Кодирование случайных множеств в булевой модели с переменной интенсивностью

Дипломная работа студентки 4 курса направление «Математика» 01.03.01. группы 16.Б01—мм очной формы обучения Давыденковой Марии Сергеевны

Научный руководитель: д.ф.-м.н. профессор Лифшиц Михаил Анатольевич

Санкт-Петербург 2020 год

Содержание

1	Введение	2
	1.1 Постановка задачи	2
	1.2 Полученные результаты	į
2	Нижние оценки для вероятности больших уклонений	3
3	Верхние оценки для вероятности больших уклонений	6

1 Введение

1.1 Постановка задачи

Пусть S – случайный элемент некоторого метрического пространства (X, dist). Средней ошибкой дискретизации S называется величина

$$D^{(q)}(r) := \inf_{\#\mathcal{C} \leqslant e^r} \mathbb{E} \min_{A \in \mathcal{C}} dist(S, A), \quad r > 0.$$

Скорость ее убывания при стремлении r к бесконечности характеризует сложность распределения S. Общие свойства величины $D^{(q)}(r)$ изучены в [6, 4, 7]. В последние два десятилетия ошибки дискретизации исследовались, в основном, для траекторий случайных процессов, рассматриваемых как случайный элемент функционального пространства, см., например, [1, 5].

В работе [2] изучалась ошибка дискретизации для случайного множества, рассматриваемого как случайный элемент пространства компактов, снабжённого метрикой Хаусдорфа $d_H(A,B) := \max(\sup_{a \in A} \inf_{b \in B} \|a-b\|, \sup_{b \in B} \inf_{a \in A} \|a-b\|)$. В качестве случайного множества была взята стандартная Булева модель (Boolean model, см. [3, 8]), которая устроена следующим образом.

Рассмотрим куб $[0,a]^d$ в \mathbb{R}^d , $d\geqslant 1$, и случайный набор шаров с центрами в этом кубе, определенный следующим образом: пусть центры шаров ξ_i — случайные величины, распределенные равномерно в $[0,a]^d$, радиусы R_i — некоторые одинаково распределенные неотрицательные случайные величины, а количество шаров N — пуассоновская случайная величина с параметром $a^d\lambda$, где $\lambda=\lambda(a)$ — положительный параметр, зависящий от a. Все эти случайные величины независимы. Отметим, что при таком построении множество $(\xi_i)_{i\leqslant N}$ — это пуассоновский точечный процесс с интенсивностью λ .

Обозначим через $B(\xi_i, R_i)$ шар с центром в ξ_i радиуса R_i (пока что мы не фиксируем норму в \mathbb{R}^d). Мы будем рассматривать "картинку", образованную этим наборов шаров:

$$S_a = \bigcup_{i=1}^{N} B(\xi_i, R_i) \cap [0, a]^d.$$

Определенная таким образом картинка называется *Булевой моделью случайного множества*. Заметим, что свойства S_a будут зависеть от рассматриваемой нормы.

В работе [2] исследовался случай a=1 с постоянной интенсивностью λ . Результаты основаны на изучении вероятностей больших уклонений величины

$$K_1 = \min\{r \geqslant 1 | \exists i_1, \dots, i_r \subset \{1, \dots, N\} : S_1 = \bigcup_{l=1}^r B(\xi_{i_l}, R_{i_l}) \cap [0, a]^d\},$$

называемой *минимальным числом видимых шаров*, то есть на нахождении асимптотики $\mathbb{P}[K_1 \geqslant n]$ при n, стремящемся к бесконечности.

В настоящей работе некоторые из этих оценок распространяются на случай, когда параметр a стремится к бесконечности, причем $n \gg a^d \lambda$.

Заметим, что тривиальная оценка, вытекающая из свойств пуассоновского распределения, такова:

$$\mathbb{P}[K_a \geqslant n] \leqslant \mathbb{P}[N \geqslant n] \sim \mathbb{P}[N = n] =$$

$$= \frac{(a^d \lambda)^n}{n!} e^{-a^d \lambda} \sim \left(\frac{ea^d \lambda}{n}\right)^n e^{-a^d \lambda} \sqrt{2\pi n} = \exp(-n\log n + n\log(a^d \lambda) + O(n)) =$$

$$= \exp((-n\log n + dn\log a + n\log \lambda + O(n))), \ n \to \infty, a \to \infty.$$

Условие $n\gg a^d\lambda$ гарантирует, что вероятность больших уклонений стремится к нулю, так как $-n\log(n/a^d\lambda)$ стремится к минус бесконечности с ростом n и a.

