ST517 Note Outline 10: Multiple Regression

Lecture 10.1: The Multiple Regression Equation

Recall: The simple linear regression model

• Sample line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

• Population line: $\hat{y} = \beta_0 + \beta_1 x$

Recall: The residuals $e = y - \hat{y}$

- Vertical distance from the point to the line
- It follows that $y = \hat{y} + e = \hat{\beta}_0 + \hat{\beta}_1 x + e$
 - On the population level: $y = \beta_0 + \beta_1 x + \varepsilon$

Recall BAC Example:

- When using the number of beers consumed to explain BAC:
 - \circ BAC = -0.01270 + 0.01796*beers
 - o About 80% of variability is explained by number of beers
 - Meaning 20% is explained by other variables (e.g. body weight, amount of food consumed, sex [male or female] etc.)

BAC	Weight	Sex	Beers
.10	132	female	5
.03	128	female	2
.19	110	female	9
.12	192	male	8
.04	172	male	3
.095	250	female	7
.07	125	female	3
0.06	175	male	5
.02	175	female	3
.05	275	male	5
.07	130	female	4
.10	168	male	6
.085	128	female	5
.09	246	male	7
.01	164	male	1
.05	175	male	4

Multiple Regression

• Using multiple variables to predict the response

- Types of predictors:
 - Other quantitative (numeric) variables that may help explain *y*
 - Other categorical variables that may help explain *y*
 - o Higher order terms, such as:
 - Polynomial terms to model curved relationships
 - Interactions of two or more variables

Visually:

General form for the multiple regression model: $y=\beta_0+\beta_1x_1+\beta_2x_2...+\beta_kx_k+\varepsilon$

- k is number of predictors; ε is random error
- β_0 still represents y-intercept
- β_i , for i=1,...,k, represents one slope term

BAC Example:

				A	naly	ysis o	Var	iance				
S	ourc	e		DF	Sum of Squares			Mean Square		'		Pr > F
M	lode	I		2	0.02782			0.01391	1	128.3	3	<.0001
E	rror			13	0.00141		0.0	0010838	3			
С	Corrected Total 15					02922						
	Root MSE					0.010		R-Squ	are	e 0.951		
		Depe	nde	nt Me	ean	0.07	375	Adj R-Sq		0.94	44	
		Coeff	Var		14.1		574					
				Р	araı	meter	Esti	mates				
	Var	iable	DF			eter nate	Standard Error		t Va	alue	P	r > t
	Inte	Intercept 1			0.03	3986	0	.01043		3.82	0.	0021
	beers 1		0.01	1998	0	.00126	15.82		<.	0001		
	wei	ight	1	-0.0	0036	5282	0.000	05668	-	-6.40		0001

[&]quot;Simple" regression equation:

Multiple regression equation:

 \Rightarrow Slope terms are different than they would be if other variables were not in the model

At 180 pounds:

At 150 pounds:

 \Rightarrow Different values for one predictor (e.g. weight) lead to different lines

Lecture 10.2: Judging the fit of the model

Recall: Conditions necessary for model to be valid

- 1. A straight line is the correct model for the data
- 2. The spread of the points around the line have the same standard deviation for all x.
- 3. The random errors are independent of each other.
- 4. The points are normally distributed around the line.

Can re-write these conditions in terms of the random errors

- If the specified model is appropriate for the data,
- The standard deviation of the points around the line
- If the points are normally distributed around the line,
- If the points are centered at the line,
- Finally, we need the random errors to be independent.

Visually: Check residual plot

- Plot of residuals vs.
- Plot of residuals vs.

Examples of residual plots (from a variety of software)

Numeric summary: Coefficient of Determination

- Recall: R^2 = the square of the correlation coefficient
- Can also be found directly using model sums of squares:

$$R^2 = \frac{SSR}{SS_{yy}} = 1 - \frac{SSE}{SS_{yy}}$$

• Interpretation: In the multiple regression model, R² is the proportion of variability in y explained by the model overall

BAC example:

Number of beers consumed explained 80% of the variability in BAC.

