Micro Tracker Reference Guide

Micro Tracker
Firmware V1.7

ABEEWAY SAS <u>contact@abeeway.com</u> www.abeeway.com

Table of contents

1	In	troduction	4
	1.1	General Description	4
	1.2	Applications	4
2	Fe	eatures	4
3	In	stallation	5
	3.1	Getting started	5
	3.2	Fixation	5
4	Fı	unctioning	6
	4.1	Main operating modes	6
	4.2	Side operations	7
	4.3	BLE (Bluetooth Low Energy) capabilities	8
	4.4	User interface	17
	4.5	Geolocation strategies	18
5	Uį	plink messages	23
	5.1	LoRa uplink transmission	23
	5.2	Encoded form	24
	5.3	Common message header	24
	5.4	Heartbeat messages	25
	5.5	Position messages	25
	5.6	Energy Status messages	28
	5.7	Activity status messages	28
	5.8	Configuration messages	29
	5.9	Frame pending messages	29
6	De	ownlink messages	30
	6.1	Acknowledge token	30
	6.2	Operational mode configuration	31
	6.3	Position on demand	31
	6.4	Request device configuration	31
	6.5	SOS mode configuration	32
	6.6	Parameters configuration	32
	6.7	Debug command	34
7	Ex	xamples of configuration	35
	7.1	Accurate position using GPS mode only	35
	7.2	Low power configuration,	35
	7.3	Tracking in low power mode (beginning and end of motions only)	36

	7.4	Indoor only position	36
	7.5	Fixed frequency positioning	36
	7.6	Activity tracking	37
8	Har	dware Specifications	38

1 Introduction

1.1 General Description

The Abeeway Micro Tracker is a multi-mode tracker combining GPS/Low power GPS, WIFI, LoRa, BLE radios with embedded sensors to support accurate outdoor and indoor geolocation. A button, a buzzer and 3 LEDs are available to interface with the user. The Micro Tracker, with its small size and long battery lifetime, is the ideal product for many tracking applications.

1.2 Applications

- Asset tracking at fixed frequency updates or on demand.
- Personal tracking with help button.
- > Safety monitoring for isolated workers inside facilities or in outdoor.
- > Anti-theft; Notification and location when device is moving.
- Geofencing applications.

2 Features

- Multiple operating modes
 - ✓ **Motion tracking:** Get the tracker position at a given cycle when motion is detected.
 - ✓ **Permanent tracking:** Get permanently a position of the tracker.
 - ✓ **Start/End motion tracking:** Get position messages during motion start and end events.
 - ✓ Activity tracking: Monitor activity rate with embedded sensors.
 - ✓ OFF: device stopped
- Position on demand: Receive the tracker position only when requested (very low power operating mode).
- Used geolocation technologies
 - ✓ GPS: Precise outdoor position.
 - ✓ Low power GPS: Get quick position outdoors and daylight indoor conditions.
 - ✓ WIFI: Position indoors and urban area.
 - ✓ BLE: Position indoors
- Buzzer and LEDs
- > Temperature monitoring
- > Embedded antennas
- ▶ LoRa™ Class A radio
- Water-spray resistant enclosure (IP64)

Note:

1- Low power GPS is referred as LPGPS or LP-GPS in the rest of the document.

3 Installation

3.1 Getting started

- > Charge your device using a micro USB cable. While charging the white LED is ON. When the battery is fully charged the white LED goes OFF.
- A long press is needed to turn ON the device (starting in motion tracking mode in standard configuration).
- Your network can use two activation modes:
 - ✓ OTAA (Over The Air Activation) that requires the following keys to join the network: DEVEUI, APPEUI and APPKEY for each device. (the most used)
 - ✓ ABP (Activation by personalization) that requires the following keys to connect to the network: DEVEUI, DEVADDR and NWKSKEY for each device
- Depending on your operator, some actions need to be done to activate the transfer of the data through Abeeway servers. Please refer to your vendor for more information.

3.2 Fixation

The device can be attached with the provided lanyard or placed in bag, or inside an asset.

Note:

1- the environment and orientation of the tracker can influence the radio performance. For optimum results keep the zone around the antenna area clear from any conducting material or magnetic fields.

4 Functioning

4.1 Main operating modes

This section describes the different operational modes supported by the trackers.

OFF mode: The tracker is in deep low power mode. No uplinks are sent in this mode. A long button press is required to wake it up. Three possibilities to set the tracker in OFF mode:

- User action (long button press, if bit1 of config_flags is set)
- Low battery
- Downlink request

Standby mode: The tracker is sending periodically short LoRa messages, called heartbeat at the chosen period (*lora_period*). Device positions can be obtained in this mode by using the side operations features (see <u>side operations</u> section).

Motion tracking mode: The tracker provides positions when the device is moving. The reporting is done at the chosen period (*ul_period*). The positions are acquired based on the *geoloc_sensor* geolocation technology. If the device is not moving, heartbeat messages are sent regularly at the *lora_period* frequency. End of motion is validated when the device hasn't moved for 2 minutes.

When the device is static, only heartbeat messages are sent at the chosen period (*lora_period*). (like in standby mode)

Note:

1- Whatever the chosen geolocation policy, the first position is always a WIFI one, sent immediately after the beginning of the motion.

Permanent tracking mode: The device reports its positions at *ul_period* frequency regardless the motion. It uses the *geoloc_sensor* geolocation technology. Heartbeat messages are sent if there are no uplink message during *lora_period* seconds.

Note:

1- Having regular position can also be obtained using standby mode + side operation periodic position See section Example to have an example of configuration

Motion Start/End tracking mode: In this mode, position messages are sent (motion_nb_pos +1) times at the start and the end of a motion (one WIFI plus motion_nb_pos times using the geoloc_sensor geolocation technology). The end of the motion is detected when there is no movement during 120 seconds. Heartbeat messages are sent if there are no uplink message during lora_period seconds.

Activity mode: This mode sends activity reports instead of positions. The tracker focuses on detecting movements. Each shake detection increases a counter (after applying an integration period). The value of the counter is reported via the LoRa link at the *ul_period* frequency. Heartbeat messages are sent if there are no uplink message during *lora_period* seconds.

Notes:

- 1- The accuracy of the different frequencies is not guaranteed as extra delays may be introduced by the LoRa network duty cycle.
- 2- In all these modes, side operation can be used to obtain additional positions

4.2 Side operations

Whatever the operating mode, optional messages can be sent according to the configuration. The side operations are:

- Periodic position message
- Position on Demand
- Alert positions
- SOS mode

For Periodic, Position on Demand and Alert position message, sending of the position is driven by the chosen transmit strategy:

- Transmit strat equal to 2 or 3: Position message is sent twice if static, 4 times if moving
- Transmit_strat equal to 0, 1 or 4: Position message is sent 3 times

4.2.1 Periodic position message:

The device sends periodically its position at the *periodic_pos_period* frequency. Usually, this reporting frequency is very long. If the *periodic_pos_period* is set to 0, this message is not sent.

