Demographic and Behavioral Data Analysis

Setup

Load data

```
variables_all <- read.table(here("data/variables_TD_N50.txt"), sep = "\t", header = T)
posttest_long <- read.table(here("data/posttest_N50.txt"), header = T)</pre>
```

Demographic information

```
# gender
table(variables_all$gender[!duplicated(variables_all$Subject)])
##
## 1 2
## 30 20
# age, mean FD
variables_all[!duplicated(variables_all$Subject),] %>%
    summarise(mean(age),sd(age),max(age),min(age), mean(mean_FD),
          sd(mean_FD),max(mean_FD),min(mean_FD))
    mean(age) sd(age) max(age) min(age) mean(mean_FD) sd(mean_FD) max(mean_FD)
                                               0.22786 0.07765465
## 1
      10.3822 1.332384
                          12.97
                                    8.18
   min(mean_FD)
##
## 1
           0.096
```

```
# correlation between age and mean FD
rr <- cor.test(variables all$age[!duplicated(variables all$Subject)],</pre>
     variables_all$mean_FD[!duplicated(variables_all$Subject)])
rr
##
## Pearson's product-moment correlation
##
## data: variables_all$age[!duplicated(variables_all$Subject)] and variables_all$mean_FD[!duplicated(v
## t = -1.7305, df = 48, p-value = 0.08996
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.48777851 0.03861993
## sample estimates:
##
## -0.2423328
r_to_d(rr$estimate)
##
## -0.4995558
## plots
# age distribution
ggplot(variables_all[!duplicated(variables_all$Subject),], aes(x=age)) +
    geom_histogram(binwidth = 1,boundary = 0, closed = "left",
               colour="black",fill="#CCFFFF") +
    theme(panel.background = element_blank(),
          axis.line = element line(colour = "black")) +
    scale_y_continuous(breaks=seq(0, 16, 4),limits = c(0,16)) +
    scale_x_continuous(breaks=seq(8, 13, 1),limits = c(8,13)) +
    labs(x = "Age (years)", y = "Numbers of participants") +
    theme(axis.text = element_text(size = 16, face = "bold"),
          axis.title = element_text(size = 18, face = "bold") ) +
    ggtitle("Age distribution of participants") +
    theme(plot.title = element_text(hjust = 0.5),
          text = element_text(size = 20, face = "bold"))
```

Age distribution of participants

Correlation between age and mean FD

Ethnicity, race, and income

```
##
        subjectid
                               ethnicity
## 1
     RED_CAT_112 Not Hispanic or Latino
     RED_CAT_123 Not Hispanic or Latino
## 5 RED_CAT_124
                      Hispanic or Latino
## 6 RED_CAT_118 Not Hispanic or Latino
## 11 RED_CAT_133 Not Hispanic or Latino
## 12 RED_CAT_150 Not Hispanic or Latino
##
## 1
     American Indian or Alaskan Native, Black or African American
## 2
                                  Black or African American, Asian
```

```
## 5
                                                 White or Caucasian
## 6
                                                 White or Caucasian
## 11
                                                 White or Caucasian
## 12
                                                 White or Caucasian
                           income
                                             Ethnicity
## 1 more than $75,000 per year Not Hispanic/Latino
## 2 more than $75,000 per year Not Hispanic/Latino
## 5 more than $75,000 per year
                                      Hispanic/Latino
## 6 more than $75,000 per year Not Hispanic/Latino
## 11 more than $75,000 per year Not Hispanic/Latino
## 12 more than $75,000 per year Not Hispanic/Latino
demog_cmnt_new$Ethnicity[demog_cmnt_new$ethnicity == "N"] <- "Not Hispanic/Latino"</pre>
demog_cmnt_new$Ethnicity[demog_cmnt_new$ethnicity == "H"] <- "Hispanic/Latino"</pre>
# race
demog_cat_new$Race[demog_cat_new$race == "Asian, White or Caucasian" |
           demog_cat_new$race == "American Indian or Alaskan Native, Black or African American" |
           demog cat new$race == "Black or African American, White or Caucasian" |
           demog_cat_new$race == "Black or African American, Asian"] <- "more than one race"</pre>
demog_cat_new$Race[demog_cat_new$race == "White or Caucasian"] <- "White/Caucasian"</pre>
demog_cat_new$Race[demog_cat_new$race == "Black or African American"] <- "Black/African American"</pre>
demog cmnt new$Race <- demog cmnt new$race</pre>
demog cmnt new$Race[demog cmnt new$race == "W"] <- "White/Caucasian"</pre>
demog_cmnt_new$Race[demog_cmnt_new$race == "B"] <- "Black/African American"</pre>
demog_cmnt_new$Race[demog_cmnt_new$race == "A, W" |
            demog_cmnt_new$race == "B, W" ] <- "more than one race"</pre>
# income
demog_cmnt_new$Income <- demog_cmnt_new$income</pre>
demog_cmnt_new$Income[demog_cmnt_new$income == "7"] <- ">75k"
demog_cmnt_new$Income[demog_cmnt_new$income == "6"] <- "65k-75k"</pre>
demog_cmnt_new$Income[demog_cmnt_new$income == "4"] <- "45k-55k"</pre>
demog_cmnt_new$Income[is.na(demog_cmnt_new$income)] <- "Unknown"</pre>
demog_cat_new$Income[demog_cat_new$income == "more than $75,000 per year"] <- ">75k"
demog cat new$Income[demog cat new$income == "$15, 000-$25, 000 per year"] <- "15k-25k"
\label{lemog_cat_new} $$\operatorname{Income}[\operatorname{demog\_cat_new}] < -"35k-45k"$$
demog_cat_new$Income[demog_cat_new$income == ""] <- "Unknown"</pre>
demog_all <- rbind.data.frame(demog_cmnt_new[,c("subjectid","Ethnicity", "Race", "Income")],</pre>
                   demog_cat_new[,c("subjectid","Ethnicity", "Race","Income")])
demog_all$Ethnicity <- factor(demog_all$Ethnicity, levels = c("Not Hispanic/Latino",</pre>
                                    "Hispanic/Latino", "Unknown"))
demog_all$Race <- factor(demog_all$Race, levels = c("White/Caucasian", "Black/African American",</pre>
                             "more than one race"))
demog_all$Income <- factor(demog_all$Income, levels = c(">75k","65k-75k","45k-55k",
                             "35k-45k","15k-25k","Unknown"))
a <- table(demog_all$Ethnicity)</pre>
b <- table(demog all$Race)</pre>
inc <- table(demog_all$Income)</pre>
```

```
print(paste0((a["Hispanic/Latino"]/50)*100,"% as Hispanic/Latino"))
## [1] "10% as Hispanic/Latino"
print(paste0((b["White/Caucasian"]/50)*100,"% as White/Caucasian"))
## [1] "60% as White/Caucasian"
print(paste0((b["Black/African American"]/50)*100,"% as Black/African American"))
## [1] "22% as Black/African American"
print(paste0((b["more than one race"]/50)*100,"% as more than one race"))
## [1] "18% as more than one race"
print(paste0((inc[">75k"]/50)*100,"% reporting over $75,000 in total family income"))
## [1] "86% reporting over $75,000 in total family income"
print(paste0(((inc["65k-75k"] + inc["45k-55k"] + inc["35k-45k"])/50)*100,
         "% reporting family income between $35,000-$75,000"))
## [1] "6% reporting family income between $35,000-$75,000"
print(paste0((inc["15k-25k"]/50)*100, "% reporting family income less than $35,000"))
## [1] "4% reporting family income less than $35,000"
print(pasteO((inc["Unknown"]/50)*100, "% did not report on income"))
## [1] "4% did not report on income"
In-scanner performance
# mean RT and accuracy
variables_all %>%
    summarise(mean(RT),sd(RT),mean(ACC per), sd(ACC per))
    mean(RT)
                 sd(RT) mean(ACC_per) sd(ACC_per)
```

