Languages, automata and computation II Tutorial 5 – Quantifier elimination, Presburger arithmetic

Winter semester 2024/2025

Normal forms

Exercise 1. Prove that any first order formula is logically equivalent to some formula in prenex normal form, i.e. a formula with all quantifiers at the beginning.

Exercise 2. Prove that any quantifier-free first order formula is logically equivalent to some formula in conjunctive normal form (CNF), i.e. a conjunction of disjunctions of atomic formulas and negations of atomic formulas.

Quantifier elimination

Exercise 3. Prove that $(\mathbb{N}, =)$ admits quantifier elimination.

Exercise 4. Prove that (\mathbb{N}, \leq) does not have quantifier elimination.

Presburger arithmetic

Exercise 5. Prove that multiplication cannot be defined in Presburger arithmetic, i.e. the set $\{(a, b, c) \in \mathbb{N}^3 : a \cdot b = c\}$ is not definable in $(\mathbb{N}, +)$.

Exercise 6. Recall¹ that subsets of \mathbb{N}^d can be encoded in binary as languages over an alphabet $\left\{\begin{bmatrix} d_1 \\ \dots \\ d_n \end{bmatrix}: d_1,\dots,d_n \in \{0,1\}\right\}$. For instance, the word $w=\begin{bmatrix} 0 \\ 1 \end{bmatrix}\begin{bmatrix} 1 \\ 0 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ encodes the pair (6,5). Let $\phi(x_1,\dots,x_n)$ be a formula of Presburger

arithmetic. Prove that the subset of \mathbb{N}^d defined by ϕ can be encoded as a regular language. Conclude that the Presburger arithmetic is decidable.

¹We mentioned this in the first tutorial