1

11.11.5.3

Lokesh Surana

Class 11, Chapter 11, Exercise 5.3

Q. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.

Solution: Uniformly loaded suspension bridge cable hangs in the form of a parabola facing upwards. The length of cable,

$$AB = 100m \tag{1}$$

Let's assume that vertex of this parabolic setup is $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

This will give us a setup similar to below figure,

Fig. 1: Representation of parabola with vertex at origin.

Here A and B are the points on the parabola where the cable is attached to the roadway, i.e. longest wire is attached at this points. And vertex of parabola O is point where shortest wire is attached, which is 6m from the ground. With the assumption

of point
$$O$$
 being $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we'll get Point $A = \begin{pmatrix} 50 \\ 24 \end{pmatrix}$ and Point $B = \begin{pmatrix} -50 \\ 24 \end{pmatrix}$.

The generic equation of conic is

$$g(\mathbf{x}) = \mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0$$
 (2)

Point
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 is on conic, so $\implies f = 0$ (3)

As conic is upward facing parabola,

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \tag{4}$$

As points A and B are on parabola

$$\implies (50 \quad 24) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 50 \\ 24 \end{pmatrix} + 2\mathbf{u}^{\mathsf{T}} \begin{pmatrix} 50 \\ 24 \end{pmatrix} = 0 \qquad (5)$$

$$\implies \mathbf{u}^{\mathsf{T}} \begin{pmatrix} 50 \\ 24 \end{pmatrix} = -1250 \qquad (6)$$

and

$$\implies \left(-50 \quad 24\right) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -50 \\ 24 \end{pmatrix} + 2\mathbf{u}^{\mathsf{T}} \begin{pmatrix} -50 \\ 24 \end{pmatrix} = 0 \quad (7)$$

$$\implies \mathbf{u}^{\mathsf{T}} \begin{pmatrix} -50 \\ 24 \end{pmatrix} = -1250$$
(8)

From (6) and (8), we get

$$\mathbf{u}^{\mathsf{T}} \begin{pmatrix} 50 & -50 \\ 24 & 24 \end{pmatrix} = \begin{pmatrix} 1250 & -1250 \end{pmatrix} \tag{9}$$

$$\implies \mathbf{u} = \begin{pmatrix} 0 \\ -\frac{625}{12} \end{pmatrix} \tag{10}$$

we get parabola

$$\mathbf{x}^{\mathsf{T}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 0 \\ -\frac{625}{12} \mathbf{x} \end{pmatrix} = 0 \tag{11}$$

At a point 18*m* from middle, let's call it $D = \begin{pmatrix} 18 \\ x_2 \end{pmatrix}$.

$$(18 x2) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 18 \\ x2 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ -\frac{625}{12} \end{pmatrix} \begin{pmatrix} 18 \\ x2 \end{pmatrix} = 0 (12)$$

$$\implies x2 = 3.3 (13)$$

 \implies Length of a supporting wire attached to the roadway 18m from the middle is

$$= x_2 + 6 = 3.3 + 6 = 9.3m \tag{14}$$

Fig. 2: Parabola