Illustrative Example

For the manuscript "Classification Accuracy of Multidimensional Tests: Quantifying the Impact of Noninvariance"

Contents

```
2
 3
 4
 5
 library(lavaan)
## This is lavaan 0.6-8
## lavaan is FREE software! Please report any bugs.
library(tidyverse)
## -- Attaching packages --
## v ggplot2 3.3.3
               0.3.4
          v purrr
## v tibble 3.1.0
          v dplyr
               1.0.5
## v tidyr 1.1.3
          v stringr 1.4.0
## v readr
     1.4.0
          v forcats 0.5.1
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
         masks stats::lag()
library(knitr)
library(kableExtra)
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
   group_rows
```

```
library(broom)
```

```
# Load the provided code `PartInv_multi.R`
source(here::here("PartInv_multi.R"))
```


Import data

The data are part of the supplemental materials by Oct et al. (2020), and can be obtained at https://journals.sagepub.com/doi/suppl/10.1177/1073191119885018

Specify the model

Preliminary analysis showed eight pairs of unique factor covariances need to be freed: A2 and A5, E4 and E7, I2 and I10, I8 and I9, A9 and I9, C3 and E6, A2 and E7, E7 and N2.

```
model <- 'A =~ a2 + a5 + a7 + a9
C =~ c3 + c4 + c8 + c9
```

 $^{^1}$ Ock, J., McAbee, S. T., Mulfinger, E., & Oswald, F. L. (2020). The practical effects of measurement invariance: Gender invariance in two Big Five personality measures. *Assessment*, 27(4), 657-674. https://doi.org/10.1177/1073191119885018

```
E =~ e1 + e4 + e6 + e7

N =~ n1 + n2 + n6 + n8

O =~ i2 + i8 + i9 + i10

a2 ~~ a5

e4 ~~ e7

i2 ~~ i10

i8 ~~ i9

a9 ~~ i9

c3 ~~ e6

a2 ~~ e7

e7 ~~ n2'
```

Conventional measurement invariance testing suggested the mini-IPIP scale support partial strict invariance across gender. Specifically, four items showed noninvariant intercepts across groups and three items showed noninvariant unique factor variance across groups. The results did not provide information on how these noninvariances may impact personnel selection using the mini-IPIP, so we demonstrated the MCAA framework in this example.

```
# Fit indices
knitr::kable(
  broom::glance(fit_strict) %>%
    select(AIC, BIC, cfi, chisq, npar, rmsea, srmr, tli, nobs),
  format = "markdown",
  digits = 3
)
```

AIC	BIC	cfi	chisq	npar	rmsea	srmr	tli	nobs
31033.99	31523.85	0.949	464.056	113	0.035	0.057	0.945	564

```
# extract parameter estimates
result <- lavInspect(fit_strict, what = "est")</pre>
```

Step 1: Selection Parameters

Because the population sizes for females and for males are roughly equal, we used a mixing proportion (π_g) of 0.5. The weights for latent factors and items were calculated based on the predictive validities reported by previous study (Drasgow et al., 2012). The codes for obtaining the weights can be found in the supplementary materials. For the selection cutoff, we assume that the mini-IPIP is used to select the top 25% of the candidates.

Step 2: Selection Accuracy Under Strict Invariance

To establish the baseline information of using the mini-IPIP for selecting males and females, we first obtained the parameter estimates under full strict invariance. The codes for extracting parameter estimates from *lavaan* model object are provided in the supplementary materials. Our function enables researchers to visualize and quantify the impact of item bias on selection accuracy indices. From the table, we can conclude female candidates would be selected in a slightly higher proportion compared to male candidates if strict invariance holds.


```
strict[1:5]
```

```
## $propsel
## [1] 0.25
##
## $cutpt_xi
## [1] 0.4470718
##
## $cutpt_z
## [1] 2.509814
##
## $summary
                        Reference Focal E_R.Focal.
##
## A (true positive)
                            0.188 0.184
                                              0.188
## B (false positive)
                            0.063 0.064
                                              0.063
## C (true negative)
                            0.685 0.688
                                              0.685
## D (false negative)
                            0.063 0.064
                                              0.063
## Proportion selected
                            0.252 0.248
                                              0.252
## Success ratio
                            0.748 0.743
                                              0.748
## Sensitivity
                            0.749 0.742
                                              0.749
## Specificity
                            0.915 0.915
                                              0.915
##
## $ai_ratio
## [1] 1
```

