

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Sistemas de Controle II ELT331

AULA 4 – Projeto de Controlador em Avanço de Fase pelo Método do Lugar das Raízes

Prof. Tarcísio Pizziolo

4.1. Controlador (Compensador)

Dispositivo inserido no sistema com a finalidade de satisfazer as especificações desejadas. Tal dispositivo compensa a deficiência do sistema original.

Estudaremos os controladores básicos que são compostos por um ganho K, um zero z e um pólo p.

Utiliza-se a Compensação Série ou a Paralela, sendo a Compensação Série mais usada.

Compensação Série:

Compensação Paralela:

4.2. Classificação dos Controladores

Dada uma excitação senoidal à entrada de um controlador e sua resposta em regime permanente, tem-se que:

- saída com avanço de fase
- saídda em atraso de fase
- saída em atraso e avanço de fase

Controladores Analógicos (compensadores) são Filtros eletrônicos aplicados para melhorar o desempenho do sistema.

Projeto de Controladores Analógicos pelo Método do Lugar das Raízes

4.3. Construção Básica de Controladores

Controladores analógicos podem ser construídos de várias maneiras, tais como circuitos RC, sistemas mecânicos do tipo mola-amortecedor e utilizando Amplificadores Operacionais.

Controladores utilizando Amplificadores Operacionais

Seja o circuito a seguir:

Ganho da Rede

Onde:
$$T = R_1C_1$$
; $\alpha T = R_2C_2$; $K_c = \frac{R_4C_1}{R_3C_2}$

Note que: $K_c \alpha = \frac{R_4 C_1}{R_3 C_2} \cdot \frac{R_2 C_2}{R_1 C_1} \Rightarrow K_c \alpha = \frac{R_2 R_4}{R_1 R_3}$ e $\alpha = \frac{R_2 C_2}{R_1 C_1}$

4.3. Construção Básica de Controladores

Pela **localização** do **zero** e do **pólo** o controlador é classificado em **Avanço de Fase** e em **Atraso de Fase**.

- Se $R_1C_1 > R_2C_2$ ou $\alpha < 1$ o zero do controlador situa-se mais próximo da origem do que o pólo, ou seja, o zero situa-se à direita do pólo. Esta situação é apresentada na Figura a) caracterizando um controlador em Avanço de Fase.
- Se R₁C₁ < R₂C₂ o polo do controlador situa-se mais próximo da origem do que o zero, ou seja, o pólo situa-se à direita do zero. Esta situação é apresentada na Figura b) caracterizando um controlador em Atraso de Fase.

4.3. Construção Básica de Controladores

- A aplicação do método do Lugar das Raízes para projetos de controladores é muito eficiente quando as especificações são dadas em termos de grandezas no domínio do tempo, tais como coeficiente de amortecimento (ξ), frequência natural não amortecida dos pólos dominantes de malha fechada (\mathbf{w}_n), sobre-sinal máximo (\mathbf{M}_p), tempo de subida (\mathbf{t}_r) e tempo de acomodação ($\mathbf{t}_{s2\%,5\%}$).

Procedimentos para o projeto de um Controlador

Seja o sistema de controle generalizado dado:

Observa-se que a realimentação **não é unitária**, pois existe **H(s)** no ramo de retroação.

Para **simplificar** o projeto de um controlador deve-e reorganizar o diagrama de blocos para obter-se uma **realimentação unitária**.

F(s) = Função de Transferência reorganizada G_c(s) = Controlador

4.4. Simplificação do Diagrama de Blocos

Deve-se transformar o sistema de controle com realimentação não unitária em um sistema com realimentação unitária adicionado e subtraindo caminhos de realimentação unitária. Então:

4.5. Compensação por Avanço de Fase

- Aplicação em sistemas que sejam instáveis ou estáveis para qualquer valor do ganho mas apresentem características de resposta transitória indesejáveis.
- Atuação principalmente no estado transitório da resposta do sistema.

