Handbook of Mathematics

November 2016

This book is published under the terms of the Creative Commons license CC0.

0	0000	0 1 2 3	0
1	0001		1
2	0010		2
3	0011		3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\begin{split} &\sin(-x) = -\sin x \\ &\cos(-x) = \cos x \end{split}$$

$$&\sin(x+y) = \sin x \cos y + \cos x \sin y \\ &\sin(x-y) = \sin x \cos y - \cos x \sin y \\ &\cos(x+y) = \cos x \cos y - \sin x \sin y \\ &\cos(x-y) = \cos x \cos y + \sin x \sin y \end{split}$$

$$&e^{\mathrm{i}\varphi} = \cos \varphi + \mathrm{i}\sin \varphi$$

Polar coordinates

$$\begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \\ \varphi &\in (-\pi, \pi] \\ \det J &= r \end{aligned}$$

Cylindrical coordinates

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Spherical coordinates

$$\begin{aligned} x &= r \sin \theta \, \cos \varphi \\ y &= r \sin \theta \, \sin \varphi \\ z &= r \cos \theta \\ \varphi &\in (-\pi, \pi], \; \theta \in [0, \pi] \\ \det J &= r^2 \sin \theta \end{aligned}$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Table of contents

1 Basics and foundations		4	1.3.1 Definitions
1.1 Complex numbers		4	1.3.2 Boolean algebra
	1.1.1 Operations	4	1.3.3 Subset relation
	1.1.2 Absolut value	4	1.3.4 Inductive sets
	1.1.3 Conjugation	4	2 Appendix
1.2	Logic	4	2.1 Mathematical constants
	1.2.1 Propositional logic	4	2.2 Physical constants
	1.2.2 Predicate logic	4	2.3 Greek alphabet
1.3			2.4 Fraktur script

1 Basics and foundations

1.1 Complex numbers

1.1.1 Operations

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},\tag{1.1}$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}. (1.2)$$

1.1.2 Absolut value

For all $z_1, z_2 \in \mathbb{C}$:

$$|z_1 z_2| = |z_1| |z_2|, (1.3)$$

$$z_2 \neq 0 \implies \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|},$$

$$z\,\overline{z} = |z|^2$$
.

1.1.3 Conjugation

For all $z_1, z_2 \in \mathbb{C}$:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2, \qquad (1.6)$$

$$\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}, \qquad (1.7)$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2, \qquad (1.8)$$

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}, \quad (1.9)$$

$$\overline{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}), \qquad (1.10)$$

$$\overline{\exp(z)} = \exp(\overline{z}). \tag{1.11}$$

1.2 Logic

1.2.1 Propositional logic

1.2.1.1 Boolean algebra

Laws of distributivity:

$$A \lor (B \land C) = (A \lor B) \land (A \lor C), \tag{1.12}$$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C). \tag{1.13}$$

1.2.1.2 Functions in two arguments

There are 16 boolean functions in two arguments.

No.	dcba	Function	Name
0	0000	0	Contradiction
1	0001	$\overline{A \vee B}$	NOR
2	0010	$\overline{B} \Rightarrow A$	
3	0011	\overline{A}	
4	0100	$\overline{A \Rightarrow B}$	
5	0101	\overline{B}	
6	0110	$A \oplus B$	Contravalence
7	0111	$\overline{A \wedge B}$	NAND
8	1000	$A \wedge B$	Conjunction
9	1001	$A \Leftrightarrow B$	Equivalence
10	1010	B	Projection
11	1011	$A \Rightarrow B$	Implication
12	1100	A	Projection
13	1101	$B \Rightarrow A$	Implication
14	1110	$A \vee B$	Disjunction
15	1111	1	Tautology

1.2.2 Predicate logic

1.2.2.1 Basic laws

(1.4)

(1.5)

Negation (De Morgan's laws):

$$\overline{\forall x[P(x)]} \iff \exists x[\overline{P(x)}],$$
 (1.14)

$$\overline{\exists x [P(x)]} \iff \forall x [\overline{P(x)}].$$
 (1.15)

Generalized laws of distributivity:

$$P \vee \forall x [Q(x)] \iff \forall x [P \vee Q(x)],$$
 (1.16)

$$P \wedge \exists x [Q(x)] \iff \exists x [P \wedge Q(x)].$$
 (1.17)

