

(12) Oversættelse af europæisk patentskrift

Patent- og Varemærkestyrelsen

(51) Int.Cla.: C 11 B 3/00 A 21 D 8/04 A 23 K 1/165 C 12 N 1/15 C 12 N 1/21 C 12 N 9/20 C 12 N 15/55 C 12 N 15/80 C 13 D 3/00 C 13 K 1/08 // (C 12 R 1:66 C 12 R 1:77) C 12 R 1:19

- (45) Oversættelsen bekendtgjort den: 2003-01-27
- (80) Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: 2002-10-30
- (86) Europæisk ansøgning nr.: 97610056.0
- (86) Europæisk indleveringsdag: 1997-12-09
- (87) Den europæiske ansøgnings publiceringsdag: 1998-10-07
- Prioritet: 1996-12-09 DK 140896 1996-12-16 DK 143296 1997-02-21 DK 19097 1997-02-26 DK 21197 1997-11-11 DK 128397
- Designerede stater: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE
- (73) Patenthaver: Novozymes A/S, Krogshoejvej 36, 2880 Bagsværd, Danmark
- (72) Opfinder: Clausen, Ib Groth, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Danmark Patkar, Shamkant Anant, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Danmark Borch, Kim, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Danmark Halkier, Torben, Hestkobvej 11E, 3460 Birkerød, Danmark Barfoed, Martin, 4708 Royal Troon Drive, Raleigh, NC 27604, USA Clausen, Kim, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Danmark Fuglsang, Claus Crone, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Danmark Dybdal, Lone, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Danmark
- (74) Fuldmægtig i Danmark: Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Danmark
- (54) Benævnelse: Reduktion af phosphor-indeholdende bestanddele i spiseolier; som omfatter en stor mængde ikkehydrerbart phosphor, ved anvendelse af en phospholipase, en phospholipase fra en trådsvamp, der har en phospholipase A og/eller B aktivitet
- (56) Fremdragne publikationer:

EP-A- 0 130 064

EP-A- 0 622 446

EP-A- 0 654 527

WO-A-97/05219

WO-A-98/18912

JP-A- 7 231 788

US-A- 5 264 367

BUCHOLD H: "ENZYMATISCHE PHOSPHATIDENTFER-NUNG AUS PFLANZENOELEN" FETT WISSENSCHAFT TECHNOLOGIE- FAT SCIENCE TECHNOLOGY, vol. 95, no. 8, 1 August 1993 (1993-08-01), pages 300-304, XP000385706 DATABASE WPI Section Ch, Week 9030 Derwent Publications Ltd., London, GB; Class D16, AN 90-226962

XP002107471 -& JP 02 153997 A (SHOWA SANGYO CO), 13

June 1990 (1990-06-13)

DATABASE WPI Section Ch, Week 9013 Derwent Publicati-

ons Ltd., London, GB; Class D16, AN 90-096521

fortsættes

DK/EP 0869167T3

XP002107472 -& JP 02 049593 A (SHOWA SANGYO CO), 19 February 1990 (1990-02-19)
NAGAO TOSHIHIRO ET AL: "Cloning and nucleotide sequence of cDNA encoding a lipase from Fusarium heterosporum." JOURNAL OF BIOCHEMISTRY (TOKYO), vol. 116, no. 3, 1994, pages 536-540, XP002157254 ISSN: 0021-924X
MASUDA N ET AL: "PRIMARY STRUCTURE OF PROTEIN MOIETY OF PENICILLIUM-NOTATUM PHOSPHOLIPASE B DEDUCED FROM THE CDNA" EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 202, no. 3, 1991, pages 783-788, XP000971864 ISSN: 0014-2956

Opfindelsens område

5

10

20

25

35

Den foreliggende opfindelse angår en fremgangsmåde til reduktion af indholdet af phosphor-indeholdende bestanddele i en spiseolie, som omfatter en stor mængde ikke-hydrerbart phosphor, ved anvendelse af en phospholipase.

Den foreliggende opfindelse angår yderligere et enzym med phospholipaseaktivitet, en klonet DNA-sekvens, der koder for enzymet med phospholipaseaktivitet, en fremgangsmåde til frembringelse af enzymet og anvendelse af nævnte enzym til en række industrielle formål.

Opfindelsens baggrund

Enzymatisk degummering af spiseolier, som omfatter en relativ stor mængde ikke-hydrerbart phosphorindhold

Anvendelsen af phospholipase til enzymatisk degummering af en vanddegummeret spiseolie (US 5 264 367, Metaligesellschaft, Röhm) til at reducere phosphorindholdet i nævnte vanddegummeret spiseolie er velkendt.

Denne proces kan imidlertid forbedres yderligere, især til udførelse af enzymatisk degummering af spiseolier, som omfatter en stor mængde ikkehydrerbart phosphor (NHP) og/eller relativt store mængder af mucilago.

Følgeligt er et formål for opfindelsen at tilvejebringe en fremgangsmåde til at reducere indholdet af phosphor-indeholdende bestanddele i sådanne olier, hvor nævnte fremgangsmåde omfatter anvendelse af en phospholipase.

30 En phospholipase ifølge opfindelsen

Phospholipider, såsom lecithin eller phosphatidylcholin, består af glycerol, der er esterificeret med to fedtsyrer i den ydre (sn-1) og den midterste (sn-2) position og esterificeret med phosphorsyre i den tredje position; phosphorsyren igen kan være esterificeret til en aminoalkohol. Phospholipaser er enzymer, der tager del i hydrolysen af phospholipider. Adskillige typer af phospholipase-aktivitet kan skelnes fra hinanden, herunder phospholipaserne

A₁ (PLA₁) og A₂ (PLA₂), som hydrolyserer én fedtsyregruppe (i henholdsvis sn-1- og sn-2-positionen) til frembringelse af lysophospholipid, og lysophospholipase (eller phospholipase B (PLB)), som kan hydrolysere den resterende fedtsyregruppe i lysophospholipid.

5

Denne opfindelse angår blandt andet en phospholipase fra en trådsvamp, som har evnen til at hydrolysere den ene og/eller begge fedtsyregrupper i et phospholipid (det vil sige fremviser PLA- og/eller PLB-aktivitet).

10 Tidligere karakteriserede PLA- og/eller PLB-enzymer fra svampe

Talrige referencer beskriver karakteriseringen af svampe-phospholipaser. For at gøre det lettere at få et overblik over status inden for området, er referencerne blevet grupperet i to afsnit.

15

Afsnit ét vedrører referencer, som beskriver identificeringen af svampephospholipaser, som man aktuelt ikke mener er beslægtede med svampephospholipasen ifølge den foreliggende opfindelse. Disse referencer er hovedsageligt indbefattet for at sammenfatte status inden for området karakterisering af svampe-phospholipaser.

20

Afsnit to vedrører referencer, som beskriver karakteriseringen af svampephospholipaser, som menes at være relevante for svampe-phospholipaserne ifølge den foreliggende opfindelse.

25

30

Afsnit ét

Enzymer med phospholipase A- og/eller B-aktivitet er blevet fundet i forskellige svampekilder, herunder *Penicillium notatum* (der også er kendt som *P. chrysogenum*; N. Kawasaki, J. Biochem. <u>77</u>:1233-44, 1975; N. Masuda et al., Eur. J. Biochem. <u>202</u>:783-787, 1991), *P. cyclopium* (Process Biochemistry <u>30</u>(5):393-401, 1995), *Saccharomyces cerevisiae* (M. Ichimasa et al., Agric. Biol. Chem. <u>49</u>(4):1083-89, 1985; F. Paultauf et al., J. Biol. Chem. <u>269</u>:19725-30, 1994), *Torulaspora delbrueckii* (gammelt navn *Saccharomyces rosei*; Y. Kuwabara, Agric. Biol. Chem. <u>52</u>(10):2451-58, 1988; FEMS, Microbiol. Letters <u>124</u>:29-34), *Schizosaccharomyces pombe* (H. Oishi et al., Biosci. Biotech. Blochem. 60(7):1087-92, 1996), *Aspergillus niger* (Technical Bulletin, G-

zyme™ G999, Enzyme Bio-Systems Ltd.; Process Biochemistry 30(5):393-401 (1995)) og *Corticium centrifugum* (S. Uehara et al., Agric. Biol. Chem. 43(3):517-525, 1979).

5 Afsnit to

EP 575133 A2 beskriver isoleringen og karakteriseringen af en svampephospholipase A1, som er opnået fra *Aspergillus*, og anvendelsen deraf til industrielle formål.

10

20

25

Der er ingen sekvensinformation (hverken DNA- eller aminosyre-) indbefattet i ansøgningen, ej heller er nogen strategi eller noget forslag til kloning af noget af *Aspergillus*-phospholipasen beskrevet eller anført i ansøgningen.

Tsung-Che et al. (Phytopathological notes <u>58</u>:1437-38 (1968)) beskriver kort karakteriseringen af en phospholipase fra *Fusarium solani*.

EP 130 064 beskriver en isoleret fraktion af et fermenteringsmedium, der fremviser lipase-aktivitet, som er opnået fra stammen *Fusarium oxysporum* DSM 2672. Ydermere er anvendelsen deraf i detergentsammensætninger beskrevet. EP 130 064 beskriver imidlertid ikke denne fraktion som fremvisende phospholipase-aktivitet.

WO 96/13579 beskriver en lipase, som er opnået fra stammen Fusarium culmorum CBS 513.94, herunder dens N-terminale sekvens.

WO 96/13579 beskriver imidlertid ikke noget enzym, som fremviser phospholipase-aktivitet.

En cDNA-sekvens, som koder for en lipase fra Fusarium heterosporum er beskrevet (Cloning and nucleotide sequence of cDNA encoding a lipase from Fusarium heterosporum, J. Biochem. 116:536-540, 1994). Denne sekvens menes aktuelt at være den DNA-sekvens, der er mest beslægtet med en klonet DNA-sekvens ifølge opfindelsen (se afsnittet "Sammenligning med tidligere kendt materiale" (se nedenfor)). Denne reference beskriver imidlertid ikke noget enzym, der fremviser phospholipase-aktivitet.

En cDNA-sekvens, som koder for en phospholipase B fra *Penicillum notatum*, er beskrevet (Eur. J. Biochem. <u>202</u>:783-787, 1991). Denne klonede DNA-sekvens har imidlertid meget begrænset homologi med en DNA-sekvens ifølge opfindelsen (se afsnittet "Sammenligning med tidligere kendt materiale" (se nedenfor)).

Industriel anvendelse af phospholipaser

5

10

15

20

25

30

35

En række anvendelser af phospholipaser er kendte, såsom anvendelse af phospholipase i for eksempel enzymatisk degummering af en vanddegummeret olie (US 5 264 367, Metallgesellschaft, Röhm), behandling af stivelseshydrolysat (især fra hvedestivelse) til forbedring af filtrerbarheden (EP 219 269, CPC International), som tilsætningsstof til brøddej til at forbedre brødets elasticitet (US 4 567 046, Kyowa Hakko), og til fremstilling af lysolecithin med specielle emulgerende egenskaber.

Aktuelt anvendes phospholipasen Lecitase® (Novo Nordisk A/S) kommercielt til for eksempel degummering af olier. Lecitase® er et mammalia-enzym, som er opnået fra svinepancreas.

Det er velkendt, at det er muligt at danne svampeenzymer rekombinant med opnåelse af industrielt økonomisk acceptable udbytter, især fra trådsvampe.

Følgeligt er det et formål for denne opfindelse at tilvejebringe en forbedret phospholipase til anvendelse for eksempel i processerne, der er beskrevet ovenfor.

Det er endvidere et formål for den foreliggende opfindelse at beskrive processer og fremgangsmåder til rekombinant produktion med industrielt acceptable udbytter af en phospholipase, som er opnået fra en trådsvamp.

Sammendrag af opfindelsen

Vanddegummering af spiseolier udføres ved hjælp af ekstraktion med vand. Ved denne behandling efterlades en del af phosphatiderne i olien. Denne del beskrives ved hjælp af fællesbetegnelsen "ikke-hydrerbare phosphatider" (NHP). Ved produktionen af olier er det essentielt at fjerne NHP-indholdet (US

5 264 367).

Den foreliggende opfindelse tilvejebringer en fremgangsmåde til fjernelse af NHP-indholdet i en olie, som omfatter en relativ stor mængde af NHP.

5

Følgeligt angår opfindelsen i et første aspekt en fremgangsmåde til at reducere indholdet af phosphor-indeholdende bestanddele i en spiseolie, som har et ikke-hydrerbart phosphorindhold på mindst 50 ppm, der er målt ved hjælp af:

10

i) forbehandling af spiseolien ved 60 °C ved hjælp af tilsætning af en opløsning, som omfatter citronsyremonohydrat i vand (tilsat vand vs. olie = 4,8 % vægt/vægt, [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM) i 30 minutter,

15

- ii) overførsel af 10 ml af den forbehandlede vand-i-olie-emulsion til et reagensglas,
- iii) opvarmning af emulsionen i et kogende vandbad i 30 minutter,

20

- iv) centrifugering ved 5000 rpm i 10 minutter,
- v) overførsel af ca. 8 ml af den øverste (olie) fase til et nyt reagensglas og henstand til bundfældning i 24 timer, og

25

- vi) herefter udtagning af 2 g fra den øverste klare fase til måling af det ikke-hydrerbare phosphorindhold (ppm) i spiseolien,
- og hvor nævnte fremgangsmåde omfatter:

30

kontaktbringning mellem nævnte olie ved en pH fra 1,5-8 og en vandig opløsning af en phospholipase A1, en phospholipase A2 eller en phospholipase B, idet opløsningen emulgeres i olien, indtil phosphorindholdet i olien er reduceret til mindre end 11 ppm, og efterfølgende separering af den vandige fase fra den behandlede olie.

35

I et andet aspekt angår opfindelsen en ny klonet phospholipase.

Yderligere undersøgelser af karakteren af lipase-aktiviteten, som findes i Fusarium oxysporum DSM 2672 (og er beskrevet i EP 130 064), viste, at den isolerede fraktion omfatter adskillige bestanddele med lipase-aktivitet, hvoraf den ene fremviste phospholipase-aktivitet.

5

10

15

25

30

35

På trods af en række tekniske vanskeligheder (se nedenfor) har de foreliggende opfindere været i stand til at klone et enzym, som fremviser phospholipase A-aktivitet, fra en stamme af slægten *Fusarium*, mere specifikt *Fusarium oxysporum*.

Dette er første gang en phospholipase A fra en trådsvamp er blevet klonet, og følgeligt tilvejebringer den foreliggende opfindelse en klonet DNA-sekvens, som koder for et phospholipase A-enzym fra en trådsvamp.

Følgeligt angår ét aspekt af opfindelsen en klonet DNA-sekvens, som koder for et polypeptid med phospholipase A-aktivitet, hvor DNA-sekvensen er opnået fra en trådsvamp.

20 En cDNA-sekvens, som koder for en phospholipase B fra *Penicillum notatum*, er beskrevet i Eur. J. Biochem. <u>202</u>:783-787, 1991.

Denne DNA-sekvens fremviser imidlertid kun en meget begrænset DNA-lighed på 39 % med DNA-sekvensen ifølge den foreliggende opfindelse (SEQ ID NO: 1, 23-1060), og endvidere varierer en fysiologisk egenskab, såsom molekylemassen, betydeligt mellem nævnte PLB fra *P. notatum* (66 kDa) og en phospholipase ifølge opfindelsen (29 ± 10 kDa (se nedenfor)).

Endvidere har en sammenligning med kendte nukleotid- og aminosyresekvenser vist, at DNA-sekvensen og/eller den tilsvarende kodede aminosyresekvens ifølge opfindelsen kun har ringe homologi med alle kendte DNA- og/eller aminosyresekvenser (se nedenfor).

Følgelig mener man aktuelt, at DNA-sekvensinformationen, der tilvejebringes i den foreliggende ansøgning, vil være meget værdifuld til for eksempel kloning af en anden beslægtet/homolog phospholipase-kodende DNA-sekvens, da en specifik hybridiseringsprobe og/eller PCR-primere nu let kan konstrueres på

basis af nævnte DNA-sekvens ifølge opfindelsen.

5

10

25

Yderligere mener man aktuelt, at det er muligt at klone både en beslægtet/homolog phospholipase A- og/eller phospholipase B-kodende DNA-sekvens på basis af sekvensinformationen, der tilvejebringes i den foreliggende ansøgning.

Følgeligt angår opfindelsen i et yderligere aspekt en klonet DNA-sekvens, som koder for et enzym, der fremviser phospholipase A- og/eller phospholipase B-aktivitet, idet DNA-sekvensen er valgt fra gruppen, der omfatter:

- (a) den phospholipase A-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i *Escherichia coli* DSM 11299,
- (b) DNA-sekvensen, der er vist i positioneme 23-1063 i SEQ ID NO: 1, mere fortrinsvis positionerne 113-1063 i SEQ ID NO: 1, eller endnu mere fortrinsvis positionerne 113-929 i SEQ ID NO: 1, eller den komplementære streng dertil,
- 20 (c) en DNA-sekvens, der er mindst 70 % homolog med nævnte DNA-sekvenser, der er defineret i (a) eller (b),
 - (d) en DNA-sekvens, der er defineret i (a) eller (b), som koder for et polypeptid, der fremviser phospholipase-aktivitet og er mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-346 i SEQ ID NO: 2, eller mere fortrinsvis mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-303 i SEQ ID NO: 2,
- (e) en DNA-sekvens, som hybridiserer med en dobbeltstrenget DNA probe, som omfatter DNA-sekvensen, der er vist i positionerne 23-1063 i SEQ
 ID NO: 1, ved lav stringens,
- (f) en DNA-sekvens, som koder for et polypeptid, der har de samme aminosyresekvenser i positionresterne 1 til 346, 31 til 303 eller 31 til 303 i SEQ
 35 ID NO: 2, eller aminosyresekvenserne, der kodes for ved hjælp af en hvilken som helst af DNA-sekvenserne ifølge (e), og

- (g) en DNA-sekvens, som er et fragment af DNA-sekvenserne, der er specificeret i (a), (b), (c), (d), (e) eller (f).
- Endvidere er en phospholipase ifølge opfindelsen blevet grundigt karakteriseret, og det har vist sig, at den har phospholipase-aktivitet ved lavt pH, denne egenskab gør den meget egnet til anvendelse til oliedegummering. Phospholipasen er ikke membranbundet, hvilket gør den egnet til kommerciel produktion og oprensning.
- Følgeligt angår opfindelsen i et yderligere aspekt et isoleret polypeptid med phospholipase A-aktivitet, som er opnået fra en stamme af slægten *Fusarium* og har:
 - i) PLA-aktivitet i pH-intervallet 3-10, målt ved 40 °C,

15

- ii) en molekylemasse på 29 ± 10 kDa, bestemt ved hjælp af SDS-PAGE,
- iii) et isoelektrisk punkt (pl) i intervallet 4,5-8,
- 20 iv) et temperaturoptimum for phospholipase-aktivitet i intervallet 25-55 °C, målt med lecithin som substrat ved pH 5, og/eller
 - v) et pH-optimum for phospholipase-aktivitet i pH-intervallet 6-12, målt med lecithin som substrat ved 37 °C.

25

En udledt aminosyresekvens for en isoleret phospholipase ifølge opfindelsen er vist i SEQ ID NO: 2.

- Den N-terminale aminosyresekvens for en moden secerneret isoleret phospholipase er blevet bestemt. Nævnte N-terminale sekvens viste, at den modne del af en phospholipase ifølge opfindelsen med aminosyresekvensen, der er vist i SEQ ID NO: 2, starter i aminosyre nr. 31 i SEQ ID NO: 2. Se forsøgseksempel heri for yderligere detaljer (se nedenfor).
- Endvidere er den C-terminale sekvens for en aktiv secemeret phospholipase ifølge opfindelsen med aminosyresekvensen, der er vist i SEQ ID NO: 2, blevet bestemt. Nævnte C-terminal-bestemte phospholipase blev rekombinant

udtrykt i trådsvampestammen *Aspergillus oryzae*. Se forsøgseksempel heri for yderligere henvisning.

Disse resultater viste, at enzymet blev C-terminalt processeret under ekspression fra A. oryzae, og resultaterne tyder på, at Ser303 i SEQ ID NO: 2 er den mest sandsynlige C-terminale rest i det udtrykte modne aktive enzym. Det forudses imidlertid, at endnu yderligere C-terminal processering kan finde sted (det vil sige, som frembringer et fragment af nævnte sekvenser), og at man stadig har et udtrykt modent aktivt enzym.

10

5

Følgeligt angår opfindelsen i et yderligere aspekt et isoleret enzym, som fremviser phospholipase A- og/eller B-aktivitet og er valgt fra gruppe, der omfatter:

- (a) et polypeptid, som kodes af den phospholipase A- og/eller Benzymkodende del af DNA-sekvensen, der er klonet ind i pYES 2.0, som er til stede i Escherichia coli DSM 11299,
- (b) et polypeptid med en aminosyresekvens som vist i positioneme 31-346 i SEQ ID NO: 2,
 - (c) et polypeptid med en aminosyresekvens som vist i positioneme 31-303 i SEQ ID NO; 2.
- 25 (d) en analog til polypeptider, der er defineret i (a), (b) eller (c), idet analogen er mindst 70 % homolog med nævnte polypeptid, og
 - (e) et fragment af (a), (b), (c) eller (d).
- I endnu et yderligere aspekt tilvejebringer opfindelsen en rekombinant ekspressionsvektor, som åbner mulighed for heterolog rekombinant produktion af et enzym ifølge opfindelsen. Det er derved muligt at lave en stærkt oprenet phospholipase-sammensætning, som er kendetegnet ved at være fri for homologe urenheder. Det er yderst fordelagtigt til en række industrielle anvendelser.

Den foreliggende opfindelse viser eksperimentelt (se nedenfor), at en

phospholipase, der er opnået fra en stamme af Fusarium culmorum og Fusarium oxysporum, har forbedrede egenskaber til anvendelse til industrielle relevante formål. Det forudses, at phospholipaser, der er opnået fra en stamme af slægten Fusarium, vil have forbedrede egenskaber, der er relevante til anvendelse til anvendelse til industrielle formål.

Følgeligt angår opfindelsen i endnu et yderligere aspekt anvendelsen af en phospholipase, der er opnået fra en stamme af slægten *Fusarium*, såsom en stamme af *F. culmorum*, *F. heterosporum*, *F. solani* eller især en stamme af *Fusarium oxysporum*, i en proces, der omfatter behandling af et phospholipid eller lysophospholipid med phospholipasen til hydrolysering af fedtsyregrupperne.

Endelig angår opfindelsen en isoleret, i det væsentlige ren biologisk kultur af *Escherichia coli*-stammen DSM 11299, som indeholder en phospholipase-kodende DNA-sekvens (den phospholipase-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i *Escherichia coli* DSM 11299), der er opnået fra en stamme af trådsvampen *Fusarium oxysporum*, eller en hvilket som helst mutant af nævnte *E. coli*-stamme, som har bevaret den phospholipase-kodende egenskab.

Homologisammenligning med kendte sekvenser

5

10

15

20

25

30

35

Der blev udført en homologisøgning med phospholipasen ifølge opfindelsen mod nukleotid- og proteindatabaser. Homologisøgningen viste, at den tættest beslægtede kendte sekvens var en lipase fra *Fusarium heterosporum* (en parallelopstilling af aminosyrer er vist i figur 1).

DNA-sekvensen ifølge opfindelsen (SEQ ID NO: 1, 23-1060), som koder for phospholipasen, viser kun 62 % DNA-homologi med den kendte lipasesekvens fra *Fusanum heterosporum* (Genbank-databasereference S77816), og den tilsvarende aminosyresekvens for phospholipasen ifølge opfindelsen (SEQ ID NO: 2) viser kun 60 % homologi med en udledt aminosyresekvens på basis af den kendte DNA-sekvens ovenfor (se figur 1).

Dette viser, at DNA- og/eller aminosyresekvensen for en phospholipase ifølge opfindelsen rent faktisk er forskellig fra alle kendte DNA- og/eller

aminosyresekvenser.

En cDNA-sekvens, der koder for en phospholipase B fra *Penicillum notatum* er beskrevet (Eur. J. Biochem. <u>202</u>:783-787, 1991). Denne DNA-sekvens (Genbank-databasereference X60348) viser imidlertid kun en meget begrænset DNA-lighed på 39 % med DNA-sekvensen ifølge den foreliggende opfindelse (SEQ ID NO: 1, 23-1060), og den tilsvarende aminosyresekvens for phospholipasen ifølge opfindelsen (SEQ ID NO: 2) viser kun 20 % lighed med en udledt aminosyresekvens, der er baseret på den kendte PLB-DNA-sekvens ovenfor.

Beregningeme af homologi blev udført som beskrevet senere i denne specifikation.

15 <u>Tegninger</u>

5

10

Figur 1: Parallelopstilling af aminosyresekvensen, der er vist i SEQ ID NO: 2 med en kendt lipasesekvens fra *Fusanium heterosporum*.

Figur 2: Sammenligning af enzymatisk degummeringsevne hos Lecitase™ og en phospholipase fra *Fusarium oxysporum* ifølge opfindelsen.

Definitioner

Før en mere detaljeret gennemgang af denne opfindelse vil følgende udtryk blive defineret.

"En klonet DNA-sekvens": Udtrykket "en klonet DNA-sekvens" henviser til en DNA-sekvens, der er klonet ifølge standard-kloningsprocedurer, som anvendes ved gensplejsning til at flytte et segment af DNA fra dens naturlige placering til et andet site, hvor det vil blive reproduceret. Kloningsprocessen inddrager udskæring og isolering af det ønskede DNA-segment, insertion af DNA-stykket i vektormolekylet og inkorporering af den rekombinante vektor i en celle, hvor talrige kopier eller kloner af DNA-segmentet vil blive replikeret.

35

30

Den "klonede DNA-sekvens" ifølge opfindelsen kan alternativt benævnes "en DNA-konstruktion", "et klonet polynukleotid med en DNA-sekvens" eller "en

isoleret DNA-sekvens".

"Opnået fra": Til formålet i den foreliggende opfindelse betyder udtrykket "opnået fra" som anvendt heri i forbindelse med en specifik mikrobiel kilde, at enzymet og følgeligt DNA-sekvensen, der koder for nævnte enzym, er dannet af den specifikke kilde eller af en celle, hvori et gen fra kilden er blevet indsat.

"Et isoleret polypeptid": Som defineret heri henviser udtrykket "et isoleret polypeptid" eller "en isoleret phospholipase" som anvendt om phospholipasen ifølge opfindelsen til en phospholipase eller phospholipasedel, som i det væsentlige er fri for andre ikke-phospholipase-polypeptider, for eksempel mindst 20 % ren, fortrinsvis mindst 40 % ren, mere fortrinsvis 60 % ren, endnu mere fortrinsvis 80 % ren, mest fortrinsvis 90 % ren og endnu mest fortrinsvis 95 % ren, bestemt ved hjælp af SDS-PAGE.

15

5

10

Når det isolerede polypeptid er mindst 60 % rent kan udtrykket "et stærkt isoleret polypeptid" anvendes. Det "isolerede polypeptid" kan alternativt benævnes "oprenset polypeptid".

20

"Homologe urenheder": Som anvendt heri betyder udtrykket "homologe urenheder" en hvilken som helst urenhed (for eksempel et andet polypeptid end enzymet ifølge opfindelsen), som stammer fra den homologe celle, hvorfra enzymet ifølge opfindelsen oprindeligt er opnået. I den foreliggende opfindelse kan den homologe celle for eksempel være en stamme af *Fusanum oxysporum*.

25

"Phospholipase-kodende del": Som anvendt heri betyder udtrykket "phospholipase-kodende del", når det anvendes i forbindelse med en DNA-sekvens, det område af DNA-sekvensen, som svarer til det område, der er translateret til en polypeptidsekvens.

30

I DNA-sekvensen, der er vist i SEQ ID NO: 1, er det området mellem den første "ATG"-startkoden ("AUG"-kodon i mRNA) og den følgende stopkodon ("TAA", "TAG" eller "TGA").

35

Det translaterede polypeptid kan yderligere foruden den modne sekvens, som fremviser phospholipase-aktivitet, omfatte et N-terminalt signal og/eller en

propeptidsekvens. Signalsekvensen styrer almindeligvis sekretionen af polypeptidet, og propeptidet styrer almindeligvis foldningen af polypeptidet. For yderligere information se Egnell, P., et al., Molecular Microbiol. <u>6</u>(9):1115-19 (1992) eller Stryer, L., "Biochemistry", W.H. Freeman and Company/New York, ISBN 0-7167-1920-7.

"Modifikation(er) af en DNA- og/eller aminosyresekvens": Udtrykket "modikation(er)", der anvendes i forbindelse med modifikation(er) af en DNA- og/eller aminosyresekvens som beskrevet heri, defineres til at indbefatte kemisk modificering såvel som genmanipulation(er). Modificeringen eller modificeringerne kan være substitution, deletion og/eller insertion i aminosyren eller aminosyrerne af interesse.

"Phospholipase A": Udtrykket "phospholipase A", som anvendes heri i forbindelse med et enzym ifølge opfindelsen, påtænkes at dække et enzym med phospholipase A1- og/eller phospholipase A2-aktivitet.

Phospholipase A1 defineres ifølge standard-enzym-EC-klassifikation som EC 3.1.1.32.

20 Officielt navn: phospholipase A1 (PLA1).

Katalyseret reaktion:

phosphatidylcholin + h(2)o <>

2-acylglycerophosphocholin + en fedtsyre-anion.

Kommentar(er): har en meget bredere specificitet end EC 3.1.1.4.

25

30

5

10

<u>Phospholipase A2</u> defineres ifølge standard-enzym-EC-klassifikation som EC 3.1.1.4.

Officielt navn: phospholipase A2 (PLA2).

Alternativt navn(e): phosphatidylcholin 2-acylhydrolase, lecithinase a, phosphatidase eller phosphatidolipase.

Katalyseret reaktion:

phosphatidylcholin + h(2)o <>

1-acylglycerophosphocholin + en fedtsyre-anion.

Kommentar(er): virker også på phosphatidylethanolamin, cholinplasmalogen

og phosphatider, idet den fjerner fedtsyren, der er bundet til 2-positionen.

"Phospholipase B": defineres ifølge standard-enzym-EC-klassifikation som EC

3.1.1.5.

10

15

20

25

30

35

Officielt navn: lysophospholipase.

Alternativt navn(e): lecithinase b, lysolecithinase, phospholipase b eller plb.

Katalyseret reaktion:

5 2-lysophosphatidylcholin + h(2)o <> glycerophosphocholin + en fedtsyre-anion.

"Phospholipase-aktivitet": Udtrykket "phospholipase-aktivitet" eller "har/fremviser phospholipase-aktivitet" påtænkes som anvendt heri i forbindelse med et enzym ifølge opfindelsen at specificere et enzym, som mindst har den mængde phospholipase-aktivitet (hvad enten det er PLA eller PLB), der defineres eksperimentelt nedenfor.

Følgeligt defineres et enzym, der fremviser phospholipase-aktivitet, heri som et enzym, der i "enkeltlags-phospholipase-assayet", der er vist i eksempel 6 heri (se nedenfor), har en phospholipase-aktivitet på mindst 0,25 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 0,40 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 0,75 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 1,0 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 1,25 nmol/min., enzymdosis: 60 μg, ved 25 °C; og endnu mere fortrinsvis mindst 1,5 nmol/min., enzymdosis: 60 μg, ved 25 °C.

Man mere på nuværende tidspunkt, at kun et enzym med en sådan signifikant phospholipase-aktivitet har industriel interesse, for eksempel til anvendelse til degummering (US 5 264 367).

"En lipase med phospholipase-sideaktivitet": Udtrykket "lipase med phospholipase-sideaktivitet" defineres følgeligt som en lipase med en phospholipase-sideaktivitet, hvor phospholipase-sideaktiviteten i "enkeltlags-phospholipase-assayet", der er vist i eksempel 6, er mindre end de ovenfor nævnte tal.

En række lipaser har en sådan phospholipase-sideaktivitet. I forsøgseksempel 6 heri (se nedenfor) er vist nogle af lipaserne med phospholipase-sideaktivitet.

"En råolie": En råolie (kaldes også en ikke-degummeret olie) kan være en presset eller ekstraheret olie eller en blanding deraf fra for eksempel rapsfrø,

sojabønne eller solsikke. Phosphatid-indholdet i en råolie kan variere fra 0,5-3 % (vægt/vægt) svarende til et phosphorindhold i intervallet 200-1200 ppm, mere fortrinsvis i intervallet 250-1200 ppm. Bortset fra phosphatideme indeholder råolien også små koncentrationer af carbohydrater, sukkerforbindelser og metal/phosphatidsyre-komplekser med Ca, Mg og Fe.

"En semiråolie": En hvilken som helst olie, som ikke er en råolie, men som har et phosphatid-indhold på over 250 ppm, mere fortrinsvis på over 500 ppm. En sådan olie kunne for eksempel opnås ved at udsætte en råolie for en proces tilsvarende "vanddegummeret olie"-processen, der er beskrevet nedenfor.

"En vanddegummeret olie": En vanddegummeret olie opnås typisk ved at blande 1-3 % (vægt/vægt) varm vand med varm (60-90 °C) råolie. Sædvanlige behandlingstider er 30-60 minutter. Vanddegummeringstrinet fjerner phosphatiderne og slimagtige gummier, som bliver uopløselige i olien, når de hydreres. De hydrerede phosphatider og gummier kan separeres fra olien ved hjælp af fældning, filtrering eller centrifugering - idet centrifugering er den mest almindelige metode.

- Det essentielle formål med nævnte vanddegummeringsproces er at separere de hydrerede phosphatider fra olien. Blandingen af varmt vand i olien, der er beskrevet ovenfor, skal heri forstås bredt som blanding af en vandig opløsning i olien ifølge kendte standard-vanddegummeringsprocedurer.
- Alternativt kan processen, som her benævnes "vanddegummering af olie", kaldes "vådraffinering til fjernelse af mucilago" (se US 5 264 367).

Detaljeret beskrivelse af opfindelsen

5

10

15

35

En fremgangsmåde til enzymatisk degummering af en spiseolie, som omfatter en stor mængde af ikke-hydrerbare phosphatider/phospholipider

Til den foreliggende opfindelse måles mængden af ikke-hydrerbart phosphor i en spiseolie ved hjælp af:

i) forbehandling af spiseolien ved 60 °C ved hjælp af tilsætning af en opløsning, som omfatter citronsyremonohydrat i vand (tilsat vand versus olie =

- 4,8 % vægt/vægt, [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM) i 30 minutter,
- ii) overførsel af 10 ml af den forbehandlede vand-i-olie-emulsion til et reagensglas,
 - iii) opvarmning af emulsionen i et kogende vandbad i 30 minutter.
 - iv) centrifugering ved 5000 rpm i 10 minutter,

5

10

15

35

v) overførsel af ca. 8 ml af den øverste (olie) fase til et nyt reagensglas og henstand (til bundfældning) i 24 timer, og

vi) efter bundfældning udtagning af 2 g fra den øverste klare fase til måling af det ikke-hydrerbare phosphorindhold (ppm) i spiseolien.

For yderligere detaljer henvises til forsøgseksemplerne heri.

- Som illustreret i forsøgseksemplerne heri varierer phospholipidsammensætningen (hydrerbart vs. ikke-hydrerbart phospholipid) betydeligt i forskellige spiseolier. Følgeligt vil niveauet af resterende phospholipid i forskellige vanddegummerede olier varierer over et bredt interval (for eksempel fra ca. 30 ppm til 200 ppm).
- Til enzymatisk degummering afhænger den optimale enzymdosis af mængden af ikke-hydrerbare phosphatider, som er til stede efter vanddegummering eller citronsyre/vand-forbehandling som defineret ovenfor.
- Endvidere gælder det, at jo højere mængden af ikke-hydrerbare phosphatider, som er til stede i olien, er, jo mere effektiv er den enzymatiske degummeringsmetode.

Den foreliggende opfindelse tilvejebringer en fremgangsmåde til fjernelse af NHP-indholdet i olie, som omfatter en relativ høj mængde af NHP.

Fortrinsvis omfatter spiseolien et ikke-hydrerbart phosphorindhold på mindst 60 ppm, mere fortrinsvis mindst 100 ppm og endnu mere fortrinsvis mindst 200

ppm.

Mere fortrinsvis omfatter spiseolien et ikke-hydrerbart phosphorindhold i intervallet 60-500 ppm, mere fortrinsvis i intervallet 100-500 ppm og endnu mere fortrinsvis i intervallet 200-500 ppm.

En spiseolie, der ifølge beskrivelsen heri er defineret til at have en relativ stor mængde af ikke-hydrerbar phosphor kan være en vanddegummeret olie eller mere fortrinsvis en råolie eller en semiråolie.

10

15

5

Følgeligt angår en udførelsesform for opfindelsen en fremgangsmåde ifølge det første aspekt af opfindelse, hvor nævnte spiseolie er en råolie, som er kendetegnet ved at nævnte råspiseolie før udførelse af fremgangsmåden ifølge opfindelsen er en olie med et phosphorindhold på over 250 ppm (part per million), idet olien ikke er blevet vanddegummeret (vanddegummering omfatter blanding af varmt vand i en varm råolie, efterfulgt af fjernelse af phosphatider, som bliver uopløselige i olien, når den hydreres) før udførelse af fremgangsmåden ifølge opfindelsen.

20

En sådan råspiseolie har fortrinsvis før udførelse af nævnte fremgangsmåde ifølge opfindelsen et phosphorindhold på over 350 ppm, mere fortrinsvis over 400 ppm, endnu mere fortrinsvis over 500 ppm, og mest fortrinsvis over 600 ppm.

25

Nævnte råspiseolie har endvidere fortrinsvis før udførelse af nævnte fremgangsmåde ifølge opfindelsen et phosphorindhold i intervallet 250-1500 ppm, mere fortrinsvis i intervallet 350-1500 ppm, endnu mere fortrinsvis i intervallet 500-1500 ppm og mest fortrinsvis i intervallet 500-1500 ppm.

30

Den enzymatiske degummeringsmetode af en råspiseolie ifølge opfindelsen er fordelagtig i forhold til kendte metoder til enzymatisk degummering af vanddegummerede spiseolier (US 5 264 367), da en direkte enzymatisk degummeringsmetode til behandling af en råolie ifølge opfindelse vil spare det første trin med vanddegummering af olien.

35

Dette sparer både tid og penge. En vanddegummeret olie opnås typisk ved at blande varmt vand i varm (60-90 °C) råolie i sædvanligvis 30-60 minutter. I

modsætning hertil kan den fulde proces til enzymtisk degummering af råolier ifølge opfindelsen udføres på mindre end 1 time med faktisk enzymatisk behandling i ca. 25 minutter. Se forsøgseksempel heri for yderligere detaljer.

Endvidere kan en spiseolie, der er defineret til at have en relativ stor mængde af ikke-hydrerbar phosphor ifølge beskrivelsen heri, være en semiråolie.

Følgeligt angår en udførelsesform for opfindelsen en fremgangsmåde ifølge det første aspekt af opfindelsen, hvor nævnte spiseolie er en semirå spiseolie, som er kendetegnet ved at nævnte semirå spiseolie før udførelse af fremgangsmåden ifølge opfindelsen har et phosphorindhold på over 500 ppm, og hvor nævnte olie er blevet vanddegummeret før udførelse af fremgangsmåden ifølge opfindelsen.

Nævnte halvrå spiseolie er fortrinsvis en olie, som før udførelse af nævnte fremgangsmåde har et phosphorindhold på over 600 ppm, mere fortrinsvis over 750 ppm.

Almindeligvis vil vanddegummering af en spiseolie reducere phosphorindholdet i olien til et niveau på under 500 ppm.

Følgeligt er en semiråolie som beskrevet heri for eksempel måske kun blevet delvist vanddegummeret før udførelse af en fremgangsmåde til reduktion af niveauet af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen.

Udtrykket "delvist vanddegummeret" angiver, at vanddegummeringsproceduren af olien kun har været en delvis/kort proces sammenlignet med en standard-vanddegummeringsprocedure.

En "delvis vanddegummerings"-proces kan udføres ved kun at blande 0,5 % varmt vand i olien (standard er 1-3 % varmt vand. Se afsnittet "Definitioner" heri) eller ved at reducere behandlingstiden til 10 minutter (standard er 30-60 minutter).

Alternativt kan en semiraolie som defineret heri være en blanding af en raolie og en semiraolie.

30

10

15

20

En udførelsesform for opfindelsen angår en fremgangsmåde ifølge en hvilken som helst del af det første aspekt af opfindelsen, som omfatter følgende trin:

- i) justering af temperaturen i spiseolien til en temperatur mellem 25 °C og 70 °C,
 - ii) forbehandling af spiseolien til ovennævnte justerede temperatur ved hjælp af tilsætning af 0,5-6 % (vægt i forhold til olien) af en vandig opløsning, som omfatter mindst 85 % vand, i 5-120 minutter, hvor nævnte forbehandling ikke følges af fjernelse af hydreret mucilago og phosphorindhold i olien,
 - iii) justering af pH i vand/olie-emulsionen til en pH mellem 1,5 og 8 (for eksempel ved hjælp af tilsætning af en passende mængde af en NaOH-opløsning),
 - iv) kontaktbringning mellem vand/olie-emulsionen og en vandig opløsning af en phospholipase (ved en temperatur (± 5 °C), der er justeret ifølge trin i)), idet phospholipasen er emulgeret i olien, indtil phoshorindholdet i olien er reduceret til mindre end 11 ppm,
 - v) separering af vandfasen fra den behandlede olie.

Temperaturen i spiseolien i trin i) umiddelbart ovenfor justeres fortrinsvis til en temperatur, som er den optimale temperatur for phospholipase-aktivitet for enzymet, der anvendes i fremgangsmåden.

For den kommercielt tilgængelige phospholipase Lecitase™ (Novo Nordisk A/S) er denne ca. 60 °C, og for en phospholipase ifølge opfindelsen, der er opnået fra trådsvampeslægten *Fusarium*, er den ca. 45 °C. Se forsøgseksempler heri for yderligere detaljer angående dette emne.

Det forudses, at hovedparten af trådsvampe-phospholipaseme vil have et temperaturoptimum omkring 35-50 °C.

Følgeligt angår en udførelsesform for opfindelsen fremgangsmåden, der er beskrevet umiddelbart ovenfor, hvor temperaturen i spiseolien i trin i) justeres til en temperatur mellem 35 °C og 50 °C, og phospholipasen, der anvendes i

10

5

20

30

trin iv) er opnået fra en trådsvampestamme.

I trin ii) i fremgangsmåden ovenfor forbehandles spiseolien ved den justerede temperatur (trin i)) ved hjælp af tilsætning af 0,5-6 % (vægt i forhold til olien) af en vandig opløsning, som omfatter mindst 85 % vand i 5-120 minutter, og hvor nævnte forbehandling ikke følges af fjemelse af hydreret mucilago og phosphorindhold i olien.

Dette trin er et standard-forbehandlingstrin ved enzymatisk degummering af spiseolier (US 5 264 367, US 5 558 781). Formålet med trin ii) er at hydrere de hydrerbare/hydrofile bestanddele (såsom det hydrerbare phosphorindhold) i spiseolien, som, når de hydreres, bliver uopløselige i olien.

Dette trin er imidlertid anderledes end, hvad man benævner "vanddegummering af en spiseolie" i den foreliggende forbindelse. Én vigtig forskel er, at nævnte forbehandlingstrin ikke fjerner de hydrerede phosphatider og mucilago fra olien. Fjernelse af nævnte hydrerede indhold fra olien er hovedformålet med vanddegummering af spiseolier.

Følgeligt omfatter olien stadig, når phospholipasen bringes i kontakt med olien i trin iv) ovenfor, nævnte hydrerede phosphatider og mucilago.

Med andre ord beskriver fremgangsmåden ovenfor, hvis spiseolien er en ikkevanddegummeret spiseolie, en simplificeret degummeringsmetode, som ikke fjerner de hydrerede phosphatider og mucilago fra olien, før nævnte olie bringes i kontakt med phospholipasen.

Den vandige opløsning, som omfatter mindst 85 % vand (trin ii ovenfor), omfatter fortrinsvis yderligere citronsyre. Der er fortrinsvis mellem 1-15 % (vægt/vægt) citronsyre i nævnte vandige opløsning, mere fortrinsvis er der mellem 3-11 % (vægt/vægt) citronsyre i nævnte vandige opløsning.

Tidsrummet i trin ii) er fortrinsvis 15-50 minutter, og mere fortrinsvis 15-30 minutter.

For yderligere detaljer angående nævnte forbehandling i trin ii) ovenfor henvises til forsøgseksemplerne heri.

5

10

15

20

25

I trin iii) ovenfor justeres pH i vand/olie-emulsionen til pH 1,5-8 (for eksempel ved hjælp af tilsætning af en passende mængde af en NaOH-opløsning). Dette gøres for at justere pH-værdien i olien, før phospholipasen bringes i kontakt med olien i trin iv). Almindeligvis vil den faktiske optimale pH-værdi afhænge af hvilket enzym, der anvendes til at blive bragt i kontakt med olien i trin iv). For yderligere detaljer angående dette emne henvises til forsøgseksempleme heri.

Almindeligvis foretrækkes det ifølge det første aspekt af opfindelsen og udførelsesformer for dette, at kontaktbringningen mellem nævnte olie og en vandig opløsning, som omfatter en phospholipase, udføres ved pH 1,5-6, mere fortrinsvis ved pH 3-6.

pH-værdien i vandet i olie-emulsionen måles ved at udtage 2 ml vand fra olieemulsionen og blande dem med 2 ml vand. Efter faseseparering skal det resulterende øverste olielag pipetteres fra, og pH skal måles i vandfasen. Målinger omregnes til "reelle" pH-værdier ved hjælp af følgende formel: pH_{reel} = pH_{målt} -0,38. For yderligere detaljer henvises til forsøgseksemplerne heri.

l en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen er mængden af en phospholipase, som er emulgeret i olien, i intervallet 0,1-15 mg enzym (tørstof)/kg olie, mere fortrinsvis 0,25-5 mg enzym (tørstof)/kg olie og endnu mere fortrinsvis 0,25-2,5 mg enzym (tørstof)/kg olie.

Almindeligvis er det fordelagtigt at optimere både mængden af anvendt phospholipase og den anvendte tid til enzymatisk degummering af en spiseolie til opnåelse af et phosphorindhold på under 11 ppm. Den faktiske optimale enzymdosis og tiden vil blandt andet afhænge af hvilken phospholipase, der anvendes. For yderligere detaljer vedrørende optimering af enzymdosis og tiden for fremgangsmåden henvises til forsøgseksempleme heri.

I en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen reduceres phosphorindholdet fortrinsvis til mindre end 11 ppm, efter at nævnte olie er bragt i kontakt med 0,5-6 mg phospholipase (tørstof)/kg olie, og hvor phospholipasen er i kontakt med nævnte olie i et tidsrum på 1-6 timer, mere fortrinsvis reduceres

30

5

10

15

20

phosphorindholdet i olien til mindre end 11 ppm, efter at nævnte olie er bragt i kontakt med 0,25-2,5 mg phospholipase (tørstof)/kg olie, og hvor phospholipasen er i kontakt med nævnte olie i et tidsrum på 15 minutter til 2 timer.

5

Se forsøgseksemplerne hen for yderligere detaljer vedrørende bestemmelsen af optimale temperaturer for individuelle phospholipaser.

10

I alle aspekter og udførelsesformer for en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen reduceres phosphorindholdet i olien fortrinsvis ti mindre end 5 ppm.

15

Phosphorindholdet i olien måles som ppm (parts per million) i oliefasen i vandet, der er til stede i olieemulsionen. Analysen af phosphorindhold udføres i overensstemmelse med procedure 2.421 i "Standard Methods for the Analysis of Oils, Fats, and Derivatives, 7. udg. (1987)". For yderligere detaljer henvises til forsøgseksemplerne heri.

20

En udførelsesform for opfindelsen angår en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen, hvor phospholipasen er opnået fra en pattedyreart, især hvor phospholipasen er opnået fra pancreas i nævnte pattedyreart, og mest fortrinsvis hvor phospholipasen er opnået fra pancreas fra et svin.

25

I en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen er phospholipasen fortrinsvis opnået fra en mikroorganisme, fortrinsvis en trådsvamp, en gær eller en bakterie.

30

Når trådsvampen, der er nævnt ovenfor, er en art af slægten *Fusarium*, er foretrukne stammer fortrinsvis stammer, såsom en stamme af *Fusarium culmorum*, *F. heterosporum*, *F. solani* eller især en stamme af *F. oxysporum*.

35

Endvidere er foretrukne stammer, når nævnte trådsvamp ovenfor er en art af slægten Aspergillus, stammer, såsom en stamme af Aspergillus awamon, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger eller især

Aspergillus oryzae.

Endvidere er spiseolien i en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen fortrinsvis en sojabønneolie, solsikkefrøolie eller mere fortrinsvis en raspfrøolie.

Karakterisering af phospholipase, der er opnået fra Fusarium oxysporum

En phospholipase ifølge opfindelsen, der er opnået fra Fusarium oxysporum, er blevet grundigt karakteriseret.

Følgeligt er et aspekt af opfindelsen fortrinsvis en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusarium* og har phospholipase A-aktivitet i pH-intervallet 3-10, målt ved 40 °C, mere fortrinsvis her phospholipase A-aktivitet i pH-intervallet 3-7, målt ved 40 °C, mere fortrinsvis har phospholipase A-aktivitet i pH-intervallet 3,5-6, målt ved 40 °C, og endnu mere fortrinsvis har phospholipase A-aktivitet i pH-intervallet 4,5-5,5, målt ved 40 °C.

20

15

5

Phospholipase A-aktiviteten blev bestemt med sojabønne-lecithin som substrat i et NEFA test bases assay eller i en buffer omfattende 2 % lecithin, 2 % Triton X-100, 20 mM Britton-Robinson (BR). Se forsøgseksemplerne heri for yderligere detaljer.

25

I en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som opnås fra en stamme af slægten *Fusarium*, fortrinsvis én, som har en molekylemasse på 29 ± 10 kDa, mere fortrinsvis en molekylemasse på 29 ± 5 kDa, endnu mere fortrinsvis en molekylemasse på 29 ± 3 kDa og mest fortrinsvis en molekylemasse på 29 ± 2 kDa.

30

Molekylemassen måles ved hjælp af SDS-PAGE-elektroforese som yderligere beskrevet i "Materialer og metoder"-afsnittet (se nedenfor).

I en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusarium*, fortrinsvis én, som har et isoelektrisk punkt (pl) i intervallet 4,5-8, mere fortrinsvis et isoelektrisk punkt

(pl) i intervallet 5-7,5 og endnu mere fortrinsvis et isoelektrisk punkt (pl) i intervallet 5,5-7,5.

Det isoelektriske punkt (pl) blev bestemt ved anvendelse af Ampholine PAGEplader fra Pharmacia. Se forsøgseksempel heri for yderligere detaljer (se nedenfor).

5

10

15

20

25

I en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusarium*, fortrinsvis én, som har et temperaturoptimum for phospholipase-aktivitet i intervallet 25-55 °C, målt med lecithin som substrat ved pH 5; mere fortrinsvis i intervallet 30-50 °C, målt med lecithin som substrat ved pH 5; og endnu mere fortrinsvis i intervallet 40-50 °C, målt med lecithin som substrat ved pH 5.

Temperaturoptimummet for phospholipase-aktivitet blev målt i en buffer, som omfattede 2 % lecithin, 2 % Triton X-100, 20 mM Britton Robinson-buffer, ved pH 5. Se forsøgseksempel heri for yderligere detaljer (se nedenfor).

I endnu en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusarium*, fortrinsvis én, som har et pH-optimum for phospholipase-aktivitet i pH-intervallet 6-12 ved 37 °C, mere fortrinsvis i pH-intervallet 7-11,5 ved 37 °C, mere fortrinsvis i pH-intervallet 8-11 ved 37 °C, og endnu mere fortrinsvis i pH-intervallet 8,5-11 ved 37 °C.

pH-optimummet for phospholipase-aktivitet blev bestemt i en buffer, som omfattede 2 % lecithin, 2 % Triton X-100, 20 mM Britton Robinson-buffer, ved 37 °C. Se forsøgseksempel heri for yderligere detalier.

En phospholipase ifølge opfindelsen omfatter fortrinsvis mindst to ud af de fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet, mere fortrinsvis omfatter en phospholipase ifølge opfindelsen mindst tre af de fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet, endnu mere fortrinsvis omfatter en phospholipase ifølge opfindelsen mindst fire af de fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet, og mest fortrinsvis omfatter en phospholipase ifølge opfindelsen alle fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet.

Som beskrevet ovenfor er en phospholipase ifølge opfindelsen blevet klonet, udtrykt rekombinant og oprenset, og de N-terminale og C-terminale sekvenser af det aktive secernerede enzym er blevet bestemt.

