7. Hypothesentests

Lernziele:

- Sie k\u00f6nnen eine Testentscheidung sinnvoll als Hypothesentest formulieren.
- Sie können Folgerungen aus dem Testergebnis zu einer konkreten Stichprobe ziehen.
- Sie unterscheiden zwischen dem Fehler 1. Art (dem Signifikanzniveau) und dem Fehler 2. Art.
- Sie kennen den p-Wert und können auch anhand des p-Wertes Testentscheidungen treffen.
- Sie verstehen den Zusammenhang zwischen einem Konfidenzintervall, einem klassischen Parametertest und dem *p*-Wert.

Literatur:

- Teschl Band 2, Kap. 30.4
- Zucchini, Kap. 8.1 + 8.3 + 8.5
- Arens et al., Kap 40.5

Situation:

Basierend auf n i.i.d. Zufallsvariablen X_1,\ldots,X_n (Messungen) soll eine Entscheidung getroffen werden, ob eine Hypothese für einen unbekannten Parameter der Verteilung, z. B. den Erwartungswert μ , gültig ist oder nicht.

Beispiel: Unterschiedliche Fragestellungen beim **Schätzen** bzw. **Testen** eines unbekannten Parameters

- Schätzen: Wie groß ist die durchschnittliche Abfüllmenge von 0.5-Liter Flaschen?
 - Testen: Kommt es zu Verbraucherklagen, weil die angegebene Abfüllmenge unterschritten wird?

7.1 Nullhypothese und Gegenhypothese

Vor dem Test:

Formulierung des Modells, der Nullhypothese H_0 und Gegenhypothese H_1

- **Modell**: Verteilung der Grundgesamtheit bzw. einer Testgröße TG (häufig: Mittelwert) ist bekannt bis auf einen Parameter, z. B. den Erwartungswert μ , für den eine Hypothese aufgestellt wird.
 - z. B. $TG \sim N_{\mu,\sigma^2}$
- Nullhypothese H_0 : Angezweifelte Aussage, der widersprochen werden kann, wenn die Stichprobe einen Gegenbeweis liefert
 - z. B. H_0 : $\mu = \mu_0$
- **Gegenhypothese** H_1 : Gegenteil von H_0
 - z. B. $H_1: \mu \neq \mu_0$

7.2 Signifikanzniveau, Ablehnungsbereich, Fehler 1. + 2. Art

Treffen der Testentscheidung

basierend auf einer konkreten Stichprobe $\{x_1, \ldots, x_n\}$

- Berechnung der Realisation $tg = TG(x_1, ..., x_n)$ der **Testgröße** TG
- Ablehnungsbereich / Kritischer Bereich C: Werte der Testgröße, die für H_1 sprechen und bei Gültigkeit von H_0 mit Wahrscheinlichkeit $\leq \alpha$ (meist: 0.1, 0.05 oder 0.01), dem sog. Signifikanzniveau auftreten. α ist also die Wahrscheinlichkeit, dass H_0 verworfen wird, obwohl sie richtig ist, der sog. Fehler 1. Art.
- Annahmebereich: Komplement \bar{C} des Ablehnungsbereichs H_0 kann nicht abgelehnt werden, falls $tg \in \bar{C}$ $(P(tg \in \bar{C}) \ge 1 \alpha)$. Die Wahrscheinlichkeit, dass H_0 nicht abgelehnt wird, obwohl sie falsch ist, ist der sog. Fehler 2. Art.

Testszenarien

	Testentscheidung		
Realität	H_0 wird nicht abgelehnt.	H_0 wird abgelehnt.	
H_0 ist wahr.	richtig	falsch Fehler 1. Art ist dic entsprechende Wsk ≤ a	
H_0 ist falsch.	falsch Fehler 2. Art ist die entsprechende Ws		
		eine signifikank Aussage, falls Ho abgelehnt wird	

Beispiel:

Für die normalverteilte Abfüllmenge $X \sim N_{\mu,25}$ von 500 ml-Flaschen soll basierend auf einer Stichprobe vom Umfang n=10 getestet werden:

$$H_0$$
: $\mu=500$ gegen H_1 : $\mu \neq 500$

Der kritische Bereich C für die Testgröße $TG = \bar{X}$ sei $C = \mathbb{R} \setminus [497, 503]$.

