

SegNeuron: 3D Neuron Instance Segmentation in Any EM Volume with a Generalist Model

Yanchao Zhang*, Jinyue Guo*, Hao Zhai*, Jing Liu, and Hua Han

Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China

BACKGROUND

Efficient and accurate neuron segmentation from electron microscopy (EM) volumes has become a bottleneck that hinders progress in connectomic analysis [1,2]. SOTA approaches [3,4,5] train models to predict descriptors for neuron boundaries (e.g., affinity maps) and then employ graph-based agglomeration [6,7] for instance segmentation. While effective, learning-based methods suffer from poor model generalization, which requires repetitive annotation, training, inference, and proofreading for new datasets with different voxel resolution and visual appetences (Fig. 1). Such cumbersome workflow could be streamlined and expedited with a generalist model that robustly determines the instance-level belonging of each voxel in any EM volume.

Diverse Visual appearances (xy-plane)

Diverse Voxel Resolutions (xz-plane)

Fig.1 Challenges in generalist model development

METHOD

In this paper, we introduce ********************************* a boundary-based neuron segmentation model, generalized across diverse data distributions and spatial resolutions. To this end, we first construct a multi-resolution, multi-modality, and multi-species volume EM database, named EMNeuron, consisting of over 22 billion voxels, with over 3 billion densely labeled (Table 1). To avoid ambiguous feature learning caused by inconsistent annotation styles, we conduct comprehensive data cleaning and transforming.

On this basis, we devise a novel workflow to build the model with customized strategies (Fig. 2), including pretraining via multi-scale Gaussian mask reconstruction (avoids global statistics distortion and severe distribution changes in masked inputs), domain mixing finetuning (preserves discriminative boundary information while enriching visual appearances and voxel resolutions), and foreground-restricted instance segmentation (filters background voxels in the predicted affinity map to mask noise values)

Dataset	Modality	$\operatorname{Res.}(nm)$ (x,y,z)) Total voxels	Labeled voxels	Dataset	Modality []]	$\operatorname{Res.}(nm) \ (x,y,z)$) Total :	Labeled voxels
1.ZFinch	SBF-SEM	9,9,20	3635M	131M	9.HBrain	FIB-SEM	8,8,8	3072M	844M
$2.\mathrm{ZFish}$	SBF-SEM	9,9,20	1674M	-	10.FIB25	FIB-SEM	8,8,8	312M	312M
$3.\underline{\mathrm{vEM1}}$	ATUM-SEM	8,8,50	1205M	157M	11.Minnie	ssTEM	8,8,40	2096M	-
$4.\underline{\mathrm{vEM2}}$	ATUM-SEM	8,8,30	1329M	281M	12.Pinky	ssTEM	8,8,40	1165M	117M
$5.\underline{\mathrm{vEM3}}$	ATUM-SEM	8,8,40	1301M	253M	13.FAFB	ssTEM	8,8,40	2625M	577M
$6. { m MitoEM}$	ATUM-SEM	8,8,30	1048M	-	14.Basil	ssTEM	8,8,40	23M	23M
7.H01	ATUM-SEM	8,8,30	1166M	118M	15.Harris	others	$6,\!6,\!50$	30M	30M
8.Kasthuri	ATUM-SEM	6,6,30	1526M	478M	$16.\underline{\text{vEM4}}$	others	8,8,20	45M	45M

Table 1. Details of EMNeuron dataset. Underlined items represent in-house datasets.

Fig.2. Customized training & inference strategies for SegNeuron.

RESULT Qualitative and quantitative results illustrate the superior performance and strong generalizability of SegNeuron on both in- and out-of-distribution datasets.

Harris

Comparison with Generalist Models

MicroSAM is a finetuned version of SAM on microscopy images. (Lower values indicates better performance.)

Basil

vEM4

Methods

		VI ↓	$ARE \downarrow$	VI↓	$ARE \downarrow$	VI ↓	$ARE \downarrow$
2D	SAM MicroSAM SegNeuron	2.8579 3.9972 0.4028	0.8113 0.9310 0.0839	2.3677 3.3483 0.6749	0.7881 0.8891 0.0922	2.0374 2.1904 0.5229	0.5252 0.5755 0.1063
3D	SAM MicroSAM SegNeuron	5.5215 5.7512 0.8655	0.8985 0.9640 0.1022	4.6624 4.8111 0.7719	0.9482 0.9655 0.1531	5.1034 4.4460 1.0221	0.8538 0.6566 0.1170

Comparison with Specialist Models

Specialist models are trained and tested on the same datasets. (Lower values indicates better performance.)

Ablation Study

Network architectures and pretraining schemes. (Lower values indicates better performance.)

