ELCT 222 Signals and Systems Computer Assignment 6

Notes:

- Unclear or illegible work will not receive full credit.
- Label all sketches and plots completely and clearly.
- Where appropriate, "box in" your final answer.

Consider a flight formation scenario where the jets can only talk with its adjacent neighbors, as indicated by the blue lines below.

In this scenario, the ith jet adjusts its velocity, i.e., $v_i(t)$, on the direction of y-axis as

$$\frac{dv_i(t)}{dt} = -\frac{1}{|N_i|} \sum_{j \in N_i} \alpha \left(y_i(t) - y_j(t) - \Delta_{ij} \right) + \beta \left(v_i(t) - v_j(t) \right), \tag{1}$$

where α and β are the stiffness and damping coefficients, respectively, $y_i(t)$ is the position of the ith jet on the y-axis, and it can be expressed as

$$y_i(t) = y_i(0) + \int_0^t v_i(t) dt,$$
 (2)

 N_i is the set of neighbor indices of the *i*th jet, $|N_i|$ is the cardinality of the set N_i (i.e., the number of neighbors of the *i*th jet), and Δ_{ij} is the desired distance between the *i*th jet and the *j*th jet for $t \to \infty$. For example, for this scenario, $\Delta_{12} := \lim_{t \to \infty} y_1(t) - y_2(t) = -d$ and $\Delta_{21} := \lim_{t \to \infty} y_1(t) - y_2(t) = -d$ and $\Delta_{21} := \lim_{t \to \infty} y_1(t) - y_2(t) = -d$ $\lim_{t \to \infty} y_2(t) - y_1(t) = d$. (Please pay attention to the signs in your expressions.)

For the initial positions $(y_1(0), y_2(0), y_3(0), y_4(0), y_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$, initial velocities $(v_1(0), v_2(0), v_3(0), v_4(0), v_5(0)) = (0.20, 40, 60, 80)$ (500,500,500,500,500), $\alpha = 1$, $\beta = 2$, and d = 10,

- 1. (25 pts) Determine $\lim_{t\to\infty} v_i(t)$ with MATLAB for all i
- (25 pts) Determine $V_i(s)$ with MATLAB for all i

- 3. (25 pts) With WolframAlpha, calculate the inverse Laplace transform of V₃(s) and plot v₃(t) in MATLAB
 4. (25 pts) By using the approximation ^{dv_i(t)}/_{dt} ≈ ^{v_i(t+Δt)-v_i(t)}/_{Δt} in (1),
 Develop a MATLAB code that obtains v_i(t) numerically for t ∈ [0,20] seconds for i (Hint: Choose Δt = 0.001 and use it in (1) and (2))
 - Plot $v_i(t)$ for all the jets (Hint: $v_3(t)$ should match with the result in part 3)
 - Plot $y_2(t) y_1(t)$, $y_3(t) y_2(t)$, $y_3(t) y_4(t)$, and $y_4(t) y_5(t)$ (Hint: They should approach d = 10 as $t \to \infty$)