บทที่ 3

การดำเนินโครงงานวิศวกรรมคอมพิวเตอร์

ในบทนี้กล่าวถึงวิธีการดำเนินงานโครงงานวิศวกรรมคอมพิวเตอร์ในการตรวจสอบ ความถูกต้องของคอร์ดเปียโนสำหรับผู้เริ่มต้นซึ่งประกอบไปด้วย

- 1. การวิเคราะห์ความต้องการระบบและการเก็บรวบรวมข้อมูลที่เกี่ยวข้อง
- 2. การวิเคราะห์และออกแบบระบบการทำงาน

3.1 การวิเคราะห์ความต้องการระบบ

3.1.1 ความต้องการเชิงฟังก์ชัน

- 1. สามารถเลือกชื่อคอร์ดได้
- 2. รับสัญญาณเสียงทางไมโครโฟนแล้วนำมาตรวจสอบความถูกต้อง

3.1.2 ความต้องการนอกเหนือจากฟังก์ชัน

- 1. ใช้เวลาไม่เกิน 10 วินาที่ในการประมวลผล
- 2. สามารถสกัดคุณลักษณะที่ประกอบด้วยช่วงของเสียงที่ครอบคลุมเสียงเปียโน
- 3. การจำแนกคอร์ดเปียโนมีความถูกต้องมากกว่า 90%

3.1.3 การเก็บรวบรวมข้อมูลที่เกี่ยวข้อง

เก็บรวมรวมข้อมูลเสียงคอร์ดเปียโน จากชุดข้อมูลเสียงเปียโนของเดวิธ บรูส (David Bruce) เพื่อนำมาทำการสกัดหาค่าคุณลักษณะและเก็บเป็นชุดตัวเลขเพื่อเปรียบเทียบเมื่อทำการวิเคราะห์เสียง

3.2 การวิเคราะห์และออกแบบระบบ

3.2.1 ภาพรวมของการตรวจสอบความถูกต้องของคอร์ดเปียโน

ส่วนประกอบของระบบงานแบ่งออกเป็น 3 ส่วน ได้แก่ กระบวนการสกัดหาค่า คุณลักษณะ กระบวนการจำแนกคอร์ด และการบวนการตรวจสอบความถูกต้อง ดังแสดงใน รูปที่ 3.1

รูปที่ 3.1 แผนภาพขั้นตอนการทำงานของแต่ละกระบวนการของการตรวจสอบความถูกต้อง ของคอร์ด

1) กระบวนการสกัดหาคุณลักษณะ

กระบวนการสกัดหาค่าคุณลักษณะเป็นการนำสัญญาณเสียงมาทำการดึงข้อมูล หรือส่วนสำคัญออกจากข้อมูลดิบ ทั้งนี้เนื่องจากการเอาข้อมูลดิบไปป้อนให้กับกระบวนการ จำแนกโดยตรงนั้นไม่มีความเหมาะสมทั้งเรื่องของหน่วยความจำ ความถูกต้องและระยะเวลาที่ ใช้ในการรู้จำมาก ซึ่งจะได้ความถูกต้องต่ำเมื่อนำมาใช้กับสัญญาณที่ไม่เคยเห็นมาก่อน (Low Generalize Ability) ดังนั้นจึงใช้อัลกอรีธึมของการสกัดหาค่าคุณลักษณะ เช่น Fourier Tranform Autocorelation เพื่อใช้ดึงข้อมูลที่มีความถูกต้องสูงออกจากสัญญาณดิบๆแล้วจึงใช้ผลที่ได้ซึ่ง เป็นเวคเตอร์ที่มีขนาดเล็กกว่าป้อนให้กับกระบวนการจำแนก

2) กระบวนการจำแนกคอร์ด

กระบวนการจำแนกคอร์ดเป็นกระบวนการสร้างโมเดลจัดการข้อมูลให้อยู่ใน กลุ่มที่กำหนดมาให้จากกลุ่มตัวอย่างข้อมูลที่เรียกว่าข้อมูลสอนระบบ (Training Data) โดยการ สร้างกฎเพื่อช่วยในการตัดสินใจจากข้อมูลที่มีอยู่ เพื่อใช้ทำนายแนวโน้มการเกิดขึ้นของข้อมูลที่ ยังไม่เกิดขึ้น โดยการนำเสนอกฎที่ได้จากเทคนิคการจำแนกประเภทข้อมูล เมื่อเปียโนรับ สัญญาณเสียงแล้วจะนำไปวิเคราะห์จนได้ค่าคุณลักษณะสำคัญ จากนั้นนำค่าคุณลักษณะ สำคัญที่ได้มาทำการจำแนกคอร์ดของเปียโนด้วยอัลกอริธึมตารางการตัดสินใจ (Decision Table) ด้วยการนำค่าความถี่เสียงของตัวโน้ตแต่ละคอร์ดที่เก็บไว้มาเปรียบเทียบกับค่าคุณลักษณะ ซึ่ง ก็คือค่าความถี่เสียงที่มีแมกนิจูดฟูเรียร์เป็นไปตามเงื่อนไขในตารางตัดสินใจ หากข้อมูลมีค่า ตรงกันหรือใกล้เคียงมากแสดงว่าเป็นคอร์ดเดียวกัน

