材料力学

轴向拉伸和压缩

Beijing University of Chemical Technology

材料力学基本假设:

- 1. 连续性假设—材料连续无孔隙
- 2. 均匀性假设—材料各处性质相同
- 3. 各向同性假设—任意方向材料性质相同
- 4. 小变形假设—变形远小于构件尺寸, 便于用变形 前的尺寸和几何形状进行计算
- 5. 线弹性假设—变形可恢复, 且力与变形成正比。

上节回顾

应力和应变是

材料力学最核

心的概念!

Beijing University of Chemical Technology

内力: 构件内部相连部分之间的相互作用力;

应力:由外力引起的内力的集度

正应力σ: 垂直于横截面的应力

剪应力で: 位于横截面内的应力

位移:物体内各点坐标的改变量

线位移:物体上一点位置的改变

角位移:物体上一条线段或一个面转动的角度

应变: 衡量各点处的变形程度

线应变: $\varepsilon_x = \frac{du}{dx}$

角应变: $\gamma_{xy} = \lim_{\Delta x \to 0} \theta$

 $\Delta x \rightarrow 0$ $\Delta y \rightarrow 0$ 3

1. 工程实例:

1. 工程实例:

1. 工程实例:

Beijing University of Chemical Technology

太空电梯

杆件过于细长时, 易产 生失稳, 不可以只考虑 轴向压缩。

Beijing University of Chemical Technology

2. 特征:

受力特征:作用于杆上的外力(或外力合力)的作用 线与杆的轴线重合。 只有线应变和线应力

变形特征:杆件的变形是沿轴线方向伸长或缩短

Beijing University of Chemical Technology

2. 特征:

轴向载荷:作用于杆上的外力,如果其作用线与杆的

轴线重合, 称为轴向载荷。

轴向拉伸: 杆件发生纵向拉伸, a杆件则称为拉杆。

轴向压缩: 杆件发生纵向拉伸, b杆件则称为压杆。

9

右图哪个属于轴向拉压?

- A)都属于
- B 都不属于
- c 只有a属于
- D 只有b属于
- [只有c属于

Beijing University of Chemical Technology

1. 截面法求轴力:

研究力和

变形的关系

求图示等直杆件横截面 mm 上的内力。

轴向拉压时的内力是轴力, 如何求该内力?

截面法:截面法是求内力的一般方法。

Beijing University of Chemical Technology

1. 截面法求轴力:

截开: 在求内力的截面mm处, 假想地将杆截为两

部分。

Beijing University of Chemical Technology

1. 截面法求轴力:

代替: 取左部分部分作为研究对象。 弃去部分对研究对象的作用以截开面上的内力代替。 合力为 N。

Beijing University of Chemical Technology

1. 截面法求轴力:

平衡:对研究对象列平衡方程。

式中:N 为杆件任一横截面m-m 上的内力。与杆的

轴线重合, 即垂直于横截面并通过其形心。称为轴力。

Beijing University of Chemical Technology

2. 特征:

轴向载荷P是不是轴力?

轴向载荷是外力, 轴力是内力!

Beijing University of Chemical Technology

1. 截面法求轴力:

平衡: 对研究对象列平衡方程。

若取右侧为研究对象,

则在截开面上的轴力

与部分左侧上的轴力

数值相等而指向相反

Beijing University of Chemical Technology

1. 截面法求轴力:

于轴向载荷?

Beijing University of Chemical Technology

3. 例题:

计算下图中1-1、2-2、3-3、4-4位置处的轴力。

$$F_{N1} = 20$$
kN (拉)

$$F_{\rm N2} = 60 \rm kN \left(\stackrel{\text{}}{\cancel{2}} \right)$$

$$F_{\rm N3} = -10\rm{kN} \left(\pm \right)$$

$$F_{N4} = 15$$
kN $($ $)$

Beijing University of Chemical Technology

2. 轴力图:

用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力数值,从而绘出表示轴力与横截面位置关系的图线,称为轴力图。将正的轴力画在上侧,负的画在下侧。

Beijing University of Chemical Technology

10 kN

注意: 计算横截面上的轴力时, 一般先假设轴力为

正值,则轴力的实际符号与其计算符号一致。

计算内力时,一般选取计算简便的部分计算内力?

