Московский государственный технический университет имени Н. Э. Баумана

«Методы машинного обучения»

Отчет по

Лабораторной работе №4

Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей.

Выполнил: студент Егоров С. А. ИУ5-22М Проверил: доцент, к.т.н. Гапанюк Ю.Е.

Москва, 2020

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью трех подходящих для задачи метрик.
- 5. Постройте модель и оцените качество модели с использованием кросс-валидации. Проведите эксперименты с тремя различными стратегиями кросс-валидации.
- 6. Произведите подбор гиперпараметра К с использованием GridSearchCV и кроссвалидации.
- 7. Повторите пункт 4 для найденного оптимального значения гиперпараметра К. Сравните качество полученной модели с качеством модели, полученной в пункте 4.
- 8. Постройте кривые обучения и валидации.

Реализация задания

Часть 1. Предварительная подготовка данных

Очевидно, что все эти временные характеристики в таком виде нам не особо интересны. Преобразуем все нечисловые столбцы в числовые. В целом колонка UNIXTime нам не интересна, дата скорее интереснее в виде дня в году. Время измерения может быть интересно в двух видах: просто секунды с полуночи, и время, нормализованное относительно рассвета и заката.

```
#Преобразуем временные колонки в соответствующий временной формат:
data["Time"] = (pd
                    .to datetime(data["UNIXTime"], unit="s", utc=True)
                    .dt.tz convert("Pacific/Honolulu")).dt.time
data["TimeSunRise"] = (pd
                       .to datetime(data["TimeSunRise"],
                                    infer datetime format=True)
                       .dt.time)
data["TimeSunSet"] = (pd
                      .to datetime(data["TimeSunSet"],
                                   infer datetime format=True)
                      .dt.time)
data = data.rename({"WindDirection(Degrees)": "WindDirection"},
                   axis=1)
def time to second(t):
    return ((datetime.combine(datetime.min, t) - datetime.min)
            .total seconds())
df = data.copy()
timeInSeconds = df["Time"].map(time_to_second)
sunrise = df["TimeSunRise"].map(time to second)
sunset = df["TimeSunSet"].map(time to second)
df["DayPart"] = (timeInSeconds - sunrise) / (sunset - sunrise)
df = df.drop(["UNIXTime", "Data", "Time",
              "TimeSunRise", "TimeSunSet"], axis=1)
df.head()
```

Результат преобразования данных:

	Radiation	Temperature	Pressure	Humidity	WindDirection	Speed	DayPart
0	1.21	48	30.46	59	177.39	5.62	1.475602
1	1.21	48	30.46	58	176.78	3.37	1.468588
2	1.23	48	30.46	57	158.75	3.37	1.461713
3	1.21	48	30.46	60	137.71	3.37	1.454653
4	1.17	48	30.46	62	104.95	5.62	1.447778

```
df.dtypes
Radiation
                 float64
Temperature
                  int64
Pressure
                 float64
Humidity
                  int64
WindDirection
                 float64
                 float64
Speed
DayPart
                 float64
dtype: object
df.shape
(32686, 7)
```

Проверим набор данных на наличие пустых значений:

```
# Проверим наличие пустых значений
df.isnull().sum()
Radiation
Temperature
Pressure
                 0
Humidity
                 0
WindDirection
                 0
Speed
                 0
DayPart
                 0
dtype: int64
# Основные статистические характеристки набора данных
df.describe()
```

	Radiation	Temperature	Pressure	Humidity	WindDirection	Speed	DayPart
count	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000
mean	207.124697	51.103255	30.422879	75.016307	143.489821	6.243869	0.482959
std	315.916387	6.201157	0.054673	25.990219	83.167500	3.490474	0.602432
min	1.110000	34.000000	30.190000	8.000000	0.090000	0.000000	-0.634602
25%	1.230000	46.000000	30.400000	56.000000	82.227500	3.370000	-0.040139
50%	2.660000	50.000000	30.430000	85.000000	147.700000	5.620000	0.484332
75%	354.235000	55.000000	30.460000	97.000000	179.310000	7.870000	1.006038
max	1601.260000	71.000000	30.560000	103.000000	359.950000	40.500000	1.566061

