1 Topología

- Encontrar la adherencia
 - · Suponemos que C es la adherencia de A
 - $\cdot \ \bar{A} \subset C$:
 - * C es un cerrado ya que es anti-imagen de un cerrado por una aplicación continua.
 - * $A \subset C$ ya que todo punto de A cumple las condiciones de C.
 - * \bar{A} contiene a todos los cerrado que contienen A $\to \bar{A} \subset C$
 - · $C \subset \bar{A}$:
 - $* C = A \cup (C \setminus A)$
 - * $A \subset \bar{A}$ siempre.
 - * $\forall (x,y) \in (C \setminus A)$: Defino una sucesión (x_n,y_n) tal que
 - $\cdot \ \forall \ n \in \mathbb{N} : x_n, y_n \in A$
 - $\cdot \lim_{n\to\infty} (x_n, y_n) = (x, y)$
 - * Procedimiento general:
 - $x_n = x + 1/n * l \text{ donde } x + l \in A.$
 - · y_n se logra sustituyendo la expresión de x_n en la expresión de la grafica que define y en función de x.
- Encontrar el interior
 - \cdot Suponemos Uel interior de A
 - $\cdot U \subset \mathring{A}$:
 - $\ast~U$ es abierto ya que es anti-imagen de un abierto por una aplicación continua.
 - * $U \in A$ ya que todo punto de U cumple las condiciones de A
 - * \mathring{A} contiene a todos los abiertos contenidos en $A \to U \in \mathring{A}$
 - · $\mathring{A} \subset U$:

- * Descomponemos $A = U \cup (A \setminus U)$.
- $* \mathring{A} \subset A \to \mathring{A} \subset U \cup (A \setminus U).$
- * Quiero ver: $\mathring{A} \cap (A \setminus U) = \emptyset$. Para ello:
- $* \ \forall p \in (A \setminus U) :$ $\forall r \in \mathbb{R}^+:$

$$\exists q \in \mathbb{R}^{\ltimes}$$
 tal que $q \in B(p,r)$ y $q \notin A \to p \notin \mathring{A}$

- Encontrar la frontera
 - $\cdot Fr(A) = \bar{A} \setminus \mathring{A}$
- Analizar si es compacto.
 - \cdot A es cerrado ya que es anti-imagen de un cerrado por una aplicación continua
 - · A es acotado ya que $\exists r \in \mathbb{R}$ tal que $A \subset B(0,r)$. Esto se hace acotando la norma de $p \in A$. $\forall p \in A : ||p|| <= C \to A \subset B(0,C)$.

2 Límites y Continuidad

2.1 Limites mediante Taylor

• Desarrollamos cada función que

2.2 Análisis de continuidad de una función definida por trozos

- Sea C el conjunto de puntos donde cambia la definición de f
- f es continua en $\mathbb{R}^n \setminus C$ ya que es composición de funciones continuas y el denominador no se anula en $\mathbb{R}^n \setminus C$
- Análisis de continuidad en C
 - · Caso en que en el denominador haya una suma. $\forall \ c \in C$:
 - $\ast\,$ Sea Nla norma del denominador

- $\ast\,$ Acotamos el enumerador en función de N
- * Logramos $0 \leq |\lim_{x \to c} f(x) f(c)| \leq N^p$
 - · p>0: Por el Teorema del Sandwich, $\lim_{x\to c}f(x)=f(c)\to f$ es continua en c.
 - \cdot p=0 Hay que ver que f no es continua mediante límites direccionales. Normalmente se intenta igualar las potencias del denominador.
 - $\lim_{x \to c, x \in E} f(x) \neq f(c) \to \lim_{x \to c} f(x) \neq f(c) \to f \text{ no es continua}$ en c
- · Caso en que en el denominador haya una resta:
 - * Defino Z el conjunto de puntos de C que anulan el enumerador también
 - * $f = \frac{P}{Q}$.
 - * $\forall c \in C \setminus Z : \lim_{x \to c} \frac{P(x)}{Q(x)} = \infty \neq f(x) \to f$ no es continua en c.
 - * $\forall (x_0, y_0) \in Z$:

