Preliminaries

For population N(t), and max supported pop N^* . Let $n = \frac{N}{N^*}$. Logistic model:

$$\frac{dn}{dt} = rn(1-n) \left| \frac{\text{General Solution}}{\text{Solution}} : n(t) = \frac{ce^{rt}}{1 + ce^{rt}} \right|.$$

Logistic model (with predation): $\frac{dn}{dt} = rn(1 - \frac{n}{s}) - \frac{n^2}{1 - n^2}$ Lotka-Volterra predator-prey model: n = prey population, p = predator population:

$$\frac{dn}{dt} = rn(1-p), \quad \frac{dp}{dt} = p(1-n)$$

Converting non-autonomous systems to autonomous:

For non-autonomous system of d equations:

$$\frac{dy_1}{dt} = f_1(t, y_1, \dots y_d),$$

$$\frac{dy_2}{dt} = f_2(t, y_1, \dots y_d),$$

$$\vdots$$

$$\frac{dy_d}{dt} = f_d(t, y_1, \dots y_d).$$

We can make it into an autonomous one by introducing the variable $y_{d+1} \equiv t$ in place of t, (thus creating an autonomous system of d+1 variables) and introduce new indep var s such that ds/dt = 1:

$$\begin{aligned} \frac{dy_1}{ds} &= f_1(t, y_1, ... y_{d+1}), \\ \frac{dy_2}{ds} &= f_2(t, y_1, ... y_{d+1}), \\ \vdots \\ \frac{dy_d}{ds} &= f_d(t, y_1, ... y_{d+1}), \\ \frac{dy_{d+1}}{ds} &= 1. \end{aligned}$$

Picard's Thm: let the function $f(\cdot, \cdot)$ be a continuous function of its arguments in a region of the plane containing the rectangle $D = \{(t, y) : t_0 \le t \le T, |y - y_0| \le K\}, T, K > 0$. Suppose $\exists L \text{ (Lipschitz constant) such that } |f(t,u)-f(t,v)| \leq L|u-v|$ whenever $(t, u), (t, v) \in D$. Since D closed & bounded, $\exists M_f > 0 \text{ such that } M_f = \max\{|f(t,u)| : (t,u) \in D\}.$ Assume $M_f(T-t_0) \leq K$. Then there exists a unique continuously differentiable function $t \mapsto y(t)$, defined on $[t_0, T]$, such that $\frac{dy}{dt} = f(t, y), y(t_0) = y_0.$

Note: $\frac{\partial f}{\partial y}$ being continuous \Rightarrow existence of a Lipschitz constant, We can take $L = \sup_{D} \left| \frac{\partial f}{\partial y} \right|$.

Thm 1.3.2 (Local Existence / Uniqueness of Solutions for ODE Systems): Suppose $f: \mathbb{R} \to \mathbb{R}^d \times \mathbb{R}^d$ is continuous and has continuous partial derivatives w.r.t. all components of the dependant var y in a neighbourhood of the point (t_0, y_0) . Then there is an interval $I = (t_0 - \delta, t_0 + \delta)$ containing a unique function y (continuously differentiable on I) that satisfies $\frac{dy}{dt} = f(t, y), y(t_0) = y_0.$

Euler's Method and Taylor Series Methods

Euler's Method: for finding approximate solutions to $\frac{dy}{dt} = f(t, y)$ in time interval $t \in [a, b]$.

Let $t_m = a + mh$, $h \in \mathbb{R}$ small. Start with $y_0 = y(t_0) = y(a)$ and use iteration function $y_{n+1} = y_n + hf(t_n, y_n)$. $y_i \approx y(t_i)$.

Error: $|e_n| = |y_n - y(t_n)|$

Lemma 2.6.1: Suppose a given sequence of non-negative numbers (v_n) satisfies $v_{n+1} \leq Av_n + B$, A > 1, B > 0. Then for $n = 0, 1, 2, ..., v_n \le A^n v_0 + \frac{A^n - 1}{A - 1} B$

Bound on error: $|e_n| \le e^{(b-a)L} \frac{M}{2L} h = Dh$ where h is the

timestep, M bounds |y''(t)|, and L bounds $\frac{\partial y}{\partial t}$.

