NTNU

Institutt for matematiske fag

Eksamen i TMA4100 Matematikk 1 13. august 2012

Løsningsforslag

 $\begin{array}{|c|c|}\hline \mathbf{1} & (i) & \lim_{x \to 0} \frac{1}{x \cot x} = \lim_{x \to 0} (\frac{\sin x}{x} \frac{1}{\cos x}) = \lim_{x \to 0} (\frac{\sin x}{x}) \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1 \text{ siden } \\ & \lim_{x \to 0} (\frac{\sin x}{x}) = \lim_{x \to 0} (\frac{\cos x}{1}) = 1 \text{ ved l'Hôpital.} \\ & (ii) & \text{Med det foreslåtte variabelskiftet får vi etter to gangers bruk av l'Hôpital:} \\ \end{array}$

$$\lim_{t \to 0^+} \frac{e^{-\frac{1}{t}}}{t^2} \stackrel{x=1/t}{=} \lim_{x \to +\infty} \frac{x^2}{e^x} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0.$$

2 Kontinuitet: Vi må ha $\lim_{x\to 0^-} f(x) = f(0)$ som gir $\lim_{x\to 0^-} (a\cos x + b\sin x) = a = f(0) = a$ 1, dvs. |a=1|

Deriverbarhet: Vi setter nå a=1. Funksjonen er deriverbar for x=0 hvis og bare hvis de ensidig deriverte eksisterer og er like i 0. Venstrederivert = $\lim_{h\to 0^-} \frac{\cos(h) + b\sin(h) - 1}{h} =$

$$\lim_{h\to 0^-} \frac{\cos(h)-1}{h} + \lim_{h\to 0^-} b \frac{\sin(h)}{h} \stackrel{\text{l'Hôpital}}{=} \lim_{h\to 0^-} \frac{-\sin(h)}{1} + b \lim_{h\to 0^-} \frac{\cos(h)}{1} = 0 + b = b.$$
Høyrederivert = $\lim_{h\to 0^+} \frac{(h^2-h+1)-1}{h} = \lim_{h\to 0^+} (h-1) = -1$. Så vi må ha $b=-1$. Omvendt ser vi at med disse verdiene for a og b blir f deriverbar i b .

Alternativt, siden f er kontinuerlig og f'(x) er definert for alle $x \neq 0$, kunne vi bruke at f'(0) eksisterer hvis de ensidige grensene $\lim_{x\to 0^+} f'(x)$ og $\lim_{x\to 0^-} f'(x)$ eksisterer og er like. Vi har $\lim_{x\to 0^+} f'(x) = \lim_{x\to 0^+} (2x-1) = -1$ og $\lim_{x\to 0^-} f'(x) = \lim_{x\to 0^+} (-\sin x + \sin x)$ $b\cos x$) = b, som gir b = -1 som før.

a) Lengden på hvert delintervall = $\Delta x = \frac{3-1}{4} = 1/2$. Delepunkter x med tilhørende y-verdier:

Tilnærmet areal ved trapesmetoden: $T = \frac{1/2}{2}(1 + 2 \cdot \frac{2}{3} + 2 \cdot \frac{1}{2} + 2 \cdot \frac{2}{5} + \frac{1}{3}) = \frac{67}{60}$. Med $f(t) = \frac{1}{t}$ har vi $f''(t) = \frac{2}{t^3}$, så $|f(t)| \le 2$ for $t \in [1,3]$. Feilestimatet for trapesmetoden gir: $\left| \int_{1}^{3} \frac{1}{t} dt - T \right| = \left| E_{T} \right| \le \frac{2 \cdot 2^{3}}{12 \cdot 4^{2}} = \frac{1}{12}$, dvs. $\frac{67}{60} - \frac{1}{12} = \frac{31}{30} \le \int_{1}^{3} \frac{1}{t} dt \le \frac{67}{60} - \frac{1}{12} = \frac{6}{5}$. Fra den første ulikheten får vi $\int_{1}^{3} \frac{1}{t} dt \ge \frac{31}{30} > 1$. Siden $\int_{1}^{e} \frac{1}{t} dt = 1$ pr. definisjon, og siden $\frac{1}{t}$ er en positiv funksjon for t>0, får vi fra $\int_1^3\frac{1}{t}dt>1=\int_1^e\frac{1}{t}dt$ at e<3.

