Machine Learning in R

R-Ladies Colombo Chapter

Kasun Bandara

29 March, 2021

Melbourne Centre for Data Science, University of Melbourne, Australia.

Machine Learning Organized by Kasun Bandara University of Melbourne Australia

Introduction

About me

- 2015 Graduated in Computer Science from University of Colombo School of Computing
- · 2015 Joined WSO2 Inc. as a Software Engineer
- 2016-2020 Ph.D. in Computer Science, Monash University, Australia
 - · Topic: Forecasting In Big Data With Recurrent Neural Networks
 - Machine Learning for Time Series Forecasting
 - · Research Internship at Walmart Labs, San Francisco, USA
 - · Research Scientist at Turning Point, Melbourne, Australia
 - Data Science Tutor, Faculty of IT, Monash University
- · 2021 Research Fellow, University of Melbourne

About me (2)

- Research Interests
 - Global Forecasting Models
 - · Hierarchical Forecasting
 - · Retail sales/demand forecasting
 - Renewable energy production forecasting (solar)
- Competition Fanatic!
 - M5 Forecasting Competition (Gold Medalist)
 - IEEE CIS Energy Forecasting Competition (4th Place)
 - Air-Liquide Energy Forecasting Competition (4th Place)
 - · ANZ Customer Segmentation Challenge (Top Performer)

What is Data Science?

Data Science is an interdisciplinary field that permits you to extract information from organized or unstructured data.

Figure 1: An intersection of many fields of science¹

 $^{1\\}Image source: https://medium.com/believing-these-8-myths-about-what-is-data-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd240dc-what-science-keeps-you-from-growing-528f1bd-what-science-keeps-you-from-growing-528f1bd-what-science-keeps-you-from-growing-from-growing-from-growing-from$

Data Science Life Cycle

Known as the O.S.E.M.N. framework.

Figure 2: Data Science Process²

 $^{^{2} \\ \}text{Image source: https://towardsdatascience.com/5-steps-of-a-data-science-project-lifecycle-26c50372b492}$

Obtain (O)

- · Retrieving data from multiple sources of inputs.
 - · Structured Data: RDBMS, Tabular Data, CSV, TSV.
 - Unstructured Data: NoSQL Databases, API Data (Twitter, Facebook).
- · Databases: {odbc}
- Scraping data from websites: {rvest}
- Data platforms: Kaggle, UCI, Competition Datasets, Government APIs

Example of {rvest}

```
library(rvest)
library(dplyr)
set.seed(1234)
# reading the HTML page (Lord of the Rings)
lor movie <- read html("https://www.imdb.com/title/tt0120737/")</pre>
# Scraping the movie rating.
lor movie %>%
  html node("strong span") %>%
  html_text() %>%
  as.numeric()
#[1] 8.8
# Scraping the cast.
lor movie %>%
  html nodes("#titleCast .itemprop span") %>%
  html_text()
# Scraping the movie poster.
lor_movie %>%
  html nodes("#img primary img") %>%
  html attr("src")
```

Scrub (S)

- · Also known as data pre-processing, data wrangling.
- · Converting the data into a unified, suitable format
 - Easier for the data exploration process.
 - · What your predictive algorithm expects?
 - tidyverse
 {dplyr,tidyr,stringr,tibble,purr,ggplot2}
- · Handles data issues
 - · Cleaning: Missing values, Outliers, Noisy data.
 - Transformation: Normalisation, Feature Discretization.
 - · Reduction: Feature selection, Dimensionality reduction.

