Kapitel II

Garben und Divisoren

§ 9 \mathcal{O}_X -Modulgarben

Definition 9.1 Sei (X, \mathcal{O}_X) lokal geringter Raum, \mathcal{F} Garbe von abelschen Gruppen auf X. \mathcal{F} heißt \mathcal{O}_X -Modulgarbe auf X, falls

- (i) Für jede offene Teilmenge $U \subseteq X$ die abelsche Gruppe $\mathcal{F}(U)$ ein $\mathcal{O}_X(U)$ -Modul ist.
- (ii) Für alle offenen Teilmengen $U' \subseteq U \subseteq X$ der Gruppenhomomorphismus $\rho_{U'}^U : \mathcal{F}(U) \longrightarrow \mathcal{F}(U')$ ein $\mathcal{O}_X(U)$ -Modulhomomorphismus ist. Dabei wird $\mathcal{F}(U')$ vermöge $\mathcal{O}_X \rho_{U'}^U$ als $\mathcal{O}_X(U)$ -Modul aufgefasst.
- **Definition** + **Bemerkung 9.2** (i) Ein *Homomorphismus von* \mathcal{O}_X -*Modulgarben* \mathcal{F} und \mathcal{G} ist ein Garbenmorphismus $\phi: \mathcal{F} \longrightarrow \mathcal{G}$, sodass für jede offene Teilmenge $U \subseteq X$ der Gruppenhomomorphismus $\phi_U: \mathcal{F}(U) \longrightarrow \mathcal{G}(U)$ ein $\mathcal{O}_X(U)$ -Modulhomomorphismus ist. Man sagt, ϕ ist \mathcal{O}_X -linearer Garbenmorphismus.
 - (ii) Die \mathcal{O}_X -Modulgarben bilden zusammen mit den \mathcal{O}_X -linearen Garbenmorphismen eine Kategorie \mathcal{O}_X -Mod.

Beispiel 9.3 Sei X eine nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper k.

(i) Sei $D := \sum_{P \in X} n_P P$ ein Divisor auf X, das heißt es ist $n_P \in \mathbb{Z}$, $n_P \neq 0$ nur für endlich viele $P \in X$. Für $U \subseteq X$ offen sei

$$\mathcal{L}(D)(U) := \{ f \in k(X) \mid \operatorname{div}(f|_{U}) + D|_{U} \ge 0 \} \cup \{ 0 \}.$$

Dann ist $\mathcal{L}(D)$ eine \mathcal{O}_X -Modulgarbe, denn: für $g \in \mathcal{O}_X(U)$ ist div $g \ge 0$ und damit

$$\operatorname{div}(fg|_{U}) + D|_{U} = \operatorname{div}(f|_{U}) + \operatorname{div}(g|_{U}) + D|_{U} = \operatorname{div}(f|_{U}) + D|_{U} \ge 0.$$

Weiter ist der globale Schnitt

$$\mathcal{L}(D)(X) = \{ f \in k(X) \mid \text{div} f + D \ge 0 \} \cup \{ 0 \} = L(D)$$

gerade der Riemann-Roch-Raum für D. Dieser ist demnach ein $\mathcal{O}_X(X)$ -Modul, also ein k-Vektorraum. Dieses Resultat hatten wir vergangener Semester bereits gesehen. Betrachte nun eine kleine Umgebung $U \subseteq X$ von $P \in X$, das heißt es gilt $n_Q = 0$ für alle $Q \in U \setminus \{P\}$. Sei t_P ein Erzeuger des zu P zugehörigen maximalen Ideals $\mathfrak{m}_P \subset \mathcal{O}_{X,P}$. Wähle nun U so, dass div $t_P|_{U\setminus \{P\}} = 0$, das heißt $t_P \in \mathcal{O}_X(U)$. Dann ist $t_P^{-n_P} \in \mathcal{L}(D)(U)$ und $t_P^{-n_P}$ erzeugt $\mathcal{L}(D)(U)$ als $\mathcal{O}_X(U)$ -Modul, denn: Ist $g \in \mathcal{O}_X(U)$, so ist

$$\operatorname{div}\left(t_P^{-n_P}g|_U\right) = \operatorname{div}\left(t_P^{-n_P}|_U\right) + \operatorname{div}\left(g|_U\right) \geqslant \operatorname{div}\left(t_P^{-n_P}|_U\right) = -n_P P,$$

also

$$\operatorname{div}\left(t_P^{-n_P}g|_U\right) + D|_U \geqslant -n_P P + n_p P \geqslant 0$$

und damit $t_P^{-n_P}g \in \mathcal{L}(D)(U)$. Ist umgekehrt $g \in \mathcal{L}(D)(U)$, also

$$\operatorname{div}(g|_{U}) + D|_{U} = \operatorname{div}(g|_{U}) + n_{P}P \ge 0,$$

so gilt

$$\operatorname{div}\left(t_P^{n_P}g|_U\right) = n_P P + \operatorname{div}\left(g|_U\right) \geqslant 0,$$

also $t_P^{n_P} g \in \mathcal{O}_X(U)$ und damit $g = t_P^{-n_P} (t_P^{n_P} g)$.

(ii) Sei $\Omega = \Omega_{k(X)/k}$ der k(X)-Vektorraum der Kählerdifferentiale von k(X)/k. Die Elemente von Ω heißen rationale Differentiale auf X. Ohne Einschränkung gelte X = V(f) mit einem irreduziblen Polynom $f \in k[X,Y]$. Dann ist $k(X) = \mathrm{Quot} k[X,Y]/(f)$. Damit wird Ω erzeugt von den Elementen dg für $g \in k(X)$, wobei d die universelle Derivation bezeichne. Da $\mathrm{d}(X^2) = 2X\mathrm{d}X$ und induktiv $\mathrm{d}(X^n) = n!X\mathrm{d}X$, genügen die linearen Terme. df = 0 ergibt also eine lineare Gleichung zwischen dX und dY und wir erhalten $\mathrm{dim}_{k(X)}\Omega = 1$. Wir wollen uns daraus nun eine \mathcal{O}_X -Modulgarbe basteln. Für $\omega \in \Omega_{k(X)/k}$ sei

