

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

FEBRUARY/MARCH 2012

MEMORANDUM

MARKS: 150

This memorandum consists of 20 pages.

1.1.1	$3x^{2} - 5x = 2$ $3x^{2} - 5x - 2 = 0$ $(3x+1)(x-2) = 0$ $x = -\frac{1}{3} \text{ or } x = 2$ $x - \frac{2}{3} = 5$	✓ standard form ✓ factors ✓ both answers (3)
1.1.2	\boldsymbol{x}	
	$x^{2}-2=5x$ $x^{2}-5x-2=0$ $-b \pm \sqrt{b^{2}-4ac}$	✓ standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-5) \pm \sqrt{25 - 4(1)(-2)}}{2(1)}$	✓ subs in correct formula
	$x = \frac{5 \pm \sqrt{33}}{2}$ x = 5,37 or x = -0,37	✓ ✓ answers (one for each answer) (4)
1.1.3	(x+1)(x-3) > 12 $x^2 - 2x - 3 > 12$	✓ multiplication
	$x^{2} - 2x - 15 > 0$ $(x - 5)(x + 3) > 0$ $+ 0 - 0 + OR$ $-3 - 5$ OR -3	✓ factors
	x < -3 or x > 5	✓✓ answer (4)

Mathematics/P1 3 DBE/Feb.–Mar. 2012

1.0		
1.2	r+p=2	$\sqrt{r-2}$
	r = 2 - p	$\checkmark r = 2 - p$
	6r + 5rp - 5p = 8	✓ substitution
	6(2-p) + 5(2-p)p - 5p = 8	
	$12 - 6p + 10p - 5p^2 - 5p = 8$	✓ simplification
	$5p^2 + p - 4 = 0$	
	(5p-4)(p+1) = 0	
	$p = \frac{4}{5} \qquad or \qquad p = -1$	✓ factors ✓ p-answers
	$r = 2 - \left(\frac{4}{5}\right) \text{ or } \qquad r = 2 - (-1)$	
	$r = \frac{6}{5} \qquad \qquad r = 3$	✓ \checkmark r-answers (7)
	OR	
	r+p=2	
	p=2-r	✓ p = 2 - r
	6r + 5rp - 5p = 8	
	6r + 5r(2-r) - 5(2-r) = 8	✓ substitution
	$6r + 10r - 5r^2 - 10 + 5r = 8$	
	$5r^2 - 21r + 18 = 0$	
	(5r-6)(r-3)=0	✓ standard form
		✓ factors
	$r = \frac{6}{5}$ or $r = 3$	✓ r-answers
	$p = 2 - \left(\frac{6}{5}\right) or \qquad p = 2 - (3)$	
	, ,	✓✓ p-answers
	$p = \frac{4}{5} \qquad p = -1$	(7)
1.3	Let the shortest side be <i>x</i>	✓ let the shortest side be x
	Sides of the prism: x ; $2x$; $3x$	
	Volume = lbh $(x)(2x)(2x) = 2.072$	$\checkmark x$; $2x$; $3x$
	$(x)(2x)(3x) = 3 072$ $6x^3 = 3 072$	\checkmark (x)(2x)(3x) = 3 072 \checkmark answer
	$x^3 = 512$	• answei
	$x = \sqrt[3]{512}$	
	x = 8	(4)
		[22]

F		T
2.1	$T_n = a + (n-1)d$	$\checkmark d = 4$
	173 = -7 + (n-1)(4)	$\checkmark \ a - 4$ $\checkmark \ T_n = -7 + 4(n-1)$
	173 = -7 + 4n - 4	n
	4n = 184	
	n = 46	✓ answer
	OR	(3)
	$T_n = 4n - 11$	$\checkmark \checkmark T_n = 4n - 11$
	173 = 4n - 11	
	4n = 184	✓ answer
	n = 46	(3)
2.2	$S_n = \frac{n}{2}[a+l]$	✓ subs of $n = 46$
	2	✓ subs of a and l
	$=\frac{46}{2}[-7+173]$	into the correct
	= 23[166]	formula
	= 3818	✓ answer
		(3)
	OR	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	
	2	✓ subs of $n = 46$
	$=\frac{46}{2}[2(-7)+(45)(4)]$	✓ subs of <i>a</i> and <i>d</i> into the correct
	= 23[-14+180]	formula
	= 3 818	101111
		✓ answer
		(3)
2.3	$\sum_{i=1}^{46} (A_i - A_i)$	✓ n = 1
	$\sum_{n=1}^{\infty} (4n-11)$	✓ top value = 46
		$\checkmark 4n - 11 \tag{3}$
		(3) [9]
L		

