An Optimization Model for a SCRUM-Oriented Software Development Domain

(Author)

August 11, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

1 1. Sets (Entities)

- \mathcal{P} (Projects; **Project**): products/initiatives; attributes: id, name, project_start, project_end, description, budget, status, target_audience, priority.
- \mathcal{T} (Teams; **Team**): self-organized, cross-functional teams; attributes: id, name, team_size, team_start, team_status, location, team_type.
- W (Workers; Worker): team members; attributes: id, name, first_name, email, start_date, status, availability.
- \mathcal{F} (Features; **Feature**): mid-sized functionality; attributes: id, title, description, status, priority, estimated_effort.
- S (Skills; Skill): professional/social competence; attributes: id, label, description, level, certified, category.
- \mathcal{R} (Roles; Role): responsibilities; attributes: id, role_name, description, area_of_responsibility.
- \mathcal{PO} (ProductOwner): attributes: id, name, email, availability.
- \mathcal{SM} (ScrumMaster): attributes: id, name, email, experience.
- \mathcal{PB} (**ProductBacklog**): attributes: id, created_on, last_updated, number_of_entries, status.
- \mathcal{SP} (Sprint): attributes: id, sprint_number, start_date, end_date, status, achievement_of_goal.
- SPP (SprintPlanning): attributes: id, date, duration_(min), moderation, outcome_documentation.
- DS (DailyScrum): attributes: id, date, time, duration, moderation.
- SR (**SprintReview**): attributes: id, date, duration, feedback_documentation, attendees_count.
- SRE (SprintRetrospective): attributes: id, date, duration, improvement_actions, team_satisfaction, moderation.
- SBL (SprintBacklog): attributes: id, number_of_tasks, last_updated, status, total_effort.
- SG (SprintGoal): attributes: id, objective_description, achievement_status, benefit.
- \mathcal{E} (**Epic**): attributes: id, title, description, priority, status, estimated_effort.
- \mathcal{US} (UserStory): attributes: id, title, description, acceptance_criteria, priority, story_points, status.
- TSK (Task): attributes: id, title, description, status, effort, type.
- \mathcal{DEV} (**DevelopmentSnapshot**): attributes: id, version_number, creation_date, test_status, deployment_target, documentation.
- BL (Blocker): attributes: id, title, description, severity, status, detected_on, resolved_on.
- \mathcal{SH} (Stakeholder): attributes: id, name, organization, role, email, area_of_interest, influence_level, relevance_to_feature.
- VEL (Velocity): attributes: id, number_of_sprints_used, avg._story_points, max_velocity, min_velocity, trend.

- \mathcal{REP} (ReleasePlan): attributes: id, version, planned_date, included_features, status.
- \mathcal{RM} (Roadmap): attributes: id, start_date, end_date, milestones, objectives, versions.
- SCB (ScrumBoard): attributes: id, board_type, columns_(todo/done...), number_of_cards, last_updated.
- \mathcal{FED} (**FeatureDocumentation**): attributes: id, title, description, creation_date, change_log, linked_requirements, author.

Relationship-induced incidence sets (from Relationships.csv).