$$\operatorname{div}\omega = \sum_{P \in X} \operatorname{ord}_P \omega P$$

folgendermaßen definiert: Für $P \in X$ sei t_P Uniformisierende, also Erzeuger vom maximalen Ideal \mathfrak{m}_P . Dann gilt $\mathrm{d}t_P(P)=0$ aber $\mathrm{d}t_P\neq 0$, also bildet $\{\mathrm{d}t_P\}$ eine Basis von $\Omega_{k(X)/k}$. Schreibe also $\omega=f_P\mathrm{d}t_P$ für ein $f_P\in k(X)$. Setze nun $\mathrm{ord}_P(\omega)=\mathrm{ord}_P(f_P)$. Beachte: $t_P-t_P(Q)$ ist Uniformisierende für Q auf einer offenen (und dichten) Teilmenge von X

und $d(t_P - t_P(Q)) = dt_P$. Damit ist $div\omega$ wohldefiniert. Setze nun

$$\Omega_X(U) := \left\{ \omega \in \Omega_{k(X)/k} \mid \operatorname{div} \omega |_U \geqslant 0 \right\} \cup \{0\}.$$

 $\Omega_X(U)$ ist für jedes $U \subseteq X$ offen ein $\mathcal{O}_X(U)$ -Modul, also ist Ω_X eine \mathcal{O}_X -Modulgarbe. Die Elemente in $\Omega_X(U)$ heißen reguläre Differentiale auf U. Bachte: Mit der Notation aus (i) gilt $\Omega_X \cong \mathcal{L}(\mathrm{div}\omega_0)$ für $\omega_0 \in \Omega_{k(X)/k} \setminus \{0\}$, denn: ω_0 ist eine Basis von $\Omega_{k(X)/k}$ und es gilt

$$\mathcal{L}(\operatorname{div}\omega_0)(U) = \{ f \in k(X) \mid (\operatorname{div}f + \operatorname{div}\omega_0) |_{U} \geqslant 0 \} \cup \{0\}$$

$$= \{ f \in k(X) \mid \operatorname{div}(f\omega_0)|_{U} \geqslant 0 \} \cup \{0\}$$

$$= \{ w \in \Omega_{k(X)/k} \mid \operatorname{div}(\omega)|_{U} \geqslant 0 \} \cup \{0\}$$

$$= \Omega_X(U).$$

 $\operatorname{div}\omega_0$ heißt auch $kanonischer\ Divisor$. Erinnern wir uns nun an den Satz von Riemann-Roch aus der algebraischen Geometrie, welcher besagt:

$$\dim L(D) - \dim L(K - D) = \deg D + 1 - g,$$

wobei g das Geschlecht der Kurve und K einen kanonsichen Divisor bezeichne, so erhalten wir mit D=0:

$$1 - \dim L(K) = 1 - g \iff \dim L(K) = g$$

und mit D = K

$$\dim L(K) - 1 = \dim L(K) - \dim L(0) = \deg K + 1 - g,$$

zusammen also deg K=2g-2. Da sist praktisch! Betrachte wir uns beispielsweise den Punkt $\infty=(1:0)\in\mathbb{P}^1$, das Differential $\omega=\mathrm{d} X$ und die Uniformisierende $t_\infty=\frac{1}{X}$, so gilt

$$\mathrm{d}X = \omega = f_p \mathrm{d}\left(\frac{1}{X}\right) = -f_P \frac{1}{X^2} \mathrm{d}X,$$

also $f_P = -X^2$ und $\operatorname{ord}_P dX = \operatorname{ord}_P X^2 = -2$, was mit unserer oben gefunden Formel und g = 0 für \mathbb{P}^1 übereinstimmt. Eine weitere Anwendung ist natürlich auch die Bestimmung des Geschlechts einer Kurve mithilfe der obigen Formel.

Definition + **Bemerkung 9.4** (i) Sei $X = \operatorname{Spec} R$ ein affines Schema und M ein R-Modul. Dann gibt es genau eine Garbe \tilde{M} auf X, sodass $\tilde{M}(D(f)) = M_f = M \otimes_R R_f$ für jedes $f \in R$. \tilde{M} wird so zur \mathcal{O}_X -Modulgarbe. Weiterhin ist für jedes $\mathfrak{p} \in \operatorname{Spec} R$ der Halm gegeben durch

$$\tilde{M}_{\mathfrak{p}} = M_{\mathfrak{p}} = M \otimes_{R} R_{\mathfrak{p}}.$$

- (ii) Eine \mathcal{O}_X -Modulgarbe \mathcal{F} heißt *quasikohärent* auf Spec R, falls es einen R-Modul M gibt mit $\mathcal{F} \cong \tilde{M}$, also $\mathcal{F}(D(f)) \cong M_f$ als R_f -Moduln.
- (iii) Sei nun (X, \mathcal{O}_X) ein allgemeines Schema. Eine \mathcal{O}_X -Modulgarbe \mathcal{F} auf X heißt $quasikoh\ddot{o}$ -rent, falls es eine offene Überdeckung von X durch affine Unterschemata $\{U_i = \operatorname{Spec} R_i\}_{i \in I}$ gibt, sodass die Einschränkung $\mathcal{F}|_{U_i}$ quasikohärent ist für jedes $i \in I$, also $\mathcal{F}|_{U_i} \cong \tilde{M}_i$ für
 einen R_i -Modul M_i .
- (iv) Eine quasikohärente \mathcal{O}_X -Modulgarbe auf X heißt kohärent, falls X noethersch ist und die R_i -Moduln M_i aus (iii) allesamt endlich erzeugt sind.

Proposition 9.5 Sei (X, \mathcal{O}_X) ein Schema. Eine \mathcal{O}_X -Modulgarbe \mathcal{F} auf X ist quasikohärent genau dann, wenn für jedes offene, affine Unterschema $U \subseteq X$ die Einschränkung $\mathcal{F}|_U$ quasikohärent ist.

Beweis. Wie zum Beispiel 4.5 oder 7.3.

