Credit 2

Preamble The course facilitates the students to master the various concepts of C++ Programming Language and to demonstrate the students to master the various concepts of C++ Programming Language and to demonstrate these concepts by implementing the solution for various kinds of real world problems 10

Unit - I

Introduction: Introduction to Object Oriented Programming -Features- Paradigm - Structure of C++ - Operators in C++ - Function Prototyping - Call by Reference - Inline Functions – Default and const Arguments - Function Overloading. 10

Unit - II

Classes and Objects -Static Members - Array of Objects - Objects and Functions - Friendly Functions - Constructors and Destructors -Operator Overloading-Overloading Unary and Binary Operators 10

Inheritance and I/O streams Unit - III

Inheritance: Types of Inheritance - Virtual Base class and Abstract class- virtual functions. Files: Writing Data-Reading Data into files. Introduction to Templates and Exception handling

List of Exercises / Experiments:

- Programs using arrays and strings 1.
- Programs to implement the concept of call-by-value, call-by-reference and call-by-address. 2.
- Programs to implement function overloading 3
- Programs to understand classes and objects 4
- Programs using constructors and destructors 5.
- Programs to understand friend function & friend class 6
- Programs to demonstrate the various forms of inheritance 7.
- Programs using unary operator overloading 8.
- Programs using binary operator overloading. 9
- Programs to define the function templates and class templates 10.
- Programs to illustrate virtual function 11.
- Programs using abstract class 12

Lecture:30 Practical:20, Total: 50

REFERENCES:

- 1. Herbert Schildt., C++: The Complete Reference, 4th Edition , McGraw Hill ,2017
- 2. Balagurusamy E., Object Oriented Programming with C++, Seventh Edition, McGraw Hill, 2017.

COURSE OUTC	BT Mapped (Highest Level)	
On completion of	the course, the students will be able to	Applying (K3),
CO1 relate real	world problems to classes and objects	Precision(S3)
	encapsulation and polymorphism to simple applications	Applying (K3), Precision(S3)
CO2 apply data	encapsulation and polymorphism to simple separate	Applying (K3),
CO3 use inherit	ance concept for code reusability	Precision(S3)
	eatures of templates, exception and file handling mechanisms in real world	Applying (K3), Precision(S3)

Mapping of COs with POs and PSOs COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2											PSO2			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	2	2	2
CO1	3	2	2	2					1			2	2	2
CO2	3	2	2	2					, 1 -1			2	2	2
CO3	3	2	2	2					1			2	2	2
CO4	3	2	2	2					1			_		
1 - Slight, 2	– Mod	erate,	3 – Sub	stantia	I, BT-	Bloom's	s Taxor	nomy						

		ASSESS	IENT PATTE	RN		Casating	Total
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	%
Written Test (25 Marks)	15	25	60				100
Practical (25 Marks)			100	1			100
Model Examination (50 Marks)	10	30	60				100

Signature of the Chairman Board of Studies -

20VC051 - INTRODUCTION TO DEVOPS TOOLS

Credit T L 2 1 0 2

Preamble This course explores the Fundamentals of DevOps tools and its development process

10

Jenkins: Jenkins overview_Installation_Jenkins dashboard. Git plugin: Git introduction_Git plugin install_Integrate
Jenkins with GitHub. Manage Transfer project: Unit - I Jenkins with GitHub_ Manage permission: User management_ Role strategy plugin_ Jenkins pipeline_ New project. New project _ Freestyle project _ Jenkins pipeline _ pipeline overview _ Jenkins file _ create and run Jenkins pipeline _ CL/ CD Pipeline _ Stages _ Dest CL/CD Pipeline_Stages_Best practices CL/CD Pipeline KPL

Docker overview - Kubernetes overview - Kubernetes API resources - Provisioning Kubernetes through Cloud -Minikube overview – Application containerization using docker - Application deployment via Kubernetes.

