Automatentheorie kontextfreie Grammatiken

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 3.Aufl. Springer Vieweg 2022;
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.; Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006
- Vossen, G. Witt K.; Grundkurs Theoretische Informatik; 4. Aufl.; Vieweg Verlag 2006
- Cohen, D; Introduction to Computer Theory; John Wiley 1990

- kontextfreie Grammatiken
 - Ableitungsbäume
 - Eindeutig und mehrdeutige Grammatiken
- Normalformen kontextfreier Grammatiken
- Erweitere Backus-Naur-Form
- Eigenschaften kontextfreier Grammatiken
- CYK-Algorithmus

Einführung

Die Sprache L(P) mit

$$L(P) = \{a^nb^n \mid n \ge 0\}$$

gehört nicht zu einer Typ-3-Grammatik

- Bei einer Typ-3-Sprache kann höchstens 1 Terminalsymbol pro Produktionsregel erzeugt werden.
- Aufheben dieser Beschränkung:
 - \blacksquare S \rightarrow aSb
 - lacktriangle (Anwenden der Regel: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb <math>\Rightarrow ...$)
 - ightharpoonup d.h. $S \Rightarrow * a^nSb^n$

Wir brauchen noch eine Terminierung $S \rightarrow \varepsilon$ und haben L(P)

■ G = ({S}, {a,b}, {S → aSb, S → ε},S) erzeugt die Sprache L(P)

Definition

- Eine Grammatik $G = (N, \Sigma, P, S)$ heißt Typ-2-Grammatik, wenn
 - ightharpoonup N eine Menge von Nicht-Terminalsymbolen, die zu Σ disjunkt ist.
 - Σ eine Menge von Terminalsymbolen
 - ▶ Peine Relation P \subseteq N x (Σ \cup N)* und |P| < ∞
 - $S \in \mathbb{N}$, dem Startsymbol
 - Eine Element $p \in P$ mit p = (I, r) heißt Produktion oder Regel mit $I \in N$ und $r \in (\Sigma \cup N)^*$ und der
 - Notation: $l \rightarrow r$ (I geht über in r oder I wird durch r ersetzt)
- Eine Sprache L heißt kontextfrei über Σ , falls es eine kontextfreie Grammatik G über Σ gibt mit L = L(G)

Beispiel 2 Palindrome

- $ightharpoonup L_P = \{ww^r \mid w \in \Sigma^*\}$ (Palindrome)
 - L gehört nicht zu den regulären Sprachen, sondern zu den kontextfreien Sprachen.
 - Die Grammatik dazu:
 - Erstellen Sie die Grammatik mit Flaci und produzieren sie alle Worte der Länge I < 5

Aufgaben

kontextfreie Grammatiken

- Konstruieren Sie eine kontextfreie Grammatik für Sprachen L mit
 - $L = \{ 0^n 1^m 2^n | n, m \ge 0 \}$
 - L = $\{0^n1^m | n, m \ge 0, n < m \}$
 - ▶ L = { w ∈ Σ^* | Anzahl der 0-Ziffern = Anzahl der 1-Ziffern in w }
 - Die Sprache L der ausgewogenen Klammerausdrücke. D.h. jede öffnende Klammer muss auch eine schließende Klammer haben.
- Mutzen Sie FLACI und pr
 üfen Sie ihre Implementierung auf Korrektheit

Ableitungsbaum

- $ightharpoonup L_P = \{ww^r \mid w \in \Sigma^*\}$ (Palindrome)
 - L gehört nicht zu den regulären Sprachen, sondern zu den kontextfreien Sprachen.
 - Die Grammatik dazu: $G_P = (\{S\}, \{a,b\}, \{S \rightarrow aSa \mid bSb \mid ε\}, S\}$
 - Ableitung abbbba
 - ightharpoonup
 ightharpoonup
 angle
 ightharpoonup
 angle
 ang
 - Dazu kann man auch einen Ableitungsbaum erstellen

Beispiel Ableitungsbaum

- Dazu kann man einen Ableitungsbaum erstellen
 - w = abbbba
 - ightharpoonup Regel: S ightharpoonup aSa ergibt zum Beispiel:

- und damit folgenden Ableitungsbaum
- Erstellen Sie Ableitungsbäume mit FLACI

Grammatik: eindeutig

Die Worte einer Grammatik G sind nicht immer in eindeutiger Weise anhand der Regeln ableitbar.

Beispiel:
$$S \rightarrow AB$$
, $A \rightarrow a$, $B \rightarrow b$

- Das Wort w=ab lässt sich ableiten als
- \longrightarrow S \Rightarrow AB \Rightarrow aB \Rightarrow ab (1) oder
- \triangleright S \Rightarrow AB \Rightarrow Ab \Rightarrow ab (2)

- Der Ableitungsbaum für beide Ableitungen (1) oder (2) ist jedoch identisch.
- Die Grammatik ist daher eindeutig.

Grammatik: mehrdeutig

Die Worte einer Grammatik G sind nicht immer in eindeutiger Weise anhand der Regeln ableitbar und können auch verschiedene Ableitungsbäume ergeben.

