Intraspecific variation influences community network structure: Tracing the roots of interactions to genetics.

M.K. Lau, R. Michalet and J.P. Malouf October 18, 2011

Contents

	0.1	Questions	2
1	Indi 1.1 1.2 1.3	ividual level facitilation network models Dependent Functions	2 3 3
2	Faci	ilitation vs Exclusion	8
3		nduct module detection and then see if there is overlap with the nion phenotype	10
4	Exa	mine the monopartite structure and groupings by phenotype	10
	ne m	ain Question: Does selection produce ecological network nestedness? Or estedness primarily a statistical artifact (i.e. more abundance species will ore connected and typically there is an asymptotic shape of ordered specindance)?	be
	2. He	ow does this analysis parallel more common analyses of diversity?	
	3. Re	ead the Geum papers	
	4. O	ther things to try:	

(a) Can we look at the inter-connectedness of cushions based on significantly similar? or different communities?

0.1 Questions

- Do the most numerically abundant species have the most connections?
- What traits would increase or decrease the diversity of beneficiary species (i.e. facilitation connections)?

1 Individual level facitilation network models

1.1 Dependent Functions

```
gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.

gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.

This is bipartite 1.14.

For latest additions type: ?bipartite.

For citation please type: citation("bipartite").

Have a nice time plotting and analysing two-mode networks.
```

._____

Tools for Social Network Analysis

Version 2.2-0 created on 2010-11-21.

copyright (c) 2005, Carter T. Butts, University of California-Irvine
Type help(package="sna") to get started.

1.2 Generate Network Models

No Test for Significance

1.3 Figures

Checkerboard Units : 4454 C-score (species mean): 23.44211

Checkerboard Units : 297

C-score (species mean): 1.563158

oecosimu with 1000 simulations simulation method quasiswap

alternative hypothesis: true mean is less than the statistic

Checkerboard Units : 4454 C-score (species mean): 23.44211

statistic z 0% 50% 95% Pr(sim.) statistic 4454.00000 0.58601 4172.00000 4397.00000 4556 0.2567

oecosimu with 1000 simulations simulation method quasiswap

alternative hypothesis: true mean is less than the statistic

Checkerboard Units : 4454 C-score (species mean): 23.44211

statistic z 0% 50% 95% Pr(sim.) statistic 4454.00000 0.53066 4192.00000 4400.00000 4566 0.2897

[,1] [,2]
[1,] "D" "RED"
[2,] "I" "BLACK"
[3,] "L" "GREEN"

[1] TRUE

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	3.0359	0.3040	9.99	0.0000
Oc.ind	0.0288	0.0062	4.63	0.0000

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.1344	0.1059	1.27	0.2095
Oc.ind	0.0177	0.0022	8.15	0.0000

2 Facilitation vs Exclusion

Bromus seems to be the most highly facilitated species, although this could be because it's the most numerically abundant.

```
> 0c.fac \leftarrow apply(0c.order, 2, function(x) length(x[x > 0]))
```

> Oc.fac

Bromus	Apiacees	Chardon.gris	Centaurea
37	13	13	10

> Oc.exc <- apply(Oc.order, 2, function(x) length(x[x < 0]))

