(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-60055

(43)公開日 平成10年(1998) 3月3日

 (51)Int.Cl.6
 酸別記号
 庁内整理番号
 F I
 技術表示箇所

 C 0 8 F 220/06
 7824-4 J
 C 0 8 F 220/06
 2/44
 C

 C 0 8 L 33/06
 C 0 8 L 33/06
 C 0 8 L 33/06

審査請求 未請求 請求項の数18 OL (全 14 頁)

(71)出願人 591035368 (21)出願番号 特顯平9-155630 エアー、プロダクツ、アンド、ケミカル ス、インコーポレーテッド (22)出願日 平成9年(1997)6月13日 AIR PRODUCTS AND CH EMICALS INCORPORATE (31) 優先権主張番号 663496 1996年6月14日 (32)優先日 アメリカ合衆国、18195-1501、ペンシル 米国(US) (33)優先権主張国 パニア州. アレンタウン. ハミルトン. プ ールパード、7201 (72)発明者 リチヤード・ヘンリー・ポット アメリカ合衆国ペンシルペニア州18062. マキユンジー、チエリーレイン1610 (74)代理人 弁理士 髙木 千嘉 (外2名) 最終頁に続く

(54) 【発明の名称】 十分に加水分解されたポリ(ビニルアルコール)の存在下で製造されたアクリルエマルジョン

(57)【要約】

【課題】 固体含量の高いアクリルエマルジョンを、<u>界</u>面活性剤または特別な処理を使用することなく容易に製造すること。

【解決手段】 上記課題は、単独の安定剤として十分に加水分解されたポリ(ビニルアルコール)または部分的に加水分解されたポリ(ビニルアルコール)(但し低分子量ポリ(ビニルアルコール)の分子量が5,000~13,000である)および連鎖移動剤の存在下でアクリルエステルモノマーを重合させて、エマルジョン組成物を製造することによって達成される。

【特許讃求の範囲】

【請求項1】 本質的に少なくとも一つのアクリルモノマーからなる重合可能なモノマー系を、水およびボリアクリルボリマーの製造用の安定剤の存在下で重合させるボリアクリルボリマー粒子を製造するためのアクリル不飽和を有する、水不溶性のエチレン系不飽和モノマーから本質的になるモノマー混合物の乳化重合のための方法において、微細流動化することなく45重量%を超える固体含量を有するアクリルエマルジョンを製造するために

a) 96.5%を超える加水分解価を有するポリ(ビニルアルコール) および少なくとも86%の加水分解価を有するポリ(ビニルアルコール) からなる群より選ばれるポリ(ビニルアルコール) から本質的になり、ここでその分子量は約5,000~13,000の範囲内である安定剤を利用し、そして実質的に界面活性剤および溶剤はなく、そして前記ポリ(ビニルアルコール) は、重合すべきモノマーの2~約15重量の量で存在する重合領域で重合を実施し;そして

b) <u>連鎖移動剤の存在下で重合を実施する</u>ことを特徴と する、上記の方法。

【請求項2】 ポリ(ビニルアルコール)を重合するモノマーの約3~約7重量%の量でエマルジョンに配合する、請求項1の方法。

【請求項3】 連鎖移動剤を重合すべきモノマーの約 0.2~3重量%の量で配合する、請求項2の方法。

【請求項4】 重合領域にアクリルモノマーを遅延添加することによって重合を実施する請求項3の方法。

【請求項5】 始発装填物として重合すべきアクリルモノマーの10~30%を重合領域に装填し、次いでモノマーの残りをある期間にわたって添加することによって、遅延添加を実施する請求項4の方法。

【請求項6】 アクリルモノマーがアクリルおよびメタクリル酸の C_{1-8} アルキルエステルである、請求項3の方法。

【請求項7】 アクリルモノマーが、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、2-エチルヘキシルアクリレートからなる群より選ばれる請求項6の方法。

【請求項8】 ポリ(ビニルアルコール)が少なくとも 98%の加水分解パーセントを有する、請求項6の方法。

【請求項9】ポリ (ビニルアルコール) 安定剤が、低分子量 (5,000~13,000) のポリ (ビニルアルコール) 20~80%および高分子量25,000~45,000ペポリ (ビニルアルコール) 20~80%からなるブレンドとして存在する、請求項7の方法。

【請求項10】 ポリ(ビニルアルコール) 安定剤が、低分子量(5,000~13,000) のポリ(ビニルアルコール) 50~75%の量、並びに約86~90%の

加水分解価およびより高い分子量25,000~45.0 00のポリ(ビニルアルコール)25~50%からなる ブレンドとして存在する、請求項9の方法。

【請求項11】 ポリアクリルポリマー粒子を製造するためのアクリル不飽和を有する、重合されたエチレン系不飽和モノマーから本質的になる水性エマルジョンにおいて、96.5%を超える加水分解価を有するポリ(ビニルアルコール)および少なくとも86%の加水分解価を有するポリ(ビニルアルコール)からなる群より選ばれるポリ(ビニルアルコール)から本質的になり、ここでその分子量は約5,000~13,000の範囲内である安定剤を用いて前記エマルジョンを安定化させ、前記エマルジョンは実質的に界面活性剤および溶剤を含まず、前記エマルジョンは固体含量がエマルジョンの少なくとも45重量%であり、そしてポリ(ビニルアルコール)は、ポリアクリルポリマーの約2~12重量%の量で配合されたものであることを特徴とする上記エマルジョン

【請求項12】 ポリ(ビニルアルコール)は、重合するモノマーの3~7重量%の量でエマルジョンに配合された、請求項11のエマルジョン。

【請求項13】 連鎖移動剤が重合すべきモノマーの 0.2~3重量%の量で配合された請求項12のエマルジョン。

【請求項14】 アクリルモノマーが、アクリルおよび メタクリル酸の C_{1-8} エステルであり、連鎖移動剤がメルカプタンである、請求項13のエマルジョン。

【請求項15】 アクリルモノマーがメチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、2-エチルヘキシルアクリレートからなる群より選ばれる、請求項14のエマルジョン。 【請求項16】 ポリ(ビニルアルコール)が少なくとも98%の加水分解パーセントを有する、請求項15のエマルジョン。

