MAT 300 4-09 HW

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1.	5.5.21	1
Problem 2.	6.1.4	2
Problem 3.	6.2.10	3
Problem 4.	6.2.3	4
Problem 5.	6.2.8	5

Problem 1. 5.5.21

Let A be a set, and (s_i) be a sequence in A.

- (a) If (s_i) is constant, every subsequence of (s_i) is constant.
- (b) If (s_i) has distinct terms, then every subsequence of (s_i) has distinct terms.

Solution

Part (a)

Proof Suppose there existed a non-constant subsequence of s_i , call it s_{a_k} . Then, by definition, $s_{a_i} \neq s_{a_j}$ for distinct natural numbers i and j. Evaluate a_i , and a_j , which will be natural numbers. Call them x and y respectively. This means that $s_x s_y$ for distinct x and y (x and y must be distinct because, if they were not, then s_{a_i} would equal s_{a_j}). This leads to a contradiction, namely that $s_x \neq s_y$ for distinct x and y, or the original subsequence would be constant. By contradiction, every subsequence of a constant sequence must also be constant.

Proof Suppose that there existed a non-distinct subsequence of s_i . Call this subsequence s_{a_k} . By negating the definition of distinct, $s_{a_i} = s_{a_j}$ for some distinct i and j. Evaluate a_i and a_j to natural numbers x and y, so that $s_x = s_y$ for distinct x and y. This is a contradiction with the fact that s_i is distinct, so it is not possible to have a constant subsequence of a distinct sequence.

Problem 2. 6.1.4

Use the well-ordering of \mathcal{N} (Every non-empty set of natural numbers contains a least element) to prove the following:

- (a) Every nonempty subset of \mathcal{Z} that has a lower bound has a least element.
- (b) Every nonempty subset of \mathcal{Z} that has a upper bound has a greatest element.

Solution

In each of these solutions, the subset on \mathcal{Z} must be converted to a subset of \mathcal{N} .

Part (a)

Proof Call this lower bounded set A, with lower bound b. Create a new set $B = \{x-b+1 | x \in A\}$, which is a subset of the natural numbers (because it has lower bound c = b - b + 1 = 1), and thus now has a least element, by the well ordering principle. Let $y \in B$, so that y = x - b + 1 for $x \in A$. Since b is a lower bound for A, $x \ge b$, $x - b + 1 \ge 1$, so $y \ge 1$, and thus $y \in \mathcal{N}$. Now observe that B is not empty. Since $A \ne \emptyset$, it contains at least one element, x_0 . Then $y_0 = x_0 - b + 1 \in B$, so $B \ne \emptyset$. By the well ordering principle, B has least element $y_1 = x_1 - b + 1$. Consider an arbitrary $x \in A$. Then, $x - b + 1 \in B$, y_1 is the least element of B, $x - b + 1 \ge y_1 = x_1 - b + 1$. Add b - 1 to both sides, so that $x \ge x_1$. Since x is arbitrary, x_1 is the least element of A

Part (b)

Proof Call this upper bounded set S, with upper bound s_u . Create a new set, $T = \{-s + s_u + 1\}$, which is a subset of the natural numbers. Consider that $s \in S$ is less than or equal to s_u , so $-s_u \le -s$. Then $-s_u + s_u + 1 \le -s + s_u + 1$, so $t = -s + s_u + 1 \ge 1$, and T is a subset of the natural numbers. Observe that T is not empty, because S is not empty (it contains some s_0), and then $t_0 = -s_0 + s_u + 1$ and t_0 is in T. Since t_1 is a least element in T (by the well ordering principle), and $t_1 = -s_1 + s_u + 1$ for some s_1 . So $-s_1$ is a least element of S, and s_1 is a greatest element: Let $s \in S$. Then $-s + s_u + 1 \in T$. t_1 is the least element of T, so $-s + s_u + 1 \ge t_1$. Also, $t_1 = -s_1 + s_u + 1$, so $-s + s_u + 1 \ge -s_1 + s_u + 1$. This implies that $s \le s_1$, and thus s_1 is a greatest element of S, since s is arbitrary.

Problem 3. 6.2.10

Prove the following about the partial ordering on \mathcal{N} .

- (a) Prove that \mathcal{N} is partially ordered under the relation |.
- (b) Is | a total order on \mathcal{N} ? Explain.
- (c) Draw a lattice diagram the depicts the order | on the set $\{1, 2...15\}$.
- (d) Does {2, 3, 4, 5..} have any minimal or maximal elements with respect to the order |?

Solution

Part (a)

A partial ordering must be reflexive, anti-symmetric, and transitive. | is reflexive, because any number (say, $x \in \mathcal{N}$) divides itself into one and itself: x = x * 1. | is anti-symmetric, because for natural numbers a, b, x and y if x|y and y|x, x and y must be equal. This can be seen by supposing to the contrary that x|y and y|x and $x \neq y$. In this case, y = xa and x = yb, so y = y * a * b. Both a and b must be 1, or this leads to a contradition, but for a and b to be 1, x must equal y. | is transitive, i.e. for natural numbers a, b, c, x, y if a|b and b|c, then a|c. This can be seen when written explicitly: b = ax and c = by, so c = axy. Let z = xy, and now c = az, so a divides c. Thus, | is a partial ordering on N.

Part (b)

No, because there are some numbers which do not divide others, and a total ordering requires the relation to exist between arbitrary elements. For instance, 3 does not divide 5, because 5 is prime.

Part (c)

```
8 4-12

|/ / \
15 10 | 6 9 | 14

| \| \|/|/ |/|

(3) 5 | 3---| 7 11 13

| | |

| | |

2-----

(all divided by)
```

Part (d)

1 is minimal (and least) because it divides everything, but there is no maximal element because the set is infinite.

Problem 4. 6.2.3

Let a, b be natural numbers. Suppose a = qb + r with $0 \le r < b$. What does the division algorithm yield when -a is divided by b? Justify your answer. Those natural numbers n that, when divided into m using the division algorithm, yield a remainder of zero have a special status with respect to m. We say that n divides m evenly or simply that n divides m.

Solution

Part (a)

Clearly, -a is not a natural number. However, since q divides positive a, -q divides -a, such that -a = -qb - r, by algebraic manipulation.

Problem 5. 6.2.8

Let a, b, c be integers.

- (a) If a|b and b|a, then a = +/-b.
- (b) If a|b and b|c, then a|c.

Solution

Part (a)

If a|b and b|a, then b=ax and a=by, so a=axy, which is only true when xy is one. So either x=-1 and y=-1 or x=1 and y=1. Substitute these into the original statements, and either a=-b or a=b.

Part (b)

If a|b and b|c, then b=ax and c=by. So c=axy, and thus c=az for z=xy, so a divides c.