

1º SEMESTRE 2021/2022 Cálculo I (Parte I)

Folhas de exercícios: 1 / 2 / 3 / 4 / 5 / 6 Folhas de apoio: 1, 2, 3, 4

 1^a Frequência: $\begin{vmatrix} 17 \text{ de novembro } 2021 \ (14:00\text{-}16:00) \\ 10 \text{ valores } (\text{mínimo } 3,0) \end{vmatrix}$

FOLHA APOIO 1 (págs.1 - 4)

Revisão

$$n, k \in \mathbb{Z} \to \begin{vmatrix} a^n a^k = a^{n+k} \\ a^n b^n = (ab)^n \\ \frac{a^n}{a^k} = a^{n-k} \\ \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \\ a^{-n} = \frac{1}{a^n} \\ (a^n)^k = a^{nk} \end{vmatrix} \qquad n > 1, k \in \mathbb{Z} \to \begin{vmatrix} \sqrt[n]{a} \sqrt[n]{b} = \sqrt[n]{ab} \\ \sqrt[n]{a} \sqrt[n]{b} = \sqrt[n]{a} \\ \sqrt[n]{b} \sqrt[n]{a} \sqrt[n]{b} = \sqrt[n]{ab} \\ a \sqrt[n]{a$$

$$(a+b)^n = \sum_{k=1}^n \binom{n}{k} a^{n-k} b^k$$

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $(a-b)^2 = a^2 - 2ab + b^2$

$$a^{2} - b^{2} = (a + b) (a - b)$$

$$ab = 0 \Leftrightarrow a = 0 \lor b = 0$$
 $ab \neq 0 \Leftrightarrow a \neq 0 \land b \neq 0$

$$\sqrt{k} = a \Rightarrow k = a^2$$

$$\sqrt{k^2} = |k| \,, \quad k \in \mathbb{R}$$

$$|x| \le a \Leftrightarrow x \le a \land x \ge -a$$
 $|x| \ge a \Leftrightarrow x \ge a \lor x \le -a$

FOLHA APOIO 1 (págs.2 - 4)

$$x, y \in \mathbb{R}^+, a, b \in \mathbb{R}^+ \setminus \{1\}$$
$$\log_a x = y \Leftrightarrow x = a^y$$
$$\log_a (xy) = \log_a x + \log_a y$$
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$
$$\log_a x^y = y \log_a x$$

Logaritmos - propriedades:

$$\log_b x = \frac{\log_a x}{\log_a b}$$

$$a^{\log_a x} = x$$

$$\log_a a^y = y$$

$$\log_a 1 = 0$$

$$a^{\log_a x} = x$$

$$\log_a a^y = y$$

$$\log_a 1 = 0$$

$$\sin^2\beta + \cos^2\beta = 1$$

$$\tan^2\beta + 1 = \sec^2\beta$$

$$\cot^2\beta + 1 = \csc^2\beta$$

$$\tan^2\beta + 1 = \sec^2\beta$$

$$\cot^2\beta + 1 = \csc^2\beta$$

$$\tan^2\beta + 1 = \sec^2\beta$$

$$\tan^2\beta + 1 = \sec^2\beta$$

$$\tan^2\beta + 1 = \sec^2\beta$$

$$\cot^2\beta + 1 = \csc^2\beta$$

$$\cot^2\beta + 1 = \cos^2\beta$$

$$\cot^2\beta + 1 =$$

$$\csc\beta = \frac{1}{\sin\beta}$$

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \sin\beta \cos\alpha$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \sin\beta \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \sin\beta \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\alpha$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\alpha$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\alpha$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\alpha$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\alpha$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\tan\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\alpha \cos\beta = \sin\alpha \cos\beta$$

$$\cot\beta \cos\beta = \sin\alpha$$

FOLHA APOIO 1 (págs.3 - 4)

 $\sin(2\beta) = 2\sin\beta\cos\beta = \frac{2\operatorname{tg}\beta}{1 + \operatorname{tg}^2\beta}$ $\cos(2\beta) = \cos^2\beta - \sin^2\beta = \frac{1 - \operatorname{tg}^2\beta}{1 + \operatorname{tg}^2\beta}$ $\operatorname{tg}(2\beta) = \frac{2\operatorname{tg}\beta}{1 - \operatorname{tg}^2\beta}$ $\cot (2\beta) = \frac{\cot g^2 \beta - 1}{2 \cot g \beta}$ $\sin^2 \beta = \frac{1 - \cos(2\beta)}{2}$ $\cos^2 \beta = \frac{1 + \cos(2\beta)}{2}$

Fórmulas de duplicação:

$$\sin\frac{\beta}{2} = \pm\sqrt{\frac{1-\cos\beta}{2}}$$

$$\cos\frac{\beta}{2} = \pm\sqrt{\frac{1+\cos\beta}{2}}$$

$$\tan\frac{\beta}{2} = \pm\sqrt{\frac{1-\cos\beta}{2}}$$

$$\tan\frac{\beta}{2} = \pm\sqrt{\frac{1-\cos\beta}{1+\cos\beta}} = \frac{\sin\beta}{1+\cos\beta} = \frac{1-\cos\beta}{\sin\beta}$$

$$\cot\frac{\beta}{2} = \pm\sqrt{\frac{1+\cos\beta}{1-\cos\beta}} = \frac{\sin\beta}{1-\cos\beta} = \frac{1+\cos\beta}{\sin\beta}$$

Fórmulas de transf. logarítmica:

$$\sin \alpha \cos \beta = \frac{1}{2} \left(\sin \left(\alpha + \beta \right) + \sin \left(\alpha - \beta \right) \right)$$

$$\sin \alpha \sin \beta = -\frac{1}{2} \left(\cos \left(\alpha + \beta \right) - \cos \left(\alpha - \beta \right) \right)$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left(\cos \left(\alpha + \beta \right) + \cos \left(\alpha - \beta \right) \right)$$

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cdot \cos \frac{\alpha \mp \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$\tan \alpha \pm \tan \beta = \frac{\sin \left(\alpha \pm \beta \right)}{\cos \alpha \cos \beta}$$

FOLHA APOIO 1 (págs.4 - 4)

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$
	00	30^o	45^{o}	60°	90^{o}	180^{o}	270^{o}
seno	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
coseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	*	0	*
cotangente	*	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	*	0

Tabela de valores:

^{*} expressões sem significado em \mathbb{R}