## Theorem 14-4

## A rotation is an isometry.

Given:  $\mathcal{R}_{Q}$  maps P to P' and Q to Q'.

Prove:  $\overline{PO} \cong \overline{P'O'}$ 



- 1. OP = OP', OQ = OQ' (Definition of rotation)
- 2.  $m \angle POP' = m \angle QOQ' = x$  (Definition of rotation)
- 3.  $m \angle POQ = m \angle P'OQ'$  (Subtraction Property of =: subtract  $m \angle QOP'$ .)
- 4.  $\triangle POQ \cong \triangle P'OQ'$  (SAS Postulate)
- 5.  $\overline{PO} \cong \overline{P'O'}$  (Corr. parts of  $\cong \mathbb{A}$  are  $\cong$ .)

A rotation about point O through 180° is called a halfturn about O and is usually denoted by  $H_0$ . The diagram shows  $\triangle PQR$  and its image  $\triangle P'Q'R'$  by  $H_Q$ . Notice that O is the midpoint of  $\overline{PP'}$ ,  $\overline{QQ'}$ , and  $\overline{RR'}$ .



$$H_o:(x, y) \to (-x, -y).$$





## Classroom Exercises

State another name for each rotation.

- 1.  $\mathcal{R}_{0.50}$
- 2.  $\mathcal{R}_{0} = 40$  3.  $\mathcal{R}_{0} = 90$  4.  $\mathcal{R}_{0} = 400$
- 5. Ro. 180

Exs. 6-11

In the diagram for Exercises 6-11, O is the center of equilateral  $\triangle PST$ . State the images of points P, S, and T for each rotation.

- 6.  $\mathcal{R}_{0,120}$
- 7.  $\mathcal{R}_{0} = 120$
- 8. Ro. 360

Name each image point.

- 9.  $\mathcal{R}_{T, 60}(S)$
- 10.  $\mathcal{R}_{T=-60}(P)$
- 11.  $\mathcal{R}_{O, 240}(P)$



- 13. Repeat Exercise 12 if A has coordinates (-3, 5).
- 14. Is congruence invariant under a half-turn mapping? Explain.
- 15. Read each expression aloud.
  - a.  $R_k(A) = A'$

- **b.**  $H_0: (-2, 0) \to (2, 0)$
- **c.**  $T:(x, y) \to (x 1, y + 3)$  **d.**  $\mathcal{R}_{P \to 0}$