Beispiel: $S \rightarrow aS \mid Sa \mid a$

- Das Wort w=aaa lässt sich ableiten als
- 1./ $S \Rightarrow aS \Rightarrow aaS \Rightarrow aaa$ (1) oder
- $\sqrt{2}$. $S \Rightarrow aS \Rightarrow aSa \Rightarrow aaa$ (2) oder
- 3. $S \Rightarrow Sa \Rightarrow Saa \Rightarrow aaa$ (3) oder
- 4. $S \Rightarrow Sa \Rightarrow aSa \Rightarrow aaa$ (4)
- Der Ableitungsbäume sind alle verschieden.
- Die Grammatik ist somit mehrdeutig.

Aufgabe Ableitungsbäume

Erstellen Sie einen Ableitungsbaum für Worte der Länge 4 zu folgenden Grammatiken G = ({S, A, B}, {0,1}, P, S). Welche Grammatiken sind mehrdeutig?

- 1. $P = \{S \rightarrow OS \mid 1S \mid O\}$
- 2. $P = \{S \rightarrow OSOS \mid 1\}$
- 3. $P = \{S \rightarrow OS1 \mid 1A, A \rightarrow 1A \mid 1\}$
- 4. $P=\{S \to 1A \mid OB, A \to 1AA \mid OS \mid O, B \to OBB \mid 1S \mid 1\}$

Grammatik: mehrdeutig

- Die Grammatik $G_m = (\{S\}, \{0\}, \{S \rightarrow aS \mid Sa \mid a\}, S)$ ist mehrdeutig, aber sie lässt sich leicht durch eine eindeutige Grammatik ersetzen.
- $G = (\{S\}, \{0\}, \{S \rightarrow aS \mid a\}, S)$
- Eine mehrdeutigen Grammatik impliziert noch lange nicht, dass die Sprache mehrdeutig ist.
- Ziel
 - für eine eindeutige Sprache L auch eine eindeutige Grammatik G mit L(G) = L zu erhalten.

Grammatik: eindeutig/mehrdeutig

■ Beispiel: $G=(\{S,A\},\{0,1\},\{S\to 00\mid 1A\mid 0AA, A\to 01\mid 1\},S)$

- Die Sprache L(G) hat nur 7 Worte: L(G) = {00, 101, 11, 00101, 0011, 0101,011}
- Die Worte: 00101, 0011, 0101 und 011 können auf zwei verschiedene Arten abgeleitet werden, aber es gibt nur einen Ableitungsbaum.
 - ⇒ die Grammatik G ist daher eindeutig.

Grammatik: eindeutig, aber Ersetzungen mehrdeutig

- Mehrdeutigkeit in der Ersetzung ist möglich
- daher erzielt man Eindeutigkeit dadurch, dass:
 - Nichtterminale, die ganz links stehen, werden zuerst ersetzt oder
 - Nichtterminale, die ganz rechts stehen, werden zuerst ersetzt.
- Beispiel: $G_2 = (\{S,A\}, \{a,b\}, \{S \rightarrow aAS \mid a, A \rightarrow SbA \mid SS \mid ba\}, S)$
- Ableiten des Wortes: aabbaa

$$S/ \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabAS$$

⇒ aabbaS ⇒ aabbaa (Linksableitung)

 $S \Rightarrow aAS \Rightarrow aAa \Rightarrow aSbAa \Rightarrow aSbbaa$

⇒ aabbaa (Rechtsableitung)

Ableitungsbaum

Rechtsableitung

Linksableitung

Aufgabe Mehrdeutigkeit

- Zeigen Sie, dass die Grammatik G mehrdeutig ist und die dazugehörige äquivalente Grammatik G_e eindeutig.
 - $G = (\{E\}, \{a, +, *, (,)\}, \{E \rightarrow E + E \mid E * E \mid (E) \mid a\}, E)$
 - $G_e = (\{E,T,F\},\{a,+,*,(,)\},\{E \to E+T \mid T,T \to T*F \mid F,F \to (E) \mid a\},E)$
- Beispiel einer inhärent mehrdeutige Sprache
 - L = $\{a^ib^jc^k \mid i=j \text{ oder } j=k \text{ mit } i,j,k>0\}$

Ableitungsbäume

- Neben der Generierung von Worte einer Sprache, können auch Ableitungsbäume zur Berechnung von Ausdrücken verwandt werden
- Beispiel:
 - $G = (\{S\}, \{a \in N\}, \{S \to S + S \mid S * S \mid a \}, S)$
 - Mögliche Ausdrücke 3+4*5, 1+7+8
 - ►/Was heißt 3+4*5?
 - 3+(4* 5) oder (3+4)*5
 - Wie bekomme ich die Mehrdeutigkeit weg?

