UCN偏極解析器の開発に向けた 鉄薄膜の磁気特性の評価

2021/07/13~17 BL05

Akatsuka Hiroaki, Higuchi Takashi

8/31

- BGの評価
- 磁化した鉄の内部磁場を求めるためのフィッティング
- 磁場+偏極率?の関係

目次

- 目的
- ・ビームの特性
- 実験結果 (q vs R, B(mT) vs Pのグラフ)
- ・まとめ
- ・京大炉実験に向けて

目的

UCN偏極解析器(鉄薄膜内の磁気ポテンシャルによってスピン解析)の開発

- 鉄薄膜への要求 飽和磁化が大きく(スピン解析効率の向上)、保磁力の小さい(漏れ磁場を抑え る)
- 鉄薄膜の評価
 - 鉄薄膜がどの程度の磁場によって磁化するかをVSMで測定
 - ・中性子反射率計での測定

Setup M2による偏極率測定 (サンプルの代わりにM2を置いて測定)

M1, SF, M2でのビームの偏極率測定

Direct, SF OFF, SF ON, Polarization rate

up, down共にM1で

波長依存性

 $4\pi \sin \theta$ $q [nm^{-1}]$ $q [nm^{-1}]$

q=0.2~0.42の領域では偏極率が80%以上ある

Setup 鉄薄膜の反射率測定

Distance from the concrete shielding exit (mm)

Setup 鉄薄膜の反射率測定

Distance from the concrete shielding exit (mm)

測定手順

- まず、-8.01 mTを印加
- ・次に、印加磁場を上げながら、 反射率を測定
- AFP ON, OFFでの反射率から、 偏極率を求めた

q-dependence of the polarization power

Color coding by the magnitude of the magnetic field applied to the sample

up, down共にM1で 反射されている領域

偏極率~0.8の領域

反射率のq依存性 スピンフリッパーOFF

$$q = \frac{4\pi \sin \theta}{\lambda}$$

偏極率のq依存性

偏極率の サンプルへの 印加磁場依存性

q-dependence of the polarization power (Fe 30nm)

Color coding by the magnitude of the magnetic field applied to the sample

q-dependence of the polarization power (Fe 30nm)

(automatic scan)

q-dependence of the polarization power (Fe 50nm)

Color coding by the magnitude of the magnetic field applied to the sample

q-dependence of the polarization power (Fe 50nm)

(automatic scan)

q-dependence of the polarization power (Fe 90nm)

Color coding by the magnitude of the magnetic field applied to the sample

q-dependence of the polarization power (Fe 90nm)

(automatic scans)

補正した電流による実験結果

■転移が観測された電流値、対応する磁場

		VSMの結果		中性子反射率測定の結果 (prelim.)		
Sample	Hc (Oe)	Hs (Oe)	Bs (Oe)	It (A) (*)	H_k (Oe)	H_a (Oe)
a) Si+Fe(30 nm)	16. 5	29.8	21553	0.190	11.8	10.2
b) Si+Fe(50 nm)	16.7	24.5	22373	0.207	12.5	11.0
c) Si+Fe(90 nm)	20.30	45.5	24879	0.265	15.0	13.5

- ・ (*): 実際の印加電流値に補正済み
- H_k: 北口さんのデータによる電流磁場較正
- H_a: 今回の測定に基づく電流磁場較正
- B-Hカーブに図示
 - ・ 実線: 北口さんのデータに基づく較正
 - 破線: 今回の測定に基づく較正

まとめ

- 中性子反射率計で鉄薄膜30 nm, 50 nm, 90nmを印加する磁場を変えて測定した
- VSMと中性子反射率計の結果を比較したところ、立ち上がりの磁場に系統的な違いがあった

京大炉実験に向けて

- やりたいことヒステリシスが鈍っていたサンプルの測定 (中性子反射率計)
- ・セットアップについて(必要なもの、治具、偏極ミラー?)
- フラックスがどの程度か (統計)
- M1の反射率がわからない
 全部なし、M1のみのデータがあるがうまくいかなかった

M1について(保留)

Back up

- ・セットアップ
- 何も置かないスペクトル
- m1のみ、m1,m2のみ、サンプル
- 1枚目に置いていないダイレクト?
- 厚さ?
- M1のみのデータが良いのがない

Setup (Comparison of incidence angles with different m2)

Comparison of incidence angles with different m2

incidence angle m2 0.48deg vs 0.97deg (8.01mT, AFP ON)

Comparison of incidence angles with different m2 incidence angle m2 0.48deg vs 0.97deg (8.01mT, AFP OFF)

ミラーの性能

0.3 < q < 1.1であれば偏極率 $P \sim 1$ 、 $q \sim 0.2$ でP > 0.9

Fe / Si polarising supermirror

Spin dependent reflectivity and polarization of a Fe/Si polarizing supermirror m = 5.5

Determination of peak position

Determine the peak from the average of the histogram over the selected range

範囲の選択の仕方によって ±1 mm程度ずれてくる(選択範囲を示す)

$$2 \sin \theta_{\text{m}_2} \sim \frac{x_{\text{peak}} - x_{\text{direct}}}{x_{\text{m}_2 \sim \text{det}}}$$

$$= \frac{\sqrt{1^2 + 1^2}}{344} = 0.0041$$

$$Y_{\text{error}_{\text{max}}} = \frac{2\pi}{0.2} \times 0.0041 \sim \pm 0.13$$

どのようにピークを決定すべきか?

サンプルを変えた時にqがずれてくる

$$q = \frac{4\pi \sin \theta}{\lambda}$$

$$\lambda(0.2 \sim 1 \text{ nm})$$

磁場測定と業者の測定と比較

妥当性を検証? 残差のプロット?磁場を変える精度が3%ある?

• 業者の測定

$$B_{\text{kitaguchi}}(\text{mT}) = -4.395(9) \frac{\text{mT}}{A} I_{\text{real}} - 0.34(4)$$

• 今回の測定(y方向)

$$B_y(\text{mT}) = -4.296(9) \frac{\text{mT}}{A} I_{\text{real}} - 0.205(9)$$

• 今回の測定(ノルム)

$$B_{\text{norm}}(\text{mT}) = -4.323(8) \frac{\text{mT}}{A} I_{\text{real}} - 0.202(9)$$

sample 30 nm 8.01 mT (saturated)

緑をとるには、上流ミラーの角度を深くする必要がある

sample 50 nm 8.13 mT (saturated)

sample 90 nm 8.13 mT (saturated)

AFP OFF

AFP ON

- Pol power の続き
- 上流ミラーのみをおいて測ったデータで何か言える?