Real Applications of Structural Combinatorics Three Case Studies

Cheyne Homberger

CCICADA March 13th, 2014 Patterns in Data

Genome Rearrangement

Combinatorial Testing

Tournaments

Relational Structures

Definition

A *relational structure* consists of a *ground set* together with a set of *relations*, describable using first-order logic.

Relational Structures

Definition

A *relational structure* consists of a *ground set* together with a set of *relations*, describable using first-order logic.

Example

A graph is a ground set (vertices) together with a 2-relation (edges) which is symmetric and nonreflexive.

That is:

$$\mathcal{G} = (\mathcal{S}, \mathcal{R})$$
, where $\mathcal{R} \subset \mathcal{S} \times \mathcal{S}$,

with

$$(x,y) \in \mathcal{R} \implies (y,x) \in \mathcal{R}$$
, and $(x,x) \notin \mathcal{R} \ \forall x \in \mathcal{S}$.

Patterns in Data (and Permutations)

Random Data

Definition

An permutation of length n is a bijection from the set $[n] = \{1, 2, \dots n\}$ to itself. The one-line notation for a permutation π is

$$\pi = \pi(1)\pi(2)\dots\pi(n).$$

The set of all permutations of length n is denoted \mathfrak{S}_n .

Definition

An permutation of length n is a bijection from the set $[n] = \{1, 2, \dots n\}$ to itself. The one-line notation for a permutation π is

$$\pi = \pi(1)\pi(2)\dots\pi(n).$$

The set of all permutations of length n is denoted \mathfrak{S}_n .

Examples

▶ The sequence $\pi = 5172643$ is a permutation of length 7.

Definition

An permutation of length n is a bijection from the set $[n] = \{1, 2, \dots n\}$ to itself. The one-line notation for a permutation π is

$$\pi = \pi(1)\pi(2)\dots\pi(n).$$

The set of all permutations of length n is denoted \mathfrak{S}_n .

- ▶ The sequence $\pi = 5172643$ is a permutation of length 7.
- The six permutations of length 3 are

$$\mathfrak{S}_3 = \{123, 132, 213, 231, 312, 321\}.$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

$$\{(1,\pi(1)),(2,\pi(2)),\cdots(n,\pi(n))\}\subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1,\pi(1)),(2,\pi(2)),\cdots(n,\pi(n))\}\subset\mathbb{R}^2$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

$$\{(1,\pi(1)),(2,\pi(2)),\cdots(n,\pi(n))\}\subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1,\pi(1)),(2,\pi(2)),\cdots(n,\pi(n))\}\subset\mathbb{R}^2$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

~

•

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

For a permutation $\pi=\pi_1\pi_2\dots\pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, ext{ and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Definition

For a permutation $\pi=\pi_1\pi_2\dots\pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, \ \ ext{and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Definition

For a permutation $\pi=\pi_1\pi_2\dots\pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, ext{ and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Definition

For a permutation $\pi = \pi_1 \pi_2 \dots \pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, \ \ ext{and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Definition

For a permutation $\pi = \pi_1 \pi_2 \dots \pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, ext{ and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Random Data

Random Data

Random Data

 $\pi=61\ 84\ 31\ 35\ 39\ 28\ 9\ 54\ 6\ 4\ 74\ 71\ 68\ 85\ 98\ 38\ 97\ 45\ 12\ 27\ 57\ 89\ 30\ 5\ 55\ 11\ 58$ 13\ 42\ 32\ 14\ 53\ 2\ 51\ 20\ 56\ 80\ 10\ 43\ 95\ 17\ 50\ 8\ 16\ 15\ 70\ 63\ 81\ 64\ 24\ 52\ 76\ 47 7\ 60\ 49\ 82\ 1\ 25\ 75\ 40\ 34\ 83\ 90\ 46\ 100\ 69\ 65\ 93\ 86\ 22\ 96\ 21\ 92\ 3\ 79\ 29\ 41 44\ 66\ 94\ 59\ 87\ 37\ 73\ 36\ 72\ 67\ 78\ 19\ 33\ 88\ 62\ 99\ 23\ 91\ 26\ 48\ 18\ 77

Permutation Patterns

Definition

Let $\pi=\pi(1)\pi(2)\cdots\pi(n)$ and $\sigma=\sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma\prec\pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j)<\pi(i_k)$ if and only if $\sigma(j)<\sigma(k)$).

