Chapter 5

Synchronous Sequential Logic

-

- A digital system is composed of
 - registers
 - data processing units
- Binary information is transferred from one set of registers into another
- Transfer can be done directly or via a processing unit to perform an operation

ITI1100

Registers

- A register is a group of *Binary cells*
- a register with n cells can store n bits

Example:

- Register with 8 cells can store 8 bits and can be in one of 2^8 possible states

The content is a function of the interpretation given to the information stored in to it. Here it's the positive integer (+3)

Registers

Fig. 1-1 Transfer of information with registers ITI1100

Registers

Fig. 1-2 Example of binary information processing

Sequential Circuits

- →outputs logical functions of inputs and previous history of circuit (memory)
- → after changed inputs, new outputs appear in the next clock cycle
- → feedback loops

Fig. 5-1 Block Diagram of Sequential Circuit

6

Sequential logic circuits -Example

-- Elevator Control --

- •The buttons are the input variables of the system
- The position is also an input variable which represents the current state of the elevator.
- in the figure the command control 'C' depends on the button selection AND and the position of the elevator (I.e. the previous state of the system: before the activation of the buttons)

Sequential logic circuits –Example (2)

-- Elevator Control --

This example represents a **Sequential** logic system That is the output C depends on combination of

- 1 the input variables
- 2 **AND** the previous states (internal states).

8

Sequential circuits: time and memory

→ In contrast to the combinational circuits two new parameters are to be considered

1 - *Time*

We have to consider the propagation delay of the circuits

2 – Memory Element

We have to keep the previous results and impose a predetermined order.

→ Generally speaking, the function performed by the memory element is to store information in a binary form.

Sequential logic circuits: Flip-flop

- The memory cell that stores one "bit" of information is termed Flip-flop.
- A set of Flip-flop can be used to store several bits (one each) in a REGISTER.
- two different modes:
 - 1- Asynchronous
 - 2- Synchronous

Sequential logic circuits

1- Asynchronous

- The output reacts "immediately" to the changes of the input variables
- → Propagation delay of the gates are to be considered

11

Sequential logic circuits

2- Synchronous

• In this mode of operation, changes of the input variables will be become **EFFECTIVE** when the clock input is active.

Fig. 5-2 Synchronous Clocked Sequential Circuit

Clock signal: definitions

- •Clock is used in synchronous logic circuits to trigger the circuit (Flip-flop) allowing it to switch its state.
- Clock signal can trigger a flip-flop in three ways:
 - During Positive level
 - During Positive transition (or positive edge)
 - During Negative transition (or negative edge)

Timing Diagram –Input and output signals

Fig. 1-5 Input-output signals for gates

Clock signal: definitions

1- Positive level

- The flip-flop is triggered while the clock pulse is at logic '1'
- the logic '0' is therefore inactive state where changes to the flip-flop (state) are not allowed.

Clock signal: definitions (2)

2- Positive transition (or positive edge)

The flip flop is triggered only during the signal transition from 0 to 1, this transition is defines as *positive edge*

Clock signal : definitions (4)

3- negative transition (or negative edge)

The flip flop is triggered only during the signal transition from 1 to 0, this transition is defines as *negative edge*

18

- A flip-flop can maintain a binary state indefinitely until directed by an input signal to switch states
- The most basic types of flip-flops operate with signal levels and are referred to as Latches.
- Latches are basic circuits from which all flip-flops are constructed

- Flip-flop (Latch) SR has two input variables that are defined as S and R
 - S for SET
 - R for RESET
- •It also has two outputs Q (normal state) and Q' (complement state)

 $\begin{array}{c} S \\ \longrightarrow \\ \text{Symbol} \end{array}$ $\begin{array}{c} R \\ \longrightarrow \\ Q \end{array}$

1- NOR Implementation

$$Q = (R+P)' = R'P'$$

$$P = (S+Q)' = S'Q'$$

Function table for RS with NOR gates

S	R	Q	Q'	
1	0	1	0	Set to "1"
0	1	0	1	Set to "0"
0	0	1	0	unchanged (after $SR = 10$)
0	0	0	1	unchanged (after $SR = 01$)
1	1	$\mid 0$	0	forbidden!

