

COURSEPACK

SCHEME

The scheme is an overview of work-integrated learning opportunities and gets students out into the real world. This will give what a course entails.

Course Title	Machine Learning Tools and Platforms				ours Type		Integrated		
Course Code					Clas	5	BCA 3 rd Sem		
	Activity	Credits	Credit Hours	To	Total Numl				ssment
	Lecture	3	3			sses p mesto			in ghtage
Instruction delivery	Tutorial	0	0	Т	r r	P	S	C	SE
	Practical	1	2	h	u	r	el f-	I E	E
	Self-study	0	0	o r y	o r a	i ti	st u d y		
	Total	4	5	4 5	0	1 5		50 %	50 %
Course	Dr. Ankit	Kumar	Course				Alok K		/0
Lead			Coordinator						
Names Course Instructors		Theory		Practical					
	Dr. Ashish Trip				ripathi				
	Dr. VDS Baghe Mr. Anshuman			S Bag shuma					
	Mr. Mujjafar H				an Hussair	n			
	Dr. Ankit Kum					it Ku		.1	
	Dr. Shambhu Jl			1		nbhu			
	Mr. Alok Kuma	ar		Mr.	Alo	k Ku	mar		

COURSE OVERVIEW

Gain a foundational understanding of machine learning concepts and explore the tools and platforms used to develop, train, and deploy ML models. Learn to use popular ML libraries such as Scikit-learn, TensorFlow to implement supervised learning algorithms. Understand key processes such as data preprocessing, model training, evaluation, and hyperparameter tuning. Explore cloud-based machine learning platforms like Google Cloud AI Platform, Amazon SageMaker, and Azure Machine Learning for scalable deployment.

PREREQUISITE COURSE

PREREQUISITE COURSE REQUIRED	YES	
If, yes please fill in the Details	Prerequisite course code	Prerequisite course name
		Python Programming
		Machine Learning

COURSE OBJECTIVE

- 1. To introduce students to machine learning tools and environments.
- 2. To help students implement ML models using Scikit-learn and TensorFlow.
- 3. To expose students to cloud-based ML platforms and model deployment.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

Use basic ML libraries and tools like NumPy, Pandas, and Scikit-learn.
Build simple ML models and evaluate their performance.
Use cloud platforms like Google Colab and Google Cloud
for ML tasks.
Create simple web apps for ML using Streamlit or Flask.

BLOOM'S LEVEL OF THE COURSE OUTCOMES

INTEGRATED

_							
	CO No.	Remember KL1	Understand KL 2	Apply KL 3	Analyse KL 4	Evaluate KL 2	Create KL 6
				•			
				1		1	
				•	•		
				1			1

PROGRAM OUTCOMES (POs):

PO1	Computational Knowledge: Apply knowledge of computing fundamentals,
	computing specialization, mathematics, and domain knowledge appropriate
	for the computing specialization to the abstraction and conceptualization of
	computing models from defined problems and requirements.
PO2	Problem Analysis: Identify, formulate, research literature, and solve
	complex computing problems reaching substantiated conclusions using
	fundamental principles of mathematics, computing sciences, and relevant
PO3	domain disciplines.
PUS	Design /Development of Solutions: Design and evaluate solutions for complex computing problems, and design and evaluate systems,
	components, or processes that meet specified needs with appropriate
	consideration for public health and safety, cultural, societal, and
	environmental considerations.
PO4	Conduct investigations of complex Computing problems: Use
	research-based knowledge and research methods including design of
	experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO5	Modern Tool Usage: Create, select, adapt and apply appropriate
	techniques, resources, and modern computing tools to complex computing
	activities, with an understanding of the limitations.
PO6	Professional Ethics: Understand and commit to professional ethics and
	cyber regulations, responsibilities, and norms of professional computing
P07	practices. Life-long Learning: Recognize the need, and have the ability, to engage in
PU	independent learning for continual development as a computing
	professional.
PO8	Project management and finance: Demonstrate knowledge and
	understanding of the computing and management principles and apply
	these to one's own work, as a member and leader in a team, to manage
	projects and in multidisciplinary environments.
PO9	Communication Efficacy: Communicate effectively with the computing
	community, and with society at large, about complex computing activities
	by being able to comprehend and write effective reports, design
	documentation, make effective presentations, and give and understand
P10	clear instructions.
LIO	Societal and Environmental Concern: Understand and assess societal, environmental, health, safety, legal, and cultural issues within local and
	global contexts, and the consequential responsibilities relevant to
	professional computing practices.
P11	Individual and Team Work: Function effectively as an individual and as a
= = -	member or leader in diverse teams and in multidisciplinary environments.
P12	Innovation and Entrepreneurship: Identify a timely opportunity and
	using innovation to pursue that opportunity to create value and wealth for
	the betterment of the individual and society at large.

