矢量运算

标量Scalar: 只有大小.

例如:质量、长度、时间、密度、能量、温度等。

矢量Vector: 既有大小又有方向,并有一定的运算规则.

例如: 位移、速度、加速度、角速度、电场强度等。

矢量的书写:带箭头的字母(如 \vec{A}),或黑体字母。

1、矢量的几种表示方式:

几何表示:有指向的线段。

解析表示:

直角坐标系中: $\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$

 \vec{i} , \vec{j} , \vec{k} 表示沿x, y, z轴的单位矢量。

矢量方向: direction

可由矢量与三个坐标轴的夹角的余弦表示。

设矢量与x, y, z三轴的夹角为α、β、γ。

$$\cos \alpha = \frac{A_x}{A},$$

$$\cos \beta = \frac{A_y}{A},$$

$$\cos \gamma = \frac{A_z}{A}$$

此三个角满足关系:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

2、矢量的运算法则:

(1) 矢量的加法运算Addition

矢量的加法遵循平行四边形法则或三角形法则。

$$\vec{A} + \vec{B} = \vec{C}$$

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

(2) 矢量的减法运算

矢量的减法运算是加法运算的逆运算。

$$\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

(3) 矢量的乘法运算

> 矢量的点乘 The scalar (dot) product

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \alpha$$
 a是 $\vec{A} = |\vec{B}|$ 的夹角。

结论:两个矢量点乘的结果得到的是标量,它只有大小,没有方向。

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$
 $\neq \vec{A}\vec{B} \neq \vec{B}\vec{A}$

直角坐标系:
$$\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}, \vec{B} = B_x \vec{i} + B_y \vec{j} + B_z \vec{k}$$

$$\vec{A} \cdot \vec{B} = (A_x \vec{i} + A_y \vec{j} + A_z \vec{k}) \cdot (B_x \vec{i} + B_y \vec{j} + B_z \vec{k})$$
$$= A_x B_x + A_y B_y + A_z B_z$$

强调: $\vec{A} \cdot \vec{B} = 0$ \Longrightarrow 两矢量互相垂直

练习1:已知
$$\vec{A} = 2\vec{i} + 10\vec{j}$$
, $\vec{B} = 4\vec{i} + 5\vec{j}$, 求 $\vec{A} \cdot \vec{B}$

▶矢量的叉乘 The vector (cross) product

 $\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin \alpha \vec{\tau}$

 α 是 \vec{A} 与 \vec{B} 的夹角。 $\vec{\tau}$ 是一个单位矢量。

结论:两个矢量叉乘得到的结果仍然是一个矢量。

 $\vec{\tau}$ 的方向: 垂直于由 \vec{A} 、 \vec{B} 所构成的平面,并且跟矢量 \vec{A} 、 \vec{B} 形成右手螺旋关系:

伸出右手,使手平面垂直 $\vec{A} \setminus \vec{B}$ 所构成的平面 $\vec{A} \times \vec{B}$ 然后四指沿着矢量 \vec{A} 的方向,经过小于180° 的角转到矢量 \vec{B} 的方向,此时姆指指示的方向,就是矢量 $\vec{A} \times \vec{B}$ 的方向。 $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$

强调:矢量点乘与矢量叉乘是不同的概念,大家一定要把符号搞清楚,不要混淆。

(4) 矢量的求导

$$\frac{d\vec{A}}{dt} = \frac{d}{dt}(A_x\vec{i} + A_y\vec{j} + A_z\vec{k})$$

$$= \frac{d}{dt}(A_x\vec{i}) + \frac{d}{dt}(A_y\vec{j}) + \frac{d}{dt}(A_z\vec{k})$$

$$= \frac{dA_x}{dt}\vec{i} + \frac{dA_y}{dt}\vec{j} + \frac{dA_z}{dt}\vec{k}$$

$$\frac{d(\vec{A} \cdot \vec{B})}{dt} = \frac{d\vec{A}}{dt} \cdot \vec{B} + \vec{A} \cdot \frac{d\vec{B}}{dt}$$

$$\frac{d(\vec{A} \times \vec{B})}{dt} = \frac{d\vec{A}}{dt} \times \vec{B} + \vec{A} \times \frac{d\vec{B}}{dt}$$

(5) 矢量的积分

对矢量我们一般不直接积分,可以先把矢量投影到x,y,z轴,对各分量分别进行积分,再对得到的各分量值进行矢量合成。

$$A_{x} = \int dA_{x}, A_{y} = \int dA_{y}, A_{z} = \int dA_{z}$$

$$\vec{A} = A_{x}\vec{i} + A_{y}\vec{j} + A_{z}\vec{k}$$

