CONTACTOS COVID-19

Relatório

Bruno Carmo nº57418 turno P5 Sahil Kumar nº57449 turno P12 Ano: 2020/2021

Secção 1

As classes do domínio do problema utilizadas no projeto são as seguintes: UserClass, GroupClass, MessageClass e ContactNetClass.

A UserClass e a GroupClass contêm uma coleção de mensagens e uma coleção de utilizadores (contactos na UserClass e participantes na GroupClass).

A TAD e a ED escolhida para a coleção de mensagens foi a lista e a lista simplesmente ligada, respetivamente, pois, como a única operação feita sobre a coleção é a adição sempre ao início da lista e a iteração de mensagens, a complexidade temporal será O(1) na adição e O(n) na iteração, no pior caso, não necessitando de gastar espaço com uma lista duplamente ligada ou um dicionário.

A TAD e a ED escolhida para a coleção de utilizadores foi o dicionário e a árvore AVL, respetivamente, dado que, é necessário pesquisa por login do utilizador e a árvore AVL garante essa pesquisa, assim como, a adição e a remoção, de um utilizador com a complexidade temporal O(log n) onde n é o número de utilizadores na coleção e permite ainda, a iteração dos utilizadores pela relação de ordem dos seu logins sem utilizar métodos de sorting.

A UserClass contêm ainda uma coleção de grupos onde a TAD e a ED escolhida é o dicionário e a tabela de dispersão aberta, respetivamente, porque, são feitas operações de pesquisa de um grupo pelo seu nome sendo a complexidade temporal da operação O(1) no caso esperado e como número de grupos é constante (10), nunca será necessário a operação de aumento da dimensão da tabela (rehash).

A ContactNetClass contêm uma coleção de utilizadores e uma coleção de grupos onde a TAD e a ED escolhida para as duas coleções é o dicionário e a tabela de dispersão aberta, respetivamente, pois, são feitas operações de pesquisa de um grupo pelo seu nome e de um utilizador pelo seu login sendo a complexidade temporal da operação O(1) no caso esperado e não é necessário iterar os elementos da tabela por alguma relação de ordem.

Secção 2

Comando	Melhor caso	Pior caso	Caso esperado
Inserir novo utilizador	O(1)	O(u)	O(1)
Consulta dados de utilizador	O(1)	O(u)	O(1)
Inserir contacto	O(log c)	O(u)+ O(log c)	O(log c)
Remover contacto	O(log c)	O(u)+ O(log c)	O(log c)
Listagem de contactos	O(c)	O(u)+O(c)	O(c)
Inserir novo grupo	O(1)	O(g)	O(1)
Consulta dados de grupo	O(1)	O(g)	O(1)
Remover grupo	O(p*1)	O(g)+O(p*gs)	O(p*gs)
Inserir participante num grupo	O(log p)	O(u)+O(g)+O(log p)+O(gs)	O(log p)
Remover participante de um grupo	O(log p)	O(u)+O(g)+O(log p) +O(gs)	O(log p)
Listagem de participantes	O(p)	O(g)+O(p)	O(p)
Inserir mensagem	O(gs)+O(c)	O(u)+O(gs)+O(c)	O(gs)+O(c)
Listar mensagens de contacto	O(log c) + O(m)	O(u)+O(log c)+O(m)	O(log c)+O(m)
Listar mensagens de grupo	O(log p)+O(m)	$O(u)+O(g)+O(\log p) + O(m)$	O(log p)+O(m)
Terminar	O(1)	O(1)	O(1)

Legenda: $u - n^{o}$ de utilizadores, $c - n^{o}$ de contactos, $g - n^{o}$ de grupos, $m - n^{o}$ de mensagens, $p - n^{o}$ de participantes num grupo, $gs - n^{o}$ de grupos subscritos

Secção 3

Seja u o número de utilizadores na aplicação, c o número de contactos de cada utilizador, g o número de grupos subscritos pelo utilizador, g o número de grupos na aplicação, p o número de participantes em cada grupo e m o número de mensagens na aplicação. Seja e o número de entradas na tabela de dispersão aberta.

Seja un a complexidade espacial de um único utilizador, un será a soma das complexidades espaciais das coleções do utilizador, ou seja, será: un = O(gs+e) + O(c) + (m).

Seja ug a complexidade espacial de um único grupo, ug será a soma das complexidades espaciais das coleções do grupo, ou seja, será: ug = O(p) + O(m)

Assim seja t a complexidade espacial total da aplicação/solução, t é soma da complexidade espacial de todos os utilizadores mais a soma da complexidade espacial de todos os grupos existentes na aplicação, ou seja, $t = O(u)^*un + O(g)^*ug$.