MATH2621 — Higher Complex Analysis. XXII Singularities

This lecture?

In this lecture, we study holomorphic functions in a punctured ball, and illustrate this study with some examples.

[P]

Recall that the punctured ball $B^{\circ}(z_0, R)$ is defined to be $\{z \in \mathbb{C} : 0 < |z - z_0| < R\}$; we allow R to be ∞ .

[P]

From last lecture, if $f \in H(B^{\circ}(z_0, R))$, then f has a Laurent series that converges in the punctured ball. Vice versa, if f has a Laurent series that converges in the punctured ball, then $f \in H(B^{\circ}(z_0, R))$.

Laurent series at an isolated singularity

Definition

A function f has an isolated singularity at z_0 in \mathbb{C} if f is holomorphic in the punctured ball $B^{\circ}(z_0, R)$ for some $R \in \mathbb{R}^+$, and f is not differentiable at z_0 , perhaps because $f(z_0)$ is not defined or f is not continuous at z_0 .

A Laurent series around an isolated singularity

Suppose that $f \in H(B^{\circ}(z_0, R))$. Take r such that 0 < r < R. By Laurent's theorem,

$$f(z) = \sum_{n=0}^{\infty} c_n(z-z_0)^n \quad \forall z \in B^{\circ}(z_0,R),$$

where

$$c_n = \frac{1}{2\pi i} \int_{\partial B(z_0,r)} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

Several possibilities

If $c_n = 0$ for all $n \in \mathbb{Z}$, then f is identically zero in $B^{\circ}(z_0, R)$. In this case we can define $f(z_0)$ to be 0 and then $f \in H(B(z_0, R))$.

Otherwise, are three mutually exclusive and exhaustive possibilities: [P]

- (i) There are infinitely many $n \in \mathbb{Z}^-$ such that $c_n \neq 0$. In this case, we say that f has an essential singularity at z_0 . [P]
- (ii) There are no $n \in \mathbb{Z}^-$ such that $c_n \neq 0$. In this case, we say that f has a removable singularity at z_0 . If there exists $M \in \mathbb{Z}^+$ such that $c_M \neq 0$ and $c_n = 0$ for all n < M, then we say that f has a zero of order M at z_0 . [P]
- (iii) There are at least one and finitely many $n \in \mathbb{Z}^-$ such that $c_n \neq 0$. In this case, there exists $M \in \mathbb{Z}^-$ such that $c_M \neq 0$ and $c_n = 0$ for all n < M. We say that f has a pole of order -M at z_0 .

Notation

A few authors write "isolated essential singularity" rather than "essential singularity" in case (i).

[P]

Zeros of order 1 are also known as *simple zeros*, while poles of order 1 are also known as *simple poles*.

Examples

- 1. Suppose that $f(z) = \frac{\sin(z)}{z}$. The natural domain for f is $\mathbb{C} \setminus \{0\}$, because f(0) is not defined. As we have seen, it is possible to extend the definition of f to 0, by setting f(0) = 1, and then the extended function (still written f) is entire, and the singularity has been removed.

 [P]
- 2. Suppose that $f(z) = \frac{(1-\cos(z))^2}{z}$. The natural domain for f is $\mathbb{C} \setminus \{0\}$, because f(0) is not defined. As we will see, it is possible to extend the definition of f to 0, by setting f(0) = 0, and then f becomes an entire function, and the singularity has been removed. This extended function has a zero of order three at 0.

Examples. 2

3. Suppose that $f(z) = \frac{1}{z^3 - z}$. The natural domain for f is $\mathbb{C}\setminus\{0,\pm 1\}$, because f(0), f(1) and f(-1) are not defined. As we will see, $\lim_{z\to 0} f(z) = \infty$, so we will leave f(0) undefined. For this function,

$$f(z) = \sum_{n=0}^{\infty} (-1)^{n+1} z^{2n-1}$$
 in $B^{\circ}(0,1)$, and there is a pole of order 1, i.e., a simple pole, at 0.

