Quantum Walk with Absorbing Boundaries

Wang Kun

Department of Computer Science and Technology Nanjing University, China

November 1, 2014

Outline

Quantum walk with one boundary

Quantum walk with two boundaries

Physical implementation

Summary

Quantum walk with one boundary[ABN⁺01]

- Step1. Initialize the system to state $|\psi_{init}\rangle = |j\rangle|R\rangle$
- Step2. For each step of evolution
 - Apply $\mathcal{U} = \mathcal{S} \cdot (\mathcal{I} \otimes \mathcal{H})$ to the system
 - Observe system with projection operator $\{\prod_{yes}^0, \prod_{no}^0\}$
- Step3. If the result of measurement was "yes", terminate; otherwise goto Step 2

Exit probability

- *Exit probability:* the probability that the measurement of whether the walker is at position 0 eventually results in "yes"
- Let $P_{0,j,\infty}$ denotes the exit probability
- Calculating $P_{0,1,\infty}$. $|\psi_{init}\rangle = |1\rangle|R\rangle$

$$\begin{array}{ll} \stackrel{\mathcal{I}\otimes\mathcal{H}}{\longrightarrow} & \frac{1}{\sqrt{2}}(|1\rangle|L\rangle + |1\rangle|R\rangle) \stackrel{\mathcal{S}}{\longrightarrow} \frac{1}{\sqrt{2}}(|0\rangle|L\rangle + |2\rangle|R\rangle) \\ \stackrel{\prod_{yes}^{0}}{\longrightarrow} & \left\{ \begin{array}{ll} |0\rangle|L\rangle & \text{w.p. } 1/2, \text{ terminates} \\ |2\rangle|R\rangle & \text{w.p. } 1/2, \text{ continues} \end{array} \right. \\ \stackrel{\mathcal{I}\otimes\mathcal{H}}{\longrightarrow} & \frac{1}{\sqrt{2}}(|2\rangle|L\rangle + |2\rangle|R\rangle) \stackrel{\mathcal{S}}{\longrightarrow} \frac{1}{\sqrt{2}}(|1\rangle|L\rangle + |3\rangle|R\rangle) \\ \stackrel{\prod_{yes}^{0}}{\longrightarrow} & \frac{1}{\sqrt{2}}(|1\rangle|L\rangle + |3\rangle|R\rangle) & \text{w.p. } 1/2, \text{ continues} \end{array}$$

The state-of-art

• Mathematical expression of $P_{0,j,\infty}[BCG^+04]$

$$P_{0,j,\infty} = \frac{1}{2\pi} \int_0^{2\pi} |F(\theta)|^2 |G(\theta)|^{2j-2} d\theta$$

where $F(\theta)$, $G(\theta)$ are pre-defined functions

Special cases

1.

$$P_{0,1,\infty} = \frac{2}{\pi}.$$

Sharp contrast with the random walk. In random walk, the probability of eventually reaching position 0 is 1.

2.

$$\lim_{j \to \infty} P_{0,j,\infty} = \frac{2}{\pi} - \frac{1}{2}.$$

Sharp contrast with the random walk. In random walk, the probability of eventually reaching position 0 is 1.

Arbitrary coin state

• For an arbitrary coin, the system state may be written as

$$|\psi\rangle_{init} = |j\rangle(\alpha|L\rangle + \beta|R\rangle), \alpha, \beta \in \mathbb{C}.$$

• Mathematical expression of $P_{0,j,\infty}[\mathsf{BCG}^+04]$

$$P_{0,j,\infty} = \frac{1}{2\pi} \int_0^{2\pi} |\alpha F(\theta) + \beta G(\theta)|^2 |G(\theta)|^{2i-2} d\theta$$

Arbitrary coin transformation

• For an arbitrary unitary operator \mathcal{C} , the transformation may be written as

$$C|L\rangle = a|L\rangle + b|R\rangle$$

 $C|R\rangle = c|L\rangle + d|R\rangle$

• Mathematical expression of $P_{0,j,\infty}[BCG^+04]$

Quantum walk with two boundaries[ABN+01]

- Step1. Initialize the system to state $|\psi_{init}\rangle = |j\rangle|R\rangle$
- Step2. For each step of evolution
 - Apply $\mathcal{U} = \mathcal{S} \cdot (\mathcal{I} \otimes \mathcal{H})$ to the system
 - Observe system with projection operator $\{\prod_{ues}^0, \prod_{no}^0\}$
 - Observe system with projection operator $\{\prod_{yes}^{n},\prod_{no}^{n}\}$
- Step3. If the result of either measurements was "yes", terminate; otherwise goto Step 2

