1.1 Lebesgue 测度

1.1.1 引论

Lebesgue 测度的性质

我们期望 Lebesgue 测度具有如下一些性质。

区间的测度为其长度 非空区间是可测集,且

$$m(I) = \ell(I)$$
.

测度是平移不变的 若 E 为 Lebesgue 可测集且 y 为一数,则

$$m\left(E+y\right) =m\left(E\right) .$$

无交集的可数并的测度可加 E_k 为可数个无交可测集,则

$$m\left(\bigcup E_k\right) = \sum m\left(E_k\right).$$

且 Lebesgue 可测集全体构成一 σ -代数。

定义 1.1.1. 一集族构成代数,如果其元素的补,有限交与有限并皆封闭。

定义 1.1.2. 一集族构成 σ -代数, 如果其元素的补, 可数交与可数并皆封闭。

在全体集合上定义满足条件的测度是不可能的,甚至仅仅满足前两个条件而具有有限可加性都是不能指望的。但在定义 Lebesgue 测度前,仍可先构造对任意集合都适用的外测度,满足前二条件,而第三条件替换为无论诸 E_k 无交与否,皆有

$$m^*\left(\bigcup E_k\right) \leq \sum m^*\left(E_k\right).$$

1.1.2 Lebesgue 外测度

定义无界区间的长度为 ∞。对于任意集合, 定义外测度

$$m^*(A) = \inf \sum \ell(I_k).$$

2

其中 $\{I_k\}$ 为 A 的区间覆盖。立即可得空集外测度为零且外测度具有单调性,即若 $A \subset B$ 则

$$m^*(A) \leq m^*(B)$$
.

可以由此证明, 可数集的测度为零。

命题 1.1.1. 区间的测度为其长度。

证明. 考虑有界闭区间 [a,b], 易证 $m* \leq (b-a)$ 。另一方向的不等号需要

$$\sum \ell\left(I_k\right) \ge b - a.$$

由紧致性只需要对有限开覆盖证明

$$\sum_{k=0}^{n} \ell\left(I_{k}\right) \ge b - a.$$

选取包含 a 的区间 1,若右端点在 (a,b) 内则选取另一包含其右端点的区间 2,重复这一过程直到右端点在 (a,b) 外,则上述不等式成立。

对于任意有界区间,选取其闭区间的上下逼近并注意外测度的单调性即可。对于无界区间,易得其测度为 ∞ 。

命题 1.1.2. Lebesque 外测度是平移不变的。

证明. 注意区间的平移不变即可。

命题 1.1.3. 对任意 $\{E_k\}$, 有

$$m^*\left(\bigcup E_k\right) \leq \sum m^*\left(E_k\right).$$

证明. 对 E_k 取误差不超过 $2^{-k}\epsilon$ 的覆盖区间,加和即可。

1.1.3 Lebesgue 可测集的 σ -代数

Carathéodory 可测

定义 1.1.3. 若对于任意集合 A, 都有

$$m^*(A) = m^*(A \cap E) + m^*(A \cap CE),$$

则称 E 可测。

3

鉴于外测度的次可加性,上述条件可弱化为

$$m^*(A) \ge m^*(A \cap E) + m^*(A \cap CE)$$
.

此外还应注意到,对于无交集,若其中任一可测,立刻有

$$m * (A \cup B) = m^* ([A \cup B] \cap A) + m^* ([A \cup B] \cap CA)$$

= $m^* (A) + m^* (B)$.

故有可加性。此外, 可测集的补仍为可测集。

定理 1.1.1. 零测集为可测集。

证明. 代入弱化后的条件,注意外测度的单调性即可。

定理 1.1.2. 可测集的有限并可测。故可测集构成代数。

证明. 只证二可测集的并可测。借助二集可测的 Carathéodory 条件,有

$$m^{*}(A) = m^{*}(A \cap E_{1}) + m^{*}(A \cap CE_{1} \cap E_{2}) + m^{*}(A \cap CE_{1} \cap CE_{2})$$

$$\geq m^{*}(A \cap [E_{1} \cup E_{2}]) + m^{*}(A \cap C[E_{1} \cup E_{2}]).$$

定理 1.1.3. 无交可测集的有限并满足

$$m^* \left(A \cap \bigcup E_k \right) = \sum m^* \left(A \cap E_k \right).$$

证明. 注意到 Carathéodory 条件的

$$A \cap \bigcup_{k=0}^{n} E_k \cap E_k = A \cap E_k$$

以及

$$A \cap \bigcup_{k=0}^{n} E_k \cap \complement E_n = A \cap \bigcup_{k=0}^{n-1} E_n,$$

