FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Also, specific user environment and usage history can make it difficult to reproduce the problem. It is very difficult to determine what are the most popular modern programming languages. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). It is very difficult to determine what are the most popular modern programming languages. There are many approaches to the Software development process. Code-breaking algorithms have also existed for centuries. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Following a consistent programming style often helps readability. However, readability is more than just programming style.