Multitask Observation using Satellite Imagery and Kitchen Sinks (MOSAIKS)

Togo Data Lab Training – UCSB, CEGA, & emLab January, 2025

Tamma Carleton (UC Berkeley & emLab)

in collaboration with: Jonathan Proctor, Trinetta Chong, Taryn Fransen, Simon Greenhill, Jessica Katz, Hikari Murayama, Luke Sherman, Jeanette Tseng, Hannah Druckenmiller, Solomon Hsiang

A growing set of measurements from space

A growing set of measurements from space

Each measurement or monitoring system is costly to implement in practice.

A growing set of measurements from space

Each measurement or monitoring system is costly to implement in practice.

Source: Farmonaut

For what **outcomes**, in what **places**, and for which **populations** should we invest in satellite-based monitoring?

Evaluating satellite-based predictions for over 100 variables

What can we see from space?

- Existing satellite imagery and machine learning (SIML) predictions are customized and heterogeneous
- This limits our ability to assess what can and cannot be feasibly monitored using this new technology

Evaluating satellite-based predictions for over 100 variables

What can we see from space?

- Existing satellite imagery and machine learning (SIML) predictions are customized and heterogeneous
- This limits our ability to assess what can and cannot be feasibly monitored using this new technology

In this paper, we:

- Assemble ground truth data for 115 outcomes at national to global scales
- Build a flexible pipeline to mass produce MOSAIKS maps/predictions
- Systematically examine which categories of variables, geographic locations, and populations are most amenable to SIML-based monitoring
- Distribute 115 maps and associated data quality layers

Recall: MOSAIKS pipeline

Multi-task Observation using Satellite Imagery and Kitchen Sinks

Rolf, Proctor, Carleton, Bolliger, Shankar, Ishihara, Recht, & Hsiang (2021)

Pipeline extensions

Original MOSAIKS pipeline

7 tasks

Sparse sampling

By-hand label customization

Posted replication code

Pipeline extensions

	This work
\rightarrow	115 tasks
\rightarrow	Dense sampling
\rightarrow	Automated variable handling
\rightarrow	Interactive pipeline and resources
	\rightarrow \rightarrow

What are the limits of a planetary mapping pipeline?

For what types of variables does it work for? What can we learn about the promise of satellite imagery?

7

Outline

Methods

Results

Summary

Outline

Methods

Results

Summary

9

One-time feature extraction

Random Convolutional Features (Rahimi & Recht (2007, 2008a,b))

Automated model specification

$$\mathbf{y}_l = \mathbf{X}\boldsymbol{\beta}_l + \boldsymbol{\epsilon}_l$$

Automated model specification

$$\mathbf{y}_l = \mathbf{X}\boldsymbol{\beta}_l + \boldsymbol{\epsilon}_l$$

.

We automatically test variations of the ridge regression to find the optimal specification

Transformation: log or levels?

Intercept in regression: yes or no?

Use regional model: yes or no?

If polygon use weighting: area or population weighted?

Category	Number of Labels	Example Label
Agricultural Assets	5	Agricultural land ownership

Category	Number of Labels	Example Label
Agricultural Assets	5	Agricultural land ownership
Agriculture	16	Maize yield
Built Infrastructure	9	Buildings

Category	Number of Labels	Example Label
Agricultural Assets	5	Agricultural land ownership
Agriculture	16	Maize yield
Built Infrastructure	9	Buildings
Demographics	5	Median age
Education	10	Expected years of schooling
Health	15	Malaria in children
Household Assets	21	Mobile phones
Income	9	Human development index
Natural Systems	8	Tree cover
Occupation	17	Unemployment

Outline

Methods

Results

Summary

Pipeline performance

115
48
11
56
56

Pipeline performance

	Total Labels	115
	have <u>not</u> been remote sensed before	48
	have been remote sensed before with covariates	11
Labels that	have been remote sensed before	56

Training time for one label Run with autotuning: 20 CPU Hours

Pipeline performance

	Total Labels	115
	have <u>not</u> been remote sensed before	48
	have been remote sensed before with covariates	11
Labels that	have been remote sensed before	56

Training time for one label

Run with autotuning: 20 CPU Hours Run final model: 2 minutes on laptop

Maize yield

Source: Proctor (2021)

Description: Amount of maize harvested in acres

Road length

Source: Open Street Maps

Description: Length of roads in kilometers

International wealth Index

Source: Demographic and Health Surveys

Description: Mean international wealth index (IWI) for each DHS

cluster

Malaria cases among children

Source: Demographic and Health Surveys

Description: Percentage of children age 6-59 months tested using a rapid diagnostic test (RDT) who are positive for malaria

Petroleum pipelines

Source: Energy Information Administration **Description**: Length of major petroleum product pipelines in kilometers

Pipelines not visible in imagery

Performance across labels

• Large variation in performance across, but especially <u>within</u> categories: σ_{within} = 0.19 and σ_{across} = 0.12

- Directly visible versus emergent: difference in mean R^2 = 0.18 (p < 0.001)
- Clear seasonal cycle versus without: difference in mean R^2 = 0.19 (p < 0.05)
- Human versus natural systems: difference in mean R^2 = 0.1 (p=0.23)
- Spatial resolution of ground-truth data: all differences in mean p > 0.1.

