INSTITUTO POLITÉCNICO NACIONAL, ESCUELA SUPERIOR DE CÓMPUTO 2da EVALUACIÓN DE MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA

Alumno(a):		Octubre 15 de 2011
Número de Boleta:	Grupo:	Calificación
Profesor:		"XX"
NO SE DEDMITE EL LISO DE	NINCLIN TIPO DE FORM	III ARIO NI CALCIII ADORA

RESOLVER 3 PROBLEMAS, EL PROBLEMA MARCADO CON (*) ES OBLIGATORIO.

- (*) 1.- Dada la función $f(z) = \frac{3}{(z-1)(z-2)}$. Encuentre una serie Taylor y una serie de Laurent, indicando en cada uno la región de validez.
- 2.- Resolver la siguiente integral,

$$\int_{-\infty}^{\infty} \frac{dx}{\left(x^2 + 1\right)^2}$$

3.- Resolver la siguiente integral,

$$\int_{0}^{2\pi} \frac{d\theta}{A + Bsen\theta} \, .$$

Donde A > B > 0 y A & B reales.

4.- Evaluar la siguiente integral

$$\int_{\gamma} \frac{e^z}{\left(z^2+1\right)^2} dz$$

donde $\gamma:|z|=2$. NO PUEDE USAR LAS FÓRMULAS INTEGRALES DE CAUCHY.

INSTITUTO POLITÉCNICO NACIONAL, ESCUELA SUPERIOR DE CÓMPUTO 2da EVALUACIÓN DE MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA

Alumno(a):		Octubre 15 de 2011	
Número de Boleta:	Grupo:	Calificación	
D C		CATATA	777
Profesor:		"XXX	•
NO SE PERMITE EL USO DE	NINGÚN TIPO DE FORM	21212	•

- (*) 1.- Dada la función $f(z) = \frac{1}{(z-2)(z-3)}$. Encuentre una serie Taylor y una serie de Laurent, indicando en cada uno la región de validez.
- 2.- Resolver la siguiente integral,

$$\int_{-\infty}^{\infty} \frac{dx}{\left(x^2 + 4\right)^2}$$

3.- Resolver la siguiente integral,

$$\int_{-\pi}^{\pi} \frac{d\theta}{A + B\cos\theta}$$

donde $A > B \ge 0$.

4.- Evaluar la siguiente integral

$$\int_{\gamma} \frac{z^2 - 2z}{(z+1)(z+4)^2} dz$$

donde γ es cualquier trayectoria que encierra a un polo de la función. NO PUEDE USAR LAS FÓRMULAS INTEGRALES DE CAUCHY.

INSTITUTO POLITÉCNICO NACIONAL, ESCUELA SUPERIOR DE CÓMPUTO 2da EVALUACIÓN DE MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA

Alumno(a):		Octubre 15 de 2011
Número de Boleta:	Grupo:	Calificación
Profesor:	•	"X"
NO SE PERMITE EL LISO DE	NINCLIN TIPO DE FORM	III.ARIO NI CALCIII.ADORA

RESOLVER 3 PROBLEMAS, EL PROBLEMA MARCADO CON (*) ES OBLIGATORIO.

- (*) 1.- Dada la función $f(z) = \frac{1}{z-1} \frac{1}{z-2}$. Encuentre una serie Taylor y una serie de Laurent, indicando en cada uno la región de validez.
- 2.- Resolver la siguiente integral,

$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} \, dx$$

3.- Resolver la siguiente integral,

$$\int_{0}^{2\pi} \frac{d\theta}{A + Bsen\theta}.$$

Donde A > B > 0 y A & B reales.

4.- Calcular la siguiente integral compleja.

$$\int_C \frac{1+z}{z^3(2-z)^2} dz,$$

donde el contorno C, es cualquier contorno que encierra a un polo de la función. NO PUEDE USAR LAS FÓRMULAS INTEGRALES DE CAUCHY.

INSTITUTO POLITÉCNICO NACIONAL, ESCUELA SUPERIOR DE CÓMPUTO 2da Evaluación de MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA

Alumno (a):		
Número de Boleta:	Grupo:	Calificación
Profesor:		EXAMEN "XXX"
NO SE PERMITE EL USO DE	NINGÚN TIPO DE FORM	ULARIO NI CALCULADORA
NI COSA PARECIDA. El prob	lema 3 es OBLIGATORIO,	resolver solamente 3 problemas.

