Intro to Econometrics: Recitation 9

Gustavo Pereira

December 4, 2019

1/15

Roadmap

Overview of restricted estimation

Hypothesis testing

Big picture

• Setup: linear projection model,

$$y_i = x_i'\beta + u_i$$

Big picture

• Setup: linear projection model,

$$y_i = x_i' \beta + u_i$$

where $\mathbf{E}x_iu_i=0$

• Suppose the relationship $F(\beta) = 0$ holds for some F.

Big picture

• Setup: linear projection model,

$$y_i = x_i' \beta + u_i$$

- Suppose the relationship $F(\beta) = 0$ holds for some F.
- Two applications:

Big picture

• Setup: linear projection model,

$$y_i = x_i' \beta + u_i$$

- Suppose the relationship $F(\beta) = 0$ holds for some F.
- Two applications:
 - In the case we know $F(\beta) = 0$ holds in advance, can we use this to improve our estimate of $\hat{\beta}$?

Big picture

• Setup: linear projection model,

$$y_i = x_i' \beta + u_i$$

- Suppose the relationship $F(\beta) = 0$ holds for some F.
- Two applications:
 - In the case we know $F(\beta) = 0$ holds in advance, can we use this to improve our estimate of $\hat{\beta}$?
 - ② If we wish to *test* whether $F(\beta) = 0$, is there something we can do?

Big picture

$$\tilde{\beta} = \arg\max_{F(\beta)=0} (y - X\beta)'(y - X\beta)$$

Big picture

Consider the restricted least squares estimator,

$$\tilde{\beta} = \arg\max_{F(\beta)=0} (y - X\beta)'(y - X\beta)$$

Comments:

Big picture

$$\tilde{\beta} = \arg\max_{F(\beta)=0} (y - X\beta)'(y - X\beta)$$

- Comments:
 - **1** By construction, $F(\tilde{\beta}) = 0$

Big picture

$$\tilde{\beta} = \arg\max_{F(\beta)=0} (y - X\beta)'(y - X\beta)$$

- Comments:
 - **1** By construction, $F(\tilde{\beta}) = 0$
 - ② Of course, in general $F(\hat{\beta}) \neq 0$ where $\hat{\beta}$ is the unrestricted solution

Big picture

$$\tilde{\beta} = \arg\max_{F(\beta)=0} (y - X\beta)'(y - X\beta)$$

- Comments:
 - **1** By construction, $F(\tilde{\beta}) = 0$
 - ② Of course, in general $F(\hat{\beta}) \neq 0$ where $\hat{\beta}$ is the unrestricted solution
- Results: under regularity conditions, if $F(\beta) = 0$ then

Big picture

$$\tilde{\beta} = \arg\max_{F(\beta)=0} (y - X\beta)'(y - X\beta)$$

- Comments:
 - **1** By construction, $F(\tilde{\beta}) = 0$
 - ② Of course, in general $F(\hat{\beta}) \neq 0$ where $\hat{\beta}$ is the unrestricted solution
- Results: under regularity conditions, if $F(\beta) = 0$ then
 - \bullet $\tilde{\beta}$ is consistent for β

Big picture

$$\tilde{\beta} = \arg\max_{F(\beta)=0} (y - X\beta)'(y - X\beta)$$

- Comments:
 - $\ \, \textbf{ 9 } \, \text{ By construction, } \, F(\tilde{\beta}) = 0 \\$
 - ② Of course, in general $F(\hat{\beta}) \neq 0$ where $\hat{\beta}$ is the unrestricted solution
- Results: under regularity conditions, if $F(\beta) = 0$ then
 - \bullet $\tilde{\beta}$ is consistent for β

Big picture

• What do we gain from all this? Questions:

- What do we gain from all this? Questions:
- Is $\tilde{\beta}$ necessarily 'better' than $\hat{\beta}$ under $F(\beta)=0$?

- What do we gain from all this? Questions:
- Is $\tilde{\beta}$ necessarily 'better' than $\hat{\beta}$ under $F(\beta)=0$?
 - In general, no. See sec 8.9. However, finite sample results in the homoskedastic linear regression with linear constraint.

- What do we gain from all this? Questions:
- Is $\tilde{\beta}$ necessarily 'better' than $\hat{\beta}$ under $F(\beta)=0$?
 - ▶ In general, no. See sec 8.9. However, finite sample results in the homoskedastic linear regression with linear constraint.
- Can we use this machinery to tests hypotheses of the type $F(\beta) = 0$?

