CASA0006 Final Assessment

April 20, 2024

1 Traffic Collision Analysis of Accident 'Black Spots' in London

1.1 through Spatial Clustering & Supervised Learning

London Road Safety Dataset: London Collisions 2022

London Spatial Dataset: London Boundaries

1.2 1 Introduction

Black spots are areas on the public road network where the number of accidents is significantly higher than expected (Karamanlis, I. et al., 2023). Globally, road safety issues are becoming increasingly severe. According to the "Global Status Report on Road Safety 2018" released by the World Health Organization, approximately 1.35 million people die each year due to road traffic accidents, making it the leading cause of death for individuals aged 5 to 29. These figures not only highlight the severity of the issue but also remind us of the urgent need to take measures to improve road safety. Indeed, the United Nations Environment Programme (UNEP, 2003) also indicates that the socio-economic costs of road traffic accidents are among the most significant of all human activities. Therefore, identifying and improving black spots is an essential strategy for enhancing road safety and reducing accident occurrence.

1.3 2 Literature Review

Research on traffic accident black spots has been enriched by a range of influential studies, each employing distinct methodologies. Karamanlis et al. (2023) emphasize the critical role of black spot analysis in enhancing road safety. Additionally, Anderson (2005) explores the spatial variations in road collisions in London, attributing these to factors such as engineering flaws and personal mobility.

Furthermore, Szénási and Csiba (2014) investigate the application of DBSCAN clustering analysis for pinpointing black spots, showcasing how this method effectively aggregates locations prone to frequent accidents. Siamidoudaran and Iscioglu (2019) demonstrate the application of supervised learning in predicting the severity of injuries from accidents, thereby improving the accuracy of risk assessments in road safety.

Together, these studies highlight the importance of scientific approaches in the identification and management of traffic accident black spots, contributing significantly to the advancement of road safety.

1.4 3 Research Question

This report aims to address the following research questions: "Is it possible to categorize or describe the characteristics of severe traffic collision areas, known as 'Black Spots', in London for the year 2022?" and "Can lessons be learned from these clustering patterns to optimize urban traffic planning?"

```
[1]: import warnings warnings.filterwarnings("ignore")
```

```
[2]: # First, load all the packages...
     import pysal as ps
     import numpy as np
     import pandas as pd
     import seaborn as sns
     import geopandas as gpd
     import matplotlib.pyplot as plt
     import plotly.express as px
     from math import ceil
     from sklearn.neighbors import NearestNeighbors
     from sklearn.model_selection import train_test_split
     from sklearn.cluster import KMeans, DBSCAN, OPTICS, AgglomerativeClustering
     from sklearn.preprocessing import RobustScaler, MinMaxScaler, StandardScaler
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import classification_report, accuracy_score
     from sklearn.multiclass import OneVsRestClassifier
     from esda.adbscan import ADBSCAN
     from scipy.cluster.hierarchy import dendrogram
     from shapely.geometry import Point
     import spopt
     from spopt.region import MaxPHeuristic as MaxP
     import matplotlib.pyplot as plt
     import libpysal
```

1.5 4 Presentation of Data

London Road Safety Dataset (London Collisions 2022) encapsulates traffic collisions occurring throughout London in 2022, provided by official road safety data from the UK government. Additionally, it comprises detailed records of individual traffic incidents as reported to local authorities. Each entry includes specifics of where and when collisions occurred, the type of location, involved vehicles, severity of injuries, and more details.