- 1.- a) Demostrar que $v(x, y) = 3x^2y y^3$ es armónica. Encuentre una función u(x, y) tal que f(z) = u + iv sea analítica.
 - b) Calcule la $f'(z) = \frac{df}{dz}$ y exprese la función f(z) y la derivada en términos de la variable z.
- Encuentre los primeros cuatro términos distintos de cero de la serie de Taylor de la siguiente función alrededor del punto indicado.

$$f(z) = \frac{3}{(z+1)(z-i)}$$
, en $z_0 = 2i$.

3.- Calcule la siguiente integral

$$\int_{\gamma} \frac{z^2 + z}{(z - i)^2 (z + 1)^4} dz$$

Siendo γ cualquier contorno cerrado que encierre a una singularidad.

NO USAR LA FÓRMULA INTEGRAL DE CAUCHY, APLIQUE EL TEOREMA DEL RESIDUO, CALCULANDO EL RESIDUO HACIENDO EL DESARROLLO EN SERIES LAURENT RESPECTIVO.

4.- a) Calcule la integral
$$\int_{\gamma} f(z)dz$$
, donde $f(z) = \frac{e^z + z}{z^2(z-4)^4}$ y γ está dado por:
a) $|z-j| \le 1/2$.

b)
$$|z| < 2$$
.

Justifique correctamente sus resultados.

b) Calcular la siguiente integral
$$\int_{0}^{2\pi} \frac{d\theta}{\lambda + sen\theta}$$

- 5.- calcule la integral $\int_{\gamma} \frac{dz}{(z-a)^n}$, donde γ está dado por |z-a|=b.
 - a) Si n es cualquier entero distinto de 1.
 - b) Si n = 1.
 - c) Resolver la siguiente integral $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 4)^2}$

INSTITUTO POLITÉCNICO NACIONAL, ESCUELA SUPERIOR DE CÓMPUTO 2da Evaluación de MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA

Alumno (a):		
Número de Boleta:	Grupo:	Calificación
Profesor:		EXAMEN "XXX"
NO SE PERMITE EL USO DE	NINGÚN TIPO DE FORM	ULARIO NI CALCULADORA
NI COSA PARECIDA. El prob	lema 3 es OBLIGATORIO,	resolver solamente 3 problemas.

- 1.- a) Demostrar que $v(x, y) = 3x^2y y^3$ es armónica. Encuentre una función u(x, y) tal que f(z) = u + iv sea analítica.
 - b) Calcule la $f'(z) = \frac{df}{dz}$ y exprese la función f(z) y la derivada en términos de la variable z.
- 2.- Encuentre los primeros cuatro términos distintos de cero de la serie de Taylor de la siguiente función alrededor del punto indicado.

$$f(z) = \frac{1}{z(z-4i)}$$
, en $z_0 = 2i$.

3.- Calcule la siguiente integral

$$\int_{\gamma} \frac{e^z}{\left(z^2+1\right)^2} dz$$

Siendo y cualquier contorno cerrado que encierre a una singularidad.

NO USAR LA FÓRMULA INTEGRAL DE CAUCHY, APLIQUE EL TEOREMA DEL RESIDUO, CALCULANDO EL RESIDUO HACIENDO EL DESARROLLO EN SERIES LAURENT RESPECTIVO.

4.- a) Calcule la integral $\int_{\gamma} f(z)dz$, donde $f(z)=\frac{sen(z)}{(z-1)^4}$ y γ está dado por: a) $|z-j| \le 1/2$. b) |z| < 2.

Justifique correctamente sus resultados.

- b) Calcular la siguiente integral $\int_{0}^{2\pi} \frac{d\theta}{\lambda + sen\theta}$
- 5.- calcule la integral $\int_{\gamma} \frac{dz}{(z-a)^n}$, donde γ está dado por |z-a|=b.
 - a) Si n es cualquier entero distinto de 1.
 - b) Si n = 1.
 - c) Resolver la siguiente integral $\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^2}$