Permit Nos. 7369 and PSD-TX-120M3

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	<u>Emissic</u>	on Rates *
Point No. (1		Name (2)		<u>Name</u>
(3)	1b/hr	TPY		
KS-1	Dry/Wet Kiln Exhaust (5)(7)(8) PM (1	total)	193.53
		PM_{10} (total)	164.20	719.34
		NO_x	950.00	4161.00
		SO_2	2400.00	6299.42
		H_2SO_4	222.00	533.82
		CO	702.50	3076.55
		VOC	277.55	395.58
		HC1	4.64	20.50
KS-1a	Dry Kiln Exhaust Baghouse 63.24	Duct PM (filter	able)	14.44
	(5)(6)(7)(8)	PM ₁₀ (filtera	ble)12.13	53.12
		PM (total)	25.44	111.42
		PM ₁₀ (total)	21.37	93.59
		NO_x	450.00	1971.00
		SO_2	1200.00	366.58
		H_2SO_4	120.00	47.64
		CO	522.50	2288.55
		VOC	97.55	320.44
		HC1	2.74	12.00
9a	Alkali Bypass Baghouse	PM (filterab		13.41
	Stack (6)	PM ₁₀ (filtera	-	11.27
		PM (total)	5.39	23.63 19.85
		PM ₁₀ (total) NO _x	4.53 50.00	219.00
		SO_2	360.00	676.84
		3 0 ₂	300.00	0/0.04

Emission	Source	Air Contaminant	<u>Emissio</u>	n Rates *
<u>Point No.</u>	(1) Name (2)	Name (3)	1b/hr	<u>TPY</u>
		H₂SO₄ CO VOC	18.00 100.00 2.87	33.84 438.00 9.44
KS-1b	Wet Kiln Exhaust ESP(5)	PM (total) PM ₁₀ (total) NO _x SO ₂ H ₂ SO ₄ CO VOC HC1	162.70 138.30 450.00 1200.00 111.00 80.00 15.00 1.90	712.80 605.90 1971.00 5256.00 486.18 350.00 65.70 8.50
4	Solid Fuel Feed Bins Bagho Stack	ouse PM ₁₀	0.09	0.38
7	Blend Silo Roof Baghouse Stack	PM ₁₀	0.69	3.00
8	Dry Process Blend Tanks Bo 0.48 Baghouse Stack	ottom	PM_{10}	0.11
9b	Alkali Bypass Bin Baghouse Stack	e PM ₁₀	0.21	0.90
10	Coal/Coke Bins Baghouse Stack	PM ₁₀	0.09	0.34
11	Dry System Clinker Cooler Baghouse Stack	PM_{10}	12.25	53.66
14	Underground Clinker Tunne	l PM ₁₀	0.28	1.22

Emission *	Source	Air Contaminant	<u>Emission</u>	Rates
Point No. (1) Name (2)	Name (3)	lb/hr	TPY
	Baghouse Stack			
25	Cement Silo No. 12 Baghous	e PM ₁₀	0.69	3.00
26	Cement Silo No. 14 Baghous	e PM ₁₀	0.34	1.50
31	Mill Baghouses Stack	PM_{10}	0.26	1.01
32	Fuel Bin Baghouse Stack	PM_{10}	0.59	2.33
33	Solid Fuel Fines Bin Bagho Stack	use PM ₁₀	0.06	0.03
38	Fringe Material Baghouse Stack	PM ₁₀	0.15	0.68
39	Turn Head Material Diverte Baghouse Stack	r PM ₁₀	0.26	1.01
40	Feed Tank Baghouse Stack	PM_{10}	0.15	0.68
41a	Separator Baghouse Stack (4) PM ₁₀	2.98	13.06
41b	Mill Baghouse Stack (4)	PM_{10}	1.20	5.26
F-B-1	Solid Fuel Drop to Bin	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-2	· · · · · · · · · · · · · · · · · · ·		PM	<0.01
	0.01	PM_{10}	<0.01	<0.01
F-B-3	Solid Fuel Conveyor Drop t	o Bins	PM	<0.01

${\tt EMISSION} \ \ {\tt SOURCES} \ \ {\tt -} \ \ {\tt MAXIMUM} \ \ {\tt ALLOWABLE} \ \ {\tt EMISSION} \ \ {\tt RATES}$

Emission *	Source	Air Contaminant	<u>Emission</u>	Rates
Point No. (1	L) Name (2)	Name (3)	lb/hr	TPY
	0.01	PM ₁₀	<0.01	<0.01
F-B-4	Feed Tank Drop to Drag Cha	in PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-5	Drag Chain Drop to Belt	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-6	Belt Transfer Drop	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-7	Belt Transfer Drop	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-8	Solid Fuel Drop to Mill Ch	ute PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-C-1	Clinker Drop to Shuttle Be	lt PM PM ₁₀	0.30 0.14	1.30 0.61
F-C-2	Shuttle Belt Drop to Clinker 1.30	er Barn	РМ	0.30
		PM ₁₀	0.14	0.61
F-H-2	Solid Fuel Drop to Conveyo	r PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-L-1	Unpaved Roads	PM PM ₁₀		25.34 11.40
F-L-2	Solid Fuel Drop to Hopper	PM PM ₁₀	0.01 0.01	0.05 0.02