Thm 2.6.1 Consider the IVP $\frac{dy}{dt} = f(t, y), y(a) = y_0$. Suppose \exists unique, twice-differentiable function f, continuous everywhere with continuous, bounded partial derivative $\left|\frac{\partial f}{\partial u}\right| < L$ with L > 0. Then for n = 0, 1, ..., N, and some D > 0, the solution y_n given by Euler's method at t_n satisfies $|e_n| = |y_n - y(t_n)| \le Dh$ where h = (b - a)/N, $t_n = a + hn$.

Big O (Landau) notation: If method is $O(h^p)$ then the error decays at least as quickly as h^p (for small h).

$$(\exists h_0, C > 0) : (\forall 0 < h < h_0), |z| \le Ch^p \Rightarrow z = O(h^p)$$
 Say z is of order p.

The Flow Map: Consider IVP $\frac{dy}{dt} = f(t,y), y(a) = y_0$ with unique solution in $t \in [a, b]$. Starting at arbitrary $t_0 \in [a, b], y_0$ we may see where y(t) ends up, denoted $y(t; t_0, y_0)$.

Fix t_0 and look at the **flow map** $|\Phi_{t_0,h}(y_0) = y(t_0 + h; t_0, y_0)|$ (actually a family of maps parameterised by h).

Numerical methods approximate flow maps: Euler's method approximates flow map with $\hat{\Phi}_{t,h}(y) = y + hf(t,y)$.

One-step methods: approximate the solution through the iteration of an approximated flow map.

Constructing Taylor series methods:

Start with Taylor series:

$$\begin{split} y(t_0+h) &= y(t_0) + y'(t_0)h + \frac{1}{2}y''(t_0)h^2 + \frac{1}{6}y'''(t_0)h^3 + \dots \\ \text{Also } y'(t) &= f(t,y) \Rightarrow \\ y'' &= \frac{d}{dt}f(t,y) = \frac{\partial}{\partial t}f(t,y)\frac{dt}{dt} + \frac{\partial}{\partial y}f(t,y)\frac{dy}{dt} \\ &= \frac{\partial}{\partial t}f(t,y) + \frac{\partial}{\partial y}f(t,y)y' = f_t + f_yf. \text{ (By chain rule)} \\ \Phi_{t,h}(y) &= y + hf(t,y) + \frac{1}{2}h^2(f_t(t,y) + f_y(t,y)f(t,y)) + \frac{1}{6}y'''h^3 + \dots \\ \text{Which we can truncate to get the 2nd order Taylor series method} \\ &\hat{\Phi}_{t,h}(y) = y + hf(t,y) + \frac{1}{2}h^2(f_t(t,y) + f_y(t,y)f(t,y)) \end{aligned}.$$

3 Convergence of One-Step Methods

Def 3.1.2 (Convergence): A method is said to be conver**gent** iff for any T,

$$\lim_{\substack{h \to 0 \\ h = T/N}} \max_{n = 0, 1, \dots, N} ||e_n|| = 0.$$

Def 3.2.1 (Local Error): The local error of a one-step method is the difference between the flow map Φ_h and it's descrete approximation Ψ_h

$$le(y,h) = \Psi_h(y) - \Phi_h(y).$$

It measures how much error is introduced in a single timestep of size h.

Def 3.2.2 (Consistency): Suppose the local error for our method satisfies

$$||le(y,h)|| \le Ch^{p+1}$$

where C is a constant that depends on y(t) and it's derivatives, and $p \ge 1$. Then the method is **consistent** at order p.

Def 3.2.3 (Stability): Suppose that a method satisfies an h-independent Lipschitz condition on D (spatial domain)

$$\|\Psi_h(u) - \Psi_h(v)\| \le (1 + h\hat{L})\|u - v\| \quad \forall u, v \in D.$$

Then the method is **stable**. Note \hat{L} need not be the same Lipschitz constant as for the vector field.

Thm 3.2.1 (Convergence of One-Step Methods): Given a differential equation and a one-step method Ψ_h which is consistent and stable. Then the method is convergent.

Interpolating Polynomials: Given distinct abscissa points $c_1,...c_s$ and data points $g_1,...,g_s$, there exists a unique interpolating polynomial $P(x) \in \mathbb{P}_{s-1}$ passing through all points (c_i,g_i) .

Lagrange Polynomials