Specification for Communication Protocol

Contents

T	Paci	ket Structur	Т
	1.1	Command Structur	1
	1.2	Response Structur	2
2	Con	nmand List	3
	2.1	Generic Commands	3
	2.2	Specific Commands	4
	2.3	InitMove (MOTOR, DIR)	5
	2.4	MoveTo (MOTOR, DIR, ABS_POS, SPEED, ACC, DEC)	5
	2.5	WaitMoved (MOTOR, TIMEOUT)	6
	2.6	IsReady (MOTOR)	6
	2.7		6
	2.8	StopMove (MOTOR, IS_HARDSTOP)	7
	2.9	GetAbsPos (MOTOR)	
	2.10	SetPin (PIN_NR,IS_HIGH)	
	2.11	GetPin (PIN_NR)	8
		ConfigPin (PIN_NR, IS_OUTPUT)	
		SaveHome (MOTOR)	
		GoHome (MOTOR)	
		SaveWayPoint (MOTOR)	9
		MoveToWayPoint (MOTOR, WAY_POINT, SPEED, ACC, DEC)	9
3	Erro	orcodes	10

Definitions

 $\begin{aligned} \text{FALSE} &:= 0 \text{x} 00 \\ \text{TRUE} &:= 0 \text{x} 01..0 \text{x} \text{FF} \end{aligned}$

1 Packet Structur

1.1 Command Structur

Length	Payload	Padding	Checksum
(1 Byte)	(013 Bytes)	(13 Bytes - Length)	(1 Byte)

Length: Länge des Befehls in Byte

Payload: Befehlsfolge Padding: Füllbytes

Checksum: Prüfsumme CRC8(Length + Payload) (optional)

1.2 Response Structur

Ack	Length	Payload	Padding	Checksum
(1 Byte)	(1 Byte)	(013 Bytes)	(13 Bytes - Length)	(1 Byte)

Ack: Acknowledge (TRUE wenn Befehl gültig)

Length: Länge der Antwort in Byte

Payload: Antwort Padding: Füllbytes

 $Checksum: Pr\"{u}fsumme \ CRC8(Length + Payload) \ (optional)$

2 Command List

2.1 Generic Commands

Command						Comman	d Bytes	(Payload)					
mnemonic	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12
InitMove	0x??	Motor	Dir										
MoveTo	0x??	Motor	Dir	AbsPos (HB)	AbsPos	AbsPos (LB)	Speed (HB)	Speed	Speed (LB)	Acc (HB)	Acc (LB)	Dec (HB)	Dec (LB)
WaitMoved	0x??	Motor	Timeout (HB)	Timeout (LB)									
IsReady	0x??	Motor											
Move	0x??	Motor	Dir	Speed (HB)	Speed	Speed (LB)	Acc (HB)	Acc (LB)	Dec (HB)	Dec (LB)			
StopMove	0x??	Motor	IsHard Stop										
GetAbsPos	0x??	Motor											
SetPin	0x??	PinNr	IsHigh										
GetPin	0x??	PinNr											
ConfigPin	0x??	PinNr	IsOutput										

2.2 Specific Commands

Command						Comma	nd Bytes	(Payload)					
mnemonic	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12
SaveHome	0x??	Motor											
GoHome	0x??	Motor											
SaveWayPoint	0x??	Motor											
MoveToWayPoint	0x??	Motor	WayPoint	Speed (HB)	Speed	Speed (LB)	Acc (HB)	Acc (LB)	Dec (HB)	Dec (LB)			

2.3 InitMove (MOTOR, DIR)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Byte 0											
Byte 1		MOTOR									
Byte 2		DIR									

Description

Der gewählte MOTOR fährt zur Initialisierung in der angegebenen Richtung (DIR) bis an eine Endposition (zB. mechanischer Anschlag). Sobald diese Position erreicht ist, bleibt der Motor stehen und ist bereit.

2.4 MoveTo (MOTOR, DIR, ABS_POS, SPEED, ACC, DEC)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 0										
Byte 1				MO	ГОК					
Byte 2				D	IR					
Byte 3			AB	S_POS ((High By	yte)				
Byte 4			ABS	S_POS (N	Middle E	Byte)				
Byte 5			AE	S_POS	(Low By	rte)				
Byte 6			SI	PEED (H	ligh Byt	ie)				
Byte 7			SP	EED (M	iddle By	rte)				
Byte 8			Sl	PEED (I	Low Byt	e)				
Byte 9		ACC (High Byte)								
Byte 10		ACC (Low Byte)								
Byte 11		DEC (High Byte)								
Byte 12		DEC (Low Byte)								

Description

Der gewählt MOTOR fährt zu eine bestimmten absoluten Position (ABS_POS). Dabei kann dem Motor eine Richtung (DIR) sowie eine Geschwindigkeit (SPEED in $\frac{Steps}{s}$) vorgegeben werden. Des weiteren kann eine Beschleunigungsrampe (ACC in $\frac{Steps}{s^2}$) und eine Verzögerungsrampe vorgegeben werden (DEC in $\frac{Steps}{s^2}$).

Falls Standardwerte für Geschwindigkeit, Beschleunigung und Verzögerung verwendet werden sollen, können die jeweiligen Parameter auf 0x00 gesetzt werden.

2.5 WaitMoved (MOTOR, TIMEOUT)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 0										
Byte 1		MOTOR								
Byte 2		TIMEOUT (High Byte)								
Byte 3		TIMEOUT (Low Byte)								

Description

Bei diesem Befehl wird die Antwort erst zurück gesendet, wenn der spezifizierte MOTOR still steht. Zusätzlich muss ein TIMEOUT (in ms) mitgegeben werden, nach welchem die Antwort auf jeden Fall gesendet wird. Falls das Timeout abgelaufen ist, wird ein Errorcode mitgesendet.

