LM194/LM394 Supermatch Pair

General Description

The LM194 and LM394 are junction isolated ultra well-matched monolithic NPN transistor pairs with an order of magnitude improvement in matching over conventional transistor pairs. This was accomplished by advanced linear processing and a unique new device structure.

Electrical characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low noise and theoretical operation over a wide current range. Most parameters are guaranteed over a current range of 1 μ A to 1 mA and 0V up to 40V collector-base voltage, ensuring superior performance in nearly all applications.

To guarantee long term stability of matching parameters, internal clamp diodes have been added across the emitter-base junction of each transistor. These prevent degradation due to reverse biased emitter current—the most common cause of field failures in matched devices. The parasitic isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices.

The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely matched transistor pair. In many cases, trimming can be eliminated entirely, improving reliability and decreasing costs. Additionally, the low noise and high gain make this device attractive even where matching is not critical.

The LM194 and LM394/LM394B/LM394C are available in an isolated header 6-lead TO-5 metal can package. The LM394/LM394B/LM394C are available in an 8-pin plastic dual-in-line package. The LM194 is identical to the LM394 except for tighter electrical specifications and wider temperature range.

Features

- Emitter-base voltage matched to 50 μV
- Offset voltage drift less than 0.1 µV/°C
- Current gain (hFE) matched to 2%
- Common-mode rejection ratio greater than 120 dB
- Parameters guaranteed over 1 μA to 1 mA collector current
- Extremely low noise
- Superior logging characteristics compared to conventional pairs
- Plug-in replacement for presently available devices

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)

(11010-1)	
Collector Current	20 mA
Collector-Emitter Voltage	V _{MAX}
Collector-Emitter Voltage	35V
LM394C	20V
Collector-Base Voltage	35V
LM394C	20V
Collector-Substrate Voltage	35V
LM394C	20V
Collector-Collector Voltage	35V
LM394C	20V

Base-Emitter Current	± 10 mA
Power Dissipation	500 mW
Junction Temperature	000 1111
LM194	-55°C to +125°C
LM394/LM394B/LM394C	-25°C to +85°C
Storage Temperature Range	-65°C to +150°C
Soldering Information	
Metal Can Package (10 sec.)	260°C
Dual-In-Line Package (10 sec.)	260°C
Small Outline Package	
Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C
See AN-450 "Surface Mounting and th	eir Effects on Prod-
uct Reliability" for other methods of	f soldering surface

Electrical Characteristics (T_J = 25°C)

Parameter	Conditions	LM 194			LM394			LM394B/394C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Current Gain (hFE)	$\begin{array}{c} V_{CB} = 0V \text{ to } V_{MAX} \text{ (Note 1)} \\ I_{C} = 1 \text{ mA} \\ I_{C} = 100 \ \mu\text{A} \\ I_{C} = 10 \ \mu\text{A} \\ I_{C} = 1 \ \mu\text{A} \end{array}$	350 350 300 200	700 550 450 300		300 250 200 150	700 550 450 300		225 200 150 100	500 400 300 200		11300 11100 11100 11100
Current Gain Match, (h _{FE} Match) = $\frac{100 [\Delta \text{lg}] [\text{h}_{\text{FE}(\text{MIN})}]}{\text{lc}}$	$V_{CB} = 0V \text{ to } V_{MAX}$ $I_{C} = 10 \mu\text{A to 1 mA}$ $I_{C} = 1 \mu\text{A}$		0.5 1.0	2		0.5 1.0	4		1.0 2.0	5	% %
Emitter-Base Offset Voltage	$V_{CB} = 0$ $I_{C} = 1 \mu A \text{ to 1 mA}$		25	100		25	150		50	200	μV
Change in Emitter-Base Offset Voltage vs Collector-Base Voltage (CMRR)	(Note 1) $I_C = 1 \mu A \text{ to 1 mA},$ $V_{CB} = 0 V \text{ to V}_{MAX}$		10	25		10	50		10	100	μV
Change in Emitter-Base Offset Voltage vs Collector Current	$V_{CB} = 0V$, $I_{C} = 1 \mu A \text{ to } 0.3 \text{ mA}$		5	25		5	50		5	50	μV
Emitter-Base Offset Voltage Temperature Drift	$I_C = 10 \mu A \text{ to 1 mA (Note 2)}$ $I_{C1} = I_{C2}$ V_{OS} Trimmed to 0 at 25°C		0,08 0.03	0,3 0,1		0.08	1.0 0.3		0.2	1.5 0.5	μV/°C μV/°C
Logging Conformity	$I_{C}=3$ nA to 300 μ A, $V_{CB}=0$, (Note 3)		150			150			150		μV
Collector-Base Leakage	$V_{CB} = V_{MAX}$		0.05	0.25		0.05	0.5		0.05	0.5	nA
Collector-Collector Leakage	$V_{CC} = V_{MAX}$		0.1	2.0		0.1	5.0		0.1	5.0	nA
Input Voltage Noise	$I_C = 100 \mu A, V_{CB} = 0V,$ f = 100 Hz to 100 kHz		1.8			1.8			1.8		nV/√Hz
Collector to Emitter Saturation Voltage	$I_C = 1 \text{ mA}, I_B = 10 \mu\text{A}$ $I_C = 1 \text{ mA}, I_B = 100 \mu\text{A}$		0.2 0.1			0.2 0.1			0.2 0.1		V V