7.49084

90.16661

1 2.043435 0.3197043

```
# regression analysis on RT
anova(lme(RT ~ social*age + mental + gender + mean_FD + IQ,
   random = ~1|Subject,
   data = variables_all))
            numDF denDF F-value p-value
## (Intercept) 1 147 3449.402 <.0001
                         27.080 <.0001
## social
               1 147
                         27.059 <.0001
## age
                   45
                1
               1 147
                        0.339 0.5614
## mental
## gender
               1 45
                        1.430 0.2380
## mean_FD
               1 45
                        0.167 0.6852
## IQ
               1
                    45
                          1.718 0.1966
## social:age
               1 147
                         0.163 0.6872
as.matrix(by(variables_all[,c("age","RT")], variables_all$MentalState,
       function(x) {cor.test(x$age, x$RT)}))
## : CM
## :
##
## Pearson's product-moment correlation
##
## data: x$age and x$RT
## t = -4.409, df = 48, p-value = 5.831e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7092431 -0.3039618
## sample estimates:
##
        cor
## -0.5368853
##
## -----
## : CNM
## :
##
## Pearson's product-moment correlation
## data: x$age and x$RT
## t = -5.1098, df = 48, p-value = 5.54e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7482830 -0.3776036
## sample estimates:
##
        cor
## -0.5935646
##
## -----
## : PM
## :
##
## Pearson's product-moment correlation
```

##

```
## data: x$age and x$RT
## t = -5.2166, df = 48, p-value = 3.841e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7536694 -0.3881461
## sample estimates:
          cor
## -0.6015072
##
## --
## : PNM
## :
##
## Pearson's product-moment correlation
##
## data: x$age and x$RT
## t = -4.6228, df = 48, p-value = 2.875e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7218574 -0.3272382
## sample estimates:
         cor
## -0.5550304
# post-hoc analysis on RT: mean RT of collapsed conditions between Peer vs. Character condition
beha <- as.data.frame(matrix(0,100,0))</pre>
beha$subj <- rep(variables_all$Subject[!duplicated(variables_all$Subject)],2)
behasocial \leftarrow rep(c("P","C"), each = 50)
beha$RT <- c((variables_all[variables_all$MentalState == "PM","RT"] +
    variables_all[variables_all$MentalState == "PNM", "RT"])/2,
    (variables_all[variables_all$MentalState == "CM","RT"] +
        variables_all[variables_all$MentalState == "CNM","RT"])/2)
tt0 <- t.test(beha[beha$social == "P", "RT"], beha[beha$social == "C", "RT"],
          paired = T)
print(paste0("Peer vs. Character differences = ", round(tt0$estimate[1],2)))
## [1] "Peer vs. Character differences = -0.08"
print(paste0("t=", round(tt0$statistic,1), " p=",round(tt0$p.value,5)))
## [1] "t=-4.7 p=2e-05"
# regression analysis on accuracy
anova(lme(ACC_per ~ social*age + mental + gender + mean_FD + IQ,
      random = ~1|Subject,
     data = variables_all))
##
               numDF denDF
                             F-value p-value
## (Intercept)
               1 147 23396.459 <.0001
                   1
                               2.042 0.1551
## social
                       147
```

```
1 45
## age
                             1.770 0.1900
                1 147
## mental
                             3.277 0.0723
## gender
                1 45
                             0.042 0.8386
                             2.487 0.1218
## mean_FD
                1 45
                            24.331 <.0001
## IQ
                 1
                      45
## social:age
                1 147
                             5.818 0.0171
anova(lme(ACC_per ~ age + mental + gender + mean_FD + IQ,
     random = ~1|Subject,
     data = variables_all[variables_all$social == "C",]))
##
              numDF denDF
                           F-value p-value
## (Intercept)
                  1
                      49 12940.761 <.0001
                      45
                            5.460 0.0240
## age
                  1
## mental
                  1
                    49
                             2.069 0.1566
                             0.509 0.4794
## gender
                  1
                      45
## mean_FD
                 1
                      45
                             0.392 0.5346
## IQ
                      45
                            13.133 0.0007
anova(lme(ACC_per ~ age + mental + gender + mean_FD + IQ,
     random = ~1|Subject,
     data = variables_all[variables_all$social == "P",]))
              numDF denDF F-value p-value
## (Intercept)
                1 49 18531.579 <.0001
                 1 45
                             0.165 0.6869
## age
## mental
                1
                    49
                             1.220 0.2747
                            1.450 0.2349
## gender
                1 45
## mean_FD
                1 45
                            4.198 0.0463
## IQ
                1 45 19.735 0.0001
# boxplots
# function
boxplot_inscan <- function(data,x,y,n,beh,title) {</pre>
   p <- ggplot(data, aes_string(x, y, fill=x)) +</pre>
       geom_boxplot() +
       scale_fill_manual(values = c("#e66101","#fdb863","#5e3c99","#b2abd2")) +
       labs(y=beh, x="") +
       coord_cartesian(ylim = n)+
       theme(axis.text.x = element_blank(),
             axis.ticks.x = element_blank(),
             axis.text.y =element_text(size=22,face="bold"),
             axis.title.y =element_text(size=24,face="bold")) +
       theme(legend.title=element_blank()) +
       theme(panel.background = element_blank(),
             axis.line = element_line(colour = "black")) #remove background
   print(p)
}
variables_all$MentalState <- factor(variables_all$MentalState,levels = c("PM","PNM","CM","CNM"))</pre>
boxplot_inscan(variables_all, "MentalState", "ACC_per", c(70,100), c("% Correct"), c("Accuracy"))
```


boxplot_inscan(variables_all, "MentalState", "RT", c(1,3), c("Seconds"), c("Reaction Time"))

Posttest questionnaire

```
# subjective reports assessed by the post-scan questionnaire
mean_P <- sapply(4:9,function(x) summary(posttest_long[posttest_long$social == "Peer",x]))
sd_P <- sapply(4:9,function(x) sd(posttest_long[posttest_long$social == "Peer",x]))
mean_C <- sapply(4:9,function(x) summary(posttest_long[posttest_long$social == "Character",x]))
sd_C <- sapply(4:9,function(x) sd(posttest_long[posttest_long$social == "Character",x]))
tt <- sapply(4:9,function(x) wilcox.test(posttest_long[posttest_long$social == "Peer",x],</pre>
```

```
posttest_long[posttest_long$social == "Character",x],
                        paired = T))
reports <- as.data.frame(matrix(0, 6, 8))
colnames(reports) <- c("Measure", "P.median", "P.mean±sd", "P.range", "C.median",</pre>
                "C.mean±sd", "C.range", "PvsC")
for (i in 1:length(4:9)) {
    reports[i,1] <- colnames(posttest_long)[3+i]</pre>
    reports[i,2:8] <- c(mean_P["Median",i], paste0(mean_P["Mean",i],"±",round(sd_P[i],2)),</pre>
               pasteO(mean_P["Min.",i],"-",mean_P["Max.",i]),mean_C["Median",i],
               paste0(mean_C["Mean",i],"±",round(sd_C[i],2)),
               pasteO(mean_C["Min.",i],"-",mean_C["Max.",i]),
               round(tt[,i]$p.value,4))
}
posttest <- c("like","likeguess","agreed","wantsee","attention","hardguess")</pre>
1 <- match(posttest, reports[,1])</pre>
knitr::kable(reports[1,])
```

