

5G物理层过程

2019年9月

目录

- 小区搜索流程
- 随机接入过程
- 功率控制过程
- 数据传输和资源调度

5G的承载

5G QoS 控制更为精细,相比于LTE的基于EPS承载的粗旷QoS控制,5G核心网支持基于IP流的灵活而细致的QoS控制。5G的QoS管理是以QoS Flow为粒度完成,如上左图所示,QoS Flow是一个端到端的概念,类似于LTE中的EPS Bear。每一个QoS Flow也会对应一个QFI来唯一的标识这一条QoS Flow,但是QFI的绝对值其实只是存在于一个PDU Session中,也就是说,在每一个PDU Session中,QFI的值不能相同,而不同的PDU Session之间,QFI可以做动态分配。

LTE里的QoS体系是以每承载(Bear)作为粒度,核心网(PCRF)为不同的承载分配不同的QoS等级,以QCI作为标识。UE的每一个PDN Connection都会建立至少一个默认承载(Default Bear)和一个或者多个专用承载(Dedicated Bear)。默认承载的建立随着UE的注册流程而完成,并且在整个PDN Connection过程中都会保持存在。

5G承载指标要求

EPS

QCI (QoS Class Identifier)

ARP

+

For GBR bearers

Max bit rate

Guaranteed bit rate

For non-GBR bearers

Aggregate max bit rate

Default EPS bearers

QCI	Guarantee	Prior	Delay budget	Loss rate	Application
1	GBR	2	100 ms	1e-2	VoIP
2	GBR	4	150 ms	1e-3	Video call
3	GBR	5	300 ms	1e-6	Streaming
4	GBR	3	50 ms	1e-3	Real time gaming
5	Non-GBR	1	100 ms	1e-6	IMS signalling
6	Non-GBR	7	100 ms	1e-3	Interactive gaming
7	Non-GBR	6	300 ms	1e-6	TCP protocols :
8	Non-GBR	8	300 ms	1e-6	browsing, email, fil download
9	Non-GBR	9	300 ms	1e-6	

5G控制面协议栈

• SM: Session Management

_____信令路由

• MM: Mobility Management

空口信令的承载

• SRB(Signaling Radio Bearer)在空口传输RRC和NAS消息,NR定义了以下 SRB

•用于RRC消息,使用CCCH逻辑信道

•用于RRC消息(可以包括搭载的NAS消息)以及SRB2建立之前的NAS消息
•使用DCCH逻辑信道

•用于NAS消息,使用DCCH逻辑信道。
•SRB2的优先级低于SRB1,在安全模式激活后由网络配置

•用于EN-DC时特定的RRC消息,使用DCCH逻辑信道

UE标识

用户标识	名称	来源	作用
IMSI	International Mobile Subscriber Identity	SIM卡	UE在首次注册时需要携带IMSI信息,网络也可以通过身份识别流程要求UE上报IMSI参数
SUPI	Subscription Permanent Identifier/用户永久标识	IMSI或 network- specific identifier	用于注册,替代IMSI,可能包含IMSI和网络标识
SUCI	Subscription Concealed Identifier/用户隐藏标识	UE	在空口对SUPI进行保护
5G-GUTI	5G-Globally Unique Temporary UE Identifier	AMF生成并维护	全球唯一临时UE标识,可以减少IMSI,IMEI 等用户私有参数暴露。第一次注册时UE携带IMSI,之后AMF生成5G-GUTI,并一直用5G-GUTI,通过注册带给UE。
5G- S- TMSI	5G-S-Temporary Mobile Station Identifier	AMF	5G-GUII简化,用于提高信令交互效率

5G-GUTI

- 5G-GUTI(5G-Globally Unique Temporary UE Identifier)
- 在网络中对用户的临时标识,提供UE标识的保密

5G-GUTI/5G Globally Unique Temporary UE Identity、5G全球唯一临时UE标识(最长80bit) GUAMI/Globally Unique AMF Identifier、全球唯一AMF标 5G-TMSI、5G临时移动用户标识 MCC MNC AMFI/AMF Identifier 5G-TMSI 移动国家码 移动网络码 AMF标识 AMF AMF AMF MCC MNC 5G-TMSI Point Region Set 32bit 3digits 2-3 digits ID 8bit ID e r 10bi 6bit 5G-S-TMSI