3.1.1	1	1
3.1.1	$r = -\frac{1}{2}$	$\checkmark r = -\frac{1}{2}$ \checkmark answer
	$T_4 = 1 \left(-\frac{1}{2} \right)$	✓ answer
	$T_4 = 1 \left(-\frac{1}{2}\right)$	(2)
	1	
	$=-\frac{1}{2}$	
3.1.2	$T_n = 4\left(-\frac{1}{2}\right)^{n-1}$ $T_n = -8\left(-\frac{1}{2}\right)^n$	$\left(1\right)^{n-1}$
		$\checkmark 4 \left(-\frac{1}{2}\right)^{n-1}$
	$\frac{1}{64} = 4\left(-\frac{1}{2}\right) \qquad \qquad \frac{1}{64} = -8\left(-\frac{1}{2}\right)$	✓ substitution
	$\frac{1}{256} = \left(-\frac{1}{2}\right)^{n-1} \qquad \mathbf{OR} \qquad \frac{1}{256} = \left(-\frac{1}{2}\right)^n$	$(1 (1)^{n-1})^{n-1}$
	$\left(-\frac{1}{2}\right)^{8} = \left(-\frac{1}{2}\right)^{n-1} \qquad \left(-\frac{1}{2}\right)^{8} = \left(-\frac{1}{2}\right)^{n-1}$	$\checkmark \frac{1}{256} = \left(-\frac{1}{2}\right)^{n-1}$
	8 = n - 1 $8 = n - 1$	
	n = 9 $n = 9$	✓ answer
		(4)
	OR	
	$T_4 = -\frac{1}{2}$	
	1	
	$T_5 = \frac{1}{4}$	$\checkmark T_5$ and T_6
	1	✓ T ₇
	$T_6 = -\frac{1}{8}$	
	$_{T}$ $_{-}$ 1	/ T
	$T_7 = \frac{1}{16}$	✓ T ₈
	$T_8 = -\frac{1}{32}$	
		✓ answer
	$T_9 = \frac{1}{64}$	(4)
	n = 9	
3.1.3	$S_{\infty} = \frac{a}{1-r}$	✓ substitution into
	1-r	
	1-r 4	correct formula
	$= \frac{4}{1 - \left(-\frac{1}{2}\right)}$	correct formula ✓ answer
	$ \frac{1-r}{4} = \frac{4}{1-\left(-\frac{1}{2}\right)} = \frac{8}{3} $	correct formula

3.2 For a geometric sequence:

$$\frac{x+1}{1} = \frac{x-3}{x+1}$$

$$x^2 + 2x + 1 = x - 3$$

$$x^2 + x + 4 = 0$$

$$x = \frac{-1 \pm \sqrt{1 - 4(1)(4)}}{2(1)}$$

$$x = \frac{-1 \pm \sqrt{-15}}{2}$$

$$x^2 + 2x + 1 = x - 3$$

$$x^2 + x + 4 = 0$$

$$(x + \frac{1}{2})^2 + \frac{15}{4} = 0$$

$$(x + \frac{1}{2})^2 + \frac{15}{4} \ge \frac{15}{4} > 0$$

Solution is non-real.

There is no x-value that makes the sequence geometric.

OR

For a geometric sequence:

$$\frac{x+1}{1} = \frac{x-3}{x+1}$$

$$x^2 + 2x + 1 = x - 3$$

$$x^2 + x + 4 = 0$$

$$b^2 - 4ac = 1 - 4(1)(4)$$

$$= -15$$

Solution is non-real

There is no *x*-value that makes the sequence geometric.