1.5.1 4.1 Data Input

In this section, we load and process the 2022 London Road Safety data along with London's spatial boundary data, merging them to analyze accidents within specific geographic areas (MSOA) of the city.

```
[3]: # read the road safety data
     accidents = pd.read_csv(
         "https://data.dft.gov.uk/road-accidents-safety-data/
      ⇔dft-road-casualty-statistics-collision-2022.csv",
         low_memory=False,
     accidents.head()
[3]:
                        accident_year accident_reference location_easting_osgr
       accident_index
     0 2022010352073
                                 2022
                                                010352073
                                                                         525199.0
     1 2022010352573
                                 2022
                                                010352573
                                                                         546214.0
     2 2022010352575
                                 2022
                                                010352575
                                                                         551119.0
     3 2022010352578
                                 2022
                                                010352578
                                                                         528889.0
     4 2022010352580
                                 2022
                                                010352580
                                                                         539773.0
                                 longitude
                                              latitude police force
        location_northing_osgr
     0
                                 -0.198224
                                             51.486454
                       177928.0
                                                                    1
     1
                       179866.0
                                  0.105042
                                             51.498830
                                                                    1
     2
                       174789.0
                                  0.173482
                                             51.451924
                                                                    1
     3
                       192230.0 -0.139873
                                             51.614153
                                                                    1
     4
                       190404.0
                                  0.016495
                                             51.595151
                                                                    1
                            number_of_vehicles
        accident_severity
     0
                         3
                                              2
                         3
                                              2
     1
                         3
     2
                                              2
                                                ...
                         3
                                              2
     3
                         3
     4
                                              4
        pedestrian_crossing_physical_facilities light_conditions
     0
     1
                                                4
                                                                  4
     2
                                                0
                                                                  4
     3
                                                0
                                                                  4
     4
                                                                  4
        weather_conditions road_surface_conditions
                                                      special_conditions_at_site
     0
                          1
                                                   1
                                                                                 0
                                                                                 0
     1
                          1
                                                   1
     2
                                                   1
                                                                                 0
                          1
     3
                          1
                                                   1
                                                                                 0
     4
                          1
                                                   1
                                                                                 0
```

```
carriageway_hazards urban_or_rural_area
     0
                         0
                                              2
     1
                         0
     2
                         0
                                              1
     3
                         0
                                              1
     4
                         0
                                              1
        did_police_officer_attend_scene_of_accident trunk_road_flag \
     0
     1
                                                   1
     2
                                                   1
                                                                     2
     3
                                                   1
                                                                     2
     4
                                                   1
                                                                     2
        lsoa_of_accident_location
     0
                        E01001883
                        E01033745
     1
     2
                        E01000378
     3
                        E01001529
                        E01003673
     [5 rows x 36 columns]
[4]: url = 'https://data.london.gov.uk/download/
      -statistical-gis-boundary-files-london/9ba8c833-6370-4b11-abdc-314aa020d5e0/
      ⇔statistical-gis-boundaries-london.zip'
     ! wget $url
    --2024-04-20 03:51:23-- https://data.london.gov.uk/download/statistical-gis-
    boundary-files-london/9ba8c833-6370-4b11-abdc-314aa020d5e0/statistical-gis-
    boundaries-london.zip
    Resolving data.london.gov.uk (data.london.gov.uk)... 104.26.7.203,
    172.67.72.228, 104.26.6.203, ...
    Connecting to data.london.gov.uk (data.london.gov.uk) | 104.26.7.203 | :443...
    connected.
    HTTP request sent, awaiting response... 302 Found
    Location: https://airdrive-secure.s3-eu-
    west-1.amazonaws.com/london/dataset/statistical-gis-boundary-files-
    london/2016-10-03T13%3A52%3A28/statistical-gis-boundaries-london.zip?X-Amz-
    Algorithm=AWS4-HMAC-SHA256&X-Amz-
    Credential=AKIAJJDIMAIVZJDICKHA%2F20240420%2Feu-
    west-1%2Fs3%2Faws4_request&X-Amz-Date=20240420T035128Z&X-Amz-Expires=300&X-Amz-S
    ignature=9899c3b096c62637901b081f05953d658922856d8b4b2e3445a296409c77f34e&X-Amz-
    SignedHeaders=host [following]
    --2024-04-20 03:51:28-- https://airdrive-secure.s3-eu-
    west-1.amazonaws.com/london/dataset/statistical-gis-boundary-files-
```

 $\label{london} $$10ndon/2016-10-03T13\%3A52\%3A28/statistical-gis-boundaries-london.zip?X-Amz-Algorithm=AWS4-HMAC-SHA256\&X-Amz-Algorithm=AWS4-Algorith$

Credential=AKIAJJDIMAIVZJDICKHA%2F20240420%2Feu-

Resolving airdrive-secure.s3-eu-west-1.amazonaws.com (airdrive-secure.s3-eu-west-1.amazonaws.com)... 3.5.64.192, 3.5.72.138, 3.5.71.167, ...

Connecting to airdrive-secure.s3-eu-west-1.amazonaws.com (airdrive-secure.s3-eu-west-1.amazonaws.com)|3.5.64.192|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 28666674 (27M) [application/zip]

4

Saving to: 'statistical-gis-boundaries-london.zip'

statistical-gis-bou 100%[=========>] 27.34M 1.00MB/s in 2m 0s

2024-04-20 03:53:31 (232 KB/s) - 'statistical-gis-boundaries-london.zip' saved [28666674/28666674]

[5]: # read the London's spatial boundary data (MSOA)
gdf_london_msoa = gpd.read_file(f"zip://statistical-gis-boundaries-london.zip!

statistical-gis-boundaries-london/ESRI/MSOA_2011_London_gen_MHW.shp")
gdf_london_msoa.head()

5-3													
[5]:		MSOA11CD			MSOA	11NM	LAD11CD)			LAD1	1NM	\
	0	E02000001	Ci	ity of Lo	ondon	001	E09000001	L	Ci	ty o	of Lone	don	
	1	E02000002	Barking	and Dage	enham	001	E09000002	2 B	Barking	and	Dagen	ham	
	2	E02000003	Barking	and Dage	enham	002	E09000002	2 B	Barking	and	Dagen	ham	
	3	E02000004	Barking	and Dage	enham	003	E09000002	2 B	Barking	and	Dagen	ham	
	4	E02000005	Barking	and Dage	enham	004	E09000002	2 B	Barking	and	Dagen	ham	
		RGN11CD	RGN11NM	USUALRES	S HHO	OLDRES	COMESTR	RES	POPDEN	I HI	HOLDS	\	
	0	E12000007	London	737!	5	7187	1	188	25.5	· •	4385		
	1	E12000007	London	677	5	6724	•	51	31.3	3	2713		
	2	E12000007	London	1004	5	10033	}	12	46.9)	3834		
	3	E12000007	London	6182	2	5937	. 2	245	24.8	3	2318		
	4	E12000007	London	8562	2	8562	!	0	72.1		3183		
		AVHHOLDSZ							geom	etry	У		
	0	1.6	MULTIPOI	LYGON (((5316	67.624	180534.9	992,	531647				
	1	2.5	POLYGON	((54888	1.563	19084	5.265, 54	1888	31.125 1	9			
	2	2.6	POLYGON	((54910	2.438	18932	4.625, 54	1895	4.500 1	.8			
	3	2.6	POLYGON	((551549	9.998	18736	4.637, 55	5147	8.000 1	.8			

