α) Η υπερβολή C έχει κέντρο το (0,0) και εστίες στον άξονα xx', οπότε θα έχει ασύμπτωτες της μορφής  $y=\frac{\beta}{\alpha}x$ ,  $y=-\frac{\beta}{\alpha}x$  και εξίσωση της μορφής  $\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}=1$ .

Αφού οι εστίες είναι E(5,0), E'(-5,0) συμπεραίνουμε ότι  $\gamma=5$  και αφού οι κορυφές της είναι τα σημεία A(4,0), A'(-4,0) συμπεραίνουμε ότι  $\alpha=4$ . Επομένως από τη σχέση  $\gamma^2=\alpha^2+\beta^2$  έχουμε ότι  $5^2=4^2+\beta^2 \Leftrightarrow \beta^2=9 \Leftrightarrow \beta=3$ . Τελικά

i. οι εξισώσεις των ασυμπτώτων της υπερβολής  $\,C\,$  είναι  $\,y=\frac{3}{4}\,x$  ,  $\,y=-\frac{3}{4}\,x$ 

ii. η εξίσωση της υπερβολής C είναι  $\frac{x^2}{16} - \frac{y^2}{9} = 1$ .

β) Οι κορυφές του ορθογωνίου βάσης είναι τα σημεία τομής των ασυμπτώτων της C με τις εφαπτόμενες της C στις κορυφές της, δηλαδή τα σημεία τομής των ευθειών  $y=\frac{3}{4}x$ ,  $y=-\frac{3}{4}x$  με τις ευθείες x=4, x=-4.

Τα σημεία αυτά είναι τα  $B(4,3), \Gamma(4,-3), \Delta(-4,-3), Z(-4,3)$ , ενώ οι ασύμπτωτες της C είναι οι διαγώνιες του ορθογωνίου βάσης.

Η υπερβολή C, οι ασύμπτωτες της C και το ορθογώνιο βάσης της C, φαίνονται στο παρακάτω σχήμα.



- γ) Από τον ορισμό της υπερβολής γνωρίζουμε ότι για κάθε σημείο M της C είναι  $|(ME)-(ME')|=2\alpha$ , οπότε (ME)-(ME')=8 (αν το M ανήκει στον κλάδο της C που είναι πιο κοντά στην εστία E') ή(ME)-(ME')=-8 (αν το M ανήκει στον κλάδο της C που είναι πιο κοντά στην εστία E).
- δ) Από την ανακλαστική ιδιότητα της υπερβολής, γνωρίζουμε ότι για κάθε σημείο της M , η διχοτόμος της γωνίας  $E\hat{M}E'$  είναι η εφαπτομένη της στο M . Συνεπώς η ζητούμενη διχοτόμος είναι η εφαπτομένη της C στο  $M(\sqrt{80},6)$  , δηλαδή η ευθεία με εξίσωση  $\frac{\sqrt{80} \cdot x}{16} \frac{6y}{9} = 1$ .