CpE 213 Digital Systems Design WIMP51

Lecture 8 Friday 9/9/2005

Overview

- Announcements
- WIMP51

Announcements

- Homework 3 is due on Friday.
- Interesting URL:
 - http://microcontroller.com/EmbeddedSystems.asp?c=4

WIMP51 Weekend Instructional Microprocessor

Fetch cycle step 1: addr <= PC

Fetch cycle step 2: IR<= data

Fetch cycle: PC<= PC+1

Decode cycle: decode current instruction in IR

Wimp51 Instructions

MOV A, #D	01110100 dddddddd	A<=D
ADDC A, #D	00110100 dddddddd	$C,A \le A+D+C$
MOV Rn, A	11111nnn	Rn<=A
MOV A, Rn	11101nnn	A<=Rn
ADDC A, Rn	00111nnn	$C,A \le A+Rn+C$
ORL A, Rn	01001nnn	A<=A OR Rn
ANL A, Rn	01011nnn	A<=A AND Rn
XRL A, Rn	01101nnn	A<=A XOR Rn
SWAP A	11000100	$A <= A_{(3-0)}$ SWAP $A_{(7-4)}$
CLR C	11000011	C<=0
SETB C	11010011	C<=1
SJMP rel	10000000 aaaaaaaa	PC<=PC+rel+2
JZ rel	01100000 aaaaaaaa	PC<=PC+rel+2 if Z

Decode cycle: immediate source

MOV A, #05h

Decode cycle: register source

MOV A, R5

Execute cycle

MOV A, R5

Execute cycle

SJMP loop

- Two complete instruction cycles are shown.
- First is a SETB C (D3h) at location 0000.
- PC increments at end of Fetch cycle, C set at end of Exec cycle.
- What is the second instruction? What is the value of the data bus during second fetch?

- Two more instructions. What are they?
- Note ACC goes from 1 to 0 at end of second instruction.
- C is set at end of second instruction.

- Two more instructions. What are they?
- First instruction increments PC once more.
- Second instruction increments PC then changes it to 3H.

- Examine the control signals for SETB C.
- WE signals let registers be updated on rising clock edge.
- Dashed line represents "don't care" signals.

Wimp51 timing

- Registers get loaded by rising edge at end of cycle.
- Each instruction lasts three clock cycles.
- Each instruction cycle consists of a Fetch, Decode, and an Execute clock cycle.
- Classic 8051 is similar but has more options; will be more complex (12 or more clock cycles per instruction).

Wimp51 timing

- Timing diagrams generated by a simulator.
- Simulator 'executes' a model of WIMP51.
- Model is written in VHDL.
- VHDL can be used to synthesize WIMP51 hardware.
- Simulation models let us 'try out' a design before committing to hardware.
- We can simulate hardware, software, or both.
- Used for rapid prototyping and to get it right the first time.

An example: Calculate 2+1

Code	Addr		Insti	<u>-</u>
74 01	0000h		MOV	A,#01H
F8	0002h		MOV	R0,A
74 02	0003h		MOV	A,#02H
C3	0005h		CLR	С
38	0006h		ADDC	A,RO
F9	0007h		MOV	R1,A
80 FE	0008h	Stop:	SJMP	Stop

An example: Calculate 2+1

PC	R0	R1	Acc	С		Instruction
0	33	35	33	?		MOV A,#1
2	33	55	1	?		MOV RO,A
3	1	55	1	?		MOV A,#2
5	1	55	2	?		CLR C
6	1	55	2	0		ADDC A,R0
7	1	55	3	0		MOV R1,A
8	1	3	3	0	Stop:	SJMP Stop

Calculate 3*5 with for loop

Code	Addr	Instr
	Loop:	MOV A,#0 MOV R0,A MOV A,#3 MOV R1,A MOV A,#5 CLR C ADDC A,R0 MOV R0,A MOV A,R1 CLR C
	Stop:	ADDC A,#0FFh MOV R1,A JZ Stop SJMP Loop SJMP Stop

For Monday

- Review today's lecture notes and textbook.
- Download and read WIMP51 handout.
- Begin Assignment 3.