31.08.2021

Digital Image Processing (CSE/ECE 478)

Lecture-4: Recap/Discussion

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Histogram: An image representation + visualization

$$h_r(i) = n_i$$

i → intensity value, range [0,L-1] n_i → number of pixels with intensity i

Histograms and Contrast

Histogram Equalization

Histogram Equalization - Example

64 x 64 image

3-bits / pixel

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Histogram Equalization - Example

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Histogram Equalization

Cumulative Histogram

Wider

Histogram Equalization v/s Contrast Enhancement

Histogram equalization

Histogram Equalization

Input gray levels

Image Courtesy: Gonzalez and Woods

Histogram Equalization

Histogram specification

Histogram Specification / Matching [GW Section 3.3.2]

Image Courtesy: Gonzalez and Woods

Histogram specification (custom curve)

Histogram specification (curve from a reference image)

https://images1.programmersought.com/152/73/733d674297c6e27a58bdc3d852dca118.png

Histogram Processing

Global to Point

Histogram: Discussion

- A visualization
- A useful statistical representation of image intensities
 - Not dependent on image size (after normalization)
- Drawbacks
 - No spatial information
 - Intensity-centric
 - Raw (unnormalized form): Image-size dependent
- Equalization:
 - An image 'normalization' approach
 - Improves global contrast, but can also boost noise

References

▶ Gonzalez, Woods textbook: Chapter – 3.3.1 to 3.3.3

Point to Point

Intensity Transforms

Global Attribute to Point

Histogram Equalization

Point to Point

▶ Neighborhood to Point

Global Attribute to Point

Histogram Equalization

Neighborhood

Local Histogram Processing

Conditional Image Enhancement

- Objective for given image: Enhance dark areas while leaving light areas unchanged
- we use some statistical parameters
 - global:
 - $m(r) = \sum_{i=0}^{L-1} p(r_i) r_i$
- $\sigma^2(r) = \sum_{i=0}^{L-1} p(r_i) r_i$ $\sigma^2(r) = \sum_{i=0}^{L-1} (r_i m)^2 p(r_i)$ ocal:
 - ° local:
 - $p(r_{s,t})$: neighborhood normalized histogram at coordinates (s,t) using a mask centered at (x,y)
 - $m_{S_{xy}} = \sum_{(s,t) \in S_{xy}} p(r_{s,t}) \, r_{s,t}$
 - $\sigma^2(S_{xy}) = \sum_{(s,t) \in S_{xy}} [r_{s,t} m_{S_{xy}}]^2 p(r_{s,t})$

- - Enhance dalk

Image Enhancement Using Histogram Statistics

abc

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130×. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)