Ejemplo 1. Encuentre la longitud de arco de la gráfica, dada la siguiente ecuación comprendida en el intervalo indicado.

$$f(x) = \ln(\sec(x)); \text{ en } \left[0, \frac{\pi}{4}\right]$$

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx$$

SOLUCIÓN	
Paso 1. Calcular la derivada de $f(x)$ $f'(x) = (\ln(secx))'$ $f'(x) = \frac{(secx)'}{secx}$	Se deriva aplicando regla de derivación de la función logarítmica
$f'(x) = \frac{secxtanx}{secx} = tanx$	Se simplifican términos semejantes
Paso 2. Se eleva al cuadrado la derivada	
$[f'(x)]^2 = [tanx]^2 = tan^2(x)$	
Paso 3. Se suma 1 al cuadrado de la derivada	Por identidades
$[f'(x)]^2 = tan^2(x) + 1$	trigonométricas
$= sec^2x$	
Paso 4. Sustituir en la integral y resolver	
$L = \int_0^{\pi/4} \sqrt{\sec^2(x)} dx$	Se simplifica el radical
$L = \int_0^{\pi/4} \sec x dx$	Se integra usando reglas de integración
$L = \ln(secx + tanx) _0^{\pi/4}$	
$L = \ln\left(\sec\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{4}\right)\right) - \ln\left(\sec(0) + \tan(0)\right)$	Aplicando T.F.C
$L = ln(\sqrt{2}+1) - ln(1+0)$	Valores intermedio
L = 0.881 u	Por tanto la longitud es $L = 0.881 u$