- What do we gain from all this? Questions:
- Is $\tilde{\beta}$ necessarily 'better' than $\hat{\beta}$ under $F(\beta)=0$?
 - ▶ In general, no. See sec 8.9. However, finite sample results in the homoskedastic linear regression with linear constraint.
- Can we use this machinery to tests hypotheses of the type $F(\beta) = 0$?
 - Yes. Options:

- What do we gain from all this? Questions:
- Is $\tilde{\beta}$ necessarily 'better' than $\hat{\beta}$ under $F(\beta)=0$?
 - ▶ In general, no. See sec 8.9. However, finite sample results in the homoskedastic linear regression with linear constraint.
- Can we use this machinery to tests hypotheses of the type $F(\beta) = 0$?
 - Yes. Options:
 - f O $F(\hat{eta})$ has a sufficiently bigger than zero magnitude (Wald test)

- What do we gain from all this? Questions:
- Is $\tilde{\beta}$ necessarily 'better' than $\hat{\beta}$ under $F(\beta)=0$?
 - ▶ In general, no. See sec 8.9. However, finite sample results in the homoskedastic linear regression with linear constraint.
- Can we use this machinery to tests hypotheses of the type $F(\beta) = 0$?
 - Yes. Options:
 - $oldsymbol{0}$ $F(\hat{eta})$ has a sufficiently bigger than zero magnitude (Wald test)
 - 2 $\hat{\beta}$ is too far from $\tilde{\beta}$ (minimum distance statistic)

- What do we gain from all this? Questions:
- Is $\tilde{\beta}$ necessarily 'better' than $\hat{\beta}$ under $F(\beta)=0$?
 - ▶ In general, no. See sec 8.9. However, finite sample results in the homoskedastic linear regression with linear constraint.
- Can we use this machinery to tests hypotheses of the type $F(\beta) = 0$?
 - Yes. Options:
 - $f O(\hat{eta})$ has a sufficiently bigger than zero magnitude (Wald test)
 - 2 $\hat{\beta}$ is too far from $\tilde{\beta}$ (minimum distance statistic)
 - 3 The Lagrange multiplier associated with F is large ("score" type test)

Minimum distance

• Take OLS objective, add subtract $\hat{\beta}$:

$$J = (y - X\beta)'(y - X\beta) = (\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta) + \text{rest}$$

where "rest" doesn't depend on β

Minimum distance

• Take OLS objective, add subtract $\hat{\beta}$:

$$J = (y - X\beta)'(y - X\beta) = (\hat{\beta} - \beta)'X'X(\hat{\beta} - \beta) + \text{rest}$$

where "rest" doesn't depend on β

• CLS is the solution to a more general problem:

$$\tilde{\beta} = \arg\min_{F(\beta)=0} (\hat{\beta} - \beta)' W(\hat{\beta} - \beta)$$

with W = X'X.

Minimum distance: results

• Index $\tilde{\beta}(W)$ by the choice of weighting matrix

Minimum distance: results

• Index $\tilde{\beta}(W)$ by the choice of weighting matrix

• Then:

- Index $\tilde{\beta}(W)$ by the choice of weighting matrix
- Then:
 - $m{0}$ $\tilde{eta}(W)$ is consistent

- Index $\tilde{\beta}(W)$ by the choice of weighting matrix
- Then:
 - \bullet $\tilde{\beta}(W)$ is consistent
 - ② $\sqrt{n}(\tilde{\beta}(W) \beta) \stackrel{d}{\to} N(0, \tilde{V}_{\beta}(W))$ where the expression for $\tilde{V}_{\beta}(W)$ is very long and not very informative

- Index $\tilde{\beta}(W)$ by the choice of weighting matrix
- Then:
 - \bullet $\tilde{\beta}(W)$ is consistent
 - ② $\sqrt{n}(\tilde{\beta}(W) \beta) \stackrel{d}{\to} N(0, \tilde{V}_{\beta}(W))$ where the expression for $\tilde{V}_{\beta}(W)$ is very long and not very informative
- ullet The following holds. For any symmetric positive definite matrix W,

$$ilde{V}_eta(W^*) \leq ilde{V}_eta(W)$$

where
$$W^* = V_{\beta}^{-1}$$

Minimum distance: results

- Index $\tilde{\beta}(W)$ by the choice of weighting matrix
- Then:
 - $\mathfrak{J}(W)$ is consistent
 - ② $\sqrt{n}(\tilde{\beta}(W) \beta) \stackrel{d}{\to} N(0, \tilde{V}_{\beta}(W))$ where the expression for $\tilde{V}_{\beta}(W)$ is very long and not very informative
- ullet The following holds. For any symmetric positive definite matrix W,

$$ilde{V}_eta(W^*) \leq ilde{V}_eta(W)$$

where $W^* = V_{\beta}^{-1}$

• In the case where F is linear, also

$$\tilde{V}_{\beta}(W^*) \leq V_{\beta}$$

Minimum distance: results

• Useful exercises:

