

Matemática Computacional

Departamento de Matemática Instituto Superior de Engenharia do Porto

2° Semestre 20-21

Estatística descritiva-revisões

- 1 Conceitos gerais
- 2 Organização e Apresentação dos dados
- 3 Medidas Descritivas
- 4 Exercícios propostos

Estatística

É uma área científica que se ocupa da obervação de um fenómeno, recolha de informação ou da produção da informação relevante, com o objetivo de a descrever e modelar para depois inferir e predizer, servindo-nos de guia em situações de incerteza.

Estatística descritiva

É um conjunto de métodos com o objetivo de apresentar, analisar e interpretar um conjunto de dados com a utilização de ferramentas adequadas.

Estatística inferencial

É um conjunto de métodos que permitem fazer estimativas e tirar conclusões sobre uma população a partir da informação contida num subconjunto dessa população (amostra).

População

É o conjunto de todos os objetos (indivíduos) com uma característica comum

Amostra

É um subconjunto finito da população que se supões representativo.

Unidade estatística

Um elemento da população.

Exemplo:

- População: Conjunto dos alunos do ISEP
- Amostra: Conjunto dos alunos de uma turma de Matcp

Relativamente ao tamanho as populações podem ser:

- Finitas (número de filhos, Alunos do ISEP, ...)
- Infinitas (número de lançamentos de uma moeda até obter uma cara, tempo de espera por um autocarro)

Censo

É o estudo de todos os elementos de uma população.

Sondagem

É um estudo (da população) efetuado a partir da informação recolhida de uma amostra.

Variável estatística

É uma variável que representa uma característica da população e passível de tomar diversos valores. Pode ser qualitativa ou quantitativa.

Dado estatístico

É um valor particular de uma variável estatística

Tipos de variáveis

Variáveis qualitativas

São variáveis que traduzem uma característica não numérica

- variáveis nominais (dados nominais, categorias)
 exemplo:sexo, cor dos olhos, raça,...
- variáveis ordinais (dados ordinais).
 Exemplo: escolaridade (básica, secundária, superior),
 qualidade (má, média, boa)

Tipos de variáveis

Variáveis quantitativas (dados quantitativos)

São variáveis que resultam de processos de medição ou contagem

- Variáveis discretas (dados discretos)
 Podem tomar um conjunto numerável ou infinitamente numerável de valores.
- variáveis contínuas (dados contínuos)
 Podem tomar quaisquer valores num dado intervalo
 (podem assumir um conjunto não numerável de valores)

Classe de uma variável estatística

É cada um dos diferentes valores que a variável pode tomar (dados quantitativos discretos), qualquer intervalo de valores (dados contínuos) ou categoria (dados qualitativos).

Frequência absoluta da classe i (n_i)

É o número de observações associadas à classe i

$$\sum_{i=1}^{c} n_i = n$$

onde, n o número total de observações e c é o número de classes.

Frequência relativa da classe i (f_i)

$$f_i = \frac{n_i}{n}$$

Verifica-se que:

$$\sum_{i=1}^{c} f_i = 1$$

é usual exprimir-se em percentagem.

Frequência acumulada até à classe i (N_i)

É o número de observações de valor inferior ou igual ao valor que caracteriza a classe i.

$$N_i = \sum_{j=1}^i n_j.$$

Frequência acumulada relativa até à classe i (F_i)

É o número de observações de valor inferior ou igual ao valor que caracteriza a classe i.

$$F_i = \sum_{j=1}^i f_j.$$

Dados quantitativos discretos

Dados quantitativos discretos são observações de variáveis quantitativas discretas, geralmente associadas a processos de **contagem**.

Tabela de distribuição de frequências de dados quantitativos discretos

É uma tabela com k linhas (uma para cada valor distinto) e três colunas. A primeira coluna representa cada uma dos diferentes valores observados, a segunda a frequência absoluta e a terceira a frequência relativa.

Dados quantitativos discretos

Exemplo: Observação de 50 peças de artesanato quanto ao número de defeitos

Número de defeitos (x_i)	frequência absoluta (n_i)	frequência relativa (f_i)
0	23	0.46
1	16	0.32
2	7	0.14
3	4	0.08

Exemplo: Dados de um inquérito realizado em 50 habitações quanto ao número de elementos do agregado familiar.

Tabela de frequências

Household members (xi)	Absolute frequency (ni)	Relative frequency (fi)	Cumulative relative frequency (Fi)		
1	4	0,08	0,08		
2	10	0,2	0,28		
3	15	0,3	0,58		
4	13	0,26	0,84		
5	6	0,12	0,96		
6	2	0,04	1		
Total	50	1			

Exemplo: Cont. Gráfico de barras

- Os dados quantitativos contínuos são obtidos a partir da observação de uma variável numérica contínua de uma população.
- Os dados de uma variável contínua apresentam uma diversidade tal que é necessário agrupa-los em classes (intervalos).