b) Vi minner om Taylors formel:

 $f(a+x) = f(a) + \frac{f'(a)}{1!}x + \frac{f''(a)}{2!}x^2 \dots \frac{f^{(n)}(a)}{n!}x^n + \frac{f^{(n+1)}(c)}{(n+1)!}x^{(n+1)}, \text{ hvor } c \text{ er et tall mellom } a$ og a+x. Med $f(x) = e^x$, a = 0 og x = 1 gir dette: $e = e^1 = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{e^c}{(n+1)!}$ hvor 0 < c < 1. Vi har derfor at $e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$ med en feil mindre enn 10^{-5} dersom vi velger n så stor at $\frac{e^c}{(n+1)!} < 10^{-5}$. Nå har vi at $\frac{e^c}{(n+1)!} < \frac{e^1}{(n+1)!} < \frac{3}{(n+1)!}$, så det holder å velge n så stor at $\frac{3}{(n+1)!} < 10^{-5}$. Vi prøver oss frem (avrunding til én desimal):

n	1	2	3	4	5	6	7	8
$\frac{3}{(n+1)!}$	1.5	0.5	0.1	0.03	0.004	0.0006	0.00008	0.000008

så vi ser at n=8 holder. Dermed får vi at $e\approx 1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}\approx$ $2.718278770 \approx 2.71828 \text{ med en feil mindre enn } 10^{-5}.$

Kulekalotten fremkommer ved for eksempel å rotere området $r-h \leq y \leq \sqrt{r^2-x^2}$, $0 \leq x \leq a$, om y-aksen. Skivemetoden gir:

Volum =
$$\pi \int_{r-h}^{r} x^2 dy = \pi \int_{r-h}^{r} (r^2 - y^2) dy = \pi [r^2 y - \frac{1}{3} y^3]_{y=r-h}^{y=r} = \pi (rh^2 - \frac{1}{3}h^3)$$
.

Fra figuren ser vi at $(r-h)^2 + a^2 = r^2$, som gir $r = \frac{a^2+h^2}{2h}$. Vi setter dette inn i uttrykket for volumet og får

Volum =
$$\pi \left[\frac{a^2 + h^2}{2h} h^2 - \frac{1}{3} h^3 \right] = \frac{\pi}{6} (3a^2h + 3h^3 - 2h^3) = \frac{\pi}{6} h(3a^2 + h^2).$$

5 Dette er en lineær 1. ordens differensialligning y' + P(x)y = Q(x) med $P(x) = \frac{1}{\tanh x}$ og $Q(x) = 2\cosh x$. Vi har $\int P dx = \int \frac{1}{\tanh x} dx = \int \frac{\cosh x}{\sinh x} dx = \ln \sinh x$. Dette gir:

Integrerende faktor:
$$v(x) = e^{\int P(x) dx} = e^{\ln \sinh x} = \sinh x$$

Generell løsning:
$$y = \frac{1}{v(x)} \int v(x)Q(x)dx$$
$$= \frac{1}{\sinh x} \int \sinh x \cdot 2\cosh x \, dx = \frac{1}{\sinh x} \int \sinh 2x \, dx$$

$$= \frac{1}{\sinh x} (\frac{1}{2}\cosh 2x + C) \,,$$

der C er en vilkårlig konstant. Initialbetingelsen $y(1) = \frac{1}{\sinh 1} (\frac{1}{2}\cosh 2 + C) = b$ gir $C = b\sinh 1 - \frac{1}{2}\cosh 2$, så løsningen på initialverdiproblemet blir