Number of beers consumed <u>and</u> weight together explain _____ of the variability in BAC.

Example: Using shoe size to predict height

			I	Analy	alysis of Variance							
Sourc	e	ı	DF	Sum Squar		٠.	Me Squa	an are	F Va	lue	Pr > F	
Mode			1	679.358 838.682 1518.041		33	3 679.358		191	1.98	<.0001	
Error			37			98	3.538	375				
Corre			38			32	32					
	Root MS Depende			ean		811 905				475 452		
	Coeff \	/ar		2		945	0					
			F	Parai	mete	r Es	timates	i				
V	ariable	DF		arameter Estimate		Standard Error		t Value		Pr	> t	
In	tercept	1		54.3	7114	().77604	7	0.06	<.0	001	
sh	ioe	1		1.3	1984	(0.09526	13.86		<.0	001	

Example: Using shoe size and *amount of money spent on textbooks* to predict height

				1	Analy	ysis (of Va	ar	iance				
So	ource	rce [S	Sum							Pr > F
Me	odel	iel 2				3.419	990	3	41.7099	95	96.	62	<.0001
Er	тог			236	834.621		142		3.5365	3			
Сс	orrec	ted To	tal	238	151	8.041	132						
		Root MSE				1.8	1.88057		R-Square		0.45	02	
		Depe	nde	nt M	t Mean		905	9	Adj R	Sq	0.44	55	
		Coeff	Va	г		2.8	936	0					
				F	Parai	mete	r Es	tir	nates				
	Var	iable	DF		ram Estin		S	Standard Error		t Value		Pr	> t
	Inte	rcept	1		54.70			0	83668		65.39	<.	0001
	sho	е	1		1.31	1486		0	09534		13.79	<.	0001
	text	tbook	1	-0.0	0079	9156	0.0	00	73863		-1.07		2850

Adjusted R²

- R² can be driven artificially close to 100% by adding (sometimes unnecessary) more predictors to the model
- Adjusted R² corrects for this by "penalizing" the number of predictors used:

BAC example: Accounting for the number of variables in the model, the number of beers consumed <u>and</u> weight together explain _____ of the variability in BAC.

Lecture 10.3: Inference for multiple regression

Two types of tests:

- 1. F-test for overall significance of the model
- 2. t-tests for individual predictors
- In simple linear regression, these are basically the same test (since there is only one predictor), but in multiple regression they have slightly different goals

F-test for overall effect:

•	Steps	1,	6,	and	7	same	as	al	lway	/S
---	-------	----	----	-----	---	------	----	----	------	----

 Hy 	potheses:
------------------------	-----------

• Conditions:

• Test statistic:

• Null distribution:

• p-value represents proportion of null distribution that is greater than or equal to the test statistic

BAC Example (F-test):

Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F						
Model	2	0.02782	0.01391	128.33	<.0001						
Error	13	0.00141	0.00010838								
Corrected Total	15	0.02922									

t-test for individual predictors

•	Steps 1, 6, and 7 same as always
•	Hypotheses:

- Conditions:
- Test statistic:
- Null distribution:
- P-value found under null distribution in direction of alternative
- New interpretation:

BAC Example (t-tests):

		Paramete	r Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	0.03986	0.01043	3.82	0.0021
beers	1	0.01998	0.00126	15.82	<.0001
weight	1	-0.00036282	0.00005668	-6.40	<.0001

Lecture 10.4: Categorical Predictors

Indicator variables

• To use categorical variables in regression we need to convert them to indicator variables:

$$x = \begin{cases} 1 \text{ if yes} \\ 0 \text{ if no} \end{cases}$$

- Also called
- General form of model is the same as before

BAC Example: Sex

$$X = \begin{cases} 1 & \text{if male} \\ 0 & \text{if female} \end{cases}$$

Obs	BAC	Weight	Sex	Beers	sex_recode
1	0.100	132	female	5	0
2	0.030	128	female	2	0
3	0.190	110	female	9	0
4	0.120	192	male	8	1
5	0.040	172	male	3	1