5

Følgeligt angår en yderligere udførelsesform for opfindelsen et isoleret polypeptid med phospholipase A-aktivitet, idet polypeptidet er opnået fra en stamme af slægten *Fusarium* og har:

- 10 i) PLA-aktivitet i pH-intervallet 3-10, målt ved 40 °C,
 - ii) en molekylemasse på 29 ± 10 kDa, bestemt ved hjælp af SDS-PAGE,
 - iii) et isoelektrisk punkt (pl) i intervallet 4,5-8,

- iv) et temperaturoptimum for phospholipase-aktivitet i intervallet 25-55 °C, målt med lecithin som substrat ved pH 5, og/eller
- v) et pH-optimum for phospholipase-aktivitet i pH-intervallet 6-12, målt med lecithin som substrat ved 37 °C,
 - og yderligere omfatter en aminosyresekvens, der er valgt fra gruppen, som omfatter:
- (a) et polypeptid, der kodes af den phospholipase A og/eller Benzymkodende del af DNA-sekvensen, der er klonet ind i pYES 2.0, som er til stede i Escherichia coli DSM 11299,
- (b) et polypeptid med en aminosyresekvens som vist i positionerne 31 346 i SEQ ID NO: 2,
 - (c) et polypeptid med en aminosyresekvens som vist i positionerne 31-303 i SEQ ID NO: 2.
- (d) en analog til polypeptidet, der er defineret i (a), (b) eller (c), som er mindst 70 % homolog med nævnte polypeptid, og

(e) et fragment af (a), (b), (c) eller (d).

5

10

15

20

25

30

35

I en udførelsesform for opfindelsen er det isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen phospholipase med phospholipase A1-aktivitet.

I en yderligere udførelsesform er det isolerede polypeptid med phospholipaseaktivitet ifølge opfindelsen phospholipase med phospholipase A2-aktivitet, og i en endnu yderligere udførelsesform er det isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen en phospholipase med phospholipase B-aktivitet.

Fortrinsvis er nævnte isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen phospholipase med phospholipase A1-aktivitet.

For specifikke eksempler på standardteknikker til måling af individuel PLA1-, PLA2- og/eller PLB-aktivitet henvises til forsøgseksemplerne heri.

I en yderligere udførelsesform angår opfindelsen et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er en phospholipase, som i det væsentlige er uafhængig af Ca²+-koncentrationen, målt som relativ phospholipase-aktivitet ved 5 mM EDTA og 5 mM Ca²+ i et phospholipase-aktivitetsassay, som måler frigørelse af frie fedtsyrer fra lecithin i en buffer, som omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter, hvor den forholdsmæssige andel af phospholipase-aktivitet ved 5 mM EDTA/5 mM Ca²+ er mere end 0,25, mere fortrinsvis mere end 0,5 og mest fortrinsvis mere end 0,80.

For yderligere detaljer vedrørende måling af afhængigheden for enzymaktiviteten af Ca²⁺-koncentrationen henvises til forsøgseksempler heri.

Nogle lipaser kan have begrænset phospholipase-aktivitet. I den aktuelle forbindelse defineres en sådan begrænset phospholipase-aktivitet for nævnte lipaser som "en lipase med phospholipase-sideaktivitet" (se afsnittet "Definitioner" heri). Den foreliggende opfindelse angår et isoleret polypeptid med phospholipase-aktivitet, hvor phospholipase-aktiviteten for nævnte

isolerede polypeptid er så høj, at det har industriel relevans.

Følgeligt angår opfindelsen et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er en phospholipase med phospholipase-aktivitet, som er mindst 0,25 nmol/minut, enzymdosis: 60 μg, ved 25 °C, mere fortrinsvis mindst 0,40 nmol/minut, enzymdosis: 60 μg, ved 25 °C, målt i et enkeltlags-phospholipase-assay som følger:

- a. i et enkeltlags-udstyr (nul ordens-niveau) spredes på en grundigt oprenset overflade af en bufferopløsning (10 mM Tris, pH 8,0, 25 °C) et enkeltlag af phospholipidet DDPC (didicanoyl (C10)-phosphatidylcholin) fra en chloroformopløsning,
- b. efter afspænding af enkeltlaget (fordampning af chloroform) justeres overfladetrykket til 15 mN/m svarende til et gennemsnitligt molekyleareal for DDPC på ca. 63 Å²/molekyle.
- c. en bufferopløsning (som ovenfor) indeholdende 60 µg enzym injiceres gennem enkeltlaget ind i underfasen i reaktionsafsnittet (cylinder med et areal på 1520 mm² og et volumen på 30400 mm³) i "nul ordens-niveauet",

d. enzymatisk aktivitet bestemmes ved hjælp af hastigheden af en mobil spærring, som komprimerer enkeltlaget for at opretholde konstant overfladetryk, efterhånden som uopløselige substratmolekyler hydrolyseres til mere vandopløselige reaktionsprodukter, hvor antallet af DDPC-molekyler, som hydrolyseres pr. minut af enzymet, æstimeres ud fra det gennemsnitlige molekyleareal (MMA) af DDPC.

Se afsnittet "Definitioner" og forsøgseksempler heri for yderligere beskrivelser af foretrukne mængder af phospholipase-aktiviteter for et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen.

Endvidere kan den specifikke phospholipase-aktivitet for en phospholipase ifølge opfindelsen måles ved hjælp af kendte standardassays for phospholipase-aktivitet.

Følgeligt angår den foreliggende opfindelse i en yderligere udførelsesform et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor

20

25

5

10

15

35

phospholipasen er en phospholipase, som har en phospholipase-aktivitet, der er i stand til at frigøre mindst 7 µmol fri fedtsyre/minut/mg enzym, mere fortrinsvis mindst 15 µmol fri fedtsyre/minut/mg enzym, endnu mere fortrinsvis mindst 30 µmol fri fedtsyre/minut/mg enzym og mest fortrinsvis mindst 50 µmol fri fedtsyre/minut/mg enzym, målt som følger:

phospholipase-aktivitet måles i et assay, der måler frigørelse af fri fedtsyrer fra lecithin i en buffer, der omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C, efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter.

For yderligere detaljer vedrørende denne udførelsesform for opfindelsen henvises til forsøgseksemplerne heri.

Et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen er meget egnet til udførelse af enzymatisk degummering af en spiseolie.

Følgeligt angår opfindelsen:

20 1. et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er i stand til at udføre enzymatisk degummering af en spiseolie, ifølge en fremgangsmåde ifølge opfindelsen til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie, som omfatter et ikke-hydrerbart phosphorindhold på mindst 50 ppm, og

25

30

5

- 2. et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er i stand til at udføre enzymatisk degummering af en vanddegummeret spiseolie (med et phosphorindhold på 50-250 ppm), hvorved phosphorindholdet i olien reduceres til mindre end 11 ppm, hvor den enzymatiske degummeringsproces omfatter kontaktbringning mellem nævnte olie ved en pH fra 1,5 til 8 og en vandig opløsning af phospholipasen, som emulgeres i olien, indtil phosphorindholdet i olien er reduceret til mindre end 11 ppm, og efterfølgende separering af den vandige fase fra den behandlede olie.
- Det isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen er fortrinsvis i stand til at udføre nævnte enzymatiske degummeringsproces i den vanddegummerede spiseolie (som defineret umiddelbart ovenfor) på mindre

end 1,5 timer og anvender mindre end 2 mg phospholipase (tørstof)/kg olie.

Et isoleret polypeptid, som fremviser phospholipase-aktivitet og har egenskaberne, der er vist ovenfor, ifølge opfindelsen opnås fortrinsvis fra en trådsvampestamme fra slægten *Fusarium*.

Uden at være begrænset af nogen teori forventes det imidlertid på nuværende tidspunkt, at en phospholipase ifølge opfindelsen også kan opnås fra en anden mikroorganisme, fortrinsvis en anden trådsvampestamme. Eksempler derpå er givet i afsnittet "Mikrobielle kilder" (se nedenfor).

Klonet DNA-sekvens

På trods af en række tekniske vanskeligheder (se afsnittet "Metode til kloning af en trådsvampe-phospholipase", se nedenfor) har de foreliggende opfindere været i stand til at klone en phospholipase, der fremviser PLA-aktivitet, fra en stamme af slægten *Fusarium*, nærmere bestemt *Fusarium oxysporum*.

Endvidere mener man på nuværende tidspunkt, at det er muligt at klone både en beslægtet phospholipase A- og/eller phospholipase B-kodende DNA-sekvens på basis af sekvensinformationen, der tilvejebringes i den foreliggende ansøgning.

Følgeligt vedrører et aspekt af opfindelsen en klonet DNA-sekvens, der koder for et enzym, som fremviser phospholipase A- og/eller phospholipase B-aktivitet, idet DNA-sekvensen er valgt fra gruppen, der omfatter:

- (a) den phospholipase A-kodende del af polynukleotidet, der er klonet ind i plasmid pYES 2.0, som er til stede i *Escherichia coli* DSM 11299,
- (b) DNA-sekvensen, der er vist i positionerne 23-1063 i SEQ ID NO: 1, mere fortrinsvis positionerne 113-1063 i SEQ ID NO: 1, eller endnu mere fortrinsvis positionerne 113-929 i SEQ ID NO: 1 eller den komplementære streng dertil,
- (c) en DNA-sekvens, som er mindst 70 % homolog med nævnte DNA-sekvenser, der er defineret i (a) eller (b),

35

5

10

- 15

20

25

(d) en DNA-sekvens som defineret i (a) eller (b), som koder for et polypeptid, der fremviser phospholipase-aktivitet og er mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-346 i SEQ ID NO: 2, eller mere fortrinsvis mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-303 i SEQ ID NO: 2,

5

10

15

35

- (e) en DNA-sekvens, som hybridiserer med en dobbeltstrenget DNAprobe, som omfatter DNA-sekvensen, der er vist i positionerne 23-1063 i SEQ ID NO: 1, ved lav stringens,
- (f) en DNA-sekvens, der koder for et polypeptid med aminosyresekvenserne som resterne 1 til 346, 31 til 346 eller 31 til 303 i SEQ ID NO: 2, eller aminosyresekvenserne, der kodes for ved hjælp af en hvilken som helst af DNA-sekvenserne ifølge (e), og
- (g) en DNA-sekvens, som er et fragment af DNA-sekvenserne, der er specificeret i (a), (b), (c), (d), (e) eller (f).
- I denne specifikation påtænkes en henvisning, når en sådan gøres til den phospholipase-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i DSM 11299, også at indbefatte den phospholipase-kodende del af DNA-sekvensen, der fremgår af SEQ ID NO: 1.
- Følgeligt kan udtrykkene "den phospholipase-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i DSM 11299" og "den phospholipase-kodende del af DNA-sekvensen, der fremgår af SEQ ID NO: 1" bruges vilkårligt.
- DNA-sekvensen kan være af genomisk, cDNA eller syntetisk oprindelse eller en hvilken som helst kombination deraf.

Den foreliggende opfindelse omfatter også en klonet DNA-sekvens, der koder for et enzym, som fremviser phospholipase A- og/eller phospholipase B-aktivitet og har aminosyresekvensen, der er vist som den modne del i SEQ ID NO: 2, som adskiller sig fra SEQ ID NO: 1 som følge af degenereringen af den genetiske kode.

DNA-sekvensen, der er vist i SEQ ID NO: 1, og/eller en analog sekvens ifølge opfindelsen kan klones fra en stamme af trådsvampen *Fusarium oxysporum*, som danner enzymet med phospholipase-aktivitet, eller en anden eller beslægtet organisme som yderligere beskrevet nedenfor (se afsnittet "Mikrobielle kilder").

Alternativt kan den analoge sekvens konstrueres på basis af DNA-sekvensen, der er vist som den phospholipase-kodende del af SEQ ID NO: 1, den kan for eksempel være et udsnit deraf og/eller konstrueres ved hjælp af indførelse af nukleotidsubstitutioner, som ikke giver anledning til en anden aminosyresekvens for phospholipasen, der kodes af DNA-sekvensen, men svarer til kodonanvendelsen for værtsorganismen, som påtænkes til produktion af enzymet, eller ved hjælp af indførelse af nukleotidsubstitutioner, som kan give anledning til en anden aminosyresekvens (det vil sige en variant til phospholipasen ifølge opfindelsen).

Når der udføres nukleotidsubstitutioner, er aminosyre-ændringerne fortrinsvis af en mindre betydende type, det vil sig konservative aminosyresubstitutioner, som ikke i betydelig grad påvirker proteinets foldning eller aktivitet; små deletioner, typisk af en til ca. 30 aminosyrer; små amino- eller carboxylterminale forlængelser, såsom en aminoterminal methioninrest; et lille linkerpeptid på op til ca. 20-25 rester; eller en lille forlængelse, som letter oprensningen, såsom et polyhistidin-område; en antigen epitop eller et bindingsdomæne.

Eksempler på konservative substitutioner er inden for gruppen af basiske aminosyrer, såsom arginin, lysin, histidin; sure aminosyrer, såsom glutaminsyre og asparaginsyre, polære aminosyrer, såsom glutamin og asparagin, hydrofobe aminosyrer, såsom leucin, isoleucin, valin, aromatiske aminosyrer, såsom phenylalanin, tryptofan, tyrosin, og små aminosyrer, såsom glycin, alanin, serin, threonin, methionin. For en generel beskrivelse af nukleotidsubstitution, se for eksempel Ford et al. (1991), Protein Expression and Purification 2:95-107.

Det vil være klart for fagfolk, at sådanne substitutioner kan foretages uden for de områder, der er kritiske for molekylets funktion, og stadig resultere i et aktivt

35

5

10

15

20

25

polypeptid. Aminosyrer, der er essentielle for aktiviteten af polypeptidet, som kodes af den klonede DNA-sekvens ifølge opfindelsen og derfor fortrinsvis ikke har været genstand for substitution, kan identificeres i overensstemmelse med kendte procedurer, såsom sekvensstyret mutagenese eller alaninscanningsmutagenese (cf. for eksempel Cunningham and Wells (1989), Science 244:1081-1085). I sidstnævnte teknik indføres mutationer i hver rest i molekylet, og de resulterende mutante molekyler testes for biologisk (for eksempel phospholipase-) aktivitet til identificering af aminosyrerester, der er kritiske for molekylets aktivitet. Sites for substrat-enzym-interaktion kan også bestemmes ved hjælp af en analyse af krystalstrukturen, der bestemmes ved hjælp af teknikker, såsom nuklear magnetisk resonans-analyses, krystallografi eller fotoaffinitetsmærkning (cf. for eksempel de Vos et al. (1992), Science 255:306-312; Smith et al. (1992), J. Mol. Biol. 224:899-904; Wlodaver et al. (1992), FEBS Lett. 309:59-64).

15

20

10

5

Polypeptider ifølge den foreliggende opfindelse indbefatter også fusionerede polypeptider eller spaltbare fusionspolypeptider, hvori et andet polypeptid er fusioneret i N-terminalen eller C-terminalen af polypeptidet eller et fragment deraf. Et fusioneret polypeptid dannes ved hjælp af fusion af en nukleinsyresekvens (eller en del deraf), som koder for et andet polypeptid, til en nukleinsyresekvens (eller en del deraf) ifølge den foreliggende opfindelse. Teknikker til frembringelse af fusionerede polypeptider er kendte og indbefatter ligering af de kodende sekvenser, som koder for polypeptiderne, således at de er i læseramme, og således at ekspression af det fusionerede polypeptid er under kontrol af den samme promotor(er) og terminator.

25

DNA-sekvensen ifølge opfindelsen kan klones fra stammen *Escherichia coli* DSM 11299 ved anvendelse af standard-kloningsteknikker, for eksempel som beskrevet af Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab.; Cold Spring Harbor, NY.

35

30

Da den foreliggende opfindelse har løst problemet med udvikling af et egnet screeningsassay til anvendelse i en ekspressionskloningsteknik til kloning af en phospholipase ifølge opfindelse, se afsnittet med overskriften "Metode til kloning af en trådsvampe-phospholipase", kan DNA-sekvensen ifølge opfindelsen nu klones ved hjælp af en hvilken som helst generel metode, som inddrager:

- kloning i egnede vektorer af et cDNA-bibliotek fra en hvilken som helst organisme, der forventes at danne phospholipasen af interesse,
- 5
- transformation af egnede gærværtsceller med nævnte vektorer,
- dyrkning af værtscellerne under passende betingelser til ekspression af et hvilket som helst enzym af interesse, der kodes af en klon i cDNAbiblioteket,

10

- screening for positive kloner ved hjælp af bestemmelse af eventuel phospholipase-aktivitet hos enzymet, der dannes af sådanne kloner, og
- isolering af det enzymkodende DNA fra sådanne kloner.

15

20

Alternativt kan DNA'et, der koder for en phospholipase ifølge opfindelsen, da den foreliggende opfindelse for første gang tilvejebringer en klonet DNA-sekvens, som koder for et trådsvampe-PLA-enzym, i overensstemmelse med velkendte procedurer klones traditionelt fra en egnet kilde, såsom en hvilken som helst af organismerne, der er nævnt i afsnittet "Mikrobielle kilder", ved anvendelse af syntetiske oligonukleotidprober, der er fremstillet på basis af en DNA-sekvens, der er beskrevet heri. For eksempel kan en egnet oligonukleotidprobe fremstilles på basis af den phospholipase-kodende del af nukleotidsekvenserne, der er vist i SEQ ID NO: 1, eller et hvilket som helst egnet udsnit deraf eller på basis af aminosyresekvensen SEQ ID NO: 2.

25

30

Da endvidere en klonet DNA-sekvens ifølge opfindelsen koder for et polypeptid med phospholipase-aktivitet ifølge opfindelsen, er en række af de specifikke udførelsesformer, som vedrører et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, også udførelsesformer for opfindelsen for en klonet DNA-sekvens ifølge opfindelsen, som koder for et polypeptid med phospholipase-aktivitet. Følgeligt vedrører referencer og foretrukne og mest foretrukne udførelsesformer for nævnte isolerede polypeptid med phospholipase-aktivitet også en klonet DNA-sekvens ifølge opfindelsen.

35

Som følge deraf vedrører en udførelsesform for opfindelsen en klonet DNA-

sekvens ifølge opfindelsen, hvor phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase A1.

I en yderligere udførelsesform er en klonet sekvens ifølge opfindelsen en klonet DNA-sekvens, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase A2, og i en endnu yderligere udførelsesform er en klonet sekvens ifølge opfindelsen en klonet DNA-sekvens, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase B.

Fortrinsvis koder for nævnte klonede DNA-sekvens ifølge opfindelsen et polypeptid med phospholipase A1-aktivitet.

Endvidere angår opfindelsen en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase, som i det væsentlige er uafhængig af Ca²⁺-koncentrationen, der måles som:

15

5

- relativ phospholipase-aktivitet ved 5 mM EDTA og 5 mM Ca²⁺ i et phospholipase-aktivitetsassay, som måler frigørelsen af fri fedtsyrer fra lecithin i en buffer, som omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C, efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter, hvor relativ phospholipase-aktivitet ved 5 mM EDTA/5 mM Ca²⁺ er et forhold, der er større end 0,25, mere fortrinsvis et forhold, der er større end 0,5.

20

25

Endnu yderligere angår opfindelsen en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase med en phospholipase-aktivitet, der er mindst 0,25 nmol/minut, enzymdosis: 60 µg, ved 25 °C, mere fortrinsvis mindst 0,40 nmol/minut, enzymdosis: 60 µg, ved 25 °C, målt i et enkeltlags-phospholipase-assay som følger:

30

a. i et enkeltlags-udstyr (nul ordens-niveau) spredes på en grundigt oprenset overfalde af en bufferopløsning (10 mM Tris, pH 8,0, 25 °C) et enkeltlag af phospholipidet DDPC (didicanoyl (C10)-phosphatidylcholin) fra en chloroform-opløsning,

35

b. efter afspænding af enkeltlaget (fordampning af chloroform) justeres overfladetrykket til 15 mN/m svarende til et gennemsnitligt molekyleareal for

DDPC på ca. 63 Å²/molekyle,

5

10

30

35

- c. en bufferopløsning (som ovenfor), der indeholder 60 µg enzym, injiceres gennem enkeltlaget ind i underfasen i reaktionsafsnittet (cyliner med et areal på 1520 mm² og et volumen på 30400 mm³) i "nul ordens-niveauet",
- d. enzymatisk aktivitet bestemmes ved hjælp af hastigheden af en mobil spærring, som komprimerer enkeltlaget til opretholdelse af konstant overfladetryk, efterhånden som uopløselige substratmolekyler hydrolyseres til mere vandopløselige reaktionsprodukter, hvor antallet af DDPC-molekyler, som hydrolyseres pr. minut af enzymet, æstimeres ud fra det gennemsnitlige molekyleareal (MMA) for DDPC.
- I en yderligere udførelsesform angår opfindelsen en klonet DNA-sekvens ifølge opfindelse, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase med en phospholipase-aktivitet, som er i stand til at frigøre mindst 7 μmol fri fedtsyre/minut/mg enzym, mere fortrinsvis mindst 15 μmol fri fedtsyre/minut/mg enzym, målt som følger:
- phospholipase-aktivitet måles i et assay, der måler frigørelsen af fri fedtsyrer fra lecithin i en buffer, som omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C, efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter.
- 25 I yderligere udførelsesformer angår opfindelsen:

en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er i stand til at udføre enzymatisk degummering af en spiseolie i overensstemmelse med en fremgangsmåde ifølge opfindelsen til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie, som omfatter et ikke-hydrerbart phosphorindhold på mindst 50 ppm, og

en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er i stand til at udføre enzymatisk degummering af en vanddegummeret spiseolie (med et phosphorindhold på 50-250 ppm) og derved reducere phosphorindholdet i olien til mindre end 11 ppm, hvor den enzymatiske degummeringsproces omfatter kontaktbringning mellem nævnte

olie ved en pH fra 1,5 til 8 og en vandig opløsning af phospholipasen, som er emulgeret i olien, indtil phosphorindholdet i olien er reduceret til mindre end 11 ppm, og efterfølgende separering af den vandige fase fra den behandlede olie.

En klonet DNA-sekvens ifølge opfindelsen er fortrinsvis en klonet DNA-sekvens, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er i stand til at udføre nævnte enzymatiske degummeringsproces i den vanddegummerede spiseolie ved anvendelse af mindre end 2 mg phospholipase (tørstof)/kg olie, og hvorved phospholipasen er i kontakt med nævnte olie i et tidsrum på 15 minutter til 2 timer.

Fremgangsmåde til kloning af en trådsvampe-phospholipase

5

10

15

20

25

30

35

Man stødte på en række tekniske vanskelighed, da man forsøgte at isolere en phospholipase ifølge opfindelsen eller klone et polynukleotid, som kodede for den. Det syntes umuligt at isolere enzymet, og problemet med kloning af polynukleotidet blev forfulgt.

Som beskrevet heri var der ingen kendt DNA-sekvens, som kodede en trådsvampe-phospholipase A, tilgængelig. Følgeligt udviklede de foreliggende opfindere en kloningsstrategi på basis af ekspressionskloning-i-gær-teknikken (H. Dalboege et al., Mol. Gen. Genet. (1994), <u>243</u>:253-260, WO 93/11249 og WO 94/14953).

Ét af de største problemer i forbindelse med denne teknik var, at gær danner en indre aktivitet, som giver anledning til en phospholipase-baggrund i udpladningsassays. Denne baggrund viste sig at være stærkt afhængig af mængden af substrat i assayskålene, og mængden af substrat skulle derfor titreres omhyggeligt til at niveau, hvor baggrunden var lav nok, til at assayet kunne være pålideligt under ekspressionsklonings-screeningsproceduren, men høj nok til at reaktionen kan finde sted.

Ydermere omfatter trådsvampestammer almindeligvis en række forskellige lipaser, hvoraf nogle endog fremviser begrænset phospholipase-aktivitet. Sådanne lipaser defineres heri som "en lipase med phospholipase-sideaktivitet (se afsnittet "Definitioner" heri).

I udpladningsassayet viste baggrunden af sådanne lipaser med phospholipase-sideaktivitet sig også at være stærkt afhængig af mængden af substrat i assayskålene, og mængden af substrat skulle derfor titreres endnu mere omhyggeligt for at eliminere baggrundsaktiviteten fra både gærcellerne og trådsvampelipaserne med phospholipase-sideaktivitet.

Ud over dette viste det sig, at der skulle foretages et omhyggeligt valg af substrat, da mange ikke tilvejebragte nogen funktionel løsning på problemet, fordi en række af de testede phospholipase-substrater gav en baggrundsaktivitet, som skyldtes, at lipaser uden phospholipase-aktivitet var i stand til at reagere på substraterne. Følgeligt skulle et stort antal substrater testes og titreres for at identificere et egnet substrat.

Den fundne løsning til muliggørelse af udførelse af ekspressionskloningen af et phospholipase-kodende polynukleotid var anvendelse af Lipoid E80 (fra Lipoid GmbH) i omhyggeligt målte koncentrationer. I "Materiale og metode"-afsnittet heri findes en detaljeret beskrivelse af den komplette ekspressionskloning-i-gær-metode, herunder et udpladningsassay, som løser de ovenfor beskrevne problemer.

20

5

10

15

25

30

Homologi/lighed for DNA-sekvenser

DNA-sekvenshomologien/ligheden, der henvises til ovenfor, bestemmes som graden af lighed mellem to sekvenser, som viser en afvigelse af den første sekvens fra den anden. Homologien kan passende bestemmes ved hjælp af kendte computerprogrammer, såsom GAP, der tilvejebringes i GCG-programpakken (Program Manual for the Wisconsin Package, Version 8, august 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B., og Wunsch, C.D., (1970), Journal of Molecular Biology 48:443-453). Ved anvendelse af GAP med følgende indstilling til DNA-sekvenssammenligning: GAP-dannelses-afskæring på 5,0 og GAP-forlængelses-afskæring på 0,3, fremviser det kodende område af DNA-sekvensen en lighedsgrad på fortrinsvis mindst 70 %, mere fortrinsvis mindst 80 %, mere fortrinsvis mindst 90 %, mere fortrinsvis mindst 95 %, mere fortrinsvis mindst 97 % med den phospholipase-kodende del af DNA-sekvensen, der er vist i SEQ ID NO: 1 (det vil sige position 23-1063 i SEQ ID NO: 1), eller mere fortrinsvis med DNA-sekvensen, der er vist i position 113-

35

1063 i SEQ ID NO: 1 (position 113 svarer til den N-terminale rest i det modne enzym), eller endnu mere fortrinsvis med DNA-sekvensen, der er vist i position 23-929 i SEQ ID NO: 1 (position 929 svarer til den C-terminale rest i C-terminalt processeret secemeret aktivt enzym).

5

10

15

20

25

30

35

Hybridisering

Hybridiseringen, der henvises til ovenfor, påtænkes at omfatte en analog DNA-sekvens, som hybridiserer til en dobbeltstrenget DNA-probe, der svarer til den phospholipase-kodende del af DNA-sekvensen, der er vist i SEQ ID NO: 1, det vil sige nukleotiderne 23-1063, eller mere fortrinsvis med en dobbeltstrenget DNA-probe, der svarer til DNA-sekvensen, der er vist i position 113-1063 i SEQ ID NO: 1 (position 113 svarer til den N-terminale rest i det modne enzym), eller endnu mere fortrinsvis med en dobbeltstrenget DNA-probe, der svarer til DNA-sekvensen, der er vist i position 23-929 i SEQ ID NO: 1 (position 929 svarer til den C-terminale rest i det C-terminalt processerede secemerede aktive enzym) under i det mindste lave stringens-betingelser som beskrevet detaljeret nedenfor.

Egnede forsøgsbetingelser til bestemmelse af hybridisering ved lav, medium eller høj stringens mellem en nukleotidprobe og en homolog DNA- eller RNAsekvens inddrager forudgående udblødning af filteret, der indeholder DNAfragmenterne eller RNA'et. der skal hybridisere, i 5 x SSC (natriumchlorid/natriumcitrat, Sambrook et al., 1989) i 10 minutter og præhybridisering af filteret i en opløsning af 5 x SSC, 5 x Denhardt's opløsning (Sambrook et al., 1989), 0,5 % SDS og 100 µg/ml denatureret sonikeret laksesperma-DNA (Sambrook et al., 1989), efterfulgt af hybridisering I den samme opløsning, som indeholder 10 ng/ml af en vilkårlig primet (Feinberg, A.P., og Vogelstein, B. (1983), Anal. Biochem. 132:6-13), ³²P-dCTP-mærket (specifik aktivitet > 1 x 109 cpm/µg) probe i 12 timer ved ca. 45 °C. Filteret vaskes herefter to gange i 30 minutter i 2 x SSC, 0,5 % SDS ved en temperatur på mindst 55 °C (lav stringens), mere fortrinsvis mindst 60 °C (medium stringens), endnu mere fortrinsvis mindst 65 °C (medium/høj stringens), endnu mere fortrinsvis mindst 70 °C (høj stringens), endnu mere fortrinsvis mindst 75 °C (meget høj stringens).

Molekyler, hvortil oligonukleotidproben hybridiserer under disse betingelser.

påvises ved anvendelse af en X-røntgenfilm.

Det har vist sig, at det er muligt teoretisk at forudsige om to givne DNAsekvenser vil hybridisere under bestemte specifikke betingelser.

5

Følgeligt kan forsøgsmetoden som et alternativ til den overfor beskrevne til bestemmelse af, om en analog DNA-sekvens vil hybridisere til nukleotidproben, baseres på en teoretisk beregning af den Tm (smeltetemperatur), hvorved to heterologe DNA-sekvenser med kendte sekvenser vil hybridisere under specificerede betingelser (for eksempel med hensyn til kation-koncentration og temperatur).

For at bestemme smeltetemperaturen for heterologe DNA-sekvenser (Tm(hetero)) er det nødvendigt indledningsvis at bestemme smeltetemperaturen (Tm(homo)) for homologe DNA-sekvenser.

15

30

10

Smeltetemperaturen (Tm(homo)) for to helt komplementære DNA-strenge (homodupleksdannelse) kan bestemmes ved anvendelse af følgende formel:

Tm(homo) = 81.5 °C + 16.6(log M) + 0.41(% GC) - 0.61(% form) - (500/L)20 ("Current protocols in Molecular Biology". John Wiley and Sons, 1995), hvor:

"M" = den molære kation-koncentration i vaskebuffer,

"% GC" = % Guanin (G) og Cytosin (C) af det totale antal baser i DNA-sekvensen.

"% form" = % formamid i vaskebufferen, og "L" = længden af DNA-sekvensen.

Ved anvendelse af denne formel og de eksperimentelle vaskebetingelserne, der er angivet ovenfor, er Tm(homo) for homodupleksdannelsen for nukleotidproben, der svarer til DNA-sekvensen, der er vist i SEQ ID NO: 1, det vil sige nukleotiderne 23-1060:

Tm(homo) = 81.5 + 16.6(log 0.30) + 0.41(56) - 0.61(0) - (500/1038)Tm(homo) = 103.5 °C

"M": 2 x SSC svarer til en kation-koncentration på 0,3 M,"% GC": % GC i SEQ ID NO: 1, position 23-1060 er 56 %.

"% form": Der er intet formamid i vaskebufferen.

"L": Længden af SEQ ID NO: 1, position 23-1063 er 1038 bp.

hjælp af ovennævnte formel er Tm for en bestemt ved homodupleksdannelse (Tm(homo)) mellem to helt komplementære DNAsekvenser. For at tilpasse Tm-værdien til en for to heterologe DNA-sekvenser, antager man, at en 1 % forskel i nukleotidsekvensen mellem de to heterologe sekvenser svarer til et fald på 1 °C i Tm ("Current protocols in Molecular Biology". John Wilev and Sons. 1995). Tm(hetero) heterodupleksdannelsen findes derfor ved at trække homologi-%-forskellen mellem den analoge sekvens, det drejer sig om, og nukleotidproben, der er beskrevet ovenfor, fra Tm(homo). DNA-homologiprocenten, som skal trækkes fra, beregnes som beskrevet heri (se nedenfor).

Homologi med aminosyresekvenser

15

20

25

30

10

5

Polypeptidhomologien, der henvises til ovenfor, bestemmes som graden af lighed mellem to sekvenser, som viser en afvigelse af den første sekvens for den anden. Homologien kan passende bestemmes ved hjælp af kendte computerprogrammer, såsom GAP, der tilvejebringes i GCG-programpakken (Program Manual for the Wisconsin Package, Version 8, august 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B., og Wunsch, C.D., (1970), Journal of Molecular Biology 48:443-453). Ved anvendelse af GAP med følgende indstilling til DNAsekvenssammenligning: GAP-dannelses-afskæring på 3,0 og forlængelses-afskæring på 0,1, fremviser den modne del af et polypeptid, der kodes af en analog DNA-sekvens, en lighedsgrad på fortrinsvis mindst 70 %, mere fortrinsvis mindst 80 %, mere fortrinsvis mindst 90 %, mere fortrinsvis mindst 95 %, især mindst 97 % med den modne del af aminosyresekvensen, der er vist i SEQ ID NO: 2, det vil sige position 31-346 i SEQ ID NO: 2, eller mere fortrinsvis med aminosyresekvensen, der er vist i position 31-303 i SEQ ID NO: 2 (position 303 er den C-terminale rest i C-terminalt processeret secemeret aktivt enzym).

35

Den foreliggende opfindelse er også rettet mod phospholipase-varianter med en aminosyresekvens, der adskiller sig i ikke mere end tre aminosyrer, fortrinsvis i ikke mere end to aminosyrer og mere fortrinsvis i ikke mere end en aminosyre fra den modne del af aminosyresekvensen, der er vist i SEQ ID NO: 2.

5

15

20

25

Endvidere angår de ovennævnte foretrukne aminosyreligheder også en analog til en klonet DNA-sekvens ifølge opfindelsen, idet denne sekvens koder for et polypeptid, der fremviser phospholipase-aktivitet, og som er mindst 70 % homolog med polypeptidsekvensen, der er vist i position 31-346 i SEQ ID NO: 2, eller mere fortrinsvis mindst 70 % homolog med polypeptidsekvensen, der omfatter positionerne 31-303 i SEQ ID NO: 2.

10 <u>Immunologisk krydsreaktivitet</u>

skal anvendes til bestemmelse af immunologisk krydsreaktivitet, kan fremstilles ved anvendelse af en oprenset phospholipase. Mere specifikt kan der dannes antiserum mod phospholipasen iføke opfindelsen ved hjælp af immunisering af kaniner (eller andre gnavere) i overensstemmelse med proceduren, der er beskrevet af Axelsen et al. i A Manual of Quantitative Immunoelectrophoresis, Blackwell Publications, 1973, Chapter. 23, eller A. Johnstone og R. Thorpe, Immunochemistry in Practice, Bladkwell Scientific Publications, 1982 (nærmere bestemt side 27-31). Oprensede immunoglobuliner kan opnås fra antiserumet, for eksempel ved hjælp af saltfældning ((NH₄)₂SO₄), efterfulgt af dialyse og ionbytningskromatografi, for eksempel på DEAE-Sephadex. Immunokemisk karakterisering af proteiner kan udføres enten ved hjælp af Outcherlony-dobbeltdiffusions analyse (O. Ouchterlony i: Handbook of Experimental Immunology (D.M. Weir, Ed.), Blackwell Scientific Publications, 1967, pp. 655-706), ved hjælp af kryds-immunelektroforese (N. Axelsen et al., supra, kapitel 3 og 4) eller ved hjælp af raket-immunelektroforese (N. Axelsen et al., kapitel 2).

30 <u>Mikrobielle kilder</u>

På prioriteringsdatoen for den foreliggende opfindelse er taksonomien, der anvendes nedenfor, i overensstemmelse med World Wide Web (WWW)-NCBI-taksonomi-browseren.

35

Et isoleret polypeptid med phospholipase-aktivitet og den tilsvarende klonede DNA-sekvens ifølge opfindelsen kan opnås fra en hvilken som helst mikroorganisme, fortrinsvis en trådsvamp, en gærcelle eller en bakterie.

Fortrinsvis kan en phospholipase og den tilsvarende klonede DNA-sekvens ifølge opfindelsen opnås fra en trådsvampestamme, hvor en foretrukken række er Ascomycota, hvor en foretrukken klasse er Pyrenomycetes, som omfatter den foretrukne familie Nectriaceae.

Mere fortrinsvis kan phospholipasen og den tilsvarende klonede DNA-sekvens ifølge opfindelsen opnås fra en stamme af slægten *Fusarium*, såsom en stamme af F. culmorum, F. heterosporum eller F. solani, især en stamme af Fusarium oxysporum.

Endvidere kan en phospholipase og den tilsvarende klonede DNA-sekvens ifølge opfindelsen opnås fra en trådsvampestamme fra slægten Aspergillus, såsom en stamme af Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger eller især Aspergillus oryzae.

Et isolat fra en stamme af Fusarium oxysporum, hvorfra en phospholipase ifølge opfindelsen kan opnås, er blevet deponeret i overensstemmelse med the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure ved the Deutche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Tyskland (DSM).

25 Deponeringsdato:

5

10

15

20

30

6. juni 1983

Deponents ref.:

NNO41759

DSM-nr.:

Fusarium oxysporum DSM-nr. 2672

Endvidere er ekspressionsplasmidet pYES 2.0, som omfatter den udforkortede cDNA-sekvens, der koder for phospholipasen ifølge opfindelsen, blevet transformeret ind i en stamme af Escherichia coli, som blev deponeret i overensstemmelse med the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure ved the Deutche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Tyskland (DSM).

35

Deponeringsdato:

25. november 1996

43

Deponents ref.:

NNO49279

DSM-nr.:

Escherichia coli DSM-nr. 11299

Ekspressionsvektorer

5

Ekspressionsvektoren ifølge opfindelsen kan være en hvilken som helst ekspressionsvektor, som på bekvern vis kan udsættes for rekombinant-DNA-procedurer, og valget af vektor vil ofte afhænge af værtscellen, hvori vektoren skal indføres. Vektoren kan således være en autonomt replikerende vektor, det vil sige en vektor, der findes som en ekstrakromosomal enhed, hvis replikation er uafhængig af kromosomal replikation, for eksempel et plasmid. Alternativt kan vektoren være en, der, når den indføres i en værtcelle, integreres i værtscellegenomet og replikeres sammen med kromosomet eller kromosomerne, hvori den er integreret.

15

20

10

I ekspressionsvektoren skal DNA-sekvensen, der koder for phospholipasen, være operationelt koblet til en egnet promotor- eller terminatorsekvens. Promotoren kan være en hvilken som helst DNA-sekvens, der fremviser transkriptionel aktivitet i den valgte værtscelle, og kan stamme fra gener, der koder for proteiner, som enten er homologe eller heterologe for værtscellen. Procedurerne, som anvendes til ligering af DNA-sekvenserne, der koder for phospholipasen, promotoren og terminatoren, og til insertion af disse i egnede vektorer er velkendte (cf. for eksempel Sambrook et al. (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, NY).

25

30

Eksempler på egnede promotorer til anvendelse i trådsvampeværtsceller er for eksempel ADH3-promotoren (McKnight et al., The EMBO J. 4:2093-2099 (1985)) eller tpiA-promotoren. Eksempler på andre anvendelige promotorer er de, der stammer fra genet, der koder for Aspergillus oryzae-TAKA-amylase, Rhizomucor miehei-asparagin-proteinase, Aspergillus niger-neutral α-amylase, Aspergillus niger-syrestabil α-amylase, Aspergillus niger- eller Aspergillus awamori-glucoamylase (gluA), Rhizomucor miehei-lipase, Aspergillus oryzae-alkalisk protease, Aspergillus oryzae-triosephosphat-isomerase eller Aspergillus nidulans-acetamidase.

35

Værtsceller

5

15

20

25

30

35

Den foreliggende opfindelse angår også rekombinante værtsceller, som omfatter en nukleinsyresekvens ifølge opfindelsen, hvor cellerne med fordel kan anvendes i den rekombinante produktion af polypeptiderne. Udtrykket "værtscelle" omfatter et hvilket som helst afkom af en parentalcelle, som ikke er identisk med parentalcellen på grund af mutationer, der forekommer under replikation.

10 Cellen transformeres fortrinsvis med en vektor, som omfatter en nukleinsyresekvens ifølge opfindelsen, efterfulgt af integrering af vektoren i værtskromosomet.

"Transformation" betyder indførelse af en vektor, som omfatter en nukleinsyresekvens ifølge den foreliggende opfindelse i en værtscelle, således at vektoren opretholdes som en kromosomalt integreret sekvens eller som en selvreplikerende ekstrakromosomal vektor. Integrering anses almindeligvis for at være en fordel, da det er mere sandsynligt, at nukleinsyresekvensen opretholdes stabilt i cellen. Integrering af vektoren i værtskromosomet kan forekomme ved hjælp af homolog eller ikke-homolog rekombination som beskrevet ovenfor.

I en foretrukken udførelsesform er værtscellen en svampecelle. "Svampe" indbefatter som anvendt heri rækken Ascomycota, Basidiomycota, Chytridiomycota og Zygomycota (som defineret af Hawksworth et al., I: Ainsworth og Bisby's Dictionary of The Fungi, 8. udgave, 1995, CAB International, University Press, Cambridge, UK) såvel som Oomycota (som anført i Hawksworth et al., 1995, supra, page 171) og alle mitosporiske svampe (Hawksworth et al., 1995, supra). Repræsentative grupper af Ascomycota indbefatter for eksempel Neurospora, Eupenicillium (= Penicillium), Emericella (= Aspergillus), Eurotium (= Aspergillus) og de egentlige gær, der er anført ovenfor. Eksempler på Basidiomycota indbefatter paddehatte, rust og brand. Repræsentative grupper af Chytridiomycota indbefatter for eksempel Allomyces, Blastocladiella, Coelomomyces og akvatiske svampe. Repræsentative grupper af Oomycota indbefatter for eksempel saprolegniomycetøse akvatiske svampe (vandskimmelsvampe), såsom Achlya. Eksempler på mitosporiske svampe indbefatter Aspergillus,

Penicillium, Candida og Alternaria. Repræsentative grupper af Zygomycota indbefatter for eksempel Rhizopus og Mucor.

5

10

15

20

25

30

35

I en foretrukken udførelsesform er svampeværtscelle en trådsvampecelle. "Trådsvampe" indbefatter alle trådagtige former af undergruppen Eumycota og Oomycota (som defineret af Hawksworth et al., 1995, supra). Trådsvampene er kendetegnet ved et vegetativt mycelium, der består af chitin, cellulose, glucan, chitosan, mannan og andre komplekse polysaccharider. Vegetativ vækst sker ved hyfal forlængelse, og carbonkatabolismen er obligat aerob. I modsætning hertil sker vegetativ vækst hos gær, såsom Saccharomyces cerevisiae, ved hjælp af knopskydning fra en unicellulær thallus, og carbonkatabolismen kan være fermentativ. I en mere foretrukken udførelsesform er trådsvampeværtscellen en celle fra en art af men ikke begrænset til Acremonium, Aspergillus, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Thielavia, Tolypocladium og Trichoderma eller en teleomorf eller et synonym dertil. I en endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Aspergillus-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Acremonium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Fusarium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Humicola-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Mucoranden endnu mere foretrukken udførelsesform er celle. trådsvampeværtscellen en Myceliophthora-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Neurospora-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Penicillium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Thielavia-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Tolypocladium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Trichoderma-celle. en foretrukken mest udførelsesform trådsvampeværtscellen en Aspergillus awamori-, Aspergillus foetidus-, Aspergillus japonicus-, Aspergillus niger- eller Aspergillus oryzae-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Fusarium-celle fra gruppen Discolor (også kendt som gruppen Fusarium). I en anden foretrukken udførelsesform er trådsvampeparentalcellen en Fusariumstamme fra udsnittet Elegans, for eksempel Fusarium oxysporum. I en anden

mest foretrukken udførelsesform er trådsvampeværtscellen en Humicola insolens- eller Thermomyces lanuginosa-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Rhizomucor miehei-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Myceliophthora thermophilum-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Neurospora crassa-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Penicillium purpurogenum-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Thielavia terrestris-celle. I en anden mest foretrukken udførelsesform er Trichoderma-cellen en Trichoderma harzianum-, Trichoderma koningii-, Trichoderma longibrachiatum-, Trichoderma vinde-celle.

Svampeceller kan transformeres ved hjælp af en proces, der inddrager protoplast-dannelse, transformation af protoplasterne og regenerering af cellevæggen på en måde, der er kendt per se. Egnede procedurer til transformation af Aspergillus-værtsceller er beskrevet i EP 238 023 og Yelton et al., 1984, Proceedings of the National Academy of Sciences USA 81:1470-1474. En egnet fremgangsmåde til transformation af Fusarium-arter er beskrevet af Malardier et al., 1989, Gene 78:147-156 eller i sideløbende US serienr. 08/269 449. Gær kan transformeres ved anvendelse af procedureme, der er beskrevet af Becker og Guarente, I: Abelson, J.N., og Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology 194:182-187, Academic Press, Inc., New York; Ito et al., 1983. Journal of Bacteriology 153:163; og Hinnen et al., 1978, Proceedings of the National Academy of Sciences USA 75:1920, Mammaliaceller kan transformeres ved hjælp af direkte optagelse ved anvendelse af calciumphosphat-fældningsmetoden ifølge Graham og Van der Eb (1978. Virology 52:546).

30

35

5

10

15

20

25

Fremgangsmåde til frembringelse af phospholipase

Den foreliggende opfindelse tilvejebringer en fremgangsmåde til frembringelse af et isoleret enzym ifølge opfindelsen, hvorved en egnet værtscelle, som er blevet transformeret med en DNA-sekvens, der koder for enzymet, dyrkes under betingelser, der åbner mulighed for dannelsen af enzymet, og det resulterende enzym indvindes fra kulturen.

Når en ekspressionsvektor, der omfatter en DNA-sekvens, som koder for enzymet, transformeres ind i en heterolog værtscelle, er det muligt at åbne mulighed for heterolog rekombinant produktion af enzymet ifølge opfindelsen.

Derved er det muligt at opnå en stærkt oprenset phospholipasesammensætning, som er kendetegnet ved at være fri for homologe urenheder.

I den foreliggende opfindelse kan den homologe værtscelle være en stamme af *Fusarium oxysporum*.

10

15

Mediet, som anvendes til at dyrke de transformerede værtsceller, kan være et hvilket som helst traditionelt medium, som er egnet til dyrkning af de pågældende værtsceller. Den udtrykte phospholipase kan passende secerneres ud i dyrkningsmediet og indvindes derfra ved hjælp af velkendte procedurer, herunder separering af cellerne fra mediet ved hjælp af centrifugering eller filtrering, fældning af proteinagtige bestanddele i mediet ved hjælp af et salt, såsom ammoniumsulphat, efterfulgt af kromatografiske procedurer, såsom ionbytningskromatografi, affinitetskromatografi eller lignende.

20

25

Anvendelse af phospholipase

Foruden anvendelsen af en phospholipase i en ny fremgangsmåde ifølge opfindelse til enzymatisk degummering af en spiseolie, som omfatter en stor mængde af ikke-hydrerbart phosphor, er en række andre anvendelser af phospholipaser kendte.

phospholipaser kendle.

Sådanne kendte anvendelser af phospholipaser er beskrevet nedenfor.

30

35

Phospholipasen ifølge opfindelsen kan anvendes i en hvilken som helst anvendelse, hvor det ønskes at hydrolysere fedtsyregruppen eller grupperne i et phospholipid eller lysophospholipid, såsom lecithin eller lysolecithin. Phospholipasen anvendes fortrinsvis ved pH 3-10 og ved 30-70 °C (især 40-60 °C). Hvis det ønskes, kan phospholipasen inaktiveres efter reaktionen ved at udsætte den for varmebehandling, for eksempel ved pH 7, 80 °C i 1 time eller 90 °C i 10 minutter.

Som eksempel kan phospholipasen ifølge opfindelsen anvendes i fremstillingen af dej, brød og kager, for eksempel til at forbedre brødets eller kagens elasticitet. Phospholipasen kan således anvendes i en proces til frembringelse af brød, som omfatter tilsætning af phospholipasen til bestanddelene i en dej, æltning af dejen og bagning af dejen til frembringelse af brød. Dette kan udføres analogt med US 4 567 046 (Kyowa Hakko), JP-A 60-78529 (QP Corp.), JP-A 62-111629 (QP Corp.), JP-A 63-258528 (QP Corp.) eller EP 426211 (Unilever).

5

20

35

Phospholipasen ifølge opfindelsen kan også anvendes til at forbedre filtrerbarheden af en vandig opløsning eller opslemning af carbohydratoprindelse ved hjælp af behandling af den med phospholipasen. Dette er særligt anvendeligt til en opløsning eller opslemning, som indeholder et stivelseshydrolysat, især et hvedestivelseshydrolysat, da denne har en tendens til at være vanskelig at filtrere og at give uklare filtrater. Behandlingen kan udføres analogt med EP 219 269 (CPC International).

Endvidere kan en phospholipase ifølge opfindelsen anvendes til partiel hydrolyse af phospholipider, fortrinsvis lecithin, til opnåelse af forbedrede phospholipid-emulgeringsmidler. Denne anvendelse beskrives yderligere i produktark til Lecitase™ (Novo Nordisk A/S), som angår brugen deraf, og i Ullmann's Encyclopedia of Industrial Chemistry (Udgiver: VCH Weinheim (1996)).

Endvidere kan en phospholipase ifølge opfindelsen anvendes i en proces til produktion af et dyrefoder, som omfatter blanding af phospholipasen med foderstoffer og mindst ét phospholipid. Dette kan gøres analogt med EP 743 017.

30 <u>Degummering af plante-/spiseolier i overensstemmelse med kendte procedurer</u>

I overensstemmelse med kendte procedurer kan phospholipasen ifølge opfindelsen anvendes i en proces til reduktion af indholdet af phospholipid i en spiseolie, som omfatter behandling af olien med phospholipasen til hydrolysering af hovedparten af phospholipiden og separering af en vandig fase, som indeholder det hydrolyserede phospholipid fra olien. Denne proces

er anvendelig til oprensning af en hvilken som helst spiseolie, der indeholder phospholipid, for eksempel planteolie, såsom sojabønneolie, rapsfrøolie og solsikkeolie.

Før den enzymatiske behandling forbehandles planteolien fortrinsvis til fjernelse af slim (mucilago), for eksempel ved hjælp af vådraffinering. Olien vil typisk indeholde 50-250 ppm phosphor som phospholipid ved starten af behandlingen med phospholipase, og processen ifølge opfindelsen kan reducere denne værdi til under 11 ppm, mere fortrinsvis under 5 ppm.

10

Den enzymatiske behandling udføres ved hjælp af dispersion af en vandig opløsning af en phospholipase, fortrinsvis som små dråber med en gennemsnitlig diameter på under 10 µm. Mængden af vand er fortrinsvis 0,5-5 vægt-% i forhold til olien. Et emulgeringsmiddel kan eventuelt tilsættes. Mekanisk bevægelse kan anvendes til opretholdelse af emulsionen.

15

Den enzymatiske behandling kan udføres ved et hvilket som helst pH i intervallet 1,5-8. pH kan justeres ved hjælp af tilsætning af citronsyre, en citratbuffer eller HCl.

20

En passende temperatur er almindeligvis 30-70 °C (især 40-60 °C). Reaktionstiden vil typisk være 0,5-12 timer (for eksempel 2-6 timer), og en passende enzymdosis vil sædvanligvis være 100-5000 IU pr. liter olie, især 200-2000 IU/I.

25

Den enzymatiske behandling kan udføres batchvis, for eksempel i en tank med omrøring, eller kan være fortløbende, for eksempel i en serie af omrørte reaktortanke.

30

Den enzymatiske behandling følges af separering af en vandfase og en oliefase. Denne separering kan udføres ved hjælp af traditionelle midler, for eksempel centrifugering.

35

I andre henseender kan processen udføres i overensstemmelse med kendte principper, for eksempel analogt med US 5 264 367 (Metallgesellschaft, Röhm); K. Dahlke & H. Buchold, INFORM 6(12):1284-91 (1995); H. Buchold, Fat Sci. Technol. 95(8):300-304 (1993); JP-A 2-153997 (Showa Sangyo); eller

EP 654 527 (Metalgesellschaft, Röhm).

Anvendelse af en phospholipase ifølge opfindelsen til bagning

Phospholipasen ifølge opfindelsen kan anvendes i brød-forbedrende additiver, for eksempel dejsammensætninger, dejadditiver, dejkonditioneringsmidler, færdigblandinger og tilsvarende præparater, som traditionelt tilsættes til melet og/eller dejen i løbet af processer til frembringelse af brød eller andre bagte produkter til tilvejebringelse af forbedrede egenskaber for brød eller andre bagte produkter.

En udførelsesform for opfindelsen angår derfor en brødforbedrende og/eller en dejforbedrende sammensætning og endvidere anvendelsen af en phospholipase ifølge opfindelsen i sådanne sammensætninger og en dej eller et bagt produkt, som omfatter en brødforbedrende og/eller en dejforbedrende sammensætning ifølge opfindelsen.

I det foreliggende sammenhæng påtænkes udtrykkene "brødforbedrende sammensætning" og "dejforbedrende sammensætning" at angive sammensætninger, som foruden enzymbestanddelen kan omfatter andre stoffer, som traditonelt anvendes til bagning til forbedring af dejens og/eller de bagte produkters egenskaber. Eksempler på sådanne bestanddele er anført nedenfor.

I det foreliggende sammenhæng påtænkes udtrykket "forbedrede egenskaber" at angive en hvilken som helst egenskab, der kan forbedres ved hjælp af virkningen af et phospholipase-enzym ifølge opfindelsen. Især resulterer anvendelsen af phospholipase i et forøget volumen og en forbedret krummestruktur og anti-"friskhedstab"s-egenskaber hos det bagte produkt, såvel som en forøget styrke, stabilitet og reduceret klæbetilbøjelighed og derved forbedret maskinbearbejdelighed hos dejen. Effekten på dejen har vist sig at være særlig god, når der anvendes en mel af ringe kvalitet. Den forbedrede maskinbearbejdelighed har særlig betydning i forbindelse med dej, der skal bearbejdes industrielt.

