§ 15.7 氢原子的量子力学描述

氢原子是最简单的原子,其系统的势能函数为: $V = -\frac{e^2}{4\pi\varepsilon_0 r}$

$$\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)\Psi + \frac{2m}{\hbar^{2}}\left(E - V\right)\Psi = 0$$

球坐标的定态薛定谔方程

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}(r^{2}\frac{\partial \Psi}{\partial r}) + \frac{1}{r^{2}}\frac{\partial}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\Psi}{\partial\theta})$$

$$+ \frac{1}{r^{2}}\frac{\partial^{2}\Psi}{\sin^{2}\theta}\frac{\partial^{2}\Psi}{\partial\varphi^{2}} + \frac{2m}{\hbar^{2}}(E + \frac{e^{2}}{4\pi\varepsilon_{0}r})\Psi = 0$$

上面的方程求解过程很复杂,我们只讨论有关的结论。在求解过程中可以很自然的得到氢原子的一些量子化特性。

1. 能量量子化

$$E_n = -\frac{1}{n^2} \left(\frac{me^4}{8\varepsilon_0^2 h^2} \right) = \frac{E_1}{n^2}$$

主量子数 $n = 1$, 2, 3,

2. 角动量量子化

电子绕核转动的角动量工的大小

$$L = \sqrt{l(l+1)}\hbar$$

副量子数(角量子数) l=0,1,2,, n-1

此结论与玻尔理论不同,实验证明量子理论的结果是正确的。

3. 角动量空间量子化

电子绕核运动的角动量 ^I 的方向在空间的取向不能是连续的,而只能取一些特定的方向,或者说 ^I 在外磁场方向的投影必须满足量子化条件。

角动量 \overline{L} 在外磁场方向Z的投影

$$L_z = m_l \hbar$$

磁量子数
$$m_l = 0$$
, ± 1 , ± 2 ,, $\pm l$

电子云(电子在核外各个位置出现形成电子云) 电子云密度(电子在各位置出现的概率) 概率密度 $\Psi(r,\theta,\phi)^2$

$$r_1 = 0.529 \times 10^{-10} m$$

 $r_2 = 4r_1$ $r_3 = 9r_1$

电子在这些地方出 现的概率最大

玻尔氢原子理论中,电子的轨道位置

I=2 电子角动量的大小及空间取向? 例

L的大小 磁量子数

$$L = \sqrt{2(2+1)}\hbar = \sqrt{6}\hbar$$

$$m_l = 0, \pm 1, \pm 2$$

$$L$$
在 Z 方向的投影 $L_z = 2\hbar, \hbar, 0, -\hbar, -2\hbar$

$$l=1$$
 $L=\sqrt{2}\hbar$

4. 塞曼效应

(1) 实验现象 光源处于磁场中时,一条 谱线会分裂成若干条谱线

(2)解释

• 磁场作用下的原子附加能量 磁矩和角动量的关系

$$\vec{\mu} = -\frac{e}{2m_e}\vec{L}$$

z轴(外磁场方向)投影

$$\mu_z = -\frac{e}{2m_e}L_z = -\frac{e}{2m_e}(m_l\hbar) = -m_l\mu_B$$
 μ_B — 玻尔磁子

$$\mu_B$$
 — 玻尔磁子

由于磁场作用,原子附加能量为
$$\mu_z = -m_l \mu_B$$

$$\Delta E = -\vec{\mu} \cdot \vec{B} = -\mu_z B = m_l \mu_B B$$

其中 $m_1 = 0, \pm 1, \pm 2, ..., \pm l$

§ 15.7 电子自旋 四个量子数

一. 斯特恩—革拉赫实验

1922年, 斯特恩—革拉赫在德国汉堡大学所作的实验, 其装置如下:

通真空泵

实验发现:不加磁场,正对狭缝有一条银原子沉积 加外磁场,出现上下两条银原子沉积

为了说明上述实验结果,1925年荷兰学者乌伦贝克和古兹密特 提出了电子自旋假说:电子除了轨道运动外,还存在自旋运动。

二. 电子自旋

• 电子自旋角动量大小

$$S = \sqrt{s(s+1)} \ \hbar$$

s — 自旋量子数

• S 在外磁场方向的投影

$$S_Z = m_s \hbar$$

自旋磁量子数 ms 取值个数为

2s + 1 = 2 (由实验结果知 m_s 只有两个值)

则
$$s=1/2$$
, $m_s=\pm 1/2$

$$S = \sqrt{\frac{1}{2}(\frac{1}{2}+1)}\hbar = \sqrt{\frac{3}{4}} \hbar$$

$$S_Z = \pm \frac{1}{2}\hbar$$

电子自旋角动量在 外磁场中的取向

- 三. 四个量子数(原子中电子的运动状态由下列四个量子数来确定)
 - 1.主量子数 *n* (1,2,3,.....) 大体上决定了电子能量
 - 2. 副量子数 l(0, 1, 2,, n-1) 决定电子的轨道角动量大小,对能量也有稍许影响。
 - 3. 磁量子数 m_l (0, ±1, ±2,, ±l) 决定电子轨道角动量空间取向
 - **4.**自旋磁量子数 m_s (1/2, -1/2) 决定电子自旋角动量空间取向

§ 15.8 原子的电子壳层结构

原子是由原子核和核外电子组成的系统,系统的状态用电子状态分布来描述。(除氢原子或类氢离子以外,其它元素的原子核外都有两个或两个以上的电子,各核外电子状态仍由四个量子数决定。)

- 1916年,物理学家柯塞尔提出了一个原子的形象化模型, 认为核外电子按壳层分布:
- 1. 主量子数n 相同的电子,组成一个壳层,n 越大,壳层的半径越大,能级越高。各壳层分别用大写字母表示。

$$n=1$$
 2 3 4 … K L M N … $l=0$ 1 2 3 4 … $n-1$ s p d f g …

一般来说,n 越小,能级越低。同一n,l 越小,能级越低。

核外电子的壳层分布遵守下面两条原理:

一. 泡利不相容原理(1925年)

在一个原子中,不能有两个或两个以上的电子处在完全相同的量子态,即它们不能具有一组完全相同的量子数 (n, l, m_l, m_s) 。

n	1	2				3								
l	0	0 1			0	1			2					
m_l	0	0	-1	0	1	0	-1	0	1	-2	-1	0	1	2
m_{s}														
Z	2	8				18								

n 给定,l 取值: 0、1、2、……n-1 共 n个 n、l 给定, m_l 取值: 0、 ± 1 、 ± 2 、…… $\pm l$ 共 2l+1个 n、l、 m_l 给定, m_s 取值: $\pm 1/2$

 \bullet 主量子数为n 的壳层,最多可能有电子的个数为:

$$Z_n = \sum_{l=0}^{n-1} 2(2l+1) = \frac{2+2(2n-1)}{2}n = 2n^2$$

- n=1,壳上最多容纳电子态(电子数) $2n^2=2$ 个
- n=2, 壳上最多容纳电子态(电子数)2n²=8个
- 角量子数为1 的分壳层,最多可能有电子的个数为: 2(21+1)
- l=0 的分壳层上最多有2个电子
- *l*=1 的分壳层上最多有6个电子

例 分析n=2的壳层,最多可容纳的电子数及所处量子态。

$$l = 0 \quad m_l = 0 \quad m_s = \pm \frac{1}{2}$$

$$l = 1 \quad m_l = \begin{cases} 0 & m_s = \pm \frac{1}{2} \\ +1 & m_s = \pm \frac{1}{2} \\ -1 & m_s = \pm \frac{1}{2} \end{cases}$$

$$(2,0,0,\frac{1}{2}) \quad (2,0,0,-\frac{1}{2})$$

$$(2,1,0,\frac{1}{2}) \quad (2,1,0,-\frac{1}{2})$$

$$(2,1,1,\frac{1}{2}) \quad (2,1,1,-\frac{1}{2})$$

$$(2,1,1,\frac{1}{2}) \quad (2,1,1,-\frac{1}{2})$$

例:基态H 原子,核外只有一个电子,其量子态为: (1, 0, 0, 1/2) 或 (1, 0, 0, -1/2)

