Teorema de Existencia de Equilibrio de Nash en Estrategias Puras

1. Introducción

En la discusión anterior (sobre equilibrios mixtos), vimos que el **Teorema de Nash** garantiza la existencia de (al menos) un **equilibrio de Nash en estrategias mixtas** en cualquier juego finito (suma de jugadores finita, con un número finito de estrategias puras por jugador). Sin embargo, **no** todo juego finito tiene equilibrios en estrategias puras (ejemplo: "Matching Pennies").

Aun así, en muchos problemas económicos, de ingeniería o de coordinación, existe un **interés** particular en la existencia (y cálculo) de **equilibrios en estrategias puras**, pues pueden representar "decisiones deterministas" o "posiciones estables" sin necesidad de mezclar probabilidades.

La buena noticia es que sí hay un **Teorema de Existencia de Equilibrio de Nash en Estrategias Puras**, pero **bajo ciertas condiciones** de continuidad y concavidad (o monotonicidad, etc.). Dichas condiciones se suelen cumplir en muchos modelos de la teoría económica (por ejemplo, en juegos con estrategias continuas y preferencias cuasi-concavas), así como en **juegos potenciales** o **juegos supermodulares**.

En este documento, presentaremos:

- 1. **Planteamiento y supuesto**: qué condiciones hacen posible garantizar al menos un equilibrio de Nash puro.
- 2. Enunciado formal del teorema.
- 3. Intuición de la demostración y vínculos con el teorema estándar de punto fijo.
- 4. Ejemplo ilustrativo.
- 5. **Componente computacional y algorítmico**: ideas generales para encontrar (o aproximar) un equilibrio en estrategias puras.

2. Planteamiento: Juegos con Estrategias Continuas y Payoffs Bien Comportados

El Teorema de Existencia de Nash en Estrategias Puras se suele enunciar para:

- Juegos con un número finito de jugadores, \$N\$.
- Cada jugador \$i\$ tiene un conjunto de estrategias \$S_i \subset \mathbb{R}^k\$ (para algún \$k\$),
 no vacío, convexo y compacto.
- La función de utilidad (payoff) \$u_i : S_1 \times \cdots \times S_N \to \mathbb{R}\$ de cada jugador \$i\$ es:
 - 1. **Continua** en los vectores de estrategia de **todos** los jugadores.
 - 2. **Cuasi-concava** (o estrictamente concava) en la estrategia propia \$s_i\$, manteniendo fijas las estrategias de los demás jugadores.

Bajo estas condiciones (y algunas variantes técnicas), **existe** un equilibrio de Nash **en estrategias puras**. En este contexto, una **estrategia pura** es un vector \$s_i\$ escogido dentro del conjunto continuo

Comentario:

- El teorema clásico de Nash (1950, 1951) asume juegos finitos y prueba la existencia de **equilibrio en mezclas** (estrategias mixtas).
- Para estrategias puras, hace falta que el juego cumpla propiedades "más suaves" (continuidad, convexidad, cuasi-concavidad, etc.).
- En juegos potenciales (Monderer & Shapley, 1996) o juegos supermodulares (Topkis, 1998), también se garantiza la existencia de un equilibrio puro, incluso si los conjuntos de estrategia no son finitos, siempre que se cumplan ciertas condiciones de isotonicidad o de potencial bien definido.

3. Enunciado Formal (Versión Simplificada)

Teorema (Existencia de Equilibrio de Nash en Estrategias Puras, versión cuasi-concava):

Sea $G = \bigcup(N, \{S_i\}_{i=1}^N, \{u_i\}_{i=1}^N \bigcup(S_i)$ un juego con:

- 1. \$N\$ jugadores.
- 2. Para cada jugador \$i\$, \$S_i\$ es un conjunto **no vacío**, **convexo** y **compacto** en \$\mathbb{R}^k\$.
- 3. La función de pago (utilidad) $u_i(s_i, s_{-i})$ es **continua** en s_{-i} para cada s_{-i} .
- 4. Para cada \$i\$, \$u_i\$ es cuasi-concava (o estrictamente concava) en \$s_i\$, manteniendo fijos \$s_{-i}\$.

Entonces, **existe** al menos un **perfil de estrategias puras** $(s_1^n, dots, s_N^n)$ tal que, para cada jugador i, v

 $s_i^* \in S_i^* \in S_i \in S_i \in S_i$; $u_i \in S$

Es decir, (s_1^n, \ldots, s_N^n) es un **equilibrio de Nash en estrategias puras**.

