

LÓGICA PROPOSICIONAL

Prof. Jonathan Gil Müller

Escopo da disciplina:

Unidade 1:
INTRODUÇÃO
LOGIÇA

O otre i leica?

O une estudar lógica?

Histórico e evolução.

Unidade 2:

LÓGICA PROPOSICIONAL

- >> Introdução: proposições, princípios, operadores lógicos;
- >> Linguagem: sintaxe e semântica;
- >> Métodos para verificar a validade de fórmulas: (a) tabelas verdade, (b) método da refutação, (c) dedução formal
- >> Formalização de problemas.

Unidade 3:

LÓGICA DE PREDICADOS

- >> Introdução;
- >> Linguagem: sintaxe e semântica;
- >> Métodos para verificar a validade de fórmulas: dedução formal;
- >> Formalização de Problemas.

Unidade 4:

FORMALIZAÇÃO DE PROGRAMAS E SISTEMAS DE COMPUTAÇÃO SIMPLES

>> PROgramming in LOGic (PROLOG)

Existem **três classificações** para uma fórmula lógica, ou seja, ela pode ser:

a) Tautológica: diz-se que uma fórmula é tautológica (ou uma tautologia) se a interpretação da fórmula for sempre V, quaisquer que sejam as interpretações de suas subfórmulas.

Em outras palavras, uma fórmula α é uma tautologia (ou é válida) se e somente se, para toda interpretação I, $I[\alpha] = V$;

Exemplo de tautologia: $(P \land Q) \rightarrow (P \lor Q)$

(P	٨	Q)	\rightarrow	(P	V	Q)

 b) Contraditória: diz-se que uma fórmula é contraditória (ou é insatisfatível) se a interpretação da fórmula for sempre F, quaisquer que sejam as interpretações de suas subfórmulas.

Em outras palavras, uma fórmula α é contraditória se, e somente se, para toda interpretação I, $I[\alpha] = F$.

Exemplo de contradição: (P ↔ ~Q) ^ (P ^ Q)

(P	\leftrightarrow	~Q)	٨	(P	۸	Q)

c) Satisfatível: diz-se que uma fórmula é satisfatível (ou contingente ou factível) se a interpretação da fórmula for V para algumas interpretações de suas subfórmulas e F para outras.

Em outras palavras, uma fórmula α é satisfatível se, e somente se, existir interpretações tais que $I[\alpha] = V$ e $I[\alpha] = F$.

- 1. As fórmulas da lógica proposicional possuem propriedades semânticas. Sendo assim:
 - a) O que significa dizer que uma fórmula é tautológica (ou uma tautologia, ou válida)?
 - b) O que significa dizer que uma fórmula é contraditória (ou insatisfatível)?
 - c) O que significa dizer que uma fórmula é satisfatível (ou contingente, ou factível)?

RESPOSTAS:

- a) O que significa dizer que uma fórmula é tautológica (ou uma tautologia, ou válida)?
- R.: Uma fórmula é tautológica se a interpretação da fórmula for sempre V, quaisquer que sejam as interpretações das suas sub-fórmulas.
- b) O que significa dizer que uma fórmula é contraditória (ou insatisfatível)?
- R.: Uma fórmula é contraditória se a interpretação da fórmula for sempre F, quaisquer que sejam as interpretações das suas sub-fórmulas.
- c) O que significa dizer que uma fórmula é satisfatível (ou contingente, ou factível)?
- R.: Uma fórmula é satisfatível se a interpretação da fórmula for V para algumas interpretações das suas sub-fórmulas e for F para outras.

