Лабораторная работа 2 Исследование процесса разрядки конденсатора

Цель работы — исследование процесса разрядки конденсатора на активное сопротивление, определение времени релаксации, оценка емкости конденсатора.

Приборы и принадлежности: лабораторная установка, источник питания, микроамперметр, исследуемый конденсатор, секундомер.

Электрический конденсатор или просто конденсатор – это устройство, способное накапливать и отдавать (перераспределять) электрические заряды. Конденсатор ИЛИ более проводников (обкладок), состоит ИЗ двух Как разделенных слоем диэлектрика. правило, расстояние обкладками, равное толщине диэлектрика, мало по сравнению с линейными размерами обкладок, поэтому электрическое поле, возникающее при подключении обкладок к источнику с напряжением U, практически полностью сосредоточено между обкладками. В зависимости от формы обкладок конденсаторы бывают плоские, цилиндрические, сферические.

Основной характеристикой конденсатора является его емкость \mathbf{C} , которая численно равна заряду \mathbf{q} одной из обкладок при напряжении, равном единице:

 $C = \frac{q}{u}$. Пусть конденсатор емкостью C включен в электрическую цепь (рис.1),

Рис.1

содержащую источник постоянного напряжения U_0 , ключ K и резистор (активное сопротивление) R. При замыкании ключа K конденсатор зарядится до напряжения U_0 . Если затем ключ K разомкнуть, то конденсатор начнет разряжаться через резистор R и в цепи возникнет электрический ток I. Этот ток изменяется со временем. Считая процессы, происходящие в цепи, квазистационарными, применим для данной цепи законы постоянного тока.

Найдем зависимость разрядного тока I от времени t. Для этого воспользуемся вторым правилом Кирхгофа применительно к цепи RC (рис.2).

Рис.2

Тогда получим:

$$-U_c + U_R = 0, \quad \frac{q}{c} = IR, \tag{1}$$

где **I** — электрический ток в цепи; **q** — заряд конденсатора **C**. Подставив в уравнение (1) значение силы тока $I = -\frac{dq}{dt}$, получим дифференциальное уравнение первого порядка с разделяющимися переменными:

$$\frac{dq}{dt} = -\frac{q}{RC'} \tag{2}$$

После интегрирования уравнения (2) находим

$$q(t) = q_o e^{-t/\tau}, (3)$$

где ${\bf q}_0$ — начальное значение заряда конденсатора; ${\bf \tau}={\bf RC}$ — постоянная, имеющая размерность времени. Она называется временем релаксации. Через время ${\bf \tau}$, заряд на конденсаторе убывает в е раз.

Продифференцировав уравнение (3), найдем закон изменения разрядного тока $\mathbf{I}(\mathbf{t})$: $I(\mathbf{t}) = \frac{q_0}{\tau} e^{-\mathbf{t}/\tau}$,

или
$$I(t) = I_0 e^{-\frac{t}{\tau}}, \tag{4}$$

где $I_0 = \frac{q_0}{\tau}$ - начальное значение силы тока, т.е. тока при $\mathbf{t} = 0$.

На рис.3 построены две зависимости разрядного тока ${\bf I}$ от времени ${\bf t}$, соответствующие двум различным значениям активного сопротивления ${\bf R}_1$ и ${\bf R}_2$ (${\bf R}_1 < {\bf R}_2$).

Рис.3

Описание лабораторной установки

В данной лабораторной работе предлагается исследовать процесс разрядки конденсатора на экспериментальной установке, схема которой приведена на рис.4.

Рис.4

Она состоит из источника постоянного напряжения $\mathbf{U_0}$, емкости \mathbf{C} , резисторов $\mathbf{R_1}$, $\mathbf{R_2}$, $\mathbf{R_3}$ и микроамперметра. Так как резисторы $\mathbf{R_1}$, $\mathbf{R_2}$, $\mathbf{R_3}$ включены последовательно, активное сопротивление цепи можно изменять при помощи перемычки Π , замыкая поочередно накоротко резисторы $\mathbf{R_1}$, $\mathbf{R_2}$ или оба вместе.

Порядок измерений. Обработка результатов измерений

- 1. Соберите электрическую цепь по схеме рис. 4 и по заданию преподавателя выберите необходимое значение сопротивления цепи \mathbf{R} .
- 2. Замкните ключ K и зарядите конденсатор C до напряжения U_0 . При полной зарядке конденсатора микроамперметр покажет максимальное значение тока I_0 .
- 3. Разомкните ключ **K** и одновременно включите секундомер. Измерьте время \mathbf{t}_0 , в течение которого показания микроамперметра уменьшатся в 10 раз. Определите интервал времени $\Delta \mathbf{t} \approx \frac{\mathbf{t}_0}{10}$, через который будет фиксироваться сила тока **I**.
- 4. Вновь замкните ключ ${\bf K}$ и зарядите конденсатор.
- 5. Разомкните ключ K и зафиксируйте показания микроамперметра через интервалы времени Δt , $2\Delta t$, $3\Delta t$ и т.д. до времени 10 Δt . Такие измерения проделайте три раза, и результаты занесите в табл.1 для каждого набора сопротивлений R.

Вычислите \overline{I} (среднее значение тока) и отношение $\frac{\overline{I}}{I_0}$.