【請求項17】 ポリ(ビニルアルコール) 安定剤は、低分子量(5,000~13,000) のポリ(ビニルアルコール) 20~80%およびより高分子量の35,000~45,000のポリ(ビニルアルコール) 20~80%の量で存在する、請求項15のエマルジョン。【請求項18】 ポリ(ビニルアルコール) 安定剤が、低分子量(5,000~13,000) のポリ(ビニルアルコール) 50~75%、およびより高分子量の35,000~45,000のポリ(ビニルアルコール) 25~50%の量で存在する、請求項16のエマルジョン。【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、ポリ(ビニルアルコール)の存在下でポリアクリレートの安定なエマルジョンを製造するための方法および得られたエマルジョンに関する。

[0002]

【発明の背景】 ポリ (ビニルアルコール) は、多くのビ ニルエステルモノマーの乳化重合の安定剤として広く使 用されている。安定剤としてポリ(ビニルアルコール) を使用すると、接着剤、シーラント、コーティングおよ びバインダーのような用途に有用である粒子サイズの制 御、流動性および架橋特性を可能にする。一つの制限 は、ポリ(ビニルアルコール)の比較的低い安定剤レベ ル、例えば重合するアクリルモノマーの12重量%未満 では、安定なアクリルエマルジョンを製造することがで きないということである。ポリ (ビニルアルコール) の 別の制限は、例えば45重量%を超える、高い固形分を 有するアクリルエマルジョンについては、安定剤として その使用を拡大できないということである。この制限を 克服するために多くの努力がなされており、それを行う にあたっては、一般には、いずれも方法または組成を変 えることをベースにしている。 以下の特許および文献 は、アクリル不飽和を有するモノマーからなるモノマー 混合物を乳化重合するための安定剤系としてポリ(ビニ ルアルコール)を使用することを説明している。

【0003】GB 1348449および "Polyvinyl alcohol-De velopments", C.A. Finch編, JohnWiley &; Sons. New York, NY. (第459頁、1992)中のFarmer, D.B. は、非イオン性またはアニオン性界面活性剤を使用する アクリルエマルジョンの製造を開示している。ポリ(ビ ニルアルコール)それ自体は、安定なエマルジョンを製 造するのに不適切であるとされている。US 5,326,809に は、広い範囲のエチレン系不飽和モノマーの乳化重合の 安定剤としてポリ(ビニルアルコールーコービニルアミ ン)を使用することが開示されている。代表的なポリ (ビニルアルコールーコービニルアミン) 安定剤には、 50~99モル%のポリ (ビニルアルコール) および 0.1~50%のポリ(ビニルアミン)が含まれる。ア クリルモノマーを単独で使用する例ではいずれも、エマ ルジョンの安定性を高めるための界面活性剤を添加して いることがわかる。安定性のいくらかの向上が、アミン 官能基によって実現される。また、アクリルモノマーは メチルアクリレートであり、これは水溶性がより高いた め、本質的にPVOHを用いて安定化するのが容易であ る。

【0004】US 5,354,803には、十分に加水分解された低分子量ポリ(ビニルアルコール)12~35%を含み、界面活性剤を含まず、ホルムアルデヒドを含まないポリ(ビニルアルコール)グラフトコポリマーの製造が開示されている。この文献では、高濃度(12~35重量%)のポリ(ビニルアルコール)を使用して、アクリルモノマーがポリ(ビニルアルコール)へ化学的にグラフト化するのを促進している。さらに、製造したエマルジョンの固体含有量は、一貫して40重量%未満であった。US 5,364,904には、ガラス繊維のサイズ剤として使

用するためのコポリマーエマルジョンの製造が開示されている。そのエマルジョンは、アルキル(ーメタ)アクリレートモノマーを含むエマルジョンを微細流動化し、そしてポリ(ビニルアルコール)で安定化させることによって形成する。ポリ(ビニルアルコール)は、加水分解の程度が少なくとも70%であるのが好ましいが、ポリ(ビニルアルコール)の加水分解の重要性は記載されていない。この例は、界面活性剤の添加がエマルジョンの安定性を確実に促進していることを示している。

【0005】GB 1,438,449には、すべてのアクリルエマルジョン組成物を安定化させるための手段として酸またはメルカプタン基を含むボリ(ビニルアルコール)の使用が開示されている。さらにまた、この文献は、すべてのアクリルエマルジョン組成物に関して、安定剤として慣用のボリ(ビニルアルコール)を使用するのは、有用性が足りないことを指摘している。US 4,670,505には、保護コロイドおよび界面活性剤の存在下で(メタ)アクリルモノマーの乳化重合のための安定化系の一部として低分子量のアミノアルコールを使用することが開示されている。ボリ(ビニルアルコール)の存在下で製造する場合、少なくとも50%の量で存在する、酢酸ビニルなしのアクリル系を製造すると不安定な系が得られる。【0006】US 2,318,429には、分散剤として部分的に

酸化されたポリ酢酸ビニルを使用して、重合したアルキ ルメタクリレート、すなわちメチルメタクリレートおよ びイソブチルアクリレート、の水性分散体を製造するた めの方法が開示されている。特許権者らは、ポリアクリ レートの水性分散体は、アニオン性界面活性剤を用いて 得ることができるが、これらのエマルジョンは、カチオ ン性界面活性剤によって、多価金属イオンによって、並 びに正に帯電したエマルジョンおよび分散体によって容 易に凝固するため、織物の仕上げ剤としての有用性は限 定されていることに言及している。特許権者らは、40 ~130の鹸化価および約20センチポアズの粘度(2 0℃の時の4%水性溶液)を有する部分的に鹸化された ポリ酢酸ビニルの存在下でアルキルアクリレートを重合 させることによってコロイド系が製造できることを報告 している。表1は、ポリメチルメタクリレートの製造並 びに部分的に鹸化されたおよび完全に鹸化されたポリ酢 酸ビニルの存在を開示している。特許権者は、完全に鹸 化されたポリ酢酸ビニルを用いて製造したエマルジョン は不安定であることを記載している。US 2,407,107に は、アルキルアクリレートモノマーを水性溶液中で乳化 し、重合させる乳化重合によってアルキルアクリレート ポリマーの安定な分散体を製造する方法が開示されてい る。水溶性の、部分的に鹸化されたポリ酢酸ビニルを乳 化剤として使用して少量の石油炭化水素、例えば鉱油ま たはワックスを加えた。炭化水素は、アルキルアクリレ ートモノマーの重量を基準にして約0.5~5%の量で 使用し、そして典型的には重合されたアルキルアクリレ

