# EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

# PROJECT BASED LEARNING (NALAIYA THIRAN) On PROFESSIONAL READINESS FOR INNOVATIONS, EMPLOYABILITY AND ENTREPRENEURSHIP

#### Submitted by

#### **TEAM ID: PNT2022TMID38667**

#### **TEAM MEMBERS:**

SAHANA R 420419205011 (TL)

KANIMOZHI D 420419205006 (TM1)

KEERTHANA V 420419205007 (TM2)

TAMILARASI S 420419205017 (TM3)

BHAVANI G 420419205301 (TM4)

in partial fulfilment for the award of the degree

of

**BACHELOR OF TECHNOLOGY** 

IN

INFORMATION TECHNOLOGY



#### ADHIPARASAKTHI ENGINEERING COLLEGE,

**MELMARUATHUR** 

ANNA UNIVERSITY: CHENNAI – 600 025

**NOVEMBER - 2022** 

#### **ANNA UNIVERSITY: CHENNAI 600 025**

#### **BONAFIDE CERTIFICATE**

Certified that report titled "EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING" is the bonafide work of SAHANA R(420419205011), KANIMOZHI D(420419205006), KEERTHANA V(420419205007),TAMILARASI S(420419205017) and BHAVANI G(420419205301) who carried out the work under my supervision.

SIGNATURE SIGNATURE SIGNATURE

Dr.A.Bhuvaneswari Dr.N.Elamathi Mr.M.Ezhilvendan

M.E.,Ph.D., M.E.,Ph.D.,

HOD and SPOC Faculty Mentor Internal Evaluator

Professor, Assistant Professor, Assistant Professor,

Department of Department of Department of

Information Technology Information Technology, Information Technology,

Adhiparasakthi Adhiparasakthi Adhiparasakthi

Engineering College, Engineering College, Engineering College,

Melmaruvathur - Melmaruvathur - 603319 Melmaruvathur - 603319

603319

#### **CERTIFICATION OF EVALUATION**

**College Code/Name** : 4204 / Adhiparasakthi Engineering College

**Branch/ Semester**: Information Technology /07

**Team ID** : PNT2022TMID38667

| S.No | Name of the student and Register number | Title of the project         | Name of the Faculty Mentor with designation |
|------|-----------------------------------------|------------------------------|---------------------------------------------|
| 1    | SAHANA R                                | Early detection of chronic   | Dr.N.Elamathi M.E.,Ph.D.,                   |
|      | (420419205011)                          | kidney disease using machine | Assistant Professor,                        |
| 2    | KANIMOZHI D                             | learning.                    | Department of IT,                           |
|      | (420419205006)                          |                              | Adhiparasakthi Engineering                  |
| 3    | KEERTHANA V                             |                              | College,                                    |
|      | (420419205007)                          |                              | Melmaruvathur                               |
| 4    | TAMILARASI S                            |                              |                                             |
|      | (420419205017)                          |                              |                                             |
| 5    | BHAVANI G                               |                              |                                             |
|      | (420419205301)                          |                              |                                             |
|      |                                         |                              |                                             |

The report of the project works submitted by the above students in the partial fulfillment for the award of Bachelor of Technology degree in Information Technology of Anna University were evaluated and confirmed to be reports of work done by the above students and then evaluated

Submitted for the Project Work and Viva -voce examination held on.....

**INTERNAL EXAMINER** 

**EXTERNAL EXAMINER** 

#### ACKNOWLEDGEMENT

It is indeed a great pleasure and proud privilege to acknowledgement the help and support we received from the positive minds around us in making this Endeavour a successful one the spiritual blessings of His Holiness **ARULTHIRU AMMA** and the divine guidance of **THIRUMATHI AMMA** have undoubtedly taken us to the path of victory in completing this project.

The infrastructural support with all kinds of lab facilities have been a motivating factor in this completion of project work, all because of our **CORRESPONDENT SAKTHI THIRU Dr. G. B. SENTHILKUMAR** with great pleasure we take this opportunity to thank him.

From the academic side the constant support from our honourable **PRINCIPAL Dr. J. RAJA, Ph.D.,** has encouraged us to work hard and attain this goal of completing the project. We sincerely thank our motivating and respected **HEAD OF THE DEPARTMENT and SPOC** 

**Dr. A. BHUVANESWARI M.E., Ph.D.,** who have given us both moral and technical support adding experience to the job we have undertaken.

We are thanking our respected Dr.N.Elamathi M.E.,Ph.D., FACULTY MENTOR, Mr.M.Ezhilvendan M.E., INTERNAL EVALUATOR and Assistant Professor who helped us in crossing obstacles in the path to our glory. We also thank other Staff members, Non- teaching members of Main Block Computer Lab. Parents and Friends who have given their constant support and motivation in all our endeavours.

#### **TABLE OF CONTENTS**

| CHAPTER<br>NO | TITLE                                   | PAGE N |
|---------------|-----------------------------------------|--------|
|               | LIST OF TABLES                          | vii    |
|               | LIST OF FIGURES                         | vii    |
| 1             | INTRODUCTION                            | 01     |
|               | 1.1 Project Overview                    | 01     |
| 2             | LITERATURE SURVEY                       | 01     |
|               | 2.1 Existing Problem                    | 02     |
|               | 2.2 References                          | 02     |
|               | 2.3 Problem Statement Definition        | 02     |
| 3             | <b>IDEATION &amp; PROPOSED SOLUTION</b> | 05     |
|               | 3.1 Empathy Map Canvas                  | 06     |
|               | 3.2 Ideation & Brainstorming            | 06     |
|               | 3.3 Proposed Solution                   | 07     |
|               | 3.4 Problem Solution Fit                | 10     |
| 4             | REQUIREMENT ANALYSIS                    | 11     |
|               | 4.1 Functional Requirement              | 12     |
|               | 4.2 Non-Functional Requirement          | 13     |
| 5             | PROJECT DESIGN                          | 14     |
|               | 5.1 Data Flow Diagrams                  | 14     |
|               | 5.2 Solution and Technical Architecture | 16     |
|               | 5.3 User Stories                        | 18     |
| 6             | PROJECT PLANNING & SCHEDULING           | 18     |
|               | 6.1 Sprint Planning & Estimation        | 19     |
|               | 6.2 Sprint Delivery Schedule            | 21     |

|    | 6.3 Reports from JIRA      | 27 |
|----|----------------------------|----|
| 7  | CODING AND SOLUTIONING     | 28 |
|    | 7.1 Feature 1              | 33 |
|    | 7.2 Feature 2              | 36 |
| 8  | TESTING                    | 36 |
|    | 8.1 Test Cases             | 38 |
|    | 8.2 User Acceptance Test   | 39 |
| 9  | RESULTS                    | 39 |
|    | 9.1 Performance Metrics    | 41 |
| 10 | ADVANTAGES & DISADVANTAGES | 41 |
| 11 | CONCLUSION                 | 42 |
| 12 | FUTURE SCOPE               | 42 |
| 13 | APPENDIX                   | 42 |

### LIST OF TABLES

| TABLE NO | TITLE                               | PAGE NO |
|----------|-------------------------------------|---------|
| 2.2.1    | Literature Survey Reference         | 02      |
| 3.3.1    | Proposed Solution                   | 10      |
| 3.4.1    | Problem Solution Fit                | 11      |
| 4.1.1    | Functional Requirements             | 12      |
| 4.2.1    | Non-Functional Requirements         | 13      |
| 5.2.1    | Solution and Technical Architecture | 15      |
| 5.3.1    | User Stories                        | 16      |
| 6.1.1    | Sprint Planning                     | 18      |
| 6.2.1    | Sprint Delivery                     | 20      |

## LIST OF FIGURES

| FIGURE NO | TITLE                  | PAGE NO |
|-----------|------------------------|---------|
| 3.1.1     | Empathy Map            | 6       |
| 3.2.1     | Brainstorming          | 8       |
| 5.1.1     | Data Flow Diagram      | 14      |
| 5.2.1     | Technical Architecture | 16      |
| 5.3.2     | Customer Journey Map   | 17      |
| 6.3.1     | Reports from JIRA      | 21      |
| 8.1.1     | Test Cases             | 36      |

#### 1. INTRODUCTION

Chronic kidney disease prediction is one of the most important issues in health care-analytics. The most interesting and challenging tasks in day-to-day lives as one third of adult population is affected by chronic kidney disease (CKD), and millions die each year because they do not have access to affordable treatment. Chronic Kidney Disease can be cured, if treated in the early stages. The main aim of the project is to predict whether the patient have chronic kidney disease or not in a painless, accurate and faster way based on certain diagnostic measurement like Blood Pressure (BP), Albumin (Al) etc., and then appropriate treatment can be given based on the details provided by the model.

#### 1.1 Project Overview:

This Project aims at creating a model for early detection of Chronic Kidney Disease using Machine Learning technology. The model output is integrated with Flask framework. The front end developed in html is used to receive user input on various parameters needed to decide on the early detection of kidney disease. The same model is deployed into IBM cloud using API keys and scoring endpoints.

#### 1.2 Purpose:

- The goals of early detection are to prevent the progression of chronic kidney disease and its associated complications, with subsequent improvements in patient outcomes and reductions in the impact of chronic kidney disease on healthcare resources.
- The purpose of the project is to alert doctors for an early detection of kidney disease and hence ensure speedy recovery or prevention of kidney disease.

#### 2. LITERATURE SURVEY

Initially, we have done literature survey of various IEEE papers and research publications to arrive at the idea of the project development. It is given below:

#### 2.1 Existing Solution:

The current existing solutions offer a methodology for predicting CKD status using clinical data, which incorporates data pre-processing, a technique for managing missing values, data aggregation, and feature extraction. A number of physiological variables, as well as ML techniques such as logistic regression (LR), decision tree (DT) classification, and -nearest neighbour (KNN), were used in this work to train three distinct models for reliable prediction.