UE标识

• 终端设备相关的标识

用户标识	名称	来源	作用
IMEI	International Mobile Equipment Identity	终端	国际移动台设备标识,唯一标识 UE 设备,用 15个数字表示
IMEISV	IMEI and Software Version Number	终端	携带软件版本号的国际移动台设备标识, 用16个数字表示
PEI	Permanent Equipment Identifier	终端	唯一标识UE,不同类型的UE和用例可以 采用不同的格式,当前版本中同IMEI

NG中UE的身份标识

对于单元级别的调度,使用以下标识:

- ✓ C-RNTI: 唯一的UE标识,用作RRC连接的标识符和用于调度;
- ✓ CS-RNTI: 用于下行链路中的半持续调度的唯一U E标识; -
- ✓ INT-RNTI: 识别下行链路中的抢占; -
- ✓ P-RNTI: 识别下行链路中的寻呼和系统信息变化通知; -
- ✓ SI-RNTI:下行链路中广播和系统信息的识别;-
- ✓ SP-CSI-RNTI:用于PUSCH上的半持久CSI报告的唯一UE标识;

在随机接入过程中,还使用以下标识:

- ✓ RA-RNTI: 识别下行链路中的随机接入响应;
- ✓ 临时C-RNTI:在随机接入过程中临时用于调度的UE标识;
- ✓ 争用解决的随机值:在随机接入过程中临时用于争用解决目的的UE标识。

UE协议状态

• UE存在许多不同的管理状态,如:

- RRC_IDLE
- RRC_CONNECTED
- RRC状态 RRC_INACTIVE

CM状态

- CM-IDLE
- CM-CONNECTED

RM状态

- •RM-DEREGISTERED
- •RM-REGISTERED

练习题

- 1、空口传输NAS消息可以使用()
- A, SRBO B, SRB1 C, SRB2 D, SRB3
- 2、GUAMI由()组成
 - A, MCC B, MNC C, AMFID, TAI
- 3、5G-S-TMSI用于寻呼,长度32bit()
- 4、5G-GUTI由AMF分配,仅在当前AMF范围内唯一。()

目录

- 5G物理层过程基础知识
- ··· 小区搜索流程
- 随机接入过程
- 功率控制过程
- 数据传输和资源调度

□ UE初始搜索总体流程

- ✓ UE开机后,根据NAS层指示,首先确定要选择的PLMN;
- ✓ AS层根据确定的PLMN进行小区选择和重选
- ✓ 小区选择包括:
 - ➢ 初始小区选择initial cell selection: UE根据其自身支持的NR频段扫描 所有RF信道。在每个频点上, UE搜索最强小区;
 - 存储小区信息选择:根据上次存储的频点信息进行小区选择,如果找不到合适小区,则进行初始选择;
- ✓ 以上流程和LTE类似
- ✓ UE对小区的搜索和选择,首先要获取小区下行同步信号。

□ 初始搜索流程-channel raster 和synchronization raster

- ✓ LTE中, channel raster 固定为100KHz
- ✓ NR中,不同频段定义了不同的channel raster。示例如 右图:
- ✓ NR中,信道带宽大,UE按照channel raster 进行同步 信号搜索时延很长
- ✓ NR引入了synchronization raster 同步raster,同步信号按照同步raster放置;
- ✓ ARFCN频点号对应channel raster
- ✓ GSCN (global synchronization channel number) 频 点号对应同步raster。

NR OPERATING BAND	ΔF raster[kHz]
n1	100
n5	100
n8	100
n75	100
n77	15
n78	15

NR OPERATING BAND	ΔF raster[kHz]
n257	60

□ SSB块

- ✓ NR中, PSS/SSS(主辅同步信号)和PBCH块,总是"绑定"在一块物理资源中的,因此也称为SSB。
- ✓ UE在GSCN频点上,要搜索的就是SSB块
- ✓ 一个SSB块,如图所示
- ✓ 在时域上占用0-3,一共4个符号
- ✓ 在频域上分布在连续的240个子载波(20个RB)
- ✓ SSB块子载波间隔支持
- ✓ 15/30kHz (6GHz以下)
- ✓ 120/240kHz (6GHz以上)
- ✓ PSS/SSS/PBCH资源采用如图固定的分布样式
- ✓ UE首先要搜索PSS主同步信号

