50.021 -AI

Alex

Week 03: Basic neural networks

[The following notes are compiled from various sources such as textbooks, lecture materials, Web resources and are shared for academic purposes only, intended for use by students registered for a specific course. In the interest of brevity, every source is not cited. The compiler of these notes gratefully acknowledges all such sources.]

Neural nets – an intro

A single Neuron - loose biological analogy

- set of inputs $\{z_i\}_{i=1}^d$
- output z_i
- weights on inputs w_{ij} , bias b

Forward equation:

preactivation
$$a_j = \sum_{i=1}^d z_i w_{ij} + b$$
 linear mapping $z_j = g(a_j)$ nonlinear activation (could be logistic function)

• non-linear activation function $g(\cdot)$

Lets consider examples of activation functions:

- function $g: \mathbb{R}^1 \longrightarrow \mathbb{R}^1$
- intuition: larger inputs \rightarrow neuron fires more strong

A single Neuron - What is the meaning of an activation function?

We have seen this in a previous lecture already.

activations do what?

nonlinearly changing w in the direction

- output of activation function a_i is constant in the red plane
- output of activation function a_j varies along the direction of w

A neural network is a graph structure made from connected neurons.

- a neuron can be input to many other neurons
- a neuron can receive input to many other neurons
- each neuron has same structure $(g(\cdot), \Sigma)$ but different parameters (w_{ij}, b_j)
- can stack neurons in layers

Non-linear activation function is important

because if we stack linear functions still

result in linear function

The XOR problem

non-linear mappings!

separate red from blue samples.

Samples lie in quadrants around coordinated $(\pm 1, \pm 1)$

This is an example how a concatenation of neurons allows to learn

We will show: a neural network with some weights can separate these two classes.

all points close to $(\pm 1, \pm 1)$

$$z_1 = tanh(10x_1)$$

$$z_2 = tanh(\frac{10}{2}x_2)$$

• tanh pushes points towards $(\pm 1, \pm 1)$

as a consequence:

$$z_3 + z_4 \approx 0$$
 for $(z_1, z_2) = (-1, -1), (+1, +1)$

$$z_3 + z_4 \approx -2$$
 for $(z_1, z_2) = (+1, -1), (-1, +1)$

 $z_3 + z_4$ Separates samples!

$$z_3 = tanh(1 + (z_1 - z_2))$$

 $z_4 = tanh(1 - (z_1 - z_2))$

z_1	z_2	$1+(z_1-z_2)$	z_3	$1-(z_1-z_2)$	z_4
-1	-1	+1	+1	+1	+1
+1	+1	+1	+1	+1	+1
-1	+1	-1	-1	+3	+1
+1	-1	+3	+1	-1	-1

as a consequence:

$$z_3 + z_4 \approx 2$$
 for $(z_1, z_2) = (-1, -1), (+1, +1)$

$$z_3 + z_4 \approx 0$$
 for $(z_1, z_2) = (+1, -1), (-1, +1)$

 $z_3 + z_4$ Separates samples! $\longrightarrow z_3 + z_4$ has learned to classify

OOPS ... multiple solutions!

(just like multiple local maxima)

$$z_3 = tanh(z_1 + z_2 - 1)$$

 $z_4 = tanh(-(z_1 + z_2) - 1)$

• output $z_3 + z_4$ separates!

Universal approximation theorem

It has many versions of it.

- Kolmogorov (1957), Hornik (1989), Cybenko (1989) and others: Neural network can approximate *any continuous function on a compact region*
- can approximate any function ≠ able to learn well from training data (!!)
- training of neural networks is often difficult with many "surprises"
- can represent but maybe cannot learn the necessary representation

Definition: Neural Network

Any directed graph built from neurons is a neural network! –The Definition ends here.

• two types: recurrent and feedforward neural networks

Quick over view over Neural Networks so far:

- neuron is a simple unit
- complexity by combining many simple units
- classification: can learn non-linear boundaries
- example: XOR-problem

How to learn the parameters in the neurons? Consider a multilayer neural network for image classification

taken from:http://www.ais.uni-bonn.de/deep_learning/

- · use gradient! __ for all weights of all neurons
- how to compute gradient for one weight w_{ij} deep in this nested structure?

how to learn neural network parameters?

