① Veröffentlichungsnummer: 0 485 823 B1

EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag der Patentschrift: 08.03.95
- (51) Int. Cl.6: C07F 17/00, C08F 4/602

- (21) Anmeldenummer: 91118682.3
- 2 Anmeldetag: 01.11.91
- 2-Substituierte Bisindenylmetallocene, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren bei der Olefinpolymerisation.
- Priorität: 12.11.90 DE 4035883
- 43 Veröffentlichungstag der Anmeldung: 20.05.92 Patentblatt 92/21
- 45) Bekanntmachung des Hinweises auf die Patenterteilung: 08.03.95 Patentblatt 95/10
- Benannte Vertragsstaaten: BE DE ES FR GB IT NL
- 66 Entgegenhaltungen: EP-A- 0 344 887

73) Patentinhaber: HOECHST AKTIENGESELL-**SCHAFT**

D-65926 Frankfurt (DE)

© Erfinder: Winter, Andreas, Dr. Taunusblick 10 W-6246 Glashütten (DE) Erfinder: Antberg, Martin, Dr. Sachsenring 10 W-6238 Hofhelm am Taunus (DE) Erfinder: Spaleck, Walter, Dr. Sulzbacher Strasse 63

> W-6237 Liederbach (DE) Erfinder: Rohrmann, Jürgen, Dr.

Hainpfad 5 W-6233 Kelkheim (Taunus) (DE)

Erfinder: Dolle, Volker, Dr. Hattershelmer Strasse 15

W-6233 Kelkhelm (Taunus) (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Vorliegende Erfindung betrifft neue in 2-Stellung substituierte Bisindenylmetallocene, die sehr vorteilhaft als Katalysatoren bei der Herstellung von Polyolefinen mit hoher Molmasse verwendet werden können

Polyolefine mit hoher Molmasse besitzen insbesondere Bedeutung für die Herstellung von Folien, Platten oder Großhohlkörpern wie z.B. Rohre oder Formteile.

Chirale Metallocene sind in Kombination mit Aluminoxanen aktive, stereospezifische Katalysatoren zur Herstellung von Polyolefinen (US 4,769,510). Unter diesen Metallocen befinden sich auch substituierte Indenverbindungen. So ist z.B. die Verwendung des Katalysatorsystems Ethylen-bis(4,5,6,7-tetrahydro-1-indenyl)zirkondichlorid/Aluminoxan zur Herstellung von isotaktischem Polypropylen bekannt; vgl. EP-A 185 918). Sowohl dieses als auch zahlreiche andere zum Stand der Technik zählende Polymerisationsverfahren besitzen insbesondere den Nachteil, daß bei technisch interessanten Polymerisationstemperaturen nur Polymere mit unakzeptabel niedriger Molmasse erhalten werden.

Überraschenderweise wurde nun gefunden, daß neue in 2-Stellung substituierte Bisindenylmetallocene geeignete Katalysatoren zur Herstellung von Olefinpolymeren mit hoher Isotaktizität, enger Molmassenverteilung und hoher Molmasse sind.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der nachstehenden Formel I

$$\begin{array}{c|c}
 & (\operatorname{CR}^8 \operatorname{R}^9)_{\mathrm{IR}} \\
 & \operatorname{R}^1 & \operatorname{R}^6 & \operatorname{R}^7 \\
 & \operatorname{R}^4 & (\operatorname{CR}^8 \operatorname{R}^9)_{\mathrm{IR}}
\end{array}$$
(1)

worin

20

25

30

35

40

45

M¹

R1 und R2

R3 und R4

R⁵ und R⁶

ein Metall der Gruppe IVb, Vb oder Vlb des Periodensystems ist,

gleich oder verschieden sind und ein Wasserstoffatom, eine C_1 - C_{10} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_6 - C_{10} -Arylgruppe, eine C_6 - C_{10} -Arylgruppe, eine C_7 - C_{10} -Alkenylgruppe, eine C_7 - C_{10} -Arylalkylgruppe, eine C_7 - C_{10} -Alkylarylgruppe, eine C_8 - C_{10} -Arylalkenylgruppe oder ein Halogenatom bedeuten,

gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{10} -Alkylgruppe, die halogeniert sein kann, eine C_6 - C_{10} -Arylgruppe, einen -NR $_2$ ¹⁰, -SR $_3$ ¹⁰, -SiR $_3$ ¹⁰ oder -PR $_2$ ¹⁰-Rest bedeuten, worin R¹⁰ ein Halogenatom,

eine C_1 - C_{10} -Alkylgruppe oder eine C_6 - C_{10} -Arylgruppe ist,

gleich oder verschieden sind und die für R^3 und R^4 genannte Bedeutung haben, mit der Maßgabe, daß R^5 und R^6 nicht Wasserstoff sind,

50

R⁷

= BR¹¹, = AIR¹¹, -Ge-, -Sn-, -O-, -S-, = SO, = SO₂, = NR¹¹, = CO, = PR¹¹ oder = P- (O)R¹¹ ist,

wobei

R11, R12 und R13

gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{10} -Alkylgruppe, C_1 - C_{10} -Fluoralkylgruppe, eine C_6 - C_{10} -Arylgruppe, eine C_6 - C_{10} -Alkoxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine C_7 - C_{40} -Arylalkylgruppe, eine C_8 - C_{40} -Arylalkenylgruppe, eine C_7 - C_{40} -Alkylarylgruppe bedeuten oder R^{11} und R^{12} oder R^{11} und R^{13} jeweils mit den sie verbindenden Atomen einen Ring bilden,

 M^2

15

20

25

30

Silizium, Germanium oder Zinn ist,

R8 und R9

gleich oder verschieden sind und die für R¹¹ genannte Bedeutung haben und m und n gleich oder verschieden sind und null, 1 oder 2 sind, wobei m plus n null, 1

oder 2 ist.

Alkyl steht für geradkettiges oder verzweigtes Alkyl. Halogen (halogeniert) bedeutet Fluor, Chlor, Brom oder Jod, bevorzugt Fluor oder Chlor.

In Formel I ist M¹ ein Metall der Gruppe IVb, Vb oder Vlb des Periodensystems, beispielsweise Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, vorzugsweise Zirkon, Hafnium und

 R^1 und R^2 sind gleich oder verschieden und bedeuten ein Wasserstoffatom, eine C_1 - C_{10} -, vorzugsweise C_1 - C_3 -Alkylgruppe, eine C_1 - C_{10} -, vorzugsweise C_1 - C_3 -Alkoxygruppe, eine C_6 - C_{10} -, vorzugsweise C_6 - C_8 -Arylgruppe, eine C_6 - C_{10} -, vorzugsweise C_6 - C_8 -Aryloxygruppe, eine C_2 - C_{10} -, vorzugsweise C_7 - C_1 -Alkylgruppe, eine C_7 - C_4 -, vorzugsweise C_7 - C_1 -Alkylgruppe, eine C_7 - C_4 -, vorzugsweise C_7 - C_1 -Arylalkenylgruppe oder ein Halogenatom, vorzugsweise Chlor.

 R^3 und R^4 sind gleich oder verschieden und bedeuten ein Wasserstoffatom, ein Halogenatom, bevorzugt ein Fluor-, Chlor- oder Bromatom, eine C_1 - C_{10} -, vorzugsweise C_1 - C_4 -Alkylgruppe, die halogeniert sein kann, eine C_6 - C_{10} -, vorzugsweise C_6 - C_8 -Arylgruppe, einen - NR_2^{10} , - SR^{10} , - SR^{10} , - SIR_3^{10} oder - PR_2^{10} -Rest, worin R^{10} ein Halogenatom, vorzugsweise Chloratom, oder eine C_1 - C_{10} -,vorzugsweise C_1 - C_3 -Alkylgruppe oder C_6 - C_{10} -, vorzugsweise C_6 - C_8 -Arylgruppe ist. Besonders bevorzugt sind R^3 und R^4 Wasserstoff.

R⁵ und R⁶ sind gleich oder verschieden, bevorzugt gleich, und haben die für R³ und R⁴ beschriebene Bedeutung, mit der Maßgabe, daß R⁵ und R⁶ nicht Wasserstoff sein dürfen. Bevorzugt sind R⁵ und R⁶ (C₁-C₄)-Alkyl, das halogeniert sein kann, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl oder Trifluormethyl, insbesondere Methyl.

R7 ist

50

=BR¹¹, =AIR¹¹, -Ge-, -Sn-, -O-, -S-, =SO, =SO₂, =NR¹¹, =CO, =PR¹¹ oder =P(O)R¹¹, wobei R¹¹, R¹² und R¹³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-, vorzugsweise C₁-C₄-Alkylgruppe, insbesondere Methylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, vorzugsweise CF₃-Gruppe, eine C₆-C₁₀-, vorzugsweise C₆-Cგ-Arylgruppe, eine C₆-C₁₀-Fluorarylgruppe, vorzugsweise Pentafluorphenylgruppe, eine C₁-C₁₀-, vorzugsweise C₁-C₄-Alkoxygruppe, insbesondere Methoxygruppe, eine C₂-C₁₀-, vorzugsweise C₂-C₄-Alkenylgruppe, eine C₂-C₄₀-, vorzugsweise Cȝ-C₁₀-Arylalkylgruppe, eine C₃-C₄₀-, vorzugsweise Cȝ-C₁₂-Alkylarylgruppe bedeuten, oder R¹¹ und R¹² oder R¹¹ und R¹³ bilden jeweils zusammen mit den sie verbindenden Atomen einen Ring.

M² ist Silizium, Germanium oder Zinn, bevorzugt Silizium und Germanium.

 R^7 ist vorzugsweise -CR¹¹R¹², = SiR¹¹R¹², = GeR¹¹R¹², -O-, -S-, = SO, = PR¹¹ oder = P(0)R¹¹.

R⁸ und R⁹ sind gleich oder verschieden und haben die für R¹¹ genannte Bedeutung.

m und n sind gleich oder verschieden und bedeuten null, 1 oder 2, bevorzugt null oder 1, wobei m plus n null, 1 oder 2, bevorzugt null oder 1 ist.

