CORRIGÉ DU DM N°11 (E3A PSI 2015)

Préliminaires

1. Soit $(e_1, ..., e_p)$ une base orthonormale de E. Notons u l'unique endomorphisme de E tel que $u(e_1) = e_1$ et $\forall i \ge 2$, $u(e_i) = 0$. u est un endomorphisme de E de rang 1. Il est symétrique (puisque sa matrice dans une base orthonormale est symétrique, ici diagonale). Enfin, si $x \in E$ alors $(u(x)|x) = (x|e_1)^2$ (puisque $x = \sum_{i=1}^{n} (x|e_i)e_i$) et donc $(u(x)|x) \ge 0$. Finalement, $u \in T$.

Cependant, $-u \notin T$ puisque $(-u(e_1)|e_1) = -1 < 0$. T(E) n'est donc pas stable par combinaisons linéaires et n'est donc pas un sous-espace vectoriel.

2. a) (Question de cours). On a :

$$\mathbf{tr}(AB) = \sum_{i=1}^{p} (AB)_{i,i} = \sum_{i=1}^{p} \sum_{k=1}^{p} A_{i,k} B_{k,j} = \sum_{k=1}^{p} \sum_{i=1}^{p} A_{i,k} B_{k,j} = \sum_{k=1}^{p} (BA)_{k,k} = \mathbf{tr}(BA).$$

b) (Question de cours).

Si B est semblable à A, il existe une matrice inversible P telle que $P^{-1}AP = B$ et alors

$$\mathbf{tr}(\mathbf{B}) = \mathbf{tr}(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}) = \mathbf{tr}(\mathbf{P}\mathbf{P}^{-1}\mathbf{A}) = \mathbf{tr}(\mathbf{A}).$$

- c) En particulier, la trace d'une matrice représentant u dans une base ne dépend pas de la base choisie (puisque deux choix de bases donnent deux matrices semblables). On peut donc définir la trace de u comme la trace de l'une quelconque des matrice le représentant.
- 3. Un hyperplan de E est un sous-espace de E dont un supplémentaire est de dimension 1, c'est à dire de dimension p-1.
 - a) C'est FAUX. G ne contient pas le vecteur nul et n'est donc même pas un espace vectoriel.
 - **b)** C'est **VRAI**. Soit $a \in G$; si $x \in H \cap Vect(a)$ il existe un scalaire k tel que x = ka. Si $k \ne 0$ alors $a = x/k \in H$ ce qui est faux. On a ainsi k = 0 et donc x = 0. On en déduit que Vect(a) et H sont en somme directe. Par dimension, il sont supplémentaires.
 - c) C'est VRAI. Si a est non nul et orthogonal à H alors il n'est pas dans H (seul le vecteur nul est dans H et orthogonal à H). La question précédente montre qu'il engendre un supplémentaire de H dans E.
 - d) C'est VRAI. Par théorème du rang, la dimension du noyau d'une forme linéaire non nulle est égale à la dimension de l'espace moins 1. Ce noyau est donc un hyperplan de l'espace.
 - e) C'est VRAI, toujours grâce au théorème du rang.
- 4. L'application est bien définie et, avec les questions précédentes, est symétrique. De plus,

$$\langle \lambda f + g, h \rangle = \mathbf{tr}((f + \lambda g) \circ h) = \mathbf{tr}(\lambda f \circ h + g \circ h) = \lambda \mathbf{tr}(f \circ g) + \mathbf{tr}(g \circ h) = \lambda \langle f, h \rangle + \langle g, h \rangle$$

ce qui donne la linéarité par rapport à la première variable. Notons enfin A une matrice représentant f dans une base orthonormée. On a tA = A par symétrie de f et

$$\langle f, f \rangle = \mathbf{tr}(\mathbf{A}^2) = \mathbf{tr}(^t \mathbf{A} \mathbf{A}) = \sum_{1 \le i, j \le n} \mathbf{A}_{i, j}^2$$

C'est une quantité positive qui n'est nulle que si A, et donc aussi f, est nulle. On a donc le caractère défini positif et notre application définit un produit scalaire sur S(E).

