# DTU IQIWA – Image quality improvement with autoencoders

Karol Krzak s203005, Maciej Tatarski s202609, Jerzy Nawrocki s202618 - Technical University of Denmark

## Introduction

- The focus of this project is to develop an efficient way of enhancing image quality for the purpose of medical diagnosis
- Our approach is based on convolutional neural networks that are best suited for image processing

#### **Key contributions:**

- Convolutional autoencoders for image denoising
- Deconvolutional network for image resolution enhancement
- Residual neural network for better image resolution enhancement
- MSE, PSNR, SSIM losses, with introduced our own Loss function
- Residual neural networks

### Image denoising

#### **Convolutional autoencoder**

A convolutional autoencoder is a neural network that is trained to reproduce its input image in the output layer. An image is passed through an encoder, that produces a low-dimensional representation of the image. The decoder takes this compressed image and reconstructs the original image.



## **Models**

Deconvolutional neural network

As we were using autoencoders in a previous

case we decided to try to implement a simple

decoder for image resolution enhancement.

### **Resolution enhancement**

#### Loss functions [4]:

- $MSE = \frac{1}{n}\sum(\hat{Y} Y)^2$

#### Residual neural network

More advanced residual neural network has better performance over the baseline model.



- Input image size: 90x90

 Number of channels: 3->10->20->3

Optimizer: Adam

- Number of channels in ResBlock: 64
- Optimizer: Adam
- Learning rate: 10e-3

#### Autoencoder trained on images without noise









With noise



Reconstructed

#### **Deconvolutional neural network**

Low resolution image Reconstruction



**Past** 

Low resolution image

Reconstruction

Resnet

Ground truth

# PHOTO NOT PHOTO NOT PHOTO NOT YET AVAILABLE YET AVAILABLE YET AVAILABLE

Autoencoder trained on images with noise







Original

Original

With noise





# **References**

Future

- [1] Yifei Zhang A Better Autoencoder for Image: Convolutional Autoencoder [2] Deep Learning for Image Super-Resolution
- [3] Christian Ledig Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- [4] https://towardsdatascience.com/deep-learning-image-enhancementinsights-on-loss-function-engineering-f57ccbb585d7