Sam Chong Tay Math 341: Real Analysis Take-home Final Exam December 19, 2012

- 1. (15 pts) Let A and B be non-empty subsets of \mathbb{R} with $A \subseteq B$. Suppose that inf A, inf B, and sup B all exist.
 - (a) Prove that $\sup A$ exists.

Proof. We know A is non-empty by hypothesis, so we only need to show that A is bounded above. Considering any $a \in A$, we see that $a \in B$ as well because $A \subseteq B$. Thus $a \le \sup B$, and since a was arbitrary we have shown that A is bounded above by $\sup B$. Hence by Axiom III, $\sup A$ exists.

(b) Prove that

$$\inf(B) \le \inf(A) \le \sup(A) \le \sup(B).$$

Proof. For the first inequality, it suffices to show that $\inf(B)$ is a lower bound for A. So, similar to part (a), we note that for any $a \in A$, a is also in B and therefore $\inf(B) \leq a$. Hence $\inf(B)$ is a lower bound for A and since $\inf(A)$ is the greatest lower bound, we have

$$\inf(B) \le \inf(A)$$
.

The next inequality is quite trivial; since A is non-empty there exists $a \in A$ and by definition of infimum and supremum we have immediately that

$$\inf(A) \le a \le \sup(A).$$

Finally, note that we showed in part (a) that $\sup(B)$ is an upper bound for A. Therefore just as in the infimum case, since $\sup(A)$ is the least upper bound, we have $\sup(A) \leq \sup(B)$. Altogether we have shown that

$$\inf(B) \le \inf(A) \le \sup(A) \le \sup(B).$$

(c) Show by giving a counterexample that

$$\inf(B) = \inf(A)$$
 and $\sup(A) = \sup(B)$

need not imply that A = B.

Counterexample: If we define

$$A = \{0, 1\}$$
 and $B = [0, 1]$

we see that

$$\inf(A) = \inf(B) = 0$$
 and $\sup(A) = \sup(B) = 1$,

but of course $A \neq B$.

2. (15 pts) Prove that every non-convergent bounded sequence of real numbers has at least two limit points.

Proof. Let (s_n) be a non-convergent bounded sequence in \mathbb{R} . Because (s_n) is bounded we know from Theorem 3.4.9 that (s_n) has at least one convergent subsequence, and hence at least one limit point x. Consider an arbitrary subsequence (s_{n_k}) of (s_n) . This subsequence must also be bounded and thus by the same theorem has a convergent subsequence $(s_{n_{k_i}})$. Well $(s_{n_{k_i}})$ is evidently also a subsequence of (s_n) in its own right, so we see that if x was the only limit point, this would imply $s_{n_{k_i}} \to x$. But we chose an arbitrary subsequence, so we have shown that if x is the only limit point of (s_n) then every subsequence of (s_n) has a subsequence converging to x. By Problem 3.3.6 this would imply $s_n \to x$, which is a contradiction because we are assuming (s_n) is non-convergent. We have shown that (s_n) must have a limit point x and that x cannot be the only limit point, and therefore the only possibility is that (s_n) has at least two limit points.

- 3. (20 pts)
 - (a) Define $h: \mathbb{R} \to \mathbb{R}$ by $h(x) = x^3 2x^2 + 3x 6$. Carefully prove that the limit $\lim_{x\to 2} h(x)$ exists. (Your solution should also indicate the limit!)

Proof. Carefully, and cleverly, we will first prove results about the identity function and constant function. Define the function $i: \mathbb{R} \to \mathbb{R}$ by i(x) = x. First note that we have previously shown every $x \in \mathbb{R}$ is a limit point of \mathbb{R} , so we know $2 \in \mathbb{R}$ is a limit point of the domain \mathbb{R} . To see that $\lim_{x\to 2} i(x) = 2$, let $\epsilon > 0$. Then for $\delta = \epsilon$, if $0 < |x-2| < \delta$,

$$|i(x) - 2| = |x - 2| < \delta = \epsilon.$$

Therefore

$$\lim_{x \to 2} i(x) = 2.$$

Next fix $k \in \mathbb{R}$ and define $c_k : \mathbb{R} \to \mathbb{R}$ by $c_k(x) = k$. Let $\epsilon > 0$ and pick $\delta = 64$. Then for $0 < |x - 2| < \delta$, we have

$$|c_k(x) - k| = |k - k| = 0 < \epsilon.$$

Therefore

$$\lim_{x \to 2} c_k(x) = k.$$

Next recall the function h from above and observe that

$$h(x) = x^3 - 2x^2 + 3x - 6$$

= $(i(x))^3 + c_{-2}(x)(i(x))^2 + c_3(x)i(x) + c_{-6}(x)$.