- $\bullet \ A^{\mathrm{team\text{-}proj}} \subseteq \mathcal{T} \times \mathcal{P} \ (\texttt{R1 is_assigned_to_project})$
- $A^{\text{work-team}} \subseteq \mathcal{W} \times \mathcal{T}$ (R2 belongs_to_team)
- ullet $A^{ ext{work-skill}}\subseteq\mathcal{W} imes\mathcal{S}$ (R3 has_skill)
- $A^{\text{work-role}} \subset \mathcal{W} \times \mathcal{R}$ (R4 takes_on_role)
- $A^{\mathrm{po-pb}} \subseteq \mathcal{PO} \times \mathcal{PB}$ (R5 manages_backlog)
- $A^{ ext{team-sm}} \subseteq \mathcal{T} \times \mathcal{SM}$ (R6 is_supported_by)
- ullet $A^{ ext{pb-feat}} \subseteq \mathcal{PB} imes \mathcal{F} \; (ext{R7 contains_feature})$
- $A^{ ext{pb-epic}} \subseteq \mathcal{PB} \times \mathcal{E}$ (R8 contains_epic)
- $A^{ ext{epic-us}} \subseteq \mathcal{E} \times \mathcal{US}$ (R9 contains_user_story)
- $\bullet \ A^{\mathrm{us\text{-}task}} \subseteq \mathcal{US} \times \mathcal{TSK} \ (\texttt{R10} \ \texttt{consists_of_tasks})$
- $A^{\text{us-sbl}} \subseteq \mathcal{US} \times \mathcal{SBL}$ (R11 is_in_sprint_backlog)
- $A^{\text{sbl-sp}} \subseteq \mathcal{SBL} \times \mathcal{SP}$ (R12 belongs_to_sprint)
- $A^{\text{sp-sg}} \subseteq \mathcal{SP} \times \mathcal{SG}$ (R13 pursues_goal)
- $A^{\text{scb-task}} \subseteq \mathcal{SCB} \times \mathcal{TSK}$ (R14 contains_tasks)
- $A^{\text{fed-feat}} \subseteq \mathcal{FED} \times \mathcal{F}$ (R15 documents_feature)
- $A^{ ext{task-bl}} \subseteq \mathcal{TSK} \times \mathcal{BL}$ (R16 is_blocked_by)
- $A^{\text{sh-sr}} \subseteq \mathcal{SH} \times \mathcal{SR}$ (R17 participates_in)
- $A^{\text{sm-sre}} \subseteq \mathcal{SM} \times \mathcal{SRE}$ (R18 moderates_retrospective)
- $A^{ ext{vel-team}} \subseteq \mathcal{VEL} \times \mathcal{T}$ (R19 refers_to_team)
- $A^{\text{rep-feat}} \subseteq \mathcal{REP} \times \mathcal{F}$ (R20 plans_release)
- $A^{\text{rep-rm}} \subseteq \mathcal{REP} \times \mathcal{RM}$ (R21 is_part_of_roadmap)
- $A^{\text{sp-dev}} \subseteq \mathcal{SP} \times \mathcal{DEV}$ (R22 generates_snapshot)

2 2. Indices

• $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}, po \in \mathcal{PO}, sm \in \mathcal{SM}, pb \in \mathcal{PB}, sp \in \mathcal{SP}, spp \in \mathcal{SPP}, ds \in \mathcal{DS}, sr \in \mathcal{SR}, sre \in \mathcal{SRE}, sbl \in \mathcal{SBL}, sg \in \mathcal{SG}, e \in \mathcal{E}, us \in \mathcal{US}, tsk \in \mathcal{TSK}, dev \in \mathcal{DEV}, bl \in \mathcal{BL}, sh \in \mathcal{SH}, vel \in \mathcal{VEL}, rep \in \mathcal{REP}, rm \in \mathcal{RM}, scb \in \mathcal{SCB}, fed \in \mathcal{FED}.$

Parameters induced by attributes (examples).

• budget_p, priority_f^F, estEffort_f^F, storyPts_{us}, effort_{tsk}, sev_{bl}, achGoal_{sp} \in [0, 1], teamSat_{sre} \in [1,5], status: $\{0,1,\ldots\}$, avgSP_{vel}, etc.

3 3. Goals

Each goal G_i is stated with its ID/Name and an objective expression.

$$\max \sum_{(vel,t)\in A^{\text{vel-team}}} \omega_{G0} \operatorname{avgSP}_{vel} \bigg(\sum_{p:(t,p)\in A^{\text{team-proj}}} x_{t,p}^{\text{team,proj}} \bigg).$$

• G1 minimize_sprint_backlog_effort

min
$$\omega_{G1} \sum_{(us,sbl)\in A^{\text{us-sbl}}} \sum_{sp:(sbl,sp)\in A^{\text{sbl-sp}}} \text{storyPts}_{us} \ x_{us,sp}^{\text{us,sp}}.$$

• G2 minimize_blocker_severity min
$$\omega_{G2} \sum_{(tsk,bl) \in A^{\text{task-bl}}} \operatorname{sev}_{bl} (1 - x_{bl}^{\text{bl}})$$
 (resolve to reduce severity impact).

$$\begin{array}{c} \bullet \ \ \mathbf{G3} \ \ \mathrm{maximize_sprint_goal_achievement} \\ \max \ \ \omega_{G3} \ \ \sum_{(sp,sg) \in A^{\mathrm{sp-sg}}} \mathrm{achGoal}_{sp}. \end{array}$$

• G4 minimize_project_budget_usage min
$$\omega_{G4} \sum_{p \in \mathcal{P}} \text{budget}_p \Big(\sum_{t: (t,p) \in A^{\text{team-proj}}} x_{t,p}^{\text{team,proj}} \Big).$$

• G5 maximize_feature_priority_delivered
$$\max \ \omega_{G5} \sum_{(rep,f) \in A^{\text{rep-feat}}} \operatorname{priority}_f^F x_{f,rep}^{\text{feat,rep}}.$$

