Lecture 12: Runtime

Introduction

When designing data structures and algorithms, it is crucial to write efficient functions, particularly in terms of time complexity. The *runtime* of a function refers to the number of computational steps required to complete a task. Efficient functions minimize these steps.

How Computers Execute Code

To understand runtime, it's important to recognize how computers execute code. Every statement in a program is translated into machine language commands, which are fundamental instructions a computer understands. The number of machine instructions required to execute a statement determines its execution time, referred to as the processing cost of the statement. Therefore, a function's runtime is the sum of the processing cost of each statement multiplied by the number of times that statement executes during the function's execution.

Summation Properties

Summations (or series) help express the total runtime of an algorithm. A summation is written as:

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \dots + f(b)$$

where a and b define the summation's range and f(i) is the function being summed. Useful summation properties include:

• Splitting a Summation

$$\sum_{i=a}^{b} f(i) = \sum_{i=a}^{c} f(i) + \sum_{i=c+1}^{b} f(i)$$

where $a \le c < b$.

• Sum/Difference & Scalar Products

$$\sum_{i=a}^{b} c(f(i) \pm g(i)) = c \left(\sum_{i=a}^{b} f(i) \pm \sum_{i=a}^{b} g(i) \right)$$

where c is a number.

• Sum of Ones

$$\sum_{i=1}^{b} 1 = (b - a + 1)$$

• Consecutive Integer Sum

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

where n is a positive integer.

These properties assist in analyzing the runtime of loops and recursive functions.

Runtime Function & Factor

A runtime function expresses an algorithm's execution time as a function of the input size (or runtime factor)—the specific aspect of the input that influences statement execution. It is computed as:

$$T(n) = \sum_{i=1}^{m} c_i \cdot t_i$$

where:

- m is the number of unique statements in the function,
- c_i is the processing cost of the *i*th statement,
- t_i is the number of times the *i*th statement executes,
- ullet n represents the size of the input data.

Since exact processing costs vary across systems, abstract cost values are used.

Example:

```
01
     ulg C(ulg x)
                                 01
                                       bool P(ulg n)
                                                                            01
                                                                                 void R(Array<int>& dt,ulg n,ulg m)
02
     {
                                 02
                                       {
                                                                            02
                                                                                 {
03
                                 03
       ulg n = 0;
                                         for(ulg i = 2;i*i <= n;i += 1)
                                                                            03
                                                                                   while(n < m)
04
                                  04
                                                                            04
                                                                                   {
05
       while(x > 0)
                                  05
                                           if(n \% i == 0)
                                                                            05
                                                                                     int t = dt[n];
06
                                  06
                                                                            06
                                                                                     dt[n] = dt[m];
                                           {
07
        x = x / 10;
                                 07
                                                                            07
                                                                                     dt[m] = t;
                                            return false;
08
                                 08
                                                                            08
        n += 1:
                                                                                     n += 1:
09
                                 09
                                                                            09
                                                                                       -= 1;
                                                                            10
10
                                  10
       return n;
                                         return (n > 1);
                                                                                 }
11
                                  11
                                                                            11
```

where 'ulg' is an abstract data type for unsigned long and Array is a container class for an array. The runtime analysis of each algorithm is:

- C() The loop executes for each digit of x; hence, the runtime factor is the number of digits in the parameter.
- P() The loop checks if n is divisible by integers at most its square root; hence, the runtime factor is the parameter's value.
- $\mathbb{R}()$ The loop swaps values between n and m; hence, the runtime factor is the difference of the integer parameters.

Worst-Case, Average-Case, & Best-Case Analysis

When analyzing runtime, different scenarios must be considered since the input varies the statement executions. The scenarios are:

- Best-case: the function executes the minimum number of steps.
- Average-case: the function executes an average number of steps.
- Worst-case: the function executes the maximum number of steps.

The worst-case scenario is often used because it provides an upper bound on runtime.

Example:

For each algorithm, its worst-case scenario is:

- C() All cases are the same.
- P() The worst-case scenario occurs when the parameter is prime.
- R() The worst-case scenario occurs when integer parameters are the end indices of the array parameter.

