

<u>Course</u> > <u>Unit 1:</u> ... > <u>1 Elimi</u>... > 7. Repr...

7. Representing functions with matrices

It turns out that if we have a function from \mathbb{R}^n to \mathbb{R}^m that we know comes from multiplication on the left with a matrix \mathbf{A} , we can find this matrix by looking at where this matrix sends the standard basis vectors!

Problem 7.1 Given θ , there is a 2×2 matrix R whose associated function rotates each vector in \mathbb{R}^2 counterclockwise by the angle θ . What is it?

Solution: The rotation maps $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to $\begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$. The matrix with columns $\mathbf{R} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{R} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is the matrix we want, and that this approach for finding a matrix representing a function always works. Thus

(first column of
$$\mathbf{R}$$
) $= \mathbf{R} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$

$$({
m second\ column\ of}\ {f R}) = {f R} egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} -\sin heta \ \cos heta \end{pmatrix},$$

SO

$$\mathbf{R} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix}.$$

Rotation in three dimensions

1/1 point (graded)

What is the matrix ${\bf A}$ which rotates the ${\it xy}$ -plane in ${\mathbb R}^3$ counterclockwise by an angle ${\bf heta}$ about the ${\it z}$ -axis?

$$\begin{pmatrix} \cos\theta & 1 & 0 \\ \sin\theta & 0 & -\sin\theta \\ 0 & 0 & \cos\theta \end{pmatrix}$$

$$\begin{pmatrix} \cos\theta & -\sin\theta & \cos\theta \\ \sin\theta & \cos\theta & \sin\theta \\ \cos\theta & -\sin\theta & \cos\theta \end{pmatrix}.$$

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}. \checkmark$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$$

Solution:

The z-axis is fixed by this rotation, so

$$\mathbf{A} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

On the other hand, the \boldsymbol{x} and \boldsymbol{y} basis vectors rotate by $\boldsymbol{\theta}$ in the plane, but still don't have a \boldsymbol{z} -coordinate after the rotation; only their \boldsymbol{x} and \boldsymbol{y} components change. So, similar to the example above,

$$\mathbf{A}egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = egin{pmatrix} \cos heta \ \sin heta \ 0 \end{pmatrix},$$

and

$$\mathbf{A}egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} = egin{pmatrix} -\sin heta \ \cos heta \ 0 \end{pmatrix},$$

SO

$$\mathbf{A} = egin{pmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Depicting functions as matrices

1/1 point (graded)

The function associated to a matrix ${\bf A}$ sends the vector ${1 \choose 0}$ to the vector ${2 \choose -2 \choose 3}$, and

sends the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to the vector $\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$.

What is the first column of the matrix \mathbf{A} ?

 $\left(egin{array}{c} 2 \ -2 \ 0 \end{array}
ight)$

 $\begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix}
2 \\
-2 \\
3
\end{pmatrix}
\checkmark$$

It cannot be determined without more information.

Solution:

The vector resulting vector from $\mathbf{A} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is actually the first column of \mathbf{A} , so we get that the first column of \mathbf{A} is $\mathbf{f} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Geometric examples in \mathbb{R}^3 : Here are some functions from \mathbb{R}^3 to \mathbb{R}^3 that can be represented as a matrix: reflections across a plane through the origin, rotations about a line through the origin, and projections onto a plane or line through the origin.

Nonexample: A function from \mathbb{R}^3 to \mathbb{R}^3 which translates all points by a fixed amount cannot be represented by multiplication by a matrix.

(Optional) When can a function be represented by a matrix?

Show

© All Rights Reserved

7. Representing functions with matrices Topic: Unit 1: Linear Algebra, Part 1 / 7. Representing functions with matrices Add a Post Show all posts ▼ by recent activity ▼ © problem 7.1 6 Learn About Verified Certificates