Fizika 1

GRUPA 1.03 SAŠA ILIJIĆ

Predavanja 2010.

Full protected by Ghoc

FIZIKALNE VELIČINE:

-SKALARI (imaju samo iznos - temperatura, tlak, gustoća...)

-VEKTORI (imaju iznos i smjer - brzina, akceleracija, struja...)

-TENZORI

VEKTORI

PRAVOKUTNI KOORDINATNI SUSTAV (desno orijentirani)

 a_x , a_y , a_z - komponente vektora a

ZBRAJANJE VEKTORA

$$\vec{a} + \vec{b} = (a_x + b_x)\vec{i} + (a_y + b_y)\vec{j} + (a_z + b_z)\vec{k}$$

MNOŽENJE VEKTORA SKALAROM

$$\lambda \vec{a} = \lambda a_x \vec{i} + \lambda a_y \vec{j} + \lambda a_z \vec{k}$$
skalar

SKALARNO MNOŽENJE VEKTORA

$$\vec{a} \cdot \vec{b} \equiv \underbrace{a_x b_x + a_y b_y + a_z b_z}_{\text{skalar}}$$

$$\vec{a} \cdot \vec{a} = a_x^2 + a_y^2 + a_z^2$$

$$a = |\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos{\vartheta}$$
 theta, kut među vektorima

$$\begin{aligned} \left| \vec{a} + \vec{b} \right|^2 &= |\vec{a}|^2 + 2|\vec{a}| \left| \vec{b} \right| \cos \vartheta + \left| \vec{b} \right|^2 \\ |\vec{a} + \vec{a}|^2 &= 4|\vec{a}|^2 = |\vec{a}|^2 + 2|\vec{a}| |\vec{a}| \cos \vartheta + |\vec{a}|^2 \end{aligned} \blacksquare$$

$$|\vec{a} - \vec{a}|^2 = 0 = |\vec{a}|^2 + 2|\vec{a}||\vec{a}|\cos\vartheta + |\vec{a}|^2$$

VEKTORSKI PRODUKT

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$$

$$\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \vartheta$$

- \otimes "u ploču"
- - prema nama

KINEMATIKA TOČKE

POLOŽAJ:

$$\vec{r}(t) = x(t)\vec{\iota} + y(t)\vec{j} + z(t)\vec{k}$$

BRZINA:

$$\vec{v}(t) = \frac{d}{dt}\vec{r}(t)$$

- vremenska derivacija vektora koji opisuje položaj

$$= \frac{d}{dt}x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k} = \frac{dx(t)}{dt}\vec{i} + \frac{dy(t)}{dt}\vec{j} + \frac{dz(t)}{dt}\vec{k}$$
$$= v_x(t)\vec{i} + v_y(t)\vec{j} + v_z(t)\vec{k}$$

$$\vec{v} \equiv \dot{\vec{r}} \longrightarrow \frac{d}{dt}$$

$$v_x \vec{i} + v_y \vec{j} + v_z \vec{k} = \dot{x} \vec{i} + \dot{y} \vec{j} + \dot{z} \vec{k}$$

INTEGRALNI ZAPIS:

$$\vec{v}(t) = \frac{d}{dt}\vec{r}(t) / dt$$

$$d\vec{r}(t) = \vec{v}(t)dt \qquad \int_{t_0}^{t_1}$$

$$\int_{t_0}^{t_1} d\vec{r} = \int_{t_0}^{t_1} \vec{v}(t) \, dt$$

$$\vec{r}(t_1) - \vec{r}(t_0) = \int_{t_0}^{t_1} \vec{v}(t) \, dt$$

$$t_1 \rightarrow t$$
, $t \rightarrow t'$

$$\vec{r}(t) - \vec{r}(t_0) = \int_{t_0}^t \vec{v}(t') dt'$$
"početni uvjet" brzina

AKCELERACIJA:

$$\vec{a}(t) \equiv \frac{d}{dt} \vec{v}(t)$$

- derivacija brzine po vremenu

$$=\frac{d^2}{dt^2}\vec{v}(t)$$

$$\vec{a}(t) = a_x(t)\vec{i} + a_y(t)\vec{j} + a_z(t)\vec{k}$$

$$= \frac{d}{dt} v_x(t) \vec{i} + \frac{d}{dt} v_y(t) \vec{j} + \frac{d}{dt} v_z(t) \vec{k} = \frac{d^2 x(t)}{dt^2} \vec{i} + \frac{d^2 y(t)}{dt^2} \vec{j} + \frac{dz(t)}{dt} \vec{k}$$

