Hausaufgabe 10

Aufgabe 6

a) $A, B \in K^{n \times n}$ orthogonal. Dann:

$$AB(BA)^{\text{tr}} = ABB^{\text{tr}}A^{\text{tr}} = AA^{\text{tr}} = E_n$$

Folglich ist auch AB orthogonal.

b) $A \in K^{n \times n}$ orthogonal. Da A quadratisch ist, folgt aus $AA^{\text{tr}} = E_n$ schon dass A invertierbar ist mit $A^{-1} = A^{\text{tr}}$. Ferner gilt stets $A^{-1}A = AA^{-1} = E_n$. Es folgt:

$$A^{-1}(A^{-1})^{\text{tr}} = A^{-1}(A^{\text{tr}})^{\text{tr}} = A^{-1}A = E_n$$

Damit ist A^{-1} ebenfalls orthogonal.

Aufgabe 7

Da $A^3 = E_n$, ist A Nullstelle von $f = X^3 - 1 \in \mathbb{C}[X]$. Insbesondere gilt in \mathbb{C} , dass $\sqrt{-3}$ definiert ist und damit:

$$X^{3} - 1 = (X - 1)(X^{2} + X + 1) = (X - 1)(X + \frac{1 + \sqrt{-3}}{2})(X + \frac{1 - \sqrt{-3}}{2})$$

Also zerfällt f in paarweise verschiedene Linearfaktoren. Nach VL gilt, da A Nullstelle von f ist, dass $\mu_A \mid f$, also μ_A ebenfalls in paarweise verschiedene Linearfaktoren zerfällt. Dies ist nach VL äquivalent dazu, dass A diagonalisierbar ist.

Aufgabe 8

Sei λ EW von A, v EV von A bzgl. λ . Dann:

$$ABv = BAv = B\lambda v = \lambda Bv \implies Bv \in \operatorname{Eig}_{\lambda}(A)$$

Da aber EV mit verschiedenen EW stets l.u. sind, und $A \in K^{n \times n}$ genau n verschiedene hat, müssen alle Eigenräume von A dim 1 haben. Insbesondere folgt dann durch $v, Bv \in \text{Eig}_{\lambda}(A)$, dass ein $\mu \in K$ mit $Bv = \mu v$ existiert, also v ein EV mit EW μ von B ist. Da sich dies für alle n EW von A machen lässt, haben wir eine Eigenbasis von $K^{n \times 1}$ bzgl. B, wodurch B diag. ist.

Wenn bspw. $K = \mathbb{R}, n = 2, A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, B = E_2$ dann gilt auch AB = BA, und B ist diag. jedoch hat B nur 1 EW.

Aufgabe 9

Sei $a \in K^n$ mit $\sum_{i=1}^n a_i \varphi(v_1) = 0$. Dann

$$\sum_{i=1}^{n} a_i \varphi(v_1) = 0 \implies \varphi(\sum_{i=1}^{n} a_i v_i) = 0 \implies \sum_{i=1}^{n} a_i v_i = 0 \implies a = 0$$

Damit ist auch $\varphi(M)$ l.u.

- **b)** Gegenbeispiel. $K = \mathbb{R}, V = \mathbb{R}^{2 \times 1}, W = \mathbb{R}, \varphi : V \to W, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x$ surjektiv. Mit l.u. Tupel $M = (e_1, e_2)$ ist $\varphi(M) = (1, 0)$ offensichtlich nicht l.u. in V.
- c) Gegenbeispiel. $K = \mathbb{R}, W = \mathbb{R}^{2\times 1}, V = \mathbb{R}, \varphi : V \to W, x \mapsto \begin{pmatrix} x \\ 0 \end{pmatrix}$ injektiv. Mit EZS M = (1) ist $\varphi(M) = (e_1)$ offensichtlich kein EZS von W.
- d) Da φ surjektiv ex. für $w \in W$ ein $v' \in V$ mit $\varphi(v) = w$. Da M Basis von V haben wir ein $a \in K^n$ mit $\sum_{i=1}^n a_i v_i = v'$. Damit:

$$\varphi(v') = \varphi(\sum_{i=1}^{n} a_i v_i) = \sum_{i=1}^{n} a_i \varphi(v_i) \in \langle \varphi(M) \rangle$$

Damit ist $\varphi(M)$ ein EZS von W.