

FIG._ 1**FIG._ 1A****FIG._ 1B****FIG._ 1A****SEQ ID NO: 1****Nucleotide Sequence Tankyrase Homologue isotype1**

CTTTGAAGACACTGGATTCATACTTTGCCTGGGTTATCTCTGTGTCACATAGACAAATA
TTAGCTGTGAGCAGATCTTTGTTGCTTGTAGTCCCCAGTTAGCAGAACATTCTGTGAGA
TAGATGTGGGAAAGGAATTCTAGCAAGAGTTGTCAGTGTATCATAAGGTGTGATTACATATTAA
GTTTTATACTTTAACATCTGAAAATGTATACTAAATATGCAGAACTCTATTGTAGAGTGAGAAA
CATTTGAACCTTGAGCTTCAGTCACTTATTGTATTCTTCTTGAGGTTAGCAGTAGTACCAACCCA
AGGCAC TGCTTAGGTACCACTGCTGCTTAGTGGAGAGTCCCTCTGGCTTATCATTAGGTTGGCG
GAAAGACGTAGTTGAATATTGCTTCAGAATGGTCAAGTGTCCAAGCACGTGATGATGGGGCCTTAT
TCCTCTCATAATGCATGCTCTTGGTCACTGCTGAAGTAGTCATTCCCTTGCACATGGCAGA
CCCCAATGCTCGAGATAATTGAATTATACTCCTCTCCATGAAGCTGCAATTAAAGGAAAGATTGATGT
TTGCATTGTGCTGTTACAGCATGGAGCTGAGCCAACCACCGAAATACAGATGGAAGGACAGCATTGGA
TTTAGCAGATCCATCTGCCAAAGCAGTGCTACTGGTAATATAAGAAAGATGAACTCTTAGAAAGTGC
CAGGAGTGGCAATGAAGAAAAATGATGGCTCTACTCACACCATTAAATGTCAGTGCACGCCAGTGA
TGGCAGAAAGTCAACTCCATTACATTGGCAGCAGGATAAACAGAGTAAAGATTGTACAGCTGTTACT
GCAACATGGAGCTGATGCCATGCTAAAGATAAAAGGTGATCTGGTACCATACACAATGCCCTGTTCTTA
TGGTCATTATGAAGTACTGAACTTTGGTCAAGCATGGTGCCTGTGTAATGCAATGGACTGTGGCA
ATTCACTCCTCTCATGAGGCAGCTCTAAGAACAGGGTTGAAGTATGTTCTCTCTTAAGTTATGG
TGCAGACCCAACACTGCTCAATTGTCACAATAAAAGTCTATAGACTTGGCTCCCACACCACAGTTAAA
AGAAAGATTAGCATATGAATTAAAGGCCACTCGTTGCTGCAAGCTGCACGAGAAGCTGATGTTACTCG
AATCAAAAAACATCTCTGGAAATGGTGAATTCAAGCATCCTCAAACACATGAAACAGCATTGCA
TTGTGCTGCTGCATCTCCATATCCAAAAGAAAGCAAATATGTGAACTGTTGCTAAGAAAAGGAGCAA
CATCAATGAAAAGACTAAAGAATTCTTGACTCCTCTGCACGTGGCATCTGAGAAAGCTCATAATGATGT
TGGTGAAGTAGTGGTGAACATGAAGCAAAGGTTAATGCTCTGGATAATCTGGTCAGACTCTACA

