EMA/ME 601 - Homework 3

A new space vehicle, called the General Purpose Spacecraft (GPSC), is being developed by the Jet Propulsion Lab (JPL) to perform a Lunar-surveying mission. The corresponding FEM is illustrated in Fig. 1. The NASTRAN bulk data deck is listed in Table 1 and a listing of the spacecraft's rigid body mass properties, produced by NASTRAN's Grid Point Weight Generator module, is presented in Table 2. Note that the units are weight. A test article has been developed and a modal survey is being planned. The JPL engineers need some help, but they readily know that your very esteemed and famous professor is very busy and important, and could never be bothered with their trivial problems. So, they come to you for help in selecting target modes and sensor locations. A MATLAB file, called "gpsc.mat" has been placed on Dr. Dan's class webpage. It contains a mass and stiffness matrix, "M" and "K", respectively, for a reduced representation of the GPSC, which is not constrained in any way. During the test, the spacecraft will be pinned at the base of the legs pictured below. Vector "DOF1" contains a listing of the dof and their order for "M" and "K". Thirty fixed interface FEM modes, "PHI", have already been supplied and do not have to be recomputed. Vector "DOF2" contains a listing of the dof and their order for "PHI". Vector "w" contains a listing of the corresponding modes in Hertz. I suggest that you reorder all matrices to give a numerically ascending sort. Make listings, plots, etc., to show details of computations and summarize results. Show listings of all MATLAB functions used in this analysis.

- 1. Generate a MATLAB function to compute *Effective Mass* and use it to rank the fixed interface modes of the spacecraft. Select a set of target modes based upon each of them having at least 5.0% effective mass in any of the six rigid body directions. Determine the total effective mass for your target mode set in each rigid body direction and comment on the sets dynamic completeness.
- 2. The target modes identified in task 1 will have to be identified during the modal test and then later correlated with the FEM representation. Generate MATLAB functions to rank candidate sensor locations based on *Modal Kinetic Energy* and *Effective Independence*. Pick a single initial candidate set of sensor locations and use your MATLAB functions to select a final set for the test that will accurately identify your target modes using each of the sensor placement techniques. The final sensor sets should contain ($n_{target} + 5$) locations.

3. Use the *Modal Assurance Criterion* and any other measure that might be appropriate to determine which of the two sensor sets produces the most independent target mode partitions and the greatest target mode response signal strength.

Fig. 1. GPSC finite element model.

aset2.datl Thursday, October 24, 1996 3:05 PM

1													
1	GENERAL	PURPOSE SE	PACECRAFT (C	GPSC) - FEM				OCTOBER	24, 1996	CSA/NASTRAN	2/08/96	PAGE 20	
	FINITE I	ELEMENT MOD	DEL (FEM)					MATRIX	PROCESSING	FOR SUPERELE	MENT 0	(RESIDUAL)	
0	NORMAL N	MODES ANALY	/SIS						′				
0					A	DISPLACE	MENT SET						
0		-1-	-2-	- 3	-4-	-5-	-6-	-7-	-8-	-9-	-10-		
	1=	35-1	35-2	35-3	42-1	42-2	42-3	36-1	36-2	36-3	50-1 =	10	
	11=	50-2	50-3	43-1	43-2	43-3	46-1	46-2	46-3	47-1	47-2 =	20	
	21=	47 –3	39-1	39-2	39-3	41-1	41-2	41-3	25-1	25-2	25-3 =	30	
	31=	33-1	33-2	33-3	34-1	34-2	34-3	26-1	26-2	26-3	37-1 =	40	
	41=	37-2	37-3	28-1	28-2	28-3	31-1	31-2	31-3	38-1	38-2 =	50	
	51=	38-3	30-1	30-2	30-3	40-1	40-2	40-3	23-1	23-2	23-3 =	60	
	61=	24-1	24-2	24-3	27-1	27-2	27-3	29-1	29-2	29-3	32-1 =	70	
	71=	32-2	32-3	19-1	19-2	19-3	20-1	20-2	20-3	21-1	21-2 =	80	
	81=	21-3	22-1	22-2	22-3	10-1	10-2	10-3	18-1	18-2	18-3 =	90	
	91=	2-1	2-2	2-3	3-1	3-2	3-3	11-1	11-2	11-3	5-1 =	100	
	101=	5-2	5-3	13-1	13-2	13-3	14-1	14-2	14-3	6-1	6-2 =	110	
	111=	6–3	9-1	9-2	9-3	17-1	17-2	17-3	1-1	1-2	1-3 =	120	
	121=	16-1	16-2	16-3	15-1	15-2	15-3	8-1	8-2	8–3	7-1 =	130	
	131=	7-2	7–3	4-1 .	4-2	4-3	12-1	12-2	12-3				

