

TECNOLOGÍA DE COMPUTADORES. 2022/23. 1 junio 2023

SOLUCIÓN

EJERCICIOS BÁSICOS (Total 5/10 puntos).

Escribe la respuesta en el espacio reservado debajo del enunciado. Puedes usar papel en sucio para hacer las operaciones que necesites.

1) Demuestra si la expresión algebraica $x \oplus y \oplus z = \overline{x \oplus y} \oplus z$ es verdadera o falsa calculando la primera forma canónica en ambos casos. Usa el Álgebra de Boole. (1,0 punto)

Solución

Tomando
$$\mathbf{w} = \overline{x \oplus y} = xy + \bar{x}.\bar{y},$$

$$\overline{\mathbf{w}} = x \oplus y = x.\bar{y} + \bar{x}.y,$$

$$\overline{x \oplus y} \oplus z = \overline{\mathbf{w}} \oplus z = \mathbf{w}.z + \overline{\mathbf{w}}.\bar{z} = (xy + \bar{x}.\bar{y})z + (x.\bar{y} + \bar{x}.y)\bar{z} = xyz + \bar{x}.\bar{y}z + x.\bar{y}\bar{z} + \bar{x}.y\bar{z} = \sum m(1,2,4,7)$$

$$x \oplus y \oplus z = \sum m(1,2,4,7)$$

Es verdadera

2) Implementa F con puertas NAND en **dos** niveles (sólo la expresión, no dibujes el circuito). (0,8 puntos)

Responde aquí:

$$F = \bar{x}.z + x.y.\bar{z} = \overline{\bar{x}.z + x.y.\bar{z}} = \overline{\bar{x}.z}.\overline{x.y.\bar{z}}$$

3) El estado inicial de Q es 0. ¿Cuál es la secuencia de J, K y Q en la figura? (0,8 puntos)

Solución										
CK	0	1	2	3	4	5	6	7		
J	1	1	0	1	1	1	0	1		
K	1	1	1	1	1	1	1	1		
Q	0	1	0	0	1	0	1	0	1	

UNIVERSIDAD DE CASTILLA LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL

4) Dibuja el cronograma del circuito sabiendo que inicialmente $Q_0(0)=Q_1(0)=Q_2(0)=Q_3(0)=Q_4(0)=0$. (0,8 puntos)

5) Simplifica el circuito lógico combinacional de esta figura. (0,6 puntos).

6) Dibuja un contador asíncrono ascendente módulo-12 usando biestables JK. (1 punto).

UNIVERSIDAD DE CASTILLA LA MANCHA

PROBLEMAS PRÁCTICOS (Total 5/10 puntos).

Problema 1 (1,5 puntos)

Dado el circuito de la Figura, que representa un autómata de Moore:

- Realizar su análisis escribiendo las ecuaciones booleanas necesarias y rellenando la tabla correspondiente. (0,8 puntos)
- Dibujar el Diagrama de Transición de Estados. (0,7 puntos)

Ecuaciones

 $T_2=E$ $J_1=Q_2$ $K_1=Q_1$ $D_0=E_1$

La salida está asociada al estado: S=1 sólo para el estado q_4 ($Q_2=1$, $Q_1=0$, $Q_0=0$)

Tabla de verdad

$Q_2(t)$	Q ₁ (t)	Q ₀ (t)	E	T ₂	J_1	K ₁	\mathbf{D}_0	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	0	0	0	1	1	0	0	1
0	0	0	1	1	0	1	0	1	0	0
0	0	1	0	0	0	1	1	0	0	1
0	0	1	1	1	0	1	0	1	0	0
0	1	0	0	0	0	0	1	0	1	1
0	1	0	1	1	0	0	0	1	1	0
0	1	1	0	0	0	0	1	0	1	1
0	1	1	1	1	0	0	0	1	1	0
1	0	0	0	0	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	0
1	0	1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	0	0	1	0
1	1	0	0	0	1	0	1	1	1	1
1	1	0	1	1	1	0	0	0	1	0
1	1	1	0	0	1	0	1	1	1	1
1	1	1	1	1	1	0	0	0	1	0

ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL

Diagrama de Transición de Estados

Problema 2 (2,0 puntos)

Suponer un circuito en el que X es un número de tres bits (X_2,X_1,X_0) en representación de Signo Magnitud y que la salida Y es el mismo número de tres bits (Y_2,Y_1,Y_0) en complemento a 2, hallar distintos circuitos que transformen una representación a otra según las especificaciones siguientes. Sólo en el caso de la entrada $X_2X_1X_0=100$, suponer que puede haber dos salidas distintas, la salida $Y_2Y_1Y_0=100$ (en ese caso llamar Y_{21} a la función Y_2), y la salida $Y_2Y_1Y_0=000$ (en ese caso llamar Y_{22} a la función Y_2).