2 / 21

CAGAGCTGCATATTGGTCATCTACAAACCTGCCGCTACTCCTGAGCTATGGGTGTGATCCTAACAT
TATATCCCTCAGGGCTTACTGCTTACAGATGGAAATGAAAATGTACAGCAACTCCTCCAAGAGGG
TATCTCATTAGGTAAATTAGGCAGACAGACAATTGCTGGAAGCTGCAAAGGCTGGAGATGTCGAAAC
TGTAaaaaaaACTGTGTACTGTTAGGTCAACTGCAGAGACATTGAAGGGCGTCAGTCTACACCCT
TCATTTGCAGCTGGGTATAACAGAGTGTCCGTGGAAATATGCTACAGCATGGAGCTGATGTGCA
TGCTAAAGATAAAAGGAGGCCTTGTACCTTGACAATGCATGTTATGGACATTATGAAGTTGAGA
ACTTCTTGTAAACATGGAGCAGTAGTTAATGTAGCTGATTTATGGAAATTACACCTTACATGAAGC
AGCAGCAAAAGGAAATATGAAATTGCAAACCTCTGCTCCAGCATGGTGCAGACCCCTACCAAAAAAA
CAGGGATGGAAATACTCCTTGGATCTGTTAAAGATGGAGATAAGATATTCAAGATCTGCTTAGGGG
AGATGCAGCTTGCTAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGTGAAGAAGTTGCTTCTCCTG
TAATGTAATTGCCGCGATAACCAAGGCAGACATTCAACACCTTACATTAGCAGCTGGTTATAATAA
TTTAGAAGTTGCAGAGTATTGTTACAACACGGAGCTGATGTGAATGCCAAGACAAAGGAGGACTTAT
TCCTTACATAATGCAGCATCTACGGGCATGTAGATGTAGCAGCTCTACTAATAAGTATAATGCATG
TGTCAATGCCACGGACAAATGGGCTTCACACCTTGACGAAGCAGGCCAAAGGGACGAACACAGCT
TTGTGCTTGCTAGCCATGGAGCTGACCCACTCTAAAATCAGGAAGGACAAACACCTTAGA
TTTAGTTTCAGCGGATGATGTCAGCGCTCTGACAGCAGCCATGCCCATCTGCTCTGCCCTTTG
TTACAAGCCTCAAGTGTCAATGGGTGAGAAGCCCAGGAGCCACTGCAGATGCTCTCTCAGGTCC
ATCTAGCCCATCAAGCCTTCTGCAAGCAGCAGTCTGACAACCTATCTGGGAGTTTCAGAACTGTC
TTCAGTAGTTAGTCAAGTGGAACAGAGGGTGCTCCAGTTGGAGAAAAGGAGGTTCCAGGAGTAGA
TTTAGCATAACTCAATTGTAAGGAATCTGGACTTGAGCACCTAATGGATATATTGAGAGAGAAC
GATCACTTGGATGTATTAGTTGAGATGGGCACAAGGAGCTGAAGGAGATTGGAATCAATGCTTATGG
ACATAGGCACAAACTAATTAAAGGAGTCGAGAGACTTATCTCCGGACAACAAGGTCTAACCCATATT
AACTTTGAACACCTCTGGTAGTGGAACAAATTCTTATAGATCTGCTCTGATGATAAGAGTTCACT
TGTGGAGGAAGAGATGCAAAGTACAGTTCAGAGACAGAGATGGAGGTCTGCAGGTGGAATCTCAA
CAGATACAATATTCTCAAGATTAGGTTGTAACAAGAAACTATGGAAAGATAACACTCACCGGAG
AAAAGAAGTTCTGAAGAAAACCACAACCATGCCATGAACGAATGCTATTCTGAGGTCTCCTTTGT
GAATGCAATTATCCACAAAGGCTTGATGAAAGGCATGCGTACATAGGTGGTATGTTGGAGCTGGCAT
TTATTTGCTGAAAACCTTCCAAAAGCAATCAATATGTATATGGAATTGGAGGAGGTACTGGGTGTC
AGTTCACAAAGACAGATCTGTTACATTGCCACAGGCAGCTGCTCTTGCCGGTAACCTGGAAA
GTCTTCTGCAAGTCACTGCAATGAAAATGGCACATTCTCCTCCAGGTCTACACTCAGTCAGTGGTAG
GCCAGTGTAAATGGCCTAGCATTAGCTGAATATGTTATTACAGAGGAGAACAGGCTTACCTGAGTA
TTAATTACTTACCAAGATTAGGGCCTGAAGGTATGGTCAAGGATAAAAGTTATTTAAGAAACTA
ATTCCACTGAACCTAAAATCATCAAAGCAGCAGTGGCCTCTACGTTTACTCCTTGCTGAAAAAA
AA

