(613) 400-3958 arsala.khan@mail.utoronto.ca

Arsalan Khan

Undergraduate Researcher

linkedin.com/in/real-arsalan-khan

I'm an undergraduate student and Photonics Researcher at University of Toronto, studying physics and computer science. Actively undertaking optics projects as part of University of Toronto's Aerospace Team.

EDUCATION

University of Toronto, Honours Bachelor of Science in Physics

Sept 2020 - June 2025 (Expected)

- Cumulative GPA: 3.74/4.00
- Awards: Dean's List Scholar, The Victoria College Faculty Award, The Elizabeth (Eastlake) Vosburg Scholarship
- Relevant Courses: Circuit Theory & Lab, Relativistic Electrodynamics, Advanced Classical Mechanics, Software Design, Theory of Computation, Quantum Physics, Quantum Information, Multivariable Calculus, Linear Algebra

EXTRACURRICULARS

Optical Testing Engineer, University of Toronto Aerospace Team (UTAT)

May 2023 — Present

- Involved in UTAT's Space Systems Division, contributing to the **Optics team** for FINCH a 3U CubeSat mission for crop residue mapping from Low-Earth Orbit, launching Q4 2024 aboard a SpaceX Falcon 9 rocket.
- Using Zemax OpticStudio and in-lab optical tools to benchmark the optical payload for the satellite.

Robotics Engineer, Robotics for Space Exploration Club (RSX)

May 2022 — September 2022

- Involved in building a rover for the Canadian International Rover Challenge competition in Alberta
- Programmed motors in C++ utilizing Arduino boards as part of the Electrical team.

WORK EXPERIENCE

Undergraduate Photonics Researcher, University of Toronto Photonics

May 2023 — Present

- Using advanced **optical equipment** such as optical fibers, spectrum analyzers, probing stations, detectors, and power meters to conduct **characterization and testing of waveguide** properties, supporting the development of Bragg Reflection Lasers (BRL) for **nonlinear optics applications**.
- Utilized Python to automate spectral analysis and evaluation of lasing thresholds for diverse waveguide lasers. Further data analysis and curve-fitting was also performed.
- Co-authored two papers regarding nonlinear and quantum optics, presenting results at a national conference.
- Currently leading a project developing a monolithic source of entangled photons.

Research Assistant (Robotics), University of Toronto

May 2022 — December 2022

- Engineered and built a compact, wearable spectrometer using off-the-shelf components to collect lighting data for architecture research on circadian rhythms. Programmed the device in C++.
- Utilized Python to develop and implement a data calibration algorithm, improving accuracy and reliability of spectrometer measurements.
- Conducted thorough **testing and benchmarking** and presented results at a **research conference**, demonstrating strong skills in **experimental design**, **data analysis**, and **communication**.

Software Engineer Intern, TAPP (The Teacher App)

June 2022 — August 2022

- Developed and implemented key functionalities utilizing ReactJS, NodeJS, and PostgreSQL, leading the development of the main feed for a social media platform, implementing software development best practices.
- Collaborated with a software team to understand pre-existing code and add new updates, overcoming challenges through continuous learning and communication with team members.

PERSONAL PROJECTS

Deep Learning & Higgs Boson, Machine Learning Project

May 2023

- Developed and implemented a **deep neural network** model using **TensorFlow** and **Keras** in **Python**, leveraging the Higgs Boson dataset to detect the particle, demonstrating proficiency in **machine learning theory** and practice.
- Utilized advanced techniques such as network **capacity tuning**, incorporating diverse **activation functions**, and employing **early stopping** to mitigate **overfitting**, achieving a commendable **accuracy of 99%**.

Tunable FM Transmitter Circuit, Electronics Hardware Project

April 2023

- Designed and constructed an FM transmitter circuit using an electret condenser microphone, LC oscillator, and frequency modulator based on 2n2222 transistors, demonstrating proficiency in analog electronics design and RF engineering.
- Successfully tested the circuit by wirelessly transmitting audio over a short range of frequencies via a wire antenna, showcasing practical knowledge of frequency modulation principles and circuit design.
- **Documented** the construction process and testing procedure in a lab report, highlighting strong **technical writing** skills and the potential for the circuit's use in short-range wireless communication systems.