Somit sind die besonders bevorzugten Metallocene solche, bei denen in Formel I M¹ Zr oder Hf, R¹ und R² gleich oder verschieden sind und Methyl oder Chlor, R³ und R⁴ Wasserstoff, R⁵ und R⁶ gleich oder verschieden sind und Methyl, Ethyl oder Trifluormethyl, R² einen Rest

und n plus m null oder 1

5

25

30

bedeuten; insbesondere die in den Ausführungsbeispielen aufgeführten Verbindungen I.

Unter den in den Ausführungsbeispielen genannten Verbindungen I besitzen rac-Dimethylsilyl(2-methyl-1-indenyl)₂-zirkondichlorid, rac-Ethylen(2-methyl-1-indenyl)₂-zirkondichlorid, rac-Dimethylsilyl(2-methyl-1-indenyl)₂-zirkondimethyl und rac-Ethylen(2-methyl-1-indenyl)₂-zirkondimethyl besondere Bedeutung.

Die chiralen Metallocene werden als Racemat zur Herstellung von hochisotaktischen Poly-1-olefinen eingesetzt. Verwendet werden kann aber auch die reine R- oder S-Form. Mit diesen reinen stereoisomeren Formen ist ein optisch aktives Polymeres herstellbar. Abgetrennt werden sollte jedoch die meso-Form der Metallocene, da das polymerisationsaktive Zentrum (das Metallatom) in diesen Verbindungen wegen Spiegelsymmetrie am Zentralmetall nicht mehr chiral ist und daher kein hochisotaktisches Polymeres erzeugen kann. Wird die meso-Form nicht abgetrennt, entsteht neben isotaktischen Polymeren auch ataktisches Polymer. Für bestimmte Anwendungen - weiche Formkörper beispielsweise - kann dies durchaus wünschenswert sein.

Die Trennung der Stereoisomeren ist im Prinzip bekannt.

Gegenstand der vorliegenden Erfindung ist ferner ein Verfahren zur Herstellung der Metallocene I, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

$$\begin{bmatrix}
R^{3} & CR^{8}R^{9} \\
R^{5} & R^{5}
\end{bmatrix}_{m}^{R^{7}-(CR^{8}R^{9})_{n}} = \begin{bmatrix}
R^{4} & R^{4} \\
R^{6} & R^{6}
\end{bmatrix}_{n}^{M_{2}^{3}}$$
(11)

.

wobei R³-R³, m und n die in Formel I beschriebene Bedeutung haben und M³ ein Alkalimetall, bevorzugt Lithium, bedeutet,

a) mit einer Verbindung der Formel III

5 M¹X₄ (III),

worin M¹ die in Formel I genannte Bedeutung besitzt und X ein Halogenatom, bevorzugt Chlor, bedeutet, oder

b) mit einer Verbindung der Formel Illa

10

15

 $M^1X_4L_2$ (IIIa),

worin M¹ und X die genannten Bedeutungen besitzen und L für einen Donorliganden steht, umsetzt und das erhaltene Reaktionsprodukt gegebenenfalls derivatisiert.

Geeignete Donorliganden sind beispielsweise Tetrahydrofuran, Diethylether, Dimethylether u.ä., vorzugsweise Tetrahydrofuran (THF).

Die Synthese wird unter Schutzgas und in wasserfreien Lösemitteln durchgeführt. Im Falle a) wird zu einer Suspension der Verbindung der Formel III in einem Lösemittel wie Toluol, n-Hexan, Dichlormethan, Ether, THF, n-Pentan, Benzol, vorzugsweise in Dichlormethan oder Toluol, das getrocknete Salz der Formel II zugegeben. Die Reaktionstemperatur beträgt -78 °C bis 30 °C, vorzugsweise -40 °C bis 10 °C. Die Reaktionsdauer beträgt 0,25 bis 24 h, vorzugsweise 1 bis 4 h.

Im Falle b) wird zu einer Lösung oder einer Suspension einer Verbindung der Formel IIIa in einem Lösemittel wie Toluol, Xylol, Ether oder THF, vorzugsweise THF, eine Lösung des Salzes der Formel II in einem der obengenannten Lösemittel zugegeben. Es kann aber auch so vorgegangen werden, daß beide Komponenten simultan zu einem Lösemittel getropft werden. Dies wird bevorzugt durchgeführt. Die Reaktionstemperatur beträgt -40 °C bis 100 °C, vorzugsweise 0 °C bis 50 °C, insbesondere 10 °C bis 35 °C. Die Reaktionsdauer beträgt 0,25 h bis 48 h, vorzugsweise 1 h bis 24 h; insbesondere 2 h bis 9 h.

Die so erhaltenen Halogenderivate können nach bekannten Standardverfahren in die Alkyl-, Aryl- oder Alkenylkomplexe umgewandelt werden.

Die Synthese der Verbindungen der Formeln II erfolgt durch Deprotonierung. Diese Reaktion ist bekannt; vgl. J. Am. Chem. Soc., 1.12 (1990) 2030-2031, ibid. 110 (1988) 6255-6256, ibid. 109 (1987), 6544-6545, J. Organomet. Chem., 322 (1987) 65-70, New. J. Chem. 14 (1990) 499-503 und die Ausführungsbeispiele.

Auch die Synthese der protonierten Formen von den Verbindungen dieser Formeln ist beschrieben, mit der Abweichung, daß sie in α- und β-Position nicht entsprechend substituiert sind (Bull. Soc. Chim., 1967, 2954). Die zu ihrer Synthese benötigten Brückenbausteine sind in der Regel bei kommerziellen Anbieten erhältlich, die benötigten Indenyl-Verbindungen dagegen nicht. Einige Synthesevorschriften beinhaltende Literaturzitate seien angegeben, die Vorgehensweise für nicht angeführte Indenderivate ist analog: J. Org. Chem., 49 (1984) 4226-4237, J. Chem. Soc., Perkin II, 1981, 403-408, J. Am. Chem. Soc., 106 (1984) 6702, J. Am. Chem. Soc., 65 (1943) 567, J. Med. Chem., 30 (1987) 1303-1308, Chem. Ber. 85 (1952) 78-85 und die Ausführungsbeispiele.

50

- 45

Die Metallocene I können somit prinzipiell nach folgendem Reaktionsschema hergestellt werden:

$$^{10} \qquad \begin{array}{c} {}^{HR^{C}-(CR^{8}R^{9})_{m}-R^{7}-(CR^{8}R^{9})_{n}-R^{d}H} & \underline{2 \text{ Butyl Li}} \\ {}^{LiR^{C}-(CR^{8}R^{9})_{m}-R^{7}-(CR^{8}R^{9})_{n}-R^{d}Li} & \underline{M^{1}Cl_{4}} \end{array}$$

$$(R^{8}R^{9}C)_{m} - R^{c} \qquad (R^{8}R^{9}C)_{m} - R^{c} \qquad$$

X = CI, Br, I, O-Tosyl; H₂R^c =

 $H_2R^d =$

Ξ.,

55

35

45

Erfindungsgemäß wird als Cokatalysator bei der Olefinpolymerisation ein Aluminoxan der Formel (IV)

10 für den linearen Typ und/oder der Formel (V)

für den cyclischen Typ verwendet, wobei in den Formeln (IV) und (V) die Reste R gleich oder verschieden sein können und eine C_1 - C_6 -Alkylgruppe, eine C_6 - C_{18} -Arylgruppe oder Wasserstoff bedeuten, und p eine ganze Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeutet.

Bevorzugt sind die Reste R gleich und bedeuten Methyl, Isobutyl, Phenyl oder Benzyl, besonders bevorzugt Methyl.

Sind die Reste R unterschiedlich, so sind sie bevorzugt Methyl und Wasserstoff oder alternativ Methyl und Isobutyl, wobei Wasserstoff bzw. Isobutyl bevorzugt zu 0,01 - 40 % (Zahl der Reste R) enthalten sind.

Das Aluminoxan kann auf verschiedene Arten nach bekannten Verfahren hergestellt werden. Eine der Methoden ist beispielsweise, daß eine Aluminiumkohlenwasserstoffverbindung und/oder eine Hydridoaluminiumkohlenwasserstoffverbindung mit Wasser (gasförmig, fest, flüssig oder gebunden - beispielsweise als Kristallwasser) in einem inerten Lösungsmittel (wie z.B. Toluol) umgesetzt wird. Zur Herstellung eines Aluminoxans mit verschiedenen Alkylgruppen R werden entsprechend der gewünschten Zusammensetzung zwei verschiedene Aluminiumtrialkyle (AIR₃ + AIR'₃) mit Wasser umgesetzt (vgl. S. Pasynkiewicz, Polyhedron 9 (1990) 429 und EP-A 302 424).

Die genaue Struktur der Aluminoxane IV und V ist nicht bekannt.

Unabhängig von der Art der Herstellung ist allen Aluminoxanlösungen ein wechselnder Gehalt an nicht umgesetzter Aluminiumausgangsverbindung, die in freier Form oder als Addukt vorliegt, gemeinsam.

Es ist möglich, das Metallocen I vor dem Einsatz in der Polymerisationsreaktion mit einem Aluminoxan der Formel (IV) und/oder (V) vorzuaktivieren. Dadurch wird die Polymerisationsaktivität deutlich erhöht und die Kornmorphologie verbessert.

Die Voraktivierung der Übergangsmetallverbindung wird in Lösung vorgenommen. Bevorzugt wird dabei das Metallocen in einer Lösung des Aluminoxans in einem inerten Kohlenwasserstoff aufgelöst. Als inerter Kohlenwasserstoff eignet sich ein aliphatischer oder aromatischer Kohlenwasserstoff. Bevorzugt wird Toluol verwendet.

