DOMAĆA ZADAĆA 3 OSNOVE OPERACIONIH ISTRAŽIVANJA

Student: Mašović Haris

Indeks: 17993

Odsjek: Računarstvo i Informatika

Datum:	Potpis:
14.12.2018	

Zadatak 1 [1.8 poena]

Potrebno je transportovati određenu količinu robe iz 6 skladišta S₁, S₂, S₃, S₄, S₅ i S₆ u 3 prodavnice P₁, P₂ i P₃. Kapaciteti skladišta iznose 45, 42, 32, 49, 42 i 51 težinskih jedinica respektivno. Potrebe prodavnica iznose 53, 68 i 44 težinskih jedinica respektivno. Jedinične cijene transporta između pojedinih skladišta i prodavnica date su u sljedećoj tabeli:

	P1	P2	P3
S1	18	13	4
S2	19	19	20
S3	12	17	15
S4	17	4	11
S5	9	4	3
S6	16	20	4

Vaš zadatak je da uradite sljedeće:

- a. Pronađete dopustivi plan transporta primjenom metoda sjeverozapadnog ugla; [0.2 poena]
- b. Pronađete dopustivi plan transporta primjenom metoda minimalnih jediničnih troškova; [0.2 poena]
- c. Pronađete dopustivi plan transporta primjenom Vogelovog aproksimativnog metoda; [0.3 poena]
- d. Pronađete optimalni plan transporta primjenom stepping-stone metoda na polazni dopustivi plan transporta dobijen Vogelovim aproksimativnim metodom; [0.5 poena]
- e. Pronađete optimalni plan transporta primjenom MODI metoda na polazni dopustivi plan transporta dobijen metodom minimalnih jediničnih troškova; [0.6 poena]

Obavezno prodiskutirajte da li će biti neka od prodavnica čije potrebe neće biti zadovoljene, i ako hoće, u kolikom iznosu, kao i da li će u nekom skladištu ostati zaliha, i ako hoće, u kolikom iznosu.

Potrebno je da predate izvještaj koji sadrži postavku problema i kompletan tok rješavanja problema (ne samo krajnje rješenje) u .pdf formatu.

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	19	19	20	0	42
\$3	12	17	15	0	32
S4	17	4	11	0	49
S5	9	4	3	0	42
S6	16	20	4	0	51
Potrebe	8	68	44	96	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	19	20	0	34
S3	12	17	15	0	32
S4	17	4	11	0	49
S5	9	4	3	0	42
S6	16	20	4	0	51
Potrebe	0	68	44	96	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	34 19	20	0	0
S3	12	17	15	0	32
S4	17	4	11	0	49
S 5	9	4	3	0	42
S6	16	20	4	0	51
Potrebe	0	34	44	96	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	34 19	20	0	0
S3	12	32	15	0	0
S4	17	4	11	0	49
S5	9	4	3	0	42
S6	16	20	4	0	51
Potrebe	0	2	44	96	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	34 19	20	0	0
S3	12	32 17	15	0	0
S4	17	2 4	11	0	47
S5	9	4	3	0	42
S6	16	20	4	0	51
Potrebe	0	0	44	96	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	34 19	20	0	0
S3	12	32	15	0	0
S4	17	2 4	44 11	0	3
S5	9	4	3	0	42
S6	16	20	4	0	51
Potrebe	0	0	0	96	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	34 19	20	0	0
S3	12	32 17	15	0	0
S4	17	2 4	44 11	3 0	0
S5	9	4	3	0	42
S6	16	20	4	0	51
Potrebe	0	0	0	93	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	34 19	20	0	0
S3	12	32 17	15	0	0
S4	17	2 4	44 11	3 0	0
S 5	9	4	3	42 0	0
S6	16	20	4	0	51
Potrebe	0	0	0	51	

	P1	P2	Р3	Pfik	Kapaciteti
S1	45	13	4	0	0
S2	8 19	34 19	20	0	0
S3	12	32	15	0	0
S4	17	2 4	44 11	3 0	0
S5	9	4	3	42 0	0
S6	16	20	4	51 0	0
Potrebe	0	0	0	0	

Plan raspodjele transporta je prikazan prethodnom tabelom, pri čemu prodavnica 1 dobija zalihe iz skladišta 1 i 2, prodavnica 2 iz skladitša 2,3,4 i prodavnica 3 iz skladišta 4. Vidimo da će potrebe sve 3 prodavnice biti zadovoljene u punom iznosu koliko mogu primti zaliha, te da će skladišta 4,5,6 imati fiktivnu prodavnicu, odnosno te će ostati će 3,42,51

količine robe respektivno u skladištima 4,5,6. m + n - 1 = 6 + 4 - 1 = 9 je jednako broju popunjenih ćelija,rješenje nije degenerirano, a minimalna cijena je: 18*45+19*8+19*34+17*32+4*2+11*44+0*3+0*42+0*51 = 2644.

b)

	P1	P2	Р3	Pfik	Kapaciteti
S1	18	13	4	0	45
S2	19	19	20	0	42
S3	12	17	15	0	32
S4	17	4	11	0	49
S5	9	4	3	0	42
S6	16	20	4	51 0	0
Potrebe	53	68	44	45	

U narednom koraku sam izabrao skladište S1 jer je samo 1 iteracija trebala.

	P1	P2	Р3	Pfik	Kapaciteti
S1	18	13	4	45 0	0
S2	19	19	20	0	42
S3	12	17	15	0	32
S4	17	4	11	0	49
S5	9	4	3	0	42
S6	16	20	4	51 0	0
Potrebe	53	68	44	0	

	P1	P2	Р3	Pfik	Kapaciteti
					_
S1	18	13	4	45 0	0
S2	19	19	20	0	42
S3	12	17	15	0	32
S4	17	4	11	0	49
S5	9	4	42	0	0
S6	16	20	4	51 0	0
Potrebe	53	68	2	0	

	P1	P2	Р3	Pfik	Kapaciteti
S1	18	13	4	45 0	0
S2	19	19	20	0	42
S3	12	17	15	0	32
S4	17	49	11	0	0
S5	9	4	42	0	0
S6	16	20	4	51 0	0
Potrebe	53	19	2	0	

	P1	P2	Р3	Pfik	Kapaciteti
S1	18	13	4	45 0	0
S2	19	19	20	0	42
S3	32 12	17	15	0	0
S4	17	49	11	0	0
S5	9	4	42	0	0
S6	16	20	4	51 0	0
Potrebe	21	19	2	0	

	P1	P2	Р3	Pfik	Kapaciteti
S1	18	13	4	45 0	0
S2	21 19	19	20	0	21
S3	32 12	17	15	0	0
S4	17	49 4	11	0	0
S 5	9	4	42	0	0
S6	16	20	4	51 0	0
Potrebe	0	19	2	0	

	P1	P2	Р3	Pfik	Kapaciteti
S1	18	13	4	45 0	0
S2	21 19	19	20	0	2
S3	32 12	17	15	0	0
S4	17	49	11	0	0
S5	9	4	42	0	0
S6	16	20	4	51 0	0
Potrebe	0	0	2	0	

	P1	P2	Р3	Pfik	Kapaciteti
S1	18	13	eps 4	45 0	0
S2	21 19	19	2 20	0	0
S3	32 12	17	15	0	0
S4	17	49	11	0	0
S5	9	4	42	0	0
S6	16	20	4	51 0	0
Potrebe	0	0	0	0	

Plan raspodjele transporta je prikazan prethodnom tabelom. Vidimo da će prodavnica 1 dobijati zalihe iz skladišta 2 i 3, dok će prodavnica 2 dobijati zahlihe iz skladišta 2 i 4, dok će prodavnica 3 dobijati zalhihe iz skladišta 2 i 5. Dobijamo dopustivi plan sa sljedećim karakteristikaama. Vidimo da će potrebe sve 3 prodavnice biti zadovoljene u punom iznosu na koliko mogu primiti zaliha, te da će skladišta 1,6 imati fiktivnu prodavnicu, odnosno te će ostati će 45,51 količine robe respektivno u skladištima 1,6. m + n - 1 = 6 + 4 - 1 = 9 nije jednako broju popunjenih ćelija (8) i ovako rješenje je degenerirano, a da bi rješili ovaj naš problem jer nam treba nedegenerirano početno rješenje trebamo jednoj od neoznačenih ćelija staviti epsilon vrijednost, uzet ćemo od preostalih neoznačenih ćelija onu ćeliju koja je pored ćelije koja se punila u iteraciji zadovoljila da potrebe i kapacitet bude popunjen u isto vrijeme, a to je ćelija u redu S1 i koloni Pfik.