2.7 POLYGON ((549099.634 187656.076, 549161.375 18...

```
accidents,
         geometry=gpd.points from xy(accidents.longitude, accidents.latitude)
     # Set the coordinate reference system (CRS) to WGS84.
     accidents gdf.crs = {"init": "epsg:4326"}
     gdf_london_msoa = gdf_london_msoa.to_crs("EPSG:4326")
     # Spatially connect 'accidents_gdf' to 'gdf_london_msoa'
     joined = gpd.sjoin(accidents_gdf, gdf_london_msoa, how="left", op='within')
     # Copy MSOA code to new column 'msoa_of_accident_location'
     accidents['msoa_of_accident_location'] = joined['MSOA11CD']
     accidents.head()
[6]: accident_index accident_year accident_reference location_easting_osgr \
     0 2022010352073
                                2022
                                              010352073
                                                                      525199.0
     1 2022010352573
                                2022
                                              010352573
                                                                      546214.0
     2 2022010352575
                                2022
                                              010352575
                                                                      551119.0
     3 2022010352578
                                2022
                                              010352578
                                                                      528889.0
     4 2022010352580
                                2022
                                              010352580
                                                                      539773.0
       location_northing_osgr longitude
                                           latitude police_force
     0
                      177928.0 -0.198224 51.486454
     1
                      179866.0 0.105042 51.498830
                                                                 1
     2
                      174789.0 0.173482 51.451924
                                                                 1
     3
                      192230.0 -0.139873 51.614153
                      190404.0
                                0.016495 51.595151
       accident_severity number_of_vehicles
                                              ... light_conditions
     0
                        3
                                            2
                        3
                                                                 4
     1
     2
                        3
                                                                 4
     3
                        3
                                                                 4
       weather conditions road surface conditions special conditions at site
     0
                        1
                                                 1
                                                                            0
                        1
                                                 1
                                                                            0
     1
     2
                        1
                                                 1
                                                                            0
     3
                        1
                                                 1
                                                                            0
     4
        carriageway_hazards urban_or_rural_area \
     0
```

[6]: accidents_gdf = gpd.GeoDataFrame(

```
1
                      0
                                            2
2
                      0
                                            1
3
                      0
                                            1
4
                       0
                                            1
  did_police_officer_attend_scene_of_accident
                                                   trunk_road_flag
0
                                                                  2
1
                                                1
                                                                  2
2
                                                1
3
                                                                  2
                                                1
4
                                                1
                                                                  2
   lsoa_of_accident_location msoa_of_accident_location
                    E01001883
0
                                                  E02000388
1
                    E01033745
                                                  E02000314
2
                    E01000378
                                                  E02000083
3
                                                  E02000308
                    E01001529
4
                    E01003673
                                                  E02000757
```

1.5.2 4.2 Data Pre-processing

[5 rows x 37 columns]

To analyze the numeric attributes of the road safety dataset, descriptive statistics have been computed as detailed in the provided code above. Key observations from this analysis include:

- The cleaned dataset comprises 23,443 records.
- The average number of vehicles involved in collisions (1.82) suggests that most accidents involve more than one vehicle.
- The mean accident severity rating is 2.83, indicating that most reported accidents are of moderate severity.

• The average number of casualties per accident is relatively low at 1.16, reflecting that most accidents result in fewer injuries.

[8]: # Check the numeric columns and descriptive statistics print(accidents.describe(include = [np.number]))

count	accident_severity 23469.000000	number_of_veh 23469.0		_of_casualties 23469.000000	\
mean	2.833056	1.820188		1.159956	
std	0.384300	0.623840		0.543314	
min	1.000000	1.0	00000	1.000000	
25%	3.000000	1.0	00000	1.000000	
50%	3.000000	2.0	00000	1.000000	
75%	3.000000	2.0	00000	1.000000	
max	3.000000	13.0	00000	16.000000	
	day_of_week firs	t_road_class	road_type	speed_limit	\
count	23469.000000	23469.000000	23469.000000	23469.000000	
mean	4.165154	3.911372	5.241084	26.342409	
std	1.939557	1.248446	2.041853	7.603702	
min	1.000000	1.000000	1.000000	20.000000	
25%	3.000000	3.000000	3.000000	20.000000	
50%	4.000000	3.000000	6.000000	30.000000	
75%	6.000000	5.000000	6.000000	30.000000	
max	7.000000	6.000000	9.000000	70.000000	
	second_road_class	pedestrian_cr	ossing_physic	al_facilities	\
count	23469.000000			23469.000000	
mean	4.043632			2.732669	
std	2.377180			3.285093	
min	0.000000			0.000000	
25%	3.000000			0.000000	
50%	5.000000			1.000000	
75%	6.000000			5.000000	
max	6.000000			9.000000	
	∪ −	weather_condit	_	rface_condition	
count	23469.000000	23469.00	0000	23469.0000	0
mean	2.022626		6450	1.5501	3
std	1.546107		9119	1.6680	
min	1.000000		0000	1.0000	
25%	1.000000		0000	1.0000	
50%	1.000000		0000	1.0000	
75%	4.000000		0000	1.0000	
max	7.000000	9.00	0000	9.0000	0
	urban_or_rural_are	•			
count	23469.00000	0 23469.00000	0 23469.0000	00	

mean	1.028889	-0.121903	51.509996
std	0.167499	0.142148	0.068528
min	1.000000	-0.508592	51.294892
25%	1.000000	-0.204350	51.465912
50%	1.000000	-0.115516	51.514507
75%	1.000000	-0.037785	51.556095
max	2.000000	0.301856	51.691585

