

Mathematical Ship Model No. 3789

Copenhagen

FORCE 115-20336 / 2016-08-29

Title of report and Project No.:

Ship Description

Ship 3789

Ferry

Service Condition

Copenhagen

Client:		Ref.:	11	5-20336		
Author(s):	Pablo Esquivel de Pablo	Date:	<i>Date:</i> 2016-08-29			
	Martin Hjorth Simonsen	Approve	Approved by:			
Revision	Description	Ву:	Checked:	Approv	ed:	Date:
2	Updated with sea trial	PDP	CVE			2016-08-29
1	Original version	MHSI	JFO			2015-05-19
Keywords:	Manoeuvring characteristics Ship characteristics Equilibrium speeds				Cla	Open Internal Confidential

i

Last Updated: 2015-05-19

List of Contents

		Page
1	Ship Description	1
2	Basis for Mathematical Ship Model	1
3	Manoeuvring Characteristics	2
4	Ship Particulars	3
5	Equilibrium Speeds	5

Appendix A: Plots of Standard and Check Manoeuvres

Nomenclature and Definitions

 $\begin{array}{cc} \text{LCB} & \text{Longitudinal centre of buoyancy} \\ \text{Lpp} & \text{Length between perpendiculars} \end{array}$

R Radius of propeller

T Draught

The ship is defined in a right hand coordinate system with x positive forward and y positive to starboard. The path of the ship is referred to the origin of the ship, i.e. at the intersection between amidships and the centreline. Rudder angles are defined positive to port.

Wind direction: Wind coming from [angle] Wave direction: Waves going to [angle] Current direction: Current going to [angle]

Last Updated: 2015-05-19

1 Ship Description

The ship is a 169.5 m long and 24.8 m wide ferry in a service condition. It is propelled by a single controllable pitch propeller mounted in the centreline and two azimuth thrusters equipped with fixed pitch propellers. The service speed at the design draught is 24.9 knots. The vessel is fitted with one spade rudder in the CL and has two bow thrusters.

In the following sections the word "rudder angle" will be also used for the azimuth thruster angle.

2 Basis for Mathematical Ship Model

The mathematical model of the ship were based on results from tests in the shallow water basin at HSVA with a scaled (1:16.983) model of the ferry. The updated version is set to match the sea trials of the sister ship "M/V Berlin". The seakeeping properties of the ship and shallow water effect on the hull forces have been scaled from a similar model to fit the conditions of the present ship. Wind load data has been obtained from wind tunnel test measurements of a similar ship.

The basis for the mathematical ship model is summarized in Table 2-1.

		Predicted	Specific		
	Scaled	using	model tests	Specific	
	from	database	(PMM/	calculations	
	similar	tool	wind	(CFD/	Full scale
Effect (device)	model	(ShipYard)	tunnel)	OMEGA)	trial data
Hull hydrodynamics					Х
Shallow water effects			Х		Х
Propulsion & rudder			Х		
Thrusters					
Wave loads	Х				
Wind loads	Х				
Bank effects	Х				
Ship-ship interaction	Х				
Hydrostatic forces	Х				
Engine characteristic	Х				
Anchor characteristic	Х				

Table 2-1: Basis for Mathematical Ship Model

Last Updated: 2015-05-19

3 Manoeuvring Characteristics

The manoeuvring characteristics of the vessel are governed by two azimuth thrusters and one centre propeller configuration, giving better stopping capability than a conventional vessel of similar dimensions. The ship is course stable as it can be seen from the spiral curve. Its turning ability as seen from the turning circle test is good. The stopping ability of the ship is excellent and well below the IMO recommendations of 15 ship lengths. The ship is seaworthy with a maximum roll angle of around 6.0 deg in 3 m waves (significant wave height). When sailing in cross winds of 15 m/s the steady heel angle is about 0.6 deg. The autopilot is not fully stable after the latest tuning.

The main manoeuvring characteristics of the ship model are listed in Table 3-1.

Parameter	Ferry	IMO limit
Turning circle, Advance	3.1 ⋅ L _{pp}	4.5 ⋅ L _{pp}
Turning circle, Tactical diameter	2.8 · L _{pp}	5.0 · L _{pp}
10/10 zig-zag, 1 st overshoot angle	12.7 deg	11.1 deg
10/10 zig-zag, 2 nd overshoot angle	23.3 deg	26.7 deg
20/20 zig-zag, 1st overshoot angle	26.3 deg	25.0 deg
Crash stop, Track reach	5.7 ⋅ L _{pp}	15 ⋅ L _{pp}
Azimuth Crash stop, Track reach	3.7 ⋅ L _{pp}	-

Table 3-1: Manoeuvring Characteristics

Note the manoeuvres have the initial speed of 19.5 knots to match the sea trial. Note the standard crash stop has been performed by using the fixed propeller, while the azimuth stop has been performed by turning the pods outward to ± 180 deg.

