

Universidad Tecnológica del Perú

Investigación Operativa

S01 - Ejercicios

Torres Vara, Mateo Nicolas - U24308542 Sección 36373

25 de agosto de 2025

Docente: Alberto Andre Reyna Alcantara

	Harina	Trigo	Disponibilidad
Refinación	3 horas	2 horas	18 horas
Empaquetación	2 horas	1 hora	10 horas
Almacenamiento	1 hora	1 hora	5 horas
Beneficio	S/5000	S/3500	

Cuadro 1: Variables y restricciones

$$3x + 2y \le 18 \rightarrow 3(0) + 2y = 18 \land 3x + 2(0) = 18$$

 $y = 9; (0, 9) \qquad x = 6; (6, 0)$
 $2x + y \le 10 \rightarrow 2(0) + y = 10 \land 2x + 1(0) = 10$
 $y = 10; (0, 10) \qquad x = 5; (5, 0)$

$$x + y \le 5$$
 $\rightarrow x + y = 5$ $\wedge x + y = 5$ $y = 5; (0, 5)$ $x = 5; (5, 0)$

$$\begin{array}{rcll} \text{Maximizar } Z & = & 5000x + 3500y \\ (0; \, 0) & = & 5000(0) + 3500(0) & = & 0 \\ (0; \, 5) & = & 5000(0) + 3500(5) & = & 17500 \\ (5; \, 0) & = & 5000(5) + 3500(0) & = & 25000 \end{array}$$

Conclusión

El punto óptimo es (5,0), lo que significa que se debe producir 5 sacos de harina y 0 sacos de trigo para maximizar el beneficio total de S/25000.

	Grande	Pequeño	Disponibilidad
Capacidad	50 asientos	40 asientos	400
Conductores	1 conductor	1 conductor	9
Costo	S/800	S/600	

Cuadro 2: Variables y restricciones

$$50x + 40y \ge 400 \rightarrow 50(0) + 40y = 400 \land 50x + 40(0) = 400$$

 $y = 10; (0, 10) \qquad x = 8; (8, 0)$

$$2x + y \le 10$$
 $\rightarrow 0 + y = 9$ $\wedge x + 0 = 9$ $y = 9; (0, 9)$ $x = 9; (9, 0)$

Minimizar
$$Z = 800x + 600y$$

 $(8; 0) = 800(8) + 600(0) = 6400$
 $(4; 5) = 800(4) + 600(5) = 6200$
 $(9; 0) = 800(9) + 600(0) = 7200$

Conclusión

El punto óptimo es (4,5), lo que significa que se deben producir 4 unidades grandes y 5 unidades pequeñas para minimizar el costo total a S/6200.

	Grandes	Pequeños	Disponibilidad
Peso (masa)	40 gr.	30 gr.	600 gr.
Cantidad	$x \ge 3$	$y \ge 2x$	≥ 9
Costo	S/2	S/1	

Cuadro 3: Variables y restricciones

$$40x + 30y \le 600 \rightarrow 40(0) + 30y = 600 \land 40x + 30(0) = 600$$

 $y = 20; (0, 20)$ $x = 15; (15, 0)$

$$\begin{array}{rcll} \text{Maximizar } Z & = & 2x + y \\ (3; 16) & = & 2(3) + 16 & = & 22 \\ (6; 12) & = & 2(6) + 12 & = & 24 \\ (3; 6) & = & 2(3) + 6 & = & 12 \end{array}$$

Conclusión

El punto óptimo es (6,12), lo que significa que se deben producir 6 unidades grandes y 12 unidades pequeñas para maximizar el beneficio total a S/24.

	A	В	Disponibilidad
A maquina	2 horas	3 horas	300 horas
A mano	1/2 hora	1/4 hora	60 horas
Cantidad	1	1	90
Beneficio	S/1600	S/1550	

Cuadro 4: Variables y restricciones

Conclusión

El punto óptimo es (105, 30), lo que significa que se deben producir 105 unidades del televisor A y 30 unidades del televisor B para maximizar el beneficio total a S/214500.

Recursos y créditos

■ Código fuente: Repositorio GitHub - Investigación Operativa

■ Carátula por: 1nfinit0 en GitHub