O controlador é dado pela Fórmula:
$$G_c(s) = K \frac{(s+z)}{(s+p)} \frac{\phi}{\theta}$$

- Para que a compensação seja por Avanço de Fase, a contribuição angular do zero do controlador tem que ser maior que a do pólo ($\phi > \theta$). Então o zero tem que ficar à direitra do pólo do controlador!
- Para a determinação do zero e do pólo do controlador utilizamos o **Método da Bissetriz** juntamente com a **condição de ângulo** do Método do Lugar das Raízes.

- Para determinar o ganho K do controlador deve-se aplicar a condição de módulo do Método do Lugar das Raízes.

Método da Bissetriz

- PB é a bissetriz do ângulo OPA = 2β.

$$\theta + \alpha + (180^{\circ} - \phi) = 180^{\circ} = >$$

$$= > \alpha = \phi - \theta$$

$$\theta \sqrt{80^{\circ} - \phi}$$

4.6. Procedimentos para Projeto de Controlador por Avanço de Fase

- 1 Determinar a localização desejada dos pólos de malha fechada dominantes com base nas especificações de desempenho do sistema.
- 2 Construir o Lugar das Raízes do sistema não compensado e verificar se é possível obter os pólos de malha fechada desejados apenas com ajuste de ganho.
- 3 Caso não seja possível obter os pólos de malha fechada desejados apenas com o ajuste de ganho, calcular o ângulo φ a ser corrigido pelo controlador.

4 – Supor que a Função de Transferência do controlador por Avanço de Fase seja

$$G_c(s) = K_c \alpha \frac{(Ts+1)}{(\alpha Ts+1)} = K_c \frac{(s+\frac{1}{T})}{(s+\frac{1}{\alpha T})}$$
; $(0 < \alpha < 1)$

Onde α e T são determinados com base na deficiência angular e K_c é determinado a partir do ganho de malha aberta.

- 5 Aplicando o **Método da Bissetriz** determine as posições do pólo $s = -1/\alpha T$ e do zero s = -1/T do controlador de modo que o mesmo contribua com o ângulo ϕ necessário.
- 6 Determine o ganho K de malha aberta do sistema compensado pela **condição de módulo**.

<u>Obs.:</u> Se as especificações ainda não forem obtidas, deve-se **ajustar** os parâmetros encontrados para o controlador!

4.7. Exemplos

Exemplo 5.7.1 Considere o sistema mostrado a seguir.

Projetar um controlador para que o Coeficiente de Amortecimento seja ξ = 0,5 e a Frequência Natural não Amortecida seja w_n = 4 rd/s.

Considerações iniciais:

- A Função de Transferência em malha fechada é:

$$F(s) = \frac{4}{s^2 + 2s + 4}; \quad P\'olos: s_{1,2} = (-1 \pm j\sqrt{3}); \quad K_v = \varprojlim_{s \to 0} sG(s) = \varprojlim_{s \to 0} s[\frac{4}{s(s+2)}] \Rightarrow K_v = 2; e_{ss} = \frac{1}{K_v} = 0.5 \text{ s}^{-1}$$

- A Frequência Natural não Amortecida atual é $w_n = \sqrt{4} = 2$ rd/s. O Coeficiente de Amortecimento atual é: $2\xi w_n = 2 => \xi = 0.5$
- O Coefficiente de Amortecimento atual e: $2\zeta W_n = 2 \Rightarrow \zeta = 0.5$

erro estático de velocidade será $e_{ss} = 1/K_v = \frac{1}{4} = 0,25$.

- Desta forma necessita-se manter o mesmo ξ , ou seja, o mesmo amortecimento, mas alterar a frequência \mathbf{w}_n de \mathbf{w}_n = 2 rd/s para \mathbf{w}_n = 4 rd/s.
- O aumento no valor de **w**_n implicará em uma resposta **mais rápida** do sistema.

