

Spike Train Analysis II: correlation analysis and surrogate methods

Dr. Junji Ito (j.ito@fz-juelich.de)

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany

9th Latin American School on Computational Neuroscience (LASCON 2024) NeuroMat, University of Sao Paulo, Sao Paulo, Brazil | January 20, 2024

Recap | response to visual stimulus

- Neurons in the primary visual cortex have...
 - Receptive field: a particular region of the visual field in which a stimulus triggers the firing of that neuron.
 - Orientation preference: a particular orientation of stimulus to which that neuron respond strongly

From: Dayan and Abbott (2008)

Introduction | hierarchical visual processing

From: Mannasi et al. (2005) J Vis 13:1-10

visual field

- As processing proceeds through the hierarchy...
 - Receptive field size gets larger

and objects

Represented feature gets more complex

Demo

From: Murata et al. (2014) PLoS ONE 9:e115658

Demo

Demo

Motivation | question

From: Mannasi et al. (2005) J Vis 13:1-10

- In the demo, you saw exactly the same image before and after you were aware of the dog.
- What difference in the brain activity makes you aware or not aware of the dog?

Motivation | underlying neuronal activity

From: Harris (2005) Nat Rev Neurosci 6:399-407

- Processing by interaction of neurons
- Activity propagates across processing stages

Motivation | what makes a neuron fire?

 Cortical neuron: single EPSP far from threshold

Synchronous input effective in generating output spikes

Abeles (1982) Isr J Med Sci 18: 83--92; Abeles (1991) Corticonics, Cambridge Univ Press; Koenig et al (1996) TINS 19: 130--137; Salinas & Sejnowski (2000) JNS 20:6193-6209; etc.

Motivation | binding-by-synchrony hypothesis

From: Harris (2005) Nat Rev Neurosci 6:399-407

 Cell assemblies act as building blocks for information processing, by firing spikes synchronously, in order to propagate their activity stably across processing stages

JÜLICH FORSCHUNGSZENTRUM

Motivation | binding-by-synchrony hypothesis

- Cell assemblies act as building blocks for information processing, by firing spikes synchronously, in order to propagate their activity stably across processing stages
- Assembly membership is expressed by coordinated spiking activity

Motivation | goal

- Identify coordinated spiking activity in spike trains of multiple neurons
 - → cross-correlation analysis

Outline

Methods

- Cross-correlation analysis
- Significance test

Applications

- Relation to gestalt perception
 - Cat V1 data (response to visual edges)
 - Monkey MT data (response to visual movement)
- Relation to network architecture
 - Rat somatosensory cortex (anesthesia)
 - Human neocortex (during sleep)

Methods | cross-correlation histogram

• The cross-correlation function is a measure of similarity between two time series $s_1(t)$ and $s_2(t)$ defined as:

$$\rho_{12}(\tau) = \int s_1(t) \cdot s_2(t-\tau) dt$$

 In the case of spike trains, computation is performed directly on binned spike trains as cross-correlation histogram (CCH)

Methods | CCH example

Methods | beyond chance?

- Trivially, the higher the rates, the more coincidences (just by chance!)
- Coherent changes in firing rates may induce a peak in a CCH
- How many chance coincidences are expected given the firing rates and their modulations?
 - Solution: compare to CCHs expected from uncorrelated data ('predictor')

Why and When Surrogates

- Goal: test if an empirical measure deviates from its predictor
 - Requires knowledge of probability distribution of the predictor: null distribution
 - When unknown, parametric or nonparametric statistical methods may be used
 - Parametric tests: require model of the data and parameter estimates → often difficult to obtain
- Non-parametric surrogate statistical tests
 - Empirically estimate the null distribution by use of surrogate data, i.e., modified samples of the original data
 - Surrogate methods include bootstrap resampling, randomization approaches, and so on
 - In our case of correlation analysis: destroy potentially existing correlations but keep (ideally all) other statistical features intact

(In parts from: http://sccn.ucsd.edu/wiki/Chapter_5.2._Nonparametric_surrogate_statistics)

Practical procedure

- Generate a surrogate by manipulating the original data to destroy potential fine temporal correlation
- 2. Compute the same measure as from the original data
- 3. Repeat steps 1 and 2 many times
- 4. Derive the distribution of the measure extracted from the surrogates
- 5. Compare the empirical measure to the surrogate distribution
- **6. Derive significance** (p-value, surprise, etc.)

