GEA1000 Cheat Sheet

Brians Tjipto

Research Targets

- Population: Entire group of interest.
- Sample: Proportion selected for study.
- Sampling frame: Source material for sampling.
- Census: Reaching the entire population.

Major Biases

- Selection bias refers to the researcher's biased selection of participants
- Non-response bias refers to participants' nonparticipation in the research

Probability Sampling Methods

- Simple random sampling: A sample of size n is chosen from the sampling frame such that every unit has an equal chance to be selected.
- Systematic sampling: The x^{th} unit is chosen from every n/k units where x, k are chosen integers and n is the size of the sampling frame.
- Stratified sampling: The population is divided into groups (strata) and SRS is applied to each strata to form the sample.
- Cluster sampling: The population is divided into clusters and a fixed number of clusters are chosen using SRS.

Non-Probability Sampling Methods

- Convenience sampling: Based on availability.
- Volunteer sampling: Participants volunteer.

Generalizability Criteria

- 1. Sampling frame \geq population.
- 2. Probability sampling method implemented (selection bias $\downarrow)$
- 3. Large sample size (variability and random error \downarrow)
- 4. Minimize non-response rate.

Variable Types

- Categorical: Variables that take on mutually exclusive categories.
- Numerical: Variables with numerical values where arithmetic can be performed meaningfully.

Variable Sub-Types

- Ordinal: Categorical variables where there is some natural ordering.
- Nominal: Categorical variable where there is no intrinsic ordering.
- Discrete: Numerical variable with gaps in the set of possible numbers.
- Continuous: Numerical variable that can be all values in a given range.
- Random: Numerical variable with probabilities assigned to each value.

Properties of Mean (\bar{x}) and Median (r)

- Adding c to all data points: \bar{x} to $\bar{x} + c$, r + c.
- Multiplying c to all data points: \bar{x} to $c\bar{x}$, cr.

Properties of Standard Deviation (s_x) and IQR

- s_x , IQR are > 0 unless identical data.
- Adding c to all data point doesn't change s_x and IQR.
- Multiplying c all data points changes s_x to $|c| s_x$ and IQR to |c| IQR.

Study Designs

- Experimental study: The independent variable is intentionally manipulated to observe its effect on the dependent variable.
- Observational study: Individuals are observed and variables are measured without any manipulation.

Blinding

- Single blinding is achieved when subjects do not know what group they belong to.
- Double blinding is achieved when neither the subjects nor the assessors are aware of the assignment.

Simple Variance, Var =
$$\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}$$
Standard Deviation, $s_x = \sqrt{Var}$
coefficient of variation =
$$\frac{s_x}{\bar{x}}$$

Positive	Negative
rate(A B) > rate(A NB)	rate(A B) < rate(A NB)
rate(B A) > rate(B NA)	rate(B A) < rate(B NA)
rate(NA NB) > rate(NA B)	rate(NA NB) < rate(NA B)
rate(NB NA) > rate(NB A)	rate(NB NA) < rate(NB A)

Symmetry Rules

$$rate(A|B) > rate(A|NB) \iff rate(B|A) > rate(B|NA)$$

 $rate(A|B) < rate(A|NB) \iff rate(B|A) < rate(B|NA)$
 $rate(A|B) = rate(A|NB) \iff rate(B|A) = rate(B|NA)$

Basic Rule on Rates

- $rate(A \mid B) \le rate(A) \le rate(A \mid NB)$ or vice versa.
- The closer rate(B) is to 100%, the closer rate(A) is to rate(A|B)
- If rate(B) = 50%, then $rate(A) = 0.5[rate(A \mid B) + rate(A \mid NB)]$
- If $rate(A \mid B) = rate(A \mid NB)$, then $rate(A) = rate(A \mid B) = rate(A \mid NB)$

Simpson's Paradox

A phenomenon where a trend appears in more than half of the groups but changes when the groups are combined.

Confounders

- A third variable associated with both the independent and dependent variables.
- When a confounder is present, segregate the data by the confounding variable. This method is called slicing.

Outliers

- An outlier is an observation that falls well above or below the overall bulk of the data.
- A general rule is that outliers should not be removed unnecessarily.
- x is an outlier if $x > Q3 + 1.5 \cdot IQR$ or $x < Q1 1.5 \cdot IQR$.