2. Considere a tabela verdade das fórmulas abaixo. Para quais fórmulas é possível afirmar: é tautológica, é contraditória, é satisfatível? Justifique sua resposta.

a)

	Р	\rightarrow	true
F	V	V	V
V	F	V	V

b)

	((P	V	Q)	\rightarrow	(P	\rightarrow	Q))
F	V	V	V	V	V	V	V
F	F	F	F	V	F	V	F
V	V	V	F	F	V	F	F

c)

	(P	٨	Q)	\leftrightarrow	(P	\rightarrow	Г	(Q	V	J	P))
_	V	V	V	F	V	F	F	V	V	F	V
	F	F	F	F	F	V	F	F	V	V	F

RESPOSTAS:

- a) R.: É tautológica, para todas as interpretações das suas sub-fórmulas, a interpretação da fórmula é sempre V.
- b) R.: É satisfatível, para algumas interpretações das suas sub-fórmulas, a interpretação da fórmula é V e para outras a interpretação da fórmula é F.
- R.: Não é possível determinar se a fórmula é contraditória ou satisfatível, pois não se tem determinadas todas as interpretações da fórmula.

Para determinar se uma fórmula é tautológica, contraditória ou satisfatível pode-se usar os seguintes métodos:

- a) tabela-verdade;
- b) método da negação ou da refutação (absurdo).
- Observa-se que esses métodos são equivalentes entre si, mas, dependendo da fórmula, um método pode se mostrar mais eficiente do que outro.

A interpretação de uma fórmula também pode ser descrita através do método da refutação (SOUZA, 2002, p. 51):

- 1º passo: considerar inicialmente a negação daquilo que se pretende demonstrar;
- 2º passo: utilizar um conjunto de deduções para concluir um absurdo, atribuindo valores aos símbolos verdade, símbolos proposicionais e conectivos proposicionais, na ordem "inversa" a da construção da tabela verdade;
- 3º passo: caso se obtenha um **absurdo**, a conclusão é que a suposição inicial é falsa. Caso contrário, nada se pode concluir sobre a suposição inicial.

Para verificar se uma fórmula α é tautológica, deve-se:

<u>1º passo</u>: negar α, ou seja, considerar que α não é válida atribuindo-se o valor \mathbf{F} à fórmula;

 2° passo: fazer deduções sobre α para concluir um absurdo;

3º passo: caso se obtenha um absurdo, α não pode ter o valor **F**. Ou seja, a suposição inicial é falsa, logo α é uma tautologia. Caso não se obtenha o absurdo, nada se pode concluir sobre a suposição inicial.

Para verificar se uma fórmula α é tautológica, deve-se:

1º passo: negar α, ou seja, considerar que α não é válida atribuindo-se o valor $\bf F$ à fórmula;

Exemplo:
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

((P	\longrightarrow	Q)	^	(Q	\longrightarrow	R))	\rightarrow	(P	\longrightarrow	R)	
											URB

Para verificar se uma fórmula α é tautológica, deve-se:

 2° passo: fazer deduções sobre α para concluir um absurdo;

Exemplo:
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

Como
$$I[\alpha] = F$$
, então

•
$$I[(P \rightarrow Q) \land (Q \rightarrow R)] = V$$

•
$$I[(P \rightarrow R)] = F$$

((P	\rightarrow	Q)	٨	(Q	\rightarrow	R))	\rightarrow	(P	\rightarrow	R)
			V				F		F	

Para verificar se uma fórmula α é tautológica, deve-se:

 2° passo: fazer deduções sobre α para concluir um absurdo;

Exemplo:
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

 A partir desse valores de verdade, podemos obter os valores de verdade das subfórmulas

((P	\rightarrow	Q)	٨	(Q	\rightarrow	R))	\rightarrow	(P	\rightarrow	R)
	V		V		V		F	V	F	F

Para verificar se uma fórmula α é tautológica, deve-se:

 2° passo: fazer deduções sobre α para concluir um absurdo;

Exemplo:
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

Então podemos concluir que I[P] = V e I[R] = F

((P	\longrightarrow	Q)	٨	(Q	\rightarrow	R))	\rightarrow	(P	\rightarrow	R)
V	V		V		V	F	F	V	F	F

Para verificar se uma fórmula α é tautológica, deve-se:

 2° passo: fazer deduções sobre α para concluir um absurdo;

Exemplo:
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

- A partir da subfórmula (P → Q), concluimos que I[Q] = V
- A partir da subfórmula (Q → R), concluimos que I[Q] = F

Portanto, suposição incial é FALSA!