	Measure	P.median	P.mean±sd	P.range	C.median	C.mean±sd	C.range	PvsC
1	like	4.5	4.3 ± 0.81	2-5	3	2.76 ± 1.04	1–5	0
4	likeguess	4	$3.84{\pm}0.96$	1-5	3	$3.26{\pm}1.12$	1-5	9e-04
6	agreed	4	$4.26{\pm}0.83$	2-5	4	$3.96 {\pm} 0.88$	2-5	0.0312
5	wantsee	4	$4.08 {\pm} 0.92$	2-5	3	$3.38{\pm}1.23$	1-5	0
2	attention	4	$3.9 {\pm} 0.91$	1-5	3	$3.4 {\pm} 0.97$	1-5	0.0019
3	hardguess	2	$2.38{\pm}1.23$	1-5	2	2.2 ± 1.29	1-5	0.3831

```
## variability of subjective reports of enjoyment
# percent of subjects who rated 4 or 5 on Liked Chatting
k <- length(which(posttest_long$like[posttest_long$social == "Peer" ]>3))
(k/50)*100

## [1] 82

# percent of subjects who rated 4 or 5 when their answer matched the answer from the peer
k <- length(which(posttest_long$agreed[posttest_long$social == "Peer" ]>3))
(k/50)*100

## [1] 80

# subjective reports when answering questions about the character
m <- table(posttest_long$like[posttest_long$social == "Character" ])
(m/50)*100</pre>
```

##

1 2 3 4 5 ## 12 24 48 8 8

```
n \leftarrow as.numeric((m/50)*100)
print(paste0(n[1]+n[2], "% rated 1 or 2"))
## [1] "36% rated 1 or 2"
print(paste0(n[3],"% rated 3"))
## [1] "48% rated 3"
print(paste0(n[4]+n[5], "% rated 4 or 5"))
## [1] "16% rated 4 or 5"
## regression analysis
posttest_long_new <- cbind.data.frame(posttest_long[rep(rownames(posttest_long),</pre>
                             each = 2),],
                variables_all[,c("gender","IQ","RT","ACC_per")])
# Liked Chatting
ano1 <- anova(lme(like ~ social*Age + gender + IQ, random = ~1|Subj,
          data = posttest_long_new))
# Liked Guessing
ano2 <- anova(lme(likeguess ~ social*Age + gender + IQ, random = ~1|Subj,
          data = posttest long new))
# Felt When Matched
ano3 <- anova(lme(agreed~ social*Age + gender + IQ, random = ~1|Subj,
      data=posttest_long_new))
# Wanted to See
ano4 <- anova(lme(wantsee ~ social*Age + gender + IQ,random = ~1|Subj,
          data=posttest_long_new))
# Paid Attention
ano5 <- anova(lme(attention ~ social*Age + gender + IQ, random = ~1|Subj,
      data = posttest_long_new))
# Perceived Difficulty
ano6 <- anova(lme(hardguess ~ social*Age + gender + IQ,random = ~1|Subj,
          data = posttest_long_new))
# multiple comparisons correction
c(ano1$`p-value`[6],ano2$`p-value`[6],ano4$`p-value`[6],
  ano5$`p-value`[6],ano6$`p-value`[6])
## [1] 2.212346e-02 1.956633e-01 4.782630e-01 1.195158e-02 8.648441e-05
## [6] 6.460372e-01
p_{\text{pusted}} \leftarrow p.adjust(c(ano1^p_{\text{p-value}}[6], ano2^p_{\text{p-value}}[6], ano3^p_{\text{p-value}}[6], ano4^p_{\text{p-value}}[6],
       ano5$`p-value`[6],ano6$`p-value`[6]),method = "fdr")
reports <- c("Liked Chatting", "Liked Guessing", "Felt When Matched",
         "Wanted to See", "Paid Attention", "Perceived Difficulty")
which(pjusted < 0.05)
```

```
reports[which(pjusted < 0.05)]
## [1] "Liked Chatting" "Wanted to See" "Paid Attention"
rbind.data.frame(ano1[6,],ano4[6,],ano5[6,])
##
               numDF denDF
                             F-value p-value
## social:Age
                       148 5.348077 0.0221
## social:Age1
                       148 6.477069 0.0120
                   1
## social:Age2
                       148 16.299305 0.0001
## post-hoc Spearman correlation
test1 <- by(posttest_long_new[,c("Age","like")], posttest_long_new$social,</pre>
   function(x) { cor.test(x$Age, x$like, method = "spearman")})
test2 <- by(posttest_long_new[,c("Age","likeguess")], posttest_long_new$social,</pre>
   function(x) { cor.test(x$Age, x$likeguess, method = "spearman")})
test3 <- by(posttest_long_new[,c("Age","agreed")], posttest_long_new$social,
   function(x) { cor.test(x$Age, x$agreed, method = "spearman")})
test4 <- by(posttest_long_new[,c("Age","wantsee")], posttest_long_new$social,</pre>
   function(x) { cor.test(x$Age, x$wantsee, method = "spearman")})
test5 <- by(posttest_long_new[,c("Age","attention")], posttest_long_new$social,</pre>
   function(x) { cor.test(x$Age, x$attention, method = "spearman")})
test6 <- by(posttest_long_new[,c("Age", "hardguess")], posttest_long_new$social,</pre>
   function(x) { cor.test(x$Age, x$hardguess, method = "spearman")})
posthoc_test <- data.frame(matrix(0,6,6))</pre>
posthoc_test <- rbind(cbind(round(ano1$`F-value`[6],3),round(ano1$`p-value`[6],3),</pre>
                round(test1$Character$estimate,3),
                round(test1$Character$p.value,3),
                round(test1$Peer$estimate,3),round(test1$Peer$p.value,3)),
                cbind(round(ano2$`F-value`[6],3),round(ano2$`p-value`[6],3),
                      round(test2$Character$estimate,3),
                      round(test2$Character$p.value,3),
                      round(test2$Peer$estimate,3),round(test2$Peer$p.value,3)),
                cbind(round(ano3$`F-value`[6],3),round(ano3$`p-value`[6],3),
                      round(test3$Character$estimate,3),
                      round(test3$Character$p.value,3),
                      round(test3$Peer$estimate,3),
                      round(test3$Peer$p.value,3)),
                cbind(round(ano4$`F-value`[6],3),round(ano4$`p-value`[6],3),
                      round(test4$Character$estimate,3),
                      round(test4$Character$p.value,3),
                      round(test4$Peer$estimate,3),
                      round(test4$Peer$p.value,3)),
                cbind(round(ano5$`F-value`[6],3),round(ano5$`p-value`[6],3),
                      round(test5$Character$estimate,3),
                      round(test5$Character$p.value,3),
                      round(test5$Peer$estimate,3),
                      round(test5$Peer$p.value,3)),
```

```
cbind(round(ano6$`F-value`[6],3),round(ano6$`p-value`[6],3),
                      round(test6$Character$estimate,3),
                      round(test6$Character$p.value,3),
                      round(test6$Peer$estimate,3),
                      round(test6$Peer$p.value,3)))
colnames(posthoc_test) <- c("interaction-F", "interaction-p", "Character-rho",</pre>
                "Character-p", "Peer-rho", "Peer-p")
rownames(posthoc_test) <- c("Liked Chatting","Liked Guessing","Felt When Matched",</pre>
         "Wanted to See", "Paid Attention", "Perceived Difficulty")
posthoc_test
##
                        interaction-F interaction-p Character-rho Character-p
## Liked Chatting
                                5.348
                                               0.022
                                                             0.218
                                                                          0.029
                                1.690
                                               0.196
                                                            -0.003
                                                                          0.975
## Liked Guessing
## Felt When Matched
                                0.505
                                               0.478
                                                            -0.139
                                                                          0.166
## Wanted to See
                                6.477
                                               0.012
                                                            -0.222
                                                                          0.026
## Paid Attention
                               16.299
                                               0.000
                                                             0.154
                                                                         0.127
## Perceived Difficulty
                                                                         0.000
                                0.212
                                               0.646
                                                            -0.428
                        Peer-rho Peer-p
## Liked Chatting
                          -0.154 0.126
## Liked Guessing
                          -0.074 0.466
## Felt When Matched
                          -0.102 0.314
## Wanted to See
                          -0.080 0.429
                          -0.223 0.026
## Paid Attention
## Perceived Difficulty
                          -0.433 0.000
posthoc_test[which(pjusted < 0.05),]</pre>
                  interaction-F interaction-p Character-rho Character-p Peer-rho
                          5.348
                                        0.022
                                                       0.218
                                                                   0.029
                                                                            -0.154
## Liked Chatting
## Wanted to See
                          6.477
                                        0.012
                                                      -0.222
                                                                   0.026
                                                                            -0.080
                         16.299
                                        0.000
                                                       0.154
                                                                   0.127
                                                                           -0.223
## Paid Attention
                  Peer-p
## Liked Chatting 0.126
## Wanted to See
                   0.429
## Paid Attention 0.026
posttest_interaction(posttest_long_new, "attention", "Paid Attention", "attention_age")
## 'geom_smooth()' using formula 'y ~ x'
```


