Know your Face Recognition data

The Devil of Face Recognition is in the Noise

```
Fei Wang ^{\star 1[0000-0002-1024-5867]}, Liren Chen ^{\star 2[0000-0003-0113-5233]}, Cheng Li^{1[0000-0002-0892-4705]}, Shiyao Huang^{1[0000-0002-5198-2492]}, Yanjie Chen^{1[0000-0003-1918-6776]}, Chen Qian^{1[0000-0002-8761-5563]}, and Chen Change Loy^{3[0000-0001-5345-1591]}
```

- SenseTime Research
- ² University of California San Diego
- Nanyang Technological University

{wangfei, chengli, huangshiyao, chenyanjie, qianchen}@sensetime.com, lic002@eng.ucsd.edu, ccloy@ieee.org

Problem

- Large Face Recognition datasets (MegaFace, MS-Celeb-1M) required for training strong convolutional network, are creating using automatic/semi-automatic methods, thus contain large amount of labe noises.
- labels flip: sample has been given wrong label of another class within the dataset.
- outliers: sample does not belong to any of the classes within dataset, but mistakenly has one of their labels.

Contribution

- Analyze the effect of noisy labels on Face Recognition networks.
- Contribute relatively large manually cleaned dataset IMDB-Face.
- Analyze of labeling methods efficiency.

Datasets Overview

LFW - 13K images : 1.6K ID, collected from Yahoo News, running Viola-jones detector. Limited by detector most of faces are frontal. Considered sufficiently clean.

CASIA-WebFace - 500K images : 10K ID, collected from IMDB, semi-automatically cleaned via tag-constrained similarity clustering.

MS-Celeb-1M - scrapping from public search engines, approximately 100 images per ID. the data is deliberately left uncleaned.

MegaFace - based on YFCC100M dataset collected from Flickr, semi-automatic cleaned.

Dataset	#Identities	#Images	Source	Cleaned?	Availablity
LFW 7	5K	13K	Search Engine	Automatic Detection	Public
CelebFaces 19 20	10K	202K	Search Engine	Manually Cleaned	Public
VGG-Face 15	2.6K	2.5M	Search Engine	Semi-automated Clean	Public
CASIA-WebFace 25	10k	0.5M	IMDb	Automatic Clean	Public
MS-Celeb-1M(v1) 5	100k	10M	Search Engine	None	Public
MegaFace 13	670K	4.7M	Flickr	Automatic Cleaned	Public
Facebook 21	4k	4.4M	1007	<u> </u>	Private
Google 18	8M	200M	_		Private
IMDb-Face	59K	1.7M	IMDb	Manually Cleaned	Public

Signal to Noise Ratio

Manually cleaned subsets:

- 2.7M from MegaFace.
- 3.7M from MS-Celeb-1M
- Casia / CelebFaces 30 Id's.

Face recognition datasets with more than million samples have a noise ratio higher than 30%.

Imdb-Face: manually cleaned by workers, with approximated noise level under 2%.

Experiment

- Attention-56, batch-size of 256, 256D feature.
- Imdb-Face dataset.

Fig. 7. 1:1M rank-1 identification results on MegaFace benchmark: (a) introducing label flips to IMDb-Face, (b) introducing outliers to IMDb-Face, and (c) fixing the size of clean data and dilute it with different ratios of label flips.

Table 2. Noisy data vs. Clean data. The results are obtained from rank-1 identification test on the MegaFace benchmark 8. Abbreviation MSV1 = MS-Celeb-1M(v1).

Dataset	#Idon	#Imag	Megal	Face Ra	nk-1(%)
Dataset	#Iden.	#IIIIgs.	Softmax	Center	A-softmax
MSV1-raw	96k	8.6M	71.70	73.82	73.99
-sampled	46k	3.7M	66.15	69.81	70.56
-clean	46k	1.76M	70.66	73.15	73.53
MegaFace-raw	670k	4.7M	64.32	64.71	66.95
-sampled	270k	2.7M	59.68	62.55	63.12
-clean	270k	1.5M	62.86	67.64	68.88

- average improvement of accuracy between clean and sampled is 4.14%.
- close and in some cases better results than the larger raw dataset.