De forbedrede egenskaber vurderes ved hjælp af sammenligning med dej og/eller bagte produkter, der er fremstillet uden tilsætning af phospholipase

5

10

15

20

25

30

ifølge den foreliggende opfindelse.

5

10

35

Den brød- og/eller dejforbedrende sammensætning ifølge opfindelsen kan yderligere omfatte et andet enzym. Eksempler på andre enzymer en cellulase, en hemicellulase, en pentosanase (der er anvendelig til partiel hydrolyse af pentosaner, som øger dejens udvidelsesevne), en glucoseoxidase (der er anvendelig til at gøre dejen stærkere), en lipase (der er anvendelig til modificering af lipider, der er til stede i dejen eller dejbestanddele til blødgøring af dejen), en peroxidase (der er anvendelig til forbedring af dejkonsistensen), en protease (der er anvendelse til glutensvækkelse, især ved anvendelse af hård hvedemel), en peptidase og/eller en amylase, for eksempel α-amylase (der er anvendelig til tilvejebringelse af sukre, der kan fermenteres ved hjælp af gær).

- Endvidere eller som et alternativ til andre enzymbestanddele kan den dejforbedrende og/eller brødforbedrende sammensætning omfatte et traditionelt anvendt bagemiddel, for eksempel en eller flere af følgende bestanddele:
- Et mælkepulver (som tilvejebringer skorpefarve), gluten (til at forbedre svage meles gastilbageholdelsesstyrke), et emulgeringsmiddel (til at forbedre dejens udvidelsesevne og i nogen grad konsistensen af det resulterende brød), granuleret fedt (til blødgøring af dejen og for brødets konsistens), en oxidant (som tilsættes for at forstærke glutenstrukturen, for eksempel ascorbinsyre, kaliumbromat, kaliumiodat eller ammoniumpersulfat), en aminosyre (for eksempel cystein), en sukker og salt (for eksempel natriumchlorid, calciumacetat, natriumsulfat eller calciumsulfat, hvis funktion er at gøre dejen fastere), mel eller stivelse.
- Eksempler på egnede emulgeringsmidler er mono- eller diglycerider, diacetylvinsyre-estere af mono- eller diglycerider, sukker-estere af fedtsyrer, polyglycerol-estere af fedtsyrer, mælkesyre-estere af monoglycerider, eddikesyre-estere af monoglycerider, polyoxyethylenstearater, phospholipider og lecithin.

I det foreliggende sammenhæng påtænkes udtrykket "bagt produkt" at indbefatte et hvilket som helst produkt, der er fremstillet af dej, som enten har

en blød eller en sprød karakter. Eksempler på bagte produkter, hvad enten de er af hvid, lys eller mørk type, som med fordel kan fremstilles ved anvendelse af den foreliggende opfindelse, er brød (især hvidt brød, fuldkorns- eller rugbrød), typisk i form af hele brød eller kuvertbrød, fransk baguette-type brød, pitabrød, tacos, kager, pandekager, kiks, knækbrød og lignende.

5

20

25

30

35

Dejen ifølge opfindelsen kan være af en hvilken som helst af typerne, der er beskrevet ovenfor, og kan være frisk eller frosset.

Fra ovennævnte beskrivelse vil det fremgå, at dejen ifølge opfindelsen normalt er en surdej eller en dej, der skal syrnes. Dejen kan syrnes på forskellige måder, såsom ved hjælp af tilsætning af natriumbicarbonat eller lignende eller ved hjælp af tilsætning af en surdej (gærende dej), men det foretrækkes at syrne dejen ved hjælp af tilsætning af en egnet gærkultur, såsom en kultur af Saccharomyces cerevisiae (bagegær). En hvilken som helst af de kommerciett tilgængelige S. cerevisiae-stammer kan anvendes.

I en sidste udførelsesform angår opfindelsen anvendelsen af en phospholipase ifølge opfindelsen til fremstilling af pastadej, som fortrinsvis fremstilles af durummel eller en mel af sammenlignelig kvalitet. Dejen kan fremstilles ved anvendelse af traditionelle teknikker og phospholipasen anvendes i en tilsvarende dosis, som den der er beskrevet ovenfor. Phospholipasen er fortrinsvis af mikrobiel oprindelse, for eksempel som beskrevet heri. Det påtænkes, at phospholipasen, når den anvendes til fremstilling af pasta, resulterer i en forstærkning af glutenstrukturen og således en reduktion i dejens klæbetilbøjelighed og en forbedret dejstyrke.

Anvendelse af lipaseaktivitet hos et enzym ifølge opfindelsen

Som vist i forsøgseksemplerne heri kan en phospholipase ifølge opfindelsen yderligere fremvise lipaseaktivitet.

Følgeligt angår opfindelsen yderligere anvendelsen af denne lipaseaktivitet i standardanvendelser af en lipase, især til anvendelse i rengørings- og detergentsammensætninger. Sådanne rengørings- og detergentsammensætninger er velbeskrevne, og der henvises til WO 96/34946, WO 97/07202 og WO 95/30011 for yderligere beskrivelser af

egnede rengørings- og detergentsammensætninger.

Opfindelsen beskrives mere detaljeret i følgende eksempler, som ikke på nogen måde har til hensigt at begrænse rækkevidden af den påberåbte opfindelse.

Materialer og metoder

Deponerede organismer

10

15

5

Fusarium oxysporum DSM 2672 omfatter phospholipasen, der koder for DNA-sekvensen ifølge opfindelsen.

Escherichia coli DSM 11299, som indeholder plasmidet, der omfatter den uforkortede cDNA-sekvens, der koder for phospholipasen ifølge opfindelsen, i den bifunktionelle vektor pYES 2.0.

Andre stammer

Gærstamme: Den anvendte Saccharomyces cerevisiae-stamme var W3124 (MATa; ura 3-52; leu 2-3, 112; his 3-D200; pep 4-1137; prc1::HIS3; prb1::LEU2; cir+).

E. coli-stamme: DH10B (Life Technologies).

25

30

Plasmider

Aspergillus-ekspressionsvektoren pHD414 er et derivat af plasmidet p775 (der er beskrevet i EP 238 023). Konstruktionen af pHD414 er yderligere beskrevet i WO 93/11249.

pYES 2.0 (Invitrogen).

pA2PH10 (se eksempel 7).

35

Generelle molekylærbiologiske fremgangsmåder

egnede rengørings- og detergentsammensætninger.

Opfindelsen beskrives mere detaljeret i følgende eksempler, som ikke på nogen måde har til hensigt at begrænse rækkevidden af den påberåbte opfindelse.

Materialer og metoder

Deponerede organismer

10

15

5

Fusarium oxysporum DSM 2672 omfatter phospholipasen, der koder for DNA-sekvensen ifølge opfindelsen.

Escherichia coli DSM 11299, som indeholder plasmidet, der omfatter den uforkortede cDNA-sekvens, der koder for phospholipasen ifølge opfindelsen, i den bifunktionelle vektor pYES 2.0.

Andre stammer

Gærstamme: Den anvendte Saccharomyces cerevisiae-stamme var W3124 (MATa; ura 3-52; leu 2-3, 112; his 3-D200; pep 4-1137; prc1::HIS3; prb1::LEU2; cir+).

E. coli-stamme: DH10B (Life Technologies).

25

30

<u>Plasmider</u>

Aspergillus-ekspressionsvektoren pHD414 er et derivat af plasmidet p775 (der er beskrevet i EP 238 023). Konstruktionen af pHD414 er yderligere beskrevet i WO 93/11249.

pYES 2.0 (Invitrogen).

pA2PH10 (se eksempel 7).

35

Generelle molekylærbiologiske fremgangsmåder

Den enzymaktivitet, der er nødvendig til frembringelse af 1 µmol fedtsyre pr. minut fra enzymreaktionen, defineredes som 1 enhed.

Ekspressionskloning i gær

5

20

Ekspressionskloning i gær blev udført som beskrevet udførligt af H. Dalboege et al. (H. Dalboege et al., Mol. Gen. Genet. (1994), <u>243</u>:253-260; WO 93/11249; WO 94/14953), der medtages heri som reference.

- Alle individuelle trin i ekstraktion af totalt RNA, cDNA-syntese, mungbønnenukleasebehandling, stump-endedannelse med T4-DNA-polymerase og konstruktion af biblioteker blev udført i overensstemmelse med referencerne, der er nævnt ovenfor.
- 15 <u>Fermenteringsprocedure af Fusarium oxysporum DSM 2672 til mRNA-isolering</u>

Fusarium oxysporum DSM 2672 blev dyrket i YPD-medium i 4 dage ved 30 °C. 10 µl supernatant blev testet for phospholipase-aktivitet i udpladningsassayet, der er beskrevet nedenfor.

mRNA blev isoleret fra mycelium fra denne kultur som beskrevet i H. Dalboege et al., Mol. Gen. Genet. (1994), 243:253-260, WO 93/11249 og WO 94/14953.

25 Identificering af positive gærkloner (udpladningsassay)

Identificering af positive gærkloner (det vil sige kloner, som omfatter et gen, der koder for phospholipase-aktivitet) blev udført som beskrevet nedenfor.

- Gærtransformanterne udplades på SC-agar, der indeholder 2 % glucose, og inkuberes i 3 dage ved 30 °C. Et celluloseacetat-filter (OE67, Schleicher & Schuell) anbringes ovenpå cellerne og overføres herefter til skålene, der indeholder SC-agar og 2 % galactose med cellerne ovenpå filteret. Efter 3 dages inkubation ved 30 °C overføres filteret med celler til substratskåle.
- Positive kloner identificeres som kolonier, der fremkalder en blågrøn zone i substratskålen under kolonien.

Substratskålene er fremstillet på følgende måde: 2,5 g agar (BA-30 INA Agar®, Funakoshi Co. Ltd.) tilsættes til 137,5 ml H_2O , opvarmet til kogning i en mikrobølgeovn. Efter nedkøling til ca. 60 °C tilsættes 30 ml af følgende blanding: 62,5 ml 0,4 M Tris-HCl-buffer (pH 7,5) og 50 ml 3 % Lipoid E80 (Lipoid GmbH, D-67065 Ludwigshafen, Tyskland), som er opløst i 2 % Triton X-100 (volumen/volumen), og 0,5 ml 2 % Brilliant Green-opløsning i H_2O . Koncentrationen af substratet er vigtig. Hvis koncentrationen er for høj, kan det give anledning til baggrundsaktivitet fra gærceller og/eller fra trådsvampelipaser med phospholipase-sideaktivitet.

10

15

20

5

Isolering af et cDNA-gen til ekspression i Aspergillus

En phospholipase-producerende gærkoloni podes i 20 ml YPD-medium i et 50 ml-glas-reagensglas. Reagensglasset rystes i 2 dage ved 30 °C. Cellerne høstes ved hjælp af centrifugering i 10 minutter ved 3000 rpm.

DNA isoleres ifølge WO 94/14953 og opløses i 50 ml vand. DNA'et transformeres ind i *E. coli* ved hjælp af standardprocedurer. Plasmid-DNA isoleres fra *E. coli* ved anvendelse af standardprocedurer og analyseres ved hjælp af restriktionsenzymanalyse. cDNA-insertet skæres ud ved anvendelse af passende restriktionsenzymer og ligeres ind i en *Aspergillus*-ekspressionsvektor.

Transformation af Aspergillus oryzae eller Aspergillus niger

25

Protoplaster kan fremstilles som beskrevet i WO 95/02043, side 6, linie 2 - side 17, linie 12, der medtages heri som reference.

35

30

100 μ l af protoplast-suspensionen blandes med 5-25 μ g af det behørige DNA i 10 μ l STC (1,2 M sorbitol, 10 mM Tris-HCl, pH = 7,5, 10 mM CaCl₂). Protoplaster blandes med p3SR2 (et *A. nidulans*-amdS-gen-indeholdende plasmid). Blandingen hensættes ved stuetemperatur i 25 minutter. 0,2 ml 60 % PEG 4000 (BDH 29576), 10 mM CaCl₂ og 10 mM Tris-HCl, pH 7,5, tilsættes og blandes omhyggeligt (to gange), og til sidst tilsættes 0,85 ml af den samme opløsning og blandes omhyggeligt. Blandingen hensættes ved stuetemperatur i 25 minutter, centrifugeres ved 2500 x g i 15 minutter, og pelleten resuspenderes i 2 ml 1,2 M sorbitol. Efter endnu en sedimentering spredes

protoplasterne i minimale skåle (Cove, Biochem. Biophys. Acta (1966), 113:51-56), som indeholder 1,0 M sucrose, pH 7,0, 10 mM acetamid som nitrogen-kilde og 20 mM CsCl til hæmning af baggrundsvækst. Efter inkubation i 4-7 dage ved 37 °C udtages sporer og spredes til enkeltkolonier. Denne procedure gentages, og sporer fra en enkeltkoloni efter den anden reisolering opbevares som en defineret transformant.

Test af Aspergillus oryzae- eller Aspergillus niger-transformanter

Hver af Aspergillus oryzae-transformanterne podes i 10 ml YPM (cf. nedenfor) og opformeres. Efter 2-5 dages inkubation ved 30 °C fjernes supernatanten. 20 µl supernatant påføres i huller, der er stukket i substratpladen (se ovenfor). Efter 1-24 timer viser phospholipase-aktivitet sig som en blågrøn zone omkring hullet.

Tilførsels-batchfermentering

5

15

20

25

Tilførsels-batchfermentering blev udført i et medium, som omfattede maltodextrin som carbonkilde, urinstof som nitrogenkilde og gærekstrakt. Tilførsels-batchfermenteringen blev udført ved hjælp af podning af en rystekolbekultur af *A. oryzae*-værtsceller af interesse i en medium, som omfattede 3,5 % af carbonkilden og 0,5 % af nitrogenkilden. Efter 24 timers dyrkning ved pH 7,0 og 34 °C blev den fortløbende tilførsel af yderligere carbon- og nitrogenkilder indledt. Carbonkilden blev holdt som den begrænsende faktor, og det blev sikret, at der var oxygen til stede i overskydende mængder. Tilførsels-batchdyrkningen blev fortsat i 4 dage.

Isolering af DNA-sekvensen, der er vist i SEQ ID NO: 1

Den phospholipase-kodende del af DNA-sekvensen, der er vist i SEQ ID NO: 1, som koder for phospholipasen ifølge opfindelsen, kan opnås fra den deponerede organisme *Escherichia coli* DSM 11299 ved hjælp af ekstraktion af plasmid-DNA ved hjælp af kendte metoder (Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY).

Medier

YPD: 10 g gærekstrakt, 20 g pepton, H₂O til 900 ml. Autoklaveret, 100 ml 20 % glucose (sterilfiltreret) tilsat.

5 YPM: 10 g gærekstrakt, 20 g pepton, H₂O til 900 ml. Autoklaveret, 100 ml 20 % maltodextrin (sterilfiltreret) tilsat.

10 x basalsalt: 75 g gær-nitrogenbase, 113 g ravsyre, 68 g NaOH, H₂O til 1000 ml, sterilfiltreret.

10

SC-URA: 100 ml 10 x basalsalt, 28 ml 20 % casaminosyrer uden vitaminer, 10 ml 1 % tryptophan, H_2O til 900 ml. Autoklaveret, 3,6 ml 5 % threonin og 100 ml 20 % glucose eller 20 % galactose tilsat.

15 SC-agar: SC-URA, 20 g/l agar tilsat.

SC-variantagar: 20 g agar, 20 ml 10 x basalsalt, H₂O til 900 ml, autoklaveret.

PEG 4000 (polyethylenglycol, molekylevægt = 4.000) (BDH, England).

20

EKSEMPLER

EKSEMPEL 1

25 <u>Fermentering af Fusarium oxysporum-phospholipase</u>

En kultur af *Fusanum oxysporum* DSM 2672 på et skråstivnet agarsubstrat blev overført til fem 500 ml-rystekolber, hver med 100 ml Bouillon-3-medium, og omrystet ved 30 °C i 1 dag (200 mm, amplitude 2,5 cm).

30

Sammensætningen af Bouillon-3-medium var som følger:

	Pepton	6 g/l
	Trypsinfordøjet kasein	4 g/l
35	Gærekstrakt	3 g/l
	Kødekstrakt	1,5 g/l
	Glucose	1 α/Ι

Mediet blev autoklaveret ved 121 °C i 40 minutter.

Dyrkningsmediet fra disse Boullion-3-rystekolber blev anvendt som podekultur til podning af tyve 500 ml-rystekolber, hver med 200 ml PL-1-medium.

Sammensætningen af PL-1-mediet var som følger:

	Pepton	10 g/l
10	Tween®-80	12 g/l
	MgSO ₄ .7H ₂ O	2 g/l
	CaCl ₂ .2H ₂ O	0,1 g/l
	pH før autoklavering	6,0

15 Mediet blev autoklaveret ved 121 °C i 40 minutter.

Hver PL-1-rystekolbe blev podet med 0,5-2 ml Boullion-3-dyrkningsmedium og rystet ved 200 rpm (amplitude 2,5 cm) ved 30 °C i 5 dage. Dyrkningsmediet fra rystekolberne blev puljet ved høst til opnåelse af 3,9 l med et enzymudbytte på 53 LU/ml.

EKSEMPEL 2

Oprensning af phospholipase

25

20

Trin 1)Én liter fermenteringssupernatant blev centrifugeret, og det resulterende præcipitat blev smidt ud. Supernatanten blev herefter justeret til 0,8 M ammoniumacetat ved hjælp af tilsætning af fast ammoniumacetat.

Trin 2)Hydrofobisk kromatografi - Toyopearl butyl 650 C-matrix blev leveret af Toso Hass (Röhm and Haas Company, Tyskland). En 50 ml-søjle blev pakket med matrixen. Søjlen blev vasket med 50 % ethanol og efterfølgende med vand. Søjlen blev herefter ækvilibreret med 0,8 M ammoniumacetat. Fermenteringssupernatanten, som var justeret med 0,8 M ammoniumacetat, blev herefter påsat søjlen. Ubundet materiale blev herefter vasket med 0,8 M ammoniumacetat, indtil alt UV-absorberende materiale (280 nm) var fjernet.

Søjlen blev herefter elueret med vand og efterfølgende med 50 % ethanol.

Phospholipase-aktivitet blev bestemt ved pH 4,5 og 40 °C ved anvendelse af Nefa-kittet som beskrevet ovenfor. Fraktioner, som indeholdt aktivitet i vandog alkohol-eluat, blev puljet. Aktiviteten blev målt ved pH 4,5 ved anvendelse af et Nefa-kitassay.

Fraktioner, som indeholdt phospholipase-aktivitet, blev herefter puljet og dialyseret og opkoncentreret ved anvendelse af en Amicon-ultrafiltreringsmembran med en afskæring på 10 kDa.

Trin 3)Negativ absorption på DEAE-hurtigflowkromatografi.

DEAE FF blev købt ved Pharmacia, og en 50 ml søjle blev pakket med matrixen.

Søjlen blev herefter vasket som beskrevet af producenten og ækvilibreret med 25 mM Tris-acetatbuffer, pH 7.

- Den dialyserede og opkoncentrerede prøve blev herefter justeret til pH 7 og konduktans 2 mSi og påsat en DEAE FF-anionbytningssøjle.

 Aktivitet blev opsamlet som effluent. Aktiviteten binder ikke til en anionbytter ved pH 7.
- 25 Effluenten fra DEAE FF, som indeholdt aktivitet, blev opkoncentreret og dialyseret ved anvendelse af en Amicon-membran med en afskæring på 10 kDa og en 25 mM natriumacetat-buffer, pH 6.

Gelfiltrering på Superdex 75.

30

35

5

10

15

Superdex 75-forpakket søjle Hiload Tm 16/60 fra Pharmacia blev vasket og ækvilibreret med 25 mM natriumacetat, pH 6, som indeholdt 150 mM NaCl.

To ml af den opkoncentrerede effluent fra anionbytteren, som fremviste phospholipase-aktivitet ved pH 4,5 og 40 °C, blev påsat Superdex-søjlen.

Aktiviteten blev separeret fra ved hjælp af gelfiltrering med en flowhastighed

på 1 ml/minut.

EKSEMPEL 3

10

15

30

5 <u>Karakterisering af oprenset phospholipase, som er opnået fra Fusarium oxysporum</u>

En karakterisering som beskrevet nedenfor blev udført på en *Fusarium* oxysporum-phospholipase, der var fermenteret som beskrevet i eksempel 1 og oprenset som beskrevet i eksempel 2.

Molekylevægten for phospholipase-enzymet blev bestemt ved anvendelse af færdigstøbte 4 til 20 % SDS-PAGE-geler fra Novex Tm. Proteinets molekylevægt blev bestemt under reducerende betingelser som beskrevet tidligere.

Foro *F. oxysporum*-phospholipase viste molekylevægten sig at være 29-30 kDa under reducerende betingelser.

Det isoelektriske punkt blev bestemt ved anvendelse af Ampholine PAGEplader fra Pharmacia. For *F. oxysporum* viste pl for proteinet sig at være omkring neutralt pH, fortrinsvis i intervallet 5,8 til 6,8.

25 Phospholipases termostabilitet

Termostabiliteten for phospholipase fra Fusarium oxysporum blev testet ved hjælp af DSC (differentiel scanningskalorimetri). Den termale denatureringstemperatur, Td, blev aflæst som spidsen af denatureringstoppen i termogrammer (Cp vs. T), der opnåedes efter opvarmning af enzymopløsninger ved en konstant, programmeret opvarmningshastighed.

Eksperimentelt

En DSC II fra Hart Scientific (Utah, US, 1993) blev anvendt til forsøgene.

50 mM bufrede opløsninger blev anvendes som opløsningsmiddel for enzymet

(ca. 2 mg/ml) ved enten pH 10 (50 mM glycinbuffer), pH 7 (50 mM HEPES-buffer + 10 mM EDTA) eller pH 4 (50 mM citratbuffer). Enzym blev oprenset ifølge eksempel 2 ovenfor.

750 μl enzymopløsning blev overført til 1 ml forsejlelige standard-hastelloy-ampuller fra Hart Scientific. Ampuller blev indført i kalorimeteret og nedkølet til 5 °C i 15 minutter. Der blev foretaget termal ækvilibrering før DSC-scanningen. DSC-scanningen blev udført fra 5 °C til 95 °C ved en scanningshastighed på ca. 90 K/time. Denatureringstemperaturer blev bestemt ved en nøjagtighed på ca. ± 2 °C.

Resultater:

TABEL 1: Spids af denatureringstop som funktion af pH

15

pH Td(°C)

4 57 °C

7 62 °C

<u>10 55 °C</u>

20

Det skal bemærkes, at disse forsøg blev udført i fravær af en oliematrix, som kan influere betydeligt på enzymstabilitet. DSC-resultaterne viser en maksimal stabilitet i nærheden af neutralt pH.

Hvis man forudsætter irreversibel termal denaturering, er en relevant arbejdstemperatur ved industriel anvendelse, såsom degummering af olier (US 5 264 367), mindst ca. 10 grader lavere end Td-temperaturerne, der er anført i tabel 1 ovenfor.

30 Aminoterminal sekvens

Aminoterminal analyse blev udført ved anvendelse af Edman-degradering med Applied Biosystem-udstyr (ABI 473A protein sequencer, Applied Biosystem, USA) som beskrevet af producenten.

35

N-terminal(e) sekvens(er):

For Fusarium oxysporum-phospholipasen er den N-terminale sekvens:

N-terminal A-V-G-V-T-T-D-F-S-N-F-K-F-Y-I

Den N-terminale aminosyre "A" (Ala) er position 31 i SEQ ID NO: 2. Dette viser, at det modne phospholipase-enzym ifølge opfindelsen starter i position 31 i SEQ ID NO: 2.

Følgeligt er den modne sekvens fra 31-346 i SEQ ID NO: 2.

10

EKSEMPEL 4

Phospholipase A-aktivitet

Phospholipase A-aktiviteten blev bestemt med sojabønne-lecithin som substrat som beskrevet ovenfor ((Nefa-testbaser-assay) ved pH 4,5 og 40 °C.

Fusarium oxysporum-phospholipasen viste signifikant phospholipase A-aktivitet ved betingelserne, der er beskrevet ovenfor.

20

EKSEMPEL 5

Aktivitet mod L-a-lysophosphatidylcholin

Phospholipase-aktiviteten blev bestemt emd L-α-lysophosphatidylcholin som substrat som beskrevet ovenfor ((Nefa-testbaser-assay) ved pH 4,5 og 40 °C.

Fusarium oxysporum-phospholipasen viste signifikant aktivitet mod L-a-lysophosphatidylcholin ved betingelserne, der er beskrevet ovenfor.

30 EKSEMPEL 6

Phospholipase-aktivitet i enkeltlags-opsætning

Et <u>enkeltlags</u>-udstyr (nul ordens-niveau, KSV5000, KSV Instruments, Finland)
er blevet anvendt til måling af forskellige enzymers aktivitet mod phospholipidet DDPC (didicanoyl (C10)-phosphatidylcholin).

Forsøg

På den grundigt oprensede overflade af en bufferopløsning (10 mM TRIS, pH 8,0, 25 °C) blev et enkeltlag af DDPC spredt fra en chloroform-opløsning. Efter af enkeltlaget (fordampning af chloroform) overfladetrykket til 15 mN/m, som svarer til et gennemsnitligt molekyleareal for DDPC på ca. 63 Å²/molekyle. En bufferopløsning (se ovenfor), som indeholder ca. 60 µg enzym, injiceres gennem enkeltlaget ind i underfasen af reaktionsdelen (cylinder med et areal på 1520 mm² og et volumen på 30400 mm³) i "nul ordens-niveauet". Enzymatisk aktivitet manifesterer sig ved hastigheden af en mobil spærring, som komprimerer enkeltlaget for at opretholde konstant overfladetryk. efterhånden som uopløselige substratmolekyler hydrolyseres til mere vandopløselige reaktionsprodukter. Efter at have verificeret, at den vandige opløselighed af reaktionsprodukterne (kaprinsyre og DDPC) er betydelig højere end for DDPC, æstimeres antallet af DDPC-molekyler, som hydrolyseres pr. minut ved hjælp af enzymet, ud fra det gennemsnitlige molekyleareal (MMA) for DDPC.

Resultater

20

5

10

15

TABEL 2. Enzymers aktivitet mod DDPC i en enkeltlags-opstilling

	Enzym	Aktivitet ^{*)} (nmol/min)
25		
	Sigma P9279 (PLA2 fra bigift, 850 U/mg)	1,9
	Enzym fra Fusarium oxysporum	2,7
	Candida antarctica-B bestanddels-lipase	0
	Candida antarctica-A bestanddels-lipase	0
30	Rekombinant marsvinepancreas-lipase (rGPL)	0,2
	Lipolase® (Novo Nordisk A/S)	< 0.1

⁹ Beregnet ud fra reduktion i enkeltlag-areal pr. tidsenhed, induceret ved hjælp af tilstedeværelse af enzym.

35

"Enzym fra Fusarium oxysporum" i tabel 2 er en phospholipase ifølge opfindelsen, der er oprenset som beskrevet i eksempel 2.

Konklusion

5

25

35

Der blev ingen phospholipase-aktivitet påvist for de fleste af enzymerne, bortset fra lipaser, der er opnået fra marsvinelipase, som viste mindre phospholipase-aktivitet.

Phospholipasen ifølge opfindelsen, der var opnået fra Fusarium oxysporum, viste overraskende høj signifikant phospholipase-aktivitet.

Følgeligt defineres i den foreliggende opfindelse udtrykket "phospholipase-aktivitet", der anvendes hen i forbindelse med en phospholipase ifølge opfindelsen, som en aktivitet, der i "enkeltlags-phospholipase-assayet", der er vist ovenfor, er mindst 0,25 nmol/minut, enzymdosis: 60 μg; mere fortrinsvis mindst 0,40 nmol/minut, enzymdosis: 60 μg; mere fortrinsvis mindst 0,75 nmol/minut, enzymdosis: 60 μg; mere fortrinsvis mindst 1,0 nmol/minut, enzymdosis: 60 μg; mere fortrinsvis mindst 1,25 nmol/minut, enzymdosis: 60 μg. Udtrykket "lipase med phospholipase-sideaktivitet" defineres følgeligt som en lipase med phospholipase-sideaktivitet, hvor phospholipase-sideaktiviteten i "enkeltlags-phospholipase-assayet", der er vist i eksempel 6, er mindre end de ovenfor nævnte tal, der specificerer phospholipase-aktivitet.

Et eksempel på en lipase med phospholipase-sideaktivitet ifølge definitionerne heri er marsvine-lipasen, der er vist i tabel 2 ovenfor. Nævnte marsvine-lipase har en phospholipase-sideaktivitet i "enkeltlags-phospholipase-assayet", der er mindre end 0,25 nmol/minut, enzymdosis: 60 µg.

EKSEMPEL 7

30 Kloning og ekspression af en phospholipase fra Fusarium oxysporum DSM 2672

Kloning og ekspression blev udført ved anvendelse af ekspressionskloning-igær-teknikken som beskrevet ovenfor.

mRNA blev isoleret fra Fusarium oxysporum DSM 2672, der var dyrket som beskrevet ovenfor, herunder bevægelse for at sikre tilstrækkelig ilttilførsel.

Mycelia blev høstet efter 3-5 dages vækst, straks nedfrosset i væskeformig nitrogen og opbevaret ved -80 °C. Et bibliotek fra *Fusanium oxysporum* DSM 2672, som bestod af ca. 9 x 10⁵ individuelle kloner, blev konstrueret i *E. coli* som beskrevet med en vektorbaggrund på 1 %. Plasmid-DNA fra nogle af puljerne blev transformeret ind i gær, og der opnåedes 50-100 skåle, som indeholdt 250-400 gærkolonier, fra hver pulje.

Phospholipase-positive kolonier blev identificeret og isoleret i substratskåle (se ovenfor). cDNA-inserts blev amplificeret direkte fra gærkolonierne og karakteriseret som beskrevet i Materialer og metoder-afsnittet ovenfor. DNA-sekvensen for cDNA'et, der koder for phospholipasen, er vist i SEQ ID NO: 1, og den tilsvarende aminosyresekvens er vist i SEQ ID NO: 2. I SEQ ID NO: 1 definerer DNA-nukleotiderne fra nr. 23 til nr. 1060 det phospholipase-kodende område. Den del af DNA-sekvensen i SEQ ID NO: 1, som koder for den modne del af phospholipasen, omfatter positionerne 113 til 1060, der svarer til aminosyrepositionerne 31-346 i SEQ ID NO: 2.

cDNA'et er opnåeligt fra plasmidet i DSM 11299.

Totalt DNA blev isoleret fra en gærkoloni, og plasmid-DNA blev indvundet ved hjælp af transformation af *E. coli* som beskrevet ovenfor. For at udtrykke phospholipasen i *Aspergillus* blev DNA'et fordøjet med passende restriktionsenzymer og størrelsesfraktioneret på gel, og et fragment, som svarede til phospholipasegenet, blev oprenset. Genet blev efterfølgende ligeret til pHD414 og fordøjet med passende restriktionsenzymer til opnåelse af plasmidet pA2PH10.

Efter amplifikation af DNA'et i *E. coli* blev plasmidet transformeret ind i *Aspergillus oryzae* som beskrevet ovenfor.

Test af A. oryzae-transformanter

5

10

15

30

35

Hver af transformanterne blev testet for enzymaktivitet som beskrevet ovenfor. Nogle af transformanterne havde en phospholipase-aktivitet, som var signifikant højere end *Aspergillus oryzae*-baggrunden. Dette viser effektiv ekspression af phospholipasen i *Aspergillus oryzae*.

EKSEMPEL 8

Rekombinant ekspression af en Fusarium oxysporum-phospholipase

En A. oryzae-transformant, som omfattede Aspergillus-ekspressionsvektoren pA2PH10 (se eksempel 7), blev tilførsels-batchfermenteret som beskrevet ovenfor. Oprensning af den rekombinant producerede F. oxysporum-phospholipase blev udført som beskrevet i eksempel 2.

10 EKSEMPEL 9

20

Karakterisering af en rekombinant udtrykt og oprenset phospholipase, der er opnået fra Fusarium oxysporum

15 Karakteriseringen blev udført på en rekombinant udtrykt og efterfølgende oprenset *Fusarium oxysporum*-phospholipase (se eksempel 8).

Disse karakteriseringsresultater med hensyn til den rekombinante *F. oxysporum*-phospholipase ifølge opfindelsen svarer perfekt overens med karakteriseringsresultaterne, der er vist i eksempel 3, hvor det blev vist, at det rekombinant udtrykte og oprensede enzym var det samme som den ikkerekombinant udtrykte og oprensede phospholipase, der blev karakteriseret i eksempel 3.

25 <u>Generelle assays, som anvendes til at karakterisere en rekombinant produceret phospholipase, der er opnået fra F. oxysporum</u>

Phospholipase-assays

Phospholipase-aktivitet (PHLU) blev målt som frigørelsen af fri fedtsyrer fra lecithin. 50 μl 4 % L-α- phosphatidylcholin (plante-lecithin fra Avanti, USA), 45 % Triton X-100, 5 mM CaCl₂ i 50 mM HEPES, pH 7, blev tilsat, 50 μl enzymopløsning, som var fortyndet til en passende koncentration i 50 mM HEPES, pH 7. Prøverne blev inkuberet i 10 minutter ved 30 °C, og reaktionen blev standset ved 95 °C i 5 minutter før centrifugering (5 minutter ved 7000 rpm). Fri fedtsyrer blev bestemt ved anvendelse af Nefa C-kittet fra Wako Chemicals GmbH; 25 μl reaktionsblanding blev tilsat til 250 μl reagens A og inkuberet i 10

minutter ved 37 °C. Herefter blev 500 µl reagens B tilsat, og prøven blev inkuberet igen, 10 minutter ved 37 °C. Absorptionen ved 550 nm blev målt ved anvendelse af et HP 8452A dioderække-spektrofotometer. Prøver blev analyseret mindst in duplo. Substrat- og enzymblindprøver (forvarmede enzymprøver (10 minutter ved 95 °C) + substrat) blev indbefattet. Oleinsyre blev anvendt som fedtsyrestandard. 1 PHLU svarer til den mængde enzym, der er i stand til af frigøre 1 µmol fri fedtsyre/minut under disse betingelser.

Alternativt blev assayet kørt ved 37 °C i 20 mM citratbuffer, pH 5 (Ca²⁺-afhængighed) eller 20 mM Britton-Robinson-buffer (pH-profil/temperaturprofil/stabilitet).

Phospholipase A1-aktivitet (PLA1) blev målt ved anvendelse af 1-(S-decanoyl)-2-decanoyl-1-thio-sn-glycero-3-phosphocholin (D3761 Molecular Probes) som substrat. 190 µl substrat (100 µl D3761 (2 mg/ml i ethanol) + 50 µl 1 % Triton X-100 + 1,85 ml 50 mM HEPES, 0,3 mM DTNB, 2 mM CaCl₂, pH 7) i en 200 µl-kuvette blev tilsat 10 µl enzym, og absorptionen ved 410 nm blev målt som funktion af tiden på HP 8452A-dioderække-spektrofotometeret ved stuetemperatur. Aktivitet blev beregnet som kurvens hældning i det lineære område. PLA1 svarer til den mængde enzym, der er i stand til at frigøre 1 µmol fri fedtsyre (thiol)/minut ved disse betingelser.

Phospholipase A2-aktivitet (PLA2) blev målt ved 40 °C ved anvendelse af 1-hexadecanoyl-2-(1-pyrendecanoyl)-sn-glycero-3-phosphocholin (H361 Molecular Probes). 2 ml substrat (50 µl 1 % Triton X-100 + 25 µl 0,1 % H361 i methanol + 10 ml 50 mM HEPES, pH 7) i en 2 ml-kuvette med omrøring blev tilsat 10 µl enzym, og pyren-fluorescens-emissionen blev målt ved 376 nm (excitation ved 340 nm) som funktion af tiden (1 sekund-intervaller) ved anvendelse af Perkin Elmer LS50-apparatet. I Triton X-100/phospholipid-micellerne blev koncentrationen af phospholipid justeret til at have excimerdannelse (emitterer ved 480 nm). Ved spaltning frigøres fedtsyren i 2-positionen, som indeholder pyrengruppen, til vandfasen, hvilket resulterer i en stigning i monomer-emissionen. PLA2 blev beregnet som hældningen af kurven i det lineære område ved tilsvarende betingelser.

Lipase-assays

5

10

15

20

25

30

Lipase-aktivitet (LU) blev målt ifølge Novo Nordisk publikation AF 95. Hydrolysen af tributyrin ved 30 °C og pH 7 blev efterfulgt af et pH-stat-titreringsforsøg. 1 LU svarer til den mængde enzym, der er i stand til at frigøre 1 µmol smørsyre/minut under standardbetingelser.

5

10

15

30

35

Aktivitet på olivenolie (SLU) blev målt som følger: 12 ml 5 mM Tris-HCl, 40 mM NaCl, 5 mM CaCl₂, pH 9, blev tilsat til 2,5 ml Sigma Lipase-substrat. pH blev justeret til pH 9 eller lige under før tilsætning af 0,5 ml lipase-opløsning (fortyndet i buffer) og udførsel af et pH-stat-titreringsassay ved 30 °C ved anvendelse af Titralab, som er kommercielt tilgængeligt fra Radiometer A/S, København, Danmark. 1 SLU svarer til den mængde enzym, der er i stand til at frigøre 1 µmol fri fedtsyre/minut ved pH 9, 30 °C.

Karakterisering af en rekombinant fremstillet F. oxysporum-phospholipase ifølge opfindelsen

Assayene, som blev anvendt til karakterisering af enzymerne, der er nævnt nedenfor, var assayene, der er beskrevet umiddelbart ovenfor.

20 Enzymer

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch F-9700989, OD_{280} 0,83 (0,69 mg/ml), renhed > 95 % (SDS-PAGE).

Enzymet blev rekombinant udtrykt og oprenset som beskrevet ovenfor.

Lecitase™ Batch L546-F06 (10368 IU/ml, ca. 20 mg/ml). Lipolase® (Novo Nordisk A/S).

Ca²⁺'s indflydelse på phospholipase-aktiviteten hos *F. oxysporum*-lipase-phospholipase blev undersøgt. Der observeredes ingen større forskel, uanset om EDTA eller Ca²⁺ var indbefattet i assayet eller ej (se tabel 3 nedenfor), og enzymet synes således at være relativt uafhængigt af Ca²⁺.

TABEL 3. F. oxysporum-phospholipase-aktivitets (PHLU) afhængighed af EDTA og CaCl₂ - 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5 ved 37 °C

EDIA og CaClo - 2	A og CaCl2 - 2 % lecithin, 2 % Triton X-100,			, 20 mM citrat, pH 5 ved 37 °C		
	5 mM	1 mM	1 mM	2 mM	5 mM	10 mM
	EDTA	EDTA	CaCl₂	CaCl ₂	CaCl ₂	CaCl₂

Relativ	1,05	1,10	1	0,90	0,90	0,89
aktivitet1	· .					

¹ Relativ aktivitet er i forhold til aktiviteten ved 1 mM CaCl₂, der er normaliseret til 1.

pH-profilen blev undersøgt i Britton-Robinson-buffer ved anvendelse af plantelecithin som substrat (tabel 4). Selvom enzymet viser en alkalisk pH-profil på phospholipid med et optimum ved pH 9 eller højere, er aktiviteten stadig tilstrækkelig høj til tilvejebringelse af degummering af olier ved lavt pH og anvendelse ved bagning (se nedenfor for en sammenligning af specifikke aktiviteter).

10

5

TABEL 4. Fusarium oxysporum-phospholipases pH-profil, 2 % lecithin, 2 %

Triton X-100, 20 mM BR, 37 °C

	pH 3	pH 4	pH 5	pH 6	pH 7	pH 8	pH 9
Relativ aktivitet ¹	0,08	0,12	0,16	0,28	0,52	0,76	1,00

¹ Relativ aktivitet er i forhold til aktiviteten ved pH 9, der er normaliseret til 1.

Temperaturprofiler for phospholipasen opnåedes ved pH 5; aktiviteten begynder at falde ved temperaturer over 40 °C (tabel 5). Dette er i rimelig overensstemmelse med temperaturstabiliteten, der måles ved præinkubering af enzymet og efterfølgende måling af residual-aktivitet (tabel 6), hvor enzymet er stabilt ved temperaturer op til 45 °C ved pH 5.

10

5

TABEL 5. F. oxysporum-phospholipase's temperaturprofil, 2 % lecithin, 2 %

Triton X-100. 20 mM BR

·	30 °C	40 °C	45 °C	50 °C	55 °C
pH 5	0,85	1,00	0,67	0,38	0,13

Alle data er vist som relative aktivitetsdata i forhold til aktiviteten ved pH 5, 40 °C, der er normaliseret til 1.

15

TABEL 6. Fusarium oxysporum-phospholipases temperaturstabilitet;

præinkubation 30 minutter i 20 mM RP

presinted action of	5 °C 30 °C 40 °C 45 °C 50 °C 55							
pH 5	1,00	0,91	1,03	1,07	0,65	0,00		

Alle data er vist som residualaktivitetsdata, hvor aktiviteten efter præinkubation ved 5 °C er normaliseret til 1.

20

Enzymets lave stabilitet kan være fordelagtig til registrering af et eventuelt produkt som en proceshjælp, da det aktive enzym ikke bør forventes i slutproduktet ved hverken degummering af spiseolier eller i bagte produkter.

25 Phospholipasen, der er opnået fra Fusarium oxysporum ifølge opfindelsen, har både phospholipase- og lipase-aktivitet.

Følgeligt blev enzymets aktivitet på forskellige lipase- og phospholipasesubstrater undersøgt og sammenlignet med aktiviteten hos den kommercielt tilgængelige phospholipase Lecitase™ og den kommercielt tilgængelige lipase Lipolase® (Novo Nordisk A/S).

5

10

F. oxysporum-phospholipase/lipasen har høj aktivitet på både tributyrin og olivenolie ved pH 7 og 9 (tabel 7). Til sammenligning er den specifikke aktivitet hos Lipolase® ca. 5000 LU/mg. Imidlertid fremviser F. oxysporum-lipasen i modsætning til Lipolase® en meget bredere specificitet med betydelig phospholipase-aktivitet og også thioesterase-aktivitet (se enkeltlags-eksempel 6 ovenfor, som viser, at Lipolase® ikke har en målbar phospholipase-aktivitet).

F. oxysporum-phospholipase/lipasen ifølge opfindelsen har en specifik aktivitet på lecithin, som er betydelig højere end den hos phospholipasen Lecitase™ (svinepancreas-PLA2) ved pH 7 (tabel 7).

15

Sammenlignet med Lecitase™ har *F. oxysporum*-enzymet en 100 gange højere aktivitet ved pH 7. Phospholipase:lipase-forholdet for *F. oxysporum*-enzymet er ca. 0,225 (1000 LU/mg/225 PHLU/mg) under tilsvarende betingelser (pH 7 og 30 °C).

20

TABEL 7. F. oxysporum-lipase/phospholipasens aktivitet - sammenligning med Lecitase™

Enzym	LU/mg	PLU ¹ /mg	PHLU/mg	SLU/mg	PLA1/mg
F. oxysporum	1000	73	225	3090	2,04
Lecitase™	<0,25	2,5	1,2-3,2	0,6	0

¹PLU blev målt i lighed med PHLU men i 20 mM citrat, pH 5 og ved 37 °C i stedet for 50 mM HEPES, pH 7 ved 30 °C.

25

F. oxysporum-lipase/phospholipasens specificitet blev undersøgt ved anvendelse af substrater, der er specifikke for phospholipase A1, ved måling af spaltningen af thioester-bindingen i 1-positionen i 1-(S-decanoyl)-2-decanoyl-1-thio-sn-glycero-3-phosphocholin.

30

Enzymet hydrolyserer klart 1-positionen i phospholipid (tabel 7), mens Lecitase™ (svinepancreas-PLA2) som forventet ikke viste aktivitet på dette

substrat.

<u>C-terminal aminosyresekvens for Fusarium oxysporum-phospholipasen ifølge opfindelsen</u>

5

Den N-terminale aminosyresekvens for det rekombinant udtrykte modne phospholipase-protein blev bestemt som beskrevet i eksempel 3, og det blev fastslået, at denne N-terminale sekvens var den samme som bestemt for det ikke-rekombinant dannede og oprensede enzym (se eksempel 3).

10

MALDI-TOF-massespektrometri blev udført ved anvendelse af et VG TofSpec-massespektrometer (Micromass, Manchester, UK) som beskrevet i Christgau et al., Biochem. J. <u>319</u>:705-712, 1996.

15 <u>Baggrund</u>

Den N-terminale aminosyresekvens for *Fusarium oxysporum*-phospholipasen, som er udledt fra DNA-sekvensen, forudser i kombination med den kendte N-terminale aminosyresekvens for den modne phospholipase et protein på 315 aminosyrerester (arninosyrerne 31-346 i SEQ ID NO: 2). Den teoretiske masse for dette udledte protein er 33.256,8 Da.

25

20

Ved anvendelse af MALDI-TOF-massespektrometri har vi tidligere bestemt massen af den native lipase/phospholipase fra *F. oxysporum* til at være 28,2 kDa (data ikke vist), og på SDS-PAGE viste det sig, at molekylevægten er 29-30 kDa (se ovenfor).

30

Da de N-terminale sekvenser for den native og den rekombinante *F. oxysporum*-lipase er identiske, er det sandsynligt, at masseforskellen, som ses mellem den udledte masse og den eksperimentelle masse, er forårsaget af C-terminal processering.

35

For at undersøge dette har vi isoleret det C-terminale peptid fra den rekombinante *F. oxysporum*-lipase, som er udtrykt i *A. oryzae*, og sekventeret det gennem dets C-terminal.

Strategi

5

10

15

20

25

Den gennemsnitlige masse for den native lipase/phospholipase fra *F. oxysporum* på 28,2 kDa kan anvendes til at forudsige den mest sandsynlige C-terminale rest, som viser sig at være Ser303 (SEQ ID NO: 2).

Denne forudsigelse er baseret på den formodning, at enzymet er ikkeglycosyleret. Det enkelte potentielle N-glycosyleringssite, som findes i sekvensen i Asn163, anvendes sandsynligvis ikke, da der findes en Pro-rest i position 164. Tilstedeværelsen af en Pro-rest i den anden rest i konsensussekvensen for N-glycosylering (Asn-Xaa-Ser/Thr) er aldrig blevet rapporteret. Endvidere tyder formen af toppen i massespektret ikke på glycosylering. Toppen er imidlertid bredere, end man sædvanligvis oplever for homogene proteiner, hvilket indikerer muligheden for størrelsesheterogenitet. Da enzymets N-terminal er veldefineret, er størrelsesheterogeniteten mest sandsynligt forårsaget af heterogen C-terminal processering.

En gennemgang af SEQ ID NO: 2 (se nedenfor) viser, at den udledte C-terminal er placeret tæt på den sidste af de 8 Cys-rester i sekvensen. Indførelse af en radioaktiv tag på Cys-resterne gør peptiderne, der indeholder Cys-rester, lette at spore gennem peptidoprensning. En kombination af den radioaktive tagging med proteolytisk degradering ved anvendelse af Asp-N-proteasen, som spalter foran Asp-rester, vil resultere i et tagget C-terminalt peptid. Endvidere vil tre indre peptider blive tagget. Sekventering af alle taggede peptider vil afsløre enzymets C-terminal.

			Ų	U	U	
31	AVGVTTTDFS	nprpyiqhga	A AYCNS EAA A	GSKITCSNNG	CPTVQGHGAT	80
					14	
81	IVTSFVGSKT	GIGGYVATDS	ARKETVUSER	CSTNTDNUT T	NI DECOEDES	
				COLUMNIA	"TOTOGEDCS	130
	ħ			(0)		
131	LVSGCGVHSG	FQRAWNEISS	QATAAVASAR	Kanpsphvis	TGHSLGGAVA	180
181	VLAAANLRVG	GTPVDIYTYG	SPRVGNAQLS	AFVSNQAGGE	YRVTHADDPV	230
			•		-	
				IJ	î)	
231	PRLPPLIFGY	RHTTPEFWLS	GGGGDKVDYT	ISDVKVCEGA	ANLGCNGGTL	280
		U				
281	GLDIAAHLHY	-		ESVDKRATHT	DAELEKKLNS	330
			1			
221	VIIOMDABA	michae				
331	AAÖMDKEAAK	nnqars				346

<u>SEQ ID NO: 2</u>: Udledt aminosyresekvens for *F. oxysporum*-lipase/phospholipasen.

Sekvensen er udledt fra DNA-sekvensen og starter i N-terminalen, som er bestemt eksperimentelt for både det native og det rekombinante enzym. De 8 Cys-rester er vist med U, mens den C-terminale Ser-rest, som er udledt ved hjælp af MALDI-TOF-massespektrometri af det native enzym, er vist med 1. Asn-resten, som findes i konsensussekvensen for N-glycosylering (NXS/T) er vist med (0), men benyttes efter al sandsynlighed ikke, da X er en Pro-rest.

<u>Forsøgsresultater</u>

Enzymet var PL fra *Fusarium oxysporum* med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch-F-9700989, $OD_{280} = 0.83$ (0.69 mg/ml), renhed > 95 % (SDS-PAGE).

Enzymet blev udtrykt rekombinant og oprenset som beskrevet ovenfor.

Enzymet blev denatureret og disulfidbindingeme blev reduceret, før thiolgrupperne blev reageret med I-[1-14C]-CH₂CONH₂.

5

Efter den radioaktive tagging af Cys-resterne blev lipasen degraderet ved anvendelse af Asp-N-proteasen.

10

De dannede peptider blev fraktioneret ved anvendelse af modfase-HPLC. De opsamlede fraktioner blev udsat for MALDI-TOF-massespektrometri og scintillationstælling. Fraktioner, som indeholdt betydelige mængder af radioaktivitet, blev valgt til fornyet oprenset ved anvendelse af modfase-HPLC.

15

De pany oprensede fraktioner blev udsat for scintillationstælling, og fraktionerne, som indeholdt radioaktivitet, blev efterfølgende sekventeret.

20

Nedenfor er vist en oversigt over resultaterne. Dette skema kan se kaotisk ud på grund af de mange anførte sekvenser. Skemaet indeholder imidlertid al den sekvensdata, der er opnået fra de radioaktive fraktioner, og udgør derfor grundlaget for de dragede konklusioner. Det skal bemærkes, at alle Cys-rester er dækket ved sekventeringen, de fleste af dem mere end en gang. En anden ting at bemærke er, at de afvigende spaltninger, som ses, resulterer i et stort antal små radioaktivt mærkede peptider.

NG CPT HNG CPTVQ CSNNG CP CSNNG CPTV CHSEAAA GSKI 31 AVGVITTDPS NFKPYIQHGA AAYCNSEAAA GSKITCSNNG CPTVQGNGAT 80 ij DCS \$1 IVTSPVGSRT GIGGYVATDS ARKEIVVSYR GSINIRNWLT NLDFGQEDCS 130 U LVSGC LVSGCGVKSG FORAW 131 LVSGCGVHSG FQRAWNEISS QATAAVASAR KANPSFWVIS TCHSLGGAVA 180 181 VLAAANLRVG GTPVDIYTYG SPRVGNAQLS AFVSNQAGGE YRVTHADDPV 230 Ų DVKVCZG DVKVCEGA ANLGCNGGTL DVKVCEGA ANLGCNGGTL 231 PRLPPLIFGY RHTTPEFWLS GGGGDKVDYT ISDVKVCEGA ANLGCNGGTL 280 U DACNAG GFS TOACNAG GF 281 GLDIAAHLHY FQATDACNAG GPSWRYRSA ESVDKRATHT DAELEKKLHS 130 331 YVQMDKEYVK NNQARS

NZAS-0007522

Aminosyresekvenserne, der er opnået ved hjælp af sekventering af de radioaktivt taggede peptider, stammede fra rekombinant *F. oxysporum*-enzym. Sekvenserne er parallelopstillet med aminosyresekvensen, der er udledt fra DNA-sekvensen. De 8 Cys-rester er vist med \$\mathbb{U}\$, mens den C-terminale Serrest, der er udledt ved hjælp af MALDI-TOF-massespektrometri af det native enzym, er vist med \$\mathbb{T}\$.

Forsøgskonklusion

5

15

25

30

35

Ud fra sekventeringen af alle de radioaktivt taggede peptider er det klart, at den C-terminale del af aminosyresekvensen, der kodes i DNA'et, processeres under ekspressionen af lipasen fra *F. oxysporum.* Peptidsekvenserne peger på Ser303 som den mest sandsynlige C-terminale rest i det modne enzym i overensstemmelse med resultatet fra MALDI-TOF-massespektrometri.

På basis af dataene kan det imidlertid ikke udelukkes, at der finder differentiel C-terminal processering sted, som fører til heterogene C-termini, for eksempel tyder ét peptid på, at Phe272 også kan findes som en C-terminal rest.

20 EKSEMPEL 10

Generel beskrivelse af assay for enzymatisk degummering af spiseolie

Udstyr til udførelse af enzymatisk degummering

Udstyret består af en 1 l-kappebeklædt stålreaktor, som er udstyret med et stållåg, en skrue (600 rpm), skærme, en temperaturføler, et indløbsrør i toppen, en tilbageløbskøler (4 °C) i toppen og et udløbsrør i bunden. Reaktorkappen er forbundet med et termostatbad. Udløbsrøret er ved hjælp af silikoneslanger forbundet til et Silverson-i linie-blandehoved, der er udstyret med en "firkantet hul- høj shearing-skærm", som styres af en Silverson L4RT-høj shearing-lab-blander (8500 rpm, flow ca. 1,1 l/minut). Blandehovedet er udstyret med en køleslange (5-10 °C) og et udløbsrør, der via silikoneslanger er forbundet med reaktorens indløbsrør. En temperaturføler er indsat i silikoneslangen umiddelbart efter blandehovedet. Den eneste forbindelse fra reaktor/blandehoved-systemet til atmosfæren er gennem tilbageløbskøleren.