4. Suppose that $f(z) = e^{1/z}$. The natural domain for f is $\mathbb{C} \setminus \{0\}$, because f(0) is not defined. As we will see, $\lim_{z\to 0} f(z)$ does not exist, and f has an essential singularity at 0.

$$e^{\frac{1}{2}} = \sum_{n=2}^{\infty} \frac{1}{n! \, 2^n}$$
 in factor singularly

Examples. 3

5. Suppose that f(z) = Log(z). The domain of f is $\mathbb{C} \setminus \{0\}$, and we say that f has a singularity at 0. However, f is not differentiable at all points on the negative real axis, due to the jump in Arg there, and so the singularity at 0 is not isolated.

[P]

6. Suppose that
$$f(z) = \frac{1}{z}$$
 Then

6. Suppose that $f(z) = \frac{1}{\sin(\pi/z)}$. Then

$$\mathsf{Domain}(f) = \mathbb{C} \setminus (\{0\} \cup \{1/n : n \in \mathbb{Z} \setminus \{0\}\}).$$

In this example, f has isolated singularities at the points 1/n, where $n \in \mathbb{Z} \setminus \{0\}$, and a nonisolated singularity at 0.

$$\frac{\pi}{2} = n\pi \quad z = \frac{n}{n}$$

A theorem

Theorem

Suppose that $f \in H(B^{\circ}(z_0, R))$, and that

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n \qquad \forall z \in B^{\circ}(z_0, R).$$

Then the following are equivalent:

- (i) $c_n = 0$ for all n < 0
- (ii) $\lim_{z \to z_0} f(z)$ exists in \mathbb{C} , and by defining $f(z_0)$ to be $\lim_{z \to z_0} f(z)$, we may extend f to a holomorphic function on $B(z_0, R)$
- (iii) $\lim_{z\to z_0} f(z)$ exists in $\mathbb C$
- (iv) there exists $C \in \mathbb{R}^+$ and $r \in (0, R)$ such that

$$|f(z)| \leq C \quad \forall z \in B^{\circ}(z_0, r).$$

Proof of theorem

Proof. Suppose that (i) holds. Then $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ in $B^{\circ}(z_0,R)$, and the power series converges in $B^{\circ}(z_0,R)$, so its radius of convergence is at least R. Hence $\lim_{z\to z_0} f(z) = c_0$, and by defining $f(z_0)$ to be c_0 , we extend f to agree with the power series in $B(z_0,R)$, which is holomorphic there, that is, (ii) holds. [P]

Suppose that (ii) holds. Then (iii) holds trivially.

Proof of theorem. 2

Suppose that (iii) holds, i.e., that $\lim_{z\to z_0} f(z)=c$ for some $c\in\mathbb{C}$. Take $\varepsilon=1$ in the definition of the limit. Then there exists r such that 0< r< R and

$$|f(z)-c|<1$$

when $z \in B^{\circ}(z_0, r)$. For such z,

$$|f(z)| = |f(z) - c + c| \le |f(z) - c| + |c| < 1 + |c|,$$

so taking C to be 1 + |c|, we have |f(z)| < C, and (iv) holds.

Proof of theorem. 3

Suppose that (iv) holds. According to Laurent's theorem, if 0 < r < R, then

$$c_n = \frac{1}{2\pi i} \int_{\partial B(z_0,r)} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

Clearly when z lies on $\partial B(z_0, r)$,

$$\left| \frac{f(z)}{(z-z_0)^{n+1}} \right| = \frac{|f(z)|}{r^{n+1}} \le \frac{C}{r^{n+1}}.$$

The length of $\partial B(z_0, r)$ is $2\pi r$, and so, by the *ML* Lemma,

$$|c_n| \leq \frac{1}{2\pi} \Big| \int_{\partial B(z_0,r)} \frac{f(z)}{(z-z_0)^{n+1}} dz \Big| \leq \frac{1}{2\pi} \frac{C}{r^{n+1}} 2\pi r = Cr^{-n}.$$

If n < 0, then -n > 0, and $r^{-n} \to 0$ as $r \to 0$. In this case, we can make r^{-n} arbitrarily small, so $c_n = 0$, i.e., (i) holds.

