

Family Name
Given Name
Student No
Signature

THE UNIVERSITY OF NEW SOUTH WALES

School of Electrical Engineering & Telecommunications

FINAL EXAMINATION

Semester 2, 2018

ELEC1111 Electrical and Telecommunications Engineering

TIME ALLOWED: 2 hours
TOTAL MARKS: 100
TOTAL NUMBER OF QUESTIONS: 5

THIS EXAM CONTRIBUTES 50% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 10 minutes.

This paper contains 6 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a **separate answer booklet**.

Marks for each question are indicated beside the question.

This paper **MAY NOT** be retained by the candidate.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

QUESTION 1 [20 marks]

- a. (10 marks) For the circuit shown in Figure 1,
 - **i. (8 marks)** Apply mesh analysis and write down the mesh equations using the labels provided. Note: DO NOT solve the equations.
 - ii. (2 marks) Given the values of mesh currents as $i_1 = 64.8 \, A$, $i_2 = 68.4 \, A$ and $i_3 = 39 \, A$, find the power dissipated in the 20Ω resistor.

Figure 1

- **b.** (10 marks) The variable resistor R_0 in the circuit shown in Figure 2 is adjusted for maximum power transfer.
 - iii. (2 marks) Find the value of R_0 .
 - iv. (8 marks) Find the maximum power that can be delivered to R_{ℓ} .

Figure 2

QUESTION 2 [20 marks]

The switch in the circuit shown in Figure 3 has been in position a for a long time. At t = 0, the switch moves instantaneously to position b.

- **a. (4 marks)** Find the initial current $i(0^-)$ though the inductor under steady-state condition.
- **b.** (2 marks) Calculate the initial energy $w_L(0)$ stored in the inductor.
- **c. (4 marks)** Find the final current $i(\infty)$ through the inductor under steady-state condition.
- **d. (5 marks)** Derive an expression for the current of the inductor i(t) for all time (i.e., for both t < 0 and $t \ge 0$).
- **e.** (5 marks) Derive an expression for the voltage v(t) across the 40 Ω resistor for $t \ge 0$.

Page 3 of 6

QUESTION 3 [18 marks]

The circuit shown in Figure 4 is a simple fire alarm system. When the alarm is triggered, 1 kHz sinusoidal "beeps" are sent to the speakers.

- **a.** (2 marks) Express the voltage at the amplifier input v_{in} as a function of time and as a phasor.
- **b.** (10 marks) Find the voltage v_{out} across each speaker as a phasor.
- c. (6 marks) Find the average power consumed by each speaker.

QUESTION 4 [30 marks]

- a. (15 marks) A 120Ω strain gauge bridge consists of four identical 120Ω resistors arranged in a Wheatstone bridge. When the gauge experiences a positive strain of 0.5%, the resistances of the individual resistor elements change as shown in Figure 5. The op-amp circuit shown has been designed to amplify these small changes in resistance into a larger change in voltage for measurement.
 - i. (3 marks) Calculate the voltages v_a and v_b at the output of the strain gauge.
 - **ii. (10 marks)** Derive an expression for the op-amp output voltage v_{out} in terms of the input voltages v_a and v_b to demonstrate that it is a difference amplifier. Note: DO NOT substitute the values of v_a and v_b from part (i) so that you can find a general expression rather than a voltage value.
 - iii. (2 marks) Substitute the values of v_a and v_b from part (i) to calculate the voltage value at the output of the op-amp.

Figure 5

b. (15 marks) Calculate the steady-state value for v_{out} in the circuit shown in Figure 6 if $v_a = 25 \cos 50000t \ V$.

Figure 6

QUESTION 5 [12 marks]

a. (6 marks) Draw the logic diagram which represents the function of the following logic equation:

$$Z = (\bar{A} + \bar{B} + C)(A + B + \bar{C})(A + \bar{B} + C)$$

- **b. (6 marks)** Consider the logical diagram in Figure 7.
 - i. (3 marks) Derive the logical expression for Z.
 - ii. (3 marks) Write the truth table of the circuit.

END OF PAPER