COCO 教学型计算机 定时器设计规范

Revision 1.0.0.4

高小鹏

版本历史

版本	日期	作者	描述
1.0.0.0	2014/1/31	高小鹏	初始版本
1.0.0.1	2014/2/11	高小鹏	1) 第 3.3 节 COUNT 寄存器修改为"R"
1.0.0.2	2014/12/14	高小鹏	1)第4节 DAT_O[32:0]应修改为 DAT_O[31:0]
1.0.0.3	2016/12/14	STAR 团队	1) 对 2.1 节和 2.2 节的功能定义进行了完善
1.0.0.4	2017/12/27	STAR 团队	1)对第1节的功能描述进行了完善
			1)
			1)
			1)

目录

版本	历史		
目录	÷		i
冬	ii		
表格	T		i
1.			
2.	计数模	式	
	2.2.	模式 1	
3.			
			2
4.		· · · · · · · · · · · · · · · · · · ·	
5.	编程说	.明	
			[[]
图 1.	- 1 Time	R/COUNTER 内部基本结构	3
<u>1</u>	1 THVIL	ICCOUNTER 1即至平均刊	
			表俗
			V V I H
			2
表 3	-3 初值	寄存器格式	
表 4	-1 TIME	R/COUNTER接口信号定义	

COCO 采用 32 位定时器/计数器,并支持中断。

1. 功能描述及内部结构

TC 的内部基本结构如图 1-1 所示。TC 由控制寄存器、初值寄存器、32 位计数器及中断产生逻辑构成。

- 1) 控制寄存器决定该计数起停控制等。
- 2) 初值寄存器为32位计数器提供初始值。
- 3) 根据不同的计数模式,在计数为 0 后,计数器或者自动装填初值并重新倒计数,或者保持在 0 值直至计数器使能再次被设置为 1。
- 4) 使用 store 类指令修改 TC 寄存器值的优先级高于 TC 自修改的优先级。
- 5) 当计数器计数时, 若计数器使能被 store 类指令修改为 0 则停止计数。
- 6) 当计数器工作在模式 0 并且在中断允许的前提下,当计数器计数值为 0 时,中断产生逻辑产生中断请求(IRQ 为 1)。

图 1-1 Timer/Counter 内部基本结构

2. 计数模式

2.1. 模式 0

当计数器倒计数为 0 后,计数器停止计数,此时控制寄存器中的使能 Enable 自动变为 0。当使能 Enable 被设置为 1 后,初值寄存器值再次被加载至计数器,计数器重新启动倒计数。

模式 0 通常用于产生定时中断。例如,为操作系统的时间片调度机制提供定时。模式 0 下的中断信号将持续有效,直至控制寄存器中的中断屏蔽位被设置为 0。

2.2. 模式 1

当计数器倒计数为0后,初值寄存器值被自动加载至计数器,计数器继续倒计数。

模式1通常用于产生周期性脉冲。例如,可以用模式1产生步进电机所需的步进控制信号。不同于模式0,模式1下计数器每次计数循环中只产生一周期的中断信号。

3. 寄存器

TC 包括控制寄存器、初值寄存器和计数值寄存器。每个寄存器都为 32 位, 共计占用 12B 空间。

偏移 寄存器 寄存器描述 R/W 复位值 0hCTRL 控制寄存器 R/W 0 初值寄存器 **PRESET** R/W 4h **COUNT** 计数值寄存器 8h R 0

表 3-1 Timer/Counter 寄存器

3.1. 控制寄存器(CTRL)

当读取 CTRL 寄存器时,未定义位始终为 0; 当写入 CTRL 寄存器时,未定义位被忽略。

表 3-2 控制寄存器格式

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
Reserved	31:4	保留	_	0
IM	3	中断屏蔽 0:禁止中断 1:允许中断	R/W	0
Mode	2:1	模式选择 00: 方式 0 01: 方式 1 10: 未定义 11: 未定义	R/W	00
Enable	0	计数器使能 0: 停止计数 1: 允许计数	R/W	0

3.2. 初值寄存器(PRESET)

表 3-3 初值寄存器格式

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
PRESET	31:0	32 位计数初值	R/W	0

3.3. 计数值寄存器(COUNT)

表 3-4 计数值寄存器格式

Bit mnemonic	Bit No.	Description	R/W	Value After Reset
COUNT	31:0	32 位计数值	R	0

4. 模块接口信号定义

表 4-1 Timer/Counter 接口信号定义

信号名	方向	描述
CLK_I	I	时钟
RST_I	I	复位信号
ADD_I[3:2]	I	地址输入
WE_I	I	写使能
DAT_I[31:0]	I	32 位数据输入
DAT_O[31:0]	О	32 位数据输出
IRQ	О	中断请求

5. 编程说明

- 1) 在允许计数器计数前,应首先停止计数;然后加载初值寄存器;再允许计数。
- 2) 无论哪种模式,如果不需要产生中断,则应屏蔽中断。