Rozwiązywanie układu równań liniowych metodą GEPP

Aleksandra Syska

April 28, 2025

1 Wstęp

Celem projektu jest rozwiązanie układu równań liniowych metodą eliminacji Gaussa z częściowym wyborem elementu głównego (**GEPP**) oraz porównanie wyników z rozwiązaniem uzyskanym za pomocą wbudowanej funkcji w programie MATLAB.

2 Treść zadania

Rozważamy układ równań liniowych postaci:

$$Cz = c$$
, gdzie $C = A + iB$, $A, B \in \mathbb{R}^{n \times n}$, $c = a + ib$, $z = x + iy$, $x, y, a, b \in \mathbb{R}^n$.

W celu zastosowania eliminacji Gaussa z częściowym wyborem elementu głównego (**GEPP**), przekształcamy problem do postaci macierzy rozszerzonej:

$$M = \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in \mathbb{R}^{2n \times 2n}.$$

Następnie porównujemy wyniki z tymi, które uzyskamy za pomocą funkcji wbudowanej w MATLAB-ie.

3 Podstawowe pojęcia i wprowadzenie do metody

Eliminacja Gaussa to algorytm służący do rozwiązywania układów równań liniowych poprzez przekształcenie macierzy współczynników do postaci **górnotrójkątnej**, a następnie zastosowanie podstawiania wstecznego w celu znalezienia rozwiązania.

3.1 Macierz współczynników i wektor wyników

Układ równań liniowych można zapisać w postaci macierzowej:

$$Ax = b$$
,

gdzie $A \in \mathbb{R}^{n \times n}$ to macierz współczynników, $x \in \mathbb{R}^n$ to wektor niewiadomych, a $b \in \mathbb{R}^n$ to wektor wyników.

Metoda eliminacji Gaussa polega na przekształceniu układu do postaci:

$$Ux = c$$
,

gdzie U jest macierzą górnotrójkątną. Rozwiązanie wyznaczamy stosując podstawianie wsteczne.

4 Eliminacja Gaussa z częściowym wyborem elementu głównego (GEPP)

Podstawowym problemem klasycznej eliminacji Gaussa jest możliwość dzielenia przez bardzo małe liczby, co prowadzi do błędów numerycznych. Aby tego uniknąć, stosuje się **częściowy wybór elementu głównego** (**pivoting**), czyli zamianę wierszy tak, aby największy (modułem) element danej kolumny znajdował się na diagonali głównej.

4.1 Etapy algorytmu GEPP

Algorytm GEPP przebiega w następujących krokach:

- 1. **Eliminacja współczynników** dla każdej kolumny wybieramy element o największej wartości bezwzględnej spośród dostępnych wierszy i zamieniamy wiersze, aby umieścić go na przekatnej.
- 2. **Redukcja do macierzy górnotrójkątnej** dla każdego wiersza poniżej przekątnej odejmujemy odpowiednią wielokrotność bieżącego wiersza.
- 3. **Podstawianie wsteczne** po otrzymaniu macierzy górnotrójkątnej rozwiązujemy układ równań dla niewiadomych.

4.2 Matematyczne wyprowadzenie eliminacji Gaussa

Rozważmy układ równań:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n.$$

Chcemy wyzerować wszystkie elementy pod a_{11} . Dla $i=2,3,\ldots,n$ obliczamy współczynnik:

$$m_{i1} = \frac{a_{i1}}{a_{11}}.$$

Następnie aktualizujemy wiersze:

$$a_{ij} = a_{ij} - m_{i1}a_{1j}$$
, dla $j = 1, 2, \dots, n$.

Analogicznie postępujemy dla kolejnych kolumn, aż uzyskamy macierz trójkatna.