Table 1. NASTRAN Bulk Data Deck

G E	NER	A L P	U R P O	SE S	PACE (CRAF	T M O	DEL	(G P S C
Last	modif	D	an Kammei	17	-May-94 '-Oct-96	Transfo	rmed to	CSA	
Conc	entrat	ed mass	data						
	-								
			4		6	. 7	8	9	
			CID						
			10						
			10						
)INIMZ	1003	40	10	250.					
Loca	l coor	dinate :	systems						
	CID	RID	A1	A2	A3	B1	B2	В3	
DRD2R	10	0	0.	0.	0.	0.	0.	1.	
		0.							
DRD2C		10		0.	120.	120.	0.	120.	
	0.	0.	0.						
			 CP	X1	X2	x3	CD		
		110		27.1	2321	213	CD		
		1			-14 0.000		10		
RID					500 0.000		10		
RID					569 12.7		10		
RID RID		4 5			.43 -12.7 569 -12.7		10 10		
RID		6		223 2.7E			10		
RID		7			.50 0.000		10		
RID		8			.00 -18.0	042	10		
RID		9	20 58.	628 347	.43 12.7	758	10		
RID		10			000 0.000		10		
RID		11			341 24.3		10		
RID		12			.66 -24.3		10		
RID		13		844 26. 149 3.7E	341 -24.3		10		
RID RID		14 15			-14 34.4 .00 0.000		10 10		
RID		16			.00 -34.4		10		
RID		17			.66 24.3		10		
RID		18			000 0.000		10		
RID		19			520 48.0		10		
RID	:	20			520 48.0		10		
		21	10 39	520 -39.	520 48.0	200	10		
RID RID		22		520 -39.			10		

23 10 3.8E-06 39.520 48.000

GRID

10

GRID	24	10	39.520-	3.8E-06	48.000	10		
GRID	25	10	39.520	39.520	30.000	10		
GRID	26	10 -	39.520	39.520	30.000	10		
GRID	27	10 -	39.520	3.8E-06	48.000	10		
GRID	28	10	39.520	-39.520	30.000	10		
GRID	29	10-3	.8E-06	-39.520	48.000	10		
GRID	30	10-3	.8E-06	-51.520	30.000	10		
GRID	31	10 -	39.520	-39.520	30.000	10		
GRID	32	10 0	.00000	0.00000	48.000	10		
GRID	33	10 3	.8E-06	39.520	30.000	10		
GRID	34	10	39.520-	3.8E-06	30.000	10		
GRID	35			39.520		10		
GRID	36			39.520		10		
GRID	37			3.8E-06		10		
GRID	38			-39.520		10		
GRID	39			-39.520		10		
GRID	40			-63.520		10		
GRID	41			-39.520		10		
GRID	42			39.520		10		
GRID	43			3.8E-06		10		
GRID	44				0.00000	10		
GRID	45 46				0.00000 12.000	10 10		
GRID GRID	46 47				12.000			
GRID					0.00000			
GRID					0.00000			
GRID	50			•	12.000	10		
		4			*			
<pre>\$ Centerl</pre>	ine grid	at the	interfa	ce plane	•			
\$ Centerl \$	ine grid	at the	interfa 	ce plane	e -			
\$ Centerl \$					-			
\$ \$ \$	ID	 СР	 X1	X2	- X3	CD		
GRID				X2	- X3	CD 0		
GRID \$	ID 99	CP 10	X1 0.	X2 0.	. X3 . 0.	0	C 1	G2
GRID \$ \$	ID 99 EID	CP 10	X1 0. EFGRID	X2 0. REFC	X3 . 0. WT1	0 C1	G1 44	G2 45
GRID \$	ID 99 EID 99	CP 10 R	X1 0.	X2 0.	X3 . 0. WT1	0	G1 44	G2 45
GRID \$ \$ RBE3	ID 99 EID	CP 10	X1 0. EFGRID	X2 0. REFC	X3 . 0. WT1	0 C1		
GRID \$ \$ RBE3	ID 99 EID 99	CP 10 R	X1 0. EFGRID	X2 0. REFC	X3 . 0. WT1	0 C1		45
GRID \$ \$ RBE3	ID 99 EID 99	CP 10 R	X1 0. EFGRID	X2 0. REFC	X3 . 0. WT1	0 C1		45
GRID \$ \$ RBE3	ID 99 EID 99 48	CP 10 R	X1 0. EFGRID	X2 0. REFC	X3 . 0. WT1	0 C1		45
GRID \$ \$ RBE3	ID 99 EID 99 48	CP 10 R	X1 0. EFGRID	X2 0. REFC	X3 . 0. WT1	0 C1		45
GRID \$ \$ RBE3 \$	ID 99 EID 99 48	CP 10 R 49	X1 0. EFGRID 99	X2 0. REFC 123456	X3 . 0. WT1	0 C1		45
GRID \$ \$ RBE3 \$ \$ \$ Shell e \$ \$ CTRIA3	ID 99 EID 99 48 elements EID 1	CP 10 R 49	X1 0. EFGRID 99 G1 3	X2 0. REFC 123456	X3 0. WT1 1.0	0 C1		45
GRID \$ \$ RBE3 \$ \$ \$ Shell e \$ CTRIA3 CTRIA3	ID 99 EID 99 48 elements EID 1	CP 10 R 49	X1 0. EFGRID 99 G1 3	X2 0. REFC 123456 G2 6 3	X3 0. WT1 1.0	0 C1		45
GRID \$ \$ RBE3 \$ \$ \$ Shell e \$ \$ \$ CTRIA3 CTRIA3 CTRIA3	ID 99 EID 99 48 elements EID 1 2 3	CP 10 R 49 PID 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5	X2 0. REFC 123456 G2 6 3 2	X3 0. WT1 1.0	0 C1		45
GRID \$ \$ RBE3 \$ \$ \$ Shell e \$ \$ CTRIA3 CTRIA3 CTRIA3 CTRIA3	ID 99 EID 99 48 Elements EID 1 2 3 4	CP 10 R 49 PID 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8	X2 0. REFC 123456 G2 6 3 2 5	X3 0. WT1 1.0	0 C1		45
GRID \$ \$RBE3 \$ \$ Shell e \$ \$ \$ CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3	ID 99 EID 99 48 elements EID 1 2 3 4 5	CP 10 R 49 PID 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4	X2 0. REFC 123456 G2 6 3 2 5 8	X3 0. WT1 1.0	0 C1		45
GRID \$ \$RBE3 \$ \$ Shell e \$ \$ CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3	ID 99 EID 99 48 elements EID 1 2 3 4 5 6	CP 10 R 49 PID 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7	X2 0. REFC 123456	G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C1		45
GRID \$ \$ RBE3 \$ \$ \$ Shell e \$ \$ CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3 CTRIA3	ID 99 EID 99 48 Elements EID 1 2 3 4 5 6 7	CP 10 R 49 PID 13 13 13 13 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7 9	X2 0. REFC 123456 G2 6 3 2 5 8 4 7	G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C1		45
GRID \$ \$ RBE3 \$ \$ \$ Shell e \$ CTRIA3	ID 99 EID 99 48 elements EID 1 2 3 4 5 6	CP 10 R 49 PID 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7	X2 0. REFC 123456	G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C1		45
GRID \$ \$ RBE3 \$ \$ \$ Shell e \$ CTRIA3	ID 99 EID 99 48 elements EID 1 2 3 4 5 6 7 8	CP 10 R 49 PID 13 13 13 13 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7 9 6	X2 0. REFC 123456 G2 6 3 2 5 8 4 7	X3 0. WT1 1.0	0 C1 123		45
GRID \$ \$RBE3 \$ \$ Shell e \$ \$ \$ CTRIA3 \$ \$	ID 99 EID 99 48 elements EID 1 2 3 4 5 6 7 8	CP 10 R 49 PID 13 13 13 13 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7 9 6	X2 0. REFC 123456 G2 6 3 2 5 8 4 7 9	G3 1 1 1 1 1 1 1 1 1 1 G3	0 C1 123		45
GRID \$ \$RBE3 \$ \$ Shell e \$ \$ \$ CTRIA3	ID 99 EID 99 48 elements EID 1 2 3 4 5 6 7 8 EID 9	PID 13 13 13 13 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7 9 6	X2 0. REFC 123456 G2 6 3 2 5 8 4 7 9	G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C1 123 G4 14		45
GRID \$ \$RBE3 \$ \$ Shell e \$ \$ CTRIA3 CTRIA4 CQUAD4 CQUAD4	ID 99 EID 99 48 Elements EID 1 2 3 4 5 6 7 8 EID 9	PID 13 13 13 13 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7 9 6 G1 6 3	X2 0. REFC 123456 G2 6 3 2 5 8 4 7 9	G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C1 123 G4 14 11		45
GRID \$ \$RBE3 \$ \$ Shell e \$ \$ \$ CTRIA3	ID 99 EID 99 48 elements EID 1 2 3 4 5 6 7 8 EID 9	PID 13 13 13 13 13 13 13 13 13 13 13 13 13	X1 0. EFGRID 99 G1 3 2 5 8 4 7 9 6	X2 0. REFC 123456 G2 6 3 2 5 8 4 7 9	G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C1 123 G4 14 11 10		45