Track plots and time series from simulated standard manoeuvres are given in Appendix A.

4 Ship Particulars

Type of ship Condition Ship No.		Ferry Service 3789
	ino.	
Length between Perpendiculars	m	156.45
Length overall	m	169.5
Breadth moulded	m	24.8
Depth moulded	m	14.25
Draught fore/aft	m ,	5.46/5.46
Displacement	m³	12364
Wetted Surface	m²	4057
Frontal wind Area	m²	500
Lateral wind Area	m²	3160
Block Coefficient based on Lpp	-	0.584
Trim by the Stern	%	0
Metacentric Height	m	2.43
LCB, % of LPP forw. of LPP/2	%	-3.97
Radius of Inertia, % of LPP	%	25.0
Type of Engine		Diesel
Number of Propellers		3
Type of Propellers		Center – CP
		Azimuth thrusters - FP
Direction of Rotation		Center – Counter Clockwise
		Azimuth thrusters -
Number of Blades		Outwards
Propeller Diameter	m	5
		Center - 4.6
Pitch Ratio at 0.7R		Azimuth thrusters – 3.0
		Center - 1.20
Area Ratio		Azimuth thrusters – 1.03
		Center - 0.766
Shaft Power (ahead) total	kW	Azimuth thrusters – 0.719
		1 X 13500
		2 X 3500
Number of Rudders		3
Type of Rudders		Center Rudder - Spade
3.		2x Azimuth thrusters
Position off CL	m	Center rudder - 0
		Azimuth thrusters -
		+/- 7.69
Area of Rudder	m²	Center rudder - 11.0
Total rudder Area/LBP x T	%	1.29
Turning Velocity of Rudder (two Pumps)	deg/s	Center rudder - 4.6
ranning velocity of Rudder (two Fullips)	ucy/s	Azimuth thrusters - 9.0
		71211110111 11111031C13 - 7.U

Max. rudder Angle	deg	Center rudder 35 Azimuth Thrusters +/-180
Anchor Weight	kg	4836
Chain Weight	kg/m	100.0
Number of bow Thrusters		2
Nominal bow thruster Power	kW	2 X 1350
Number of stern Thrusters		0

Table 4-1: Ship Particulars

Last Updated: 2015-05-19

5 Equilibrium Speeds

Ship Engine	Centre P	ropeller	Azimuth Thrusters		Speed, knots	
Setting	RPM	Pitch	RPM	Pitch	1000 m	6.6 m
1.0	164	1.2	254	1.02	24.9	12.8
0.8	149	0.9	203	II	18.8	12.3
0.5	121	0.5	127	Ш	10.6	8.4
0.25	98	0.3	64	П	4.7	4.0
0.125	98	0.2	32	Ш	3.0	2.6
-0.125	98	-0.2	32	П	-1.5	-0.9
-0.25	98	-0.4	64	И	-4.5	-3.6
-0.5	121	-0.6	127	И	-9.5	-7.7
-1.0	164	-0.8	254	и	-17.0	-11.3

Table 5-1: Propeller RPM and pitch, and equilibrium speeds for various handle settings for two water depths: deep water and shallow water corresponding to 1.2 times the mean draught.

6 Azimuth units range

The azimuth units have been limited to avoid the flow wash the hull. The limitation is set up in a range between 60° to 150° towards the hull (positive values for the starboard unit and negative for the port one).

Appendix A

Mathematical Ship Model No. 3789 Copenhagen

Plots of Standard and Check Manoeuvres

List of Contents

Side View and Birds Eye View	3
Wind Coefficients	4
1. Turning Circle Starboard	5
2. Turning Circle Port	7
3. Turning Circle Starboard, Shallow Water	9
4. Zig-zag 10/10	11
5. Zig-zag 20/20	12
6. Combined Dieudonne- and Reverse Spiral	13
7. Acceleration	14
8. Standard Crash Stop	15
9. Azimuth Crash Stop	16
10. Going Astern	17
11. Drifting in Wind	18
12. Sailing with Autopilot in Wind	20
13. Drifting in Current	22
14. Sailing with Autopilot in Current	24
15. Drifting in Waves	26
16. Sailing with Autopilot in Waves	28

