K.R. Mangalam University

School of Engineering & Technology

Assignment

Probabilistic Modeling and Reasoning

Submitted by: Submitted to:

Name: Rakesh G Dr. Kunal Rai

Roll No: 2401201064

Class: BCA (AI & DS)

Assignment - 1

Q1. Bike Prices

Prices = ₹12,000, ₹15,000, ₹18,000, ₹20,000, ₹50,000

(a) Mean

Mean=Sum of pricesNumber of bikes=12000+15000+18000+20000+500005=1150005=₹23,0 00\text{Mean} = \frac{\text{12000} + 15000}{\text{15000}}{5} = \frac{12000 + 15000}{5} = \frac{120000 + 15000}{5} = \frac{12000 + 15000}{5} = \frac{12000 + 15000}{5} = \frac{12000 + 15000}{5} = \frac{12000 + 15000}{5} = \frac{120000}{5} = \frac{120000}{5} = \frac{120000}{5} = \frac{120000}{5} = \frac{120000}{5} = \frac{120000}{5}

(b) Median

Ordered data: 12,000; 15,000; 18,000; 20,000; 50,000 Middle value (3rd) = \$18,000

(c) Advertised Average

Mean = ₹23,000

Median = ₹18,000

If the shop owner wants bikes to "seem affordable," they should advertise the median (₹18,000), because it's less affected by the one very high outlier (₹50,000).

Q2. Histogram Shape (Left-Skewed)

- In a left-skewed distribution (long tail on the left):
 - o Mean < Median < Mode
- Explanation: Extreme low values pull the mean to the left, while the median is less affected, and the mode remains at the peak of the data.

Q3. Exam Scores

Data: 85, 92, 78, 90, 85, 67, 88, 95, 85, 72

- (a) Mean, Median, Mode
 - Mean =
 85+92+78+90+85+67+88+95+85+7210=83710=83.7\frac{85+92+78+90+85+67+88+95+85+72}{10} = \frac{837}{10} = 83.71085+92+78+90+85+67+88+95+85+72=10837=83.7
 - Ordered Data: 67, 72, 78, 85, 85, 85, 88, 90, 92, 95

- Median = average of 5th & 6th = (85+85)/2 = 85
- Mode = most frequent value = 85

(b) Shape of Distribution

- Mean (83.7) ≈ Median (85) ≈ Mode (85)
 Distribution is approximately symmetrical.
- (c) Five-Number Summary
 - Min = 67
 - Q1 = 78
 - Median = 85
 - Q3 = 90
 - Max = 95

Q4. Population vs Sample

- Population parameter = numerical summary of the whole population.
 Example: Average height of all students in a university = population mean (μ).
- Sample statistic = numerical summary from a sample subset.
 Example: Average height of 50 selected students = sample mean (x \bar{x}x^).

Q5. Company Salaries

Salaries: \$45,000, \$50,000, \$55,000, \$60,000, \$250,000

(a) Mean

 $45000+50000+55000+60000+2500005=4600005=92,000\\ frac\{45000+50000+55000+60000+50000+55000+60000+55000+60000+55000+60000+55000+55000+60000+600000+60000+60000+60000+60000+60000+60000+60000+60000+60000+6000$

Median = 55,000 (middle value)

(b) Advertising

- Company will likely advertise mean = \$92,000 (looks higher).
- Employees prefer median = \$55,000 (represents typical salary).

 Difference occurs because the mean is inflated by one extreme outlier (\$250,000).

Q6. (Same as Q3, Repeated)

Already solved above:

• Mean = 83.7, Median = 85, Mode = 85

Shape: Symmetrical

• Five-Number Summary: (67, 78, 85, 90, 95)

Q7. Learning Modes

Raw Data: F, H, O, F, F, O, H, F, O, F, H, F, F, F, O, H, O, F, H, F

(a) Frequency Table

Mode Frequency

Face-to-Face (F) 10

Hybrid (H) 5

Online (O) 5

(b) Bar Chart (Python)

```
D ~ import matplotlib.pyplot as plt
modes = ['Face-to-Face', 'Hybrid', 'Online']
freq = [10, 5, 5]

plt.bar(modes, freq, color=['blue', 'green', 'orange'])
plt.title("Preferred Learning Mode (Survey of 20 Students)")
plt.ylabel("Learning Mode")
plt.ylabel("Frequency")
plt.show()
# RAKESH G 2401201054

[1] ✓ 2.6s

Python
```


(c) Most Popular Mode

- Face-to-Face (10 students)
- Percentage = (10/20) × 100 = 50%

(d) Why not Histogram?