PROGRAM SPECIFIC OUTCOMES(PSOs):

PSO1	Have the ability to work with contemporary technologies in computing requisite to
	Industry 4.0 developing and implementing solutions to real life problems.
PSO2	Demonstrate applications development skills learned through technical training and
	projects to solve real world problems.

COURSE ARTICULATION MATRIX

COs#/ POs	PO 1	P O 2	P O 3	PO 4	P O 5	P O 6	O	P O 8	P O 9	P O 1 0	P O 1	P O 1 2	P S O 1	P S O 2
	-	-	-	-	3	1	-	1	-	-	-	-	1	2
	2	-	-	-	3	-	1	-	-	-	-	-	3	2
	-	3	-	-	3	-	-	-	-	-	-	-		
	-	-	3	-	3	3	1	3	1	1	3	3	2	3

Note: 1-Low, 2-Medium, 3-High

COURSE ASSESSMENT

The course assessment patterns are the assessment tools used both in formative and summative examinations.

Type of Course (B)	C I E			Tota Mar		Final Marks
	LAB Work+ Record ® + MoU	M T E	LAB EXAM*	C I E	SE E	CIE*0.5+S EE*0.5
INTEGRATED	25	5 0	25	1 0 0	10 0	1 0 0

[@]Lab Work-15 marks + MoU WITH WIPRO-10 marks

*Passing Criteria-30% of marks to be secured in the lab Exam conducted by two examiners (one internal and one external)

TEACHING PEDAGOGY: please choose teaching pedagogy according to the COs of subject.

	INTEGRATED
1	Interactive Demonstrations
2	Collaborative Learning
2	Problem Based Learning

<u>SLOW and FAST LEARNER</u>: It is required to complete this process after completion of 25% of syllabus.

For Integrated Course: Through problem based Learning OR through Lab Experiments COURSE CONTENT

THEORY+ PRACTICAL

Basics of Machine Learning & Tools: What is Machine Learning? Types of ML (Supervised, Unsupervised), ML workflow and lifecycle, Introduction to Python libraries: NumPy, Pandas, Matplotlib, Working with Jupyter Notebook and Google Colab

Data Handling and Preprocessing: Loading datasets (CSV, online), Data cleaning and handling missing values, Feature scaling and encoding, Data splitting (train/test)

Building ML Models using Scikit-learn: Introduction to Scikit-learn, Classification: Logistic Regression, K-Nearest Neighbors, Regression: Linear Regression, Clustering: K-Means, Model evaluation: Accuracy, Confusion Matrix

Introduction to Deep Learning with TensorFlow/Keras: What is Deep Learning?, Neural network basics, Using Keras to build simple neural networks, Training, validation, and testing, Simple example: MNIST digit classification

Cloud-based ML Platforms: Introduction to cloud ML platforms: Google Cloud, AWS, Azure (overview), Using Google Colab with GPU, Intro to Google Cloud AutoML / AWS SageMaker Studio, Creating and training a basic model on cloud