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k} = \dot{v}_x \vec{i} + \dot{v}_y \vec{j} + \dot{v}_z \vec{k}$$

$$= \ddot{x}\vec{i} + \ddot{y}\vec{j} + \ddot{z}\vec{k}$$

$$\vec{a}(t) = \frac{d}{dt}\vec{v}(t) / dt$$

$$d\vec{v}(t) = \vec{a}(t)dt \qquad \int_{t_0}^{t_1}$$

$$\int_{t_0}^{t_1} d\vec{v} = \int_{t_0}^{t_1} \vec{a}(t) \, dt$$

$$\vec{v}(t_1) - \vec{v}(t_0) = \int_{t_0}^{t_1} \vec{a}(t) dt$$

$$t_1 \rightarrow t$$
, $t \rightarrow t'$

$$\vec{v}(t) = v(t_0) + \int_{t_0}^t \vec{a}(t') dt'$$

PRIMJER 1 – HARMONIČKO TITRANJE

položaj čestice na x-osi:

$$x(t) = A\cos(\omega t)$$

$$A, \omega \rightarrow konstante$$

$$v(t) = ?, a(t) = ?$$

$$x(t) = A \cdot \cos(\omega t + \Phi)$$
amplituda frekvencija fazni pomak

$$v(t) = \frac{d}{dt}x(t) = \frac{d}{dt}(A\cos(\omega t + \Phi)) = -A\omega \cdot \sin(\omega t + \Phi)$$

$$a(t) = \frac{d}{dt}v(t) = \frac{d}{dt}\left(-A\omega \cdot \sin(\omega t + \Phi)\right) = -\omega^2 A \cdot \cos(\omega t + \Phi)$$
$$= -\omega^2 x(t)$$

PRIMJER 2 – GIBANJE PO KRUŽNICI POLUMJERA R BRZINOM STALNOG IZNOSA v

položaj:

$$\vec{r}(t) = R\cos(\varphi)\vec{\iota} + R\sin(\varphi)\vec{\jmath}$$

 φ – raste linearno u vremenu

$$\varphi = \omega t$$

$$\vec{r}(t) = R(\vec{i}cos(\omega t) + \vec{j}sin(\omega t))$$

$$\vec{v}(t) = R\left(\vec{i}(-\omega sin(\omega t)) + \vec{j}(\omega cos(\omega t))\right) = -\omega R\left(\vec{i}sin(\omega t) - \vec{j}cos(\omega t)\right)$$

$$\vec{a}(t) = -\omega^2 R(\vec{i}cos(\omega t) + \vec{j}sin(\omega t)) = -\omega^2 \vec{r}(t)$$

$$\omega T = 2\pi$$

$$v = \frac{2R\pi}{T} = \frac{2R\pi}{\frac{2\pi}{\omega}} = \omega R \to \omega = \frac{v}{R}$$

$$\begin{split} |\vec{v}| &= \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{\left[-\omega R \big(\vec{\imath} sin(\omega t) - \vec{\jmath} cos(\omega t)\big)\right] \cdot \left[-\omega R \big(\vec{\imath} sin(\omega t) - \vec{\jmath} cos(\omega t)\big)\right]} \\ &= \sqrt{(-\omega R)^2 \cdot \big(\vec{\imath} sin(\omega t) - \vec{\jmath} cos(\omega t)\big) \cdot \big(\vec{\imath} sin(\omega t) - \vec{\jmath} cos(\omega t)\big)} \\ &= \sqrt{(-\omega R)^2 \cdot \left[(\vec{\imath} \cdot \vec{\imath}) \sin^2(\omega t) - (\vec{\imath} \cdot \vec{\jmath}) sin(\omega t) \cos(\omega t) - (\vec{\jmath} \cdot \vec{\imath}) sin(\omega t) \cos(\omega t) + (\vec{\jmath} \cdot \vec{\jmath}) \cos^2(\omega t)} \\ &= \omega R \sqrt{\sin^2(\omega t) + \cos^2(\omega t)} = \boldsymbol{\omega} \boldsymbol{R} \quad \blacksquare \end{split}$$