Bemerkung 9.6 Sei $X = \operatorname{Spec} R$ ein affines Schema. Dann ist die Zuordnung

$$\underline{R}\text{-}\mathrm{Mod} \longrightarrow \underline{\mathcal{O}_X}\text{-}\mathrm{Mod}, \qquad M \mapsto \tilde{M}$$

ein volltreuer, exakter Funktor, dessen Bild die quasikohärenten \mathcal{O}_X -Modulgarben sind.

Beweis. Sei 0 \longrightarrow M' \longrightarrow 0 exakte Sequenz von R-Moduln. Zu zeigen: Für jedes $\mathfrak{p} \in \operatorname{Spec} R \text{ ist die lokalisierte Sequenz}$

$$0 \longrightarrow M'_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \longrightarrow M''_{\mathfrak{p}} \longrightarrow 0$$

ebenfalls exakt (als Sequenz von $R_{\mathfrak{p}}$ -Moduln): Übung. Man sagt, $R_{\mathfrak{p}}$ ist "flacher" R-Modul.

- **Definition** + **Bemerkung 9.7** (i) Sei (X, \mathcal{O}_X) ein lokal geringter Raum, \mathcal{F}, \mathcal{G} zwei \mathcal{O}_X Modulgarben. dann ist die zur Prägarbe $U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$ assoziierte Garbe $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ eine \mathcal{O}_X -Modulgarbe.
 - (ii) Ist $X = \operatorname{Spec} R$ affin, so gilt für R-Moduln M, N

$$\widetilde{M \otimes_R N} = \widetilde{M} \otimes_{\widetilde{R}} \widetilde{N} = \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}.$$

(iii) Sind für $i \in I$ R-Moduln M_i gegeben, so ist

$$\underbrace{\bigoplus_{i\in I} M_i} = \bigoplus_{i\in I} \tilde{M}_i.$$

Bemerkung + **Definition 9.8** Sei $f: X \longrightarrow Y$ Morphismus lokal geringter Räume.

- (i) Für jede \mathcal{O}_X -Modulgarbe \mathcal{F} auf X ist $f_*\mathcal{F}$ eine \mathcal{O}_Y -Modulgarbe auf Y.
- (ii) Für jede \mathcal{O}_Y -Modulgarbe \mathcal{G} auf Y ist $f^{-1}\mathcal{G}$ eine $f^{-1}\mathcal{O}_Y$ -Modulgarbe und die zur Prägarbe $U \mapsto f^{-1}\mathcal{G}(U) \otimes_{f^{-1}\mathcal{O}_Y(U)} \mathcal{O}_X(U)$ assoziierte Garbe $f^*\mathcal{G} := f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$ eine \mathcal{O}_X -Modulgarbe. $f^*\mathcal{G}$ heißt Pullback von \mathcal{G} unter f.
- Beweis. (i) Für $U \subseteq Y$ offen ist $f_*\mathcal{F}(U) = \mathcal{F}\left(f^{-1}(U)\right)$ ein $\mathcal{O}_X\left(f^{-1}(U)\right)$ -Modul. Der Garbenmorphismus $f^\#: \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X$ induziert einen Ringhomomorphismus $f_U^\#: \mathcal{O}_Y(U) \longrightarrow f_*\mathcal{O}_X(U) = \mathcal{O}_X\left(f^{-1}(U)\right)$, welcher die gewünschte $\mathcal{O}_Y(U)$ -Modulstruktur liefert.
 - (ii) Zur Wohldefiniertheit brauchen wir noch einen Morphismus $f^{-1}\mathcal{O}_Y \longrightarrow \mathcal{O}_X$. Der Garbenmorphismus $f^{\#}: \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X$ liefert den Morphismus $f^{-1}\mathcal{O}_Y \longrightarrow f^{-1}f_*\mathcal{O}_X$ und Proposition 2.16 liefert $f^{-1}f_*\mathcal{O}_X \longrightarrow \mathcal{O}_X$, was zusammen die Behauptung liefert.

Bemerkung 9.9 Seien $X = \operatorname{Spec} R$, $Y = \operatorname{Spec} S$ affine Schemata, $f : X \longrightarrow Y$ Morphismus mit zugehörigem Ringhomomorphismus $\alpha : S \longrightarrow R$.

- (i) Für jeden R-Modul M gilt: $f_*\tilde{M} = \widetilde{\alpha M}$, wobei αM die von α als S-Modul aufgefasste abelsche Gruppe M bezeichne.
- (ii) Für jeden S-Modul N gilt $f^*\tilde{N} = N \otimes_S R$.
- Beweis. (i) Für $U \subseteq Y$ offen ist $f_*\tilde{M}(U) = \tilde{M}(f^{-1}(U))$. Das wird durch $f_U^{\#}$ (von α induziert) zum $\mathcal{O}_Y(U)$ -Modul. Für U = D(g) gilt wegen $f^{-1}(D(g)) = D(g \circ f) = D(\alpha(g))$:

$$f_*\tilde{M}(U) = \tilde{M}(f^{-1}(U)) = M(D(\alpha(g))) = M_{\alpha(g)} = \widetilde{\alpha M}_g = \widetilde{\alpha M}(U).$$

(ii) Für die globalen Schnitte gilt

$$f^*\tilde{N}(X) = \left(f^{-1}\tilde{N} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X\right)(X) = N \otimes_S R$$

und für $U \subseteq X$ offen

$$f^*\tilde{N}(U) = \left(f^{-1}\tilde{N} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X\right)(U)$$

$$= \left(N \otimes_S f^{-1}\mathcal{O}_Y(U)\right) \otimes_{f^{-1}\mathcal{O}_Y(U)} \mathcal{O}_X(U)$$

$$= N \otimes_S \mathcal{O}_X(U)$$

$$= \left(\widetilde{N \otimes_S R}\right)(U),$$

also gerade die Behauptung.

Proposition 9.10 Sei $f: X \longrightarrow Y$ Morphismus von Schemata.