Step 3: Selection Accuracy Under Partial Strict Invariance

The selection accuracy of mini-IPIP under partial strict invariance can be obtained in the same way as in Step 2, except that $\mathtt{nu_r}$ and $\mathtt{nu_f}$ were different for males and for females, as well as Theta_r and Theta_f. The column $E_F(\mathrm{Male})$ represents the expected proportion selected for male candidates based on the latent score distributions of the female candidates. The AI ratio for male candidates is estimated to be 0.935, indicating a slight disadvantage for male candidates when doing selection using the mini-IPIP.

```
par_strict <- PartInvMulti_we(propsel = .25,</pre>
              weights_item = c(0.008125, 0.008125, 0.008125, 0.008125,
                                0.044875, 0.044875, 0.044875, 0.044875,
                                0.117325, 0.117325, 0.117325, 0.117325,
                                -0.048775, -0.048775, -0.048775, -0.048775,
                                0.0309, 0.0309, 0.0309, 0.0309),
              weights_latent = c(0.0325, 0.1795, 0.4693, -0.1951, 0.1236),
              alpha_r = result[[2]]$alpha,
              alpha_f = result[[1]]$alpha,
              psi_r = result[[2]]$psi,
              psi_f = result[[1]]$psi,
              lambda_r = result[[2]]$lambda,
              nu_r = result[[2]]$nu,
              nu_f = result[[1]]$nu,
              Theta_r = result[[2]]$theta,
              Theta_f = result[[1]]$theta)
```


par_strict[1:5]

```
## $propsel
## [1] 0.25
##
## $cutpt_xi
   [1] 0.4470718
##
##
## $cutpt_z
   [1] 2.509731
##
## $summary
##
                        Reference Focal E_R.Focal.
## A (true positive)
                            0.191 0.182
                                              0.186
## B (false positive)
                            0.070 0.058
                                              0.058
## C (true negative)
                            0.679 0.694
                                              0.691
## D (false negative)
                            0.061 0.066
                                              0.066
## Proportion selected
                            0.260 0.240
                                              0.243
## Success ratio
                            0.732 0.759
                                              0.764
                                              0.739
## Sensitivity
                            0.758 0.733
## Specificity
                            0.907 0.923
                                              0.923
##
## $ai_ratio
## [1] 0.9354029
```

Step 4: Compare the Change in Selection Accuracy indices

Comparing the results in Steps 2 and 3, researchers can quantify the impact of item bias on selection accuracy indices. In this example, we see in the presence of item bias, male candidates are selected in a lower proportion compared to when strict invariance holds (24.0% as opposed to 24.8%), whereas female candidates are selected in a higher proportion compared to when strict invariance holds (26.0% as opposed to 25.2%).

Table 2: Impact of Item Bias on Selection Accuracy Indices

	Female	Male	$E_F(Male)$	Female	Male	$E_F(\text{Male})$
Proportion selected	0.252	0.248	0.252	0.260	0.240	0.243
Success ratio	0.748	0.743	0.748	0.732	0.759	0.764
Sensitivity	0.749	0.742	0.749	0.758	0.733	0.739
Specificity	0.915	0.915	0.915	0.907	0.923	0.923

Note: The column $E_F(Male)$ shows the expected proportion for male candidates if the latent distributions are the same for both genders.

Appendix: Parameter estimates

```
# Show parameter estimates
parameterEstimates(fit_strict)
```

