

Predictive models for Service Life of Architectural Waterborne Coatings under Multi-factor Accelerated Weathering Exposures.

Yiyang Sheng, Donghui Li, Noah Tietsort, Laura S. Bruckman, Roger H. French Case Western Reserve University SDLE Center I 10900 Euclid Avenue, Cleveland, OH 44106

Introduction

- -exterior waterborne acrylic coating systems concern the durability significantly.
- -The goal of this study is to investigate the effect of TiO₂ pigments on the photodegradation of polyacrylate system and build up a structural equation modeling for lifetime prediction
- -use FTIR to tracks the functional group changes as a material degrades.
- -build a R package to analyze the data from different FTIR data -use semi-gSEM to predict the degradation.

Degradation mechanisms

Mechanism 1: UV light strikes a TiO_2 particle, exciting its valence electrons, giving them a chance to escape the band gap of TiO_2 . These escaped electrons will act as free radicals to break bonds within surrounding polymer.

Mechanism 2: Water is present, and excited electrons ionize the water into very reactive *H H* +and *O O* -ions, which quickly break down surrounding polymer.

Results and Discussion

baseline correction:

- remove the background noise of impurity in the air. Normalization:
- bring the loudest peaks of the signal up to the highest level **Deconvolution:**
- decompose the peaks that overlap with each other, extract information about the "hidden peak".

PCA:

- reduce the multi-dimensionality of the FTIR data
- into its most dominant components or scores
- maintaining the relevant variation between the data points.

To predict the degradation mechanism with quantitative FTIR data

-mixed/fixed effects models and netSEM models are built to find the relationship between measured responses and length of exposure time under different exposure conditions.

1.Original data with different baseline level 2.Baseline correction

3. Normalization & peak ratio calculation

5.Principle Component Analysis

4.Deconvolution

6. Modeling methodology

Define peaks(literature review)

Baseline correction

Normalization

Deconvolution

PCA Analysis

ANOVA testing

Peak Ratio, FWHM, Integral

Mixed-Fixed Effect

NetSem Model

Conclusion

- 1.FTIR data shows the degradation tendency of carbonyl group along with exposure
- 2. after baseline correction/ normalization/deconvolution, PCA analysis, the curves on the FTIR data are smooth, on the same baseline and easy to be quantitative.
- 3. Calculate peak ratio/full width at half maximum/integral of a Gaussian function in R. Those responses are very important to present the degradation tendency.
- 4. Peak ratio of carbonyl group and C-O group, as mechanism in semi-gSEM modeling, shows relative strong relationship with stress, which is time of illumination

Future Work

1.Use other general model to find correlation between predictors and response

References

- 1.Allen, N. S., et al. "The durability of water-borne acrylic coatings." Polymer degradation and stability 47.1 (1995): 117-127.
- 2. Bruckman, Laura S., et al. "Statistical and domain analytics applied to PV module lifetime and degradation science." Access, IEEE 1 (2013): 384-403.
- 3. Abdulkerim Gok ,Laura S. Bruckman.,et al. "Predictive models of poly(ethylene-terephthalate) film degradation under multi-factor accelerated weathering exposures."

Acknowledge

- SURES funded by Case Alumini Association
- 2. SDLE