posttest_interaction(posttest_long_new,"wantsee","Want to See","wantsee_age")

'geom_smooth()' using formula 'y ~ x'

posttest_interaction(posttest_long_new,"like","Like Chatting","likechatting_age")

posttest_interaction(posttest_long_new,"hardguess","Like Chatting","hardguess_age")

'geom_smooth()' using formula 'y ~ x'

posttest_interaction(posttest_long_new,"likeguess","Like Chatting","likeguess_age")

posttest_interaction(posttest_long_new,"agreed","Like Chatting","agreed_age")

```
## 'geom_smooth()' using formula 'y ~ x'
```



```
Mean 3rd Qu.
##
      Min. 1st Qu.
                    Median
                                                Max.
##
      1.00
              3.00
                       4.00
                               3.65
                                        4.00
                                                5.00
for (i in 1:6) {
    p <- ggplot(posttest_long, aes_string(x="social",y=measures[i],fill = "social")) +</pre>
        geom_boxplot() +
        labs(y="Rating") +
```


Correlations between mean RT and scial motivation

	$_{ m rho}$	p
Liked Chatting	-0.123	0.197
Liked Guessing	-0.065	0.327
Felt When Matched	-0.252	0.038
Wanted to See	-0.238	0.048
Paid Attention	-0.030	0.418

Functional Connectivity and Brain-Behavior Analysis

Setup

```
# load packages
packages <- c("here", "dplyr", "ggplot2", "ppcor", "tidyverse", "nlme", "multcomp", "xlsx")
lapply(packages, library, character.only = TRUE)

# load function
source(here("code/flm_FC.R"))
source(here("code/FC_scatterplot.R"))</pre>
```

Load data

```
mean_networks_FC <- read.table(here("data/mean_networks_FC.txt"), header = T)
mean_control_FC <- read.table(here("data/mean_control_FC.txt"), header = T)
variables_all <- read.table(here("data/variables_TD_N50.txt"), sep = "\t", header = T)</pre>
```

Within vs. between network

Regression analysis on within- and between-network connectivity

```
# the main effect of social interaction and interaction effects
flm1 <- flm FC(mean networks FC, "mental FC", "Age")</pre>
flm2 <- flm_FC(mean_networks_FC, "reward_FC", "Age")</pre>
flm3 <- flm_FC(mean_networks_FC, "between_FC", "Age")</pre>
flm4 <- flm_FC(mean_control_FC, "motor_FC", "Age")</pre>
flm5 <- flm_FC(mean_control_FC, "mirror_FC", "Age")</pre>
flm6 <- flm_FC(mean_control_FC, "salience_FC", "Age")</pre>
# summary of variance inflation factor
flm1[[1]]
##
                                                                                ΙQ
       socialP
                         age
                                 mentalNM
                                                 gender
                                                             \mathtt{mean}_{\mathtt{FD}}
     62.957537
                                               1.055093
                    1.348847
                                 1.000000
                                                            1.104513
                                                                         1.055296
## socialP:age
     63.169124
vlf_all <- as.data.frame(matrix(0, 6, 7))</pre>
vlf_all <- rbind(flm1[[1]],flm2[[1]],flm3[[1]],flm4[[1]],flm5[[1]],flm6[[1]])
rownames(vlf_all) <- c("mentalization", "reward", "between", "motor", "mirror", "salience")</pre>
knitr::kable(vlf_all)
```

	socialP	age	mentalNM	gender	mean_FD	IQ	socialP:age
mentalization	62.95754	1.348847	1	1.055093	1.104513	1.055296	63.16912
reward	62.95754	1.358689	1	1.055093	1.104513	1.055296	63.17897
between	62.95754	1.392987	1	1.055093	1.104513	1.055296	63.21326
motor	62.95754	1.471361	1	1.055093	1.104513	1.055296	63.29164
mirror	62.95754	1.376867	1	1.055093	1.104513	1.055296	63.19714
salience	62.95754	1.365470	1	1.055093	1.104513	1.055296	63.18575

```
# summary of the main regression results
flm_all <- as.data.frame(matrix(0,6,9))</pre>
flm all<-rbind(cbind(as.data.frame(flm1[[3]])[2,2:4],as.data.frame(flm1[[3]])[3,2:4],
             as.data.frame(flm1[[3]])[8,2:4]),
             cbind(as.data.frame(flm2[[3]])[2,2:4],as.data.frame(flm2[[3]])[3,2:4],
                   as.data.frame(flm2[[3]])[8,2:4]),
             cbind(as.data.frame(flm3[[3]])[2,2:4],as.data.frame(flm3[[3]])[3,2:4],
                   as.data.frame(flm3[[3]])[8,2:4]),
             cbind(as.data.frame(flm4[[3]])[2,2:4],as.data.frame(flm4[[3]])[3,2:4],
                   as.data.frame(flm4[[3]])[8,2:4]),
             cbind(as.data.frame(flm5[[3]])[2,2:4],as.data.frame(flm5[[3]])[3,2:4],
                   as.data.frame(flm5[[3]])[8,2:4]),
             cbind(as.data.frame(flm6[[3]])[2,2:4],as.data.frame(flm6[[3]])[3,2:4],
                   as.data.frame(flm6[[3]])[8,2:4]))
colnames(flm_all) <- c("social_df", "social_F-value", "social_p-value",</pre>
               "age_df", "age_F-value", "age_p-value",
               "social*age_df", "social*age_F-value", "social*age_p-value")
rownames(flm_all) <- c("mentalization", "reward", "between", "motor", "mirror", "salience")</pre>
knitr::kable(flm_all)
```