1.5.3 4.3 Data Preparation

For clustering and spatial analysis, it is essential to select the necessary data for merging by neighborhoods. The spatial clustering analysis will concentrate on the four numerical variables detailed in the table below.

Variables	Definition
Severity of Accidents	The average severity of accidents within a
	specific neighborhood.
Frequency of Collision Accidents	Frequency of Collision Accidents
	happening in a specific neighbourhood.
Average Number of Vehicles	The average number of vehicles involved
	per traffic accident in a specific
	neighborhood.
Average Number of Casualties	The average number of casualties per
	traffic accident in a specific neighborhood.

```
[9]: # Group by MSDA_ID and return the mean/count in the group.
     a = pd.DataFrame(accidents.

¬groupby('msoa_of_accident_location')['accident_severity'].mean())
     b = pd.DataFrame(accidents.

¬groupby('msoa_of_accident_location')['accident_index'].count())

     c = pd.DataFrame(accidents.
      ogroupby('msoa_of_accident_location')['number_of_vehicles'].mean())
     d = pd.DataFrame(accidents.

¬groupby('msoa_of_accident_location')['number_of_casualties'].mean())

     # change the columns' name
     b.rename(columns={'accident_index':'Freq'},inplace=True)
     c.rename(columns={'number of vehicles':

    'average_number_of_vehicles'},inplace=True)
     d.rename(columns={'number_of_casualties':

¬'average_number_of_casualties'},inplace=True)
     # Then we should merge these four attributes' values
     temp 1 = a.join(b)
     temp_2 = temp_1.join(c)
     temp_3 = temp_2.join(d)
```

```
dfm = temp_3.copy()
dfm.head()

: accident_severity Freq \
```

```
[9]:
    msoa_of_accident_location
     E02000001
                                          2.659091
                                                      176
     E02000002
                                           2.888889
                                                       18
     E02000003
                                                       52
                                           2.884615
     E02000004
                                                        4
                                           2.750000
     E02000005
                                           2.700000
                                                       10
                                 average_number_of_vehicles
    msoa_of_accident_location
     E0200001
                                                    1.693182
     E02000002
                                                    2.277778
    E02000003
                                                    1.673077
                                                    2.000000
     E02000004
     E02000005
                                                    1.900000
                                 average_number_of_casualties
     msoa_of_accident_location
     E02000001
                                                      1.068182
     E02000002
                                                      1.388889
     E02000003
                                                      1.307692
     E02000004
                                                      1.500000
     E02000005
                                                      1.400000
```

The following descriptive statistics will help us understand how to scale these four values. For instance, the average number of accidents per neighborhood is approximately 23.85, with a substantial variability indicated by a standard deviation of 17.59. This suggests that while some neighborhoods might experience few accidents, others could have significantly more, with the maximum reaching 224 accidents.

[10]: dfm.describe()

[10]:	accident_severity	Freq	average_number_of_vehicles	\
count	983.000000	983.000000	983.000000	
mean	2.834708	23.874873	1.826043	
std	0.102265	17.663799	0.182672	
min	2.250000	1.000000	1.000000	
25%	2.777778	13.000000	1.724747	
50%	2.842105	20.000000	1.814815	
75%	2.904762	30.000000	1.923077	
max	3.000000	224.000000	3.000000	
	average_number_of_	casualties		
count		983.000000		

```
      mean
      1.168800

      std
      0.158103

      min
      1.000000

      25%
      1.060606

      50%
      1.142857

      75%
      1.235294

      max
      2.461538
```

```
[11]: # Calculate the correlation matrix
    corr = dfm.corr()

# Heat mapping with Seaborn
    plt.figure(figsize=(10,8))
    sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", cbar=True)
    plt.title("Correlation Matrix")
    plt.show()
```


After examining the merged DataFrame containing the four variables, we find that the likelihood of significant relationships between these attributes is relatively low based on the correlation matrix. Additionally, by employing exploratory data analysis methods, we can clearly observe the distribution patterns within the merged DataFrame.

