MHPC Molecular dynamics

Sabine Reißer

Equations of motion

$$\dot{\boldsymbol{r}}_i = \boldsymbol{p}_i/m_i$$
 $\dot{\boldsymbol{p}}_i = -\nabla_{\boldsymbol{r}_i} V_i = \boldsymbol{F}_i$

Integrator

- Conserve energy
- Time reversible
- Long time step Δt
- As exact as possible
- Easy to implement
- Fast

Taylor expansion

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^{2} + \dots$$

$$v(t + \Delta t) = v(t) + a(t)\Delta t + \frac{1}{2}\dot{a}(t)\Delta t^{2} + \dots$$

Taylor expansion

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^{2} + \dots$$

$$v(t + \Delta t) = v(t) + a(t)\Delta t + \frac{1}{2}\dot{a}(t)\Delta t^{2} + \dots$$

$$a = F/m$$

$$F(r) = -\frac{\partial V(R^N)}{\partial r}$$

Euler algorithm

$$r(t + \Delta t) = r(t) + v(t)\Delta t$$

$$v(t + \Delta t) = v(t) + a(t)\Delta t$$

Time step Δt

Vibrational Mode ^a	Wave number	Period T_p	T_p/π
	$(1/\lambda)$ [cm ⁻¹]	(λ/c) [fs] ^b	[fs]
O-H, N-H stretch	3200-3600	9.8	3.1
C-H stretch	3000	11.1	3.5
O-C-O asymm. stretch	2400	13.9	4.5
$C\equiv C$, $C\equiv N$ stretch	2100	15.9	5.1
C=O (carbonyl) stretch	1700	19.6	6.2
C=C stretch			
H–O–H bend	1600	20.8	6.4
C-N-H, H-N-H bend	1500	22.2	7.1
C=C (aromatic) stretch			
C–N stretch (amines)	1250	26.2	8.4
Water Libration (rocking)	800	41.7	13
O–C–O bending	700	47.6	15
C=C-H bending (alkenes)			
C=C-H bending (aromatic)			

O-H vibration

Obtain from IR spectroscopy

$$T_p = 1/\nu$$
 $T_p(O-H) \approx 10 \text{ fs}$
 $r_0(O-H) \approx 0.1 \text{ nm}$
 $k \approx 502080 \text{ kJ/(mol nm}^2)$

Particle in a well

$$V(r) = \frac{1}{2}k(r - r_0)^2$$

 $r_0 = 0.1 \text{ nm}$
 $k = 502080 \text{ kJ/(mol nm}^2)$
 $T_p \approx 10 \text{ fs}$

$$\begin{array}{cccc} r(0) & = & 0 & r(t + \Delta t) & = & r(t) + v(t) \Delta t \end{array}$$

$$v(t + \Delta t) = v(t) + a(t)\Delta t$$

Particle in a well - Euler algorithm

Euler algorithm - energy

Energy not conserved Time reversible?

Euler-plus

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^2$$

 $v(t + \Delta t) = v(t) + a(t)\Delta t$

Energy not conserved Not time-reversible

Verlet algorithm

$$r(t + \Delta t) = 2r(t) - r(t - \Delta t) + a(t)\Delta t^2$$

$$v(t) = \frac{r(t + \Delta t) - r(t - \Delta t)}{2\Delta t}$$

Time reversible?

Verlet algorithm

Verlet - energy

Flavors of Verlet: leap-frog

$$r(t + \Delta t) = r(t) + v(t + \frac{\Delta t}{2}) \cdot \Delta t$$

$$v(t+\frac{\Delta t}{2}) = v(t-\frac{\Delta t}{2}) + a(t)\Delta t$$

Equivalent Verlet

Time reversible

Numerically more accurate

BUT: velocities at different times than positions

Velocity Verlet

$$r(t + \Delta t) = r(t) + v(t) \cdot \Delta t + \frac{1}{2}a(t) \cdot \Delta t^2$$

$$v(t + \Delta t) = v(t) + \frac{1}{2}(a(t) + a(t + \Delta t))\Delta t$$

Time reversible

Velocity Verlet - energy

Increase the time step

- Until now: $\Delta t = 10^{-16} \text{ s}$
- 100 steps/ period
- What if we increase the time step?

Increase timestep by factor 10: $\Delta t = 10^{-15} \text{ s}$ 10 steps per period

Verlet vs. Velocity-Verlet

Increase timestep by factor 100: $\Delta t = 10^{-14} \text{ s} \approx T_p$

Stability condition for Verlet

$$\Delta t < T_p/\pi$$
 $T_p(\text{stretch}) < T_p(\text{bend})$ $T_p(\text{light atoms}) < T_p(\text{heavy atoms})$

Vibrational Mode ^a	Wave number	Period T_p	T_p/π
	$(1/\lambda)$ [cm ⁻¹]	(λ/c) [fs] ^b	[fs]
O–H, N–H stretch	3200-3600	9.8	3.1
C–H stretch	3000	11.1	3.5
O-C-O asymm. stretch	2400	13.9	4.5
$C\equiv C$, $C\equiv N$ stretch	2100	15.9	5.1
C=O (carbonyl) stretch	1700	19.6	6.2
C=C stretch			
H–O–H bend	1600	20.8	6.4
C-N-H, H-N-H bend	1500	22.2	7.1
C=C (aromatic) stretch			
C–N stretch (amines)	1250	26.2	8.4
Water Libration (rocking)	800	41.7	13
O–C–O bending	700	47.6	15
C=C-H bending (alkenes)			
C=C-H bending (aromatic)			

Generally 1-2 fs

Velocity-Verlet

 $t+\delta t$

```
// Read initial positions
read positions
                                  v
// Set random velocities
randomize velocities
// Compute initial neighbor list
 compute list
// compute initial forces
compute forces
for(istep=0;istep<nstep;istep++){</pre>
    thermostat
   velocity += (force*dt/2)/mass
   position += velocity*dt
    // Check whether the neighbour list has to be recomputed
    check_list
    if(recompute list){
      compute list
    compute forces
   velocity += (force*dt/2)/mass
    thermostat
```

(a) $t - \delta t$

$$r(t + \Delta t) = r(t) + v(t) \cdot \Delta t + \frac{1}{2}a(t) \cdot \Delta t^2$$

$$v(t+\Delta t) = v(t) + \frac{1}{2}(a(t) + a(t+\Delta t))\Delta t$$