Záverečná písomka B (25. 1. 2006)

Príklad 1. Odpovedzte na otázky z výrokovej logiky:

- (a) čo je syntaktický strom priradený formule výrokovej logiky?
- (b) ako je definovaná podformula?
- (c) čo je tautológia, kontradikcia a splniteľná formula?
- (d) čo je teória a čo je model?
- (e) čo znamenajú výrazy $\{\varphi_1,...,\varphi_n\} \vdash \varphi$ a $\{\varphi_1,...,\varphi_n\} \models \varphi$?

Príklad 2. Doplňte výsledok v týchto schémach usudzovania.

Príklad 3. Zostrojte pomocou logických neurónov neurónovú sieť (snažte sa ju minimalizovať), ktorá simuluje úlohu

$$\alpha_1 \times \alpha_2 \alpha_3 = \beta_1 \beta_2$$

Príklad 4. Použitím rezolučnej metódy rozhodnite či teória T má model a či formula α je logickým dôsledkom T, $T \vdash \alpha$,

$$T = \{x \Rightarrow y, y \Rightarrow (z \lor \neg x), \neg t \Rightarrow (t \land \neg z), t \Rightarrow x\}, \ \alpha = z$$

Príklad 5. Prepíšte tvrdenie prirodzeného jazyka do formuly predikátovej logiky, vytvorte negáciu tejto formuly a prepíšte túto formulu do tvrdenia prirodzeného jazyka.

- (a) Vtáky sa množia vajciami.
- (b) Každý športovec má dobrú fyzickú kondíciu.
- (c) Každé nepárne číslo je prvočíslo.
- (d) Každý, kto navštívil Anglicko hovorí po anglicky.
- (e) Existuje dym bez ohňa.

Príklad 6. Rozhodnite pre každú formulu, či je tautológia, kontradikcia, alebo či je splniteľná formula, ktorá nie je tautológia:

(a)
$$(\forall x P(x)) \land (\forall x \neg P(x))$$
,

(b)
$$\forall x (P(x) \vee \neg P(x))$$
,

(c)
$$(\exists x P(x)) \Rightarrow (\forall x P(x))$$
,

(d)
$$(\forall x P(x)) \land (\exists x \neg P(x))$$
.

Príklad 7. Riešte tieto sylogizmy:

(a) Každý študent je maturant Každý maturant nie je analfabet (b) každý študent je kominár niektorí kominári sú maturanti

?

(c) niektorí fyzici sú astronómovia každý fyzik nie je chemik (c) Každý študent nie je analfabet niektorí analfabeti nie sú včelári

?

1

9

Príklad 8. Pomocou prirodzenej dedukcie odvoďte formuly:

(a)
$$(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$$

(b)
$$(p \Rightarrow r) \land (q \Rightarrow r) \Rightarrow (p \lor q \Rightarrow r)$$

Príklad 9. Pomocou tabuľkovej metódy preverte, či formule sú tautológie 3-hodnotovej Łukasiewiczovej logiky:

(a)
$$\neg \psi \Rightarrow ((\varphi \Rightarrow \psi) \Rightarrow \neg \varphi)$$
,

(b)
$$\varphi \Rightarrow (\neg \psi \Rightarrow \varphi)$$
.

Cvičenie 10. Vypočítajte pravdivostné hodnoty intuicionistickej formuly a všetkých jej podformúl

$$p \Rightarrow ((\neg (p \land q)) \lor (\neg q \lor \neg r))$$

pre Kripkeovský model špecifikovaný reláciou R, pričom každý vrchol je ohodnotený trojicou pravdivostných hodnôt premenných p, q a r.

Z nasledujúcich dvoch príkladov vyberte jeden a ten riešte, v prípade, že budete riešiť oba, započíta sa vám lepší výsledok z týchto dvoch.

Príklad 11a. Zistite pre ktoré hodnoty premenných p a q je výroková formula vo fuzzy logike pravdivá $(p \land (p \Rightarrow q)) \Rightarrow q$.

Príklad 11b. Pomocou metódy sémantických tabiel dokážte tautologičnosť formuly modálnej logiky $\Diamond(\phi \Rightarrow \psi) \Rightarrow (\Box \phi \Rightarrow \Diamond \psi)$.

