.#1: Find the inverse of
$$A = \begin{bmatrix} 4 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & | & 1$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & -2 & 5 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

A (BC) = In
$$\Rightarrow$$
 A 13 invertible.

Find out which one and prove it;

① Span { Z1,, Zn } ⊆ Span { Z1,, Zn }	•	•	•	•
3 Span {21,, an} = Span {21,, 2n}	•	•	•	•
3 Span { 2, -, 2n } = Span { 2, -, 2n }	•	•	•	•
⊕ Span {7, -77 hn} = Span {2,-,2n3.	•	•	•	•
	•	•	•	•
17 true.	•	•	•	•
Lecall that each column of AB is a linear con	h	of	•	•
the columns of A, i.e.	•	•	•	•
$Z_i \in Span \{Z_i, -, Z_n\}$ $\forall i$.	•	•	•	•
In fact, $Z_i = b_i, \vec{a}, + \dots + b_i, \vec{a},$	•	•	•	•
(o prove Q, Suppose 7 & Span {Z1, , Zn},	•	•	•	•
ine. 3 dy, dreR st. = d/2, to-+ d			•	•
Then = d1 4 + + d1 2n	•	•	•	•
= d1 (bn 21++ ln 22) ++ dn (bin	à, +.	+ bn	in Tan
= (dibil++ dnbin) 21 ++ (dibni	+	t dn	bin) a	→
€ Span { d, 7 dn}	•	٠	•	•
This proves Span { Z,, Zn } & Span { Zi	· /·	· · · · · · · · · · · · · · · · · · ·).·	•
			~	

Soly;