EKSPERIMENT- SLOBODNI PAD

s/m	t/s				\overline{t}/s
0.2000	0.2019		0.2019		0.2019
0.8000	0.4037		0.4037		0.4037
1.8000	0.6062	0.6060		0.6066	0.6063

$$s(t) = At^2$$

$$A = \frac{\sum_{i=1}^{N} S_i t_i^2}{\sum_{i=1}^{N} t_i}$$

$$s(t) = A't^n$$

$$g = \bar{g} \pm \sigma_g$$

$$\overline{g} = \frac{2\overline{s}}{t^2}$$

$$s = (1.8000 \pm 0.0005)$$

$$t = (0.6063 \pm 0.0001)$$

ZADATAK – HORVAT – 1.1

-pješak; pola vremena hoda v₁=2 km/h, pola preostalog puta trči 7 km/h, a drugu polovicu preostalog puta v₃=5 km/h. Izračunaj srednju brzinu gibanja tog pješaka!

$$\bar{v} = ?$$

$$s_1 = v_1 t_1$$

$$t_1 = t_2 + t_3$$

$$s_2 = s_3$$

$$S_2 = S_2$$

$$\bar{v} = \frac{s}{t} = \frac{s_1 + s_2 + s_3}{t_1 + t_2 + t_3}$$

$$t_2 = \frac{v_3 t_3}{v_3}$$

$$t_3 = \frac{v_2 t_2}{t_3}$$

$$t_{1} + t_{2} + t_{3}$$

$$t_{2} = \frac{v_{3}t_{3}}{v_{2}}$$

$$t_{3} = \frac{v_{2}t_{2}}{v_{3}}$$

$$t_{2} + t_{3} = \frac{v_{3}t_{3}}{v_{2}} + \frac{v_{2}t_{2}}{v_{3}}$$

$$t_3 = t_1 - t_2 \rightarrow t_2 + t_1 - t_2 = \frac{v_3(t_1 - t_2)}{v_2} + \frac{v_2 t_2}{v_3}$$

$$t_{3} = t_{1} - t_{2} \rightarrow t_{2} + t_{1} - t_{2} = \frac{v_{3}(t_{1} - t_{2})}{v_{2}} + \frac{v_{2}t_{2}}{v_{3}}$$

$$\left(1 - \frac{v_{3}}{v_{2}}\right)t_{1} = \left(\frac{v_{2}}{v_{3}} - \frac{v_{3}}{v_{2}}\right)t_{2} \qquad /\cdot v_{2}v_{3}$$

$$t_3 = \frac{v_2}{v_2 + v_3} t_1$$

$$\bar{v} = \frac{s_1 + s_2 + s_3}{t_1 + t_2 + t_3} = \frac{v_1 t_1 + v_2 t_2 + v_3 t_3}{t_1 + t_2 + t_3} = \frac{v_1 t_1 + \frac{v_2 v_3 t_1}{v_2 + v_3} + \frac{v_2 v_3 t_1}{v_2 + v_3}}{2t_1} = \frac{v_1}{2} + \frac{v_2 v_3}{v_2 + v_3} = 1 + \frac{35}{12} = \frac{47}{12}$$

(...)

ZADATAK – "ELEKTRIJADA" – 1

Čestica se giba duž x-osi tako da joj se brzina mijenja kao $v(x) = \frac{A}{B}(1 + B(x))$ gdje su A i B konstante,a x je koordinata čestice. Odredi ubrzanje pri položaju $x = \frac{1}{B}$!

$$a(x) = \frac{d}{dt}v(x) = \frac{d}{dt}v(x(t)) = \frac{dv}{dx}\frac{dx}{dt} = \left[\frac{d}{dx}\left(\frac{A}{B}(1+B(x))\right)\right]\left[\frac{A}{B}(1+B(x))\right]$$
$$= \frac{A}{B}B\frac{A}{B}(1+Bx) = \frac{A^2}{B}(1+Bx)$$
$$a\left(\frac{1}{B}\right) = \frac{A^2}{B}\left(1+B\frac{1}{B}\right) = \frac{2A^2}{B}$$