Poznámka: Každý príklad je hodnotený 5 bodmi, maximálny počet bodov je 55. *Nezabudnite na písomku napísať meno a priezvisko, číslo krúžku a ročník*. Čas na písomku je 90 min.

2

Riešenie

Príklad 1.

(a) Syntaktický strom formuly φ je binárny strom, ktorého neterminálne vrcholy sú priradené logickým spojkám a terminálne vrcholy sú priradené výrokovým premenným. Vyhodnocovanie stromu prebieha zdola nahor.

(b) Podformula môže byť definovaná pomocou syntaktického stromu priradeného formule φ tak, že podformula ψ je zostrojená pomocou ľubovolného podstromu syntaktického stromu.

(c) Formula sa nazýva tautológia (kontradikcia) vtedy a len vtedy, ak pre každú interpretáciu premenných je pravdivá (nepravdivá); formula sa nazýva splniteľná vtedy a len vtedy, keď existuje aspoň jedna interpretácia premenných, pre ktorú je pravdivá.

(d) Teóriou sa nazýva každá neprázdna množina formúl. Hovoríme, že teória má model vtedy a len vtedy, ak existuje taká interpretácia, že všetky formuly z teórie sú pravdivé.

(e) Formula φ sa nazýva logický dôsledok množiny formúl T (čo označíme $T \vdash \varphi$ vtedy a len vtedy, ak $\varphi \in T$ alebo je bezprostredným dôsledkom T alebo je bezprostredným dôsledkom T rozšírenej o niektoré jej bezprostredné dôsledky.

Formula φ sa nazýva tautologický dôsledok teórie T (čo označíme $T \models \varphi$) vtedy a len vtedy, ak každý model teórie T je aj modelom formuly φ (t.j. formula φ je v ňom pravdivá).

Príklad 2.

Príklad 3.

Riešenie.

α_1	α_2	α_3	β_1	β_2
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

$$\beta_1 = \alpha_1 \alpha_2 \overline{\alpha}_3 + \alpha_1 \alpha_2 \alpha_3 = \alpha_1 \alpha_2 (\overline{\alpha}_3 + \alpha_3) = \alpha_1 \alpha_2$$

$$\beta_2 = \alpha_1 \overline{\alpha}_2 \alpha_3 + \alpha_1 \alpha_2 \alpha_3 = \alpha_1 (\overline{\alpha}_2 + \alpha_2) \alpha_3 = \alpha_1 \alpha_3$$

Príklad 4.

Riešenie. Ak $T = \{C_1, C_2, ..., C_n\}$, potom vlastnosť $T \models \alpha$ je ekvivaletná platnosti implikácie

$$C_1 \wedge C_2 \wedge ... \wedge C_n \Rightarrow \alpha$$

Negácia tejto implikácie má tvar

$$C_1 \wedge C_2 \wedge ... \wedge C_n \wedge \neg \alpha$$

Ak sa nám podarí dokázať, že táto formula je kontradikcia, potom platí $T \models \alpha$.

$$(x \Rightarrow y) \land (y \Rightarrow (z \lor \neg x)) \land (\neg t \Rightarrow (t \land \neg z)) \land (t \Rightarrow x) \land \neg z$$

Prepíšeme ju do tvaru NKF

$$(\neg x \lor y) \land (\neg y \lor z \lor \neg x) \land \underbrace{(t \lor (t \land \neg z))}_{t \land (t \lor \neg z)} \land (\neg t \lor x) \land \neg z$$

Ak vynecháme opakujúce klauzule (dôsledok idenpotentnosti konjunkcie a disjunkcie) dostaneme

$$(\neg x \lor y) \land (\neg y \lor z \lor \neg x) \land (t \lor \neg z) \land t \land (\neg t \lor x) \land \neg z$$

	1	2	3	4	5	6						
	$\neg x \lor y$	$\neg y \lor z \lor \neg x$	$t \vee \neg z$	t	$\neg z$	$\neg t \lor x$	7	8				
z		1	0		0		$\neg y \lor t \lor \neg x$	$\neg y \lor \neg x$	9	10		
у	1						0	0	$\neg x \lor t$	$\neg x$	11	
\boldsymbol{x}						1			0	0	$\neg t$	12
t				1							0	

Záver: Platí tautologické vyplývanie

$$\{x \Rightarrow y, y \Rightarrow (z \lor \neg x), \neg t \Rightarrow (t \land \neg z), t \Rightarrow x\} \vDash z$$

Príklad 5.

