BUS TERMINALS

Solution

The solution is based on the algorithm, running in $O(n^3)$ time, presented in [1]. Recently, this algorithm is slightly improved in [2], but its implementation is too complicated to accept it for the competition, so we use the algorithm in [1] as a solution.

The diameter of a bus network is the longest length of the route between any two bus stops in the bus network. Our goal is to find the minimum value of the diameters over all possible choices of the hubs and assignments of bus stops. As did in [1], we consider two cases separately. For it, we need some notations. Let D_1 be the minimum value of the longest length between two bus stops which are connected through only one hub over all possible choice of one hub, and let D_2 be the minimum value of the longest length between two bus stops which are connected through both two hubs over all possible choice of two hubs and the corresponding assignments of bus stops. The diameter can be found in the following way presented in [1]. First, compute D_1 and D_2 . Next, output the minimum of D_1 and D_2 as the minimum diameter of the entire network.

First we will explain the computation of D_1 . If a point p will be served as the hub through which the longest route passes, the longest length is d(p, q) + d(p, r), where the points q and r is the farthest and the second farthest ones from p, respectively. Then $D_1 = \min_p \{ d(p, q) + d(p, r) \}$ over all points p of the input. This can be obtained in $O(n^2)$ time because the farthest and second farthest bus stops for each point p are easily found in O(n) time. Second we will explain how to compute D_2 with a simple example. Note that in this case the longest route between two bus stops will pass both two hubs H_1 and H_2 .

We consider all pairs of bus stops of the input as possible two hubs H_1 and H_2 , and select the pair of the bus stops that gives a minimum diameter. Let at the beginning D_2 be sufficiently large (e.g., maxint). Consider now fixed two hubs H_1 and H_2 . Each of the remaining n-2 points will be initially connected to one of two hubs, say H_1 . Sort the remaining n-2 points in the array P in non-decreasing order according to the distance from the hub H_1 (Figure 1).

Denote by $r_1 = d(H_1, P[n-3])$, $r_2 = d(H_2, P[n-2])$ and $d_{12} = d(H_1, H_2)$. If $r_1 + d_{12} + r_2 < D_2$, then the point P[n-2] is connected to the hub H_2 and set D_2 to the new value $D_2 = r_1 + d_{12} + r_2$. Figure 2 represents this step, $r_1 = d(H_1, P[n-3]) = d(H_1, P[4]) = 10$, $r_2 = d(H_2, P[n-2]) = (H_2, P[5]) = 3$, $d_{12} = d(H_1, H_2) = 12$, so $D_2 = r_1 + d_{12} + r_2 = 10 + 12 + 3 = 25$. Now we repeat the same procedure with $r_1 = d(H_1, P[n-4])$, $r_2 = d(H_2, P[n-3])$, same $d_{12} = d(H_1, H_2)$, and get $r_1 + d_{12} + r_2 = d(H_1, P[3]) + d_{12} + d(H_2, P[4]) = 7 + 12 + 8 = 27$. Since we got the new distance which is greater than the previous diameter, the value D_2 remains unchanged, so D_2 still has value 25. (If 25 is turned out to be the minimum of D_2 at the end of the procedure, the point P[4] shall be connected to H_1 although its distance to H_2 is smaller than the distance from H_1 .) This situation is represented in Figure 3 where the point P[4] is connected with a thin line to H_2 which is shorter than the distance from H_1 to P[4].

This procedure is repeated by decreasing the index of the array P one by one until the index 1 is reached. For the example, the minimum value of D_2 is 25 after the procedure and the corresponding network is shown in Figure 4.

Other approaches

Many contestants may take a (seemingly natural and intuitive) heuristic approach to connect each of n-2 bus stops to the nearest one of two hubs. But this is wrong because there is a counter example. Of course, this approach can produce correct answers for some inputs (in six test cases with bold faces in the table).

We can make a *bruteforce* algorithm running in $O(n^4)$ time. It considers all pairs of points as hubs H_1 and H_2 , and computes $D(H_1, H_2)$ for each pair in $O(n^2)$ time. But this approach will not produce the answer for large inputs within the time limit. Six tests are small enough that bruteforce approach will work.

Test Data Information

No.	n	size	Generation	AnswerH	euristic's Answer
1	2	10	Extreme case	18	18
2	7	20	Example 2	25	26
3	10	30	Random	42	42
4	10	30	Random	52	53
5	50	100	Random	167	168
6	100	20	Random	35	36
7	170	1000	Random	1884	1896
8	180	1000	Random	1845	1849
9	300	650	Dumbbell,-45-degree	911	911
10	300	650	Dumbbell,45-degree	995	995
11	400	675	Dumbbell, O-degree	689	689
12	400	20	20x20 grid	39	39
13	300	100	Random	186	188
14	300	1000	Random	1876	1882
15	350	150	Random	286	287
16	350	500	Random	945	946
17	350	2000	Random	3697	3709
18	400	1000	Random	1908	1912
19	400	5000	Random	9381	9405
20	500	500	Random	970	971

References

[1] J.-M. Ho, D. T. Lee, C.-H. Chang, C. K Wong, Minimum diameter spanning trees and related problems, SIAM J. on Computing, 20(5):987—997, 1991.

[2] T. Chan, Semi-online maintenance of geometric optima and measures, 13th ACM-SODA, 474—483, 2002.