#### 2.2 Reference:

#### NALAIYA THIRAN

(Professional Readiness for Innovation, Employability and Entrepreneurship)

LITERATURE SURVEY 2022-2023

Team Id: PNT2022TMID38667 Team Leader : Sahana R

Team Title: Early Detection of Chronic Kidney Disease Members List: Kanimozhi D, Keerthana V, Tamilarasi S, Bhavani G

using Machine Learning

| INT        | INTRODUCTION SURVEY/BODY OF REVIEW                                                              |                                                                                                                                                           | EW                                                                                                                            |                                                                                                                                 |                                                                                           | Conclusion                                               |                                                                                                        |                                                         |                                                                                                                               |
|------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Year       | Title                                                                                           | Keywords                                                                                                                                                  | Problem<br>Definition                                                                                                         | Methodology<br>(Algorithm,<br>ProtocolEtc)                                                                                      | Input Parameters                                                                          | Result                                                   | Advantage<br>s                                                                                         | Disadvantage<br>s/Drawbacks                             | Research<br>Gap/Research<br>Question                                                                                          |
|            | Min ·                                                                                           | 301                                                                                                                                                       | De 1:                                                                                                                         |                                                                                                                                 | Sahana R                                                                                  | Č.                                                       | 4/0                                                                                                    | 801                                                     | WIL 1482                                                                                                                      |
| 1.         | Chronic Kidney<br>Disease<br>diagnosis using<br>Decision Tree<br>algorithm                      | Decision Tree,<br>Machine learning,<br>CKD, Data Mining                                                                                                   | A reduction in<br>the kidney<br>disease burden.<br>Longer lives and<br>improved<br>quality of life<br>for people with<br>CKD. | Collect the datasets like age, sex, race and serum. Then, calculate the GFR rate and categorize the stages based on the result. | Age, BP,<br>Glucose,<br>Albumin, GFR.                                                     | Predicts the<br>stage of<br>Chronic<br>Kidney<br>Disease | *Produces<br>80%<br>accurate<br>result.<br>*Handle<br>both<br>numerical<br>and<br>categorical<br>data. | *Slow and<br>ineffective for<br>real time<br>prediction | J48-Decision tree<br>model is not sufficient<br>for luge data sets.<br>It is in effective for<br>real time prediction         |
| 2.<br>2022 | Early Detection<br>of Chronic<br>Kidney Disease<br>Using Advanced<br>Machine<br>Learning Models | Chronic Kidney<br>Disease (CKD),<br>Machine Learning<br>(ML), Support<br>Vector Machine<br>(SVR), Random<br>Forest (LR),<br>Arest (LR),<br>Network (ANN), | To avoid early<br>death cases need<br>to predict early<br>stage disease<br>using data<br>analytics<br>methodologies           | *CKD Dataset<br>*Data<br>Preprocessing<br>*Training Models<br>*Prediction                                                       | Dataset like age,<br>serum, albumin,<br>creatinine which<br>are obtained<br>from patients | Precision,<br>Accuracy, F1<br>score, and<br>Recall       | *Gives<br>accurate<br>prediction                                                                       | *More time<br>required for<br>execution                 | The traditional<br>algorithms were used<br>here.  It gets more duration<br>to category and<br>classifies the give data<br>set |

| 3          |                                                                                                   | Decision Tree (DT).                                                                     |                                                                                                                                                                                     |                                                                                                                                                                                         | 10                                                      | 33:                                                                                                     | 3                                                                            | 3 (3                                                                                                                                   | 88                                                                                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.<br>2022 | A Deep Neural<br>network for<br>Early detection<br>and Prediction of<br>Chronic kidney<br>disease | Regressive feature,<br>elimination, support<br>vector machine,<br>machine learning      | The proposed approach should be a useful tool for nephrologists in detecting CKD                                                                                                    | *Data processing *Categorical data encoding *Data *Data transformation *Outlier detection                                                                                               | Serum, Race,<br>Historical data,<br>genetic<br>problems | The study<br>concluded<br>that it is more<br>efficient in<br>detecting<br>CKD                           | *Execute<br>feature<br>engineerin<br>g by itself                             | *It can handle<br>only small<br>datasets                                                                                               | To improve the model performance, significant volumes of increasingly sophisticated and representative CKD data will be collected in the future to detect disease sevenity             |
| 4.<br>2022 | Early<br>identification of<br>CKD- a scoping<br>review of the<br>global<br>publications           | Chronic Kidney<br>Disease (CKD),<br>Machine Learning<br>(ML), Support<br>Vector Machine | Decisions on whether to screen for chronic kidney disease (CKD) or not remain contentious in nephrology. This study provides a global overview of early CKD identification efforts. | Data extracted<br>from included<br>studies focused<br>on the following<br>4 themes: study<br>population<br>measurement<br>methods,<br>interventions<br>used, and<br>available policies. | Gender, bp,<br>cholesterol,<br>pulse rate               | We identified<br>290 CKD<br>screening and<br>detection<br>programs<br>from 83<br>countries.             | *Time<br>saving<br>process                                                   | This study has<br>some<br>limitations,<br>including<br>inability to<br>use World<br>Bank income<br>grouping at<br>time of the<br>study | To explore the effect<br>of ethnicity because<br>most studies were not<br>performed in<br>homogeneous<br>populations or did not<br>report the racial<br>composition of<br>participants |
| 5.<br>2022 | Chronic Kidney<br>Disease<br>Predictionusing<br>K-Means<br>algorithm                              | Chronic kidney<br>disease, k-means,<br>Logistic regression<br>Support vector<br>machine | Elimination of<br>disparities<br>among kidney<br>disease patients.                                                                                                                  | The best measure of kidney function is the glomerular filtration rate (GFR). To measure GFR is complica-ted in clinical practice, requiring substantial time and resources              | *Albuminaria<br>*GFR<br>*Sodium                         | Stage 1-<br>Normal<br>Stage-2<br>Slightly<br>damaged<br>kidney<br>Stage-3<br>Fully<br>damaged<br>kidney | 1. Scales to<br>large data<br>sets.<br>2. Guarante<br>es<br>convergenc<br>e. | Scaling with<br>number of<br>dimensions.     Chustering<br>data of<br>varying sizes<br>and density.                                    | To beat the<br>performance of other<br>classifiers using<br>normalized dataset                                                                                                         |
|            | No.                                                                                               | On a                                                                                    |                                                                                                                                                                                     |                                                                                                                                                                                         | Tamilarasi S                                            | ide<br>Secondo                                                                                          | 1/0                                                                          | (S)                                                                                                                                    | No.                                                                                                                                                                                    |
| 6.<br>2021 | Diagnose of<br>Chronic Kidney<br>Disease by using                                                 | Naïve Bayes,<br>Random Forest,<br>eGFR. CKD.                                            | The relationship<br>of CKD to<br>chronic kidney                                                                                                                                     | Scan The<br>Dataset, Calculate<br>the                                                                                                                                                   | Blood<br>pressure, sugar,<br>bacteria.                  | Helps<br>medical<br>predicting the                                                                      | *No need<br>for<br>anticoagula                                               | *Protein loss<br>through<br>dailysate                                                                                                  | It has to be enhanced<br>based on the ground<br>truth recommended                                                                                                                      |

|             |                                                                                                                              | 3                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                | model                                        |                                                                                                                                                                            | 3                                                                                                                                   | overlapping.                                                              |                                                                                                              |
|-------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 10.<br>2020 | Detailed review<br>of chronic<br>kidney disease                                                                              | Chronic kidney<br>disease, Glomerular<br>filtration rate,<br>Albumin creatinine<br>rate, Acute kidney<br>injury, Cystatin C | With the help of various engineering techniques one can easily design controllers to assess as well as to prevent CKD permanently.                                                 | *Collect the<br>dataset<br>*Pre-process it<br>*Apply machine<br>learning<br>algorithm<br>*Predict the stage<br>of CKD                                                                          | RBC, WBC<br>count, age, bp,<br>sugar content | With the help<br>of<br>engineering<br>techniques<br>we can design<br>predictive<br>control<br>systems for<br>assessing as<br>well as<br>preventing<br>CKD                  | *Simple to<br>implement<br>*More<br>efficient                                                                                       | *More<br>resources<br>required                                            | More accurate data<br>mining techniques has<br>to be implemented for<br>better prediction                    |
|             |                                                                                                                              |                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                | Bhavani G                                    |                                                                                                                                                                            |                                                                                                                                     |                                                                           |                                                                                                              |
| 11.<br>2020 | The case for<br>early<br>identification<br>and intervention<br>of Chronic<br>Kidney disease                                  | Chronic kidney<br>disease, Glomerular<br>filtration rate,<br>Albumin, creatinine<br>rate                                    | Participants identified strategies for screening, risk stratification, and treatment for early CKD and the key health system and economic factors for implementing these processes | *Input dataset *CKD Screening *Treatment                                                                                                                                                       | GFR, blood<br>sample, wine<br>sample         | A fundamental justification for the early detection of CKD is the availability of evidence-based interventions to slow the progression of CKD and reduce its complications | *Easy to<br>carry out<br>*More<br>throughput                                                                                        | *Need to<br>work on<br>additional<br>features                             | Need to support<br>systematic approaches<br>for CKD screening                                                |
| 12.<br>2020 | Risk Level<br>Prediction of<br>Chronic Kidney<br>Disease using<br>Neuro-Fuzzy<br>and Hierarchical<br>Clustering<br>algorithm | Heatmap, clustering<br>multivariant<br>statistical analysis                                                                 | The treatment<br>can prevent or<br>delay<br>complications of<br>decreased<br>kidney function                                                                                       | A fusion of neural<br>networks with<br>fuzzy logic is<br>generally defined<br>as a system<br>trained using a<br>particular<br>learning<br>algorithm which<br>is derived from<br>neural network | BP, Glucose,<br>Urine protein,<br>urea       | The results of<br>the prediction<br>showing the<br>risk of any<br>patient<br>having CKD<br>given the ten<br>features.                                                      | *Data<br>mining in<br>healthcare<br>detects<br>fraud and<br>abuse.<br>*Help<br>physicians<br>to identify<br>effective<br>treatments | *Ethical,<br>Legal and<br>Social Issues.<br>*Data<br>Ownership<br>issues. | Implement more<br>bigdata oriented tools<br>and technique which<br>makes the process<br>faster and effective |

| 35          |                                                                                                                            |                                                                                                       |                                                                                                            |                                                                                       | Kanimozhi D                                      |                                                                                                                                                               |                                                      | 3                                                           | is .                                                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 16.<br>2019 | Chronic Kidney<br>Disease<br>Prediction Using<br>Machine<br>Learning<br>Techniques                                         | Chronic disease Decision Tree Support Vector Machine Logistic Regression and Bagging Ensemble methods | To develop and<br>validate a<br>predictive model<br>for the<br>prediction of<br>chronic<br>kidney disease. | *Apply logistic                                                                       | Giucose, BP,<br>Albumin,<br>Creatimine           | The machine<br>learning<br>classifiers<br>used in two<br>stages, at first<br>the logistic<br>regression<br>classifier is<br>used to<br>predict the<br>results | *Easy to<br>implement<br>*Accurate                   | *Not efficient                                              | The model can be further turned by applying feature selection methods to increase the performance of the prediction.               |
| 17.<br>2019 | Chronic Kidney<br>Disease<br>Prediction using<br>Machine<br>Learning Models                                                | Chronic Kidney Disease, Decision Tree, Machine Learning, Random Forest, Vactors.                      | Presents evidences of early identification and care of CKD can improve the quality of the patients life.   | *Create dataset *Pre-processing *Apply decision and support vector machine.           | Glucose, BP,<br>RBC, WBC,<br>Albumin             | Models has been constructed using training data set instances which is 70% of original CKD data set. Constructed models have been validated using test data.  | *Efficient<br>functioning<br>*Simple to<br>implement | *Not<br>compared the<br>data at the<br>time of<br>execution | The comparison must<br>be done based on the<br>time of execution and<br>feature set selection                                      |
| 18.<br>2019 | Detection of<br>Chronic Kidney<br>Disease Using<br>Machine<br>Learning<br>Algorithms with<br>Least Number of<br>Predictors | forest, Gradient<br>boosting, Logistic<br>Regression, Support                                         | The target is to diagnose the CKD using different intelligent techniques.                                  | *Data<br>preprocessing<br>*Missing values<br>*Data reduction<br>*Modelling<br>*Result | Age, sex, serum,<br>creatinine,<br>albumin       | The experiments are conducted using Python 3.3 programming language through the Jupyter Notebook                                                              | *Effective<br>method                                 | *Disassociati<br>on between<br>classes may<br>occur         | It is aimed to validate the results by using bigdata sets o compare the resulusing another datase that contains the same features. |
| 19.<br>2019 | Using machine<br>learning models<br>to predict the<br>initiation of renal                                                  | A novel approach of<br>screening CKD<br>patients to predict<br>the chances of<br>future RRT based     | our study is to<br>develop a<br>screening tool                                                             | *Data source<br>*Petient selection<br>*Outcome                                        | Age, serum,<br>urea, creatinine,<br>albumin, gfr | They, tested<br>the effect of<br>all the<br>implemented<br>data                                                                                               | *Easy data<br>aquisation                             | *High error<br>prone<br>*Time<br>consuming                  | Future scope lies in<br>coming up with a<br>prediction model that<br>would factor in the<br>more clinical data in                  |