Beijing University of Chemical Technology

纵向线:平行于轴线;

研究力和

横向线: 位于横截面, 垂直于轴线。

变形的关系

如何变形?

Beijing University of Chemical Technology

两端施加一个轴向拉力P,变形后。

纵向线: 仍然平行于轴线, 伸长相等;

横向线:保持为直线,且依然垂直于轴线。

<mark>平面假设</mark>:杆件变形前的各横截面在变形后仍为平

面且与杆的轴线垂直。

Beijing University of Chemical Technology

平面假设:直杆在轴向拉压时横截面仍保持为平面。

物理关系:杆件的变形和受力之间的关系。

杆件内部各点变形相同—线应变; 没有角应变

杆件内部各点受力相同—正应力; 和切应力!

Beijing University of Chemical Technology

正应力:由平面假设可知,轴向拉压时,横截面上的正应力处处相等。

$$F_{\rm N} = \int \sigma dA = \sigma A$$

$$\sigma = \frac{F_{\rm N}}{A}$$

Beijing University of Chemical Technology

正应力:

$$\sigma = \frac{F_N}{A}$$

式中, F_N 为轴力,A为横截面面积, σ 的符号与轴力相同:

当轴力为正时(拉伸), 正应力也为正号, 称为拉应力;

当轴力为负时(压缩),正应力也为负号,称为压应力。

Beijing University of Chemical Technology

一横截面为正方形的砖柱分上、

下两段, 其受力情况、各段长

度及横截面面积如图所示。已

知P=50KN. 试求荷载引起的

最大工作应力。

Beijing University of Chemical Technology

解:作轴力图,如图所示

$$N_1 = -P = -50KN$$

$$N_2 = -3P = -150KN$$

Beijing University of Chemical Technology

上部分应力:

$$\sigma_1 = \frac{N_1}{A_1} = \frac{-50000}{0.24 \times 0.24}$$
$$= -0.87 \times 10^6 N / m^2 = -0.87 MPa$$

下部分应力:

$$\sigma_2 = \frac{N_2}{A_2} = \frac{-150000}{0.37 \times 0.37}$$
$$= -1.1 \times 10^6 \, \text{N} \, / \, \text{m}^2 = -1.1 \text{MPa}$$

 σ_{max} 在柱的下段,其值为

1.1 MPa, 是压应力。

图示阶梯杆AD受三个集中力F作用,设AB、BC、CD 段的横截面面积分别为A、2A、3A,则在三段杆的横截面上:

- A 轴力不等, 应力相等;
- B 轴力相等,应力不等;
- **全** 轴力和应力都相等;
- 轴力和应力都不等。

Beijing University of Chemical Technology

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验

棒材----圆柱形试样

板材---板状试样

在试样中间等直部分上划两条横线,这一段杆称为工作段

 l_0 --- 标准长度或称标距

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验-拉伸图

拉伸图:拉力F和伸长量 Δl 关系的曲线。

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验-拉伸图

拉伸图与试样尺寸有关。

应力-应变关系

拉伸图与试样尺寸有关。

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验-应力应变图

$$\sigma = \frac{F}{A}$$

$$\varepsilon = \frac{\Delta l}{l_0}$$

$$\varepsilon = \frac{\Delta l}{l_0} = \frac{2\Delta l}{2l_0}$$

前面几种情况的应力应变曲 线重合:与尺寸无关

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验-应力应变图

(a) 弹性阶段

试样的变形完全弹性的

(Ob)。 此阶段内的直线

段材料满足胡克定律:

