In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2008-06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16.
1	2008-06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19.
2	2008-06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20.
3	2008-06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10.
4	2008-06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.
226387	2008-11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.
226388	2008-11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15.
226389	2008-11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17.
226390	2008-11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11.
226391	2008-11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.

226392 rows × 17 columns

In [3]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 226392 entries, 0 to 226391
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype					
0	date	226392 non-null	object					
1	BEN	67047 non-null	float64					
2	CO	208109 non-null	float64					
3	EBE	67044 non-null	float64					
4	MXY	25867 non-null	float64					
5	NMHC	85079 non-null	float64					
6	NO_2	225315 non-null	float64					
7	NOx	225311 non-null	float64					
8	OXY	25878 non-null	float64					
9	0_3	215716 non-null	float64					
10	PM10	220179 non-null	float64					
11	PM25	67833 non-null	float64					
12	PXY	25877 non-null	float64					
13	SO_2	225405 non-null	float64					
14	TCH	85107 non-null	float64					
15	TOL	66940 non-null	float64					
16	station	226392 non-null	int64					
dtyp	<pre>dtypes: float64(15), int64(1), object(1)</pre>							
memo	ry usage:	29.4+ MB						

In [4]: b=a.fillna(value=119)

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	
0	2008-06-01 01:00:00	119.00	0.47	119.00	119.00	119.00	83.089996	120.699997	119.00	16.99
1	2008-06-01 01:00:00	119.00	0.59	119.00	119.00	119.00	94.820000	130.399994	119.00	17.46
2	2008-06-01 01:00:00	119.00	0.55	119.00	119.00	119.00	75.919998	104.599998	119.00	13.47
3	2008-06-01 01:00:00	119.00	0.36	119.00	119.00	119.00	61.029999	66.559998	119.00	23.1 ⁻
4	2008-06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.1;
226387	2008-11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.40
226388	2008-11-01 00:00:00	119.00	0.30	119.00	119.00	119.00	41.880001	48.500000	119.00	35.80
226389	2008-11-01 00:00:00	0.25	119.00	0.56	119.00	0.11	83.610001	102.199997	119.00	14.1;
226390	2008-11-01 00:00:00	0.54	119.00	2.70	119.00	0.18	70.639999	81.860001	119.00	119.00
226391	2008-11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.9 ⁻

226392 rows × 17 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2008-06-01 01:00:00	119.00	0.47	119.00	119.00	119.00	83.089996	120.699997	119.00	16.990000	•
1	2008-06-01 01:00:00	119.00	0.59	119.00	119.00	119.00	94.820000	130.399994	119.00	17.469999	•
2	2008-06-01 01:00:00	119.00	0.55	119.00	119.00	119.00	75.919998	104.599998	119.00	13.470000	:
3	2008-06-01 01:00:00	119.00	0.36	119.00	119.00	119.00	61.029999	66.559998	119.00	23.110001	
4	2008-06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	;
5	2008-06-01 01:00:00	119.00	0.47	119.00	119.00	0.22	67.820000	101.099998	119.00	20.610001	:
6	2008-06-01 01:00:00	0.17	0.40	0.44	119.00	0.15	72.639999	91.220001	119.00	17.040001	
7	2008-06-01 01:00:00	119.00	0.51	119.00	119.00	119.00	80.440002	141.500000	119.00	10.310000	;
8	2008-06-01 01:00:00	119.00	0.36	119.00	119.00	119.00	68.150002	85.639999	119.00	23.580000	
9	2008-06-01 01:00:00	119.00	0.18	119.00	119.00	0.16	58.330002	64.769997	119.00	35.060001	
10	2008-06-01 01:00:00	119.00	0.45	119.00	119.00	119.00	53.700001	66.610001	119.00	27.180000	

