Summary | Hydraulic Machinary

Introduction

|Positive Displacementd|Piston pump, Rotary pump|Motors|Hydraulic Ram, Jack Press| |Rotodynamic| Pumps, Compressors|Turbines|Hydraulic coupling, Torque converter|

In s1, only rotodynamic <u>pumps</u> and rotodynamic turbines are studied.

Pumps

Vane

A curved blade used in a pump.

Impeller

Set of vanes attached to a disc or a cyllinder. Main rotating element in a pump.

In a pump, impeller is mounted on a shaft. The shaft is driven by an electric motor or IC engine.

Direction of the fluid flow

Axial flow

Fluid enters and exits the impeller axially.

Radial flow

Fluid enters the impeller axially. Leaves radially. Aka. centrifugal pumps.

Mixed flow

Fluid enters the impeller axially. Leaves in both axial and radial directions.

(i) No

For s1, only centrifugal pumps are studied.

Parameters

Head provided

The head provided by a pump depends on the flow rate.

$$H = f(Q)$$

Here:

- ullet H provided head
- ullet Q flow rate

For a given pump running at a given speed, there is a unique variation of H and Q.

Power input

Denoted by P_i . Varies with Q.

Efficiency

Denoted by μ . Varies with Q.

$$\mu = rac{P_o}{P_i}$$

$$\text{Energy per unit volume} = \frac{P_{i_A}}{Q}$$

All these parameters, plotted vs Q, is known as **performance characteristic** of the pump. Will be given by the manufacturer. Can be found by laboratory testing.

In a pipeline system

$$H = H_0 + KQ^2$$

H is the head required (or received) to create the flow rate Q in the pipeline system. The above equation is known as **system characteristic** or **system load curve**.

Here K is the loss coefficient and is given by:

$$K=rac{8}{\pi^2gD^4}igg(K_L+rac{\lambda L}{D}igg)$$

(i) Note

Working state of a pipeline system is given by the intersection of system characteristic and performance characteristic (of the pump) curves.

Centrifugal Pumps

Most used pumps in engineering because they support wide range of heights and flow rates.

There can be a diffuser as well, which is optional.

Volute

Casing of the impeller. A passage with increasing area, to reduce velocity (to reduce losses).

(i) Note

Energy losses in a fluid flow is directly proportional to v^2 .

Diffuser

A fixed set of vanes added to the impeller. To direct the flow into the volute, to minimize impact losses.

Operation

- Volute must be filled with fluid to start pumping
- Fluid enters through the eye of the impeller
- ullet v and P are increased when the fluid flows through the impeller

Performance characteristic

This PDF is saved from https://s1.sahithyan.dev