Ableitungsbäume

- Durch Klammerung
- $G = (\{S\}, \{(,), a \in N\}, \{S \to (S+S) \mid (S*S) \mid a\}, S)$
- Was heißt ((3+4)*5) oder (3+(4*5)) ?
- Es gibt jedoch noch einen anderen Weg

Berechnungsbäume

- Die Ableitungsbäume erlauben arithmetische Ausdrücke zu berechnen
- Wenn man den Baum durchwandert erhält man *3+4 5
 - Dies nennt man Prefix-Notation (oder Polnische Notation)
 (Operation steht vor den beiden Operanden)
 - erlaubt die Klammerfreie Berechnung von Ausdrücken

<u>Berechnungsbäume</u>

- Durchwandern von Bäumen
 - Prefix Notation (Operation wird zuerst ausgegeben, dann der linke Ast rekursiv durchwandert und dann der rechte Ast rekursiv durchwandert)

Nennt man auch Polnische Notation

- Infix Notation (zuerst der linke Ast durchwandert dann die Operation ausgegeben und dann der rechte Ast durchwandert)
- Postfix Notation (Der linke Ast wird rekursiv durchwandert und dann der rechte Ast rekursiv durchwandert dann wird die Operation ausgegeben)

Nennt man auch Umgekehrte Polnische Notation

Beispiel: (1-(2+3)*4)

- Prefix: -1*+234
- Infix: 1 2+3*4
- Postfix: 123+4*-

Beispiel: Berechnungsbäume

- Beispiel: ((1+2)*(3+4)+5)*6)
- Polnische Notation: * + * +1 2 +3 4 5 6
- Berechnung:

```
+*+12+3456 \Rightarrow *+*3+3456
+*3+3456 \Rightarrow *+*3756
*+*3756 \Rightarrow *+2156
+2156 \Rightarrow *266
*266 \Rightarrow 156
```

Aufgabe Polnische Notation

- Wandeln Sie folgende Infix-Notation in Polnische Notation um.
- 1. 1*2*3
- 2. 1*2+3
- **3**. 1*(2+3)
- 4. ((1+2)*3)+4)
- 5. 1+2*3+4

Beispiel arithmetische Ausdrücke

- Erzeugen von arithmetischen Ausdrücken

 Als Stellvertreter für Variablen und Ausdrücken wählen wir a

 Ausdrücke wäre: a, a+a, a*a, a+(a+a),a*((a-a)/a)-((a+a)*a)).
- Was ist das Terminalalphabet?
 - a als Bezeichner für Konstanten und Variablen
 - () Klammersymbolen
 - +,-,*,/ als Operatoren
 - Hilfssymbole E für Ausdrücke und O für Operationen
- D.h wir haben
 - \blacksquare E \rightarrow a und O \rightarrow + | | * | /
 - E → E O E zum Verknüpfen von Ausdrücken
 - ightharpoonup E ightharpoonup (E) zum Einklammern
- $G_A = (\{E,O\}, \{a,(,),+,-,*,/\}, P,E)$ $P = \{E \rightarrow a \mid E \cap E \mid (E) \mid , O \rightarrow + \mid - \mid * \mid /\}$

Beispiel 2 Ableitung von Wörter

$$G_A = (\{E,O\}, \{a,(,),+,-,*,/\}, \{E \rightarrow a \mid E O E \mid (E) \mid , O \rightarrow + | - | * | / \},E)$$

Ableiten des Ausdrucks: a*(((a-a)/a)-((a+a)*a))

$$E \Rightarrow EOE$$

$$\Rightarrow E^*E$$

$$\Rightarrow E^*(E)$$

$$\Rightarrow E^*(EOE)$$

$$\Rightarrow E^*(E-E)$$

$$\Rightarrow E^*(E-(E))$$

$$\Rightarrow E^*(E-(EOE))$$

$$\Rightarrow E^*(E-(EOE))$$

$$\Rightarrow E^*(E-(EOE))$$

$$\Rightarrow E^*(E-(EOE))$$

$$\Rightarrow E^*(E-(EOE))$$

$$\Rightarrow E^*(E-(EOE))$$

$$E \Rightarrow E * ((E)-((E+E)*E))$$

$$\Rightarrow E * ((EOE)-((E+E)*E))$$

$$\Rightarrow E * ((E/E)-((E+E)*E))$$

$$\Rightarrow E * (((E)/E)-((E+E)*E))$$

$$\Rightarrow E * (((EOE)/E)-((E+E)*E))$$

$$\Rightarrow E * (((E-E)/E)-((E+E)*E))$$

$$\Rightarrow * a * (((a-a)/a)-((a+a)*a))$$

Beispiel2 Ableitungsbaum

Ableitungsbaum für: a*(((a-a)/a)-((a+a)*a))

Normalformen

- Jede kontextfreie Grammatik lässt sich vereinfachen und in eine Normalform überführen.
 - Elimination der ε-Regeln
 - Elimination von Kettenregeln
 - Elimination von nutzlosen Variablen
- Gängige Normalformen sind:
 - Chomsky-Normalform

(Produktionen P mit A, B, C \in N und a \in Σ nur in der Form:

 $A \rightarrow BC$ oder $A \rightarrow a$

Greibach-Normalform

(Produktionen P mit $a \in \Sigma$ und $X \in N^*$ nur in der Form: $A \to aX$)

Elimination der ε-Regeln

- In jeder kontextfreie Grammatik G lassen sich alle ϵ -Regeln mit Ausnahme der Regel $S \to \epsilon$ eliminieren.
 - Die Grammatiken sind dabei äquivalent.
- Verfahren:
 - 1. Sei $X \to vAw$ mit $A \to \varepsilon$ (A eine ε -Variable), dann füge $X \to vw$ als Regel hinzu.
 - 2./ Mache das iterativ bis keine neue ε-Variable mehr hinzu kommt.
 - 3. Lösche alle ϵ -Regeln bis auf $S \to \epsilon$