	_						
CQUAD4	13	13	8	4	12	16	
CQUAD4	14	13	4	7	15	12	
CQUAD4	15	13	7	9	17	15	
CQUAD4	16	13	9	6	14	17	
\$							
\$							
\$ Bar elem	ments						
\$							
\$							
\$ \$ Bar eler \$ \$	EID	PID	GA.	GB	X1	X2	X3
CBAR	17	5	41	49	1.000	0.000	0.000
CBAR	18	5	36	45	1.000	0.000	0.000
CBAR	19	5	39	48	1.000	0.000	0.000
CBAR	20	5	35	44	1.000	0.000	0.000
CBAR	21	2	46	41	0.000	0.000	1.000
CBAR	22	2	36	46	0.000	0.000	1.000
CBAR	23	2	41	47	0.000	0.000	1.000
CQUAD4	24	10	50	47	41	46	
CQUAD4	25	10	50	46	36	42	
CBAR	26	2	42	36	0.000	0.000	1.000
CBAR	27	2	47	39	0.000	0.000	1.000
CQUAD4	28	10	50	43	39	47	
CQUAD4	29	10	50	42	35	43	
CBAR	30	2	35	42	0.000	0.000	1.000
CBAR	31	2	39	43	0.000	0.000	1.000
CBAR	32	2	43	35	0.000	0.000	1.000
CBAR	33	5	31	41	1.000	0.000	0.000
CQUAD4	34	11	37	46	41	31	
CQUAD4	35	11	37	26	36	46	
CBAR	36	5	26	36	1.000	0.000	0.000
CBAR	37	4	41	30	0.000	0.000	1.000
CQUAD4	38	11	38	31	41	47	
CQUAD4	39	11	33	42	36	26	
CBAR	40	4	30	39	0.000	0.000	1.000
CQUAD4	41	11	38	47	39	28	
CQUAD4	42	11	33	25	35	42	
CBAR	43	5	28	39	1.000	0.000	0.000
CQUAD4	44	11	34	28	39	43	
CQUAD4	45	11	34	43	35	25	
CBAR	46	5	25	35	1.000	0.000	0.000
CBAR	47	2	30	40	0.000	0.000	1.000
CBAR	48	2	38	30	0.000	0.000	1.000
CBAR	49	5	22	31	1.000	0.000	0.000
CQUAD4	50	11	37	31	22	27	
CQUAD4	51	11	37	27	20	26	
CBAR	52	5	20	26	1.000	0.000	0.000
CBAR	53	4	22	30	0.000	0.000	1.000
CQUAD4	54	11	38	29	22	31	
CQUAD4	55	11	33	26	20	. 23	
CBAR	56	4	21	30	0.000	0.000	1.000
CQUAD4	57	11	38	28	21	29	
CQUAD4	58	11	33	23	19	25	
CBAR	59	5	21	28	1.000	0.000	0.000
CQUAD4	60	11	34	24	21	28	
CQUAD4	61	11	34	25	19	24	
CBAR	62	5	19	25	1.000	0.000	0.000
CBAR	63	3	27	22	0.000	0.000	1.000

