Nonsmooth composite minimization: an exponentially convergent primal-dual algorithm

Dongsheng Ding

joint work with Bin Hu, Neil K. Dhingra, Mihailo R. Jovanović

57th IEEE Conference on Decision and Control, Miami Beach, FL, December 19, 2018

Nonsmooth composite minimization

Nonsmooth composite minimization

- T select certain coordinates to impose structure
- f strongly convex; Lipschitz cts gradient
- g non-differentiable; convex $e.g., I_{\mathcal{C}}(\cdot), \|\cdot\|_1, \|\cdot\|_*$, easy to evaluate proximal operator

•
$$\mathbf{prox}_{\mu g}(v) := \underset{z}{\operatorname{argmin}} g(z) + \frac{1}{2\mu} ||z - v||^2$$

Gradient descent plus proximal operator

$$x^{k+1} = \mathbf{prox}_{\alpha_k g}(x^k - \alpha_k \nabla f(x^k))$$

•
$$\mathbf{prox}_{\mu g}(v) := \underset{z}{\operatorname{argmin}} g(z) + \frac{1}{2\mu} \|z - v\|^2$$

Gradient descent plus proximal operator

$$x^{k+1} = \mathbf{prox}_{\alpha_k g}(x^k - \alpha_k \nabla f(x^k))$$

- $\mathbf{prox}_{\mu g}(v) := \underset{z}{\operatorname{argmin}} g(z) + \frac{1}{2\mu} \|z v\|^2$
- explicit formula for $\operatorname{prox}_q \longrightarrow$ efficient implementation
- does not apply to g(Tx)

minimize
$$f(x) + g(z)$$

subject to $Tx - z = 0$

Augmented Lagrangian method

minimize
$$f(x) + g(z)$$

subject to $Tx - z = 0$

Augmented Lagrangian method

minimize
$$f(x) + g(z)$$

subject to $Tx - z = 0$

Augmented Lagrangian

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + g(z) + y^{T}(Tx-z) + \frac{1}{2\mu}||Tx-z||^{2}$$

Augmented Lagrangian method

minimize
$$f(x) + g(z)$$

subject to $Tx - z = 0$

Augmented Lagrangian

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + g(z) + y^{T}(Tx-z) + \frac{1}{2\mu}||Tx-z||^{2}$$

ADMM

$$\begin{array}{lll} \boldsymbol{x^{k+1}} & = & \underset{\boldsymbol{x}}{\operatorname{argmin}} & \mathcal{L}_{\mu}(\boldsymbol{x}, z^k; \boldsymbol{y}^k) \\ \boldsymbol{z^{k+1}} & = & \underset{\boldsymbol{z}}{\operatorname{argmin}} & \mathcal{L}_{\mu}(\boldsymbol{x^{k+1}}, \boldsymbol{z}; \boldsymbol{y}^k) & & \operatorname{prox}_{\mu g}(\cdot) \\ \boldsymbol{y^{k+1}} & = & \boldsymbol{y^k} + \frac{1}{\mu}(T\boldsymbol{x^{k+1}} - z^{k+1}) \end{array}$$

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + \frac{g(z)}{2\mu} + \frac{1}{2\mu} ||z - (Tx + \mu y)||^2 - \frac{\mu}{2} ||y||^2$$

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + \frac{g(z)}{2\mu} + \frac{1}{2\mu} ||z - (Tx + \mu y)||^2 - \frac{\mu}{2} ||y||^2$$

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + \frac{g(z)}{2\mu} + \frac{1}{2\mu} ||z - (Tx + \mu y)||^2 - \frac{\mu}{2} ||y||^2$$

• Minimizer of $\mathcal{L}_{\mu}(x,z;y)$ over z

$$\mathbf{z}_{\mu}^{\star}(x, y) = \mathbf{prox}_{\mu g}(Tx + \mu y)$$

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + \frac{g(z)}{2\mu} + \frac{1}{2\mu} ||z - (Tx + \mu y)||^2 - \frac{\mu}{2} ||y||^2$$

