Permutation groups of rank three

Hongyi Huang

Group Theory in Florence IV

2 July 2024

joint with C.H. Li and Y.Z. Zhu

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.

 $\operatorname{rank}(G)$: The number of G_{α} -orbits on Ω (G-orbits on Ω^2).

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.

 $\operatorname{rank}(G)$: The number of G_{α} -orbits on Ω (G-orbits on Ω^2).

Low rank groups:

$$\mathsf{rank}(G) = 1 \iff |\Omega| = 1.$$

 $rank(G) = 2 \iff G$ is 2-transitive.

G is determined via CFSG;

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.

 $\operatorname{rank}(G)$: The number of G_{α} -orbits on Ω (G-orbits on Ω^2).

Low rank groups:

$$\operatorname{rank}(G) = 1 \iff |\Omega| = 1.$$
 $\operatorname{rank}(G) = 2 \iff G \text{ is 2-transitive.}$

- G is determined via CFSG;
- G is affine or almost simple (Burnside 1900).

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.

 $\operatorname{rank}(G)$: The number of G_{α} -orbits on Ω (G-orbits on Ω^2).

Low rank groups:

$${\sf rank}(G)=1\iff |\Omega|=1.$$
 ${\sf rank}(G)=2\iff G \ {\sf is} \ 2\text{-transitive}.$

- G is determined via CFSG;
- G is affine or almost simple (Burnside 1900).

Problem. Classify the transitive groups G with rank(G) = 3.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.

 $\operatorname{rank}(G)$: The number of G_{α} -orbits on Ω (G-orbits on Ω^2).

Low rank groups:

$$\mathsf{rank}(\mathsf{G}) = 1 \iff |\Omega| = 1.$$

 $rank(G) = 2 \iff G$ is 2-transitive.

- G is determined via CFSG;
- G is affine or almost simple (Burnside 1900).

Problem. Classify the transitive groups G with rank(G) = 3.

Example. $G = GL_n(3)$ and $\Omega = \mathbb{F}_3^n \setminus \{0\}$.

Primitive: G_{α} is a maximal subgroup of G.

• Bannai, Foulser, Kantor, Liebeck, Liebler and Saxl (1969–1986)

Primitive: G_{α} is a maximal subgroup of G.

Bannai, Foulser, Kantor, Liebeck, Liebler and Saxl (1969–1986)

Quasiprimitive: Every non-trivial normal subgroup of G is transitive.

• Devillers, Giudici, Li, Pearce & Praeger (2011)

primitive \implies quasiprimitive

Primitive: G_{α} is a maximal subgroup of G.

Bannai, Foulser, Kantor, Liebeck, Liebler and Saxl (1969–1986)

Quasiprimitive: Every non-trivial normal subgroup of G is transitive.

• Devillers, Giudici, Li, Pearce & Praeger (2011)

Innately transitive: G has a transitive minimal normal subgroup.

• Baykalov, Devillers & Praeger (2023)

primitive \implies quasiprimitive \implies innately transitive

Primitive: G_{α} is a maximal subgroup of G.

Bannai, Foulser, Kantor, Liebeck, Liebler and Saxl (1969–1986)

Quasiprimitive: Every non-trivial normal subgroup of G is transitive.

• Devillers, Giudici, Li, Pearce & Praeger (2011)

Innately transitive: G has a transitive minimal normal subgroup.

• Baykalov, Devillers & Praeger (2023)

e.g. $GL_n(3) \cong C_2 \times PSL_n(3)$ when n is odd.

primitive \implies quasiprimitive \implies innately transitive

Primitive: G_{α} is a maximal subgroup of G.

Bannai, Foulser, Kantor, Liebeck, Liebler and Saxl (1969–1986)

Quasiprimitive: Every non-trivial normal subgroup of G is transitive.

Devillers, Giudici, Li, Pearce & Praeger (2011)

Innately transitive: G has a transitive minimal normal subgroup.

• Baykalov, Devillers & Praeger (2023)

e.g. $GL_n(3) \cong C_2 \times PSL_n(3)$ when n is odd.

Remark. When *n* is even, $GL_n(3)$ is not innately transitive.

primitive \implies quasiprimitive \implies innately transitive

Primitive: G_{α} is a maximal subgroup of G.

Bannai, Foulser, Kantor, Liebeck, Liebler and Saxl (1969–1986)

Quasiprimitive: Every non-trivial normal subgroup of G is transitive.

Devillers, Giudici, Li, Pearce & Praeger (2011)

Innately transitive: G has a transitive minimal normal subgroup.

• Baykalov, Devillers & Praeger (2023)

e.g. $GL_n(3) \cong C_2 \times PSL_n(3)$ when n is odd.

Remark. When *n* is even, $GL_n(3)$ is not innately transitive.

