Deep Learning Workshop

Reinforcement Learning

Instructor: Aaron Low

HELP University, Faculty of Computing and Digital Technology

Reinforcement Learning Example: Video Games

Reinforcement Learning Example: Robotics

Reinforcement Learning Example: Robotics

DeepMind's AlphaGo beats Lee Sedol

DeepMind's AlphaStar in Starcraft 2

OpenAl's OpenAl Five in Dota 2

Facebook and CMU's Pluribus in Poker

Classes of Learning Problems

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Data: (x, y)

x is data, y is label

Data: x

x is data, no labels!

Data: state-action pairs

Goal: Learn function to map

 $x \rightarrow y$

Goal: Learn underlying

structure

Goal: Maximize future rewards over many time steps

Apple example:

This thing is an apple.

Apple example:

This thing is like the other thing.

Apple example:

Eat this thing because it will keep you alive.

Reinforcement Learning

Agent and Environment

Agent: The intelligent unit that learns what actions to take

Environment: The surrounding world which provides feedback to the agent

Action: An action the agent takes in the environment e.g. moving

State: The configuration the agent is currently in

Reward: How much benefit taking an action from the current state provides

Deterministic vs Stochastic

Deterministic Grid World

Stochastic Grid World

Markov Decision Process

- Transition function, T(s'|s,a)
 - Probability that action, a from state, s will lead to next state,
 s'
 - o Known as the `model`

Reinforcement Learning

 In reinforcement learning problems, we don't know the Transitions and the Rewards

Reinforcement Learning

Learn to maximize rewards

Total **Reward**:
$$R_t = r_0 + \gamma r_1 + \gamma^2 r_2 + ... + \gamma^t r_t$$

- Q function: $Q(s_t, a_t) = E[R_t | s_t, a_t]$
 - \circ Expected total future **reward** an agent in state, s_t , receives by making action, a_t
- Policy: $\pi(s_t) = argmax_a Q(s_t, a)$
 - The policy chooses the best action that maximizes future rewards
- Discount factor: γ , 0< γ <1
 - Discount future rewards
 - Immediate rewards are weighted more highly

Importance of Reward: Unintended Consequences

Reinforcement Learning Taxonomy

Reinforcement Learning Taxonomy

Model-based

- Learn an approximate model based on experiences
- Use approximate model to make decisions
- "I have an idea of where I will be and what the reward will be if I take this action from this state"

Model-free

- Learn optimal policy or optimal Q-values directly for each action in each state from experience
- "I know that since I'm in this state, taking this action will be the best"
- Can the agent make predictions about what the next state and reward will be before it takes each action?
 - o If yes, then it is Model-based

Q-Learning

- Estimate Q(s, a) that maximizes future reward
- Use any policy and keep updating (s, a) pairs

How to update Q value

Q-Learning: Value Iteration

Q-Learning: Value Iteration

- Value Iteration has some weaknesses
 - Limited states/actions
 - Doesn't generalize to unseen states
- Breakout game
 - State: screen pixels
 - Image size: 84x84
 - 4 frames
 - Grayscale (possible levels)
 - $=> 256^{84*84*4} = 10^{69970} >> 10^{82}$ atoms in the universe

Reinforcement Learning in the Real World

- Training in the real world is not always feasible
- Large number of possible states (we cannot visit all of them and learn about them all)
- Running learning tasks to termination state is NOT always feasible
- Can use simulation to train first before deploying in real world
 - Limited to how well the simulation environment models the real world

Exploration vs Exploitation

Exploitation

- Take deterministic best paths greedily
- At the start (before training), this won't work well as the agent knows nothing about the environment

Exploration

- Explore areas we don't know anything about
- Explore by taking random actions at a certain probability, p
- Eventually stop exploring (lower p to 0)

Deep Reinforcement Learning: Deep Q Network (DQN)

Deep Reinforcement Learning: Reinforcement Learning + Neural Networks

- Use NN to learn Q-function and then use to infer the optimal policy
- Obtain target by running agent in environment

target predicted Loss Function:
$$L = E[(r + \gamma max_{a'}Q(s', a') - Q(s, a))^2]$$

Deep Q Network (DQN)

Example: Q(s, a₁) has highest value

Deep Q Network (DQN)

Deep Q Network (DQN)

Weaknesses

- o Cannot handle large action space
- Cannot handle continuous action space
- Cannot learn stochastic policy (policy is deterministic)

Policy Gradient (PG)

- On-policy (DQN is off-policy)
- Directly optimize the policy $\pi(s)$

Example: $P(a_1|s)$ has highest probability

Policy Gradient (PG): Training

• Steps:

- 1. Initialize agent
- Run policy until termination
- Record all states, actions and rewards
- Decrease probability of actions that resulted in low reward
- Increase probability of actions that resulted in high reward

Example: Pong Game

Policy Gradient (PG): Continuous Action State

- On-policy (DQN is off-policy)
- Directly optimize the policy $\pi(s)$
- **Example:** Assume action space follows Gaussian distribution
- Predict parameters of distribution only
- Sample from distribution based on predicted parameters

Continuous: How fast left or right should I go?

Discrete: Left or Right?

Policy Gradient (PG): Continuous Action State

Weaknesses

- Needs more data
- Less stable during training
- Poor credit assignment to (s, a) pairs for delayed rewards
 - Calculating reward at the end means all actions will be averaged as good if total reward is high

Questions?