• Minimizer of $\mathcal{L}_{\mu}(x,z;y)$ over z

$$\mathbf{z}_{\mu}^{\star}(x, y) = \mathbf{prox}_{\mu g}(Tx + \mu y)$$

• Evaluate $\mathcal{L}_{\mu}(x,z;y)$ at z_{μ}^{\star}

$$\mathcal{L}_{\mu}(x;y) := \mathcal{L}_{\mu}(x,z;y)\Big|_{z=z_{\mu}^{\star}}$$

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + \frac{g(z)}{2\mu} + \frac{1}{2\mu} ||z - (Tx + \mu y)||^2 - \frac{\mu}{2} ||y||^2$$

• Minimizer of $\mathcal{L}_{\mu}(x,z;y)$ over z

$$\mathbf{z}_{\mu}^{\star}(x, y) = \mathbf{prox}_{\mu g}(Tx + \mu y)$$

• Evaluate $\mathcal{L}_{\mu}(x,z;y)$ at z_{μ}^{\star}

$$\mathcal{L}_{\mu}(x;y) := \mathcal{L}_{\mu}(x,z;y) \Big|_{z=z_{\mu}^{\star}}$$

$$= f(x) + M_{\mu g}(Tx + \mu y) - \frac{\mu}{2} ||y||^{2}$$

continuously differentiable in \boldsymbol{x} and \boldsymbol{y}

Primal-dual gradient flow dynamics

Primal-descent dual-ascent

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -\nabla_x \mathcal{L}_{\mu}(x;y) \\ \nabla_y \mathcal{L}_{\mu}(x;y) \end{bmatrix}$$

$$= \begin{bmatrix} -(\nabla f(x) + T^T \nabla M_{\mu g}(Tx + \mu y)) \\ \mu(\nabla M_{\mu g}(Tx + \mu y) - y) \end{bmatrix}$$

$$\mu \nabla M_{\mu g}(v) = v - \operatorname{prox}_{\mu g}(v)$$

- Lipschitz cts RHS
- $\dot{x} = 0, \dot{y} = 0$ optimality condition
- $\dot{x}=0, y=0$ optimizing, 23 f strongly convex; Lipschitz cts gradient $\}$ \to exponentially stable
- T row full rank

Implementation issues

- Key issue
 - · how do we implement it? discretization
- Simple discretization

$$\begin{bmatrix} x^{k+1} \\ y^{k+1} \end{bmatrix} = \begin{bmatrix} x^k - \alpha \nabla_x \mathcal{L}_{\mu}(x^k; y^k) \\ y^k + \alpha \nabla_y \mathcal{L}_{\mu}(x^k; y^k) \end{bmatrix}$$

- Key challenge
 - CT convergence rate analysis → DT algorithm

Proposed primal-dual algorithm

Forward Euler discretization

$$\begin{bmatrix} x^{k+1} \\ y^{k+1} \end{bmatrix} = \begin{bmatrix} x^k - \alpha \nabla_x \mathcal{L}_{\mu}(x^k; y^k) \\ y^k + \alpha \nabla_y \mathcal{L}_{\mu}(x^k; y^k) \end{bmatrix}$$
$$= \begin{bmatrix} x^k - \alpha (\nabla f(x^k) + T^T \nabla M_{\mu g}(Tx^k + \mu y^k)) \\ y^k + \alpha \mu (\nabla M_{\mu g}(Tx^k + \mu y^k) - y^k) \end{bmatrix}$$

Contributions

- an automated tool → exp. converg. of PD algorithm
- LMI condition → rate certificate
- a range of step size values → exp. converg.

