MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Random self-reducibility of Subgroup Hiding). Let $\mathbb{G}_1 = \langle g_1 \rangle$ be a q-element subgroup of a finite group \mathbb{G} . We say that \mathbb{G}_* is (t, ε) -indistinguishable from \mathbb{G} if for any t-time adversary \mathcal{A}

Show that if \mathbb{G} is a cyclic subgroup of n elements then \mathbb{G}_1 cannot be indistinguishable form \mathbb{G} . As a consequence, there must exist a base set $\{g_1,\ldots,g_\ell\}$ such that any element of \mathbb{G} is uniquely representable as $g_1^{\alpha_1}\cdots g_\ell^{\alpha_\ell}$ for $\alpha_1,\ldots,\alpha_\ell\in\mathbb{Z}_q$. Show that under this assumption subgroup hiding is randomly self-reducible. For that, define an algorithm \mathbb{B} such that

$$|\Pr\left[\mathcal{B}(x)=1\right] - \Pr\left[\mathcal{B}(y)=1\right]| = \mathsf{Adv}^{\mathsf{sgh}}_{\mathbb{G}}(\mathcal{A})$$

for any $x \in \mathbb{G}_1$ and for any $y \in \mathbb{G} \setminus \mathbb{G}_*$. What is the additional requirement to q and what happens if this assumption is not satisfied? How one can define subgroup hiding for cyclic groups?

Solution. Hint: Let g be the generator of \mathbb{G} how g_* looks like and what can you tell about the structure of \mathbb{G}_* in terms of powers of g. Clarification: Last question can be neglected.