Chapter 1: Vector Spaces

Author: Meng-Gen Tsai Email: plover@gmail.com

Section 1.2: Vector Spaces

Exercise 1.2.2. Write the zero vector of $M_{3\times 4}(F)$.

Exercise 1.2.3. If
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 what are M_{13}, M_{21}, M_{22} ?

Proof. Since $M_{ij} = 3(i-1) + j$, $M_{13} = 3$, $M_{21} = 4$ and $M_{22} = 5$. \square

Exercise 1.2.22. How many elements are there in the vector space $M_{m\times n}(\mathbb{Z}/2\mathbb{Z})$?

Proof. 2^{mn} . \square

Section 1.6: Bases and Dimension

Exercise 1.6.19. Let V be a vector space having dimension n, and let S be a subset of V that generates V.

- (a) Prove that there is a subset of S that is a basis for V. (Be careful not to assume that S is finite.)
- (b) Prove that S contains at least n elements.

Proof of (a). Similar to the argument in Theorem 1.9.

- (1) If $S = \emptyset$ or $S = \{0\}$, then $V = \{0\}$ and \emptyset is a subset of S that is a basis for V.
- (2) Otherwise S contains a nonzero element u_1 . $\{u_1\}$ is a linearly independent set. Continue, if possible, choosing elements $u_2, ..., u_k$ in S such that $\{u_1, u_2, ..., u_k\}$ is linearly independent. By the Replacement Theorem (Theorem 1.10), we must eventually reach a stage at which $\beta = \{u_1, u_2, ..., u_k\}$ is a linearly independent subset of S with $k \leq n$.

(3) β generates S by the construction of β , and S generates V . Therefore, β generates V (and thus $k=n$ by the definition of dimension).
Therefore, there is a subset of S that is a basis for V . \square
<i>Proof of (b).</i> By (a), there is a subset $\beta \subseteq S$ of size n that is a basis for V. So S contains at least n elements of β . \square