5. De façon immédiate, (1,1,1) est vecteur propre associé à la valeur propre -3, (1,-1,0) et (0,1,-1) sont vecteurs propres associés à la valeur propre -6. On a donc

$$Sp(A) \subset \{-3, -6\}, Vect((1, 1, 1)) \subset E_{-3}(A), Vect((1, -1, 0), (0, 1, -1)) \subset E_{-6}(A).$$

Les sous-espace propres étant en somme directe, on a toutes les valeurs propres et les inclusions ci-dessus sont des égalités.

Partie 1

1. u_a est immédiatement un endomorphisme de E (par linéarité du produit scalaire par rapport à la première variable). Son image est égale à Vect(a) et est de dimension ≤ 1 (et donc le rang de u_a est ≤ 1). On a de plus

$$(u_a(x)|y) = (x|a)(a|y) = (x|u_a(y))$$

et u_a est symétrique. Enfin, pour tout x, $(u_a(x)|x) = (x|a)^2 \ge 0$. On a donc

$$u_a \in T(E)$$
.

2. a) Comme $a \ne 0$, la famille \mathcal{B} proposée est bien une base. u_a envoie les élements orthogonaux à a sur 0 et envoie a sur $||a||^2a$. La matrice cherchée est donc :

$$diag(||a||^2, 0, ..., 0.)$$

b) On en déduit que la matrice de u_a^2 est diag($||a||^4, 0, ..., 0$) et que :

$$\mathbf{tr}(u_a) = ||a||^2, \ \mathbf{tr}(u_a^2) = ||a||^4.$$

c) La matrice de $f \circ u_a$ dans $\mathcal B$ s'obtient en multipliant celle de f dans $\mathcal B$ par celle de u_a , ce qui revient à multiplier la première colonne par $\|a\|^2$ et les autres par 0. Les coefficients diagonaux de la matrice de $f \circ u_a$ sont donc $\|a\|^2 \alpha, 0, \ldots, 0$, où α est le coefficient supérieur gauche de la matrice de f. En décomposant f(a) sur $\mathrm{Vect}(a)$ et son orthogonal, on obtient $f(a) = \alpha a + y$ et ainsi $(f(a)|a) = \|a\|^2 \alpha$. On en déduit que les coefficients diagonaux de $f \circ u_a$ sont :

$$(f(a)|a), 0, \ldots, 0.$$

d) En particulier,

$$\mathbf{tr}(f \circ u_a) = (f(a)|a).$$

- **3.** Comme $u \in T$, on notera que Im(u) = Vect(b) (inclusion et égalité par dimension).
 - a) Comme $u(b) \in \text{Im}(u)$, il existe donc un scalaire μ tel que $u(b) = \mu b$. En prenant le produit scalaire avec b, il vient $0 \le (u(b)|b) = \mu ||b||^2$ et comme $||b||^2 > 0$, on a donc $\mu \ge 0$.
 - **b)** Soit $x \in E$. $u(x) \in Im(u)$ et il existe k tel que u(x) = kb. En prenant le produit scalaire avec b, il vient $k = \frac{(u(x)|b)}{\|b\|^2}$. Mais comme u est symétrique, $(u(x)|b) = (x|u(b)) = \mu(x|b)$ et ainsi

$$u(x) = \frac{\mu}{||b||^2}(x|b)b.$$

c) μ ne peut donc être nul (sinon u le serait) et comme on a vu que $\mu \ge 0$, on conclut que :

$$\mu > 0$$
.

d) Posons $a = \sqrt{\mu} d \frac{b}{\|b\|}$. La question 3.*b* donne

$$\forall x \in E$$
, $u(x) = (x|a)a = u_a(x)$.

4. La question 1 montre que ϕ va bien de E dans T(E). La question 3 indique que tout élément de T(E) admet un antécédent et on a donc surjectivité de ϕ .

Comme $\varphi(a) = \varphi(-a)$, on montre que φ n'est pas injective en considérant un vecteur a non nul (et il y en a puisque $p \ge 1$). L'application φ n'est donc pas injective.

