DATA ANALYSIS AND VISUALIZATION

INSTRUCTOR: UMME AMMARAH

IMAGE PROCESSING

INTRODUCTION

WHAT IS IMAGE?

- It is defined as a two-dimensional function, F(x,y),
 - where x and y are spatial coordinates.
 - the amplitude of **F** at any pair of coordinates (x,y) is called the **intensity** of that image at that point.
- When x,y, and amplitude values of F are finite, we call it a digital image.

IMAGE SOURCES

 The principal energy source for images in use today is the electromagnetic energy spectrum

Synthetic images, used for modeling and visualization, are generated by computer

GAMMA RAYS IMAGING

- Bone Scan
- Pet Scan

X-RAY IMAGING

- Chest X Ray
- Head CT Scan

ULTRAVIOLET IMAGING

Fluorescence microscopy

SATELLITE IMAGES

Captured using different waves

IMAGES OF VISIBLE SPECTRUM

IMAGING IN THE RADIO BAND

MRI Scans (Knee, Spine)

SPACE IMAGES

Same star is captures using different waves.

ULTRASOUND IMAGING

Thyroid and muscle layer

IMAGE GENERATION BY COMPUTER

- Patterns
- 3D modeling

PIXEL

A digital image is composed of a finite number of elements, each of which has a particular location and value.

 These elements are called picture elements, image elements, pels, and pixels

STEPS OF IMAGE PROCESSING

- Image acquisition
- Image enhancement
- Image restoration
- Color image processing
- Wavelets
- Compression
- Morphing
- Segmentation
- Feature extraction
- Image pattern classification

EXAMPLES

Image Enhancement

RESTORATION

RESTORATION

SEGMENTATION

WHY IMAGE PROCESSING

- To facilitate storage and transmission
 - Compression, quality
 - Prepare images for display or printing
- Enhancement and restoration
 - Noise removal, quality, sharpness
- Extract information from images
 - Image understanding
 - Comparison of images to find changes

RESOLUTION

- Resolution is a common term used with images
- The resolution can be defined in many ways.
 - Pixel resolution,
 - Spatial resolution,
 - Intensity resolution,
 - Spectral resolution.

SPATIAL RESOLUTION

- Defined as the smallest observable/identifiable detail in an image
- Spatial resolution refers to clarity
- For image clarity comparison, images have to be of the same size
- As spatial resolution reduces, image size also reduces
- Different devices, different measure
 - Dots per inch (DPI) usually used in monitors.
 - Lines per inch (LPI) usually used in laser printers.
 - Pixels per inch (PPI) is measure for different devices such as tablets, Mobile phones etc.

PIXEL RESOLUTION

- Resolution refers to the number of pixels in an image.
- Resolution is sometimes identified by
 - The width and height of the image as well as
 - The total number of pixels in the image
- An image that is 2048 pixels wide and 1536 pixels high (2048 x 1536) contains 3,145,728 pixels (or 3.1 Megapixels).

RESOLUTION UNITS

- Resolution is the number of pixels in a linear Resolution inch (i.e. pixels per inch or ppi).
- The more pixels per inch (ppi), the higher your image resolution will be.
- Resolution of an image display device or Resolution printing device is described in dots per inch (dpi).

HOW DOES RESOLUTION PLAY OUT ON COMPUTER SCREEN

- If your monitor is set to 800 x 600 and
- You open up an image that is 640 x 480
- It will only fill up a part of your screen.

What if you open up an image that is 2048 x 1536?

You will find yourself moving the slider bar around to see all the different parts of the image.

PRINTING SIZE

- You have a 640 x 480 image and
- You want to print it at 200 dpi (dots or pixels per inch).
- What will be the size of the printed image?
- 640 / 200 = 3.2 and
- **480 / 200 = 2.4**
- So, the size of the printed image is 3.2" x 2.4"

IMAGES AT DIFFERENT RESOLUTION

300 PPI / 600 x 600 pixel dimension

72 PPI / 144 x 144 pixel dimension

30 PPI / 60 x 60 pixel dimension

CHARACTER SCANNER AT DIFFERENT RESOLUTIONS

600 dpi

INTENSITY RESOLUTION

- Intensity/gray-level resolution can be defined as the smallest identifiable change in intensity level.
- image size constant at 452 X 374 pixels
- Decrasing the gray-level resolution of a digital image may result in what is known as false contouring

Figure 2.6 (a) 452×374, 256-level image. (b)-(h) Image displayed in 128, 64, 32, 16, 8, 4, and 2 gray levels, while keeping the spatial resolution constant.

BIT DEPTH

The number of bits used to define a pixel.

- The greater the bit depth, the greater the number of tones that can be represented.
- For example, an image with a bit depth of I has pixels with two possible values.
- An image with a bit depth of 8 has 2^8 , or 256, possible values.

TYPES OF IMAGES

- Binary Images
- Gray-scale images
- Color images

I BIT IMAGE/BINARY

- Each pixel consist of only 0/linformation
- Called I-bit monochrome (since no color) image
- Suitable for simple graphics & text

How much storage is required for a monochrome image of resolution 640 x 480?

