[例5-3] 平面谐波u=8,t=0波形如图

求[1]λ[2]波动方程

解: (1)
$$2\pi : \lambda = [\pi / 4 - (-\pi / 2)] : 12$$

⇒ $\lambda = 32$

(2)
$$\omega = 2 \pi v = 2 \pi u / \lambda = \pi / 2$$

$$o$$
振动方程 $y_0 = A\cos(\frac{\pi}{2}t + \frac{\pi}{4})$
$$\{ y_0 = \frac{A}{\sqrt{2}} \Rightarrow \varphi_0 = \frac{\pi}{4} \}$$
 波动方程 $y = A\cos[\frac{\pi}{2}(t - \frac{x}{8}) + \frac{\pi}{4})]$

$$p$$
振动方程 $y_p = A\cos(\frac{\pi}{2}t - \frac{\pi}{2})$ $\begin{cases} y_p = 0 \Rightarrow \varphi_p = -\frac{\pi}{2} \end{cases}$ 波动方程 $y = A\cos[\frac{\pi}{2}(t - \frac{x - 12}{8}) - \frac{\pi}{2})]$

$$\begin{cases} \mathbf{y}_0 = \frac{A}{\sqrt{2}} \\ \mathbf{v}_0 < \mathbf{0} \end{cases} \Rightarrow \varphi_0 = \frac{\pi}{4}$$

$$\begin{cases} \mathbf{y}_{p} = \mathbf{0} \\ \mathbf{v}_{p} > \mathbf{0} \end{cases} \Rightarrow \varphi_{p} = -\frac{\pi}{2}$$

[例5-3]*平面谐波u=8, t=0波形如图 求[1] λ [2]波动方程

$$\begin{cases} \boldsymbol{y}_0 = -\frac{A}{\sqrt{2}} \\ \boldsymbol{v}_0 > \mathbf{0} \end{cases} \Rightarrow \varphi_0 = -\frac{3\pi}{4}$$

$$\begin{cases} \mathbf{y}_{p} = \mathbf{0} \\ \mathbf{v}_{p} < \mathbf{0} \end{cases} \Rightarrow \varphi_{p} \stackrel{\mathbf{\times}}{\sim} \frac{\pi}{2}$$
$$\Rightarrow \varphi_{p} \stackrel{\mathbf{\wedge}}{\sim} \frac{3\pi}{2}$$

FangYi

[讨论1]平面谐波沿x正向, A、 υ 、u已知,

t=t'波形如右.

- 求(1)原点振动方程
 - (2)波动方程

$$\mathbf{m}$$
: (1) $\mathbf{y} = \mathbf{A}\cos(\omega t + \varphi)$

原点
$$t=t'$$
 $\begin{cases} y=0 \\ v<0 \end{cases} \Rightarrow q=\frac{\pi}{2}$ 位相定初相

初相
$$\varphi = \phi - \omega t' = \frac{\pi}{2} - 2\pi \upsilon t'$$

$$\implies y = A\cos[2\pi \upsilon t + (\frac{\pi}{2} - 2\pi \upsilon t')]$$

(2) 波动方程
$$y = A\cos[2\pi \upsilon(t - \frac{x}{\upsilon}) + (\frac{\pi}{2} - 2\pi \upsilon t')]$$

FangYi

[讨论2]已知t=T/4 波形,如何确定原点初相?

解: 原点
$$t=0$$
 $\begin{cases} y = A \\ v = 0 \end{cases} \Rightarrow \varphi = 0$ A $t=T/4$

[讨论3]已知t=T/7 波形,上述平移波形图方法可行否?

「结论]

平移波形定初相 —已知特殊时刻波形

位相定初相

—已知任一时刻波形

确定波动方程的基本条件

已知
$$\left\{ egin{aligned} 1.波线上一点振动方程 \ 2. $ar{u} \end{array} \right.$$$

(4) **E**波 ≤ 与 **E**振 ≤ 之比较

波动(体元)	振动(系统)
E _波 随 t 变 化,不 守 恒	E _振 不 随 t 变 化 , 守 恒
(非孤立系统) 体元在不断接受或放出能量	(孤立系统)
E _{k波} 、 E _{p波} 同步变化	E _{k振} 、 E _{p振} 此消彼长

[讨论4]平面谐波当质元从最大位移处回到平衡位置时

- (A) 势能转成动能;
- (B) 动能转成势能;
- (₡)从相邻质元获能量,渐增;
- (D) 向相邻质元放能量, 渐减

[例题4-3讨论] 已知谐振x - t曲线, 求:φ、ω及振动方程

解:

读
$$t=1$$
态 $\begin{cases} x_1=0 \\ v_1>0 \end{cases} \Rightarrow \phi_1 \neq -\pi/2$ $\phi_1 \neq 3\pi/2$

$$\phi = \omega t + \varphi \rightarrow \omega = (\phi_1 - \varphi)/1 = 5\pi/6$$

.: 振动方程为 x=Acos[(5π/6)t+2π/3]

 x_0, v_0 共同确定 φ !!! 相位 Φ 与初相 φ 不能矛盾! $\Phi = \omega t + \varphi \Phi > \varphi$