Definitions

Term	Notation Example(s)	We say in English
sequence	x_1, \ldots, x_n	A sequence x_1 to x_n
	x_1, \ldots, x_n where $n = 0$	An empty sequence
	x_1, \ldots, x_n where $n = 1$	A sequence containing just x_1
	x_1, \ldots, x_n where $n = 2$	A sequence containing just x_1 and x_2 in order
	x_1, x_2	A sequence containing just x_1 and x_2 in order
all integers	\mathbb{Z}	The (set of all) integers (whole numbers including negatives, zero, and positives)
all positive integers	\mathbb{Z}^+	The (set of all) strictly positive integers
all natural numbers	N	The (set of all) natural numbers. Note : we use
	1 V	the convention that 0 is a natural number.
function rule definition	f(x) = x + 4	Define f of x to be $x + 4$
piecewise rule definition	$f(x) = \begin{cases} x & \text{if } x \ge 0 \end{cases}$	Define f of x to be x when x is nonnegative and
	$\int -x \text{if } x < 0$	to be $-x$ when x is negative
function application	f(7)	f of 7 or f applied to 7 or the image of 7 under f
	f(z)	f of z or f applied to z or the image of z under f
	f(g(z))	f of g of z or f applied to the result of g applied
		to z
absolute value	-3	The absolute value of -3
square root	$\sqrt{9}$	The non-negative square root of 9

Defining sets

To define a set using **roster method**, explicitly list its elements. That is, start with { then list elements of the set separated by commas and close with }.

To define a set using **set builder definition**, either form "The set of all x from the universe U such that x is ..." by writing

$$\{x \in U \mid ...x...\}$$

or form "the collection of all outputs of some operation when the input ranges over the universe U" by writing

$$\{...x... \mid x \in U\}$$

We use the symbol \in as "is an element of" to indicate membership in a set.

Example sets: For each of the following, identify whether it's defined using the roster method or set builder notation and give an example element.