Due at the beginning of class on 6 February 2024

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: [Sto22, Chapter 2].

- (1) A theorem of Serre shows that $\pi_k(S^n)$ for i > 2 is a finite abelian group, except for two classes of exceptions: $\pi_n(S^n) \cong \mathbb{Z}$ and $\pi_{4i-1}(S^{2j}) \cong \mathbb{Z} \oplus M$, where M is a torsion \mathbb{Z} -module. Use this to prove that the stable homotopy groups $\pi_{L}^{s}(S^{0})$ are finite abelian for i > 0.
- (2) Let $(\mathcal{C}, \otimes, 1)$ be a symmetric monoidal category. A *monoid* in \mathcal{C} is an object M together with morphisms $m: M \otimes M \to M$ and $i: 1 \to M$ such that the following diagrams commute:

$$\begin{array}{ccc}
M \otimes M \otimes M & \xrightarrow{m \otimes 1} & M \otimes N \\
\downarrow^{1 \otimes m} & & \downarrow^{m} \\
M \otimes M & \xrightarrow{m} & M
\end{array}$$

A *morphism of monoids* $f: M \to N$ is one that commutes with the structure morphisms:

$$1 \xrightarrow{i} M \downarrow_f$$

(M, m, i) is a *commutative monoid* if $f = f \circ s$, where $s \colon M \otimes M \to M \otimes M$ is the symmetry in \mathcal{C} .

- (a) Let M and C be objects in \mathcal{C} . Prove that if either M is a monoid or C is a comonoid, then $\mathcal{C}(C,M)$ is a monoid in the ordinary sense: a set with an associative and unital operation.
- (b) Let M in C be a monoid in two different ways: (M, m, i) and (M, n, j). Further assume that m and n are morphisms of monoids. Prove that M is a commutative monoid and the two structures are
- (c) For any spaces X and Y, prove that $[X, \Omega^2 Y]$ and $[\Sigma X, \Omega Y]$ are abelian groups.
- (3) Let $f: X \to Y$ be a map between simply connected spaces such that $f_*: H_i(X) \to H_i(Y)$ is an isomorphism for $i \le n$. We will show that f is an n-connected map.
 - (a) Let C be the homotopy cofiber of f, and let F be the homotopy fiber of $Y \to C$. Use the Hurewicz theorem to show that C is n-connected and $F \rightarrow Y$ is an n-connected map.
 - (b) Use the Blakers–Massey theorem to show that $X \to F$ is at least 2-connected.
 - (c) Show that f is at least 2-connected. Iterate your argument from part (b) to show that f is nconnected.
- (4) Let $X_0 \to X_1 \to X_2 \to \cdots$ be a sequence of spaces. Prove that $\Omega \operatorname{hocolim}_i X_i \simeq \operatorname{hocolim}_i \Omega X_i$. Use this to show that homotopy groups commute with sequential homotopy colimits.

REFERENCES

[Sto22] Bruno Stonek. Introduction to stable homotopy theory. https://bruno.stonek.com/stable-homotopy-2022/stable-online.pdf, July 2022.