CAUSE: A Data Repository for Causal Inference

Raha Moraffah, Lu Cheng, Ruocheng Guo, K Selcuk Candan, Huan Liu Arizona State University {rmoraffa, huan.liu}@asu.edu

Traditional Supervised Learning vs Causal Inference

- How does type of school affect child's achievements in feature?
- Traditional supervised learning

These methods are designed to predict the outcome and not the effect of types of schools

Correlation vs Causation

- From observational data, School's type (T) and outcome (Y) are correlated, But neither of them might cause the other one Observed correlation could be due to the child's features

Challenges and desiderata of causal inference

Challenges:

- Causal structure of variables is unknown
- Not all variables are confounders
- Counterfactuals can not be observed in observational data

Example:

Factual: John Went to X school and his college gpa is A.

Counterfactual: What would have been John's gpa, had he not gone to X school?

Desiderata:

- Overlap assumption: Common support
- Ignorability assumption: No unmeasured confounder

Causal feature evaluation; datasets and methodologies

Methodologies:

- Available datasets for causal discovery:
 - Not available for all tasks
 - Existing datasets are small
- Mapping the problem to another domain and use existing datasets:

- Relaxing the problem by enforcing strong assumptions:
 - Based on the theory of transportability, causal relationships are more robust
 - o compare the performance of classifiers with different interventional distributions

This material is based upon work supported by, or in part by, the X grant Y.

