

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Proceso: Autoevaluación y Acreditación

Versión: 01

Fecha de Aprobación: 27/07/2023

FACULTAD:			Tecnológica						
PROYECTO CURRICULAR:			Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:			
			I. IDENTIF	ICACIÓN DEL ESPACIO A	CADÉMICO				
NOMBRE DEL E	SPACIO ACA	DÉMICO: ANTENAS Y PRO	OPAGACIÓN						
Código del espacio académico:			7408	Número de créditos académicos:			3		
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	5	
Tipo de espacio académico:			Asignatura	х	Cátedra				
			NATURA	ALEZA DEL ESPACIO ACA	DÉMICO:				
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco		
CARÁCTER DEL ESPACIO ACADÉMICO:									
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:	
			MODALIDAD	DE OFERTA DEL ESPACIO	ACADÉMICO:				
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:	
			II. SUGERENCIA	S DE SABERES Y CONOCIN	MIENTOS PREVIOS				

El estudiante debe haber cursado satisfactoriamente asignaturas como campos electromagnéticos, medios de transmisión y fundamentos de telecomunicaciones. Es importante dominar operaciones vectoriales, ecuaciones de Maxwell, principios de radiación y conceptos básicos de análisis de señales. El manejo de herramientas de simulación electromagnética (CST, HFSS, ADS) y conocimientos en programación (MATLAB o Python) fortalecerán su comprensión del curso.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

En la actualidad, el desarrollo de tecnologías como 5G, 6G, IoT, comunicaciones satelitales y redes inteligentes depende en gran medida del diseño y análisis de sistemas radiantes eficientes. Esta asignatura proporciona al estudiante las herramientas teóricas y prácticas necesarias para comprender cómo las antenas interactúan con el medio de propagación, permitiendo diseñar, adaptar y optimizar sistemas de comunicación inalámbrica. Además, introduce conceptos clave sobre diversidad espacial, formación de haces (beamforming), y control adaptativo de radiación, aspectos esenciales en la evolución de las telecomunicaciones modernas.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Analizar, diseñar y caracterizar sistemas de antenas y su interacción con el medio de propagación en aplicaciones modernas de telecomunicaciones.

Objetivos Específicos:

Interpretar los parámetros fundamentales que caracterizan las antenas.

Estudiar y aplicar conceptos de polarización, acoplamiento y adaptación de impedancias.

Modelar el comportamiento de antenas individuales y arreglos complejos.

Diseñar antenas para aplicaciones específicas (móviles, satelitales, Wi-Fi, IoT).

Utilizar herramientas de simulación para evaluar el desempeño de estructuras radiantes.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Desarrollar competencias en modelado y simulación de sistemas radiantes aplicados a redes móviles, satelitales y comunicaciones IoT.

Fomentar la innovación en el diseño de antenas adaptativas, inteligentes y de múltiples entradas y salidas (MIMO).

Fortalecer habilidades en el análisis experimental y validación de parámetros de radiación.

Promover una cultura ética y responsable en la implementación de tecnologías inalámbricas.

Resultados de aprendizaje:

Analiza parámetros de antenas individuales y arreglos, interpretando su impacto en el sistema de transmisión.

Diseña antenas optimizadas para aplicaciones específicas mediante métodos analíticos y herramientas de simulación.

Evalúa experimentalmente patrones de radiación y adapta sistemas antenarios a condiciones reales de propagación.

Integra soluciones de antenas en entornos de comunicaciones inal'ambricas modernas, considerando eficiencia, direccionalidad y sostenibilidad.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos de radiación y polarización

Naturaleza del campo electromagnético y radiación Tipos de polarización (lineal, circular, elíptica)

Zonas de radiación: Fresnel y Fraunhofer

2. Antenas elementales

Dipolos, monopolos y bucles

Cálculo de ganancia, directividad y eficiencia

Relación frente-espalda y pérdidas

3. Arreglos de antenas

Arreglos uniformes y no uniformes

Diagramas de radiación y control de lóbulos

Beamforming y escaneo electrónico

4. Diseño de antenas especializadas

Antenas Yagi, log-periódicas y helicoidales

Antenas de apertura, plato y ranura

Diseño de patch antennas (microstrip)

5. Simulación y caracterización

Parámetros S y uso de redes vectoriales

Modelado en HFSS, CST o ADS

Análisis de impedancia y adaptación

6. Aplicaciones modernas y futuras

Antenas para IoT, móviles y 5G/6G

Metasuperficies y antenas reconfigurables (RIS)

Integración con sensores y edge computing

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante clases magistrales, estudio de casos, talleres aplicados, uso intensivo de software de simulación, laboratorios experimentales y proyectos de diseño. Se promoverá el aprendizaje activo y colaborativo, articulado con problemas reales del contexto industrial y académico.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35% Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorio de telecomunicaciones con analizador de espectros, generadores de señal, kits de antenas, equipos SDR (Software Defined Radio) y plataformas Arduino/ESP para validación de prototipos. De igual forma software especializado: CST Studio, HFSS, ADS, MATLAB

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se prevé una visita técnica a un centro de monitoreo de comunicaciones satelitales o estación base 5G donde los estudiantes puedan observar la implementación de arreglos de antenas, conocer sobre normativas de instalación y realizar mediciones reales de patrones de radiación.

XI. BIBLIOGRAFÍA

Balanis, Constantine A. Antenna Theory: Analysis and Design. Wiley, 2016.

Cardama Aznar, Antón. Antenas. Alfaomega, 2014.

Mailloux, R.J. Phased Array Antenna Handbook. Artech House, 2018.

Volakis, J.L. Antenna Engineering Handbook. McGraw-Hill, 2019.

Artículos IEEE Xplore sobre 5G/6G, MIMO, metasuperficies, RIS y antenas reconfigurables.

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS Fecha revisión por Consejo Curricular: Fecha aprobación por Consejo Curricular: Número de acta: