Facial Emotion Detection

WHY?

Drownsiness of Drivers/Pilots

Students / Lack of interest

Kidnapping or loss of a person

Lie detector (examination)

Behavior of psychopaths

Children with communication

CHALLENGES

Real

Ethics_Domains

Capture

Light, reflections...

Time_Cost

Model complexity

Data representation, Preprocessing...

RECOGNIZE

Нарру

Neutral

Sad

Surprise

GOAL

The most efficient model in terms of time and cost. The most suitable for the real world.

PROBLEM TO SOLVE:

Data representation & preprocessing

Quality & Diversity of the dataset

Features Extraction

Labeled Emotion & Annotation

Performance Model

In gray 48*48*3 =

1 Channel = Faster = Cheaper!

Ok, but

ANN (Artificial Neural Nerwork) alone for feature detection = BAD

41%

CONVOLUTIONAL Neural Networks)

	precision	recall	f1-score	support
Happy Sad Neutral Surprise	0.78 0.50 0.59 0.93	0.78 0.66 0.50 0.78	0.78 0.57 0.54 0.85	32 32 32 32
accuracy macro avg weighted avg	0.70 0.70	0.68 0.68	0.68 0.68 0.68	128 128 128

From scratch

- + Full control: Design the architecture
- + Lighter model

74%

- **Data:** Needs a LOT

- **Settings:** Longer training time

Epoch 20/20

473/473 - 137s - 289ms/step - accuracy: 0.7447 - loss: 0.6334 - val_accuracy: 0.7338 - val_loss: 0.6887

Transfer Learning

EfficientNet

TIME?
MONEY?
to invest in the final project

"TARGET"? is static or moving.

77% (only 5 Epoch)

Epoch 5/5
473/473 - 194s - 410ms/step - accuracy: 0.7703 - loss: 0.5741 - val_accuracy: 0.1605 - val_loss: 1.9668

- Freezing layers before the Flatten (or GlobalAveragePooling) layer > feature extractor.
- Keeping the classifier layers trainable. Here, overfitting but has one of the best potentials

PROPOSED MODEL SOLUTION

A CNN MODEL from Scratch

Flexible, Adaptative, Personalized

Widespread use in the future

Final proposal based on

ANN accuracy: 0.4233 val_accuracy: 0.46177 test:accuracy: 0.5490

CNN1 accuracy: 0.6943 val_accuracy: 0.6710 test:accuracy: 0.7604

CNN2 accuracy: 0.7505 val_accuracy: 0.7372 test:accuracy: 0.7812

CNN3 accuracy: 0.6329 val_accuracy: 0.7812 test:accuracy: 0.0860

VGG16 model accuracy: 0.6380 val_loss: 0.8290 test:accuracy: 0.6865

ResNet V2 w/ GAP accuracy: 0.5424 val_accuracy: 0.5843 test:accuracy: 0.5552

EfficientNet w/ GAP accuracy: 0.7703 val_accuracy: 0.1605 test:accuracy: 0.6427

Complex CNN accuracy: 0.6740 val_accuracy: 0.7366 test:accuracy: 0.7510

TRANSFER LEARNING (EfficientNet)

Freezing base layers and fine-tune only the top (head) layers

Fast and lightweight (especially B0–B3)
Captures complex features with fewer parameters

"Emotion is the key to Human experience."

— Carl Jung

THANK YOU