4. Intuición de la Demostración

La **idea conceptual** detrás de la prueba se basa en la extensión de los **argumentos de punto fijo** (como el de **Kakutani** o el de **Brouwer**) usados en el teorema de Nash para estrategias mixtas.

- En la versión original para **juegos finitos**, cada jugador elige una **mezcla** (un punto en un **simplejo** de dimensión finita). Luego se define la "correspondencia de mejores respuestas" de cada jugador y se usa el teorema de Kakutani para probar que existe un **punto fijo** de esa correspondencia. Ese punto fijo corresponde a un perfil de estrategias mixtas en equilibrio.
- En la versión para juegos continuos con cuasi-concavidad:
 - 1. El conjunto de estrategias ya no es un simplejo finito, sino un conjunto convexo y compacto en \hat{R}^k .
 - 2. Las mejores respuestas en estrategias puras (dado \$s_{-i}\$) están **bien definidas** (por ejemplo, la maximización de una función cuasi-cóncava sobre un conjunto convexo y compacto tiene soluciones).
 - 3. Se define la **correspondencia de mejores respuestas puras** \$BR_i\$, que asocia a cada perfil de estrategias \$(s_1, \dots, s_N)\$ la mejor respuesta \$s_i^*\$ de cada jugador.

- 4. Se muestra que esta correspondencia cumple las condiciones (no vacía, convexa, grafo cerrado, etc.) para aplicar de nuevo el **Teorema de Kakutani** y obtener un punto fijo.
- 5. Ese punto fijo $(s_1^n, dots, s_N^n)$ es, por construcción, un equilibrio de Nash en **estrategias puras**.

En resumen, la **cuasi-concavidad** (o concavidad) y la **compacidad** del conjunto de estrategias permiten garantizar que cada jugador **tiene** al menos una mejor respuesta pura para cada posible configuración del juego, y la aplicación del teorema de punto fijo prueba que existe un "punto" (o perfil) donde todos juegan sus mejores respuestas simultáneamente.

5. Ejemplo Ilustrativo

5.1. Juego de Duopolio de Cournot (con Funciones de Costos y Demanda Simples)

Consideremos un juego económico de **duopolio** (2 jugadores, "empresa 1" y "empresa 2"), donde cada empresa elige **su cantidad de producción** $q_1, q_2 \in [0, \inf y]$. Para simplificar, supongamos que:

- \$S_1 = S_2 = [0, K]\$ para algún \$K\$ grande (por ejemplo, la capacidad máxima). Este intervalo es compacto y convexo.
- La función de demanda de mercado es lineal: p(Q) = a b,Q\$, donde $Q = q_1 + q_2$ \$, con \$a > 0\$ y \$b > 0\$.
- El costo de producción es \$C_i(q_i) = c , q_i\$, constante marginal.

La utilidad (beneficio) para la empresa \$i\$ es:

$$u_i(q_i, q_j) = bigl[a - b,(q_i + q_j)] \cdot (dot q_i; -; c, q_i.$$$

Si fijamos \$q_j\$, la empresa \$i\$ resuelve:

$$\max_{q_i \in [0, K]} ;; (a - b(q_i + q_j)), q_i ;-; c, q_i.$$$

Esta es una función **cóncava** en \$q_i\$ (fácil de verificar, ya que es cuadrática con coeficiente negativo en el término \$q_i^2\$). El conjunto de estrategias es convexo y compacto. Además, la función es continua.

Cumplidas las condiciones, existe un **equilibrio de Nash en estrategias puras** (las cantidades (q_1^n, q_2^n)) que satisfacen que cada q_i^n sea la mejor respuesta a q_i^n .

De hecho, se puede calcular explícitamente (en la versión sin restricción \$K\$ grande, y asumiendo nonegatividad) y se obtienen las **cantidades de Cournot**. Eso corresponde a la intersección de las **curvas de reacción** de cada empresa, que son las ecuaciones donde cada una maximiza su utilidad dada la cantidad de la otra.

5.2. Verificación de las Condiciones

- 1. $S_i = [0, K]$ es no vacío, convexo (un intervalo) y compacto (cerrado y acotado).
- 2. $\frac{q_i}{q_i} = \frac{q_i}{q_i}$ es continua en $\frac{q_i}{q_i} = \frac{q_i}{q_i}$
- 3. Dada \$q_j\$, la función \$q_i \mapsto u_i(q_i, q_j)\$ es una cuasi-cóncava (de hecho, estrictamente cóncava en un rango) en \$q_i\$.

