Алгоритмы и структурам данных: ДЗ #1, #2 СПБ, CS-Center, осенний семестр 2014

Сод	ерж	ание
\sim		CILIL

01	. Base [5/5]		3
1	Задача 1А.	Сумма двух [1 секунда, 256 mb]	3
2	Задача 1В.	Произведение двух [1 секунда, 256 mb]	4
3	Задача 1С.	Коллекционер [1 секунда, 256 mb]	5
4	Задача 1D.	Разбиения на слагаемые [срр: 0.5s, java: 1s, 256 mb]	6
5	Задача 1Е.	Числа Каталана [1 секунда, 256 mb]	7
01	.Advanced [1	./2]	8
6	Задача 1F.	Маленький холодильник [1 секунда, 256 mb]	8
7	Задача 1 G .	Умножение матриц [1.5 секунд, 256 mb]	9
01	.Hard $[0/1]$		10
8	Задача 1Н.	Большой холодильник [2.5 секунд, 256 mb]	10
02	.Base $[3/3]$		12
9	Задача 2А.	Заезд в ЛКШ [0.5 секунд, 256 mb]	12
10	Задача 2В.	Тестирующая система [срр: 0.8s, java: 1.5s, 256 mb]	13
11	Задача 2С.	Количество инверсий [2 секунды, 256 mb]	14
02	.Advanced [1	./3]	15
12	Задача 2D.	Мега-инверсии [0.5 секунд, 256 mb]	15
13	Задача 2Е.	Умножение чисел [1 секунда, 256 mb]	16
14	Задача 2F.	Ближайшие точки [3 секунды, 256 mb]	17
02	.Hard $[0/1]$		18
15	Задача 2 G .	Точки в пространстве [2 секунды, 256 mb]	18

Алгоритмы и структурам данных: ДЗ #1, #2 СПБ, CS-Center, осенний семестр 2014

Общие правила:

Дедлайн на задачи 10 дней с 00:00 в чевтерг по 23:59 в субботу через неделю. К каждой главе есть более простые задачи (base), посложнее (advanced), и сложные (hard). В скобках к каждой главе написано сколько любых задач из этой главы нужно сдать.

Общая информация по курсу:

Тестирующая система: http://contest.yandex.ru/contest/640/

Сайт курса: http://compscicenter.ru/courses/algorithms-1/2014-autumn/

Семинары ведет Сергей Владимирович Копелиович, контакты: burunduk30@gmail.com, vk.com/burunduk1

01.Base [5/5]

Задача 1А. Сумма двух [1 секунда, 256 mb]

Формат входных данных

В первой строке входного файла расположены два целых числа A и B, не превосходящих 1 000 по модулю.

Формат выходных данных

Ваша программа должна выдавать в выходной файл одно число — сумму чисел A и B.

sum.in	sum.out
2 3	5
17 -18	-1

2 Задача 1В. Произведение двух [1 секунда, 256 mb]

Формат входных данных

Входной файл состоит из двух целых чисел A и B, не превосходящих по модулю 10^9 .

Формат выходных данных

Программа должна выдавать в выходной файл единственное число — произведение чисел A и B.

product.in	product.out
2 2	4

Задача 1С. Коллекционер [1 секунда, 256 mb]

В Байтландии за всю её историю было выпущено 15000 различных почтовых марок. Известный коллекционер почтовых марок планирует собрать полную коллекцию марок Байтландии. Какое-то количество марок (возможно, с дубликатами) у него есть на данным момент). По заданному списку марок, имеющихся в наличии, вычислить, какое минимальное количество марок коллекционер должен докупить, чтобы коллекция стала полной.

Формат входных данных

Входной файл состоит из двух строк. В первой строке задано одно целое число n $(1 \le n \le 3\,000\,000)$ — количество имеющихся на данный момент у коллекционера экземпляров байтландских марок. Во второй строке заданы n целых чисел, каждое из которых лежит в интервале [1,15000] — номер марки, представленной соответствующим экземпляром.