2- Inverter and NAND Implementation

$$Q = (S'.P)' = S + P'$$

$$P = (R'Q)' = R+Q'$$

Function table for RS with Inverter and NAND gates

S	R	Q	Q'	
1	0	1	0	Set to "1"
0	1	0	1	Set to "0"
0	0	1	0	unchanged (after $SR = 10$)
0	0	0	1	unchanged (after $SR = 01$)
1	1	1	1	forbidden!

3- NAND Implementation also called S'R' Latch

Active Low

Function table for RS with NAND gates:

S	R	Q	Q'	R Inputs	7
1	0	0	1	set to « 0 »	
1	1	0	1	unchanged (after SR = 10)	
0	1	1	0	set to « 1 »	
1	1	1	0	unchanged (after $SR = 01$)	
0	0	1	1	Not allowed! (forbidden)	
				ITI1100 25	

- A flip-flop can maintain a binary state indefinitely until directed by an input signal to switch states
- The most basic types of flip-flops operate with signal levels and are referred to as Latches.
- Latches are basic circuits from which all flip-flops are constructed

Synchronous Sequential Circuits

• If we add to the memory element a **synchronization signal** (i.e.clock impulse or control input) we would obtain a synchronous SR latch (i.e. a Flip-Flop)

- We will examine the following synchronous flipflops
 - •SR
 - •D and T
 - •JK

SR Latch with Control Input

- The time when a latch is allowed to change state is regulated.
- Change of state is regulated by a control signal called ENABLE.
- Circuit is a NAND latch controlled by steering gates.

Latch with Control Input: SR Latch

- Used in two principal ways.
 - as an ON/OFF signal.
 - as a synchronizing signal.

Sometimes it's useful to avoid latch changes

When $C = 0 \rightarrow$ disables all latch state changes

- Control signal *enables* state change when C = 1
- Right side of circuit same as ordinary S-R latch with NAND.

Latches with Control Input: D latch

• D for Data. Data is transferred to the Latch

When C is high, D passes from input to output (Q)

D	C	Q Q'	
0	1	0 1	
1	1	1 0	
X	0	$Q_n Q_n'$	

Edge Sensitive Flip-Flop

- Latches respond to trigger levels on control inputs Example: If C = 1, input is reflected at output
- Flip flips store data on a positive or negative edge.
 - Example: control input transitions from 0 to 1, data input available at output
- Data remains stable in the flip flop until next positive /negative edge.
- Different types of flip flops are used for specific functions

Edge Sensitive Flip-Flop:definitions

- The sequential circuit output changes when its CLOCK input detects an edge. Edge-sensitive instead of level-sensitive.
- Symbol is a triangle on the CLK (clock) input of a flip-flop.
- Flip flop can be triggered on positive or negative edge
- Bubble before *Clock (CLK)* input indicates negative edge trigger

Symbol with positive edge

Symbol with negative edge

Edge Sensitive SR

Characteristic Table

S	R	С	Q(n+1)	Comment
0	0	1	Q(n)	No Change
0	1	1	0	Reset
1	0	1	1	Set
1	1	1	?	Forbidden
X	X	X	Q(n)	No Change

- • Q_n = state *before* positive edge
- • Q_{n+1} = state *after* positive edge

JK Flip flop

Symbol

Same as SR except for

K=J=1 the JK flip flop will Output the opposite state of Q_n .

If
$$Q_{n.} = 1$$
 then $Q_{n+1} = 0$
If $Q_{n.} = 0$ then $Q_{n+1} = 1$

Characteristic Table

J	K	C	Q(n+1)	Function
0	0	1	Q(n)	No Change
0	1	1	0	Reset
1	0	1	1	Set
1	1	1	Q'(n)	Toggle
X	X	X	Q(n)	No Change

- • Q_n = state *before* positive edge
- • Q_{n+1} = state *after* positive edge

34

J-K Flip-Flop Implementations

$$S = JQ'$$
$$R = KQ$$

J	K	S	R	Q(n+1)	Comment
0	0	0	0	Q(n)	
0	1	0	Q	0	If Q 1, reset to 0.
1	0	Q'	0	1	If Q 0, set to 1.
1	1	Q'	Q	Q'(n)	S,R = 0,1 (Q=1),
					Reset
					S,R = 1,0 (Q=0),