归纳即可。

推论 1.1.1. 可测集的测度有限可加。

定理 1.1.4. 可测集的可数并可测。故可测集构成 σ -代数。

证明. 不妨设诸集无交。设其并为 E,则根据前开命题及单调性,有

$$m^*(A) \ge \sum_{k=0}^{n} m^*(A \cap E_k) + m^*(A \cap CE).$$

让 $n \to \infty$, 借助次可加性即可。

定理 1.1.5. 区间是可测集。

证明. 只证 $I=(a,\infty)$ 型区间可测。不妨设 a 不在 A 内且将之分割为 $A\cap \mathbb{C}I=A_1$ 与 $A\cap I=A_2$ 。对于 A 的任意覆盖 $\{I_k\}$ 均同样割裂之,有

$$m^*(A_1) + m^*(A_2) \le \sum \ell(I_k),$$

故满足弱化后条件。

定义 1.1.4. 开集的可数交为 G_δ 型集。

定义 1.1.5. 闭集的可数并为 F_{σ} 型集。

注意 \mathbb{R} 中开集为区间的并,故 G_{δ} 型(以及 F_{σ} 型)集可测。

定义 1.1.6. 包含开集的最小 σ -代数称为 Borel σ -代数,其元素称为 Borel 集。

定理 1.1.6. \mathbb{R} 中可测集包含 Borel σ -代数。区间,开集,闭集, G_δ 与 F_σ 型集可测。

命题 1.1.4. 可测集平移后可测。

证明. 在 Carathéodory 条件中将 E 的平移转化为 A 的平移,注意外测度 的平移不变即可。 \qed

1.1.4 Lebesgue 可测集的内外逼近

引理 1.1.1. 对 $A \subset B$, 有

$$m^*(B-A) = m^*(B) - m^*(A)$$
.

证明. 注意由 Carathéodory 条件,

$$m^*(B) = m^*(B \cap A) + m^*(B - A).$$

定理 1.1.7. 下列条件与 E 的可测性等价。

- (a) 对 $\epsilon > 0$, 存在包含 E 的开集 \mathcal{O} 满足 $m^*(\mathcal{O} E) < \epsilon$;
- (b) 存在包含 E 的 G_δ 型集满足 $m^*(G-E)=0$;
- (c) 对 $\epsilon > 0$, 存在 E 内的闭集 F 满足 $m^*(E F) < \epsilon$;

(d) 存在 E 内的 F_{σ} 型集满足 $m^*(E-F)=0$ 。

证明. 只证前二者。后二者取补可得。

设 E 可测,则存在区间并任意逼近其外测度,取 O 为区间并即可。有

$$m^* (\mathcal{O} - E) = m^* (\mathcal{O}) - m^* (E) < \epsilon.$$

对于无界 E,分为可数个有界部分即可。不断缩小 ϵ ,可得所求 G_δ 型集。鉴于零测集可测,又 $E=G\cap\mathbb{C}(G-E)$,知 E 可测。

注意到对于任意集合 E 都存在开集使 $m^*(\mathcal{O}) - m^*(E)$ 任意小,然而外测度的减性仅对可测集成立。

定理 1.1.8. 对有限测度的 $E \subset \mathbb{R}$, 存在有限多个区间的并 \mathcal{O} 满足 m* $(E-\mathcal{O})+m^*(\mathcal{O}-E)<\epsilon$ 。

证明. 取开集 U 为 E 的 $\epsilon/2$ 外逼近,写 U 为区间并,选取其中有限个以 $\epsilon/2$ 逼近之,注意到两差均小于 $\epsilon/2$ 即可。

1.1.5 Lebesgue 测度的其他性质

定义 1.1.7. 对可测集定义其 Lebesque 测度为外测度。

定理 1.1.9. Lebesque 测度是可数可加的。

证明. $m(\cup) \le \sum m$ 由次可加性可得,由有限可加性和单调性又有 $m(\cup) \ge \sum^n m$,让右侧 $n \to \infty$ 即可。

定理 1.1.10. \mathbb{R} 中可测集包含 *Borel* σ -代数。区间测度为长度,且平移不变,可数可加。

定义 1.1.8. 一个可数集族称为升链,如果 $E_k \subset E_{k+1}$,相似定义降链。

定理 1.1.11. Lebesque 测度满足

(a) 若 $\{A_k\}$ 为升链,则

$$m\left(\bigcup A_k\right) = \lim_{k \to \infty} m\left(A_k\right).$$

(b) 若 $\{B_k\}$ 为降链且 $m(B_1) < \infty$, 则

$$m\left(\bigcap B_k\right) = \lim_{k \to \infty} m\left(B_k\right).$$

证明. 不妨设诸 A_k 测度有限,则构造 A_k 的差得到等价的无交序列,后应用可数可加性即可。

对于 B 则关于 B_1 取补后构造等价无交序列,借助减性即可。

定义 1.1.9. 称一性质在 E 上几乎处处成立,如果它在除一零测集外成立。

引理 1.1.2 (Borel-Cantelli). 若 $\{E_k\}$ 测度和有限,则几乎任意 $x \in \mathbb{R}$ 最多属于有限多个 E_k 。