1.5.4 4.4 Descriptive Statistics

[12]: sns.pairplot(dfm)

[12]: <seaborn.axisgrid.PairGrid at 0x7efc2ecf4c50>

The map below illustrates the distribution of traffic accidents across London's Middle Super Output

Areas (MSOAs), with accidents highlighted in red. Key observations from this map include:

- Concentration of Accidents: A significant cluster of accidents is evident in central London, correlating with the region's high traffic density and increased accident rates.
- Accidents on Major Roads: Accidents are particularly concentrated on A-roads, which are known to handle heavier traffic and, consequently, experience higher accident rates.
- Consistency with Literature: Supporting findings by Balawi & Goktug Tenekeci (2024), about 60% of traffic accidents in London happen on A-roads, consistent with the patterns shown on the map.

```
[13]: # Creating a GeoDataFrame of the accidents location
      accidents_gdf = gpd.GeoDataFrame(
          accidents,
          geometry=gpd.points_from_xy(accidents.longitude, accidents.latitude),
          crs="EPSG:4326"
      )
      # Ensure that the CRS of the GeoDataFrame for the London region is consistent
       ⇔with the accidents data
      gdf_london_msoa = gdf_london_msoa.to_crs("EPSG:4326") # CRS WGS 84
      fig, ax = plt.subplots(1, 1, figsize=(12, 12))
      # Mapping the London boroughs
      gdf_london_msoa.plot(ax=ax, color='lightgrey', edgecolor='black')
      # Plotting accident points on the base map
      accidents_gdf.plot(ax=ax, markersize=5, color='red', alpha=0.6)
      # Add legend and title
      ax.set_title('Distribution of Accidents Across London MSOAs')
      plt.show()
```


[14]: <Axes: >

The map presented above is the result of successfully merging two DataFrames, with the completeness of the map suggesting that the merge was executed without any data loss.

```
[15]: # We can inspect the min and max in these three value in London
print('Frequency of Colision Accidents')
print(dfmg[dfmg.Freq.isin([dfmg.Freq.max(), dfmg.Freq.min()])][['Freq']])
```

```
Frequency of Colision Accidents
Freq
419 1
944 224
```

The key findings from this merged spatial and numeric dataset:

- The highest frequency of collision accidents is found in Westminster 018, with 224 incidents, located in the city center of London.
- The lowest frequency of collision accidents occurs in Harrow 003, with only one recorded incident, situated on the northwestern edge of London.

```
[16]: tfont = {'fontname':'DejaVu Sans', 'horizontalalignment':'left'}
f = plt.figure()
f.set_size_inches(12,7)
ax1 = f.add_subplot()
```

```
dfmg.plot(column='Freq', legend=True, cmap='viridis', figsize=(12,6), ax=ax1)

f.subplots_adjust(top=0.92)
f.suptitle(f"Frequency of Collision Accidents in London (Raw)", x=0.025, usize=24, **tfont);
plt.show()
```

Frequency of Collision Accidents in London (Raw)

The above frequency distribution shows that the closer you are to the city centre, the more frequent the accident "black spots" are, but there are some exceptions.

1.6 5 Methodology

This study focuses on identifying 'black spots' through spatial clustering and supervised learning techniques. It involves data normalization, the use of clustering algorithms such as DBSCAN and K-means, and the application of RF for advanced data classification.

1.6.1 5.1 Standardisation

This study concentrates on four variables detailed in the table below. The range of accident_severity is from 2.25 to 3.00; average_number_of_vehicles varies from 1 to 3; average_number_of_casualties spans from 1.00 to 2.46; and Freq extends from 1 to 224. All numerical data will undergo rescaling to fit within a (-1,1) range, a process known as standardization.

Variables	Definition	Value Scale
Severity of Accident	The average severity of accidents within a specific neighborhood.	(2.25, 3.00)
Average Number of Vehicles	The average number of vehicles involved per traffic accident in a specific neighborhood.	(1, 3)
Average Number of Casualties	The average number of casualties per traffic accident in a specific neighborhood.	(1.00, 2.46)
Frequency of Collision Accidents	Frequency of Collision Accidents happening in a specific neighbourbood.	(1, 224)

[17]:	accident_severity	Freq	average_number_of_vehicles	\
MSOA11CD				
E02000001	-0.772428	4.457143	-0.324355	
E02000002	0.197454	-0.057143	1.234568	
E02000003	0.179418	0.914286	-0.377968	
E02000004	-0.388738	-0.457143	0.493827	
E02000005	-0.599768	-0.285714	0.227160	
	average_number_of	_casualties		
MSOA11CD				
E02000001		-0.211933		
E02000002		0.698254		
E02000003		0.467813		
E02000004		1.013594		
E02000005		0.729788		

1.6.2 5.2 DBSCAN Clustering Analysis

After normalizing the four variables, DBSCAN clustering analysis can be performed to fit them. The parameters set for this DBSCAN cluster are as follows:

Epsilon (eps) is the maximum distance between two samples for one to be considered within the neighborhood of the other. The correct selection of DBSCAN parameters is crucial and depends on the dataset and the distance function used. Epsilon is set at 0.5, and the minimum number of points required in a neighborhood for a point to be considered a core point (minPts) is set at 3. Finally, the silhouette score method will be applied to evaluate the quality of the clustering results.