□主同步信号PSS

- ✓ NR的PSS为长度127的伪随机序列,采用频域BPSK M序列
- ✓ 3个循环移位位置为0/43/86

$$d_{PSS}(n) = 1 - 2x(m)$$

$$m = (n + 43N_{ID}^{(2)}) \bmod{127}, \quad [x(6) \ x(5) \ x(4) \ x(3) \ x(2) \ x(1) \ x(0)] = [1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0]$$

$$0 \le n \le 127$$

- ✓ PSS映射到12个PRB中间的连续127个子载波,占用144个子载波,
- ✓ 两侧分别为8/9个SC作为guard band,以零功率发送

UE搜索到PSS后,可以获得SSB的子载波间隔和PCID的一部分信息

□ 辅同步信号SSS

✓ Sss为长度127的频域BPSK M序列,有两个生成多项式

```
d_{SSS}(n) = [1 - 2x_0((n + m_0)mod127][1 - 2x_1((n + m_1)mod127]]
m_0 = 15 \left[ \frac{N_{ID}^{(1)}}{112} \right] + 5N_{ID}^{(2)}
m_1 = N_{ID}^{(1)}mod112
0 \le n \le 127
x_0(i + 7) = (x_0(i + 4) + x_0(i))mod2
x_1(i + 7) = (x_1(i + 1) + x_1(i))mod2
[x_0(6) x_0(5) x_0(4) x_0(3) x_0(2) x_0(1) x_0(0)] = [0 \ 0 \ 0 \ 0 \ 0 \ 1]
[x_1(6) x_1(5) x_1(4) x_1(3) x_1(2) x_1(1) x_1(0)] = [0 \ 0 \ 0 \ 0 \ 0 \ 1]
```


□ 物理广播信道PBCH

- ✓ UE搜索到PSS/SSS后,获得了PCID,下一步要解调PBCH信道
- ✓ 和LTE不同,NR中不再支持小区参考信号(CRS)
- ✓ 要解调PBCH信道,要获取PBCH信道的DM-RS(解调参考信号)位置
- ✓ PBCH的DM-RS在时域上,和PBCH相同位置,在频域上间隔4个子载波,初始偏移由PCID确定,SSB使用PORT 4000发送
- ✓ PBCH的DM-RS频域初始偏移位置
- ✓ $V = N_{ID}^{cell} mod4$

□ PBCH信道内容MIB

✓ PBCH信道发送的MIB对应的高层Payload内容,在38.331中定义:

```
MIB.
-- ASN1START₽
-- TAG-MIB-START+
MIB ::=
                                    SEQUENCE {↩
    systemFrameNumber
                                         BIT STRING (SIZE (6)), €
    subCarrierSpacingCommon
                                         ENUMERATED {scs15or60, scs30or120},
    ssb-SubcarrierOffset
                                        INTEGER (0..15), ₽
    dmrs-TypeA-Position
                                         ENUMERATED {pos2, pos3}.4
    pdcch-ConfigSIB1
                                        INTEGER (0..255), ←
    cellBarred
                                         ENUMERATED {barred, notBarred}, +
    intraFreqReselection
                                        ENUMERATED {allowed, notAllowed},+
    spare
                                         BIT STRING (SIZE (1))₽
34
-- TAG-MIB-STOP₩
```

- ✓ 其中并无获取SSB块索引所需信息
- ✓ SSB索引在PBCH信道物理层处理时,加入额外编码信息bit和通过DM-RS序列来处理
- ✓ 这个额外编码信息bit的处理,在规范38.212中定义

□ RMSI (remaining Minimum System Infomation)

- ✓ UE获得SSB信息块信息后,还不足以驻留小区和进一步发起初始接入
- ✓ UE还需要的到一些"必备"的系统信息
- ✓ 这个"必备"的系统信息在NR中称为RMSI。在目前NR R15版本中, RMSI可以认为就是SIB1。
- ✓ 和LTE类似,NR中的SIB1信息,通过下行PDSCH信息发送,而PDSCH信道需要 PDCCH信道的DCI来调度
- ✓ UE需要在MIB中得到调度RMS的PDCCH信道信息,在PDCCH上进行盲检,获得RMSI
- ✓ MIB中的这个关键信息,就是PDCCH-CONFIGSIB2字段

