0	yw 1	
1 a)	Go.	
	i) fully observable	
	ii) strategic	
	iii) sequential	
	iv) semi-dynamic	
	v) discrete	
	vi) multi-agent	
	vii) entire percept history	
6)	Tenga	
	i) partially observable	
	ii) deterministic	
	(ii) sequential	
	IV) Semi-dynamic	1
	v) continuous	
	vi) single-agent	
100	vii) current percept	
c)	Face recognition	
	() fully observable	_
	ii) deterministic	
<u> </u>	iii) episodic	
	iv) semi-algnamic	
	V) continuous.	
	Vi) single agent	
	vii) entire percept history	

2.1	
2.c)	If both player plays perfectly, MIN will win the game.
	Because the minimax value is negative, which means if both players play the game perfectly, MIN
	will always win the game.
3.9)	DFS is complete but not optimal Because the moze
	is of size N×M - finite space, and by remembering
	nodes on the current path, we can avoid cycles. Therefore
	DFS is able to perform a complete search.
	If a case on the left occurs where
B	A is the enterance and F is the exit,
0 0	DFS will find A-B-E-F as solution, rather
000	A-C-F which is the optimal solution.
Ь	BFS is complete and optimal. Because there is a
	finite branching factor, BFS can perform a complete
	search. Since the path cost is constant (a non-decreasing
	function of depth), DFS is optimal.
()	H., Hz, Hz would guarantee that the graph search version
	of 1* search is optimal. It is optimal with a ADMISSIBIE
	HEURISTIC as long as repeated paths to a state with better
	costs are not discarded. The shortest (most ideal) path from
	(x,y) to (N,M) is N-x+M-y (H2). H= D < H2 1-13= \((N-x)^2 + (M-y)^2 < H_2
	by Pythagorean Theorem. H4 = (N-x) x (M-y) > H, (N > x, M > y, x, y, M, N
	are all positive integers).

13	
	1-1, In = N-x+M-y is the best one to use with the graph
	search version of A+, because without overestimating
	Ha is the largest (out of 1-1, Ha, Ha).
•	