Übungsblatt 5

Turing-Maschinen

{Theoretische Informatik}@AIN3

Prof. Dr. Barbara Staehle Wintersemester 2021/2022 HTWG Konstanz

AUFGABE 5.1 4 PUNKTE

Betrachten Sie die in Abbildung 1 spezifizierte Turing-Maschine $T_M = (Q, \Sigma, \Pi, \delta, q_1, F) = (\{q_1, q_2, \dots, q_{10}\}, \{a, b, c\}, \{a$

Abbildung 1: Spezifikation der Turing-Maschine T_M (Quelle: Mossakowski, Uni Magdeburg)

Bestimmen Sie für die Worte

$$\omega_0 = ccc$$
 $\omega_1 = aca$ $\omega_2 = bbb$ $\omega_3 = abc$ $\omega_4 = abcab$

jeweils alle Konfigurationen welche die TM T_M während der Verarbeitung der Worte, ausgehend von der jeweiligen Startkonfiguration, durchläuft. Geben Sie jeweils an, ob die Worte akzeptiert werden oder nicht. Geben Sie weiterhin die von T_M akzeptierte Sprache, $\mathcal{L}(T_M)$ an.

Aufgabe 5.2 Die Sprache L_2

Wir betrachten die Sprache $L_2 = \{0^n 1^{2n} \mid n \in \mathbb{N}\} = \{011,001111,000111111,\ldots\}$ -

TEILAUFGABE 5.2.1 4 PUNKTE

Konstruieren Sie die Turing-Maschine (TM oder NTM), welche die Sprache L_2 akzeptiert.

TEILAUFGABE 5.2.2 3 PUNKTE

Konstruieren Sie den Kellerautomaten (PDA oder DPDA), welcher die Sprache \mathcal{L}_2 akzeptiert.

TEILAUFGABE 5.2.3 2 PUNKTE

Konstruieren Sie den endlichen Automaten (DEA oder NEA), welche die Sprache L_2 akzeptiert.

AUFGABE 5.3

Gegeben Sei die Turing-Maschine $T_x = (Q, \Sigma, \Pi, \delta, q_0, F) = (\{q_0, q_1, q_a, q_b, q_f\}, \{a, b\}, \{a, b, c, \Box\}, q_0, \{q_f\})$ und δ gegeben durch Tabelle 1.

δ	а	b	с	
q_0	(q_a, c, \rightarrow)	(q_b, c, \rightarrow)	-	(q_f,c,\circlearrowleft)
q_a	(q_a, a, \rightarrow)	(q_b, a, \rightarrow)	-	(q_1, a, \leftarrow)
q_b	(q_a, b, \rightarrow)	(q_b, b, \rightarrow)	-	(q_1, b, \leftarrow)
q_1	(q_1, a, \leftarrow)	(q_1, b, \leftarrow)	(q_f,c,\circlearrowleft)	-
$q_f \mid$	-	-	-	-

Tabelle 1: Zustandsübergangsfunktion von T_x

TEILAUFGABE 5.3.1 1 PUNKT

Stellen Sie δ mit Hilfe eines erweiterten Zustandsübergangsdiagramms dar.

TEILAUFGABE 5.3.2 2 PUNKTE

Berechnen Sie die Endkonfiguration von T_x unter der Eingabe von

- a) $\omega = bb$
- b) $\omega = aba$.

Geben Sie alle Konfigurationen an, welche, ausgehend von der Startkonfiguration, durchlaufen werden.

TEILAUFGABE 5.3.3 1 PUNKT

- a) Welche Funktion f_x berechnet T_x für ein Eingabewort $\omega \in \Sigma^*$?
- b) Handelt es sich bei f_x um eine totale oder eine partielle Funktion?
- c) Welche Sprache wird von T_x akzeptiert?

Begründen Sie Ihre Antworten.

AUFGABE 5.4

Wir betrachten das Alphabet $\Sigma = \{0,1\}$ und die Funktion $f_y : \Sigma^* \to \Sigma^*$ welche von der Turing-Maschine $T_y = (Q, \Sigma, \Pi, \delta, q_0, F) = (\{q_0, q_1, \dots, q_8\}, \{0,1\}, \{0,1,\square\}, \delta, q_0, \{q_8\})$ berechnet wird.