ートの10~40重量%を含むエマルジョンの安定性を 高めるのに使用した。

【0007】US 2,773.050には、ヒドロキシル基を含むポリマー、例えばポリ(ビニルアルコール)との混合物中で同時に、アクリルエステルを重合するための方法が開示されており、これは次いで架橋剤を用いた処理によって硬化することができる。重合は、ヒドロキシル基を有するビニルポリマー、例えばポリ(ビニルアルコール)の水性溶液中のアクリルエステル、および場合により、乳化剤、例えば硫酸化された脂肪族アルコールのアルカリ金属塩の分散体を製造することによって実施するのが都合よい。アクリル樹脂対ポリ(ビニルアルコール)およびエマルジョンの重量比は約80:20~約50:50の範囲であるが、好ましくは80:20~65:35である。

[0008]

【発明の概要】本発明は、改善されたアクリルエマルジ ョン組成物およびアクリルエマルジョンを製造するため の改善された方法に関する。水に不溶なアクリルモノマ 一系を重合させるための改良点は、本質的に特定の加水 分解レベルを有するポリ (ビニルアルコール) からなる 安定剤系の存在下および連鎖移動剤の存在下で、アクリ ルモノマーの重合を実施することにある。この媒体は有 用な性質を有し、そして接着剤、コーティング、バイン ダーおよびセメント添加剤のような用途の使用に適して いるエマルジョンを製造することを可能にする。すくな くとも大部分のアクリルモノマーが、メチルアクリレー トよりも大きい炭素含有量を有する、実質的に全アクリ ルの水不溶性のモノマー系を重合させ、そして実質的に 十分に加水分解されたポリ(ビニルアルコール)並びに 少なくとも86%の加水分解価および約5,000~1 3,000の分子量を有するポリ(ビニルアルコール) からなる群より選ばれるポリ(ビニルアルコール)から 本質的になる安定剤を使用して、その全アクリルエマル ジョン系を45重量%を超える高固体で、エマルジョン の12重量%未満のポリ(ビニルアルコール)濃度で、 安定化させることが可能であることがわかった。約9 6.5%未満の加水分解レベルは、低分子量のポリ(ビ ニルアルコール)では使用されうるが高分子量のポリ (ビニルアルコール)では不安定となる。

【0009】本発明に関するいくつかの利点があり、これらには、

- · 安定剤としてポリ(ビニルアルコール)保護コロイドを使用して、高固体の本質的にすべてのアクリルエマルジョンを製造する能力
- 比較的低レベルのポリ(ビニルアルコール)、例えばモノマー重量の2~12%そして一般的には3~5%の範囲を有するアクリルエマルジョンを製造する能力
- 使用の界面活性剤もしくは炭化水素可溶化剤または 微細流動化技術を使用することなく安定なアクリルエマ

ルジョンを製造する能力

- ・ 木材のような種々の物質に対する優れた接着性を有し、そして優れた湿潤強度および耐水性を有するアクリルエマルジョンを製造する能力
 - 優れた膜およびコーティングを形成する能力
- ポリ (ビニルアルコール) で安定化された再分散可能なアクリルポリマーを製造する能力、および
- ・ 低粘度を有するアクリルエマルジョンを製造する能力、が含まれる。

【0010】発明の詳述

本発明の実施においては、安定剤として、ポリ(ビニル アルコール)からなる安定剤系を使用する乳化重合法に よって、実質的にすべてのアクリルエマルジョンを製造 することができる。アクリルモノマー、特にメチルアク リレートよりも水溶性の低いアクリルモノマーは、本質 的に安定剤としてポリ(ビニルアルコール)を使用して エマルジョン系中で重合させることが本質的に不可能で あった。ここに記載した重合法では、広い範囲のアクリ ルモノマーを使用することができ、それらは単独で、ま たは別のアクリルモノマーと組み合わせて使用すること ができる。これらのエチレン系不飽和の重合可能な、ア クリルおよびメタクリル酸のC1~C8アルキルエステル には、メチルアクリレート、エチルアクリレート、ブチ ルアクリレート、2-エチルーヘキシルアクリレートお よび対応するメタクリレートが含まれる。これらの中で は、メチルメタクリレートおよびブチルメタクリレート が、接着剤、コーティング、バインダーおよびセメント の用途に適した種々の重合系を製造するための重合法に 使用する好ましい低級アルキルアクリレートである。

【0011】別のエチレン系不飽和モノマーをアクリル エステルと共重合させることができる。得られるコポリ マーの組成は、用途に大きく依存している。典型的なモ ノマーには、酢酸ビニル、アクリルアミド、メタクリル アミド、アクリルおよびメタクリル酸、マレイン酸およ びフマル酸無水物等が含まれる。また、僅かにより水溶 性の高いアクリレートには、ヒドロキシアクリレート、 例えばヒドロキシエチルアクリレートおよびグリシジル アクリレートが含まれこれらをアクリルエステルと共重 合させることもできる。エマルジョンがアクリルエマル ジョンとみなされるには、アクリルエステル以外のモノ マーは最少に、ポリマーを製造するのに使用するモノマ 一の例えば約10重量%未満、好ましくは5重量%にし なければならない。より親水性のモノマー、すなわち重 合すべきアクリルモノマーよりも親水性のモノマーは、 耐水性を維持するためには除くべきである。