Generel procedure til udførelse af enzymatisk degummering

Alt køle- og termostatudstyr tændes. Herefter indføres 0,6 l (ca. 560 g) olie i reaktoren, som holdes på ca. den temperatur, der er nødvendig for det specifikke forsøg. Lab-blanderen tændes, hvorved olien starter med at cirkulere fra reaktoren til blandehovedet og tilbage til reaktoren. Systemet får mulighed for at ækvilibrere i ca. 10 minutter, i løbet af hvilket tidsrum temperaturen finindstilles. Forbehandlingsperioden starter med tilsætning af 0,6 g (2,86 mmol) citronsyremonohydrat i 27 g MilliQ-vand (tilsat vand vs. olie = 4,8 % (vægt/vægt; [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM), hvilket sætter t = 0. Til t = 30 minutter tilsættes en passende mængde af en 4 M NaOH-opløsning.

0,0 ækviv. 4 M NaOH -> pH 3,7
1,0 ækviv. 4 M NaOH (0,71 ml) -> pH 4,5
1,5 ækviv. 4 M NaOH (1,07 ml) -> pH 5,0
2,0 ækviv. 4 M NaOH (1,43 ml) -> pH 5,5
2,5 ækviv. 4 M NaOH (1,79 ml) -> pH 6,2
3,0 ækviv. 4 M NaOH (2,14 ml) -> pH 8,0

20

5

10

Til t = 35 minutter udtages prøver til P-analyse og pH-bestemmelse. Umiddelbart herefter tilsættes den nødvendige mængde af enzym-opløsning (slut på forbehandlingsperiode). Prøver til P-analyse og pH-stemmelse udtages til t = 1, 2, 3, 5, 5, 6 timer, og herefter standses reaktionen.

25

Reaktor/blande-systemet tømmes og vaskes med 2 x 500 ml 10 % Deconex/DI-vandopløsning efterfulgt af minimum 3 x 500 ml DI-vand. Tabel 8 viser en oversigt over de forskellige tilsætninger og prøvetagninger under reaktionen.

TABEL 8. Plan for enzymatisk degummering

Tid	Tilsætning af		vetagning
		P-analyse	pH-bestemmelse
		Х	
0	Citronsyre		
5 min.	·		х
30 min.		Х	х
30 + ō min.	NaOH		
35 min.		Х	х
35 + δ min.	Enzym		
1 time		Х	х
2 timer		X	х
3,5 timer		х	×
5 timer		х	x
6 timer		X	×

Phosphor-analyse

5 Prøvetagning til P-analyse:

10 -

15

Anbring 10 ml vand-i-olie-emulsion i et glascentrifugerør. Opvarm emulsionen i et kogende vandbad i 30 minutter. Centrifuger ved 5000 rpm i 10 minutter. Overfør ca. 8 ml af den øverste (olie) fase til et 12 ml-polystyrenrør og lad det stå (til bundfældning) i 12-24 timer. Efter bundfældning udtag ca. 1-2 g fra den øverste klare fase til P-analyse.

P-analyse blev udført i overensstemmelse med procedure 2.421 i "Standard Methods for the Analysis of Oils, Fats, and Derivatives, 7th ed. (1987)":

Afvej 100 mg MgO (leicht, Merck nr. 5862) i en porcelænskål og opvarm med

en gasbrænder. Tilsæt 1-2 g olie og antænd med en gasbrænder til opnåelse af en sort, hård masse. Opvarm i en Vecstar-ovn ved 850 °C i 2 timer til opnåelse af hvid aske. Opløs asken i 5 ml 6 M HNO₃ og tilsæt 20 ml reagensblanding. Hensæt i 20 minutter. Mål absorbans ved 460 nm (anvend en blank (5 ml HNO₃ + 20 ml reagensblanding) til nuljustering). Beregn ved anvendelse af kalibreringskurve.

pH-bestemmelse

5

20

Udtag 2 ml vand-i-olie-emulsion og bland med 2 ml MilliQ-vand. Efter faseseparering afpipetter det øverste olielag. Mål pH i vandfase med pH-elektrode Orion. Målinger omregnes til "reelle" pH-værdier ved hjælp af formlen:

15 $pH_{reel} = pH_{mail} - 0.38$.

En kalibreringskurve opnåedes ved hjælp af opløsning af 0,6 g citronsyremonohydrat i 27 g Dl-vand, pH i denne opløsning blev målt ved hjælp af pH-elektrode Orion (pH_{reel}). 100 μ l blev blandet med 2 ml MilliQ-vand, og pH i denne opløsning blev målt ved hjælp af pH-elektrode Orion (pH_{målt}). pH i citronsyre-opløsningen blev ændret gradvist ved hjælp af tilsætning af NaOH-opløsning, og for hver Justering blev fortynding og pH-målinger udført som beskrevet ovenfor.

25 EKSEMPEL 11

Optimale degummeringsbetingelser for LecitaseTM

Alle forsøg vedrørende degummering af spiseolie blev udført som beskrevet i eksempel 10.

Olie:

Vanddegummeret rapsfrøolie (Colzro) fra Aarhus Oliefabrik, Danmark. Batch C00730/B01200, 9 kg, P-indhold 186 ppm (0,47 % phosphatid).

Olien er ikke et kommercielt tilgængeligt produkt, men er taget direkte fra produktionslinien på møllen.

Enzym:

Lecitase™ 10L.

Batch L646-F02 (10190 U/ml), æstimeret koncentration 20 mg/ml.

De specifikke betingelser for en serie af parameter-optimeringsforsøg med LecitaseTM er vist i tabel 9. Standardbetingelser er: enzymdosis 535 U/kg olie (1,1 mg/kg olie), 60 °C, 2,0 ækviv. NaOH (pH 5,5). Enzymdosen er varieret fra 268-1070 U/kg olie, temperaturen er varieret fra 40-70 °C, og NaOH-tilsætning er varieret fra 1,0-3,0 ækviv. svarende til de forskellige pH-niveauer som vist i tabel 9.

TABEL 9. Specifikke betingelser for Lecitase™-optimering

INDEL	TABEL 9. Specifikke betingelser for Lecitase™-optimering							
For- søg	Rapsfrøolie	Temp.	Ækv. NaOH	pH- niveau	Enzymdosis (U/kg olie)			
10	Colzro 1200	60 °C	2,0	5,5	0 (blind)			
21	Colzro 1208	60 °C	0,0	3,7	0 (blind)			
8	Colzro 1200	60 °C	2,0	5,5	535			
9	Colzro 1200	60 °C	2,0	5,5	535			
11	Colzro 1200	60 °C	2,0	5,5	268			
12	Colzro 1200	60 °C	2,0	5,5	1070			
15	Colzro 1200	70 °C	2,0	5,5	535			
17	Colzro 1200	50 °C	2,0	5,5	535			
18	Colzro 1200	40 °C	2,0	5,5	535			
19	Colzro 1200	60 °C	1,0	4,5	535			
40	Colzro 1209	60 °C	1,5	5,0	535			
44	Colzro 1429	60 °C	2,5	7,0	535			
20	Colzro 1200	60 °C	3,0	8,0	535			

pH fra t = 35 minutter - 6 timer. Indenfor dette tidsrum var alle pH-bestemmelser inden for et smalt interval. Dette illustreres yderligere i eksempel 13 nedenfor.

En oversigt over de separate optimeringsundersøgelser er vist i tabel 10.

Resultaterne i tabel 10 viser.

i) at det af dosis/reaktions-undersøgelsen fremgår, at optimal enzymdosis (ved 60 °C og 2,0 ækviv. NaOH) er ca. 535 U/kg olie. Halv dosis øger degummeringstiden fra ca. 3,5 timer til 6 timer, og tobbelt dosis frembringer ingen ændring i degummeringsydeevnen. Enzymblindprøve-resultaterne er indsat til sammenligning,

- ii) at optimal NaOH-tilsætning er ca. 2,0 ækviv. (pH ca. 5,5) med dårlig ydeevne ved 1,0 ækviv. (pH ca. 4,5) og 3,0 ækviv. (pH ca. 8),
- iii) at optimal temperatur er ca. 60 °C, da 70 °C ikke bringer P-niveauet helt ned, 50 °C øger degummeringstiden fra ca. 3,5 til 6 timer, og 40 °C giver dårlig ydeevne.

TABEL	10:	Resultat	ter ve	<u>drørende</u>	optin	nering	af Le	citase™-
degumm	eringsbe	tingelser						
For- søg	Tid ¹ 0	Tid ¹ 0,50	Tid ¹ 0,58	Tid ¹ 1,0	Tid ¹ 2,0	Tid ¹ 3,5	Tid ¹ 5,0	Tid ¹ 6,0
10	160	140	116	118	108	109	105	109
21	178	149	-	143	142	143	147	154
8	164	139	117	85	30	-	2	3
9	164	136	109	79	14	4	3	4
11	183	149	123	104	78	35	10	7
12	165	131	117	71	13	3	4	3
15	170	139	127	83	23	10	11	9
17	162	134	127	95	56	15	11	5
18	176	151	136	100	66	28	24	28
19	171	139	147	142	142	118	91	80
40	184	149	157	126	109	73	40	30
44	226	202	197	148	99	66	40	34
20	165	136	111	102	90	81	73	72

¹Phosphorindhold (ppm) i oliefase ved angivne tidspunkter i timer.

5 **EKSEMPEL 12**

Optimale degummeringsbetingelser for en Fusarium oxysporumphospholipase ifølge opfindelsen

Alle forsøg med enzymatisk degummering af spiseolie blev udført som beskrevet i eksempel 10.

Olie:

Vanddegummeret rapsfrøolie (Colzro) fra Aarhus Oliefabrik, Danmark. Batch C00730/B01208, P-indhold ca. 200 ppm

Batch C00730/B01209, P-indhold ca. 200 ppm

Batch C00730/B01429, P-indhold 227 ppm
Batch C00730/B01430, P-indhold 252 ppm
Olierne er ikke kommercielt tilgængelige, men er taget direkte fra produktionslinien på møllen.

10 Enzym:

20

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch F-9700123, OD_{280} = 1,48, renhed ca. 58 %, æstimeret koncentration 0,9 mg/ml.

15 Enzymet var udtrykt rekombinant og oprenset som beskrevet ovenfor.

De specifikke betingelser for en serie af parameter-optimeringsforsøg med PL fra Fusarium oxysporum er vist i tabel 11. Standardbetingelser er: enzymdosis 1,6 mg/kg olie, 40 °C, 1,5 ækviv. NaOH (pH ca. 5,0). Enzymdosis er varieret fra 0,2-1,6 mg/kg olie, temperaturen er varieret fra 30-50 °C, og NaOHtilsætningen er varieret fra 1,0-2,5 ækviv. svarende til de forskellige pHniveauer som vist i tabel 11.

TABEL 11. Specifikke betingelser til optimering af PL fra Fusarium oxysporum

For- søg	Rapsfrøolie	Temp. (°C)	Ækv. NaOH	pH-niveau	Enzymdosis (mg/kg olie)
31	Colzro 1208	40 °C	1,5	5,0	1,6
53	Colzro 1429	40 °C	1,5	5,3	1,6
33	Colzro 1209	40 °C	1,5	5,0	0,8
35	Colzro 1209	40 °C	1,5	5,0	0,4
36	Colzro 1209	40 °C	1,5	5,0	0,2
38	Colzro 1209	50 °C	1,5	5,0	1,6
64	Colzro 1430	45 °C	1,5	5,0	1,6
39	Colzro 1209	30 °C	1,5	5,0	1,6
32	Colzro 1209	40 °C	1,0	3,5	1,6
13	Colzro 1200	40 °C	1,0	4,5	1,6
45	Colzro 1429	40 °C	1,25	5,0	1,6
46	Colzro 1429	40 °C	1,75	5,5	1,6
34	Colzro 1209	40 °C	2,0	5,5	1,6
37	Colzro 1209	40 °C	2,5	6,2	1,6

Forsøgsresultaterne er vist i tabel 12 nedenfor. pH-afgivelserne i tidsvinduet 35 minutter - 6 timer faldt alle inden for de forventede intervaller med kun mindre uregelmæssigheder.

Sammenfattet viser resultateme i tabel 12 nedenfor:

- i) at det af dosis/reaktions-testene fremgår, at den optimale enzymdosis 10 (ved 40 °C og 1,5 ækviv. NaOH) er ca. 0,8 mg/kg olie,
 - ii) at optimal NaOH-tilsætning er ca. 1,5 ækviv. (pH ca. 5,0) med ingen ydeevne ved 1,0 ækviv. (pH ca. 4,5), med begrænset ydeevne ved 2,0 ækviv. (pH ca. 5,5) og 2,5 ækviv. (pH ca. 6,2), og

at den optimale temperatur er ca. 45 °C, og 50 °C giver begrænset ydeevne.

TABEL 12: Resultater vedrørende optimering af Fusarium oxysporum-

Gegunni	legummeringsbetingelser									
For- søg	Tid ¹ 0	Tid ¹ 0,50	Tid ¹ 0,58	Tid ¹ 1,0	Tid ¹ 2,0	Tid ¹ 3,5	Tid ¹ 5,0	Tid ¹ 6,0		
31	169	130	136	15	8	7	8	7		
53	232	203	208	32	10	7	7	4		
33	188	156	160	27	7	6	6	8		
35	181	153	153	78	5	5	4	6		
36	187	162	157	117	61	32	20	15		
38	187	149	146	84	83	68	58	55		
64	252	192	201	10	4	4	4	4		
39	184	163	158	36	7	7	9	9		
32	167	137	165	152	146	151	148	146		
13	170	140	141	140	133	126	130	131		
45	221	189	195	161	118	99	92	95		
46	225	187	163	93	4	7	6	15		
34	189	174	165	61	27	25	26	19		
37	205	168	157	. 88	22	23	20	21		

¹Phosphorindhold (ppm) i oliefase på angivne tidspunkter i timer.

EKSEMPEL 13

Visning af standard-pH-afvigelser under en enzymatisk degummeringsproces

Tabel 13 nedenfor viser et gennemsnitseksempel for pH-afvigelser under den enzymatiske degummeringsproces, der udføres som beskrevet i eksempel 10.

Forsøgene udføres med Lecitase™. Se eksempel 11 for yderligere detaljer.

10 TABEL 13: pH-værdier fra t = 35 minutter - 6 timer

		o minuter - o tin		
Tid (timer)	pH Forsøg 8 (2,0 ækv)	pH Forsøg 15 (2,0 ækv)	pH Forsøg 19 (1,0 ækv)	pH Forsøg 20 (3,0 ækv)
0,58	4,97	5,80	4,45	7,38
1,0	5,82	5,75	4,46	7,63
2,0	5,50	5,44	4,57	8,13
3,5	5,35	5,34	-	8,37
5,0	5,25	5,47	4,47	8,21
6,0	5,01	5,26	4,43	8,05

Hvis ikke andet er angivet i eksemplerne på forsøg med enzymatisk degummering, der er beskrevet heri, var standard-pH-afvigelserne i nævnte forsøg som vist i tabel 13 ovenfor.

EKSEMPEL 14

Sammenligning af enzymatisk degummeringskapacitet hos Lecitase™ og en phospholipase fra Fusarium oxysporum ifølge opfindelsen

I figur 2 er vist resultaterne fra PL'erne under deres respektive optimale betingelser, som bestemt i eksempel 11 og 12 ovenfor.

Forsøgsbetingelser, der er vist i figur 2:

25

20

Lecitase[™]: 60 °C, pH 5,5 (2,0 ækviv. NaOH) og 1 mg enzym/kg olie (ca. 535 U) (forsøg nr. 9).

Fusarium oxysporum PL: 40 °C, pH 5,0 (1,5 ækviv. NaOH) og 0,8 mg enzym/kg olie (forsøg nr. 33).

Fusarium oxysporum PL: 45 °C, pH 5,0 (1,5 ækviv. NaOH) og 1,6 mg enzym/kg olie (forsøg nr. 64).

Tilsyneladende giver PL fra *Fusarium oxysporum* en meget hurtig degummeringseffekt sammenlignet med Lecitase™.

PL fra Fusarium ifølge opfindelsen giver en næsten total degummering efter ca. 25 minutters kontakt mellem enzym og olie.

15

EKSEMPEL 15

Bestemmelse af mængden af ikke-hydrerbare phospholipider, som er til stede i forskellige typer af spiseolier

20

Olier:

Rårapsfrøolie fra Arhus Oliefabrik (AOM), Danmark. Batch C00745/B01146, P-indhold 609 ppm.

Denne batch indeholder faste rester.

25

Rårapsfrøolie fra Scanola (Danmark). Batch C00745/B01593, P-indhold 315 ppm.

Filtreret rårapsfrøolie.

Batch C00745/B01146 filtreret, P-indhold 231 ppm.

Denne olie er Batch C00745/B01146 ovenfor (609 ppm), der er filtreret gennem et 100 μm Johnson-filter.

Rårapsfrøolie fra Arhus Oliefabrik (AOM), Danmark.

35 Batch C00745/B01700, P-indhold 459 ppm.

Rapsfrøolie fra Lurgi, Tyskland.

Batch C00932/B1381, P-indhold 148 ppm.

Råsojabønneolie fra Arhus Oliefabrik, Danmark. Batch C00744/B01145, P-indhold 593 ppm.

5

Bestemmelse af mængden af ikke-hydrerbare phospholipider, som er til stede i de forskellige typer af spiseolier, der er vist ovenfor, blev udført ved hjælp af forbehandling af olierne ved hjælp af en opløsning, som omfatter citronsyremonohydrat i vand som beskrevet i eksempel 10 ovenfor.

10

15

I korte træk omfatter forbehandlingsprocessen,

- i) forbehandling af spiseolien ved 60 °C ved hjælp af tilsætning af en opløsning, som omfatter citronsyremonohydrat i vand (tilsat vand versus olie = 4,8 % vægt/vægt, [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM) i 30 minutter,
 - ii) overførsel af 10 ml af den forbehandlede vand-i-olie-emulsion til et reagensglas,

20

- iii) opvarmning af emulsionen i et kogende vandbad i 30 minutter,
- iv) centrifugering ved 5000 rpm i 10 minutter,
- v) overførsel af ca. 8 ml af den øverste (olie) fase til et nyt reagensglas og henstand til bundfældning i 24 timer,

efter bundfældning udtag 2 g fra den øverste klare fase til måling af det ikkehydrerbare phosphorindhold (ppm) i spiseolien. ppm-værdien blev bestemt som beskrevet i eksempel 10 ovenfor.

30

Ifølge denne proces var mængden af ikke-hydrerbare phospholipider, som var til stede i de forskellige typer af spiseolier, der er vist ovenfor.

rårapsfrøolien nr. 1148 fra AOM, der indeholder fast partikelholdigt materiale, som til dels er ansvarligt for det høje P-niveau (609 ppm), filtrering gennem et 100 µm Johnson-filter gav en klar olie med et P-indhold på 231 ppm.

Forbehandling af råolien og af den filtrerede olie gav et P-niveau på 140 ppm, som er et mål for de ikke-hydrerbare phospholipider, som er til stede i olien;

phospholipid-indholdet i en rårapsfrøolie fra Scanola blev reduceret fra 315 ppm til ca. 30 ppm ved hjælp af forbehandling,

phospholipid-indholdet i en rapsfrøolie, som var opnået fra Lurgi (sandsynligvis vilkårlig blanding af råolie og totalt raffineret olie), blev reduceret til 60 ppm ved hjælp af forbehandlingsprocessen,

10

5

forbehandling rårapsfråolie nr. 1710 fra AOM reducerede P-indholdet fra 459 til 200-250 ppm,

ved råsojabønneolie nr. 1145 fra AOM reducerede forbehandling P-niveauet fra 593 til 10 ppm. Denne sojabønneolie er et eksempel på en olie, der kan degummeres ved hjælp af vanddegummering/citrat-behandling alene. Enzymtilsætning til denne råsojabønneolie efter forbehandling reducerede ikke P-indholdet yderligere.

20

Disse data viser, at phospholipid-sammensætningen (hydrerbart vs. ikke-hydrerbart phospholipid) i rårapsfrøolie varierer meget fra én batch til en anden, og følgeligt vil niveauet af resterende phospholipid i vanddegummeret rapsfrøolie variere over et bredt interval (30 ppm (Scanola) til 200-250 ppm (AOM)).

25

Til enzymatisk degummering afhænger den optimale enzymdosis af mængden af ikke-hydrerbart phospholipid, som er til stede efter degummering eller forbehandling.

30

Endvidere gælder det, at jo højere mængde af ikke-hydrerbart phospholipid, der er til stede i olien, jo mere anvendelig er den enzymatiske degummeringsmetode.

35

Dette illustreres også i eksempel 16 nedenfor, hvor den foreliggende opfindelse viser enzymatisk degummering af rårapsfrøolie nr. 1146, som har et ikke-hydrerbart phospholipid-niveau på ca. 140 ppm.

EKSEMPEL 16

Degummering af rårapsfrø-spiseolie (I)

Forsøg A og B blev udført ifølge "Generel procedure til udførelse af enzymatisk degummering" som beskrevet i eksempel 10 ovenfor.

Olie:

Rårapsfrøolie fra Aarhus Oliefabrik (AOM), Danmark.

10 Batch C00745/B01146, P-indhold 609 ppm.

Denne batch indeholder faste rester.

Enzym:

Lecitase™ 10 L.

15 Batch L646-F02 (10190 U/ml), æstimeret koncentration 20 mg/ml.

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch F-9700123, $OD_{280} = 1,48$, renhed ca. 58 %, æstimeret koncentration 0,9

20 mg/ml.

Enzymet var rekombinant udtrykt og oprenset som beskrevet ovenfor.

Forsøg A (reference)

25 0,6 I (580 g) rårapsfrøolie tilføres udstyret og opvarmes til 60 °C. Til t = 30 minutter tilsættes 1,43 ml (5,7 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,6. Til t = 35 minutter tilsættes 30 μl (300 U) Lecitase™ 10L (som er leveret af Novo Nordisk A/S). Det målte phosphorindhold i oliefasen efter centrifugering såvel som pH-værdierne i vandfasen er vist i tabel 14.

TABEL 14. Resultater fra degummering af rårapsfrøolie med Lecitase™

Tid (timer)	Phosphorindhold i oliefase	рН
0	609	
0,50	155	4,8
0,58	146	5,6
1,0	127	5,6
2,0	88	5,7
3,5	61	5,7
5,0	44	5,6
6,0	34	5,8

Forsøg B

5 0,6 l (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 40 °C. Til t = 30 minutter tilsættes 1,07 ml (4,3 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,4. Til t = 35 minutter tilsættes 1 ml (0,9 mg) af en oprenset opløsning (eksempel 2) af phospholipase fra F. oxysporum. Det målte phosphorindhold i oliefasen efter centrifugering såvel som pH-værdierne i vandfasen er vist i tabel 15.

TABEL 15. Resultater fra degummering af rårapsfrøolie med phospholipase

fra F. oxysporum

Tid (timer)	Phosphorindhold i oliefase	рН
0	609	
0,50	155	4,9
0,58	149	5,4
1,0	91	5,3
2,0.	13	5,4
3,5	11	5,3
5,0	. 13 –	5,4
6,0	10	5,2

EKSEMPEL 17

5

Degummering af rårapsfrø-spiseolie (II)

Forsøg A og B blev udført ifølge "Generel procedure til udførelse af enzymatisk degummering" som beskrevet i eksempel 10 ovenfor.

10

Olie:

Rårapsfrøolie fra Aarhus Oliefabrik (AOM), Danmark. Batch C00745/B01710, P-indhold 459 ppm.

15 <u>Enzym</u>:

Lecitase™ 10 L.

Batch L646-F02 (10190 U/ml), æstimeret koncentration 20 mg/ml.

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID

20 NO: 2.

Batch F-9700470, $OD_{280} = 0.8$, renhed ca. 58 %, æstimeret koncentration 0,45 mg/ml.

Enzymet var rekombinant udtrykt og oprenset som beskrevet ovenfor.

Forsøg A

5

0,6 l (580 g) rårapsfrøolie tilføres udstyret og opvarmes til 60 °C. Til t=30 minutter tilsættes 1,43 ml (5,7 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,6. Til t=35 minutter tilsættes en passende mængde (for eksempel 50 µl (ca. 500 U) til 1 mg enzym/kg olie) af Lecitase 10L (som er opnået fra Novo Nordisk A/S). Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 16.

10 TABEL 16. Resultater fra degummering af rårapsfrøolie med Lecitase

Tid (timer)	1 mg Lecitase /kg olie P(ppm)	2 mg Lecitase /kg olie P(ppm)	3 mg Lecitase /kg olie P(ppm)
0	459	459	459
0,50	251	235	248
0,58	202	194	202
1,0	181	186	183
2,0	165	156	107
3,5	111	66	11
5,0	52	12	12
6,0	20	5	9

Forsøg B

0,6 l (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 40 °C. Til t=30 minutter tilsættes 1,07 ml (4,3 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,0. Til t=35 minutter tilsættes en passende mængde (det vil sige 1,6 mg enzym/kg olie og 3,2 mg enzym/kg olie) af en oprenset opløsning af phospholipase fra F. oxysporum. Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 17.

20

TABEL 17. Resultater fra degummering af rårapsfrøolie med phospholipase

fra F. oxysporum

Tid (timer)	1,6 mg <i>Fusariuml</i> kg olie, P(ppm)	3,2 mg <i>Fusariuml</i> kg olie, P(ppm)
0	459	459
0,50	236	208
0,58	193	173
1,0	109	96
2,0	9	7
3,5	9	8
5,0	9	9
6,0	9	9

Sammenfattet viser resultaterne:

5

Lecitase, 60 °C, pH 5,5

Enzymdosen blev varieret fra 1,0 til 3,0 mg/kg olie. Resultaterne er vist i tabel 16 ovenfor. Ved en enzymdosis på 1,0 mg/kg olie var degummering langsom og gav ca. 20 ppm efter 6 timer. Med de høje enzymdoser blev degummerings-ydeevnen forbedret til opnåelse af et phosphorindhold på 10 ppm efter ca. 3,5 timer med 3,0 mg enzym/kg olie.

Det formodes, at ydeevnen vil forbedres yderligere, hvis der anvendes højere enzymdoser.

15

10

F. oxysporum PL, 45 °C, pH 5.0

Enzymdoserne 1,6 og 3,2 mg/kg olie blev testet, og ydeevnen viste sig at være lige god (tabel 17 ovenfor). Med 1,6 mg enzym/kg olie - eller muligvis mindre - observeredes fortræffelig degummering, som gav 9 ppm P efter ca. 2 timer. Det forventes, at det er muligt at anvende endnu lavere mængder af *F. oxysporum*-phospholipase (for eksempel 0,9 mg/kg olie) og stadig opnå god degummerings-ydeevne.

EKSEMPEL 18

Degummering af vanddegummeret spiseolie ved anvendelse af et phospholipase-præparat, der er opnået fra Fusarium culmorum

5

Der blev udført et forsøg ifølge "Generel procedure til udførelse af enzymatisk degummering" som beskrevet i eksempel 10 ovenfor.

Olie:

Vanddegummeret rapsfrøolie fra Aarhus Oliefabrik (AOM), Danmark. Batch C00730/B01700, P-indhold 231 ppm.

Enzym:

Et fermenteringsmedium fra Fusarium culmorum.

15 En *Fusarium culmorum*-stamme blev dyrket og centrifugeret, og supernatanten blev oprenset som beskrevet nedenfor.

Podekulturer af stammen *Fusarium culmorum* CBS 513.94 (deponeringsdato den 25. oktober 1994) blev frembragt i 500 ml-rystekolber, som indeholdt 100 ml af følgende sammensætning:

Majsudblødningsvæske (tørret) 12 g/l Glucose 24 g/l

25

20

Til hver kolbe tilsættes 0,5 g CaCO₃ og 0,5 ml olie. pH justeres til 5,5 før autoklavering.

Efter 3 dage ved 26 °C og 250 rpm blev 5 ml af hver af podekultureme podet i rystekolber, som indeholdt 100 ml af følgende medium:

	Pepton, Difco 0118	6 g/l
	Pepticase, Sheffield Products	4 g/l
	Gærekstrakt, Difco 0127	3 g/l
	Kødekstrakt, Difco 0126	1,5 g/l
35	Dextrose, Roquette 101-0441	1 g/l
	Olivenolie, Sigma	10 g/l

pH justeres til 7,3-7,4 før autoklavering.

Dyrkning fandt sted i 9 dage ved 26 °C og 250 rpm. Medierne blev centrifugeret og filtreret (0,45 μ m) og supernatanterne opsamlet og anvendt til degummeringsforsøgene, der er vist nedenfor.

Æstimeret aktivitet 200 PHLU/ml.

Forsøg: Enzymatisk degummering af en vanddegummeret olie ved anvendelse af et phospholipase-præparat, som er opnået fra Fusarium culmorum

0,6 l (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 40 °C. Til t=30 minutter tilsættes 1,43 ml (5,7 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,5. Til t=35 minutter tilsættes en passende mængde (det vil sige 1070 PHLU/kg olie) af en oprenset opløsning af phospholipase fra *F. culmorum*. Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 18.

TABEL 18. Resultater fra degummering af rårapsfrøolie med phospholipase

fra F. culmorum

5

10

15

Tid (timer)	1070 U <i>F. culmorum</i> /kg olie P(ppm)
0	254
0,50	
0,58	213
1,0	137
2,0	61
3,5	9
5,0	8
6,0	7

EKSEMPEL 19

Enzymatisk degummering af råolie ved anvendelse af Degomma VOD

5 <u>Olie</u>:

10

15

Rårapsfrøolie C00745/B01700, P-indhold 459 ppm.

Enzym:

En kommerciel tilgængelig phospholipase Degomma VOD (Röhm, Tyskland), æstimeret koncentration 10 mg/ml.

0,6 l (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 50 °C. Til t = 30 minutter tilsættes 0,714 ml (2,86 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 4,5. til t = 35 minutter tilsættes en passende mængde (det vil sige 3,6 mg/kg olie eller 7,1 mg/kg olie) af en oprenset opløsning af Degomma VOD-phospholipase. Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 19.

TABEL 19

TABLE TO		
Tid	3,6 mg/kg olie	7,1 mg/kg olie
0	276	273
0,50	216	253
0,58	210	246
1,0	127	94
2,0	45	16
3,5	15	7
5,0	15	10
6,0	14	10

20

Dette eksempel viser, at Degomma VOD er i stand til at degummere en spiseolie. For at opnå en tilfredsstillende degummering af nævnte olie kræves imidlertid relativt høje doser af Degomma VOD sammenlignet med *Fusarium*-phospholipasen ifølge opfindelsen. Se for eksempel eksemplerne 16 og 17 til

sammenligning.

EKSEMPEL 20

5 Anvendelse af en phospholipase, der er opnået fra F. oxysporum, som et brødforbedrende middel

Materialer og metoder

10 Fremstilling af brød

Europæiske almindeligt dej-hvidt brød og kuvertbrød blev fremstillet ud fra følgende grundopskrift:

15	Grundopskrift	
	Mel (Meneba BBZ)	100 % (2000 g)
	Vand	61 %
	Gær	4 %
	Salt	1,5 %
20	Sukker	1,5 %
	Ascorbinsyre	40 ppm
	<u>Bageprocedure</u>	
	Blanding (spiralblander), 625 rpm	3 min.
25	Blanding (spiralblander), 1250 rpm	3,5 min.
	Vurdering af dej	7 min.
	Fermentering (stuetemperatur)	15 min.
	Valsning/formning	3 min.
	Hvile ved stuetemperatur	5 min.
30	Sammenfoldning	2 min.
	Hvile ved stuetemperatur	5 min.
	Valsning/formning/i form	2 min.
	Hævning (32 ℃, 82 % RH)	•
	Kuvertbrød:	45 min.
35	Formbrød:	55 min.
	Bagning (230 °C)	
	Kuvertbrød:	22 min.

Formbrød: 35 min.

Vurdering af dej og bagte produkter

5 Egenskaberne for dejen og de bagte produkter blev bestemt som følger:

Specifikt volumen-ideks: Volumen af et brød eller et kuvertbrød måles ved hjælp af den traditionelle rapsfrø-fortrængningsmetode. Det specifikke volumen beregnes som volumen ml pr. g brød. Det specifikke volumen af kontrollen (uden enzym) defineres som 100. Det relative specifikke volumenindeks beregnes som:

Specifikt volumen-indeks = <u>brødets specifikke volumen</u> specifik volumen af kontrolbrød x 100

Dejens klæbetilbøjelighed vurderes manuelt i overensstemmelse med følgende skala:

Kuvertbrødform: meget flad 1
20 flad 2
normal 3
god/rund 4
meget god 5
for rund 6

25

10

15

30

RESULTATER

TABEL 20

Enzym/ additiv								
A)					1	1	1	1
B)		500	1500	3000		500	1500	3000
C)	100	110	106	93	99	111	116	108
D)	100	106	99	94	102	107	109	103
E)	3	4	4	3	3	4.	5	4,5

- A) Lecimulthin 100 (g/kg mel)
- B) F.o.-phospholipase (LU/kg mel)
- C) Specifikt volumen-indeks (kuvertbrød)
- D) Specifikt volumen-indeks (formbrød)
- E) Kuvertbrødform (score)
- 10 Kommercielt lecithin-præparat til bagning (Superfos, Danmark).

Resultaterne viser en klar volumenforøgende effekt af *Fusarium oxysporum*-phospholipase på både kuvertbrød og formbrød ved opskriften, som ikke indeholder lecithin. Hvis lecithin indbefattes i opskriften, opnås endnu bedre volumeneffekter, selvom lecithin ikke selv bidrager til volumen. En statistisk analyse (ANOVA, α = 0,05), som blev udført i Statgraphics Plus, release 3.0, viser en signifikant positiv synergi mellem phospholipasen og lecithinen.

Både med og uden lecithin i opskriften opnås en betydeligt forbedret form af kuvertbrød med *F. oxysporum*-phospholipasen. I dette eksempel opnåedes den bedste kuvertbrødform ved en blanding af lecithin og phospholipase (1500 LU/kg mel).

EKSEMPEL 21

25

5

15

20

Anvendelse af en phospholipase, der er opnået fra F. oxysporum, som et antifriskhedstabende middel

Materialer og metoder Fremstilling af brød

Grundopskrift

Hvile ved stuetemperatur

Hvile ved stuetemperatur

Valsning/formning/i form

Hævning (32 °C, 82 % RH)

Sammenfoldning

Bagning (230 °C)

25

30

Europæiske almindeligt dej-hvidt brød og kuvertbrød blev fremstillet ud fra følgende grundopskrift:

	Mel (Meneba BBZ)	100 % (200	0 g)
	Vand	61 %	-
10	Gær	5 %	
	Salt	1,5 %	
	Sukker	1,5 %	
	Ascorbinsyre	40 ppm	
15	Bageprocedure		*
	Blanding (spiralblander), 625 r	pm	3 min.
	Blanding (spiralblander), 1250	rpm	3,5 min.
	Vurdering af dej		7 min.
	Fermentering (stuetemperatur))	15 min.
20	Valsning/formning		3 min.

I dette eksempel blev brødene anbragt i forme med låg for at undgå forskelle i de specifikke volumener før strukturanalyse. Efter nedkøling blev brødene opbevaret ved stuetemperatur, pakket i plastikposer.

5 min.

2 min.

5 min.

2 min.

55 min.

35 min.

Vurdering af bagte produkter

Vurdering af friskhedstab og struktur kan udføres ifølge AACC-metoden 74-09. En vurdering af brødkrummers blødhed som indikator for brøds friskhedstab blev udført 0, 1, 3 og 7 dage efter bagning i overenstemmelse med følgende procedure:

En skive brød blev komprimeret ved konstant hastighed i en strukturanalyse (TA TX-2), og styrken af kompressionen blev målt i g. Krummens fasthed måles som styrken ved 25 % kompression. En brødkrummes fasthed stiger efterhånden som brødet mister friskhed.

Resultater

5

10

15

Resultaterne fra fasthedsmålinger som funktion af opbevaringsdage er vist i tabel 21. Lecimulthin blev tilsat i en koncentration på 1 g/kg mel, og Füsarium oxysporum-phospholipasen blev tilsat i en dosis på 500 U/kg mel. Hvert resultat i tabellen er gennemsnitsværdien for 6 målinger (2 brød, 3 målinger på hver).

20 TABEL 21

Enzym/additiv	Fasthed Dag 0	Fasthed Dag 1	Fasthed Dag 3	Fasthed Dag 7
Kontrol	223	350	631	1061
Lecimulthin 100°	225	261	532	1010
Phospholipase	201	303	573	1257
Lecimulthin 100° + phospholipase	169	304	468	834

^{*}Kommercielt lecithin-præparat til bagning (Superfos, Danmark).

Som det fremgår af tabel 21, var brødene, der var behandlet med phospholipase, lidt blødere end kontrollen op til 3 dages opbevaring. I kombination med lecithin kunne der opnås en betydelig anti-friskhedstabende effekt under hele opbevaringen (som ikke er opnåelig med lecithin eller phospholipase alene).

SEKVENSLISTE

35

5	SEQ en D aktivi	JNA-sekv	<u>l</u> viser e ens, de	n klone r koder	t DNA- for e	-sekven: t enzyn	s ifølge n, som	opfindelse fremviser	en, som omfatter phospholipase-
	(2)	INFORI	NOITAN	OM SE	Q ID N	0: 1			
10		(i)	(A) (B) (C)	ENSEGI LÆNGI TYPE: I BESKA TOPOL	DE: 11 nuklein FFENI	70 base syre HED: en		nget	
13		(ii)	MOLE	KYLETY	/PE: cl	ONA			
20		(vi)	(A)	RLIG OF ORGAN STAMM	IISME:	Fusario	ım oxys	sporum	
25		(ix)	(B)	NAVN/k PLACEI	RING:	23106			
		(xi)	SEKVE	NSBES	KRIVE	LSE: S	EQ ID I	NO: 1	
	776	GAGAATA TI	CCTTGTCA					G GCC ATC F Ala Ile 10	52
		CTC GOG G				day day			100
		GAG GAG C						Asn Phe	148
		TTC TAC A							196
30									

NZAS-0007550

DK/EP 0869167T3

106

		45					50					55					
GC3	CCT	CCT	TCC	AAG	ÀTC	ACC:	TGC	TCC	AAC	AAT	GGC	TCT	CCA	ACC	GTT	,	44
													Pro		_	•	•
	60			_		65					70	-					
								•									
												_	TCC			_	92
	Çly	Asn	Gly	Ala		Ile	Val	Thr	Ser		Val-	Gly	Ser	Lys	Thr	•	
75					80					85				•	90		
GGT	ATC	GGT	GGC	TAC	GTC	ccc	усу	GAC	TCT	GCC	CCY	AAG	Gλλ	ATC	GTC	3	40
Gly	Ile	Gly	Gly	Tyr	Val	Ala	Thr	Asp	Ser	Ala	Arg	Lys	Glu	Ile	Val		
				95					100					105			
												~~			~~~		
													ACC Thr				68
741	361		110	41,	-41			115	<i>-</i> -y			,-	120	,,,,,,,			
													CGT			4	36
увр	Phe	Gly	Gln	Glu	yab	Cys		Leu	Val	Ser	ĊJĀ		Gly	Val	His		
		125					130					135					
TCT	sec	TTC	CAG	CGA	GCC	TGG	"AAT	GYU'	ATC	rog '	TCT	Chl	ೀಸ	ACC	CCT	4	84
													Ala				
	140					145					150						
																٠.	22
													GTC Val			3	32
155		W14	Ser	714	160	275	~~~		•••	165					170		
					•••												
													GCC			5	80
Thr	Gly	His	Ser		Cly	@JÅ	yjs	Val		Val	Leu	Mla	Als		Asn		
				175					180					185			
TTG	AGA	GTC	GGT	GGA	λCλ	CCC	GTC	CAT	ATT	TAC	λCC	TAC	GGC	TCT	ccc	6	28
													Gly				
			190					195					200				
													~~				76
													CAG Gln				,,,
~. y	741	205	A=1	~**	4111	5 04	210	~**	£ ***			215		,,,,,	3		
								•			•						
															CCT	7	124
Gly		Tyr	Arg	Val	Thr			yab	yab	Pro		Pro	yrg	Leu	Pro		
	220					225					230						

DK/EP 0869167T3

107

CC	T (7	G AT	C T	C 60	A TA	C AG	G CA	C AC	A AC	T CC	T C	-			6 700	_
Pr	o Le	u Il	e Pt	ua Gl	v Tv	- Ar	n 81	. Th	- Th	- 5-	:		C 16	e cr	e rcc u Ser	772
23	ς				24		y	9 111	E AIL			U Ph	e Tr	p le	u Ser	•
	•				49	J				24	5				250	١
GG	c 66	T GG	A GG	C GA	CAA	c cr	r ga	C TA	C AC		c	~ ~ ~ ~			G GTC	
G1	v C1	v Gl	v G1	v le	n Lu	o V.					-	~ UA	I GI	-	G GTC • Val	820
	•	,	,	25	<i>p −</i> j. 5			P -3	260		9 2 e	r As	p Va			
					•				200	,				26	5	
TC	r GA	c ca	T GC	T GO		. —	· cc				· 				t TIG	
Cvi	G)	u 61:	v Al:						- ~	. 667		A ACT	CT	CC	TIG	868
-4.			270		. v.		61)			613	GI	y Thi	Lev	1 C13	Leu	
			-/	•				279	•				280)		
CAT		~														
An-	Tla		21.	. 24.	·	CAT	TAC		: CAG	GCG	ACI	. CYC	: GCC	TGI	AAC	916
~=}		. 450	P WT	HI	red	H78			Gln	Ala	The	. yeb) Ala	CAR	λsn	
		285	•				290)				295				
~																
001	CG	GGC	; 110	ाटा	IGG	CCY	CCY	TAC	ycy	AGC	ecc	GAG	AGC	GTC	GAC	964
WTS	GIY	GIY	Phe	Ser	Trp		yrg	Tyr	Arg	Ser	Al a	שום .	Ser	Val	Asp	
	300	,				305					310	ì				
AAG	AGG	CCC	ACC	ATC	ACT	CAT	CCC	GYC	CTT.	GAG	AAG	-AAG	CIG	AAC	TCT	1012
Lys	Arg	yıa	Thr	Het	The	yab	χĮΒ	Gla	Lou	Clu	Lys	Lys	Leu	λsn	Ser	
315					32C					325					330	
														•		
TAT	GTC	CAG	ATG	GAT	YYG	GAG	TAT	CIC	AAG	YYI	AAC	CAG	écc	CGC	TCT	1060
Tyr	A#1	Çln	Xet	yeb	Lys	Clu	Tyr	Val	Lys	λen	yau	Gln	λla	λrg	Ser	
				335					340					345		
TAA	CCA	GGGT?	ATG I	NGCT:	TGAT	.c ec	NAX:	LCYCI	, ICY	TTC	TGA	ACCA	VAACC	:AT		1113
																•
AGTA	CAT	ric i	/TCCJ	UNT)	ic ca	KTATA	w	CAT	ATII	CAT	TCAC	TAGO	11 1	ACAC	AA	1170

- 5 <u>SEQ ID NO: 2</u> viser aminosyresekvensen for en phospholipase ifølge opfindelsen.
 - (2) INFORMATION OM SEQ ID NO: 2

10 (i) SEKVENSEGENSKABER:
(A) LÆNGDE: 346 aminosyrer
(B) TYPE: aminosyre
(D) TOPOLOGI: lineær

15 (ii) MOLEKYLETYPE: protein

(xi) SEKVENSBESKRIVELSE: SEQ ID NO: 2

Net 1	Leu	Leu	Leu	Pro 5	Leu	Leu	ser	λla	110	Thr	Lev	Ala	Val	Ala 15	Ser
Pro	Val	Ala	Leu 20	λsp	Хвр	Tyr	Val	Asn 25	Ser	Leu	Glu	Glu	Arg 30	Ala	Val
Gly	Val	Thr 35	Thr	Thr	Двр	Phe	Ser 40	λsn	Phe	Lys	Phe	Туг 45	Ile	Gln	His
Gly	Ala 50	Ala	Ala	Tyr	Cya	a sk 22	Ser	Clu	Ala	Ala	Ala 60	ely	Ser	Lys	Ile
Thr 65	Сув	Ser	Хsп	yau	61y 70	Сув	Pro	Thr	Val	Gln 75	Gly	λsn	Gly	Ala	Thr 80
IJ	Val	Thr	Ser	Phe 85	Val	Gly	Ser	Lys	Thr 90	Gly	Ile	Gly	Gly	Tyr 95	Val
Ala	Thr	Aŝp	Ser 100	λla	Arg	Lys	Gļu	11e 105	Val	Val	Ser.	. Phe	Arg 110	Cly	Ser
Ile	Asn	Ile 115	Arg	aek	Trp	Leu	Thr 120	Asn	Leu	As p	Phe	Gly 125		Glu	Хвр
сув	Ser 130		Val	Ser	Gly	Сув 135	Gly	Val	His	Ser	Gly 140		Gln	Arg	λla
Trp 145	Asn	Glu	Ile	Ser	Ser 150		Ala	Thr	Ala	Ala 155		Ala	Ser	λla	Arg 160
Lys	Ala	λen	Pro	Ser	Phe	λsn	Val	Ile	Ser	Thr	Gly	His	Ser	Leu	Gly

				165					170)				175	•
Gly i	Ala	Val	Ala 180		Leu	λla	Ala	Ala 185		Lev	Arg	Val	. Gly 190	_	Th
Pro 1	Val	Лвр 195	Ile	Tyr	Thr	Tyr	Gly 200	Ser	Pro	Arg	Val	Gly 205		Ala	Gli
Leu S	Ser 210	Ala	Phe	Val	Ser	Asn 215	Gln	Ala	Gly	Cly	Glu 220		λrg	Val	Thi
His 7 225	Ala	увр	ДВр	Pro	Val 230	Pro	Arg	Leu	Pro	Pro 235	Leu	Ile	Phe	Gly	Тух 240
Arg E	lis	The	Thr	<i>Pr</i> o 245	Glu	Phe	Trp	Leu	Ser 250	Gly	Gly	Gly	Gly	Хэр 255	Lys
Val A	\ap	Tyr	Thr 260	Ile	Ser	λвр	Val	Lys 265	Val	Сув	Glu	Gly	Ala 270	λla	Asn
Leu G		Cys 275	Asn	Gly	Gly	Thr	Leu 280	Gly	Leu	λ sp	Ile	Ala 285	Ala	His	Leu
His T	γr 90	Phe	Gla.	Ala	Thr	Лвр 295	Ala	Сув	λsn	Ala	Gly 300	Gly	Phe	Ser	Trp
Arg A 305	rg .	Tyr	Arg	Ser	Ala 310	Clu	Ser	Val	Авр	Lys 315	λrg	Ala	Thr	Xet	Thr 320
yab y	la	Glu		G]u 325	Lys	Lys	Leu	λsn	Ser 330	Tyr	Val	Gln	Met	λ ap 335	Lys

345

Glu Tyr Val Lys Asn Asn Gln Ala Arg Ser

Patentkrav:

_		olypeptid, som fremviser phospholipase A-aktivitet, der er valgt fra gruppen, består af:								
		et polypeptid, der kodes af den phospholipase A-kodende del af DNA- vensen, der er klonet ind i plasmid pYES 2.0, som er til stede i <i>Escherichia</i> DSM 11299,								
10	(b) SEC	et polypeptid med en aminosyresekvens som vist i positionerne 31-346 i D NO: 2,								
15	(c) SEC	et polypeptid med en aminosyresekvens som vist i positionerne 31-303 i ID NO: 2, og								
15	(d) et polypeptid, der er mindst 70 % homologt med polypeptidet, der er defineret i (a), (b) eller (c).									
20	2. P	olypeptid ifølge krav 1, som er en phospholipase A1.								
20	3. Po af:	olynukleotid, som omfatter en sekvens, der er valgt fra gruppen, som består								
25	(a) 2.0,	den phospholipase A-kodende sekvens, der er klonet ind i plasmid pYES som er til stede i <i>Escherichia coli</i> -DSM 11299,								
•	(b)	nukleotiderne 23-1063 i SEQ ID NO: 1,								
20	(c)	nukleotiderne 113-1063 i SEQ ID NO: 1,								
30	(d)	nukleotiderne 113-931 i SEQ ID NO: 1,								
	(e)	et polynukleotid, der koder for aminosyrerne 31-346 i SEQ ID NO: 2,								
35	(f)	et polynukleotid, der koder for aminosyreme 31-303 i SEQ ID NO: 2, og								
	(g)	et polynukleotid, der er mindst 70 % homologt med et hvilket som helst								

af ovennævnte polynukleotider, hvor polynukleotidet koder for et polypeptid, der fremviser phospholipase A-aktivitet.

4. Polynukleotid ifølge krav 3, der koder for et phospholipase A1-polypeptid.

5

- 5. Vektor, som omfatter polynukleotidet ifølge krav 3 eller 4.
- 6. Værtscelle, som omfatter vektoren ifølge krav 5.
- 10
- 7. Værtscelle ifølge krav 6, som er en eukaryotcelle, især en svampecelle, såsom en trådsvampecelle, for eksempel *Aspergillus* eller *Fusarium*.
- 8. Fremgangsmåde til frembringelse af en phospholipase A, som omfatter:
- 15
- (a) dyrkning af værtscellen ifølge krav 6 eller 7 under betingelser, der er passende til ekspression af phospholipasen og
- (b) indvinding af phospholipasen.
- 20
- 9. Anvendelse af polypeptidet ifølge krav 1 eller 2 i en proces, som omfatter behandling af et phospholipid eller lysophospholipid med phospholipasen til hydrolysering af fedtacylgrupper.
- 25
- 10. Anvendelse af polypeptidet ifølge krav 1 eller 2 i en proces til reduktion af indholdet af phospholipid i en spiseolie, der har et phosphorindhold fra 50-250 ppm, som omfatter behandling af olien med polypeptidet til hydrolysering af en stor del af phospholipidet og separering af en vandfase, som indeholder det hydrolyserede phospholipid, fra olien.
- 30
- 11. Anvendelse af polypeptidet ifølge krav 1 eller 2 i en proces til frembringelse af et bagt produkt, som omfatter tilsætning af polypeptidet til en dej og bagning af dejen til frembringelse af det bagte produkt.

Fig.

Oliedegummering - Fusarium PL vs. Lecitase Fig. 2

TELEFAX 1 SIDE HASTER

Patent- og Varemærkestyrelsen Helgeshøj Allé 81 2630 Tåstrup 19 December 2002

Att.: Kassen

Deres ref:

Vor ref:

4798.202-EP

DK/EP oversættelse vedrørende EP patent 0869167 Trykningsgebyr

Vi skal hermed anmode om at trykningsgebyret for ovennævnte patent trækkes på kontonr. PDK 1.

NB

Vi beder Dem venligst bekræfte modtagelsen af dette brev pr. fax. På forhånd tak.

Med venlig hilsen Novozymes A/S

Sten L. Klundon Sten Lottrup Knudsen

Patents

19.000 2002 Please return this copy	Patent- og Varemærkestyrelse Erhvervsministeriet
DIVLI	CHIACLANIMUMS (GLIGA
oversættelse vedrørende EP patentansøgning / EP patent	
Reference	Helgeshøj Allé 81 2630 Taastrup
Trykningsgebyr: Agent Short till: 7.390, - Short till: Ansøgers/fuldmægtigs referencenr.: 4798, 202-EP/DK	Tir. 43 50 80 00 Fax 43 50 80 01 Postgiro 8 989 923 E-post pvs@dkpto.dk www.dkpto.dk
Ansøger (fulde navn og adresse):	
NOVOZYMES A/S Krogshøjvej 36 2880 Bagsværd SLI	< 19 DEC 2002
Fuldmægtig (navn og adresse):	•
ℓ	
Dansk benævnelse:	1 0
REDUKTION AF PHOSPHOR-INDHOLDENDE BESTANDDELE I SPISEOLIER; SOM OMFATTER EN STOR MÆNGDE IKKE-HYDRER PHOSPHOR, VED ANVENDELSE AF EN PHOSPHOLIPASE, EN PHOLIPASE FRA EN TRÅDSVAMP, DER HAR EN PHOSPHOLIPAS A OG/ELLER B AKTIVITET.	ios-
Bilagsfortegnelse: Dansk oversættelse af krav (71) i 2 ekspl. Rettet dansk oversættelse af krav (72) i 2 ekspl. Dansk oversættelse af patent (73)	
Dansk oversættelse af ændret patent (74)	
☐ Rettet dansk oversættelse af patent (75) ☑ Tegning	
Fuldmagt	
Dato og underskrift: Bagsværd, 17. december 2002 Novozymes A/S Sten Lottrup Knudsen EP ansøgningsnummer: 97 610 056.0	
EP publiceringsnummer: 0869167	
EP patentnummer: 0869167	

10.1-mar00/s

DK/EP

Patent- og Varemærkestyrelsen Erhvervsministeriet

Helgeshøj Allé 81 2630 Taastrup

			2030 1883(10)
Trykningsgebyr:		Ansøgers/fuldmægtigs referencenr.:	Tif. 43 50 80 00 Fax 43 50 80 01
7.390,-		4798,202-EP/DK	Postgiro 8 989 923 E-post pvs@dkpto.dk www.dkpto.dk
Ansøger (fulde navn og adres:	se):	☐ Flere ansøgere på bagsiden.	-
NOVOZYMES A/S Krogshøjvej í 2880 Bagsvæ	36		
Fuldmægtig (navn og adresse)):		
·		·	
Dansk benævnelse:			-
SPISEOLIER; SPHOSPHOR, VE	SOM OMFATTER D ANVENDELSE A EN TRÅDSVAM	HOLDENDE BESTANDDELE I EN STOR MÆNGDE IKKE-HYDI AF EN PHOSPHOLIPASE, EN P, DER HAR EN PHOSPHOLII	PHOS-
Bilagsfortegnelse:			
Dansk oversættelse af krav			
Rettet dansk oversættelse a			
Dansk oversættelse af pate			
Dansk oversættelse af ænd			
Rettet dansk oversættelse a	of patent (73)		
☑ Tegning ☐ Fuldmagt			
Dato og underskrift: Bags No v	sværd, 17. de ozymes A/S	cember 2002	_
Ste	n Lottrup Knu	usen Jul trend	4
EP ansøgningsnummer:	97 610 056.0	=	_ •
EP publiceringsnummer:	0869167		
EP patentnummer:	0869167		
10.1-mar00/ts			

Reduktion af phosphor-indeholdende bestanddele i spiseolier, som omfatter en stor mængde ikke-hydrerbart phosphor, ved anvendelse af en phospholipase, en phospholipase fra en trådsvamp, der har phospholipase A og/eller B aktivitet.