3) กระบวนการตรวจสอบความถูกต้อง

หลังจากที่โปรแกรมได้ทำการจำแนกคอร์ดเปียโนจากไฟล์เสียงแล้ว โปรแกรม จะทำการตรวจสอบความถูกต้องของคอร์ดโดยเปรียบเทียบชื่อคอร์ดจากไฟล์เสียงที่ถูกจำแนก กับชื่อคอร์ดที่ผู้ใช้งานระบุไว้ จากนั้นโปรแกรมจะแสดงผลการตรวจสอบว่าเรากดคอร์ดได้ ถูกต้องหรือไม่ หากไม่ถูกต้องก็สามารถบอกได้ว่าเสียงนั้นเป็นคอร์ดอะไร ซึ่งโปรแกรมจะทำ การตรวจสอบแล้วแสดงผลการตรวจสอบให้ทราบ

3.2.2 การทำงานของกระบวนการสกัดหาค่าคุณลักษณะ

ส่วนประกอบของระบบงานแบ่งออกเป็น 3 ส่วน ได้แก่ กระบวนการกรอง สัญญาณเสียง กระบวนการหาจุดเริ่มต้นและจุดสิ้นสุด และการบวนสกัดหาค่าคุณลักษณะ ดังแสดงในรูปที่ 3.2

รูปที่ 3.2 แผนภาพ (Block Diagram) ขั้นตอนการทำงานของกระบวนการสกัดหาค่าคุณลักษณะ

1) กระบวนการกรองสัญญาณเสียง

อันดับแรกทำการระบุชื่อของคอร์ดเปียโน จากนั้นเมื่อรับอินพุตเสียงเป็นไฟล์ .wav ระบบการตรวจสอบความถูกต้องของคอร์ดเปียโนจะเริ่มทำงาน เมื่อรับเสียงอินพุตเข้ามา จะต้องทำการกำจัดสัญญาณรบกวนออกจากสัญญาณเสียง โครงงานนี้กรองเสียงด้วยวิธีการ กรองสัญญาณแบบเอลลิปติก (Elliptic Filter) แบบกรองความถี่ช่วงกลางผ่าน (Band Pass Filter) ผลการดำเนินงานการกรองสัญญาณเสียงโดยแสดงได้ดังรูปที่ 3.3

รูปที่ 3.3 ผลการนำเสียงคอร์ด A major ไปทำการกรองสัญญาณ

- (ก) เสียงคอร์ด A major ก่อนกรองสัญญาณ
- (ข) เสียงคอร์ด A major หลังกรองสัญญาณ

จากรูปที่ 3.3 แสดงผลของการนำเสียงคอร์ด A major ไปกรองสัญญาณ แกน x คือ เวลาในหน่วยวินาที (Time, s) ส่วนแกน y คือ ความสูงคลื่นเสียง (Amplitude) โดยที่รูป 3.3 (ก) เป็นสัญญาณเสียงก่อนการกรองสัญญาณ ซึ่งยังคงมีสัญญาณรบกวนอยู่ และรูปที่ 3.3 (ข) เป็น สัญญาณเสียงหลังผ่านการกรองความถี่แบบช่วงกลางผ่าน สังเกตได้จากการฟังเสียงและดู รูปกราฟว่าตัวสัญญาณเรียบขึ้นและช่วยลดสัญญาณรบกวนได้ ก่อนนำไปหาจุดเริ่มต้นและ จุดสิ้นสุดของเสียงดนตรี

2) กระบวนการหาจุดเริ่มต้นและจุดสิ้นสุดของเสียง

หลังจากที่อินพุตเสียงผ่านการกรองสัญญาณแล้วจะต้องทำการหาจุดเริ่มต้น และจุดสิ้นสุดของเสียงเพื่อตัดเอาสัญญาณที่ไม่ใช่เสียงดนตรีออก ก่อนการนำสัญญาณเสียงไป หาค่าคุณลักษณะ เริ่มจากการวางกรอบหน้าต่างเพื่อช่วยป้องกันการเปลี่ยนแปลงกะทันหัน บริเวณช่วงปลายของกรอบหน้าต่าง จากนั้นจะเข้าสู่กระบวนการหาจุดเริ่มต้นและจุดสิ้นสุด ของเสียงซึ่งประกอบไปด้วยวิธีการตัดหัวท้ายเสียงด้วยค่าลอการิธึมของพลังงานและวิธีอัตรา การตัดศูนย์ การใช้ 2 วิธีประกอบกันแสดงดังรูปที่ 3.6

2.1) การตัดหัวท้ายเสียงด้วยค่าลอการิธึมของพลังงาน (Log Energy) ช่วงที่มี พลังงานมากกว่าจะเป็นช่วงที่มีเสียงดนตรี ส่วนช่วงที่มีพลังงานน้อยจะเป็นช่วงที่ไม่ใช่ เสียงดนตรี สูตรการหาค่าลอการิธึมของพลังงานแสดงดังสมการที่ (2.3) การตัดหัวท้ายเสียง โดยใช้ค่าลอการิธึมของพลังงานเพื่อเลือกเอาเฉพาะส่วนที่เป็นเสียงดนตรีจะใช้ค่าเส้นขีดแบ่ง (T_e) คือ –30 ดังนั้นค่าลอการิธึมของพลังงานเสียงที่มีค่ามากกว่า –30 จัดเป็นช่วงที่เป็น เสียงดนตรี ส่วนค่าลอการิธึมของพลังงานเสียงที่มีค่าน้อยกว่า –30 จัดเป็นช่วงที่ไม่ใช่ เสียงดนตรี ผลการตัดหัวท้ายเสียงด้วยวิธีค่าพลังงานแสดงดังรูปที่ 3.4 โดยแกน x คือ ลำดับ เฟรม (Frame Number) และแกน y คือ ค่าลอการิธึมของพลังงาน (Log Energy)

