REDUCING AGENTS

Prepared By: Mr O P Sir

$LiAlH_4$	$R-X(1^{\circ})$	R-CHO	R-COCl	R-COOH	0	R-COOR'
in Dry Ether	$R-X(2^{\circ})$	RCOR'		$RCOO^-$	R—	
	$R-X(3^{\circ})$				Ř	
	R-COOCOR'	R-CH=CH-CHO	$R-NO_2$	AMIDES	R-CN	$R-N_3$
		Ph-CH=CH-CHO	$Ph-NO_2$			
	o					
	0					
	R-N=C=0	0	0	0-0 R1		
	Alkyl ISOCYANATE	0	NHO	R H		
			A THE COLOR	H		
		LACTIDE O	Ö			
		D. GNO	2,5 – diKeto piperazine	0	D GH GH GHO	A 11 . 1
$NaBH_4$	$R-X(1^{\circ})$	R-CHO	R-COCl		R-CH=CH-CHO	All other
in R - OH	$R-X(2^{\circ})$	RCOR'		R—	Ph-CH=CH-CHO	Fuctional
	$R-X(3^{\circ})$			Ŕ	O O	g <i>roups</i>

nBu ₃ SnH or Ph ₃ SnH	R-X(any) $Ar-X(any)$	H ₂ C Br	R—(CI			
NaBH ₃ CN in slightely acidic medium	$IMINE$ $R - CH = NH$ $R_2C = NH$	R – CHO RCOR'				
DIBAL AT – 78° C DIBAL	RCOOH RCOCI RCOOR	RCOO ⁻	$ \begin{array}{c} O\\ R \longrightarrow \\ N \longrightarrow R\\ R \longrightarrow \\ RCOO \end{array} $	nent		
AT RT	RCOR' ALKANA	RCOCI RCOOR	ACOO I	R—————————————————————————————————————		
Na / NH _{3(liq)} or Na / ROH	ALKANA ALKENE R – O – R	$R - C \equiv C - H$ $R - COOH$	$R - C \equiv C - R$	RCOCl	Ph-CHO	RCOOR Bouveault Blanc reduction

	$R - NO_2$	RCN	H_2C H_3C CH_2 H_2C		OCH ₃	COOH
$BH_3 \bullet THF$	R-COOH	ALKENE ALKYNE Hydroboration	RCHO RCOR	O R————————————————————————————————————	RCN	RCOOR
	RCOCl	RNO ₂	PhNO ₂ dfeler	nent		
$H_2, Ni/Pt/Pd$	RCOCl	RNO_2 $PhNO_2$	ALKENE ALKYNE If Ni Sabatier Senderens reduction	RCHO	RCOR	$Ar - CH_2 - OR$ $Ar - CH_2 - NHR$
	RCN RNO_2 $ArNO_2$		Carboxylic acids Esters A mi des	Carboxylic acids Esters A mi des With H_2 , $Ru - C$ Or Mixed oxide of Ba, $Cu \& Cr$		

H_2 / Pd – $BaSO_4$ Quinoline	$R - C \equiv C - H$	$R - C \equiv C - R$	$R-C \equiv C-R'$	RCOCl Rosenmund Reduction	All other functional groups	
R – MgX In dry ether Grignard Re agent	$ACTIVE SITE LIKE$ $C \equiv CH, NH, OH,$ $SH, RCOCH_2COR,$ $RCOCH_2COOR,$	R-X	RCHO RCOR	RCOCI	R—N—R	RCN
	RCOO ⁻	CO_2 $(Dryice)$	Diethyl carbonate	CH_3 O CH_3 H O CH_3 $Ethyl \ or tho \ formate$	O CH_3 H_3C CH_3 CH_3 $W\Pi H$ $(CH_3)_2CHMgBr$	O Along with Cu ₂ Cl ₂
RLi	RCOO-	H_3C H_3C CH_3 H_3C CH_3 CH_3		CH ₃	S	

$R_2CuLi(Gilman)$ Or R_2Cd	R – X Corey House Synthesis	RCOCl	Carbonyl compounds and All other functional g roups	
BrZnCH ₂ COOR Re formatsky Re action	RCHO RCOR	All other functional groups		

- \rightarrow 1. $H_2 / Pd BaSO_4$; Quinoline
 - 2. $N_2H_4(1.0eq)/H_2O_2 \Rightarrow N_2H_2(DiIMIDE)$
 - 3. $Ni_2B(P-2Catalyst)$
 - $4. Sia_2BH, CH_3COOH$

These four reagents are useful to convert selectively internal alkynes to cis-alkenes .

Raney Ni is selectively used for HYDROGENOLYSIS

Wilkinson's catalyst $(PPh_3)_3RhCl$ is a HOMOGENEOUS Catalyst, gives syn addition, used to convert both

$$C = C \longrightarrow CH - CH \ Or \ C \equiv C \longrightarrow CH_2 - CH_2$$

- \rightarrow HI & Re d P is a power full reducing agent , Converts
 - $R-X\ or\ R-OH\ or\ RCHO\ or\ RCOR\ or\ RCOOH\ (Vigrous)\ or\ RCOCl\ or\ RCOOR\ r\ RCOOCOR\ to\ corresponding\ alkane(s)$
- $ightharpoonup SnCl_2 + HCl$ is milid reducing agent than Sn + HCl

$$R-C \equiv N \xrightarrow{SnCl_2+HCl} R-C \equiv N \xrightarrow{SnCl_2+HCl} RCH = NH \xrightarrow{H_3O^+} RCHO(Stephen aldehyde synthesis)$$

$$R - C \equiv N \xrightarrow{Sn + HCl} RCH_2NH_2$$

- \blacktriangleright Nitro benzene reduced to aniline by means of H_2 , Ni/Pt/Pd or Sn+HCl Or Zn+HCl or Fe+HCl or
 - *NaHS or* $(NH_4)_2$ *S or Poly sulfides* (*Zinin* Re *duction*)

- $\succ C_6H_5 NO_2 \xrightarrow{Z_{n+KOH}} C_6H_5 NH NH C_6H_5$
- $\sim C_6H_5 NO_2 \xrightarrow{LiAlH_4} C_6H_5 N = N C_6H_5$

