Table of Contents

1 非線形最小2乗法の原理

2 python code

3 具体的な手順

4 pythonによる解法の指針

5 Gauss-Newton法に関するメモ

6 課題

6.1 Gaussian(正規分布)へのフィット

非線形最小2乗法 (NonLinearFit)

file:/Users/bob/Github/TeamNishitani/jupyter_num_calc/nonlinearfit https://github.com/daddygongon/jupyter_num_calc/tree/master/notebooks_python cc by Shigeto R. Nishitani 2017

非線形最小2乗法の原理

前章では、データに近似的にフィットする最小二乗法を紹介した。ここでは、フィット式が多項式のような線形関係にない関数の最小二乗法を紹介する。図のようなデータにフィットする場合を考えよう。

このデータにあてはめるのはローレンツ関数.

$$F(x; \mathbf{a}) = a_1 + \frac{a_2}{a_3 + (x - a_4)^2}$$

である。この関数の特徴は、今まで見てきた関数と違いパラメータが線形関係になっていない。誤差関数は、いままでと同様に

$$\chi^{2}(\mathbf{a}) = \sum_{i}^{N} d_{i}^{2} = \sum_{i}^{N} (F(x_{i}; \mathbf{a}) - y_{i})^{2}$$

で、 $\mathbf{a} = \{a_0, a_1, \ldots\}$ をパラメータとして変えた時に最小となる値を求める点もかわらない。しかし、線形の最小二乗法のように微分しても一元の方程式にならず、連立方程式を単に解くだけでは求まらない。

そこで図のような2次関数の最小値を求める場合を考える。最小値の $点 a_0$ のまわりで、Taylor展開すると、 \mathbf{d} , \mathbf{D} をそれぞれの係数とすると、

$$\chi^{2}(\mathbf{a}) = \chi^{2}(\mathbf{a_{0}}) - \mathbf{d}(\mathbf{a} - \mathbf{a_{0}}) + \frac{1}{2}\mathbf{D}(\mathbf{a} - \mathbf{a_{0}})^{2}$$

である. 最小の点 a_0 は、微分が0になるので、

non_linear_fit

$$\mathbf{a_0} = \mathbf{a} + \mathbf{D}^{-1} \times (-\mathbf{d})$$

と予測される。図を参照して上の式を導け、またその意味を考察せよ

現実には高次項の影響で計算通りにはいかず、単に最小値の近似値を求めるだけである。これは、 $\chi(\mathbf{a})^2$ の微分関数の解をNewton法で求める操作に対応する。つまり、この操作を何度も繰り返せばいずれ解がある精度で求まるはず

python code

幾つもの関数が用意されている。

curve fit

non_linear_fit

- · curve fit with bounds
- least square fit

全部を理解する必要はないが、manualを見ながら使うことができるといいね。 boundsとかparamsの初期値が重要

```
In [2]: import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

def func(t, a1, a2, a3, a4):
    return a1+a2/(a3+(t-a4)**2)

xdata = np.linspace(0, 10, 100)
y = func(xdata, 1, 10, 1, 4)
y_noise = 0.2 * np.random.normal(size=xdata.size)
ydata = y + y_noise
plt.plot(xdata, ydata, 'b-', label='data')

popt, pcov = curve_fit(func, xdata, ydata)
plt.plot(xdata, func(xdata, *popt), 'r-', label='fit')
plt.show()
```



```
In [3]: import numpy as np
    import matplotlib.pyplot as plt
    from scipy.optimize import curve_fit

def func(t, a1, a2, a3, a4, a5):
        return a1+a2*1000/(a3+(t-a4)**2)+a2*1000/(a3+(t-a5)**2)

    xdata = np.linspace(0, 256, 256)
    y = func(xdata, 10, 40, 380, 90, 128)
    y_noise = 10 * np.random.normal(size=xdata.size)
    ydata = y + y_noise
    plt.plot(xdata, ydata, 'b-', label='data')

    popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [15,50,400,10 0,150]))
    plt.plot(xdata, func(xdata, *popt), 'r-', label='fit')

    print(popt)
    plt.show()
```

```
[ 7.92623836 42.57537952 400. 89.17411616 127.8653 8647]
```



```
In [4]: import scipy.optimize
        from numpy import *
        params0=[15,50,400,100,150]
        def fit func(params,t,y):
            a1, a2, a3, a4, a5=params
            residual=y-(a1+a2*1000/(a3+(t-a4)**2)+a2*1000/(a3+(t-a5)**2))
            return residual
        params, cov=scipy.optimize.leastsq(fit_func,params0,args=(xdata, yd
        ata))
        print(params)
        [ 7.16505033
                         44.91568512 427.72186145
                                                    89.189773
                                                                  127.9043
        75921
In [4]: | ?curve fit
```

