

Srećko Mitruševski SM pumps Ljubljana

Dejan Stanišić Godent Niš

Miroslav Petrović

<u>UPOREDBA POTROŠNJE ENERGIJA KOD VERTIKALNIH I</u> <u>UTOPNIH PUMPI</u>

REZIME

U ovom stručnom radu predstavljena je uporedba potrošnje energije kod vertikalnih i utopnih pumpi

DALI DA SE UGRADI VERTIKALNA ILI UTOPNA PUMPA?

Kada se se razmatra ovo pitanje obavezno treba da se uzme u obzir i potrošnja energije koja najčešje je veoma različitia za oba tipa pumpi.

STEPEN KORISNOSTI UTOPNIH I VERTIKALNIH PUMPI I MOTORA

Kao primer za upoređivanje uzeli smo pumpe sa sledečim karakteristikama koje se veoma često koriste

Protok (I/s)	25	50	75	100
Visina	75	75	75	75

Ovde ćemo uporediti stepen korisnosti pumpi i motora

Stepen korisnosti pumpi u zavisnosti od protoka

Stepen korisnosti za vertikalne pumpe je na osnovu ispitanih modelnih pumpi VF 8, VF 11, VF 12 i VF 14 proizvod SM pumps

Stepen korisnosti za utopne pumpe je uzet iz kataloga proizvođača. U katalozima je je prikazani stepen korisnosti u okviru tolerancije standarda ISO 9906 što znači da je u stvarnosti do 5% manji.

Stepen korisnosti klasičnih vertikalnih pumpi je veči od 6-8% što ima veoma važnu ulogu u potrošnji energije.

Klasične vertikalne pumpe mogu da dostignu i stepen korisnosti i do 86% za navedene protoke dok utopne pumpe zbog uslove strujanja ne mogu da postignu takav stepen korisnosti. Kod njih je moguč stpene korisnosti do 80% a i to nije lako da se postigne

Stepen korisnosti motora

Stepen korisnosti (%) od kataloga proizvođača motora SEVER i ANDRITZ za 2900 okr/min

	30 kW	55 kW	75 kW	110 kW
Sever standarni motor	92	93,2	93,8	94,3
Andritz utopni motor	83	85	86,5	87

Stepen korisnosti utopnih elektro motora je dosta manji od stepena korisnosti standarnih motora koji se koriste kod vertikalnih pumpi.

Utopni motor se okreče u vodi šta prouzrokuje velike zagube a i tip ležaja doprinose k tome.

Ovde se vidi da stepen korisnosti utopnih motora je manji do 9%

SM Pumps je u okviru razvija potopnih pumpi za nemačkog proizvoča pumpi i utopnoh motora Andritz Ritz koristio baždarene motore i to baždareni utopni motor firme Andritz Ritz i oni su i izvršili baždarenje i baždareni standardni motor 18,5 kW

Uporedba od kalibracije standarnog elektromotora 160 L2 snage 18,5 kW i broj okretaja 2900 okr/min i standarnog utopnog motora 18,5 kW, 2900 okr/min,

Sa ovog dijagrama se vidi da ima utopni motor i više od 10% manji stepen korisnisti.

<u>Izračun potrešnje energije za utopne i vertikalne pumpe</u>

Pumpa 110 kW Q = 300 m3/h, H = 90 m

Stepen korisnosti utopni motor 86%

vertikalni standardni motor 93%

utopna pumpa 78%

vertikalna pumpa 85%

Agregat utopna pumpa + utopni motor 67,08%

vertikalna pumpa + st. motor 79,05 %

79,05 / 67,08 = 1,178 odnosno 17,8% veća potrošnja energije

Ukoliko ovakva pumpa radi 5000 sati godišnje za 10 godina potroši više energije i to:

5000 h * 17,8 kW * 10 godina * 0,05 EUR/kW = 44.500 EUR

ZAKLJUČAK

Trošak energije kod utopnih pumpi je mnogo veči nego kod vertikalnih pumpi i to bi trebalo da bude jedan od glavnih kriterijuma kod odlučivanja dali da se upotrebi utopna ili vertikalna pumpa

Za pumpe sa dubainama do 30-40 metara je prioritet da se koriste vertikalne pumpe a ne utopne a za veče dubine potrebno je da se analizira i cena ostalih faktora.

Drugi veoma važan razlog su troškovi oddržavanje i ovi troškovi posebno kod utopnih motora su veoma veliki zbog mnogo slabijek kvaliteta utopnoh motora u odnosu na standardne suve motore.

Literatura

- 1. Duško Mitruševski: Višestepene pumpe u termoelektranama Ohrid 1994
- 2. Bogdan Jančar: Problematika racionalnog koriščenja energije u pumpnim stanicama, Turboinstitut Slovenija
- 3. M.Gantar, M.Zager, M.Potočnik, B.Jančar, D.Mitruševski, Optimiranje sistema za daljisko grejanje Šaleške Doline, Maribor 1994
- 4. M.Gantar, B.Jančar, Z.Marinac, D.Kralik, Smanjenje potrošnje energije na pumpama u vodovodnim sistemima., Buzet 1989
- 5. Srečko Mitruševski: Optimiranje režima rada pumpi i ušteda električne energije, Jahorina 2012