AUTOVALORES E AUTOVETORES

Seja T: V \rightarrow V um operador linear (transformação linear de um espaço vetorial nele mesmo). Um vetor $V \in V$, $V \neq 0$ é autovetor do operador T se existir $\lambda \in \Re$ tal que:

$$T(\sqrt{r}) = \lambda \sqrt{r}$$

O número real λ tal que: T(V) = λV é denominado autovalor de T associado ao vetor próprio V

OBS: Os autovetores são também denominados <u>VETORES PRÓPRIOS</u> ou <u>VETORES</u> <u>CARACTERÍSTICOS</u> e os autovalores são também denominados de <u>VALORES</u> <u>PRÓPRIOS</u> ou <u>VALORES CARACTERÍSTICOS</u>.

EXEMPLO 1:

Verifique se os vetores $\sqrt[r]{1}$ = (5, 2) e $\sqrt[r]{2}$ = (2, 1) são vetores próprios do operador linear T: $IR^2 \rightarrow IR^2 \mid T(x,y) = (4x + 5y, 2x + y)$ associados os valor próprio λ = 6.

Solução

$$T(\vec{v_1}) = T(5, 2) = (20 + 10, 10 + 2)$$

$$T(\vec{v_1}) = T(5, 2) = (30, 12)$$

$$T(\vec{v_1}) = T(5, 2) = 6(5, 2)$$

$$\mathsf{T}(\overrightarrow{v_1}) = 6\overrightarrow{v_1}$$
.

Portanto, o vetor $\overrightarrow{v_1}$ = (5, 2) é vetor próprio do operador linear deste operador T: $IR^2 \rightarrow IR^2 \mid T(x, y) = (4x + 5y, 2x + y)$, pois: T(5, 2) = (30, 5) = 6(5, 2).

$$T(\overrightarrow{v_2}) = T(2, 1) = (8 + 5, 2 + 1)$$

$$T(\overrightarrow{v_2}) = T(2, 1) = (13, 5)$$

$$T(\overrightarrow{v_2}) = T(2, 1) \neq \lambda(2, 1).$$

Portanto.

O vetor $\overrightarrow{v_2}$ = (2, 1) não é vetor do operador linear T: $IR^2 \to IR^2 | T(x, y)$ = (4x + 5y, 2x + y), pois: T(2, 1) = (13, 5) $\neq \lambda(2, 1)$. Para $\forall \in IR$.

<u>CONCLUSÃO:</u> Qualquer múltiplo do vetor (5,2) será vetor próprio associado ao valor próprio 6.

Exemplo 2

Verificar se o vetor $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ é um autovalor de $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ correspondendo ao autovalor $\lambda = 3$?

Solução

$$\vec{A} \cdot \vec{v} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$\vec{A} \cdot \vec{v} = 3\vec{v}$$

Portanto, o vetor
$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 é um autovalor de $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$

DETERMINAÇÃO DOS VALORES PRÓPRIOS E DOS VETORES PRÓPRIOS:

i) Determinação dos valores próprios ou autovalores

Seja o operador linear T: $IR^3 \rightarrow IR^3$, cuja matriz canônica é:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \text{, isto \'e } A = \begin{bmatrix} T \end{bmatrix}$$

Se v e λ são respectivamente, vetor próprio e o correspondente valor próprio do operador T, tem-se:

$$A.v = \lambda v$$
 (v é matriz-coluna 3 X1) ou:

$$A.v - \lambda v = 0$$

Tendo em vista que v = Iv (I é matriz-identidade), pose-se escrever:

$$A.v - \lambda Iv = 0$$
 ou:

$$(A - \lambda I).v = 0$$

Para que esse sistema homogêneo admita solução não-nula, isto é:

$$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

deve-se ter:

 $det(A - \lambda I) = 0$ ou:

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = 0$$

A equação $\det(A-\lambda I)=0$ é denominada equação característica do operador T ou da matriz A, e suas raízes são os valores próprios do operador T ou da matriz A. O determinante $\det(a-\lambda I)$ é um polinômio em λ denominado polinômio característico.

ii) Determinação dos vetores próprios ou autovetores

A substituição de λ pelos valores no sistema homogêneo de equações lineares permite determinar os vetores próprios associados.

Exemplo

1) Determinar os valores próprios e os vetores próprios do operador linear:

T:
$$IR^3 \rightarrow IR^3$$
, $T(x, y, z) = (3x - y + z, -x + 5y - z, x - y + 3z)$.

Solução:

i) <u>Determinação dos valores próprios (autovalores):</u>

A matriz canônica do operador Té:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

A equação característica do operador é:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 & 1 \\ -1 & 5 - \lambda & -1 \\ 1 & -1 & 3 - \lambda \end{vmatrix} = 0$$

isto é, desenvolvendo o determinante pela $1^{\underline{a}}$ linha,(Laplace) vem:

$$(3-\lambda) \begin{vmatrix} 5-\lambda & -1 \\ -1 & 3-\lambda \end{vmatrix} - (-1) \begin{vmatrix} -1 & -1 \\ 1 & 3-\lambda \end{vmatrix} + 1 \begin{vmatrix} -1 & 5-\lambda \\ 1 & -1 \end{vmatrix} = 0$$

$$(3-\lambda).(15-8\lambda+\lambda^2-1)+1.(-3+\lambda+1)+1.(1-5+\lambda)=0$$

$$45-24\lambda+3\lambda^2-3-15\lambda+8\lambda^2-\lambda^3+\lambda-3+\lambda+1+1-5+\lambda=0$$

$$-\lambda^3+11\lambda^2-36\lambda+36=0$$
ou:
$$\lambda^3-11\lambda^2+36\lambda-36=0$$

