Section 3.4.

Angular Momentum for a Single Particle

The definition

Consider a particle with position vector r (w.r.t. the chosen origin O) and momentum p = m v.

Define the angular momentum, of the particle about the origin O; notation = ℓ ;

$$\ell = r \times p$$

 $\boldsymbol{\ell}$ is a vector.

(Review cross product; page 7 and right hand rule)

- \star The direction is perpendicular to the plane spanned by r and p.
- \star The magnitude is $r p \sin \theta$.

Theorem.

 $d\boldsymbol{\ell}/dt$ is equal to the torque.

Proof.

Figure 3.5 For any particle with position \mathbf{r} relative to the origin O and momentum \mathbf{p} , the angular momentum about O is defined as the vector $\boldsymbol{\ell} = \mathbf{r} \times \mathbf{p}$. For the case shown, $\boldsymbol{\ell}$ points into the page.

Figure 3.6 A planet (mass m) is subject to the central force of the sun (mass M). If we choose the origin at the sun, then $\mathbf{r} \times \mathbf{F} = 0$, and the planet's angular momentum about O is constant.

Example

Kepler's second law

Figure 3.7

Figure 3.7 The orbit of a planet with the sun fixed at O. Kepler's second law asserts that if the two pairs of points P, Q and P', Q' are separated by equal time intervals, dt = dt', then the two areas dA and dA' are equal.

Kepler published three laws of planetary orbits, in 1609 and 1619. He determined these laws from a mathematical analysis of planetary observations — very difficult in the 17th century but Kepler was a mathematical genius.

Kepler's second law:

The radial vector sweeps out equal areas in equal times.

We'll prove that this follows from conservation of angular momentum.

(not known at the time of Kepler; Newton)

Comment:

"Kepler's second law", or, conservation of angular momentum, applies to *all* central forces.

I.e., it's not just for planetary orbits.

Figure 3.6 A planet (mass m) is subject to the central force of the sun (mass M). If we choose the origin at the sun, then $\mathbf{r} \times \mathbf{F} = 0$, and the planet's angular momentum about O is constant.

TAYLOR PROBLEM 3.25.

The mass m slides without friction on a horizontal surface. It is attached to a string as shown. The string goes through a hole in the surface, O; and it can be pulled down beneath the surface to change the distance r from m to O.

A. Initially, $r = r_0$ and $\omega = \omega_0$. Calculate F required

to keep r constant.

B. Then the string is pulled down by distance $r_0/2$. Determine the final angular velocity.

$$(B) X = m r^2 \omega_s^2 = m r^2 \omega^2$$

$$r = r_0/2 \implies \omega = 4\omega_0^2$$

C. Calculate the work done pulling the string.

(c)
$$W = \Delta K = E$$

 $= \frac{1}{2} m (r \omega)^2 - \frac{1}{2} k (r_0 \omega_0)^2$
 $= \frac{3}{2} m r_0^2 \omega_0^2$

Angular momentum of a rotating disk (ω) about the symmetry axis of the disk

Moment of Inertia

$$I = \sum_{\alpha} u_{\alpha} r_{\alpha}^{2} \longrightarrow \int r_{1}^{2} dm$$

For a uniform disk $\psi f = \frac{M}{RR^{2}} \leftarrow \frac{dm}{dA}$

$$I = \int r^{2} \frac{M}{RR^{2}} r dr d\phi$$

$$= \frac{M}{RR^{2}} \cdot \frac{R^{4}}{4} \cdot 2\pi = \frac{1}{2} MR^{2}$$

THE PARALLEL AXIS THEOREM – an example

KEPLER'S SECOND LAW ...

First, the orbit lies in a plane because the vector $\boldsymbol{\ell}$ is a constant of the motion.

The area swept out by the radial vector from time t to $t+\delta t$ is

$$SA = \frac{1}{2} r r S_{\phi}$$

$$\frac{SA}{St} = \frac{1}{2} r^{2} \frac{S\phi}{St}$$

The angular momentum is

$$\frac{dA}{dt} = \frac{1}{2m}$$
 is constant

Thus the area rate is constant because angular momentum is constant.

Homework Assignment #6
due in class Friday, October 14
[27] Problem 3.16 *
[28] Problem 3.20 **
[29] Problem 3.22 **
[30] Problem 3.27 **
[30x] Problem 3.32 **
[30xx] Problem 3.35 **

Use the cover sheet.

The first midterm exam is this Friday, October 7.