Autómatas a Pila

Fabio Martínez Carrillo

Autómatas Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

6 de noviembre de 2017

Agenda

Autómatas de Pila

Lenguajes del Autómata de Pila

Automatas a Pila (AP)

Autómata finito no determinista con transiciones ε y una pila que pemite almacenar cadenas de "simbolos de pila"

- Pila Puede recordar una cantidad infinita de información
- Se puede acceder a la información de la pila utilizando LIFO (Last-in first-out). También es posible FIFO
- Reconoce todos los lenguajes Independientes del contexto.

- "control de estados finitos": lee en la entrada un simbolo cada vez.
- Puede leer simbolos ubicados en la parte superior de la pila y hacer la transición con el estado actual.
- ullet Puede hacer una transición espontanea con arepsilon

En una transición

- Utiliza el simbolo de entrada. Si es ε no se utiliza ningún simbolo de entrada.
- Pasa a un nuevo estado (puede ser el mismo)
- Remplaza la parte superior de la pila por cualquier cadena.
 Puede ser:
 - ε : corresponde a una extracción de pila.
 - El mismo simbolo que estaba en la pila (no pasa nada)
 - Por dos o mas simbolos. Puede adicionar más simbolos a la pila.

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q conjunto finito de estados.
- Σ Simbolos de entrada
- Γ alfabeto de pila. Elementos que se introducen a la pla
- δ comportamiento del autómata según $\delta(q, a, X)$
 - q estado de Q
 - a simbolo de entrada $\{\Sigma, \varepsilon\}$. ε normalmente no es simbolo de entrada.
 - X simbolo de pila Γ

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- La salida de $\delta(q, a, X)$ es (p, γ) . Nuevo estado y nueva cadena de simbolos para la pila.
 - $\gamma = \varepsilon$ se extrae un elemento de la pila
 - $\gamma = X$ la pila no cambia
 - $\gamma = YZ$, entonces Z reemplaza la X y Y se introduce a la pila.

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- q₀ estado inicial
- Z₀ simbolo inicial. El autómata a pila consta de una instancia de este símbolo
- F conjunto de estados de aceptación o estados finales.

$$L_{ww^r} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

Gramatica

- ullet $P \rightarrow 0P0$
- $P \rightarrow 1P1$

$$L_{ww'} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

- Inciamos en un estado q_0 . No hemos visto el centro de w,
 - ullet Los simbolos leidos en q_0 se almacenan en la pila
- ② En cualquier instante suponemos estar en el final de w.
 - simbolo más a derecha de w estará en la cima
 - Pasamos a q₁
 - ullet Como es no deteminista, también permanecemos en q_0
- \odot En q_1 comparamos el símbolo de entrada con el símbolo de la cima de la pila
 - Si son iguales extraemos el símbolo pila y continua
 - Si no son iguales, la suposición es erronea y la rama del Autómata muere.
- 4 Si la pila se vacia, se encontro a w seguido de w^R . Aceptamos la entrada leida hasta el momento.

$$L_{ww^r} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

PDA

$$P = (\{q_0, q_1q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})$$

• Z₀ (bandera) Símbolo de pila que indica el fondo.

$$L_{ww'} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

Definición de δ

- **1** Estamos en q_0 y vemos a Z_0 $\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$ y $\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$.
- 2 Permanecer en q_0 , leer entradas e introducirlas a la pila
 - $\delta(q_0,0,0) = \{(q_0,00)\}$
 - $\delta(q_0, 0, 1) = \{(q_0, 01)\}$
 - $\delta(q_0, 1, 0) = \{(q_0, 10)\}$
 - $\delta(q_0, 1, 1) = \{(q_0, 11)\}$

$$L_{ww'} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

Definición de δ

- $oldsymbol{\circ}$ Pasar del estado q_0 a q_1 de forma espontanea sin utilizar la pila
 - $\delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\}$
 - $\delta(q_0, \varepsilon, 0) = \{(q_1, 0)\}$
 - $\delta(q_0, \varepsilon, 1) = \{(q_1, 1)\}$
- $oldsymbol{\bullet}$ Emparejar símbolos en q_1 y extraerlos
 - $\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$
 - $\delta(q_1, 1, 1) = \{(q_1, \varepsilon)\}$

$$L_{ww^r} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

Definición de δ

Pasamos al estado q2 y aceptamos:

$$\delta(q_1,\varepsilon,Z_0)=\{(q_2,Z_0)\}$$

Se ha encontrado una entrada de la forma ww^R !