【0012】界面活性剤、可溶化剤および微細流動化技術を使用することなしに、例えば45重量%を超える、すべての高固体アクリルエマルジョンを製造するための鍵の一つは、安定剤として、実質的に十分に加水分解されたポリ(ビニルアルコール)および部分的に加水分解

されたポリ(ビニルアルコール)、>86%、からなる 群より選ばれ、分子量が約5,000~13,000の範 囲であるポリ (ビニルアルコール)を使用することにあ る。低分子量、すなわち13,000未満のポリ(ビニ ルアルコール)は、86%加水分解されたものから十分 に加水分解されたものまで使用することができる。安定 剤として使用したポリ (ビニルアルコール) のレベル は、重合する全モノマーの重量を基準に約2~12%、 好ましくは約3~約7%である。ポリ(ビニルアルコー ル)の一つのタイプは、次なくとも96.5%の加水分 解価を有する、すなわちポリ(酢酸ビニル)の酢酸基の 96.5%がヒドロキシル基に変換されている。酢酸基 が96.5%未満しかヒドロキシル基に変換されていな い時、すなわちポリ酢酸ビニルが十分には加水分解され ておらず、そして分子量が約13,000より上の時 は、高固体アクリルエマルジョン処方物がが砂のように なる傾向がある。加水分解の程度が実質的に96.5% <u>より低いときは、</u>ラテックスは不安定となりうる。ポリ (ビニルアルコール)の第二のタイプは、少なくとも8 6%の加水分解価から十分に加水分解されたもので、 5,000~13,000の範囲の分子量を有するポリ (ビニルアルコール)である。加水分解価が低く、分子 量が高いポリ (ビニルアルコール) は、先行技術によっ て示されているように低固体のアクリルエマルジョンを 製造することが可能であるが、ポリ(ビニルアルコー ル) 安定剤レベルが低いと、高固体エマルジョンを製造 することは不可能である。

【0013】ポリ(ビニルアルコール)の分子量は、ア クリルエマルジョンを安定化するのに重要な因子であ る。約5,000~約45,000の範囲の数平均分子量 を有する十分に加水分解されたポリ(ビニルアルコー ル) は、<u>約15,000~約30,000</u>の好ましい範囲 で使用しなければならない。加水分解価の低いポリ(ビ ニルアルコール) は、<u>分子量が約13,000を超えな</u> いことを条件として使用することができる。十分に加水 分解されたポリ (ビニルアルコール) のブレンドを使用 しても望ましい結果を得ることができる。ブレンドの一 <u>つのタイプは、86~90%加水分解されたものを含</u> む、低分子量(5,000~13,000)のポリ(ビュ <u>ルアルコール)20~80%、好ましくは50~75</u> %、およびより高い分子量、例えば25,000~45 000の分子量のポリ (ビニルアルコール) 20~80 %、好ましくは50~75%からなる。別のブレンド は、十分に加水分解されたポリ(ビニルアルコール)お よび単独ではエマルジョンを安定化することができない と考えられる部分的に加水分解されたポリ(ビニルアル コール)からなることができる。換言すれば、安定化ポ リ (ビニルアルコール)のすべてが十分に加水分解され ている必要はないが、いくらかの加水分解の程度の低い 物質、例えば15,000を超える分子量で、85~9

0%の加水分解価のものを含みうる。いくらかの加水分解価の低い物質を使用する場合、そのレベルは、エマルジョンの安定性が低くなるにつれて、しっかりと調整しなければならない。このような低加水分解ポリ(ビニルアルコール)は約0~25%使用することができるが、残りのポリ(ビニルアルコール)は、安定剤の別の成分として、少なくとも98%の加水分解価を有しなければならない。

【0014】安定な低級アルキルアクリレートを含むエ マルジョンを製造する別のポイントは、連鎖移動剤を使 用することにある。これらの連鎖移動剤は、重合させる べきモノマーの約0.2~3重量%、好ましくは0.5~ 1.5重量%の量で配合させる。代表的な連鎖移動剤に は、慣用のメルカプタン、例えばnードデシルメルカプ タンおよび水溶性の連鎖移動剤が含まれる。典型的に は、これらの連鎖移動剤は、メチルメタクリレートを基 準にして、少なくとも 0.6の連鎖移動係数を有する。 ポリ (ビニルアルコール) および連鎖移動剤の存在下に おける、アクリルおよびメタクリル酸の低級アルキルエ ステルの乳化重合は、慣用の遅延添加重合技術を使用し て、または慣用のバッチ法によって実施することができ る。遅延法は好ましいものであり、この場合、重合すべ きモノマーの約10~30%を安定剤を含む重合反応器 に添加し、残りのモノマーをある期間にわたって添加す る。添加の時間は変化しうるが、慣用の方法では、2~ 4時間の期間にわたってモノマーを添加する。 さらなる 記述は、U.S. 5,326,809に記載されており、参照により 本明細書に組み込まれている。

【0015】慣用の乳化重合法では、使用する触媒は、 過酸化物のようなフリーラジカルを形成する触媒、例え ばt-ブチルヒドロパーオキサイド、過硫酸塩、例えば 過硫酸カリウム、過硫酸アンモニウム等、並びにアゾ化 合物、例えば2,2′ーアゾアミジノプロパン塩酸塩お よび還元系、例えばホルムアルデヒドスルホキシル酸ナ トリウムおよびエリソルビン酸ナトリウムである。酸化 剤は、一般に、重合系に入れるモノマーの重量を基準に して、0.01~1%、好ましくは0.05~0.5重量 %の量で使用する。還元剤は、水性系として、必要な当 量または化学量論量で添加する。エマルジョン中のアク リルポリマーおよびコポリマーの粒子サイズは、0.3 ~2ミクロンの範囲である。この粒子サイズの範囲は、 微細流動化により得た極めて微細な粒子サイズのエマル ジョンよりも有益である。これらの利点には、高い剪断 下での安定性、湿潤粘着性、硬化速度、塩への安定性お よび配合者にとって処方の許容範囲が広いということが 含まれる。