5 Podstawianie wsteczne

Po otrzymaniu macierzy górnotrójkątnej rozwiązujemy układ równań:

$$Ux = c$$
,

gdzie U ma postać:

$$\begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & u_{nn} \end{bmatrix}$$

Rozwiązujemy równania od dołu:

$$x_{n} = \frac{c_{n}}{u_{nn}},$$

$$x_{n-1} = \frac{c_{n-1} - u_{n-1,n}x_{n}}{u_{n-1,n-1}},$$

$$\vdots$$

$$x_{1} = \frac{c_{1} - \sum_{j=2}^{n} u_{1j}x_{j}}{u_{11}}.$$

6 Opis zaimplementowanych funkcji

W ramach projektu zaimplementowano dwie kluczowe funkcje do przekształcania i rozwiązywania zespolonych układów równań liniowych metodą eliminacji Gaussa z częściowym wyborem elementu głównego.

6.1 Funkcja create_equations

Funkcja ta przekształca układ równań zespolonych:

$$Cz = c$$
, $C \in \mathbb{C}^{n \times n}$, $c \in \mathbb{C}^n$

do równoważnego układu rzeczywistego:

$$Mx = w, \quad M \in \mathbb{R}^{2n \times 2n}, \quad w \in \mathbb{R}^{2n}.$$

Działanie funkcji można podsumować w następujących krokach:

• Rozdzielenie części rzeczywistych i urojonych:

$$C = A + iB$$
, $c = a + ib$, $A, B, a, b \in \mathbb{R}$.

• Utworzenie rzeczywistego układu blokowego:

$$M = \begin{bmatrix} A & -B \\ B & A \end{bmatrix}, \quad w = \begin{bmatrix} a \\ b \end{bmatrix}.$$

 \bullet Zwrócenie macierzy M i wektora w jako nowej reprezentacji problemu.

Przykład użycia

```
C = [1+2i, 3-1i; 2+0i, 4+2i];
c = [5+1i; 6-2i];
[M, w] = create_equations(C, c);
```

6.2 Funkcja solve_block_system

Funkcja ta rozwiązuje zespolony układ równań Cz = c poprzez:

- 1. **Przekształcenie układu** na rzeczywisty system blokowy za pomocą funkcji create_equations.
- 2. **Zastosowanie eliminacji Gaussa** z częściowym wyborem elementu głównego do rozwiązania układu rzeczywistego.
- 3. **Zrekonstruowanie rozwiązania zespolonego** poprzez połączenie części rzeczywistej i urojonej.

Przykład użycia

```
C = [2+1i, 1-0.5i; 1+0.5i, 3-1i];
c = [1+0.5i; 2-1i];
z = solve_block_system(C, c);
```

6.3 Obsługa macierzy osobliwych

Podczas eliminacji Gaussa funkcja sprawdza, czy macierz jest osobliwa (lub bliska osobliwości) poprzez porównanie największego elementu w kolumnie do wartości eps, czyli maszynowej precyzji obliczeń.

W przypadku wykrycia osobliwości funkcja zwraca komunikat ostrzegawczy i może zwrócić wartości NaN w rozwiązaniu.

7 Opis funkcji w skrypcie testującym

W celu ułatwienia analizy wyników działania algorytmu rozwiązującego układy równań zespolonych, w skrypcie zaimplementowano dwie funkcje pomocnicze:

- display_system(C, c) Funkcja służy do czytelnego wyświetlania układu równań zespolonych w formie tekstowej. Dla każdej linii systemu konstruuje ciąg znaków opisujący równanie w postaci algebry zespolonej, uwzględniając znaki liczb zespolonych oraz odpowiednie formatowanie pierwszego i kolejnych składników. Na końcu każdego równania wypisywana jest prawa strona (c_i) .
- display_error(error_value, threshold)
 Funkcja odpowiedzialna za prezentację różnicy pomiędzy rozwiązaniem uzyskanym metodą własną a rozwiązaniem MATLAB-a. Jeśli błąd bezwzględny jest mniejszy niż zadany próg (ERROR_THRESHOLD), funkcja informuje, że różnica jest praktycznie zerowa. W przeciwnym przypadku wyświetla wartość błędu w formacie naukowym.