具体的な手順

パラメータの初期値を

$$a_0 + \Delta a, b_0 + \Delta b, c_0 + \Delta c, d_0 + \Delta d$$

とする。このとき関数fを真値 a_0,b_0,c_0,d_0 のまわりでテイラー展開し、高次項を無視すると $\Delta f = f(a_0 + \Delta a_1,b_0 + \Delta b_1,c_0 + \Delta c_1,d_0 + \Delta d_1) - f(a_0,b_0,c_0,d_0)$ $= \left(\frac{\partial}{\partial a}f\right)_0 \Delta a_1 + \left(\frac{\partial}{\partial b}f\right)_0 \Delta b_1 + \left(\frac{\partial}{\partial c}f\right)_0 \Delta c_1 + \left(\frac{\partial}{\partial d}f\right)_0 \Delta d_1$

となる。

課題でつくったデータはt=1からt=256までの時刻に対応したデータ点 $f_1,f_2,\cdots f_{256}$ とする。各測定値とモデル関数から予想される値との差 $\Delta f_1,\Delta f_2,\cdots,\Delta f_{256}$ は、

$$\begin{pmatrix} \Delta f_1 \\ \Delta f_2 \\ \vdots \\ \Delta f_{256} \end{pmatrix} = J \begin{pmatrix} \Delta a_1 \\ \Delta b_1 \\ \Delta c_1 \\ \Delta d_1 \end{pmatrix}$$

となる。ここでJはヤコビ行列と呼ばれる行列で、4列256行

$$J = \begin{pmatrix} \left(\frac{\partial}{\partial a}f\right)_{1} & \left(\frac{\partial}{\partial b}f\right)_{1} & \left(\frac{\partial}{\partial c}f\right)_{1} & \left(\frac{\partial}{\partial d}f\right)_{1} \\ \vdots & \vdots & \vdots & \vdots \\ \left(\frac{\partial}{\partial a}f\right)_{256} & \left(\frac{\partial}{\partial b}f\right)_{256} & \left(\frac{\partial}{\partial c}f\right)_{256} & \left(\frac{\partial}{\partial d}f\right)_{256} \end{pmatrix}$$

である.このような矩形行列の逆行列は転置行列 J^T を用いて,

$$J^{-1} = \left(J^T J\right)^{-1} J^T$$

と表わされる。したがって、真値からのずれは

$$\begin{pmatrix} \Delta a_2 \\ \Delta b_2 \\ \Delta c_2 \\ \Delta d_2 \end{pmatrix} = (J^T J)^{-1} J^T \begin{pmatrix} \Delta f_1 \\ \Delta f_2 \\ \vdots \\ \Delta f_{256} \end{pmatrix}$$

で求められる。理想的には $(\Delta a_2, \Delta b_2, \Delta c_2, \Delta d_2)$ は $(\Delta a, \Delta b, \Delta c, \Delta d)$ に一致するはずだが、測定誤差と高次項のために一致しない。初期値に比べ、より真値に近づくだけ、そこで、新たに得られたパラメータの組を新たな初期値に用いて、より良いパラメータに近付けていくという操作を繰り返す。新たに得られたパラメータと前のパラメータとの差がある誤差以下になったところで計算を打ち切り、フィッティングの終了となる。

pythonによる解法の指針

まずは、お任せでcurve fitを試しましょう。

```
In [13]: import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

def func(t, a1, a2, a3, a4):
    return a1+a2/(a3+(t-a4)**2)

ndata = 8
nparam = 4
xdata = np.linspace(1, 8, ndata)
y = func(xdata, 1, 10, 1, 4)
ydata = y
plt.plot(xdata, ydata, 'b-', label='data')

popt, pcov = curve_fit(func, xdata, ydata)
plt.plot(xdata, func(xdata, *popt), 'r-', label='fit')
plt.show()
```



```
In [14]: print(popt)
[ 5.471 -2.526 0.43 7.524]
```

うまくいってません。curve_fitの失敗の原因は、ほとんどが初期値の取り方のせいです。

では、手計算でどうなるかを観て行きましょう。まずは初期値として適当な値を取ります。さらに、numpyと線形代数計算のためにscipy.linalg as linalgを呼びだしておきます。サンプルデータydataと初期値で予測される関数を同時にplotして観ます。

```
In [15]: guess1 = [1, 8, 1, 4.5]
```

```
In [16]: from pprint import pprint
    import scipy.linalg as linalg
    plt.plot(xdata, ydata, 'b-', label='data')

plt.plot(xdata, func(xdata, *guess1), 'r-', label='fit')
    plt.show()
```


ydataと予測した関数との差をdfに入れます.