Permutation Patterns

Definition

Let $\pi = \pi(1)\pi(2)\cdots\pi(n)$ and $\sigma = \sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma \prec \pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j) < \pi(i_k)$ if and only if $\sigma(j) < \sigma(k)$).

Permutation Patterns

Definition

Let $\pi = \pi(1)\pi(2)\cdots\pi(n)$ and $\sigma = \sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma \prec \pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j) < \pi(i_k)$ if and only if $\sigma(j) < \sigma(k)$).

Permutation Patters

Example

The pattern 12 is contained in all permutations *except* for the decreasing ones:

 $12 \not\prec n \dots 321$.

Permutation Patters

Example

The pattern 12 is contained in all permutations *except* for the decreasing ones:

$$12 \not\prec n \dots 321$$
.

Definition

If a permutation π does not contain a pattern σ , we say that π avoids σ . The set of all permutations which avoid a given pattern (or set of patterns) σ is denoted

$$Av(\sigma)$$
.

Permutation Classes

Definition

A permutation class is a set $\mathcal C$ of permutations for which, if $\pi \in \mathcal C$ and $\sigma \prec \pi$, then $\sigma \in \mathcal C$. Let $\mathcal C_n$ denote the set of permutations of length n in $\mathcal C$.

Permutation Classes

Definition

A permutation class is a set \mathcal{C} of permutations for which, if $\pi \in \mathcal{C}$ and $\sigma \prec \pi$, then $\sigma \in \mathcal{C}$. Let \mathcal{C}_n denote the set of permutations of length n in \mathcal{C} .

Example

 $\mathsf{Av}(\sigma)$ is a permutation class for any pattern (or set of patterns) $\sigma.$

Permutation Classes

Definition

A permutation class is a set \mathcal{C} of permutations for which, if $\pi \in \mathcal{C}$ and $\sigma \prec \pi$, then $\sigma \in \mathcal{C}$. Let \mathcal{C}_n denote the set of permutations of length n in \mathcal{C} .

Example

 $\mathsf{Av}(\sigma)$ is a permutation class for any pattern (or set of patterns) σ .

Theorem (Marcus and Tardos, 2004)

Every proper permutation class has a finite exponential growth rate. That is, for any proper class \mathcal{C} , there exists a real number s such that

$$\limsup_{n\to\infty}\sqrt[n]{|\mathcal{C}_n|}=s.$$

This number s is the growth rate of the class.

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \ge 0} c_n x^n$.

Question

$$C(x) = xC(x)^2 + 1$$

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \ge 0} c_n x^n$.

Question

What does a 132-avoiding permutation look like?

$$0 = xC(x)^2 - C(x) + 1$$

 $C(x) = xC(x)^2 + 1$

$$0 \equiv xC(x)^{\perp} - C(x) + C(x)$$

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

$$C(x) = xC(x)^{2} + 1$$

 $0 = xC(x)^{2} - C(x) + 1$
 $C(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

$$C(x) = xC(x)^{2} + 1$$

$$0 = xC(x)^{2} - C(x) + 1$$

$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

$$c_{n} = \frac{1}{n + 1} {2n \choose n}$$

\sim					
()	ЦE	251	П	O	n

Question

Question

Question

Question

Question

Question

Question

Question

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

 $\mathsf{Av}(132) \mapsto \mathsf{Av}(123)$

Av(123)

$$|Av_n(123)| = |Av_n(132)|$$

 $|\operatorname{Av}_n(123)| = |\operatorname{Av}_n(132)| = \frac{1}{n+1} {2n \choose n}.$

