Statistik Nachklausur 2, Dr. Martin Franzen

Sommersemester 2024 19.06.24 10:00 Uhr - 11:30 Uhr Raum Explorhino EXP 1.15 Studiengänge UX, ID Dauer 90min

Punkte

- Aufgabe A: Ausgleichsgerade, Ausgleichsparabel (8 Punkte)
- Aufgabe B: Einfache Laplace-Experimente (8 Punkte)
- Aufgabe C: (Approximation der) Binomialverteilung (8 Punkte)
- Aufgabe D: Normalverteilung, Standardnormalverteilung (9 Punkte)

Bewertung

 $\bullet\,$ alle Ergebnisse, Rechenwege, Begründungen richtig \rightarrow 33 Punkte

Hilfsmittel

• 1 Blatt DIN A4 Papier, Taschenrechner

Abgabe Namen auf jedes Blatt schreiben

Aufgabe A: Ausgleichsgerade, Ausgleichsparabel (8 Punkte)

a) Berechne die Koeffizienten der Ausgleichsgeraden

$$g(x) = a_0 + a_1 x$$

welche die Summe der Fehlerquadrate minimiert unter Verwendung der Vandermonde-Matrix für die Punkte

$$G_1(1,0), G_2(2,1), G_3(3,2)$$

b) Berechne die Koeffizienten der Ausgleichsparabel

$$p(x) = b_0 + b_1 x + b_2 x^2$$

welche die Summe der Fehlerquadrate minimiert unter Verwendung der Vandermonde-Matrix für die Punkte

$$P_1(-1,0), P_2(0,0), P_3(1,0), P_4(2,0)$$

Aufgabe B: Einfache Laplace-Experimente (8 Punkte)

Wenn alle Elementarereignisse eines Zufallsexperiments gleich wahrscheinlich sind, spricht man von einem Laplace-Experiment.

Die Wahrscheinlichkeitsfunktion P ist bei endlichen Ereignismengen Ω folgendermaßen definiert

$$P: 2^{|\Omega|} \to [0,1], \quad \Omega \supset A \mapsto P(A) = \frac{|A|}{|\Omega|}$$

a) Dreimaliger Münzwurf (Kopf = 0, Zahl = 1)

$$X: \Omega \to \mathbb{R}, \quad (m_1, m_2, m_3) \mapsto (m_1 + m_2)^{m_3}$$

sei die Zufallsvariable. Tipps: $0^0 = 1$, $1^0 = 1$, $0^1 = 0$

Gebe die Ereignismenge Ω und die Menge der Elementarereignisse $A=X^{-1}(1)$ an, wobei

$$X^{-1}(1) = \{(m_1, m_2, m_3) \mid X((m_1, m_2, m_3)) = 1\}$$

Berechne die Wahrscheinlichkeit beim dreimaligen Münzwurf $X((m_1, m_2, m_3)) = 1$ zu erhalten

$$p_1 = P_1(A) = \frac{|A|}{|\Omega|}$$

Runde die Prozentzahl p_1 auf die zweite Nachkommastelle.

b) Zweimaliges Würfeln (Würfel 1,...,6)

$$Y: \Lambda \to \mathbb{R}, \quad (w_1, w_2) \mapsto (w_1)^{w_2} + (w_2)^{w_1}$$

sei die Zufallsvariable.

Tipp: $1^r = 1$ für alle $r \in \mathbb{R}$.

Gebe die Ereignismenge Λ und die Menge der Elementarereignisse $B=\{Y=2\}$ an, wobei

$${Y = 2} = {(w_1, w_2) | Y((w_1, w_2)) = 2}$$

Berechne die Wahrscheinlichkeit beim zweimaligen Würfeln $Y((w_1, w_2)) = 2$ zu erhalten

$$p_2 = P_2(B) = \frac{|B|}{|\Lambda|}$$

Runde die Prozentzahl p_2 auf die zweite Nachkommastelle.

Aufgabe C: (Approximation der) Binomialverteilung (8 Punkte)

a) 100-maliger Münzwurf (Kopf = 0, Zahl = 1)

$$X: \Omega \to \mathbb{R}, \quad \vec{m} = (m_1, \dots, m_{100}) \mapsto X(\vec{m}) = \sum_{i=1}^{100} m_i$$

sei die Zufallsvariable. Gebe die Ereignismenge Ω und die Menge der Elementarereignisse $A=\{10\leq X\leq 90\}$ an, wobei

$$\{10 \le X \le 90\} = \{(m_1, \dots, m_{100}) \mid 10 \le X(\vec{m}) \le 90\}$$

Berechne die Wahrscheinlichkeit p_1 beim 100-maligen Münzwurf zwischen 10 und 90 Mal Zahl zu erhalten

$$p_1 = P_1(A) = \frac{|A|}{|\Omega|}$$

Alternativ approximiere die Wahrscheinlichkeit p_1 mithilfe der Normalverteilung

$$N(\mu \mid \sigma) = N(n \cdot p \mid \sqrt{n \cdot p \cdot (1-p)})$$

unter Verwendung der z-Werte Tabelle.

