

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

W-SK2 Labor Systemintegration Windkraft Kennlinien für die Simulation in Matlab erstellen

Prof. Dr.-Ing. Jens Fortmann

Nur für den internen Gebrauch im Rahmen von Lehrveranstaltungen an der HTW. Weiterverbreitung an Dritte aus urheberrechtlichen Gründen nicht gestattet!

Cp-lampda-Daten aus QBlade exportieren

 Die Registerkarte "Char BEM" auswählen

2. Ein Diagramm cp über TRS auswählen, x-Achse auf 0..20 begrenzen, y-Achse auf 0..0.5 begrenzen, Wind auf z.B. 11 m/s. Dann Diagramm mir Rechtsklick exportieren:

Aerodynamik-Kennfeld aus QBlade nutzen

Hochschule für Technik und Wirtschaft Berlin

Im WEA Block in den Blick "Wind Turbine" gehen

Dort, die Funktion zur Berechnung des cp-Werts durch eine "2-D Lookup Table" ersetzen → ↓ ↓ ↓ ↓ □

Registerblatt "Table and Breakpoints" anpassen

Tabelle)

```
TableData cp = [-0.0004 - 0.0002 0.0001;
0.0033 \ 0.\overline{0}045 \ 0.0056;
0.0816 0.0903 0.09901;
d.h. nach jeder Zeile ein Semikolon "; ".
```

Schnelllaufzahl und Pitchwinkel bestehen nur aus einer Zeile, z.B.

```
Breakpoints1 TSR = [1.512 \ 3.52 \ 7.53];
Breakpoints2 PitchAngle = [-5:5:5];
```


Registerblatt "Algorithm" anpassen

Hochschule für Technik und Wirtschaft Berli

Parameterdateien nutzen (1)

Wenn die Cp-Tabelle in einer Datei gespeichert ist, z.B. mit dem Name ,Cp_lamda_Daten.m `so müssen die Parameter nach dem Neustart von Matlab erneut geladen werden. Dazu gibt es 3 Varianten

a) aus Matlab heraus mit der rechten Maustaste auf die Datei klicken und

,run' auswählen

b) Cp_lamda_Daten (ohne.m)
in der Komandozeile eingeben

Parameterdateien nutzen (2)

Automatisch beim Start laden: Auf der obersten Ebene mit Rechtklick "Model Properties" auswählen.

Dann unter "Callbacks" Cp lamda Daten hinzufügen:

Explore

Can't Redo

Select All

Recently Added

Paste Duplicate Inport

Find Referenced Variables

Ctrl+Z

Ctrl+Y

Ctrl+V

Ctrl+A

Regelungsblock im Block Wind Turbine Control

Hochschule für Technik und Wirtschaft Berlin

1. Im Block WEA den Regelungsblock auswählen

2. Dort den Pitchregler auswählen

htuu

Altes Regelungsdiagramm in Matlab

Export der Steuerkennlinie aus QBlade

Hochschule für Technik und Wirtschaft Berlin

In QBlade in "Turbine BEM"

2. ...ein Diagramm Leistung über Drehzahl erstellen, dann mit Rechtsklick exportieren

Leistungs-Drehzahl-Kennlinie aus QBlade in Excel normieren

Hochschule für Technik und Wirtschaft Berli

Bisherige Kennlinie in Matlab

- pwt=0:0.01:1; om = min(-0.67*pwt.^2 + 1.42*pwt + 0.51,1.2);
- figure; plot(pwt,om);
 xlabel('Power in p.u.');
 ylabel('Speed in p.u.');
 grid('on');

Berechnete Kennlinie aus QBlade

- Leistung normieren auf 10 MW -> Bereich 0..1
- Drehzahl normieren auf Synchrondrehzahl, das ergibt eine Nenndrehzahl bei 1.2, also einen Bereich 0..1.2

