Team Fortum

Disaggregation of household electricity consumption

Final Presentation

Mihail Douhaniaris Samuel Marisa Matias Peljo Johan Salmelin

Outline of the presentation

- What is electricity disaggregation?
- Project objectives
- Electricity disaggregation methods
- Hidden Markov model theory
- Model implementation
- Results
- Discussion
- Conclusion

What is electricity disaggregation?

- Separating the total electricity load of a household into appliance specific loads
- Intrusive device specific monitoring is avoided
- Smart meter data
- Opens possibilities to gain insights on customer electricity usage behavior

Project objectives

- Provide a study of current electricity disaggregation methods
- Understand the possibilities and limitations
- Compare different methods
- Implement a proof of concept unsupervised electricity disaggregation model
- Test model with Fortum's own data

Electricity disaggregation methods

- Supervised disaggregation algorithms
 - Require labelled appliance-level training data
 - Training data from each household → Fully supervised
 - Training data from some households → Semi-supervised
 - Different approaches
 - Optimization based methods, e.g. Combinatorial Optimization (CO)
 - Pattern recognition based methods, e.g. Artificial Neural Networks, Support Vector Machines
- Unsupervised disaggregation algorithms
 - Training data not needed
 - Different approaches
 - Hidden Markov Model based approaches most common
 - Graphical Signal Processing, Dynamic Time Warping, Deep Learning etc.

TheoryHidden Markov Models (HMM)

- Widely used in modeling discrete time series
- System state is modeled as a hidden Markov chain Z_t
- Observations Y_t are emitted by the hidden variable Z_t
- Simple and efficient parameter estimation
- Many extensions exist

TheoryFactorial Hidden Markov Models (FHMM)

- An extension of the classical HMM
- The hidden state is factored into separate components
- Each component evolves with independent Markov dynamics
- Observation Y_t is a function of component outputs
- The number of components is known beforehand

Theory

Nonparametric Factorial Hidden Markov Model (NFHMM)

- Bayesian nonparametric extension of the FHMM
- The number of components is unbounded
- The Markov Indian Buffet
 Process is used as a prior
 over binary matrices with
 infinite columns
- Stick-breaking representation possible

Implementation Inference algorithm

Input

Y: Aggregate electricity consumption data

Initialization

 $\mathbf{Z}, \mu, b, \theta$

Iteration number IterNum.

Iteration loop

while IterNum > 0 do

- 1. Sample slice variable s
- 2. Expand representation of $\mathbf{Z}, \mu, b, \theta$.
- Sample Z using blocked Gibbs sampling and Forward Filtering Backward Sampling (FFBS).
- 4. Sample θ , μ , b
- 5. Sample hyperparameters $\alpha, \delta, \gamma, \mu_{\theta}, \sigma_{\theta}^2, \sigma_{\epsilon}^2$ from their conjugate posterior distributions.
- 6. IterNum \leftarrow IterNum 1.

Output

- Z: Binary state matrix
- θ : Device power levels.

ImplementationNon-Intrusive Load Monitoring Toolkit (NILMTK)

- Toolkit to facilitate electricity disaggregation research
- Published in 2014 in the 5th
 International Conference on Future
 Energy Systems
- Convert and import public datasets
- Statistics, preprocessing and disaggregation metrics
- Benchmark disaggregation algorithms

NILMTK: An Open Source Toolkit for Non-intrusive Load Monitoring

[Extended Abstract]

Nipun Batra¹, Jack Kelly², Oliver Parson³, Haimonti Dutta⁴, William Knottenbelt², Alex Rogers³, Amarjeet Singh¹, Mani Srivastava⁵

¹Indraprastha Institute of Information Technology Delhi, India {nipunb, amarjeet}@iiitd.ac.in

² Imperial College London {jack.kelly, w.knottenbelt}@imperial.ac.uk

³ University of Southampton {osp, acr}@ecs.soton.ac.uk

⁴ CCLS Columbia {haimonti@ccls.columbia.edu}

⁵ UCLA {mbs@ucla.edu}

http://nilmtk.github.io/

ResultsSynthetic dataset

- A simple synthetic dataset was created to test the disaggregation
- The dataset is comprised by a heater, an oven, a fridge and a light
- 4 devices are extracted by the algorithm
- Observation matches sum of disaggregates
- Noise in signal is quite well estimated

ResultsSynthetic dataset

- Disaggregation results seem quite reasonable
- Correct number of appliances
- Power levels are correct
- Some usage durations are not realistic
- Semi-Markov property would be helpful

ResultsSynthetic dataset

- The probabilistic nature of the model can cause variation in the number of extracted appliances
- Results again seem reasonable, however one extra appliance is present
- Difficult to know correctness, without any knowledge of ground truth

ResultsSupervised vs Unsupervised

- Supervised FHMM and CO was compared to the unsupervised NFHMM
- Supervised FHMM outperforms NFHMM with an almost perfect score
- Comparison between the supervised and unsupervised methods is nontrivial
- Used comparison scheme problematic
- NILMTK designed for supervised methods

ResultsSupervised vs Unsupervised

- F-scores were computed with NILMTK
- NFHMM: Appliance F-scores vary from 0.5 to 0.8
- Supervised FHMM: Almost perfect
 F-scores (>0.95)
- However, the supervised FHMM was trained with perfect data
 - no real difference between training and testing datasets
- F-score metric makes sense with supervised data

$$F-score = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Results Fortum boiler data

- Fortum customer household data containing water heater boilers
- Disaggregation was performed with NFHMM
- Algorithm extracted 5 distinct appliances
- Observation and sum of disaggregated components match reasonably well

Results Fortum boiler data

- Boiler dataset disaggregates shown
- Boiler event of ~3 kW detected
- Duration of boiler usage is not properly considered
- A few one second on/off events
- Semi-Markov property would help suppress the false switch events

Discussion

- Implementation
 - Multi-state designation could be added
 - Negative power levels possible
- Model
 - Markov property does not consider state durations (recall the oven and boiler)
 - NFHMM algorithm seems to converge sometimes to local optimal
 - No additional features considered (e.g. time of day)
- Comparison of supervised and unsupervised methods difficult

Conclusion

- Recent advances in electricity disaggregation methods
 - Supervised
 - Unsupervised
- Reference for the development of the client's vision on electricity disaggregation services
- Disaggregation problem not trivial
- Results of unsupervised methods are promising
- Results of implemented NFHMM not quite comparable to supervised methods

Questions