Partie 2

- 1. $\{\Phi(x) \mid x \in E\}$ est une partie non vide de \mathbb{R} (elle contient $N(f u_0)^2 = N(f)^2$) et minorée par 0. Elle possède donc une borne inférieure m(f).
- 2. On développe par multilinéarité :

$$\Phi(x) = \langle f - u_x, f - u_x \rangle = \mathcal{N}(f)^2 - 2\langle f, u_x \rangle + \mathcal{N}(u_x)^2.$$

Or, $N(u_x^2) = \langle u_x, u_x \rangle = \mathbf{tr}(u_x^2) = ||x||^4$ (question 1.2.2) et $\langle f, u_x \rangle = \mathbf{tr}(f \circ u_x) = (f(x)|x)$ (question 1.2.d) et donc:

$$\Phi(x) = N(f)^2 - 2(x|f(x)) + ||x||^4.$$

3. Ainsi (on utilise la symétrie de f et ||y|| = 1):

$$\begin{split} h_x(t) &= \Phi(x+ty) \\ &= N(f)^2 - 2(x+ty|f(x)+tf(y)) + ||x+ty||^4 \\ &= N(f)^2 - 2((x|f(x)) + 2t(x|f(y)) + t^2(y|f(y))) + (||x||^2 + 2t(x|y) + t^2)^2 \\ &= t^4 + 4(x|y)t^3 + (4(x|y)^2 + 2||x||^2 - 2(y|f(y)))t^2 \\ &+ (-4(x|f(y)) + 4||x||^2(x|y))t + N(f)^2 - 2(x|f(x)) + ||x||^2, \end{split}$$

et h_x est polynomiale de degré 4.

- 4. f est symétrique donc diagonalisable da ns une base orthonormale . Quitte à renuméroter les vecteurs de cette base (e_i) , il est toujours possible de supposer que les valeurs propres respectives $\lambda_1, \ldots, \lambda_p$ sont ordonnées comme dans l'énoncé.
- **5.** Dans la base \mathcal{C} , f est représentée par $\operatorname{diag}(\lambda_1,\ldots,\lambda_p)$ et $f\circ f$ par $\operatorname{diag}(\lambda_1^2,\ldots,\lambda_p^2)$. On a donc :

$$N(f) = \sqrt{\operatorname{tr}(f \circ f)} = \sqrt{\sum_{i=1}^{p} \lambda_i^2}.$$

6. Soit $z \in E$ de norme 1 ; il peut alors s'écrire $z = z_1 e_1 + \dots + z_p e_p$ avec $z_1^2 + \dots + z_p^2$. On a alors :

$$(z|f(z)) = \sum_{i=1}^{n} \lambda_i z_i^2 \leqslant \lambda_p \sum_{i=1}^{p} z_i^2 = \lambda_p.$$

Ceci montre (en passant à la borne supérieure) que $\alpha \le \lambda_p$. $z = e_p$ étant un élément de norme 1 pour lequel l'inégalité ci-dessus est une égalité, on conclut que :

$$\alpha = \max_{\|z\|=1} (z|f(z)) = \lambda_p.$$

Si $(z|f(z))=\lambda_p$, on a pour tout i, $\lambda_i z_i^2=\lambda_p z_i^2$. Dès que $\lambda_i\neq\lambda_p$, on a donc $z_i=0$. z est donc combinaison linéaire des e_i tels que $\lambda_i=\lambda_p$. C'est ainsi un élément de $\ker(f-\lambda_p\mathrm{I} d_\mathrm{E})$.

