Supplementary Material

Proof of Lemma 1

Proof. Consider a partial assignment x and let $j \in x^-$ s.t. $\operatorname{cl}_{inc}(x^+, j, M')$ holds, meaning that $j \in \operatorname{clos}_{M'}(x^+)$. As x^+ cannot be extended to a closed itemset without adding j (j being in x^-), the result follows.

Proof of Proposition 2

 ${\it Proof.}$ Let x be a consistent partial assignment and i be a free item

1) Assume that $\operatorname{cl}_{inc}(x^+,i,M')$ holds. It follows that $i\in\operatorname{clos}_{M'}(x^+)$. From Lemma 1, x^+ cannot be extended to a closed itemset w.r.t. M' with $i\in x^-$. Thus $\{0\}\notin\operatorname{dom}(x_i)$. 2) (**proof by contradiction**) Suppose $j\in x^-$ s.t. $\operatorname{cl}_{inc}(x^+\cup\{i\},j,M')$, which means that $j\in\operatorname{clos}_{M'}(x^+\cup\{i\})$. Since $j\in x^-$, which means that $j\notin\operatorname{clos}_{M'}(x^+)$, it follows that $j\notin\operatorname{clos}_{M'}(x^+\cup\{i\})$.

Algorithm 1 ADEQUATECLOSURE

```
In: \mathcal{D}: dataset, M': set of measures
InOut: x: vector of Boolean variables
  1: if \exists i \in x^-: \operatorname{cl}_{inc}(x^+,i,M') then return false
  2: for i \in x^* do
          if \operatorname{cl}_{inc}(x^+,i,M') then \operatorname{dom}(x_i) \leftarrow \operatorname{dom}(x_i) \setminus \{0\}
 4: end for
  5: for j \in x^- do
  6:
           for i \in x^* do
                if \operatorname{cl}_{inc}(x^+ \cup \{i\}, j, M') then \operatorname{dom}(x_i)
  7:
      dom(x_i)\setminus\{1\}
  8:
           end for
  9: end for
10: return true
```

Algorithm 1 shows the propagator for ADEQUATECLOSURE. It takes as input the transactional dataset \mathcal{D} , the item variables x, and the set of measures M'. It starts by checking the consistency of the current partial assignment (Lemma 1), that is, if x^+ cannot be extended to a closed itemset w.r.t. M' without adding i ($i \in x^-$) (line 1), if so, the constraint is violated and a fail is returned. Algorithm 1 must then check items $i \in x^*$ that are required to extend x^+ to a closed pattern w.r.t. M'. Thus, we remove 0 from each free item variable $i \in x^*$ such that $\operatorname{cl}_{inc}(x^+, i, M')$ holds by using rule $(\mathbf{R_1})$. Second, using rule $(\mathbf{R_2})$, we remove 1 from each free item variable $i \in x^*$ such that $x^+ \cup \{i\}$ cannot be extended

to a closed pattern w.r.t. M' without adding the absent item $j \in x^-$ (lines 5-9).

Computing $m(x^+)$ depends on the type of m. For instance, computing $sup(x^+)$ requires a reversible BitSet to store the cover of x^+ . Other measures such as min or max only require a reversible integer.

Proposition (Consistency, time complexity). Let \mathcal{D} be a transaction database of n items and m transactions and a set of measures M', which contains c sup-based measures. Algorithm 1 enforces domain consistency in time $\mathcal{O}(n^2mc)$.

Proof of the domain consistency of Algorithm 1

Proof. (proof by contradiction) Let i be an item, M' a set of preserving measures and $v \in dom(x_i)$ such that x_i is not domain consistent:

- if v = 1, then it means that x^+ can't be extended to a closed pattern w.r.t. M'. Such case is not possible since rule 2 is applied.
- if v = 0, then it means that x^+ can't be extended to a closed pattern w.r.t. M' without adding i. This will never happen because rule 1 is applied.

Proof of the time complexity of Algorithm 1

Proof. Let n be the number of items and m the number of transactions in the database. Computing $m(x^+)$ requires at most O(nm) for each sup-based measures (such as sup or sup_{\vee}) and O(n) for each attribute-based measures (such as min or max). Checking rule 1 can be done in O(nm) for sup-based measures and O(n) for attribute measures. Finally, checking rule 2 requires $O(n^2m)$ for sup-based measures and $O(n^2)$ for attribute measures. Therefore, if c is the number of sup-based measures in M', the worst case complexity is $O(n^2mc)$.

Proof of Proposition 3

Proof. We have $P = X \cup Y$, X is a generator. Since $Y' = Y \cup clos^-(P)$, we have $X \cup Y' = clos_{sup}(P)$. Thus, r' is an MNR. By definition, $sup(P) = sup(clos_{sup}(P))$ and thus sup(r) = sup(r'). As $conf(r) = \frac{sup(r)}{sup(X)}$ and $conf(r') = \frac{sup(r')}{sup(X)}$, we get conf(r) = conf(r').

CP model for computing MNRs (solving step)

$$\begin{array}{ll} & & \\ & &$$

- (a) Variables. There are two groups of decision variables:
- rule variables: x, y and z are three vectors of Boolean variables, where x_i, y_i and z_i represent the presence of item $i \in \mathcal{I}$ in the antecedent x, the consequence y and in the rule as a whole z.
- skypattern variables: sky is a vector of Boolean variables, where sky_s holds iff the MNR is related to the skypattern s. (b) Constraints. Our model involves the following set of
- constraints:
- Cons.(1) is a channeling constraint ensuring that the rule associated to skypattern s satisfies $X \cup Y = {\tt clos}_{sup}(s)$ and $clos^-(s) \subseteq Y$.
- Cons.(2) associates a rule to at least one skypattern.
- Cons.(3) ensures that an item cannot appear in the antecedent and in the consequence of the rule simultaneously.
- Cons.(4) ensures that the antecedent and the consequence of the rule are not empty.
- Cons.(5) is a channeling constraint between z and x, y.
- Cons.(6) ensures that x is a generator.

Rules quality for SKY4MNR vs CP4MNR

Figures 1 and 2 plot the values of support (noted freq) vs. confidence and confidence vs. lift for both approaches for different datasets.

Figure 1: Qualitative analysis of MNRs (all datasets): support (x-axis) vs. lift (y-axis).

Figure 2: Qualitative analysis of MNRs (Chess and Connect datasets): support (x-axis) vs. confidence (y-axis)