1.2 Полученные результаты

Получены ($noka\ umo\ :$)) более точные оценки вероятности больших уклонений для ℓ_1 -и ℓ_2 -нормы. А именно, что существует число $\beta > 1$, для которого

$$\mathbb{P}[K_a \geqslant n] = \exp((-\beta \cdot n \log n + \beta \cdot dn \log a + n \log \lambda + O(n))), \ n \to \infty, a \to \infty.$$

Число β зависит от размерности d, используемой нормы и распределения радиусов R_i .

2 Нижние оценки для вероятности больших уклонений

Рассмотрим случай, когда радиусы – это константа r > 0 п.н.

Теорема 1. Пусть $R_1 \equiv r > 0$ п.н., где шары берутся в ℓ_1 -норме, $d \geqslant 2$ и $n \gg a^d \lambda$. Тогда

$$\mathbb{P}[K_a \geqslant n] \geqslant \exp\left(-\left(1 + \frac{1}{d-1}\right)n\log n + \left(1 + \frac{1}{d-1}\right)dn\log a + n\log\lambda + O(n)\right), \ n, a \to \infty.$$

Доказательство. Рассмотрим набор ячеек:

$$\left\{ \prod_{m=1}^{d-1} \left[\frac{a^{d/(d-1)}(k_m+1/4)}{(8rn)^{1/(d-1)}}, \frac{a^{d/(d-1)}(k_m+3/4)}{(8rn)^{1/(d-1)}} \right] \times \left[l \left(\frac{c_1 a^{d/(d-1)}}{(rn)^{1/(d-1)}} + 2r \right), l \left(\frac{c_1 a^{d/(d-1)}}{(rn)^{1/(d-1)}} + 2r \right) + \frac{c_1 a^{d/(d-1)}}{(rn)^{1/(d-1)}} \right] \right\},$$

где $k_m \in \{0, \dots, \lfloor (8rn/a)^{1/(d-1)} \rfloor - 1\}, l \in \{0, \dots, \lfloor a/4r \rfloor\}, c_1 = 2^{-(2+3/(d-1))}$.

Все эти ячейки лежат в кубе $[0,a]^d$. По первым d-1 координатам это очевидно, проверим по последней. Действительно,

$$\frac{a}{4r} \cdot \left(\frac{c_1 a^{d/(d-1)}}{(rn)^{1/(d-1)}} + 2r \right) + \frac{c_1 a^{d/(d-1)}}{(rn)^{1/(d-1)}} = \frac{c_1 a^{d/(d-1)}}{r(rn)^{1/(d-1)}} \cdot \left(\frac{a}{4} + r \right) + \frac{a}{2} < a$$

при достаточно больших a и n.

Заметим, что если центры шаров $B(\xi_i, r)$, $B(\xi_j, r)$ лежат в разных "рядах", то есть $\xi_i^{(d)}$ и $\xi_j^{(d)}$ лежат в разных выбранных нами интервалах, то эти шары не пересекаются, так как расстояние между "рядами" хотя бы 2r. Если же центры лежат в одном "ряду", то в каждом из шаров есть точка, не покрытая другим шаром. Действительно, рассмотрим точку $x_i = \xi_i + (0, \dots, 0, r)$. Заметим, что для достаточно больших n и a эта точка действительно лежит в кубе $[0, a]^d$. Итак, при $j \neq i$

$$||x_{i} - \xi_{j}||_{1} = |\xi_{i}^{(d)} + r - \xi_{j}^{(d)}| + \sum_{m=1}^{d-1} |\xi_{i}^{(m)} - \xi_{j}^{(m)}| \geqslant$$

$$\geqslant r - |\xi_{i}^{(d)} - \xi_{j}^{(d)}| + \sum_{m=1}^{d-1} |\xi_{i}^{(m)} - \xi_{j}^{(m)}| \geqslant r - \frac{c_{1}a^{d/(d-1)}}{(rn)^{1/(d-1)}} + \frac{1/2 \cdot a^{d/(d-1)}}{(8rn)^{1/(d-1)}} > r.$$

Мы построили порядка $8rn/a \cdot a/4r = 2n$ непересекающихся ячеек, поэтому можно выбрать n из них. Назовем их V_1, \ldots, V_n и рассмотрим событие

$$E = \{N = n\} \cap \bigcup_{\pi \text{ - перестановка } \{1,...,n\}} \{\xi_i \in V_{\pi(i)}, i = 1,\ldots,n\}.$$

Заметим, что событие E влечет событие $\{K\geqslant n\}$ в силу свойств выбранных ячеек, показанных выше.

