Garden of Forking paths part 2

Josef Fruehwald

2023-05-10

```
i Listening

renv::install("khroma")

library(tidyverse)
library(khroma)
library(gt)
library(patchwork)
```

A nicer table version.

library(here)

I'd like to re-represent the Bayesian Update in a nicer GT table. Some options are

1. Plotting extensions from {gtExtras}

source(here("_defaults.R"))

2. Emojis

```
renv::install("gtExtras")
renv::install("svglite")
renv::install("emoji")

library(gtExtras)
library(emoji)
```

First, trying the "win/losses" column plot from {gtExtra} to illustrate the blue vs white marbles.

The cell background will have to be off-white for the white ticks to show I'm not overwhelmed by the result. I'll try emojis instead.

```
blue_marb <- emojis |>
    filter(str_detect(name, "blue"),
           str_detect(name, "circle")) |>
    pull(emoji)
  blue_marb
[1] ""
  white_marb <- emojis |>
    filter(str_detect(name, "white"),
           str_detect(name, "circle")) |>
    pull(emoji)
  white_marb
[1] ""
  tibble(
    blue_marbs = 0:4,
    white_marbs = 4 - blue_marbs
  ) |>
    rowwise() |>
    mutate(
      marbles = list(c(rep(blue_marb, blue_marbs),
```

```
rep(white_marb, white_marbs)))
) ->
marbles_emoji
```

Update: As it turns out, getting tables with emoji and the plots with gt_plt_*() do not play nice with LaTeX. For now, I'm saving the tables to png with gtsave() just for the pdf output.

```
fs::dir_create("tables/")
renv::install("webshot2")

marbles_emoji |>
   gt() |>
   gtsave(filename = "tables/marb1.png")
```

blue_marbs	white_marbs	marbles
0	4	, , , ,
1	3	•, •, •, •
2	2	, , , ,
3	1	•, •, •, •
4	0	•, •, •, •

Yes, this is it.

Rerunning the sampling

I'll re-run the sampling from the previous post.

```
pattern = c(blue_marb, white_marb, blue_marb)){
    sampling_tibble <- tibble(samp = 1:n)</pre>
    sampling_tibble |>
      mutate(
         chosen = map(samp,
                       ~sample(marbles,
                               size = 3,
                               replace = T)),
        match = map_lgl(chosen,
                         ~all(.x == pattern))
       ) |>
       summarise(prop_match = mean(match))->
       sampling_tibble
    return(sampling_tibble)
  marbles_emoji |>
   ungroup() |>
    mutate(
      prob = map(marbles, ~sampling_df(.x, n = 10000))
    ) |>
    unnest(prob) |>
    mutate(norm_probs = prop_match/sum(prop_match))->
    marble_probs
I want to label the column of probabilities with the key sequence.
  key_seq <- str_glue("{blue_marb}, {white_marb}, {blue_marb}")</pre>
gtExtras::gt_plt_bar_pct() will plot a bar chart within the table.
  marble_probs |>
    select(marbles, norm_probs) |>
    mutate(norm_probs = norm_probs * 100) |>
    gt() |>
    cols_label(
      norm_probs = str_glue("p(marbles | {key_seq})")
    ) |>
    gt_plt_bar_pct(norm_probs,
                    scaled = T,
                    fill = "steelblue")->
```

```
update_1
gtsave(update_1, filename = "tables/update1.png")
```


There we go!

With the Bayesian Update

Bayesian Updating

I'll try to illustrate Baysian updating with an animated plotly plot.

```
renv::install("plotly")
renv::install("slider")

library(plotly)
library(slider)
```

I know enough to know that the distribution that's being updated is the beta. (Apparently is the binomial. Still a but lost on their distinction!) So I'll get the density for each update.

```
plot(
    seq(0,1, length =100),
    dbeta(seq(0,1, length =100), 1, 1),
    type = 'l'
)
```



```
water_land_sequence <- c("\dagger", "L", "\dagger", "\dagger", "\dagger", "\dagger", "\dagger", "\dagger")</pre>
```

I'll use slider::slide() to generate a data frame of sample updates. I'll need a function that takes a sequence of W and L and converts them into counts.

```
w_l_count <- function(x){
  tibble(
    water = sum(x == "W"),
    land = sum(x == "L")
)
}

slide(water_land_sequence,
    .f = w_l_count,
    .before = Inf,
    .after = 0) |>
  bind_rows() |>
  mutate(seq = row_number()) |>
  bind_rows(
    tibble(
    water = 0,
```

```
land = 0,
    seq = 0
)
) |>
arrange(seq) ->
sequence_counts

sequence_counts |>
gt()
```

Table 1: Table of water, land count updates

water	land	seq
0	0	0
1	0	1
1	1	2
2	1	3
3	1	4
3	2	5
4	2	6
4	3	7
5	3	8

Now to get the densities.

```
sequence_counts |>
  rowwise() |>
  mutate(
    density = map2(
        water, land, ~tibble(
        prop = seq(0.0001, 0.9999, length = 100),
        density_unstd = dbinom(water, size = water + land, prob = prop),
        density = density_unstd/sum(density_unstd)
        )
    )
    )
    )
    unnest(density)->
    density_updates
```

```
density_updates |>
  ggplot(aes(prop, density))+
  geom_line(aes(group = seq, color = seq))
```


Figure 1: beta distribution updates

Good first step.