Часть 2. Разделение данных.

```
X = df.drop("Radiation", axis=1)
y = df["Radiation"]
print(X.head(), "\n")
print(y.head())
   Temperature Pressure Humidity WindDirection Speed DayPart
                          59 177.39 5.62 1.475602
58 176.78 3.37 1.468588
0
            48
                   30.46
                               58
                   30.46
1
            48
                  30.46 58
30.46 57
30.46 60
30.46 62
                                                     3.37 1.461713
                                           158.75
           48
2
                                          137.71 3.37 1.454653
           48
3
                                           104.95 5.62 1.447778
            48
4
     1.21
0
     1.21
1
     1.23
2
3
     1.21
4
    1.17
Name: Radiation, dtype: float64
print(X.shape)
print(y.shape)
(32686, 6)
(32686,)
```

```
columns = X.columns
scaler = StandardScaler()
X = scaler.fit_transform(X)
pd.DataFrame(X, columns=columns).describe()
```

	Temperature	Pressure	Humidity	WindDirection	Speed	DayPart
count	3.268600e+04	3.268600e+04	3.268600e+04	3.268600e+04	3.268600e+04	3.268600e+04
mean	5.565041e-16	2.904952e-14	1.391260e-17	6.956302e-17	-9.738822e-17	5.217226e-18
std	1.000015e+00	1.000015e+00	1.000015e+00	1.000015e+00	1.000015e+00	1.000015e+00
min	-2.758117e+00	-4.259540e+00	-2.578560e+00	-1.724255e+00	-1.788859e+00	-1.855112e+00
25%	-8.229646e-01	-4.184734e-01	-7.316829e-01	-7.366250e-01	-8.233591e-01	-8.683240e-01
50%	-1.779139e-01	1.302504e-01	3.841386e-01	5.062367e-02	-1.787376e-01	2.279483e-03
75%	6.283995e-01	6.789742e-01	8.458578e-01	4.307058e-01	4.658840e-01	8.682924e-01
max	3.208603e+00	2.508053e+00	1.076717e+00	2.602741e+00	9.814329e+00	1.797910e+00

Часть 3. Модель ближайших соседей для произвольно заданного гиперпараметра K.

Параметр К возьмём равным 5.

```
test_model(reg_5)

mean_absolute_error: 55.39857905041605

median_absolute_error: 4.01700000000004

r2 score: 0.8677873476991447
```

Видно, что средние ошибки не очень показательны для одной модели, они больше подходят для сравнения разных моделей. В тоже время коэффициент детерминации неплох сам по себе, в данном случае модель более-менее состоятельна.

Часть 4. Использование кросс-валидации

Проверим различные стратегии кросс-валидации.

```
scores = cross_val_score(KNeighborsRegressor(n_neighbors=5), X, y,
                         cv=KFold(n splits=10), scoring="r2")
print(scores)
print(scores.mean(), "±", scores.std())
[0.83276085 0.5984654 0.83547149 0.75974839 0.76407458 0.81422383
 0.85420738 0.79432111 0.74927049 0.28234327]
0.7284886763598686 ± 0.16383980384698185
scores = cross_val_score(KNeighborsRegressor(n_neighbors=5), X, y,
                         cv=RepeatedKFold(n splits=5, n repeats=2),
                         scoring="r2")
print(scores)
print(scores.mean(), "±", scores.std())
[0.86237764 0.86301328 0.86540791 0.8721868 0.87241189 0.85995955
 0.85940263 0.86550803 0.87276485 0.86803623]
0.8661068822340072 ± 0.004814883174569271
scores = cross_val_score(KNeighborsRegressor(n_neighbors=5), X, y,
                         cv=ShuffleSplit(n_splits=10), scoring="r2")
print(scores)
print(scores.mean(), "±", scores.std())
[0.87920701 0.86987589 0.86841501 0.87145097 0.86677115 0.87814793
0.8725625   0.85537219   0.86709691   0.87171571]
0.8700615268168288 ± 0.0063094303682732335
```

Часть 5. Подбор гиперпараметра K

Очевидно, что для K = 1 на тренировочном наборе данных мы находим ровно ту же точку, что и нужно предсказать, и чем больше её соседей мы берём — тем меньше точность. На тестовом наборе данных картина сильно интереснее:

plt.plot(n_range, gs.cv_results_["mean_test_score"]);

Выходит, что сначала соседей слишком мало (высоко влияние выбросов), а затем количество соседей постепенно становится слишком велико, и среднее значение по этим соседям всё больше и больше оттягивает значение от истинного.

Проверим получившуюся модель:

```
reg = KNeighborsRegressor(**gs.best_params_)
reg.fit(X_train, y_train)
test_model(reg)
```

В целом получили примерно тот же результат. Очевидно, что проблема в том, что данный метод и так показал достаточно хороший результат для данной выборки.

Построим кривую обучения:

Построим кривую валидации:

