

So Far...

- Our goal (supervised learning):
 - To learn a set of discriminant functions
- Bayesian framework
 - We could design an optimal classifier if we knew:
 - $P(\omega_i)$: priors and $P(x \mid \omega_i)$: class-conditional densities
 - Using training data to estimate $P(\omega_i)$ and $P(x \mid \omega_i)$
 - $P(\omega_i | x)$ is computed and be used as the discriminant functions
 - Estimating $P(x, \omega_i)$
- Other possible ways?
 - Directly learning discriminant functions from the training data
 - Directly estimating $P(\omega_i | x)$

Linear Methods for Regression

Deng Cai (蔡登)

College of Computer Science Zhejiang University

dengcai@gmail.com

Classification VS Regression

- Both are supervised learning methods
 - Goal: learn a mapping from inputs x to outputs y
- Classification (Categorization, Decision making...)
 - y is a categorical variable

- Regression
 - y is real-valued

Linear model

- ▶ Sample: $x \in R^d$, $x = [x_1, x_2, \dots x_d]^T$
- Finds a linear function $\mathbf{w} = [w_1, w_2, \dots, w_d]^T \in \mathbb{R}^d$, b

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

$$\mathbf{x} = [x_1, x_2, \cdots x_d, 1]^T \in \mathbb{R}^{d+1}$$

$$\mathbf{w} = [w_1, w_2, \cdots w_d, b]^T \in \mathbb{R}^{d+1}$$

Polynomial Curve Fitting

$$f(x, \mathbf{a}) = a_0 + a_1 x + a_2 x^2 + \dots + a_M x^M = \sum_{j=0}^{N-1} a_j x^j$$

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

Sum-of-Squares Error Function

- Training data:
 - $(x_1, y_1), (x_2, y_2), \cdots (x_n, y_n)$
- ▶ To learn f which f(x) = y
- Criterion function:

• MSE(
$$\boldsymbol{a}$$
) = $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, \boldsymbol{a}))^2$

Polynomial Curve Fitting → **Linear Regression**

$$f(x, \mathbf{a}) = a_0 + a_1 x + a_2 x^2 + \dots + a_M x^M = \sum_{j=1}^M a_M x^M$$

•
$$x = [1, x, x^2, \dots, x^M]^T$$

$$a = [a_0, a_1, a_2, \cdots, a_M]^T$$

$$f(x, a) = a^T x$$

Linear Regression Model

▶ Training data: (x_i, y_i)

•
$$f(x) = a_0 + \sum_{i=1}^{p} a_i x_i = a_0 + \mathbf{a}^T x$$

- $\mathbf{a} = [a_1, \dots, a_p]^T$ and a_0 : unknown parameters or coefficients
- *x* : Feature vector, the outcome of feature extraction.
- Minimize the mean-squared error :

$$J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Minimize the residual sum of squares

$$RSS(f) = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

The MSE Criterion

$$J_n(\boldsymbol{a}) = \sum_{i=1}^n (y_i - \boldsymbol{a}^T \boldsymbol{x}_i)^2$$

- ► MSE Criterion: Minimize the sum of squared differences between $\boldsymbol{a}^T \boldsymbol{x}_i$ and y_i
- Using matrix notation for convenience

$$X = [\mathbf{x}_1, \cdots, \mathbf{x}_n], \qquad \mathbf{y} = [y_1, \cdots, y_n]^T$$

$$J_n(\boldsymbol{a}) = (\boldsymbol{y} - \boldsymbol{X}^T \boldsymbol{a})^T (\boldsymbol{y} - \boldsymbol{X}^T \boldsymbol{a})$$

How to optimize it (finds the optimal solution)?

Optimizing the MSE Criterion

Computing the gradient gives:

$$\nabla J_n = -2X(\boldsymbol{y} - X^T \boldsymbol{a})$$

Setting the gradient to zero,

$$XX^T \mathbf{a} = X\mathbf{y}$$
$$\mathbf{a} = (XX^T)^{-1}X\mathbf{y}$$

- Any problems?
- What is the rank of the matrix XX^T ?
- ▶ The solution for **a** can be obtained uniquely if XX^T is non-singular.
- ▶ The fitted values at the training inputs are

$$\widehat{\boldsymbol{y}} = X^T \boldsymbol{a} = X^T (XX^T)^{-1} X \boldsymbol{y}$$

Geometry of least-squares fitting

Figure 2:The N-dimensional geometry of least squares regression with two predictors. The outcome vector y is orthogonally projected onto the hyperplane spanned by the input vectors x1 and x2. The projection ŷ represents the vector of the least squares predictions

Statistical model of regression

- A generative model: $y = f(x, a) + \epsilon$
- f(x, a) is a deterministic function
- ϵ is a random noise , it represents things we cannot capture with , e.g. $\epsilon \sim N(0, \sigma^2)$

Statistical model of regression

- A generative model: $y = f(x, a) + \epsilon$
- Assume: $\epsilon \sim N(0, \sigma^2)$
- $p(y|x,a,\sigma) = ?$

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(y-f(x,w))^2}$$

- Likelihood of predictions
 - The probability of observing outputs y in D given a, X, and σ .