Defino
$$E = \{(x, y) | P(x, y) = Q(x, y)\} = \{(x, y) | y = g(x)\}$$

- * (x_0,y_0) es punto de acumulación de E ya que $\lim_{n\to\infty}(x_0+1/n,g(x))=(x_0,y_0)$
- * $\lim_{(x,y)\to(x_0,y_0),(x,y)\in E} f(x,y) = 1 \to \lim_{(x,y)\to(x_0,y_0)} f(x,y) \neq f(x_0,y_0) \to f$ no es continua en (x_0,y_0) .

3 Difernciabilidad

3.1 Análisis de diferenciabilidad de una función definida por trozos

- 1. Sea C el conjunto donde f cambia de expresión
- 2. f es diferenciable en $\mathbb{R}^n \setminus C$ ya que es composición de funciones diferenciables y en denominador no se anula.
- 3. $\forall p \in C$: calculamos su matriz jacobiana $D_f(p)$

- 4. f es diferenciable en p si $\lim_{x\to p} \frac{f(x)-f(p)-D_f(p)(x-p)}{||x-p||}=0$
- 5. f no es diferenciable si $\exists E \subset \mathbb{R}^n$ tal que $\lim_{x \to p, x \in E} \frac{f(x) f(p) D_f(p)(x p)}{||x p||} \neq$ 0. Normalmente se prueba con $x > 0, \alpha > 0, y = \alpha x$.

4 Extremos y Puntos de silla

4.1 Análisis de Máximos y mínimos

- Sea $C = \{ p \in \mathbb{R}^n | D_f(p) = 0 \}$
- $\forall p \in C$:
 - · Caso $H_f(p)$ definida positiva: p es un mínimo local de f
 - \cdot Caso $H_f(p)$ definida negativa: pes un máximo local de f
 - · Caso $H_f(p)$ indefinida, p es un punto de silla.

5 Función implícita e inversa

5.1 Ver que una ecuación define una función implícita

- Sea V el conjunto de las variables libres e D el de los dependientes
- Defino $F: \mathbb{R}^{\#V} \times \mathbb{R}^{\#D} \to \mathbb{R}$ como la función que envía las variables a la ecuación igualada a 0.
- $F \in C^1$ ya que es composición de diferenciables.
- F(p) = 0
- Si $\exists \ d \in D$ tal que $\frac{\delta f}{\delta d} \neq 0$, se puede aplicar el Teorema de la función implícita:
- $\exists W$ entorno de (x, y)
- $\bullet \ \exists \ V$ entorno de x

• $\exists g : \mathbb{R}^{\#V} \to \mathbb{R}^{\#D} \in C^1$ tal que:

$$\forall (x,y) \in W$$
:

$$F((x,y)) = 0 \leftrightarrow y = g(x)$$

5.2 Teorema de la función inversa

- $f \in C^1$
- $\forall p \in \mathbb{R}^n$ tal que $det(J_f(p)) \neq 0$:
 - · Sea q = f(p)
 - · \exists U entorno de p y V entorno de q tal que f:U \to V es un difeomorfismo. En particular tiene inversa y se cumple

$$J_f^{-1}(b) = [J_f(a)]^{-1}$$

5.3 Multiplicadores de Lagrange

- Sea K el conjunto donde queremos maximizar la función f
- \bullet K es compacto, por el teorema de Weier Strass existe máximo y mínimo de f
 sobre K
- Descomponemos $K = IntK \cup FrK$
- ullet P es el conjunto de puntos críticos de IntK
- Sea g la función que envía las variables a las ecuaciones de K igualadas a cero.
- Por el teorema de Lagrange, si un punto es extremo ha de cumplir $\nabla f = \lambda \nabla g$. Sea L el conjunto de estos puntos.
- $\forall p \in P \cup L$: evalúo los puntos y veo cuales son los extremos. Si uno de ellos era de p confirmo que es extremo mediante la Hessiana.