• Wahrscheinlichkeit für den Fehler 1. Art: Unter H_0 gilt: $\bar{X}\sim N_{500,\frac{25}{10}}$ bzw. $\frac{\bar{X}-500}{\sqrt{2.5}}\sim N_{0,1}$ und damit

$$P(\bar{X} \in C) = P\left(\frac{\bar{X} - 500}{\sqrt{2.5}} < -\frac{3}{\sqrt{2.5}}\right) + P\left(\frac{\bar{X} - 500}{\sqrt{2.5}} > \frac{3}{\sqrt{2.5}}\right) = 2\Phi(-\frac{3}{\sqrt{2.5}}) = 0.058 = \alpha$$
When the property control is the start of the property of the property

• Wahrscheinlichkeit für den Fehler 2. Art: Lässt sich unter H_1 nur für einen festen Wert von μ berechnen, z. B. für $\mu=504$

≈ 26.4%

$$\Phi^{-1}(\frac{\pi}{2})$$
 $\Phi^{-1}(1-\frac{\pi}{2})$

Recedenance des Pehlers 2. Art (B) für $\mu = 504$:

Berechnung des Pehlers 2. Art (B) für µ = 504: D= P_{μ=504} (x̄ ∈ c̄) = P_{μ=504} (497 = x̄ ≤ 503) =

 $= P_{\mu = 50Y} \left(\frac{497 - 50Y}{42.5'} \le \frac{\overline{X} - 50Y}{42.5'} \le \frac{503 - 50Y}{\sqrt{z.5'}} \right) = \phi \left(\frac{1}{4z.5} \right) - \phi \left(\frac{7}{4z.5} \right)$

$$\phi^{-1}(\frac{1}{2})$$
 $\phi^{-1}(1-\frac{1}{2})$
2. Art (\beta) für $\mu = 504$:

Tūr μ = 501: β₀₀≈ 89%

7.3 Klassische Parametertests

Testprobleme:

- Zweiseitiger Test: $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$
- Einseitige Tests:

 H_0 : $\mu \ge \mu_0$ gegen H_1 : $\mu < \mu_0$ bzw.

 $H_0: \mu \leq \mu_0$ gegen $H_1: \mu > \mu_0$

Testentscheidung basierend auf Stichprobe $\{x_1, \ldots, x_n\}$:

- H_0 wird abgelehnt, falls $tg = TG(x_1, \ldots, x_n) \in C$
- H_0 kann nicht abgelehnt werden, falls $tg = TG(x_1, \ldots, x_n) \in \bar{C}$

Der kritische Bereich ergibt sich analog zu den Konfidenzintervallen durch die Vorgabe eines kleinen Signifikanzniveaus α , d. h. der maximalen Wahrscheinlichkeit für einen Fehler 1. Art. Mit der standardisierten

Testgröße
$$TG^*$$
 gilt: $P(TG \in C) \ge 1 - \alpha \iff TG^* \in [\Phi^{-1}(\frac{\alpha}{2}), \Phi^{-1}(1 - \frac{\alpha}{2})]$

Wird dann H_0 verworfen, so spricht man von einer **signifikanten** Schlußfolgerung.

Kann allerdings H_0 nicht verworfen werden, dann lässt sich keine Aussage über den Fehler 2. Art treffen und man spricht von einer **schwachen** Schlußfolgerung.

Je größer a desto kleiner ist der Annahmebereich.

7.3.1 Gauß-Test

Test für Erwartungswert einer Normalverteilung bei bekannter Varianz σ_0^2

(1) Zweiseitiger Gauß-Test $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$

$$ar{X} \sim N_{\mu_0,\sigma_0^2/n} \implies rac{ar{X}-\mu_0}{\sigma_0} \sqrt{n} \sim N_{0,1}$$

$$P_{\mu_0}(\bar{X} \in \bigcirc \leq \alpha \iff |TG| = \frac{|\bar{X} - \mu_0|}{\sigma_0} \sqrt{n} > \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$$

Testentscheidung:

- H_0 wird abgelehnt, falls $|TG| > \Phi^{-1} \left(1 \frac{\alpha}{2}\right)$
- H_0 kann nicht abgelehnt werden, falls $TG \le \Phi^{-1} \left(1 \frac{\alpha}{2}\right)$

Beispiel 7.3.1:

Das Verpackungsgewicht von Schokoladetafeln sei normalverteilt mit unbekanntem EW μ und Standardabweichung $\sigma_0=4$ [g]. Es wird vermutet, dass die Verpackungsanlage nicht richtig funktioniert und deshalb der EW für das Gewicht einer Tafel $\neq 100$ [g] ist. Lässt sich anhand einer Stichprobe vom Umfang n=25 mit $\bar{x}=98$ [g] die Hypothese $\mu=100$ [g] zum Signifikanzniveau $\alpha=5\%$ signifikant widerlegen?