##		lhs	ор	rhs	block	group	label	est	se	z	pvalue	ci.lower	ci.upper
##	1	Α	=~	a2	1	1	.p1.	0.322	0.055	5.878	0.000	0.215	0.429
##	2	Α	=~	a5	1	1	.p2.	0.655	0.060	10.841	0.000	0.537	0.773
##	3	Α	=~	a7	1	1	.p3.	0.645	0.054	11.912	0.000	0.539	0.751
##	4	Α	=~	a 9	1	1	.p4.	0.745	0.056	13.284	0.000	0.636	0.855
##	5	C	=~	сЗ	1	1	.p5.	0.570	0.052	10.947	0.000	0.468	0.672
##	6	C	=~	c4	1	1	.p6.	0.341	0.049	7.037	0.000	0.246	0.436
##	7	C	=~	с8	1	1	.p7.	0.398	0.049	8.100	0.000	0.301	0.494
##	8	C	=~	с9	1	1	.p8.	0.745	0.081	9.170	0.000	0.586	0.905
##	9	Ε	=~	e1	1	1	.p9.	0.657	0.050	13.147	0.000	0.559	0.755
##	10	Ε	=~	e4	1	1	.p10.	0.803	0.069	11.594	0.000	0.667	0.939
##	11	Ε	=~	е6	1	1	.p11.	0.799	0.062	12.841	0.000	0.677	0.920
##	12	Ε	=~	e7	1	1	.p12.	0.686	0.062	10.993	0.000	0.564	0.808
##	13	N	=~	n1	1	1	.p13.	0.507	0.057	8.964	0.000	0.396	0.618
##	14	N	=~	n2	1	1	.p14.	0.824	0.063	13.080	0.000	0.701	0.948
##	15	N	=~	n6	1	1	.p15.	0.600	0.053	11.245	0.000	0.495	0.704
##	16	N	=~	n8	1	1	.p16.	0.825	0.064	12.803	0.000	0.699	0.952
##	17	0	=~	i2	1		.p17.	0.512	0.081	6.356	0.000	0.354	0.670
##	18	0	=~	i8	1	1	.p18.	0.425	0.080	5.344	0.000	0.269	0.581
##	19	0	=~	i 9	1	1	.p19.	0.485	0.075	6.457	0.000	0.338	0.632
##	20	0	=~	i10	1	1	.p20.	0.570	0.091	6.273	0.000	0.392	0.748
##	21	a2	~ ~	a 5	1	1		0.172	0.041	4.221	0.000	0.092	0.252
##	22	e4	~ ~	e7	1	1		-0.107	0.078	-1.379	0.168	-0.259	0.045
##	23	i2	~ ~	i10	1	1		0.312	0.089	3.521	0.000	0.138	0.486
##	24	i8		i 9	1	1		0.457		4.653	0.000	0.265	0.650
##	25	a 9	~ ~	i 9	1	1		0.149	0.047	3.145	0.002	0.056	0.242
##	26	сЗ	~ ~	e6	1	1		-0.232	0.074	-3.136	0.002	-0.377	-0.087