- Histogram is for continuous numerical data (e.g., heights, scores).
- This is categorical data (modes of learning), so bar chart is appropriate.

Assignment - 2

Q1. Marbles (without replacement)

A jar contains 5 red and 7 blue marbles (total 12). Two marbles are drawn one after the other without replacement.

Find: P(second is red|first was blue)P(\text{second is red} \mid \text{first was blue})P(second is red|first was blue).

If the first marble was blue, then after that draw:

- Reds remaining = 5
- Blues remaining = 7 − 1 = 6
- Total remaining = 11

Q2. Medical test (population-level Bayes)

Given:

- Sensitivity = P(+|D)=0.95P(+ mid D) = 0.95P(+|D)=0.95 (95% of diseased test positive)
- False positive rate = P(+|Dc)=0.02P(+\mid D^c) = 0.02P(+|Dc)=0.02 (2% of healthy test positive)
- Prevalence = P(D)=0.01P(D) = 0.01P(D)=0.01 (1% of population)

Compute step-by-step:

- Numerator = 0.95×0.01=0.00950.95 \times 0.01 = 0.00950.95×0.01=0.0095.
- Denominator = 0.0095+0.02×0.99=0.0095+0.0198=0.02930.0095 + 0.02\times0.99 = 0.0095 + 0.0198 = 0.02930.0095+0.02×0.99=0.0095+0.0198=0.0293.

Interpretation: Even with a highly sensitive test, when the disease is rare (1%), a positive result gives only about a 32% chance the person truly has the disease (because false positives among the large healthy group matter).

Q3. Doctor's prior (patient-level Bayes)

Now the doctor's prior belief for this patient (before seeing the test) is P(D)=0.30P(D)=0.30P(D)=0.30P(D)=0.30 (30%). The test characteristics are the same as Q2: sensitivity 0.95 and false positive rate 0.02. After the test is positive, revise the probability.

Use Bayes:

- Numerator = $P(+|D)P(D)=0.95\times0.30=0.285P(+\mbox{mid D})P(D) = 0.95 \times 0.30 = 0.285P(+|D)P(D)=0.95\times0.30=0.285$.
- Denominator = 0.285+P(+|Dc)P(Dc)=0.285+0.02×0.70=0.285+0.014=0.2990.285 + P(+\mid D^c)P(D^c) = 0.285 + 0.02 \times 0.70 = 0.285 + 0.014 = 0.2990.285+P(+|Dc)P(Dc)=0.285+0.02×0.70=0.285+0.014=0.299.

Interpretation: Because the doctor already assessed a high prior (30%), a positive test pushes the posterior probability very high — about 95.2%. That's why priors matter: the same test result leads to very different posteriors depending on the prior belief.

Q4. Venn diagram / only Physics

Given group of 50 students:

• Physics: 30

Chemistry: 25

• Both Physics & Chemistry: 15

Compute students who study only Physics:

Only Physics=Physics-Both=30-15=15.\text{Only Physics} = \text{Physics} - \text{Both} = 30-15=15.\text{Only Physics=Physics-Both=30-15=15.\text{Only Physics=Physics-Both=30-15=15.\text{Physics} = \text{Physics} - \text{Both} = 30-15=15.\text{Physics} - \text{Physics} - \text{Physics}

Probability a randomly selected student studies only Physics:

P(only Physics)=1550=0.30=30%.P(\text{only Physics}) = \frac{15}{50} = 0.30 = 30\%.P(only Physics)=5015=0.30=30%.

Venn diagram description (counts):

• Only Physics: 15

Only Chemistry: 25–15=1025 - 15 = 1025–15=10

Both: 15

• Neither: 50-(15+10+15)=1050 - (15 + 10 + 15) = 1050-(15+10+15)=10

So the partition of 50 is: {Only P =15, Only C=10, Both=15, Neither=10}.

Q5. (This is the same as Q4)

Since Q5 repeats Q4, the answer is the same:

- Only Physics = 15 students
- Probability = 15/50=30%15/50 = 30\%15/50=30%
- Venn diagram counts as above.

