Examples of the homomorphism Theorem

Example
$$SL(2,\mathbb{Z}) := \begin{cases} (ab) & a,b,c,d \in \mathbb{Z} \end{cases}$$

integer 2×2 meetrices with determinant 1

This is a group as
$$\begin{pmatrix} a & b \end{pmatrix}^{-1} = \frac{1}{ad-bc}\begin{pmatrix} d & -b \end{pmatrix} = \begin{pmatrix} d & -b \end{pmatrix}$$

integer entries

The is a homomorphism $\varphi: SL(2,\mathbb{Z}) \longrightarrow SL(2,\mathbb{Z}_n)$ $\varphi((ab)) = (az (bz))$ [cz] [dz]

[Exercise: cheek $\varphi(AB) = \varphi(A)\varphi(B)$: easy but tedions] let $\overline{G} = \varphi(SL(2,\mathbb{Z})) \leq SL(2,\mathbb{Z}_n)$ be the image of φ . Then $\varphi: SL(2,\mathbb{Z}) \longrightarrow \overline{G}$ is surjective by construction.

What is $\ker(\varphi)$? $\ker(\varphi) = \frac{2(ab)}{(cd)} | \frac{(ad)}{(cd)} | \frac{(a$

The Theorem then implies that There is an isomorphism $\tilde{\varphi}: SL(2,\mathbb{Z})/_{T_n} \longrightarrow \overline{G}$

Remork: It is a fact that $\varphi: SL(z, \mathbb{Z}) \longrightarrow SL(z, \mathbb{Z}_n)$ is always surjective and $G = SL(z, \mathbb{Z}_n)$. So in fact $SL(z, \mathbb{Z})/n \cong SL(z, \mathbb{Z}_n)$.

Another example: Define $\mathbb{Z}_n \times \mathbb{Z}_m = \frac{2}{3}([a]_n, [b]_m)|_{[b]_m \in \mathbb{Z}_n}$ with the group operation of anotherwise addition

([a]n,[b]m)+([a']n,[b']m) $:= ([a+a']_n, [b+b']_m)$ (Check: this is a group.)

Now suppose gcd(n,m)=1Refine $\varphi: \mathbb{Z} \longrightarrow \mathbb{Z}_n \times \mathbb{Z}_m \qquad \varphi(\times) = ([x]_u, [x]_m)$

 $\ker(\mathcal{Q}) = \{x : (x]_n = [0]_n \text{ and } [x]_m = [0]_m\} = \{x : n \mid x \text{ and } m \mid x\}$ = {x:(nm)|x } since ged(n,m)=1

I.e., $\ker(Q) = \langle nm \rangle$. (et $\overline{G} = \varphi(Z)$ be the image of φ . then $\varphi: Z \longrightarrow \overline{G}$ is surjectie, and its terrel is $\langle nm \rangle$

Thus there is an isomorphism $\tilde{\varphi}: \mathbb{Z}/\langle nm \rangle \longrightarrow \overline{G}$

Now Z/<nm> = Znm has non elements

so G has non elements.

But Zux Zm has non elements, and G is a subset.

So it must be that $G = Z_n \times Z_m$, that is

The original map of was surjective!

So $\tilde{\varphi}: \mathbb{Z}_{nn} \to \mathbb{Z}_{n} \times \mathbb{Z}_{n}$ is an isomorphism

This actually prones the Chinese remainder theorem!

More Theorems about quotient groups.

Theorem if $\varphi: G \rightarrow G$ is a surjective homomorphism with kernel N, then $\varphi: G/N \rightarrow G$ $\varphi(aN) = \varphi(a)$ is an isomorphism.

There is a correspondence of subgroups of G/N and G, whoch amounts to

Prop. 2.7.Β: let φ: G = G be a surjective homomorphism, with kernel N.

(a) There is a bijective correspondence $\{\text{subgroups of G }\}$ —> $\{\text{subgroups of G }\}$ —> $\{\text{subgroups of G }\}$ $\{\text{subgroups of G }\}$

(b) This bijection preserves the property of being normal. i.e., B is normal in G (Β) is normal in G.

Proof: let $B \leq G$. Then $\varphi^{-1}(B) \leq G$. Since $e \in B$, $\varphi^{-1}(e) = \ker \varphi = N$ is contained in $\varphi^{-1}(B)$. So $\varphi^{-1}(B)$ is indeed a subgroup containing N.

Conversely, if $A \leq G$ is a subgroup containing N ($N \leq A$) then $\varphi(A)$ is a subgroup of G.

 ${S \mapsto \varphi^{-}(B)}$ ${S \mapsto \varphi^{-}(B)}$ ${S \mapsto \varphi^{-}(B)}$ ${S \mapsto \varphi^{-}(B)}$ ${A \mapsto \varphi(A)}$

are two maps. We must check they are innerses.

Claim: $\varphi(\varphi^{-1}(B))=B$ proof: $\varphi(\varphi^{-1}(B))=\frac{2}{3}\varphi(a) \mid a \in \varphi^{-1}(B)$ = $\frac{2}{3}\varphi(a) \mid \varphi(a) \in B$ = $\frac{2}{3}$ = $\frac{2}{3}$.