8 Generowanie wykresów

W skrypcie służącym do oceny jakości oraz szybkości rozwiązania układów równań zespolonych zaimplementowano następujące funkcjonalności:

• Test wydajności

Dla różnych rozmiarów macierzy ($n=10,60,110,\ldots,1010$) mierzony jest czas rozwiązania układu Cz=c przy użyciu:

- własnej metody użytkownika (solve_block_system),
- wbudowanej funkcji MATLAB-a (C\c).

Czasy wykonania obu metod są zapisywane w odpowiednich tablicach, a następnie przedstawiane na wykresie zależności czasu od rozmiaru macierzy.

• Analiza prędkości działania

Po wykonaniu testów dla wszystkich rozmiarów obliczana jest względna prędkość działania obu metod jako stosunek czasów wykonania:

$$speed_ratio = \frac{czas_mojej_metody}{czas_MATLAB}$$

Wyniki są wypisywane w konsoli.

• Test dokładności

Dla tych samych rozmiarów macierzy przeprowadzono dodatkowy test dokładności rozwiązania. Obliczana jest względna norma błędu pomiędzy rozwiązaniem własnym a rozwiązaniem MATLAB-a:

błąd względny =
$$\frac{\|z_{\text{custom}} - z_{\text{MATLAB}}\|}{\|z_{\text{MATLAB}}\|}$$

Wyniki błędów są zapisywane i prezentowane na wykresie.

Wizualizacja wyników

W obu przypadkach (wydajność i dokładność) wyniki są przedstawione graficznie:

- Wydajność: wykres czasu wykonania w funkcji rozmiaru macierzy.
- Dokładność: wykres względnego błędu w funkcji rozmiaru macierzy.

9 Przeprowadzone testy

W celu oceny poprawności i efektywności implementacji metody GEPP przeprowadzono serię testów numerycznych. Otrzymane wyniki porównano z rozwiązaniami uzyskanymi za pomocą MATLAB-a.

9.1 Test 1: Duża macierz losowa 5×5 (wydajność)

Celem testu było sprawdzenie wydajności implementacji dla macierzy o większym rozmiarze. Otrzymano następujące czasy wykonania:

- Czas mojej metody: 15.4286 s
- Czas MATLAB: 0.0714 s
- Różnica w rozwiązaniach: 2.457546×10^{-10}

Pomimo poprawności wyniku, wydajność mojej implementacji była znacznie gorsza niż MATLAB-a.

9.2 Test 2: Macierz dobrze uwarunkowana 3×3

W teście rozwiązano dobrze uwarunkowany układ równań. Otrzymane wyniki:

- Moje rozwiązanie: $\begin{bmatrix} 0.4339 + 0.0356i & 0.5702 0.3058i & 0.2668 + 0.3069i \end{bmatrix}$
- Rozwiązanie MATLAB: $\begin{bmatrix} 0.4339 + 0.0356i & 0.5702 0.3058i & 0.2668 + 0.3069i \end{bmatrix}$
- Różnica w rozwiązaniach: 2.077037e-16 10⁻¹⁶

Wyniki obu metod są identyczne.

9.3 Test 3: Macierz Hermitowska 4×4

Test przeprowadzono dla macierzy Hermitowskiej. Otrzymano następujące wyniki:

- Moje rozwiązanie: zgodne z MATLAB-em
- Różnica w rozwiązaniach: 4.200181 10⁻¹⁶

Metoda GEPP dała poprawne wyniki.

9.4 Test 4: Macierz źle uwarunkowana 3×3

Przetestowano układ z macierzą źle uwarunkowaną, czyli taką, dla której niewielkie zmiany danych wejściowych mogą powodować duże zmiany w rozwiązaniu. Otrzymano:

- **Moje rozwiązanie:** [2 0 0]
- Rozwiązanie MATLAB: $\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$
- Różnica w rozwiązaniach: 0 (mniej niż 10⁻¹⁶)

Obie metody dały zgodne wyniki.

9.5 Test 5: Macierz prawie osobliwa 4×4

W przypadku macierzy bliskiej osobliwości MATLAB wygenerował ostrzeżenie:

• Moje rozwiązanie: NaN (nieokreślone wartości)

• Rozwiązanie MATLAB: NaN (nieokreślone wartości)

• Różnica w rozwiązaniach: NaN

Oba algorytmy prawidłowo wykryły problem i wskazały brak rozwiązania.