Removing singularities

The reason for the terminology "removable singularity" should now be clear: by defining (or perhaps redefining) $f(z_0)$ appropriately, we may extend f to be holomorphic in $B(z_0, R)$, that is, we remove the singularity of f at z_0 .

[P]

The proof of the theorem has similarities to that of Liouville's theorem.

[P]

It is possible to generalize the proof of the theorem above to prove the following result. A more general theorem

more general theorem

Theorem

$$F(z) = \underbrace{f(z)}_{(z-2o)} = \sum_{n=M} C_n \underbrace{(z-2o)}_{(z-2o)} = C_M + \cdots$$

Suppose that $f(z) = \sum_{n=-\infty}^{\infty} c_n(z-z_0)^n$ in $B^{\circ}(z_0,R)$. Then the following are equivalent:

- (i) $c_n = 0$ for all n < M and $c_M \neq 0$
- (ii) there exists $F \in H(B(z_0, R))$ such that $f(z) = (z z_0)^M F(z)$ in $B^{\circ}(z_0, R)$ and $F(z_0) \neq 0$
- (iii) $\lim_{z \to z_0} (z z_0)^{-M} f(z)$ exists and is in $\mathbb{C} \setminus \{0\}$
- (iv) there exists $C \in \mathbb{R}^+$ and $r \in (0, R)$ such that

$$|f(z)| \leq C|z-z_0|^M \qquad \forall z \in B^{\circ}(z_0,r),$$

but $\lim_{z\to z_0}(z-z_0)^{-M}f(z)\neq 0$ (either because the limit does not exist or because it exists and is not 0).

Notation

We write $f(z) \sim c(z-z_0)^N$ as $z \to z_0$, where $c \in \mathbb{C} \setminus \{0\}$ and $N \in \mathbb{Z}$, to mean that

$$\lim_{z\to z_0}\frac{f(z)}{c(z-z_0)^N}=1.$$

Note that if $f(z) \sim c(z-z_0)^N$ as $z \to z_0$, then there is a punctured ball $B(z_0, r)$ in which f does not vanish.

Summary

If f has a zero of order N at z_0 , then $f(z) \sim c(z-z_0)^N$ as $z \to z_0$, where $c \ne 0$, and f vanishes at z_0 ; when the order of the zero is higher, f(z) vanishes more rapidly.

[P]

If f has a pole of order N at z_0 , then $f(z) \sim c(z-z_0)^{-N}$ as $z \to z_0$, where $c \ne 0$, and diverges to ∞ ; when the order of the pole is higher, the divergence is more rapid.

[P]

If f has a removable singularity at z_0 , then f is bounded near z_0 , and vice versa.

Manipulating functions at singularities

Corollary

Suppose that $f, g, h \in H(B^{\circ}(z_0, R))$ and that f has a zero of order M at z_0 while g has a zero of order N at z_0 , while h has a pole of 1 ~ a(2-26) M M≥0 order P at z_0 . Then: 9 ~ b(t-20) ~ N≥0

- (i) 1/h has a zero of order P at z_0 ;
- (ii) 1/f has a pole of order M at z_0 ; h~ c 1/(2-20)P P≥0
- (iii) fg has a zero of order M + N at z_0 ;
- (iv) if $M \geq N$, then f/g has a removable singularity at z_0 , and if M > N, then f/g has a zero of order M - N;
- (v) if M < N, then f/g has a pole of order N M.

Proof

We prove only (v).

Observe that $f(z) \sim a(z-z_0)^M$ and $g(z) \sim b(z-z_0)^N$ as $z \to z_0$, where $ab \neq 0$. Now

$$\frac{f(z)}{g(z)} \sim \frac{a(z-z_0)^M}{b(z-z_0)^N} = \frac{a}{b}(z-z_0)^{M-N}$$

as $z \rightarrow z_0$, and the result follows.

