### MEASUREMENT OF TOBACCO SMOKE COMPONENTS IN HUMAN SUBJECTS

report to

NATIONAL CANCER INSTITUTE

NO1-CP-33349

**SUMMER, 1974** 

Arthur D Little, Inc.

BIBLIOGR DATA

77 PAGES

STORAGE

CHI-0116

AVAILABLE

BIB/021081

TITLE

VARIAN AEROGRAPH

GAS CHROMATOGRAPHIC APPLICATIONS

DOCUMENT NUMBER = 0000A0236200

PUBLISHER

ARTHUR D. LITTLE INCORPORATED

PUBLICATION DATE 1974

BIBLIOGR DATA

7+297 PAGES

STORAGE

B10-0475

AVAILABLE

BIB/111281

TITLE

MEASUREMENT OF TOBACCO SMOKE COMPONENTS IN HUMAN SUBJECTS

REPORT TO NATIONAL CANCER INSTITUTE

NO1 - CP - 33349 SUMMER 1974

DOCUMENT NUMBER = 0000A0236700

PUBLICATION

NENTH INTERNATIONAL CONGRESS FOR MICROBIOLOGY, MOSCOW

PUBLICATION DATE 1966

BIBLIOGR DATA

750 PAGES, JULY 24 TO 30

STORAGE

B10-0479

AVAILABLE

BIB/151281

TITLE

9. INTERNATIONAL CONGRESS FOR MICROBIOLOGY

ABSTRACTI OF PAPERS TO BE PRESENTED AT FOCAL TOPIC SESSIONS

MOSCOW, JULY 24: - 30, 1966

DOCUMENT NUMBER = 0000A0237090

Supplied the second

in with the second of the seco

B10-0475 Input 10 023620

# MEASUREMENT OF TOBACCO SMOKE COMPONENTS IN HUMAN SUBJECTS

Report to

NATIONAL CANCER INSTITUTE

250 Banker

Marie Elli

Andrews States

er of the second control of the second

NOI-CP-33349

Summer, 1974

Arthur D Little, Inc.

#### TABLE OF CONTENTS

| Tables                                                                                                                | v                                        |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                       | =                                        |
| Figures                                                                                                               | vii                                      |
| MARY                                                                                                                  | 1                                        |
| RODUCTION                                                                                                             | 7                                        |
| ERATURE SURVEY                                                                                                        | 11                                       |
| SOURCES                                                                                                               | 12                                       |
| COMPOUNDS IN SMOKE REPORTED IN BIOLOGICAL FLUIDS                                                                      | 15                                       |
| COMPOSITION OF CIGARETTE SMOKE AND METHODS OF ANALYSIS                                                                | 43                                       |
| USE OF BIOLOGICAL RESPONSES TO SMOKE AND SMOKE COMPONENT AS INDICATORS OF SMOKE INTAKE                                | 130                                      |
| 1. Nicotine                                                                                                           | 167                                      |
| 2. Immunological Effects                                                                                              | 167                                      |
| 3. Hormonal Response                                                                                                  | 167                                      |
| 4. Pulmonary Function                                                                                                 | 168                                      |
| 5. Enzymes                                                                                                            | 169                                      |
| SELECTION OF POSSIBLE MARKER COMPOUNDS BASED ON ESTIMATE OF AMOUNT OF BODY FLUID NEEDED FOR ANALYSIS                  | 170                                      |
| SELECTED BIOLOGICAL RESPONSES AS POSSIBLE INDICATORS OF SMOKE INTAKE                                                  | 181                                      |
| 1. Effect of Nicotine on Catechollamine Levells in Blood and Urine                                                    | 181                                      |
| 2. Lipid Metabolism                                                                                                   | 182                                      |
| 3. Hormones                                                                                                           | 183                                      |
| 4. Vitamin Levels in the Body                                                                                         | 184                                      |
| 5. Induction of Enzymes                                                                                               | 185                                      |
| 6. Miscellaneous Responses to Smoking                                                                                 | 186                                      |
| CHEMICAL CONSIDERATIONS RELATED TO PROBLEMS OF SELECTING<br>HODS SUITABLE FOR QUANTITATIVE ASSESSMENT OF SMOKE INTAKE |                                          |
| PROPERTIES OF MARKER COMPOUND                                                                                         | 188                                      |
| BIOLOGICAL FATE OF MARKER COMPOUND                                                                                    | 190                                      |
| RETENTION OF MARKER COMPOUND                                                                                          | 190                                      |
| MEASUREMENT OF MARKER COMPOUND IN BODY FLUID                                                                          | 190                                      |
| ANALYSIS                                                                                                              | 191                                      |
| GASEOUS: VS. CONDENSATE MARKERS                                                                                       | 191                                      |
| BODY FLUIDS                                                                                                           | 192                                      |
| BODY SURFACE EFFLUENTS                                                                                                | 194                                      |
| RESPIRATORY GASES                                                                                                     | 196                                      |
| <b>iii</b>                                                                                                            | 192<br>194<br>196<br>Arthur D'Little Inc |
| F                                                                                                                     |                                          |

elektrist i tetti inter inter 

A statute targue 1944 - Tri

#### TABLE OF CONTENTS (cont.)

|          |                                                                                                        |                     |                                                                                       | Page      |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|-----------|--|--|--|--|
| <b>V</b> | SELECTED BIANALYTICAL METHODOLOGIES AND ANALYTICAL INSTRUMENTATION APPLICABLE TO SMOKE INTAKE ANALYSIS |                     |                                                                                       |           |  |  |  |  |
|          | Α.                                                                                                     |                     | RODUCTION                                                                             | 198       |  |  |  |  |
|          | в.                                                                                                     |                     | S SPECTROMETRY AND RELATED TECHNIQUES                                                 | 198       |  |  |  |  |
|          |                                                                                                        | 1.                  | Electron-Impact Mass Spectrometry (EI)                                                | 198       |  |  |  |  |
|          |                                                                                                        | 2.                  | Ion-Molecule Reactions - Chemical Ionizations Mass Spectrometry (CI)                  | 199       |  |  |  |  |
|          |                                                                                                        | 3.                  | Field Desorption Mass Spectrometry: Concerns for Thermal Decomposition                | 200       |  |  |  |  |
|          |                                                                                                        | 4.                  | Field Ionization (FI)                                                                 | 201       |  |  |  |  |
|          |                                                                                                        | 5.                  | Single- or Multiple-Ion Detection: Sensitivity Maximization                           | 202       |  |  |  |  |
|          | c.                                                                                                     | GAS                 | -LIQUID CHROMATOGRAPHIC DETECTORS                                                     | 203       |  |  |  |  |
|          | D.                                                                                                     | HIG                 | H PRESSURE LIQUID CHROMATOGRAPHY (HPLC)                                               | 206       |  |  |  |  |
|          | E.                                                                                                     | E. RADIOIMMUNOASSAY |                                                                                       |           |  |  |  |  |
|          | $\mathbf{F}$ .                                                                                         | F. STABLE ISOTOPES  |                                                                                       |           |  |  |  |  |
|          | G.                                                                                                     | . SPECTROSCOPY      |                                                                                       |           |  |  |  |  |
|          |                                                                                                        | 1.                  | Introduction                                                                          | 210       |  |  |  |  |
|          |                                                                                                        | 2.                  | Chemiluminescence                                                                     | 210       |  |  |  |  |
|          |                                                                                                        | 3.                  | Infrared Absorption                                                                   | 212       |  |  |  |  |
| VI.      | SMO                                                                                                    | KE I                | NTAKE QUANTITATION: MOST PROMISING METHODS                                            | 227       |  |  |  |  |
|          | <b>A</b> .                                                                                             | INT                 | RODUCTION                                                                             | 228       |  |  |  |  |
|          | B.                                                                                                     | CAR                 | BON MONOXIDE AS A MARKER FOR SMOKE INTAKE                                             | 229       |  |  |  |  |
|          |                                                                                                        | 1.                  | Exogenous Carbon Monoxide                                                             | 229       |  |  |  |  |
|          |                                                                                                        | 2.                  | Mainstream Cigarette Carbon Monoxide                                                  | 229       |  |  |  |  |
|          |                                                                                                        | 3.                  | Endogenous Carbon Monoxide                                                            | 230       |  |  |  |  |
|          | c.                                                                                                     | WAT                 | ER: AS: A MARKER FOR SMOKE INTAKE (ALTERNATIVE METHOD)                                | 234       |  |  |  |  |
|          | D.                                                                                                     | STA                 | NDARDIZATION OF SMOKING AND SMOKE INTAKE - PILOT STUDY:                               | 241       |  |  |  |  |
|          | E.                                                                                                     | STU                 | DY OF INTAKE OF THE CHRONIC SMOKER                                                    | 244       |  |  |  |  |
|          | F.                                                                                                     | EXP                 | ERIMENTAL DESIGN                                                                      | 245       |  |  |  |  |
|          |                                                                                                        | 1.                  | Carbon Monoxide                                                                       | 245       |  |  |  |  |
|          |                                                                                                        | 2.                  | Mass Spectrometry; Hydrogen Isotope Ratio Determination for Deuterated Water Analysis | n:<br>250 |  |  |  |  |
| VII.     | OTH                                                                                                    | IER C               | ONCEIVABLE METHODS                                                                    | 251       |  |  |  |  |
| VIII.    | REF                                                                                                    | REFERENCES          |                                                                                       |           |  |  |  |  |

iv

Arthur D Little Inc.

ora orazonia ambili Pirita bezten bel

#### LIST OF TABLES

| Table<br>No. |                                                                                                                                                             | Page |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.           | Agents in Cigarette Smoke Found in Biological Fluids<br>for Assessment of Smoke Intake                                                                      | 17   |
| 2-A          | Estimate of the Volume of Body Fluid Needed for Analysis of Individual Smoke Component (Based on Analytical Sensitivity and Possible Concentration In Situ) | 46   |
| 2-B          | Agents in Cigarette Smoke                                                                                                                                   | 47   |
| 3            | Biological Responses of Possible Use as Indication of Cigarette Smoke Intake:                                                                               | 132  |
| 4.           | Selected Components in Cigarette Smoke of Possible Use<br>for Assessment of Smoke Intake                                                                    | 1.71 |
| 5:           | Stable Isotopes of Carbon Monoxide                                                                                                                          | 232  |
| 6:           | The Intake of Deuterated Water as a Function of Smoking Habits                                                                                              | 239  |
| 7.           | Concentration of Deuterium in Body Water When Equilibrium Is Established as a Function of Smoking Habits                                                    | 240  |

-----

.....

\*\*\* -- \*\*\*

#### LIST OF FIGURES

Arangan Lateran Lauri

200.42 June 1991

CHAIR BY OF

egene i ruedinesemente inci. 1944

| Figure<br>No. |                                                                                             | Page |
|---------------|---------------------------------------------------------------------------------------------|------|
| 1             | Influence of Puffing on Recovery of Selected Smoke<br>Constituents of Non-Filter Cigarettes | 189  |
| 2.            | Composition Dependence of Emission Frequency for Pb-salt Diode Lasers                       | 215  |
| 3:            | Conceptual Diagram of a Tunable Diode Laser                                                 | 217  |
| 4.            | Temperature Dependence of Threshold for a Pb-salt<br>Diode Laser                            | 218  |
| 5             | Current Dependence of Output Power for a Pb-salt Diode.<br>Laser                            | 219  |
| 6             | Emission Spectrum of a PbSe Laser                                                           | 220  |
| 7.            | Absorption Spectrum of SO <sub>2</sub> at a Pressure of 1 Torr                              | 222  |
| 8:            | Conceptual Diagram Illustrating Isotope Separation by Selective Optical Excitation          | 224  |
| <b>9</b> :    | Sources of Carbon Monoxide and Distribution in the Body                                     | 231  |
| 10            | Concentration-Time Curves for Various Inputs of Smoke<br>Containing Deuterated Water        | 237  |
| 11.           | Concentration-Time Curves for Various Inputs of Smoke<br>Containing Deuterated Water        | 238  |
| 12:           | Model TDLS-II Modular Block Diagram                                                         | 247  |
|               |                                                                                             |      |

vii

Arthur D Little, Inc. 888

SUMMARY

\_

I. SUMMARY

The purpose of this study was to determine a suitable method(s) for estimating smoke intake in the human smoking population, both in an experimental setting and eventually in a survey-type situation. Although there have been studies in the past to determine smoke intake by analysis of various smoke components in body fluids, to our knowledge this is the first attempt to assemble in a single document much of the relevant knowledge available from the literature and other sources, including consultants.

Early in the study inquiries were made of various expert consultants for advice and suggestions relating to compounds or methods suitable for measuring smoke intake. It became clear that, although this approach was necessary for specific segments of the problem, it was inappropriate and inefficient for the ultimate objective since individual experts lacked essential information outside of their area of expertise. We have attempted to bring these various types of information together so that this report might provide scientists of diverse backgrounds with a broad perspective, which together with various clues and other facts may catalyze thinking about novel approaches to the measurement of smoke intake, in addition to those specifically proposed.

To this general end the report presents a compilation of:

- (1) Over 475 compounds reported in smoke, their amount and methods of analysis.
- (2) Over 20 compounds found in smoke which were previously reported in the literature to measure smoke intake, related information on the body fluid used, methods of analysis, and where stated or derivable, the reliability and limitations of the methodology.
- (3) Various biological responses, to whole smoke or to individual smoke components, which conceivably could be used as indicators of smoke intake.
- (4) The factors which influence the determination of smoke intake, e.g., level of smoke retention in body fluids, volume and availability of various body fluids, the degree of invasiveness needed for sampling, and pharmacokinetics of the marker compound once inhaled and absorbed.

ymag ca

William Street

Jan 1931

Our own analysis of the situation has led us to a recommendation that for the immediate future, two methodologies should be further developed for experimental studies. Since they involve the use of stable isotopes, in carbon monoxide and water, they might well not be suitable for survey studies but could provide a firm basis for calibration of survey methods with other compounds. Our reasoning leading to this recommendation is based on the following considerations.

(5) Analytical procedures surveyed for the state-of-the-art, to

- (1) A great many compounds are present in smoke in sufficient quantity to be useful as indicators for estimating smoke intake. In most instances, however, the amount of information available about the distribution, metabolism and elimination of these compounds was inadequate to permit an evaluation.
- (2) None of the biological responses examined appear to be sufficiently specific or attainable by ordinary sampling techniques to be considered prime candidates for determining smoke intake.
- (3) An in depth analysis of previous studies determined various sources of error and uncertainty. The major ones include: the inability of the investigator to control adequately the volume of smoke generated from each digarette by the smoker; the inability to determine the fraction of generated smoke actually inhaled; the pharmacokinetics of the compound of interest, e.g., transfer rate from lung to body fluid; and finally, in many cases, changes in background levels of the marker compounds in body fluid, i.e., from endogenous and exogenous sources. These appear to be the major obstacles in any future studies on the development of methodology for estimating smoke intake quantitatively.

age of sylanger

La viera nel Salarenos. I esto

(4) Compounds that have been reported in the literature as indicators of smoke intake include nicotine, cotinine (metabolite of nicotine), thiocyanate (cyanide metabolite), free cyanide, polonium 210, lead 210, thorium 228, bromine 82, cadmium, nitrogen, carbon monoxide, acetonitrile, and 1,2,3,4-dibenzo-pyrene. Although body tissue levels of many of the above compounds have been shown to be increased in smokers, the degree of correlation between smoking history and level of these compounds in a body fluid, with the exception of carbon monoxide

and acetonitrile, has not been impressive. Additional study is needed to confirm the high correlations found using acetonitrile.

Results of this study lead us to recommend further investigations of the potential applicability of carbon monoxide as an indicator of gas phase intake, particularly in the light of the extent of knowledge of its biochemical properties. Water, as a constituent of both particulate and gas phase of smoke, may also be useful as an indicator. However, in view of the presence in the body fluids of carbon monoxide and water from endogenous and exogenous sources other than cigarette smoke, it will be necessary to use a suitable method of tagging the compound in smoke. Use of the stable mass isotopes was selected since they provide a high degree of selectivity and instrumentation is available to maximize sensitivity.

The following subsidiary recommendations offer a logical development of this general recommendation, leading to methods for direct use in experimental situations, and providing a basis for development of survey methods.

- (1) To help differentiate the source of the marker compound in body fluid, i.e., to limit it to digarette smoke versus other sources, a mass-isotope added to digarette tobacco is recommended. Although many compounds are potentially good indicators of smoke intake, carbon monoxide and water are two which, if labeled with a mass-isotope (13C, 2D), show the most promise of offering this differentiation.
- (2) The use of carbon monoxide is recommended since it provides a non-invasive method and a measure of the amount of smoke (gas phase) actually inhaled. Also the level of tissue absorption and metabolism which complicate many quantitative. studies of smoke intake is minimal. For analysis, our recomendation is the use of diode laser spectroscopy. instrumentation provides a maximum in sensitivity and specificity. The suggested instrumentation is still a research tool and not available in most analytical laboratories, yet it is, in our best judgment, the most promising for providing methodology for determing smoke intake quantitation. The preparation of a compound containing 13C or 2D suitable for labeling tobacco which would produce labeled carbon monoxide or water, respectively, upon combustion should not involve: major. expenditure. We have: considered several possible ways of labeling cigarettes, but the selection should not be considered final.

4

era alam dan digeneral

garanana di

engre

- (3) Cigarette smoking should be carried out with a calibrated smoking machine to control the amount of smoke generated and the level of the marker compound in mainstream smoke. In biological experiments, all smoke in exhaled breath (plus any which may be recovered from the mouth) should be collected to establish the amount not retained in the respiratory tract.
- (4) In a pilot study, smoke intake would be determined under standardized and well controlled exposure conditions using the tracheotomized dog initially, then a selected population of chronic smokers. Carbon monoxide would be the first compound to be evaluated.
- (5) Once a protocol for quantitatively estimating smoke intake using mass-isotope techniques is developed, other potential natural marker compounds can be calibrated for use in characterizing the intake of smoking populations involving large numbers of subjects.
- (6) Cigarette butts could be analyzed for different smoking modes to determine if there are differences in the build-up of various smoke components. These differences would serve as a crude measure of the degree of puffing versus smoldering of the cigarette.

Until such studies are actually carried out, an assessment of overall program cost is difficult to make. Analysis of trace gases by laser spectroscopy (as proposed in Section V and detailed in Section VI) for the detection of <sup>13</sup>C-carbon monoxide in expired air, will require a considerable initial capital outlay. The diode laser source assembly will cost approximately \$16,000 with additional components (which would be needed for any laser) costing another \$50,000. In terms of epidemiological studies of smoking, the cost of the proposed capital equipment would probably be small in relation to the total number of samples needed to characterize various segments of the smoking population.

فاحترا والماء والمارة والماري

militariya 👟 militari

II. INTRODUCTION

Talendar modeling and

water and the

With the second

normalis de la companya de la compan

Arthur D Little Inc S

For obvious reasons the rate of puffing, puff volume, depth of inhalation, time elapsed for smoke in the lung (time between smoke inhalation and exhalation), and many other factors — all profoundly influence the overall retention of smoke components and are not accounted for in estimating dose or smoking history by inquiry or questionnaire.

Since smoke is composed of hundreds of different chemical compounds, reliable measurements of smoke intake are dependent on the proper selection of one (or more) component that is transferred from smoke to a physiological fluid (or, in the broader sense, body tissues) in a very reproducible manner during smoking. Moreover, the fate of a suitable compound must be well understood in terms of its distribution, metabolism and excretion, as well as those factors that would tend to influence its stability in the smoke. Finally, the practical aspects of body fluid analysis, e.g., sensitivity, specificity, cost of analysis, and a use of non-invasive methodology to acquire tissue fluids, have helped shape the conclusions of this report.

To clarify the problems of quantitating smoke intake in human subjects, selected experts in related fields have been consulted and have provided considerable direction, especially in areas of analytical instrumentation. A literature search was used to define relevant knowledge from past research.

era erakanak erak sa Magustan kentan

#### List of Consultants and Contributors

Mr. Richard Amacher
Technical Information Officer
National Clearinghouse for Smoking and
Health
Bethesda, Maryland 20016

Dr. John F. Benner
Assistant Professor
Department of Agronomy and
Assistant Director
Tobacco and Health Research Institute
University of Kentucky
Lexington, Kentucky 40506

Dr. C. Forbes Dewey, Jr. Professor of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Mass. 02139

Mr. John Fanton Hewlett Packard Company Medical Electronics Division Waltham, Massachusetts

Dr. Michael R. Guerin
Oak Ridge National Laboratory
P.O. Box X
Oak Ridge, Tennessee 37830

Mr. Thomas Hayes Hewlett Packard Company Medical Electronics Division Waltham, Massachusetts

Dr. Charles Hignite
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Mass. 02139

Dr. Ronald A. Hites Professor of Chemical Engineering Massachusetts Institute of Technology Cambridge, Mass. 02139

Dr. Dietrich Hoffmann American Health Foundation New York, New York 10019

Dr. Herbert Kagan Department of Biochemistry Boston University Medical School Boston, Massachusetts

Dr. Charles Keith Celanese Corporation Charlotte, North Carolina

Dr. L. B. Kreuzer
Diax Corporation
250 Sobrante Way
Sunnyvale, California 94086

Dr. Krotoszynski IIT Research Laboratory Chicago, Illimois

Dr. Herbert McKennis, Jr. Medical College of Virginia Department of Pharmacology Richmond, Virginia 23219

Dr. Monica Nees Assistant Director Information Services, NERAC University of Connecticut Storrs, Connecticut

#### List of Consultants and Contributors (cont.)

Dr. Alfred O. C. Nier Professor of Physics University of Minnesota Minneapolis, Minnesota Miss Susan Woredford Technical Assistant Massachusetts Institute of Technology Cambridge, Mass. 02139

Dr. Vello Norman. Liggett & Myers, Inc. Durham, North Carolina 27702

Dr. Edward Pelikan Department of Pharmacology Boston University Medical School Boston, Massachusetts

Mr. Peter Piper
MEDLINE Service
Massachusetts Institute of Technology
Cambridge, Mass. 02139

Dr. Starke Information Services, NERAC University of Connecticut Storrs, Connecticut

Mr. William Sutterer Mayo Clinic Minneapolis, Minnesota

Keizo Uemapsu Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Mr. Anthony Waraska Instrumentation: Laboratories Lexington, Massachusetts

10

Arthur D Little Inc.

appain simi

حاجه وبالمجروع فعماء

nganisi eksepteni

purgramageurs drawn (+170\*)

III. LITERATURE SURVEY

And the following section of the sec

rin rigita angin .

sudment with a con-

Arthur D Little, Inc. 98

#### A. SOURCES

An institute one

Due to the extensive literature related to the biology and chemistry of cigarette smoke, in part our efforts have been directed toward compilation of a list of those chemical compounds which occur in smoke in sufficient quantities so that they would be present in measurable levels in body fluids using existing published methodology. To accomplish this it was necessary to compile from the published literature a list of chemical compounds reported in cigarette smoke, the amount, and the methods of analysis.

In addition to an extensive compilation of literature in the ADL files the following sources were also searched: Chemical Abstracts (1/1960-6/1974); Biological Abstracts (1/1967-6/1973); Index Medicus (1/1960-6/1973); the Reports of the Surgeon General on the Health Consequences of Smoking (1964, 1968, 1971); and The Bibliography on Smoking and Health, National Clearinghouse for Smoking and Health, HEW (1/1968-6/1973). We have consulted with the editor of The Bibliography on Smoking and Health and with the Assistant Director for Information Services of NERAC computerized data service at the University of Connecticut, Storrs, Connecticut. A computerized literature search was also carried out through the National Library of Medicine in both the MEDLINE and the MEDLARS programs, and also the Preston Technical Abstract Service.

The MEDLINE search (1970-3/1974) produced 578 citations under the following key words: complications of smoking (276 citations); carbon monoxide/blood or carbon monoxide/urine or carbon monoxide/analysis (251 citations); carbon monoxide and breath tests (no citations); carbon monoxide and blood gas analysis (13 citations); nicotine/blood (11 citations); dose-response relationship, smoke (14 citations); and smoking/pathology (13 citations).

The MEDLARS search (1/1964-5/1973) furnished 873 citations under the following key words: smoking and blood, smoking and urine, smoking and lymph, smoking and hemolymph, smoking and plasma (693 citations); smoking and other body fluids (180 citations).

The Preston Technical Abstract Search (1960-1971) produced 84 citations (key word: cigarette smoke).

Certain operational problems associated with the literature search soon became apparent, particularly with respect to the computerized aspects of the literature search. All of the computerized data retrieval systems were categorized and classified under certain key words. Due to the enormous volume of smoke related papers in the literature, plus the broad scope of our inquiry which overlapped into several areas, the available key words were not specific enough for our purposes. Since we could not coordinate the key words programmed into the computer with

12

Arthur D Little Inc.

our particular needs, we requested, by necessity, several key words to ensure receiving all citations relevant to smoke intake analysis. This action resulted in many citations unrelated to our specific aims. For example, citations under smoking and health might include papers concerned with various disease states which coincidentally made mention of the smoking history of the individual(s), or perhaps papers concerned with the effects of marijuana smoking, etc.

To deal effectively with all the published literature, it was necessary to have many foreign publications translated into English.

To assist the reader, a list of frequently used abbreviations for the method of analysis is included.

العاطف المشارية فالإمرية

Arthur D Little 19700

### LIST OF ABBREVIATIONS FREQUENTLY USED IN REFERRING TO METHODS OF ANALYSIS

| GC         | Gas Chromatography                                       |
|------------|----------------------------------------------------------|
| GCFPD      | Gas Chromatography with Flame Photometric Detector       |
| GCFID      | Gas Chromatography with Flame Ionization Detector        |
| GCTCD      | Gas Chromatography with Thermal Conductivity Detector    |
| GCECD      | Gas: Chromatography:<br>with Electron Capture: Detector. |
| MS         | Mass Spectroscopy                                        |
| GLC        | Gas-Liquid Chromatography                                |
| UV:        | Ultraviolet Spectroscopy                                 |
| IR         | Infrared Analysis                                        |
| SPF        | Spectrophotometric                                       |
| C          | Colorimetric                                             |
| NAA        | Neutron Activation Analysis                              |
| FS         | Fluorescence Spectroscopy                                |
| AAS        | Atomic Absorption Spectroscopy                           |
| cc         | Column Chromatography                                    |
| PC:        | Paper Chromatography                                     |
| CLUM       | Chemiluminescence                                        |
| <b>A</b> : | Analytical Methods                                       |
| POT        | Potentiometric Analysis                                  |
| GRAV.      | Gravimetric Method                                       |
| TLC        | Thin Layer Chromatography                                |
| HRCC       | High Resolution Capillary Columns                        |
| RIA        | Radioimmunoassay                                         |
| ESR        | Electron Spin Resonance                                  |
| SCIN       | Scintillation Analysis                                   |
| FP         | Freezing Point                                           |
| MP:        | Melting Point                                            |
| SSMS       | Spark Source Mass Spectroscopy                           |
| FLP        | Flame Photometry                                         |
| NMG        | No Method Given                                          |

14

#### Arthur D Little Inc.

jugaan seeda see

the charge transfer of

PROPERTY.

