Concours EAMAC 2021 Cycle: TECHNICIEN EPREUVE DE: MATHEMATIQUES

Durée: 03 heures

Exercice 1 (5 pts)

On appelle f la fonction définie sur]0; $+\infty[$ par f(x) = 1 + (x-2)lnx.

On note C la courbe représentative de f dans un repère orthonormé $(0; \vec{i}, \vec{j})$ d'unité graphique 2 cm.

- 1. f' désigne la fonction dérivée première de f .
 - a) Etudier le sens de variation de f'.
 - b) Déterminer les limites de f' en 0 et en $+\infty$.
- 2. a) Montrer que sur IR_+^* l'équation f'(x) = 0 admet une solution unique α appartenant à l'intervalle [1,4; 1,5].
 - b) En déduire le signe de f'(x) suivant les valeurs de x.
- 3. Etudier le sens de variation de f puis donner son tableau de variation.
- 4. a) Trouver les réels x_0 pour lesquels les tangentes à C au point d'abscisse x_0 passe par le point de coordonnées (2; 0).
 - b) Tracer C ainsi que les tangentes à C en x_0 .

Exercice 2 (5 points)

On lance simultanément deux dés bien équilibrés, un blanc et un vert, dont les faces sont numérotées de 1 à 6. On considère les évènements suivants :

B: « le numéro sorti sur le dé blanc est pair »

V : « le numéro sorti sur le dé vert est pair »

S: « la somme des numéros sortis sur les deux dés est paire ».

- 1. Calculer la probabilité des évènements B, V et S.
- 2. Les évènements S et V sont-ils indépendants ?
- 3. Les évènements S et B sont-ils indépendants?
- 4. Les évènements S et V∩B sont-ils indépendants?

Exercice 3 (5 pts)

1. Résoudre dans l'ensemble $\mathbb C\,$ des nombres complexes l'équation :

$$4z^2 - 4z + 5 = 0.$$

2. On considère dans le plan complexe muni d'un repère orthonormé $(0, \vec{u}, \vec{v})$ d'unité graphique 5 cm, les points A, B, C et D d'affixes respectives a, b, c et d définies par

$$a = \frac{1}{2}$$
; $b = \frac{1}{2} - i$; $c = \frac{1}{2} + i$ et $d = \frac{1}{2}(1 + i)$.

- a) Donner le module et un argument de d.
- b) Mettre sous forme algébrique $\frac{1}{b}$, $\frac{1}{c}$ et $\frac{1}{d}$.
- c) Placer dans le plan complexe les points A, B, C, D et les points B', C' et D' d'affixes respectives $\frac{1}{h}$, $\frac{1}{c}$ et $\frac{1}{d}$.
- 3. a) Quel est l'ensemble *E* des points *M* d'affixe $z = \frac{1}{2} + iy$ lorsque *y* décrit *IR*.
 - b) Calculer le module des nombres complexes $\frac{1}{b} 1$; $\frac{1}{c} 1$ et $\frac{1}{d} 1$.
 - c) Calculer en fonction de y, la partie réelle X et la partie imaginaire Y du nombre complexe $Z=\frac{1}{z}$ avec z défini au point 3. a).
 - d) En déduire l'ensemble F des points N d'affixe Z lorsque y décrit IR.

Construire *E et F* sur le graphique précédent.

Exercice 4 (5points)

Soit $(u_n)_{n\in N}$ la suite numérique définie par :

$$u_0 = 15$$
 et $u_{n+1} = \sqrt{3u_n + 4}$

- 1) Montrer que cette suite est minorée par 4.
- 2) Préciser le sens de variation de (un)
- 3) Montrer que cette suite converge, puis déterminer sa limite.