

Verbose labels for Semantic Roles

Ravikiran Vadlapudi

Dr. Anoop Sarkar, Senior Supervisor

Dr. Fred Popowich, Supervisor

Dr. John Dill, Examiner

Dr. Oliver Schulte, Chair

Semantic Role Labeling

Definition: identifying semantic arguments for a verb of a sentence and defining their roles such as who did what to whom, when and where

The boy hit a ball

hit: Predicate

The boy: Agent Hitter Argumerstsmantic Roles Verbose Labels Thing Hit

Task Description

Verbose labels depend on verb sense

Imports have gone down.

patient

entity in motion

Managers go after highest rates.

patient

goal

But not always

John made up all the answers on his midterm.

Agent creator

Loews Corp makes Kent cigarettes.

Agent creator

Motivation

- Question Answering
 - Query: Who defeated Sparta?
 - Answer: sentence with `Sparta' as `thing defeated', for example: Persia defeated Sparta
- Text visualization tool for browsing document collection
 - Illustrate importance of verbose labeling

Resources

PropBank

```
Sentence: Loews Corp makes Kent Cigarettes.
                                            make.01
(S
                                            <role descr="creator" n="A0"/>
  (NP (NNP Loews) (NNP Corp))
                                       A0
                                            <role descr="creation" n="A1"/>
  (VP (VBZ makes)
                                            <role descr="created-from" n="A2"/>
     (NP (NNP Kent) (NNS cigarettes))) A1
                                            <role descr="benefactive" n="A3"/>
  (..)))
Sentence: NE Edison made a bid.
                                           make.03
(S
                                            <role descr="maker" n="A0"/>
  (NP (NNP NE) (NNP Edison))
                                A0
                                           <role descr="bid or purchase" n="A1"/
  (VP (VBD made)
                                           <role descr="benefactive" n="A2"/>
    (NP (DT a) (NN bid)))))
                                A1
```

Contributions

- Introduce Verbose label prediction
 - Extends SRL for applications such as text visualization
- Tools released
 - Verbose labeling module for UIUC SRL
 - In-House SRL with verbose labeling module
 - Interactive text visualization tool for browsing large document collection

Related Work

Related Work

- Semantic Role Labeling
 - Phrase Structure trees
 - State-of-Art (Toutanova et.al)
 - UIUC SRL (Punyakanok et al)
 - ASSERT (Pradhan et al)
 - Sentence Simplification (Vickrey & Koller)
 - LTAG Spinal
 - Liu and Sarkar
 - Extended domain of locality
 - Extraction of LTAG-Spinal Treebank

In-House SRL

SRL Pipeline

Predicate identification

Ex: I went to Apple store to buy iPhone

Argument identification

Ex: I went to Apple store to buy iPhone

Argument classification

Ex: I (A0) went to Apple store to buy iPhone (A1)

Verbose label prediction

Ex: I(buyer) went to Apple store to buy iPhone(thing bought)

Experiments

Argument Identification

Tool	Precision / Recall / F-measure
LibLinear	95.93 / 96.85 / 96.39
LibSVM	77.95 / 97.21 / 86.52
SVM SGD	95.96 / 98.16 / 96.84
MegaM	96.02 / 97.40 / 96.71

Argument Classification

Approach	Gold Trees	SPINC Trees
Ident and Class	83.47/82.33/82.89	53.63/39.46/45.47
Class	83.23/83.29/83.26	52.79/40.58/45.89

Verbose Label Prediction

Picking ground truth for Verbose Labeling Task

Identify sense of a predicate

Mary gamely kicked in \$5 to John's bail.

