General Physics II (152)

Discussion Questions #4 Electric Flux and Potential

1. Electric Flux through a Cubic Box

Consider a cubic box located in a region of space with an electric field parallel to *x*-axis.

Flux from left side $\Phi_L = -2 \text{ Nm}^2/\text{C}$

Flux leaving right $\Phi_R = +1 \text{ Nm}^2/\text{C}$

What is Q_{enclosed} , the net charge enclosed by the box?

2. Electric Flux through a Slanted Area

Given a constant electric field \mathbf{E} along the x-direction. The field passes through a wedge shape as shown. First \mathbf{E} passes through the rectangular face abcd, which has an area A_1 and is perpendicular to \mathbf{E} . Leaving the wedge, the field passes through a second rectangle abc'd', which has an area A_2 and is inclined with an angle $\angle dad' = \theta$ as shown.

a) What is Φ_2 , the electric flux due to the field **E** through the second rectangle, abc'd'? Express your answer in terms of A_2 and θ .

(Hints: Flux can be thought of as $\Phi = EA_{\perp}$.)

b) What is the flux through the rectangle, dcc'd'?

3. Conducting Shell and Point Charge

Consider an electrostatic situation. A point charge q_1 is located at the center of a thick spherical conducting shell (the dark shaded region). The net charge on the shell is q_2 .

a) What is E_P , the magnitude of the radial electric field vector at P, which is at a distance r from the center?

b) What is the charge on the outer surface S of the spherical shell?

4. V Due to Three Point Charges

Three point charges are placed at equal distance a from O.

a) What is the potential at O?

b) What work is done if a charge q_1 is brought to point O from a point very far away?