Exame de F329 - Turmas A e - C 18 de fevereiro de 2010

RA: _____ Nome:_____

- a) Entregue todas as folhas, inclusive a folha de prova
- b) Assine todas as folhas
- c) A prova começa às 10:00.
- d) A prova tem duração de duas horas.
- e) Demonstre todas as propagações de erros
- f) ln(10)=2,30; $log_{10}(e)=0,434$;

 $1.(\underline{\hspace{1cm}}/3.0)$ Duas resistências, R_1 e R_2 foram medidas com os circuitos acima. A tabela abaixo indica as medidas do voltímetro e do amperímetro

1ª Montagem	V ₁ =4 V	$I_1=2.0 \times 10^{-4} \text{ A}$
2º Montagem	V ₂ =10 V	$I_2=1/3 \times 10^{-3} A$

R_V (Voltimetro) =10 K Ω	R_A (Amperimetro) = 1 k Ω
-----------------------------------	------------------------------------

(2,0) Calcule exatamente o valor de R₁ e R₂,inicialmente de forma literal e depois substitua os valores numéricos.

1ª Montagem	$V_1 = (4,0 \pm 0,1) V$	$I_1=(2.0 \pm 0.05) \times 10^{-4} A$
2º Montagem	$V_2 = (10 \pm 0,1) \text{ V}$	$I_2 = (0.33 \pm 0.05) \times 10^{-3} A$

(1,0) Dada a tabela acima, calcule os desvios das duas resistências. Suponha que as resistências internas do voltímetro e do amperímetro são exatas.

2. (____/**2.5**) Uma medida de um circuito RC utilizou uma resistência R e um capacitor C. O gráfico abaixo representa a medida para a carga do capacitor, sendo que o capacitor estava descarregado no inicio do processo (t=0). Considere o amperímetro e a fonte utilizados na montagem ideais.

Estime os valores da capacitância C (1,5) e da tensão na fonte V (1,0), sabendo que $R=1~k\Omega$. Não é necessário propagar os erros.

 $I=I_0exp(-t/\tau), \tau=RC$

Questão 3 (2,5) Dada a equação do varistor

$$I = \left(\frac{V}{C}\right)^{\alpha}$$

e o gráfico abaixo, obtenha os valores para as constantes α e C.

Questão 4 (2,0) Um imã oscilando no centro de uma bobina de Helmholtz apresenta uma expressão que relaciona a sua freqüência de oscilação com o campo terrestre e o campo da bobina, expressa por :

$$f^2 = (\mu/4\pi^2 m_L) [(8 \mu_0 N/5^{3/2} R) I \pm B_T]$$

sendo que essa expressão pode ser compreendida como uma constante Ψ que multiplica o campo da bobina de Helmholtz (8 μ_0 N/5 R I) mais ou menos o campo terrestre. Posso escrever o campo da bobina com H I, onde H= 8 μ_0 N/5 R. O valor de H calculado nesse experimento foi de 2,0 x 10-3 Tesla/A

$$f^2 = \Psi (H \mid \pm B_T) = \Psi H \mid \pm \Psi \mid B_T) \rightarrow f^2 = \pm A + B \mid$$

O campo da Terra pode ser somado ao campo da bobina (paralelo) ou ser subtraído (antiparalelo). A partir da análise da equação acima e do gráfico, abaixo, sabendo que o experimento não foi realizado em Campinas, responda:

- a) Calcule o valor dos coeficientes angulares e lineares de ambas as curvas, de forma a poder utilizar o modelo proposto para o cálculo da componente horizontal do campo magnético terrestre.
- b) Estime o valor para Ψ . Lembre-se de que o valor de H é um dado do problema.
- c) A partir do valor de Ψ , calcule a componente horizontal do campo que está sendo medida, B_{τ} .

