Machine learning from scratch

Lecture 2: Convex optimization

Alexis Zubiolo alexis.zubiolo@gmail.com

Data Science Team Lead @ Adcash

February 2, 2017

Optimization: Derivatives

The **derivative** is an important concept in optimization and in machine learning. Mathematical definition: Let $f: \mathbb{R} \mapsto \mathbb{R}$ be a function. Its derivative f' is defined by:

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives give us an idea of the local behavior of the function.

Derivatives give us an idea of the local behavior of the function.

Case 1: f'(x) > 0

Derivatives give us an idea of the local behavior of the function.

Case 1: f'(x) > 0

Suppose h > 0, we have

$$f'(x) > 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} > 0$$

 $\iff f(x+h) > f(x)$
 $\iff f \text{ is increasing (because } x+h > x)$

Derivatives give us an idea of the local behavior of the function.

Case 1: f'(x) > 0

Suppose h > 0, we have

$$f'(x) > 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} > 0$$

 $\iff f(x+h) > f(x)$
 $\iff f \text{ is increasing (because } x+h > x)$

Now, suppose h < 0, we have

Derivatives give us an idea of the local behavior of the function.

Case 1: f'(x) > 0

Suppose h > 0, we have

$$f'(x) > 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} > 0$$

 $\iff f(x+h) > f(x)$
 $\iff f \text{ is increasing (because } x+h > x)$

Now, suppose h < 0, we have

$$f'(x) > 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} > 0$$

 $\iff f(x+h) < f(x)$
 $\iff f \text{ is increasing (because } x + h < x)$

Derivatives give us an idea of the local behavior of the function.

Case 1: f'(x) > 0

Suppose h > 0, we have

$$f'(x) > 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} > 0$$

 $\iff f(x+h) > f(x)$
 $\iff f \text{ is increasing (because } x+h > x)$

Now, suppose h < 0, we have

$$f'(x) > 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} > 0$$

 $\iff f(x+h) < f(x)$
 $\iff f \text{ is increasing (because } x+h < x)$

Conclusion: f is increasing $\iff f' > 0$

Case 2: f'(x) < 0

Case 2: f'(x) < 0

Now, suppose again h > 0, we have

Case 2: f'(x) < 0

Now, suppose again h > 0, we have

$$f'(x) < 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < 0$$

 $\iff f(x+h) < f(x)$
 $\iff f \text{ is decreasing}$

Case 2: f'(x) < 0

Now, suppose again h > 0, we have

$$f'(x) < 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < 0$$

 $\iff f(x+h) < f(x)$
 $\iff f \text{ is decreasing}$

Case 2: f'(x) < 0

Now, suppose again h > 0, we have

$$f'(x) < 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < 0$$

 $\iff f(x+h) < f(x)$
 $\iff f \text{ is decreasing}$

Suppose again h < 0, we have:

Case 2: f'(x) < 0

Now, suppose again h > 0, we have

$$f'(x) < 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < 0$$

 $\iff f(x+h) < f(x)$
 $\iff f \text{ is decreasing}$

Suppose again h < 0, we have:

$$f'(x) < 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < 0$$

 $\iff f(x+h) > f(x)$
 $\iff f \text{ is decreasing}$

Case 2: f'(x) < 0

Now, suppose again h > 0, we have

$$f'(x) < 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < 0$$

 $\iff f(x+h) < f(x)$
 $\iff f \text{ is decreasing}$

Suppose again h < 0, we have:

$$f'(x) < 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < 0$$

 $\iff f(x+h) > f(x)$
 $\iff f \text{ is decreasing}$

Conclusion: f is decreasing $\iff f' < 0$

Case 3: f'(x) = 0, then

Case 3: f'(x) = 0, then

$$f'(x) = 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0$$
$$\iff f(x+h) = f(x)$$
$$\iff f \text{ is constant}$$

Case 3: f'(x) = 0, then

$$f'(x) = 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0$$
$$\iff f(x+h) = f(x)$$
$$\iff f \text{ is constant}$$

Conclusion: f is constant $\iff f' = 0$

Case 3: f'(x) = 0, then

$$f'(x) = 0 \iff \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0$$
$$\iff f(x+h) = f(x)$$
$$\iff f \text{ is constant}$$