This periodic position uses the *geoloc_method* geolocation strategy.

It can be accrued to all operational modes

4.2.2 Position on Demand:

Position requests are done via LORA downlink message. The device answers with its current position. The geolocation strategy chosen for *geoloc_method* is used to have this position.

4.2.3 Alert position

After a double short press on the button:

- ➤ The tracker sends its position (using *geoloc_method* geolocation strategy).
- LoRa messages is tagged with an alert flag. (see <u>uplink description</u> for more detail)
- ➤ Once done the tracker removes its alert state. There is no server acknowledge. (config_flags, bit2=0)

4.2.4 SOS mode:

Activation/deactivation:

- using LoRa downlink (See section SOS mode configuration for more details)
- using double press button (if bit2 of config flags is set)

When it is activated:

- Send continuously positions at a fixed period of 120 s.
- Geolocation strategy: WGPS (WIFI then GPS if WIFI fails).
- GPS timeout set to 120 seconds (fixed).
- LoRa messages tagged with an alert flag. (see <u>uplink description</u> for more detail)

Notes:

- 1- The side operations can be accrued.
- 2- SOS mode using button press and alert position can't work at the same time. Both modes are using the same bit of *config_flags:*
 - ✓ bit2=0: alert position activated
 - ✓ bit2=0: **SOS mode** using press button activated

4.3 BLE (Bluetooth Low Energy) capabilities

The firmware version 1.7 uses the Bluetooth Low Energy (BLE) capabilities of the micro trackers. Devices, such as Smart-phones, graphical tablets and so on can communicate with the tracker via this interface. This connectivity can be enabled or disabled via the bit 5 of the *config_flags* parameter.

Smartphones or graphical tablets run the **Client application** and are called **Central device** in this section.

Unless otherwise specified:

- all numerical values transmitted through BLE interface shall be in big endian.
- > all string values transmitted through BLE interface shall be composed of unicode characters encoded with UTF-8.

Note:

1- Wifi scans can't be performed while it's advertising and not bonded, to not disturb bonding process.

Terminology used:

- ➤ WRITE_CMD: ATT write command. No answer expected.
- ➤ WRITE_REQ: ATT request command. An answer is expected.
- ➤ WRITE_RESP: ATT response command.
- > **NOTIFICATION**: ATT notification.
- SCAN_REQ: ATT scan request.
- > SCAN_RESP: ATT scan response.
- > ERROR_RSP: ATT error response
- ➤ **READ_REQ**: ATT read request command. An answer is expected.
- READ_RESP: ATT read response.

4.3.1 Advertisement and connection

When the tracker is powered on, it tries to establish a connection with a **central device**. The configured connection interval depends on its bonding state:

- In absence of bond:
 - ✓ tracker sends advertisements each 500ms for 1 minute. (1)
 - ✓ the buzzer beeps periodically
- ➤ If the device is bonded but not connected, it sends advertisements each 2 seconds without any timeout. This lets the client to use the auto-reconnection capability.

Advertisement packets are sent on each of the 3 advertising channels.

Note:

(1) If the device is not connected within 1-minute delay the BLE module is switch off

The **Client application** should scan for all BLE devices containing advertising data with Complete Local Name: "**ABW** + 9 latest DEVEUI digit" (e.g. ABW012345678).

The tracker is publishing an encrypted value of its unique Hardware ID within advertising **SCAN_RESP**. **Client application** should proceed with an ACTIVE SCAN to request the related remaining advertising data (**SCAN_REQ**). The device authentication can be done by sending a request to an Abeeway server with the content of the response (**SCAN_RESP**). Note that this step is not mandatory.

Once authenticated, a connection request should be sent by the **Client application**.

There is no limitation regarding the connection interval within the connection request.

However, we advise to use a fast connection interval during the service discovery process:

Connection interval: 7.5ms
 Connection latency: 0ms
 Supervision timeout: 2000ms

4.3.2 BLE Bonding procedure

Once the connection has been established, the **Client application** should send a bond request within a fixed delay of 1 minute. If no bond request is received during this period, the BLE module is switched off.

If the bonding fails, the device must be switched off then on to restart the bonding procedure.

4.3.3 BLE Secured connection

A secured connection is established when a known **Central device** initiates a connection request and bounded information are present.

Security keys are stored in both tracker and **Central device**. The connection is encrypted.

When the tracker communicates with the **Client application** using BLE, it acts as a Bluetooth peripheral and uses GAP and GATT profiles.

The client application should configure its BLE protocol stack as central.

The tracker sends a connection update request 5 and 30 seconds after a secure connection establishment using the following parameters:

Minimum connection interval: 980msMaximum connection interval: 1000ms

Slave latency: 0

Supervision timeout: 6000ms

The **Client application** should accept the above parameters for energy saving purpose.

As soon as a BLE secure connection is established (with the bond information), the tracker enters in a special mode where the following applies:

- Accelerometer and battery monitoring tasks are maintained
- All LoRa communications are stopped.
- No geolocation is performed.

Notes:

- 1- Once connected, the tracker does not accept any other BLE connections.
- 2- If the tracker has bonding information, only the paired central device can connect to it.
- 3- Usually the geolocation is done by central device.

4.3.3.1 Disconnection with bonded device

The usual BLE keepalive mechanism between the **central device** and the tracker is done at the frequency of one message per second (*Maximum connection interval*).

The BLE connection is said lost if no messages are received for 6 seconds (Supervision timeout).

30 seconds after a secured connection is lost, the last configured operational mode of the tracker is restored.

4.3.3.2 Clear bond event

The bond information can be cleared by:

- A Lora Downlink (see <u>Debug command</u> section for more details)
- ➤ A specific BLE command, (see details here)

Once cleared the tracker is disconnected from the **central device** and switches to its configured operational mode.

The bonding procedure restarts.

4.3.4 Retrieve data from the tracker

4.3.4.1 Device Information

The tracker exposes the *Device Information Service* allowing a bonded *Client application* to read information summarized in the table below:

	Device Information Service (UUID 0x180A)				
UUID	Value	Perm	Content		
0x2a24	Model Number String	READ	MicroTracker		
0x2425	Serial Number String	READ	Device EUI-64 (DevEUI) (ex: 20635f01020015f2)		
0x2426	Firmware Revision String	READ	BLE Firmware version (ex: 1.0.0)		
0x2A28	Software Revision String	READ	Main processor Firmware version (ex: 1.0.0)		
0x2A29	Manufacturer Name String	READ	Abeeway		

4.3.4.2 Tx Power Level

The tracker exposes the Tx Power Service allowing a bonded Client application to retrieve the Tx power level.

	Tx Power Service (UUID 0x1804)			
UUID Value		Perm	Content	
0x2a07	Tx Power Level	READ	Refer to the <u>description</u>	

4.3.4.3 Battery Information

The tracker exposes the *Battery Service* allowing a bonded **Client application** to retrieve the percentage of the battery level and the battery charging state.