$$\sigma = E \varepsilon$$

重点

 $\sigma_{
m p}$ 一 比例极限

线性关系

b点是弹性阶段的最高点

σ_e —— 弹性极限 弹性

Beijing University of Chemical Technology

碳素钢的拉伸试验-应力应变图

(b) 屈服阶段 当应力超过b点后。试样 的荷载基本不变而变形 却急剧增加。这种现象 称为屈服。

屈服极限

屈服阶段的最低点

者之间数值相近, 但要区分概念。

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验-应力应变图

(c) 强化阶段 过屈服阶段后. 材料又 恢复了抵抗变形的能力 要使它继续变形必须增 加拉力、这种现象称为材 料的强化。

 $\sigma_{_{
m b}}$ —— 强度极限

e点是强化阶段的最高点

Beijing University of Chemical Technology

1. 碳素钢的拉伸试验-应力应变图

(d) 局部变形阶段

过e点后,试样在某一段内的横截面面积显著地收缩,

出现颈缩现象,一直到试样被拉断。

Beijing University of Chemical Technology

2. 断后伸长率和断面收缩率

试样拉断后,弹性变形消失,塑性变形保留, 试样的长度由l变为 l_1 ,横截面积原为A,断口处 的最小横截面积为 A_1

伸长率

$$\delta = \frac{l_1 - l}{l} \times 100\%$$

断面收缩率

$$\psi = \frac{A - A_1}{A} \times 100\%$$

 $\delta < 5\%$ 的材料,称作脆性材料

Beijing University of Chemical Technology

3. 典型韧性金属材料的拉伸曲线

Beijing University of Chemical Technology

3. 典型韧性金属材料的拉伸曲线

Beijing University of Chemical Technology

4. 卸载定律及冷作硬化

卸载定律:

定律。

若加栽到强化阶段的某一点d停止加载,并逐渐卸载,在卸载过程中,荷载与试 样伸长量之间遵循直线关 系的规律称为材料的卸载

Beijing University of Chemical Technology

4. 卸载定律及冷作硬化

冷作硬化:

在常温下把材料领拉到强化阶段然后卸载,当再次加载时,试样在线弹性范围内所能承受的最大荷载将增大.这种现象称为冷作硬化。

Beijing University of Chemical Technology

5. 铸铁的拉伸试验

脆性材料, 没有颈缩

Beijing University of Chemical Technology

5. 铸铁的拉伸试验

应用背景-强度失效

Beijing University of Chemical Technology

强度:抵抗破坏的能力。

设计要求:不因发生断裂或显著塑性变形而失效。

脆性

塑性

Beijing University of Chemical Technology

6. 材料压缩时的力学性能

Beijing University of Chemical Technology

6. 材料压缩时的力学性能

Beijing University of Chemical Technology

6. 材料压缩时的力学性能

低碳钢压缩时的 弹性模量E和屈 服极限σ、都与拉 伸时大致相同。 屈服阶段后,试样 越压越扁、横截面 面积不断增大,试 样不可能被压断、 因此得不到压缩 时的强度极限。

Beijing University of Chemical Technology

对于某种材料,应力的增加是有限度的,超过这一限度材料就要破坏,这一限度称为材料极限应

杆件能安全工作的应力最大值,称为许用应力 $[\sigma]$ 。

$$n = \begin{cases} 1.2 \sim 2.5 &$$
 塑性材料 $2 \sim 3.5 &$ 脆性材料

$$[\sigma] = \frac{\sigma_u}{n} \quad \begin{array}{cc} n > 1, \, \text{称为} \\ \text{安全系数,} \end{array}$$

n越大越安全

Beijing University of Chemical Technology

强度条件: 杆内的最大工作应力不超过材料的许用应力

$$\sigma_{\text{max}} = \frac{N_{\text{max}}}{A} \leq [\sigma]$$

等直杆内最大正应力发生在最大轴力所在的横截面上。 该截面称为危险截面。

危险截面上的正应力称为最大工作应力。

Beijing University of Chemical Technology

(1) 强度校核

$$\frac{N_{\max}}{A} \leq [\sigma]$$

(2) 设计截面

$$A \ge \frac{N_{\max}}{\lceil \sigma \rceil}$$

(3) 确定许可核载

$$N_{\text{max}} \leq A[\sigma]$$

Beijing University of Chemical Technology

例题3.2: AB: $[\sigma]_1$ =160 MPa, A_1 =6cm², AC: $[\sigma]_2$ =7 MPa, A_2 =100cm², 如果F=40kN, 试强度其校核。