Elimination der ε-Regeln

- Beispiel: $G = (\{S,A,B,C\}, \{0,1,2\}, \{S \rightarrow 0A \mid 1B, A \rightarrow BC, B \rightarrow B2 \mid \epsilon, C \rightarrow \epsilon \},S\}$
- 1.Schritt (neue Regeln für die ε-Variablen B und C)
 - \blacksquare S \rightarrow OA | 1B | 1
 - \rightarrow A \rightarrow BC | B | C | ϵ
 - \blacksquare B → B2 | 2 | ε
 - C/ $\rightarrow \epsilon$
- Nyn ist A eine ε-Variablen (Iteration über A)
 - \searrow S \rightarrow OA | O | 1B | 1
 - $A \rightarrow BC \mid B \mid C \mid \varepsilon$
 - \blacksquare B → B2 | 2 | ε
 - $C \rightarrow \epsilon$
- Löschen aller ε-Regeln
 - S \rightarrow OA | O | 1B | 1
 - $A \rightarrow BC \mid B \mid C$
 - $B \rightarrow B2 \mid 2$

Elimination von Kettenregeln

- In jeder kontextfreie Grammatik G lassen sich alle Kettenregeln eliminieren.
- ► Eine Kettenregel ist eine Regeln von der Form A \rightarrow B mit B \in N
- ightharpoonup Def: [A]* = {B \in N | mit A \rightarrow * B}
- Verfahren:
 - 7. Zunächst Zyklen eliminieren. Ein Zyklus ist eine Menge $A_1, ..., A_k$ von Variablen mit: $A_1 \rightarrow A_2, A_2 \rightarrow A_3, ... A_{k-1} \rightarrow A_k, A_k \rightarrow A_1$. Der Zyklus wird entfernt, indem die zyklische Regel gelöscht wird und alle Variablen $A_1, ..., A_k$ durch eine Variable B ersetzt werden.
 - 2. Für alle $A \in N$
 - 1. bestimme [A]* . Lösche anschließend alle Kettenregeln
 - 2. Für jedes $B \in [A]^*$ und jede Regel $B \to w$: Füge die Regel $A \to w$ hinzu.

Elimination von Kettenregeln

- Beispiel: G = ({S,A,B,C}, {a,b,c,d}, P, S} mit P:
 - \rightarrow S \rightarrow A | bB
 - \rightarrow A \rightarrow B | C
 - \rightarrow B \rightarrow A | Cc
 - C \rightarrow c|d
- 1.Schritt Zyklus A \rightarrow B, B \rightarrow A entfernen. A,B werden durch X ersetzt.
 - \longrightarrow S \rightarrow X | bX
 - \rightarrow X \rightarrow C | Cc
 - $C \rightarrow c \mid d$
- 2. Schritt [S]* , [X]* und [C]* bestimmen
 - \blacksquare [S]* = {X,C}, [X]* = {C}, [C]* = \emptyset
 - \rightarrow X \rightarrow C und S \rightarrow X löschen.
- 3. Schritt Regeln hinzufügen ($S \rightarrow c \mid d \mid Cc \text{ und } X \rightarrow c \mid d$)
 - \rightarrow S \rightarrow c | d | Cc | bX
 - \rightarrow X \rightarrow c | d | Cc
 - $C \rightarrow c \mid d$

Elimination nutzloser Variablen

- Eine Variable heißt **nützlich**, wenn sie in der Ableitung eines Terminalwortes vorkommt, d.h. $S \Rightarrow^* \cup Av \Rightarrow^* w$ mit $w \in \Sigma^* \cup Av \cup \Sigma$)*
- A ist nutzlos,
 - wenn sich daraus kein Terminalwort ableiten lässt oder
 - wenn A von Startsymbol aus nicht erreichbar ist.
- Beispiel: Grammatik G = ({S,A,B,C}, {0,1,2}, P,S} mit P:

$$S \rightarrow 0A \mid 0 \mid 1B \mid 1$$

 $A \rightarrow BC \mid B \mid C$
 $B \rightarrow B2 \mid 2$

die Variable C ist nutzlos. D.h. eliminieren alle Produktionen, wo C vorkommt.

```
S \rightarrow 0A \mid 0 \mid 1B \mid 1

A \rightarrow B

B \rightarrow B2 \mid 2
```

Aufgabe Vereinfachung

- Falls möglich, vereinfachen Sie folgende Grammatiken G
- $G = (\{S,A,B,C,D\},\{0,1\},$

 $\{S \rightarrow 00B \mid 1A, A \rightarrow B \mid C, B \rightarrow 1B \mid 0 \mid AD, C \rightarrow BD \mid AD, D \rightarrow \epsilon\}, S\}$

Chomsky Normalform

Definition: Chomsky Normalform

Eine kontextfreie Grammatik mit $\epsilon \notin L(G)$ heißt in Chomsky-Normalform, wenn alle ihre Regeln von einer der beiden Formen sind:

 $A \rightarrow BC$ oder

 $A \rightarrow a$

mit A, B, C \in N und a \in Σ

Jede kontextfreie Grammatik G mit ε ∉ L(G) lässt sich in Chomsky-Normalform transformieren.

