# Variability in Causal Reasoning

## Ivar Kolvoort<sup>1</sup>, Zachary J. Davis<sup>1</sup>, Leendert van Maanen, & Bob Rehder

1 equal contribution. IR: i.r.kolvoort@uva.nl, University of Amsterdam. ZD: zach.davis@stanford.edu, Stanford University

## Background

We investigate the source of the considerable variability of causal judgments.



We do so by analyzing full response distributions of participant judgments, instead of just mean responses.

#### Questions

- Is there meaningful within-participant variability?
- Does variability differ across inference types?
  - Predictive vs diagnostic reasoning
  - Effect of conditional information
- Is individual level variability related to violations of Markov independence?
- Can existing models explain within-participant variability?

# Setting 50% base rate 75% causal strengths 75% causal strengths

#### Inference task

- given state of 1 or 2 variables
- predict unknown variable's state (0 100)

Low interest rates

High retirement savings ???

This economy has low interest rates and high retirement savings. What is the probability that it has **Small trade deficits**?

## Experiment

## 6 inference types



#### Repeated independent measurements

To get multiple measurements of a single inference type we collapsed over:

- 5 different domains
- Flipping the two effects
- Absence and presence P(Y=1) = 1- P(Y=0)
   Resulting in 20 measurements of each inference
   type, and 120 queries per participant.

#### Raw results



#### Results



## 50

Markov violations

High variability

More variable participants committed larger Markov violations. A common process might drive both Markov violations and a part of the observed variability



- Motor or general task noise cannot explain the variability, as it varies systematically and is multimodal.
- Distributions are not centered on the normative response, counter to predictions of e.g. the Beta inference model (R&H, 2016)
- Uncertainty about the parameters of the causal network is unlikely as a source. It could explain increased variability for diagnostic inferences, but cannot explain other findings.
- Default responding might explain spikes at 50%.
   A possible explanation of changes in spikes might be that guessing is more likely with more ambiguous information.
- The Mutation Sampler (D&R, 2020) can explain the changing spikes and predicts within-participant variability.

#### Conclusions

- Within-participant variability in causal reasoning can be probed experimentally and is related to the type of inference
- Variability can't be explained by simple additions to normative CGM model
- Computational models need to account for (systematic variation in) variability





Within-participant variability (bars) does not follow mean response (floating boxes) and varies systematically per inference type:

- Variability is lower for inferences with incomplete information.
- Variability is higher for diagnostic inferences.

These findings indicate that the observed withinparticipant variability reflects (at least partly) a decisionmaking process, and not just noise.