	Battery Service (UUID 0x180F)			
UUID Value Perm Content		Content		
0x2A19	Battery Level	READ NOTIFY	 Value expressed in percentage. 0 means fully discharged Notification sent for every multiple of 5% (More details can be found here) 	
0x2A1A	Battery Power State	READ NOTIFY	 0x77: Charger present and charging 0x67: Charger present but not charging 0x66: Charger not present Notifications are sent for every state change. (More details can be found here) 	

4.3.4.4 Temperature

The tracker exposes *Environmental Sensing* Service allowing bonded *Client application* to retrieve the current temperature in Degree Celsius.

	Environmental Sensing (UUID 0x181A)			
UUID	Value	Perm	Content	
0x2A1F	Temperature	READ	Current temperature (More details can be found <u>here</u>)	

4.3.4.5 System Event

At any time, the **client application** must be ready to handle notifications on its *Characteristic System Event* (UUID 0000**2742**-1212-efde-1523-785feabcd123). This characteristic is embedded within *Abeeway Service*:

Abeeway Primary Service (UUID 00008A45-1212-efde-1523-785feabcd123)		
System Event Characteristic		
UUID	Permission	
0000 2742 -1212-efde-1523-785feabcd123	WRITE_REQ WRITE_CMD, NOTIFY	

Notification content

Value	Description	
0x00	SOS Alert Tracker configuration	
0x01	Device start moving	
0x02	Motion end	

Following diagram explains the procedure to discover the tracker services:

Once a *System Event Notification* has been received, the **client application** should retrieve the event type by reading the notification content.

4.3.5 Immediate Alerts

4.3.5.1 Immediate Alerts sent by the tracker

If the **Client application** supports a GATT server containing *Immediate Alert* Service, the tracker will write to its characteristic value the alert levels as described below:

- > 0: No Alert
- 1: Alert Medium. :not used
- 2: Alert High: triggered with a short button press.

It is up to the **Client application** to decide how it reacts according to the level of alert received.

4.3.5.2 Immediate Alerts received by the tracker

The *Client application* is allowed to send *immediate alerts* to the tracker.

	Immediate Alert Service (UUID 0x1802)				
UUID Value Perm		Content			
0x2a06	Alert Level	_	0x00: No Alert 0x02: Alert High (More details can be found		

When the tracker receives an immediate alert, it plays a <u>BLE alert</u> melody. This feature allows the user to locate the tracker.

4.3.6 Tracker parameters configuration

4.3.6.1 Introduction

The *Client application* can update and retrieve the tracker parameters by sending the corresponding ATT Write command (WRITE_CMD).

Abeeway Primary Service (UUID 00008A45-1212-efde-1523-785feabcd123)		
Parameters configuration characteristic		
UUID Permission		
0000 2740 -1212-efde-1523-785feabcd123	WRITE_CMD NOTIFY	

The **Client application** should discover the Abeeway Primary service (UUID: 0000**8A45**-1212-efde-1523-785feabcd123). This service supports a writable and notifiable characteristic called *Parameters configuration characteristic* with UUID: 0000**2740**-1212-efde-1523-785feabcd123.

On every write command on its characteristic value, the tracker sends back the operation result through a **NOTIFICATION**.

Before receiving a notification, the *Client application* must subscribe to the notification handler. This is done by writing 0x01 to its related *Client Characteristic Configuration Descriptor* (cccd).

Once done, the *Client application* can receive such notifications.

The diagram below summarizes the operation described above.

Note:

1- To optimize the throughput during the configuration read or write commands, it is highly recommended to use **WRITE_CMD** instead of **WRITE_REQ**.

4.3.6.2 Write parameters

Once the notifications have been enabled, the *Client application* can update a parameter by sending a write command (WRITE_CMD).

The complete request content is shown below.

Writing parameter value with Write Command			
Byte 0	Byte 1	Byte 2-5	
WRITE_CMD (always 0x01)	Parameter ID	Parameter Value	

Before sending another command, the *Client application* should wait for the reception of the **NOTIFICATION** (containing the write status). Such a message is displayed below.

Writing parameter response from Notification		
Status	Bytes 0	
Success	0x00	
Invalid payload	0x01	
Invalid Parameter ID or value	0x03	

Example:

To set the parameter having the identifier 0x05 with the value 0x01, the write command (**WRITE_CMD**) 0x010500000001 should be sent.

A **NOTIFICATION** will be received in response, with 0x00 if the write operation is a success.

4.3.6.3 Read parameters

Once the notification has been enabled, the *Client application* can read a parameter value by sending a write command (**WRITE_CMD**) containing the parameter identifier to be read.

Reading parameter value with Write Command		
Byte 0	Byte 1	
Read Command (always 0x00)	Parameter ID	

The response is contained within the following **NOTIFICATION** message.

Remember that the *Client application* should wait for this **NOTIFICATION** message before sending another command.

The **NOTIFICATION** message associated to this command is shown below.

Reading parameter value response		
Byte 0	Byte 1	Byte 2-5
Status Ox00: success Ox01: Invalid payload Ox02: Invalid Parameter ID	Parameter ID	Parameter Value. Please check the status before taking this value in consideration

Example:

To read the value of parameter ID 0x05. The write command 0x0005 should be sent. A notification will be received in response, containing the parameter value: 0x000500000001.

4.3.7 Tracker Operational modes

4.3.7.1 Introduction

The *Client application* can change and retrieve the tracker operational mode by sending either a **WRITE_REQ** or a **READ_REQ** using the following *Abeeway primary service*.

Abeeway Primary Service (UUID 00008A45-1212-efde-1523-785feabcd123)		
Operational mode Characteristic		
UUID	Permission	
0000 2741 -1212-efde-1523-785feabcd123	WRITE_REQ READ	

The **Client application** should first discover the *Abeeway Primary service* (UUID: 0000**8A45**-1212-efde-1523-785feabcd123). This service supports a writable and notifiable characteristic called *Operational mode Characteristic* with UUID: 0000**2741**-1212-efde-1523-785feabcd123.

4.3.7.2 Change the operational mode

The *Client application* can change the operational mode by sending a write request (**WRITE_REQ**) containing the new operational mode value.

The complete request content is shown below.

Change the operational mode with a Write Request		
Bytes 0-3		
New operational Mode		

Under successful completion, the tracker replies with a write Response (WRITE_RSP) containing the value 0x00. Such a message is displayed below.

Operational mode response from Write Response		
Byte 0		
Status	0x00: success	

Under failure, the tracker replies with an Error Response (ERROR_RSP) shown below.

Operational mode response from Error Response	
byte 0	
Error code	0x81: Invalid operational mode

4.3.7.3 Read the operational mode

The Client application can read the current operational mode by sending a Read request (READ_REQ).

The Read Response (READ_RSP) associated to this command is shown below.

Refer to the section to convert the values.

4.3.8 Send system commands

The *Client application* can send system commands to the device.

