7. Случайные величины. Функции распределения и их свойства.

Функция $X:\Omega \to \mathbb{R}$ называется **случайной величиной**, то есть каждому элементарному исходу ставится в соответствие число $X(w) \in \mathbb{R}$.

Функцией распределения случайной величины ξ называется функция $F_{\xi}:\mathbb{R} o [0,1]$, при каждом значении $x\in\mathbb{R}$ равная вероятности случайной величины ξ принимать значения, меньшие x:

$$F_{\xi}(t) = P(\xi < t) = P\{\omega : \xi(\omega) < t\}$$

Свойства функции распределения:

- 1. Не убывание: $x_1 < x_2 \Rightarrow F_{\xi}(x_1) \leq F_{\xi}(x_2)$
 - 1. Доказательство из монотонности вероятности, так как $x_1 < x_2$: $\{ \xi < x_1 \} \subset \{ \xi < x_2 \}.$
- 2. Пределы:

1.
$$\lim_{t o -\infty} F_{\xi}(t) = 0$$

2.
$$\lim_{t o\infty}F_{\xi}(t)=1$$

Доказательство свойства (F2). Заметим сначала, что существование пределов в свойствах (F2), (F3) вытекает из монотонности и ограниченности функции $F_{\xi}(x)$. Остаётся лишь доказать равенства $\lim_{x\to-\infty}F_{\xi}(x)=0, \ \lim_{x\to+\infty}F_{\xi}(x)=1$ и $\lim_{x\to x_0-0}F_{\xi}(x)=F_{\xi}(x_0)$. Для этого в каждом случае достаточно найти предел по какой-нибудь подпоследова-

тельности $\{x_n\}$, так как существование предела влечёт совпадение всех частичных пределов.

Докажем, что $F_{\xi}(-n) \to 0$ при $n \to \infty$. Рассмотрим вложенную убывающую последовательность событий $B_n = \{\xi < -n\}$:

$$B_{n+1} = \{\xi < -(n+1)\} \subseteq B_n = \{\xi < -n\}$$
 для любых $n \geqslant 1$.

Пересечение B всех этих событий состоит из тех и только тех ω , для которых $\xi(\omega)$ меньше любого вещественного числа. Но для любого элементарного исхода ω значение $\xi(\omega)$ вещественно, и не может быть меньше всех вещественных чисел. Иначе говоря, пересечение событий B_n не содержит элементарных исходов, т. е. $B = \bigcap B_n = \emptyset$. По свойству непрерывности меры, $F_{\xi}(-n) = \mathsf{P}(B_n) \to \mathsf{P}(B) = 0$ при $n \to \infty$.

Точно так же докажем остальные свойства.

Покажем, что $F_{\xi}(n) \to 1$ при $n \to \infty$, т.е. $1 - F_{\xi}(n) = \mathsf{P}(\xi \geqslant n) \to 0$. Обозначим через B_n событие $B_n = \{\xi \geqslant n\}$. События B_n вложены:

$$B_{n+1} = \{\xi \geqslant (n+1)\} \subseteq B_n = \{\xi \geqslant n\}$$
 для любых $n \geqslant 1$,

а пересечение B этих событий снова пусто: оно означает, что ξ больше любого вещественного числа. По свойству непрерывности меры,

$$1 - F_{\xi}(n) = \mathsf{P}(B_n) \to \mathsf{P}(B) = 0$$
 при $n \to \infty$.

3. Непрерывность слева:
$$F_{\xi}(x_0-0) = \lim_{x o x_0-0} F_{\xi}(x) = F_{\xi}(x_0)$$

Доказательство свойства (F3). Достаточно доказать, что $F_{\xi}(x_0-1/n)\to F_{\xi}(x_0)$ при $n\to\infty$. Иначе говоря, доказать сходимость к нулю следующей разности:

$$F_{\xi}(x_0) - F_{\xi}\left(x_0 - \frac{1}{n}\right) = \mathsf{P}(\xi < x_0) - \mathsf{P}\left(\xi < x_0 - \frac{1}{n}\right) = \mathsf{P}\left(x_0 - \frac{1}{n} \leqslant \xi < x_0\right).$$

У пражнение. Обозначьте событие $\{x_0 - 1/n \leqslant \xi < x_0\}$ через B_n , и попробуйте снова воспользоваться свойством непрерывности меры.

- 1. Говорим, что события B_n вложены друг в друга, а вероятность от их пересечения равна нулю (так как $P(\xi=x_0)=0$). Тогда разность сходится к нулю, и из этого функция непрерывна слева.
- 4. Например

Свойство 9. Для любой случайной величины §

$$\mathsf{P}(a \leqslant \xi < b) = F_{\xi}(b) - F_{\xi}(a).$$

Доказательство. Разобьём событие $\{\xi < b\}$ в объединение несовместных событий: $\{\xi < a\} \cup \{a \leqslant \xi < b\} = \{\xi < b\}$. По свойству аддитивности вероятности, $\mathsf{P}\{\xi < a\} + \mathsf{P}\{a \leqslant \xi < b\} = \mathsf{P}\{\xi < b\}$, или $F_{\xi}(a) + \mathsf{P}\{a \leqslant \xi < b\} = F_{\xi}(b)$, что и требовалось доказать.

Вообще свойств можно придумать сколько угодно, главные выписаны, (4) уже не так важно, запоминать помимо первых трех смысла мало.