(a) Vtáky sa množia vajciami.

$$\forall x (Vtak(x) \Rightarrow Mnoz_vaj(x))$$

$$\exists x (Vtak(x) \land \neg Mnoz_vaj(x))$$

Existuje taký vták, ktorý sa nemnoží vajciami.

(b) Každý športovec má dobrú fyzickú kondíciu.

$$\forall x (sport(x) \Rightarrow fyz _kond(x))$$

$$\exists x (sport(x) \land \neg fyz _kond(x))$$

Existuje taký športovec, ktorý nemá dobrú fyzickú kondíciu.

(c) Každé nepárne číslo je prvočíslo.

$$\forall x (neparne(x) \Rightarrow prime(x))$$

$$\exists x (neparne(x) \land \neg prime(x))$$

Niektoré nepárne čísla nie sú prvočísla.

(d) Každý, kto navštívil Anglicko hovorí po anglicky.

$$\forall x (navst_UK(x) \Rightarrow hovori_angl(x))$$

$$\exists x (navst_UK(x) \land \neg hovori_angl(x))$$

Existuje taký, čo navštívil Anglicko a nehovorí po anglicky.

(e) Existuje dym bez ohňa.

$$\exists x (dym(x) \land \neg ohen(x))$$

$$\forall x (dym(x) \Rightarrow ohen(x))$$

Každý dym je s ohňom.

Príklad 6.

(a)
$$(\forall x P(x)) \land (\forall x \neg P(x))$$
,

Pomocou formule z príkladu 7.2 $(\forall x P(x) \land \forall x Q(x)) \equiv \forall x (P(x) \land Q(x))$ prepíšeme skúmanú formulu do ekvivalentného tvaru

$$\forall x \underbrace{\left(P(x) \land \neg P(x)\right)}_{0} \equiv 0$$

- (b) $\forall x (P(x) \lor \neg P(x))$, táto formula je automaticky pravdivá, pretože podformula stojaca za univerzálnym kvantifikátorom $(P(x) \lor \neg P(x)) \equiv 1$ pre každé indivíduum x.
- (c) $(\exists x \, P(x)) \Rightarrow (\forall x \, P(x))$, navrhneme interpretáciu \mathcal{I} , pre ktorú je formula nepravdivá. Nech univerzum U je množina prirodzených čísel $\{0,1,2,3,...\}$ a P(x) je unárny predikát, ktorého význam je "x je párne číslo". Ľavá časť implikácie $\exists x \, P(x)$ je evidentne pravdivá, "existuje také prirodzené číslo x, ktoré je párne". Pravá časť implikácie $\forall x \, P(x)$ je evidentne nepravdivá, nie "každé prirodzené číslo je párne". To znamená, že celková implikácia $(1\Rightarrow 0)$ je nepravdivá. To znamená, že študovaná formula nie je ani tautológia a ani kontradikcia, je splniteľná (existujú interpretácie \mathcal{I} v ktorých je pravdivá, napr. ak predikát P(x) interpretujeme "x je nezáporné číslo").
- (d) $(\forall x P(x)) \land (\exists x \neg P(x))$, túto formulu môžeme pomocou zákona pre negáciu univerzálneho kvantifikátora $(\neg \forall x P(x) \equiv \exists x \neg P(x))$ previesť do ekvivalentného tvaru $(\forall x P(x)) \land \neg (\forall x P(x))$, ktorá môže vzniknúť z elementárnej tautológie výrokovej logiky $p \land \neg p$ substitúciou $p/\forall x P(x)$, formula je kontradikcia.

Príklad 7.

Riešenie.

(a)

Každý študent je maturant Každý maturant nie je analfabet

?

