信息学院秋季学期课程一 数值计算

第三章 插值与拟合(2)拟合方法

插值的Matlab函数

yc=interp1(x,y,cx,'method')

给定曲线上4个点的坐标为

(0,0),(60,0.45),(120,3.6),(180,12.15), 求

x=100时y值。

x=[0,60,120,180]; y=[0,0.45,3.6,12.15]; y1=interp1(x,y,100,'spline')

给定曲线上4个点的坐标为(0,0),(60,0.45),(120,3.6),(180,12.15),求该曲线方程。

3.2 曲线拟合

所谓"曲线拟合",是指根据给定的数据表,寻找一个简单的表达式来"拟合"该组数据,此处的"拟合"的含义为:不要求该表达式对应的近似曲线完全通过所有的数据点,只要求该近似曲线能够反映数据的基本变化趋势。

最小二乘拟合

已知数据对 $(x_j, y_j)(j=1,2,...,n)$, 求多项式

$$P(x) = \sum_{i=0}^{m} a_i x^i (m < n)$$

使得
$$\Phi(a_0, a_1, \dots, a_n) = \sum_{j=1}^n \left(\sum_{i=0}^m a_i x_j^i - y_j \right)^2$$
为最小

(1) 线性拟合

例:考察某种纤维的强度与其拉伸倍数的关系.下表是实际测定的24个纤维样品的强度与相应的拉伸倍数的数据记录:

编号	拉伸倍数 x_i	强 度 y_i	编号	拉伸倍数 x_i	强 度 y_i
1	1.9	1.4	13	5	5.5
2	2	1.3	14	5.2	5
3	2.1	1.8	15	6	5.5
4	2.5	2.5	16	6.3	6.4
5	2.7	2.8	17	6.5	6
6	2.7	2.5	18	7.1	5.3
7	3.5	3	19	8	6.5
8	3.5	2.7	20	8	7
9	4	4	21	8.9	8.5
10	4	3.5	22	9	8
11	4.5	4.2	23	9.5	8.1
12	4.6	3.5	24	10	8.1

可以看出,纤维强度随拉伸倍数增加而增加

并且24个点大致分布在一条直线附近

因此可认为强度与 拉伸倍数之间的主 要关系是线性关系

$$y \approx \varphi(x) = a + bx$$

该直线称为这一问题的数学模型。

怎样确定a, b, 使得直线能较好地反映所给数据的基本"变化趋势"?

采用最小二乘的思想

问题转化为求参数 a,b使 S(a,b)达到最小值。

$$\frac{\partial S}{\partial a} = \frac{\partial S}{\partial b} = 0 \quad \Longrightarrow \quad \begin{bmatrix} m & \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y_i \\ \sum_{i=1}^{m} x_i y_i \end{bmatrix}$$

$$\begin{pmatrix} 24 & 127.5 \\ 127.5 & 829.61 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 113.1 \\ 731.6 \end{pmatrix}$$

 $a \approx 0.1505$ $b \approx 0.8587$

$$\varphi(x) = 0.1505 + 0.8587x$$

这种求线性函数y=a+bx的过程称为线性拟合。

(2) 非线性拟合

已知函数f(x)在若干个点上的数据表,确定参数a和b,

利用经验函数 $y = ae^{bx}$ 拟合某组数据:

线性化处理: $y = ae^{bx} \Leftrightarrow \ln y = \ln a + bx$

 $\diamondsuit \overline{y} = \ln y; \overline{a} = \ln a \qquad \qquad \bigcup \overline{y} = \overline{a} + bx$

J	\mathcal{C}_{i}	\boldsymbol{x}_1	\boldsymbol{x}_2	• • •	\boldsymbol{x}_{m}
	\overline{v}_i	$\mathbf{ln}f_1$	$\ln f_2$	• • •	$\ln f_m$

由线性拟合方法可得到 \overline{a} 和b,从而得到a和b。

用MATLAB解拟合问题

1、线性最小二乘拟合

2、非线性最小二乘拟合

用MATLAB作线性最小二乘拟合

1. 多项式 $f(x)=a_1x^{m+}...+a_mx+a_{m+1}$ 拟合,可利用函数:

输出拟合多项式系数

 $a=[a_1, ...a_m, a_{m+1}](数组))$

输入同长度

的数组X,Y

拟合多项

式次数

2. 多项式在x处的值y可用以下命令计算:

xi	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
yi	-0.447	1.978	3.28	6.16	7.08	7.34	7.66	9.58	9.48	9.30	11.2

即要求 出二次多项式:

$$f(x) = a_1 x^2 + a_2 x + a_3$$

中的 $A = (a_1, a_2, a_3)$ 使得:

$$\sum_{i=1}^{10} [f(x_i) - y_i]^2$$
 最小

+ + +

用多项式拟合的命令

1)输入以下命令: x=0:0.1:1;

y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];

10

A=polyfit(x,y,2)

z=polyval(A,x);

plot(x,y,'k+',x,z,'r') %作出数据点和拟合曲线的图形

2) 计算结果: A = -9.8108 20.1293 -0.0317

$$f(x) = -9.8108x^2 + 20.1293x - 0.0317$$

例7: 1949年—1994年我国人口数据资料如下:

年份xi 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 人口数yi 5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8 建模分析我国人口增长的规律, 预报1999年我国人口 数。

x=[1949 1954 1959 1964 1969 1974 1979 1984 1989 1994]; y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];

plot(x,y,'*')

假设人口随时间线性地增加

模型: y = a + bx

$$[a,b]=polyfit(x,y,1)$$

可以算出: *a* = -283.2320

$$b = 0.1480$$

模型: y = 0.148 x - 283.232

实验题1

给定数据组 x0, y0, 求拟合三阶多项式, 并图示拟合情况。

xi	0 0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
yi	-0.447 1.978	3.11	5.25	5.02	4.66	4.01	4.58	3.45	5.35	9.22

x0=0:0.1:1;y0=[-0.447,1.978,3.11,5.25,5.02,4.66,4.01,4.58,3.45,5.35,9.22]; n=3;

P=polyfit(x0,y0,n);

xx=0:0.01:1;yy=polyval(P, xx);

plot(xx,yy,'-b',x0,y0,'.r','MarkerSize',20)

legend('拟合曲线','原始数据','Location','SouthEast')

xlabel('x')

实验题2

给定曲线上4个点的坐标为(0,0),(60,0.45),(120,3.6), (180,12.15), 求该曲线方程。

```
x=[0,60,120,180];
y=[0,0.45,3.6,12.15];
P=polyfit(x,y,3)
xx=0:180;
yy=polyval(P,xx);
plot(x,y,'ro',xx,yy)
```


用MATLAB作非线性最小二乘拟合

Matlab的提供了两个求非线性最小二乘拟合的函数: lsqcurvefit和lsqnonlin。两个命令都要先建立M-文件fun.m,在其中定义函数f(x),但两者定义f(x)的方式是不同的.

1. lsqcurvefit

$$\sum_{i=1}^{n} (F(x, xdata_i) - ydata_i)^2$$
 最小

输入格式为:

- (1) x = lsqcurvefit ('fun', x0, xdata, ydata);
- (2) [x, options, funval, Jacob] = lsqcurvefit ('fun', x0, xdata, ydata,...);

说明: x = lsqcurvefit ('fun', x0, xdata, ydata, options);

fun是一个事先建立的 定义函数F(x,xdata) 的 M-文件, 自变量为x和 xdata

迭代初值 已知数据点

选项见无 约束优化

2. Isqnonlin

已知数据点: xdata= (xdata₁, xdata₂, ..., xdata_n)
ydata= (ydata₁, ydata₂, ..., ydata_n)

lsqnonlin用以求含参量x(向量)的向量值函数 $f(x)=(f_1(x),f_2(x),...,f_n(x))^T$ 中的参量x,使得

$$f^{T}(x)f(x) = f_1(x)^2 + f_2(x)^2 + \dots + f_n(x)^2$$

最小。

其中 $f_i(x) = f(x, xdata_i, ydata_i)$ $= F(x, xdata_i) - ydata_i$

输入格式为:

- 1) x=1squonlin ('fun', x0, options);
- 2) [x, options, funval]=1sqnonlin ('fun', x0, ...);

说明: x=1sqnonlin ('fun', x0, options);

fun是一个事先建立的 定义函数f(x)的M-文件, 自变量为x

迭代初值

选项见无 约束优化

例8. 用下面一组数据拟合

中的参数a,b,k

t_{j}	100	200	300	400	500	600	700	800	900	1000
$c_j \times 10^3$	4.54	4.99	5.35	5.65	5.90	6.10	6.26	6.39	6.50	6.59

该问题即解最优化问题:

$$\min F(a,b,k) = \sum_{j=1}^{10} [a + be^{-0.02kt_j} - c_j]^2$$

解法1. 用命令1sqcurvefit


```
F(x, tdata) = (a + be^{-0.02kt_1}, \dots, a + be^{-0.02kt_{10}})^T, x = (a, b, k)
1) 编写M-文件 curvefun1.m
  function f=curvefun1(x,tdata)
  f=x(1)+x(2)*exp(-0.02*x(3)*tdata)
                    %其中 x(1)=a; x(2)=b; x(3)=k;
2) 输入命令
tdata=100:100:1000
cdata=1e-03*[4.54, 4.99, 5.35, 5.65, 5.90, 6.10, 6.26, 6.39,
      6.50, 6.59;
 x0=[0.2, 0.05, 0.05];
 x=lsqcurvefit ('curvefun1', x0, tdata, cdata)
 f= curvefun1(x,tdata)
```

3)运算结果为:

f = 0.0043

0.0051

0.0056

0.0059

0.0061

0.0062

0.0062

0.0063

0.0063

0.0063

x = 0.0063 -0.0034

0.2542

4) 结论: a=0.0063, b=-0.0034, k=0.2542

解法 2 用命令lsqnonlin

$$\mathbf{f}(\mathbf{x}) = \mathbf{F}(\mathbf{x}, \mathbf{tdata}, \mathbf{ctada}) = (a + be^{-0.02kt_1} - c_1, \dots, a + be^{-0.02kt_{10}} - c_1)^T$$
 x= (a, b, k)

