哈尔滨工业大学(深圳)2018级《代数与几何》期中试题

(此卷满分30分)

注:本试卷中R(A)、 A^{T} 、 A^{*} 分别表示A的秩,A的转置矩阵、A的伴随矩阵, E 表示单位矩阵.

一、填空题(每小题1分,共5分)

1. 行列式
$$\begin{vmatrix} 1 & 0 & 0 & 2 \\ 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{vmatrix} = \underline{\qquad}$$

3. 已知两直线 $L_1: x-1=\frac{y-2}{0}=\frac{z-3}{-1}$, $L_2: \frac{x+2}{2}=y-1=z$, 则过 L_1 且平行于 L,的

平面方程为

4. 设A 为n阶方阵,且 $A^2 = E$,则R(A + E) + R(A - E) =

二、选择题(每小题1分,共5分)

1. 过点 (2,-1,3),且和平面 $\pi_1: 2x-y+3z-1=0$ 与 $\pi_2: 5x+4y-z-7=0$ 都平行的直线方程为 1

(A)
$$\frac{x-2}{11} = \frac{y+1}{-17} = \frac{z-3}{-13}$$
; (B) $\frac{x-2}{-11} = \frac{y+1}{-17} = \frac{z-3}{13}$;

(D) 11x+17y-13z=0. (C) 11x-17y-13z=0;

2. 设A 是n (n>1) 阶方阵,则下列结论正确的是

(A) $AA^* = |A|$; (B) $R(A) = R(A^*)$;

(C)
$$A^* = \frac{1}{|A|}A^{-1};$$

(D) 若 $|A|\neq 0$,则 $|A^*|\neq 0$.

3. 设
$$\boldsymbol{\alpha} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\boldsymbol{\beta} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $\boldsymbol{A} = \boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}$, \boldsymbol{B} 是 4 阶方阵, 且 $\boldsymbol{R}(\boldsymbol{B}) = 3$,则 $\boldsymbol{R}(\boldsymbol{A}\boldsymbol{B} - \boldsymbol{B})$ 为

1

- (A) 4;
- (B) 3;

4. 设
$$A$$
 为 3 阶矩阵, B 为 3 阶可逆阵,且 $B^{-1}AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,若将 B 的第 2 列加

到第1列得P,则 $P^{-1}AP$ 为

1

$$(A) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(B) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(C) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix};$$

$$(D) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

5. 设
$$\boldsymbol{A}$$
为3阶方阵,满足 $\boldsymbol{A}^* = \boldsymbol{A}^{\mathrm{T}}$,若 $a_{31} = a_{32} = a_{33} > 0$,则 a_{31} 的值为【 】

- (A) $\frac{\sqrt{3}}{2}$; (B) 3; (C) $\frac{1}{3}$; (D) $\sqrt{3}$.

三、(本题5分)

求过点 $M_0(2,1,3)$ 且与直线 $L: \frac{x+1}{3} = \frac{y-1}{2} = \frac{z}{-1}$ 垂直相交的直线方程.

四、(本题5分) 设矩阵 $\mathbf{A} = \mathbf{E} - \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\alpha}$, $\mathbf{B} = \mathbf{E} + 2\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\alpha}$, 其中 $\boldsymbol{\alpha} = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} \end{pmatrix}$, 求 \mathbf{AB} .

五、(本题 5 分)设
$$A$$
 为 3 阶可逆方阵,满足 2 $A^{-1}B = B - 4E$,其中 $B = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,

- . 求矩阵A.
- 六、(本题 3 分)设 $\alpha = (1, 0, -1)^T$,矩阵 $A = \alpha \alpha^T$, $n \in \mathbb{N}$,k 为常数,(1)求 R(A)(2)求行列式| $kE + A^n$ |的值.
- 七、**(本题 2 分)** 设A,B 为n 阶方阵,且 $|A| \neq 0$,B-E 可逆,满足 $(B-E)^{-1} = (A-E)^{\mathrm{T}}$,. 证明B 可逆.