

Optical recording medium for archival storage - has two thin layers forming optically detectable alloy or mixt. on laser marking
Patent Assignee: IBM CORP

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
JP 58220794	A	19831222	JP 8368503	A	19830420	198406	B
US 4477819	A	19841016	US 82388319	A	19820614	198444	
CA 1250176	A	19890221				198913	

Priority Applications (Number Kind Date): US 82388319 A (19820614)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
JP 58220794	A		4		

Abstract:

JP 58220794 A

Medium having a predetermined surface profile comprises two adjacent layers of thin materials which can be marked with an energy beam to endothermically form a marked area having different optical properties from unmarked areas. The first layer is a metal and the second layer is a metal or semiconductor, and marking forms an alloy or mixt. having the predetermined surface profile.

The first layer is Al, Au, Pb or Sn and the second is a different material from Al, Au, Pb, Sn, Ge or Si. After marking, the surface profile comprises at least one flat marked area on a flat background of unmarked areas.

USE/ADVANTAGE - The storage medium is useful for archival storage. It can record information at high density at acceptable laser power levels, e.g. similar to those of conventional Te (alloy) films, and has sufficient lifetime for archival storage. (First major country equivalent to J58220794-A)

0/6

Derwent World Patents Index

© 2003 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 3887266

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開
 ⑪ 公開特許公報 (A) 昭58-220794

⑥ Int. Cl. ³	識別記号	序内整理番号	⑩ 公開 昭和58年(1983)12月22日
B 41 M 5/26		6906-2H	
G 11 B 7/24		7247-5D	発明の数 1
G 11 C 13/04		7341-5B	審査請求 有

(全 4 頁)

④光学記録媒体

②特 願 昭58-68503
 ②出 願 昭58(1983)4月20日
 优先権主張 ③1982年6月14日③米国(US)
 ③388319
 ②発明者 マイケル・ヘイノ・リー
 アメリカ合衆国カリフォルニア
 州サンノゼ・シーウッド・ウェ
 イ715番地
 ②発明者 アーラ・オントン
 アメリカ合衆国カリフォルニア

州サラトガ・アロハ・アベニュー
 -14690番地
 ②発明者 ハロルド・ウイーダー
 アメリカ合衆国カリフォルニア
 州サラトガ・ノールウッド・ド
 ライブ10175番地
 ②出願人 インターナショナル・ビジネス
 ・マシーンズ・コーポレーション
 アメリカ合衆国10504ニューヨ
 ーク州アーモンク
 ②代理人 弁理士 岡田次生 外1名

明細書

1.発明の名称 光学記録媒体

2.特許請求の範囲

少なくとも2つの物質の隣接した層を有し、エ
 ネルギー・ビームを用いて記録が行なわれる時に
 未記録領域の光学的特性とは異なる光学的特性
 を有する記録領域を形成する光学記録媒体であつ
 て、上記少なくとも2つの物質の1つが、第1の
 金属であり、上記少なくとも2つの物質の他の1
 つが、第2の金属又はガルマニウムである光学記
 録媒体。

3.発明の詳細な説明

【技術分野】

本発明は光学記録媒体、特に集束されたレーザ
 ビームに露出する事によつて情報を記録できる
 記録媒体に関する。

【背景技術】

記録レーザの回折限界スポット。サイズに近い
 尺度の領域の物質を除去する事によつて記録を行
 なう光学記録媒体は、公知である。この媒体は一
 般に書き込み領域と未書き込み領域との間に高いコントラ
 ストが得られるが、ある場合には、スポットの周
 辺部のヘリの影響により信号対雑音比が制限され
 る。これはヘリが読み取りビームをいくらか散乱する
 からである。さらに、T_g及びT_m合金に基づいて
 それらの媒体は腐食され易い。

