Parte I

Introdução aos sistemas de numeração e conversão de base

Sistema de numeração

- Definições importantes:
 - Sistema de numeração: conjunto dos símbolos utilizados para a representação de quantidades e as regras que definem a forma de representação.
 - Um sistema de numeração é determinado fundamentalmente pela base, que é o número de símbolos utilizado. A base é o coeficiente que determina qual o valor de cada símbolo de acordo com a sua posição.

Notação posicional

- A forma mais empregada de representação numérica é a chamada **notação posicional**. Nela, os algarismos componentes de um número assumem valores diferentes, dependendo de sua posição relativa no número, sendo que a posição do algarismo ou digito que determina seu valor;
- Generalizando, num sistema qualquer de numeração posicional, um número N é expresso da seguinte forma:
 - $N=(d_{n-1} d_{n-2} d_{n-3} ... d_1 d_0)_b$

• Onde:

- d indica cada algarismo
- **n-1, n-2, 1, 0** (índice) indicam a posição de cada algarismo
- b indica a base de numeração
- n indica o número de digitos inteiros

Continuando ...

- Utilizando-se a notação posicional, representam-se números em qualquer base:
 - $-(1011)_2$ na base 2
 - $-(342)_5$ na base 5
 - $-(257)_8$ na base 8 (octal)
- Portanto, o valor do algarismo mais à esquerda (mais significativo) de um número de n algarismos inteiros é obtido pela multiplicação de seu valor absoluto (algarismo d_{n-1}) pela base elevada à potência (n-1), ou seja, (d_{n-1} x bⁿ⁻¹);
- O valor total do número é obtido somando-se **n** valores, cada um expressando o valor relativo de um dos **n** algarismos componentes do número.
- Por exemplo, o numero $(1043)_{10}$:
 - $-1 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 3 \times 10^0 =$
 - $-1000 + 0 + 40 + 3 = (1043)_{10}$

0011

Decimal

Binário

Sistema decimal

A base do sistema decimal é o **número 10**, que corresponde ao número de símbolos utilizado para a representação de quantidades; estes símbolos (também chamados de dígitos) são:

0123456789

001

Sistema decimal (2)

Exemplo: 3748

Desse modo, na base 10, podemos representar um número: 3748

Esquematicamente temos:

Numeração posicional

$$N = 3 \times 10^3 + 7 \times 10^2 + 4 \times 10^1 + 8 \times 10^0 =$$

 $3000 + 700 + 40 + 8 = 3748$

001

• Mostre a composição dos seguintes algarismos no sistema decimal:

a) 1303

b) 594

Resp1: 1303₁₀

O número é composto de quatro algarismos: 1, 3, 0 e 3

$$\frac{10^{3}|10^{2}|10^{1}|10^{0}}{1 \quad 3 \quad 0 \quad 3} = >1 \times 10^{3} + 3 \times 10^{2} + 0 \times 10^{1} + 3 \times 10^{0} = 1303_{10}$$

Resp2: 594₁₀

$$4 \times 10^0 = 4 \times 1 = 4$$

$$9 \times 10^1 = 9 \times 10 = 90$$

$$5 \times 10^2 = 5 \times 100 = 500$$

594

Esquematicamente temos:

Sistema binário

- No sistema binário são utilizados os dígitos 1 e 0 para a representação de quantidades.
 Portanto, a sua base é 2(número de dígitos do sistema).
- Cada dígito de um número representado neste sistema é denominado Bit (contração de binary digit).

Sistema binário (2)

2^0	1
2^{1}	2
2^2	4
2^3	8
24	16
2^5	32
2^6	64
27	128
2^8	256
29	512
2^{10}	1024
211	2048
212	4096
2^{13}	8192
214	16384

Sistema binário (3)

Para transformarmos um número binário em decimal, basta lembrarmos da numeração posicional. Veja o exemplo para transformarmos **11101**₂ em decimal:

$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 =$$

$$16+8+4+0+1=29$$

Portanto, $11101_2 = 29_{10}$

Exercícios

001

 Converter para decimal os seguintes números em binário:

- a) 1010₂
- b) 1011₂
- c) 01110₂
- d) 1100110001₂

Respostas

a) 1010₂

$$0 x 2^{0} = 0 x 1 = 0$$

$$1 x 2^{1} = 1 x 2 = 2$$

$$0 x 2^{2} = 0 x 4 = 0$$

$$1 x 2^{3} = 1 x 8 = 8$$

Esquematicamente, temos:

b) 1011₂

c) 01110₂

d) 1100110001₂ =

$$1 \times 2^9 + 1 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 =$$

$$1 \times 512 + 1 \times 256 + 1 \times 32 + 1 \times 16 + 1 \times 1 = 817$$

Sistema Octal

- É um sistema posicional de numeração cuja base é 8;
- Utiliza portanto 8
 símbolos para a
 representação de
 quantidades. Esses
 símbolos são:
 - -0, 1, 2, 3, 4, 5, 6, 7
- Exemplo: 27₈ para decimal

$$2 \times 8^{1} + 7 \times 8^{0} =$$

$$16 + 7 = 23$$

Portanto, 27_8 = 23_{10}

Parte II

Questões para revisão

Instruções

001

- As questões a seguir devem ser resolvidas passo a passo (demonstrar a conversão);
- Vocês podem conferir os resultados utilizando a calculadora do Windows (modo científico).

1) Converter os números em binário para decimal

- a) 1011101₂
- b) 11111₂
- c) 1010110₂
- d) 11011101010₂
- e) 11001101101₂

2. Converter os números do sistema octal para decimal

- a) 1741₈
- b) 405₈
- c) 237₈

