ROI Analysis

ROI analysis

Setup

```
library(easypackages)
libraries("ggplot2", "patchwork", "here")
source(here("code", "cohens_d.R"))
options(stringsAsFactors=FALSE)
```

Read in data

```
# read in ROI data
fname = file.path(here("data","tidy","tidy_roidata.csv"))
data = read.csv(fname)
```

Run analyses on each ROI

```
# names of ROIs
roiname = c("LHfrontal","LHtemporal","RHfrontal","RHtemporal")
# pre-allocate data frame for storing subtype model results
res_colnames = c("fstat","pval","fdr",
  "d_TD_vs_ASDGood","t_TD_vs_ASDGood","p_TD_vs_ASDGood",
  "d_TD_vs_ASDPoor","t_TD_vs_ASDPoor","p_TD_vs_ASDPoor",
  "d_ASDGood_vs_ASDPoor", "t_ASDGood_vs_ASDPoor", "p_ASDGood_vs_ASDPoor")
res = data.frame(matrix(nrow = length(roiname), ncol = length(res_colnames)))
colnames(res) = res_colnames
rownames(res) = roiname
# pre-allocate data frame for storing case-control model results
res_colnames = c("fstat","pval","fdr",
                 "d_TD_vs_ASD","t_TD_vs_ASD","p_TD_vs_ASD")
res_casecontrol = data.frame(matrix(nrow = length(roiname),
                                    ncol = length(res_colnames)))
colnames(res_casecontrol) = res_colnames
rownames(res_casecontrol) = roiname
for (i in 1:length(roiname)){
  # run subtype model
  form2use = as.formula(sprintf("%s ~ subgrp + sex",roiname[i]))
  mod2use = lm(formula = form2use, data = data)
  tmp_res = anova(mod2use)
  res$fstat[i] = tmp_res[1,4]
  res$pval[i] = tmp_res[1,5]
  # run case-control model
```

```
form2use = as.formula(sprintf("%s ~ Dx + sex",roiname[i]))
mod2use = lm(formula = form2use, data = data)
tmp_res = anova(mod2use)
res_casecontrol$fstat[i] = tmp_res[1,4]
res_casecontrol$pval[i] = tmp_res[1,5]
# remove sex variation from data to compute effect sizes
form2use = as.formula(sprintf("%s ~ subgrp + sex",roiname[i]))
residmod = lm(formula = form2use, data = data)
full_model = model.matrix(~0+as.factor(subgrp) + as.factor(sex), data=data)
colnames(full_model) = c("Good", "Poor", "TD", "sex")
cov columns = c("sexM")
beta1 = residmod$coefficients[cov_columns, drop = FALSE]
beta1[is.na(beta1)] = 0
cov_columns = c("sex")
reduced_model = full_model[,cov_columns]
data$resid2use = t(data[,roiname[i]] - beta1 %*% t(reduced_model))
# case-control t-stats and effect sizes
mask1 = data$subgrp=="TD"
mask2 = data$subgrp=="Good" | data$subgrp=="Poor"
res_casecontrol$d_TD_vs_ASD[i] = cohens_d(data$resid2use[mask1],
                                          data$resid2use[mask2])
res_casecontrol$t_TD_vs_ASD[i] = t.test(data$resid2use[mask1],
                                        data$resid2use[mask2])$statistic
res_casecontrol$p_TD_vs_ASD[i] = t.test(data$resid2use[mask1],
                                        data$resid2use[mask2])$p.value
# subtype t-tstats and effect sizes
res$d_TD_vs_ASDGood[i] = cohens_d(data$resid2use[data$subgrp=="TD"],
                                  data$resid2use[data$subgrp=="Good"])
res$d_TD_vs_ASDPoor[i] = cohens_d(data$resid2use[data$subgrp=="TD"],
                                  data$resid2use[data$subgrp=="Poor"])
res$d_ASDGood_vs_ASDPoor[i] = cohens_d(data$resid2use[data$subgrp=="Good"],
                                       data$resid2use[data$subgrp=="Poor"])
res$t_TD_vs_ASDGood[i] = t.test(data$resid2use[data$subgrp=="TD"],
                                data$resid2use[data$subgrp=="Good"])$statistic
res$t_TD_vs_ASDPoor[i] = t.test(data$resid2use[data$subgrp=="TD"],
                                data$resid2use[data$subgrp=="Poor"])$statistic
res$t_ASDGood_vs_ASDPoor[i] = t.test(data$resid2use[data$subgrp=="Good"],
                                     data$resid2use[data$subgrp=="Poor"])$statistic
res$p_TD_vs_ASDGood[i] = t.test(data$resid2use[data$subgrp=="TD"],
                                data$resid2use[data$subgrp=="Good"])$p.value
res$p_TD_vs_ASDPoor[i] = t.test(data$resid2use[data$subgrp=="TD"],
                                data$resid2use[data$subgrp=="Poor"])$p.value
res$p_ASDGood_vs_ASDPoor[i] = t.test(data$resid2use[data$subgrp=="Good"],
                                     data$resid2use[data$subgrp=="Poor"])$p.value
# fill in effect size matrix
names2use = c("TD", "ASD Good", "ASD Poor")
es_mat = matrix(nrow = length(names2use), ncol = length(names2use))
```

```
colnames(es_mat) = names2use
  rownames(es_mat) = colnames(es_mat)
  es_mat[1,1] = NA
  es_mat[2,2] = NA
  es_mat[3,3] = NA
  es_mat[1,2] = res$d_TD_vs_ASDGood[i]
  es_mat[2,1] = res$d_TD_vs_ASDGood[i]
  es_mat[1,3] = res$d_TD_vs_ASDPoor[i]
  es_mat[3,1] = res$d_TD_vs_ASDPoor[i]
  es_mat[2,3] = res$d_ASDGood_vs_ASDPoor[i]
  es_mat[3,2] = res$d_ASDGood_vs_ASDPoor[i]
  #plot the effect size matrix as a heatmap
   WGCNA::labeledHeatmap(Matrix = es_mat,
        xLabels = rownames(es_mat), yLabels = colnames(es_mat),
        ySymbols = NULL, colorLabels = FALSE,
        colors = WGCNA::blueWhiteRed(50), textMatrix = round(es_mat,digits=2),
        setStdMargins = FALSE, cex.text = 3, zlim = c(0,0.75),
        main = sprintf("%s Effect Size (Cohen's d)",roiname[i]))
} # for (i in 1:length(roiname))
```