BINARY IMAGES

8 BIT IMAGE (GRAYSCALE)

- Each pixel is represented by a single byte.
- Gray levels between 0 to 255 (black to white).

How much storage is required for a grayscale image of resolution 640 x 480?

256 gray levels (8bits/pixel) 16 gray levels (4 bits/pixel) 32 gray levels (5 bits/pixel)

8 gray levels (3bits/pixel)

4 gray levels (2bits/pixel)

2 gray levels (Ibit/pixel)

COLOR IMAGES

- The two most common ways of storing color image contents are
 - 1) RGB representation (24 bit image)
 - 2) Indexed representation (8 bit image)

COLOR IMAGE

- 24- bit color image
- Each pixel is represented by 3 bytes, RGB
 - Each R, G, B are in the range 0-255
 - 256 x 256 x 256 possible colors

Example of 24-Bit Colors Image

■ What is the size (in kB) of a 24-bit, 640 x 480 color image?

COLOR IMAGE

8 BIT COLOR IMAGE

- 8- bit color image
 - Carefully chosen 256 colors represent the image
 - stores only the index of the color, the file header will contain the mapping information.
 - The mapping is performed using the color lookup table (LUT).

■ What is the size (in kB) of a 8-bit, 640 x 480 color image?

COLOR LOOK UPTABLE

RGB TO GREY-SCALE IMAGE CONVERSION

- Can convert from an RGB colour space to a grey-scale image
- Grey-scale conversion is the initial step in many image analysis algorithms
 - simplifies (i.e. reduces) the amount of information in the image.
- Grey-scale image contains less information than a colour image, the majority of important, feature related information is maintained, such as edges, regions, blobs, junctions and so on.
- An RGB colour image can converted to grey scale

$$I_{\text{grey-scale}}(n, m) = \alpha I_{\text{colour}}(n, m, r) + \beta I_{\text{colour}}(n, m, g) + \gamma I_{\text{colour}}(n, m, b)$$

Conversion is a noninvertible transformation

- Basic ways to represent f(x, y):
- Image plotted as a surface
 - First method is a plot of the function f(x, y), with two axes determining spatial location and the third axis being the values of f (intensities) as a function of the

- Image as a visual intensity
- In this figure, there are only three equally spaced intensity values.
- If the intensity is normalized to the interval [0, 1], then each point in the image has the value 0, 0.5, or 1.
- A monitor or printer simply converts these three values to black, gray, or white, respectively

- Image shown as a 2-D numerical array
- In this example, f is of size 600 X 600 elements, or 360,000 numbers
- Image displays allow us to view results at a glance and Numerical arrays are used for processing and algorithm development

Coordinate convention to represent digital image

IMAGE HISTOGRAM

- Histogram which acts as a graphical representation of the tonal distribution in a digital image.
- It plots the number of pixels for each tonal value.
- It can be used to judge the entire tonal distribution of an image at a glance.

IMAGE HISTOGRAM

Histogram of Lena's grayscale image

IMAGE HISTOGRAM

Histogram of Lena's colored image

RELATIONSHIP BETWEEN PIXELS

Conventional indexing method

NEIGHBORS OF A PIXEL

Neighborhood relation is used to tell adjacent pixels. It is useful for analyzing regions.

4-neighbors of *p*:

$$N_4(p) = \begin{cases} (x-1,y) \\ (x+1,y) \\ (x,y-1) \\ (x,y+1) \end{cases}$$

4-neighborhood relation considers only vertical and horizontal neighbors.

NEIGHBORS OF A PIXEL

Diagonal neighbors of p:

$$N_D(p) = \begin{cases} (x-1,y-1) \\ (x+1,y-1) \\ (x-1,y+1) \\ (x+1,y+1) \end{cases}$$

Diagonal-neighborhood relation considers only diagonal neighbor pixels.

NEIGHBORS OF A PIXEL

(x-1,y-1)	(x,y-1)	(x+1,y-1)	
(x-1,y)	p	(x+1,y)	
(x-1,y+1)	(x,y+1)	(x+1,y+1)	

8-neighbors of *p*:

$$N_{8}(p) = \begin{cases} (x-1,y-1) \\ (x,y-1) \\ (x+1,y-1) \\ (x-1,y) \\ (x+1,y) \\ (x,y+1) \\ (x+1,y+1) \end{cases}$$

8-neighborhood relation considers all neighbor pixels.

SPATIAL OPERATIONS

Spatial operations are performed directly on the pixels of an image.

- Single pixel operations
- Neighborhood operations
- Geometric spatial transformations

SINGLE-PIXEL OPERATIONS

• Alter the intensity of an image's pixels individually using a transformation function.

$$s = T(z)$$

EXAMPLE

Original image

Negative Image

NEIGHBORHOOD OPERATIONS

Neighborhood processing generates a corresponding pixel at the same coordinates in an output image, such that the value of that pixel is determined by a specified operation on the neighborhood of pixels in the input image.

EXAMPLE

Averaging Operation

$$g(x,y) = \frac{1}{mn} \sum_{(r,c) \in S_{xy}} f(r,c)$$

 S_{xy} Represents the set of neighborhood, m and n represents rectangular size of neighborhood.

EXAMPLE

Blurring of an image.

