1. Give an example of sets A, B, C such that:

a) $A \in B$, $B \in C$, and $A \in C$;

b) $A \in B$, $B \in C$ but $A \notin C$;

: Novosad Ivan 231-2

(a) $A = \{\emptyset\}$, $B = \{\{\emptyset\}\}$, $C = \{\{\{\emptyset\}\}\}, \{\emptyset\}\}$

(b)
$$A = \{\emptyset\}; B = \{\{\emptyset\}\}; C = \{\{\{\emptyset\}\}\}\}$$

2. Give a set-builder specification for the set of all natural numbers which are either even or whose every natural divisor's sine is less than 9/10.

{XEN BREN BREX V YMEN BQEN mq=x.5,n(m)<9/10}

4. Is it always the case that $\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y)$?

- (1) Let CEP(ANB) => C = ANB => C = A n C = B => C = P(A) n C = P(B)
- (a) Let ce P(A) n P(B) => ce P(A) n CEP(B) => ce AnceB => ce Anbes ce P(Anb)

Hence from (1) $n(2) = P(X \cap Y) = P(X) \cap P(Y)$

5. Prove that for every sets A, B, C the following hold: a) $(A \setminus B) \cup B = A \iff B \subseteq A;$ b) $A \subseteq B \cap C \iff A \subseteq B \text{ and } A \subseteq C;$ c) $A \subseteq B \cup C \iff A \cap \bar{B} \subseteq C.$

a) $(A \setminus B) \cup B = A \iff B \leq A$

Consider AIB as arbitrary set D

1) then if DUB = A => B \(\text{A} \) \(\text{VD} \)

\[\lambda \text{x\in B \times \text{x\in B}} \\
\lambda \text{x\in B} \\
\lambda \

2) BEA then YXEANX&B XEA\B and also WXEA either XEANX&B or XEANXEB, hence

 $A = A \setminus B \cup B \implies A = (A \setminus B) \cup B$

b) OHEB))

A C B N C C HaE A a E (B N C) C HaE A a E B N A E C C A C B N A C C

or, more formally.

=> 1) if ACBNC => VaEA -> aEBNC (aEBNC => aEBNC =>)

(=) VaeA -> XEB n XEC -> A SB n A SC

(4:nce aeBracc => XEBRC) => VaeA -> aeBrac Brac B

C) A = BUC => ANB = C

=>1)A < BUC => Va & A->a & B va & C

AMB => VaeA -> a &B. but if aeA na&B,

then due to @ XeC => Yx(xeAnB->xec) => A = Bue => AnB = c

(= 2) AnBCC(=> Vx((xeAnxeB) -> xec) => if xeA

NXEBITHON XEC => XEA -> XE CUB => ACCUB => ACCUB

6. Give an example of sets A, B, C such that $A \times (B \times C) \neq (A \times B) \times C$. (You should *prove* your sets

ppose $A = \{1\}$ $B = \{2\}$ $C = \{3\}$ $A \times (B \times C) \neq (A \times B) \times C$ $\{1\} \times \{(2,3)\} \neq \{(1,2)\} \times \{3\}$ $\{(1(2,3))\} \neq \{(1,2),3)\}$

Suppose they are equal, then:

$$(1(2,3)) = ((1,2),3) => 1 = (1,2) \land (2,3) = 3$$

[1={11,11,23}]-False, hence []

7. Suppose $A \subseteq C$ and $B \subseteq D$. Prove that $A \times B = (A \times D) \cap (C \times B)$.

given: $A \subseteq C \land B \subseteq D$ prove: $A \times B = (A \times D) \cap (C \times B)$

not formal - "AxB contain pairs of elements from each set, that is:"

if $(x,y) \in (A \times D) \cap (C \times B) \iff (x,y) \in (A \times D) \cap (x,y) \in (C,B)$ we can change

(=)(XEAnyED)n(XECnyEB) (=)(XEAnXEC)nyEDnyEB)

(=> XE ANB NY EDNB (=> XEAN YEB (fince ACC N BCD)

 $(X,y) \in A \times B$

since all statements are follows from eachother, ; t's

to prove right hand from left

in fact :t's already prooved.

3*. Suppose that there exists a set S such that for each $x, x \in S$ iff $x = \{y\}$ for some y ("the set of all gletons"). Get a contradiction

Assume that exist such 5, set of all singletones, then
it's power set (P(S)) would to contain all sets, including
non-single-tones. This leads to a contradiction with
Russell's paradox.