

Теория вероятностей и случайных процессов

Лекция 1-2

Пространство элементарных событий. Случайные события и операции над ними. Классическое, геометрическое, статистическое и аксиоматическое определения вероятности. Свойства вероятности

Зайчиковой Надежды Анатольевны к.ф.-м. н., доцента кафедры ПМиФ zajna@yandex.ru
Самара, 2024

Что могло бы быть эпиграфом

- «Кто ничем не рискует, тот ничего не имеет»
- «Нет дела без риска»
- «В жизни нет гарантий, существуют одни вероятности». Том Клэнси
- «Жизнь состоит из вероятностей». Из сериала «Готэм»
- «Вероятное нам всегда кажется невероятным». Эрих Мария Ремарк, из книги «Возлюби ближнего своего»
- «Возможность» ещё не значит «вероятность». Возможно, что завтра солнце взойдёт на западе, но это не значит вероятно. Рик Янси, из книги «Ученик монстролога»
- «Низкая вероятность не означает нулевую». Из «Один на вылет»
- «Оптимизм, вероятно, лучшее оружие, каким располагает человечество. Без него мы бы никогда не решились совершать невозможное, которое вопреки всем вероятностям оказывается возможным». Брайан Герберт, Кевин Дж, из книги «Андерсон. Песчаные черви Дюны»

Что могло бы быть эпиграфом

- Экклезиаст, 9.11 ". . . не проворным достается успешный бег, не храбрым победа, не мудрым хлеб, и не у разумных богатство, и не искусным благорасположение, но время и случай для всех их".
- Т. Гоббс (1588 1679 гг.) "Все случайные явления имеют свои необходимые причины, но называются случайными по отношению к другим событиям, от которых они не зависят".
- Д. Юм (1711 1776 гг.) "Случайность сама по себе не есть нечто реальное, а является лишь отрицанием причины. Случайность существует лишь только в суждении, но не в самих вещах."
- К.А. Гельвеций (1715 1771 гг.) ". . . случай, т.е. бесконечное множество событий, причину и сцепление которых мы не можем указать вследствие незнания их".
- И. Кант (1724 1804 гг.) Случайное в единичном, тем не менее, подчинено правилу в общем.

Основная:

- 1. Коломиец, Э. И. Теория вероятностей и математическая статистика. Конспект лекций [Электронный ресурс] : электрон. учеб. пособие : [по направлению 010400.62]. Самара, 2011. on-line
- 2. Коломиец, Э. И. Сборник задач по теории вероятностей [Электронный ресурс] : [учеб. пособие для вузов по специальности и направлению "Прикладная математика и информатика. Самара.: Изд-во СГАУ, 2006. on-line
- 3. Вентцель, Е.С. Теория случайных процессов и ее инженерные приложения: учеб. пособие для втузов. М.: Высш. шк., 2007. 479 с.
- 4. Храмов, А. Г. Теория случайных процессов. Конспект лекций [Электронный ресурс] : электрон. учеб. пособие. Самара, 2011. on-line

Дополнительная:

- 1. Гмурман, В. Е. Теория вероятностей и математическая статистика [Электронный ресурс] : учеб. пособие для бакалавров : электрон. копия. М.:: Юрайт, 2014. on-line
- 2. Вентцель, Е. С. Задачи и упражнения по теории вероятностей [Текст] : [учеб. пособие для втузов]. М.:: КНОРУС, 2010. 493 с.
- 3. Вентцель, Е. С. Теория вероятностей [Текст] : учеб. для вузов. М.:: Высш. шк., 1999. 575 с.
- 4. Прохоров, С. А. Аппроксимативный анализ случайных процессов [Электронный ресурс]. [Уральск].: СГАУ, 2001. on-line

- 5. Ширяев, А. Н. Вероятность-1: Элементарная теория вероятностей. Математические основания. Предельные теоремы: учебник: в 2 книгах / А. Н. Ширяев. Изд. 4-е, перераб. и доп. Москва: МЦНМО, 2007. 552 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=63256 ISBN 978-5-94057-105-6. Текст: электронный. Режим доступа: http://biblioclub.ru/index.php?page=book_red&id=63256
- 6. Боровков, А. А. Теория вероятностей [Текст] : [учеб. пособие для вузов]. М.:: URSS : Либроком, 2017. 652 с.
- 7. Боровков, А. А. Математическая статистика. Оценка параметров. Проверка гипотез : [учеб. пособие для мат. и физ. спец. вузов]. М.:: Наука, 1984. 472с.
- 8. Сборник задач по теории вероятностей, математической статистике и теории случайных функций : учеб. пособие для вузов. СПб..: Лань, 2008. 445 с.