Следовательно,

$$\mathbb{P}[K_a \geqslant n] \geqslant \mathbb{P}[E] = \frac{(a^d \lambda)^n}{n!} e^{-a^d \lambda} \cdot n! \cdot \left(\frac{1}{a^d} \cdot \left(\frac{1/2 \cdot a^{d/(d-1)}}{(8rn)^{1/(d-1)}}\right)^{d-1} \cdot \frac{c_1 a^{d/(d-1)}}{(rn)^{1/(d-1)}}\right)^n =$$

$$= \exp\left(dn \log a + n \log \lambda - a^d \lambda - \left(1 + \frac{1}{d-1}\right) n \log n + \frac{d}{d-1} n \log a + O(n)\right) =$$

$$= \exp\left(-\left(1 + \frac{1}{d-1}\right) n \log n + \left(1 + \frac{1}{d-1}\right) dn \log a + n \log \lambda + O(n)\right).$$

Теорема 2. Пусть $R_1 \equiv r > 0$ п.н., где шары берутся в ℓ_2 -норме, $d \geqslant 2$ и $n \gg a^d \lambda$. Тогда

$$\mathbb{P}[K_a \geqslant n] \geqslant \exp\left(-\left(1 + \frac{2}{d-1}\right)n\log n + \left(1 + \frac{2}{d-1}\right)dn\log a + O(n)\right), \ n, a \to \infty.$$

Доказательство теоремы аналогично случаю ℓ_1 -нормы, и отличается только размером ячеек.

Доказательство. Рассмотрим набор ячеек:

$$\left\{ \prod_{m=1}^{d-1} \left[\frac{a^{d/(d-1)}(k_m+1/4)}{(8rn)^{1/(d-1)}}, \frac{a^{d/(d-1)}(k_m+3/4)}{(8rn)^{1/(d-1)}} \right] \times \left[l \left(\frac{c_2 a^{2+2/(d-1)}}{r(rn)^{2/(d-1)}} + 2r \right), l \left(\frac{c_2 a^{2+2/(d-1)}}{r(rn)^{2/(d-1)}} + 2r \right) + \frac{c_2 a^{2+2/(d-1)}}{r(rn)^{2/(d-1)}} \right] \right\},$$

где $k_m \in \{0,\dots,\lfloor (8rn/a)^{1/(d-1)}\rfloor-1\},\ l\in \{0,\dots,\lfloor a/4r\rfloor\},\ c_2=2^{-(4+6/(d-1))}.$ Все эти ячейки лежат в кубе $[0,a]^d.$ По первым d-1 координатам это очевидно,

Все эти ячейки лежат в кубе $[0,a]^d$. По первым d-1 координатам это очевидно проверим по последней. Действительно,

$$\frac{a}{4r} \left(\frac{c_2 a^{2+2/(d-1)}}{r(rn)^{2/(d-1)}} + 2r \right) + \frac{c_2 a^{2+2/(d-1)}}{r(rn)^{2/(d-1)}} = \frac{c_2 a^{2+2/(d-1)}}{r^2(rn)^{2/(d-1)}} \cdot \left(\frac{a}{4} + r \right) + \frac{a}{2} < a$$

при достаточно больших a и n.

Заметим, что если центры шаров $B(\xi_i,r), B(\xi_j,r)$ лежат в разных "рядах", то есть $\xi_i^{(d)}$ и $\xi_j^{(d)}$ лежат в разных выбранных нами интервалах, то эти шары не пересекаются, так как расстояние между "рядами" хотя бы 2r. Если же центры лежат в одном "ряду", то в каждом из шаров есть точка, не покрытая другим шаром. Действительно, рассмотрим точку $x_i = \xi_i + (0, \dots, 0, r)$. Заметим, что для достаточно больших n и a эта точка действительно лежит в кубе $[0, a]^d$. Итак, при $j \neq i$

$$||x_{i} - \xi_{j}||_{2}^{2} = |\xi_{i}^{(d)} + r - \xi_{j}^{(d)}|^{2} + \sum_{m=1}^{d-1} |\xi_{i}^{(m)} - \xi_{j}^{(m)}|^{2} \geqslant$$

$$\geqslant r^{2} - 2r|\xi_{i}^{(d)} - \xi_{j}^{(d)}| + (\xi_{i}^{(d)} - \xi_{j}^{(d)})^{2} + \sum_{m=1}^{d-1} |\xi_{i}^{(m)} - \xi_{j}^{(m)}|^{2} \geqslant$$

$$\geqslant r^{2} - \frac{2c_{2}a^{2+2/(d-1)}}{(rn)^{2/(d-1)}} + \left(\frac{1/2a^{d/(d-1)}}{(8rn)^{1/(d-1)}}\right)^{2} \geqslant r^{2}.$$

