Trabalho 2 - Redes Bayesianas

Gilmar Couto Júnior [22152247] | Gabrielly Rodrigues [22152262]

Um sistema de diagnóstico deve ser feito para um farol de bicicleta movido a dinamo usando uma rede bayesiana. As variáveis na tabela a seguir são fornecidas

Variável	Significado	Valores
Li	Luz ligada (Light is on)	t/f
Str	Condição da rua (Street condition)	dry, wet, snow_covered
Flw	Volante do Dínamo desgastado (Dynamo flywheel worn out)	t/f
R	Dínamo deslizante (Dynamo sliding)	t/f
V	Dínamos mostra a tensão (Voltagem) (Dynamo shows voltage)	t/f
В	Lâmpada ok (Light bulb ok)	t/f
K	Cabo ok (Cable ok)	t/f

1ª Questão

(a) Desenhe a rede causalidade entre as variáveis Str, Flw, R, V, B, K e Li

(b) Insira todos os CPTs faltantes no gráfico (tabela de probabilidades condicionais).

Tabela de Probabilidade Condicional para $Li \rightarrow P(Li \mid V, B, K)$

V	В	K	P (Li = True)	P(Li = False)
T	T	T	0.99	0.01
Т	Т	F	0.01	0.99
Т	F	Т	0.01	0.99
Т	F	F	0.001	0.999
F	Т	T	0.3	0.7
F	Т	F	0.005	0.995
F	F	T	0.005	0.995
F	F	F	0	1

(c) Insira livremente valores plausíveis para as probabilidades.

- i. Variáveis e Relações Causais
 - Str (condição da rua) e Flw (volante do dínamo desgastado) influenciam R (dínamo deslizando).
 - R influencia V (voltagem gerada).
 - V, B (lâmpada ok) e K (cabo ok) influenciam Li (luz ligada).

ii. Probabilidades marginais

B(Lâmpada ok)

P(B = True) = 0.95 (95% de chance de a lâmpada estar funcionando)

$$P(B = False) = 0.05$$

K (Cabo ok):

P(K = True) = 0.98 (98% de chance de o cabo estar funcionando)

$$P(K = False) = 0.02$$

Str (Condição da rua):

P(Str = dry) = 0.6 (60% de chance de a rua estar seca)

P(Str = wet) = 0.3 (30% de chance de estar molhada)

P(Str = snow covered) = 0.1 (10% de chance de estar coberta de neve)

Flw (Volante desgastado):

P(Flw = True) = 0.2 (20% de chance de o volante estar

desgastado)

P(Flw = False) = 0.8

Tabela de Probabilidade Condicional para $R \rightarrow P(R \mid Str, Flw)$

Str	Flw	P (R = True)	P(R = false)
dry	T	0.3	0.7
dry	F	0.1	0.9
wet	Т	0.6	0.4
wet	F	0.4	0.6
snow_covered	Т	0.9	0.1
snow_covered	F	0.7	0.3

Tabela de Probabilidade Condicional para $V \rightarrow P(V \mid R)$

R	P (V = True)	P(V = false)
Т	0.2	0.8
F	0.95	0.05

(d) Mostre que a rede não contém uma aresta (Str, Li).

- i. Estrutura da Rede Bayesiana e Dependências Diretas
 - As variáveis Str, Flw, B, e K são independentes entre si.
 - As dependências diretas são:
 - Str (condição da Rua) e Flw (volante desgastado) influenciam R (dínamo deslizante).
 - R influencia V (dínamo mostra tensão).
 - V, B (lâmpada ok), e K (cabo ok) influenciam Li (luz ligada).

Dado esse fluxo causal, Li depende de V, B, e K, mas Str não afeta diretamente Li.

ii. Verificação de Independências Condicionais

- Para reforçar que Str não influencia diretamente Li, analisamos as independências condicionais fornecidas no problema:
 - O problema afirma que P(Li | V, R) = P(Li | V). Isso indica que, dado o conhecimento sobre a tensão V, o deslizamento R se torna irrelevante para Li.
 - Além disso, sabemos que P(V | R, Str) = P(V | R), o que implica que, dado o estado de deslizamento R, a condição da rua Str não afeta V.

Essas relações sugerem que Str não tem influência direta sobre Li, pois qualquer efeito que Str possa ter sobre Li é mediado por R e V. Ou seja, Str e Li são **condicionalmente independentes dado V**: Li \perp Str | V,B,K

Não é necessário (nem correto) incluir uma aresta direta de Str para Li.

(e) Calcule P (V | Str = snow covered)

Devemos lembrar que V depende de R e este, por sua vez, depende de Str e Flw, então precisamos realizar uma **inferência marginalizada**.

Fórmula Geral:

$$P(V \mid Str = snow_covered) = \sum_{Flw} \sum_{R} P(V \mid R) \cdot P(R \mid Str = snow_covered, Flw) \cdot P(Flw)$$

$$P(V \mid Flw = true, Str = snow_covered) = \sum_{R} P(V \mid R) \cdot P(R \mid snow_covered, Flw = true)$$

$$P(V \mid R = true) \cdot P(R = true \mid snow_covered, Flw = true) + P(V \mid R = false) \cdot P(R = false \mid snow_covered, Flw = true)$$

=

$$0.2 \cdot 0.9 + 0.95 \cdot 0.1 = 0.18 + 0.095 = 0.275$$

Multiplicando pelo peso de P(Flw = true) = 0.2:

$$0.275 \cdot 0.2 = 0.055$$

Caso 2: Flw = false

 $P(V \mid Flw = false, Str = snow_covered) = 0.2 \cdot 0.7 + 0.95 \cdot 0.3 = 0.14 + 0.285 = 0.425$ Multiplicando pelo peso de P(Flw = false) = 0.8:

$$0.425 \cdot 0.8 = 0.34$$

Resultado final: $P(V \mid Str = snow_covered) = 0.055 + 0.34 = 0.395$