In the Claims:

Please rewrite Claims 1, 8, 15, and 22 as follows.

1. (TWICE AMENDED) A method of forming source/drain regions, comprising the steps of:

providing a semiconductor integrated circuit wafer
having source/drain regions;

providing an ion implant apparatus;

placing a phosphorous ion source in said ion implant
apparatus;

adjusting said ion implant apparatus so that said ion implant apparatus produces an ion beam comprising P_2^+ ions, wherein said ion beam has a beam density and a beam energy;

implanting impurities into said source/drain regions of said integrated circuit wafer, wherein said impurities consist of P_2 ions implanted using a single ion implantation step and said ion beam; and

annealing said integrated circuit wafer having $\mathbf{P_2}^+$ ions implanted at an anneal temperature for an anneal time.

8. (TWICE AMENDED) A method of forming source/drain regions, comprising the steps of:

providing a semiconductor integrated circuit wafer
having source/drain regions;

providing an ion implant apparatus;

12

CS-97-110/112 09/186,388

placing an arsenic ion source in said ion implant apparatus;

adjusting said ion implant apparatus so that said ion implant apparatus produces an ion beam comprising As2+ ions, wherein said ion beam has a beam density and a beam energy;

implanting impurities into said source/drain regions of said integrated circuit wafer, wherein said impurities consist of $\mathrm{As_2}^+$ ions implanted using a single ion implantation step and said ion beam; and

annealing said integrated circuit wafer having $\mathrm{As_2}^+$ ions implanted at an anneal temperature for an anneal time.

15. (TWICE AMENDED) A method of doping a polysilicon electrode, comprising the steps of:

providing a semiconductor integrated circuit wafer having a polysilicon electrode formed thereon;

providing an ion implant apparatus;

placing a phosphorous ion source in said ion implant apparatus:

adjusting said ion implant apparatus so that said ion implant apparatus produces an ion beam comprising P_2^+ ions, wherein said ion beam has a beam density and a beam energy;

implanting impurities into said polysilicon electrode, wherein said impurities consist of P_2^+ ions implanted using a single ion implantation step and said ion [implant] beam; and

Corel

annealing said integrated circuit wafer having $\mathbf{P_2}^+$ ions implanted at an anneal temperature for an anneal time.

22. (TWICE AMENDED) A method of doping a polysilicon electrode, comprising the steps of:

providing a semiconductor integrated circuit wafer having a polysilicon electrode formed thereon;

providing an ion implant apparatus;

placing a arsenic ion source in said ion implant
apparatus;

adjusting said ion implant apparatus so that said ion implant apparatus produces an ion beam comprising As₂+ ions, wherein said ion beam has a beam density and a beam energy;

implanting impurities into said polysilicon electrode, wherein said impurities consist of As_2^+ ions implanted using a single ion implantation step and said ion [implant] beam; and

annealing said integrated circuit wafer having As_2^+ ions implanted at an anneal temperature for an anneal time.