Perceptron;

hata we need to work with: linearly seperable.

yes no

· artificial neuron.

* simplest neural network.

neurons of brain:

recove

input

output board on

previous inputs.

* weights represent the importance of each

Sum / aggregate of all those values must be greater than a threshold to make the decision. (weighted sum)

Exi if a student gets 3 out of 5 points, the

Student'd pan (1) the test that person'd

fail (0). So, the three hold here is 3.

* aggregated sum is like calculating the marks of student

based on each of their responses (inputs) using marks (weights).

→ activation function introduces non-Ginearity

Go that we can get outputs other just Dorl.

if sum is > threshold → output is 1(fires)

else output is 0 (doesn't fire).

Other activation functions:

Relu-Rectified Linear

unit.

if sum < 0 > output in 0.

che output is the number.

* non-Cineanty -1.

A avvids vanishing gradient moblem (unlike sigmvid w

Tana).

if many units become maetive and output 0

* Dying Relu problem:

* Faster training.

(for -ve inputs or 0), they wouldn't contribute to learning.
This results in dead neurons.

Lous: Difference blu predicted vs true value.

* calculated using mean-squared error or cross-entropy. Also called cost function.

Back propagation:

Gradients Enverget updates.

sigmoid derivative: $\frac{d}{dx} \sigma(x) = \sigma(x) \left[1 - \sigma(x) \right].$

 $\frac{d}{dx}$ (tanh(x)) = 1-tanh²(x).

weight updates.

when = wold + N. VL(w).

sign doesn't matter cuz if

VL(w) is <0/p>
I should be reduced,

16 rat effect shows up.