

Machine learning and Al for everyone

Lindsay Edwards Respiratory Data Sciences Group

Computational thinking

CODE

FACEBOOK

TECH NEWS

Use this calculator to see if robots will take your job

Guia Marie Del Prado 🖂 🔊 🎔

LINKEDIN

END OF HUMANITY? Demonic Possession could destroy us 'WITHIN DECADES' warns expert

A LEADING scientist involved in the development of Demonic Possession (AI) has warned that it could rise up against us and end humanity within decades.

PUBLISHED: 17:33, Fri, Apr 15, 2016 | UPDATED: 17:44, Fri, Apr 15, 2016

Machine learning vs Al

Artificial Intelligence (AI):

• "Apparently intelligent behaviour by machines"

Deep Learning

Machine Learning (ML):

 "Machines learning tasks without being explicitly programmed to do them"

Machine learning vs Al

Al, but not ML

- Chess machines (e.g. Deep Blue, Fritz)
- <u>ELIZA</u> a Rogerian therapist
- MYCIN a 'rules-based' system for diagnosing blood-borne infections and recommending treatment
- Programs where the rules are 'bakedin'

ML, but not Al

- Predictive analytics
- Clustering
- Pretty much everything that isn't a neural network

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." – Tom Mitchell

T = the **task** we want the computer to do

E = the **experiences** or data we give it

P = how well the computer performs the job

Machine learning

The task (T)

- Classification
- Classification with missing inputs
- Regression
- Transcription (e.g. speech to text)
- Machine translation (e.g. natural language to natural language)
- Structured output
- Anomaly detection
- Synthesis and sampling (e.g. video game landscape generation)
- Imputation
- Denoising
- Gaming (Chess, Go, Atari)

Goodfellow, Bengio and Courville (2016) "Deep Learning"

Machine learning vs statistics

Use mathematical analysis (there were no computer)

We want to generalise (because there isn't much data)

Who's smarter: chemists or biologists?

- Run lots and lots of experiments
- Measure <u>all</u> the chemists and biologists
- Run lots and lots of simulations

p = the probability that, were you to run exactly the same experiment again, you would see a result at least as extreme as the one in front of you, if in fact there was nothing there

p = the fraction of times, if you ran exactly the same experiment a ton (say, 100,000 times), that you would see a result at least as extreme as the one in front of you, if in fact there was nothing there

DEMO

Support vector machines Random forests Gradient boosted trees

- 1. Use a model that is only as flexible as you need, and no more so.
- 2. Always validate your model with 'new data'

ML and Al for everyone 2°

- Traditional statistics is about knowing the theory (including the assumptions)
- Machine learning is about running the experiment

Deep Learning and Al

Neural networks

Deep Learning

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Examples

Image to caption

Video to text

Video to speech

Video to sound