115-20336 29-Aug-2016

1. Turning Circle Starboard

Initial Conditions and Controls

Approach speed : 19.5 knots Rudder deflection : -35 deg Water depth : h/T = 1

Results and Equilibrium Values

Advance : 478 m
Transfer : 201 m
Tactical diameter : 430 m
Steady diameter : 366 m

2. Turning Circle Port

Initial Conditions and Controls

Approach speed : 19.5 knots Rudder deflection : 35 deg Water depth : h/T = 1

Results and Equilibrium Values

Advance : 479 m
Transfer : 206 m
Tactical diameter : 432 m
Steady diameter : 364 m

3. Turning Circle Starboard, Shallow Water

Initial Conditions and Controls

Approach speed : 8.4 knots Rudder deflection : -35 deg Water depth : h/T = 1.2

Results and Equilibrium Values

Advance : 639 m
Transfer : 466 m
Tactical diameter : 897 m
Steady diameter : 765 m

4. Zig-zag 10/10

Initial Conditions and Controls

Approach speed : 19.5 knots Rudder/heading deflection : 10/10 deg

Results and Equilibrium Values

1st Overshoot Angle : 12.7 deg 2nd Overshoot Angle : 23.3 deg Initial turning ability : 298 m

5. Zig-zag 20/20

Initial Conditions and Controls

Approach speed : 19.5 knots Rudder/heading deflection : 20/20 deg

Results and Equilibrium Values

1st Overshoot Angle : 22.7 deg 2nd Overshoot Angle : 26.3 deg Initial turning ability : 308 m

7. Acceleration

Initial Conditions and Controls

Initial speed : 0.0 knots Water depth : h/T = 1

Results and Equilibrium Values

Advance : 8261 m

Speed : 20.0 knots

Revolutions : 247.1 RPM

Time : 795 s

8. Standard Crash Stop

Initial Conditions and Controls

Initial speed : 19.4 knots Water depth : h/T = 1

Results and Equilibrium Values

Advance : 898 m
Speed : 0.0 knots
Revolutions : 0.0 RPM
Time : 207 s

9. Azimuth Crash Stop

Initial Conditions and Controls

Initial speed : 19.4 knots Water depth : h/T = 1

Results and Equilibrium Values

Advance : 586 m

Speed : 0.1 knots

Revolutions : 193.5 RPM

Time : 121 s

10. Going Astern

Initial Conditions and Controls

Initial speed : -1.9 knots Water depth : h/T = 1

Results and Equilibrium Values

Advance : -510 m
Speed : -1.3 knots
Revolutions : 33.0 RPM
Time : 595 s

11. Drifting in Wind

Initial Conditions and Controls

Water depth : h/T = 1Wind speed : 15 m/s Wind direction : 270 deg

Results and Equilibrium Values

Longitudinal Speed : 0.1 knots
Transverse Speed : 1.0 m/s
Roll Angle : 0.6 deg

12. Sailing with Autopilot in Wind

Initial Conditions and Controls

Water depth : h/T = 1Wind speed : 15 m/s Wind direction : 270 deg

Results and Equilibrium Values

Longitudinal Speed : 20.9 knots
Transverse Speed : 0.3 m/s
Roll Angle : 5.0 deg

13. Drifting in Current

Initial Conditions and Controls

Water depth : h/T = 1Current speed : 2 knots Current direction : 90 deg

Results and Equilibrium Values

Longitudinal Speed : -0.1 knots
Transverse Speed : 0.8 m/s
Roll Angle : -0.0 deg

14. Sailing with Autopilot in Current

Initial Conditions and Controls

Water depth : h/T = 1Current speed : 2 knots Current direction : 90 deg

Results and Equilibrium Values

Longitudinal Speed : 17.6 knots
Transverse Speed : 0.3 m/s
Roll Angle : -3.3 deg

15. Drifting in Waves

Initial Conditions and Controls

Water depth : h/T = 1Wave height (Hs) : 3 m Wave period (Tp) : 9.1 s Wave direction : 90 deg

Results and Equilibrium Values

Longitudinal Speed : -0.3 knots
Transverse Speed : 0.4 m/s
Maximum Roll Angle : 6.4 deg

16. Sailing with Autopilot in Waves

Initial Conditions and Controls

Water depth : h/T = 1Wave height (Hs) : 3 m Wave period (Tp) : 9.1 s Wave direction : 90 deg

Results and Equilibrium Values

Longitudinal Speed : 23.5 knots
Transverse Speed : 0.1 m/s
Maximum Roll Angle : 6.0 deg

