MAP0214 3o. PROGRAMA - Integração Numérica

- 1) Seja a integral $I = \int_0^1 (6 6x^5) dx$.
- a) Construa um programa em **precisão simples** que calcule numericamente a integral usando o método de Simpson.
 - b) Faça uma tabela na forma

p	N	I_{num}	erro
1	2		
2	4		
•	•		
•	•		
	•		
25	33554432		

onde $N=2^p$ é o número de intervalos, $erro=|I_{num}-I|$ e I é o valor analítico da integral.

- c) Repita o item b em dupla precisão.
- d) Faça um gráfico de $\log_{10}(erro)$ em função de p, eliminando os pontos em que eventualmente erro=0, para precisão simples e dupla precisão, no mesmo gráfico. Indique nos gráficos os efeitos do erro de Truncamento no método de Simpson e erro de "Roundoff" da representação de ponto flutuante. Determine a partir do gráfico a ordem de grandeza do erro do método de Simpson e de "Roundoff" e compare com o teóricos $\mathcal{O}(h^4)$ e $\mathcal{O}(\sqrt{N})$, respectivamente. Explique o que está acontecendo à medida que se aumenta N.
- 2) O período de um pêndulo simples para ângulos pequenos ($\theta_0 < 10^\circ$) é dado por $T_{Galileu} = 2\pi\sqrt{l/g}$. Para ângulos apreciáveis e desprezando a resistência do ar a expressão para o período é

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\pi/2} \frac{1}{\sqrt{1 - k^2 \sin^2 \phi}} d\phi$$
 (1)

onde $k^2 \equiv [1 - \cos(\theta_0)]/2$ e θ_0 é o ângulo inicial. Com o método de trapézios calcule a integral acima e construa uma tabela com 20 valores de θ_0 e T, com θ_0 em **radianos** no intervalo $[0, \pi)$. Aumente bem o número de valores θ_0 e faça um gráfico de $T/T_{Galileu}$ em função de θ_0 . Use o número de divisões trapezoidais que achar necessário.

- 3) Cálculo de π a partir da área do primeiro quadrante do círculo limitado pela curva $x^2+y^2=1$ usando o método de Monte-Carlo.
- a) Faça primeiro uma rotina random (Z_i) que retorne números aleatórios uniformemente distribuídos por "linear congruential method" (LCG) com $Z_{i+1} = aZ_i \mod m$ onde a = 16807, m = 2147483647 e $U_i = Z_{i+1}/m$. U_i é o número entre 0 e 1 gerado. Use seu número USP como semente inicial Z_0 . (em C declare os inteiros unsigned long e em FORTRAN use integer*8)
- b) Faça UMA tentativa jogando 100 pontos (x,y), 0 < x < 1 e 0 < y < 1 aleatoriamente e determine o valor da área do círculo usando

$$I \sim 4 \frac{\text{número de pontos dentro}}{\text{número total de pontos}}$$
 (2)

c) Faça um estudo com com diferentes números de tentativas $N_{tent}=2,4,8,16...,131072.$ (cada tentativa joga 100 pontos aleatórios). Construa a seguinte tabela

N_{tent}	I_m	σ	σ_m
2			
4			
•			
•			
•			
131072			

onde I_m é o valor médio da integral, σ é o desvio padrão e σ_m é o desvio padrão da média, dados pelas fórmulas

$$I_m = \frac{1}{N_{tent}} \sum_{i=1}^{N_{tent}} I_i, \tag{3}$$

$$\sigma^2 = \frac{1}{N_{tent} - 1} \sum_{i=1}^{N_{tent}} (I_i - I_m)^2, \tag{4}$$

e $\sigma_m = \sigma/\sqrt{N_{tent}}$.

O valor da integral é dado por $I_m \pm \sigma_m$.

O QUE É PARA ENTREGAR:

- 1a) programa (só em precisão simples)
- 1b) tabela impressa precisão simples
- 1c) tabela impressa precisão dupla
- 1d) gráfico com curvas do erro precisão simples e dupla, indicando efeitos erros de truncamento do Simpson e de "Roundoff"+ ordem de grandeza do erro + Explicação.
 - 2) programa + tabela + gráfico
 - 3) programa + tabela do item c

Referências

P.A. Stark, Introduction to Numerical methods, Macmillan Company, 1970, p.210. Ralston and P. Rabinowitz, A first course in Numerical Analysis, Dover, 1978, pp.9-11. L.D. Landau and E.M. Lifshitz, Mechanics, 3rd edition, Pergamon, 1976. N. Giordano, Computational Physics, Prentice Hall, 1997.

Dúvidas c/ Professor na aula

Dúvidas c/ Monitor