13. Umordnungen und Produkte von Reihen

Definition (Umordnung)

Sei (a_n) eine Folge und $\phi : \mathbb{N} \to \mathbb{N}$ bijektiv. Setzt man $b_n := a_{\phi(n)}$ $(n \in \mathbb{N})$, so heißt (b_n) $(\sum_{n=1}^{\infty} b_n)$ eine **Umordnung** von (a_n) $(\sum_{n=1}^{\infty} a_n)$.

Beispiel

 $(a_1, a_3, a_2, a_4, a_5, a_7, a_6, a_8)$ ist eine Umordnung von (a_n) (aber keine Teilfolge!).

Hilfssatz

- (1) Sei $\phi: \mathbb{N} \to \mathbb{N}$ bijektiv und $m_0 \in \mathbb{N}$. Dann gilt: $\phi(n) \geq m_0$ ffa $n \in \mathbb{N}$
- (2) (b_n) ist eine Umordnung von $(a_n) \iff (a_n)$ ist eine Umordnung von (b_n) $\sum_{n=1}^{\infty} b_n$ ist eine Umordnung von $\sum_{n=1}^{\infty} a_n \iff \sum_{n=1}^{\infty} a_n$ ist eine Umordnung von $\sum_{n=1}^{\infty} b_n$

Beweis

(1) $A := \{n \in \mathbb{N} : \phi(n) < m_0\}$. z.z.: A ist endlich.

Annahme: A ist unendlich, etwa $A = \{n_1, n_2, n_3, \ldots\}$ mit $n_1 < n_2 < n_3 < \ldots; \phi$ bijektiv $\implies \phi(A)$ ist unendlich.

 $n \in \phi(A) \implies n = \phi(n_k), n_k \in A \implies n < m_0 \implies \phi(A) \subseteq \{1, 2, \dots, m_0 - 1\},$ Widerspruch!

(2) Es sei $b_n = a_{\phi(n)}$ und $\phi : \mathbb{N} \to \mathbb{N}$ bijektiv, $\phi^{-1} : \mathbb{N} \to \mathbb{N}$ bijektiv. $b_{\phi^{-1}(n)} = a_{\phi(\phi^{-1}(n))} = a_n \implies (a_n)$ ist eine Umordnung von (b_n) .

Satz 13.1 (Riemannscher Umordnungssatz)

 (b_n) sei eine Umordnung von (a_n) .

- (1) Ist (a_n) konvergent, dann gilt: (b_n) ist konvergent und $\lim b_n = \lim a_n$.
- (2) Ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent, dann gilt: $\sum_{n=1}^{\infty} b_n$ ist absolut konvergent und $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$.
- (3) **Riemannscher Umordnungssatz**: $\sum_{n=1}^{\infty} a_n$ sei konvergent aber *nicht* absolut konvergent.
 - (i) Es gibt divergente Umordnungen von $\sum_{n=1}^{\infty} a_n$.
 - (ii) Ist $s \in \mathbb{R}$, so existiert eine Umordnung von $\sum_{n=1}^{\infty} a_n$ mit Reihenwert s.

Beweis

Für (1) und (2) sei $\phi : \mathbb{N} \to \mathbb{N}$ bijektiv und $b_n = a_{\phi(n)}$.

(1) Sei $a := \lim a_n$. Sei $\varepsilon > 0$, $\exists m_0 \in \mathbb{N} : |a_n - a| < \varepsilon \ \forall n \ge m_0$.

Aus Hilfssatz (1) folgt: $\exists n_0 \in \mathbb{N} : \phi(n) \geq m_0 \ \forall n \geq n_0$. Für $n \geq n_0 : |b_n - a| = |a_{\phi(n)} - a| < \varepsilon$.

(2) Wir schreiben \sum statt $\sum_{n=1}^{\infty}$.

Fall 1: $a_n \geq 0 \ \forall n \in \mathbb{N}$

 $s_n := a_1 + a_2 + \ldots + a_n, \sigma_n := b_1 + b_2 + \ldots + b_n. a_n \ge 0 \implies (s_n)$ ist wachsend, sei $s := \lim s_n (= \sum a_n)$. Es gilt: $s_n \le s \ \forall n \in \mathbb{N}$.