【0016】本明細書に記載した、低級アルキルアクリレートエマルジョンの重要な利点の一つは、記載したように、それらが本質的に十分に加水分解されたポリ(ビニルアルコール)および/または部分的に加水分解され

2 -

たポリ (ビニルアルコール) からなる安定化系で安定化 されており、多くの用途で得られたポリマーの性質に悪 影響を及ぼしうるレベルの非イオン性およびアニオン性 の界面活性剤を含まないということである。十分に加水 分解されたポリ (ビニルアルコール) の存在下における ポリマーに関連する性質の利点には、前記のものおよび 望ましいエマルジョン粘度が含まれる。高レベルのポリ (ビニルアルコール)を有する先行技術のエマルジョン では、グラフト化のレベルが高く、このため粘度が望ま しくない、膜形成および耐水性に乏しいといったことに 関連するプロセスの欠点が生じる。低レベルのポリ(ビ ニルアルコール)で安定化されたエマルジョンは、これ らの性質を改善する。以下の実施例は、本発明の種々の 実施態様を説明するために提供するものであって、本発 明の範囲を限定しようとするものではない。すべての量 は別記しない限り、重量部である。

【0017】実施例1

ポリ(酢酸ビニル)の加水分解

以下の方法を使用して、実施例に使用したポリ(ビニル アルコール) 試料の加水分解の程度を測定した。ポリ (ビニルアルコール)の秤量した試料を、フラスコ中に 置き、水およびメタノールの75/25容積/容積混合 物中に溶解した。次いで、既知濃度の水酸化ナトリウム 溶液のアリコートを残っているすべての酢酸基を完全に 加水分解するのに十分な量で添加した。次いで、溶液を 1時間、還流させ、反応を確実に完了させた。最後に、 加水分解の程度を、酸の標準液で過剰の水酸化ナトリウ ムを逆滴定することによって測定した。次いで、ポリ (ビニルアルコール)の加水分解を完了するのに消費し た水酸化ナトリウムの量を使用して、ポリ(ビニルアル コール)の加水分解の程度を決定した。

【0018】実施例2

ブチルアクリレート/メチルメタクリレートエマルジョ

ポリ (ビニルアルコール) の存在下において

一般的な合成法:混合器、冷却器、窒素パージ、および 溶液を供給するための供給路を備え付けた2リッターの ジャケット付きガラス反応器を重合容器として、使用し た。水性系は初期装填物からなり、これは水、安定剤、 酸化剤、少レベル(10~30%)モノマーおよび促進 剤からなる。この混合物を反応温度に加熱し、所望の温 度で平衡状態にした。次いで、少量の還元剤を添加する ことによって反応を開始した。反応が熱を生じ始めた 時、供給物の添加(遅延添加)を開始した。反応器のジ ャケットを加熱または冷却することによって、および遅 延成分の添加速度を制御することによって、所望の温度 を維持した。モノマーおよび開始剤溶液をすべて添加し た後、生成物を反応温度に30~90分維持し、モノマ <u>ーを確実に完全に転化させた。次いで生成物を室温に冷</u> 却し取り出した。 ブチルアクリレートおよびメチルメタ / クリレートをベースとするエマルジョンA~Fを、上の 一般的な記述に従って製造した。実施例A~Fは、まず 第一に安定剤として、種々のポリ(ビニルアルコール) ポリマーを使用することで区別され、このようなポリ (ビニルアルコール) ポリマーは、異なるエマルジョン に対応するようA~Fと示されている。ポリ(ビニルア ルコール)A~Fは、以下の表に示した。

[0019]

【表1】

ポリ (ビニルアルコール)

ポリ(ビニルア ルコール)	数平均分子量	加水分解の程度 (モル%)
A	6.000	97.4
В	7.000~13.000	98~98.8
С	27.000~44.000	96.5~97.5
D-比較例	7.000~13.000	√9 6. 7
E一比較例	44.000~65.000	95.5~96.5
(F)-比較例	15.000~27.000	87~89
Ġ	15.000~27.000	1 98~98.8

【0020】ポリ (ビニルアルコール) Aのエマルジョ

本実施例は、単独の安定剤としてポリ(ビニルアルコー

ル) Aの存在下で製造された、ブチルアクリレート/メ チルメタクリレートコポリマーエマルジョンの製造を説 明している。

反応器への始発装填物

230g 脱イオン水 _ポリ (ビニルアルコール)(A10%水溶液 340g 357g モノマー混合物(以下と同じ比率) ・tertブチルヒドロパーオキサイド(70%水性溶液) 1.0g 硫酸アンモニウム第一鉄(1%水性溶液) 5 g

(g)

酢酸

3.9g

[0021]

遅延供給物

~	量
1)脱イオン水	323.4g
ホルムアルデヒドスルホキシル酸ナトリウム	6.6 g
総量	330g
	169.5g
tertブチルヒドロパーオキサイド(70%水性溶液)	10.65g
Foamaster VF(*)	1.5
総量	181.65g
3) n-ブチルアクリレート	383g '
メチルメタクリレート	467g
nードデシルメルカプタン	7 g
総量	857g
7.0	

Foamaster VFは市販の脱泡剤である。

【0022】反応は、70℃で実施した。遅延溶液1を 最初に0.2g/分の速度で、次いで2時間にわたって 1.9g/分に高めて添加した。遅延溶液2は、最初に 高めて添加した。モノマー遅延溶液3は、3.3g/分 の速度で添加した。反応は4時間で完了した。生成物は 以下の性質を有していた。

0.1 g/分の速度で、次いで15分後に0.5 g/分に

未反応のモノマーのブチルアクリレート	ЗУРРШ
メチルメタクリレート	133 ррш
固体%	49.5
加速された沈降	4.0%
рН	3.2
Tg	12.1℃
60RPM粘度	2 2 5 cps
12RPM粘度	420cps
100メッシュ粗粒子	2500ppm

粘度はBrookfieldの装置で4%エマルジョンで測定した。

エマルジョンは安定しており、従って、高固体の、ブチルアクリレート/メチルメタクリレートエマルジョンは、単独の安定剤としてポリ(ビニルアルコール)を使用して製造することができることがわかった。粒度レベルは適度であった。