|             | replacement<br>therapy among<br>chronic kidney<br>disease patients                                | on the clinical data<br>using ML<br>algorithms                                                             | history using<br>various ML<br>models.                                                                    |                                                                                                                                                                                                                                    |                                                                                                   | preprocessing<br>approaches<br>on the results<br>of ML<br>algorithms.                                                                               |                                                      |                                                             | predicting the outcomes.                                                                                                            |
|-------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 20.<br>2018 |                                                                                                   | Machine learning Artificial Neural Network (ANN) Support Vector Machine (SVM) Chronic Kidney Disease (CKD) | machine<br>learning classific                                                                             | Models of the two<br>proposed<br>techniques were<br>developed using<br>the best-obtained<br>parameters and<br>features. The<br>empirical results<br>from the<br>experiments<br>indicated that<br>ANN performed<br>better than SVM. | count,<br>creatinine, gfi                                                                         | The empirical results from the experiments indicated that ANN performed better than SVM.                                                            | fault<br>tolerance<br>*Distribute                    | *Does not<br>aimed on<br>selecting<br>important<br>features | Need to obtain the<br>results using most<br>important parameter<br>and features                                                     |
| 21.<br>2018 | Prediction of<br>Chronic Kidney<br>Disease Using<br>Machine<br>Learning<br>Algorithm              | CKD, Decision<br>Tree, GFR, SVM,<br>Machine Learning                                                       | To build a model with maximum accuracy of predicting whether CKD or not and if yes then its Severity.     | *Data<br>preprocessing<br>*Cleanm dataset<br>*Train and test<br>the data<br>*Prediction                                                                                                                                            | Keerthana V Age, Blood Pressure, Albumin, Red Blood cells, Pus cell, Serum creatinine, Hemoglobin | To build a machine learning model targeting chronic kidney disease with overall accuracy of p9.99%, will need millions of records with zero missing | *Prediction<br>process is<br>less time<br>consuming. | *Less security<br>provided for<br>the data                  | Strength of the data<br>need to be improved                                                                                         |
| 22.<br>2018 | A Deep Neural<br>Network for<br>Early Detection<br>and Prediction of<br>Chronic Kidney<br>Disease | Chronic kidney<br>disease; feature<br>selection; recursive<br>feature elimination                          | Chronic kidney<br>failure makes to<br>difficulties in<br>removing extra<br>fluids from the<br>body blood. | *Data set<br>description<br>*Data processing<br>*Handling<br>missing value<br>*Data                                                                                                                                                | BP,<br>hypertension,<br>urea, sodium                                                              | values.  To improve the model performance, significant volumes of increasingly                                                                      | *Can work<br>with<br>insufficient<br>knowledge       | *Large<br>datasets need<br>to be<br>implemented.            | Significant volumes<br>of increasingly<br>sophisticated and<br>representative CKD<br>data will be collected<br>in future to detect. |

**Tables 2.2.1 Literature Survey** 

#### 2.3 Problem Statement Definition:

- The first step in the problem-solving process is to determine what the problem actually is. This is an important step because you can waste time solving the wrong problem. Do not assume automatically you know what the problem is, because it may not be apparent.
- The problem statement is a structured set of statements that describe the purpose of an effort in terms of what problem it's trying to solve.

## DEFINING THE PROBLEM (PROBLEM STATEMENTS) CHRONIC KIDNEY DISEASE

- Kidney Disease affected patients need a way to detect the presence of this disease at an
  early date to slow down or stop the progress of chronic kidney failure which not only
  reduces the facilities but also the pain experienced by the patient while undergoing the
  treatment.
- Patients need to follow a healthy diet by maintaining a balance of sodium, potassium, phosphorus, protein and fluids in the diet to keep the kidneys stronger, safer and healthier.
- Symptoms of chronic kidney disease often don't appear until the condition has reached an advanced stage in which kidney function has become greatly impaired. However, with our project, we can detect whether a person is indeed in the risk of danger of CKD or not, even if there are no symptoms detected.
- 4. Suppose a person got admitted with severe kidney pain in a hospital. The doctor has to diagnose the problem as quickly as possible. After getting the required parameters, either the person is affected with CKD or not can quickly be decided with the help of our project.
- With the parameters checked prior, there is no need of a person to seek the hospitals. We can diagnose the CKD, with our project, in their home itself.
- Patients need to do regular blood test so that can avoid kidney damage.
- If you are a member of the African -American, American Indian or Asian -American races, you are considered to be at higher risk for chronic kidney disease. Those people should always have regular kidney check -ups.
- Chronic Kidney disease (CKD) means your kidneys are damaged and can't filter blood the way they should. The disease called "chronic" because the damage to your kidneys happens slowly over a long period.

#### 3. IDEATION & PROPOSED SOLUTION

#### 3.1 Empathy Map Canvas:

An empathy map is a collaborative visualization used to articulate what we know about a particular type of user. It externalizes knowledge about users in order to 1) create a shared understanding of user needs, and 2) aid in decision making.

An empathy map helps to map what a design team knows about the potential audience. This tool helps to understand the reason behind some actions a user takes deeply. This tool helps build Empathy towards users and helps design teams shift focus from the product to the users who are going to use the product.



Fig 3.1.1 Empathy Map Canvas

#### 3.2 Ideation and Brainstorming:

- Brainstorming is an activity that will help you generate more innovative ideas.
   It's one of many methods of ideation—the process of coming up with new ideas—and it's core to the design thinking process.
- Brainstorming refers to a problem-solving technique used by teams or individuals. In this process, participants generate various ideas or solutions, then begin discussing and narrowing them down to the best options.



Ideation is often closely related to the practice of brainstorming, a specific technique
that is utilized to generate new ideas. A principal difference between ideation and
brainstorming is that ideation is commonly more thought of as being an individual
pursuit, while brainstorming is almost always a group activity.





#### **Brainstorm** & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

- ( 10 minutes to prepare
- 1 hour to collaborate
- 2-8 people recommended



#### Before you collaborate

A little bit of preparation goes a long way with this session. Here's what you need to do to get going.

- Team gathering

Define who should participate in the session and send an invite. Share relevant information or pre-work ahead.

B Set the goal

Think about the problem you'll be focusing on solving in the brainstorming session.

C Learn how to use the facilitation tools
Use the Facilitation Superpowers to run a happy and productive session.

Open article →



To run an smooth and productive session



#### Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes





Sahana R





#### Kanimozhi D







#### Keerthana V

| invisibility, must<br>implement info-<br>Fuzzy Network | must be selected<br>to reduce the time<br>of training | the number of predicting features       |
|--------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|
| Work on<br>hyper<br>parameters                         |                                                       | Need to<br>build<br>prediction<br>model |
| Prioritize<br>the features                             | Apply feature<br>selection to<br>increase the         | Implement<br>for large                  |

#### Tamilarasi S





#### Elamathi N

| Feature<br>Embedding<br>method | further<br>capture<br>temporal<br>information | prediction model<br>for progression to<br>ESRO based on a<br>large-scale<br>multidimensional<br>detabase |
|--------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|
|--------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|



#### **Group ideas**

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

#### ① 20 minutes





Fig 3.2.1 Brainstorming

#### 3.3 Proposed Solution:

- The purpose of this tool is to provide a structured process for identifying a problem, understanding the root causes, ascertaining solution steps, and progress monitoring.
- With a solution template, you can organize development content that you want to reuse for customer-specific solutions. Solution templates enable you to easily start the development of customer-specific solutions, for example, for a specific industry.

#### Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

| S.No. | Parameter                                | Description                                                                                                                                                                                                                                                                                                                                                                 |
|-------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Problem Statement (Problem to be solved) | I am a Medical Researcher I am trying to estimate the prevalence, evaluate the risk factors of Kidney disease and determine the association between disease and its risk factors but it is difficult to categorize the data because algorithm cannot handle huge datasets which makes me feel to work on large datasets and more number of features for earlier prediction. |
| 2.    | Idea / Solution description              | Implement feature embedding method to<br>work on large datasets and add more<br>number of features for earlier prediction.                                                                                                                                                                                                                                                  |
| 3.    | Novelty / Uniqueness                     | Feature embedding from neural networks                                                                                                                                                                                                                                                                                                                                      |
| 4.    | Social Impact / Customer<br>Satisfaction | The feature embedding method allows to<br>apply feature selection which only considers<br>most important parameters(hyper-<br>parameters) that can easily predict the<br>Chronic Kidney Disease.                                                                                                                                                                            |
| 5.    | Business Model (Revenue Model)           | Fremium model – it attracts customers by introducing them to basic, limited-scope products and customer need to pay extra to upgrade the services.                                                                                                                                                                                                                          |
| 6.    | Scalability of the Solution              | The Chronic Kidney Disease prediction<br>model is scalable because more number of<br>features are added and if number of users<br>increases also it can predict the result<br>efficiently.                                                                                                                                                                                  |

**Table 3.3.1 Proposed Solution** 

#### 3.4 Problem Solution Fit:

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem.

Problem-Solution Fit - this occurs when you have evidence that customers care about certain jobs, pains, and gains. At this stage you've proved the existence of a problem and have designed a value proposition that addresses your customers' jobs, pains and gains.



Fig 3.4.1 Problem Solution Fit

#### 4. REQUIREMENT ANALYSIS

#### 4.1 Functional requirement:

- Solution Requirements are identified before the technical solution is selected and/or designed. They describe the characteristics of a solution (functional and nonfunctional) that meet business requirements and stakeholder requirements.
- A solution requirement is aimed at the concerns of the people who will build and deliver the solution. It tells those people what the functional and non-functional requirements for the solution will be and how the solution will deliver on the business and stakeholder requirements. Solution Requirements Describe the features, functions, and characteristics of a product, service, or result that will meet the business and stakeholder requirements.

