Gauss/Jacobi Iterative Method Numerical Computation Lilybeth Delgado Project #7

The following image shows the work done to determine the diagonal dominant matrix. This could have been done on MATLAB but it was visually and algebraically easier by hand. Although in the future for an arbitrary matrix of length x it would be much more difficult to perform all permutations to find the dominant diagonal. The Gaussian and Jacobi follow similar approaches in the iterations but differ in that Jacobi takes the previous approximations while Gauss-Seidal takes on ones currently available.

Let Matrix A= Let Matrix B=

a)
$$\begin{bmatrix} -2 & 3 & 1 & | -5 \\ 2 & 0 & 5 & | 10 \end{bmatrix}$$
b)
$$\begin{bmatrix} 1 & -2 & 4 & | 6 \\ 8 & -3 & 2 & | 2 \\ -1 & 10 & 2 & | 4 \end{bmatrix}$$

Results:

	Matrix A	Iterations	Stopping Criteria	Matrix B	Iterations
Gauss	3.2094	63	MAE	-0.1131	15
	0.2343			0.0756	
	0.7163			1.5661	
Gauss	3.2094	63	RMSE	-0.1132	18
	0.2343			0.0755	
	0.7163			1.5660	
Jacobi	3.2087	169	MAE	-0.1132	21
	0.2351			0.0755	
	0.7159			1.5659	
Jacobi	3.2094	171	RMSE	-0.1132	21
	0.2339			0.0755	
	0.7165			1.5659	

The following is table demonstrating all the roots and the iterations followed by which stopping criteria. Gaussian Iteration method does converge faster in both cases. And for some the roots differ be 0.001 or 0.0002 which questions the accuracy of our results, although very close to each other. On the bottom or some screen shots that display the iteration number to confirm my results on the table. The rest can be seen through the "testingAssign2.m" file.

	0.110001	0.0,0100	1.000000	0.000010					
18 19	-0.112891 -0.113218	0.075430		0.012266 0.000327	47	3.213178	0.236132	0.717960	0.000080
20	-0.113218	0.400000		0.000327	48	3.213178	0.236132	0.714729	0.000090
21	-0.113218	0.075508	1.565937	0.000483	49	3.207595	0.236132	2 0.714729	0.000031
	-0.1132	0.0755 1	.5659						
1	-0.375000	0.400000	1.500000	70.140625	50	3.207595	0.233487	7 0.714729	0.000038
1 2	-0.375000	0.400000 1.000000	1.500000	74.140625	51	3.207595	0.233487	7 0.716962	0.000043
3	-0.375000	1.000000	-1.000000	78.140625	52	3.211454	0.233487	7 0.716962	0.000015
4	0.875000	0.400000	1.500000	1.562500	F 2	2 211454	0 00501	0.716060	0.000010
5	0.875000	0.562500	1.500000	1.753906	53	3.211454	0.235315	0.716962	0.000018
6	0.875000	0.562500	2.093750	11.325195	54	3.211454	0.235315	0.715418	0.000021
7	-0.062500	0.400000	1.500000	0.878906	55	3.208786	0.235315	5 0.715418	0.000007
8	-0.062500	0.068750	1.500000	1.122695					
9	-0.062500	0.068750	1.562500	1.404922	56	3.208786	0.234051	l 0.715418	0.000009
10 11	-0.114844 -0.114844	0.400000 0.081250		0.002740 0.002896	57	3.208786	0.234051	0.716486	0.000010
12	-0.114844	0.081250		0.002898					
13	-0.107031	0.400000		0.003032	58	3.210630	0.234051	l 0.716486	0.000003
14	-0.107031	0.078516		0.000069	59	3.210630	0.234925	0.716486	0.000004
15	-0.107031	0.078516	1.569336	0.000442	60	2 210620	0.234925	0.715740	0 000005
16	-0.112891	0.400000	1.500000	0.000034	60	3.210630	0.234923	0.715748	0.000005
17	-0.112891	0.075430	1.500000	0.000044	61	3.209355	0.234925	0.715748	0.000002
18	-0.112891	0.075430	1.566016	0.000055	62	3.209355	0.234321	0.715748	0.000002
19	-0.113218	0.400000	1.500000	0.000000	02	3.209333	0.23432	0./15/40	0.000002
20	-0.113218	0.075508	1.500000	0.000000	63	3.209355	0.234321	l 0.716258	0.000002
21	-0.113218	0.075508	1.565937	0.000000		3.2094	0.2343	0.7163	
	-0.1132	0.0755 1	.5659			3.2034	0.2343	0.7103	