Homework 2

Question 1

Most discriminative attribute

The attribute that was deemed the most discriminative for the recurrance of the disease was the breast attribute, with a weight of 0.253

Decision tree height

The height of the decision tree generated is 7.

Pure partitions

The node-caps -- no -- irradiat -- no -- tumor-size -- 0-4 -- menopause -- ge40 -- no-recurrence-event is a pure leaf partition in the tree

Figure 1: pure leaf partition

Question 2

Figure 2: gain 0.01, max depth 10

This is the original tuple of configuration values, the tables of weights for each attribute is as follows:

Attribute	Weight
breast	0.2532550974160511
menopause	0.23805216502842008
irradiat	0.14435823064078993
inv-nodes	0.11028606216489178
deg-malig	0.09565463631753374
breast-quad	0.07938395975554524
age	0.0683047025088976
node-caps	0.007801823805608859
tumor-size	0.002903322362261681

Figure 3: gain 0.01, max depth 5

We notice that by halving the maximum depth of the tree, the most significant attribute becomes irradiat, with a weight of 0.352

Attribute	Weight	
irradiat	0.35258774682691774	
deg-malig	0.0984743548059487	
tumor-size	0.007091219430150039	
node-caps	0.019055563818908165	

breast-quad	0.10703518944505139
inv-nodes	0.09866675322109492
breast	0.30045027740853664
age	0.016638895043392433

Figure 4: gain 0.01, max depth 3

We see that by further reducing the maximum depth of the tree the table of weights changes again, in particular there is not enough depth to take into account more than three attributes so we end up with irradiat, deg-malig and node-caps as the most significant attributes.

Attribute	Weight
irradiat	0.7242905594804206
deg-malig	0.20005362846304608
node-caps	0.07565581205653318

Figure 5: gain 0.1, max depth 10

A minimal gain of 0.1 is too high for the tree to be able to split the data, so the tree is a single node with the most common class.

Figure 6: gain 0.05, max depth 10

With a minimal gain of 0.05 the tree is able to split the data, the table of weights is as follows:

Attribute	Weight	
irradiat	0.46895231084037786	
deg-malig	0.06922665308270236	
node-caps	0.026179973315981146	
inv-nodes	0.13555584033360638	
breast	0.2772254512663664	
age	0.022859771160966044	

Question 3

After performing cross-validation on the dataset with the decision trees with parameters max_depth and min_gain with values equal to the ones in the previous question, we obtain the following results.

max_depth	min_gain	accuracy
10	0.01	67.48% +/-6.59% (micro average: $67.48%$)
5	0.01	70.28% +/- $7.75%$ (micro average: $70.28%$)
3	0.01	74.82% + /-6.64% (micro average: $74.83%$)
10	0.1	70.30% +/- $1.43%$ (micro average: $70.28%$)
10	0.05	70.64% +/-6.20% (micro average: $70.63%$)

So the maximum accuracy is achieved with a maximum depth of 3 and a minimal gain of 0.01.

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	37	45	45.12%
pred. 'no-recurrence-events'	48	156	76.47%
class recall	43.53%	77.61%	

Figure 7: max depth 10, minimal gain 0.01

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	35	35	50.00%
pred. 'no-recurrence-events'	50	166	76.85%
class recall	41.18%	82.59%	

Figure 8: max depth 5, minimal gain 0.01

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	24	11	68.57%
pred. 'no-recurrence-events'	61	190	75.70%
class recall	28.24%	94.53%	

Figure 9: max depth 3, minimal gain 0.01

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	0	0	0.00%
pred. 'no-recurrence-events'	85	201	70.28%
class recall	0.00%	100.00%	

Figure 10: max depth 10, minimal gain 0.1

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	24	23	51.06%
pred. 'no-recurrence-events'	61	178	74.48%
class recall	28.24%	88.56%	

Figure 11: max depth 10, minimal gain 0.05

Question 4

We have to take into account that bias and variance are inversely proportional, when varying the values of K we are trying to find a balance between the two that minimizes the error. A larger K leads to lower variance and higher bias, while a smaller K leads to higher variance and lower bias. Having a large bias means that the model is not able to capture the complexity of the data and is **underfitting**, while having a large variance means that the model is too complex and is classifying noise, so it is **overfitting**.