- Useful exercises:
 - Make sure you can derive the expressions for constrained OLS and MD estimator

- Useful exercises:
 - Make sure you can derive the expressions for constrained OLS and MD estimator
 - Check out the proof of efficient MD weighting

Statistical tests

Review of first half

• Parameter space decomposed into $B = B_0 \sqcup B_1$

Statistical tests

Review of first half

- ullet Parameter space decomposed into $B=B_0\sqcup B_1$
- \bullet Action space: $\mathcal{A}=\{0,1\}$ or $\mathcal{A}=[0,1]$

Statistical tests

Review of first half

- Parameter space decomposed into $B = B_0 \sqcup B_1$
- ullet Action space: $\mathcal{A}=\{0,1\}$ or $\mathcal{A}=[0,1]$
- Loss function

$$\mathcal{L}(a,\beta) = \mathbf{1}(a = 0, \beta \in B_1) + \mathbf{1}(a = 1, \beta \in B_0)$$

Review of first half

- Parameter space decomposed into $B = B_0 \sqcup B_1$
- ullet Action space: $\mathcal{A}=\{0,1\}$ or $\mathcal{A}=[0,1]$
- Loss function

$$\mathcal{L}(a,\beta) = \mathbf{1}(a = 0, \beta \in B_1) + \mathbf{1}(a = 1, \beta \in B_0)$$

ullet Statistical test: let data realizations be denoted by $z\in\mathcal{Z}$

$$\phi: \mathcal{Z} \rightarrow \{0,1\}$$

Review of first half

- Parameter space decomposed into $B = B_0 \sqcup B_1$
- ullet Action space: $\mathcal{A}=\{0,1\}$ or $\mathcal{A}=[0,1]$
- Loss function

$$\mathcal{L}(a,\beta) = \mathbf{1}(a = 0, \beta \in B_1) + \mathbf{1}(a = 1, \beta \in B_0)$$

ullet Statistical test: let data realizations be denoted by $z\in\mathcal{Z}$

$$\phi: \mathcal{Z} \rightarrow \{0,1\}$$

• Define $\xi(\beta) = \mathbf{E}_{\beta}[\phi(z)]$

Review of first half

- Parameter space decomposed into $B = B_0 \sqcup B_1$
- ullet Action space: $\mathcal{A}=\{0,1\}$ or $\mathcal{A}=[0,1]$
- Loss function

$$\mathcal{L}(a,\beta) = \mathbf{1}(a = 0, \beta \in B_1) + \mathbf{1}(a = 1, \beta \in B_0)$$

ullet Statistical test: let data realizations be denoted by $z\in\mathcal{Z}$

$$\phi: \mathcal{Z} \rightarrow \{0,1\}$$

- Define $\xi(\beta) = \mathbf{E}_{\beta}[\phi(z)]$
 - ▶ For $\beta \in B_0$, $\xi(\beta)$ is rate of type I error

"How often does your test reject a true null?"

Review of first half

- Parameter space decomposed into $B = B_0 \sqcup B_1$
- ullet Action space: $\mathcal{A}=\{0,1\}$ or $\mathcal{A}=[0,1]$
- Loss function

$$\mathcal{L}(a,\beta) = \mathbf{1}(a = 0, \beta \in B_1) + \mathbf{1}(a = 1, \beta \in B_0)$$

ullet Statistical test: let data realizations be denoted by $z\in\mathcal{Z}$

$$\phi: \mathcal{Z} \rightarrow \{0,1\}$$

- Define $\xi(\beta) = \mathbf{E}_{\beta}[\phi(z)]$
 - ▶ For $\beta \in B_0$, $\xi(\beta)$ is rate of type I error

"How often does your test reject a true null?"

▶ For $\beta \in B_1$, $\xi(\beta)$ is the *power* of a test

"how capable is your test of rejecting a false null?"

