Ejercicios Prácticos de Programación Declarativa

Sesión de laboratorio 2

Curso 2021/22

- Realiza los siguientes ejercicios individualmente en un mismo fichero .hs.
- Escribe tu nombre al comienzo del fichero como líneas comentadas. Incluye comentarios significativos y no olvides declarar los tipos de las expresiones que definas.
- 1. Programa en Haskell las siguiente funciones cuyo argumento es un entero no negativo n, sin usar recursión explícita sino **funciones de orden superior** predefinidas en Haskell.
 - a) La lista de los cuadrados de los números naturales entre 0 y n (o sea, $[0, 1, 4, 9, ..., n^2]$).
 - b) La lista anterior, pero con cada número emparejado con su cuadrado y en orden inverso $([(n, n^2), \dots, (2, 4), (1, 1), (0, 0)])$.
 - c) La suma $\sum_{i=1}^{i=n} i \cdot |\cos(i)|$.
 - d) La suma de los números menores que n que sean múltiplos de 3 o 5.
 - e) El primer número primo mayor que n.
- 2. Programa las siguientes funciones de orden superior, utilizando funciones de orden superior predefinidas en Haskell. Los tipos de las variables n y m usadas en estas funciones tienen que estar en la clase Enum.
 - a) iguales f g n m \Leftrightarrow f x = g x, para todo $n \le x \le m$.
 - b) menor n p = menor $x \ge n$ que verifica p
 - c) mayorA n m p = mayor $x \operatorname{con} n \leq x \leq m$ que verifica p
 - d) ex n m p \Leftrightarrow existe x con $n \le x \le m$ que verifica p.
- 3. Programa las siguientes funciones de orden superior, utilizando funciones de orden superior predefinidas en Haskell:
 - a) filter2 xs p q = (us, vs) donde us son los elementos de xs que cumplen p y vs los que cumplen q.
 - b) filters xs ps = $[xs_1, ..., xs_n]$, donde xs_i son los elementos de xs que cumplen p_i , supuesto que ps es $[p_1, ..., p_n]$.
 - c) mapx x [f0,f1,...,fn] = [f0 x,f1 x,...,fn x].
- 4. Programa, indicando los tipos, las siguientes variantes de fold1 y foldr, que operan con listas no vacías y no usan valor acumulado inicial:
 - $foldr1 \oplus [x_1, \dots, x_n] = x_1 \oplus x_2 \oplus \dots \oplus x_n$ (con \bigoplus associando por la derecha)
 - $foldl1 \bigoplus [x_1, \ldots, x_n] = x_1 \bigoplus x_2 \bigoplus \ldots \bigoplus x_n$ (con \bigoplus associando por la izquierda)