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$$

✓ standard form

✓ subs in quadratic formula

✓ non-real/no *x*values

(4)

$$\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$$

✓ standard form

✓ subs in discriminant

✓ non-real/no *x*values

(4)

[12]

Copyright reserved

Please turn over

4.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ complete pattern
		✓ r = 1
	r = 1 $ s = 2$	$\checkmark s = 2 \tag{3}$
	OR	
	NOTE: Candidates may do 4.2 first.	
	$d(n) = n^2 - 10n + 26$	✓ 2 10 2
	r = d(5)	$d(n) = n^2 - 10n + 26$
	$= (5)^2 - 10(5) + 26$ $= 1$	✓ r = 1
	s = d(6)	
	$= (6)^2 - 10(6) + 26$	$\checkmark s = 2 \tag{3}$
	=12	
	OR	
	$d(n) = (n-5)^2 + 1$	
	r = d(5)	
	$=(5-5)^2+1$	$d(n) = (n-5)^2 + 1$
	= 1	$d(n) = (n-5)^2 + 1$ $\checkmark r = 1$
		$\checkmark r = 1$
	$=(6-5)^2+1$	$\checkmark s = 2$
4.2	= 2 $2a = 2$	(3)
	a=1	$\checkmark a = 1$
	3a + b = -7	✓ method
	$\therefore 3(1) + b = -7$	
	$b = -10$ $\therefore a + b + c = 17$	
	1-10+c=17	$\checkmark b = -10$ $\checkmark c = 26$
	c = 26	(4)
	$\therefore d(n) = n^2 - 10n + 26$	
	OR	

$$\begin{array}{|c|c|c|c|}\hline & a+b+c=17\\ 4a+2b+c=10\\ 3a+b=-7\\ 9a+3b=-21\\ 9a+3b+c=5\\ -21+c=5\\ c=26\\ a+b=-9\\ a=1\\ 4a+2b=-16\\ 2a+2b=-18\\ a=1\\ b=-10\\ d(n)=n^2-10n+26\\ \hline \begin{tabular}{l} a+b+c=17\\ 4a+2b+c=10\\ 9a+3b+c=5\\ -21+c=5\\ 5a+b=-5\\ c=26\\ a+b=-9\\ a=1\\ 3(1)+b=-7\\ 2a=2\\ a=1\\ c=26\\ d(n)=n^2-10n+26\\ \hline \begin{tabular}{l} \checkmark method\\ \checkmark a=1\\ \checkmark c=26\\ d(n)=n^2-10n+26\\ \hline \begin{tabular}{l} \checkmark method\\ \checkmark a=1\\ 0=10\\ d(n)=n^2-10n+26\\ \hline \begin{tabular}{l} \checkmark method\\ \checkmark a=1\\ 0=26\\ d(n)=n^2-10n+26\\ \hline \begin{tabular}{l} \checkmark method\\ \checkmark a=1\\ 0=26\\ d(n)=n^2-10n+26\\ \hline \begin{tabular}{l} \checkmark method\\ \checkmark a=1\\ \checkmark c=26\\ d(n)=n^2-10n+26\\ \hline \begin{tabular}{l} \checkmark method\\ \checkmark a=1\\ \checkmark c=26\\ \hline \end{tabular}$$

