An incremental MaxSAT formulation for on-line train scheduling

bjørnar

Note for Carlo 2021-11-09

Re-scheduling trains after traffic disturbances is an important problem from the operations research literature.

There are several formulations of on-line train scheduling problem as mixed-integer linear programming (MILP), including time-indexed[?], big-M[?], path-and-cycle[?], and dynamic discretization discovery[?]. The constraints for the problem are disjunctions of difference constraints over a continuous time domain, though several of the MILP formulations are based on discretizing the time domain to create a problem over purely binary variables. However, since the optimization objective is usually formulated as a continuous piecewise-linear function, and it plays a crucial role in efficient train scheduling, most algorithmic efforts have focused on classical optimization techniques involving mixed-integer programming solvers (such as CPLEX and Gurobi) or local search algorithms.

The recent dynamic discretization discovery (DDD) formulation avoids altogether continuous variables for representing the arrival and departure times of trains. Instead, it solves an independent set problem, where the nodes consist of a sequence of consecutive time intervals for each time variable, and where edges are intervals that are incompatible under the difference constraints. The algorithm lazily subdivides the intervals and adds conflict edges between intervals until the difference constraints are satisfied by the left-most point of each interval. Because the objective is increasing in all time variables, selecting the earliest time from each interval is a lower bound on the objective value, and thus the algorithm is exact.

We adapt this algorithm for a SAT solver, using the same idea of abstraction refinement, though on unary-number-like representations of time-domain variables. The objective is discretized into a step-wise function (which has also, independently, been suggested by domain experts as a correct objective), so that the resulting problem becomes an incremental unweighted MaxSAT problem. We solve this problem using fully lazy constraint generation, in combination with the RC2 MaxSAT algorithm.

Potential problems with this approach

- The objective function does not change value at all when increasing the delay of a train above the maximum value. This allows the algorithm to effectively give up on optimizing a train that is sufficiently late, and delay it arbitrarily long. This seems to make the problem easier to solve in some cases, though the solution can be undesirable. For example, a train might be told to wait for hours in a station to keep the other trains on time.
- There are some inefficient runs where visits with maximum cost can be involved in very many conflicts (two trains can push each other forward in time indefinitely). This depends on the phase heuristic of the solver, and should be fixable.
- The performance is not directly comparable to the MILP approaches because of the change in objective function. The objective function from the instance files are ignored.
- The delays are minimized relative to the earliest possible arrival times, taking the delay into account, but not taking into account which trains are more delayed at the current time. Also, any priority between trains (train types) is ignored.

Problem definition

We simplify the on-line train scheduling problem using the following assumptions:

- Trains may exclusively occupy single-track sections.
- There is no rerouting.
- There are no capacity constraints in stations, i.e. any train can use any track and/or platform, and there are no constraints on how many trains can be in the same station at the same time.
- There are no safety margin on occupation times, i.e. a train can immediately enter a single-track section as soon as the previous train has left, and multiple trains can enter a station simultaneously.
- Trains occupy only one resource at a time (trains have effectively zero length).
- Trains take zero time to travel across a station.
- Double tracks are treated as two oppositely directed single-track connections, used exclusively for single-directed traffic.

We define the simplified on-line train scheduling input data as:

- A set of resources R and a binary relation defining the conflicting resources $C \subseteq R \times R$.
- A set of trains $t \in T$, each consisting of a sequence of visits V_t^i for $i = 0, 1, \dots$
- The visits V_t^i are a three-tuple $V_t^i = (r_t^i, e_t^i, l_t^i)$, where

 - $-r_t^i \in R$ is a resource, $-e_t^i \in \mathbb{R}$ is the earliest time the train can enter the resource, and

 $-l_i^i \in \mathbb{R}$ is the minimum travel time the train needs to traverse the resource.