Формат выходных данных

Одно число — минимальное количество марок, которое коллекционер должен докупить, чтобы коллекция стала полной.

collection.in	collection.out
8	14995
3 6 2 2 4 6 3 7	

4 Задача 1D. Разбиения на слагаемые [cpp: 0.5s, java: 1s, 256 mb]

Перечислите все разбиения целого положительного числа N ($1 \le N \le 40$) на целые положительные слагаемые. Разбиения должны обладать следующими свойствами:

- 1. Слагаемые в разбиениях идут в невозрастающем порядке.
- 2. Разбиения перечисляются в лексикографическом порядке.

partition.in	partition.out
4	1 1 1 1
	2 1 1
	2 2
	3 1
	4

5 Задача 1Е. Числа Каталана [1 секунда, 256 mb]

Числа Каталана определяются следущим образом:

1.
$$C_0 = 1$$

2. $C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}$

Ваша задача — посчитать $C_n \mod m$.

Формат входных данных

На первой строке целые числа $n~(0\leqslant n\leqslant 1000)$ и $m~(1\leqslant m\leqslant 10^9).$

Формат выходных данных

Выведите одно целое число — $C_n \mod m$.

catalan.in	catalan.out
5 100000000	42

01.Advanced [1/2]

6 Задача 1F. Маленький холодильник [1 секунда, 256 mb]

Дано целое число n ($1 \le n \le 10^{12}$). Нужно найти натуральные a,b,c: abc=n и при этом 2(ab+bc+ca) минимально. Т.е. при фиксированном объеме минимимизировать площадь поверхности.

Формат входных данных

На первой строке число $n \ (1 \le n \le 10^{12}).$

Формат выходных данных

На первой строке четыре целые числа — 2(ab+bc+ca) и a,b,c.

refrator.in	refrator.out
120	148 4 6 5

7 Задача 1G. Умножение матриц [1.5 секунд, 256 mb]

Даны две квадратных матрицы из целых неотрицательных чисел и целое число m. Посчитайте произведение матриц по модулю m.

Формат входных данных

На первой строке $n \ (1 \le n \le 700), \ m \ (1 \le m \le 10^9).$

Следующие n строк содержат по n целых чисел от 0 до m-1 — матрица A. Следующие n строк содержат по n целых чисел от 0 до m-1 — матрица B.

Формат выходных данных

Выведите n строк по n целых чисел от 0 до m-1 в каждой — матрица $(A \times B) \mod m$.

Примеры

matmul.in	matmul.out
3 2	1 0 1
1 1 1	1 0 1
1 1 1	1 0 1
1 1 1	
1 0 0	
0 1 0	
0 1 1	

Замечание

Внимание: это оптимизационная задача. У нас есть решение на c++, оно работает **0.76** секунд. Мы не гарантируем, что ваше решение на другом языке пройдет. Если у вас не сдается эта задача — это нормально =)

$01.{ m Hard} \, [0/1]$

8 Задача 1H. Большой холодильник [2.5 секунд, 256 mb]

Вася хочет купить новый холодильник. Он считает, что холодильник должен быть прямоугольным параллелепипедом с целочисленными длинами ребер. Вася рассчитал, что для повседневного пользования ему понадобится холодильник объема не меньше V. Кроме того, Вася по натуре минималист, поэтому объем должен быть и не больше V — к чему занимать лишнее место в квартире? Определившись с объемом холодильника, Вася столкнулся с новой непростой задачей — чтобы холодильник было проще мыть, при фиксированном объеме Vон должен иметь минимальную площадь поверхности.

Объем и площадь поверхности холодильника с ребрами a, b, c равны V = abc и S = 2(ab + bc + ca), соответственно.

Помогите Васе по заданному объему V найти такие целые длины ребер холодильника a, b, c, чтобы объем холодильника был равен V и при этом его площадь поверхности S была минимальна.

Формат входных данных

В первой строке записано единственное целое число t ($1 \le t \le 500$) — количество наборов данных.