#### **Functional Requirements:**

Following are the functional requirements of the proposed solution.

| FR No. | Functional Requirement (Epic) | Sub Requirement (Story / Sub-Task)                                                                                                                                                           |
|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR-1   | Home Page<br>(Login<br>Page)  | <ul> <li>Introduction page of the website.</li> <li>Symptoms and steps to cure will be displayed.</li> <li>If the user already exists asks to login or else redirects to Sign Up.</li> </ul> |
| FR-2   | User Sign Up Page             | The user had to enter the username, phone number and password.                                                                                                                               |
| FR-3   | User Verification             | After getting the phone number the OTP will be sent via SMS and it will be verified.                                                                                                         |
| FR-4   | Dataset Collection            | Collect the data set of Chronic Kidney Disease patients and pre-process the data.                                                                                                            |
| FR-5   | Training the Model            | By using the pre-processed data, we can train the model by using Deep Neural Networks.                                                                                                       |
| FR-6   | Testing the Model             | By using 20% of dataset the model will be tested.                                                                                                                                            |
| FR-7   | Prediction                    | The results are predicted from the collected data by testing the model.                                                                                                                      |

**Table 4.1.1 Functional Requirement** 

### **4.2 Non-Functional Requirement:**

#### Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

| FR No. | Non-Functional Requirement | Description                                                                                                                                                                           |
|--------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-1  | Usability                  | Creating a machine learning model that uses the                                                                                                                                       |
|        |                            | attributes of medical tests taken for different purposes                                                                                                                              |
|        |                            | to detect chronic kidney disease at early stage.                                                                                                                                      |
| NFR-2  | Security                   | The reports are maintained confidentially to                                                                                                                                          |
|        |                            | thecustomer.                                                                                                                                                                          |
| NFR-3  | Reliability                | Earlier prediction can save the life of many                                                                                                                                          |
|        |                            | users who may be affected by the CKD, hence                                                                                                                                           |
|        |                            | this model produces the reliable results.                                                                                                                                             |
|        |                            |                                                                                                                                                                                       |
| NFR-4  | Performance                | By using DNN, we can predict the chronic kidney disease with more than 98% of accuracy. In the DNN we have more hidden layers and hence its accuracy also high.                       |
| NFR-5  | Availability               | It is built as an User <u>Interface(UI)</u> that acts as a website which is trained to predict the CKD.                                                                               |
| NFR-6  | Scalability                | The Chronic Kidney Disease prediction model is scalable because <u>more</u> number of features are added and if number of users increases also it can predict the result efficiently. |

**Table 4.2.1 Non-Functional Requirement** 

#### 5. PROJECT DESIGN

#### **5.1 Data Flow Diagram:**

 A Data Flow Diagram (DFD) is a graphical representation of the "flow" of data through an information system(as shown on the DFD flow chart Figure 5), modeling its process aspects. Often it is a preliminary step used to create an overview of the system that can later be elaborated.

#### Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.



Fig 5.1.1 Data Flow Diagram

#### 5.2 Solution and Technical Architecture:

- A solutions architect creates the overall technical vision for a specific solution to a business problem. A solutions architect creates the overall technical vision for a specific solution to a business problem. They design, describe, and manage the solution.
- Technology Architecture describes the logical software and hardware capabilities that
  are required to support the deployment of business, data, and application services. This
  includes IT infrastructure, middleware, networks, communications, processing,
  standards, etc.
- Technology architecture deals with the deployment of application components on technology components. A standard set of predefined technology components is provided in order to represent servers, network, workstations.

#### Components & Technologies

| S.No | Component                    | Description                                                             | Technology                                                            |
|------|------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1    | User Interface               | User interact with our application through web User Interface.          | HTML, CSS, Python<br>Flask                                            |
| 2    | Registration                 | The user details will be stored and it will be used for further process | HTML, CSS, Python<br>Flask                                            |
| 3    | Login                        | Logic for a process in the application                                  | IBM Watson STT<br>Service                                             |
| 4    | Client's input<br>collection | User enters their diagnose report                                       | Front end – HTML,<br>CSS, MySQL,<br>Python Flask<br>Back end – Python |
| 5    | Database                     | For user registration and login process                                 | MySQL                                                                 |
| 6    | Machine Learning<br>Model    | Deep Learning Model gives 98% accuracy                                  | Deep Learning<br>Neural Network                                       |

**Table 5.2.1 Components & Technologies** 



Fig 5.2.1 Technical Architecture

#### **5.3 User Stories:**

| Functional<br>requirement<br>(Epic) | User<br>story<br>number | User story<br>andtasks                                           | Story<br>point | priority | Team<br>member               |
|-------------------------------------|-------------------------|------------------------------------------------------------------|----------------|----------|------------------------------|
| Data collection                     | USN 1                   | Use dataset<br>from Google<br>and clean the<br>dataset           | 110            | High     | Keerthana V                  |
| Model                               | USN 2                   | Create, test and save<br>the model                               | 10             | High     | Keerthana V                  |
| Display                             | USN 3                   | Display user entry form to user                                  | 6.7            | High     | Tamilarasi S,<br>Kanimozhi D |
| Enter data                          | USN 4                   | Receive data from<br>user as numeric<br>values                   | 6.7            | High     | Tamilarasi S,<br>Kanimozhi D |
| Enter data                          | USN 5                   | Receive data from<br>user as selection<br>from pull down<br>menu | 6.7            | High     | Tamilarasi S,<br>Kanimozhi D |
| Select                              | USN 6                   | As a user can<br>select<br>prediction                            | 10             | Medium   | Bhavani G                    |
| View data                           | USN 7                   | As a user can<br>view final<br>result                            | 10             | Medium   | Bhavani G                    |
| Application building for project    | USN 8                   | Deploy into IBM cloud                                            | 20             | High     | Sahana R                     |

**Table 5.3.1 User Stories** 

#### **Customer Journey Map:**

- During the Design Phase II we have done Customer journey map, Data flow diagram & user stories, Solution Requirement and Technology Architecture. Let us see in detail each activity.
- A customer journey map is a visual storyline of every engagement a customer has with a service, brand, or product. The creation of a journey map puts the organization directly in the mind of the consumer, so they can see and understand their customer's processes, needs, and perceptions.

#### Early Detection of Chronic Kidney Disease



Fig 5.2.2 Customer Journey Map

#### 6. PROJECT PLANNING & SCHEDULING

During the Project Planning Phase we have done Project planning template, Milestone and activity list and Jira sprint delivery plan.

#### **6.1 Sprint Planning & Estimation:**

A project plan template is a document that creates a standard format for a project plan. Typically, it contains a list of the essential elements of a project, such as stakeholders, scope, timelines, estimated cost and communication methods. The project manager typically lists the information based on the assignment.

#### PRODUCT BACKLOG, SPRINT DELIVERY, ESTIMATION (4MARKS):

| Sprint   | Functional<br>requirement<br>(Epic) | User<br>story<br>number | User story<br>andtasks                                           | Story<br>point | priority | Team<br>member               |
|----------|-------------------------------------|-------------------------|------------------------------------------------------------------|----------------|----------|------------------------------|
| Sprint 1 | Data collection                     | USN 1                   | Use dataset<br>from Google<br>and clean the<br>dataset           | 110            | High     | Keerthana V                  |
| Sprint 1 | Model                               | USN 2                   | Create, test and save<br>the model                               |                | High     | Keerthana V                  |
| Sprint2  | Display                             | USN 3                   | Display user entry<br>form to user                               | 6.7            | High     | Tamilarasi S,<br>Kanimozhi D |
| Sprint2  | Enter data                          | USN 4                   | Receive data from<br>user as numeric<br>values                   | 6.7            | High     | Tamilarasi S,<br>Kanimozhi D |
| Sprint2  | Enter data                          | USN 5                   | Receive data from<br>user as selection<br>from pull down<br>menu | 6.7            | High     | Tamilarasi S,<br>Kanimozhi D |
| Sprint 3 | Select                              | USN 6                   | As a user can<br>select<br>prediction                            | 10             | Medium   | Bhavani G                    |
| Sprint 3 | View data                           | USN 7                   | As a user can<br>view final<br>result                            | 10             | Medium   | Bhavani G                    |
| Sprint 4 | Application building for project    | USN 8                   | Deploy into IBM<br>cloud                                         | 20             | High     | Sahana R                     |

**Table 6.1.1 Sprint Planning & Estimation** 

#### Project tracker, velocity:

| Sprint   | Total<br>story<br>points | duration | Sprint<br>start date | Sprint<br>end date<br>(planned) | Story<br>point<br>complete<br>d (as on<br>planned<br>end date) | Sprint<br>release<br>date(actu<br>al) |
|----------|--------------------------|----------|----------------------|---------------------------------|----------------------------------------------------------------|---------------------------------------|
| Sprint 1 | 20                       | 6 days   | 24-oct -<br>2022     | 29-oct-<br>2022                 | 20                                                             | 29-oct-<br>2022                       |
| Sprint 2 | 20                       | 6 days   | 31-oct-<br>2022      | 05-nov-<br>2022                 | 20                                                             | 05-nov-<br>2022                       |
| Sprint 3 | 20                       | 6 days   | 07-nov-<br>2022      | 12-nov-<br>2022                 | 20                                                             | 12-nov-<br>2022                       |
| Sprint 4 | 20                       | 6 days   | 14-nov-<br>2022      | 19-nov-<br>2022                 | 20                                                             | 19-nov-<br>2022                       |

#### Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points

#### **6.2 SPRINT DELIVERY SCHEDULE:**

A milestone list is a project management document that identifies all project milestones. A milestone is a significant event or a point in a project. It represents nothing more than a moment in time; hence, when scheduling, milestones should be assigned zero duration.

| TITLE                                                | DESCRIPTION                                                                                                                                                  | DATE              |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Literature Survey & Information Gathering            | Literature survey on the selected project & gathering information by referring the technical papers, research publications, journals etc.                    | 16 SEPTEMBER 2022 |
| Prepare Empathy Map                                  | Prepare Empathy Map Canvas<br>to capture the user Pains &<br>Gains, Prepare list of problem<br>Statements that are to be solved<br>by this project.          | 23 SEPTEMBER 2022 |
| Ideation                                             | List the ideas by organizing a brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.                                   | 23 SEPTEMBER 2022 |
| Proposed Solution                                    | Prepare the proposed solution<br>document, which includes<br>novelty, feasibility of idea,<br>revenue model, social impact,<br>scalability of solution, etc. | 10 OCTOBER 2022   |
| Problem Solution Fit                                 | Prepare problem - solution fit document.                                                                                                                     | 10 OCTOBER 2022   |
| Solution Architecture                                | Prepare solution architecture document.                                                                                                                      | 10 OCTOBER 2022   |
| Customer Journey                                     | Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).                                    | 17 OCTOBER 2022   |
| Functional Requirement                               | Prepare the functional requirement document.                                                                                                                 | 17 OCTOBER 2022   |
| Data Flow Diagrams                                   | Draw the data flow diagrams and submit forreview.                                                                                                            | 17 OCTOBER 2022   |
| Technology Architecture                              | Prepare the technology architecture diagram.                                                                                                                 | 17 OCTOBER 2022   |
| Prepare Milestone & Activity<br>List                 | Prepare the milestones<br>&activity list of the<br>project.                                                                                                  | 02 NOVEMBER 2022  |
| Project Development - Delivery of Sprint-1, 2, 3 & 4 | Develop & submit the developed code by testing it.                                                                                                           | IN PROGRESS.      |