Note. Every normal subgroup of $GL_n(3)$ is transitive or semiregular (such a group is said to be **semiprimitive**).

primitive \implies quasiprimitive \implies innately transitive \implies semiprimitive

Imprimitive: G_{α} is not a maximal subgroup of G.

Imprimitive: G_{α} is not a maximal subgroup of G.

G is imprimitive \iff there exists $B \subseteq \Omega$ with $|B| \notin \{1, |\Omega|\}$ s.t.

$$B^g \cap B = B$$
 or \emptyset for all $g \in G$.

Imprimitive: G_{α} is not a maximal subgroup of G.

G is imprimitive \iff there exists $B \subseteq \Omega$ with $|B| \notin \{1, |\Omega|\}$ s.t.

$$B^g \cap B = B$$
 or \emptyset for all $g \in G$.

The set B is called a (non-trivial) **block**, and B^G is called a **block system**.

Imprimitive: G_{α} is not a maximal subgroup of G.

G is imprimitive \iff there exists $B \subseteq \Omega$ with $|B| \notin \{1, |\Omega|\}$ s.t.

$$B^g \cap B = B$$
 or \emptyset for all $g \in G$.

The set B is called a (non-trivial) **block**, and B^G is called a **block system**.

Imprimitive rank 3 groups:

• G has a unique non-trivial block system $\mathcal{B} = B^G$.

Imprimitive: G_{α} is not a maximal subgroup of G.

G is imprimitive \iff there exists $B \subseteq \Omega$ with $|B| \notin \{1, |\Omega|\}$ s.t.

$$B^g \cap B = B$$
 or \emptyset for all $g \in G$.

The set B is called a (non-trivial) **block**, and B^G is called a **block system**.

Imprimitive rank 3 groups:

• G has a unique non-trivial block system $\mathcal{B} = \mathcal{B}^G$.

Imprimitive: G_{α} is not a maximal subgroup of G.

G is imprimitive \iff there exists $B \subseteq \Omega$ with $|B| \notin \{1, |\Omega|\}$ s.t.

$$B^g \cap B = B$$
 or \emptyset for all $g \in G$.

The set B is called a (non-trivial) **block**, and B^G is called a **block system**.

Imprimitive rank 3 groups:

• G has a unique non-trivial block system $\mathcal{B} = B^G$.

• The induced groups $G^{\mathcal{B}}$ (on \mathcal{B}) and $G^{\mathcal{B}}_{\mathcal{B}}$ (on \mathcal{B}) are 2-transitive.

Theorem (H, Li & Zhu, 2024+)

Suppose G_B^B is affine and rank(G) = 3.

Theorem (H, Li & Zhu, 2024+)

Suppose G_B^B is affine and rank(G) = 3. Then one of the following holds.

- $G^{\mathcal{B}}$ is almost simple and G is semiprimitive;
- $G^{\mathcal{B}}$ is affine and $N \leqslant G \leqslant N$: Aut(N);

Theorem (H, Li & Zhu, 2024+)

Suppose G_B^B is affine and rank(G) = 3. Then one of the following holds.

- $G^{\mathcal{B}}$ is almost simple and G is semiprimitive;
- $G^{\mathcal{B}}$ is affine and $N \triangleleft G \leqslant N$: Aut(N); (N, Aut(N)) is determined (Li & Zhu, 2024+)

Theorem (H, Li & Zhu, 2024+)

Suppose G_B^B is affine and rank(G) = 3. Then one of the following holds.

- $G^{\mathcal{B}}$ is almost simple and G is semiprimitive;
- $G^{\mathcal{B}}$ is affine and $N \leqslant G \leqslant N$: Aut(N); (N, Aut(N)) is determined (Li & Zhu, 2024+)
- $K_{(B)}$ is transitive on B';
- $K_{(B)} \neq 1$ is intransitive on B', and G has an elementary abelian self-centralising normal subgroup,

where $K = G_{(\mathcal{B})}$ and $B, B' \in \mathcal{B}$.

Theorem (H, Li & Zhu, 2024+)

Suppose G_B^B is affine and rank(G) = 3. Then one of the following holds.

- $G^{\mathcal{B}}$ is almost simple and G is semiprimitive;
- $G^{\mathcal{B}}$ is affine and $N \triangleleft G \leqslant N$: Aut(N); (N, Aut(N)) is determined (Li & Zhu, 2024+)
- K_(B) is transitive on B';
 always rank 3
- $K_{(B)} \neq 1$ is intransitive on B', and G has an elementary abelian self-centralising normal subgroup,

where $K = G_{(\mathcal{B})}$ and $B, B' \in \mathcal{B}$.

Theorem (H, Li & Zhu, 2024+)

Suppose G_B^B is affine and rank(G) = 3. Then one of the following holds.

