Теория Рамсея:

В достаточно большой структуре, об устройстве которой ничего не предполагается, можно найти подструктуру, устроенную некоторым регулярным образом.

полный хаос невозможен.

Пример: из шести людей всегда можно выбрать либо троих, попарно знакомых, либо троих, попарно незнакомых.

Теорема Рамсея

Обобщение:

- 1. пары людей (ребра графа знакомств) o наборы людей по k (k-гиперребра).
- 2. два цвета (знакомы-незнакомы) o d цветов.

подмножества множества A покрашены в цвет i.

3. будем искать подмножество заранее выбранной мощности, в котором все гиперребра одного цвета.

Определение. $N \in \mathbb{N}$ обладает свойством Рамсея $\mathcal{R}(k; m_1, \ldots, m_d)$, если для любой покраски всех k-элементных подмножеств M, |M| = N в d цветов $\{1, \ldots, d\}$ найдется номер i и подмножество $A \subseteq M$, $|A| = m_i$, т. ч. все k-элементные

Число Рамсея $R(k; m_1, \ldots, m_d)$: наименьшее из натуральных чисел, удовлетворяющих свойству $\mathcal{R}(k; m_1, \ldots, m_d)$.

Пример. Утверждение о шести людях: $R(2;3,3) \le 6$ (на самом деле =).

Теорема (Рамсея, 1930)

Для любых натуральных чисел $\{k; m_1, \ldots, m_d\}$ найдется $N \in \mathbb{N}$, обладающее свойством $\mathcal{R}(k; m_1, \ldots, m_d)$. Иными словами, число $R(k; m_1, \ldots, m_d)$ существует и конечно. Доказательство. Отметим, что:

- 1. $R(1; m_1, \dots, m_d) = \sum_{i=1}^d m_i d + 1 \ \forall m_1, \dots, m_d \in \mathbb{N}.$ Действительно, k = 1 покраска элементов множества.
 - Отсутствие одноцветного множества A мощности m_i и цвета $i \Leftrightarrow$ в цвет i покрашено не более чем m_i-1 элементов.
 - Это возможно для некоторого $i \Leftrightarrow$ всего элементов $\leq \sum_{i=1}^d m_i d$.
- 2. Если $\min(m_1, \ldots, m_d) < k$, то $R(k; m_1, \ldots, m_d) = \min(m_1, \ldots, m_d)$.
 - Т.к. при $m_i < k$ любое множество мощности m_i нам подойдет в качестве A.

Двойная индукция:

- **▶** по *k* (база 1.),
- ightharpoonup по $\sum m_i$ при фиксированном k (база 2.).

Предположим, что числа Рамсея конечны при меньших значениях k и при данном k при меньшем значении $\sum m_i$. Докажем, что конечно $R(k; m_1, \ldots, m_d)$.

Если $\min(m_1,\ldots,m_d) < k$, то доказано по 2.; пусть $\min(m_1,\ldots,m_d) \geq k$.

Обозначим $Q_1 = R(k; m_1 - 1, \dots, m_d)$; аналогично Q_i $(i = 2, \dots, d)$.

 Q_i существуют и конечны по индукционному предположению.

Положим $N = 1 + R(k-1; Q_1, \dots, Q_d)$. По индукционному предположению по k, N конечно.

Докажем, что $R(k; m_1, \ldots, m_d) \leq N$.

Рассмотрим N-элементное множество M, k-элементные подмножества которого покрашены в цвета от 1 до d.

Зафиксируем $a\in M$ и покрасим (k-1)-элементные подмножества $M\backslash a=M_1$ в d цветов: всякое $A\subset M_1$ мощности (k-1) красим в цвет множества $a\cup A$ в M.

Т.к. N-1 выбрано со свойством $\mathcal{R}(k-1;Q_1\dots,Q_d)$, то имеется $B\subseteq M_1$, $|B|=Q_i$, т.ч. все (k-1)-элементные подмножества B имеют цвет i. Без ограничения общности i=1. Тогда в B найдется (по определению Q_i):

- либо подмножество мощности m_i , все k-элементные подмножества которого имеют цвет i, для некоторого $i \in \{2, \ldots, d\}$;
- ightharpoonup либо подмножество мощности m_1-1 , все k-элементные подмножества которого имеют цвет 1.

В первом случае сразу имеем то, что нужно. Во втором случае имеем то, что нужно, после добавления к найденному подмножеству мощности m_1-1 элемента a.