M.Tech (OE1) OE 5020 Design Project January – May 2021

Design of Fluidic Diode for an Oscillating Water Column.

First Review April 2021

Name: Prasad Shamrao Deshpande

Roll no: OE20M012

Guide: Prof. Abdus Samad

Scope and Objectives

Objective

Design the Fluidic Diode for an Oscillating Water Column type wave energy converter.

Scope

- Improve the performance of the twin turbine
- Designing a fluidic diode for targeted output of the twin turbine
- Verify the different shapes for a potential fluidic diode application
- Determine the dimensions of potential fluidic diode shape.
- CAD model of the designed fluidic diode.

Design Methodology

- Obtain the performance characteristics of the twin turbine.
- Calculate operating range of pressure drop of twin turbine through curve fitting technique.
- Match the working pressure of diode and flow rate with the pressure drop and flow rate of twin turbine.
- Choose the optimum dimensions of the diode so that maximum efficiency is obtained from system.

Work done so far...

- Literature Review
- ❖ To obtain the performance characteristics of the twin turbine.
- ❖ Initial Parameter Assumption (guide vane angle, hub ratio, flow rate and inner diameter).
- ❖ To use the curve fitting technique to calculate the pressure drop in forward and reverse direction of the twin turbine
- To plot the performance curves on basis of above calculated data
- The details of above will be presented in the subsequent slides

Performance Curves

$$C_{t} = \frac{2To}{\rho(u^2 + v^2)Ar}$$

$$C_{a} = \frac{2\Delta PQ}{\rho(u^2 + v^2)Av}$$

$$\Phi = \frac{v}{u}$$

Obtain the curves and Digitize the plots to calibrate it

Export data to excel sheet and Fit the polynomial of order n

Check Regression Prediction coefficient and obtain the equation of curve

Caf = -0.3078x6 + 2.2651x5 - 4.751x4 + 0.2832x3 + 5.9876x2 + 3.6672x - 0.2951

Car =
$$0.9808x6 - 9.1296x5 + 32.097x4 - 52.719x3 + 35.366x2 + 6.8355x + 0.7557$$

$$Ctr = -0.129x6 + 1.0756x5 - 3.0752x4 + 3.1771x3 + 0.0649x2 - 0.7917x - 0.1795$$

Process chart

Parameter Assumption

- Guide vane angle 20 degrees
- Air Density -1.2 kg/m^3

Hub ratio – 0.7

Flow rate- 0.15 m³/s

- Inner Diameter 0.24m
- Flow coefficient and rotational speed are varying parameters
- Sinusoidal flow is assumed

$$\eta = \frac{\Delta PQ}{\omega \Sigma T_o}$$

$$v = \frac{Q}{A_{channel}}$$

$$A_{channel} = \frac{\pi}{4} (D_o^2 - D_i^2)$$

(a) Inhaltion

$$r_{mean} = \frac{1}{2} (r_{o} + r_{i})$$

Fig1: Basic arrangement of twin unidirectional Impulse turbine topology

Ref: A Twin Unidirectional Impulse Turbine for Wave Energy Conversion Manabu Takao et al **Analytical Calculations**

Parameter		Value	Unit	Parameter		Value	Unit	Parameter	Value
Guide vane angle		20	deg	Inner diameter		0.24	m	Tof	0.1119
Air Density		1.2	kg/m^3	Rotational Speed		1400	rpm	Tor	-0.0216
Hub ratio		0.7		Cross sectional area		0.0231	m^2	Ро	7.1858
Flow rate		0.15	m^3/sec	Axial flow velo v		6.4935	m/s	Pi	22.043265
Flow coeff		0.8		tangential velo u		8.1169	m/s	effi	0.326
mean radius		0.102	m	W		79.5775	rad/sec		
Caf	$y = -0.3692x^5 + 3.2334x^4 - 9.9211x^3 + 11.101x^2 + 2.550$ - 0.4597		01x ² + 2.5501x	Car	y= -1.2126x ⁵	3x ² + 7.4154x			
Caf	2.8734				Car	3.4673			
Flow coeff	tangential velo	Forward Input coeff	Flow coeff forward	pressure drop	Backward Input coeff	Flow coeff reverse	pressure drop		
Φ	u	Caf	Φf	▲ pf	Car	Φr	▲ pr	▲ p	
0.8	8.1268	0.42	0.2	17.309	9.0225	0.6	486.2462	-468.9372	
0.8	8.1268	3.3141	0.6	178.6055	2.6215	0.2	108.0373	70.5682	
0.8	8.1268	2.541	0.5	125.865	4.139	0.3	178.7773	-52.9123	
0.8	8.1268	2.9276	0.55	151.1054	3.3604	0.25	141.485	9.6204	
0.8	8.1268	2.8502	0.54	145.8793	3.5133	0.26	148.6326	-2.7533	
0.8	8.1268	2.8734	0.543	147.4367	3.4673	0.257	146.4735	0.9632	
Ctf y= -0.3357x5 + 3.0338x4 - 9.8999x3 + 13.149x2 - 2.1762x - 0.1569			Ctr	y = 0.0849x ⁴ - 0.7271x ³ + 1.9264x ² - 1.0196x - 0.0848					
Ctf	1.2013				Ctr	-0.2316			

Plot obtained by Analytical Calculations

Work to be done

- ❖ Match the working pressure of diode and flow rate with the pressure drop and flow rate of twin turbine.
- Choose the optimum dimensions of the diode so that maximum efficiency is obtained from system.
- Cad model of the fluidic diode

Work Schedule

Activity	March	April	May	June	1-15 July
Literature Review					
Obtain the performance characteristics of turbine					
Analytical Calculations					
CAD Modelling					
Report					

Thanks