Silhouette Score is : 0.481413555180166

The silhouette score indicates that the DBSCAN clustering provides a reasonable structure. According to the tutorial, it is important to note that the areas marked in blue on the map represent noise samples for the DBSCAN method. Next, we will visualize the cluster centroids using a radar plot.

```
[19]: def radar_plot_cluster_centroids1(df_cluster_centroid):
          # parameters
          # df_cluster_centroid: a dataframe with rows representing a cluster_
       ⇔centroid and columns representing variables
          # add an additional element to both categories and restaurants that's _{\sqcup}
       ⇔identical to the first item
          # manually 'close' the line
          categories = df_cluster_centroid.columns.values.tolist()[1:]
          categories += [categories[0]]
          label_loc = np.linspace(start=0, stop=2 * np.pi, num=len(categories))
          plt.figure(figsize=(12, 8))
          ax = plt.subplot(polar=True)
          for index, row in df_cluster_centroid.iterrows():
              centroid = row.tolist()[1:]
              centroid += [centroid[0]]
              label = "Cluster {}".format(row['cluster'])
              ax.plot(label_loc, centroid, label=label)
          plt.title('Cluster centroid comparison', size=20, y=1.05)
          lines, labels = plt.thetagrids(np.degrees(label_loc), labels=categories)
          plt.legend()
          plt.show()
```

```
[20]: df_dbscan = normed.copy()
    df_dbscan['cluster'] = dbsc.labels_

# Calculate cluster centres and remove noisy points
    df_dbscan_centroid1 = df_dbscan.groupby('cluster').mean()
    df_dbscan_centroid1.drop(-1, inplace=True)
    df_dbscan_centroid1.reset_index(inplace=True)

radar_plot_cluster_centroids1(df_dbscan_centroid1)
```

Cluster centroid comparison

However, it is essential to append the new labels from the DBSCAN analysis to the original dataset, as all real data has been rescaled in the normalization process.

```
[21]: accident_severity Freq average_number_of_vehicles \
DBSCAN_Cluster
-1 2.79 28.86 1.87
0 2.84 23.15 1.82
1 2.79 102.33 1.78
```

1.6.3 5.3 K-means Clustering Analysis

Simultaneously, the K-means clustering analysis is applied to the London Road Safety Dataset to explore its latent features. K-means clustering involves forming clusters and determining the number of centroids, as illustrated below. Similar to the aforementioned DBSCAN analysis, it is advisable to append the K-means clustering labels to the London Road Safety Dataset.

```
[22]: from sklearn.cluster import KMeans
k_cluster = 2
random_seed = 1
kmeans_method = KMeans(n_clusters=k_cluster,random_state=random_seed)
kmeans_method.fit(normed)

dfmg['Kmeans_Cluster'] = kmeans_method.labels_
dfmg.plot(column='Kmeans_Cluster', categorical=True, legend=True,__
figsize=(12,8),cmap = 'plasma');
from sklearn import metrics
print("Silhouette Score is :")
print(metrics.silhouette_score(normed, dfmg['Kmeans_Cluster']))
```

Silhouette Score is : 0.21749564861115095

The optimization solution involves using the SSE (Sum of Squared Errors) plot to determine the optimal number of clusters. The SSE plot below identifies the best k value for clustering. Subsequently, this study will re-run the K-Means function with k set to 3.

```
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()
```



```
[24]: from sklearn.cluster import KMeans
k_cluster = 3
random_seed = 1
kmeans_method = KMeans(n_clusters=k_cluster,random_state=random_seed)
kmeans_method.fit(normed)

dfmg['Kmeans_Cluster'] = kmeans_method.labels_
dfmg.plot(column='Kmeans_Cluster', categorical=True, legend=True,_
figsize=(12,8),cmap = 'plasma');
from sklearn import metrics
print("Silhouette Score is :")
print(metrics.silhouette_score(normed, dfmg['Kmeans_Cluster']))
```

Silhouette Score is : 0.22306314322316226


```
[25]: # adapted from this tutorial: https://towardsdatascience.com/
       \hookrightarrow how-to-make-stunning-radar-charts-with-python-implemented-in-matplotlib-and-plotly-91e21801
      def radar_plot_cluster_centroids2(df_cluster_centroid):
          # parameters
          # df_cluster_centroid: a dataframe with rows representing a cluster_
       →centroid and columns representing variables
          # add an additional element to both categories and restaurants that's _{\sqcup}
       ⇔identical to the first item
          # manually 'close' the line
          categories = df_cluster_centroid.columns.values.tolist()
          categories = [*categories, categories[0]]
          label_loc = np.linspace(start=0, stop=2 * np.pi, num=len(categories))
          plt.figure(figsize=(12, 8))
          plt.subplot(polar=True)
          for index, row in df_cluster_centroid.iterrows():
              centroid = row.tolist()
              centroid = [*centroid, centroid[0]]
```

```
label = "Cluster {}".format(index)
    plt.plot(label_loc, centroid, label=label)

plt.title('Cluster centroid comparison', size=20, y=1.05)

lines, labels = plt.thetagrids(np.degrees(label_loc), labels=categories)

plt.legend()

plt.show()
```

```
[26]: df_cluster_centroid2 = pd.DataFrame(kmeans_method.cluster_centers_,_
columns=normed.columns)
radar_plot_cluster_centroids2(df_cluster_centroid2)
```

Cluster centroid comparison


```
[27]:
                       accident_severity
                                             Freq
                                                   average_number_of_vehicles \
      Kmeans_Cluster
      0
                                     2.83
                                           18.81
                                                                           1.75
                                     2.85
                                                                           2.01
      1
                                           18.16
      2
                                     2.83 54.08
                                                                           1.80
                       average_number_of_casualties
      Kmeans_Cluster
      0
                                                 1.11
      1
                                                 1.31
      2
                                                 1.14
```

