Advanced Econometrics I: Principles of Econometrics First Retake Exam

30 January 2017

- This exam has three pages and parts.
- Don't copy the instructions.
- Start each part on a new sheet of paper (one sheet comprises four A4-sized pages), and use them in A3 format (which makes correcting your exam easier).
- Good luck!

1 Gauß-Markov Theorem (12 points)

Prove the following version of the Gauß-Markov Theorem: The estimator $Lb = L\left(X'X\right)^{-1}X'y$, where $L \in \mathbb{R}^{s \times K}$ is the best linear unbiased estimator for $L\beta$ in the linear model $y = X\beta + \varepsilon$, where $X \in \mathbb{R}^{N \times K}$, $N \geq K$, is non-stochastic and of full column rank, $\mathbb{E}\left(\varepsilon\right) = 0$, and the error terms are homoskedastic and uncorrelated.

1.1 Preliminary questions Statement and definitions (4,5 points)

- 1. (1 point) Let $\hat{\theta}$ be an estimator, i.e. a random variable from the sample space to the parameter space, for the population parameter θ . Give the formal definition of an unbiased estimator.
- 2. (1 point) We consider the class of all unbiased estimators $\tilde{\theta}$ for the population parameter θ . Give the formal definition of the efficient estimator in this class of estimators.
- 3. (0,5 points) Under the assumptions above, $\mathbb{E}(\varepsilon) = 0$ implies $\mathbb{E}(\varepsilon|X) = 0$. True or false?
- 4. (0,5 points) The statement " $\mathbb{E}(\varepsilon) = 0$ implies $\mathbb{E}(\varepsilon|X) = 0$ " is true in general (for stochastic X). True or false?
- 5. (0,5 points) In the case of a stochastic matrix X, the condition $\mathbb{E}(\varepsilon_i x_i') = 0$ implies that $\mathbb{E}(\varepsilon | X) = 0$. True or false?
- 6. (1 point) Which of the following are valid for stating that the error terms are homoskedastic and uncorrelated? (The question only counts if ALL correct possibilities are indicated.)
 - (a) $\mathbb{V}(\varepsilon) = \sigma^2 I_N$
 - (b) $\mathbb{V}(\varepsilon) = \sigma^2 I_K$
 - (c) $\mathbb{V}(\varepsilon_i) = \sigma^2$ for all i and $\mathbb{C}(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$
 - (d) $\mathbb{V}\left(\varepsilon_{i}\right)=\sigma_{i}^{2}$ for all i and $\mathbb{C}\left(\varepsilon_{i},\varepsilon_{j}\right)=0$ for $i\neq j$

1.2 Part 1 of the proof (3,5 points)

- 1. (1 point) Calculate the expectation of Lb.
- 2. (2 points) Consider the linear estimator $L\check{b}=Dy$. Derive the conditions on the matrix D such that a linear estimator $L\check{b}=Dy$ is unbiased for $L\beta$.
- 3. (0,5 points) What dimensions does D have?

1.3 Part 2 of the proof (4 points)

- 1. (2 points) Calculate the variance of Lb.
- 2. (2 points) Show that for matrices $D, X \in \mathbb{R}^{N \times K}$, $L \in \mathbb{R}^{s \times K}$ satisfying DX = L, the decompositition

$$DD' = \left(L\left(X'X\right)^{-1}X'\right)\left(L\left(X'X\right)^{-1}X'\right)' + \left(D - \left[L\left(X'X\right)^{-1}X'\right]\right)\left(D - \left[L\left(X'X\right)^{-1}X'\right]\right)$$

holds.

2 F-test (12 points)

Consider the regression model

$$y = X_1 \beta^{(1)} + X_2 \beta^{(2)} + \varepsilon$$

satisfying assumptions (A1)-(A5). Furthermore, assume that $X_1 \in \mathbb{R}^{N \times (K-J)}$ and $X_2 \in \mathbb{R}^{N \times J}$ are non-stochastic and of full column rank. To fix notation, denote $b = \begin{pmatrix} b^{(1)} \\ b^{(2)} \end{pmatrix}$ the OLS estimator for $\beta = \begin{pmatrix} \beta^{(1)} \\ \beta^{(2)} \end{pmatrix}$ and e the corresponding OLS residual such that