Diagrama de transiciones de un Autómata a Pila

$$L_{ww'} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

- (a) Los nodos son los estados del autómata a Pila
- (b) Flecha indica el inicio y doble circulo el estado final.
- (c) Los arcos corresponden a las transiciones
 - Un arco etiquetado como a, \mathbf{X}/α del estado q al p es: $\delta(q, a, X)$ y contiene el par p, α
 - Indica las entradas y los elementos de la cima en la Pila

$$L_{ww'} = \left\{ ww^R | w \in (\mathbf{0} + \mathbf{1})^* \right\}$$

Descripciones instantaneas (ID) del PDA

$$(q, w, \gamma)$$

- q es el estado
- w es lo que queda de la entrada
- ullet γ es el contenido de la pila

Por convención: a la izquierda de γ especificamos la parte superior de la pila

Representación de movimiento de un PDA -

Notación que describe los cambios de estado, la entrada y la pila.

Sea $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, entonce se define \vdash cuando:

- Tenemos $\delta(q, a, \mathbf{X})$ que contiene (p, α)
- Para las cadenas $w \in \Sigma^*$, $\beta \in \Gamma^*$

$$(q, aw, \mathbf{X}\beta) \vdash (p, w, \alpha\beta)$$

Refleja la idea de ir del estado q al estado p, consumiendo un simbolo a de la entrada y reemplazando ${\bf X}$ por α en la Pila

⊢* Uno o mas movimientos de Pila

Caso base

1 ⊢* 1

Cualquier descripción instantanea (ID) /

Paso por inducción

 $I \vdash^* J$ Si existe una ID K tal que $I \vdash K$ y $K \vdash^* J$

Existe una secuencia de transiciones $\{K_1, K_2, \dots K_n\}$ con $I = K_1, J = K_n$ y para $i = 1, \dots n-1$ tenemos: $K_i \vdash K_{i+1}$

Ejemplo 1111

$$\begin{array}{l} \delta(q_0,1111,Z_0) \vdash \delta(q_0,111,1Z_0) \vdash \delta(q_0,11,11Z_0) \vdash \delta(q_1,11,11Z_0) \vdash \\ \delta(q_1,1,1Z_0) \vdash \delta(q_1,\varepsilon,Z_0) \vdash \delta(q_2,\varepsilon,Z_0) \end{array}$$

Diseñe un PDA que acepte $\{0^n1^n|n \ge 1\}$

Diseñe un PDA que acepte $\{0^n1^n|n \ge 1\}$

Estados

- q estado inicial. Solo hemos visto 0's
- P Hemos visto almenos un 1 y procedemos con la entrada de 1's
- f estado final. Estado de aceptación

Diseñe un PDA que acepte $\{0^n1^n|n \ge 1\}$

Simbolos de Pila

- Z₀ Simbolo inicial. Indica el fondo de la Pila
- X Cuenta el número de 0's en la entrada.

Diseñe un PDA que acepte $\{0^n1^n|n \ge 1\}$

Funciones de transición

- $\delta(q, 0, Z_0) = \{(q, XZ_0)\}$
- $\delta(q, 0, X) = \{(q, XX)\}$ Una X por cada cero leido.
- $\delta(q, 1, X) = \{(p, \varepsilon)\}$ Cuando un 1 aparece vamos al estado p y sacamos una x
- $\delta(p, 1, X) = \{(p, \varepsilon)\}$ sacamos una x por cada 1
- $\delta(p, \varepsilon, Z_0) = \{(f, Z_0)\}$ Estado de aceptación

$$δ(q,000111, Z_0) ⊢ δ(q,00111, XZ_0) ⊢ δ(q,0111, XXZ_0) ⊢ δ(q,111, XXXZ_0) ⊢ δ(p,11, XXZ_0) ⊢ δ(p, 1, XZ_0) ⊢ δ(p, ε, Z_0) ⊢ δ(f, ε, Z_0)$$

$$\delta(q,000111,Z_0) \vdash^* (f,Z_0)$$

Cuales son los movimientos de ID (⊢) para 000111

Cuales son los movimientos de ID (⊢) para 000111

$$\delta(q,0001111,Z_0) \vdash^* (f,1,Z_0)$$

Agenda

Autómatas de Pila

2 Lenguajes del Autómata de Pila

Leguaje de un PDA

Aceptación por estado final

- El lenguaje de un PDA se define por su estado final
- Si P es un PDA, entonces L(P) es el conjunto de cadenas w tal que $(q_0, w, Z_0) \vdash^* (f, \varepsilon, \alpha)$ para cualquier α

Aceptación por Pila vacia

- El lenguaje de un PDA se define por su pila vacia
- Si P es un PDA, entonces N(P) es el conjunto de cadenas w tal que $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon)$ para cualquier estado q

Que tipo de Autómata es este?