Training with different datasets:

Detect	#Idon	#Imag	Rank-1 (%) Softmax Center Loss A-Softm				
Dataset	#Iden.	#Imgs.	Softmax	Center Loss	A-Softmax		
CelebFaces		0.20M	36.15	42.54	43.72		
CASIA-WebFace	10.5k	0.49M	65.17	68.09	70.89		
MS-Celeb- $1M(V1)$	96k	8.6M	71.70	73.82	73.99		
MegaFace	670k	4.7M	64.32	64.71	66.95		
IMDbFace	59k	1.7M	74.75	79.41	84.06		

Comparison to SOTA??:

SphereFace 12, CASIA-WebFace 99.42 75.77 95.0	Method, Dataset	LFW	Mega(Ident.)	YTF
DeepSense V2 [†] , Private - 81.23 - Marginal Loss [‡] 4 MS-Celeb-1M 99.48 80.278 95.9 SphereFace 12 ,CASIA-WebFace 99.42 75.77 95.0	Vocord-deep V3 [†] , Private	1-1	91.76	-
Marginal Loss [‡] 4 MS-Celeb-1M 99.48 80.278 95.9 SphereFace 12,CASIA-WebFace 99.42 75.77 95.0	YouTu Lab [†] , Private	-	83.29	-
SphereFace 12, CASIA-WebFace 99.42 75.77 95.0	DeepSense V2 [†] , Private	-	81.23	-
· · · · · · · · · · · · · · · · · · ·	Marginal Loss [‡] 4 MS-Celeb-1M	99.48	80.278	95.98
Center Loss 23, CASIA-WebFace 99.28 65.24 94.9	SphereFace 12, CASIA-WebFace	99.42	75.77	95.00
	Center Loss [23], CASIA-WebFace	99.28	65.24	94.90
A-Softmax [‡] , MS-Celeb-1M 99.58 73.99 97.4	A-Softmax [‡] , MS-Celeb-1M	99.58	73.99	97.45
A-Softmax [‡] , IMDb-Face 99.79 84.06 97.6	A-Softmax [‡] , IMDb-Face	99.79	84.06	97.67

[†] Commercial, have not been published

 $[\]sharp$ Single Model

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Jiankang Deng *
Imperial College London

j.deng16@imperial.ac.uk

Jia Guo * InsightFace

guojia@gmail.com

Niannan Xue Imperial College London

n.xue15@imperial.ac.uk

Stefanos Zafeiriou Imperial College London

s.zafeiriou@imperial.ac.uk

Arc Loss

$$L_3 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i} + m))}}{e^{s(\cos(\theta_{y_i} + m))} + \sum_{j=1, j \neq y_i}^{n} e^{s\cos\theta_j}}.$$

s - hypersphere radius

n - number of classes (identities)

m - additive margin parameter

x - normlized features embeding

W - norrmalized weight class

Ø - angle between x and W

N - batch size

Arc Loss

Method	#Image	LFW	YTF
DeepID [32]	0.2M	99.47	93.20
Deep Face [33]	4.4M	97.35	91.4
VGG Face [24]	2.6M	98.95	97.30
FaceNet [29]	200M	99.63	95.10
Baidu [16]	1.3M	99.13	-
Center Loss [38]	0.7M	99.28	94.9
Range Loss [46]	5M	99.52	93.70
Marginal Loss [9]	3.8M	99.48	95.98
SphereFace [18]	0.5M	99.42	95.0
SphereFace+ [17]	0.5M	99.47	-
CosFace [37]	5M	99.73	97.6
MS1MV2, R100, ArcFace	5.8M	99.83	98.02

Table 4. Verification performance (%) of different methods on LFW and YTF.

s = 64, m = 0.5

MS1MV2 - Semi Automatic refined version of MS-Celeb-1M dataset

Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces

Jiankang Deng * 1 Jia Guo * 2 Tongliang Liu³ Mingming Gong ⁴ Stefanos Zafeiriou¹

¹Imperial College ²InsightFace ³University of Sydney ⁴University of Melbourne {j.deng16, s.zafeiriou}@imperial.ac.uk, guojia@gmail.com tongliang.liu@sydney.edu.au, mingming.gong@unimelb.edu.au

- Even though ArcFace is efficient, this method assume that training data is clean.
- Reduce the intra-class constraint, and improve the robustness to label noise.
- Design of K-sub-centers for each class.
- Most of clean faces will be close to a dominant sub-class, and non-dominant subclasses will include noisy faces.

