Récurrences

Marc Chevalier DI ENS

Septembre 2019

1 Récurrence simple

Théorème 1 – Principe de récurrence simple

Soit P(n) un prédicat portant sur une variable n entière. Si les propriétés P(0) et $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$ sont vraies, alors la propriété $\forall n \in \mathbb{N}, P(n)$ est vraie.

1.1 Récurrence forte

Théorème 2 – Principe de récurrence forte

Soit P(n) un prédicat portant sur une variable n entière. Si la propriété $\forall n_0, (\forall n \in [0, n_0 - 1], P(n)) \Rightarrow P(n_0)$ est vraie, alors la propriété $\forall n \in \mathbb{N}, P(n)$ est vraie.

2 Définition par récurrence

Définition 1 – Suites

Une famille d'éléments indexés par l'ensemble $\mathbb N$ est appelé une suite. L'ensemble des suites de d'éléments de l'ensemble A est noté $A^{\mathbb N}$.

Théorème 3 – Définition par récurrence

Soit E un ensemble. Soit $e \in E$ un élément de E et $f \in E \to E$ une fonction de E dans E.

Alors il existe une et unique suite $g \in E^{\mathbb{N}}$ telle que :

$$\begin{cases} g_0 = e \\ g_{n+1} = f(g_n), & \text{pour } n \in \mathbb{N} \end{cases}$$

Exemple 1 – Suite des itérées d'une fonction

Nous considérons $f: E \to E$ une fonction de E dans E. Nous appelons la suite des itérées de f la suite de fonction $(g_n) \in (E^E)^{\mathbb{N}}$ qui vérifie les condition suivantes :

$$\begin{cases} g_0 = Id_E, \\ g_{n+1} = f \circ g_n \text{ pour } n \in \mathbb{N} \end{cases}$$

La suite $(g_n)_{n\in\mathbb{N}}$ est aussi notée $(f^n)_{n\in\mathbb{N}}$ ou $(f^{(n)})_{n\in\mathbb{N}}$.