

Maulana Kavaldo -Visualization & Machine Learning

149368779100-121

Outline

Challenge 1 - Visualization

Dashboard COVID-19 in Indonesian and function

Challenge 2 - Machine Learning

Churn Prediction

- Data Preparation
- Data Prepocessing
- Classification Models

Visualization - Dashboard

Dataset Source: <u>Kaggle</u> Dashboard: <u>Data Studio</u>

Visualization - Dashboard

Total dari kasus, total meninggal, total sembuh, tingkat sembuh dan tingkat kematian yang terjadi di seluruh provinsi di Indonesia. Nilai dapat berubah jika ingin melihat provinsi tertentu dan melakukan filter waktu dari tanggal tertentu.

Perkembangan COVID-19 yang terjadi di Indonesia di tahun 2022. Dimana data terakhir menampilkan nilai total kasus, kematian dan sembuh terlihat pada gambar.

Perkembangan COVID-19 mulai dari tahun 2020 s/d 2022. Terjadi lonjakan kasus terbesar pada bulan Juni-Juli 2020 dan bulan Februari pada tahun 2022.

Provinsi di Indonesia dengan warna pudar hingga lebih pekat, semakin pekat warna maka nilai/total kasus semakin tinggi. Untuk grafik yang ditampilkan yaitu, Total Meninggal dan Total Sembuh.

	Provinsi 🔺	Total Kasus	Total Meninggal	Total Sembuh		
1.	Aceh	44.038	2.223	41.713		
2.	Bali	166.831	4.731	161.629		
3.	Banten	333.875	2.950	328.482		
4.	Bengkulu	29.173	522	28.617		
5.	DKI Jakarta	1.412.511	15.513	1.386.134		
6.	Daerah Istimewa Yogyakarta	224.307	5.928	217.712		
7.	Gorontalo	13.951	487	13.433		
8.	Jambi	38.643	889	37.681		
	1-34/34 < >					

Untuk dapat melihat secara rinci data akibat covid-19 dapat melihat tabel data covid. Table data dapat diurutkan sesuai kebutuhan dengan men-hit pada kolom tertentu baik dapat terurut secara menurun atau menaik.

Tabel Data Covid-19 di Indonesia

Beberapa provinsi teratas terdampak COVID-19 berdasarkan total kasus. DKI Jakarta menduduki posisi pertama dengan total kasus sebanyak 1.4 juta sekian, total sembuh 1.4 juta dan total kematian 15.5 ribu

Diurutkan berdasar total kasus per 1 juta orang dan DKI Jakarta lagi-lagi menempati posisi pertama dengan total kematian sebanyak 1.4 ribu jiwa..

Machine Learning

Churn Prediction

Churn Prediction

Telecom

AUC Score

95%

Machine Learning

Machine Learning - Problems and Goals

Problem

Peningkatan jumlah jaringan telekomunikasi di pasar menyebabkan peningkatan jumlah pelanggan yang beralih ke jaringan lain.

Goals

Memprediksi pelanggan dengan potensi churn atau tidak churn secara akurat dan memberikan rekomendasi.

Machine Learning - Exploratory Data Analysis (EDA)

Dataset Churn

Berisi 4.250 sampel. Terdapat 19 fitur dan 1 variabel boolean "churn" yang menunjukkan kelas sampel. 19 fitur input dan 1 variabel target.

Features:

- 1) state
- 2) account_length
- 3) area_code
- 4) international_plan
- 5) voice_mail_plan
- 6) number_vmail_messages
- 7) total_day_minutes

- 8) total_day_calls
- 9) total_day_charge
- 10) total_eve_minutes
- 11) total_eve_calls
- 12) total_eve_charge
- 13) total_night_minutes
- 14) total_night_calls

- 15) total_night_charge
- 16) total_intl_minutes
- 17) total_intl_calls
- 18) total_intl_charge
- 19) number_customer_service_calls
- 20) churn

Machine Learning - Exploratory Data Analysis (EDA)

Beberapa fitur memiliki korelasi yang sama, sehingga dapat dihilangkan salah satu fitur

Machine Learning - Exploratory Data Analysis (EDA)

Biaya harian meningkat, churn ikut meningkat.

Customer yang sering melakukan voice mail lebih berpotensi churn

Churn meningkat seiring dengan meningkatnya customer call.

Churn rate pelanggan dengan international plane lebih tinggi

Machine Learning - Data Prepocessing

Numerical Features

MinMax Scaller

Features:

- ['account_length',
- 'number_vmail_messages',
- 'total_day_calls',
- 'total_eve_calls',
- 'total_night_calls',
- 'total_intl_calls',
- 'number_customer_service_calls',
- 'total_day_minutes',
- 'total_eve_minutes',
- 'total_night_minutes',
- 'total_intl_minutes']

Machine Learning - Data Prepocessing

Categorical Features

One Hot Encoder

Features:

- ['international_plan',
- 'voice_mail_plan']

Machine Learning - Data Prepocessing

Train - Test Split

Original Data

1:8

Resampling

1:1

Train

70%

Test

30%

Machine Learning - classification Models

Models & Metric

Random Forest

Can overcome noise and missing values and can handle large amounts of data

XGB Classifier

Parallel processing that can speed up computing, has a high flexibility of setting objectives, built in cross validation, has a regularization feature, and overcomes splits when negative loss.

Decision Tree

Model simple and easy to understand, can be used to search for all possible decisions, and no need to do a lot of data cleaning or augmentation.

Metric

Area Under the Curve (AUC)

Machine Learning - classification Models

Comparison Models

Model	Data	Train		Test	
Model		Accuracy (%)	Recall (%)	Accuracy (%)	Recall (%)
Random	Original Data	100	100	86	72
Forest	Random Under Sampling	95	100	87	86
XGB	Original Data	100	100	89	78
Classifier	Random Under Sampling	96	100	87	85
Decision	Original Data	100	100	82	69
Tree	Random Under Sampling	92	100	81	82

Random Forest

Machine Learning - conclusion

Model:

Karena data imbalance lebih disarankan model machine learning Random Forest dengan metode resampling (Random Under Sampling).

Recommendation:

Kategori	Strategi
	Memberikan notifikasi secara berkala setiap program promosi yang masih tersedia.
Potensial to Churn	Menawarkan program anggota untuk membuat mereka loyal.
	Memberikan diskon atau promo khusus pada layanan yang ditargetkan kepada pelanggan yang secara potensial untuk churn.
	Menerapkan sistem member tier seperti silver, gold dan platinum, setiap grade memiliki manfaat yang berbeda.
Loyal	Memberikan notifikasi secara berkala setiap program promosi yang masih tersedia agar mereka tetap setia.

Thank you!