- $G^{\mathcal{B}}$ is almost simple and G is semiprimitive;
- $G^{\mathcal{B}}$ is affine and $N \triangleleft G \leqslant N$: Aut(N); (N, Aut(N)) is determined (Li & Zhu, 2024+)
- K_(B) is transitive on B';
 always rank 3
- $K_{(B)} \neq 1$ is intransitive on B', and G has an elementary abelian self-centralising normal subgroup,

no known examples

where $K = G_{(\mathcal{B})}$ and $B, B' \in \mathcal{B}$.

Imprimitive rank three groups (G_B^B affine)

$G^{\mathcal{B}}$ affine	N extcolored G regular $N extcolored G$ is known	$K_{(B)}$ trans on B^\prime	$K_{(B)} \neq 1$
$G^{\mathcal{B}}$ almost simple	semiprimitive		intrans on <i>B'</i>

Let
$$X = GL_n(q) \leqslant Sym(\Gamma)$$
 with $\Gamma = \mathbb{F}_q^n \setminus \{0\}$.

Let
$$C \leqslant Z(X)$$
 and $\Omega = \{C\text{-orbits on }\Gamma\}$. So $G := X/C \leqslant \text{Sym}(\Omega)$.

Let
$$X = GL_n(q) \leqslant Sym(\Gamma)$$
 with $\Gamma = \mathbb{F}_q^n \setminus \{0\}$.

Let
$$C \leqslant Z(X)$$
 and $\Omega = \{C\text{-orbits on }\Gamma\}$. So $G := X/C \leqslant \operatorname{Sym}(\Omega)$.

- *G* is semiprimitive.
- rank(G) = |Z(X) : C| + 1.

Let
$$X = GL_n(q) \leqslant Sym(\Gamma)$$
 with $\Gamma = \mathbb{F}_q^n \setminus \{0\}$.

Let
$$C \leqslant Z(X)$$
 and $\Omega = \{C\text{-orbits on }\Gamma\}$. So $G := X/C \leqslant \text{Sym}(\Omega)$.

- *G* is semiprimitive.
- rank(G) = |Z(X) : C| + 1.

Examples

If C = Z(X), then $G = PGL_n(q)$ is 2-transitive.

Let
$$X = \operatorname{GL}_n(q) \leqslant \operatorname{Sym}(\Gamma)$$
 with $\Gamma = \mathbb{F}_q^n \setminus \{0\}$.

Let
$$C \leqslant Z(X)$$
 and $\Omega = \{C\text{-orbits on }\Gamma\}$. So $G := X/C \leqslant \text{Sym}(\Omega)$.

- *G* is semiprimitive.
- rank(G) = |Z(X) : C| + 1.

Examples

If C = Z(X), then $G = PGL_n(q)$ is 2-transitive.

If C = 1, then $G = GL_n(q)$ and rank(G) = q.

Let
$$X = \operatorname{GL}_n(q) \leqslant \operatorname{Sym}(\Gamma)$$
 with $\Gamma = \mathbb{F}_q^n \setminus \{0\}$.

Let
$$C \leqslant Z(X)$$
 and $\Omega = \{C\text{-orbits on }\Gamma\}$. So $G := X/C \leqslant \text{Sym}(\Omega)$.

- *G* is semiprimitive.
- rank(G) = |Z(X) : C| + 1.

Examples

If C = Z(X), then $G = PGL_n(q)$ is 2-transitive.

If C = 1, then $G = GL_n(q)$ and rank(G) = q.

If |Z(X):C|=2 (so $G=2.\operatorname{PGL}_n(q)$), then $\operatorname{rank}(G)=3$ with

- |B| = 2 and $G_B^B = S_2$;
- $\mathcal{B} = \{1\text{-spaces}\}\ \text{and}\ G^{\mathcal{B}} = \mathsf{PGL}_n(q).$

Theorem (H, Li & Zhu, 2024+)

Suppose $G^{\mathcal{B}}$ is almost simple, $G_{\mathcal{B}}^{\mathcal{B}}$ is affine and G is semiprimitive but not innately transitive.

Theorem (H, Li & Zhu, 2024+)

Suppose $G^{\mathcal{B}}$ is almost simple, $G_{\mathcal{B}}^{\mathcal{B}}$ is affine and G is semiprimitive but not innately transitive. Then $\operatorname{rank}(G)=3$ if one of the following holds.

- $(G, G_{\alpha}) = (3.S_6, S_5)$ or $(2.M_{12}, M_{11})$.
- Ω is the set of *C*-orbits on $\mathbb{F}_q^n\setminus\{0\}$ for $C\leqslant Z(\mathsf{GL}_d(q))$, and

$$r. \mathsf{PSL}_d(q) \cong \mathsf{SL}_d(q) C/C \leqslant G \leqslant \mathsf{\GammaL}_d(q)/C \cong r. \mathsf{P\GammaL}_d(q).$$

Theorem (H, Li & Zhu, 2024+)

Suppose $G^{\mathcal{B}}$ is almost simple, $G_{\mathcal{B}}^{\mathcal{B}}$ is affine and G is semiprimitive but not innately transitive. Then $\operatorname{rank}(G)=3$ if one of the following holds.