Дополнительная:

- 9. Севастьянов, Б. А. Курс теории вероятностей и математической статистики [Текст]: [для специальностей "Математика" и "Механика"]. М..: Наука, 1982. 255 с.
- 10. Ширяев, А. Н. Вероятность : [учеб. пособие для вузов]. М..: Наука, Гл. ред. физ.-мат. лит., 1989. 640 с.
- 11. Б.В.Гнеденко. Курс теории вероятностей. Изд. 6-е, перераб. и доп. М.: Наука. Гл. ред. физ.-мат. лит., 1988.
- 14. Ширяев А.Н. Вероятность: в 2-х кн. М.: МЦНМО, 2007.
- 15. Тутубалин В.Н. Теория вероятностей и случайных процессов: Учебн. Пособие. М.: Изд-во МГУ, 1992. 400 с.
- 16. Феллер В. Введение в теорию вероятностей и ее приложения. В 2-х томах. М., 2021. 766 с.
- 17. Гмурман В. Е. Теория вероятностей и математическая статистика : учеб. пособие для вузов. М.: Высш. шк., 2001.
- 18. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике : учеб. пособие. М.: Высш. образование, 2007.

Информационное обеспечение дисциплины

- Электронно-библиотечная система http://lib.ssau.ru/els;
- Открытая электронная библиотека «Киберленинка» http://cyberleninka.ru
- Электронная библиотека РФФИ http://www.rfbr.ru/rffi/ru/
- Архив научных журналов на платформе НЭИКОН https://archive.neicon.ru/xmlui/
- http://www.intuit.ru;
- https://urait.ru

Зарождение науки о случайных событиях

Джироламо Кардано,

Галилео Галилей,

Христиан Гюйгенс

XVI- XVII BB.

«Рецепты теории азартных игр»

Смена парадигмы мышления

До эпохи Реформации (лат. reformatio «исправление;

преобразование; реформирование» — широкое религиозное и общественно-политическое движение в Западной и Центральной Европе XVI - начала XVII века, направленное на реформирование католической церкви)

люди в большинстве своем верили, что любое событие предопределено волей Бога или, если не им, то какой-либо другой сверхъестественной силой.

Математическая теория вероятностей основана на противоположном утверждении, что события могут быть случайными

Подходы к изучению явлений и процессов

? ?

Определение науки

Теория вероятностей — математическая наука, изучающая закономерности случайных явлений

Математическая статистика — раздел математики, изучающий методы сбора, систематизации и обработки результатов наблюдений с целью выявления статистических закономерностей

Теория случайных процессов — раздел ТВ, изучающий закономерности случайных процессов

Якоб Бернулли Абрахам де Муавр Пьер-Симон Лаплас («Закон больших чисел», интегральные теоремы) XVII-XIX вв.

Карл Фридрих Гаусс Симеон Дени Пуассон (законы распределения случайных величин) XVII-XIX вв.

Александр Михайлович Ляпунов

(Центральная предельная теорема)

Андрей Андреевич Марков (цепи Маркова)

XIX - начало XX в.

Андрей Николаевич Колмогоров

(Аксиоматика Колмогорова)

Рональд Фишер (распределение Фишера)

ХХ в.

Пакеты прикладных программ/ языки программирования для обработки статистических данных

- Python, Julia
- Gretl
- R-project
- Mathematica
- Statistica
- SPSS
- SYSTAT

Предмет ТВ

- Предметом изучения теории вероятностей являются количественные закономерности однородных случайных явлений массового характера.
- Объект математические модели случайных явлений
- Цель осуществление прогноза в области случайных явлений, влияние на их ход, их контроль, ограничение сферы действия случайностей.

«Три кита» теории вероятностей

- Случайные события
- Случайные величины
- Случайные процессы

Основные понятия теории вероятностей

События

A, B, C, D, ...

Вероятность событий p(A), p(B), p(C),...

