Question 1: Suppose $R \in \mathbb{C}^{m \times m}$ is upper triangular and invertible. Prove that R^{-1} is also upper triangular.

Proof. Let R_k denote the $k \times k$ submatrix of R consisting of the first k columns and k rows of R. Construct the matrix X as follows: Let e_k^j denote the kth standard unit vector in \mathbb{C}^j .

$$X = \begin{pmatrix} X_1 & \cdots & X_m \end{pmatrix}$$
 such that $X_k = \begin{pmatrix} x_k \\ 0 \end{pmatrix}$ with $x_k = R_k^{-1} e_k^k$, $0 \in \mathbb{C}^{m-k}$

The vector x_k exists since R_k is invertible. Notice that X is upper-triangular. Then,

$$RX = R(X_1 \cdots X_m) = (RX_1 \cdots RX_m) = (e_1^m \cdots e_m^m) = I_m$$

Thus, $X = R^{-1}$ and we are done.