Before accessing this service, the *Client application* should discover the *Abeeway Primary service* (UUID: UUID 0000**8A45**-1212-efde-1523-785feabcd123).

Abeeway Primary Service (UUID 00008A45-1212-efde-1523-785feabcd123)		
Custom command characteristic		
UUID	Permission	
0000 273D -1212-efde-1523-785feabcd123	READ WRITE_REQ WRITE_CMD	

4.3.8.1 Clear the bond

To remove a bonding information, (locally stored), a bonded *Client application* should first inform the tracker about this operation, which is achieved by writing **0x99** to the custom command characteristic value. Once done, the **central device** should remove its bonding information.

4.3.8.2 Reset the tracker

To reset the tracker, the *Client application* should write **0xFE** to the custom command characteristic value (0000**273D**-1212-efde-1523-785feabcd123).

4.3.8.3 Powering OFF the tracker

To power off the tracker, the **Client application** should write **0xFF** to the custom command characteristic value.

4.4 User interface

4.4.1 Button management

The interface from the user to the tracker is performed via a button.

Sequence	Action	Output
Two short presses	Trigger an alert position or start/ end the SOS mode	Other LED pattern (see next section)
Any press when battery low (short or long press)	Go to OFF mode, except if mode disabled	Buzzer melody fast LED blinking
One long press when device OFF and good battery	Wake up	LED pattern (See next section)
One very long press (5 s) when device ON.	Go to the OFF mode, except if mode disabled	Buzzer melody
Button down when device is ON		Blue LED ON

4.4.2 LED interface

One of the two interfaces between the user and the tracker is done via the LED interface. Several patterns have been defined for different outputs.

LED blinking patterns

Three fast blinks	Go to the OFF mode (Low battery or user operation)
Three slow blinks	Device starting for the first time
Long fast blink of blue LED	LORA join operation in progress
Fast blink of blue LED after two button clicks	Device acknowledges the alert position
Slow blink of blue LED after two button clicks	SOS mode. Blinking remains until the mode is left

4.4.3 Buzzer melodies

The second interface between a user and the tracker is done via a buzzer.

Up to nine different melodies have been defined:

Melody	Meaning
Device reset	Device is resetting/ going to bootloader
Major rising scale	Device is starting
Major falling scale	Device is going to OFF mode
Low battery	Low battery detected
SOS stop	SOS mode is left
BLE bond on going	Tracker in not bound. Waiting for a bond
BLE bond failure	Bond process unsuccessful
BLE bond success	Bond process successful
BLE alert	Alert activated from connected device using BLE

Note:

1- A zip file containing the different sounds can be found in the same folder than this document.

4.5 Geolocation strategies

4.5.1 Main operating modes

The following geolocation policies (*geoloc_sensor* parameter) are used by the operating modes: motion-tracking, permanent-tracking and start/end tracking. Note that in standby mode, only side operations can report positions.

- ➤ WIFI only → Only WIFI scans are used for position determination.
- \triangleright **GPS only** \rightarrow Only the GPS is used for position determination.
- ▶ LP-GPS only → GPS and low power-GPS are used for position determination.
- ➤ Multimode (WIFI + AGPS + GPS) → Alternate WIFI, LP-GPS and GPS technologies on failure, with timeout. Superseded by WIFI-LPGPS/ WIFI-GPS mode.
- \rightarrow WIFI-GPS only \rightarrow WIFI then GPS if WIFI fails in one geolocation cycle.
- \triangleright WIFI-LPGPS only \rightarrow WIFI then Low power-GPS if WIFI fails in one geolocation cycle.
- ➤ WIFI-LPGPS/ WIFI-GPS → WIFI-low power GPS first, then WIFI-GPS if WIFI-low power GPS fails until timeout, then back to WIFI-low power GPS.
- ➤ **BLE beacon scan only** → Provide data formatted as a list of "MAC address/RSSI" couple that can be used to compute a position

Note:

1- The first position is always a WIFI one whatever the chosen geolocation strategy.

4.5.2 Side operations

The following geolocation policies (*geoloc_method* parameter) are used for periodic-reporting or on-demand actions.

- ➤ WIFI only → Only WIFI scans are used for position determination
- ➤ **GPS only** →Only the GPS is used for position determination
- ➤ LP-GPS only → GPS and LP-GPS are used for position determination
- ➤ WIFI-GPS only → WIFI then GPS if WIFI fails in one geolocation cycle
- ➤ WIFI-LPGPS only → WIFI then low power-GPS if WIFI fails in one geolocation cycle
- ➤ BLE beacon scan only → Provide data formatted as a list of MAC address/RSSI(Receive Signal Strengh Indication) couple that can be used to compute a position

4.5.3 Geolocation technology description

4.5.3.1 GPS

When doing a cold start, the tracker uses systematically a timeout of 5 minutes instead of the configured one.

To complete a position, the GPS module expects one of the two following conditions to be achieved.

- ➤ The GPS_convergence timeout (time let to the GPS module to have a more precise position)
- The *gps_ehpe* value is below the configured value. EHPE (Estimated Horizontal Position Error) is provided by the GPS module and is expressed in meter.

Once completed the position is reported via LoRa and the GPS module switches to standby state. Then, it waits *gps_standby_timeout* delay before going to the off state (losing all data and ephemeris)

In the case where the GPS module didn't succeed, a GPS timeout message is sent instead of a GPS position message.

Note:

1- If a period smaller than gps_timeout is set for ul_period the GPS timeout used will be ul_period instead of gps_timeout

GPS state diagram

Page 19 of 38
Restricted distribution

4.5.3.2 Low power GPS

In this mode, the device sends the data given by the GPS module before the *agps_timeout* delay expiry and the position calculation is done in our server.

If the GPS module didn't succeed in having enough data to provide to the server, a LP-GPS timeout message is sent instead of a LP-GPS data message.

Note:

1- If a period smaller than agps_timeout is set for ul_period the LP-GPS timeout used will be ul_period instead of agps_timeout

4.5.3.3 WIFI

Since a WIFI scan is always done within five seconds, there is no timeout parameter.

Once the scan is done, BSSID are sent via loRa with the related RSSI and the position calculation is done in our server.

In a multi technology geolocation strategy, a WIFI scan with less than 3 BSSID triggers a technology switch. Regardless the number of BSSID (including 0) a LoRa WIFI position is sent.

In the case where the communication fails with the WIFI module, the device sends either a WIFI failure message or a WIFI timeout message.

4.5.3.4 BLE

In this mode, the device scans to find up to *ble_beacon_count* number of BLE beacons before the *ble_beacon_timeout* delay expiry.

Once the scan is done, the BLE beacon MAC addresses are sent via loRa with the related RSSI In the case where the BLE module fails to detect BLE beacons, the device sends a **BLE failure message**.