Réciproquement, si z est de norme 1 et élément de $\ker(f-\lambda_p\mathrm{I}d_{\mathrm{E}}^2)$, on a $(z|f(z))=\lambda_p$ par le calcul cidessus

7. a) Si m(f) est atteint en a alors h_a est minimale en a. Sur un ouvert I de \mathbb{R} , les seuls points où une fonction $g: \mathbb{I} \to \mathbb{R}$ dérivable peut atteindre un extremum local sont les points d'annulation de la dérivée. On a donc :

$$h'_{a}(0) = 0$$
.

b) On en déduit, avec la question 3 que :

$$\forall y \in E \text{ tel que } ||y|| = 1, (a|f(y)) = ||a||^2 (a|y)$$

(on a dérivé h_a et pris la valeur en 0). f étant symétrique, ceci sécrit aussi :

$$\forall y \in E \text{ tel que } ||y|| = 1, (f(a)|y) = ||a||^2 (a|y).$$

Ainsi, $f(a) - ||a||^2 a$ est orthogonal à tout vecteur unitaire et donc à tout vecteur (multiplier par un scalaire ne changera pas la nullité). Comme $E^{\perp} = \{0\}$, on a prouvé que :

$$f(a) = ||a||^2 a$$
.

c) Il suffit alors de reprendre l'expression obtenue en question 3. Le terme de degré 1 est nul, le terme constant est égal à $\Phi(a)$ et on obtient :

$$\Phi(a+ty) - \Phi(a) = t^2[(t+2(y|a))^2 + 2(||a||^2 - (y|f(y)))].$$

(pour tout y unitaire).

d) Si m(f) est atteint en a, pour tout y unitaire, $(t+2(y|a))^2+2(||a||^2-(y|f(y)))$ reste positif et on a donc $||a||^2-(y|f(y))\geqslant 0$. On a aussi vu plus haut que $f(a)=||a||^2$. Réciproquement, si ces relations ont lieu, $f(a)=||a||^2a$ donne l'identité de 7.c et la seconde condition donne alors que $\Phi(a+ty)-\Phi(a)$ reste positif. Comme ty décrit E quand t décrit $\mathbb R$ et y la sphère

unité, Φ atteint donc son minimum m(f) en a.

- **8.** On suppose $\lambda_p \leq 0$.
 - a) On a $(y|f(y)) \le 0$ pour tout y unitaire (question 6). 0 vérifie les deux conditions de 7.d et $m(f) = \Phi(0)$.

Réciproquement, si $m(f) = \Phi(a)$ et, par l'absurde $a \neq 0$. a est alors vecteur propre de f associé à la valeur propre $||a||^2 > 0$ ce qui est impossible (on a supposé $\lambda_p \leq 0$). On a donc a = 0.

b) f_A n'admettant que des valeurs propres négatives, $m(f_A) = \Phi(0) = N(f - u_0)^2 = N(f)^2$. Avec la question 5 (et commeles valeurs propres sont -6, -6 et -3) on a donc

$$m(f_{\rm A}) = 6^2 + 6^2 + 3^2 = 81.$$

- **9.** On suppose que $\lambda_p > 0$.
 - a) Posons $a=\sqrt{\lambda_p}e_p$. On a $f(a)=\sqrt{\lambda_p}\lambda_pe_p=\|a\|^2a$. De plus, pour tout y de norme 1, on a $(y|f(y))\leqslant \lambda_p=\|a\|^2$. On en déduit que :

$$m(f) = \Phi(a) = N(f)^2 - 2(a|f(a)) + ||a||^4 = \sum_{i=1}^p \lambda_i^2 - 2\lambda_p^2 + \lambda_p^2 = \sum_{i=1}^{p-1} \lambda_i^2.$$

- b) On raisonne par analyse et synthèse.
 - Supposons $m(f) = \Phi(x)$. On a alors $\lambda_p = \alpha \le ||x||^2$ et x est non nul. Comme de plus $f(x) = ||x||^2 x$ et x est donc vecteur propre de f. Il existe donc un i tel que $f(x) = \lambda_i x$. $f(x) = ||x||^2 x$ donne $||x|| = \sqrt{\lambda_i}$ puis on en déduit que $\lambda_p = \alpha \le \lambda_i$ ce qui entraîne $\lambda_i = \lambda_p$ (car les λ_k sont ordonnés).
 - Réciproquement, supposons que $||x|| = \sqrt{\lambda_p}$ et que $f(x) = \lambda_p x$. On a alors immédiatement $f(x) = \lambda_p x = ||x||^2 x$. De plus, la question 6 indique que pour tout y unitaire on a $(y|f(y)) \le \lambda_p = ||x||^2$. Ceci indique (question 7.d) que $m(f) = \Phi(x)$.