FIG.-1B

FIG._2**FIG._2A****FIG._2B****FIG._2A****SEQ ID NO: 2****Nucleotide Sequence Tankyrase Homologue isotype2**

CGCGCTGCTCCGCCCGCCGGGGCAGCCGGGGCAGGGAGCCCAGCGAGGGCGCGTGGCGCG
CCCATGGACTGCGCCGGATCCGGTACAGCAGGGAGCCAAGCGGCCGGGCCTGAGCGCGTCTCTC
CGGGGGGCCTCGCCCTCCTGCTCGCGGGCCGGCTCCTGCTCCGGTTGCTGGCGCTGTTGCTGGCTG
TGGCGGGCGGCCAGGATCATGTCGGGTGCGCCGCTGCGCCGGCGGGGAGCGGCCCTGCGCGAGCGCCGCG
CCGAGGCCGTGGAGCCGGCCCGAGAGCTGTTGAGGCCTGCCAACGGGACGTGGAACGAGTCA
AGAGGCTGGTGACGCCTGAGAAGGTGAACAGCCGACACGGCGGAGGAAATCCACCCGCTGCAC
TCGCCGCAGGTTTGGCGAAAGACGTAGTTGAATATTGCTTCAGAACATGGCAAATGTCCAAGCAC
GTGATGATGGGGCCTTATTCCCTTCATAATGCATGCTCTTGGTATGCTGAAGTAGTCAATCTCC
TTTGCACATGGTGAGACCCAAATGCTCGAGATAATTGAAATTATACTCCTCTCCATGAAGCTGCAA
TTAAAGGAAAGATTGATGTTGCATTGTGCTGTTACAGCATGGAGCTGAGCCAACCATCGAAATACAG
ATGGAAGGACAGCATTGGATTAGCAGATCCATGCCAACAGCAGTGCTTACTGGTGAATATAAGAAAG
ATGAACCTTAGAAAGTGCCAGGAGTGGCAATGAAGAAAAATGATGGCTACTCACACCATAATG
TCAACTGCCACGCAAGTGATGGCAGAAAGTCAACTCCATTACATTGGCAGCAGGATATAACAGAGTAA
AGATTGTACAGCTGTTACTGCAACATGGAGCTGATGTCCATGCTAAAGATAAAGGTGATCTGGTACCAT
TACACAATGCCCTGTTCTTATGGTCAATTGAAAGTAAGTAACTGAACCTTGGTCAAGCATGGCCTGTGAA
ATGCAATGGACTTGTGGCAATTCACTCCCTTCATGAGGCAGCTCTAAGAACAGGGTTGAAGTATGTT
CTCTTCTCTTAAGTTATGGTGAGACCCAAACACTGCTCAATTGTCACAATAAAAGTGTATAGACTTGG
CTCCCACACCACAGTTAAAGAAAGATTAGCATATGAATTAAAGGCCACTCGTTGCTGCAAGCTGCAC
GAGAAGCTGATGTTACTCGAATCAAAAACATCTCTGAAATGGTGAATTCAAGCATCCTCAA
CACATGAAACAGCATTGCATTGTGCTGCGATCTCCATATCCAAAAGAAAGCAAATATGTGAACTGT
TGCTAAGAAAAGGAGCAAACATCAATGAAAAGACTAAAGAATTCTGACTCCTCTGACGTGGCATCTG
AGAAAGCTCATAATGATGTTGAAGTAGTGGTAAACATGAAGCAAAGTTAATGCTCTGGATAATC