二. 能量最小原理

• 原子处于正常状态时,每个电子都趋向占据可能的最低能级

当原子中电子的能量最小时,整个原子的能量最低,原子处于稳定状态。

由能量最小原理,能级最低的壳层首先被电子填满,其余电子依次向未被占据的能级较低的壳层填充,直到核外电子都占据了能量最低的能级。

- 一般情况下,离核越近的壳层能级越低,首先被填充,但由于副量子数*l* 与能级稍有关系,所以有时*n* 较小的壳层未填满,下一个壳层就开始有电子填入了。
- 对原子外层电子能级高低可以用 (*n*+0.7*l*) 值大小来比较,值越大,能级越高。

如: 钾¹⁹K,对3d 能级n=3,l=2 ,所以n+0.7l=4.4 ,对4s 能级,n=4,l=0 ,所以n+0.7l=4 ,所以3d分层中的能级比4s 能级稍高,故先填4s ,后填3d

		1 <i>s</i>	2 <i>s</i>	2 <i>p</i>	3 <i>s</i>	3 <i>p</i>	3 <i>d</i>	4 <i>s</i>	
1 氢 2 氦	H He	1 2							
3 锂 4 铍	Li Be	2 2	1 2		D:	D=n+0.7 l			
5 硼 6 碳 10 氖	B C Ne	2 2 2	2 2 2	1 2 6			4s 育 低		
13 铝 14 硅 18 氩	Al Si Ar	2 2 2	2 2 2	6 6 6	2 2 2	1 2 6	3d 育		
19 钾 20 钙 21 钪	K Ca Sc	2 2 2	2 2 2	6	2 2 2	6	1	1 2 2	

部分原子的电子排列

例 基态钾原子的电子组态 $1s^22s^22p^63s^23p^64s^1$

1. 氢原子的量子力学描述
1) 能量量子化
$$E_n = -\frac{1}{n^2} (\frac{me^4}{8\varepsilon_0^2 h^2}) = \frac{E_1}{n^2}$$

主量子数 n=1, 2, 3,

2) 角动量量子化 $L = \sqrt{l(l+1)}\hbar$

副量子数(角量子数) $l=0,1,2,\ldots,n-1$

- 3) 角动量空间量子化 $L_r = m_l \hbar$ 磁量子数 $m_l = 0$, ± 1 , ± 2 ,, $\pm l$
- 2. 电子自旋
 - 电子自旋角动量大小 $S = \sqrt{s(s+1)} h$ 自旋量子数 s = 1/2
 - S 在外磁场方向的投影 $S_7 = m_s \hbar$ 自旋磁量子数 $m_s = \pm 1/2$

- $\overline{\bf 3.}$ 四个量子数(n, l, m_l , m_s) 四个量子数决定了电子的运动状态。
- 4. 原子的电子壳层结构 ——核外电子按壳层分布
 - 1) 泡利不相容原理
- 主量子数为n 的壳层,最多可能有电子的个数为: $2n^2$
- 角量子数为l 的分壳层,最多可能有电子的个数为: 2(2l+1)

2) 能量最小原理

- 一般情况下,离核越近的壳层能级越低,首先被填充,但由于副量子数*l* 与能级稍有关系,所以有时*n* 较小的壳层未填满,下一个壳层就开始有电子填入了。
- 对原子外层电子能级高低可以用 (*n*+0.7*l*) 值大小来比较,值越大,能级越高。