• Realizar la tabla de verdad en ambos casos en el lugar indicado. (0,3 puntos)

X ₂	X ₁	X_0	Y ₂₁	Y ₂₂	Y ₁	\mathbf{Y}_{0}
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	0	0	1	1
1	0	0	1	0	0	0
1	0	1	1	1	1	1
1	1	0	1	1	1	0
1	1	1	1	1	0	1

ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL

Implementar con un DEC 3x8 con salidas activas a nivel bajo la función que necesite una puerta con el menor número posible de entradas. (0,2 puntos)

Criterio seguido: se toma la única función que tiene 3 unos (las restantes tienen 4 unos), lo que necesita una puerta de 3 entradas, mientras que las restantes funciones necesitarían una puerta de 4 entradas.

Implementar Y₂₂ sólo con puertas NAND en dos niveles. (0,3 puntos)

$$\mathbf{Y}_{22} = [(\mathbf{X}_2 \cdot \mathbf{X}_0)' \cdot (\mathbf{X}_2 \cdot \mathbf{X}_1)']'$$

procede de realizar el MK correspondiente

Implementar Y₁ sólo con puertas NOR en dos niveles. (0,3 puntos)

$$Y_{21} = [(X_2 + X_1)' + (X_1 + X_0)' + (X_2 + X_1' + X_0)']'$$

procede de realizar el MK correspondiente

Implementar Y₁ con un MUX 4x1 con X₁ (MSB) y X₂ (LSB) como líneas de selección. (0,4 puntos)

Implementar Y₁ con un MUX 2x1 con X₁ como línea de selección. (0,3 puntos)

Implementar Y₂₁ e Y₀ a criterio del alumno. (0,2 puntos)

Es inmediato ver que $\mathbf{Y}_{21} = \mathbf{X}_2$ y que $\mathbf{Y}_0 = \mathbf{X}_0$

UNIVERSIDAD DE CASTILLA LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL

Problema 3 (1,5 puntos)

Diseñar un contador síncrono que genere la secuencia repetitiva 0, 4, 10, 8, 2, 0, ... Para ello rellena la tabla de transición de estados y de excitación incluyendo todas las posibilidades de tipo de biestables, excluyendo RS (1,0 punto), y escoge el caso más sencillo de implementación con puertas lógicas (0,5 puntos). Se valorará no usar más biestables de los necesarios.

Solución: Se hace un contador de 3 bits con la secuencia 0, 2, 5, 4, 1, 0, ..., y se pone como LSB el bit 0 ($Q_0=0$).

La evolución de estados es: $q_0 \rightarrow q_2 \rightarrow q_5 \rightarrow q_4 \rightarrow q_1 \rightarrow q_0 \rightarrow \dots$ y así sucesivamente.

Tabla de verdad

Estado	Q ₃ (t)	Q ₂ (t)	Q ₁ (t)	$Q_3(t+1)$	$Q_2(t+1)$	$Q_1(t+1)$	J_3 K_3	J_2 K_2	$J_1 K_1$	$T_3 T_2 T_1$	$\mathbf{D}_3 \ \mathbf{D}_2 \ \mathbf{D}_1$
\mathbf{q}_0	0	0	0	0	1	0	0 X	1 X	0 X	0 1 0	0 1 0
\mathbf{q}_1	0	0	1	0	0	0	0 X	0 X	X 1	0 0 1	0 0 0
\mathbf{q}_2	0	1	0	1	0	1	1 X	X 1	1 X	1 1 1	1 0 1
q 3	1	0	0	X	X	X	хх	хх	хх	X X X	X X X
\mathbf{q}_4	1	0	0	0	0	1	x 1	0 X	1 X	1 0 1	0 0 1
q 5	1	0	1	1	0	0	X 0	0 X	X 1	0 0 1	1 0 0
q 6	1	1	0	X	X	X	хх	хх	хх	X X X	X X X
q 7	1	1	1	X	X	X	X X	X X	X X	X X X	X X X

Viendo los MKs y realizando las agrupaciones más sencillas resultan los siguientes casos:

$$J_3 = Q_2$$
 $K_3 = Q'_1$ $D_2 = Q'_3 \cdot Q'_2 \cdot Q'_1 = (Q_3 + Q_2 + Q_1)'$ $T_1 = Q_3 + Q_2 + Q_1$

Éste es el circuito más sencillo que resuelve el problema