ML Deployment and Visualization: Creating a simple web app with Streamlit, Basic API using Flask, Deploying ML models using Heroku or GitHub Pages, Introduction to model monitoring and versioning (basic idea)

LESSON PLAN FOR INTEGRATED COURSES

FOR THEORY 15 weeks * 3 Hours = 45 Classes) (1credit = 1Lecture Hour) FOR PRACTICAL 15 weeks * 2Hours = 30 Hours lab sessions (1 credit = 2 lab hours)

Lesso n No.	Topic	Learning Outcome (LO)	Level (SOLO)	CO Mapping	Assessment	Learning Activity
1	Introduction to Machine Learning: Definition, Real- world applications	Describe what machine learning is and identify real-world use cases.	Unistructural	CO1	Wooclap Quiz	Think-Pair- Share
2	Types of Machine Learning: Supervised, Unsupervised (with examples)	Differentiate between supervised and unsupervised learning with examples.	Multi- structural	CO1	Group discussion	Jigsaw
3	ML Workflow and Lifecycle: Data collection, preprocessing, model building, evaluation, deployment	Explain the stages of the ML lifecycle from data to deployment.	Relational	CO1	Case study analysis	Think-Pair- Share
4	Working with Jupyter Notebook	Operate Jupyter Notebook to write and execute Python code.	Unistructural	CO1	Lab exercise	Interactive demo, Guided exploration
5	Working with Google Colab: Running code cells, markdown, uploading files	Use Google Colab to run cells, write markdown, and upload files.	Unistructural	CO1	Lab exercise	Lab exercisePair coding, Demo session
6	Python for Machine Learning: Basic syntax, variables, loops, functions	Write Python programs using basic syntax, variables, loops, and functions	Write Python programs using basic syntax, variables, loops, and functions.Mult	CO1	Coding test	Think-Pair- Share

			istructural			
7	Introduction to NumPy: Arrays, basic operations, reshaping	Apply array operations and reshaping using NumPy.	Multi- structural	CO1	Coding assignment	Collaborative activity
8	Introduction to Pandas: DataFrames, Series, basic data manipulation	Manipulate data using Series and DataFrames in Pandas	Multi- structural	CO1	Coding assignment	Collaborative activity
9	Introduction to Matplotlib: Plotting line charts, bar graphs, histograms	Create line charts, bar graphs, and histograms using Matplotlib.	Multi- structural	CO1	Quiz, Group task	Data plotting pair task
10	Loading Datasets: Reading CSV files using Pandas, loading from URLs, basic exploration (`head()`, `info()`, `describe()`)	Load and explore datasets using Pandas functions like head(), info().	Multi- structural	CO2	Practical exercises	Think-Pair- Share on dataset insights
11	Data Cleaning: Identifying null/missing values, removing duplicates, replacing or imputing missing data	Identify and clean missing or duplicate data in a dataset.	Multi- structural	CO2	Lab Task	Fishbowl (approaches to cleaning)
12	Handling Missing Values: Techniques like mean/median imputation, forward/backward fill, dropping missing entries	Apply techniques to handle missing data appropriately.	Relational	CO2	Quiz	Problem solving in pairs
13	Feature Scaling: Normalization (Min-Max), Standardization	Normalize or standardize numerical features in a	Relational	CO2	Practical quiz	Peer review task