Kick. 01

A0: kicker

A1: thing kicked

A2: instrument

Kick. 03

A0: contributor

A1: contribution

A2: given to

Pick most frequent verbose label

go.01 motivate.01

A0 : entity in motion, goer A0 : decision or attitude

being shown to be right

Data & Evaluation

- Data
 - Train: 90,819, Sec. 24: 3252, Sec. 23: 5273
- Evaluation
 - Verb Sense Prediction

$$Accuracy = \frac{\#\ currectly\ predicted\ senses}{\#\ predicates}$$

Verbose Label Prediction

$$Accuracy = \frac{\text{\# correct labels for identified args}}{\text{total identified args}}$$

Baselines

 Baseline 1 : Assign most frequent verbose label across PropBank

Approach	Section -24	Section -23
Baseline – 1	58.2	31.3

 Baseline 2 : Assign most frequent verbose label across predicate frames

Approach	Section -24	Section -23
Baseline – 1	58.2	31.3
Baseline -2	63.5	68.1

Baselines

 Baseline 3: Assign verbose labels from default predicate frame `01' (UIUC SRL)

Approach	Section -24	Section -23
Baseline-1	58.2	31.3
Baseline-2	63.5	68.1
UIUC	91.01	92.32

 Baseline 4: Assign verbose labels from predicate frame with max arguments coverage

Approach	Section -24	Section -23
Baseline-1	58.2	31.3
Baseline-2	63.5	68.1
UIUC	91.01	92.32
Baseline-4	93.34	94.13

Approach

1. Sense Prediction

- Post-processing stage
- Phrase Structure trees (UIUC SRL)
- LTAG Spinal trees (In-House SRL)

2. Joint Prediction

LTAG Spinal trees (In-House SRL)

- Standard Features
- → Predicate Lemma
 - Predicate Root Form
 - Predicate Voice
 - Number of Senses
 - POS tags on left & right
 - Chunk tags on left & right
 - Words on left & right

```
(S
(NP (DT The) (NN boy))
(VP (VBD kicked)
(NP (DT the) (NN ball)))
(...)))
```

Verb Sense Prediction

Approach	Sec-24	Sec-23
Def Sense	82.8	82.3
Gold Parses		
Standard	90.9	90.74
Automatic Parses		
Standard	90.3	90.1

Verbose Label Prediction

Approach	Sec-24	Sec-23
	Gold Parses	
UIUC	91.01	92.32
Baseline-4	93.34	94.13
Standard	94.9	95.1
Automatic Parses		
UIUC	91.46	90.51
Baseline-4	93.4	92.6
Standard	94.7	93.9

- Canonical form generation
 - Definition: Representation of verb and its arguments abstracted away from syntax

1) A car hit Bob

2) Bob was hit by a car

verb: hit subject: a car object: Bob

Transformation rules (Vickrey & Koller)

Canonical forms for Sense prediction

Algorithm

 Naïve implementation can lead to exponential number of parses

- Algorithm
 - Store S in chart data structure

Verb Sense Prediction

Approach	Sec-24	Sec-23
Def Sense	82.8	82.3
Gold Parses		
Standard	90.9	90.74
Transform	91.3	90.85
Automatic Parses		
Au	tomatic Parse	es
Standard	tomatic Parse 90.3	90.1

Verbose Label Prediction

Approach	Sec-24	Sec-23
	Gold Parses	
UIUC	91.01	92.32
Baseline-4	93.34	94.13
Standard	94.9	95.1
Transform	95.04	95.2
Aut	comatic Parse	es
UIUC	91.46	90.51
Baseline-4	93.4	92.6
Standard	94.7	93.9
Transform	94.85	94

Sense Prediction LTAG Spinal Trees

- Standard Features
 - Predicate lemma, root form, voice, number of senses, POS
 - POS tags on left & right
 - Words on left & right
 - Argument Relative Position
 - Argument Head
 - Argument Label
 - Argument Path to Predicate

Sense Prediction LTAG Spinal Trees

Verb Sense Prediction

Approach	Sec-24	
Def Sense	82.8	
Gold	Parses	
Standard	90.55	
Automatic Parses		
Standard	88	

Verbose Label Prediction

Approach	Sec-24
Gold	Parses
Baseline-3	91.01
Baseline-4	93.34
Standard	94.5
Automati	c Parses
Baseline-3	87.6
Baseline-4	87.71
Standard	90.89

Joint Prediction LTAG Spinal Trees

Verb Sense Prediction

Approach	Sec-24	
Def Sense	82.8	
Gold Parses		
Standard	90.55	
Joint	71.4	
Automatic Parses		
Standard	88	
Joint	68.5	