1.6.4 5.4 RF Classification Analysis

summary_df_Kmeans

The Random Forest (RF) model is crucial for classifying traffic accidents using characteristics identified during the initial clustering phase. It employs labels derived from K-means clustering as target categories, effectively categorizing accidents within predetermined clusters. Key attributes such as day of the week, road type, and speed limit are standardized and leveraged to train the RF model, which then predicts the severity or type of accidents. The model's accuracy is evaluated using performance metrics to ensure precise and reliable classification within the established clusters.

```
[28]:
        accident_index
                         accident_severity
                                             number_of_vehicles
                                                                  number_of_casualties
      0 2022010352073
                                          3
                                                                2
                                                                                       1
      1 2022010352573
                                          3
                                                                2
                                                                                       1
                                                                2
      2 2022010352575
                                          3
                                                                                       1
      3 2022010352578
                                          3
                                                                2
                                                                                       2
      4 2022010352580
                                          3
                                                                                       3
         day_of_week msoa_of_accident_location
                                                   first_road_class
                                                                      road_type
      0
                    4
                                       E02000388
                    7
      1
                                       E02000314
                                                                   3
                                                                               3
      2
                    7
                                       E02000083
                                                                   3
                                                                               6
                    7
      3
                                       E02000308
                                                                   6
                                                                               6
      4
                    7
                                                                   3
                                                                               3
                                       E02000757
```

```
0
                 30
                                    6
                                                                           0
                                    6
                                                                           4
                 50
     1
     2
                 30
                                    6
                                                                           0
                                    0
     3
                 30
                                                                           0
     4
                 50
                                    6
                                                                           0
                         weather conditions road surface conditions
        light conditions
     0
                      4
                                                                 1
     1
     2
                                         1
                                                                 1
     3
                      4
                                         1
                                                                 1
     4
                      4
                                         1
                                                                 1
        urban_or_rural_area longitude
                                      latitude cluster_label
                            -0.198224 51.486454
     0
                                                            0
                            0.105042 51.498830
                                                             1
     1
     2
                            0.173482 51.451924
                                                             1
     3
                         1 -0.139873 51.614153
                                                            0
                             0.016495 51.595151
                                                             1
[29]: # Selection of features and labels
     features = accidents[['day_of_week', 'first_road_class', 'road_type',_
      'pedestrian_crossing_physical_facilities', u
      'road_surface_conditions', 'urban_or_rural_area']]
     labels = accidents['cluster_label']
     # Split the data into training and test sets
     X_train, X_test, y_train, y_test = train_test_split(features, labels,_
      →test_size=0.2, random_state=42)
     # Creating a Random Forest Classifier Example
     random_forest = RandomForestClassifier(n_estimators=100, random_state=42)
     # Training Models
     random_forest.fit(X_train, y_train)
     # Prediction using test sets
     y_pred = random_forest.predict(X_test)
     # Output classification reports and accuracy
     print(classification_report(y_test, y_pred))
     print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}")
```

second_road_class pedestrian_crossing_physical_facilities

speed limit

	precision	recall	f1-score	support
0	0.48	0.60	0.54	2141
1	0.32	0.20	0.25	963
2	0.44	0.39	0.41	1590
accuracy			0.45	4694
macro avg	0.41	0.40	0.40	4694
weighted avg	0.43	0.45	0.44	4694

Accuracy: 0.45

The Random Forest model exhibits moderate overall performance with an accuracy of 45%. It predicts Class 0 most effectively, evidenced by reasonable precision and recall. Class 2 displays moderate predictive accuracy with balanced metrics. However, Class 1 demonstrates poor predictive capabilities.

1.7 6 Results and Discussion

1.7.1 6.1 DBSCAN

The DBSCAN clustering results, as depicted on the geographic distribution map, show cluster '0' extensively throughout London, indicating a ubiquitous occurrence of traffic accidents across various districts. In stark contrast, the sparse instances of cluster '1' deviate significantly from the urban norm, potentially pointing to areas with unique traffic dynamics or a higher propensity for severe incidents. Noise points, labeled as '-1', represent outliers that diverge from common accident patterns, calling for individualized analysis to understand their unique contexts.

```
[30]: dfmg.plot(column='DBSCAN_Cluster', categorical=True, legend=True, usefigsize=(12,8), cmap = 'plasma')
```

[30]: <Axes: >

The radar chart offers a comparative visualization of the centroids for clusters '0' and '1', accentuating the pronounced profile of cluster '1' with its exceptionally high frequency of occurrences—essentially, the aforementioned 'black spots' that markedly exceed the usual incident rate of cluster '0'. These areas emerge as pivotal targets for the enhancement of traffic safety measures and infrastructural planning.

[31]: radar_plot_cluster_centroids1(df_dbscan_centroid1)

Cluster centroid comparison

Upon meticulous scrutiny of the cluster table, the noise cluster '-1' is discerned to comprise accidents with escalated severity, an increased number of involved vehicles, and higher casualties. This anomaly could signify scenarios of augmented hazard, albeit less frequent yet bearing substantial risk and impact, which mandates the formulation of specific remedial measures.

