ΜΑΣ026 - Μαθηματικά για Μηχανικούς ΙΙ Εαρινό εξάμηνο 2020

Ασκήσεις 6ου Κεφαλαίου

1. Αποδείξτε ότι η $\phi(x,y)=\tan^{-1}(xy)$ είναι συνάρτηση δυναμικού του πεδίου $F(x,y)=\frac{y}{1+x^2y^2}\imath+\frac{x}{1+x^2y^2}\jmath$.

2. Να βρεθεί η απόκλιση και ο στροβιλισμός του διανυσματικού πεδίου $F(x, y, z) = x^2 i - 2j + yzk$.

Απάντηση: div F = 2x + y, curl F = zi.

3. Έστω τα διανυσματικά πεδία $F(x,yz)=2x\imath+\jmath+4yk,$ $G(x,y,z)=x\imath+y\jmath-zk.$ Να υπολογίσετε το $\nabla\cdot(F\times G).$

Απάντηση: 4x

4. Έστω $F: \mathbb{R}^3 \to \mathbb{R}^3$ ένα δύο φορές παραγωγίσιμο διανυσματικό πεδίο. Ποιες από τις παρακάτω εκφράσεις έχουν νόημα; Αυτές που έχουν, ορίζουν βαθμωτή συνάρτηση ή διανυσματικό πεδίο;

i) curl(grad F)

ii) grad(curl F)

iii) $\operatorname{div}(\operatorname{grad} F)$

iv) grad(div F)

v) $\operatorname{curl}(\operatorname{div} F)$

vi) div(curl F)

Απάντηση: (i), (ii), (iii), (v) δεν έχουν νόημα, (iv) έχει νόημα και είναι διανυσματικό πεδίο (vi) έχει νόημα και είναι βαθμωτό πεδίο.

5. Να υπολογιστούν τα παρακάτω ολοκληρώματα.

$${\rm i)}\ \, \int_C \frac{1}{1+x}\,ds, C: r(t)=t\imath+\frac{2}{3}t^{3/2}\jmath \quad (0\leq t\leq 3),$$

ii)
$$\int_C \frac{x}{1+y^2} ds$$
, $C: x = 1+2t$, $y = t \quad (0 \le t \le 1)$.

Απάντηση: i) 2, ii) $\sqrt{5}(\pi/4 + \ln 2)$

6. Να υπολογιστεί το ολοκλήρωμα $\int_C F \cdot dr$, όπου F(x,y) = 2i + 5j και C το ευθύγραμμο τμήμα από το (1,-3) στο (4,-3).

1

Απάντηση: 6

7. Να υπολογιστεί το ολοκλήρωμα $\int_C (3x+2y)dx + (2x-y)dy$ στις παρακάτω περιπτώσεις.

i) C το ευθύγραμμο τμήμα από το (0,0) στο (1,1),

ii) C το παραβολικό τόξο $y = x^2$ από το (0,0) στο (1,1),

iii) C η καμπύλη $y = \sin(\pi x/2)$ από το (0,0) στο (1,1),

iv) C η καμπύλη $x = y^3$ από το (0,0) στο (1,1).

Απάντηση: i) 3 ii) 3 iii) 3 iv) 3

8. Να ελέγξετε αν τα παρακάτω διανυσματικά πεδία είναι συντηρητικά και αν είναι, να βρεθεί η συνάρτηση δυναμικού.

i)
$$F(x,y) = xi + yj$$

ii)
$$F(x,y) = x^2yi + 5xy^2j$$

iii)
$$F(x,y) = (\cos y + y \cos x)\imath + (\sin x - x \sin y)\jmath$$

Απάντηση: i) Συντηρητικό, $\phi(x,y)=x^2/2+y^2/2+K$ ii) Όχι συντηρητικό iii) Συντηρητικό, $\phi(x,y)=x\cos y+y\sin x+K$

9. Υπολογίστε το ολοκλήρωμα $\int\limits_{(2,-2)}^{(-1,0)} 2xy^3 \, dx + 3y^2x^2 \, dy \text{ αφού πρώτα δείξετε ότι είναι ανεξάρτητο της διαδρομής}.$

Απάντηση: 32

10. Έστω το διανυσματικό πεδίο $F = (x^3 - 2xy^3)i - 3x^2y^2j$.

- i) Να δειχθεί ότι το F είναι συντηρητικό πεδίο..
- ii) Να βρεθεί βαθμωτή συνάρτηση ϕ ώστε $F = \nabla \phi$.
- iii) Να υπολογιστεί το ολοκλήρωμα του πεδίου F κατά μήκος της παραμετρικής καμπύλης $x=\cos^3\theta$, $y=\sin^3\theta$, $\theta\in[0,\pi/2]$.

Απάντηση: ii)
$$\phi(x,y) = \frac{x^4}{4} - 2xy^3 + c$$
 iii) $-\frac{1}{4}$

11. Να υπολογιστούν τα παρακάτω ολοκληρώματα με χρήση του Θεωρήματος Green.

i)
$$\oint_C y^2 dx + x^2 dy$$
, C το τετράγωνο με κορυφές $(0,0)$, $(1,0)$, $(1,1)$ και $(0,1)$.

ii)
$$\oint_C (x^2 - y) dx + x dy$$
, C ο κύκλος $x^2 + y^2 = 4$

iii)
$$\oint_C \ln(1+y) \, dx - \frac{xy}{1+y} \, dy$$
, C το τρίγωνο με κορυφές $(0,0)$, $(2,0)$ και $(0,4)$.

Απάντηση: i) 0 ii) 8π iii) -4