TTGGTCAGACTCTACACAGAGCTGCATATTGTGGTCATCTACAAACCTGCCGCTACTCCTGAGCT
ATGGGTGTGATCTAACATTATATCCCTCAGGGCTTACTGCTTACAGATGGAAATGAAAATGTAC
AGCAACTCCTCCAAGAGGGTATCTCATTAGGTAAATTAGGGCAGACAGACAATTGCTGGAAGCTGCAA
AGGCTGGAGATGTCGAAACTGTAAAAAAACTGTGTACTGTTCAGAGTGTCAACTGCAGAGACATTGAAG
GGCGTCAGTCTACACCACTCATTGCAGCTGGTATAACAGAGTGTCCGTGGTGAATATCTGCTAC
AGCATGGAGCTGATGTGCATGCTAAAGATAAAGGAGGCCCTGTACCTTGACAAATGCATGTTCTTATG
GACATTATGAAGTTGCAGAACTTCTGTTAACATGGAGCAGTAGTTAATGTAGCTGATTATGGAAAT
TTACACCTTACATGAAGCAGCAGAAAAGGAAATATGAAATTGCAAACCTCTGCTCCAGCATGGTG
CAGACCCTACCAAAAAACAGGGATGGAATACTCCTTGGATCTGTTAAAGATGGAGATACAGATA
TTCAAGATCTGCTTAGGGAGATGCAGCTTGCTAGATGCTGCCAAGAAGGGTTGTTAGCCAGAGTGA
AGAAGTGTCTTCTGATAATGTAATTGCCGCGATAACCAAGGCAGACATTCAACACACCTTACATT
TAGCAGCTGGTTATAATAATTAGAAGTTGCAGAGTATTGTTACAACACGGAGCTGATGTGAATGCC
AAGACAAAGGAGGACTTATTCTTACATAATGCAGCATCTACGGGATGTAGATGTAGCAGCTCTAC
TAATAAAAGTATAATGCATGTCATGCCACGGACAAATGGCTTACACCTTGACGAAGCAGGCC
AAAAGGGACGAACACAGCTTGTGCTTGTCTAGCCCAGGACTCTTAAAGGACT
AAGGACAAACACCTTAGATTTAGTTAGCTCAGCGGATGATGTCAGCGCTCTGACAGCAGCCATGCC
CATCTGCTCTGCCCTTGTACAAGCCTCAAGTGTCAATGGGTGAGAAGGCCAGGAGCCACTGCAG
ATGCTCTCTCTTCAGGTCCATCTAGCCATCAAGCCTTCTGCAGCCAGCAGTCTGACAACATTATCTG
GGAGTTTCAGAACTGTCTCAGTAGTTAGTTCAAGTGGAACAGAGGGTGTCCAGTTGGAGAAAA
AGGAGGTTCCAGGAGTAGATTTAGCATAACTCAATTGTAAGGAATCTGGACTTGAGCACCTAATGG
ATATATTGAGAGAGAACAGATCACTTGGATGTATTAGTTGAGATGGGCACAAGGAGCTGAAGGAGA
TTGGAATCAATGCTTATGGACATAGGCACAAACTAATTAAAGGAGTCGAGAGACTTATCTCCGGACAAC
AAGGTCTAACCCATATTAACTTGAACACCTCTGGTAGTGGAACAAATTCTTATAGATCTGCTCTG
ATGATAAAGAGTTCAGTCTGTGGAGGAAGAGATGCAAAGTACAGTTCAGAGCAGAGATGGAGGTC
ATGCAGGTGGAATCTCAACAGATAAAATTCTCAAGATTCAAGGTTGTAACAAGAAACTATGGG
AAAGATAACACTACCGGAGAAAAGAAGTTCTGAAGAAAACCACAACCAGCCAAATGAACGAATGCTAT
TTCATGGGTCTCTTGTGAATGCAATTATCCACAAAGGCTTGTGAAAGGCATGCGTACATAGGTG
GTATGTTGGAGCTGGCATTATTGCTGAAACTCTTCCAAAAGCAATCAATATGTATATGGAATTG
GAGGAGGTACTGGGTGTCCAGTTCAAAAGACAGATCTGTTACATTGCCACAGGCAGCTGCTCTT
GCCGGGTAACCTGGGAAAGTCTTCCTGCAGTCAGTCAATGAAAATGGCACATTCTCCAGGTC
ATCACTCAGTCAGTGGTAGGCCAGTGTAAATGCCCTAGCATTAGCTGAATATGTTATTACAGAGGAG
AACAGGCTTATCCTGAGTATTAAATTACCAAGATTGAGGCCTGAAGGTATGGTCGATGGATAAA
TAGTTATTTAAGAAACTAATTCCACTGAACCTAAATCATCAAAGCAGCAGTGGCCTTACGTTTAC
TCCTTGCTGAAAAAA