Vykonáme prepis sylogizmu do formálneho tvaru

$$\varphi_1: \forall x (st(x) \Rightarrow mat(x)) \Rightarrow (st(t) \Rightarrow mat(t))$$

$$\varphi_2: \forall x (mat(x) \Rightarrow \neg analf(x)) \Rightarrow (mat(t) \Rightarrow \neg analf(t))$$

použitím hypotetického sylogizmu ($p \Rightarrow q$) \Rightarrow (($q \Rightarrow r$) \Rightarrow ($p \Rightarrow r$))

dostaneme

 $(st(t) \Rightarrow \neg analf(t))$ pre l'ubovolné indivíduum t, čiže platí aj

$$\forall x (st(x) \Rightarrow \neg analf(x))$$

Záver zo sylogizmu je: "každý študent nie je analfabet"

(b)

každý študent je kominár niektorí kominári sú maturanti

?

$$\varphi_1: \forall x \left(st(x) \Rightarrow kom(x)\right) \Rightarrow \left(st(a) \Rightarrow kom(a)\right)$$

$$\varphi_2: \exists x \left(kom(x) \land mat(x)\right) \Rightarrow \left(kom(b) \land mat(b)\right)$$

Z týchto dvoch implikácií nič nevyplýva, sylogizmus nemá platný záver.

(c)

niektorí fyzici sú astronómovia každý fyzik nie je chemik

2

$$\varphi_1: \exists x \left(fyz(x) \land astr(x) \right) \Rightarrow \left(fyz(a) \land astr(a) \right)$$

$$\varphi_2: \forall x \left(fyz(x) \Rightarrow \neg chem(x) \right) \Rightarrow \left(fyz(a) \Rightarrow \neg chem(a) \right)$$

Z premisy φ_1 vyplýva, že súčasne platí fyz(a) a astr(a). Použitím fyz(a) a predpokladu φ_2 spolu s pravidlom modus tollens dostaneme $\neg chem(a)$. To znamená, že záver sylogizmu má tvar

$$astr(a) \land \neg chem(a) \Rightarrow \exists x \ astr(x) \land \neg chem(x)$$

alebo, "niektorí astronómovia nie sú chemici".

(d)

Každý študent nie je analfabet niektorí analfabeti nie sú včelári

•

$$\varphi_1: \forall x \left(st(x) \Rightarrow \neg analf(x) \right) \Rightarrow \left(st(a) \Rightarrow \neg analf(a) \right) \equiv \left(analf(a) \Rightarrow \neg st(a) \right)$$

$$\varphi_2: \exists x \left(analf(x) \land \neg vce(x) \right) \Rightarrow \left(analf(a) \land \neg vce(a) \right)$$

Z druhej premisy vyplýva, že analf(a) a $\neg vce(a)$. Použitím analf(a) s prvou premisou dostaneme $\neg st(a)$, spojením s $\neg vce(a)$ dostaneme

$$\neg vce(a) \land \neg st(a) \Rightarrow \exists x (\neg vce(x) \land \neg st(x))$$

Záver zo sylogizmu je: "existuje taká osoba, ktorá nie je včelárom a ani študentom". Poznamenajme, že tento výsledok nemá v klasickej teórie sylogizmov analog, t.j. uvádza sa bez riešenia. Za platné budeme považovať obidve riešenia.

Príklad 8.

(a)
$$(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$$

 $p \Rightarrow q$ (aktivácia 1. pomocného predpokladu) $q \Rightarrow r$ (aktivácie 2. pomocného predpokladu) 3. (aktivácia 3. pomocného predpokladu) 4. (modus ponens na 1. a 3.) 5. (modus ponens na 2. a 4.) 6. (deaktivácia 3.) 7. $(q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ (deaktivácia 2.) $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$ (deaktivácia 1.)

(b)
$$(p \Rightarrow r) \land (q \Rightarrow r) \Rightarrow (p \lor q \Rightarrow r)$$

- $(p \Rightarrow r) \land (q \Rightarrow r)$ (aktivácia 1. pomocného predpokladu) (aktivácia 2. pomocného predpokladu) 3. (vymenovanie možných prípadov disjunkcie) $q \Rightarrow r$ (eliminácia konjunkcie aplikovaná na 1.) 4. 5. (E⇒ (modus ponens) na 3. a 4.) (deaktivácia 2. pomoc. predpokladu na 5.)
- 7. $((p \Rightarrow r) \land (q \Rightarrow r)) \Rightarrow ((p \lor q) \Rightarrow r)$ (deaktivácia 1. pomoc. predpokladu na 6.)

