

Assignment 1

2D bars: Cantilever structure

Consider the articulated bars structure in Figure 1. The position of nodes 1 and 5 is fixed and a force F=920 N acts in the indicated nodes and direction. All bars are made of the same material, with a Young's modulus E=75000 MPa, a circular section area A=120 mm², a second moment of area I=1400 mm⁴, and a thermal expansion coefficient of $\alpha=23\times10^{-6}$ K⁻¹.

Node	x (m)	y (m)
1	0	0
2	0.5	0.2
3	1	0.4
4	1.5	0.6
5	0	0.5
6	0.5	0.6
7	1	0.7
8	1.5	0.8

Figure 1. Sketch of the 2D bars cantilever structure.

In such conditions:

- A) Determine the deformed structure and the stress state of each bar.
- B) Considering there is a sudden change of the overall temperature of the structure, determine the resulting deformed configuration and the stress of each bar for:
 - 1. A temperature increase of $\Delta T = 10^{\circ}$ C.
 - 2. A temperature decrease of $\Delta T = -5$ °C.

Repeat and determine the results without considering external forces (i.e., F = 0). Note: treat the thermal expansion effects on each bar as an initial (imposed) strain:

 $\varepsilon_0 = \alpha \Delta T$

$$\begin{array}{c|c}
L \\
\hline
T (\Delta T > 0)
\end{array}$$

$$\varepsilon_0 = \frac{L - L_0}{L_0}$$

20/02/2022

The assignment can be done in groups of maximum 2 people. Only one of the members must submit a compressed ZIP file to Atenea containing the following:

- All the MATLAB® script files.
- A report with the following information:
 - Names of the group members.
 - For part A:
 - Displacement obtained for node 4.
 - Reactions obtained at nodes 1 and 5.
 - Table with the stress of each bar.
 - Plot of the deformed structure depicting the stress of each bar.
 - Assessment of the risk of buckling. Consider the critical stress for buckling as

$$\sigma_{cr} = \frac{\pi^2 EI}{L^2 A}$$

- o For parts B1 and B2:
 - Maximum and minimum stress.
 - Plot of the deformed structure depicting the stress of each bar.
 - Maximum and minimum stress for F = 0.
 - Plot of the deformed structure depicting the stress of each bar for F = 0.

20/02/2022