MATH 266 Homework 1 Solution

Problem 1 (20 points) Consider the equation $y' = y^2$.

(a) (15 points) Find the equilibrium point(s), and use the phase diagram to mark each one stable or unstable.

We first find the equilibrium points by setting $y^2 = 0$. This gives us y = 0.

Let us next sketch the phase diagram. We see that y=0 splits the y-axis into two intervals: $(0,\infty)$, $(-\infty,0)$. For the interval $(0,\infty)$, we pick y=1. This yields $y'=1^2>0$. Turning attention to the interval $(-\infty,0)$, by setting y=-1, we have $y'=(-1)^2>0$. Hence, the phase diagram is as follows.

Therefore, y = 0 is unstable.

(b) (5 **points**) Find $\lim_{x\to\infty} y(x)$ for the solution y if y(0)=1. Justify your answer.

We see from the phase diagram above that y is increasing on the interval $(0, \infty)$. Thus, if y(0) = 1, y will increase. As there are no equilibrium points above, y will increase without bound. Therefore, $\lim_{x \to \infty} y(x) = \infty$.

Problem 2 (20 points) Consider the equation $y' = (y-1)(y-2)y^2$.

(a) (15 points) Find and classify the equilibrium points.

We first need to find equilibrium points. To this end, by setting y' = 0, we have $(y - 1)(y - 2)y^2 = 0$. We solve this equation to see that y = 0, 1, 2 are the equilibrium points.

We next sketch the y-axis and see that the three equilibrium points above split the y-axis into four intervals: $(-\infty, 0)$, (0, 1), (1, 2), and $(2, \infty)$.

Let us now check whether y is increasing or decreasing on each interval. To this end, we first choose y = -1 on $(-\infty, 0)$ to get $y' = (-1 - 1)(-1 - 2)(-1)^2 > 0$.

We next pick y = 0.5 on (0, 1), then we have $y' = (0.5 - 1)(0.5 - 2)(0.5)^2 > 0$.

Similarly, setting y = 1.5 on (1, 2), we obtain $y' = (1.5 - 1)(1.5 - 2)(1.5)^2 < 0$.

Finally, we let y = 3 on $(2, \infty)$ to deduce $y' = (3 - 1)(3 - 2)3^2 > 0$.

The phase diagram is the following:

From the diagram, we see that y = 1 is stable, and y = 0, 2 are unstable.

(b) (5 points) Find $\lim_{x\to\infty} y(x)$ for the solution y if y(0) = 0.5. Justify your answer.

Since y is increasing on the interval (0,1), we see that y decreases as x increases if y(0) = 0.5. However, y will stop changing when it reaches the equilibrium point y = 1. Therefore, we see that $\lim_{x \to \infty} y(x) = 1$. **Problem 3** (10 points) Determine whether $y = e^x$ is a solution to the equation y''' - 12y'' + 48y' - 64y = 0.

We need to take the derivative of $y = e^x$ up to the third order. Clearly, we have $y' = y''' = e^x$. Plugging them into the given differential equation, we get

$$y''' - 12y'' + 48y' - 64y = e^x - 12e^x + 48e^x - 64e^x$$
$$= -27e^x \neq 0.$$

Therefore, $y = e^x$ is not a solution to the given equation.

Problem 4 (20 points) Consider the equation y'' - y' = 0.

(a) (10 points) Show that $y = C_1 e^x + C_2$ is a solution to the equation for any constants C_1, C_2 .

We compute y' and y''. To this end, we see that $y' = C_1 e^x$ and $y'' = C_1 e^x$. Thus, it follows that

$$y'' - y' = C_1 e^x - C_1 e^x = 0.$$

Therefore, $y = C_1 e^x + C_2$ is a solution to the equation.

(b) (10 points) Find C_1 and C_2 that satisfies y(0) = 10 and y'(0) = 100.

By substituting x = 0 into $y = C_1 e^x + C_2$, we get

$$y(0) = C_1 e^0 + C_2 = C_1 + C_2.$$

Given that y(0) = 10, we have y(0) = 10.

Similarly, we substitute x = 0 into $y' = C_1 e^x$, we have

$$y'(0) = C_1 e^0 = C_1.$$

Since it is given that y'(0) = 100, we see that $C_1 = 100$.

Finally, substituting $C_1 = 100$ into the equation $C_1 + C_2 = 10$, we obtain $C_2 = -90$.

Problem 5 (10 points) Find all the values of r such that $y = e^{rx}$ is a solution to the equation y'' + 9y' - 10y = 0.

[Hint: $e^{rx} \neq 0$ for any r and all real number x.]

By the chain rule, we compute that $y' = re^{rx}$ and $y'' = r^2e^{rx}$. Then we get

$$y'' + 9y' - 10y = r^{2}e^{rx} + 9re^{rx} - 10e^{rx}$$
$$= (r^{2} + 9r - 10)e^{rx}.$$

By hypothesis, we see that $(r^2+9r-10)e^{rx}=0$. Since $e^{rx}\neq 0$, we must have $r^2+9r-10=0$. To solve this quadratic equation, we factor it to get (r+10)(r-1)=0. This yields r=-10 and r=1.