Conclusion: f is constant $\iff f' = 0$

Summary:

- f is increasing $\iff f'(x) > 0$
- f is decreasing $\iff f'(x) < 0$
- f is constant $\iff f'(x) = 0$

Summary:

- f is increasing $\iff f'(x) > 0$
- f is decreasing $\iff f'(x) < 0$
- f is constant $\iff f'(x) = 0$

Summary:

- f is increasing $\iff f'(x) > 0$
- f is decreasing $\iff f'(x) < 0$
- f is constant $\iff f'(x) = 0$

What do we do with this?

Summary:

- f is increasing $\iff f'(x) > 0$
- f is decreasing $\iff f'(x) < 0$
- f is constant $\iff f'(x) = 0$

What do we do with this?

If we want to find f's minimum(s), a strategy could be:

- 1. Start at a random point $x_0 \in \mathbb{R}$
- 2. Compute $f'(x_0)$ and then
 - if $f'(x_0) > 0$ then move to the left (because f is increasing)
 - if $f'(x_0) < 0$ then move to the right (because f is decreasing)
 - if $f'(x_0) = 0$ then we stop

Derivatives: How to compute them?

There are several ways to compute the derivatives.

Derivatives: How to compute them?

There are several ways to compute the derivatives.

► By applying the definition

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

with a small h (e.g. h = 0.01). This is called the **finite** difference approximation.

▶ By using **closed-form derivatives**, *e.g.*

if
$$f(x) = x^2$$
, then $f'(x) = 2x$

How do we know that? By using the formula!

Derivative: Practical example

Recall the definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Exercice: Apply this formula for $f(x) = x^2$. What is f'(x)?

Derivative: Practical example

Recall the definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Exercice: Apply this formula for $f(x) = x^2$. What is f'(x)?

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2}{h}$$

$$= \lim_{h \to 0} 2x + h = 2x$$

We can apply this logic to the usual functions (log, cos, sin, ...) and obtain what we call **closed-form solutions**.

Derivative: Practical example

Recall the definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Exercice: Apply this formula for $f(x) = x^2$. What is f'(x)?

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2}{h}$$

$$= \lim_{h \to 0} 2x + h = 2x$$

We can apply this logic to the usual functions (log, cos, sin, \dots) and obtain what we call **closed-form solutions**.

Exercise: Do the same for $f(x) = \frac{1}{x}$.

Derivatives: Finite difference approximation

Recall: The **finite difference approximation** consists in applying the following formula

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

with h close enough to 0.

Derivatives: Finite difference approximation

Recall: The **finite difference approximation** consists in applying the following formula

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

with h close enough to 0.

There's a symmetric and more stable formula, called the **centered finite difference approximation**.

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

Chain rule

Another important rule concerning derivatives is the **chain rule**:

$$(f(g(x)))' = g'(x)f'(g(x))$$
 (1)

or, equivalently:

$$\frac{df(g(x))}{dx} = \frac{df(g)}{dg} \frac{dg(x)}{dx}$$
 (2)

Derivatives look like a practical way to get the minimum of a function, which is what we want to achieve (minimizing $J(\theta)$).

Derivatives look like a practical way to get the minimum of a function, which is what we want to achieve (minimizing $J(\theta)$).

However, the definition we've seen only applies to function from \mathbb{R} to \mathbb{R} . The **gradient** is a generalization of the derivative for functions from \mathbb{R}^d to \mathbb{R} , like J.

Beyond derivatives: Gradient

Let's consider a function of f 2 real variables x and y, e.g.

$$f(x, y) = xy$$

The gradient of f is a 2-dimensional vector noted ∇f defined by:

$$\nabla f(x,y) = \left[\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right]$$

where

$$\frac{\partial f(x,y)}{\partial x}$$

is the **partial derivative** of f with respect to x (considering y as a constant), and

$$\frac{\partial f(x,y)}{\partial x}$$

is the **partial derivative** of f with respect to y (considering x as a constant).