Die Konzentration des Aluminoxans in der Lösung liegt im Bereich von ca. 1 Gew.-% bis zur Sättigungsgrenze, vorzugsweise von 5 bis 30 Gew.-%, jeweils bezogen auf die Gesamtlösung. Das Metallocen kann in der gleichen Konzentration eingesetzt werden, vorzugsweise wird es jedoch in einer Menge von 10⁻⁴ - 1 mol pro mol Aluminoxan eingesetzt. Die Voraktivierungszeit beträgt 5 Minuten bis 60 Stunden, vorzugsweise 5 bis 60 Minuten. Man arbeitet bei einer Temperatur von -78 °C bis 100 °C, vorzugsweise 0 bis 70 °C.

Das Metallocen kann auch vorpolymerisiert oder auf einen Träger aufgebracht werden. Zur Vorpolymerisation wird bevorzugt das (oder eines der) in der Polymerisation eingesetzte(n) Olefin(e) verwendet.

Geeignete Träger sind beispielsweise Silikagele, Aluminiumoxide, festes Aluminoxan oder andere anorganische Trägermaterialign. Ein geeignetes Trägermaterial ist auch ein Polyolefinpulver in feinverteilter Form.

Eine weitere mögliche Ausgestaltung des Verfahrens besteht darin, daß man an Stelle oder neben eines Aluminoxans eine salzartige Verbindung der Formel $R_xNH_{4-x}BR'_4$ oder der Formel $R_3PHBR'_4$ als Cokatalysator verwendet. Dabei sind x=1,2 oder 3, R=Alkyl oder Aryl, gleich oder verschieden, und R'=Aryl, das auch fluoriert oder teilfluoriert sein kann. In diesem Fall besteht der Katalysator aus dem Reaktionsprodukt eines Metallocens mit einer der genannten Verbindungen (vgl. EP-A 277 004).

Die Polymerisation oder Copolymerisation wird in bekannter Weise in Lösung, in Suspension oder in der Gasphase, kontinuierlich oder diskontinuierlich, ein- oder mehrstufig bei einer Temperatur von 0 bis 150 °C, vorzugsweise 30 bis 80 °C, durchgeführt. Polymerisiert oder copolymerisiert werden Olefine der Formel Ra-CH=CH-Rb. In dieser Formel sind Ra und Rb gleich oder verschieden und bedeuten ein Wasserstoffatom oder einen Alkylrest mit 1 bis 14 C-Atomen. Ra und Rb können jedoch auch mit den sie verbindenden C-Atomen einen Ring bilden. Beispiele für solche Olefine sind Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1-Octen, Norbornen oder Norbornadien. Insbesondere wird Propylen und Ethylen polymerisiert.

Als Molmassenregler wird, falls erforderlich, Wassertoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 100 bar. Bevorzugt ist die Polymerisation in dem technisch besonders interessanten Druckbereich von 5 bis 64 bar.

Dabei wird das Metallocen in einer Konzentration, bezogen auf das Übergangsmetall, von 10^{-3} bis 10^{-8} , vorzugweise 10^{-4} bis 10^{-7} mol Übergangsmetall pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen angewendet. Das Aluminoxan wird in einer Konzentration von 10^{-5} bis 10^{-1} mol, vorzugsweise 10^{-4} bis 10^{-2} mol pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen verwendet. Prinzipiell sind aber auch höhere Konzentrationen möglich.

Wenn die Polymerisation als Suspensions- oder Lösungspolymerisation durchgeführt wird, wird ein für das Ziegler-Niederdruckverfahren gebräuchliches inertes Lösemittel verwendet. Beispielsweise arbeitet man in einem aliphatischen oder cycloaliphatischen Kohlenwasserstoff; als solcher sei beispielsweise Butan, Pentan, Heptan, Isooctan, Cyclohexan, Methylcyclohexan, genannt.

Weiterhin kann eine Benzin- bzw. hydrierte Dieselölfraktion benutzt werden. Brauchbar ist auch Toluol. Bevorzugt wird im flüssigen Monomeren polymerisiert.

Werden inerte Lösemittel verwendet, werden die Monomeren gasförmig oder flüssig zudosiert.

Die Dauer der Polymerisation ist beliebig, da das erfindungsgemäß zu verwendende Katalysatorsystem einen nur geringen zeitabhängigen Abfall der Polymerisationsaktivität zeigt.

Das Verfahren zeichnet sich dadurch aus, daß die erfindungsgemäßen Metallocene im technisch interessanten Temperaturbereich zwischen 30 und 80 °C Polymere mit hoher Molmasse, hoher Stereospezifität und guter Kornmorphologie erzeugen.

Insbesondere die erfingungsgemäßen Zirkonocene stoßen in einem Molmassenbereich vor, der beim bisherigen Stand der Technik den Hafnocenen vorbehalten war. Diese hatten jedoch den Nachteil nur geringer Polymerisationsaktivität und sehr hoher Katalysatorkosten und die damit hergestellten Polymeren wiesen eine schlechte Pulvermorphologie auf.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern.

35 Synthese der Ausgangssubstanzen

I) Synthese von 2-Me-Inden

110,45 g (0,836 mol) 2-Indanon wurden in 500 cm³ Diethylether gelöst und 290 cm³ 3 n (0,87 mol) etherische Methylgrignardlösung so zugetropft, daß leicht refluxierte. Nach 2 h Kochen unter leichtem Rückfluß wurde auf eine Eis/Salzsäure-Mischung gegeben und mit Ammoniumchlorid ein pH von 2-3 eingestellt. Die organische Phase wurde abgetrennt und mit NaHCO₃ und Kochsalzlösung gewaschen und getrocknet. Es wurden 98 g Rohprodukt (2-Hydroxy-2-methyl-indan) erhalten, welches nicht weiter gereinigt wurde.

In 500 cm³ Toluol wurde dieses Produkt gelöst, mit 3 g p-Toluolsulfonsäure am Wasserabscheider bis zur Beendigung der Wasserabspaltung erhitzt, eingeengt, in Dichlormethan aufgenommen und über Silicagel filtriert und im Vakuum destilliert (80 ° C/10 mbar).

Ausbeute: 26,49 g (0,22 mol-26 %).

Die Synthese dieser Verbindung ist auch beschrieben in: C.F. Koelsch, P.R. Johnson, J. Am. Chem. Soc., 65 (1943) 567-573

II) Synthese von (2-Me-Inden)2SiMe2

13 g (100 mmol) 2-Me-Inden wurde in 400 cm³ Diethylether gelöst und 62,5 cm³ 1,6 n (100 mmol) n-Butyllithium-n-Hexan-Lösung innerhalb 1 h unter Eiskühlung zugetropft und dann 1 h bei ~35 °C nachgerführt.

6,1 cm³ (50 mmol) Dimethyldichlorsilan wurden in 50 cm³ Et₂O vorgelegt und bei 0 °C die Lithiosalzlösung innerhalb von 5 h zugetropft, über Nacht bei Raumtemperatur gerührt und über das Wochenende

stehen gelassen.

Vom abgesetzten Feststoff wurde abfiltriert und zur Trockne eingedampft. Nach Extraktion mit kleinen Portionen n-Hexan wurde filtriert und eingeengt. Es fielen 5,7 g (18,00 mmol) eines weißen Kristallisats an. Die Mutterlauge wurde eingeengt und dann säulenchromatographisch (n-Hexan/H₂CCl₂ 9:1 vol.) gereinigt, wobei nochmals 2,5 g (7,9 mmol-52 %) Produkt (als Isomerengemisch) anfielen.

 r_F (SiO₂; n-Hexan/H₂CCl₂ 9:1 vol.) = 0,37

Das 1-H-NMR-Spektrum zeigt die für ein Isomerengemisch zu erwartenden Signale in Verschiebung und Integrationsverhältnis.

10 III) Synthese von (2-Me-Ind)₂ CH₂ CH₂

3 g (23 mmol) 2-Me-Inden wurden in 50 cm³ THF gelöst und 14,4 cm³ 1,6 n (23,04 mmol) n-Butyllithium-n-Hexan-Lösung zugetropft und dann 1 h bei 65 °C gerührt. Danach wurde 1 ml (11,5 mmol) 1,2-Dibromethan bei -78 °C zugegeben, auf Raumtemperatur erwärmen lassen und 5 h gerührt. Nach Eindampfen wurde säulenchromatographisch gereinigt (SiO₂; n-Hexan/H₂CCl₂ 9:1 vol.).

Die produkthaltigen Fraktionen wurden vereinigt, eingedampft und in trockenem Ether aufgenommen, über MgSO₄ getrocknet, filtriert und das Lösemittel abgezogen.

Ausbeute: 1,6 g (5,59 mmol - 49 %) an Isomerengemisch-

 r_F (SiO₂; n-Hexan/H₂CCl₂ 9:1 vol.) = 0,46

Das 1-H-NMR-Spektrum entspricht der Erwartung für ein Isomerengemisch in Signalverschiebung und Integration.

Synthese der Metallocene I

40

50

5 IV) Synthese von rac-Dimethylsilyl(2-Me-1-indenyl)2-zirkondichlorid

1,68 g(5,31 mmol) des Chelatliganden Dimethylsilyl(2-methylinden)₂ wurden in 50 cm³ THF gegeben und 6,63 cm³ einer 1,6 n (10,61 mmol) n-BuLi-n-Hexan-Lösung zugetropft. Die Zugabe erfolgte bei Umgebungstemperatur innerhalb 0,5 h. Nach 2 stündigem Rühren bei ca. 35 °C wurde das Lösemittel im Vakuum abgezogen und der Rückstand mit n-Pentan verrührt, abfiltriert und getrocknet.

Das so erhaltene Dilithiosalz wurde bei -78 °C zu einer Suspension von 1,24 g (5,32 mmol) ZrCl₄ in 50 cm³ CH₂Cl₂ gegeben und die Mischung 3 h bei dieser Temperatur gerührt. Nach Erwärmung auf Raumtemperatur über Nacht, wurde eingedampft. Das 1-H-NMR-Spektrum zeigte, neben dem Vorliegen von etwas ZrCl₄ (thf)₂, ein rac-meso-Gemisch. Nach Verrühren mit n-Pentan und Trocknen wurde der feste, gelbe Rückstand in THF suspendiert, abfiltriert und NMR-spektroskopisch untersucht. Diese drei Arbeitsschritte wurden mehrmals wiederholt; schließlich wurden 0,35 g (0,73 mmol-14 %) Produkt erhalten, in dem die rac-Form, nach 1-H-NMR, auf mehr als 17:1 angereichert war.

