Camada de Rede (Protocolo IPv6)

Redes e Serviços

Licenciatura em Engenharia Informática DETI-UA

IPv6 Background

- ETF IPv6 WG began to work on a solution to solve addressing growth issues in early 1990s
- Reasons to late deployment
 - Classless Inter-Domain Routing (CIDR) and Network address translation (NAT) were developed
 - Investments on field equipments (not IPv6 aware) had to reach the predicted "return of investment"
 - Massive re-equipment price

IPv6 Features

- Larger address space enabling:
 - Global reachability, flexibility, aggregation, multihoming, autoconfiguration, "plug and play" and renumbering
- Simpler header enabling:
- Routing efficiency, performance and forwarding rate scalability
- Improved option support

IPv6 Addressing

- IPv4: 4bytes/32 bits
 - **→** ~ 4,294,967,296 possible addresses
- IPv6: 16bytes/128 bits
 - → 340,282,366,920,938,463,463,374,607,431,768,211,456 possible addresses
- Representation
 - 16-bit hexadecimal numbers
 - Hex numbers are not case sensitive
 - Numbers are separated by (:)
 - Abbreviations are possible
 - Leading zeros in contiguous block could be represented by (::)
 - Example:
 - 2001:0db8:0000:130F:0000:0000:087C:140B = 2001:0db8:0:130F::87C:140B
 - Double colon only appears once in the address
 - Address's prefix is represented as: prefix/mask_number_of_bits

IPv4 vs. IPv6 Headers

IPv4 Header

Version	IHL	Type of Service	Total Length		
Identification			Flags		Fragment Offset
Time to	Live	Protocol	Header Checksum		
Source Address					
Destination Address					
Options					Padding

IPv6 Header

Source Address

Destination Address

IPv6 Header Format

IPv6 Addressing Model

- Interface have multiple addresses
- Addresses have scope:
 - Link Local
 - Valid within the same LAN or link
 - Unique Local
 - Valid within the same private domain
 - Can not be used in Internet
 - Global
- Addresses have lifetime
 - Valid and preferred lifetime

Types of IPv6 Addresses

Unicast

- Address of a single interface.
- One-to-one delivery to single interface
- Multicast
 - Address of a set of interfaces.
 - One-to-many delivery to all interfaces in the set
- Anycast
 - Address of a set of interfaces.
 - One-to-one-of-many delivery to a single interface in the set that is closest
- No more broadcast addresses

IPv6 Addressing

Туре	Binary	Hexadecimal	
Global Unicast Address	0010	2	
Link-Local Unicast Address	1111 1110 10	FE80::/10	
Unique-Local Unicast Address	1111 1100 1111 1101	FC00::/8 FD00::/8	
Multicast Address	1111 1111	FF00::/16	

Link-Local Address

- Used For:
 - Mandatory address for local communication between two IPv6 devices
 - Next-Hop calculation in Routing Protocols
- Automatically assigned as soon as IPv6 is enabled
- Remaining 54 bits could be Zero or any manual configured value

Unique-Local Address

- Used For:
 - Local communications
 - Inter-site VPNs
- Can be routed only within the same Autonomous System
 - Can not be used on the Internet

Global Unicast Addresses

24 Bits

- LA, NLA and SLA used for hierarchical addressing
 - TLA Top-Level Aggregation

13 Bits 8 Bits

- RES Reserved (must be zero)
- NLA Next-Level Aggregation Identifier
- SLA Site-Level Aggregation Identifier

IPv6 Interface Identifier

- Lowest-Order 64-Bit field of any address:
 - Auto-configured from a 64-bit EUI-64, or expanded from a 48-bit MAC address (e.g. Ethernet address)
 - Auto-generated pseudo-random number
 - Assigned via DHCP
 - Manually configured

MAC to Interface ID (EUI-64 format)

- Stateless auto-configuration
- Expands the 48 bit MAC address to 64 bits by inserting FFFE into the middle 16 bits
- To make sure that the chosen address is from a unique Ethernet MAC address
 - "u"bit is set to 1 for global scope
 - "u"bit is set to 0 for local scope

Anycast Address

IPv6 Address

- Address that is assigned to a set of interfaces
 - Typically belong to different nodes
- A packet sent to an Anycast address is delivered to the closest interface (determined by routing and timings)
- Anycast addresses can be used only by routers, not hosts
- Must not be used as the source address of an IPv6 packet
- Nodes to which the anycast address is assigned must be explicitly configured to recognize that the address is an Anycast address

Multicast Addresses

8-bit	4-bit	4-bit	112-bit
1111 1111	Lifetime	Scope	Group-ID

Lifetime	
0	If Permanent
1	If Temporary

Scope	
1	Node
2	Link
5	Site
8	Organization
E	Global

- Multicast addresses have a prefix FF00::/8
- The second byte defines the lifetime and scope of the multicast address.

Mapping a IPv6 Multicast Address to **Ethernet Address**

Common Multicast Addresses

Node Scope

- FF01:::1 All Nodes Address (Node scope)
- FF01:::2 All Routers Address (Node scope)

Link Scope

- FF02::1 All Nodes Address (Node scope)
- FF02::2 All Routers Address
- FF02::4 DVMRP Routers
- FF02::5 OSPF IGP
- FF02::6 OSPF IGP Designated Routers
- FF02::9 RIP Routers
- FF02::B Mobile-Agents
- FF02::D All PIM Routers
- → FF02::E RSVP-ENCAPSULATION
- → FF02::16 All MLDv2-capable routers
- → FF02:::1:2 All DHCP agents

Solicited-Node Multicast Address

IPv6 Address

- For each unicast and anycast address configured there is a corresponding solicited-node multicast
- FF02::1:FF:<interface ID's lower 24 bits>
- This address has link local significance only
- Used in "Neighbour Solicitation Messages"
 - MAC/Physical addresses resolution
 - Duplicate Address Detection (DAD)
 - Random or assigned interface IDs may result in equal global/link addresses

Physical Addresses Resolution

- In IPv6 ARP does not exist anymore.
- ARP table is now called NDP table
 - NDP: Neighbor Discovery Protocol
 - Maintains a list of known neighbors (IPv6 addresses and MAC addresses).
- Uses ICMPv6 "Neighbor Solicitation" and "Neighbor Advertisement" messages.
 - To resolve an address a Neighbor Solicitation message is sent to the Solicited-Node multicast address of the target machine (IPv6 address).
 - Response is sent in unicast using a Neighbor Advertisement message.