Мы построили порядка $8rn/a \cdot a/4r = 2n$ непересекающихся ячеек, поэтому можно выбрать n из них. Назовем их V_1, \ldots, V_n и рассмотрим событие

$$E = \{N = n\} \cap \bigcup_{\pi \text{ перестановка } \{1,...,n\}} \{\xi_i \in V_{\pi(i)}, i = 1,...,n\}.$$

Заметим, что событие E влечет событие $\{K\geqslant n\}$ в силу свойств выбранных ячеек, показанных выше.

Следовательно,

$$\mathbb{P}[K_a \geqslant n] \geqslant \mathbb{P}[E] = \frac{(a^d \lambda)^n}{n!} e^{-a^d \lambda} \cdot n! \cdot \left(\frac{1}{a^d} \cdot \left(\frac{1/2 \cdot a^{d/(d-1)}}{(8rn)^{1/(d-1)}}\right)^{d-1} \cdot \frac{c_2 a^{2+2/(d-1)}}{r(rn)^{2/(d-1)}}\right)^n = \\
= \exp\left(dn \log a + n \log \lambda - a^d \lambda - \left(2 + \frac{2}{d-1}\right) n \log n + \left(2 + \frac{2}{d-1}\right) n \log a + O(n)\right) = \\
= \exp\left(-\left(1 + \frac{2}{d-1}\right) n \log n + \left(1 + \frac{2}{d-1}\right) dn \log a + n \log \lambda + O(n)\right).$$

3 Верхние оценки для вероятности больших уклонений

Теорема 3. Пусть $R_1 \equiv \frac{r}{a}$ п.н., где r < 1, шары берутся в l_1 -норме, $u \ d \geqslant 2$. Тогда

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp\left(\left(-\left(1 + \frac{1}{d-1}\right)n\log n + \left(1 + \frac{1}{d-1}\right)n\log a^d\right)(1 + o(1))\right), n \to \infty, a \to \infty.$$

Доказательство. Шаг 1. Объединение шаров в группы. Пусть

$$S = \bigcup_{i=1}^{K_a} B(\xi_i, R_1) \cap [0, 1]^d$$

обозначает неуменьшаемое представление картинки S. Тогда для каждого числа $i\leqslant K_a$ существует точка $\nu_i\in B(\xi_i,R_1)\cap [0,1]^d$, которая не лежит ни в каком другом шаре $B(\xi_j,R_1),j\neq i$. Зафиксируем такие $\nu_i,i=1,2,\ldots K_a$. Обозначим $\Delta_i:=\nu_i-\xi_i$.

Объединим шары в группы $J_0, J_1^+, J_1^-, \dots J_d^+, J_d^-$ следующим образом. Определим $J_0 := \{i : \|\Delta_i\|_1 \leqslant R_1/2\}$. Оценим мощность этого множества. Для любых $i, j \in J_0$ выполнено:

$$R_1 < \|\nu_j - \xi_i\| \le \|\nu_j - \nu_i\| + \|\nu_i - \xi_i\| \le \|\nu_j - \nu_i\| + \|\Delta_i\| \le \|\nu_j - \nu_i\| + R_1/2.$$

То есть $\|\nu_j - \nu_i\| > R_1/2$, а значит, $\#J_0 \leqslant c_1(R_1)^{-d} = c_1 r^{-d} a^d$, где константа $c_1 = 2^d / \operatorname{vol}_d B(0, 1)$. Теперь пусть $i \not\in J_0$. Значит,

$$\|\Delta_i\|_{\infty} \geqslant c_2 \|\Delta_i\|_1 > c_2 R_1/2,$$

где c_2 — контанта, зависящаятолько от нормы. Поэтому i принадлежит одному из 2d множеств вида:

$$J_m^+ := \{i : \Delta_i^{(m)} > c_2 R_1 / 2\}, \quad J_m^- := \{i : \Delta_i^{(m)} < -c_2 R_1 / 2\}.$$

Шаг 2. Оценка расстояний между центрами. Пусть $\sigma \colon \mathbb{R}^d \to \mathbb{R}^d$ – проекция, определенная таким образом:

$$\sigma x := (x^{(1)}, \dots x^{(d-1)}, 0).$$

Лемма 1 (Lemma 20 из статьи.). Пусть $i, j \in J_d^+, i \neq j, u$ пусть $c_3 := c_2 r/2$. Тогда

$$|\xi_i^{(d)} - \xi_j^{(d)}| \not\in [\|\sigma \xi_i - \sigma \xi_j\|_1, c_3/a].$$

Доказательство. См. статью.