ร**ูปที่ 3.4** ผลการหาค่าลอการิธึมของพลังงานของคอร์ด A major

2.2) การตัดหัวท้ายเสียงด้วยวิธีอัตราการตัดศูนย์เป็นจำนวนครั้งของสัญญาณ เสียงที่ตัดแกนศูนย์ในช่วงเวลาใดๆ ปกติสัญญาณเสียงที่มีค่าจุดตัดสูงจะเป็นเสียงไม่ก้อง (Unvoiced Signal) และสัญญาณเสียงที่มีค่าจุดตัดต่ำจะเป็นเสียงก้อง (Voiced Signal) สูตรการ หาค่าอัตราการตัดศูนย์แสดงดังสมการที่ (2.4) วิธีอัตราการตัดศูนย์จะหาจุดเริ่มต้นและ จุดสิ้นสุดของเสียงจะใช้ค่าเส้นขีดแบ่ง (T_{zc}) เท่ากับ 50 ดังนั้นค่าอัตราการตัดศูนย์มีน้อยกว่า 50 จัดเป็นช่วงที่มีเสียงดนตรี ส่วนค่าอัตราการตัดศูนย์ที่มีค่ามากกว่า 50 จัดเป็นช่วงที่ไม่ใช่ เสียงดนตรี ผลการตัดหัวท้ายเสียงด้วยวิธีอัตราการตัดศูนย์แสดงดังรูปที่ 3.5 โดยแกน x คือ ลำดับเฟรม (Frame Number) ส่วนแกน y คือ ค่าอัตราการตัดศูนย์ (Zc Rate)

รูปที่ 3.5 ผลการหาอัตราการตัดศูนย์ของคอร์ด A major

รูปที่ 3.6 ผลการหาจุดเริ่มต้นและจุดสิ้นสุดของเสียงด้วยค่าพลังงานและอัตราการตัดศูนย์

- (ก) ผลของสัญญาณเสียงที่ผ่านการกรองความถี่ช่วงกลางผ่าน
- (ข) ผลการตัดหัวท้ายเสียงโดยใช้วิธีการหาค่าพลังงาน
- (ค) ผลการตัดหัวท้ายเสียงโดยใช้อัตราการตัดศูนย์

โครงงานนี้หาจุดเริ่มต้นและจุดสิ้นสุดโดยใช้ทั้งวิธีตัดหัวท้ายด้วยค่าพลังงานและ วิธีอัตราการตัดศูนย์ร่วมกัน แสดงดังรูปที่ 3.6 เส้นประสีน้ำเงินแนวตั้งเป็นเส้นขีดแบ่งเพื่อบอก ระยะทางตั้งแต่จุดเริ่มต้นถึงจุดสิ้นสุดของเสียง จากรูปที่ 3.6 (ก) เป็นรูปของสัญญาณอินพุต ก่อนการหาจุดเริ่มต้นและจุดสิ้นสุดของเสียง แกน x คือเวลาในหน่วยวินาที (Time, s) ส่วนแกน y คือ ความสูงคลื่นเสียง (Amplitude) จากรูปที่ 3.6 (ข) เป็นการหาจุดเริ่มต้นและจุดสิ้นสุดด้วย ค่าลอการิธีมของพลังงาน แกน x คือ ลำดับเฟรม (Frame Number) แกน y คือ ค่าลอการิธีมของ พลังงาน (Log Energy) โปรแกรมจะเลือกเก็บเฟรมที่มีค่าลอการิทึมของพลังงานมากกว่าเส้น ขีดแบ่ง (T_e) จากรูปที่ 3.6 (ค) เป็นการหาจุดเริ่มต้นและจุดสิ้นสุดของเสียงด้วยอัตราการตัด ศูนย์ แกน x คือ ลำดับเฟรม (Frame Number) แกน y คือ อัตราการตัดศูนย์ (Zc Rate) โปรแกรม จะเลือกเก็บเฟรมที่มีค่าน้อยกว่าเส้นขีดแบ่ง (T_e) ไว้ ดังนั้นจุดที่ตัดสินว่าเป็นจุดเริ่มต้นและ จุดสิ้นสุดจะต้องมีค่าเส้นขีดแบ่งของค่าลอการิธีมของพลังงาน (T_e) ที่มากกว่า –30 และต้องมีค่าเส้นขีดแบ่งของค่าลอการิธีมของพลังงาน (T_e) ที่มากกว่า –30 และต้องมีค่าเส้นขีดแบ่งของอัตราการตัดศูนย์ (T_{ze}) ที่น้อยกว่า 50 ด้วยเช่นกัน ผลของสัญญาณเสียงที่ ผ่านการตัดสัญญาณเสียงที่ไม่ใช่เสียงดนตรีออก แสดงดังรูปที่ 3.7 แกน x คือ เวลาในหน่วย วินาที (Time, s) และแกน y คือ ความสูงคลื่นเสียง (Amplitude SL[t])

รูปที่ 3.7 สัญญาณเสียงดนตรี (Voiced Signal) ที่ได้ตัดสัญญาณที่ไม่ใช่เสียงดนตรีออก