	social	social_F- df value	social_p- value	age (age_F- df value	age_p- value	social*age	_	F-social*age_p-
	Social_	ui vaiue	varue	age_c	ii varue	varue	social age	_ui vaiue	varue
mentaliza	tion 147	0.2004686	0.6550020	45	0.017253	90.8960807	147	9.401684	0.0025807
reward	147	0.0203753	0.8866893	45	0.308820	00.5811578	147	7.130540	0.0084315
between	147	0.4598243	0.4987721	45	0.502306	40.4821441	147	3.480606	0.0640849
motor	147	1.8618277	0.1744992	45	0.094208	80.7603091	147	1.053926	0.3062910
mirror	147	0.6907475	0.4072582	45	1.066688	30.3072136	147	2.860422	0.0929027
salience	147	0.4394368	0.5084325	45	3.753313	80.0589949	147	5.869676	0.0166202

	P_df	P_F-value	P_p-value	C_df	C_F-value	C_p-value
mentalization	45	1.4060972	0.2419291	45	1.6836125	0.2010576
reward	45	0.3563243	0.5535464	45	3.2473667	0.0782393
between	45	0.0433606	0.8359874	45	2.1716313	0.1475384
motor	45	0.0506730	0.8229154	45	0.7498698	0.3911110

```
P df P_F-value P_p-value
                                             C_df C_F-value
                                                                 C_p-value
                                                      0.0388680
                                                                  0.8445982
mirror
                 45
                      2.5282886
                                  0.1188233
                                                45
salience
                      5.6805600
                                  0.0214349
                                                45
                                                      0.7549965
                                                                  0.3895098
                 45
```

```
# correlation with age
mean_FC <- "mental_FC"</pre>
cor.test(mean_networks_FC[mean_networks_FC$social == "P", mean_FC],
     mean_networks_FC[mean_networks_FC$social == "P", "age"])
##
   Pearson's product-moment correlation
##
##
## data: mean_networks_FC[mean_networks_FC$social == "P", mean_FC] and mean_networks_FC[mean_networks_
## t = 1.5069, df = 98, p-value = 0.1351
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.0473314 0.3369444
## sample estimates:
##
         cor
## 0.1504857
cor.test(mean_networks_FC[mean_networks_FC$social == "C", mean_FC],
     mean_networks_FC[mean_networks_FC$social == "C", "age"])
##
##
   Pearson's product-moment correlation
##
## data: mean_networks_FC[mean_networks_FC$social == "C", mean_FC] and mean_networks_FC[mean_networks_
## t = -1.6531, df = 98, p-value = 0.1015
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.34981164 0.03276754
## sample estimates:
##
          cor
## -0.1647107
mean FC <- "reward FC"
cor.test(mean_networks_FC[mean_networks_FC$social == "P", mean_FC],
     mean_networks_FC[mean_networks_FC$social == "P", "age"])
##
##
   Pearson's product-moment correlation
##
## data: mean_networks_FC[mean_networks_FC$social == "P", mean_FC] and mean_networks_FC[mean_networks_
## t = 0.73604, df = 98, p-value = 0.4635
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1240786 0.2666808
## sample estimates:
          cor
```

0.07414653

```
cor.test(mean_networks_FC[mean_networks_FC$social == "C", mean_FC],
     mean_networks_FC[mean_networks_FC$social == "C", "age"])
##
##
   Pearson's product-moment correlation
##
## data: mean_networks_FC[mean_networks_FC$social == "C", mean_FC] and mean_networks_FC[mean_networks_
## t = -2.114, df = 98, p-value = 0.03705
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.38929113 -0.01295517
## sample estimates:
          cor
## -0.2088419
mean_FC <- "between_FC"</pre>
cor.test(mean_networks_FC[mean_networks_FC$social == "P", mean_FC],
     mean_networks_FC[mean_networks_FC$social == "P", "age"])
##
##
   Pearson's product-moment correlation
## data: mean_networks_FC[mean_networks_FC$social == "P", mean_FC] and mean_networks_FC[mean_networks_
## t = 0.24697, df = 98, p-value = 0.8054
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1723224 0.2202789
## sample estimates:
##
          cor
## 0.02493985
cor.test(mean_networks_FC[mean_networks_FC$social == "C", mean_FC],
     mean_networks_FC[mean_networks_FC$social == "C", "age"])
##
## Pearson's product-moment correlation
## data: mean_networks_FC[mean_networks_FC$social == "C", mean_FC] and mean_networks_FC[mean_networks_
## t = -1.7433, df = 98, p-value = 0.08441
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.35766798 0.02379467
## sample estimates:
##
         cor
## -0.173434
mean_FC <- "salience_FC"</pre>
cor.test(mean control FC[mean control FC$social == "P", mean FC],
    mean_control_FC[mean_control_FC$social == "P", "age"])
```

```
## Pearson's product-moment correlation
##
## data: mean_control_FC[mean_control_FC$social == "P", mean_FC] and mean_control_FC[mean_control_FC$s
## t = 3.1021, df = 98, p-value = 0.00251
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1090068 0.4679560
## sample estimates:
##
         cor
## 0.2990225
cor.test(mean_control_FC[mean_control_FC$social == "C", mean_FC],
     mean_control_FC[mean_control_FC$social == "C", "age"])
##
   Pearson's product-moment correlation
##
## data: mean_control_FC[mean_control_FC$social == "C", mean_FC] and mean_control_FC[mean_control_FC$s
## t = 0.97311, df = 98, p-value = 0.3329
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1005225 0.2886979
## sample estimates:
##
          cor
## 0.09782716
mean_FC <- "mirror_FC"</pre>
cor.test(mean_control_FC[mean_control_FC$social == "P", mean_FC],
     mean_control_FC[mean_control_FC$social == "P", "age"])
##
## Pearson's product-moment correlation
## data: mean_control_FC[mean_control_FC$social == "P", mean_FC] and mean_control_FC[mean_control_FC$s
## t = 1.9304, df = 98, p-value = 0.05645
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.005220282 0.373761293
## sample estimates:
##
         cor
## 0.1913941
cor.test(mean_control_FC[mean_control_FC$social == "C", mean_FC],
     mean_control_FC[mean_control_FC$social == "C", "age"])
##
##
   Pearson's product-moment correlation
## data: mean_control_FC[mean_control_FC$social == "C", mean_FC] and mean_control_FC[mean_control_FC$s
## t = 0.22014, df = 98, p-value = 0.8262
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
```

```
## -0.1749499 0.2176996
## sample estimates:
## cor
## 0.02223217
```

scatterplots for interaction effects of social interaction and age
FC_scatterplot(mean_networks_FC, "age", "mental_FC", "Age(years)", "Age")

