

Diabetes Progression Prediction Service

ML service for predicting short-term diabetes progression risk to help triage nurses prioritize patient follow-ups.

Show Image

Overview

Context: A hospital runs a virtual diabetes clinic where nurses review hundreds of patient check-ins weekly to decide who needs follow-up calls. Manual reviews are time-consuming.

Solution: This ML service predicts disease progression and returns a continuous risk score, enabling nurses to prioritize high-risk patients first.

Dataset: Uses scikit-learn's diabetes dataset as a stand-in for de-identified EHR features (age, BMI, blood pressure, cholesterol, blood sugar, etc.).

Quick Start

Using Docker (Recommended)

```
# Pull pre-built image
docker pull ghcr.io/YOUR_USERNAME/YOUR_REPO/diabetes-predictor:latest

# Run service
docker run -p 8000:8000 ghcr.io/YOUR_USERNAME/YOUR_REPO/diabetes-predictor:latest

# Test prediction
curl -X POST http://localhost:8000/predict/single \
-H "Content-Type: application/json" \
-d '{
    "age": 0.05, "sex": 0.05, "bmi": 0.06, "bp": 0.02,
    "s1": -0.04, "s2": -0.03, "s3": -0.04, "s4": 0.0,
    "s5": 0.02, "s6": -0.03
}'
```

Local Development

```
bash

# Install dependencies

pip install -r requirements.txt

# Train model

python train.py --version v0.1 --model-type linear

# Run API

uvicorn app:app --reload --port 8000

# Open API docs

open http://localhost:8000/docs
```

API Endpoints

Health Check

bash
GET /health

Response:

```
json
{
    "status": "healthy",
    "model": "LinearRegression",
    "scaler": "StandardScaler"
}
```

Single Patient Prediction

bash

POST /predict/single

Request Body:

json

```
{
    "age": 0.05,
    "sex": 0.05,
    "bmi": 0.06,
    "bp": 0.02,
    "s1": -0.04,
    "s2": -0.03,
    "s3": -0.04,
    "s4": -0.00,
    "s5": 0.02,
    "s6": -0.03
}
```

Response:

```
json
{
    "patient_id": 0,
    "progression_score": 152.5,
    "risk_level": "HIGH",
    "high_risk": true
}
```

Batch Prediction (Triage Dashboard)

```
bash
POST /predict
```

Request Body:

```
json
```

```
{
    "patients": [
    {
        "age": 0.05, "sex": 0.05, "bmi": 0.06, "bp": 0.02,
        "s1": -0.04, "s2": -0.03, "s3": -0.04, "s4": 0.0,
        "s5": 0.02, "s6": -0.03
    },
    {
        "age": -0.01, "sex": -0.04, "bmi": -0.03, "bp": 0.0,
        "s1": 0.01, "s2": 0.02, "s3": 0.03, "s4": 0.02,
        "s5": 0.0, "s6": 0.01
    }
}
```

Response: (sorted by risk, descending)

Architecture

```
Triage Nurse |
Dashboard
```


CI/CD Pipeline

GitHub Actions automatically:

- 1. Trains model on every push to main
- 2. **Runs unit tests**
- 3. Builds Docker image
- 4. **V** Pushes to GitHub Container Registry
- 5. Runs smoke tests
- 6. Reports metrics in Actions summary

Manual Model Training:

```
# Trigger workflow with custom parameters
gh workflow run train-and-deploy.yml \
-f version=v0.2 \
-f model_type=ridge
```

v0.1 (Baseline - Linear Regression)

Metric	Value
RMSE	~55-60
MAE	~45-50
R ²	~0.45-0.52
▲	· · · · · · · · · · · · · · · · · · ·

Risk Classification (75th percentile threshold):

Metric	Value
Precision	~0.70-0.80
Recall	~0.65-0.75
F1 Score	~0.68-0.77
◀	•

See <u>CHANGELOG.md</u> for detailed metrics and version history.

Training New Models

Baseline (v0.1)

bash

python train.py --version v0.1 --model-type linear

Ridge Regression (v0.2)

bash

python train.py --version v0.2 --model-type ridge --alpha 1.0

Random Forest (v0.2)

bash

python train.py --version v0.2 --model-type random_forest \
--n-estimators 100 --max-depth 10

Training Outputs:

- (models/model_vX.X.pkl) Trained model + scaler
- (models/metrics vX.X.json) Performance metrics

Testing

```
# Install test dependencies
pip install pytest httpx

# Run tests
pytest test_api.py -v

# Test with Docker
docker build -t diabetes-predictor:test .
docker run -d -p 8000:8000 --name test diabetes-predictor:test
curl http://localhost:8000/health
docker stop test && docker rm test
```

Project Structure

```
- .github/
 — workflows/
 train-and-deploy.yml # CI/CD pipeline
- models/
                      # Trained models (gitignored)
  model v0.1.pkl
  metrics v0.1.json
                     # FastAPI service
app.py
train.py
                     # Training pipeline
- requirements.txt
                         # Python dependencies
- Dockerfile
                       # Container definition
- CHANGELOG.md
                              # Version history & metrics
                           # This file
- README.md
```

Security & Privacy

- No PHI/PII: Demo uses synthetic scikit-learn dataset
- **In Production**: Would require:
 - HIPAA-compliant infrastructure
 - Data encryption at rest and in transit

- Audit logging
- Authentication/authorization
- De-identification of training data

Roadmap

v0.2 (Next)

- Ridge/Random Forest models
- ☐ Feature selection/engineering
- Improved risk calibration
- A/B testing framework

Future

- Model monitoring & drift detection
- Explainability (SHAP values)
- Real-time retraining
- Multi-model ensemble
- Dashboard UI

MIT License - See LICENSE file

Contributing

- 1. Fork the repository
- 2. Create feature branch ((git checkout -b feature/amazing-feature))
- 3. Train and test your model
- 4. Commit changes ((git commit -m 'Add amazing feature'))
- 5. Push to branch (git push origin feature/amazing-feature)
- 6. Open Pull Request (CI will auto-test)

Contact

MLOps Team - your-email@example.com

Project Link: https://github.com/YOUR_USERNAME/YOUR_REPO