

CR(III)



FIG. 1(a)



FIG. 1(c)



FIG. 1(e)



Cr(VI) Isotope distribution of the unspiked sample ☐ Cr(III) 140 spiké Amount of isotope (pmole) 120 ☑ Cr(III) 100 naturál 80 Cr(VI) 60 spike 40 ☑ Cr(VI) 20 natural 0 50 52 53 Isotope

FIG. 1(b)



FIG. 1(d)



FIG. 1(f)



FIG. 2(a)



FIG. 2(b)



FIG. 3





FIG. 5

0.6. FIG. CLASS SUBCLASS

|              | _        |        |
|--------------|----------|--------|
|              | Sample 4 |        |
|              | Sample 3 | SIDMS  |
|              | Sample 2 | 7196A  |
|              | Sample 1 | 9      |
| Hecovery (%) | )<br>}   | FIG. 6 |

SURCLASS

CLASS

0.6. Fi6.

APPROVLD





|        | H                                               |   |             |                                           |              | 2 |  |  |
|--------|-------------------------------------------------|---|-------------|-------------------------------------------|--------------|---|--|--|
|        | ı                                               |   |             |                                           |              | 4 |  |  |
|        |                                                 |   |             | - CO. |              | က |  |  |
|        |                                                 |   | ·           |                                           |              | 7 |  |  |
| 1-000  |                                                 |   |             |                                           |              | - |  |  |
| 9      | 72                                              | 4 | <del></del> |                                           | <del>-</del> | 0 |  |  |
| (% uị) | Percentage of Cr(III) Oxidation to Cr(VI) (in % |   |             |                                           |              |   |  |  |

D 0.6.F16.

15 Page 15 Pag

FIG. 10