Lab 4: Rectifier Circuits

Name: Nick Snyder Major: CE

Objective:

- To build a half-wave and a full-wave rectifier and verify the voltage waveform.
- Measure the conduction interval and verify with the theoretical values.

1. Half-Wave Rectifier

• Construct the circuit in Figure 1. Using a function generator, produce a sine wave at $V_s(t)$ with 100 Hz frequency and 5 V amplitude. Use channel 1 of oscilloscope to display V_s and channel 2 to display V_o on the scope.

Plot two periods of V_S and V_O on the axis provided below.

• Calculate the maximum and the minimum voltage for $V_0(t)$.

• Vinase $\begin{bmatrix} 0.01 \\ 1000.0.00001 \end{bmatrix}$ • Vinase $\begin{bmatrix} 0.01 \\ 100$

 \bullet Measure the maximum and minimum voltages at $V_{0}(t)$ and compare them with the theoretical values.

• Measure the conduction interval (ΔT) with the oscilloscope and compare with the theoretical value.

DT: 1.2 m Sec 1 ower than expected but very close

Get TA's initial:

2. Full-Wave Bridge Rectifier

• Construct the circuit in Figure 2. Using a function generator, produce a sine wave at $V_s(t)$ with 100 Hz frequency and 5V amplitude. Connect channel 1 of oscilloscope to one end of the load resistor R_L (to measure V_1) and channel 2 to the other end (to measure V_2).

• Display $V_1 - V_2$ on the oscilloscope by "adding" channel 1 and inverse of channel 2. Plot several periods of the resultant waveform on the axis provided below.

• What is the peak voltage of Vo across the load? How does it compare to the peak voltage of Vs?

- Now add a 10 μ F capacitor in parallel with the load resistor to obtain a crude DC voltage with a ripple.
- Calculate the maximum and the minimum voltage for $V_{\text{O}}(t)$.

Calculate the conduction interval (ΔT) and the conduction angle ($heta_c$)

$$O_{c} = Cos^{-1} \left(1 - \frac{0.13}{2.5}\right) = 0.324 \text{ rad}$$

$$DT = \frac{0.324}{100} = 3.24 \text{ m see}$$

Measure the maximum and minimum voltages at $V_0(t)$ and compare them with the theoretical values.

higher than expected

Measure the conduction interval (ΔT) with the oscilloscope and compare with the theoretical value.

lower thing expected

O. f. M sec