FIG._2B

SEQ ID NO: 3

Amino Acid Sequence Tankyrase Homologue isotype1

GFGRKDVVEYLLQNGASVQARDDGGLIPLHNACSGHAEVNLLRHGADPNARDNWNYTPLHEAAIKG
KIDVCIVLQLQHGAEPTIRNTDGRITALDPSAKAVLTGEYKKDELLESARSGNEEK**MALLT**PLNVNC
HASDGRKSTPLHLAAGYNRVKIVQLLLQHGADVHAKDKGDLVPLHNACSYGHYEVTELLVKHGACVNAM
DLWQFTPLHEAASKNRVECSLLSYGADPTILLNCHNKSAILAPTPQLKERLAYEFKGHSLLQAAREA
DVTRIKKHLSEMVNFKHPOQTHETALHCAAASPYPKRQICELLRKGANINEKTKEFLTPLHVASEKA
HNDVVEVVVKHEAKVNALDNLGQTSLHRAAYCGHLQTCRLLSYGCDPNIISLQGFTALQMGNENVQQL
LQEGLISLGNSEADRQLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQSTPLHFAAGYNRVSVVEYLLQHG
ADVHAKDKGGLVPLHNACSYGHYEVABELVKHGAVVNADLWKFTPLHEAAAKGKYEICKLLLQHGADP
TKKNRDGNTPLDVKDGTDIQDLLRGDAALLDAAKGCLARVKKLSSPDNVNCRDTQGRHSTPLHLAA
GYNNEVAEYLLQHGADVNAQDKGGLIPLHNAASYGHVDVAALLIKYNACVNATDKWAFTPLHEAAQKG
RTQLCALLLAHGADPTLKNQEGOTPDLVSADDVSALLTAAMPPSALPSCYKPQVLNGVRSPGATADAL
SSGPSSPSSLSAASSLDNLGSFSELSSVSSSGTEGASSLEKKEVPGVDFSITQFVRNLGLEHLMDF
EREQITLDVLVEMGHKELKEIGINAYGHRHKLIKGVVERLISGQQGLNPYLTNNTSGSGTILIDLSPDDK
EFQSVEEEMQSTVREHRDGGHAGGIFNRYNILKIQKVCNKLWERYTHRRKEVSEENHNHANERMLFHG
SPFVNAAIHKGFDERHAYIGGMFGAGIYFAENSSKSQNQYVYGGTGCPVHKDRSCYICHROQLLFCRV
TLGKSFLQFSAMKMAHSPPGHHSVTGRPSV