CBAR CBAR CQUAD4	64 65 66	3 3 12	20 22 32	27 29 27	0.000 0.000 22	0.000 0.000 29	1.000 1.000	
CQUAD4 CBAR CBAR CQUAD4	67 68 69 70	12 3 3 12	32 23 29 32	23 20 21 29	20 0.000 0.000 21	27 0.000 0.000 24	1.000	
CQUAD4 CBAR CBAR	71 72 73	12 3 3	32 19 21	24 23 24	19 0.000 0.000	23 0.000 0.000	1.000	
CBAR CBAR CBAR	74 75 76	3 4 4	24 22 15	19 15 21	0.000 0.000 0.000	0.000 0.000 0.000	1.000 1.000 1.000	
CBAR CBAR CBAR	77 78 79	4 4 4	21 14 19	14 19 10	0.000 0.000 0.000	0.000 0.000 0.000	1.000 1.000 1.000	
CBAR CBAR CBAR	80 81 82	4 4 4	10 20 16	20 16 22	0.000 0.000 0.000	0.000 0.000 0.000	1.000 1.000 1.000	
CBAR CBAR	83 84	4	15 14	18 18	0.000	0.000	1.000	
CBAR CBAR CBAR	85 86 87	4 4 2	10 16 47	18 18 50	0.000 0.000 0.000	0.000 0.000 0.000	1.000 1.000 1.000	
CBAR CBAR	88 89	2 2	43 42 46	50 50 50	0.000 0.000 0.000	0.000 0.000 0.000	1.000 1.000 1.000	
5	90 RAIN BASE	2 OF LEGS	40	50	0.000	0.000	1.000	
S S S SPC1 1	RAIN BASE	OF LEGS	G2	G	3 G	4	1.000	
CONSTR CONSTR S S S S S S S S S S S S S S S S S S	RAIN BASE	OF LEGS 	G2 45	G	3 G 8 4	4	1.000	
CONSTR CONSTR S S CPC1 1 S GENERA CONSTR	RAIN BASE GID C LO 1.	OF LEGS G1 23456 44	G2 45 AFT - 	G 4 pretest	3 G 8 4	4	1.000	
CONSTR CO	RAIN BASE SID C O 1: AL PURPOS: TAL AND P: PID 2	OF LEGS	G2 45 AFT - ROPERTY A 4.	G 4 pretest DATA I1 1.33	3 G 8 4 model 12 1.33	4 9 2.667	1.000	
S CONSTR S S S SEPC1 1 S S GENERA S S MATERI S S PBAR PBAR PBAR PBAR PBAR PBAR	RAIN BASE BID C LO 1: AL PURPOS: LAL AND PI PID	OF LEGS G1 23456 44 E SPACECR HYSICAL P MID 1 1	G2 45 AFT - ROPERTY A 4. 1. .7654	DATA I1 1.33 .0833 .04662	3 G 8 4 model	J 2.667 .1667 .09324		
S CONSTR S CONSTR S S S S S S S S S S S S S S S S S S S	RAIN BASE SID C LO 1: AL PURPOS: FID 2 3 4 5	OF LEGS G1 23456 44 E SPACECR HYSICAL P: MID 1 1 1 1 MID 1	G2 45 AFT - ROPERTY A 4. 1. .7654 9.	DATA I1 1.33 .0833 .04662 6.75	3 G 8 4 model 12 1.33 .0833 .04662 6.75	J 2.667 .1667 .09324		
CONSTR CO	RAIN BASE SID C O 1: AL PURPOS: PID 2 3 4 5	OF LEGS G1 23456 44 E SPACECR HYSICAL P: MID 1 1 1 1	G2 45 AFT - ROPERTY A 4. 1. .7654 9.	DATA I1 1.33 .0833 .04662 6.75	3 G 8 4 model 12 1.33 .0833 .04662 6.75	J 2.667 .1667 .09324 12.5		NSM .5

