Synthesizing Physiological and Motion Data for Stress and Meditation Detection

Md Taufeeg Uddin, Shaun Canavan

Computer Vision & Pattern Recognition - Affective Vision Lab University of South Florida, FL, USA

mdtaufeeq@mail.usf.edu, scanavan@usf.edu

AAAC ACII 2019: ML4AD Workshop, Cambridge, UK

Overview

- Motivation
- 2 Contribution
- 3 Model: Physiological and Motion Data Synthesis
- 4 Data
- 5 Experiments and Analysis
- 6 Conclusion and Discussion

Motivation

Improving mental health via synthesizing signal for predicting affective states

Motivation

Improving mental health via synthesizing signal for predicting affective states

Can we synthesize (predict) physiological and motion signal (data) ahead of time?

Motivation

Improving mental health via synthesizing signal for predicting affective states

- Can we synthesize (predict) physiological and motion signal (data) ahead of time?
- If so, can we use the data to predict affective states?

Contributions

- Synthesized (predicted) physiological signal ahead of time
- Predicted affective states from the synthetic data
- Published first baseline results on meditation (/ relaxed state) detection from WESAD dataset.

Physiological and Motion Data Synthesis

Physiological and Motion Data Synthesis

Predict (synthesize) futuristic data from current and previous observations

Physiological and Motion Data Synthesis

- Predict (synthesize) futuristic data from current and previous observations
- Feed features (computed from the synthetic data) to affect detection model

WESAD (Schmidt et al., ICMI 2018) Dataset

- Devices: RespiBAN and Empatica E4
- Signals: Acceleration, ECG, EMG, EDA, Temperature, Respiration
- Subjects: 15 (12 males and 3 females) grad students
- Data Collection
 - Neutral: induce neutral affective state. 20 mins long
 - Amusement: induce happy state. 6.5 mins long
 - Stress: induce stress via public speaking and mental math tasks. 10 mins long
 - **Meditation** (/ relaxed): breathing exercise. 7 mins long

Note: In this work, we only used data collected via RespiBAN device

Experiments

- Data Preprocessing
 - Smooth raw signal via Savitz-Golay filter
 - Normalized the data in between [0, 1]

Experiments

- Data Preprocessing
 - Smooth raw signal via Savitz-Golay filter
 - 2 Normalized the data in between [0, 1]
- Convolutional neural network (CNN) for synthesis
- Random forest for affective states classification

Experiments

- Data Preprocessing
 - Smooth raw signal via Savitz-Golay filter
 - 2 Normalized the data in between [0, 1]
- Convolutional neural network (CNN) for synthesis
- Random forest for affective states classification
- Model validation: 3-fold subject independent (non-overlapping subjects)

Performance: Synthesis

Input feature vector size = 25 CCC Score: higher \longrightarrow better

Time T1: Use 0.25 second of data to predict 0.01 second of data

Signal		CCC score
	Time T1	
ACC X	0.9909 ± 0.0054	
ACC Y	0.9675 ± 0.0272	
ACC Z	$0.9957 {\pm} 0.003$	
ECG	0.8104 ± 0.0327	
EMG	$0.4381 {\pm} 0.6313$	
EDA	$0.9928 {\pm} 0.0012$	
TEMP	$0.95{\pm}0.0268$	
RESP	$0.9895 {\pm} 0.0009$	

Performance: Synthesis

Input feature vector size = 25CCC Score: higher → better

Time T2: Use 1 second of data to predict 0.04 second of data

Signal		CCC score	
	Time T1	Time T2	-
ACC X	0.9909 ± 0.0054	$0.9856 {\pm} 0.0119$	
ACC Y	0.9675 ± 0.0272	$0.9711 {\pm} 0.0081$	
ACC Z	$0.9957 {\pm} 0.003$	$0.992 {\pm} 0.0026$	
ECG	0.8104 ± 0.0327	0.5001 ± 0.0922	
EMG	$0.4381 {\pm} 0.6313$	$0.5837 {\pm} 0.0561$	
EDA	$0.9928 {\pm} 0.0012$	$0.9964 {\pm} 0.0009$	
TEMP	$0.95{\pm}0.0268$	0.9401 ± 0.0437	
RESP	$0.9895 {\pm} 0.0009$	$0.9697{\pm}0.0065$	