#### 6.3 REPORI'S ÏROM JIRA:

#### **SPRINT 1:**



#### **SPRINT 2:**



#### **SPRINT 3 and 4:**



#### **SCREENSHOTS:**





| Status:             | Done                                |                               |             |  |
|---------------------|-------------------------------------|-------------------------------|-------------|--|
| Project:            | Early Detection of Chronic Kidney D | isease using Machine Learning |             |  |
| Components:         | None                                |                               |             |  |
| Affects versions:   | None                                |                               |             |  |
| Fix versions:       | None                                |                               |             |  |
| Type:               | Story                               | Priority:                     | Medium      |  |
| Reporter:           | Sahana R                            | Assignee:                     | Keerthana V |  |
| Resolution:         | Done                                | Votes:                        | 0           |  |
| Labels:             | None                                |                               |             |  |
| Remaining Estimate: | Not Specified                       |                               |             |  |
| Time Spent:         | Not Specified                       |                               |             |  |
| Original estimate:  | Not Specified                       |                               |             |  |
|                     |                                     |                               |             |  |
| Rank:               | 0 i00007:                           |                               |             |  |
| Sprint:             | EDCKDUML Sprint 1                   |                               |             |  |

| Status:             | Done                                 |                              |             |
|---------------------|--------------------------------------|------------------------------|-------------|
| Project:            | Early Detection of Chronic Kidney Di | sease using Machine Learning |             |
| Components:         | None                                 |                              |             |
| Affects versions:   | None                                 |                              |             |
| Fix versions:       | None                                 |                              |             |
| Type:               | Story                                | Priority:                    | Medium      |
| Reporter:           | Sahana R                             | Assignee:                    | Keerthana V |
| Resolution:         | Done                                 | Votes:                       | 0           |
| Labels:             | None                                 |                              |             |
| Remaining Estimate: | Not Specified                        |                              |             |
| Time Spent:         | Not Specified                        |                              |             |
| Original estimate:  | Not Specified                        |                              |             |
| Rank:               | 0 i0000v:                            |                              |             |
| Sprint:             | EDCKDUML Sprint 1                    |                              |             |

| Status:             | Done                                |                               |             |  |
|---------------------|-------------------------------------|-------------------------------|-------------|--|
| Project:            | Early Detection of Chronic Kidney D | isease using Machine Learning |             |  |
| Components:         | None                                |                               |             |  |
| Affects versions:   | None                                |                               |             |  |
| Fix versions:       | None                                |                               |             |  |
| Type:               | Story                               | Priority:                     | Medium      |  |
| Reporter:           | Sahana R                            | Assignee:                     | Keerthana V |  |
| Resolution:         | Done                                | Votes:                        | 0           |  |
| Labels:             | None                                |                               |             |  |
| Remaining Estimate: | Not Specified                       |                               |             |  |
| Time Spent:         | Not Specified                       |                               |             |  |
| Original estimate:  | Not Specified                       |                               |             |  |
| Rank:               | 0 i00013:                           |                               |             |  |
| Sprint:             | EDCKDUML Sprint 1                   |                               |             |  |

| Status:             | Done                                |                                                                  |             |  |  |  |
|---------------------|-------------------------------------|------------------------------------------------------------------|-------------|--|--|--|
| Project:            | Early Detection of Chronic Kidney D | Early Detection of Chronic Kidney Disease using Machine Learning |             |  |  |  |
| Components:         | None                                |                                                                  |             |  |  |  |
| Affects versions:   | None                                |                                                                  |             |  |  |  |
| Fix versions:       | None                                |                                                                  |             |  |  |  |
| Type:               | Story                               | Priority:                                                        | Medium      |  |  |  |
| Reporter:           | Sahana R                            | Assignee:                                                        | Keerthana V |  |  |  |
| Resolution:         | Done                                | Votes:                                                           | 0           |  |  |  |
| Labels:             | None                                |                                                                  |             |  |  |  |
| Remaining Estimate: | Not Specified                       |                                                                  |             |  |  |  |
| Time Spent:         | Not Specified                       |                                                                  |             |  |  |  |
| Original estimate:  | Not Specified                       |                                                                  |             |  |  |  |
| Rank:               | 0 i0001j:                           |                                                                  |             |  |  |  |
| Sprint:             | EDCKDUML Sprint 1                   |                                                                  |             |  |  |  |

| Status:             | In Progress                                                      |           |             |  |
|---------------------|------------------------------------------------------------------|-----------|-------------|--|
| Project:            | Early Detection of Chronic Kidney Disease using Machine Learning |           |             |  |
| Components:         | None                                                             |           |             |  |
| Affects versions:   | None                                                             |           |             |  |
| Fix versions:       | None                                                             |           |             |  |
| Type:               | Story                                                            | Priority: | Medium      |  |
| Reporter:           | Sahana R                                                         | Assignee: | Keerthana V |  |
| Resolution:         | Unresolved                                                       | Votes:    | 0           |  |
| Labels:             | None                                                             |           |             |  |
| Remaining Estimate: | Not Specified                                                    |           |             |  |
| Time Spent:         | Not Specified                                                    |           |             |  |
| Original estimate:  | Not Specified                                                    |           |             |  |
| Rank:               | 0 i0001r:                                                        |           |             |  |
| Sprint:             | EDCKDUML Sprint 1                                                | ABC       |             |  |

| Status:             | In Progress                         |                                |             |
|---------------------|-------------------------------------|--------------------------------|-------------|
| Project:            | Early Detection of Chronic Kidney I | Disease using Machine Learning |             |
| Components:         | None                                |                                |             |
| Affects versions:   | None                                |                                |             |
| Fix versions:       | None                                |                                |             |
|                     |                                     |                                |             |
| Type:               | Story                               | Priority:                      | Medium      |
| Reporter:           | Sahana R                            | Assignee:                      | Keerthana V |
| Resolution:         | Unresolved                          | Votes:                         | 0           |
| Labels:             | None                                |                                |             |
| Remaining Estimate: | Not Specified                       |                                |             |
| Time Spent:         | Not Specified                       |                                |             |
| Original estimate:  | Not Specified                       |                                |             |
|                     |                                     |                                |             |
| Rank:               | 0 i0001z:                           |                                |             |
| Sprint:             | EDCKDUML Sprint 1                   |                                |             |

| Status:             | Done                              |                                |             |  |
|---------------------|-----------------------------------|--------------------------------|-------------|--|
| Project:            | Early Detection of Chronic Kidney | Disease using Machine Learning |             |  |
| Components:         | None                              |                                |             |  |
| Affects versions:   | None                              |                                |             |  |
| Fix versions:       | None                              |                                |             |  |
|                     |                                   |                                |             |  |
| Type:               | Story                             | Priority:                      | Medium      |  |
| Reporter:           | Sahana R                          | Assignee:                      | Keerthana V |  |
| Resolution:         | Done                              | Votes:                         | 0           |  |
| Labels:             | None                              |                                |             |  |
| Remaining Estimate: | Not Specified                     |                                |             |  |
| Time Spent:         | Not Specified                     |                                |             |  |
| Original estimate:  | Not Specified                     |                                |             |  |
| Rank:               | 0 i0001i:                         |                                |             |  |
| Sprint:             | EDCKDUML Sprint 1                 |                                |             |  |

| Status:             | In Progress                         |                               |             |
|---------------------|-------------------------------------|-------------------------------|-------------|
| Project:            | Early Detection of Chronic Kidney D | isease using Machine Learning |             |
| Components:         | None                                |                               |             |
| Affects versions:   | None                                |                               |             |
| Fix versions:       | None                                |                               |             |
| Type:               | Story                               | Priority:                     | Medium      |
| Reporter:           | Sahana R                            | Assignee:                     | Keerthana V |
| Resolution:         | Unresolved                          | Votes:                        | 0           |
| Labels:             | None                                |                               |             |
| Remaining Estimate: | Not Specified                       |                               |             |
| Time Spent:         | Not Specified                       |                               |             |
| Original estimate:  | Not Specified                       |                               |             |
| Rank:               | 0 i0001r:                           |                               |             |
| Sprint:             | EDCKDUML Sprint 1                   | ABC                           |             |

| Status:             | In Progress                         |                               |             |  |
|---------------------|-------------------------------------|-------------------------------|-------------|--|
| Project:            | Early Detection of Chronic Kidney D | isease using Machine Learning |             |  |
| Components:         | None                                |                               |             |  |
| Affects versions:   | None                                |                               |             |  |
| Fix versions:       | None                                |                               |             |  |
| Type:               | Story                               | Priority:                     | Medium      |  |
| Reporter:           | Sahana R                            | Assignee:                     | Keerthana V |  |
| Resolution:         | Unresolved                          | Votes:                        | 0           |  |
| Labels:             | None                                |                               |             |  |
| Remaining Estimate: | Not Specified                       |                               |             |  |
| Time Spent:         | Not Specified                       |                               |             |  |
| Original estimate:  | Not Specified                       |                               |             |  |
| Rank:               | 0 i0002f:                           |                               |             |  |
| Sprint:             | EDCKDUML Sprint 1                   |                               |             |  |

| [EDCKDUML-13] Create H | TML files Created: 02/Nov/22 Updated: 03/Nov/22 |                                                                  |                       |  |  |  |
|------------------------|-------------------------------------------------|------------------------------------------------------------------|-----------------------|--|--|--|
| Status:                | To Do                                           | To Do                                                            |                       |  |  |  |
| Project:               | Early Detection of Chronic Kidney Disease       | Early Detection of Chronic Kidney Disease using Machine Learning |                       |  |  |  |
| Components:            | None                                            |                                                                  |                       |  |  |  |
| Affects versions:      | None                                            |                                                                  |                       |  |  |  |
| Fix versions:          | None                                            |                                                                  |                       |  |  |  |
|                        |                                                 |                                                                  |                       |  |  |  |
| Type:                  | Story                                           | Priority:                                                        | Medium                |  |  |  |
| Reporter:              | Sahana R                                        | Assignee:                                                        | Tamilarasi Seenuvasan |  |  |  |
| Resolution:            | Unresolved                                      | Votes:                                                           | 0                     |  |  |  |
| Labels:                | None                                            |                                                                  |                       |  |  |  |
| Remaining Estimate:    | Not Specified                                   |                                                                  |                       |  |  |  |
| Time Spent:            | Not Specified                                   |                                                                  |                       |  |  |  |
| Original estimate:     | Not Specified                                   |                                                                  |                       |  |  |  |
|                        |                                                 |                                                                  |                       |  |  |  |
| Rank:                  | 0 i0002n:                                       |                                                                  |                       |  |  |  |
| Sprint:                | EDCKDUML Sprint 2                               |                                                                  |                       |  |  |  |
| Story point estimate:  | 5                                               |                                                                  |                       |  |  |  |

| Status:               | To Do             | © Creard: 02/Nov/22 Updated: 03/Nov/22                           |            |  |  |  |
|-----------------------|-------------------|------------------------------------------------------------------|------------|--|--|--|
| Project:              |                   | Early Detection of Chronic Kidney Disease using Machine Learning |            |  |  |  |
| Components:           | None              |                                                                  |            |  |  |  |
| Affects versions:     | None              |                                                                  |            |  |  |  |
| Fix versions:         | None              |                                                                  |            |  |  |  |
|                       |                   |                                                                  |            |  |  |  |
| Type:                 | Story             | Priority:                                                        | Medium     |  |  |  |
| Reporter:             | Sahana R          | Assignee:                                                        | kani mozhi |  |  |  |
| Resolution:           | Unresolved        | Votes:                                                           | 0          |  |  |  |
| Labels:               | None              |                                                                  |            |  |  |  |
| Remaining Estimate:   | Not Specified     |                                                                  |            |  |  |  |
| Time Spent:           | Not Specified     |                                                                  |            |  |  |  |
| Original estimate:    | Not Specified     |                                                                  |            |  |  |  |
|                       |                   |                                                                  |            |  |  |  |
| Rank:                 | 0 i0002v:         |                                                                  |            |  |  |  |
| Sprint:               | EDCKDUML Sprint 2 |                                                                  |            |  |  |  |
| Story point estimate: | 5                 |                                                                  |            |  |  |  |