Generalized laws of idempotence:

$$\exists x \in M [P] \iff (M \neq \{\}) \land P$$

$$\iff \begin{cases} P & \text{if } M \neq \{\}, \\ 0 & \text{if } M = \{\}. \end{cases}$$

$$(1.18)$$

$$\forall x \in M [P] \iff (M = \{\}) \vee P$$

$$\iff \begin{cases} P & \text{if } M \neq \{\}, \\ 1 & \text{if } M = \{\}. \end{cases}$$

$$(1.19)$$

Equivalences:

$$\forall x \forall y [P(x,y)] \iff \forall y \forall x [P(x,y)], \tag{1.20}$$

$$\exists x \exists y [P(x,y)] \iff \exists y \exists x [P(x,y)], \tag{1.21}$$

$$\forall x [P(x) \land Q(x)] \iff \forall x [P(x)] \land \forall x [Q(x)], \tag{1.22}$$

$$\exists x [P(x)] \lor Q(x)] \iff \forall x [P(x)] \lor \forall x [Q(x)], \tag{1.23}$$

$$\forall x [P(x) \Rightarrow Q] \iff \exists x [P(x)] \Rightarrow Q, \tag{1.24}$$

$$\forall x[P \Rightarrow Q(x)] \iff P \Rightarrow \forall x[Q(x)],$$
 (1.25)

$$\exists x [P(x) \Rightarrow Q(x)] \iff \forall x [P(x)] \Rightarrow \exists x [Q(x)].$$
 (1.26)

Implications:

$$\exists x \forall y [P(x,y)] \implies \forall y \exists x [P(x,y)], \tag{1.27}$$

$$\forall x [P(x)] \lor \forall x [Q(x)] \implies \forall x [P(x) \lor Q(x)], \tag{1.28}$$

$$\exists x [P(x) \land Q(x)] \implies \exists x [P(x)] \land \exists x [Q(x)], \tag{1.29}$$

$$\forall x[P(x) \Rightarrow Q(x)] \implies (\forall x[P(x)] \Rightarrow \forall x[Q(x)]), \quad (1.30)$$

$$\forall x [P(x) \Leftrightarrow Q(x)] \implies (\forall x [P(x)] \Leftrightarrow \forall x [Q(x)]). \quad (1.31)$$

1.3. SET THEORY 5

Table 1.1: Operations

Name	Operation	Polar form	Cartesian form
Identity	z	$=r\mathrm{e}^{\mathrm{i}\varphi}$	= a + bi
Addition	$z_1 + z_2$		$= (a_1 + a_2) + (b_1 + b_2)i$
Subtraction	$z_1 - z_2$		$=(a_1-a_2)+(b_1-b_2)i$
Multiplication	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Reciprocal	$\frac{1}{z}$	$= \frac{1}{r} e^{-i\varphi}$	$= \frac{\ddot{a}}{a^2 + b^2} - \frac{b}{a^2 + b^2} i$
Real part	$\operatorname{Re}(z)$	$=\cos\varphi$	=a
Imaginary part	$\operatorname{Im}(z)$	$=\sin\varphi$	= b
Conjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi
Absolut value	z	= r	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$=\varphi$	$= s(b)\arccos\left(\frac{a}{r}\right)$

$$s(b) := \begin{cases} +1 & \text{if } b \ge 0, \\ -1 & \text{if } b < 0 \end{cases}$$

Table 1.2: Boolean algebra

Disjunction	Conjunction	
$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$	Laws of idempotence
$A \lor 0 \Leftrightarrow A$	$A \wedge 1 \Leftrightarrow A$	Laws of neutrality
$A \lor 1 \Leftrightarrow 1$	$A \wedge 0 = 0$	Laws of annihilation
$A \vee \overline{A} \Leftrightarrow 1$	$A \wedge \overline{A} \Leftrightarrow 0$	Laws of complementation
$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$	Laws of commutativity
$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	Laws of associativity
$\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$	$\overline{A \wedge B} \Leftrightarrow \overline{A} \vee \overline{B}$	De Morgan's laws
$A \lor (A \land B) \Leftrightarrow A$	$A \land (A \lor B) \Leftrightarrow A$	Laws of absorption

1.2.2.2 Finite sets

Let $M = \{x_1, \ldots, x_n\}$. One has:

$$\forall x \in M [P(x)] \iff P(x_1) \wedge \ldots \wedge P(x_n), \qquad (1.32)$$

$$\exists x \in M [P(x)] \iff P(x_1) \vee \ldots \vee P(x_n). \tag{1.33}$$

1.2.2.3 Restricted quantification

$$\forall x \in M [P(x)] :\iff \forall x [x \notin M \lor P(x)] \\ \iff \forall x [x \in M \Rightarrow P(x)],$$
 (1.34)

$$\exists x \in M [P(x)] :\iff \exists x [x \in M \land P(x)], \tag{1.35}$$

$$\forall x \in M \setminus N [P(x)] \iff \forall x [x \notin N \Rightarrow P(x)]. \quad (1.36)$$

1.2.2.4 Product sets as domains of discourse

$$\forall (x,y) [P(x,y)] \iff \forall x \forall y [P(x,y)], \tag{1.37}$$

$$\exists (x,y) [P(x,y)] \iff \exists x \exists y [P(x,y)].$$

By analogy:

$$\forall (x, y, z) \iff \forall x \forall y \forall z,$$

$$\exists (x, y, z) \iff \exists x \exists y \exists z$$

$$\forall (x, y, z) \iff \forall x \forall y \forall z,$$

1.2.2.5 Alternative representation

Let $P: G \to \{0,1\}$ and $M \subseteq G$. Let P(M) be the image of M under P. One has