Далее следует описание t наборов данных. Каждый набор состоит из одного целого числа V ($2 \le V \le 10^{18}$), заданного своим разложением на множители следующим образом.

Пусть $V=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$, где p_i — различные простые числа, а a_i — положительные целые степени.

Тогда в первой строке описания набора данных записано единственное положительное целое число k — количество различных простых делителей V. В следующих k строках записаны простые числа p_i и их степени a_i , разделенные пробелом. Все p_i различны, все $a_i > 0$.

Формат выходных данных

Выведите t строк, в i-й строке выведите ответ на i-й набор данных — четыре целых числа, записанные через пробел: минимальная возможная площадь поверхности S и соответствующие длины ребер $a,\ b,\ c$. Если вариантов длин ребер, дающих минимальную площадь, несколько, разрешается вывести любой из них. Длины ребер холодильника разрешается выводить в любом порядке.

Алгоритмы и структурам данных: ДЗ #1, #2 СПБ, CS-Center, осенний семестр 2014

Примеры

refrigerator.in	refrigerator.out
3	24 2 2 2
1	70 1 1 17
2 3	148 4 6 5
1	
17 1	
3	
3 1	
2 3	
5 1	

Замечание

В первом наборе данных примера объем холодильника $V=2^3=8,$ и минимальную площадь поверхности дадут ребра одинаковой длины.

Во втором наборе данных объем V=17, и его можно получить из единственного набора ребер целочисленных длин.

02.Base [3/3]

9 Задача 2A. Заезд в ЛКШ [0.5 секунд, 256 mb]

Знаете ли вы, как непросто организовать заезд в ЛКШ? Например, в 2010 году нужно было заказать автобусы для целых n ЛКШат, мечтающих добраться в "Орлёнок" из Саратова. Директору смены сообщили, что можно заказать некоторые из m автобусов. Он узнал вместимость каждого автобуса и сразу понял, какое минимальное количество автобусов ему нужно заказать, чтобы привезти в лагерь всех ЛКШат. А сможете ли вы так же быстро решить эту задачу?

Формат входных данных

В первой строке через пробел записаны целые числа n и m ($1 \le n \le 10^6$; $1 \le m \le 1000$). В следующей строке через пробел записаны m целых чисел в пределах от 1 до $1\,000$ — вместимости автобусов.

Формат выходных данных

В первой строке выведите число k — минимальное количество автобусов, которое придётся заказать директору. В следующей строке выведите через пробел k целых чисел — номера автобусов, которые нужно заказать. Автобусы пронумерованы от 1 до m в том порядке, в которых они перечислены во входных данных. Если возможных решений несколько, выведите любое. Если решения нет, в единственной строке выведите «-1».

arrival.in	arrival.out
345 5	3
100 130 190 140 150	1 3 4
345 3	-1
100 100 100	

10 Задача 2В. Тестирующая система [срр: 0.8s, java: 1.5s, 256 mb]

Юный программист Саша написал свою первую тестирующую систему. Он так обрадовался тому, что она скомпилировалась, что решил пригласить школьных друзей на свой собственный контест.

Но в конце тура выяснилось, что система не умеет сортировать команды в таблице результатов. Помогите Саше реализовать эту сортировку.

Команды упорядочиваются по правилам АСМ:

- по количеству решённых задач в порядке убывания;
- при равенстве количества решённых задач по штрафному времени в порядке возрастания;
- при прочих равных по номеру команды в порядке возрастания.

Формат входных данных

Первая строка содержит натуральное число n ($1 \le n \le 100\,000$) — количество команд, участвующих в контесте. В i-й из следующих n строк записано количество решенных задач S ($0 \le S \le 100$) и штрафное время T ($0 \le T \le 100\,000$) команды с номером i.

Формат выходных данных

В выходной файл выведите n чисел — номера команд в отсортированном порядке.

ejudge.in	ejudge.out
5	5 2 1 3 4
3 50	
5 720	
1 7	
0 0	
8 500	

11 Задача 2С. Количество инверсий [2 секунды, 256 mb]

Дан массив случайных целых чисел, нужно найти количество инверсий.

