VARIABLES ALEATORIAS BIDIMENSIONALES

Ejercicio 1.

a.
$$c = \frac{1}{42}$$

b.
$$P(X \le 2.5) = g(0) + g(1) + g(2) = 1$$

c.
$$P(X = 2, Y = 1) = f(2,1) = \frac{5}{42}$$

d.
$$P(X \ge 1, Y \le 2) = f(1,0) + f(1,1) + f(1,2) + f(2,0) + f(2,1) + f(2,2) = \frac{4}{7}$$

Ejercicio 2.

a.
$$k = \frac{6}{5}$$

b.
$$g(x) = \frac{6}{5} \left(x + \frac{1}{3} \right)$$
 si $0 \le x \le 1$; $h(y) = \frac{6}{5} \left(\frac{1}{2} + y^2 \right)$ si $0 \le y \le 1$. $g(x).h(y) \ne f(x,y)$ No son variables aleatorias independientes.

c.
$$P(Y < 0.5) = \int_0^{0.5} h(y) dy = \frac{7}{20}$$

d.
$$P(Y > 0.75 | X = 0.5) = \int_{0.75}^{1} f(y | x = 0.5) dy = \int_{0.75}^{1} \frac{6}{5} \left(\frac{1}{2} + y^2\right) dy = \frac{61}{160}$$

Ejercicio 3.

a.
$$P(X = 2, Y = 3) = f(2,3) = 0.04$$

b.
$$P(Y > X) = f(0,1) + f(0,2) + f(0,3) + f(1,2) + f(1,3) + f(2,3) = 0.12$$

C.

×	0	1	2	3	4	5
g(x)	0.03	0.08	0.16	0.21	0.24	0.28

d. (b.1).
$$P(X = 2) = 0.16$$
 (b.2). $P(Y = 0) = 0.25$

$$e. \quad G(x) = \begin{cases} 0 & si \ x < 0 \\ 0.03 & si \ 0 \le x < 1 \\ 0.11 & si \ 1 \le x < 2 \\ 0.27 & si \ 2 \le x < 3 \\ 0.48 & si \ 3 \le x < 4 \\ 0.72 & si \ 4 \le x < 5 \end{cases} \quad H(y) = \begin{cases} 0 & si \ y < 0 \\ 0.25 & si \ 0 \le y < 1 \\ 0.51 & si \ 1 \le y < 2 \\ 0.76 & si \ 2 \le y < 3 \\ 1 & si \ y \ge 3 \end{cases}$$

Ejercicio 4

b.
$$g(x) = \frac{1}{9} \left(3x - \frac{3}{2} \right)$$
 si $1 \le x \le 3$; $h(y) = \frac{1}{9} (12 - 2y)$ si $1 \le y \le 2$

c.
$$g(x).h(y) \neq f(x,y)$$
 No son variables aleatorias independientes.

d.
$$P(Y > 1.5) = \int_{1}^{1.5} h(y) dy = \frac{19}{36}$$
; $P(X < 2) = \int_{1}^{2} g(x) dx = \frac{1}{3}$

e.
$$P(X = 2|Y = 1) = \int_2^3 f(x|y = 1)dx = \int_2^3 \frac{1}{10}(3x - 1)dx = 0.65$$

Ejercicio 5

a.
$$c = \frac{1}{27}$$

b.
$$g(x) = \frac{1}{27}(2x+4)$$
 si $1 \le x \le 4$; $h(y) = \frac{1}{27}(\frac{15}{2}y+6)$ si $0 \le y \le 2$; Son dependientes.

c.
$$P(X > 2; Y < 1) = \frac{7}{27}$$

d.
$$P(X > 3) = \frac{11}{27}$$
 probabilidad de contener más de $3\mu g$ de magnesio.

e.
$$P(X \le 2|Y = 1) = \frac{4}{9}$$

Ejercicio 6

a.
$$c = \frac{1}{36}$$

b.

×	2	4	6	8
g(x)	11/36	11/36	6/36	8/36

У	3	4	5
h(y)	7/36	10/36	19/36

c. Son dependientes.

d.
$$H(y) = \begin{cases} 0 & \text{si } y < 3 \\ \frac{7}{36} & \text{si } 3 \le y < 4 \\ \frac{17}{36} & \text{si } 4 \le y < 5 \\ 1 & \text{si } y \ge 5 \end{cases}$$

e. (E.1)
$$P(Y > X) = \frac{19}{36}$$

(E.2) $P(X > 4) = \frac{7}{18}$

Ejercicio 7

a.
$$P(X < 5; Y > 1) = \frac{65}{168}$$

b.
$$g(x) = \frac{1}{84}(4x+2)$$
 si $0 \le x \le 6$; $h(y) = \frac{1}{84}(36+6y)$ si $0 \le y \le 2$; Son dependientes.

c.
$$P(X = 2) = 0$$

Ejercicio 8

a.
$$c = \frac{1}{3}$$

b.
$$P(X = 2; Y \le 0) = \frac{1}{3}$$

c.

×	1	2
g(x)	1/3	2/3

У	-1	0	1
h(y)	3/12	4/12	5/12

Son dependientes.

d.
$$P(Y \ge 0) = \frac{3}{4}$$

Ejercicio 9

a.
$$g(x) = \frac{1}{324}(21x - 3)$$
 si $2 \le x \le 6$; $h(y) = \frac{1}{324}(32y - 4)$ si $2 \le y \le 5$; Son dependientes.

b.
$$P(X \ge 3) = \frac{61}{72}$$

c. $P(X < 4; Y > 4) = \frac{17}{81}$ probabilidad de que la aleación contenga menos de 4 mg de aluminio y más de 4 mg de cobre.