- define a loss function E on outputs f(x) of the NN. NN has parameters w
- \bullet compute gradient of the loss function w.r.t. NN parameters w
- optimize parameters by gradient descent using $\frac{\partial E(f(x),y)}{\partial w}$

The loss function

- need to define a loss *E*
- example loss *E* for: *Multiclass Classification*
- assume: have 3 output neurons for three classes z_1, z_2, z_3 ice cream, oranges, everything else.
- a sample x_i is fed into a neural network, produces 3 outputs $z_1(x_i), z_2(x_i), z_3(x_i)$
- map outputs $z_c(x_i)$ to "probabilities" p_c , then apply loss to p_c

$$p_c = \frac{e^{z_c}}{\sum_{c'=1}^3 e^{z_{c'}}}$$

$$\sum_{c=1}^3 p_c = \frac{\sum_{c=1}^3 e^{z_c}}{\sum_{c'=1}^3 e^{z_{c'}}} = 1$$

$$p_c = \frac{e^{z_c}}{\sum_{c'=1}^3 e^{z_{c'}}}$$

Note: this is a generalization of the logistic function to more than two classes. See it for two classes:

$$p_1(z_1, z_2) = \frac{e^{z_1}}{\sum_{c'=1}^2 e^{z_{c'}}} = \frac{e^{z_1}}{e^{z_1} + e^{z_2}} = \frac{e^{z_1}}{e^{z_1} + C}$$
$$p_1(z_1, z_2 = 0) = \frac{e^{z_1}}{e^{z_1} + 1} = \frac{1}{e^{-z_1} + 1}$$

- maximizing the likelihood of p_c is equivalent to minimizing the neg log likelihood
- minimize loss as: neg log likelihood
- likelihood for one datapoint x_i :

$$\prod_{c=1}^{3} p_c(x_i)^{(y_{c,i}+1)/2}$$

$$y_{c,i} = \begin{cases} 1 & \text{if } c \text{ is the class label for } x_i \\ -1 & \text{else} \end{cases}$$

$$y_{c,i} = \begin{cases} 1 & \text{otherwise in the class label for } x_i \\ -1 & \text{else} \end{cases}$$

• neg log likelihood for one sample x_i

$$-1\sum_{c=1}^{K}\log(p_{c}(x_{i}))\frac{y_{ci}+1}{2}$$

- minimize loss as: minimize neg log likelihood
- neg log likelihood for one sample x_i

$$-1\sum_{c=1}^{K}\log(p_{c}(x_{i}))\frac{y_{ci}+1}{2}$$

• loss *E* for a set of x_i is sum over all x_i :

$$E = -1 \sum_{i \in data} \sum_{c=1}^{K} \log(p_c(x_i)) \frac{y_{ci} + 1}{2}$$

$$\Rightarrow E = -1 \sum_{i \in data} \sum_{c=1}^{K} t(z_c(x_i)) \frac{y_{ci} + 1}{2}$$

(with
$$t(z_c) := log(\frac{e^{z_c}}{\sum_{c'=1}^3 e^{z_{c'}}}))$$

• E as a function of the neuron outputs z_1, z_2, z_3

have now a loss function for the three neuron outputs z_1, z_2, z_3

• example: compute gradient with respect to parameters w_{25} of neuron z_2

$$\frac{\partial E}{\partial w_{2,5}} = \frac{\partial E}{\partial z_2} \frac{z_2}{\partial w_{2,5}}$$
 chain rule
$$\frac{\partial}{\partial w_{2,5}} = \frac{\partial E}{\partial z_2} \frac{z_2}{\partial w_{2,5}}$$

• important: both terms $\frac{\partial E}{\partial z_2}$ and $\frac{z_2}{\partial w_{2,5}}$ easily computable in terms of NN structure

$$z_2(x_i) = g(w_{2,4}z_4(x_i) + w_{2,5}z_5(x_i)) \qquad \text{look at the graph}$$

$$\frac{\partial z_2}{\partial w_{2,5}} = g'(w_{2,4}z_4(x_i) + w_{2,5}z_5(x_i)) \cdot z_5(x_i)$$
 derivative of the inner term

