Algoritmos e Estruturas de Dados 1 (AED1) Buscas sequencial e binária em vetores

"Busca binária está para algoritmos assim como a roda está para mecânica: ela é simples, elegante e imensamente importante"

- U. Manber, Introduction to Algorithms: a Creative Approach, 1989.

Busca sequencial

Para resolver este problema, temos de

• devolver a posição de um determinado elemento x em um vetor de inteiros v.

Uma ideia básica é percorrer o vetor verificando se x é o elemento de cada posição.

Algoritmo iterativo que busca um elemento x em um vetor v de tamanho n

```
int buscaSequencial1(int v[], int n, int x) {
   int i = 0;
   while (i < n && v[i] != x)
        i++;
   if (i < n) return i;
   return -1;
}</pre>
```

Variações:

- Uma variação do algoritmo anterior é percorrer o vetor do fim para o início.
 - Neste caso, se o elemento não for encontrado i sai do laço valendo -1,
 - o que permite eliminar o if.
- Quiz1: Embora esta variante também resolva o problema,
 - o ela pode devolver valor diferente numa situação específica. Qual?

Corretude e invariante: O invariante principal do algoritmo é que,

- o no início de toda iteração do laço, o vetor v[0 .. i 1] não contém x.
- No início o invariante vale trivialmente,
 - o pois i = 0 e v[0 .. i 1] é vazio.
- O invariante se mantém de uma iteração para outra
 - o pois i só é incrementado se v[i] != x.
- Se o algoritmo sair do laço por violar a primeira condição (i < n),
 - o invariante garante que x não está no vetor.
- Caso contrário, a violação da segunda condição (v[i] != x)
 - o garante que o algoritmo devolve a posição correta de x.

Eficiência de tempo: No pior caso o algoritmo precisa

percorrer o vetor inteiro, realizando da ordem de n operações, i.e., O(n).

Eficiência de espaço: O(1), pois só usa uma pequena quantidade

• de variáveis cujos tamanhos não dependem de n.

Quiz2: E se o vetor estiver ordenado, nossa busca sequencial pode ser melhorada?

- Supondo que o vetor está em ordem crescente e
 - o que estamos percorrendo-o do início ao fim,
- quando encontrarmos algum valor maior que x
 - o sabemos que não adianta continuar buscando. Por que?
- O seguinte algoritmo utiliza essa ideia.

Algoritmo iterativo que realiza busca sequencial de um elemento x

• em um vetor v em ordem crescente de tamanho n.

```
int buscaSequencial2(int v[], int n, int x) {
   int i = 0;
   while (i < n && v[i] < x) i++;
   if (i < n && v[i] == x) return i;
   return -1;
}</pre>
```

Corretude e invariante:

- O invariante principal do algoritmo é que, no início de toda iteração do laço,
 - o temos v[0 .. i 1] < x.
- O invariante vale trivialmente no início, pois i começa valendo 0.
- Supondo que ele vale no início de uma iteração qualquer,
 - o como o laço só incrementa i se v[i] < x,
 - ele continua valendo no início da próxima iteração.
- Quando o algoritmo sai do laço, temos que i indica onde x deveria estar,
 - pois todo elemento em v[0..i 1] é menor que x e
 - o algoritmo só sai do laço caso
 - o vetor tenha terminado, i.e., i = n,
 - ou v[i] >= n.
- Se i é um índice válido do vetor e x = v[i],
 - o algoritmo devolve i, indicando sucesso na busca.
- Senão, ele devolve -1, indicando que x não está no vetor.

Convenções e variações:

- O algoritmo anterior devolve -1 se n\u00e3o encontrou o elemento.
- Outra convenção válida é devolver a posição em que
 - o elemento deveria ser inserido, de modo a manter a ordenação.
- Quiz3: Como modificar o algoritmo para refletir esta convenção?

Eficiência de tempo:

- o número de operações no pior caso é da ordem de n,
 - o ou, simplesmente, O(n),
- mas vale notar que a constante é melhor no caso médio,
 - já que, em média, após percorrer metade do vetor
 - encontramos um elemento >= x e saímos do laço.

Eficiência de espaço: O(1), pois só usa uma pequena quantidade de variáveis,

cujos tamanhos não dependem de n.

Busca binária

A ideia da busca binária deriva da seguinte propriedade de vetores ordenados:

- Se o valor buscado x é menor que o valor na i-ésima posição do vetor v,
 - i.e., x < v[i],
- Então x é menor que todo valor em v[i .. n 1].
 - Portanto, x só pode ser encontrado
 - no subvetor complemento v[0 .. i 1].
- Caso contrário, i.e., x > v[i], temos x maior que todo valor em v[0 .. i].
 - o Portanto, x só pode ser encontrado
 - no subvetor complemento v[i+1..n-1].

Essa propriedade significa que,

- dependendo do índice i do valor v[i] com o qual comparamos x,
 - o podemos descartar grandes pedaços do vetor.
- Por isso, devemos escolher sabiamente o índice i.

Note que, um índice i próximo dos extremos do vetor corrente

- pode resultar em descartes pequenos,
 - o dependendo do resultado da comparação entre x e v[i].

Assim, o valor que nos garante descartes significativos,

- independente de tal resultado é
 - o i igual ao meio do vetor corrente.

