Considere o seguinte problema de programação linear e a respectiva solução óptima:

max
$$2x_1 + x_2$$

suj. $x_1 - 2x_2 \le 4$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

	\boldsymbol{z}	x_1	x_2	s_1	s_2	
x_1	0	1	0	1	2	8
x_2	0	0	1	0	1	2
	1	0	0	2	5	18

- a) Desenhe o domínio de soluções admissíveis no espaço (x_1, x_2) .
- b) Quanto é que estaria disposto a pagar para aumentar o recurso da restrição 1? Justifique.
- c) Considere que o valor do recurso 1 passa a ser 5 unidades. Redesenhe o domínio, e determine o valor da nova solução óptima.
- d) Quanto é que estaria disposto a pagar para aumentar o recurso da restrição 2? Justifique.
- e) Considere que o valor do recurso 2 passa a ser 3 unidades. Redesenhe o domínio, e determine o valor da nova solução óptima.
- f) Da observação do desenho da alínea a), determine os limites de variação do recurso 1 (que apareceriam no relatório de análise de sensibilidade) dentro dos quais a variação do valor da função objectivo permanece igual à da alínea b). Justifique.
- g) Da observação do desenho da alínea a), determine os limites de variação do recurso 2 (que apareceriam no relatório de análise de sensibilidade) dentro dos quais a variação do valor da função objectivo permanece igual à da alínea d). Justifique.

 $\max 2x_1 + x_2$ suj. $x_1 - 2x_2 \leq 4$ x₂ ≤ 2 $x_1, x_2 \ge 0$

max
$$2x_1 + x_2$$

suj. $x_1 - 2x_2 \le 4$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

	\boldsymbol{z}	x_1	x_2	s_1	s_2	
x_1	0	1	0	1	2	8
x_1 x_2	0	0	1	0	1	2
	1	0	0	2	5	18

A solução óptima é:

$$x1* = 8, x2* = 2$$

E o valor do óptimo é $z^* = 18$.

	z	x_1	x_2	s_1	s_2	
x_1	0	1	0	1	2	8
x_2	0	0	1	0	1	2
	1	0	0	2	5	18

Por cada unidade de incremento do recurso 1, o valor da função objectivo aumenta 2 unidades.

O máximo que estaria disposto a pagar por cada unidade adicional do recurso 1 deve ser um valor inferior ao aumento do valor da função objectivo, para o incremento ser compensador.

 $\max 2x_1 + x_2$ suj. $x_1 - 2x_2 \le X = 5$ $x_2 \leq 2$ $x_1, x_2 \ge 0$

A nova solução óptima é:

$$x1* = 9, x2* = 2$$

E o novo valor do óptimo é $z^* = 20$.

Como o quadro simplex indica, o aumento do valor da função objectivo é de 2 unidades.

	z	x_1	x_2	s_1	s_2	
x_1	0	1	0	1	2	8
x_1 x_2	0	0	1	0	1	2
	1	0	0	2	5	18

Por cada unidade de incremento do recurso 2, o valor da função objectivo aumenta 5 unidades.

O máximo que estaria disposto a pagar por cada unidade adicional do recurso 2 deve ser um valor inferior ao aumento do valor da função objectivo, para o incremento ser compensador.

max
$$2x_1 + x_2$$

suj. $x_1 - 2x_2 \le 4$
 $x_2 \le X 3$
 $x_1, x_2 \ge 0$

A nova solução óptima é:

$$x1* = 10, x2* = 3$$

E o novo valor do óptimo é $z^* = 23$.

Como o quadro simplex indica, o aumento do valor da função objectivo é de 5 unidades.

max
$$2x_1 + x_2$$

suj. $x_1 - 2x_2 \le X b1$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

Por cada unidade de incremento do recurso 1, o valor da função objectivo aumenta 2 unidades dentro do intervalo [-4, +∞[

O limite esquerdo ocorre para b1 = -4, para a restrição x1 – 2 x2 <= - 4. Para valores de b1 mais baixos, o problema é impossível.

À direita, o aumento é sempre de 2 unidades qualquer que seja o valor de b1.

max
$$2x_1 + x_2$$

suj. $x_1 - 2x_2 \le 4$
 $x_2 \le X b2$
 $x_1, x_2 \ge 0$

Por cada unidade de incremento do recurso 2, o valor da função objectivo aumenta 5 unidades dentro do intervalo [0, +∞[

O limite esquerdo ocorre para b2 = 0, para a restrição x2 <= 0. Para valores de b2 mais baixos, o problema é impossível.

À direita, o aumento é sempre de 5 unidades qualquer que seja o valor de b2.

Fim