## 27	a2 ~~	e7	1	1		0.012 0.0	145	0.269	0.788	-0.076	0.100
## 28	e7 ~~	n2	1	1		-0.023 0.0		-0.451	0.652	-0.121	0.076
## 29	a2 ~~	a2	1		.p29.			10.946	0.000	0.447	0.641
	a5 ~~				-						
## 30		a5	1		.p30.			9.759	0.000	0.429	0.644
## 31	a7 ~~	a7	1		.p31.			7.704	0.000	0.306	0.515
## 32	a9 ~~	a9	1		.p32.			6.611	0.000	0.251	0.462
## 33	c3 ~~	c3	1		.p33.			12.559	0.000	0.789	1.081
## 34	c4 ~~	c4	1		.p34.			10.578	0.000	0.334	0.486
## 35	c8 ~~	c8	1	1	0.0	0.495 0.0		7.756	0.000	0.370	0.620
## 36	c9 ~~	с9	1		.p36.			8.019	0.000	0.699	1.151
## 37	e1 ~~	e1	1		.p37.			13.555	0.000	0.671	0.898
## 38	e4 ~~	e4	1		.p38.			11.035	0.000	0.815	1.168
## 39	e6 ~~	e6	1		.p39.			12.136	0.000	0.739	1.023
## 40	e7 ~~	e7	1		.p40.			8.919	0.000	0.477	0.746
## 41	n1 ~~	n1	1	1		0.663 0.0		7.966	0.000	0.500	0.826
## 42	n2 ~~	n2	1	1		0.570 0.0		6.221	0.000	0.390	0.749
## 43	n6 ~~	n6	1		.p43.			12.641	0.000	0.632	0.864
## 44	n8 ~~	n8	1		.p44.			8.691	0.000	0.505	0.799
## 45	i2 ~~	i2	1		.p45.			8.123	0.000	0.558	0.912
## 46	i8 ~~	i8	1	1	.p46.	1.182 0.0	094	12.529	0.000	0.997	1.367
## 47	i9 ~~	i 9	1	1	.p47.	1.015 0.0	090	11.268	0.000	0.839	1.192
## 48	i10 ~~	i10	1	1	.p48.	0.786 0.1	122	6.449	0.000	0.547	1.024
## 49	A ~~	Α	1	1		1.000 0.0	000	NA	NA	1.000	1.000
## 50	C ~~	C	1	1		1.000 0.0	000	NA	NA	1.000	1.000
## 51	E ~~	Ε	1	1		1.000 0.0	000	NA	NA	1.000	1.000
## 52	N ~~	N	1	1		1.000 0.0	000	NA	NA	1.000	1.000
## 53	0 ~~	0	1	1		1.000 0.0	000	NA	NA	1.000	1.000
## 54	A ~~	C	1	1		0.031 0.0	98	0.313	0.754	-0.162	0.223
## 55	A ~~	Ε	1	1		0.398 0.0	091	4.383	0.000	0.220	0.576
## 56	A ~~	N	1	1		-0.191 0.0	097	-1.960	0.050	-0.381	0.000
## 57	A ~~	0	1	1		0.416 0.1	113	3.676	0.000	0.194	0.638
## 58	C ~~	E	1	1		0.052 0.1	106	0.485	0.627	-0.157	0.260
## 59	C ~~	N	1	1		-0.159 0.1	104	-1.523	0.128	-0.364	0.046
## 60	C ~~	0	1	1		-0.009 0.1	134	-0.070	0.944	-0.272	0.253
## 61	E ~~	N	1	1		-0.041 0.1	101	-0.405	0.685	-0.239	0.157
## 62	E ~~	0	1	1		0.672 0.1	103	6.503	0.000	0.470	0.875
## 63	N ~~	0	1	1		-0.059 0.1	129	-0.458	0.647	-0.311	0.194
## 64	a2 ~1		1	1		3.944 0.0	056	70.735	0.000	3.835	4.054
## 65	a5 ~1		1	1	.p65.	3.562 0.0		57.403	0.000	3.440	3.684
## 66	a7 ~1		1		.p66.	3.999 0.0		72.486	0.000	3.891	4.107
## 67	a9 ~1		1		.p67.	3.618 0.0		61.186	0.000	3.503	3.734
## 68	c3 ~1		1		.p68.	3.287 0.0		56.183	0.000	3.173	3.402
## 69	c4 ~1		1		.p69.	4.263 0.0			0.000	4.187	4.339
## 70	c8 ~1		1		.p70.	4.181 0.0		94.704	0.000	4.095	4.268
## 71	c9 ~1		1		.p71.	3.599 0.0		50.883	0.000	3.461	3.738
## 72	e1 ~1		1		.p72.	2.270 0.0		38.013	0.000	2.153	2.387
## 73	e4 ~1		1		.p73.	2.924 0.0		41.218	0.000	2.785	3.063
## 74	e6 ~1		1	1	1	3.012 0.0		38.552	0.000	2.859	3.165
## 75	e7 ~1		1		.p75.	3.091 0.0		50.674	0.000	2.971	3.210
## 76	n1 ~1		1	1	1	2.259 0.0		36.249	0.000	2.137	2.382
## 77	n2 ~1		1	1		2.460 0.0		33.974	0.000	2.318	2.602
## 78	n6 ~1		1		.p78.	2.324 0.0		39.856	0.000	2.209	2.438
## 79	n8 ~1		1		.p79.			31.976	0.000	2.139	2.418
## 80	i2 ~1		1		.p80.	3.972 0.0		72.365	0.000	3.864	4.079
50	-L 1		_	-	. 200.	0.012 0.0		. 2.000	0.000	3.50∓	1.010