• G6 minimize_task_effort

$$\min \ \omega_{G6} \sum_{tsk \in \mathcal{TSK}} \text{effort}_{tsk} \, x_{tsk}^{\text{task}}.$$

• G7 maximize_team_satisfaction

$$\max \ \omega_{G7} \sum_{sre \in \mathcal{SRE}} \text{teamSat}_{sre}.$$

• G8 minimize_daily_scrum_duration

$$\min \ \omega_{G8} \sum_{ds \in \mathcal{DS}} y_{ds}^{\text{dsDur}}.$$

• G9 maximize_stakeholder_relevance

max
$$\omega_{G9} \sum_{sh \in \mathcal{SH}}$$
 relevance_{sh} (weighted participation in reviews optional).

• G10 minimize_open_blockers

min
$$\omega_{G10} \sum_{bl \in \mathcal{BL}} (1 - x_{bl}^{bl}).$$

• G11 maximize_release_readiness
$$\max \ \omega_{G11} \sum_{rep \in \mathcal{REP}} \text{status}_{rep}^{REP} \Big/ |\mathcal{REP}| \ \text{(proxy via release statuses)}.$$

 $\bullet \ G12 \ minimize_planning_time \\$

min
$$\omega_{G12}$$
 $\sum_{spp \in \mathcal{SPP}} y_{spp}^{\text{planDur}}$.

4 4. Conditions

Each condition C_i is stated with ID/Name, logic, and the corresponding constraint(s).

C0 must_match_active_product_backlog

Math: status $_{pb}^{PB} \ge 1 \quad \forall pb \in \mathcal{PB}$. Logic: Product Backlog must be active.

C1 must_match_worker_availability

Logic: Assigned workers must be available. Math: $\sum_{tsk \in \mathcal{TSK}} x_{w,tsk}^{\text{work,task}}$ effort_{tsk} \leq availability_w $\forall w \in \mathcal{W}$.

• C2 cannot_match_task_done_outside_sprint

Logic: Tasks marked done must belong to a sprint backlog.

Math: $x_{tsk}^{\text{task}} \leq \sum_{(us,tsk)\in A^{\text{us-task}}} \sum_{(us,sbl)\in A^{\text{us-sbl}}} \sum_{(sbl,sp)\in A^{\text{sbl-sp}}} 1 \quad \forall tsk.$

\bullet C3 must_match_ci_test_passed

Logic: Only increments with passed tests are releasable.

Math: For all $(sp, dev) \in A^{\text{sp-dev}}$: testStatus_{dev} = 1 \Rightarrow releaseEligible_{sp} = 1; lineariza-

tion: releaseEligible_{sp} \leq testStatus_{dev}.

C4 must_match_sprint_goal_defined

Logic: Each sprint must have a defined goal.

Math: $\sum_{(sp,sq)\in A^{\text{sp-sg}}} 1 \geq 1 \quad \forall sp \in \mathcal{SP}.$

• C5 may_match_high_influence_stakeholders

Logic (soft): Prefer high-influence stakeholders in reviews.

Math (penalty/reward term): add $+\lambda_{C_5} \sum_{(sh,sr) \in A^{\text{sh-sr}}} \text{influence}_{sh}$ to objective (or constraint with slack).

• C6 must_match_feature_effort_cap

Logic: Effort of selected features per sprint \leq cap. Math: $\sum_{(us,sbl)\in A^{\text{us-sbl}}} \sum_{(us,tsk)\in A^{\text{us-task}}} \text{effort}_{tsk} \ x_{tsk}^{\text{task}} \leq \text{CapEffort}_{sp} \quad \forall sp.$

• C7 must_match_story_points_capacity

Logic: Sum of story points respect capacity. Math: $\sum_{us \in \mathcal{US}} \text{storyPts}_{us} x_{us,sp}^{\text{us,sp}} \leq y_{sp}^{\text{capSP}} \quad \forall sp, \text{ with } y_{sp}^{\text{capSP}} \leq \overline{CSP}.$

• C8 must_match_sprint_backlog_committed

 $\begin{array}{l} \text{Logic: Sprint backlog must be committed before start.} \\ \text{Math: status}_{sbl}^{SBL} \geq 1 \quad \forall (sbl, sp) \in A^{\text{sbl-sp}}. \end{array}$

• C9 may_match_positive_retrospective_trend

Logic (soft): prefer improving team satisfaction.

Math: add $+\lambda_{C9} \sum_{sre} \text{teamSat}_{sre}$ to objective (or enforce teamSat_{sre} $\geq \underline{S}$).