Por ello, **el teorema** garantiza la existencia de un equilibrio en estrategias puras (aunque también sabemos que la versión lineal de Cournot se resuelve directamente hallando la intersección de mejores

6. Componente Computacional y Algorítmico

En la **práctica**, aunque el teorema garantiza la **existencia** de un equilibrio puro, encontrarlo puede requerir métodos numéricos. Algunas aproximaciones:

1. Algoritmos de mejor respuesta iterada (o sucesiva):

- Se parte de un perfil inicial $(s_1^{(0)}, \dots, s_N^{(0)})$.
- Iterativamente, cada jugador actualiza su estrategia a su mejor respuesta frente a la estrategia actual de los demás.
- En ciertos juegos (por ejemplo, juegos supermodulares), este proceso converge a un equilibrio en estrategias puras.

2. Métodos de optimización conjunta en juegos potenciales:

- Si el juego admite una función de potencial \$P(s_1, \dots, s_N)\$ tal que cada \$u_i\$ está alineada con \$P\$, la búsqueda de equilibrio en puras se reduce a encontrar los puntos que maximizan (o hacen estacionario) el potencial.
- Ejemplo: en algunos juegos de enrutamiento, la minimización de la latencia agregada coincide con encontrar el equilibrio de Nash.

3. Fictitious play:

- Cada jugador asume que los demás juegan estrategias estocásticas basadas en las frecuencias históricas de jugadas.
- Se puede demostrar convergencia en ciertos tipos de juegos (p.ej., juegos con una función de utilidad que es cuasi-concava y ciertos supuestos de unicidad de mejor respuesta, o juegos de dos jugadores con ciertas propiedades).

4. Métodos de punto fijo (Kakutani / Brouwer) en versión computacional:

 Existen enfoques de "punto fijo computacional" (por ejemplo, algoritmos homotópicos o de recubrimiento) para aproximar los puntos fijos de la correspondencia de mejores respuestas.

En todos estos métodos, la **clave** es que, al cumplir las condiciones del teorema, la **mejor respuesta** de cada jugador siempre existe y es un **conjunto compacto** (a menudo un solo punto si la utilidad es estrictamente cóncava). Así, la iteración o el algoritmo de punto fijo está bien definido en todo momento.

7. Comentarios Finales

- El **Teorema de Nash** más **conocido** (1950) es el de **existencia de un equilibrio en estrategias mixtas** para juegos finitos.
- El **Teorema de existencia en estrategias puras** se basa en extensiones similares de punto fijo, pero requiere **hipótesis adicionales** de continuidad y cuasi-concavidad/convexidad en los

- conjuntos de estrategias.
- En casos como "Matching Pennies", donde las estrategias puras son discretas, el teorema de pureza **no** aplica en su forma general (porque no hay concavidad ni conjuntos compactos en \$\mathbb{R}^k\\$); por ello su equilibrio es **mixto**.
- En escenarios económicos (producción, subastas continuas, etc.) o de ingeniería (control de recursos, potencia, etc.), la existencia de equilibrio puro está muy ligada a la estructura de maximización concava de cada jugador.

En conclusión, **la existencia de un equilibrio puro** depende de condiciones que permitan garantizar una solución de maximización pura para cada jugador y la aplicabilidad de un argumento de **punto fijo** que fuerce la intersección de todas las mejores respuestas en un único perfil. Desde el punto de vista **computacional**, varios algoritmos explotan dichas propiedades de concavidad y continuidad para **encontrar** o **aproximar** el equilibrio en la práctica.

Referencias Breves

- **Nash, J. F. (1950)**. *Equilibrium points in n-person games*. Proceedings of the National Academy of Sciences. (Versión clásica para juegos finitos, mezclas).
- **Debreu, G. (1952)** y **Glicksberg, I. (1952)**: extensión de juegos con conjuntos de estrategia compactos y convexos en \$\mathbb{R}^n\$.
- Rosen, J. B. (1965): Existence and Uniqueness of Equilibrium Points for Concave N-Person Games.
- Monderer, D., & Shapley, L. (1996): juegos potenciales y su existencia de equilibrio puro.
- Topkis, D. (1998): Juegos supermodulares.

Estos resultados complementan la teoría de **equilibrio de Nash** y, en conjunto, explican cuándo podemos asegurar equilibrios puros y cuándo sólo podemos asegurar (en general) equilibrios mixtos.