

Massachusetts Institute of Technology Organic Chemistry 5.13

September 20, 2006 Prof. Timothy F. Jamison

Notes for Lecture #7

Material Provided on Hour Exam 1 (Friday, September 29, 2006)

The following 4 pages will be provided to you as reference material for the hour exam on Friday, September 29, exactly as they appear here.

(Some of this information has been distributed in previous lecture handouts.)

Infrared Spectra: Tables of Reference

X-H Region

Phenols and Alcohols	ROH	3700-3500 sharp or 3200-3600 broad(H-bonded)
Acids	RCO ₂ H	2800-3600 very broad
Amides and Amines	RCONHR R ₂ NH	3300-3500
C-H bonds	C≡C-H C=C-H C-C-H RCHO	3100-3300 3000-3200 2850-3000 2700-2800

sp Region

Acetylenes	C≡C	2100	
Nitriles	C≡N	2200	
Ketenes	C=C=O	2150	
Allenes	C=C=C	1950	

Double Bond Region

Alkenes	C=C	1600-1670 weak unless conjugated
Imines	C= N	1600-1700
Nitro	-NO ₂	1350-1550(two bands)

Carbonyl Groups

Anhydrides RC(O)OCOR	1740-1780, 1800-1840		6-member 1710	ed and larger c	yclic ketones
Acid Chlorides RCOCI	(two bands)	/ PO		10	1680
Esters RCO ₂ R	1790-1815 1725-1755		1740		1715
Acids		O	1780		
RCO ₂ H Amides	1700-1725	/ CO	1770		1740
RCONR ₂ Urethanes	1630-1700	<u>_</u> 6	1770	NR	1690-1740
R ₂ NCO ₂ R Aldehydes	1700	0	1730	C 0	4.570
RCHO	1720-1740			NR	1650

Figure by MIT OCW.

Characteristic Functional Group Chemical Shifts in ¹³C NMR (ppm)

Alkanes		Organohalogen	
Methyl (RCH ₃)	0-30	C–F	70-80
Methylene (RCH₂R')	15-55	C–CI	25-50
Methine (RCH(R')(R"))	25-55	C–Br	10-40
Quaternary (RC(R')(R")(R""))	30-40	C–I	-20-10
Alkenes	100-150	Ketones, Aldehydes	185-220
Aromatic	120-160	Carboxyl Derivatives	
Alkynes	70-90	Acids	150-185
Nitriles	110-125	Esters	155-180
Alcohols, Ethers	50-90	Amides	150-180
Amines	40-60	Carbamates	150-160

¹H NMR Spectra: Tables of Reference

Average Chemical Shifts (δ) of α–Hydrogens in Substituted Alkanes*

X	CH ₃ X	RCH ₂ X	R ₂ CHX
Н	0.233	0.9	1.25
CH ₃ or CH ₂	0.9	1.25	1.5
F	4.26	4.4	<u> </u>
Cl	3.05	3.4	4.0
Br	2.68	3.3	4.1
I	2.16	3.2	4.2
ОН	3.47	3.6	3.6
OR	3.3	3.4	<u> </u>
OAr	3.7	3.9	-
OCOR	3.6	4.1	5.0
OCORAr	3.8	4.2	5.1
SH	2.44	2.7	_
SR	2.1	2.5	_
SOR	2.5		2.8
SO_2R	2.8	2.9	3.1
NR_2	2.2	2.6	2.9
NR-Ar	2.9	<u> </u>	<u> </u>
NCOR	2.8		3.2
NO_2	4.28	4.4	4.7
СНО	2.20	2.3	2.4
COR	2.1	2.4	2.5
COAr	2.6	3.0	3.4
СООН	2.07	2.3	2.6
COOR	2.1	2.3	2.6
CONH ₂	2.02	2.2	
CR=CRCR ¹	2.0-1.6	2.3	2.6
Phenyl	2.3	2.7	2.9
Aryl §	3.0-2.5	_	_
C≡CR	2.0		
C≡CN	2.0	2.3	2.7

^{*} The tabulated values are average values for compounds that do not contain another functional group within two carbon atoms from the indicated hydrogens.

Chemical Shifts of Hydrogens Bonded to Unsaturated Centers

Туре	Unconjugated	Conjugated*
R ₂ C=CH ₂	4.6-5.0	5.4-7.0
R ₂ C=CHR	5.0-5.7	5.7-7.3
Aromatic	6.5-8.3	
Nonbenzenoid aromatic	6.2-9.0	
Acetylenic	2.3-2.7	2.7-3.2
Aldehydic	9.8-9.8	9.5-10.1
R ₂ NCHO	7.9-8.1	
ROCHO	8.0-8.2	

^{*} The position depends on the type of functional group in conjugation with the unsaturated group.

Chemical Shifts of Hydrogen Bonded to Oxygen, Nitrogen, and Sulfer

Functional Group		Chemical Shift, δ		
ОН	Akohols	0.5	(Monomeric)	
		0.5-5	(Associated)	
	Phenols	4.5	(Monomeric)	
		4.5-8	(Associated)	
	Enols	15.5		
	RCO ₂ H	9-12	(Dimeric)	
	H-bonded to C=O	13-16		
NH ₂	Alkylamine	0.6-1.6		
	Arylamine	2.7-4.0		
	Amide	7.8		
NH	Alkylamine,	0.3-0.5		
	Arylamine	2.7-2.8		
R ₃ NH ⁺	Ammonium salts	7.1-7.7	(in CF ₃ COOH)	
SH	Aliphatic	1.3-1.7		
	Aromatic	2.5-4		

[§] Includes polycycllc and many heterocyclic aromatics.

¹H NMR Coupling Constants (Expanded)

In rigid systems, vicinal coupling can range from 0 to 15 Hz. For example:

$$H$$
 ax-ax 6-14 Hz H ax-eq 0-5 Hz H eq-eq 0-5 Hz

Spin-spin coupling in alkenes:

Spin- spin coupling in arenes:

$$H_a$$
 H_b
 J_{ab} (ortho) 6-10 Hz
 J_{ac} (meta) 1-3 Hz
 J_{ac} (para) 0-1 Hz
 J_{ad} (para) 0-1 Hz