HEREIN

PAGE FROM

D:

ADVANCE CONFIDENTIAL REPORT

No. 212

WIND-TUNNEL INVESTIGATION OF AN NACA LOW-DRAG TAPERED WING WITH STRAIGHT TRAILING EDGE AND SIMPLE SPLIT FLAPS

> By Thomas C. Muse and Robert H. Neely Langley Memorial Aeronautical Laboratory

QLASSELL DOUGLERS

This document contains chemical information exects a the National Peterso of the United States within the ಾಡಣಾಗಿತ ್ Unclassified - Notice Remarked 🕕 ಸಾರ್ವ 32.. 4/17/09 MINISTERNA FA 4 30% TOPASSONS chibited by โดยสา เพิ่มสำเราสะ is presente as and assuming and navay services of the United States, appropriate civilion officers and employees si the Federal Covernment who have a legitimate interest these in, and to United States citizens of known loyelty and discustion who of accounty must be informed thousal.

December 1941

WIND-TUNNEL INVESTIGATION OF AN NACA LOW-DRAG TAPERED WING WITH STRAIGHT TRAILING EDGE AND SIMPLE SPLIT FLAPS

By Thomas C. Muse and Robert H, Neely

SUMMARY

An investigation was conducted in the NACA 19-foot pressure wind tunnel of a tapered wing with straight trailing edge having NACA 66 series low-drag airfoil sections and equipped with full-span and partial-span simple split flaps. The airfoil sections used were the NACA 66,2-116 at the root and the 66,2-216 at the tip. The primary purpose of the investigation was to determine the effect of the split flaps on the aerodynamic characteristics of the tapered wing. Complete lift, drag, and pitching-moment coefficients were determined for the plain wing and for each flap arrangement through a Reynolds number range of 2,600,000 to 4,600,000.

The results of this investigation indicate that values of maximum lift coefficient comparable to values obtained on tapered wings with conventional sections and similar flap installations can be obtained from wings with the NACA low-drag sections. The increment of maximum lift due to the split flap was found to vary somewhat with Reynolds number over the range investigated. The The top of the wing alone is 1.49 at a Reynolds number of max

4,600,000; whereas with the partial-span simple split of lapoitoris 2,22 and with the full-span arrangement, 2.80. and the state of the second of the second of the second

Observations of wool tufts on the wing indicate that the addition of split flaps did not appreciably alter the pattern of the stall; even though the stall did occur more abruptly than with the wing alone.

INTRODUCTION

Control of the Contro

医精神性皮肤性 医乳头 医神经性 有一点 人名德里马斯

State of poster despective, as The NACA is undertaking an extensive investigation in the 19-foot pressure tunnel to determine the effect of various high-lift devices on the aerodynamic characteristics of representative wings having NACA low-drag airfoil sections. This investigation is to include tests of wings. of different plan form equipped with various types of trailing-edge flaps; the effects of a fuselage will be included after the wing-alone tests. Table I gives an outline of the models to be tested in the program. The aerodynamic characteristics of a rectangular NACA 66,2-216 wing with full-span and partial-span split flaps of various chords were presented in a previous report (reference 1), the first of the series.

The present paper constitutes the second part of the series. In it are presented the results of wind-tunnel tests of full-span and of partial-span simple split flaps on a tapered wing with straight trailing edge, constructed to NACA low-drag airfoil sections.

65 worker gringfrom 216 thip

MODELS

Plain Wing

The plain wing, or basic model, (fig 1) was constructed of laminated mahogany to NACA low-drag airfoil sections. These sections are the 66,2-116 (table II) for the root and the 66,2-216 (table III) for the construction tip. The wing plan form consists of a square center section and tapered outboard sections with elliptical tips. The trailing edge is a straight-line continuation of the square center section; whereas the leading edge is swept back at an angle of 12.5°. The wing has a geometric twist, or washout, of 1.5° between the outboard edge of the center section and the extreme wing tip. This angle, which corresponds to an aerodynamic twist of approximately 2.5°, was used to give improved stalling characteristics.

While no dihedral is used, a small dihedral effect is obtained by having the wing upper surface between the 40-percent-chord point of the root section and the 50-percent-chord point of the construction tip lie in a horizontal plane. In as much as the span, aspect ratio, and area are 15 feet, 7.0, and 32.14 square feet, respectively, or identical with those of the rectangular wing described in reference 1, a fair comparison of the relative merits of the two wings can be made. An "aerodynamically smooth" surface was obtained by spraying the wing with a number of coats of lacquer and then rubbing until smooth with No. 500 watercloth.

and the eight of the tradition and Flaps. The many

The flaps were of the simple split type with a chord 20 percent of the wing section chord. These flaps were made of 1/16-inch galvanized sheet steel curved to approximate the contour of the flap portion of the wing lower surface. The desired deflections were obtained by inserting appropriately shaped wooden blocks between the wing lower surface and the flap. For the partial-span condition the flaps extended over 53 percent of the wing span. (See fig. 1.) This span was determined as the distance between the inboard ends of 0.37 b/2 ailerons, should they be used. The full-span arrangement extended along 90 percent of the entire wing span.

TESTS

The tests were conducted in the NACA 19-foot pressure wind tunnel at an absolute pressure of 35 pounds per square inch with the model mounted on the standard wing supports. (See fig. 2.)

Since the aerodynamic characteristics of the plain wing are the basis for comparing the merits of the various high-lift devices, a set of complete polar runs was made for this condition. For these runs the angle of attack was varied from -4° through the stall for dynamic pressures of 20, 40, and 70 pounds per square foot, corresponding to test Reynolds numbers of about 2,600,000; 3,700,000; and 4,600,000; respectively. Simultaneous measurements of lift and drag were recorded by a six-component electrical recording balance.

For the partial-span-flap arrangement complete polar runs were made for flap deflections of 15°, 30°, 45°, and 60° at dynamic pressures of 20, 40, and 70 pounds per square foot. Complete polar runs were made with the full-span-flap installation at the same dynamic pressures as for the partial-span arrangement but only for the 60° deflection.

In order to provide a basis for a comparison of the aerodynamic characteristics obtained in these tests with section characteristics obtained in other two-dimensional-flow tests, momentum surveys for the plain-wing condition were made in the wing wake at dynamic pressures of 40 and

70 pounds per square foot. Measurements were made at approximately 6-inch intervals along the span except near the tips, where a closer spacing was used. The surveys were made at an angle of attack of 1°, which previously had been found to give the minimum drag.

In order to study the wing stalling characteristics, wool tufts were fastened with cellulose tape to the wing upper surface at the 20-, 30-, 40-, 60-, 70-, 80-, and 90-percent-chord points. These tufts were arranged in parallel rows spaced approximately 7 inches apart along the wing span. Slightly closer spacing was used near the tips. Sketches were made from visual observations of the behavior of the tufts at various angles of attack through the stall for the plain wing and also for the wing with partial-span flap deflected 60°. The tuft observations were made at a dynamic pressure of 70 pounds per square foot.

RESULTS AND DISCUSSION

Coefficients

The data presented in this report are given in standard nondimensional coefficient form corrected for the effect of model support tare and interference and for jetboundary effects.

The coefficients and symbols used herein are defined as follows:

- C_L lift coefficient (L/qS)
- C_{D} drag coefficient (D/qS)
- $\frac{c_{m_{\underline{c}\,\underline{s}}}}{4} \ \ \, \begin{array}{c} \text{pitching-moment coefficient about the quarter-} \\ \text{chord point of the plain wing root section} \\ \text{(M/qS$\,\overline{c}\,$)} \end{array}$
- CD wing profile-drag coefficient
- c_{d_0} section profile-drag coefficient (d_0/qc)

where

- q dynamic pressure in the undisturbed air stream $(1/2 \rho V^2)$
- S wing area (32.14 sq ft)

- \overline{c} mean wing chord S/b (2.14 ft)
- cs root section wing chord
- c section chord
- b wing span (15 ft)
- ρ mass density of air, slugs per cubic foot

and

- $\delta_{\mathbf{f}}$ flap deflection measured between the lower surface of the wing and the flap
- a angle of attack of root chord corrected for jetboundary interference

Commence of the commence of th

ng star begand godern i Americana da Kristin et som en en ekst Kulturatur et som gjar ekstern star i stor en et som kristin

- R test Reynolds number based on mean wing chord $(\rho V \overline{c}/\mu)$
 - μ coefficient of viscosity

Precision

A. A. Sarahara C. State Secret

The accidental experimental errors as determined from repeat tests are believed to be within the following limits:

$$c_{m_{\frac{c_s}{4}}}$$

$$c_{D}(c_{T}=0)$$
 ±0.0003

$$c_{D(C_T=1)}$$
 ±0.0006

$$c^{D}(c^{T}=5)$$
 ∓ 0.005

 $^{\text{Cd}} \circ (c_l = 0)$ wake $^{\pm 0.0002}$

±0.5°

Flap position ±0.002c

The coefficients given are corrected for the effect of model support tare and interference as determined for the plain wing. No additional tare tests were made for the flap installations, as the tare increment is believed to be small.

Plain Wing

The aerodynamic characteristics of the plain wing as determined in these tests are given in figure 3 as the zero-flap-deflection condition. Examination of the lift curves reveals that the slope $dC_L/d\alpha$ is constant up to the point where $C_L=0.5$; from this point the slope gradually decreases up to the stall. Of significance is the absence of any irregularity around $C_L=0.3$ as shown by the rectangular wing tests reported in reference 1. Further comparison with the rectangular wing shows that the tapered wing has a greater slope of the lift curve and a higher angle of stall, resulting in an increase of $^{\rm CL}_{\rm max}$.

