# An Introduction to Inverse Optimization

Preared by Yingcong Tan<sup>1</sup>

Email: t\_yingco@encs.concordia.ca

Home page: https://users.encs.concordia.ca/~t\_yingco/

<sup>1</sup>Department of Mechanical, Industrial and Aerospace Engineering Concordia University

Last update: May 17, 2019

### COMBINATORIAL OPTIMIZATION PROBLEMS

#### ROUTING PROBLEM

GIVEN a network ..... Constraints



### COMBINATORIAL OPTIMIZATION PROBLEMS

#### ROUTING PROBLEM

GIVEN a network ..... CONSTRAINTS
FIND a path with the least Cost ..... OBJECTIVE



### Modelling Optimization Problems

(Forward) Optimization Problem

(FOP) minimize 
$$c'x$$
 OBJECTIVE subject to  $Ax \le b$  CONSTRAINTS

### GEOMETRIC INTERPRETATION

### Forward Optimization Problem

$$(FOP)$$
 minimize  $x_1 - x_2$  subject to  $0 \le x_1 \le 1$   $0 \le x_2 \le 1$ 



### GEOMETRIC INTERPRETATION

### Forward Optimization Problem

$$(FOP)$$
 minimize  $x_1 - x_2$  subject to  $0 \le x_1 \le 1$   $0 \le x_2 \le 1$ 



6/14

## WHAT IS INVERSE OPTIMIZATION (IO)?

Forward Optimization Problem

(FOP) minimize c'xsubject to  $Ax \le b$ , An Example of IO

Given Constraints i.e., **A**, **b** Find Cost Vector c





# WHAT IS INVERSE OPTIMIZATION (IO)?

Forward Optimization Problem

(FOP) minimize c'xsubject to  $Ax \le b$ , An Example of IO

Given Constraints i.e., **A**, **b** Find Cost Vector c





### VARIANTS OF IO TASKS

LEARN COST VECTOR **c**CONSISTENT WITH TARGET



### VARIANTS OF IO TASKS

LEARN CONSTRAINTS **A**, **b** CONSISTENT WITH TARGET



### Variants of IO Tasks

Learn Weights w of Parametric Problems  $\mathbf{c}(\mu, w), \ \mathbf{A}(\mu, w), \ \mathbf{b}(\mu, w)$  consistent with Target



### FURTHER READING I

To learn more about Inverse Optimization, please see the following papers:

Overview of Inverse Optimization

Ravindra K Ahuja and James B Orlin. "Inverse optimization". In: *Operations Research* 49.5 (2001), pp. 771–783

T. C. Y. Chan, T Lee, and D. Terekhov. "Goodness of Fit in Inverse Optimization". In: *Management Science* (2018)

- Single Observations Inverse Optimization
  - M. D. Troutt et al. "Linear programming system identification: The general nonnegative parameters case". In: *European Journal of Operational Research* 185.1 (2008), pp. 63–75
  - M. D. Troutt et al. "Linear programming system identification: The general nonnegative parameters case". In: *European Journal of Operational Research* 185.1 (2008), pp. 63–75

Timothy C Y Chan et al. "Multiple Observations and Goodness of Fit in Generalized Inverse Optimization". In: arXiv preprint arXiv:1804.04576 (2018)



### FURTHER READING II

Timothy C Y Chan and Neal Kaw. "Inverse optimization for the recovery of constraint parameters". In: arXiv preprint arXiv:1811.00726 (2018)

#### PARAMETRIC INVERSE OPTIMIZATION

A. Keshavarz, Y. Wang, and S. Boyd. "Imputing a convex objective function". In: 2011 IEEE International Symposium on Intelligent Control. IEEE. 2011, pp. 613–619

Javier Saez-Gallego and Juan Miguel Morales. "Short-term forecasting of price-responsive loads using inverse optimization". In: *IEEE Transactions on Smart Grid* (2017)

Anil Aswani, Zuo-Jun Shen, and Auyon Siddiq. "Inverse optimization with noisy data". In: *Operations Research* 63.3 (2018)

# THANK YOU!