| [EDCKDUML-16] Collect d | <u>ata from user as numeric from blood samples</u> c | reated: 02/Nov/22 Updated: 03/Nov/22                             |            |  |  |  |  |
|-------------------------|------------------------------------------------------|------------------------------------------------------------------|------------|--|--|--|--|
| Status:                 | To Do                                                | To Do                                                            |            |  |  |  |  |
| Project:                | Early Detection of Chronic Kidney Disease            | Early Detection of Chronic Kidney Disease using Machine Learning |            |  |  |  |  |
| Components:             | None                                                 | None                                                             |            |  |  |  |  |
| Affects versions:       | None                                                 | None                                                             |            |  |  |  |  |
| Fix versions:           | None                                                 |                                                                  |            |  |  |  |  |
|                         |                                                      |                                                                  |            |  |  |  |  |
| Type:                   | Story                                                | Priority:                                                        | Medium     |  |  |  |  |
| Reporter:               | Sahana R                                             | Assignee:                                                        | kani mozhi |  |  |  |  |
| Resolution:             | Unresolved                                           | Votes:                                                           | 0          |  |  |  |  |
| Labels:                 | None                                                 |                                                                  |            |  |  |  |  |
| Remaining Estimate:     | Not Specified                                        |                                                                  |            |  |  |  |  |
| Time Spent:             | Not Specified                                        |                                                                  |            |  |  |  |  |
| Original estimate:      | Not Specified                                        | Not Specified                                                    |            |  |  |  |  |
|                         |                                                      |                                                                  |            |  |  |  |  |
| Rank:                   | 0 i0003b;                                            |                                                                  |            |  |  |  |  |
| Sprint:                 | EDCKDUML Sprint 2                                    |                                                                  |            |  |  |  |  |
|                         |                                                      |                                                                  |            |  |  |  |  |

| Status:               | To Do             |                                                                  |           |  |  |  |
|-----------------------|-------------------|------------------------------------------------------------------|-----------|--|--|--|
| Project:              |                   | Early Detection of Chronic Kidney Disease using Machine Learning |           |  |  |  |
| Components:           | None              |                                                                  |           |  |  |  |
| Affects versions:     | None              |                                                                  |           |  |  |  |
| Fix versions:         | None              |                                                                  |           |  |  |  |
|                       |                   |                                                                  |           |  |  |  |
| Type:                 | Story             | Priority:                                                        | Medium    |  |  |  |
| Reporter:             | Sahana R          | Assignee:                                                        | Bhavani G |  |  |  |
| Resolution:           | Unresolved        | Votes:                                                           | 0         |  |  |  |
| Labels:               | None              |                                                                  |           |  |  |  |
| Remaining Estimate:   | Not Specified     |                                                                  |           |  |  |  |
| Time Spent:           | Not Specified     |                                                                  |           |  |  |  |
| Original estimate:    | Not Specified     |                                                                  |           |  |  |  |
|                       |                   |                                                                  |           |  |  |  |
| Rank:                 | 0 i0003j:         |                                                                  |           |  |  |  |
| Sprint:               | EDCKDUML Sprint 3 |                                                                  |           |  |  |  |
| Story point estimate: | 5                 |                                                                  |           |  |  |  |

| EDCKDUML-18] Give man | ny testcases and view the result Created: 02/Nov/22 Upda | ted: 03/Nev/22                                                   |           |  |  |  |
|-----------------------|----------------------------------------------------------|------------------------------------------------------------------|-----------|--|--|--|
| Status:               | To Do                                                    |                                                                  |           |  |  |  |
| Project:              | Early Detection of Chronic Kidney Disease                | Early Detection of Chronic Kidney Disease using Machine Learning |           |  |  |  |
| Components:           | None                                                     |                                                                  |           |  |  |  |
| Affects versions:     | None                                                     |                                                                  |           |  |  |  |
| Fix versions:         | None                                                     |                                                                  |           |  |  |  |
|                       |                                                          |                                                                  |           |  |  |  |
| Type:                 | Story                                                    | Priority:                                                        | Medium    |  |  |  |
| Reporter:             | Sahana R                                                 | Assignee:                                                        | Bhavani G |  |  |  |
| Resolution:           | Unresolved                                               | Votes:                                                           | 0         |  |  |  |
| Labels:               | None                                                     |                                                                  |           |  |  |  |
| Remaining Estimate:   | Not Specified                                            |                                                                  |           |  |  |  |
| Time Spent:           | Not Specified                                            |                                                                  |           |  |  |  |
| Original estimate:    | Not Specified                                            |                                                                  |           |  |  |  |
|                       |                                                          |                                                                  |           |  |  |  |
| Rank:                 | 0 i0003r:                                                |                                                                  |           |  |  |  |
| Sprint:               | EDCKDUML Sprint 3                                        |                                                                  |           |  |  |  |
| Story point estimate: | 5                                                        |                                                                  |           |  |  |  |

| [EDCKDUML-17] Allow user to sel | ect prediction Created: 02/Nov/22 Updated: 03/Nov/22             |           |           |
|---------------------------------|------------------------------------------------------------------|-----------|-----------|
| Status:                         | To Do                                                            |           |           |
| Project:                        | Early Detection of Chronic Kidney Disease using Machine Learning |           |           |
| Components:                     | None                                                             |           |           |
| Affects versions:               | None                                                             |           |           |
| Fix versions:                   | None                                                             |           |           |
|                                 |                                                                  |           |           |
| Type:                           | Story                                                            | Priority: | Medium    |
| Reporter:                       | Sahana R                                                         | Assignee: | Bhavani G |
| Resolution:                     | Unresolved                                                       | Votes:    | 0         |
| Labels:                         | None                                                             |           |           |
| Remaining Estimate:             | Not Specified                                                    |           |           |
| Time Spent:                     | Not Specified                                                    |           |           |
| Original estimate:              | Not Specified                                                    |           |           |
|                                 |                                                                  |           |           |
| Rank:                           | 0 i0003j:                                                        |           |           |
| Sprint:                         | EDCKDUML Sprint 3                                                |           |           |
| Story point estimate:           | 5                                                                |           |           |

| EDCKDUML-18] Give man | y testcases and view the result Created: 02/Nov/22 Updat | ed: 03/Nov/22                                                    |           |  |  |  |
|-----------------------|----------------------------------------------------------|------------------------------------------------------------------|-----------|--|--|--|
| Status:               | To Do                                                    |                                                                  |           |  |  |  |
| Project:              | Early Detection of Chronic Kidney Disease                | Early Detection of Chronic Kidney Disease using Machine Learning |           |  |  |  |
| Components:           | None                                                     | None                                                             |           |  |  |  |
| Affects versions:     | None                                                     |                                                                  |           |  |  |  |
| Fix versions:         | None                                                     |                                                                  |           |  |  |  |
|                       |                                                          |                                                                  |           |  |  |  |
| Type:                 | Story                                                    | Priority:                                                        | Medium    |  |  |  |
| Reporter:             | Sahana R                                                 | Assignee:                                                        | Bhavani G |  |  |  |
| Resolution:           | Unresolved                                               | Votes:                                                           | 0         |  |  |  |
| Labels:               | None                                                     |                                                                  |           |  |  |  |
| Remaining Estimate:   | Not Specified                                            |                                                                  |           |  |  |  |
| Time Spent:           | Not Specified                                            |                                                                  |           |  |  |  |
| Original estimate:    | Not Specified                                            |                                                                  |           |  |  |  |
|                       |                                                          |                                                                  |           |  |  |  |
| Rank:                 | 0 i0003r:                                                |                                                                  |           |  |  |  |
| Sprint:               | EDCKDUML Sprint 3                                        |                                                                  |           |  |  |  |
| Story point estimate: | 5                                                        |                                                                  |           |  |  |  |
| -                     | 1                                                        |                                                                  |           |  |  |  |
| Rank:                 | 0 i0001z:                                                |                                                                  |           |  |  |  |
| Sprint:               | EDCKDUML Sprint 1                                        |                                                                  |           |  |  |  |



| Status:               | To Do                                                            |           |          |  |
|-----------------------|------------------------------------------------------------------|-----------|----------|--|
| Project:              | Early Detection of Chronic Kidney Disease using Machine Learning |           |          |  |
| Components:           | None                                                             |           |          |  |
| Affects versions:     | None                                                             |           |          |  |
| Fix versions:         | None                                                             |           |          |  |
| Type:                 | Story                                                            | Priority: | Medium   |  |
| Reporter:             | Sahana R                                                         | Assignee: | Sahana R |  |
| Resolution:           | Unresolved                                                       | Votes:    | 0        |  |
| Labels:               | None                                                             |           |          |  |
| Remaining Estimate:   | Not Specified                                                    |           |          |  |
| Time Spent:           | Not Specified                                                    |           |          |  |
| Original estimate:    | Not Specified                                                    |           |          |  |
| Rank:                 | 0ji0004f:                                                        |           |          |  |
| Sprint:               | EDCKDUMI. Sprint 4                                               |           |          |  |
| Story point estimate: | 5                                                                |           |          |  |

#### 7.0 CODING AND SOLUTIONING:

During the Project Development Phase we have done four Sprints they are Sprint 1, Sprint 2, Sprint 3 and Sprint 4.In <u>Agile product development</u>, a sprint is a set period of time during which specific work has to be completed and made ready for review.

Each sprint begins with a planning meeting. During the meeting, the product owner (the person requesting the work) and the development team agree upon exactly what work will be accomplished during the sprint. The development team has the final say when it comes to determining how much work can realistically be accomplished during the sprint, and the product owner has the final say on what criteria need to be met for the work to be approved and accepted.

The duration of a sprint is determined by the <u>scrum master</u>, the team's facilitator and manager of the <u>Scrum framework</u>. Once the team reaches a consensus for how many days a sprint should last, all future sprints should be the same. Traditionally, a sprint lasts 30 days.

After a sprint begins, the product owner must step back and let the team do their work. During the sprint, the team holds daily <u>stand-up meetings</u> to discuss progress and <u>brainstorm</u> solutions to challenges. The project owner may attend these meetings as an observer but is not allowed to participate unless it is to answer question. The project owner may not make requests for changes during a sprint and only the scrum master or project manager has the power to interrupt or stop the sprint.

At the end of the sprint, the team presents its completed work to the project owner and the project owner uses the criteria established at the sprint planning meeting to either accept or reject the work.

#### **7.1 Feature 1:**

#### Predicting Chronic Kidney Disease based on health records

Given 24 health related attributes taken in 2-month period of 400 patients, using the information of the 158 patients with complete records to predict the outcome (i.e. whether one has chronic kidney disease) of the remaining 242 patients (with missing values in their records).