The constraints are:

• Earliest time constraints: for each visit V_t^i ,

$$x_t^i \ge e_t^i$$

• Travel time constraints: for two consecutive visits V_t^i, V_t^{i+1} ,

$$x_t^i + l_t^i \le x_t^{i+1}$$

• Resource constraints: for any pair of visits V_a^i, V_b^j that use conflicting resources $(r_a^i, r_b^j) \in C$,

$$(x_a^{i+1} \le x_b^j) \lor (x_b^{j+1} \le x_a^i)$$

The objective function is

$$\sum_{t \in T} \sum_{V_t^i} \sigma(x_t^i - e_t^i),$$

where x_t^i is the chosen time for train t to start its visit i, and $\sigma(x)$ is:

- $\sigma(x) = 3$, if x > 360 seconds
- $\sigma(x) = 2$, if x > 180 seconds
- $\sigma(x) = 1$, if x > 0
- $\sigma(x) = 0$, otherwise

Encoding

Dynamically discretized number representation

We define a dynamically discretized number y with a lower bound lb(y) and upper bound ub(y), as an increasing sequence of values and corresponding Boolean literals, initially containing:

$$[(lb(y), \top), (ub(y), \bot)]$$

We define the evaluation of the number y in a propositional logic model M as the value corresponding with the last (right-most) element in the sequence which evaluates to true. In the initial sequence, the evaluation will always be lb(y).

Whenever we need to add constraints involving expressions of the form $y \ge c$, we check if c is a value in the sequence. If it is, we can use the corresponding Boolean literal to represent $y \ge c$, and it's negation to represent y < c. If c is not in the sequence (and lb(y) < c < ub(y)), we can add it by creating a new Boolean variable λ_v^c and inserting it in the sequence:

$$\left[\left(lb(y),\top\right),\left(c,\lambda_{u}^{c}\right),\left(ub(y),\bot\right)\right]$$

We also insert clauses to enforce consistency: each variable of the sequence implies the previous. Here, this is the non-clause $\lambda_y^c \Rightarrow \top$, though in general for neighboring variables λ_y^f and λ_y^g , we have:

$$\lambda_y^g \Rightarrow \lambda_y^c, \quad \lambda_y^c \Rightarrow \lambda_y^f$$

Because new values with corresponding fresh variables are inserted into the sequence at the correct place to preserve the ordering, we always have f < c < g. Note that when values can be incrementally added in arbitrary order, all the clauses above are sufficient for consistency, and valid, though some clauses become redundant because the involved variables are no longer neighbors in the sequence.

This encoding is similar to the number representation known as the Unary encoding[?] in that it represents lower and upper bounds, and uses one variable per possible value, but this version does not require all values to be represented, and as such it is similar to the generalized totalizer encoding [?].

With this representation, we can create Boolean logic constraints involving y < c and $y \ge c$ for any specific c.

Note that the number may be either continuous or integral, in fact any totally ordered domain would work. In practice, we use integers representing seconds in the online train scheduling algorithm described below.

Discretized train scheduling constraints

Now, we implement each of the train scheduling constraints using dynamically discretized number representations of each x_t^i from the online train scheduling problem.

- Earliest time constraints: if we let $lb(x_t^i) = e_t^i$ (and $ub(x_t^i) = \infty$), then each constraint $x_t^i \ge e_t^i$ becomes \top , i.e. the constraint is implicit.
- Travel time constraint: consider consecutive visits x_t^i, x_t^{i+1} . For every possible value c, we have the clause

$$x_t^i \ge c \Rightarrow x_t^{i+1} \ge c + l_t^i$$
.

• Resource occupation constraint: consider conflicting visits x_a^i, x_b^j . For every possible value c_1 and every possible value c_2 , we have the clause

$$\left((x_a^{i+1} \ge c_1) \Rightarrow (x_b^j \ge c_1) \right) \lor \left((x_b^{j+1} \ge c_2) \Rightarrow (x_a^i \ge c_2) \right)$$

Although these are an infinte number of constraints, we can check a propositional model M for violations of the original constraints, and add values c to the dynamically discretized numbers only as needed, and then also create the corresponding discretized constraints.