Notes:

- 1- BLE Beacons must be at least compliant with:
 - iBeacon (Apple)
 - Eddystone (Google)
 - Altbeacon
- 2- The Abeeway geolocation server does not support the position calculation based on BLE beacons. So, it is up to the application to process them.

4.5.3.5 WIFI/LPGPS or WIFI/GPS

Using these strategies, the tracker can use two location technologies in the same cycle if needed

A WIFI scan result considered as successful (at least three BSSID) triggers a WIFI position message. Otherwise, the tracker tries immediately the next geolocation technology (GPS or LP- GPS), in the same geolocation cycle. That way, two geolocation technologies are used (if needed) before sending a given position uplink.

Geoloc_timeout =gps_timeout or agps_timeout depending on the used technology If geoloc_timeout + wifi_time (8 seconds) is higher than ul_period, geoloc_timeout is adjusted and reduced to fit the *ul_period*.

4.5.3.6 Multi technology switching state diagrams

Multimode (WIFI + low power-GPS + GPS) (with reset to WIFI on timeout) strategy: (geoloc strategy=5)

Dotted rectangles represent 1 cycle of geolocation (ul_period time)

Condition 1: success if at least 3 WIFI BSSIDs are seen Condition 2: success if at least 5 satellites with C/N>= 15 a GPS position are found by the GPS module within agps_timeout period
Condition 3: success

ifa GPS position obtained within agps_timeout period

TIMEOUT= Maximum(10 minutes; (3 *ul_period+ 10

In multimode WIFI/LPGPS WIFI/GPS (geoloc_strategy=9):

Dotted rectangles represent 1 cycle of geolocation (ul_period time)

Condition 1: success if at least 3 WIFI BSSIDs are seen Condition 2: success if at least 5 satellites with C/N>= 15 a GPS position are found by the GPS module within agps_timeout period Condition 3: success if a GPS position is obtained within agps_timeout period

TIMEOUT= Maximum(10 minutes; (3 *ul_period+ 10 seconds))

5 Uplink messages

This section describes the payload messages supported by the tracker.

Unless otherwise specified, all values are transmitted in network byte order (MSB first).

Each message is composed by:

- > A common header
- A specific data part

The tracker supports different types of uplink messages, that are described in following sections:

Message type		Content	
Frame pending 0x00		This uplink message is sent to trigger the sending. (and speed up the configuration of the tracker) if downlink messages are available on gateway and no other uplink message is on the queue	
Position message	0x03	x03 GPS, low power GPS, WIFI or BLE position data	
Energy status message 0x04 Used by the server to estimate the battery le		Used by the server to estimate the battery level. Contain information related to the power consumption	
Heartbeat message	eartbeat message 0x05 Notify the server the tracker is operational and under LoRa coverage		
Activity Status message (1)	0x07	Reports the activity counter. Used only by the activity tracking operating mode	
Configuration message (1)	0x07	Reports the partial or whole configuration of the trackers,	
Shutdown message	0x09	sent when the tracker is set off	
Debug message	0xFF	Internal use only	

Note:

(1) Activity status message and configuration message share the same identifier. They are differentiated by another field.

5.1 LoRa uplink transmission

5.1.1 Strategy used

The tracker follows the LORA requirements regarding the transmission (like duty cycle).

Each transmission is managed according to the *transmit strat* parameter:

Strategy	ID	Static device	motion device	
Single fixed	0x00		Single transmission using a fixed data rate: SF10 (1).	
Single random	0x01		Single transmission using a random data rate within [SF7-SF12].	
Dual random	0x02	Single transmission using network ADR ^{(2).}	 Double transmissions: First transmission using a random data rate within [SF7-SF8]. Second transmission using a random data rate within [SF9-SF12]. 	
Network ADR	0x04		Single transmission using network ADR ^{(2).}	
Dual fixed	0x03	Double transmission using network ADR ⁽²⁾ .	 Double transmissions: First transmission using a random data rate within [SF7-SF8]. Second transmission using a fixed data rate: SF10 (1). 	

Notes:

- (1) Value provisioned in the device in the factory
- (2) Number of retransmission and rate managed by the network (with the same sequence number)

Refer the section LoRa parameters for more details.

5.1.2 Confirmed uplink

The device can be configured to request LoRa confirmation for a collection of uplink message types. The parameter *confirmed_ul_bitmap* is used to select the message types that requires a confirmation. Only message types in the range 0x00 to 0x0F can be selected. Example:

Confirmed uplink of message types 0x0 and 0x3: bitmap = $2^0 + 2^3 = 1 + 8 = 9$.

The parameter *confirmed_ul_retry* gives the number of retransmissions that the tracker should do in the case where the LoRa confirmation is not received.

A value 0 means that the uplink will request the LoRa confirmation but will not retry in a case of a failure.

5.2 Encoded form

Some parameters are encoded with the following algorithms:

static float _step_size (float lo, float hi, unsigned nbits, unsigned nresv) { return 1.0/(((1 << nbits) -1) -nresv)/(hi -lo)); }

float mt_value_decode(uint32_t value, float lo, float hi, unsigned nbits, unsigned nresv) { return ((value -nresv /2) * _step_size(lo, hi, nbits, nresv) + lo);}

Where:

- ✓ nbits: number of bits used to encode.:
- ✓ lo: min value that can be encoded
- ✓ hi: max value that can be encoded
- ✓ nresv: number of reserved values, not used for the encoding.

5.3 Common message header

	(Data			
Byte 0	Byte 1	Byte 4	Variable		
Type	Status	Battery	Temperature	Ack/opt	Information

Type: refer to Message types

Status:

Jeacas.						
Bit7-5	Operating mode:					
	> 0- Standby					
	▶ 1- Motion tracking					
	2- Permanent tracking					
	3- Motion start/end tracking					
	4- Activity tracking					
	➤ 5- OFF					
Bit 4	Set if the user alert/SOS has been entered					
Bit 3	Set if the tracker is in tracking state, else idle state.					
Bit 2	Set if the tracker is moving					
Bit 1	Set for a periodic position message					
Bit 0	Set for a position on demand message					

Battery: Battery voltage expressed in volt. Encoded form using **lo**= 2.8, **hi**= 4.2, **nbits**= 8, **nresv**= 2. It is given with a step of 5,5mV

Temperature: Temperature measured in the device, expressed in degree Celsius. Encoded form using lo= -44, hi= 85, nbits= 8, nresv= 0. It is given with a step of 0.5°C

Ack/opt:

Bit 7-4	Acknowledge token. Refer the section <u>Acknowledge token</u> for more details
Bit 3-0	Optional data (depending on message type)

Information: Variable part depending on the message type.