#### Load Modules and helper functions



```
351 non-null
248 non-null
335 non-null
396 non-null
396 non-null
356 non-null
381 non-null
383 non-null
                  rbc
pc
pcc
ba
bgr
bu
sc
sod
pot
hemo
                                                            float64
object
object
object
float64
float64
            6
7
8
9
10
11
12
13
14
15
16
17
18
20
21
22
23
                                       383 non-null
                                       313 non-null
                                                             float64
float64
                                       312 non-null
                                       348 non-null
330 non-null
                                                            float64
                                                            object
                  wc
rc
htn
                                       295 non-null
                                                            object
          18 rc 270 non-null object 19 htn 398 non-null object 20 dm 398 non-null object 21 cad 398 non-null object 22 appet 399 non-null object 23 pe 399 non-null object 24 ane 399 non-null object 25 classification 400 non-null object dtypes: float64(11), int64(1), object(14) memory usage: 81.4+ KB
                                       270 non-null
                                                            object
In [7]: df.describe()
                           ld
                                      age
                                                    bp
                                                               sg
                                                                                         su
                                                                                                    bgr
                                                                                                                 bu
                                                                                                                                        sod
                                                                                                                                                     pot
            mean 199.500000 51.483376 76.469072 1.017408
                                                                       1.016949
                                                                                   0.450142 148.036517 57.425722 3.072454 137.528754
                                                                                                                                                 4.627244 12.526437
             std 115.614301 17.169714 13.683637 0.005717
                                                                       1.352679
                                                                                   1.099191 79.281714 50.503006
                                                                                                                        5.741126 10.408752
                                 2.000000 50.000000
                                                                                   0.000000 22.000000
                     0.000000
                                                           1.005000
                                                                       0.000000
                                                                                                           1.500000
                                                                                                                       0.400000
                                                                                                                                   4.500000
                                                                                                                                                2.500000
                                                                                                                                                             3.100000
             25% 99.750000 42.000000 70.000000 1.010000 0.000000 99.000000 27.000000 0.900000 135.000000
                                                                                                                                                3.800000 10.300000
            75% 299.25000 64.50000 80.00000 1.02000 2.00000 0.00000 163.00000 66.00000 2.80000 142.00000 4.90000 15.00000
              max 39,00000 90,00000 180,00000 1,02500 5,00000 5,00000 391,00000 75,00000 163,00000 47,00000 17,80000
In [8]: df[df.duplicated()]
Out[8]:
             ld age bp sg al su rbc pc pcc ba ... pcv wc rc htn dm cad appet pe ane classification
```

0 rows × 26 columns

#### Cleaning and preprocessing of data for training a classifier

```
# Map text to 1/0 and do some cleaning
df[['ntn','dm','cad','pe','ane']] = df[['htn','dm','cad','pe','ane']].replace(to_replace={'yes':1,'no':0})
df[['nbc','pc']] = df[['rbc','pc']].replace(to_replace={'abnormal':1,'normal':0})
df[['pcc','ba']] = df[['pcc','ba']].replace(to_replace={'present':1,'notpresent':0})
df[['appet']] = df[['appet']].replace(to_replace={'good':1,'poor':0,'no':np.nan})
df['classification'] = df['classification'].replace(to_replace={'ckd':1.0,'ckd\t':1.0,'notckd':0.0,'no':0.0})
df.rename(columns={'classification':'class'},inplace=True)
In [10]: # Further cleaning
                # ruther Ccentury
df('pe'] = df('pe'].replace(to_replace='good',value=0) # Not having pedal edema is good
df('appet'] = df('appet'].replace(to_replace='no',value=0)
df('cad'] = df('cad'].replace(to_replace='\tno',value=0)
df('dm'] = df('dm'].replace(to_replace={\tno',value=0})
df('dm') = df('dm').replace(to_replace={\tno',value=0})
df.drop('id',axis=1,inplace=True)
In [11]: df.head()
Out[11]:
                   age bp sg al su rbc pc pcc ba bgr ... pcv wc rc htn dm cad appet pe ane class
                  0 48.0 80.0 1.020 1.0 0.0 NaN 0.0 0.0 121.0 ... 44 7800 5.2 1.0 1.0 0.0
                                                                                                                                                                1.0 0.0 0.0
                                                                                                                                                                                         1.0
                   1 7.0 50.0 1.020 4.0 0.0 NaN 0.0 0.0 0.0 NaN ... 38 6000 NaN 0.0 0.0 0.0
                                                                                                                                                                1.0 0.0 0.0
                                                                                                                                                                                         1.0
                  2 62.0 80.0 1.010 2.0 3.0 0.0 0.0 0.0 423.0 ... 31 7500 NaN 0.0 1.0 0.0 0.0 0.0 1.0
                                                                                                                                                                                         10
                  $ 48.0 70.0 1.005 4.0 0.0 0.0 1.0 1.0 0.0 117.0 ... 32 6700 3.9 1.0 0.0 0.0 0.0 1.0 1.0 1.0
                  4 51.0 80.0 1.010 2.0 0.0 0.0 0.0 0.0 106.0 ... 35 7300 4.6 0.0 0.0 0.0 1.0 0.0 0.0 1.0
                 5 rows × 25 columns
```

#### Check the portion of rows with NaN

- Now the data is cleaned with improper values labelled NaN. Let's see how many NaNs are there.
- Drop all the rows with NaN values, and build a model out of this dataset (i.e. df2)

#### Examine correlations between different features

```
In [13]: corr_df = df2.corr()

# Generate a mask for the upper triangle
mask = np.zeros like(corr_df, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

# Set up the matplotib figure
f, ax = plt.subplots(figsize=(11, 9))

# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)

# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr_df, mask=mask, cmap=cmap, ymax=.3, center=0,
square=True, linesidth==s, cber_lows=(shrink': .5))
plt.title('Correlations between different predictors')
plt.show()

Correlations between different predictors

ape -

tp -

gg -

d -

gg -

gg
```



```
Split the set for training models further into a (sub-)training set and testing set.
In [34]: X_train.head()
Out[34]:
             age bp sg al su rbo po poo ba bgr ... hemo pov wo ro htn dm oad appet pe ane
           $17 58.0 70.0 1.020 0.0 0.0 0.0 0.0 0.0 102.0 ... 15.0 40 $100 4.9 0.0 0.0 0.0 1.0 0.0 0.0
          288 41.0 70.0 1.020 0.0 0.0 0.0 0.0 0.0 0.0 125.0 ... 16.8 41 6300 5.9 0.0 0.0 0.0 1.0 0.0 0.0 167 62.0 70.0 1.025 3.0 0.0 0.0 1.0 0.0 0.0 122.0 ... 12.6 39 7900 3.9 1.0 1.0 0.0 1.0 0.0 0.0
          268 42.0 80.0 1.020 0.0 0.0 0.0 0.0 0.0 0.0 98.0 ... 13.9 44 8400 5.5 0.0 0.0 0.0 1.0 0.0 0.0 201 47.0 80.0 1.025 0.0 0.0 0.0 0.0 0.0 0.0 124.0 ... 14.9 41 7000 5.7 0.0 0.0 0.0 1.0 0.0 0.0
          5 rows × 24 columns
In [15]: print(X_train.shape)
          print(X test.shape)
          (105, 24)
(53, 24)
In [16]: y_train.value_counts()
Out[16]: 0.0 76
1.0 29
Name: class, dtype: int64
          Choosing parameters with GridSearchCV with 10-fold cross validations.
          (Suggestion for next time: try using Bayesian model selection method)
clf.fit(X_train, y_train)
          print("Detailed classification report:")
          y_true, lr_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, lr_pred))
          confusion = confusion_matrix(y_test, lr_pred)
print('Confusion Hatrix:')
print(confusion)
          # Determine the false positive and true positive rates fpr,tpr,roc_auc = auc_scorer(clf, X_test, y_test, 'RF')
          print('Best parameters:')
print(clf.best_params_)
clf_best = clf.best_estimator
```



Confusion Matrix: [[39 0] [ 0 14]]



Best parameters: {'class\_weight': None, 'max\_depth': 2, 'n\_estimators': 8, 'random\_state': 42}

#### Examine feature importance

Since I pruned the forest ( $max\_depth=2$ ) and decrease the number of trees ( $n\_estimators=8$ ), not all features are used.

```
In [18]: plt.figure(figsize=(12,8))
features = X_test.columns.values.tolist()
importance = cif_best.feature_importances_tolist()
feature_series = pd.Series(data=importance,index-features)
feature_series.plot.ber()
plt.title('Feature Importance')
```

Out[18]: Text(0.5, 1.0, 'Feature Importance')





Confusion Matrix [[39 0] [ 0 14]]



Best parameters: {'class\_weight': None, 'max\_depth': 2, 'n\_estimators': 8, 'random\_state': 42}

#### Examine feature importance

Since I pruned the forest ( $max\_depth=2$ ) and decrease the number of trees ( $n\_est/mators=8$ ), not all features are used.

```
In [18]: plt.figure(figsize=(12,3))
features = X_test.columns.values.tolist()
importance = clf_best.feature_importances__tolist()
feature_series = pld.Series(data=importance,index=features)
feature_series.plot.best.pdf
```

Out[18]: Text(0.5, 1.0, 'Feature Importance')



```
In [18]: list_to_fill = X_test.columns[feature_series we]
print(list_to_fill)

Todex(['sg', 'sl', 'su', 'bgn', 'sc', 'pot', 'pot', 'nc', 'nd'], dtypes'object')

Next, I examine the rest of the dataset (with missing values across the rows)

Are there correlations believes no coursence of missing values in a row? The piot suggests, seems no.

In [28]: does there correlation to missing values?

or deterrorse a mask for the upper printing is
mask[np.nlu, indices_fron(msk)] = True

# Set up the matploation figure

# Somewher a custom diverging polatice(20), 30, ss_cmsp=True)

# Down the heatings with the mask and connect aspect rotio

# Somewher heatings with the mask and connect aspect rotio

# Somewher heatings with the mask and connect aspect rotio

# Somewher heatings with the mask and connect aspect rotio

# Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the mask and connect aspect rotio

## Somewher heatings with the ma
```

#### Make predictions with the best model selected above

I filled in all NaN with 0 and pass it to the trained classifier. The results are as follows:

- True positive = 180
- True negative = 35
- False positive = 0
- False negative = 27
- Accuracy = 88.8%
- ROC AUC = 99.2%

```
In [21]:
    df2 = df.dropna(axis=0)
    no_na = df2.index.tolist()
    some_na = df.drop(no_na).apply(lambda x: pd.to_numeric(x,errors='coerce'))
    some_na = some_na.fillna(0) # fill up all Nan by zero.

X test = some_na.iloc[:,:-1]
    y_test = some_na['class']
    y_true = y_test
    lr_pred = clf_best.predict(X_test)
    print(classification_report(y_true, lr_pred))

confusion = confusion_matrix(y_test, lr_pred)
    print('Confusion Matrix:')
    print(confusion)

print('Accuracy: %3f' % accuracy_score(y_true, lr_pred))
    # Determine the false positive and true positive rotes
    fpr,tpr,roc_auc = auc_scorer(clf_best, X_test, y_test, 'Rf')
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.56      | 1.00   | 0.72     | 35      |
| 1.0          | 1.00      | 0.87   | 0.93     | 207     |
| accuracy     |           |        | 0.89     | 242     |
| macro avg    | 0.78      | 0.93   | 0.83     | 242     |
| weighted avg | 0.94      | 0.89   | 0.90     | 242     |



```
In [23]: import pickle
   pickle. dump(clf_best, open('randomclass_chronic', 'wb'))
```

#### Summary of Results

With proper tuning of parameters using cross-validation in the training set, the Random Forest Classfier achieves an accuracy of 88.8% and an ROC AUC of 99.2%. Lesson learnt: It happens that some pruning helps improve the performance of RF a lot.

#### **7.2 FEATURE 2:**

During Sprint2 we have planned for Creating HTML files, Build Python code and run the app1.

Building flask file: app.py screen shots

# • App.py Code Screen

```
App.py - C:\Users\ELCOT\Downloads\App.py (3.9.2)
File Edit Format Run Options Window Help
import numpy as np
  mport pandas as pd
from flask import Flask, request, render_template
import pickle
app = Flask(__name__)
model = pickle.load(open('CKD.pkl', 'rb'))
@app.route('/')
     home():
return render_template('home.html')
@app.route('/Prediction', methods=['POST', 'GET'])
      return render template('indexnew.html')
@app.route('/Home', methods=['POST', 'GET'])
      return render_template('home.html')
@app.route('/predict', methods=['POST'])
 def predict():
      #input_features = ([int(x) for x in request.form.values()])
blood_urea = request.form["blood_urea"]
      blood_drea = request.form["blood_drea"]
blood_glucose_random = request.form["blood_glucose_random"]
anemia = request.form["Anemia"]
if (anemia == "no"):
    anemia = 0
if (anemia == "yes"):
    anemia = 1
      coronary_artery_disease = request.form["coronary_artery_disease"]
if (coronary_artery_disease == "no"):
    coronary_artery_disease = 0
      if(coronary_artery_disease == "yes"):
    coronary_artery_disease = 1
      pus cell = request.form["pus cell"]
```

