Homework assignment 3.

Most of the assignment was related to graph theory, so I used familiar to me structures like Priority queue, Multiset, Map. There is better way to implement the solution. For example, one could use pointer to the structure instead of using strings and additional containers. I realized it too late to change whole code and submit it before deadline.

Function name	Complexity	Description
add_friendship	2 * (O(1+logM))	Find in unordered map and Insert
		in map. 2 times because of
		mutual friendship
remove_friendship	2 * (O(1 + 1))	Find in unordered map and Erase
		by pointer in map. 2 times
		because of mutual friendship
get_friends	O(1 + 1*M)	Find in unordered map and Push
		back in vector all items from map
		(linear)
all_friendships	O(1*N + M*logM)	Linear Push back from multiset
		into vector and sort in
		alphabetical order
shortest_friendpath	O(N + M*logM)	Dijkstra Algorithm with edge
		weight = 1
check_boss_hierarchy	O(N + M)	Cycles check for all nodes and
		Hierarchy check for all. Approx
		linear operations
cheapest_friendpath	O(N + M*logM)	Dijkstra Algorithm O(E+ V log V)
		with priority queue for better
		performance
leave_cheapest_friendforest	O (N*logM + N^2)	Krushkal's Algorithm to find MST
		(Minimum Spanning Tree) and
		removal of the omitted edges.

I hope you will understand my crappy code. Asking for mercy and considering Vappu and Exams during deadline week while grading. Thank you!