Способы введения понятия «вероятность»

Определение вероятности

Аксиомы вероятностного пространства

Свойства вероятности

Свойства, условия

Определение вероятности

Пространство элементарных событий (ПЭС) Ω

- Испытание (опыт, эксперимент) выполнение определенного комплекса условий, который может быть воспроизведен неограниченное число раз
- Исходы- результаты эксперимента
- События результаты идеализированного опыта

Примеры событий и ПЭС

Описать ПЭС и событие: при игре с двумя костями сумма очков равна 7.

Примеры событий и ПЭС

- Распределение дней рождения. Событие: у двух студентов д/р в один день
- Трехкратное подбрасывание монеты. Событие: выпало не менее двух гербов
- Возраст супругов. События: муж старше жены и муж старше 40.

Случайные события и их виды

• Случайное событие (СС) — событие, которое может произойти или не произойти, при соблюдении данного комплекса условий.

«Мы живем в мире вероятностей, а не достоверностей, поэтому прекрасные восхитительные случаи должны иногда происходить» Аласдер Грей, из книги «Ланарк: Жизнь в четырех книгах»

Обозначения

- эл. соб. из ПЭС
- соб. А из ПЭС
- эл. соб. благоприятно для А
- эл. соб. не благоприятно для А
- невозможное событие из ПЭС

Виды событий

Совместные	Зависимые	Единственно возможные	Равновозможные	Равносильные
Несовместные	Независимые	Не единственно возможные	He равновозможные	He равносильные

Действия над событиями

п/п	Название	Теоретико -множеств. обознач.	Алгебр. обозн.	Определение	Диаграмма Эйлера- Венна
1.	Объединение событий A и B	$A \cup B$	A+B	Событие, которое состоит в наступлении хотя бы одного из событий A или B.	A B
2.	Пересечение событий А и В	$A \cap B$	AB	Событие, состоящее в наступлении обоих событий и A, и B	B B
3.	Разность А и В	A/B	A-B	Событие, состоящее в наступлении с. А, но не В	A B
4.	Включение	$A \subset B$	-	Событие, при котором из наступления с. А следует наступление с. В (if A then B)	B
5.	Дополнение (противополож ное соб.)	\overline{A} , $C_{\Omega}A$	-	Событие, при котором А не произойдет (не А)	ΑΩ

Свойства операций над событиями

1°.
$$A + B = B + A$$
, $AB = BA$ - коммутативность.
2°. $(A + B) + C = A + (B + C)$; $A(BC) = (AB)C$ - ассоциативность.
3°. $(A + B)C = AC + BC$ - дистрибутивность.

$$4^{\circ}$$
. $A + \Omega = \Omega$, $A\Omega = A$.

$$5^{\circ}$$
. $A + \emptyset = A$, $A\emptyset = \emptyset$.

$$6^{\circ}$$
. $A + A = A$, $AA = A$.

$$7^{\circ}$$
. $A + \overline{A} = \Omega$, $A\overline{A} = \emptyset$.

$$8^{\circ}$$
. $\overline{\Omega} = \emptyset$; $\overline{\emptyset} = \Omega$.

$$9^{\circ}$$
. $\overline{A+B} = \overline{AB}$ - свойства двойственности или 10° . $\overline{AB} = \overline{A} + \overline{B}$ законы Де Моргана.

11°.
$$A \subseteq B \Rightarrow A + B = B$$
, $AB = A$.

12°.
$$AB \subseteq A \subseteq A + B$$
.

13°.
$$A - B = A\overline{B}$$
.

Вероятность события

Аксиоматическое определение

Классическая

p(A)=M/N

Статистическая

Геометрическая

$$p(A) = \frac{\text{meg g}}{\text{meg G}}$$

$$p(A)=w(A)=m/n$$

Классическое определение вероятности и полная группа событий

Качественное определение:

- вероятность события численная мера степени объективной возможности наступления события.
- Полную группу событий, ПГС, образуем из единственно возможных, несовместных исходов.

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_k\}$$

Классическая модель

• Если события образуют ПГС, конечных и равновозможных, элементарных, то такую группу называют классической моделью.

Опр.: Вероятность, p(A), события A равна отношению конечного числа исходов классической модели, благоприятствующих ему (M), к общему числу исходов (N), то есть $p(A)=M/N=|A|/|\Omega|$ (1).