Verbose Label Prediction

Approach	Sec-24	
Gold Parses		
Baseline-3	91.01	
Baseline-4	93.34	
Standard	94.5	
Joint	80.2	
Automatic Parses		
Baseline-3	87.6	
Baseline-4	87.71	
Standard	90.89	
Joint	76.15	

Text Visualization

Introduction

- LensingWikipedia
 - Illustrate importance of verbose labeling

- Wikipedia History articles
 - Event descriptions follow Who did what to whom where and how
 - History of World in 100 seconds project: Articles from 500 BC to 2000 AD

Data Processing

Time

Place

Event

Who

Whom

RoleAO defeater

RoleA1 thing defeated

Visualize

- Map, Timeline & Rgraph
- Map, Timeline & Facets

Demo

Conclusion

- Introduced Verbose label Prediction
- Proposed Baselines and more informed models
 - Phrase Structure for UIUC SRL
 - LTAG-Spinal trees for In-House SRL
- Illustrated importance by extending to Text visualization
 - Map, Timeline & Rgraph
 - Map, Timeline & Facets

Thank you

• Extras

- Introduction
- Related Work
- In-House SRL
- Verbose Label Prediction
- Text Visualization
- Conclusion

Experiments

Evaluation measure

$$Precision = \frac{n.o\ correctly\ labeled\ arguments}{n.o\ of\ labeled\ arguments}$$

$$Recall = \frac{n.o\ of\ currectly\ labeled\ arguments}{n.o\ of\ gold\ arguments}$$

$$F-Measure = \frac{2*precision*recall}{precision+recall}$$

LTAG-Spinal Formalism

Extended domain of locality

 $P \rightarrow A$

P <- A

 $P \leftarrow Px \rightarrow A$

 $P \leftarrow Cord \rightarrow Px \rightarrow A$

 $P \leftarrow Ax \rightarrow Py \rightarrow A$

P <- Cord <- Px -> A

P <- Px <- Py -> A

stabilize -> Street

continues <- Stabilize

continues <- Stabilize -> Street

Features for SRL

Argument e-tree

lemma: Street, *pos:* NNP, *spine*: XP-NP-street

Predicate e-tree

lemma: continue, *pos:* VB, *voice:* active

spine: S-VP-VB-continue & S-VP-VB-active

- Introduction
- Related Work
- In-House SRL
- Verbose Label Prediction
- Text Visualization
- Conclusion

- Task Description
- Motivation
- SOA SRL tools
- = **SROTIBULITIONS**
- LTAG Formalism
- Approach
- Data & Evaluation
- = KASULECTION
- Pata Processing
- Experiments
- Demo - Reference data
 - SRL output

- Introduction
- Related Work
- In-House SRL
- Verbose Label Prediction
- Text Visualization
- Conclusion

Task Description

Verbose Label Prediction

The boy hit a ball

hit: Predicate

The boy: Agent Hitter

a ball: Patient Thing Hit

Semantic Roles Verbose Labels

- Introduction
- Related Work
- In-House SRL
- Verbose Label Prediction
- Text Visualization
- Conclusion

- Introduction
- Related Work
- In-House SRL
- Verbose Label Prediction
- Text Visualization
- Conclusion

- Introduction
- Related Work
- In-House SRL
- Verbose Label Prediction
- Text Visualization
- Conclusion

Picking ground truth for Verbose Labeling Task

Identify sense of a predicate

Mary gamely kicked in \$5 to John's bail.

Kick. 01

A0: kicker

A1: thing kicked

A2: instrument

Kick. 03

A0: contributor

A1: contribution

A2: given to

Pick most frequent verbose label

go.01 go.02

A0 : entity in motion, goer A0 : goer

Results

Phrase Structure Trees

Approach	Section -24	Section - 23
Default Sense	82.8	82.3
VSD Standard	90.9	90.74
VSD Transform	91.3	90.85

LTAG Spinal Trees

VSD Std Gold Args	90.58	
VSD Std Auto Args	90.55	
VSD Joint	71.4	

- Introduction
- Related Work
- In-House SRL
- Verbose Label Prediction
- Text Visualization
- Conclusion