Die Verbindung zeigte eine korrekte Elementaranalyse und die folgenden NMR-Signale (CDCl₃, 100 MHz): $\delta = 1,25$ (s, 6H, Si-Me); 2,18 (s, 6H, 2-Me), 6,8 (s, 2H, 3-H-Ind); 6,92-7,75 (m, 8H, 4-7-H-Ind).

V) rac-Dimethylsilyl(2-Me-1-indenyl)2-zirkondimethyl

0,24 g (0,58 mmol) rac-Dimethylsilyl(2-Me-1-indenyl)₂-zirkondichlorid in 40 cm³ Et₂O wurden bei -50 °C tropfenweise mit 1,3 cm³ einer 1,6 n (2,08 mmol) etherischen MeLi-Lösung versetzt und 2 h bei -10 °C gerührt. Nach Austausch des Lösemittels gegen n-Pentan wurde noch 1,5 h bei Raumtemperatur gerührt und der filtrierte Rückstand im Vakuum sublimiert. Es wurden 0,19 g (0,44 mmol-81 %) Sublimat mit einer korrekten Elementaranalyse erhalten.

VI) rac-Ethylen(2-Me-1-indenyl)2-zirkondichlorid

Zu 5,07 g (17,7 mmol) Ligand Ethylen(2-methylinden)₂ in 200 cm³ THF wurde bei Raumtemperatur 14,2 cm³ 2,5 n (35,4 mmol) n-BuLi-n-Hexan-Lösung innerhalb 1 h zugetropft und dann 3 h bei ca. 50 °C gerührt. Dabei geht ein zwischenzeitlich gebildeter Niederschlag wieder in Lösung. Über Nacht wurde stehengelassen.

6,68 g (17,7 mmol) ZrCl₄(thf)₂ in 250 cm³ THF wurden simultan mit obiger Dilithiosalzlösung zu ca. 50 cm³ THF bei 50 °C zugetropft und dann 20 h bei dieser Temperatur gerührt. Der Toluolextrakt des Eindampfrückstands wurde eingedampft. Nach Extraktion des Rückstands mit wenig THF wurde aus Toluol umkristallisiert. Dabei wurden 0,44 g (0,99 mmol-5,6 %) Produkt erhalten, wobei die rac-Form besser als

15:1 angereichert war.

Die Verbindung zeigte eine korrekte Elementaranalyse und die folgenden NMR-Signale (CDCl₃, 100 MHz) : δ = 2,08 (2s, 6H, 2-Me); 3,45-4,18 (m, 4H, -CH₂CH₂-), 6,65 (2H, 3-H-Ind); 7,05-7,85 (m, 8H, 4-7-H-Ind).

VII) $Me_2Zr[(2-Me-Ind)_2CH_2CH_2]$

1,43 g (3,20 mmol) Cl₂Zr[(2-Me-Ind)₂CH₂CH₂] wurden in 50 cm³ Et₂O gelöst und bei -40 °C tropfenweise mit 6 cm³ 1,6 n (9,6 mmol) etherischer Methyllithiumlösung versetzt. Nach 2 h Rühren bei -10 °C wurde der Eindampfrückstand in n-Hexan aufgenommen, 1 h bei Raumtemperatur gerührt und dann nach Filtration eingedampft und sublimiert.

Ausbeute: 1,20 g (2,96 mmol-92 %); korrekte Elementaranalyse

VIII) Cl2 Zr[(2-Me-Ind)2 SiPh2]

15

5

Zu 4,41 g (10 mmol) (2-Me-Ind)₂ SiPh₂ in 40 cm³ THF wurden 12,5 cm³ 1,6 n (20 mmol) n-Butyllithium-n-Hexanlösung bei Raumtemperatur innerhalb von 0,5 h zugetropft und dann 1 h bei 55°C gerührt. Nach Abziehen der Lösemittel wurde in n-Hexan verrührt, abfiltriert und im Vakuum getrocknet.

2,33 g (10 mmol) ZrCl₄ wurden in 50 cm³ H₂CCl₂ suspendiert und bei -78 °C das Dilithiosalz aus obiger Reaktion zugegeben und über Nacht auf Raumtemperatur erwärmt. Nach Filtration wurde eingedampft, mit mehreren kleinen Portionen THF gewaschen und dann im Vakuum getrocknet. Es wurden 2,11 g (3,51 mmol-35 %) Produkt erhalten. Die Elementaranalyse entsprach den zu fordernden C,H,Cl-Werten.

IX) Cl₂Zr[(2-Me-Ind)₂SiMePh]

25

Zu 5,68 g (15 mmol) (2-Me-Ind)₂ SiMePh in 50 cm³ THF wurden 12 cm³ 2,5 n (30 mmol) n-Butyllithium-n-Hexan-Lösung bei 10 °C innerhalb von 1 h zugetropft und 1 h dann bei 50 °C gerührt und eingedampft. Nach suspendieren in n-Hexan wurde abfiltriert und im Vakuum getrocknet.

3,5 g (15,02 mmol) ZrCl₄ wurden in 100 cm³ H₂CCl₂ suspendiert und das Dilithiosalz bei -78 °C zugegeben. Dann wurde 6 h bei -25 °C und 2 h bei 0 °C gerührt. Nach Filtration wurde der Eindampfrückstand mit wenig THF mehrmals extrahiert und dann im Vakuum getrocknet.

Ausbeute: 1,47 g (2,73 mmol-18 %); mit korrekter Elementaranalyse

X) $Cl_2Zr[(2-Et-Ind)_2CH_2CH_2]$

35

Zu 3,77 g (11,99 mmol) (2-Et-Ind)₂CH₂CH₂ in 150 cm³ THF wurden 9,6 cm³ 2,5 n (24 mmol) n-Butyllithium-n-Hexanlösung bei Raumtemperatur innerhalb 10 min. zugetropft. Nach 2 stündigem Rühren bei 50 °C wurde die erhaltene, auf Umgebungstemperatur abgekühlte Dilithiosalzlösung simultan mit einer gleichvolumigen Lösung von 4,53 g (12 mmol) ZrCl₄ zu 50 cm³ THF bei 35 °C innerhalb von 6 h zugetropft und über Nacht weitergerührt. Der eingedampfte Ansatz wurde mit mehreren Portionen einer Toluol/n-Hexan-Mischung (vol. 3:1) extrahiert, filtriert und eingedampft. Nach Waschen mit kleinen Portionen THF wurde im Vakuum getrocknet.

Ausbeute: 2,37 g (4,99 mmol-42 %). Die Elementaranalyse war korrekt.

45 XI) Cl₂Zr[(2-Et-Ind)₂SiMe₂]

- 6,2 g (18 mmol) (2-Et-Ind)₂SiMe₂ in 150 cm³ THF werden mit 22,5 cm³ 1,6 n (36 mmol) etherischer Methyllithiumlösung tropfenweise bei Raumtemperatur innerhalb von 1 h versetzt und bis Beendigung der Gasentwicklung bei 45 °C gerührt. Das Lösemittel wurde abgezogen und dann in n-Pentan digeriert, abfiltriert und im Vakuum getrocknet.
- Zu 4,2 g (18,02 mmol) ZrCl₄ suspendiert in 100 cm³ H₂CCl₂ wurde das Dilithiosalz bei -45°C zugegeben und auf -20°C erwärmen gelassen. Nach 3 h Rühren bei dieser Temperatur wurde auf Raumtemperatur erwärmt, filtriert und eingedampft. Dann wurde mit mehreren Portionen Toluol extrahiert, filtriert und eingedampft. Nach Verrühren mit n-Hexan wurde abfiltriert und im Vakuum getrocknet.
- Ausbeute: 1,04 g (2,06 mmol-11 %). Die Substanz zeigte eine korrekte Elementaranalyse.

XII) Cl₂ Zr[(2-Me-Ind)₂ CHMeCH₂]

Zu 2,12 g (7.06 mmol) (2-Me-Ind)₂ CHMeCH₂ in 40 cm³ THF wurden 8,85 cm³ 1,6 n (14,16 mmol) n-Buthyllithium-n-Hexanlösung bei Raumtemperatur innerhalb von 0,5 h zugetropft und dann 1,5 h bei 55 °C gerührt. Diese Lösung wurde dann bei 0 °C zu 2,66 g (7,05 mmol) ZrCl₄ (thf)₂ in50 cm³ THF über einen Zeitraum von 2 h zugegeben. Nach Rühren von 2 h bei Raumtemperatur wurde eingedampft und mit mehreren kleinen Portionen Toluol/n-Hexan 1:1 (vol.) extrahiert, eingedampft und in der Wärme mit n-Hexan extrahiert, eingeengt und abfiltriert.

Ausbeute: 0,44 g (0,96 mmol-14 %); korrekte Elementaranalyse

XIII) Cl₂Zr[(2-Me-Ind)₂CMe₂]

10

1,97 g (6,56 mmol) (2-Me-Ind)₂CMe₂ in 60 cm³ Et₂O gelöst werden mit 8,2 cm³ (13,12 mmol) 1,6 n etherischer Methyllithiumlösung tropfenweise bei 0 °C versetzt und dann 2 h refluxiert. Der Eindampfrückstand wurde mit n-Hexan verrührt, abgetrennt und im Vakuum getrocknet.

Das erhaltene Dilithiosalz wurde zu einer Suspension von 1,53 g (6,57 mmol) ZrCl₄ in 60 cm³ H₂CCl₂ bei -50 °C gegeben und 3 h bei -35 °C gerührt. Nach Erwärmung auf Raumtemperatur filtriert und mit wenigen Portionen Toluol/n-Hexan extrahiert, dann eingedampft, mit n-Pentan verrührt und das Lösemittel im Vakuum abgezogen.