3) กระบวนการสกัดหาค่าคุณลักษณะของเสียง

สัญญาณเสียงที่ผ่านการหาจุดเริ่มต้นและจุดสิ้นสุดจะทำให้ได้เฉพาะสัญญาณที่ มีเฉพาะช่วงที่เป็นเสียงดนตรีเพื่อนำไปสกัดหาค่าคุณลักษณะ ซึ่งกระบวนการสกัดหาค่า คุณลักษณะเป็นการนำสัญญาณเสียงมาทำการดึงข้อมูลหรือส่วนสำคัญออกจากข้อมูลดิบ ก่อนเข้าสู่กระบวนการจำแนก ค่าคุณลักษณะสามารถนำมาใช้เป็นเงื่อนไขในการจำแนกได้ เนื่องจากข้อมูลเสียงแต่ละคอร์ดย่อมมีคุณลักษณะเฉพาะตัวที่ทำให้สามารถแยกความแตกต่าง ระหว่างคอร์ดต่างๆได้โดยไม่ให้เกิดการทับซ้อน (Overlap) ของข้อมูล โครงงานนี้ทดสอบการ

สกัดหาค่าคุณลักษณะโดยเปรียบเทียบ 2 วิธีด้วยกันคือ วิธีการหาค่าความถี่มูลฐาน (Fundamental Frequency : FO) จากค่าสหสัมพันธ์อัตโนมัติ (Autocorrelation) และวิธีการหาค่าความถี่เสียงที่ให้ค่า แมกนิจูดฟูเรียร์ (Magnitude Fourier) เป็นโลคอลแม็กซิมัม (Local Maximum) แสดงดังต่อไปนี้

3.1) การหาค่าความถี่มูลฐานด้วยวิธีการหาค่าสหสัมพันธ์อัตโนมัติ

อัลกอริธึมสหสัมพันธ์อัตโนมัติจะตรวจสอบข้อมูลที่มีความสัมพันธ์กัน และ จะสามารถบอกระดับเสียงที่ต่างกันได้ ขั้นตอนการทำงานของอัลกอริธึมสหสัมพันธ์อัตโนมัติ อันดับแรกเมื่อรับอินพุตเสียงเข้ามาจะต้องผ่านการทำเซ็นเตอร์คลิปปิ้ง (Center Clipping) ก่อน จากนั้นแบ่งเซ็นเตอร์คลิปปิ้งออกเป็นเฟรม และคำนวณค่าสหสัมพันธ์อัตโนมัติที่ละเฟรม ในแต่ ละเฟรมของค่าสหสัมพันธ์อัตโนมัติจะให้ค่าความถี่มูลฐานออกมา 1 ค่า การหาค่าความถี่มูลฐานสามารถหาได้จากการเลือกลำดับตัวอย่างของสัญญาณที่มีค่าสหสัมพันธ์อัตโนมัติที่เป็น จุดโลคอลแม็กซิมัมค่าสูงที่สุดมาหารอัตราสุ่มของสัญญาณเสียง (Sampling Rate) ซึ่งความถี่ มูลฐานเป็นคุณลักษณะสำคัญสำหรับใช้แยกเสียงของคอร์ดเปียโนตามระดับเสียง สูตรการหาค่าสหสัมพันธ์อัตโนมัติแสดงดังสมการที่ (2.5) ผลของการหาคุณลักษณะโดยวิธีสหสัมพันธ์อัตโนมัติแสดงดังรูปที่ 3.8–3.10

รูปที่ 3.8 ผลของการหาค่าสหสัมพันธ์อัตโนมัติของไฟล์เสียงคอร์ด B Minor ชุดที่ 1

- (ก) สัญญาณเสียงที่ผ่านการทำเซ็นเตอร์คลิปปิ้ง
- (ข) สัญญาณเสียงที่ผ่านการหาค่าสหสัมพันธ์อัตโนมัติ

จากรูปที่ 3.8 แสดงผลการหาค่าสหสัมพันธ์อัตโนมัติของไฟล์เสียงคอร์ด B Minor ชุดที่ 1 โดยรูป 3.8 (ก) เป็นผลของสัญญาณเสียงที่ผ่านการทำเซ็นเตอร์คลิปปิ้ง แกน x คือตัวอย่างของสัญญาณ (Samples) แกน y คือ ค่าเซนเตอร์คลิปปิ้ง (Center Clipping) จากนั้น เมื่อโปรแกรมแบ่งเซ็นเตอร์คลิปปิ้งออกเป็นเฟรม และหาค่าสหสัมพันธ์อัตโนมัติทีละเฟรมดังรูป ที่ 3.8 (ข) เป็นเฟรมที่ 101 แกน x คือ ตัวอย่างของสัญญาณ (Samples) แกน y คือ ค่าสหสัมพันธ์ อัตโนมัติ (AC) จะเห็นได้ว่ามีจุดยอดอยู่ 2 จุด ซึ่งโปรแกรมจะเลือกเก็บลำดับตัวอย่างของสัญญาณ ที่มีค่าสหสัมพันธ์อัตโนมัติที่เป็นจุดโลคอลแม็กซิมัมค่าสูงที่สุด แต่ต้องอยู่ระหว่างตัวอย่าง สัญญาณ (Samples) ตั้งแต่ลำดับที่ 27 ถึง 137 ค่าที่ได้คือ ตัวอย่างสัญญาณลำดับที่ 90