Lessard, Recht, Packard, SIAM J. Optim. '16
Hu, Seiler, Rantzer, PMLR '17
Fazlyab, Ribeiro, Morari, Preciado, SIAM J. Optim. '18

Control-theoretic viewpoint

Feedback connection

$$\begin{bmatrix} x^{k+1} \\ y^{k+1} \end{bmatrix} = \begin{bmatrix} (1 - \alpha m_f) x^k \\ (1 - \alpha \mu) y^k \end{bmatrix}$$
$$-\alpha \begin{bmatrix} \nabla f(x^k) - m_f x^k \\ 0 \end{bmatrix}$$
$$-\alpha \begin{bmatrix} T^T \nabla M_{\mu g} (T x^k + \mu y^k) \\ -\mu \nabla M_{\mu g} (T x^k + \mu y^k) \end{bmatrix}$$

Control-theoretic viewpoint

Control-theoretic viewpoint

• LTI system: (*A*, *B*, *C*)

$$A = \begin{bmatrix} (1 - \alpha m_f)I & 0 \\ 0 & (1 - \alpha \mu)I \end{bmatrix}$$

$$B = \begin{bmatrix} -\alpha I & -\frac{\alpha}{\mu}T^T \\ 0 & \alpha I \end{bmatrix}, C = \begin{bmatrix} I & 0 \\ T & \mu I \end{bmatrix}$$

$$\begin{bmatrix} A^T P A - r^2 P & A^T P B \\ B^T P A & B^T P B \end{bmatrix} + \begin{bmatrix} C^T & 0 \\ 0 & I \end{bmatrix} \Pi \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix} \quad \prec \quad 0$$

$$P \quad \succ \quad 0$$

$$\begin{bmatrix} A^T P A - r^2 P & A^T P B \\ B^T P A & B^T P B \end{bmatrix} + \begin{bmatrix} C^T & 0 \\ 0 & I \end{bmatrix} \Pi \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix} \quad \prec \quad 0$$

$$P \quad \succ \quad 0$$

$$\begin{aligned} w^k &= (x^k, y^k) & \qquad \qquad \Downarrow \\ \|w^k - \bar{w}\| &\leq \sqrt{\operatorname{cond}(P)} \, r^k \, \|w^0 - \bar{w}\| \end{aligned}$$

$$\begin{bmatrix} A^T P A - \mathbf{r}^2 P & A^T P B \\ B^T P A & B^T P B \end{bmatrix} + \begin{bmatrix} C^T & 0 \\ 0 & I \end{bmatrix} \Pi \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix} \quad \prec \quad 0$$

$$P \quad \succ \quad 0$$

$$w^k = (x^k, y^k) \qquad \qquad \downarrow \\ \|w^k - \bar{w}\| \leq \sqrt{\operatorname{cond}(P)} \, r^k \, \|w^0 - \bar{w}\|$$

- (A, B, C) algorithm parameters (α, μ, T, m_f)
- Π problem parameters (L_f, m_f)
- $(\alpha, r) \longrightarrow$ decision variable P
- $r \in (0,1) \longrightarrow \text{decision variables } (\alpha, P)$

$$\begin{bmatrix} G(re^{j\theta}) \\ I \end{bmatrix}^* \Pi \begin{bmatrix} G(re^{j\theta}) \\ I \end{bmatrix} \quad \prec \quad 0, \ \forall \theta \in [0, 2\pi)$$
$$G(re^{j\theta}) \quad \in \quad \mathcal{RH}_{\infty}$$

$$\begin{bmatrix} G(re^{j\theta}) \\ I \end{bmatrix}^* \Pi \begin{bmatrix} G(re^{j\theta}) \\ I \end{bmatrix} \quad \forall \quad 0, \ \forall \, \theta \in [0, 2\pi)$$

$$G(re^{j\theta}) \quad \in \quad \mathcal{RH}_{\infty}$$

$$w^k = (x^k, y^k) \qquad \qquad \downarrow$$

$$\|w^k - \bar{w}\| \leq c \, r^k \, \|w^0 - \bar{w}\|$$

$$\begin{bmatrix} G(re^{\mathrm{j}\theta}) \\ I \end{bmatrix}^* \Pi \begin{bmatrix} G(re^{\mathrm{j}\theta}) \\ I \end{bmatrix} \quad \forall \quad 0, \ \forall \theta \in [0, 2\pi)$$

$$G(re^{\mathrm{j}\theta}) \quad \in \quad \mathcal{RH}_{\infty}$$

$$w^k = (x^k, y^k) \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\|w^k - \bar{w}\| \leq c \, r^k \, \|w^0 - \bar{w}\|$$

