OSDA Big Homework Neural FCA

Gorbunov E.I.

Faculty of Computer Science Higher School of Economics

December 3, 2024

Dataset

Used Dataset: Credit Score Classification Dataset with 164 objects, 7 attribute columns (2 numerical, 5 categorical) and 1 target column. **The main goal** is to determine which credit score a client has (High/Average/Low). But I have decided to determine whether a client has a high score.

Dataset

Attributes and values:

- Age (25 53 years)
- Gender (Female/Male)
- Income (25000\$ 162500\$)
- Education ("Bachelor's Degree", "Master's Degree", 'Doctorate', 'High School Diploma', "Associate's Degree")
- Martial Status (Single/Married)
- Number of Children (0, 1, 2, 3)
- Home Ownership(Rented/Owned)

Target for classification:

- Credit Score (High/Average/Low)
- is Not High (False High, True Average/Low)

Feature Engineering

Figure: Distributions of Age/Income

- Age Group ("25-33"/"34-43"/"44-53")
- Income Group ("25k-74k"/"75k-124k"/"125k-174k")
- Has Children (False 0, True 1/2/3)

Binarization Stategy / Prediction Quality Measure

Scales:

- Age Group, Income Group, Education nominal scale
- Gender, Martial Status, Home Ownership, Has Children dichotomic scale

After binarization there are 12 binary attributes.

The dataset has 113 samples, which have a high credit score, and 51 samples, which have a low/average credit score. So, the most preferable metric for this date would be **F1 score**.

$$F1 = \frac{2*precision*recall}{precision + recall}$$

First Results

16 best concepts give F1 score ≈ 0.962 on train set and F1 score ≈ 0.88 on test set. This CN was train on 2000 epochs.

Comparison with Standard Models

Model	DT	RF	KNN	LR	СВ	XGB	CN
F1 Train	0.987	0.987	0.987	0.987	0.987	0.987	0.926
F1 Test	0.917	0.917	0.880	0.917	0.917	0.917	0.880

Table: Comparison

Modifications

Engineering of Age/Income

- Age Group ("25-40"/"40-53")
- Income Group ("25k-59k"/"60k-99k"/"100k-174k")

Scales:

- Income Group, Education nominal scale
- Age Group, Gender, Martial Status, Home Ownership, Has Children dichotomic scale

After binarization there are 11 binary attributes.

Modifications

9 best concepts give F1 score ≈ 0.962 on train set and F1 score ≈ 0.88 on test set. This CN was train on 2000 epochs.

Confusion Matrix on CN

Modifications with Nonlinearities

9 best concepts and **tanh** give **F1 score** ≈ 0.987 on train set and **F1 score** ≈ 0.88 on test set. This CN was train on **2000 epochs**.

4 D F 4 DF 4 ZF 4 ZF ZF 5 VQC

Conclusion

- Performance: Great but Decision Tree, Random Forest, Logistic Regression, CatBoost, XGBoost show better results
- **Interpretability:** Decision Tree provides better results and is easily interpretable.

References

- Github repository of this project
- Task formulation
- Oataset on Kaggle