1. 内力计算: 强度校核

$$\sum F_{y} = 0, F_{N1} \sin 30^{\circ} - F = 0$$
$$\sum F_{x} = 0, -F_{N1} \cos 30^{\circ} - F_{N2} = 0$$

$$F_{N1} = 80kN (拉)$$
$$F_{N2} = -69.3kN (压)$$

$$\sigma_1 = \frac{F_{N1}}{A_1} = 133 \text{MPa} < [\sigma]_1$$

2. 强度校核:

:
$$\frac{A_1}{\sigma_2} = \frac{F_{N2}}{A_2} = 6.93 \text{MPa} < [\sigma]_2$$

均满足强度条件!

Beijing University of Chemical Technology

例题3.3: 滑轮在CD移动,F=20kN,AB拟采用两根等边角钢, $[\sigma]=140$ MPa,选择角钢型号。 设计截面

$$\sum M_C = 0, 3F_N \sin 30^\circ - Fx = 0$$

$$F_N = \frac{Fx}{3\sin 30^\circ} \le \frac{5F}{3\sin 30^\circ} = 66.7 \text{kN} (\frac{12}{2})$$

2. 截面选择:

$$A \ge \frac{F_N}{2[\sigma]} = 2.381cm^2$$

由P197型钢表查询,40-40-3等边角钢横截面2.359cm², 比较接近: 工权社社用户力10/工程上认为

$$\sigma = \frac{F_N}{2A} = 141 \text{MPa}$$

不超过许用应力1%。工程上认为不超过5%,仍认为满足强度条债。

Beijing University of Chemical Technology

Beijing University of Chemical Technology

例题3.4: AB和BC的许用应力均为 $[\sigma]$ =115MPa,横截面 A_1 =200mm2, A_2 =150mm2,求许用载荷[F]。

1. 内力计算: 确定许用载荷

$$\sum F_x = 0, -F_{N1} \sin 30^\circ + F_{N2} \sin 45^\circ = 0$$

$$\sum F_y = 0, F_{N1} \cos 30^\circ + F_{N2} \cos 45^\circ - F = 0$$

$$F_{N1} = 0.732F($$
拉 $)$, $F_{N2} = 0.518F($ 拉 $)$

2. 许用载荷:

$$\frac{M}{A_1} \le [\sigma] \Rightarrow F \le 31.4 \text{kN}$$

$$\frac{F_{N2}}{A} \le [\sigma] \Rightarrow F \le 33.3 \text{kN}$$

$$[F] = 31.4 \text{kN}$$

Beijing University of Chemical Technology

1. 轴向变形

$$\Delta l = \frac{Fl}{EA}$$
 应用的前提条件

- **D** 应力小于弹性极限
- **应力小于屈服极限**
- 应力小于强度极限

Beijing University of Chemical Technology

1. 轴向变形

$$\Delta l = \frac{F l}{EA}$$

$$\Delta dx = \frac{F}{EA} dx$$

Beijing University of Chemical Technology

Beijing University of Chemical Technology

2. 横向变形

1、轴向变形和轴向应变

$$\Delta l = l_1 - l$$
 $\varepsilon = \frac{\Delta l}{l}$

2、横向变形和横向应变

$$\Delta b = b_1 - b$$
 $\varepsilon' = \frac{b_1 - b}{b} = \frac{\Delta b}{b}$

3、泊松比

$$\varepsilon' = -\upsilon\varepsilon$$

$$\upsilon = \left| \frac{\varepsilon'}{\varepsilon} \right| \ge 0$$

过时了!

