# **CH\_4**

CH\_4

4.1 Moving Boundary Work For a Cycle

Polytropic Process

- 4.2 Energy Balance for Closed Systems
- 4.3 Specific Heats

## **4.1 Moving Boundary Work**

In a quasi-equilibrium manner

$$\delta W_b = F \mathrm{d} s = P A \mathrm{d} s = P \mathrm{d} V$$

$$W_b = \int_1^2 P \mathrm{d}V$$
 Area  $= A = \int_1^2 \mathrm{d}A = \int_1^2 P \mathrm{d}V$ 



### For a Cycle

$$W_{net} = W_{2-1} - W_{1-2}$$



#### **Polytropic Process**

$$PV^n = C$$
  $\qquad \qquad \Downarrow$   $P = CV^{-n}$   $W_b = \int_1^2 P \mathrm{d}V = \int_1^2 CV^{-n} \mathrm{d}V = C \frac{V_2^{-n+1} - V_1^{-n+1}}{-n+1} = \frac{P_2 V_2 - P_1 V_1}{1-n}$  when  $n = 1$   $W_b = \int_1^2 P \mathrm{d}V = \int_1^2 CV^{-1} \mathrm{d}V = PV \ln \frac{V_2}{V_1}$ 





# **4.2 Energy Balance for Closed Systems**

$$Q-W=\Delta E_{
m system}$$

### **4.3 Specific Heats**

Definition: the energy required to raise the temperature of a unit mass of a substance by one degree

- ullet  $c_v$ : specific heat at constant volume  $c_p$ : specific heat at constant pressure

$$c_v=(rac{\partial h}{\partial T})_v$$

$$c_p = (rac{\partial h}{\partial T})_p$$