CS420: Operating Systems Operating System Structure

James Moscola Department of Physical Sciences York College of Pennsylvania

Operating System Design and Implementation

- Design and Implementation of OS not "solvable"
 - There is no single OS that works best for every use case
- How does one design an operating system??
 - Start by defining goals and specifications
 - Affected by choice of hardware, type of system
 - User goals and System goals
 - User goals operating system should be convenient to use, easy to learn, reliable, safe, and fast
 - System goals operating system should be easy to design, implement, and maintain, as well as flexible, reliable, error-free, and efficient

An OS With Simple Structure

- MS-DOS written to provide the most functionality in the least space
 - Not divided into modules
 - Although MS-DOS has some structure, its interfaces and levels of functionality are not well separated
 - Not well protected

Layered Approach

 The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.

- With modularity, layers are selected such that each uses functions (operations) and services of only lower-level layers
 - An OS can be designed from the lower layers up; ensure that lower layers work before moving to higher layers

Traditional UNIX System Structure

Microkernel System Structure

- Moves as much from the kernel into "user" space
- Communication takes place between user modules using message passing

Benefits:

- Easier to extend a microkernel
- Easier to port the operating system to new architectures
- More reliable (less code is running in kernel mode)
- More secure

Detriments:

- Performance overhead of user space to kernel space communication

Kernel Modules

- Most modern operating systems implement kernel modules
 - Uses object-oriented approach
 - Each core component is separate
 - Each talks to the others over known interfaces
 - Each is loadable as needed within the kernel

Overall, similar to layers but more flexible

Solaris Modular Approach

Virtual Machines

• A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the operating system kernel as though they were all hardware.

 A virtual machine provides an interface identical to the underlying bare hardware.

 The operating system host creates the illusion that a process has its own processor and (virtual memory).

Each guest provided with a (virtual) copy of underlying computer.

Virtual Machines History and Benefits

- First appeared commercially in IBM mainframes in 1972
- Fundamentally, multiple execution environments (different operating systems)
 can share the same hardware
- Protected from each other
- Some sharing of file can be permitted, but controlled
- Communicate with each other, other physical systems via networking
- Useful for development, testing
- Consolidation of many low-resource use systems onto fewer busier systems
- "Open Virtual Machine Format", standard format of virtual machines, allows a VM to run within many different virtual machine (host) platforms

Virtual Machines (Cont.)

VMware Architecture

The Java Virtual Machine

System Boot

- Operating system must be made available to hardware so hardware can start it
 - Small piece of code bootstrap loader, locates the kernel, loads it into memory, and starts it
 - Sometimes two-step process where boot block at fixed location loads bootstrap loader
 - When power initialized on system, execution starts at a fixed memory location
 - Firmware used to hold initial boot code