Experiment 1 Introduction to MATLAB

Question I.

- MATLAB stands for MATrix LABoratory. It is developed by Mathworks. It is an
 extremely useful tool for Scientists and Engineers. It is a high-level language which
 provides environment for Numerical Computations and Visualizations. Scripts are
 stored in '.m' format.
- MATLAB can be used as an advanced calculator. The below operators can be used:
 - + for addition
 - > for subtraction
 - * for multiplication
 - \rightarrow / and \ for division. Example 5/4 = 1.25 and 5\4 = 0.8
 - \rightarrow ^ for power. Example 2^3 = 8

Brackets can be used to give preference

== stands for equals and ~= stands for not equals

rem() function can be used for remainder. Example rem(5,4) = 1

exp() function is used for exponential. Example exp(2) = 7.3891

log() function is used for logarithmic (base e). Example log(10) = 2.3026

cos(), sin(), tan(), asin(), acos() etc. functions are used for trigonometry.

• Arrays are ordered arrangement of numbers in MATLAB.

For example, a vector can be thought of a 1-D array and matrix, a 2-D array.

Hence, a 1-D array can be created as below:

 $A = [n1 \ n2 \ n3 \ \ nm]$

A 3-D can be created as below:

B = [n1 n2 n3;n4 n5 n6;n7 n8 n9] (i.e. use semi-colon for next row)

Matrix Algebra

Addition: '+' Example: matrix1 + matrix2 or matrix1 + scalar

- ➤ **Subtraction:** Same as Addition (use of instead of +)
- ➤ **Multiplication:** '*' when multiplication is possible(i.e., row dimension of one equals column dimension of other). Use '.*' when dimensions do not agree. Also known as element by element multiplication.
- **Division:** X = Same as multiplication (use of / and ./). Moreover, $A \setminus B$ solves for X in A*X = B and X = B/A solves for X in X*A = B.
- 2-D Plotting: After declaring syms x (x as a symbol), and y = f(x), we can use directly ezplot(y) (easy plot) to plot y = f(x). Different attributes of ezplot can be used (using set command) to make graph more fancy or simple. plot(x,y) function can also be used to plot graph but before that we have to initialize x and y as arrays.
 3-D Plotting: 3-D plotting can be used in same way as above but functions change respectively as ezsurf(z) (where z is a function of x and y) and plot3(x,y,z) (where are x,y and z are initialized arrays)
- **Symbolic Math Toolbox** is used to plot, solve and manipulate symbolic math equations. A symbol is declared by using 'syms' keyword. In just above part, we can see how it can be used to plot 2-D and 3-D Functions. Solving can be done using 'solve' command ('vpasolve' solves numerically but 'solve' solves symbolically). Example: solve(x^2-1) will give x = -1,1 as solutions of x.

Question II.

A = [1 3 5 7 9 11 13 15;2.5 2 1.5 1 0.5 0 -0.5 -1;0.25 0.5 1 2 4 8 16 32]

Let A*B = C

Then C = [1 7 13;2.5 1 -0.5;0.25 2 16]

Hence, command to find B is:

 $B = A \setminus C$

Input and Output Images below:

```
Editor - D:\VIT\MATLAB\Refined\ans3.m
Command Window
  >> A = [1 3 5 7 9 11 13 15;2.5 2 1.5 1 0.5 0 -0.5 -1;0.25 0.5 1 2 4 8 16 32]
 A =
     1.0000 3.0000 5.0000 7.0000 9.0000 11.0000 13.0000 15.0000
     2.5000 2.0000 1.5000 1.0000 0.5000
                                              0 -0.5000 -1.0000
     0.2500 0.5000 1.0000 2.0000 4.0000 8.0000 16.0000 32.0000
  >> C = [1 7 13;2.5 1 -0.5;0.25 2 16]
  C =
     1.0000 7.0000 13.0000
     2.5000 1.0000 -0.5000
    0.2500 2.0000 16.0000
  >> B = A\C
 B =
     1.0000 0.3445 -0.0766
         0
              0
         0
                0
                         0
         0
                 0
                         0
         0
                 0
                         0
         0 0.7943 0.7679
              0
                      0
        0
        0 -0.1388 0.3086
fx >>
```

Question III.