(i) Ist \mathcal{G} eine quasikohärente \mathcal{O}_Y -Modulgarbe auf Y, so ist $f^*\mathcal{G}$ eine quasikohärente \mathcal{O}_X Modulgarbe auf X.

- (ii) Sind X, Y noethersch und \mathcal{G} zusätzlich kohärent, so ist auch $f^*\mathcal{G}$ kohärent.
- (iii) Ist X noethersch und \mathcal{F} eine quasikohärente \mathcal{O}_X -Modulgarbe auf X, so ist $f_*\mathcal{F}$ eine quasikohärente \mathcal{O}_Y -Modulgarbe auf Y.
- Beweis. (i) Die Eigenschaft quasikohärent zu sein ist eine lokale Eigenschaft, ohne Einschränkung sei also X und damit auch Y affin. Dann folgt die Aussage mit 9.9 aus $\mathcal{G} = \widetilde{N}$ für einen S-Modul N und $f^*\mathcal{G} = \widetilde{N} \otimes_S R$.
 - (ii) Ist N als S-Modul erzeugt von den n_1, \ldots, n_r , so ist $N \otimes_S R$ erzeugt von den $n_1 \otimes 1, \ldots, n_r \otimes 1$, also insbesondere endlich erzeugt als R-Modul.
- (iii) Ohne Einschränkung sei Y affin. Da X noethersch ist, gibt es eine endliche Überdeckung $X = \bigcup_{i=1}^r U_i$, ohne Einschränkung sei $U_i \cap U_j$ affin für alle i, j. \mathcal{F} ist eine Garbe, die Sequenz

$$0 \longrightarrow \mathcal{F} \stackrel{\alpha}{\longrightarrow} \bigoplus_{i=1}^{r} \mathcal{F}|_{U_i} \stackrel{\beta}{\longrightarrow} \bigoplus_{i < j} \mathcal{F}|_{U_i \cap U_j}$$

mit $\alpha(m) = (m|_{U_i})_i$ und $\beta((m_i)_i) = (m_i|_{U_i \cap U_j} - m_j|_{U_i \cap U_j})_{i < j}$ ist also exakt. Der Funktor f_* ist linksexakt, denn: Ist $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$ exakt, so ist die Sequenz

$$0 \longrightarrow f_* \mathcal{F}'(U) = \mathcal{F}\left(f^{-1}(U)\right) \longrightarrow \mathcal{F}\left(f^{-1}(U)\right) \longrightarrow \mathcal{F}''\left(f^{-1}(U)\right)$$

ebenfalls exakt (2.9 und 2.14). Da nun $\bigoplus_{i=1}^r f_* \mathcal{F}|_{U_i}$ und $\bigoplus_{i< j} f_* \mathcal{F}|_{U_i \cap U_j}$ quasikohärent sind, ist $f_* \mathcal{F}$ als Kern eines Homomorphismus quasikohärenter Garben ebenfalls quasikohärent, was zu zeigen war.

§ 10 Lokal freie Garben

Beispiel 10.1 Sei X nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper k, $D = \sum_{P \in X} n_P P$ ein Divisor auf X sowie $\mathcal{L}(D)$ die zu D assoziierte \mathcal{O}_X -Modulgarbe

$$\mathcal{L}(D)(U) = \{ f \in k(X) \mid (\text{div} f + D) |_{U} \ge 0 \} \cup \{ 0 \}.$$

Erinnerung: Ist U "klein", so ist $\mathcal{L}(D)(U) = t_U \mathcal{O}_X(U)$. Außerdem gilt für den Halm in jeden Punkt $P \in X$:

$$\mathcal{L}(D)_P = \{ f \in k(X) \mid \text{ord}_P(f) \geqslant -n_P \} \cup \{ 0 \} = t_P^{-n_P} \mathcal{O}_{X,P}.$$

Bemerkung 10.2 Ist X wie in Beispiel 10.1, so gilt für Divisoren D, D' auf X

$$\mathcal{L}(D) \otimes_{\mathcal{O}_{\mathbf{Y}}} \mathcal{L}(D') \cong \mathcal{L}(D+D').$$

Beweis. Für $U \subseteq X$ offen ist

$$\psi: \mathcal{L}(D)(U) \times \mathcal{L}(D')(U) \longrightarrow \mathcal{L}(D+D')(U), \qquad (f,g) \mapsto fg$$

eine wohldefinierte, bilineare Abbildung von $\mathcal{O}_X(U)$ -Moduln, denn es gilt

$$(\operatorname{div}(fg) + (D + D'))|_{U} = (\operatorname{div} f + D)|_{U} + (\operatorname{div} g + D')|_{U} \ge 0 + 0 = 0.$$

Damit induziert ϕ also eine $\mathcal{O}_X(U)$ -lineare Abbildung

$$\phi_U: (\mathcal{L}(D) \otimes_{\mathcal{O}_X} \mathcal{L}(D'))(U) \longrightarrow \mathcal{L}(D+D')(U).$$

Diese Abbildungen verkleben sich zu einem Garbenmorphismus

$$\phi: \mathcal{L}(D) \otimes_{\mathcal{O}_{Y}} \mathcal{L}(D') \longrightarrow \mathcal{L}(D+D').$$

Nach Beispiel 10.1 haben wir in jedem Punkt eine Isomorphismus der Halme

$$\phi_P: t_P^{-n_P}\mathcal{O}_{X,P} \otimes_{\mathcal{O}_{X,P}} t_P^{-n_P'}\mathcal{O}_{X,P} \longrightarrow t_P^{-n_P-n_P'}\mathcal{O}_{X,P},$$

 ϕ ist also Isomorphismus. Beachte: Es gilt $\mathcal{L}(D) \otimes_{\mathcal{O}_X} \mathcal{L}(-D) \cong \mathcal{O}_X$.

Definition 10.3 Sei (X, \mathcal{O}_X) lokal geringter Raum, \mathcal{F} eine \mathcal{O}_X -Modulgarbe, $n \in \mathbb{N}$.

