(* '~	Missing: Noteo from last class:
	$Z_n = \frac{X_n - \mu_{\infty}}{\frac{\delta_x}{\sqrt{n}}}$ Standardized R.V.
	$P(X_n - \mu_X > \varepsilon) \le \frac{c}{\varepsilon^2}$ (Chebeye's inequality gives us this right bound).
	$\sup_{z} F_{z}(z) - \phi(z) \to 0$ $\lim_{z \to \infty} F_{z}(z) \to 0$ And when hy ustribution
	$\int e^{-x^2/2} dx \sim \frac{e^{-\varepsilon^2/2}}{\varepsilon^2}$ Impulsional The faul was proposed in the faul was propo
	$z_h \rightarrow N(0,1)$ per z_h

Hurrem	- (Continuous Mapping Theorem.)
	Xn distrior random
	g(.) is a measurable function continuous w.p. 1 in the support of xn & x
	Then $g(X_n) \xrightarrow{x} g(X)$ $Z_n \xrightarrow{x} N(0, 1)$
Then,	Zn = X2 (Chi square is defined Thin way. Check Dennis) first set of notes.)
	$ \begin{pmatrix} z_n \\ z_n \end{pmatrix} $ $ \begin{pmatrix} z_n \\ \vdots \\ z_n \end{pmatrix} $
Then	$(z_n)^2 + \dots + (z_n)^2 \xrightarrow{d} \chi_k^2$
	of $Z \sim N(\mu, \Xi)$ Covariance Matrix. (Positive sewi-definite) $\Xi = \Xi^{1/2} \Xi^{1/2}$ (Product of 2 positive sewi-definite matrix)
	We can standardite his R.V. using he inverse $f \geq 1/2$. $\leq (Z - \mu) \sim N(0, I)$

	Pre-multiplying by & makes the otherwise correlated P.V. independent.
Theorem	
	• Theorem: Let X_n , X and Y_n be random vectors. Then (i) $X_n \xrightarrow{a.s.} X$ implies $X_n \xrightarrow{p} X$; (ii) $X_n \xrightarrow{p} X$ implies $X_n \xrightarrow{d} X$; (iii) $X_n \xrightarrow{p} c$ (c is a constant) iff $X_n \xrightarrow{d} c$; (iv) if $X_n \xrightarrow{d} X$ and $\ X_n - Y_n\ \xrightarrow{p} 0$, then $Y_n \xrightarrow{d} X$; (v) if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$ (c is a constant), then $(X_n, Y_n) \xrightarrow{d} (X, c)$; (vi) if $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n) \xrightarrow{p} (X, Y)$
	Xn x is stronger from X Does not tell us about individual components (host MW conved
(iii)	When vouvergoure in p (3 convergence in d (that it in appillon box of something)
(VT)	Mixing 2 different types of converges.

Marginal convergence does not imply (Only exception) & Margi Lower Also holds when xu Any R.V. is going to be independent a constant so you get independence fore > Mut how does independence fee joint convergence?) $(ii) \quad \chi_{n} \xrightarrow{p} \chi \quad \chi_{n} \xrightarrow{p} \chi$ $\Rightarrow (\chi_{n}, \chi_{n}) \xrightarrow{p} (\chi, \chi)$

	1 Theory of
Ex	suples: Degree of
\mathcal{G}	Fischer Theorem
- 9	1000/200
	Humb . i. D. b
	1 typotheris. But
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	$S_{\times}^{2} = \frac{1}{n-1} \sum_{i=1}^{N} (X_{i} - X_{n})^{2}$ (1) lames out, $E[S_{\times}^{2}] = 2^{2} \text{ who}$
0 000	$E\left[S_{x}^{2}\right] = S_{x}^{2} \qquad \text{hinded by } L$
An annual	
1000	
	$t_{\eta} = \frac{x_{\eta} - \mu_{\chi}}{x_{\eta}}$
	<u>C</u>
	Jn
	What can him son about 1010,1000 con land?
	What can we say about convergence here?
[-	Apply LLN to (1)
	man
	$e^2 - 1 \leq f_{11} + \dots + f_{n-2}$
	× = = = = = = = = = = = = = = = = = = =
	Apply UN to (1) $S_{x}^{2} = \prod_{i=1}^{\infty} \left(x_{i} - \mu_{x} + \mu_{x} - \overline{x}_{n} \right)^{2}$ $S_{x}^{1} = \prod_{i=1}^{\infty} \left(x_{i} - \mu_{x} + \mu_{x} - \overline{x}_{n} \right)^{2}$
	$= \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)^2 + 2(\mu_x - \overline{X}_y) \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)^{\frac{1}{2}}$
	= 1 2 (x;- hx)+2(hx- xy) - 2 (x;-hx)+
	n-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	+ N (px - xn)
	ν- ₍
	2
	$= \frac{1}{n-1} \frac{2}{i} \left[\left(x_i - \mu_x \right)^2 - \frac{n}{n-1} \left(\mu_x - \overline{x}_n \right)^2 \right]$
	n-1 i=1
	h
	$= \frac{1}{n-1} (\frac{1}{1} \sum_{i=1}^{n} (x_i - \mu_x)^2 - \frac{n}{n-1} (\mu_x - x_n)^2$
	$\sqrt{-1}$

variance exists & by CLT:-~ N(0,1) except & around (2n, Yn) d (N (0,1),1) $t_n = g(t_n, Y_n) \xrightarrow{d} N(0, 1)$ $\begin{cases} E \\ Y \end{cases} \xrightarrow{l} N(0, 1)$ of romant =1/2 you have sample variance out Question: When