Grau de Matemàtiques. Curs 2020-2021. Semestre de primavera

MÈTODES NUMÈRICS II EXAMEN PARCIAL. 9 d'abril de 2021

Exercici 1 (relacionat amb la pràctica 1, 1.5 punts)

Heu d'imitar el que fa el vostre programa en un cas molt senzill.

Es considera el PVF

$$y''(x) + 6y'(x) - 50y(x) = 100x \quad \forall x \in [0, 1],$$

 $y(0) = 1,$
 $y(1) = 1.$

Es discretitza el problema usant diferències centrades de segon ordre per a y'(x) i y''(x), amb pas de discretització h = 0.2.

- (a) Escriviu explícitament el sistema lineal que cal resoldre.
- (b) Prenent com a aproximació inicial el vector amb totes les components nul·les, feu tres iterats del mètode de Jacobi. Calculeu la $\| \|_{\infty}$ de la matriu d'iteració de Jacobi.
- (c) Prenent com a aproximació inicial el vector amb totes les components nul·les, feu dos iterats del mètode de Gauss-Seidel.

Exercici 2 (tema 1, 4 punts)

Es considera el sistema lineal real 3×3 , Ax = b, amb $b = (1, 2, 3)^T$ i

$$A = \left(\begin{array}{ccc} 1 & c & 0 \\ 0 & 1 & c \\ c & 0 & 1 \end{array}\right) ,$$

on $c \in \mathbb{R}$, $c \neq -1$, és un paràmetre. Es vol estudiar l'ús dels mètodes iteratius habituals (Jacobi, Gauss-Seidel i SOR) en aquest cas.

- (a) Sigui B_J la matriu d'iteració del mètode de Jacobi. Calculeu, en funció de c, els seus valors propis $(Spec(B_J))$ i el seu radi espectral $(\rho(B_J))$. Per quins valors de c és convergent el mètode de Jacobi?
- (b) En el cas concret c = -0.5, si es comença amb l'aproximació inicial $x^{(0)} = (0,0,0)^T$, feu una previsió de les iteracions k que caldria fer del mètode de Jacobi per tal que s'obtingui $||x^{(k)} x||_{\infty} < 10^{-9}$, on x és la solució del sistema.
- (c) Sigui B_1 la matriu d'iteració del mètode de Gauss-Seidel. Calculeu $Spec(B_1)$ i $\rho(B_1)$, en funció de c. Per quins valors de c és convergent el mètode de Gauss-Seidel? Per als valors de c tals que tant Jacobi com Gauss-Seidel són convergents, quin ho farà més ràpidament?

(d) Es considera finalment el mètode SOR. Trobeu la matriu d'iteració B_{ω} , així com el seu polinomi característic (els dos depenen de ω i de c). Seguidament, es considera el cas concret c=-0.5 i es vol estudiar la convergència quan $\omega\approx 1$. Vegeu que, tant si ω és lleugerament inferior a 1 com si ω és lleugerament superior a 1, es verifica $\rho(B_{\omega}) > \rho(B_1)$ (per tant, SOR no millora la convergència de Gauss-Seidel, almenys a prop de $\omega=1$).

Indicació. Per a l'última part, deduïu que, en un entorn de $\omega = 1$, els tres valors propis de B_{ω} són simples: $\lambda_i = \lambda_i(\omega)$; després, calculeu $\lambda_i'(1)$, per tal conèixer el comportament de les gràfiques de $\lambda_i(\omega)$ quan $\omega \approx 1$.

Exercici 3 (tema 2, 4.5 punts)

Sigui $A = (a_{ij})_{1 \le i,j \le 10}$, real, simètrica i verificant

$$a_{ii} = 1 + 2i$$
, $|a_{ij}| \le 1/8$, $\forall i$, $\forall j \ne i$.

Per a cada $i \in \{1, 2, ..., 10\}$, sigui $D_i(A)$ el disc de Gerschgorin associat a la fila i de la matriu A. Observeu que no es pot assegurar que siguin disjunts. També, per a cada $i \in \{1, 2, ..., 10\}$ i cada $\alpha > 0$, sigui $S_{i,\alpha} = (s_{kj})$ la matriu 10×10 que difereix de la identitat només en l'element s_{ii} , el qual val α .

- (a) Per a cada i, es fa la similaritat $B = S_{i,\alpha}AS_{i,\alpha}^{-1}$ amb $\alpha = 0.2$. És el disc $D_i(B)$ disjunt de la resta de discs $D_i(B)$?
- (b) Useu (a) per a separar els 10 valors propis de A; o sigui, doneu 10 subconjunts del pla complex, tals que cadascun contingui exactament un valor propi de A.
- (c) S'aplica el mètode de la potència a la matriu A per a trobar el seu valor propi dominant i un vector propi associat. Fiteu, inferiorment i superiorment, la raó asimptòtica de convergència.
- (d) S'aplica el mètode de Jacobi clàssic a la matriu A per a trobar tots els seus valors propis i una base de vectors propis. Trobeu una fita superior del nombre de similaritats que cal fer per tal d'obtenir una matriu tal que la norma 2 del vector format amb tots els elements no diagonals sigui menor que 10^{-6} .
- (e) Es repeteix (a) amb $\alpha > 0$ arbitrari. Trobeu l'interval de valors de α per als quals es pot assegurar que el disc $D_i(B)$ és disjunt de la resta de discs $D_j(B)$.

Nota. Aquest interval ha de contenir el valor $\alpha = 0.2$ usat en els dos primers apartats.