Minimalna cijena odnosno optimum za ovakav transport je: 0*45+19*21+19*19+20*2+12*32+4*49+3*42+0*51=1506. Vidimo da je manja cijena u odnosu pod a).

c) Prvo ćemo predstaviti ukupnu tabelu zajedno sa žaljenjima, pa od 2 iteracije tek kreće algoritam jer je na taj način lakše pratiti i u svakoj iteraciji možemo imati žaljena za narednu iteraciju što olakšava rad.

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	13	4	0	45	4
S2	19	19	20	0	42	19
S3	12	17	15	0	32	12
S4	17	4	11	0	49	4
S5	9	4	3	0	42	3
S6	16	20	4	0	51	4
Potrebe	53	68	44	96		
Žaljenje	3	0	1	0		

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	13	4	0	45	4
S2	19	19	20	42 0	0	
S3	12	17	15	0	32	12
S4	17	4	11	0	49	4
S5	9	4	3	0	42	3
S6	16	20	4	0	51	4
Potrebe	53	68	44	54		1
Žaljenje	3	0	1	0		

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	13	4	0	45	4
S2	19	19	20	42 0	0	
\$3	12	17	15	32 0	0	
S4	17	4	11	0	49	4
\$5	9	4	3	0	42	3
S6	16	20	4	0	51	4
Potrebe	53	68	44	22		,
Žaljenje	7	0	1	0		

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	13	4	0	45	4
S2	19	19	20	42 0	0	
S3	12	17	15	32 0	0	
S4	17	4	11	0	49	4
S5	42 9	4	3	0	0	
S6	16	20	4	0	51	4
Potrebe	11	68	44	22		
Žaljenje	1	9	0	0		

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	13	4	0	45	4
S2	19	19	20	42 0	0	
S3	12	17	15	32 0	0	
S4	17	49	11	0	0	
S5	42 9	4	3	0	0	
S6	16	20	4	0	51	4
Potrebe	11	19	44	22		
Žaljenje	2	7	0	0		

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	19 13	4	0	26	4
S2	19	19	20	42 0	0	
S3	12	17	15	32 0	0	
S4	17	49	11	0	0	
S5	42 9	4	3	0	0	
S6	16	20	4	0	51	4
Potrebe	11	0	44	22		
Žaljenje	2		0	0		

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	19 13	4	22 0	4	14
S2	19	19	20	42 0	0	
S3	12	17	15	32 0	0	
S4	17	49 4	11	0	0	
S 5	42 9	4	3	0	0	
S6	16	20	4	0	51	12
Potrebe	11	0	44	0		
Žaljenje	2		0			

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	19	4 4	22 0	0	
S2	19	19	20	42 0	0	
S3	12	17	15	32 0	0	
S4	17	49	11	0	0	
S5	42 9	4	3	0	0	
S6	16	20	4	0	51	12
Potrebe	11	0	40	0		
Žaljenje	16		4			

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	19	4 4	22 0	0	
S2	19	19	20	42 0	0	
S3	12	17	15	32 0	0	
S4	17	49	11	0	0	
S 5	42 9	4	3	0	0	
S6	11 16	20	4	0	40	12
Potrebe	0	0	40	0		
Žaljenje			4			

	P1	P2	Р3	Pfik	Kapaciteti	Žaljenje
S1	18	19	4 4	22 0	0	
S2	19	19	20	42 0	0	
S3	12	17	15	32 0	0	
S4	17	49	11	0	0	
S 5	42 9	4	3	0	0	
S6	11 16	20	40 4	0	0	
Potrebe	0	0	0	0		
Žaljenje						

Plan transporta je prikazan prethodnom tabelom. Vidimo da će prodavnica 1 dobijati zalihe iz skladišta 5 i 6, prodavnica 2 iz skladišta 1 i 4, i prodavnica 3 iz skladišta 1 i 6. Dobijamo dopustivi plan sa sljedećim karakteristikaama. Vidimo da će potrebe sve 3 prodavnice biti zadovoljene u punom iznosu tj. ono koliko mogu da prime zaliha, te da će skladišta 1,2,3 imati fiktivnu prodavnicu, odnosno te će ostati će 22,42,32 količine robe respektivno u skladištima 1,2,3.

m + n - 1 = 6 + 4 - 1 = 9 je jednako broju popunjenih ćelija (0) i ovako rješenje nije degenerirano, a minimalna cijena odnosno optimum za ovakav transport je: 13*19+4*4+0*22+0*42+0*32+4*49+9*42+16*11+4*40=1173. Vidimo da je manja cijena u odnosu pod b) ujedno i pod a).

d) Početno dopustivo rješenje dobijemo pod c je:

	P1	P2	Р3	PF
S1	18	19	4 4	22 0
S2	19	19	20	42 0
S3	12	17	15	32 0
S4	17	49	11	0
S5	42 9	4	3	0
S6	11 16	20	40 4	0

VAG metodom dobili smo sljedeći rezultat:

13*19+4*4+0*22+0*42+0*32+4*49+9*42+16*11+4*40 = 1173.

Pomoću stepping-stone metode pronaći ćemo naći neko drugo rješenje koje će imati manju optimalnu vrijednost. Prvo moramo naći sve koeficjente $d_{i,j}$ i cikluse za tražene $d_{i,j}$. U nastavku su prikazana iteracije:

Neoznačena ćelija	Ciklus	$d_{i,j}$
S1-P1	S1P1 -> S1P3 -> S6P3 -> S6P1	18 - 4 + 4 - 16 = 2
S2-P1	S2P1 -> S2PF -> S1PF -> S1P3 -> S6P3 -> S6P1	19 - 0 + 0 - 4 + 4 - 16 = 3
S2-P2	S2P2 -> S2PF -> S1PF -> S1P2	19 - 0 + 0 - 13 = 6
S2-P3	S2P3 -> S2PF -> S1PF -> S1P3	20 - 0 + 0 - 4 = 16
S3-P1	S3P1 -> S3PF -> S1PF -> S1P3 -> S6P3 -> S6P1	12 - 0 + 0 - 4 + 4 - 16 = -4
S3-P2	S3P2 -> S3PF -> S1PF -> S1P2	17 - 0 + 0 - 13 = 4
S3-P3	S3P3 -> S3PF -> S1PF -> S1P3	15 - 0 + 0 - 4 = 11
S4-P1	S4P1 -> S4P2 -> S1P2 -> S1P3 -> S6P3 -> S6P1	17 - 4 + 13 - 4 + 4 - 16 = 10
S4-P3	S4P3 -> S4P2 -> S1P2 -> S1P3	11 - 4 + 13 - 4 = 16
S4-PF	S4PF -> S4P2 -> S1P2 -> S1PF	0 - 4 + 13 - 0 = 9
S5-P2	S5P2 -> S5P1 -> S6P1 -> S6P3 -> S1P3 -> S1P2	4 - 9 + 16 - 4 + 4 - 13 = -2
S5-P3	S5P3 -> S5P1 -> S6P1 -> S6P3	3 - 9 + 16 - 4 = 6
S5-PF	S5PF -> S5P1 -> S6P1 -> S6P3 -> S1P3 -> S1PF	0 - 9 + 16 - 4 + 4 - 0 = 7
S6-P2	S6P2 -> S6P3 -> S1P3 -> S1P2	20 - 4 + 4 - 13 = 7
S6-PF	S6PF -> S6P3 -> S1P3 -> S1PF	0 - 4 + 4 - 0 = 0