□ CORESET 0和TYPE 0 common search space

- ✓ 和LTE类似, NR中PDCCH信道对应多种搜索空间,包括公共搜索空间和UE专用搜索空间
- ✓ 其中公共搜索空间TYPE 0 common search space 仅用于RMSI调度
- ✓ 比LTE复杂的是,NR中引入了对PDCCH信道的所在物理资源集合的定义Coreset (control resource set)
- ✓ 一个小区PDCCH信道对应多个CORESET集合, coreset集合有ID编号
- ✓ 其中CORESETO 有特殊意义,就是TYPE 0 common search space搜索空间对应的物理资源集合

- □ RMSI(SIB1)
- ✓ UE根据RMSI PDCCH的调度信息,在指定时频域资源上解码PDSCH信道,
- ✓ 获得RMSI(SIB1)内容,完成初始小区搜索
- ✓ 以下为38.331 f21版本主要内容,供参考

```
SIB1 message
-- ASNISTART
SIB1 ::=
                SEQUENCE (+
    -- FFS / TODO: Add other parameters. +
   frequencyOffsetSSB ENUMERATED (khz-5, khz5)
ssb-PositionsInBurst SEQUENCE (+)
                                                                                                                OPTIONAL, -- Need Re
                                        BIT STRING (SIZE (8)),
       inOneGroup
       groupPresence
                                           BIT STRING (SIZE (8))
                                                                                                                OPTIONAL -- Cond above6GHzOnlyw
    ssb-PeriodicityServingCell
                                        ENUMERATED (ms5, ms10, ms20, ms40, ms80, ms160, spare1, spare2),+
    ss-PBCH-BlockPower
                                        INTEGER (-60..50) .+'
    uplinkConfigCommon
                                                                                                                OPTIONAL,
                                        UplinkConfigCommon
    supplementaryUplink
                                        SEQUENCE (+
                                            UplinkConfigCommon
                                                                                                                OPTIONAL +
        -- FFS: Add additional (selection) criteria determining when/whether the UE shall use the SUL frequency &
                                                                                                                OPTIONAL, -- Cond SULA
                                        TDD-UL-DL-ConfigCommon
                                                                                                                OPTIONAL, -- Cond TDD-
    tdd-UL-DL-Configuration
                                                                                                                OPTIONAL, -- Cond TDD-
    tdd-UL-DL-configurationCommon2
                                        TDD-UL-DL-ConfigCommon
                                                                                                                OPTIONAL, +
    pdcch-ConfigCommon
                                        PDCCH-ConfigCommon
    pucch-ConfigCommon
                                        PUCCH-ConfigCommon
                                                                                                                OPTIONAL, +
    lateNonCriticalExtension
                                        OCTET STRING
                                                                                                                OPTIONAL, *
                                                                                                                OPTIONAL +
    nonCriticalExtension
                                        SEQUENCE ( )
```

系统广播消息概述

NR同步和系统消息广播包括: PSS/SSS, PBCH, RMSI和OSI

- PSS/SSS用于UE进行下行时钟同步,并获取小区的Cell ID
- PBCH (携带了MIB) 用于UE获取了接入网络的最基本信息,主要是通知 UE在何处接收RMSI消息;
- RMSI(即SIB1)用于广播初始BWP信息,初始BWP中的信道配置,TDD 小区的半静态配比以及其它UE接入网络的必要信息等
- OSI(other system information),用于其它小区信息的广播(目前NSA组网下没有用到这部分内容)。

为支持massive MIMO,所有的广播信道和信号都支持进行波束扫描

□ 总体流程回顾

✓ 同步Raster GSCN

✓ UE获得RMSI(SIB1)后,得到上下行公共信道相关配置,即可发起随机接入过程

NR系统消息

- NR系统信息 (System Information, SI) 分为MIB和多个SIB:
 - ◆ MIB (Master Information Block, 主信息块)
 - ◆ SIB (System Information Block, 系统信息块)

