Sectoral Volatility and the Investment Channel of Monetary Policy

Thomas Walsh & Ozgen Ozturk *European University Institute*

MMF Society Annual Conference September 4, 2022

Firms' investment is key transmission from monetary policy to real economy.

- ➤ Firm heterogeneity shapes the aggregate response in a number of dimensions (Ottonello, Winberry (2020), Jeenas (2019), Cloyne, Ferreira, Froemel, Surico (2019))
- > we focus on firm risk: dispersion in idiosyncratic productivity shocks

Firms' investment is key transmission from monetary policy to real economy.

- ➤ Firm heterogeneity shapes the aggregate response in a number of dimensions (Ottonello, Winberry (2020), Jeenas (2019), Cloyne, Ferreira, Froemel, Surico (2019))
- > we focus on firm risk: dispersion in idiosyncratic productivity shocks

Idiosyncratic firm risk matters for investment:

- ➤ idiosyncratic shocks are major source of variation
- idio. volatility affects the triggering of extensive margin of adjustments

Firms' investment is key transmission from monetary policy to real economy.

- ➤ Firm heterogeneity shapes the aggregate response in a number of dimensions (Ottonello, Winberry (2020), Jeenas (2019), Cloyne, Ferreira, Froemel, Surico (2019))
- > we focus on firm risk: dispersion in idiosyncratic productivity shocks

Idiosyncratic firm risk matters for investment:

- ➤ idiosyncratic shocks are major source of variation
- idio. volatility affects the triggering of extensive margin of adjustments

Research Question:

how does dispersion in idiosyncratic shocks affect the investment channel of monetary policy.

⇒ we construct measures of idiosyncratic risk using firm-level panel data to answer these questions

Why is this important?

Investment is:

- most volatile component of GDP, and strongly procyclical
- most responsive to MP operations

therefore: better understanding of investment behaviour = better countercyclical policy, and understanding of business cycles generally.

Why is this important?

Investment is:

- most volatile component of GDP, and strongly procyclical
- most responsive to MP operations

therefore: better understanding of investment behaviour = better countercyclical policy, and understanding of business cycles generally.

Our Contributions?

- 1. **evidence**: idiosyncratic risk in the form of higher dispersion in productivity shocks at the firm-level matters for monetary policy transmission.
- explanation: why monetary policy is weaker in recessions: volatility rises, the extensive margin of business investment is harder to set off, and so the investment channel is weaker. (finding of Tenreyro & Thwaites)

This Paper

Empirics:

- > construct firm-level productivity shocks, aggregate at sector (-year) to measure volatility
- regression (LP) analysis: interact monetary policy shocks with measures of volatility

This Paper

Empirics:

- > construct firm-level productivity shocks, aggregate at sector (-year) to measure volatility
- regression (LP) analysis: interact monetary policy shocks with measures of volatility

Preview of Findings

- ➤ IRFs: **qualitatively** and **economically** significant dampening of investment response to MP when volatility is high
- Moving from the 10th→90th percentile of sector volatility approx halves IRF
- > fairly consistent pattern across measures of volatility

Stylized Mechanisms

mechanisms in mind:

Real Options effects

- $ightharpoonup k^* = c \cdot z^{\frac{1}{1-\alpha}}$. convexity: expected future dispersion* raises value of waiting (upside)
- harder to trigger the extensive margin today due to fixed costs (double-paying)
- > Firms freeze investment/hiring decisions, insensitive to prices/policy today

Irreversibility frictions

- ightharpoonup dispersion ightharpoonup more likely irr. constraint binds (more likely to hit constrained space)
- ightharpoonup constrained choice: $k_{t+1}^{cons}=(1-\delta)k_t=$ independent of aggreagate shocks/policy

Nominal Adjustment channel

becomes relatively more attractive to reset prices than K,N

Empirics

Dataset and Sample Selection

Compustat: quarterly firm panel

- based in US
- > trading in USD
- exclude Finance and Real Estate
- > sample period limited to 2001-2012 by MPS series

