

Training with Confidence:

Catching Silent Errors in Deep Learning
Training with Automated Proactive Checks

Yuxuan Jiang, Ziming Zhou, Boyu Xu, Beijie Liu, Runhui Xu, Peng Huang

Healthy Metrics, Broken Training

176B params 59 languages Open-access

BLOOM (176B) – 384 A100 GPU, 3.5 months

"Loss curve looks healthy"

- Weights silently diverged across **GPUs**
- Checkpoints became invalid
- Could've wasted 3.5 months & 384 A100s

Took 10 days to notice, 4 more to diagnose and fix

BLOOM Isn't Alone – Silent Training Errors Are Everywhere

Seen in other large-scale projects

- OPT-175B: 17 loss explosions,
 3+ training method changes
- BloombergGPT: weight decay misapplied to all parameters
- Shanghai Al Lab: > 60% of GPU time spent on cancelled jobs

How to detect silent training errors early on?

Our Contribution: From Problem to Solution

- Studied 88 real-world silent training errors
- > GitHub issues, StackOverflow posts, and industry reports

TrainCheck: A System to Proactively Catch Silent Training Errors

What We Learned from 88 Silent Errors

Root causes are diverse and widespread

Single-component solutions (e.g., compiler testing) might be inadequate

We need runtime, end-to-end solutions to detect issues early across the full training stack.

What We Learned from 88 Silent Errors

Hard to detect & severe impact

 \Leftrightarrow Eval metrics appear non-deterministic \rightarrow \Leftrightarrow Delays in detection

- No symptoms, until it's too late
- Noisy signal, unclear if it's a real issue

Early silent error detection should go beyond eval metrics

Training Invariants for Early Detection

★ Many silent errors have **precise**, **actionable** root causes

Training Invariants

Concrete, accurate "specs" of the low-level components

Enable early detection

Non-determinism is an artifact of checking at too high levels

Example: Bloom Parameter Divergence

Root cause: gradient clipping is only applied to the first worker within tensor parallel (TP) groups

```
1.for_clipping = False →
@torch.no_grad()
                                                collect gradients to compute norm
def get_grads_for_norm(self, for_clipping=False):
   grads = []
                                                (de-duplication needed)
   tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu
   for i, group in enumerate(self.bf16_groups):
      for j, lp in enumerate(group)
                                             2.for_clipping = True →
         if not for_clipping:
             if hasattr(lp, PIPE_REPLICATED) and lp.
                                                collect gradients to be clipped (all
                continue
                                                gradients needs to be clipped)
         if not (tensor_mp_rank == 0 or is_model_par
             continue # YUXUAN: as compared to the day
         if not self.fp32_groups_h
                               The de-duplication logic is misplaced to
             continue
                              for_clipping == True
         grads.append(self.fp32_gr
   return grads
```

Example: Bloom Parameter Divergence

Root cause: gradient clipping is only applied to the first worker within tensor parallel (TP) groups

Training Invariant:

- 1. API Behavior Invariant
 get_grad_for_norm API contract
- 2. State Relationship:

Parameters should be equal across workers

X Error not detected until end of training

An end-to-end system that infers and checks training invariants to prevent silent training errors

Goals:

- Check properties lower than high-level signals
- Automated workflows
- Continuous runtime validation
- Systematically cover diverse root causes

Automated Inference + Proactive Validation

Inference Engine: Key Challenges

1. Inferring Semantically Relevant Invariants

2. Context-sensitive Semantics

- DL behaviors depend on subtle runtime contexts
- Statistical likelihood might not be a good indicator of invariant validity

3. Limited Development Histories for Inference

→ Invariants must be **transferable**

4. A Huge Search Space

• Each iteration logs 50 MB of traces (e.g., GPT-2 pretraining)

Invariant Representation

"The weights of certain layers should stay consistent across tensor parallelism (TP) ranks."

```
(1) Relation (2) Descriptors – Abstraction over concrete API / variable instances to check Consistent(torch.nn.Parameter.data, torch.nn.Parameter.data)
```

(3) ★ Precondition (Context)

Invariant Inference Workflow

Proactive Hypothesis Generation

Matches of relation observed
 Hypothesis

Full Hypothesis Validation

 Full scan of hypotheses on traces

Precondition Deduction

 Determine applicable contexts

Inferring DL-tailored Invariants via Relations

Instantiate invariants using domain-specific templates for DL systems

Relation	Description
<pre>Consistent(Va, V b)</pre>	Va and Vb should have the same values, while the values may change
<pre>EventContain(Ea , Eb)</pre>	Eb must happen in the duration of Ea
APISequence (Ia, Ib,)	la, lb, must all occur and in the specified order
<pre>APIArg(Ia, is_distinct)</pre>	Ensures argument consistency or distinction in all calls to la
APIOutput (Ia, bound_type)	The output of la must meet certain attribute constraints

- → Narrows the search space
- → Keeps inference relevant to training semantics

* Precondition

For every hypothesis, infer a precondition based on passing/failing examples:

Preconditions are conjunctions of conditions:

- CONSTANT: field equal to a constant
- EQUAL: field has the same value
- UNEQUAL: field has different values
- EXIST: field exists

Why Precondition

- Transferability across different training setups
- Validity of DL invariants is not tied to statistical likelihood
 - → Help preserve rare but meaningful invariants
 - → Prune superficial ones that happen to hold frequently

- Consistency Invariant (Bloom)
- Critical for correctness
- 1:38 Passing to Failing Ratio
- Accepted due to valid precondition

- X Consistent(torch.Tensor.is_cuda,
 torch.Tensor.requires_grad)
- Superficial & irrelevant
- Holds 99% of the time
- Rejected due to missing precondition

Effort-free, Low-overhead Instrumentation

 Dynamic Instrumentation Via Monkey-Patching (API) & Proxy (Variable)

Low-overhead Checking Stage via Selective Instrumentation

E.g. Bloom-176B parameter consistency invariant only needs a parameter dump per iteration.

