6-1 Notes

Graphing Systems of Equations

Possible Number of Solutions Two or more linear equations involving the same variables form a system of equations. A solution of the system of equations is an ordered pair of numbers that satisfies both equations. The table below summarizes information about systems of linear equations.

Graph of a System	intersecting lines	same line	parallel lines
Number of Solutions	15 olutrai (different slopes)	Infinitely many solution (some slope of	no solution (same slope different y intercept
Terminology	consistent	consistent	inconsistent
	independent	dependent	SEVINE PROPERTY.

Example: Use the graph at the right to determine whether each system is consistent or inconsistent and if it is independent or dependent.

$$a. y = -x + 2$$
$$y = x + 1$$

Exercises

Determine whether each system is consistent or inconsistent and if it is independent or dependent.

1.
$$y = -x - 3$$

$$y=x-1$$

Chapter 6 Consistent & Independent

In consistent

Graphing Systems of Equations, cont. 6 - 1

Solve by Graphing One method of solving a system of equations is to graph the equations on the same coordinate plane.

Example: Graph each system and determine the number of solutions that it has. If it has one solution, name it.

$$a. x + y = 2$$

$$x-y=4$$

$$b, y = 2x + 1$$

$$b, y = 2x + 1$$

$$2y = 4x + 2$$

$$y = 2x + 1$$

Exercises

Graph each system and determine the number of solutions it has. If it has one solution, name it.

$$3 \overline{y = \frac{1}{2}x} < y = 0$$

$$(y = \frac{1}{2}x) < y = 0$$

4.
$$2y = -4x + 4$$