empirical count

Surrogates for significance estimation

- More surrogates available / to be invented
- Concern: keep the changes in other statistical features of spike trains as little as possible

Grün (2009) J Neurophysiol (review)

Louis et al. (2010) Front Comput Neuroscience

Louis et al. (2010) in Analysis of Parallel Spike Trains (2010) Eds: Grün & Rotter, Springer

Trial shuffling

- Random recombination of trials
- Effect: spike trains are not changed, only their trial combination
- Assumption: stationarity across trials
 - For short-term stationarity: shift predictor = recombination with shifted trial IDs

Spike time dithering

- Apply to each spike a small random shift with weighted probability within [-s, s]
 - Choice of s: larger than temporal jitter of correlation, small enough not to alter the firing rate modulations on a larger time scale
- Effect: ISIs modified, firing rate modulations smoothed
- Assumptions: stationarity on the time scale of the dither width

Spike time randomization

- Randomize times of spike occurrences
- Effects:
 - destroys ISIs (makes spike train become Poisson)
 - flattens the firing rate modulations
- Assumption: Poisson, stationarity

ISI randomization

- Randomize ISIs
- Effects:
 - keeps the distribution of ISIs
 - flattens the firing rate modulations
- Assumption: renewalty (more general than Poisson), stationarity

Mitglied in der Helmholtz-Gemeinschaft

Pros-and-cons of different surrogate methods

TABLE 1. Methods for implementing the null-hypothesis, divided into model based and data based

			Problems accounted for					Conserves		Destroys				
	Method				Non- Cross Stat Trial Rate in Non- Time Stat		oss- rial on-	Non- Poisson	Assumptions	Single Neuron	Parallel Neurons	Single Neuron	Parallel Neurons	
Model based	Α	Homogeneous Poisson process	con E	ation			(X)		Poisson stat	average rate	average rates of all neurons	• ISI • PSTH	• POPH	
	В	process Homogeneous model process	estin e trial			(X)	(X)	Model processstat	average rate	 average rates of all neurons 	• PSTH	• POPH		
	С	Inhomogenous Poisson process	Parameter e	Parameter estimation in single trials	(X)		(X)		PoissonNon-stat	• PSTH	Co-var rate	• ISI	• POPH	
	D	Inhomogenous model process			(X)		(X)	(X)	Model processNon-stat	PSTH ISI	Co-var rate		• POPH	
Data-based surrogates	Е	E Spike time randomization (within single trials))	K		Poisson stat	• SpC	SpC co-var	ISI PSTH Sp-tr struc	• POPH	
	F	F ISI shuffling (within single trials))	K	Х	Renewal stat rate stat proc param	• SpC	SpC co-var	PSTH Sp tr struc	• POPH	
	G	ISI shuffling (across trials)						Х	Renewal stat rate cr-tr stat	tot SpC tot ISI	tot SpC per neuron	PSTH ISI Sp-tr struc	• POPH	neurons
	Н	H Trial shuffling			Х				• cr-trl stat	PSTH ISI Sp-tr struc	• tot POPH	Trial ids	• POPH • SpC	oss ner
	1	I Shift predictor			X	()	K)		Short-term cr-tr stat	PSTH sp tr struc ISI	• tot POPH	Trial ids	POPH SpC co-var	ing acr
	J	Spike shuffling across neurons (within trials)							cr-tr statSpC co-varPoisson			PSTH ISI SpC sp-tr struc		Spike timing across
	K	Spike exchange across K neurons (within trials)							stat rate Poisson	• SpC	• POPH	PSTH ISI sp-tr struc		
	L	_ Dithering			(X))	K	(X)		 sp-tr struc (approx) SpC ISI (smoothed) PSTH (smoothed) 	• POPH (smoothed)			
	М	Soft dithering (according to ISI distribution)			(X))	K	х		sp-tr struc (approx) SpC ISI PSTH (smoothed)	POPH (smoothed)			
	N	Shifting spike trains of neurons against each other			(X))	K	X		Sp-tr strucSpC (approx)PSTH (smoothed)	POPH (smoothed)			

litglied in der Helmholtz-Gemeins

Pros-and-cons of different surrogate methods

 Example drawback: applying spike time dithering on data to be discretized can lead to spike count reduction