Obs.:

Como efeito colateral, a alteração da frequência \mathbf{w}_n de \mathbf{w}_n = 2 rd/s para \mathbf{w}_n = 4 rd/s provocará uma diminuição no **erro estacionário** do sistema quando este for submetido a uma entrada **Rampa Unitária** em função do decréscimo de \mathbf{K}_v . Para \mathbf{w}_n = 2 rd/s o \mathbf{K}_v atual é \mathbf{K}_v = 2 s⁻¹, mas para \mathbf{w}_n = 4 rd/s o \mathbf{K}_v será \mathbf{K}_v = 4 s⁻¹, daí o

Solução

1 - Determinar a localização desejada dos pólos de malha fechada dominantes com

base nas especificações de desempenho do sistema.

$$\beta = \cos^{-1}(\xi) \Rightarrow \beta = \cos^{-1}(0.5) \Rightarrow \beta = 60^{\circ}$$

$$w_n^2 = \sigma^2 + w^2 \Rightarrow 2^2 = \sigma^2 + w^2 \Rightarrow 4 = 1^2 + (\sqrt{3})^2 \Rightarrow 4 = 4 \text{ (ok!)}$$

$$w_n^2 = \sigma^2 + w^2 \Rightarrow 4^2 = \sigma^2 + w^2 \Rightarrow 16 = 2^2 + (2\sqrt{3})^2 \Rightarrow 16 = 16 \text{ (ok!)}$$

Solução

- 1 Construir o LR do sistema não compensado e verificar se é possível obter os pólos de malha fechada desejados apenas com ajuste do ganho **K**.
- 2 Como **ξ** deve permanecer com o mesmo valor não é possivel obter os pólos de malha fechada desejados apenas com ajuste do ganho **K** pelo fato de que o LR não compensado não passará pelos mesmos.
- 3 Caso não seja possível obter os pólos de malha fechada desejados apenas com o ajuste de ganho, calcular o ângulo φ a ser corrigido pelo controlador.

Método da Bissetriz

Solução

$$-\angle P = 120^{\circ} + 90^{\circ} \Rightarrow \angle P = -210^{\circ}$$

Método da Bissetriz

Condição de Ângulo para o pólo P':

$$\angle \frac{4}{\mathbf{s}(\mathbf{s}+2)} \Big|_{\underbrace{\mathbf{s}=(-2+\mathbf{j}2\sqrt{3})}_{\text{Pólo P'}}} = \angle \left[\frac{4}{(-2+\mathbf{j}2\sqrt{3})(-2+\mathbf{j}2\sqrt{3}+2)} \right] \Rightarrow$$

$$\Rightarrow \angle \left[\frac{4}{(-12-\mathbf{j}4\sqrt{3})} \right] = \angle \left[\frac{1}{(-3-\mathbf{j}\sqrt{3})} \right] = 0^{\circ} - \mathsf{tg}^{-1} \left(\frac{-\sqrt{3}}{-3} \right) \Rightarrow$$

$$\Rightarrow \angle \frac{4}{s(s+2)} \Big|_{s=(-2+j2\sqrt{3})} = -210^{0}$$

Para P' pertencer ao LR o Controlador em Avanço de Fase deve contribuir com $\alpha = +30^{\circ}$.

- Zeros possuem $\phi > 0^{\circ}$
- Pólos possuem $\theta < 0^{\circ}$ $(\phi - \theta) = +30^{\circ}$

Solução

Método da Bissetriz

Cálculo do Zero:

$$tg(75^{\circ}) = \frac{2\sqrt{3}}{z} \Rightarrow z = \frac{2\sqrt{3}}{tg(75^{\circ})} \Rightarrow z = \frac{2\sqrt{3}}{3,732} \Rightarrow z \approx 0.93$$

Zero:
$$-\frac{1}{T} = -(0.93 + 2) \Rightarrow -\frac{1}{T} = -2.93$$

Cálculo do Pólo:

$$tg(75^{0}) = \frac{2\sqrt{3}}{z} \Rightarrow z = \frac{2\sqrt{3}}{tg(75^{0})} \Rightarrow z = \frac{2\sqrt{3}}{3,732} \Rightarrow z = 0.93 \qquad tg(45^{0}) = \frac{2\sqrt{3}}{p} \Rightarrow z = \frac{2\sqrt{3}}{tg(45^{0})} \Rightarrow z = \frac{2\sqrt{3}}{1} \Rightarrow z = 3.46$$

Pólo:
$$-\frac{1}{\alpha T} = -(3,46+2) \Rightarrow -\frac{1}{\alpha T} = -5,46$$

Solução

4 – Supor que a Função de Transferência do controlador por Avanço de Fase seja dada por: $\binom{1}{s+1}$

 $G_c(s) = K_c \alpha \frac{(Ts+1)}{(\alpha Ts+1)} = K_c \frac{(s+\frac{1}{T})}{(s+\frac{1}{\alpha T})}$; $(0 < \alpha < 1)$

Onde α e T são determinados com base na deficiência angular e K_c é determinado a partir do ganho de malha aberta.

