Prof : Fourati Classe: 2Sciences

Decoir de contrôle No.3

Date: 25/01/2025

Durée : 1 h

Exercice 1: (4pts)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n = \sqrt{n+1} - \sqrt{n}$

1º/ a- Calculer uo; u1 et u2

b- La suite (un) est-elle arithmétique? Justifier votre réponse.

2°/ Pour tout $n \in \mathbb{N}^*$ on considère la somme $S_n = u_0 + u_1 + \cdots + u_n$

a- Calculer S1

b- Montrer que pour tout $n \in \mathbb{N}^*$, on $a: S_n = \sqrt{n+1}$.

c- En déduire la valeur de S120

Exercice 2: (8pts)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique tel que $u_{10} = 55$ et $u_{25} = 145$

1% a -Montrer que la suite (u_n) est de raison r=6 et que son premier terme $u_0=-5$.

b -Calculer la somme $S = 55 + 61 + 67 + \cdots + 145$.

2°/ Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n = \frac{1}{2}(u_n + 1) + n$

a- Montrer que pour tout $n \in \mathbb{N}$, on $a: v_{n+1} - v_n = \frac{1}{2}(u_{n+1} - u_n) + 1$

b- En déduire que v_n est une suite arithmétique de raison r'=4 et de premier terme $v_0 = -2$.

c- Ecrire le terme général de la suite v_n.

3°/ Pour tout $n \in \mathbb{N}$ on donne $S_n = v_n + v_{n+1} + \cdots + v_{2n+5}$. Calculer S_{10}

Exercice 3: (8pts)

La figure ci-contre est celle d'un triangle ABC tel que AB = 2AC et 1 le barycentre de (A, 2) et (B, 1)

Soit l'application h définie par

$$M \mapsto M'$$
 tel que $2\overline{M'A} + \overline{MB'} = 0$

b- Montrer que l'application h admet un seul point invariant.

c- Montrer que h est l'homothètie de centre l et rapport $\left(-\frac{1}{2}\right)$

2º/ La droite \(\Delta\) parallèle \(\text{a}\) (BC) passant par A coupe la droite (IC) en C'.

a- Justifier que $h((BC)) = \Delta$.

b- Montrer que h(C) = C'.

3% On considère le cercle & de centre B passant par A et le cercle &' de centre A passant par C

a- Justifier que h(&) = &'

b- Le cercle \mathscr{C}' coupe [AI) en A'. Montrer que h(A) = A'.

$$\begin{array}{l} = \sqrt{1} \\ V_{0} = \sqrt{1+1} - \sqrt{1} \\ V_{0} = \sqrt{1+1} - \sqrt{1} = 1 \\ V_{0} = \sqrt{1+1} - \sqrt{1} = \sqrt{2} - 1 \\ V_{0} = \sqrt{1+1} - \sqrt{2} = \sqrt{3} - \sqrt{2} \\ V_{1} = V_{0} = (\sqrt{2} - 1) - 4 - \sqrt{2} - 2 \\ V_{2} = V_{1} = (\sqrt{3} - \sqrt{2}) + (\sqrt{2} - 1) - \sqrt{3} - 2\sqrt{2} + 1 \\ V_{1} = V_{0} \Rightarrow V_{2} = V_{1} = V_{0} + V_{1} + V_{1} = V_{1} \\ V_{1} = V_{0} \Rightarrow V_{1} = 1 + \sqrt{2} - 4 = \sqrt{2} \\ V_{1} = V_{0} + U_{1} + V_{1} + V_{1} = 1 + \sqrt{2} - 4 = \sqrt{2} \\ V_{1} = V_{0} + V_{1} + V_{1} + V_{1} = V_{1} + V_{1} = V_{1} + V_{1} = V_{1} + V_{1} + V_{1} = V_{1} = V_{1} + V_{1} = V_{1} + V_{1} = V_{1} = V_{1} = V_{1} + V_{1} = V$$

When
$$\frac{1}{2}(U_{n+1}) + 1$$

When $\frac{1}{2}(U_{n+1}) + 1$

I $U_{n+1} + 1 + 1$

I $U_{n+1} +$