Opfindelsens område

5

10

20

25

35

Den foreliggende opfindelse angår en fremgangsmåde til reduktion af indholdet af phosphor-indeholdende bestanddele i en spiseolie, som omfatter en stor mængde ikke-hydrerbart phosphor, ved anvendelse af en phospholipase.

Den foreliggende opfindelse angår yderligere et enzym med phospholipaseaktivitet, en klonet DNA-sekvens, der koder for enzymet med phospholipaseaktivitet, en fremgangsmåde til frembringelse af enzymet og anvendelse af nævnte enzym til en række industrielle formål.

Opfindelsens baggrund

Enzymatisk degummering af spiseolier, som omfatter en relativ stor mængde ikke-hydrerbart phosphorindhold

Anvendelsen af phospholipase til enzymatisk degummering af en vanddegummeret spiseolie (US 5 264 367, Metallgesellschaft, Röhm) til at reducere phosphorindholdet i nævnte vanddegummeret spiseolie er velkendt.

Denne proces kan imidlertid forbedres yderligere, især til udførelse af enzymatisk degummering af spiseolier, som omfatter en stor mængde ikkehydrerbart phosphor (NHP) og/eller relativt store mængder af mucilago.

Følgeligt er et formål for opfindelsen at tilvejebringe en fremgangsmåde til at reducere indholdet af phosphor-indeholdende bestanddele i sådanne olier, hvor nævnte fremgangsmåde omfatter anvendelse af en phospholipase.

30 <u>En phospholipase ifølge opfindelsen</u>

Phospholipider, såsom lecithin eller phosphatidylcholin, består af glycerol, der er esterificeret med to fedtsyrer i den ydre (sn-1) og den midterste (sn-2) position og esterificeret med phosphorsyre i den tredje position; phosphorsyren igen kan være esterificeret til en aminoalkohol. Phospholipaser er enzymer, der tager del i hydrolysen af phospholipider. Adskillige typer af phospholipase-aktivitet kan skelnes fra hinanden, herunder phospholipaserne

A₁ (PLA₁) og A₂ (PLA₂), som hydrolyserer én fedtsyregruppe (i henholdsvis sn-1- og sn-2-positionen) til frembringelse af lysophospholipid, og lysophospholipase (eller phospholipase B (PLB)), som kan hydrolysere den resterende fedtsyregruppe i lysophospholipid.

5

Denne opfindelse angår blandt andet en phospholipase fra en trådsvamp, som har evnen til at hydrolysere den ene og/eller begge fedtsyregrupper i et phospholipid (det vil sige fremviser PLA- og/eller PLB-aktivitet).

10 <u>Tidligere karakteriserede PLA- og/eller PLB-enzymer fra svampe</u>

Talrige referencer beskriver karakteriseringen af svampe-phospholipaser. For at gøre det lettere at få et overblik over status inden for området, er referencerne blevet grupperet i to afsnit.

15

Afsnit ét vedrører referencer, som beskriver identificeringen af svampephospholipaser, som man aktuelt ikke mener er beslægtede med svampephospholipasen ifølge den foreliggende opfindelse. Disse referencer er hovedsageligt indbefattet for at sammenfatte status inden for området karakterisering af svampe-phospholipaser.

Afsnit to vedrører referencer, som beskriver karakteriseringen af svampephospholipaser, som menes at være relevante for svampe-phospholipaserne ifølge den foreliggende opfindelse.

25

30

35

20

Afsnit ét

Enzymer med phospholipase A- og/eller B-aktivitet er blevet fundet i forskellige svampekilder, herunder *Penicillium notatum* (der også er kendt som *P. chrysogenum*; N. Kawasaki, J. Biochem. <u>77</u>:1233-44, 1975; N. Masuda et al., Eur. J. Biochem. <u>202</u>:783-787, 1991), *P. cyclopium* (Process Biochemistry <u>30</u>(5):393-401, 1995), *Saccharomyces cerevisiae* (M. Ichimasa et al., Agric. Biol. Chem. <u>49</u>(4):1083-89, 1985; F. Paultauf et al., J. Biol. Chem. <u>269</u>:19725-30, 1994), *Torulaspora delbrueckii* (gammelt navn *Saccharomyces rosei*; Y. Kuwabara, Agric. Biol. Chem. <u>52</u>(10):2451-58, 1988; FEMS, Microbiol. Letters <u>124</u>:29-34), *Schizosaccharomyces pombe* (H. Oishi et al., Biosci. Biotech. Biochem. <u>60</u>(7):1087-92, 1996), *Aspergillus niger* (Technical Bulletin, G-

zyme™ G999, Enzyme Bio-Systems Ltd.; Process Biochemistry <u>30(5)</u>:393-401 (1995)) og *Corticium centrifugum* (S. Uehara et al., Agric. Biol. Chem. <u>43(3)</u>:517-525, 1979).

5 Afsnit to

EP 575133 A2 beskriver isoleringen og karakteriseringen af en svampephospholipase A1, som er opnået fra *Aspergillus*, og anvendelsen deraf til industrielle formål.

10

Der er ingen sekvensinformation (hverken DNA- eller aminosyre-) indbefattet i ansøgningen, ej heller er nogen strategi eller noget forslag til kloning af noget af *Aspergillus*-phospholipasen beskrevet eller anført i ansøgningen.

15

Tsung-Che et al. (Phytopathological notes <u>58</u>:1437-38 (1968)) beskriver kort karakteriseringen af en phospholipase fra *Fusarium solani*.

20

EP 130 064 beskriver en isoleret fraktion af et fermenteringsmedium, der fremviser lipase-aktivitet, som er opnået fra stammen *Fusarium oxysporum* DSM 2672. Ydermere er anvendelsen deraf i detergentsammensætninger beskrevet. EP 130 064 beskriver imidlertid ikke denne fraktion som fremvisende phospholipase-aktivitet.

WO 96/13579 beskriver en lipase, som er opnået fra stammen Fusarium culmorum CBS 513.94, herunder dens N-terminale sekvens.

25

 ℓ^2

WO 96/13579 beskriver imidlertid ikke noget enzym, som fremviser phospholipase-aktivitet.

30

En cDNA-sekvens, som koder for en lipase fra Fusarium heterosporum er beskrevet (Cloning and nucleotide sequence of cDNA encoding a lipase from Fusarium heterosporum, J. Biochem. 116:536-540, 1994). Denne sekvens menes aktuelt at være den DNA-sekvens, der er mest beslægtet med en klonet DNA-sekvens ifølge opfindelsen (se afsnittet "Sammenligning med tidligere kendt materiale" (se nedenfor)). Denne reference beskriver imidlertid ikke noget enzym, der fremviser phospholipase-aktivitet.

En cDNA-sekvens, som koder for en phospholipase B fra *Penicillum notatum*, er beskrevet (Eur. J. Biochem. <u>202</u>:783-787, 1991). Denne klonede DNA-sekvens har imidlertid meget begrænset homologi med en DNA-sekvens ifølge opfindelsen (se afsnittet "Sammenligning med tidligere kendt materiale" (se nedenfor)).

Industriel anvendelse af phospholipaser

En række anvendelser af phospholipaser er kendte, såsom anvendelse af phospholipase i for eksempel enzymatisk degummering af en vanddegummeret olie (US 5 264 367, Metallgesellschaft, Röhm), behandling af stivelseshydrolysat (især fra hvedestivelse) til forbedring af filtrerbarheden (EP 219 269, CPC International), som tilsætningsstof til brøddej til at forbedre brødets elasticitet (US 4 567 046, Kyowa Hakko), og til fremstilling af lysolecithin med specielle emulgerende egenskaber.

Aktuelt anvendes phospholipasen Lecitase® (Novo Nordisk A/S) kommercielt til for eksempel degummering af olier. Lecitase® er et mammalia-enzym, som er opnået fra svinepancreas.

Det er velkendt, at det er muligt at danne svampeenzymer rekombinant med opnåelse af industrielt økonomisk acceptable udbytter, især fra trådsvampe.

Følgeligt er det et formål for denne opfindelse at tilvejebringe en forbedret phospholipase til anvendelse for eksempel i processerne, der er beskrevet ovenfor.

Det er endvidere et formål for den foreliggende opfindelse at beskrive processer og fremgangsmåder til rekombinant produktion med industrielt acceptable udbytter af en phospholipase, som er opnået fra en trådsvamp.

Sammendrag af opfindelsen

Vanddegummering af spiseolier udføres ved hjælp af ekstraktion med vand. Ved denne behandling efterlades en del af phosphatiderne i olien. Denne del beskrives ved hjælp af fællesbetegnelsen "ikke-hydrerbare phosphatider" (NHP). Ved produktionen af olier er det essentielt at fjerne NHP-indholdet (US

25

30

35

5

10

5 264 367).

Den foreliggende opfindelse tilvejebringer en fremgangsmåde til fjernelse af NHP-indholdet i en olie, som omfatter en relativ stor mængde af NHP.

5

Følgeligt angår opfindelsen i et første aspekt en fremgangsmåde til at reducere indholdet af phosphor-indeholdende bestanddele i en spiseolie, som har et ikke-hydrerbart phosphorindhold på mindst 50 ppm, der er målt ved hjælp af:

10

1

i) forbehandling af spiseolien ved 60 °C ved hjælp af tilsætning af en opløsning, som omfatter citronsyremonohydrat i vand (tilsat vand vs. olie = 4,8 % vægt/vægt, [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM) i 30 minutter,

15

- ii) overførsel af 10 ml af den forbehandlede vand-i-olie-emulsion til et reagensglas,
- iii) opvarmning af emulsionen i et kogende vandbad i 30 minutter,

20

- iv) centrifugering ved 5000 rpm i 10 minutter,
- v) overførsel af ca. 8 ml af den øverste (olie) fase til et nyt reagensglas og henstand til bundfældning i 24 timer, og

25

vi) herefter udtagning af 2 g fra den øverste klare fase til måling af det ikke-hydrerbare phosphorindhold (ppm) i spiseolien,

og hvor nævnte fremgangsmåde omfatter:

30

kontaktbringning mellem nævnte olie ved en pH fra 1,5-8 og en vandig opløsning af en phospholipase A1, en phospholipase A2 eller en phospholipase B, idet opløsningen emulgeres i olien, indtil phosphorindholdet i olien er reduceret til mindre end 11 ppm, og efterfølgende separering af den vandige fase fra den behandlede olie.

35

I et andet aspekt angår opfindelsen en ny klonet phospholipase.

Yderligere undersøgelser af karakteren af lipase-aktiviteten, som findes i Fusarium oxysporum DSM 2672 (og er beskrevet i EP 130 064), viste, at den isolerede fraktion omfatter adskillige bestanddele med lipase-aktivitet, hvoraf den ene fremviste phospholipase-aktivitet.

5

10

15

(

25

30

35

På trods af en række tekniske vanskeligheder (se nedenfor) har de foreliggende opfindere været i stand til at klone et enzym, som fremviser phospholipase A-aktivitet, fra en stamme af slægten *Fusarium*, mere specifikt *Fusarium oxysporum*.

Dette er første gang en phospholipase A fra en trådsvamp er blevet klonet, og følgeligt tilvejebringer den foreliggende opfindelse en klonet DNA-sekvens, som koder for et phospholipase A-enzym fra en trådsvamp.

Følgeligt angår ét aspekt af opfindelsen en klonet DNA-sekvens, som koder for et polypeptid med phospholipase A-aktivitet, hvor DNA-sekvensen er opnået fra en trådsvamp.

20 En cDNA-sekvens, som koder for en phospholipase B fra *Penicillum notatum*, er beskrevet i Eur. J. Biochem. <u>202</u>:783-787, 1991.

Denne DNA-sekvens fremviser imidlertid kun en meget begrænset DNA-lighed på 39 % med DNA-sekvensen ifølge den foreliggende opfindelse (SEQ ID NO: 1, 23-1060), og endvidere varierer en fysiologisk egenskab, såsom molekylemassen, betydeligt mellem nævnte PLB fra *P. notatum* (66 kDa) og en phospholipase ifølge opfindelsen (29 ± 10 kDa (se nedenfor)).

Endvidere har en sammenligning med kendte nukleotid- og aminosyresekvenser vist, at DNA-sekvensen og/eller den tilsvarende kodede aminosyresekvens ifølge opfindelsen kun har ringe homologi med alle kendte DNA- og/eller aminosyresekvenser (se nedenfor).

Følgelig mener man aktuelt, at DNA-sekvensinformationen, der tilvejebringes i den foreliggende ansøgning, vil være meget værdifuld til for eksempel kloning af en anden beslægtet/homolog phospholipase-kodende DNA-sekvens, da en specifik hybridiseringsprobe og/eller PCR-primere nu let kan konstrueres på

basis af nævnte DNA-sekvens ifølge opfindelsen.

5

10

(:)

25

35

Yderligere mener man aktuelt, at det er muligt at klone både en beslægtet/homolog phospholipase A- og/eller phospholipase B-kodende DNA-sekvens på basis af sekvensinformationen, der tilvejebringes i den foreliggende ansøgning.

Følgeligt angår opfindelsen i et yderligere aspekt en klonet DNA-sekvens, som koder for et enzym, der fremviser phospholipase A- og/eller phospholipase B-aktivitet, idet DNA-sekvensen er valgt fra gruppen, der omfatter:

- (a) den phospholipase A-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i *Escherichia coli* DSM 11299,
- (b) DNA-sekvensen, der er vist i positionerne 23-1063 i SEQ ID NO: 1, mere fortrinsvis positionerne 113-1063 i SEQ ID NO: 1, eller endnu mere fortrinsvis positionerne 113-929 i SEQ ID NO: 1, eller den komplementære streng dertil,
- 20 (c) en DNA-sekvens, der er mindst 70 % homolog med nævnte DNA-sekvenser, der er defineret i (a) eller (b),
 - (d) en DNA-sekvens, der er defineret i (a) eller (b), som koder for et polypeptid, der fremviser phospholipase-aktivitet og er mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-346 i SEQ ID NO: 2, eller mere fortrinsvis mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-303 i SEQ ID NO: 2,
- (e) en DNA-sekvens, som hybridiserer med en dobbeltstrenget DNA 30 probe, som omfatter DNA-sekvensen, der er vist i positionerne 23-1063 i SEQ
 ID NO: 1, ved lav stringens,
 - (f) en DNA-sekvens, som koder for et polypeptid, der har de samme aminosyresekvenser i positionresterne 1 til 346, 31 til 303 eller 31 til 303 i SEQ ID NO: 2, eller aminosyresekvenserne, der kodes for ved hjælp af en hvilken som helst af DNA-sekvenserne ifølge (e), og

- (g) en DNA-sekvens, som er et fragment af DNA-sekvenserne, der er specificeret i (a), (b), (c), (d), (e) eller (f).
- Endvidere er en phospholipase ifølge opfindelsen blevet grundigt karakteriseret, og det har vist sig, at den har phospholipase-aktivitet ved lavt pH, denne egenskab gør den meget egnet til anvendelse til oliedegummering. Phospholipasen er ikke membranbundet, hvilket gør den egnet til kommerciel produktion og oprensning.
- Følgeligt angår opfindelsen i et yderligere aspekt et isoleret polypeptid med phospholipase A-aktivitet, som er opnået fra en stamme af slægten *Fusarium* og har:
 - i) PLA-aktivitet i pH-intervallet 3-10, målt ved 40 °C,

15

ſ.

25

(....

- ii) en molekylemasse på 29 ± 10 kDa, bestemt ved hjælp af SDS-PAGE,
- iii) et isoelektrisk punkt (pl) i intervallet 4,5-8,
- 20 iv) et temperaturoptimum for phospholipase-aktivitet i intervallet 25-55 °C, målt med lecithin som substrat ved pH 5, og/eller
 - v) et pH-optimum for phospholipase-aktivitet i pH-intervallet 6-12, målt med lecithin som substrat ved 37 °C.

En udledt aminosyresekvens for en isoleret phospholipase ifølge opfindelsen er vist i SEQ ID NO: 2.

- Den N-terminale aminosyresekvens for en moden secerneret isoleret phospholipase er blevet bestemt. Nævnte N-terminale sekvens viste, at den modne del af en phospholipase ifølge opfindelsen med aminosyresekvensen, der er vist i SEQ ID NO: 2, starter i aminosyre nr. 31 i SEQ ID NO: 2. Se forsøgseksempel heri for yderligere detaljer (se nedenfor).
- Endvidere er den C-terminale sekvens for en aktiv secerneret phospholipase ifølge opfindelsen med aminosyresekvensen, der er vist i SEQ ID NO: 2, blevet bestemt. Nævnte C-terminal-bestemte phospholipase blev rekombinant

udtrykt i trådsvampestammen *Aspergillus oryzae*. Se forsøgseksempel heri for yderligere henvisning.

Disse resultater viste, at enzymet blev C-terminalt processeret under ekspression fra A. oryzae, og resultaterne tyder på, at Ser303 i SEQ ID NO: 2 er den mest sandsynlige C-terminale rest i det udtrykte modne aktive enzym. Det forudses imidlertid, at endnu yderligere C-terminal processering kan finde sted (det vil sige, som frembringer et fragment af nævnte sekvenser), og at man stadig har et udtrykt modent aktivt enzym.

10

5

Følgeligt angår opfindelsen i et yderligere aspekt et isoleret enzym, som fremviser phospholipase A- og/eller B-aktivitet og er valgt fra gruppe, der omfatter:

- 15 (a) et polypeptid, som kodes af den phospholipase A- og/eller Benzymkodende del af DNA-sekvensen, der er klonet ind i pYES 2.0, som er til stede i *Escherichia coli* DSM 11299,
- (b) et polypeptid med en aminosyresekvens som vist i positionerne 31-20 346 i SEQ ID NO: 2,
 - (c) et polypeptid med en aminosyresekvens som vist i positionerne 31-303 i SEQ ID NO: 2,
- 25 (d) en analog til polypeptider, der er defineret i (a), (b) eller (c), idet analogen er mindst 70 % homolog med nævnte polypeptid, og
 - (e) et fragment af (a), (b), (c) eller (d).
- I endnu et yderligere aspekt tilvejebringer opfindelsen en rekombinant ekspressionsvektor, som åbner mulighed for heterolog rekombinant produktion af et enzym ifølge opfindelsen. Det er derved muligt at lave en stærkt oprenet phospholipase-sammensætning, som er kendetegnet ved at være fri for homologe urenheder. Det er yderst fordelagtigt til en række industrielle anvendelser.

Den foreliggende opfindelse viser eksperimentelt (se nedenfor), at en

phospholipase, der er opnået fra en stamme af *Fusarium culmorum* og *Fusarium oxysporum*, har forbedrede egenskaber til anvendelse til industrielle relevante formål. Det forudses, at phospholipaser, der er opnået fra en stamme af slægten *Fusarium*, vil have forbedrede egenskaber, der er relevante til anvendelse til anvendelse til industrielle formål.

Følgeligt angår opfindelsen i endnu et yderligere aspekt anvendelsen af en phospholipase, der er opnået fra en stamme af slægten *Fusarium*, såsom en stamme af *F. culmorum*, *F. heterosporum*, *F. solani* eller især en stamme af *Fusarium oxysporum*, i en proces, der omfatter behandling af et phospholipid eller lysophospholipid med phospholipasen til hydrolysering af fedtsyregrupperne.

Endelig angår opfindelsen en isoleret, i det væsentlige ren biologisk kultur af *Escherichia coli*-stammen DSM 11299, som indeholder en phospholipase-kodende DNA-sekvens (den phospholipase-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i *Escherichia coli* DSM 11299), der er opnået fra en stamme af trådsvampen *Fusarium oxysporum*, eller en hvilket som helst mutant af nævnte *E. coli*-stamme, som har bevaret den phospholipase-kodende egenskab.

Homologisammenligning med kendte sekvenser

Der blev udført en homologisøgning med phospholipasen ifølge opfindelsen mod nukleotid- og proteindatabaser. Homologisøgningen viste, at den tættest beslægtede kendte sekvens var en lipase fra *Fusarium heterosporum* (en parallelopstilling af aminosyrer er vist i figur 1).

DNA-sekvensen ifølge opfindelsen (SEQ ID NO: 1, 23-1060), som koder for phospholipasen, viser kun 62 % DNA-homologi med den kendte lipasesekvens fra *Fusarium heterosporum* (Genbank-databasereference S77816), og den tilsvarende aminosyresekvens for phospholipasen ifølge opfindelsen (SEQ ID NO: 2) viser kun 60 % homologi med en udledt aminosyresekvens på basis af den kendte DNA-sekvens ovenfor (se figur 1).

Dette viser, at DNA- og/eller aminosyresekvensen for en phospholipase ifølge opfindelsen rent faktisk er forskellig fra alle kendte DNA- og/eller

NZAS-0007572

35

30

5

10

15

20

aminosyresekvenser.

En cDNA-sekvens, der koder for en phospholipase B fra *Penicillum notatum* er beskrevet (Eur. J. Biochem. <u>202</u>:783-787, 1991). Denne DNA-sekvens (Genbank-databasereference X60348) viser imidlertid kun en meget begrænset DNA-lighed på 39 % med DNA-sekvensen ifølge den foreliggende opfindelse (SEQ ID NO: 1, 23-1060), og den tilsvarende aminosyresekvens for phospholipasen ifølge opfindelsen (SEQ ID NO: 2) viser kun 20 % lighed med en udledt aminosyresekvens, der er baseret på den kendte PLB-DNA-sekvens ovenfor.

Beregningeme af homologi blev udført som beskrevet senere i denne specifikation.

15 <u>Tegninger</u>

5

10

Figur 1: Parallelopstilling af aminosyresekvensen, der er vist i SEQ ID NO: 2 med en kendt lipasesekvens fra Fusarium heterosporum.

Figur 2: Sámmenligning af enzymatisk degummeringsevne hos Lecitase™ og en phospholipase fra *Fusarium oxysporum* ifølge opfindelsen.

Definitioner

Før en mere detaljeret gennemgang af denne opfindelse vil følgende udtryk blive defineret.

"En klonet DNA-sekvens": Udtrykket "en klonet DNA-sekvens" henviser til en DNA-sekvens, der er klonet ifølge standard-kloningsprocedurer, som anvendes ved gensplejsning til at flytte et segment af DNA fra dens naturlige placering til et andet site, hvor det vil blive reproduceret. Kloningsprocessen inddrager udskæring og isolering af det ønskede DNA-segment, insertion af DNA-stykket i vektormolekylet og inkorporering af den rekombinante vektor i en celle, hvor talrige kopier eller kloner af DNA-segmentet vil blive replikeret.

Den "klonede DNA-sekvens" ifølge opfindelsen kan alternativt benævnes "en DNA-konstruktion", "et klonet polynukleotid med en DNA-sekvens" eller "en

35

30

(· · ·

isoleret DNA-sekvens".

"Opnået fra": Til formålet i den foreliggende opfindelse betyder udtrykket "opnået fra" som anvendt heri i forbindelse med en specifik mikrobiel kilde, at enzymet og følgeligt DNA-sekvensen, der koder for nævnte enzym, er dannet af den specifikke kilde eller af en celle, hvori et gen fra kilden er blevet indsat.

"Et isoleret polypeptid": Som defineret heri henviser udtrykket "et isoleret polypeptid" eller "en isoleret phospholipase" som anvendt om phospholipasen ifølge opfindelsen til en phospholipase eller phospholipasedel, som i det væsentlige er fri for andre ikke-phospholipase-polypeptider, for eksempel mindst 20 % ren, fortrinsvis mindst 40 % ren, mere fortrinsvis 60 % ren, endnu mere fortrinsvis 80 % ren, mest fortrinsvis 90 % ren og endnu mest fortrinsvis 95 % ren, bestemt ved hjælp af SDS-PAGE.

15

10

5

Når det isolerede polypeptid er mindst 60 % rent kan udtrykket "et stærkt isoleret polypeptid" anvendes. Det "isolerede polypeptid" kan alternativt benævnes "oprenset polypeptid".

20

"Homologe urenheder": Som anvendt heri betyder udtrykket "homologe urenheder" en hvilken som helst urenhed (for eksempel et andet polypeptid end enzymet ifølge opfindelsen), som stammer fra den homologe celle, hvorfra enzymet ifølge opfindelsen oprindeligt er opnået. I den foreliggende opfindelse kan den homologe celle for eksempel være en stamme af *Fusanum oxysporum*.

25

 $f_{i,j}$

"Phospholipase-kodende del": Som anvendt heri betyder udtrykket "phospholipase-kodende del", når det anvendes i forbindelse med en DNA-sekvens, det område af DNA-sekvensen, som svarer til det område, der er translateret til en polypeptidsekvens.

30

1 DNA-sekvensen, der er vist i SEQ ID NO: 1, er det området mellem den første "ATG"-startkoden ("AUG"-kodon i mRNA) og den følgende stopkodon ("TAA", "TAG" eller "TGA").

35

Det translaterede polypeptid kan yderligere foruden den modne sekvens, som fremviser phospholipase-aktivitet, omfatte et N-terminalt signal og/eller en

propeptidsekvens. Signalsekvensen styrer almindeligvis sekretionen af polypeptidet, og propeptidet styrer almindeligvis foldningen af polypeptidet. For yderligere information se Egnell, P., et al., Molecular Microbiol. <u>6</u>(9):1115-19 (1992) eller Stryer, L., "Biochemistry", W.H. Freeman and Company/New York, ISBN 0-7167-1920-7.

"Modifikation(er) af en DNA- og/eller aminosyresekvens": Udtrykket "modikation(er)", der anvendes i forbindelse med modifikation(er) af en DNA- og/eller aminosyresekvens som beskrevet heri, defineres til at indbefatte kemisk modificering såvel som genmanipulation(er). Modificeringen eller modificeringerne kan være substitution, deletion og/eller insertion i aminosyren eller aminosyrerne af interesse.

"Phospholipase A": Udtrykket "phospholipase A", som anvendes heri i forbindelse med et enzym ifølge opfindelsen, påtænkes at dække et enzym med phospholipase A1- og/eller phospholipase A2-aktivitet.

<u>Phospholipase A1</u> defineres ifølge standard-enzym-EC-klassifikation som EC 3.1.1.32.

20 Officielt navn: phospholipase A1 (PLA1).

Katalyseret reaktion:

phosphatidylcholin + h(2)o <>

2-acylglycerophosphocholin + en fedtsyre-anion.

Kommentar(er): har en meget bredere specificitet end EC 3.1.1.4.

25

30

35

i . . .

5

10

<u>Phospholipase A2</u> defineres ifølge standard-enzym-EC-klassifikation som EC 3.1.1.4.

Officielt navn: phospholipase A2 (PLA2).

Alternativt navn(e): phosphatidylcholin 2-acylhydrolase, lecithinase a, phosphatidase eller phosphatidolipase.

Katalyseret reaktion:

phosphatidylcholin + h(2)o <>

1-acylglycerophosphocholin + en fedtsyre-anion.

Kommentar(er): virker også på phosphatidylethanolamin, cholinplasmalogen og phosphatider, idet den fjerner fedtsyren, der er bundet til 2-positionen.

"Phospholipase B": defineres ifølge standard-enzym-EC-klassifikation som EC

3.1.1.5.

5

10

15

20

25

(i

Officielt navn: lysophospholipase.

Alternativt navn(e): lecithinase b, lysolecithinase, phospholipase b eller plb.

Katalyseret reaktion:

2-lysophosphatidylcholin + h(2)o <> glycerophosphocholin + en fedtsyre-anion.

"Phospholipase-aktivitet": Udtrykket "phospholipase-aktivitet" eller "har/fremviser phospholipase-aktivitet" påtænkes som anvendt heri i forbindelse med et enzym ifølge opfindelsen at specificere et enzym, som mindst har den mængde phospholipase-aktivitet (hvad enten det er PLA eller PLB), der defineres eksperimentelt nedenfor.

Følgeligt defineres et enzym, der fremviser phospholipase-aktivitet, heri som et enzym, der i "enkeltlags-phospholipase-assayet", der er vist i eksempel 6 heri (se nedenfor), har en phospholipase-aktivitet på mindst 0,25 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 0,40 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 0,75 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 1,0 nmol/min., enzymdosis: 60 μg, ved 25 °C; mere fortrinsvis mindst 1,25 nmol/min., enzymdosis: 60 μg, ved 25 °C; og endnu mere fortrinsvis mindst 1,5 nmol/min., enzymdosis: 60 μg, ved 25 °C.

Man mere på nuværende tidspunkt, at kun et enzym med en sådan signifikant phospholipase-aktivitet har industriel interesse, for eksempel til anvendelse til degummering (US 5 264 367).

"En lipase med phospholipase-sideaktivitet": Udtrykket "lipase med phospholipase-sideaktivitet" defineres følgeligt som en lipase med en phospholipase-sideaktivitet, hvor phospholipase-sideaktiviteten i "enkeltlags-phospholipase-assayet", der er vist i eksempel 6, er mindre end de ovenfor nævnte tal.

En række lipaser har en sådan phospholipase-sideaktivitet. I forsøgseksempel 6 heri (se nedenfor) er vist nogle af lipaserne med phospholipase-sideaktivitet.

"En råolie": En råolie (kaldes også en ikke-degummeret olie) kan være en presset eller ekstraheret olie eller en blanding deraf fra for eksempel rapsfrø,

NZAS-0007576

35

sojabønne eller solsikke. Phosphatid-indholdet i en råolie kan variere fra 0,5-3 % (vægt/vægt) svarende til et phosphorindhold i intervallet 200-1200 ppm, mere fortrinsvis i intervallet 250-1200 ppm. Bortset fra phosphatiderne indeholder råolien også små koncentrationer af carbohydrater, sukkerforbindelser og metal/phosphatidsyre-komplekser med Ca, Mg og Fe.

"En semiråolie": En hvilken som helst olie, som ikke er en råolie, men som har et phosphatid-indhold på over 250 ppm, mere fortrinsvis på over 500 ppm. En sådan olie kunne for eksempel opnås ved at udsætte en råolie for en proces tilsvarende "vanddegummeret olie"-processen, der er beskrevet nedenfor.

"En vanddegummeret olie": En vanddegummeret olie opnås typisk ved at blande 1-3 % (vægt/vægt) varm vand med varm (60-90 °C) råolie. Sædvanlige behandlingstider er 30-60 minutter. Vanddegummeringstrinet fjerner phosphatiderne og slimagtige gummier, som bliver uopløselige i olien, når de hydreres. De hydrerede phosphatider og gummier kan separeres fra olien ved hjælp af fældning, filtrering eller centrifugering - idet centrifugering er den mest almindelige metode.

- Det essentielle formål med nævnte vanddegummeringsproces er at separere de hydrerede phosphatider fra olien. Blandingen af varmt vand i olien, der er beskrevet ovenfor, skal heri forstås bredt som blanding af en vandig opløsning i olien ifølge kendte standard-vanddegummeringsprocedurer.
- Alternativt kan processen, som her benævnes "vanddegummering af olie", kaldes "vådraffinering til fjernelse af mucilago" (se US 5 264 367).

Detaljeret beskrivelse af opfindelsen

5

10

15

35

En fremgangsmåde til enzymatisk degummering af en spiseolie, som omfatter en stor mængde af ikke-hydrerbare phosphatider/phospholipider

Til den foreliggende opfindelse måles mængden af ikke-hydrerbart phosphor i en spiseolie ved hjælp af:

i) forbehandling af spiseolien ved 60 °C ved hjælp af tilsætning af en opløsning, som omfatter citronsyremonohydrat i vand (tilsat vand versus olie =

- 4,8 % vægt/vægt, [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM) i 30 minutter,
- ii) overførsel af 10 ml af den forbehandlede vand-i-olie-emulsion til et reagensglas,
 - iii) opvarmning af emulsionen i et kogende vandbad i 30 minutter.
 - iv) centrifugering ved 5000 rpm i 10 minutter,

10

15

20

5

- v) overførsel af ca. 8 ml af den øverste (olie) fase til et nyt reagensglas og henstand (til bundfældning) i 24 timer, og
- vi) efter bundfældning udtagning af 2 g fra den øverste klare fase til måling af det ikke-hydrerbare phosphorindhold (ppm) i spiseolien.

For yderligere detaljer henvises til forsøgseksemplerne heri.

- Som illustreret i forsøgseksemplerne heri varierer phospholipidsammensætningen (hydrerbart vs. ikke-hydrerbart phospholipid) betydeligt i forskellige spiseolier. Følgeligt vil niveauet af resterende phospholipid i forskellige vanddegummerede olier varierer over et bredt interval (for eksempel fra ca. 30 ppm til 200 ppm).
- Til enzymatisk degummering afhænger den optimale enzymdosis af mængden af ikke-hydrerbare phosphatider, som er til stede efter vanddegummering eller citronsyre/vand-forbehandling som defineret ovenfor.
- Endvidere gælder det, at jo højere mængden af ikke-hydrerbare phosphatider, som er til stede i olien, er, jo mere effektiv er den enzymatiske degummeringsmetode.

Den foreliggende opfindelse tilvejebringer en fremgangsmåde til fjernelse af NHP-indholdet i olie, som omfatter en relativ høj mængde af NHP.

35

Fortrinsvis omfatter spiseolien et ikke-hydrerbart phosphorindhold på mindst 60 ppm, mere fortrinsvis mindst 100 ppm og endnu mere fortrinsvis mindst 200

ppm.

Mere fortrinsvis omfatter spiseolien et ikke-hydrerbart phosphorindhold i intervallet 60-500 ppm, mere fortrinsvis i intervallet 100-500 ppm og endnu mere fortrinsvis i intervallet 200-500 ppm.

En spiseolie, der ifølge beskrivelsen heri er defineret til at have en relativ stor mængde af ikke-hydrerbar phosphor kan være en vanddegummeret olie eller mere fortrinsvis en råolie eller en semiråolie.

10

15

5

Følgeligt angår en udførelsesform for opfindelsen en fremgangsmåde ifølge det første aspekt af opfindelse, hvor nævnte spiseolie er en råolie, som er kendetegnet ved at nævnte råspiseolie før udførelse af fremgangsmåden ifølge opfindelsen er en olie med et phosphorindhold på over 250 ppm (part per million), idet olien ikke er blevet vanddegummeret (vanddegummering omfatter blanding af varmt vand i en varm råolie, efterfulgt af fjernelse af phosphatider, som bliver uopløselige i olien, når den hydreres) før udførelse af fremgangsmåden ifølge opfindelsen.

20

En sådan råspiseolie har fortrinsvis før udførelse af nævnte fremgangsmåde ifølge opfindelsen et phosphorindhold på over 350 ppm, mere fortrinsvis over 400 ppm, endnu mere fortrinsvis over 500 ppm, og mest fortrinsvis over 600 ppm.

(*). **25**

Nævnte råspiseolie har endvidere fortrinsvis før udførelse af nævnte fremgangsmåde ifølge opfindelsen et phosphorindhold i intervallet 250-1500 ppm, mere fortrinsvis i intervallet 350-1500 ppm, endnu mere fortrinsvis i intervallet 500-1500 ppm.

30

Den enzymatiske degummeringsmetode af en råspiseolie ifølge opfindelsen er fordelagtig i forhold til kendte metoder til enzymatisk degummering af vanddegummerede spiseolier (US 5 264 367), da en direkte enzymatisk degummeringsmetode til behandling af en råolie ifølge opfindelse vil spare det første trin med vanddegummering af olien.

35

Dette sparer både tid og penge. En vanddegummeret olie opnås typisk ved at blande varmt vand i varm (60-90 °C) råolie i sædvanligvis 30-60 minutter. I

modsætning hertil kan den fulde proces til enzymtisk degummering af råolier ifølge opfindelsen udføres på mindre end 1 time med faktisk enzymatisk behandling i ca. 25 minutter. Se forsøgseksempel heri for yderligere detaljer.

Endvidere kan en spiseolie, der er defineret til at have en relativ stor mængde af ikke-hydrerbar phosphor ifølge beskrivelsen heri, være en semiråolie.

Følgeligt angår en udførelsesform for opfindelsen en fremgangsmåde ifølge det første aspekt af opfindelsen, hvor nævnte spiseolie er en semirå spiseolie, som er kendetegnet ved at nævnte semirå spiseolie før udførelse af fremgangsmåden ifølge opfindelsen har et phosphorindhold på over 500 ppm, og hvor nævnte olie er blevet vanddegummeret før udførelse af fremgangsmåden ifølge opfindelsen.

Nævnte halvrå spiseolie er fortrinsvis en olie, som før udførelse af nævnte fremgangsmåde har et phosphorindhold på over 600 ppm, mere fortrinsvis over 750 ppm.

Almindeligvis vil vanddegummering af en spiseolie reducere phosphorindholdet i olien til et niveau på under 500 ppm.

Følgeligt er en semiråolie som beskrevet heri for eksempel måske kun blevet delvist vanddegummeret før udførelse af en fremgangsmåde til reduktion af niveauet af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen.

Udtrykket "delvist vanddegummeret" angiver, at vanddegummeringsproceduren af olien kun har været en delvis/kort proces sammenlignet med en standard-vanddegummeringsprocedure.

En "delvis vanddegummerings"-proces kan udføres ved kun at blande 0,5 % varmt vand i olien (standard er 1-3 % varmt vand. Se afsnittet "Definitioner" heri) eller ved at reducere behandlingstiden til 10 minutter (standard er 30-60 minutter).

Alternativt kan en semiraolie som defineret heri være en blanding af en raolie og en semiraolie.

35

10

20

25

30

6.12

En udførelsesform for opfindelsen angår en fremgangsmåde ifølge en hvilken som helst del af det første aspekt af opfindelsen, som omfatter følgende trin:

- i) justering af temperaturen i spiseolien til en temperatur mellem 25 °C og 70 °C,
- ii) forbehandling af spiseolien til ovennævnte justerede temperatur ved hjælp af tilsætning af 0,5-6 % (vægt i forhold til olien) af en vandig opløsning, som omfatter mindst 85 % vand, i 5-120 minutter, hvor nævnte forbehandling ikke følges af fjernelse af hydreret mucilago og phosphorindhold i olien.
- iii) justering af pH i vand/olie-emulsionen til en pH mellem 1,5 og 8 (for eksempel ved hjælp af tilsætning af en passende mængde af en NaOH-opløsning),
- iv) kontaktbringning mellem vand/olie-emulsionen og en vandig opløsning af en phospholipase (ved en temperatur (± 5 °C), der er justeret ifølge trin i)), idet phospholipasen er emulgeret i olien, indtil phoshorindholdet i olien er reduceret til mindre end 11 ppm,
- v) separering af vandfasen fra den behandlede olie.

Temperaturen i spiseolien i trin i) umiddelbart ovenfor justeres fortrinsvis til en temperatur, som er den optimale temperatur for phospholipase-aktivitet for enzymet, der anvendes i fremgangsmåden.

For den kommercielt tilgængelige phospholipase Lecitase™ (Novo Nordisk A/S) er denne ca. 60 °C, og for en phospholipase ifølge opfindelsen, der er opnået fra trådsvampeslægten *Fusarium*, er den ca. 45 °C. Se forsøgseksempler heri for yderligere detaljer angående dette emne.

Det forudses, at hovedparten af trådsvampe-phospholipaserne vil have et temperaturoptimum omkring 35-50 °C.

Følgeligt angår en udførelsesform for opfindelsen fremgangsmåden, der er beskrevet umiddelbart ovenfor, hvor temperaturen i spiseolien i trin i) justeres til en temperatur mellem 35 °C og 50 °C, og phospholipasen, der anvendes i

10

5

20

25

trin iv) er opnået fra en trådsvampestamme.

5

10

15

20

25

30

35

· ·

I trin ii) i fremgangsmåden ovenfor forbehandles spiseolien ved den justerede temperatur (trin i)) ved hjælp af tilsætning af 0,5-6 % (vægt i forhold til olien) af en vandig opløsning, som omfatter mindst 85 % vand i 5-120 minutter, og hvor nævnte forbehandling ikke følges af fjernelse af hydreret mucilago og phosphorindhold i olien.

Dette trin er et standard-forbehandlingstrin ved enzymatisk degummering af spiseolier (US 5 264 367, US 5 558 781). Formålet med trin ii) er at hydrere de hydrerbare/hydrofile bestanddele (såsom det hydrerbare phosphorindhold) i spiseolien, som, når de hydreres, bliver uopløselige i olien.

Dette trin er imidlertid anderledes end, hvad man benævner "vanddegummering af en spiseolie" i den foreliggende forbindelse. Én vigtig forskel er, at nævnte forbehandlingstrin ikke fjerner de hydrerede phosphatider og mucilago fra olien. Fjernelse af nævnte hydrerede indhold fra olien er hovedformålet med vanddegummering af spiseolier.

Følgeligt omfatter olien stadig, når phospholipasen bringes i kontakt med olien i trin iv) ovenfor, nævnte hydrerede phosphatider og mucilago.

Med andre ord beskriver fremgangsmåden ovenfor, hvis spiseolien er en ikkevanddegummeret spiseolie, en simplificeret degummeringsmetode, som ikke fjerner de hydrerede phosphatider og mucilago fra olien, før nævnte olie bringes i kontakt med phospholipasen.

Den vandige opløsning, som omfatter mindst 85 % vand (trin ii ovenfor), omfatter fortrinsvis yderligere citronsyre. Der er fortrinsvis mellem 1-15 % (vægt/vægt) citronsyre i nævnte vandige opløsning, mere fortrinsvis er der mellem 3-11 % (vægt/vægt) citronsyre i nævnte vandige opløsning.

Tidsrummet i trin ii) er fortrinsvis 15-50 minutter, og mere fortrinsvis 15-30 minutter.

For yderligere detaljer angående nævnte forbehandling i trin ii) ovenfor henvises til forsøgseksemplerne heri.

I trin iii) ovenfor justeres pH i vand/olie-emulsionen til pH 1,5-8 (for eksempel ved hjælp af tilsætning af en passende mængde af en NaOH-opløsning). Dette gøres for at justere pH-værdien i olien, før phospholipasen bringes i kontakt med olien i trin iv). Almindeligvis vil den faktiske optimale pH-værdi afhænge af hvilket enzym, der anvendes til at blive bragt i kontakt med olien i trin iv). For yderligere detaljer angående dette emne henvises til forsøgseksemplerne heri.

Almindeligvis foretrækkes det ifølge det første aspekt af opfindelsen og udførelsesformer for dette, at kontaktbringningen mellem nævnte olie og en vandig opløsning, som omfatter en phospholipase, udføres ved pH 1,5-6, mere fortrinsvis ved pH 3-6.

pH-værdien i vandet i olie-emulsionen måles ved at udtage 2 ml vand fra olie-emulsionen og blande dem med 2 ml vand. Efter faseseparering skal det resulterende øverste olielag pipetteres fra, og pH skal måles i vandfasen. Målinger omregnes til "reelle" pH-værdier ved hjælp af følgende formel: pH_{reel} = pH_{målt} -0,38. For yderligere detaljer henvises til forsøgseksemplerne heri.

l en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen er mængden af en phospholipase, som er emulgeret i olien, i intervallet 0,1-15 mg enzym (tørstof)/kg olie, mere fortrinsvis 0,25-5 mg enzym (tørstof)/kg olie og endnu mere fortrinsvis 0,25-2,5 mg enzym (tørstof)/kg olie.

Almindeligvis er det fordelagtigt at optimere både mængden af anvendt phospholipase og den anvendte tid til enzymatisk degummering af en spiseolie til opnåelse af et phosphorindhold på under 11 ppm. Den faktiske optimale enzymdosis og tiden vil blandt andet afhænge af hvilken phospholipase, der anvendes. For yderligere detaljer vedrørende optimering af enzymdosis og tiden for fremgangsmåden henvises til forsøgseksemplerne heri.

I en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen reduceres phosphorindholdet fortrinsvis til mindre end 11 ppm, efter at nævnte olie er bragt i kontakt med 0,5-6 mg phospholipase (tørstof)/kg olie, og hvor phospholipasen er i kontakt med nævnte olie i et tidsrum på 1-6 timer, mere fortrinsvis reduceres

5

10

15

20

25

30

Ü

phosphorindholdet i olien til mindre end 11 ppm, efter at nævnte olie er bragt i kontakt med 0,25-2,5 mg phospholipase (tørstof)/kg olie, og hvor phospholipasen er i kontakt med nævnte olie i et tidsrum på 15 minutter til 2 timer.

5

Se forsøgseksemplerne heri for yderligere detaljer vedrørende bestemmelsen af optimale temperaturer for individuelle phospholipaser.

10

I alle aspekter og udførelsesformer for en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen reduceres phosphorindholdet i olien fortrinsvis ti mindre end 5 ppm.

15.

ç . ·

Phosphorindholdet i olien måles som ppm (parts per million) i oliefasen i vandet, der er til stede i olieemulsionen. Analysen af phosphorindhold udføres i overensstemmelse med procedure 2.421 i "Standard Methods for the Analysis of Oils, Fats, and Derivatives, 7. udg. (1987)". For yderligere detaljer henvises til forsøgseksemplerne heri.

20

En udførelsesform for opfindelsen angår en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen, hvor phospholipasen er opnået fra en pattedyreart, især hvor phospholipasen er opnået fra pancreas i nævnte pattedyreart, og mest fortrinsvis hvor phospholipasen er opnået fra pancreas fra et svin.

25

(...

I en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen er phospholipasen fortrinsvis opnået fra en mikroorganisme, fortrinsvis en trådsvamp, en gær eller en bakterie.

30

Når trådsvampen, der er nævnt ovenfor, er en art af slægten *Fusarium*, er foretrukne stammer fortrinsvis stammer, såsom en stamme af *Fusarium culmorum*, *F. heterosporum*, *F. solani* eller især en stamme af *F. oxysporum*.

35

Endvidere er foretrukne stammer, når nævnte trådsvamp ovenfor er en art af slægten Aspergillus, stammer, såsom en stamme af Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger eller især

Aspergillus oryzae.

Endvidere er spiseolien i en fremgangsmåde til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie ifølge opfindelsen fortrinsvis en sojabønneolie, solsikkefrøolie eller mere fortrinsvis en raspfrøolie.

Karakterisering af phospholipase, der er opnået fra Fusarium oxysporum

10 En phospholipase ifølge opfindelsen, der er opnået fra *Fusarium oxysporum*, er blevet grundigt karakteriseret.

Følgeligt er et aspekt af opfindelsen fortrinsvis en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusarium* og har phospholipase A-aktivitet i pH-intervallet 3-10, målt ved 40 °C, mere fortrinsvis her phospholipase A-aktivitet i pH-intervallet 3-7, målt ved 40 °C, mere fortrinsvis har phospholipase A-aktivitet i pH-intervallet 3,5-6, målt ved 40 °C, og endnu mere fortrinsvis har phospholipase A-aktivitet i pH-intervallet 4,5-5,5, målt ved 40 °C.

20

15

1

5

Phospholipase A-aktiviteten blev bestemt med sojabønne-lecithin som substrat i et NEFA test bases assay eller i en buffer omfattende 2 % lecithin, 2 % Triton X-100, 20 mM Britton-Robinson (BR). Se forsøgseksemplerne heri for yderligere detaljer.

25

 $\hat{C} = j$

I en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som opnås fra en stamme af slægten *Fusarium*, fortrinsvis én, som har en molekylemasse på 29 ± 10 kDa, mere fortrinsvis en molekylemasse på 29 ± 5 kDa, endnu mere fortrinsvis en molekylemasse på 29 ± 3 kDa og mest fortrinsvis en molekylemasse på 29 ± 2 kDa.

30

Molekylemassen måles ved hjælp af SDS-PAGE-elektroforese som yderligere beskrevet i "Materialer og metoder"-afsnittet (se nedenfor).

35

I en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusarium*, fortrinsvis én, som har et isoelektrisk punkt (pl) i intervallet 4,5-8, mere fortrinsvis et isoelektrisk punkt

(pl) i intervallet 5-7,5 og endnu mere fortrinsvis et isoelektrisk punkt (pl) i intervallet 5,5-7,5.

Det isoelektriske punkt (pl) blev bestemt ved anvendelse af Ampholine PAGEplader fra Pharmacia. Se forsøgseksempel heri for yderligere detaljer (se nedenfor).

5

10

20

25

30

35

(...

I en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusanum*, fortrinsvis én, som har et temperaturoptimum for phospholipase-aktivitet i intervallet 25-55 °C, målt med lecithin som substrat ved pH 5; mere fortrinsvis i intervallet 30-50 °C, målt med lecithin som substrat ved pH 5; og endnu mere fortrinsvis i intervallet 40-50 °C, målt med lecithin som substrat ved pH 5.

Temperaturoptimummet for phospholipase-aktivitet blev målt i en buffer, som omfattede 2 % lecithin, 2 % Triton X-100, 20 mM Britton Robinson-buffer, ved pH 5. Se forsøgseksempel hen for yderligere detaljer (se nedenfor).

i endnu en yderligere udførelsesform for opfindelsen er en isoleret phospholipase A, som er opnået fra en stamme af slægten *Fusarium*, fortrinsvis én, som har et pH-optimum for phospholipase-aktivitet i pH-intervallet 6-12 ved 37 °C, mere fortrinsvis i pH-intervallet 7-11,5 ved 37 °C, mere fortrinsvis i pH-intervallet 8-11 ved 37 °C, og endnu mere fortrinsvis i pH-intervallet 8,5-11 ved 37 °C.

pH-optimummet for phospholipase-aktivitet blev bestemt i en buffer, som omfattede 2 % lecithin, 2 % Triton X-100, 20 mM Britton Robinson-buffer, ved 37 °C. Se forsøgseksempel heri for yderligere detaljer.

En phospholipase ifølge opfindelsen omfatter fortrinsvis mindst to ud af de fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet, mere fortrinsvis omfatter en phospholipase ifølge opfindelsen mindst tre af de fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet, endnu mere fortrinsvis omfatter en phospholipase ifølge opfindelsen mindst fire af de fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet, og mest fortrinsvis omfatter en phospholipase ifølge opfindelsen alle fem (nummereret i) til v)) ovennævnte fysiske egenskaber for enzymet.

Som beskrevet ovenfor er en phospholipase ifølge opfindelsen blevet klonet, udtrykt rekombinant og oprenset, og de N-terminale og C-terminale sekvenser af det aktive secernerede enzym er blevet bestemt.

5

Følgeligt angår en yderligere udførelsesform for opfindelsen et isoleret polypeptid med phospholipase A-aktivitet, idet polypeptidet er opnået fra en stamme af slægten *Fusarium* og har:

- 10 i) PLA-aktivitet i pH-intervallet 3-10, målt ved 40 °C,
 - ii) en molekylemasse på 29 ± 10 kDa, bestemt ved hjælp af SDS-PAGE.
 - iii) et isoelektrisk punkt (pl) i intervallet 4,5-8,

15

(

- iv) et temperaturoptimum for phospholipase-aktivitet i intervallet 25-55 °C, målt med lecithin som substrat ved pH 5, og/eller
- v) et pH-optimum for phospholipase-aktivitet i pH-intervallet 6-12, målt 20 med lecithin som substrat ved 37 °C,
 - og yderligere omfatter en aminosyresekvens, der er valgt fra gruppen, som omfatter:
- 25 (a) et polypeptid, der kodes af den phospholipase A og/eller Benzymkodende del af DNA-sekvensen, der er klonet ind i pYES 2.0, som er til
 - stede i Escherichia coli DSM 11299,
- (b) et polypeptid med en aminosyresekvens som vist i positionerne 31-30 346 i SEQ ID NO: 2,
 - (c) et polypeptid med en aminosyresekvens som vist i positioneme 31-303 i SEQ ID NO: 2,
- 35 (d) en analog til polypeptidet, der er defineret i (a), (b) eller (c), som er mindst 70 % homolog med nævnte polypeptid, og

(e) et fragment af (a), (b), (c) eller (d).

5

10

15

20

25

30

35

(::::

I en udførelsesform for opfindelsen er det isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen phospholipase med phospholipase A1-aktivitet.