- (i) \mathcal{F} heißt frei von Rang n, falls gilt $\mathcal{F} \cong \mathcal{O}_X^n = \bigoplus_{i=1}^n \mathcal{O}_X$.
- (ii) \mathcal{F} heißt lokal frei von Rang n, wenn es eine offene Überdeckung $\{U_i\}_{i\in I}$ von X gibt, sodass für alle $i \in I$ gilt $\mathcal{F}|_{U_i} \cong (\mathcal{O}_X|_{U_i})^n$.

Bemerkung 10.4 Aus Freiheit folgt sicherlich lokale Freiheit, die Umkehrung ist im Allgemeinen allerdings nicht der Fall. Betrachte hierfür $X = \mathbb{P}^1_k$ für einen algebraisch abgeschlossenen Körper k und für den Divisor $D = 1 \cdot P$ auf X für ein $P \in X$ die Garbe $\mathcal{L}(D)$ auf X. In Beispiel 10.1 haben wir bereits gesehen, dass $\mathcal{L}(D)$ lokal frei von Rang 1 ist. Betrachte nun die globalen Schnitte von $\mathcal{L}(D)$ und der Strukturgarbe. Es gilt

$$\mathcal{O}_{\mathbb{P}^1_k}\left(\mathbb{P}^1_k\right) = k$$

und

$$\begin{split} \mathcal{L}(D)(\mathbb{P}^{1}_{k}) &= \{f \in k(X) \mid \operatorname{div} f + P \geqslant 0\} \\ &= \{f \in k(X) \mid \operatorname{ord}_{Q} f \geqslant 0 \text{ für alle } Q \in \mathbb{P}^{1} \backslash \{P\}\} \oplus \{f \in k(X) \mid \operatorname{ord}_{P} f \geqslant -1\} \\ &= \{f \in k(X) \mid f \in \mathcal{O}_{\mathbb{P}^{1}_{k}} \left(\mathbb{P}^{1}_{k} \backslash \{P\}\right)\} \oplus \{f \in k(X) \mid \operatorname{ord}_{P} f \geqslant -1\} \\ &= k \oplus \frac{1}{X - X_{P}} k, \end{split}$$

womit die Garben nicht isomorph sein können.

Bemerkung 10.5 Ist (X, \mathcal{O}_X) ein Schema, so ist jede lokalfreie Garbe auf X quasikohärent. Ist X weiterhin noethersch, so ist jede lokalfreie Garbe sogar kohärent.

Beweis. Sei \mathcal{F} eine lokal freie Garbe von Rang n sowie $\{U_i = \operatorname{Spec} R_i\}_{i \in I}$ eine offene, ohne Einschränkung affine Überdeckung von X derart, dass $\mathcal{F}|_{U_i} = (\mathcal{O}_X|_{U_i})^n$ für alle $i \in I$. Dann gilt $\mathcal{F}|_{U_i} = \tilde{R}_i^n$. Ist zudem X noethersch, so ist R_i noethersch für alle $i \in I$, \mathcal{F} also kohärent.

Bemerkung 10.6 Jede lokalfreie Garbe \mathcal{L} von Rang 1 auf einer nichtsingulären, projektiven Kurve über einem algebraisch abgeschlossenen Körper k, die sich einbetten lässt in die konstante Garbe des Funktionenkörpers, ist isomorph zu einer Garbe $\mathcal{L}(D)$ für einen Divisor D auf X.

Beweis. Sei $\{U_i\}$, $i \in \{1, ..., n\}$ offene Überdeckung von X mit $\mathcal{L}|_{U_i} \cong t_i \mathcal{O}_X|_{U_i}$ mit Erzeugern $t_i \in k(X) \cap \mathcal{L}(U_i)$. Es ist $t_i \mathcal{O}_X|_{U_i \cap U_j} = t_j \mathcal{O}_{U_i \cap U_j}$, das heißt es gilt $\frac{t_i}{t_j} \in \mathcal{O}_X(U_i \cap U_j)^{\times}$. Damit gilt

$$\operatorname{div} t_i|_{U_i \cap U_j} = \operatorname{div} \left. \frac{t_j t_i}{t_j} \right|_{U_i \cap U_j} = \operatorname{div} \left. \frac{t_i}{t_j} \right|_{U_i \cap U_j} + \operatorname{div} \left. t_j \right|_{U_i \cap U_j} = \operatorname{div} \left. t_j \right|_{U_i \cap U_j},$$

das heißt, wir können einen wohldefinierten Divisor D auf X durch $D|_{U_i} = \text{div } \frac{1}{t_i}\Big|_{U_i}$ definieren. Dann gilt $\mathcal{L} \cong \mathcal{L}(D)$, denn für die Schnitte erhalten wir

$$\mathcal{L}(U_{i}) = \{t_{i}f \mid f \in \mathcal{O}_{X}(U_{i})\} = \{t_{i}f \mid \operatorname{div} f|_{U_{i}} \geqslant 0\}$$

$$= \left\{f \in \mathcal{O}_{X}(U_{i}) \mid \operatorname{div} \frac{f}{t_{i}}\Big|_{U_{i}} \geqslant 0\right\}$$

$$= \left\{f \in \mathcal{O}_{X}(U_{i}) \mid \operatorname{div} f|_{U_{i}} \geqslant \operatorname{div} t_{i}|_{U_{i}}\right\}$$

$$= \left\{f \in k(X) \mid (\operatorname{div} f - \operatorname{div} t_{i})|_{U_{i}} \geqslant 0\right\}$$

$$= \left\{f \in k(X) \mid (\operatorname{div} f + \operatorname{div} \frac{1}{t_{i}})\Big|_{U_{i}} \geqslant 0\right\}$$

$$= \left\{f \in k(X) \mid (\operatorname{div} + D)|_{U_{i}} \geqslant 0\right\}$$

$$= \mathcal{L}(D)(U_{i}),$$

woraus die Behauptung folgt.

Proposition 10.7 Sei (X, \mathcal{O}_X) lokal geringter Raum, \mathcal{F} lokal freie Garbe von Rang n auf X. Dann gilt:

- (i) Ist \mathcal{G} lokal frei von Rang m, so ist $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ lokal frei von Rang mn.
- (ii) Ist $f: Y \longrightarrow X$ Morphismus von lokal geringten Räumen, so ist $f^*\mathcal{F}$ lokal freie Garbe von Rang n auf Y.

