4096-word × 8-bit UV Erasable and Programmable Read Only Memory

The HN462732 is a 4096 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 24-pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

■ FEATURES

● Single Power Supply +5V ±5%

• Simple Programming Program Voltage: +25V D.C.

Program with One 50ms Pulse

• Static No Clocks Required

Inputs and Outputs TTL Compatible During Both Read and

Program Modes

Fully Decoded On-Chip Address Decode

Access Time 450ns Max.

Low Power Dissipation............ 150mA Max. Active Current

30mA Max. Standby Current

Three State Output OR-Tie-Capability

• Compatible with INTEL 2732

BLOCK DIAGRAM

■ PIN ARRANGEMENT

■ MODE SELECTION

Pins	CE	$\overrightarrow{\mathrm{OE}}/V_{PP}$	V_{CC}	Outputs
Mode	(18)	(20)	(24)	$(9 \sim 11, 13 \sim 17)$
Read	V_{IL}	V_{IL}	+5	Dout
Stand by	$V_{I\!H}$	Don't Care	+5	High Z
Program	V_{IL}	V_{PP}	+5	Din
Program Verify	V_{IL}	V_{IL}	+5	Dout
Program Inhibit	$V_{I\!H}$	V_{PP}	+5	High Z

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	
Operating Temperature Range	T_{opr}	0 to + 70	°C	
Storage Temperature Range	T_{stg}	-65 to + 125	°C	
All Input and Output Voltages*	V_{IN}, V_{out}	-0.3 to + 7	V	
V _{PP} Voltage*	$\overline{ m OE}/V_{PP}$	-0.3 to +28	V	

^{*}with respect to GND

■ READ OPERATION

• D. C. AND OPERATING CHARACTERISTICS $(T_a$ =0 to +70°C, V_{CC} =5V±5%)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Input Leakage Current (Except \overline{OE}/V_{PP})	I_{LI1}	$V_{IN} = 5.25 \text{ V}$		_	10	μА
OE/V _{PP} Input Leakage Current	I_{LI2}	<i>V_{IN}</i> = 5.25 V	_	_	300	μА
Output Leakage Current	I_{LO}	V _{out} = 5.25 V	_	_	10	μΑ
V _{CC} Current (Standby)	I_{CC1}	$\overline{\text{CE}} = V_{IH}, \overline{\text{OE}} = V_{IL}$	_	_	30	mA
V _{CC} Current (Active)	I _{CC2}	$\overline{OE} = \overline{CE} = V_{IL}$	_	_	150	mA
Input Low Voltage	V_{IL}		-0.1	_	0.8	V
Input High Voltage	V_{IH}		2.0	_	$V_{CC} + 1$	v
Output Low Voltage	V_{OL}	$I_{OL} = 2.1 \text{ mA}$		_	0.45	v
Output High Voltage	V_{OH}	$I_{OH} = -400 \ \mu A$	2.4	_	_	v

• A. C. CHARACTERISTICS $(T_a=0 \text{ to } +70^{\circ}\text{C}, V_{CC}=5\text{V}\pm5\%)$

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Address to Output Delay	t _{ACC}	$\overline{\text{CE}} = \overline{\text{OE}} = V_{IL}$	_	-	450	ns
CE to Output Delay	t _{CE}	$\overline{\text{OE}} = V_{IL}$	_	_	450	ns
Output Enable to Output Delay	t _{OE}	$\overline{\text{CE}} = V_{IL}$	_	_	120	ns
Output Enable High to Output Float	t_{DF}	$\overline{\text{CE}} = V_{IL}$	0	_	100	ns
Address to Output Hold	t _{OH}	$\overline{\text{CE}} = \overline{\text{OE}} = V_{IL}$	0	_	_	ns

• SWITCHING CHARACTERISTICS

Test Condition

Input Pulse Levels: 0.8V to 2.2V Input Rise and Fall Times: \leq 20ns Output Load: 1TTL Gate + 100pF

Reference Level for Measuring Timing: Inputs 1V and 2V

Outputs 0.8V and 2V

• CAPACITANCE (T_a =25°C, f=1 MHz)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Input Capacitance (Except \overline{OE}/V_{PP})	C_{IN1}	<i>V_{IN}</i> = 0 V	_		6	pF
OE/V _{PP} Input Capacitance	C _{IN2}	<i>V_{IN}</i> = 0 V	_	_	20	pF
Output Capacitance	Cout	$V_{out} = 0 \text{ V}$		_	12	pF

■ PROGRAMMING OPERATION

• D.C. PROGRAMMING CHARACTERISTICS (V_{CC} =5V±5%, V_{pp} =25V±1V, T_a =25°C±5°C)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Input Leakage Current	I_{LI}	$V_{IN} = 5.25/0.4 \text{ V}$	_	_	10	μΑ
Output Low Voltage During Verify	V_{OL}	I _{OL} = 2.1 mA	_		0.4	v
Output High Voltage During Verify	V_{OH}	$I_{OH} = -400 \ \mu A$	2.4		_	v
V _{CC} Supply Current	I_{CC}		_		150	mA
Input Low Level	V_{IL}		-0.1	_	0.8	v
Input High Level (All Inputs Except $\overline{\text{OE}}/V_{PP}$)	V _{IH}		2.0	_	V _{CC} + 1	v
V _{PP} Supply Current	I _{PP}	$\overline{\text{CE}} = V_{IL}, \overline{\text{OE}} = V_{PP}$	_	_	30	mA

• A.C. PROGRAMMING CHARACTERISTICS (V_{CC} =5V±5%, V_{pp} =25V±1V, T_a =25°C±5°C)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Address Setup Time	t_{AS}		2		_	μs
OE Setup Time	toes		2	_		μs
Data Setup Time	t_{DS}		2			μs
Address Hold Time	t _{AH}		0			μs
OE Hold Time	t _{OEH}		2	_	_	μs
Data Hold Time	t _{DH}		2		America	μs
Chip Enable to Output Float Delay	t _{DF}	-	0	_	120	ns
Data Valid from CE	t_{DV}	$\overline{\text{CE}} = V_{IL}, \overline{\text{OE}} = V_{IL}$		_	1	μs
CE Pulse Width During Programming	t _{PW}	III) III	45	50	55	ms
OE Pulse Rise Time During Programming	tPRT		50		-	ns
V _{PP} Recovery Time	t _{VR}		2	_	_	μς

• SWITCHING CHARACTERISTICS

Test Conditions

Input Pulse Level: 0.8V to 2.2V Input Rise and Fall Times: ≤20ns Output Load: 1 TTL Gate + 100pF

Reference Level for Measuring Timing: Inputs; 1V and 2V,

Outputs; 0.8V and 2V