

The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval

Collaborative Residual Metric Learning

Tianjun Wei, Jianghong Ma, Tommy W.S. Chow

July 26, 2023 Taipei

Collaborative Filtering

Matrix Completion

• Completing the elements of the useritem interaction matrix that are not 1

Link Prediction

 Predicting unconnected edges in user-item bipartite graphs

Nature of Recommendation Tasks

- Focus more on ranking of scores
- Focus more on top positions

Collaborative Filtering as a Matrix Completion Problem

Collaborative Filtering as a Link Prediction Problem

Traditional Matrix Factorization

- Representing users and items with fixed-length vectors
- Both a trainable parameters ($N \propto |U| + |I|$)

Asymmetric Matrix Factorization

- Training only item vectors
- Representing users with the aggregation of item vectors
- No need to train when new users are added

Linear Autoencoder

- Full-rank Extension of asymmetric matrix factorization
- Adding sparse constraint to low the cost of storage and inference
- SLIM (ICDM 2011), EDLAE (Netflix, NIPS 2020)

Type of Methods

Metric Learning in Collaborative Filtering

Metric Learning

CoRML

- The objective of metric learning is to learn a valid distance metric to pull similar nodes closer, push dissimilar nodes farther away:
- Non-negativity: $d(\mathbf{x}_i, \mathbf{x}_i) \ge 0$
- Identity: $d(\mathbf{x}_i, \mathbf{x}_i) \ge 0 \rightarrow i = j$
- Symmetry: $d(\mathbf{x}_i, \mathbf{x}_i) = d(\mathbf{x}_i, \mathbf{x}_i)$
- Triangle inequality: $d(\mathbf{x}_i, \mathbf{x}_i) \le d(\mathbf{x}_i, \mathbf{x}_k) + d(\mathbf{x}_k, \mathbf{x}_i)$

Collaborative Metric Learning (CML)

- Updating vectors to decrease the Euclidean distance between users and interacted (similar) items, and the opposite for uninteracted items.
- Adopting triplet hinge loss, with a margin ζ

$$L = (d^2(\mathbf{e}_u, \mathbf{e}_i) - d^2(\mathbf{e}_u, \mathbf{e}_i) + \zeta)_+$$

Metric Learning in Collaborative Filtering

Propagation of Similarity

- MF is not reliable on capturing u-u and i-i similarity
- CML shows the capability of propagating similarities through triangle inequality

Special Case of Metric Learning

Generalized Mahalanobis (GM) Distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{W} (\mathbf{x}_i - \mathbf{x}_j)}$$

- W must be symmetric positive semidefinite (PSD)
- CML learns a rank-d weight matrix $\mathbf{W} \in \mathbb{R}^{(|U|+|I|)\times(|U|+|I|)}$
- Cannot generalize to methods like asymmetric matrix factorization

Matrix Factorization

Collaborative Metric Learning

Collaborative Signals

Representing Users with Items

- User feature: $\mathbf{P} \in \mathbb{R}^{|U| \times |I|} = \mathbf{D}_I^{-t} \mathbf{R}$
- Item feature: $\mathbf{Q} \in \mathbb{R}^{|I| \times |I|} = \mathbf{D}_I^t$
- Preference score: $y_{ui} = \mathbf{p}_u^T \mathbf{C} \mathbf{q}_i$

Fitting More Methods by Introducing Normalization Strength

Methods	t	C
Asymmetric Matrix Factorization	0	$\mathbf{E}_I^T\mathbf{E}_I$
Linear Autoencoder	0	$\mathbf{W}_{sp,diag_0}$
 Graph Filtering Model 	0.5	$\mathbf{V}\mathbf{V}^T$

Incorporate Signal-based Models with ML

Linear Autoencoder not Working Well with ML

- Symmetry: can be added as a constraint to the optimization
- \square PSD: almost impossible to satisfy because of the diagonal zero constraint, $diag(\mathbf{W}) = 0$

Focus instead on the difference of distances

Recommendation task focuses on the relative relationship of preference scores (distance)

$$\Delta D^{2} = d^{2}(\mathbf{p}_{u}, \mathbf{q}_{i}) - d^{2}(\mathbf{p}_{u}, \mathbf{q}_{j})$$

$$= \mathbf{q}_{i}^{T} \mathbf{W} \mathbf{q}_{i} - \mathbf{q}_{j}^{T} \mathbf{W} \mathbf{q}_{j} - 2 \mathbf{p}_{u}^{T} \mathbf{W} (\mathbf{q}_{i} - \mathbf{q}_{j}) + (\mathbf{p}_{i}^{T} \mathbf{W} \mathbf{p}_{i} - \mathbf{p}_{i}^{T} \mathbf{W} \mathbf{p}_{i})$$

$$= W_{ii}(d_{i}^{2t} - 2R_{ui}) - W_{jj}(d_{j}^{2t} - 2R_{uj}) - 2 \mathbf{p}_{u}^{T} \mathbf{H} (\mathbf{q}_{i} - \mathbf{q}_{j})$$

$$= W_{ii}(d_{i}^{2t} - 2R_{ui}) - W_{jj}(d_{j}^{2t} - 2R_{uj}) + \Delta Y$$

where H = W - diag(W) is called the *Hollow matrix*.

