COULEUR, VISION & IMAGE - Fiche n°6

Réaction chimique

1. Tableau d'avancement

A et B sont les *réactifs*. C et D sont les *produits*. a, b, c et d sont les *coefficients stoechiométriques*. Ce sont les nombres entiers les plus petits possibles qui permettent d'équilibrer l'équation de la réaction (conservation des éléments et de la charge).

x est l'avancement de la réaction. C'est une grandeur qui permet d'exprimer les quantités de matière des réactifs et des produits à une date t quelconque située entre t = 0 (début de la réaction) et t_f (fin de la réaction que l'on supposera totale). t s'exprime en mole.

 x_{max} est l'avancement maximal de la réaction. Lorsque x_{max} est atteint, la réaction est terminée.

Pour effectuer un bilan de matière, on trace un tableau d'avancement. On détermine l'avancement maximal et on complète la dernière ligne du tableau.

Equation de la réaction		$a A + b B \rightarrow c C + d D$				
Etat du	Avancement	n(A)	n(B)	n(C)	n(D)	
système	(mol)	, ,	. ,	, ,	, ,	
Etat initial	x = 0	$n_i(A)$	$n_i(B)$	$n_i(C)$	$n_i(D)$	
Etat intermédiaire	x	$n_i(A) - ax$	$n_i(B) - b x$	$n_i(C) + cx$	$n_i(D) + dx$	
Etat final	x_{\max}	$n_i(A) - ax_{\text{max}}$	$n_i(B) - b x_{\text{max}}$	$n_i(C) + c x_{\text{max}}$	$n_i(D) + dx_{\text{max}}$	

2 . Détermination de l'avancement maximal

Pour déterminer x_{max} , on cherche les valeurs de l'avancement qui annulent les quantités de matière de chaque réactif. La plus petite de ces valeurs est l'avancement maximal de la réaction.

$$n_i(A) - ax = 0$$

$$x = \frac{n_i(A)}{a}$$

$$x = \frac{n_i(B)}{b}$$

Cas
$$n^{\circ}1$$
: $\frac{n_i(A)}{a} = \frac{n_i(B)}{b}$
$$x_{\text{max}} = \frac{n_i(A)}{a} = \frac{n_i(B)}{b}$$

Cas
$$n^{\circ}2$$
: $\frac{n_i(A)}{a} > \frac{n_i(B)}{b}$

Cas
$$n^{\circ}3$$
: $\frac{n_i(A)}{a} < \frac{n_i(B)}{b}$

$$\frac{a}{a} = \frac{n_i(B)}{b}$$
A et B sont introduits dans les proportions stoechiométriques

$$x_{\text{max}} = \frac{n_i(B)}{h}$$

B est le réactif *limitant*

A est le réactif *en* excès

$$x_{\text{max}} = \frac{n_i(A)}{a}$$
 A est le réactif *limitant* B est le réactif *en excès*

COULEUR, VISION & IMAGE - Fiche n°6

3. Bilan de matière

Faire un bilan de matière consiste à compléter la dernière ligne du tableau d'avancement :

Equation de la réaction		a A	+ <i>b B</i>	\rightarrow c C	+ <i>d D</i>
	Cas n°1 proportions stoechiométriques	0	0	$\frac{c}{a}n_i(A) = \frac{c}{b}n_i(B)$	$\frac{d}{a}n_i(A) = \frac{d}{b}n_i(B)$
Etat final	Cas n°2 B en défaut	$n_i(A) - \frac{a}{b}n_i(B)$	0	$\frac{c}{b}n_i(B)$	$\frac{d}{b}n_i(B)$
	Cas n°3 A en défaut	0	$n_i(B) - \frac{b}{a}n_i(A)$	$\frac{c}{a}n_i(A)$	$\frac{d}{a}n_i(A)$

4 . Rappels : calculer une quantité de matière

	Identifier l'état physique de l'espèce
Etape 1	

solide pur / liquide pur / soluté dissout dans un solvant / gaz

Repérer dans l'énoncé les données sur l'échantillon

Etape 2

- Pour un solide ou un liquide pur, sa masse m(X)
- Pour un liquide pur, son volume V(X), sa masse volumique $\rho(X)$ ou sa densité d(X)
- ullet Pour une espèce en solution, le *volume de la solution V_{\it solution}*, la concentration molaire de l'espèce c(X)

Etape 3

- Pour un solide ou un liquide pur, calculer la masse molaire M(X) de l'espèce X à l'aide de la classification périodique des éléments.
- ullet Pour un gaz, repérer dans l'énoncé les conditions de température et de pression et en déduire la valeur V_m du *volume molaire d'un gaz*.

Etape 4 Ecrire la relation entre n(X) et les grandeurs caractérisant l'échantillon						
Corps pur X à l'éta	at solide ou liquide	Soluté X en solution aqueuse	Gaz parfait			
$n(X) = \frac{m(X)}{M(X)}$	$n(X) = \frac{\rho(X).V(X)}{M(X)}$ $n(X) = \frac{d(X).\rho_{eau}.V(X)}{M(X)}$	$n(X) = c(X) \cdot V_{solution}$	$n(X) = \frac{V(X)}{V_m}$			