Chomsky Normalform

Transformation 1: Beispiel

Beispiel: Grammatik G = ({S,A,B,C}, {0,1,2,3}, P,S} mit P S
$$\rightarrow$$
 0A1 | 0C A \rightarrow B0B | 0 | C B \rightarrow BA | 1 C \rightarrow C2 | 3C

Elimination von C (nutzlos)

$$S \rightarrow 0A1$$

 $A \rightarrow B0B \mid 0$
 $B \rightarrow BA \mid 1$

Für jedes Terminalsymbol $\{0,1\}$ eine Regel $X_0 \rightarrow 0$, $X_1 \rightarrow 1$ einführen und entsprechend in der Regelmenge ersetzten.

$$S \rightarrow X_0 A X_1$$

$$A \rightarrow B X_0 B \mid 0$$

$$B \rightarrow B A \mid 1$$

$$X_0 \rightarrow 0$$

$$X_1 \rightarrow 1$$

Chomsky Normalform

Transformation 2: Beispiel

$$S \rightarrow X_0 A X_1$$

$$A \rightarrow B X_0 B \mid 0$$

$$B \rightarrow B A \mid 1$$

$$X_0 \rightarrow 0$$

$$X_1 \rightarrow 1$$

Schließlich mehrfach Produktionen: $A \rightarrow B_1B_2 ...B_k$ ersetzen durch $A \rightarrow B_1W_1, W_1 \rightarrow B_2 W_2 ... W_{k-2} \rightarrow B_{k-1} B_k$

$$S \rightarrow X_0W_1$$

$$W_1 \rightarrow AX_1$$

$$A \rightarrow B W_2 \mid 0$$

$$W_2 \rightarrow X_0B$$

$$B \rightarrow BA \mid 1$$

$$X_0 \rightarrow 0$$

$$X_1 \rightarrow 1$$

Aufgabe Chomsky-Normalform

- Überführen Sie folgende Grammatiken G = ({S, A, B}, {0,1}, P, S) in Chomsky-Normalform.
- 1. $P = \{S \rightarrow 0S0 \mid SS0 \mid 0\}$
- 2. $P = \{S \rightarrow SOS \mid SOS1S \mid S1SOS \mid \epsilon\}$
- 3. $P = \{S \rightarrow ABABAB, A \rightarrow 0 \mid \epsilon, B \rightarrow 1\}$
- 4. $P = \{S \rightarrow OA \mid B1, A \rightarrow S, B \rightarrow 1B \mid 1\}$

Greibach-Normalform

- Neben der Chomsky-Normlform gibt es auch Greibach-Normalform. Die Regeln sind alle vom Typ:
 - L -> aN* (N: Nichterminale, a die Terminale der Grammatik)
 - In jeden Schritt lässt sich ein Zeichen ableiten. Um ein Wort der Länge n zu erkennen braucht man höchstens n-Schritte.
- Die Umwandlung einer kontextfreie Grammatik in die Greibach-Normalform ist recht aufwändig. Daher belassen wie es mit zwei Beispielen für Grammatiken in der Greibach-Normalform
- Beispiele
 - $G_1 = (\{S,B\},\{a,b\}, \{S \rightarrow a B \mid a S B, B \rightarrow b\}, S)$
 - \blacksquare $G_2 = (\{S,A,B\},\{a,b\},\{S \rightarrow aA \mid bB \mid aSA \mid bSB, A \rightarrow a, B \rightarrow b\}, S)$

Welche Sprachen erzeugen diese Grammatiken?

Darstellung kontextfreier Grammatiken

- Die erweiterterte Backus-Naur-Form (EBNF) ist eine effiziente Darstellungsform für kontextfreie Grammatiken.
- Verwendet für die Darstellung von Programmier- und Dialogsprachen.
- Entwickelt durch Backus und Naur.
 - Diese waren in den 50 und 60 Jahren wesentlich an der Entwicklung von Fortan und Algol beteiligt.

Erweiterte Backus-Naur-Form (EBNF) Definition

- Seine Σ und N zwei Alphabete mit Σ terminales und N nicht terminales Alphabet. Dann gilt:
 - ▶ Jedes $a \in \Sigma$ und jedes $A \in N$ sowie ε sind Elemente von EBNF
 - Sind $a_1,a_2,...a_k, k \ge 1 \in EBNF$ dann auch $(a_1a_2...a_k)$ sowie $(a_1 \mid a_2 \mid ... \mid a_k)$
 - Sind a, b und $c \in EBNF$, dann auch a{b}*c oder alternativ a{b}c $\in EBNF$
 - ▶ Sind a, b und c ∈ EBNF, dann auch a{b} 1 0c oder alternativ a[b]c ∈ EBNF
- Sợi A ∈ N und x eine EBNF, dann heißt A::= x eine erweiterte Backus-Naur-Regel
- Eine Grammatik $G = \{ N, \Sigma, P, S \}$, wobei $S \in N$ das Startsymbol und P eine endliche Menge von erweiterten Backus-Naur-Regeln ist, heißt erweiterte Backus-Naur Grammatik.