Формат входных данных

На первой строке числа n $(1 \le n \le 1\,000\,000)$ — размер массива и m $(1 \le m \le 2^{24}$ числа в массиве от 0 до m-1). На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
1. unsigned int cur = 0; // беззнаковое 32-битное число 2. unsigned int nextRand24() { 3. cur = cur * a + b; // вычисляется с переполнениями 4. return cur » 8; // число от 0 до 2^{24}-1. 5. }
```

Элементы массива генерируются последовательно. $x_i = nextRand24() \% m$;

Формат выходных данных

Выведите количество инверсий

Примеры

invcnt.in	invcnt.out
20 5	63
19 18	

Замечание

Сгенерированный массив: 01142210424031343330.

02.Advanced [1/3]

12 Задача 2D. Мега-инверсии [0.5 секунд, 256 mb]

Инверсией в перестановке $p_1, p_2, ..., p_N$ называется пара (i, j) такая, что i < j и $p_i > p_j$. Назовем мега-инверсией в перестановке $p_1, p_2, ..., p_N$ тройку (i, j, k) такую, что i < j < k и $p_i > p_j > p_k$. Придумайте алгоритм для быстрого подсчета количества мега-инверсий в перестановке.

Формат входных данных

Первая строка входного файла содержит целое число N ($1 \le N \le 100\,000$). Следующие N чисел описывают перестановку: $p_1, p_2, ..., p_N$ ($1 \le p_i \le N$), все p_i попарно различны. Числа разделяются пробелами и/или переводами строк.

Формат выходных данных

Единственная строка выходного файла должна содержать одно число, равное количеству мега-инверсий в перестановке $p_1, p_2, ..., p_N$.

mega.in	mega.out
4	4
4 3 2 1	

13 Задача 2Е. Умножение чисел [1 секунда, 256 mb]

Требуется перемножить два целых неотрицательных числа.

Формат входных данных

В двух строках даны два целых неотрицательных числа в 10-чной системе счисления. Максимальная длина числа $=2^{18}$.

Формат выходных данных

Выведите в выходной файл произведение.

mul.in	mul.out
13	1300
100	

14 Задача 2F. Ближайшие точки [3 секунды, 256 mb]

Дано несколько точек на плоскости. Выведите наименьшее расстояние, которое достигается между какими-то двумя из них.

Формат входных данных

В первой строке задано число N ($2 \le N \le 200\,000$) — количество точек. Следующие N строк содержат координаты точек (целые числа от -10^9 до 10^9).

Формат выходных данных

Выведите единственное вещественное число — минимальное расстояние между какими-то двумя из этих точек. Ответ будет считаться корректным, если абсолютная погрешность ответа не будет превышать 10^{-6} .

closest.in	closest.out
2	5.0
0 0	
3 4	
2	0.0
7 7	
7 7	
4	2.8284271247461903
0 0	
5 6	
3 4	
7 2	

02. Hard [0/1]

15 Задача 2G. Точки в пространстве [2 секунды, 256 mb]

В пространстве заданы n точек. Вас очень интересует одна величина — минимальное из попарных расстояний между точками. Именно её вы и должны найти.

Формат входных данных

Первая строка ввода содержит единственное число n— количество точек ($2 \le n \le 50\,000$). Следующие n строк содержат по три целых числа каждая— координаты точек в пространстве. Гарантируется, что все точки различны. Координаты не превышают 10^6 по абсолютной величине.

Формат выходных данных

В первой строке выведите единственное вещественное число d— минимальное расстояние— с точностью не менее 5 знаков. Во второй строке выведите пару целых чисел— номера точек, расстояние между которыми совпадает с ответом. Если таких пар несколько, выведите любую пару.

points3d.in	points3d.out
5	1.4142135624
1 1 0	4 3
1 0 1	
0 1 1	
0 0 0	
2 2 2	