

MATHEMATICAL REASONING Chapter 20

2nd SECONDARY

CONTEO DE FIGURAS

¿Qué figuras geométricas puedes encontrar?
Y ¿Cuántas habrá de cada una?

MÉTODO SCHOENK

Consiste en asignar números y/o letras a todas las figuras simples, posteriormente se procede al conteo creciente y ordenado, de figuras de 1 número, al unir 2 números, al unir 3 números, ... etc.

Ejm: Indica el total de triángulos que hay en la figura

MÉTODO PRÁCTICO

□ CONTEO POR FÓRMULA

Aplica para figuras recurrentes ya sea en líneas y/o vértices.

Segmentos:

Número de segmentos:

$$\frac{n(n+1)}{2}$$

n = número de segmentos simples

Ejemplo:

Calcule el total de segmentos:

Total segmentos:

$$\frac{4(5)}{2} + \frac{2(3)}{2} + \frac{3(4)}{2}$$
$$10 + 3 + 6 = 19$$

Triángulos:

Número de triángulos:

$$\frac{n(n+1)}{2}$$

Número de triángulos:

$$\frac{n(n+1)}{2} \mathbf{x} \mathbf{k}$$

Ejemplo Calcule el total de triángulos

$$\frac{40(41)}{2}$$
 x 5

TOTAL: (820)5 = 4100

Cuadriláteros:

1 2 3 4 ... *n*

N° de cuadriláteros

$$\frac{n(n+1)}{2}$$

Ejemplo:

1 2 3 4 5 6 7 8 9

Total cuadriláteros:

$$\frac{9(10)}{2} = 45$$

Cuadriláteros:

1	2	3	 n
2			
m			

Total cuadriláteros

verticales: horizontales:
$$\frac{n(n+1)}{2} \times \frac{m(m+1)}{2}$$

Ejemplo:

Calcule el total de cuadriláteros

1	2	3	4
2			
3			
4			
5			

Total cuadriláteros:

verticales: horizontales:

$$\frac{4(5)}{2} \times \frac{5(6)}{2}$$

$$10 \times 15 = 150$$

Cuadrados:

1	2	3	4	 a
2				
b				

Total cuadrados:

$$(a \times b) + (a - 1)(b - 1) + (a - 2)(b - 2) + \dots + ()()$$

Hasta que aparezca la unidad en uno de ellos.

Ejemplo: Calcule el total de cuadrados

1	2	3	4	5	6	7	8
2							
3							
4							

Total cuadrados:

$$8 \times 4 = 32$$
 $7 \times 3 = 21$
 $6 \times 2 = 12$
 $5 \times 1 = 5$
 70

Halle el número total de triángulos

13

1letra: a,b,c,d,e,f \rightarrow 6

2letras: ab,de,ad,be → 4

3letras: adc, bef → 2

6 letras: adcdef → 1

Total de \triangle s: 13

Halle el número de triángulos

Resolución:

Halle el total de cuadriláteros

Resolución:

1	2	3	4	5	6
2					
3					
4					

Total cuadriláteros:

verticales: horizontales:

$$\frac{6(7)}{2}$$
 x $\frac{4(5)}{2}$

21 x 10

HELICO | PRACTICE

Calcule la diferencia entre el número de cuadriláteros y triángulos

84

Resolución:

Total triángulos:

Total cuadriláteros:

verticales: horizontales:

$$\frac{7(8)}{2}$$
 x $\frac{3(4)}{2}$

$$28 \times 6 = 168$$

Piden: 168 - 84 = 84

◎1

El tangrama es un rompecabezas de origen chino que permite construir diversas figuras de animales.

Indicar verdadero (V) o falso(F)

- I. En la figura 1 hay 7 triángulos ()
- II. En la figura 1 hay 10 cuadriláteros ()
- III. La figura 2 es un gato

Resolución:

I. En la figura 1 hay 7 triángulos

(VERDADERO)

De 1 letra: A, B, C, E, G : 5

De 2 letras: AB : 1

De 3 letras: No hay

De 4 letras: No hay

De 5 letras: CDEFG: 1

De 6 letras: No hay

De 7 letras: No hay

TOTAL: 7

II. En la figura 1 hay 10 cuadriláteros (FALSO)

De 1 letra: D, F : 2

De 2 letras: CD, DE, EF: 3

De 3 letras: ACD, BEF, CDE, DEF: 4

De 4 letras: CDEF : 1

De 5 letras: No hay

De 6 letras: No hay

De 7 letras: ABCDEFG: 1

TOTAL : 11

III. La figura 2 es un gato (VERDADERO)

¿ Cuántos sectores circulares hay en total

Resolución:

Total de sectores circulares

$$\left(\frac{8(9)}{2}\right) = 36$$

Ana : ¿ Viste la configuración dibujada en la

pared?

Rosa: Sí. Se observan x cuadrados en total.

Ana: Cierto. Y también y cuadriláteros en

general.

Rosa: ¡ Qué fácil son las matemáticas cuando

no nos preocupamos por una nota!

Ana: ¡ Sí! Y ya calculé la diferencia entre

dichas cantidades.

¿Podrías decir cuál era la diferencia mencionada por Ana ?

l				

Resolución:

1	2	3	4	5	6	7	8
2							
3							
4							
5							

Total cuadriláteros:

verticales: horizontales:

$$\frac{8(9)}{2}$$
 x $\frac{5(6)}{2}$

36 **x**
$$15 = 540$$

Piden:

$$540 - 100 = 440$$

Total cuadrados:

$$8 \times 5 = 40$$
 $7 \times 4 = 28$
 $6 \times 3 = 18$
 $5 \times 2 = 10$
 $4 \times 1 = 4$

