# New York Stock Exchange Predictions

This repository is about predicting the stock prices of a single stock type (in this case Apple with symbol 'APPLE') by using the Long-Short Term Memory (LSTM) networks .The kaggle data is used for this study available from 2012 to 2016 for S & P 500 companies.

## Data loading and preprocessing:

The data file 'prices-split-adjusted.csv' is loaded as a data frame which has the columns 'open', 'close','high', 'low', 'volume' for a given company ticker 'symbol'. The 'date' column is set as the index column when loading the data.

| date       | symbol | open       | close      | low        | high       | volume    |
|------------|--------|------------|------------|------------|------------|-----------|
| 2016-01-05 | WLTW   | 123.43     | 125.839996 | 122.309998 | 126.25     | 2163600.0 |
| 2016-01-06 | WLTW   | 125.239998 | 119.980003 | 119.940002 | 125.540001 | 2386400.0 |
| 2016-01-07 | WLTW   | 116.379997 | 114.949997 | 114.93     | 119.739998 | 2489500.0 |
| 2016-01-08 | WLTW   | 115.480003 | 116.620003 | 113.5      | 117.440002 | 2006300.0 |
| 2016-01-11 | WLTW   | 117.010002 | 114.970001 | 114.089996 | 117.330002 | 1408600.0 |

### **Data manipulation:**

The unique symbol names are extracted and a separate data frame is created for symbol 'AAPL' with 'close' column. The purpose is to predict the closing price. 50 new columns are created and next 50 data points are entered one by one for each date(index). This creates a 51 day sequence . Then these values are normalized for better convergence and to be compatible with the activation functions in the neural network. The first 50 day sequence acts as a input sample (X) while 51st day acts as the label (y).

|            | AAPL_close | 1         | 2         | 3         | 4         |
|------------|------------|-----------|-----------|-----------|-----------|
| date       |            |           |           |           |           |
| 2010-01-04 | 30.572857  | 30.625713 | 30.138571 | 30.082857 | 30.282858 |
| 2010-01-05 | 30.625713  | 30.138571 | 30.082857 | 30.282858 | 30.015715 |
| 2010-01-06 | 30.138571  | 30.082857 | 30.282858 | 30.015715 | 29.674286 |
| 2010-01-07 | 30.082857  | 30.282858 | 30.015715 | 29.674286 | 30.092857 |
| 2010-01-08 | 30.282858  | 30.015715 | 29.674286 | 30.092857 | 29.918571 |
| 2010-01-11 | 30.015715  | 29.674286 | 30.092857 | 29.918571 | 29.418571 |
| 2010-01-12 | 29.674286  | 30.092857 | 29.918571 | 29.418571 | 30.719999 |
| 2010-01-13 | 30.092857  | 29.918571 | 29.418571 | 30.719999 | 30.247143 |
| 2010-01-14 | 29.918571  | 29.418571 | 30.719999 | 30.247143 | 29.724285 |
| 2010-01-15 | 29.418571  | 30.719999 | 30.247143 | 29.724285 | 28.250000 |
| 2010-01-19 | 30.719999  | 30.247143 | 29.724285 | 28.250000 | 29.010000 |
| 2010-01-20 | 30.247143  | 29.724285 | 28.250000 | 29.010000 | 29.420000 |
| 2010-01-21 | 29.724285  | 28.250000 | 29.010000 | 29.420000 | 29.697144 |
| 2010-01-22 | 28.250000  | 29.010000 | 29.420000 | 29.697144 | 28.469999 |
| 2010-01-25 | 29.010000  | 29.420000 | 29.697144 | 28.469999 | 27.437143 |
|            |            |           |           |           |           |

#### **Training the neural network:**

To train the model RNN are used due to the reason that the stock data has a time component and it can be framed as a time series supervised learning problem. The  $x_t$  sample value depends on the  $x_{t-1}$  and previous data points and LSTM model is used to create the network. Keras module (Sequential model) is used for this study which runs on Tensor Flow backend. The schematic diagram which demonstrates the used neural network model is shown below.



The <u>input data (X)</u> are in shape: [Nu of samples, sequence length, nu of features] which in this case is [Nu of samples, 50,1]. Following the same pattern the <u>label data (y)</u> are in shape [Nu of samples, 1,1]. When training the batch\_size is set to 1 for smoother training. As loss function "mean square error' is used.

#### **Predictions:**

The prediction shows the score of : 0.0007 with the following figure. Batch size= 1 and epochs=10 are used to generate this prediction.



epochs =10

batch size= 1

Score: 0.000327119

## Hyper parameter tuning.

Prior to achieve the above prediction , the batch size was changed from 512 to 1 while keeping the epochs=1 fixed.



batch size= 512

epochs =1

batch size= 1

Score: 0.00138711

**epochs =1** Score: 0.003106