

Universidade Federal de Santa Catarina – UFSC

Transferência de Calor e Umidade em Telhas : Simulação e Análise Experimental

Professor André Duarte Bueno

Prof. André Duarte Bueno - Dr - LENEP/CCT/UENF

Resumo Lattes

- Possui graduação em **Engenharia Civil pela UFSC** Universidade Federal de Santa Catarina (1990), **Mestrado em Engenharia Civil pela UFSC** (1994) e **Doutorado em Engenharia Mecânica pela UFSC** (2001).
- Atualmente é **Professor Associado da Universidade Estadual do Norte Fluminense Darcy Ribeiro (2003)**, Chefe do Setor de Modelagem Matemática e Computacional (2004) e Coordenador do PRH25-ANP Programa de Recursos Humanos da Agência Nacional de Petróleo Gás Natural e Bio-Combustíveis.
- Tem experiência na **área de Ciência da Computação Aplicada a Engenharia Mecânica e Engenharia de Petróleo**, com ênfase em Engenharia de Software, atuando principalmente nos seguintes temas: algoritmos computacionais aplicados a área de E&P, micro-modelagem de rochas reservatório com uso de técnicas de análise de imagens, programação orientada a objeto com C++ e software livre.

Linhas de Pesquisa

- Caracterização, Modelagem e Simulação Micro-Estrutural de Rochas Reservatório de Petróleo com Análise de Imagem
- Desenvolvimento de Softwares Científicos para Área de Engenharia de Petróleo, Elevação e Escoamento, Simulação de Reservatório

Escopo do Problema

Densidade = 1 880 +/- 80 [kg/m 3]; $w_{sat} = 0.17647 +/- 0.00003 [kg/kg]$;

porosidade =
$$0.331 + /- 0.014$$
 [m³/m³].

$$\rho = \frac{m_{\text{sec }a}}{V_{\text{total}}}$$

$$w = \frac{m_{\text{\'umida}} - m_{\text{sec}a}}{m_{\text{sec}a}}$$

$$\eta = \frac{V_{poros}}{V_{total}} = w_{sat} \cdot \frac{\rho_t}{\rho_l}$$

Material	Densidade [kg/m ³]	Porosidade [m ³ /m ³]	
Telha de cerâmica	1 880 +/- 80	0.331 +/- 0.014	
Argamassa de cal e cimento [10].	1 730 +/- 50	0.31 +/- 0.03	

0.022

0.02

-0.1

Tabela 2.3: Principais resultados do ensaio de porosimetria a mercúrio

Volume máximo de mercúrio retido pela	0.1702 ml/g.
amostra na intrusão	
Área total dos poros	$14.791 \text{ m}^2/\text{g}$.
Diâmetro médio do poro (volume)	0.0579 μm
Diâmetro médio do poro (área)	0.0385 µm
Densidade	1.8298 g/ml
Densidade aparente	2.6573 g/ml
Porosidade	31.14 %

$$\frac{\partial \theta}{\partial t} = \nabla (D_{\theta}. \nabla \theta) + \nabla (D_{T}. \nabla T)$$

$$\rho_{t,\text{sec}}.(c_t + c_l.w) \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \cdot \nabla T) - l_v \cdot \nabla (D_{\theta,v} \nabla \theta)$$

	Condutividade térmica aparente do material	[W/m.°C]
λ		
0	Densidade volumétrica do material seco	[kg/m³]
$ ho_{\scriptscriptstyle t,sec}$		
C_t	Calor específico do material	[J/kg.ºC]
C_I	Calor específico da água	[J/kg.ºC]
t	Тетро	[s]
Т	Temperatura do material	[°C].
θ	Conteúdo volumétrico de umidade	[m³/m³]
W	Conteúdo mássico de umidade	[kg/kg]
Do	Coeficiente de transporte de massa associado a um gradiente de conteúdo de umidade	[m²/s]
DT	Coeficiente de transporte de massa associado a um gradiente de temperatura	[m²/s]
Do,v	Coeficiente de transporte de massa associado a um gradiente de conteúdo de umidade na fase vapor	[m²/s]
I_{ν}	Calor latente de vaporização da água	[J/kg]