Maximum Likelihood Estimation

Likelihood of predictions

$$L(\mathbf{D}, \mathbf{a}, \sigma) = \prod_{i=1}^{n} p(y_i | \mathbf{x}_i, \mathbf{a}, \sigma)$$

- Maximum likelihood estimation of parameters
 - Parameters maximizing the likelihood of predictions

$$a^* = \operatorname{argmax} \prod_{i=1}^n p(y_i | x_i, a, \sigma)$$

Log-likelihood

Maximum Likelihood Estimation

Log-likelihood

$$l(\mathbf{D}, \mathbf{a}, \sigma) = \log(L(\mathbf{D}, \mathbf{a}, \sigma)) = \log \prod_{i=1}^{n} p(y_i | \mathbf{x}_i, \mathbf{a}, \sigma)$$

$$= \sum_{i=1}^{n} \log p(y_i|\mathbf{x}_i, \mathbf{a}, \sigma)$$

$$p(y_i|\mathbf{x}_i,\mathbf{a},\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(y-f(\mathbf{x},\mathbf{a}))^2}$$

$$l(\mathbf{D}, \mathbf{a}, \sigma) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y - f(\mathbf{x}, \mathbf{a}))^2 + c(\sigma)$$

$$RSS(f) = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Sum-of-Squares Error Function

MSE(
$$a$$
) = $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, a))^2$

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Model complexity

Issues with MSE Criterion

$$\boldsymbol{a} = (XX^T)^{-1}X\boldsymbol{y}$$

- ▶ The solution for **a** can be obtained uniquely if XX^T is non-singular.
- If XX^T is singular, overfitting
- Coefficients

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

▶ Why?

$$y = f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$
 $w = f'(\mathbf{x}) = \frac{dy}{dx}$

Ridge Regression

▶ How to control the size of the coefficients in Regression?

$$a^* = \operatorname{argmin} \sum_{i=1}^{n} (y_i - x_i^T a)^2 + \lambda \sum_{j=1}^{p} a_j^2$$

local smoothness

weight decay

Equivalent formulation

$$a^* = \operatorname{argmin} \sum_{i=1}^n (y_i - x_i^T a)^2$$

Subject to
$$\sum_{j=1}^{p} a_j^2 \le t$$

Lagrange multipliers

Ridge Regression

$$a^* = \operatorname{argmin} \sum_{i=1}^{n} (y_i - x_i^T a)^2 + \lambda \sum_{j=1}^{p} a_j^2$$

Matrix notations:

$$(y - X^T a)^T (y - X^T a) + \lambda a^T a$$

Computing the gradient gives:

$$-2X(\mathbf{y} - X^T\mathbf{a}) + 2\lambda\mathbf{a}$$

Setting the gradient to zero,

$$(XX^T + \lambda I)a = Xy$$

▶ The unique solution:

$$\boldsymbol{a}^* = (XX^T + \lambda \boldsymbol{I})^{-1}X\boldsymbol{y}$$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

9th Order Polynomial

Regularization ($\ln \lambda = -18$)

Regularization ($\ln \lambda = 0$)

Regularization

Model complexity

Maximum Likelihood Estimation

- A generative model: $y = f(x, a) + \epsilon$
- Assume: $\epsilon \sim N(0, \sigma^2)$

$$p(y|\mathbf{x}, \mathbf{a}, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(y - f(\mathbf{x}, \mathbf{a}))^2}$$

$$\mathbf{a}^* = \operatorname{argmax} L(\mathbf{D}, \mathbf{a}, \sigma) = \operatorname{argmax} \prod_{i=1}^n p(y_i | \mathbf{x}_i, \mathbf{a}, \sigma)$$

$$l(\mathbf{D}, \mathbf{a}, \sigma) = \log(L(\mathbf{D}, \mathbf{a}, \sigma)) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (y - f(\mathbf{x}, \mathbf{a}))^2 + c(\sigma)$$

Bayesian Linear Regression

Bayes rule

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(\boldsymbol{a}|\boldsymbol{y},\boldsymbol{x},\sigma) = \frac{P(\boldsymbol{y}|\boldsymbol{a},\boldsymbol{x},\sigma)P(\boldsymbol{a}|\boldsymbol{x},\sigma)}{P(\boldsymbol{y}|\boldsymbol{x},\sigma)}$$

posterior
$$P(\boldsymbol{a}|\mathcal{D}) = \frac{P(\mathcal{D}|\boldsymbol{a})P(\boldsymbol{a})}{P(\mathcal{D})}$$