Warnung: Es gibt keine entsprechende Aussage für f_* .

Beweis. (i) Wähle eine ausreichend feine Überdeckung $\{U_i\}_{\in I}$ von X, sodass

$$\mathcal{F}|_{U_i} \cong (\mathcal{O}_X|_{U_i})^n, \qquad \mathcal{G}|_{U_i} (\mathcal{O}_X|_{U_i})^m$$

und wähle Basen t_{i1}, \ldots, t_{in} von $\mathcal{F}|_{U_i}$ und s_{i1}, \ldots, s_{im} von $\mathcal{G}|_{U_i}$ als $\mathcal{O}_X(U_i)$ -Moduln. Dann bilden die $t_{i1} \otimes s_{i1}, \ldots, t_{i1} \otimes s_{im}, \ldots, t_{in} \otimes s_{im}$ eine Basis von $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$, woraus die Behauptung folgt.

(ii) Sei $U \subseteq X$ offen mit $\mathcal{F}|_{U} \cong (\mathcal{O}_{X}|_{U})^{n}$. Dann ist

$$f^{*}\mathcal{F}|_{f^{-1}(U)} = \left(f^{-1}\mathcal{F} \otimes_{f^{-1}\mathcal{O}_{X}} \mathcal{O}_{Y}\right)\Big|_{f^{-1}(U)}$$

$$= \left(f^{-1}\mathcal{F}\right)|_{f^{-1}(U)} \otimes_{f^{-1}\mathcal{O}_{X}|_{f^{-1}(U)}} \mathcal{O}_{Y}|_{f^{-1}(U)}$$

$$= f^{-1}\left(\mathcal{F}|_{U}\right) \otimes_{f^{-1}\mathcal{O}_{X}|_{f^{-1}(U)}} \mathcal{O}_{Y}|_{f^{-1}(U)}$$

$$= f^{-1}\left(\mathcal{O}_{X}|_{U}\right)^{n} \otimes_{f^{-1}\mathcal{O}_{X}|_{f^{-1}(U)}} \mathcal{O}_{Y}|_{f^{-1}(U)}$$

$$= \left(f^{-1}\mathcal{O}_{X}\right)^{n}|_{f^{-1}(U)} \otimes_{f^{-1}\mathcal{O}_{X}|_{f^{-1}(U)}} \mathcal{O}_{Y}|_{f^{-1}(U)}$$

$$= \left(f^{-1}\mathcal{O}_{X}|_{f^{-1}(U)} \otimes_{f^{-1}\mathcal{O}_{X}|_{f^{-1}(U)}} \mathcal{O}_{Y}|_{f^{-1}(U)}\right)^{n}$$

$$= \left(f^{-1}\mathcal{O}_{X} \otimes_{f^{-1}\mathcal{O}_{X}} \mathcal{O}_{Y}|_{f^{-1}(U)}\right)^{n}$$

$$= \left(\mathcal{O}_{Y}|_{f^{-1}(U)}\right)^{n}$$

Ist nun $\{U_i\}_{i\in I}$ eine offene Überdeckung von X, so ist auch $\{f^{-1}(U)\}$ eine offene Überdeckung für Y und damit ist $f^*\mathcal{F}$ lokal frei von Rang n wie gewünscht.

Definiton + **Proposition 10.8** Sei (X, \mathcal{O}_X) lokal geringter Raum sowie $\mathcal{F}, \mathcal{G} \mathcal{O}_X$ -Modulgarben auf X. Für $U \subseteq X$ offen sei

$$\mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})(U) := \mathrm{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U).$$

Dann ist $\mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ eine \mathcal{O}_X -Modulgarbe.

Beweis. Sei $U \subseteq X$ offen. Klar: $\mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})(U)$ ist abelsche Gruppe. Wir brauchen also nur noch eine $\mathcal{O}_X(U)$ -Modulstruktur. Für $\alpha \in \mathcal{O}_X(U)$ und $\phi \in \mathrm{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U)$. Definiere $\alpha\phi$

wie folgt: Für jede offene Teilmenge $V \subseteq U$ sei

$$(\alpha \phi)_V : \mathcal{F}(V) \longrightarrow \mathcal{G}(V), \qquad (\alpha \phi)_V(s) := \alpha|_V \phi_V(s).$$

Die $(\alpha\phi)_V$ ergeben den gewünschten Garbenmorphismus $\alpha\phi: \mathcal{F}|_U \longrightarrow \mathcal{G}|_U$, womit also $\mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})(U)$ zum $\mathcal{O}_X(U)$ -Modul wird. Es bleibt noch zu zeigen: die Zuordnung $U \mapsto \mathrm{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U)$ ist eine Garbe. Übung!

Definiton + **Proposition 10.9** Sei (X, \mathcal{O}_X) lokal geringter Raum, \mathcal{F} lokal freie Garbe von Rang n auf X.

- (i) $\mathcal{F}^* := \mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$ ist lokal frei von Rang n.
- (ii) \mathcal{F}^* heißt die zu \mathcal{F} duale Garbe.
- (iii) Für jede \mathcal{O}_X -Modulgarbe \mathcal{G} auf X gilt

$$\mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \cong \mathcal{F}^* \otimes_{\mathcal{O}_X} \mathcal{G}.$$

Beweis. (i) Es genügt zu zeigen: Ist $\{U_i\}_{i\in I}$ offene Überdeckung von X, so ist $\mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)|_{U_i}$ frei. Es sei also ohne Einschränkung $\mathcal{F} \cong \mathcal{O}_X^n$. Dann ist zu zeigen:

$$\mathbf{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{O}_X) = \mathbf{Hom}_{\mathcal{O}_X}\left(\mathcal{O}_X^n,\mathcal{O}_X\right) \overset{!}{\cong} \mathcal{O}_X^n.$$

Aus der linearen Algebra wissen wir, dass für einen Körper k gilt: $\operatorname{Hom}_k(k^n, k) \cong k^n$. Der zugehörige Isomorphismus ist $l \mapsto (l(e_1), \dots, l(e_n))$, wobei $\{e_1, \dots, e_n\}$ eine Basis des k^n ist. Dieselbe Aussage kann auf freie Moduln übertragen werden, woraus die Behauptung folgt.

