$C\Pi \delta \Gamma \Upsilon \Upsilon))$

Презентация к выпускной квалификационной работе на тему: «Многоуровневое зонирование качества покрытия сетей радиодоступа»

2023г

Выполнил: Козлов Михаил Дмитриевич Ст. Гр. РМ-94 Научный руководитель: Коротин В.Е.

Актуальность, цели и задачи

Цель —исследование возможности применения БПЛА в исследовании покрытия сети сотовой связи , а также внедрение решений в отрасль связи Российской Федерации.

Задачи:

Исследование существующих методов измерения покрытия сетей сотовых связей, рассмотрение их недостатков, анализ существующей информации о практическом применении действующих математических и программно-аппаратных моделей

Теоретическая оценка преимуществ предложенного в работе метода перед существующими измирительно-аналитическими платформами, предложение по их внедрению в предложенный метод

Устойчивые тренды развития

Тренд роста месячного трафика

Сценарии применения БПЛА

Методы измерения покрытия сети сотовой связи

$C\Pi \overline{\sigma} \Gamma \overline{\Upsilon} \Upsilon))$

Платформа с БПЛА как способ измерения

Математические модели для расчета основных потерь передачи в СПС

Наименование, источник информации	Условия примени- мости, исходные данные	Описание зоны, дополнительные условия	Расчетное уравнение
Окамура-Хата (Rec. ITU-R P.529-2)	$F = 1501000 \text{ M}\Gamma$ ц $H_{BS} = 30200 \text{ M}$	Средний и малый город (medium stall city)	$\begin{split} L_1 &= 68,75 - 13,82 \lg(H_{BS}) + 27,72 \lg(F) - (1,1 \lg F - 0,7) \cdot H_{MS} + \\ &+ \left(44,9 - 6,55 \lg(H_{BS})\right) \cdot \lg(R) \end{split}$
	$H_{MS} = 110$ м $R = 120$ км	Большой город (large city), $F \le 200 \ \mathrm{M}\Gamma\mathrm{ц}$	$L_2 = 68,45 - 13,82 \lg(H_{BS}) + 26,16 \lg(F) - 8,29 (\lg(1,54H_{MS}))^2 + (44,9 - 6,55 \lg(H_{BS})) \cdot \lg(R)$
		Большой город (large city), $F \ge 400 \ \mathrm{M}\Gamma\mathrm{ц}$	$L_3 = 74,52 - 13,82 \lg(H_{BS}) + 26,16 \lg(F) - 3,2 (\lg(11,75H_{MS}))^2 + (44,9 - 6,55 \lg(H_{BS})) \cdot \lg(R)$
		Пригород (suburban)	$L_4 = 63,35 - 13,82 \lg(H_{BS}) + 27,72 \lg(F) - 2(\lg(F/28))^2 - $ $- (1,1 \lg F - 0,7) \cdot H_{MS} + (44,9 - 6,55 \lg(H_{BS})) \cdot \lg(R)$
		Сельская местность — квазиоткрытая зона (Rural Quasi - Open) Сельская местность — открытая,	$L_5 = 32,81 - 13,82 \lg(H_{BS}) + 46,05 \lg(F) - 4,78 (\lg(F))^2 - (1,1 \lg F - 0,7) \cdot H_{MS} + (44,9 - 6,55 \lg(H_{BS})) \cdot \lg(R)$ $L_6 = 27,81 - 13,82 \lg(H_{BS}) + 46,05 \lg(F) - 4,78 (\lg(F))^2 - (1,1 \lg F) + (1,2 \lg(F))^2 - (1,2 $
		голая, пустынная зона (Rural Open-Area)	$-(1.11gF - 0.7) \cdot H_{MS} + (44.9 - 6.551g(H_{BS})) \cdot 1g(R)$
КОСТ 231 - Хата (COST 231 - Hata)	$F = 15002000 \text{ M}$ Гц $H_{BS} = 30200 \text{ M}$ H _{MS} = 110 м	Средний город и пригородный центр с умеренной плотностью посадки деревьев (medium sized city and suburban centres)	$L_7 = 45.5 - 13.82 \lg(H_{BS}) + 35.4 \lg(F) - (1.1 \lg F - 0.7) \cdot H_{MS} + (44.9 - 6.55 \lg(H_{BS})) \cdot \lg(R)$
	R = 120 км	Центр столичного города (metropolitan centres)	$L_8 = 48.5 - 13.82 \lg(H_{BS}) + 35.4 \lg(F) - (1.1 \lg F - 0.7) \cdot H_{MS} + (44.9 - 6.55 \lg(H_{BS})) \cdot \lg(R)$

Математические модели для расчета основных потерь передачи в СПС

• МОДЕЛЬ ЭРИКСОНА 9999

$$L = a_0 + a_1 \times \lg(R) + a_2 \times \lg(h_t) + a_3 \times \lg(h_t) \times \lg(R) -$$

$$-3.2 \times (\lg(11.75 \times h_r)^2) + 44.49 \times \lg(f) - 4.78 \times (\lg(f))^2,$$

Значения коэффициентов для модели Эриксона 9999

Тип местности	a_0	a_1	a_2	a_3
Городская	36,2	30,2	12	0,1
Пригородная	43,2	68,93	12	0,1
Сельская	45,95	100,6	12	0,1

Модель CCIR

$$L = A + B \times \lg(R) - E,$$

$$A = 69,55 + 26,16 \times \lg(f) - 13,82 \times \lg(h_t) - (1,1 \times \lg(f) - 0,7) \times h_r + 1,56 \times \lg(f) - 0,8,$$

$$B = 44,9 - 6,55 \times \lg(h_t),$$

$$E = 30 - 25 \times \lg(PB),$$

Сравнение моделей в городской застройке

Название модели	Диапазон частот (МГц)	Трасса (км)	Высота антенны БС(м)	Высота антенны АС(м)	Особенности
CCIR	150 – 1000	1 – 20	30-200	1-10	Учитывается коэффициент застройки
<u>Окамура</u> – Хата	150-1500	1-20	30-200	1-10	Применима для большинства условий
COST231 – Хата	1500-2000	1-20	30-200	1-10	Небольшой частотный диапазон
Эриксона 9999	От 1500	1-20	30-200	1-10	Применима для большинства современных стандартов связи

Модель ITM (Irregular Terrain Model) Лонгли–Райса

 $C\Pi \overline{\delta} \Gamma \overline{Y} T))$

Допустимый диапазон частот от 20 МГц до 20 ГГц. Расстояние от АС до БС 1...2000км, высота БС от 1...3000м

Моделирование измерения покрытия БПЛА

 $C\Pi \overline{\delta} \Gamma \overline{Y} T))$

Параметр Значения

Территория моделирования Центр г. Вашингтон из OSM

Локация БС Широта 38.90567183758209

Долгота -77.03989679655152

Высота подвеса БС 15м

Максимальное число отражений волн 10

Материал зданий Бетон

Максимальная дальность покрытия 500м (подходит для LTE)

Высота зоны измерения 1, 10, 20 м

Мощность передатчика 46 дБм

Частоты передатчика 2620-2690 МГц

Атмосферные эффекты Без эффектов, дождь

Результаты моделирования в программной среде

1м без погодных эффектов

1м погодные эффекты

10 м без погодных эффектов

10 м с погодными эффектами

20 м без погодных эффектов

20 м с погодными эффектами

Создание макетного прототипа

$C\Pi \overline{\Gamma YT}))$

- 1.корпус БПЛА
- 2.Контроллер
- 3. SDR-приемник
- 4. Мобильный терминал с предустановленным ПО
- 5. Крепления для оборудования

Программная часть

- 1.Передача от БС (LTE/ 5G NR) к SDR-приемнику
- 2. Передача log-файлов от SDR-приемника, к мобильному терминалу
- 3.Передача собранных данных от мобильного терминала к БС (LTE/5G NR)
- 4. Передача данных от БС к провайдеру услуг
- 5. Передача пакетных данных от провайдера на сервер
- 6. Передача данных от сервера на веб-сервер
- 7. Подключение к веб-серверу удаленно инженера с персонального компьютера
- 8. Интерфейс программного продукта, размещенного на веб-сервере

Источники

- 1.S. Tan, C. Dun, F. Jin and K. Xu, "UAV Control in Smart City Based on Space-Air-Ground Integrated Network," 2021 International Conference on Internet, Education and Information Technology (IEIT)
- 2. Helka-Liina Määttänen, "3GPP Standardization for Cellular-Supported UAVs," in UAV Communications for 5G and Beyond, IEEE
- 3. Wang H., Zhang P., Li J., You X. Radio propagation and wireless coverage of LSAA-based 5G millimeter-wave mobile communication systems. China Communications, 2019
- 4. B. Shang, V. Marojevic, Y. Yi, A. S. Abdalla and L. Liu, "Spectrum Sharing for UAV Communications: Spatial Spectrum Sensing and Open Issues," in IEEE Vehicular Technology Magazine
- 5. Hufford, G. A., A. G. Longley, and W. A. Kissick (1982), A guide to the use of the ITS Irregular Terrain Model in the area prediction mode, NTIA Report
- 6. Rohde & Schwarz; R&S®ROMES4 Drive Test Software