LHfrontal Effect Size (Cohen's d)

LHtemporal Effect Size (Cohen's d)

RHtemporal Effect Size (Cohen's d)

compute FDR
res_casecontrol\$fdr = p.adjust(res_casecontrol\$pval, method = "fdr")
res\$fdr = p.adjust(res\$pval, method = "fdr")

Results from subtype model

knitr::kable(res[,c("fstat","pval","fdr")], digits = 4)

	fstat	pval	fdr
LHfrontal	0.7500	0.4747	0.4747
LHtemporal	6.1688	0.0029	0.0114
RHfrontal	3.6576	0.0289	0.0385
RHtemporal	4.5552	0.0125	0.0250

Results from case-control model

knitr::kable(res_casecontrol, digits = 4)

	fstat	pval	fdr	d_TD_vs_ASD	t_TD_vs_ASD	p_TD_vs_ASD
LHfrontal	1.5121	0.2213	0.2213	0.2475	1.2306	0.2227
LHtemporal	7.2353	0.0082	0.0328	0.4887	2.5954	0.0112
RHfrontal	2.4242	0.1222	0.1630	0.3202	1.7009	0.0929
RHtemporal	4.5727	0.0346	0.0692	0.3419	1.6850	0.0967

Make plots

```
dotSize = 1
yLabel = "Delta % Signal Change"
xLabel = "Group"
black.bold.italic.text = element text(face = "bold",
                                      colour = "black")
black.bold.axis.title = element_text(face="bold",
                                     size = 12,
                                     colour = "black")
bold.axis.text = element text(face="bold",
                              size = 10)
data$plotOrder = factor(data$plotOrder)
p1 = ggplot(data = data, aes(x = reorder(subgrp, as.numeric(plotOrder)),
                             y = LHtemporal, colour = subgrp))
p1 = p1 + geom_jitter(size = dotSize) +
  geom_boxplot(fill = NA, colour = "#000000", outlier.shape = NA) +
  guides(colour = FALSE)
p1 = p1 + xlab(xLabel) + ylab(yLabel) + labs(title = "LH Temporal") +
 theme(plot.title = element_text(hjust = 0.5))
p1 = p1 + theme(title = black.bold.italic.text) +
  theme(axis.title = black.bold.axis.title) +
  theme(axis.text.x = bold.axis.text) +
  theme(axis.text.y = bold.axis.text)
p2 = ggplot(data = data, aes(x = reorder(subgrp, as.numeric(plotOrder)),
                             y = RHtemporal, colour = subgrp))
p2 = p2 + geom_jitter(size = dotSize) +
  geom_boxplot(fill = NA, colour = "#000000", outlier.shape = NA) +
  guides(colour = FALSE)
p2 = p2 + xlab(xLabel) + ylab(yLabel) + labs(title = "RH Temporal") +
  theme(plot.title = element_text(hjust = 0.5))
p2 = p2 + theme(title = black.bold.italic.text) +
  theme(axis.title = black.bold.axis.title) +
  theme(axis.text.x = bold.axis.text) +
  theme(axis.text.y = bold.axis.text)
p3 = ggplot(data = data, aes(x = reorder(subgrp, as.numeric(plot0rder)),
                             y = LHfrontal, colour = subgrp))
p3 = p3 + geom_jitter(size = dotSize) +
  geom_boxplot(fill = NA, colour = "#000000", outlier.shape = NA) +
  guides(colour = FALSE)
p3 = p3 + xlab(xLabel) + ylab(yLabel) + labs(title = "LH Frontal") +
  theme(plot.title = element_text(hjust = 0.5))
p3 = p3 + theme(title = black.bold.italic.text) +
  theme(axis.title = black.bold.axis.title) +
  theme(axis.text.x = bold.axis.text) +
  theme(axis.text.y = bold.axis.text)
p4 = ggplot(data = data, aes(x = reorder(subgrp, as.numeric(plot0rder)),
                             y = RHfrontal, colour = subgrp))
```

```
p4 = p4 + geom_jitter(size = dotSize) +
    geom_boxplot(fill = NA, colour = "#000000", outlier.shape = NA) +
    guides(colour = FALSE)
p4 = p4 + xlab(xLabel) + ylab(yLabel) + labs(title = "RH Frontal") +
    theme(plot.title = element_text(hjust = 0.5))
p4 = p4 + theme(title = black.bold.italic.text) +
    theme(axis.title = black.bold.axis.title) +
    theme(axis.text.x = bold.axis.text) +
    theme(axis.text.y = bold.axis.text)
p_final = p1 + p2 + p3 + p4 + plot_layout(nrow = 2, ncol = 2)
p_final
```

