有限域上的广义 Euler 函数:

冯 红

(大连理工大学应用数学系 116024)

摘要 利用反演的方法给出了有限域上 Euler 函数的推广形式;在此基础上给出了广义 Euler 函数的一些结果在有限域上一元多项式环中的模拟. 并且证明了一种新型的广义 Euler Φ -函数在一定条件下,计算了满足 $\deg B < \deg A$ 且(B,A),=1的多项式 B 的个数.

关键词: Euler Φ-函数; Mobius 函数; 卷积

分类号: O157.1

设 F_q 是 q 个元素的有限域, $F_q(x)$ 是 F_q 上的一元多项式环;其元素用 A、B、C、…表示. 设 Ω 表示 $F_q(x)$ 中所有首项系数为 1 的多项式集合; Δ 表示 Ω 中所有不可约多项式的集合,其元素一般用 P 表示. 对任意的 $A \in F_q(x)$, $A \neq 0$,记 $|A| = q^{\deg A}$ ($\deg A$ 表示多项式 A 的次数),即剩余类环 $F_q(x)/(A)$ 中的元素个数. 定义 $\Phi(A)$ 为 $F_q(x)/(A)$ 中单位的个数,即 $\Phi(A)$ 等于 $\Phi(A)$ 等于 $\Phi(A)$ 为 $\Phi(A)$ 是 Euler 函数 $\Phi(A)$ 是 $\Phi(A)$ 为 $\Phi(A)$ 为 $\Phi(A)$ 是 $\Phi(A)$ 为 $\Phi(A)$ 为 $\Phi(A)$ 是 $\Phi(A)$ 中的模拟,所以称 $\Phi(A)$ 为 $\Phi(A)$ 产品数,简称 $\Phi(A)$ 是 $\Phi(A)$ 和 $\Phi(A)$ 产品数有如下熟知的结果:

$$\Phi(A) = |A| \prod_{\substack{P \in \Delta \\ P \mid A}} (1 - |P|^{-1})$$
 (1)

 \prod 表示对 A 的所有素因子取积. 对于一般的 Euler 函数 $\varphi(n)$ 的推广形式,文[1]给出了一些结果,本文讨论了这些结果在一元多项式环 $F_{\varphi}(x)$ 中的模拟.

$1 F_o[x]$ 上的算术函数的某些性质

与普通的算术函数类似,定义 $F_q[x]$ 上的算术函数为 Ω 到复数域内的映射. 用 \mathscr{A} 表示所有这样的映射的集合. 对任意 $f,g\in\mathscr{A}$,定义其 Dirichlet 卷积为

$$(f * g)A = \sum_{D|A} f(D)g(A/D), A \in \Omega$$

其中的和式是对 A 的所有在 Ω 中的因子求和, $f \cdot g$ 表示通常的乘积,A/D 表示 D 除以 A 所得的商式.不难验证,这个运算满足结合律和交换律,并且有单位元 e_0 ;(\checkmark , *, e_0)构成一个交换半群.

算术函数 f 称为是可乘的,如果 f(1)=1,并且当(A,B)=1(互素)时,有

$$f(AB) = f(A)f(B) \tag{2}$$

国家自然科学基金资助项目 收稿日期: 1994-10-20; 修订日期: 1995-05-25

如果式(2)对所有的 $A,B \in \Omega$ 都成立,则称 f 是完全可乘的.

易见,对任意的 $\tau \in \mathscr{A}$,如果 $\tau(1) \neq 0$,则存在唯一的 $\nu \in \mathscr{A}$,使得 $\tau * \nu = e_0$. 这时称 τ 是一个 Dirichlet 可逆函数,简称可逆函数 . ν 称为 τ 的逆,记作 τ^{-1} . 显然可乘函数是可逆的,并且所有可乘函数的集合 M 在 Dirichlet 卷积运算下构成一个 Abel 群 . 令 ζ 是 \mathscr{A} 中恒等于 1 的函数,则 ζ 是可逆的,它的逆函数便是熟知的 Möbius 函数,即