(iii) Die entsprechende Aussage aus der linearen Algebra für k-Vektorräume V und W lautet

$$\operatorname{Hom}_k(V, W) \cong V^* \otimes_k W$$

denn: Betrachte die bilineare Abbildung

$$\psi: V^* \times W \longrightarrow \operatorname{Hom}_k(V, W), \qquad (l, w) \mapsto (\alpha: V \longrightarrow W, v \mapsto l(v)w).$$

Es induziert ψ eine Abbildung $\phi: V^* \otimes W \longrightarrow \operatorname{Hom}_k(V, W)$. Wir müssen zeigen: ϕ ist bijektiv. Surjektivität sehen wir wie folgt ein: Sind Basen $\{b_1, \ldots, b_n\}$ für V und $\{c_1, \ldots, c_m\}$ für W gegeben, so wird $\operatorname{Hom}_k(V, W)$ erzeugt von den f_{ij} für $1 \leq i \leq n$ und $1 \leq j \leq m$, wobei f_{ij} gegeben ist durch $f_{ij}(b_k) = \delta_{ik}c_j$. Ist $\{b_1^*, \ldots, b_n^*\}$ die zu $\{b_1, \ldots, b_n\}$ duale Basis

von V^* , so erhalten wir die Darstellung $f_{ij} = \psi(b_i^*, c_j)$, das heißt, ϕ ist surjektiv. Nun gilt

$$\dim V^* \otimes_k W = \dim V^* \dim W = \dim V \dim W = nm = \dim \operatorname{Hom}_k(V, W),$$

also ist ϕ auch injektiv und damit bereits Isomorphismus und die Behauptung folgt.

Definiton + **Proposition 10.10** Sei (X, \mathcal{O}_X) lokal gringter Raum.

- (i) Für jede lokal freie \mathcal{O}_X -Modulgarbe von Rang 1 gilt $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}^* \cong \mathcal{O}_X$.
- (ii) Eine \mathcal{O}_X -Modulgarbe \mathcal{L} heißt *invertierbar*, falls es eine \mathcal{O}_X -Modulgarbe \mathcal{L}' gibt, sodass $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}' \cong \mathcal{O}_X$.
- (iii) Ist (X, \mathcal{O}_X) noethersches Schema, so ist jede invertierbare \mathcal{O}_X -Modulgarbe auf X lokal frei von Rang 1.
- (iv) Die Isomorphieklassen der invertierbaren \mathcal{O}_X -Modulgarben auf X bilden eine abelsche Gruppe, die sogenannte Picard-Gruppe Pic(X).

Beweis. (i) Nach 10.9 gilt $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}^* \cong \mathbf{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{L})$. Definiere nun

$$\phi: \mathcal{O}_X \longrightarrow \mathbf{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{L}), \qquad 1 \mapsto \mathrm{id}_{\mathcal{L}}.$$

Dann ist ϕ ein wohldefinierter, injektiver Morphismus von \mathcal{O}_X -Modulgarben. Für den Beweis genügt es nun, die Surjetkivität von ϕ nachzuweisen. Dies zeigen wir halmweise. Sei $x \in X$ und betrachte ϕ_x . Sei $\alpha \in \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{L}_x, \mathcal{L}_x) = (\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F}))_x$, also $\alpha = (U, s)$, wobei ohne Einschränkung U klein genug ist, sodass $\mathcal{L}|_U \cong \mathcal{O}_X|_U$. Dann gilt $s = \phi_x(s(1))$, also ist ϕ_x und damit ϕ surjektiv.

- (iii) Übung.
- (v) Die Strukturgarbe \mathcal{O}_X ist neutral bezüglich des Tensorprodukt (welches auch assoziativ und kommutativ ist) und inverses Element folgt aus (i).

Beispiel 10.11 Sei X differenzierbare Mannigfaltigkeit, \mathcal{O}_X die Garbe der C^{∞} -Funktionen auf X. Dann ist (X, \mathcal{O}_X) lokal geringter Raum. Sei E eine weitere differenzierbare Mannigfaltigkeit und $p: E \longrightarrow X$ differenzierbare Abbildung. Das Paar (E, p) heißt Vektorbündel von Rang n über <math>X, falls es eine offene Überdeckung $\{U_i\}_{i\in I}$ von X und für jedes $i \in I$ einen Diffeomorphismus $\phi_i: p^{-1}(U_i) \longrightarrow U_i \times \mathbb{R}^n$ gibt, sodass das Diagramm

kommutiert, also $p = \pi_1 \circ \phi_i$, und gilt

$$\phi_{ij} := \phi_i \circ \phi_j^{-1} : (U_i \cap U_j) \times \mathbb{R}^n \longrightarrow (U_i \cap U_j) \mathbb{R}^n$$

faserweise linear ist für alle $i, j \in I$, nach Wahl eine Basis des \mathbb{R}^n also durch eine Matrix $A = (A_{ij}) \in \operatorname{GL}_n(\mathcal{O}_X(U_i \cap U_j))$ dargestellt wird. Im folgenden wollen wir zeigen, dass die Vektorbündel von Rang n auf X gerade den lokal freien \mathcal{O}_X -Modulgarben von Rang n auf X entsprechen. Sei dazu zunächst (E, p) ein Vektorbündel von Rang n auf X wie oben definiert und \mathcal{E} die Garbe der Schnitte in E auf X, für offene Teilmengen $U \subseteq X$ gilt also

$$\mathcal{E}(U) = \{s : U \longrightarrow E \mid s \text{ ist differenzierbare Abbildung mit } p \circ s = \mathrm{id}_U \}$$
.

Dann ist \mathcal{E} lokal frei von Rang n, denn für $i \in I$ gilt

$$\mathcal{E}(U_i) = \{s : U_i \longrightarrow \mathbb{R}^n \mid s \text{ ist differenzierbar }\} = \mathcal{O}_X(U_i)^n.$$

Dasselbe erhalten wir für Einschränkungen auf beliebige offene $V \subseteq U_i$.

