MA 2-21

- 1. Vyšetřete lokální extrémy funkce $z = 4x 3x^3 2xy^2$.
- 2. Přepište následující integrál

$$\int_0^1 \int_{\sqrt{2y - y^2}}^1 f \, dx \, dy.$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\rho \, d\varphi$.

3. Uvažujme pole $\vec{F}=(e^x-x^2,\lambda xy)$. Pomocí Greenovy věty zjistěte hodnotu parametru $\lambda\in\mathbb{R},$ aby integrál přes pozitivně orientovanou hranici množiny

$$D = \{(x, y) \in \mathbb{R}^2 \mid \sqrt{1 - x^2} \le y \le 1 + x^2, \ x \in (0, 1) \}$$

byl alespoň 1.

- 4. Zjistěte, zda je pole $\vec{F}=(y,x+z^2\sin y,e^z-2z\cos y)$ potenciální a v kladném případě nalezněte potenciál.
- 5. S využitím rozvoje exponenciály $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ nalezněte Taylorovu řadu funkce $f(x) = 5^{x+1}$ se středem $x_0 = 0$ a určete poloměr konvergence.

Řešení.

1. Funkce má 4 stacionární body: $(\pm \frac{2}{3}, 0)$ a $(0, \pm \sqrt{2})$. Hessián

$$\mathbb{H} = \begin{pmatrix} -18x & -4y \\ -4y & -4x \end{pmatrix} \approx \begin{pmatrix} -9x & -2y \\ -2y & -2x \end{pmatrix}$$

je v bodě $(\frac{2}{3},0)$ negativně definitní, v bodě $(-\frac{2}{3},0)$ pozitivně definitní a ve zbylých bodech indefinitní. Závěr: f má v $(\frac{2}{3},0)$ lokální maximum, v bodě $(-\frac{2}{3},0)$ lokální minimum, zbývající body jsou sedlové.

2. Opačné pořadí je $\int_0^1 \int_0^{1-\sqrt{1-x^2}} f \ dx \, dy$, v polárních souřadnicích

$$\int_0^{\pi/4} \int_{2\sin\varphi}^{1/\cos\varphi} f\varrho \, d\varrho d\varphi.$$

3. Protože $\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}=\lambda y,$ je hledaný integrál roven

$$\int_{(\partial D)} \vec{F} \ d\vec{s} = \int_0^1 \int_{\sqrt{1-x^2}}^{1+x^2} \lambda y \ dy \, dx = \frac{3\lambda}{5},$$

a tak $\lambda \geq 5/3$.

- 4. Pole je potenciální s potenciálem $f(x,y,z) = xy z^2 \cos y + e^z + C$.
- 5. Protože $f(x)=5\cdot 5^x=5\cdot e^{x\ln 5}$, užijeme substituci $t=x\ln 5$ a rozvoj exponenciální funkce:

$$f(x) = 5\sum_{n=0}^{\infty} \frac{t^n}{n!} = 5\sum_{n=0}^{\infty} \frac{\ln^n 5}{n!} x^n.$$

Poloměr konvergence je $R = \infty$.