Capital, K: perpetual inventory method to back out stocks

 $ightharpoonup K_{it+1} = K_{it} + [X_{it} - \delta_{s,t}K_{it}] = book \ value, \mathtt{PPEGT}_{t_o} + \mathsf{Net} \ \mathsf{Investment}_t$

CapX, X_k : investment expenditures

Labour, N: direct employment (annual) or proxy, COGS (quarterly)

LabX X_n : labour expenses (emp*avg ind wage, annual)

Output Y: revenue only, no P-Q split

Constructing Firms' Productivity

3 approaches to estimating productivity

Cost Share: Cobb-Douglas production function and competitive factor markets:

$$y_{it} = z_{it} + \alpha_{s(i),t} k_{i,t} + (1 - \alpha_{s(i),t}) n_{i,t} \quad \alpha_{s(i),t}^k = median \left\{ \frac{X_{it}^k}{X_{it}^k + X_{it}^n} \middle| s(i), t \right\}$$

$$\tag{1}$$

Constructing Firms' Productivity

3 approaches to estimating productivity

Cost Share: Cobb-Douglas production function and competitive factor markets:

$$y_{it} = z_{it} + \alpha_{s(i),t} k_{i,t} + (1 - \alpha_{s(i),t}) n_{i,t} \quad \alpha_{s(i),t}^k = median \left\{ \frac{X_{it}^k}{X_{it}^k + X_{it}^n} \middle| s(i), t \right\}$$

$$\tag{1}$$

Control Function Investment monotonic function of productivity given state X (age, size)

$$I = f(z, X) \Leftrightarrow z = g(I, X) \tag{2}$$

Constructing Firms' Productivity

3 approaches to estimating productivity

Cost Share: Cobb-Douglas production function and competitive factor markets:

$$y_{it} = z_{it} + \alpha_{s(i),t} k_{i,t} + (1 - \alpha_{s(i),t}) n_{i,t} \quad \alpha_{s(i),t}^k = median \left\{ \frac{X_{it}^k}{X_{it}^k + X_{it}^n} \middle| s(i), t \right\}$$
(1)

Control Function Investment monotonic function of productivity given state X (age, size)

$$I = f(z, X) \Leftrightarrow z = g(I, X) \tag{2}$$

➤ **Generalised Method of Moments** AR1 process for TFP, set errors orthogonal to instruments. Relaxes assumptions on factor markets.

$$y_{it} - \rho_s y_{it-1} = \alpha_s^n (n_{it} - \rho_s n_{it-1}) + \alpha_s^n (k_{it} - \rho_s k_{it-1}) + \underbrace{(z_{it} - \rho z_{it-1})}_{\varepsilon_{it}}$$

moment condition:
$$E(Z\varepsilon) = 0$$
, instruments: k_t, k_{t-1}, n_{t-1} (3)

Firm Risk: Volatility of idiosyncratic shocks

sector specific AR(1) process:

$$(z_{it} - \rho_s z_{it-1} - X_{it-1}\beta_s - f_i - \lambda_{s,t}) = \varepsilon_{it}$$
(4)

baseline volatility: 2nd moment

$$volatility: v_s = sd(\varepsilon_{it}|s)$$
 (5)

$$V_{s,y} = sd(\varepsilon_{it}|s, y(t))$$
 (6)

(also compute other moments, e.g. IQR, 90-10 ratio, as robustness)

sector specific AR(1) process: $(z_{it} - \rho_s z_{it-1} + X_{it-1}\beta_s + f_i + \lambda_{s,t}) = \varepsilon_{it}$

(7)

LP Regressions

Direct Effect: Investment Response to Fed Tightening

regress Investment on Miranda-Agrippino Ricco (AEJ macro 2021) high-frequency shocks

$$\Delta_{h+1}\log k_{it+h} = f_i + \lambda_{SIC_1(s), \mathbf{y}(t+h)} + \beta_h^m \epsilon_t^m + \delta_h' \mathbf{X}_{ist-1} + u_{ist+h}$$
(8)