5 – Aplicando o **Método da Bissetriz** determine as posições do pólo $s = -1/\alpha T$ e do zero s = -1/T do controlador de modo que o mesmo contribua com o ângulo ϕ necessário.

$$G_{c}(s) = K_{c} \frac{(s+2,93)}{(s+5,46)}$$
; $(0 < \alpha < 1)$
 $\frac{1}{T} = \frac{1}{2,93} \Rightarrow T = 0,34$
 $\frac{1}{\alpha T} = 5,46 \Rightarrow \frac{1}{\alpha(0,34)} = 5,46 \Rightarrow \alpha = 0,54$

Solução

6 – Determine o ganho K de malha aberta do sistema compensado pela **condição de módulo**.

$$G_{c}(s)G(s) = \left[K_{c}\frac{(s+2,93)}{(s+5,46)}\right]\left[\frac{4}{s(s+2)}\right] \Rightarrow G_{c}(s)G(s) = \left[\frac{4K_{c}(s+2,93)}{(s+5,46)s(s+2)}\right]$$

Para a condição de módulo:

$$\left|G_{\mathbf{c}}(\mathbf{s})G(\mathbf{s})\right|_{\mathbf{s}=(-2+\mathbf{j}2\sqrt{3})} = 1 \Rightarrow \left|\frac{4K_{\mathbf{c}}(\mathbf{s}+2.93)}{(\mathbf{s}+5.46)\mathbf{s}(\mathbf{s}+2)}\right|_{\mathbf{s}=(-2+\mathbf{j}2\sqrt{3})} = 1 \Rightarrow K_{\mathbf{c}} = 4.68$$

O Controlador em Avanço de Fase será dado por:

$$G_c(s) = 4,68 \frac{(s+2,93)}{(s+5,46)}$$

Deve-se notar que o K_v assume um valor $K_v = 5 \text{ s}^{-1}$ aplicando o controlador $G_c(s)$ projetado. Sem o controlador $K_v = 2 \text{ s}^{-1}$, daí a aplicação deste controlador implica na redução do erro na resposta à entrada Rampa Unitária, pois $e_{ss} = 1/K_v$.

Para uma entrada Degrau Unitário a resposta do sistema fica mais rápida pelo fato de $\mathbf{w_n}$ aumentar de $\mathbf{w_n} = 2$ rd/s para $\mathbf{w_n} = 4$ rd/s (c(t) = 1 – e -(ξ wn)t.sen(.....)).

O controlador foi inserido na malha de controle do sistema e após a determinação da Função de Tansferência em malha fechada aplicou-se uma entrada Degrau Unitária. A curva de resposta é apresentada a seguir.

Um circuito com amplificadores operacionais pode ser construido para este controlador em avanço de fase considerando que:

Utilizando
$$C_1 = C_2 = 10 \ \mu\text{F} \ \text{e} \ R_3 = 10 \ \text{K}\Omega \ \text{e} \ G_c(s) = 4,68 \frac{(s+2,93)}{(s+5,46)} = 2,51 \frac{(0,345s+1)}{(0,185s+1)} \ \text{:}$$

$$\frac{R_2R_4}{R_1R_3} = 2,51$$
; $R_1C_1 = 0,345 \Rightarrow R_1 = 34,5 \text{ K}\Omega$ e $R_2C_2 = 0,185 \Rightarrow R_2 = 18,5 \text{ K}\Omega$

E
$$\frac{R_2R_4}{R_1R_3}$$
 = 2,51 \Rightarrow R₄ = 46,8 KΩ

Exemplo 4.7.2 Considere o sistema mostrado a seguir.

$$G(s)H(s) = \frac{10}{s(s+1)}$$

Projetar um controlador em série com a Planta para que o Coeficiente de Amortecimento seja $\xi = 0.5$ e a Frequência Natural não Amortecida seja $w_n = 3$ rd/s.