${\tt EMISSION} \ \ {\tt SOURCES} \ \ {\tt -} \ \ {\tt MAXIMUM} \ \ {\tt ALLOWABLE} \ \ {\tt EMISSION} \ \ {\tt RATES}$

Emission *	Source	Air Contaminant	<u>Emission</u>	Rates
Point No.	(1) Name (2)	Name (3)	lb/hr	TPY
F-P-1	Solid Fuel Storage Drop t 0.05	o Pile	РМ	0.01
	0.03	PM_{10}	0.01	0.02
F-P-2	Wind Pile Erosion	PM PM ₁₀	0.10 0.05	0.42 0.20
F-P-7	Kiln Dust Drop to Piles	PM PM ₁₀	<0.01 <0.01	<0.01 <0.01
F-P-12	CKD Dry Kiln Pug Mill to	Truck	PM	<0.01
	<0.01	PM_{10}	<0.01	<0.01
F-Q-4	Quarry Loader Drop to Tru	CK PM PM ₁₀	0.11 0.05	0.29 0.14
F-Q-6	Primary Crusher	PM PM ₁₀	<0.01 <0.01	<0.01 <0.01
F-R-2	Belt Transfer Drop	PM PM ₁₀	0.02 0.01	0.06 0.03
F-R-3	Belt Drop to Tabernacle T 0.29	ransfer	PM	0.11
	0.29	PM_{10}	0.05	0.14
F-R-6	Feed Belt Drop to RMS Shuttle 0.04	ttle Belt	PM	0.02
		PM ₁₀	0.01	0.02
F-R-7	RMS Shuttle Belt Drop to	Pile PM PM ₁₀	0.02 0.01	0.04 0.02

Emission	Source	Air Contaminant	<u>Emission</u>	Rates
<u>*</u> Point No.	(1) Name (2)	Name (3)	lb/hr	TPY
F-R-8	RMS Feeder Drop to Belt	PM PM ₁₀	0.01 0.01	0.04 0.02
F-R-9	RMS Belt Drop to Cross Pl	ant Belt	PM	0.01
	0.04	PM_{10}	0.01	0.02
F-R-10	Cross Plant Belt Drop to Shutt 0.04	Shuttle Belt	PM	0.01
		PM_{10}	0.01	0.02
	Shuttle Belt Drop to Dry Feed 0.04	Feed Bins	PM	0.01
		PM_{10}	0.01	0.02
F-R-12	Feed Bins Drop to Roller Mill 0.04	Mill Belt	PM	0.01
		PM_{10}	0.01	0.02
F-TR-1	Paved Roads	PM PM ₁₀		10.37 0.86
F-TR-2	Solid Fuel Truck Unloading Dro 0.04	ng Drop	PM	0.02
		PM_{10}	0.01	0.02

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

⁽²⁾ Specific point source name. For fugitive sources use area name or fugitive source name.

⁽³⁾ PM - particulate matter suspended in the atmosphere, including PM_{10} .

AIR CONTAMINANTS DATA

Emission *	Source	Air Contaminant	Emission	Rates
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
PM ₁₀ - diame parti NO _x - SO ₂ - H ₂ SO ₄ - CO - VOC - HCl - (4) EPNs 41a (5) EPN KS-1 emission complian (6) The PM a train on (7) Until Jul of 7088. rate of (8) Until Jurate of emission * Emission	particulate matter equater. Where PM is not culate matter greater the total oxides of nitrogen sulfur dioxide sulfuric acid carbon monoxide volatile organic compoun hydrogen chloride and 41b will never exhaus is the sum total of Eduallowables for each ce purposes. In PM10 filterable rates ly. In 2002, KS-1 is allowables and KS-1a is a 1832.78 tons. In 1832.78 tons. In 1832.78 tons. In 1832.78 tons and KS-1a is a 1832.78 tons. In 1832.78 tons. In 1832.78 tons and KS-1a is a 1832.78 tons. In 1832.78 tons and KS-1a is a 1832.78 tons. In 1832.78 tons and KS-1a is a 1832.78 tons	al to or less than listed, it shall be an 10 microns is emit ds ds ust to the atmosphere PNs KS-1a and KS-1b. of EPNs KS-1a and are based on front wed a maximum annual allowed a maximum annual is allowed a maximum and a is allowed a ma	simultaned ted. simultaned The ind KS-1b a half of s SO ₂ emissi nual SO ₂ e imum annua	ously. Hividual are for sampling on rate emission al H ₂ SO ₄
Hrs/day	g maximum operating sche 24 Days/week7		<u>?</u> or F	lrs/year_
8,760				

Dated____