Mathe Nacht Lösung

Aufgabe 18-28 (Graphentheorie)

Chenpjie "Jay" Zhou

Julian Pins

Kontakt gerne per Zulip!

Stefan Shushpanov

Aufgabe 18 Aufgabe 19 Die einzig mögliche Gradmenge ist {2,2,3,3} M-einzig möglicher Graph bis Isomorph. Aufgabe 20 a) (1,2,3,4,5,5). (0,1,2,3,4) - fail Grad summe - un gerade => fail dy=4>n-1=3 -> fail d) (1,2,2,3,3,3) (\$ 1, 1, 2, 2, 2) (0,1,1)(0,0)

Aufgabe 21
a) Grad summe - ungcrade => der graph existient nicht
(2,2,3,5,5,5)
(1,1,2,4,4)
(0,0,1,3) - Pail => der Graph existient night
e) (4,4,5,5,5,5) => [== \frac{28}{2} = 14 \ M= 6
E = 14 > 12 = 3 1 - 8 4 => der Graph exist. nicht
Aufgabe 22
a) $ V =6$ $ E =\frac{14}{2}=7$ $ V \neq E +1$ $ Y =>$ Graph-kein Baum
=> exist ein Kreis.
6) v = 5 E = 16/2 = 8 v + E +1 4 => Graph-kein Baum
:::c): Gegenbeispiel [
:::d): Gegenbeispiel \square
Aufgabe 23
a) Nicht realisierbar, da Simme der Gradfolge ingerade
b) Bis auf Isomorphie gist es nur den Graphen
mit des Cradfolio velidos 3 factions ist
mit der Gradfolge, welcher 3-farbbar ist
c) Da es weder 6 knoten mit einem Gad ≥3, noch
5 Knoten Mannit einem Grad 24 gist, hann weder
K3,3 noch K5 Minor des Gaphen sein.
Der Graph ist also planer und damit nach den
Vierfarbensatz vierfarbbar

Aufgase 27

a) Nein, da es einen Knoten mit Grad I gist

b) Ja, der Graph besitet seinen Unikreis als
Hamiltonkreis

c/ Nein, denn wenn der Graph aus zwei K5 besteht, ist er nicht usammenhängend und enthält damit heine Eilertour d) Nen, denn die Gradfolge enthält ingerade Knotengrade

b)
$$IEI = (\frac{1}{3} \cdot IVId + \frac{1}{3} IVI \cdot 2d + \frac{7}{3} IVI \cdot 3d) / 2$$

 $= IVId$
 $f - IEI + IVI = 2$
 $f - IVId + IVI = 2$
 $f - IVI(d-1) = 2$
 $f = 2 + IVI(d-1)$

$$|E| = |V|d$$

$$|E| \le 3 (VI - 6)$$

$$|V|d \le 3 (VI - 6)$$

$$|V|(d-3) \le 6$$

$$|V| \le -\frac{6}{d-3}$$

$$|V| \in [3, \infty), |V| \le 0$$

$$|E| = \frac{3}{2}|v|$$

$$5f = 2|E|$$

$$\Rightarrow 5f = 3|v|$$

$$|v| = \frac{5}{3}f \longrightarrow |E| = \frac{3}{2}|v| = \frac{5}{2}f$$

$$Da \quad f - |E| + |v| = 2$$

$$f + \frac{5}{3}f - \frac{5}{5}f = 2$$

Jeder zusammenhängende Graph besitzt einen Spannbaum. Entfernt man einen Blattknoten des Spannbaums, ist der resultierende Graph noch immer zusammenhängend.

f=12

$$4.6 + 3. n = 2 | E| = 3 | V|$$

$$f - | E| + | V| = 2$$

$$\Leftrightarrow f - | E| + \frac{2}{3} | E| = 2$$

$$\Leftrightarrow f - \frac{1}{3} | E| = 2$$

$$\Leftrightarrow f - \frac{1}{3} | E| = 2$$

$$\Leftrightarrow 3f - | E| = 6$$