Quick Python checks

```
LANGUAGE > python > a rough.py > ...

1  # Q1

2  p_q1 = 5/11

3  print("Q1:", p_q1)  # ~0.454545

4

5  # Q2

6  sens = 0.95

7  fpr = 0.02

8  prev = 0.01

9  num = sens * prev

10  den = num + fpr * (1 - prev)

11  print("Q2 P(D|+):", num/den)  # ~0.3242

12

13  # Q3 (doctor prior = 0.30)

14  prior = 0.30

15  num3 = sens * prior

16  den3 = num3 + fpr * (1 - prior)

17  print("Q3 P(D|+):", num3/den3)  # ~0.952

18

19  # Q4 / Q5

20  total = 50

21  physics = 30

22  both = 15

23  only_physics = physics - both

24  print("Only Physics:", only_physics, "Probability:", only_physics/total)  # 15, 0.3

25  # RAKESH G 2401201064
```

```
PROBLEMS 18 OUTPUT DEBUG CONSOLE TERMINAL PORTS POSTMAN CONSOLE JUPYTER

D:\RAKESH\VSC>C:/Users/Rakesh/AppData/Local/Programs/Python/Python313/python.exe hon/rough.py
Q1: 0.4545454545454545453
Q2 P(D|+): 0.3242320819112628
Q3 P(D|+): 0.9531772575250835
Only Physics: 15 Probability: 0.3

D:\RAKESH\VSC>
```

Assignment 3

1. Project Objective:

Perform a complete Exploratory Data Analysis (EDA) on a dataset of your choice. Your goal is to understand the underlying structure of the data, discover patterns and relationships, identify anomalies and outliers, and test your initial hypotheses.

2. Dataset Selection:

You must select a dataset from (link unavailable) Choose a dataset that is rich enough to allow for meaningful analysis. It should have:

- At least 5 variables (columns).
- A mix of numerical and categorical variables is highly recommended.
- A sufficient number of rows (e.g., >100) to make analysis interesting.

Popular beginner-friendly datasets on Kaggle include: Titanic, Iris, House Prices, Netflix Movies and TV Shows, Wine Reviews, or Pokemon Datasets. You are free to choose any that interests you.

3. Technical Requirements:

Your analysis must include the following, implemented in Python:

- Data Loading & Inspection:
 - Load the dataset using pandas.
 - Display the first and last few rows (.head(), .tail()).
 - Check the data types and summary info (.info(), .describe()).
- Data Cleaning (Mandatory):
 - Identify and handle missing values. Explain your method (e.g., removal, imputation).
 - Check for and handle any duplicate entries.
 - Identify outliers using visualizations (e.g., boxplots) and describe how you treated them.
- Univariate Analysis (From Project 1):
- For numerical variables: Calculate and interpret Mean, Median, Trimmed Mean, Range, Variance, and Standard Deviation.
 - For categorical variables: Calculate frequency counts and modes.
 - Visualize distributions using histograms, KDE plots, and boxplots.
- Bivariate/Multivariate Analysis (From Project 2):
 - Create scatter plots to explore relationships between two numerical variables.
 - Create a correlation matrix and visualize it using a heatmap.
- Use grouped boxplots or bar charts to explore relationships between categorical and numerical variables.
- Conclusion:
 - Summarize the 3-5 most important insights you discovered from your analysis.

Plan for my project I am using tips.csv:

1. Data Loading & Inspection

Show .head(), .tail(), .info(), .describe().

2. Data Cleaning

- o Check for missing values.
- Handle duplicates.
- Identify outliers (boxplots for total_bill, tip, size).

3. Univariate Analysis

- o Numerical: mean, median, trimmed mean, range, variance, std.
- o Categorical: frequency counts & mode.
- Visuals: histograms, KDE plots, boxplots, bar charts.

4. Bivariate / Multivariate Analysis

- Scatter plot (total_bill vs tip).
- o Correlation matrix & heatmap.
- o Grouped boxplots (tip vs sex, smoker, day, etc.).
- Bar charts (time vs avg tip).

5. Conclusion

o 3–5 key insights about tipping patterns.