Where are SIML measurements reliable?

Mean Absolute Normalized Error

$$MANE_{i} = \frac{1}{|L_{i}|} \sum_{l \in L_{i}} \left| \frac{\hat{\varepsilon}_{li} - \overline{\hat{\varepsilon}}_{l}}{\sigma(\hat{\varepsilon}_{li})} \right|$$

- $\hat{\varepsilon}_{li}$: residual of pixel i of label l
- \cdot $\overline{\hat{\epsilon}}_{l}$: mean of residuals for label l
- $\sigma(\hat{\varepsilon}_{li})$: standard deviation for residuals label l in pixel i
- L_i: the set of labels we have in pixel i

Where are SIML measurements reliable?

Mean Absolute Normalized Error

$$MANE_{i} = \frac{1}{|L_{i}|} \sum_{l \in L_{i}} \left| \frac{\hat{\varepsilon}_{li} - \overline{\hat{\varepsilon}}_{l}}{\sigma(\hat{\varepsilon}_{li})} \right|$$

- $\hat{\varepsilon}_{li}$: residual of pixel i of label l
- \cdot $\overline{\hat{\epsilon}}_{l}$: mean of residuals for label l
- $\sigma(\hat{\varepsilon}_{li})$: standard deviation for residuals label l in pixel i
- L_i: the set of labels we have in pixel i

MANE \approx z-score

- MANE differs significantly across continents: p < 0.01
- Lowest errors in Australia and Africa (deserts) and highest errors in North America and Asia (urban areas and high elevation)
- High errors in extreme locations → mean-reverting measurement error (common in ML)

26

How far from training data can we extrapolate?

- 1. Partition sample in checkerboard
- 2. Train on white squares
- 3. Test on black squares
- 4. Jitter checkerboard location & repeat
- 5. Compare to spatial interpolation of ground-truth

(Reference: $8^{\circ} \times 8^{\circ} = 888 \text{ km} \times 682 \text{ km}$ (552 mi \times 424 mi) at centroid)

How far from training data can we extrapolate?

We use the results from spatial cross-validation to report estimated data quality alongside release of global predictions

For each of 115 outcomes:

- Conduct spatial cross-validation (i.e., "checkerboard") experiment detailed above
- 2. Determine estimated R² for all locations outside training set based on distance to nearest ground truth observation
- 3. Assign all locations a quality score based on estimated R^2 : 0 ($R^2 < 0$) \rightarrow 5 ($R^2 \ge 0.6$)
- 4. For socioeconomic outcomes, mask populated areas

 Conduct spatial cross-validation (i.e., "checkerboard") experiment detailed above

E.g., access to flush toilets:

- 2. Determine estimated R^2 for all locations outside training set based on distance to nearest ground truth observation
- 3. Assign all locations a quality score based on estimated R^2 : 0 $(R^2 < 0) \rightarrow 5 (R^2 > 0.6)$

4. For socioeconomic outcomes, mask populated areas

Distribute predictions and data quality layers

115 Maps

MOSAIKS API - www.mosaiks.org

Outline

Methods

Results

Summary

Conclusions

- 1. We demonstrate that mass production of global maps from satellite imagery is possible
 - >100 maps predicted using a single featurization of imagery, at low computational cost
 - Automated tuning pipeline makes imagery-based predictions "plug-and-play"

Conclusions

- 1. We demonstrate that mass production of global maps from satellite imagery is possible
 - >100 maps predicted using a single featurization of imagery, at low computational cost
 - Automated tuning pipeline makes imagery-based predictions "plug-and-play"
- 2. We uncover patterns that characterize the promise of satellite imagery for global mapping
 - Observe high (agriculture, household assets, natural systems) and low (health, demographics) performers
 - Show how prediction error correlates with location, income, population

Conclusions

1. We demonstrate that mass production of global maps from satellite imagery is possible

- >100 maps predicted using a single featurization of imagery, at low computational cost
- Automated tuning pipeline makes imagery-based predictions "plug-and-play"

2. We uncover patterns that characterize the promise of satellite imagery for global mapping

- Observe high (agriculture, household assets, natural systems) and low (health, demographics) performers
- Show how prediction error correlates with location, income, population

3. We publicly release inputs, outputs, and training resources

- API: 4,000 features from Planet Labs, Inc., extensive tutorial resources
- · Data quality layer provided alongside predicted maps
- · All code and input data public

Acknowledgements

Team

Benjamin Recht, Esther Rolf, Eugenio Noda, Hikari Murayama, Hannah Druckenmiller, Ian Bolliger, Jeanette Tseng, Jessica Katz, Jonathan Proctor, Luke Sherman, Miyabi Ishihara, Simon Greenhill, Solomon Hsiang, Tamma Carleton, Taryn Fransen, Trinetta Chong, Vaishaal Shankar

Partners and Funding
USAID, UNDP, CEGA, UCSB Bren
School: Data Science students

MOSAIKS API

www.mosaiks.org

Appendix

Breeding bird species diversity

Source: U.S. Geological Survey

Description: Count of the unique species documented by all road segments

Classifier Example

Test and cross-validated performance