 y_{ui} in signal-based models

- Eliminate redundant terms in the GM distances
- Separate diagonal and non-diagonal entries

Incorporate Signal-based Models with ML

Finding Alternative Solutions

- W = H + X can always be PSD when $X = \omega D_I^{-2t}$, H is the hollow matrix.
- Derive the relationships between ΔD^2 and ΔY (Preference Residual):

$$\Delta D^{2} - \Delta Y = W_{ii}(d_{i}^{2t} - 2R_{ui}) - W_{jj}(d_{j}^{2t} - 2R_{uj})$$
$$= 2\omega(d_{i}^{-2t}R_{uj} - d_{j}^{-2t}R_{ui})$$

A. When
$$R_{ui} = R_{ui} = 0$$

(item i and j are both uninteracted)

$$\Delta D^2 - \Delta Y = 0$$

- Δ Distance = Preference Residual
- Critical to the model inference process

B. When
$$R_{ui} = 1, R_{ui} = 0$$

(item i is interacted, item j is uninteracted)

$$\Delta D^2 - \Delta Y = 2\omega d_i^{-2t}$$

- The bias is always positive
- Useful in the model training process

How does t affect the recommendations?

Non-negativity Constraint

• General form of signal-based model with non-negativity constraint and l_2 regularization:

minimize
$$\mathscr{L}(\mathbf{W}) + \|\mathbf{W}\|_F^2$$
, $s.t.\mathbf{W} \ge 0$

• Preference score for each (u, i) pair:

$$y_{ui} = \sum_{j \in I_u^+} \left(\frac{d_i}{d_j}\right)^t W_{ji}$$

- Counterfactual results: Larger t will increase the chance of popular items to be recommended
- Improve the **novelty** of the recommendations by decreasing C

Collaborative Residual Metric Learning (CoRML)

Triplet Residual Margin Loss

Triplet Margin Loss

$$L = \sum_{u \in U} \sum_{(i^+, i^-) \in (I_u \times I \setminus I_u)} (d_{ui^+}^2 - d_{ui^-}^2 + \zeta)_+$$

- Replace $d_{ui^+}^2 d_{ui^-}^2 (\Delta D^2)$ with ΔY
- Replace ζ with $2\omega d_{i+}^{-2t}$ as an adaptive margin

Triplet Residual Margin Loss

$$L_{TRM} = \sum_{u \in U} \sum_{(i^+, i^-) \in (I_u \times I \setminus I_u)} (y_{ui^-} - y_{ui^+})_+$$

$$= \sum_{u \in U} (\sum_{i^+ \in I_u} \alpha_{ui^+} y_{ui^+} + \sum_{i^- \notin I_u} \beta_{ui^-} y_{ui^-})$$

$$\alpha_{ui^{+}} = \sum_{i^{-} \notin I_{u}} - \frac{\delta(y_{ui^{-}} > y_{ui^{+}})}{|I| - |I_{u}|}, \ \beta_{ui^{-}} = \sum_{i^{+} \in I_{u}} \frac{\delta(y_{ui^{-}} > y_{ui^{+}})}{|I_{u}|}$$

Approximated Ranking Weights

- α and β are are coefficients dynamically updated by the ranking of the value of y_{ui} for user u
- Use numerical value to approximate ranking

$$\tilde{\alpha}_{ui^{+}} = \phi y_{ui^{+}} - 1, \tilde{\beta}_{ui^{-}} = \phi y_{ui^{-}}$$

Scaling factor

$$\phi_u = \epsilon (\frac{d_u}{\max_{u \in U} d_u})^{-t_u}$$

- Global scaling (ϵ): rescale y_{ui^+} to map $\tilde{\alpha}_{ui^+}$ to negative values, and keep $\tilde{\beta}_{ui^-}$ positive
- User-degree scaling (t_u): reduce the effects of different number of non-zero entries in the collaborative signal of each user

Loss Function

$$L_{CoRML} = \sum_{u \in U} \sum_{i \in I} y_{ui} (\phi_u y_{ui} - R_{ui}) = tr(\mathbf{Y}^T (\mathbf{\Phi} \mathbf{Y} - \mathbf{R}))$$

Hybrid Preference Score

$$\mathbf{Y} = \mathbf{R}(\lambda \mathbf{D}_{I}^{-t} \mathbf{H} \mathbf{d}_{I}^{t} + (1 - \lambda) \mathbf{D}_{I}^{-\frac{1}{2}} \mathbf{G} \mathbf{D}_{I}^{\frac{1}{2}})$$

with adjustable t

Extension from linear autoencoder Extension from graph signal model $\mathbf{G} = (\mathbf{V}\mathbf{V}^T - diag(\mathbf{V}\mathbf{V}^T))_{\perp}$

Optimization Problem

$$\min_{\boldsymbol{H}} tr(\boldsymbol{Y}^T(\boldsymbol{\Phi}\boldsymbol{Y} - \boldsymbol{R})),$$

$$s.t.$$
 $diag(\mathbf{H}) = 0, \mathbf{H} \ge 0, \mathbf{H} = \mathbf{H}^T$

Optimized through Alternating Directions Method of Multipliers (ADMM)