本実施例は、98~98.8%の加水分解価を有するポリ(ビニルアルコール) Bの存在下で製造した、ブチルアクリレート/メチルメタクリレートコポリマーエマルジョンの製造を説明している。

【0023】ポリ (ビニルアルコール) Bのエマルジョ

反応器への始発装填物

脱イオン水	230g
ポリ (ビニルアルコール) B10%水溶液	340g
モノマー混合物(以下と同じ比率)	357g
tertブチルヒドロパーオキサイド(70%水性溶液)	1.0g
硫酸アンモニウム第一鉄(1%水性溶液)	5 g
酢酸	6.2g

[0024]

遅延供給物

E) E D (10 10	
溶 液_	
1)脱イオン水	323.4g
ホルムアルデヒドスルホキシル酸ナトリウム	6.6 g
総量	330g
2)脱イオン水	169.5g

tertブチルヒドロバーオキサイド(70%水性溶液) 10.65g
Foamaster VF(*) 1.5
総量 181.65g
3) nーブチルアクリレート 383g
メチルメタクリレート 467g
nードデシルメルカプタン 7g
総量 857g

【0025】反応を70℃で実施した。遅延溶液1を最初に0.5g/分の速度で、次いで1.5時間にわたって1.3g/分に高めて添加した。遅延溶液2は、最初に0.3g/分の速度で、次いで15分後に0.7g/分に

高めて添加した。モノマー遅延溶液3は、3.7g/分の速度で添加した。反応は4時間で完了した。生成物は以下の性質を有していた。

未反応のモノマーのブチルアクリレート	80ppm
メチルメタクリレート	14.0ppm
固体%	49
pН	3.1
Tg	20.9℃
12RPM粘度	ND
6.0RPM粘度	265cps
100メッシュ粗粒子	1 0 Oppm
加速された沈降	3.0%

エマルジョンは安定であり、粗い粒子は少ししかなく、従ってポリ(ビニルアルコール)Bの安定剤としての有効性が示された。粗い粒子のレベルを下げた主な理由は、ポリ(ビニルアルコール)Aと比べて、分子量のより高い、すなわち7000~13,000のポリ(ビニルアルコール)であったためと考えられる。この結果は、より高分子量のアルコールでは安定化する力がより

大きいためであると考えられる。

従ってポリ (ビニルアルコール) Bの安定剤としての有 ② 【0026】ポリ (ビニルアルコール) Cのエマルジョ

本実施例は、単独の安定剤として、ポリ(ビニルアルコール) C (加水分解96.5~97.5%)の存在下で、ブチルアクリレート/メチルメタクリレートコポリマーエマルジョンの製造を説明している。

反応器への始発装填物

脱イオン水	230g
ポリ(ビニルアルコール)C10%水溶液	340g
モノマー混合物(以下と同じ比率)	357g
tertブチルヒドロパーオキサイド(70%水性溶液)	1.0 g
硫酸アンモニウム第一鉄(1%水性溶液)	5 g
酢酸	3.1 g

[0027]

遅延供給物

	溶 液	
1)	脱イオン水	323.4g
	ホルムアルデヒドスルホキシル酸ナトリウム	6.6g
	総量	330g
2)	脱イオン水	169.5g
	tertブチルヒドロパーオキサイド(70%水性溶液)	10.65g
	Foamaster VF(*)	1.5
	総量	181.65g
3)	nーブチルアクリレート	383g
	メチルメタクリレート	467g
	nードデシルメルカプタン	7 g
	総量	857g

【0028】反応を70℃で実施した。遅延溶液1を最初に0.2g/分の速度で、次いで2時間にわたって1.

2g/分に高めて添加した。遅延溶液2は、最初に0. 1g/分の速度で、次いで30分にわたって0.7g/ 分に高めて添加した。モノマー遅延溶液3は、3.6g /分の速度で添加した。反応は4時間で完了した。生成 物は以下の性質を有していた。

未反応のモノマーのブチルアクリレート	4 9 ppm
メチルメタクリレート(*)	ND
固体%	50.3
рН	4.0
Tg	2 2℃
12RPM粘度	19000cps
60RPM粘度	7980cps
加速された沈降	7.0%
100メッシュ粗粒子	1900ppm

NDとは、検出されなかったということである。

この結果は、ポリ(ビニルアルコール)がアクリルモノマー系を安定化させるのに有効であることを示している。しかしながら、ポリ(ビニルアルコール)Bと比較すると、粘度および粗粒子の形成がより高いのは、おそらくポリ(ビニルアルコール)の加水分解価が低いためであろう。

(0) [0029] ポリ (ビニルアルコール) Dのエマルジョ

3.0%

本実施例は、単独の安定剤として、96.7%の加水分解価を有するポリ(ビニルアルコール)Dの存在下で製造した、ブチルアクリレート/メチルメタクリレートコポリマーエマルジョンの製造を説明している。

反応器への始発装填物

加速された沈降

脱イオン水・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	230 g
ポリ(ビニルアルコール)D10%水溶液	340g
モノマー混合物(以下と同じ比率)	357g
tertブチルヒドロパーオキサイド(70%水性溶液)	1.0 g
硫酸アンモニウム第一鉄(1%水性溶液)	5 g
酢酸	4.8g

[0030]

遅延供給物

溶液	
1)脱イオン水	323.4g
ホルムアルデヒドスルホキシル酸ナトリウム	6.6g
総量	330g
2)脱イオン水	169.5g
tertブチルヒドロパーオキサイド(70%水性溶液)	10.65g
Foamaster VF(*)	1.5
総量	181.65g
3) n - ブチルアクリレート	383g
メチルメタクリレート	467g
nードデシルメルカプタン	7 g
総量	857g

【0031】反応を70℃で実施した。遅延溶液1を最初に0.2g/分の速度で、次いで2時間にわたって1.9g/分に高めて添加した。遅延溶液2は、最初に0.1g/分の速度で、次いで15分後に0.6g/分に高めて添加した。モノマー遅延溶液3は、3.3g/分の

速度で添加した。反応を開始して直ちに、多量の凝塊が 観察された。この不安定な状態は反応を通じて続いた。 反応は4時間で完了した。生成物は以下の性質を有して いた。

未反応のモノマーのブチルアクリレート	24 ppm
メチルメタクリレート(*)	6Зррш
固体%	ND
加速された沈降	ND
рН	ND

 Tg
 ND

 12RPM粘度
 ND

 60RPM粘度
 ND

 100メッシュ粗粒子
 ND

NDとは、生成物が不安定であるために測定できなかったということである.

