Problem 1 Please write down a group of universial quantum logical gate set.

Solution:

We have the following universal quantum logical gate set, for example

- 45-degree rotation of Z gate T, Hadamard gate H, CNOT.
- Hadamard gate H, phase gate S, controlled phase gate $\Lambda(S)$
- Hadamard gate H, phase gate S, controlled controlled not gate $\Lambda^2(\sigma_x)$

Problem 2 Please write down the DiVincenzo criterion that quantum computer implementation must satisfy.

Solution:

- Scalability: A scalable physical system with well characterized parts, usually qubits.
- Initialization: The ability to initialize the system in a simple fiducial state.
- Control: The ability to control the state of the computer using sequences of elementary universal gates.
- Stability: Decoherence times much longer than gate times, together with the ability to suppress decoherence through error correction and fault-tolerant computation.
- Measurement: The ability to read out the state of the computer in a convenient product basis.

Problem 3 Please write down the matrix form of the C-NOT gate, and the state resulting from the application of this gate to four Bell states.

Solution:

This matrix for C-NOT gate is

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)$$

Denote the four Bell states as

$$\left|\beta_{xy}\right\rangle = \frac{\left|0,y\right\rangle + (-1)^x \left|1,\bar{y}\right\rangle}{\sqrt{2}}$$

then

$$\begin{split} &C-NOT\left(\left|\beta_{00}\right\rangle\right)=(\left|0\right\rangle+\left|1\right\rangle)\left|0\right\rangle/\sqrt{2}\\ &C-NOT\left(\left|\beta_{01}\right\rangle\right)=(\left|0\right\rangle+\left|1\right\rangle)\left|1\right\rangle/\sqrt{2}\\ &C-NOT\left(\left|\beta_{10}\right\rangle\right)=(\left|0\right\rangle-\left|1\right\rangle)\left|0\right\rangle/\sqrt{2}\\ &C-NOT\left(\left|\beta_{11}\right\rangle\right)=(\left|0\right\rangle-\left|1\right\rangle)\left|1\right\rangle/\sqrt{2} \end{split}$$

Problem 4 Please construct the quantum SWAP gate to swap two qubits using the C-NOT gate.

Solution:

The construction is as follows

To see that this circuit accomplishes the swap operation, note that the sequence of gates has the following sequence of effects on a computational basis state $|a,b\rangle$,

$$|a,b\rangle \longrightarrow |a,a \oplus b\rangle$$

$$\longrightarrow |a \oplus (a \oplus b), a \oplus b\rangle = |b, a \oplus b\rangle$$

$$\longrightarrow |b, (a \oplus b) \oplus b\rangle = |b, a\rangle$$

where all additions are done modulo 2.

Problem 5 Suppose you are given a box which performs a unitary gate U on a one-qubit input state. In addition, you are given $|u\rangle$, and eigenstate of U with eigenvalue one $(U|u\rangle = |u\rangle)$. Provide a quantum circuit which performs a controlled-U gate(control qubit $|q\rangle$ and target qubit $|\psi\rangle$), using this box, $|u\rangle$ and quantum Fredkin (i.e. controlled-swap) gates.

Solution:

It's as follows

Problem 6 An unknown qubit in the state $|\psi\rangle$ can be swapped with a second qubit which is prepared in the state $|0\rangle$ using only two controlled-not gates, with the circuit

Show that the circuit below, which use only a single cnot gate, with measurement and a classically controlled single qubit operation, also accomplish the same task(use circuit equivalences):

Solution:

The proof is as follows.

Classical control operation after measurement is equivalent to quantum control operation before measurement, hence the circuit is equivalent to

Controlled-Z operation is symmetric between control bit and target bit, hence the circuit is equivalent to

Commuting controlled-Z through Hadamard we get controlled-not

This completes the proof.

Problem 7 Please design a quantum circuit which converts the state $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ into four Bell states.

Solution:

The circuit is as follows

Problem 8 Please design a quantum circuit to perform full Bell state measurement, i.e. to distinguish four Bell states by projective measurement at $|0\rangle$, $|1\rangle$ basis.

Solution: The circuit is as follows

Problem 9 Please draw the quantum circuit of Deutsch algorithm, and analysis how it works. **Solution:** The circuit is as follows

The algorithm works as follows

- The input state is $|\psi_0\rangle = |01\rangle$.
- After Hadamard gates, we obtain $|\psi_1\rangle = |+\rangle |-\rangle$.
- After U_f , we obtain

$$|\psi_2\rangle = \begin{cases} \pm \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ \pm \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}, \quad f(0) = f(1) \\ \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix}, \quad f(0) \neq f(1). \end{cases}$$
(1)

• Then after Hadamard gates, we have

$$|\psi_3\rangle = \begin{cases} \pm |0\rangle \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ \pm |1\rangle \begin{bmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{bmatrix} & \text{if } f(0) = f(1) \\ \text{if } f(0) \neq f(1) \end{cases}$$
 (2)

By measuring the first bit, we obtain the answer.

Lu Wei | PB16000702 | March 7, 2021

– 4 –