

Virtual, October 10-21, 2020

Miniature Electromagnetic Sensor Nodes for Wireless Surgical Navigation Systems

Hyunwoo Park, CheolJun Park, Soon-Jae Kweon, Ji-Hoon Suh, Jaesuk Choi, and Minkyu Je

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Outline

Introduction

- Surgical Navigation System
- Previous Work

Design and Implementation

- EM Sensor Node System
- Analog Signal Processing
- Digital Signal Processing
- Wireless Communication

Measurement Results

- Experimental Environment
- Test Result

Conclusion

Outline

Introduction

- Surgical Navigation System
- Previous Work

Design and Implementation

- EM Sensor Node System
- Analog Signal Processing
- Digital Signal Processing
- Wireless Communication

Measurement Results

- Experimental Environment
- Test Result
- Conclusion

Surgical Navigation System

Infrared stereo camera tracking

Infrared stereo camera tracking

- Infrared stereo camera tracking
 - Pros
 - Used widely and proven effective

- Infrared stereo camera tracking
 - Pros
 - Used widely and proven effective
 - Cons
 - Need to secure the line of sight between the camera and markers
 - Bulky optical markers

Tracking system based on EM sensors

Tracking system based on EM sensors

[3]

- Tracking system based on EM sensors
 - Pros
 - No need for line-of-sight

[3]

- Tracking system based on EM sensors
 - Pros
 - No need for line-of-sight
 - Cons
 - > Inconvenience for surgeons, caused by wires in the wired system
 - Become more serious as the number of sensors increases

[3]

- Tracking system based on EM sensors
 - Pros
 - Not needed for line-of-sight
 - Cons
 - In wired system, Incurring inconvenience to surgeons by wires
 - As a large of sensor nodes are used, the problem is to be serious

Sensor node is wireless and miniaturized!!

Tracking system based on EM sensors

- Structure
 - > Field generator (3 coils)
 - Sensor node (3 coils)

Operation Principle

- EM fields with different frequencies are generated by three coils in the field generator
- ➤ The EM fields by the field generator
 → Electromotive forces induced to three coils in the sensor node
- Different frequency components of the induced voltage signals
 → Position and orientation of the sensor node

Outline

Introduction

- Surgical Navigation System
- Previous Work

Design and Implementation

- EM Sensor Node System
- Analog Signal Processing
- Digital Signal Processing
- Wireless Communication

Measurement Results

- Experimental Environment
- Test Result
- Conclusion

EM Sensor Node System

2020 IEEE International Symposium on Circuits and Systems

Wireless Communication

Wireless Communication

Wireless Communication

Outline

Introduction

- Surgical Navigation System
- Previous Work

Design and Implementation

- EM Sensor Node System
- Analog Signal Processing
- Digital Signal Processing
- Wireless Communication

Measurement Results

- Experimental Environment
- Test Result
- Conclusion

2020 IEEE International Symposium on Circuits and Systems

Experimental Environment

Experiment	Coil	Standard Deviation (σ , $N^a = 200$) (mV)		
		Frequency 1 17.281kHz	Frequency 2 18.481kHz	Frequency 3 19.682kHz
Position (x-axis)	1	0.1777	0.3143	0.3605
	2	0.3271	0.2934	0.2375
	3	0.1996	0.3830	0.2021
Position (y-axis)	1	0.1691	0.2983	0.3160
	2	0.3192	0.3806	0.2563
	3	0.1937	0.3098	0.1748
Position (z-axis)	1	0.2390	0.2175	0.3026
	2	0.2614	0.3189	0.2489
	3	0.1957	0.3720	0.1964
Orientation (yaw)	1	0.2491	0.2008	0.3568
	2	0.2604	0.3480	0.2717
	3	0.2133	0.4113	0.1912
Orientation (pitch)	1	0.1874	0.3508	0.3785
	2	0.3077	0.3874	0.2391
	3	0.2242	0.3888	0.2138

a. The number of samples (N)

The accuracy is 100%, 98.75%, 100% according to the movement of each of the x-, y-, z-axes

The accuracy is 99.58%, 99.92% according to the rotation around yaw and pitch

Outline

Introduction

- Surgical Navigation System
- Previous Work

Design and Implementation

- EM Sensor Node System
- Analog Signal Processing
- Digital Signal Processing
- Wireless Communication

Measurement Results

- Experimental Environment
- Test Result

Conclusion

- Miniaturized
 - Volume: 8.84 cm³(Diameter: 3.80cm, Height: 0.78cm)

- Miniaturized
 - Volume: 8.84 cm³ (Diameter: 3.80cm, Height: 0.78cm)
- Using wireless communication

- Miniaturized
 - Volume: 8.84 cm³ (Diameter: 3.80cm, Height: 0.78cm)
- Using wireless communication
- High accuracy
 - 99.58% for position sensing
 - 99.92% for orientation sensing

Developed EM sensor node

- Miniaturized
 - Volume: 8.84 cm³ (Diameter: 3.80cm, Height: 0.78cm)
- Using wireless communication
- High accuracy
 - 99.58% for position sensing
 - 99.92% for orientation sensing

Miniature EM sensor node providing high-accuracy sensing performances and wireless communication capability

References

- [1] Ping Zhou, Yue Liu, and Yongtian Wang, "Pipeline Architecture and Parallel Computation-Based Real-Time Stereovision Tracking System for Surgical Navigation," *IEEE Transactions on Instrumentation and Measurement*, vol. 59, no. 5, pp. 1240-1250, May 2010.
- [2] Rongqian Yang, Zhigang Wang, Sujuan Liu, and Xiaoming Wu, "Design of an Accurate Near Infrared Optical Tracking System in Surgical Navigation," *Journal of Lightwave Technology*, vol. 31, no. 2, pp. 223-231, January 2013.
- [3] Litao Zhang, Weidong Wang, Dongmei Wu, and Zhijiang Du, "Visualization and Real-time Tracking of Bone Drill by Electromagnetic Position Sensors," in *Proceedings of International Conference on Complex Medical Engineering*, May 2013.
- [4] Alfred M. Franz, Tamás Haidegger, Wolfgang Birkfellner, Kevin Cleary, Terry M. Peters, and Lena Maier-Hein, "Electromagnetic Tracking in Medicine-A Review of Technology, Validation, and Applications," *IEEE Transactions on Medical Imaging*, vol. 33, no. 8, pp. 1702-1725, May 2014.
- [5] Mao Li, Shuang Song, Chao Hu, Dongmei Chen, and Max Q.-H. Meng, "A Novel Method of 6-DoF Electromagnetic Navigation System for Surgical Robot," in *Proceedings of World Congress on Intelligent Control and Automation*, July 2010.
- [6] "G4." [Online]. Available: https://polhemus.com/_assets/img/G4_Brochure.pdf.

Thank you