ZADATAK

Brzina čestice koja se giba duž x-osi je $v(x) = v_0 e^{-x/b}$. Pri tom su v_0 i b konstante. Odredi položaj kao funkciju vremena ako je poznato da je u početnom trenutku $t_0=0$, $x(t_0)=0$!

$$v = \frac{dx}{dt} = v_0 e^{-\left(\frac{x}{b}\right)} / e^{\left(\frac{x}{b}\right)} dt$$

$$e^{\frac{x}{b}}dx = v_0 e^{-\left(\frac{x}{b}\right)} \qquad \int_{0}^{1} e^{-\frac{x}{b}} dx$$

$$\int_{x_0}^{x_1} e^{\frac{x}{b}} \, dx = \int_{t_0}^{t_1} v_0 dt$$

$$be^{\frac{x}{b}}|_{x_0}^{x_1} = v_0 t|_{t_0}^{t_1}$$

$$b\left(e^{\frac{x_1}{b}} - e^{\frac{x_0}{b}}\right) = v_0(t_1 - t_0)$$

$$b\left(e^{\frac{\chi_1}{b}} - 1\right) = \nu_0 t_1$$

konačno stanje "poopćujemo"

$$t_1 \to t, x_1 \to x(t)$$

$$b\left(e^{\frac{x(t)}{b}} - 1\right) = v_0 t$$

$$e^{\frac{x(t)}{b}} = \frac{v_0 t}{b} + 1$$

$$x(t) = b \cdot ln \left(\frac{v_0 t}{b} + 1 \right)$$

NEWTONOVI AKSIOMI

Čestica m – ima samo masu, nema ni oblik, ni dimenzije, ni orijentaciju

KOLIČINA GIBANJA

PRVI AKSIOM – Kad na česticu djeluje sila ona ostaje u stanju mirovanja ili jednolikog gibanja po pravcu - vrijedi u inercijalnim sustavima

DRUGI AKSIOM – Vremenska promjena količine gibanja čestice je razmjerna sili koja na česticu djeluje $\frac{d\vec{p}}{dt} = \vec{F}$

TREĆI AKSIOM – Ako tijelo/čestica djeluje na drugu česticu silom, tada druga čestica djeluje na prvu silom istog iznosa, ali suprotnog smjera. Te sile leže na istom pravcu (pravcu koji prolazi dvjema česticama).

NEWTONOVA JEDNADŽBA GIBANJA

$$\frac{d}{dt}\vec{p} = \frac{d}{dt}(m\vec{v}) = m\frac{d\vec{v}}{dt} = m\vec{a} = \vec{F}$$

$$\vec{F}(\vec{r},t) = \vec{F}_0 \rightarrow konst.$$

prvi korak: BRZINA

$$\frac{d\vec{p}}{dt} = \overrightarrow{F_0} \to \frac{d\vec{v}}{dt} = \frac{\overrightarrow{F_0}}{m} / \cdot dt$$

$$d\vec{v} = \frac{\overrightarrow{F_0}}{m}dt \qquad \int_{po\check{c}}^{kon}$$

$$\int_{poč}^{kon} d\vec{v} = \int_{poč}^{kon} \overrightarrow{\overline{F_0}} dt$$

$$\vec{v} \mid_{po\check{c}}^{kon} = \frac{\vec{F_0}}{m} t \mid_{po\check{c}}^{kon}$$

$$\begin{split} \vec{v}_{kon} - \vec{v}_{po\check{c}} &= \frac{\overrightarrow{F_0}}{m} (t_{kon} - t_{po\check{c}}) \\ t_{po\check{c}} &\to t_0, \qquad t_{kon} \to t \end{split}$$

$$\vec{v}(t) - \vec{v}(t_0) = \frac{\overrightarrow{F_0}}{m}(t - t_0)$$

$$\vec{v}(t) = \vec{v}(t_0) = \frac{1}{m}(t - t_0)$$

$$\vec{v}(t) = \frac{\vec{F_0}}{m}(t - t_0) + \vec{v}(t_0)$$
početni uvjet

drugi korak: POLOŽAJ

$$\frac{d\vec{r}}{dt} = \vec{v} \qquad / \cdot dt$$

$$d\vec{r} = \vec{v}dt$$

$$\int_{po\check{c}}^{kon} d\vec{r} = \int_{po\check{c}}^{kon} \vec{v} dt$$

$$\vec{r}(t_1) - \vec{r}(t_0) = \int_{t_0}^{t} \vec{v}(t')dt' = \int_{t_0}^{t} [\vec{v}(t_0) + \frac{\overrightarrow{F_0}}{m}(t' - t_0)] dt'$$
$$= \vec{v}(t_0)(t' - t_0) + \frac{\overrightarrow{F_0}}{2m}(t' - t_0)^2$$

$$\vec{r}(t) = \vec{r}(t_0) + \vec{v}(t_0)(t - t_0) + \frac{\vec{F_0}}{2m}(t - t_0)^2$$