รูปที่ 3.9 ความถี่มูลฐานของเสียงคอร์ด B Minor ชุดที่ 1

จากรูปที่ 3.9 แสดงค่าความถี่มูลฐานที่หาได้จากอัตราการสุ่มของสัญญาณ เสียงหารด้วยลำดับของตัวอย่างสัญญาณที่มีโลคอลแม็กซิมัมของค่าสหสัมพันธ์อัตโนมัติสูง ที่สุด โดยแกน x คือ ลำดับเฟรม (Frame Number) แกน y คือ ค่าความถี่มูลฐาน (FO) เมื่อหา ค่าความถี่มูลฐานครบทุกเฟรมแล้ว โปรแกรมจะนำค่าความถี่มูลฐานทั้งหมดมาหาฐานนิยม แล้วนำค่าฐานนิยมและเก็บไว้เพื่อเป็นค่าคุณลักษณะสำหรับแต่ละคอร์ด การหาค่าความถี่มูล ฐานแสดงดังสมการที่ (3.1) (การกำหนดค่าอัตราการสุ่มเสียงสามารถดูรายละเอียดเพิ่มเติมได้ ในบทที่ 2 หัวข้อที่ 2.8)

รูปที่ 3.10 ค่าความถี่มูลฐานของค่าสหสัมพันธ์อัตโนมัติแต่ละเฟรมของเสียงคอร์ด B Minor ชุดที่ 2

จากรูปที่ 3.10 แสดงค่าความถี่มูลฐานของค่าสหสัมพันธ์อัตโนมัติแต่ละเฟรม ของเสียงคอร์ด B Minor ชุดที่ 2 โดยแกน x คือ ลำดับเฟรม (Frame Number) แกน y คือ ค่าความถี่มูลฐาน (FO) ซึ่งค่าความถี่มูลฐานของไฟล์เสียงคอร์ด B Minor ชุดที่ 2 มีฐานนิยม เท่ากับ 290 Hz เมื่อเปรียบเทียบกับค่าความถี่มูลฐานของไฟล์เสียงคอร์ด B Minor ชุดที่ 1 ซึ่งมี ฐานนิยมเท่ากับ 122.5 Hz พบว่าเสียงคอร์ดเดียวกันได้ค่าความถี่มูลฐานที่ต่างกันค่อนข้างมาก

จากการทดสอบข้อมูลเสียง 24 คอร์ด จำนวน 2 ชุด พบว่าความถี่มูลฐานที่ ได้จากค่าสหสัมพันอัตโนมัตินั้นไม่เหมาะกับการใช้หาค่าคุณลักษณะเฉพาะของคอร์ดแต่ละ คอร์ด เนื่องจากความถี่มูลฐานมีแนวโต้นของสัญญาณที่ไม่คงที่เมื่อทดสอบกับสัญญาณเสียง คอร์ด จำนวน 24 คอร์ด ทั้ง 2 ชุด ทำให้นำมาใช้เป็นค่าคุณลักษณะในการจำแนกคอร์ดแล้วให้ ความถูกต้องต่ำ

3.2) การหาค่าความถี่เสียงที่ให้ค่าแมกนิจูดฟูเรียร์เป็นโลคอลแม็กซิมัม

เนื่องจากเสียงของคอร์ดแต่ละคอร์ด เกิดจากเสียงประสานของตัวโน้ต 3 ตัวโน้ต ซึ่งโน้ตแต่ละตัวมีความถี่เป็นค่าที่แตกต่างกัน วิธีแมกนิจูดฟูเรียร์สามารถใช้หาค่า คุณลักษณะของเสียงได้ด้วยการแปลงสัญญาณเสียงให้อยู่ในรูปของแถบความถี่เสียง จากนั้น สามารถเลือกความถี่เสียงที่ได้มาเป็นค่าคุณลักษณะสำคัญ โดยการแปลงค่าแมกนิจูดฟูเรียร์ (IF(u)I) ให้อยู่ในหน่วยของเดซิเบล (dB) ให้ค่าเส้นขีดแบ่งของแมกนิจูดฟูเรียร์ เท่ากับ ค่าสูงสุด ของค่าแมกนิจูด-ฟูเรียร์ (Max) ลบด้วย 20 dB ต่อมาโปรแกรมจะเลือกเก็บค่าความถี่เสียง ตั้งแต่ความถี่ที่ 100 Hz ถึง 3000 Hz ที่มีค่าแมกนิจูดฟูเรียร์เป็นโลคอลแม็กซิมัมที่มากกว่าค่า เส้นขีดแบ่ง (Max-20) เพื่อใช้เป็นค่าคุณลักษณะสำคัญ จากนั้นนำค่าคุณลักษณะสำคัญที่เลือก

ไว้มาเปรียบเทียบกับความถี่ของโน้ต 3 โน้ตที่อยู่ในคอร์ด หากความถี่ที่คำนวณได้จากไฟล์เสียง มีค่าเท่ากันหรือมีความใกล้เคียงกับความถี่ของตัวโน้ตที่อยู่ในคอร์ดแต่ละคอร์ดทั้ง 24 คอร์ด จึงสามารถนำไปใช้ในการจำแนกคอร์ดได้ จากการทดสอบการหาความถี่เสียงที่มีค่าแมกนิจูด - ฟูเรียร์เป็นโลคอลแม็กซิมัม แสดงได้ดังรูปที่ 3.11-3.14