【0032】記載からわかるように、ポリマーはほとんど直ちに凝固し、低加水分解価のポリ (ビニルアルコール)は、安定剤として効果的でないことによるものと考えられる。連鎖移動剤の存在は役立っていなかった。ここで得られた結果は、幾分擬似的であると考えられ、それはこのデータが他の仕事と一致させることができないからである。試験の概要に関しては実施例5を参照するとよい。しかしながら、使用したポリ (ビニルアルコー

ル) は許容される安定剤のボーダーライン上にあり、失 敗することが予想されうる。

(e) [0033]ポリ(ビニルアルコール) Eのエマルジョ

本実施例は、単独の安定剤として、ポリ (ビニルアルコール) Eの存在下で製造した、ブチルアクリレート/メチルメタクリレートコポリマーエマルジョンの製造を説明している。

反応器への始発装填物

脱イオン水	230g
ポリ (ビニルアルコール) E10%水溶液	340g
モノマー混合物(以下と同じ比率)	357g
tertブチルヒドロパーオキサイド(70%水性溶液)	1.0 g
硫酸アンモニウム第一鉄(1%水性溶液)	5 g
酢酸	3.3 g

[0034]

遅延供給物

_ 溶液	
1)脱イオン水	323.4g
ホルムアルデヒドスルホキシル酸ナトリウム	6.6 g
2)脱イオン水	169.5g
tertブチルヒドロパーオキサイド(70%水性溶液)	10.65g
Foamaster VF(*)	1.5
3) n-ブチルアクリレート	383g
メチルメタクリレート	467g
nードデシルメルカプタン	7 g

【0035】反応を70℃で実施した。遅延溶液1を最初に0.2g/分の速度で、次いで2時間にわたって1.9g/分に高めて添加した。遅延溶液2は、最初に0.1g/分の速度で、次いで15分後に0.6g/分に高めて添加した。モノマー遅延溶液3は、3.3g/分の

速度で添加した。反応を開始して直ちに、多量の凝塊が 観察された。この不安定な状態は反応を通じて続いた。 2時間後に反応を停止した。生成物は以下の性質を有し ていた。

未反応のモノマーのブチルアクリレート	4 3 ppm
メチルメタクリレート	238ppm
固体%	34%
加速された沈降	ND
рΗ	2.7
Тg	ND
12RPM粘度	ND
60RPM粘度	ND
100メッシュ粗粒子	49,000ppm

NDとは、生成物が不安定であるために測定できなかったということである.

【0036】高分子量の低加水分解ポリ(ビニルアルコール)が安定剤として有効でないということは、他の親水性モノマーおよび/または安定剤なしで、より水不溶性のアクリルモノマーを安定化させるポリ(ビニルアル

コール)の能力に関する先行の研究者らの結果を確認することとなった。

水性モノマーおよび/または安定剤なしで、より水不溶 (0037)ポリ (ビニルアルコール) Fのエマルジョ 性のアクリルモノマーを安定化させるポリ (ビニルアル 本実施例は、単独の安定剤として、ポリ(ビニルアルコール)(F)の存在下で製造した、ブチルアクリレート/メ

チルメタクリレートコポリマーエマルジョンの製造を説明している。

反応器への始発装填物

脱イオン水	245g
ポリ (ビニルアルコール) F10%水溶液	218g
モノマー混合物(以下と同じ比率)	·40g
tertブチルヒドロパーオキサイド(70%水性溶液)	0.5g
硫酸アンモニウム第一鉄(1%水性溶液)	5 g
酢酸	2.3g

[0038]

遅延供給物

_ 溶液	
1)脱イオン水	237.5g
ホルムアルデヒドスルホキシル酸ナトリウム	12.5g
総量	250g
2)脱イオン水	200g
tertブチルヒドロパーオキサイド(70%水性溶液)	8.0g
総量	208g
3) n-ブチルアクリレート	289g
メチルメタクリレート	193g
nードデシルメルカプタン	1.5g
総量	483.5g

【0039】反応を70℃で実施した。遅延溶液1を最初に0.2g/分の速度で、次いで2時間にわたって0.3g/分に高めて添加した。遅延溶液2は、最初に0.1g/分の速度で、次いで15分後に0.4g/分に高めて添加した。モノマー遅延溶液3は、1.4g/分の

速度で添加した。反応を開始して直ちに、多量の凝塊が 観察された。この不安定な状態は反応を通じて続いた。 反応は6時間で完了した。生成物は以下の性質を有して いた。

未反応のモノマーのブチルアクリレート	172ppm
メチルメタクリレート(*)	
固体%	34%
加速された沈降	ND
рН	2.3
Tg	-7.0
12RPM粘度	ND
60RPM粘度	ND
100メッシュ粗粒子	ND

(*) 未検出

NDとは、生成物が不安定であるために測定できなかったということである.