PRIMJER – SLOBODNI PAD

$$\vec{v}(t) = -g\vec{k}t$$

$$\vec{r}(t) = (h - \frac{g}{2}t^2)\vec{k}$$

PRIMJER - PADOSTROJ

$$\overrightarrow{r_1}(t) = x_1(t)\vec{\iota}$$

$$\overrightarrow{r_2}(t) = x_2(t)\vec{\iota}$$

$$x_1(t) = -x_2(t)$$

$$\begin{aligned} \dot{x_1}(t) &= -\dot{x_2}(t) \\ \dot{x_1}(t) &= -\ddot{x_2}(t) \end{aligned}$$

$$\ddot{x_1}(t) = -\ddot{x_2}(t)$$

JEDNADŽBA GIBANJA

$$m_1\ddot{x_1} = T - m_1g$$
 $m_2\ddot{x_2} = T - m_2g$
napetost niti

$$m_1 \ddot{x_1} - m_2 \ddot{x_2} = (m_2 - m_1)g$$

$$\ddot{x_1} = -\ddot{x_2} = \frac{m_2 - m_1}{m_2 + m_1}g$$

sila
$$\overrightarrow{F_0} = -mg\overrightarrow{k}$$

početni uvjeti u
$$t=t_0=0$$

 $\vec{v}(t_0) = \vec{v}(0) = \overrightarrow{v_0} = 0$
 $\vec{r}(t_0) = \overrightarrow{r_0} = h\vec{k}$

$$\vec{r}(t_0) = \overrightarrow{r_0} = h\vec{k}$$

ZADATAK - PADOSTROJ

$$m_1 = 400 g$$

$$m_2 = 402 g$$

iz mirovanja

$$t_1$$
- t_0 =6.4 s

$$x_1(t_1) - x_1(t_0) = 0.5 \text{ m}$$

izračunaj g!

$$x_1(t_1) - x_1(t_0) = \frac{a_x}{2} (t_1 - t_0)^2$$

$$x_1(t_1) - x_1(t_0) = \frac{a_x}{2} (t_1 - t_0)^2$$

$$x_1(t_1) - x_1(t_0) = \frac{a_x}{2}(t_1 - t_0)^2$$

$$a_{x} = \frac{m_{2} - m_{1}}{m_{2} + m_{1}}g \rightarrow g = \frac{m_{2} + m_{1}}{m_{2} - m_{1}} \cdot \frac{2[x_{1}(t_{1}) - x_{1}(t_{0})]}{(t_{1} - t_{0})^{2}} = \frac{400 + 402}{402 - 400} \cdot \frac{(2 \cdot 0.5)}{(6.4)^{2}} = 9.79 \frac{m}{s^{2}}$$

KOSI HITAC

$$\vec{v}(t) = \frac{\vec{F_0}}{m}(t - t_0) + \vec{v}(t_0)$$

$$\vec{r}(t) = \vec{r}(t_0) + \vec{v}(t_0)(t - t_0) + \frac{\vec{F_0}}{2m}(t - t_0)^2$$

uvrštavanje:

$$\rightarrow \vec{v}(t) = v_0(\cos\alpha \,\vec{t} + \sin\alpha \vec{j}) - gt\vec{j}$$

$$\rightarrow \vec{r}(t) = v_0(\cos\alpha \vec{i} + \sin\alpha \vec{j})t - \frac{g}{2}t^2\vec{j}$$

po komponentama:

$$v_x(t) = v_0 \cos \alpha$$

$$v_y(t) = v_0 \sin \alpha - gt$$

$$x(t) = v_0 \cos \alpha \cdot t$$

$$y(t) = v_0 \sin \alpha \cdot t - \frac{g}{2}t^2$$

$$y = v_0 \sin \alpha \frac{x}{v_0 \cos \alpha} - \frac{g}{2} \left(\frac{x}{v_0 \cos \alpha} \right)^2 = x \cdot tg \ \alpha - \frac{g}{2} \frac{x^2}{v_0^2 \cos^2 \alpha}$$

