Conduite de projets informatiques

Principes généraux et techniques

Eric Bourreau

Ouvrage de référence

Plan

- Définition et terminologie
- Le découpage d'un projet
- L'estimation des charges
- Les techniques de planification
- L' organisation du travail
- Le pilotage du projet
- La maîtrise de la qualité

Rappel de la première partie

- Définition et terminologie
 - Projet (besoin → objectif)
 - gestion d'un projet (estim, planif, pilot, suivi)
- Le découpage d'un projet
 - les principes (temporel, fonctionnel, both)
 - I les modèles existants (PBS, OBS, Merise)
 - Cycle de vie (cascade, V, W, RAD, XP)

Plan de la deuxième partie

- Estimation des charges
 - I Charge et durée
 - Les besoins
 - Les méthodes

ESTIMATION DES CHARGES

- Charge et durée
 - Notions de base
 - La CHARGE représente une quantité de travail nécessaire, indépendamment du nombre de personnes.
 - Elle permet d'obtenir un coût prévisionnel.
 - · Elle s 'exprime en mois/homme.
 - Elle aide à définir la taille d'un projet.
 - Projet < 6 m/H => très petit
 - Projet > 100 m/H => très grand (année/homme).

_				
_				

ESTIMATION DES CHARGES

- Charge et durée
 - Notions de base
 - La DURÉE est le temps consommé par le projet.
 - Elle dépend du nombre de personnes, mais l'évaluation n'est pas isotrope
 - (100 personnes pendant un mois ne sont pas équivalentes à 1 personne pendant 100 mois)

Les besoins en estimation

- Au niveau du projet global
- Au niveau de l'étape
 - I Ordre de grandeur : semaine/homme
 - Ajuster le découpage
 - Sous-traiter
 - Prévoir des délais pour planifier l'ordonnancement des étapes

Les besoins en estimation

- Au niveau de la phase
 - I Faire une planification précise
 - I Annoncer un calendrier de remise des différents résultats intermédiaires
 - Prévoir et effectuer un suivi, pour surveiller les écarts

les écarts

Prévoir l'affectation des ressources

Les besoins en estimation

- Au niveau de la tâche
 - Affectation des ressources individuelles
 - I Planification au niveau le plus fin
- Visibilité croissante du projet vers la tâche
- Utilisation de techniques différentes selon le niveau de granularité

10

LES MÉTHODES D'ESTIMATION

- Loi de Parkinson : « le travail se dilate jusqu' à remplir le temps disponible »
- « méthode du marché »: la charge correspond au prix à proposer pour remporter l'appel d'offre.
- Théorème Eric Bourreau : « Il faut toujours plus de temps que prévu, même en tenant compte du théorème d' Eric Bourreau »
- Quatre « vraies » méthodes :
 - Delphi, Cocomo/Diebold, évaluation analytique et « points fonctionnels »

11

LES MÉTHODES D'ESTIMATION

- Schéma général
 - Construire une BC rassemblant l'expertise des projets antérieurs
 - Faire une estimation de la taille du projet à l'aide d'une unité de mesure
 - Ajuster la taille ou la charge brute en fonction des spécificités du projet
 - Répartir la charge entre les différentes étapes.

_			
_			

La méthode de répartition proportionnelle

- S'appuie sur le découpage temporel classique
- Trois types d 'utilisation
 - Estimation globale du projet que l'on cherche à répartir dans le temps : descendante
 - l Evaluation d'une des étapes au moyen d'une autre méthode, et on veut généraliser : ascendante
 - I En cours de déroulement de projet, le temps consommé sur les étapes en amont redéfinit celui des étapes à venir : dynamique

13

La méthode de répartition proportionnelle

Etape	ratio
ÉTUDE PRÉALABLE	10% du total du projet
	(hors mise en œuvre)
ÉTUDE DÉTAILLÉE	20 à 30 % du total du
	projet
ÉTUDE TECHNIQUE	5 à 15% de la charge
	de réalisation
RÉALISATION	40 à 60 % du total du
	projet
MISE EN ŒUVRE	30 à 40 % de la charge
	de réalisation

14

La méthode de répartition proportionnelle

- Ces ratios sont issus de l'expérience
- Ce sont des recommandations
- Dans I 'étape ÉTUDE PRÉALABLE, on utilise une répartition proportionnelle entre phases
 - Observation: 30 à 40 %
 - Conception/Organisation 50 à 60 %
 - Appréciation : 10 %

La méthode de répartition proportionnelle

- L'ÉTUDE DÉTAILLÉE est la plus difficile à évaluer
- Deux critères de variation :
 - La couverture : partie du domaine étudiée.
 - I PETITS PROJETS : ÉTUDE PRÉALABLE ET ÉTUDE DÉTAILLÉE CONFONDUES SANS SURCHARGE POUR L 'EP
 - La maille : précision de la description.

