('CH₃).

(c) Predict and draw the intensity distribution in hyper

fine lines of ESR spectrum of methyl radical

[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 5566

J

Unique Paper Code

: 2172013603

Name of the Paper

: DSC-PHOTOCHEMISTRY

AND SPECTROSCOPY

Name of the Course

: B.Sc. (Hons) Chemistry

Semester

: VI

Duration: 2 Hours

Maximum Marks: 60

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt **FOUR** questions in all. Question No. 1 is compulsory.
- 3. The questions should be numbered in accordance to the number in the question paper.
- 4. Use of Scientific Calculator is permitted.

Planck's Constant: 6.626×10^{-34} Js : Mass of Electron: 9.1×10^{-31} Kg

(5,5,5)

- 1. Answer any 5 of the following:
 - (a) Zero-point energy in vibrational spectra is never zero. Comment.
 - (b) Why electronic transitions are said to be vertical transitions.
 - (c) Why the symmetric stretching mode of vibration of CO₂ molecule is Raman active and asymmetric mode of vibration is Raman inactive?
 - (d) What are the laws of photochemistry?
 - (e) Explain the terms chromophore and auxochrome.

 Give one example of each.
 - (f) As the number of conjugated atoms in a molecule increases, red shift is observed. Explain with help of one example. (5×3=15)

- (b) Explain the Phosphorescence phenomenon with the help of a suitable energy diagram. Why is it a delayed phenomenon?
- (c) The first UV peak of 1,3-butadiene is observed at 210 nm, corresponding to a transition from HOMO (highest occupied molecular orbital) to LUMO (lowest unoccupied molecular orbital). Based on free electron model, calculate the length of the box to which this transition corresponds.

(5,5,5)

- 6. (a) Explain the term chemical shift. What is

 TMS? Why is it used as a reference standard in

 NMR?
 - (b) What is spin-spin coupling? Explain and sketch the NMR spectrum of methanol with and without spin-spin coupling.

- (ii) Triple bond has higher stretching frequency than corresponding double bond, which in turn has higher frequency than single bond. Explain.
- (c) A molecule XY₂ has the following IR and vibrational Raman spectral data:

Wavenumber (cm ⁻¹)	IR	Raman
1243	Inactive	Active
2920	Active (PR)	Inactive
786	Active (PQR)	Inactive

Predict the geometry of XY₂ molecule. (5,5,5)

5. (a) Define Lambert-Beer's Law. What are its limitations? Give one application of this law.

- 2. (a) What is the essential condition for a molecule to be microwave active? Which of the following molecules are expected to be microwave active: SF₆, H₂O, N₂, HCN, NO, and CO₂. Give reason.
 - (b) The HCl molecule shows pure rotational lines at the following frequencies (cm⁻¹)

Assign these lines to the corresponding $J \rightarrow J+1$ rotational transitions. Calculate the bond distance of HCl.

The atomic masses are: $H = 1.673 \times 10^{-27} \text{ kg}$; $C1 = 58.06 \times 10^{-27} \text{ kg}$.

(c) (i) Explain, why many of the lower rotational levels are thickly populated.

(ii) Show that the rotational level whose quantum number is given by the expression has a maximum population:

 $J = \sqrt{\frac{kT}{2Bhc} - \frac{1}{2}} \tag{5,5,5}$

- 3. (a) Discuss how a simple harmonic oscillator system differs from a homonuclear diatomic molecule undergoing anharmonic oscillations in terms of energy relation and energy vs displacement curve from mean position.
 - (b) (i) How the presence of Hydrogen bonding can be predicted in IR spectra? Explain with an example.
 - (ii) An intense band and the first overtone transition of HBr (bond length 0.142 nm) are centered at 2560 cm⁻¹ and 5028 cm⁻¹.

Calculate the anharmonicity constant and force constant for H-Br bond. Mass of hydrogen: 1.0 g/mol and Mass of Br: 80.0 g/mol.

- (c) (i) How will you distinguish between the overtones and hot bands of a spectrum?
 - (ii) Calculate the number of fundamental vibrational modes for NH_3 , H_2O and HCN. (5,5,5)
- 4. (a) What are Rayleigh, Stokes and anti-Stokes lines?

 How is the intensity of stokes lines different from that of anti-stokes lines in pure Raman spectrum?

 Explain giving reasons.
 - (b) (i) Explain the factors that control intensity of spectral lines/band.