[P]

If f has an essential singularity at z_0 , what about 1/f?

L'Hôpital's rule

Theorem

Suppose that $f,g \in H(\Omega)$ and $z_0 \in \Omega$. Suppose also that $\lim_{z\to z_0} f(z)/g(z)$ is of the form 0/0. If $\lim_{z\to z_0} f'(z)/g'(z)$ exists, then so does $\lim_{z\to z_0} f(z)/g(z)$, and the limits are equal.

Proof. By hypothesis, f and g have Taylor series in some ball centred at z_0 , and $f(z) \sim a(z-z_0)^M$ while $g(z) \sim b(z-z_0)^N$ as $z \to z_0$. Further, $f'(z) \sim aM(z-z_0)^{M-1}$ and $g'(z) \sim bN(z-z_0)^{N-1}$. If $\lim_{z\to z_0} f'(z)/g'(z)$ exists, then

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{a(z - z_0)^M}{b(z - z_0)^N}$$

$$= \lim_{z \to z_0} \frac{N}{M} \frac{aM(z - z_0)^{M-1}}{bN(z - z_0)^{N-1}} = \frac{N}{M} \lim_{z \to z_0} \frac{f'(z)}{g'(z)}.$$

[P]

The result follows by considering the cases M < N, M = N and M > N.

Exercise 1

Suppose that $f(z) = (1 - \cos(z))^2/z$. What kind of singularity does f have at 0?

Answer. [P] Clearly

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{(1 - \cos(z))^2}{z} = \lim_{z \to 0} \frac{2(1 - \cos(z))\sin(z)}{1} = 0$$

by l'Hôpital's rule. So f has a zero of some currently unknown order at 0.

Answer to Exercise 1

There are various ways to proceed. Here is one:

$$(1 - \cos(z))^2 = \left(1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots\right)\right)^2$$
$$= \left(\frac{z^2}{2!} - \frac{z^4}{4!} + \dots\right)^2$$
$$= \frac{z^4}{4} - \frac{z^6}{24} + \dots$$

whence $(1 - \cos(z))^2$ has a zero of order 4; by dividing by z, we obtain the series for f, which has a zero of order 3.

Answer to Exercise 1 (continued)

Here is another: by L'Hôpital's rule, $\lim_{z\to 0}\frac{1-\cos(z)}{z^2}=\frac{1}{2}$, whence

$$\lim_{z \to 0} \frac{(1 - \cos(z))^2}{z^4} = \frac{1}{4},$$

and so $(1 - \cos(z))^2$ has a zero of order 4 at 0, whence f has a zero of order 3.

Exercise 2

Suppose that $f(z) = e^{1/z}$. How does f behave near 0?

Answer. [P] From Taylor series,

$$e^{w} = 1 + w + \frac{w^{2}}{2!} + \frac{w^{3}}{3!} + \dots$$

Hence

$$e^{1/z} = 1 + z^{-1} + \frac{z^{-2}}{2!} + \frac{z^{-3}}{3!} + \dots$$

Since there are infinitely many nonzero negative powers of z, the singularity at 0 is essential.

Picard's theorem[†]

Theorem

If f has an essential singularity at z_0 , then for all $\delta>0$, the set $\mathbb{C}\setminus f(B^\circ(z_0,\delta))$ has at most one element.

[P]

We shall not prove this result. But consider the example $f(z) = e^{1/z}$.

[P]

Given any c in $\mathbb{C}\setminus\{0\}$, we can find w such that $e^w=c$. Let w_n be $w+2\pi in$, for all $n\in\mathbb{N}$. Then $e^{w_n}=c$. Now take $z_n=1/w_n$; this sequence tends to 0. Thus there is a z_n as close to 0 as we like for which $e^{1/z_n}=c$. This illustrates Picard's theorem.