$$y = X_1 b^{(1)} + X_2 b^{(2)} + e.$$

- 1. (1 point) How is the projection on the orthogonal complement of the space spanned by the columns of X_1 defined?
- 2. (2 points) Consider the projection matrix M_{X_1} defined above, define $e_{restr} := M_{X_1}y$, $\tilde{X}_2 := M_{X_1}X_2$ and apply M_{X_1} to the equation $y = X_1b^{(1)} + X_2b^{(2)} + e$. Calculate $M_{X_1}X_1b^{(1)}$ (0.5 points) and $M_{X_1}e$ (0.5 points) and explain your reasoning (0.5 points respectively).
- 3. (1 point) Consider $e^{'}_{restr}e_{restr}:=\left(\tilde{X}_2b^{(2)}+e\right)^{'}\left(\tilde{X}_2b^{(2)}+e\right)$. Show that $e^{'}_{restr}e_{restr}=\left(b^{(2)}\right)^{'}\tilde{X}_2^{'}\tilde{X}_2b^{(2)}+e^{'}e_{restr}e_{restr}$ and explain your calculations.
- 4. (3 points) From the Frisch-Waugh Theorem we know that $b^{(2)} = \left(\left(\tilde{X}_2\right)'\tilde{X}_2\right)^{-1}\left(\tilde{X}_2\right)'y$. Show that under the $H_0:\ \beta^{(2)} = 0$, the equation $\tilde{X}_2b^{(2)} = \tilde{X}_2\left(\left(\tilde{X}_2\right)'\tilde{X}_2\right)^{-1}\left(\tilde{X}_2\right)'\varepsilon$ holds and explain your calculations (1.5 points). Furthermore (1.5 points), show that $\left(b^{(2)}\right)'\tilde{X}_2'\tilde{X}_2b^{(2)} = \varepsilon'P_{\tilde{X}_2}\varepsilon$, where $P_{\tilde{X}_2}:=\tilde{X}_2\left(\left(\tilde{X}_2\right)'\tilde{X}_2\right)^{-1}\left(\tilde{X}_2\right)'$.
- 5. (3 points) Show that $\frac{1}{\sigma^2}e'e$ is equal to $\frac{1}{\sigma^2}\varepsilon'M_X\varepsilon$. Then, show that $\frac{1}{\sigma^2}\varepsilon'M_X\varepsilon$ and $\frac{1}{\sigma^2}\left[\varepsilon'P_{\tilde{X}_2}\varepsilon\right]$ are independent.
 - (a) Hint: In order to show that $\frac{1}{\sigma^2} \varepsilon' M_X \varepsilon$ and $\frac{1}{\sigma^2} \left[\varepsilon' P_{\tilde{X}_2} \varepsilon \right]$ are independent, start by showing that $M_X \varepsilon$ and $P_X \varepsilon$ are uncorrelated, then use properties of normal distributions to show that $\frac{1}{\sigma^2} \varepsilon' M_X \varepsilon$ and $\frac{1}{\sigma^2} \left[\varepsilon' P_{\tilde{X}_2} \varepsilon \right]$ are independent.
- 6. (2 points) We know from 5) that $\frac{1}{\sigma^2} \varepsilon' M_X \varepsilon$ and $\frac{1}{\sigma^2} \left[\varepsilon' P_{\tilde{X}_2} \varepsilon \right]$ are independent.
 - (a) (1 point) How are these quantities related to the terms in $f = \frac{\left(e_{restr}^{'}e_{restr}-e^{'}e^{'}e\right)}{\frac{e^{'}e}{N-K}}$?

(b) (1 point) What are the distributions of $\frac{1}{\sigma^2}\varepsilon' M_X \varepsilon$ and $\frac{1}{\sigma^2}\left[\varepsilon' P_{\tilde{X}_2}\varepsilon\right]$ and why does it follow from their independence that $f=\frac{\left(\frac{e_{restr}^e r_{restr}-e's}{e^* e_{rest}}\right)}{\sqrt[e_{restr}^e r_{restr}-e's}$ is $F_{J,N-K}$ distributed?

3 Short Questions (12 points + 1 bonus)

1. (3 points) We consider the linear regression model

$$y = X\beta + \varepsilon$$

where $X \in \mathbb{R}^{N \times K}$ is non-stochastic and of full rank., $\mathbb{E}\left(\varepsilon\right) = 0$ and $\mathbb{V}\left(\varepsilon\right) = \sigma^2\Psi$, where $\sigma^2 > 0$ and Ψ is positive definite.

- ullet (3 points) Calculate the covariance matrix $\mathbb{V}\left(\hat{eta}
 ight)$ of the GLS estimator $\hat{eta}=\left(X'\Psi^{-1}X
 ight)^{-1}X'\Psi^{-1}y$.
- 2. (6 points) We consider the models under assumptions (A1)-(A4)

$$y_i = x_i'\beta + z_i'\gamma + \varepsilon_i \qquad (B)$$

and

$$y_i = x_i'\beta + v_i \qquad (S)$$

- (a) Assume model (S) is true, but we happen to estimate (B):
 - i. The estimate $\begin{pmatrix} \hat{\beta} \\ \hat{\gamma} \end{pmatrix}$ for $\begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ is unbiased. True or false (0,75 points)? Give an explanation in (at most) one sentence (0.75 points).
 - ii. The estimate $\begin{pmatrix} \hat{\beta} \\ \hat{\gamma} \end{pmatrix}$ for $\begin{pmatrix} \beta \\ \gamma \end{pmatrix}$ is efficient. True or false (0,75 points)? Give an explanation in (at most) one sentence (0.75 points).
- (b) Assume model (B) is true, but we happen to estimate (S)
 - i. The estimate $\hat{\beta}$ for β is unbiased. True or false (0,75 points)? Give an explanation in (at most) one sentence (0.75 points).
 - ii. The estimate $\hat{\beta}$ for β is efficient. True or false (0,75 points)? Give an explanation in (at most) one sentence (0.75 points).
- 3. The p-value corresponding to testing H_0 : $\beta=\beta_0$ is 0.075.
 - (a) (1 point) H_0 gets rejected at level 10%. True of false?
 - (b) (1 point) H_0 gets rejected at level 5%. True or false?
- 4. Assuming that a test with Type I error $\alpha=0.10$ has been constructed to test H_0 : $\beta=\beta_0$. Compare two different alternative hypotheses $\beta_0<\beta^{(1)}<\beta^{(2)}$.
 - (2 points) The inequality \mathbb{P} (reject $H_0|\beta^{(1)}$ true) $> \mathbb{P}$ (reject $H_0|\beta^{(2)}$ true) holds. True or false (1 point)? Give an explanation (1 point).