I en yderligere udførelsesform er det isolerede polypeptid med phospholipaseaktivitet ifølge opfindelsen phospholipase med phospholipase A2-aktivitet, og i en endnu yderligere udførelsesform er det isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen en phospholipase med phospholipase B-aktivitet.

Fortrinsvis er nævnte isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen phospholipase med phospholipase A1-aktivitet.

For specifikke eksempler på standardteknikker til måling af individuel PLA1-, PLA2- og/eller PLB-aktivitet henvises til forsøgseksemplerne heri.

I en yderligere udførelsesform angår opfindelsen et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er en phospholipase, som i det væsentlige er uafhængig af Ca²+-koncentrationen, målt som relativ phospholipase-aktivitet ved 5 mM EDTA og 5 mM Ca²+ i et phospholipase-aktivitetsassay, som måler frigørelse af frie fedtsyrer fra lecithin i en buffer, som omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter, hvor den forholdsmæssige andel af phospholipase-aktivitet ved 5 mM EDTA/5 mM Ca²+ er mere end 0,25, mere fortrinsvis mere end 0,5 og mest fortrinsvis mere end 0,80.

For yderligere detaljer vedrørende måling af afhængigheden for enzymaktiviteten af Ca²⁺-koncentrationen henvises til forsøgseksempler heri.

Nogle lipaser kan have begrænset phospholipase-aktivitet. I den aktuelle forbindelse defineres en sådan begrænset phospholipase-aktivitet for nævnte lipaser som "en lipase med phospholipase-sideaktivitet" (se afsnittet "Definitioner" heri). Den foreliggende opfindelse angår et isoleret polypeptid med phospholipase-aktivitet, hvor phospholipase-aktiviteten for nævnte

isolerede polypeptid er så høj, at det har industriel relevans.

Følgeligt angår opfindelsen et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er en phospholipase med phospholipase-aktivitet, som er mindst 0,25 nmol/minut, enzymdosis: 60 μg, ved 25 °C, mere fortrinsvis mindst 0,40 nmol/minut, enzymdosis: 60 μg, ved 25 °C, målt i et enkeltlags-phospholipase-assay som følger:

- a. i et enkeltlags-udstyr (nul ordens-niveau) spredes på en grundigt oprenset overflade af en bufferopløsning (10 mM Tris, pH 8,0, 25 °C) et enkeltlag af phospholipidet DDPC (didicanoyl (C10)-phosphatidylcholin) fra en chloroformopløsning,
- b. efter afspænding af enkeltlaget (fordampning af chloroform) justeres overfladetrykket til 15 mN/m svarende til et gennemsnitligt molekyleareal for DDPC på ca. 63 A^2 /molekyle,
- c. en bufferopløsning (som ovenfor) indeholdende 60 µg enzym injiceres gennem enkeltlaget ind i underfasen i reaktionsafsnittet (cylinder med et areal på 1520 mm² og et volumen på 30400 mm³) i "nul ordens-niveauet",

d. enzymatisk aktivitet bestemmes ved hjælp af hastigheden af en mobil spærring, som komprimerer enkeltlaget for at opretholde konstant overfladetryk, efterhånden som uopløselige substratmolekyler hydrolyseres til mere vandopløselige reaktionsprodukter, hvor antallet af DDPC-molekyler, som hydrolyseres pr. minut af enzymet, æstimeres ud fra det gennemsnitlige molekyleareal (MMA) af DDPC.

Se afsnittet "Definitioner" og forsøgseksempler heri for yderligere beskrivelser af foretrukne mængder af phospholipase-aktiviteter for et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen.

Endvidere kan den specifikke phospholipase-aktivitet for en phospholipase ifølge opfindelsen måles ved hjælp af kendte standardassays for phospholipase-aktivitet.

Følgeligt angår den foreliggende opfindelse i en yderligere udførelsesform et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor

1.

5

10

15

20

25

35

phospholipasen er en phospholipase, som har en phospholipase-aktivitet, der er i stand til at frigøre mindst 7 µmol fri fedtsyre/minut/mg enzym, mere fortrinsvis mindst 15 µmol fri fedtsyre/minut/mg enzym, endnu mere fortrinsvis mindst 30 µmol fri fedtsyre/minut/mg enzym og mest fortrinsvis mindst 50 µmol fri fedtsyre/minut/mg enzym, målt som følger:

phospholipase-aktivitet måles i et assay, der måler frigørelse af fri fedtsyrer fra lecithin i en buffer, der omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C, efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter.

For yderligere detaljer vedrørende denne udførelsesform for opfindelsen henvises til forsøgseksemplerne heri.

Et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen er meget egnet til udførelse af enzymatisk degummering af en spiseolie.

Følgeligt angår opfindelsen:

5

10

(·

25

- 20 1. et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er i stand til at udføre enzymatisk degummering af en spiseolie, ifølge en fremgangsmåde ifølge opfindelsen til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie, som omfatter et ikke-hydrerbart phosphorindhold på mindst 50 ppm, og
 - 2. et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, hvor phospholipasen er i stand til at udføre enzymatisk degummering af en vanddegummeret spiseolie (med et phosphorindhold på 50-250 ppm), hvorved phosphorindholdet i olien reduceres til mindre end 11 ppm, hvor den enzymatiske degummeringsproces omfatter kontaktbringning mellem nævnte olie ved en pH fra 1,5 til 8 og en vandig opløsning af phospholipasen, som emulgeres i olien, indtil phosphorindholdet i olien er reduceret til mindre end 11 ppm, og efterfølgende separering af den vandige fase fra den behandlede olie.
- Det isolerede polypeptid med phospholipase-aktivitet ifølge opfindelsen er fortrinsvis i stand til at udføre nævnte enzymatiske degummeringsproces i den vanddegummerede spiseolie (som defineret umiddelbart ovenfor) på mindre

end 1,5 timer og anvender mindre end 2 mg phospholipase (tørstof)/kg olie.

Et isoleret polypeptid, som fremviser phospholipase-aktivitet og har egenskaberne, der er vist ovenfor, ifølge opfindelsen opnås fortrinsvis fra en trådsvampestamme fra slægten *Fusanum*.

Uden at være begrænset af nogen teori forventes det imidlertid på nuværende tidspunkt, at en phospholipase ifølge opfindelsen også kan opnås fra en anden mikroorganisme, fortrinsvis en anden trådsvampestamme. Eksempler derpå er givet i afsnittet "Mikrobielle kilder" (se nedenfor).

Klonet DNA-sekvens

På trods af en række tekniske vanskeligheder (se afsnittet "Metode til kloning af en trådsvampe-phospholipase", se nedenfor) har de foreliggende opfindere været i stand til at klone en phospholipase, der fremviser PLA-aktivitet, fra en stamme af slægten Fusarium, nærmere bestemt Fusarium oxysporum.

Endvidere mener man på nuværende tidspunkt, at det er muligt at klone både en beslægtet phospholipase A- og/eller phospholipase B-kodende DNA-sekvens på basis af sekvensinformationen, der tilvejebringes i den foreliggende ansøgning.

Følgeligt vedrører et aspekt af opfindelsen en klonet DNA-sekvens, der koder for et enzym, som fremviser phospholipase A- og/eller phospholipase B-aktivitet, idet DNA-sekvensen er valgt fra gruppen, der omfatter:

- (a) den phospholipase A-kodende del af polynukleotidet, der er klonet ind i plasmid pYES 2.0, som er til stede i *Escherichia coli* DSM 11299,
- (b) DNA-sekvensen, der er vist i positionerne 23-1063 i SEQ ID NO: 1, mere fortrinsvis positionerne 113-1063 i SEQ ID NO: 1, eller endnu mere fortrinsvis positionerne 113-929 i SEQ ID NO: 1 eller den komplementære streng dertil,
- (c) en DNA-sekvens, som er mindst 70 % homolog med nævnte DNA-sekvenser, der er defineret i (a) eller (b),

35

30

5

10

15

20

(d) en DNA-sekvens som defineret i (a) eller (b), som koder for et polypeptid, der fremviser phospholipase-aktivitet og er mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-346 i SEQ ID NO: 2, eller mere fortrinsvis mindst 70 % homolog med polypeptidsekvensen, der er vist i positionerne 31-303 i SEQ ID NO: 2,

5

10

15

- (e) en DNA-sekvens, som hybridiserer med en dobbeltstrenget DNAprobe, som omfatter DNA-sekvensen, der er vist i positionerne 23-1063 i SEQ ID NO: 1, ved lav stringens,
 - (f) en DNA-sekvens, der koder for et polypeptid med aminosyresekvenserne som resterne 1 til 346, 31 til 346 eller 31 til 303 i SEQ ID NO: 2, eller aminosyresekvenserne, der kodes for ved hjælp af en hvilken som helst af DNA-sekvenserne ifølge (e), og
 - (g) en DNA-sekvens, som er et fragment af DNA-sekvenserne, der er specificeret i (a), (b), (c), (d), (e) eller (f).
- I denne specifikation påtænkes en henvisning, når en sådan gøres til den phospholipase-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i DSM 11299, også at indbefatte den phospholipase-kodende del af DNA-sekvensen, der fremgår af SEQ ID NO: 1.
- Følgeligt kan udtrykkene "den phospholipase-kodende del af DNA-sekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i DSM 11299" og "den phospholipase-kodende del af DNA-sekvensen, der fremgår af SEQ ID NO: 1" bruges vilkårligt.
 - DNA-sekvensen kan være af genomisk, cDNA eller syntetisk oprindelse eller en hvilken som helst kombination deraf.
 - Den foreliggende opfindelse omfatter også en klonet DNA-sekvens, der koder for et enzym, som fremviser phospholipase A- og/eller phospholipase B-aktivitet og har aminosyresekvensen, der er vist som den modne del i SEQ ID NO: 2, som adskiller sig fra SEQ ID NO: 1 som følge af degenereringen af den genetiske kode.

DNA-sekvensen, der er vist i SEQ ID NO: 1, og/eller en analog sekvens ifølge opfindelsen kan klones fra en stamme af trådsvampen *Fusarium oxysporum*, som danner enzymet med phospholipase-aktivitet, eller en anden eller beslægtet organisme som yderligere beskrevet nedenfor (se afsnittet "Mikrobielle kilder").

Alternativt kan den analoge sekvens konstrueres på basis af DNA-sekvensen, der er vist som den phospholipase-kodende del af SEQ ID NO: 1, den kan for eksempel være et udsnit deraf og/eller konstrueres ved hjælp af indførelse af nukleotidsubstitutioner, som ikke giver anledning til en anden aminosyresekvens for phospholipasen, der kodes af DNA-sekvensen, men svarer til kodonanvendelsen for værtsorganismen, som påtænkes til produktion af enzymet, eller ved hjælp af indførelse af nukleotidsubstitutioner, som kan give anledning til en anden aminosyresekvens (det vil sige en variant til phospholipasen ifølge opfindelsen).

Når der udføres nukleotidsubstitutioner, er aminosyre-ændringerne fortrinsvis af en mindre betydende type, det vil sig konservative aminosyresubstitutioner, som ikke i betydelig grad påvirker proteinets foldning eller aktivitet; små deletioner, typisk af en til ca. 30 aminosyrer; små amino- eller carboxylterminale forlængelser, såsom en aminoterminal methioninrest; et lille linkerpeptid på op til ca. 20-25 rester; eller en lille forlængelse, som letter oprensningen, såsom et polyhistidin-område; en antigen epitop eller et bindingsdomæne.

Eksempler på konservative substitutioner er inden for gruppen af basiske aminosyrer, såsom arginin, lysin, histidin; sure aminosyrer, såsom glutaminsyre og asparaginsyre, polære aminosyrer, såsom glutamin og asparagin, hydrofobe aminosyrer, såsom leucin, isoleucin, valin, aromatiske aminosyrer, såsom phenylalanin, tryptofan, tyrosin, og små aminosyrer, såsom glycin, alanin, serin, threonin, methionin. For en generel beskrivelse af nukleotidsubstitution, se for eksempel Ford et al. (1991), Protein Expression and Purification 2:95-107.

Det vil være klart for fagfolk, at sådanne substitutioner kan foretages uden for de områder, der er kritiske for molekylets funktion, og stadig resultere i et aktivt

35

5

10

15

20

25

30

(...

polypeptid. Aminosyrer, der er essentielle for aktiviteten af polypeptidet, som kodes af den klonede DNA-sekvens ifølge opfindelsen og derfor fortrinsvis ikke har været genstand for substitution, kan identificeres i overensstemmelse med kendte procedurer, såsom sekvensstyret mutagenese eller alaninscanningsmutagenese (cf. for eksempel Cunningham and Wells (1989), Science 244:1081-1085). I sidstnævnte teknik indføres mutationer i hver rest i molekylet, og de resulterende mutante molekyler testes for biologisk (for eksempel phospholipase-) aktivitet til identificering af aminosyrerester, der er kritiske for molekylets aktivitet. Sites for substrat-enzym-interaktion kan også bestemmes ved hjælp af en analyse af krystalstrukturen, der bestemmes ved hjælp af teknikker, såsom nuklear magnetisk resonans-analyses, krystallografi eller fotoaffinitetsmærkning (cf. for eksempel de Vos et al. (1992), Science 255:306-312; Smith et al. (1992), J. Mol. Biol. 224:899-904; Wlodaver et al. (1992), FEBS Lett. 309:59-64).

15

20

 $V_{j_{1}}$

10

5

Polypeptider ifølge den foreliggende opfindelse indbefatter også fusionerede polypeptider eller spaltbare fusionspolypeptider, hvori et andet polypeptid er fusioneret i N-terminalen eller C-terminalen af polypeptidet eller et fragment deraf. Et fusioneret polypeptid dannes ved hjælp af fusion af en nukleinsyresekvens (eller en del deraf), som koder for et andet polypeptid, til en nukleinsyresekvens (eller en del deraf) ifølge den foreliggende opfindelse. Teknikker til frembringelse af fusionerede polypeptider er kendte og indbefatter ligering af de kodende sekvenser, som koder for polypeptiderne, således at de er i læseramme, og således at ekspression af det fusionerede polypeptid er under kontrol af den samme promotor(er) og terminator.

25

DNA-sekvensen ifølge opfindelsen kan klones fra stammen *Escherichia coli* DSM 11299 ved anvendelse af standard-kloningsteknikker, for eksempel som beskrevet af Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab.; Cold Spring Harbor, NY.

35

30

Da den foreliggende opfindelse har løst problemet med udvikling af et egnet screeningsassay til anvendelse i en ekspressionskloningsteknik til kloning af en phospholipase ifølge opfindelse, se afsnittet med overskriften "Metode til kloning af en trådsvampe-phospholipase", kan DNA-sekvensen ifølge opfindelsen nu klones ved hjælp af en hvilken som helst generel metode, som inddrager:

- kloning i egnede vektorer af et cDNA-bibliotek fra en hvilken som helst organisme, der forventes at danne phospholipasen af interesse,

5

- transformation af egnede gærværtsceller med nævnte vektorer.
- dyrkning af værtscellerne under passende betingelser til ekspression af et hvilket som helst enzym af interesse, der kodes af en klon i cDNAbiblioteket.

10

- screening for positive kloner ved hjælp af bestemmelse af eventuel phospholipase-aktivitet hos enzymet, der dannes af sådanne kloner, og
- isolering af det enzymkodende DNA fra sådanne kloner.

15

20

Alternativt kan DNA'et, der koder for en phospholipase ifølge opfindelsen, da den foreliggende opfindelse for første gang tilvejebringer en klonet DNA-sekvens, som koder for et trådsvampe-PLA-enzym, i overensstemmelse med velkendte procedurer klones traditionelt fra en egnet kilde, såsom en hvilken som helst af organismerne, der er nævnt i afsnittet "Mikrobielle kilder", ved anvendelse af syntetiske oligonukleotidprober, der er fremstillet på basis af en DNA-sekvens, der er beskrevet heri. For eksempel kan en egnet oligonukleotidprobe fremstilles på basis af den phospholipase-kodende del af nukleotidsekvenserne, der er vist i SEQ ID NO: 1, eller et hvilket som helst egnet udsnit deraf eller på basis af aminosyresekvensen SEQ ID NO: 2.

25

30

1 : .

Da endvidere en klonet DNA-sekvens ifølge opfindelsen koder for et polypeptid med phospholipase-aktivitet ifølge opfindelsen, er en række af de specifikke udførelsesformer, som vedrører et isoleret polypeptid med phospholipase-aktivitet ifølge opfindelsen, også udførelsesformer for opfindelsen for en klonet DNA-sekvens ifølge opfindelsen, som koder for et polypeptid med phospholipase-aktivitet. Følgeligt vedrører referencer og foretrukne og mest foretrukne udførelsesformer for nævnte isolerede polypeptid med phospholipase-aktivitet også en klonet DNA-sekvens ifølge opfindelsen.

35

Som følge deraf vedrører en udførelsesform for opfindelsen en klonet DNA-

sekvens ifølge opfindelsen, hvor phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase A1.

I en yderligere udførelsesform er en klonet sekvens ifølge opfindelsen en klonet DNA-sekvens, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase A2, og i en endnu yderligere udførelsesform er en klonet sekvens ifølge opfindelsen en klonet DNA-sekvens, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase B.

10 Fortrinsvis koder for nævnte klonede DNA-sekvens ifølge opfindelsen et polypeptid med phospholipase A1-aktivitet.

Endvidere angår opfindelsen en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase, som i det væsentlige er uafhængig af Ca²⁺-koncentrationen, der måles som:

15

5

- relativ phospholipase-aktivitet ved 5 mM EDTA og 5 mM Ca²⁺ i et phospholipase-aktivitetsassay, som måler frigørelsen af fri fedtsyrer fra lecithin i en buffer, som omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C, efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter, hvor relativ phospholipase-aktivitet ved 5 mM EDTA/5 mM Ca²⁺ er et forhold, der er større end 0,25, mere fortrinsvis et forhold, der er større end 0,5.

25

(---

20

Endnu yderligere angår opfindelsen en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase med en phospholipase-aktivitet, der er mindst 0,25 nmol/minut, enzymdosis: 60 µg, ved 25 °C, mere fortrinsvis mindst 0,40 nmol/minut, enzymdosis: 60 µg, ved 25 °C, målt i et enkeltlags-phospholipase-assay som følger:

30

a. i et enkeltlags-udstyr (nul ordens-niveau) spredes på en grundigt oprenset overfalde af en bufferopløsning (10 mM Tris, pH 8,0, 25 °C) et enkeltlag af phospholipidet DDPC (didicanoyl (C10)-phosphatidylcholin) fra en chloroform-opløsning,

35

b. efter afspænding af enkeltlaget (fordampning af chloroform) justeres overfladetrykket til 15 mN/m svarende til et gennemsnitligt molekyleareal for

DDPC på ca. 63 Å²/molekyle,

5

10

15

20

30

35

(34

- c. en bufferopløsning (som ovenfor), der indeholder 60 µg enzym, injiceres gennem enkeltlaget ind i underfasen i reaktionsafsnittet (cyliner med et areal på 1520 mm² og et volumen på 30400 mm³) i "nul ordens-niveauet",
- d. enzymatisk aktivitet bestemmes ved hjælp af hastigheden af en mobil spærring, som komprimerer enkeltlaget til opretholdelse af konstant overfladetryk, efterhånden som uopløselige substratmolekyler hydrolyseres til mere vandopløselige reaktionsprodukter, hvor antallet af DDPC-molekyler, som hydrolyseres pr. minut af enzymet, æstimeres ud fra det gennemsnitlige molekyleareal (MMA) for DDPC.

I en yderligere udførelsesform angår opfindelsen en klonet DNA-sekvens ifølge opfindelse, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er en phospholipase med en phospholipase-aktivitet, som er i stand til at frigøre mindst 7 μmol fri fedtsyre/minut/mg enzym, mere fortrinsvis mindst 15 μmol fri fedtsyre/minut/mg enzym, målt som følger:

phospholipase-aktivitet måles i et assay, der måler frigørelsen af fri fedtsyrer fra lecithin i en buffer, som omfatter 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5, der inkuberes i 10 minutter ved 37 °C, efterfulgt af standsning af reaktionen ved 95 °C i 5 minutter.

25 I yderligere udførelsesformer angår opfindelsen:

en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er i stand til at udføre enzymatisk degummering af en spiseolie i overensstemmelse med en fremgangsmåde ifølge opfindelsen til reduktion af mængden af phosphor-indeholdende bestanddele i en spiseolie, som omfatter et ikke-hydrerbart phosphorindhold på mindst 50 ppm, og

en klonet DNA-sekvens ifølge opfindelsen, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er i stand til at udføre enzymatisk degummering af en vanddegummeret spiseolie (med et phosphorindhold på 50-250 ppm) og derved reducere phosphorindholdet i olien til mindre end 11 ppm, hvor den enzymatiske degummeringsproces omfatter kontaktbringning mellem nævnte

olie ved en pH fra 1,5 til 8 og en vandig opløsning af phospholipasen, som er emulgeret i olien, indtil phosphorindholdet i olien er reduceret til mindre end 11 ppm, og efterfølgende separering af den vandige fase fra den behandlede olie.

En klonet DNA-sekvens ifølge opfindelsen er fortrinsvis en klonet DNA-sekvens, hvori phospholipasen, der kodes af nævnte DNA-sekvens, er i stand til at udføre nævnte enzymatiske degummeringsproces i den vanddegummerede spiseolie ved anvendelse af mindre end 2 mg phospholipase (tørstof)/kg olie, og hvorved phospholipasen er i kontakt med nævnte olie i et tidsrum på 15 minutter til 2 timer.

Fremgangsmåde til kloning af en trådsvampe-phospholipase

Ċ

(**).

15

20

35

Man stødte på en række tekniske vanskelighed, da man forsøgte at isolere en phospholipase ifølge opfindelsen eller klone et polynukleotid, som kodede for den. Det syntes umuligt at isolere enzymet, og problemet med kloning af polynukleotidet blev forfulgt.

Som beskrevet heri var der ingen kendt DNA-sekvens, som kodede en trådsvampe-phospholipase A, tilgængelig. Følgeligt udviklede de foreliggende opfindere en kloningsstrategi på basis af ekspressionskloning-i-gær-teknikken (H. Dalboege et al., Mol. Gen. Genet. (1994), 243:253-260, WO 93/11249 og WO 94/14953).

Ét af de største problemer i forbindelse med denne teknik var, at gær danner en indre aktivitet, som giver anledning til en phospholipase-baggrund i udpladningsassays. Denne baggrund viste sig at være stærkt afhængig af mængden af substrat i assayskålene, og mængden af substrat skulle derfor titreres omhyggeligt til at niveau, hvor baggrunden var lav nok, til at assayet kunne være pålideligt under ekspressionsklonings-screeningsproceduren, men høj nok til at reaktionen kan finde sted.

Ydermere omfatter trådsvampestammer almindeligvis en række forskellige lipaser, hvoraf nogle endog fremviser begrænset phospholipase-aktivitet. Sådanne lipaser defineres heri som "en lipase med phospholipase-sideaktivitet (se afsnittet "Definitioner" heri).

I udpladningsassayet viste baggrunden af sådanne lipaser med phospholipase-sideaktivitet sig også at være stærkt afhængig af mængden af substrat i assayskålene, og mængden af substrat skulle derfor titreres endnu mere omhyggeligt for at eliminere baggrundsaktiviteten fra både gærcellerne og trådsvampelipaserne med phospholipase-sideaktivitet.

Ud over dette viste det sig, at der skulle foretages et omhyggeligt valg af substrat, da mange ikke tilvejebragte nogen funktionel løsning på problemet, fordi en række af de testede phospholipase-substrater gav en baggrundsaktivitet, som skyldtes, at lipaser uden phospholipase-aktivitet var i stand til at reagere på substraterne. Følgeligt skulle et stort antal substrater testes og titreres for at identificere et egnet substrat.

Den fundne løsning til muliggørelse af udførelse af ekspressionskloningen af et phospholipase-kodende polynukleotid var anvendelse af Lipoid E80 (fra Lipoid GmbH) i omhyggeligt målte koncentrationer. I "Materiale og metode"-afsnittet heri findes en detaljeret beskrivelse af den komplette ekspressionskloning-i-gær-metode, herunder et udpladningsassay, som løser de ovenfor beskrevne problemer.

20

25

30

5

10

15

Homologi/lighed for DNA-sekvenser

DNA-sekvenshomologien/ligheden, der henvises til ovenfor, bestemmes som graden af lighed mellem to sekvenser, som viser en afvigelse af den første sekvens fra den anden. Homologien kan passende bestemmes ved hjælp af kendte computerprogrammer, såsom GAP, der tilvejebringes i GCG-programpakken (Program Manual for the Wisconsin Package, Version 8, august 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B., og Wunsch, C.D., (1970), Journal of Molecular Biology 48:443-453). Ved anvendelse af GAP med følgende indstilling til DNA-sekvenssammenligning: GAP-dannelses-afskæring på 5,0 og GAP-forlængelses-afskæring på 0,3, fremviser det kodende område af DNA-sekvensen en lighedsgrad på fortrinsvis mindst 70 %, mere fortrinsvis mindst 80 %, mere fortrinsvis mindst 90 %, mere fortrinsvis mindst 95 %, mere fortrinsvis mindst 97 % med den phospholipase-kodende del af DNA-sekvensen, der er vist i SEQ ID NO: 1 (det vil sige position 23-1063 i SEQ ID NO: 1), eller mere fortrinsvis med DNA-sekvensen, der er vist i position 113-

1063 i SEQ ID NO: 1 (position 113 svarer til den N-terminale rest i det modne enzym), eller endnu mere fortrinsvis med DNA-sekvensen, der er vist i position 23-929 i SEQ ID NO: 1 (position 929 svarer til den C-terminale rest i C-terminalt processeret secerneret aktivt enzym).

5

10

(* ·

Hybridisering

Hybridiseringen, der henvises til ovenfor, påtænkes at omfatte en analog DNA-sekvens, som hybridiserer til en dobbeltstrenget DNA-probe, der svarer til den phospholipase-kodende del af DNA-sekvensen, der er vist i SEQ ID NO: 1, det vil sige nukleotiderne 23-1063, eller mere fortrinsvis med en dobbeltstrenget DNA-probe, der svarer til DNA-sekvensen, der er vist i position 113-1063 i SEQ ID NO: 1 (position 113 svarer til den N-terminale rest i det modne enzym), eller endnu mere fortrinsvis med en dobbeltstrenget DNA-probe, der svarer til DNA-sekvensen, der er vist i position 23-929 i SEQ ID NO: 1 (position 929 svarer til den C-terminale rest i det C-terminalt processerede secernerede aktive enzym) under i det mindste lave stringens-betingelser som beskrevet detalieret nedenfor.

20

25

30

35

ÚŢ

15

Egnede forsøgsbetingelser til bestemmelse af hybridisering ved lav, medium eller høj stringens mellem en nukleotidprobe og en homolog DNA- eller RNAsekvens inddrager forudgående udblødning af filteret, der indeholder DNAfraamenterne eller RNA'et, der skal hybridisere, i 5 (natriumchlorid/natriumcitrat, Sambrook et al., 1989) i 10 minutter og præhybridisering af filteret i en opløsning af 5 x SSC, 5 x Denhardt's opløsning (Sambrook et al., 1989), 0,5 % SDS og 100 µg/ml denatureret sonikeret laksesperma-DNA (Sambrook et al., 1989), efterfulgt af hybridisering i den samme opløsning, som indeholder 10 ng/ml af en vilkårlig primet (Feinberg, A.P., og Vogelstein, B. (1983), Anal. Biochem. 132:6-13), ³²P-dCTP-mærket (specifik aktivitet > 1 x 109 cpm/µg) probe i 12 timer ved ca. 45 °C. Filteret vaskes herefter to gange i 30 minutter i 2 x SSC, 0,5 % SDS ved en temperatur på mindst 55 °C (lav stringens), mere fortrinsvis mindst 60 °C (medium stringens), endnu mere fortrinsvis mindst 65 °C (medium/høj stringens), endnu mere fortrinsvis mindst 70 °C (høj stringens), endnu mere fortrinsvis mindst 75 °C (meget høj stringens).

Molekyler, hvortil oligonukleotidproben hybridiserer under disse betingelser,

påvises ved anvendelse af en X-røntgenfilm.

Det har vist sig, at det er muligt teoretisk at forudsige om to givne DNAsekvenser vil hybridisere under bestemte specifikke betingelser.

5

10

Følgeligt kan forsøgsmetoden som et alternativ til den overfor beskrevne til bestemmelse af, om en analog DNA-sekvens vil hybridisere til nukleotidproben, baseres på en teoretisk beregning af den Tm (smeltetemperatur), hvorved to heterologe DNA-sekvenser med kendte sekvenser vil hybridisere under specificerede betingelser (for eksempel med hensyn til kation-koncentration og temperatur).

For at bestemme smeltetemperaturen for heterologe DNA-sekvenser (Tm(hetero)) er det nødvendigt indledningsvis at bestemme smeltetemperaturen (Tm(homo)) for homologe DNA-sekvenser.

15

20

Smeltetemperaturen (Tm(homo)) for to helt komplementære DNA-strenge (homodupleksdannelse) kan bestemmes ved anvendelse af følgende formel:

Tm(homo) = 81.5 °C + 16.6(log M) + 0.41(% GC) - 0.61(% form) - (500/L) ("Current protocols in Molecular Biology". John Wiley and Sons, 1995), hvor:

"M" = den molære kation-koncentration i vaskebuffer,

"% GC" = % Guanin (G) og Cytosin (C) af det totale antal baser i DNA-sekvensen.

25

30

35

"% form" = % formamid i vaskebufferen, og

"L" = længden af DNA-sekvensen.

Ved anvendelse af denne formel og de eksperimentelle vaskebetingelserne, der er angivet ovenfor, er Tm(homo) for homodupleksdannelsen for nukleotidproben, der svarer til DNA-sekvensen, der er vist i SEQ ID NO: 1, det vil sige nukleotiderne 23-1060:

Tm(homo) = 81,5 + 16,6(log 0,30) + 0,41(56) - 0,61(0) - (500/1038)Tm(homo) = 103,5 °C.

"M": 2 x SSC svarer til en kation-koncentration på 0,3 M,

"% GC": % GC i SEQ ID NO: 1, position 23-1060 er 56 %.

"% form": Der er intet formamid i vaskebufferen.

"L": Længden af SEQ ID NO: 1, position 23-1063 er 1038 bp.

hjælp af ovennævnte formel er Tm for bestemt ved homodupleksdannelse (Tm(homo)) mellem to helt komplementære DNAsekvenser. For at tilpasse Tm-værdien til en for to heterologe DNA-sekvenser, antager man, at en 1 % forskel i nukleotidsekvensen mellem de to heterologe sekvenser svarer til et fald på 1 °C i Tm ("Current protocols in Molecular Tm(hetero) Biology". John Wilev Sons. 1995). heterodupleksdannelsen findes derfor ved at trække homologi-%-forskellen mellem den analoge sekvens, det dreier sig om, og nukleotidproben, der er beskrevet ovenfor, fra Tm(homo). DNA-homologiprocenten, som skal trækkes fra, beregnes som beskrevet heri (se nedenfor).

Homologi med aminosyresekvenser

15

20

25

10

5

Polypeptidhomologien, der henvises til ovenfor, bestemmes som graden af lighed mellem to sekvenser, som viser en afvigelse af den første sekvens for den anden. Homologien kan passende bestemmes ved hjælp af kendte computerprogrammer, såsom GAP, der tilvejebringes i GCG-programpakken (Program Manual for the Wisconsin Package, Version 8, august 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B., og Wunsch, C.D., (1970), Journal of Molecular Biology 48:443-453). Ved anvendelse af GAP med følgende indstilling til DNAsekvenssammenligning: GAP-dannelses-afskæring på 3,0 og GAPforlængelses-afskæring på 0,1, fremviser den modne del af et polypeptid, der kodes af en analog DNA-sekvens, en lighedsgrad på fortrinsvis mindst 70 %, mere fortrinsvis mindst 80 %, mere fortrinsvis mindst 90 %, mere fortrinsvis mindst 95 %, især mindst 97 % med den modne del af aminosyresekvensen, der er vist i SEQ ID NO: 2, det vil sige position 31-346 i SEQ ID NO: 2, eller mere fortrinsvis med aminosyresekvensen, der er vist i position 31-303 i SEQ ID NO: 2 (position 303 er den C-terminale rest i C-terminalt processeret secerneret aktivt enzym).

35

30

Den foreliggende opfindelse er også rettet mod phospholipase-varianter med en aminosyresekvens, der adskiller sig i ikke mere end tre aminosyrer, fortrinsvis i ikke mere end to aminosyrer og mere fortrinsvis i ikke mere end en aminosyre fra den modne del af aminosyresekvensen, der er vist i SEQ ID NO: 2.

5

15

20

25

 $\{-i\}_{i \in \mathbb{Z}_2}$

ť.

Endvidere angår de ovennævnte foretrukne aminosyreligheder også en analog til en klonet DNA-sekvens ifølge opfindelsen, idet denne sekvens koder for et polypeptid, der fremviser phospholipase-aktivitet, og som er mindst 70 % homolog med polypeptidsekvensen, der er vist i position 31-346 i SEQ ID NO: 2, eller mere fortrinsvis mindst 70 % homolog med polypeptidsekvensen, der omfatter positionerne 31-303 i SEQ ID NO: 2.

10 <u>Immunologisk krydsreaktivitet</u>

anvendes til bestemmelse af immunologisk Antistoffer. skal krydsreaktivitet, kan fremstilles ved anvendelse af en oprenset phospholipase. Mere specifikt kan der dannes antiserum mod phospholipasen ifølge opfindelsen ved hjælp af immunisering af kaniner (eller andre gnavere) i overensstemmelse med proceduren, der er beskrevet af Axelsen et al. i A Manual of Quantitative Immunoelectrophoresis, Blackwell Publications, 1973, Chapter. 23, eller A. Johnstone og R. Thorpe, Immunochemistry in Practice, Bladkwell Scientific Publications, 1982 (nærmere bestemt side 27-31). Oprensede immunoglobuliner kan opnås fra antiserumet, for eksempel ved hjælp af saltfældning ((NH₄)₂SO₄), efterfulgt af dialyse og ionbytningskromatografi, for eksempel på DEAE-Sephadex. Immunokemisk karakterisering af proteiner kan udføres enten ved hjælp af Outcherlony-dobbeltdiffusionsanalyse (O. Ouchterlony i: Handbook of Experimental Immunology (D.M. Weir, Ed.), Blackwell Scientific Publications, 1967, pp. 655-706), ved hjælp af kryds-immunelektroforese (N. Axelsen et al., supra, kapitel 3 og 4) eller ved hjælp af raket-immunelektroforese (N. Axelsen et al., kapitel 2).

30 Mikrobielle kilder

På prioriteringsdatoen for den foreliggende opfindelse er taksonomien, der anvendes nedenfor, i overensstemmelse med World Wide Web (WWW)-NCBI-taksonomi-browseren.

35

Et isoleret polypeptid med phospholipase-aktivitet og den tilsvarende klonede DNA-sekvens ifølge opfindelsen kan opnås fra en hvilken som helst mikroorganisme, fortrinsvis en trådsvamp, en gærcelle eller en bakterie.

Fortrinsvis kan en phospholipase og den tilsvarende klonede DNA-sekvens ifølge opfindelsen opnås fra en trådsvampestamme, hvor en foretrukken række er *Ascomycota*, hvor en foretrukken klasse er *Pyrenomycetes*, som omfatter den foretrukne familie *Nectriaceae*.

Mere fortrinsvis kan phospholipasen og den tilsvarende klonede DNA-sekvens ifølge opfindelsen opnås fra en stamme af slægten *Fusarium*, såsom en stamme af *F. culmorum*, *F. heterosporum* eller *F. solani*, især en stamme af *Fusarium oxysporum*.

Endvidere kan en phospholipase og den tilsvarende klonede DNA-sekvens ifølge opfindelsen opnås fra en trådsvampestamme fra slægten Aspergillus, såsom en stamme af Aspergillus awamon, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger eller især Aspergillus oryzae.

Et isolat fra en stamme af *Fusarium oxysporum*, hvorfra en phospholipase ifølge opfindelsen kan opnås, er blevet deponeret i overensstemmelse med the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure ved the Deutche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Tyskland (DSM).

25 Deponeringsdato:

5

10

15

20

30

35

; · · \

6. juni 1983

Deponents ref.:

NNO41759

DSM-nr.:

Fusarium oxysporum DSM-nr. 2672

Endvidere er ekspressionsplasmidet pYES 2.0, som omfatter den udforkortede cDNA-sekvens, der koder for phospholipasen ifølge opfindelsen, blevet transformeret ind i en stamme af *Escherichia coli*, som blev deponeret i overensstemmelse med the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure ved the Deutche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Tyskland (DSM).

Deponeringsdato:

25. november 1996

Deponents ref.:

NNO49279

DSM-nr.:

Escherichia coli DSM-nr. 11299

Ekspressionsvektorer

5

Ekspressionsvektoren ifølge opfindelsen kan være en hvilken som helst ekspressionsvektor, som på bekvem vis kan udsættes for rekombinant-DNA-procedurer, og valget af vektor vil ofte afhænge af værtscellen, hvori vektoren skal indføres. Vektoren kan således være en autonomt replikerende vektor, det vil sige en vektor, der findes som en ekstrakromosomal enhed, hvis replikation er uafhængig af kromosomal replikation, for eksempel et plasmid. Alternativt kan vektoren være en, der, når den indføres i en værtcelle, integreres i værtscellegenomet og replikeres sammen med kromosomet eller kromosomerne, hvori den er integreret.

15

20

10

I ekspressionsvektoren skal DNA-sekvensen, der koder for phospholipasen, være operationelt koblet til en egnet promotor- eller terminatorsekvens. Promotoren kan være en hvilken som helst DNA-sekvens, der fremviser transkriptionel aktivitet i den valgte værtscelle, og kan stamme fra gener, der koder for proteiner, som enten er homologe eller heterologe for værtscellen. Procedurerne, som anvendes til ligering af DNA-sekvenserne, der koder for phospholipasen, promotoren og terminatoren, og til insertion af disse i egnede vektorer er velkendte (cf. for eksempel Sambrook et al. (1989), Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, NY).

25

30

(t.)

Eksempler på egnede promotorer til anvendelse i trådsvampeværtsceller er for eksempel ADH3-promotoren (McKnight et al., The EMBO J. 4:2093-2099 (1985)) eller tpiA-promotoren. Eksempler på andre anvendelige promotorer er de, der stammer fra genet, der koder for Aspergillus oryzae-TAKA-amylase, Rhizomucor miehei-asparagin-proteinase, Aspergillus niger-neutral α-amylase, Aspergillus niger-syrestabil α-amylase, Aspergillus niger- eller Aspergillus awamori-glucoamylase (gluA), Rhizomucor miehei-lipase, Aspergillus oryzae-alkalisk protease, Aspergillus oryzae-triosephosphat-isomerase eller Aspergillus nidulans-acetamidase.

Værtsceller

5

10

15

20

25

30

35

()

Den foreliggende opfindelse angår også rekombinante værtsceller, som omfatter en nukleinsyresekvens ifølge opfindelsen, hvor cellerne med fordel kan anvendes i den rekombinante produktion af polypeptiderne. Udtrykket "værtscelle" omfatter et hvilket som helst afkorn af en parentalcelle, som ikke er identisk med parentalcellen på grund af mutationer, der forekommer under replikation.

Cellen transformeres fortrinsvis med en vektor, som omfatter en nukleinsyresekvens ifølge opfindelsen, efterfulgt af integrering af vektoren i værtskromosomet.

"Transformation" betyder indførelse af en vektor, som omfatter en nukleinsyresekvens ifølge den foreliggende opfindelse i en værtscelle, således at vektoren opretholdes som en kromosomalt integreret sekvens eller som en selvreplikerende ekstrakromosomal vektor. Integrering anses almindeligvis for at være en fordel, da det er mere sandsynligt, at nukleinsyresekvensen opretholdes stabilt i cellen. Integrering af vektoren i værtskromosomet kan forekomme ved hjælp af homolog eller ikke-homolog rekombination som beskrevet ovenfor.

I en foretrukken udførelsesform er værtscellen en svampecelle. "Svampe" indbefatter som anvendt heri rækken Ascomycota, Basidiomycota, Chytridiomycota og Zygomycota (som defineret af Hawksworth et al., I: Ainsworth og Bisby's Dictionary of The Fungi, 8. udgave, 1995, CAB International, University Press, Cambridge, UK) såvel som Oomycota (som anført i Hawksworth et al., 1995, supra, page 171) og alle mitosporiske svampe (Hawksworth et al., 1995, supra). Repræsentative grupper af Ascomycota indbefatter for eksempel Neurospora, Eupenicillium (= Penicillium), Emericella (= Aspergillus), Eurotium (= Aspergillus) og de egentlige gær, der er anført ovenfor. Eksempler på Basidiomycota indbefatter paddehatte, rust og brand. Repræsentative grupper af Chytridiomycota indbefatter for eksempel Allomyces, Blastocladiella, Coelomomyces og akvatiske svampe. Repræsentative grupper af Oomycota indbefatter for eksempel saprolegniomycetøse akvatiske svampe (vandskimmelsvampe), såsom Achlya. Eksempler på mitosporiske svampe indbefatter Aspergillus,

Penicillium, Candida og Alternaria. Repræsentative grupper af Zygomycota indbefatter for eksempel Rhizopus og Mucor.

5

10

15

20

25

30

35

(· .

(·

I en foretrukken udførelsesform er svampeværtscelle en trådsvampecelle. "Trådsvampe" indbefatter alle trådagtige former af undergruppen Eumycota og Oomycota (som defineret af Hawksworth et al., 1995, supra). Trådsvampene er kendetegnet ved et vegetativt mycelium, der består af chitin, cellulose. glucan, chitosan, mannan og andre komplekse polysaccharider. Vegetativ vækst sker ved hyfal forlængelse, og carbonkatabolismen er obligat aerob. I modsætning hertil sker vegetativ vækst hos gær, såsom Saccharomyces cerevisiae, ved hjælp af knopskydning fra en unicellulær thallus, og carbonkatabolismen kan være fermentativ. I en mere foretrukken udførelsesform er trådsvampeværtscellen en celle fra en art af men ikke begrænset til Acremonium, Aspergillus, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Thielavia. Tolypocladium og Trichoderma eller en teleomorf eller et synonym dertil. I en endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Aspergillus-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Acremonium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Fusarium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Humicola-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Mucorcelle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Myceliophthora-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Neurospora-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Penicillium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Thielavia-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Tolypocladium-celle. I en anden endnu mere foretrukken udførelsesform er trådsvampeværtscellen en Trichoderma-celle. 1 en mest foretrukken udførelsesform trådsvampeværtscellen en Aspergillus awamori-, Aspergillus foetidus-, Aspergillus japonicus-, Aspergillus niger- eller Aspergillus oryzae-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Fusarium-celle fra gruppen Discolor (også kendt som gruppen Fusarium). I en anden foretrukken udførelsesform er trådsvampeparentalcellen en Fusariumstamme fra udsnittet Elegans, for eksempel Fusarium oxysporum. I en anden

mest foretrukken udførelsesform er trådsvampeværtscellen en Humicola insolens- eller Thermomyces lanuginosa-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Rhizomucor miehei-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Myceliophthora thermophilum-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Neurospora crassa-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Penicillium purpurogenum-celle. I en anden mest foretrukken udførelsesform er trådsvampeværtscellen en Thielavia terrestris-celle. I en anden mest foretrukken udførelsesform er Trichoderma-cellen en Trichoderma harzianum-, Trichoderma koningii-, Trichoderma longibrachiatum-, Trichoderma vinde-celle.

Syampeceller kan transformeres ved hiælp af en proces, der inddrager protoplast-dannelse, transformation af protoplasterne og regenerering af cellevæggen på en måde, der er kendt per se. Egnede procedurer til transformation af Aspergillus-værtsceller er beskrevet i EP 238 023 og Yelton et al., 1984, Proceedings of the National Academy of Sciences USA 81:1470-1474. En egnet fremgangsmåde til transformation af Fusarium-arter er beskrevet af Malardier et al., 1989, Gene 78:147-156 eller i sideløbende US serienr. 08/269 449. Gær kan transformeres ved anvendelse af procedurerne, der er beskrevet af Becker og Guarente, I: Abelson, J.N., og Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology 194:182-187, Academic Press, Inc., New York; Ito et al., 1983, Journal of Bacteriology 153:163; og Hinnen et al., 1978, Proceedings of the National Academy of Sciences USA 75:1920. Mammaliaceller kan transformeres ved hjælp af direkte optagelse ved anvendelse af calciumphosphat-fældningsmetoden ifølge Graham og Van der Eb (1978, Virology 52:546).

30

35

5

10

15

20

25

(· :-

Fremgangsmåde til frembringelse af phospholipase

Den foreliggende opfindelse tilvejebringer en fremgangsmåde til frembringelse af et isoleret enzym ifølge opfindelsen, hvorved en egnet værtscelle, som er blevet transformeret med en DNA-sekvens, der koder for enzymet, dyrkes under betingelser, der åbner mulighed for dannelsen af enzymet, og det resulterende enzym indvindes fra kulturen.

Når en ekspressionsvektor, der omfatter en DNA-sekvens, som koder for enzymet, transformeres ind i en heterolog værtscelle, er det muligt at åbne mulighed for heterolog rekombinant produktion af enzymet ifølge opfindelsen.

Derved er det muligt at opnå en stærkt oprenset phospholipasesammensætning, som er kendetegnet ved at være fri for homologe urenheder.

I den foreliggende opfindelse kan den homologe værtscelle være en stamme af Fusarium oxysporum.

10

15

5

Mediet, som anvendes til at dyrke de transformerede værtsceller, kan være et hvilket som helst traditionelt medium, som er egnet til dyrkning af de pågældende værtsceller. Den udtrykte phospholipase kan passende secerneres ud i dyrkningsmediet og indvindes derfra ved hjælp af velkendte procedurer, herunder separering af cellerne fra mediet ved hjælp af centrifugering eller filtrering, fældning af proteinagtige bestanddele i mediet ved hjælp af et salt, såsom ammoniumsulphat, efterfulgt af kromatografiske procedurer, såsom ionbytningskromatografi, affinitetskromatografi eller lignende.

20

25

(-

Anvendelse af phospholipase

Foruden anvendelsen af en phospholipase i en ny fremgangsmåde ifølge opfindelse til enzymatisk degummering af en spiseolie, som omfatter en stor mængde af ikke-hydrerbart phosphor, er en række andre anvendelser af phospholipaser kendte.

Sådanne kendte anvendelser af phospholipaser er beskrevet nedenfor.

30

Phospholipasen ifølge opfindelsen kan anvendes i en hvilken som helst anvendelse, hvor det ønskes at hydrolysere fedtsyregruppen eller grupperne i et phospholipid eller lysophospholipid, såsom lecithin eller lysolecithin. Phospholipasen anvendes fortrinsvis ved pH 3-10 og ved 30-70 °C (især 40-60 °C). Hvis det ønskes, kan phospholipasen inaktiveres efter reaktionen ved at udsætte den for varmebehandling, for eksempel ved pH 7, 80 °C i 1 time eller 90 °C i 10 minutter.

Som eksempel kan phospholipasen ifølge opfindelsen anvendes i fremstillingen af dej, brød og kager, for eksempel til at forbedre brødets eller kagens elasticitet. Phospholipasen kan således anvendes i en proces til frembringelse af brød, som omfatter tilsætning af phospholipasen til bestanddelene i en dej, æltning af dejen og bagning af dejen til frembringelse af brød. Dette kan udføres analogt med US 4 567 046 (Kyowa Hakko), JP-A 60-78529 (QP Corp.), JP-A 62-111629 (QP Corp.), JP-A 63-258528 (QP Corp.) eller EP 426211 (Unilever).

5

20

35

 U_{i}

Phospholipasen ifølge opfindelsen kan også anvendes til at forbedre filtrerbarheden af en vandig opløsning eller opslemning af carbohydratoprindelse ved hjælp af behandling af den med phospholipasen. Dette er særligt anvendeligt til en opløsning eller opslemning, som indeholder et stivelseshydrolysat, især et hvedestivelseshydrolysat, da denne har en tendens til at være vanskelig at filtrere og at give uklare filtrater. Behandlingen kan udføres analogt med EP 219 269 (CPC International).

Endvidere kan en phospholipase ifølge opfindelsen anvendes til partiel hydrolyse af phospholipider, fortrinsvis lecithin, til opnåelse af forbedrede phospholipid-emulgeringsmidler. Denne anvendelse beskrives yderligere i produktark til Lecitase™ (Novo Nordisk A/S), som angår brugen deraf, og i Ullmann's Encyclopedia of Industrial Chemistry (Udgiver: VCH Weinheim (1996)).

Endvidere kan en phospholipase ifølge opfindelsen anvendes i en proces til produktion af et dyrefoder, som omfatter blanding af phospholipasen med foderstoffer og mindst ét phospholipid. Dette kan gøres analogt med EP 743 017.

30 <u>Degummering af plante-/spiseolier i overensstemmelse med kendte</u> <u>procedurer</u>

I overensstemmelse med kendte procedurer kan phospholipasen ifølge opfindelsen anvendes i en proces til reduktion af indholdet af phospholipid i en spiseolie, som omfatter behandling af olien med phospholipasen til hydrolysering af hovedparten af phospholipiden og separering af en vandig fase, som indeholder det hydrolyserede phospholipid fra olien. Denne proces

er anvendelig til oprensning af en hvilken som helst spiseolie, der indeholder phospholipid, for eksempel planteolie, såsom sojabønneolie, rapsfrøolie og solsikkeolie.

Før den enzymatiske behandling forbehandles planteolien fortrinsvis til fjernelse af slim (mucilago), for eksempel ved hjælp af vådraffinering. Olien vil typisk indeholde 50-250 ppm phosphor som phospholipid ved starten af behandlingen med phospholipase, og processen ifølge opfindelsen kan reducere denne værdi til under 11 ppm, mere fortrinsvis under 5 ppm.

10

5

Den enzymatiske behandling udføres ved hjælp af dispersion af en vandig opløsning af en phospholipase, fortrinsvis som små dråber med en gennemsnitlig diameter på under 10 µm. Mængden af vand er fortrinsvis 0,5-5 vægt-% i forhold til olien. Et emulgeringsmiddel kan eventuelt tilsættes. Mekanisk bevægelse kan anvendes til opretholdelse af emulsionen.

15

Den enzymatiske behandling kan udføres ved et hvilket som helst pH i intervallet 1,5-8. pH kan justeres ved hjælp af tilsætning af citronsyre, en citratbuffer eller HCI.

20

En passende temperatur er almindeligvis 30-70 °C (især 40-60 °C). Reaktionstiden vil typisk være 0,5-12 timer (for eksempel 2-6 timer), og en passende enzymdosis vil sædvanligvis være 100-5000 IU pr. liter olie, især 200-2000 IU/I.

25

(- 1

Den enzymatiske behandling kan udføres batchvis, for eksempel i en tank med omrøring, eller kan være fortløbende, for eksempel i en serie af omrørte reaktortanke.

30

Den enzymatiske behandling følges af separering af en vandfase og en oliefase. Denne separering kan udføres ved hjælp af traditionelle midler, for eksempel centrifugering.

35

I andre henseender kan processen udføres i overensstemmelse med kendte principper, for eksempel analogt med US 5 264 367 (Metallgesellschaft, Röhm); K. Dahlke & H. Buchold, INFORM 6(12):1284-91 (1995); H. Buchold, Fat Sci. Technol. 95(8):300-304 (1993); JP-A 2-153997 (Showa Sangyo); eller

EP 654 527 (Metalgesellschaft, Röhm).

Anvendelse af en phospholipase ifølge opfindelsen til bagning

Phospholipasen ifølge opfindelsen kan anvendes i brød-forbedrende additiver, for eksempel dejsammensætninger, dejadditiver, dejkonditioneringsmidler, færdigblandinger og tilsvarende præparater, som traditionelt tilsættes til melet og/eller dejen i løbet af processer til frembringelse af brød eller andre bagte produkter til tilvejebringelse af forbedrede egenskaber for brød eller andre 10 bagte produkter.

> En udførelsesform for opfindelsen angår derfor en brødforbedrende og/eller en dejforbedrende sammensætning og endvidere anvendelsen af en phospholipase ifølge opfindelsen i sådanne sammensætninger og en dej eller et bagt produkt, som omfatter en brødforbedrende og/eller en dejforbedrende sammensætning ifølge opfindelsen.

> I det foreliggende sammenhæng påtænkes udtrykkene "brødforbedrende sammensætning" oq "dejforbedrende sammensætning" sammensætninger, som foruden enzymbestanddelen kan omfatter andre stoffer, som traditonelt anvendes til bagning til forbedring af dejens og/eller de bagte produkters egenskaber. Eksempler på sådanne bestanddele er anført nedenfor.

> I det foreliggende sammenhæng påtænkes udtrykket "forbedrede egenskaber" at angive en hvilken som helst egenskab, der kan forbedres ved hjælp af virkningen af et phospholipase-enzym ifølge opfindelsen. Især resulterer anvendelsen af phospholipase i et forøget volumen og en forbedret krummestruktur og anti-"friskhedstab"s-egenskaber hos det bagte produkt, såvel som en forøget styrke, stabilitet og reduceret klæbetilbøjelighed og derved forbedret maskinbearbeidelighed hos dejen. Effekten på dejen har vist sig at være særlig god, når der anvendes en mel af ringe kvalitet. Den forbedrede maskinbearbejdelighed har særlig betydning i forbindelse med dej, der skal bearbejdes industrielt.