A CONTRACTOR OF THE PARTY OF TH

Various methods have been used to determine the concentration of nicotine in an individual who smokes and these studies have shown that nicotine is rapidly metabolized and the molecule is rather unstable in neutral and alkaline solutions, undergoing a variety of chemical changes. These factors have probably contributed to the great variability in the results of nicotine, and its metabolite cotinine, determination in urine. This has been demonstrated by Becket<sup>38</sup>, who artificially maintained the urine at an acidic pH by the administration of ammonium chloride tablets to the test subjects. Another metabolite, nicotine-1'-oxide is independent of urinary pH but the amount present is small (Beckett<sup>38</sup>).

Urinary nicotine analysis often requires a 24-hour sample and tedious extraction and assay procedures (Beckett<sup>38</sup>, <sup>39</sup>), (Bowman<sup>63</sup>) (Booth<sup>60</sup>) (Dagne<sup>124</sup>). Moreover, sex dependent changes in excretion (Becket<sup>39</sup>) must also be taken into account; and smoking is believed to induce enzymes that alter the metabolism of nicotine (Beckett<sup>41</sup>). When both smokers and non-smokers were administered intravenously identical doses of nicotine, smokers excreted lower levels of nicotine, although levels of cotinine were comparable in both groups. This finding would lead one to question the use of urinary nicotine as a measure of smoke intake. Blood nicotine analyses, in general, provide more reliable data on body burden than do analyses of urinary nicotine excretion (Schievelbein<sup>4,74</sup>) (Isaac<sup>2,37</sup>).

Nicotine is rapidly eliminated from the bloodstream e.g., 30 seconds (Isaac<sup>236</sup>)], and within a few minutes the concentration drops below the levels of gas chromatographic detectability (Isaac<sup>236</sup>) (Schievelbein<sup>4,74</sup>). Also, the rate of plasma decline shows a considerable degree of variability between smokers (Isaac<sup>237</sup>). Langone, Gjika and Van Vunakis<sup>286</sup> have recently developed a highly sensitive radioimmuno-assay procedure for detecting nicotine and/or cotinine either in blood or urine. However, they report no apparent correlation between the number of cigarettes smoked and the concentrations of nicotine and cotinine in body fluids when using their procedure, although within each subject there is a well defined decrease in concentration with time after smoking.

A list of compounds found in smoke which have been isolated from one or more of the body fluids is presented in Table 1. Other compounds in addition to nicotine, carbon monoxide and thiocyanate reported in body fluids include polonium-210, lead (also 210), thorium-228, cadmium, nitrogen, methanol, furfural, acetonitrile, 3,4-benzpyrene, and bis(p-chlorophenyl) acetic acid.

f Increases, higher

♥ Decreases, lower

+ Leads to, causes

COHb Carboxyhemoglobin

BUN Blood urea nitrogen

SGOT Serum glutamic oxalic transaminase

SGPT Serum glutamic pyruvic transaminase

LDH Lactic dehydrogenase

HR: Heart: rate

BP Blood pressure

NEFA Non-esterified fatty acid

FFA Free fatty acid

FA Fatty acid

5-HT 5-Hydroxytryptamine

NE Norepinephrine

EPI Epinephrine

5-HIAA 5-Hydroxy-3-indole acetic acid

ADP Adenosine diphosphate

FEV Forced expiratory volume

SV Stroke volume

ADH Antidiuretic hormone

OHCS Hydroxycorticosteroids

KA units King Armstrong units

pCi pico Curies

da maria eterrologia a

A maggiologic

. www.arenigeneis

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|    | Component                                                 | Reference       | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Conce                        | entration/Fi         | ndings             |
|----|-----------------------------------------------------------|-----------------|-----------------------|--------------------------------|------------------------------|----------------------|--------------------|
|    | Nicotine-1'-oxide                                         | Booth (60)      | PC                    | Urine<br>(Man)                 | 0.04 μg/ml/cig.              |                      | - 1                |
|    | Nicotine<br>(1 mg IV)                                     | Beckett<br>(38) | GLC                   | Urine<br>(Man)                 | pH dependent<br>recovery     | Nicotine<br>Cotinine | ug/24 hrs. 350 178 |
| 17 | Nicotine<br>(In Atmosphere)<br>(15-35 µg/m <sup>3</sup> ) | Cano<br>(83)    | GC                    | Urine<br>(Man)                 | Excretion of 22              |                      |                    |
|    | Nicotine (3 mg p.o.) (Cotinine)                           | Bowman<br>(63)  | PC                    | Urine<br>(Man)                 | 10% of administ as cotinine. | ered nicoti          | ne excreted        |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|    | Component                                 | Reference             | Method of<br>Analysis | Presence in<br>Tissue or Fluid            | Conc                       | entration/Findings                           |
|----|-------------------------------------------|-----------------------|-----------------------|-------------------------------------------|----------------------------|----------------------------------------------|
|    | <sup>3</sup> H-Nicotine<br>(100 µg/kg IV) | Tsujimoto<br>(528)    | SCIN                  | Saliva<br>(Dog)                           | Nicotine                   | 0.15 µg/m1 max. at 2 min.                    |
|    | (200 %8/ 108 21/                          | (320)                 |                       | (pog)                                     | Metabolites                | $0.05  \mu \text{g/ml}$ at 1 hr.             |
|    |                                           |                       |                       | Saliva                                    | Nicotine                   | 0.08 µg/ml max. at 2 min.                    |
|    |                                           |                       |                       | (Monkey)                                  | Metabolites                | 0.15 µg/ml max. at 5 min.                    |
|    |                                           |                       |                       |                                           | Metabolites                | $0.09  \mu g/ml$ at 1 hr.                    |
| 18 | Nicotine                                  | Schievelbein<br>(474) | GLC                   | Blood 10 min.<br>after 1 cig.<br>(Man)    | 0.005-0.064 դ              | g/ml.                                        |
|    | Nicotine                                  | Langone<br>(286)      | RIA                   | Blood from<br>chronic<br>smokers<br>(Man) |                            | lation between smoking history blood levels. |
|    | Hydroxycotinine                           | Dagne<br>(124)        | MS                    | Urine<br>( <u>Man</u> )                   | Compound has in urine of s | been qualitatively identified mokers.        |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|   | Component                 | Reference             | Method of<br>Analysis | Presence in<br>Tissue or Fluid                 | Concentration/Findings                                                                         |
|---|---------------------------|-----------------------|-----------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|
|   | Cotinine                  | Langone<br>(286)      | RIA                   | Blood from<br>chronic<br>smokers<br>(Man)      | No good correlation between smoking history and cotinine blood levels.                         |
|   | Nicotine                  | Isaac<br>(237)        | GLCFID                | Plasma<br>(Man)                                | Max. 0.05 $\mu$ g/ml 1/2 hr after 1 cigarette. Average 0.01 $\mu$ g/ml 1 hr after 1 cigarette. |
|   | Nicotine<br>(Smoke)       | Isaac<br>(236)        | <b>GL</b> C           | Brachial artery<br>blood<br>(Dog)              | Max. 0.15-0.25 μg/ml 7-10 sec. after 1 puff.                                                   |
| , | Nicotine<br>(28 µg/kg IV) | <u>Isaac</u><br>(236) | GLC                   | Brachial artery<br>blood<br>(Dog)              | Max. 0.9 to 1.3 $\mu$ g/ml 25 sec. after dose, then falls rapidly.                             |
|   | Nicotine<br>(Smoke or IV) | Beckett<br>(41)       | GLC                   | Urine<br>(Man)<br>(Maintained<br>at acidic pH) | Smokers 25-50% recovery. Non-smokers 55-70% recovery.                                          |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|    | Component                 | Reference           | Method of Analysis | Presence in<br>Tissue or Fluid | Concentration/Findings                                                                                 |
|----|---------------------------|---------------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|
|    | Nicotine<br>(1 mg IV)     | Beckett<br>(39)     | GCFID              | Urine<br>(Man)                 | The ratio of cotinine/nicotine excretion is higher in smokers than non-smokers, especially in females. |
|    | Nicotine                  | Elmenhorst<br>(149) | SPF                | Lungs<br>(Hamster)             | Correlation is shown between number of cigarettes smoked and † concentration in lungs.                 |
| 20 | Nicotine<br>(5 cigs/1 hr) | Sugitani<br>(516)   | NMG                | Blood<br>(Man)                 | Heavy smokers showed a noticeable † in levels of blood nicotine.                                       |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component     | Reference      | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Concentrat                                            | ion/Findings                                                                                   |
|---------------|----------------|-----------------------|--------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|
| CO<br>(Smoke) | Harke<br>(202) | NMG                   | Blood<br>(Man)                 | Smokers  Non-smokers in same room with heavy smokers  | 3.4-10% сонь<br>1.2-2.3% сонь                                                                  |
| CO<br>(Smoke) | Bowden<br>(62) | Ċ                     | Blood<br>(Man)                 | Smokers 9 a.m.  Smokers 4.30 p.m.  Non-smokers 9 a.m. | 1.5±0.4 SD %COHb<br>2.7±1.1 SD %COHb<br>0.7±0.3 SD %COHb                                       |
| CO<br>(Smoke) | Cohen<br>(107) | NMG                   | Blood,<br>Expired air<br>(Man) | smoked and CO                                         | on between no. of cigarettes in expired air (r = 0.64). Detween CO in expired air (3 (CO ppm). |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|    | Component     | Reference        | Method of<br>Analysis | Presence in<br>Tissue or Fluid |     | Concentration/Findings                                                                                                              |
|----|---------------|------------------|-----------------------|--------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|
|    | CO<br>(Smoke) | Landaw<br>(283)  | IR<br>(Expired air)   | Expired air,<br>Blood<br>(Man) | (a) | A linear correlation (r = .93) was found between CO concentration in expired air and COHb in a simultaneous venous sample of blood. |
|    |               |                  | GC<br>(COHb)          |                                | (b) | There was great variability among smokers having similar smoking habits.                                                            |
| 22 | CO<br>(Smoke) | Ringold<br>(448) | IR                    | Expired air,<br>Blood<br>(Man) | (a) | Relationship between expired air CO and COHb is:  COHb% = 0.5 + CO(ppm) 5                                                           |

(b) Higher COHb levels were found in cigarette smokers than non-smokers or smokers of pipes or cigars.

# TABLE 1 (cont.) AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component     | Reference        | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Concentration/Findings |                        |                                                                                                        |
|---------------|------------------|-----------------------|--------------------------------|------------------------|------------------------|--------------------------------------------------------------------------------------------------------|
| CO<br>(Smoke) | Stewart<br>(511) | GCFID                 | Expired air<br>(Man)           | (a)                    | Smokers<br>N=1620      | %COHb<br>4.47±0.06 (SE)                                                                                |
|               |                  | CO-oximeter           | Blood<br>(Man)                 |                        | Non-smokers<br>N=2798  | %COHb<br>1.33±0.02 (SE)                                                                                |
|               |                  |                       |                                | (b)                    | Equation rel           | lating %COHb and CO ppm                                                                                |
|               | •                |                       |                                |                        | <b>%сонь</b> = 0.25    | 5 (CO ppm) + 0.48                                                                                      |
|               |                  |                       |                                | (c)                    | and smoking day. Above | onship between CO levels habits up to 1.5 packs/this point there is no reciable increase in CO levels. |
| СО            | Yacoub<br>(574)  | <b>C</b>              | Blood<br>(Man)                 | (a)                    | had + CO blo           | cigs/day) who did not inhale<br>ood levels (12.1 ml) when<br>inhalers (18.8 ml/liter blood)            |
|               |                  |                       |                                | ( <u>Þ</u> )           | Both groups CO/liter). | were > non-smokers (3.05 ml                                                                            |
|               |                  |                       |                                | (c)                    | Concomitant            | Δ in urinary SCN was seen:                                                                             |
|               |                  |                       |                                |                        | Non-inhaler            | 16.3 mg/L                                                                                              |
|               |                  | :                     |                                |                        | Inhalers               | 19.4 mg/L                                                                                              |
|               |                  |                       |                                |                        | Non-smokers            | 4.5 mg/L                                                                                               |

\$0\$\$330\$\$TO

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component | Reference       | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Conc                   | entration/Findings           |
|-----------|-----------------|-----------------------|--------------------------------|------------------------|------------------------------|
| СО        | Desoille        | IR                    | Blood<br>(Man)                 | Smokers                | 0.25-1.75 ml CO/100 ml blood |
|           | (136)           |                       |                                | Non-smokers            | > 0.20 ml/100 ml blood       |
| ĞÖ        | Jones           | SPF                   | Blood<br>(Man)                 | Smokers                | 5.31% СОНЬ                   |
|           | (248)           |                       |                                | Non-smokers            | 1.55% СОНЬ                   |
| CO        | Anderhub<br>(7) | CO-oximeter<br>SPF    | Blood<br>(Man)                 | Farmwon<br>Non-smokers | rkers<br>1.5-2.4% COHb       |
|           |                 |                       |                                | Smokers                | 1.8-10.0% COHb               |
|           |                 |                       |                                | Traffic<br>Non-smokers | Policemen<br>1.5-2.3% COHb   |
|           |                 |                       |                                | Smokers                | 3.0-8.1% COHb                |
| CO        | Lawther (291)   | IR                    | Blood<br>(Man)                 | Elevated level         | ls in heavy smokers as high  |
|           |                 |                       |                                | Half-life of (         | 30 = 4  hr.                  |

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component        | Reference            | Method of<br>Analysis                                                                                                                                                      | Presence in<br>Tissue or Fluid |     | Concentration/Findings                                                                                   |
|------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|----------------------------------------------------------------------------------------------------------|
| scn -            | Foulds<br>(165)      | ;<br><b>C</b>                                                                                                                                                              | Serum<br>(Man)                 | (a) | SCN concentrations are higher in smokers than in non-smokers.                                            |
|                  |                      |                                                                                                                                                                            |                                | (b) | SCN levels of patients with tobacco<br>amblyopia are not significantly<br>different from non-smokers.    |
|                  |                      |                                                                                                                                                                            |                                | (e) | Author suggests that tobacco amblyopia may be an inability to convert CNT to SCNT.                       |
| scn <sup>-</sup> | <u>Bhown</u><br>(48) | SCN-:C                                                                                                                                                                     | Serum<br>(Man)                 | (a) | SCN concentrations † from 0.24-2.0 (non-smokers) to 0.41-2.48 mg %.                                      |
|                  |                      | Alk. Phos.: King,<br>E.J. and Wootton,<br>I.D.P. <u>Micro-</u><br>analysis in Medica<br><u>Biochemistry</u> , 3rd<br>ed., J. & A.<br>Churchill Ltd.,<br>England, 1956,p.83 |                                | (b) | Corresponding + in alkaline phosphatase from 1.0-6.64 (smokers) to 3.41-8.04 K.A. units for non-smokers. |

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component        | Reference       | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Concentration/Findings                                                                                                                             |
|------------------|-----------------|-----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| scn <sup>-</sup> | Beck<br>(37)    | NMG                   | Serum<br>(Woman)               | Serum SCN levels + from 0.27 mg% (non-smokers) to 0.37 mg%.                                                                                        |
|                  |                 |                       | Saliva<br>(Woman)              | Salivary SCN levels + from 18.4 mg% to 21.4 mg%.                                                                                                   |
|                  |                 |                       | Cervical<br>mucus<br>(Woman)   | No difference - 1.6 mg%.                                                                                                                           |
| SCN              | Yacoub<br>(575) | C                     | Urine<br>(Man)                 | Urinary SCN                                                                                                                                        |
|                  |                 |                       |                                | Non-smokers + 4.5 mg/liter 1-10 cigs/day + 9.3 mg/liter 10-20 cigs/day + 16.3 mg/liter 20-30 cigs/day + 21.0 mg/liter 30+ cigs/day + 27.8 mg/liter |
| scn7             | Pettigrew (415) | Ċ                     | Plasma<br>(Man)                | (a) Plasma SCN levels ↑ from 36 μmole/L (non-smokers) to 65 μmole/L.                                                                               |
|                  |                 |                       |                                | (b) Plasma SCN levels + to non-smoking<br>level in 4 weeks of no smoking.                                                                          |

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| <u>Component</u> <u>SCN</u> |          | ponent Reference Analysis Tiss CN Linnell SPF |     | Presence in<br>Tissue or Fluid | Smokers have + excretion of SCN in urine (207.8 µmoles/24 hrs) compared with 90.5 µmoles/24 hrs for non-smokers. |                                   |  |
|-----------------------------|----------|-----------------------------------------------|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
|                             |          |                                               |     | Urine<br>(Man)                 |                                                                                                                  |                                   |  |
|                             | SCN      | Dastur<br>(129)                               | SPF | Plasma<br>(Man)                | SCN higher in smoker                                                                                             | s than non-smokers.               |  |
|                             | SCN      | Bruce<br>(72)                                 | С   | Plasma<br>(Man)                | 1.6 µg/ml of SCN in                                                                                              | plasma of non-smokers.            |  |
| 27                          | Free CN  | Maehly<br>(315)                               | SPF | Blood<br>(Man)                 | Smokers<br>2.0-13.0 µg/100 ml                                                                                    | Non-smokers<br>3.5-10.1 µg/100 ml |  |
|                             | Free SCN |                                               |     | Urine<br>(Man)                 | 3.1- 6.5 ug/ml                                                                                                   | 1.1- 3.8 ug/ml                    |  |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component        | Reference            | Method of<br>Analysis | Presence in Tissue or Fluid | Concentration/Findings                                                                                                                                     |
|------------------|----------------------|-----------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| scn <sup>-</sup> | Pettigrew (416)      | Ç                     | Plasma<br>(Man)             | (a) There was a significant † in plasma SCN levels from 45.8 (non-smokers) to 86.4 umole/liter of plasma.                                                  |
|                  |                      |                       |                             | (b) Plasma SCN levels were also significant<br>for smokers vs. tobacco amblyopes<br>(36.7 μmole/liter).                                                    |
| CN :             | Pettigrew<br>(416)   | Ċ                     | Blood<br>(Man)              | There was no significant difference in whole blood CN among smokers (0.8±1 SD), non-smokers (1.5±0.9 SD) and tobacco amblyopes (1.4±1.7 SD) nmole/g blood. |
| CN T             | <u>Ansell</u><br>(9) | Č                     | Urine<br>(Man)              | (a) Non-smokers 6.7 μg%<br>(b) Smokers 17.4 μg%                                                                                                            |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component        | Reference         | Method of<br>Analysis | Presence in<br>Tissue or Fluid |     | Concentration/Findings                                                                                                                                   |
|------------------|-------------------|-----------------------|--------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| scn <sup>-</sup> | Densen<br>(135)   | SPF                   | Urine<br>Saliva<br>Serum       | (a) | Smoking → † SCN levels in saliva of smokers vs. non-smokers.                                                                                             |
|                  |                   |                       | (Man)                          | (b) | Smoking - detectable amounts of SCN in serum of smokers vs. non-smokers.                                                                                 |
|                  |                   |                       |                                | (c) | SCN levels t in urine of smokers.                                                                                                                        |
| scn <sup>-</sup> | Langmann<br>(285) | SPF                   | Saliva<br>(Man)                | (a) | Smokers in each clinical group (normal, gastric ulcer, gastric cancer) had † SCN <sup>-</sup> salivary concentrations than non-smokers.                  |
|                  |                   |                       |                                | (b) | Gastric cancer patients had significantly lower SCN salivary concentrations than gastric ulcer patients or normal patients regardless of smoking habits. |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|    | Component        | Reference                | Method of<br>Analysis              | Presence in<br>Tissue or Fluid |     | Concentration/Findings                                            |
|----|------------------|--------------------------|------------------------------------|--------------------------------|-----|-------------------------------------------------------------------|
|    | scn <sup>-</sup> | (143)                    | Summer and Somers<br>Chemistry and | Saliva<br>(Man)                | (a) | SCN concentrations were significantly higher in smokers.          |
|    |                  |                          | Methods of En-<br>zymes, Academic  |                                | (b) | Ca <sup>++</sup> was markedly lower in smokers.                   |
|    |                  |                          | Press, New York<br>1947,p.312      |                                | (c) | K+ + in smokers compared to non-smokers.                          |
|    | šcn_             | Bourke<br>(61)           | С                                  | Blood<br>(Man)                 |     | ing + mean serum SCN from 0.2 mg (non-<br>ers) to 0.56 mg/100 ml. |
| 30 | scn              | Courant<br>(116)         | С                                  | Saliva<br>(Man)                | (a) | Statistically significant + in SCN saliva level of smokers.       |
|    |                  |                          |                                    |                                | (b) | SCN level + with no. of cigarattes smoked.                        |
|    | son-             | Barylko-Pikielna<br>(33) | SPF                                | Urine<br>(Man)                 | (a) | Smoking + SCN from 16.28 mg (non-smokers) to 23.41 mg/liter.      |
|    |                  |                          |                                    | Saliva<br>(Man)                | (b) | Smoking + SCN from 3.73 mg% (non-smokers) to 15.48 mg%.           |
|    | CN SCN           | Wilson<br>(570)          | SPF                                | Plasma<br>(Man)                | (a) | Plasma SCN levels in smokers were much than non-smokers.          |
|    |                  |                          |                                    |                                | (b) | Plasma CN levels were higher but not statistically significant.   |

## \$0\$\$30\$T\$

: 5

11. \$

| Component        | Reference            | Method of<br>Analysis                                                                                                   | Presence in<br>Tissue or Fluid | Concentration/Findings                                                                  |
|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|
| sen <sup>-</sup> | Dacre<br>(123)       | SPF                                                                                                                     | Saliva<br>(Man)                | Smokers       177.4 μg/ml         Non-smokers       52.4 μg/ml                          |
| SCN              | Dacre<br>(123)       | SPF                                                                                                                     | Sputum<br>(Man)                | Smokers 36.7 µg/ml<br>Non-smokers 19.9 µg/ml                                            |
| scn <sup>=</sup> | Cruz Urbina<br>(121) | Barker, M.H. & Linberg, H.A. J.Biol.Chem. 117:1591,1941                                                                 | Saliva<br>(Man)                | Smokers       0.23-0.38 mg%         Non-smokers       0.0048-0.191 mg%                  |
| scn⊤ .           | Wray<br>(571)        | Levinson, S.A. & McFate, R.P. Clin. Laboratory Diagnosis, 5th ed., p. 419, citing M.H.Barker, Lea & Febinger, Phila., 1 | •                              | Salivary SCN levels † from 11.91 mg% (non-smokers) to 16.87 mg%.                        |
| scn <sup>=</sup> | Djuric<br>(141)      | SPF                                                                                                                     | Urine<br>(Man)                 | (a) Smokers - 3-17.5 mg/liter.<br>Non-smokers - trace amount.                           |
|                  | ·                    |                                                                                                                         |                                | (b) No. of cigarettes smoked and/or brand +<br>considerable variation in concentration. |
| SCNT             | Eliakis<br>(148)     | С                                                                                                                       | Serum<br>(Man)                 | Serum SCN levels † as a function of the no. of cigarettes/day:                          |
|                  |                      |                                                                                                                         |                                | Non-smokers <pre></pre>                                                                 |

\$0\$\$330\$T8

<u>بر</u> 11

Arthur D Little Inc.

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component    | Reference      | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Concentrat            | ion/Findings                 |
|--------------|----------------|-----------------------|--------------------------------|-----------------------|------------------------------|
| Polonium-210 | Bogner<br>(58) | NMG                   | Urine<br>(Man)                 | Smokers excrete 5 tim | es more Po-210 than          |
| Lead-210     | Bogner<br>(58) | NMG                   | Urine<br>(Man)                 | Smokers excrete 2 tim | es more Pb-210 th <u>a</u> n |
| Polonium-210 | Bogner<br>(58) | Alpha-SPF             | (Man)                          | pCi/100 g tiss        | ue<br>Non-smokers            |
|              | *****          |                       | Lung                           | 0.65                  | 0.31                         |
|              |                |                       | Liver                          | 1.25                  | 1.03                         |
|              |                |                       | Kidney                         | 0.79                  | 0.80                         |
|              |                |                       | Muscle                         | 0.08                  | 0.08                         |
|              |                |                       | Blood                          | 0.19                  | 0.13                         |
|              |                |                       | Bone                           | 3.16                  | 3.05                         |
|              |                |                       | Heart                          | 0.24                  | 0.26                         |

| Component    | Reference          | Method of<br>Analysis               | Presence in<br>Tissue or Fluid |            | Concentration/Findings                                                                                               |
|--------------|--------------------|-------------------------------------|--------------------------------|------------|----------------------------------------------------------------------------------------------------------------------|
| Thorium-228  | Petushkov<br>(418) | SCIN                                | Expired breath (Man)           | (a)        | Expired air of smokers contained 0.28±0.03 pCi/liter.                                                                |
|              |                    |                                     |                                | (b)        | Ash from one cigarette contained 0.09 pCi.                                                                           |
| Polonium-210 | Little<br>(307)    | Gas Flow<br>Proportioned<br>Counter | Blood<br>(Man)                 |            | ntration in smokers was 1.72 pCi/kg compared to 0.76 pCi for non-smokers.                                            |
| Polonium-210 | Little (308)       | Gas Flow<br>Proportioned            | Blood<br>(Man)                 | (a)        | Concentration in smokers was 1.43 pCi/kg blood.                                                                      |
| •            |                    | Counter                             |                                | (b)        | Determined t <sup>1</sup> / <sub>2</sub> in blood to be approximately 100 days.                                      |
| Bromine-82   | Wehner<br>(553)    | Gamma ray<br>spectrometry           | Blood<br>(Dog)                 | (a)        | Dogs which smoked neutron activated cigarettes had blood levels of 0.125-0.145 µg Br/cigarette 30 min after smoking. |
|              |                    |                                     |                                | <b>(b)</b> | Blood levels appeared to be linearly related to the number of cigarettes smoked,                                     |

although total body counts did not.