Definition der Sprache

- ► Festlegen der Ableitungsregeln (A \in N , a,b,c \in Σ)
 - Bisher wurde ein nicht-terminales Symbol A durch ein Wort w über N υ
 Σ ersetzt. (Expansionsschritt)
 - $aAc \Rightarrow abc$, falls eine Regel $A \rightarrow b$ existierte mit $A \in N$ und $a, b, c \in \Sigma$
- Außer diesen Regeln gibt es noch (Reduktionsschritt):
 - Ist ein Wort $w = a(b_1 \mid b_2 \mid ... \mid b_k)c$ abgeleitet, dann gilt $a(b_1 \mid b_2 \mid ... \mid b_k)$ \Rightarrow ab_ic für ein $1 \le i \le k$
 - ▶ Ist ein Wort w = a{b}c abgeleitet, dann gilt a{b}c \Rightarrow abic für ein i \geq 0
 - Ist ein Wort w = a[b]c abgeleitet, dann gilt a[b]c ⇒ ac oder a[b]c ⇒ abc
- Die Symbole | und * werden wie bei den regulären Ausdrücken interpretiert und [a] entspricht dem regulären Ausdruck (ε | a)
- Damit lässt sich die Sprache der erweiterten Backus-Naur-Grammatik definieren: L(G) = { w ∈ Σ* | S ⇒* w}

Beispiel: Ableitung

Gegeben $G_1 = \{\{int, v_z, z_f, z_1, z_0\}, \{+, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, P, int\}$

Ableiten der Zahl: 7305:

$$\begin{array}{l} \text{int} \Rightarrow v_z \, z_f \Rightarrow [+\,|\,-] \, z_f \Rightarrow z_f \\ \\ \Rightarrow (0\,|\,z_1\{z_0\} \Rightarrow z_1\{z_0\} \Rightarrow z_1z_0z_0z_0z_0 \\ \\ \Rightarrow (1\,|\,2\,|\,3\,|\,4\,|\,5\,|\,6\,|\,7\,|\,8\,|\,9) \, z_0z_0z_0z_0 \Rightarrow 7z_0z_0z_0z_0 \\ \\ \Rightarrow 7(0\,|\,z_1) \, z_0z_0 \Rightarrow 7z_1z_0z_0 \Rightarrow 7(1\,|\,2\,|\,3\,|\,4\,|\,5\,|\,6\,|\,7\,|\,8\,|\,9) \, z_0z_0 \Rightarrow 73z_0z_0 \\ \\ \Rightarrow 73(0\,|\,z_1)z_0 \Rightarrow 730z_0 \\ \\ \Rightarrow 730(0\,|\,z_1) \Rightarrow 730z_1 \Rightarrow 730(1\,|\,2\,|\,3\,|\,4\,|\,5\,|\,6\,|\,7\,|\,8\,|\,9) \Rightarrow 7305 \end{array}$$

EBNG ist äquivalent zu den kontextfreien Grammatiken

Die Sprache einer erweiterten Backus-Naur-Grammatik L_{BN} ist äquivalent der Sprache einer kontextfreien Grammatik L_{kf}

Beweis durch Konstruktion:

1) Jedes
$$A \rightarrow a \Rightarrow A := a$$

d.h/jede kontextfreie Sprache lässt sich durch eine EBNG beschreiben

1/2) Jede Backus-Naur-Regel lässt sich in eine kontextfreie Regel transformieren.

A::=
$$(a_1 a_2...a_k)$$
 $\Rightarrow A \rightarrow a_1 a_2...a_k$
A::= $(a_1 \mid a_2 \mid ... \mid a_k)$ $\Rightarrow A \rightarrow a_1$, $A \rightarrow a_2$,..., $A \rightarrow a_k$
A::= $a\{b\}c$ $\Rightarrow A \rightarrow aBc$, $B \rightarrow bB$, $B \rightarrow \epsilon$
mit B ein neues nicht-terminales Symbol
A::= $a[b]c$ $\Rightarrow A \rightarrow ac$, $A \rightarrow abc$

Mit diesem Verfahren alle Regeln transformieren.

Beispiel: EBNG ist äquivalent zu den kontextfreien Grammatiken

• Gegeben $G_1 = \{\{int, v_z, z_f, z_1, z_0\}, \{+, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, P, int\}$

$$P = \{ int::= \quad v_z \, z_f, \\ v_z::= \quad [+|-], \\ z_f::= \quad (0 \, | \, z_1 \{ z_0 \}), \\ z_1::= \quad (1 \, | \, 2 \, | \, 3 \, | \, 4 \, | \, 5 \, | \, 6 \, | \, 7 \, | \, 8 \, | \, 9), \\ z_0::= \quad (0 \, | \, z_1) \} \\ int::=v_z \, z_f \qquad \Rightarrow int \rightarrow v_z \, z_f \\ v_z::= [+|-] \qquad \Rightarrow v_z \rightarrow + |-|\epsilon \\ z_f::= (0 \, | \, z_1 \{ z_0 \}) \Rightarrow z_f \rightarrow 0 \, \text{ und } z_f \rightarrow z_1 \{ z_0 \} \\ z_f \rightarrow z_1 \{ z_0 \} \, \text{ wird transformiert in } z_f \rightarrow z_1 B, \, B \rightarrow z_0 \, , B \rightarrow \epsilon \\ z_1::= (1 \, | \, 2 \, | \, 3 \, | \, 4 \, | \, 5 \, | \, 6 \, | \, 7 \, | \, 8 \, | \, 9) \Rightarrow z_1 \rightarrow 1 \, | \, 2 \, | \, 3 \, | \, 4 \, | \, 5 \, | \, 6 \, | \, 7 \, | \, 8 \, | \, 9) \\ z_0::= (0 \, | \, z_1) \qquad \Rightarrow z_0 \rightarrow 0 \, | \, z_1$$

vereinfachte Regel Darstellung

Wenn man sich EBNF genauer ansieht, lassen sich mit der dortigen Notation die Regeln regulärer Grammatiken kompakter schreiben

