

Final Project

Department of Computer Science and Engineering

Course Code: CSE 209 Section: 2 Course Title: Electrical Circuit.

Submitted BY:

Name: Ariful Islam Fardin
ID: 2020-1-60-111
Date of Report Submission:9 September 2021

Submitted To: Reshedul Amin Tuhin

Senior Lecturer, Department of Computer Science and Engineering

Tittle: PSpice Analysis for Maximum Power Transfer.

 ${f Q}$ 1. Using PSpice Simulation, determine the Thevenin's equivalent of the circuit looking from the load resistance R_L .

ANS: the original circuit given on the question is

From the PSpice simulation we can see

From the figure 2 we find V_{oc} =0.457V

Figure 3

From the figure 2 we find I_{sc} = 242.42mA

 $R_{th}\!=\!\!R_L\!\!=V_{oc}\!/I_{sc}$

 $R_{th}\!=\!\!0.457/242.42m$

 $R_{th} = 1.88 \ \Omega$

Q 2. From the Thevenin's equivalent circuit, theoretically determine the value of load resistance R L for maximum power transfer. Using PSpice Simulation of the Thevenin's equivalent circuit with R L for maximum power transfer, determine the value of maximum power transferred to R L?

Figure 5

Applying KCL at Super Node,

$$-1+(V_1/4)+(V_1-V_3)/1+(V_2/1)-2(V_1-V_3)=0$$

or,
$$-3/4$$
 V₁ + V₂ + V₃ = 1.....(1)

Applying KCL at 3,

$$V_3 - V_1 + 2(V_1 - V_3) + V_3/4 + V_3/2 = 0$$

or,
$$V_1 - 1/4 V_3 = 0 \dots (2)$$

From the super node,

$$V_2-V_1=4I_0$$
 $[I_0=V_3/4]$

or,-
$$V_1 + V_2 - V_3 = 0$$
.....(3)

After calculation from equation 1,2 and 3

$$V_3 = 0.48484V$$

So,
$$I_{sc} = V_3/2$$

$$I_{sc} \ = 0.4848/2$$

$$I_{sc} = 0.24242A$$

Now,

Figure 6

Applying KCL at super node respectively,

$$-1+(V_1/4)+V_1-V_3+V_2-2(V_1-V_3)=0$$

or,
$$(-3/4 V_1)+V_2+V_3=1...(1)$$

Applying KCL at node 3 respectively,

$$V_3 - V_1 + 2(V_1 - V_3) + V_3/4 = 0$$

or,
$$V_1$$
 –(3/4 V_3) = 0(2)

From super node,

$$V_2 - V_1 = 4* V_3 / 4$$

or,
$$-V_{1} + V_{2} - V_{3} = 0$$
(3)

From equation (1), (2), And (3)

$$V_3 = 16/35 = 0.457V$$

$$V_3 = V_{oc} = V_{th} = 0.457V$$

$$R_{th} = R_L = V_{oc}/I_{sc}$$

$$R_{th} = 0.457/0.24242$$

$$R_{th} = 1.88 \Omega$$

$$P_{max} = V_{th}^2 / 4R_{th}$$

$$P_{max} = (0.457)^2 / 4 * 1.88$$

$$P_{max} = 0.0277W \\$$

OR,
$$P_{max} = 0.0277W$$

So,
$$P_{max} = 0.028W$$

Q 3. Using PSpice Simulation with resistance sweep, determine the value of R L for maximum power transfer and the corresponding maximum power.

ANS:

From the graph max power is 27.706mw =0.27706W.

Q4. Compare the value of R L and maximum power obtained in steps 2 and 3. **ANS:** from the table we can see there is no difference between theoretically calculation and PSpice simulation

	STEP 2	STEP 3
$R_{ m L}$	1.88 Ω	1.88 Ω
P _{max}	0.028W	0.0277W
		=0.028W