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component | Reference        | Method of<br>Analysis | Presence in<br>Tissue or Fluid   | Concentration/Findings                                                                                                                    |
|-----------|------------------|-----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Lead      | Lehnert<br>(297) | AAS                   | Blood<br>(Man)                   | There was no significant statistical difference (t test) between $16.3\pm4.6~\mu g\%$ (smokers) and $16.4\pm4.8~\mu g\%$ for non-smokers. |
| Cadmium   | Lewis<br>(303)   | AAS                   | Kidney<br>Liver<br>Lung<br>(Man) | Smokers had significantly + mean composite value of cadmium per organ (15.8 mg) than non-smokers (6.63 mg).                               |
| Lead      | Jones<br>(248)   | AAS                   | Blood<br>(Man)                   | No statistical significance between 16-42 $\mu g/100$ ml (non-smokers) and 18-49 $\mu g/100$ ml for smokers.                              |

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component | Reference            | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Concentration/Findings                                                                                                                                                |
|-----------|----------------------|-----------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nitrogen  | O'Brien<br>(396)     | GC                    | Urine<br>Blood<br>(Man)        | (a) Small but statistically insignificant<br>† in partial pressure of N <sub>2</sub> found in<br>blood and urine of smokers (3 mm Hg<br>higher than for non-smokers). |
|           |                      |                       |                                | (b) Suggests presence of † ventilation perfusion (VA/Q) inequality in smokers.                                                                                        |
| Smoke     | Nishimura<br>(384)   | cc,uv                 | Urine<br>(Man)                 | Heavy smokers show a higher incidence of compound IV (believed to be cinnabarinic acid) in urine than non-smokers.                                                    |
| Methanol  | Majchrowicz<br>(316) | GC                    | Urine<br>(Man)                 | Normal levels: 0.02-0.2 mg/100 ml.                                                                                                                                    |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

| Component       | Reference        | Method of Analysis | Presence in Tissue or Fluid | Concentration/Findings |                                        |  |
|-----------------|------------------|--------------------|-----------------------------|------------------------|----------------------------------------|--|
| Smoke           | Dalhamn<br>(126) |                    | Expired air (Man)           | Perco                  | ent Retention<br>Total (Mouth + Lungs) |  |
| Acetaldehyde    |                  | GC                 |                             | 60                     | 99                                     |  |
| Isoprene        |                  | ĢÇ                 |                             | 20                     | 99                                     |  |
| Acetone         |                  | GC                 |                             | 56                     | 86                                     |  |
| Acetonitrile    |                  | GC                 |                             | 74                     | 91                                     |  |
| Toluene         | :                | GC                 |                             | 29                     | 93                                     |  |
| Carbon monoxide |                  | ec                 |                             | 3                      | 54                                     |  |
| Particulates    |                  | Fluorometry        |                             | 16                     | 96                                     |  |
|                 |                  |                    |                             |                        |                                        |  |
| Furfural        | Rice<br>(446)    | NMG                | Urine<br>(Man)              | Not stated.            |                                        |  |

| Component                                       | Reference       | Method of<br>Analysis      | Presence in<br>Tissue or Fluid | Concentration/Findings                                                                                                             |
|-------------------------------------------------|-----------------|----------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Acetonitrile                                    | McKee<br>(328)  | GC,MS                      | Urine<br>(Man)                 | Smokers 0.12 $\mu$ g/ml Non-smokers 0.003 $\mu$ g/ml Definite relationship between smoking and concentration r = 0.707.            |
| 3,4-Benzpyrene                                  | Mallet<br>(317) | FS                         | Urine<br>(Man)                 | At necropsy: 50 year old smoker \rightarrow 1.8 \mug/liter 10 year old child \rightarrow 3.0 \mug/liter (Polluted city atmosphere) |
| Polycyclic<br>hydrocarbons<br>(e.g. benzpyrene) | Vassar<br>(536) | Fluorescence<br>Microscopy | Lung<br>Sputum<br>(Man)        | (a) Direct positive relationship between no. of cigarettes and no. of fluorescent macrophages.                                     |
|                                                 |                 |                            |                                | (b) Fluorescence possibly due to polycyclic<br>hydrocarbons taken up by histiocytes.                                               |

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|    | Component                             | Reference         | Method of<br>Analysis        | Presence in<br>Tissue or Fluid       |     | Conc                        | entration/Findings                                                                                     |
|----|---------------------------------------|-------------------|------------------------------|--------------------------------------|-----|-----------------------------|--------------------------------------------------------------------------------------------------------|
|    | 3,4-Benzpyrene<br>N-methyl aniline    | Pelkonen<br>(410) | In vivo enzyme<br>assay; SPF | Placenta and<br>fetal liver<br>(Man) | (a) | from placent significant l  | epyrene (BP) hydroxylase as of smoking mothers by than non-smoking mothers, had no BP activity at all. |
|    |                                       |                   |                              |                                      | (b) | in N-methyl<br>livers or pl | ally significant differences aniline demethylase in fetal acentas in infants of smoking ting mothers.  |
| 38 |                                       |                   |                              |                                      | (c) | in fetal liv                | eally significant difference<br>wer BP hydroxylase between<br>moking and non-smoking mothers.          |
|    | 1,2,3,4-dibenzopyrene                 | Maly<br>(318)     | FS                           | Urine<br>(Man)                       |     | Smokers<br>Non-smokers      | 0.001 µg/m1<br>0.0003 µg/m1                                                                            |
|    | bis(p-chlorophenyl) acetic acid (DDA) | Lee<br>(295)      | GLC                          | Urine<br>(Man)                       |     | Smokers<br>Non-smokers      | 0.034 µg/ml<br>0.0046 µg/ml                                                                            |

TABLE 1 (cont.)

AGENTS IN CIGARETTE SMOKE FOUND IN BIOLOGICAL FLUIDS FOR ASSESSMENT OF SMOKE INTAKE

|           | Component            | Reference      | Method of<br>Analysis | Presence in<br>Tissue or Fluid | Concentration/Findings                                                                 |
|-----------|----------------------|----------------|-----------------------|--------------------------------|----------------------------------------------------------------------------------------|
|           | <u>Acetalde</u> hyde | McKee<br>(328) | GC,MS                 | Urine<br>(Man)                 | Smokers 0.199 µg/ml Non-smokers 0.019 µg/ml Poor correlation with smoking r = 0.0019   |
|           | Propionaldehyde      | McKee<br>(328) | GC,MS                 | Urine<br>(Man)                 | Smokers 0.0036 µg/ml Non-smokers 0.0027 µg/ml Poor correlation with smoking r = 0.045  |
| <b>39</b> | Acetone              | McKee<br>(328) | GC,MS                 | Urine<br>(Man)                 | Smokers 0.819 µg/ml Non=smokers 0.848 µg/ml Poor correlation with smoking r = 0.0001   |
|           | Methylethyl Ketone   | McKee<br>(328) | GC,MS                 | Urine<br>(Man)                 | Smokers 0.0127 µg/ml Non-smokers 0.0134 µg/ml Poor correlation with smoking r = 0.0005 |
|           | Methanol             | McKee<br>(328) | GC,MS                 | Urine<br>(Man)                 | Smokers 0.528 µg/ml Non-smokers 0.541 µg/ml Poor correlation with smoking r = 0.0029   |

The published literature is in agreement that thiocyanate levels in either saliva, blood, or urine of smokers are higher than the levels found in non-smokers. Numerous investigators have reported an increase in plasma thiocyanate levels (SCN) in smokers, Foulds, 165 Bhown, 48 Pettigrew, 415,416 Dastur, 129 Densen, 135 Bourke, 61 Beck, 37 and Wilson. 570 Eliakis 148 states that serum SCN levels increase as a function of the number of cigarettes smoked per day. A similar relationship has been reported for urinary SCN levels (Yacoub 575) while most reports simply show a higher level of urinary SCN in smokers, Linnell, 306 Maehly, 315 Densen, 135 Barylko-Pikielna, 33 and Djuric. 141 Likewise, salivary SCN levels are higher in smokers, Langmann, 285 Densen, 135 Dogen, 143 Courant, 116 Barylko-Pikielna, 33 Dacre, 123 Cruz Urbina, 121 and Wray, 571 but wide daily variations in the level of SCN in saliva have been reported (Dacre 123).

Determination of SCN in body fluids is uncomplicated, rapid and inexpensive, and it would be ideal if these levels were a reliable index of smoke intake. Moreover, Pettigrew<sup>415</sup> reports that plasma SCN levels gradually drop to non-smoking levels within four weeks after the cessation of smoking. This would seem to indicate that the higher levels seem in smokers are directly associated with smoking. However, although SCN levels are elevated and roughly proportional to the level of smoking, subject variability precludes usage of SCN concentrations as a reliable index of individual smoking consumption. Densen<sup>135</sup> also reported wide variations among individuals and concludes that these variations may indicate metabolic adjustments to years of tobacco exposure. Djuric<sup>141</sup> has found considerable individual differences in uninary levels of thiocyanate and these variations may reflect dietary intake since many foods, e.g., almonds, cabbage, garlic, mustard, radishes, etc., give rise to thiocyanate in body tissues and could mask the effects of smoking.

The influence of body cyanide may introduce additional complications in SCN determination because blood samples are not suitable for the detection of low cyanide concentrations due to the high rate of metabolism by the enzymatic Rhodanese or  $\beta$ -mercaptopyruvate trans-sulfurase. Thus, this may account for the discrepancy of Maehly  $^{315}$  who reported a higher cyanide level in the blood of smokers, whereas Pettigrew  $^{416}$  has observed no difference in whole blood cyanide concentrations.

Therefore, despite the fact that smokers have higher thiocyanate levels in body fluids, the large degree of variability within and between individuals makes measurement of thiocyanate concentrations unsuitable as a reliable measure of smoke intake.

The determination of carbon monoxide (CO) in body tissues and expired air has been pursued by numerous investigators, and despite many variables (e.g., occupation, sex, health status, or environment) which might obscure the results, it can be concluded that chronic smokers have higher carboxyhemoglobin (COHb) levels than non-smokers. Employing spectrophotometric methods of analysis, Bowden, 62 Yacoub, 574 and Jones 248 have reported five

40

Arthur D'Little Inc.

المناز ويباغان أينده

percent and higher COHb levels in smokers. These methods measure blood CO levels indirectly by measuring COHb saturation.

Landaw<sup>283</sup> reduced CO to  $CH_4$  in a  $H_2$  stream at  $300^{\circ}C$  over a metallic surface. The CH4 was then detected with gas chromatography using a flame ionization detector. He found a linear correlation between CO levels in expired breath and blood. Landaw further reported great individual variability despite very similar smoking habits.

etgal, eta territorio

ne garrentelektris eta .

क्षेत्रक स्टब्स्स सम्बद्धित

30 \$ 1,335 v (25, 125) GANGERALIE EN

Anderhub<sup>7</sup> and Stewart<sup>511</sup> used a CO-oximeter to measure COHb. The instrument is rapid and precise but has one major disadvantage in that it must be calibrated daily against a known standard of human blood which must be determined by gas chromatographic or other instrumentation.

Cohen, 107 Ringold, 448 and Stewart 11 measured CO in expired air. The advantages of this method include the ease of sampling, its rapidity, and the non-invasive aspect of sampling. On the other hand, this method necessitates a sampling device which is impermeable to CO and capable of retaining gas samples without change in composition. Broad variations could also result due to collection techniques.

Stewart<sup>511</sup> has reported a good relationship between CO levels and smoking habits up to 1.5 packs per day. Beyond this point he reports no further appreciable increase in CO levels. Based on these findings the CO levels could be used to measure the degree of smoke for intake among light smokers, but would not permit discrimination of smoke intake on a daily basis beyond the 1.5 pack level.

Other agents have been measured in an attempt to quantitate the dose of smoke an individual actually receives. These agents include lead, cadmium, acetonitrile, some polycyclic hydrocarbons, and the radioactive elements polonium-210, lead-210, thorium-228 and bromine-82.

Jones<sup>248</sup> found no significant statistical difference in blood lead levels of smokers when compared with non-smokers. This confirms identical results published by Lehnert<sup>297</sup> using atomic absorption spectroscopy. Lewis <sup>303</sup> reported finding higher mean composite levels of cadmium per organ in the liver, kidney, and lungs at necropsy in humans who smoked. Although smokers do accumulate cadmium with cigarette-pack-years, tissue biopsy is far too drastic a procedure to use for quantitating smoke intake. Additionally, certain foods contain measurable amounts of cadmium (e.g., fish, wheat, oats, and many dairy products) which could influence the results.

Dalham 126 measured the percent retention in humans of acetonitrile present in smoke using gas chromatographic analyses of expired breath. He found a total of 74% retention in the mouth and a 91% retention in mouth and lungs. McKee $^{328}$  has reported a definite correlation (r = .707) between smoking and the concentration of acetonitrile in the urine. This is a surprisingly high correlation. No mention was made of the cigarette brand, filtered or non-filtered. Smoke intake was based on the smoker's subjective evaluation. This finding should be evaluated more fully.

Anthur D Little, Inc.

Some polycyclic hydrocarbons, most notably 3,4-benzpyrene, have been found in human urine, sputum, and in lung biopsy tissue. Vassar, <sup>536</sup> using fluorescence microscopy, reports a direct positive relationship between the number of cigarettes smoked and the number of fluorescent macrophages in the lung; this finding is believed to be a result of polycyclic hydrocarbons being taken up by the histiocytes. A significant increase in the activity of aryl hydrocarbon hydroxylase has been seen in the placentas of smoking mothers (Pelkonen<sup>4,10</sup>). However, Mallet <sup>317</sup> found 3,4-benzpyrene at necropsy in the urine of a smoker, but found even higher levels in a child raised in the polluted atmosphere of a large city. This entire area concerning the relationship of fluorescent macrophages and enzyme inducibility with exposure to polycyclic hydrocarbons has too many variables to be indicative of smoke intake since benzpyrene is found in car exhausts, in certain foods, etc.

Recently attempts have been made to detect in smokers radioisotopes which occur naturally in tobacco smoke. Petushkov, 418 working with thorium-228, tried to clarify the peculiarity of distribution and the rapidity of removal of thorium-228 and its decomposition products after it is transferred from smoke to humans. The radionuclides, polonium-210 and lead-210, have been found in higher levels in body fluids of smokers vs. non-smokers (Bogner<sup>58</sup>) (Little, 307, 308) and are a direct result of increased absorption of these radioisotopes from cigarette smoke. Wehner 553 has gone one step further and by means of neutron activation, labeled cigarettes with bromine-82 and measured the amount of gamma radiation present in dog's blood after smoking these cigarettes. Although this method is relatively easy in both procedure and analysis, it exposes the test subject to radiation.

42

Arthur D Little Inc.

May Maria Back tell

eta etapologia de la como esta La como esta de la como esta d

#### C. COMPOSITION OF CIGARETTE SMOKE AND METHODS OF ANALYSIS

are the district of the second

AND STATE OF THE STATES

usukongangalkan (1986) 1980 - Paris III (1986)

Individual chemical components of smoke that have been reported in the literature are tabulated in the following pages. An attempt has been made to group individual compounds according to the chemical class-ifications used by previous workers. Data on the amount in smoke, if available, are also provided for each compound. All data are expressed in µg/cigarette. It was necessary to assume cigarettes contained one gram of tobacco, the volume of a puff is 35 ml, and 8 puffs can be taken from one cigarette. Frequently different amounts were reported by different workers. For these compounds the range of values is provided.

The major objective of this report was to select a main stream cigarette component that when quantitated in body tissues would serve as a measure of smoke intake. Selection of an appropriate marker compound can be attempted, however, only if its concentration in the appropriate body fluid is known along with some understanding of its detectability. In view of the limited information on tissue distribution of individual chemical compounds in smoke, it was impossible to evaluate a priori a suitable marker compound. To overcome this limitation we have taken the concentration of the compound reported in smoke along with its analytical detectability and calculated the sample size of body fluid needed to measure the marker after smoking one cigarette. This required an assumption that each compound distributed itself uniformly throughout soft tissues (body mass less bone).

The sample size needed to provide sufficient concentration for analysis of the marker in body fluid is calculated by dividing the sensitivity of the method by the quantity found in one gram of tissue (tissue fluid). The method of analysis for each compound and the name of the investigators are listed on the table immediately following one containing the estimated sample sizes.

#### Abbreviations Used for Compounds Reported in Smoke

t = Trace amount.

Same and the Control

- Q = Smoke component was identified, but not quantitated.
- a = Original published data reported as per puff. To obtain values per cigarette, all values were multiplied by eight.
- b = Original published data based on grams of tobacco smoked. The values in this table were calculated on the basis of a one-gram cigarette.
- c = Original published data reported as amount per liter of smoke. The values in this table were calculated on the basis of a 280-ml (35 x 8) volume of smoke from one cigarette.
- d = Original published data reported as vol. %. Calculations were based on a 280-ml volume of smoke.
- e = Original published data reported as mole %. Values in this table were converted to µg/cigarette on the basis of a 280-ml volume of smoke.
- f = Original published data reported as ppm. Values in this table were converted to µg/cigarette on the basis of a 280-ml volume of smoke.

Arthur D Little, In 23

TABLE 2-A

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component         | Amount<br>per Cig.<br>(µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size per Cig. (ml or gm) |
|-------------------|----------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------|
| Alcohols          |                            |                                            |                                                 |                                 |
| n-Butyl alcohol   | 5                          | 10                                         | 79                                              | 127                             |
| sec-Butyl alcohol | 4                          | 10                                         | 6.3                                             | 159                             |
| Isobutyl alcohol  | 6                          | 10                                         | 95                                              | 105                             |
| Ethano1           | 2                          | 10                                         | 32                                              | 313                             |
| Furfuryl alcohol  | 5.7                        | 0. <u>1</u>                                | 90                                              | 1.1                             |
| Glycero1          | 4,200                      | 10                                         | $6.7 \times 10^4$                               | 0.15                            |
| Methanol          | 180                        | 10                                         | 2,857                                           | 3.5                             |
|                   | 100=200                    | 10                                         | 1,587-3,175                                     | 6.3-3.1                         |
|                   | 90                         | 10                                         | 1,428                                           | 7                               |
| Menthol           | 350-580                    | 10                                         | 5,554-9,205                                     | 1.8-1.1                         |
|                   | 200-500                    | 10                                         | 3,175-7,936                                     | 3.1-1.3                         |
| n-Propyl alcohol  | 4                          | 10                                         | 63                                              | 159                             |
|                   | 4.8 <sup><u>a</u></sup>    | 10                                         | 76                                              | 132                             |
| Isopropyl alcohol | Q                          | <b>0.1</b>                                 |                                                 |                                 |
| Phytol            | 14                         | 10                                         | 222                                             | 45.0                            |
| Propylene Glycol  | 400-1,000                  | 10                                         | 6,349-15,873                                    | 1.6-0.6                         |
|                   | 330                        | 10                                         | 5,238                                           | 1.9                             |
| Solanesol         | 130                        | 1,000                                      | 2,063                                           | 485                             |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

TABLE 2-B
AGENTS IN CIGARETTE SMOKE

|    | Component         | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|----|-------------------|---------------------------------|--------------------|--------------------|
|    | <u> </u>          | <u>\rs/</u>                     | nechod of Marysts  | wererence          |
|    | Alcohols          |                                 |                    |                    |
|    | n-Butyl alcohol   | 5                               | GCFID              | Grob (186)         |
|    | sec-Butyl alcohol | 4                               | GCFID              | Grob (186)         |
|    | Isobutyl alcohol  | 6                               | GCFID              | Grob (186)         |
|    | Ethanol           | 2                               | GCFID              | Grob (186,185,184) |
|    | Furfuryl alcohol  | 5.7                             | MS,UV,GC           | Guvernator (199)   |
|    | Glycero1          | 4,200                           | GC                 | Laurene (288)      |
|    | Methanol          | 180                             | GCFID              | Grob (186,185,184) |
| 47 |                   | 100-200                         | GCTCD              | Newsome (378)      |
| 7  |                   | 90                              | GCTCD              | Irby (235)         |
|    | Menthol           | 350-580                         | GLC                | Mitchell (340)     |
|    |                   | 200-500                         | GCTCD              | Lyerly (311)       |
|    | n-Propyl alcohol  | 4                               | GC, IR             | Johnstone (246)    |
|    |                   | 4.8 <sup>a</sup>                | GCFID              | Grob (186)         |
|    | Isopropyl alcohol | Q                               | MS                 | Grob (188)         |
|    | Phyto1            | <u>1</u> 4                      | GC, IR             | Rodgman (452)      |
|    | Propylene Glycol  | 400-1,000                       | GCTCD              | Lyerly (311)       |
|    |                   | 330                             | GC                 | Laurene (288)      |
|    | Solanesol         | 130                             | IR                 | Mold (344)         |
|    |                   |                                 |                    |                    |

TABLE 2-A (cont.) ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                  | Amount per Cig. (µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|----------------------------|----------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
| <u>Aldehydes</u>           |                      |                                            |                                                 |                                       |
| Acetaldehyde               | 730                  | 10                                         | 11,587                                          | 0.9                                   |
|                            | 720-850              | 10                                         | 11,428-13,492                                   | 0.9-0.7                               |
|                            | 1,000                | -==                                        | 15,873                                          |                                       |
|                            | 592 <sup>a</sup>     | 10                                         | 9,395                                           | 1.1                                   |
|                            | 280-1,310            | 1,000                                      | 4,444-20,794                                    | 225-48                                |
|                            | 1,200                | 20,000                                     | 19,048                                          | 1,050                                 |
| Acrolein                   | 74 <sup>a</sup>      | 10                                         | 1,168                                           | 8.6                                   |
|                            | 45                   | 10                                         | 714                                             | 14                                    |
|                            | 54-83                | 10                                         | 857-1,317                                       | 11.7-7.6                              |
| Methacrolein               | 8                    | 10                                         | 127                                             | 79                                    |
| n-Butyraldehyde            | 10                   | 10                                         | 158                                             | 63                                    |
|                            | 8                    | 10                                         | 127                                             | 79                                    |
| Isobutyraldehyde           | 12                   | 10                                         | 190                                             | 53                                    |
|                            | 30                   | 10                                         | 476                                             | 21                                    |
|                            | 32                   | 10                                         | 508                                             | 20                                    |
| 2-Methy1butyraldehyde      | Q                    | 0.1                                        |                                                 | ·                                     |
| Caproaldehyde              | 12                   | 10                                         | 190                                             | 53                                    |
| Crotonaldehyde (2-Butenal) | 14-16                | 10                                         | 222-254                                         | 45-39                                 |
|                            | 16                   | 10                                         | 254                                             | 39                                    |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

### AGENTS IN CIGARETTE SMOKE

|                            | Amount per<br>Cigarette |                    |                    |
|----------------------------|-------------------------|--------------------|--------------------|
| Component                  | <u>(μg)</u>             | Method of Analysis | Reference          |
| Aldehydes                  |                         |                    |                    |
| Acetaldehyde               | 730                     | GCTCD              | Irby (235)         |
|                            | 720-850                 | GC                 | Laurene (290)      |
|                            | 1,000                   | NMG                | Wynder (572)       |
|                            | 592 <sup>a</sup>        | GCFID              | Terrell (520)      |
|                            | 280-1,310               | PC,UV              | Buyske (77)        |
|                            | 1,200                   | UV,IR              | Mold (345)         |
| Acrolein                   | 74 <sup>a</sup>         | GCFID              | Terrell (520)      |
|                            | 45                      | GCFID              | Grob (186,185,184) |
|                            | 54-83                   | GC _               | Laurene (290)      |
| Methacrolein               | 8                       | GCFID              | Grob (186,185,184) |
| n-Butyraldehyde            | 10                      | GCFID              | Grob (186,185,184) |
|                            | 8                       | GCTCD              | Newsome (378)      |
| Isobutyraldehyde           | 12                      | GCFID              | Grob (186,185,184) |
|                            | 30                      | GCTCD              | Irby (235)         |
|                            | 32                      | GCTCD              | Newsome (378)      |
| 2-Methylbutyraldehyde      | Q                       | MS                 | Grob (188)         |
| Caproaldehyde              | 12                      | GCFID              | Grob (186)         |
| Crotonaldehyde (2-Butenal) | 14-16                   | GCFID              | Grob (186,185,184) |
| ·                          | 16                      | GCTCD              | Newsome (378)      |
|                            |                         |                    |                    |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                                   | Amount<br>per Cig.<br>(µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in the Body Fluid (pg/gm) | Sample Size per Cig. (ml or gm) |
|---------------------------------------------|----------------------------|--------------------------------------------|----------------------------------|---------------------------------|
| Formaldehyde                                | 20                         | 20,000                                     | 317                              | 63,091                          |
|                                             | 32                         | 10                                         | 508                              | 20                              |
|                                             | 29-66                      | 3,500                                      | 460-1,047                        | 7,609-3,343                     |
|                                             | 40-84                      | 1,000                                      | 635-1,333                        | 1,575-750                       |
| Furfural (2-furaldehyde)                    | 100                        | 20,000                                     | 1,587                            | 12,602                          |
|                                             | 45-110                     | 1,000                                      | 714-1,746                        | 1,401-573                       |
| Glyoxal (oxalaldehyde)                      | Q                          | 10                                         |                                  |                                 |
| Methyl Glyoxal                              | Q                          | 400 mi mi                                  |                                  |                                 |
| 2-Methylpent-4-enal                         | Q                          | 0.1                                        | and with last                    |                                 |
| 2,4-Pentadienal                             | Q                          | 0.1                                        | ===                              |                                 |
| Pivaldehyde                                 | 4                          | 10                                         | age and man                      | ===                             |
| Propionaldehyde                             | 40                         | 10                                         | 635                              | 16                              |
| <del>-</del>                                | 15                         | 20,000                                     | 238                              | 84,034                          |
|                                             | 50                         | 10                                         | 794                              | 13                              |
| Mixture: Propionaldehyde + Isobutyraldehyde | 13 <sup>b</sup>            | 10                                         | 206                              | 49                              |
| n-Valeraldehyde                             | 1                          | 10                                         | 16                               | 625                             |
|                                             | <u>8</u>                   | 10                                         | 127                              | 79                              |
| Isovaleraldehyde                            | 20                         | 10                                         | 317                              | 32                              |
|                                             | 24                         | 10                                         | 381                              | 26                              |
| 2-Methylvaleraldehyde                       | 8                          | 10                                         | 127                              | 79                              |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

#### AGENTS IN CIGARETTE SMOKE

| Component                                      | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|------------------------------------------------|---------------------------------|--------------------|--------------------|
| Formaldehyde                                   | 20                              | ŲV,IR              | Mold (345)         |
|                                                | 32                              | GCTCD              | Newsome (378)      |
|                                                | 29=66                           | SPF                | Spincer (504)      |
|                                                | 40-84                           | SPF                | Stauffer (506)     |
| Furfural (2-furaldehyde)                       | 100                             | UV, IR             | Mold (345)         |
|                                                | 45-110                          | PC, SPF            | Buyske (77)        |
| Glyoxal (oxalaldehyde)                         | Q                               | GCFID              | Grob (186)         |
| Methyl Glyoxal                                 | Q                               | NMG                | Wah1 (542)         |
| 2-Methylpent-4-enal                            | Q                               | MS                 | Grob (188)         |
| 2,4-Pentadienal                                | Q                               | MS                 | Grob (188)         |
| Pivaldehyde                                    | 4                               | GCFID              | Grob (186,185,184) |
| Propionaldehyde                                | 40                              | GCFID              | Grob (186,185,184) |
|                                                | 15                              | UV, IR             | Mold (345)         |
|                                                | 50                              | GCTCD              | Irby (235)         |
| Mixture: Propionaldehyde +<br>Isobutyraldehyde | 13 <sup>b</sup>                 | GC                 | Mokhnachev (342)   |
| n-Valeraldehyde                                | 1                               | GCTCD              | Newsome (378)      |
|                                                | 8                               | GCFID              | Grob (186)         |
| Isovaleraldehyde                               | 20                              | GCFID              | Grob (186,185,184) |
|                                                | 24                              | GCTCD              | Newsome (378)      |
| 2-Methylvaleraldehyde                          | 8                               | GCTCD              | Newsome (378)      |
|                                                |                                 |                    |                    |

\$0\$\$930737

Arthur D Little Inc.

