2024/2025 AMATA(LEI)

Licenciatura em Engenharia Informática (LEI) 2024/2025

Análise Matemática (AMATA)

CAPÍTULO 4

Equações diferenciais ordinárias (EDO) de 1^a ordem.

EXERCÍCIOS

2024/2025 AMATA(LEI)

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE VARIÁVEIS SEPARÁVEIS

1. Resolva as seguintes equações diferenciais:

$$1.1 \frac{dy}{dx} = \frac{6x^2}{2y + \cos(y)}$$

$$1.2 y'\cos(x) + y\cos(x)\operatorname{tg}(x) = 0$$

$$1.3 e^y y' - xe^{-x}(1 + e^y) = 0$$

$$1.4 \ 2y \, dx + \left(x - 2xy^2\right) \, dy = 0$$

$$1.5 (x^3 + 1)(y + 2)dy + (x^2y^2 + x^2)dx = 0$$

1.6
$$(xy^2 + x) x' + y(x+8) = 0$$
, para $y(0) = 0$

1.7
$$e^x yy' = e^{x+2y} \operatorname{sen}^2(x)$$
,

sabendo que a curva passa na origem das coordenadas.

1.8
$$\cos(x)\cos(y) = \sin(x)\sin(y) x'$$
, tal que $y(0) = \frac{\pi}{3}$.

2. Determine a curva y=y(x) que verifica a condição

$$xy \ln y + \sqrt{1 + 4x^2} y' = 0$$

tal que y(0) = e.

3. Determine a solução particular da equação

$$(e^x + 2e^{y+x}) dy + 2e^{y+x} dx = -ye^x dx$$

tal que y(1) = 0.

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES

4. Resolva as seguintes equações diferenciais:

$$4.1 \ y' - 2xy = x$$

$$4.2 \ y' + \frac{5}{x}y = -3x^2$$

$$4.3 \ yx^3 dx - x^2 dy = e^{\frac{x^2}{2}} dx$$

$$4.4 \ y' = 3x^2y + x^5 + x^8$$

$$4.5 e^{-y} dx - (2y + xe^{-y}) dy = 0$$

4.6
$$(1+y^2) dx + (2xy - y^3) dy = 0$$

$$4.7 \frac{y'}{y} = \operatorname{sen}(x) \left(\frac{e^{\operatorname{sec}(x)}}{y} + \operatorname{sec}^{2}(x) \right)$$

- 5. Considere a equação diferencial $\cos(x) + (y \sin(x) e^{\operatorname{tg}(x)}) x' = 0$
 - 5.1 Prove que a equação diferencial pode tomar a forma

$$y' + f(x)y = g(x).$$

- 5.2 Encontre a solução geral da equação.
- 5.3 Encontre a solução particular da equação que verifica y(0) = 0.
- 6. Considere a equação diferencial $1 + \left(\frac{y-1}{\sqrt{x+1}}\right)x' = 0$
 - 6.1 Prove que a equação diferencial pode tomar a forma y' + f(x)y = g(x).
 - 6.2 Encontre a solução geral da equação.

2024/2025 AMATA(LEI)

MISCELÂNEA DE EDO's

7. Resolva as equações diferenciais seguintes:

$$7.1 y^2 \ln(x) dx + 2xy(\ln^2(x) - 1) dy = 0$$

7.2
$$(y'+y)x = 3x^2e^{-x} + y$$

7.3
$$xy + y'\sqrt{xy} - y'\sqrt{x}y = 0$$
.

- 8. Resolva a equação deferencial de 1^a ordem dada por $\sqrt{1+x^2}=\frac{xx'}{y^2}$ que verifica x(1)=1.
- 9. Encontre a curva que verifica as condições $xy' = y + x^2 \operatorname{sen}(x)$, x > 0 e $y(\pi) = 0$.
- 10. Determine a equação da curva que verifica a equação diferencial $(1 + e^x)yy' = e^x$, que passa no ponto (0, 1).
- 11. Considere a equação diferencial definida por $y'\cos(x) y = (1 + \sin(x))\cos(x)$.
 - 11.1 Mostre que a equação anterior é linear.
 - 11.2 Resolva a equação.
- 12. Resolva as equações diferenciais seguintes:

$$12.1 \cos^2(1+x^2) dy + 2xy dx = 2x dx.$$

$$12.2 (1 + \sin(y))\cos(y) y' = \cos(y) - xy'.$$

2024/2025 AMATA(LEI)

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS $(C \in \mathbb{R})$

1.1
$$sen(y) + y^2 = 2x^3 + C$$
; **1.2** $y = Ccos(x)$;

1.3
$$\ln(1+e^y) + (x+1)e^{-x} = C$$
; **1.4** $\ln|y| - y^2 = C - 2\ln|x|$;

1.5
$$3\ln(y^2+1) + 12\arctan(y) + 2\ln(x^3+1) = C;$$

1.6
$$x - 8 \ln |x + 8| + \ln \left(\sqrt{y^2 + 1}\right) = -8 \ln(8);$$

1.7
$$(2y+1)e^{-2y} + 2x = \sin(2x) + 1$$
; **1.8** $2\cos(x)\sin(y) = \sqrt{3}$;

2.
$$\sqrt{1+4x^2}+4\ln|\ln y|=1$$
; 3. $\ln(2e^y+y)+x=\ln(2)+1$;

4.1
$$y = e^{x^2} \left(C - \frac{e^{-x^2}}{2} \right)$$
; **4.2** $yx^5 = C - \frac{3x^8}{8}$;

4.3
$$y = \left(\frac{1}{x} + C\right) e^{x^2/2}$$
; **4.4** $y = \left(-e^{-x^3} \left(\frac{x^6 + 3x^3 + 3}{3}\right) + C\right) e^{x^3}$;

4.5
$$x = (y^2 + C) e^y$$
; **4.6** $x = (\frac{y^4}{4} + C) (1 + y^2)^{-1}$;

4.7
$$y = e^{\sec x}(C - \cos x)$$
; **5.1** $y' + \operatorname{tg}(x) y = \frac{e^{\operatorname{tg}(x)}}{\cos(x)}$;

5.2
$$y = (e^{tg(x)} + C)\cos(x);$$
 5.3 $y = (e^{tg(x)} - 1)\cos(x);$

5.2
$$y = (e^{tg(x)} + C)\cos(x);$$
 5.3 $y = (e^{tg(x)} - 1)\cos(x);$ **6.1** $y' + \frac{1}{\sqrt{x+1}}y = \frac{1}{\sqrt{x+1}};$ **6.2** $y = 1 + Ce^{-2\sqrt{x+1}};$

7.1
$$y^2 \sqrt{\ln^2(x) - 1} = C$$
; **7.2** $y = x(3x + C)e^{-x}$;

7.4
$$\frac{2}{3}x^{\frac{3}{2}} + 2\sqrt{y} - y = C$$
; 8. $\frac{y^3}{3} - \sqrt{1 + x^2} = \frac{1}{3} - \sqrt{2}$;

9.
$$y = -x(\cos(x) + 1)$$
;

10.
$$y^2 = 2 \ln (e^x + 1) - 2 \ln(2) + 1$$
;

11.2
$$y = (\operatorname{sen}(x) + C)(\operatorname{sec}(x) + \operatorname{tg}(x));$$
 12.1 $y = e^{-\operatorname{tg}(x^2 + 1)}(e^{\operatorname{tg}(x^2 + 1)} + e^{-\operatorname{tg}(x^2 + 1)});$

C); 12.2
$$x = (sen(y) + C)(sec(y) + tg(y)).$$