TABLE 2. NASTRAN Grid Point Generator

```
GENERAL PURPOSE SPACECRAFT (GPSC) - FEM
                                                          OCTOBER 24, 1996 CSA/NASTRAN 2/08/96
                                                                                                 PAGE
                                                          MATRIX PROCESSING FOR SUPERELEMENT
                                                                                            0 (RESIDUAL )
    FINITE ELEMENT MODEL (FEM)
   NORMAL MODES ANALYSIS
                         OUTPUT FROM GRID POINT WEIGHT GENERATOR
                                                 REFERENCE POINT =
0
                                  MO - RIGID BODY MASS MATRIX IN BASIC COORDINATE SYSTEM
                     * 5.712471E+03 .000000E+00 .000000E+00 .000000E+00 1.218244E+05 2.064367E+02 *
                       .000000E+00 5.712471E+03 .000000E+00 -1.218244E+05 .000000E+00 6.225555E-04 *
                       .000000E+00 .000000E+00 5.712471E+03 -2.064367E+02 -6.225555E-04 .000000E+00 *
                        .000000E+00 -1.218244E+05 -2.064367E+02 1.140252E+07 -1.265985E-01 1.039334E-02 *
                    * 1.218244E+05 .000000E+00 -6.225555E-04 -1.265985E-01 9.685567E+06 3.085192E+05 *
                    * 2.064367E+02 6.225555E-04 .000000E+00 1.039334E-02 3.085192E+05 9.654570E+06 *
                                    S - TRANSFORMATION MATRIX FOR SCALAR MASS PARTITION
                                       * 1.000000E+00 .000000E+00 .000000E+00 *
                                          .000000E+00 1.000000E+00 .000000E+00 *
                                           .000000E+00 .000000E+00 1.000000E+00 *
                            DIRECTION
                        MASS AXIS SYSTEM (S)
                                            MASS
                                                              X-C.G.
                                                                            Y-C.G.
                                                            .000000E+00 -3.613790E-02 2.132604E+01
                                          5.712471E+03
                               Х
                                                           1.089818E-07 .000000E+00 2.132604E+01
                               Y
                                           5.712471E+03
                                           5.712471E+03
                                                           1.089818E-07 -3.613790E-02 .000000E+00
                                              I(S) - INERTIAS RELATIVE TO C.G.
0
                                       * 8.804481E+06 1.266210E-01 -2.366998E-02 *
                                        * 1.266210E-01 7.087536E+06 -3.041167E+05 *
                                        * -2.366998E-02 -3.041167E+05 9.654562E+06 *
                                               I(Q) - PRINCIPAL INERTIAS
                                       ***
                                       * 8.804481E+06
                                                       7.051999E+06
                                                                   9.690099E+06 *
                                                 Q - TRANSFORMATION MATRIX
                                                    I(Q) = QT*IBAR(S)*Q
                                        * 1.000000E+00 .000000E+00 .000000E+00 *
                                          .000000E+00 9.932418E-01 1.160630E-01 *
                                           .000000E+00 -1.160630E-01 9.932418E-01 *
                                       ***
```

Output Set: Mode 1 13.58455 Hz Deformed(0.631): Total Translation

V1 C1 Output Set: Mode 8 25.03358 Hz Deformed(2.212): Total Translation

