

Individuazione variabile target

 Individuare qual è la variabile target, ossia la variabile che vogliamo che il modello usi come risultato del suo processo di inferenza

 Analisi distribuzione dei valori della variabile target/bilanciamento delle classi

Gestione classi sbilanciate

 Classi sbilanciate se 1 o più classi hanno molti più esempi rispetto alle altre classi

Soluzioni:

- Oversampling della classe meno frequente (e.g. SMOTE, duplicazione, data augmentation)
- Undersampling della classe più frequente
- Assegnare un peso maggiore agli errori sulla classe meno frequente

ML Supervisionato vs non-supervisionat

Le tecniche di ML si dividono in 3 categorie:

 ML supervisionato: nel dataset è presente la variabile target, ossia i dati sono etichettati con l'output atteso

- ML non supervisionato: dataset non etichettato
- ML semi-supervisionato: dataset etichettato solo per alcuni esempi

ML Supervisionato vs non-supervisionat

Feature selection

Individuare e eliminare eventuali colonne fortemente correlate ad altre presenti nel dataset o ridondanti (che non danno informazioni aggiuntive) o non utili

	id	title	type	description	release_year	age_certification	runtime	imdb_id
index								
0	tm84618	Taxi Driver	MOVIE	A mentally unstable Vietnam War veteran works	1976	R	113	tt0075314
1	tm127384	Monty Python and the Holy Grail	MOVIE	King Arthur, accompanied by his squire, recrui	1975	PG	91	tt0071853

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

Feature selection

- Individuare e selezionare le colonne utili al modello per l'apprendimento e la risoluzione del task (e per la presentazione dei risultati finali)
- Utile perché alcuni modelli/tecniche richiedono di non elaborare troppe features (problema dell'elevata dimensionalità)

Gestione valori mancanti e righe duplicate

- Le righe duplicate vanno eliminate
- Per alcuni esempi, i valori di alcuni campi possono mancare
- In molti casi questo è un problema per le operazioni successive, quindi va gestito

Gestione dati anomali (outliers)

- 1. Identificare outliers
 - Metodi grafici: box-plot
 - metodi statistici: Intervallo Interquartile (IQR), z-score
 - Metodi basati su tecniche di ML: DBSCAN, KNN, One-class SVM

- 2. Gestione (se sono tanti e creano problemi)
- Rimozione o imputazione (se ipotizziamo siano dati errati)
- Trasformazione (smorzando la loro distanza dai dati «normali»)
- 3. Utilizzo tecniche più robuste (meno sensibili agli outliers)

Gestione scale di valori diverse

	gender	hsc_p	ssc_p	age	height	salary	suffer_from_disease
0	М	81.4	82.2	44	6.1	120000	no
1	М	75.2	86.2	40	5.9	80000	no
2	F	80.0	83.2	34	5.4	210000	yes
3	F	85.4	72.2	46	5.6	50000	yes
4	М	68.4	87.2	28	5.11	70000	no

- In molti casi, il fatto che diverse feature abbiano scale di valori molto diverse è un problema
- Si gestisce **scalando/normalizzando** i dati
- Attenzione: Da eseguire dopo lo splitting dei dati

Feature engineering

Costruire nuove feature a partire da quelle già presenti:

- Estrarre informazioni da campi con valori complessi
- La maggior parte dei modelli non lavorano coi dati categorici (testo), quindi trasformare dati categorici in numerici

emperature	Order	Binary	Temperature_0	Temperature_1	Temperature_
Hot	1	001	0	0	1
Cold	2	010	0	1	0
Very Hot	3	011	0	1	1
Warm	4	100	1	0	0
Hot	1	001	0	0	1
Warm	4	100	1	0	0
Warm	4	100	1	0	0
Hot	1	001	0	0	1
Hot	1	001	0	0	-1
Cold	2	010	0	1	0

Preprocessing

Abbiamo visto le principali operazioni di preprocessing per dati tabellari. Il preprocessing, però, dipende dal tipo di dato:

- Con le **immagini**, bisogna effettuare per esempio un **resize** per far sì che abbiano tutte la stessa dimensione
- Coi testi, spesso bisogna suddividere il testo in token, rimuovere le «stopwords», effettuare lemmatizzazione o stemming, riduzione a lowercase ecc
- Con le **serie temporali**, spesso bisogna raggruppare (cambiare granularità)

Splitting del dataset

Non tutto il dataset deve essere usato per addestrare il modello

- Abbiamo bisogno di 3 insiemi di dati:
- 1. Training set: per addestrare il modello, ossia per fargli apprendere a risolvere il task
- 2. Validation set: per valutare le performance del modello durante l'addestramento e l'hyperparameter tuning su dati che non fanno parte del training set (dati su cui il modello non ha appreso)
- 3. Test set: per valutare le performance del modello finale su dati su cui il modello non ha appreso e su cui non sono state prese delle decisioni durante lo sviluppo

Splitting del dataset

 Tecnica più semplice: holdout (split statico con percentuali tipo 70%-15%-15%)

 Questo non ha senso per le serie temporali, per cui i set devono essere continui e contigui tra loro

Splitting del dataset

cross-validation sets final training set test set

Tecniche più evolute:

- k-fold CV: Il dataset viene diviso in k blocchi (fold), a turno uno come validation e gli altri come training (riduce problemi di poca varietà/eterogeneità dei dati nel training set)
- stratified split/stratified k-fold CV: mantiene la distribuzione delle classi (adatto per dataset sbilanciati)
- Leave-One-Out Cross-Validation (LOOCV): una sola osservazione come test, il resto come training (adatto per dataset piccoli) Revelis

Generalizzazione

- Separare training, validation e test set serve per valutare la capacità di generalizzazione del modello
- Capacità di generalizzazione è la capacità di apprendere dei pattern dal training set e applicarli correttamente su dati che non ha visto durante l'addestramento, quindi generalizzare le informazioni apprese dal training set su tutti i dati
- Per questo è necessario che il training set copra quanto più possibile la varietà delle tipologie di dato su cui il modello dovrà essere applicato

Underfitting e overfitting

- Overfitting: il modello ha appreso in modo troppo specifico le informazioni del training set, quindi fatica a generalizzarle su dati nuovi
- **Underfitting**: il modello non ha appreso dal training set le informazioni necessarie per effettuare l'inferenza, quindi fatica sia sui dati del training set che sui dati nuovi

Underfitting e overfitting

La capacità di apprendere e di generalizzare del modello dipende da tanti fattori:

- Varietà/eterogeneità dei dati: nel training set devono essere presenti tutte le tipologie di dato, la CV può aiutare
- Quantità e complessità dei dati: pochi dati portano ad avere meno informazioni da apprendere e a non coprire tutte le possibili tipologie di casistiche, data augmentation può aiutare
- Complessità del modello: più è complesso, più informazioni apprenderà dai dati del training set, maggiore sarà il rischio di overfitting

Salvatore liritano CEO salvatore.iiritano@revelis.eu

Davide lacopino

Data Analyst
davide.iacopino@revelis.eu

Rende

V.le della Resistenza, 19/C 87036 Rende (CS)

Parma

Largo L. Mercantini, 13 43125 Parma (PR)

Telefono

(+39) 335.1099492

Fax

(+39) 0984.494269

info@revelis.eu

www.revelis.eu