	(Z-score)	dataset.				
14	Encoding Categorical Variables: One-hot encoding, Label encoding using Pandas	Encode categorical variables using one-hot or label encoding.	Relational	CO2	Assignment	Guided lab with peer check
15	Data Splitting: Train-test split, validation sets, random state, stratified sampling	Split data into training and testing sets with control over sampling.	Multi- structural	CO2	Quiz, Practice task	Think-Pair- Share
16	Introduction to Scikit-learn: Structure, loading datasets, pipeline overview	Describe Scikit-learn structure and load datasets for modeling.	Multi- structural	CO2	Quiz, Group Discussion	Jigsaw (dataset APIs)
17	Classification with Logistic Regression: Model training, prediction, interpretation	Train and interpret a logistic regression classifier using Scikit-learn.	Relational	CO2	Coding Assessment	Interactive group coding
18	Classification with K-Nearest Neighbors: Distance metrics, model fitting, prediction	Build a KNN model and analyze results based on distance metrics.	Relational	CO2	Coding Assessment	Code in pairs, Share outcomes
19	Model Evaluation I: Accuracy, Confusion Matrix, Precision, Recall	Evaluate models using accuracy, precision, recall, and confusion matrix.	Relational	CO2	Quiz, Short answer questions	Think-Pair- Share on metrics
20	Regression with Linear Regression: Fitting models, predicting	Build and evaluate a linear regression model.	Relational	CO2	Quiz	Think-Pair- Share
21	Clustering with K-Means: Unsupervised	Perform K- Means clustering and	Relational	CO2	Practical assessment task	Interactive lab

	learning, visualization	visualize the clusters.				
22	Model Evaluation II: Cross- validation, overfitting, underfitting	Analyze model performance using cross-validation and interpret overfitting/un derfitting.	Relational	CO2	Quiz, Discussion	Fishbowl debate
23	Full workflow from data to model evaluation	Integrate data preprocessing , modeling, and evaluation into a complete ML pipeline.	Extended Abstract	CO2	Practical exercise	Group project
24	What is Deep Learning? Overview vs traditional ML, applications	Compare deep learning with traditional ML and describe use cases.	Multistructura l	CO2,CO 3	Quiz, Case study	Interactive quiz, Discussion pairs
25	Neural Network Basics: Perceptron, activation functions, layers, forward pass	Explain the structure and working of simple neural networks.	Multi- structural	CO2,CO 5	Quiz, Short answers	Diagram-based peer teaching
26	Introduction to Keras and TensorFlow: Model structure (Sequential API), compiling models	Construct a basic neural network using Keras Sequential API.	Multi- structural	CO2,CO 5	Lab activity	Hands-on, pair modeling
27	Training Neural Networks: Epochs, batch size, optimizers, loss functions	Train a neural network using appropriate parameters and observe learning behavior.	Relational	CO2,CO 5	Training log evaluation	Experiment and share results
28	Validation and Testing: Splitting	Differentiate between	Multistructura l	CO2, CO5	Quiz	Think-Pair- Share

	datasets	training, validation, and testing data splits.				
29	Example: MNIST Digit Classification – Building and training a CNN	Build and train a CNN to classify handwritten digits from MNIST dataset.	Relational	CO2	Coding	Group implementation task
30	Visualizing Results and Model Summary: Accuracy/Loss curves, confusion matrix for DL	Interpret training curves and confusion matrices of neural networks.	Relational	CO2	Model performance analysist	Compare visualizations in pairs
31	Overview of Cloud ML Platforms: Google Cloud, AWS, Azure – key services and comparison	Compare ML services offered by Google Cloud, AWS, and Azure.	Multistructura 1	CO4	Case study	Jigsaw on cloud platforms
32	Introduction to Google Colab: Features, advantages, running notebooks, mounting Google Drive	Explain the features and benefits of Google Colab for ML tasks	Multistructura l	CO4	Quiz	Interactive quiz, Peer discussion
33	Using GPU in Google Colab: Enabling GPU, comparing CPU vs GPU runtime, benchmarking	Enable and benchmark GPU in Colab for ML training.	Relational	CO4	Practical assignment	Code walkthrough, Peer reviews
34	Introduction to Google Cloud AutoML: Interface, features, creating datasets and	Use Google Cloud AutoML interface to create and train a model.	Relational	CO3	Practical assignment	Code walkthrough, Peer reviews