[32]:	summary_df_dbsc	an		
[32]:		accident_severity	Freq	average_number_of_vehicles \
	DBSCAN_Cluster			
	-1	2.79	28.86	1.87
	0	2.84	23.15	1.82
	1	2.79	102.33	1.78
		average_number_of_	casualti	es
	DBSCAN_Cluster			
	-1		1.	46
	0		1.	16

1 1.09

1.7.2 6.2 Kmeans

The K-means clustering map offers an intricate portrayal of traffic accidents across London, dividing them into three principal clusters. Cluster '0', pervasive across the metropolis, signifies a consistent pattern of urban traffic incidents. Alternatively, the infrequent yet pronounced Cluster '1' may reflect specific anomalous conditions, with its increased vehicle and casualty averages pointing to more grave incidents. Cluster '2' stands out with its heightened accident rate, signaling areas in dire need of targeted safety measures.

[34]: radar_plot_cluster_centroids2(df_cluster_centroid2)

Cluster centroid comparison

Both the radar chart and the tabular data enhance our understanding by quantifying each cluster's characteristics. They suggest that Cluster '0', despite its lower frequency of accidents, does not necessarily correlate with lower severity or fewer casualties. This observation contradicts common perceptions about the frequency and impact of accidents. Cluster '1', with its heightened vehicle and casualty rates, suggests a propensity for more severe accidents, necessitating tailored traffic management strategies. Cluster '2', with its acute frequency of incidents, highlights "black spots" that urgently require road safety advancements and infrastructural changes to avert future incidents.

	unat digentity requi	ic road salety advancen		initiasti detarai changes to avert ruture incident	J.D.
[35]:	summary_df_Kmea	ns			
[35]:		accident_severity	Freq	average_number_of_vehicles \	
	${\tt Kmeans_Cluster}$				
	0	2.83	18.81	1.75	
	1	2.85	18.16	2.01	
	2	2.83	54.08	1.80	

Kmeans_Cluster	
0	1.11
1	1.31
2	1.14

1.7.3 6.3 RF

The feature importance charts for a Random Forest model reveal key factors influencing the classification of traffic accidents into Kmeans clusters:

- For Class 0, the timing of accidents ('day of the week') is paramount, while the type of road plays a secondary role. The setting ('urban or rural area') seems negligible, suggesting a uniform risk across environments.
- Class 1 is dominated by the type of road and the speed limit, hinting that structural road features and traffic regulation significantly affect accident classification.
- In Class 2, visibility ('light conditions') is the most critical factor, with environmental conditions ('weather' and 'road surface') also being influential.

The feature importance from the Random Forest model highlights the primacy of temporal and environmental conditions over geographical settings in predicting traffic accident clusters. 'Day of the week' and 'light conditions' emerge as critical indicators, overshadowing 'urban or rural' distinctions. This suggests that policy interventions may benefit from focusing on when and under what conditions accidents occur, rather than solely on where they take place. The data advocates for targeted safety measures at times and in conditions most conducive to accidents, potentially offering a more nuanced approach to traffic safety strategies.

1.8 7 Conclusion

In conclusion, this study's comprehensive analysis has identified and characterized traffic collision 'black spots' in London. Through the integration of spatial clustering and supervised learning methods, we have discerned the influence of temporal, environmental, and infrastructural factors on accident occurrences. The research underscores the complexity of urban traffic accidents and reinforces the critical need for targeted safety interventions, transcending traditional urban-rural distinctions. This study contributes to the overarching goal of enhancing road safety and mitigating the socio-economic impacts of traffic-related injuries and fatalities.

1.9 References

Anderson, T. (2005) 'Spatial variations in road collision propensities in London' [Online]. Available at: https://discovery.ucl.ac.uk/id/eprint/1266 (Accessed: 12 April 2024).

Aziz, S. and Ram, S. (2022) 'A Meta-analysis of the methodologies practiced worldwide for the identification of Road Accident Black Spots', Transportation Research Procedia, 62, pp. 790-797.

Balawi, M. & Tenekeci, G. (2024) Time series traffic collision analysis of London hotspots: Patterns, predictions and prevention strategies. Heliyon, Elsevier BV, pp.e25710-e25710.

Karamanlis, I., Nikiforiadis, A., Botzoris, G., Kokkalis, A. and Basbas, S., 2023. Towards sustainable transportation: The role of black spot analysis in improving road safety. Sustainability,

15(19), p.14478.

Siamidoudaran, M. and Iscioglu, E., 2019. Injury severity prediction of traffic collision by applying a series of neural networks: The City of London case study. Promet – Traffic & Transportation, 31(6), pp.643-654.

Szénási, S. and Csiba, P., 2014. Clustering algorithm in order to find accident black spots identified by GPS coordinates. In: 14th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing, 17-26 June 2014, Bulgaria. Available at: https://www.researchgate.net/publication/264635564

for UNEP (2003)Technical Guidelines the Environmentally Sound Manof Waste Lead-Acid Batteries. Basel Convention Series/SBC agement Switzerland: Basel Available at: No. 2003/9. Geneva, Convention Secretariat. http://www.basel.int/Portals/4/Basel%20Convention/docs/pub/techguid/techwasteacid.pdf (Accessed: 12 April 2024).