Detection & Diagnosis Benchmark

- We collect and reproduce 20 real-world silent training errors
 - 6 in the empirical study, 14 newly collected

Quick & Actionable Detection

- TrainCheck detects 18 out of 20 real-world silent training errors within 1 iteration
- ▼ TrainCheck provides actionable diagnosis clues
- **Pinpoints** the exact root cause in **10** cases, close to the root cause in **8** more

- Baselines (stats monitoring, PyTea + NeuRI)
- Detect 3/20 cases total
- Pinpoints **only 1** root cause

Another 6 new bugs exposed in DeepSpeed and Transformers

False Positive Rate < 2%

 63 representative pipelines, diffs in scale, complexity, and frameworks used

TrainCheck consistently shows < 2% FP rate with 5 representative input pipelines

A Small Set of Inputs to Detect Many Errors

- Invariants used for all 18 cases are inferred from example pipelines.
 PyTorch case study:
 - GCN covers 77% of silent issues
 - GCN + Autocast + DDP covers 100%
- One invariant, many pipelines
 - 23% of inferred invariants in FP evaluation transfer across different training tasks
 - Conditional invariants transfer better than unconditional ones
 - Invariants can be inferred once and reused across pipelines

Runtime overhead

Measure per-iteration time slowdown before/after instrumentation.

Typical checking stage (selective with 100 invariants deployed) is
 < 11%

Conclusions

Silent training errors are prevalent, costly, and hard to detect

<u>TrainCheck</u>: automated validation of training tasks using inferred invariants

Precondition deduction to ensure precision and transferability

Key results:

- Caught 18/20 real-world silent issues, identified 6 new bugs
- ≤ 2% false positive rate, overhead ≤ 11% in realistic settings

Actively Maintained!

Backup Slides

What Silent Issues Does TrainCheck Target?

• TrainCheck targets objective correctness violations.

Case Study – AC-2665 Stagnant Training

- Root Cause: FSDP flattened parameters, corrupting the optimizer state
- Applying invariants from the PyTorch GCN example resulted in 100 violations (52 true alarms).
- True Positives (52):
 - 33 → torch.optim.adamw.adamw were never invoked
 - 17 -> optimizer.step did not perform any update

 - → ✓ Optimizers were not properly initialized with model parameters!
- False positives (48) were quickly dismissed
 - 26 → missing ReLU invocations (but T5 does not use ReLU)
 - 7 → specific numerical values in GCN training (e.g., dropout_rate==0.5)
 - Structured inspection allows quick identification of TP/FP

Example: Bloom Parameter Divergence

Trace snippet for torch.nn.Parameter

```
{"name": "layernorm.weight", "type": "torch.nn.Parameter", "meta_vars": {"TP_RANK": 0,
...}, "attr": { data": 411977, "is_cuda": true, "tensor_model_parallel": false, ...}}
    {"name": "layernorm.weight", "type": "torch.nn.Parameter", "meta_vars": {"TP_RANK": 1,
2 ... }, "attr": { "data": 411977, "/is_cuda": true, "tensor_model_parallel": false, ... } }
    {"name": "dense_h_to_4h.bias", "type": "torch.nn.Parameter", "meta_vars": {"TP_RANK":
    1, _...}, "attr": {"data": 650462, "is_cuda": true, "tensor_model_parallel": true, _...}}
```

- Generate hypothesis
- torch.nn.Parameter.data)
- 2. Validate hypothesis
- Passing samples: (1),(2) Failing samples: (1),(3),(2,(3))

Consistent (torch.nn.Parameter.data,

Deduce precondition

```
UNEQUAL(meta vars.TP RANK) && EQUAL(meta vars.step)
CONSTANT (attr.tensor model parallel, false) &&
EQUAL (name)
```

Baselines and methodology

- High-level signal
 - (1) Spike, (2) Trend (3) Anomaly Detection
- Existing research artifact
 - PyTea [ICSE'22] + NeuRI [ESEC/FSE'23]: Automatically inferring and checking shaping constraints for APIs.

Pipelines with Silent Issues

How to get these invariants?

- Manual specification/debugging doesn't scale
 - Infrastructure is complex, and evolution is fast-paced
 - Encoding intuitions into accurate checks is hard

Automated inference of precise, context-aware invariants

Rough Invariant for Catching the Bloom Parameter Divergence Error

```
(1) Entities to be checked

The weights of certain layers should stay consistent

across tensor parallelism (TP) ranks

(3) Meta Variables
```