Patterns

Patterns

Patterns

Patterns

Patterns

Patterns

Random Data

Random Data

 $\begin{array}{c|cc}
\nu_{12} & \nu_{21} & \mathsf{Avg} \\
2803 & 2147 & 2475
\end{array}$

Random Data

			'			
ν_{123}	ν_{132}	ν_{213}	ν_{231}	ν_{312}	ν_{321}	Avg
35357	30063	31414	22321	23348	19197	26950

Patterns as Random Variables

Theorem (Bóna 2007)

For a (uniformly) randomly selected permutation of length n, the random variables ν_σ are asymptotically normal as n approaches infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)

For a randomly selected permutation of length n and two patterns σ and ρ , the random variables ν_{σ} and ν_{ρ} are asymptotically jointly normally distributed as $n \to \infty$.

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Previous Results

Theorem (Bóna)

In Av_n 132, the pattern 123 is the least common, 321 is the most common, and $\nu_{213}=\nu_{231}=\nu_{312}.$

Data

Av 132								
length	123	132	213	231	312	321		
3	1	0	1	1	1	1		
4	10	0	11	11	11	13		
5	68	0	81	81	81	109		
6	392	0	500	500	500	748		
7	2063	0	2794	2794	2794	4570		

Data

Av 132							
	length	123	132	213	231	312	321
	3	1	0	1	1	1	1
	4	10	0	11	11	11	13
	5	68	0	81	81	81	109
	6	392	0	500	500	500	748
	7	2063	0	2794	2794	2794	4570

O	392	U	500	500	500	140
7	2063	0	2794	2794	2794	4570
			Av 123			
length	123	132	213	231	312	321
3	0	1	1	1	1	1

Data

Av 132								
	length	123	132	213	231	312	321	
	3	1	0	1	1	1	1	
	4	10	0	11	11	11	13	
	5	68	0	81	81	81	109	
	6	392	0	500	500	500	748	
	7	2063	0	2794	2794	2794	4570	
Av 123								
		400	400	040	004	~ 4 ~		

AV 123						
length	123	132	213	231	312	321
3	0	1	1	1	1	1
4	0	9	9	11	11	16

Data

Av 132							
length	123	132	213	231	312	321	
3	1	0	1	1	1	1	
4	10	0	11	11	11	13	
5	68	0	81	81	81	109	
6	392	0	500	500	500	748	
7	2063	0	2794	2794	2794	4570	
Av 123							
length	123	132	213	231	312	321	
3	0	1	1	1	1	1	
4	0	9	9	11	11	16	
5	0	57	57	81	81	144	

Patterns Within Av(123)

Theorem

The total nuber of 231 (and 312) patterns is identical within the sets ${\rm Av}_n(123)$ and ${\rm Av}_n(132)$.

Patterns Within Av(123)

Theorem

The total nuber of 231 (and 312) patterns is identical within the sets ${\rm Av}_n(123)$ and ${\rm Av}_n(132)$.

Further, within $Av_n(123)$,

$$u_{132} = \nu_{213} \sim \sqrt{\frac{n}{\pi}} 4^n,$$

$$\nu_{231} = \nu_{312} \sim \frac{n}{2} 4^n,$$
and $\nu_{321} \sim \frac{8}{3} \sqrt{\frac{n^3}{\pi}} 4^n.$

$$v_{132}$$
 v_{213} v_{231} v_{312} v_{321}

$$v_{132} + v_{213} + v_{231} + v_{312} + v_{321} = \binom{n}{3} c_n$$

(Both sides count the number of length three patterns)

$$2\nu_{132} + 2\nu_{213} + \nu_{231} + \nu_{312} = (n-2)\nu_{12}$$

(Count triples containing a 12 pattern \dots)

$$\boxed{\nu_{132} = \nu_{213} \quad \nu_{231} = \nu_{312} \quad \nu_{321}}$$

(Since Av(123) is closed under inversion)

$$\nu_{213}(p) = \binom{2}{2}$$

$$\nu_{213}(p) = \binom{2}{2} + \binom{2}{2}$$

$$v_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2}$$

$$u_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2} + \binom{1}{2}$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k>0} h_{n,k} x^n u^k$.