Sei nun umgekehrt \mathcal{E} lokal freie \mathcal{O}_X -Modulgabe von Rang n auf X. Dann ist für jedes $x \in X$ der Halm \mathcal{E}_x ein freier $\mathcal{O}_{X,x}$ -Modul von Rang n. Weiter gilt $\mathcal{O}_{X,x}/\mathfrak{m}_x \cong \mathbb{R}$ sowie $\mathcal{E}_x/\mathfrak{m}_x\mathcal{E}_x \cong \mathbb{R}^n$. Ist nun $U_i \subseteq X$ offen mit $\mathcal{E}|_{U_i} \cong (\mathcal{O}_X|_{U_i})^n$ via $\phi_i : \mathcal{E}|_{U_i} \longrightarrow (\mathcal{O}_X|_{U_i})^n$, so ist $\phi_i\phi_j^{-1}$ ein $\mathcal{O}_X|_{U_i\cap U_j}$ -Modulgarbenisomorphsmus von $(\mathcal{O}_X|_{U_i\cap U_j})^n$ auf sich selbst, also ein Element $A_{ij} \in \mathrm{GL}_n$ $(\mathcal{O}_X(U_i\cap U_j))$. In jedem $x\in U_i\cap U_j$ induziert A_{ij} einen Vektorraumisomorphismus von $\mathcal{E}_x/\mathfrak{m}_x\mathcal{E}_x\cong\mathbb{R}^n$. Verklebt man nun die $U_i\times\mathbb{R}^n$ mithilfe der A_{ij} zum Vektorbündel E, so erhält man die gewünschte Aussage.

Definiton + **Proposition 10.12** Sei (X, \mathcal{O}_X) ein Schema, $p : E \longrightarrow X$ Morphismus von Schemata.

- (i) (E,p) heißt geometrisches Vektorbündel von Rang n über X, falls es eine offene Überdeckung $\{U_i\}_{i\in I}$ von X und für jedes $i\in I$ Isomorphismen $\phi_i:p^{-1}(U_i)\longrightarrow \mathbb{A}^n_{U_i}=U_i\times_{\operatorname{Spec}\mathbb{Z}}\mathbb{A}^n_{\mathbb{Z}}$ gibt, sodass für alle $i,j\in I$ und jedes affine offene Unterschema $\operatorname{Spec} R=U\subseteq U_i\cap U_j$ von X die Abbildungen $\phi_i\circ\phi_j^{-1}$ R-lineare Automorphismen sind, also von linearen Automorphismen von $R[X_1,\ldots,X_n]$ induziert werden.
- (ii) Die Isomorphieklassen von geometrischen Vektorbündeln von Rang n entsprechen bijektiv den Isomorphieklassen von lokal freien \mathcal{O}_X -Modulgarben von Rang n auf X.

Beweis. Wie in 10.11

§ 11 Divisoren und invertierbare Garben

Erinnerung: Ist X nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper k und $D = \sum_{P \in X} n_P P$ ein Divisor auf X, so wird durch

$$\mathcal{L}(D)(U) = \{ f \in k(X) \mid \operatorname{ord}_P f + n_P > 0 \text{ für alle } p \in U \}$$

eine lokal freie Garbe von Rang 1 auf X definiert.

Beispiel 11.1 Betrachte den Newtonknoten $X = V(Y^2 - X^3 - X^2) \subseteq \mathbb{P}^2_k$ in der projektiven Ebene und definere einen Divisor durch $D = 1 \cdot P_0$, wobei P_0 den singulären Punkt der Kurve bezeichne. Können wir nun auch die Garbe $\mathcal{L}(D)$ definieren? Betrachte das maximale Ideal im Punkt P_0 : Es wird erzeugt von den Restklassen von X, Y, bezeichne sie mit x, y. Es gilt $y^2 = x^2(x-1)$, es kann aber auf keinen Erzeuger verzichtet werden, \mathfrak{m}_{P_0} ist also kein Hauptideal. Wie kann man dann $\operatorname{ord}_{P_0} f$ bestimmen? Ist $\operatorname{ord}_{P_0} x = 2$? Betrachte den Faktorring $\mathcal{O}_{X,P_0}/(f)$ und setze $\operatorname{ord}_{P_0} := \dim_k \mathcal{O}_{X,P_0}/(f)$ und erhalte beispielsweise $\operatorname{ord}_{P_0} x = 2$ (denn in $\mathcal{O}_{X,P_0}/(x)$ sind 1, y linear unabhängig). Wir können die Garbe $\mathcal{L}(D)$ als konstruieren, für den Halm in P_0 gilt aber

$$\mathcal{L}(D)_{P_0} = \{ f \in k(X) \mid \text{ord}_{P_0} f \geqslant 1 \} = \mathfrak{m}_P,$$

weswegen dieser nicht frei von Rang 1 ist und $\mathcal{L}(D)$ damit nicht lokal frei von Rang 1, also nicht invertierbar ist.

Definition 11.2 Ein Schema (X, \mathcal{O}_X) heißt *integer*, falls es reduziert und irreduzibel ist.

Definition + **Bemerkung 11.3** Sei (X, \mathcal{O}_X) ein Schema.

- (i) Ein *Primdivisor* auf X ist ein integres, abgeschlossenes Unterschema der Kodimension 1.
- (ii) Die von den Primdivisoren auf X erzeugte frei abelsche Gruppe Div(X) heißt Gruppe der Weil-Divisoren. Die Elemente von Div(X) heißen Weil-Divisoren.
- (iii) Ist X eine Kurve über einem algebraisch abgeschlossenen Körper k, so sind die Primdivisoren gerade die abgeschlossenen Punkte in X und die Weil-Divisoren von der Form $D = \sum_{P \in X} n_P P \text{ für gewisse } n_P \in \mathbb{Z}.$
- (iv) Sei W ein Primdivisor auf X, γ_W der generische Punkt von W.