9.6 Test 6: Macierz osobliwa 3×3

W przypadku macierzy osobliwej MATLAB również zgłosił ostrzeżenie o osobliwości:

• Moje rozwiązanie: NaN

• Rozwiązanie MATLAB: NaN (z wyjątkiem jednej wartości ∞)

• Różnica w rozwiązaniach: NaN

Obie metody wykryły brak jednoznacznego rozwiązania.

9.7 Test 7: Macierz rzadka 5×5

Test przeprowadzono na rzadkiej macierzy, czyli takiej, w której większość elementów to zera. Otrzymano:

• Czas mojej metody: 0.0003 s

• Czas MATLAB: 0.0001 s

• Różnica w rozwiązaniach: 1.67685910⁻¹²

10 Podsumowanie analizy wyników

10.1 Porównanie różnicy w rozwiązaniach

Test	Różnica w rozwiązaniach
Duża macierz losowa 5x5	2.457546e-10
Macierz dobrze uwarunkowana 3x3	2.077037e-16
Macierz Hermitowska 4x4	4.200181e-16
Macierz źle uwarunkowana 3x3	0 (mniej niż 1e-16)
Macierz rzadka 5x5	1.676859e-16
Macierz prawie osobliwa 4x4	NaN
Macierz osobliwa 3x3	NaN

Table 1: Porównanie różnicy w rozwiązaniach

Przeprowadzone testy wykazały, że uzyskane rozwiązania są w większości przypadków zgodne z wynikami MATLAB-a. Różnice w wynikach były minimalne i nie przekraczały 10^{-10} , co potwierdza poprawność implementacji. W przypadkach macierzy osobliwych oraz prawie osobliwych obie metody zwróciły wartości NaN, co jest zgodne z oczekiwanym zachowaniem numerycznym.

10.2 Porównanie czasu wykonania metod

Test	Czas mojej metody (s)	Czas MATLAB (s)
Duża macierz losowa 5x5	15.4286	0.0714
Macierz rzadka 5x5	0.0003	0.0001

Table 2: Porównanie czasu wykonania metod

Największa różnica pomiędzy obiema metodami dotyczyła jednak czasu wykonania. W przypadku dużej macierzy losowej 5×5 nasza implementacja była znacząco wolniejsza niż rozwiązanie MATLAB-a, co sugeruje możliwość dalszej optymalizacji.

11 Test działania metody w zależności od rozmiaru macierzy

W ramach testów sprawdzono czas wykonania oraz dokładność własnej metody rozwiązującej układy równań zespolonych w porównaniu z funkcją MATLAB w zależności od rozmiaru macierzy.

11.1 Wydajność

Na górnym wykresie przedstawiono czas wykonania obu metod w funkcji rozmiaru macierzy. Widać wyraźnie, że funkcja wbudowana MATLAB-a (\backslash) działa szybciej od własnej implementacji, zwłaszcza dla większych rozmiarów n.

Dla małych macierzy (n < 100) różnice w czasie są stosunkowo niewielkie, jednak wraz ze wzrostem rozmiaru macierzy różnice te stają się coraz bardziej wyraźne.

11.2 Dokładność

Można zauważyć, że dla wszystkich rozmiarów macierzy względny błąd pozostaje bardzo niski, zwykle na poziomie 10^{-14} do 10^{-12} . Oznacza to, że własna metoda zachowuje wysoką dokładność rozwiązania, praktycznie równą dokładności funkcji MATLAB-a, niezależnie od rozmiaru układu.

12 Wnioski

Podsumowując, opracowana metoda charakteryzuje się wysoką dokładnością rozwiązań przy akceptowalnym wzroście czasu wykonania w porównaniu do funkcji wbudowanej w MATLAB-a. Metoda może być stosowana w praktyce tam, gdzie priorytetem jest dokładność rozwiązania, a czas wykonania nie jest krytycznym czynnikiem.