$$v_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2} + \binom{1}{2} = 5$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k>0} h_{n,k} x^n u^k$.

$$H(x, u) =$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x, u) = \sum_{n,k>0} h_{n,k} x^n u^k$.

$$H(x, u) = ux(H(x, u) + 1)C(x) + xC(x)H(x, u)$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k \ge 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k \geq 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123)) x^n = \sum_{n\geq 0} \binom{k}{2} h_{n-1,k} x^n$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k \ge 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123)) x^n = \sum_{n\geq 0} \binom{k}{2} h_{n-1,k} x^n$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123)) x^n = \frac{x \partial_u^2 H(x) \big|_{u=1}}{2}$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x, u) = \sum_{n,k \ge 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n\geq 0} \nu_{213}(Av_n^*(123))x^n = \sum_{n\geq 0} {k \choose 2} h_{n-1,k}x^n$$

$$\sum_{n\geq 0} \nu_{213}(Av_n^*(123))x^n = \frac{x\partial_u^2 H(x)|_{u=1}}{2}$$

$$= \frac{x^3C(x)}{(1 - 4x)^{3/2}}$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x, u) = \sum_{n,k \ge 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n \ge 0} \nu_{213}(Av_n^*(123))x^n = \sum_{n \ge 0} {k \choose 2} h_{n-1,k}x^n$$

$$\sum_{n \ge 0} \nu_{213}(Av_n^*(123))x^n = \frac{x\partial_u^2 H(x)|_{u=1}}{2}$$

$$= \frac{x^3C(x)}{(1 - 4x)^{3/2}}$$

$$= x^3 + 7x^4 + 38x^5 + 187^6 + \dots$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k \geq 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n \ge 0} \nu_{213}(\mathsf{Av}_n^*(123))x^n = \sum_{n \ge 0} \binom{k}{2} h_{n-1,k} x^n$$

$$\sum_{n \ge 0} \nu_{213}(\mathsf{Av}_n^*(123))x^n = \frac{x\partial_u^2 H(x)\big|_{u=1}}{2}$$

$$= \frac{x^3 C(x)}{(1 - 4x)^{3/2}}$$

$$= x^3 + 7x^4 + 38x^5 + 187^6 + \dots$$

Results

$$\nu_{231}(\mathsf{Av}_n\,123) = \nu_{231}(\mathsf{Av}_n\,132)$$

Results

$$\nu_{213} = \frac{n+2}{4} \binom{2n}{n} - 3 \cdot 2^{2n-3}$$

$$u_{231} = (2n-1) \binom{2n-3}{n-2} - (2n+1) \binom{2n-1}{n-1} + (n+4) \cdot 2^{2n-3}$$

$$\nu_{321} = \frac{1}{6} \binom{2n+5}{n+1} \binom{n+4}{2} - \frac{5}{3} \binom{2n+3}{n} \binom{n+3}{2} + \frac{17}{3} \binom{2n+1}{n-1} \binom{n+2}{2} - 6 \binom{2n-1}{n-2} \binom{n+1}{2} - (n+1) \cdot 4^{n-1}.$$

Question

Are there any other 'surprising' symmetries across or within permutation classes?

Question

Are there any other 'surprising' symmetries across or within permutation classes?

Note

The increasing and decreasing patterns are not always the opposite extremes of the class: $\nu_{123}(\text{Av}\,2413) = \nu_{321}(\text{Av}\,2413)$

Question

Are there any other 'surprising' symmetries across or within permutation classes?

Note

The increasing and decreasing patterns are not always the opposite extremes of the class: $\nu_{123}(\text{Av}\,2413) = \nu_{321}(\text{Av}\,2413)$

Question

Are there any other 'surprising' symmetries across or within permutation classes?