Шаг 3. Подсчет ячеек, содержащих центры шаров. Зафиксируем большое число A > 0 и покроем куб $[0,1]^d$ следующим набором ячеек:

$$V_{\bar{k},k_d} := \prod_{m=1}^d \left[\frac{Ak_m}{(na^{-1})^{1/(d-1)}}, \frac{A(k_m+1)}{(na^{-1})^{1/(d-1)}} \right],$$

где $k_m \in \{0, \dots, \lfloor A^{-1}(na^{-1})^{1/(d-1)} \rfloor \}$ для $1 \leqslant m \leqslant d$ и мульти-индекса $\bar{k} := (k_1, \dots, k_{d-1})$. Зафиксируем некоторый индекс \bar{k} и оценим количество ячеек, содержащих центры шаров:

$$N(\bar{k},d,+) := \#\{k \colon \xi_i \in V_{\bar{k},k} \text{ для некоторого } i \in J_d^+\}.$$

Заметим, что если $\xi_i \in V_{\bar{k},\kappa_i}$ и $\xi_j \in V_{\bar{k},\kappa_j}$ для некоторых $i,j \in J_d^+$, то

$$\|\sigma\xi_i - \sigma\xi_j\|_1 \leqslant (d-1)A(an^{-1})^{1/(d-1)}.$$

Поэтому по лемме

$$|\xi_i^{(d)} - \xi_i^{(d)}| \notin [(d-1)A(an^{-1})^{1/(d-1)}, c_3/a].$$

Замечание. При достаточно больших a, n этот интервал определен (то есть левый конец меньше правого).

Исходя из этого, разобъем [0,1] на $\lceil ac_3^{-1} \rceil$ частей длины не более c_3/a , и заметим, что если $\xi_i^{(d)}, \xi_j^{(d)}$ лежат в одной части, то $|\xi_i^{(d)} - \xi_j^{(d)}| \leqslant (d-1)A(an^{-1})^{1/(d-1)}$. Поэтому тогда $|\kappa_i - \kappa_j| \leqslant d$. Отсюда получаем искомую оценку:

$$N(\bar{k}, d, +) \leqslant d\lceil ac_3^{-1} \rceil =: ac_4.$$

Теперь мы можем получить общее число ячеек, содержащих центры:

$$\sum_{\bar{k}} \sum_{m=1}^{d} (N(\bar{k}, m, +) + N(\bar{k}, m, -)) \leqslant (2d) \cdot (ac_4) \cdot (na^{-1}A^{-(d-1)}) =: \frac{c_5 n}{A^{d-1}}.$$

Замечание. Размер ячеек специально выбирался так, чтобы общее количество ячеек, содержащих центры, не зависело от а. Иначе в финальном рассуждении мы не смогли бы избавиться от громоздкого множителя, взяв достаточно большое А. Чтобы все было хорошо (хотя бы с членом n log n в финальной асимптотике), надо

чтобы этот множитель был O(n). Из всех таких степеней а я выбрала ту, которая дает наилучшую оценку.

Пусть \mathcal{U} — семейство всех возможных объединений из $\left\lfloor \frac{c_5 n}{A^{d-1}} \right\rfloor$ ячеек. Их количество — число способов выбрать $\left\lfloor \frac{c_5 n}{A^{d-1}} \right\rfloor$ ячеек из $\left\lceil \frac{n^{d/(d-1)}}{a^{d/(d-1)A^d}} \right\rceil$. Поэтому можно выписать следующую простую оценку:

$$\#\mathcal{U} \leqslant \exp\left(\frac{c_5 n}{A^{d-1}} \log \left\lceil \frac{n^{d/(d-1)}}{a^{d/(d-1)A^d}} \right\rceil \right) = \\ = \exp\left(\left(\frac{c_5 d}{(d-1)A^{d-1}} n \log n + \frac{c_5}{(d-1)A^{d-1}} n \log a^d\right) (1 + o(1))\right).$$