> De forbedrede egenskaber vurderes ved hjælp af sammenligning med dej og/eller bagte produkter, der er fremstillet uden tilsætning af phospholipase

5

15

20

25

30

()

ifølge den foreliggende opfindelse.

5

10

15

20

25

30

35

í

Den brød- og/eller dejforbedrende sammensætning ifølge opfindelsen kan yderligere omfatte et andet enzym. Eksempler på andre enzymer en cellulase, en hemicellulase, en pentosanase (der er anvendelig til partiel hydrolyse af pentosaner, som øger dejens udvidelsesevne), en glucoseoxidase (der er anvendelig til at gøre dejen stærkere), en lipase (der er anvendelig til modificering af lipider, der er til stede i dejen eller dejbestanddele til blødgøring af dejen), en peroxidase (der er anvendelig til forbedring af dejkonsistensen), en protease (der er anvendelse til glutensvækkelse, især ved anvendelse af hård hvedemel), en peptidase og/eller en amylase, for eksempel α-amylase (der er anvendelig til tilvejebringelse af sukre, der kan fermenteres ved hjælp af gær).

Endvidere eller som et alternativ til andre enzymbestanddele kan den dejforbedrende og/eller brødforbedrende sammensætning omfatte et traditionelt anvendt bagemiddel, for eksempel en eller flere af følgende bestanddele:

Et mælkepulver (som tilvejebringer skorpefarve), gluten (til at forbedre svage meles gastilbageholdelsesstyrke), et emulgeringsmiddel (til at forbedre dejens udvidelsesevne og i nogen grad konsistensen af det resulterende brød), granuleret fedt (til blødgøring af dejen og for brødets konsistens), en oxidant (som tilsættes for at forstærke glutenstrukturen, for eksempel ascorbinsyre, kaliumbromat, kaliumiodat eller ammoniumpersulfat), en aminosyre (for eksempel cystein), en sukker og salt (for eksempel natriumchlorid, calciumacetat, natriumsulfat eller calciumsulfat, hvis funktion er at gøre dejen fastere), mel eller stivelse.

Eksempler på egnede emulgeringsmidler er mono- eller diglycerider, diacetylvinsyre-estere af mono- eller diglycerider, sukker-estere af fedtsyrer, polyglycerol-estere af fedtsyrer, mælkesyre-estere af monoglycerider, eddikesyre-estere af monoglycerider, polyoxyethylenstearater, phospholipider og lecithin.

I det foreliggende sammenhæng påtænkes udtrykket "bagt produkt" at indbefatte et hvilket som helst produkt, der er fremstillet af dej, som enten har

NZAS-0007613

en blød eller en sprød karakter. Eksempler på bagte produkter, hvad enten de er af hvid, lys eller mørk type, som med fordel kan fremstilles ved anvendelse af den foreliggende opfindelse, er brød (især hvidt brød, fuldkorns- eller rugbrød), typisk i form af hele brød eller kuvertbrød, fransk baguette-type brød, pitabrød, tacos, kager, pandekager, kiks, knækbrød og lignende.

5

20

25

30

35

ŧ.

: :

Dejen ifølge opfindelsen kan være af en hvilken som helst af typerne, der er beskrevet ovenfor, og kan være frisk eller frosset.

Fra ovennævnte beskrivelse vil det fremgå, at dejen ifølge opfindelsen normalt er en surdej eller en dej, der skal syrnes. Dejen kan syrnes på forskellige måder, såsom ved hjælp af tilsætning af natriumbicarbonat eller lignende eller ved hjælp af tilsætning af en surdej (gærende dej), men det foretrækkes at syrne dejen ved hjælp af tilsætning af en egnet gærkultur, såsom en kultur af Saccharomyces cerevisiae (bagegær). En hvilken som helst af de kommercielt tilgængelige S. cerevisiae-stammer kan anvendes.

I en sidste udførelsesform angår opfindelsen anvendelsen af en phospholipase ifølge opfindelsen til fremstilling af pastadej, som fortrinsvis fremstilles af durummel eller en mel af sammenlignelig kvalitet. Dejen kan fremstilles ved anvendelse af traditionelle teknikker og phospholipasen anvendes i en tilsvarende dosis, som den der er beskrevet ovenfor. Phospholipasen er fortrinsvis af mikrobiel oprindelse, for eksempel som beskrevet heri. Det påtænkes, at phospholipasen, når den anvendes til fremstilling af pasta, resulterer i en forstærkning af glutenstrukturen og således en reduktion i dejens klæbetilbøjelighed og en forbedret dejstyrke.

Anvendelse af lipaseaktivitet hos et enzym ifølge opfindelsen

Som vist i forsøgseksemplerne heri kan en phospholipase ifølge opfindelsen yderligere fremvise lipaseaktivitet.

Følgeligt angår opfindelsen yderligere anvendelsen af denne lipaseaktivitet i standardanvendelser af en lipase, især til anvendelse i rengørings- og detergentsammensætninger. Sådanne rengørings- og detergentsammensætninger er velbeskrevne, og der henvises til WO 96/34946, WO 97/07202 og WO 95/30011 for yderligere beskrivelser af

egnede rengørings- og detergentsammensætninger.

Opfindelsen beskrives mere detaljeret i følgende eksempler, som ikke på nogen måde har til hensigt at begrænse rækkevidden af den påberåbte opfindelse.

Materialer og metoder

Deponerede organismer

10

15

5

Fusarium oxysporum DSM 2672 omfatter phospholipasen, der koder for DNA-sekvensen ifølge opfindelsen.

Escherichia coli DSM 11299, som indeholder plasmidet, der omfatter den uforkortede cDNA-sekvens, der koder for phospholipasen ifølge opfindelsen, i den bifunktionelle vektor pYES 2.0.

Andre stammer

Gærstamme: Den anvendte Saccharomyces cerevisiae-stamme var W3124 (MATa; ura 3-52; leu 2-3, 112; his 3-D200; pep 4-1137; prc1::HIS3; prb1::LEU2; cir+).

E. coli-stamme: DH10B (Life Technologies).

25

Plasmider

Aspergillus-ekspressionsvektoren pHD414 er et derivat af plasmidet p775 (der er beskrevet i EP 238 023). Konstruktionen af pHD414 er yderligere beskrevet i WO 93/11249.

pYES 2.0 (Invitrogen).

pA2PH10 (se eksempel 7).

35

30

Generelle molekylærbiologiske fremgangsmåder

Med mindre andet er anført, blev DNA-manipuleringerne og transformationerne udført ved anvendelse af standardmetoder indenfor molekylærbiologi (Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, F.M. et al. (red.), "Current protocols in Molecular Biology". John Wiley and Sons, 1995; Harwood, C.R., og Cutting, S.M. (red.), "Molecular Biological Methods for Bacillus". John Wiley and Sons, 1990).

Enzymer til DNA-manipuleringer blev anvendt i overensstemmelse med specifikationerne fra leverandørerne.

Enzymer til DNA-manipuleringer

Med mindre andet er anført, er alle enzymer til DNA-manipuleringer, såsom for eksempel restriktionsendonukleaser, ligaser etc., leveret af New England Biolabs, Inc.

Phospholipase-aktivitetsassay på basis af Nefa-C-test

20 Substrat: L-α-lysophosphatidylcholin (Sigma).

Substrat: Sojabønne-lecithin (Sigma nr. P3644). Anvendes til måling af phospholipase A-aktivitet.

Nefa-C-testkit er fra Wako Chemicals Germany.

Buffer: 20 mM NaOAc, pH 4,5.

25

5

10

Substratopløsning: 10 mg substrat i 1 ml milliQ-vand og 1 ml buffer (lav tilstrækkelig substratopløsning til alle prøver).

- 1. 15 μl enzym tilsættes til 150 μl substratopløsning.
- 30 2. Inkubation i 10 minutter ved 40 °C.
 - 3. 30 µl overføres til 300 µl reagens 1 (fra Nefa-kit).
 - 4. Inkubation i 10 minutter ved 37 °C.
 - 5. Tilsætning af 600 μl reagens 2 (fra Nefa-kit).
 - 6. Inkubation i 10 minutter ved 37 °C.
- 7. Absorption for det endelige reaktionsprodukt måles ved 550 nm i overensstemmelse med Nefa-kit-instruktioner.

Den enzymaktivitet, der er nødvendig til frembringelse af 1 µmol fedtsyre pr. minut fra enzymreaktionen, defineredes som 1 enhed.

Ekspressionskloning i gær

5

20

£ ...

Ekspressionskloning i gær blev udført som beskrevet udførligt af H. Dalboege et al. (H. Dalboege et al., Mol. Gen. Genet. (1994), 243:253-260; WO 93/11249; WO 94/14953), der medtages heri som reference.

Alle individuelle trin i ekstraktion af totalt RNA, cDNA-syntese, mungbønnenukleasebehandling, stump-endedannelse med T4-DNA-polymerase og konstruktion af biblioteker blev udført i overensstemmelse med referencerne, der er nævnt ovenfor.

15 <u>Fermenteringsprocedure af Fusarium oxysporum DSM 2672 til mRNA-</u>isolering

Fusarium oxysporum DSM 2672 blev dyrket i YPD-medium i 4 dage ved $30\,^{\circ}$ C. $10\,\mu$ l supernatant blev testet for phospholipase-aktivitet i udpladningsassayet, der er beskrevet nedenfor.

mRNA blev isoleret fra mycelium fra denne kultur som beskrevet i H. Dalboege et al., Mol. Gen. Genet. (1994), 243:253-260, WO 93/11249 og WO 94/14953.

25 Identificering af positive gærkloner (udpladningsassay)

Identificering af positive gærkloner (det vil sige kloner, som omfatter et gen, der koder for phospholipase-aktivitet) blev udført som beskrevet nedenfor.

Gærtransformanterne udplades på SC-agar, der indeholder 2 % glucose, og inkuberes i 3 dage ved 30 °C. Et celluloseacetat-filter (OE67, Schleicher & Schuell) anbringes ovenpå cellerne og overføres herefter til skålene, der indeholder SC-agar og 2 % galactose med cellerne ovenpå filteret. Efter 3 dages inkubation ved 30 °C overføres filteret med celler til substratskåle. Positive kloner identificeres som kolonier, der fremkalder en blågrøn zone i substratskålen under kolonien.

Substratskålene er fremstillet på følgende måde: 2,5 g agar (BA-30 INA Agar®, Funakoshi Co. Ltd.) tilsættes til 137,5 ml H₂O, opvarmet til kogning i en mikrobølgeovn. Efter nedkøling til ca. 60 °C tilsættes 30 ml af følgende blanding: 62,5 ml 0,4 M Tris-HCl-buffer (pH 7,5) og 50 ml 3 % Lipoid E80 (Lipoid GmbH, D-67065 Ludwigshafen, Tyskland), som er opløst i 2 % Triton X-100 (volumen/volumen), og 0,5 ml 2 % Brilliant Green-opløsning i H₂O. Koncentrationen af substratet er vigtig. Hvis koncentrationen er for høj, kan det give anledning til baggrundsaktivitet fra gærceller og/eller fra trådsvampelipaser med phospholipase-sideaktivitet.

10

15

(..

5

Isolering af et cDNA-gen til ekspression i Aspergillus

En phospholipase-producerende gærkoloni podes i 20 ml YPD-medium i et 50 ml-glas-reagensglas. Reagensglasset rystes i 2 dage ved 30 °C. Cellerne høstes ved hjælp af centrifugering i 10 minutter ved 3000 rpm.

DNA isoleres ifølge WO 94/14953 og opløses i 50 ml vand. DNA'et transformeres ind i *E. coli* ved hjælp af standardprocedurer. Plasmid-DNA isoleres fra *E. coli* ved anvendelse af standardprocedurer og analyseres ved hjælp af restriktionsenzymanalyse. cDNA-insertet skæres ud ved anvendelse af passende restriktionsenzymer og ligeres ind i en *Aspergillus*-ekspressionsvektor.

20

Transformation af Aspergillus oryzae eller Aspergillus niger

25

Protoplaster kan fremstilles som beskrevet i WO 95/02043, side 6, linie 2 - side 17, linie 12, der medtages heri som reference.

30

100 µl af protoplast-suspensionen blandes med 5-25 µg af det behørige DNA i 10 µl STC (1,2 M sorbitol, 10 mM Tris-HCl, pH = 7,5, 10 mM CaCl₂). Protoplaster blandes med p3SR2 (et *A. nidulans*-amdS-gen-indeholdende plasmid). Blandingen hensættes ved stuetemperatur i 25 minutter. 0,2 ml 60 % PEG 4000 (BDH 29576), 10 mM CaCl₂ og 10 mM Tris-HCl, pH 7,5, tilsættes og blandes omhyggeligt (to gange), og til sidst tilsættes 0,85 ml af den samme opløsning og blandes omhyggeligt. Blandingen hensættes ved stuetemperatur i 25 minutter, centrifugeres ved 2500 x g i 15 minutter, og pelleten resuspenderes i 2 ml 1,2 M sorbitol. Efter endnu en sedimentering spredes

protoplasterne i minimale skåle (Cove, Biochem. Biophys. Acta (1966), 113:51-56), som indeholder 1,0 M sucrose, pH 7,0, 10 mM acetamid som nitrogen-kilde og 20 mM CsCl til hæmning af baggrundsvækst. Efter inkubation i 4-7 dage ved 37 °C udtages sporer og spredes til enkeltkolonier. Denne procedure gentages, og sporer fra en enkeltkoloni efter den anden reisolering opbevares som en defineret transformant.

Test af Aspergillus oryzae- eller Aspergillus niger-transformanter

Hver af Aspergillus oryzae-transformanterne podes i 10 ml YPM (cf. nedenfor) og opformeres. Efter 2-5 dages inkubation ved 30 °C fjernes supernatanten. 20 µl supernatant påføres i huller, der er stukket i substratpladen (se ovenfor). Efter 1-24 timer viser phospholipase-aktivitet sig som en blågrøn zone omkring hullet.

Tilførsels-batchfermentering

5

15

20

25

Tilførsels-batchfermentering blev udført i et medium, som omfattede maltodextrin som carbonkilde, urinstof som nitrogenkilde og gærekstrakt. Tilførsels-batchfermenteringen blev udført ved hjælp af podning af en rystekolbekultur af *A. oryzae*-værtsceller af interesse i en medium, som omfattede 3,5 % af carbonkilden og 0,5 % af nitrogenkilden. Efter 24 timers dyrkning ved pH 7,0 og 34 °C blev den fortløbende tilførsel af yderligere carbon- og nitrogenkilder indledt. Carbonkilden blev holdt som den begrænsende faktor, og det blev sikret, at der var oxygen til stede i overskydende mængder. Tilførsels-batchdyrkningen blev fortsat i 4 dage.

Isolering af DNA-sekvensen, der er vist i SEQ ID NO: 1

Den phospholipase-kodende del af DNA-sekvensen, der er vist i SEQ ID NO: 1, som koder for phospholipasen ifølge opfindelsen, kan opnås fra den deponerede organisme *Escherichia coli* DSM 11299 ved hjælp af ekstraktion af plasmid-DNA ved hjælp af kendte metoder (Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY).

Medier

YPD: 10 g gærekstrakt, 20 g pepton, H₂O til 900 ml. Autoklaveret, 100 ml 20 % glucose (sterilfiltreret) tilsat.

5 YPM: 10 g gærekstrakt, 20 g pepton, H₂O til 900 ml. Autoklaveret, 100 ml 20 % maltodextrin (sterilfiltreret) tilsat.

10 x basalsalt: 75 g gær-nitrogenbase, 113 g ravsyre, 68 g NaOH, H_2O til 1000 ml, sterilfiltreret.

10

SC-URA: 100 ml 10 x basalsalt, 28 ml 20 % casaminosyrer uden vitaminer, 10 ml 1 % tryptophan, H_2O til 900 ml. Autoklaveret, 3,6 ml 5 % threonin og 100 ml 20 % glucose eller 20 % galactose tilsat.

15 SC-agar: SC-URA, 20 g/l agar tilsat.

SC-variantagar: 20 g agar, 20 ml 10 x basalsalt, H₂O til 900 ml, autoklaveret.

PEG 4000 (polyethylenglycol, molekylevægt = 4.000) (BDH, England).

20

EKSEMPLER

EKSEMPEL 1

25 Fermentering af Fusarium oxysporum-phospholipase

En kultur af *Fusarium oxysporum* DSM 2672 på et skråstivnet agarsubstrat blev overført til fem 500 ml-rystekolber, hver med 100 ml Bouillon-3-medium, og omrystet ved 30 °C i 1 dag (200 rpm, amplitude 2,5 cm).

30

Sammensætningen af Bouillon-3-medium var som følger:

	Pepton	6 g/l
	Trypsinfordøjet kasein	4 g/l
35	Gærekstrakt	3 g/l
	Kødekstrakt	1,5 g/l
	Glucose	1 g/l

Mediet blev autoklaveret ved 121 °C i 40 minutter.

Dyrkningsmediet fra disse Boullion-3-rystekolber blev anvendt som podekultur til podning af tyve 500 ml-rystekolber, hver med 200 ml PL-1-medium.

Sammensætningen af PL-1-mediet var som følger:

	Pepton	10 g/I
10	Tween®-80	12 g/l
	MgSO ₄ .7H ₂ O	2 g/l
	CaCl₂.2H₂O	0,1 g/l
	pH før autoklavering	6.0

15 Mediet blev autoklaveret ved 121 °C i 40 minutter.

Hver PL-1-rystekolbe blev podet med 0,5-2 ml Boullion-3-dyrkningsmedium og rystet ved 200 rpm (amplitude 2,5 cm) ved 30 °C i 5 dage. Dyrkningsmediet fra rystekolberne blev puljet ved høst til opnåelse af 3,9 l med et enzymudbytte på 53 LU/ml.

EKSEMPEL 2

Oprensning af phospholipase

25

20

Ĉ

Trin 1)Én liter fermenteringssupernatant blev centrifugeret, og det resulterende præcipitat blev smidt ud. Supernatanten blev herefter justeret til 0,8 M ammoniumacetat ved hjælp af tilsætning af fast ammoniumacetat.

Trin 2)Hydrofobisk kromatografi - Toyopearl butyl 650 C-matrix blev leveret af Toso Hass (Röhm and Haas Company, Tyskland). En 50 ml-søjle blev pakket med matrixen. Søjlen blev vasket med 50 % ethanol og efterfølgende med vand. Søjlen blev herefter ækvilibreret med 0,8 M ammoniumacetat. Fermenteringssupernatanten, som var justeret med 0,8 M ammoniumacetat, blev herefter påsat søjlen. Ubundet materiale blev herefter vasket med 0,8 M ammoniumacetat, indtil alt UV-absorberende materiale (280 nm) var fjernet.

Søjlen blev herefter elueret med vand og efterfølgende med 50 % ethanol.

Phospholipase-aktivitet blev bestemt ved pH 4,5 og 40 °C ved anvendelse af Nefa-kittet som beskrevet ovenfor. Fraktioner, som indeholdt aktivitet i vandog alkohol-eluat, blev puljet. Aktiviteten blev målt ved pH 4,5 ved anvendelse af et Nefa-kitassay.

Fraktioner, som indeholdt phospholipase-aktivitet, blev herefter puljet og dialyseret og opkoncentreret ved anvendelse af en Amicon-ultrafiltreringsmembran med en afskæring på 10 kDa.

Trin 3)Negativ absorption på DEAE-hurtigflowkromatografi.

DEAE FF blev købt ved Pharmacia, og en 50 ml søjle blev pakket med matrixen.

Søjlen blev herefter vasket som beskrevet af producenten og ækvilibreret med 25 mM Tris-acetatbuffer, pH 7.

Den dialyserede og opkoncentrerede prøve blev herefter justeret til pH 7 og konduktans 2 mSi og påsat en DEAE FF-anionbytningssøjle.

Aktivitet blev opsamlet som effluent. Aktiviteten binder ikke til en anionbytter ved pH 7.

25 Effluenten fra DEAE FF, som indeholdt aktivitet, blev opkoncentreret og dialyseret ved anvendelse af en Amicon-membran med en afskæring på 10 kDa og en 25 mM natriumacetat-buffer, pH 6.

Gelfiltrering på Superdex 75.

30

35

5

10

15

(

(* .

Superdex 75-forpakket søjle Hiload Tm 16/60 fra Pharmacia blev vasket og ækvilibreret med 25 mM natriumacetat, pH 6, som indeholdt 150 mM NaCl.

To ml af den opkoncentrerede effluent fra anionbytteren, som fremviste phospholipase-aktivitet ved pH 4,5 og 40 °C, blev påsat Superdex-søjlen.

Aktiviteten blev separeret fra ved hjælp af gelfiltrering med en flowhastighed

på 1 ml/minut.

EKSEMPEL 3

10

15

30

5 <u>Karakterisering af oprenset phospholipase, som er opnået fra Fusarium oxysporum</u>

En karakterisering som beskrevet nedenfor blev udført på en *Fusarium* oxysporum-phospholipase, der var fermenteret som beskrevet i eksempel 1 og oprenset som beskrevet i eksempel 2.

Molekylevægten for phospholipase-enzymet blev bestemt ved anvendelse af færdigstøbte 4 til 20 % SDS-PAGE-geler fra Novex Tm. Proteinets molekylevægt blev bestemt under reducerende betingelser som beskrevet tidligere.

Foro *F. oxysporum*-phospholipase viste molekylevægten sig at være 29-30 kDa under reducerende betingelser.

Det isoelektriske punkt blev bestemt ved anvendelse af Ampholine PAGEplader fra Pharmacia. For *F. oxysporum* viste pl for proteinet sig at være omkring neutralt pH, fortrinsvis i intervallet 5,8 til 6,8.

25 Phospholipases termostabilitet

Termostabiliteten for phospholipase fra Fusanum oxysporum blev testet ved hjælp af DSC (differentiel scanningskalorimetri). Den termale denatureringstemperatur, Td, blev aflæst som spidsen af denatureringstoppen i termogrammer (Cp vs. T), der opnåedes efter opvarmning af enzymopløsninger ved en konstant, programmeret opvarmningshastighed.

Eksperimentelt

En DSC II fra Hart Scientific (Utah, US, 1993) blev anvendt til forsøgene.

50 mM bufrede opløsninger blev anvendes som opløsningsmiddel for enzymet

(ca. 2 mg/ml) ved enten pH 10 (50 mM glycinbuffer), pH 7 (50 mM HEPES-buffer + 10 mM EDTA) eller pH 4 (50 mM citratbuffer). Enzym blev oprenset ifølge eksempel 2 ovenfor.

750 μl enzymopløsning blev overført til 1 ml forsejlelige standard-hastelloyampuller fra Hart Scientific. Ampuller blev indført i kalorimeteret og nedkølet til 5 °C i 15 minutter. Der blev foretaget termal ækvilibrering før DSC-scanningen. DSC-scanningen blev udført fra 5 °C til 95 °C ved en scanningshastighed på ca. 90 K/time. Denatureringstemperaturer blev bestemt ved en nøjagtighed på ca. ± 2 °C.

Resultater.

TABEL 1: Spids af denatureringstop som funktion af pH

15

pH Td(°C)

4 57 °C

7 62 °C

10 55 °C

20

Det skal bemærkes, at disse forsøg blev udført i fravær af en oliematrix, som kan influere betydeligt på enzymstabilitet. DSC-resultaterne viser en maksimal stabilitet i nærheden af neutralt pH.

Hvis man forudsætter irreversibel termal denaturering, er en relevant arbejdstemperatur ved industriel anvendelse, såsom degummering af olier (US 5 264 367), mindst ca. 10 grader lavere end Td-temperaturerne, der er anført i tabel 1 ovenfor.

30 Aminoterminal sekvens

Aminoterminal analyse blev udført ved anvendelse af Edman-degradering med Applied Biosystem-udstyr (ABI 473A protein sequencer, Applied Biosystem, USA) som beskrevet af producenten.

35

N-terminal(e) sekvens(er):

For Fusarium oxysporum-phospholipasen er den N-terminale sekvens:

N-terminal A-V-G-V-T-T-T-D-F-S-N-F-K-F-Y-I

Den N-terminale aminosyre "A" (Ala) er position 31 i SEQ ID NO: 2. Dette viser, at det modne phospholipase-enzym ifølge opfindelsen starter i position 31 i SEQ ID NO: 2.

Følgeligt er den modne sekvens fra 31-346 i SEQ ID NO: 2.

10

(

EKSEMPEL 4

Phospholipase A-aktivitet

15 Phospholipase A-aktiviteten blev bestemt med sojabønne-lecithin som substrat som beskrevet ovenfor ((Nefa-testbaser-assay) ved pH 4,5 og 40 °C.

Fusarium oxysporum-phospholipasen viste signifikant phospholipase A-aktivitet ved betingelserne, der er beskrevet ovenfor.

20

25

35

 $\int_{0}^{\infty} dt$

EKSEMPEL 5

Aktivitet mod L-a-lysophosphatidylcholin

Phospholipase-aktiviteten blev bestemt emd L-α-lysophosphatidylcholin som substrat som beskrevet ovenfor ((Nefa-testbaser-assay) ved pH 4,5 og 40 °C.

Fusarium oxysporum-phospholipasen viste signifikant aktivitet mod L-α-lysophosphatidylcholin ved betingelserne, der er beskrevet ovenfor.

30 EKSEMPEL 6

Phospholipase-aktivitet i enkeltlags-opsætning

Et enkeltlags-udstyr (nul ordens-niveau, KSV5000, KSV Instruments, Finland) er blevet anvendt til måling af forskellige enzymers aktivitet mod phospholipidet DDPC (didicanoyl (C10)-phosphatidylcholin).

Forsøg

På den grundigt oprensede overflade af en bufferopløsning (10 mM TRIS, pH 8.0. 25 °C) blev et enkeltlag af DDPC spredt fra en chloroform-opløsning. Efter chloroform) afspænding af enkeltlaget (fordampning af overfladetrykket til 15 mN/m, som svarer til et gennemsnitligt molekyleareal for DDPC på ca. 63 Å²/molekyle. En bufferopløsning (se ovenfor), som indeholder ca. 60 µg enzym, injiceres gennem enkeltlaget ind i underfasen af reaktionsdelen (cylinder med et areal på 1520 mm² og et volumen på 30400 mm³) i "nul ordens-niveauet". Enzymatisk aktivitet manifesterer sig ved hastigheden af en mobil spærring, som komprimerer enkeltlaget for at konstant efterhånden som uopløselige overfladetryk, opretholde substratmolekyler hydrolyseres til mere vandopløselige reaktionsprodukter. Efter at have verificeret, at den vandige opløselighed af reaktionsprodukterne (kaprinsyre og DDPC) er betydelig højere end for DDPC, æstimeres antallet af DDPC-molekyler, som hydrolyseres pr. minut ved hjælp af enzymet, ud fra det gennemsnitlige molekyleareal (MMA) for DDPC.

Resultater

20

5

10

15

TABEL 2. Enzymers aktivitet mod DDPC i en enkeltlags-opstilling

	Enzym	Aktivitet ⁷
		(nmol/min)
25		
	Sigma P9279 (PLA2 fra bigift, 850 U/mg)	1,9
	Enzym fra Fusarium oxysporum	2,7
	Candida antarctica-B bestanddels-lipase	0
	Candida antarctica-A bestanddels-lipase	0
30	Rekombinant marsvinepancreas-lipase (rGPL)	0,2
	Lipolase® (Novo Nordisk A/S)	< 0,1

⁹ Beregnet ud fra reduktion i enkeltlag-areal pr. tidsenhed, induceret ved hjælp af tilstedeværelse af enzym.

35

"Enzym fra Fusarium oxysporum" i tabel 2 er en phospholipase ifølge opfindelsen, der er oprenset som beskrevet i eksempel 2.

Konklusion

5

(-

25

35

Der blev ingen phospholipase-aktivitet påvist for de fleste af enzymerne, bortset fra lipaser, der er opnået fra marsvinelipase, som viste mindre phospholipase-aktivitet.

Phospholipasen ifølge opfindelsen, der var opnået fra *Fusarium oxysporum*, viste overraskende høj signifikant phospholipase-aktivitet.

Følgeligt defineres i den foreliggende opfindelse udtrykket "phospholipase-aktivitet", der anvendes heri i forbindelse med en phospholipase ifølge opfindelsen, som en aktivitet, der i "enkeltlags-phospholipase-assayet", der er vist ovenfor, er mindst 0,25 nmol/minut, enzymdosis: 60 μg; mere fortrinsvis mindst 0,40 nmol/minut, enzymdosis: 60 μg; mere fortrinsvis mindst 0,75 nmol/minut, enzymdosis: 60 μg; mere fortrinsvis mindst 1,0 nmol/minut, enzymdosis: 60 μg; og endnu mere fortrinsvis mindst 1,25 nmol/minut, enzymdosis: 60 μg. Udtrykket "lipase med phospholipase-sideaktivitet" defineres følgeligt som en lipase med phospholipase-sideaktivitet, hvor phospholipase-sideaktiviteten i "enkeltlags-phospholipase-assayet", der er vist i eksempel 6, er mindre end de ovenfor nævnte tal, der specificerer phospholipase-aktivitet.

Et eksempel på en lipase med phospholipase-sideaktivitet ifølge definitionerne heri er marsvine-lipasen, der er vist i tabel 2 ovenfor. Nævnte marsvine-lipase har en phospholipase-sideaktivitet i "enkeltlags-phospholipase-assayet", der er mindre end 0,25 nmol/minut, enzymdosis: 60 μg.

EKSEMPEL 7

30 <u>Kloning og ekspression af en phospholipase fra Fusarium oxysporum DSM</u>
2672

Kloning og ekspression blev udført ved anvendelse af ekspressionskloning-igær-teknikken som beskrevet ovenfor.

mRNA blev isoleret fra Fusarium oxysporum DSM 2672, der var dyrket som beskrevet ovenfor, herunder bevægelse for at sikre tilstrækkelig ilttilførsel.

Mycelia blev høstet efter 3-5 dages vækst, straks nedfrosset i væskeformig nitrogen og opbevaret ved -80 °C. Et bibliotek fra *Fusarium oxysporum* DSM 2672, som bestod af ca. 9 x 10⁵ individuelle kloner, blev konstrueret i *E. coli* som beskrevet med en vektorbaggrund på 1 %. Plasmid-DNA fra nogle af puljerne blev transformeret ind i gær, og der opnåedes 50-100 skåle, som indeholdt 250-400 gærkolonier, fra hver pulje.

Phospholipase-positive kolonier blev identificeret og isoleret i substratskåle (se ovenfor). cDNA-inserts blev amplificeret direkte fra gærkolonieme og karakteriseret som beskrevet i Materialer og metoder-afsnittet ovenfor. DNA-sekvensen for cDNA'et, der koder for phospholipasen, er vist i SEQ ID NO: 1, og den tilsvarende aminosyresekvens er vist i SEQ ID NO: 2. I SEQ ID NO: 1 definerer DNA-nukleotiderne fra nr. 23 til nr. 1060 det phospholipase-kodende område. Den del af DNA-sekvensen i SEQ ID NO: 1, som koder for den modne del af phospholipasen, omfatter positionerne 113 til 1060, der svarer til aminosyrepositionerne 31-346 i SEQ ID NO: 2.

cDNA'et er opnåeligt fra plasmidet i DSM 11299.

5

10

15

30

35

 $(\cdot \cdot$

Totalt DNA blev isoleret fra en gærkoloni, og plasmid-DNA blev indvundet ved hjælp af transformation af *E. coli* som beskrevet ovenfor. For at udtrykke phospholipasen i *Aspergillus* blev DNA'et fordøjet med passende restriktionsenzymer og størrelsesfraktioneret på gel, og et fragment, som svarede til phospholipasegenet, blev oprenset. Genet blev efterfølgende ligeret til pHD414 og fordøjet med passende restriktionsenzymer til opnåelse af plasmidet pA2PH10.

Efter amplifikation af DNA'et i *E. coli* blev plasmidet transformeret ind i *Aspergillus oryzae* som beskrevet ovenfor.

Test af A. oryzae-transformanter

Hver af transformanterne blev testet for enzymaktivitet som beskrevet ovenfor. Nogle af transformanterne havde en phospholipase-aktivitet, som var signifikant højere end *Aspergillus oryzae*-baggrunden. Dette viser effektiv ekspression af phospholipasen i *Aspergillus oryzae*.

NZAS-0007628

EKSEMPEL 8

Rekombinant ekspression af en Fusarium oxysporum-phospholipase

En A. oryzae-transformant, som omfattede Aspergillus-ekspressionsvektoren pA2PH10 (se eksempel 7), blev tilførsels-batchfermenteret som beskrevet ovenfor. Oprensning af den rekombinant producerede F. oxysporum-phospholipase blev udført som beskrevet i eksempel 2.

10 EKSEMPEL 9

i

20

25

()

Karakterisering af en rekombinant udtrykt og oprenset phospholipase, der er opnået fra Fusarium oxysporum

15 Karakteriseringen blev udført på en rekombinant udtrykt og efterfølgende oprenset *Fusarium oxysporum*-phospholipase (se eksempel 8).

Disse karakteriseringsresultater med hensyn til den rekombinante *F. oxysporum*-phospholipase ifølge opfindelsen svarer perfekt overens med karakteriseringsresultaterne, der er vist i eksempel 3, hvor det blev vist, at det rekombinant udtrykte og oprensede enzym var det samme som den ikkerekombinant udtrykte og oprensede phospholipase, der blev karakteriseret i eksempel 3.

Generelle assays, som anvendes til at karakterisere en rekombinant produceret phospholipase, der er opnået fra F. oxysporum

Phospholipase-assays

Phospholipase-aktivitet (PHLU) blev målt som frigørelsen af fri fedtsyrer fra lecithin. 50 μl 4 % L-α- phosphatidylcholin (plante-lecithin fra Avanti, USA), 45 % Triton X-100, 5 mM CaCl₂ i 50 mM HEPES, pH 7, blev tilsat, 50 μl enzymopløsning, som var fortyndet til en passende koncentration i 50 mM HEPES, pH 7. Prøverne blev inkuberet i 10 minutter ved 30 °C, og reaktionen blev standset ved 95 °C i 5 minutter før centrifugering (5 minutter ved 7000 rpm). Fri fedtsyrer blev bestemt ved anvendelse af Nefa C-kittet fra Wako Chemicals GmbH; 25 μl reaktionsblanding blev tilsat til 250 μl reagens A og inkuberet i 10

minutter ved 37 °C. Herefter blev 500 µl reagens B tilsat, og prøven blev inkuberet igen, 10 minutter ved 37 °C. Absorptionen ved 550 nm blev målt ved anvendelse af et HP 8452A dioderække-spektrofotometer. Prøver blev analyseret mindst in duplo. Substrat- og enzymblindprøver (forvarmede enzymprøver (10 minutter ved 95 °C) + substrat) blev indbefattet. Oleinsyre blev anvendt som fedtsyrestandard. 1 PHLU svarer til den mængde enzym, der er i stand til af frigøre 1 µmol fri fedtsyre/minut under disse betingelser.

Alternativt blev assayet kørt ved 37 °C i 20 mM citratbuffer, pH 5 (Ca²⁺-afhængighed) eller 20 mM Britton-Robinson-buffer (pH-profil/temperaturprofil/stabilitet).

Phospholipase A1-aktivitet (PLA1) blev målt ved anvendelse af 1-(S-decanoyl)-2-decanoyl-1-thio-sn-glycero-3-phosphocholin (D3761 Molecular Probes) som substrat. 190 µl substrat (100 µl D3761 (2 mg/ml i ethanol) + 50 µl 1 % Triton X-100 + 1,85 ml 50 mM HEPES, 0,3 mM DTNB, 2 mM CaCl₂, pH 7) i en 200 µl-kuvette blev tilsat 10 µl enzym, og absorptionen ved 410 nm blev målt som funktion af tiden på HP 8452A-dioderække-spektrofotometeret ved stuetemperatur. Aktivitet blev beregnet som kurvens hældning i det lineære område. PLA1 svarer til den mængde enzym, der er i stand til at frigøre 1 µmol fri fedtsyre (thiol)/minut ved disse betingelser.

Phospholipase A2-aktivitet (PLA2) blev målt ved 40 °C ved anvendelse af 1-hexadecanoyl-2-(1-pyrendecanoyl)-sn-glycero-3-phosphocholin (H361 Molecular Probes). 2 ml substrat (50 µl 1 % Triton X-100 + 25 µl 0,1 % H361 i methanol + 10 ml 50 mM HEPES, pH 7) i en 2 ml-kuvette med omrøring blev tilsat 10 µl enzym, og pyren-fluorescens-emissionen blev målt ved 376 nm (excitation ved 340 nm) som funktion af tiden (1 sekund-intervaller) ved anvendelse af Perkin Elmer LS50-apparatet. I Triton X-100/phospholipid-micellerne blev koncentrationen af phospholipid justeret til at have excimerdannelse (emitterer ved 480 nm). Ved spaltning frigøres fedtsyren i 2-positionen, som indeholder pyrengruppen, til vandfasen, hvilket resulterer i en stigning i monomer-emissionen. PLA2 blev beregnet som hældningen af kurven i det lineære område ved tilsvarende betingelser.

35

5

10

15

20

25

30

Ę.,

ŗ

Lipase-assays

Lipase-aktivitet (LU) blev målt ifølge Novo Nordisk publikation AF 95. Hydrolysen af tributyrin ved 30 °C og pH 7 blev efterfulgt af et pH-stattireringsforsøg. 1 LU svarer til den mængde enzym, der er i stand til at frigøre 1 µmol smørsyre/minut under standardbetingelser.

5

10

15

30

35

(

Aktivitet på olivenolie (SLU) blev målt som følger: 12 ml 5 mM Tris-HCl, 40 mM NaCl, 5 mM CaCl₂, pH 9, blev tilsat til 2,5 ml Sigma Lipase-substrat. pH blev justeret til pH 9 eller lige under før tilsætning af 0,5 ml lipase-opløsning (fortyndet i buffer) og udførsel af et pH-stat-titreringsassay ved 30 °C ved anvendelse af Titralab, som er kommercielt tilgængeligt fra Radiometer A/S, København, Danmark. 1 SLU svarer til den mængde enzym, der er i stand til at frigøre 1 µmol fri fedtsyre/minut ved pH 9, 30 °C.

Karakterisering af en rekombinant fremstillet F. oxysporum-phospholipase ifølge opfindelsen

Assayene, som blev anvendt til karakterisering af enzymerne, der er nævnt nedenfor, var assayene, der er beskrevet umiddelbart ovenfor.

20 Enzymer

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch F-9700989, OD_{280} 0,83 (0,69 mg/ml), renhed > 95 % (SDS-PAGE).

Enzymet blev rekombinant udtrykt og oprenset som beskrevet ovenfor.

Lecitase™ Batch L546-F06 (10368 IU/ml, ca. 20 mg/ml). Lipolase® (Novo Nordisk A/S).

Ca²⁺'s indflydelse på phospholipase-aktiviteten hos *F. oxysporum*-lipase-phospholipase blev undersøgt. Der observeredes ingen større forskel, uanset om EDTA eller Ca²⁺ var indbefattet i assayet eller ej (se tabel 3 nedenfor), og enzymet synes således at være relativt uafhængigt af Ca²⁺.

TABEL 3. F. oxysporum-phospholipase-aktivitets (PHLU) afhængighed af EDTA og CaCl₂ - 2 % lecithin, 2 % Triton X-100, 20 mM citrat, pH 5 ved 37 °C

EDIA og CaCl ₂ - 2	2 % iecitni	n, 2 % i fil	on A- IUU.	20 mivi ci	trat, pri s	veu 37 C
	5 mM	1 mM	1 mM	2 mM	5 mM	10 mM
	EDTA	EDTA	CaCl₂	CaCl₂	CaCl₂	CaCl₂

Relativ	1,05	1,10	1	0,90	0,90	0,89
aktivitet ¹						

¹ Relativ aktivitet er i forhold til aktiviteten ved 1 mM CaCl₂, der er normaliseret til 1.

pH-profilen blev undersøgt i Britton-Robinson-buffer ved anvendelse af plantelecithin som substrat (tabel 4). Selvom enzymet viser en alkalisk pH-profil på phospholipid med et optimum ved pH 9 eller højere, er aktiviteten stadig tilstrækkelig høj til tilvejebringelse af degummering af olier ved lavt pH og anvendelse ved bagning (se nedenfor for en sammenligning af specifikke aktiviteter).

10

TABEL 4. Fusarium oxysporum-phospholipases pH-profil, 2 % lecithin, 2 %

Triton X-100, 20 mM BR, 37 °C

171101171 100, 20							
	pH 3	pH 4	pH 5	pH 6	pH 7	pH 8	pH 9
Relativ aktivitet ¹	0,08	0,12	0,16	0,28	0,52	0,76	1,00

¹ Relativ aktivitet er i forhold til aktiviteten ved pH 9, der er normaliseret til 1.

Temperaturprofiler for phospholipasen opnåedes ved pH 5; aktiviteten begynder at falde ved temperaturer over 40 °C (tabel 5). Dette er i rimelig overensstemmelse med temperaturstabiliteten, der måles ved præinkubering af enzymet og efterfølgende måling af residual-aktivitet (tabel 6), hvor enzymet er stabilt ved temperaturer op til 45 °C ved pH 5.

10

TABEL 5. F. oxysporum-phospholipase's temperaturprofil, 2 % lecithin, 2 %

Triton X-100, 20 mM BR

	30 °C	40 °C	45 °C	50 °C	55 °C
pH 5	0,85	1,00	0,67	0,38	0,13

Alle data er vist som relative aktivitetsdata i forhold til aktiviteten ved pH 5, 40 °C, der er normaliseret til 1.

15

TABEL 6. Fusarium oxysporum-phospholipases temperaturstabilitet;

præinkubation 30 minutter i 20 mM BR

		30 °C	40 °C	45 °C	50 °C	55 °C
pH 5	1,00	0,91	1,03	1,07	0,65	0,00

Alle data er vist som residualaktivitetsdata, hvor aktiviteten efter præinkubation ved 5 °C er normaliseret til 1.

20

Enzymets lave stabilitet kan være fordelagtig til registrering af et eventuelt produkt som en proceshjælp, da det aktive enzym ikke bør forventes i slutproduktet ved hverken degummering af spiseolier eller i bagte produkter.

25 Phospholipasen, der er opnået fra *Fusarium oxysporum* ifølge opfindelsen, har både phospholipase- og lipase-aktivitet.

Følgeligt blev enzymets aktivitet på forskellige lipase- og phospholipasesubstrater undersøgt og sammenlignet med aktiviteten hos den kommercielt tilgængelige phospholipase Lecitase™ og den kommercielt tilgængelige lipase Lipolase® (Novo Nordisk A/S).

5

10

15

20

(

 $\binom{1}{2}$.

F. oxysporum-phospholipase/lipasen har høj aktivitet på både tributyrin og olivenolie ved pH 7 og 9 (tabel 7). Til sammenligning er den specifikke aktivitet hos Lipolase® ca. 5000 LU/mg. Imidlertid fremviser F. oxysporum-lipasen i modsætning til Lipolase® en meget bredere specificitet med betydelig phospholipase-aktivitet og også thioesterase-aktivitet (se enkeltlags-eksempel 6 ovenfor, som viser, at Lipolase® ikke har en målbar phospholipase-aktivitet).

F. oxysporum-phospholipase/lipasen ifølge opfindelsen har en specifik aktivitet på lecithin, som er betydelig højere end den hos phospholipasen Lecitase™ (svinepancreas-PLA2) ved pH 7 (tabel 7).

Sammenlignet med Lecitase™ har *F. oxysporum*-enzymet en 100 gange højere aktivitet ved pH 7. Phospholipase:lipase-forholdet for *F. oxysporum*-enzymet er ca. 0,225 (1000 LU/mg/225 PHLU/mg) under tilsvarende betingelser (pH 7 og 30 °C).

TABEL 7. F. oxysporum-lipase/phospholipasens aktivitet - sammenlignjng med Lecitase™

Enzym	LU/mg	PLU ¹ /mg	PHLU/mg	SLU/mg	PLA1/mg
F. oxysporum	1000	73	225	3090	2,04
Lecitase™	<0,25	2,5	1,2-3,2	0,6	0

¹PLU blev målt i lighed med PHLU men i 20 mM citrat, pH 5 og ved 37 °C i stedet for 50 mM HEPES, pH 7 ved 30 °C.

25

F. oxysporum-lipase/phospholipasens specificitet blev undersøgt ved anvendelse af substrater, der er specifikke for phospholipase A1, ved måling af spaltningen af thioester-bindingen i 1-positionen i 1-(S-decanoyl)-2-decanoyl-1-thio-sn-glycero-3-phosphocholin.

30

Enzymet hydrolyserer klart 1-positionen i phospholipid (tabel 7), mens Lecitase™ (svinepancreas-PLA2) som forventet ikke viste aktivitet på dette

substrat.

<u>C-terminal aminosyresekvens for Fusarium oxysporum-phospholipasen ifølge</u> opfindelsen

5

Den N-terminale aminosyresekvens for det rekombinant udtrykte modne phospholipase-protein blev bestemt som beskrevet i eksempel 3, og det blev fastslået, at denne N-terminale sekvens var den samme som bestemt for det ikke-rekombinant dannede og oprensede enzym (se eksempel 3).

10

MALDI-TOF-massespektrometri blev udført ved anvendelse af et VG TofSpec-massespektrometer (Micromass, Manchester, UK) som beskrevet i Christgau et al., Biochem. J. <u>319</u>:705-712, 1996.

15 <u>Baggrund</u>

Den N-terminale aminosyresekvens for *Fusarium oxysporum*-phospholipasen, som er udledt fra DNA-sekvensen, forudser i kombination med den kendte N-terminale aminosyresekvens for den modne phospholipase et protein på 315 aminosyrerester (aminosyrerne 31-346 i SEQ ID NO: 2). Den teoretiske masse for dette udledte protein er 33.256,8 Da.

20

Ved anvendelse af MALDI-TOF-massespektrometri har vi tidligere bestemt massen af den native lipase/phospholipase fra *F. oxysporum* til at være 28,2 kDa (data ikke vist), og på SDS-PAGE viste det sig, at molekylevægten er 29-30 kDa (se ovenfor).

25

Da de N-terminale sekvenser for den native og den rekombinante *F. oxysporum*-lipase er identiske, er det sandsynligt, at masseforskellen, som ses mellem den udledte masse og den eksperimentelle masse, er forårsaget af C-terminal processering.

30

For at undersøge dette har vi isoleret det C-terminale peptid fra den rekombinante *F. oxysporum*-lipase, som er udtrykt i *A. oryzae*, og sekventeret det gennem dets C-terminal.

Strategi

5

10

15

20

25

Den gennemsnitlige masse for den native lipase/phospholipase fra *F. oxysporum* på 28,2 kDa kan anvendes til at forudsige den mest sandsynlige Cterminale rest, som viser sig at være Ser303 (SEQ ID NO: 2).

Denne forudsigelse er baseret på den formodning, at enzymet er ikkeglycosyleret. Det enkelte potentielle N-glycosyleringssite, som findes i
sekvensen i Asn163, anvendes sandsynligvis ikke, da der findes en Pro-rest i
position 164. Tilstedeværelsen af en Pro-rest i den anden rest i
konsensussekvensen for N-glycosylering (Asn-Xaa-Ser/Thr) er aldrig blevet
rapporteret. Endvidere tyder formen af toppen i massespektret ikke på
glycosylering. Toppen er imidlertid bredere, end man sædvanligvis oplever for
homogene proteiner, hvilket indikerer muligheden for størrelsesheterogenitet.
Da enzymets N-terminal er veldefineret, er størrelsesheterogeniteten mest
sandsynligt forårsaget af heterogen C-terminal processering.

En gennemgang af SEQ ID NO: 2 (se nedenfor) viser, at den udledte C-terminal er placeret tæt på den sidste af de 8 Cys-rester i sekvensen. Indførelse af en radioaktiv tag på Cys-resterne gør peptiderne, der indeholder Cys-rester, lette at spore gennem peptidoprensning. En kombination af den radioaktive tagging med proteolytisk degradering ved anvendelse af Asp-N-proteasen, som spalter foran Asp-rester, vil resultere i et tagget C-terminalt peptid. Endvidere vil tre indre peptider blive tagget. Sekventering af alle taggede peptider vil afsløre enzymets C-terminal.

			Ü	Ų	N	
31	AVGVTTTDFS	NFKFYIQHGA	AAYCNSEAAA	GSKITCSNNG	CPTVQGNGAT	80
					*	
	TIMOTHIA				ı,	
81	IVTSFVGSKT	GIGGYVATUS	ARKEIVVSFR	GSINIRNWLT	NLDFGQEDCS	130
	IJ			(0)		
131	LVSGCGVHSG	FQRAWNEISS	QATAAVASAR	KANPSFNVIS	TGHSLGGAVA	180
181	VLAAANLRVG	GTPVDIYTYG	SPRVGNAOLS	AFVSNOAGGE	VRUTHANDRY	230
			D1 117 0 117 12 20	ni vongnogo	INVIIDADOFV	230
				Ų	N ·	
231	PRLPPLIFGY	RHTTPEFWLS	GGGGDKVDYT	ISDVKVCEGA	ANLGCNGGTL	280
		Ŋ		-		
281	GLDIAAHLHY	FQATDACNAG	GFSWRRYRSA	ESVDKRATMT	DAELEKKINS	330
			i			
331	YVQMDKEYVK	NNQARS				346

<u>SEQ ID NO: 2</u>: Udledt aminosyresekvens for *F. oxysporum*-lipase/phospholipasen.

Sekvensen er udledt fra DNA-sekvensen og starter i N-terminalen, som er bestemt eksperimentelt for både det native og det rekombinante enzym. De 8 Cys-rester er vist med ∜, mens den C-terminale Ser-rest, som er udledt ved hjælp af MALDI-TOF-massespektrometri af det native enzym, er vist med ↑. Asn-resten, som findes i konsensussekvensen for N-glycosylering (NXS/T) er vist med (◊), men benyttes efter al sandsynlighed ikke, da X er en Pro-rest.

Forsøgsresultater

Enzymet var PL fra *Fusarium oxysporum* med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch-F-9700989, $OD_{280} = 0.83$ (0.69 mg/ml), renhed > 95 % (SDS-PAGE).

Enzymet blev udtrykt rekombinant og oprenset som beskrevet ovenfor.

Enzymet blev denatureret og disulfidbindingerne blev reduceret, før thiolgrupperne blev reageret med I-[1-¹⁴C]-CH₂CONH₂.

5

Efter den radioaktive tagging af Cys-resterne blev lipasen degraderet ved anvendelse af Asp-N-proteasen.

10

De dannede peptider blev fraktioneret ved anvendelse af modfase-HPLC. De opsamlede fraktioner blev udsat for MALDI-TOF-massespektrometri og scintillationstælling. Fraktioner, som indeholdt betydelige mængder af radioaktivitet, blev valgt til fornyet oprenset ved anvendelse af modfase-HPLC.

15

De påny oprensede fraktioner blev udsat for scintillationstælling, og fraktionerne, som indeholdt radioaktivitet, blev efterfølgende sekventeret.

20

Nedenfor er vist en oversigt over resultaterne. Dette skema kan se kaotisk ud på grund af de mange anførte sekvenser. Skemaet indeholder imidlertid al den sekvensdata, der er opnået fra de radioaktive fraktioner, og udgør derfor grundlaget for de dragede konklusioner. Det skal bemærkes, at alle Cys-rester er dækket ved sekventeringen, de fleste af dem mere end en gang. En anden ting at bemærke er, at de afvigende spaltninger, som ses, resulterer i et stort antal små radioaktivt mærkede peptider.

NG CPT NNG CPTVQ CSNNG CP CSNNG CPTV CNSEAAA GSKI 31 AVGVTTTDFS NFKFYIQHGA AAYCNSEAAA GSKITCSHNG CPTVQGHGAT 80 Ü DCS 81 IVTSFVGSKT GIGGYVATDS ARKEIVVSFR GSINIRNWLT NLDFGQEDCS 130 IJ LVSGC LVSGCGVHSG FQRAW 131 LVSGCGVHSG FQRAWNEISS QATAAVASAR KANPSFNVIS TGHSLGGAVA 180 181 VLAAANIRVG GTPVDIYTYG SPRVGNAQLS AFVSNQAGGE YRVTHADDPV 230 DVXVCEG DVKVCEGA ANLGCNGGTL DVKVCEGA ANLGCNGGTL 231 PRLPPLIPGY RHTTPEFWLS GGGGDKVDYT ISDVKVCEGA ANLGCNGGTL 280 DACNAG GPS GL TDACNAG GF 281 GLDIAAHLHY FQATDACNAG GPSWRRYRSA ESVDKRATMT DAELEKKLNS 330 331 YVQMDKEYVK NNQARS

NZAS-0007639

Aminosyresekvenserne, der er opnået ved hjælp af sekventering af de radioaktivt taggede peptider, stammede fra rekombinant *F. oxysporum*-enzym. Sekvenserne er parallelopstillet med aminosyresekvensen, der er udledt fra DNA-sekvensen. De 8 Cys-rester er vist med V, mens den C-terminale Serrest, der er udledt ved hjælp af MALDI-TOF-massespektrometri af det native enzym, er vist med V.

Forsøgskonklusion

5

10

15

25

30

35

(...

Ud fra sekventeringen af alle de radioaktivt taggede peptider er det klart, at den C-terminale del af aminosyresekvensen, der kodes i DNA'et, processeres under ekspressionen af lipasen fra *F. oxysporum*. Peptidsekvenserne peger på Ser303 som den mest sandsynlige C-terminale rest i det modne enzym i overensstemmelse med resultatet fra MALDI-TOF-massespektrometri.

