

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Matrix Norm and Singular Value Decomposition

(Induced) Matrix Norm

Given a matrix $A \in \mathbb{R}^{m \times n}$ (not necessarily square)

- A defines a linear map from \mathbb{R}^n to \mathbb{R}^m
- Denote by $\|\cdot\|$ the Euclidean (or L^2) norms on both \mathbb{R}^n and \mathbb{R}^m
- ||Ax||/||x|| is the amplification factor or gain of A in the direction of x

The induced matrix norm of $A \in \mathbb{R}^{m \times n}$ is the maximum possible gain:

$$||A|| := \sup_{x \in \mathbb{R}^n, \, x \neq 0} \frac{||Ax||}{||x||} = \sup_{x \in \mathbb{R}^n, \, ||x|| = 1} \frac{||Ax||}{||x||}$$

• $\|\cdot\|$ is called the spectrum norm (or L^2 -induced norm)

Example:
$$A = \begin{bmatrix} 0.5 & 100 \\ 0 & 0.5 \end{bmatrix}$$

Properties of Induced Matrix Norm

Induced matrix norm is a norm on the vector space $\mathbb{R}^{m \times n}$:

- Homogeneity: $\|\alpha A\| = |\alpha| \, \|A\|$, $\forall \alpha \in \mathbb{R}$
- Triangle Inequality: $||A + B|| \le ||A|| + ||B||$
- Positive Definiteness: ||A|| = 0 if and only if A = 0

Moreover, it has the additional properties

- $||Ax|| \le ||A|| \, ||x||, \, \forall x \in \mathbb{R}^n$
- $||AB|| \le ||A|| \cdot ||B||$ (assume the product AB is well defined)

Characterizing Spectrum Norm

For $A \in \mathbb{R}^{m \times n}$, its spectrum norm is

$$||A|| = \sqrt{\lambda_{\max}(A^T A)}$$

Proof:
$$||A||^2 = \sup_{x \neq 0} \frac{||Ax||^2}{||x||^2} = \sup_{x \neq 0} \frac{x^T A^T A x}{x^T x} = \lambda_{\max}(A^T A)$$

- Maximum gain input direction is the eigenvector of $A^T A$ for $\lambda_{\max}(A^T A)$
- Alternatively, can switch the positions of A and A^T :

$$\|A\| = \|A^T\| = \sqrt{\lambda_{\max}(AA^T)}$$

Singular Value Decomposition (SVD)

Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed as

$$A = U\Sigma V^T$$

- $\Sigma = \begin{bmatrix} \Sigma_+ & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{m \times n}$ where $\Sigma_+ = \mathsf{diag}\left(\sigma_1, \ldots, \sigma_r\right)$, $r = \mathsf{rank}\left(A\right)$
 - $\sigma_1 \ge \cdots \ge \sigma_r > 0$ are the singular values of A
- $U = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \in \mathbb{R}^{m \times m}$ is orthogonal: $U^T U = U U^T = I_m$
 - u_1, \ldots, u_m are the left or output singular vectors of A
- $V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \in \mathbb{R}^{n \times n}$ is orthogonal: $V^T V = V V^T = I_n$
 - v_1, \ldots, v_n are the right or input singular vectors of A
- Matlab command: svd

Transformation Interpretation of SVD

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_+ & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^T = U_1 \Sigma_+ V_1^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

Consider A as a linear map from \mathbb{R}^n to \mathbb{R}^m

- maps v_1 to $\sigma_1 u_1$ (most sensitive input/output direction)
- . .
- maps v_r to $\sigma_r u_r$
- maps $v_{r+1}, ..., v_n$ to 0
- Range space of A is $\mathcal{R}(A) = \mathcal{R}(U_1) = \operatorname{span} \{u_1, \dots, u_r\}$
- Null space of A is $\mathcal{N}(A) = \mathcal{R}(V_2) = \operatorname{span} \{v_{r+1}, \dots, v_n\}$
- From $A^T = V_1 \Sigma_+ U_1^T$, we have $\mathcal{R}(A^T) = \mathcal{R}(V_1)$ and $\mathcal{N}(A^T) = \mathcal{R}(U_2)$

Finding U and V in SVD

Write
$$A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^T \Sigma V^T$$

- v_i is a unit eigenvector of $A^T A$ for eigenvalues $\lambda_i(A^T A)$
- $\sigma_i = \sqrt{\lambda_i(A^TA)}$, i = 1, ..., r, and $\lambda_i(A^TA) = 0$ for i = r + 1, ..., n

Write
$$AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma \Sigma^T U^T$$

- u_i is a unit eigenvector of AA^T for eigenvalues $\lambda_i(AA^T)$
- $\sigma_i = \sqrt{\lambda_i(AA^T)}$, i = 1, ..., r, and $\lambda_i(AA^T) = 0$ for i = r + 1, ..., m

Remark:

- Symmetric matrices AA^T and A^TA have the same set of nonzero eigenvalues
- Spectrum norm of A is the largest singular value of A:

$$||A|| = \sigma_1 = \sqrt{\lambda_{\max}(AA^T)} = \sqrt{\lambda_{\max}(A^TA)}$$

Constructive Proof of SVD

1 Find an orthogonal $V \in \mathbb{R}^{n \times n}$ to diagonalize $A^T A$:

$$A^{T}A = V\Lambda V^{T}$$

where $\Lambda = \text{diag}\left(\sigma_1^2, \dots, \sigma_r^2, 0, \dots, 0\right)$ with $\sigma_1 \geq \dots \geq \sigma_r > 0$

2 Rewrite

$$A^{T}A = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} \Sigma_{+}^2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^{T}$$

where $V_1 \in \mathbb{R}^{n \times r}$, $V_2 \in \mathbb{R}^{n \times (n-r)}$, and $\Sigma_+ = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$

- **3** Define $U_1 = AV_1\Sigma_+^{-1} \in \mathbb{R}^{m \times r}$, whose columns are orthogonal: $U_1^T U_1 = I_r$
- **4** Choose any $U_2 \in \mathbb{R}^{m \times (m-r)}$ so that $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ is orthogonal
- **6** Then $A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_+ & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^T$.