2.6 IsReady (MOTOR)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 0										
Byte 1		MOTOR								

Description

Sendet mit der Antwort, ob der spezifizierte MOTOR bereit ist. Die Antwort ist TRUE, wenn der Motor keinen aktuellen Befehl am ausführen ist, andernfalls ist sie FALSE.

2.7 Move (MOTOR, DIR, SPEED, ACC, DEC)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 0										
Byte 1				MO	гоп					
Byte 2				D:	IR					
Byte 3			SI	PEED (H	High Byt	ie)				
Byte 4			SP	EED (M	iddle By	rte)				
Byte 5			SI	PEED (1	Low Byt	e)				
Byte 6			I	ACC (Hi	gh Byte)				
Byte 7		ACC (Low Byte)								
Byte 8		DEC (High Byte)								
Byte 9		DEC (Low Byte)								

Description

Der gewählt MOTOR fährt mit der angegebenen Geschwindigkeit (SPEED in $\frac{Steps}{s}$) in die Richtung DIR. Es kann eine Beschleunigungsrampe (ACC in $\frac{Steps}{s^2}$) und eine Verzögerungsrampe vorgegeben werden (DEC in $\frac{Steps}{s^2}$). Falls Standardwerte für Geschwindigkeit, Beschleunigung und Verzögerung verwendet werden

sollen, können die jeweiligen Parameter auf 0x00 gesetzt werden.

StopMove (MOTOR, IS_HARDSTOP) 2.8

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Byte 0											
Byte 1		MOTOR									
Byte 2		IS_HARDSTOP									

Description

Stoppt den MOTOR. Mit dem zusätzlichen Parameter IS_HARDSTOP kann angegeben werden, ob der Motor auf der Stelle stoppt (IS_HARDSTOP = TRUE) oder mit der programmierten Verzögerungsrampe abbremst (IS_HARDSTOP = FALSE).

2.9 GetAbsPos (MOTOR)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Byte 0									
Byte 1	MOTOR								

Description

Fragt die aktuelle absolute Position des MOTORs ab. Die absolute Position wird in der Antwort mit 3 Bytes beschrieben, wobei das höchste Byte als erstes geschickt wird.

2.10 SetPin (PIN_NR,IS_HIGH)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Byte 0									
Byte 1		$\mathrm{PIN}_{-}\mathrm{NR}$							
Byte 1		IS_HIGH							

Description

Dieser Befehlt setzt einen IO-Pin (PIN_NR) des μ C auf den entsprechenden Pegel (IS_HIGH). Der Pin wird auf Vcc gesetzt, wenn der Parameter IS_HIGH = TRUE ist, andernfalls auf 0V. Der IO-Pin muss als Output definiert sein. Wenn der gewählte Pin nicht gesetzt werden kann, enthält die Antwort einen Errorcode.

2.11 GetPin (PIN_NR)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0								
Byte 1	PIN_NR							

Description

Mit diesem Befehl kann der Wert eines IO-Pins (PIN_NR) des μ C abgefragt werden. In der Antwort ist der Zustand des Pins direkt enthalten (Low = FALSE, High = 0x01). Wenn der gewählte Pin nicht gelesen werden kann, enthält die Antwort einen Errorcode.

2.12 ConfigPin (PIN_NR, IS_OUTPUT)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Byte 0									
Byte 1		PIN_NR							
Byte		IS_OUTPUT							

Description

Der gewählte IO-Pin (PIN_NR) des μ Cs wird anhand des zweiten Parameters (IS_OUTPUT) konfiguriert. Der Pin wird zum Output, wenn IS_OUPUT = TRUE ist, andernfalls zum Input.

2.13 SaveHome (MOTOR)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0								
Byte 1	MOTOR							

Description

Speichert die Home-Position für den gewählten MOTOR.

2.14 GoHome (MOTOR)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0								
Byte 1	MOTOR							

Description

Der entsprechende MOTOR fährt auf die Home-Position

2.15 SaveWayPoint (MOTOR)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0								
Byte 1	MOTOR							

Description

Speichert einen Wegpunkt für den gewählten MOTOR. In der Antwort ist die Nummer des gespeicherten Wegpunktes enthalten (max. 255).

2.16 MoveToWayPoint (MOTOR, WAY_POINT, SPEED, ACC, DEC)

Command code: 0x??

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 0										
Byte 1		MOTOR								
Byte 2		WAY_POINT								
Byte 3		SPEED (High Byte)								
Byte 4		SPEED (Middle Byte)								
Byte 5			SI	PEED (I	Low Byt	e)				
Byte 6			A	ACC (Hi	gh Byte)				
Byte 7		ACC (Low Byte)								
Byte 8		DEC (High Byte)								
Byte 9]	DEC (Lo	ow Byte)				

Description

Der MOTOR fährt zum angegebenen Wegpunkt (WAY_POINT). Dabei kann die Geschwindigkeit ((SPEED in $\frac{Steps}{s^2}$)), sowie eine Beschleunigungsrampe (ACC in $\frac{Steps}{s^2}$) und Verzögerungsrampe (DEC in $\frac{Steps}{s^2}$) vorgegeben werden. Falls Standardwerte für Geschwindigkeit, Beschleunigung und Verzögerung verwendet werden

sollen, können die jeweiligen Parameter auf 0x00 gesetzt werden.

3 **Errorcodes**