20 Ausbeute: 0,81 g (1,76 mmol-27 %); korrekte Elementaranalyse

XIV) Me₂Zr[(2-Me-Ind)₂SiMePh]

2,29 g (4,25 mmol) Cl₂Zr[(2-Me-Ind)₂SiMePh] wurden in 50 cm³ Et₂O gelöst und bei -50°C 6,5 cm³ 1,6 n (10,4 mmol) etherische Methyllithiumlösung zugetropft, bei -25°C 2,5 h gerührt. Nach Austausch des Lösemittels gegen n-Hexan wurde noch 1 h bei Raumtemperatur gerührt, abfiltriert, etwas eingeengt, erneut filtriert und das Lösemittel abgedampft.

Ausbeute: 1,58 g (3,17 mmol-75 %); korrekte Elementaranalyse

30 Abkürzungen:

40

45

50

Me = Methyl, Et = Ethyl, Bu = Butyl, Ph = Phenyl, Ind = Indenyl, THF = Tetrahydrofuran, PP = Polypropylen, PE = Polyethylen

35 Metallocene I als Katalysatoren für die Olefinpolymerisation

Es bedeuten:

VZ = Viskositätszahl in cm3/g

 M_{w} = Molmassengewichtsmittel in g/mol ermittelt durch Gelpermeations- M_{w}/M_{n} = Molmassendispersität chromatographie

II = Isotaktischer Index (II = mm + 1/2 mr), ermittelt durch ¹³C-NMR-Spektroskopie
 SD = Polymerschüttdichte in g/dm³
 MFI (230/5) = Schmelzindex, gemessen nach DIN 53735 in g/10 min

Beispiel 1

Ein trockener 24 dm³-Reaktor wurde mit Stickstoff gespült und mit 12 dm³ flüssigem Propylen befüllt.

Dann wurden 35 cm³ toluolische Methylaluminoxanlösung (entsprechend 52 mmol Al, mittlerer Oligomerisierungsgrad n = 17) zugegeben und der Ansatz bei 30 °C 15 Minuten gerührt.

Parallel dazu wurden 6,9 mg (0,015 mmol) rac-Ethylen(2-Me-1-indenyl)₂zirkondichlorid in 13,5 cm³ toluolischer Methylaluminoxanlösung (20 mmol Al) gelöst und durch 15 minütiges Stehenlassen voraktiviert.

Die Lösung wurde dann in den Reaktor gegeben, durch Wärmezufuhr auf 70 °C aufgeheizt (10°C/min) und das Polymerisationssystem 1 h durch Kühlung bei 70 °C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des überschüssigen Monomeren. Es wurden 1,56 kg Polypropylen erhalten.

Die Aktivität des Metallocens betrug somit 226 kgPP/g Metallocen x h.

 $VZ = 67 \text{ cm}^3/\text{g}$; $M_w = 58\,900 \text{ g/mol}$; $M_w/M_n = 2.0$; II = 95.9 %; $SD = 350 \text{ g/dm}^3$

Beispiel 2

Beispiel 1 wurde wiederholt, es wurden jedoch 10,1 mg (0,023 mmol) des Metallocens verwendet und es wurde bei 50 °C polymerisiert.

Es wurden 0,51 kg Polymerpulver erhalten, entsprechend einer Metallocenaktivität von 50,5 kgPP/g Metallocen x h.

 $VZ = 100 \text{ cm}^3/\text{g}; M_w = 108 500 \text{ g/mol}; M_w/M_n = 2,2; II = 96,4 %; MFI (230/5) = 210 \text{ g/10 min}$

15 Beispiel 3

25

30

35

Beispiel 1 wurde wiederholt, es wurden jedoch 10,5 mg (0,023 mmol) des Metallocens eingesetzt und es wurde bei 30 °C 10 h polymerisiert.

Es wurden 1,05 kg Polymerpulver erhalten, entsprechend einer Metallocenaktivität von 10,0 kgPP/g Metallocen x h.

 $VZ = 124 \text{ cm}^3/\text{g}$; $M_w = 157\ 000 \text{ g/mol}$; $M_w/M_n = 2.2$; II = 96.3 %; MFI (230/5) = 104 g/10 min

Vergleichsbeispiele A - C

In zu den Beispielen 1 bis 3 analoger Weise wurde unter Verwendung des Metallocens rac-Ethylenbisindenylzirkondichlorid polymerisiert. Die Viskositätszahlen und Molmassen der dabei erhaltenen Polymerprodukte betrugen:

Verglbeisp.	Polym.temp. [* C]	VZ [cm ³ /g]	M _w [g/mol]
Α	. 70	30	19 900
В	50	46	38 500
С	30	60	48 700

Diese Vergleichsbeispiele zeigen den molmassenerhöhenden Einfluß des Substituenten in 2-Position am Indenylliganden.

Beispiel 4

Es wurde verfahren wie in Beispiel 1, verwendet wurden jedoch 4,0 mg (0,008 mmol) rac-Dimethylsilyl-(2-methyl-1-indenyl)₂ zirkondichlorid.

Die Metallocenaktivität betrug 293 kgPP/g Metallocen x h.

 $VZ = 171 \text{ cm}^3/\text{g}$; $M_w = 197\ 000 \text{ g/mol}$; $M_w/M_n = 2.5$; II = 96.0 %; MFI (230/5) = 43.2 g/10 min; SD = 460 g/dm³, Schmp. = 145 °C

Beispiel 5

Es wurde verfahren wie in Beispiel 1, verwendet wurden jedoch 6,0 mg (0,013 mmol) rac-Dimethylsilyl-(2-methyl-1-indenyl)₂ zirkondichlorid.

Die Polymerisationstemperatur betrug 60 °C, die Polymerisationszeit 1 h.

Die Metallocenaktivität betrug 178 kgPP/g Metallocen x h.

 $VZ = 217 \text{ cm}^3/\text{g}$; $M_w = 297\ 000 \text{ g/mol}$; $M_w/M_n = 2.3$; II = 96.4 %; MFI (230/5) = 12.9 g/10 min, Schmp. = 148 °C

Beispiel 6

Es wurde verfahren wie in Beispiel 1, verwendet wurden jedoch 2,4 mg (0,0052 mmol) rac-Dimethylsilyl(2-methyl-1-indenyl)₂zirkondichlorid. Die Polymerisationstemperatur betrug 50 °C, die Polyme-

risationszeit 3 h.

Die Metallocenaktivität betrug 89 kgPP/g Metallocen x h.

 $VZ = 259 \text{ cm}^3/\text{g}$; $M_w = 342 500 \text{ g/mol}$; $M_w/M_n = 2,1$; II = 96,8 %; MFI (230/5) = 8,1 g/10 min, Schmp. = 150 °C

Beispiel 7

Es wurde verfahren wie in Beispiel 1, verwendet wurden jedoch 9,9 mg (0,021 mmol) rac-Dimethylsilyl-(2-methyl-1-indenyl)₂ zirkondichlorid.

Die Polymerisationstemperatur betrug 30 °C, die Polymerisationszeit 2 h.

Die Metallocenaktivität betrug 26,5 kgPP/g Metallocen x h.

 $VZ = 340 \text{ cm}^3/\text{g}$; $M_w = 457\ 000 \text{ g/mol}$; $M_w/M_n = 2.4$; II = 96.0 %; MFI (230/5) = 2.5 g/10 min

Beispiel 8

15

5

Ein trockener 24 dm³-Reaktor wurde mit Stickstoff gespült und mit 6 dm³ eines entaromatisierten Benzinschnittes mit dem Siedebereich 100-120 °C sowie 6 dm³ flüssigem Propylen befüllt. Dann wurden 35 cm³ toluolische Methylaluminoxanlösung (entsprechend 52 mmol Al, mittlerer Oligomerisierungsgrad n = 17) zugegeben und der Ansatz bei 30 °C 30 Minuten gerührt.

Parallel dazu wurden 14,7 mg (0,031 mmol) rac-Dimethylsilyl(2-methyl-1-indenyl)₂zirkondichlorid in 13,5 cm³ toluolischer Methylaluminoxanlösung (20 mmol Al) gelöst und durch 30 minütiges stehenlassen voraktiviert.

Die Lösung wurde dann in den Reaktor gegeben und das Polymerisationssystem 1 h bei 50 °C durch Kühlung gehalten. Die Polymerisation wurde durch Zugabe von 50 cm³ Isopropanol gestoppt.

Die Metallocenaktivität betrug 159,2 kgPP/g Metallocen x h.

 $VZ = 188 \text{ cm}^3/\text{g}$; $M_w = 240\ 000\ \text{g/mol}$; $M_w/M_n = 2.1$; $II = 96.0\ \%$; MFI (230/5) = 28.6 g/10 min

Beispiel 9

Beispiel 8 wurde wiederholt, es wurden jedoch 15,2 mg (0,032 mmol) des Metallocens verwendet, die Polymerisationszeit war 2 h und die Polymerisationstemperatur war 30 °C.

Die Metallocenaktivität betrug 24,1 kgPP/g Metallocen x h.

 $VZ = 309 \text{ cm}^3/\text{g}$; $M_w = 409\ 000 \text{ g/mol}$; $M_w/M_n = 2.3$; II = 97.0 %; MFI (230/5) = 3.5 g/10 min

35 Vergleichsbeispiele D - F

In zu den Beispielen 4, 6 und 7 analoger Weise wurde unter Verwendung des Metallocens Dimethylsilylbisindenylzirkondichlorid polymerisiert. Die Viskositätszahlen und Molmassen der dabei erhaltenen Polymerprodukte betrugen:

40.

Verglbeisp.	Polym.temp. [* C]	VZ [cm³/g]	M _w [g/mol]
D	70	47	37 500
E	50	60	56 000
F	30	77	76 900

45

Diese Beispiele zeigen den molmassenerhöhenden Einfluß des Substituenten in 2-Position am Indenylliganden.

