TP8 Impulso e quantidade de movimento

- **1.** Dois objectos, $A \in B$, que se movem sem atrito numa superfície horizontal, chocam. A quantidade de movimento de $A \notin p_A = p_0 bt$, em que $p_0 \in b$ são constantes e $t \notin b$ o tempo. Calcule a quantidade de movimento de $b \in b$ em função do tempo se:
 - a) B está inicialmente em repouso.
 - **b**) a quantidade de movimento inicial de B for p_0 .
- **2.** Qual é a força constante necessária para aumentar a quantidade de movimento de um corpo de 2300 kg.m.s⁻¹ para 3000 kg.m.s⁻¹ em 50 s ?
- **3.** Um automóvel com uma massa de 1500 kg e uma velocidade inicial de 60 km.h⁻¹, trava com aceleração constante, e o carro pára em 1.2 min. Calcule a força aplicada ao carro.
- **4.** Um corpo com uma massa de 10 g cai de uma altura de 3 m sobre um monte de areia. O corpo penetra 3 cm na areia antes de parar. Qual a força que a areia exerceu sobre o corpo ?
- 5. Uma massa de 200 g move-se com velocidade constante $\vec{v} = 50\hat{i}$ (cm.s⁻¹). Quando a massa se encontra em $\vec{r} = -10\hat{i}$ (cm), uma força constante $\vec{F} = -400\hat{i}$ (N) é aplicada ao corpo. Determine:
 - a) o tempo que a massa demora a parar.
 - b) a posição da partícula no instante em que pára.
- **6.** Bolas de massa 1 kg são lançadas com velocidade horizontal v_0 para dentro de um carrinho de 9 kg de massa, inicialmente em repouso. A resistência do ar e o atrito do rolamento do carrinho são desprezáveis (Note que tanto faz lançar as bolas, uma de cada vez, ou todas juntas). $\mathbf{m} = 1 \, \mathbf{kg}$
- a) Quantas bolas conterá o carrinho quando a sua velocidade for $v_0/2$? (R: 9)
- b) Determine v_0 sabendo que a energia cinética do carrinho e das bolas nele contidas na situação descrita na alínea anterior é 9.0 J. (R: 2 m/s)
- c) Se não se parasse de atirar bolas para dentro do carrinho, qual seria a sua velocidade limite?
- 7. Um projéctil de massa $m_1 = 30$ g atinge, horizontalmente, um corpo M, de massa $m_2 = 30$ kg, suspenso por uma corda de 1 m de comprimento. O projéctil penetra no corpo M que oscila, elevando-se a uma altura máxima h = 3 cm.
 - a) Calcule a velocidade do projéctil. (R: 767.6 m/s)
 - b) Verifique se há ou não conservação da energia antes e depois da colisão.
- **8.** Uma bala de 0.01 kg é disparada horizontalmente sobre um bloco de massa m = 10 kg que estava em repouso sobre uma mesa. Após o choque, o conjunto bala-bloco move-se 4 cm antes de parar. O coeficiente de atrito entre o bloco e a mesa é de 0.2.
 - a) Qual a velocidade da bala imediatamente antes do choque ? (R: 396.4 m/s)

- b) Se a bala demorar $0.002~\rm s$ a imobilizar-se dentro do bloco, qual é a força média exercida pelo bloco sobre a bala ? (R: 1980 N)
- **9.** Uma bola é solta da altura $h_0 = 0.90$ m sobre uma superfície lisa. Sabendo que a altura do primeiro salto é h_1 =0.80 m, determine:
 - a) o coeficiente de restituição. (R: 0.943)
 - b) a altura do segundo salto. (R: 0.71 m)

- **10.** Dois discos, A e B, de massas iguais, movem-se sem atrito, numa mesa horizontal, com velocidades $\vec{v}_A = 4.0 \,\hat{i} \, (m/s)$, $\vec{v}_B = -2.0 \,\hat{j} \, (m/s)$. Num dado instante sofrem uma colisão, após a qual o disco B se move com a velocidade $\vec{v}_B = 2.0 \,\hat{i} \, (m/s)$.
 - a) Determine a velocidade do disco A após a colisão. (R: $\vec{v}'_A = 2.0\hat{i} 2.0\hat{j} \ m/s$)
 - b) Mostre que não houve conservação de energia cinética de translação do sistema.
- **11.** Num jogo de bilhar a bola A move-se com velocidade $\vec{v}_0 = 3\hat{i}$ (m/s) quando bate nas bolas B e C que estão em repouso lado a lado. Após a colisão as três bolas movem-se nas direcções mostradas ($\theta = 30^{\circ}$). Supondo as superfícies sem atrito e as colisões perfeitamente elásticas, determine os módulos das velocidades v_A , v_B e v_C . (R: $v_A=1.5$ m/s, $v_B=1.3$ m/s, $v_C=2.25$ m/s)

12. Um sistema é constituído por três partículas de 3 kg, 2 kg e 5 kg. A primeira partícula tem uma velocidade $\vec{v}_1 = 6\hat{i}$ (m/s). A segunda move-se com velocidade de 8 m/s fazendo um ângulo de – 30° com o eixo dos xx. Determine a velocidade da terceira partícula, de modo que o centro de massa permaneça em repouso.