FEDERATED LEARNING PROJECT REPORT TEMPLATE

First Last, email@address.com

ABSTRACT

This abstract provides a concise summary of the project, including the FL application, empirical graph modeling, variation minimization approach, and the FL algorithms used.

Keywords: Federated Learning, Networks, Personalized ML, Trustworthy AI

1. INTRODUCTION

Instructions (Remove before submission)

Introduce the background and motivation for your FL project:

- A real-life scenario motivating your FL application.
- Summary of state-of-the-art methods relevant to your project.
- Brief outline of the structure of your report.

2. PROBLEM FORMULATION

Instructions (Remove before submission)

Model your FL application as a FL network (see [1, Ch. 3]). In particular, clearly define and explain:

- Nodes: What real-world devices do they represent?
- Local Models: Describe the models used at each node.
- Loss Functions: Specify local loss functions for training.
- Edges: How are edges and their weights chosen?

3. METHODS

Instructions (Remove before submission)

The project requires you to apply GTVMinbased methods to the FL application modelled in Section 2. In this section you need to clearly state and explain:

- Your choice of variation measure.
- Your choice of FL algorithm and its message passing implementation.

4. NUMERICAL EXPERIMENTS

Instructions (Remove before submission)

Describe implementation details and analyze results:

- Data sources used.
- Model validation, selection, and diagnosis methods (see [2, Sec. 6.6]).
- Report training, validation, and test losses.

Important: Your report must include a zip archive containing a single Python script along with any necessary data files. Minimize the use of non-standard Python packages to ensure ease of execution and reproducibility.

5. CONCLUSION

Instructions (Remove before submission)

- Discuss whether the obtained results solve the problem satisfactorily.
- Identify limitations and suggest potential improvements.

6. REFERENCES

[1] A. Jung, Federated Learning: From Theory to Practice, Aalto, 2025. Available: https://github.com/alexjungaalto/ FederatedLearning/blob/main/
material/FLBook.pdf.

[2] A. Jung, *Machine Learning: The Basics*, Springer, 2022.