Mathematical and Numerical Modeling of Ultrasound Vibro-Acoustography

Alison Malcolm – MIT

Collaborators:

Fernando Reitich¹ Jiaqi Yang¹ Mostafa Fatemi² James Greenleaf²

¹University of Minnesota ²Mayo Clinic College of Medicine

Oil Exploration

 $From \ http://www.pgesafetye ducation.com. \ Image \ courtesy \ of \ Pacific \ Gas \ and \ Electric \ Company.$

Oil Exploration

Image courtesy of USGS.

Summary so far

We use waves for:

Summary so far

We use waves for:

CO₂ monitoring

Summary so far

We use waves for:

- CO₂ monitoring
- Geothermal energy
- Determining deep Earth structure
- Finding (and producing) oil

Typical wave imaging

Radon Transform

http://en.wikipedia.org/wiki/

File:64_slice_scanner.JPG

f - absorption of material Rf - data

$$Rf(\theta, s) = \int_{\Theta^{\perp}} f(x+s\theta)dx$$

Image difference in absorbance

Typical wave imaging Radon Transform

Shepp-Logan Phantom

Projection-Slice Theorem

$$\widehat{\mathsf{Rf}}(\sigma) = (2\pi)^{(\mathsf{n}-1)/2}\widehat{\mathsf{f}}(\sigma\theta)$$

back-project data along lines

Image difference in absorbance

MIT OpenCourseWare http://ocw.mit.edu

12.445 Oral Communication in the Earth, Atmospheric, and Planetary Sciences Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.