

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

MAESTRÍA EN CIENCIAS MATEMÁTICAS

Programa de la actividad académica Inferencia Bayesiana							
Clave Semestre Cré		Créditos 6	Campo de conocimiento	Estadística			
Modalidad Curso Básico			Tipo	T (X) P ()	T/P ()		
Carácter Obligatorio de Elección				lección	Horas		
Duración del programa Semestral				Semana	Semestre		
					Teóric	as: 3	Teóricas: 48
					Práctio	cas: 0	Prácticas: 0
					Total:	3	Total: 48

		Seriación
		Ninguna (X)
		Obligatoria ()
Actividad antecedente	académica	
Actividad subsecuente	académica	
		Indicativa()
Actividad antecedente	académica	
Actividad subsecuente	académica	

Objetivo general:

Presentar al alumno los fundamentos matemáticos de la Estadística Bayesiana.

Objetivos específicos:

Familiarizar al alumno con los elementos de la Teoría de la Decisión en Ambiente de Incertidumbre y su aplicación a la formalización de la Estadística Bayesiana, así como a la resolución de problemas específicos de inferencia estadística desde el punto de vista Bayesiano.

Índice temático				
	Tema Hora			
		Teóricas	Prácticas	
1	Introducción	8	0	
2	Intercambiabilidad 8 0		0	
3	Inferencia Estadística	8	0	
4	Elementos de la Teoría de la Decisión	8	0	

Suma total de horas		4	<u>. </u>
	Total	48	0
6	Modelado	8	0
5	Algunos Problemas de Decisión Estadísticos	8	0

	Contenido Temático
	Tema y subtemas
1	Introducción 1.1 Introducción Estadística 1.2 Un ejemplo: Análisis de Datos Dicotómicos
2	Intercambiabilidad 2.1 El Concepto de Intercambiabilidad 2.2 Teorema de Representación de Bruno Finetti 2.3 Teorema de Bayes 2.4 Inferencia y Predicción
3	Inferencia Estadística 3.1 Suficiencia 3.2 Familias exponenciales 3.3 Familias conjugadas 3.4 El principio de Verosimilitud 3.5 Aproximaciones Analíticas y Numéricas 3.6 Parámetros de Interés y Parámetros de Ruido 3.7 Análisis de Referencia
4	Elementos de la Teoría de la Decisión 4.1 Estructura de un Problema de Decisión en Ambiente de Incertidumbre 4.2 Solución Bayesiana de un problema de Decisión en Ambiente de Incertidumbre 4.3 Problemas de Decisión Secuenciales 4.4 Procesos de Inferencia como Problemas de Decisión
5	Algunos Problemas de Decisión Estadísticos 5.1 Estimación Puntual 5.2 Estimación por Regiones 5.3 Contraste de Hipótesis 5.4 Predicción
6	Modelado 6.1 Modelado de Regresión Lineal 6.2 Modelado de Regresión Logística 6.3 Modelos Jerárquicos 6.4 Mezclas 6.5 El Proceso de Dirichlet

Estrategias didácticas		Evaluación del aprendizaje	
Exposición oral	Х	Exámenes parciales	Χ
Trabajo en equipo		Examen final	Χ
Lecturas		Trabajos y tareas	Х
Trabajo de investigación		Presentación de tema	
Prácticas (taller o laboratorio)		Participación en clase	X
Prácticas de campo		Asistencia	
Aprendizaje por proyectos		Rúbricas	
Aprendizaje basado en problemas		Portafolios	
Casos de enseñanza		Listas de cotejo	
Otras (especificar)		Otras (especificar)	
Ejercicios dentro de clase	X		

Ejercicios fuera del aula X

Perfil profesiográfico		
Grado	Maestro o Doctor en Ciencias Matemáticas	
Experiencia docente		
Otra característica		

Bibliografía Básica:

- Berger, J. O. & Wolpert, R.L. (1988). The Likelihood Principle. Hayward, Ca: Institute Of Mathematical Statistics
- Bernardo, J.M. &Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley.
- O'hagan A. (1994). Kendall's Advanced Theory of Statistics. Vol. 2b: Bayesian Inference. Cambridge: Edward Arnold
- Schervish, M.J. (1995). Theory of Statistics. New York: Springer.
- Sivia, D.S. (1996). Data Analysis. A Bayesian Tutorial. Oxford: Clarendon Press.

Bibliografía Complementaria:

- Berger, J.O. (1985) Statistical Decision Theory and Bayesian Analysis (2nd. Edition). New York: Springer Verlag.
- Bernardo, J.M. (1981) Bioestadística: Una Perspectiva Bayesiana. Barcelona: Vicens Vives.
- Box, G.E.P. & Tiao, G.C. (1973) Bayesian Inference in Statiscal Analysis. Reading, Ma: Addison-Wesley.
- Congdon, P. (2001) Bayesian Statiscal Modelling. Chichester: Wiley.
- Congdon, P. (2003) Applied Bayesian Modelling. Chichester: Wiley.
- De Finetti, B. (1970/1974) Teoria Delle Probabilitá 1. Turin: Einaudi. English Translation as Theory of Probability 1 in 1974, Chichester: Wiley.
- De Finetti, B. (1970/1975) Teoria Delle Probabilitá 2. Turin: Einaudi. English Translation as Theory of Probability 2 in 1975, Chichester: Wiley.
- De Groot, M.H. (1970) Optimal Statistical Decisions. New York: Mc Graw-Hill.
- Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B (1995). Bayesian Data Analysis. London: Chapman and Hall.
- Ghosh, J.K., Delampady, M. A & Tapas, S. (2009). An Introduction to Bayesian Analysis: Theory and Methods. Springer.
- Jeffreys, H. (1961) Theoryof Probability. Oxford: University Press.
- Leonard, T. Y Hsu, J.S. (1999) Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. Cambridge: Cambridge University Press.
- Lindley, D.V. (1972) Bayesian Statistics: A Review. Philadelphia, Pa: Siam.
- Raiffa, H. & Schlaifer, R. (1961). Applied Statistical Decision Theory.
 Cambridge: University Press.
- Robert, C.P. (2007). The Bayesian Choice. (2nd Ed.) New York: Springer.