Beispiel 10

Beispiel 1 wurde wiederholt, es wurden jedoch 4,1 mg (0,008 mmol) des Metallocens rac-Phenyl-(methyl)silyl-(2-methyl-1-indenyl)₂ ZrCl₂ verwendet.

Es wurden 1,10 kg Polypropylen erhalten, entsprechend einer Aktivität des Metallocens von 269 kg PP/g Metallocen x h

VZ = 202 cm³/g, M_w = 230000 g/mol, M_w/M_n = 2,3, II = 97 %, MFI (230/5) = 36 g/10 min, Schmp. = 147 °C.

Beispiel 11

Beispiel 1 wurde wiederholt, es wurden jedoch 5,2 mg (0,009 mmol) des Metallocens rac-Diphenylsilyl-(2-methyl-1-indenyl)₂ZrCl₂ verwendet.

Es wurden 1,14 kg Polypropylen erhalten. Die Metallocenaktivität betrug somit 219 kg PP/g Metallocen x h. $VZ = 298 \text{ cm}^3/\text{g}, M_w = 367000 \text{ g/mol}, M_w/M_n = 2,2, MFI (230/5) = 7,1 \text{ g/10 min}.$

Beispiel 12

Beispiel 1 wurde wiederholt, es wurden jedoch 17,4 mg (0,038 mmol) des Metallocens rac-10 Methylethylen(2-methyl-1-indenyl)₂ ZrCl₂ verwendet.

Es wurden 2,89 kg Polypropylen erhalten. Die Metallocenaktivität betrug somit 165,9 kg PP/g Metallocen x

 $VZ = 138 \text{ cm}^3/\text{g}, M_w = 129000 \text{ g/mol}, M_w/M_n = 2,2, \text{Schmp.} = 150 \,^{\circ}\text{C}.$

Beispiel 13

15

30

35

40

45

50

55

Beispiel 1 wurde wiederholt, es wurden jedoch 9,6 mg (0,02 mmol) des Metallocens rac-Dimethylsilyl(2ethyl-1-indenyl)2 zirkondichlorid verwendet.

Es wurden 1,68 kg Polypropylen, entsprechend einer Metallocenaktivität von 175,0 kg PP/g Metallocen x h, erhalten.

 $VZ = 143 \text{ cm}^3/\text{g}, M_w = 132000 \text{ g/mol}, M_w/M_n = 2,3, \text{ Schmp.} = 140 \,^{\circ}\text{C}.$

Patentansprüche

Patentansprüche für folgende Vertragsstaaten: BE, DE, FR, GB, IT, NL

1. Verbindung der Formel I

 $(CR^8R^9)_{m}$ (CR⁸R⁹) (I)

worin

M¹ ein Metall der Gruppe IVb. Vb oder Vlb des Periodensystems ist,

gleich oder verschieden sind und ein Wasserstoffatom, eine C1-C10-Alkylgrup-R1 und R2 pe, eine C₁-C₁₀-Alkoxygruppe, eine C₆-C₁₀-Arylgruppe, eine C₆-C₁₀-Aryloxygruppe, eine C2-C10-Alkenylgruppe, eine C7-C40-Arylalkylgruppe, eine C7-C40-Alkylarylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder ein Halogenatom bedeu-

ten.

gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine R3 und R4 C_1 - C_{10} -Alkylgruppe, die halogeniert sein kann, eine C_6 - C_{10} -Arylgruppe, einen

-NR210, -SR10, -OSiR310, SiR310 oder -PR210-Rest bedeuten, worin R10 ein

Halogenatom, eine C₁-C₁₀-Alkylgruppe oder eine C₆-C₁₀-Arylgruppe ist,

gleich oder verschieden sind und die für R3 und R4 genannte Bedeutung haben, R5 und R6

mit der Maßgabe, daß R5 und R6 nicht Wasserstoff sind,

R7

10 R¹¹ R¹¹ C R¹¹ R¹² R¹² R¹² R¹²

15

20

25

 $=BR^{11}$, $=AIR^{11}$, $-Ge^{-}$, $-Sn^{-}$, $-O^{-}$, $-S^{-}$, $=SO_{2}$, $=NR^{11}$, $=CO_{1}$, $=PR^{11}$ oder = P(O)R11 ist.

wobei

R11, R12 und R13

gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₆- C_{10} -Fluorarylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine C7-C40-Arylalkylgruppe, eine C8-C40-Arylalkenylgruppe, eine C7-C40-Alkylarylgruppe bedeuten oder R11 und R12 oder R11 und R13 jeweils mit den sie verbindenden Atomen einen Ring bilden,

 M^2

Silizium, Germanium oder Zinn ist,

R8 und R9

gleich oder verschieden sind und die für R11 genannte Bedeutung haben und m und n gleich oder verschieden sind und null, 1 oder 2 sind, wobei m plus n null, 1 oder 2 ist.

30

2. Verbindung der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I M¹ Zr oder Hf, R1 und R2 gleich oder verschieden sind und Methyl oder Chlor, R3 und R4 Wasserstoff, R5 und R6 gleich oder verschieden sind und Methyl, Ethyl oder Trifluormethyl, R7 einen Rest

35

40

und n plus m null oder 1 bedeuten.

- 3. Verbindung der Formel I gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es sich um rac-45
 - Dimethylsilyl(2-methyl-1-indenyl)2-zirkondichlorid, rac-Ethylen(2-methyl-1-indenyl)2-zirkondichlorid, rac-Dimethylsilyl(2-methyl-1-indenyl)2 zirkondimethyl oder rac-Ethylen(2-methyl-1-indenyl)2-zirkondimethyl, rac-Phenyl(methyl)silyl(2-methyl-1-indenyl)2zirkondichlorid, rac-Diphenylsilyl(2-methyl-1-indenyl)-2 zirkondichlorid, rac-Methylethylen(2-methyl-1-indenyl)2 zirkondichlorid, rac-Dimethylsilyl(2-ethyl-1-indenyl)2zirkondichlorid, rac-Ethylen(2-ethyl-1-indenyl)2zirkondichlorid, rac-Isopropyliden(2-methyl-1-indenyl)2zirkondichlorid oder rac-Phenyl(methyl)silyl(2-methyl-1-indenyl)2zirkondimethyl handelt.
 - 4. Verfahren zur Herstellung einer Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

55

10

wobei R³-R⁹, m und n die in Formel I beschriebene Bedeutung haben und M³ ein Alkalimetall, bevorzugt Lithium, bedeutet,

a) mit einer Verbindung der Formel III

15

20

25

M¹X₄ (III),

worin M¹ die in Formel I genannte Bedeutung besitzt und X ein Halogenatom, bevorzugt Chlor, bedeutet, oder

b) mit einer Verbindung der Formel Illa

 $M^1X_4L_2$ (IIIa),

worin M¹ und X die genannten Bedeutungen besitzen und L für einen Donorliganden steht, umsetzt und das erhaltene Reaktionsprodukt gegebenenfalls derivatisiert.

5. Verwendung einer Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 3 als Katalysator bei der Olefinpolymerisation.

Patentansprüche für folgenden Vertragsstaat : ES

1. Verfahren zur Herstellung einer Verbindung der Formel I

35

40

45

50

55

worin

M¹

R1 und R2

 $(CR^8R^9)_{m}$ $(CR^8R^9)_{m}$ (1) (1)

ein Metall der Gruppe IVb, Vb oder Vlb des Periodensystems ist, gleich oder verschieden sind und ein Wasserstoffatom, eine C_1 - C_{10} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_6 - C_{10} -Arylgruppe, eine C_6 - C_{10} -Arylgruppe, eine C_7 - C_{10} -Alkenylgruppe, eine C_7 - C_{10} -Arylalkylgruppe, eine C_8 - C_{10} -Arylalkenylgruppe oder in Halogenatom bedeu-

ten.

R³ und R⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine

 C_1 - C_{10} -Alkylgruppe, die halogeniert sein kann, eine C_6 - C_{10} -Arylgruppe, einen -NR $_2$ ¹⁰, -SR $_3$ ¹⁰ SiR $_3$ ¹⁰ oder -PR $_2$ ¹⁰-Rest bedeuten, worin R $_3$ ¹⁰ ein

Halogenatom, eine C₁-C₁₀-Alkylgruppe oder eine C₆-C₁₀-Arylgruppe ist,

5 R⁵ und R⁶ gleich oder verschieden sind und die für R³ und R⁴ genannte Bedeutung haben,

mit der Maßgabe, daß R5 und R6 nicht Wasserstoff sind,

R7

15

20

25

30

50

55

 R^{11} R^{11} R

= BR 11 , = AIR 11 , -Ge-, -Sn-, -O-, -S-, = SO, = SO₂, = NR 11 , = CO, = PR 11 oder = P(O)R 11 ist,

wobei

R¹¹, R¹² und R¹³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine

 $C_1\text{-}C_{10}\text{-}Alkylgruppe, C_1\text{-}C_{10}\text{-}Fluoralkylgruppe, eine $C_6\text{-}C_{10}\text{-}Arylgruppe, eine $C_6\text{-}C_{10}\text{-}Fluorarylgruppe, eine $C_1\text{-}C_{10}\text{-}Alkoxygruppe, eine $C_2\text{-}C_{10}\text{-}Alkenylgruppe, eine $C_7\text{-}C_{40}\text{-}Arylalkylgruppe, eine $C_8\text{-}C_{40}\text{-}Arylalkenylgruppe, eine $C_7\text{-}C_{40}\text{-}Alkylarylgruppe bedeuten oder R^{11} und R^{12} oder R^{11} und R^{13} jeweils mit den sie$

verbindenden Atomen einen Ring bilden,

M² Silizium, Germanium oder Zinn ist,

R⁸ und R⁹ gleich oder verschieden sind und die für R¹¹ genannte Bedeutung haben und

m und n gleich oder verschieden sind und null, 1 oder 2 sind, wobei m plus n

null, 1 oder 2 ist,

dadurch gekennzeichnet, daß man eine Verbindung der Formel II

wobei R3-R9, m und n die in Formel I beschriebene Bedeutung haben und M3 ein Alkalimetall, bevorzugt Lithium, bedeutet,

a) mit einer Verbindung der Formel III

 M^1X_4 (III),

worin M¹ die in Formel I genannte Bedeutung besitzt und X ein Halogenatom, bevorzugt Chlor, bedeutet, oder

b) mit einer Verbindung der Formel Illa

M¹X₄L₂ (IIIa),

worin M¹ und X die genannten Bedeutungen besitzen und L für einen Donorliganden steht, umsetzt und das erhaltene Reaktionsprodukt gegebenenfalls derivatisiert.

Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I M¹ Zr oder Hf, R¹ und R² gleich oder verschieden sind und Methyl oder Chlor, R³ und R⁴ Wasserstoff, R⁵ und R⁶ gleich oder verschieden sind und Methyl, Ethyl oder Trifluormethyl, R² einen Rest

und n plus m null oder 1 bedeuten.

- 3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß es sich bei der Verbindung der Formel I um rac-Dimethylsilyl(2-methyl-1-indenyl)₂ zirkondichlorid, rac-Ethylen(2-methyl-1-indenyl)₂ zirkondichlorid, rac-Dimethylsilyl(2-methyl-1-indenyl)₂ zirkondimethyl, rac-Phenyl(methyl)silyl(2-methyl-1-indenyl)₂ zirkondichlorid, rac-Diphenylsilyl(2-methyl-1-indenyl)₂ zirkondichlorid, rac-Dimethylsilyl(2-ethyl-1-indenyl)₂ zirkondichlorid, rac-Dimethylsilyl(2-ethyl-1-indenyl)₂ zirkondichlorid, rac-Sthylen(2-ethyl-1-indenyl)₂ zirkondichlorid, rac-Isopropyliden(2-methyl-1-indenyl)₂ zirkondichlorid oder rac-Phenyl(methyl)silyl(2-methyl-1-indenyl)₂ zirkonmethylhandelt.
 - 4. Verwendung einer Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 3 als Katalysator bei der Olefinpolymerisation.

o Claims

35

40

45

50

55

10

15

Claims for the following Contracting States: BE, DE, FR, GB, IT, NL

1. A compound of the formula !

$$(CR^8R^9)_{R}$$

$$(CR^8R^9)_{R}$$

$$(I)$$

in which

M¹

R¹ and R²

is a metal from group IVb, Vb or Vlb of the Periodic Table, are identical or different and are a hydrogen atom, a C_1 - C_{10} -alkyl group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -aryl group, a C_7 - C_{10} -alkylaryl group, a C_7 - C_{10} -alkylaryl group, a C_8 - C_{10} -arylalkyl group, a C_8 - C_{10} -arylalkenyl group or a halogen atom,

R³ and R⁴ are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, which may be halogenated, a C_6 - C_{10} -aryl group, an -NR $_2$ ¹⁰, -SR $_3$ ¹⁰, -OSiR $_3$ ¹⁰ or -PR $_2$ ¹⁰ radical in which R¹⁰ is a halogen atom, a C_1 - C_{10} -alkyl group or a C_6 - C_{10} -aryl group, are identical or different and are as defined for R³ and R⁴, with the proviso that

R^s and R^s are not hydrogen,

R⁷ is

5

25

30

35

40

= BR^{11} , = AIR^{11} , -Ge-, -Sn-, -O-, -S-, = SO_2 , = NR^{11} , = CO_1 , = PR^{11} or = $P(O)R^{11}$,

where

R¹¹, R¹² and R¹³ are identical or different and are a hydrogen atom, a halogen atom, a C₁-C₁₀-alkyl group, C₁-C₁₀-fluoroalkyl group, a C₆-C₁₀-aryl group, a C₆-C₁₀-fluoroaryl group, a C₁-C₁₀-alkoxy group, a C₂-C₁₀-alkenyl group, a C₇-C₄₀-arylalkyl group, a C₈-C₄₀-arylalkenyl group or a C₇-C₄₀-alkylaryl group, or R¹¹ and R¹² or R¹¹ and R¹³, in each case with the atoms connecting them, form a ring,

M² is silicon, germanium or tin,

R⁸ and R⁹ are identical or different and are as defined for R¹¹, and

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2.

2. A compound of the formula I as claimed in claim 1, wherein, in the formula I, M¹ is Zr or Hf, R¹ and R² are identical or different and are methyl or chlorine, R³ and R⁴ are hydrogen, R⁵ and R⁶ are identical or different and are methyl, ethyl or trifluoromethyl, R³ is a

R11 R11 - C - , or - Si - , 212

radical, and n plus m is zero or 1.

- 3. A compound of the formula I as claimed in claim 1 or 2, wherein the compound is rac-dimethylsilyl(2-methyl-1-indenyl)₂zirconium dichloride, rac-ethylene(2-methyl-1-indenyl)₂zirconium dichloride, rac-dimethylsilyl(2-methyl-1-indenyl)₂dimethylzirconium, rac-ethylene(2-methyl-1-indenyl)₂dimethylzirconium, rac-ethylene(2-methyl-1-indenyl)₂zirconium dichloride, rac-diphenylsilyl-(2-methyl-1-indenyl)₂zirconium dichloride, rac-methylethylene(2-methyl-1-indenyl)₂zirconium dichloride, rac-dimethylsilyl(2-ethyl-1-indenyl)₂zirconium dichloride, rac-ethylene(2-ethyl-1-indenyl)₂zirconium dichloride, rac-ethylene(2-ethyl-1-indenyl)₂zirconium dichloride, rac-ethylene(2-methyl-1-indenyl)₂zirconium dichloride or rac-phenyl(methyl)silyl(2-methyl-1-indenyl)₂dimethylzirconium.
 - 4. A process for the preparation of a compound of the formula I as claimed in one or more of claims 1 to 3, which comprises reacting a compound of the formula II

where R³-R⁹, m and n are as described in the formula I, and M³ is an alkali metal, preferably lithium, a) with a compound of the formula III

M¹X₄ (III)

15

in which M^{τ} is as defined in the formula I, and X is a halogen atom, preferably chlorine, or b) with a compound of the formula IIIa

 $M^1X_4L_2$ (IIIa)

in which M¹ and X are as defined above, and L is a donor ligand, and, if desired, derivatizing the resultant reaction product.

5. The use of a compound of the formula I as claimed in one or more of claims 1 to 3 as a catalyst in the polymerization of olefins.

Claims for the following Contracting State: ES

A process for the preparation of a compound of the formula I

35
$$(CR^8R^9)_{m}$$
40
$$R^{\frac{1}{2}}M^{\frac{1}{2}}R^{\frac{6}{2}}R^{\frac{7}{2}}$$

$$(CR^8R^9)_{n}$$
45

50 in which

55

M¹ R¹ and R² is a metal from group IVb, Vb or Vlb of the Periodic Table,

are identical or different and are a hydrogen atom, a C₁-C₁₀-alkyl group, a C₁-C₁₀-alkoxy group, a C₆-C₁₀-aryl group, a C₆-C₁₀-aryloxy group, a C₂-C₁₀-alkenyl group, a C₇-C₄₀-arylalkyl group, a C₇-C₄₀-alkylaryl group, a C₈-C₄₀-aryl-aryl-aryloxyl-aryl

alkenyl group or a halogen atom,

R³ and R⁴ are identical or different and are a hydrogen atom, a halogen atom, a C₁-C₁₀-alkyl group, which may be halogenated, a C₆-C₁₀-aryl group, an -NR₂¹⁰, -SR¹⁰, -OSiR₃¹⁰, SiR₃¹⁰ or -PR₂¹⁰ radical in which R¹⁰ is a halogen atom, a C₁-C₁₀-

alkyl group or a C₆-C₁₀-aryl group,

R5 and R6

are identical or different and are as defined for R^3 and R^4 , with the proviso that R^5 and R^6 are not hydrogen,

R⁷

5

15

20

25

is

= BR 11 , = AIR 11 , -Ge-, -Sn-, -O-, -S-, = SO, = SO₂, = NR 11 , = CO, = PR 11 or = P(O)R 11 ,

where

R11, R12 and R13

are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -fluoroaryl group, a C_7 - C_{10} -alkoxy group, a C_7 - C_{10} -alkenyl group, a C_7 - C_{10} -arylalkenyl group, a C_7 - C_{10} -arylalkenyl group, or C_7 - C_7 -arylalkenyl group, a C_7 - C_7

 M^2

is silicon, germanium or tin,

R⁸ and R⁹

are identical or different and are as defined for R11, and

m and n

are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2,

which comprises reacting a compound of the formula II

35 $\begin{bmatrix} R^3 & (CR^8R^9)_{m} - R^7 - (CR^8R^9)_{n} & R^4 \end{bmatrix} \begin{bmatrix} M_3^3 & (II) \\ R^5 & R^6 \end{bmatrix}$

40

where R³-R⁹, m and n are as described in the formula I, and M³ is an alkali metal, preferably lithium, a) with a compound of the formula III

M¹X₄ (III)

45

in which M^1 is as defined in the formula I, and X is a halogen atom, preferably chlorine, or b) with a compound of the formula IIIa

M¹X₄L₂ (IIIa)

50

in which M^1 and X are as defined above, and L is a donor ligand, and, if desired, derivatizing the resultant reaction product.

2. The process as claimed in claim 1, wherein, in the formula I, M¹ is Zr or Hf, R¹ and R² are identical or different and are methyl or chlorine, R³ and R⁴ are hydrogen, R⁵ and R⁶ are identical or different and are methyl, ethyl or trifluoromethyl, R⁷ is a

radical, and n plus m is zero or 1.