函数curvefun2的自变量是x,

1) 编写M-文件 curvefun2.m function f=curvefun2(x) tdata=100:100:1000; cdata和tdata是已知参数,故应将cdata tdata的值写在curvefun2.m中

```
cdata=le-03*[4.54,4.99,5.35,5.65,5.90,
6.10,6.26,6.39,6.50,6.59];
f=x(1)+x(2)*exp(-0.02*x(3)*tdata)- cdata
```

2) 输入命令:

```
x0=[0.2,0.05,0.05];
x=lsqnonlin('curvefun2',x0)
f= curvefun2(x)
```


3) 运算结果为

f =1.0e-003 *(0.2322 -0.1243 -0.2495 -0.2413 -0.1668 -0.0724 0.0241 0.1159 0.2030 0.2792 x =0.0063 -0.0034 0.2542

4) 结论: 即拟合得a=0.0063 b=-0.0034 k=0.2542

可以看出,两个命令的计算结果是相同的.

例9. 体重约70kg的某人在短时间内喝下2瓶啤酒后, 隔一定时间测量他的血液中酒精含量(mg/100ml),得到数据如表所示。试用所给数据用函数 $\varphi(t) = at^b e^{ct}$ 进行拟合,并求出未知常数。

时间t/h	0.25	0.5	0.75	1	1.5	2	2.5	3	3.5	4	4.5	5
酒精含量h mg/100ml	30	68	75	82	82	77	68	68	58	51	50	41
时间t/h	6	7	8	9	10	11	12	13	14	15	16	
酒精含量h mg/100ml	38	35	28	25	18	15	12	10	7	7	4	

t=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]; h=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]; plot(t,h,'*')

clear all; close all; $t = [0.25 \ 0.5 \ 0.75 \ 1 \ 1.5 \ 2 \ 2.5 \ 3 \ 3.5 \ 4 \ 4.5 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16];$ h=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]; h1=log(h); %对数变换 f=inline('a(1)+a(2).*log(t)+a(3).*t', 'a', 't');

输出结果:

 $\mathbf{x} =$ -0.2663 4.4834 0.4709 0.4097

在一次传染病中,已知t 时刻的人数i(t) 满足 $i(t) = \frac{1}{a+be^{at}}$,公共部门每隔2天记

录一次传染病的人数,具体数据如表1 所示,求a、b、c的值

-10	(1)	O 47-112
老	Ъ	数据

天数	0	2	4	6	8	10	12	14	16	18	20	22	24
人数	0.2	0.4	0.5	0.9	1.5	2.4	3.1	3.8	4.1	4.2	4.5	4.4	4.5

解: 程序如下

tdata=0:2:24;

ydata=[0.2,0.4,0.5,0.9,1.5,2.4,3.1,3.8,4.1,4.2,4.5,4.4,4.5];

f=@(x,t)1./(x(1)+x(2)*exp(x(3)*t)); %定义匿名函数

x=lsqcurvefit(f,[0.5,10,0],tdata,ydata);

plot(tdata,ydata,'ko')

hold on

fplot(@(t)f(x,t),[0,30])

legend({'数据散点图','拟合曲线'},'location','northwest')

title(sprintf('a=\%.4f,b=\%.4f,c=\%.4f,x))

1、已知数据如表 2 所示,求一个形如 $y=ae^{bx}$ 的经验公式 (a,b)常数)。

表 2 题 1 的数据

x	1	2	3	4	5	6	7	8
у	15.3	20.5	27.4	36.6	49.1	65.5	87.8	117.6

2、近年来我国的电信事业发展迅速,现已成世界第一电信大国。据统计某市在过去 9 年中通信工具的拥有量(单位:万台)如表 3 所示,求该市通信工具的发展规律。

老 3 题 2 的数据

x	1	2	3	4	5	6	7	8	9
y	1.78	2.24	2.74	3.74	4.45	5.31	6.92	8.85	10.97

实验题5

4、许多储油罐在使用一段时间后,由于地基变形等原因, 使罐体的位置发生纵向倾斜和横向偏转等变化(以下称为变 位),从而导致罐容表发生改变。按照有关规定,需要定期 对罐容表进行重新标定。

请根据附件的数据,完成以下问题:

- (1)为了掌握罐体变位后对罐容表的影响,分别对罐体无变位和倾斜角为 α =4.10的纵向变位两种情况做了实验,实验数据如附件3所示。请分别绘出罐体变位前后油位高度间隔为1cm的罐容表数据散点图和曲线拟合图,并尝试用拟合方法给出曲线方程。
- (2)请利用罐体变位后在进/出油过程中的实际检测数据(附件4),绘出罐体变位后油位高度间隔为10cm的罐容表标定数据散点图和曲线拟合图,并给出曲线方程。

Q&A

• 有什么问题吗?