Свойства вероятности событий

1°.
$$P(A) \ge 0$$
 для любого события A (так как м>0).

2°.
$$P(\Omega) = 1$$
. $\triangle P(\Omega) = \frac{N}{N} = 1 \blacksquare$

3°. Если события A и B несовместны $(AB = \emptyset)$, то

$$P(A+B) = P(A) + P(B).$$

▲ Пусть событию A благоприятствует m' исходов, а событию B - m'' исходов. Поскольку события A и B являются несовместными (т.е. не имеют общих исходов), то сумме A + B благоприятствует m' + m'' исходов. Поэтому

$$P(A+B) = \frac{m'+m''}{n} = \frac{m'}{n} + \frac{m''}{n} = P(A) + P(B).$$

Свойства вероятности событий

4°.
$$P(\bar{A}) = 1 - P(A)$$
.

▲ Поскольку события A и \overline{A} образуют полную группу событий $(A + \overline{A} = \Omega, \ A\overline{A} = \varnothing)$, то из свойств 2° и 3° $P(A + \overline{A}) = P(A) + P(\overline{A}) = P(\Omega) = 1.$ ■ 5° . $P(\varnothing) = 0$.

▲ Следует из свойств 2° и 4° , поскольку события $\varnothing = \overline{\Omega}$. ■

6°. Если $A \subseteq B$, то $P(A) \le P(B)$.

▲ Представим событие B в виде: $B = \Omega B = (A + \overline{A})B = AB + \overline{A}B = A + \overline{A}B$. Поскольку события A и $\overline{A}B$ являются несовместными, то из свойств 1° и 3° имеем: $P(B) = P(A + \overline{A}B) = P(A) + P(\overline{A}B) \ge P(A)$. ■

 7° . $0 \le P(A) \le 1$.

▲ Следует из свойств 2°, 5° и 6°, так как $\varnothing \subseteq A \subseteq \Omega$, так как 0<M<N.■

Примеры вероятности событий

- Вероятность появления «Орла» или «Решки» при подбрасывании монеты равна ½.
- Вероятность случайно взять короля из шахматного набора 2/32=1/16, а ладью 4/32=1/8.
- Вероятность появления красной карты равна ½, а появления туза в колоде из 36 карт равна 4/36=1/9

Примеры вероятности событий

Вероятность получить 7 очков при играх с двумя костями

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Элементы комбинаторики

- К.- раздел математики, изучающий методы решения комбинаторных задач задач на подсчет числа различных комбинаций
- «Золотое правило комбинаторики»:
-] нужно выполнить к-действий. Причем 1-ое действие n1 способами, 2-ое действие n2 способами, ..., к-ое действие nк способами. Тогда общее кол-во способов выполнения к-действий подряд определяется по формуле: n1*n2*...*nk.

Элементы комбинаторики

- Другой вариант «Золотого правила»: дано n1 элементов: n1=(a1, a2, ..., an1); n2 элементов: n2=(b1, b2, ..., bn2), ..., nk элементов: nk=(c1, c2, ..., cnk). Тогда общее кол-во таких наборов: n1*n2*...*nk.
- Правило сложения в комбинаторике:
-] эл-т A м. выбрать n способами, а эл-т B m способами, то выбрать эл-т A или B можно m+n способами.

Выборка

• Возьмем некоторое множество:

E={e₁, e₂, ..., e_n} Образуем на нем набор или соединение ei₁, ei₂, ..., ei_к наз. *выборкой* объема k.

Основные формулы комбинаторики. Соединения и их количества

Виды	Упорядоченные	Неупорядоченные
	Размещения	Сочетания
Без повторения (без возвращения)	I. $A_n^m = \frac{n!}{(n-m)!}$ (при m=n: перестановки $P_n = n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$)	$C_n^m = \frac{n!}{m!(n-m)!}$
С повторением (с возвращением)	III. $\widetilde{A}_n^m = n^m$	IV. $\widetilde{C}_n^m = C_{n+m-1}^m$

I. Упорядоченные выборки без возвращения

-]|E|=n, m- мощность выборки
- $\Omega = \{(ei_1, ei_2, ..., ei_m), ei_1 \neq ei_2 \neq ... \neq ei_m \},$
- Число размещений $A_n^m = |\Omega| = n^*(n-1)^*(n-2)^*$... $*(n-m+1) = \frac{n!}{(n-m)!}$
- $\mathbf{n} \in \mathbb{N}, 0 \le m \le n$, альтерн. обозн. $(n)_m$
- If m=n A_n^n = P_n =n! кол-во перестановок эл-тов множества объема n
- If m=1 $A_n^1=n-$ общее кол-во выборок из множества по 1 элементу

• Найти количество различных комбинаций из 4 карточек при выкладывании карточек с буквами {A, B, C, D, E, F, G} на стол.