$$y = \frac{1}{\sinh x} (\frac{1}{2}\cosh 2x + b\sinh 1 - \frac{1}{2}\cosh 2).$$

For at $\lim_{x\to 0} y(x)$ skal eksistere, må telleren i uttrykket for y ha verdien 0 i 0 (siden nevneren er lik 0 i 0). Vi får $(\frac{1}{2}\cosh 2x + b\sinh 1 - \frac{1}{2}\cosh 2)|_{x=0} = \frac{1}{2}\cosh 0 + b\sinh 1 - \frac{1}{2}\cosh 2 = \frac{1}{2} + b\sinh 1 - \frac{1}{2}\cosh 2 = 0$, som gir $b = \frac{1}{2}\frac{\cosh 2 - 1}{\sinh 1}$, og dermed

$$y = \frac{1}{\sinh x} \left(\frac{1}{2} \cosh 2x + \frac{1}{2} (\cosh 2 - 1) - \frac{1}{2} \cosh 2 \right) = \frac{1}{2} \frac{\cosh 2x - 1}{\sinh x}.$$

Vi sjekker så at $\lim_{x\to 0} y(x)$ eksisterer med denne verdien av b:

$$\lim_{x\to 0}y(x)=\lim_{x\to 0}\frac{1}{2}\frac{\cosh 2x-1}{\sinh x}\stackrel{\text{l'Hôpital}}{=}\lim_{x\to 0}\frac{1}{2}\frac{2\sinh 2x}{\cosh x}=0\,.$$

Vi har $g(t) = \frac{2}{3}f(t)^{\frac{3}{2}}$ for alle t, og derivasjon av denne likheten gir $g'(t) = f(t)^{\frac{1}{2}}f'(t)$. Innsetting i $\sqrt{f'(t)^2 + g'(t)^2} = \frac{2}{3}$ gir $\sqrt{f'(t)^2 + f'(t)^2}f(t)^2 = |f'(t)|\sqrt{1 + f(t)} = \frac{2}{3}$. At punktet beveger seg mot høyre, betyr at $f'(t) \geq 0$ for alle t, så absoluttverditegnet rundt f'(t) kan sløyfes, og vi får $f'(t)\sqrt{1 + f(t)} = \frac{2}{3}$. Dette er en separabel differensialligning, og integrasjon gir $\frac{2}{3}(1 + f(t))^{\frac{3}{2}} = \frac{2}{3}t + C$, hvor C er en konstant. Siden punktet er i origo ved t = 1, har vi f(1) = 0, som ved innsetting i foregående ligning gir C = 0. Dermed har vi $(1 + f(t))^{\frac{3}{2}} = t$, som gir $f(t) = t^{\frac{2}{3}} - 1$ og $g(t) = \frac{2}{3}f(t)^{\frac{3}{2}} = \frac{2}{3}(t^{\frac{2}{3}} - 1)^{\frac{3}{2}}$, m.a.o., punktets posisjon ved tiden t er gitt ved

$$x = t^{\frac{2}{3}} - 1$$
, $y = \frac{2}{3}(t^{\frac{2}{3}} - 1)^{\frac{3}{2}}$, $t \ge 1$.

Vi viser at eksistens av flere enn to nullpunkt vil stride mot antakelsen om at f''(x) > 0 for alle x. Så anta at f har tre forskjellige nullpunkt $x_1 < x_2 < x_3$. Ifølge sekantsetningen finnes da et $c_1 \in (x_1, x_2)$ slik at f'(x) = 0 og et $c_2 \in (x_2, x_3)$ slik at $f'(c_2) = 0$. Siden $c_1 \neq c_2$, vil derfor f' ha minst to nullpunkt. Men betingelsen f''(x) > 0 for alle x medfører at f' er strengt voksende, og f' kan derfor ikke ha mer enn ett nullpunkt. Ergo har f høyst to nullpunkt.