ОСНОВЫ ПРОГРАММИРОВАНИЯ СИСТЕМ УПРАВЛЕНИЯ

Что нужно знать при написании функции чтения данных из регистров микропроцессорного модуля БУ УРТК

- 1. Назначение разрядов регистра чтения данных по формату Centronics,
- 2. Алгоритм формирования байтов при чтении,
- 3. Временную диаграмму для чтения данных из регистров ох378 и ох37А,
- 4. Правила формирования данных по тактам и правила формирования байтов,
- 5. Соответствие между числами в разных системах счисления, и использование кодов в функции чтения,
- 6. Некоторые библиотечные функции inport (), outport (), delay(),

Схема обмена данными между Centronics и микропроцессорным модулем БУ.

Чтение и запись информации.

Схема диалога с блоком управления:

- В регистр RC заносится константа управляющее слово (команда), определяющая режим диалога.
- Через регистр RD производится чтение или запись данных.
 Если необходимо передать более одного байта, передача байт через регистр RD производится последовательно.
- После отправки последнего байта действие считается завершенным.

Алгоритм действий.

Значение константы	Описание действия	Алгоритм действия
11h	Установка состояния двигателей	1. В регистр RC отправить константу 11h; 2. Через регистр RD последовательно передать два байта состояния двигателей: DRV1, DRVo.
12h	Установка состояния светодиодных индикаторов	 В регистр RC отправить константу 12h; Через регистр RD передать байт состояния светодиодных индикаторов LEDo.
13h	Получение текущего состояния датчиков	1. В регистр RC отправить константу 13h; 2. Через регистр RD последовательно принять три байта состояния датчиков: SNSo, SNS1 и SNS2.
14h	Получение текущего состояния клавиатуры	1. В регистр RC отправить константу 14h; 2. Через регистр RD последовательно принять три байта состояния клавиатуры: KBDo и KBD1.

Назначение разрядов регистра управления Centronics

Номер разряда	Название	Инверсия	Назначение разряда
0	RD	Да	Строб чтения данных из СУ
1	Ao	Да	Младший разряд шины адреса
2	WR	Нет	Строб записи данных в СУ
3	Aı	Да	Старший разряд шины адреса
4			Не используется. Должен быть равен о
5	B5	Нет	Дополнительный бит для режима чтения
6			Не используется. Должен быть равен о
7			Не используется. Должен быть равен о

Функции чтения и записи.

Запись данных:

outportb(Addr, Data)

Где:

Addr – адрес порта,

Data – записываемые данные.

Чтение данных:

inportb(Addr)

Где:

Addr – адрес порта.

Временная диаграмма чтения данных из СУ.

Последовательность этапов чтения.

- Регистр RC устанавливается в начальное положение.
- В регистр RD устанавливается управляющая константа.
- В регистр RC устанавливается адрес.
- В регистр RC устанавливается байт в котором бит В5 имеет значение "1".
- Происходит чтение данных DATA (после задержки).
- Регистр RC устанавливается в начальное положение.

Формирование данных.

- оооооооо ~ охо4 или outportb(ох37А, охо4);
- 11111111 ~ 0_xFF или outportb(o_x378, o_xFF);
- 00001110 ~ 0_x0E или **outportb(o_x37A, o_x0E)**;
- 00101110 ~ 0_x 2E или outportb(0_x 37A, 0_x 2E);
- 00101111 ~ 0_x2F или outportb(o_x37A, o_x2F);
- Задержка 2-7 ms или delay(5);
- Чтение данных ~ $data = inportb(o_x378);$

! На 8-м такте нет необходимости в каких-либо действиях. При чтении из *RD* в нем может быть байт SNSo, SNS1, SNS2

Пример программы.

```
outport(ox37A, ox2F); //в регистр управления записывается двоичное слово delay(5); //задержка на 5 мсек result=inportb(ox378); // чтение данных из регистра данных
```

Пример функции чтения.

```
unsigned char rbfr()
  unsigned char data;
    outportb(ox37A,oxo4);
    outportb(ox378,oxFF);
    outportb(ox37A,oxoE);
    outportb(ox37A,ox2E);
    outportb(ox37A,ox2F);
    delay(5);
    data=inportb(ox378);
 return data;
```

Управление исполнительными устройствами.

Номер разряда	Разряды DRVo	Разряды DRV1
0	Mo-	M4-
1	Mo+	M ₄ +
2	M1-	M ₅ –
3	M1+	M5+
4	M2-	Do
5	M2+	D1
6	M3-	D ₂
7	M3+	Ew

Мо-М5 – степени ММ

Do-D2 - нереверсивные двигатели (схват, фреза).

Ew – обмотка возбуждения.

Включение двигателей.

Алгоритм запуска двигателей:

- В регистр RC отправляется константа 11h
- Передать байт DRV1
- Передать байт DRVo

Регистры СУ УРТК для опроса датчиков.

Номер разряда	Разряды SNSo	Разряды SNS1	Разряды SNS2
О	Мо нач	М2 нач	М4 нач
1	Мо кон	М2 кон	М4 кон
2	Моимп	М2 имп	М4 имп
3	М1 нач	М3 нач	М5 нач
4	М1 кон	М3 кон	М5 кон
5	М1 имп	М3 имп	М5 имп
6	Резерво	Резерв2	Резерв4
7	Резерв1	Резерв3	Резерв5

Алгоритм чтения состояния датчиков.

- в регистр RC отправить константу 13h
- через регистр RD последовательно считать три байта информации состояния датчиков: SNSo, SNS1 и SNS2.

Пример(фрагмент программы чтения состояния датчиков)

```
//переменные, которым будут
unsigned char SNSo, SNS1,
                               //присвоены прочитанные байты
SNS2;
                               //REG – переменная, определяющая в какой
write (REG, ox13);
                               //из регистров (RC или RD) будет происходить
                               //запись (в данном случае регистр RC)
SNSo = ~read ();
                                //последовательно считываются три байта
SNS1 = ~read ();
                                //информации состояния датчиков
SNS<sub>2</sub> = ~read ();
```

Управление светодиодными индикаторами.

Номер разряда	Разряды LEDo
0	Lo
1	L1
2	L2
3	L ₃
4	L ₄
5	L ₅
6	L6
7	L7

"1" зажигает соответствующий светодиод, "0" выключает светодиод.