ICMPv6

- Internet Control Message Protocol version 6 (ICMPv6) is the implementation ICMP for IPv6
 - RFC 4443
 - ICMPv6 is an integral part of IPv6.
- Have the same functionalities of ICMP, plus:
 - Replaces and enhances ARP,
 - ICMPv6 implements a Neighbor Discovery Protocol (NDP),
 - Hosts use it to discover routers and perform auto configuration of addresses,
 - Used to perform Duplicate Address Detection (DAD),
 - Used to test reachability of neighbors.

Neighbor Discovery

- Neighbor discovery uses ICMPv6 messages, originated from node on link local with hop limit of 255
- Consists of IPv6 header, ICMPv6 header, neighbor discovery header, and neighbor discovery options
- Five neighbor discovery messages
 - Router solicitation (ICMPv6 type 133)
 - Router advertisement (ICMPv6 type 134)
 - Neighbor solicitation (ICMPv6 type 135)
 - Neighbor advertisement (ICMPv6 type 136)
 - Redirect (ICMPV6 type 137)

Router Solicitation

- Host send to inquire about presence of a router on the link
- Send to all routers multicast address of FF02::2 (all routers multicast address)
- Source IP address is either link local address or unspecified IPv6 address

Router advertisement

- Sent out by routers periodically, or in response to a router solicitation
- Includes auto-configuration information
- Includes a "preference level" for each advertised router address
- Also includes a "lifetime" field

Neighbor Solicitation

- Send to discover link layer address of IPv6 node
- IPv6 header, source address is set to unicast address of sending node, or :: for DAD
- Destination address is set to
 - Unicast address for reachability
 - Solicited node multicast for address resolution and DAD

Neighbor Advertisement

- Response to neighbor solicitation message
- Also send to inform change of link layer address

Redirect

 Redirect is used by a router to signal the reroute of a packet to a better router

Auto-configuration

Stateless

- A node on the link can automatically configure global IPv6 addresses by appending its interface identifier (64 bits) to the prefixes (64 bits) included in the Router Advertisement messages
- Additional/Other network information may be obtained
 - Additional fields in Router Advertisement messages,
 - Using a stateless DHCPv6 server.

Stateful

- Addresses are obtained using DHCPv6.
- The default gateway may send two configurable flags in Router Advertisements (RA)
 - Other flag bit: client can use DHCPv6 to retrieve other configuration parameters (e.g.: DNS server addresses)
 - Managed flag bit: client may use DHCPv6 to retrieve a Managed IPv6 address from a server

Multicast Listener Discovery (MLD)

- MLD permits the creation/management of multicast groups
- MLD is used by an IPv6 router to:
 - Discover the presence of multicast listeners on directly attached links
 - And to discover which multicast addresses are of interest to those neighboring nodes
 - Report interest in router specific multicast addresses
- Routers and hosts use MLD to report interest in respective Solicited-Node Multicast Addresses
- MLD will be studied later in detail.

IPv6 Start-up - Router

Multicast (all MLDv2-capable routers)

ff02::16

Multicast (all MLDv2-capable routers)

ff02::16

Multicast solicited-node address

ff02::1:ff+(address's last 24 bits)

Multicast (all hosts)

ff02::1

Multicast (all MLDv2-capable routers)

ff02::16

Multicast (all MLDv2-capable routers)

ff02::16

Multicast solicited-node address

ff02::1:ff+(address's last 24 bits)

Multicast (all hosts)

ff02::1

MLDv2 Report Message

(Multicast all routers)

MLDv2 Report Message

(Multicast solicited-node address)

Neighbor Solicitation

(DAD link-local address)

Neighbor Advertisement

MLDv2 Report Message

(Multicast all routers)

MLDv2 Report Message

(Multicast solicited-node address)

Neighbor Solicitation

(DAD global address)

Router Advertisement

Null address

Null address

Null address

Link-local address

fe80::+(interface ID 64-bits)

Link-local address

fe80::+(interface ID 64-bits)

Link-local address

fe80::+(interface ID 64-bits)

Null address

Link-local address

fe80::+(interface ID 64-bits)

IPv6 Start-up – Terminal/Router Interaction

Address Resolution and Ping6

IPv6 Subnetting/Aggregation

- In IPv6 the same principles of IPv4 subnetting and aggregation are still valid.
 - Using the TLA, NLA and SLA bits of the IPv6 addresses.
 - Example: network 2001:A:A:/48 can be divided in 2^16 sub-networks with identifiers 2001:A:A:****:/64
- By standard, the maximum mask size is /64, however it is possible to subnet also the host part of the IPv6 address.
 - Usage of mask /120 to protect the network from NDP Table Exhaustion attacks.
 - With mask /120 the maximum size of the NDP table is limited to 2⁸.
 - More "large" masks also work.
 - Some tools/services may break.
 - Requires manual, DHCPv6 address configuration or modified autoconfiguration mechanisms.