MIB	小区最基本的物理层信息	
SIB1	小区选择相关信息和其他SIB调度信息	
SIB2	小区重选信息(公共参数,适用同频、异频、异系统)	
SIB3	小区重选信息(同频邻区)	
SIB4	小区重选信息 (异频邻小区和频率)	
SIB5	小区重选信息(EUTRA邻小区和频率)	
SIB6	ETWS基本通知	
SIB7	ETWS辅助通知	
SIB8	CMAS通知信息	
SIB9	GPS/UTC时间信息	

获取MIB

• MIB映射: BOCH BCH PBCH

● MIB在SFNmod8=0的无线帧初次发送,80 ms周期内重复

获取SIB1

- UE解码MIB,可以获得包含SIB1 PDCCH的CORESET
- CORESET内的TypeO-PDCCH公共搜索空间,通过盲检获取SIB1

其他SI消息获取流程

• SIB1中,如果存在没有进行广播的SIB,UE需要根据需求发送SI请求,以便获取相应SI

练习题

- 1、MIB的周期是()
- A, 5ms B, 10ms C, 20ms D, 80ms
- 2、下列系统消息中,总是发送的是()
- A, MIB B, SIB1 C, SIB2 D, SIB3
- 3、包含同频小区重选信息的系统消息是()
- A, SIB2 B, SIB3 C, SIB4 D, SIB5
- 4、UE解码MIB获得其他系统消息的信息()

目录

- 5G物理层过程基础知识
- 小区搜索流程
- **链机接入过程**
- 功率控制过程
- 数据传输和资源调度

□ 随机接入流程

- ✓ NR中,出发UE发起随机接入的时间类型和LTE类似:
- ✓ 包括:
- ✓ UE在idle状态下的初始接入
- ✓ RRC连接重建立
- ✓ RRC连接态时,上行失步状态下,下行数据到达
- ✓ RRC连接态时,上行失步状态下上行数据到达或者无可用的SR 资源时
- ✓ 切换
- ✓ 波束管理中,波束失败回复过程,发起随机接入
- ✓ 从RRC inactive 状态到RRC连接状态

NR新增加

□ PRACH 资源的选择

- ✓ UE获得随机接入所需配置后,可以发起初始随机接入流程,首先要选择Preamble资源。
- ✓ UE初始接入时:
- ✓ 选择一个满足RSRP门限要求的SSB(SSB和PRACH对应),发起接入,如果都不满足RSRP门限,则选择任意一个SSB
- ✓ 如果MSG3没有发送过,则根据Group A/B配置,判定MSG3大小,选择Group A或者 GroupB的Preamble资源
- ✓ 如果MSG3重传,则选择Group A的Preamble资源
- ✓ 从当前SSB的Preamble Group 中等概率的随机选择RA-Preambleindex

〕随机接入流程

✓ NR随机接入总体流程和LTE类似

✓ MAC RAR结构定义和LTE类似

✓ NR初始随机接入过程中:

PRACH上行功控, Preamble重传, backoff机制, Temp C-RNTI分配, RAPID匹配, 冲突解决, MSG3功控, MSG3/4 重传等机制均和LTE类似

□ 波束切换

- ✓ LTE中, UE发送MSG1后,在随机接入响应窗口RA-Response Window范围内没有收到 RAR, UE需要重发MSG1,重发时,要进行功率提升(RAMPING)
- ✓ 对于NR, 重发MSG1时, UE要考虑是否需要重新选择SSB的波束
- ✓ 在满足RSRP门限内的SSB,可以更换SSB波束,也可以沿用上一次的波束
- ✓ 如果所有SSB都不满足RSRP门限,选择任意SSB
- ✓ 当UE继续用上次发送SSB波束重发MSG1时,需要功率攀升
- ✓ 当UE更换SSB波束发送MSG1时,不需要进行功率攀升
- ✓ 优先使用功率攀升发送,还是有限更换满足门限的SSB波束
- ✓ 规范没有强制要求,和UE实现有关

随机接入流程小结:

- ✓ NR的PRACH信道基于LTE设计,针对不同应用场景,频段部署,增加 了更多的格式,随机接入流程的触发,基于竞争和基于非竞争接入等概 念,NR和LTE差别不大;
- ✓ NR中,随机接入流程最大的变化就是基于波束的接入
- ✓ 下行基于SSB索引,上行基于PRACH Occasion
- ✓ 随机接入流程中的其他技术特点,LTE和NR原理基本一致,具体细节有差别。

