P6: Ondes mécaniques

1 Ondes mécaniques progressives.

Exemple: Propagation d'une onde sur une corde.

- Une perturbation est créée à l'extrémité d'une corde, puis se propage.
- Le point touché par l'onde commence par monter, puis il redescend et retrouve sa position initiale.

Ce type d'onde est appelée **transversale** car la direction de propagation est perpendiculaire à celle de déplacement d'un point du milieu

Exemple: Propagation d'une onde le long d'un ressort

Le point touché par l'onde avance puis il recule pour retrouver sa position de départ.

Ce type d'onde est appelée **longitudinale** car la direction de propagation est perpendiculaire la même que celle de déplacement d'un point du milieu

Définition Onde mécanique

Une onde mécanique progressive est un phénomène de propagation d'une déformation dans un milieu matériel sans transport global de matière.

Exemples d'ondes

- mécaniques: Ondes sonores ultrasons ondes sismiques – houle en mer
- non mécaniques: ondes électromagnétiques (radio / X / lumière / WiFi)

Remarque: Une onde transporte de l'énergie. Par exemple une onde sonore peut faire vibrer le tympan dans l'oreille, une onde sismique provoquer des destructions.

2 Célérité et temps de retard.

Définition Célérité

La **célérité** v d'une onde est la vitesse de déplacement de la <u>perturbation</u>.

$$v = \frac{d}{\Delta t}$$

où d est la distance parcourue par la **perturbation** et Δt la durée correspondante.

On peut dire que la perturbation qui existe en B à l'instant t est la même que celle qui existait en A à l'instant t'. On dit que $\tau = t - t' = \frac{d}{v}$ est le temps de retard de B par rapport à A.

3 Ondes progressives périodiques.

Rappels:

- Un phénomène est périodique lorsqu'il se répète à intervalle régulier au cours du temps.
- Celui ci est caractérisé par sa période T qui la plus petite durée au bout de laquelle il se répète.
- La fréquence f est le nombre de répétitions du phénomène, généralement en une seconde, elle s'exprime alors en hertz (Hz)

$$f = \frac{1}{T}$$

A. Périodicité temporelle.

Une onde mécanique est **périodique** lorsque la source de l'onde est animée d'un mouvement périodique

Exemple: L'onde sinusoïdale.

Elle est caractérisée par :

- sa période temporelle T
- son amplitude A
- sa phase φ (nulle ici)

Mathématiquement en un point donné à un instant t l'onde est modélisé par une fonction de type $y = A. \sin(\frac{2\pi}{\tau}t + \varphi)$

B. La périodicité spatiale.

• Une onde sinusoïdale se propage sur une corde.

Lycée Kleber (HW 2025) 1 / 5

- Au bout d'une période pour la source de l'onde, on voit apparaître un motif se dessiner sur la corde.
- La longueur de ce motif est appelée la longueur d'onde et notée $\boldsymbol{\lambda}$

Définition Longueur d'onde

La distance parcourue par une onde pendant une **période** T est appelée longueur d'onde donc :

$$\lambda = v \times T$$

où λ est la longueur d'onde v est la célérité T est la période

Interprétation : La longueur d'onde est une mesure de la périodicité de l'onde dans l'espace.

Ce qu'il faut savoir faire

- ✓ Décrire, dans le cas d'une onde mécanique progressive, la propagation d'une perturbation mécanique d'un milieu dans l'espace et au cours du temps : houle, ondes sismiques, ondes sonores, etc.
- Expliquer, à l'aide d'un modèle qualitatif, la propagation d'une perturbation mécanique dans un milieu matériel.
- Exploiter la relation entre la durée de propagation, la distance parcourue par une perturbation et la célérité, notamment pour localiser une source d'onde.
- Distinguer périodicité spatiale et périodicité temporelle.
 Justifier et exploiter la relation entre période, longueur d'onde et célérité.
- Déterminer les caractéristiques d'une onde mécanique périodique à partir de représentations spatiales ou temporelles.

Lycée Kleber (HW 2025) 2 / 5

P6: Activité et Exercices

⚠ Méthode de travail à suivre :

- Lire la partie cours et suivre les explications du professeur.
- Rédiger les réponses aux questions Q1.. sur une feuille de travail. Ne pas attendre la correction pour commencer!
- Réaliser une carte mentale (ou un résumé) du cours
- Faire les exercices dans l'ordre (sur une feuille)
- Q1. Quelles sont les propositions justes ?
 - a) une onde transporte de l'énergie.
 - b) la lumière est une onde mécanique.
 - c) la célérité d'une onde dépend du milieu de propagation.
 - d) une onde mécanique ne se propage pas dans le vide.
 - e) le vent est une onde.
- Q2. Quelles sont les propositions justes ?
 - a) Toutes les ondes sont périodiques.
 - b) Sans changer de milieu, si la fréquence d'une onde est doublée, la longueur d'onde est aussi doublée.