Decoding of the encoded form is detailed in the **Encoded form** section

5.4 Heartbeat messages

Byte 0-4	Byte 5	Byte 6-8 (optional)
Header	Cause	FW version

Cause: Last reset cause

FW version: Firmware version on the device, it is sent only twice a day

5.5 Position messages

Common	header	Data		
Byte 0-3	Byte 4	(1)		
Header	Ack/opt	Position Information		

Note:

(1) The size of data part depends on the type of position message

Ack/opt:

Bit 7-4	Acknowledge token
Bit 3-0	Optional data: position type (see the values below)

Position Information: type of position message

- \triangleright 0 GPS fix:
- ➤ 1 GPS timeout
- ➤ 2 No more used.
- ➢ 3 WIFI timeout
- ➤ 4 WIFI failure
- > 5, 6 LP-GPS data (encrypted, not described in this document)
- ➤ 7 BLE beacon scan
- ➤ 8 BLE beacon failure
- ➤ 9 WIFI BSSIDs

5.5.1 GPS fix payload

Common header	Data								
Byte 0-4	Byte 5	Byte 6-8	Byte 9-11	Byte 12	Byte 13-15				
Header	Age	Latitude	Longitude	EHPE	Encrypted				

Age: Age of the fix. Encoded form using **Io**= 0, **hi**= 2040, **nbits**= 8, **nresv**= 0. Expressed in seconds. The step is 8 seconds.

Latitude: Latitude of the position (expressed in degree) calculated as follow:

Latitude = Latitude << 8

If Latitude > 0x7FFFFFFF then Latitude = Latitude - 0x10000000

Latitude = Latitude / 10⁷

Longitude: Longitude of the position (expressed in degree) calculated as follow:

Longitude = Longitude << 8

If Longitude > 0x7FFFFFFF then Longitude = Longitude - 0x10000000

Longitude = Longitude / 107

EHPE: Estimated Horizontal Position Error, expressed in meters. Encoded form using **lo**= 0, **hi**= 1000, **nbits**= 8, **nresv**= 0. The step is 5.9 meters.

Encoded form is detailed in the **Encoded form** section.

5.5.2 GPS timeout payload

Common header		Data								
Byte 0-4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9					
Header	Cause	C/N 0	C/N 1	C/N 2	C/N 3					

Cause: Timeout cause

> 0 - User timeout cause

C/N 0: Carrier over noise (dBm) for the first satellite seen.

C/N 1: Carrier over noise (dBm) for the second satellite seen.

C/N 2: Carrier over noise (dBm) for the third satellite seen.

C/N 3: Carrier over noise (dBm) for the fourth satellite seen.

Notes:

- 1- C/N encoding uses: Io= 0, hi=2040, nbits=8, nresv= 0. It is expressed in dBm with a step of 0,2dBm
- 2- Encoded form is detailed in the **Encoded form** section.

5.5.3 WIFI timeout payload

Common header	Data								
Byte 0-4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10			
Header	v_bat1	v_bat2	v_bat3	v_bat4	v_bat5	v_bat6			

v_bat1: encoded voltage at the start time (T0) of the WIFI scan.

v_bat2: encoded voltage at T0 + 0.5 second.

v_bat3: encoded voltage at T0 + 1 second.

v_bat4: encoded voltage at T0 + 1.5 second.

v_bat5: encoded voltage at T0 + 2 seconds.v_bat6: encoded voltage at T0 + 2.5 seconds.

Notes:

- 1- Most of time a WIFI timeout occurs due to low battery.
- 2- v_bat encoding uses lo=2.8, hi=4.2, nbits=8, nresv=2. It is expressed in volt with a step of 5.5mV
- 3- Encoded form is detailed in the **Encoded form** section

5.5.4 WIFI failure payload

Common header	Data								
Byte 0-4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11		
Header	v_bat1	v_bat2	v_bat3	v_bat4	v_bat5	v_bat6	Error		

v_bat1: encoded voltage at the start time (T0) of the WIFI scan.

v_bat2: encoded voltage at T0 + 0.5 second.

v_bat3: encoded voltage at T0 + 1 second.

v_bat4: encoded voltage at T0 + 1.5 second.

v_bat5: encoded voltage at T0 + 2 seconds.

v_bat6: encoded voltage at T0 + 2.5 seconds.

Error:

- O– WIFI connection failure
- ➤ 1 Scan failure
- ➤ 2 Antenna unavailable
- 3 WIFI not supported on this device

Notes:

- 1- Most of time a WIFI timeout occurs due to a low battery condition.
- 2- v_bat encoding uses lo=2.8, hi=4.2, nbits=8, nresv=2. It is expressed in volt with a step of 5.5mV
- 3- Encoded form is detailed in the Encoded form section

5.5.5 WIFI BSSID payload

Common header					Data				
Byte 0-4	Byte5	B 6-11	Byte12	B 13-18	Byte19	B 20-25	Byte26	B 27-33	Byte 34
Header	Age	BSSID0	RSSI0	BSSID1	RSSI1	BSSID2	RSSI2	BSSID3	RSSI3

Age: encoded form of scan age with **lo=**0, **hi=**2040, **nbits=**8, **nres=**0. Expressed in seconds.

BSSID x: BSSID of the WIFI station x.

RSSI x: Receive Signal Strength Indication of the WIFI station x. Non encoded form (signed 8 bits). It is expressed in dBm.

Notes

- 1- The payload contains the listened WIFI stations (up to 4).
- 2- If less than 4 stations are listened, the payload will be reduced.
- 3- BSSID address is provided in big endian format. So, the byte 6 of the payload contains the MSB of the BSSID0, while the byte 11 contains its LSB.
- 4- Encoded form is detailed in the **Encoded form** section.

5.5.6 BLE payload

Common header		Data								
Byte 0-4	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
	5	6-11	12	13-18	19	20-25	26	27-33	34	
Header	Age	MAC ADR0	RSSI0	MAC ADR1	RSSI1	MAC ADR2	RSSI2	MAC ADR3	RSSI3	

Age: encoded form of scan age with lo=0, hi=2040, nbits=8, nres=0. Expressed in seconds.

MAC ADRx: MAC Address of the BLE beacon x.

RSSIx: Receive Signal Strength Indication of the BLE beacon x. Non encoded form (signed 8 bits). It is expressed in dBm.

Notes

- 1- The payload contains the listened BLE beacon (up to 4, it is configurable using *ble_beacon_count* parameter), during *ble_beacon_timeout* delay.
- 2- If less than 4 BLE beacons are listened, the payload will be reduced.

5.5.7 BLE failure payload

Common header	Data
Byte 0-4	Byte 5
Header	Error

Error:

- > 0: BLE is not responding
- ➤ 1: internal error
- > 2: shared antenna not available
- > 3: scan already on going
- ➤ 4: No beacon detected
- > 5: hardware incompatibility

5.6 Energy Status messages

This message should be used for the primary battery life estimation. It is not useful for micro tracker

5.7 Activity status messages

Common header	Data		
Byte 0-4	Byte 5 Byte 6-9		
Header	Tag=1	Activity	

Activity: Activity counter. Unsigned 32 bits value in big endian format (MSB first).

