

PURE AND APPLIED CHEMISTRY

IUPAC General Assembly August 2021 <u>Committee on Publications and</u> <u>Cheminformatics Data Standards</u>

Progress Report: IUPAC FAIR standard for spectroscopic data description & management

Robert M. Hanson, Damien Jeannerat, Mark Archibald, Ian Bruno, Stuart J. Chalk, Antony N. Davies, Robert J. Lancashire, Jeff Lang, Henry S. Rzepa <a href="https://linear.com/li

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Bob Hanson

Damien Jeannerat

FAIRSpec PROJECT TEAM

IUPAC Project: 2019-031-1-024

Development of a Standard for FAIR Data Management of Spectroscopic Data

Mark Archibald

lan Bruno

Stuart Chalk

Tony Davies

Robert Lancashire

Jeff Lang

Henry Rzepa

March 2020 Project Initiation – Two-year time frame

The Problem

- Too much reliance on published PDF "supplemental information" without concern for interoperability
- No central community-based effort to archive and make available spectroscopic data
- No standards for describing or relating that data to chemical structure

March 2020 Project Initiation – Two-year time frame

The Task – To do what IUPAC does best

- Develop a standard vocabulary and structure in the area of chemistry
- Enable others to implement area-specific value-added services
- Enable services to work together using a shared set of data descriptors and protocols

first year design; second year build

Design Decisions

- 1. This project is not about the creation of any new file formats
- 2. We will not limit ourselves to one specific spectroscopic technique.
- 3. We recognize four key pieces of the puzzle.
 - the spectroscopic data itself
 - associated chemical identifier/structure-related (meta)data
 - associated structure-spectrum analysis (meta)data
 - associated general key/value pair metadata (authors, associated DOIs, provenance, licenses, etc.)
- 4. We recognize the importance of multiple representations.
 - drawing from successes in earth science and archival science
 - varieties of spectroscopic data representations
 - key aspects of acceptable chemical identifiers and structure formats

Design Decisions

- 5. We recognize the importance of a *collection* and its associated *finding aid*.
 - drawing specifically from archival science
 - an isolated manufacturer data set has no intrinsic value
 - connection to an appropriate chemical identifier is critical
 - connection to related spectra and compounds is valuable
 - key element is a structured finding aid
- 6. We will work closely with known (meta)data managers and other stakeholders, ensuring that whatever we do is mappable to their metadata as much as possible.
 - publishers and authors (ACS, RSC)
 - repository and database managers (HMDB, BMRB, NP-MRD, NMRShiftDB, nmrdb)
 - chemical information services (PubChem)

The IUPAC FAIRSpec Specification, Version 0.0.1

Robert M. Hanson, Damien Jeannerat, Mark Archibald, lan Bruno, Stuart J. Chalk, Antony N. Davies, Robert J. Lancashire, Jeff Lang, Henry S. Rzepa

[draft version 2021.08.06]

https://docs.google.com/document/d/1WYB3f04dFdVzlvf7aEwdVNwEwLpQ7YBAA00pGbc8Jp0/edit?usp=sharing

- 1. Basic IUPAC FAIRSpec Principles
- 2. Preferred Collection Organization
- 3. The IUPAC FAIRSpec Metadata Model
- 4. Data and Metadata Extraction and Serialization
- 5. The IUPAC FAIRSpec Data Model

- 1.1 FAIR spectroscopic data management should be an ongoing concern
- part of the design of an ongoing scientific endeavor
- intrinsic value in real time to the originating research group(s)
- should allow for cycles of data generation, (re)processing, and (re)analysis
- requires distributed curation

1.2 Context is important

- emphasize the value of a collection
- emphasize the connection between chemical structure and chemical properties
- allow for the fact that spectroscopic relationships develop over time

One to One and One to Many FAIR Relationships

IFS Finding Aid Demonstrator

IUPAC-FAIRSpec GitHub Repository

https://github.com/BobHanson/IUPAC-FAIRSpec

Communications

- ACS National Meeting, April 14, 2021
 - Division of Chemical Information:
 Framing FAIR: Scientific Research Data Sharing Policies, Frameworks and Principles Presentation
- Are you taking your Metadata seriously, Spectroscopy Europe, 31(2), 17-23, 2019 https://doi.org/10.1255/sew.2019.a1
- Are Your Spectroscopic Data FAIR?, Spectroscopy Europe, 30(4), 21-24, 2018
 https://doi.org/10.1255/sew.2018.a2
- FAIR enough? Spectroscopy Europe, 33(2), 25-31, 2021 https://doi.org/10.1255/sew.2021.a9
- FAIR Practice, Spectroscopy Europe, 33(3), 18-21, 2021 https://doi.org/10.1255/sew.2021.a14