Note

The increasing and decreasing patterns are not always the opposite extremes of the class: $v_{123}(Av 2413) = v_{321}(Av 2413)$

Question

What about multiset permutations?

7

CCGTGCTACACTGCGATCCGACT...

Question

For a given block transformation, how many mutations does it take to turn one genome into another?

Question

For a given block transformation, how many mutations does it take to turn one genome into another?

Question

How many block transformations does it take to turn one permutation into another?

Question

For a given block transformation, how many mutations does it take to turn one genome into another?

Question

How many block transformations does it take to turn one permutation into another?

Question

Given the increasing permutation, how many block transformations does it take to sort it into a given permutation?

Example: Block Transpositions

Example: Block Transpositions

Example: Block Transpositions

Block Transformations and Polynomial Classes

Definition

A polynomial class is a class C for which $f(n) = |C_n|$ is given by a polynomial for large enough n.

Block Transformations and Polynomial Classes

Definition

A polynomial class is a class C for which $f(n) = |C_n|$ is given by a polynomial for large enough n.

Theorem

For a given block transformation and a positive integer k, the set of permutations which are at most k transformations from the permutation 123...n forms a polynomial class.

Peg Figures

Definition

A *peg figure* consists of a grid of increasing and decreasing lines and dots, with one non-empty cell per row and column:

Peg Figures

Definition

A *peg figure* consists of a grid of increasing and decreasing lines and dots, with one non-empty cell per row and column:

Definition

A peg permutation is a permutation $\overset{\sim}{\pi}$ with each entry decorated by either a +, -, or \bullet .

Peg Figures

Definition

A *peg figure* consists of a grid of increasing and decreasing lines and dots, with one non-empty cell per row and column:

Definition

A peg permutation is a permutation $\overset{\sim}{\pi}$ with each entry decorated by either a +, -, or \bullet .

$$\overset{\sim}{\pi}=\overset{+}{\overset{\bullet}{3}}\overset{\bullet}{\overset{-}{1}}\overset{-}{\overset{-}{2}}$$

Peg Classes

Definition

Let $\mathcal{C}(\overset{\sim}{\pi})$ denote the class of permutations which can be drawn on the figure corresponding to $\overset{\sim}{\pi}$.

Peg Classes

Definition

Let $\mathcal{C}(\overset{\sim}{\pi})$ denote the class of permutations which can be drawn on the figure corresponding to $\overset{\sim}{\pi}.$

$$456132 \in \mathcal{C}(\overset{+}{3}\overset{-}{12})$$

Polynomial Classes

Theorem (Vatter et. al.)

A permutation class is a polynomial class if and only if it can be expressed as the union of classes of the form $\mathcal{C}(\overset{\sim}{\pi})$.

Polynomial Classes

Theorem (Vatter et. al.)

A permutation class is a polynomial class if and only if it can be expressed as the union of classes of the form $\mathcal{C}(\overset{\sim}{\pi})$.

Algorithm

Takes peg permutations as input, and returns the polynomial enumerating the class.

Example: Av(123, 231)

Fact

The class Av(123, 231) is equal to the peg class $\mathcal{C}(\overline{312})$.

Two Block Reversals

Two Block Reversals

Computation

Example

```
>>> C = PolyClass.block_reversal(2)
>>>
>>> C.top_level
{+1-3-4+2+5, +1+4-2-3+5, +1-2+3-4+5, +1-4+3-2+5}
>>>
>>> C.genfcn()
-(x^7 - x^6 - 3*x^5 + 7*x^4 - 4*x^3 + 7*x^2 - 4*x + 1)/(x - 1)^5
>>>
>>> C.polynomial()
8 + -19/6n^1 + 1/3n^2 + -1/3n^3 + 1/6n^4
>>>
>>> C.sequence(10)
1, 1, 2, 6, 22, 63, 145, 288, 516, 857
```


Problem

How can you be sure that your new website/satellite/algorithm does what it's supposed to?

