Sustainability Classification for Fashion Products

TABLE OF CONTENTS

O1 BACKGROUND

O2 METHODOLOGY

O3 EDA

O4 MODEL DEVELOPMENT

O5 INDEPENDENT DATASET

06 FUTURE WORK

RISE OF THE ECO-CONSCIOUS CONSUMER

42%	Consumers would pay more for sustainably produced items	80%
37%	Consumers looked for products with environmentally friendly packaging	78%
35%	Consumers chose sustainable products to help protect the environment	74%
2019		2021

FASHION INDUSTRY

Produced <u>2-8%</u> of global carbon emissions Cause of microplastics in oceans

GREENWASHING

Misleading, vague claims that their products are sustainable

CERTIFICATIONS

Expensive and inaccessible to small businesses

EDA - Distribution of target variable

- Imbalanced classes
 - o F1-score
- Multi-class
 - Macro average

EDA - Significance of categorical features

FEATURES	CHI-SQUARE P-VALUE			
Material label	2.667e-97			
Chemical label	5.589e-16			
Production label	3.709e-125			
Reusability label	2.464e-135			
Recylability label	1.687e-126			

- Categorical vs categorical
 - Chi-square test
- p-values < 0.05
 - Statistically significant
- Keep all features

EDA - Distribution of raw material features

- Many outliers
- ML model that can deal with outliers

EDA – Distribution of transportation distance

- One outlier
- Non-normal distribution
- Non-parametric ML model

MODEL DEVELOPMENT

MODELS	TRAIN F1	TEST F1	REMARKS Overfitted		
K-Nearest Neighbors	0.9986	0.8661			
Support Vector Machine	0.8891	0.8893 Convergend			
Random Forest	0.942	0.922	Good fit		
Random Forest Decision Trees	0.942 0.9436	0.922 0.9172	Good fit		

CONFUSION MATRIX

- Minimise errors in the red box
- Good model

FEATURE IMPORTANCE

 Raw materials contribute the most to the classification

INDEPENDENT DATASET - Data collection

TEST ON INDEPENDENT DATASET

		Cotton	Organic_cotton	Other_plant	Wool	Oth	er_animal	Polyester	Nylon	Spandex	Polyamide
		mean	mean	mean	mean		mean	mean	mean	mean	mean
Туре	EI										
jacket	1	0.000000	0.0	1.000000	0.0		0.0	0.000000	0.000000	0.000000	0.0
	3	0.937500	0.0	0.000000	0.0		0.0	0.000000	0.057500	0.003750	0.0
shirt	1	0.000000	0.0	1.000000	0.0		0.0	0.000000	0.000000	0.000000	0.0
	3	0.748000	0.0	0.000000	0.0		0.0	0.000000	0.048000	0.014667	0.0
short	3	0.830000	0.0	0.000000	0.0		0.0	0.075000	0.095000	0.000000	0.0
sweater	3	1.000000	0.0	0.000000	0.0		0.0	0.000000	0.000000	0.000000	0.0
t-shirt	3	0.730000	0.0	0.000000	0.0		0.0	0.000000	0.000000	0.020000	0.0
trousers	3	0.657826	0.0	0.086957	0.0		0.0	0.026087	0.152174	0.003913	0.0

- Did not just predict majority class
- Natural > synthetic
- Linen > Cotton

Model good enough to be deployed

FUTURE WORKS

MODEL IMPROVEMENT

- Random oversampling
- Feature engineering
- Other independent testing

SUSTAINABILITY CONTEXT

- Dashboard for companies to check on their sustainability initiatives
- Extend the model for other product categories

THANKS

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