	Parameter Estimates											
Variable	DF	Parameter Estimate		t Value	Pr > t							
Intercept	1	-0.00348	0.01200	-0.29	0.7767							
beers	1	0.01810	0.00214	8.48	<.0001							
sex_recode	1	-0.01976	0.00909	-2.18	0.0487							

If male:

If female:

BAC Example:

			Ai	naly	sis of	Var	iance					
Sourc	e		DF	_	um of uares						Pr > F	
Model			3	0.02785			0.00928	3	80.81	ı	<.0001	
Error			12	0.	.00138	0.0	00011486	ì				
Corre	cted T	otal	15	0.	.02922							
	Root	MSE		0.01			R-Square		0.9528			
	Dependen				0.07	375	375 Adj R-3		0.941	0		
	Coeff	Var		14.53		212						
			Pa	ran	neter	Esti	mates					
Varia	ble	DF			eter nate	St	andard Error	t V	alue	Р	r > t	
Inter	Intercept 1			0.0	3871		0.01097		3.53		0.0042	
beers 1			0.0	1990		0.00131	15.20			<.0001		
sex_r	ecode	1		-0.0	0324		0.00629		-0.52		0.6156	
weigh	weight 1 -0.0003		4440	0.00006842		-5.03			0.0003			

If you have multiple categories, create multiple indicators

- A series of yes/no variables
- Each takes on 1 or 0
- Need one less variable than there are categories

Example: Political parties

party	X1	X2
Republican	1	0
Democrat	0	1
Republican	1	0
Democrat	0	1
Democrat	0	1
Republican	1	0
Other	0	0

Lecture 10.5: Higher Order Terms

Polynomial Terms

- Used to model curved (rather than straight line) relationships
- Most common are quadratic models:

Example: Using engine size to predict gas mileage on the highway

Parameter Estimates									
Variable	DF	Parameter Estimate		t Value	Pr > t				
Intercept	1	47.71774	1.71419	27.84	<.0001				
engine	1	-9.29955	1.05474	-8.82	<.0001				
engine2	1	0.78220	0.15191	5.15	<.0001				

Estimated model:

Predicted value for a car that has a 1.8 liter engine:

Interaction Terms

- Used to model differential effects
- Model with an interaction:

- Interactions change slope and/or intercept of model o Let x₁ be an indicator variable

 - Basic model:
 - Interaction model:

Example (Hypertension study): A study of 32 men randomly assigned to receive either a placebo or an anti-hypertension drug. Also recorded was the age and systolic blood pressure of each subject.

Source	DF	Type Ⅲ SS	Mean Square	F Value	Pr ≻ F
drug	1	20.841261	20.841261	0.35	0.5589
age	1	4363.993647	4363.993647	73.28	<.0001
age*drug	1	68.739388	68.739388	1.15	0.2918

A final note about higher order terms:

• What if the higher order term is significant, but one of its supporting lower order terms is not?

Ex:
$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2$$

Lecture 10.6: Additional Examples

Use the following to answer questions 1 to 14: A study was conducted to determine whether infection surveillance and control program have reduced the rates of hospital-acquired infections. We have data on a random sample of 28 US hospitals with the following variables:

- RISK = average estimated probability of acquiring an infection while in the hospital (in percent)
- STAY = average length of stay of all patients in the hospital (in days)
- AGE = average age of all patients in the hospital (in years)
- INS = ratio of number of cultures performed to number of patients without signs or symptoms of hospital acquired infection (times 100)
- SCHOOL = indicator that the hospital is affiliated with a medical school (1 = yes, 0 = no)
- RC = region of country where the hospital is located (Northeast, North central, South, West)
- 1. How many indicator variables do we need to create so that RC could be included as a predictor in a regression model?
- 2. Define the appropriate indicator variables for RC using WEST as the baseline (reference) category.
- 3. SAS output (OUTPUT 1) on the next page shows results of a regression model predicting RISK based on all of the other variables. Predict percent RISK for a hospital that is located in the south, not affiliated with a medical school, and has an average length of stay of 7.13 days, average patient age of 55.7 years, and INS ratio of 9. Round the estimated coefficients to 2 decimal places. Round your final answer to 3 decimal places.
- 4. What percent of the variability in RISK is explained by the model?
- 5. What percent of the variability in RISK is explained by the model, after penalizing for the number of predictors?
- 6. On average, how far are the actual values of RISK from what we would predict based on the model?
- 7. Note that RC1 is insignificant. Could we remove just this variable from the model? Explain.
- 8. Suppose we wanted to see if there was an interaction between STAY and AGE; write the model equation (using generic $\hat{\beta}_i$ notation) that could be estimated to test this. Include all other predictor variables as well.
- 9. For the model in the previous question, imagine that the interaction term is significant. Which main effects could be removed from the model if they were found to insignificant? Explain.
- 10. SAS output (OUTPUT 2) on the next page shows the estimated model with the interaction. It would not be reasonable to interpret the estimated slope coefficient for STAY. Explain why not.

- 11. What test statistic and p-value would be used to determine if the model is significant overall? Draw a well-labeled picture of this p-value.
- 12. What test statistic and p-value would be used to determine if the interaction is significant? Draw a well-labeled picture of this p-value.
- 13. Suppose we wanted to see if there was a non-linear relationship between RISK and INS; write the model equation (using generic $\hat{\beta}_i$ notation) that could be estimated to test this. Include all other predictor variables as well. (Note: do not include the interaction from question 8.)
- 14. For the model in the previous question, imagine that the quadratic term is significant. Which main effects could be removed from the model if they were found to insignificant? Explain.

OUTPUT 1 Analysis of Variance Sum of Mean Squares | Square | F Value Source Pr > F Model 39.49805 5.64258 4.42 0.0041 Error 25.54623 1.27731 Corrected Total 27 65.04429 Root MSE 1.13018 R-Square 0.6072 Dependent Mean 4.86429 Adj R-Sq Coeff Var 23.23429 Parameter Estimates Standard Parameter Error t Value Pr > |t| Variable Label DF Estimate -1.07801 4.69135 -0.23 0.8206 Intercept Intercept STAY STAY 0.23613 0.11569 2.04 0.0547

0.04360

0.06924

-0.41517

-0.26956

-0.19268

0.70243

1

0.07811

0.02278

0.64823

0.68941

0.71943

0.88962

Source	Source Di		DF	Sum of Squa		ares	Mean So		quare	F Value		Pr > F
Model			8	39.5206		831	4.94008354		3.68		0.0094	
Error 1		19	25.5236		740	1.34334828						
Corrected Total 2		27	65.04428571									
		R-S	quare	9	Coeff Var	Roc	t MSE	R	RISK M	ean		
0.607			07596			159029 4.864		286				
	Para	amet	0		Estimate	S	Standard Error 20.41785538		t Valu	ıe l	Pr > t	I
	Inte	rcep			552696776	20.4			-0.1	18 (0.8599	
	STA	Υ			0.500773847 0.088424464		.04300556		0.2	25 (0.8090	
	AGE								0.2	25 (0.8058	1
	INS				0.067499928		0.02692700		2.5	51 (0.0214	
	SCH	IOOL	(-0.429804816		0.67427479		9	-0.6	-0.64 0		
	RC1		-(0.2	288006787	0.7	211664	6	-0.4	10 ().6941	
	RC2		-(0.1	194254383	0.7	378971	8	-0.2	26 ().7952	2
	RC3		(0.6	697760265	0.9	130419	3	0.7	76 ().4541	
	STA	Y*A(GE -().(004523981	0.0	348659	9	-0.1	13 (0.8981	

Note:

AGE

RC1

RC2

RC3

AGE

RC1

RC2

RC3

SCHOOL SCHOOL

• RC1 is an indicator that the hospital is located in the Northeast region

0.56 0.5829

3.04 0.0065

-0.64 0.5291

-0.39 0.6999

-0.27 0.7916

0.79 0.4390

- RC2 is an indicator that the hospital is located in the North central region
- RC1 is an indicator that the hospital is located in the South