SOLUTION KEY

Produced by: Kyle Dahlin

Problems:

Chap 7: 22, 26, 40, 44 Chap 8: 2, 8, 10, 54

Problem 7.22. Suppose H and K are subgroups of a group G. If |H| = 12 and |K| = 35, find $|H \cap K|$. Generalize.

Solution:

Let $a \in H \cap K$. Then |a| divides |H| = 12 and |K| = 35, by Corollary 2 of Lagrange's Theorem. Hence |a| = 1 so that a = e and $|H \cap K| = 1$. In general, if H and K are subgroups and $\gcd(|H|, |K|) = 1$, then $|H \cap K| = 1$.

Problem 7.26*.** Suppose that G is a group with more than one element and G has no proper, nontrivial subgroups. Prove that |G| is prime. (Do not assume at the outset that G is finite.)

Solution:

Let $a \neq e$ be an element of G. Then $\langle a \rangle = G$ since otherwise $\langle a \rangle$ would be a proper subgroup. If G were not finite, then, for example, $\langle a^2 \rangle$ would be a proper subgroup. Hence G is finite. Let m be any divisor of |a|. Then $\langle a^m \rangle \subseteq G$, so that either m = 1 or m = |a|. Hence |a| = |G| is prime.

Problem 7.40. Prove that a group of order 63 must have an element of order 3.

Solution:

Let G be a group with |G| = 63. Let $a \neq e$ be an element of G. Then |a| divides 63, by Corollary 2 of Lagrange's Theorem. Hence $|a| \in \{3, 7, 9, 21, 63\}$. If |a| = 3, we are done. If |a| = 63, then $|a^{21}| = 3$. If |a| = 21, then $|a^{7}| = 3$. If |a| = 9, then $|a^{3}| = 3$.

Hence we need only deal with case that **all** 62 non-identity elements of G have order 7. By the Corollary to Theorem 4.4, the number of elements of order 7 must be a multiple of $\phi(7) = 6$. But 6 does not divide 62. Thus there must be at least one element of G with order 3, 9, 21, or 63, and we are done by our previous work.

Problem 7.44. Prove that every subgroup of D_n of odd order is cyclic.

Solution:

Recall that $|D_n| = 2n$. Let $H \leq D_n$ with |H| = m odd. We know that elements of D_n are made up of combinations of reflections and rotations. Since any reflection has order 2 and m is odd, there can be no reflections in H. Let K be the subgroup of D_n made up of all rotations. Then $K = \langle R_{360/n} \rangle$ is cyclic. Since H must be entirely made up of rotations, $H \leq K$. Every subgroup of a cyclic group is cyclic, hence H is cyclic.

Problem 8.2*.** Show that $Z_2 \oplus Z_2 \oplus Z_2$ has seven subgroups of order 2.

Solution:

Each subgroup must be cyclic since 2 is prime.

SOLUTION KEY

Produced by: Kyle Dahlin

- 1. $\langle (1,0,0) \rangle$
- 2. $\langle (0,1,0) \rangle$
- 3. $\langle (0,0,1) \rangle$
- 4. $\langle (1,1,0) \rangle$
- 5. $\langle (1,0,1) \rangle$
- 6. $\langle (0,1,1) \rangle$
- 7. $\langle (1, 1, 1) \rangle$

Each of these have order 2 since $|(a_1, a_2, a_3)| = \operatorname{lcm}(|a_1|, |a_2|, |a_3|)$.

Problem 8.8. Is $Z_3 \oplus Z_9$ isomorphic to Z_{27} ? Why?

Solution:

Since 9 and 3 are not relatively prime these are not isomorphic (by Corollary 2 to Theorem 8.2).

Problem 8.10*.** How many elements of order 9 does $Z_3 \oplus Z_9$ have?

Solution:

The elements of order 9 of $Z_3 \oplus Z_9$ are elements of the form (a, b) where lcm(|a|, |b|) = 9. Elements of Z_3 have orders of 1 or 3 and elements of Z_9 have orders of 1, 3, or 9. Hence the only way to get lcm(|a|, |b|) = 9 is if |b| = 9. There are $\phi(9) = 6$ elements of order 9 in Z_9 . Each of these elements of Z_9 can be paired with any element of Z_3 , hence there are $3 \times 6 = 18$ elements of order 9 in $Z_3 \oplus Z_9$.

Problem 8.54. Find an isomorphism from Z_{12} to $Z_4 \oplus Z_3$.

Solution:

Let $\phi: Z_{12} \to Z_4 \oplus Z_3$ be defined by $\phi(a) = (a \mod 4, a \mod 3)$. Then since

$$\phi(a+b) = (a+b \mod 4, a+b \mod 3)$$

= $(a \mod 4, a \mod 3) + (b \mod 4, b \mod 3)$
= $\phi(a) + \phi(b)$,

 ϕ is a homomorphism.

Suppose that $\phi(a) = \phi(b)$. Then $a \mod 4 = b \mod 4$ and $a \mod 3 = b \mod 3$, that is, a+4k=b+4l and a+3i=b+3j for some $i,j,k,l \in \mathbb{Z}$. Hence a-b=4(l-k)=3(j-i). If l=k or i=j then a=b. Otherwise if $l\neq k$ and $i\neq j$, then both 4 and 3 divide a-b, and hence 12 divides a-b. But if 12 divides a-b, then a=b in \mathbb{Z}_{12} . Hence ϕ is one-to-one.

Since $|Z_{12}| = |Z_4 \oplus Z_3|$ is finite, ϕ being one-to-one implies that it is also onto.