Copyright reserved Please turn over

OR

Mathematics/P1 9 DBE/Feb.–Mar. 2012

$d(n) = (n-1)d(2) - (n-2)d(1) + \text{second difference} \times \frac{(n-1)(n-2)}{2}$	
$d(n) = (n-1)(10) - (n-2)(17) + \frac{2(n-1)(n-2)}{2}$	\checkmark method \checkmark $a = 1$
d(n) = 10n - 10 - 17n + 34 + (n-1)(n-2)	$\checkmark c = 26$ $\checkmark b = -10$
$d(n) = n^2 - 10n + 26$	(4)
OR	
$d(n) = (n-5)^2 + 1$	\checkmark method \checkmark $a = 1$
$= n^2 - 10n + 26$	$\checkmark c = 26$
a=1	$\checkmark b = -10$
b = -10	(4)
c = 26	
4.3 $d(8) = (8)^2 - 10(8) + 26$ OR By symmetry	✓ subs $t = 8$
=10 m	
d(8)	✓ answer
=d(5+3)	(2)
=d(5-3)	✓ method
=d(2)	• method
= 10	✓ answer
O.D.	(2)
OR 17, 10, 5, 2, 1, 2, 5, 10	✓ method
so d(8) = 10	✓ method ✓ answer
	(2)
4.4 Since the distance from P is decreasing for $n < 5$ the athlete is moving	ing towards P. ✓✓ decreasing
Since the distance from P is increasing for $n > 5$, the athlete is move	
P.	✓✓ increasing Moving away
OR	Woving away
It is sufficient to show that d is decreasing when $n < 5$ and increasing	ng when $n > 5$
$d(n) = n^2 - 10n + 26$	✓
d'(n) = 2n - 10	d'(n) = 2n - 10
d'(n) = 2(n-5)	
For $n < 5$, $2(n-5) < 0$	$\checkmark 2(n-5) < 0$
d'(n) < 0: decreasing	✓ decreasing
For $n > 5$, $2(n-5) > 0$	
d'(n) > 0: increasing	
	✓ increasing (4)
	[13]

5.1	x = 0	✓ answer
	y = 0	✓ answer
		(2)
5.2	$f(x) = -2x^2 + 8x + 10$	✓ equate to 0
	$x^2 - 4x - 5 = 0$	
	(x-5)(x+1) = 0	✓ factors
	x = 5 or x = -1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ x-values ✓ answer
	$\Pi(\mathcal{I}, \mathcal{O})$	(4)
5.3	$f(x) = -2x^2 + 8x + 10$	✓ method
		$\checkmark (x-2)^2$
	$f(x) = -2(x-2)^2 + 18$	√ 18
	Range of f is $y \le 18$ OR $y \in (-\infty; 18]$	✓ answer
	OR	- answer
	OK	(4)
	$f(x) = -2x^2 + 8x + 10$	
	8	
	$x = -\frac{8}{2(-2)}$	
		✓ method
	x = 2	$\checkmark x = 2$
	$y = -2(2)^2 + 8(2) + 10$	$\checkmark y = 18$
	y = 18	✓ answer
	Range of f is $y \le 18$ OR $y \in (-\infty; 18]$	(4)
	OR	
		✓ method

NSC – Memorandum

 1100 11101111111111	
$r = \frac{5-1}{1}$	$\checkmark x = 2$
$\begin{array}{ccc} x & 2 \end{array}$	
x=2	$\checkmark y = 18$
$y = -2(2)^2 + 8(2) + 10$	✓ answer
y = 18	(4)
Range of f is $y \le 18$ OR $y \in (-\infty; 18]$	

	OR	
	$f(x) = -2x^{2} + 8x + 10$ $f'(x) = -4x + 8$ $0 = -4x + 8$ $x = 2$ $y = -2(2)^{2} + 8(2) + 10$ $y = 18$ Range of f is $y \le 18$ OR $y \in (-\infty; 18]$	✓ method ✓ $x = 2$ ✓ $y = 18$ ✓ answer (4)
5.4	$f(1) = -2(1)^{2} + 8(1) + 10$ $f(1) = 16$ $g(1) = \frac{16}{1}$ $g(1) = 16$ $C(1; 16) \text{ lies on both the graphs of } f \text{ and } g$	✓ substitution $f(1)$ ✓ substitution $g(1)$ (2)
	OR $-2x^{2} + 8x + 10 = \frac{16}{x}$ $-2x^{3} + 8x^{2} + 10x - 16 = 0$ $x^{3} - 4x^{2} - 5x + 8 = 0$ $(x-1)(x^{2} - 3x - 8) = 0$ $x = 1 or x^{2} - 3x - 8 = 0$ $C(1; 16)$	✓ equating ✓ answer (2)
5.5	p(x) = f(3x) 3x = 2 $x = \frac{2}{3}$ TP $(\frac{2}{3}; 18)$ NOTE: Answer Only: Full Marks	$\sqrt{3x} = 2$ $\sqrt{x} = \frac{2}{3}$ $\sqrt{y} = 18$ (3)
	OR $p(x) = -2(3x)^{2} + 8(3x) + 10$ $= -18x^{2} + 24x + 10$	$\checkmark x = -\frac{24}{2(-18)}$ $\checkmark x = \frac{2}{3}$