Claim, $\varphi'(\varphi(A)) = A$, provided $N \leq A$. (et x ∈ φ'(φ(A)) then φ(x) ∈ φ(A) so there is a $\in A$ such that $\varphi(x) = \varphi(a)$ thu $\varphi(u)^{-1}\varphi(x)=e$, $\varphi(a^{-1}x)=e$, so $a^{-1}x\in N\leq A$ so $a^{-1}x=a'$ for some $a'\in A$. Then $x=aa'\in A$ this shows $\varphi^{-1}(\varphi(A)) \subseteq A$ conversely, if $a \in A$, then $\varphi(a) \in \varphi(A)$, so $\alpha \in \varphi^{-1}(\varphi(A))$ thus $A = \varphi'(\varphi(A))$ as well, proving the claim.

This employees the proof of (a).

G containing N $(N \leq K \leq G)$ $g \in G$ be any elemt, $g \cdot Q(K)g^{-1} \in Q(K)$ For (b), let K be a normal subgroup Want to show (Q(K) 4 G. Let and let $\varphi(k) \in \varphi(K)$. Need

Since φ is surjective, $g = \varphi(g)$ for some $g \in G$ 30 \(\frac{1}{9}\partial(k)\(\frac{1}{9}\)\(\frac{1}{9}\q(k)\(\phi(\frac{1}{9}\)\)\(\frac{1}{9}\q(\frac{1}{9}\)\(\frac{1}{9}\q(\frac{1}{9}\)\(\frac{1}{9}\)\(\frac{1}{9}\q(\frac{1}{9}\)\(\frac{1}{9}\)\(\frac{1}{9}\q(\frac{1}{9}\)\(and glag EK since K is mormal, so $\varphi(gkg^{-1}) \in \varphi(K)$, as were to be shown.

Conversely let K=G be a normal subgroup. let a e q (K) and g e G. Need gag e q (K) (q(gag-1) = q(g)(q(a)(q(g)-1), and this is in R since q(a) EX and K is normal. So $\varphi(gag^{-1}) \in K$ and $gag^{-1} \in \varphi^{-1}(R)$

Example: What are the subgraps of \mathbb{Z}_n ? $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ is a surjective homomorphism W/kernel < n > 0 $\varphi(x) = [x]_n$ Esubgroups of Z containing <n> = {<d> | d divides n }

so Esubgrups of Zn 5 = ECEJ> d'divide n }

Proposition 2.7.14 let $\varphi: G \to \overline{G}$ be a surjective homomorphism with kernel N. Let $K = G \setminus K$ be normal and let $K = \varphi'(R)$ then $G/K \cong G/K$.

Since G = G/N, and K = K/N, we can also write this as G/K = (G/N)/(K/N).

Proof: Define a homomorphism $\gamma: G \to G/K$ as $\gamma = \pi \cdot \varphi$ where $G = \pi \cdot G/K$

quetient homomorphim for G/R

Then I is surjective since both e and To we surjective. Now

 $\ker(\psi) = \{x \in G \mid \psi(x) = \xi = \{x \in G \mid \overline{\pi}(\varphi(x)) = R\}$ $= \{x \in G \mid \varphi(x) \in R\} = \varphi^{\dagger}(R) = K$

So by the main theorem, there is an isomorphism $\tilde{\psi}: G/K \rightarrow G/K$ $\tilde{\psi}(x) = \psi(x)$

Proposition 2.7.15: Let $N \triangleleft G$ and $\varphi : G \rightarrow G$ a homomorphic with kernel K. If $N \leq K$, there is a homomorphism $\varphi : G/N \rightarrow G$ such that $\varphi \circ \pi = \varphi$

Try to prove this yourself, or see textbook. See also Cor. 2.7.16.

Next problem: If A ≤ G, B≤ G, is AB = {ab | G∈ A, b∈ B} a subgroup of G? Not necessarily.

$$E_{X} = G = S_{4}$$
 $A = \langle (12) \rangle = \{e, (12)\}$
 $B = \langle (234) \rangle = \{e, (234), (243)\}$

 $AB = \{e, (234), (243), (12), (1234), (1243)\}$ Not a subgrap since (234)(12) = (1342) is not in AB

But if $N \triangleleft G$ is normal, and $A \leq G$, then $AN \leq G$:

Take $a_1 n_1$, $a_2 n_2 \in AN$. Then $a_1 n_1 a_2 n_2 = a_1 a_2 (a_2^{-1} n_1 a_2) n_2 \in AN$

Since Nis normal

If $an \in AN$ then $(an)^{-1} = n^{-1}a^{-1} = a^{-1}(an^{-1}a^{-1}) \in AN$

Proposition 2.7.19 (Diamond iso morphism theorem)
Let NAG, A \le G. Then AnN \le A and N \le AN
and A/AnN \le AN/N

AN ANN

Proof if n \in AnN and a \in A

thu ana \in A \in ince A is a subgrup

and an \in \in \in N \in an \in N \in AnN

The new and granze \in An \in an \in \in \in Ann \in Ann

The new and granze \in Ann \in Ann

Since $N \triangleleft AN$ there is a surjective homomorphism $\pi: AN \rightarrow AN/N$.

There is also a humanuplism $i:A\rightarrow AN$, i(a)=a. there $Q:A\rightarrow AN/N$ $Q=\pi \circ i$ is a humanorphism. It is subjective (an) N=aN=Q(a). For any an $N\in AN/N$. The karnel of Q is $\{a\in A\mid aN=N\}=\{a\in A\mid a\in N\}=A\cap N$ So by the muin theorem there is an iso morphism $i(a):A/A\cap N\rightarrow AN/N$.