Beijing University of Chemical Technology

3. 负泊松比材料

Beijing University of Chemical Technology

3. 负泊松比材料

泊松比有可能小于()。

では、of Chemical rechnology 事事 かまれる。 1958 東京 (C) Sunion

Beijing University of Chemical Technology

例题:已知:1,2 两杆相同,EA,l,P, α 均已知,

求: A 点位移

1. 内力计算: 取节点A

$$\sum F_{x} = 0$$
, $N_{1} = N_{2}$

$$\sum F_y = 0, N_1 \cos \alpha + N_2 \cos \alpha - P = 0$$

$$N_1 = N_2 = P/2\cos\alpha$$

2. 变形计算:

$$\Delta l = \frac{Nl}{EA} = \frac{Pl}{2EA\cos\alpha}$$

Beijing University of Chemical Technology

例题:已知:1,2 两杆相同,EA,l,P, α 均已知,

求: A 点位移

3. 变形计算:

$$f_A = \frac{\Delta l}{\cos \alpha}$$

$$= \frac{Pl}{2EA\cos^2 \alpha}$$

小变形假设

变形远小于尺寸,

可用变形前的尺寸

进行计算。

小应变情况下, $\alpha'=\alpha$; 切线可以代替弧线

Beijing University of Chemical Technology

1次静不定

Beijing University of Chemical Technology

- 一. 静定静不定概念
- 1. 静定问题——仅用静力平衡方程就能求出全部未知力,这类问题称为静定问题.

实质: 未知力的数目等于静力平衡方程的数目。

2. 静不定问题——仅用静力平衡方程不能求出全部未知力。又称超静定问题。

实质: 未知力的数目多于静力平衡方程的数目。

Beijing University of Chemical Technology

例题: 求支反力

1. 平衡方程:

$$\sum Y = 0, N_1 - N_2 - P = 0$$

2. 几何方程:

$$\Delta L_1 + \Delta L_2 = 0$$

3. 物理方程:

$$\Delta L_1 = N_1 L_1 / EA$$

$$\Delta L_2 = N_2 L_2 / EA$$

4. 补充方程:

$$N_1 L_1 / EA + N_2 L_2 / EA + = 0$$

求解:

$$N_1 = PL_2 / L, N_2 = -PL_1 / L$$

Beijing University of Chemical Technology

静不定问题的解法:

1.判断静不定次数:

方法: 未知力数目 - 平衡方程数目

- 2.列平衡方程
- 3.列几何方程:

反映各杆变形之间的关系,需要具体问题具体分析。

4.列物理方程:变形与力的关系。

5.列补充方程: 物理方程代入几何方程即得。

Beijing University of Chemical Technology

例题: 已知: $E_1=E_2=E_3$, $A_1=A_2=A_3$, $l_1=l_2=l_3$, 求 各杆轴力。

1次静不定问题

Beijing University of Chemical Technology

例题:已知: $E_1=E_2=E_3$, $A_1=A_2=A_3$, $l_1=l_2=l_3$,求:各杆轴力。

1. 受力分析:

$$\sum F_x = 0, -N_2 \sin \alpha + N_3 \sin \sigma = 0$$

$$\sum F_{y} = 0$$
, $N_{1} + N_{2} \cos \alpha + N_{3} \cos \alpha - P = 0$

2. 几何方程:

$$\Delta l_2 = \Delta l_3 = \Delta l_1 \cos \alpha$$

3. 物理方程:

$$\Delta l_1 = \frac{N_1 l_1}{E_1 A_1}, \Delta l_2 = \Delta l_3 = \frac{N_2 l_2}{E_2 A_2}$$

Beijing University of Chemical Technology

例题: 已知: E_1A_1 , l_1 , $E_2A_2=E_3A_3$, $l_2=l_3$, 求: 各杆轴力。

1. 平衡方程:

$$\sum F_x = 0, -N_2 \sin \alpha + N_3 \sin \sigma = 0$$

$$\sum F_{v} = 0$$
, $N_1 + N_2 \cos \alpha + N_3 \cos \alpha - P = 0$

$$\frac{4. \, \text{补充方程:}}{E_3 A_3} = \frac{N_1 l_1}{E_1 A_1} \cos \alpha$$

3个未知量 3个方程

求解:

$$N_{1} = \frac{P}{1 + \frac{2E_{2}A_{2}l_{1}}{E_{1}A_{1}l_{2}}\cos^{2}\alpha}, N_{2} = N_{3} = \frac{P}{2\cos\alpha + \frac{E_{1}A_{1}l_{2}}{E_{2}A_{2}l_{1}\cos\alpha}}$$

作业

Beijing University of Chemical Technology

必做题: 3.1b 3.11

选做题: 3.2 3.30