Exemplo de busca binária:

$$x = 3$$
 [1 2 3 4 5 6 7 8] $x = 3 < 4 = r[i]$

[1 2 3 4 5 6 7 8 $x = 3 > 2 = r[i]$

1 2 [3] 4 5 6 7 8 $x = 3 = r[i]$

marting

Algoritmo recursivo para busca binária de um elemento x

• em um vetor v em ordem crescente de tamanho n.

```
int buscaBinariaR(int v[], int e, int d, int x) {
   int m;
   if (d < e) return -1;
   m = (e + d) / 2;
   if (v[m] == x) return m;
   if (v[m] < x) return buscaBinariaR(v, m + 1, d, x);
   return buscaBinariaR(v, e, m - 1, x);
}

int buscaBinaria2(int v[], int n, int x) {
   return buscaBinariaR(v, 0, n - 1, x);
}</pre>
```

Corretude: Deriva diretamente da propriedade anterior

o e pode ser demonstrada usando indução matemática.

Eficiência de tempo: Cada chamada da função buscaBinariaR

- o desencadeia no máximo uma chamada recursiva,
 - na qual um dos extremos (e ou d) é atualizado com m (+ ou 1),
- o sendo que m = (e + d) / 2.
- Por isso, o vetor corrente (que começa em e e termina em d)
 - o diminui de pelo menos metade a cada chamada recursiva.
- Intuitivamente, podemos pensar que a cada chamada recursiva
 - o vetor que começa com tamanho n é dividido pela metade.

- Assim, depois de aproximadamente lg n chamadas recursivas,
 - o seu tamanho é reduzido a 0, e as chamadas terminam.
- Como o número de operações realizadas
 - o localmente em cada chamada da função é constante,
 - o algoritmo leva tempo da ordem de lg n, ou, O(lg n).

Para calcular o número total de operações, usamos a recorrência

Seguindo a recorrência

```
    T(n/2) = T(n/4) + 1
    T(n/4) = T(n/8) + 1
    T(n/8) = T(n/16) + 1
```

Substituindo e simplificando

```
 T(n) = T(n / 2^{1}) + 1 
 T(n / 2^{2}) + 2 
 T(n / 2^{3}) + 3 
 T(n / 2^{4}) + 4
```

- Esta relação sugere a fórmula geral
 - \circ T(n) = T(n / 2^k) + k
- Sabemos que a recorrência acaba
 - quando o vetor corrente tiver tamanho 0.
- Como as sucessivas divisões por 2 no tamanho do vetor
 - são arredondadas para baixo, isso ocorre para k que satisfaça
 - n/2^k<1<= n/2^(k-1).
- Portanto, n / $2^k < 1 \le n / 2^k < 1 \longrightarrow n < 2^k \le 2^n$
 - $\circ \rightarrow \lg n < k \leq \lg 2n = 1 + \lg n$
- Substituindo k por 1 + lg n na recorrência

$$\circ$$
 T(n) = T(n / 2^k) + k = T(0) + lg n + 1 = lg n + 2

- Assim, o número de operações no pior caso é da ordem de lg n,
 - o u simplesmente O(lg n).

Eficiência de espaço:

O(log n), devido ao tamanho da cadeia de chamadas recursivas.

Algoritmo iterativo para busca binária de um elemento x

• em um vetor v em ordem crescente de tamanho n.

```
int buscaBinaria(int v[], int n, int x) {
   int e, m, d;
   e = 0;
   d = n - 1;
   while (e <= d) {
        m = (e + d) / 2;
        if (v[m] == x)
            return m;
        if (v[m] < x) e = m + 1;
        else d = m - 1;
   }
   return -1;
}</pre>
```

Corretude e invariante:

- O invariante principal é que no início de cada iteração
 - \circ v[0 .. e 1] < x < v[d + 1 .. n 1].
- O invariante vale no início da primeira iteração,
 - o pois os subvetores começam vazios.
- Supondo que o invariante vale no início de uma iteração qualquer,
 - o como no laço só atualizamos o extremo (e ou d) que não contém x,
 - de acordo com o resultado da comparação v[m] < x,</p>
 - o invariante continua valendo no início da iteração seguinte.
 - Ou seja, sempre descartamos o subvetor correto.
- Se em alguma iteração a comparação v[m] == x for verdadeira,
 - devolve a posição de x.
- Caso contrário, sai do laço quando d = e 1.
 - Pelo invariante, neste caso, v[e 1] < x < v[d + 1] = v[e].
 - Portanto, x não está no vetor e o algoritmo devolve -1.

Eficiência de tempo:

- O(log n), sendo que a demonstração
 - o é igual aquela feita para o algoritmo recursivo,
 - substituindo chamada recursiva por iteração na argumentação.

Eficiência de espaço:

- O(1), pois só usa uma pequena quantidade de variáveis auxiliares,
 - o cujos tamanhos não dependem de n.

Convenções e variações:

- Nossos algoritmos para busca binária
 - o devolvem -1 se não encontram o elemento.
- Outra convenção válida é devolver a posição em que
 - o elemento deveria ser inserido, de modo a manter a ordenação.
- Quiz4: Como modificar o algoritmo para refletir esta convenção?
 - Basta devolver o valor de e. Por que?
 - A resposta deriva do fato de, nos dois algoritmos
 - v[0 .. e 1] < x < v[d + 1 .. n 1]
 - No caso em que o elemento não é encontrado,
 - temos e = d 1.
 - Portanto, v[0 ... e 1] < x < v[e ... n 1],
 - ou seja, todo elemento até e 1 < x
 - e todo elemento a partir de e > x.