Name:			
manne.			

Show all work clearly and in order. Please box your answers. 10 minutes.

1. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$$

- (a) Compute A^{-1} .
- (b) Write A^{-1} as a product of elementary matrices.
- (c) Write A as a product of elementary matrices.
- (d) Use the A^{-1} computed in part (a) to solve the equation $A\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

$$[AII] = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ -2 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & -3 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2 \to R2 + 2R1} \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & 0 & 1 & | & 6 & 3 & 1 \end{bmatrix}$$

$$SO A^{-1} = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 2 & 1 & 0 & | & 2 & 1 & 0 \\ 6 & 3 & 1 & | & 6 & 3 & 1 \end{bmatrix}$$

(b) operation ① corresponds to
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

operation ② corresponds to
$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 3 & i \end{bmatrix}$$
 So $A^{-1} = E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i \end{bmatrix}$

(c)
$$E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$ so $A = E_1^{-1}E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(d)
$$A^{-1}Ax = x = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$$

2. Give an example of a 2×2 matrix which is not the zero matrix and is NOT invertible.