他にも多くの光学記録媒体及びそれらの媒体
 に記録を行なう手段が知られているが、情報の長
 寿命記録を達成した媒体は、所望のレベルよりも
 高い、即ち、T_g基合金を用いて得られるよりも
 高いレーザ・パワー・レベルを必要としている。

【発明の図示】

従つて、本発明の目的は、許容可能なパワー・
 レベルのレーザ・ビームに応答して情報を記録す
 る事ができ、また、長期間の記録を行なうのに充
 分な寿命を有する光学記録媒体を提供する事であ

る。

本発明によれば、少なくとも2つの物質の構成した薄層から成る光学記録媒体が与えられる。この媒体は、エネルギー・ビームを用いて記録される時、末尾光構造の光学特性とは異なる光学特性を有する記録領域を吸収的に形成する。この層状物質は、金属より成る第1の群及び金属と半導体より成る第2の群から選択される。

好ましくは金属はAl、Au、Pb及びSnより成る群から選択され、半導体は、Ge及びSiより成る群から選択される。吸収反射的に形成される記録領域は、それらの物質の混合物あるいは合金により成る。

ここに開示した物質は、許容できるレーザ・パワー・レベルを用いて高い記録密度で情報を記録する事ができ且つ是期間の記憶目的に適した寿命特性を有する光学記録媒体を形成する。

〔発明を実施するための最も良の形態〕

本発明の新規な光学記録媒体は、少なくとも2

所的加熱を生じさせる。

第4図に示すビームB1のようないエネルギー・ビームは、記録スポット19を形成するために媒体の表面11に照射する事が好ましい。しかしながら、基板12がエネルギー・ビーム中の放射に対して透明であれば、基板12を経てビームを照射する事によって、記録スポット19を形成してもよい。この場合、層14及び層16を構成する物質は交換されるであろう。

記録時に起きた変化の正確な性質は完全に理解されていない。というのは、加熱は20ナノ秒程度の時間内に起きたからである。第4図は、ビームB1による加熱による層14及び16の局所的融解及び小さな矢印で示すような界面を構成する成分物質の混合に伴なつて記録時に生じると信じられている事を示している。第5図及び第6図は、記録後の被記録領域19及び未記録領域11を示す。

走査電子顕微鏡(SEM)を用いた記録領域の研究によれば、平坦なバックグラウンド上に平坦

つの物質の接続した薄層から成り、エネルギー・ビームを用いて記録を行なう時に、元の物質の光学的特性とは異なる光学的特性を有する記録領域を吸収的に形成する。

第1図に示す本発明の実施例において、媒体10は、媒体の用いられる用途に応じて、透明の事も不透明の事もある基板12を有する。基板12上には、第1の物質の層14が付着される。この第1の物質は金属が好ましい。第1の物質層14上には、第2の物質の層16が付着される。第2の物質は金属又は半導体が好ましい。媒体の表面中に環境因子に露出される事による層14及び16の腐食を防止するために媒体10上に表面保護層18が付着される。

情報は、適当なパワー・レベルのエネルギー・ビームを媒体10に照射する事によって記録される。エネルギー・ビームは、層16及びより少ないう程度において層14で吸収され、層14及び16から成る物質の光学的特性に変化を生じさせると充分な大きさの層14及び16の記録領域の周

な記録スポットのある事が示されており、記録スポットの内側から外側への組成の顕著な変化は存在しない。光学的特性の変化は、層14及び16を構成する2つの物質の混合もしくは合金化又はそれらの層の相互拡散の結果生じるものと信じら

れている。

第2図を参照すると、媒体20の構造は第1図の実施例と非常によく似ており、基板22は、記録媒体に適した何らかの基板物質から構成されている。層24は基板22上に付着され、好ましくは金属である。層26は、層24上に付着され、好ましくは半導体である。この場合、半導体層26が表面保護層としても作用するので、別個の表面保護層は不要である。適当な半導体物質は、シリコン又はゲルマニウムから選択できる。