På basis af dataene kan det imidlertid ikke udelukkes, at der finder differentiel C-terminal processering sted, som fører til heterogene C-termini, for eksempel tyder ét peptid på, at Phe272 også kan findes som en C-terminal rest.

20 EKSEMPEL 10

Generel beskrivelse af assay for enzymatisk degummering af spiseolie

Udstyr til udførelse af enzymatisk degummering

Udstyret består af en 1 l-kappebeklædt stålreaktor, som er udstyret med et stållåg, en skrue (600 rpm), skærme, en temperaturføler, et indløbsrør i toppen, en tilbageløbskøler (4 °C) i toppen og et udløbsrør i bunden. Reaktorkappen er forbundet med et termostatbad. Udløbsrøret er ved hjælp af silikoneslanger forbundet til et Silverson-i linie-blandehoved, der er udstyret med en "firkantet hul- høj shearing-skærm", som styres af en Silverson L4RT-høj shearing-lab-blander (8500 rpm, flow ca. 1,1 l/minut). Blandehovedet er udstyret med en køleslange (5-10 °C) og et udløbsrør, der via silikoneslanger er forbundet med reaktorens indløbsrør. En temperaturføler er indsat i silikoneslangen umiddelbart efter blandehovedet. Den eneste forbindelse fra reaktor/blandehoved-systemet til atmosfæren er gennem tilbageløbskøleren.

Generel procedure til udførelse af enzymatisk degummering

Alt køle- og termostatudstyr tændes. Herefter indføres 0,6 I (ca. 560 g) olie i reaktoren, som holdes på ca. den temperatur, der er nødvendig for det specifikke forsøg. Lab-blanderen tændes, hvorved olien starter med at cirkulere fra reaktoren til blandehovedet og tilbage til reaktoren. Systemet får mulighed for at ækvilibrere i ca. 10 minutter, i løbet af hvilket tidsrum temperaturen finindstilles. Forbehandlingsperioden starter med tilsætning af 0,6 g (2,86 mmol) citronsyremonohydrat i 27 g MilliQ-vand (tilsat vand vs. olie = 4,8 % (vægt/vægt; [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM), hvilket sætter t = 0. Til t = 30 minutter tilsættes en passende mængde af en 4 M NaOH-opløsning.

0,0 ækviv. 4 M NaOH -> pH 3,7

1,0 ækviv. 4 M NaOH (0,71 ml) -> pH 4,5

1,5 ækviv. 4 M NaOH (1,07 ml) -> pH 5,0

2,0 ækviv. 4 M NaOH (1,43 ml) -> pH 5,5

2,5 ækviv. 4 M NaOH (1,79 ml) -> pH 6,2

3,0 ækviv. 4 M NaOH (2,14 ml) -> pH 8,0

20

5

10

Til t = 35 minutter udtages prøver til P-analyse og pH-bestemmelse. Umiddelbart herefter tilsættes den nødvendige mængde af enzym-opløsning (slut på forbehandlingsperiode). Prøver til P-analyse og pH-stemmelse udtages til t = 1, 2, 3,5, 5, 6 timer, og herefter standses reaktionen.

25

(...

Reaktor/blande-systemet tømmes og vaskes med 2 x 500 ml 10 % Deconex/DI-vandopløsning efterfulgt af minimum 3 x 500 ml DI-vand. Tabel 8 viser en oversigt over de forskellige tilsætninger og prøvetagninger under reaktionen.

TABEL 8. Plan for enzymatisk degummering

Tid	Tilsætning af	Prøvetagning				
		P-analyse	pH-bestemmelse			
		Х				
0	Citronsyre					
5 min.	·		x			
30 min.		X	X			
30 + δ min.	NaOH					
35 min.		х	X			
35 + δ min.	Enzym		-			
1 time		Х	X			
2 timer		Х	×			
3,5 timer		Х	×			
5 timer		Х	×			
6 timer		х	X			

Phosphor-analyse

5 Prøvetagning til P-analyse:

(. .

10

15

Anbring 10 ml vand-i-olie-emulsion i et glascentrifugerør. Opvarm emulsionen i et kogende vandbad i 30 minutter. Centrifuger ved 5000 rpm i 10 minutter. Overfør ca. 8 ml af den øverste (olie) fase til et 12 ml-polystyrenrør og lad det stå (til bundfældning) i 12-24 timer. Efter bundfældning udtag ca. 1-2 g fra den øverste klare fase til P-analyse.

P-analyse blev udført i overensstemmelse med procedure 2.421 i "Standard Methods for the Analysis of Oils, Fats, and Derivatives, 7th ed. (1987)":

Afvej 100 mg MgO (leicht, Merck nr. 5862) i en porcelænskål og opvarm med

en gasbrænder. Tilsæt 1-2 g olie og antænd med en gasbrænder til opnåelse af en sort, hård masse. Opvarm i en Vecstar-ovn ved 850 °C i 2 timer til opnåelse af hvid aske. Opløs asken i 5 ml 6 M HNO₃ og tilsæt 20 ml reagensblanding. Hensæt i 20 minutter. Mål absorbans ved 460 nm (anvend en blank (5 ml HNO₃ + 20 ml reagensblanding) til nuljustering). Beregn ved anvendelse af kalibreringskurve.

pH-bestemmelse

5

20

30

Udtag 2 ml vand-i-olie-emulsion og bland med 2 ml MilliQ-vand. Efter faseseparering afpipetter det øverste olielag. Mål pH i vandfase med pH-elektrode Orion. Målinger omregnes til "reelle" pH-værdier ved hjælp af formlen:

15 $pH_{reel} = pH_{malt} - 0.38$.

En kalibreringskurve opnåedes ved hjælp af opløsning af 0,6 g citronsyremonohydrat i 27 g DI-vand, pH i denne opløsning blev målt ved hjælp af pH-elektrode Orion (pH_{reel}). 100 µl blev blandet med 2 ml MilliQ-vand, og pH i denne opløsning blev målt ved hjælp af pH-elektrode Orion (pH_{målt}). pH i citronsyre-opløsningen blev ændret gradvist ved hjælp af tilsætning af NaOH-opløsning, og for hver justering blev fortynding og pH-målinger udført som beskrevet ovenfor.

25 <u>EKSEMPEL 11</u>

Optimale degummeringsbetingelser for Lecitase™

Alle forsøg vedrørende degummering af spiseolie blev udført som beskrevet i eksempel 10.

Olie:

Vanddegummeret rapsfrøolie (Colzro) fra Aarhus Oliefabrik, Danmark. Batch C00730/B01200, 9 kg, P-indhold 186 ppm (0,47 % phosphatid).

Olien er ikke et kommercielt tilgængeligt produkt, men er taget direkte fra produktionslinien på møllen.

Enzym:

Lecitase™ 10L.

Batch L646-F02 (10190 U/ml), æstimeret koncentration 20 mg/ml.

De specifikke betingelser for en serie af parameter-optimeringsforsøg med Lecitase™ er vist i tabel 9. Standardbetingelser er: enzymdosis 535 U/kg olie (1,1 mg/kg olie), 60 °C, 2,0 ækviv. NaOH (pH 5,5). Enzymdosen er varieret fra 268-1070 U/kg olie, temperaturen er varieret fra 40-70 °C, og NaOH-tilsætning er varieret fra 1,0-3,0 ækviv. svarende til de forskellige pH-niveauer som vist i tabel 9.

TABEL 9. Specifikke betingelser for Lecitase™-optimering

For- søg	Rapsfrøolie	Temp. (°C)	Ækv. NaOH	pH- niveau	Enzymdosis (U/kg olie)
10	Colzro 1200	60 °C	2,0	5,5	0 (blind)
21	Colzro 1208	60 °C	0,0	3,7	0 (blind)
8	Colzro 1200	60 °C	2,0	5,5	535
9	Colzro 1200	60 °C	2,0	5,5	535
11	Colzro 1200	60 °C	2,0	5,5	268
12	Colzro 1200	60 °C	2,0	5,5	1070
15	Colzro 1200	70 °C	2,0	5,5	535
17	Colzro 1200	50 °C	2,0	5,5	535
18	Colzro 1200	40 °C	2,0	5,5	535
19	Colzro 1200	60 °C	1,0	4,5	535
40	Colzro 1209	60 °C	1,5	5,0	535
44	Colzro 1429	60 °C	2,5	7,0	535
20	Colzro 1200	60 °C	3,0	8,0	535

pH fra t = 35 minutter - 6 timer. Indenfor dette tidsrum var alle pHbestemmelser inden for et smalt interval. Dette illustreres yderligere i eksempel 13 nedenfor.

15

(ii .

En oversigt over de separate optimeringsundersøgelser er vist i tabel 10.

Resultateme i tabel 10 viser:

i) at det af dosis/reaktions-undersøgelsen fremgår, at optimal enzymdosis (ved 60 °C og 2,0 ækviv. NaOH) er ca. 535 U/kg olie. Halv dosis øger degummeringstiden fra ca. 3,5 timer til 6 timer, og tobbelt dosis frembringer ingen ændring i degummeringsydeevnen. Enzymblindprøve-resultaterne er indsat til sammenligning,

- ii) at optimal NaOH-tilsætning er ca. 2,0 ækviv. (pH ca. 5,5) med dårlig ydeevne ved 1,0 ækviv. (pH ca. 4,5) og 3,0 ækviv. (pH ca. 8),
- iii) at optimal temperatur er ca. 60 °C, da 70 °C ikke bringer P-niveauet helt ned, 50 °C øger degummeringstiden fra ca. 3,5 til 6 timer, og 40 °C giver dårlig ydeevne.

5 EKSEMPEL 12

Optimale degummeringsbetingelser for en *Fusarium oxysporum*-phospholipase ifølge opfindelsen

Alle forsøg med enzymatisk degummering af spiseolie blev udført som beskrevet i eksempel 10.

¹Phosphorindhold (ppm) i oliefase ved angivne tidspunkter i timer.

Olie:

Vanddegummeret rapsfrøolie (Colzro) fra Aarhus Oliefabrik, Danmark.

Batch C00730/B01208, P-indhold ca. 200 ppm

Batch C00730/B01209, P-indhold ca. 200 ppm

5 Batch C00730/B01429, P-indhold 227 ppm

Batch C00730/B01430, P-indhold 252 ppm

Olierne er ikke kommercielt tilgængelige, men er taget direkte fra produktionslinien på møllen.

10 Enzym:

20

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID

Batch F-9700123, $OD_{280} = 1,48$, renhed ca. 58 %, æstimeret koncentration 0,9 mg/ml.

15 Enzymet var udtrykt rekombinant og oprenset som beskrevet ovenfor.

De specifikke betingelser for en serie af parameter-optimeringsforsøg med PL fra Fusarium oxysporum er vist i tabel 11. Standardbetingelser er: enzymdosis 1,6 mg/kg olie, 40 °C, 1,5 ækviv. NaOH (pH ca. 5,0). Enzymdosis er varieret fra 0,2-1,6 mg/kg olie, temperaturen er varieret fra 30-50 °C, og NaOH-tilsætningen er varieret fra 1,0-2,5 ækviv. svarende til de forskellige pH-niveauer som vist i tabel 11.

TABEL 11. Specifikke betingelser til optimering af PL fra Fusarium oxysporum

For-	Rapsfrøolie	Temp.	Ækv.	pH-niveau	Enzymdosis Enzymdosis
søg		(°C)	NaOH		(mg/kg olie)
31	Colzro 1208	40 °C	1,5	5,0	1,6
53	Colzro 1429	40 °C	1,5	5,3	1,6
33	Colzro 1209	40 °C	1,5	5,0	0,8
35	Colzro 1209	40 °C	1,5	5,0	0,4
36	Colzro 1209	40 °C	1,5	5,0	0,2
38	Colzro 1209	50 °C	1,5	5,0	1,6
64	Colzro 1430	45 °C	1,5	5,0	1,6
39	Colzro 1209	30 °C	1,5	5,0	1,6
32	Colzro 1209	40 °C	1,0	3,5	1,6
13	Colzro 1200	40 °C	1,0	4,5	1,6
45	Colzro 1429	40 °C	1,25	5,0	1,6
46	Colzro 1429	40 °C	1,75	5,5	1,6
34	Colzro 1209	40 °C	2,0	5,5	1,6
37	Colzro 1209	40 °C	2,5	6,2	1,6

Forsøgsresultaterne er vist i tabel 12 nedenfor. pH-afgivelserne i tidsvinduet 35 minutter - 6 timer faldt alle inden for de forventede intervaller med kun mindre uregelmæssigheder.

Sammenfattet viser resultaterne i tabel 12 nedenfor:

- i) at det af dosis/reaktions-testene fremgår, at den optimale enzymdosis
 10 (ved 40 °C og 1,5 ækviv. NaOH) er ca. 0,8 mg/kg olie,
 - ii) at optimal NaOH-tilsætning er ca. 1,5 ækviv. (pH ca. 5,0) med ingen ydeevne ved 1,0 ækviv. (pH ca. 4,5), med begrænset ydeevne ved 2,0 ækviv. (pH ca. 5,5) og 2,5 ækviv. (pH ca. 6,2), og

iii) at den optimale temperatur er ca. 45 °C, og 50 °C giver begrænset ydeevne.

5 TABEL 12: Resultater vedrørende optimering af Fusarium oxysporum-

degummeringsbetingelser

For- søg	Tid ¹ 0	Tid ¹ 0,50	Tid ¹ 0,58	Tid ¹ 1,0	Tid ¹ 2,0	Tid ¹ 3,5	Tid ¹ 5,0	Tid ¹ 6,0
31	169	130	136	15	8	7	8	7
53	232	203	208	32	10	7	7	4
33	188	156	160	27	7	6	6	8
35	181	153	153	78	- 5	5	- 4	6 - 7
36	187	162	157	117	61	32	20	15
38	187	149	146	84	83	68	58	55
64	252	192	201	10	4	4	4	4
39	184	163	158	36	7	7	9	9
32	167	137	165	152	146	151	148	146
13	170	140	141	140	133	126	130	131
45	221	189	195	161	118	99	92	95
46	225	187	163	93	4	7	6	15
34	189	174	165	61	27	25	26	19
37	205	168	157	. 88	22	23	20	21

¹Phosphorindhold (ppm) i oliefase på angivne tidspunkter i timer.

EKSEMPEL 13

Visning af standard-pH-afvigelser under en enzymatisk degummeringsproces

Tabel 13 nedenfor viser et gennemsnitseksempel for pH-afvigelser under den enzymatiske degummeringsproces, der udføres som beskrevet i eksempel 10.

Forsøgene udføres med Lecitase™. Se eksempel 11 for yderligere detaljer.

10 TABEL 13: pH-værdier fra t = 35 minutter - 6 timer

TABLE 10. pri-vector na t do minutes d'anner				
Tid (timer)	pH Forsøg 8	pH Forsøg 15	pH Forsøg 19	pH Forsøg 20
	(2,0 ækv)	(2,0 ækv)	(1,0 ækv)	(3,0 ækv)
0,58	4,97	5,80	4,45	7,38
1,0	5,82	5,75	4,46	7,63
2,0	5,50	5,44	4,57	8,13
3,5	5,35	5,34	-	8,37
5,0	5,25	5,47	4,47	8,21
6,0	5,01	5,26	4,43	8,05

Hvis ikke andet er angivet i eksemplerne på forsøg med enzymatisk degummering, der er beskrevet heri, var standard-pH-afvigelserne i nævnte forsøg som vist i tabel 13 ovenfor.

EKSEMPEL 14

Sammenligning af enzymatisk degummeringskapacitet hos Lecitase™ og en phospholipase fra *Fusarium oxysporum* ifølge opfindelsen

I figur 2 er vist resultaterne fra PL'erne under deres respektive optimale betingelser, som bestemt i eksempel 11 og 12 ovenfor.

Forsøgsbetingelser, der er vist i figur 2:

25

15

Lecitase™: 60 °C, pH 5,5 (2,0 ækviv. NaOH) og 1 mg enzym/kg olie (ca. 535 U) (forsøg nr. 9).

Fusarium oxysporum PL: 40 °C, pH 5,0 (1,5 ækviv. NaOH) og 0,8 mg enzym/kg olie (forsøg nr. 33).

Fusarium oxysporum PL: 45 °C, pH 5,0 (1,5 ækviv. NaOH) og 1,6 mg enzym/kg olie (forsøg nr. 64).

Tilsyneladende giver PL fra *Fusarium oxysporum* en meget hurtig degummeringseffekt sammenlignet med Lecitase™.

PL fra *Fusarium* ifølge opfindelsen giver en næsten total degummering efter ca. 25 minutters kontakt mellem enzym og olie.

15 EKSEMPEL 15

Bestemmelse af mængden af ikke-hydrerbare phospholipider, som er til stede i forskellige typer af spiseolier

Olier:

Rårapsfrøolie fra Arhus Oliefabrik (AOM), Danmark.

Batch C00745/B01146, P-indhold 609 ppm.

Denne batch indeholder faste rester.

25

20

5

Rårapsfrøolie fra Scanola (Danmark). Batch C00745/B01593, P-indhold 315 ppm.

Filtreret rårapsfrøolie.

Batch C00745/B01146 filtreret, P-indhold 231 ppm.

Denne olie er Batch C00745/B01146 ovenfor (609 ppm), der er filtreret gennem et 100 µm Johnson-filter.

Rårapsfrøolie fra Arhus Oliefabrik (AOM), Danmark.

35 Batch C00745/B01700, P-indhold 459 ppm.

Rapsfrøolie fra Lurgi, Tyskland.

Batch C00932/B1381, P-indhold 148 ppm.

Råsojabønneolie fra Arhus Oliefabrik, Danmark. Batch C00744/B01145, P-indhold 593 ppm.

5

Bestemmelse af mængden af ikke-hydrerbare phospholipider, som er til stede i de forskellige typer af spiseolier, der er vist ovenfor, blev udført ved hjælp af forbehandling af olierne ved hjælp af en opløsning, som omfatter citronsyremonohydrat i vand som beskrevet i eksempel 10 ovenfor.

10

I korte træk omfatter forbehandlingsprocessen,

- i) forbehandling af spiseolien ved 60 °C ved hjælp af tilsætning af en opløsning, som omfatter citronsyremonohydrat i vand (tilsat vand versus olie = 4,8 % vægt/vægt, [citronsyre] i vandfase = 106 mM, i vand/olie-emulsion = 4,6 mM) i 30 minutter,
 - ii) overførsel af 10 ml af den forbehandlede vand-i-olie-emulsion til et reagensglas,

20

- iii) opvarmning af emulsionen i et kogende vandbad i 30 minutter,
- iv) centrifugering ved 5000 rpm i 10 minutter,

25

30

(=)

v) overførsel af ca. 8 ml af den øverste (olie) fase til et nyt reagensglas og henstand til bundfældning i 24 timer,

efter bundfældning udtag 2 g fra den øverste klare fase til måling af det ikkehydrerbare phosphorindhold (ppm) i spiseolien. ppm-værdien blev bestemt som beskrevet i eksempel 10 ovenfor.

Ifølge denne proces var mængden af ikke-hydrerbare phospholipider, som var til stede i de forskellige typer af spiseolier, der er vist ovenfor:

rårapsfrøolien nr. 1146 fra AOM, der indeholder fast partikelholdigt materiale, som til dels er ansvarligt for det høje P-niveau (609 ppm), filtrering gennem et 100 µm Johnson-filter gav en klar olie med et P-indhold på 231 ppm.

Forbehandling af råolien og af den filtrerede olie gav et P-niveau på 140 ppm, som er et mål for de ikke-hydrerbare phospholipider, som er til stede i olien;

phospholipid-indholdet i en rårapsfrøolie fra Scanola blev reduceret fra 315 ppm til ca. 30 ppm ved hjælp af forbehandling,

phospholipid-indholdet i en rapsfrøolie, som var opnået fra Lurgi (sandsynligvis vilkårlig blanding af råolie og totalt raffineret olie), blev reduceret til 60 ppm ved hjælp af forbehandlingsprocessen,

10

0

5

forbehandling rårapsfråolie nr. 1710 fra AOM reducerede P-indholdet fra 459 til 200-250 ppm,

15

ved råsojabønneolie nr. 1145 fra AOM reducerede forbehandling P-niveauet fra 593 til 10 ppm. Denne sojabønneolie er et eksempel på en olie, der kan degummeres ved hjælp af vanddegummering/citrat-behandling alene. Enzymtilsætning til denne råsojabønneolie efter forbehandling reducerede ikke P-indholdet yderligere.

20

Disse data viser, at phospholipid-sammensætningen (hydrerbart vs. ikke-hydrerbart phospholipid) i rårapsfrøolie varierer meget fra én batch til en anden, og følgeligt vil niveauet af resterende phospholipid i vanddegummeret rapsfrøolie variere over et bredt interval (30 ppm (Scanola) til 200-250 ppm (AOM)).

25

Til enzymatisk degummering afhænger den optimale enzymdosis af mængden af ikke-hydrerbart phospholipid, som er til stede efter degummering eller forbehandling.

30

Endvidere gælder det, at jo højere mængde af ikke-hydrerbart phospholipid, der er til stede i olien, jo mere anvendelig er den enzymatiske degummeringsmetode.

35

Dette illustreres også i eksempel 16 nedenfor, hvor den foreliggende opfindelse viser enzymatisk degummering af rårapsfrøolie nr. 1146, som har et ikke-hydrerbart phospholipid-niveau på ca. 140 ppm.

EKSEMPEL 16

Degummering af rårapsfrø-spiseolie (I)

Forsøg A og B blev udført ifølge "Generel procedure til udførelse af enzymatisk degummering" som beskrevet i eksempel 10 ovenfor.

Olie:

Rårapsfrøolie fra Aarhus Oliefabrik (AOM), Danmark.

10 Batch C00745/B01146, P-indhold 609 ppm.

Denne batch indeholder faste rester.

Enzym:

Lecitase™ 10 L.

15 Batch L646-F02 (10190 U/ml), æstimeret koncentration 20 mg/ml.

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch F-9700123, OD_{280} = 1,48, renhed ca. 58 %, æstimeret koncentration 0,9

20 mg/ml.

Enzymet var rekombinant udtrykt og oprenset som beskrevet ovenfor.

Forsøg A (reference)

0,6 I (580 g) rårapsfrøolie tilføres udstyret og opvarmes til 60 °C. Til t = 30 minutter tilsættes 1,43 ml (5,7 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,6. Til t = 35 minutter tilsættes 30 µl (300 U) Lecitase™ 10L (som er leveret af Novo Nordisk A/S). Det målte phosphorindhold i oliefasen efter centrifugering såvel som pH-værdierne i vandfasen er vist i tabel 14.

TABEL 14. Resultater fra degummering af rårapsfrøolie med Lecitase™

Tid (timer)	Phosphorindhold i oliefase	рН
0	609	
0,50	155	4,8
0,58	146	5,6
1,0	127	5,6
2,0	88	5,7
3,5	61	5,7
5,0	44	5,6
6,0	34	5,8

Forsøg B

5 0,6 l (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 40 °C. Til t = 30 minutter tilsættes 1,07 ml (4,3 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,4. Til t = 35 minutter tilsættes 1 ml (0,9 mg) af en oprenset opløsning (eksempel 2) af phospholipase fra *F. oxysporum*. Det målte phosphorindhold i oliefasen efter centrifugering såvel som pH-værdierne i vandfasen er vist i tabel 15.

TABEL 15. Resultater fra degummering af rårapsfrøolie med phospholipase

fra F. oxysporum

Tid (timer)	Phosphorindhold i oliefase	рН
0	609	
0,50	155	4,9
0,58	149	5,4
1,0	91	5,3
2,0	13	5,4
3,5	11	5,3
5,0	13	5,4
6,0	10	5,2

EKSEMPEL 17

5

Degummering af rårapsfrø-spiseolie (II)

Forsøg A og B blev udført ifølge "Generel procedure til udførelse af enzymatisk degummering" som beskrevet i eksempel 10 ovenfor.

10

20

Olie:

Rårapsfrøolie fra Aarhus Oliefabrik (AOM), Danmark. Batch C00745/B01710, P-indhold 459 ppm.

15 Enzym:

Lecitase™ 10 L.

Batch L646-F02 (10190 U/ml), æstimeret koncentration 20 mg/ml.

PL fra Fusarium oxysporum med aminosyresekvensen, der er vist i SEQ ID NO: 2.

Batch F-9700470, $OD_{280} = 0.8$, renhed ca. 58 %, æstimeret koncentration 0,45 mg/ml.

Enzymet var rekombinant udtrykt og oprenset som beskrevet ovenfor.

Forsøg A

5

10

0,6 I (580 g) rårapsfrøolie tilføres udstyret og opvarmes til 60 °C. Til t = 30 minutter tilsættes 1,43 ml (5,7 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,6. Til t = 35 minutter tilsættes en passende mængde (for eksempel 50 µl (ca. 500 U) til 1 mg enzym/kg olie) af Lecitase 10L (som er opnået fra Novo Nordisk A/S). Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 16.

TABEL 16. Resultater fra degummering af rårapsfrøolie med Lecitase

TABLE TO, Resultater tra degularitering at rarabshipolic fried Lecitase			
Tid (timer)	1 mg Lecitase /kg olie P(ppm)	2 mg Lecitase /kg olie P(ppm)	3 mg Lecitase /kg olie P(ppm)
- 0	_ 459	459	459
0,50	251	235	248
0,58	202	194	202
1,0	181	186	183
2,0	165	156	107
3,5	111	66	11
5,0	52	12	12
6,0	20	5	9

Forsøg B

0,6 I (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 40 °C. Til t = 30 minutter tilsættes 1,07 ml (4,3 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,0. Til t = 35 minutter tilsættes en passende mængde (det vil sige 1,6 mg enzym/kg olie og 3,2 mg enzym/kg olie) af en oprenset opløsning af phospholipase fra *F. oxysporum*. Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 17.

20

15

(.[^];

TABEL 17. Resultater fra degummering af rårapsfrøolie med phospholipase

fra F. oxysporum

na r. oxysporum		
Tid (timer)	1,6 mg <i>Fusariuml</i> kg olie, P(ppm)	3,2 mg <i>Fusariuml</i> kg olie, P(ppm)
0	459	459
0,50	236	208
0,58	193	173
1,0	109	96
2,0	9	7
3,5	9	8
5,0	9	9
6,0	9	9

Sammenfattet viser resultaterne:

5

Lecitase, 60 °C, pH 5,5

Enzymdosen blev varieret fra 1,0 til 3,0 mg/kg olie. Resultaterne er vist i tabel 16 ovenfor. Ved en enzymdosis på 1,0 mg/kg olie var degummering langsom og gav ca. 20 ppm efter 6 timer. Med de høje enzymdoser blev degummerings-ydeevnen forbedret til opnåelse af et phosphorindhold på 10 ppm efter ca. 3,5 timer med 3,0 mg enzym/kg olie.

Det formodes, at ydeevnen vil forbedres yderligere, hvis der anvendes højere enzymdoser.

15

10

F. oxysporum PL, 45 °C, pH 5,0

Enzymdoserne 1,6 og 3,2 mg/kg olie blev testet, og ydeevnen viste sig at være lige god (tabel 17 ovenfor). Med 1,6 mg enzym/kg olie - eller muligvis mindre - observeredes fortræffelig degummering, som gav 9 ppm P efter ca. 2 timer. Det forventes, at det er muligt at anvende endnu lavere mængder af *F. oxysporum*-phospholipase (for eksempel 0,9 mg/kg olie) og stadig opnå god degummerings-ydeevne.

EKSEMPEL 18

Degummering af vanddegummeret spiseolie ved anvendelse af et phospholipase-præparat, der er opnået fra Fusarium culmorum

5

Der blev udført et forsøg ifølge "Generel procedure til udførelse af enzymatisk degummering" som beskrevet i eksempel 10 ovenfor.

Olie:

10 Vanddegummeret rapsfrøolie fra Aarhus Oliefabrik (AOM), Danmark. Batch C00730/B01700, P-indhold 231 ppm.

Enzym:

Et fermenteringsmedium fra Fusarium culmorum.

15 En *Fusarium culmorum*-stamme blev dyrket og centrifugeret, og supernatanten blev oprenset som beskrevet nedenfor.

Podekulturer af stammen *Fusanum culmorum* CBS 513.94 (deponeringsdato den 25. oktober 1994) blev frembragt i 500 ml-rystekolber, som indeholdt 100 ml af følgende sammensætning:

Majsudblødningsvæske (tørret) 12 g/l Glucose 24 g/l

25

20

Til hver kolbe tilsættes 0,5 g CaCO₃ og 0,5 ml olie. pH justeres til 5,5 før autoklavering.

Efter 3 dage ved 26 °C og 250 rpm blev 5 ml af hver af podekulturerne podet i rystekolber, som indeholdt 100 ml af følgende medium:

30

Pepton, Difco 0118	6 g/l
Pepticase, Sheffield Products	4 g/l
Gærekstrakt, Difco 0127	3 g/l
Kødekstrakt, Difco 0126	1,5 g/l
Dextrose, Roquette 101-0441	1 g/l
Olivenolie, Sigma	10 g/l

pH justeres til 7,3-7,4 før autoklavering.

Dyrkning fandt sted i 9 dage ved 26 °C og 250 rpm. Medierne blev centrifugeret og filtreret (0,45 μ m) og supernatanterne opsamlet og anvendt til degummeringsforsøgene, der er vist nedenfor.

Æstimeret aktivitet 200 PHLU/ml.

5

10

15

20

Forsøg: Enzymatisk degummering af en vanddegummeret olie ved anvendelse af et phospholipase-præparat, som er opnået fra Fusarium culmorum

0,6 I (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 40 °C. Til t = 30 minutter tilsættes 1,43 ml (5,7 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 5,5. Til t = 35 minutter tilsættes en passende mængde (det vil sige 1070 PHLU/kg olie) af en oprenset opløsning af phospholipase fra *F. culmorum*. Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 18.

TABEL 18. Resultater fra degummering af rårapsfrøolie med phospholipase fra F. culmorum

Tid (timer)	1070 U <i>F. culmorum</i> /kg olie P(ppm)			
0	254			
0,50	-			
0,58	213			
1,0	137			
2,0	61			
3,5	. 9			
5,0	8			
6,0	7			

EKSEMPEL 19

Enzymatisk degummering af råolie ved anvendelse af Degomma VOD

5 Olie:

10

15

(:

Rårapsfrøolie C00745/B01700, P-indhold 459 ppm.

Enzym:

En kommerciel tilgængelig phospholipase Degomma VOD (Röhm, Tyskland), æstimeret koncentration 10 mg/ml.

0,6 l (581 g) rårapsfrøolie tilføres udstyret og opvarmes til 50 °C. Til t = 30 minutter tilsættes 0,714 ml (2,86 mmol) 4 M NaOH-opløsning, som giver en pH på ca. 4,5. til t = 35 minutter-tilsættes en passende mængde (det vil sige 3,6 mg/kg olie eller 7,1 mg/kg olie) af en oprenset opløsning af Degomma VOD-phospholipase. Det målte phosphorindhold i oliefasen efter centrifugering er vist i tabel 19.

TABEL 19

IADEL 19		
Tid	3,6 mg/kg olie	7,1 mg/kg olie
0	276	273
0,50	216	253
0,58	210	246
1,0	127	94
2,0	45	16
3,5	15	7
5,0	. 15	10
6,0	14	10

20

Dette eksempel viser, at Degomma VOD er i stand til at degummere en spiseolie. For at opnå en tilfredsstillende degummering af nævnte olie kræves imidlertid relativt høje doser af Degomma VOD sammenlignet med *Fusarium*-phospholipasen ifølge opfindelsen. Se for eksempel eksemplerne 16 og 17 til

sammenligning.

EKSEMPEL 20

5 Anvendelse af en phospholipase, der er opnået fra F. oxysporum, som et brødforbedrende middel

Materialer og metoder

10 Fremstilling af brød

Europæiske almindeligt dej-hvidt brød og kuvertbrød blev fremstillet ud fra følgende grundopskrift:

	15	Grundopskrift	
		Mel (Meneba BBZ)	100 % (2000 g)
		Vand	61 %
		Gær	4 %
		Salt	1,5 %
	20	Sukker	1,5 %
		Ascorbinsyre	40 ppm
		Bageprocedure	
		Blanding (spiralblander), 625 rpm	3 min.
	25	Blanding (spiralblander), 1250 rpm	3,5 min.
		Vurdering af dej	7 min.
		Fermentering (stuetemperatur)	15 min.
•		Valsning/formning	3 min.
		Hvile ved stuetemperatur	5 min.
	30	Sammenfoldning	2 min.
		Hvile ved stuetemperatur	5 min.
		Valsning/formning/i form	2 min.
		Hævning (32 °C, 82 % RH)	
		Kuvertbrød:	45 min.
	35	Formbrød:	55 min.
		Bagning (230 °C)	
		Kuvertbrød:	22 min.

Formbrød: 35 min.

Vurdering af dei og bagte produkter

5 Egenskaberne for dejen og de bagte produkter blev bestemt som følger:

<u>Specifikt volumen-ideks</u>: Volumen af et brød eller et kuvertbrød måles ved hjælp af den traditionelle rapsfrø-fortrængningsmetode. Det specifikke volumen beregnes som volumen ml pr. g brød. Det specifikke volumen af kontrollen (uden enzym) defineres som 100. Det relative specifikke volumenindeks beregnes som:

Specifikt volumen-indeks = <u>brødets specifikke volumen</u> specifik volumen af kontrolbrød x 100

Dejens klæbetilbøjelighed vurderes manuelt i overensstemmelse med følgende skala:

	Kuvertbrødform:	meget flad	1
20		flad	2
		normal	3
		god/rund	4
		meget god	5
		for rund	6

30

25

10

15

RESULTATER

TABEL 20

IADEL ZU					,			,
Enzym/ . additiv			•					
A)					1	1	1	1
B)		500	1500	3000		500	1500	3000
C)	100	110	106	93	99	111	116	108
D)	100	106	99	94	102	107	109	103
E)	3	4	4	3	3	4	5	4,5

- A) Lecimulthin 100 (g/kg mel)
- B) F.o.-phospholipase (LU/kg mel)
- C) Specifikt volumen-indeks (kuvertbrød)
- D) Specifikt volumen-indeks (formbrød)
- E) Kuvertbrødform (score)

10 Kommercielt lecithin-præparat til bagning (Superfos, Danmark).

Resultaterne viser en klar volumenforøgende effekt af *Fusarium oxysporum*-phospholipase på både kuvertbrød og formbrød ved opskriften, som ikke indeholder lecithin. Hvis lecithin indbefattes i opskriften, opnås endnu bedre volumeneffekter, selvom lecithin ikke selv bidrager til volumen. En statistisk analyse (ANOVA, α = 0,05), som blev udført i Statgraphics Plus, release 3.0, viser en signifikant positiv synergi mellem phospholipasen og lecithinen.

Både med og uden lecithin i opskriften opnås en betydeligt forbedret form af kuvertbrød med *F. oxysporum*-phospholipasen. I dette eksempel opnåedes den bedste kuvertbrødform ved en blanding af lecithin og phospholipase (1500 LU/kg mel).

EKSEMPEL 21

25

5

15

20

Anvendelse af en phospholipase, der er opnået fra F. oxysporum, som et antifriskhedstabende middel

Materialer og metoder

Grundopskrift

Fremstilling af brød

Europæiske almindeligt dej-hvidt brød og kuvertbrød blev fremstillet ud fra følgende grundopskrift:

	Mel (Meneba BBZ)	100 % (2000 g)
	Vand	61 %
10	Gær	5 %
	Salt	1,5 %
	Sukker	1,5 %
	Ascorbinsyre	40 ppm

15 Bageprocedure

30

		
	Blanding (spiralblander), 625 rpm	3 min.
	Blanding (spiralblander), 1250 rpm	3,5 min.
	Vurdering af dej	7 min.
	Fermentering (stuetemperatur)	15 min.
20	Valsning/formning	3 min.
	Hvile ved stuetemperatur	5 min.
	Sammenfoldning	2 min.
	Hvile ved stuetemperatur	5 min.
	Valsning/formning/i form	2 min.
25	Hævning (32 °C, 82 % RH)	55 min.
	Bagning (230 °C)	35 min.

I dette eksempel blev brødene anbragt i forme med låg for at undgå forskelle i de specifikke volumener før strukturanalyse. Efter nedkøling blev brødene opbevaret ved stuetemperatur, pakket i plastikposer.

Vurdering af bagte produkter

Vurdering af friskhedstab og struktur kan udføres ifølge AACC-metoden 74-09. En vurdering af brødkrummers blødhed som indikator for brøds friskhedstab blev udført 0, 1, 3 og 7 dage efter bagning i overenstemmelse med følgende procedure:

En skive brød blev komprimeret ved konstant hastighed i en strukturanalyse (TA TX-2), og styrken af kompressionen blev målt i g. Krummens fasthed måles som styrken ved 25 % kompression. En brødkrummes fasthed stiger efterhånden som brødet mister friskhed.

Resultater

5

10

15

(1)

25

Resultaterne fra fasthedsmålinger som funktion af opbevaringsdage er vist i tabel 21. Lecimulthin blev tilsat i en koncentration på 1 g/kg mel, og *Fusarium oxysporum*-phospholipasen blev tilsat i en dosis på 500 U/kg mel. Hvert resultat i tabellen er gennemsnitsværdien for 6 målinger (2 brød, 3 målinger på hver).

20 <u>TABEL 21</u>

Enzym/additiv	Fasthed Dag 0	Fasthed Dag 1	Fasthed Dag 3	Fasthed Dag 7
Kontrol	223	350	631	1061
Lecimulthin 100°	225	261	532	1010
Phospholipase	201	303	573	1257
Lecimulthin 100° + phospholipase	169	304	468	834

Kommercielt lecithin-præparat til bagning (Superfos, Danmark).

Som det fremgår af tabel 21, var brødene, der var behandlet med phospholipase, lidt blødere end kontrollen op til 3 dages opbevaring. I kombination med lecithin kunne der opnås en betydelig anti-friskhedstabende effekt under hele opbevaringen (som ikke er opnåelig med lecithin eller phospholipase alene).

SEKVENSLISTE

	5		viser en klonet DNA-sekvens ifølge opfindelsen, som omfatter ns, der koder for et enzym, som fremviser phospholipase-
		(2) INFORM	ATION OM SEQ ID NO: 1
	10	(i) .	SEKVENSEGENSKABER: (A) LÆNGDE: 1170 basepar (B) TYPE: nukleinsyre (C) BESKAFFENHED: enkeltstrenget (D) TOPOLOGI: lineær
<u></u>	15	(ii)	MOLEKYLETYPE: cDNA
	20	(vi)	NATURLIG OPRINDELSE: (A) ORGANISME: Fusarium oxysporum (B) STAMME: DSM 2672
		(ix)	EGENSKAB: (A) NAVN/KODE: CDS (B) PLACERING: 231063
	25	(xi)	SEKVENSBESKRIVELSE: SEQ ID NO: 1
		TTGGAGAATA TI	Het Leu Leu Pro Leu Leu Ser Ala Ile 1 5 10
-, シ		ACC CTC GCG C	STA GCC AGT CCT GTA GCT CTC GAC GAC TAC GTC AAC TCT 100 Val Ala Ser Pro Val Ala Leu Asp Asp Tyr Val Asn Ser 15 20 25
		CTT GAG GAG (CCA GCT GTT GGT GTC ACT ACA ACC GAC TTC AGC AAC TTC 148 Arg Ale Val Gly Val Thr Thr Thr Asp Phe Ser Asn Phe 30. 35 40
		ANG TTC TAC	ATC CAA CAC GGC GCC GCA GCT TAC TGC AAC TCT GAA GCC 195 Ile Gln His Gly Ale Ale Ale Tyr Cys Asn Ser Glu Ale

30

45	50	5'5

			TCC													244
Ala	Ala	Gly	Ser	Lys	Ile	Thr	СЛа	Ser	Asn	Asn	Cly	CAa	Pro	Thr	Val	
	60					65					70					
CAG	GGC	AAC	GGA	GCG	ACC	ATC	GTG	ACA	TCT	TTC	GTT	GGC	TCC	AAG	ACA	292
Gln	Gly	Asn	Gly	Ala	Thr	Ile	Val	Thr	5er	Phe	Val	Ġly	Ser	Lya	Thr	
75	-		_		80					85					90	
GGT	ATC	GGT	GGC	TAC	GTC	GCG	λСΆ	GAC	TCT	GCC	CGA	AAG	GAA	ATC	GTC	340
Glv	Ile	Glv	Cly	Tyr	Val	Ala	Thr	узр	Ser	Ala	λrg	Lys	Glu	Ile	Val	
,			•	95				_	100	•				105		
GTC	TCC	TTC	CGC	GGA	AGC	ATC	AAT	ATT	CGA	AAC	TGG	CII	ACC	AAC	CTC	388
															Leu	
441	Jer	1 114	110	4 1,				115	,		•	•	120			
			110													
			CAG	C33	GNC	TOC	NGT	CTC	GTC	TCT	GGA	TGC	GGT	GTG	CAC	436
			Gln													-
Asp	rne		CIN	GIU	vaħ	Cys	130	Deu	761	J L1	- -,	135	,			-
		125					130									
			CAG			**	- 3 - 2 - 12	C 34:		market.	44	Ca.	CCA	*CC	GCT'	484
Ser	-	Phe	Gln	Arg	YTS		ASI	GIB	ire	Ser		GIN	n.a	1114	ALG.	
	140					145					150					
															m-0**	532
GCT	GTT	GCC	TÇC	GCC	CGC	AAG	ccc	YYG	CCT	TCT	TTC	AAC	UIC	MIT	101	334
Уļа	Val	Ala	Ser	Ala		Lys	Ala	Asn	Pro		Phe	Asn	ATT	116	170	
155					160					165					170	
			•													
ACA	GGC	CYC	TCC	CII	GGA	CCT	ccc	GTG	GCC	GTT	CTI	CCT	GCC	GCA	AAC	580
Thr	Gly	ein	Ser	Leu	C1A	Cly	УŢа	Val		Val	Leu	Хļа	Χla			
				175					180					185		
	•															620
															CCC	628
Leu	Arg	Val	Cly	Gly	Thr	Pro	Va)	yab	Ile	Ιλε	Thr	Tyr			Pro	
			190					195	•				200			
															GGT	676
λrg	Val	Gly	λsn	Ala	Glr	Leu	Ser	. Ala	Phe	Val	Ser	λsn	Gln	Ala	Gly	
		205	i				210)				215				
									•							
															CCT	724
Gly	, Glu	Tyr	Arg	Val	Thi	His	Al	A Asj) Asy	Pro	Val	Pro	Arç	Le	Pro	

CCT	CTG	ATC	TTC	GGX	TAC	AGG	CAC	ACA	ACT	CCT	GAC	TTC	TGG	CIG	TCC	772
Pro	Leu	Ile	Phe	Gly	Tyr	λrg	His	Thr	Thr	Pro	Glu	Phe	Trp	Leu	Ser	
235				-	240	_				245					250	
GGC	GGT	GGA	GGC	GAC	AAG	GTT	GAÇ	TAC	ACC	ATC	AGÇ	GAT	GTC	AAG	GTC	820
Gly	Cly	Gly	Gly	Λsp	Lys	Val	Asp	Tyr	Thr	Ile	5er	Asp	Val	Lys	Val	
,		•	-	255	-		_		260					265		
															•	
TGT	GAG	GGT	GCT	GCC	AAC	CTT	GGA	TCC	AAC	GGT	GGA	ACT	CTT	CGT	TTG	868
Суэ	Glu	Gly	Ala	Ala	Asn	Leu	Gly	Cys	λsn	Gly	Gly	Thr	Leu	Gly	Leu	
•		_	270					275					280			
GAT	ATT	CCI	GCT	CAT	CTG	CAT	TAC	TTC	CAG	GCG	λCT	.GAC	GCC	TGT	AAC	916
				His												
		285					290					295				
CCT	GGT	GGC	TTC	TCT	TGG	CGA	CGA	TAC	AGA	AGC	ecc	GAG	AGC	GTC	GAC	964
				Ser												
	300	-				305					310					
							-	-								
AAG	AGG	GCC	ACC	ATG	ACT	GAT	GCC	CAG	CTT	GAG	AAG	AAG	CIG	λλC	TCT	1012
Lys	Arg	Ala	Thr	Met	Thr	Asp	Mla	Glu	Leu	Glu	Lys	Lys	Leu	Asn	Ser	
315					32C					325					330	
				GAT												1060
Tyr	Val	Gln	Het	λвр	Lys	Glu	Tyr	Val	Lув	λsn	ysu	Gln	YJP	Arg	Ser	
				335					340					345		
TAA	CGA	CCGT	ATG :	aggt	TTGN	IC G	GAAA	TGYC	N TG	YIIC.	ATGA	ACC.	AAAC	CAT		1113
				٠												
AGTACATATG ATGCARATAG GATATAARA CATATTCAT TCACTAGCTI TACACAA 117										1170						

- 5 <u>SEQ ID NO: 2</u> viser aminosyresekvensen for en phospholipase ifølge opfindelsen.
 - (2) INFORMATION OM SEQ ID NO: 2

10 (i) SEKVENSEGENSKABER:
(A) LÆNGDE: 346 aminosyrer
(B) TYPE: aminosyre
(D) TOPOLOGI: lineær

- 15 (ii) MOLEKYLETYPE: protein
 - (xi) SEKVENSBESKRIVELSE: SEQ ID NO: 2

Het 1	Leu	Leu	Leu	Pro 5	Leu	Leu	Ser	Ala	lle 10	Thr	Leu	Ala	Val	Ala 15	Ser
Pro	Val	Ala	Leu 20	Дзр	Двр	Tyr	Val	Asn 25	Ser	Leu	Glu	Glu	λrg 30	Ala	Val
Gly	Val	Thr 35	Thr	Thr	уар	Phe	Ser 40	Asn	Phe	Lys	Phe	Tyr 45	Ile	Gln	His
Gly	Ala 50	λ la	Ala	туг	Сув	A sn 55	Ser	Glu	Ala	Ala	Ala 60	Gly	5er	Lys	Ile
Thr 65	Сув	Ser	Asn	yav	Gly 70	Сув	Pro	Thr	Val	Gln 75	Ģly	Asn	Gly	λla	Thr 80
Ile	Val	Thr	Ser	Phe 85	Val	Gly	Ser	Lув	Thr _90	Gly	Ile	Gly	Gly	Tyr 95	Val
Ala	Thr	yab	Ser 100	Ala	Arg	Lys	Glu	Ile 105	Val	Val	Ser.	Phe	Arg 110	Gly	Ser
lle) Nan	Ile 115	Arg	Asn	Trp	Leu	Thr 120		Leu	Asp	Phe	Gly 125		Glu	Asp
Сув	Ser 130		Val	Ser	Gly	Суз 135		Val	Bis	Ser	Gly 140		Gln	Arg	Ala
Trp 145		Glu	Ile	Ser	Ser 150		λla	Thr	Ala	Ala 155		Ala	Ser	Ala	Ar 0
Lys	λla	Asn	Pro	Ser	Phe	. Asn	Val	Ile	Ser	Thr	Gly	His	Ser	Leu	Gly

				165					170					175	
e1Å	Ala	Val	Ala 180	Val	Leu	λla	Ala	Ala 185	Asn	Leu	Arg	Val	Gly 190	Gly	Thr
Pro	Val	Авр 195	Ile	Tyr	Thr	Tyr	200	Ser	Pro	Arg	Val	Gly 205	Asn	Ala	Gln
Leu	Ser 210	Ala	Phe	Val	Ser	Asn 215	Gln	Ala	Gly	CJÀ	Glu 220	Tyr	λrg	Val	Thr
His 225	Ala	увр	Дзр	Pro	Val 230	Pro	Ar g	Leu	Pro	Pro 235	Leu	Ile	Phe	Gly	Tyr 240
Arg	His	Thr	Thr	Pro 245	Glu	Phe	Trp	Leu	Ser 250	GJA	Gly		Gly	255 255	Lys
Val	Двр	Tyr	Thr 260	Ile	Ser	Авр	Val	L уэ 265	Val	Сув	Glu	Gly	Ala 270	Ala	yau
Leu	Gly	Cys 275	Asn	Gly	Gly	Thr	Leu 280	Gly	Leu	Авр	Ile	Ala 285	Ala	His	Leu
His	Tyr 290	Phe	Gln	Ala	Thr	Л вр 295	λla	Сув	Asn	Ala	Gly 300	Gly	Phe	Ser	Trp
Arg 305	Arg	Tyr	Arg	Ser	Ala 310	Glu	Ser	Val	Авр	Lys 315	Arg	Ala	Thr	Met	320
ysb	Ala	Glu	Leu	Glu 325	Lys	Lys	Leu	Asn	Ser 330	Tyr	Val	Gln	Met	335	Lys

Glu Tyr Val Lys Asn Asn Gln Ala Arg Ser

Patentkrav:

5

10

15

20

25

30

35

(g)

1. Polypeptid, som fremviser phospholipase A-aktivitet, der er valgt fra gruppen, som består af: (a) et polypeptid, der kodes af den phospholipase A-kodende del af DNAsekvensen, der er klonet ind i plasmid pYES 2.0, som er til stede i Escherichia coli-DSM 11299, et polypeptid med en aminosyresekvens som vist i positionerne 31-346 i (b) SEQ ID NO: 2, et polypeptid med en aminosyresekvens som vist i positionerne 31-303 i (c) SEQ ID NO: 2, og et polypeptid, der er mindst 70 % homologt med polypeptidet, der er defineret i (a), (b) eller (c). 2. Polypeptid ifølge krav 1, som er en phospholipase A1. 3. Polynukleotid, som omfatter en sekvens, der er valgt fra gruppen, som består af: den phospholipase A-kodende sekvens, der er klonet ind i plasmid pYES (a) 2.0, som er til stede i Escherichia coli-DSM 11299, (b) nukleotiderne 23-1063 i SEQ ID NO: 1, nukleotiderne 113-1063 i SEQ ID NO: 1, (c) (d) nukleotiderne 113-931 i SEQ ID NO: 1, et polynukleotid, der koder for aminosyrerne 31-346 i SEQ ID NO: 2, (e) (f) et polynukleotid, der koder for aminosyrerne 31-303 i SEQ ID NO: 2, og

et polynukleotid, der er mindst 70 % homologt med et hvilket som helst

af ovennævnte polynukleotider, hvor polynukleotidet koder for et polypeptid, der fremviser phospholipase A-aktivitet.

- 4. Polynukleotid ifølge krav 3, der koder for et phospholipase A1-polypeptid.
- 5. Vektor, som omfatter polynukleotidet ifølge krav 3 eller 4.
 - 6. Værtscelle, som omfatter vektoren ifølge krav 5.
- 7. Værtscelle ifølge krav 6, som er en eukaryotcelle, især en svampecelle, såsom en trådsvampecelle, for eksempel *Aspergillus* eller *Fusarium*.
 - 8. Fremgangsmåde til frembringelse af en phospholipase A, som omfatter:
- 15 (a) dyrkning af værtscellen ifølge krav 6 eller 7 under betingelser, der er passende til ekspression af phospholipasen og
 - (b) indvinding af phospholipasen.
- 9. Anvendelse af polypeptidet ifølge krav 1 eller 2 i en proces, som omfatter behandling af et phospholipid eller lysophospholipid med phospholipasen til hydrolysering af fedtacylgrupper.
 - 10. Anvendelse af polypeptidet ifølge krav 1 eller 2 i en proces til reduktion af indholdet af phospholipid i en spiseolie, der har et phosphorindhold fra 50-250 ppm, som omfatter behandling af olien med polypeptidet til hydrolysering af en stor del af phospholipidet og separering af en vandfase, som indeholder det hydrolyserede phospholipid, fra olien.
- 30 11. Anvendelse af polypeptidet ifølge krav 1 eller 2 i en proces til frembringelse af et bagt produkt, som omfatter tilsætning af polypeptidet til en dej og bagning af dejen til frembringelse af det bagte produkt.

35

25

Fig.

5

()

Oliedegummering - Fusarium PL vs. Lecitase Fig. 2

 (\cdot)

Novozymes A/S Att.: Mira Hansen Krogshøjvej 36 2880 Bagsværd 31. SEP 2002 , MSH

Reterence	Country		
Agent MSH	0 1. CKT	Short title	
Action		Term	

Den 27. september 2002

Vi kvitterer hermed for modtagelse af sagsnr. p4798202dk, der skal oversættes fra engelsk til dansk.

Vi bekræfter samtidig, at fristdatoen er den 6. december 2002.

Med venlig hilsen Lingtech A/S

Kristina Breyen

LINGTECH

ENGELSK		TYSK		ansk over		SE		
Fra firma		Nov	OZym	es a/s	5			
Dato		24/						
Side- antal	Ialt	Beskr.	Krav	Sm.drag	Tegn.	Andet		
Fremsendt af		nie	a 5.	Havis	see			
Sagsnummer		4798	3.202	ED/OK				
Sagsbehandler		Stan	1.4	Ludse				
Sagsområde		Lipa	se		· · · · · · · · · · · · · · · · · · ·			
Ønskes retur (d	dato)	6/12	- 2002					
Evt. forslag to der skal oversa	il hvem ette		- ·					
Oversætter	NGTECH		·					
Sendt dato			Frist c	iato				
Retur dato		Antal ord						
Afr.bil.nr.		Fakt.nr.						
Вет.								

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

efects in the images include but are not limited to the items	checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	• 0
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUAI	LITY
□ OTHER•	V.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.