Social influence models: Autologistic Actor Attribute Models (ALAAMs)

SWINBURNE UNIVERSITY OF TECHNOLOGY **DUSTIN HOFFMAN**

RENE RUSSO

MORGAN FREEMAN

OUTBREAK

TRY TO REMAIN CALM

SWINBURNE UNIVERSITY OF TECHNOLOGY

COVID-19 outbreak

Source: Department of Health, States & Territories Report 27/2/2021

If everyone has 1 unique close contact...

Social dynamics

Network structure influences actor attributes at the same time as actors shape the structure of their behaviour (smoking behaviour, friendship)

MPNet: ERGMs and ALAAM

SIENA: stochastic actororiented models (SAOM)

Social influence (Robins et al., 2001)

Questions: What explains emergence of outcomes of individuals?

- Individual outcome self-organization
 Attribute variables tend to be associated in particular ways
- Network-level explanation

"Network position" can explain individual outcomes dyadic social influence (contagion effect) – when people are influenced by their direct network connections

generalised social influence – when people are influenced by their position in the network

Social influence

- SI models can:
 - Predict a binary variable from other individual level variables (logistic regression!)
- BUT ALSO.....
 - Network ties of varying configurations

Attributes of alters & network ties

- Spatial
 - Optimise study

ALAAMs and ERGMs

Auto-logistic models

- ALAAM is a nodebased model
- Predicting behaviour
- Social influence
- Number of data points is the number of actors:
 - n

- ERGM is a tie-based model
- Predicting ties
- Social selection
- Number of data points is the number of possible ties:
 - *n*(*n*-1)

Snijders et al (2006) SAOM can do both simultaneously But only with longitudinal data

ALAAMs

Here we regard the network as **fixed**, and treat the states of nodes (eg attitude, belief, behaviour) as (binary) variables

The node state variables are <u>not</u> assumed independent

Some potential effects (e.g. tendency for the state of an actor to depend on the state of a network partner) are assumed to be *common* across the system

The result is a *model* that can be estimated from an observation on the network and node state variables (and any covariates)

ALAAMs

$$\Pr(\mathbf{Y} = \mathbf{y} \mid \mathbf{X} = \mathbf{x}) = \frac{1}{\kappa} \exp \left\{ \sum_{Q} \lambda_{Q} z_{Q} (\mathbf{y}) + \sum_{R} \lambda_{R} z_{R} (\mathbf{x}, \mathbf{y}) \right\}$$

where

- X = [X(i, j)] is a matrix of network tie variables, with realisations x = [x(i, j)]
- Y = [Y(i)] is a vector of binary node attribute variables, with realisations y = [y(i)]
- $z_Q(y)$ and $z_R(x, y)$ are a network-attribute statistic (consistent with assumed dependence)
- λ is a corresponding parameter
- $\kappa(\theta) = \sum_{\mathbf{v}} \exp\{\sum \lambda z(\mathbf{y}, \mathbf{x})\}\$ is a normalising quantity

A model for the distribution of attributes, conditional on the observed network structure and other covariates.

ALAAM/Logistic regression configurations

Simple configurations:

Characterising dependence: some possible assumptions

Y(i) and Y(j) are conditionally independent unless:

Distance 0

 D_0 : i and j are the same node

1

i = j

Logistic regression model

Distance 1

 D_1 : *i* is directly connected to *j*

i **1**—**1**

Autologistic regression

– the model used here
(Besag, 1974)

ALAAM configurations

Simple configurations:

ALAAM configurations

Star configurations:

Ego-2star (Having many partners, irrespective of their attribute status)

Alter-2star1 (Having partners, with a mix of attributes)

Alter-2star2 (Having many partners with the attribute)

ALAAM configurations

Triangle configurations:

Predicting attributes on this node (ego):

TA1 (Being in closed structures, irrespective of the attribute status of partners)

TA₂ (Being in closed structures with mixed attribute status of partners)

TA₃ (Being in closed structures with actors with the attribute)

Attribute covariates