Sei $n \in \mathbb{N}$ und $j := \max\{\phi(1), \phi(2), \dots, \phi(n)\}$. Dann: $\{\phi(1), \phi(2), \dots, \phi(n)\} \subseteq \{1, 2, \dots, j\} \implies \sigma_n = b_1 + b_2 + \dots + b_n = a_{\phi(1)} + a_{\phi(2)} + \dots + a_{\phi(n)} \le a_1 + a_2 + \dots + a_j = s_j \le s \implies (\sigma_n)$ ist wachsend und beschränkt.

6.3 \Longrightarrow (σ_n) ist konvergent. Weiter: $\lim \sigma_n \leq s$, d.h. $\sum b_n \leq \sum a_n$. Vertauschung der Rollen von $\sum a_n$ und $\sum b_n$ liefert: $\sum a_n \leq \sum b_n$.

Fall 2, der allgemeine Fall: $\sum |b_n|$ ist eine Umordnung von $\sum |a_n| \xrightarrow{\text{Fall } 1} \sum |b_n|$ konvergiert und $\sum |b_n| = \sum |a_n|$. Noch z.z.: $\sum b_n = \sum a_n$.

 $\alpha_n := a_n + |a_n|, \beta_n := b_n + |b_n|$. Dann: $\alpha_n, \beta_n \ge 0 \ \forall n \in \mathbb{N}. \sum \alpha_n, \sum \beta_n$ konvergieren, $\sum \beta_n$ ist eine Umordnung von $\sum \alpha_n$. Fall $1 \implies \sum \beta_n = \sum \alpha_n$.

Dann: $\sum a_n = \sum (\alpha_n - |a_n|) = \sum \alpha_n - \sum |a_n| = \sum \beta_n - \sum |b_n| = \sum (\beta_n - |b_n|) = \sum b_n$.

(3) ohne Beweis.

Vereinbarung: Für den Rest des Paragraphen seien gegeben: $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$. Wir schreiben \sum statt $\sum_{n=0}^{\infty}$. Weiter sei, falls $\sum a_n$ und $\sum b_n$ konvergent, $s := (\sum a_n)(\sum b_n)$.

Definition

Eine Reihe $\sum_{n=0}^{\infty} p_n$ heißt eine Produktreihe von $\sum a_n$ und $\sum b_n : \iff \{p_0, p_1, p_2, \ldots\} = \{a_j b_k : j = 0, 1, \ldots; k = 0, 1, \ldots\}$ und jedes $a_j b_k$ kommt in $(p_n)_{n=0}^{\infty}$ genau einmal vor.

Satz 13.2 (Alle Produktreihen sind Umordnungen voneinander)

Sind $\sum p_n$ und $\sum q_n$ zwei Produktreihen von $\sum a_n$ und $\sum b_n$, so ist $\sum p_n$ eine Umordnung von $\sum q_n$.

Beweis

Übung.

Satz 13.3 (Absolute Konvergenz geht auf Produktreihen über)

Sind $\sum a_n$ und $\sum b_n$ absolut konvergent, und ist $\sum p_n$ eine Produktreihe von $\sum a_n$ und $\sum b_n$, dann ist $\sum p_n$ absolut konvergent und $\sum p_n = s$.

Beweis

 $\sigma_n = |p_0| + |p_1| + \ldots + |p_n|$ $(n \in \mathbb{N})$. Sei $n \in \mathbb{N}_0$. Dann existiert ein $m \in \mathbb{N}$: $\sigma_n \le (\sum_{k=0}^m |a_k|)(\sum_{k=0}^m |b_k|)$.

 $\alpha_k := |a_0| + |a_1| + \ldots + |a_k|, (\alpha_k)$ konvergiert und $\alpha_k \to \sum |a_k|, (\alpha_k)$ ist wachsend $\implies \alpha_k \le \sum |a_n| \implies 0 \le \sigma_n \le (\sum |a_n|)(\sum |b_n|) \ \forall n \in \mathbb{N}_0 \implies (\sigma_n)$ ist beschränkt (und wachsend).