Test problem:
$$H_0: \mu = 100$$
 gegen $H_a: \mu \neq 100$
Standardisierte Test größe: $T6 = \frac{\overline{X} - \mu_0}{G_0} \cdot \overline{M} = \frac{98 - 100}{4} \cdot 5 = -2.5$

Ho kann abgelehnt werden, wenn |TG| = 2.5 > \$\phi^{-1} \left(\frac{1-\frac{\pi}{2}}{2.5}\right)\verset{\pi_{.975}}{\pi_{.975}}

Das ist der Foll, d.h. Ho kunn signifikant widerlegt werden.

[▶ ◆□ ▶ ◆ 불 ▶ ◆ 불 · ♡ Q @

10 / 17

Annahme bereich C für a = 5%: [-1.96; 1.96] für $\alpha = 1\%$: $\left[-\phi^{-1}(0.995); \phi^{-1}(0.995) \right]$

Jetzt kann Ho nicht verworfen werden.

Welche Testentscheidung wird für «= 1% getroffen?

Signifikanzniveau

Annahmebereich

Nullhypothese

Fehler 2. Art

hei bekannter Varianz

(2) Einseitiger Gauß-Test

$$H_0: \mu \geq \mu_0$$
 gegen $H_1: \mu < \mu_0$ b 7. $\mu \leq \mu_0$ **የም**ር $H_4: \mu > \mu_0$

bzw.
$$\mu \leq \mu_0$$
 ggen $H_1: \mu > \mu_0$

$$P_{\mu_0}(\bar{X} \in C) \leq \alpha \iff TG = \frac{\bar{X} - \mu_0}{\sigma_0} \sqrt{n} < \Phi^{-1}(\alpha)$$

Tenler 1. Art

Testentscheidung:

- H_0 wird abgelehnt, falls $TG < \Phi^{-1}(\alpha)$
- H_0 kann nicht abgelehnt werden, falls $TG \ge \Phi^{-1}(\alpha)$

Beispiel 7.3.2:

Die Anzahl der Personen in einer U-Bahn, die nominell 175 Personen fasst, sei normalverteilt. Die aus früheren Messungen bekannte Varianz der Anzahl der Fahrgäste beträgt 225. = 6.

Es wird vermutet, dass die U-Bahnen teilweise überladen fahren. Deshalb soll in den Stoßzeiten eine Stichprobe durchgeführt werden, die die Nullhypothese testet, dass die Bahnen tatsächlich überfüllt sind. Mit einem Stichprobenumfang von n=30 wurde ein Mittelwert $\overline{x}=172$ errechnet.

- a) Es soll ein Konfidenzintervall für den Erwartungswert μ zum Konfidenzniveau 92 % geschätzt werden. (Hinweis: qnorm(0.96,0,1) \approx 1.7507)
- b) Formulieren Sie das Testproblem, um die Vermutung, dass die Bahnen überfüllt sind, signifikant zu widerlegen. Zu welcher Entscheidung kommen Sie auf einem Signifikanzniveau von $\alpha=0.04$?
- c) Wie wäre die Entscheidung in Teilaufgabe b) ausgefallen, wenn die Stichprobe einen Mittelwert $\overline{x}=170$ ergeben hätte?

a)
$$I = \int \bar{x} - \phi^{-1}(1 - \frac{\alpha}{2}) \cdot \frac{d_0}{1\pi}$$
, $\bar{x} + \phi^{-1}(1 - \frac{\alpha}{2}) \cdot \frac{d_0}{1\pi}$ [