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	119.00	0.47	119.00	119.00	119.00	83.089996	120.699997	119.00	16.990000
1	119.00	0.59	119.00	119.00	119.00	94.820000	130.399994	119.00	17.469999
2	119.00	0.55	119.00	119.00	119.00	75.919998	104.599998	119.00	13.470000
3	119.00	0.36	119.00	119.00	119.00	61.029999	66.559998	119.00	23.110001
4	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000
5	119.00	0.47	119.00	119.00	0.22	67.820000	101.099998	119.00	20.610001
6	0.17	0.40	0.44	119.00	0.15	72.639999	91.220001	119.00	17.040001
7	119.00	0.51	119.00	119.00	119.00	80.440002	141.500000	119.00	10.310000
8	119.00	0.36	119.00	119.00	119.00	68.150002	85.639999	119.00	23.580000
9	119.00	0.18	119.00	119.00	0.16	58.330002	64.769997	119.00	35.060001
10	119.00	0.45	119.00	119.00	119.00	53.700001	66.610001	119.00	27.180000

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
 Out[9]: <seaborn.axisgrid.PairGrid at 0x11e6de54280>
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
In [11]: from sklearn.model_selection import train_test_split
In [12]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
         -7.105427357601002e-14
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                    Co-efficient
                  2.989965e-16
             BEN
             CO
                  9.585229e-14
             EBE -6.116106e-16
            MXY -5.266844e-16
           NMHC
                  2.110477e-15
            NO_2
                  7.048595e-16
            NOx 1.000000e+00
            OXY -5.520637e-16
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x11e723ed4c0>
           120
           110
           100
            90
            80
            70
                   70
                           80
                                    90
                                           100
                                                   110
                                                           120
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.99994569566436
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9999665160868221
In [22]:
           a1=b.head(6000)
Out[22]:
                                        CO
                                             EBE
                                                    MXY
                                                          NMHC
                                                                      NO_2
                       date
                               BEN
                                                                                   NOx
                                                                                           OXY
                                                                                                       0
                  2008-06-01
                             119.00
                                       0.47
                                            119.0 119.00
                                                           119.0
                                                                   83.089996 120.699997 119.00
                                                                                                 16.99000
                    01:00:00
                  2008-06-01
                             119.00
                                       0.59
                                            119.0 119.00
                                                           119.0
                                                                   94.820000 130.399994 119.00
                                                                                                 17.46999
                    01:00:00
                  2008-06-01
                             119.00
                                       0.55
                                           119.0 119.00
                                                           119.0
                                                                   75.919998
                                                                             104.599998 119.00
                                                                                                 13.47000
                    01:00:00
                  2008-06-01
                             119.00
                                       0.36
                                            119.0 119.00
                                                           119.0
                                                                   61.029999
                                                                              66.559998 119.00
                                                                                                 23.11000
                    01:00:00
                  2008-06-01
                               1.68
                                       0.80
                                              1.7
                                                    3.01
                                                                 105.199997 214.899994
                                                             0.3
                                                                                           1.61
                                                                                                 12.12000
                    01:00:00
                  2008-06-10
            5995
                             119.00
                                       0.27 119.0 119.00
                                                           119.0
                                                                   32.000000
                                                                              35.639999 119.00
                                                                                                 67.98000
                    15:00:00
                  2008-06-10
            5996
                             119.00
                                       0.32 119.0 119.00
                                                           119.0
                                                                   45.299999
                                                                              57.360001 119.00
                                                                                                 59.11000
                    15:00:00
                  2008-06-10
            5997
                             119.00
                                       0.24 119.0 119.00
                                                           119.0
                                                                   26.160000
                                                                              39.930000 119.00
                                                                                                 52.20000
                    15:00:00
                  2008-06-10
            5998
                             119.00 119.00 119.0 119.00
                                                           119.0
                                                                  119.000000
                                                                             119.000000 119.00 119.00000
                    15:00:00
                  2008-06-10
            5999
                             119.00
                                       0.31 119.0 119.00
                                                           119.0
                                                                   68.599998
                                                                              94.559998 119.00
                                                                                                 42.72000
                    15:00:00
           6000 rows × 17 columns
           e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
           f=e.iloc[:,0:14]
In [24]:
In [25]:
In [26]: logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
           from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
         [28079003]
In [30]: ___
Out[30]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
               28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
               28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
               28079025, 28079026, 28079027, 28079036, 28079038, 28079039,
               28079040, 28079099], dtype=int64)
In [31]:
Out[31]: 4.63437247861083e-27
In [32]: ___
Out[32]: 0.7955388500721003
In [33]:
Out[33]: 0.575
In [34]: from sklearn.linear_model import ElasticNet
        en=ElasticNet()
        C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_d
        escent.py:530: ConvergenceWarning: Objective did not converge. You might want
        to increase the number of iterations. Duality gap: 8.3059915445693, toleranc
        e: 1.6844122929515772
          model = cd fast.enet coordinate descent(
Out[34]: ElasticNet()
In [35]:
        [-0.0802347 0. -0.12234881 -0.02045458 -0.
                                                                  0.
          0.99934409 0.22163918]
In [36]: ....
        0.22489545373029785
In [37]: prediction=en.predict(x_test)
        0.6320535313373075
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
Out[38]: RandomForestClassifier()
```