Classe de uma variável quantitativa contínua

É um intervalo na forma [a,b[ou]a,b] que representa um conjunto de valores que a variável pode tomar.

- Amplitude da classe h: h = b a
- Marca da classe é o representante dessa classe para efeitos de cálculo.

Por defeito considera-se $marca = x_i = \frac{a+b}{2}$

Número de classes

Número de classes É habitual escolher entre 4 e 20 classes, dependendo do número de observações. Regra de Sturges: c=int(1+3.3log(n)).

Amplitude aproximada da classe (aproximada)

Amplitude classe =
$$\frac{\text{maior obs.} - \text{menor obs.}}{\text{n}^{\circ} \text{ de classes} = c}$$

 Limite inferior da 1^a classe - é qualquer número inferior ou igual à menor das observações

Exemplo: Dados observados de tempos de realização de 34 tarefas, em minutos.

Tabela de frequências

amplitude	Tempo	Marca da	Freq. abs.	Freq. rel.	Freq. rel. acumulada
classe (h_i)	classe i	$classe(x'_i)$	(n_i)	(f_i)	(F_i)
2	[5, 7[6	5	0.1471	0.1471
2	[7, 9[8	13	0.3824	0.5295
2	[9, 11[10	8	0.2353	0.7648
4	[11, 15]	13	8	0.2353	1.000
		Total	34	1.000	

Representação gráfica

Histograma

È uma representação gráfica dos dados em que se marcam as classes no eixo horizontal, as frequências no eixo vertical e em que se usam barras de área proporcional à frequência da classe correspondente. As barras contíguas têm uma fronteira comum.

Na figura seguinte representa-se um histograma referente ao tempo de realização de 34 tarefas, em minutos. Note-se que h_i e n_i representam, respetivamente, a amplitude e a frequência absoluta da classe i:i=1,2,3,4.

Média aritmética \bar{x} para dados não classificados

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Média aritmética \bar{x} para dados classificados

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{c} x_i n_i = \sum_{i=1}^{c} x_i f_i$$

onde c é o número de classes, n o número total de observações, n_i é a frequência absoluta e f_i a frequência relativa. No caso de dados contínuos classificados x_i representa a marca da classe.

Definição: Moda, Mo

É a classe (ou classes) com maior frequência. Para dados discretos, ou contínuos não classificados, é o valor (ou valores) que apresenta(m) a maior frequência.

Mediana, Me

É o valor que divide uma série de n observações em duas partes iguais, tal que 50% das observações tem um valor inferior, ou igual, a Me

Mediana para dados não classificados em série ordenada

$$Me = \begin{cases} \frac{x_{(n/2)} + x_{(n/2+1)}}{2} &, n \text{ par} \\ x_{(n+1)/2} &, n \text{ impar} \end{cases}$$

Mediana para dados quantitativos contínuos classificados

$$Me = L_k + \left(\frac{0.5 - F_{k-1}}{f_k}\right) h_k$$

- k classe mediana (1ª classe onde se verifica $F_k \geq 50\%$).
- \bullet f_k frequência relativa da classe mediana.
- lacksquare F_{k-1} frequência acumulada relativa da classe anterior.
- \blacksquare h_k amplitude da classe mediana.
- \blacksquare L_k limite inferior da classe mediana.

Comparação entre a média moda e mediana (simetria)

Obs: Deve ser calculado também o coeficiente de assimetria (slide 40)

Medidas de localização não central

Quantil de ordem α , z_{α}

É o valor que divide uma série de n observações em duas partes, tal que $\alpha\%$ das observações tem um valor menor, ou igual, a z_{α}

Quantil para dados não classificados em série ordenada

$$z_{\alpha} = x_k$$

onde k é o maior inteiro menor que $n\alpha + 1$

Quantil para dados quantitativos contínuos classificados

$$z_{\alpha} = L_k + \left(\frac{\alpha - F_{k-1}}{f_k}\right) h_k$$

onde, k é a classe do quantil α , tal que $F_{k-1} < \alpha$ e $F_k \ge \alpha$

Percentil de ordem k, p_k

$$p_k, (k = 1, 2, ..., 99) = z_{k/100}$$

Decil de ordem k, d_k

$$d_k, (k = 1, 2, ..., 9) = z_{k/10}$$

Quartil de ordem k, d_k

$$q_k, (k = 1, 2, 3) = z_{k/4}$$

De acordo com as definições anteriores, tem-se que:

$$Me = p_{50} = d_5 = q_2$$

Medidas de dispersão ou variabilidade

Amplitude total, "Range"r

É a diferença entre o maior e o menor valor de um conjunto de observações.

- Depende apenas das observações extremas.
- Depende o número de observações
- Para dados classificados, define-se como a diferença entre o valores máximo e mínimo das marcas da classe.