是可逆的,它的逆函数便是熱和的 Mobius 函数,即
$$\mu(A) = \begin{cases} 1, & \text{如果 } A = 1, \\ (-1)^k, & \text{如果 } A \neq k \land \text{互不相同的不可约多项式之积,} \\ 0, & \text{其他.} \end{cases}$$

2 广义 Euler 函数

定义 1 设 τ 为 Ω 上的一个 Dirichlet 可逆函数, 称 Ω 上函数

$$\Phi_{\mathsf{r}}^{(k)}(A) = \sum_{D|A} |D|^k \tau(A/D)$$

为关于 τ 的 Φ -函数. τ 称为 $\Phi^{(k)}$ 的核, 而 $\Phi^{(k)}$ 称为 $\Phi^{(k)}$ 的对偶函数. 为方便起见, 记 $\Phi_r = \Phi^{(1)}_r$.

定义 2 设 $\Phi_r^{(*)}$ 为关于 Dirichlet 可逆函数 τ 的 Φ -函数. 称 $\Phi_r^{(*)}$ 是一个一阶 Φ -函数,如果 $\tau = \mu f$,其中 f 是一个完全可乘函数.

引理 1 设 f 是 Ω 上一个可乘函数, $A \in \Omega$ 的标准分解式是 $A = P_1^{e_1} \cdots P_i^{e_i}$, $P_i \in \Delta$, $P_i \neq P_j$ $(i \neq j)$,则

$$\sum_{D|A} f(D) = \prod_{\substack{P|A \\ P \in \Delta}} \operatorname{ord}_{p}(A) f(P^{i}),$$

其中 ord_o(A)表示非负整数 k, 使得 P^k 整除 A, 但 P^{k+1} 不整除 A, $P \in \Delta$.

定理 1 一阶 Φ-函数具有乘积公式

$$\Phi_{r}^{(k)}(A) = |A|^{k} \prod_{\substack{P \mid A \\ P \in \Delta}} (1 - \frac{f(P)}{|P|^{k}})$$

定理 2 对任意 $P \in \Delta$,设 \mathscr{P}_P 为 $F_q[x]/(P)$ 上 k 维线性空间的一个子集. 于是唯一存在一个完全可乘函数 f,使得 f(P)等于 \mathscr{P}_P 中元素个数. 令 $r = \mu \cdot f$,则 $\Phi^{(k)}(A)$ 等于满足下述条件的有序多项式组 (A_1, \dots, A_k) 的个数, $\deg A_i < \deg A$,并且对 A 的任一不可约因子 $P \in \Delta$,恒有 $(A_1 + (P), \dots, A_k + (P))$ 不在 \mathscr{P}_P 中.

设 $A\neq 1$, $A\in\Omega$, 称 $B\in\Omega$ 与 A 是 r 阶互素的,记作(B,A),=1. 如果对于 A 的每一不可约因子 $P\in\Delta$, 存在 B_0 , B_1 , ..., B_{r-1} , $B_r\in\Omega$, 使

$$B = B_0 + B_1 P + \cdots + B_{r-1} P^{r-1} + B_r P^r$$

其中对 $1 \leq i \leq r-1$, $B_i \neq 0$, $\deg B_i < \deg P$.

设 $N_r(A)$ 为满足下列条件 B 的个数: $\deg B < \deg A$,且 $(B,A)_r = 1$, $B \in \Omega$. 为了计算 $N_r(A)$,先讨论一个 Φ -函数 \square 记

$$\mu_{r}(D) = \prod_{\substack{P \mid D \\ P \in A}} \binom{r}{\operatorname{ord}_{p}(D)} (-1)^{\operatorname{ord}_{p}(D)}$$

称 μ 为 r 阶 Möbius 函数. 显然 $\mu_1 = \mu$, 且 μ 是可乘函数.

$$\Phi_{\mu_{r}}(A) = \sum_{D|A} |A/D| \mu_{r}(D) = |A| \prod_{\substack{P|A \\ P \in A}} \sum_{i=0}^{\operatorname{ord}_{p}(A)} {r \choose i} \left(-\frac{1}{|P|} \right)^{i}$$

最后一等式由引理1得出.

