

College of Engineering & Computer Science Florida Atlantic University

BEHAVIORAL SERVICE GRAPHS: A BIG DATA APPROACH FOR PROMPT INVESTIGATION OF INTERNET-WIDE INFECTIONS

DR. ELIAS BOU-HARB, FAU, USA
DR. MARK SCANLON, UCD, IRELAND

Introduction, Motivation & Contributions

Related Work

Proposed Approach

Empirical Evaluation

Limitations and Possible Improvements

Introduction & Motivation

- This video illustrates a large scale orchestrated probing campaign targeting VoIP servers as reported by The Center for Applied Internet Data Analysis (CAIDA).
- This and other events continue to be stealthy and the occur on a frequent basis.

Introduction & Motivation

 Recently, we have seen a large-scale coordinated DDoS attack by exploiting IoT devices (mainly cameras), which took down many famous services such as amazon and twitter.

Introduction & Motivation

 Internet-scale infections and orchestrated events continue to escalate

- The need for prompt, formal and accurate solutions, which can operate on big Internetwide data
 - Preferably we would like to have an approach that is formal and exploit data analytics techniques.

Forensic Challenges

- Network forensic analysts are significantly overwhelmed by huge amounts of low quality evidence, i.e., false positives and false negatives
- Network forensic approaches are passive or reactive, employ manual ad-hoc methods and are time consuming
- Most current network forensic practices do not support distributed inference, and if they do, they force the analysts to go through an error-prone process of correlating dispersed unstructured evidence to infer a specific security incident

Introduction, Motivation & Contributions

Related Work

Proposed Approach

Empirical Evaluation

Limitations and Possible Improvements

Related Work

Anomaly detection using graphs

Big data forensic approaches

In contrast, we we attempt to fuse both to provide a prompt and a sound approach:

- Infer Internet-wide infections
- Leverage probing activities using a set of behavioral analytics to infer infections
- Employ a new concept of similarity service graphs to infer campaigns of infected machines
- Exploit graph theoretic notions to infer the niche of the infected campaign

Introduction, Motivation & Contributions

Related Work

Proposed Approach

Empirical Evaluation

Limitations and Possible Improvements

Proposed Approach

- Our approach works in a Security Operation Center (SOC) model by investigation darknet data, which is Internet-scale data that targets routable, allocated yet unused IP addresses.
- It attempts to infer infected bots by characterizing probing activities, which are the very first signs of infection.
- It then constructs certain graphs and manipulates them to infer the campaigns

Infer & characterize probing Activities (1/3)

- Infer probing activities from darknet data
 - Plethora of approaches to do this
 - We leverage a previous work

 Characterize their behaviors (probing strategy, randomness in traffic, etc.) based on statistical tests and heuristics

Infer & characterize probing Activities (2/3)

Infer & characterize probing Activities (3/3)

Behavior vector

Randomness

Probing Strategy

Bot:

Target

Rate

Destinations Overlap

Port Number

Construct Behavioral Service Graphs (1/3)

- Model probing bots in an undirected complete graph
 - Nodes are the scanning bots
 - Edges are weights related to their similarity

 Each graph clusters a number of bots targeting the same port, which define an orchestrated campaign

Construct Behavioral Service Graphs (2/3)

Bot 1:

Random Traffic
Sequential Probing
Dispersed Probing

Rate: 60 pps

Destinations Overlap: 100

Port Number: 80

Bot 2:

Pattern in Traffic
Sequential Probing
Targeted Probing

Rate: 55 pps

Destinations Overlap: 200

Port Number: 80

Behavioral Similarity = 50%

Construct Behavioral Service Graphs (3/3)

Allow the prompt inference of bot infected machines

Automate amalgamation of evidence from distributed entities

 Provide valuable insights related to behaviors of the infected machines

Infer Niche of Campaigns (1/2)

Niche of campaign defines those nodes that aggressively infect other nodes or are heavily used in C&C communication

- Apply maximum spanning tree algorithm to create an Erdős–Rényi random subgraph
 - Nodes with maximum similarity are the niche nodes

Infer Niche of Campaigns (2/2)

Unique characteristics of campaigns:

- Population of bots has several orders of large magnitude
- Targeted the entire IP address space
- Bots adopt well orchestrated strategies to maximize targets coverage

radication of Niche can limit the propagation of the Campaign

Introduction, Motivation & Contributions

Related Work

Proposed Approach

Empirical Evaluation

Limitations and Possible Improvements

Deployment Scenarios

- Two different deployment scenarios are used to validate accuracy, effectiveness, and simplicity of the approach.
- In the first scenario, Behavior Service Graphs are employed to infer infected machines within an enterprise network. While in the second scenario, the approach is ported to a global scale.

Data and Ground Truth

Enterprise-scale

- In the first scenario, use enterprise network traffic dataset and a confirmed campaign that targeted IPv4 as a ground truth
- Enterprise network traffic dataset
 - □ 15 GB by leveraging the Security Experimentation EnviRonment (SEER)
- Ground truth is an orchestrated probing campaign (Carna botnet)
 - Considered as one of the largest and most comprehensive probing census targeted IPv4

Outcome

Enterprise-scale

- Inferring and clustering 10 infected machines
- 2 IP addresses as the niche of such campaign
 - Their prompt eradication can limit the propagation of this campaign

Data and Ground Truth

Internet-scale

- Darknet Data
 - Operate the approach in a Security Operation Center (SOC) model

- Ground truth is a probing campaign from October 2012
 - Reported by ISC to be targeting Internet-scale SQL servers

Outcome

Internet-scale

- Inferring and clustering close to 800 unique SQL-injection bots
- 84 bots as the niche of such campaign
 - Their prompt eradication can limit the propagation of this campaign

Introduction, Motivation & Contributions

Related Work

Proposed Approach

Empirical Evaluation

Limitations and Possible Improvements

Limitations and Possible Improvements

- Need to fortify the infection evidence
 - Currently working on correlating malware with probing traffic to accomplish this
- There's a need find a formal mathematical computation to infer the niche of the campaign
 - Currently relying on a threshold related to the subgraph
- Experimental, non-operational
 - Currently addressing scalability issues of the approach to make it function in near real-time on darknet data

Introduction, Motivation & Contributions

Related Work

Proposed Approach

Empirical Evaluation

Limitations and Possible Improvements

- Fusing data analytics with formal methods has rarely been investigated. We leverage this here to infer campaigns and their niches.
 - A step towards leveraging big data analytics with formal methods as applied to cyber security
- Preliminary results in a SOC model are promising
- Address the mentioned limitations
- We would like in future work to also verify the soundness of the approach in corporate networks using two-way traffic.

Acknowledgements

Questions