## 81	i8 ~1		1	1	.p81.	3.590 0.062	57.626	0.000	3.468	3.712
## 82	i9 ~1		1		.p82.		59.144	0.000	3.495	3.735
## 83	i10 ~1		1		.p83.		64.852	0.000	3.948	4.195
## 84	A ~1			1	. pos.	0.000 0.000	NA	NA		0.000
			1						0.000	
## 85	C ~1		1	1		0.000 0.000	NA	NA	0.000	0.000
## 86	E ~1		1	1		0.000 0.000	NA	NA	0.000	0.000
## 87	N ~1		1	1		0.000 0.000	NA	NA	0.000	0.000
## 88	0 ~1	_	1	1		0.000 0.000	NA	NA	0.000	0.000
## 89	A =~	a2	2	2	.p1.		5.878	0.000	0.215	0.429
## 90	A =~	a5	2	2	.p2.		10.841	0.000	0.537	0.773
## 91	A =~	a7	2	2	.p3.		11.912	0.000	0.539	0.751
## 92	A =~	a9	2	2	.p4.		13.284	0.000	0.636	0.855
## 93	C =~	сЗ	2	2	.p5.		10.947	0.000	0.468	0.672
## 94	C =~	c4	2	2	.p6.		7.037	0.000	0.246	0.436
## 95	C =~	c8	2	2	.p7.		8.100	0.000	0.301	0.494
## 96	C =~	с9	2	2	.p8.		9.170	0.000	0.586	0.905
## 97	E =~	e1	2	2	.p9.		13.147	0.000	0.559	0.755
## 98	E =~	e4	2	2	.p10.	0.803 0.069	11.594	0.000	0.667	0.939
## 99	E =~	e6	2	2	.p11.	0.799 0.062	12.841	0.000	0.677	0.920
## 100	E =~	e7	2	2	.p12.		10.993	0.000	0.564	0.808
## 101	N =~	n1	2	2	.p13.	0.507 0.057	8.964	0.000	0.396	0.618
## 102	N =~	n2	2	2	.p14.		13.080	0.000	0.701	0.948
## 103	N =~	n6	2	2	.p15.	0.600 0.053	11.245	0.000	0.495	0.704
## 104	N =~	n8	2	2	.p16.	0.825 0.064	12.803	0.000	0.699	0.952
## 105	0 =~	i2	2	2	.p17.	0.512 0.081	6.356	0.000	0.354	0.670
## 106	0 =~	i8	2	2	.p18.	0.425 0.080	5.344	0.000	0.269	0.581
## 107	0 =~	i 9	2	2	.p19.	0.485 0.075	6.457	0.000	0.338	0.632
## 108	0 =~	i10	2	2	.p20.	0.570 0.091	6.273	0.000	0.392	0.748
## 109	a2 ~~	a 5	2	2		0.099 0.041	2.396	0.017	0.018	0.180
## 110	e4 ~~	e7	2	2		-0.083 0.068	-1.219	0.223	-0.216	0.050
## 111	i2 ~~	i10	2	2		0.275 0.101	2.722	0.006	0.077	0.474
## 112	i8 ~~	i 9	2	2		0.580 0.090	6.437	0.000	0.403	0.757
## 113	a9 ~~	i9	2	2		-0.006 0.037	-0.148	0.882	-0.078	0.067
## 114	c3 ~~	e6	2	2		-0.030 0.059	-0.506	0.613	-0.144	0.085
## 115	a2 ~~	e7	2	2		-0.116 0.039	-2.980	0.003	-0.191	-0.040
## 116	e7 ~~	n2	2	2		-0.146 0.053	-2.783	0.005	-0.249	-0.043
## 117	a2 ~~	a2	2	2	.p29.	0.544 0.050	10.946	0.000	0.447	0.641
## 118		a5	2		.p30.	0.536 0.055	9.759	0.000	0.429	0.644
## 119		a7	2		.p31.		7.704	0.000	0.306	0.515
## 120		a 9	2		.p32.		6.611	0.000	0.251	0.462
## 121		сЗ	2		.p33.		12.559	0.000	0.789	1.081
## 122		c4	2		.p34.	0.410 0.039	10.578	0.000	0.334	0.486
## 123		c8	2	2	- F	0.705 0.093	7.606	0.000	0.523	0.886
## 124		с9	2		.p36.	0.925 0.115	8.019	0.000	0.699	1.151
## 125		e1	2		.p37.	0.784 0.058	13.555	0.000	0.671	0.898
## 126		e4	2		.p38.		11.035	0.000	0.815	1.168
## 127		e6	2		.p39.		12.136	0.000	0.739	1.023
## 128		e7	2		.p40.	0.612 0.069	8.919	0.000	0.477	0.746
## 129		n1	2	2		0.944 0.078	12.028	0.000	0.790	1.097
## 130		n2	2	2		0.959 0.116	8.259	0.000	0.730	1.186
## 130		n6	2		.p43.	0.748 0.059	12.641	0.000	0.731	0.864
## 131		n8	2		.p43.		8.691	0.000	0.632	0.799
## 132		по i2	2		.p44.		8.123	0.000	0.558	
					_					0.912
## 134	i8 ~~	i8	2	2	.p46.	1.182 0.094	12.529	0.000	0.997	1.367