ร**ูปที่ 3.11** ผลการหาค่าคุณลักษณะสำคัญด้วยแมกนิจูดฟูเรียร์ของเสียงคอร์ด B minor ชุดที่ 1

รูปที่ 3.12 ผลการหาค่าคุณลักษณะสำคัญด้วยแมกนิจูดฟูเรียร์ของเสียงคอร์ด B minor ชุดที่ 2

ร**ูปที่ 3.13** การแปลงแมกนิจูดฟูเรียร์ให้อยู่ในหน่วยของเดซิเบลของเสียงคอร์ด B minor ชุดที่ 1

รูปที่ 3.14 การแปลงแมกนิจูดฟูเรียร์ให้อยู่ในหน่วยของเดซิเบลของเสียงคอร์ด B minor ชุดที่ 2

จากรูปที่ 3.11 และ 3.12 เป็นรูปของผลการหาแมกนิจูดฟูเรียร์ของเสียง คอร์ด B Minor ชุดที่ 1 และ ชุดที่ 2 แกน x คือ ความถี่เสียง (Frequenzy) แกน y คือ ค่าแมก-นิจูดฟูเรียร์ (IF(u)I) ส่วนรูปที่ 3.13 และ 3.14 เป็นรูปของผลการหาแมกนิจูดฟูเรียร์ในหน่วยเดชิ เบลของเสียงคอร์ด B Minor ชุดที่ 1 และ ชุดที่ 2 เพื่อสกัดเอาค่าคุณลักษณะสำคัญ โดยแกน x คือ ความถี่เสียง แกน y คือ ค่าแมกนิจูดฟูเรียร์ในหน่วยเดซิเบล จากรูปที่ 3.13 เสียงของคอร์ด B minor ชุดที่ 1 มีค่าความถี่เสียงที่ให้ค่าแมกนิจูดฟูเรียร์ที่เป็นโลคอลแม็กซิมัมเป็นชุดตัวเลข ดังนี้247, 294, 371, 494, 587, 740, 882, 989, 1176, 1238, 1472, 1488, 1738, 1769, 2068, 2239 และจากรูปที่ 3.14 เสียงของคอร์ด B minor ชุดที่ 2 มีค่าความถี่เสียงที่ให้ค่าแมกนิจูดฟูเรียร์ที่เป็นโลคอลแม็กซิมัมเป็นชุดตัวเลขดังนี้ คือ 247, 294, 370, 494, 588, 883, 990, 1113, 1178, 1739 ซึ่งคอร์ด B minor นั้นประกอบไปด้วยในัต D มีความถี่ = 293 Hz, F# มีความถี่ = 369 Hz, และ B มีความถี่ = 493 Hz

ผลการวิเคราะห์พบว่าค่าความถี่เสียงที่มีแมกนิจูดฟูเรียร์เป็นโลคอลแม็ก - ซิมัมที่พบในไฟล์เสียงคอร์ด B minor ชุดที่ 1 มี 3 ค่าที่ใกล้เคียงกับความถี่ใน้ตของคอร์ด ได้แก่ 294, 371 และ 494 และค่าความถี่เสียงที่มีแมกนิจูดฟูเรียร์โลคอลแม็กซิมัมที่พบในไฟล์เสียง คอร์ด B minor ชุดที่ 2 มี 3 ค่าที่ใกล้เคียงกับความถี่ใน้ตของคอร์ด ได้แก่ 294, 370 และ 494 (ความถี่ใน้ตแสดงดังตารางที่ 3.1) จากการทดสอบไฟล์เสียงทั้งหมด 24 คอร์ด จำนวน 2 ชุด รวมเป็น 48 คอร์ด พบว่าค่าแมกนิจูดฟูเรียร์ดังกล่าวที่สกัดได้จากไฟล์เสียงประกอบไปด้วยชุด ตัวเลขที่มีความสัมพันธ์กับความถี่ของตัวโน้ตซึ่งเป็นส่วนประกอบของคอร์ด ดังนั้นจึงสามารถ ใช้ค่าแมกนิจูดฟูเรียร์เป็นค่าคุณลักษณะสำคัญได้

หมายเหตุ : ตัวเลขสีแดง คือ ความถี่ที่ใช้เป็นค่าคุณลักษณะของคอร์ด B Minor

3.2.2 การทำงานของกระบวนการจำแนกคอร์ด

โครงงานนี้ใช้วิธีการจัดข้อมูลเสียงให้อยู่ในกลุ่มเพื่อให้จำแนกประเภทของคอร์ดได้ ด้วยการใช้อัลกอริธีมตารางการตัดสินใจเป็นเครื่องมือที่ใช้แสดงเงื่อนไขการตัดสินใจ และการ เลือกการทำงานหรือกระทำกิจกรรมใต้เหตุการณ์ของเงื่อนไขที่ระบุ เช่นเดียวกับต้นไม้การ ตัดสินใจ แต่ตารางการตัดสินใจเป็นลักษณะตาราง โปรแกรมจะนำค่าคุณลักษณะที่สกัดได้ จากสัญญาณเสียงมาใช้เป็นเงื่อนไขในการตัดสินใจเพื่อจำแนกเสียงคอร์ดเปียโนโดย คุณลักษณะสำคัญที่ใช้จำแนกเป็นชุดข้อมูลความถี่เสียงที่มีแมกนิจูดฟูเรียร์เป็นโลคอลแม็กซิมัม ซึ่งมีความสัมพันธ์กับความถี่เสียงของตัวโน้ต 3 ตัวโน้ตซึ่งเป็นองค์ประกอบของคอร์ด ความถี่ เสียงของตัวโน้ตแสดงดังตารางที่ 3.1 ค่าคุณลักษณะที่สกัดได้แสดงดังตารางที่ 3.2 และ 3.3

