

CD4094BMS

CMOS 8-Stage Shift-and-StoreBus Register

FN3194 Rev 0.00 December 1992

Features

- High Voltage Type (20V Rating)
- 3-State Parallel Outputs for Connection to Common Bus
- Separate Serial Outputs Synchronous to Both Positive and Negative Clock Edges for Cascading
- Medium Speed Operation 5MHz at 10V (typ)
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- · Serial-to-Parallel Data Conversion
- · Remote Control Holding Register
- · Dual-Rank Shift, Hold, and Bus Applications

Description

CD4094BMS is a 8-stage serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transitions. The data in each shift register stage is transferred to the storage register when the STROBE input is high. Data in the storage register appears at the outputs whenever the OUTPUT-ENABLE signal is high.

Two serial outputs are available for cascading a number of CD4094BMS devices. Data is available at the QS serial output terminal on positive clock edges to allow for high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information, available at the Q'S terminal on the next negative clock edge, provides a means for cascading CD4094BMS devices when the clock rise time is slow.

The CD4094BMS is supplied in these 16 lead outline packages:

Braze Seal DIP H4X
Frit Seal DIP H1F
Ceramic Flatpack H6W

Pinout

CD4094BMS TOP VIEW

Functional Diagram

PARALLEL OUTPUTS Q1 - Q8

(TERMINALS 4, 5, 6, 7, 14, 13, 12, 11, RESPECTIVELY)

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Operating Temperature Range.....-55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	$\theta_{\sf ja}$	θ_{ic}
Ceramic DIP and FRIT Package	80°C/W	$^{ heta_{ extsf{jc}}}$ 20 $^{ extsf{c}/ extsf{W}}$
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD		
For TA = -55°C to +100°C (Package Typ		
For TA = +100°C to +125°C (Package T	ype D, F, K)	Derate
Lineari	ty at 12mW	OC to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rar	nge (All Pac	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (N	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μА
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load ((Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0).5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C	1		
		VDD = 3V, VIN = VDD	or GND	8B	-55°C	1		
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.4	-	μА
Leakage		VOUT = 0V		2	+125°C	-12	-	μА
			VDD = 18V	3	-55°C	-0.4	-	μА
Tri-State Output	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.4	μА
Leakage		VOUT = VDD		2	+125°C	-	12	μА
			VDD = 18V	3	-55°C	-	0.4	μА

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

^{2.} Go/No Go test with limits applied to inputs.