'geom_smooth()' using formula 'y ~ x'

FC_scatterplot(mean_networks_FC, "age", "reward_FC", "Age(years)", "Age")

FC_scatterplot(mean_networks_FC, "age", "between_FC", "Age(years)", "Age")

'geom_smooth()' using formula 'y ~ x'

FC_scatterplot(mean_control_FC, "age", "mirror_FC", "Age(years)", "Age")

'geom_smooth()' using formula 'y ~ x'

FC_scatterplot(mean_control_FC, "age", "salience_FC", "Age(years)", "Age")

FC_scatterplot(mean_control_FC, "age", "motor_FC", "Age(years)", "Age")

'geom_smooth()' using formula 'y ~ x'

FC differences between subjects at upper vs. lower quartile of age

```
# connectivity averaged across collapsed conditions
tmp <- as.data.frame(matrix(0,100,0))
tmp$subj <- rep(mean_networks_FC$Subject[!duplicated(mean_networks_FC$Subject)],2)
tmp$age <- rep(mean_networks_FC$age[!duplicated(mean_networks_FC$Subject)],2)
tmp$social <- rep(c("P","C"),each = 50)</pre>
```

```
tmp$mental_FC <- c((mean_networks_FC$mental_FC[mean_networks_FC$conditions == "PM"] +</pre>
            mean_networks_FC$mental_FC[mean_networks_FC$conditions == "PNM"])/2,
           (mean_networks_FC$mental_FC[mean_networks_FC$conditions == "CM"] +
            mean_networks_FC$mental_FC[mean_networks_FC$conditions == "CNM"])/2)
tmp$reward FC <- c((mean networks FC$reward FC[mean networks FC$conditions == "PM"] +
            mean_networks_FC$reward_FC[mean_networks_FC$conditions=="PNM"])/2,
           (mean networks FC$reward FC[mean networks FC$conditions == "CM"] +
            mean networks FC$reward FC[mean networks FC$conditions == "CNM"])/2)
tmp$between_FC <- c((mean_networks_FC$between_FC[mean_networks_FC$conditions == "PM"] +</pre>
           mean_networks_FC$between_FC[mean_networks_FC$conditions == "PNM"])/2,
           (mean_networks_FC$between_FC[mean_networks_FC$conditions == "CM"] +
           mean_networks_FC$between_FC[mean_networks_FC$conditions == "CNM"])/2)
# FC differences: upper vs. lower quantile of age
age <- summary(variables_all$age[!duplicated(variables_all$Subject)])</pre>
print(paste0("The upper quartile of age is ", round(age["3rd Qu."],2)))
## [1] "The upper quartile of age is 11.37"
print(paste0("The lower quartile of age is ", age["1st Qu."]))
## [1] "The lower quartile of age is 9.33"
networks <- c("mental_FC", "reward_FC", "between_FC")</pre>
contrast_FC_age <- as.data.frame(matrix(0,3,3))</pre>
colnames(contrast_FC_age) <- c("network","older children","younger children")</pre>
k <-0
for (net in networks) {
    k \leftarrow k+1
    tt1 <- t.test(tmp[tmp$age > as.numeric(age["3rd Qu."]) & tmp$social == "P",net],
              tmp[tmp$age > as.numeric(age["3rd Qu."]) & tmp$social == "C",net],
              paired = T)
    tt2 <- t.test(tmp[tmp$age < as.numeric(age["1st Qu."]) & tmp$social == "P",net],
              tmp[tmp$age < as.numeric(age["1st Qu."]) & tmp$social == "C",net],</pre>
              paired = T)
    contrast_FC_age[k, 1] <- net</pre>
    contrast_FC_age[k, 2:3] <- c(paste0("t=", round(tt1$statistic,3),", p=",</pre>
                        round(tt1$p.value,3)),
                     paste0("t=", round(tt2$statistic,3),", p=",
                             round(tt2$p.value,3)))
}
    knitr::kable(contrast_FC_age)
```

network	older children	younger children
mental_FC reward_FC between FC	t=1.928, p=0.078 t=0.928, p=0.372 t=0.677, p=0.511	, -

ROI analysis

```
# load data
mental_node_FC <- read.table(here("data/mental_nodes_FC.txt"), header = T)</pre>
reward_node_FC <- read.table(here("data/reward_nodes_FC.txt"), header = T)</pre>
between_node_FC <- read.table(here("data/between_nodes_FC.txt"), header = T)</pre>
salience_node_FC <- read.table(here("data/salience_nodes_FC.txt"), header = T)</pre>
mirror_node_FC <- read.table(here("data/mirror_nodes_FC.txt"), header = T)</pre>
motor_node_FC <- read.table(here("data/motor_nodes_FC.txt"), header = T)</pre>
# mental network
ROIs <- c("dmPFC","vmPFC","PCC","RTPJ","LTPJ","RATL","LATL")</pre>
colnames (mental node FC)
    [1] "Subject"
                       "conditions" "social"
##
                                                   "mental"
                                                                  "age"
                                                   "RT"
   [6] "gender"
                       "mean_FD"
                                     "IQ"
                                                                  "Accuracy"
## [11] "dmPFC"
                       "vmPFC"
                                     "PCC"
                                                   "RTPJ"
                                                                  "LTPJ"
## [16] "RATL"
                       "LATL"
flm_sum1 <- as.data.frame(matrix(0, 7, 2))</pre>
rownames(flm_sum1) <- ROIs</pre>
colnames(flm_sum1) <- c("F-value", "p-value")</pre>
k <- 0
for (ROI in ROIs) {
    k < - k + 1
    flm_ROI <- flm_FC(mental_node_FC, ROI, "Age")</pre>
    flm_sum1[k,] <- c(flm_ROI[[3]]$`F-value`[4], flm_ROI[[3]]$`p-value`[4])
}
# reward network
ROIs <- c("LOFC", "RVFC", "ACC", "LVS", "RVS", "LAmygdala", "RAmygdala")
colnames(reward_node_FC)
##
    [1] "Subject"
                       "conditions" "social"
                                                   "mental"
                                                                  "age"
    [6] "gender"
                                     "IQ"
                                                   "RT"
                       "mean_FD"
                                                                  "Accuracy"
## [11] "LOFC"
                       "RVFC"
                                     "ACC"
                                                   "LVS"
                                                                  "RVS"
## [16] "LAmygdala"
                       "RAmygdala"
flm_sum2 <- as.data.frame(matrix(0, 7, 2))</pre>
rownames(flm_sum2) <- ROIs</pre>
colnames(flm_sum2) <- c("F-value", "p-value")</pre>
```

```
k <- 0
for (ROI in ROIs) {
    k < -k + 1
    flm_ROI <- flm_FC(reward_node_FC, ROI, "Age")</pre>
    flm_sum2[k, ] <- c(flm_ROI[[3]]$`F-value`[4], flm_ROI[[3]]$`p-value`[4])
}
# between noodes:
ROIs <- c("dmPFC", "vmPFC", "PCC", "RTPJ", "LTPJ", "RATL", "LATL", "LOFC", "RVFC", "ACC",
      "LVS", "RVS", "LAmygdala", "RAmygdala")
flm_sum3 <- as.data.frame(matrix(0, 14, 2))</pre>
rownames(flm_sum3) <- ROIs</pre>
colnames(flm_sum3) <- c("F-value", "p-value")</pre>
k <- 0
for (ROI in ROIs) {
    k < - k + 1
    flm_ROI <- flm_FC(between_node_FC, ROI, "Age")</pre>
    flm_sum3[k,] <- c(flm_ROI[[3]]$`F-value`[8], flm_ROI[[3]]$`p-value`[8])
}
# significant interaction effects
knitr::kable(rbind.data.frame(flm_sum1[flm_sum1$`p-value` < 0.05,],</pre>
                   flm_sum2[flm_sum2$^p-value^ < 0.05,],
                   flm_sum3[flm_sum3$`p-value` < 0.05,]))</pre>
```

