Semaine n° 8: du 6 novembre au 10 novembre

Lundi 6 novembre

- Cours à préparer : Chapitre IX Calcul matriciel
 - Partie 1.1 : Somme de deux matrices; produit par un scalaire; produit matriciel.
 - Partie 1.2 : Puissances d'une matrice carrée ; formule du binôme de Newton.
 - Partie 1.3 : Matrices carrées inversibles.

Mardi 7 novembre

- Cours à préparer : Chapitre IX Calcul matriciel
 - Partie 1.4: Matrices élémentaires; produit de matrices élémentaires; opérations élémentaires sur les lignes et les colonnes d'une matrice, matrices d'opérations élémentaires.
 - Partie 1.5: Transposée d'une matrice; matrice symétrique, matrice antisymétrique.
- Exercices à corriger en classe
 - Feuille d'exercices nº 6 : exercices 6, 9.

Jeudi 9 novembre

- Cours à préparer : Chapitre IX Calcul matriciel
 - Partie 1.6 : Inversibilité des matrices triangulaires.
 - Partie 2 : Matrice associée à un système linéaire ; cas d'une matrice inversible.
- Exercices à corriger en classe
 - Feuille d'exercices n° 6 : exercice 10.
 - Feuille d'exercices nº 7 : exercices 3 et 5.

Vendredi 10 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 1: Relation binaire; relation binaire réflexive, transitive, symétrique, antisymétrique.
- Exercices à corriger en classe
 - Feuille d'exercices nº 7 : exercices 6 et 7.

Échauffements

Mardi 7 novembre

- Déterminer, sans aucun calcul d'intégrale, une primitive des fonctions suivantes :
 - $-t \mapsto te^{-t^2}$ $-t \mapsto \frac{t^3}{1+t^4}$

 - $-t\mapsto \tan^2 t$
 - $\begin{array}{l} t \mapsto \tan^3 t \\ t \mapsto \frac{1}{\cos^2 t \sqrt{\tan t}} \end{array}$
- Cocher toutes les assertions vraies : Soit A, B et C trois ensembles.
 - $\Box (A \cap B) \cup C = A \cap (B \cup C);$
- $\Box \ (A \cap B) \cup C = (A \cup C) \cap (B \cup C).$
- $\Box A \cap B \cup C = A \cap B \cup A \cap C$;

Jeudi 9 novembre

- Soit l'application $f: \mathbb{R} \longrightarrow \mathbb{R}$ Déterminer $f([-4,5]), f^{-1}([-3,0]), f^{-1}(\{-4\})$ et $x \longmapsto x^2 + 4x + 1$ $f^{-1}(\{-2\}).$
- ullet Cocher toutes les assertions vraies : Soit A et B deux ensembles.
 - \square Si $A \subset B$, $\mathscr{P}(A) \subset \mathscr{P}(B)$;

 \square Si $x \in A$, $x \in \mathscr{P}(A)$;

 \square Si $A \subset B$, $A \in \mathscr{P}(B)$;

 \square $A \subset \mathscr{P}(A)$.

Vendredi 10 novembre

- Soit $C = \begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix}$. Calculer C^3 et C^{-1} .
- Cocher toutes les assertions vraies: Soit E, F, G trois ensembles, et $f: E \to F$ et $g: F \to G$. Alors,
 - \square si f est injective, $g \circ f$ aussi;
- \square si $g \circ f$ est surjective, f aussi;
- \square si $g \circ f$ est injective, f aussi;
- \square si $g \circ f$ est bijective, f et g aussi.
- \square si f et g sont surjectives, $g \circ f$ aussi;