계산이론 (중간고사) - 답

담당 : 이은주 일시 : 2018년 10월 30일 화요일 13시 - 13시 50분

학년 분반 01 학	번 성명	점수	20
------------	------	----	----

문제 1. 다음 그래프에 대하여 깊이 우선 탐색한 결과 그래프를 그리고 탐색 순서를 쓰세요.(2점)

2 3 3 (그림 7.22) BFS의 결과

1,2, 4, 8, 5, 6, 3, 7

1, 2, 3, 4, 5, 6, 7, 8

문제 2. 문자 빈도 수가 다음과 같을 때 허프만 트리를 작성하고 허프만 코드를 만드세요.(3점)

문자	0	р	q	r	S	t	u
빈도수	10	3	8	5	13	3	7

문자	0	s	r	u	q	р	t
코드	00	10	011	110	111	0100	0101

문제 3. 촘스키 계층 (Chomsky hierachy)에 대해 설명하세요. (2점)

Туре	문법(Grammar)	오토마타(Automata)
0	무제한 문법	튜링 기계
1	문맥연관 문법(CSG)	선형한계 오토마타
2	문맥무관 문법(CFG)	푸시다운 오토마타
3	정규 문법 (우선형문법(RLG), 좌선형문법(LLG))	유한 오토마타

문제 4. $\Sigma = \{a,b\}$ 일 때, 다음의 각 언어들에 대해 그 언어를 생성하는 문법을 쓰세요. (4점)

1)
$$L_1 = \{a^n b^m : n \ge 0, m > n\}$$

 $G = (\{S,A,B\}, \{a,b\}, P, S)$

 $P:S \rightarrow AB$

 $A \rightarrow aAb \mid \lambda$

 $B \rightarrow bB \mid b$

$$_{2)}\ L_{2}=\left\{ a^{n}b^{n-3}:n\geq3\right\}$$

 $G = (\{S,A\}, \{a,b\}, P, S)$

 $P:S \rightarrow aaaA$

 $A \rightarrow aAb \mid \lambda$

문제 5. 짝수 개의 b를 가지는 $\Sigma = \{a, b\}$ 상의 모든 스트링을 인식하는 DFA를 디자인 하세요.(3점)

문제 6. 다음 NFA(Non Deterministic Finite Automat)에 의해 인식되는 문자열은? (1점)

① 00 ② 01001 ③ 10010 ④ **000** ⑤ 0000

초기 q ₀	{q ₁ }	{ q ₁ }
최종 q ₁	$\{q_0, q_2\}$	$\{q_1, q_2\}$
q ₂	Ø	{ q ₁ }

DFA M	0	1
초기 [q ₀ , q ₂]	[q ₁]	[q ₁]
최종 [q ₁]	$[q_{0}, q_{2}]$	$[q_{1}, q_{2}]$
최종 [q _{1,} q ₂]	$[q_{0}, q_{2}]$	[q ₁ , q ₂]

DFA M	0	1
초기 A	В	В
최종 B	Α	С
최종 C	Α	С

문제 8. 오토마타의 일반적인 구조를 설명하세요. (2점)

문제 7. 6번의 NFA를 동치인 DFA로 변환하세요. (3점)

NFA M	0	1
-------	---	---

- 1) 오토마타는 입력 데이터를 읽을 수 있는 입력 기능을 가지고 있다. 입력 데이터는 입력 파일에 쓰여져 있는 알파벳상의 스트링들로 이루어져 있 는데, 입력 파일은 네모꼴의 셀(cell)들로 이루어져 있으며 각 셀에는 오직 하나의 심볼만 존재함
- 2) 오토마타는 특정 형태의 출력 기능을 가지고 있다. 0이나 1의 출력을 생성 할 수 있으며 인식 (accept) 또는 기각(reject)의 출력도 생성함
- 3) 오토마타는 무한개의 셀들로 이루어진 임시 저 장 장치를 가질 수 있다. 각 셀은 하나의 심볼만 을 가질 수 있는데, 오토마타는 작동에 따라 셀들 의 내용을 읽어내거나 변경할 수 있음
- 4) 오토마타는 유한개의 내부 상태를 제어할 수 있는 제어 장치를 가지고 있다. 이것의 제어에 따라 상태가 변화될 수 있음