

Foundations of Machine Learning (CS 725)

FALL 2024

Lecture 20:

- SVMs and Kernels

Instructor: Preethi Jyothi

Question

Recall the soft-margin SVM where each (\mathbf{x}_i, y_i) is associated with a ξ_i and the objective contains a term $C\sum_i \xi_i$. Say we impose an additional constraint that $\forall i, \xi_i = \xi_1$. What can

we say about the minimum value of the objective function under the modified constraints, say α , in comparison to the minimum under the original constraints, say β ?

$$\alpha \leq \beta$$

 β is the minimum value under fewer constraints; guaranteed to be at least as good (if not better) than α obtained with additional constraints.

Gaussian Kernel