Beyond derivatives: Gradient

Let's consider a function of f 2 real variables x and y, e.g.

$$f(x, y) = xy$$

The gradient of f is a 2-dimensional vector noted ∇f defined by:

$$\nabla f(x,y) = \left[\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right]$$

where

$$\frac{\partial f(x,y)}{\partial x}$$

is the **partial derivative** of f with respect to x (considering y as a constant), and

$$\frac{\partial f(x,y)}{\partial x}$$

is the **partial derivative** of f with respect to y (considering x as a constant).

Exercise: What is $\nabla f(x,y)$ for f(x,y)=xy and f(x,y)=x+y?

Recall we want to minimize the following cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)} \right)^{2}$$

Recall we want to minimize the following cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)} \right)^{2}$$

To do so, we need to compute $\nabla J(\theta)$, the **gradient** of J in θ , which is, by definition:

$$\nabla J(\theta) = \left[\frac{\partial}{\partial \theta_1} J(\theta), \dots, \frac{\partial}{\partial \theta_d} J(\theta) \right]^T$$

Recall we want to minimize the following cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)} \right)^{2}$$

To do so, we need to compute $\nabla J(\theta)$, the **gradient** of J in θ , which is, by definition:

$$\nabla J(\theta) = \left[\frac{\partial}{\partial \theta_1} J(\theta), \dots, \frac{\partial}{\partial \theta_d} J(\theta)\right]^T$$

Interpretation of the gradient: Direction of steepest descent of f

Back to least squares: context reminder

living area (m²)	# bedrooms	intercept	price (1000's BGN)
50	1	1	30
76	2	1	48
26	1	1	12
102	3	1	90

$$h(\mathbf{x}) = \sum_{j=0}^{d} \theta_{j} x_{j} = \theta^{T} \mathbf{x}$$

Back to least squares: context reminder

living area (m²)	# bedrooms	intercept	price (1000's BGN)
50	1	1	30
76	2	1	48
26	1	1	12
102	3	1	90

$$h(\mathbf{x}) = \sum_{j=0}^{a} \theta_{j} x_{j} = \theta^{T} \mathbf{x}$$

Suppose we chose the following loss function:

$$\ell(y,\hat{y}) = \frac{1}{2}(y - \hat{y})^2$$

This leads to the following least squares cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)} \right)^{2}$$

This problem the **ordinary least squares** (OLS) regression model.

To apply the LMS update rule, we need to compute the gradient of J. Let's compute it for a single (x, y) sample:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h(\mathbf{x}) - \mathbf{y})^2$$
= ?

where
$$h(\mathbf{x}) = \sum_{j=0}^{d} \theta_j x_j = \theta^T \mathbf{x}$$

To apply the LMS update rule, we need to compute the gradient of J. Let's compute it for a single (x, y) sample:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h(\mathbf{x}) - \mathbf{y})^2$$
= ?

where
$$h(\mathbf{x}) = \sum_{j=0}^{d} \theta_j x_j = \theta^T \mathbf{x}$$

Exercise: Compute the gradient and find the update rule.

Solution:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h(\mathbf{x}) - y)^2$$

$$= 2\frac{1}{2} (h(\mathbf{x}) - y) \frac{\partial}{\partial \theta_j} (h(\mathbf{x}) - y)$$

$$= (h(\mathbf{x}) - y) \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k - y \right)$$

 $= (h(\mathbf{x}) - y) x_i$

Solution:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h(\mathbf{x}) - y)^2$$

$$= 2\frac{1}{2} (h(\mathbf{x}) - y) \frac{\partial}{\partial \theta_j} (h(\mathbf{x}) - y)$$

$$= (h(\mathbf{x}) - y) \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k - y \right)$$

$$= (h(\mathbf{x}) - y) x_j$$

So the gradient descent update becomes

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
$$:= \theta_j + \alpha (y - h(\mathbf{x})) x_j$$

Conclusion

We had an overview of the optimization techniques.

Conclusion

We had an overview of the optimization techniques.

Next Thursday, we will review what needs to be reviewed (tell me by email so that I can adapt or when the class starts) and start implementing:

- ► The loss function for the least-squares problem
- Its gradient
- The Gradient descent weight upgrade
- Run it on a toy example

Thank you! Questions?

alexis.zubiolo@gmail.com

https://github.com/azubiolo/itstep