((P	\rightarrow	Q)	٨	(Q	\rightarrow	R))	\rightarrow	(P	\rightarrow	R)
V	V	V	V	F	V	F	F	V	F	F

Para verificar se uma fórmula α é tautológica, deve-se:

3º passo: caso se obtenha um absurdo, α não pode ter o valor **F**. Ou seja, a suposição inicial é falsa, logo α é uma tautologia. Caso não se obtenha o absurdo, nada se pode concluir sobre a suposição inicial.

Exemplo:
$$\alpha = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

- A partir da subfórmula (P → Q), concluimos que I[Q] = V
- A partir da subfórmula (Q \rightarrow R), concluimos que I[Q] = F

que I[α] = F
Logo, α é uma tautologia.

Não existe interpretação I tal

Portanto, suposição incial é FALSA!

((P										
V	V	V	V	F	V	F	F	V	F	F

Mais alguns exercícios!

Questão 03 da Lista 03...

Questão 3:

a) $(P \rightarrow R) \rightarrow (P \rightarrow R)$

	THE PARTY	ED ESS		Mark Street		
The M			Shape.	100	la constant	100 M

Questão 3:

b)
$$(P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P)$$

3000	A COMP	5	No-2	150	1960	300	
		3444				Pas	

FURB

c) $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$

No. 19				38-3				5.00		100	
1000	The same	A 45	3	77/46	15-6	1500	38%	19.50	1995	MIN.	35

M	7	((P	~	(0	٨		((Q))	1	9
	F		V		V	V		V	V
	1	り	4	7	6	හි	07	2	3

Absundo

Étautalipries?

_			=
F	Ū	R	В

7	((P	<u>></u>	(Q	Λ	~	Q))	1	P)
V	V	F	V	F	F	V	F	V
>	V	F	F	F	V	F	F	V
V	F	V	V	F	F	V	F	1
V	F	V	F	F	V	F	F	F
		4					1	+
<u> </u>		Hologie						

e)
$$((P \rightarrow (Q \rightarrow R)) \land (P \land \neg R)) \rightarrow \neg Q$$

((P	→>	(12	3	R))	Λ	(P	Λ	7	RJ)	~	7	Q
V	V	V		£1	V	V	V	V	(F)	F	F	V
10	5	12	11	13	2	7	.6	8	/9	L	3	4

FURB

f) $((P \rightarrow Q) \land (R \rightarrow S)) \rightarrow ((P \land R) \rightarrow (Q \land S))$

41.76	W.	9-31		83.3	-873			900	3 3	1	ME
100			100		6-75	1	970		507		10

g)

h) $(P \land Q) \leftrightarrow (Q \land P)$

	Mile:	1886	AND SERVICE	No.	BES
	RANG		RES. SI	DAY S	No.
8 1			13		
	1,48				

18 18					
				-	
With the	200	IL S		35.3	

$$j) \quad (P \to (Q \to R)) \leftrightarrow ((P \land Q) \to R)$$

		A Cir.		400			No. Pr		
		Hit		5	Treasure.		W.		MES I
					TEXA	4		THE CO.	
744	į Širių		700	44	اجبت		Server.		

Para verificar se uma fórmula α é contraditória, deve-se:

1º passo: negar α, ou seja, considerar que α é válida atribuindose o valor \mathbf{V} à fórmula;

 2° passo: fazer deduções sobre α para concluir um absurdo;

3º passo: caso se obtenha um absurdo, α não pode ter o valor V. Isto é, a suposição inicial é falsa, logo α é contraditória. Caso não se obtenha o absurdo, nada se pode concluir sobre a suposição inicial.