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|                       | Amount per Cig. | Estimated<br>Sensitivity<br>of Anal. Method<br>(ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size per Cig. (ml or gm) |
|-----------------------|-----------------|-----------------------------------------------------|-------------------------------------------------|---------------------------------|
| Component             | <u>(μg)</u>     | (lig)                                               | (PB/ Bm)                                        | (mx 01 Bm/                      |
| Ketones               |                 |                                                     |                                                 |                                 |
| Acetone               | 360             | 10                                                  | 5,714                                           | 1.8                             |
|                       | 390             | 10                                                  | 6,190                                           | 1.6                             |
|                       | 650             | 20,000                                              | 10,317                                          | 1,939                           |
|                       | 370-560         | 0.1                                                 | 5,873-8,889                                     | 0.017-0.011                     |
| Acetophenone          | Q               | 0.1                                                 |                                                 |                                 |
| p-Methoxyacetophenone | <u>1</u>        | 10                                                  | 16                                              | 625                             |
| m-Methoxyacetophenone | 2               | 10                                                  | 32                                              | 313                             |
| 2-Butanone            | 80              | 10                                                  | 1,270                                           | 7.9                             |
|                       | 80              | 10                                                  | 1,270                                           | 7.9                             |
|                       | 250             | 20,000                                              | 3,968                                           | 5,040                           |
| 3-Methy1-2-butanone   | 6               | 10                                                  | 95                                              | 105                             |
|                       | 8               | 10                                                  | 127                                             | 79                              |
| 2,3-Butanedione       | 12              | 10                                                  | 190                                             | 53                              |
| Butenone              | 28              | 10                                                  | 444                                             | 23                              |
|                       | 32              | 10                                                  | 516                                             | 19                              |

<sup>+</sup> Based on uniform distribution after smoking one cigarette.

### AGENTS IN CIGARETTE SMOKE

|                       | Amount per<br>Cigarette | M. 1. 1. 6 A. 1    | Deference          |
|-----------------------|-------------------------|--------------------|--------------------|
| Component             | (μ <b>g</b> )           | Method of Analysis | Reference          |
| Vahanan               | :                       | :                  |                    |
| Ketones               |                         |                    |                    |
| Acetone               | 360                     | GCFID              | Grob (186,185,184) |
|                       | 390                     | GCTCD              | Irby (235)         |
|                       | 650                     | uv,ir              | Mold (345)         |
|                       | 370-560                 | GC,MS              | Laurene (290)      |
| Acetophenone          | Q                       | GC,MS              | Kaburaki (250)     |
| p-Methoxyacetophenone | 1                       | GLC                | Carruthers (86)    |
| m-Methoxyacetophenone | <u>2</u>                | GLC                | Carruthers (86)    |
| 2-Butanone            | 80                      | GCFID              | Grob (186,185,184) |
|                       | 80                      | GC, IR             | Spears (503)       |
|                       | 250                     | UV, IR             | Mold (345)         |
| 3-Methy1-2-butanone   | 6                       | GCFID              | Grob (186,185,184) |
|                       | 8                       | GCTCD              | Newsome (378)      |
| 2,3-Butanedione       | 12                      | GCTCD              | Newsome (378)      |
| Butenone              | 28                      | GCFID              | Grob (186,185,184) |
|                       | 32                      | GCFID              | Newsome (378)      |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                                | Amount per Cig. (µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in † Body Fluid† (pg/gm)        | Sample Size per Cig. (ml or gm) |
|------------------------------------------|----------------------|--------------------------------------------|----------------------------------------|---------------------------------|
|                                          |                      |                                            | f                                      |                                 |
| Methyl Butenone                          | 51 <sup>a</sup>      | 10                                         | 813                                    | 12                              |
| 2-Methyl-buten-1-one-3                   | Q                    | 0.1                                        | there will the con-                    | -                               |
| Coumarin                                 | Q                    | 0.1                                        | ************************************** |                                 |
| 6-Methyl-coumarin                        | Q                    | 0.1                                        |                                        |                                 |
| 4-Heptanone                              | Q                    | 10                                         | <del></del>                            |                                 |
| 2-Hexanone                               | Q                    | 0.1                                        | ***                                    | ===                             |
| 3-Hexanone                               | Q                    | 0.1                                        |                                        |                                 |
| Cyclohexanone                            | Q                    | 0.1                                        |                                        |                                 |
| 1-Indanone                               | Q                    | 0.1                                        | ===                                    |                                 |
| 3-Methyl-1-indanone                      | Q                    | 0.1                                        | <del></del>                            |                                 |
| 4-Methyl-1-indanone                      | Q                    | 0.1                                        | man and and                            |                                 |
| 5-Methyl-1-indanone                      | Q                    | <u>0.1</u>                                 |                                        |                                 |
| 6-Methyl-1-indanone                      | Q                    | 0.1                                        |                                        |                                 |
| Maltol (2-hydroxy-3-<br>methyl=4-pyrone) | 5-10                 | 0.1                                        | 79-159                                 | 1.3-0.6                         |
| 2-Pentanone                              | 12                   | 10                                         | 190                                    | 53                              |
|                                          | 16                   | 10                                         | 254                                    | 39                              |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

#### AGENTS IN CIGARETTE SMOKE

| Component                               | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|-----------------------------------------|---------------------------------|--------------------|--------------------|
| Methyl butenone                         | 51 <sup><u>a</u></sup>          | GCFID              | Grob (186)         |
| 2-Methy1-buten-1-one-3                  | Q                               | MS,GC              | Grob (188,187)     |
| Coumarin                                | Q                               | GC,MS              | Kaburaki (250)     |
| 6-Methyl-coumarin                       | Q                               | GC,MS              | Kaburaki (250)     |
| 4-Heptanone                             | Q                               | GC                 | Dymond (146)       |
| 2-Hexanone                              | Q                               | MS,GC              | Grob (188,187)     |
| 3-Hexanone                              | Q                               | MS,GC              | Grob (188,187)     |
| Cyclohexanone                           | Q                               | MS,GC              | Grob (188,187)     |
| 1-Indanone                              | Q                               | MS,GC              | Kaburaki (250)     |
| 3-Methyl-1-indanone                     | Q                               | MS,GC              | Kaburaki (250)     |
| 4-Methyl-1-indanone                     | Q                               | MS,GC              | Kaburaki (250)     |
| 5-Methyl-1-indanone                     | Q                               | MS,GC              | Kaburaki (250)     |
| 6-Methyl-1-indanone                     | Q                               | MS,GC              | Kaburaki (250)     |
| Maltol (2-hydroxy-3-<br>methyl-4-pyrone | 5-10                            | TLC,UV,GC,MS       | Elmenhorst (150)   |
| 2-Pentanone                             | 12                              | GCFID              | Grob (186,185,184) |
|                                         | 16                              | GCTCD              | Newsome (378)      |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|    | Component                | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|----|--------------------------|----------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
|    | 3-Methy1-2-pentanone     | Q                          | 0.1                                        | <del></del>                                     | <del></del>                           |
|    | 4-Methyl-2-pentanone     | Q                          | 0.1                                        |                                                 |                                       |
|    | 3-Methylcyclopentanone   | Q                          | 0.1                                        |                                                 | 440 MB                                |
|    | 3-Pentanone              | 4                          | 10                                         | 63                                              | 159                                   |
|    |                          | 12                         | 10                                         | 190                                             | 53                                    |
|    | 2-Methy1-3-pentanone     | Q                          | 0.1                                        | <u></u>                                         |                                       |
| 56 | 2,4-Dimethy1-3-pentanone | Q                          | 0.1                                        | <del></del>                                     |                                       |
|    | Cyclopentanone           | Q                          | 0.1                                        |                                                 |                                       |
|    | 1-Penten-3-one           | 45                         | 10                                         | 714                                             | 14                                    |
|    | 1-Penten-4-one           | Q                          | 0.1                                        |                                                 |                                       |
|    | 2,3-Pentanedione         | Q                          | 0.1                                        |                                                 |                                       |
|    | Phthalide Phthalide      | Q                          | 0.1                                        |                                                 |                                       |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

#### AGENTS IN CIGARETTE SMOKE

| <u>Component</u>         | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|--------------------------|---------------------------------|--------------------|--------------------|
| 3-Methy1-2-pentanone     | Q                               | MS                 | Grob (188)         |
| 4-Methy1-2-pentanone     | Q                               | MS,GC              | Grob (188,187)     |
| 3-Methylcyclopentanone   | Q                               | MS                 | Grob (188)         |
| 3-Pentanone              | 4                               | GCTCD              | Newsome (378)      |
|                          | 12                              | GCFID              | Grob (186,185,184) |
| 2-Methy1-3-pentanone     | Q                               | GC,MS              | Grob (188,187)     |
| 2,4-Dimethy1-3-pentanone | Q                               | GC,MS              | Grob (188)         |
| Cyclopentanone           | Q                               | GC,MS              | Grob (188,187)     |
| 1-Penten-3-one           | 45                              | GCFID              | Grob (186)         |
| 1-Penten-4-one           | Q                               | GC,MS              | Grob (188)         |
| 2,3-Pentanedione         | Q                               | GC,MS              | Grob (188,187)     |
| Phthalide                | Q                               | GC,MS              | Kaburaki (250)     |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                    | Amount per Cig. (ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in + Body Fluid + (pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|------------------------------|----------------------|--------------------------------------------|----------------------------------|---------------------------------------|
| Esters                       |                      |                                            |                                  |                                       |
| Butyl acetate                | 1                    | 10                                         | 16                               | 625                                   |
| Ethyl acetate                | 2                    | 10                                         | 32                               | 313                                   |
| Triacetin (glyceryl acetate) | 200-300              | 10                                         | 3175-4762                        | 3.2-2.1                               |
| Methyl acetate               | 8                    | 10                                         | 127                              | 79                                    |
|                              | 10                   | 10                                         | 158                              | 63                                    |
| Solanesol acetate            | 18                   | 1000                                       | 286                              | 3,497                                 |
|                              | 18                   | 1000                                       | 286                              | 3 <u>,49</u> 7                        |
| Vinyl acetate                | 4                    | <u>10</u>                                  | 63                               | 159                                   |
|                              | 4 <sup>a</sup>       | 10                                         | 63                               | 159                                   |
| Unknown Acetate ester        | 12.9 <sup>b</sup>    | 0.1                                        | 205                              | 0.48                                  |
| Acrylate                     | 3                    | 10                                         | 48                               | 208                                   |
| Ethyl Butyrate               | Q                    |                                            |                                  |                                       |
| Ethyl Capronate              | 1                    | 10                                         | 16                               | 625                                   |
| Ethyl formate                | 4                    | 10                                         | 63                               | 159                                   |
| Isopropyl formate            | 5                    | 10                                         | 79                               | 127                                   |
|                              | 4.8 <u>ª</u>         | 10                                         | 76                               | 132                                   |
| Methyl formate               | 30                   | 10                                         | 476                              | 21                                    |
| Formate ester                | 36.3 <sup>b</sup>    | 0,1                                        | 576                              | 0.17                                  |
| Propionate ester             | t                    | 0.1                                        | ===                              |                                       |
| Ethyl Propionate             | Q                    |                                            |                                  |                                       |

<sup>+</sup> Based on uniform distribution after smoking one cigarette.

### \$028930744

| Component                    | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|------------------------------|---------------------------------|--------------------|--------------------|
| Esters                       |                                 |                    |                    |
| Butyl acetate                | 1                               | GCFID              | Grob (186)         |
| Ethyl acetate                | 2                               | GCFID              | Grob (186,185,184) |
| Triacetin (glyceryl acetate) | 200-300                         | GCTCD              | Lyerly (311)       |
| Methyl acetate               | 8                               | GCFID              | Grob (186,185,184) |
|                              | 10                              | GCTCD              | Irby (235)         |
| Solanesol acetate            | 18                              | IR                 | Mold (344)         |
|                              | 18                              | MP,CC,IR           | Rodgman (450)      |
| Vinyl acetate                | 4                               | GCFID              | Grob (186)         |
|                              | 4 <sup>a</sup> .                | GLC                | Newsome (380)      |
| Unknown Acetate ester        | 12.9 <sup>b</sup>               | PC,MS              | Mokhnachev (342)   |
| Acrylate                     | 3                               | GCFID              | Grob (186,185,184) |
| Ethyl Butyrate               | Q                               | NMG                | Johnstone (243)    |
| Ethyl Capronate              | 1                               | GCFID              | Grob (186)         |
| Ethyl formate                | 4                               | GCFID              | Grob (186)         |
| Isopropyl formate            | 5                               | GCFID              | Grob (186)         |
|                              | 4.8 <sup>a</sup>                | GLC                | Newsome (380)      |
| Methyl formate               | 30                              | GCFID              | Grob (186,185,184) |
| Formate ester                | 36.3 <sup>b</sup>               | PC,MS              | Mokhnachev (342)   |
| Propionate ester             | ŧ                               | PC,MS              | Mokhnachev (342)   |
| Ethyl Propionate             | Q                               | NMG                | Johnstone (243)    |

TABLE 2-A (CORT.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|   | Component                   | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in † Body Fluid † (pg/gm) | Sample Size per Cig. (ml or gm) |
|---|-----------------------------|----------------------------|--------------------------------------------|----------------------------------|---------------------------------|
|   | Ethers                      |                            |                                            |                                  |                                 |
|   | Anisole, (Methoxybenzol)    | 5                          | 10                                         | 79                               | 127                             |
|   |                             | 8                          | 10                                         | 127                              | 79                              |
|   | Furan                       | 18                         | 10                                         | 286                              | 35                              |
|   |                             | 30                         | 10                                         | 476                              | 21                              |
|   |                             | 18                         | 10                                         | 286                              | 35                              |
| , | 2-Acetylfuran               | Q                          | 0.1                                        |                                  | ===                             |
| • | Benzo-(b)-furan             | Q                          | 0.1                                        |                                  |                                 |
|   | Dibenzofuran                | 0.106                      | 0.1                                        | 1.68                             | 59.5                            |
|   | 1-Methyldibenzofuran        | 0.040                      | 0.1                                        | 0.64                             | 156                             |
|   | 2- and 3-Methyldibenzofuran | 0.1                        | 0.1                                        | 1.59                             | 63                              |
|   | 4-Methyldibenzofuran        | 0.052                      | 0.1                                        | 0.83                             | 120                             |
|   | Methylfuran                 | 20                         | 10                                         | 317                              | 32                              |
|   |                             | 20                         | 10                                         | 317                              | 32                              |
|   | 2-Methylfuran               | 20                         | 10                                         | 317                              | 32                              |
|   |                             | 20                         | 10                                         | 317                              | 32                              |
|   |                             |                            |                                            |                                  |                                 |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|    | Component                   | Amount per<br>Cigarette<br>(μg) | Method of Analysis | Reference          |
|----|-----------------------------|---------------------------------|--------------------|--------------------|
|    | Ethers                      |                                 |                    |                    |
|    | Anisole, (Methoxybenzol)    | 5                               | GCFID              | Grob (186)         |
|    |                             | 8                               | GLC                | Carruthers (86)    |
|    | Furan                       | 18                              | GCFID              | Grob (186,185,183) |
|    |                             | 30                              | GCTCD              | Irby (235)         |
|    |                             | 18                              | GC, IR             | Spears (503)       |
| 61 | 2-Acetylfuran               | Q                               | MS                 | Grob (188)         |
|    | Benzo-(b)-furan             | Q                               | GCFID,MS           | Neurath (372)      |
|    | Dibenzofuran                | 0.106                           | GCFID,MS           | Hoffmann (216)     |
|    | l-Methyldibenzofuran        | 0.040                           | GCFID,MS           | Hoffmann (216)     |
|    | 2- and 3-Methyldibenzofuran | 0.100                           | GCFID,MS           | Hoffmann (216)     |
|    | 4-Methyldibenzofuran        | 0.052                           | GCFID,MS           | Hoffmann (216)     |
|    | Methylfuran                 | 20                              | GCFID              | Grob (185,184)     |
|    |                             | 20                              | GCTCD              | Irby (235)         |
|    | 2-Methylfuran               | 20                              | GCFID              | Grob (186)         |
|    |                             | 20                              | GCTCD              | Irby (235)         |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|                                         |                             | Estimated                              |                                    |                                       |
|-----------------------------------------|-----------------------------|----------------------------------------|------------------------------------|---------------------------------------|
| Component                               | Amount<br>per Cig.<br>_(µg) | Sensitivity<br>of Anal. Method<br>(ng) | Amount in<br>Body Fluid<br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
| <u> </u>                                | <u></u>                     |                                        | ;                                  |                                       |
| 2,5-Dimethylfuran                       | 16                          | 10                                     | 254                                | 39                                    |
|                                         | 3.5-48                      | 10                                     | 56-762                             | 18-13                                 |
| Tetrahydrofuran                         | 8                           | 10                                     | 127                                | 79                                    |
| 5-Methyl furfurole                      | Q                           | 10                                     | <del></del>                        |                                       |
| 5-Hydroxymethylfurfurole                | Q                           | 10                                     |                                    | ===                                   |
| Guaiacol, (o-Methoxyphenol)             | 13                          | 0.1                                    | 206                                | 0.48                                  |
|                                         | 15-25                       | 0.1                                    | 238-397                            | 0.42-0.25                             |
| Methylcresylether                       | 20                          | 10                                     | 317                                | 32                                    |
| Tetrahydropyran                         | 2                           | 10                                     | 32                                 | 313                                   |
| Veratrole (Pyrocatechol, dimethylether) | 40                          | 10                                     | 635                                | 16                                    |

### 8670E6SS0S

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|    | Component                               | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|----|-----------------------------------------|---------------------------------|--------------------|--------------------|
|    | 2,5-Dimethylfuran                       | 16                              | GCFID              | Grob (186,184)     |
|    |                                         | 3.5-48                          | GC, IR             | Johnstone (246)    |
|    | Tetrahydrofuran                         | 8                               | GCFID              | Grob (186,185,184) |
|    | 5-Methyl furfurole                      | Q                               | GCFID, IR          | Burdick (74)       |
|    | 5-Hydroxymethylfurfurole                | Q                               | GLC                | Black (54)         |
|    | Guaiacol, (o-Methoxyphenol)             | 13                              | MS                 | Spears (503)       |
|    |                                         | 15-25                           | MS                 | Rayburn (442)      |
| S. | Methylcresylether                       | 20                              | GLC                | Carruthers (86)    |
|    | Tetrahydropyran                         | 2                               | GCFID              | Grob (186,185,184) |
|    | Veratrole (Pyrocatechol, dimethylether) | 40                              | GLC                | Carruthers (86)    |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component              | Amount<br>per Cig.<br>(µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in † Body Fluid † (pg/gm) | Sample Size per Cig. (ml or gm) |
|------------------------|----------------------------|--------------------------------------------|----------------------------------|---------------------------------|
| Aliphatic Hydrocarbons |                            |                                            |                                  |                                 |
| Acetylene              | 22                         | 10                                         | 349                              | 29                              |
| •                      | 26                         | 10                                         | 413                              | 24                              |
| n-Butane               | 56                         | 10                                         | 889                              | 11                              |
|                        | 70                         | 10                                         | 1,111                            | 9                               |
| 2-Methylbutane         | 15                         | 10                                         | 238                              | 42                              |
|                        | 20                         | 10                                         | 318                              | 31                              |
| 1-Nitro-n-butane       | 0.71                       | 10                                         | 11.3                             | 885                             |
| 1,2-Butadiene          | 3                          | 10                                         | 48                               | 208                             |
| 1,3-Butadiene          | 34                         | 10                                         | 540                              | 19                              |
| 2-Methy1-1,3-butadiene | 630                        | <u>0.1</u>                                 | 10,000                           | .01                             |
|                        | 500                        | 0.1                                        | 7,936                            | .013                            |
|                        | 376                        | 10                                         | 5,968                            | 1.7                             |
| 1-Butene               | 50                         | 10                                         | 794                              | 13                              |
| 2-Methyl-1-butene      | 24                         | 10                                         | 381                              | 26                              |
|                        | 19                         | 10                                         | 302                              | 33                              |
| 3-Methy1-1-butene      | 1                          | 10                                         | 16                               | 625                             |
|                        | 15                         | 10                                         | 238                              | 42                              |
| 2,3-Dimethyl-1-butene  | 0.64                       | 0.1                                        | 10                               | 10                              |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

Amount per

|    | Component              | Cigarette<br>(µg) | Method of Analysis       | Reference                                 |
|----|------------------------|-------------------|--------------------------|-------------------------------------------|
|    | Aliphatic Hydrocarbons |                   |                          |                                           |
|    | Acetylene              | 22                | GCTCD                    | Newsome (378)                             |
|    |                        | 26                | GC, IR                   | Spears (503)                              |
|    | n-Butane               | 56                | GCTCD                    | Newsome (378)                             |
|    |                        | 70                | GC, IR                   | Spears (503)                              |
|    | 2-Methy1butane         | 15                | GCTCD                    | Newsome (378)                             |
|    |                        | 20                | GC, IR                   | Spears (503)                              |
|    | 1-Nitro-n-butane       | 0.71              | GCFID                    | Hoffmann (217)                            |
| 65 | 1,2-Butadiene          | 3                 | GCTCD                    | Newsome (378)                             |
|    | 1,3-Butadiene          | 34                | GCTCD                    | Newsome (378)                             |
|    | 2-Methyl-1,3-butadiene | 630               | GC, IR, MS               | Irby (235)                                |
|    |                        | 500               | GC, IR, MS               | Spears (503)                              |
|    |                        | 376               | GCTCD                    | Newsome (378)                             |
|    | 1-Butene               | 50                | GCTCD                    | Newsome (378)                             |
|    | 2-Methy1-1-butene      | 24                | GC, IR                   | Spears (503)                              |
|    |                        | 19                | GCTCD                    | Newsome (378)                             |
|    | 3-Methyl-1-butene      | 1                 | GC, IR                   | Spears (503)                              |
|    |                        | 15                | GETCD                    | Newsome (378)                             |
|    | 2,3-Dimethy1-1-butene  | 0.64              | GC, IR, MS               | Philippe (423)                            |
|    | 3-Methyl-1-butene      | 19<br>1<br>15     | GCTCD<br>GC, IR<br>GCTCD | Newsome (3)<br>Spears (50)<br>Newsome (3) |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                       | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in the Body Fluid (pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|---------------------------------|----------------------------|--------------------------------------------|----------------------------------|---------------------------------------|
|                                 |                            |                                            |                                  |                                       |
| 3,3-Dimethy1-1-butene           | Q                          | 10                                         |                                  | ===                                   |
| 2-Methyl-2-butene               | 68                         | 10                                         | 1,079                            | 9                                     |
|                                 | 54                         | 10                                         | 857                              | 12                                    |
| cis-2-Butene                    | 29                         | 10                                         | 460                              | 22                                    |
|                                 | 23                         | 10                                         | 365                              | 27                                    |
| trans=2=Butene                  | <u>4</u> 1                 | 10                                         | 651                              | 15                                    |
|                                 | 33                         | 10                                         | 524                              | 19                                    |
| 3-Butene-1-yne                  | 4ª                         | 10                                         | 64                               | 156                                   |
| 1-Butyne                        | t                          | 10                                         |                                  |                                       |
| DCS (4,4-Dichlostilbene)        | 1.5                        |                                            | 24                               | en 40 en                              |
| DDT                             | 0.8                        |                                            | 13                               |                                       |
| TDE or DDD                      | 1.8                        |                                            | 29                               | -=-                                   |
| TDEE (Breakdown product of TDE) | 0.8                        |                                            | 13                               | 727                                   |
| 1-Decene                        | Q                          | 0.1                                        |                                  | <del></del> -                         |
| Ethane                          | 500                        | 10                                         | 7,936                            | 1.3                                   |
|                                 | 410                        | 10                                         | 6,508                            | 1.5                                   |
|                                 | 302 <sup>a</sup>           | 10                                         | 4,799                            | 2.1                                   |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component                       | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference      |
|---------------------------------|---------------------------------|--------------------|----------------|
| 3,3-Dimethyl-1-butene           | Q                               | GCTCD              | Philippe (425) |
| 2-Methyl-2-butene               | 68                              | GC, IR             | Spears (503)   |
|                                 | 54                              | GCTCD              | Newsome (378)  |
| cis-2-Butene                    | 29                              | GC, IR             | Spears (503)   |
|                                 | 23                              | GCTCD              | Newsome (378)  |
| trans-2-Butene                  | 41                              | GC, IR             | Spears (503)   |
|                                 | 33                              | GCTCD              | Newsome (378)  |
| 3-Butene-1-yne                  | 4ª                              | GCTCD              | Philippe (425) |
| 1-Butyne                        | ŧ                               | GCTCD              | Philippe (425) |
| DCS (4,4-Dichlostilbene)        | 1.5                             | NMG                | Guthrie (198)  |
| DDT                             | 0.8                             | NMG                | Guthrie (198)  |
| TDE or DDD                      | 1.8                             | NMG                | Guthrie (198)  |
| TDEE (Breakdown produce of TDE) | 0.8                             | NMG                | Guthrie (198)  |
| 1-Decene                        | Q                               | MS                 | Grob (188)     |
| Ethane                          | 500                             | GC, IR             | Spears (503)   |
|                                 | 410                             | GCTCD              | Newsome (378)  |
|                                 | 302 <sup>a</sup>                | GC                 | Terrell (519)  |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|                                                  |                            | Estimated                              |                                                 |                                 |
|--------------------------------------------------|----------------------------|----------------------------------------|-------------------------------------------------|---------------------------------|
| Component                                        | Amount<br>per Cig.<br>(µg) | Sensitivity<br>of Anal. Method<br>(ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size per Cig. (ml or gm) |
|                                                  |                            |                                        |                                                 |                                 |
| Nitroethane                                      | 1.1                        | 10                                     | 17                                              | 588                             |
|                                                  | 0.24                       | 10                                     | 4                                               | 2,500                           |
| Ethylene                                         | 240                        | 10                                     | 3,810                                           | 2.6                             |
|                                                  | 176                        | 10                                     | 2,794                                           | 3.6                             |
| l=chloro=2=(p-chlorophenyl)-2-<br>Phenylethylene | Q                          | 0.1                                    | <del>-,-,-</del>                                | ===                             |
| Heptane                                          | Q                          | 0.1                                    |                                                 |                                 |
| n-Hexane                                         | 10                         | 10                                     | 158                                             | 63                              |
|                                                  | 8                          | 10                                     | 127                                             | 79                              |
| 1-chloro-5-methyl-Hexane                         | Q                          | 0.1                                    |                                                 | ==:                             |
| 1,3,5-Hexatriene                                 | Q                          | 0.1                                    |                                                 |                                 |
| Cyclohexane                                      | 3                          | 10                                     | 48                                              | 208                             |
|                                                  | 3                          | 10                                     | 48                                              | 208                             |
|                                                  | 3                          | 10                                     | 48                                              | 208                             |
| 2,4-DiMe-4-Vinyl-Cyclohexane                     | 5                          | 10                                     | 79                                              | 127                             |
| 1-Hexene                                         | 3.2ª                       | 0.1                                    | 51                                              | 1.96                            |
| trans-2-Hexene                                   | 0.8 <sup>a</sup>           | 0.1                                    | 13                                              | 7.7                             |
| Cyclohexene                                      | 0.08 <sup>a</sup>          | <u>0.1</u>                             | 1.3                                             | 77                              |
| 1-Methyl-4-isopropylcyclohex-1-ene               | Q                          | 0.1                                    |                                                 | sale date and                   |
|                                                  |                            |                                        |                                                 |                                 |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