NSC - Memorandum
$$x = -\frac{24}{2(-18)}$$

$$x = \frac{2}{3}$$

$$TP(\frac{2}{3}; 18)$$
OR
$$(3)$$

$$p(x) = -2(3x)^{2} + 8(3x) + 10$$

$$= -18x^{2} + 24x + 10$$

$$p'(x) = -36x + 24$$

$$0 = -36x + 24$$

$$x = \frac{2}{3}$$

$$TP(\frac{2}{3}; 18)$$

OR
$$p(x) = -2(3x)^{2} + 8(3x) + 10$$

$$= -18x^{2} + 24x + 10$$

$$= -18\left(x - \frac{2}{3}\right)^{2} + 18$$

$$TP(\frac{2}{3}; 18)$$

$$(3)$$

$$\Rightarrow x = \frac{2}{3}$$

$$\Rightarrow y = 18$$

6.1	$f(x) = 3^x$,
	$f^{-1}(x) = \log_3 x$	✓ answer (1)
6.2	f f	$f^{-1}(x) = \log_3 x$ (Log Graph) $\checkmark \text{ shape}$ $\checkmark x \text{-intercept}$ $f(x) = 3^x$
	$(0;1) \qquad \qquad f^{-1}$	(Exponential Graph) \checkmark shape \checkmark y-intercept (4)
	(1;0)	
6.3	x > 0	✓✓ answer
	OR	(2)
	$x \in (0; \infty)$	
6.4	$0 < x \le 1$	✓ critical values ✓ notation (2)
6.5	$y > -4$ OR $y \in (-4; \infty)$	✓ answer (2)
6.6	$g(x) = -3^{x-2}$ OR $g(x) = -f(x-2)$	\checkmark -(sign) \checkmark x-2
	OR	(2)
	$g(x) = -\frac{1}{9}(3^x)$ OR $g(x) = -\frac{1}{9}f(x)$	\checkmark -(sign) \checkmark $\frac{1}{9}$
		(2) [13]

7.1	00	
7.1	$\frac{88}{100} \times 850000$	√
		$\frac{88}{100} \times 850000$
	= R748000	
		✓ answer
	OR	(2)
	12	
	$\frac{12}{100} \times 850000$	✓
		$\frac{12}{100} \times 850000$
	$= R102\ 000$	100
	Loan amount $= R850\ 000 - R102\ 000$	✓ answer
	$= R748\ 000$	(2)
7.2	$1 + i_e = \left(1 + \frac{0.09}{12}\right)^{12}$	
	$1 + i_e = 1 + \frac{1}{12}$	$\checkmark \frac{0.09}{12}$
		12
	$i_e = 0.09380689$	✓ substitution
	$r = 9.38\% \ p.a$	✓ answer
	≠ 9,6%	✓ decision
	Not correct	(4)
	OR	
		i
	; \12	$\sqrt{\frac{i}{12}}$
	$1 + 0,096 = \left(1 + \frac{i}{12}\right)^{12}$	✓ substitution
	$\sqrt[12]{1,096} = 1 + \frac{i}{12}$	
	$\sqrt{1,090} = 1 + \frac{1}{12}$	
	i andresa di	
	$1,007668183 = 1 + \frac{i}{12}$	
	i = 0.092018201	✓ answer
	r = 9.2% p.a	✓ decision
	<i>≠</i> 9%	(4)
	Not correct	
7.3	$x[1-(1+i)^{-n}]$	
	$P_{v} = \frac{x[1-(1+i)^{-n}]}{i}$	✓ subs into
	i i	correct
	$748\ 000 = \frac{x \left[1 - \left(1 + \frac{0.09}{12}\right)^{-240}\right]}{\frac{0.09}{12}}$	formula
		$\angle i = 0.09$
	$748\ 000 = \frac{1}{0.09}$	$\checkmark i = \frac{0.09}{12}$ $\checkmark n = -240$
	$\frac{0.07}{12}$	\checkmark n = -240
	12	✓ answer
	x = R6 729,95	(4)
		I ('')