证明.

$$m\left(\bigcap_{k=n} E_k\right) = \lim_{n \to \infty} m\left(\bigcup_{k=n} E_k\right) = 0.$$

1.1.6 不可测集

引理 1.1.3. 设 $E \subset \mathbb{R}$ 有界且存在可数无限有界实数集 Λ 其元素使诸 $\lambda + E$ 无交,则 m(E) = 0。

证明. 注意平移不变性与可数可加性, 以及有界性即可。

定义 1.1.10. 定义二实数有理等价, 若其差为有理数。

定理 1.1.12 (Vitali). 任意正测度的实数集 E 存在一不可测子集。

证明. 不妨设 E 有界,取 E 内有理等价类的代表元集 C,有上述引理知 m(C) = 0。再选取 Λ 为 $\mathbb Q$ 足够大的子集,使诸 $\lambda + E$ 可覆盖 E,矛盾。 \square

定理 1.1.13. 存在 $\mathbb R$ 的无交子集 A 与 B 满足

$$m^* (A \cup B) < m^* (A) + m^* (B)$$
.

1.1.7 Cantor 集与 Cantor-Lebesgue 函数

定义 1.1.11. 定义 Cantor 集为 I = [0,1] 不断挖去各连通分量之三等分之中间部分的结果。令诸 C_k 为每一步的结果, $\mathbf{C} = \cap C_k$ 。

定理 1.1.14. *Cantor* 集不可数,且 $m(\mathbf{C}) = 0$ 。

证明. 易证其可测且测度为零。参考定理??的证明过程知不可数。

定义 Cantor-Lebesgue 函数 φ 函数如下。对 $\mathcal{O}_k = [0,1] - C_k$ 的 $2^k - 1$ 个连通分量分别赋值

$$\{1/2^k, 2/2^k, 3/2^k, \cdots, (2^k-1)/2^k\}$$
.

 $\Rightarrow \varphi(0) = 0 \perp$

$$\varphi(x) = \sup \{ \varphi(t) \mid t \in [0, x) \}.$$

定理 1.1.15. φ 连续单调递增且在 O 内导数为零, 并将 [0,1] 映满 [0,1]。

证明. 注意 φ 在 $x \in \mathbb{C}$ 附近的跳跃不超过其两侧 \mathcal{O} 的跳跃,而随 k 增大其可任意小。故其连续,由介值定理知映满。

定理 1.1.16. 连续严格递增映射 $\psi(x) = \varphi(x) + x$ 满足:

- (a) 将零测 C 映为一正测集;
- (b) 将一可测 $E \subset \mathbb{C}$ 映为不可测集。

证明. 注意到 $[0,2] = \psi(\mathcal{O}) + \psi(\mathbf{C})$ 且开集与闭集映射后仍为开集与闭集,故仍可测。将 \mathcal{O} 分解成区间,映射后区间长度不变即知 $m(\psi(\mathcal{O})) = 1$ 。

因此, $m(\psi(\mathbf{C})) = 1$ 而含有不可测集, 其原像为零测可测集。

引理 1.1.4. 严格递增映射存在连续逆。

引理 1.1.5. 连续映射 f 的 Borel 集像的原像为 Borel 集。

证明. 注意
$$f^{-1}\left(\mathsf{C}U\right) = \mathsf{C}f^{-1}\left(U\right), \ f^{-1}\left(A\cap B\right) = f^{-1}\left(A\right)\cap f^{-1}\left(B\right).$$

定理 1.1.17. 存在非 Borel 集的可测集。

证明. Borel 集经严格增映射后仍为 Borel 集,可测集映射后可能不可测。 □

1.2 可测函数

1.2.1 可测函数的和、积与复合

命题 1.2.1. 对于在可测集上定义的函数 f, 下列命题等价。

- 1. 对任意 c, f(x) > c 的 x 可测;
- 2. 对任意 c, $f(x) \ge c$ 的 x 可测;

- 3. 对任意 c, f(x) < c 的 x 可测;
- 4. 对任意 c, $f(x) \leq c$ 的 x 可测;

证明. 只证前二。将 $f(x) \ge c$ 的 x 视为诸 f(x) > c - 1/k 的交,而 f(x) > c 视为诸 $f(x) \ge c + 1/k$ 的并。