Questão 4:

b) $P \wedge (Q \wedge \neg P)$

c) $(P \wedge Q) \wedge \neg P$

	1	1963	160.5		-		
7776		SPER		KA B	193		

e)
$$\neg ((P \rightarrow R) \rightarrow ((Q \rightarrow R) \rightarrow ((P \lor Q) \rightarrow R)))$$

100 /2		Mary 19	MIX		476		000	F 188	TO BY	end	1	
1.000	1900	Pas.	20	W. Th	1100	HALL			W.			11.00

f)
$$\neg (((P \land Q) \rightarrow R) \rightarrow ((P \rightarrow R) \lor (Q \rightarrow R)))$$

- 6	286.0				보유다				1.65
-		497			TAN.		HAIR	F	

g)
$$\neg (((P \rightarrow (Q \lor R)) \land (\neg R \land \neg Q)) \rightarrow \neg P)$$

コ	(((P	~	(0	V	((Fi	Λ	(7	R	Λ	7	Q)	→>	7	P)
· V	V	V	F	(V)	F	V		F	V	V	F	F	F	V
1	11	5	13	12	14	4	7	9	6	8	10	2	3	4

E controditoris? Sim FIM

アンソンチャ

g)
$$\neg (((P \rightarrow (Q \lor R)) \land (\neg R \land \neg Q)) \rightarrow \neg P)$$

4 (36)	913		100			18m				900		43.5	Same	
						B. 35		3465			984	825	March 1	316
	9.			WAR					W	1				
						53%			inder.		400		WE!	1
1 6	4.15	100	No.		1000			HAY.	NEW YORK	4.6	9)		80.75	10
	100	3339		BAST.	NUR		The same	(FILE)	BAR.	163				2000
			63.			1176	700	A VON	TO SE			903	M. A.	
10 1	4		AR F							TÀ.			190	4 33

h) $\neg (P \land (Q \land \neg P)) \rightarrow ((P \land Q) \land \neg P)$

10.00	SIL	E.	360	Wite.			AU.					
TO LAND		F 68					The last	1	200		NEW J	MAL.
100		1800	46.U	345		318					610	
		Y							JBS-	裁片	N	
		31.7			T T	30 1				1000		

i) $\neg(\neg(P\lor Q)\leftrightarrow(\neg P\land\neg Q))$

			-					190	
	No.	2 4		400			19		
5 100		1	105	200	200	1100	10	(FS)	863
	MAN.	200	187	TRE		4	T. Ar	1773	

$$j) \ \neg ((P \rightarrow Q) \rightarrow (((P \land Q) \leftrightarrow P) \land ((P \lor Q) \leftrightarrow Q)))$$

					-	5 6				THE.			37	1	ME
	100	3 7 7	1600		300	75	450		D.C.	599				100	
7:3	90	13.			1077			400	-	80	100	Fig.	9700	MIN	
				48			X H				100	13 F			1
		11.45				200		Ris	N/S		7000°	Bet.	MX		OH -
			新			Kar.		PA'	790		390				MA.

Questão 5:

a) a) $(\neg P \lor \neg Q) \leftrightarrow \neg P$

				- 2		\$000 M	1000
		12.3		76			NO.
150		25 × 6			200	Se 127	
	The state of			TO NO.	130		
	400				MINE		6000
		11500	13.18	BREE	813	TOWN !	100

Questão 5:

b) b) $\neg((P \land Q) \land (\neg P \land \neg Q))$

200		N Top	1000		Fig.	AS EAR	5 5 6	SSE
	N. P. IV		103	1		W. F. A.	FRE.	16 19

c) c) $\neg(\neg((P \land Q) \land \neg P))$

Yelf				Marie St.	
	-				11,334

e) e)
$$\neg (((P \land \neg(\neg Q \leftrightarrow R)) \land (\neg R \land (\neg S \to Q))) \to (S \land P))$$

	200	7	50	other.		E.	N. S.	West .	20	300	38	9/	1
1								1			5- B	5	

f) f) $((P \rightarrow Q) \land (\neg(\neg Q \leftrightarrow R) \land ((\neg S \rightarrow \neg R) \land ((S \rightarrow (Q \land T)) \land \neg T)))) \rightarrow \neg P$ Furb

g)

300	1	476				183 h			
1770		-	4.00	485		1	1		
1 60			ZE	1			-		
					BY	T. S.	1000	Dr. vi	

h)

i)													
11.75		-35	00	1000			700		980	OF A	1		
100			03/3			450				994	900		
	= 10 N		7	400	4		60 to	-			Mag	2000	1000
10.0	1		AT U	Fig.	RES							WE	