CSP-S 2019 模拟赛 Day 1

CMXRYNP & Panole

October 8, 2019

题目名称	流量	个人练习生	假摔
题目类型	传统型	传统型	传统型
目录	traffic	practice	fake
可执行文件名	traffic	practice	fake
输入文件名	traffic.in	practice.in	fake.in
输出文件名	traffic.out	practice.out	fake.out
每个测试点时限	1秒	1秒	4 秒
内存限制	1024 MB	1024 MB	1024 MB
测试点数目	20	20	5
测试点是否等分	是	是	是

评测环境: Windows, Lemon

编译选项: -std=c++11 -O2 -lm -Wl,--stack=998244353

题目很简单,AK 了不要喷出题人,没AK 也不要喷出题人。

1 流量

1.1 题目描述

zx2003 的学校的水管网络可以认为是一张 n 个点 m 条管道的图(**图不一定连通,可能有重边,无自环**),每条管道没有流量或者有单向的流量,每个点处流入的流量之和等于流出的流量之和。

作为学生,虽然还没有到 24 岁,zx2003 很想知道每条管道的确切状态(是否有流量,如果有,你也需要知道流量的大小及方向)。第 i 条管道被观察的代价是 w_i (可以为负数)。由于学校非常穷,你需要最小化代价之和,并直接或间接得到所有管道的状态。

请输出这个最小值。

1.2 输入格式

第一行两个正整数 n, m $(2 \le n \le 200000, 1 \le m \le 500000)$,分别表示点数和管道数。接下来 m 行,第 i 行三个整数 a_i, b_i, w_i $(1 \le a_i, b_i \le n, a_i \ne b_i, |w_i| \le 10^9)$ 表示这一条管道连接了 a_i 和 b_i ,观察代价是 w_i 。

1.3 输出格式

一行一个整数表示最小的代价之和。

1.4 样例 1 输入

4 6

1 2 -1

3 4 6

4 1 4

2 3 3

2 4 2

1 3 3

1.5 样例 1 输出

4

1.6 样例 1 解释

观察第 1,5,6 条边。

通过 2 号点的流量平衡可以知道第 4 条边的流量。 通过 1 号点的流量平衡可以知道第 3 条边的流量。 进一步可以知道第 2 条边的流量。

1.7 样例 2

见选手目录下的 traffic/traffic2.in 与 traffic/traffic2.ans。

1.8 样例 3

见选手目录下的 traffic/traffic3.in 与 traffic/traffic3.ans。

1.9 子任务

- 对于 30% 的测试点, $n, m \le 10$ 。
- 对于 60% 的测试点, $n, m \le 1000$ 。
- 对于另外 10% 的测试点,保证 $m = n 1, w_i \ge 1$ 且图连通。
- 对于另外 20% 的测试点, 保证 m = n 1 且图连通。
- 对于 100% 的测试点, $2 \le n \le 200000, 1 \le m \le 500000$.

2 个人练习生

2.1 题目描述

有一棵 n 个点的树,有 n 个 zx2003 在 1 号点处,第 i 个 zx2003 需要前往 i 号点。 经过一条边需要 1 年,从 0 时刻开始每年你可以钦定一个 zx2003 从 1 号点出发,第 i 个 zx2003 出发后会沿简单路径走到 i 号点,并在到达之后立刻开始练习 a_i 年的唱、跳、rap 和篮球。zx2003 不能路过一个已经有人到达的点,即以 1 为根,祖先节点的 zx2003 不能先于后代节点出发。

年轻的 zx2003 经历了如此漫长的过程,会成为先辈。你不喜欢这样,因此你希望最小 化最后一个 zx2003 结束长为 a_i 年的练习的时刻。

2.2 输入格式

第一行一个正整数 $n (1 \le n \le 300000)$, 表示点数和人数。

第二行 n 个正整数,第 i 个数 a_i ($1 \le a_i \le 10^9$) 表示第 i 个 zx2003 会练习唱、跳、rap 和篮球 a_i 年。

接下来 n-1 行每行两个正整数 u_i, v_i $(1 < u_i, v_i < n, u_i \neq v_i)$ 表示树的一条边。

2.3 输出格式

一行一个整数表示最小的结束时刻。

2.4 样例 1 输入

5

2 3 5 2 1

2 1

3 2

2 4

1 5

2.5 样例 1 输出

7

2.6 样例 1 解释

按照 3,4,2,5,1 的顺序出发,到达时间按照编号顺序依次为 4,3,2,3,4,完成时间依次为 6,6,7,5,5,可以证明没有更小的答案。

2.7 样例 2

见选手目录下的 practice/practice2.in 与 practice/practice2.ans。

2.8 样例 3

见选手目录下的 practice/practice3.in 与 practice/practice3.ans。

2.9 子任务

- 对于 20% 的测试点, $n \le 10$ 。
- 对于 40% 的测试点, $n \le 1000$ 。
- 对于另外 20% 的测试点,保证每条边连接编号相邻的两个点。
- 对于另外 20% 的测试点,保证 1 号点度数为 n-1。
- 对于 100% 的测试点, $1 \le n \le 300000$.

3 假摔

3.1 题目描述

zx2003 喜欢假,也喜欢假摔。

zx2003 假摔之后会在地面上形成共线的三个点(脚 A、膝盖 B、头 C)。为了简化问题我们假设地面是一维的,A,B,C 都是整数且 $1 \le A < B < C \le n$ 。出于美观 zx2003 要求 $B-A \le C-B$ (保持最基本的身体比例)。

位置 i 有坚硬度 a_i , zx2003 一次假摔的疼痛度即为 $a_A + a_B + a_C$ 。

现在有 q 次询问,每次给定一个区间 $[l_i, r_i]$,询问 $l_i \leq A < B < C \leq r_i$ 的一次假摔的最大疼痛度。

3.2 输入格式

第一行一个正整数 n (3 \leq n \leq 500000),表示地面的长度。

第二行 n 个正整数, 第 i 个正整数 a_i ($1 \le a_i \le 10^9$) 表示点 i 的坚硬度。

第三行一个正整数 q (1 $\leq q \leq 500000$),表示询问个数。

接下来 q 行, 第 i 行两个正整数 l_i, r_i $(1 \le l_i < l_i + 2 \le r_i \le n)$, 表示询问的区间。

3.3 输出格式

共 q 行, 第 i 行一个正整数, 第 i 次询问的最大疼痛度。

3.4 样例 1 输入

5

7 3 2 7 5

3 1 4

2 5

1 5

3.5 样例 1 输出

17

14

17

3.6 样例 1 解释

- 对于第一问,选择 1,2,4。
- 对于第二问,选择 3,4,5。
- 第三问同第一问。

3.7 样例 2

见选手目录下的 fake/fake2.in 与 fake/fake2.ans。

3.8 样例 3

见选手目录下的 fake/fake3.in 与 fake/fake3.ans。

3.9 子任务

本题采用捆绑测试。

- Subtask 1 [20%]: $n, q \leq 500$.
- Subtask 2 [20%]: $n \le 5000$.
- Subtask 3 [20%]: $n \le 200000, q = 1, l_1 = 1, r_1 = n$
- Subtask 4 [20%]: 保证 a_i 在 $[1,10^9]$ 中等概率随机生成。
- Subtask 5 [20%]: $3 \le n \le 500000, 1 \le 1 \le 500000$.