 $6.3 \implies (\sigma_n)$ konvergiert $\implies \sum p_n$ ist absolut konvergent. Noch z.z.: $\sum p_n = s$.

Dazu betrachten wir eine spezielle Produktreihe $\sum q_n$ ("Anordnung nach Quadraten"):

$$q_0 := a_0 b_0, \ q_1 := a_0 b_1, \ q_2 := a_1 b_1, \ q_3 := a_1 b_0, \ q_4 := a_0 b_2, \ q_5 := a_1 b_2, \dots$$

 $s_n := q_0 + q_1 + \dots + q_n$

Nach dem schon Bewiesenen konvergiert $\sum q_n$, also auch (s_n) .

Nachrechnen:
$$\underbrace{(a_0 + a_1 + \ldots + a_n)}_{\to \sum a_n} \underbrace{(b_0 + b_1 + \ldots + b_n)}_{\to \sum b_n} = s_{n^2 + 2n} \ \forall n \in \mathbb{N}$$

$$\stackrel{n\to\infty}{\Longrightarrow} s = \sum q_n.$$

Aus 13.1 und 13.2 folgt: $\sum p_n = \sum a_n \sum b_n = s$.

Definition (Cauchyprodukt)

Setze $c_n := \sum_{k=0}^n a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0 \ (n \in \mathbb{N}_0)$, also: $c_0 = a_0 b_0$, $c_1 = a_0 b_1 + a_1 b_0$, ...

 $\sum_{n=0}^{\infty} c_n$ heißt Cauchyprodukt von $\sum a_n$ und $\sum b_n$.

Satz 13.4 (Cauchyprodukt absolut konvergierender Folgen konvergiert)

Sind $\sum a_n$ und $\sum b_n$ absolut konvergent, so konvergiert ihr Cauchyprodukt $\sum c_n$ und $\sum c_n = s$.

Beweis

Sei $\sum p_n$ die Produktreihe von $\sum a_n$ und $\sum b_n$, die durch "Anordnung nach Diagonalen"entsteht. $(p_0 = a_0b_0, p_1 = a_0b_1, p_2 = a_1b_0, p_3 = a_0b_2, p_4 = a_1b_1, p_5 = a_0b_3, \ldots)$. Dann: $c_0 = a_0b_0 = p_0, c_1 = p_1 + p_2, c_2 = p_3 + p_4 + p_5$. $\sum c_n$ ensteht also aus $\sum p_n$ durch Setzen vom Klammern. 13.3 $\implies \sum p_n$ konvergiert absolut und $\sum p_n = s \xrightarrow{12.6}$ Behauptung.

Beispiel

Für $x \in \mathbb{R}$ mit |x| < 1 ist $\sum_{n=0}^{\infty} x^n$ absolut konvergent und $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. Für |x| < 1: $\frac{1}{(1-x)^2} = (\sum_{n=0}^{\infty} x^n)(\sum_{n=0}^{\infty} x^n) \stackrel{13.4}{=} \sum_{n=0}^{\infty} c_n$, wobei $c_n = \sum_{k=0}^n x^k x^{n-k} = \sum_{k=0}^n x^n = (n+1)x^n$.

$$\implies \sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}.$$

Satz 13.5 $(E(r) = e^r \ \forall r \in \mathbb{Q})$

Erinnerung: $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$

(1)
$$E(x + y) = E(x)E(y) \ \forall x, y \in \mathbb{R}$$
; allgemein: $E(x_1 + x_2 + \ldots + x_n) = E(x_1)E(x_2)\cdots E(x_n) \ \forall x_1, x_2, \ldots, x_n \in \mathbb{R}$.

13. Umordnungen und Produkte von Reihen

(2)
$$E(x) > 1 \ \forall x > 0$$
.

(3)
$$E(x) > 0 \ \forall x \in \mathbb{R}, E(-x) = \frac{1}{E(x)} \ \forall x \in \mathbb{R}.$$

(4) Aus
$$x < y$$
 folgt: $E(x) < E(y)$.