Posterior ∝ likelihood × prior

Bayesian Linear Regression

Posterior ∝ likelihood × prior

▶ A common choice for the prior is

$$p(\boldsymbol{a}) = \mathcal{N}(\boldsymbol{a}|\boldsymbol{0}, \lambda^{-1}\boldsymbol{I})$$

$$= \frac{1}{(2\pi)^{\frac{q}{2}}|\lambda^{-1}\boldsymbol{I}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\boldsymbol{a}-\boldsymbol{0})^{T}(\lambda^{-1}\boldsymbol{I})^{-1}(\boldsymbol{a}-\boldsymbol{0})}$$

$$\ln(p(\boldsymbol{a})) = -\frac{\lambda}{2}\boldsymbol{a}^{T}\boldsymbol{a} + c$$

$$p(\boldsymbol{a}) = -\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (y - f(\boldsymbol{x}, \boldsymbol{a}))^{2} + c(\sigma)$$

A more general regularizer

Ridge Regression

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t$$

subject to
$$\sum_{j=1}^{p} |\beta_j|^q \le t$$

LASSO

Least Absolute Selection and Shrinkage Operator

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le t$$

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_1$$

Sparse model

LASSO: Sparse Model

- Ridge regression VS. LASSO
 - Why LASSO → Sparse model ?

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 \qquad \widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t$$

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le t$$

LASSO: Sparse Model

- The first order (necessary and sufficient) condition concludes that: a feasible point becomes the optimum if and only if the opposite gradient direction of the objective function falls inside the normal cone to the feasible set at that point.
- The normal cones to the feasible set at the corner points, such as **a** and **b**, contain infinitely many rays, while they reduce to a singleton (only contain a single ray) at the other boundary points.
- ► Thus, the optimum will more likely fall at the points with "larger" normal cones.
- This also explains why non-convex regularizers usually induce sparser models than the convex regularizers.

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_1$$

$$\frac{1}{n}\sum_{i}y_{i}=0, \ \frac{1}{n}\sum_{i}x_{i}=0, \ \frac{1}{n}\sum_{i}x_{ij}^{2}=1$$

- Convex optimization
- Coordinate descent
- Single predictor (feature) setting

$$\hat{\beta} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - z_i \beta)^2 + \lambda |\beta|$$

$$\hat{\beta} = \frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle - \lambda$$
 If $\frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle > \lambda$

If
$$\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle > \lambda$$

$$\hat{\beta} = 0$$

$$\hat{\beta} = 0$$
 If $\left| \frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle \right| \le \lambda$

$$\hat{\beta} = \frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle + \lambda$$
 If $\frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle < -\lambda$

If
$$\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle < -\lambda$$

Single predictor (feature) setting

$$\hat{\beta} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - z_i \beta)^2 + \lambda |\beta| \qquad \frac{1}{n} \sum_{i} y_i = 0, \ \frac{1}{n} \sum_{i} z_i = 0, \ \frac{1}{n} \sum_{i} z_i^2 = 1$$

$$f(\beta) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - z_i \beta)^2 + \lambda |\beta| = \frac{1}{2n} (\mathbf{y} - \beta \mathbf{z})^T (\mathbf{y} - \beta \mathbf{z}) + \lambda |\beta|$$
$$f(\beta) = \frac{1}{2n} \mathbf{z}^T \mathbf{z} \beta^2 - \frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle \beta + \lambda |\beta| + \frac{1}{2n} \mathbf{y}^T \mathbf{y}$$
$$f(\beta) = \frac{1}{2} \beta^2 - \frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle \beta + \lambda |\beta|$$

$$f(\beta) = \begin{cases} \frac{1}{2}\beta^2 - \left(\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle - \lambda\right)\beta, & \beta \ge 0\\ \frac{1}{2}\beta^2 - \left(\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle + \lambda\right)\beta, & \beta < 0 \end{cases}$$

$$f(\beta) = \begin{cases} \frac{1}{2}\beta^2 - \left(\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle - \lambda\right)\beta, & \beta \ge 0\\ \frac{1}{2}\beta^2 - \left(\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle + \lambda\right)\beta, & \beta < 0 \end{cases}$$

$$\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle > \lambda$$

$$\frac{1}{n}\langle \mathbf{z}, \mathbf{y} \rangle < -\lambda$$

$$\left|\frac{1}{n}\langle \mathbf{z}, \mathbf{y}\rangle\right| < \lambda$$

$$\hat{\beta} = \frac{1}{n} \langle \mathbf{z}, \mathbf{y} \rangle - \lambda$$

$$\hat{\beta} = 0$$

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- Convex optimization
- Coordinate descent
- Single predictor (feature) setting

- Multiple predictors (features)
 - Cyclic Coordinate descent

LARs

Model Assessment and Selection

The generalization performance of a learning method

- Model selection:
 - estimating the performance of different models in order to choose the best one.

