Econ 106: Data Analysis for Economics

Lecture 10

slides adapted from:

https://jhudatascience.org/tidyversecourse/model.html#descriptive-and-exploratory-analysis

Reminder

Research Milestone #1 is due Sunday 11:59pm

#tidytuesday

Law and Order: SVU is the best (except for two bad seasons)

Descriptive and Exploratory Analysis

- The goal of a descriptive analysis is to generate simple summaries to describe the data you're working with
- The goal of an exploratory analysis is to explore the data and find relationships that weren't previously known.

Describing a Quantitative Variable

Describing a Categorical Variable

 We flip the bar chart horizontally when there are a lot of levels or levels with long labels

Filter, then combine levels

Some of the partyid levels have very few cases:

- no answer
- other party
- don't know)

We're first going to filter out cases with these answers

Next, we're going to collapse the remaining levels into:

- rep
- ind
- dem

That's better

 I also added color to the bar plot with the fill argument

Exploring Relationships Between Variables

- The best way to spot a relationship is to visualize the relationship between two or more variables.
- How you do that should depend on the type of variables involved:
 - categorical and quantitative
 - categorical and categorical
 - quantitative and quantitative

A road map to choosing the right visualization

Visualizations for Two Quantitative Variables

<u>Scatterplot</u>

Relationship between

two quantitative variables

Line plot

quantitative trend over time

United States Population Over Time

https://pollev.com/vsovero

Visualizations for a Quantitative Variable and a Categorical Variable

GSS TV Hours

- Does the distribution of TV hours look different based on political affiliation?
- Let's find out.

Distribution of tvhours by political affiliation

- Color Mapping: color will vary based on the value of party_3
- remember to wrap variable names inside the aes() function

Distribution of tvhours by political affiliation

- This give us a separate density plot of tvhours for each level of party_3
- Republicans watch the least amount of tv
- Similar tv watching habits between independents and democrats
- Democrats watch the most

Class Exercise

- Filter out cases where marital is "No answer"
- Create a factor variable (marry_fewer) with the following levels:
 - Married
 - Previously Married
 - Never Married
- Create a density plot for age by marry_fewer

Try Multiple Graphs Instead of a Single Plot

- color can help break down the information, but we can still end up with an overcluttered graph
- Instead, we can try faceting (break up the information into multiple plots)

Faceting

A spaghetti chart of baby names popularity 75000 50000 25000 2000

A spaghetti chart of baby names popularity

facet_wrap()

- Argument: the name of the variable you want to facet on
- Output: separate graph for each level of your faceted variable

```
gss_party%>%
ggplot(data=gss_party, mapping=aes(x = tvhours)) +
    geom_density(adjust=2, aes(color=party_3)) +
    facet_wrap(~ party_3)
```


facet_wrap()

- it's called facet_wrap()
 because the plots will
 wrap to the following
 row as needed
- In this example, partyid has 7 levels, so the graphs will wrap over to the next row

facet_grid()

- Do you want everything in a single row? Single column?
- facet_grid() gives you this control

facet_grid()

 Everything in a single row

facet_grid()

 Everything in a single column

Class Exercise

Step 1. Create separate density plots for age by marry_fewer (don't include "No answer"). Put all the plots into a single column.

Categorical and Quantitative (Summary Stats)

- Instead of showing the entire distribution of tvhours for each level of a categorical variable, we can compare summary statistics
- In this example, we are exploring if the average amount of time spent watching tv differs by political affiliation

geom_col()

- to use geom_col(), you first need to create a summary table of mean tvhours by party_fewer
- We will also calculate the standard deviation

*	party_3 [‡]	mean_tv [‡]	sd_tv [‡]
1	rep	2.666180	2.201986
2	ind	2.925984	2.593218
3	dem	3.275351	2.754989

geom_col()

 when using geom_col(), your y variable is mean_tv from the summary table

Adding Standard Deviation

- We can also add error bars to represent standard deviation
- geom_errorbar() arguments:
 - ymin: the low point of the error bar
 - ymax: the high point of the error bar

Box plots

Boxplot
Summary of a
quantitative variable
broken down by a
categorical variable

Components of a Box Plot

 a box plot gives more information about the distribution of a numeric variable (center and spread)

Maximum (Maximum Value in the Data, Q₃ + 1.5*IQR)

Categorical and Quantitative (box plot)

Mapping Arguments:

- x= the categorical variable
- y= the quantative variable

```
ggplot(data=gss_party,
    mapping=aes(x=party_3, y=tvhours))+
geom_boxplot(aes(fill=party_3))
```

using fill to color the box plots by party_3

Categorical and Quantitative (box plot)

- The box plot is showing that median tv watching is actually similar for republicans and independents
- The mean of independents is pulled up by some extreme values (right skewed)

Class Exercise

create a box plot for age by marry_fewer

Visualizations for Two Categorical Variables

Bar graphs

- We use bar plots to display information about categorical variables
- We can also examine the relationship between two categorical variables
- Example: are there differences in political affiliation by race?

Stacked Barplot

 Frequencies of political parties within each race

Stacked barplot (proportions)

Proportion of political parties within each race

Class Exercise

 Create a stacked bar plot that shows the proportions of marital status for each political affiliation

Unstacked barplot

 Frequencies of political parties within each race

Faceted barplot

```
ggplot(data=gss_party,
    mapping= aes(x=party_3)) +
geom_bar(aes(fill=party_3))+
facet_wrap(~race)
```


Class Exercise

Create a faceted bar plot that shows the marital status for each political affiliation