Analyzing Function Runtime with a Runtime Table

Constructing a runtime table—a table that records the cost and number of executions (time) for each distinct statement in an algorithm—simplifies determining an algorithm's runtime function. The cost of a statement is represented as an abstract value, typically 0 or 1, depending on the aspects of the analyzed algorithm. The time is expressed as either a fixed integer or a function of the algorithm's runtime factor. When the time is an expression involving the runtime factor, the floor and ceiling functions are used to ensure proper calculations.

Example:

The runtime tables for each algorithm is:

C():		
line	cost	time
03	c_1	1
05	c_2	n+1
07	c_3	n
08	c_4	n
10	c_5	1

P():		
line	cost	time
03	c_1	1
03	c_2	$\lfloor \sqrt{n} \rfloor$
05	c_3	$\lfloor \sqrt{n} \rfloor - 1$
07	c_4	0
03	c_5	$\lfloor \sqrt{n} \rfloor - 1$
10	c_6	1
	'	

R():		
line	cost	time
03	c_1	$\lceil \frac{n}{2} \rceil + 1$
05	c_2	$\lceil \frac{n}{2} \rceil$
06	c_3	$\lceil \frac{n}{2} \rceil$
07	c_4	$\lceil \frac{n}{2} \rceil$
08	c_5	$\lceil \frac{n}{2} \rceil$
09	c_6	$\lceil \frac{n}{2} \rceil$
		_

• The loop condition in Algorithm C() (line 05) is evaluated once for each digit of x, plus one additional time when the condition evaluates to false, resulting in a total of n+1 evaluations. The loop body executes only when the condition is true, meaning its statements run n times—one less than the total condition evaluations. Therefore, assuming all statement costs are 1, the runtime function is:

$$T(n) = 3n + 3$$

• The loop condition in Algorithm P() (line 03) is evaluated once for each integer upto \sqrt{n} starting from 2 plus one additional time when the condition evaluates to false, resulting in a total of $\lfloor \sqrt{n} \rfloor$ evaluations. Since for the worst-case scenario, n is prime, the return statement on line 07 will never execute; whereas, all other statements in the body run $\lfloor \sqrt{n} \rfloor - 1$ times as expected. Therefore, assuming all statement costs are 1, the runtime function is:

$$T(n) = 3\lfloor \sqrt{n} \rfloor$$

• The loop condition in Algorithm R() (line 03) is evaluated for $\lceil \frac{n}{2} \rceil$ since both endpoints are adjusted by 1 for each cycle plus one additional time when the condition evaluates to false, resulting in a total of $\lceil \frac{n}{2} \rceil + 1$ evaluations. The body statements run $\lceil \frac{n}{2} \rceil$ times as expected. Therefore, assuming all statement costs are 1, the runtime function is:

 $T(n) = 6\left\lceil \frac{n}{2} \right\rceil + 1$

Order of Growth & Big-O Notation

Asymptotic notations are used to compare algorithms by providing a mathematical boundary for their runtime functions. These notations define an upper bound, a lower bound, or both, helping to analyze the efficiency of algorithms as input size grows.

- **Big-Oh**: upper bound on runtime growth denoted O(f(n)) which is $\{g(n): 0 < g(n) \le cf(n) \text{ whenever } n \ge n_0 \text{ for some } c > 0, n_0 > 0\}$
- **Big-Omega**: lower bound on runtime growth denoted $\Omega(f(n))$ which is $\{g(n): 0 < cf(n) \le g(n) \text{ whenever } n \ge n_0 \text{ for some } c > 0, n_0 > 0\}$
- **Big-Theta**: tight bound (both upper and lower bound) denoted $\Theta(f(n))$ which is $\{g(n): c_1 f(n) \leq g(n) \leq c_2 f(n) \text{ whenever } n \geq n_0 \text{ for some } c_2 \geq c_1 > 0, n_0 > 0\}$

Example:

- O(1): constant time (independent of input size).
- O(logn): logarithmic time (e.g., binary search).
- O(n): linear time (e.g., iterating over an array).
- $O(n^2)$: quadratic time (e.g., nested loops).
- $O(2^n)$: exponential time (e.g., brute-force recursive algorithms).

In addition, although a function may have multiple big-oh bounds, the tightest bound is preferred. For instance, $3n + 5 = O(n^2)$ is valid, but 3n + 5 = O(n) is tighter and more accurate.