Runde die Prozentzahl p_1 in jeden Fall auf die zweite Nachkommastelle.

b) 10.000-maliger Münzwurf (Kopf = 0, Zahl = 1)

$$Y: \Lambda \to \mathbb{R}, \quad \vec{m} = (m_1, \dots, m_{10.000}) \mapsto Y(\vec{m}) = \sum_{i=1}^{10.000} m_i$$

sei die Zufallsvariable. Gebe die Ereignismenge Λ und die Menge der Elementarereignisse $B=\{1.000\leq Y\leq 9.000\}$ an, wobei

$$\{1.000 \le Y \le 9.000\} = \{(m_1, \dots, m_{10.000}) \mid 1.000 \le Y(\vec{m}) \le 9.000\}$$

Berechne die Wahrscheinlichkeit p_2 beim 10.000-maligen Münzwurf zwischen 1.000 und 9.000 Mal Zahl zu erhalten

$$p_2 = P_2(B) = \frac{|B|}{|\Lambda|}$$

Alternativ approximiere die Wahrscheinlichkeit p_2 mithilfe der Normalverteilung

$$N(\mu \mid \sigma) = N(n \cdot p \mid \sqrt{n \cdot p \cdot (1-p)})$$

unter Verwendung der z-Werte Tabelle.

Runde die Prozentzahl p_2 in jedem Fall auf die zweite Nachkommastelle.

Aufgabe D: Normalverteilung, Standardnormalverteilung (9 Punkte)

Nehme an, dass der Anstieg der Durchschnittstemperatur bis 2050 in Kontinentaleuropa normalverteilt ist mit

$$N(\mu \mid \sigma) = N(4 \mid 2)$$

(in Grad Celsius). Die Funktionsvoschrift für die entsprechende Verteilungsfunktion lautet

 $P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi \cdot 2^2}} \cdot e^{-\frac{1}{2}(\frac{t-4}{2})^2} dt$

- a) Berechne mithilfe der z-Tabelle die Wahrscheinlichkeit p_1 dafür, dass sich der Anstieg der Durchschnittstemperatur zwischen 3 und 5 Grad bewegt.
 - Runde die Prozentzahl p_1 auf die zweite Nachkommastelle.
- b) Berechne mithilfe der z-Tabelle die Wahrscheinlichkeit p_2 dafür, dass die Durchschnittstemperatur um mehr als 5 Grad steigt.
 - Runde die Prozentzahl p_2 auf die zweite Nachkommastelle.
- c) Berechne mithilfe der z-Tabelle die Wahrscheinlichkeit p_3 dafür, dass die Durchschnittstemperatur um weniger als 3 Grad steigt.
 - Runde die Prozentzahl p_3 auf die zweite Nachkommastelle.
- d) Berechne mithilfe der z-Tabelle die Wahrscheinlichkeit p_4 dafür, dass die Durchschnittstemperatur um weniger als 0 Grad steigt. Es also in Kontinentaleuropa kälter wird.
 - Runde die Prozentzahl p_4 auf die zweite Nachkommastelle.

z-Werte Tabelle in Schritten von 0.01: 4. Nachkommastelle

	0.	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.	0.5	0.504	0.508	0.512	0.516	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.591	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.648	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.67	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.695	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.719	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.758	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.791	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.834	0.8365	0.8389
1.	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.877	0.879	0.881	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.898	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.937	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.975	0.9756	0.9761	0.9767
2.	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.983	0.9834	0.9838	0.9842	0.9846	0.985	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.992	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.994	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.996	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.997	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.998	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.999	0.999

Beachte

- \bullet Dezimalzahlen in der z-Tabelle haben einen Punkt statt einem Komma
- $\bullet\,$ Die z-Tabelle gilt für standardnormalverteilte Zufallsvariablen $Z \sim N(0\mid 1)$
- $P(z) = P(Z \le z)$
- P(-z) = 1 P(z)
- für z > 3: $P(z) \approx 1$