Technical Appendix

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

- 1.3 FAIR data management standards should be modular, extensible, and flexible
- modular, allowing for core standards to be developed in different subdisciplines
- extensible, expressing clear versioning and allowing for future needs
- flexible, respecting variety and should not require one particular data format

- the standard should describe a digital finding aid that allows a reuser to quickly ascertain whether additional scrutiny of the data collection is warranted
- the standard should allow for repackaging or "extraction" of metadata and other digital objects from an original dataset in order to provide a better reuser experience

- standard must be clearly defined and, as much as possible, mappable
 onto other metadata standards that are in use or will be in future FAIR
 as "Fully Artificial Intelligence Ready"
- standards should respect the fact that data can have multiple
 representations, as reuse of data relies upon data being in a form that is
 meaningful for the reuser.

2.1 IFS Properties

2.1.1 Collection Properties

```
IFS.property.collection.data.license.name: "cc-by-nc-4.0"
IFS.property.collection.data.license.uri: "https://creativecommons.org/licenses/by-nc/4.0"
IFS.property.collection.id: "acs.orglett.0c00571"
IFS.property.collection.len: 199413401
IFS.property.collection.ref: "acs.orglett.0c00571._IFS_collection.zip"
IFS.property.collection.source.publication.uri: "https://doi.org/10.1021/acs.orglett.0c00571"
```

2.1 IFS Properties

2.1.2 Spectroscopic Data Properties

```
IFS.property.spec.nmr.expt.label: "3c/1H-NMR"
IFS.property.spec.nmr.expt.nucl.1: "1H"
IFS.property.spec.nmr.expt.pulse.prog: "zg30"
IFS.property.spec.nmr.expt.temperature.K: 298.1486
IFS.property.spec.nmr.instr.freq.nominal: 600
IFS.property.spec.nmr.instr.manufacturer.name: "Bruker"
IFS.property.spec.nmr.instr.probe.type: "Z126545_0016 (CPP BBO 600S3 BB-H&F-D-05 Z)"
```

2.1 IFS Properties

2.1.3 Chemical Structure Properties

2.1.4 Chemical Sample Properties (todo)

2.2 IFS Representations

2.2.1 Spectroscopic Data Representations

IFS.representation.spec.nmr.jcamp.fid.1d

IFS.representation.spec.nmr.jcamp.fid.2d

IFS.representation.spec.nmr.jcamp.spec.1i1r.1d

IFS.representation.spec.nmr.jcamp.spec.1r.1d

IFS.representation.spec.nmr.jcamp.spec.2d

IFS.representation.spec.nmr.peaklist

IFS.representation.spec.nmr.spectrum.description

IFS.representation.spec.nmr.spectrum.image

IFS.representation.spec.nmr.spectrum.pdf

IFS.representation.spec.nmr.vendor.dataset

2.2 IFS Representations

2.2.2 Chemical Structure Representations

IFS.representation.struc.cdx

IFS.representation.struc.cdxml

IFS.representation.struc.mol

IFS.representation.struc.mol.2d

IFS.representation.struc.mol.3d

IFS.representation.struc.png

IFS.representation.struc.sdf

IFS.representation.struc.sdf.2d

IFS.representation.struc.sdf.3d

IFS.representation.struc.unknown

2.2.3 Chemical Sample Representations (todo)

3. Preferred Collection Organization

- 3.1 Structured data collections
- 3.2 Describing a collection The IFS Finding Aid
- 3.3 Data and metadata extraction

Author data

data and metadata

extraction and serialization

IUPAC FAIRSpec Data Collection

IUPAC FAIRSpec Finding Aid

3. Preferred Collection Organization

INTERNATIONAL UNION OF

PURE AND APPLIED CHEMISTRY

- 3.1 Structured data collections
- 3.2 Describing a collection The IFS Finding Aid
- 3.3 Data and metadata extraction

4. Data / Metadata Extraction & Serialization

INTERNATIONAL UNION OF

PURE AND APPLIED CHEMISTRY

- 4.1 Workflow
- 4.2 Data and Metadata Extraction
- 4.3 IFSSpecDataFindingAid Serialization

• 5. The IUPAC FAIRSpec Data Model

- 5.1 Definitions
- 5.2 Common Core Classes
- 5.3 Common Associative Classes
- 5.4 Spectroscopy-Specific Classes