GCE with Chempy:

transforming stellar physics into

elemental abundances and vice versa

Jan Rybizki – MPIA 11/29/18 – CENAG Heidelberg

Fast and flexible GCE: Chempy

Chempy(CC-SN, SNIa, AGB yields + SSP parameters):

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time
- Chempy(yields, SSP + ISM parameters):

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time
- Chempy(yields, SSP + ISM parameters):
 - ISM abundances over time compare to observational data

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time
- Chempy(yields, SSP + ISM parameters):
 - ISM abundances over time compare to observational data

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time
- Chempy(yields, SSP + ISM parameters):
 - ISM abundances over time compare to observational data
- Bayesian framework → infer posterior over parameterspace

- Chempy(CC-SN, SNIa, AGB yields + SSP parameters):
 - IMF integrated, metallicity dependent yield over time
- Chempy(yields, SSP + ISM parameters):
 - ISM abundances over time compare to observational data
- Bayesian framework → infer posterior over parameterspace
 - no fiducial model, give your data → get GCE parameters

If we believe our yieldsets then yes

If we believe our yieldsets then yes

- If we believe our yieldsets then yes
- We can use multiple stars to increase the signal

- If we believe our yieldsets then yes
- We can use multiple stars to increase the signal
- Even for different yield sets the parameter range is consistent

- If we believe our yieldsets then yes
- We can use multiple stars to increase the signal
- Even for different yield sets the parameter range is consistent
 - $-\alpha = -2.42 \pm 0.05$
 - Fraction of mass going CC-SN: 10 14%
 - 0.5 1.4 SNIa per 1000 Msun

- If we believe our yieldsets then yes
- We can use multiple stars to increase the signal
- Even for different yield sets the parameter range is consistent
 - $-\alpha = -2.42 \pm 0.05$
 - Fraction of mass going CC-SN: 10 14%
 - 0.5 1.4 SNIa per 1000 Msun
- Not able to reproduce all elements

Favorite plot: Channel contribution

Philcox, Rybizki & Gutcke 2018: github.com/oliverphilcox/ChempyScoring
On the Optimal Choice of Yields and IMF-, SNIa-parameter

Philcox, Rybizki & Gutcke 2018: github.com/oliverphilcox/ChempyScoring On the Optimal Choice of Yields and IMF-, SNIa-parameter

Bayesian model comparison for different CC-SN yield tables

Philcox, Rybizki & Gutcke 2018: github.com/oliverphilcox/ChempyScoring On the Optimal Choice of Yields and IMF-, SNIa-parameter

Bayesian model comparison for different CC-SN yield tables

Abbr.	Yield Table					
C04	Chieffi & Limongi (2004)					
N13	Nomoto et al. (2013)					
W17	West & Heger (in prep.)					
R17	Ritter et al. (2017b)					
P18	Limongi & Chieffi (2018) ^a					

Philcox, Rybizki & Gutcke 2018: On the Optimal Choice of Yields and IMF-, SNIa-parameter

- Bayesian model comparison for different CC-SN yield tables
 - Depends on choice of elements + we only fit to the Sun

Abbr.	Yield Table				
C04	Chieffi & Limongi (2004)				
N13	Nomoto et al. (2013)				
W17	West & Heger (in prep.)				
R17	Ritter et al. (2017b)				
P18	Limongi & Chieffi (2018) ^a				

Philcox, Rybizki & Gutcke 2018: On the Optimal Choice of Yields and IMF-, SNIa-parameter

- Bayesian model comparison for different CC-SN yield tables
 - Depends on choice of elements + we only fit to the Sun
 - Can distinguish between different input physics

Abbr.	Yield Table				
C04	Chieffi & Limongi (2004)				
N13	Nomoto et al. (2013)				
W17	West & Heger (in prep.)				
R17	Ritter et al. (2017b)				
P18	Limongi & Chieffi (2018) ^a				

|Fe/H

Philcox, Rybizki & Gutcke 2018: On the Optimal Choice of Yields and IMF-, SNIa-parameter

- Bayesian model comparison for different CC-SN yield tables
 - Depends on choice of elements + we only fit to the Sun
 - Can distinguish between different input physics

A		$0.4 \mathrm{r}$							
Abbr.	Yield Table								
C04	Chieffi & Limongi (2004)	0.2	1	1		Į.			#
N13	Nomoto et al. (2013)	چ 0.0 ک	* *	*	*	*		*	*
W17	West & Heger (in prep.)	[X/Fe]		•	''	141	 		C04
R17	Ritter et al. (2017b)	-0.2		+		I	1	1.	N13 W17
P18	Limongi & Chieffi (2018) ^a	-0.4						1	R17 P18 Proto-
		-0.4							Roma
			Нe	Ċ	Ň	Ò	Йe	Мg	Si

Philcox, Rybizki & Gutcke 2018: github.com/oliverphilcox/ChempyScoring On the Optimal Choice of Yields and IMF-, SNIa-parameter

Predict best SSP parameters for hydrodynamical simulations

Philcox, Rybizki & Gutcke 2018: On the Optimal Choice of Yields and IMF-, SNIa-parameter

Predict best SSP parameters for hydrodynamical simulations

Philcox, Rybizki & Gutcke 2018: On the Optimal Choice of Yields and IMF-, SNIa-parameter

Predict best SSP parameters for hydrodynamical simulations

Many star inference

• By fitting many stars at the same time we can:

- By fitting many stars at the same time we can:
 - introduce yield error parameter per element

- By fitting many stars at the same time we can:
 - introduce yield error parameter per element
 - very precisely determine global SSP parameters,

- By fitting many stars at the same time we can:
 - introduce yield error parameter per element
 - very precisely determine global SSP parameters,
 - IMF (high mass slope, even metallicity dependent)
 - SNIa (number and non-parametric delay time distribution)

- By fitting many stars at the same time we can:
 - introduce yield error parameter per element
 - very precisely determine global SSP parameters,
 - IMF (high mass slope, even metallicity dependent)
 - SNIa (number and non-parametric delay time distribution)
 - tag local ISM parameters to each individual star

- By fitting many stars at the same time we can:
 - introduce yield error parameter per element
 - very precisely determine global SSP parameters,
 - IMF (high mass slope, even metallicity dependent)
 - SNIa (number and non-parametric delay time distribution)
 - tag local ISM parameters to each individual star
 - compare different yield tables

- By fitting many stars at the same time we can:
 - introduce yield error parameter per element
 - very precisely determine global SSP parameters,
 - IMF (high mass slope, even metallicity dependent)
 - SNIa (number and non-parametric delay time distribution)
 - tag local ISM parameters to each individual star
 - compare different yield tables
 - infer complex empirical yield tables for different nucleosynthetic channels

Thank you for your attention