目录

- 5G物理层过程基础知识
- 小区搜索流程
- 随机接入过程
- ∴ 功率控制过程
- 数据传输和资源调度

功控概述

• 功率控制主要用于:补偿信道的路径损耗和阴影衰落,抑制5G同频小区间干扰,保证网络覆盖和容量需求

下行功率分配

NR下行功率控制和LTE类似,当前只采用固定功率分配策略,功控对象包含如下信道/信号:

- •PBCH
- **•**SS
- •CSI-RS
- •PDCCH
- PDSCH

LTE中以CRS为基准功率,其他信道在CRS的功率基础之上做偏置,由于NR系统没有类似于LTE的小区级公共参考信号CRS,也不支持配置CRS功率

NR基准功率

NR基准功率:通过界面配置的每通道功率MaxTransmitPower,内部计算得到小区基准功率 ReferencePwr(物理含义为单通道每RE上的功率),所有下行信道和信号都可以通过在小区 基准功率ReferencePwr上设置功率偏置的方式来进行功率控制

•ReferencePwr的计算方式:

ReferencePwr = MaxTransmitPower / 带宽内子载波个数,其中:

MaxTransmitPower表示每个通道的最大发送功率

上行功率控制

ŲE	E		
	PRACH (preamble)		
	RA response		
<	TPC(PDCCH功率控制命令)		
	PUSCH(Data & Signaling)		
	Sounding RS		
	PUCCH		

功控类型	功控对象
开环功控	PRACH
	PUCCH
闭环功控	PUSCH
	Sounding RS

PRACH的发射功率(开环)

PRACH的发射功率 (开环)

•PRACH功率= min{gNB期望的目标功率+路径损耗+(前导第N次传输-1)*前导功率攀升步长+ preamble, UE最大发射功率}

•如果随机接入preamble尝试失败,UE可能增加发射功率以尝试下一个RA Preamble

PUSCH/PUCCH/SRS的功率控制(闭环)

UE根据PUSCH和PUCCH的目标功率,结合上行路损和其他参数配置计算上行发射功率,基站根据上行的信号质量对UE的发射功率进行动态调整

TPC命令	累计模式 (PUSCH/PUCCH/SRS)	绝对模式 (PUSCH/SRS)
0	-1	-4
1	0	-1
2	1	1
3	3	4

SRS功率控制(依赖PUSCH)

SRS功率是在PUSCH的功率加一个偏置

目录

- 5G物理层过程基础知识
- 小区搜索流程
- 随机接入过程
- 功率控制过程
- 数据传输和资源调度

4G HARQ过程

收到ACK反馈后, 间隔一定时间后, 发送方会传新数据

发送方

接收方解调数据,如果解 调错误,会保存错误的数 据块,间隔一定时间后, 反馈NACK给发送方

5G异步HARQ过程

5G上下行链路采用异步HARQ协议: 重传在上一次传输之后的任何可用时间上进行,接收端需要被告知具体的进程号

5G异步HARQ

- •NR中每个HARQ反馈信息可以针对一个上下行TB块,也可以针对Code BlockGroup码块组,即当一个TB块分为多个CBG码块组传输时,每个HARQ反馈bit信息对应一个CBG码块组;
- •在没有下行空分复用时,一-次调度传输一个TB块,-个HARQ进程对应一个TB块, 在开启下行空分复用时,一次调度传输多个TB块(最多2个),一个HARQ进程对应1或者2个TB块;
- •在进行上下行传输时,在MAC层,每个小区有一个HARQ Entity实体,上下行独立。
- •每个HARQ实体包含了多个并行的HARQ进程;
- •HARQ进程的数量,在RRC层配置,NR中UE最多支持16个(每个服务小区),在不配置的情况下,默认为8个

调度概述

在5G系统中,有大量的物理资源,也会有大量的用户,调度的目的就是将用户的资源放到合适的物理资源上发送给接收端

•调度器: MAC

•调度的对象: PDSCH、PUSCH

•调度信息的传递:PDCCH

•调度的其他要素

调度周期TTI:

- 时隙级调度、符号级调度
- 帧结构配置

调度的基本单位

下行调度

RB数的初步估算

数据量=Nprb * Nre * v * Qm * R

Nprb:需要的RB个数

Nre: 一个RB内的RE个数

v:MIMO的层数

Qm:调制效率

R:编码效率

上行调度

上行调度和下行调度流程基本类似,主要区别如下:

- 下行基站中有下行的数据缓存状况,而上行手机中缓存的数据需要手机上报上行缓存报告BSR
- 上行手机发射功率余量需要上报
- 上行MCS的映射主要参考上行SRS和DMRS
- 手机中的MAC层会进行二次调度

调度RB信息的传递(类型0)

基站为UE分配RB之后会通过PDCCH的bitmap字段通知该UE分配的RB个数及RB位置信息bitmap的生成如下:

•以下行带宽34RB举例:
RBG大小为2,那么34个RB可划分为34/2=17个RBG,假设给UE调度的资源为18个RB,映射的RBG为2、3、4、5、8、10、11、13、17,则bitmap如下:

练习

计算在5G 100Mhz 子载波取30Khz,调制方式为256QAM调制,MIMO为8层、编码效率为0.92,上下行时隙配比为DDDSU,控制信道开销为25%,计算每秒下行最大调度次数和下载速率是多少?

下行传输方案

- ✓ 物理下行链路共享信道(PDSCH)支持基于闭环解调参考信号(DMRS)的空间复用。
- ✓ 类型1和类型2 DMRS分别 支持多达8个和12个正交DL DMRS端口。
- ✓ 对于SU-MIMO,每个UE支持多达8个正交DL DMRS端口,并且MU-MIMO 支持每个UE多达 4个正交DL DMRS端口。 SU-MIMO码字的数量是1-4层传输的数量,而2-8层传输的数量是2
 - 。使用相同的预编码矩阵发送DMRS和对应的PDSCH,并且UE不需要知道预编码矩阵来解调传输。 发射机可以针 对传输带宽的不同部分使用不同的预编码器矩阵,从而产生频率选择性预编码。 UE还可以假设在表示为预 编码资源块组(PRG)的一组物理资源块(PRB)上使用相同的预编码矩阵。

物理层流程--链路适配

- ✓ 具有各种调制方案和信道编码率的链路自适应(AMC:自适应调制和编码)被应用于 PDSCH。
- ✓ 将相同的编码和 调制应用于属于在一个TTI内和在MIMO码字内调度给一个用户的相同 L2 PDU的所有资源块组。 对于信道状态估计目的, UE可以被配置为测量CSI-RS并基 于CSI-RS测量来估计下行链路信道状态。
- ✓ UE将估 计的信道状态反馈给gNB以用于链路自适应。

接收SIB1

- ✓ PBCH上的MIB向UE提供用于监视PDCCH的参数,用于调度承载SIB1的PDSCH。
- ✓ PBCH还可以指示不存在关联的 SIB1,在这种情况下,UE可以指向从哪里搜索与SIB1 相关联的同步信号和PBCH块的另一频率以及UE可以假设的频率范围。
- ✓ 不存在与SIB1相关联的同步信号和PBCH块。
- ✓ 所指示的频率范围被限制在检测到同步信号和PBCH 块的同一运营商的连续频谱分配内

0

上行传输方案

- ✓ 对于基于码本的传输, gNB在DCI中向UE提供发送预编码矩阵指示。
- ✓ UE使用该指示从码本中选择PUSCH发送预编码器。对于基于非码本的传输,UE基于来自DCI的宽带SRI字段确定其PUSCH预编码器。
- ✓ PUSCH支持基于闭环DMRS的空间复用。 对于给定的UE,支持多达4层传输。 代码字的数量是一个。 当使用变 换预编码时,仅支持单个MIMO层传输。 支持插槽中1到14个符号的传输持续时间
 - 。 支持TB重复的多个时隙的聚合。 支持两种类型的跳频 , 时隙内跳频 , 以及在时隙聚合的情况下 ,时隙间跳频。
- ✓ 可以在PDCCH上使用DCI调度PUSCH,或者可以在RRC上提供半静态配置的授权,
- ✓ 其中支持两种类型的操作:
 - ▶ -使用DCI触发第一PUSCH,随后在DCI上接收到RRC配置和调度之后的PUSCH传输,
 - 通过数据到达UE的发送缓冲器来触发PUSCH,并且PUSCH传输遵循RRC配置。