5.8 Configuration messages

Common header	Data					
Byte 0-4	Byte 5	Byte 6-10	Byte 11-15	Byte 16-20	Byte 21-25	Byte 26-30
Header	Tag=2	Parameter 0	Parameter 2	Parameter 2	Parameter 3	Parameter 4

Parameter x: Configuration parameter x, coded on 5 bytes as follow:

- First byte: Parameter identifier. Refer to the parameter identifier in the section Parameters configuration
- Next 4 bytes: Parameter value. Unsigned 32 bits value in big endian format (MSB first).

5.9 Frame pending messages

Byte 0	Byte 1
Type=0	Acknowledge token

When additional messages are available on a gateway, this uplink message is sent to trigger the gateway sending (if no other messages are pending).

Note:

1- To shorter the payload, this message is only 2 Bytes long (no common header).

6 Downlink messages

These messages are sent from the server to the tracker through the LoRa network. They are used to either configure or manage the tracker. Each message contains a header including:

- A message type
- An acknowledgement token

The remaining of the message depends on the message type described in the following table.

Message type	ID	Description	
POD	0x01	Position on demand	
Set Mode	0x02	Change the tracker mode	
Request configuration	0x03	Request actual config	
Start SOS mode	0x04	Turn on SOS mode	
Stop SOS mode	0x05	Turn off SOS mode	
Set Param	0x0B	Modify parameter(s)	
Debug command	0xFF	Remove BLE bonding. Reset the tracker	

Notes

- 1- Any unexpected message (unknown message type, bad length, ...) is discarded. However, the ack token is updated even if the message is discarded (if the payload is at least 2 bytes long).
- 2- The LoRa port to be used for downlink is 2.

6.1 Acknowledge token

It provides a way to indicate to the application that a given message has been received by the tracker.

The acknowledge token is transmitted in every uplink message, and it is updated when the tracker receives a LoRa message. This way, each time the server receives a LoRa uplink, it knows whether the previous message has been received.

The acknowledge token is four bits size. Its value ranges from 0 to 15 (0x0F).

Notes

- 1- The ack token value must be changed for each downlink.
- 2- It's up to the application to process or not the ack tokens.
- 3- It's up to the application to manage the confirmations. It can either wait for the matching ack token in the uplink message before sending another downlink or send multiple downlink and later waits for the acks.

6.2 Operational mode configuration

The operating mode can be remotely configured with a downlink LoRa message built as follow:

Byte 0	Byte 1	Byte 2
0x02	ACK	Mode

ACK: Acknowledge token. Refer to the section Acknowledge token.

Mode: operating modes. Acceptable values are:

- > 0- Standby
- ➤ 1- Motion tracking
- 2- Permanent tracking
- > 3- Motion start/end tracking
- 4- Activity tracking
- > 5- Off mode

Example:

Changing the operating mode to "motion track" (01) with an ack token of 3: 0x020301.

6.3 Position on demand

Whatever the state, a position can be requested from the tracker using the message:

Byte 0	Byte 1
0x01	ACK

Example:

Position on demand message with ack token of 2: 0x0102.

The tracker will answer with a position message.

6.4 Request device configuration

Byte 0	Byte 1	Byte 2-21
0x03	ACK	Parameter ID list (optional)

Parameter ID list: List of requested parameters identifiers.

- > Each single byte contains a single identifier.
- > The list can have up to 20 parameters.
- Parameter IDs are the one used to configure the device (see section <u>Parameters configuration</u>).
- Special parameters can be requested.
- The list can be empty. In this case, all parameters are requested.

Special parameter Id:

- > 0xFD: get the BLE version.
- OxFE: get the firmware version.

Notes

- 1- The tracker answers this request with a Configuration uplink message (section <u>Configuration</u> <u>messages</u>).
- 2- The uplink contains a maximum of 5 parameters.
- 3- If the number of parameters is greater than 5, the tracker will send the needed number of uplinks to fulfill the request.

6.5 SOS mode configuration

Turn on SOS mode of the tracker:

Byte 0	Byte 1
0x04	ACK

Turn off SOS mode of the tracker:

Byte 0	Byte 1
0x05	ACK

See section <u>Side operations</u> to have more information about the SOS mode behavior. In this section it is also described how activate it using double press button

6.6 Parameters configuration

Any parameter can be remotely modified with a downlink LoRa message. Such messages are built according to the following format:

Byte 0	Byte 1	Byte 2	Byte 3-6
0x0B	ACK	Parameter ID	New value [31-00]

It is possible to modify up to 5 parameters in the same message by using the following format:

		Parameter 1		P	arameter 2
Byte 0	Byte 1	Byte 2	Byte 3-6	Byte 2	Byte 3-6
0x0B	ACK	ID	New value1 [31-00]	ID	New value2 [31-00]

The parameters identifier and the values are given in the following tables

6.6.1 Parameters for operational modes

Parameter	ID	Unit	Range	Description
ul_period	0x00	second	60 - 86400 (min 30 for US)	Period of position or activity messages in motion, start/end, activity or permanent operating mode
lora_period	0x01	second	300 - 86400	Period of LoRa heartbeat messages
geoloc_sensor	0x05	none	0 - 9	Geolocation sensor profile used in motion, start/end or permanent tracking operating mode 0- WIFI only 1- GPS only 2- LP-GPS (AGPS/GPS) 3, 4- Reserved (do not use) 5- Multimode (WIFI + low power-GPS + GPS) (with reset to WIFI on timeout). Superseded by mode 9. 6-WIFI-GPS only (WIFI then GPS if WIFI fails in one geolocation cycle) 7- WIFI-LPGPS only (WIFI then low power GPS if WIFI fails in one geolocation cycle) 8- Reserved (do not use) 9- WIFI-LPGPS first, the WIFI-GPS until timeout, then back to WIFI-LPGPS 10- BLE scan only
motion_nb_pos	0x08	none	1-60	Number of positions to report during motion events (motion start/end mode only).

6.6.2 Parameters for side operation modes

Parameter	ID	Unit	Range	Description
periodic_pos_period	0x03	second	0, 900 - 604800	Period of the periodic position report. A null value (0) disables this reporting.
geoloc_method	0x06	none	0-4	Oneshot geolocation policy used for alert,periodic or on demand positions: 0- WIFI 1- GPS 2- LP-GPS (AGPS/GPS) 3- WIFI-GPS only (WIFI then GPS if WIFI fails in one geolocation cycle) 4- WIFI-LPGPS only (WIFI then low power GPS if WIFI fails in one geolocation cycle) 5- BLE scan only

6.6.3 Parameters for GPS and low power GPS geolocation modes

Parameter	ID	Unit	Range	Description			
GPS	GPS						
gps_timeout	0x09	second	30-300	Timeout for GPS scans before sending a GPS timeout message.			
gps_ehpe	0x0B	meter	0-100	Acceptable GPS horizontal error for GPS geolocation			
gps_convergence	0x0C	second	0-300	Time let to the GPS module to refine the calculated position			
gps_standby_timeout	0x11	second	10-7200	Duration of the GPS standby mode before going OFF.			
Low power GPS							
agps_timeout	0x0A	second	30-250	Timeout for LPGPS scans before sending the timeout message.			