is 0.050V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
Clock to Serial Output QS	TPLH1	(Note 1, 2)	10, 11	+125°C, -55°C	-	810	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	460	ns
Clock to Serial Output Q'S	TPLH2	(Note 1, 2)	10, 11	+125°C, -55°C	-	621	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	840	ns
Clock to Parallel Output	TPLH3	(Note 1, 2)	10, 11	+125°C, -55°C	-	1134	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	580	ns
Strobe to Parallel Output	TPLH4	(Note 1, 2)	10, 11	+125°C, -55°C	-	783	ns
Propagation Delay	TPHZ	VDD = 5V, VIN = VDD or GND	9	+25°C	-	280	ns
Output Enable to Parallel Output	TPZH	(Note 2, 3)	10, 11	+125°C, -55°C	-	378	ns
Propagation Delay	TPLZ	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Output Enable to Parallel Output	TPZL	(Note 2, 3)	10, 11	+125°C, -55°C	-	270	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH	(Note 1, 2)	10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	1.25	-	MHz
Frequency		(Note 1, 2)	10, 11	+125°C, -55°C	.93	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.
- 3. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	MITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μА
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	MITS]
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.1	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-2.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	250	ns
Clock to Serial Output Qs	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	190	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	220	ns
Clock to Serial Output Q's	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	150	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	390	ns
Clock to Parallel Output	TPLH3	VDD = 15V	1, 2, 3	+25°C	-	270	ns
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25°C	-	290	ns
Strobe to Parallel Output	TPLH4	VDD = 15V	1, 2, 3	+25°C	-	200	ns
Propagation Delay	TPHZ	VDD = 10V	1, 2, 4	+25°C	-	120	ns
Output Enable to Parallel Output	TPZH	VDD = 15V	1, 2, 4	+25°C	-	90	ns
Propagation Delay	TPLZ	VDD = 10V	1, 2, 4	+25°C	ı	100	ns
Output Enable to Parallel Output	TPZL	VDD = 15V	1, 2, 4	+25°C	1	80	ns
Transition Time	TTLH	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTHL	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input	FCL	VDD = 10V	1, 2, 3	+25°C	2.5	-	MHz
Frequency		VDD = 15V	1, 2, 3	+25°C	3	-	MHz
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	125	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	55	ns
		VDD = 15V	1, 2, 3	+25°C	-	35	ns
Maximum Clock Input	TRCL	VDD = 5V	1, 2, 3, 5	+25°C	-	15	μS
Rise and Fall Time	TFCL	VDD = 10V	1, 2, 3, 5	+25°C	-	5	μS
		VDD = 15V	1, 2, 3, 5	+25°C	-	5	μS
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Width		VDD = 10V	1, 2, 3	+25°C	ı	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	83	ns
Minimum Strobe Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	80	ns
		VDD = 15V	1, 2, 3	+25°C	1	70	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.
- 5. If more than one unit is cascaded, TRCL should be made less than or equal to the sumof the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	\pm 1.0 μ A
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Final Test	100% 5004	2, 3, 8A, 8B, 10, 11	

TABLE 6. APPLICABLE SUBGROUPS

CONFO	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILI	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	4 - 7, 9 - 14	1 - 3, 8, 15	16			
Static Burn-In 2 (Note 1)	4 - 7, 9 - 14	8	1 - 3, 15, 16			
Dynamic Burn- In (Note 1)	-	8	1, 15, 16	4 - 7, 9 - 14	3	2
Irradiation (Note 2)	4 - 7, 9 - 14	8	1 - 3, 15, 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

FIGURE 1. LOGIC DIAGRAM

TRUTH TABLE

	ОИТРИТ			PARALLEL OUTPUTS		SERIAL OUTPUTS	
CL∆	ENABLE	STROBE	DATA	Q1	QN	QS*	Q'S
	0	X	X	OC	OC	Q7	NC
	0	Х	Х	OC	OC	NC	Q7
	1	0	Х	NC	NC	Q7	NC
	1	1	0	0	QN-1	Q7	NC
	1	1	1	1	QN-1	Q7	NC
	1	1	1	NC	NC	NC	Q7

 Δ = Level Change

Logic 1 = High

X = Don't Care

Logic 0 = Low

NC = No Change

OC = Open Circuit

^{*} At the positive clock edge information in the 7th shift register stage is transferred to the 8th register stage and the QS output

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT TRANSFER CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. CLOCK-TO-SERIAL OUTPUT QS PROPAGATION DELAY vs CL

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. CLOCK-TO-SERIAL OUTPUT Q'S PROPAGATION DELAY vs CL

Typical Performance Characteristics (Continued)

FIGURE 8. CLOCK-TO-PARALLEL OUTPUT PROPAGATION DELAY vs CL

FIGURE 10. OUTPUT ENABLE-TO-PARALLEL OUTPUT PROPAGATION DELAY vs CL

FIGURE 12. TYPICAL MAXIMUM-CLOCK-FREQUENCY vs SUPPLY VOLTAGE

FIGURE 9. STROBE-TO-PARALLEL OUTPUT PROPAGATION DELAY vs CL

FIGURE 11. TYPICAL TRANSITION TIME vs LOAD CAPACITANCE

FIGURE 13. DYNAMIC POWER DISSIPATION vs INPUT CLOCK FREQUENCY

FIGURE 14. TIMING DIAGRAM

FIGURE 15. REMOTE CONTROL HOLDING REGISTER

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