Problem

How can you be sure that your new website/satellite/algorithm does what it's supposed to?

(Bad) Solution

Try every input, and make sure nothing goes wrong.

Problem

How can you be sure that your new website/satellite/algorithm does what it's supposed to?

(Bad) Solution

Try every input, and make sure nothing goes wrong.

(Better) Solution

Try some inputs, and make sure nothing goes wrong.

 $2^{30} > 10^9$ total input combinations

Parameter Interactions

Idea

Most errors are caused by interactions between relatively few parameters.

Parameter Interactions

Idea

Most errors are caused by interactions between relatively few parameters.

Source: NIST

Example: Printer

Paper	Duplex	Color	Content	Orientation
A4	Yes	Yes	Text	Portrait
Letter Legal	No	No	Pictures Both	Landscape

Example: Printer

Paper	Duplex	Color	Content	Orientation
A4	Yes	Yes	Text	Portrait
Letter Legal	No	No	Pictures Both	Landscape

 $3\times2\times2\times3\times2=56$ combinations

Example: Printer

Paper	Duplex	Color	Content	Orientation
A4	Yes	Yes	Text	Portrait
Letter	No	No	Pictures	Landscape
Legal			Both	

$$3 \times 2 \times 2 \times 3 \times 2 = 56$$
 combinations

Example

Suppose that printing two-sided color landscape pictures on legal paper breaks the printer. . .

Example: Printer Tests

	paper	duplex	color	content	orientation	
1	a4	false	false	text	landscape	
2	a4	true	true	pictures	portrait	
3	a4	false	true	both	landscape	
4	letter	true	false	text	portrait	
5	letter	false	true	pictures	landscape	
6	letter	true	false	both	portrait	
7	legal	false	true	text	portrait	
8	legal	true	false	pictures	landscape	
9	legal	false	false	both	portrait	

Example: Printer Tests

	P1	P2	P3	P4	P5
1	1	0	0	0	1
2	1	1	1	1	0
3	1	0	1	2	1
4	2	1	0	0	0
5	2	0	1	1	1
6	2	1	0	2	0
7	3	0	1	0	0
8	3	1	0	1	1
9	3	0	0	2	0

Covering Arrays

Problem

Represent a system with k parameters by a sequence $(p_1, p_2, \dots p_k) \in \mathbb{N}^k$ where p_i denotes the number of variables for the ith parameter. (the printer is represented by (3, 2, 2, 3, 2))

Want to construct a sequence of tests which covers every 2-way interaction between variables. That is, want an $l \times k$ array \mathcal{A} such that, for every $1 \leq i < j \leq k$ and every pair $(v,w) \in \{1,\ldots p_i\} \times \{1,\ldots p_j\}$, there exists some $1 \leq r \leq l$ with

$$A_{r,i} = v$$
 and $A_{r,j} = w$.

IPO Algorithm

IPO Algorithm

Horizontal Growth

IPO Algorithm

Vertical Growth

Horizontal Growth

Vertical Growth

etc.

P_{\perp}	Ρ2
0	0
0	1
1	1
1	0

p_1	p_2	p_3
0	0	0
0	1	1
1	1	0
1	0	1

p_1	p_2	p_3	p_4
0	0	0	0
0	1	1	1
1	1	0	1
1	0	1	1

p_1	p_2	p_3	p_4
0	0	0	0
0	1	1	1
1	1	0	1
1	0	1	1
1	1	1	0

p_1	p_2	p_3	p_4	p_5	
0	0	0	0	0	
0	1	1	1	1	
1	1	0	1	0	
1	0	1	1	0	
1	1	1	0	1	
1	0	0	0	1	

Definition

A $strength\ t$ covering array is one in which every t-way combination of variables appears in at least one row.

Definition

A *strength* t covering array is one in which every t-way combination of variables appears in at least one row.

Approximate Size

The number of tests is a minimal covering array of strength t for a system with n parameters, each of which having v variables, is

 $v^t \log(n)$.

Questions? Thanks for listening!