6.6.4 LoRa parameters

Parameter	ID	Unit	Range	Description
Transmit_strat ⁽¹⁾	0x0E	none	0-4	Transmit strategy in motion: 0 - Single fixed. Single TX. Use provisioned data rate. 1 - Single random: Single TX. Rate in [SF7SF12]. 2 - Dual random: First TX with rate in [SF7SF8], next TX with rate in [SF9SF12]. 3 - Dual fixed: First TX in [SF7SF8]. Next Use provisioned data rate. (not recommended) 4 - Network ADR. The LoRa network controls the number of transmissions.
confirmed_ul_bitmap ⁽²⁾	0x12	none	0x0 – 0xFFFF	Bitmap enabling the LoRa confirmation of specific type of uplink message

Parameter	ID	Unit	Range	Description
confirmed_ul_retry ⁽²⁾	0x13	none	10-8	The number of retries for each confirmed uplink when the confirmation is not received

Note:

- (1) Refer to the section **Strategy used** for more details
- (2) Refer to the section Confirmed uplink for more details

6.6.5 BLE parameters

Parameter	ID	Unit	Range	Description
BLE_beacon_count	0x0F	none	1-4	Maximum number of BLE beacons to report
BLE_beacon_timeout	0x10	second	1-5	Timeout used by the BLE beacon for geolocation

6.6.6 Miscellaneous parameters

Parameter	ID	Unit	Range	Description
pw_stat_period	0x02	second	0, 300 - 604800	Period of the Energy status report. When 0, no energy status report is transmitted. Not used for micro trackers
config_flags	0x0D	none		Configuration flags: bit 0: Frame pending mechanism bit 1: Activate long button press to switch to off mode bit 2: Double short press configuration: Alert (0) vs SOS (1) bit 3: Send a configuration uplink message in response to a configuration modification downlink. Used to confirm the action. bit 4: WIFI payload with Cypher (0) or without Cypher(1) bit 5: Activate BLE advertising

Example:

To modify the heartbeat period to 1 hour, the command **0x0B020100000E10** should be sent.

Description:

- ➤ (0x0B): set the parameter
- ➤ (0x02): with an ack token of 2
- > (0x01): heartbeat message period
- > (0x 00 00 0E 10): to a value of 3600s = 1 hour

6.7 Debug command

Debug downlink commands allow to trigger specific behavior.

Byte 0	Byte 1	Byte 2
0xFF	ACK	Debug CMD ID

Debug CMD ID:

- > 0x01 Reset the device
- > 0x02 BLE bond remove

7 Examples of configuration

7.1 Accurate position using GPS mode only

Case description:

Accurate Motion tracking of an asset. Configuration:

- ✓ Environment: outdoor only (GPS mode only).
- ✓ Reporting position period: 5 minutes.
- ✓ LoRa TX strategy: Dual transmit with random SF when moving.
- ✓ No power consumption restriction

To improve the GPS accuracy, you can either decrease *gps_ehpe* parameter or increase the *gps_convergence* time

The GPS timeout can be also modified to let more time to have or refine a position.

Proposed configuration

- ✓ Operational mode: motion tracking
- √ ul_period: 300 (5 minutes)
- ✓ geoloc_sensor: 1 (GPS only)
- ✓ gps_timeout: 290s.
- √ gps_ehpe: 3m
- √ gps_convergence: 120s
- √ gps_standby_timeout: 3600s (1 hour)
- ✓ Transmit_strat=2

Results:

Accurate GPS positions are obtained each five minutes under good condition (weather, ...).

7.2 Low power configuration,

Case description:

Long battery life time, with position only when desired.

- ✓ Single position on request.
- √ High position cadency on request
- ✓ Environment: indoor/ outdoor

Proposed configuration

- ✓ Operational mode: Standby
- ✓ geoloc_method: 4 (WIFI/ A-GPS)
- ✓ Transmit strat=2
- ✓ Downlinks:
 - o Receive position of the device (position on demand
 - o Activate the **SOS mode** to accurately track the device.

Results:

- ✓ Single position: When requested, the position is sent twice (it is doubled if the device is moving).
- ✓ Continuous positions (each 120s using WIFI/GPS) until the SOS mode is stopped.

7.3 Tracking in low power mode (beginning and end of motions only)

Case description:

Long-battery life time. Tracking an asset to get its final location in an indoor/outdoor environment.

Proposed configuration

- ✓ Operational mode: Start/End tracking.
- ✓ geoloc_sensor: 9 (WIFI/ A-GPS WIFI/GPS)
- ✓ ul_period: 120 (2 minutes)
- ✓ motion_nb_pos: 2✓ Transmit strat: 1

Results

At the beginning or at the end of a motion, the device sends its position twice with a period of 2 minutes

7.4 Indoor only position

Case description:

Fast tracking of an asset inside buildings or in dense urban area.

Proposal configuration

- ✓ Operational mode: Motion tracking
- ✓ ul period: 120 (2 minutes)
- ✓ geoloc sensor: 0 (WIFI only)
- ✓ geoloc_method: 0 (WIFI only)
- ✓ Transmit_strat=4

Results

The device sends its position once, every 2 minutes when moving, using WIFI mode only. Medium power consumption (due to the fast tracking).

7.5 Fixed frequency positioning

Case description:

Asset to be geolocated at regular interval (no matter if moving or not) in an indoor/outdoor environment.

Proposed configurations

Position every 6 hours

- ✓ Operational mode: Standby
- ✓ geoloc_method: 4 (WIFI/ A-GPS)
- ✓ periodic pos period: 21600 (6 heures)
- ✓ Transmit_strat=2

Position every 30 minutes

- ✓ Operational mode: Permanent
- ✓ ul period: 1600(30 minutes)
- ✓ geoloc_sensor: 9 (WIFI/ A-GPS WIFI/GPS)
- ✓ Transmit_strat=2

Results

Position every 6 hours

Every 6 hours the device sends its position **twice** using WIFI/AGPS method. The number of uplinks is doubled if the device is moving.

Position every 30 minutes

Every 30 minutes the device sends its position **once** using Multimode strategy. The number of uplinks is doubled if the device is moving.

7.6 Activity tracking

Case description:

No geolocation needed. The focus is the activity measure of an asset.

Proposed configuration

- ✓ Operational mode: Activity tracking
- √ ul_period: 1600(30 minutes)
- ✓ Transmit_strat=2

Results

When moving the device sends an activity message every 30 minutes, containing a counter which is incremented on each motion detection.

Note:

1- To locate the tracker, the **position on demand** downlink can be used. In this case, the configuration should be enhanced with the *geoloc_method* set to the appropriate value.

Another way to locate the tracker is the use of the **periodic position report** side operation. In this case the configuration should contain: the *geoloc_method* and the *periodic_pos_period*.

8 Hardware Specifications

Refer to the related datasheet