 δ sei gegeben durch:

Abbildung 2: Zustandsübergangsdiagramm für T_y

TEILAUFGABE 5.4.1 3 PUNKTE

Bestimmen Sie für die Worte

$$\omega_1 = 101$$
 $\omega_2 = 011$ $\omega_3 = 110$ $\omega_4 = 1101$

jeweils alle Konfigurationen welche die TM T_y während der Verarbeitung der Worte, ausgehend von der jeweiligen Startkonfiguration, durchläuft. Geben Sie jeweils **zusätzlich** das Ergebnis der Berechnung von f_y für diese Worte an.

TEILAUFGABE 5.4.2 3 PUNKTE

Geben Sie für jedes der in der nebenstehenden Tabelle angegebenen Eingabewörter ω das von T_y berechnete Ergebnis $f_y(\omega)$ an.

Falls Sie der Meinung sind, dass T_y für ein Eingabewort ein undefiniertes Ergebnis liefert, verwenden Sie für das entsprechende Ergebnis das Symbol " \perp ".

Hinweis: Sie müssen **keine** durchlaufenen Konfigurationen oder sonstige Begründungen angeben!

ω	$f_y(\omega)$
ε	
0	
1	
01	
101	
11101	
11011	
111011	
111101	
01 101 11101 11011 111011	

TEILAUFGABE 5.4.3 2 PUNKTE

Charakterisieren Sie die von der TM T_y berechnete Funktion f_y .

- a) T_y liefert nur für manche Eingabewörter ein sinnvolles Ergebnis. Beschreiben Sie, wie ein Inputwort strukturiert sein muss, für das T_y ein Ergebnis berechnete und im Finalzustand endet.
- b) Geben Sie das Ergebnis der Funktion f_y für ein gültig strukturiertes Eingabewort an, bzw. beschreiben Sie das Ergebnis für ein gültiges Eingabewort.

TEILAUFGABE 5.4.4 2 PUNKTE

Betrachten Sie T_y als **akzeptierende** Turing-Maschine.

- a) Nennen Sie (so möglich) jeweils **zwei** beispielhafte, von T_y akzeptierte, bzw. nicht akzeptierte Worte.
- b) Geben Sie die von T_y akzeptierte Sprache $L_y=\mathcal{L}(T_y)$ an.

AUFGABE 5.5

Betrachten Sie die in Abbildung 3 spezifizierte Turing-Maschine A. Beachten Sie, dass das Symbol ★ für ein Blank steht.

$$A = (E, B, S, \delta, s_0, F); E = \{0, 1\}, B = \{0, 1, E, N, \star\}, S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_e\}, F = \{s_e\}, F =$$

δ	1	0	*	E	N
<i>s</i> ₀	(s_1, E, R)	(s_4, N, R)	(s_e, \star, N)		
<i>s</i> ₁	$(s_1, 1, R)$	$(s_1, 0, R)$	(s_2,N,L)	(s_1, E, R)	(s_1,N,R)
<i>s</i> ₂	$(s_3, 1, L)$	$(s_3, 0, L)$	(s_5, \star, R)	(s_2, E, L)	(s_2,N,L)
<i>S</i> 3	$(s_3, 1, L)$	$(s_3, 0, L)$		(s_0, E, R)	(s_0, N, R)
<i>S</i> ₄	$(s_4, 1, R)$	$(s_4, 0, R)$	(s_2, E, L)	(s_4, E, R)	(s_4, N, R)
<i>S</i> 5			(s_6,\star,L)	$(s_5, 1, R)$	$(s_5, 0, R)$
<i>s</i> ₆	$(s_6, 1, L)$	$(s_6, 0, L)$	(s_e, \star, R)		
Se					

Abbildung 3: Spezifikation der Turing-Maschine A

TEILAUFGABE 5.5.1 3 PUNKTE

Bestimmen Sie, welches Ergebnis A unter der Eingabe von $\omega_1, \ldots \omega_3$ jeweils berechnet.