Apply Theorem 5.3.1 parts (1) and (3) a total of eight times (if you want me to be *really* careful, we apply part (1) three times and part (3) five times) to obtain

$$\lim_{x \to 2} h(x) = \lim_{x \to 2} \left((i(x))^3 + c_{-2}(x)(i(x))^2 + c_3(x)i(x) + c_{-6}(x) \right)$$

$$= (2)^3 + (-2)(2)^2 + (3)(2) + (-6)$$

$$= 8 - 8 + 6 - 6$$

$$= 0.$$

Of course applying Theorem 5.3.1 guarantees that the limit does exist, and that it is equal to 0.

(b) Carefully prove that the limit $\lim_{x\to 0}\cos\frac{1}{x}$ fails to exist.

Proof. We need to be quite careful indeed; the problem is actually stated quite ambiguously because it is not clear over which domain we are to consider this function. I think it is safe to assume that we are considering a function $f: \mathbb{R}^* \to \mathbb{R}$ defined by $f(x) = \cos \frac{1}{x}$, where $0 \in \mathbb{R}$ is a limit point of the subset \mathbb{R}^* . To show $\lim_{x\to 0} f(x)$ does not exist, we will show that it is not equal to any candidate $L \in \mathbb{R}$. First consider L = 0 and pick $\epsilon = \frac{1}{2}$. Let $\delta > 0$ and choose $n \in \mathbb{N}$ such that $n > \frac{1}{\delta}$. Then

$$0 < \left| \frac{1}{2n\pi} - 0 \right| < \frac{1}{n} < \delta,$$

yet

$$\left| f\left(\frac{1}{2n\pi}\right) - L \right| = \left| \cos(2n\pi) - 0 \right| = |1 - 0| = 1 > \epsilon.$$

This shows that $\lim_{x\to 0} f(x) \neq 0$. Now consider any $L \neq 0$, and pick $\epsilon = |L|$. As before, for any $\delta > 0$ choose $n \in \mathbb{N}$ such that $n > \frac{1}{\delta}$. Then

$$0 < \left| \frac{1}{2n\pi + \frac{\pi}{2}} - 0 \right| < \frac{1}{n} < \delta,$$

yet

$$\left| f\left(\frac{1}{2n\pi + \frac{\pi}{2}}\right) - L \right| = \left| \cos\left(2n\pi + \frac{\pi}{2}\right) - L \right| = |0 - L| = |L| = \epsilon.$$

Therefore $\lim_{x\to 0} f(x) \neq L$. So in considering the cases when L=0 and $L\neq 0$, we have shown that the limit of f as x goes to 0 is not L for any L in the codomain \mathbb{R} . Therefore the limit does not exist.

- 4. (15 pts) Let (X, d) be a metric space. Show that the following statements about X are equivalent.
 - i. (X, d) is discrete.
 - ii. All functions on X are continuous. (The range can be any metric space!)

Proof. (\Longrightarrow) Suppose (X,d) is discrete. Consider any $a \in X$. Since $\{a\}$ is open, there exists r > 0 such that $B_r(a) \subseteq \{a\}$, from which it follows that $B_r(a) = \{a\}$. Then obviously $B_r(a)$ does not contain infinitely many points of X, so by the characterization in Theorem 3.5.1.3 we conclude that a is not a limit point of X. Thus for any metric space Y and any function $f: X \to Y$, f is continuous at a by definition. Since a was arbitrary we conclude that all functions on X are continuous.

 (\Leftarrow) Conversely suppose that all functions on X are continuous. Let $a \in X$ and define the function $f_a: X \to \mathbb{R}$ by

$$f_a(x) = \begin{cases} 64 & \text{if } x = a \\ 0 & \text{if } x \neq a \end{cases}$$

Note that the open interval $(63,65) = B_1(64)$ is an open subset of \mathbb{R} . Since f_a is continuous by hypothesis, Theorem 4.3.5 guarantees that the inverse image of (63,65) is open in X. By the construction above we have

$$f_a^{-1}((63,65)) = \{a\},\$$

so the previous sentence implies that $\{a\}$ is open in X. Since a was arbitrary, we conclude X is a discrete metric space.

5. (15 pts) Let (a_n) and (b_n) be Cauchy sequences in a metric space (X, d). Show that the sequence $(d(a_n, b_n))$ converges. (Note that X need not be complete, but \mathbb{R} is complete!)