(5)
$$E(r) = e^r \ \forall r \in \mathbb{Q}.$$

Beweis
$$(1) \ E(x)E(y) = (\sum_{n=0}^{\infty} \frac{x^n}{n!})(\sum_{n=0}^{\infty} \frac{y^n}{n!}) \stackrel{13.4}{=} \sum_{n=0}^{\infty} c_n \text{ mit}$$

$$c_n = \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = \frac{(x+y)^n}{n!}.$$

$$\implies E(x)E(y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = E(x+y).$$

(2)
$$x > 0 : E(x) = 1 + \underbrace{x + \frac{x^2}{2!} + \dots}_{>0} > 1.$$

(3)
$$1 = E(0) = E(x + (-x)) \stackrel{(1)}{=} E(x)E(-x)$$
. Wir wissen: $E(x) > 0 \ \forall x > 0$.
Sei $x < 0 \implies -x > 0 \implies E(-x) > 0 \implies E(x) > 0$.

$$(4) \text{ Sei } x < y \implies y - x > 0 \stackrel{(2)}{\Longrightarrow} 1 < E(y - x) \stackrel{(1)}{=} E(y) E(-x) \stackrel{(3)}{=} \frac{E(y)}{E(x)} \implies E(x) < E(y).$$

(5) Seien
$$n, m \in \mathbb{N}$$
. $E(n) = E(\underbrace{1 + \ldots + 1}_{n \text{ mal}}) \stackrel{(1)}{=} E(1)^n = e^n$.

$$e = E(1) = E(n \cdot \frac{1}{n}) = E(\underbrace{\frac{1}{n} + \dots + \frac{1}{n}}_{n \text{ mal}}) = E(\frac{1}{n})^n \implies E(\frac{1}{n}) = e^{\frac{1}{n}} \ (= \sqrt[n]{e}).$$

$$E(\frac{m}{n}) = E(\underbrace{\frac{1}{n} + \ldots + \frac{1}{n}}_{m \text{ mal}}) \stackrel{\text{(1)}}{=} E(\frac{1}{n})^m = (e^{\frac{1}{n}})^m = e^{\frac{m}{n}}. \text{ Also: } E(r) = e^r \ \forall r \in \mathbb{Q} \text{ mit } r \geq 0.$$

Sei
$$r \in \mathbb{Q}$$
 und $r < 0$. Dann: $-r > 0 \implies E(-r) = e^{-r} \stackrel{(3)}{\Longrightarrow} E(r) = e^{r}$.

Definition (e^x)

$$e^x := E(x) \ (x \in \mathbb{R}).$$

Hilfssatz 13.6

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$

Beweis

 $\alpha_n = \frac{1}{\sqrt[n]{n!}}, \ 0 \le \alpha_n \le 1 \ \forall n \in \mathbb{N}, \ (\alpha_n)$ ist also beschränkt. $\alpha = \limsup \alpha_n$. Wegen 9.3 genügt es zu zeigen: $\alpha = 0$. Annahme: $\alpha > 0$. Setze $x := \frac{2}{\alpha}; \ a_n = \frac{x^n}{n!} \implies \sum a_n$ ist konvergent. $\sqrt[n]{|a_n|} = \frac{|x|}{\sqrt[n]{n!}} = |x| \cdot \alpha_n \implies \limsup \sqrt[n]{|a_n|} = |x| \cdot \alpha = 2 > 1 \implies \sum a_n$ ist divergent, Widerspruch!

Beispiel 13.7

Behauptung: Die Reihen

$$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

und

$$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

konvergieren absolut für alle $x \in \mathbb{R}$.

Definition (Kosinus und Sinus)

$$\cos x := \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} \ (x \in \mathbb{R}) \ (\textbf{Kosinus})$$

$$\sin x := \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} \ (x \in \mathbb{R}) \ (\mathbf{Sinus})$$

Beweis

Nur für die erste Reihe:

$$a_n := (-1)^n \cdot \frac{x^{2n}}{(2n)!} \implies \sqrt[n]{|a_n|} = \frac{x^2}{((2n)!)^{\frac{1}{n}}} = \frac{x^2}{(((2n)!)^{\frac{1}{2n}})^2} \stackrel{13.6}{\longrightarrow} 0 \ (n \to \infty) \ (\text{wegen } 12.3).$$