(a) ArcFace vs. Sub-center ArcFace

(b) Example of Sub-classes

$$\ell_{\text{ArcFace}_{\text{subcenter}}} = -\log \frac{e^{s\cos(\theta_{i,y_i} + m)}}{e^{s\cos(\theta_{i,y_i} + m)} + \sum_{j=1, j \neq y_i}^{N} e^{s\cos\theta_{i,j}}},$$

where $\theta_{i,j} = arccos\left(\max_k\left(W_{j_k}^T\mathbf{x}_i\right)\right), k \in \{1, \dots, K\}.$

Casia-Webface distribution

Fig. 3. (a) Angle distribution of samples to their corresponding centers predicted by the pre-trained ArcFace model [5]. Noise exists in the CASIA dataset [40,30]. (b) Angle distribution of samples from the dominant and non-dominant sub-classes. Clean data are automatically isolated by sub-center ArcFace (K=10).

MS1MV0 (raw) distribution

- estimated noise: 47.1% ~ 54.4%
- Training ResNet-50, MS1MV0, ArcFace
- "clean" and "noisy" are defined by MS1MV3 semi-automatic cleaned dataset.
- Sub-center ArcFace reduce noise from 38.47% to 12.40%.
- Angle threshold between 70 and 80 can be easily searched to drop most noisy samples.

Fig. 4. Data distribution of ArcFace (K=1) and the proposed sub-center ArcFace (K=3) before and after dropping non-dominant sub-centers. MS1MV0 [9] is used here. $K=3\downarrow 1$ denotes sub-center ArcFace with non-dominant sub-centers dropping.

Proposed training flow

- Training Network using Sub-center ArcFace with K sub-classes, K>1.
- After enough discriminative power, we can clean the dataset by droping all no-dominant sub-classes, and using angle-threshold Øt.
- Retrain Network from scratch with the cleaned dataset, with no sub-classes, for example denoted as K = 3 ↓ 1

Table 2. Ablation experiments of different settings on MS1MV0, MS1MV3 and

Settings			IJB-B				3	IJB-C		
octomes	1e-6	1e - 5	1e-4	1e-3	1e-2	1e-6	1e - 5	1e-4	1e-3	1e-2
(1) MS1MV0,K=1	34.14	74.74	87.87	93.27	96.40	67.08	81.11	90.27	94.59	97.08
(2) MS1MV0,K=3	40.89	85.62	91.70	94.88	96.93	86.18	90.59	93.72	95.98	97.60
(3) MS1MV0,K=3, softmax pooling [22]	38.4	85.49	91.53	94.76	96.83	85.43	90.40	93.55	95.87	97.36
(4) MS1MV0,K=5	39.24	85.48	91.47	94.68	96.96	85.49	90.38	93.62	95.88	97.59
(5) MS1MV0,K=10	19.81	49.03	63.84	76.09	87.73	45.98	55.74	67.94	79.44	89.29
(6) MS1MV0, $K = 3 \downarrow 1$, drop $> 70^{\circ}$	47.61	90.60	94.44	96.44	97.71	90.40	94.05	95.91	97.42	98.42
(7) MS1MV0, $K = 3 \downarrow 1$, drop $> 75^{\circ}$	46.78	89.40	94.56	96.49	97.83	89.17	94.03	95.92	97.40	98.41
(8) MS1MV0, $K = 3 \downarrow 1$, drop $> 80^{\circ}$	38.05	88.26	94.04	96.19	97.64	86.16	93.09	95.74	97.19	98.33
(9) MS1MV0, $K = 3 \downarrow 1$, drop $> 85^{\circ}$	42.89	87.06	93.33	96.05	97.59	81.53	92.01	95.10	97.01	98.24
(10) MS1MV0, K=3, regularizer [22]	39.92	85.51	91.53	94.77	96.92	85.44	90.41	93.64	95.85	97.40
(11) MS1MV0,Co-mining [33]	40.96	85.57	91.80	94.99	97.10	86.31	90.71	93.82	95.95	97.63