Missing Value Imputation

```
library(simputation)
set.seed(1234)
# Loading iris dataset and randomly inserting NAs.
df <- iris
df NA <- as.data.frame(lapply(df, function(imp) imp[ sample(c(TRUE, NA),</pre>
        prob = c(0.85, 0.15), size = length(imp), replace = TRUE)]))
# Using median to impute the missing values.
median imputed <- impute median(df NA.
                                Sepal.Length ~ Species)
# Using linear regression to impute the missing values.
linear imputed <- impute lm(df NA, Sepal, Length ~ Sepal, Width + Species)
# Using CART algorithm to impute the missing values.
cart imputed <- impute cart(df NA. Species ~ .)
# Imputing multiple variables at once.
multivariable imputed <- impute rlm(df NA. Sepal.Length + Sepal.Width
                                    ~ Petal.Length + Species)
# Imputing using a pre-trained model.
model <- lm(Sepal.Length ~ Sepal.Width + Species, data=iris)
model imputed <- impute(df NA, Sepal.Length ~ model)
```

Dealing with Outliers

- A data point that differs significantly from other observations.
- · Observations that distort your analysis.
 - Boxplot visualisation: {ggplot2}
 - Grubbs's test, Dixon's test, Rosner's test: {outliers}
 - Outlier detection algorithms: {OutlierDetection}
 - outlierTest() from {car}
 - · lofactor() from {DMwR} (Local Outlier Factor)
- Anomaly detection is itself a different research area!
 - · One Class SVM, IsolationForest
 - Unsupervised algorithms (Clustering)
 - Time series: {tsoutliers,oddstream,stray}

Feature Selection

- · Removing redundant features from the dataset.
- · Computational complexity, Address model overfitting.

Filter Methods

- · Features are selected based on a statistical score.
- Independent of any machine learning algorithm.
- · Pearson's Correlation, Chi-Square, PCA

Wrapper Methods

- · A subset of features are used to train a model.
- · Forward, Backward, Recursive elimination.
- · Inbuilt penalization functions: LASSO, RIDGE regression
- {Boruta,caret,glmnet}

Using Correlation

```
library(GGally)
library(dplyr)
set.seed(1234)

# Plotting the feature correlations.
iris %>% select(-Species) %>% ggpairs()
```


Using PCR

```
library(dplyr)
set.seed(1234)

# Plotting the feature importance.
pcomp_df <- iris %>%
    select(-Species) %>% prcomp(scale. = T, center = T) %>%
    plot(type="l", main = "Principle Components")
```


Example of {Boruta}

```
library(Boruta)
set.seed(1234)

# Boruta is a feature selection algorithm based on the random forests algorithm.
boruta_df <- Boruta(Species ~ ., data=iris, doTrace=0)

# Plotting the feature importance.
plot(boruta_df, xlab="Features", main="Variable Importance")</pre>
```


Example of {caret}

```
library(caret)
set.seed(1234)

# Build a decision tree model using rpart (Recursive Partitioning And Regression Trees)
rPart_df <- train(Species ~ ., data=iris, method="rpart")
rPart_imp <- varImp(rPart_df)

# Plotting the feature importance.
plot(rPart_imp, top = 3, main='Variable Importance', ylab = "Features")</pre>
```


Explore (E)

- Examination of data, features, and their characteristics.
 - · Data types: numerical, ordinal, and nominal data.
 - Summary statistics.
 - · Feature distributions.
 - · Feature correlations (positive, negative).
 - · Classification: class distribution (Class Imbalance?)
- Invest your time more on the data exploration process.
 - · Frequency distribution: Histograms
 - · Outlier detection: Box plots
 - Feature correlation analysis: Scatter plots
 - Time series analysis: Trend and Seasonal plots

Tools available for Exploration

Figure 3: Plots available from {ggplot2}³

 $^{^3} lmage \ source: \ https://www.pinterest.com.au/pin/281686151677624808/$

Seasonal plot from {feasts}

Figure 4: The presence of multiple seasonal cycles⁴

⁴Github repo: https://github.com/kasungayan/Meldatathon2020

Title formats

This is important

- · This is important
- Now this

- · This is important
- · Now this
- And now this

- This is really important
- · Now this
- · And now this

Simple list

- Kasun
- Now this
- · And now this

Tables (using LATEX})

References i