CODE:

```
Start Chat to Generate Code (Ctrl+I) ies
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from scipy import stats
        pd.set_option("display.max_columns", None)
        df = pd.read_csv("tips.csv")
        print("First 5 rows:\n", df.head())
print("\nLast 5 rows:\n", df.tail())
        print("\nData Info:")
print(df.info())
        print("\nSummary Statistics:")
        print("\nMissing Values:\n", df.isnull().sum())
        print("\nDuplicate Rows:", df.duplicated().sum())
        df = df.drop_duplicates()
        # Detect outliers using boxplot & Z-score
        plt.figure(figsize=(8,5))
sns.boxplot(data=df[['total_bill','tip','size']])
        plt.title("Boxplots for Numerical Variables")
        z_scores = np.abs(stats.zscore(df[['total_bill','tip','size']]))
```

```
PAL.SHOW()
z_scores = np.abs(stats.zscore(df[['total_bill','tip','size']]))
print("\nNumber of Outliers Detected:", outliers.sum())
for col in ['total_bill', 'tip', 'size']:
    print(f"\n-- {col.upper()} ---")
print("Mean:", df[col].mean())
print("Median:", df[col].median())
print("Trimmed Mean:", stats.trim_mean(df[col], 0.1)) # 10% trimmed mean
print("Range:", df[col].max() - df[col].min())
    print("Variance:", df[col].var())
    print("Standard Deviation:", df[col].std())
    plt.figure(figsize=(6,4))
     sns.histplot(df[col], kde=True, bins=20)
     plt.title(f"Distribution of {col}")
     plt.show()
     plt.figure(figsize=(6,2))
     sns.boxplot(x=df[col])
     plt.title(f"Boxplot of {col}")
     plt.show()
    print(f"\n--- {col.upper()} ---")
print(df[col].value_counts())
     print("Mode:", df[col].mode()[0])
    plt.figure(figsize=(5,4))
     plt.title(f"Frequency of {col}")
     plt.show()
```

```
plt.figure(figsize=(6,5))
sns.scatterplot(x="total_bill", y="tip", hue="sex", data=df)
plt.title("Total Bill vs Tip")
plt.show()
corr = df[['total_bill','tip','size']].corr()
print("\nCorrelation Matrix:\n", corr)
plt.figure(figsize=(6,4))
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
plt.figure(figsize=(6,4))
sns.boxplot(x-"sex", y-"tip", hue-"smoker", data-df)
plt.title("Tip Distribution by Sex & Smoker")
plt.show()
avg_tips = df.groupby("day")["tip"].mean().reset_index()
plt.figure(figsize=(6,4))
sns.barplot(x="day", y="tip", data=avg_tips)
plt.title("Average Tip by Day")
print("\nKey Insights:")
print("1. Tips are positively correlated with total bill (higher bill → higher tip).")
print("2. Majority of customers are non-smokers and males.")
print("3. Sunday has the highest average tips.")
print("4. Outliers exist in total_bill and tip (very high spending customers).")
print("5. Tip percentage is generally between 10% and 20% of the bill.")
```

OUTPUT:

20

10

0

total_bill

```
First 5 rows:
   total_bill tip sex smoker day
      16.99 1.01 Female
       10.34 1.66
                   Male
       21.01 3.50
                    Male
       23.68 3.31
                   Male
       24.59 3.61 Female
Last 5 rows:
     total_bill tip
                                         time size
                      sex smoker
                     Male
        22.67 2.00
                    Male
        18.78 3.00 Female No Thur Dinner
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
           Non-Null Count Dtype
   total_bill 244 non-null
           244 non-null
dtype: int64
Duplicate Rows: 1
```


Boxplots for Numerical Variables

tip

size

--- TOTAL BILL ---

Mean: 19.813868312757204

Median: 17.81

Trimmed Mean: 18.762615384615387

Range: 47.74

Variance: 79.38936183382647

Standard Deviation: 8.910070809697668

•••

--- TIP ---

Mean: 3.00238683127572

Median: 2.92

Trimmed Mean: 2.8470256410256414

Range: 9.0

Variance: 1.9182306431316531

Standard Deviation: 1.3850020372301455

٠.,

--- SIZE ---

Mean: 2.57201646090535

Median: 2.0

Trimmed Mean: 2.4205128205128204

Range: 5

Variance: 0.9069822807196558

Standard Deviation: 0.9523561732459426


```
...
--- SEX ---
sex
Male 157
Female 86
Name: count, dtype: int64
Mode: Male
```



```
...
--- SMOKER ---
smoker
No 151
Yes 92
Name: count, dtype: int64
Mode: No
```



```
...
--- DAY ---
day
Sat 87
Sun 76
Thur 61
Fri 19
Name: count, dtype: int64
Mode: Sat
```



```
...
--- TIME ---
time
Dinner 176
Lunch 67
Name: count, dtype: int64
Mode: Dinner
```


Key Insights:

- 1. Tips are positively correlated with total bill (higher bill \rightarrow higher tip).
- 2. Majority of customers are non-smokers and males.
- 3. Sunday has the highest average tips.
- 4. Outliers exist in total_bill and tip (very high spending customers).
- 5. Tip percentage is generally between 10% and 20% of the bill.