TABLE 6 Logical Equivalences.		
Equivalence	Name	
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	
$p \vee \mathbf{T} \equiv \mathbf{T}$ $p \wedge \mathbf{F} \equiv \mathbf{F}$	Domination laws	
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	
$\neg(\neg p) \equiv p$	Double negation law	
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws	
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws	
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	
$p \vee \neg p \equiv \mathbf{T}$ $p \wedge \neg p \equiv \mathbf{F}$	Negation laws	

TABLE 1 Rules of Inference.			
Rule of Inference	Tautology	Name	
$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens	
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens	
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism	
$p \lor q$ $\neg p$ $\therefore \overline{q}$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism	
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition	
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification	
$ \frac{p}{q} $ $ \therefore \overline{p \wedge q} $	$((p) \land (q)) \to (p \land q)$	Conjunction	
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution	

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

TABLE 1 Set Identities.		
Identity	Name	
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	
$A \cup A = A$ $A \cap A = A$	Idempotent laws	
$\overline{(\overline{A})} = A$	Complementation law	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	
$\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws	
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws	

Logical Equivalences	Set Properties
For all statement variables p, q , and r :	For all sets A , B , and C :
a. $p \lor q \equiv q \lor p$	a. $A \cup B = B \cup A$
b. $p \wedge q \equiv q \wedge p$	b. $A \cap B = B \cap A$
a. $p \wedge (q \wedge r) \equiv p \wedge (q \wedge r)$	$a. A \cup (B \cup C) \equiv A \cup (B \cup C)$
b. $p \lor (q \lor r) \equiv p \lor (q \lor r)$	b. $A \cap (B \cap C) \equiv A \cap (B \cap C)$
a. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	a. $A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$
b. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	b. $A \cup (B \cap C) \equiv (A \cup B) \cap (A \cup C)$
a. $p \vee \mathbf{c} \equiv p$	a. $A \cup \emptyset = A$
b. $p \wedge \mathbf{t} \equiv p$	b. $A \cap U = A$
a. $p \lor \sim p \equiv \mathbf{t}$	a. $A \cup A^c = U$
b. $p \land \sim p \equiv \mathbf{c}$	b. $A \cap A^c = \emptyset$
$\sim (\sim p) \equiv p$	$(A^c)^c = A$
a. $p \vee p \equiv p$	$a. A \cup A = A$
b. $p \wedge p \equiv p$	b. $A \cap A = A$
a. $p \vee \mathbf{t} \equiv \mathbf{t}$	a. $A \cup U = U$
b. $p \wedge \mathbf{c} \equiv \mathbf{c}$	b. $A \cap \emptyset = \emptyset$
a. $\sim (p \vee q) \equiv \sim p \wedge \sim q$	a. $(A \cup B)^c = A^c \cap B^c$
b. $\sim (p \land q) \equiv \sim p \lor \sim q$	b. $(A \cap B)^c = A^c \cup B^c$
a. $p \lor (p \land q) \equiv p$	$a. A \cup (A \cap B) \equiv A$
b. $p \land (p \lor q) \equiv p$	b. $A \cap (A \cup B) \equiv A$
a. $\sim t \equiv c$	a. $U^c = \emptyset$
b. \sim c \equiv t	b. $\emptyset^c = U$