Algorithm

Algorithm 1: Incremental MaxSAT algorithm for the online train scheduling problem

```
Input: Visits V_t^i = (r_t^i, e_t^i, l_t^i) and objective function \sigma(x).
     Output: A value x_t^i for each visit, fulfilling the train scheduling constraints
                      and minimizing the objective function.
 1 S \leftarrow new incremental MaxSAT solver instance
 2 \mathcal{O} \leftarrow \left\{ V_t^i : \left[ \left( l_t^i, \top \right), (\infty, \bot) \right] \right\}
 з \mathcal{C} \leftarrow \left\{ V_t^i : [(0, \top)] \right\}
 4 while true do
           M \leftarrow \mathcal{P}.\mathtt{solve}()
                                                 (RC2 increases cost until SAT)
           \left\{x_t^i\right\} \leftarrow \left\{\mathcal{O}[V_t^i].\mathtt{evalDiscretizedNumber}(M)\right\}
  6
           7
  8
                 \mathcal{P}.\mathtt{addClause}(\neg \mathcal{O}[V_t^i].\mathtt{geq}(x_t^i) \lor \mathcal{O}[V_t^{i+1}].\mathtt{geq}(x_t^i + l_t^i))
  9
10
           11
12
                 \mathcal{O}[V_b^j].newValue(x_a^{i+1})
13
                 \begin{array}{l} \mathcal{D}. \texttt{addClause}(x_a^{-j}) \\ \mathcal{D}. \texttt{addClause}(\neg \mathcal{O}[V_b^{i+1}]. \texttt{geq}(x_b^{j+1}) \vee \mathcal{O}[V_a^i]. \texttt{geq}(x_b^{j+1}) \vee \\ \neg \mathcal{O}[V_a^{i+1}]. \texttt{geq}(x_a^{i+1}) \vee \mathcal{O}[V_b^j]. \texttt{geq}(x_a^{i+1})) \end{array} 
14
           end
15
           if no constraints were added then
16
            return x_t^i
17
18
           end
           for
each new \ value \ c \ added \ to \ V_t^i \ \mathbf{do}
19
                 while C[V_t^i]. maxValue < \sigma(c - e_t^i) do
20
                        C[V_t^i].extendUnary(\sigma(c-e_t^i))
21
                       \mathcal{S}.\mathtt{addSoft}(\neg \mathcal{C}[V_t^i].\mathtt{geq}(\mathcal{C}[V_t^i].\mathtt{maxValue}))
\mathbf{22}
23
                 \mathcal{P}.\mathtt{addClause}(\neg \mathcal{O}[V_a^{i+1}].\mathtt{geq}(x_a^{i+1}) \lor \mathcal{C}[V_t^i].\mathtt{geq}(\sigma(c-e_t^i)))
24
           end
25
26 end
```

Performance evaluation

The tables below show the performance of the algorithm on 20 instances supplied by Anna Livia Croella. Each table uses a different objective function $\sigma^{a,b,c}$, where $\sigma(x)$ is:

- $\sigma(x) = c$, if x > 360 seconds
- $\sigma(x) = b$, if x > 180 seconds
- $\sigma(x) = a$, if x > 0
- $\sigma(x) = 0$, otherwise

Note that Instance 8 varies heavily in running time with different objective functions, while the other instance seem to work the same.

The column headings are:

- Insntc: the instance number.
- Trains: the number of trains in the instance.
- Resources: the number of single-track sections in the instance.
- Avg.res.: the average number of single-track sectionss that trains need to traverse.
- Confl.pairs: the total number of pairs of visits that share a resource.
- Cost: the minimum of the objective function
- n_{SAT} : the number of SAT problems solved that were satisfiable (resulting in further discretizing the domain).
- n_{UNSAT} : the number of SAT problems solved that were unsatisfiable (resulting in further increasing the cost).
- Travel confl.: the number of travel time constraints added.
- Res. confl.: the number of resource conflict constraints adeded.
- Vars: the number of Boolean variables in the final SAT problem.
- Clauses: the number of clauses in the final SAT problem.
- Solve time (ms): the total running time of the solver.