Geben Sie hierfür **zuerst** alle Konfigurationen an, welche T_x , ausgehend von der Startkonfiguration, bis zur Endkonfiguration durchläuft. Verwenden Sie hierfür die tabellarische Notation oder Konfigurationsübergänge. Geben Sie **dann** das Ergebnis der Berechnung an.

- a) $\omega_1 = 1$
- b) $\omega_2 = 00$
- c) $\omega_3 = 01$

TEILAUFGABE 5.5.2 3 PUNKTE

- a) Beschreiben Sie die Arbeitsweise von A.
- b) Welche Funktion f_a berechnet A für ein Eingabewort $\omega \in E^*$? (Diese ist mathematisch schwierig zu spezifizieren, eine umgangssprachliche Beschreibung reicht).
- c) Handelt es sich bei f_a um eine totale oder eine partielle Funktion?
- d) Geben Sie die von A akzeptierte Sprache $\mathcal{L}(A)$ an.

AUFGABE 5.6

TEILAUFGABE 5.6.1 3 PUNKTE

Erstellen Sie die Turingmaschine T_{-3} welche die Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto \begin{cases} n-3 & \text{falls } n \geq 3 \\ 0 & \text{falls } n < 3 \end{cases}$ für unär codierte Zahlen $(0 = \varepsilon, 1 = 1, 2 = 11, 3 = 111, \ldots)$ berechnet.

Geben Sie die Zustandsübergangsfunktion δ sowohl in tabellarischer Form, als auch in Form eines erweiterten Zustandsübergangsdiagrammes an.

Achten Sie darauf, dass T_{-3}

- für die unär codierte Eingabe n die unär codierte Ausgabe f(n) ausgibt und erfolgreich terminiert,
- auch f(0), f(1), f(2), f(3) korrekt berechnet werden.

Teilaufgabe 5.6.2 Arbeitsweise von T_{-3} , 2 Punkte

Berechnen Sie die Endkonfiguration für T_{-3} unter der Eingabe von

- a) $\omega = \varepsilon$
- b) $\omega = 11$
- c) $\omega = 1111$

Geben Sie alle Konfigurationen an, welche, ausgehend von der Startkonfiguration, durchlaufen werden.

AUFGABE 5.7 BINÄRE ADDITION, 4 PUNKTE

Ziel dieser Aufgabe ist es, eine Turing-Maschine T_{b+1} zu konstruieren, welche zu einer im Binärformat angegeben Zahl n eine 1 addiert.

Nutzen Sie Ihre Kenntnisse über Binärzahlen, um eine allgemeine Regel abzuleiten, wie sich die Zahl n+1 binär geschrieben von der Zahl n binär geschrieben unterscheidet. Nutzen Sie diese Regel, um die TM T_{b+1} zu konstruieren, welche unter Verwendung des Eingabealphabets $\Sigma = \{0,1\}$ die Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0, f(n) = n+1$ mit binär codierter Eingabe n und Ausgabe n+1 berechnet.

Geben Sie die Zustandsübergangsfunktion δ in tabellarischer Form oder in Form eines erweiterten Zustandsübergangsdiagrammes an.

AUFGABE 5.8 BERECHNUNG DES PARITÄTSBITS, 5 PUNKTE

Wir betrachten das Alphabet $\Sigma = \{0,1\}$ und die Funktion $f_p : \Sigma^* \to \Sigma^*$ welche von der Turing-Maschine T_p berechnet wird. T_p hängt an ein nichtleeres binäres Eingabewort ein **Paritätsbit** an, verlängert einen 0/1-String also um genau ein Zeichen, um sicherzustellen, dass die Summe der 1en eine gerade Zahl ist. Konkret:

$$f_p: \Sigma^* \to \Sigma^*, \quad f_p(\omega) = \left\{ \begin{array}{ll} \omega 0 & \text{falls } \omega \text{ eine gerade Anzahl von 1en enthält,} \\ \omega 1 & \text{falls } \omega \text{ eine ungerade Anzahl von 1en enthält} \\ \bot & \text{falls } \omega = \varepsilon, \end{array} \right.$$

Beispiele:
$$f_p(0) = 00, f_p(1) = 10, f_p(101) = 1010, f_p(100) = 1001$$

Konstruieren Sie die Turing-Maschine \mathcal{T}_p welche wie spezifiziert arbeitet!