Experiments

Performance Comparison

Dataset

4 real-world public datasets

Evaluation Metrics

- NDCG@K
- MRR@K

Baselines

- CML models
- Signal-based Models
- GCN models

	3.5		T 01 (T	DD01/I	OT T1 /	T. A.O.T.	D 774 D		TT1. 0.0NT	01 0 OT	
Dataset	Metric	CML	L-CML	DPCML	SLIM	EASE	RecVAE	GFCF	UltraGCN	SimGCL	CoRML
	NDCG@5	0.0509	0.0594	0.0563	0.0488	0.0558	0.0516	0.0620	0.0572	0.0616	*0.0655
	NDCG@10	0.0665	0.0766	0.0724	0.0630	0.0704	0.0668	$\overline{0.0785}$	0.0729	0.0783	*0.0824
Pinterest	NDCG@20	0.0897	0.1021	0.0965	0.0841	0.0921	0.0895	$\overline{0.1031}$	0.0962	0.1031	*0.1076
	MRR@5	0.1018	0.1186	0.1133	0.0957	0.1125	0.1024	$\overline{0.1239}$	0.1146	$\overline{0.1237}$	*0.1306
	MRR@10	0.1164	0.1343	0.1283	0.1084	0.1262	0.1164	$\overline{0.1390}$	0.1292	0.1390	*0.1458
	MRR@20	0.1261	0.1444	0.1381	0.1171	0.1353	0.1258	$\overline{0.1488}$	0.1387	0.1488	*0.1556
	NDCG@5	0.0853	0.0985	0.0999	0.1100	0.1211	0.0890	0.1174	0.1108	0.1229	*0.1317
	NDCG@10	0.0953	0.1093	0.1087	0.1156	0.1268	0.0978	0.1257	0.1181	$\overline{0.1295}$	*0.1383
Gowalla	NDCG@20	0.1125	0.1281	0.1261	0.1302	0.1412	0.1140	0.1440	0.1348	$\overline{0.1460}$	*0.1554
	MRR@5	0.1533	0.1743	0.1811	0.1912	0.2186	0.1613	0.2121	0.2001	0.2235	*0.2334
	MRR@10	0.1682	0.1899	0.1957	0.2043	0.2323	0.1752	0.2269	0.2144	0.2377	*0.2479
	MRR@20	0.1768	0.1984	0.2040	0.2118	0.2393	0.1832	0.2352	0.2225	0.2454	*0.2558
	NDCG@5	0.0483	0.0574	0.0556	0.0535	0.0611	0.0525	0.0587	0.0585	0.0646	*0.0690
	NDCG@10	0.0521	0.0617	0.0592	0.0554	0.0628	0.0558	0.0617	0.0621	0.0676	*0.0716
Yelp2018	NDCG@20	0.0629	0.0742	0.0709	0.0644	0.0722	0.0663	0.0731	0.0737	<u>0.0795</u>	*0.0832
•	MRR@5	0.1007	0.1188	0.1156	0.1117	0.1277	0.1106	0.1236	0.1234	<u>0.1349</u>	*0.1435
	MRR@10	0.1149	0.1345	0.1304	0.1245	0.1413	0.1247	0.1380	0.1385	0.1499	*0.1586
	MRR@20	0.1241	0.1443	0.1399	0.1327	0.1496	0.1336	0.1472	0.1478	<u>0.1594</u>	*0.1679
	NDCG@5	0.2319	0.2731	0.2620	0.2785	0.3025	0.3045	0.2718	0.2365	0.2675	*0.3189
	NDCG@10	0.2326	0.2689	0.2588	0.2710	0.2934	0.3033	0.2671	0.2280	0.2644	*0.3103
ML-20M	NDCG@20	0.2486	0.2832	0.2725	0.2813	0.3036	0.3204	0.2799	0.2369	0.2794	*0.3212
	MRR@5	0.3761	0.4341	0.4190	0.4478	0.4829	0.4777	0.4356	0.3919	0.4310	*0.4967
	MRR@10	0.3932	0.4494	0.4347	0.4621	0.4963	0.4923	0.4506	0.4063	0.4466	*0.5098
	MRR@20	0.4002	0.4554	0.4409	0.4677	0.5014	0.4976	0.4566	0.4124	0.4527	*0.5149

CoRML

Detailed Analysis

Mitigating Popularity Bias

Novelty

Measure the popularity of top-*K* items recommended

$$Nov @ K = \frac{1}{|U|K} \sum_{u=1}^{|U|} \sum_{i=1}^{K} -\frac{1}{\log_2 |U|} \log_2 \frac{d_i}{|U|}$$

- Smaller normzalization strength increases the novelty of recommendation
- Accuracy and novelty are not just trade-off

Detailed Analysis

14

CoRML Jul 26 2023

Thank you!

The code is available at GitHub: Joinn99/CoRML

Presenter:

Tianjun Wei

City University of Hong Kong

tjwei2-c@my.cityu.edu.hk