#### AGENTS IN CIGARETTE SMOKE

|                                                  | Amount per<br>Cigarette |                    |                    |
|--------------------------------------------------|-------------------------|--------------------|--------------------|
| Component                                        | (µg)                    | Method of Analysis | Reference          |
| Nitroethane                                      | 1.1                     | GCFID              | Hoffmann (217)     |
|                                                  | 0.24                    | GCFID              | Rathkamp (441)     |
| Ethylene                                         | 240                     | GC, IR             | Spears (503)       |
|                                                  | 176                     | GCTCD              | Newsome (378)      |
| 1-chloro-2-(p-chlorophenyl)-2-<br>Phenylethylene | Q                       | GC,IR,MS           | Miller (336)       |
| Heptane                                          | Q                       | MS                 | Grob (188)         |
| n-Hexane                                         | 10                      | GC, IR             | Spears (503)       |
|                                                  | 8                       | GCTCD              | Newsome (378)      |
| 1-chloro-5-methyl-Hexane                         | Q                       | GC,MS              | Bartle (31)        |
| 1,3,5-Hexatriene                                 | Q                       | GC,MS              | Bartle (31)        |
| Cyclohexane                                      | 3                       | GCFID              | Grob (186,185,184) |
|                                                  | 3                       | GC, IR             | Spears (503)       |
|                                                  | 3                       | GCTCD              | Newsome (378)      |
| 2,4-DiMe-4-Vinyl-Cyclohexane                     | 5                       | GC                 | Cook (115)         |
| 1-Hexene                                         | 3.2 <sup>a</sup>        | GC, IR, MS         | Philippe (423)     |
| trans-2-Hexene                                   | 0.8 <sup>a</sup>        | GC, IR, MS         | Philippe (423)     |
| Cyclohexene                                      | 0.08 <sup>a</sup>       | GC, IR, MS         | Philippe (423)     |
| 1-Methyl-4-Isopropylcyclohex-1-ene               | Q                       | ` ms               | Grob (188)         |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|   | Component               | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid (pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|---|-------------------------|----------------------------|--------------------------------------------|---------------------------------|---------------------------------------|
|   | Limonene (Dipentene)    | 24                         | 10                                         | 381                             | 26                                    |
|   |                         | 126-200                    | 10                                         | 2,000-3,175                     | 5-3.1                                 |
|   |                         | 200                        | 10                                         | 3,175                           | 3                                     |
|   | nC <sub>12</sub> alkane | 1-10                       | 10                                         | 16-158                          | 625=63                                |
|   | nC <sub>13</sub> alkane | 1-40                       | 10                                         | 16-635                          | 625-16                                |
|   | nC <sub>14</sub> alkane | 1-20                       | 10                                         | 16-317                          | 625-32                                |
|   | nC <sub>15</sub> alkane | 1-25                       | 10                                         | 16-397                          | 625-25                                |
| 1 | nC <sub>16</sub> alkane | 2-20                       | 10                                         | 32-317                          | 313-32                                |
| - | nC <sub>17</sub> alkane | 4-20                       | 10                                         | 63-317                          | 159-32                                |
|   | nC <sub>18</sub> alkane | 1=20                       | 10                                         | 16-317                          | 625-32                                |
|   | nC <sub>19</sub> alkane | 1-10                       | 10                                         | 16-158                          | 625-63                                |
|   | nC <sub>20</sub> alkane | 5-20                       | 10                                         | 79-317                          | 127-32                                |
|   | nC <sub>21</sub> alkane | 6-20                       | 10                                         | 95-317                          | 105-32                                |
|   | nC <sub>22</sub> alkane | 4-20                       | 10                                         | 63-317                          | 159-32                                |
|   | nC <sub>23</sub> alkane | 4-10                       | 10                                         | 63-158                          | 159-63                                |
|   | nC <sub>24</sub> alkane | 3-20                       | 10                                         | 48-317                          | 208-32                                |
|   | nC <sub>25</sub> alkane | 3-30                       | <u>10</u>                                  | 48-480                          | 208-21                                |
|   | nC <sub>26</sub> alkane | 3=30                       | 10                                         | 48-480                          | 208-21                                |
|   |                         |                            |                                            |                                 |                                       |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component               | Amount per<br>Cigarette<br>(ug) | Method of Analysis | Reference       |
|-------------------------|---------------------------------|--------------------|-----------------|
| Limonene (Dipentene)    | 24                              | GCFID              | Greb (186)      |
|                         | 126-200                         | GC, IR             | Johnstone (246) |
|                         | 200                             | GC                 | Cook (115)      |
| nC <sub>12</sub> alkane | 1-10                            | CC,GCFID           | Spears (502)    |
| nC <sub>13</sub> alkane | 1-40                            | CC, GCFID          | Spears (502)    |
| nC <sub>14</sub> alkane | 1-20                            | CC,GCFID           | Spears (502)    |
| nC <sub>15</sub> alkane | 1-25                            | CC,GCFID           | Spears (502)    |
| nC <sub>16</sub> alkane | 2-20                            | CC,GCFID           | Spears (502)    |
| nC <sub>17</sub> alkane | 4-20                            | CC,GCFID           | Spears (502)    |
| nC <sub>18</sub> alkane | 1-20                            | CC, GCFID          | Spears (502)    |
| nC <sub>19</sub> alkane | 1-10                            | CC,GCFID           | Spears (502)    |
| nC <sub>20</sub> alkane | 5-20                            | CC,GCFID           | Spears (502)    |
| nC <sub>21</sub> alkane | 6–20                            | CC,GCFID           | Spears (502)    |
| nC <sub>22</sub> alkane | 4-20                            | CC,GCFID           | Spears (502)    |
| nC <sub>23</sub> alkane | 4=10                            | CC,GCFID           | Spears (502)    |
| nC <sub>24</sub> alkane | 3–20                            | CC, GCFID          | Spears (502)    |
| nC <sub>25</sub> alkane | 3–30                            | CC,GCFID           | Spears (502)    |
| nC <sub>26</sub> alkane | 3–30                            | CC,GCFID           | Spears (502)    |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component               | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in the Body Fluid (pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|-------------------------|----------------------------|--------------------------------------------|----------------------------------|---------------------------------------|
|                         |                            |                                            |                                  |                                       |
| nC <sub>27</sub> alkane | 3-10                       | 10                                         | 48-158                           | 208-63                                |
| nC <sub>28</sub> alkane | 1-20                       | 10                                         | 16-317                           | 625=32                                |
| nC <sub>29</sub> alkane | 6-10                       | 10                                         | 95-158                           | 105-63                                |
| nC <sub>30</sub> alkane | 12-100                     | 10                                         | 190-1,587                        | 53-6.3                                |
| nC <sub>31</sub> alkane | 20-350                     | 10                                         | 317-5,556                        | 32-1.8                                |
| nC <sub>32</sub> alkane | 20-200                     | 10                                         | 317-3,175                        | 32-3.2                                |
| nC <sub>33</sub> alkane | 6-250                      | 10                                         | 95=3,968                         | 105-2.5                               |
| Methane                 | 770                        | 10                                         | 12,222                           | 0.8                                   |
|                         | 1,000                      | 10                                         | 15,873                           | 0.6                                   |
|                         | 860 <sup>a</sup>           | <u>1</u> 0                                 | 13,648                           | 0.7                                   |
|                         | 1,300                      | 0.1                                        | 20,635                           | 0.005                                 |
| Nitromethane            | 0.53                       | 10                                         | 8.4                              | 1,191                                 |
|                         | 0.18                       | 10                                         | 2.9                              | 3,448                                 |
| Nonane                  | Q                          | 0.1                                        |                                  |                                       |
| Norphytene              | 1                          | ~~                                         | 16                               | ===                                   |
| Octane                  | Q                          | 0.1                                        |                                  |                                       |
| 2-Methyl-1-octene       | Q                          | 0.1                                        |                                  | ***                                   |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|                         | Amount per<br>Cigarette |                    |                |
|-------------------------|-------------------------|--------------------|----------------|
| Component               | (µg)                    | Method of Analysis | Reference      |
| nC <sub>27</sub> alkane | 3-10                    | CC,GCFID           | Spears (502)   |
| nC <sub>28</sub> alkane | 1-20                    | CC,GCFID           | Spears (502)   |
| nC <sub>29</sub> alkane | 6-10                    | CC,GCFID           | Spears (502)   |
| nC <sub>30</sub> alkane | 12-100                  | CC,GCFID           | Spears (502)   |
| nC <sub>31</sub> alkane | 20-350                  | CC,GCFID           | Spears (502)   |
| nC <sub>32</sub> alkane | 20-200                  | CC,GCFID           | Spears (502)   |
| nC <sub>33</sub> alkane | 6-250                   | CC,GCFID           | Spears (502)   |
| Methane                 | 770                     | GCTCD              | Newsome (378)  |
|                         | 1000                    | GC, IR             | Spears (503)   |
|                         | 860 <sup>a</sup>        | GC                 | Terrell (519)  |
|                         | 1300                    | MS                 | Keith (258)    |
| Nitromethane            | 0.53                    | GCFID              | Hoffmann (217) |
|                         | 0.18                    | GCFID              | Rathkamp (441) |
| Nonane                  | Q                       | MS                 | Grob (188)     |
| Norphytene              | 1                       | NMG                | Wynder (573)   |
| Octane                  | Q                       | MS                 | Grob (188)     |
| 2-Methyl-1-octene       | Q                       | GC,MS              | Bartle (31)    |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|                      | Estimated   |                 |                         |                 |  |
|----------------------|-------------|-----------------|-------------------------|-----------------|--|
|                      | Amount      | Sensitivity     | Amount in<br>Body Fluid | Sample Size     |  |
| Component            | per Cig.    | of Anal. Method |                         | per Cig.        |  |
| Component            | <u>(μg)</u> | (ng)            | (pg/gm)                 | (ml or gm)      |  |
|                      |             |                 | -4-                     |                 |  |
| n-Pentane            | 23          | <u>10</u>       | 365                     | 27              |  |
|                      | 18          | 10              | 286                     | 35              |  |
| 2-Methylpentane      | 6           | 10              | 95                      | 105             |  |
|                      | 5           | 10              | 79                      | 127             |  |
| 3-Methylpentane      | 1           | 10              | 16                      | 625             |  |
|                      | <u>2</u>    | 10              | 32                      | 313             |  |
| 2,4-Dimethylpentane  | Q           | <u>0.1</u>      |                         |                 |  |
| 1-Nitro-n-pentane    | 0.22        | 10              | 3.5                     | 2,857           |  |
| Cyclopentane         | 1           | 0.1             | 16                      | 6               |  |
|                      | 2           | 10              | 32                      | 3 <u>1</u> 3    |  |
| Methylcyclopentane   | 2           | 10              | 32                      | 313             |  |
| Pentadiene           | 20          | 10              | 317                     | 32              |  |
| cis-1,3-Pentadiene   | 15          | 10              | 238                     | 42              |  |
| trans-1,3-Pentadiene | 10          | 10              | 158                     | 63              |  |
| 1,4-Pentadiene       | 2           | 10              | 3 <u>2</u>              | 313             |  |
|                      | 2           | 10              | 32                      | 3 <u>1</u> 3    |  |
| Cyclopentadiene      | t           | 10              | <del></del>             | <del>****</del> |  |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

TABLE 2-B (cont.)
AGENTS IN CIGARETTE SMOKE

| Component            | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|----------------------|---------------------------------|--------------------|--------------------|
|                      |                                 |                    |                    |
| n-Pentane            | <u>23</u>                       | GC, IR             | Spears (503)       |
|                      | 18                              | GCTCD              | Newsome (378)      |
| 2-Methylpentane      | 6                               | GC, IR             | Spears (503)       |
|                      | 5                               | GCTCD              | Newsome (378)      |
| 3-Methylpentane      | 1                               | GC,IR              | Spears (503)       |
|                      | 2                               | GCTCD              | Newsome (378)      |
| 2,4-Dimethylpentane  | Q                               | MS                 | Grob (188)         |
| 1-Nitro-n-pentane    | 0.22                            | GGFID              | Hoffmann (217)     |
| Cyclopentane         | 1                               | GC,MS              | Spears (503)       |
|                      | 2                               | GCTCD              | Newsome (378)      |
| Methylcyclopentane   | 2                               | GCTCD              | Newsome (378)      |
| Pentadiene           | 20                              | GCFID              | Grob (186,185,184) |
| cis-1,3-Pentadiene   | 15                              | GCTCD              | Newsome (378)      |
| trans-1,3-Pentadiene | 10                              | GCTCD              | Newsome (378)      |
| 1,4-Pentadiene       | 2                               | GC, IR             | Spears (503)       |
|                      | 2                               | GCTCD              | Newsome (378)      |
| Cyclopentadiene      | t                               | GCTCD              | Philippe (425)     |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component               | Amount<br>per Cig.<br>(μg) | Estimated Sensitivity of Anal. Method (ng) | Amount in † Body Fluid † (pg/gm) | Sample Size per Cig. (ml or gm) |
|-------------------------|----------------------------|--------------------------------------------|----------------------------------|---------------------------------|
| 1-Pentene               | 19                         | 10                                         | 302                              | 33                              |
|                         | <u>1</u> 5                 | 10                                         | 238                              | 42                              |
| 2-Methyl-1-pentene      | 0.4ª                       | 0.1                                        | 6                                | 17                              |
| 3-Methy1-1-pentene      | 0.2ª                       | 0.1                                        | 3                                | 33                              |
| 4-Methyl-1-pentene      | 3                          | 10                                         | 48                               | 208                             |
| cis-2-Pentene           | 8                          | 10                                         | 127                              | 79                              |
| trans-2-Pentene         | <u>15</u>                  | 10                                         | 238                              | 42                              |
|                         | <u>12</u>                  | 10                                         | 190                              | 53                              |
| 2-Methy1-2-pentene      | 2.4ª                       | 0.1                                        | 38                               | 2.6                             |
| 4-Methyl-2-pentene      | 3                          | 10                                         | 48                               | 208                             |
|                         | 3.2 <sup>a</sup>           | 0.1                                        | <u>51</u>                        | 1.9                             |
| Cyclopentene            | 6                          | 10                                         | 95                               | 105                             |
| 1-Methyl=1=Cyclopentene | 0.24 <sup>a</sup>          | 0.1                                        | 4                                | 25                              |
| 3-Methyl-1-Cyclopentene | 0.08 <sup>a</sup>          | <u>0.1</u>                                 | 1                                | 100                             |
| Beta-Pinene             | 3                          | 10                                         | 48                               | 208                             |
| Propane                 | 250                        | 10                                         | 3,968                            | 2.5                             |
|                         | 180                        | 10                                         | 2,857                            | 3.5                             |

# \$970E8\$50\$

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component               | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference      |
|-------------------------|---------------------------------|--------------------|----------------|
| 1-Pentene               | 19                              | GC, IR             | Spears (503)   |
|                         | 15                              | GCTCD              | Newsome (378)  |
| 2-Methyl-1-pentene      | 0.4 <sup>a</sup>                | GC, IR, MS         | Philippe (423) |
| 3-Methyl-1-pentene      | 0.2ª                            | GC, IR, MS         | Philippe (423) |
| 4-Methyl-1-pentene      | 3                               | GCTCD              | Newsome (378)  |
| cis-2-Pentene           | 8                               | GCTCD              | Newsome (378)  |
| trans=2-Pentene         | 15                              | GC, IR             | Spears (503)   |
|                         | 12                              | GCTCD              | Newsome (378)  |
| 2-Methy1-2-pentene      | 2.4 <sup>a</sup>                | GC, IR, MS         | Philippe (423) |
| 4-Methyl-2-pentene      | 3                               | GCTCD              | Newsome (378)  |
|                         | 3.2 <sup>a</sup>                | GC, IR, MS         | Philippe (423) |
| Cyclopentene            | 6                               | GCTCD              | Newsome (378)  |
| 1-Methyl-1-Cyclopentene | 0.24 <sup>a</sup>               | GC, IR, MS         | Philippe (423) |
| 3-Methyl-1-Cyclopentene | 0.08 <sup>a</sup>               | GC, IR, MS         | Philippe (423) |
| Beta-Pinene             | 3                               | GCFID              | Grob (186)     |
| Propane                 | 250                             | GC,IR              | Spears (503)   |
|                         | 180                             | GCTCD              | Newsome (378)  |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Amount<br>per Cig.<br>(µg) | Estimated Sensitivity of Anal. Method (ng)                        | Amount in + Body Fluid (pg/gm)                | Sample Size<br>per Cig.<br>(ml or gm)                                                                                                                                                             |
|----------------------------|-------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.73                       | 10                                                                | 12                                            | 833                                                                                                                                                                                               |
| 1.1                        | 10                                                                | 16                                            | 625                                                                                                                                                                                               |
| 23                         | 10                                                                | 365                                           | 27                                                                                                                                                                                                |
| 16                         | 10                                                                | 254                                           | 39                                                                                                                                                                                                |
| Q                          | 0.1                                                               |                                               |                                                                                                                                                                                                   |
| Q                          | 0.1                                                               |                                               |                                                                                                                                                                                                   |
| Q                          | 0.1                                                               |                                               | ===                                                                                                                                                                                               |
| 5                          | 10                                                                | 79                                            | 127                                                                                                                                                                                               |
| 4                          | 10                                                                | 63                                            | 159                                                                                                                                                                                               |
| 240                        | 10                                                                | 3,810                                         | 2.6                                                                                                                                                                                               |
| 200                        | 10                                                                | 3,175                                         | 3.2                                                                                                                                                                                               |
| 64                         | 10                                                                | 1,016                                         | 9.8                                                                                                                                                                                               |
| 55                         | 10                                                                | 873                                           | 12                                                                                                                                                                                                |
| 6                          | 10                                                                | 95                                            | 105                                                                                                                                                                                               |
|                            | Per Cig. (µg)  0.73  1.1  23  16  Q  Q  Q  5  4  240  200  64  55 | Amount Sensitivity of Anal. Method (ng)  0.73 | Amount per Cig. of Anal. Method (µg) (ng) Body Fluid (pg/gm)  0.73 10 12  1.1 10 16  23 10 365  16 10 254  Q 0.1 Q 0.1 Q 0.1 5 10 79  4 10 63  240 10 3,810  200 10 3,175  64 10 1,016  55 10 873 |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component                      | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference      |
|--------------------------------|---------------------------------|--------------------|----------------|
| 1-Nitropropane                 | 0.73                            | GCFID              | Hoffmann (217) |
| 2-Nitropropane                 | 1.1                             | GCFID              | Hoffmann (217) |
| 3-Methylpropane                | 23                              | GC, IR             | Spears (503)   |
| · · · · ·                      | 16                              | GCTCD              | Newsome (378)  |
| 1,1-Dimethylcyclopropane       | Q                               | GC,MS              | Bartle (31)    |
| 1,2-cis-Dimethylcyclopropane   | Q                               | GC,MS              | Bartle (31)    |
| 1,2-trans-Dimethylcyclopropane | Q                               | GC,MS              | Bartle (31)    |
| Propadiene                     | 5                               | GC, IR             | Spears (503)   |
|                                | 4                               | GCTCD              | Newsome (378)  |
| Propene                        | 240                             | GC, IR             | Spears (503)   |
|                                | 200                             | GCTCD              | Newsome (378)  |
| 2-Methylpropene                | 64                              | GC, IR             | Spears (503)   |
|                                | 55                              | GCTCD              | Newsome (378)  |
| Propyne                        | 6                               | GCTCD              | Newsome (378)  |
|                                |                                 |                    |                |

7.9

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|          | Component                      | Amount<br>per Cig.<br>(µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid<br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|----------|--------------------------------|----------------------------|--------------------------------------------|------------------------------------|---------------------------------------|
|          | Aromatic Hydrocarbons          |                            |                                            |                                    |                                       |
|          | 9, 9-Dimethylacridan           | Q                          | 0.1                                        | um are the                         |                                       |
|          | Isopropyl-9,-9-dimethylacridan | Q                          | 0.1                                        |                                    |                                       |
|          | Acenaphthylene                 | Q                          | 10                                         |                                    |                                       |
|          | Anthracene                     | 0.14                       | 10                                         | 2.2                                | 4,546                                 |
|          |                                | 0.23                       | 10                                         | 3.7                                | 2,703                                 |
| <b>x</b> | :                              | 0.102                      | 1,000                                      | 1.6                                | 625,000                               |
| <b>D</b> | Benz(a)anthracene              | 0.04                       | 10                                         | 0.6                                | 16,667                                |
|          |                                | 0.08                       | 10                                         | 1.2                                | 8,333                                 |
|          |                                | 0.007                      | 10                                         | 0.1                                | 100,000                               |
|          | Methylbenz(a)anthracene        | Q                          | 0.1                                        |                                    |                                       |
|          | Dibenz(ah)anthracene           | Q                          | 10                                         |                                    |                                       |
|          | 9-Methylanthracene             | Q                          | 10                                         |                                    |                                       |
|          | Methylanthracene               | Q                          | 0.1                                        | <del></del>                        |                                       |
|          | Benzene                        | 32                         | 10                                         | 508                                | 20                                    |
|          |                                | 12-48                      | 10                                         | 190-762                            | 53-13                                 |
|          |                                | 30                         | 10                                         | 476                                | 21                                    |
|          |                                |                            |                                            |                                    |                                       |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component                      | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|--------------------------------|---------------------------------|--------------------|--------------------|
| Aromatic Hydrocarbons          |                                 |                    |                    |
| 9, 9-Dimethylacridan           | Q                               | GC, IR, MS         | Miller (336)       |
| Isopropy1-9,-9-dimethylacridan | Q                               | GC, IR, MS         | Miller (336)       |
| Acenaphthylene                 | Q                               | GLC                | Zane (578)         |
| Anthracene                     | 0.14                            | GLC                | Zane (578)         |
|                                | 0.23                            | GC                 | Chakraborty (91)   |
|                                | 0.102                           | cc,uv              | Commins (113)      |
| Benz (a) anthracene            | 0.04                            | GC                 | Chakraborty (91)   |
|                                | 0.08                            | GLC                | Ayres (21)         |
|                                | 0.007                           | GCFID              | Rathkamp (441)     |
| Methylbenz(a)anthracene        | Q                               | GC, IR, MS         | Miller (336)       |
| Dibenz(ah)anthracene           | Q                               | GCECD              | Robb (449)         |
| 9-Methylanthracene             | Q                               | GCECD              | Robb (449)         |
| Methylanthracene               | Q                               | GC, IR, MS         | Miller (336)       |
| Benzene                        | 32                              | GCFID              | Grob (186,185,184) |
|                                | 12-48                           | GC, IR             | Johnstone (246)    |
|                                | 30                              | GC, IR             | Spears (503)       |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                 | Amount<br>per Cig.<br>(µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid<br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|---------------------------|----------------------------|--------------------------------------------|------------------------------------|---------------------------------------|
| Ethy1benzene              | 7                          | 10                                         | 111                                | 90                                    |
|                           | 7                          | 10                                         | ,<br>1111                          | 90                                    |
|                           | <14                        | 10                                         | <222                               | <45                                   |
|                           | 10                         | 10                                         | 158                                | 63                                    |
| Isopropylbenzene          | 11                         | 10                                         | 175                                | 57                                    |
|                           | 11                         | 1,000                                      | 175                                | 5,714                                 |
| 1-Ethy1-2-methylbenzene   | 1.0                        | 10                                         | 16                                 | 625                                   |
| 1,2,3-Trimethylbenzene    | 3                          | 10                                         | 48                                 | 208                                   |
| 1,2,4-Trimethylbenzene    | 6                          | 10                                         | 95                                 | 105                                   |
|                           | 10                         | 10                                         | 158                                | 63                                    |
| 1,3,5-Trimethylbenzene    | 1                          | 10                                         | 16                                 | 625                                   |
|                           | 4                          | 10                                         | 63                                 | 159                                   |
|                           | 9                          | 10                                         | 143                                | 70                                    |
|                           | 9                          | 10                                         | 143                                | 70                                    |
| Nitrobenzene              | 0.027                      | 10                                         | 0.4                                | 25,000                                |
| Phenyl benzene (Biphenyl) | Q                          | 10                                         |                                    | ====                                  |
| Fluoranthene              | 0.17                       | 10                                         | 2.7                                | 3,704                                 |
|                           | 0.1                        | 10                                         | 1.6                                | 6,250                                 |
|                           | 0.01                       | 1,000                                      | 0.2                                | 5 x 106                               |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|                           | Amount per<br>Cigarette |                    |                  |
|---------------------------|-------------------------|--------------------|------------------|
| Component                 | (µg)                    | Method of Analysis | Reference        |
| Ethylbenzene              | 7                       | GC, IR             | Johnstone (246)  |
|                           | 7                       | GC, IR             | Spears (503)     |
|                           | <14                     | GCFID              | Grob (186)       |
|                           | 10                      | GC                 | Cook (115)       |
| Isopropy1benzene          | 11                      | GC, IR             | Johnstone (246)  |
|                           | 11                      | FP,UV              | Spears (503)     |
| 1-Ethy1-2-methy1benzene   | 1.0                     | GCFID              | Grob (186)       |
| 1,2,3-Trimethylbenzene    | 3                       | GCFID              | Grob (186)       |
| 1,2,4-Trimethylbenzene    | 6                       | GCFID ·            | Grob (186)       |
|                           | 10                      | GC                 | Cook (115)       |
| 1,3,5-Trimethylbenzene    | 1                       | GCFID              | Grob (186)       |
|                           | 4                       | GCTCD              | Newsome (378)    |
|                           | 9                       | GC, IR             | Spears (503)     |
|                           | 9                       | GC, IR             | Johnstone (246)  |
| Nitrobenzene              | 0.027                   | GCFID              | Rathkamp (441)   |
| Phenyl benzene (Biphenyl) | Q                       | GCECD              | Robb (449)       |
| Fluoranthene              | 0.17                    | GC                 | Chakraborty (91) |
|                           | 0.1                     | GC                 | Cook (115)       |
|                           | 0.01                    | PC.UV              | Van Duuren (532) |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Estimated                                                            |           |                 |             |                     |
|----------------------------------------------------------------------|-----------|-----------------|-------------|---------------------|
|                                                                      | Amount    | Sensitivity     | Amount in   | Sample Size         |
|                                                                      | per Cig.  | of Anal. Method | Body Fluid' | per Cig. (ml or gm) |
| Component                                                            | (µg)      | (ng)            | (pg/gm)     | (mi or gm)          |
| Alkylfluoranthene                                                    | 0.33      | 10              | 5.2         | 1,923               |
| Benzofluoranthene                                                    | 0.04      | 10              | 0.6         | 16,667              |
| Benzo(b)fluoranthene                                                 | 0.04      | 10              | 0.6         | 16,667              |
|                                                                      | Q         | 10              |             |                     |
| Benzo(j)fluoranthene                                                 | 0.04      | 10              | 0.6         | 16,667              |
| 8-Methylfluoranthene                                                 | Q         | 1,000           | <del></del> |                     |
| Fluorene                                                             | 0.83      | 10              | 13          | 769                 |
| Methylfluorenes                                                      | 1.4       | 10              | 22          | 455                 |
| Benzofluorene                                                        | 0.09-0.18 | 10              | 1.4-2.9     | 7,143-3,448         |
| Alkylbenzofluorene                                                   | 0.14=0.17 | 10              | 2.2-2.7     | 4,546-3,704         |
| 11-H-Benzo(a)fluorene                                                | 0.04      | 10              | 0.7         | 14,286              |
| Methy1-11-H-benzo(a)fluorene                                         | 0.04      | 10              | 0.7         | 14,286              |
| Indene                                                               | 4         | 10              | 63          | 159                 |
| Naphthalene                                                          | 1.85      | 10              | 29          | 345                 |
| 1-Me-Naphthalene                                                     | 0.5       | 10              | 8           | 1,250               |
| 2-Me-Naphthalene                                                     | 0.5       | <u>10</u>       | 8           | 1,250               |
| $\alpha$ , $\alpha$ , $\alpha$ , $\alpha$ !-Dinaphthylene (Perylene) | Q         | 10              |             |                     |
| Benzo(ghi)perylene                                                   | Q         | 10              |             | <del></del>         |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

