遥感概论实验 第9次上机作业(遥感影像分类后处理)

100002000001 许愿

1. 小斑块去除

打开实验所给数据中的 can_tmr.img 及 can_tmr_class.dat。

(1) Majority 和 Minority 分析

在 Toolbox 中 选 择 Classification - Post Classification - Majority/Minority Analysis,选中 can_tmr_class.dat,在参数设置页面 选择所有 Items,自定义 Kernel Size 和 Center Pixel Weight。此处设置 Kernel Size 为 5*5,Center Pixel Weight 为 7。点击 OK。然后再次进行 Minority 分析作为对比。

Majority/Minority Parameters	×
Select Classes:	
Vnclassified 林地 耕地 草地/灌木 草池 沙地 其他	
Number of items selected: 7 Select All Items Clear All Items	
Analysis Method OMajority OMinority	
Kernel Size ⁵	
Center Pixel Weight 7	
Output Result to File Memory	
Enter Output Filename Choose Compres	ıs
lan/Desktop/24-25上专业课/envi/上机10/res	ult1
OK Cancel Help	

原图

Minority 分析

Majority 分析

(2) 聚类处理(Clump)

在 Toolbox 中选择 Classification - Post Classification - Clump Classes,选择 can_tmr_class.dat。自定义 Dilate Kernel Value(此处设置为 3)和 Erode Kernel Value(此处设置为 3),选定输出的文件名为 result2。

Classification Clum	oing	_		×
Input Raster	can_tmr_class.dat			
Dilate Kernel Value (optionel)	Cols. 3 P Rows 3	e U		
Erode Kernel Value (optional)	Cols. 3 Rows 3	# 		
Class Order (optional)	Vnclassified 林地 耕地 草地/灌木 课地			* *
	7 items.	Ŧ 1	4 7	ď
Output Raster	l-25 <u>上专业课</u> \envi\ <u>L</u>	机)\res	ult2	
Preview	☑Display result	▼ OK	Can	el

原图

结果

(3) 过滤处理(Sieve)

在 Toolbox 中选择 Classification - Post Classification - Sieve Classes,选择 can_tmr_class.dat。 设置 Pixel Connectivity(此处设置为 8)和 Minimum Size(默认为 2, 此处设置为 3),选定输出的文件名为 result3。

Classification Siev	ng	_	U	×
Input Raster	can_tmr_class.dat			
Pixel Connectivity	8 ~			
Class Order (optional)	Unclassified 林地 耕地 草地/灌木			+
	7 items.	平 介	. + 7	
Minimum Size (optional)	3			
Output Raster	4-25 <u>上专业</u> 课\envi	\上机10\re	esult3	.)
Preview	☑Display result	▼ OK	Can	re]

原图

过滤结果

2. 分类统计

在 Toolbox 中选择 Classification - Post Classification - Class Statistics,选择 can_tmr_class.dat,在 Statistics Input File 窗口中选择 can_tmr.img,在 Class Selection 窗口中选中所有 Items,在 Compute Statistics

Parameters 窗口中勾选 Basic Stats、Histograms、Covariance、Covariance Image、Output to a Statistics File、Output to a Text Report File,在 Report Precision 中设置 Data Precision 为 6,Floating Report 为 Normal。

3. 分类叠加

1) 先进行拉伸

在 Toolbox 中选择 Raster Management - Stratch Data,选择 can_tmr.img, 在 Spectral Subset 中选中 TM Band 1~3,点击 OK。在 Data Stretching 中选择 Linear,Stretch Range 设置为 Min 2.0%, Max 98.0%,Output Data Range 设置为 Min 0,Max 255,Data Type: Byte。结果如图。

2) 叠加

在 Toolbox 中选择 Classification - Post Classification - Overlay Classes,选择刚刚输出的 result4.dat(R\G\B 分别设为 Band 1\2\3)。在 Classification Input File 窗口中选择 can_tmr_class.dat。在 Class Overlay to RGB Parameters 窗口中选中林地、裸地和沙地,设置输出的文件名。

4. 分类结果转矢量

可以利用 ENVI 提供的 Classification to Vector 工具将分类结果转化为 矢量文件。在 Toolbox 中选择 Classification - Post Classification - Classification to Vector,在数据选择窗口中选择 can_tmr_class.dat,在 转化窗口中选择林地和草地/灌木,模式保持为 Single Vector Layer,设置输出的文件名。

在 ENVI 中打开新生成的文件,右键单击选择 Properties,对不同类别 修改颜色。

结果如图所示。