调度

- ✓ 基本调度流程
 - 为了有效地利用无线资源,gNB中的MAC包括为下行链路和上行链路分配物理层资源的动态资源调度器。 在本 子条款中,根据调度流程操作,调度流程决策的信令和测量给出了调度流程的概述。
- 调度流程操作:
- 考虑到UE缓冲器状态以及每个UE和相关无线承载的QoS要求,调度器在UE之间分配资源;
- 调度器可以分配资源,考虑通过在gNB处进行的测量和/或由UE报告而识别的UE处的无线条件;
- ✓ 调度器以时隙为单位分配无线资源(例如,一个小时隙,一个时隙或多个时隙);
 - 资源分配由无线资源(资源块)组成。 调度流程决策的信号:

 - UE通过接收调度(资源分配)信道来识别资源。 支持调度流程操作的测量: - 上行链路缓冲器状态报告(测量在UE中的逻辑信道队列中缓冲的数据)用于提供对QoS感知的分组调度的支
 - 持。 - 功率余量报告(测量标称UE最大发射功率与上行链路传输的估计功率之间的差异)用于为功率感知分组调度 提供支持。

下行调度

- 在下行链路中,gNB可以经由PDCCH上的C-RNTI动态地将资源分配给UE。 UE始终监视PDCCH以便在其下行链路 接收被启用时找到可能的指派(在配置时由DRX控制的活动)。
- 配置CA时,相同的C-RNTI适用于所有服务小区。 gNB可以利用对另一UE的等待时间的传输来抢占正在进行的PDSCH 传输到一个UE。
- gNB可以配置UE以在PDCCH 上使用INT-RNTI来监视中断的传输指示。 如果UE接收到中断的传输指示,则UE可以假设该指示中包括的资源 单元没有携带到该UE的有用信息,即使这些资源单元中的一些已经被调度到该UE。
- · 另外,利用半持续调度(SPS),gNB可以为UE进行初始HARQ传输的下行链路资源:RRC定义配置的下行链路指配的周期性,而寻址到CS-RNTI的PDCCH可以发信号通知并激活配置的下行链路。分配,或停用它;
- 即,寻址到CS-RNTI的PDCCH指示可以根据RRC定义的周期性隐式地重用下行链路指配,直到去激活。注意:当需要时,在PDCCH上明确地调度重传。当配置的下行链路指配是活动的时,如果UE在PDCCH上找不到其C-RNTI,则假设根据配置的下行链路指派的下行链路传输。
- 否则,如果UE在PDCCH上找到其C-RNTI,则PDCCH分配优先于配置的下行链路指派。
- 当配置CA时,每个服务小区最多可以用信号通知一个配置的下行链路指配。 当配置BA时,每个BWP可以发信号通知最多一个配置的下行链路指配。 在每个服务小区上,一次只能有一个配置的下行链路指配有效,并且多个配置的下行链路指配可以仅在不同的服务小区上同时有效。配置的下行链路指配的激活和去激活在服务 小区之间是独立的。

上行调度

- ✓ 在上行链路中,gNB可以经由PDCCH上的C-RNTI动态地将资源分配给UE。 UE始终监视PDCCH,以便在其下行链 路接收被 启用时找到用于上行链路传输的可能许可(在配置时由DRX控制的活动)。
- ✓ 配置CA时,相同的C-RNTI 适用于所有服务小区。 另外,利用配置授权,gNB可以将用于初始HARQ传输的上行链路资源分配给UE。
- ✓ 定义了两种类型的配置上行链路授权: 对于类型1,RRC直接提供配置的上行链路授权(包括周期性)。
- ✓ 对于类型2, RRC定义配置的上行链路授权的周期性,而寻址到CS-RNTI的PDCCH可以发信号通知并激活 配置的上行链路 授权,或者将其去激活;即,寻址到CS-RNTI的PDCCH指示可以根据RRC定义的周期性隐 式地重用上行链路许可,直到去激活。当配置的上行链路许可是活动的时,如果UE在PDCCH上找不到其C-RNTI/CS-RNTI,则可以进行根据配置的上行链路 许可的上行链路传输。 否则,如果UE在PDCCH上找到其C-RNTI/CS-RNTI,则PDCCH分配优先于配置的 上行链路授权。