第3図に示す実施例は、適当な基板32、好ましくは金属から成る第1の記録層34、好ましくは金属もしくは半導体から成る第2の記録層36、及び厚い表面保護層38より構成される媒体30の構造を示している。この場合、表面保護層38

は数千オングストロームの厚さを有する事があり、ポリメチルメタクリレート(PMMA)又は、他の適当なポリマー物質から形成してもよい。この実施例で表面保護層30は、その表面40が記錄層34、36と同じ焦点面内にない程度に充分な厚さを有する。この構成は、媒体30の表面40上の少量のホコリその他の汚染物が被覆又は再生動作に悪影響を与えないという利点を有する。良好な媒体は、PMMA基板上に付着された200オングストロームの厚さのAl層、その上に付着された230オングストロームの厚さのGe層、及びSiO₂表面保護層から構成される。この媒体は、1.0ナノ秒のパルス幅を用いて、5.800オングストロームの波長の赤色レーザで、スポットが記録された。レーザ・パワーの必要量を最適化する試みは行なわれなかつたが、テストによれば必要なパワー・レベルは標準的なSiO₂被覆されたT₁光学記録媒体に関して要求されるものよりも大きくなかつた。SEMで調査した時、記録されたスポットは、平坦なバツクグラウンド

と共に平坦な記録スポットを示した。コントラストは、慣習的のある読み取りを行なう事ができるのに充分な高さであつた。

同様な媒体が、PMMA基板上に200オングストロームの厚さのAl層を付着して製造された。Al層上には、350オングストロームの厚さのSi層が付着され、MgOの表面保護層が被覆される。1000オングストロームの厚さのMgOに関する書込みエネルギーは、Ge-Al層に関するものよりも少し高かつた。また、コントラストもより低かつたが、コントラストはMgO層の厚さと共に変化する可能性がある。SEMによれば、少しドーム状に隆起したスポットが観察されたが、物質は除去されておらず、またスポット内の反射率はスポット外よりも高かつた。

また、PMMA基板上に500オングストロームの厚さのPb層が付着された媒体が製作された。Pb層の上には320オングストロームの厚さのSi層が付着され、さらに1000オングストロームの厚さのSiO₂表面保護層が形成された。記

録スポットの形成のための書込みエネルギーは、Ge-Al層の媒体の場合よりも2倍大きかつた。また、コントラストも、テストされた他の媒体よりも低かつた。しかしSEMによれば表面においてセグメント化効果が見られ、各セグメントは、完全に書き込まれるか又は全く書き込まれないかのいずれかであつた。この媒体はある応用には不適当であると考えられるが、デジタル形式の記録用に用いる事が可能である。

最低のレーザ・パワーしか必要としない媒体は、PMMA基板上に500オングストロームの厚さのIn層を付着させ、230オングストロームの厚さのGe層及びSiO₂の表面保護層で被覆したものである。この物質の組み合せの优点に基けば、必要なレーザ・パワーは最低となるであろうが、この事はまだ実際のテストにより確認されていない。

Au及びSiからいくつかの膜が製作されたが、膜の成分の厚さに関して最適化は達成されなかつた。この媒体が適当な記録媒体ではないという理

由は原理的には存在しないが、価格及び他の系の有望な特徴により、この媒体は研究を続行しなかつた。

4. 四面の簡単な説明

第1図は、本発明の一実施例の光学記録媒体の側面図。

第2図は、他の実施例の側面図。

第3図は、別の実施例の側面図。

第4図は、光学記録媒体の記録過程を示す部分断面側面図。

第5図は、記録媒体の記録領域を示す部分断面側面図。

第6図は第5図の記録領域を示す記録媒体の平面図である。

1.0、2.0、3.0…記録媒体、1.2、2.2、3.2…基板、1.4、2.4、3.4…第1の物質の層、1.6、2.6、3.6…第2の物質の層、1.8…表面保護層、3.8…厚い表面保護層、B1、B2…ビーム。

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6