当 $A \in r$ -powerful 多项式时,即对 A 的每一不可约因子 P, ord $\rho(A) \ge r$ 时,有

$$\Phi_{\mu_r}(A) = |A| \prod_{\substack{P \mid A \\ P \in \Delta}} \left(1 - \frac{1}{|P|}\right)^r$$

定理 3 设 $A \in r$ -powerful 多项式时, $N_r(A) = \Phi_u(A)$.

以上概念和结果可推广到 k-集情形.

设 $\alpha = (A_1, \dots, A_k)$ 是一有序 k-多项式组, $A_i \in \Omega$,对任一 $P \in \Delta$,唯一存在 $F_q[x]/(P)$ 上 $r \times k$ 矩阵 $\mathcal{B}_P(\alpha)$,使得

$$\alpha = (1, P, P^2, \dots, P^{r-1}) \mathcal{Z}_P(\alpha) + P^r(\overline{A}_1, \overline{A}_2, \dots, \overline{A}_k)$$

定义 3 设 $A \in \Omega$, $A \neq 1$, $\alpha = (A_1, \dots, A_k)$, $A_i \in \Omega$, 称 $\alpha = A_r$ 阶互素, 记作 $(\alpha, A)_r = 1$. 如果 A 的任一不可约因子 $P \in \Delta$, 矩阵 $\mathscr{B}_{\alpha}(\alpha)$ 的每一个行向量都是非零的.

定理 4 设 $A \in r$ -powerful 多项式, $A \in \Omega$,则与 A r 阶互素的 $\alpha = (A_1, A_2, \dots, A_k)$, $\deg A_i < \deg A$ 的个数为

$$\Phi_{\mu_r}^{(k)}(A) = \sum_{D|A} |D|^k \mu_r(A/D) = |A|^k \prod_{\substack{P|A\\P \in \Delta}} (1 - |P|^{-k})^r$$

定义 4 设 $\Phi_r^{(k)}$ 为关于 τ 的 Φ -函数,如果 $\tau = \mu_r \cdot f$,其中 f 是一个完全可乘函数,则称 $\Phi_r^{(k)}$ 是一个 τ 阶 Φ -函数.

显然, 当 $A \to r$ -powerful 多项式时, $r \cap \Phi$ -函数具有下面的乘积公式

$$\Phi_{\mathsf{r}}^{(k)}(A) = |A|^k \prod_{\substack{P \mid A \\ P \in A}} \left(1 - \frac{f(P)}{|P|^k}\right)^{\mathsf{r}}$$

其中 $\tau = \mu_{\tau} \cdot f$.

定理 5 设 \mathscr{F}_P , f 的意义同定理 2. 对任意有序多项式组 $\alpha=(A_1,A_2,\cdots,A_k)$, $A_i\in\Omega$, 记 $(\alpha,A)_{\mathscr{F}}=1$, 如果对于 A 的任一素因子 $P\in\Delta$, $\mathscr{F}_P(\alpha)$ 中每一个行向量均不在 \mathscr{F}_P 中. 令 $\tau=\mu$, \bullet f, 则当 A 是 r-powerful 多项式时, $\Phi_r^{(k)}(A)$ 等于满足如下条件的有序多项式组 $\alpha=(A_1,\cdots,A_k)$ 的个数: $\deg A_i < \deg A_i$, $(\alpha,A)_{\mathscr{F}}=1$.

证明 设 $A = P_1^{r_1}$, …, $P_s^{r_s}$ 是 r-powerful 多项式; 其中 $P_s \in \Delta$, $P_i \neq P_s$ $(i \neq j)$, $e_i \geqslant r$. 设 $N_r(A,k)$ 为下列有序多项式组 α 的个数: $\alpha = (A_1, \dots, A_k)$, $A_i \in \Omega$, $\deg A_i < \deg A_i$ $(\alpha, A)_r = 1$. 由中国剩余定理⁽³⁾,对于任意有序多项式组 $\alpha_1 = (A_{11}, A_{12}, \dots, A_{1k})$; $\alpha_2 = (A_{21}, \dots, A_{2k})$, …, $\alpha_s = (A_{s1}, \dots, A_{sk})$,存在唯一的 $\alpha = (A_1, \dots, A_k)$, $\deg A_i < \deg A_i$ 使得

$$\alpha \equiv \alpha_1 \pmod{P_1^{r_1}}, \ \alpha \equiv \alpha_2 \pmod{P_2^{r_2}}, \cdots, \alpha \equiv \alpha_s \pmod{P_s^{r_s}}$$

反之,对于任意 k-多项式组 α ,存在唯一的一组 α (mod P_i -)满足上述同余式. 因此(α , A)。=1 当且仅当(α , P_i -)。=1, 1 $\leq i \leq s$. 因此 $N_r(A,k)$ 关于 A 是可乘的.