Vidimo da je najmanje d jednako -4 i to je polje S3-P1. Taj ciklus ćemo iskoristiti. Naše t iznosi min $\{32, 4, 16\} = 4$. Novo formirana tabela:

	P1	P2	Р3	PF
S1	18	19	4	26 0
S2	19	19	20	42 0
S 3	12	17	15	28 0
S4	17	49	11	0
S5	42	4	3	0
S6	7 16	20	44 4	0

Neoznačena ćelija	Ciklus	$d_{i,j}$
S1-P1	S1P1 -> S1PF -> S3PF -> S3P1	18 - 0 + 0 - 12 = 6
S1-P3	S1P3 -> S1PF -> S3PF -> S3P1 -> S6P1 -> S6P3	4 - 0 + 0 - 12 + 16 - 4 = 4
S2-P1	SP21 -> S2PF -> S3PF -> S3P1	19 - 0 + 0 - 12 = 7
S2-P2	S2P2 -> S2PF -> S1PF -> S1P2	19 - 0 + 0 - 13 = 6
S2-P3	S2P3 -> S2PF -> S3PF -> S3P1 -> S6P1 -> S6P3	20 - 0 + 0 - 12 + 16 - 4 = 20
S3-P2	S3P2 -> S3PF -> S1PF -> S1P2	17 - 0 + 0 - 13 = 4
S3-P3	S3P3 -> S3P1 -> S6P1 -> S6P3	15 - 12 + 16 - 4 = 15
S4-P1	S4P1 -> S4P2 -> S1P2 -> S1PF -> S3PF -> S3P1	17 - 4 + 13 - 0 + 0 - 12 = 14
S4-P3	S4P3 -> S4P2 -> S1P2 -> S1PF -> S3PF -> S3P1 -> S6P1 -> S6P3	11 - 4 + 13 - 0 + 0 - 12 + 16 - 4 = 20
S4-PF	S4PF -> S4P2 -> S1P2 -> S1PF	0 - 4 + 13 - 0 = 9
S5-P2	S5P2 -> S5P1 -> S3P1 -> S3PF -> S1PF -> S2P2	4 - 9 + 12 - 0 + 0 - 13 = -6
S5-P3	S5P3 -> S5P1 -> S6P1 -> S6P3	3 - 9 + 16 - 4 = 6
S5-PF	S5PF -> S5P1 -> S3P1 -> S3PF	0 - 9 + 12 - 0 = 3
S6-P2	S6P2 -> S6P1 -> S3P1 -> S3PF -> S1PF -> S1P2	20 - 16 + 12 - 0 + 0 - 13 = 3
S6-PF	S6PF -> S6P1 -> S3P1 -> S3PF	0 - 16 + 12 - 0 = -4

Vidimo da je najmanje d jednako -6 i to je polje S5-P2. Taj ciklus ćemo iskoristiti. Naše t iznosi min {42,28,19} = 19. Novo formirana tabela:

	P1	P2	Р3	PF
S1	18	13	4	45 0
S2	19	19	20	42 0
S3	23 12	17	15	9 0
S4	17	49	11	0
S5	23 9	19 4	3	0
S6	7 16	20	44 4	0

Neoznačena ćelija	Ciklus	$d_{i,j}$
S1-P1	S1P1 -> S1PF -> S3PF -> S3P1	18 - 0 + 0 - 12 = 6
S1-P2	S1P2 -> S1PF -> S3PF -> S3P1 -> S5P1 -> S5P2	13 - 0 + 0 - 12 + 9 - 4 = 6
S1-P3	S1P3 -> S1PF -> S3PF -> S3P1 -> S6P1 -> S6P3	4 - 0 + 0 - 12 + 16 - 4 = 4
S2-P1	S2P1 -> S2PF -> S3PF -> S3P1	19 - 0 + 0 - 12 = 7
S2-P2	S2P2 -> S2PF -> S3PF -> S3P1 -> S5P1 -> S5P2	19 - 0 + 0 - 12 + 9 - 4 = 12
S2-P3	S2P3 -> S2PF -> S3PF -> S3P1 -> S6P1 -> S6P3	20 - 0 + 0 - 12 + 16 - 4 = 20
S3-P2	S3P2 -> S3P1 -> S5P1 -> S5P2	17 - 12 + 9 - 4 = 10
S3-P3	S3P3 -> S3P1 -> S6P1 -> S6P3	15 - 12 + 16 - 4 = 15
S4-P1	S4P1 -> S4P2 -> S5P2 -> SP51	17 - 4 + 4 - 9 = 8
S4-P3	S4P3 -> S4P2 -> S5P2 -> S5P1 -> S6P1 -> S6P3	11 - 4 + 4 - 9 + 16 - 4 = 14
S4-PF	S4PF -> S4P2 -> S5P2 -> S5P1 -> S3P1 -> S3PF	0 - 4 + 4 - 9 + 12 - 0 = 3
S5-P3	S5P3 -> S5P1 -> S6P1 -> S6P3	3 - 9 + 16 - 4 = 6
S5-PF	S5PF -> S5P1 -> S3P1 -> S3PF	0 - 9 + 12 - 0 = 3
S6-P2	S6P2 -> S6P1 -> S5P1 -> S5P2	20 - 16 + 9 - 4 = 9
S6-PF	S6PF -> S6P1 -> S3P1 -> S3PF	0 - 16 + 12 - 0 = -4

Vidimo da je najmanje d jednako -4 i to je polje S6-PF. Taj ciklus ćemo iskoristiti. Naše t iznosi min $\{7, 9\} = 7$. Novo formirana tabela:

	P1	P2	Р3	PF
S1	18	13	4	45 0
S2	19	19	20	42 0
S 3	30 12	17	15	2 0
S4	17	49	11	0
S5	23 9	19 4	3	0
S6	16	20	44 4	7 0

Neoznačena ćelija	Ciklus	$d_{i,j}$
S1-P1	S1P1 -> S1PF -> S3PF -> S3P1	18 - 0 + 0 - 12 = 6
S1-P2	S1P2 -> S1PF -> S3PF -> S3P1 -> S5P1 -> S5P2	13 - 0 + 0 - 12 + 9 - 4 = 6
S1-P3	S1P3 -> S1PF -> S6PF -> S6P3	4 - 0 + 0 - 4 = 0
S2-P1	S2P1 -> S2PF -> S3PF -> S3P1	19 - 0 + 0 - 12 = 7
S2-P2	S2P2 -> S2PF -> S3PF -> S3P1 -> S5P1 -> S5P2	19 - 0 + 0 - 12 + 9 - 4 = 12
S2-P3	S2P3 -> S2PF -> S6PF -> S6P3	20 - 0 + 0 - 4 = 16
S3-P2	S3P2 -> S3P1 -> S5P1 -> S5P2	17 - 12 + 9 - 4 = 10
S3-P3	S3P3 -> S3PF -> S6PF -> S6P3	15 - 0 + 0 - 4 = 11
S4-P1	S4P1 -> S4P2 -> S5P2 -> S5P1	17 - 4 + 4 - 9 = 8
S4-P3	S4P3 -> S4P2 -> S5P2 -> S5P1 -> S3P1 -> S3PF -> S6PF -> S6P3	11 - 4 + 4 - 9 + 12 - 0 + 0 - 4 = 10
S4-PF	S4PF -> S4P2 -> S5P2 -> S5P1 -> S3P1 -> S3PF	0 - 4 + 4 - 9 + 12 - 0 = 3
S5-P3	S5P3 -> S5P1 -> S3P1 -> S3PF -> S6PF -> S6P3	3 - 9 + 12 - 0 + 0 - 4 = 2
S5-PF	S5PF -> S5P1 -> S3P1 -> S3PF	0 - 9 + 12 - 0 = 3
S6-P1	S6P1 -> S6PF -> S3PF -> S3P1	16 - 0 + 0 - 12 = 4
S6-P2	S6P2 -> S6PF -> S3PF -> S3P1 -> S5P1 -> S5P2	20 - 0 + 0 - 12 + 9 - 4 = 13

Vidimo da su svi d-ovi >= 0 shodno time imamo optimalno rješenje za naš problem koje nije jedinstveno. Finalna tabela raspodjela između prodavnica i skladišta je sljedeća:

	P1	P2	Р3	PF
S1	18	13	4	45 0
S2	19	19	20	42 0
S3	30 12	17	15	2 0
S4	17	49	11	0
S5	23 9	19 4	3	0
S6	16	20	44 4	7 0

Optimalan plan transporta je prikazan prethodnom tabelom tj. prodavnica 1 će dobiti zalihe iz skladišta 3 i 5, prodavnica 2 iz skladišta 4 i 5, prodavnica 3 iz skladišta 6. Vidimo da će sve prodavnice biti zadovoljene u punom iznosu kao što je traženo, također vidimo da će u skladištima 1,2,3,6 ostati respekivno 45,42,2,7 količina zaliha, što je prikazano fiktivnom prodavnicom. Finalno izračunajmo minimalnu cijenu:

Z = 0*45+0*42+12*30+0*2+4*49+9*23+4*19+4*44+0*7 = 1015

	P1 P2		Р3	PF
S1	18	13	eps 4	45 0
S2	21 19	19	2 20	0
S3	32 12	17	15	0
S4	17	49	11	0
S5	9	4	42	0
S6	16	20	4	51 0

Tabela iznad predstavlja raspodjelu transporta tj. početno rješenje po metodi jediničnih troškova. Sada ćemo primjeniti MODI metodu da dobijemo optimalno rješenje.

	P1	P2	Р3	PF	u_i
S1	18	13	eps 4	45 0	-16
S2	21 19	19 19	2 20	0	0
S3	32 12	17	15	0	-7
S4	17	49	11	0	-15
S5	9	4	42 3	0	-17
S6	16	20	4	51 0	-16
v_j	19	19	20	16	

Izračunajmo za sva neoznačena polja $d_{i,j}$ (radi jednostavnosti $d_{i,j}$ je dij i naravno v4 je jednako vf koloni tj. fiktivna prodavnica):

$$\begin{array}{l} d11 = c11 - (u1 + v1) = 18 - (-16 + 19) = 15 \\ d12 = c12 - (u1 + v2) = 13 - (-16 + 19) = 10 \end{array}$$

$$d24=c24-(u2+v4)=0-(0+16)=-16$$

$$d32=c32-(u3+v2)=17-(-7+19)=5$$

$$d33=c33-(u3+v3)=15-(-7+20)=2$$

 $d34=c34-(u3+v4)=0-(-7+16)=-9$

```
\begin{array}{l} \text{d}41 = \text{c}41 - (\text{u}4 + \text{v}1) = 17 - (-15 + 19) = 13 \\ \text{d}43 = \text{c}43 - (\text{u}4 + \text{v}3) = 11 - (-15 + 20) = 6 \\ \text{d}44 = \text{c}44 - (\text{u}4 + \text{v}4) = 0 - (-15 + 16) = -1 \\ \\ \text{d}51 = \text{c}51 - (\text{u}5 + \text{v}1) = 9 - (-17 + 19) = 7 \\ \text{d}52 = \text{c}52 - (\text{u}5 + \text{v}2) = 4 - (-17 + 19) = 2 \\ \text{d}54 = \text{c}54 - (\text{u}5 + \text{v}4) = 0 - (-17 + 16) = 1 \\ \\ \text{d}61 = \text{c}61 - (\text{u}6 + \text{v}1) = 16 - (-16 + 19) = 13 \\ \text{d}62 = \text{c}62 - (\text{u}6 + \text{v}2) = 20 - (-16 + 19) = 17 \\ \text{d}63 = \text{c}63 - (\text{u}6 + \text{v}3) = 4 - (-16 + 20) = 0 \\ \end{array}
```

Vidimo da je najnegativnije d24 = -16 pa ćemo za to polje formirati ciklus:

S2PF -> S2P3 -> S1P3 -> S1PF. Naše t je jednako min $\{2, 45\} = 2$.

Novo nastala tabela:

	P1	P2	Р3	PF	u_i
S1	18	13	2 4	43 0	0
S2	21 19	19 19	20	2 0	0
S3	32 12	17	15	0	-7
S4	17	49	11	0	-15
S5	9	4	42 3	0	-1
S6	16	20	4	51 0	0
v_{j}	19	19	4	0	

Izračunajmo za sva neoznačena polja $d_{i,j}$:

$$\begin{array}{l} \text{d11=c11-} & \text{(u1+v1)} = 18 - (0+19) = -1 \\ \text{d12=c12-} & \text{(u1+v2)} = 13 - (0+19) = -6 \\ \\ \text{d23=c23-} & \text{(u2+v3)} = 20 - (0+4) = 16 \\ \\ \text{d32=c32-} & \text{(u3+v2)} = 17 - (-7+19) = 5 \\ \text{d33=c33-} & \text{(u3+v3)} = 15 - (-7+4) = 18 \\ \text{d34=c34-} & \text{(u3+v4)} = 0 - (-7+0) = 7 \\ \\ \text{d41=c41-} & \text{(u4+v1)} = 17 - (-15+19) = 13 \\ \text{d43=c43-} & \text{(u4+v3)} = 11 - (-15+4) = 22 \\ \text{d44=c44-} & \text{(u4+v4)} = 0 - (-15+0) = 15 \\ \\ \text{d51=c51-} & \text{(u5+v1)} = 9 - (-1+19) = -9 \\ \text{d52=c52-} & \text{(u5+v2)} = 4 - (-1+19) = -14 \\ \end{array}$$

d54=c54-(u5+v4)=0-(-1+0)=1

```
d61=c61-(u6+v1)=16-(0+19)=-3
d62=c62-(u6+v2)=20-(0+19)=1
d63=c63-(u6+v3)=4-(0+4)=0
```

Vidimo da je najnegativnije d52 = -14 pa ćemo za to polje formirati ciklus: $S5P2 \rightarrow S5P3 \rightarrow S1P3 \rightarrow S1PF \rightarrow S2PF \rightarrow S2P2$. Naše t je jednako min {42, 42 19} = 19.