Helm Charts Overview - Chartmuseum - Configuration files - YAML templating - Helm commands - Helm install -Inline Upgrade – Zero down time application deployment – Managing Helm charts in SCM

List of Exercises / Experiments:

- Installation of Jenkins and Jenkins Dashboard Access 1.
- Git Plugin installation and Managing Repository using Git and Integration of Jenkins with GitHub 2.
- Creation of Users and Managing the Roles and Folders using DevOps Tools 3.
- Create a New project. Create a Free style Project 4
- Installation of Docker and Kubernetes 5.
- Sample Application development for user creation and deletion 6
- Application containerization using Docker 7.
- Application Deployment via Kubernetes 8
- Installation of Helm 9.
- Helm Deployment 10.

Lecture:30 Practical:20, Total: 50

REFERENCES:

- 1. John Ferguson smart "Jenkins the Definitive Guide "published by Oreilly Media, 2011
- 2. Scott Surovich, Marc Boorshtein, "Kubernetes and Docker An Enterprise Guide: Effectively containerize applications, integrate enterprise systems, and scale applications in your enterprise", 2nd Edition, Packt Publishing, 2021
- 3 https://helm.sh/

COURSE OUTCOMES:	BT Mapped (Highest Level)
On completion of the course, the students will be able to	Applying (K3), Precision(S3)
CO1 perform Jenkins Installation and configuration	Applying (K3),
CO2 describe and apply knowledge on application containerization using Docker and	Precision(S3)
Application deployment via Kubernetes	Applying (K3), Precision(S3)
CO3 experiment about Management of Helm charts in SCM	Applying (K3),
CO4 create a Basic configuration Management & Create a new project and Manage it	Precision(S3)

	Mapping of COs with POs and PSOs COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO											5040	psO1	PSO2				
	COs/POs	P	01	F	PO2	PO3	PO	4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2	2
	CO1		3		2		2										2	2
	CO2		3		2	2	2		2			44					2	2
	CO3		3		2	2	2		2								2	2
-	CO4		3		2	2	2		2								_	-
1	1 - Slight, 2	- 1	/lod	era	ate, :	3 – Su	bstant	ia	, BT-	Bloom'	s Taxo	nomy						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Miniproject (50 Marks)			100				100
Model Examination Written Test (50 marks)	15	45	40				100

Signature of the Chairman Board of Studies - CSE

SLZ (S.SAVITHA) ON CONFERING OF

Credit

Lecture:30 Practical:20, Total: 50

	2 0 1 2
Preamble	demonstrate these concepts by implementing the solution for various kinds of real world problems.
Unit - I	Object Oriented Programming Features
Introduction - Function	on: Introduction to Object Oriented Programming_Features- Paradigm - Structure of C++ - Operators in C++ in Prototyping - Call by Reference - Inline Functions - Default and const Arguments - Function Overtoading.
Unit - II	Classes and Objects
Classes and Dest	and Objects - Static Members - Array of Objects - Objects and Functions - Friendly Functions - Constructors ructors - Operator Overloading- Overloading Unary and Binary Operators
Unit - III	Inheritance and I/O streams
Inheritan Reading	ice. Types of Inheritance - Virtual Base class and Abstract class virtual functions. Files: Writing Data- Data into files. Introduction to Templates and Exception handling.
List of E	xercises / Experiments:
1.	Programs using arrays and strings.
2.	Programs to implement the concept of call-by-value, call-by-reference and call-by-address
3.	Programs to implement function overloading
4.	Programs to understand classes and objects
5.	Programs using constructors and destructors
6.	Programs to understand friend function & friend class
.7.	Programs to demonstrate the various forms of inheritance.

REFERENCES:

8.

9.

10.

11

12.

1. Herbert Schildt , C++ The Complete Reference, 4th Edition , McGraw Hill ,2017

Programs to define the function templates and class templates

Programs using unary operator overloading.

