

Project Initialization and Planning Phase

Date	20 June 2025
Team ID	SWTID1749791625
Project Title	Smart Lender- Applicant Credibility Prediction for Loan Approval
Maximum Marks	3 Marks

Project Proposal (Proposed Solution)

The proposal report aims to transform the loan approval process using machine learning, enhancing both efficiency and accuracy. It addresses current inefficiencies in traditional systems by introducing intelligent automation and data-driven decision-making. The integration of a machine learning-based credit scoring model allows for real-time evaluation of applicants, reducing delays and human error. This approach not only streamlines operations and minimizes credit risks but also improves customer satisfaction by offering faster and more transparent loan decisions. Overall, the project promises to deliver a more reliable, efficient, and customer-friendly loan approval system.

Project Overview	
Objective	The primary objective is to transform the loan approval process using advanced machine learning techniques for faster and more accurate assessments, improving efficiency and decision-making.
Scope	The project enhances the loan approval process by integrating machine learning for a more robust and efficient system.
Problem Statement	
Description	Addressing inaccuracies and inefficiencies in the current loan approval system is crucial, as they negatively impact operational efficiency and customer satisfaction.
Impact	Solving these issues will improve operational efficiency, reduce risks, and enhance the lending process, leading to greater customer satisfaction and organizational success.
Proposed Solution	•

Approach	Employing machine learning techniques to analyze and predict creditworthiness enables the creation of a dynamic and adaptable loan approval system.	
Key Features	 Implementation of a machine learning-based credit assessment model Real-time decision-making for faster loan approvals Continuous learning to adapt to evolving financial landscapes 	

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU		
Memory	RAM specifications	8 GB		
Storage	Disk space for data, models, and logs	1 TB SSD		
Software				
Frameworks	Python frameworks	Flask		
Libraries	Additional libraries	scikit-learn, pandas, numpy, matplotlib, seaborn		
Development Environment	IDE, version control	Jupyter Notebook, pycharm		
Data				
Data	Source, size, format	Kaggle dataset, 614, csv UCI dataset,690,cs		