Universidade Tecnológica Federal do Paraná – UTFPR
Departamento Acadêmico de Eletrônica – DAELN
Departamento Acadêmico de Informática – DAINF
Engenharia de Computação
EEX21 S71-S72 Oficina de Integração 1
2020/1

Medidor de consumo de água para galão

Alunos:

Gabriel Henrique Linke - (49) 98860-7303 gabriellinke@alunos.utfpr.edu.br

Filipe Ulian Agostinho - (41) 99500-7951 filipe-rua@hotmail.com

1 Descrição

O desenvolvimento do Medidor de Consumo de Água para galão (MCA) tem por objetivo disponibilizar ao usuário um *feedback* da quantidade de água que está sendo consumida por dia. Com o uso recorrente do MCA, o usuário poderá análisar seu histórico de consumo e tomar decisões para melhorar sua saúde, sendo aumentando ou diminuindo seu consumo de água diário.

1.1 Funcionamento

O projeto consiste em um suporte para galão de água, que terá conectado em seu interior um sensor de fluxo de água. Esse sensor contabilizará o fluxo que passa por ele durante o dia, e enviará os dados a um arduino Uno. O arduino, por sua vez, realizará cálculos para encontrar o volume de água que passou pelo sensor e, através de um módulo bluetooth, enviará esse dado para o smartphone do usuário, que poderá ver seu consumo de água através de um aplicativo. O esquemático que demonstra esse processo pode ser visualizado na Figura 1.

2 Cronograma

O projeto será dividido em três grandes etapas que se referem aos seus objetivos principais, chamados de marcos. Na Figura 2 é possível observar os objetivos semanais com suas respectivas datas de execução. Além disso, na Figura 3 é possível observar o Diagrama de Gantt do projeto, que facilita a visualização da distribuição das tarefas no tempo.

Figura 1: Esquemático referente ao projeto MCA

TASK	START	END
Fazer o planejamento	3/2/20	3/23/20
Comprar os componentes	3/2/20	3/23/20
Ler Datasheet do sensor de fluxo	3/23/20	3/30/20
Calibrar sensor de fluxo	3/30/20	4/6/20
Escrever programa para o cálculo do volume	3/30/20	4/6/20
Salvar dados na memória ROM do arduino	4/6/20	4/13/20
Integrar sensor de fluxo ao bebedouro	4/13/20	4/27/20
Isolar os fios do sensor	4/27/20	5/4/20
Conectar o sensor ao arduíno	4/27/20	5/4/20
Iniciar a programação básica do aplicativo	5/4/20	5/18/20
Estudar funcionamento do módulo bluetooth	5/18/20	5/25/20
Estudar uma forma de salvar dados na memória do celular	5/18/20	5/25/20
Integrar módulo bluetooth ao arduino	5/18/20	6/1/20
Permitir a transferência de dados através do bluetooth quando o usuário clicar em "Atualizar consumo atual"	5/25/20	6/1/20
Abrir tela que mostra o consumo atual em Litros, com 2 casas decimais quando o usuário clicar em "Consultar consumo atual"	5/25/20	6/1/20
Salvar dados atuais quando o usuário clicar em "Finalizar dia" e reiniciar a contagem do consumo atual	5/25/20	6/1/20
Através dos dados salvos, mostrar o consumo dos últimos dias quando o usuário clicar em "Histórico de consumo"	6/1/20	6/15/20
Decidir onde colocar o circuito em relação ao bebedouro	6/1/20	6/15/20
Melhorar a estética do circuito	6/1/20	6/15/20
Finalizar o relatório	6/15/20	6/29/20
Elaborar apresentação	6/15/20	6/29/20

Figura 2: Cronograma

DIAGRAMA DE GANTT

Figura 3: Diagrama de Gantt

3 Lista de Componentes

Na tabela 1 é possível observar a lista de componentes que serão utilizados para o desenvolvimento do projeto.

Componente	Quantidade
Suporte para bebedouro	1
Sensor de fluxo	1
Arduino Uno	1
Módulo Bluetooth	1
Jumpers	-
Alimentação para circuito	1
Galão de água	1
Smartphone	1

Tabela 1: Componentes utilizados no projeto

4 Lista de Softwares

Para o desenvolvimento do projeto, serão utilizados os seguintes softwares:

• Arduino IDE[1].

- Android Studio[2].
- Microsoft Office Excel[3].

Referências

- [1] Arduino ide. https://www.arduino.cc/en/main/software.
- $[2] \ And roid \ studio. \ https://developer.and roid.com/studio.$
- [3] Microsoft Corporation. Microsoft excel. https://office.microsoft.com/excel.