Novo nastala tabela:

	P1	P2	Р3	PF	u_i
S1	18	13	21 4	24 0	0
S2	21 19	19	20	21 0	0
S3	32 12	17	15	0	-7
S4	17	49	11	0	-1
S5	9	19 4	23	0	-1
S6	16	20	4	51 0	0
v_j	19	5	4	0	

Izračunajmo za sva neoznačena polja $d_{i,i}$:

$$d11=c11-(u1+v1)=18-(0+19)=-1$$

 $d12=c12-(u1+v2)=13-(0+5)=8$

$$d22=c22-(u2+v2)=19-(0+5)=14$$

$$d23=c23-(u2+v3)=20-(0+4)=16$$

$$d32=c32-(u3+v2)=17-(-7+5)=19$$

$$d33=c33-(u3+v3)=15-(-7+4)=18$$

$$d34=c34-(u3+v4)=0-(-7+0)=7$$

$$d41=c41-(u4+v1)=17-(-1+19)=-1$$

$$d43=c43-(u4+v3)=11-(-1+4)=8$$

$$d44 = c44 - (u4 + v4) = 0 - (-1+0) = 1$$

$$d51=c51-(u5+v1)=9-(-1+19)=-9$$

$$d54 = c54 - (u5 + v4) = 0 - (-1+0) = 1$$

$$d61=c61-(u6+v1)=16-(0+19)=-3$$

$$d62=c62-(u6+v2)=20-(0+5)=15$$

$$d63=c63-(u6+v3)=4-(0+4)=0$$

Vidimo da je najnegativnije d51 = -9 pa ćemo za to polje formirati ciklus:

S5P1 -> S5P3 -> S1P3 -> S1PF -> S2PF -> S2P1. Naše t je jednako min $\{23,24,21\} = 21$.

Novo nastala tabela:

	P1	P2	Р3	PF	u_i
S1	18	13	42 4	3 0	1
S2	19	19	20	42 0	1
S3	32 12	17	15	0	3
S4	17	49	11	0	0
S5	21 9	19 4	2 3	0	0
S6	16	20	4	51 0	1
v_j	9	4	3	-1	

Izračunajmo za sva neoznačena polja $d_{i,j}$:

$$d11=c11-(u1+v1)=18-(1+9)=8$$

$$d12=c12-(u1+v2)=13-(1+4)=8$$

$$d21=c21-(u2+v1)=19-(1+9)=9$$

$$d22=c22-(u2+v2)=19-(1+4)=14$$

$$d23=c23-(u2+v3)=20-(1+3)=16$$

$$d32=c32-(u3+v2)=17-(3+4)=10$$

$$d33=c33-(u3+v3)=15-(3+3)=9$$

$$d34=c34-(u3+v4)=0-(3-1)=-2$$

$$d41=c41-(u4+v1)=17-(0+9)=8$$

$$d43=c43-(u4+v3)=11-(0+3)=8$$

$$d44=c44-(u4+v4)=0-(0-1)=1$$

$$d54=c54-(u5+v4)=0-(0-1)=1$$

$$d61=c61-(u6+v1)=16-(1+9)=6$$

$$d62=c62-(u6+v2)=20-(1+4)=15$$

$$d63=c63-(u6+v3)=4-(1+3)=0$$

Vidimo da je najnegativnije d34 = -2 pa ćemo za to polje formirati ciklus:

S3PF -> S3P1 -> S5P1 -> S5P3 -> S1P3 -> S1PF. Naše t je jednako min
$$\{32,2,3\} = 2$$
.

Novo nastala tabela:

	P1	P2	Р3	PF	u_i
S1	18	13	44 4	1 0	0
S2	19	19	20	42 0	0
S3	30 12	17	15	2 0	0
S4	17	49	11	0	-3
S5	23 9	19 4	3	0	-3
S6	16	20	4	51 0	0
v_j	12	7	4	0	

Izračunajmo za sva neoznačena polja $d_{i,j}$:

$$d11=c11-(u1+v1)=18-(0+12)=6$$

$$d12=c12-(u1+v2)=13-(0+7)=6$$

$$d21=c21-(u2+v1)=19-(0+12)=7$$

$$d22=c22-(u2+v2)=19-(0+7)=12$$

$$d23=c23-(u2+v3)=20-(0+4)=16$$

$$d32=c32-(u3+v2)=17-(0+7)=10$$

 $d33=c33-(u3+v3)=15-(0+4)=11$

$$d41 = c41 - (u4 + v1) = 17 - (-3 + 12) = 8$$

$$d43 = c43 - (u4 + v3) = 11 - (-3 + 4) = 10$$

$$d44=c44-(u4+v4)=0-(-3+0)=3$$

$$d53=c53-(u5+v3)=3-(-3+4)=2$$

 $d54=c54-(u5+v4)=0-(-3+0)=3$

$$d61=c61-(u6+v1)=16-(0+12)=4$$

$$d62=c62-(u6+v2)=20-(0+7)=13$$

 $d63=c63-(u6+v3)=4-(0+4)=0$

Vidimo da su svi dij >= 0 shodno tome imamo optimalno rješenje, koje nije jedinstveno. Finalna tabela raspodjele transporna glasi:

	P1	P2	Р3	PF
S1	18	13	44 4	1 0
S2	19	19	20	42 0
S3	30 12	17	15	2 0
S4	17	49	11	0
S5	23	19 4	3	0
S6	16	20	4	51 0

Optimalan plan transporta je prikazan prethodnom tabelom tj. prodavnica 1 će dobiti zalihe iz skladišta 3 i 5, prodavnica 2 iz skladišta 4 i 5, prodavnica 3 iz skladišta 1. Vidimo da će sve prodavnice biti zadovoljene u punom iznosu kao što je traženo, također vidimo da će u skladištima 1,2,3,6 ostati respekivno 1,42,2,51 količina zaliha, što je prikazano fiktivnom prodavnicom. Finalno izračunajmo minimalnu cijenu:

Z = 4*44+0*1+0*42+12*30+0*2+4*49+9*23+4*19+0*51=1015. Vidimo da se rješenje poklapa sa rješenjem koje je dobijeno pomoću stepping stone metode.

Zadatak 2 [1.8 poena]

Neka fabrika je nabavila 5 različitih mašina M₁, M₂, M₃, M₄ i M₅ za proizvodnju pojedinih dijelova jednog proizvoda. Pošto jednom mašinom može da jednovremeno rukuje samo jedan radnik, potrebno je zaposliti 5 radnika. Od prijavljenih 5 radnika R₁, R₂, R₃, R₄ i R₅, svi su zadovoljili opće uvjete konkursa, pa je izvršena provjera njihove stručne sposobnosti. Za proizvodnju svakog od dijelova proizvoda na pojedinačnim mašinama, radnicima je bilo potrebno vrijeme prikazano u sljedećoj tabeli (vrijeme je izraženo u minutama):

	M1	M2	МЗ	M4	М5
R1	21	17	12	14	5
R2	14	33	7	7	27
R3	21	35	5	30	9
R4	28	30	5	21	31
R5	15	21	30	13	17

Vaš zadatak je da primjenom mađarskog algoritma raspoređivanja pronađete optimalni raspored radnika na mašine koji će garantirati minimalni ukupni utrošak vremena na mašinama potreban za proizvodnju jednog proizvoda. Rješenje nađite na više različitih načina:

- a. Redukcijom matrice C prvo po redovima, a zatim po kolonama prije ulaska u glavni ciklus algoritma; [0.3 poena]
- b. Redukcijom matrice C prvo po kolonama, a zatim po redovima prije ulaska u glavni ciklus algoritma; [0.3 poena]
- c. Redukcijom matrice C samo po redovima (bez redukcije po kolonama) prije ulaska u glavni ciklus algoritma (ovo će kasnije tražiti više iteracija nego što je uobičajeno); [0.4 poena]
- d. Varijantom mađarskog algoritma prilagođenom za izvedbu za računaru. Ukoliko pri rješavanju na način a) niste dobili optimalno rješenje odmah nakon redukcije, obavite ovaj dio zadatka tako što ćete prvo odrediti dualne promjenljive u_i a zatim v_j (pandan redukcije prvo po redovima). U suprotnom, ukoliko pri rješavanju na način b) niste dobili optimalno rješenje odmah nakon redukcije, obavite ovaj dio zadatka tako što ćete prvo odrediti dualne promjenljive v_j a zatim u_i (pandan redukcije prvo po kolonama). Ukoliko ste bili te sreće da ste dobili problem kod kojeg i pod a) i pod b) dobijate optimalno rješenje odmah nakon obavljenih redukcija, obavite ovaj dio zadatka tako što ćete prvo odrediti dualne promjenjive u_i , a zatim uzeti da su sve dualne promjenljive v_j jednake nuli (pandan redukcije samo po redovima). [0.8 poena]

Potrebno je da predate izvještaj koji sadrži postavku problema i kompletan tok rješavanja problema (ne samo krajnje rješenje) u .pdf formatu.

	M1	M2	МЗ	M4	M5
R1	21	17	12	14	5
R2	14	33	7	7	27
R3	21	35	5	30	9
R4	28	30	5	21	31
R5	15	21	30	13	17

Nakon reduciranja prvo po redovima zatim kolonama i razvrstavanja nula na nezavisne (plave) i zavisne (crvene) dobijamo /označavanje vršimo */:

	M1	M2	МЗ	M4	M5	
R1	14	4	7	9	0	
R2	5	18	0	0	20	*
R3	14	22	0	25	4	*
R4	21	17	0	16	26	*
R5	0	0	17	0	4	*
	*	*	*	*		

Vidimo da je naše delta jednako 4, smanjivanjem dobijamo:

	M1	M2	МЗ	M4	M5	
R1	18	8	11	13	0	*
R2	5	18	0	0	16	
R3	14	22	0	25	0	*
R4	21	17	0	16	22	*
R5	0	0	17	0	0	
			*		*	

Vidimo da je naše delta jednako 8, smanjivanjem dobijamo:

	M1	M2	МЗ	M4	M5
R1	10	0	11	5	0
R2	5	18	8	0	24
R3	6	14	0	17	0
R4	13	9	0	8	22
R5	0	0	25	0	8

Vidimo da smo dobili 5 nezavisnih nula, shodno tome postupak je završen. Rješenje uparivanja zajedno sa cijenom svakog

radnika po mašini dato je sljedećom tabelom, pri čemu Opt znači optimalna cijena (najmanja) za trošak:

R	М	С
R1	M2	17
R2	M4	7
R3	M5	9
R4	M3	5
R5	M1	15
	Opt	53

b)

	M1	M2	МЗ	M4	M5
R1	21	17	12	14	5
R2	14	33	7	7	27
R3	21	35	5	30	9
R4	28	30	5	21	31
R5	15	21	30	13	17

Nakon reduciranja prvo po kolonama zatim redovima i razvrstavanja nula na nezavisne (plave) i zavisne (crvene) dobijamo /označavanje vršimo */:

	M1	M2	МЗ	M4	M5	
R1	7	0	7	7	0	
R2	0	16	2	0	22	
R3	7	18	0	23	4	*
R4	14	13	0	14	26	*
R5	0	3	24	4	11	
			*			

Vidimo da je naše delta jednako 4, smanjivanjem dobijamo:

	M1	M2	МЗ	M4	M5
R1	7	0	11	7	0
R2	0	16	6	0	22
R3	3	14	0	19	0
R4	10	9	0	10	22
R5	0	3	28	4	11

Vidimo da smo dobili 5 nezavisnih nula, shodno tome postupak je završen. Rješenje uparivanja zajedno sa cijenom svakog radnika po mašini dato je sljedećom tabelom, pri čemu Opt znači optimalna cijena (najmanja) za trošak:

R	М	С
R1	M2	17
R2	M4	7
R3	M5	9
R4	M3	5
R5	M1	15
	Opt	53

Vidimo da je isto rješenje kao pod a, shodno time zaključujemo da je bilo potrebna jedna iteracija manje ukoliko smo prvo išli redukcijom po kolonama, a onda po redovima (u ovom slučaju rađenja zadatka).

C)

	M1	M2	М3	M4	M5
R1	21	17	12	14	5
R2	14	33	7	7	27
R3	21	35	5	30	9
R4	28	30	5	21	31
R5	15	21	30	13	17

Nakon reduciranja po redovima i razvrstavanje nula na nezavisne (plave) i zavisne (crvene) dobijamo /označavanje vršimo */:

	M1	M2	М3	M4	M5	
R1	16	12	7	9	0	*
R2	7	26	0	0	20	*
R3	16	30	0	25	4	*
R4	23	25	0	16	26	*
R5	2	8	17	0	4	
			*	*	*	

Vidimo da je naše delta jednako 7, smanjivanjem dobijamo:

	M1	M2	М3	M4	M5	
R1	9	5	7	9	0	
R2	0	19	0	0	20	
R3	9	23	0	25	4	*
R4	16	18	0	16	26	*
R5	2	8	24	7	11	*
			*	*		

Vidimo da je naše delta jednako 2, smanjivanjem dobijamo:

	M1	M2	МЗ	M4	M5	
R1	9	5	9	11	0	
R2	0	19	2	2	20	*
R3	7	21	0	25	2	*
R4	14	16	0	16	24	*
R5	0	6	24	7	9	*
	*		*			

Vidimo da je naše delta jednako 2, smanjivanjem dobijamo:

	M1	M2	МЗ	M4	M5	
R1	11	5	11	11	0	*
R2	0	17	2	0	18	
R3	7	19	0	23	0	*
R4	14	14	0	14	22	*
R5	0	4	24	5	7	
			*		*	

Vidimo da je naše delta jednako 5, smanjivanjem dobijamo:

	M1	M2	МЗ	M4	М5
R1	6	0	11	6	0
R2	0	17	2	0	18
R3	2	14	0	18	0
R4	9	9	0	9	22
R5	0	4	24	5	7

Vidimo da smo dobili 5 nezavisnih nula, shodno tome postupak je završen. Rješenje uparivanja zajedno sa cijenom svakog

radnika po mašini dato je sljedećom tabelom, pri čemu Opt znači optimalna cijena (najmanja) za trošak:

R	M	С
R1	M2	17
R2	M4	7
R3	M5	9
R4	M3	5
R5	M1	15
	Opt	53

Vidimo da je isto rješenje kao pod a odnosno b, shodno time zaključujemo da je bilo potrebno više iteracije ukoliko samo reduciramo po redovima, u odnosu na a) i b).

d)