Set

$$D = JQ' + K'Q$$

J	K	D	Q(n+1)	Comment
0	0	Q	Q(n)	
0	1	0	0	0 + 0
1	0	1	1	Q'+Q
1	1	Q'	Q'(n)	

Characteristic Table

35

JK Flip flop

- Two data inputs, J and K
- J -> set, K -> reset, if J=K=1 then toggle (complement) output

D Flip flop

Output changes only on the clock transition

D	CLK	Q	Q'
0	†	0	1
1	†	1	0
X	0	Q_0	Q_0

D Flip flop can be implemented using SR S = D R = D'

D Flip flop

- Stores a value on the positive edge of *Clock*
- Input changes at other times have no effect on output

T Flip-Flop

Fig. 5-13 T Flip-Flop

°Can be Created from JK or D flip flop

Т	С	Q(t+1)	= TQ' + T'Q
0	†	Q(t)	No change_
1	†	Q ' (t)	No change_ Complement(Toggle)

39

 $D = T \oplus Q$

Asynchronous Inputs

- So far we have only considered **synchronous inputs** (e.g. D, S, R, J, K) \rightarrow Their Effects on the output are synchronized with the *CLK* input.
- Flip flops have asynchronous inputs. They operate independently of the synchronous inputs and clock
 - used to Set the Flip flop to 1 or 0 state at any time.

PRESET	CLEAR	FF response
1	1	Clocked operation*
0	1	Q = 1 (regardless of CLK)
1	0	Q = 0 (regardless of CLK)
0	0	Not used

^{*}Q will respond to J, K, and CLK

Latch (Controlled) Summary

SR Latch

Function Table

S	R	E	Q(n+1)	Q'(n+1)	Comment
0	0	1	Q(n)	Q'(n)	No change
0	1	1	0	1	Reset
1	0	1	1	0	Set
1	1	1	?	?	Forbidden
X	X	0	Q(n)	Q'(n)	No change

D Latch

Function Table

D	E	Q(n+1)	Q'(n+1)	Comment
0	1	0	1	
1	1	1	0	
X	0	Q(n)	Q'(n)	No change

Flip-Flop Summary – Symbols/Function Tables

•Qn = state *before* positive edge

•Qn +1 = state <i>after</i> positive edg	e
--	---

D Flip-Flop

•	D	SET	Q
	>		
		CLR	\overline{Q}

S	R	C	Q(n+1)	Q'(n+1)	Comment
0	0	1	$Q(\mathbf{n})$	Q'(n)	No Change
0	1	1	0	1	Reset
1	0	1	1	0	Set
1	1	1	?	?	Forbidden
X	X	0/1	Q(n)	Q'(n)	No Change

D	Clock	Q(n+1)	Q'(n+1)	Comment
0	1	0	1	
1	1	1	0	
X	0/1	Q(n)	Q'(n)	No Change

J	K	С	Q(n+1)	Comment
0	0	1	$Q(\mathbf{n})$	No Change
0	1	1	0	Reset
1	0	1	1	Set
1	1	1	Q'(n)	Toggle
X	X	0/1	Q(n)	No Change

[Τ	SET	Q
	>		
		CLR	\overline{Q}

T	С	Q(n+1)	Q'(n+1)	Comment
0	1	Q(n)	Q'(n)	
1	1	Q'(n)	Q(n)	Complement (toggle)
X	0/1	Q(n)	Q'(n)	No change in output

42

Flip-Flop Summary — Characteristic Table/Function

SR Flip-Flop

S	R	Q(t+1)	Comment
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Undef.	Forbidden

JK Flip-Flop

J	K	Q(t+1)	Comment
0	0	Q(t)	No Change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D Flip-Flop •Qt = state *before* positive edge

•Q(t+1) = state *after* positive edge

$$Q(t+1) = D$$

D	Q(t+1)	Comment
0	0	Reset
1	1	Set

T Flip-Flop

T	Q(t+1)	Comment
0	Q(t)	No change
1	Q'(t)	Complement (toggle)

43

Example: an application of Flip flops

Analysis of synchronous sequential circuits

→ Analysis describes what a given circuit will do under certain conditions

- → Behavior of synchronous sequential circuit can be determined from
- Its inputs,
- Its outputs and its Flip Flop state

Flip Flop State

Behavior of synchronous sequential circuit can be determined from inputs, outputs and Flip Flop state

we can derive:

$$y(t) = x(t)Q_1(t)Q_0(t)$$

$$Q_0(t+1) = D_0(t) = x(t)Q_1(t)$$

$$Q_1(t+1) = D_1(t) = x(t) + Q_0(t)$$
ITI1100

Output and State Equations

Next state dependent on previous state.

