A compound of the general formula:

wherein:

a) Rb and Ro are independently -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH2-OH, -NH2; or N(R6)(R7), wherein R6 and R7 are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;

 $R_a \ \ \text{is} \ \ -N_3\,, \ \ -C \equiv C\,-\,R\,, \ \ -C = CH-R\,, \ \ -R\,-\,C = CH_2\,,$ -C=CH, -O-R, -R-R√, or -O-R-R1 where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃;

c) Z' is >CH, >COH, or >C-R2-OH, where R2 is an alkyl or branched alkyl with up to 1/0 carbons or aralkyl;

d) $>C_7R_g$ is $>CH_2$, >C(H)-OH, >C=O, >C=N-OH, $>C(R_3)OH$, >C=N-OR₃, \not C(H)-NH₂, \not C(H)-NHR₃, >C(H)-NR₃R₄, or >C(H)-C(O)-R₃, where each R3 and R4 is independently an alkyl or branched alkyl with up to 10 carbons or afalkyl; and

e)/Z" is >CH2, >C=O, >C(H)-OH, >C=N-OH, >C=N-OR5, $> C(H) / C \equiv N$, or $> C(H) - NR_5R_5$, wherein each R₅ is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl.

The compound of Claim 1, wherein: 2.

> Rb and Ro are H, R_a is $-C \equiv C - CH_3$ Z' is >C-OH, >C-Rg is >C(H)-B-OH, and Z" is >CH2.

rozoca socopet

R_b and R_o are H, R_a is OCH₂QF₃ Z' is >C-OH, >C-R_g is >C(H)-B-OH, and Z" is >C=O.

4. The compound of Claim 1, wherein:

R_b and R_o are H)
R_a is OCH₂CF₃
Z' is >C-OH,
>C-R_g is >C(H)-B-OH, and
Z" is >C=NOH.

5. The compound of Claim 1, wherein:

Rb and Ro are H,
Ra is Of 2H3
Z' is C-OH,
>C Rg is C(H)-B-OH, and
Z' is SCH2.

6. The compound of Claim 1, wherein:

Rb and Ro are H, Ra is OCH2CF3 Z' is >C-OH, >C-Rg is >C(H)-B-OH, and Z" is >CH2.

7. The compound of Claim 1, wherein:

Rb and Ro are H, Ra is CH=CH₂ Z' is >C-OH, >C-Rg is >C(H)- β -OH, and Z" is >CH₂.

8. The compound of Claim 1, wherein:

R_b and R_o are H, R_a is E-CH=CHCH₃ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >CH₂.

Profes /

9. The compound of Claim 1, wherein:

R_b and R_o are H, R_a is NHC2H5 Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >CH2

10. The compound of Claim 1, wherein:

R_b and R_o are H, R_a is NHCOCH₃ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >CH₂.

11. The compound of Claim 1, wherein:

 R_b and R_o are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is >C=O.

12. The compound of Claim 1, wherein:

R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >OH.

13. The compound of Claim 1 wherein:

 R_b and R_o are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is >C=NOH.

14. The compound of Claim 1, wherein:

R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >C=NOCH₃. 15. A method of inhibiting angiogenesis comprising adminsteriung to an endothelial cell an angiogenesis inhibiting amount of a compound of the general formula:

$$R_a$$
 Z'
 R_o
 Z''

wherein:

- a) Rb and Ro are independently -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH2-OH, -NH2; or N(R6)(R7), wherein R6 and R7 are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;
- b) R_a is $-N_3$, $-C \equiv N$, $-N_3$, $-C \equiv C R$, -C = CH R, $-R C = CH_2$, $-C = CH_1$, $-C = CH_2$, $-C = CH_3$, $-CH_3$, or $-CH_3$, where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R_1 is $-CH_3$, $-CH_$
- c) Z' is >CH, >COH, or >C-R₂-OH, where R₂ is an alkyl or branched alkyl with up to 10 carbons or aralkyl;
- d) >C-Rg is >CH₂, >C(H)-OH, >C=O, >C=N-OH, >C(R₃)OH, >C=N-OR₃, >C(H)-NH₂, >C(H)-NHR₃, >C(H)-NR₃R₄, or >C(H)-C(O)-R₃, where each R₃ and R₄ is independently an alkyl or branched alkyl with up to 10 carbons or aralkyl; and
- e) Z" is >CH2, >C=O, >C(H)-OH, >C=N-OH, >C=N-OR5, >C(H)-C \equiv N, or >C(H)-NR5R5, wherein each R5 is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl.
- 16. The method of Claim 15, wherein:

R_b and R_o are H, R_a is $-C \equiv C - CH_3$ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z" is >CH₂.

17. The method of Claim 15, wherein:

R_b and R₀ are H, R_a is OCH₂CF₃ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >C=O.

18. The method of Claim 15, wherein:

R_b and R_o are H, R_a is OCH₂CF₃ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >C=NOH.

19. The method of Claim 15, wherein:

R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >CH₂.

20. The method of Claim 15, wherein:

R_b and R_o are H, R_a is OCH₂CF₃ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >CH₂.

The method of Claim 15, wherein:

R_b and R_o are H, R_a is CH=CH₂ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >CH₂.

22. The method of Claim 15, wherein:

 R_b and R_o are H, R_a is E-CH=CHCH3 Z' is >C-OH, >C-Rg is >C(H)- β -OH, and Z" is >CH2.

23. The method of Claim 15, wherein:

 R_b and R_o are H, R_a is NHC₂H₅ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z" is >CH₂.

24. The method of Claim 15, wherein:

R_b and R_o are H, R_a is NHCOCH₃ Z' is >C-OH, >C-R_g is >C(H)-β-OH, and Z" is >CH₂.

25. The method of Claim 15, wherein:

R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)- β -OH, and Z" is >C=O.

26. The method of Claim 15, wherein:

 R_b and R_o are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is >OH.

27. The method of Claim 15, wherein:

 R_b and R_o are H, R_a is OC_2H_5 Z' is >C-OH, $>C-R_g$ is $>C(H)-\beta-OH$, and Z'' is >C=NOH.

28. The method of Claim 15, wherein:

R_b and R_o are H, R_a is OC₂H₅ Z' is >C-OH, >C-R_g is >C(H)-B-OH, and Z" is >C=NOCH₃.

0003