	M1	M2	М3	M4	M5
R1	21	17	12	14	5
R2	14	33	7	7	27
R3	21	35	5	30	9
R4	28	30	5	21	31
R5	15	21	30	13	17

Prvo ćemo odrediti početne vrijednosti dualnih promjenljivih i to slučaj "Ukoliko pri rješavanju na način a) niste dobili optimalno rješenje odmah nakon redukcije, obavite ovaj dio zadatka tako što ćete prvo odrediti dualne promjenljive ui a zatim vj (pandan redukcije prvo po redovima)." jer pod a) nakon redukcije nije dobijeno optimalno rješenje. Shodno tome imamo sljedeće:

$$u_1 = \min \{21, 17, 12, 14, 5\} = 5$$
 $u_2 = \min \{14, 33, 7, 7, 27\} = 7$
 $u_3 = \min \{21, 35, 5, 30, 9\} = 5$
 $u_4 = \min \{28, 30, 5, 21, 31\} = 5$
 $u_5 = \min \{15, 21, 30, 13, 17\} = 13$

$$v_1 = \min \{21-5, 14-7, 21-5, 28-5, 15-13\} = 2$$

$$v_2 = \min \{17-5, 33-7, 35-5, 30-5, 21-13\} = 8$$

$$v_3 = \min \{12-5, 7-7, 5-5, 5-5, 30-13\} = 0$$

$$v_4 = \min \{14-5, 7-7, 30-5, 21-5, 13-13\} = 0$$

$$v_5 = \min \{5-5, 27-7, 9-5, 31-5, 17-13\} = 0$$

Dobijamo tablicu izravnjajućih dualnih promjenljivih (ne treba se računati u kodu, radi pregleda i jednostavnosti):

	M1	M2	МЗ	M4	M5
R1	14	4	7	9	0
R2	5	18	0	0	20
R3	14	22	0	25	4
R4	21	17	0	16	26
R5	0	0	17	0	4

Sada treba razvrsiti nule na nezavisne i zavisne (ujedno ćemo i odraditi označavanje u ovom koraku):

	M1	M2	МЗ	M4	M5	
R1	14	4	7	9	0	
R2	5	18	0	0	20	
R3	14	22	0	25	4	*
R4	21	17	0	16	26	*
R5	0	0	17	0	4	
			*			

U ovom dijelu uvećavamo v_3 , a smanjujemo u_3 , u_4 za 4. Shodno tome ponovnim izračunavanjem d-ova dobijamo sljedeću tabelu sa već odrađenim novim označavanjem:

	M1	M2	МЗ	M4	M5	
R1	14	4	11	9	0	*
R2	5	18	4	0	20	
R3	10	18	0	21	0	*
R4	17	13	0	12	22	*
R5	0	0	21	0	4	
			*		*	

Naša nova kolona ima nezavisnu nulu (R1 red) i ovdje se završava novonastalo označavanje.

Sada uvećavamo v_3 , v_5 a smanjujemo u_1 , u_3 , u_4 za 4. Vidimo da će kao rezultat toga i novonastalog označavanja, dobiti nova kolona M2 koja ne sadrži nezavisnu nulu:

	M1	M2	МЗ	M4	M5	
R1	10	0	11	5	0	*
R2	5	18	8	0	24	
R3	6	14	0	17	0	*
R4	13	9	0	8	22	*
R5	0	0	25	0	8	
		*	*		*	

Shodno tome mora se naći povećavajući put, taj povećavajući put je označen zelenom bojom u prošloj tabeli, kada primjenimo zamjenu nezavisnih i zavisnih nula dobijamo sljedeću tabelu:

	M1	M2	МЗ	M4	M5
R1	10	0	11	5	0
R2	5	18	8	0	24
R3	6	14	0	17	0
R4	13	9	0	8	22
R5	0	0	25	0	8

Vidimo da nemamo više redova bez nezavisnih nula, i da je bila potrebna 1 iteracija (1 povećavajući put) da se pronađe raspodjela. Shodno tome algoritam završava. Vidimo da smo dobili 5 nezavisnih nula. Rješenje uparivanja zajedno sa cijenom svakog radnika po mašini dato je sljedećom tabelom, pri čemu Opt znači optimalna cijena (najmanja) za trošak:

R	М	С
R1	M2	17
R2	M4	7
R3	M5	9
R4	M3	5
R5	M1	15
	Opt	53

Vidimo da je isto rješenje kao pod a (ujedno i pod b i c ukoliko gledamo samo raspodjelu radnika), a i finalna tabela tj. sve vrijednosti u tabelama su jednake, što je i logično.

DOMAĆA ZADAĆA 3

IZVJEŠTAJ PROGRAMSKOG DIJELA OSNOVE OPERACIONIH ISTRAŽIVANJA

Studenti: Mašović Haris, Šoljić Haris

Indeks: 17993, 17811

Odsjek: Računarstvo i Informatika

Datum:	Potpisi:
13.12.2018	

1. Opis implementacije funkcije transport

Slijedi prikaz implementacije funkcija transport za komentarima za prije svakog bitnog dijela implementacije. Ukratko: Prvo je balansiran problem te zatim određeni matrica ograničenja i funkcija cilja. Na kraju je pozivom funkcije linprog određeno rješenje te vraćeno u formu matrice.

```
function [X,V] = transport(A,S,P)
    % u origN i origM sačuvamo početnu veličinu matrice
    % jer će se možda promijeniti u toku balansiranja
    origN = size(A, 1);
    origM = size(A, 2);
    % ovdje se vrši balansiranje problema
    % ako je suma skladišta veća od sume potrošača dodaje se novi potrošač
    if sum(S) > sum(P)
       P = [P sum(S) - sum(P)];
       A = [A zeros(size(A,1), 1)];
    % ako je suma potrošača veća od sume skladišta dodaje se novo skladište
    elseif sum(S) < sum(P)
       S = [S sum(P) - sum(S)];
       A = [A; zeros(1, size(A,2))];
    % n i m su veličine matrica A(služe za manje pisanja)
   n = size(A, 1);
   m = size(A, 2);
    % u sljedećoj liniji "ispravljamo" matricu cijena u jedan vektor, tj.
    % slažemo redove jedan do drugog da bi ga upotrijebili za linprog
    c = reshape(A', [1 n*m]);
    % inicijalizacija matrice ograničenja
    a = zeros(n + m, n * m);
    % inicijalizacija desne strane ograničenja
   b = [S'; P'];
    % dodajemo ograničenja za skladišta(jedinice na mjestima xi,*)
    for i = 1:n
        a(i, ((i-1)*m+1):(i*m)) = ones(m,1);
    end
    % dodajemo ograničenja za potrošače(jedinice na mjestima x*,i)
    for i = 1:m
        z = zeros(1, m);
        z(i) = 1;
        a(n+i, :) = repmat(z, 1, n);
    end
    % poziv funkcije linprog(nema ograničenja tipa <= nego su sva tipa =,</pre>
    % varijable su >= 0, i dodano
    % u opcijama da se izvodi algoritam dual-simplex koji će naći bazno
    % dopustivo rješenje
 [X, V] = linprog(c, [], [], a, b, 0*c, [], optimoptions('linprog', 'Algorithm', 'dual-simplex', 'Display', 'off')); 
    % pošto je rezultat funkcije linprog u formi vektora sljedećom
    % linijom pravimo od tog vektora matricu formata kao i matrica cijena
    X = reshape(X, [m n])';
    % sljedećom linijom se "odsjeca" dodano skladište/potrošač?
    X = X(1:origN, 1:origM);
end
```

2. Testiranje funkcije

Primjer #1:

Primjer: U nekom transportnom problemu sa tri skladišta S₁, S₂ i S₃ i četiri potrošača P₁, P₂, P₃ i P₄, kapaciteti skladišta (zalihe), potrebe potrošača i cijene transporta po količinskoj jedinici robe dati su u sljedećoj tabeli:

	\mathbf{P}_1	P ₂	P_3	P ₄	Zalihe
S_1	8	9	4	6	100
S_2	6	9	5	3	120
S_3	5	6	7	4	140
Potrebe	90	125	80	65	

Odrediti jedno dopustivo rješenje ovog problema koristeći metod sjeverozapadnog ugla.