II. Неупорядоченные выборки без возвращения

-]|E|=n, m- мощность выборки
- Ω={(ei1, ei2, ..., eim), ei1 ≠ ei2 ≠ ... ≠ eim}
 },
- Число сочетаний $C_n^m = |\Omega| = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!}$
- $\mathbf{n} \in \mathbb{N}, 0 \le m \le n$, альтернативное обозначение $\binom{n}{m}$

Треугольник Паскаля

• - бесконечная таблица биномиальных коэффициентов, имеющая треугольную

форму

0	n (n) 1
1	$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ 1 1
2	1 2 1
3	1 3 3 1
4	1 4 6 4 1
5	1 5 10 10 5 1
6	1 6 15 20 15 6 1
7	1 7 21 35 35 21 7 1
8	1 8 28 56 70 56 28 8 1

Некоторые важные свойства

- 1) $C_n^0 = 1$
- 2) $C_n^1 = n$
- 3) $C_n^m = C_n^{n-m}$
- 4) $C_{n+1}^k = C_n^k + C_n^{k-1}$
- 5) $\sum_{k=0}^{n} C_{n}^{k} = 2^{n}$ общее число подмножеств множества объема п (включая само множество и пустое)

• В коробке 10 различных конфет. Определить сколькими способами можно поровну раздать конфеты 5 девочкам.

III. Размещения с повторениями Выборки с возвращением

-]|E|=n, m- объем выборки
- $\Omega = \{(ei1, ei2, ..., eim), eik \in E\},$
- $|\Omega| = n^*n^*...^*n = n^m$, $n \in \mathbb{N}$, $m \in \mathbb{N}$

•] есть 5 карточек с русскими буквами {а, б, в, г, м}. Определить вероятность того, что ребенок, случайным образом вытаскивая 4 карточки, выписывая буквы на доске, и возвращая их обратно, получит слово «мама».

IV. Неупорядоченные выборки с возвращением

$$\widetilde{C}_n^m = C_{n+m-1}^m$$

-] |E|=n, m- объем выборки
- $\Omega = \{(ei1, ei2, ..., eim), eik \in E\},$
- $|\Omega| = \tilde{C}_n^m = C_{n+m-1}^m$, $\mathbf{n} \in \mathbb{N}$, $\mathbf{m} \in \mathbb{N}$

Количество неупорядоченных выборок с возвращением

- Док-во.] |E|=n, m- объем выборки, n ≥1, m
 ≥1. Рассмотрим вектор с n+m-1 координатой из 0 и 1, в котором n-1 нулей, и m единиц.
- Нули будем считать разделителями, которые делят вектор на n частей.
- Число единиц в і-й части число элементов еі в сочетании с повторением, которое соответствует этому вектору.

Количество неупорядоченных выборок с возвращением

- Например, для n=3, m=3: (1,1,0,0,1) соответствует выборке из E (a1, a1,a3); (1,0,1,0,1) (a1, a2,a3);
- (1,0,0,1,1) (a1, a3,a3).
- Каждому сочетанию с повторением из n по m соответствует вектор из 0 и 1, и наоборот.
- → Э биекция → кол-во элементов в этих множествах совпадает.

Количество неупорядоченных выборок с возвращением

• Количество таких векторов равно количеству сочетаний из n+m-1 по m, в которых будут стоять единицы, а на остальных местах нули. Следовательно, $\tilde{C}_n^m = C_{n+m-1}^m$,

Что и требовалось доказать.

• В журнале список из 15 студентов. Найти количество способов случайным образом выбрать 2-х студентов путем попадания в журнал.

