ANÁLISIS DE CIRCUITOS. 1º CURSO ING. TELECOMUNICACIÓN EXAMEN FINAL. FEBRERO DE 2005

1.- En el circuito de la figura, las fuentes de tensión y corriente son DC y proporcionan: I = 1 mA y V = 12 V. Calcule la corriente que circula por la resistencia R1 simplificando previamente el circuito lo que estime conveniente.

- 2.- En el circuito de la figura, la tensión de la fuente varía tal como se especifica en la gráfica. Calcule el valor de la corriente i que suministra la fuente de tensión:
 - a) En t < 0
 - b) En t = 0⁺ (justo después del escalón de tensión)
 - c) En t $\rightarrow \infty$
 - d) Represente i(t) en función del tiempo

[Sugerencia: Calcule las corrientes de las dos ramas por separado]

R1 = 500
$$\Omega$$
, R2 = 1k Ω , L = 1 mH, C = 2 nF

- 3.- En el circuito de la figura, calcule la función de transferencia definida según $T(s) = V_O(s)/V_S(s)$
 - a) Usando el método de análisis de las corrientes en las mallas
 - b) Obteniendo previamente el equivalente de Thèvenin entre los puntos A y B

4.- Represente el diagrama de Bode del circuito del problema 3 si:

R1 = 100
$$\Omega$$
, R2 = 2R1 = 200 Ω , C = 0.1 μ F, L = 0.2 mH

5.- En el circuito de la siguiente figura, con los mismos valores de los componentes del problema 4, obtenga la salida $v_o(t)$ si $v_s(t)$ = 5.sin($2\pi f \cdot t$) V, con f = 20 kHz, y represente en una misma gráfica $v_s(t)$ y $v_0(t)$ en función del tiempo.

[Sugerencia: Aproveche los resultados obtenidos en los problemas anteriores]