1. Nested Quantisiers 2. Functions
For all odd n , $4/(n^2-1)$. Proof: Let n be an odd integer. Then $n=2k+1$ for some $k\in\mathbb{Z}$. So $n^2-1=(2k+1)^2-1=4k^2+4k+1-1=4(k^2+k)$ Since $K^2+K\in\mathbb{Z}$, $4/(n^2-1)$
$k^2+k=k(k+1)$ These are consecutive int, so $k(k+1)=2l$ for some $l\in\mathbb{Z}$. Then $n^2-1=4\cdot 2l=8l$. So $8/(n^2-1)$.
Nested Quantifles
Example: For all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that yex. applies to for each a, there is some y
True, Let as pe, Let y=2-1, then y=2-1 <x< td=""></x<>
Example: There exists y & R such that for all x e R, yxx. Sind a yr all x all x
False. Whichever y we prak, x=y-1 does not work.
Example: There exists yell such that for all XEIN,
分こん・
True, let y=1. For any 26 1/1, X ≥ 1 sy.

Example: There exists XEZ such that for all yEZ, True, Let x=1. Let y ∈ Z. Then y=1.y. 50 x/y, Examples: For all X & P(N), there exists Y & P(N) such that X&Y and Y&X [X= {3,5,19} Y={21}] If X= IN, every YEP(IN) sortistives If azø, ~ False. Excercise: For all X & P(IN), if x & { & p, IN}, then then exists YE P(IN) such that 2\$Y and Y\$20 definition of a sunotini Functions: A = domain ter all a & A, there is f: A > B = codomain a unique y & B such that Range = 2 flat) | x & Az possible outputs f(a)= y. Examples: f: R-XR} - Codemain fla)=22+1 0 f(x) = x²-1 (3) $f(x) = e^{x}$ (3)

range & codomain
Desinition: For a Sunction J:A > B, (A) It is onto is for all yeB, there exists x \in A such that \in (20) = y. (everything in B is mapped) (1) is onto, but (2) & 3 are not. Proof that (1) is onto:
(Need: for all $y \in \mathbb{R}$, there is $x \in \mathbb{R}$, such that $f(x) = y$ Let $y \in \mathbb{R}$, Consider $x = \frac{y-1}{2}$. Then $f(x) = f(\frac{y-1}{2}) = 2(\frac{y-1}{2}) + 1$
= 4-1+1 =4
So & is onto.

Range: 0 R $(0,\infty)$