Hardwares para Realidade Aumentada

Realidade aumentada (AR) é a tecnologia que sobrepõe imagens geradas por computador à visão do mundo real, criando uma experiência interativa e imersiva.

Gabriel A. Rodrigues

Luan L.Guarnieri

Maria E. Krutzsch

Nadir Rafagnin

Nicole Bauchspiess

Rodrigo K. Franco

Data Gloves

Dispositivos de entrada avançados para interação com objetos virtuais. Permitem a manipulação e controle de elementos digitais sobrepostos ao mundo real, proporcionando uma experiência mais imersiva e intuitiva.

Aplicações

Interação com Objetos Virtuais

Manipulação de objetos digitais como se fossem reais.

 Exemplos: Tocar, mover e modificar objetos virtuais no campo de visão dos usuários.

Controle e Navegação

• Navegação em interfaces de AR usando gestos manuais.

Seleção de itens, abertura de aplicativos e ajuste de configurações.

Treinamento e Simulações

- Execução de tarefas detalhadas em ambientes mistos.
- Exemplos: Montagem virtual de máquinas combinada com componentes reais.

2

3

Outras Aplicações dos Data Gloves

Design e Prototipagem

- Manipulação de modelos 3D sobrepostos no ambiente físico.
- Facilitação do design colaborativo e revisão de protótipos.

Medicina e Reabilitação

 Ajuda em terapias de reabilitação com interação com objetos virtuais para exercícios específicos.

Entretenimento e Jogos

 Jogos de AR mais imersivos com gestos naturais para interação com conteúdo virtual.

Características e Exemplo de Produto

Características Gerais

- Captura de dados de movimento e posição em 3D.
- Sistema de coordenadas relativo ou absoluto.
- Feedback tátil para simulação de sensações físicas.
- Precisão em movimentos detalhados e amplos.

Xsens Metagloves

- Tecnologia: Rastreamento quântico para captura precisa dos dedos.
- Compatibilidade: Integrável com software Xsens MVN.
- Aplicações: Realidade virtual e captura de movimento.
- **Preço:** 5.999 euros.

Magic Leap 2

Busca integrar o mundo virtual com o real, criando experiências imersivas para uma variedade de aplicações.

Objetivo

- Criação de experiências imersivas.
- Integração de objetos virtuais com o ambiente real.

Características

- Visualização 3D com gráficos vetoriais e raster.
- Rastreamento absoluto para mapeamento preciso.
- Entrada sensorial por gestos, voz e sensores.
- Saídas multimodais de imagens, vídeos e áudio.

Características Técnicas

O Magic Leap 2 utiliza diferentes tipos de informação para criar experiências visuais realistas.

Tipo de Informação	Descrição
Vetorial (V)	Processa gráficos 3D e sobreposições.
Raster (R)	Manipula imagens e texturas.
Dimensão	3D: opera em um espaço tridimensional.
Sistema	Absoluto (A): utiliza rastreamento absoluto para mapeamento do ambiente.

Entrada, Processo, Saída e Mídia

Funciona com base em um processo de entrada, processamento e saída de dados.

Entrada

Sensores captam dados do ambiente.

Processo

Processamento computacional de dados sensoriais e de entrada.

Saída

Exibição de saídas visuais.

Aplicações Reais

Encontra aplicações em diversos setores, com exemplos notáveis.

Treinamento e Simulação

O Imperial College Healthcare utiliza o Magic Leap 2 para treinamento médico.

Design e Visualização

A Holo-Light utiliza o Magic Leap 2 para visualização de projetos.

Colaboração e Produtividade

A Spatial utiliza o Magic Leap 2 para ambientes de trabalho virtuais.

Saúde e Reabilitação

A MindMaze utiliza o Magic Leap 2 para programas de reabilitação e terapia.

Made with Gamma

IBeacon

É uma tecnologia desenvolvida pela Apple que utiliza Bluetooth Low Energy (BLE) para transmitir sinais de rádio que podem ser detectados por dispositivos próximos.

Localização e Proximidade

 Permite a localização de um dispositivo em relação a um beacon.

Engajamento e Interatividade

 Permite a criação de experiências personalizadas, marketing e promoções.

Navegação e Orientação

• Direcionamento em ambientes Internos.

Automatização e Ações Contextuais

 Permite que ações específicas sejam disparadas automaticamente quando um dispositivo entra em um determinado alcance de um beacon.

Disponibilidade em Dispositivos

Beacons de Hardware

Dispositivos Beacon de Fabricantes: Como os da Estimote, Kontakt.io,
Radius Networks, entre outros. Esses dispositivos são projetados para ser facilmente integrados em ambientes físicos.

Dispositivos Móveis

- iPhones e iPads: A partir de iOS 7, dispositivos da Apple
- Existem opções para dispositivos Android

Arquitetura com IBeacon

Beacon broadcast Mobile Device Backend Service

2. Lookup object with identity

Receive object, URL to download, etc.

Caracteristicas do Hardware

Tipo de Informação	Nenhum (Transmite sinais identificadores em formato de dados simples, não rasterizados ou vetoriais)
Dimensão da Informação	1D
Sistema	Relativo (T)
Entrada (E)	Não aplicável
Processo (P)	Não aplicável
Saída (S)	Emissão de sinal BLE
Tipo de Mídia	Não aplicável
Posicionamento	Micro (Pi)

Exemplo de uso em um aeroporto

Conclusão

Os hardwares para realidade aumentada e virtual estão criando novas oportunidades e experiências empolgantes em diversos setores, seu desenvolvimento contínuo está abrindo portas para aplicações práticas e muito interessantes.