Solve time (ms)	63.92	35.23	23.56	9.52	9.85	4.32	5.77	484.22	55.78	21.39	17.53	2.79	2.07	23.23	2.35	1.98	30.85	2.82	17.46	2.22	
Clauses Solv	6575	4716	3373	1794	1663	696	1173	13937	6221	2789	2559	453	653	3712	549	494	4433	628	2881	551	
	9	0.	6		-	9	9	0	7	က	4	0	7	4	7	4	4	9	∞	3	
Vars	453	337	240	136	119	902	78	758	371	170	197	35	46	239	45	40	281	46	158	41	
Res. confl.	284	202	130	70	62	32	42	682	238	116	96	28	34	182	22	12	192	22	156	30	
Travel confl.	928	693	513	301	266	150	184	1627	779	419	418	89	106	580	85	88	703	103	401	88	n for $\sigma^{1,2,3}$
n_{UNSAT}	630	494	356	214	180	110	106	099	396	190	328	54	70	284	82	72	344	99	140	62	Table 1: Performance evaluation for
n_{SAT}	55	45	55	41	59	47	52	87	09	64	37	33	33	22	34	34	28	54	92	36	rforman
Cost	630	494	356	214	180	110	106	099	396	190	328	54	20	284	85	72	344	99	140	62	le 1: Pe
Confl.pairs	5915	3735	2061	1175	876	307	126	4877	2616	1632	2022	87	136	2246	136	93	2865	72	150	130	Tab
Avg.res.	20.93	19.00	21.06	19.21	19.25	18.62	12.62	19.21	19.10	18.18	17.33	12.33	16.80	15.95	17.80	12.67	15.25	13.40	13.57	11.38	
Resources	33	33	33	33	33	33	33	33	33	33	25	25	25	25	25	25	25	25	25	25	
Trains	29	25	17	14	12	∞	∞	28	21	17	18	9	2	20	3	9	24	5	7	∞	
Insntc	1	2	ဗ	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	

(sm)	60.6	5.88	5.04	9.01	2.39	6.25	5.39	3.59	7.02	5.86	3.87	2.20	2.74	6.25	3.14	2.83	0.66	3.17	1.85	3.30	
Solve time (ms)	∞	5	4	1	1			1220	13	4	3			6			2		2		
Clauses	8297	5905	51111	2944	2011	1318	1299	27179	10528	4650	4199	260	829	6272	800	759	6544	841	3958	799	
Vars	5739	4326	3610	2110	1513	944	921	13591	6128	2744	3073	441	614	3760	646	591	4150	622	2278	289	
Res. confl.	274	186	130	80	62	34	36	969	286	136	118	26	34	190	22	18	194	24	148	30	
Travel confl.	806	664	587	407	259	165	163	1505	947	496	483	20	100	601	98	101	269	106	353	111	Table 2: Performance evaluation for $\sigma^{1,3,6}$
n_{UNSAT}	846	989	530	308	246	156	144	1008	620	278	510	74	106	388	126	106	498	06	220	06	ce evaluatic
n_{SAT}	57	26	98	73	09	61	48	98	82	107	62	39	30	46	36	38	52	59	61	51	erforman
Cost	846	989	530	308	246	156	144	1008	620	278	510	74	106	388	126	106	498	90	220	06	ole 2: Pe
Confl.pairs	5915	3735	2061	1175	876	307	126	4877	2616	1632	2022	87	136	2246	136	93	2865	72	150	130	Tak
Avg.res.	20.93	19.00	21.06	19.21	19.25	18.62	12.62	19.21	19.10	18.18	17.33	12.33	16.80	15.95	17.80	12.67	15.25	13.40	13.57	11.38	
Resources	33	33	33	33	33	33	33	33	33	33	25	25	25	25	25	25	25	25	25	25	
Trains	29	25	17	14	12	∞	∞	28	21	17	18	9	2	20	က	9	24	ಬ	7	∞	
Insntc	П	2	3	4	2	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20	