- The process as claimed in claim 1 or 2, wherein the compound of the formula I is rac-dimethylsilyl(2methyl-1-indenyl)2zirconium dichloride, rac-ethylene(2-methyl-1-indenyl)2zirconium dichloride, racrac-ethylene(2-methyl-1-indenyl)dimethylsilyl(2-methyl-1-indenyl)2dimethylzirconium, 2dimethylzirconium, rac-phenyl(methyl)silyl(2-methyl-1-indenyl)2zirconium dichloride, rac-diphenylsilyl-(2-methyl-1-indenyl)2 zirconium dichloride, rac-methylethylene(2-methyl-1-indenyl)2 zirconium dichloride, rac-dimethylsilyl(2-ethyl-1-indenyl)2zirconium dichloride, rac-ethylene(2-ethyl-1-indenyl)2zirconium dichloride, rac-isopropylidene(2-methyl-1-indenyl)2zirconium dichloride or rac-phenyl(methyl)silyl(2-methyl-1-indenyl)2 methylzirconium.
- The use of a compound of the formula I as claimed in one or more of claims 1 to 3 as a catalyst in the polymerization of olefins.

Revendications

5

10

15

20

25

30

35

40

45

50

55

Revendications pour les Etats contractants suivants : BE, DE, FR, GB, IT, NL

Composé de formule I :

(I)

dans	laquelle
8.41	1

représente un métal du groupe IVb, Vb ou VIb de la classification périodique des

R1 et R2

sont identiques ou différents et représentent un atome d'hydrogène, un groupe alkyle en C1-C10, un groupe alcoxy en C1-C10, un groupe aryle en C6-C10, un groupe aryloxy en C₆-C₁₀, un groupe alcényle en C₂-C₁₀, un groupe arylalkyle en C7-C40, un groupe alkylaryle en C7-C40, un groupe arylalcényle en C8-C40 ou un atome d'halogène,

R3 et R4

sont identiques ou différents et représentent un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C1-C10, qui peut être halogéné, un groupe aryle en C6-C10, un radical -NR210, -SR10, -OSiR310 SiR310 ou -PR210 où R10 représente un atome d'halogène, un groupe alkyle en C1-C10 ou un groupe aryle en C6-Ció,

R5 et R6

sont identiques ou différents et ont la signification donnée pour R³ et R⁴, à la condition que R5 et R6 ne soient pas l'hydrogène,

R⁷

15

20

25

30

35

40

45

50

= BR11, = AIR11, -Ge-, -Sn-, -O-, -S-, = SO, = SO2, = NR11, = CO, = PR11 ou = P-(O)R11

οù

R¹¹, R¹² et R¹³ sont identiques ou différents et représentent un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C₁-C₁₀, un groupe fluoroalkyle en C₁-C₁₀, un groupe aryle en C₆-C₁₀, un groupe alcoxy en C₁-C₁₀, un groupe alcényle en C₂-C₁₀, un groupe arylalkyle en C₇-C₄₀, un groupe arylalcényle en C₈-C₄₀, un groupe alkylaryle en C₇-C₄₀ ou R¹¹ et R¹³, respectivement, avec l'atome qui les relie, forment un cycle,

M² est le silicium, le germanium ou l'étain,

R⁸ et R⁹ sont identiques ou différents et ont la signification donnée pour R¹¹ et m et n sont identiques ou différents et valent zéro, 1 ou 2, m plus n étant zéro, 1 ou 2.

2. Composé de formule I selon la revendication 1, caractérisé en ce que, dans la formule I, M¹ représente Zr ou Hf, R¹ et R² sont identiques ou différents et sont le méthyle ou le chlore, R³ et R⁴ sont l'hydrogène, R⁵ et R⁵ sont identiques ou différents et sont le méthyle, l'éthyle ou le trifluorométhyle, R³ représente un radical

et n plus m valent zéro ou 1.

- 3. Composé de formule I selon la revendication 1 ou 2 caractérisé en ce qu'il s'agit de dichlorure de rac-diméthylsilyl-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-éthylène-(2-méthyl-1-indényl)₂-zirconium, de rac-diméthylsilyl-(2-méthyl-1-indényl)₂-zirconium-diméthyle ou de rac-éthylène-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-diphénylsilyl-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-diphénylsilyl-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-diphénylsilyl-(2-éthyl-1-indényl)₂-zirconium, de dichlorure de rac-éthylène-(2-éthyl-1-indényl)₂-zirconium, de dichlorure de rac-isopropylidène-(2-méthyl-1-indényl)₂-zirconium ou de rac-phényl-(méthyl)-silyl-(2-méthyl-1-indényl)₂-zirconium-diméthyle.
- Procédé pour la préparation d'un composé de formule I, selon une ou plusieurs des revendications 1 à 3, caractérisé en ce qu'on fait réagir un composé de formule II :

$$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

10

15

20

5

où R³-R⁹, m et n ont la signification décrite dans la formule I, et M³ est un métal alcalin, de préférence le lithium,

a) avec un composé de formule III

M¹X₄ (III),

où M¹ a la signification donnée dans la formule I et X représente un atome d'halogène, de préférence le chlore, ou

b) avec un composé de formule Illa:

 $M^1X_4L_2$ (IIIa),

où M¹ et X ont les significations précitées et L représente un ligand donneur, et éventuellement on transforme en dérivé le produit obtenu.

25

5. Utilisation d'un composé de formule I selon une ou plusieurs des revendications 1 à 3, en tant que catalyseur pour la polymérisation d'oléfines.

Revendications pour l'Etat contractant suivant : ES

30

1. Procédé pour la préparation d'un composé de formule I :

35

40 .

45

50

dans laquelle

M١

représente un métal du groupe IVb, Vb ou Vlb de la classification périodique des éléments,

 (\dot{I})

R¹ et R²

55

sont identiques ou différents et représentent un atome d'hydrogène, un groupe alkyle en C_1 - C_{10} , un groupe alcoxy en C_1 - C_{10} , un groupe aryle en C_5 - C_{10} , un groupe aryloxy en C_6 - C_{10} , un groupe alcényle en C_2 - C_{10} , un groupe arylalkyle en C_7 - C_{40} , un groupe alkylaryle en C_7 - C_{40} , un groupe arylalcényle en C_8 - C_{40} ou un atome d'halogène,

R3 et R4

sont identiques ou différents et représentent un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C_1 - C_{10} , qui peut être halogéné, un groupe aryle en C_6 - C_{10} , un radical -NR $_2$ ¹⁰, -SR $_2$ ¹⁰, -OSiR $_3$ ¹⁰, SiR $_3$ ¹⁰ ou -PR $_2$ ¹⁰, où R¹⁰ représente un atome d'halogène, un groupe alkyle en C_1 - C_{10} ou un groupe aryle en C_6 - C_{10} ,

R5 et R6

sont identiques ou différents et ont la signification donnée pour R³ et R⁴, à la condition que R⁵ et R⁶ ne soient pas l'hydrogène,

R7

5

15

25

30

35

50

55

= BR¹¹, = AIR¹¹, -Ge-, -Sn-, -O-, -S-, = SO, = SO₂, = NR¹¹, = CO, = PR¹¹ ou = P-(O)R¹¹

οù

R11, R12 et R13

sont identiques ou différents et représentent un atome d'hydrogène, un atome d'halogéne, un groupe alkyle en C_1 - C_{10} , un groupe fluoroalkyle en C_1 - C_{10} , un groupe aryle en C_6 - C_{10} , un groupe alcoxy en C_1 - C_{10} , un groupe alcényle en C_2 - C_{10} , un groupe arylalkyle en C_7 - C_{40} , un groupe arylalcényle en C_8 - C_{40} , un groupe alkylaryle en C_7 - C_{40} ou C_1 0 ou C_1 1 et C_1 2 ou C_1 3 respectivement, avec l'atome qui les relie, forment un cycle,

 M^2

est le silicium, le germanium ou l'étain,

R8 et R9

sont identiques ou différents et ont la signification donnée pour R11 et

m et n

sont identiques ou différents et valent zéro, 1 ou 2, m plus n étant zéro, 1 ou 2.

caractérisé en ce qu'on fait réagir un composé de formule II :

où R³-R³, m et n ont la signification décrite dans la formule I et M³ est un métal alcalin, de préférence

a) avec un composé de formule III:

 M^1X_4 (III),

où M^1 a la signification donnée dans la formule I et X représente un atome d'halogène, de préférence le chlore, ou

b) avec un composé de formule IIIa :

 $M^1X_4L_2$ (Illa),

où M¹ et X ont les significations précitées et L représente un ligand donneur, et éventuellement on transforme en dérivé le produit obtenu.

2. Composé de formule I selon la revendication 1, caractérisé en ce que dans la formule I, M¹ représente Zr ou Hf, R¹ et R² sont identiques ou différents et sont le méthyle ou le chlore, R³ et R⁴ sont l'hydrogène, R⁵ et R⁶ sont identiques ou différents et sont le méthyle, l'éthyle ou le trifluorométhyle, R³ représente un radical

et n plus m valent zéro ou 1.

- 3. Composé de formule I selon la revendication 1 ou 2, caractérisé en ce qu'il s'agit de dichlorure de rac-diméthylsilyl-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-éthylène-(2-méthyl-1-indényl)₂-zirconium, de rac-diméthylsilyl-(2-méthyl-1-indényl)₂-zirconiumdiméthyle, de rac-éthylène-(2-méthyl-1-indényl)₂-zirconium-diméthyle, de dichlorure de rac-phényl-(méthyl)silyl-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-diphénylsilyl-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-éthylène-(2-méthyl-1-indényl)₂-zirconium, de dichlorure de rac-éthylène-(2-éthyl-1-indényl)₂-zirconium, de dichlorure de rac-isopropylidène-(2-méthyl-1-indényl)₂-zirconium ou de rac-phényl-(méthyl)-silyl-(2-méthyl-1-indényl)₂-zirconium-diméthyle.
 - 4. Utilisation d'un composé de formule I selon une ou plusieurs des revendications 1 à 3 en tant que catalyseur pour la polymérisation d'oléfines.

30

15

35

40

45

50