Exit probabilities

- Exit probability: the probability that the measurement of whether the walker is at position 0 eventually results in "yes"
- Let $P_{0,i,n}$ denotes the exit probability
- Calculating $P_{0,1,3}$. $|\psi_{init}\rangle = |1\rangle|R\rangle$

$$\frac{u}{\sqrt{2}} \left(|0\rangle|L\rangle + |2\rangle|R\rangle \right) = \begin{cases} |0\rangle|L\rangle, & \text{w.p. } 1/2, \text{ terminates} \\ |2\rangle|R\rangle, & \text{w.p. } 1/2, \text{ continues} \end{cases}$$

$$\frac{u}{\sqrt{2}} \left(|1\rangle|L\rangle + |3\rangle|R\rangle \right) = \begin{cases} |3\rangle|R\rangle, & \text{w.p. } 1/4, \text{ terminates} \\ |1\rangle|L\rangle, & \text{w.p. } 1/4, \text{ continues} \end{cases}$$

$$\frac{u}{\sqrt{2}} \left(|0\rangle|L\rangle - |2\rangle|R\rangle \right) = \begin{cases} |0\rangle|L\rangle, & \text{w.p. } 1/8, \text{ terminates} \\ |2\rangle|R\rangle, & \text{w.p. } 1/8, \text{ continues} \end{cases}$$

$$\frac{u}{\sqrt{2}} \left(|0\rangle|L\rangle - |2\rangle|R\rangle \right) = \begin{cases} |0\rangle|L\rangle, & \text{w.p. } 1/8, \text{ terminates} \\ |2\rangle|R\rangle, & \text{w.p. } 1/8, \text{ continues} \end{cases}$$

•
$$P_{0,1,3} = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} + \dots = \frac{2}{3}$$

The state-of-art

• Mathematical expression of $P_{0,j,n}[BB09]$

$$P_{0,j,n} = \frac{\sqrt{2}}{4} \cdot \frac{(A^{n-j} - B^{n-j})(A^{j-1}B^{j-1})}{A^{n-1} + B^{n-1}}$$

where $A = 2 + \sqrt{2}, B = 2 - \sqrt{2}$.

Special cases

1

$$\lim_{n \to \infty} P_{0,1,n} = \frac{1}{\sqrt{2}}.$$

Sharp contrast with the random walk. In random walk, the probability of eventually exiting to the left is $\lim_{n\to\infty} P_{0,1,n}=1$.

2.

$$P_{0,1,n+1} = \frac{1 + 2P_{0,1,n}}{2 + 2P_{0,1,n}}, \ \forall n \ge 0.$$

Single-photon quantum walk[BFL+10]

Single-photon quantum walk (cont.)

Tunable decoherence by pure dephasing

$$\rho_{N+1} = (1 - q)\mathcal{U}\rho_N \mathcal{U}^{\dagger} + q \sum_i K_i \mathcal{U}\rho_N \mathcal{U}^{\dagger} K_i^{\dagger}$$

The parameter q is the probability of a dephasing event occur at each step

- A difference between the quantum walk exit probability and classical walk exit probability first occurs after 5 steps
- Absorbing boundaries implemented using *beam blocks* in every spatial mode -1

What we can do

- What are other questions which could be asked about the quantum walk with boundaries?
- In the two boundaries case, arbitrary coin state and arbitrary coin transformation have not been analyzed
- Applications of quantum walk with boundaries
 - The ruined gambler
- Demonstrate the differences using other physical schemes
 - How to implement projection measurement $\{\prod_{n=0}^{0}, \prod_{n=0}^{0}\}$
 - Walking more steps to show the difference

Summary

- Exit probabilities of quantum walk with boundaries have been intensively studied
- Parameters in quantum walk
 - Discrete or continuous
 - Arbitrary coin initial state
 - Arbitrary coin transformation
 - Arbitrary walker initial state?

Acknowledgement

Thank you!

References I

Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath, and John Watrous, *One-dimensional quantum walks*, Proceedings of the thirty-third annual ACM symposium on Theory of computing, ACM, 2001, pp. 37--49.

Eric Bach and Lev Borisov, Absorption probabilities for the two-barrier quantum walk, arXiv preprint arXiv:0901.4349 (2009).

Eric Bach, Susan Coppersmith, Marcel Paz Goldschen, Robert Joynt, and John Watrous, *One-dimensional quantum walks with absorbing boundaries*, Journal of Computer and System Sciences **69** (2004), no. 4, 562–592.

Matthew A Broome, Alessandro Fedrizzi, Benjimain P Lanyon, Ivan Kassal, Alan Aspuru-Guzik, and Andrew G White, *Discrete single-photon quantum walks with tunable decoherence*, Physical review letters **104** (2010), no. 15, 153602.