16

La méthode de répartition proportionnelle

- La charge de l'ÉTUDE TECHNIQUE est liée à la charge de réalisation (éventuellement augmentée d'un facteur de nouveauté)
- La charge de l'étape de RÉALISATION est liée à l'ETUDE DÉTAILLÉE.
 - On évalue la charge de réalisation par une autre méthode et on divise par deux pour

La méthode de répartition proportionnelle

- La charge de l'étape de MISE EN ŒUVRE ne relève pas d'un système standard.
 - Elle est proportionnelle à la complexité des programmes écrits, et au nombre de sites.
 - Le ratio appliqué sur la charge de réalisation doit être complété par les problèmes de basculement (ancien système vers nouveau)

١		
9		
١		
١		
١		
Ī		
_		
9		
١		
١		

La méthode de répartition proportionnelle

- La méthode est aussi appliquée pour l'estimation des charges complémentaires au développement de l'application
 - I Tâche d'encadrement de projet
 - Recette
 - Documentation utilisateur

19

Charges complémentaires

Tâche	ratio
Encadrement du	
projet :	
- Etape de réalisation	20 % de la charge de réalisation
- Autres étapes	10% de la charge de l'étape
Recette	20% de la charge de réalisation
Documentation	5% de la charge de
utilisateur	réalisation

20

La méthode DELPHI

- Elaborée en 1948 par la Rand Corporation
- Fondée sur le jugement d'experts
- Consiste à rechercher des analogies avec des projets antérieurs.
- Repose sur un raffinement successif de jugements porté par plusieurs experts jusqu 'à obtention d'une convergence.

LES MÉTHODES À MODÈLE : COCOMO ET DIEBOLD

- Constructive Cost Model (COCOMO)
 Boehm 1981
- Deux hypothèses :
 - Un informaticien évalue mieux la taille du logiciel à développer que la quantité de travail nécessaire
 - Il faut toujours le même effort pour écrire un nombre donné de lignes de programme, quel que soit le langage (3eme génération)

22

LES MÉTHODES À MODÈLE : COCOMO ET DIEBOLD

L'unité: l'instruction source

- 1 121 121 121 121 121 121	
Le modèle permet d'obtenir la charge de réalisation en m/H et le délai normal	
recommandé	
Formules de calcul :	
■ Charge en mois/Homme = a (Kisl) ^b	
Kisl = kilo instruction source testée	
23	
	I
LES MÉTHODES À MODÈLE :	
COCOMO ET DIEBOLD	
COCOMO ET DIEDOED	
Durée normale en mois = c(charge) ^d	
Les paramètres a, b, c et d dépendent	
de la catégorie du projet. Soit l la taille	
du logiciel.	
Projet simple si I< 50 Kisl, spécifications	
stables, petite équipe. Projet moyen si 300 Kisl >l > =50 Kisl,	
spécifications stables, petite équipe.	
Projet complexe si I >300 Kisl, grande	
équipe.	

LA MÉTHODE COCOMO

Type de projet	Charge en mois homme	Durée en mois
Simple	C= 3,2 (Kisl) ^{1,05}	D= 2,5(C) ^{0,38}
Moyen	C= 3 (Kisl) ^{1,12}	D= 2 ,5(C) ^{0,35}
Complexe	C= 2,8 (Kisl) ^{1,2}	D= 2,5(C) ^{0,32}

25

La méthode COCOMO: exemple

- Soit un projet visant à développer un logiciel de 40 000 instructions source
- C 'est un petit projet par la taille du logiciel.
- Charge = 3,2 (40)^{1,05} = 154 mois/homme
- Durée normale = 2,5 (154)^{0,38} = 17 mois
- Ce qui donne une taille moyenne de l'équipe = 154 / 17 = 9 personnes.

26

LA MÉTHODE COCOMO

- Il faut tenir compte des « facteurs correcteurs » d'estimation de charge.
- Quatre sources de risque sur l'estimation
 - Exigences attendues du logiciel
 - caractéristiques de l'environnement technique (matériel)
 - Caractéristiques de l'équipe projet
 - Environnement du projet lui-même

LA MÉTHODE COCOMO

- Les facteurs logiciels sont :
 - Fiabilité du logiciel : influence forte si exigence dans ce sens
 - Base de données : mesuré par le ratio
 - (volume de données gérées en octets) /(taille du logiciel en lignes)
 - L'influence du facteur est faible si le ratio<10, très forte si ratio>1000
 - Complexité : celle des algorithmes
 - I Temps d'exécution : crucial si temps réel

28

LA MÉTHODE COCOMO

- Les facteurs matériels sont :
 - I Taille mémoire : s 'il est nécessaire de l 'optimiser
 - Stabilité de l'environnement : celle du logiciel de base
 - Contrainte de délai : se mesure par rapport au délai calculé « normal ».

29

LA MÉTHODE COCOMO

- Démarche en cinq étapes:
 - Estimation du nombre d'instructions source.
 - Calcul de la charge « brute ».
 - Sélection des facteurs correcteurs
 - Calcul de la charge nette = produit (valeurs des facteurs correcteurs)* Charge brute
 - Evaluation de la durée sur la charge nette.

