STT 380

In-Class Activity 18

- 1. Suppose in the ping pong example you have prior probabilities of 0.1, 0.3, and 0.6 for winning 20%, 40%, or 60% of the games.
 - a. After playing 4 games, you win 2 and lose 2. What are your posterior probabilities after these 4 games?

```
i. theta <- c(0.2,0.4,0.6)
```

ii. prior
$$<$$
- c(0.1,0.3,0.6)

- iv. win <- 2
- v. posterior <- prior*dbinom(win,n,theta)/sum(prior*dbinom(win,n,theta))
- vi. posterior = 0.04705882 0.31764706 0.63529412
- b. (Use the original prior probabilities and disregard the results of (a)) Next, simulate wins and losses from a distribution with a 40% chance of winning (you can use runif(0,1) and if it is less than 0.4, it counts as a win; otherwise, a loss).
 - i. Run an iteration and compute the posterior probabilities each time.
 - ii. About how many times do you play before the posterior odds for winning 40% reach 0.9?

```
1. theta <- c(0.2,0.4,0.6)
```

2. prior
$$<$$
- c(0.1,0.3,0.6)

- 3. games <-0
- 4. while (prior[2] < 0.9){
- 5. n <- 1
- 6. win <- rbinom(1,1,0.4)
- 7. prior <- prior*dbinom(win,n,theta)/sum(prior*dbinom(win,n,theta))
- 8. games = games+1
- 9. }
- 10. prior = 0.078388276 0.917421569 0.004190155
- 11. Games = 32

- 2. Suppose the prior weights for the probability of winning a game is proportional to $sin(\pi x)$. Suppose after 30 games you win 10.
 - a. Use a grid discretization (100 cells) to find the posterior probabilities.
 - i. x < -seq(0,1, by = 0.01)
 - ii. prior <- sin(pi*x)/sum(sin(pi*x))</pre>
 - iii. plot(prior)
 - iv. # play 12, win 4
 - v. n <- 30
 - vi. wins <- 10
 - vii. posterior_123 <- prior*dbinom(wins,n,theta)/sum(prior*dbinom(wins,n,theta))</pre>

- b. Graph the prior and posterior together.
 - i. plot(posterior_123)
 - ii. points(prior)

- c. Is the mean value of the posterior closer to 0.5 (the mean value of the prior) and 1/3 (the proportion of games won)?
 - i. mean(posterior_123*x*100) = 0.3511255
 - ii. So it is closer to 0.3 (1/3) which is the proportion of games won.