FIG._3

6 / 21

SEQ ID NO: 4**Amino Acid Sequence Tankyrase Homologue isotype2**

RCSARRGAAGGQGAQRGARVGAAGTAPDPVTAGSQAARALSASSPGLALLLAGPGLLLRLALLAV
AAARIMSGRRCAGGAACASAAAEEAVEPAARELFEACRNGDVERVKRLVTPEKVNSRDTAGRKSTPLHF
AAGFGRKDVEYLLQNGANVQARDDGGLIPLHNACSFHAEVVNLLLHGADPNARDNWNYTPLHEAAI
KGKIDVCIVLQLQHGAEPITRNTDGRTALDLADPSAKAVLTGEYKKDELLESARSGNEEKMALLTPLNV
NCHASDGRKSTPLHLAAGYNRVKIVQLLLQHGADVHAKDKGDLVPLHNACSYGHYEVTELLVKHGACVN
AMDLWQFTPPLHEAASKNRVECSLLSYGADPTLLNCHNKAIDLAPTPQLKERLAYEFKGHSLLQAAR
EADVTRIKKHLSEMVNFHPQTETALHCAAASPYPKRKQICELLRLGANINEKTKEFLTPLHVASE
KAHNDVVEVVVKHEAKVNALDNLGQTSLLHRAAYCGHLQTCRLLSYGCDPNIISLQGFTALQMGNENVQ
QLLQEGLSLGNSEADRQLLEAAKAGDVETVKKLCTVQSVNCRDIEGRQSTPLHFAAGYNRVSVVEYLLQ
HGADVHAKDKGGLVPLHNACSYGHYEAELLVKHGAVVNADLWKFTPLHEAAAKGKYEICKLLLQHGA
DPTKKNRDGNTPLDLVKDGTDIQDLLRGDAALLDAAKKGCLARVKKLSSPDNVNCRTQGRHSTPLHL
AAGYNNLEVAEYLLQHGADVNAQDKGGLIPLHNAAASYGHVDVAALLLIKYNACVNATDKWAFTPPLHEAAQ
KGRTQLCALLLAHGADPTLKNQEGQTPLDLSADDVSALLTAAMPPSALPSCYKPQVLNGVRSPGATAD
ALSSGPSSPSSLSAASSLDNLGSFSSELSSVSSSGTEGASSLEKKEVPGVDFSITQFVRNLGLEHLM
IFEREQITLDVLVEMGHKELKEIGINAYGHRHKLIKGVVERLISGQQGLNPYTLNTSGSGTILIDLSPD
DKEFQSVEEEMQSTVREHRDGGHAGGIFNRYNILKIQKVCNKLWERYTHRRKEVSEENHNHANERMLF
HGSPFVNAAIHKGFDERHAYIGGMFGAGIYFAENSSKSQNQYVYGIGGGTGCPVHKDRSCYICHQOLLFC
RVTLGKSFLQFSAMKMAHSPPGHHSVTGRPSVNGLALAELYRGEQAYPEYLITYQIMRPEGMVDG

FIG._4

Schematic Presentation of Dominant Negative Mutants for Tankyrase Homologue

Dominant Negative Mutants

Truncation: 429ΔC- of the C-terminal catalytic domain – truncation of the catalytic domain of PARP acts as a dominant negative when overexpressed *in vivo* (Oncogene 1999 Nov 25; 18(50):7010-5)

Point mutant: E945AΔC- conserved residue in PARP domain, thought to be important in NAD⁺ binding

FIG._5

FIG._6

**Cell Cycle Analysis of A549 Cells
Infected With GFP-fused Wild Type
and Mutant Tankyrase Homologue**

FIG._6A

9 / 21

FIG._6B

Kinetics of GFP Positive cells in A549 Cells and Human Mammary Epithelial Cells (HMEC) After Retrovirus Infection Encoding GFP-fused Wild Type and Mutant Tankyrase Homologue

FIG._7

The Binding Site of Antisense Oligos Against Tankyrase Homologue

T11	Tankyrase Homologue	Tankyrase	GTGGAACAGGGGTGCTCC GTGGAACAGGGGTGCTCCAGTTGGAAAAAGGAGGGTCCAGGAGTAGATTAGCAT ATGCAGGGATGGCGCCGGAAACAGAAAGGAAGGGAAAGTGGTCAGAT	2838 3091
*	*	*	*	*** *** ***

FIG. 8

Anti-Proliferative Phenotype of Antisense Oligonucleotides Against Tankyrase Homologue in A549 and HeLa Cells

FIG.-9

Cell Cycle Analysis of A549 Cells Transfected with Antisense Oligonucleotides Against Tankyrase Homologue at 48 Hours, Antisense Oligonucleotides (T11) and Control Oligonucleotides (T11S) were transfected with FITC-labeled random 20mer Oligonucleotides (FITC). After 48 Hours, entire population (R1) and Top 5% (R2) of FITC transfected cells were analyzed for cell cycle

