Chrisi

GRUPPE

 $\begin{array}{c} \text{DAVID Raese} \\ \# \ 1628909 \end{array}$

1 Aufgabe a)

2 Aufgabe b)

3 Aufgabe c)

3.1 Bestimmung der Steigung:

Um die durchschnittliche molare Verdampfungsenthalpie zu bestimmen muss zunächst die Steigung aus Diagramm zwei berechnet werde. Die Geradengleichung der Regressionsgerade ist gegeben durch:

$$y = m \cdot x + c$$

Die Parameter m(Steigung) = -5.060 und c(Achsenabschnitt) = 13.5 wurden mit dem Programm SciDAVis bestimmt. Zur berechnung der Steigung kann folgende Formel verwende werden:

$$m = \frac{n \cdot \sum_{i=1}^{n} (x_i \cdot y_i) - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

Der Zusammenhang der Steigung und der durchschnittlichen molaren Verdampfungsenthalpie wird über die Clausius-Claperyron-Gleichung hergestellt:

$$\frac{dln(p)}{d(1/T)} = \frac{-\Delta_V H_m}{R}$$

Da bei Diagramm zwei ln(p) gegen 1/T aufgetragen ist, entspricht $\frac{-\Delta_V H_m}{R} = m$, da m und R bekannt sind kann $\Delta_V H_m$ bestimmt werden.

$$m = \frac{-\Delta_V H_m}{R}$$

$$\Delta_V H_m = -mR = -(-5060K \cdot mol) \cdot 8,13J \cdot K^{-1} mol^{-1} = 42071J$$

Die durchschnittliche Verdampfungsenthalpie die gemessen wurde beträgt somit 42071J.

Berechnung der theoretischen Siedepunktserhöhung

$$\Delta_V H = 41, 1 \cdot 10^3 \text{ J/mol}$$

 $R = 8, 3145 \text{ J/(mol \cdot K)}$

$$\begin{split} & n(H_2O) = 13,\!877 \; mol \\ & T_{350mbar} = 72,\!54 \; C = 345,\!69 \; K \\ & T_{1006mbar} = 99,\!5 \; C = 372,\!65 \; K \end{split}$$

$$\Delta T = \frac{R \cdot T^2}{\Delta_V H} \cdot x_B$$

NaCl:

$$x_B = \frac{2 \text{ mol}}{(2+13,877)\text{mol}} = 0,126$$

$$\Delta T_{350 \text{ mbar}} = 3,05 \text{ K}$$

$$\Delta T_{1006 \text{ mbar}} = 3,54 \text{ K}$$

CaCl₂:

$$x_B = \frac{3\text{mol}}{(3+13,877) \text{ mol}} = 0,178$$

$$\Delta T_{350 \text{ mbar}} = 4,30 \text{ K}$$

$$\Delta T_{1006~mbar} = 5,00~K$$

Druck [mbar]	x_{B}	T* [C]	Δ T [C]
1006	0,126	104,3	3,54
350	0,126	77,38	3,05

Tabelle 1: Theoretische Siedepunktserhöhung für NaCl

Druck [mbar]	x_{B}	T* [C]	Δ T [C]
1006	0,178	111,2	4,88
350	0,178	84,48	4,20

Tabelle 2: Theoretische Siedepunktserhöhung für CaCl₂

4 Aufgabe e)

4.1 Berechnung des Aktivitätskoeffizienten:

Wie in Aufgabe d) zu erkennen ist, weichen die realen von den idealen Siedetemperaturen ab. Dies liegt daran, das bei der Clausius-Claperyron-Gleichung von idealen verhalten ausgegangen wird, es werden also nicht die Wechselwirkungen, welche zwischen den Molekülen stattfinden berücksichtigen. Um diese Diskrepanz zu quantifizieren wird der Aktivitätskoeffizient herangezogen, dieser beschreibt das Verhältnis zwischen idealem und realen Verhalten.

$$\Delta T_{real} = \Delta T_{ideal} \cdot \gamma$$
$$\gamma = \frac{\Delta T_{real}}{\Delta T_{ideal}}$$

NaCl			
Druck [mbar]	real [K]	theoretisch [K]	γ
1006	4,8	3,46	1,39
350	4,84	2,97	1,63

Tabelle 3: Aktivitätskoeffizienten für NaCl

CaCl_2			
Druck [mbar]	real [K]	theoretisch [K]	γ
1006	11,7	4,20	2,79
350	11,94	4,88	2,45

Tabelle 4: Aktivitätskoeffizienten für CaCl₂

5 Aufgabe f)

5.1 Berechnung des Parameters C:

Zur Berechnung des Parameters C aus der NBS-Formel muss zuerst die Ionenstärke und der Koeffizient A berechnet werden

1. NBS-Formel:

$$ln(\gamma) = \frac{-A|z_{+} \cdot z_{-}|\sqrt{I}}{1 + B\sqrt{I}} + CI$$

A... ? I... Ionenstärke z_+ ... pos. Ladung z_- ... neg. Ladung B... 1 C... gesucht

- 2. Bestiummng der Ionenstärke:
 - Die Ionenstärke ist gegeben durch:

$$I = \frac{1}{2} \sum_{i} z_i^2 m_i$$

z... Ladung m... Molalität

• Ionenstärke von NaCl und $CaCl_2$:

$$I_{NaCl} = \frac{1}{2} (1^2 \cdot 4 \frac{mol}{Kg} + 1^2 \cdot 4 \frac{mol}{Kg}) = 4$$
$$I_{CaCl_2} = \frac{1}{2} (2^2 \cdot 4 \frac{mol}{Kg} + 1^2 \cdot 8 \frac{mol}{Kg}) = 12$$