 $ightharpoonup A
ightharpoonup a_1, A
ightharpoonup a_2,..., A
ightharpoonup a_k$ kompakter $A
ightharpoonup a_1 \mid a_2 \mid ... \mid a_k$

ightharpoonup A→ aBc, B→ bB, B→ ε kompakter A → a{b}c

ightharpoonup /A
ightharpoonup ac, A
ightharpoonup abc kompakter A ightharpoonup a[b]c

vnd graphisch darstellen (Syntaxdiagramme).

Syntaxdiagramme

Grafische Darstellung der Regeln

Syntaxdiagramme

- Darstellung kontextfreien Grammatiken durch Syntaxdiagramme
 - ► Ein Pfeil markiert das Startsymbol
 - ▶ Terminale sind Kreise
 - Nicht-Terminale sind Rechtecke
 - Beispiel $G_1 = \{\{int, v_z, z_f, z_1, z_0\}, \{+,-,0,1,2,3,4,5,6,7,8,9\}, P, int\}$ mit

 $P = \{ int ::= v_z z_f, v_z ::= [+ | -], z_f ::= (0 | z_1 \{z_0\}), z_1 ::= (1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9), z_0 ::= (0 | z_1) \}$

Eigenschaften kontextfreier Sprachen

- Es gibt ein Pumping-Lemma für diese Sprachen
 - Sei L eine kontextfreie Sprache. Dann existiert eine Zahl p ≥ 0 mit p∈N, so dass sich jedes Wort w ∈ L mit |w| ≥ p in der folgenden Form schreiben lässt:

```
w = uvwxy \; mit \; |\; vx \; | \; \geq 1 \; und \; |\; vwx \; | \; \leq p und \forall \; i \geq 0 \; gilt \; uv^iwx^iy \; gehört \; auch \; zu \; L.
```

- Die kontextfreien Sprachen sind abgeschlossen unter:
 - Vereinigung
 - Konkatenation
 - Kleene-Stern
- Die kontextfreien Sprachen sind nicht abgeschlossen unter:
 - Durchschnittsbildung
 - Komplement

Kontextfreier Sprachen

Abgeschlossenheit

- Seien $L_1 = L(G_1)$ und $L_2 = L(G_2)$ zwei kontextfreie Sprachen, die durch die Grammatiken
 - $G_1 = (N_1, \Sigma, P_1, S_1)$ und
 - \blacksquare $G_2 = (N_2, \Sigma, P_2, S_2)$ definiert sind

Kontextfreie Sprachen sind abgeschlossen unter

- **Vereinigung** $L(G) = L_1 \cup L_2$
 - $G = (N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}, S\}$
 - ist eine kontextfreie Sprache.
- **Konkatenation** $L(G) = L_1L_2$
 - $G = (N_1 \cup N_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}, S\}$
 - ist eine kontextfreie Sprache.
- ► Kleene-Stern L(G) = L₁*
 - \blacksquare G = (N₁ \cup {S}, Σ , P₁ \cup {S \rightarrow SS₁ | ϵ }, S}
 - ist eine kontextfreie Sprache.

Kontextfreier Sprachen

Nichtabgeschlossenheit

Kontextfreie Sprachen sind nicht abgeschlossen unter

Durchschnittsbildung

Gegenbeispiel:

- $L_1 = \{a^ib^ic^k \mid i,k \ge 1\}$ und $L_2 = \{a^ib^kc^k \mid i,k \ge 1\}$
- Sowohl L₁ als auch L₂ gehören zu den kontextfreien Sprachen
 - mit $G_1 = (\{S,A,B\},\{a,b,c\},\{S \rightarrow AB, A \rightarrow aAb \mid ab, B \rightarrow cB \mid c\},S\}$
 - und $G_2 = (\{S,C,D\},\{a,b,c\},\{S->CD,C\rightarrow aC\mid a,D\rightarrow bDc\mid bc\},S\}$
- Die Schnittmenge L = $L_1 \cap L_2 = \{a^i b^i c^i \mid i \ge 1\}$ ist nicht kontextfrei.
- und Komplement.

Da $L_1 \cap L_2 = (L_1^c \cup L_2^c)^c \Rightarrow L^c$ kann auch nicht kontextfrei frei.

Entscheidungsprobleme

- Der Zweck eines endlichen Automaten ist die Pr
 üfung, ob ein gegebenes Wort zu seiner Sprache geh
 ört. (Wortproblem)
- Auch andere Entscheidungsprobleme sind hier relevant.
- Für kontextfreie Sprachen können diese fast alle mit ja beantwortet werden.

