Problem 2.1

Problem 2.1 The tetrahedral bond angle of diamond is given by the angle between the body diagonals of a cube.

2.1.1 Use vector analysis to find the angle. (3 points)

We can find this angle using
$$\cos\theta=\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$$

$$\vec{a}=(1,1,1)/\sqrt{3}$$

$$\vec{b}=(1,1,-1)/\sqrt{3}$$

$$\cos\theta=(1+1-1)/\sqrt{3}$$

$$\theta=\cos^{-1}\frac{1}{\sqrt{3}}=1.23\mathrm{rad}\rightarrow70.5^\circ$$

Or $180-70.5=109.5\,^{\circ}$ for the larger angle

Problem 2.2

Problem 2.2 Consider a cubic crystal.

- 2.2.1 Calculate the angles between the following planes: (8 points)
 - (100) and (110)
 - (100) and (111)
 - (100) and (010)
 - (111) and (113)

Miller indicies represent a vector which is normal to the associated plane, so we can simply treat them as vectors

1.
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}}$$

$$\theta = \cos^{-1} \frac{1}{\sqrt{2}} = \pi/4$$

$$(1) \qquad (1)$$

2. $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{3}}$ $\theta = \cos^{-1} \frac{1}{\sqrt{3}} = 0.95$

3. Clearly a right angle $\pi/2$

4.
$$\frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \frac{1}{\sqrt{11}} \begin{pmatrix} 1\\1\\3 \end{pmatrix} = \frac{5}{\sqrt{33}}$$
$$\theta = \cos^{-1} \frac{5}{\sqrt{33}} = 0.51$$

Problem 2.3

Problem 2.3 For the four crystal structures on the following page, identify:

- 2.3.1 type of lattice (crystal system and centering type) (3 points)
- 2.3.3 position of all atoms in basis (3 points)
- 2.3.3 number of each type of atom per unit cell (3 points)

CsCl:

• Lattice: Cubic.

• Basis atom Positions:

CI:
$$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

^{1/8}Cs: One in each corner $\{(x_1,x_2,x_3)\}$ for $x_1,x_2,x_3\in\{0,1\}$

• Number: 1x Cs, 1x Cl

NaCl:

• Lattice: FCC

• Basis Positions:

$$\begin{array}{l} ^{1/8}\text{CI } \{(x_1,x_2,x_3)\} \text{ for } x_1,x_2,x_3 \in \{0,1\} \\ ^{1/2}\text{CI } \left\{ \left(\frac{1}{2},\frac{1}{2},x\right), \left(\frac{1}{2},x,\frac{1}{2}\right), \left(x,\frac{1}{2},\frac{1}{2}\right) \right\} \text{ for } x \in \{0,1\} \\ ^{1/4}\text{Na } \left\{ \left(\frac{1}{2},x_1,x_2\right), \left(x_1,\frac{1}{2},x_2\right), \left(x_1,x_2,\frac{1}{2}\right) \right\} \text{ for } x_1,x_2 \in \{0,1\} \\ \text{Na } \left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) \end{array}$$

• Number: 4x Na, 4x Cl

CaF₂:

Lattice: FCC

• Basis Positions:

$$\begin{array}{l} ^{1/8}\text{Ca }\{(x_1,x_2,x_3)\} \text{ for } x_1,x_2,x_3 \in \{0,1\} \\ ^{1/2}\text{Ca }\left\{\left(\frac{1}{2},\frac{1}{2},x\right),\left(\frac{1}{2},x,\frac{1}{2}\right),\left(x,\frac{1}{2},\frac{1}{2}\right)\right\} \text{ for } x \in \{0,1\} \\ \text{F}\left\{\left(\frac{2\pm 1}{4},\frac{2\pm 1}{4},\frac{2\pm 1}{4}\right)\right\} \end{array}$$

• Number: 4x Ca, 8x F

BaTiO₃:

• Lattice: Cubic

• Basis Positions:

$$\begin{array}{l} ^{1/8} \mathrm{Ba} \left\{ (x_1, x_2, x_3) \right\} \mathrm{ \, for \, } x_1, x_2, x_3 \in \{0, 1\} \\ ^{1/2} \mathrm{O} \left\{ \left(\frac{1}{2}, \frac{1}{2}, x\right), \left(\frac{1}{2}, x, \frac{1}{2}\right), \left(x, \frac{1}{2}, \frac{1}{2}\right) \right\} \mathrm{ \, for \, } x \in \{0, 1\} \\ \mathrm{Ti:} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \end{array}$$

• Number: 1x Ba, 1x Ti, 3x O

Yay we're done!

Cesium Chloride (CsCl) Cs

Calcium Fluoride (CaF₂)

Barium Titanate (BaTiO₃)