• C10 must_match_team_size_bounds

Logic: Team size within bounds.

Math: $\underline{n} \leq \text{team_size}_t \leq \overline{n} \quad \forall t \in \mathcal{T}.$

• C11 cannot_match_open_blockers_at_release

Logic: No open blockers at release.

Math: $\sum_{bl \in \mathcal{BL}} (1 - x_{bl}^{bl}) = 0$ for releases rep (or $\leq \epsilon$).

• C12 may_match_review_feedback_documented

Logic (soft): documented feedback preferred.

Math: add $+\lambda_{C12} \sum_{sr \in \mathcal{SR}} \text{hasFeedback}_{sr}$ to objective.

5 5. DecisionVariables

• Binary assignment

```
 \begin{array}{l} x_{t,p}^{\mathrm{team,proj}} \in \{0,1\} \ (\mathtt{DV0}) \text{: team } t \text{ assigned to project } p \text{; only allowed if } (t,p) \in A^{\mathrm{team-proj}}. \\ x_{us,sp}^{\mathtt{US,sp}} \in \{0,1\} \ (\mathtt{DV1}) \text{: user story } us \text{ selected in sprint } sp \ (\text{through its sprint backlog}). \\ x_{tsk}^{\mathtt{task}} \in \{0,1\} \ (\mathtt{DV2}) \text{: task } tsk \text{ selected/committed.} \\ x_{w,tsk}^{\mathtt{work,task}} \in \{0,1\} \ (\mathtt{DV3}) \text{: worker } w \text{ assigned to task } tsk. \\ x_{f,rep}^{\mathtt{feat,rep}} \in \{0,1\} \ (\mathtt{DV4}) \text{: feature } f \text{ included in release plan } rep. \\ x_{bl}^{\mathtt{bl}} \in \{0,1\} \ (\mathtt{DV5}) \text{: blocker } bl \text{ is resolved } (1) \text{ or open } (0). \\ \end{array}
```

• Integer/real planning variables

```
y_{sp}^{\mathrm{capSP}} \in \mathbb{Z}_{\geq 0} (DV6): sprint capacity in story points; bounds 0 \leq y_{sp}^{\mathrm{capSP}} \leq 500. y_{ds}^{\mathrm{capSP}} \in \mathbb{Z}_{\geq 0} (DV7): Daily Scrum duration (min); bounds 0 \leq y_{ds}^{\mathrm{dsDur}} \leq 30. y_{spp}^{\mathrm{planDur}} \in \mathbb{Z}_{\geq 0} (DV8): Sprint Planning duration (min); bounds 0 \leq y_{spp}^{\mathrm{planDur}} \leq 480. y_{p}^{\mathrm{budget}} \in \mathbb{R}_{\geq 0} (DV9): allocated project budget; bounds 0 \leq y_{p}^{\mathrm{budget}} \leq 10^{6}. y_{t}^{\mathrm{teamSize}} \in \mathbb{Z}_{\geq 0} (DV10): configured team size; bounds 0 \leq y_{p}^{\mathrm{teamSize}} \leq 15. y_{p}^{\mathrm{prioW}} \in \mathbb{R}_{\geq 0} (DV11): global priority weight; bounds 0 \leq y_{p}^{\mathrm{prioW}} \leq 10. y_{t}^{\mathrm{WIP}} \in \mathbb{Z}_{\geq 0} (DV12): WIP limit for team t; bounds 0 \leq y_{t}^{\mathrm{WIP}} \leq 100.
```

Standard linking and capacity constraints (illustrative).

- If $x_{us,sp}^{\text{us,sp}} = 1$ then at least one task of us must be selected: $\sum_{tsk:(us,tsk)\in A^{\text{us-task}}} x_{tsk}^{\text{task}} \ge x_{us,sp}^{\text{us,sp}}$.
- Worker assignment implies task selection: $x_{w,tsk}^{\text{work,task}} \leq x_{tsk}^{\text{task}}$.
- WIP per team (via board) bounded: $\sum_{(scb,tsk)\in A^{\text{scb-task}}} x_{tsk}^{\text{task}} \leq y_t^{\text{WIP}}$ for tasks routed to team t

Multi-objective aggregation (optional). If a single scalar objective is preferred, combine all goals using weights ω_{Gi} and signs per GoalType:

$$\max \sum_{i \in \{G0,\dots,G12\}} \sigma_i \, \omega_{Gi} \, \Phi_i(x,y) \quad \text{with } \sigma_i = +1 \text{ for "maximize" and } \sigma_i = -1 \text{ for "minimize"}.$$