- A berechnen:
 - Die Größe A ist vom Lösungsmittel und der jeweiligen Temperatur Abhängig.

$$A = \frac{F^3}{4\pi \cdot N_a} \cdot \sqrt{\frac{\rho}{2\epsilon^3 R^3 T^3}}$$

F... Faraday-Konstante $N_a...$ Avogadrozahl $\rho...$ Dichte $\epsilon...$ Dielektrizitätskonstante

$$A = \frac{96485^{3}}{4\pi * 6.022 \cdot 10^{26}} \cdot \sqrt{\frac{1000}{2 \cdot (6.95 \cdot 10^{-10})^{3} \cdot R^{3}T^{3}}}$$

$$A_{NaCl,1006mbar} = 0.82 \quad A_{CaCl_{2},1006mbar} = 0.80$$

$$A_{NaCl,350mbar} = 0.92 \quad A_{CaCl_{2},350mbar} = 0.89$$

• NBS-Formel auf C umstellen und C berechnen:

$$ln(\gamma) = \frac{-A|z_{+} \cdot z_{-}|\sqrt{I}}{1 + B\sqrt{I}} + CI$$
$$C = \frac{ln(\gamma)}{I} \cdot \frac{A \cdot |z_{+} \cdot z_{-}|\sqrt{I}}{(1 + B\sqrt{I})I}$$

	γ	Temperatur [K]	I	A	С
NaCl 1006mbar	1.39	377.45	4	0.82	0.219
$NaCl~350 \mathrm{mbar}$	1.63	350.53	4	0.92	0.275
$CaCl_2$ 1006mbar	2.79	384.35	12	0.80	0.189
$CaCl_2$ 350mbar	2.45	357.63	12	0.89	0.190

Tabelle 5: Ergebnisse für Aufgabe f

6 Fehlerrechung

Da alle Messungen mit Fehleren behaftet sind, muss dies auch im Ergebnis berücksichtigt werden. Die Fehlerbehafteten Vorgänge in diesem Versuch waren das Ablesen der Temperatur und des Druckes. Die Temperaturanzeige hat ca. um 0.1C und der Druck um ca. 4mbar geschwankt. Bei der Berechnung der Verdampfungsenthalpie in Aufgabe c) muss dies noch berücksichtigt werden.

1. Aufstellen der Funktion:

$$\Delta_V H_m = k = \frac{\Delta y}{\Delta x} = \frac{\Delta ln(\frac{p}{p_0})}{\Delta T^{-1}} = \frac{ln(p) - ln(p_0)}{T_0^{-1} - T^{-1}}$$

2. Gegebene Werte:

- $\Delta T = 0.1K$
- $\Delta p = 0.004bar$
- $T_0 = 373.25K$
- $T_1 = 342.95K$
- $p_0 = 1.007bar$
- $p_1 = 0.308bar$
- 3. Δk berechnen:

$$\begin{split} \Delta k &= \left| \frac{\delta k}{\delta p_0} \right| \cdot \Delta p_0 + \left| \frac{\delta k}{\delta p} \right| \cdot \Delta p + \left| \frac{\delta k}{\delta T_0} \right| \cdot \Delta T_0 + \left| \frac{\delta k}{\delta T} \right| \cdot \Delta T \\ &= \left| \frac{-\frac{1}{p_0}}{T_0^{-1} - T_1^{-1}} \right| \cdot \Delta p_0 + \left| \frac{\frac{1}{p_1}}{T_0^{-1} - T_1^{-1}} \right| \cdot \Delta p + \left| \frac{-(\ln(p_1) - \ln(p_0)) \cdot T_1^{-2}}{(T_0^{-1} - T_1^{-1})^2} \right| \cdot \Delta T + \left| \frac{(\ln(p_1) - \ln(p_0)) \cdot T_0^{-2}}{(T_0^{-1} - T_1^{-1})^2} \right| \cdot \Delta T_0 \\ &= 4195 \cdot 0.004 + 13716 \cdot 0.004 + 179 \cdot 0.1 + 151 \cdot 0.1 \\ &= 104.8 J/mol \end{split}$$

4. Der Fehler der Steigung beträgt:

$$\Delta k = \pm 104.8 J/mol$$

5. $\Delta_V H_m$ beträgt demnach:

$$m = \frac{-\Delta_V H_m}{R} \pm 104.8 J/mol$$

$$\Delta_V H_m = -R \cdot (m \pm 104.8 J/mol)$$

$$\Delta_V H_m = 42.1 KJ/mol \pm 0.9 KJ/mol$$

Ergebnisse

 H_2O :

T [C]	p [mbar]
99,5	1006
97	916
94	823
90,5	718
86,7	611
81,8	514
76,1	408
69,8	308

 $\mathbf{H_2O} + \mathbf{NaCl}$:

T [C]	p [mbar]
104,3	1006
102,1	907
99,1	818
95,5	714
91,3	620
85,5	500
80,3	390
75,8	328

$$H_2O + CaCl_2$$
:

T [C]	p [mbar]
111,2	1006
109,4	928
107,3	822
103,5	730
99,5	610
95,7	535
89,9	426
84,4	345