定义 1.2.1. 可测集上定义的函数 f 称为可测的,若其满足前开命题之一。

命题 1.2.2. 可测集上定义的 f 为可测当且仅当开集的原像均可测。

证明. 注意开集可写为区间并, 而 $(a,b) = (-\infty,b) \cap (a,+\infty)$ 。

命题 1.2.3. 可测集上定义的连续函数可测。

命题 1.2.4. 区间上定义的单调函数可测。

命题 1.2.5. 设 $f: E \to \overline{\mathbb{R}}$ 。

- 1. 若 f 可测而 g 与 f 几乎处处相等,则 g 可测;
- 2. 设 D 为可测子集, f 可测当且仅当在 D 和 E-D 上可测。

定理 1.2.1. f 和 g 为几乎处处有界的可测函数,则 $\alpha f + \beta g$ 与 fg 可测。

证明. 只证 f+g 和 fg 可测。 f+g < c,则存在 $q \in \mathbb{Q}$ 满足 f < q < c-g,将诸可数个 q 并起即可。又注意

$$fg = \frac{1}{2} \left[(f+g)^2 - f^2 - g^2 \right]$$

以及可测函数的平方可测即可。

例 1.2.1. 由定理 1.1.16可知,可测函数的复合 $\chi_E \circ \psi^{-1} > 0$ 的原像 $\psi(E)$ 不可测。

定理 1.2.2. 设 f 连续可测而 q 可测,则 $f \circ q$ 可测。

证明. 注意
$$(f \circ g)^{-1}(\mathcal{O}) = g^{-1}(f^{-1}(\mathcal{O}))$$
 即可。

由是立得 |(f)| 与 $|(f)|^p$ 可测。

命题 1.2.6. $max\{f_1, \dots, f_n\}$ 与 $min\{f_1, \dots, f_n\}$ 可测。

由是立得诸

$$|f| = \max\{f, -f\}, \quad f^+ = \max\{f, 0\}, \quad f^- = \max\{-f, 0\}$$

可测。故 f 可写为可测函数之差 $f = f^+ - f^-$ 。

1.2.2 可测函数的极限与逼近

定义 1.2.2. 称 $\{f_n\}$ 一致收敛于 f, 若对于充分大的 n 有 $||f - f_n|| < \epsilon$.

命题 1.2.7. 若可测函数列 $\{f_n\}$ 逐点收敛于 f, 则 f 可测。

证明. 若 f(x) < c, 对于充分大的 N 有 $f_{N:}(x) < c$, 并起诸 N 即可。 \square

定义 1.2.3. 简单函数为仅取有限多个值的可测函数。

注意简单函数 φ 均可写为

$$\varphi = \sum_{k=0}^{n} c_k \cdot \chi_{E_k}.$$

引理 1.2.1 (简单函数逼近). 可测函数存在 ϵ -接近的上下逼近 φ_{ϵ} 与 ψ_{ϵ} 。

证明. 将可测函数的值域分割为若干 ϵ 小区间即可。

定理 1.2.3 (简单函数逼近). 可测函数存在满足 $|\varphi_n| < |f: E \to \mathbb{R}|$ 的逼近。若 f 恒正,则存在诸 φ_n 递增。

证明. 设 f 恒正。在第 n 步截断 f 的值域至 n 后作 1/n 逼近即可。取 $\varphi_n = \max \{\varphi_1, \dots, \varphi_n\}$ 可得递增序列。

一般情形将
$$f$$
 写为 $f^+ - f^-$ 即可。

1.2.3 Littlewood 的三大原理

三大原理谓

- 1. 每个可测集都几乎是区间的并; (定理 1.1.8)
- 2. 每个可测函数都几乎是连续的; (定理 1.2.5)
- 3. 每个可测函数的逐点收敛序列都几乎是一致收敛的。(定理 1.2.4)

引理 1.2.2. 对有限测度的 E 上定义的逐点收敛可测函数列 $\{f_n\} \to f$,存在充分大的 N 使 f_N . 在任意逼近 E 的集合上任意逼近 f。

证明. 注意由逐点收敛, 诸 N 的 A 为升列且并为 E 即可。

定理 1.2.4 (Egoroff 定理). 有限测度的 E 上定义的逐点收敛可测函数列 $\{f_n\} \to f$ 在一 ϵ -接近 E 的闭集 F 上一致收敛。

证明. 据上引理,对任意 n 取 A_n 与 E 为 $\epsilon/2^{n+1}$ -接近而 $f_{N:}$ 与 f 为 1/n-接近,由是其交 A 与 E 为 ϵ -接近且一致收敛。再取闭集逼近 A 即可。

命题 1.2.8. 对在 E 上定义的简单函数,存在连续函数在任意逼近 E 的集合上与之相等。

证明. 对诸 E_k 选取闭集逼近之,后调用 Urysohn 引理。

定理 1.2.5 (Lusin 定理). 对可测函数, 前开命题成立。

证明. 由简单函数逼近之, 后以连续函数逼近之, 再选取一致收敛的闭集。