- $G(re^{j\theta}) = C(re^{j\theta}I A)^{-1}B$ transfer function
- Π problem parameters (L_f, m_f)
- no need to find P

• Choose $\mu = L_f - m_f$ and rewrite

$$\begin{bmatrix} a(\zeta)I & b(\zeta)T^T \\ b(\zeta)T & c(\zeta)I + d(\zeta)TT^T \end{bmatrix} \succ 0, \forall \zeta \in [-1, 1]$$

• functions $a(\zeta), b(\zeta), c(\zeta),$ and $d(\zeta)$ are parameterized by (α, r)

• Choose $\mu = L_f - m_f$ and rewrite

$$\begin{bmatrix} a(\zeta)I & b(\zeta)T^T \\ b(\zeta)T & c(\zeta)I + d(\zeta)TT^T \end{bmatrix} \succ 0, \forall \zeta \in [-1, 1]$$

- functions $a(\zeta), b(\zeta), c(\zeta),$ and $d(\zeta)$ are parameterized by (α, r)
- Take Schur complement and impose stability

•
$$a(\zeta) > 0$$
, $c(\zeta) + \left(d(\zeta) - \frac{b^2(\zeta)}{a(\zeta)}\right) TT^T > 0$, $\forall \zeta \in [-1, 1]$

• Choose $\mu = L_f - m_f$ and rewrite

$$\begin{bmatrix} a(\zeta)I & b(\zeta)T^T \\ b(\zeta)T & c(\zeta)I + d(\zeta)TT^T \end{bmatrix} \succ 0, \forall \zeta \in [-1, 1]$$

- functions $a(\zeta), b(\zeta), c(\zeta),$ and $d(\zeta)$ are parameterized by (α, r)
- Take Schur complement and impose stability
 - $a(\zeta) > 0$, $c(\zeta) + \left(d(\zeta) \frac{b^2(\zeta)}{a(\zeta)}\right) TT^T > 0$, $\forall \zeta \in [-1, 1]$
 - stability of transfer function $G(r\mathrm{e}^{\mathrm{j}\theta})$

• Choose $\mu = L_f - m_f$ and rewrite

$$\begin{bmatrix} a(\zeta)I & b(\zeta)T^T \\ b(\zeta)T & c(\zeta)I + d(\zeta)TT^T \end{bmatrix} \succ 0, \forall \zeta \in [-1, 1]$$

- functions $a(\zeta), b(\zeta), c(\zeta)$, and $d(\zeta)$ are parameterized by (α, r)
- Take Schur complement and impose stability

•
$$a(\zeta) > 0$$
, $c(\zeta) + \left(d(\zeta) - \frac{b^2(\zeta)}{a(\zeta)}\right) TT^T > 0$, $\forall \zeta \in [-1, 1]$

• stability of transfer function $G(re^{j\theta})$

$$\cdot f - m_f$$
-strongly convex

$$\rightarrow \qquad \cdot \ \mu \geq L_f - m_g$$

$$\begin{array}{l} \cdot \ f - m_f\text{-strongly convex} \\ \cdot \ \nabla f - L_f\text{-Lipschitz cts} \\ \cdot \ T - \text{row full rank} \end{array} \right\} \rightarrow \begin{array}{l} \quad \text{Exponentially convergent if} \\ \cdot \ \mu \geq L_f - m_f \\ \cdot \ 0 < \alpha < \bar{\alpha}(\mu, m_f, L_f, \lambda_m(TT^T)) \end{array}$$

Quadratic programming

$$\begin{array}{ll} \underset{x,\,z}{\text{minimize}} & \frac{1}{2}\,x^TQx\,+\,q^Tx\,+\,g(z)\\ \text{subject to} & Tx\,-\,z\,=\,0. \end{array}$$

Summary

Results

- · an iterative primal-dual algorithm
- · an automated tool
- a region of step size with exp. converg.

Ongoing works

- · reduce the conservative
- · other discretization methods

THANK YOU!