Gates for Cell Cycle Analysis

FIG.. 10A

Cell Cycle Analysis of A549 Cells Transfected with Antisense Oligonucleotides Against Tankyrase Homologue at 48 Hours, Antisense Oligonucleotides (T11) and Control Oligonucleotides (T11S) were transfected with FITC-labeled random 20mer Oligonucleotides (FITC). After 48 Hours, entire population (R1) and Top 5% (R2) of FITC transfected cells were analyzed for cell cycle

Cell Cycle Analysis

Hoescht Staining 48 Hour Post Transfection

FIG.- 10B

mRNA Expression of Tankyrase Homologue in Several Tumors and Normal Tissues by a Taqman Analysis, mRNA Expression was Normalized by 90kDa Highly Basic Protein (HBP) and Ribosomal Protein S9 (S9)

FIG.- 11

Procedure for Nonisotopic Detection of Poly-ADP Ribosylation
Using Anti-GFP mAb-Coated Plates

- Protein lysates from 293T cells normalized by GFP fluorescence and total protein →
Immobilization of GFP-tankyrase homologue in anti-GFP Coated plates →
Auto PARR reaction with Biotinylated-NAD in 96 wells →
Detection of poly ADP ribose chains with Streptavidin-HRP and chemiluminescent substrate

FIG. 12

Non-Isotopic Plate-Based Detection of Taho PARP Activity in the Presence of Biotinylated NAD

FIG._ 13

Comparison of IC₅₀ Values of the PARP Inhibitors

	<u>Approximate IC₅₀ (nM)</u>	<u>hPARP assay IC₅₀ (nM)</u>		
		<u>TaHo</u>	<u>Rigel</u>	<u>Decker*</u>
3AB	>50 000		5 000	2 000
6(5H)Phenanthridinone	1 000-2 000		300	
Niacinamide	>50 000		30 000	>>5 000
				31 000

* Decker P et al., Clinical Cancer Research. 1999 May; 5:1169-1172

* Rawkin PW et al., J Biol Chem. 1989 Mar 15;264(8):4312-4317

FIG._ 14

**Inhibition of Tankyrase Homologue PARP Activity
by hPARP Inhibitors**

FIG._ 15

FIG._ 16

FIG._ 16A

FIG._ 16B

FIG._ 16C

**TH-1: Tankyrase Homologue isoform-1, TH-2: Tankyrase Homologue isoform-2
M (Red): the first methionine in the sequence, Z: stop codon
In this figure, the first methionine in TH-1 sequence is position 1 (M1)**

FIG._ 16A

Taho C terminus deletion mutant ends at position 429 (K) and adds 28 amino acids because of frame shift.

Taho F/L mutant has the mutation at position 871

Taho E/A dC mutant has the mutation at position 948, ends at position 957 (A) and adds 2 amino acids.

TH-1	-----	-----	-----	-----	-----	-----	-----
TH-2	RCSARRGAAGGQAQRGARVGAAGTAPDPVTAGSQ	-231					
TH-1	-----	-----	-----	-----	-----		
TH-2	AARALSASSPGLLALLAGPGLLRLLLAVAAARIMSGRRCAGGGAACASAEEAVE	-171					
TH-1	-----	-----	-----	-----	*GFGRKDVVVEYLLQNGA	-111	
TH-2	PAARELFEACRNGDVERVKRLVTPKEKVNSRDTAGRKSTPLHFAAGFGRKDVVVEYLLQNGA	-111	Ankyrin repeat	Ankyrin repeat	Ankyrin repeat	Ankyrin repeat	
TH-1	-----	-----	-----	-----	-----		
TH-2	SVQARDGGGLIPLHNACSFGHAEVVNLLIRHGADPNARDNWNYTPLHEAAIKGKIDVCIV	-51					
TH-1	NVQARDGGGLIPLHNACSFGHAEVVNLLIRHGADPNARDNWNYTPLHEAAIKGKIDVCIV	-51					
TH-2	Ankyrin repeat	Ankyrin repeat	Ankyrin repeat	Ankyrin repeat	Ankyrin repeat	Ankyrin repeat	Ankyrin repeat
TH-1	-----	-----	-----	-----	-----	•TH1 start	
TH-2	LLQHGAEPITIRNTDGRTALDIADPSAKAVLTGEYKKDELLESARSMSGNEEKMMALLTPLNV	10					
TH-1	LLQHGAEPITIRNTDGRTALDIADPSAKAVLTGEYKKDELLESARSMSGNEEKMMALLTPLNV	10					
TH-2							