s. confl. Vars Clauses Solve time (ms)	6189 8775	4709 6364		4474 6479	4474 6479 2592 3796	4474 6479 2592 3796 1899 2627	4474 6479 2592 3796 1899 2627 936 1277	4474 6479 2592 3796 1899 2627 936 1277 1054 1459	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 17522 36935 18	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 17522 36935 18 7565 12734	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 17522 36935 18 7565 12734 3052 5072	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 17522 36935 7565 12734 3052 5072 3567 4874	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 17522 36935 7565 12734 3052 5072 3567 4874 512 661	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 17522 36935 18 7565 12734 3052 5072 3567 4874 512 661 758 1003	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 17522 36935 18 7565 12734 3052 5072 3567 4874 512 661 758 1003 4149 6791	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 1752 36935 18 7565 12734 3052 5072 3567 4874 512 661 758 1003 4149 6791 833 1035	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 1752 36935 7565 12734 3052 5072 3567 4874 512 661 758 1003 4149 6791 833 1035 623 801	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 1752 36935 18 7565 12734 3052 5072 3567 4874 512 661 758 1003 4149 6791 833 1035 623 8818	4474 6479 2592 3796 1899 2627 936 1277 1054 1459 1752 36935 7565 12734 3052 5072 3567 4874 512 661 758 1003 4149 6791 833 1035 620 9818 640 854	132 4474 6479 60.43 84 2592 3796 25.53 64 1899 2627 18.76 34 936 1277 6.26 674 17522 36935 18202.19 284 7565 12734 167.48 156 3052 5072 44.25 120 3567 4874 44.25 26 512 661 3.01 34 758 1003 3.54 204 4149 6791 69.28 20 833 1035 4.17 18 623 801 2.87 206 5650 9818 218.14 20 640 854 3.09 152 3462 6146 45.78
Travel confl. Res. co.																				660 299 155 155 1027 480 491 69 69 69 88 99 707 707
n_{UNSAT} Tr	924	746		604	604 342	604 342 280	604 342 280 156	604 342 280 156 174	604 342 280 156 174 1224	604 342 280 156 174 1224 752	604 342 280 156 174 1224 752 314	604 342 280 156 174 1224 752 314 580	604 342 280 156 174 1224 752 314 580	604 342 280 156 174 1224 752 314 580 86	604 342 280 156 174 1224 752 314 580 86 436	604 342 280 156 174 1224 752 314 580 86 142 436	604 342 280 156 174 1224 752 314 580 86 142 436 112	604 342 280 156 174 1224 752 314 580 86 142 436 112 590	604 342 280 156 174 1224 752 314 580 86 142 436 112 590	604 342 280 156 174 1224 752 314 580 86 142 168 168 290 280
n_{SAT}	53	09		96	96 88	96 88 95	96 88 95 59	96 88 95 59 49	96 88 95 79 88	96 88 95 49 94	96 88 95 59 49 88 94	96 88 95 59 49 88 94 103	96 88 95 59 49 103 65	96 88 88 88 103 83 83 83	96 88 88 103 103 88 88 103 103 41	96 88 88 94 103 103 30 30 35	96 88 95 94 103 103 30 30 36	96 88 95 65 103 30 88 94 103 46 46 46	96 88 88 88 103 103 103 103 103 103 103 103 103 103	96 88 88 88 103 103 103 103 104 104 105 105 105 105 105 105 105 105 105 105