$$a_i \cdot X_i = b_i \cdot X_{i+1} + c_i \cdot X_{i-1} + d$$

$$P_{i} = \frac{b_{i}}{a_{i} - c_{i} \cdot P_{i-1}}$$

$$Q_{i} = \frac{c_{i} \cdot Q_{i-1} + d_{i}}{a_{i} - c_{i} \cdot P_{i-1}}$$

 $\rho_{v,ext}$

Eq. de Clapeyron-Clausius

 $h_{\text{m,ext}}.(\rho_{\text{v,ext}} - \rho_{\text{v,1}}^{0}) + \frac{\rho_{\text{I}}.D_{1\to 2}^{0}.(\theta_{2} - \theta_{1})}{\Delta v} = \rho_{\text{I}}.\frac{\Delta x}{2}.\frac{(\theta_{1} - \theta_{1}^{0})}{\Delta t} \quad \text{para } \theta_{1} < \theta_{\text{sat}}$

$$h_{m,ext}.(\rho_{v,ext} - \rho_{v,1}^{0}) + \frac{\rho_{I}.D_{1\to 2}.(\theta_{2} - \theta_{1})}{\Delta x} = \rho_{I}.\frac{\Delta x}{2}.\frac{(\theta_{1} - \theta_{1}^{*})}{\Delta t}$$

$$h_{m,ext}.(\rho_{v,ext} - \rho_{v,sat}^{0}) + \frac{\rho_{I}.D_{1\to 2}^{0}.(\theta_{2} - \theta_{sat})}{\Delta x} = (esp - esp^{0}).\frac{\rho_{I}}{\Delta t}$$

$$p_I. D_{1\rightarrow 2}^0$$

Eq. Auxiliar:

para $\theta_1 \ge \theta_{\text{sat}}$

(4.10)

$$\Delta x$$

$$D_{1\to 2}^{0}.(\theta_{2}-\theta_{3})$$

 $esp - esp^0 = (\theta_1 - \theta_{sat}) \cdot \frac{\Delta X}{2}$

$Para \theta_1 \ge \theta_{sat}$

 $d_{1} = \frac{h_{m,ext} \cdot (\rho_{v,ext} - \rho^{0}_{v,1})}{\Omega_{c}} + \frac{esp^{0}}{\Delta t} - \theta_{sat} \frac{D_{1->2}^{0}}{\Delta x}$

 $c_1 = 0$

Resultados

(4.17)

(4.18)

(4.19)

(4.20)

 $a_1 = \frac{D_{1\to 2}^0}{\Delta X} + \frac{\Delta X}{2 \cdot \Delta t}$ $a_1 = \frac{1}{\Delta t}$ $b_1 = \frac{D_{1\to 2}^0}{\Delta X}$ $b_1 = \frac{D_{1\to 2}^0}{\Delta X}$

 $d_{1} = \frac{h_{m,ext} \cdot (\rho_{v,ext} - \rho_{v,1}^{0})}{\rho_{I}} + \theta_{1}^{0} \cdot \frac{\Delta x}{2 \cdot \Delta t}$

Para $\theta_1 < \theta_{sat}$.

 $c_1 = 0$

externa e interna para em edificações. IW/m^2 .°C1 para convecção externa. IW/m^2 .°C1 para convecção interna.

O CIBSE [38] apresenta valores simplificados para o coeficiente de convecção

$$h_{c,ext} \cdot (T_{ext} - T_1) + \alpha \cdot R_{oc} + \varepsilon \cdot R_{ol} + \lambda^{*0}_{1 \to 2} \cdot \frac{(T_2 - T_1)}{\Delta x} + I_v \cdot h_{m,ext} \cdot (\rho_{v,ext} - \rho_{v,1}) = \left[\rho_{t,sec} \cdot (c_t + c_I \cdot w_1^0) \frac{\Delta x}{2}\right] \frac{T_1 - T_1^0}{\Delta t}$$