(12) MS1MV0,NT [11] (13) MS1MV0,NR [41]

(14) MS1MV3, K=1 (15) MS1MV3, K=3

(17) Celeb500K, K=1 (18) Celeb500K, K=3

(16) MS1MV3, $K = 3 \downarrow 1$

(19) Celeb500K, $K = 3 \downarrow 1$

40.84 85.56 91.57 94.79 96.83 86.14 90.48 93.65 95.86 97.54

40.86 85.53 91.58 94.77 96.80 86.07 90.41 93.60 95.88 97.44 35.86 91.52 95.13 96.61 97.65 90.16 94.75 96.50 97.61 98.40

40.16 91.30 94.84 96.66 97.74 90.64 94.68 96.35 97.66 98.48

40.18 91.32 94.87 96.70 97.81 90.67 94.74 96.43 97.66 98.47 42.42 88.18 90.96 92.19 93.00 88.18 90.87 92.15 95.47 97.64

43.84 90.91 93.76 95.12 96.00 90.92 93.66 94.90 96.21 98.02

44.64 92.71 95.65 96.94 97.89 92.73 95.52 96.91 97.87 98.42

Adding synthtic noise and training ResNet-50 on clean MS1MV3.

open-set: 75% of Id remain clean, other are assigned with random labels. (outliers)

close-set: randomly select 25% images of each ld and assign random labels.
(label-flips)

Table 3. Ablation experiments of different settings under synthetic open-set and close-set noise. The 1:1 verification accuracy (TAR@FAR) is reported on the IJB-B and IJB-C datasets. ResNet-50 is used for training.

Settings	IJB-B	IJB-C
County	$1e-6 \ 1e-5 \ 1e-4 \ 1e-3 \ 1e-2$	$1e-6 \ 1e-5 \ 1e-4 \ 1e-3 \ 1e-2$
	Synthetic O	pen-set Noise
(1) 75%CleanID,K=1	37.49 90.02 94.48 96.48 97.72	90.10 94.18 96.00 97.45 98.38
(2) 75%CleanID+25%NoisyID,K=1	37.80 86.68 92.96 94.72 95.80	86.19 92.03 94.52 95.89 97.29
(3) 75%CleanID+25%NoisyID,K=3	38.31 87.87 94.17 95.83 97.15	87.23 93.01 95.57 96.95 97.75
(4) 75%CleanID+25%NoisyID, $K = 3 \downarrow 1$	38.36 88.14 94.20 96.15 97.94	87.51 93.27 95.89 97.29 98.43
(5) 50%CleanID,K=1	34.43 89.36 93.97 96.26 97.63	88.35 93.49 95.65 97.28 98.35
(6) 50%CleanID+50%NoisyID,K=1	35.96 81.45 90.77 92.69 94.56	80.97 88.49 92.25 93.84 95.10
(7) 50%CleanID+50%NoisyID, $K=3$	34.15 85.13 92.62 94.98 96.77	84.43 91.00 94.50 95.79 97.33
(8) 50%CleanID+50%NoisyID, $K = 3 \downarrow 1$	34.55 86.43 93.85 96.13 97.37	85.22 91.82 95.50 96.73 98.16
	Synthetic Cl	ose-set Noise
(9) 75%CleanIM,K=1	38.44 89.41 94.76 96.42 97.71	89.31 94.19 96.19 97.39 98.43
(10) 75%CleanIM+25%NoisyIM,K=1	36.16 83.46 92.29 94.85 95.61	82.20 91.24 94.28 95.58 97.58
(11) 75%CleanIM+25%NoisyIM, $K=3$	36.09 83.16 91.45 94.33 95.23	81.28 90.02 93.57 94.96 96.32
(12) 75%CleanIM+25%NoisyIM, $K = 3 \downarrow$. 1 37.79 85.50 94.03 95.53 97.42	84.09 93.17 95.13 96.85 97.61
(13) 50%CleanIM,K=1	36.85 90.50 94.59 96.49 97.65	90.46 94.32 96.08 97.44 98.33
(14) 50%CleanIM+50%NoisyIM, $K=1$	17.54 43.10 71.76 82.08 93.38	28.40 55.46 75.80 88.22 94.68
(15) 50%CleanIM+50%NoisyIM, $K=3$	17.47 41.63 66.42 78.70 91.37	26.03 54.23 72.04 86.36 94.19
(16) 50%CleanIM+50%NoisyIM, $K = 3 \downarrow$. 1 22.19 68.11 85.86 88.13 95.08	44.34 69.25 78.12 90.51 96.16