7.4 $P_{v} = \frac{x[1 - (1+i)^{-n}]}{i}$ $748\ 000 = \frac{7\ 000\left[1 - \left(1 + \frac{0.09}{12}\right)^{-n}\right]}{\frac{0.09}{12}}$	✓ subs into correct formula
$\frac{561}{700} = 1 - \left(1 + \frac{0,09}{12}\right)^{-n}$ $\left(1 + \frac{0,09}{12}\right)^{-n} = \frac{139}{700}$	✓ simplification
$-n\log\left(1 + \frac{0,09}{12}\right) = \log\frac{139}{700}$ $n = 216,35 \text{ months}$	✓ use of logs
=18,03 years	✓ answer (4)
OR $P_{v} = \frac{x[1 - (1+i)^{-12n}]}{i}$ $748\ 000 = \frac{7\ 000\left[1 - \left(1 + \frac{0,09}{12}\right)^{-12n}\right]}{\frac{0,09}{12}}$ $\frac{561}{700} = 1 - \left(1 + \frac{0,09}{12}\right)^{-12n}$	✓ subs into correct formula
$\left(1 + \frac{0,09}{12}\right)^{-12n} = \frac{139}{700}$	✓ simplification
$-12n\log\left(1+\frac{0.09}{12}\right) = \log\frac{139}{700}$	✓ use of logs
n = 18,03 years	✓ answer (4) [14]

Mathematics/P1

DBE/Feb.-Mar. 2012

QUESTION 8

8.1	$f(x) = 9 - x^2$	
	$f(x+h) = 9 - (x+h)^2$	✓ substitution
	$= 9 - x^2 - 2xh - h^2$	
	$f(x+h) - f(x) = -2xh - h^2$	✓ simplification
	$f'(x) = \lim_{h \to 0} \frac{-2xh - h^2}{h}$	/ C 1
		✓ formula
	$= \lim_{h \to 0} \frac{h(-2x - h)}{h}$	✓ common factor
	$=\lim_{h\to 0}(-2x-h)$	
	=-2x	✓ answer (5)
	OR	(3)
	f(x+h)-f(x)	✓ formula
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$= \lim_{h \to 0} \frac{9 - (x+h)^2 - (9 - x^2)}{h}$ $= \lim_{h \to 0} \frac{9 - (x^2 + 2xh + h^2) - 9 + x^2}{h}$	✓ substitution
	$-\lim_{x \to 0} \frac{9 - (x^2 + 2xh + h^2) - 9 + x^2}{2}$	✓ simplification
	$= \lim_{h \to 0} \frac{-2xh - h^2}{h}$	
	$=\lim_{h\to 0}\frac{h(-2x-h)}{h}$	✓ common factor
	$= \lim_{h \to 0} \left(-2x - h \right)$	
		✓ answer (5)
8.2.1	$= -2x$ $D_x[1 + 6\sqrt{x}]$	(3)
	$\begin{bmatrix} 1 & \frac{1}{2} \end{bmatrix}$	1
	$=D_x\left[1+6x^{\frac{1}{2}}\right]$	$\checkmark 6x^{\frac{1}{2}}$ $\checkmark \text{ answer}$
	$y = \frac{8 - 3x^{6}}{8x^{5}}$ $= \frac{1}{x^{5}} - \frac{3}{8}x$	(2)
8.2.2	$y = \frac{8 - 3x^6}{}$	$\checkmark x^{-5}$ $\checkmark \frac{3}{8}x$ $\checkmark -5x^{-6}$ $\checkmark -\frac{3}{8}$
	$8x^5$	$\sqrt{\frac{3}{9}x}$
	$=\frac{1}{x^5}-\frac{3}{8}x$	8
	$\frac{x^{-5}}{x^{-5}} = \frac{3}{x}$	$\checkmark -5x^{-6}$
	$-x$ $-\frac{8}{8}$	$\sqrt{-\frac{3}{8}}$
	$= x^{-5} - \frac{3}{8}x$ $\frac{dy}{dx} = -5x^{-6} - \frac{3}{8}$	(4)
	un 0	[11]