- Model assessment:
 - having chosen a final model, estimating its prediction error (generalization error) on new data.

Bias & Variance Decomposition

The Supervised Learning Problem

- **Given** example pairs $[x_i, y_i]$
- **Learn** a function f(x), such as f(x)=y
- Loss: L(y, f(x))
- Expected Loss:

$$E(L) = \iint L(y, f(x)) p(x, y) dx dy$$

- Squared loss: $L(y, f(x)) = (y f(x))^2$
- Expected Prediction Error:

$$EPE(f) = \iint (y - f(x))^2 p(x, y) dx dy$$

$$f^*(x) = ?$$

$$EPE(f) = \iint (y - f(x))^2 p(x, y) dx dy$$

Squared loss

$$(y - f(\mathbf{x}))^2 = (y - E(y|\mathbf{x}) + E(y|\mathbf{x}) - f(\mathbf{x}))^2$$
$$= (y - E(y|\mathbf{x}))^2 + (E(y|\mathbf{x}) - f(\mathbf{x}))^2 + 2(y - E(y|\mathbf{x}))(E(y|\mathbf{x}) - f(\mathbf{x}))$$

Expected Prediction Error:

$$EPE(f) = \int (f(\mathbf{x}) - E(y|\mathbf{x}))^2 p(\mathbf{x}) d\mathbf{x} + \int var(y|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

▶ The first term:

$$f^*(x) = E(y|x)$$

▶ The second term:

In Reality

- ▶ **Given** training set *D*, contains *n* example pairs $[x_i, y_i]$
- ▶ **Learn** a function f(x), such as f(x)=y

Expected Prediction Error:

$$EPE(f) = \iint (y - f(\mathbf{x}))^2 p(\mathbf{x}, y) d\mathbf{x} dy$$

$$f(\mathbf{x}) \to f(\mathbf{x}; D)$$

 $E_D(f(\mathbf{x}; D))$

In Reality

Expected Prediction Error:

$$EPE(f) = \int (f(\mathbf{x}) - E(y|\mathbf{x}))^2 p(\mathbf{x}) d\mathbf{x} + \int var(y|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$= \int (f(\mathbf{x}; D) - E(y|\mathbf{x}))^2 p(\mathbf{x}) d\mathbf{x} + \int var(y|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$[f(\mathbf{x};D) - E_D(f(\mathbf{x};D)) + E_D(f(\mathbf{x};D)) - E(y|\mathbf{x})]^2$$

$$\left(f(\boldsymbol{x};D) - E_D(f(\boldsymbol{x};D))\right)^2 + \left(E_D(f(\boldsymbol{x};D)) - E(y|\boldsymbol{x})\right)^2 + 2\left(f(\boldsymbol{x};D) - E_D(f(\boldsymbol{x};D))\right)\left(E_D(f(\boldsymbol{x};D)) - E(y|\boldsymbol{x})\right)$$

$$E_{D}\left\{\left(f(\boldsymbol{x};D) - E(\boldsymbol{y}|\boldsymbol{x})\right)^{2}\right\}$$

$$E_{D}\left\{\left[f(\boldsymbol{x};D) - E_{D}(f(\boldsymbol{x};D))\right]^{2}\right\} + \left\{E_{D}(f(\boldsymbol{x};D)) - E(\boldsymbol{y}|\boldsymbol{x})\right\}^{2}$$
Variance
(Bias)²

Bias-variance Decomposition

- $\blacktriangleright \quad \text{EPE}(f) = \iint (y f(x))^2 p(x, y) dx dy$
- Expected prediction error (expected loss) =

 $(bias)^2 + variance + noise$

• $(bias)^2$:

$$\int \{E_D(f(x;D)) - E(y|x)\}^2 p(x) dx$$

variance:

$$\int E_D\left\{\left[f(x;D)-E_D\big(f(x;D)\big)\right]^2\right\}p(x)dx$$

noise:

$$\int \operatorname{var}(y|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

The Bias-Variance Decomposition

• Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

Deng Cai, College of Computer Science, Zhejiang University

The Bias-Variance Decomposition

• Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

Deng Cai, College of Computer Science, Zhejiang University

The Bias-Variance Decomposition

• Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

Deng Cai, College of Computer Science, Zhejiang University

The Bias-Variance Trade-off

 Over-regularized model (large λ) → high bias

▶ Under-regularized model (small λ) → high variance.

Cross-Validation

► K-Fold Cross-Validation

▶ leave-one-out cross-validation