 $q_{norm}(0.96) \approx 1.75$
 $I = \int 167.2$, 176.8 [

b) $H_0: \mu > 175$ gegen $H_4: \mu = 175$ Testproblem

 $TG = \frac{\bar{x} - 175}{15} = 130 \approx -1.095$ $f_0 = 1.75$
 $f_0 = \frac{\bar{x} - 175}{15} = 130 \approx -1.095$ $f_0 = 1.75$

The kann night verworfen werden, $f_0 = 1.75$ and $f_0 = 1.75$ do $f_0 = 1.75$ do $f_0 = 1.75$

$$TG = \frac{170 - 175}{15} \cdot 130 \approx -1.83 < \phi^{-1}(0.04) \approx -1.75$$

Für
$$\bar{x} = 170$$
:

=> Ho wird verworfen

Varianten des Gauß-Tests: Testgröße $tg = \frac{\bar{X} - \mu_0}{\sigma_0} \sqrt{n}$

		bekannte		
	H_0	H_1	H_0 ablehnen, falls	p-Wert
Z	reiseitig $\mu=\mu_0$	$\mu \neq \mu_0$	$ tg >\Phi^{-1}\left(1-rac{lpha}{2} ight)$	2(1 – Φ (tg)))
	$\mu \leq \mu_0$	$\mu > \mu_0$	$tg > \Phi^{-1} \left(1 - lpha ight)$	$1-\Phi(tg)$
פושאלי	$\mu \ge \mu_0$	$\mu < \mu_0$	$tg < \Phi^{-1}\left(lpha ight)$	$\Phi(tg)$

7.3.2 t-Test

Test für Erwartungswert einer Normalverteilung bei unbekannter Varianz

Testgröße
$$tg = \frac{\bar{X} - \mu_0}{\sqrt{n}} \sqrt{n} \sim t_{n-1}$$
 anten:

Varianten:

_	H_0	H_1	H_0 ablehnen, falls $ tg > (1 - \frac{\alpha}{2})$	p-Wert 🔀	halt man aus fentscheidung	
ļ	$\mu = \mu_0$	$\mu \neq \mu_0$	$ tg > \underbrace{t_{n-1}^{-1}} \left(1 - \frac{\alpha}{2}\right)$	$2(1-t_{n-1}(tg))$	durch Auflösen nach d	
ļ	$\mu \leq \mu_0$	$\mu > \mu_0$	$tg > (1-\alpha)$	$1-t_{n-1}(tg)$		
ļ	$\mu \ge \mu_0$	$\mu < \mu_0$	$tg < (t_{n-1}^{-1})(\alpha)$	$t_{n-1}(tg)$		

7.4 p-Wert

p-Wert: "beobachtetes Signifikanzniveau"

Tehler 1. 4rt wenn to freeze des kriftschen Bereichs

Wahrscheinlichkeit, bei Zutreffen von H_0 den beobachteten Wert tg der

Testgröße oder einen noch stärker von μ_0 abweichenden Wert zu bekommen. Falls $\alpha < \rho$ -Wert dann kann the nicht verworfen werken

Beispiel: Fulls p-Wert < & , dann wird the verworfen

Berechnung des p-Werts für das Testproblem zur Abfüllmenge von 500 ml Flaschen für n=10 und $\bar{x}=504$

p-Wert:
$$P(\frac{1\bar{x}-5001}{5} + 10) > \frac{4}{5} + 10) = 2 \cdot pnorm(-\frac{4}{5} + 10)$$
 ≈ 0.0114

Für $\alpha = 5\%$ bzw. 10% kann H. verworfen werden, für $\alpha = 1\%$ nicht.

Zusammenhang p-Wert – Hypothesentest

Der p-Wert zu einer Hypothese H_0 ist der größte Wert von α , für den H_0 nicht abgelehnt wird.

Vorteil:

Anhand des p-Werts kann man für beliebige Werte von α eine

Zusammenhang Konfidenzintervall I – Hypothesentest

Testentscheidung: !!! Gilt nur bei zweiseitigem Test !!!

- H_0 wird abgelehnt, falls $\mu_0 \notin I$ (I: Konfrdenzintervall zum Kon fidenznivæn 1- α) H_0 kann nicht abgelehnt werden, falls $\mu_0 \in I$ für unbekannten

Zusammenhang: I ist der Annahmebereich für $H_0: \mu = \mu_0$ gegen $H_4: \mu \neq \mu_0$ Zum Signifikanzniveau a