	training models					
35	Introduction to AWS SageMaker Studio: Interface, notebooks, model training demo	Demonstrate ML workflow in AWS SageMaker Studio.	Relational	CO4	Practical assignment	Code walkthrough, Peer reviews
36	Creating and Training a Basic Model on Google Cloud Platform	Build and deploy an ML model on Google Cloud using AutoML tools.	Relational	CO4	Quiz	Group activity
37	Creating and Training a Basic Model on AWS SageMaker Studio	Train and evaluate a model using AWS SageMaker interface.	Relational	CO4	Peer review, Checklist assessment	Role-playing, Demonstrations
38	Introduction to ML Deployment: Why deployment matters, overview of deployment options	Explain the purpose of ML deployment and options available.	Multi- structural	CO3	Practical assignment	Lab exercises, Group work
39	Streamlit: UI basics, displaying data, integrating ML models	Create a simple UI using Streamlit for ML input/output.	Relational	CO3	UI demo task	App design pairs
40	Creating a Simple Web App with Streamlit	Build a basic ML web app using Streamlit.	Relational	CO5	App build task	Interactive coding pairs
41	Streamlit – Model Integration and Input Handling: Uploading input, displaying predictions	Integrate ML model with UI and handle user input in Streamlit.	Extended Abstract	CO5	App build task	Interactive coding pairs
42	Introduction to Flask: Creating basic API routes, handling requests and responses	Build basic API routes and handle requests using Flask.	Relational	CO5	Coding task	Peer coding and review

43	Building and Testing ML API with Flask: Integrating a trained model, using Postman/cURL	Deploy and test a ML model using Flask and external tools like Postman.	Relational	CO5	API testing	Group test activity
44	Deploying ML Apps using Heroku: Setup, deployment steps, troubleshooting	Deploy a Flask app with ML model to Heroku.	Relational	CO5	Deployment evaluation	Guided deployment session
45	Introduction to Model Monitoring and Versioning: Concepts, tools overview (MLflow, DVC - intro only)	Describe the basic concepts and tools for model monitoring/ve rsioning.	Multistructura l	CO5	Quiz	Think-pair- share

LIST OF PROGRAMS

Practical No	Practical
1	Introduction to Jupyter Notebook / Google Colab: Install Jupyter (if
	local), open Colab, use Markdown, run basic cells.
2	Working with NumPy and Pandas: Create arrays, perform slicing,
	filtering, use DataFrames to import CSV.
3	Data Cleaning and Preprocessing: Handle missing values, label
	encoding, one-hot encoding, scaling.
4	Data Visualization: Plot histograms, bar charts, scatter plots,
	heatmaps for correlation.
5	Data Splitting and Model Evaluation Basics: Use train_test_split,
	calculate accuracy, precision, recall.
6	Build a Linear Regression Model: Predict house prices or student
0	scores using LinearRegression.
7	Classification using Logistic Regression: Predict whether a student
	will pass/fail based on study hours.
8	K-Nearest Neighbors (KNN) for Classification: Classify iris flower
	species using KNeighborsClassifier.
9	Clustering with K-Means: Group customers or animals based on
	features.
10	Building a Neural Network using Keras: Use Keras to classify digits
	using the MNIST dataset.
11	Google Colab with GPU: Enable GPU and compare training time with

	CPU.
12	Use of AutoML Tools (Google Cloud / Teachable Machine / H2O.ai):
	Use Google Teachable Machine or H2O.ai to classify images or data.
13	Model Deployment using Streamlit:Predict student result or diabetes
	detection using Streamlit.
14	Model Deployment with Flask and Heroku:Use Flask to build API;
	deploy to Heroku (basic template).
15	Mini Project Presentation: Students present a mini project (data
	analysis → model → app).

Text Book (s)

1. Géron, Aurélien. *Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow*. "O'Reilly Media, Inc", 2022.

Reference Book (s)

- 1. Raschka, Sebastian, and Vahid Mirjalili. "Python machine learning second edition." *Birmingham, England: Packt Publishing* (2017).
- 2. McMahon, Andrew P., and Adi Polak. *Machine learning engineering with Python*. Packt Publishing, 2023.
- 3. Grus, Joel. *Data science from scratch: first principles with python*. O'Reilly Media, 2019.