- $(G, G_{\alpha}) = (3.S_6, S_5)$ or $(2.M_{12}, M_{11})$.
- Ω is the set of *C*-orbits on $\mathbb{F}_q^n\setminus\{0\}$ for $C\leqslant Z(\mathsf{GL}_d(q))$, and

$$r. \mathsf{PSL}_d(q) \cong \mathsf{SL}_d(q) C/C \leqslant G \leqslant \mathsf{\GammaL}_d(q)/C \cong r. \mathsf{P\GammaL}_d(q).$$

e.g. 2. $PGL_n(q)$, necessary and sufficient conditions are given

Theorem (H, Li & Zhu, 2024+)

Suppose $G^{\mathcal{B}}$ is almost simple, $G_{\mathcal{B}}^{\mathcal{B}}$ is affine and G is semiprimitive but not innately transitive. Then $\operatorname{rank}(G)=3$ if one of the following holds.

- $(G, G_{\alpha}) = (3.S_6, S_5)$ or $(2.M_{12}, M_{11})$.
- Ω is the set of *C*-orbits on $\mathbb{F}_q^n\setminus\{0\}$ for $C\leqslant Z(\mathsf{GL}_d(q))$, and

$$r. \mathsf{PSL}_d(q) \cong \mathsf{SL}_d(q) C/C \leqslant G \leqslant \mathsf{\GammaL}_d(q)/C \cong r. \mathsf{P\GammaL}_d(q).$$

e.g. 2. $PGL_n(q)$, necessary and sufficient conditions are given

This classifies the semiprimitive rank 3 groups G with $G^{\mathcal{B}}$ almost simple.

Theorem (H, Li & Zhu, 2024+)

Suppose $G^{\mathcal{B}}$ is almost simple, $G_{\mathcal{B}}^{\mathcal{B}}$ is affine and G is semiprimitive but not innately transitive. Then $\operatorname{rank}(G)=3$ if one of the following holds.

- $(G, G_{\alpha}) = (3.S_6, S_5)$ or $(2.M_{12}, M_{11})$.
- ullet Ω is the set of C-orbits on $\mathbb{F}_q^n\setminus\{0\}$ for $C\leqslant Z(\mathsf{GL}_d(q))$, and

$$r. \mathsf{PSL}_d(q) \cong \mathsf{SL}_d(q) C/C \leqslant G \leqslant \mathsf{\GammaL}_d(q)/C \cong r. \mathsf{P\GammaL}_d(q).$$

e.g. 2. $PGL_n(q)$, necessary and sufficient conditions are given

This classifies the semiprimitive rank 3 groups G with $G^{\mathcal{B}}$ almost simple.

H, Li & Zhu, 2024+: If $G^{\mathcal{B}}$ is affine, G is semiprimitive and rank(G) = 3, then $G_{\mathcal{B}}^{\mathcal{B}}$ is affine and $\mathcal{N} \leq G \leq \mathcal{N}$: Aut (\mathcal{N}) with \mathcal{N} a special group.

Theorem (H, Li & Zhu, 2024+)

Suppose $G^{\mathcal{B}}$ is almost simple, $G^{\mathcal{B}}_{\mathcal{B}}$ is affine and G is semiprimitive but not innately transitive. Then $\operatorname{rank}(G)=3$ if one of the following holds.

- $(G, G_{\alpha}) = (3.S_6, S_5)$ or $(2.M_{12}, M_{11})$.
- ullet Ω is the set of C-orbits on $\mathbb{F}_q^n\setminus\{0\}$ for $C\leqslant Z(\mathsf{GL}_d(q))$, and

$$r. \mathsf{PSL}_d(q) \cong \mathsf{SL}_d(q) C/C \leqslant G \leqslant \mathsf{\GammaL}_d(q)/C \cong r. \mathsf{P\GammaL}_d(q).$$

e.g. $2. PGL_n(q)$, necessary and sufficient conditions are given

This classifies the semiprimitive rank 3 groups G with $G^{\mathcal{B}}$ almost simple.

H, Li & Zhu, 2024+: If $G^{\mathcal{B}}$ is affine, G is semiprimitive and rank(G) = 3, then $G_{\mathcal{B}}^{\mathcal{B}}$ is affine and $\mathcal{N} \leq G \leq \mathcal{N}$: Aut (\mathcal{N}) with \mathcal{N} a special group.

Li, Yi & Zhu (last Sunday): such *G* is determined.

Summary

