Préparation à l'agrégation externe de Sciences Sociales

Algèbre linéaire 2 : correction

2021-2022

Exercice 1 (2014)

- 1. (a) Cela se vérifie par calcul direct.
 - (b) On sait que $X_{n+1} = AX_n + C$ et dans la question précédente on a montré que X = AX + C. La soustraction de ces deux égalités nous donne $X_{n+1} - X = A(X_n - X)$. Finalement en remplaçant $X_n - X$ par Y_n , on obtient $Y_{n+1} = AY_n$.

Par récurrence on peut montrer que $Y_n = A^n Y_0$, ce qui donne $X_n = Y_n + X = A^n (X_0 - X) + X$.

- 2. (a) Un calcul rapide montre que $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et $B^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. On voit bien que $B^2 = 2I + B$.
 - (b) Pour $n=0,\ A^0=I$ donc $\alpha_0=1,\beta_0=0.$ Pour n=1, d'après la définition de $B,\ A^1=A=\frac{1}{2}I+\frac{1}{4}B,$ et les suites vérifient bien $\alpha_1=\frac{1}{2}=\frac{\alpha_0+\beta_0}{2}$ et $\beta_1=\frac{1}{4}=\frac{\alpha_0+3\beta_0}{4}.$ Supposons que pour n nous avons $A^n=\alpha_nI+\beta_nB.$ Alors

$$A^{n+1} = A^n A = (\alpha_n I + \beta_n B) A.$$

Si on remplace A à droite grâce à la relation $A = \frac{1}{4}(2I + B)$, on obtient :

$$A^{n+1} = (\alpha_n I + \beta_n B) A$$

$$= (\alpha_n I + \beta_n B) \frac{1}{4} (2I + B)$$

$$= \frac{1}{2} \alpha_n I + \left(\frac{1}{2} \beta_n + \frac{1}{4} \alpha_n\right) B + \frac{1}{4} \beta_n B^2$$

$$= \frac{1}{2} \alpha_n I + \left(\frac{1}{2} \beta_n + \frac{1}{4} \alpha_n\right) B + \frac{1}{4} \beta_n (2I + B)$$

$$= \left(\frac{1}{2} \alpha_n + \frac{1}{2} \beta_n\right) I + \left(\frac{1}{2} \beta_n + \frac{1}{4} \alpha_n + \frac{1}{4} \beta_n\right) B$$

$$= \alpha_{n+1} I + \beta_{n+1} B$$

Par récurrence, la formule est valable pour $n \geq 0$.

- 3. Soit $U_n = \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix}$ pour tout $n \in \mathbb{N}$.
 - (a) $U_{n+1} = \begin{pmatrix} \alpha_{n+1} \\ \beta_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(\alpha_n + \beta_n) \\ \frac{1}{4}(\alpha_n + 3\beta_n) \end{pmatrix} = \begin{pmatrix} 0.5 & 0.5 \\ 0.25 & 0.75 \end{pmatrix} \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix} = MU_n.$

Par récurrence, $U_n = M^n U_0$.

(b) Soit
$$V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $W = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.
 $MV = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = V$ et $MW = \begin{pmatrix} -0.5 \\ 0.25 \end{pmatrix} = 0.25W$.

V est donc un vecteur propre de M de valeur propre 1 et W est un vecteur propre de valeur propre 0.25.

(c) Comme on a trouvé deux vecteurs V et W et qu'ils forment une famille libre, et M est une matrice 2×2 , alors $\{V, W\}$ est une base qui diagonalise M. Posons alors

$$P = \begin{pmatrix} V & W \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 \\ 0 & 0.25 \end{pmatrix}$

où les vecteurs propres V et W sont les colonnes de P, et les valeurs propres associées sont disposées dans l'ordre sur la diagonale de D. On a alors $M = PDP^{-1}$. En consequence, $M^n = PD^nP^{-1}$.

(d) Comme D est diagonale, D^n est facile à calculer. On remplace chaque nombre sur la diagonale par sa puissance n-ième. Donc

$$D^n = \begin{pmatrix} 1 & 0 \\ 0 & 0.25^n \end{pmatrix}.$$

On peut calculer P^{-1} de la manière suivante. On pose $P^{-1}=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Puis, on impose

$$P^{-1}P = \begin{pmatrix} a+b & -2a+b \\ c+d & -2c+d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

D'où

$$\begin{cases} a+b=1 \\ -2a+b=0 \\ c+d=0 \\ -2c+d=1 \end{cases} \Rightarrow \begin{cases} a=\frac{1}{3} \\ b=\frac{2}{3} \\ c=-\frac{1}{3} \\ d=\frac{1}{3} \end{cases} \Rightarrow P^{-1}=\frac{1}{3}\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$

Puis le calcul matriciel donne

$$M^n = \frac{1}{3} \begin{pmatrix} 1 + 2 \times 0.25^n & 2 - 2 \times 0.25^n \\ 1 - 0.25^n & 2 + 0.25^n \end{pmatrix}.$$

On en déduit que

$$\begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix} = U_n = M^n \begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix} = M^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 + 2 \times 0.25^n \\ 1 - 0.25^n \end{pmatrix} \xrightarrow[n \to +\infty]{} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}.$$

Donc α_n et β_n convergent tous les deux vers $\frac{1}{3}$ quand $n \to +\infty$.

4. Dans la question (2b), on a $A^n = \alpha_n I + \beta_n B$. Alors,

$$A^n \xrightarrow[n \to +\infty]{} \frac{1}{3}(I+B) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Comme $X_n = A^n(X_0 - X) + X$, et $X_0 - X = \begin{pmatrix} -4 \\ -4 \\ -2 \end{pmatrix}$. On en déduit que

$$\begin{pmatrix} p_n \\ q_n \\ r_n \end{pmatrix} = X_n \xrightarrow[n \to +\infty]{} \frac{1}{3} (I+B) \begin{pmatrix} -4 \\ -4 \\ -2 \end{pmatrix} + \begin{pmatrix} 16 \\ 20 \\ 12 \end{pmatrix} = \begin{pmatrix} 16 - \frac{10}{3} \\ 20 - \frac{10}{3} \\ 12 - \frac{10}{3} \end{pmatrix}.$$