Partie 3

- 1. M est une matrice stochastique symétrique.
 - **a)** On a immédiatement que (1,...,1) est vecteur propre associé à la valeur propre 1 (multiplier M par ce vecteur revient à sommer toutes les colonnes).
 - **b**) Avec les notations de l'énoncé, on a :

$$\lambda x_k = (MX)_K = \sum_{j=1}^p m_{k,j} x_j.$$

En passant à la valeur absolue et avec l'inégalité triangulaire,

$$|\lambda|.|x_k| \le \sum_{j=1}^p |m_{k,j}|.|x_j| \le |x_k| \sum_{j=1}^p m_{k,j} = |x_k|.$$

Comme X \neq 0 (vecteur propre), on a $|x_k| > 0$ et ainsi

$$|\lambda| \leq 1$$
.

c) On est dans la situation de la partie 2 avec $\lambda_p = 1$ (toutes les valeurs propres sont plus petites que 1 qui est valeur propre). D'après la question 2.9.b, un élément de norme 1 de $\ker(f - \mathrm{I}d_{\mathrm{E}})$ donne un vecteur où Φ atteint son minimum. On peut ainsi choisir :

$$a=\frac{1}{\sqrt{p}}(1,\ldots,1).$$

d) On a alors:

$$m(f_{M}) = \Phi(a) = [N(f_{M} - u_{a})]^{2}$$

et l'endomorphisme $v = u_a$ convient.

e) On a v(x) = (x|a)a et comme ||a|| = 1, v est la projection orthogonale sur vect(a) (formule sur les projections dans une base orthonormale).

2. B est de rang 1 et admet donc 0 comme valeur propre avec une multiplicité n-1 (elle est diagonalisable et son noyau est de dimension n-1). De plus $(1,\ldots,1)$ est vecteur propre associé à la valeur propre p. Les sous-espaces propres étant en somme directe, il n'y a que ces deux valeurs propres (et deux sous-espaces propres de dimensions n-1 et p). On est dans le cadre de la partie 2 avec $\lambda_1=\cdots=\lambda_{p-1}=0$ et $\lambda_p=p$. On obtient :

$$m(f_{\rm B}) = \sum_{i=1}^{p-1} \lambda_i^2 = 0.$$

De plus, b = (1, ..., 1) est un vecteur de norme \sqrt{p} dans le noyau de $f_B - pId_E$ et

$$m(f_{\rm B}) = \Phi(b) = [N(f_{\rm B} - u_b)]^2$$
.

3. a) $C = B - I_p$ et ainsi (en notant $(\varepsilon_1, ..., \varepsilon_p)$ la base canonique de \mathbb{R}^p):

$$Sp(C) = \{-1, p-1\}, \ E_{-1}(C) = Vect(\varepsilon_1 - \varepsilon_2, \varepsilon_1 - \varepsilon_3, \dots, \varepsilon_1 - \varepsilon_p), \ E_{p-1}(C) = vect(\varepsilon_1 + \dots + \varepsilon_p).$$

b) On a cette fois (comme p > 1, $\lambda_p = p - 1 > 0$):

$$m(f_{\rm C}) = \sum_{i=1}^{p-1} \lambda_i^2 = p - 1.$$

c) On cherche c de norme $\sqrt{p-1}$ colinéaire à (1,...,1), il suffit de choisir :

$$c = \sqrt{\frac{p-1}{p}}(1,\ldots,1) \text{ et } w = u_c$$

d) Supposons que $N(f_C - u)^2 = m(f_C)$ avec $u \in T(E)$. D'après la surjectivité de l'application φ de la partie 1, il existe x tel que $u = u_x$. On a alors $m(f_C) = \Phi(x)$ et donc $||x|| = \sqrt{p-1}$ avec $x \in \ker(f - (p-1)Id_E)$. Comme cet espace est de dimension 1, il y a deux x possibles qui sont opposés. Comme $u_x = u_{-x}$, on obtient un seul élément de T(E) possible et il y a unicité.

