Algebraic Complement

Let V be a f-vecton space.

Def: Let W be a subspace of V. An algebraic complement of W in V" is a subspace U of V s.t UnW =
$$\{0\}$$
 and $W+U=V$

Note that algebraic complement is a subspace

Theonem: - For any subspace Wot V, its algebraic complement exists. If V is finite dimensional then dim W= = dim V - dim W

Theorem: If W is a subspace of V and let U be an algebraic complement of W. Then for every $u \in V$, \exists unique $u \in U$ and $u \in W$ sit $u = u + \omega$, i.e. if

 $u = u + \omega = u' + \omega'$ $u, u' \in U$, $u, \omega' \in W$, then we have $u = u', \omega = \omega'$

Proof
$$\rightarrow$$
 If $\omega = u + \omega = u' + \omega' \Rightarrow u - u' = \omega' - \omega = \omega'$

Note that $\omega' \in U$, $\omega' \in W \Rightarrow \omega' \in U \cap W = \{0\} \Rightarrow \omega' = 0$

$$\Rightarrow u = u'$$

$$\omega = \omega'$$

Note that given a subspace Wif V, there might exist more than one algebraic complements of W. But all these algebraic complements one "unique up to isomorphism"

Proposition: Given a subspace Wift V, all its algebraic complements in V are isomorphic to VW. Thus every pain of algebraic complements are isomorphic (unique upto isomorphism)

Proof - Let U be an all ebraic complement of W. Consider the map

$$\phi$$
: $U \longrightarrow W$

Note that $\phi = \pi I_{U}$
 $\pi: V \to V_{W}$, $u \mapsto u + W$

Check that this is a well defined, linear map

It is injective as $\phi(u) = \phi(u') \Rightarrow u + W = u' + W \Rightarrow u - u' \in W$

but u-u' \(U =) u-u' = 0 as UnW = {0}

It is sunjective as, take any typical element of V/W,

V + M

We know that $u = u + \omega$, $u \in U$, $\omega \in W$ Then $(u + \omega) + W = u + W$

Thus done!

Now we are going to enjoy the above propositions, Theonem o-1) Let 9: V -> W be linean map. Then $(\ker \varphi)^{c} \stackrel{N}{=} \operatorname{Im} \varphi$ Proof:- We have (ken φ) = \sim ken φ 21st Jomonphim The 3 Howeven one might note that a possible isomorphism between (ken P) and Im P is 9/ (ken 4) c itself. 2) Rank - Nullity: - Let V and W be finite dimensional Ihen dim (ken p) + dim (Im p) = dim V

Rank

Nullity Proof - dim (ken q) + dim (ken q)= dim V By the prievious theorem done: 3) Let V be finite dimensional. W be subspace Then dim V - dim W 7: V- > /w · Now apply Rank-Nullity. Proof - Considen