为此只须对 $A=P^*$, $P \in \Delta$, $e \ge r$ 的情况讨论. 设 $\alpha = (A_1, A_2, \dots, A_k)$, $\deg A_i < \deg A_i$, $(\alpha, A)_r = 1$, 则 α 可唯一写成

$$\alpha = (1, P, P^2, \dots, P^{r-1}) \mathscr{B}_{P}(\alpha) + P^r(\overline{A}_1, \overline{A}_2, \dots, \overline{A}_k)$$

其中 $\mathscr{B}_{P}(\alpha)$ 是 $F_{\mathfrak{g}}[x]/(P)$ 上的 $r \times k$ 矩阵, $\deg \overline{A}_{i} < (e-r) \deg P$ $(i=1,2,\cdots,k)$. 设

$$\overline{A}_{\iota} = \sum_{m=0}^{(e-r)\deg P-1} \lambda_m x^m, \qquad \lambda_m \in F_q,$$

故 \overline{A}_i 有 $q^{(r-r)deg^p}=|P|^{r-r}$ 种选择.显然 $(\alpha,A)_r=1$ 当且仅当 $\mathscr{I}_P(\alpha)$ 的每一个行向量皆在 $(F_q(x)/(P))^k\setminus \mathscr{I}_P$ 中. 因此 α 的个数是

$$(|P|^k - f(P))^r (|P|^{r-r})^k = |P|^{rk} \left(1 - \frac{f(P)}{|P|^k}\right)^r$$

因此

$$N_r(A,k) = |A|^k \prod_{\substack{P \mid A \ P \in \Delta}} \left(1 - \frac{f(P)}{|P|^k}\right)^r$$
 证毕

在定理 5 中,取 r=1,则得定理 2. 取 $\mathscr{F}_{p}=\{0\}$ 及 $\mathscr{F}_{p}=\{0,0,\cdots,0\}$ (k 维零向量),则分别得定理 3 及定理 4.

例1 在定理 5 中,取 r=1, k=1,

$$\mathcal{F}_{P} = \{a_{1} + (P), a_{2} + (P), \dots, a_{q} + (P)\} \subset F_{q}(x)/(P)$$

其中 a_1, a_2, \dots, a_q 为 F_q 中全部元素. 则

$$\Phi_{\mathsf{r}}(A) = |A| \prod_{\substack{P \mid A \\ P \in \Delta}} \left(1 - \frac{f(P)}{|P|} \right) = |A| \prod_{\substack{P \mid A \\ P \in \Delta}} (1 - q^{1 - \mathsf{deg}P})$$

是 $F_q[x]$ 中满足如下条件的 B 的个数: $\deg B < \deg A$,与 A 互素,且减去任一常数后仍与 A 互素。

感谢王军教授对本文工作的指导与帮助.

参考文献

- 1 王 军,徐利治. 怎样推广 Euler Ø-函数,全国第五届组合数学学术会议论文,上海,1994.
- 2 Hsu L C. A difference-operational appoach to the Möbius inversion formulae. Fibonacci Quarterly, 1995, 30(2): 169~173
- 3 Lidl R, Niederreiter H. Finite Fields. Addison-Wesley: Reading MA, 1983.

Euler functions in finite fields

Feng Hong

(Dept. of Applied Mathematics, DUT)

Abstract The generalized Euler-type functions in finite fields are given by using the method of inversion. Based on this condition, some results on the generalized Euler-type functions are shown in a polynomial ring over finite fields analytically.

Key Words: Euler Φ -functions; Mobius functions; convolutions