Table 4. Column 2-3: 1:1 verification TAR (@FAR=1e-4) on the IJB-B and IJB-C dataset. Column 4-5: Face identification and verification evaluation on MegaFace Challengel using FaceScrub as the probe set. "Id" refers to the rank-1 face identification accuracy with 1M distractors, and "Ver" refers to the face verification TAR at 10⁻⁶ FAR. Column 6-8: The 1:1 verification accuracy on the LFW, CFP-FP and AgeDB-30 datasets. ResNet-100 is used for training.

Settings	I.	JΒ	Mega	aFace	Quick	Verification	on Datasets
	IJB-B	IJB-C	Id	Ver	LFW	CFP-FP	AgeDB-30
MS1MV0, K=1	87.91	90.42	96.52	96.75	99.75	97.17	97.26
MS1MV0, $K = 3 \downarrow 1$	94.94	96.28	98.16	98.36	99.80	98.80	98.31
MS1MV3, $K=1$ [5,6]	95.25	96.61	98.40	98.51	99.83	98.80	98.45
Celeb500K, $K = 3 \downarrow 1$	95.75	96.96	98.78	98.69	99.86	99.11	98.35

Ethnicity Bias ??

When combining all identities from MS1MV2 and Asian celebrities from DeepGlint, Arc-Face achieves the best identification performance 84.840%.

Method	Id (@FPR=1e-3)	Ver(@FPR=1e-9)
CASIA	26.643	21.452
MS1MV2	80.968	78.600
DeepGlint-Face	80.331	78.586
MS1MV2+Asian	84.840 (1st)	80.540
CIGIT_IRSEC	84.234 (2nd)	81.558 (1st)

Table 8. Identification and verification results (%) on the Trillion-Pairs dataset. ([Dataset*, ResNet100, ArcFace])

Future improvements

- Train with Imdb-Face dataset, large mannual cleaned.
- Train with larger datasets such as, CelebFace500K or other, using Sub-Center ArcFace to relax intra-classes noise.
- Scraping more data on search engines and imply ethnicity bias, regarding the mission.
- Adding our labeled data, to imply ethnicity bias.

Appendix - MS1MV3 (our dataset training)

Lightweight Face Recognition Challenge

```
Jiankang Deng <sup>1</sup> Jia Guo <sup>1</sup>
Debing Zhang <sup>2</sup> Yafeng Deng<sup>2</sup> Xiangju Lu <sup>3</sup> Song Shi <sup>3</sup>

<sup>1</sup>InsightFace <sup>2</sup>DeepGlint <sup>3</sup>IQIYI
```

- Cleaned from raw MS-Celeb-1M
- face images are pre-processed to the size of 112 × 112 by the five facial landmarks predicted by RetinaFace.
- Semi-automatic refinement by employing the pre-trained ArcFace model and ethnicity-specific annotators.
- Named also MS1M-RetinaFace, and contains 5.1M images of 93K identities.