• E is defined directly as a function of z_2 and z_1, z_3

$$\frac{\partial E}{\partial z_2} = -1 \sum_{i \in data} \left(\frac{y_{2i} + 1}{2} - \frac{e^{z_2(x_i)}}{\sum_{c'=1}^3 e^{z_{c'}(x_i)}} \right)$$

How about
$$\frac{\partial E}{\partial w_{7,5}} = ???$$

• same approach - using chain rule

$$\frac{\partial E}{\partial w_{7,5}} = \frac{\partial E}{\partial z_5} \frac{\partial z_5}{\partial w_{7,5}}$$

• $\frac{\partial E}{\partial z_5}$ not directly computable (z_5 is no input to E)

• idea: apply top-down chainrule to compute $\frac{\partial E}{\partial z_5}$ – we know all the functions that depend on z_5 as input: z_1, z_2, z_3 . Use this:

- know already how to compute $\frac{\partial E}{\partial z_1}$, $\frac{\partial E}{\partial z_2}$, $\frac{\partial E}{\partial z_3}$ can be done directly by differentiating E.
- open is only $\frac{\partial z_1}{\partial z_5}$, $\frac{\partial z_2}{\partial z_5}$, $\frac{\partial z_3}{\partial z_5}$

$$\begin{aligned} z_2(x_i) &= g(w_{2,4}z_4(x_i) + w_{2,5}z_5(x_i)) \\ \frac{\partial z_2}{\partial z_5} &= g'(w_{2,4}z_4(x_i) + w_{2,5}z_5(x_i)) \cdot w_{2,5} \\ \text{very similar to} \\ \frac{\partial z_2}{\partial w_{2,5}} &= g'(w_{2,4}z_4(x_i) + w_{2,5}z_5(x_i)) \cdot z_5 \end{aligned}$$

Observation

- $\bullet \ \frac{\partial E}{\partial w_{7,5}} = \frac{\partial E}{\partial z_5} \frac{\partial z_5}{\partial w_{7,5}}$
- $\frac{\partial E}{\partial z_5}$ can be computed by top-down chain rule

$$\frac{\partial E}{\partial z_5} = \frac{\partial E}{\partial z_1} \frac{\partial z_1}{\partial z_5} + \frac{\partial E}{\partial z_2} \frac{\partial z_2}{\partial z_5} + \frac{\partial E}{\partial z_3} \frac{\partial z_3}{\partial z_5}$$

- $\frac{\partial z_2}{\partial z_5}$ is easy to compute by NN structure, similar to $\frac{\partial z_2}{\partial w_{25}}$
- (final result:)

$$\frac{\partial E}{\partial w_{5,7}} = \frac{\partial E}{\partial z_1} \frac{\partial z_1}{\partial z_5} \frac{\partial z_5}{\partial w_{5,7}} + \frac{\partial E}{\partial z_2} \frac{\partial z_2}{\partial z_5} \frac{\partial z_5}{\partial w_{5,7}} + \frac{\partial E}{\partial z_3} \frac{\partial z_3}{\partial z_5} \frac{\partial z_5}{\partial w_{5,7}}$$

- have shown: $\frac{\partial z_i}{\partial w_{i,i}}$, $\frac{\partial z_i}{\partial z_j}$ are simple terms
- can use chainrule to get every $\frac{\partial E}{\partial z_i}$

• there is a pattern in these computations – formalize it

Backprop Takeaway 1

• goal: compute $\frac{\partial E}{\partial w_n^{(l)}}$, need to get: $\frac{\partial E}{\partial z^{(l)}}$ so that we can compute

$$\frac{\partial E}{\partial w_v^{(l)}} = \frac{\partial E}{\partial z^{(l)}} \frac{\partial z^{(l)}}{\partial w_v^{(l)}}$$

- assume each neuron $z^{(l)}$ has an index (l) denoting its layer.
- assume there are no shortcuts between layers, can be treated similarly, but messy to write down
- · backpropagation is essentialy only a top-down application of chainrule

Backprop Takeaway 2

- to calculate all weights • above approach can compute also derivatives $\frac{\partial E}{\partial w_v^{(k)}}$ at all layers (k), Back propogation: not only (l) when going down the layers
- TOP DOWN CHAIN RULE • general top-down algorithm – see below