FIG.-16B

	<u>Ankyrin repeat</u>	<u>Ankyrin repeat</u>
TH-1	NCHASDGRKSTPLHAAAGYNRVKIVQLLIQHGADVHAKDKGDLVPLHNACSYGHYEVTEL Ankyrin repeat	70
TH-2	NCHASDGRKSTPLHAAAGYNRVKIVQLLIQHGADVHAKDKGDLVPLHNACSYGHYEVTEL Ankyrin repeat	70
TH-1	LVKHGACVNAMDWLQFTTPLHEASKNRVECSLLLISYGADPTLNCHNKSAILDAPTPQL LV	130
TH-2	<u>Ankyrin repeat</u>	
TH-1	KERIAYEFFKHSLLQAAAREADVTTRIKKKLSEMVNFKHPOTHEATALHCAAAASPYPKRKQI Ankyrin repeat	190
TH-1	CELLLRKGANINEKTKEFLTPLHVASEKAHNDVVVVVKHEAKVNALDNLGOTSLHRAAY Ankyrin repeat	250
TH-1	CGHIQTCRLLSISYGCDPNIISLOGFTALQMGNEVQOLLQEGISLGNSEADRQLLEAAKA Ankyrin repeat	310
TH-1	GDVETVKKLCTVQSVNCRDIEGRQSTPLHFAAGYNRVSVEYLLQHGADVHAKDKGGGLVP Ankyrin repeat	370
TH-1	LHNACSYGHYEVAEILLVKHGAVVNADLWKFTPLHEAAAKGKYEICKLILLQHGADPTKKN Ankyrin repeat	430
TH-1	GMEILLWILKMEIQIFKICLGMQLCZ RDGNTPLDLVKDGTIDQDLLRGDAALLDAAKKGCLARVKLSSPDNVNCRDTQGRHSTP Ankyrin repeat	490

21 / 21

FIG._16C

TH-1	LHLAAGYNNLEVAEYLLQHGA DVAQDKGGGLIPLHNAA SYGHVDVAALLIKYNACVNATD	550	
	Ankyrin repeat		Ankyrin repeat
TH-1	KWAFTPLHEAAQKGRTQLCALLAHGADPTLKNQEGQTPLDLVSADDVSALLTAMPSSA	610	
	Ankyrin repeat		Ankyrin repeat
TH-1	LPSCYKPVQVLNGVRSPGATA DALSSGPSSPSSLSAASSLDNLNSGSFSELSVSSSSGTEG	670	
	Ankyrin repeat		Ankyrin repeat
TH-1	ASSLEKKE--VPGVDFSITQFVRNLGLEHLM DIFEREQITLDVLVEMGHKELKEIGINAY	730	
	SAM domain		SAM domain
TH-1	GHRHKLIKGVVERLISGQQGLNPYLT LNTSGSGTILLIDLSPPDDKEFQSVEEEQM STVREHR	790	
TH-1	DGGHAGGIENRYNILKIQKV CNKWLIVERYTHRKEVSEENHN HANERMLFHGSPPFVNALL	850	
TH-1	HKGFDERHAYIGGMFGAGIYFA ENSSKSQNYYVYGGGGTGC PVHKDRSCYICHRLLLFCR	910	
	• F → L mutation		
	PARP domain		
TH-1	VTLGKSFLQFSAMKMAHSPPGH HSVTGRPSVNGLALA EYVIYRGEOQAYPEYLITYQIMRP	970	
	• E → A		• Deletion.
TH-1	EGMVDG 976		