State Table

- Sequence of outputs, inputs, and flip flop states are listed in a table called "State Table"
- Present state indicates current value of flip flops
- Next state indicates state after next clock edge
- Output is output value on current clock edge

State Table – 2 forms

Present State	Nex	t State	Ou	ıtput
	x = 0	x = 1	x = 0	x = 1
$Q_1(t)/Q_0(t)$	$Q_1(t+1)/Q_0(t+1)$	$Q_1(t+1)/Q_0(t+1)$	У	y
00	00	10	0	0
01	10	10	0	0
10	00	11	0	0
11	10	11	0	1

Presei	nt State	Input	Next	State	Output
Q ₁ (t)	Q ₀ (t)	x	Q ₁ (t+1)	$Q_0(t+1)$	у
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	1	1

49

State Table

- All possible input combinations are listed
- All possible state combinations are listed
- Separate columns for each output value.
- Easier to use a symbol for each state.

	Present ₁	Nex	t State	Ou	tput
Let:	State	x=0	x=1	x=0	x=1
$s_0 = 00$	$\mathbf{s_0}$	$\mathbf{s_0}$	$\mathbf{s_2}$	0	0
$s_1 = 01$	$\mathbf{s_1}$	$\mathbf{s_2}$	$\mathbf{S_2}$	0	0
$s_2 = 10$	$\mathbf{s_2}$	$\mathbf{s_0}$	$\mathbf{s_3}$	0	0
$s_3 = 11$	$\mathbf{s_3}$	$\mathbf{s_2}$	$\mathbf{S_3}$	0	1

State Diagram

- Circles indicate current state
- Arrows point to next state
- For x/y, x is input and y is output

Present	Next	State	Outp	out
State	x=0	x=1	x=0	x=1
0 0	00	10	0	0
0 1	10	10	0	0
10	00	11	0	0
1 1	10	11	0	1

51

State Diagram

- Each state has two arrows leaving
 - One for x = 0 and one for x = 1
- Unlimited arrows can enter a state
- Use of state names in this example
 - Easier to identify

Analysis of synchronous sequential circuits

- →Analysis describes what a given circuit will do under certain conditions
- →Behavior of synchronous sequential circuit can be determined from
 - Its inputs, its outputs and its Flip Flop state
- → Analysis Steps
- Circuit Diagram → Equations → State Table → State Diagram
 - Identify Equations:
 - \triangleright F-F input eqn: F-F inputs = F1(inputs, present state)
 - \triangleright Output eqn: Outputs = F2(inputs, present state)
 - \triangleright State eqn: Next state = F3(inputs, present state)

Example: Zero Detector

Zero Detector: State Table

Table 5.2 *State Table for the Circuit of Fig. 5.15*

	Present Nex State Input Stat			Output	
A	В	X	A	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Zero Detector: Second Form of the State Table

Table 5.3Second Form of the State Table

Dro	Present		ext	Stat	e	Out	tput
	ate	x =	0	X =	= 1	x = 0	<i>x</i> = 1
A	В	A	В	A	В	у	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Zero Detector: State Diagram

FIGURE 5.16

State diagram of the circuit of Fig. 5.15

Flip Flop Input Equations

° Boolean expressions which indicate the input to the flip flops.

Analysis with D Flip-Flops

- Identify flip flop input equations $D_A = A \oplus x \oplus y$
- Identify output equation (no output in this example)
- Identify state equation $A(t+1)=D_A = A \oplus x \oplus y$

Present state	Inputs	Next s state
A	x y	A
0	0 0	0
0	0 1	1
0	1 0	1
0	1 1	0
1	0 0	1
1	0 1	0
1	1 0	0
1	1 1	1

(a) Circuit diagram

(b) State table

Note: this example

has no output

(c) State diagram

Fig. 5-17 Sequential Circuit with D Flip-Flop

FIGURE 5.18 Sequential circuit with *JK* flip-flop

- **1.** Determine the flip-flop input equations in terms of the present state and input variables.
- **2.** List the binary values of each input equation.
- **3.** Use the corresponding flip-flop characteristic table to determine the next-state values in the state table.