Геометрическое определение вероятности

-] $\Omega \in \mathbb{R}^n$, на Ω задана мера: Ω измеримо по Лебегу, $\mu(\Omega) < \infty$, $\mu(\Omega) \neq 0$. $(\Omega, \mathcal{F}, \mathbb{P})$
- •
 £-σ-алгебра,
 £-{A ⊂ Ω, A − измеримо по Лебегу}. Т.е. выполняется:
- исходы эксперимента можно изобразить точками некоторой области $\Omega \in \mathbb{R}^n$, $\mu(\Omega)$ < ∞;
- попадание точки в любые области А⊂ Ω, имеющие одинаковую конечную меру µ, равновозможно и не зависит от формы и расположения А внутри Ω.
 Точка равномерно распределена в области Ω или бросается в область Ω наудачу.

Геометрические вероятности

•] в область, соответствующую достоверному событию Ω , наугад бросается точка ω . Тогда определим вероятность случайного события $A=\{\omega\in A\}$, состоящего в том, что точка попадет в область A:

•
$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$
 (2)

• Вероятность, определенная по формуле (2) называется геометрической вероятностью

Геометрические вероятности

при n=1 под мерой $\mu(\cdot)$ понимается длина $l(\cdot)$ подмножества на числовой прямой ℝ и

$$P(A) = \frac{l(A)}{l(\Omega)};$$

при n=2 под мерой $\mu(\cdot)$ понимается площадь $S(\cdot)$ подмножества на

плоскости \mathbb{R}^2 и

$$P(A) = \frac{S(A)}{S(\Omega)};$$

при n=3 под мерой $\mu(\cdot)$ понимается объем $V(\cdot)$ подмножества в

пространстве \mathbb{R}^3 и

$$P(A) = \frac{V(A)}{V(\Omega)}$$
.

• Юноша и девушка условились встретиться в определенном месте, так, что каждый является туда в любой момент времени между 11 и 12 часами и ждет в течение 30 минут. Если один из них еще не пришел или уже успел покинуть установленное место, встреча не состоится. Найти вероятность того, что встреча состоится.

• Решение. Обозначим моменты прихода в определенное место лиц А и В соответственно через х и у. Пусть в прямоугольной системе координат Оху начало отсчета – 11 часов, а единица масштаба — 1 час. По условию $0 \le x \le 1$, $0 \le y \le 1$. Этим неравенствам удовлетворяют координаты любой точки квадрата OKLM, со стороной равной 1.

- Событие A встреча произойдет, если разность между x и у: $|x-y| \le 0.5$, решение которого есть полоса $x 0.5 \le y \le x + 0.5$.
- Тогда по формуле (2):

• $P(A) = \frac{\mu(A)}{\mu(\Omega)} = 1 - \frac{1 - 2 * (\frac{1}{2}) * 0.5^2}{1} = 0.75$

Статистическое определение вероятности

- Пусть при осуществлении комплекса условий C праз событие A произошло n_A раз $0 \le n_A \le n$.
- Тогда отношение $\frac{n_A}{n}$ называется частотой события A (или относительной частотой события A).

Статистические вероятности

- При небольшом n частота события A носит случайный характер и может заметно отличаться в разных группах опытов.
- Если же случайное событие А обладает свойством статистической устойчивости, то при увеличении числа опытов относительная частота события все более теряет свой случайный характер, приближаясь к некоторой постоянной величине:

$$\lim_{n\to\infty} \frac{n_A}{n} = \widehat{P}(A) = const \quad (3)$$

Определение статистической вероятности

Величина $\hat{P}(A)$ называется статистической вероятностью события А при выполнении условия (3):

$$\lim_{n\to\infty} \frac{n_A}{n} = \widehat{P}(A) = const \quad (3)$$

Сходимость частоты к $\hat{P}(A)$ отличается от сходимости числовых последовательностей к пределу, которая рассматривается в математическом анализе. Здесь учитывается случайность $\hat{P}(A)$ (сходимость по вероятности).

Вычисление статистических вероятностей основано лишь на экспериментальных наблюдениях и свойстве статистической устойчивости случайных событий, которое должно быть экспериментально проверено. События должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

• Выпадение герба при бросании монеты $\widehat{P}(A)$ =0,5

	число бросаний	частота выпадений герба
Ж. Бюффон (18 век)	4040	0.507
К. Пиреон	12000	0.5016
(конец 19 века)	24000	0.5005
Романовский (20 век)	80640	0.4923