As soluções inteiras, caso existam, são divisoras do termo independente - 36. Com as devidas substituições na equação acima, constata-se que λ = 2 é uma delas. Conseqüentemente, λ - 2 é um fator do polinômio característico λ^3 - $11\lambda^2$ + 36λ - 36. Se dividirmos esse polinômio por λ - 2, a equação poderá ser apresentada como:

$$(\lambda - 2).(\lambda^2 - 9\lambda + 18) = 0$$

e, portanto, as demais raízes são soluções da equação:

$$\lambda^2 - 9\lambda + 18 = 0$$

Logo, os valores próprios do operador T são:

$$\lambda_1 = 2; \quad \lambda_2 = 3; \quad \lambda_3 = 6$$

ii) <u>Determinação dos vetores próprios (autovalores):</u>

O sistema homogêneo de equações lineares que permite a determinação dos vetores próprios associado é:

$$(A - \lambda I) \cdot v = 0$$

Considerando
$$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 o sistema fica:

$$\begin{bmatrix} 3 - \lambda & -1 & 1 \\ & 5 - \lambda & -1 \\ 1 & -1 & 3 - \gamma \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

1) Substituindo λ por 2 no sistema, obtém-se os vetores próprios associados a λ_1 = 2:

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é;

$$\begin{cases} 1x - 1y + z = 0 \\ -1x + 3y - 1z = 0 \\ 1x - 1y + 1z = 0 \end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$z = -x$$

$$y = 0$$

Assim, os vetores do tipo v_1 = (x, 0, -x) ou v_1 = x(1, 0, -1), $x \ne 0$, são vetores próprios associados a λ_1 = 2.

2) Substituindo λ por 3 no sistema obtém-se os vetores próprios associados a λ_2 = 3:

$$\begin{bmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases}
-y+z=0\\ -x+2y-z=0\\ x-y=0
\end{cases}$$

O sistema admite uma infinidade de soluções próprias:

$$y = x$$

$$z = x$$

Assim, os vetores do tipo $v_2 = (x, x, x)$ ou $v_2 = x(1, 1, 1), x \neq 0$, são os vetores próprios associados a $\lambda_2 = 3$.

3) Substituindo λ por 6 no sistema obtém-se os vetores próprios associados a λ_3 = 6:

$$\begin{bmatrix} -3 & -1 & 1 \\ -1 & -1 & -1 \\ 1 & -1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

isto é:

$$\begin{cases}
-3x - y + z = 0 \\
-x - y - z = 0 \\
x - y - 3z = 0
\end{cases}$$

O sistema admite infinidade de soluções próprias:

$$y = -2x$$

$$z = x$$

Assim, os vetores do tipo $v_3 = (x, -2x, x)$ ou $v_3 = x(1, -2, 1), x \neq 0$, são os vetores próprios associados a $\lambda_3 = 6$.

Exercícios

1) Determinar os vetores próprios e os valores próprios para:

a) T:
$$IR^2 \to IR^2 | T(x, y) = (4x + 5y; 2x + y)$$
.

b) T:
$$IR^2 \rightarrow IR^2 | T(x, y) = (-3x - 5y, 2y)$$
.

c) T:
$$IR^2 \to IR^2 | T(x, y) = (x = 2y, -x + 4y)$$
.

d) T:
$$IR^3 \rightarrow IR^3 | T(x, y, z) = (x, -2x - y, 2x + y + 2z)$$
.

e) T: IR³
$$\to$$
 IR³, T(x, y, z) = (x +y, y, z)

f) T:
$$IR^2 \rightarrow IR^2$$
, $T(x, y) = y, -x$)

- 2. Calcular os valores próprios e os correspondentes vetores próprios da seguinte matriz: $A = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix}$.
- 3. Encontre todos os autovalores do operador T: $IR^3 \rightarrow IR^3$, definido por T(x, y, z) = (2x + y, y z, 2y + 4z).
- 4. Seja $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. Determine os autovalores e autovetores de A.
- 5. Determine os autovalores e autovetores da matriz $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$.
- 6. Determine os autovalores e autovetores da matriz $A = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$.
- 7. Determinar os valores próprios e os vetores próprios da matriz $A = \begin{bmatrix} 4 & 5 \\ 2 & 1 \end{bmatrix}$.
- 8. Determinar os valores próprios e os vetores próprios da matriz $A = \begin{bmatrix} -16 & 10 \\ -16 & 8 \end{bmatrix}$.
- 9. Os valores próprios de um operador linear são $\lambda_1 = 2$ e $\lambda_2 = -3$, sendo $\overrightarrow{v_1} = (1, -1)$ e $\overrightarrow{v_2} = (-1, 0)$ os respectivos vetores associados. Determine T(x, y).

BOLDRINI, José Luiz. Álgebra Linear. 3ª ed. São Paulo: Harpa, 1980. LIPSCHUTZ, Seymour. Álgebra Linear. 2ª ed. São Paulo: McGran-Hill do Brasil, 1981.

MACHADO, Antonio dos Santos. Álgebra Linear e Geometria Analítica. 2ª ed. São Paulo: Atual Editora, 1991.

STEINBRUCH, Alfredo e WINTERLE, Paulo. Geometria Analítica. 2ª ed. São Paulo: McGran-Hil do Brasil, 1987.

STEINBRUCH, Alfredo e WINTEELE, Paulo. Álgebra Linear. 2ª ed. São Paulo: McGranw-Hill, 1987.