	F-value	p-value
$\overline{\mathrm{dmPFC}}$	4.907437	0.0282794
ACC	7.999469	0.0053325
dmPFC1	5.798029	0.0172835
LTPJ	5.173727	0.0243779
LATL	5.499957	0.0203539
ACC1	5.817598	0.0170996
LVS	4.788573	0.0302281

```
ROIs <- c("X3","X4","X5")
flm_sum <- as.data.frame(matrix(0, 3, 2))</pre>
rownames(flm_sum) <- ROIs</pre>
colnames(flm_sum) <- c("F-value", "p-value")</pre>
k \leftarrow 0
for (ROI in ROIs) {
    k < - k + 1
    flm_ROI <- flm_FC(motor_node_FC, ROI, "Age")</pre>
    flm_sum[k, ] <- c(flm_ROI[[3]]$`F-value`[8], flm_ROI[[3]]$`p-value`[8])</pre>
}
flm_sum[flm_sum$`p-value` < 0.05,]</pre>
## [1] F-value p-value
## <0 rows> (or 0-length row.names)
# mirror nodes
colnames(mirror_node_FC)[1] <- "Subject"</pre>
ROIs <- c("X3","X4","X5","X6","X7","X8","X9","X10","X11","X12")
flm_sum <- as.data.frame(matrix(0, 10, 2))</pre>
rownames(flm_sum) <- ROIs</pre>
colnames(flm_sum) <- c("F-value", "p-value")</pre>
k < -0
for (ROI in ROIs) {
    k < - k + 1
    flm_ROI <- flm_FC(mirror_node_FC, ROI, "Age")</pre>
    flm_sum[k, ] <- c(flm_ROI[[3]]$`F-value`[8], flm_ROI[[3]]$`p-value`[8])</pre>
}
flm_sum[flm_sum$`p-value` < 0.05,]</pre>
## [1] F-value p-value
## <0 rows> (or 0-length row.names)
# salience nodes
colnames(salience_node_FC)[1] <- "Subject"</pre>
ROIs <- c("RdACC", "LaInsula", "RaInsula")</pre>
flm_sum <- as.data.frame(matrix(0, 3, 2))</pre>
rownames(flm_sum) <- ROIs</pre>
colnames(flm_sum) <- c("F-value", "p-value")</pre>
k \leftarrow 0
for (ROI in ROIs) {
    k < - k + 1
   flm_ROI <- flm_FC(salience_node_FC, ROI, "Age")</pre>
```

```
flm_sum[k, ] <- c(flm_ROI[[3]]$`F-value`[8], flm_ROI[[3]]$`p-value`[8])

flm_sum[flm_sum$`p-value` < 0.05,]

## [1] F-value p-value
## <0 rows> (or 0-length row.names)
```

Correlations between salience/mirror neuron and mentalizing/reward networks

```
##
## Pearson's product-moment correlation
##
## data: tmp0$mentalizing and tmp0$salience
## t = 3.724, df = 48, p-value = 0.0005155
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2247139 0.6642578
## sample estimates:
## cor
## 0.4734481
```

cor.test(tmp0\$reward,tmp0\$salience)

```
##
## Pearson's product-moment correlation
##
## data: tmp0$reward and tmp0$salience
## t = 4.3194, df = 48, p-value = 7.815e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2940001 0.7037641
## sample estimates:
## cor
## 0.5290532
```

```
# correlation between mirror neuron network and mentalizing network
cor.test(tmp0$mentalizing,tmp0$mirror)
##
##
   Pearson's product-moment correlation
##
## data: tmp0$mentalizing and tmp0$mirror
## t = 6.0831, df = 48, p-value = 1.872e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4672542 0.7925798
## sample estimates:
         cor
##
## 0.6597902
cor.test(mean_networks_FC$mental_FC[mean_networks_FC$social == "P"],
     mean_control_FC$mirror_FC[mean_control_FC$social == "P"])
##
##
   Pearson's product-moment correlation
##
## data: mean_networks_FC$mental_FC[mean_networks_FC$social == "P"] and mean_control_FC$mirror_FC[mean
## t = 9.1785, df = 98, p-value = 7.343e-15
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5579963 0.7730756
## sample estimates:
##
         cor
## 0.6798972
cor.test(mean_networks_FC$mental_FC[mean_networks_FC$social == "C"],
     mean control FC$mirror FC[mean control FC$social == "C"])
##
## Pearson's product-moment correlation
##
## data: mean_networks_FC$mental_FC[mean_networks_FC$social == "C"] and mean_control_FC$mirror_FC[mean
## t = 8.3404, df = 98, p-value = 4.739e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5127933 0.7462865
## sample estimates:
##
         cor
## 0.6443148
Brain-behavior correlations (RT, subjective reports)
```

regression analysis on RT

flm1 <- flm_FC(mean_networks_FC, "mental_FC","RT")
flm2 <- flm_FC(mean_networks_FC, "reward_FC","RT")</pre>

```
flm3 <- flm_FC(mean_networks_FC, "between_FC","RT")</pre>
flm4 <- flm_FC(mean_control_FC, "motor_FC", "RT")</pre>
flm5 <- flm FC(mean control FC, "mirror FC", "RT")</pre>
flm6 <- flm_FC(mean_control_FC, "salience_FC", "RT")</pre>
# summary of the main regression results
flm all \leftarrow as.data.frame(matrix(0,6,9))
flm all <- rbind(cbind(as.data.frame(flm1[[3]])[2,2:4],as.data.frame(flm1[[3]])[3,2:4],
             as.data.frame(flm1[[3]])[8,2:4]),
             cbind(as.data.frame(flm2[[3]])[2,2:4], as.data.frame(flm2[[3]])[3,2:4],
                    as.data.frame(flm2[[3]])[8,2:4]),
             cbind(as.data.frame(flm3[[3]])[2,2:4],as.data.frame(flm3[[3]])[3,2:4],
                    as.data.frame(flm3[[3]])[8,2:4]),
             cbind(as.data.frame(flm4[[3]])[2,2:4],as.data.frame(flm4[[3]])[3,2:4],
                    as.data.frame(flm4[[3]])[8,2:4]),
             cbind(as.data.frame(flm5[[3]])[2,2:4],as.data.frame(flm5[[3]])[3,2:4],
                    as.data.frame(flm5[[3]])[8,2:4]),
             cbind(as.data.frame(flm6[[3]])[2,2:4],as.data.frame(flm6[[3]])[3,2:4],
                    as.data.frame(flm6[[3]])[8,2:4]))
colnames(flm_all) <- c("social_df", "social_F-value", "social_p-value",</pre>
               "RT_df", "RT_F-value", "RT_p-value",
               "social*RT_df", "social*RT_F-value", "social*RT_p-value")
rownames(flm_all) <- c("mentalization", "reward", "between", "motor", "mirror", "salience")</pre>
knitr::kable(flm all)
```