$$y(x) = ux - \frac{gx^2}{2v_0^2}(1 + u^2)$$
 gdje je u=tg α

$$\vec{v}(t_0) = \vec{v}(0) = \overrightarrow{v_0} = v_0(\cos\alpha \vec{i} + \sin\alpha \vec{j})$$

$$\vec{r}(t_0) = \vec{r}(0) = \overrightarrow{r_0} = 0$$

$$\overrightarrow{F_0} = -mg\overrightarrow{j}$$

ZADATAK – DJEČAK S PRAĆKOM

Pod kojim kutem dječak treba iz praćke ispucati kamen brzinom 10 m/s ako stoji na 5 m od zida a da taj kamen pogodi što višu točku zida?

$$y(x) = ux - \frac{gx^2}{2v_0^2}(1 + u^2)$$

tražimo max funkcije v*

$$0 = \frac{dy^*}{du} = \frac{d}{du} \left(ud - \frac{gd^2}{2v_0^2} (1+u)^2 \right) = d - \frac{gd^2}{2v_0^2} 2u = d - \frac{gd^2}{v_0^2} u$$

$$\Rightarrow u = \frac{v_0^2}{gd} = \frac{100}{9.81 \cdot 5} = \frac{20}{9.81} = 2.038$$

$$arc \ tg \ u = 63.87^{\circ}$$

tražimo tjeme parabole

$$y(x) = u^*x - \frac{gx^2}{2v_0^2}(1 + (u^*)^2) = \frac{v_0^2}{gd}x - \frac{gx^2}{2v_0^2}\left(1 + \frac{v_0^4}{g^2d^2}\right) = \frac{v_0^2}{gd}x - \frac{gx^2}{2v_0^2} - \frac{v_0^2gx^2}{2g^2d^2}$$

$$y = ax^2 + bx + x$$

$$x_{MAX} = -\frac{b}{2a} \rightarrow tjeme \ parabole = \frac{\frac{v_0^2}{gd}}{2\left(\frac{g}{2v_0^2} + \frac{v_0^2}{2gd^2}\right)} = \frac{\frac{v_0^2}{gd}}{\frac{2v_0^2}{gd}\left(\frac{g^2d}{2v_0^4} + \frac{1}{2d}\right)} = \frac{1}{2\left(\frac{g^2d}{2v_0^4} + \frac{1}{2d}\right)} = \frac{1}{\frac{g^2d}{v_0^4} + \frac{1}{d}}$$

$$= \frac{d}{1 + \frac{g^2 d^2}{v_0^4}}$$

 $x_{MAX} < d$ a to je ono što smo dokazivali, da će kamen dosegnuti najvišu točku zida ako mu je tjeme parabole po kojoj leti ispred zida \blacksquare

Rješavanje Newtonove jednadžbe gibanja za silu razmjernu brzini

$$\overrightarrow{F} = -\gamma \overrightarrow{v} \longrightarrow \text{brzina}$$
 $\downarrow \text{sila}$
 $\downarrow \text{konst.}$

uvrštavanje:

$$\begin{aligned} \frac{d\vec{p}}{dt} &= \vec{F} \\ m \cdot \dot{\vec{v}} &= -\gamma \vec{v} \end{aligned}$$

x komponenta –

$$m \cdot \dot{v_x} = -\gamma v_x$$

$$m \frac{dv_x}{dt} = -\gamma v_x \qquad / \cdot \frac{dt}{mv_x}$$

$$\frac{dv_x}{v_x} = -\frac{dt\gamma}{m} \qquad \int_{po\check{c}}^{kon}$$

$$\ln v_{x}(kon) - \ln v_{x}(po\check{c}) = -\frac{\gamma}{m} (t(kon) - t(po\check{c}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$v(t) \qquad v(t_{0}) \qquad \qquad t \qquad t_{0}$$

$$v_x(t) = v_x(t_0) \cdot e^{-\frac{\gamma}{m}(t-t_0)}$$

zaključno sa predavanjem 08.03.'10.