HOMEWORK

In each part, determine whether the vectors are linearly independent or are linearly dependent in
$$P_2$$
.

(a)
$$2-x+4x^2$$
, $3+6x+2x^2$, $2+10x-4x^2$

(b)
$$1 + 3x + 3x^2$$
, $x + 4x^2$, $5 + 6x + 3x^2$, $7 + 2x - x^2$

In each part, determine whether the three vectors lie on the same line in
$$\mathbb{R}^3$$
.

(a)
$$\mathbf{v}_1 = (-1, 2, 3), \ \mathbf{v}_2 = (2, -4, -6), \ \mathbf{v}_3 = (-3, 6, 0)$$

(b)
$$\mathbf{v}_1 = (2, -1, 4), \ \mathbf{v}_2 = (4, 2, 3), \ \mathbf{v}_3 = (2, 7, -6)$$

(c)
$$\mathbf{v}_1 = (4, 6, 8), \ \mathbf{v}_2 = (2, 3, 4), \ \mathbf{v}_3 = (-2, -3, -4)$$

For which real values of
$$\lambda$$
 do the following vectors form a linearly dependent set in \mathbb{R}^3 ?

$$\mathbf{v}_1 = (\lambda, -\frac{1}{2}, -\frac{1}{2}), \quad \mathbf{v}_2 = (-\frac{1}{2}, \lambda, -\frac{1}{2}), \quad \mathbf{v}_3 = (-\frac{1}{2}, -\frac{1}{2}, \lambda)$$

Determine all values of
$$k$$
 for which the following matrices are linearly independent in M_{22} .

$$\begin{bmatrix} 1 & 0 \\ 1 & k \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ k & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$$