Programs using binary operator overloading

Programs to illustrate virtual function.

Programs using abstract class

2. Balagurusamy E., Object Oriented Programming with C++, Seventh Edition, McGraw Hill, 2017.

	BT Mapped (Highest Level)
COURSE OUTCOMES: On completion of the course, the students will be able to	Applying (K3), Precision(S3)
CO1 relate real world problems to classes and objects	Applying (K3), Precision(S3)
CO2 apply data encapsulation and polymorphism to simple applications	Applying (K3), Precision(S3)
use inheritance concept for code reusability utilize the features of templates, exception and file handling mechanisms in real world	Applying (K3), Precision(S3)
CO4 problems	

		Mapping of COs with POs and PSOs PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11										PO12	PSO1	PSO2
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POTT	2	2	2
CO1	3	2	2	2					1			2	2	2
CO2	3	2	2	2					1			2	2	2
CO3	3	2	2	2								2	2	2
CO4	3	2	2	2					1					

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

		ASSESSI	IENT PATTE	RN		r =	T - 4 - 1
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Written Test (25 Marks)	15	25	60				100
Practical (25 Marks)			100				100
Model Examination (50 Marks)	10	30	60				100

Signature of the Chairman Board of Studies - CSE

Chean Ralawaani Just HEER!

20VC050 - OPENCV

Credit 2

0

2

1

reamble	To provide basic insights into the processing and recognizing images using OpenCV	10
and the same	Desig Image Operations	cronning -
	on to Computer Vision - Introduction to images - Basic image operations: creating new	w image - Cropping
opying -	on to Computer Vision – Introduction to images – Basic image operations on image - Accessing camera - resizing – masking. Arithmetic and logic operations on image - Accessing camera	10
Init - II	Image Analysis	age filtering - image
mage A	Image Analysis nnotation – Image Enhancement and Filtering: color spaces – color transforms - image detection. Image gradients	-9-
moothir	ng – Edge detection - Image gradients	10
Jnit - III	Image Recognition	- Face Recognition
JIIIC	Image Recognition eatures and Image alignment – Image stitching – image classification - Object detection	
mage		-
	Exercises / Experiments. Installing OpenCV3 for Python 3 on Windows and reading and displaying images	
1.	Performing basic image operations	
2.	Performing arithmetic and logical Operations on Images	
3.	Drawing geometric shapes and image annotation	
4.	Drawing geometric snapes and image	
5.	Displaying multiple Images with Matplotlib	
6.	Implementing image enhancement techniques	
7.	Implementing image filtering techniques	
8.	Demonstrating image features and Image alignment	
9.	forming object detection	
10.	Developing a simple face recognition application	actical:20, Total: 50

1. Sandipan Dey, "Hands-On Image Processing with Python", 1stEdition, Packt Publishing, 2018. REFERENCES:

2. Robert Laganlere, "OpenCV 3 Computer Vision Application Programming Cookbook", 3rdEdition, Packt Publishing, 2017

COURSE OUTCOMES:	BT Mapped (Highest Level)
On completion of the course, the students will be able to	Applying (K3),
CO1 describe and apply different operations to the image	Precision(S3)
CO2_perform different annotation over images.	Applying (K3), Precision(S3)
CO3 apply different image enhancement and filtering techniques	Applying (K3), Precision(S3)
CO4 develop simple object recognition applications	Applying (K3), Precision(S3)

Mapping of COs with POs and PSOs COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO1 3 1										0002					
С	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	3	1
	CO1		2											3	1
	CO2	3	2	1	1	, 1								3	1
	CO3	3	2	1	1	1								3	1
	CO4	3	2	1		1									

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN

		- 41	Tatal				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Written Test1 (25 marks)	20	40	40				100
Projects (25 marks)			100				100
Model Examination Written Test (50 marks)	10	40	50				100

Signature of the Chairman Board of Studies - CSE

(2-Malya)

SEMIC CELL