Backpropagation as algorithm for layered NNs

for *layerindex* $l = N \rightarrow 1$

• if l == N: compute $\frac{\partial E}{\partial z^{(l)}}$ directly (error as a function of NN outputs)

- else: use precomputed $\frac{\partial E}{\partial z_j^{(l+1)}}$, compute and store $\frac{\partial E}{\partial z_i^{(l)}} = \sum_{z_j^{(l+1)}} \frac{\partial E}{\partial z_j^{(l+1)}} \frac{\partial z_j^{(l+1)}}{\partial z_i^{(l)}}$
- compute partial derivative for variable $w_{hi}^{(l)}$ as $\frac{\partial E}{\partial w_{hi}^{(l)}} = \frac{\partial E}{\partial z_i^{(l)}} \frac{\partial z_i^{(l)}}{\partial w_{hi}^{(l)}}$

end for

Now: assemble partial derivatives for variables w_{ij} into one huuuge gradient vector ... and descend in w-space!

another Backprop Takeaway

- backprop: chainrule PLUS we can reuse terms:
- reuse $\frac{\partial z^{(k)}}{\partial z^{(k-1)}}$ for all weights in levels below k-1
- recycling of $\frac{\partial z^{(k)}}{\partial z^{(k-1)}}$ is the key to fast computation of gradient

Backpropagation in general

- does work without layer assumptions.
- replace *neurons of next higher layer* (l+1) by neurons such that the current neuron is input to them

• "flow" pattern

Neural network Implementation: Backpropagation with batch sizes

One important trick: when running toolbox code, the toolboxes create of every layer as many copies as the batchsize (or they create a layer with dimensionality being multiplied by the batch size). The forward computation runs in parallel for all samples in a batch.

Care needs to be taken when implementing backpropagation in such setup. For neuron activations implementation is as usual

$$Y = \frac{1}{1 + e^{-x}}$$

Then what one needs to return to the layer below is:

$$\frac{dE}{dX} = \frac{dE}{dY} * \frac{dY}{dX}$$

however there are layers with shared parameters. For example a fully connected layer

$$Y = W \cdot X + b$$

There are multiple copies of X – one for every sample in the batch, but the parameters (W,b) are shared across all samples in the batch-size. Suppose that X would have dimension K if one would use a batchsize of 1, and Y would have dimension M if one would use a batchsize of 1. Then W would have dimension $K \times M$, no matter what batchsize.

Now $\frac{dE}{dX}$ and $\frac{dE}{dW}$ must be treated differently. $\frac{dE}{dX}$ is same as above for the activation layer. Note: if it has a batch size of 5, then $\frac{dE}{dX}$ has dimensionality $5 \cdot K$.

Following the formula:

$$\nabla \sum_{(x_i, y_i) \in Batch} E(f(x_i), y_i)$$

The

however there are layers with shared parameters. For example a fully connected layer

$$Y = W \cdot X + b$$

There are multiple copies of X – one for every sample in the batch, but the parameters (W, b) are shared across all samples in the batch-size. Suppose that X would have dimension K if one would use a batchsize of 1, and Y would have dimension M if one would use a batchsize of 1. Then W would have dimension $M \times N$, no matter what batchsize.

Now $\frac{dE}{dX}$ and $\frac{dE}{dW}$ must be treated differently. $\frac{dE}{dX}$ is same as above for the activation layer. Note: if it has a batch size of 5, then $\frac{dE}{dX}$ has dimensionality $5 \cdot K$.

For $\frac{dE}{dW}$, using the formula:

$$\nabla \left(\sum_{(x_i, y_i) \in Batch} E(f(x_i), y_i) \right) : \text{ The } \cdot \text{ in the term } \frac{dE}{dW} = \frac{dE}{dY} \cdot \frac{dY}{dW}$$

says that it needs to be summed over all elements of the batch, when computing $\frac{dE}{dW}$ for updating W.

If we have a batch size of 5, then (up to transposition and reshaping)

$$X.shape = (5, K) W.shape = (K, M)$$

$$Y.shape = (5, M)$$

$$\frac{dE}{dY}.shape = Y.shape = (5, M)$$

$$\frac{dY}{dW}$$
.shape = (5K, M) or (K, 5M) or (5, K, M) – be aware of that additional 5