การจำแนกชุดข้อมูลจะใช้ความถี่เสียงที่มีแมกนิจูดฟูเรียร์ไปตามตารางการตัดสินใจ ตารางการ ตัดสินใจแสดงดังตารางที่ 3.4

เนื่องจากตัวใน้ตแต่ละตัวมีความถี่เสียง ดังตารางที่ 3.1 ซึ่งความถี่เสียงดังกล่าวมี ความสัมพันธ์กับค่าแมกนิจูดฟูเรียร์ที่วิเคราะห์ได้จากเสียงของคอร์ด ในโครงงานนี้เลือกใช้ ค่าความถี่ของระดับเสียง (Pitch) ในออกเตฟ (Octave) ที่ 4 และ 5 โดยเลือกเฉพาะบางความถี่ มาเป็นค่าคุณลักษณะ

ตารางที่ 3.1 แสดงความถี่ของตัวโน้ตในออกเตฟที่ 4 และ 5

PITCH	Octave 4 (Hz)	Octave 5 (Hz)			
G#	415.305	830.609			
G	391.995	783.991			
F#	369.994	739.989			
F	349.228	698.456			
E	329.628	659.255			
D#	311.127	622.254			
D	293.665	587.330			
C#	277.183	554.365			
С	261.626	523.251			
В	246.942	493.883			
A#	233.082	466.164			
А	220.000	440.000			

หมายเหตุ : ความถี่ตัวโน้ตสีน้ำเงินคือ ความถี่ที่นำมาใช้เป็นค่าคุณลักษณะของโครงงานนี้

ตารางที่ 3.2 ความถี่เสียงชุดที่ 1 ที่ได้จากการสกัดหาค่าคุณลักษณะโดยมีแมกนิจูดฟูเรียร์ เป็นโลคอลแม็กซิมัม

ชื่อคอร์ด	ความถี่เสียงที่ได้จากการสกัดค่าคุณลักษณะ (Hz)											
D Major	370	440	587	294	741	1176	881	1472	2067	1769	2663	2239
	1485											
D# Major	234	392	466	195	933	699	785	589	982	311	621	1169
	1404	1090	1641	1377	1775	155	1576	1563				
E Major	494	330	247	207	416	989	831	660	741	825	1040	624
2 7710,01	165	1238	1738	1158	1487	1662	1493	1459	1325	1669		
F Major	524	350	261	440	220	874	699	174	661	785	1048	881
. ,,,,,,,,	1102	1312	1842	1227	1576	1546	1404	1994	1761	1769	1581	
F# Major	555	233	466	370	277	933	1110	185	832	699	927	740
viaje.	1169	1390	1641	1404	1951	1488	1300	1866	1669			
G Major	588	247	294	494	392	195	989	741	1176	785	982	882
e majo:	1238	1472	1738	1487	2068	1377	1769	1576				
G# Major	623	261	207	523	416	311	785	831	1048	1246	934	1040
	1312	1560	1576	1842	2190	1459	1874	2109	1669			
A Major	278	659	554	440	330	220	1110	832	1102	881	1320	990
A Major	1390	1652	665	1951	1670	2321	1546	1994	2320	2219	1985	1769
A# Major	350	233	466	587	294	933	1176	699	882	1169	1472	1641
	1404	2068										
B Major	371	247	494	311	622	989	1246	934	1238	740	1560	1738
	1488	2190	2239	1874								
C Major	330	262	523	392	195	495	1048	660	982	589	825	1312
	784	165	1842	1158	1493	1377	1325	1662	1775			
C# Major	350	207	832	416	874	174	525	699	1040	624	554	277
	972	1251	1227	1392	2102	1581	1674	1404	1459	2094	1761	

ตารางที่ 3.3 ความถี่เสียงชุดที่ 2 ที่ได้จากการสกัดหาค่าคุณลักษณะโดยมีแมกนิจูตฟูเรียร์ เป็นโลคอลแม็กซิมัม

ชื่อคอร์ด	ความถี่เสียงที่ได้จากการสกัดค่าคุณลักษณะ											
D Minor	349	440	294	587	699	1176	881	1472	1769	1049	2067	
D# Minor	234	370	466	556	185	699	933	927	740	311	622	1169
	1404	1090	1641	1300	1488	1866	155	1563				
E Minor	494	330	247	392	195	989	660	741	785	982	589	825
2 77	165	1238	1738	1158	1487	1377	1325	1493	1662	1775		
F Minor	524	350	207	261	416	874	174	699	785	1048	831	1040
	624	1312	1227	1842	1576	1404	1581	1459				
F# Minor	555	370	277	440	220	185	1110	661	832	927	740	1102
	881	1390	1951	1994	1488	1300	1866	1669	1546			
G Minor	588	233	466	294	392	195	933	699	1176	785	982	882
G 77111101	1169	1472	1641	1404	1377	2068	1769	1576				
G# Minor	623	247	494	207	416	311	989	1246	741	831	934	1040
	1238	1560	1738	1487	2190	1459	1874	2094	1669			
A Minor	660	261	523	440	330	220	785	1048	1320	1102	881	1312
	990	1652	1842	1576	1546	2321	1994	654	2320	1769	2109	2219
A# Minor	350	233	466	277	554	933	1110	832	699	1169	1390	1641
	1404	1951	1670									
B Minor	371	247	587	294	494	989	1176	882	1238	740	1472	1488
	1738	2068	1769	2239								
C Minor	262	392	523	195	1048	466	982	589	311	1312	784	621
	934	1090	1842	1404	1377	1775	1563	155	1879	2360	2109	1977
C# Minor	330	207	832	416	495	660	825	554	1040	624	277	165
	972	1251	1158	1392	2102	1493	1325	1674	1459	1662	2094	