##	135	i 9	~ ~	i9	2	2	.p47.	1.015	0.090	11.268	0.000	0.839	1.192
##	136	i10	~~	i10	2		.p48.	0.786	0.122	6.449	0.000	0.547	1.024
##	137	Α	~ ~	Α	2	2	_	0.562	0.114	4.945	0.000	0.339	0.785
##	138	C	~ ~	C	2	2		1.455	0.251	5.797	0.000	0.963	1.947
##	139	Ε	~ ~	E	2	2		0.979	0.130	7.559	0.000	0.725	1.233
##	140	N	~ ~	N	2	2		1.114	0.167	6.657	0.000	0.786	1.442
##	141	0	~ ~	0	2	2		1.859	0.468	3.973	0.000	0.942	2.777
##	142	Α	~~	C	2	2		-0.036	0.081	-0.443	0.658	-0.195	0.123
##	143	Α	~~	Ε	2	2		0.135	0.065	2.093	0.036	0.009	0.262
##	144	Α	~ ~	N	2	2		-0.159	0.078	-2.036	0.042	-0.313	-0.006
##	145	Α	~ ~	0	2	2		0.294	0.109	2.703	0.007	0.081	0.507
##	146	C	~ ~	Ε	2	2		0.114	0.100	1.140	0.254	-0.082	0.311
##	147	C	~ ~	N	2	2		-0.310	0.118	-2.635	0.008	-0.541	-0.079
##	148	C	~ ~	0	2	2		-0.245		-1.538	0.124	-0.557	0.067
##	149	E	~ ~	N	2	2		-0.175	0.091	-1.929	0.054	-0.354	0.003
##	150	Ε	~ ~	0	2	2		0.455		3.308	0.001	0.185	0.724
##	151	N	~ ~	0	2	2		-0.055		-0.420	0.674	-0.311	0.201
##	152	a2	~1		2	2		4.098		65.328	0.000	3.975	4.221
	153	a 5			2		.p65.	3.562		57.403	0.000	3.440	3.684
##	154	a7			2		.p66.	3.999		72.486	0.000	3.891	4.107
##	155	a9			2		.p67.	3.618		61.186	0.000	3.503	3.734
##	156	c3			2		.p68.	3.287		56.183	0.000	3.173	3.402
##	157	c4	~1		2		.p69.	4.263	0.039	109.524	0.000	4.187	4.339
	158	с8			2		.p70.	4.181		94.704	0.000	4.095	4.268
	159	с9			2		.p71.	3.599		50.883	0.000	3.461	3.738
	160	e1			2		.p72.	2.270		38.013	0.000	2.153	2.387
	161	e4			2		.p73.	2.924		41.218	0.000	2.785	3.063
	162	е6			2	2		3.428		38.528	0.000	3.253	3.602
##	163	e7			2		.p75.	3.091		50.674	0.000	2.971	3.210
	164	n1			2	2		2.566		35.974	0.000	2.427	2.706
	165	n2			2	2		2.699		28.652	0.000	2.515	2.884
	166	n6			2		.p78.	2.324		39.856	0.000	2.209	2.438
	167	n8			2		.p79.	2.279		31.976	0.000	2.139	2.418
	168	12			2		.p80.	3.972		72.365	0.000	3.864	4.079
	169	18			2		.p81.	3.590		57.626	0.000	3.468	3.712
	170	19			2		.p82.	3.615		59.144	0.000	3.495	3.735
##		i10			2		.p83.	4.072		64.852	0.000	3.948	4.195
	172		~1		2	2		0.743		8.936	0.000	0.580	0.905
	173		~1		2	2		0.140		1.219	0.223	-0.085	0.366
	174		~1		2	2		-0.019		-0.186	0.853	-0.224	0.185
##	175		~1		2	2		-0.049		-0.444	0.657	-0.266	0.168
##	176	0	~1		2	2		-0.458	0.166	-2.764	0.006	-0.783	-0.133