Bell curve

- \bullet Symmetic: Mean = Median = Mode
- \bullet Left-Skewed: Mean < Median < Mode
- Right-Skewed: Mean > Median > Mode

Analyzing Histograms

- Peaks show the mode.
- More spread indicates higher variability.

Analyzing Box Plots

- Center is the median.
- Whiskers are smallest and largest non-outlier values.
- Skewness: compare max median and median min.

Correlation Coefficient

- Measure of linear association between two variables, $-1 \le r \le 1$.
- 0 to ± 0.3 = weak, ± 0.3 to ± 0.7 = moderate, ± 0.7 to ± 1 = strong.
- \bullet Removing outliers can increase, decrease, or cause no change to r.

Properties of r

- r is not affected by interchanging the x and y variables.
- r is not affected by adding or multiplying a constant to all values of a variable.
- Association \neq Causation: r value indicates a statistical relationship only.

Method of Least Squares

- Fits a line through data points by minimizing the sum of squared errors or the distance between the observed value and predicted outcome is the error (e):
- Error Sum of Squares: $e_1^2 + e_2^2 + \ldots + e_n^2$

Conditional Probability

• $P(E|F) = \frac{P(E \cap F)}{P(F)}$

Probability Rules

- For an event E: $0 \le P(E) \le 1$.
- For a sample space S: P(S) = 1.
- Sum of square errors $e_1^2 + e_2^2 + \ldots + e_n^2$.
- For mutually exclusive events E and F: $P(E \cup F) = P(E) + P(F)$.

Probability in Independent Events

• For independent events A and B: P(A) = P(A|B) and $P(A) \times P(B) = P(A \cap B)$.

Sensitivity and Specificity

- Sensitivity: P(Test Positive | Individual is infected).
- Specificity: P(Test Negative | Individual is not infected).

Law of Total Probability

- Formally, the law of total probability states that if E, F, and G are events from the same sample space S such that:
 - 1. E and F are mutually exclusive
 - $2. \ E \cup F = S$
- Then, $P(G) = P(G \mid E) \times P(E) + P(G \mid F) \times P(F)$

Normal Distribution

- Continuous random variables denoted as $N(\mu, \sigma^2)$ where μ : mean, σ^2 : variance.
- Density curve is bell-shaped and symmetric about the mean.
- For normal distribution: mean = median = mode.

Confidence Intervals

 A confidence interval is a range of values likely to contain a population parameter based on a certain degree of confidence.

We are 95% confident that the population parameter lies within the confidence interval

Another interpretation is that 95% of the researchers who repeat the experiment will have intervals that contain the population parameter

It is a common mistake to say that there is 95% chance that the population parameter lies within the confidence interval

- Larger sample size → smaller random error → narrower confidence intervals.
- ullet Higher confidence level o wider confidence interval.

Null and Alternative Hypotheses

- Null Hypothesis (H_0) : Asserts no effect; observed variances occurred by random chance.
- Alternative Hypothesis (H_a): The hypothesis to confirm, opposed to H_0 .
- Hypothesis testing aims to reject H_0 in favor of H_a .

Significance Level α

- Specifies how convincing the evidence must be before rejecting H_0 ($0 \le \alpha \le 1$).
- Lower significance level $\alpha \to \text{greater}$ evidence required.

p-Value

- The probability of obtaining a test result at least as extreme as the result observed, assuming the H_0 is true
- Alternatively, the probability of observing a test result that favours the H_{α} at least as much as what is observed, assuming the H_0 is true
- If $p \ge \alpha$, do not reject H_0 .
- If $p < \alpha$, reject H_0 .
- Never accept H_0 or reject H_a .

One-sample t-test	Chi-squared test
Mainly used to test difference between	Mainly used to test for association be-
sample mean and a known or hypothe-	tween two categorical variables.
sised mean.	
Population distribution should be ap-	Data required for the test is the count
proximately normal if sample size is	for the categories of a categorical vari-
small.	able.
Data used should be acquired via ran-	Data used should be acquired via ran-
dom sampling.	dom sampling.

Found: https://github.com/brianstm/NUS.git