Session 24: Equivalence Relations

- Equivalence Relations
- Equivalence Classes
- Partitions

Equivalence Relations

Definition 1: A relation on a set *A* is called an **equivalence relation** if it is reflexive, symmetric, and transitive.

Definition 2: Two elements *a*, and *b* that are related by an equivalence relation are called **equivalent**.

The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

Example

$$R_{minus} = \{ (a, b) \in \mathbf{R} \times \mathbf{R} \mid a - b \in \mathbf{Z} \}$$

Is R an equivalence relation?

Example

 $R_{divides} = \{ (a, b) \in \mathbb{N} \times \mathbb{N} \mid a \text{ divides } b \} = \{ (a, b) \in \mathbb{N} \times \mathbb{N} \mid a \mid b \}$ Is R an equivalence relation?

Equivalence Classes

Definition 3: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the **equivalence class** of a.

The equivalence class of a with respect to R is denoted by $[a]_R$.

- When only one relation is under consideration, we can write [a].
- Note that $[a]_R = \{s/(a, s) \in R\}.$

If $b \in [a]_R$, then b is called a **representative** of this equivalence class.

Any element of a class can be used as a representative of the class.

Example

What is the equivalence class of element 0 for the relation

$$R_{minus} = \{ (a, b) \in \mathbf{R} \times \mathbf{R} \mid a - b \in \mathbf{Z} \}?$$

Equivalence Classes

Theorem 1: let *R* be an equivalence relation on a set *A*. These statements for elements *a* and *b* of *A* are equivalent:

- (i) R(a, b)
- (ii) [a] = [b]
- (iii) $[a] \cap [b] \neq \emptyset$

Partition of a Set

Definition: A **partition** of a set *S* is a collection of disjoint nonempty subsets of *S* that have *S* as their union.

Formally, for an index set I the collection of subsets A_i , where $i \in I$ forms a partition of S if and only if

$$A_i \neq \emptyset$$
 for $i \in I$ non-empty subsets $A_i \cap A_j = \emptyset$ when $i \neq j$ disjoint subsets and $\bigcup A_i = S$ union is S

Partition of a Set

Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union.

Formally, for an index set I the collection of subsets A_i , where $i \in I$

forms a partition of S if and only if

$$A_i \neq \emptyset$$
 for $i \in I$

non-empty subsets

$$A_i \cap A_i = \emptyset$$
 when $i \neq j$ disjoint subsets

and
$$\bigcup A_i = S$$

union is S

A Partition of a Set

An Equivalence Relation Partitions a Set

Theorem 2: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets A_i , $i \in I$, as its equivalence classes.

Summary

- Equivalence Relations
- Equivalence Classes
- Partitions
- Equivalence Classes and Partitions