Review of first half

• In the simple null vs simple alternative case:

Review of first half

- In the simple null vs simple alternative case:
 - Admissible tests maximize power subject to size

Review of first half

- In the simple null vs simple alternative case:
 - Admissible tests maximize power subject to size
 - Admissible tests take the LR form, i.e., reject when

$$\frac{f(z,\beta_1)}{f(z,\beta_0)}$$

is large

Review of first half

- In the simple null vs simple alternative case:
 - Admissible tests maximize power subject to size
 - Admissible tests take the LR form, i.e., reject when

$$\frac{f(z,\beta_1)}{f(z,\beta_0)}$$

is large

 Constructed LR tests in the composite case, argued that it's approximately the same as Wald and Score tests

• We move to the linear projection/regression model

- We move to the linear projection/regression model
- ullet Problem: distribution of data is not fully specified \Longrightarrow no likelihood function

- We move to the linear projection/regression model
- ullet Problem: distribution of data is not fully specified \Longrightarrow no likelihood function
 - E.g., linear projection model

$$y_i = x_i' \beta + u_i$$
 $\mathbf{E}[x_i u_i] = 0$

indexed by β ;

- We move to the linear projection/regression model
- ullet Problem: distribution of data is not fully specified \implies no likelihood function
 - E.g., linear projection model

$$y_i = x_i'\beta + u_i$$
 $\mathbf{E}[x_iu_i] = 0$

indexed by β ;

Approach: asympotics

- We move to the linear projection/regression model
- ullet Problem: distribution of data is not fully specified \Longrightarrow no likelihood function
 - E.g., linear projection model

$$y_i = x_i'\beta + u_i$$
 $\mathbf{E}[x_iu_i] = 0$

indexed by β ;

- Approach: asympotics
 - We will focus on constructing tests with correct (asymptotic) size

- We move to the linear projection/regression model
- ullet Problem: distribution of data is not fully specified \Longrightarrow no likelihood function
 - E.g., linear projection model

$$y_i = x_i'\beta + u_i$$
 $\mathbf{E}[x_iu_i] = 0$

indexed by β ;

- Approach: asympotics
 - ▶ We will focus on constructing tests with correct (asymptotic) size
 - ▶ Then we will try to think about comparing tests based on some notion of power

Main example

In the linear projection model,

$$\sqrt{n}\left(\hat{eta}-eta
ight)\stackrel{d}{
ightarrow} N(0,V_eta)$$

Main example

In the linear projection model,

$$\sqrt{n}\left(\hat{\beta}-\beta\right)\stackrel{d}{
ightarrow} N(0,V_{\beta})$$

• Suppose we want to test $H_0: \beta = \beta_0$ vs $H_1: \beta \neq \beta_0$. Note that

$$\sqrt{n}\hat{V}_{\beta}^{-1/2}\left(\hat{\beta}-\beta\right)\overset{d}{
ightarrow}\mathsf{N}(0,\mathbf{I}_{k})$$

Main example

In the linear projection model,

$$\sqrt{n}\left(\hat{\beta}-\beta\right)\stackrel{d}{
ightarrow} N(0,V_{eta})$$

• Suppose we want to test $H_0: \beta = \beta_0$ vs $H_1: \beta \neq \beta_0$. Note that

$$\sqrt{n}\hat{V}_{\beta}^{-1/2}\left(\hat{\beta}-\beta\right)\stackrel{d}{\to} N(0,\mathbf{I}_k)$$

• Thus, if the null is correct,

$$W_n = n \left(\hat{\beta} - \beta_0\right)' \hat{V}_{\beta}^{-1} \left(\hat{\beta} - \beta_0\right) \stackrel{d}{\to} \chi_k^2$$

Main example

 \bullet Consider the following procedure. Let K be a $1-\alpha$ quantile of χ^2_k

- ullet Consider the following procedure. Let K be a 1-lpha quantile of χ^2_k
 - Reject the null if $W_n > K$

- ullet Consider the following procedure. Let K be a 1-lpha quantile of χ^2_k
 - Reject the null if $W_n > K$
 - Accept the null otherwise

- ullet Consider the following procedure. Let K be a 1-lpha quantile of χ^2_k
 - Reject the null if $W_n > K$
 - Accept the null otherwise
- What happens if the null is correct?

$$\mathbf{P}_0\left(W_n > K\right) = 1 - F_n(K) \to 1 - F(K) = \alpha$$

Main example

- ullet Consider the following procedure. Let K be a 1-lpha quantile of χ^2_k
 - Reject the null if $W_n > K$
 - Accept the null otherwise
- What happens if the null is correct?

$$\mathbf{P}_0\left(W_n > K\right) = 1 - F_n(K) \to 1 - F(K) = \alpha$$

• What happens if $\beta \neq \beta_0$?