$$F(s) = \frac{\frac{10}{s(s+1)}}{1 + \frac{10}{s(s+1)}} \Rightarrow F(s) = \frac{10}{s^2 + s + 10} \Rightarrow \begin{bmatrix} \xi = 0.16 \end{bmatrix} \text{ e } \begin{bmatrix} w_n = \sqrt{10} \text{ rd/s} \cong 3.16 \text{ rd/s} \end{bmatrix}$$
Pólo desejado

Equação característica: $s^2 + s + 10 = 0 \Rightarrow s_{1,2} = -0.5 \pm j3.12$

Pólos atuais:

Solução

Determinação da contribuição angular do controlador em avanço de fase:

$$\xi = 0.5 \rightarrow \beta = 60^{\circ}$$

$$\alpha = 180^{\circ} - \theta = 180^{\circ} - \text{tg}^{-1} \left(\frac{2,598}{0,5} \right) \Rightarrow \alpha = 100,9^{\circ}$$

$$\phi = 180^{0} - 120^{0} - \alpha \Rightarrow \phi = 180^{0} - 120^{0} - 100,9^{0} \Rightarrow \phi = -40,9$$

O controlador em avanço deverá contribuir com $\phi = 40,9^{\circ}$.

A função de transferência do controlador será:

$$G_c(s) = K_c \alpha \frac{(Ts+1)}{(\alpha Ts+1)} = K_c \frac{(s+\frac{1}{T})}{(s+\frac{1}{\alpha T})}$$
; $(0 < \alpha < 1)$

` jw

Solução

Determinação do zero e do pólo do controlador em avanço de fase:

39,6°

ZERO:
$$tg(80,5^{\circ}) = \frac{2,598}{\sigma_z} \Rightarrow \sigma_z = 0,43$$

$$tg(39,6^{\circ}) = \frac{2,598}{\sigma_p} \Rightarrow \sigma_p = 3,10$$

$$p = -1.5 - \sigma_p \Rightarrow p = -4.61$$

$$G_c(s) = K_c \frac{(s+z)}{(s+p)} \Rightarrow G_c(s) = K_c \frac{(s+1,94)}{(s+4,61)}$$

Condição de módulo determina-se
$$K_c$$
:
$$\left|G_c(s)G(s)\right|_{s=-1,5+j2,598}=1 \Rightarrow \left|K_c\frac{(s+1,94)}{(s+4,61)}\frac{10}{s(s+1)}\right|_{s=-1,5+j2,598}$$

$$\Rightarrow$$
 $K_c = 1,23$

` jw

j2,598

20,45°

20,45°

oissettill

60°

=1⇒

120°

$$z = -1.5 - \sigma_z \Rightarrow z = -1.94$$
PÓLO:

Solução

Determinação da função de transferência do controlador:

$$G_c(s) = K_c \frac{(s+z)}{(s+p)} \Rightarrow G_c(s) = 1,23 \frac{(s+1,94)}{(s+4,61)}$$

A nova $G_c(s)G(S)H(s)$:

$$G_c(s)G(s)H(s) = 1,23 \frac{(s+1,94)}{(s+4,61)} \frac{10}{s(s+1)} \Rightarrow G_c(s)G(s)H(s) = \frac{12,3(s+1,94)}{s(s+4,61)(s+1)}$$

Gráfico do lugar das raízes do sistema projetado.

Exemplo 4.7.2 Solução

A função de transferência em malha fechada com o controlador será:

$$\frac{C(s)}{R(s)} = \frac{(2,644s + 5,138)}{(0,2152s^3 + 1,2152s^2 + 3,644s + 5,138)}$$

4.8. Exercícios

4.8.1 Considere o sistema abaixo com $G(s) = \frac{5}{s(0.5s+1)}$.

Projete o controlador $G_c(s)$ em avanço de fase de modo que os pólos dominantes em mlaha fechada se localizem em $s = -2 \pm j2\sqrt{3}$.

4.8.2 Considere o sistema abaixo com $G(s) = \frac{1}{s^2}$.

Projete o controlador $G_c(s)$ em avanço de fase de modo que os pólos dominantes em mlaha fechada se localizem em $s = -1 \pm j1$.