K	Accuracy
3	70.26% +/- $7.23%$ (micro average: $70.28%$)
5	73.77% +/- $5.98%$ (micro average: $73.78%$)
7	74.84% +/- $6.23%$ (micro average: $74.83%$)
9	75.20% +/- $5.18%$ (micro average: $75.17%$)
11	73.45% +/- 5.57% (micro average: 73.43%)

We can see that the best accuracy is achieved with K=9. The accuracy using the Naïve Bayes classifier is 72.45% +/- 7.70% (micro average: 72.38%) so the KNN classifier with K=9 is better and the average of the accuracies for the KNN classifier is 73,504 so the KNN is better all around in this case.

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	27	27	50.00%
pred. 'no-recurrence-events'	58	174	75.00%
class recall	31.76%	86.57%	

Figure 12: KNN K=3

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	26	16	61.90%
pred. 'no-recurrence-events'	59	185	75.82%
class recall	30.59%	92.04%	

Figure 13: KNN K=5

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	25	12	67.57%
pred. 'no-recurrence-events'	60	189	75.90%
class recall	29.41%	94.03%	

Figure 14: KNN K=7

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	23	9	71.88%
pred. 'no-recurrence-events'	62	192	75.59%
class recall	27.06%	95.52%	

Figure 15: KNN K=9

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	19	10	65.52%
pred. 'no-recurrence-events'	66	191	74.32%
class recall	22.35%	95.02%	

Figure 16: KNN K=11

	true 'recurrence-events'	true 'no-recurrence-events'	class precision
pred. 'recurrence-events'	41	35	53.95%
pred. 'no-recurrence-events'	44	166	79.05%
class recall	48.24%	82.59%	

Figure 17: Naïve Bayes

Question 5

The data for the correlation matrix can be visualized with the following table:

Attributes	age	menopa	tumor-size	inv-nodes	node-caps	deg-malig	breast	breast-quad	irradiat
age	1	0.241	-0.045	-0.001	0.052	-0.043	0.067	-0.024	-0.011
menopause	0.241	1	0.019	-0.011	0.130	-0.161	0.077	-0.096	-0.075
tumor-size	-0.045	0.019	1	-0.131	0.058	0.133	-0.022	-0.056	-0.022
inv-nodes	-0.001	-0.011	-0.131	1	-0.465	-0.213	0.040	0.063	0.399
node-caps	0.052	0.130	0.058	-0.465	1	0.098	0.024	-0.036	-0.197
deg-malig	-0.043	-0.161	0.133	-0.213	0.098	1	-0.073	0.018	-0.074
breast	0.067	0.077	-0.022	0.040	0.024	-0.073	1	0.175	-0.019
breast-quad	-0.024	-0.096	-0.056	0.063	-0.036	0.018	0.175	1	-0.005
irradiat	-0.011	-0.075	-0.022	0.399	-0.197	-0.074	-0.019	-0.005	1

Figure 18: correlation matrix

while the data of the pairwise table is the following (Only the first 10 and last 10 rows are shown):

Attribute 1	Attribute 2	Correlation
inv-nodes	irradiat	0.39911819719082897
age	menopause	0.24059243233053124
breast	breast-quad	0.1751707189626296
tumor-size	deg-malig	0.13273721749621958
menopause	node-caps	0.13013151242614435
node-caps	deg-malig	0.09784272338880319
menopause	breast	0.07689126686592174
age	breast	0.06720918629451157
inv-nodes	breast-quad	0.0627920149528649

tumor-size	node-caps	0.05761736321041181
tumor-size	breast-quad	-0.05634086948449663
deg-malig	breast	-0.07327153260340742
deg-malig	irradiat	-0.07416583658042385
menopause	irradiat	-0.07510818380013956
menopause	breast-quad	-0.09556274857769992
tumor-size	inv-nodes	-0.13128441345283084
menopause	deg-malig	-0.1612529644952651
node-caps	irradiat	-0.1966134284809648
inv-nodes	deg-malig	-0.21292888705047638
inv-nodes	node-caps	-0.46515754241618157

So the two most correlated attributes are inv-nodes and irradiat with a correlation of 0.39911819719082897, not all the features are equally as important so the naïve indipendence assumption is not valid.