Для каждого $U \in \mathcal{U}$ объем можно оценить так:

$$\operatorname{vol}_d(U) \leqslant \frac{c_5 n}{A^{d-1}} \left(\frac{A a^{1/(d-1)}}{n^{1/(d-1)}} \right)^d = \frac{A c_5 a^{d/(d-1)}}{n^{1/(d-1)}}.$$

Шаг 4. Оценка вероятности. Напомним, что

$$K_a = \#J_0 + \#\left(\bigcup_{m=1}^d (J_m^+ \cup J_m^-)\right) =: K^{(0)} + K^{(\pm)}.$$

Заметим, что для некоторого случайного множества $U \in \mathcal{U}$ выполнено:

$$N_U := \#\{i \colon \xi_i \in U\} \geqslant K^{(\pm)}.$$

Пусть $c_6 := c_1 r^{-d}$. Тогда, как мы помним, $K^{(0)} \leqslant c_6 a^d$.

Поэтому, пользуясь тем, что случайная величина N_U имеет распределение Пуассона с математическим ожиданием $a^d \lambda \operatorname{vol}_d(U)$, получаем следующую оценку:

$$\mathbb{P}[K_{a} \geqslant n] \leqslant \mathbb{P}[K^{(\pm)} \geqslant n - c_{6}a^{d}] \leqslant \sum_{U \in \mathcal{U}} \mathbb{P}[N_{U} \geqslant n - c_{6}a^{d}] \leqslant \#\mathcal{U} \cdot \max_{U \in \mathcal{U}} \mathbb{P}[N_{U} \geqslant n - c_{6}a^{d}] \leqslant \exp\left(\left(\frac{c_{5}d}{(d-1)A^{d-1}}n\log n + \frac{c_{5}}{(d-1)A^{d-1}}n\log a^{d}\right)(1+o(1))\right) \left(\frac{a^{d}\lambda \operatorname{vol}_{d}(U)e}{n - c_{6}a^{d}}\right)^{n - c_{6}a^{d}} \leqslant \exp\left(\left(\frac{c_{5}d}{(d-1)A^{d-1}}n\log n + \frac{c_{5}}{(d-1)A^{d-1}}n\log a^{d}\right)(1+o(1))\right) \cdot \left(\frac{(a^{d}\lambda Ac_{5}a^{d/(d-1)}e)n^{-1/(d-1)}}{n - c_{6}a^{d}}\right)^{n - c_{6}a^{d}} = \exp\left(\left(\left(\frac{c_{5}d}{(d-1)A^{d-1}} - 1 - \frac{1}{d-1}\right)n\log n + + \left(\frac{c_{5}}{(d-1)A^{d-1}} + 1 + \frac{1}{d-1}\right)n\log a^{d}\right)(1+o(1))\right).$$

Здесь использовался тот факт, что $a^d = o(n)$, а также следующее равенство:

$$n\log(n - c_6 a^d) = n\log(n - c_6 a^d) - n\log n + n\log n = n\log(1 - c_6 a^d/n) + n\log n = n\log n + o(n).$$

Так как константа A может быть выбрана сколь угодно большой, получаем:

$$\mathbb{P}[K_a \geqslant n] \leqslant \exp\left(\left(-\left(1 + \frac{1}{d-1}\right)n\log n + \left(1 + \frac{1}{d-1}\right)n\log a^d\right)(1 + o(1))\right).$$

Список литературы

- [1] F. Aurzada, S. Dereich, M. Scheutzow, C. Vormoor, High resolution quantization and entropy coding of jump processes, J. Complexity 25 (2) (2009) 163–187.
- [2] F. Aurzada, M. Lifshits, How complex is a random picture? Journal of Complexity 53 (2019) 133–161.
- [3] S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications, Wiley Series in Probability and Statistics, third ed., John Wiley & Sons, Ltd., Chichester, 2013, p. xxvi+544.
- [4] T.M. Cover, J.A. Thomas, Elements of Information Theory, second ed., Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006, p. xxiv+748.
- [5] S. Dereich, The coding complexity of diffusion processes under supremum norm distortion, Stochastic Process. Appl. 118 (6) (2008) 917–937.
- [6] S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics, vol. 1730, Springer-Verlag, Berlin, 2000, p. x+230.
- [7] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Int. J. Comput. Math. 2 (1968) 157–168.
- [8] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008, p. xii+693.