Investment response (ppts) at	(1) +4 quarters	(2) +8qtrs	(3) +12qtrs
Fed Tightening (1ppt)	-0.0194 (0.0157)	-0.0503** (0.0208)	-0.0172 (0.0211)
Firm FE	Yes	Yes	Yes
Industry-2digit $ imes$ Year FE	Yes	Yes	Yes
Firm Controls	Yes	Yes	Yes
Observations	188277	171377	156508
R2	0.0305	0.0284	0.0343

Standard errors in parentheses, clustered at firm and quarter levels. covars: size, sales gr, financial conditions, tobinq, dividend, leverage, fiscal qtr

Simple Volatility-MP Interaction Specification

$$\Delta_{h+1}\log k_{i,s,t+h} = f_i + \left(\beta_h + \frac{\gamma_h}{\gamma_h} V_{s,y(t)-1}\right) \epsilon_t^m + \delta_h' \mathbf{X}_{ist-1} + u_{ist+h}$$
(9)

Figure 1: Implied IRFs at high and low volatility

twoway-clustered SEs at (firm, quarter) levels.

Full specification local projections:

$$\Delta_{h+1}log \ k_{it+h} = f_i + \lambda_{\text{SIC1(s)},t+h} + \left(\beta_h + \beta_h^m \epsilon_t^m\right) vol_{s,y(t)-1} + \left(\delta_h' + \epsilon_t^m \delta_h^{m'}\right) \mathbf{X}_{ist-1} + u_{ist+h}$$

$$\tag{10}$$

Variables:

- \triangleright ϵ_t^m : high-frequency identified monetary policy shock (Miranda-Agrippino & Ricco)
- \triangleright v_s : sector volatility $(v_{s,v-1})$
- covars: size, age, leverage, liquidity, dividend status, tobin q; firm and industry-quarter effects.

Structure

- \blacktriangleright linear ϵ_t^m term is absorbed in 1-digit industry non-parametric time trends
- > shifters $(\beta_h, \delta_h, f, \lambda)$ take care of level effects on investment
- \blacktriangleright wedges (β_h^m, δ_h^m) allows differential slopes wrt volatility and covariates

$$\Delta_{h+1}log \ k_{it+h} = f_i + \lambda_{\text{SIC1(s)},t+h} + \left(\beta_h + \beta_h^m \epsilon_t^m\right) v_{s,y(t)-1} + \left(\delta_h' + \epsilon_t^m \delta_h^{m'}\right) \mathbf{X}_{ist-1} + u_{ist+h} \tag{11}$$

investment, Δk_{t+h}

$$\Delta_{h+1}log \ k_{i,s,t+h} = f_i + \lambda_{\text{SIC1}(s),t+h} + \left(\beta_h + \beta_h^m \epsilon_t^m\right) v_{s,y(t)-1} + \left(\delta_h' + \epsilon_t^m \delta_h^{m'}\right) \mathbf{X}_{ist-1} + u_{ist+h}$$

$$\tag{12}$$

Figure 2: Cost Share Volatility (L) time-pooled (R) time-varying

twoway-clustered SEs at (firm, quarter) levels.

Further Results / Ongoing

Qualitatively similar story across

- Cost Share, Control Function, GMM
- > Time-invariant dispersion vs time-varying
- > Other faster-moving quarterly proxies (sales growth volatility, VIX)

...under construction

- quarterly TFPR and volatility based on CAPX and COGS for LABX
- discriminate between channels?
 - intangible-rich firms cut back inv more wrt volatility? (irreversibility)
 - higher persistence in v makes it easier to predict dispersion, less wait-and-see? (real options)

To Conclude

Main takeaway:

 dispersion of idio. productivity shocks key determinant of firm investment channel of monetary policy

Policy implications:

monetary policy is weaker when idio. volatility is high, typically in recessions

Thanks for your attention!

Comments and feedback welcome:

thomas.walsh@eui.eu ozgen.ozturk@eui.eu walshthomas.com sites.google.com/view/ozgenozturk/