lie in one of them say A. The rest of the degrees follow by taking the suspension of X and considering the following cases, then using the stability of Sq^i .

Now take some $n \geq 1$. Consider the weak homotopy equivalence $\Sigma^n X \simeq A \vee B$. These spaces are both 1-connected so this induces an isomorphism on cohomology $\mathbb{F}_2[\iota_1] \cong H^{*+n}(X;\mathbb{F}_2) \cong H^*(\Sigma^n X;\mathbb{F}_2) \cong H^*(A \vee B;\mathbb{F}_2)$. Moreover $\tilde{H}^*(A \vee B;\mathbb{F}_2) = \tilde{H}^*(A;\mathbb{F}_2) \oplus \tilde{H}^*(B;\mathbb{F}_2)$. Pick $x = \iota_1 \in H^1(X;\mathbb{F}_2)$, the generator for the cohomology ring on $\mathbb{R}P^{\infty}$. Then the generator on the ring $H^*(\Sigma^n X;\mathbb{F}_2)$ is x^n which will shall now consider as such. Without loss of generality let x be contained in $H^*(A;\mathbb{F}_2)$. Since we have Steenrod squares on X and so on $\Sigma^n X$ we also have it on $H^*(A \vee B;\mathbb{F}_2)$.

We have
$$\operatorname{Sq}^1(x^k) = \begin{cases} x^{k+1} & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$
 and $\operatorname{Sq}^2(x^k) = \begin{cases} x^{k+2} & k \equiv 2, 3 \mod 4 \\ 0 & k \text{ even} \end{cases}$

 $\operatorname{Sq}^1(x)=x^2, \operatorname{Sq}^2(x^2)=x^4$ so $x^2, \, x^4$ is contained in $H^*(A;\mathbb{F}_2).$ Moreover $\operatorname{Sq}^1(x^3)=x^4$ so x^3 also in $H^*(A;\mathbb{F}_2).$ We can now proceed inductively: $x^{4j+2}\in H^*(A;\mathbb{F}_2)\implies x^{4j+4}\in H^*(A;\mathbb{F}_2), \, x^{4j+3}\in H^*(A;\mathbb{F}_2)\implies x^{4j+1}\in H^*(A;\mathbb{F}_2)$ by the above relations. Moreover, $\operatorname{Sq}^1(x^{4j+1})=x^{4j+2}, \operatorname{Sq}^1(x^{4j+3})=x^{4j+4}$ so $x^{4j+1},x^{4j+3}\in H^*(A;\mathbb{F}_2).$ Therefore if x lies in $H^*(A;\mathbb{F}_2)$ then all rest x^k lies in $H^*(A;\mathbb{F}_2)$ hence $H^*(B;\mathbb{F}_2)$ is trivial on cohomology and therefore also on homotopy so is weakly contractible.

2. Let X be (n-1)-connected for some $n \geq 2$. By Hurewicz $\pi_n(X) \cong H_n(X)$ and from the suspension isomorphism $s: H_k(X) \to H_{k+1}(\Sigma X)$, ΣX is n-connected. Consider the fibre sequence $\Omega \Sigma X \to P\Sigma X \xrightarrow{p} \Sigma X$, and take the maps $\phi: X \to \Omega \Sigma X$, $\phi(x)(t) = [x, t]$, $\varphi: CX \to P\Sigma X$, $\varphi([x, t])(s) = [x, st]$ we get diagram

$$\begin{array}{ccc} X & \longrightarrow & CX & \longrightarrow & \Sigma X \\ \downarrow^{\phi} & & \downarrow^{\varphi} & & \parallel \\ \Omega \Sigma X & \longrightarrow & P\Sigma X & \stackrel{p}{\longrightarrow} & \Sigma X \end{array}$$

which commutes with the rest of the maps being the natural ones. Consider the Serre spectral sequence in homology. ΣX is n-connected and $\Omega \Sigma X$ is (n-1)-connected, so $H_p(\Sigma X) = 0$ for 0 and

 $H_q(\Omega \Sigma X) = 0$ for $0 < q \le n-1$. (Local coefficient system is trivial as $\Omega \Sigma X$ is path-connected).

In the diagram $H_k(\Sigma X, b_0; \mathbb{Z}) \stackrel{p^*}{\longleftarrow} H_k(P\Sigma X, \Omega\Sigma X; \mathbb{Z}) \stackrel{\delta}{\rightarrow} H_{k-1}(\Omega\Sigma X; \mathbb{Z})$ we get the transgression τ by restricting to the domain $E_{k,0}^k$ such that it maps to the range $H_{k-1}(\Omega\Sigma X)/\ker p^*$.

$$H_{n+1}(\Omega \Sigma X) = 0 = 0$$
 $H_n(\Omega \Sigma X) = 0 = 0$
 $0 = 0 = 0$
 $\mathbb{Z} = 0 = 0$
 $H_{n+1}(\Sigma X)H_{n+2}(\Sigma X)$

Consider the diagram induced by the previous one.

$$H_{m}(X) \xleftarrow{\cong} H_{m+1}(CX, X) \xrightarrow{\cong} H_{m+1}(\Sigma X)$$

$$\downarrow^{\phi_{*}} \qquad \qquad \downarrow^{\varphi_{*}} \qquad \qquad \parallel$$

$$H_{m}(\Omega \Sigma X) \xleftarrow{\cong} H_{m+1}(P\Sigma X, \Omega \Sigma X) \longrightarrow H_{m+1}(\Sigma X)$$

Since $\rho := p \circ \varphi : CX \to \Sigma X$ is the natural quotient map and $\rho_* : H_m(CX,X) \to H_k(\Sigma X,b_0)$ is an isomorphism it follows that p_* is surjective so the trangression τ is defined on all of its domain $H_k(\Sigma X,b_0)$. So from the diagram we get $\tau \circ s = \partial \circ \varphi_* \circ (\rho_*)^{-1} \circ s = \phi_*$.

We have the Serre exact sequence

$$H_{2n}(\Omega\Sigma X;\mathbb{Z}) \longrightarrow H_{2n}(P\Sigma X;\mathbb{Z}) \xrightarrow{p^*} H_{2n}(\Sigma X;\mathbb{Z}) \xrightarrow{\tau} H_{2n-1}(\Omega\Sigma X;\mathbb{Z}) \longrightarrow \dots$$

Then as $P\Sigma X$ contractible, this gives us that $H_{k+1}(\Sigma X; \mathbb{Z}) \xrightarrow{\tau} H_k(\Omega \Sigma X; \mathbb{Z})$ is an isomorphism for all $k \leq 2n-1$. Hence as τ is an isomorphism, so is ϕ and thus $\varphi: H_k(CX, X) \to H_k(P\Sigma X, \Omega\Sigma X)$ for $k \leq 2n-1$. Then by relative Hurewicz theorem, as $H_k(\Omega\Sigma X, X) = 0$ for $k \leq 2n-1$ then $\pi_k(\Omega\Sigma X, X) = 0$ for $k \leq 2n-1$. Hence for the long exact sequence $\pi_k(X) \to \pi_k(\Omega\Sigma X)$ is an isomorphism for k < 2n-1 and an epimorphism for k = 2n-1. Then the result follows from the isomorphism $\pi_{k+1}(\Sigma X) \cong \pi_k(\Omega\Sigma X)$.