見やすいように、小数点以下を3桁表示に制限しています。

```
In [17]: np.set_printoptions(precision=3, suppress=True)

df=np.zeros([ndata])
    for i in range(0,ndata):
        df[i] = ydata[i]-func(xdata[i], *guess1)

pprint(df)

array([ 0.396,  0.897,  2.538,  3.6  , -1.4  , -0.462, -0.103, -0.016])
```

ローレンツ型の関数を仮定し、関数として定義

```
def func(t, a1, a2, a3, a4):
    return a1+a2/(a3+(t-a4)**2)
```

ヤコビアンの中の微分を新たな関数として定義します。

$$dfda1 := x \mapsto 1$$

$$dfda2 := x \mapsto (a3 + (x - a4)^{2})^{-1}$$

$$dfda3 := x \mapsto -\frac{a2}{(a3 + (x - a4)^{2})^{2}}$$

$$dfda4 := x \mapsto -\frac{a2(-2x + 2a4)}{(a3 + (x - a4)^{2})^{2}}$$

```
In [18]:
    def dfdal(x, a1, a2, a3, a4):
        return 1
    def dfda2(x, a1, a2, a3, a4):
        return (a3 + (x - a4)**2)**(-1)
    def dfda3(x, a1, a2, a3, a4):
        return -a2/(a3 + (x -a4)**2)**2
    def dfda4(x, a1, a2, a3, a4):
        return -a2*(-2*x +2*a4)/(a3 + (x-a4)**2)**2
```

Jacobian行列を作ります.

$$J^{-1} = \left(J^T J\right)^{-1}$$

を求めます

これをまたもとの近似値(guess)に入れ直して表示させると以下のようになる。カーブがデータに近づいているのが確認できよう。

この操作をずれが十分小さくなるまで繰り返す

```
In [27]: df=np.zeros([ndata])
         for i in range(0,ndata):
             dy = ydata[i]-func(xdata[i], *quess1)
             df[i]=dy
         #pprint(df)
         Jac=np.zeros([ndata,nparam])
         for i in range(0,ndata):
             Jac[i,0] = dfdal(xdata[i], *guess1)
             Jac[i,1] = dfda2(xdata[i], *guess1)
             Jac[i,2] = dfda3(xdata[i], *guess1)
             Jac[i,3] = dfda4(xdata[i], *guess1)
         # pprint(Jac)
         iJac = linalg.inv(np.dot(np.transpose(Jac),Jac))
         # print(iJac)
         Jdf = np.dot(np.transpose(Jac),df)
         # pprint(Jdf)
         guess1 = guess1 + np.dot(iJac, Jdf)
         pprint(guess1)
         plt.plot(xdata, ydata, 'b-', label='data')
         popt, pcov = curve_fit(func, xdata, ydata)
         plt.plot(xdata, func(xdata, *quess1), 'r-', label='fit')
         plt.show()
```

array([1.006, 9.926, 0.989, 4.])

4回ほど繰り返すと以上の通り、いい値に収束している。

Gauss-Newton法に関するメモ

このGauss-Newton法と呼ばれる非線形最小二乗法は線形問題から拡張した方法として論理的に簡明であり、広く使われている。しかし、収束性は高くなく、むしろ発散しやすいので注意が必要。2次の項を無視するのでなく、うまく見積もる方法を用いたのがLevenberg-Marquardt法である。明快な解説がNumerical Recipes in C(C 言語による数値計算のレシピ) WilliamH.Press 他著、技術評論社1993にある。

課題

Gaussian(正規分布)へのフィット

正規分布で知られる、ガウス関数

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

フィットをやってみましょう.

例えば、平均値(μ)が60点、偏差値(σ)が15点、ピークの人数が20人としましょう。

```
In [28]: import numpy as np
import matplotlib.pyplot as plt

def func(x, a1, a2, a3):
    return al*np.exp(-(x-a2)**2/a3**2)

ndata = 100
    xdata = np.linspace(1, ndata, ndata)
    y = func(xdata, 20, 60, 15)
    ydata = y
    plt.plot(xdata, ydata, 'b-', label='data')

popt, pcov = curve_fit(func, xdata, ydata)
    plt.plot(xdata, func(xdata, *popt), 'r-', label='fit')
    plt.show()
```


guess1 = [10,50,10]

から初めてGauss-Newton法でfittingしなさい.

ただし、Gauss関数

$$f(x) = a_1 \exp\left(-1/2 \frac{(x - a_2)^2}{a_3^2}\right)$$

それぞれのパラメータでの微分は,

$$\frac{\partial f}{\partial a_1} = \exp\left(-\frac{(x - a_2)^2}{2a_3^2}\right)$$

$$\frac{\partial f}{\partial a_2} = \frac{a_1 (x - a_2)}{a_3^2} \exp\left(-\frac{(x - a_2)^2}{2a_3^2}\right)$$
$$\frac{\partial f}{\partial a_3} = \frac{a_1 (x - a_2)^2}{a_3^3} \exp\left(-\frac{(x - a_2)^2}{2a_3^2}\right)$$

これらの関数は次の通り定義される.

```
In [30]: from pprint import pprint
import scipy.linalg as linalg

def dfda1(x,a1,a2,a3):
    return np.exp(-(x - a2) ** 2 / a3 ** 2 / 2)

def dfda2(x,a1,a2,a3):
    return a1 * (x - a2) / a3 ** 2 * np.exp(-(x - a2) ** 2 / a3 **
2 / 2)

def dfda3(x,a1,a2,a3):
    return a1 * (x - a2) ** 2 / a3 ** 3 * np.exp(-(x - a2) ** 2 / a
3 ** 2 / 2)
```

以下の初期条件からfittingをおこなえ、