Príklad 9.

(a)
$$\neg \psi \Rightarrow ((\phi \Rightarrow \psi) \Rightarrow \neg \phi)$$

φ	Ψ	¬φ	¬ψ	$\phi \Rightarrow \psi$	$(\phi \Rightarrow \psi) \Rightarrow \neg \phi$	$\neg \psi \Rightarrow ((\phi \Rightarrow \psi) \Rightarrow \neg \phi)$
0	0	1	1	1	1	1
0	1/2	1	1/2	1	1	1
0	1	1	0	1	1	1
1/2	0	1/2	1	1/2	1	1
1/2	1/2	1/2	1/2	1	1/2	1
1/2	1	1/2	0	1	1/2	1
1	0	0	1	0	1	1
1	1/2	0	1/2	1/2	1/2	1
1	1	0	0	1	0	1

(1.)		(`	
(b)	φ⇒($\neg \Psi$	\Rightarrow	φ)	

φ	Ψ	$\neg \psi$	$\neg \psi \Rightarrow \varphi$	$\varphi \Rightarrow (\neg \psi \Rightarrow \varphi)$
0	0	1	0	1
0	1/2	1/2	1/2	1
0	1	0	1	1
1/2	0	1	1/2	1
1/2	1/2	1/2	1	1
1/2	1	0	1	1
1	0	1	1	1
1	1/2	1/2	1	1
1	1	0	1	1

Príklad 10.

	1	2	3	4	5
p	0	0	0	1	1
q	1	1	1	1	1
r	0	0	1	0	1
$p \wedge q$	0	0	0	1	1
$\neg r$	0	0	0	0	0
$\neg q$	0	0	0	0	0
$\neg q \lor \neg r$	0	0	0	0	0
$\neg (p \land q)$	0	0	1	0	0
$(\neg (p \land q)) \lor (\neg r \lor \neg q)$	0	0	1	0	0
$p \Rightarrow (\neg (p \land q)) \lor (\neg r \lor \neg q)$	0	0	1	0	0

Príklad 11.

Riešenie

11a. Zistite pre ktoré hodnoty premenných p a q je výroková formula vo fuzzy logike pravdivá $(p \land (p \Rightarrow q)) \Rightarrow q$.

Študovaná formula je pravdivá pre $p \le q$ a pre p=1.

11b. Pomocou metódy sémantických tabiel dokážte tautologičnosť formuly modálnej logiky $\Diamond(\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Diamond \psi)$.

1.
$$v(w_1, \diamond(\phi \Rightarrow \psi) \Rightarrow (\Box \phi \Rightarrow \diamond \psi)) = 0$$

2.
$$v(w_1, \diamond(\varphi \Rightarrow \psi)) = 1$$

3.
$$v(w_1, \Box \varphi \Rightarrow \Diamond \psi) = 0$$

4.
$$v(w_2, \varphi \Rightarrow \psi) = 1 \quad (\exists w_2 \in \Gamma(w_1))$$

5.
$$v(w_1, \Box \varphi) = 1$$

6.
$$v(w_1, \Diamond \psi) = 0$$

7.
$$v(w_3, \varphi) = 1 \quad (\forall w_3 \in \Gamma(w_1))$$

8.
$$v(w_4, \psi) = 0 \quad (\forall w_4 \in \Gamma(w_1))$$

8.
$$v(w_4, \psi) = 0 \quad (\forall w_4 \in \Gamma(w_1))$$
9.
$$(v(w_2, \varphi) = 0) \lor (v(w_2, \psi) = 1) \quad (\exists w_2 \in \Gamma(w_1))$$

Riadky 7, 8 a 9 produkujú kontradikciu, z tejto skutočnosti vyplýva, že formula je tautológia (pre každú interpretáciu je pravdivá).