回路製作基礎実習課題

EC2 37 番 平田蓮

1. 回路図 2 において、点 A の電圧を 0[V] とし、点 B に電圧 $V_i[V]$ を印加したとする。 B-D 間電圧 $V_1[V]$ を求め、B-D 間抵抗を $R_1[\Omega]$ としたとき、 R_1 を流れる電流 $I_1[A]$ を求めよ。 また同様に、点 C の電圧 V_o として、点 D-C 間電圧 $V_2[V]$ を求め、D-C 間抵抗を $R_2[\Omega]$ としたとき、 R_2 を流れる電流 $I_2[A]$ を求めよ。

点 A と点 D に電位差は無いため、点 D は 0[V]。 よって、B-D 間電圧 $V_1=V_i-0=V_i[V]$ 。

$$\Leftrightarrow I_1 = \frac{V_1}{R_1} = \frac{V_i}{R_1}[A]$$
また、 $V_2 = 0 - V_o = -V_o[V]$ 。
$$\Leftrightarrow I_2 = \frac{V_2}{R_2} = -\frac{V_o}{R_2}[A]$$

2. 反転入力端子に電流が流れ込まないとすると、電流 I_1 と I_2 は等しいといえる。 このことから、電流 I_1 と電流 I_2 の式を等しいものとして、 V_1 、 V_2 と V_i 、 V_o の関係を利用して電圧 V_i と V_o の関係を求めよ。 $(V_o = AV_i \text{ orb} \text{ orb} \text{ orb})$

$$I_1=I_2$$
 \$ 9,
$$\frac{V_i}{R_1}=-\frac{V_o}{R_2}$$

$$\frac{R_2}{R_1}V_i=-V_o$$

$$V_o=-\frac{R_2}{R_1}V_i$$

3. 回路図 2(反転増幅回路) において、非反転入力端子 (点 A) に、ある電圧 $V_s[V]$ を接続したとする。入力信号 (点 B の電圧) V_i を $V_s + A\sin\omega t[V]$ としたとき、出力電圧 (点 C の電圧) $V_o[V]$ は、

$$V_o = -\frac{R_2}{R_1} A \sin \omega t + V_s[V]$$

となることを示せ。

1. より、 $B ext{-}D$ 間電圧は、 $V_i - V_s = A\sin\omega t[\mathrm{V}]$ 。 よって、 R_1 を流れる電流は、

$$\frac{R_1}{A\sin\omega t}[\mathbf{A}]$$

また、D-C 間電圧は、 $V_s - V_o[V]$ 。 よって、 R_2 を流れる電流は、

$$\frac{R_2}{V_s - V_o}[\mathbf{A}]$$

2. より、上の二つは等しいので、

$$\begin{split} \frac{R_1}{A\sin\omega t} &= \frac{R_2}{V_s - V_o} \\ R_1(V_s - V_o) &= R_2 A\sin\omega t \\ -R_1 V_o &= R_2 A\sin\omega t - R_1 V_s \\ V_o &= -\frac{R_2}{R_1} A\sin\omega t + V_s \end{split}$$