## AGENTS IN CIGARETTE SMOKE

TABLE 2-B (cont.)

| Component                                | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference        |
|------------------------------------------|---------------------------------|--------------------|------------------|
| Alkylfluoranthene                        | 0.33                            | GC                 | Chakraborty (91) |
| Benzofluoranthene                        | 0.04                            | GC                 | Chakraborty (91) |
| Benze(b)fluoranthene                     | 0.04                            | GLC                | Ayres (21)       |
|                                          | Q                               | GCECD              | Robb (449)       |
| Benzo(j)fluoranthene                     | 0.04                            | GLC                | Ayres (21)       |
| 8-Methy1fluoranthene                     | Q                               | PC,UV              | Van Duuren (532) |
| Fluorene                                 | 0.83                            | GC                 | Chakraborty (91) |
| Methylfluorenes                          | 1.4                             | GC                 | Chakraborty (91) |
| Benzofluorene                            | 0.09-0.18                       | GC                 | Chakraborty (91) |
| Alkylbenzofluorene                       | 0.14-0.17                       | <b>GC</b>          | Chakraborty (91) |
| 11-H-Benzo(a)fluorene                    | 0.04                            | GLC                | Ayres (21)       |
| Methyl-11-H-benzo(a)fluorene             | 0.04                            | GLC                | Ayres (21)       |
| Indene                                   | 4                               | GC                 | Cook (115)       |
| Naphthalene                              | 1.85                            | GCFID              | Rathkamp (441)   |
| 1-Me-Naphthalene                         | 0.5                             | GC                 | Cook (115)       |
| 2-Me-Naphthalene                         | 0.5                             | GC                 | Cook (115)       |
| α, α, α', α'-Dinaphthylene<br>(Perylene) | Q                               | GCECD              | Robb (449)       |
| Benzo(ghi)perylene                       | Q                               | GCECD              | Robb (449)       |

ၓ

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                    | Amount per Cig. (ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid<br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|------------------------------|----------------------|--------------------------------------------|------------------------------------|---------------------------------------|
| 1,6-DiMe-Naphthalene         | 1.0                  | 10                                         | 16                                 | 625                                   |
| 2,6-DiMe-Naphthalene         | 0.3                  | 10                                         | 4.8                                | 2,083                                 |
| 2,7-DiMe-Naphthalene         | 0.3                  | 10                                         | 4.8                                | 2,083                                 |
| 1,3,6-TriMe-Naphthalene      | 0.7                  | 10                                         | 11                                 | 909                                   |
| Nephthacene                  | Q                    | 0.1                                        |                                    |                                       |
| Phenanthrene                 | 0.72                 | 10                                         | 11                                 | 909                                   |
|                              | 0.45                 | 10                                         | 7                                  | 1,429                                 |
|                              | 0.2                  | 10                                         | 3                                  | 3,333                                 |
|                              | 0.4                  | 10                                         | 6                                  | 1,667                                 |
| Alkylphenanthrene            | 0.48-0.65            | 10                                         | 8-10                               | 1,250-1,000                           |
| Dimethylphenanthrene         | 0.63                 | 10                                         | 10                                 | 1,000                                 |
| Chrysene (Benzophenanthrene) | 0.06                 | 10                                         | 0.95                               | 10,526                                |
|                              | 0.096                | 10                                         | 1.5                                | 6,667                                 |
| Methylchrysene               | 0.103                | 10                                         | 1.6                                | 6,250                                 |
| Dimethylchrysene             | 0.026                | 10                                         | 0.4                                | 25,000                                |
| Pyrene                       | 0.12                 | 10                                         | 1.9                                | 5,263                                 |
|                              | 0.113                | 10                                         | 1.8                                | 5,556                                 |
|                              | 0.09                 | 1,000                                      | 14                                 | 71,428                                |
|                              | 0.05                 | 1,000                                      | 0.8                                | 1,250,000                             |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

. 86

| Component                    | Amount per<br>Cigarette<br>(µg) | Method of Analysis | <u>Reference</u> |
|------------------------------|---------------------------------|--------------------|------------------|
| 1,6-DiMe-Naphthalene         | 1.0                             | GC                 | Cook (115)       |
|                              |                                 | GC                 |                  |
| 2,6-DiMe-Naphthalene         | 0.3                             |                    | Cook (115)       |
| 2,7-DiMe-Naphthalene         | 0.3                             | GC                 | Cook (115)       |
| 1,3,6-TriMe-Naphthalene      | 0.7                             | GC                 | Cook (115)       |
| Nephthacene                  | Q                               | GC, IR, MS         | Miller (336)     |
| Phenanthrene                 | 0.72                            | GC                 | Chakraborty (91) |
|                              | 0.45                            | GCFID              | Rathkamp (441)   |
| :                            | 0.2                             | GC                 | Cook (115)       |
|                              | 0.4                             | GLC                | Zane (579)       |
| Alkylphenanthrene            | 0.48-0.65                       | GC ·               | Chakraborty (91) |
| Dimethylphenanthrene         | 0.63                            | GC                 | Chakraborty (91) |
| Chrysene (Benzophenanthrene) | 0.06                            | GÇ                 | Chakraborty (91) |
|                              | 0.096                           | GLC                | Ayres (21)       |
| Methylchrysene               | 0.103                           | GLC                | Ayres (21)       |
| Dimethylchrysene             | 0.026                           | GLC                | Ayres (21)       |
| Pyrene                       | 0.12                            | GC                 | Chakraborty (91) |
|                              | 0.113                           | GLC                | Zane (578)       |
|                              | 0.09                            | cc, uv             | Commins (113)    |
|                              | 0.05                            | PC,UV              | Van Duuren (532) |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|                                  | Estimated |                 |                 |                    |  |  |
|----------------------------------|-----------|-----------------|-----------------|--------------------|--|--|
|                                  | Amount    | Sensitivity     | Amount in +     | Sample Size        |  |  |
|                                  | per Cig.  | of Anal. Method | Body Fluid      | per Cig.           |  |  |
| Component                        | (µg)      | (ng)            | (pg/gm)         | (ml or gm)         |  |  |
|                                  |           |                 |                 |                    |  |  |
| Benzo(a)pyrene                   | 0.03      | 10              | 0.6             | 16,667             |  |  |
|                                  | 0.03      | 10              | 0.6             | 16,667             |  |  |
|                                  | 0.005     | 1,000           | 0.08            | $1.25 \times 10^7$ |  |  |
|                                  | 0.04      | 10              | 0.6             | 16,667             |  |  |
|                                  | 0.027     | 10              | 0.4             | 25,000             |  |  |
| Benzo(e)pyrene                   | 0.01      | 10              | 0.16            | 62,500             |  |  |
|                                  | Q         | 10              |                 |                    |  |  |
| Indeno (1:2:3-c:d) pyrene        | 0.02      | 10              | 0.32            | 31,250             |  |  |
| 1-Methyl pyrene                  | Q         | 10              |                 |                    |  |  |
| 4-Methyl pyrene                  | 0.05      | 1,000           | 0.79            | $1.27 \times 10^6$ |  |  |
| Styrene                          | 10        | <u>10</u>       | 158             | 63                 |  |  |
| o-Methylstyrene                  | 1.0       | 10              | 16              | 625                |  |  |
| m-Methylstyrene                  | 2         | 10              | 32              | 313                |  |  |
| 3,4-bis-Trimethylsilyloxystyrene | Q         | 10              | deals and della |                    |  |  |
| Toluene                          | 80        | 10              | 1,270           | 7.9                |  |  |
|                                  | 46        | 10              | 730             | 14                 |  |  |
|                                  | 80        | 10              | 1,270           | 8                  |  |  |
| 2-Ethy1toluene                   | 1.0       | 10              | 16              | 625                |  |  |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

### AGENTS IN CIGARETTE SMOKE

|                                  | Amount per<br>Cigarette | W .1 . 1 . 6 . 4 1 4 | Deference          |
|----------------------------------|-------------------------|----------------------|--------------------|
| Component                        | <u>(μg)</u>             | Method of Analysis   | Reference          |
| Benzo(a)pyrene                   | 0.03                    | GC                   | Chakraborty (91)   |
|                                  | 0.03                    | GLC                  | Ayres (21)         |
|                                  | 0.005                   | PC,UV                | Van Duuren (532)   |
|                                  | 0.04                    | GCECD                | Robb (449)         |
|                                  | 0.027                   | GCFID                | Rathkamp (441)     |
| Benzo(e)pyrene                   | 0.01                    | GC                   | Chakraborty (91)   |
|                                  | Q                       | GCECD                | Robb (449)         |
| Indeno (1:2:3-c:d) pyrene        | 0.02                    | GLC                  | Ayres (21)         |
| 1-Methyl pyrene                  | Q                       | GCECD                | Robb (449)         |
| 4-Methyl pyrene                  | 0.05                    | PC,UV                | Van Duuren (532)   |
| Styrene                          | 10                      | GCFID                | Grob (186)         |
| o-Methylstyrene                  | 1.0                     | GCFID                | Grob (186)         |
| m-Methylstyrene                  | 2                       | GCFID                | Grob (186)         |
| 3,4-bis-Trimethylsilyloxystyrene | Q                       | GLC,UV,IR            | Leach (292)        |
| Toluene                          | <u>80</u>               | GCFID                | Grob (186,185,184) |
|                                  | 46                      | GC,IR                | Johnstone (246)    |
|                                  | 80                      | GC, IR               | Spears (503)       |
| 2-Ethyltoluene                   | 1.0                     | GCFID                | Grob (186)         |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|    | Component            | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in Body Fluid (pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|----|----------------------|----------------------------|--------------------------------------------|------------------------------|---------------------------------------|
|    | 3-Ethyltoluene       | 3                          | 10                                         | 48                           | 208                                   |
|    |                      | 5                          | 10                                         | 79                           | 127                                   |
|    | 4-Ethyltoluene       | 2                          | 10                                         | 32                           | 313                                   |
|    | •                    | 5                          | 10                                         | 79                           | 127                                   |
|    | p-Isopropenyltoluene | 11                         | 10                                         | 175                          | 57                                    |
|    | 4-Isopropyltoluene   | 7 <b>-1</b> 4              | 10                                         | 111-222                      | 90-45                                 |
|    |                      | 11                         | 10                                         | 175                          | 57                                    |
| 90 | p-Xylene             | <10                        | 10                                         | <158                         | <63                                   |
|    | m-Xylene             | 16                         | 10                                         | 254                          | 39                                    |
|    |                      | 30                         | 10                                         | 476                          | 21                                    |
|    |                      | 20-48                      | 10                                         | 317-762                      | 32-13                                 |
|    | o-Xylene             | 6                          | 10                                         | 95                           | 105                                   |
|    |                      | 22                         | 10                                         | 349                          | 29                                    |
|    |                      | 10                         | 10                                         | 158                          | 63                                    |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|    | Component            | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference       |
|----|----------------------|---------------------------------|--------------------|-----------------|
|    | 3-Ethyltoluene       | 3                               | GCFID              | Grob (186)      |
|    |                      | 5                               | GC                 | Cook (115)      |
|    | 4-Ethyltoluene       | 2                               | GCFID              | Grob (186)      |
|    |                      | 5                               | GC                 | Cook (115)      |
|    | p-Isopropenyltoluene | 11                              | GC,IR              | Johnstone (246) |
|    | 4-Isopropy1toluene   | 7=14                            | GC,IR              | Johnstone (246) |
|    |                      | 11                              | GC, IR             | Spears (503)    |
| 91 | p-Xylene             | <10                             | GCFID              | Grob (186)      |
| •  | m-Xylene             | 16                              | GCFID              | Grob (186)      |
|    |                      | 30                              | GC, IR             | Spears (503)    |
|    |                      | 20-48                           | GC, IR             | Johnstone (246) |
|    | o-Xylene             | 6                               | GCFID              | Grob (186)      |
|    |                      | 22                              | GC, IR             | Spears (503)    |
|    |                      | 10                              | GC                 | Cook (115)      |
|    |                      |                                 |                    |                 |

| Component                       | Amount<br>per Cig.<br>(µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Bedy Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|---------------------------------|----------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
| Phenols                         |                            |                                            |                                                 |                                       |
| Catecho1                        | 49-228                     | 1,000                                      | 778=3,618                                       | 1,285-276                             |
|                                 | 500                        | <del></del>                                | 7,936                                           |                                       |
| 4-Vinylcatechol                 | Q                          | 10                                         | , <del></del> ,                                 |                                       |
| o-Cresol                        | 20-25                      | 10                                         | 317-397                                         | 32-25                                 |
| m- + p-Cresol                   | 43-61                      | 10                                         | 682-968                                         | 15-10                                 |
| Eugeno1                         | 4                          | 10                                         | 63                                              | 159                                   |
| Isoeugeno1                      | 15                         | <u>1</u> 0                                 | 238                                             | 42                                    |
| Hydroquinone                    | 90                         |                                            | 1,428                                           |                                       |
| Myristicin (5-Methoxysafrole)   | 0.5                        | 0.1                                        | 8                                               | 12.5                                  |
| alpha-Naphthol                  | 0.3                        | 1,000                                      | 5                                               | $2 \times 10^5$                       |
| beta-Naphthol                   | 0.5                        | 1,000                                      | 8                                               | $1.25 \times 10^5$                    |
| Pheno1                          | 76-110                     | 10                                         | 1,206-1,746                                     | 8.3-5.7                               |
|                                 | 83-121                     | 0.1                                        | 1,317=1,921                                     | 0.08-0.05                             |
|                                 | 95-202                     | 0.1                                        | 1,508-3,206                                     | 0.07-0.03                             |
| o-Ethylphenol + o-Methoxyphenol | 1=15                       | 10                                         | 16-238                                          | 625-42                                |
| m- + p-Ethylphenol              | 10-30                      | 10                                         | 158-476                                         | 63-21                                 |
| 2,4 + 2,5-DiMePhenol            | 14-21                      | 10                                         | 222-333                                         | 45 <del>-</del> 30                    |
| 2,4,5, + 2,3,5,-TriMePhenol     | 10                         | 10                                         | 158                                             | 63                                    |
| 2,6-DiMePhenol                  | 20-45                      | 10                                         | 317-714                                         | 32-14                                 |
| Resercinol                      | 10                         | <del></del>                                | 158                                             |                                       |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|                                 | Amount per<br>Cigarette |                    | 2.6                 |
|---------------------------------|-------------------------|--------------------|---------------------|
| Component                       | <u>(µg)</u>             | Method of Analysis | Reference           |
| Phenols                         |                         |                    |                     |
| Catecho1                        | 49-228                  | TLC,C              | Kallianos (252)     |
|                                 | 500                     | NMG                | Kato (Cited in 573) |
| 4-Vinylcatechol                 | Q                       | GLC, UV, IR        | <b>Lea</b> ch (292) |
| o-Cresol                        | 20-25                   | GC                 | Spears (501)        |
| m- + p-Cresol                   | 43-61                   | GC                 | Spears (501)        |
| Eugeno1                         | 4                       | GC                 | Rodgman (453)       |
| Isoeugeno1                      | 15                      | ĢÇ                 | Rodgman (453)       |
| Hydroquinone                    | 90                      | NMG                | Kato (Cited in 573) |
| Myristicin (5-Methoxysafrole)   | 0.5                     | GC, IR, UV, MS     | Schmeltz (479)      |
| alpha-Naphthol                  | 0.3                     | CC, UV             | Commins (114)       |
| beta-Naphthol                   | 0.5                     | CC,UV              | Commins (114)       |
| Pheno1                          | 76-110                  | GC                 | Spears (501)        |
|                                 | 83=121                  | MS                 | Hoffmann (226)      |
|                                 | 95-202                  | MS                 | Rayburn (442)       |
| o=Ethylpheno1 + o-Methoxypheno1 | 1-15                    | GCFID              | Crouse (120)        |
| m- + p-Ethylphenol              | 10-30                   | GCFID              | Crouse (120)        |
| 2,4 ± 2,5-DiMePhenol            | 14-21                   | GC                 | Spears (501)        |
| 2,4,5, + 2,3,5,-TriMePheno1     | <u>1</u> 0              | GCFID              | Crouse (120)        |
| 2,6-DiMePhenol                  | 20-45                   | GCFID              | Crouse (120)        |
| Resorcinol                      | 10                      | NMG                | Kato (Cited in 573) |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component           | Amount per Cig. (µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid<br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|---------------------|----------------------|--------------------------------------------|------------------------------------|---------------------------------------|
| Nitriles            |                      |                                            |                                    |                                       |
| Acetonitrile        | 140                  | 10                                         | 2,222                              | 4.5                                   |
|                     | 1,000                | 0.1                                        | 15,870                             | 0.0063                                |
|                     | 114 <sup>a</sup>     | 10                                         | 1,816                              | 5.5                                   |
| Acrylonitrile       | 10                   | 10                                         | 158                                | 63                                    |
| Methacrylonitrile   | 3                    | 10                                         | 48                                 | 208                                   |
| Allylnitrile        | Q                    | 0.1                                        |                                    |                                       |
| 9-Anthronitrile     | Q                    | 0.1                                        | ===                                |                                       |
| Butyronitrile       | 5                    | 10                                         | 79                                 | 127                                   |
| Isobutyronitrile    | <u>8</u>             | 10                                         | 127                                | 79                                    |
| n-Capronitrile      | 1                    | 10                                         | 16                                 | 625                                   |
| Isocapronitrile     | t,                   | 10                                         | ·                                  | ===                                   |
| Cinnamonitrile      | Q                    | 0.1                                        |                                    |                                       |
| Hydrocinnamonitrile | Q                    | 0.1                                        |                                    |                                       |
| Crontonitrile       | 3                    | 10                                         | 48                                 | 208                                   |
|                     | 3.2 <sup>a</sup>     | 10                                         | <u>51</u>                          | 196                                   |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component               | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|-------------------------|---------------------------------|--------------------|--------------------|
| <u>Nitriles</u>         |                                 |                    |                    |
| Acetonitrile            | 140                             | GCFID              | Grob (186,185,184) |
|                         | 1000                            | GC,MS              | Campbell (81)      |
|                         | 114 <sup>a</sup>                | GC                 | Terrell (519)      |
| Acrylonitrile           | 10                              | GCFID              | Grob (186,185,184) |
| Methacrylonitrile       | 3                               | GCFID              | Grob (186,185)     |
| Allylnitrile            | Q                               | MS                 | Grob (188)         |
| 9-Anthronitrile         | Q                               | MS                 | Brown (70)         |
| Butyronitrile           | 5                               | GCFID              | Grob (186)         |
| <b>Isobutyronitrile</b> | 8                               | GCFID              | Grob (185,184)     |
| n-Capronitrile          | 1.0                             | GCFID              | Grob (186)         |
| Isocapronitrile         | ţ                               | GCFID              | Grob (186)         |
| Cinnamonitrile          | Q                               | GC,MS              | Kaburaki (250)     |
| Hydrocinnamonitrile     | Q                               | GC,MS              | Kaburaki (250)     |
| Crotonitrile            | 3                               | GCFID              | Grob (186)         |
|                         | 3.2 <sup>a</sup>                | GLC                | Newsome (380)      |

| Component          | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|--------------------|----------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
| Hydrogen cyanide   | 300-500                    | 1,000                                      | 4,762-7,936                                     | 210-126                               |
|                    | 300                        | 0.1                                        | 4,762                                           | 0.02                                  |
|                    | 400                        | 10                                         | 6,348                                           | 1.6                                   |
| •                  | 130-149                    | 1,000                                      | 2,063-2,365                                     | 485-423                               |
|                    | 338                        | 26,000                                     | 5,364                                           | 4,847                                 |
|                    | 280 <sup>a</sup>           |                                            | 4,444                                           | <del></del>                           |
|                    | 184 <sup>a</sup>           | 1,000                                      | 2,920                                           | 342                                   |
| Cyanogen           | Q                          |                                            |                                                 | -:                                    |
| Nicotinonitrile    | 3-10                       | 10                                         | 48-158                                          | 208-63                                |
| Phenylacetonitrile | Q                          | 0.1                                        |                                                 |                                       |
| Propionitrile      | 30                         | 10                                         | 476                                             | 21                                    |
| n-Valeronitrile    | 2                          | 10                                         | 32                                              | 313                                   |
| Isovaleronitrile   | t                          | 10                                         |                                                 |                                       |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component          | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|--------------------|---------------------------------|--------------------|--------------------|
| Hydrogen cyanide   | 300–500                         | C                  | Guerin (197a)      |
|                    | 300                             | MS                 | Keith (258)        |
|                    | 400                             | GC, IR             | Spears (503)       |
|                    | 130-149                         | С                  | Na11 (360)         |
|                    | 338                             | POT                | Vickroy (538)      |
|                    | 280 <sup>a</sup>                | POT                | Mattina (323)      |
|                    | 184 <sup>a</sup>                | С                  | Terrell (519)      |
| Cyanogen           | Q                               | NMG                | Johnstone (243)    |
| Nicotinonitrile    | 3-10                            | GC                 | Kaburaki (249)     |
| Phenylacetonitrile | Q                               | GC,MS              | Kaburaki (250)     |
| Propionitrile      | 30                              | GCFID              | Grob (186,185,184) |
| n-Valeronitrile    | 2                               | GCFID              | Grob (186)         |
| Isovaleronitrile   | t                               | GCFID              | Grob (186)         |
|                    |                                 |                    |                    |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                      | Amount<br>per Cig.<br>(μg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|--------------------------------|----------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
| Sulfur Containing Compounds    |                            |                                            |                                                 |                                       |
| Carbon Monosulfide             | Q                          | 0.1                                        | <del></del>                                     |                                       |
| Carbon Disulfide               | <u>2</u>                   | 10                                         | 32                                              | 313                                   |
| Carbonylsulfide                | 35                         | 10                                         | 556                                             | 18                                    |
| Dimethylsulfide                | Q                          | 0.1                                        |                                                 |                                       |
| Diemthyldisulfide              | Q                          | 0.1                                        |                                                 |                                       |
| Ethylmercaptan                 | Q                          | 0.1                                        |                                                 |                                       |
| Hydrogen Sulfide               | 85                         | 10                                         | 1,349                                           | 7                                     |
|                                | 39-49                      | 32,000                                     | 619-778                                         | 51,696-41,131                         |
|                                | 36 <sup>a</sup>            | 1,000                                      | 571                                             | 1,751                                 |
| Methylmercaptan                | Q                          | 0.1                                        |                                                 | ====                                  |
| Methylthionitrite              | 6                          | 0.1                                        | 95                                              | 17                                    |
| Sulfur Dioxide                 | 3                          | 10                                         | 48                                              | 208                                   |
|                                | 0.8 <sup>a</sup>           | 10                                         | 13                                              | 769                                   |
| Thiocyanic Acid                | Q                          |                                            | ===                                             |                                       |
| Thiocyanogen                   | Q                          |                                            | <del></del>                                     |                                       |
| Thiophene (Divinylene Sulfide) | 2                          | 10                                         | 32                                              | 313                                   |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component                      | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference          |
|--------------------------------|---------------------------------|--------------------|--------------------|
| Sulfur Containing Compounds    |                                 |                    |                    |
| Carbon Monosulfide             | Q                               | MS, IR             | Osborne (399)      |
| Carbon Disulfide               | 2                               | GCFPD              | Horton (229a)      |
| Carbonylsulfide                | 35                              | GCFPD              | Horton (229a)      |
| Dimethylsulfide                | Q                               | GC, IR, MS         | Philippe (419)     |
| Dimethyldisulfide              | Q                               | GC,MS              | Mokhnachev (342)   |
| Ethylmercaptan                 | Q                               | GC,MS              | Mokhnachev (342)   |
| Hydrogen Sulfide               | 85                              | GCFPD              | Horton (229a)      |
|                                | 39-49                           | POT                | Morie (350)        |
|                                | 36 <sup>a</sup>                 | C                  | Terrell (519)      |
| Methylmercaptan                | Q                               | MS                 | Grob (186)         |
| Methylthionitrite              | 6                               | IR,MS              | Philippe (424)     |
| Sulfur Dioxide                 | 3                               | GCFPD              | Horton (229a)      |
|                                | 0.8 <sup>a</sup>                | GLC                | Newsome (379)      |
| Thiocyanic Acid                | Q                               | GRAV               | Bentley (46)       |
| Thiocyanogen                   | Q                               | GRAV               | Bentley (46)       |
| Thiophene (Divinylene Sulfide) | 2                               | GCFID              | Grob (186,185,184) |

# ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                 | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in † Body Fluid (pg/gm)                    | Sample Size<br>per Cig.<br>(ml or gm) |
|---------------------------|----------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------|
| Component                 |                            | N=343                                      | <del>- 1                                   </del> |                                       |
| Amines                    |                            |                                            |                                                   |                                       |
| Allyamine                 | Q                          | 0.1                                        |                                                   |                                       |
| n-Amylamine               | Q                          | 0.1                                        |                                                   |                                       |
| Isoamylamine              | 3.2 <sup>a</sup>           | 0.1                                        | 51                                                | 1.96                                  |
| Aniline                   | 2                          | 0.1                                        | 32                                                | 3.1                                   |
| n-Butylamine              | 2.4 <sup>a</sup>           | 0.1                                        | 38                                                | 2.6                                   |
| 2-Aminobutane             | Q                          | 0.1                                        |                                                   |                                       |
| Isobutylamine             | 2.4 <sup>a</sup>           | 0.1                                        | 38                                                | 2.6                                   |
| Ethylamine                | t                          | 0.1                                        |                                                   |                                       |
|                           | 8                          | 0.1                                        | 127                                               | 0.8                                   |
| Diethylamine              | Q                          | 0.1                                        |                                                   | ===                                   |
| Methylethylamine          | 1.6 <sup>a</sup>           | 0.1                                        | 25                                                | 4                                     |
| β-Phenylethylamine        | 8.3 <sup>f</sup>           | 0.1                                        | 132                                               | .76                                   |
| Methyl-β-phenylethylamine | 1.2 <sup>f</sup>           | 0.1                                        | 19                                                | 5.3                                   |
| n-Hexylamine              | Q                          | 0.1                                        |                                                   |                                       |
| Hydrazine                 | 0.032                      | 10                                         | 0.5                                               | 20,000                                |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|                           | Amount per<br>Cigarette |                    |                |
|---------------------------|-------------------------|--------------------|----------------|
| Component                 | (µg)                    | Method of Analysis | Reference      |
| Amines                    |                         |                    |                |
| Allyamine                 | Q                       | GC,MS              | Pailer (402)   |
| n-Amylamine               | Q                       | GC,MS              | Pailer (402)   |
| Isoamylamine              | 3.2 <sup>a</sup>        | MP, IR, MS         | Neurath (370)  |
| Aniline                   | 2                       | GC,MS              | Pailer (402)   |
| n-Butylamine              | 2.4 <sup>a</sup>        | MP, IR, MS         | Neurath (370)  |
| 2-Aminobutane             | Q                       | GC,MS              | Pailer (402)   |
| Isobutylamine             | 2.4 <sup>a</sup>        | MP, IR, MS         | Neurath (370)  |
| Ethylamine                | t                       | IR,MS              | Osborne (399)  |
|                           | <u>8</u>                | MP, IR, MS         | Neurath (370)  |
| Diethylamine              | Q                       | GC,MS              | Pailer (402)   |
| Methylethylamine          | 1.6 <sup>a</sup>        | MP, IR, MS         | Neurath (370)  |
| β-Phenylethylamine        | 8.3 <sup><u>f</u></sup> | MP, IR, MS         | Neurath (370)  |
| Methy1-β-phenylethylamine | 1.2 <sup>f</sup>        | MP, IR, MS         | Neurath (370)  |
| n-Hexylamine              | Q                       | GC,MS              | Pailer (402)   |
| Hydrazine                 | 0.032                   | GCFID              | Hoffmann (221) |

| Component                       | Amount per Cig. (µg) | Estimated Sensitivity of Anal. Method (ng) | Amount in † Body Fluid† (pg/gm) | Sample Size per Cig. (ml or gm) |
|---------------------------------|----------------------|--------------------------------------------|---------------------------------|---------------------------------|
| Methylamine                     | 16 <sup>a</sup>      | 0.1                                        | 254                             | 0.4                             |
| Dimethylamine                   | 8 <sup>.a</sup>      | 0.1                                        | 127                             | 0.8                             |
| Trimethylamine                  | Q                    |                                            |                                 |                                 |
| n-Butyl-methylamine             | Q                    | 0.1                                        |                                 |                                 |
| alpha-Naphthylamine             | 0.025                | 10                                         | 0.4                             | 25,000                          |
| beta-Naphthylamine              | 0.025                | 10                                         | 0.4                             | 25,000                          |
| Methylethylnitrosamine          | 0.03                 | 10                                         | 0.5                             | 20,000                          |
| Diethylnitrosamine              | <0.005               | 10                                         | <0.08                           | <125,000                        |
| n-Dimethylnitrosamine           | 0.084                | 10                                         | 1.3                             | 7,692                           |
|                                 | 0-0.140              | 10                                         | 0-2.2                           | >4,545                          |
| N-Phenyl-4-isopropylphenylamine | Q                    | 0.1                                        |                                 |                                 |
| n-Propylamine                   | 1.6 <sup>a</sup>     | 0.1                                        | 25                              | 4                               |
| Di-n-propylamine                | Q                    | 0.1                                        |                                 |                                 |
| Isopropylamine                  | Q                    | 0.1                                        |                                 |                                 |
| n-Propyl-isopropylamine         | Q                    | 0.1                                        |                                 | <del>***</del>                  |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

# TABLE 2-B (cont.) AGENTS IN CIGARETTE SMOKE

| Component                       | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference       |
|---------------------------------|---------------------------------|--------------------|-----------------|
| Methylamine                     | 16 <sup>a</sup>                 | MP, IR, MS         | Neurath (370)   |
| Dimethylamine                   | 8 <sup>a</sup>                  | MP, IR, MS         | Neurath (370)   |
| Trimethylamine                  | Q                               | PÇ                 | Johnstone (243) |
| n-Butyl-methylamine             | Q                               | GC,MS              | Pailer (402)    |
| alpha-Naphthylamine             | 0.025                           | GC                 | Masuda (321)    |
| beta-Naphthylamine              | 0.025                           | GC                 | Masuda (321)    |
| Methylethylnitrosamine          | 0.03                            | GCFID              | Hoffmann (221)  |
| Diethylnitrosamine              | <0.005                          | GCFID              | Hoffmann (221)  |
| n-Dimethylnitrosamine           | 0.084                           | GCFID              | Hoffmann (221)  |
|                                 | 0-0.140                         | GE                 | Rhoades (445)   |
| N-Pheny1-4-isopropylphenylamine | Q                               | GC, IR, MS         | Miller (336)    |
| n-Propylamine                   | 1.6 <sup>a</sup>                | MP, IR, MS         | Neurath (370)   |
| Di-n-propylamine                | Q                               | GC,MS              | Pailer (402)    |
| Isopropylamine                  | Q                               | GC,MS              | Pailer (402)    |
| n-Propyl-isopropylamine         | Q                               | GC,MS              | Pailer (402)    |
|                                 |                                 |                    |                 |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT
(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component        | Amount per Cig. (ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(m1 or gm) |
|------------------|----------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
| Carboxylic Acids |                      |                                            |                                                 |                                       |
| Acetic Acid      | 370                  | 10                                         | 5,872                                           | 1.7                                   |
|                  | 722                  | 10                                         | 11,458                                          | 0.9                                   |
|                  | 650-1,030            | 10                                         | 10,316-16,346                                   | 1-0.6                                 |
| •                | 117-322              | 10                                         | 1,857-5,110                                     | 5.4-2.0                               |
| Adipic Acid      | 6                    | 10                                         | 95                                              | 105                                   |
| n=Butyric Acid   | 10-50                | 10                                         | 158-794                                         | 63.3-12.6                             |
|                  | 12                   | 10                                         | 190                                             | 52.6                                  |
| Isobutyric Acid  | 10-25                | 10                                         | 158-397                                         | 63.3-25.2                             |
|                  | 10                   | 10                                         | 158                                             | 63.3                                  |
| (n) Caproic Acid | 5-12                 | 10                                         | 79=190                                          | 127-53                                |
| Isocaproic Acid  | 5-20                 | 10                                         | 79=317                                          | 127-31.5                              |
| Capronic Acid    | Q                    | 10                                         |                                                 | game delete mont                      |
| Caprylic Acid    | Q                    | <u>10</u>                                  |                                                 |                                       |
| Formic Acid      | 280-420              | 10                                         | 4,444-6,665                                     | 2.3-1.5                               |
|                  | 48-94                | 10                                         | 762-1,492                                       | .0013-6.7                             |
|                  | 600                  | 10                                         | 9,522                                           | 1.1                                   |
| Furoic Acid      | 30-140               | 10                                         | 476-2,222                                       | 21-4.5                                |
| Glutaric Acid    | 30                   | 10                                         | 476                                             | 21                                    |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

### TABLE 2-B (cont.)

### AGENTS IN CIGARETTE SMOKE

|                  | Amount per<br>Cigarette |                    |                  |
|------------------|-------------------------|--------------------|------------------|
| Component        | <u>(µg)</u>             | Method of Analysis | Reference        |
| Carboxylic Acids |                         |                    |                  |
| Acetic Acid      | 370                     | GCFID              | Morie (351)      |
|                  | 722                     | GCFID              | Stedman (508)    |
|                  | 650-1030                | PC,CC,GC           | Buyske (78)      |
|                  | 117-322                 | GCTCD              | Oakley (393)     |
| Adipic Acid      | 6                       | GC                 | Quin (438)       |
| n-Butyric Acid   | 10-50                   | GC, IR, UV         | Stedman (509)    |
|                  | 12                      | GC                 | Morie (351)      |
| Isobutyric Acid  | 10-25                   | GC, IR, UV         | Stedman (509)    |
|                  | 10                      | GC                 | Morie (351)      |
| (n) Caproic Acid | 5-12                    | GC, IR, UV         | Stedman (509)    |
| Isocaproic Acid  | 5-20                    | GC, IR, UV         | Stedman (509)    |
| Capronic Acid    | Q                       | GC                 | Mokhnachev (343) |
| Caprylic Acid    | Q                       | ĞÇ                 | Mokhnachev (343) |
| Formic Acid      | 280-420                 | PC,CC,GC           | Buyske (78)      |
|                  | 48-94                   | GCTCD              | Oakley (393)     |
|                  | 600                     | GC, IR             | Spears (503)     |
| Furoic Acid      | 30-140                  | GC                 | Quin (438)       |
| Glutaric Acid    | 30                      | GC                 | Quin (438)       |
|                  |                         |                    | -                |

1670E6SS930S

105

Arthur D Little. Inc.

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component         | Amount per Cig. (ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in Body Fluid (pg/gm) | Sample Size per Cig. (ml or gm) |
|-------------------|----------------------|--------------------------------------------|------------------------------|---------------------------------|
| Glycolic Acid     | 50-300               | 10                                         | 794-4,762                    | 12.6-2.1                        |
| (n) Heptylic Acid | 12-50                | 10                                         | 190-794                      | 53-12.6                         |
| Lactic Acid       | 50-300               | 10                                         | 794-4,762                    | 12.6-2.1                        |
| Lauric Acid       | Q                    | 10                                         |                              |                                 |
| Linoleic Acid     | 50-150               | 0.1                                        | 794-2,381                    | 0.13=0.04                       |
| Linelenic Acid    | 50-300               | 0.1                                        | 794-4,762                    | 0.04-0.02                       |
| Levulinic Acid    | 20=70                | 10                                         | 317-1,111                    | 32-9                            |
| Malic Acid        | 60                   | 10                                         | 952                          | 11                              |
| Malonic Acid      | 90                   | 10                                         | 1,428                        | 7                               |
| Margaric Acid     | Q                    | 10                                         |                              | <del></del>                     |
| Myristic Acid     | Q                    | 10                                         |                              |                                 |
| Oleic Acid        | 20-100               | 0.1                                        | 317-1,587                    | 0.3-0.06                        |
| Oxalic Acid       | 40-90                | 10                                         | 635-1,428                    | 16-7                            |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component         | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference        |
|-------------------|---------------------------------|--------------------|------------------|
| Glycolic Acid     | 50 <del>-</del> 300             | GC                 | Quin (438)       |
| (n) Heptylic Acid | 12-50                           | GC, IR, UV         | Stedman (509)    |
| Lactic Acid       | 50-300                          | GC                 | Quin (438)       |
| Lauric Acid       | Q                               | GC                 | Mokhnachev (343) |
| Linoleic Acid     | 50-150                          | GCFID, IR, MS      | Hoffmann (225)   |
| Linolenic Acid    | 50-300                          | GCFID, IR, MS      | Hoffmann (225)   |
| Levulinic Acid    | 20-70                           | GC                 | Quin (438)       |
| Malie Acid        | 60                              | GC                 | Quin (438)       |
| Malonic Acid      | 90                              | GC                 | Quin (438)       |
| Margaric Acid     | Q                               | GC                 | Mokhnachev (343) |
| Myristic Acid     | Q                               | GC                 | Mokhnachey (343) |
| Oleic Acid        | 20-100                          | GCFID, IR, MS      | Hoffmann (225)   |
| Oxalic Acid       | 40=90                           | GC                 | Quin (438)       |

|                         |                   | Estimated       |             |             |
|-------------------------|-------------------|-----------------|-------------|-------------|
|                         | Amount            | Sensitivity     | Amount in + | Sample Size |
| _                       | p <u>er Ci</u> g. | of Anal. Method | Body Fluid  | per Cig.    |
| Component               | (µg)              | (ng)            | (pg/gm)     | (ml or gm)  |
| Palmitic Acid           | 50-300            | 0.1             | 794-4,762   | 0.04-0.02   |
| Pelargonic Acid         | Q                 | 10              |             |             |
| Pentadecanoic Acid      | Q                 | 10              |             |             |
| Phthalic Acid           | 40                | <u>10</u>       | 635         | 16          |
| Propionic Acid          | 300               | 10              | 4,762       | 2.1         |
|                         | 110-230           | 10              | 1,746-3,650 | 6-3         |
| Succinic Acid           | 100-250           | 10              | 1,587-3,968 | 6.3-2.5     |
| Stearic Acid            | 30-90             | 0.1             | 476-1,428   | 0.2-0.07    |
| Tridecanoic Acid        | Q                 | 10              |             |             |
| Undeacanoic Acid        | Q                 | 10              |             |             |
| Valeric Acid            | 7-50              | <u>1</u> 0      | 111-794     | 90-12.6     |
| Isovaleric Acid         | 15                | 10              | 238         | 42          |
|                         | 10                | 10              | 158         | 63          |
| beta-Methylvaleric Acid | 20-40             | 10              | 317-635     | 32-16       |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component               | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference        |
|-------------------------|---------------------------------|--------------------|------------------|
| Palmitic Acid           | 50–300                          | GCFID, IR, MS      | Hoffmann (225)   |
| Pelargonic Acid         | Q                               | GC                 | Mokhnachev (343) |
| Pentadecanoic Acid      | Q                               | GC                 | Mokhnachev (343) |
| Phthalic Acid           | 40                              | GC                 | Quin (438)       |
| Propionic Acid          | 300                             | GC,IR              | Spears (503)     |
|                         | 110-230                         | PC,CC,GC           | Buyske (78)      |
| Succinic Acid           | 100-250                         | GC                 | Quin (438)       |
| Stearic Acid            | 30-90                           | GCFID, IR, MS      | Hoffmann (225)   |
| Tridecanoic Acid        | Q                               | GC                 | Mokhnachev (343) |
| Undecanoic Acid         | Q                               | GC                 | Mokhnachev (343) |
| Valeric Acid            | 7–50                            | GC, IR, UV         | Stedman (509)    |
| Isovaleric Acid         | 15                              | GC, IR, UV         | Stedman (509)    |
|                         | 10                              | GCFID              | Morie (351)      |
| beta-Methylvaleric Acid | 20-40                           | GC,IR,UV           | Stedman (509)    |

### TABLE 2-A (cont.) ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component  | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|------------|----------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
| Inorganics |                            |                                            | - <del> </del>                                  |                                       |
| Ammonia    | 53-103 <sup>c</sup>        | <del></del> .                              | 8 <u>44</u> -1,644                              | ===                                   |
| :          | 60-330                     |                                            | 952-5,237                                       | ===                                   |
|            | 10                         | 10                                         | 158                                             | 63                                    |
| Antimony   | 49 <sup>f</sup>            | 1000                                       | 776                                             | 1,289                                 |
| Argon      | 5000                       | 0.1                                        | 79,350                                          | 0.001                                 |
| Arsenie    | 5.6 <sup>£</sup>           | 1000                                       | 89                                              | 11,236                                |
|            | <u>13-19 <sup>£</sup></u>  | 10,000                                     | 200-300                                         | 50,000-33,333                         |
| Bromine    | 9.3 <sup>f</sup>           | 1000                                       | 148                                             | 6,757                                 |
| Cadmium    | 0.1-0.25                   | $4.58 \times 10^{-3}$                      | 1.6-4.0                                         | 2.9-1.1                               |
|            | 0.8                        | 1000                                       | 12.7                                            | 78,740                                |
|            | 0.1                        | 4                                          | 1.6                                             | 2,500                                 |
| Chromium   | 0.005-0.02                 | $2.13 \times 10^{-3}$                      | 0.08-0.32                                       | 27-6.7                                |
|            | 0.017 <sup>f</sup>         | 1000                                       | 0.27                                            | 3,700,000                             |
| Cobalt     | 0.466 <sup>f</sup>         | 1000                                       | 7.4                                             | 135,135                               |
| Copper     | 0.05-0.12                  | $2.62 \times 10^{-3}$                      | 0.8-1.9                                         | 3.3-1.4                               |
| Hydrogen   | 700                        | 0.1                                        | 11,100                                          | .009                                  |
| •          | 275 <sup>d</sup>           | 0.1                                        | 4,000                                           | .025                                  |
|            | 390 <sup>d</sup>           | 10                                         | 5,500                                           | 1.8                                   |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

3670E6SS0S

### TABLE 2-B (cont.)

#### AGENTS IN CIGARETTE SMOKE

| Component   | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference      |
|-------------|---------------------------------|--------------------|----------------|
| <del></del> |                                 |                    |                |
| Inorganics  |                                 |                    |                |
| Ammonia     | 53-103 <sup>c</sup>             | A                  | Bradford (65)  |
|             | 60-330                          | NMG                | Neurath (366)  |
|             | 10                              | GCTCD              | Newsome (378)  |
| Antimony    | 49 <sup>£</sup>                 | NAA                | Nadkarni (358) |
| Argon       | 5000                            | MS                 | Keith (258)    |
| Arsenic     | 5.6 <sup>f</sup>                | NAA                | Nadkarni (358) |
|             | 13-19 <sup>f</sup>              | SPF                | Williams (567) |
| Bromine     | 9.3 <sup>f</sup>                | NAA                | Nadkarni (358) |
| Cadmium     | 0.1-0.25                        | SSMS               | Guerin (197)   |
|             | 0.8                             | C                  | Nandi (359)    |
|             | <u>0.1</u>                      | AAS                | Menden (332)   |
| Chromium    | 0.005-0.02                      | SSMS               | Guerin (197)   |
|             | 0.017 <sup>f</sup>              | NAA                | Nadkarni (358) |
| Cobalt      | 0.466 <sup>f</sup>              | NAA                | Nadkarni (358) |
| Copper      | 0.05-0.12                       | SSMS               | Guerin (197)   |
| Hydrogen    | 700                             | GC,MS              | Keith (258)    |
|             | 275 <sup>d</sup>                | GCTCD,MS           | Newsome (378)  |
|             | 390 <sup>d</sup>                | GÇ                 | Lakritz (281)  |
|             |                                 |                    |                |

# ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component        | Amount<br>per Cig.<br>(µg) | Estimated<br>Sensitivity<br>of Anal. Method<br>(ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size per Cig. (ml or gm)           |
|------------------|----------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------|
|                  |                            |                                                     |                                                 |                                           |
| Iron             | 150 <sup>f</sup>           | 1000                                                | 2,400                                           | 417                                       |
| Lanthanum        | 2.1 <sup>f</sup>           | 1000                                                | 33                                              | 30,303                                    |
| Lead             | 0.075-0.175                | $8.47 \times 10^{-3}$                               | 1.2-2.8                                         | 7-3                                       |
| Mercury          | 0.001-0.005                | $4.11 \times 10^{-3}$                               | 0.016-0.08                                      | 257-51                                    |
|                  | 22.4 <u><sup>£</sup></u>   | 1000                                                | 350                                             | 2,857                                     |
| Nickel           | 0.025-0.075                | $2.41 \times 10^{-3}$                               | 0.4-1.4                                         | 6-1.7                                     |
|                  | 0.02-0.08                  | 10                                                  | 0.32-1.3                                        | 31,250-7,692                              |
| Nitrie Oxide     | 350 <sup>a</sup>           | 1000                                                | 5,586                                           | 179                                       |
|                  | 100-600                    |                                                     | 1,587-9,522                                     | <del></del>                               |
|                  | 148-450                    | 100                                                 | 2,348-7.142                                     | 43-14                                     |
|                  | 310 <sup>a</sup> ,         | 1000                                                | 4,900                                           | 204                                       |
| Nitrogen         | 2 2 105                    | 0.1                                                 | $3.4 \times 10^{6}$                             | $2.9 \times 10^{-5}$                      |
|                  | 1.7-2.2x10 <sup>5</sup>    | 0.1                                                 | 2.7 <del>-</del> 3.6x10 <sup>6</sup>            | $3.7 \times 10^{-5} - 2.8 \times 10^{-5}$ |
| Nitrogen Dioxide | 45 <del>-</del> 580        | 1000                                                | 710-9,200                                       | 1,408-107                                 |
|                  | 32 <sup>f</sup>            |                                                     | 510                                             | <del></del>                               |
|                  | 12 <sup>a</sup>            | 1000                                                | 190                                             | 5,263                                     |
| Nitrous Oxide    | 30-40                      | 1000                                                | 476-635                                         | 2,101-1,574                               |
|                  | 30-44                      |                                                     | 476-698                                         |                                           |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|     | Component             | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference           |
|-----|-----------------------|---------------------------------|--------------------|---------------------|
|     | Iron                  | 150 <sup>f</sup>                | NAA                | Nadkarni (358)      |
|     | Lanthanum             | 2.1 <sup>f</sup>                | NAA                | Nadkarni (358)      |
|     | Lead                  | 0.075-0.175                     | SSMS               | <b>Guerin</b> (197) |
|     | Mercury               | 0.001-0.005                     | FLS                | Guerin (197)        |
|     |                       | 22.4 <sup>f</sup>               | NAA                | Nadkarni (358)      |
|     | Nickel                | 0.025-0.075                     | SSMS               | Guerin (197)        |
|     | N <u>i</u> tric Oxide | 0.02-0.08                       | AAS                | Menden (332)        |
|     |                       | 350 <sup>a</sup>                | SPF                | Sloan (493)         |
| 113 |                       | 100-600                         | NMG                | Neurath (366)       |
|     |                       | 148-450                         | CLUM               | Neurath (369)       |
|     |                       | 310 <sup>a</sup> d              | C                  | Norman (386)        |
|     | Nitrogen              | 2.2×10 <sup>5</sup> d           | GC,MS,IR           | Keith (258)         |
|     |                       | $1.7 = 2.2 \times 10^{5}$       | GC,MS,IR           | Newsome (378)       |
|     | Nitrogen Dioxide      | 45–580                          | IR,UV              | Smith (496)         |
|     |                       | 32 <sup>f</sup>                 | NMG                | Bokhoven (59)       |
|     |                       | 12 <mark>ª</mark>               | SPF                | Sloan (493)         |
|     | Nitrous Oxide         | 30=40                           | IR                 | Philippe (420)      |
|     |                       | 30-44                           | NMG                | Neurath (366)       |

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|   | Component                    | Amount<br>per Cig.<br>(μg) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|---|------------------------------|----------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------|
|   | Mixture NO + NO <sub>2</sub> | 650-700                    | 1,000                                      | 10,316-11,100                                   | 97-90                                 |
|   | ~                            | 100 <sup>f*</sup>          |                                            | 1,600                                           |                                       |
|   | Oxygen                       | 49,000 <sup>d</sup>        | 0.1                                        | $7.9 \times 10^{5}$                             | $1.3 \times 10^{-4}$                  |
|   |                              | 57,000 <sup>d</sup>        | 0.1                                        | $9.5 \times 10^{5}$                             | $1.1 \times 10^{-4}$                  |
|   | ·                            | 44,000 <sup>d</sup>        | 10                                         | $7.3 \times 10^{5}$                             | .014                                  |
|   |                              | 53,000 <sup>e</sup>        | 10                                         | $8.7 \times 10^5$                               | .011                                  |
|   | Polonium-210                 | 0.042pCi                   | 0.8 DPH                                    |                                                 |                                       |
|   |                              | 0.45 pCi                   | <pre>= background</pre>                    |                                                 |                                       |
| 1 | Scandium                     | 0.6 <sup>f</sup>           | 1,000                                      | 9.5                                             | 105,263                               |
|   | Selenium                     | 2.4                        | 1,000                                      | 38                                              | 26,316                                |
|   | Silver                       | 0.37                       | 1,000                                      | 5.9                                             | $1.7 \times 10^{5}$                   |
|   | Water                        | 6,000=7,000                |                                            | $5.7 \times 10^4 - 1.1 \times 10^5$             |                                       |
|   |                              | 5,800                      | 0.1                                        | $9.2 \times 10^4$                               | 0.001                                 |
|   |                              | 8,600                      | $1 \times 10^{6}$                          | $1.4 \times 10^{5}$                             | 7,000                                 |
|   | Zinc                         | 0.2 to 1.0                 | $2.66 \times 10^{-3}$                      | 3-16                                            | 0.9-0.06                              |
|   |                              | 22 <sup>f</sup>            | 1,000                                      | 350 <sup>£</sup>                                | 2,857                                 |
|   |                              |                            |                                            |                                                 |                                       |

008068202 \* Based on molecular weight of NO<sub>2</sub> assuming NO is converted to NO<sub>2</sub>.

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component                  | Amount per<br>Cigarette<br>(µg) | Method of Analysis                | Reference      |
|----------------------------|---------------------------------|-----------------------------------|----------------|
| Mixture NO+NO <sub>2</sub> | 650-700                         | IR,UV                             | Westcott (558) |
|                            | 100 <sup>f</sup> *              | NMG                               | Bokhoven (59)  |
| Oxygen                     | 49,000 <sup>d</sup>             | GC,MS                             | Keith (258)    |
|                            | 57,000 <sup>d</sup>             | GCTCD,MS                          | Newsome (378)  |
|                            | <u>44</u> ,000 <sup>d</sup>     | GC                                | Lakritz (281)  |
|                            | 53,000 <sup>e</sup>             | GC                                | Terrell (519)  |
| Polonium - 210             | 0.042pCi                        | Gas Flow                          | Kelly (260)    |
|                            | 0.45pCi                         | <sup>l</sup> Proportional Counter | Little (308)   |
| Scandium                   | 0.6 <sup>f</sup>                | NAA                               | Nadkarni (358) |
| Selenium                   | 2.4                             | NAA                               | Nadkarni (358) |
| Silver                     | 0.37                            | NAA                               | Nadkarni (358) |
| Water                      | 6000-7000                       | Karl Fisher                       | Holmes (227)   |
|                            | 5800                            | GC,MS                             | Keith (258)    |
|                            | 8600                            | A                                 | Seehofer (488) |
| Zinc                       | 0.2-1.0                         | SSMS                              | Guerin (197)   |
|                            | 22 <sup>f</sup>                 | NAA                               | Nadkarni (358) |
|                            |                                 |                                   |                |

<sup>\*</sup> Based on molecular weight of  $NO_2$  assuming NO is converted to  $NO_2$ .