LA MÉTHODE DIEBOLD

- Version antérieure et simplifiée de COCOMO.
- Connaît le nombre d'instructions à écrire et donne le temps en jours
- Temps(jours) = (complexité)*(savoirfaire)*(connaissance)*(kisl)

31

LA MÉTHODE DIEBOLD

- Complexité : celle du logiciel.
 - 10<=c<=40
- Savoir-faire : mesure l'expérience du programmeur
 - Beaucoup de savoir faire : 0,65
 - Peu de savoir faire : 2
- Connaissance: celle de
 - I'environnement technique:
 - 1 = bonne K et 2 = faible K

32

LA MÉTHODE ANALYTIQUE

- S' appuie sur la typologie des programmes à développer
- Affecte un poids par type de programme et niveau de difficulté dans l'environnement
 - UNITÉ : jour/homme
- La charge obtenue est celle de réalisation
- Pour les test d'enchaînement : 10% charge
- Pour l'encadrement : 20% charge

LA MÉTHODE ANALYTIQUE

TYPE DE	FACILE	MOYEN	DIFFICILE
PROGRAMME			
MENU	0.25	0,5	1
CONSULTATION	1	2,5	4
MISE A JOUR	1,5	3	5
EDITION EN	1	2	4
TEMPS RÉEL			
EXTRACTION	0,5	1	1,5
MISE A JOUR PAR	2	3	5
LOT			
EDITION PAR LOT	1,5	2,5	4

34

LA MÉTHODE ANALYTIQUE

- Charge de réalisation = somme (p_i*t_i)
 - p est le poids
 - I t le nombre de programmes du type i
- Charge globale = 1,3 * Cr / 22 (en m/H)
- Pour les projets dont la charge est comprise entre 3 et 30
 - Durée incompressible = 2,5 (Cg en m/H))^{1/3} en mois

25

LA MÉTHODE DES POINTS FONCTIONNELS

- A. Albrecht (IBM) 1979
- Groupe d'utilisateurs : guide en 1984
- En France, groupe FFPUG en 1992
- Principe:
 - Estimation à partir d'une description externe du futur système, et de ses fonctions.
 - 5 types d'unité d'œuvre et 3 degrés de complexité

LA MÉTHODE DES POINTS FONCTIONNELS

- Pour un projet donné on calcule son poids en « points de fonction ».
- Méthode:
 - Comptage des points au début du projet
 - Comptage en fin
 - Ecart = changement d'envergure
 - Evaluation:
 - Calcul de la taille, ajustement de la taille, transformation en charge.

LA MÉTHODE DES POINTS FONCTIONNELS

- Composants fonctionnels :
 - I Groupe logique de données internes (GDI)
 - Groupe logique de données externes (GDE)
 - Entrée de traitement (ENT)
 - Sortie de traitement (SORT)
 - Interrogation (INT)

38

LA MÉTHODE DES POINTS FONCTIONNELS

- Complexité d'un composant :
 - Faible
 - Moyenne
 - Elevée
- Nombre de points de fonction du composant :
 - Tableau de correspondance entre la complexité et le type du composant = > poids

Calcul du nombre de points de fonction brut : exemple

Entité	Complexité	Nh de composants	Poids	Nb de Points de fonction
GDI	Faible	3	7	21
	Moyenne	1	10	10
	Elevée	1	15	15
GDE	Faible	2	5	10
	Moyenne	2	7	14
	Elevée	3	10	30
ENT	Faible	4	3	12
	Moyenne	6	4	24
	Elevée	2	6	12
SORT	Faible	3	4 5	12
	Moyenne	4	5	20
	Elevée	0	7	0
INT	Faible	2	3	6
	Moyenne	5	4	20
	Elevée	4	6	24
PFB				230

LA MÉTHODE DES POINTS FONCTIONNELS

- Le PFB est ensuite ajusté par une appréciation des spécificités du projet.
 - 1 14 points sont identifiés, auquels est attribuée une note de 0 à 5 en fonction du degré d'influence (réutilisabilité, portabilité, ...)
- Le PFA ou nombre ajusté de points
 - I PFA = (0,65 * (SOMME (Di_{i, i = 1 à 14})/100) * PFB

LA MÉTHODE DES POINTS FONCTIONNELS

- Le PF permet de donner le nombre d'instructions source utile pour COCOMO ou DIEBOLD avec la formule :
 - ISL (lprocédural)= 118, 7 * PFA 6490.
 - Dans I 'exemple, si PFA = PFB alors ISL = 20811.
- Mais on calcule la charge en général en convertissant directement les points.

LA MÉTHODE DES POINTS FONCTIONNELS

- En fin d 'étude préalable
 - 3 j/H /pF
 - 2 jours si petit projet
 - 4 jours si grand projet
- En fin d'étude détaillée : 1 à 2 j / pf selon l'environnement
- Avec un L4G 1j /10 pf en réalisation.
- En RAD , productivité élevée : 0,5 j/H/pF