Amplitude interquartil, "Interquartile Range" r_q

$$r_q = q_3 - q_1$$

Diagrama de extremos e quartis (Boxplot ou caixa de bigodes)

Consiste numa representação gráfica de dados baseado nos seus quartis, mínimo e máximo muito utilizada para analisar a dispersão dos dados.

Outliers

Outliers moderados

Um valor observado $x_i, i=1,2,...,n$, é um candidato a outlier moderado se

$$x_i < q_1 - 1.5(q_3 - q_1)$$

ou

$$x_i > q_3 + 1.5(q_3 - q_1)$$

Outliers

Outliers severos

Um valor observado $x_i, i = 1, 2, ..., n$, é um candidato a outlier severo se

$$x_i < q_1 - 3(q_3 - q_1)$$

ou

$$x_i > q_3 + 3(q_3 - q_1)$$

 A remoção de outliers(valores anómalos) do conjunto de dados requer o conhecimento da área onde o estudo estatístico se insere.

A variância e o desvio padrão são as medidas de variabilidade, ou dispersão mais utilizadas em estatística.

- Estas medidas têm em conta todos os valores observados.
- O desvio padrão indica a proximidade com que os valores observados se distribuem em torno da média.
- Um valor nulo do desvio padrão implica que todas as observações concentradas em torno do mesmo valor.
- Valores crescentes do desvio padrão indicam que os valores estão cada vez mais "espalhados"ou dispersos em relação à média.
- A variância é o quadrado do desvio padrão.

Variância de uma amostra s^2

Para dados não classificados: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ Para dados classificados:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{c} (x_{i} - \bar{x})^{2} n_{i}$$

Nota: Para dados contínuos classificados x_i representa a marca da classe.

Desvio padrão s

É a raiz quadrada positiva da variância

$$s = \sqrt{s^2}$$

Coeficiente de variação s

O coeficiente de variação de uma amostra é dado pela expressão

$$cv = \frac{s}{\bar{x}}$$

Trata-se de uma medida de dispersão relativa que tem em conta a magnitude dos valores observados.

- Informação sobre a deformação dos dados
- Informação sobre o peso dos dados nas caudas

Momento centrado de ordem r, m_r

Para dados não classificados:

$$m_r = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^r$$

Para dados classificados:

$$m_r = \frac{1}{n} \sum_{i=1}^{c} (x_i - \bar{x})^r n_i$$

Coeficiente de assimetria amostral, a_3

$$a_3 = \frac{m_3}{s^3}$$

- É uma medida adimensional
- Mede a assimetria da distribuição
- $a_3 > 0$ quando a cauda direita é mais comprida (enviesada à direita)
- **a** $a_3 < 0$ quando a cauda esquerda é mais comprida (enviesada à esquerda)
- $a_3 = 0$ distribuição simétrica

Coeficiente de curtose amostral, a_4

$$a_4 = \frac{m_4}{s^4}$$

- É uma medida adimensional
- Mede o achatamento e o peso das caudas da distribuição.
- lacksquare A distribuição normal tem $a_4=3$ distribuição **mesocúrtica**
- $\mathbf{a}_4 > 3$ quando a distribuição é mais esguia e as caudas mais pesadas do que a distribuição normal distribuição leptocúrtica
- lacksquare $a_4 < 3$ quando a distribuição é mais achatada e as caudas menos pesadas do que a distribuição normal distribuição platicúrtica

Exercício 1: Dados discretos

Considere a série estatística que representa as respostas quanto ao número de elementos do agregado familiar de uma amostra aleatória de 40 questionários:

2	5	1	2	6	5	4	6	1	4
3	6	5	3	5	5	2	4	2	6
3	6	5	4	2	6	5	5	5	2
3	3	2	5	2	1	3	2	4	4

- a) Construa a tabela de frequências.
- b) Represente a distribuição dos dados num gráfico adequado
- c) Calcule a média, a mediana e a moda do número observado de elementos do agregado familiar.
- d) Calcule a variância e o desvio padrão da amostra.
- e) Classifique os dados da amostra quanto à simetria.

Considere a série estatística que representa uma amostra aleatória dos tempos de jogo de 40 jogadores de basquetebol, em minutos.

10,52	9,87	3,28	10,82	32,42	30,55	4,17	9,62	15,8	14,27
11,4	5,63	12,88	10,8	22,68	23,32	30,1	21,78	7,98	17,7
10,35	14,77	10,42	9,57	31,95	32,92	33,28	27,97	11,03	18,02
17,78	0,75	14,75	21,02	28,43	30,33	29,67	28,05	26,1	23,28

- a) Construa a tabela de frequências.
- b) Represente a distribuição dos dados num histograma.
- c) Calcule o tempo médio dos 40 jogadores com base na tabela de frequências.
- d) Calcule a variância e o desvio padrão da amostra.
- e) Classifique os dados da amostra quanto à simetria e curtose.