$$para \ \theta_{1 <} \theta_{sat}$$

$$h_{c,\text{ext}}.\left(T_{\text{ext}}-T_{\!\!1}\right) + \alpha.R_{\!\alpha} + \varepsilon.R_{\!o\!I} + \lambda^{*0}_{1\rightarrow 2}.\frac{\left(T_{\!\!2}-T_{\!\!1}\right)}{\Delta x} + I_{\!\scriptscriptstyle V}.\frac{\rho_{\scriptscriptstyle I}}{\Delta t}\left(\exp\!-\!\exp^0\right) = \!\!\left[\rho_{\scriptscriptstyle t,\text{sec}}.\left(c_{\scriptscriptstyle t}+c_{\scriptscriptstyle I}.w_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}\right)\frac{\Delta x}{2} + \exp^0.c_{\scriptscriptstyle I}.\rho_{\scriptscriptstyle I}\right]\!\frac{T_{\!\!1}-T_{\!\!1}^{\scriptscriptstyle 0}}{\Delta t}$$

(4.21)

para $\theta_{1} \theta_{sat}$

$$T_1 \left[h_{c,ext} + \frac{\lambda_2^0}{\Delta x} + \frac{\left[\rho_t \cdot (c_t + c_I \cdot w_1^0) \frac{\Delta x}{2} \right]}{\Delta t} \right] =$$

$$T_{1} \cdot \left[h_{c,ext} + \frac{\gamma_{2}}{\Delta x} + \frac{Z}{\Delta t} \right] =$$

$$T_{2} \cdot \frac{\lambda_{2}^{0}}{\Delta x} + \alpha \cdot R_{oc} + \varepsilon \cdot R_{ol} + h_{c,ext} \cdot T_{ext} + \left[\frac{\rho_{t} \cdot (c_{t} + c_{l} \cdot w_{1}^{0}) \frac{\Delta x}{2}}{\Delta t} \right] \cdot T_{1}^{0} + I_{v} \cdot h_{m,ext} \cdot (\rho_{v,ext} - \rho^{0}_{v,1}) \quad \text{para } \theta_{1} < \theta_{sat}$$

$$T_{1} \left[h_{c,ext} + \frac{\lambda_{2}^{0}}{\Delta x} + \frac{\left[\rho_{t}.(c_{t} + c_{1}.w_{1}^{0})\frac{\Delta x}{2} + (esp^{0}).c_{1}.\rho_{1}\right]}{\Delta t} \right] =$$

$$T_{2} \cdot \frac{\lambda_{2}^{0}}{\Delta x} + \alpha \cdot R_{oc} + \varepsilon \cdot R_{ol} + h_{c,ext} \cdot T_{ext} + \left[\frac{\rho_{t} \cdot (c_{t} + c_{l} \cdot w_{1}^{0}) \frac{\Delta x}{2} + esp^{0} \cdot c_{l} \cdot \rho_{l}}{\Delta t} \right] \cdot T_{1}^{0} + I_{v} (esp - esp^{0}) \cdot \frac{\rho_{l}}{\Delta t}$$

$$para \theta_{1} \geq \theta_{sat} \qquad (4.22)$$

$$Para \theta_1 < \theta_{sat}$$

$$a_1 = h_{c,ext} + \frac{\lambda_2^0}{\Delta x} + \frac{\left[\rho_t \cdot (c_t + c_I \cdot w_1^0) \frac{\Delta x}{2}\right]}{\Delta t}$$

$$a_{1} = h_{c,ext} + \frac{\lambda_{2}^{0}}{\Delta x} + \frac{[\rho_{t} \cdot (c_{t} + c_{l} \cdot w_{1}^{0}) \frac{\Delta x}{2} + (esp^{0}) \cdot c_{l} \cdot \rho_{l}]}{\Delta t}$$

$$(4.23)$$

$$b_{1} = \frac{\lambda_{2}^{0}}{\Delta x}$$

$$b_1 = \frac{\lambda_2^0}{\Delta x}$$

$$c_1 = 0$$

$$\begin{split} c_1 &= 0 \\ \\ d_1 &= \alpha \cdot R_{oc} + \varepsilon \cdot R_{ol} + h_{c,ext} \cdot T_{ext} + \left[\frac{\rho_t \cdot (c_t + c_l \cdot w_l^0) \frac{\Delta x}{2}}{\Delta t} \right] \cdot T_l^0 + lv \cdot h_{m,ext} \cdot (\rho_{v,ext} - \rho_{v,int}^0) \end{split}$$

