Mechanics of Materials

Lecture 22 - Stress Concentration

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

17 November, 2020

schedule

- 17 Nov Stress Concentration
- 19 Nov Buckling
- 20 Nov Project 3 Due
- 1 Dec Bucking, Final Review
- 3 Dec Final Review, Problem Solving, HW 11 Due
- 8 Dec Final Exam (comprehensive, same format as other exams)

1

outline

stress concentration factors

3

stress concentration

- Our textbook splits the idea of concentration factors across multiple chapters
- **4.7**, 5.8, 6.9
- The basic idea of a stress concentration factor is that some geometry causes the maximum stress to be greater than the 'nominal' stress

stress concentration

- Stress concentrations occur when there is a sudden change in cross-sectional area
- Features such as holes and fillets will have a stress concentration factor

$$K = \frac{\sigma_{max}}{\sigma_{avg}}$$

Б

stress concentration

- The exact value of the stress concentration factor can be derived for simple shapes, but in practice it is usually looked up on a chart or figure
- The value of K depends on the ratio of the radius and depth of the feature relative to the total object depth

fillets

7

holes

If $\sigma_{allow} = 120$ MPa, find the maximum axial force, P.

9

stress concentration in torsion

- We can also have stress concentration in torsion
- For circular shafts, this is usually around a filleted shaft as shown in the next slide
- The maximum shear can be found with

$$au_{max} = K \frac{Tc}{J}$$

fillet

11

example 5.14

Determine the maximum stress in the shaft due to the applied torques. The shoulder fillet has a radius of r=6 mm

beams

- We can also have a stress concentration in a beam
- The maximum stress can be found with

$$\sigma_{max} = K \frac{Mc}{I}$$

13

fillet

notch

15

example 6.20

Determine the maximum normal stress for a steel bar with a shoulder fillet as shown.