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|          | Component                  | Amount per Cig. (ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size per Cig. (ml or gm)     |
|----------|----------------------------|----------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------|
|          | Heterocyclic N             |                      |                                            |                                                 |                                     |
|          | Dibenz(a,h)acridine        | 0.0001               | 1,000                                      | 0.00016                                         | 6.25 x 10 <sup>9</sup>              |
|          | Dibenz(a,j)acridine        | 0.003=0.01           | 1,000                                      | 0.048-0.159                                     | $2.1 \times 10^{7}$ -6.3 × $10^{7}$ |
|          | Carbazole (Dibenzopyrrole) | 0.7                  | 0.1                                        | 11.1                                            | 9                                   |
|          |                            | t                    | 10                                         | ===                                             |                                     |
|          |                            | 1.0                  | 0.1                                        | 15.9                                            | 6.29                                |
|          | 7-H-Dibenzo(a,g)carbazole  | 0.00007              | 10                                         | 0.001                                           | 1 x 10 <sup>7</sup>                 |
| <u>.</u> | Dibenz(c,g)carbazole       | 0.0007               | 1,000                                      | 0.011                                           | $9.1 \times 10^{7}$                 |
| į.       | 9-Ethylcarbazole           | 0.006                | 10                                         | 0.095                                           | 105,263                             |
|          | 1-Me-Carbazole             | 0.23                 | 0.1                                        | 3.65                                            | 27                                  |
|          |                            | 0.2                  | 0.1                                        | 3.17                                            | 32                                  |
|          | 2- + 3-Methyl Carbazole    | 0.19                 | 0.1                                        | 3.02                                            | 33                                  |
|          | 4-Methyl Carbazole         | 0.098                | 0.1                                        | 1.56                                            | 64                                  |
|          | 9-Me-Carbazole             | 0.1                  | 10                                         | 1.59                                            | 6,289                               |
|          | 1,9-Di-Me-Carbazole        | 0.01                 | 10                                         | 0.159                                           | 62,893                              |
|          | 2,9 and 3,9-DiMe-Carbazole | 0.02                 | 10                                         | 0.317                                           | 31,546                              |
|          | 4,9-DiMe-Carbazole         | 0.006                | 10                                         | 0.095                                           | 105,263                             |

<sup>‡</sup> Based on uniform distribution after smoking one cigarette.

| Component                  | Amount per<br>Cigarette<br>(µg) | Method of Analysis  | Reference        |
|----------------------------|---------------------------------|---------------------|------------------|
| Heterocyclic N             |                                 |                     |                  |
| Dibenz(a,h)acridine        | 0.0001                          | PC, FS, UV          | Van Duuren (533) |
| Dibenz(a,j)acridine        | 0.003-0.01                      | PC,FS,UV            | Van Duuren (533) |
| Carbazele (Dibenzopyrrole) | 0.7                             | CC, IR, UV, NMR, MS | Rodgman (451)    |
|                            | t                               | GC, IR, UV          | Schmeltz (481)   |
|                            | 1.0                             | GC,MS               | Hoffmann (223)   |
| 7-H-Dibenzo(a,g)carbazole  | 0.00007                         | GC, IR              | Van Duuren (534) |
| Dibenz(c,g)carbazole       | 0.0007                          | PC,FS,UV            | Van Duuren (533) |
| 9-Ethylcarbazole           | 0.006                           | GCFID               | Hoffmann (222)   |
| 1-Me-Garbazole             | 0.23                            | GCFID,MS            | Hoffmann (223)   |
|                            | 0.2                             | IR, UV, NMR, MS     | Rodgman (451)    |
| 2- + 3-Methyl Carbazole    | 0.19                            | GCFID,MS            | Hoffmann (223)   |
| 4-Methyl Carbazole         | 0.098                           | GCFID,MS            | Hoffmann (223)   |
| 9-Me-Carbazole             | 0.1                             | GCFID               | Hoffmann (222)   |
| 1,9-Di-Me-Carbazole        | 0.01                            | GCFID               | Hoffmann (222)   |
| 2,9 and 3,9-DiMe-Carbazole | 0.02                            | GCFID               | Hoffmann (222)   |
| 4,9-DiMe-Carbazole         | 0.006                           | GCFID               | Hoffmann (222)   |

## ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|                          | Amount<br>per Cig. | Estimated<br>Sensitivity<br>of Anal. Method | Amount in H | Sample Size<br>per Cig. |
|--------------------------|--------------------|---------------------------------------------|-------------|-------------------------|
| Component                | <u>(µg)</u>        | (ng)                                        | (pg/gm)     | (ml or gm)              |
|                          |                    |                                             |             |                         |
| Indole                   | 14                 | 10                                          | 222         | 45                      |
|                          | 17.4               | 10                                          | 276         | 36                      |
| 3-Ethylindole            | 4                  | 1,000                                       | 63          | 15,873                  |
|                          | 4                  | 10                                          | 63          | 159                     |
| 1-Methylindole           | 0.39               | 10                                          | 6.19        | 1,616                   |
| Skatole (3-Methylindole) | 14                 | 10                                          | 222         | 45                      |
|                          | 12.9               | 10                                          | 205         | 49                      |
| 1,3-Dimethylindole       | 0.25               | 10                                          | 3.97        | 2,519                   |
| Dimethylindoles          | 0.03               | 1,000                                       | 0.476       | $2.1 \times 10^{6}$     |
| •                        | 0.03               | 10                                          | 0.476       | 21,008                  |
| Di-Me-Indole             | 1                  | 0.1                                         | 15.8        | 6.3                     |
| Tri-Me-Indole            | 0.5                | 0.1                                         | 7.9         | 12.7                    |
| 3-Phenylindole           | 0.31               | 0.1                                         | 4.92        | 20.3                    |
| 3-N-Propylindole         | 0.2                | 1,000                                       | 3.2         | 312,500                 |
|                          | 0.2                | 10                                          | <u>3.2</u>  | 3,125                   |
| Harmane + Norharmane     | 15-20              | 1,000                                       | 238-317     | 4,202-3,155             |
| Piperidine               | 8.1ª               | 0.1                                         | 114.3       | 0.9                     |
| •                        |                    |                                             |             |                         |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

|     | Component                | Amount per<br>Cigarette<br>(µg) | Method of Analysis  | Reference        |
|-----|--------------------------|---------------------------------|---------------------|------------------|
|     | Indole                   | 14                              | GCFID               | Hoffmann (224)   |
|     |                          | 17.4                            | GCFID               | Rathkamp (441)   |
|     | 3-Ethylindole            | 4                               | PC, SPF             | Buyske (77)      |
|     |                          | 4                               | GCFID               | Hoffmann (224)   |
|     | <u>l-Methylindole</u>    | 0.39                            | GCFID               | Rathkamp (441)   |
|     | Skatole (3-Methylindole) | 14                              | GCFID               | Hoffmann (224)   |
|     |                          | 12.9                            | GCFID               | Rathkamp (441)   |
| 119 | 1,3-Dimethylindole       | 0.25                            | GCFID               | Rathkamp (441)   |
|     | Dimethylindoles          | 0.03                            | PC,SPF              | Buyske (77)      |
|     |                          | 0.03                            | GCFID               | Hoffmann (224)   |
|     | Di-Me-Indole             | 1                               | CC, IR, UV, NMR, MS | Rodgman (451)    |
|     | Tri-Me-Indole            | 0.5                             | CC, IR, UV, NMR, MS | Rodgman (451)    |
|     | 3-Phenylindole           | 0.31                            | GCFID,MS            | Hoffmann (223)   |
|     | 3-N-Propylindole         | 0.2                             | PC,SPF              | Buyske (77)      |
|     |                          | 0.2                             | GCFID               | Hoffmann (224)   |
|     | Harmane + Norharmane     | 15-20                           | UV, IR, FS          | Poindexter (429) |
|     | Piperidine               | 8.1 <sup>a</sup>                | MP,IR,MS            | Neurath (370)    |

## ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                    | Amount<br>per Cig.<br>(ug) | Estimated Sensitivity of Anal. Method (ng) | Amount in † Body Fluid † (pg/gm) | Sample Size<br>per Cig.<br>(ml or gm) |
|------------------------------|----------------------------|--------------------------------------------|----------------------------------|---------------------------------------|
| <del></del>                  |                            |                                            |                                  |                                       |
| Δ <sup>3</sup> -Piperidine   | 0.76 <sup>f</sup>          | 0.1                                        | 12.1                             | 8.3                                   |
| Anabasine (Neonicotine)      | 3=11                       | 10                                         | 48-175                           | 208-57                                |
| Anatabine                    | 14                         | 10                                         | 222                              | 45                                    |
| Pyridine                     | 30=140                     | 10                                         | 476-2222                         | 21-4.5                                |
|                              | 20 <sup>a</sup>            | 1,000                                      | 317                              | 3,155                                 |
| 3-Methylaminopyridine        | 0.62 <sup>f</sup>          | 0.1                                        | 98                               | 1.02                                  |
| Quinoline (Benzo(b)pyridine) | 4-15                       | 10                                         | 63-238                           | 159-42                                |
| 3-Cyanopyridine              | Q                          | 10                                         |                                  |                                       |
| 2-Ethylpyridine              | Q                          | 10                                         |                                  |                                       |
| 3-Ethylpyridine              | 1-9                        | 10                                         | 16-140                           | 625-71                                |
|                              | 2-12                       | 10                                         | 32-190                           | 313-53                                |
| 2-Methylpyridine (α-Picolin) | 31                         | 10                                         | 490                              | 20                                    |
| 3-Methylpyridine             | Q                          | 10                                         | ===                              | unpy vision labor                     |
| 4-Methylpyridine             | 51                         | 10                                         | 810                              | 12                                    |
|                              | 3-50                       | 10                                         | 48-800                           | 208-13                                |
| 2- + 4-Methylpyridine        | 20-50                      | 10                                         | 300-800                          | 33-13                                 |
|                              |                            |                                            |                                  |                                       |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference |
|---------------------------------|--------------------|-----------|
|                                 |                    | 10000     |

| Component                    | (µg)              | Method of Analysis | Reference   |
|------------------------------|-------------------|--------------------|-------------|
|                              |                   |                    |             |
| $\Delta^3$ -Piperidine       | 0.76 <sup>f</sup> | MP, IR, MS         | Neurath (3  |
| Anabasine (Neonicotine)      | <u>3-11</u>       | GCTCD,GCFID        | Schmeltz (  |
| Anatabine                    | 14                | PC,GC,UV           | Quin (437)  |
| Pyridine                     | 30-140            | GCTCD, GCFID       | Schmeltz (  |
|                              | 20 <sup>a</sup>   | C                  | Waltz (546) |
| 3-Methylaminopyridine        | 0.62 <sup>f</sup> | UV,TLC,IR,MS       | Neurath (3  |
| Quinoline (Benzo(b)pyridine) | 4-15              | GC                 | Kaburaki (  |
| 3-Cyanopyridine              | Q                 | <u>GC</u>          | Artho (14)  |
| 2-Ethylpyridine              | Q                 | GC                 | Artho (14)  |
| 3-Ethylpyridine              | 1-9               | GCTCD,GCFID        | Schmeltz (  |
|                              | 2-12              | GC                 | Kaburaki (  |
| 2-Methylpyridine (α-Picolin) | <u>3</u> 1        | GGTCD,GCFID        | Schmeltz (  |
| 3-Methylpyridine             | Q                 | GC                 | Artho (14)  |
| 4-Methylpyridine             | 51                | GC,IR              | Schmeltz (  |
|                              | 3-50              | GC                 | Kaburaki (  |
| 2- ± 4-Methylpyridine        | 20-50             | GCTCD,GCFID        | Schmeltz (  |

TABLE 2-A (cont.)

ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT

(BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

| Component                           | Amount<br>per Cig.<br>(ug) | Estimated<br>Sensitivity<br>of Anal. Method<br>(ng) | Amount in<br>Body Fluid (pg/gm) | Sample Size per Cig. (ml or gm) |
|-------------------------------------|----------------------------|-----------------------------------------------------|---------------------------------|---------------------------------|
| Component                           |                            |                                                     | <u> </u>                        |                                 |
| 3- + 4=Methylpyridine               | 3–50                       | 10                                                  | 50-800                          | 200-13                          |
|                                     | 0.5                        | 10                                                  | 8                               | 1,250                           |
| 2,3-Dimethylpyridine                | 0.5                        | 10                                                  | 8                               | 1,250                           |
| 2,4-Dimethylpyridine                | Q                          | 10                                                  |                                 |                                 |
| 2,4- + 2,5-Dimethylpyridine         | 2-15                       | 10                                                  | 30-240                          | 333-42                          |
| 2,4 · 2,5 Dimothylpyllating         | 2-15                       | 10                                                  | 30-240                          | 333-42                          |
| 2,5-Dimethylpyridine (2,5-Lutidine) | 2                          | 10                                                  | 30                              | 333                             |
|                                     | 2                          | 10                                                  | 30                              | 333                             |
| 2,6-Dimethylpyridine (2,6-Lutidine) | 1.5                        | 10                                                  | 24                              | 417                             |
| 3,4-Dimethylpyridine                | Q                          | 10                                                  |                                 | ===                             |
| 3,5-Dimethylpyridine                | 4=25                       | 10                                                  | 60-400                          | 167-25                          |
|                                     | Q                          | 10                                                  |                                 |                                 |
| 2-Phenylpyridine                    | Q                          | 0.1                                                 |                                 |                                 |
| 3-Phenylpyridine                    | Q                          | 0.1                                                 | ===                             |                                 |
| Nicotine                            | 200-3,500                  | 1,000                                               | 3,000-55,000                    | 333-18                          |
|                                     | 3,400                      | 0.1                                                 | 54,000                          | 0.002                           |
|                                     | 4,900                      | 0.1                                                 | 78,000                          | 0.001                           |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

#### AGENTS IN CIGARETTE SMOKE

| Component                                | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference      |
|------------------------------------------|---------------------------------|--------------------|----------------|
| 3- + 4-Methylpyridine                    | 3-50                            | GCTCD,GCFID        | Schmeltz (480) |
| 2,3-Dimethylpyridine                     | 0.5                             | GCTCD,GCFID        | Schmeltz (480) |
|                                          | 0.5                             | GC                 | Kaburaki (249) |
| 2,4-Dimethylpyridine                     | Q                               | ĢC                 | Artho (14)     |
| 2,4- + 2,5-Dimethylpyridine              | 2=15                            | GCTCD, GCFID       | Schmeltz (480) |
|                                          | 2-15                            | GC                 | Kaburaki (249) |
| 2,5-Dimethylpyridine (2,5-Lutidin        | ie) 2                           | GCTCD,GCFID        | Schmeltz (480) |
| -, -, -, -, -, -, -, -, -, -, -, -, -, - | 2                               | GC                 | Kaburaki (249) |
| 2,6-Dimethylpyridine (2,6-Lutidir        | ne) 1.5                         | GCTCD,GCFID        | Schmeltz (480) |
| 3,4-Dimethylpyridine                     | Q                               | GCTCD,GCFID        | Schmeltz (480) |
| 3,5-Dimethylpyridine                     | 4-25                            | GC                 | Kaburaki (249) |
| <b>3,0</b> 2-m3, 2 m =====               | Q                               | GCTCD,GCFID        | Schmeltz (480) |
| 2-Phenylpyridine                         | Q                               | GC,MS              | Neurath (368)  |
| 3-Phenylpyridine                         | Q                               | GC,MS              | Neurath (368)  |
| Nicotine                                 | 200-3,500                       | uv                 | FTC (170)      |
| emas alue                                | 3,400                           | GC,MS              | Enzell (154)   |
|                                          | 4,900                           | GC,MS              | Enzell (155)   |

|                                 |                   | Estimated       |             |             |
|---------------------------------|-------------------|-----------------|-------------|-------------|
|                                 | Amount            | Sensitivity     | Amount in + | Sample Size |
|                                 | per Cig.          | of Anal. Method | Body Fluid  | per Cig.    |
| Component                       | <u>(µg)</u>       | (ng)            | (pg/gm)     | (ml or gm)  |
| Nornicotine                     | 1                 | 10              | 16          | 625         |
| Nitrosonornicotine              | 0.137             | 10              | 217         | 46          |
| 2,3-Dipyridyl (Pyridylpyridine) | 7-20              | 10              | 110-320     | 91-31       |
|                                 | 7-20              | 10              | 110-320     | 91-31       |
| 3-Vinylpyridine                 | 28                | 10              | 440         | 23          |
| Pyrocoll                        | 1                 | 0.1             | 16          | 6.25        |
| Pyrrole                         | <u>t</u>          | 10              |             |             |
| N-Methylpyrrole                 | Q                 | 0.1             | <del></del> |             |
| Pyrrolidine                     | 24 <sup>a</sup>   | 0.1             | 380         | 0.26        |
| 2-Methylpyrrolidine             | 0.48 <sup>a</sup> | 0.1             | 7.6         | 13.2        |
| Cotinine                        | 60                | 10              | 950         | 10.5        |
| 2,3- + 2,4,6-Collidine          | <u>2</u>          | 10              | 30          | 333         |
| Δ <sup>3</sup> -Pyrroline       | Q                 | 0.1             |             |             |

## oteosessos

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

#### TABLE 2-B (cont.)

#### AGENTS IN CIGARETTE SMOKE

| Component                       | Amount per<br>Cigarette<br>(µg) | Method of Analysis  | Reference      |
|---------------------------------|---------------------------------|---------------------|----------------|
| Nornicotine                     | 1                               | GC,UV               | Quin (436)     |
| Nitrosonornicotine              | 0.137                           | GCFID               | Hoffmann (221) |
| 2,3-Dipyridyl (Pyridylpyridine) | 7-20                            | GCFID               | Schmeltz (480) |
|                                 | 7-20                            | PC,GC,UV            | Quin (437)     |
| 3-Vinylpyridine                 | 28                              | GCFID               | Schmeltz (480) |
| Pyrocoll                        | 1                               | GC, IR, UV, NMR, MS | Rodgman (451)  |
| Pyrrole                         | t                               | GCFID               | Schmeltz (480) |
| N-Methylpyrrole                 | Q                               | MS                  | Grob (188)     |
| Pyrrolidine                     | 2 <u>4</u> ª                    | MP, IR, MS          | Neurath (370)  |
| 2-Methylpyrrolidine             | 0.48 <sup>a</sup>               | MP, IR, MS          | Neurath (370)  |
| Cotinine                        | 60                              | PC,GC,UV            | Quin (437)     |
| 2,3-+2,4,6-Collidine            | 2                               | GCFID               | Schmeltz (480) |
| Δ <sup>3</sup> -Pyrroline       | Q                               | GC,MS               | Pailer (402)   |

| Component             | Amount<br>per Cig.<br>(µg)    | Estimated Sensitivity of Anal. Method (ng) | Amount in<br>Body Fluid <sup>†</sup><br>(pg/gm) | Sample Size per Cig. (ml or gm)           |
|-----------------------|-------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------|
|                       | VFB/                          | \8/                                        | <u> </u>                                        | 72 <u>0 = 8</u> 7                         |
| Miscellaneous         |                               |                                            |                                                 |                                           |
| Acetamide             | 38-56                         | 0.1                                        | 603-889                                         | 0.17-0.11                                 |
| Carbon Dioxide        | $4-5 \times 10^{4d}$          | 10                                         | $6.3-7.9 \times 10^5$                           | $1.5 \times 10^{-2} - 1.3 \times 10^{-2}$ |
|                       | $6.8 \times 10^4$             | 0.1                                        | $10.8 \times 10^{5}$                            | 0.0009                                    |
| •                     | $3.7 \times 10^{4d}$          |                                            | $5.9 \times 10^{5}$                             |                                           |
|                       | 3.8 x 10 <sup>4<u>d</u></sup> | 10                                         | $6.0 \times 10^{5}$                             | 0.02                                      |
|                       | $5.5 \times 10^{4e}$          | 10                                         | $8.7 \times 10^5$                               | 0.01                                      |
| Carbon Monoxide       | $9,619 = 16,032^{d}$          | 10                                         | $1.5 \div 2.5 \times 10^{5}$                    | $6.7 \times 10^{-2} = 4.0 \times 10^{-2}$ |
|                       | 16,200                        | 0.1                                        | $2.6 \times 10^{5}$                             | 0.004                                     |
|                       | 15,300                        | 10                                         | $2.4 \times 10^{5}$                             | 0.04                                      |
|                       | 6,733 <sup>d</sup>            |                                            | $1.1 \times 10^{5}$                             |                                           |
|                       | 10,580 <sup>d</sup>           | 10                                         | $1.7 \times 10^{5}$                             | 0.06                                      |
|                       | $13,800 - 16,200^{\circ}$     | 1,000                                      | $2.2-2.4 \times 10^5$                           | 4.6 - 4.2                                 |
|                       | 17,000 <sup>e</sup>           | 0.1                                        | $2.7 \times 10^{5}$                             | 0.0004                                    |
|                       | 8,977 <sup>e</sup>            | 10                                         | $1.4 \times 10^{5}$                             | 0.07                                      |
| D ihydroactinidiolide | Q                             | 0.1                                        | ===                                             |                                           |
| Ethylchloride         | Q                             | 0.1                                        |                                                 | **************************************    |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

#### AGENTS IN CIGARETTE SMOKE

|                      | Amount per<br>Cigarette         |                    |                           |
|----------------------|---------------------------------|--------------------|---------------------------|
| Component            | (µg)                            | Method of Analysis | Reference                 |
| Miscellaneous        |                                 |                    | •                         |
| Acetemide            | 38-56                           | GC,MS              | Johnson (241)             |
| Carbon Dioxide       | $4.0-5.0 \times 10^{4^{\circ}}$ | GCTCD              | Horton (229)              |
|                      | 6.8 × 10 <sup>4</sup>           | GC,MS              | Keith (258)               |
|                      | $3.7 \times 10^{4}$             | NMG                | Bokhoven (59)             |
|                      | 3.8 x 10 <sup>4d</sup>          | GC                 | Lakritz (281)             |
|                      | 5.5 x 10 <sup>4°</sup>          | GC                 | Terrell (519)             |
| Carbon Monoxide      | 9,619 to 16,032 <sup>d</sup>    | GCTCD              | Horton (229)              |
|                      | 16,200                          | GC,MS              | Keith (258)               |
|                      | 15,300                          | GC :               | Waltz (545)               |
|                      | 6,733 <sup><u>d</u></sup>       | NMG                | Bokhoven (59)             |
|                      | 10,580 <sup>d</sup>             | <u>GC</u>          | Lakritz (281)             |
|                      | 13,800 to 16,200°               | IR                 | Collins (111)             |
|                      | 17,000 <sup>e</sup>             | MS, IR             | Osborne (399)             |
|                      | 8,977 <sup>e</sup>              | GC                 | Terrell (519)             |
| Dihydroactinidiolide | Q                               | GC,MS              | Kaburaki (250)            |
| Ethylchloride        | Q                               | GC,MS              | Grob (188), Völlmin (540) |
|                      |                                 |                    |                           |

# ESTIMATE OF THE VOLUME OF BODY FLUID NEEDED FOR ANALYSIS OF INDIVIDUAL SMOKE COMPONENT (BASED ON ANALYTICAL SENSITIVITY AND POSSIBLE CONCENTRATION IN SITU)

|                   | Estimated                |                 |              |                |  |
|-------------------|--------------------------|-----------------|--------------|----------------|--|
|                   | Amount                   | Sensitivity     | Amount in +  | Sample Size    |  |
|                   | per Cig.                 | of Anal. Method | Body Fluid'  | per Cig.       |  |
| Component         | (µg)                     | (ng)            | (pg/gm)      | (ml or gm)     |  |
|                   |                          |                 |              |                |  |
| Ethylene Oxide    | 5.6 <sup>e</sup>         | 10              | 90           | 1,11           |  |
| Ethyl Nitrite     | Q                        | 10              |              |                |  |
| Formamide         | 4-27                     | 0.1             | 63-430       | 1.59-2.3       |  |
| Isopropyl Nitrite | Q                        | 10              |              | <del>-</del> : |  |
| Methychloride     | 744 <sup>e</sup>         | 10              | 12,000       | 0.8            |  |
|                   | <u>21</u> 9 <sup>e</sup> | 10              | 3,500        | 0.3            |  |
|                   | 954 <sup>e</sup>         | 0.1             | 15,000       | .007           |  |
|                   | 236 <sup>e</sup>         | 10              | 3,700        | 2.7            |  |
|                   | 672 <sup><u>f</u></sup>  |                 | 11,000       | <del></del>    |  |
|                   | 200-600                  | 10              | 3,000-9,500  | 3.3 - 1.1      |  |
|                   | 480-860 <sup>e</sup>     | 1,000           | 7,600-14,000 | 132-71         |  |
| Methylisocyanate  | 4.8 <sup>a</sup>         | 0.1             | 76           | 1.3            |  |
| Methylnitrite     | 16-468                   | 10              | 250-7,400    | 40-1.4         |  |
|                   | 19-94                    | 10              | 300-1,500    | 33-6.7         |  |
| Propionamide      | 6=25                     | 0.1             | 95-397       | 1.05-0.25      |  |
|                   |                          |                 |              |                |  |

<sup>†</sup> Based on uniform distribution after smoking one cigarette.

| Component         | Amount per<br>Cigarette<br>(µg) | Method of Analysis | Reference      |
|-------------------|---------------------------------|--------------------|----------------|
| Ethylene Oxide    | 5.6 <sup>c</sup>                | GC                 | Binder (51)    |
| Ethyl Nitrite     | Q                               | GLC                | Newsome (379)  |
| Formamide         | 4-27                            | GC,MS              | Johnson (241)  |
| Isopropyl Nitrite | Q                               | GLC                | Newsome (379)  |
| Methylchloride    | 744 <sup>e</sup>                | GC                 | Carugno (87)   |
|                   | 219 <sup>e</sup>                | C,POT,GC           | Norman (388)   |
|                   | 954 <sup>e</sup>                | IR,MS              | Osborne (399)  |
|                   | 236 <sup>e</sup>                | GCTCD              | Philippe (425) |
|                   | 672 <sup>f</sup>                |                    | PHS (434)      |
|                   | 200-600                         | GCTCD              | Newsome (378)  |
|                   | 480-860 <sup>e</sup>            | IR                 | Philippe (421) |
| Methylisocyanate  | 4.8 <sup>a</sup>                | GLC, IR, MS        | Philippe (422) |
| Methylnitrite     | 16-468                          | GC, IR             | Philippe (420) |
|                   | 19-94                           | GLC,SPF            | Sloan (494)    |
| Propionamide      | 6-25                            | GC,MS              | Johnson (241)  |
|                   |                                 |                    |                |