Performance: Synthesis

Input feature vector size = 25CCC Score: higher → better

Time T3: Use 2 seconds of data to predict 0.1 second of data

Signal		CCC score	
	Time T1	Time T2	Time T3
ACC X	0.9909±0.0054	0.9856 ± 0.0119	0.9899±0.0014
ACC Y	0.9675 ± 0.0272	0.9711 ± 0.0081	$0.7882 {\pm} 0.2552$
ACC Z	$0.9957 {\pm} 0.003$	$0.992{\pm}0.0026$	$0.9943 {\pm} 0.0024$
ECG	0.8104 ± 0.0327	0.5001 ± 0.0922	$0.3995{\pm}0.0602$
EMG	$0.4381 {\pm} 0.6313$	$0.5837 {\pm} 0.0561$	$0.3407{\pm}0.4757$
EDA	$0.9928 {\pm} 0.0012$	$0.9964 {\pm} 0.0009$	$0.9927{\pm}0.0036$
TEMP	$0.95{\pm}0.0268$	0.9401 ± 0.0437	$0.7405 {\pm} 0.1785$
RESP	$0.9895{\pm}0.0009$	0.9697 ± 0.0065	0.9563±0.0094

Sample Signals (Original and Synthesis)

Sample Signals (Original and Synthesis)

Signal Distribution (Original and Synthesis)

Signal Distribution (Original and Synthesis)

Learned the distribution for all signals except EMG

Detection Setting		Original data			Synthetic data	
	Precision	Recall	F1-score	Precision	Recall	F1-score
Stress vs Baseline	0.71 ± 0.06	0.68 ± 0.10	0.69 ± 0.08	0.71 ± 0.10	0.66 ± 0.11	0.68 ± 0.10

Detection Setting		Original data			Synthetic data	
	Precision	Recall	F1-score	Precision	Recall	F1-score
Stress vs Baseline	0.71±0.06	0.68±0.10	0.69±0.08	0.71±0.10	0.66 ± 0.11	0.68±0.10
Stress vs Amusement	$0.54 {\pm} 0.11$	0.61 ± 0.06	0.57 ± 0.10	$0.55 {\pm} 0.15$	0.56 ± 0.07	0.55 ± 0.11

Detection Setting		Original data			Synthetic data	
	Precision	Recall	F1-score	Precision	Recall	F1-score
Stress vs Baseline	0.71 ± 0.06	0.68 ± 0.10	0.69 ± 0.08	0.71 ± 0.10	0.66 ± 0.11	0.68 ± 0.10
Stress vs Amusement	0.54 ± 0.11	0.61 ± 0.06	0.57 ± 0.10	0.55 ± 0.15	0.56 ± 0.07	0.55 ± 0.11
Stress vs Meditation	0.72 ± 0.05	0.71 ± 0.06	0.71 ± 0.06	0.71 ± 0.02	0.7 ± 0.02	0.71 ± 0.02

Detection Setting		Original data			Synthetic data	
	Precision	Recall	F1-score	Precision	Recall	F1-score
Stress vs Baseline	0.71±0.06	0.68±0.10	0.69±0.08	0.71±0.10	0.66 ± 0.11	0.68±0.10
Stress vs Amusement	0.54 ± 0.11	0.61 ± 0.06	0.57 ± 0.10	0.55 ± 0.15	0.56 ± 0.07	0.55 ± 0.11
Stress vs Meditation	0.72 ± 0.05	0.71 ± 0.06	0.71 ± 0.06	0.71 ± 0.02	0.7 ± 0.02	0.71 ± 0.02
Stress vs Rest	0.76 ± 0.03	0.7 ± 0.06	0.73 ± 0.04	0.74 ± 0.03	0.67 ± 0.07	0.7 ± 0.04

Summary, Challenges and Future Work

Summary, Challenges and Future Work

- Summary
 - Predicted signal ahead of time using CNN
 - Detected affective states from predicted (synthetic) data
 - Achieved comparable results

Summary, Challenges and Future Work

Summary

- Predicted signal ahead of time using CNN
- Detected affective states from predicted (synthetic) data
- Achieved comparable results

Challenges and Future Work

- Synthetic data to synthesize data. (Noise, drift) → out of distribution (Alcorn et al., CVPR 2019)
- Influence of gender (male & female)
- Explore EMG and ECG