Surrogate performance | test data

Туре	Process	Nonstat. in time	Cross-trial nonstat.	γ	Δ
1	Poisson	no	no	1	0
2	Poisson	yes	no	1	0
3	Poisson	no	yes	1	0.235
4	Poisson	yes	yes	1	0.5
5	Gamma	yes	yes	3	0.5

Louis et al. in *Analysis of Parallel Spike Trains* (2010) Eds: Grün & Rotter, Springer

- To evaluate the performance of different surrogate methods, a test data set is generated
 - Non-stationary firing rates according to a profile
 - Cross-trial variations by random selections (per trial) of rate modulation depth Δ
 - Different regularities of the ISIs by gamma processes of different shape factors γ
- Correlations are introduced by inserting coincident spikes in a pair of spike trains at a given rate

Surrogate performance | test data

An example of type 5 data

Louis et al. in Analysis of Parallel Spike Trains (2010) Eds: Grün & Rotter, Springer

Surrogate performance | CCH

Louis et al. in *Analysis of Parallel Spike Trains* (2010) Eds: Grün & Rotter, Springer

- Two temporally different components in the original data
 - Broad peak: due to the nonstationarity of the firing rate
 - Narrow peak at zero-lag: fine temporal correlation

Surrogate performance | CCH

Louis et al. in *Analysis of Parallel Spike Trains* (2010) Eds: Grün & Rotter, Springer

Spike time randomization

 Flat CCH – due to destruction of firing rate changes

Trial shuffling

 Under-estimation of the amplitude of the rate peak due to the variability across trials

Spike time dithering

Reproduces the broad peak

Surrogate performance | zero-lag synchrony

Louis et al. in *Analysis of Parallel Spike Trains* (2010) Eds: Grün & Rotter, Springer

- Empirical coincidence count at 258
 - Its percentile score in each surrogate distribution is shown in the legend
- With a 5% significance threshold, the empirical count is significantly large in comparison to all types of surrogates
- But mostly due to wrong reasons – all but spike time dithering tend to lead to false positives!

Methods | summary

- Cross-correlation histogram (CCH) is a standard tool for examining synchronized or delayed spike correlation.
- Comparison to surrogate data allows to differentiate excess correlation from chance correlation, which occurs just by chance.
 - Choosing an appropriate surrogate method is crucial for drawing proper conclusions

Outline

- Methods
 - Cross-correlation analysis
 - Significance test
- Applications
 - Relation to gestalt perception
 - Cat V1 data (response to visual edges)
 - Monkey MT data (response to visual movement)
 - Relation to network architecture
 - Rat somatosensory cortex (anesthesia)
 - Human neocortex (during sleep)

Application | relation to gestalt perception

Freiwald et al. (1995) NeuroReport 6: 2348--2352

- Simultaneous recording from pairs of single units in the primary visual cortex (A17) of cats
- Long bar condition: synchronized spike response
- Dual bar condition: absence of synchronization

Application | relation to gestalt perception

- Simultaneous recording from pairs of single units in area MT of monkeys
- Long bar condition: synchronized spike response
- Dual bar condition: absence of synchronization

Bartho et al. (2004) J Neurophysiol 92:600-608

- Simultaneous recording from multiple single units in rat somatosensory cortex using a 64-ch electrode array
- ~0.25% of the recorded cell pairs showed shortlatency peak and/or trough in their CCHs
- Short-latency peak
 - → excitatory connection
- Short-latency trough
 - → inhibitory connection

Application | relation to network architecture

- Simultaneous recording from multiple single units in the middle temporal gyrus of epilepsy patients using a 10x10 grid of electrodes
- Correlation between inhibitory neurons → constant over distance
- Correlation between excitatory neurons → decay with distance

Peyrache et al. (2012) PNAS 109:1731-1736

Summary

- Cross-correlation histogram (CCH) is a standard tool for examining synchronized or delayed spike correlation.
- Comparison to surrogate data allows to differentiate excess correlation from chance correlation, which occurs just by chance.
- Conversing evidence suggests that gestalt perception requires binding of single unit activities via spike synchrony.
- The type and direction of synaptic connections between neurons can be inferred from the shape of CCH.