【0040】生成物は、不安定であり、従って、<u>たとえ</u>ボリ(ビニルアルコール)の分子量が所望の範囲内であっても、少なくとも96.5%の加水分解価を有するボリ(ビニルアルコール)を使用するのが重要であることがわかる。

【0041】実施例3

ブチルアクリレート/メチルメタクリレートエマルジョ

反応器への始発装填物

脱イオン水		140g
ポリ (ビニルアルコール) B.10%水溶液		160g
メチルメタクリレート		158g
ブチルアクリレート		141g

ンを製造するためのバッチ法

本実施例は、実施例2で使用した遅延法とは異なるバッチ法を使用して、単独の安定剤としてポリ(ビニルアルコール)Bの存在下で製造したブチルアクリレート/メチルメタクリレートコポリマーエマルジョンの製造を説明している。

n – ドデシルメルカプタン	0.9g
tertブチルヒドロパーオキサイド(70%水性溶液)	2.3g
硫酸アンモニウム第一鉄(1%水性溶液)	5 g
Foamaster VF	2.3 g

遅延供給物

_ 溶 _ 液	量
1)脱イオン水	237.5g
ホルムアルデヒドスルホキシル酸ナトリウム	12.5g
	250g

【0042】反応を40℃で開始し、1時間にわたって 40℃に上昇させた。遅延溶液1を0.3g/分の速度 で添加した。遅延溶液1の添加速度を変化させることに よって反応温度を制御した。反応は2時間で完了した。 生成物は工程を通じて良好な安定性を示した。生成物は 以下の性質を有してた。

未反応のモノマーのブチルアクリレート	3 1 ppm
メチルメタクリレート(*)	
固体%	45.8%
加速された沈降	4.0%
рH	_
60RPM粘度	<u> </u>
Tg1	-3.3
12RPM粘度	_
100メッシュ粗粒子	'
4 3 5 18 111	

【0043】実施例4

ブチルアクリレート/メチルメタクリレートエマルションの製造

ポリ (ビニルアルコール) のブレンドの存在下において 本実施例は、安定剤としてポリ (ビニルアルコール) C およびポリ(ビニルアルコール)Gの混合物すなわちブレンドの存在下で製造したブチルアクリレート/メチルメタクリレートコポリマーエマルジョンの製造を説明している。

反応器への始発装填物

脱イオン水	403g
ポリ(ビニルアルコール)C 10%水性溶液	619g
ポリ(ビニルアルコール)G10%水性溶液	185g
モノマー混合物(以下と同じ比率)	434g
tertブチルヒドロパーオキサイド(70%水性溶液)	2.2g
硫酸アンモニウム第一鉄(5%水性溶液)	5 g
酢酸	5.8g

遅延供給物

溶 液_	量
1)脱イオン水	393.9g
ホルムアルデヒドスルホキシル酸ナトリウム	10.1g
総量	404g
2)脱イオン水	387g
tertブチルヒドロパーオキサイド(70%水性溶液)	15.4g
総量	$402.4\mathrm{g}$
3) n-ブチルアクリレート	935g
メチルメタクリレート	935g
nードデシルメルカプタン	13.2g
₩	1883.2g

【0044】反応を70℃で実施した。遅延溶液1および2を最初に0:3g/分の速度で添加し、次いで2時間にわたって1.7g/分に高めた。モノマーの遅延物

3を16.1g/分の速度で添加した。反応を2.5時間で完了した。遅延溶液の総量については上に示した通りであり、使用した実際の量は、遅延溶液1が105.1

gそして遅延溶液2が156.9gであった。追加の水 を添加して、最終的な固体含有量を~50%に調節し

た。生成物は以下の性質を有していた。

未反応のモノマーのブチルアクリレート	235ppm
メチルメタクリレート(*)	
固体%	50.4%
加速された沈降	3.0%
pH'	3.9
60RPM粘度	2400cps
Tg1	0.7℃
- 12RPM粘度	5400cps
100メッシュ粗粒子	· 5 Оррш

本実施例は、分子量および加水分解のレベルの異なるポリ (ビニルアルコール)の組み合わせを使用することによって良好な性質が得られることを示している。粗粒子の形成は、単独で使用したポリ (ビニルアルコール)タイプのいずれのものより少なかった。

(*)未検出

【0045】<u>実施例5</u>

試験のまとめ

一連の試験は、広く様々な市販のポリ(ビニルアルコール)の効果を測定するために実施した。実施例1の一般的な方法は以下の通りである。ポリ(ビニルアルコール)は以下の表に示した。

【0046】 【表2】

試験した PVOH		粘度/数平均分子量	アクリレートの安定化 における効果
A -502	87-89	3. 0-3. 7/7. 000-13. 000	あり、高粘度
A -203	87-89	3. 0-4. 5/7, 000-15, 000	あり
A -205	87-89	5. 2-6. 2/15. 000-27. 000	なし、粗くかつ沈降が速い
A -523	87-89	23-27/44, 000-65, 000	なし、粗くかつ沈降が速い
WS-42	96. 5-97. 5	14-17/27.000-44.000	あり
A - 425	95. 5-96. 5	27-31/44. 000-65. 000	なし、粗く高粘度であり 沈降が速い
A -103	98. 0-98. 8	3. 5-4. 5/7, 000-15, 000	あり
A-107	98. 0-98. 8	5. 5-6. 6/15. 000-27. 000	あり
A -321	98. 0-98. 8	16. 5-20. 5/27, 000-44, 000	あり
A -125	99. 3+	28-32/44, 000-65, 000	あり
Run-1	97. 6	2. 6/6. 000	あり .
Run-2	97. 2	2. 4/5. 000	あり

【0047】上記表中のAは、Air Products and Chemi cals. Incが所有する登録商標、Airvolのその系列のポリ(ビニルアルコール)についての略号である。後の数字は等級を表している。表からわかるように、最良の結果は、中程度の重量、高加水分解>98%のポリ(ビニルアルコール)を用いて得られる。また、結果から低分子量の低加水分解ポリ(ビニルアルコール)は、アクリルエマルジョンを安定化させるのに有効であり、上記ポ

リ(ビニルアルコール)Dと対照的である。

【0048】比較例1

この特別な実施例では、単独の安定剤としてポリ(ビニルアルコール)Bを使用した実施例の手法に従って製造したが、異なる点は連鎖延長剤、ドデシルメルカプタンを除いたことである。過剰の粗粒子が形成し、エマルジョンが不安定であったために、重合は数時間で停止した。

フロントページの続き

(72)発明者 フランク・ヴィートウ・デイステフアーノ アメリカ合衆国ペンシルベニア州18062. マキユンジー、ギヤツプロード360