Cost	924	746		604	604 342	604 342 280	604 342 280 156	604 342 280 156 174	604 342 280 156 174 1224	604 342 280 156 174 1224 752	604 342 280 156 174 1224 752 314	604 342 280 156 174 1224 752 314 580	604 342 280 156 174 1224 752 314 580 86	604 342 280 156 174 1224 752 314 580 86	604 342 280 156 174 1224 752 314 580 86 142 436	604 342 280 156 174 752 314 580 86 142 436	604 342 280 156 174 1224 752 314 580 86 142 436 118	604 342 280 156 174 1224 752 314 580 86 142 436 112 590	604 342 280 156 174 1224 752 314 580 86 142 436 168 112 590	604 342 280 156 174 1224 752 314 580 86 142 436 168 112 590 280
Confl.pairs	5915	3735		2061	$\begin{array}{c} 2061 \\ 1175 \end{array}$	$ \begin{array}{c} 2061 \\ 1175 \\ 876 \end{array} $	2061 1175 876 307	2061 1175 876 307 126	2061 1175 876 307 126 4877	2061 1175 876 307 126 4877 2616	2061 1175 876 307 126 4877 2616 1632	2061 1175 876 307 126 4877 2616 1632	2061 1175 876 307 126 4877 2616 1632 2022	2061 1175 876 307 126 4877 2616 1632 2022 87	2061 1175 876 307 126 4877 2616 1632 2022 2022 87 136	2061 1175 876 307 126 4877 2616 1632 2022 2022 87 136 2246	2061 1175 876 307 126 4877 2616 1632 2022 2022 87 136 2246 136	2061 1175 876 307 126 4877 2616 1632 2022 2022 87 136 2246 136 33 2865	2061 1175 876 307 126 4877 2616 1632 2022 87 136 2246 136 93 2865	2061 1175 876 307 126 4877 2616 1632 2022 87 136 136 93 2865 150
Avg.res.	20.93	19.00		21.06	21.06 19.21	21.06 19.21 19.25	21.06 19.21 19.25 18.62	21.06 19.21 19.25 18.62	21.06 19.21 19.25 18.62 12.62 19.21	21.06 19.21 19.25 18.62 12.62 19.21 19.10	21.06 19.21 19.25 18.62 12.62 19.21 19.10	21.06 19.21 19.25 18.62 12.62 19.21 19.21 18.18 17.33	21.06 19.21 19.25 18.62 12.62 19.21 19.10 18.18 17.33	21.06 19.21 19.25 18.62 12.62 19.21 19.10 18.18 17.33 12.33	21.06 19.21 19.25 18.62 19.21 19.10 18.18 17.33 12.33 16.80	21.06 19.21 19.25 18.62 19.21 19.10 18.18 17.33 16.80 15.95 17.80	21.06 19.21 19.25 18.62 19.21 19.10 18.18 17.33 12.33 16.80 17.80 17.80	21.06 19.21 19.25 18.62 19.21 19.10 18.18 17.33 16.80 15.95 17.80	21.06 19.21 19.25 18.62 19.21 19.10 18.18 17.33 16.80 15.95 17.80 15.25 13.40	21.06 19.21 19.25 18.62 19.21 19.10 18.18 17.33 12.33 16.80 15.95 17.80 15.95 17.80 13.40
Resources	33	33		33	33 33	33 33 33	8 8 8 8	8 8 8 8 8	88 88 88 88 88	8 8 8 8 8 8 8	8 8 8 8 8 8 8 8	23 83 83 83 83 83 83 83 83	24 24 23 23 23 23 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	27 27 28 28 28 28 28 28 28 28 28	24 25 25 23 23 23 23 23 23 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 24 24 24 28 28 28 28 28 28 28 28 28 28 28 28 28	52 53 <td< td=""><td>52 53 <td< td=""></td<></td></td<>	52 53 <td< td=""></td<>
Trains	29	S.	77	17	22 17 14	25 17 12 12	2.7 1.7 1.2 8	5. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5 7 1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57 112 8 8 8 8 12 71 71	57 71 71 8 8 8 8 11 71 71 81	57 1 1 2 1 8 8 8 8 8 1 1 2 1 1 1 1 1 1 1 1	27 11 12 12 8 8 8 12 17 17 17 18	27 11 12 8 8 8 12 17 17 17 18 18 10 10 10 10 10 10 10 10 10 10 10 10 10	27 11 12 13 14 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	27 11 12 13 14 15 15 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	27 112 8 8 8 8 8 12 12 14 17 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Insntc																				