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$\iff M \subseteq \{x \in G \mid P(x)\}$$
 (1.41)

and

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M)$$

$$\iff M \cap \{x \in G \mid P(x)\} \neq \{\}.$$
(1.42)

1.2.2.6 Uniqueness

Quantifier of unique existence:

$$\exists!x [P(x)] :\iff \exists x [P(x) \land \forall y [P(y) \Rightarrow x = y]] \iff \exists x [P(x)] \land \forall x \forall y [P(x) \land P(y) \Rightarrow x = y].$$
 (1.43)

1.3 Set theory

1.3.1 Definitions

Subset relation:

$$(1.39) A \subseteq B : \iff \forall x [x \in A \implies x \in B]. (1.44)$$

(1.40)Equality:

(1.38)

$$A = B :\iff \forall x [x \in A \iff x \in B]. \tag{1.45}$$

etc.

Union:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}. \tag{1.46}$$

Intersection:

$$A \cap B := \{x \mid x \in A \land x \in B\}. \tag{1.47}$$

Difference set:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}. \tag{1.48}$$

Symmetric difference:

$$A \triangle B := \{ x \mid x \in A \oplus x \in B \}. \tag{1.49}$$

1.3.2 Boolean algebra

Laws of distributivity:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B), \tag{1.50}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B). \tag{1.51}$$

1.3.3 Subset relation

Decomposition of equality:

$$A = B \iff A \subseteq B \land B \subseteq A. \tag{1.52}$$

Pharaphrasing of subset relations:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}.$$
(1.53)

Law of contraposition:

$$A \subseteq B = \overline{B} \subseteq \overline{A}. \tag{1.54}$$

1.3.4 Inductive sets

Set theoretical model of the natural numbers:

$$\begin{array}{ll} 0 := \{\}, & 1 := \{0\}, & 2 := \{0, 1\}, \\ 3 := \{0, 1, 2\}, & \text{usw.} \end{array} \tag{1.55}$$

Successor function:

$$x' := x \cup \{x\}. \tag{1.56}$$

Proof by induction: For a predicate A(n) with $n \in \mathbb{N}$ one has:

$$A(n_0) \wedge \forall n \ge n_0 [A(n) \Rightarrow A(n+1)]$$

$$\implies \forall n \ge n_0 [A(n)].$$
(1.57)

1.3. SET THEORY 7

Table 1.3: Boolean algebra

Union	Intersection	
$A \cup A = A$	$A \cap A = A$	Laws of idempotence
$A \cup \{\} = A$	$A \cap G = A$	Laws of neutrality
$A \cup G = G$	$A \cap \{\} = \{\}$	Laws of annihilation
$A \cup \overline{A} = G$	$A \cap \overline{A} = \{\}$	Laws of complementation
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Laws of commutativity
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	Laws of associativity
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	Laws of absorption
C. II		

G: Universe

2 Appendix

2.1 Mathematical constants

- 1. Archimede's constant $\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Euler's number $e = 2.71828\ 18284\ 59045\ 23536\ 02874\ 71352\dots$
- 3. Euler-Mascheroni constant $\gamma = 0.57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Golden ratio, $(1+\sqrt{5})/2$ $\varphi = 1.61803~39887~49894~84820~45868~34365\dots$
- 5. First Feigenbaum constant $\delta = 4.66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. Second Feigenbaum constant $\alpha = 2.50290$ 78750 95892 82228 39028 73218 . . .

2.2 Physical constants

- 1. Speed of light in vacuum $c=299\,792\,458\,\mathrm{m/s}$
- 2. Electric constant $\varepsilon_0 = 8.854\,187\,817\,620\,39\times 10^{-12}\,\mathrm{F/m}$
- 3. Magnetic constant $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$
- 4. Elementary charge $e = 1.602\,176\,6208(98)\times 10^{-19}\,\mathrm{C}$

2.3 Greek alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Е О П	$ \begin{array}{c} \nu \\ \xi \\ o \\ \pi \end{array} $	Nu Xi Omicron Pi
Ε Ζ Η Θ	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{array}{c} R \\ \Sigma \\ T \\ Y \end{array}$	$egin{array}{c} arrho \ \sigma \ \ au \ \ v \end{array}$	Rho Sigma Tau Upsilon
Ι Κ Λ Μ		Iota Kappa Lambda Mu	Φ Χ Ψ Ω	$egin{array}{c} arphi \ \chi \ \psi \ \omega \end{array}$	Phi Chi Psi Omega

2.4 Fraktur script

A a B b C c D d	21 a	O o	O o
	23 b	P p	P p
	C c	Q q	Q q
	D d	R r	R r
$\begin{array}{c} E \ e \\ F \ f \\ G \ g \\ H \ h \end{array}$	E e	S s	S s
	ኝ f	T t	T t
	G g	U u	U u
	ℌ h	V v	V v
I i	I i	$\begin{array}{ccc} W \ w \\ X \ x \\ Y \ y \\ Z \ z \end{array}$	Ww
J j	I j		X r
K k	K t		Y n
L l	L l		3 3
$\begin{array}{c} M\ m\\ N\ n \end{array}$	M m N n		