```
File Edit Find View Navigate Debug Help

| International Color Project | Pro
```



```
File Edit Find View Navigate Debug Help

Let

Microcolator-Intel

Temport Find

Tempor
```

# 8. TESTING

#### **8.1 Test Cases:**

# **CKD**:



# Risk Assessment

Please find below the Risk Assessment

# Patient has a high risk of Kidney Disease, please consult your doctor immediately

Click here to learn more about Kidney Disease
©riskassess.com

Download

# No CKD:

| Blood Pressure           | 120   |
|--------------------------|-------|
| Specific Gravity         | 1.006 |
| Albumin                  | 4     |
| Blood Sugar Level        | 110   |
| Red Blood Cells<br>Count | 5     |
| Pus Cell Count           | 3     |
| Pus Cell Clumps          | 4     |

# **8.2 User Acceptance Testing:**

| Test case ID             | Feature Type | Compo                                   | Test Scenario                                  | Pre-Requisite | Steps To Execute                                                                                 | Test Data | Expected Result                                                                                                                                                                                                      |                                                         | Sta<br>tus | Commets              | TC for<br>Automation(Y/N | BU<br>G ID | Executed By  |
|--------------------------|--------------|-----------------------------------------|------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------|----------------------|--------------------------|------------|--------------|
| InitialScreen_TC<br>_001 | Functional   | Home<br>Page                            | Verify user able to see the<br>Prediction page |               | 1.Enter URL 2.Click on Prediction button 3.Verify going to next page                             |           | Entering into data input page                                                                                                                                                                                        | Working as<br>expected                                  | Pass       | Normal test case     |                          |            | R.Sahana     |
| Input_data_TC_<br>OO2    | Functional   | Prediction<br>value<br>input<br>page UI | Verify user able to enter input<br>value       |               | 1.Check entering into prediction page<br>2.Check if user can enter value                         |           | Application should show below<br>UI elements to enter numeric<br>values:<br>a.Blood Urea<br>b.Blood Glucose Pandom<br>Software should accept only<br>numeric values                                                  | Should<br>allow<br>entering<br>numeric<br>values        | Pass       | Normal test case     |                          |            | S.Tamilarasi |
| Input_data_TC_<br>003    | Functional   | Prediction<br>value<br>input<br>page UI | Verify user able to enter input<br>value       |               | 1.Check eatering into prediction page<br>2.Check if user can select option from<br>drop down box |           | Application should show below Ut elements to select from drop down menu: a Select Anemia b Select Coronary Artery Disease c.Select Pus Cell d.Select Red Blood Cell e.Select Blood Cell e.Select Disbettics Mellitus | should<br>allow<br>selection<br>from pull<br>down menu  | Pass       | Normal test case     |                          |            | D.Kanimozhi  |
| Input<br>data_TC_004     | Functional   | Prediction<br>value<br>input<br>page UI | Verify user able to enter input<br>value       |               | 1.Check entering into prediction page     2.Check if user can select option from drop down box   |           | Application should show below<br>UI elements to enter alphabetic<br>characters:<br>a.Blood Utea<br>b.Blood Glucose Random<br>Software should accept only<br>numeric values                                           | Should not<br>allow<br>entering<br>alphabetic<br>values | Pass       | Robustness test case |                          |            | V.Keerthana  |

| Result_data,<br>_005 | TC Functional | Prediction<br>Result<br>Page | Verify Chronic Kidney Disease<br>(CKD) test values       | LEaser admit button after extering above. 2 Redirect to result page and display correct result    |                                                                                                                                                                                                                                                              | Application should show<br>Chronic Kidney Oseeuse | Showed<br>CKD    | Pass | Normal test case |  | G.Bhavani |
|----------------------|---------------|------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|------|------------------|--|-----------|
| Result_data,<br>_006 | TC Functional | Prediction<br>Result<br>Page | Verify No Chronic Kidney<br>Disease (No CKD) test values | Effect which both on after extering values: 2. Redirect to result page and display correct result | a.Blood Urea : 46<br>b.Blood Glecore<br>Random : 117<br>c.Select Anemia : No<br>d.Select Coronary Artery<br>Disease : No<br>c.Select Pia Cell : No<br>f.Select Piade Blood Cell<br>: 300<br>g.Select Disbettics<br>Mollitus : No<br>h.Select Pedal Edema: No |                                                   | Showed<br>No CKD | Pass | Normal test case |  | R.Sahana  |

| Result_data_TC<br>_007 | Functional | Prediction<br>Result<br>Page | Verify Chronic Kidney Disease<br>(CKD) test values       | LEater submit button after entering values: 2.Redirect to result page and display correct result | b.Blood Glucose Random : 173 c.Select Anemia : Yes d.Select Coronary Artery Disease : Yes c.Select Pus Cell :No f.Select Red Blood Cell :No g.Select Diabetics Mellitus : Yes h.Select Pedal Edema; Yes |                                                      | Showed<br>CKD    | Pass | Normal test case |  | V.Keerthana |
|------------------------|------------|------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------|------|------------------|--|-------------|
| Result_data_TC<br>_008 | Functional | Prediction<br>Result<br>Page | Verify No Chronic Kidney<br>Disease (No CKD) test values | LEnter submit button after entering values 2. Redirect to result page and display correct result |                                                                                                                                                                                                         | Application should show No<br>Chronic Kidney Disease | Showed<br>No CKD | Pass | Normal test case |  | D.Kanimozhi |

#### 9. RESULTS

#### 9.1 Performance Metrics:

#### Model Performance Testing:

Project team shall fill the following information in model performance testing template.

| S.No. | Parameter      | Values                                                                                                                                | Screenshot |
|-------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.    | Metrics        | Regression Model: MAE -, MSE -, RMSE -, R2 score  Classification Model: Confusion Matrix - , Accuray Score- & Classification Report - | See Below  |
| 2.    | Tune the Model | Hyperparameter Tuning -<br>Validation Method -                                                                                        | See Below  |

#### 1. Metrics

#### Model: Random Forest Classification

#### 2. Tune the Model

#### **Hyperparameter Tuning:**

- The number of features is important and should be tuned in random forest classification.
- Initially all parameters in the dataset are taken as independent values to arrive at the dependent decision of Chronic Kidney Disease or No Chronic Kidney Disease.
- But the result was not accurate so used only 8 more correlated values as independent values to arrive at the dependent decision of Chronic Kidney Disease or not.

#### Validation Method:

It involves partitioning the training data set into subsets, where one subset is held out to test the performance of the model. This data set is called the validation data set.

Cross validation is to use different models and identify the best:

#### Logistic Regression Model performance values:

```
check model performance Random forest gives accurate predictions than
         logistic regression
In [59]: accuracy_score(y_test,y_pred)
Out[59]: 0.925
In [60]: conf_mat=confusion_matrix(y_test,y_pred)
conf_mat
Out[60]: array([[48, 6], [0, 26]], dtype=int64)
In [61]: print(classification_report(y_test,y_pred))
                       precision
                                 recall f1-score
                                               0.93
         macro avg
weighted avg
                           0.91
                           0.94
                                     0.93
                                               0.93
In [54]: pickle.dump(lgr,open('CKD.pkl','wb'))
```

Hence we tested with Logistic regression and Random Forest Classification wherein the accuracy of Random Forest classification is 99% compared with Logistic Regression.

| Metric   |                             | Logistic Regression Random Forest Classific |            |           |                                                   |                               |          | sification | n        |         |  |  |  |
|----------|-----------------------------|---------------------------------------------|------------|-----------|---------------------------------------------------|-------------------------------|----------|------------|----------|---------|--|--|--|
| Accuracy |                             | (                                           | 0.925      |           |                                                   | 0.95                          |          |            |          |         |  |  |  |
| Other    | accuracy_score              | y_test,y_p                                  | ored)      |           |                                                   | accuracy score(y test,y pred) |          |            |          |         |  |  |  |
| metrics  | 0.925                       |                                             |            |           |                                                   | 0.95                          |          |            |          |         |  |  |  |
|          | conf_matsconfus<br>conf_mat | ion_matrix                                  | (y_test,)  | _pred)    | conf_mat=confusion_matrix(y_test,y_pred) conf_mat |                               |          |            |          |         |  |  |  |
|          | array([[48, 6<br>[ 0, 26    | ],<br> ], dtype=i                           |            |           | array([[52, 2],<br>[ 2, 24]], dtype=int64)        |                               |          |            |          |         |  |  |  |
|          | print(classific             | ation_repo                                  | ort(y_test | ,y_pred)) | print(classification_report(y_test,y_pred))       |                               |          |            |          |         |  |  |  |
|          |                             | precision                                   | recall     | f1-score  | support                                           | p                             | recision | recall     | f1-score | support |  |  |  |
|          | e<br>1                      | 1.00                                        | 0.89       |           | 54<br>26                                          | 0                             | 0.96     | 0.96       | 0.96     | 54      |  |  |  |
|          | 1                           | 0.81                                        | 1.00       | 0.90      | 26                                                | 1                             | 0.92     | 0.92       | 0.92     | 26      |  |  |  |
|          | accuracy                    |                                             |            | 0.93      | 80                                                | accuracy                      |          |            | 0.95     | 84      |  |  |  |
|          | macro avg<br>weighted avg   | 0.91                                        | 0.94       |           | 80<br>80<br>80                                    | macro avg<br>weighted avg     | 0.94     | 0.94       | 0.94     | 86      |  |  |  |

The above table shows that Random Forest Classification gives better results over Logistic Regression.

#### 10. ADVANTAGES & DISADVANTAGES

- This software has various advantages where it can be used as an expert guide to doctors for early detection of chronic kidney disease. It is also seen in performance metrics that it has an accuracy of 95% which gives good confidence to the users.
- Machine Learning is autonomous but highly susceptible to errors. Suppose you train an
  algorithm with data sets small enough to not be inclusive. You end up with biased
  predictions coming from a biased training set.

# 11. CONCLUSION

- This Project has helped team members to understand various concepts of Machine learning, Flask file, IBM cloud and Python notebook.
- This project can be scaled for usage in prediction of other chronic diseases which will help doctors in diagnosis of disease at an early stage thereby helping in early detection of various disease.



### 12. FUTURE SCOPE

This software can be used to detect various other chronic diseases by modifying the dataset and the user inputs received. The model can be further trained with enormous amount of data to improve the accuracy.

#### 13. APPENDIX

# 13.1 Source Code:

https://github.com/IBM-EPBL/IBM-Project-433-

1658301077/tree/main/Project%20Development%20Phase

# 13.2 GitHub & Project Demo Link:

Github: <a href="https://github.com/IBM-EPBL/IBM-Project-433-">https://github.com/IBM-EPBL/IBM-Project-433-</a>

1658301077/tree/main/Project%20Development%20Phase

Demo Link: <a href="https://youtu.be/1csfumlsdYE">https://youtu.be/1csfumlsdYE</a>