[16] **3.** Here is a pair of similar-looking linear programming problems:

$$(P) \text{ Maximize } f = 2x_1 + 6x_2 + 4x_3$$
 subject to
$$2x_1 + x_2 + x_3 \le 4$$

$$3x_1 - x_2 + x_3 \le 8$$

$$2x_1 + 2x_2 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

(
$$\widetilde{P}$$
) Maximize $f = 2x_1 + 6x_2 + 4x_3 + 6x_4$
subject to $2x_1 + x_2 + x_3 + x_4 \le 4$
 $3x_1 - x_2 + x_3 + 2x_4 \le 8$
 $2x_1 + 2x_2 + x_4 \le 6$
 $x_1, x_2, x_3, x_4 \ge 0$

Let s_1, s_2, s_3 be the slack variables for the three constraints of (P), in the given order.

- (a) Find a Basic Feasible Solution for (P), using x_3 , s_2 , and x_2 as the basic variables. [4 marks]
- (b) Prove that the BFS found in part (a) is optimal for (P).
- (c) Find the maximum value in (\widetilde{P}) , and all decision vectors that achieve it. [8 marks]