MATLAB Code

```
Editor - D:\VIT\MATLAB\Refined\ans3.m
  ans3.m × ans4.m × +
      %Program for Question 3 - 16BCE0783
1
     n = input('Enter the value of n = ');
      list = []; %Creating empty array
     c = 0; %Initializing Counter
5 - - while n~=1
          if rem(n,2)==0
7 -
               c = c + 1;
8 -
              f = n/2;
9 -
               n = f;
               list(c) = f;
10 -
11 -
          else
12 -
               c = c + 1;
              f = (3*n) + 1;
13 -
14 -
               n = f;
15 -
               list(c) = f;
16 -
           end
      ∟end
17 -
18 -
       list
19 -
       disp(['Number of steps is: ',num2str(c)])
```

Input and Output:

Z Editor - D:\VIT\MATLAB\Refined\ans3.m									•	
Command Window Enter the value of n = 783										
Enter the value of $n = 783$										
list =										
Columns 1	Columns 1 through 9									
2350	1175	3526	1763	5290	2645	7936	3968	1984		
Columns 10	through 18									
992	496	248	124	62	31	94	47	142		
Columns 19	through 27									
71	214	107	322	161	484	242	121	364		
Columns 28	through 36									
182	91	274	137	412	206	103	310	155		
Columns 37	through 45									
466	233	700	350	175	526	263	790	395		
Columns 46	through 54									
1186	593	1780	890	445	1336	668	334	167		
Columns 55	through 63									
502	251	754	377	1132	566	283	850	425		

	Editor - D:\VIT\MATLAB\	Refined\ans3.m							6	
Coi	mmand Window									
	502	251	754	377	1132	566	283	850	425	
	Columns 64 through 72									
	1276	638	319	958	479	1438	719	2158	1079	
	Columns 73 through 81									
	3238	1619	4858	2429	7288	3644	1822	911	2734	
	Columns 82 through 90									
	1367	4102	2051	6154	3077	9232	4616	2308	1154	
	Columns 91 through 99									
	577	1732	866	433	1300	650	325	976	488	
	Columns 100 through 108									
	244	122	61	184	92	46	23	70	35	
	Columns 109 through 117									
	106	53	160	80	40	20	10	5	16	
	Columns 118 through 121									
	8	4	2	1						
	Number of steps is: 121 $f_{\xi} >>$									

Question IV.

```
Editor - D:\VIT\MATLAB\Refined\ans4.m
   ans4.m × +
 1
       %Program for Question 4 Fibonacci Numbers - 16BCE0783
       a = 0; b = 1;
 2 -
       n = input('Input the number of terms: ');
 3 -
       sum = 0; %Initializing Total Sum
     - for i = 1:n
 6 -
            sum = sum+a;
 7 -
            t = a; %Lines 7 to 9 are for exchanging
 8 -
 9 -
            b = t+b;
10 -
      ∟end
11 -
       disp(['The sum of first ',num2str(n),' Fibonacci Numbers is ',num2str(sum)])
Command Window
  Input the number of terms: 783
  The sum of first 783 Fibonacci Numbers is 3.139243139476952e+163
  Input the number of terms: 18
  The sum of first 18 Fibonacci Numbers is 4180
f_{\underline{x}} >>
```

Question V.

```
Editor - D:\VIT\MATLAB\Refined\ans5.m
 ans5.m × +
        %Program for Question 5 - 16BCE0783
 1
 2 -
        th = 0:pi/25:2*pi;
 3 -
       x = 2 * cos(th);
        y = 2 * sin(th);
 5 -
      h = plot(x,y,'color','blue');
 6 -
       axis([-4 4 -4 4])
 7 -
       title('16BCE0783')
 8 -
       hold on
 9 -
     - for w=1:numel(th)
10 -
       i = (1*cos(th))+x(w);
11 -
       j = (1*sin(th))+y(w);
12 -
      k = plot(i,j,'color','green');
13 -
      ∟end
```


Question VI.

```
Editor - D:\VIT\MATLAB\Refined\ans6.m
  ans6.m × +
1
      %Program for Question 6 - 16BCE0783
      syms theta phi
3 -
     c = input('Enter the value of c: ');
      a = input('Enter the value of a: ');
5 -
      x = c+(a*cos(theta)*cos(phi));
6 -
     y = c+(a*cos(theta)*sin(phi));
7 -
     z = a*sin(phi);
8 -
     ezsurf(x,y,z,[0 2*pi])
Command Window
  Enter the value of c: 0
  Enter the value of a: 4
f_{x} >>
```