R	! =									Таблица 1	
t,c	0	Δt	2Δt	3∆t	4∆t	5Δt	6Δt	7Δt	8Δt	9Δt	10∆t
I_1											
I_2											
I_3											
Ī											
Ī											
$\overline{I_o}$											

- 6. По результатам измерений постройте график зависимости отношения $\frac{\bar{I}}{I_o}$ от времени (см.формулу 4), и определите из графика постоянную $\boldsymbol{\tau} = \boldsymbol{R}\boldsymbol{C}$. Оцените погрешность $\boldsymbol{\sigma}_{\tau}$ (см. приложение 1).
- 7. Зная значения $\boldsymbol{\tau}$ и \mathbf{R} , найдите емкость конденсатора $\boldsymbol{C} = \frac{\boldsymbol{\tau}}{R}$. Оцените погрешность $\boldsymbol{\sigma}_{c}$.
- 8. Запишите окончательный результат с погрешностью: С $\pm \sigma_{\mathcal{C}}$
- 9. Оцените емкость конденсатора другим способом. Для этого изобразите на графике в полулогарифмическом масштабе зависимость

$$ln\frac{I_0}{\bar{I}} = \frac{1}{RC}t\tag{5}$$

для каждого значения сопротивления R.

Формула (4) показывает, что график должен иметь вид прямой линии с наклоном $K = \frac{1}{RC}$.

Наклон прямой (5) позволяет, таким образом, определить емкость конденсатора

$$C = \frac{1}{KR} \tag{6}$$

10. Оцените погрешность $\sigma_{\rm c}$ и запишите окончательный результат: $C \pm \sigma_{\rm c}$

Контрольные вопросы

- 1. Какое устройство называется конденсатором?
- 2. Дайте определение емкости конденсатора.
- 3. Сформулируйте правила Кирхгофа.
- **4.** Выведите формулы (3) и (4).
- **5.** Получите выражения для емкостей плоского и сферического конденсаторов.

В лабораторной работе 2 Исследование процесса разрядки конденсатора из экспоненциальной кривой $\frac{\bar{l}}{l_0} = e^{-\frac{t}{\tau}}$ определяется время релаксации τ и погрешность ее измерения. Т.к. $ln\frac{\bar{l}}{l_0} = -\frac{t}{\tau}$, следует, что $\tau = \frac{t}{ln(\frac{l_0}{l})}$ или $\tau = t$ при отношении токов $\frac{\bar{l}}{l_0} = \frac{1}{e}$. Проведя горизонтальную линию через все экспериментальные кривые, можно определить значение τ для различных значений сопротивлений (см. рис. 3).

Погрешность измерений τ в различных точках экспоненциальных кривых различна и для ее определения, прежде всего, требуется проанализировать в какой точке кривой эта погрешность максимальна.

Среднеквадратичная погрешность:

$$\sigma_{ au} = rac{1}{ln\left(rac{I_0}{I}
ight)}\sigma_t + rac{t}{\left[ln\left(rac{I_0}{I}
ight)
ight]^2}rac{1}{I}rac{I_0}{I}\sigma_I.$$

Относительная погрешность:

$$\varepsilon_{\tau} = \frac{\sigma_{\tau}}{\tau} = \frac{\sigma_{t}}{t} + \frac{1}{ln\left(\frac{I_{0}}{I}\right)} \frac{\sigma_{I}}{I}.$$

Анализ этой формулы показывает, что максимальная погрешность измерения τ будет также при токе $\frac{\bar{I}}{I_0} = \frac{1}{e}$. В этом случае (значение e принимается \approx 3).

$$\varepsilon_{\tau} = \frac{\sigma_{t}}{t\left(npu\ \frac{\overline{I}}{I_{0}} = \frac{1}{e}\right)} + e\frac{\sigma_{I}}{I_{0}} = \frac{\sigma_{t}}{t\left(npu\ \frac{\overline{I}}{I_{0}} = \frac{1}{e}\right)} + 3\frac{\sigma_{I}}{I_{0}}.$$

Среднеквадратичная погрешность: $\sigma_{\tau} = \varepsilon_{\tau} \tau^{-1}$.

Расчет погрешности $\pmb{\tau}$ можно провести для одной из построенных кривых, т.е. найти $\pmb{\tau}_R$ для одного значения \pmb{R} : $\pmb{\tau}_R = \pmb{\tau} \pm \pmb{\sigma}_{\pmb{\tau}}$.

При расчете погрешности емкости конденсатора необходимо в формулу относительной погрешности $\frac{\sigma_{\tau}}{\tau}$ добавить относительную погрешность $\frac{\sigma_{R}}{R}$,

$$\frac{\bar{I}}{I_0} = \frac{1}{e}.$$

 $^{^1}$ При расчете относительной погрешности ε_I погрешность σ_I можно принять равной половине выбранного интервала времени, а $\sigma_I = \sqrt{\sigma_{\rm cuct}^2 + \sigma_{\rm cn}^2}$, где $\sigma_{\rm cuct} =$ половине цены деления амперметра, а $\sigma_{\rm cn} =$ максимальной разности $|I - \bar{I}|$ для интервала времени соответствующего отношению токов

$$\varepsilon_c = \frac{\sigma_c}{C} = \frac{\sigma_t}{t} + 3\frac{\sigma_I}{I_0} + \frac{\sigma_R}{R}.$$

Относительная погрешность сопротивления промаркирована на сопротивлении. В этом случае среднеквадратичная погрешность

 $m{\sigma_C} = m{arepsilon_C}_{cp}$, где $m{C_{cp}}$ – определяется из всех экспериментальных кривых как $m{C_{cp}} = \sum_{R_i}^{ au_i}$, и можно записать результат в виде $m{C} = m{C_{cp}} \pm m{\sigma_C}$.