The next-state values can also be obtained by evaluating the state equations from the characteristic equation. This is done by using the following procedure:

- **1.** Determine the <u>flip-flop input equations</u> in terms of the present state and input variables.
- 2. Substitute the input equations into the flip-flop characteristic equation to obtain the state equations.
- **3.** Use the corresponding state equations to determine the next-state values in the state table.

$$J_{A} = B \quad K_{A} = Bx'$$

$$J_{B} = x' \quad K_{B} = A'x + Ax' = A \oplus x$$

$$A(t+1) = BA' + (Bx')' A = A'B + AB' + Ax$$

$$B(t+1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$$
ITI1100

Table 5.4 *State Table for Sequential Circuit with JK Flip-Flops*

Present State		Input		ext ate	Flip-Flop Inputs
A	В	X	A	В	J _A K _A J _B K _E
0	0	0	0	1	0 0 1 0
0	0	1	0	0	0 0 0 1
0	1	0	1	1	1 1 1 0
0	1	1	1	0	1 0 0 1
1	0	0	1	1	0 0 1 1
1	0	1	1	0	0 0 0 0
1	1	0	0	0	1 1 1 1
1	1	1	1	1	1 0 0 0

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Copyright ©2013 Pearson Education, publishing as Prentice Hall

63

64

Mealy and Moore Models

- A general model of a Sequential Circuit has
 - Inputs
 - Outputs
 - Internal States
- Circuits with different states know as Finite State Machines (FSMs)
- There are two "standard models"
 - Mealy Model, known as Mealy Finite State Machine (or Mealy machine)
 - Moore Model known as Moore Finite State Machine (or Moore Machine)

Mealy Machine

Output based on state and present input

Example of Mealy Machine

Moore Machine

• Output based on state only

Example of Moore Machine

Fig. 5-18 Sequential Circuit with JK Flip-Flop

Example 1 D FF Analysis

Zero Detector

Mealy FSM (Outputs indicated on transition arrows)

70

Example 2 JK FF Analysis

FIGURE 5.18Sequential circuit with *JK* flip-flop

Moore FSM (Outputs reflected by FF states)

Example 3 T FF Analysis

TTI1100 72

Design of Sequential Circuits

- So far, we have examined the analysis of sequential circuits
 - Circuit Diagram → Equations → State Table →
 State diagram
- Now we want to design sequential circuits
 - State Diagram → State Reduction → State
 Assignment → State Table → Select type of FF's
 →Derive: FF input Equations, State equations;
 Output equations (minimized) → Circuit Diagram
 - Note: FF Input Equations/Output Equations lead to combinational circuit design.

State Reduction (1)

- Consider a the following state diagram

- The following is the output sequence generated by the FSM for the given input sequence:

gram 0/0 0/0
1/0 0/0
1/0 1/0 0/0
0/0 1/1 1/1
1/1

state	a	a	b	c	d	e	f	f	g	f	g	а
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

State Reduction (2)

- Possible that an FSM with fewer states can generate same input/output sequences
 - Nice to have method to reduce # of states in FSM
- An approach:
 - Generate a state table from the given state diagram
 - Apply the following algorithm:
 - 2 states are equivalent if
 - They give the same output for each member of the set of inputs
 - They send the circuit to the same or to an equivalent state
 - When 2 states are equivalent, one can be removed without altering the input/output relationship:
 - Remove the row(s) in the state table where present state equals the removed state
 - Where ever the removed state occurs in the Next state column(s), it is replaced by its equivalent state.