Webliography:

- 1. https://learn.microsoft.com/en-us/azure/machine-learning/
- 2. https://scikit-learn.org/stable/documentation.html
- 3. https://aws.amazon.com/sagemaker/
- ${\tt 4.\ https://developers.google.com/machine-learning/crash-course}$

PROBLEM-BASED LEARNING

Exercises in Problem-based Learning (Assignments)

SN	Problem	KL
1	What is the difference between supervised and unsupervised learning with examples?	KL2
2	Design a basic ML pipeline to predict house prices using Linear Regression.	KL4
3	Given a dataset with missing values, how will you preprocess it?	KL4
4	Compare Logistic Regression and KNN in terms of classification accuracy.	K
5	Build a model using Scikit-learn to classify Iris flowers.	KL4
6	Why is feature scaling important before using KNN?	KL2
7	Implement a simple neural network using Keras on MNIST.	KL4

10 P	Use Pandas to clean a dataset and remove duplicates and null values.	KL4
		1 1
44 -	Plot a correlation heatmap using Seaborn and analyze relationships.	KL4
11 I	Describe the difference between one-hot encoding and label encoding.	KL2
12 (Create a scatter plot to visualize the relationship between hours studied and test scores.	KL4
13 F	How would you split a dataset into train/test sets in Scikit-learn?	KL2
14	Compare accuracy and confusion matrix as evaluation metrics.	KL5
15 E	Build and deploy a diabetes detection model using Streamlit.	KL6
16 V	What problems arise if we don't normalize features in distance-based algorithms?	KL4
17 T	Train a logistic regression model to predict student pass/fail status.	KL3
18 (Create a basic Streamlit web app to display prediction results.	KL6
19 Г	Describe how GPUs accelerate deep learning model training.	KL2
20 V	What are the key differences between Google Cloud AutoML and AWS SageMaker?	KL2
21 V	Visualize a classification boundary using KNN. What insights can you draw?	KL4
22 L	Use Google Colab to train a model and compare CPU vs GPU training time.	KL3
23 T	Train a clustering model to group customers based on shopping habits.	KL3
24 (Given a CSV file, write Python code to load and describe its statistics.	KL3
25 L	Use Matplotlib to visualize outliers in a dataset. How would you treat them?	KL4
26 I	dentify common sources of data bias in ML datasets.	KL2
27 Γ	Describe the difference between underfitting and overfitting.	KL4
28 E	Build an API using Flask to serve predictions from an ML model.	KL6
29 V	What steps are needed to deploy a model on Heroku?	KL2
30 E	Explain how confusion matrix gives more insights than accuracy alone.	KL2
31 E	Explore H2O.ai or Google Teachable Machine to classify hand gestures.	KL3
32 L	Use NumPy to create a matrix and apply slicing and reshaping.	KL3
33 V	What are the pros and cons of cloud-based ML vs local training?	KL5
34 Г	Design a model versioning strategy for a production ML app.	KL6
35 V	What is the significance of validation data during training?	KL2
	Train and test a Linear Regression model using only 10% of the dataset. What nappens?	KL4
37 S	Simulate a classification problem where classes are imbalanced. How will you handle t?	KL5
	Analyze model performance using precision, recall, and F1-score.	KL4

39	Why do we use activation functions in neural networks?	KL2
40	Create a notebook in Google Colab to demonstrate end-to-end ML project.	KL6
41	How do you monitor a deployed ML model for data drift?	KL6
42	Propose a mini project to predict employee attrition.	KL6
43	Integrate a trained ML model into a web interface using Flask and HTML.	KL6
44	Modify the learning rate in Keras and analyze its effect on training.	KL4
45	Compare K-Means clustering with Hierarchical clustering in terms of output and usage.	KL5