Methods			vEM4		Basil		Ha	rris
Architectures	$\begin{array}{ l } \mathbf{Params}/\\ \mathbf{FLOPs} \end{array}$	Pretraining schemes	VI ↓	$ ext{ARE}\downarrow$	VI ↓	$\mathrm{ARE}\downarrow$	VI ↓	ARE ↓
UNETR	115M/ 334G	from scratch SimSiam MAE Ours	1.1190 1.1059 1.0829 1.0493	0.1490 0.1492 0.1391 0.1369	1.8145	$\begin{array}{c} 0.4161 \\ \textbf{0.4130} \end{array}$	2.9475	
SwinUNETR	$\frac{62\mathrm{M}/}{197\mathrm{G}}$	from scratch SimSiam Ours	1.0825	0.1679 0.1624 0.1628	1.5092		2.5210	0.2367
PNI-Net	$rac{33 \mathrm{M}}{317 \mathrm{G}}$	from scratch SimSiam Ours	$\begin{vmatrix} 0.9984 \\ 0.9804 \\ 0.9674 \end{vmatrix}$		0.8878		0.8316	0.1052
MNet	$\begin{array}{c c} 40\mathrm{M}/\\ 471\mathrm{G} \end{array}$	from scratch Ours(SegNeuron)	1	0.1211 0.1022				

Voy companents in the gustomized hineline. (Lower values indicates better horfermance.)

Key components in the customized pipeline. (Lower values indicates better performance.)									
Methods		vEM4		Basil		Ha	rris		
	VI↓	$\mathrm{ARE}\downarrow$	VI↓	$\text{ARE}\downarrow$	VI↓	$\mathrm{ARE}\downarrow$			
Database		0.9480	0.1241	0.9929	0.2288		0.1298		
	w/ preprocessing	0.9338	0.1217	0.9625	0.1805	1.1036	0.1246		
	-	0.9338	0.1217	0.9625	0.1805	1.1036	0.1246		
	zero mask	0.9377	0.1173	0.8644	0.1854	1.0888	0.1107		
Pretraining	mean mask	0.9191	0.1197	0.9199	0.1921	1.1024	0.1194		
Fredraming	Gaussian mask	0.9241	0.1102	0.8213	0.1647	1.0600	0.1141		
	Gaussian mask w/o multi-scale	0.9119	0.1168	0.9029	0.1713	1.0940	0.1306		
	Gaussian mask w/o HOG loss	0.9341	0.1190	0.8446	0.1651	1.0882	0.1155		
	-	0.9241	0.1102	0.8213	0.1647	1.0600	0.1142		
Finetuning	w/ frequency mixing	0.9031	0.1112	0.7821	0.1544	1.0563	0.1197		
rmetuning	w/ spatial mixing	0.9058	0.1133	0.8208	0.1617	0.9935	0.1126		
	w/ spatial & frequency mixing	0.8655	0.1022	0.7719	0.1531	1.0221	0.1170		
Sagmentation	_	0.8655	0.1022	0.7719	0.1531	1.0221	0.1170		
Segmentation	w/o foreground restriction	0.8879	0.1056	0.8069	0.1620	1.0414	0.1182		

Conclusion

This paper proposes SegNeuron, a neuron instance segmentation model trained on large-scale heterogeneous EM datasets with strong zero-shot generalization capabilities. We believe the released model can significantly simplify existing workflows and accelerate the scientific analysis of connectomics.

SegNeuron

References

- 1. Shapson-Coe, A., Januszewski, M., Berger, D.R., et al.: A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 384(6696), eadk4858 (2024)
- 2. Abbott, L.F., Bock, D.D., Callaway, E.M., et al.: The mind of a mouse. Cell 182(6),1372–1376 (2020) 3. Lee, K., Zung, J., Li, P., et al.: Superhuman accuracy on the snemi3d connectomics challenge. arXiv:1706.00120 (2017)
- 4. Lee, K., Lu, R., Luther, K., Seung, H.S.: Learning and segmenting dense voxel embeddings for 3d neuron reconstruction. IEEE Transactions on Medical Imaging 40(12), 3801–3811 (2021)
- 5. Sheridan, A., Nguyen, T.M., Deb, D., et al.: Local shape descriptors for neuron segmentation. Nature Methods pp. 1–9 (2022)
- 6. Beier, T., Pape, C., Rahaman, N., et al.: Multicut brings automated neurite segmentation closer to human performance. Nature Methods 14(2), 101–102 (2017). 7. Funke, J., Tschopp, F., Grisaitis, W., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence 41(7), 1669–1680 (2018)