mount devices.

Note 1: Collector-base voltage is swept from 0 to V_{MAX} at a collector current of 1 μ A, 10 μ A, 100 μ A, and 1 mA.

Note 2: Offset voltage drift with $V_{OS}=0$ at $T_A=25^{\circ}$ C is valid only when the ratio of I_{C1} to I_{C2} is adjusted to give the initial zero offset. This ratio must be held to within 0.003% over the entire temperature range. Measurements taken at $+25^{\circ}$ C and temperature extremes.

Note 3: Logging conformity is measured by computing the best fit to a true exponential and expressing the error as a base-emitter voltage deviation.

Note 4: Refer to RETS194X drawing of military LM194H version for specifications,

Typical Applications (Continued) Fast, Accurate Logging Amplifier, $V_{IN} = 10V$ to 0.1 mV or $I_{IN} = 1$ mA to 10 nA R6 9.76k 1% 100k **≶** v_{оит} TL/H/9241-3 °1 k Ω (±1%) at 25°C, +3500 ppm/°C. Available from Vishay Ultronix, Grand Junction, CO, Q81 Series. $V_{OUT} = -\log_{10}\left(\frac{V_{IN}}{V_{REF}}\right)$ Voltage Controlled Variable Gain Amplifier R6 50k 2N3810 D1 1N457 C1 30 pF LM318 D2 1N457 TL/H/9241-4

 $\pm\,13$

 ± 13

 ± 13

٧

±13

Output Swing (R_L = $10 \text{ k}\Omega$)

**Assumes ≤ 5 ppm/°C tracking of resistors

TL/H/9241-8

Typical Performance Characteristics (Continued)

Collector to Collector Capacitance vs Collector-Substrate Voltage

Emitter-Base Capacitance vs Reverse Bias Voltage

Collector-Base Capacitance vs Reverse Bias Voltage

Collector-Base Leakage vs Temperature

Collector to Collector Leakage vs Temperature

Offset Voltage Long Term Stability at High Temperature

TL/H/9241-9

Emitter-Base Log Conformity

TL/H/9241-10

Low Frequency Noise of Differential Pair*

TIME (SEE GRAPH)

*Unit must be in still air environment so that differential lead temperature is held to less than 0,0003°C.

TL/H/9241-11

Connection Diagrams

Metal Can Package

TL/H/9241-12

Top View

Order Number LM194H/883*, LM394H, LM394BH or LM394CH See NS Package Number H06C **Dual-In-Line and Small Outline Packages**

Top View

TL/H/9241-13

Order Number LM394N or LM394CN See NS Package Number N08E

*Available per SMD #5962-8777701

HOSC (REV D)

Metal Can Package (H) Order Number LM194H/883, LM394H, LM394BH or LM394CH NS Package Number H06C

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number LM394CN or LM394N NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: onlyge@tenzt.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 1-180-532 78 32 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsul, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

