Homework 3

Will Boland

March 25, 2019

Question 1

A) Claim: $(P \land Q) \rightarrow R, P \land S, \neg \neg Q \vdash R$ is valid.

Proof:

Assume $(P \land Q) \rightarrow R, P \land S, \text{ and } \neg \neg Q.$

Because $\neg\neg Q$, we know Q. (\neg -Eliminiation)

Because $P \wedge S$, we know P. (\wedge -Elimination)

From P and Q, we know $P \wedge Q$ (\wedge -introduction)

Due to $(P \land Q) \to R$ from $P \land Q$, we know R. $(\to \text{-Elimination}) \square$

B) Claim: $X \land (X \rightarrow (Z \land Y)) \vdash X \land Y$ is valid.

Proof:

Assume $X \land (X \rightarrow (Z \land Y))$.

From $X \wedge (X \rightarrow (Z \wedge Y))$, we know X and $(X \rightarrow (Z \wedge Y))$. (\wedge -elimination)

Due to $X \rightarrow (Z \land Y)$ from X, we know $(Z \land Y)$ $(\rightarrow$ -elimination)

From $Z \wedge Y$ we know Y. (\wedge -elimination)

From X and Y, we know $X \wedge Y$ (\land -introduction) \square

C) Claim: $A \land \neg \neg B \vdash B \lor (A \rightarrow \neg C)$ is valid

Proof:

Assume $A \land \neg \neg B$.

From $A \land \neg \neg B$, we know A and $\neg \neg B$. (\land -elimination)

From $\neg\neg B$, we know B. (Double negation)

From B, we know $B \lor (A \rightarrow \neg C) \ (\lor$ -introduction)

D) Claim: $(K \lor L) \rightarrow N, K \land M \vdash N \land M$ is valid

Proof:

Assume $(K \lor L) \to N$ and $K \land M$.

From $K \wedge M$, we know both K and M. (\wedge -elimination)

From K, we know $K \vee L$. (\vee -introduction)

Due to $(K \lor L) \to N$ from $K \lor L$ from K, we know N. $(\to \text{-elimination})$

From M and N, we know $N \wedge M$ (\wedge -introduction)

E) Claim: $(A \land B) \rightarrow C$, B, $A \land \neg D \vdash C \land \neg D$ is valid

Proof:

Assume $(A \land B) \rightarrow C$, B, and $A \land \neg D$

From $A \land \neg D$, we know both A and $\neg D$ (\land -elimination)

From A and B, we know $A \land B$ (\land -introduction)

Due to $(A \land B) \rightarrow C$ from $A \land B$, we know $C (\rightarrow -elimination)$

From C and $\neg D$, we know $C \land \neg D$ (\land -introduction) \square

F) Claim: $(A \land B) \rightarrow C$, $B \vdash (A \land \neg D) \rightarrow (C \land \neg D)$ is valid

Proof:

Assume $(A \land B) \rightarrow C$ and B.

- Assume $A \land \neg D$
- From $A \land \neg D$, we have both $\neg D$ and $A (\land \text{-elimination})$
- From A and B, we get $A \wedge B$ (\wedge -introduction)
- Due to $(A \land B) \rightarrow C$ from $A \land B$, we know $C (\rightarrow -elimination)$
- From C and $\neg D$, we know $C \land \neg D$ (\land -introduction)

Assuming $A \land \neg D$, we proved $(C \land \neg D)$ and therefore $(A \land \neg D) \rightarrow (C \land \neg D)$. (direct proof or \rightarrow -introduction) \square

G) Claim: $Z \rightarrow \neg X$, $Z \land \neg \neg Y \vdash \neg X \lor Y$ is valid

Proof:

Assume $Z \rightarrow \neg X$ and $Z \land \neg \neg Y$

From $Z \land \neg \neg Y$, we know Z and $\neg \neg Y$ (\land -elimination)

From $\neg\neg Y$ we get Y (double negation)

Due to $Z \rightarrow \neg X$ from Z, we get $\neg X$ (\rightarrow -elimination)

From $\neg X$ or Y, we know $\neg X \lor Y$ (\lor -introduction) \square

H) Claim: $\vdash ((Z \rightarrow \neg X) \land (Z \land \neg \neg Y)) \rightarrow (\neg X \lor Y)$ is valid

Proof:

- Assume $((Z \rightarrow \neg X) \land (Z \land \neg \neg Y))$
- From $((Z \rightarrow \neg X) \land (Z \land \neg \neg Y))$, we know $(Z \rightarrow \neg X)$ and $(Z \land \neg \neg Y)$ $(\land$ -elimination)
- From $(Z \land \neg \neg Y)$, we know Z and $\neg \neg Y$ $(\land \text{-elimination})$
- From $\neg\neg Y$, we know Y (\neg -elimination)

```
— Due to (Z \rightarrow \neg X) from Z, we know \neg X (\rightarrow-elimination)
— From \neg X and Y, we know \neg X \lor Y (\lor-introduction)
```

Assuming $((Z \rightarrow \neg X) \land (Z \land \neg \neg Y))$, we proved $\neg X \lor Y$; therefore, $((Z \rightarrow \neg X) \land (Z \land \neg \neg Y)) \rightarrow (\neg X \lor Y)$. (Direct proof)