Exercice 1: Onde sur une corde

Une onde sur une corde est créée à l'instant t=0 à partir du point S. Un point M se trouve à 50 cm de S. Le schéma montre la situation à l'instant t=0,30 s

- 1) Décrire le mouvement du point M lors du passage de l'onde.
- 2) Définir puis calculer la célérité de l'onde.
- 3) Faire un schéma de la corde à t=0,60 s.
- **4)** Pendant combien de temps le point M est-il en mouvement ?

Exercice 2: Ondes sismiques

Parmi les ondes sismiques, on distingue :

 les ondes P ou ondes primaires, qui sont des ondes de compression ou ondes longitudinales; leur célérité vaut en moyenne v_D = 6,0 km.s⁻¹. les ondes S ou ondes secondaires, appelées également ondes de cisaillement ou ondes transversales ; leur célérité v_s vaut en moyenne v_s = 3,5 km.s⁻¹.

Sur un sismogramme on observe que les ondes S arrivent à un instant t_P et les ondes S arrivent à un instant t_S , 5,0 s plus tard.

Déterminer la distance d à laquelle se trouve la source des ondes.

Exercice 3: Célérité d'ondes périodiques sur l'eau

Un vibreur génère des ondes périodique de fréquence 25 Hz sur l'eau. La situation est visible sur la photo. Attention le document n'est pas à taille réelle!

- 1) Mesurer la longueur d'onde sur le document. La valeur doit être précise.
- 2) Rappeler la relation entre longueur d'onde et fréquence.
- 3) En déduire la célérité des ondes sur l'eau.

Exercice 4: Célérité du son dans l'air.

Trois micros M_1 , M_2 et M_3 sont alignés de telle manière que les distances M_1M_2 et M_2M_3 valent respectivement 2,00 m et 3,00 m. Les signaux électriques correspondant aux sons reçus par les micros sont enregistrés grâce à un ordinateur.

On donne un coup de cymbale devant le premier micro M_1 puis lance immédiatement l'enregistrement.

Lycée Kleber (HW 2025) 3 / 5

- 1) Quel est le temps de retard de l'onde sonore en M_2 par rapport à M_1 ?
- 2) En déduire la valeur de la célérité du son dans l'air.
- 3) À l'aide d'une autre mesure faire un deuxième calcul de la célérité du son.

On dispose maintenant les deux micros M_1 et M_2 à la même distance d'un diapason. Les signaux sonores obtenus sont alors en phase.

4) Déterminer la période puis la fréquence du son émis par le diapason.

On éloigne le microphone M_2 et la courbes correspondante se décale progressivement pour revenir en phase. On répète l'opération jusqu'à compter cinq positions pour lesquelles les courbes sont à nouveau en phase. La distance entre les deux microphones est alors égale à 3,86 m.

- 5) Définir la longueur d'onde. Déduire sa valeur numérique de l'expérience
- **6)** Calculer la célérité du son dans l'air et comparer aux valeurs précédentes.

Exercice 5: La houle

La houle est un mouvement ondulatoire de la surface de la mer dû au frottement d'un vent éloigné de la zone d'observation. En l'absence de vent les vagues continuent à se propager librement.

Si on observe un objet flottant à la surface de la mer: les vagues le soulèvent, puis il revient à sa position initiale. Si l'eau est assez profonde, ce déplacement vertical lors du passage de la vague est accompagné d'un mouvement de va-et-vient horizontal de même amplitude. Le savant allemand F Gerstner a démontré que les « particules d'eau » décrivent des trajectoires circulaires dont le diamètre est égal à la hauteur de la vague.

mouvement d'une particule d'eau

- 1) Décrire le mouvement d'un bateau sous l'effet de la houle.
 - Lorsque la profondeur h de la mer est supérieure à la longueur d'onde, on parle de vague en eau profonde, la vitesse se calcule alors par la formule :

$$v = \sqrt{\frac{g\lambda}{2\pi}}$$

où g est l'accélération de la pesanteur g = 9,8 m.s $^{-2}$ et λ la longueur d'onde

Lycée Kleber (HW 2025) 4 / 5

 Lorsque la profondeur h de la mer est petite par rapport à la longueur d'onde, la vitesse de l'onde devient :

$$v = \sqrt{gh}$$

avec $g = 9.8 \text{ m.s}^{-2}$ et h est la profondeur de l'eau.

2) La vague représentée sur le document suivant est elle en eau profonde ? (Bien justifier)

- 3) Calculer la célérité de cette onde.
- **4)** En déduire la durée qui sépare l'arrivée de deux vagues successives en un même point.
- 5) Lors d'un tsunami, la longueur d'onde créée par le séisme peut atteindre 100 km. Sachant que la profondeur moyenne de l'océan Pacifique est de l'ordre de 4 km, déterminer la vitesse de l'onde.
- **6)** En déduire sa période. Pourquoi le tsunami passe-t-il inaperçu en haute mer ?
- 7) Le document suivant montre l'évolution de la houle à l'approche du rivage. Comment évolue sa célérité ?