9.1	$f(x) = a(x+1)^2(x-3)$	✓✓ substitution of
	$-6 = a(0+1)^2(0-3)$	<i>x</i> -values
		\checkmark subs $(0; -6)$
	-6 = -3a	
	a = 2	$\checkmark a = 2$
	$f(x) = 2(x^2 + 2x + 1)(x - 3)$	✓ simplification
	$=2x^3 - 2x^2 - 10x - 6$	(5)
9.2	$f'(x) = 6x^2 - 4x - 10$	$f'(x) = 6x^2 - 4x - 6$
	$6x^2 - 4x - 10 = 0$	f'(x) = 0
	$3x^2 - 2x - 5 = 0$	✓ factors
	(3x - 5)(x + 1) = 0	
	$x = \frac{5}{3}$ or $x = -1$	✓ x-value
]	✓ y-value
	$B\left(\frac{5}{3}; -\frac{512}{27}\right)$ OR $B(1,67; -18,96)$	(5)
9.3	$h(x) = 2x^3 - 2x^2 - 10x - 6 - (6x - 6)$	
	$= 2x^3 - 2x^2 - 16x$	$1 \checkmark h(x) = 2x^3 - 2x^2 - 16x$
	_,, _,, _,,	$4 h'(x) = 6x^2 - 4x - 16$
	$h'(x) = 6x^2 - 4x - 16$	$\checkmark h'(x) = 0$
	$0 = 3x^2 - 2x - 8$	()
	0 = (3x+4)(x-2)	✓ factors
	$x = -\frac{4}{3} or x = 2$	
	$\therefore x = -\frac{4}{3}$	✓ correct <i>x</i> -value
	3	
		(5)
		[15]

10.1	y = 5(1) - 8	✓ subs 1
	=-3	(1)
	Point of contact is $(1; -3)$	
10.2	$-3 = 2(1)^3 + p(1)^2 + q(1) - 7$	
	2 = p + q	\checkmark subs $(1;-3)$
	$g'(x) = 6x^2 + 2px + q$	
	g'(1) = 5	√
	$5 = 6(1)^2 + 2p(1) + q$	$g'(x) = 6x^2 + 2px + q$
		\checkmark subs $x = 1$ and $y = 5$
	-1 = 2p + q	✓ simplification
		✓ p-value
	p = -3	$\checkmark q$ -value
	q = 5	(6)
		[7]

QUESTION 11

12.1	N			
12.1	$x, y \in N_0$	100	$\checkmark \checkmark x + y \le 100$	
		$0 \le -x + 100$	$\checkmark x + y \le 100$ $\checkmark \checkmark x + 2y \le 180$	
		≤ 50	$\checkmark x + 2y \le 160$ $\checkmark x \le 50$	
	$x + 2y \le 180$	$y \le -\frac{1}{2}x + 90$	v x ≤ 50	(5)
	,	2 2 2		(5)
10.0	Large tables			
12.2	170-		✓✓✓ each constra	ıınt
	160-		✓ feasible region	
	150-		reasible region	(4)
	140-			(.)
	120-			
	110-			
	100-			
	90-			
	A(20; 80)			
	70-			
	60			
	50 FEASHREE RECKON			
	10 20 30 40 50 60 70 80 90 100 110 120 130	Small Tables		
	10 20 30 40 30 60 /0 80 90 100 110 120 130	140 120 100 170 180 190 200 210 220 230		
12.3	90 tables		✓ answer	
12.5	70 tuoies		answer	(1)
12.4	P = 300x + 400y		✓ answer	
				(1)
12.5	Maximum at A (20; 80)		✓✓ answer	
10.5	20 small tables and 80 large tables.			(2)
12.6	P = qx + 400y			
	$m = -\frac{q}{q}$		<i>a</i>	
	$m = -\frac{q}{400}$		$\checkmark m = -\frac{q}{400}$	
	$-1 \le -\frac{q}{400} \le -\frac{1}{2}$			
	$\frac{1}{400} = \frac{1}{400} = \frac{1}{2}$		$\checkmark 200 \le q \le 400$	
	$200 \le q \le 400$			
				(2)
				(2) [15]
				[13]

TOTAL: 150

NSC - Memorandum

QUESTION 12.2