ตารางที่ 3.4 ตารางการตัดสินใจในการจำแนกคอร์ดเปียโน

ชื่อคอร์ด	ความถี่ 1 (Hz)	ความถี่ 2 (Hz)	ความถี่ 3 (Hz)
คอร์ดD Major	293	370	440
คอร์ดD# Major	311	392	466
คอร์ดE Major	330	415	493
คอร์ดF Major	261	349	440
คอร์ดF# Major	277	370	466
คอร์ดG Major	293	392	493 หรือ 523
คอร์ดG# Major	261 หรือ 544	311	415
คอร์ดA Major	277	330	440 หรือ 582
คอร์ดA# Major	293	349	466 หรือ 622
คอร์ดB Major	311	370	493
คอร์ดC Major	261	330	392
คอร์ดC# Major	277	370	415
คอร์ดD Minor	293	349	440
คอร์ดD# Minor	311	370	466
คอร์ดE Minor	330	392	493
คอร์ดF Minor	261	349	415
คอร์ดF# Minor	277	370	440
คอร์ดG Minor	293	392	466
คอร์ดG# Minor	311	415	493
คอร์ดA Minor	261	330	440
คอร์ดA# Minor	277	349	466
คอร์ดB Minor	293	370	493
คอร์ดC Minor	261	311	392
คอร์ดC# Minor	277	330	415

3.2.3 การทำงานของกระบวนการตรวจสอบความถูกต้องของคอร์ด

หลังจากที่โปรแกรมได้ทำการจำแนกคอร์ดเปียโนจากอินพุตไฟล์เสียงที่รับเข้า มาแล้ว โปรแกรมจะทำการตรวจสอบความถูกต้องว่า ผู้ใช้งานสามารถกดคอร์ดได้ถูกต้อง หรือไม่ โดยนำชื่อคอร์ดที่ผู้ใช้งานได้ระบุไว้ เปรียบเทียบกับชื่อคอร์ดที่ถูกจำแนก หากชื่อคอร์ด ตรงกันแสดงว่าเสียงคอร์ดที่ถูกป้อนให้กับโปรแกรมเป็นเสียงคอร์ดที่กดอย่างถูกต้อง การเขียน โปรแกรมในกระบวนการตรวจสอบความถูกต้องของคอร์ด แสดงดังรูปที่ 3.15

```
178 -
        pop1 = get(handles.popup1, 'String');
        mpop1 = pop1{get(handles.popup1, 'Value')}
179 -
180 -
        pop2 = get(handles.popup2,'String');
181 -
        mpop2 = pop2{get(handles.popup2,'Value')}
182 -
        [Chord, fileneme] = main fft2()
183 -
        set(handles.edit1, 'String', fileneme);
184 -
        id = mpop1;
185 -
        id2 = mpop2;
186 -
        c1 = 'Correct';
        c2 = 'Incorrect';
187 -
188 -
        if strcmp(id, 'A') && strcmp(id2, '-')
189 -
           if Chord == 'a'
190 -
                set(handles.text2, 'String', c1);
191 -
192 -
                set(handles.text2,'String',c2);
        elseif strcmp(id,'A#') && strcmp(id2,'-')
195 -
           if Chord == 'b'
196 -
                set(handles.text2, 'String', c1);
197 -
           else
198 -
                set(handles.text2, 'String',c2);
199 -
            end
200 -
        elseif strcmp(id, 'B') && strcmp(id2, '-')
201 -
           if Chord == 'c'
202 -
                set(handles.text2, 'String', c1);
203 -
204 -
                set(handles.text2, 'String', c2);
205 -
            end
```

รูปที่ 3.15 การเขียนโปรแกรมกระบวนการตรวจสอบความถูกต้องของคอร์ด

จากรูปที่ 3.15 แสดงการเขียนขั้นตอนการตรวจสอบความถูกต้องของคอร์ดโดย ระบุชื่อของคอร์ดประเภทเมเจอร์และไมเนอร์เก็บไว้ในตัวแปร จากนั้นรับอินพุตเป็นตัวแปรของ ผลการจำแนกที่ส่งค่าจากฟังก์ชันการจำแนกคอร์ดจากค่าคุณลักษณะด้วยวิธีแมกนิจูดฟูเรียร์ ต่อมานำชื่อคอร์ดที่ผู้ใช้งานระบุไว้มาเปรียบเทียบกับชื่อคอร์ดที่ถูกจำแนก การทำงานของการ ตรวจสอบความถูกต้องของคอร์ดแสดงได้ดังรูปที่ 3.16

รูปที่ 3.16 แผนภาพรูลเบส (Rule Based) แสดงกระบวนการตรวจสอบความถูกต้องของคอร์ด เปียโน