State Reduction (3)

- Obtaining the State table from State diagram of the previous slide

State Table

State e and g are equivalent \rightarrow have the same next states and same output when x=0, x=1

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	C	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

Reducing the State Table

	Next S	State	Output	
Present State	x = 0	x = 1	x = 0	x = 1
а	а	Ь	0	0
b	c	d	0	0
c	а	d	0	0
d	e	f	0	1
e	a	f	0	1
f	e	f	0	1

Remove row with present state g and replace it by e in remaining next states

ITI1100

State Reduction (4)

Reducing the State Table

	Next :	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	e	f	0	1	

f and d are		Next S	State	Out	put
equivalent	Present State	x = 0	x = 1	x = 0	<i>x</i> = 1
	a	a	b	0	0
	<i>b</i>	c	d	0	0
	c	a	d	0	0
	d	e	d	0	1
	e	a	d	0	1

State Reduction (4)

- New state machine contains only 5 states and produces same input/output sequences
 - May result in less equipment, but May not lead to savings in Flip-flops
 - In practice, state reduction may be skipped.

Reduced State Table

 \boldsymbol{a}

0

state

input

output

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

 \boldsymbol{c}

0

78

State Assignment (1)

- To assign coded binary values to the states: for circuit with m states, codes must contain n bits where $2^n \ge m$
 - E.g., with 7 states, require 3 bits, one state is unused
 - E.g., with 5 states, require 3 bits, three states are unused
- Unused states can be treated as don't care conditions
 - Can simplify combinational circuits
- Coding states
 - Use counting order: fives states use 000 to 100 (101, 110, 111 are unused)
 - Use Gray code: Only one bit changes from one number to next
 - One-hot assignment: as many bits as states and only 1 bit set in the state number

State Assignment (2)

Table 5.9 *Three Possible Binary State Assignments*

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
С	010	011	00100
d	011	010	01000
e	100	110	10000

One-Hot

- Usually leads to simpler decoding logic for next state and output
- FSM can be faster than that with sequential binary encoding
- Silicon area required for extra flip-flops can be offset by area saved in simpler decoding logic. No guarantee in this trade-off, must be evaluated for given design

Design Procedure

- Design of systems that input flip flops and combinational logic
- Specifications start with a word description
- Create a state table to indicate next states
- Convert next states and outputs to output and flip flop input equations
 - Reduce logic expressions using truth tables
- Draw resulting circuits.

Design Procedure

- **1.** From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- **2.** Reduce the number of states if necessary.
- **3.** Assign binary values to the states.
- **4.** Obtain the binary-coded state table.
- **5.** Choose the type of flip-flops to be used.
- **6.** Derive the simplified flip-flop input equations and output equations.
- **7.** Draw the logic diagram.

Designing Finite State Machines

- Specify the problem with words
 - (e.g. Design a circuit that detects three consecutive 1 inputs)
- Derive a state diagram
- Assign binary values to states
- Develop a state table
- Choose flip flop type
- Use K-maps to simplify expressions
 - Flip flop input equations and output equations
- Create appropriate logic diagram
 - Should include combinational logic and flip flops

Example: Detect 3 or More Consecutive 1 Inputs

State Diagram

- $^{\circ}$ State S_0 : zero 1s detected
 - State S_1 : one 1 detected
- State S_2 : two 1s detected
- State S_3 : three or more 1s detected

Fig. 5-24 State Diagram for Sequence Detector

- ° Moore circuit with output 0 at S0, S1, S2, and 1 at S3.
- Each state has 2 output arrows
- Two bits needed to encode state

84

State Table for Sequence Detector

Present State	Input	Next State	Outpu
A B	X	A B	у
0 0	0	0 0	0
0 0	1	0 1	0
0 1	0	0 0	0
0 1	1	1 0	0
1 0	0	0 0	0
1 0	1	1 1	0
1 1	0	0 0	1
1 1	1	1 1	1

- Sequence of outputs, inputs, and flip flop states enumerated in state table
- Present state indicates current value of flip flops
- Next state indicates state after next rising clock edge
- Output is output value on current clock edge

$$^{\circ}$$
 $S_0 = 00$

$$^{\circ}$$
 $S_2 = 10$

°
$$S_0 = 00$$

° $S_1 = 01$

$$^{\circ}$$
 S₃ = 11

85

Design with DFF's

- Word to State Diagram (Done)
- Derive the State Table from State Diagram (Done)
- Choose type of Flip-Flop: D
 - Two D flip-flops to represent 4 states
 - Outputs of FF: A and B
- Develop the FF Input equations and output equations
- Derive Circuit Diagram