```
parameters={'max_depth':[1,2,3,4,5],
In [39]:
                             'min_samples_leaf':[5,10,15,20,25],
                              'n_estimators':[10,20,30,40,50]
In [40]: | from sklearn.model selection import GridSearchCV
                          grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                              param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                 'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                 'n_estimators': [10, 20, 30, 40, 50]},
                                                               scoring='accuracy')
In [41]:
Out[41]: 0.6535714285714286
In [42]:
In [43]: from sklearn.tree import plot_tree
                          plt.figure(figsize=(80,50))
Out[43]: [Text(2178.346153846154, 2491.5, 'X[13] <= -0.225\ngini = 0.961\nsamples = 26
                          23\nvalue = [160, 159, 143, 166, 159, 171, 177, 179, 185, 125\n158, 154, 152,
                          166, 148, 185, 153, 188, 160, 151\n179, 143, 153, 163, 163, 160]'),
                            Text(1244.7692307692307, 2038.5, 'X[11] <= -0.06\ngini = 0.874\nsamples = 81
                          9\nvalue = [0, 0, 0, 164, 0, 169, 0, 0, 0, 157, 0, 0\n0, 0, 0, 153, 188,
                          0, 151, 179, 0, 0, 0, 0\n160]'),
                             Text(686.7692307692307, 1585.5, 'X[5] <= -0.845\ngini = 0.763\nsamples = 37
                          4\nvalue = [0, 0, 0, 27, 0, 143, 0, 0, 0, 0, 1, 0, 0\n0, 0\n0, 0, 143, 176, 0,
                          0, 0, 0, 0, 0, 101]'),
                             Text(343.38461538461536, 1132.5, X[2] <= -1.505  ngini = 0.44 \ nsamples = 13
                          0\nvalue = [0, 0, 0, 15, 0, 5, 0, 0, 0, 0, 1, 0, 0, 0\n0, 0, 10, 149, 0, 0,
                          0, 0, 0, 0, 0, 23]'),
                             Text(171.69230769230768, 679.5, 'X[8] <= 0.585 \setminus gini = 0.727 \setminus gini = 52 \setminus gin
                          0, 0, 0, 23]'),
                             Text(85.84615384615384, 226.5, 'gini = 0.728\nsamples = 35\nvalue = [0, 0, 0]
                          0, 12, 0, 5, 0, 0, 0, 0, 0, 0, 0\n0, 0, 5, 10, 0, 0, 0, 0, 0, 0, 23]'),
                             Text(257.53846153846155, 226.5, 'gini = 0.227 \nsamples = 17 \nvalue = [0, 0, 0]
                          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 3, 20, 0, 0, 0, 0, 0, 0, 0]'),
```

From this observation I had observe that the LASSO is a highest accuracy of 0.9999665160868221

```
In [ ]:
```