# Evaluation of the Wobbling Motion in Even-Even Nuclei Within a Simple Rotor Model

#### Robert POENARU<sup>1,2</sup>

<sup>1</sup>Doctoral School of Physics @ UB Bucharest, Romania

<sup>2</sup>Dept. of Th. Phys. @ IFIN-HH Magurele, Romania

International Conference on Nuclear Structure Properties June 27, 2022



## Table of Contents

## **Nuclear Deformation**

- Most of the nuclei are either spherical or axially symmetric in their ground-state.
- Deformation parameter  $\beta$  (Bohr, 1969): preserves axial symmetry



Figure 1: spherical:  $\beta = 0$  prolate:  $\beta > 0$  oblate:  $\beta < 0$ 

## **Nuclear Triaxiality**

#### Non-axial shapes

- Deviations from symmetric shapes can occur across the chart of nuclides → triaxial nuclei.
- ullet The triaxiality parameter  $\gamma$  (Bohr, 1969): departure from axial symmetry



## Fingerprints for Triaxiality

- Stable triaxial nuclei represent a real challenge for experimentalists and theoreticians
- Clear signatures for confirming stable triaxiality in nuclei
  - ① Chiral symmetry breaking (Frauendorf, 1997)
  - **2 Wobbling motion** (Bohr & Mottelson, 1975)

### Wobbling Motion (WM)

- Unique to non-axial nuclei
- Predicted 50 years ago for even-A nuclei (i.e., the simple wobbler)
- First experimental evidence for <sup>163</sup>Lu (Ødegård, 2001)
- Currently confirmed wobblers  $A \approx [100, 130, 160, 180]$ .



## Triaxial Rotor Energy

- ullet Rigid body rotational energy:  $E_{
  m rot} \propto rac{\hbar^2}{2\mathcal{J}_{
  m max}} I(I+1)$
- ullet A triaxial nucleus can rotate about any of the three axes o rich energy specra spectra
- MOI anisotropy → the main rotation around J<sub>max</sub> is disturbed by the other two axes → resulting motion of the rotating nucleus has an oscillating behavior



## Wobbling Motion

- ullet Oscillatory character of  $oldsymbol{I} o oldsymbol{I}$  disaligned w.r.t. body-fixed axes
- ullet The a.m. **precesses** and **wobbles** around the axis with  $\mathcal{J}_{\mathsf{max}}$
- The precession of I can increase by tilting
- Tilting by an energy quanta  $\sim$  *vibrational character*  $\rightarrow$  **wobbling phonon**  $n_w = 0, 1, 2...$



# Wobbling Spectrum

#### Even-A Nuclei

- Employing the Harmonic Approximation (Bohr, 1969)
- $\hat{H}$  composed of a rotational part and harmonic oscillation (i.e., wobbling) part:

$$\hat{H} = \frac{\hbar^2}{2\mathcal{J}_{\text{max}}}I(I+1) + \hbar\omega_{\text{wob}}\left(n_w + \frac{1}{2}\right), n_w = 0, 1, 2, \dots$$
 (1)



# Energy spectrum - simple wobbling

 Employed an energy spectrum of harmonic type according to Eq. 1:

$$E_{I} = \frac{\hbar^{2}}{2\mathcal{J}_{3}}I(I+1) + \hbar\omega_{\text{wob}}\left(n_{w} + \frac{1}{2}\right)$$

•  $\hbar\omega_{\text{wob}}$  - wobbling frequency - linear dependence on I (fixed MOI ordering  $\mathcal{J}_3 > \mathcal{J}_{1,2}$ )

$$\hbar\omega_{\mathsf{wob}}(I) = 2f(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3) \cdot I$$



#### New Results

- New experimental measurements show *potential* wobbling candidates in the  $A \approx 130$  region
- Three even-A are studied with the simple wobbler formalism
  - 130 Ba (*Petrache et al. 2019*)
  - <sup>2</sup> <sup>134</sup>Ce (Petrache and Guo, 2016)
  - 3 136 Nd (Lv et al., 2018)
- Study the excited spectra: theoretical model checks the data?

## Model

### Harmonic Approximation

- Reproduced the excited spectra for the wobbling bands
- Employ a free parameter set:  $\mathcal{P} = [\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3]$
- Adopt a fitting procedure:

$$\chi^{2} = \frac{1}{N_{T}} \sum_{i=1}^{N_{T}} \frac{\left(E_{\text{exp}}^{(i)} - E_{\text{th}}^{(i)}\right)^{2}}{E_{\text{exp}}^{(i)}}$$
(2)

ullet  $N_{\mathcal{T}}$  o total number of wobbling states within the nucleus



Robert, POENARU

### New Results for 130Ba

#### Recent findings for even-even nuclei

- Two wobbling bands have been identified experimentally in <sup>130</sup>Ba (Petrache et al., 2019)
- DFT+PRM description of the wobbling motion described the excited spectra (Chen et al., 2019)
- $\bullet$  Stable triaxiality for  $\beta=$  0.24 and  $\gamma=21.5^\circ$



Figure from Petrache et al., 2019