On Manifolds with Corners

Pavel Hájek

June 5, 2014

Motivation

- Prof. Dr. Kai Cieliebak, **Lectures on String Topology**; Universität Augsburg, WS 12/13. (Lecture Notes Available Online)
- To understand the details of Chas & Sullivan's construction of the **Loop Product**; String Topology (ARXIV:MATH/9911159)
- **Geometric Homology**: Replace standard simplexes by manifolds with corners such that intersections can be considered.

Geometric Homology

- Geometric Simplex [P, f]: P manifold, $f: P \rightarrow X$ continuous
- Boundary $\partial[P.f] = \sum_{i} [\partial_{i}P, \partial_{i}f], \quad \partial P = \bigcup_{i} \partial_{i}P$
- **Geometric Chain Complex** (P, ∂) with relations:

$$[-P, f] = -[P.f]$$

$$[P, f] = 0 \text{ if } [P, f] \text{ is degenerate}$$

$$[P, f] = [P_1, f|_{P_1}] + \ldots + [P_n, f|_{P_n}] \text{ if } P = \bigcup_{i=1}^n P_i$$

Tasks

- Carry out the construction in details.
- Prove $\mathcal{HP}(X) \simeq H(X)$.
- Define the loop product on $\mathcal{HP}(\mathbb{L}M)$.

What has been done...

Differential topology of manifolds with corners:

neat immersions / submersions
manifolds with embedded faces
transverse intersection and approximation
vector fields and collar neighborhoods
basic properties of decompositions
orientations

ullet Plan how to prove the tasks using the facts above + two conjectures about triangulations. (Not in the thesis)

Motivation

Manifolds with embedded faces = Manifolds with Corners such that the 1-faces are embedded manifolds with corners (and automatically manifolds with embedded faces)

Vector Fields Compatible with Boundary I

Vector Fields Compatible with Boundary I

• In a manifold with corners the *flow of a vector field* does not always exist.

Vector Fields Compatible with Boundary I

• In a manifold with corners the *flow of a vector field* does not always exist.

No integral curve exists at marked points in \mathbb{H}^2 and \mathbb{R}^2_+ , respectively.

Vector Fields Compatible with Boundary II

• Restrict to the class of *vector fields compatible with boundary*: The vector field X is either inward pointing or outward pointing or tangent to F at all points of F for any 1-face F.

Vector Fields Compatible with Boundary II

• Restrict to the class of *vector fields compatible with boundary*: The vector field X is either inward pointing or outward pointing or tangent to F at all points of F for any 1-face F.

Vector Fields Compatible with Boundary II

• Restrict to the class of *vector fields compatible with boundary*: The vector field X is either inward pointing or outward pointing or tangent to F at all points of F for any 1-face F.

• Then the flow $\psi:W\to P$ of X exists where $W\subset P\times\mathbb{R}$ is its not necessarily open domain.

Collar Neighborhoods I

Recall: Collar neighborhood of a 1-face F of a manifold with embedded faces P is an open neighborhood C(F) of F together with a diffeomorphism $\varphi_F: F \times [0,1) \to C(F)$.

Collar Neighborhoods I

Recall: Collar neighborhood of a 1-face F of a manifold with embedded faces P is an open neighborhood C(F) of F together with a diffeomorphism $\varphi_F : F \times [0,1) \to C(F)$.

Theorem (Collar Neighborhood Theorem)

Every 1-face F of a compact manifold with embedded faces P has a collar neighborhood C(F) such that the diffeomorphisms φ_i for different F_i commute on overlaps of domains and

$$C(F_1) \cap \ldots \cap C(F_n) = \bigsqcup_{\substack{H \text{ n-face of } P \\ H \subset F_1 \cap \ldots \cap F_n}} C(H)$$

where C(H) is a neighborhood of H diffeomorphic to $H \times [0,1)^n$ through $\varphi_1 \circ \ldots \circ \varphi_n$.

Collar Neighborhoods II

• The basic framework and tools to work with manifolds with corners are established.

• The basic framework and tools to work with manifolds with corners are established.

Remains to be proven:

 The basic framework and tools to work with manifolds with corners are established.

Remains to be proven:

• Triangulations T_i of some 1-faces F_i which agree on overlaps $F_i \cap F_j$ can be extended to a triangulation T of P.

• The basic framework and tools to work with manifolds with corners are established.

Remains to be proven:

- Triangulations T_i of some 1-faces F_i which agree on overlaps $F_i \cap F_i$ can be extended to a triangulation T of P.
- Given two triangulations T_1 , T_2 of P there is a third triangulation T_3 and a diffeomorphism $\psi:P\to P$ such that T_3 is finer than T_1 and $\psi(T_2)$.

Thank you for your attention !