Credit & Credibility

Arnav Sood

November 29, 2018

Model

Big Picture This is a model of strategic behavior by a credit rater. In particular, the agency both chooses a strategy for assigning ratings to firms, and a single price p for the rating service. The idea is that p is a tool by which the reporter can control the "ground truth" of the client pool it has to rate, in the same way that college tuition can serve as a filter on applicants.

Global "Time 0" Objects

- A unit mass of firms $i \in [0,1]$, with types $\theta_i \in \{H, L\}$
- Two type-dependent distributions of outside offers $F_H(\cdot)$ and $F_L(\cdot)$, on the same bounded support $[\underline{\omega}, \overline{\omega}]$, such that $\mathbb{E}F_L \leq \mathbb{E}F_H$. These can be interpreted as ratings offers from other reporters, private investment, a job-market outcome for an entrepreneur, etc.
- A credit market with a prior belief λ about the distribution of good firms in the market (i.e., the distributions of good firms that exist)
- A mechanistic confidence threshold $\underline{\lambda} > \lambda$ for investment which assigns investment outcomes to firms by

$$\mu: \tilde{\lambda} \mapsto \begin{cases} R & \tilde{\lambda} \ge \underline{\lambda} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Sequence of Moves

- 1. Credit reporter chooses a ratings strategy $\phi: \theta \mapsto \Delta(\{h, l\})$ and a price $p \in \mathbb{R}^+$.
 - (a) Conjecture that Pr[h|H] = 1 (why hide your peaches?)
 - (b) So gives us really a choice of $\phi: L \mapsto \Delta(\{h, l\})$. Since there are only two types, this is just the choice of a scalar $\Pr[h|L]$. For simplicity, from now on we'll call that ϕ .

- (c) Call those whole policy $m \in M$, where M is a space of mechanisms (??)
- 2. Firms, observing the reporter's moves, choose their entry policies.

$$e: \theta_i \times \omega_i \times m \to [0, 1]$$
 (2)

- 3. The credit market updates its beliefs and assigns investment outcomes to firms
 - (a) The market calculates a signal-independent inflow prior $\lambda^{I}(m)$, based only on the mechanism, which is a confidence rating conditioned solely on the entry decision.
 - (b) The market calculates signal-dependent posteriors $\lambda^{o}(h, m), \lambda^{o}(l, m)$.
 - (c) The market assigns investment outcomes.

Equilibrium Definition An equilibrium is:

- 1. A mechanism $m \equiv (\phi, p) \in M$
- 2. An entry map $e: \theta_i \times \omega_i \times m \to [0,1]$
- 3. A set of updated beliefs $\lambda^I(m), \lambda^o(h, m), \lambda^o(l, m)$ and investment outcomes $\mu(\lambda)$

such that

1. The mechanism m satisfies the credit reporter's optimality condition

$$\max_{m \in M} p \mathbb{E} |\Gamma(m)|$$

where $\Gamma(m)$ is the set of firms who choose to transact with the reporter.

- 2. The entry map satisfies firms' optimality:
 - (a) $\lambda^o(h,m) < \underline{\lambda} \implies e = 0$ (don't enter if the market outcome is deterministically zero)
 - (b) Otherwise,

$$e(\theta, m) = F_{\theta}(\phi_{\theta}R - p) \tag{3}$$

3. The posterior beliefs are compatible with Bayes' theorem

Model Solution

Market's Problem

Start with the investors' beliefs given $m \in M$ and e.

The inflow prior is:

$$\lambda^{I}(m) = \frac{e(H, m)\lambda}{e(H, m)\lambda + e(L, m)(1 - \lambda)}$$
(4)

The signal-dependent prior is (afer applying our Pr[h|h] = 1 conjecture):

$$\lambda^{o}(h,m) = \frac{\lambda^{I}(m)}{\lambda^{I}(m) + (1 - \lambda^{I}(m))\phi}$$
 (5)

Note that this is the only belief which matters, because if $\Pr[h|H] = 1$, then $\lambda^o(l) = 0$ (i.e., if high firms are always sorted correctly, then a low signal means you're worthless)

Firms' Problem

Look for a simultaneous Nash equilibrium $(e_H, e_L) \in \mathbb{R}^2$.

As above, in an interior equilibrium we have the entry rules:

- High types: $e_H = F_H(R-p)$
- Low types: $e_L = F_L(\phi R p)$

subject to the constraint that $\mathbb{1}_{\lambda^o(h)>\lambda}=1$.

Rewrite that prior in terms of model primitives:

$$\lambda^{o}(h) = \frac{e_{H}\lambda}{e_{H}\lambda + \phi e_{L}(1 - \lambda)} \ge \underline{\lambda}$$
 (6)

We can rewrite this as a constraint on ϕ :

$$\phi \le \frac{e_H \lambda (1 - \underline{\lambda})}{e_L \underline{\lambda} (1 - \lambda)} \tag{7}$$

This passes a sanity check, since it says that (a) the maximum allowable dishonesty ϕ is bounded above by some function of the right quantities, and (b) the bound is increasing in high entry, decreasing in low entry.

Rater's Problem

The rater wants to maximize $p\mathbb{E}|\Gamma(p,\phi)|$, as above. We know that entry flow is $F_L(\phi R - p) + F_H(R - p)$. So this gives us the following optimization problem:

maximize
$$p\left(F_H(R-p) + F_L(\phi R - p)\right)$$

subject to $0 \le \phi \le \frac{e_H \lambda (1 - \underline{\lambda})}{e_L \underline{\lambda} (1 - \lambda)}$ (8)

We see that $\frac{\partial}{\partial \phi}$ of the objective is positive, which means that, whatever the price, the rater can benefit by lying a little more (within the constraint). Let τ be the ratio

$$\tau \equiv \frac{\lambda(1-\underline{\lambda})}{\underline{\lambda}(1-\lambda)} \tag{9}$$

Then we have

maximize
$$p\left(F_H(R-p) + F_L(\phi R - p)\right)$$

subject to $\frac{\phi}{\tau} = \frac{F_H(R-p)}{F_L(\phi R - p)} \equiv \frac{e_H}{e_L}$ (10)

We can sketch out this optimal curve for a simple example. (Would it help to interpret ϕ as the fixed point of a map $f: x \mapsto \frac{\tau e_H(p)}{e_L(\phi, p)}$?)