Problem	Gegeben	Gefragt	Entscheidbar
Wortproblem	L und $w \in \Sigma^*$	Gilt w ∈ L?	Ja
Leerheitsproblem	L	Gilt L = ∅?	Ja
Endlichkeitsproble m	L	Gilt L < ∞?	Ja
Äquivalenzproblem	L ₁ und L ₂	$L_1 = L_2$?	nein

Entscheidungsprobleme

- Das Wortproblem ist entscheidbar
 - Z.B. lösen mit Hilfe des CYK-Algorithmus
- Das Leerheitsproblem ist entscheidbar
 - Die Sprache L(G) ist genau dann leer, wenn S eine nutzlose Variable ist. (Siehe dazu Kapitel Vereinfachung der Grammatik von kontextfreien Sprachen)
- Das Endlichkeitsproblem ist entscheidbar
 - Transformation in Chomsky-Normalform
 - Aufstellen eines gerichteten Graphen.
 - Die Knoten sind die Nichtterminglen.
 - Die gerichtete Kantenmenge V wird gebildet anhand der Regeln. Jede Regel S→AB ergibt zwei Kanten S → A und S → B.
 - Enthält der gerichtete Graph keine Zyklen, dann ist die Sprache endlich.
- Das Äquivalenzproblem ist nicht entscheidbar

Das Endlichkeitsproblem

Beispiel

Gegeben die Grammatiken:

$$G_1 = (\{S,A,B,C\},\{a,b,c\},\{S \to AB, A \to BC \mid a, B \to b, C \to c\},S)$$

 $G_2 = (\{S,A,B,C\},\{a,b,c\},\{S \to AB, A \to BC, B \to CA \mid b, A \to a, C \to c\},S)$

Die zugehörigen Graphen sind:

- $ightharpoonup G_1$ nicht zyklisch \Rightarrow L(G_1) endlich
- \blacksquare G_2 zyklisch \Rightarrow L(G_2) unendlich

Das Wortproblem

CYK Algorithmus

w ∈ L(G) und G eine kontextfreie Grammatik?

- Diese Frage lässt sich mit ja beantworten.
- Ein einfacher Algorithmus mit Komplexität O(n³) stammt von Cocke, Younger und Kasami (CYK Algorithmus)
- Methode dynamische Programmierung
 - In der Chomsky-Normlform sind alle Regeln (A,B,C \in N und a \in Σ) entweder
 - \rightarrow A \rightarrow a oder
 - \rightarrow A \rightarrow BC
 - Sei $w \in \Sigma^*$ und es soll geprüft werden ob $w \in L(G)$ ist.
 - ▶ Ist |w| = 1 so muss es eine Regel $S \rightarrow w$ geben, andernfalls $w \notin L(G)$
 - Ist |w| > 1 so ist die erste Regel $S \Rightarrow XY \Rightarrow^* w$. d.h w lässt sich zerlegen in w = uv mit $X \Rightarrow^* u$ und $Y \Rightarrow^* v$
 - Dies wird nun rekursive auf die Teilworte u und v von w angewandt bis |u| = 1 und |v| = 1
 - Dieser rekursiver Algorithmus lässt sich auch in einen iterativen Algorithmus überführen

Das Wortproblem

CYK Algorithmus: iterative Variante

- Methode der Tabellierung
 - Für jedes Teilwort des Eingabeworts w wird notiert aus welchem Nichtterminal es sich ableiten lässt. Dies wird sukzessiv angewandt bis man beim Startsymbol endet.
- Sei w = $a_1 a_2 ... a_n$ das zu erkennende Wort.
- Man erstellt eine Tabelle T ∈ (n+1) x n
 - in T[i,j] wird notiert aus welchem Nichtterminal das Teilwort u=a_ja_{j+1}...a_{j+1-i} das an Position j beginnt und Länge i hat ableiten lässt.
 - Das Ergebnis ist dann in T[n,1] abzulesen.
 - Enthält T[n,1] das Startsymbol S ist w aus dem S ableitbar und damit w ∈ L(G)

Das Wortproblem

CYK Algorithmus: Beispiel

- Beispiel w_1 =0011 und w_2 =1001 Frage $w_1 \in L(G)$, $w_2 \in L(G)$? mit $G=(\{S,A,B,C\},\{0,1\},S \to BC \mid BA, A \to SC \mid BS, B \to 0, C \to 1\},S\}$
- Aufstellen der Tabelle

W_1	/j=1	j=2	j=3	j=4
i=0	0	0	1	1
i=1/	В	B	Ċ	c
i≠2		\$		
/= 3	A	A		
i=4	S			

$$\Rightarrow$$
 $W_2 = 1001 \notin L(G)$

W_2	j=1	j=2	j=3	j=4
i=0	~~	Q	Q	1
i=1	C	В	В.	C
i=2			S	
i=3		A		
i=4				

Aufgabe CYK Algorithmus

- Überprüfen Sie mit Hilfe des CYK-Algorithmus, ob folgende Worte w zur Sprache L(G) mit der Grammatik
- $G = (\{S, A, B, C, D, \{a,b,c,S\},P,S\})$ mit

P={S \rightarrow AB | AC | ϵ , C \rightarrow DB, D \rightarrow AB | AC, A \rightarrow a, B \rightarrow b | c} gehören. (Überprüfen Sie ihr Ergebnis mit FLACI).

- w= aacbc
- w= aaabcb