In Loworay Airful Book The pitching-moment coefficient was computed about the quarter-chord point of the root section in the interest of simplicity since the aerodynamic center varies somewhat with C_L and R. The moment coefficient curves have a negative slope and exhibit little scale effect.

The section profile-drag coefficients determined by the momentum-loss method are shown in figure 4 for two values of Reynolds number. The minimum wing profile-drag coefficient $C_{D_{O_{min}}}$ obtained by this method at a Reynolds

number of 3,750,000 is 0.0038, which is in good agreement with the value of 0.0041 obtained by the force measurements.

Wing with Flaps

The aerodynamic characteristics of the wing with flaps are plotted against angle of attack in figure 3.

The slopes of the lift curves, in general, appear to be consistent and uniform almost to the stall. The peaks of the curves, however, show wide variation, ranging from sharp breaks to almost flat—top curves. At present no complete explanation of the differences is available. The curves do indicate a pronounced increase in the angle of stall with increase of Reynolds number.

As was true for the plain wing, the pitching-moment coefficients about the quarter-chord point of the root

section have a negative slope $-\frac{\frac{m_{C_S}}{4}}{d\alpha}$ when plotted

against angle of attack. Little variation with Reynolds number is indicated, however. On the other hand, a large increase, negatively, is shown by the pitching-moment coefficients as the flap deflections are increased.

The variation of $c_{L_{max}}$ with Reynolds number is

given in figure 5 for both the wing alone and the wing with flaps. These curves show some scale effect for both conditions and an increase of $c_{L_{\max}}$ over similar instal-

lations on the rectangular wing described in reference 1. The increment of maximum lift coefficient Δc_{L} occabines

sioned by the use of the flaps indicates, a change with Reynolds number as shown by figure 6. This result is somewhat different from that obtained with the rectangular wing mentioned previously where little change was noted.

The variation of $\Delta \mathtt{C}_{\mathtt{L}_{\mathtt{max}}}$ with flap deflection is

given in figure 7. At the maximum deflection tested (60°) , the curve is still increasing somewhat; however, it is beginning to level off, indicating that higher deflections would give only a small increase in the maximum lift coefficient.

Stalling Characteristics

The stall diagrams for the plain wing and for the wing with partial-span split flap deflected 60° are given in figures 8 and 9. These diagrams show that the stall begins on the rear portion of the wing directly behind the wing supports from whence it spreads forward and out-

ward with increase of angle of attack. The addition of the flap delays the beginning of the stall somewhat, but complete stall develops more rapidly and occurs at a lower angle of attack than with the plain wing. As was true of the rectangular low-drag wing described in reference 1, the addition of the flap induces an appreciable inflow over that portion of the wing normally occupied by the ailerons. It may be noted that the right side of the wing appears to stall first, but this may be due to a slight asymmetry of the wing rather than something of an aerodynamic nature. Moreover, since the investigation was conducted in a closed-throat wind tunnel, the results should be somewhat conservative compared with those in free air.

CONCLUSIONS

- l. The addition of a simple split flap to a tapered wing having NACA low-drag sections gives aerodynamic characteristics that compare favorably with those obtained with similar installations on wings having conventional sections.
- 2. The increment of maximum lift coefficient due to the split flap on the wing tested was found to vary some-what with Reynolds number. The minimum effect occurs with the smallest flap deflection and increases as the deflection increases.
- 3. The $\rm C_{L_{max}}$ of the wing alone is 1.49 at a Reynolds number of 4,600,000; whereas with the partial-span splitflap arrangement the value is 2.22 and with the full-span arrangement, 2.80.
- 4. The plain wing appears to have favorable stalling characteristics that are not appreciably altered by the addition of a split flap, even though complete stall occurs earlier with the flap.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va.

REFERENCE.

1. Muse, Thomas C., and Neely, Robert H.: Wind-Tunnel Investigation of an NACA 66,2-216 Low-Drag Wing with Split Flaps of Various Sizes. NACA A.C.R. Sept. 1941.

TABLE 1.- WING MODELS AND SUMMARY OF TEST RESULTS FOR HIGH-LIFT DEVICE AND STALLING INVESTIGATION IN THE NACA 19-FOOT PRESSURE TUNNEY.

Model	Wing	NACA airfo	il section	Geo- metric	High-lift device	high-lift device of Aerodynamic characteristics												
		Root	Tip	twist (deg)		(deg)	C _{Lmax} &C _{Lmax}		α C _L max		c _D o	C _{mCA} 4			Reynolds			
DNIW							1				(ae)	g)	wake	C _L =		C _{Lmax}	,	mumber
							Partial (a)	Full (b)	Parti a l	Full	Partial	Full		Partial	Full	Partial	rull	
	O(NACA)	66,2-216	66,2-216	0			1.40		-		20.6		0.0038	-0.005		1 '		4.6 × 10 ⁶
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Í	-		0.10c split flap	60	1.84	2.15		ł	20.0	18.0				085.	1	4.6
h					.20c split flap	60		2.53		i	17.8	18.4		- '		1	225	4.6 4.6
1					.30c split flap	60	.2.07	2.52	.67	1.12	16.8	17.2				150	210	
	I(NACA)	66,2-116	66,2 -2 16	·1½			1.49			,	22.2		0.0040	-0.030		-0.210		4.6
					0.20c split flap	60	ļ	2-80	0.73	1.31	21.2	21.4				460	1 - '	4.6
	Za M	. Jan 7 m	Day of		.30c Fowler flap		1	3,57	17, 0		22.2			-	gen Carlo		4.260	
- C _S		18 000	gott hat		.25c slotted flag	·	2,42	2.97	1 '''		22.0	21.5	1	-			8/5	
·					.200 plain riap		2.11	12.73	.62	, 74	21.0	20.6		 		470	550	4.7
	II(NACA)	66,2-116	66,2-216	-1½				ļ										,
					0.20c split flap	ľ												
					.25c slotted flag						-							,
					.20c plain flap]							1					
	II (Navy)	23015	23009	0							†				1			
					Maxwell slot											1		
					Split flap													
				<u> </u>	Slotted flap	ļ		+	 		-		 	+	 		 	4,6
	III(Mavy)	23015	23009	0			1		, , ,	١,								7.6
			ļ	 	0.20c split flap	60	2.26	12,65	.64	17, 0.	3	+	+	+	+	+	+	3.1.4
20,	VI(Navy)	23015	23009	0	0.20c split flap		-											
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	luli com	+	CEOG Phile Ligh	 		+	+	-	-	+	+	+	1	 	†	
	VII (Navy)) 4416.5R	4409R	-3	0.000 144 63		-								ľ			
			<u> </u>	<u></u>	0.20c split flap								1				1	!

b Partial-span flap extends over 0.53b. Full-span flap extends over 0.90b.

Table T

TABLE II. ORDINATES FOR NACA 66,2-116 AIRFOIL SECTION [Stations and ordinates in percent of wing chord]

10 / 10 march - SR 2/2

as dem shock QBE 1/0/43

a = . 6 as ma	p and Armi Sharill	OC 10 E 1/8/4					
Upper	surface	Lower surface					
Station	Ordinate	Station	Ordinate				
0 .435 6176 12.4 .897 12.4 .8990 12.4 .9913 19.4 .9913 24.9913 24.9913 44.989 100.0091 85.0091 85.000 95.000 100.009	0111234466788888888765421 2482986595504676514542976 2482986595504676514542976 2482986595504676514542976 2482986945421344239998539	0 1257000000000000000000000000000000000000	0 11.62861476895008739381150073426147689500873938115				

TABLE III .- ORDINATES FOR NACA 66,2-216 AIRFOIL SECTION [Stations and ordinates in percent of wing chord]

m. april 3R - 2/2

a = . 6 as near as I am their RAE 1/6/43 I swals ACRAHIS

Upper	surface	Lower surface				
Station	Ordinate	Station	Ordinate			
0 .7691 1.794 7.7984 7.785 19.785 19.886 19.886 19.889 19.	216513808588611404895572 21586106808588611404895572 21586788888611404895572 216788888611404895572	0	29879142010223368446777752 11302335420102233687677752 113023354555666666554433			

Type this of the will the team of the team

BY ATHEYING THE 66,2-016 ORDINATES TO THE GOST MENN LINE BUTTOSOME OTHERMLINE. E. M. G. 1712/42...

Figure 1.- The NACA 66 series low-drag tapered wing.

Figure 2.- The NACA 66 series low-drag tapered wing with split flaps on the standard wing supports in the 19-foot pressure tunnel.

(a) R = 2,600,000.

Figure 3(a to c).- Aerodynamic characteristics of an NACA 66 series low-drag tapered wing with 0.20c split flap.

Figure 3(b).

Figure 3c.

(a) R = 4,750,000. (b) R = 3,750,000. Figure 4.- The variation of section profile-drag coefficient along the span of an NACA 66 series low-drag tapered wing.

Figure 5.- Variation of maximum lift coefficient with Reynolds number of an NACA 66 series low-drag tapered wing with a 0.20c split flap.

Figure 6.- Variation of increment of maximum lift coef-ficient with Reynolds number of an NACA 66 series low-drag tapered wing with 0.20c split flaps.

Figure 7.- Effect of flap deflection on the increment of maximum lift coefficient for a 0.20c partial-span split flap on an NACA 66 series low-drag tapered wing.

Fig, 9