$$c_1 = 0$$

$$c_1 + \left[\frac{\rho_t \cdot (c_t + c_I \cdot w_1^0) \frac{\Delta x}{2}}{2} \right] . 7$$

$$\frac{\Delta x}{2} \bigg] T_1^0 + Iv. h_{m,ext}$$

$$\boxed{\frac{2}{1}} \int T_1^0 + I$$

$$v.h_{m.ext}.(\rho_{v.ext}-\rho^0_{v.int})$$

Para $\theta_1 \geq \theta_{sat}$

$$d_{1} = \alpha . R_{oc} + \varepsilon . R_{ol} + h_{c,ext} . T_{ext} + \left[\frac{\rho_{t} . (c_{t} + c_{l} . w_{1}^{0}) \frac{\Delta x}{2} + esp^{0} . c_{l} . \rho_{l}}{\Delta t} \right] . T_{1}^{0} + I_{v} (esp - esp^{0}) \frac{\rho_{1}}{\Delta t}$$

(4.23)

(4.24)

(4.25)

Software SIMULAT

Características:

- C++
- Interface texto e gráfica

Site: https://github.com/ldsc/simulat

https://sites.google.com/view/professorandreduartebueno

Resultados: Simulações

- tp[1] --- tp[4] --- tp[7] --- tp[10] --- ti[1] --- ti[4] --- ti[7] --- ti[10]

Resultados: Ensaios x Software - SIMULAT

Resultados: Ensaios x Software - SIMULAT

https://sites.google.com/view/professorandreduartebueno

Artigos relacionados ao mestrado

LAMBERTS, R.; BUENO, A.D.; CUNHA NETO, J. A. B. . Determinação da temperatura e do conteúdo mássico de umidade de telhas expostas ao meio ambiente. In: Proceedings of the Brazilian Congress of engineering and thermal sciences, 1996, Florianópolis. Proceedings of the Brazilian Congress of engineering and thermal sciences, 1996. v. 1. p. 177-182.

CUNHA NETO, J. A. B.; BUENO, A.D. . Determinação de propriedades relacionadas a transferência de massa em telhas cerâmicas. In: Proceedings of the Brazilian Congress of engineering and thermal sciences, 1996, Florianópolis. Proceedings of the Brazilian Congress of engineering and thermal sciences, 1996. v. 1. p. 171-176.

LAMBERTS, R.; BUENO, A.D.; PHILIPPI, P. C. . Avaliação do comportamento higro-térmico de telhas cerâmicas em ambiente real. In: Proceedings of 5th International Seminar on Structural Masonry For Developing Countries, 1994, Florianópolis. Proceedings of 5th International Seminar on Structural Masonry For Developing Countries, 1994. v. 1. p. 647-659.

Artigos relacionados ao mestrado

BUENO, A.D.; LAMBERTS, R.; PHILIPPI, P. C. . Higroscopicidade em telhas de cerâmica- efeitos sobre o comportamento térmico. In: Proceedings of 5th International Seminar on Structural Masonry for Developing Countries, 1994, Florianópolis. Proceedings of 5th International Seminar on Structural Masonry for Developing Countries, 1994. v. 1. p. 637-646.

BUENO, A.D.; LAMBERTS, R.; PHILIPPI, P. C. . Influênce of Water Vapour Sorption on the Thernal Behavior of Masonry Materials. In: 3rd Internacional Masonry Conference, 1992, Londres. 3rd Internacional Masonry Conference, 1992. p. 1-13.

LAMBERTS, R.; BUENO, A.D.. Proposta de zona de conforto na carta psicométrica. In: Primeiro Congresso Nacional de Normalização Ligada ao Conforto Ambiental, 1991, Florianópolis. Primeiro Congresso Nacional de Normalização Ligada ao Conforto Ambiental, 1991. v. 1. p. 89-95

PROPOSTA DE ZONA DE CONFORTO NA CARTA PSICOMÉTRICA

André Duarte Bueno, Roberto <u>Lamberts</u>. Grupo de Análise Térmica de Edificações Núcleo de Pesquisa em Construção Civil Universidade Federal de Santa Catarina

CONTATO

Professor André Duarte Bueno andreduartebueno@gmail.com

https://sites.google.com/view/professorandreduartebueno