I had to turn to the plotly book to get the animated lines correct https://plotly-r.com/animating-views.html.

```
sequence_counts |>
mutate(
   annotation = str_glue("W:{water}, L:{land}")
) ->
wl_annotate
```

Update: I started making this just for the pdf, which can't have the animation, but it's actually kind of nice enough to include in the html.

```
density_updates |>
 group_by(prop) |>
 arrange(seq) |>
 mutate(
   prev_density = lag(density),
   facet_lab = str_glue("W:{water}, L{land}")
  ggplot(aes(prop, density))+
    geom_area(aes(y = prev_density), linetype = 2, alpha = 0.2)+
    geom_area(alpha = 0.6, fill = "steelblue4")+
    scale_y_continuous(expand = expansion(mult = c(0,0)))+
    facet_wrap(~facet_lab)+
    theme(
      axis.title.y = element_blank(),
      axis.text.y = element_blank(),
     axis.text.x = element_text(size = 8),
     panel.grid.major.y = element_blank()
```


On priors

The fact that statistical inference uses mathematics does not imply that there is only one reasonable or useful way to conduct an analysis.

Grid approximation

Ok, I'll do one grid approximation for the hell of it.

•••

Got distracted and went down a rabbit hole on the beta vs binomial distributions.

```
tibble(
  prob = seq(0.0001, 0.9999, length = 50),
  prior_unstd = case_when(
    prob < 0.5 \sim 0,
    .default = 1
  ),
  prior_std = prior_unstd/sum(prior_unstd),
  likelihood_binom = dbinom(6, size = 9, prob = prob),
  l_binom_std = likelihood_binom/sum(likelihood_binom),
  likelihood_beta = dbeta(prob, 6, 9-6),
  l_beta_std = likelihood_beta/sum(likelihood_beta)
) |>
  ggplot(aes(prob))+
    geom_point(aes(y = l_binom_std, color = "binom"))+
    geom_point(aes(y = l_beta_std, color = "beta"))+
    scale_color_bright()+
    labs(
      x = "probability",
      color = "distribution",
     y = NULL
```


Figure 2: Comparing normalized densities for beta(6,3) and binom(6, 9, p)

Glad I did this. I guess

- dbinom $\propto P(O, S|p)$
- dbeta $\propto P(p|O,S)$

I guess I'd want to see dbinom plotted out with O on the x axis?

```
binomial_densities |>
  ggplot(aes(obs, density, color = probability))+
  geom_point()+
  geom_line(aes(group = probability)) +
  geom_rect(
    color = "red",
    fill = NA,
    xmin = 5.5,
    xmax = 6.5,
    ymin = 0,
    ymax = 1
  )+
  scale_color_batlow()
```


Figure 3: Binomial distributions of various successes out of 9 trials, for various p

What we're plotting out is what's in the red box, flipped on its side.

```
binomial_densities |>
  filter(obs == 6) |>
  ggplot(aes(probability, density))+
```

```
geom_line()+
geom_point(aes(color = probability))+
scale_color_batlow()
```


Figure 4: Normalized binomial density for 6 successes out of 9 trials for various p.

Update!

```
Thanks TJ!
```

i forgot how i know this but they are the same if you plug in likelihood_beta = dbeta(prob, 1 + 6, 1 + 9-6),

```
— tj mahr (@tjmahr) May 10, 2023
```

```
tibble(
  prob = seq(0.0001, 0.9999, length = 50),
  prior_unstd = case_when(
    prob < 0.5 ~ 0,
    .default = 1
  ),
  prior_std = prior_unstd/sum(prior_unstd),</pre>
```

```
likelihood_binom = dbinom(6, size = 9, prob = prob),
l_binom_std = likelihood_binom/sum(likelihood_binom),
likelihood_beta = dbeta(prob, (6+1), (9-6)+1),
l_beta_std = likelihood_beta/sum(likelihood_beta)
) |>
ggplot(aes(prob))+
geom_point(aes(y = l_binom_std, color = "binom", size = "binom"))+
geom_point(aes(y = l_beta_std, color = "beta", size = "beta"))+
scale_color_bright()+
labs(
    x = "probability",
    color = "distribution",
    size = "distribution",
    y = NULL
)
```


Figure 5: Comparing normalized densities for beta(6+1,3+1) and binom(6, 9, p)