> barplot(rbind(Oc.fac, Oc.exc), beside = TRUE, las = 2)

```
Asperula
                             Festuca
                                                 Crocus
                                                                    Scilla
                                  15
                                                                         4
                                                      6
Renoncule.glauque
                           Marrubium
                                              Cerastium
                                                                 Veronica
                                   7
                                                                         5
 Scrophulariacees
                              Galium
                                       CaryophyllacÃl'es
                                                                      Prunus
                                                                         1
                                                             Chardon.dorÃl'
 Astragalus.blanc
                             Senecio
                                              Taraxacum
                                   0
> Oc.fac.. <- apply(Oc.order.., 2, function(x) length(x[x > 0]))
> 0c.exc.. \leftarrow apply(0c.order..., 2, function(x) length(x[x < 0]))
> barplot(rbind(Oc.fac.., Oc.exc..), beside = TRUE, las = 2)
> Oc.fac..
                             Festuca
           Bromus
                                              Apiacees
                                                                Centaurea
               27
                                   5
                                      Scrophulariacees
           Galium
                        Chardon.gris
                                                                Marrubium
                                                                         1
         Asperula
                              Prunus
                                             Cerastium
                                                                 Veronica
Renoncule.glauque
                              Crocus
                                                 Scilla
                                                         Astragalus.blanc
                                   0
                                                      0
                                                               Chardon.dorÃl'
          Senecio
                    CaryophyllacÃl'es
                                                Taraxacum
> par(mfrow = c(1, 2))
> barplot(rbind(Oc.fac, Oc.exc), beside = TRUE, las = 2)
> barplot(rbind(Oc.fac.., Oc.exc..), beside = TRUE, las = 2)
> Oc.1 <- list()
> Oc.1[[1]] <- Oc.com[Oc.env$microsite == "in open", ]</pre>
> Oc.1[[2]] <- Oc.com[Oc.env$microsite == "on cushion", ]</pre>
> names(Oc.1) <- levels(Oc.env$microsite)</pre>
> Oc.net <- list()
> Oc.net[[1]] <- kendall.pairs(Oc.1[[1]], adj.method = "fdr", p.adj = FALSE)
> Oc.net[[2]] <- kendall.pairs(Oc.1[[2]], adj.method = "fdr", p.adj = FALSE)</pre>
> names(Oc.net) <- names(Oc.1)</pre>
> gplot(abs(Oc.net[[1]]), displaylabels = TRUE, main = "In Open",
      label.cex = 0.5)
> gplot(abs(Oc.net[[2]]), displaylabels = TRUE, main = "On Cushion",
```

label.cex = 0.5

3 Conduct module detection and then see if there is overlap with the cushion phenotype

```
> Oc.bg <- graph.incidence(incidence = as.matrix(Oc.order))</pre>
> Oc.bg. <- graph.incidence(incidence = as.matrix(Oc.order..))</pre>
> clusters(Oc.bg)
$membership
[77] 0 0 0 0
$csize
[1] 80
$no
[1] 1
> clusters(Oc.bg.)
$membership
[1] 0 0 0 0 0
             0 0 0 0
                      0
                         0 0 0 0
                                  0
                                        0 0 0 0 0 0 0
                                    1
[26] 0 0 0 0 0
              0 0
                  0 2
                       3
                         4 5
                             6
                               7
                                  8
                                    9 10 11 12 13 14 15 16 17 18
[51] 19 20 21 22 23 24 25 26 27 28
                         0 0
                             0
                               0
                                    0 0
                                       1 0 0 29 30 31 32 33
[76] 34 35 36 37 38
$csize
                         1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1] 41
                 1
                    1 1
[26] 1 1 1 1 1
              1
                 1 1 1
                       1
                         1 1
$no
[1] 39
```

4 Examine the monopartite structure and groupings by phenotype

```
> Oc.om <- as.one.mode(Oc.order, project = "lower")
> Oc.om. <- as.one.mode(Oc.order.., project = "lower")</pre>
```

```
> par(mfrow = c(2, 2))
> gplot(abs(Oc.om), displaylabels = TRUE, gmode = "graph", vertex.col = as.numeric(
> gplot(abs(Oc.om.), displaylabels = TRUE, gmode = "graph", vertex.col = as.numeric
> legend("topright", legend = sort(unique(Oc.pheno)), pch = 19,
      col = as.numeric(factor(sort(unique(Oc.pheno)))), box.lwd = 0.5)
> Bs.om <- as.one.mode(Oc.order, project = "higher")</pre>
> Bs.om. <- as.one.mode(Oc.order.., project = "higher")
> gplot(abs(Bs.om), displaylabels = TRUE, gmode = "graph")
> gplot(abs(Bs.om.), displaylabels = TRUE, gmode = "graph")
> Bs.n <- Bs.om
> Bs.n[Bs.n > 0] <- 0
> Bs.n. <- Bs.om.
> Bs.n.[Bs.n. > 0] <- 0
> par(mfrow = c(2, 2))
> gplot(abs(Bs.om), displaylabels = TRUE, gmode = "graph")
> gplot(abs(Bs.om.), displaylabels = TRUE, gmode = "graph")
> gplot(abs(Bs.n), displaylabels = TRUE, gmode = "graph")
> gplot(abs(Bs.n.), displaylabels = TRUE, gmode = "graph")
```