- ullet Consider the following procedure. Let K be a 1-lpha quantile of χ^2_k
 - Reject the null if $W_n > K$
 - Accept the null otherwise
- What happens if the null is correct?

$$\mathbf{P}_0\left(W_n > K\right) = 1 - F_n(K) \to 1 - F(K) = \alpha$$

- What happens if $\beta \neq \beta_0$?
 - ▶ By CMT,

$$\frac{W_n}{n} = \left(\hat{\beta} - \beta_0\right)' \hat{V}_{\beta}^{-1} \left(\hat{\beta} - \beta_0\right) \stackrel{p}{\to} \left(\beta - \beta_0\right)' V_{\beta}^{-1} \left(\beta - \beta_0\right)$$

Main example

- ullet Consider the following procedure. Let K be a 1-lpha quantile of χ^2_k
 - Reject the null if $W_n > K$
 - Accept the null otherwise
- What happens if the null is correct?

$$\mathbf{P}_0\left(W_n > K\right) = 1 - F_n(K) \to 1 - F(K) = \alpha$$

- What happens if $\beta \neq \beta_0$?
 - ▶ By CMT,

$$\frac{W_n}{n} = \left(\hat{\beta} - \beta_0\right)' \hat{V}_{\beta}^{-1} \left(\hat{\beta} - \beta_0\right) \stackrel{p}{\to} \left(\beta - \beta_0\right)' V_{\beta}^{-1} \left(\beta - \beta_0\right)$$

Therefore

$$W_n = n \frac{W_n}{n} \stackrel{p}{\to} +\infty \implies \mathbf{P}_{\beta}(W_n > K) \to 1$$

Summary

• Testing $H_0: \beta \in B_0$ vs $H_1: \beta \in B_1$

Summary

- Testing $H_0: \beta \in B_0$ vs $H_1: \beta \in B_1$
- ullet Find statistic T_n and critical region K_n

Summary

- Testing $H_0: \beta \in B_0$ vs $H_1: \beta \in B_1$
- Find statistic T_n and critical region K_n
- Asymptotic level requirement:

$$\lim \mathbf{P}_{\beta}(T_n \in K_n) \leq \alpha$$

for all $\beta \in B_0$. Typically achieve that by finding *pivotal* T_n

Summary

- Testing $H_0: \beta \in B_0$ vs $H_1: \beta \in B_1$
- Find statistic T_n and critical region K_n
- Asymptotic level requirement:

$$\lim \mathbf{P}_{\beta}(T_n \in K_n) \leq \alpha$$

for all $\beta \in B_0$. Typically achieve that by finding *pivotal* T_n

ullet Power: if test is level α , and

$$\lim \mathbf{P}_{\beta}(T_n \in K_n) \to 1$$

for every $\beta \in B_1$, we call it *consistent*

Consider the model

$$y_i = x_i'\beta + u_i$$

Consider the model

$$y_i = x_i'\beta + u_i$$

• Want to test $r(\beta) = \theta_0$

Consider the model

$$y_i = x_i' \beta + u_i$$

- Want to test $r(\beta) = \theta_0$
- Two approaches:

Consider the model

$$y_i = x_i'\beta + u_i$$

- Want to test $r(\beta) = \theta_0$
- Two approaches:
 - Apply delta method:

$$\sqrt{n}\left[r(\hat{\beta})-r(\beta)\right]\to r'(\beta)N(0,V_{\beta})$$

Consider the model

$$y_i = x_i'\beta + u_i$$

- Want to test $r(\beta) = \theta_0$
- Two approaches:
 - Apply delta method:

$$\sqrt{n}\left[r(\hat{\beta})-r(\beta)\right]\to r'(\beta)N(0,V_{\beta})$$

Use the properties of restricted estimators

Consider the model

$$y_i = x_i' \beta + u_i$$

- Want to test $r(\beta) = \theta_0$
- Two approaches:
 - Apply delta method:

$$\sqrt{n}\left[r(\hat{\beta})-r(\beta)\right]\to r'(\beta)N(0,V_{\beta})$$

- Use the properties of restricted estimators
 - * It is often easier to solve minimization of squared residuals in the restricted model