Each exercise is 2 points

3.1 Compare Sums

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given two arrays of floats A and B, check which one has a larger sum of elements.

Input

The first line contains an integer n ($1 \le n \le 100$), the length of the arrays.

The second line contains floating point numbers $A[1], A[2], \ldots, A[n]$ (0.001 $\leq A[i] \leq 1000$, for all $1 \leq i \leq n$), the elements of A.

The third line contains floating point numbers $B[1], B[2], \ldots, B[n]$ (0.001 $\leq B[i] \leq 1000$, for all $1 \leq i \leq n$), the elements of B.

Each floating point number has exactly 3 digits after the decimal point.

Output

Output SUM(A)=SUM(B), if both sequences have equal sum of elements. Output SUM(A)>SUM(B), if sequence A has larger sum. Otherwise output SUM(A)<SUM(B). Avoid any white spaces.

Examples

standard input	standard output
2	SUM(A)=SUM(B)
1.500 1.500	
1.000 2.000	
1	SUM(A)>SUM(B)
2.000	
1.123	
3	SUM(A) <sum(b)< td=""></sum(b)<>
1.000 2.000 3.000	
1.001 2.001 3.001	

3.2 Round Up

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given a rational number $\frac{x}{y}$, find the minimum integer z such that $z \geq \frac{x}{y}$.

Input

Two integers x and y $(-10^9 \le x, y \le 10^9, y \ne 0)$.

Output

The required value z.

Examples

standard input	standard output
1 2	1
1 -2	0
10 10	1

3.3 Yet Another Sum

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given a sequence of integers x_1, x_2, \dots, x_n , compute the sum

$$s = \sum_{i=1}^{n} \left(x_i + \frac{1}{x_i} \right) .$$

Pay attention to the precision of the resulting double.

Input

The first line contains an integer n ($1 \le n \le 50$), the length of the sequence.

The second line contains integers x_1, x_2, \dots, x_n $(-10^9 \le x_i \le 10^9, x_i \ne 0$, for all $1 \le i \le n$).

Output

A floating-point number s. The answer will be graded as correct, if absolute or relative error does not exceed 10^{-9} .

Examples

standard input	standard output
1	3.333333333
3	
1	-4.250000000
-4	
4	-1.3333333333
-2 -3 1 2	

3.4 Binary Knapsack

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

The knapsack problem is a classical problem in combinatorial optimization: Given a set of n items, each with a weight w_i and a value v_i , determine the items to include in a collection so that the total weight is less than or equal to a given limit w and the total value is as large as possible.

Your goal is to solve a special case of the knapsack problem with additional constraint: the weight of each item is a power of 2.

Find the set of items with the maximum total value so that their total weight is at most w.

Input

The first line contains two integers n and w ($1 \le n \le 100$, $0 \le w \le 2^{30}$), the number of items and the maximal total weight of items in the knapsack.

Each of the next n lines contains two integers w_i and v_i ($1 \le w_i \le 2^{30}$, $0 \le v_i \le 10^6$), the weight and the value of i-th item in the set. Each w_i is a power of 2.

Output

The maximum total value of items in the selected set.

Examples

standard input	standard output
3 5	6
1 3	
1 2	
1 1	
5 10	18
1 4	
2 5	
1 2	
4 6	
8 12	
1 5	0
8 3	

Note

Each item can be selected at most once.