		social_F-	social_p-		RT_F-	RT_p-		socia	al*RT_I	F-social*RT_p
	social_	df value	value	RT_{-}	df value	value	social*RT	_df	value	value
mentaliza	tion 146	0.2057666	0.6507795	146	0.519479	990.472216	1 146	13.7	188173	0.0003005
reward	146	0.0203308	0.8868136	146	0.000059	000.993881	5 146	7.5	508297	0.0067550
between	146	0.4724018	0.4929746	146	0.080103	340.777558	2 146	8.3	3190439	0.0045175
motor	146	1.8800552	0.1724318	146	0.013700	080.906981	0 146	3.0	118387	0.0847684
mirror	146	0.7182700	0.3980992	146	2.544794	170.112820	7 146	7.4	875435	0.0069843
salience	146	0.4228982	0.5165164	146	0.724208	310.396160	6 146	0.6	3449687	0.4232228

-	D 4t	D. E. realina	D. r. rralina	Cat	C. E volue	C ra realise
	P_df	P_F-value	P_p-value	C_df	C_F-value	C_p-value
mentalization	48	4.4741657	0.0396275	48	2.1271212	0.1512252
reward	48	1.6147360	0.2099517	48	2.6460498	0.1103556
between	48	0.8605380	0.3582295	48	4.3070943	0.0433358
motor	48	0.1918808	0.6633209	48	0.8001456	0.3755134
mirror	48	4.3632759	0.0420483	48	0.0464303	0.8303086
salience	48	0.9769435	0.3279110	48	0.1808576	0.6725378

```
# correlations between RT and FC averaged across conditions
tmp0$RT <- (mean_networks_FC$RT[mean_networks_FC$conditions=="PM"] +</pre>
            mean_networks_FC$RT[mean_networks_FC$conditions=="PNM"] +
            mean_networks_FC$RT[mean_networks_FC$conditions=="CM"] +
            mean_networks_FC$RT[mean_networks_FC$conditions=="CNM"])/4
# correlation between RT within-mentalizing, reward, and between-networks
cor.test(tmp0$mentalizing, tmp0$RT)
##
##
  Pearson's product-moment correlation
##
## data: tmp0$mentalizing and tmp0$RT
## t = -0.16419, df = 48, p-value = 0.8703
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3000616 0.2563456
## sample estimates:
           cor
## -0.02369269
cor.test(tmp0$reward, tmp0$RT)
##
   Pearson's product-moment correlation
##
## data: tmp0$reward and tmp0$RT
## t = 0.2718, df = 48, p-value = 0.7869
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2417845 0.3141216
## sample estimates:
##
          cor
## 0.03920144
cor.test(tmp0$between, tmp0$RT)
##
  Pearson's product-moment correlation
##
## data: tmp0$between and tmp0$RT
## t = 0.86768, df = 48, p-value = 0.3899
```

alternative hypothesis: true correlation is not equal to 0

```
## 95 percent confidence interval:
   -0.1596003 0.3891549
## sample estimates:
##
        cor
## 0.124268
# correlation between RT and mirror neuron networks
tmp0$mirror <- (mean_control_FC$mirror_FC[mean_control_FC$conditions == "PM"] +</pre>
            mean_control_FC$mirror_FC[mean_control_FC$conditions == "PNM"] +
            mean_control_FC$mirror_FC[mean_control_FC$conditions == "CM"] +
            mean_control_FC$mirror_FC[mean_control_FC$conditions == "CNM"])/4
cor.test(tmp0$mirror, tmp0$RT)
##
   Pearson's product-moment correlation
##
## data: tmp0$mirror and tmp0$RT
## t = -0.84355, df = 48, p-value = 0.4031
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3862183 0.1629665
## sample estimates:
##
          cor
## -0.1208638
# scatter plot
FC_scatterplot(mean_networks_FC,"RT","mental_FC","Seconds","RT")
```


FC_scatterplot(mean_networks_FC,"RT","reward_FC","Seconds","RT")

'geom_smooth()' using formula 'y ~ x'

FC_scatterplot(mean_networks_FC,"RT","between_FC","Seconds","RT")

'geom_smooth()' using formula 'y ~ x'

FC_scatterplot(mean_control_FC,"RT","mirror_FC","Seconds","RT")

FC_scatterplot(mean_control_FC,"RT","salience_FC","Seconds","RT")

'geom_smooth()' using formula 'y ~ x'

FC_scatterplot(mean_control_FC, "RT", "motor_FC", "Seconds", "RT")


```
# regression analysis on subjective reports
posttest_long <- read.table(here("data/posttest_N50.txt"), header = T)
posttest_long$Subject <- gsub("_","",posttest_long$Subj)

mean_networks_FC$social[mean_networks_FC$social == "P"] <- "Peer"
mean_networks_FC$social[mean_networks_FC$social == "C"] <- "Character"

mean_networks_FC_new <- merge(mean_networks_FC,posttest_long, by = c("Subject","social"))
colnames(mean_networks_FC_new)</pre>
```

```
[1] "Subject"
                               "social"
                                                      "conditions"
##
                                                      "gender"
                               "age"
##
    [4] "mental"
                               "IQ"
    [7] "mean_FD"
                                                     "Accuracy"
  [10] "RT"
##
                               "motion_byCondition"
                                                     "mental_FC"
                               "between_FC"
                                                     "Subj"
   [13] "reward_FC"
   [16] "Age"
                               "like"
                                                     "attention"
##
  [19] "hardguess"
                               "likeguess"
                                                     "wantsee"
## [22] "agreed"
```

```
sum_FC_report[k,6:8] <- flm0[3,2:4]</pre>
              sum_FC_report[k,9:11] <- flm0[7,2:4]</pre>
             }
}
p.adjust(sum_FC_report$V5, method = "fdr")
## [1] 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896700 0.8896709 0.8896709 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896700 0.8896000 0.8896000 0.8896000 0.8896000 0.8896000 0.88960000000000000
## [8] 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709 0.8896709
## [15] 0.8896709 0.8896709 0.8896709 0.8896709
p.adjust(sum_FC_report$V8, method = "fdr")
## [1] 0.1386560 0.1386560 0.7724179 0.7416456 0.9584689 0.6996508 0.7416456
## [8] 0.2956724 0.9243718 0.6996508 0.8944720 0.9584689 0.2944737 0.2944737
## [15] 0.6996508 0.6996508 0.6996508 0.6996508
p.adjust(sum_FC_report$V11, method = "fdr")
## [1] 0.9671393 0.9671393 0.9671393 0.9671393 0.9671393 0.9671393 0.4657774
## [8] 0.4657774 0.4657774 0.4930539 0.4657774 0.4657774 0.4657774 0.4657774
## [15] 0.4657774 0.4657774 0.4657774 0.4657774
```