Proof. As hinted above, we will show that $(d(a_n, b_n))$ is a Cauchy sequence and invoke the completeness of \mathbb{R} to complete the proof. Let $\epsilon > 0$. Since (a_n) and (b_n) are Cauchy sequences, we can choose $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ so that

$$d(a_n, a_m) < \frac{\epsilon}{2}$$
 for all $n, m > N_1$

$$d(b_n, b_m) < \frac{\epsilon}{2}$$
 for all $n, m > N_2$.

Let $N = \max\{N_1, N_2\}$ and n, m > N. Supposing without loss of generality that $d(a_n, b_n) \ge d(a_m, b_m)$,

$$\begin{aligned} |d(a_n,b_n) - d(a_m,b_m)| &= d(a_n,b_n) - d(a_m,b_m) \\ &\leq d(a_n,a_m) + d(a_m,b_n) - d(a_m,b_m) \\ &\leq d(a_n,a_m) + d(b_n,b_m) + d(b_m,a_m) - d(a_m,b_m) \\ &= d(a_n,a_m) + d(b_n,b_m) \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Therefore $(d(a_n, b_n))$ is a Cauchy sequence in \mathbb{R} and since \mathbb{R} is complete, $(d(a_n, b_n))$ converges.

- 6. (20 pts)
 - (a) Let (f_n) be a sequence of real-valued continuous functions on a metric space X. Suppose that (f_n) converges uniformly to a function f. Prove that if all terms (i.e. all functions) of the sequence (f_n) are bounded, then f is bounded.

Proof. Let X be a metric space and $f_n: X \to \mathbb{R}$ be a sequence of bounded functions that converges uniformly to f. To show that f is bounded we need to show that the range $f(X) = \{f(x): x \in X\}$ is bounded in \mathbb{R} , and to do so we will use the characterization given in Corollary 3.1.14. Explicitly, we will show that there exists $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all elements $f(x) \in f(X)$. We will need to use the uniform convergence assumption, so let $\epsilon = 64$. Since (f_n) converges uniformly to f, we can choose $N \in \mathbb{N}$ so that for all n > N and all $x \in X$, $|f_n(x) - f(x)| < 64$. Now fix an n > N. Since f_n is bounded, by Corollary 3.1.14 there exists $K \in \mathbb{R}$ such that $|f_n(x)| \leq K$ for all $x \in X$. Then for any $x \in X$,

$$|f(x)| = |f(x) - 0| \le |f(x) - f_n(x)| + |f_n(x) - 0|$$

$$< 64 + |f_n(x)|$$

$$< 64 + K.$$

Therefore $|f(x)| \leq 64 + K$ for all $x \in X$, so f(X) is bounded in \mathbb{R} . By definition, f is bounded.

(b) Recall that a function $f: X \to Y$ is said to be **bounded** if its range f(X) is a bounded subset of Y. Give an example to show that the pointwise limit of real-valued bounded functions on a metric space X need not be a bounded function. Hint: consider piecewise defined functions on \mathbb{R} .

Example: Consider \mathbb{N} under the Euclidean metric and the sequence of functions $f_n: \mathbb{N} \to \mathbb{R}$ defined by

$$f_n(m) = \begin{cases} m & \text{if } m \le n \\ 0 & \text{if } m > n. \end{cases}$$

Now each f_n is bounded by n:

$$f_n(\mathbb{N}) = \{1, 2, 3, \dots, n, 0, 0, 0, \dots\}$$

= \{0, 1, 2, \dots, n\}.

However, it is clear that (f_n) converges pointwise to the function f(m) = m. To show this rigorously, let $m \in \mathbb{N}$ (as a point in the domain!) and $\epsilon > 0$. Then for all n > m (as a sequence index!),

$$|f_n(m) - f(m)| = |m - m| = 0 < \epsilon.$$

Therefore $f_n(m) \to f(m)$ at the point m, and since m was arbitrary we have shown that (f_n) converges pointwise to f. But obviously $f(\mathbb{N}) = \mathbb{N}$ is unbounded! Therefore uniform convergence is in fact a necessary condition for part (a).

Of course, using the same idea I could have constructed $f_n : \mathbb{R} \to \mathbb{R}$ as

$$f_n(x) = \begin{cases} |x| & \text{if } x \le n \\ 0 & \text{if } x > n \end{cases}$$

and gotten the same result. This would have even avoided confusion with regards to choosing $m \in \mathbb{N}$ in the domain and shortly thereafter using N = m for the sequence index that we need in showing a sequence converges. However, I like the way I did it because \mathbb{N} is 1-separated under the Euclidean metric and thus has no limit points. So the sequence functions f_n , while piecewise, are actually continuous.