Rješenje je sljedeće:

	\mathbf{P}_1	P_2	P_3	P_4
S_1	8	20 9	80 4	6
S_2	55 6	9	5	65
S_3	35 5	105	7	4

Ovom rješenju odgovaraju troškovi transporta

$$Z = 9 \cdot 20 + 4 \cdot 80 + 6 \cdot 55 + 3 \cdot 65 + 5 \cdot 35 + 6 \cdot 105 = 1830$$

Pozovimo našu funkciju:

Kao rezultat dobijamo:

X =

1830

Vidimo da je rezultat isti kao u predavanju, te sama raspodjela transporta je ista kad su u pitanju skladišta i potrošači.

Primjer #2:

U sljedećoj tabeli prikazani su osnovni parametri nekog transportnog problema, pri čemu su umjesto troškova transporta prikazane zarade (izražene u novčanim jedinicima po količinskoj jedinici realiziranog transporta) koje se ostvaruju transportom:

	\mathbf{P}_{1}	P ₂	P_3	P ₄	Kapaciteti
S_1	3	5	4	7	40
S_2	2	8	10	10	60
S_3	10	12	6	15	80
S ₄	7	10	8	4	100
Potrebe	80	60	40	20	9

Potrebno je pronaći optimalni plan transporta koji maksimizira zaradu koja se ostvaruje transportom.

Rješenje:

Optimalna zarada iznosi 2040 novčanih jedinica. Iz skladišta S₁ potrebno je transportirati 40 količinskih jedinica u odredište P₅, iz skladišta S₂ 40 količinskih jedinica u odredište P₃ i 20 količinskih jedinica u odredište P₅, iz skladišta S₃ 60 količinskih jedinica u odredište P₁ i 20 količinskih jedinica u odredište P₄, te iz skladišta S₄ 20 količinskih jedinica u odredište P₁, 60 količinskih jedinica u odredište P₂ i 20 količinskih jedinica u odredište P₅. U skladištima S₁, S₂ i S₄ će ostati neisporučeni višak od 40, 20 i 20 količinskih jedinica respektivno.

Pozovimo sada našu funkciju sa ovim početnim vrijednostima:

```
C=[3 5 4 7; 2 8 10 10; 10 12 6 15; 7 10 8 4];
C = C .* -1;
P=[80 60 40 20]; S=[40 60 80 100];
[X,V] = transport (C,S,P);
V = V * -1
Kao rezultat dobijamo:
X =
    0
        0 0
                   0
         0
             40 0
   60 0
             0
                   20
   20 60 0
                  0
```

V =

2040

Vidimo da dobijemo isti rezultat kao u rješenju postavljenog problema i ista raspodjela transporta, naravno samo bez dodatnih fiktivnih vrijednosti.

Primjer #3:

Iz tri rudnika R₁, R₂ i R₃ potrebno je transportirati ugalj do četiri elektrane E₁, E₂, E₃ i E₄. Podaci o količini uglja koju rudnici mogu obezbijediti u tom periodu, potrebe elektrana, kao i udaljenosti u kilometrima između rudnika i elektrana dati su u sljedećoj tabeli.

3	E_1	E_2	E_3	E_4	Ponuda
R_1	20	60	40	30	160
R_2	70	80	30	90	190
R_3	50	20	70	40	300
Potrebe	140	160	170	180	

Troškovi transporta proporcionalni su pređenoj kilometraži i količini uglja koja se transportira, i iznose 2 KM po kilometru za svaku tonu transportiranog uglja. Potrebno je pronaći optimalan plan transporta tako da se ostvari minimalna cijena transporta.

Rješenje:

Optimalni troškovi transporta iznose 37800 KM. Potrebno je iz rudnika R_1 transportirati 120 tona u elektranu E_1 i 40 tona u elektranu E_4 , iz rudnika R_2 20 tona u elektranu E_1 i 170 tona u elektranu E_3 , te iz rudnika R_3 160 tona u elektranu E_2 i 140 tona u elektranu E_4 .

Pozovimo sada našu funkciju sa ovim početnim vrijednostima:

V =

Vidimo da naše finalno rješenje moramo još pomnožiti sa 2, shodno time dobijamo isti rezultat kao što je opisano, ujedno i istu raspodjelu.

Primjer #4:

U sljedećoj tabeli prikazani su osnovni parametri nekog transportnog problema, pri čemu su kapaciteti i potrebe prikazani u tonama, a cijene transporta u KM/toni.

	P ₁	P ₂	P ₃	P ₄	P ₅	Kapaciteti
S_1	3	10	4	2	3	200
S_2	7	5	8	4	10	200
S_3	5	8	15	7	12	150
S ₄	10	12	10	8	4	200
Potrebe	100	200	400	200	100	

Potrebno je pronaći optimalni plan transporta koji minimizira troškove.

Rješenje:

Optimalni troškovi transporta iznose 3750 KM. Postoji beskonačno mnogo optimalnih planova transporta, pri čemu su četiri bazna (od čega su dva degenerirana). Zajedničko za sve planove transporta je da iz skladišta S₃ treba transportirati 100 kg u odredište P₁, iz skladišta S₄ 100 kg u odredište P₅, dok potrebe odredišta P₃ ostaju nezadovoljene u iznosu od 250 kg. Što se tiče ostalih transporta, ovisno od postupka rješavanja, može se dobiti neki od sljedećih baznih optimalnih planova transporta, prema kojima treba izvršiti još i sljedeće transporte:

```
Iz S<sub>1</sub> 50 kg u P<sub>3</sub> i 150 kg u P<sub>4</sub>, iz S<sub>2</sub> 200 kg u P<sub>2</sub>, iz S<sub>3</sub> 50 kg u P<sub>4</sub>, te iz S<sub>4</sub> 100 kg u P<sub>3</sub>;
Iz S<sub>1</sub> 150 kg u P<sub>3</sub> i 50 kg u P<sub>4</sub>, iz S<sub>2</sub> 200 kg u P<sub>2</sub>, iz S<sub>3</sub> 50 kg u P<sub>4</sub>, te iz S<sub>4</sub> 100 kg u P<sub>4</sub>;
Iz S<sub>1</sub> 50 kg u P<sub>3</sub> i 150 kg u P<sub>4</sub>, iz S<sub>2</sub> 150 kg u P<sub>2</sub> i 50 kg u P<sub>4</sub>, iz S<sub>3</sub> 50 kg u P<sub>2</sub>, te iz S<sub>4</sub> 100 kg u P<sub>3</sub>;
Iz S<sub>1</sub> 150 kg u P<sub>3</sub> i 50 kg u P<sub>4</sub>, iz S<sub>2</sub> 150 kg u P<sub>2</sub> i 50 kg u P<sub>4</sub>, iz S<sub>3</sub> 50 kg u P<sub>2</sub>, te iz S<sub>4</sub> 100 kg u P<sub>4</sub>.
```

Naravno, bilo koja konveksna linearna kombinacija nekih od ovih baznih planova transporta je također optimalni plan transporta.

Pozovimo sada našu funkciju sa ovim početnim vrijednostima:

```
C=[3 10 4 2 3; 7 5 8 4 10; 5 8 15 7 12; 10 12 10 8 4];
P=[100 200 400 200 100]; S=[200 200 150 200];
[X,V]=transport(C,S,P)
```

Kao rezultat dobijamo:

0	50	150	0	0
0	50	0	150	0
0	0	0	50	100
100	100	0	0	0

V =

3750

Vidimo da se rješenje podudara sa postavljenim rješenjem, naravno prikaz bez fiktivnih vrijednosti.