$$L_{ww'} = \left\{ ww^{R} | w \in (\mathbf{0} + \mathbf{1})^{*} \right\}$$

$$0, Z_{0} / 0 Z_{0}$$

$$1, Z_{0} / 1 Z_{0}$$

$$0, 0 / 0 0$$

$$0, 1 / 0 1$$

$$1, 0 / 1 0$$

$$0, 0 / 0$$

$$1, 1 / 1 1$$

$$1, 1 / 1 1$$

$$1, 1 / 1 1$$

$$1, 1 / 0$$

$$\epsilon, Z_{0} / Z_{0}$$

$$\epsilon, Z_{0} / Z_{0}$$

$$\epsilon, Z_{0} / Z_{0}$$

ε, 1/1

Aceptación por estado final

$$(\ q_0\ ,\ 1111, 1Z_0\) \\ (\ q_0\ ,\ 111, 1Z_0\) \\ (\ q_0\ ,\ 111, 11Z_0\) \\ (\ q_0\ ,\ 11, 111Z_0\) \\ (\ q_0\ ,\ 1, 111Z_0\) \\ (\ q_0\ ,\ 1, 111Z_0\) \\ (\ q_1\ ,\ 11, 11Z_0\) \\ (\ q_1\ ,\ 1, 111Z_0\) \\ (\ q_1\ ,\ 1, 11Z_0\) \\ (\ q_1\ ,\ \epsilon\ , 1111Z_0\) \\ (\ q_1\ ,\ \epsilon\ , 111Z_0\) \\ (\ q_1\ ,\ \epsilon\ , 111Z_0\) \\ (\ q_1\ ,\ \epsilon\ , 111Z_0\) \\ (\ q_1\ ,\ \epsilon\ , 2_0\) \\ (\ q_2\ ,\ \epsilon\ , 2_0$$

$$\begin{array}{l} \delta(q_0, 1111, Z_0) \vdash \delta(q_0, 111, 1Z_0) \vdash \delta(q_0, 11, 11Z_0) \vdash \delta(q_1, 11, 11Z_0) \vdash \\ \delta(q_1, 1, 1Z_0) \vdash \delta(q_1, \varepsilon, Z_0) \vdash \delta(q_2, \varepsilon, Z_0) \end{array}$$

Aceptación de Pila vacia

Nunca vacia la pila, por lo tanto $N(P) = \emptyset$. Como se podria modificar para que acepte por pila vacia?

Aceptación de Pila vacia

$$\begin{array}{c} 0\;,\;Z_0\;/0\;Z_0\\ 1\;,\;Z_0\;/1\;Z_0\\ 0\;,\;0\;/0\;0\\ 0\;,\;1\;/0\;1\\ 1\;,\;0\;/1\;0\\ 1\;,\;1\;/1\;1\\ \end{array} \begin{array}{c} 0\;,\;0\;/\;\epsilon\\ 1\;,\;1\;/1\;1\\ \end{array}$$
 Inicio
$$\begin{array}{c} \epsilon\;,\;Z_0\;/Z_0\\ \epsilon\;,\;0\;/\;0\\ \epsilon\;,\;1\;/\;1\\ \end{array}$$

- Originalmente tiene la transición $\delta(q_1, \varepsilon, Z_0) = \{q_2, Z_0\}$
- Lo cambiamos por $\delta(q_1, \varepsilon, Z_0) = \{q_2, \varepsilon\}$

P extrae el último simbolo de la Pila cuando lo acepta y por lo tanto L(P) = N(P)

Teorema

Si $L = N(P_N)$ para un autómata de pila $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, entonces existe un autómata a Pila P_F tal que $L = L(P_F)$

- Se utiliza un nuevo simbolo X_0 que es:
 - Simbolo inicial de P_F
 - ullet marcador de fondo de pila de P_N

Si P_F ve X_0 en la cima, sabe que P_N vaciará su pila

- Se define un nuevo estado inicial p_0 para introducir Z_0 , simbolo de P_N
- q_0 es el estado inicial de P_N
- P_F simula a P_N hasta está vacia
- se define un nuevo estado p_f de aceptación

Especificación de P_F

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, \{p_f\})$$

δ se define:

- $\delta_F(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$. Transición espontanea P_F a P_N
- Para todo los estados $q \in Q$, entradas $a \in \Sigma$, $\forall a = \varepsilon$ y símbolos $Y \in \Gamma$: $\delta_F(q, a, Y)$ contiene $\delta_N(q, a, Y)$
- $\delta_F(q, \varepsilon, X_0)$ contiene (p_f, ε)

Del estado final a la Pila vacia

Teorema

Si $L = L(P_F)$ para un autómata de pila $P_F = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, F)$, entonces existe un autómata a Pila P_N tal que $L = N(P_N)$

Del estado final a la Pila vacia

$$P_{N} = (Q \cup \{p_{0}, p\}, \Sigma, \Gamma \cup \{X_{0}\}, \delta_{N}, p_{0}, X_{0})$$

Del estado final a la Pila vacia

δ se define como:

- $\delta_N(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\}$
- $\delta_N(q, a, Y)$ contiene $\delta_F(q, a, Y)$
- Para $q \in F$ y simbolos $Yin\Gamma \lor Y = X_0$: $\delta_N(q, \varepsilon, Y)$ contiene (p, ε)
- P_N extrae todos los símbolos de su pila hasta que ésta queda vacía sin leer símbolos de entrada

Muchas gracias por su atención