Finding FF Input Equation and Output Equation

- FF D input = "next state", $Q(t + 1) = D_Q$
- From state table, find FF input equation of D_Q with regard to present state and inputs
- Find output equation of y with regard to present state and inputs
- Create K-map directly from state table (3 K-maps for D_A , D_B , and y)
- Minimize K-maps to find SOP representations

 $D_A = Ax + Bx$

 $D_B = Ax + B'x$

y = AB

Circuit Diagram – Sequence Decoder

This is a Moore machine.

state flip flops

FIGURE 5.29 Logic diagram of a Moore-type sequence detector

88 ITI1100

Excitation Tables (JK and T FF's)

- Input FF equations derived indirectly from state table
 - For D FF, input equations obtained directly from next state
 - Not so for JK and T FF's need excitation tables.
- Excitation table: list required inputs for a given state change.

JK Flip Flop

Characteristic Tables

II.			<u> </u>
J	K	Q(t+1)	Comment
0	0	Q(t)	No Change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

T Flip Flop

T	Q(t+1)	Comment
0	Q(t)	No change
1	Q'(t)	Complement (toggle)

Excitation Tables

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Design with JK FF's

- Design the circuit for the following state diagram
 - State table, FF Input equations, Circuit

90

Design with JK FF's – State Table

Add FF inputs in the state table to get FF input equations

Table 5.13 *State Table and JK Flip-Flop Inputs*

Present State		Input	Next State		Flip-Flop Inputs			
A	В	X	A	В	J _A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	\mathbf{X}	0	0	X
1	0	1	1	1	\mathbf{X}	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Design with JK FF's – FF Input Eqn's

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Design with JK FF's – Circuit

Design with T FF's

- Design the circuit for the following state diagram, a 3-bit binary counter:
 - State Diagram: no input/output, triggered by a clock edge
 - 3 T flip-flops : FF outputs map binary count
 - State table, FF Input equations, Output equations (no output), Circuit

Design with T FF's – State Table

Add FF inputs in the state table to get FF input equations

Table 5.14 *State Table for Three-Bit Counter*

Present State		No	Next State			Flip-Flop Inputs		
A ₂	A ₁	A_0	A ₂	A_1	A_0	T _{A2}	<i>T_A</i> 1	T _{AO}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Design with T FF's – FF Input Equations

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Design with T FF's – Circuit

Design with JK FF's – Even Counter

- Design the circuit for the following state diagram, a 3-bit even counter
 - State table, FF Input equations, Circuit

What is interesting about the following state

diagram?

Design with JK FF's – Even Counter – State Table

Present	Next						
State	State	JK FF Inputs					
ABC	ABC	J_A	K_A	J_B	KB	J_C	Kc
000	010	0	X	1	X	0	X
001	XXX	X	X	X	X	X	X
010	100	1	X	X	1	0	X
011	XXX	X	X	X	X	X	X
100	110	X	0	1	X	0	X
101	XXX	X	X	X	X	X	X
110	000	X	1	X	1	0	X
111	XXX	X	X	X	X	X	X

Design with JK FF's – Even Counter – FF Input Eqn's

$$J_A = B$$

Bx				
A	00	01	11	10
0	mo	m_1	<i>m</i> ₃	<i>m</i> ₂
0		X	X	1
1	m4	m5	<i>m</i> 7	m6
1	X	X	X	X

$$K_A = B$$

Bx				
A	00	01	11	10
0	m_0	m_I	<i>m</i> ₃	<i>m</i> ₂
0	X	X	X	X
1	m4	m5	<i>m</i> 7	m6
1		X	X	1

$$J_B = 1$$

$$J_c = 0$$

$$K_B = 1$$

$$K_c = 1$$

Design with JK FF's – Even Counter – Circuit

Design with JK FF's – Even Counter - Alternate

- Design the circuit for the following state diagram, a 3-bit event counter
 - State table, FF Input equations, Circuit
 - What is interesting about the following state diagram.

– Can you deduce the circuit directly?

– What would our design give us?

ITI1100

Design with JK FF's – Even Counter (alt) - Circuit

• Circuit deduced directly from the state diagram

Design with JK FF's – Even Counter (alt) - Circuit

- Modified original circuit.
- Check with design.

END of Chapter 5