القسم الثالثة تقدر داخر هاي		المؤسسة
الفسم الثالثة نقلي زياضي هك	الفرض الأول للفصل الأول	المؤسسة .
المدة: ساعتين	العراض الأول للعصل الأول	الموسم الدراسي :

نظام آلي لفرز القطع

يهدف النظام إلى فرز نوعين من القطع (B,A) و تصرفهما إلى مركزين مختلفين أو إعادة الفرز عند امتلاء أحد المركزين .

I. كيفية الاشتغال:

 M_1 متحكم القطع بترتيب عشوائي إلى مركز الفرز بواسطة البساط المتحرك الذي يديره المحرك M_1 متحكم فيه بواسطة ملامس كهرو مغناطيسى KM_1 . يتم الفرز بالكيفية التالية :

- تعرف القطعة A بواسطة الخلية CP_1 ويتم توجيهها غلى المركز الأول بواسطة الرافعة S ذات المضاعف متحكم فيها بواسطة موزع S (S أحادي الاستقرار) . في حالة امتلاء المركز الأول يتم توجيه القطع S بواسطة البساط الثاني الذي يديره المحرك S متحكم فيه بواسطة ملامس كهرو مغناطيسي S S لإعادة فرزها لاحقا ، يتوقف البساط عند الكشف عن القطعة بواسطة الخلية S S عندئذ يتوقف النظام لمدة S S لأجل تفريغ المركز الأول
- تعرف القطعة B بواسطة الخلية CP_2 ويتم توجيهها غلى المركز الثاني بواسطة الرافعة C ذات المضاعف متحكم فيها بواسطة موزع D (D أحادي الاستقرار). في حالة امتلاء المركز الثاني يتم توجيه القطع D بواسطة البساط الثاني الذي يديره المحرك D متحكم فيه بواسطة ملامس كهرو مغناطيسي D . لإعادة فرزها لاحقا ، يتوقف البساط عند الكشف عن القطعة بواسطة الخلية D D عندئذ يتوقف النظام لمدة D D لأجل تفريغ المركز الثاني.
 - عمليات تفريغ مركزي الفرز ، و إعادة القطع غير المفروزة إلى سلسلة الفرز تتم يدويا .

II. الوظيفة الشاملة:

III. المناولة الهيكلية:

التحليل الزمنية:

س1: أكمل متمن من وجهة نظر جزء التحكم الموافق لتشغيل النظام.

س2: أكمل جدول تنشيط و تخميل المرحلة 1 و 2 من وجهة نظر جزء التحكم الموافق لتشغيل النظام .

الأفعال	التخميل	التنشيط	المرحلة
			X1
			X2

انجازات التكنولوجية:

- يتوقف البساط الثاني عند الكشف عن القطعة بواسطة الخلية CP3 ، الممثلة بالشكل التالي:

س3: علما أن الثنائي D1 يحمل الخصائص التالية:

 $V_{IN\;max}=400V$, $I_{D\;max}=100\;mA$

 $V_0 = 0.7V$

 CD_1 التي تسمح بحماية الثنائي R_1 التي تسمح بحماية الثنائي

س4: أكمل جدول تشغيل خلية الكشف التالي:

T+12V	
R_1 قطعة D_1 T_1 R_3 R_2 R_2	اشارة نحو جزء V_s التحكم النظام T_2 اللآلي T_2

\mathbf{V}_{S} حالة	حالة T ₂	\mathbf{T}_1 حالة	
			غياب القطعة
			حضور القطعة

الصفحة 3/2

- للحصول على تأجيل قدره 60S ، نستعمل مؤجلة بعداد لا تزامني تصاعدي بالقلابات تحكم بالجبهة النازلة الممثل بالشكل التالي: (دور إشارة الساعة T=6S

الطابق الأول:

T=6~S المكثفة C المكثفة C المكثفة C

الطابق الثاني:

س6: استنتج معامل (تردید) العداد ؟

س7: ما نوع البوابة المنطقية المستعملة في مخرج العداد

س8: أكمل التصميم المنطقي للعداد مع رسم نوع البوابة المنطقية المستعملة في مخرج العداد

س9: أكمل المخطط الزمني المفصل لدورة اشتغال هدا العداد

الصفحة 3/3 بالتوفيق

انتهى

المؤسسة: ثانوية قارة الطين بريان تصحيح الفرض الأول للفصل القسم: الثالثة تقني رياضي هك المدة ساعتين الأول

الموسم الدراسي: 2015 / 2016

التحليل الزمنية:

س1: أكمل متمن من وجهة نظر جزء التحكم الموافق لتشغيل النظام.

س2: أكمل جدول تنشيط و تخميل المرحلة 1 و 2 من وجهة نظر جزء التحكم الموافق لتشغيل النظام .

			•=-
الأفعال	التخميل	التنشيط	المرحلة
	X2	X7.C/C.S0.C0 + Init	X1
KM1	X3+X4+X5+RAZ	X1.Dcy.S0.C0 +X7.AUTO.S0.C0	X2

س3: علما أن الثنائي D1 يحمل الخصائص التالية:

 $V_0 = 0.7 V \;\; V_{IN\; max} \, = 400 V$, $I_{D\; max} \, = 100 \; mA$

حساب قيمة المقاومة R_1 التي تسمح بحماية الثنائي R_1 التي تسمح بحماية الثنائي $V_{CC}=R_1.I_{Dmax}+V_0 \Longrightarrow R_1=rac{V_{CC}-V_0}{I_{Dmax}}=rac{12-07}{0.1}=113~\Omega$ س4: أكمل جدول تشغيل خلية الكشف التالي:

$\mathbf{V}_{\mathbf{S}}$ حالة	\mathbf{T}_2 حالة	\mathbf{T}_1 حالة	
0V	مشبع	مشبع	غياب القطعة
12V	محصور	محصور	حضور القطعة

الصفحة 2/1

الطابق الأول:

ج5: حساب قيمة المكثفة C للحصول على دور إشارة الساعة T=6S

$$T = 0.7 * C * (R_1 + 2 * R_2) \implies C = \frac{T}{0.7 * (R_1 + 2 * R_2)} = \frac{6}{0.7 * (100 * 10^3)} = 85.47 \mu F$$

الطابق الثاني:

بة: معامل (ترديد) العداد : $N = \frac{t}{T} = \frac{60}{6} = 10$: عامل العداد هو

ج7: نوع البوابة المنطقية المستعملة في مخّرج العداد هي: بوابة واو ذات مدخلين

س8: أكمل التصميم المنطقي للعداد مع رسم نوع البوابة المنطقية المستعملة في مخرج العداد

س9: أكمل المخطط الزمني المفصل لدورة اشتغال هدا العداد

