Quantum Chebyshev's Inequality and Applications

Yassine Hamoudi, Frédéric Magniez IRIF, Université Paris Diderot, CNRS

JIQ 2018

arXiv: 1807.06456

A needle dropped randomly on a floor with equally spaced parallel lines will cross one of the lines with probability $2/\pi$.

ESSAI D'ARITHMÉTIQUE MORALE.

277

tion par des comparaisons d'espace, comme nous allons le démontrer.

Je suppose que dans une chambre dont le parquet est simplement divisé par des points parallèles, on jette en l'air une baguette, et que l'un des joueurs parie que la baguette ne croisera aucune des parallèles du parquet, et que l'autre au contraire parie que la baguette croisera quelques unes de ces parallèles; on demande le sort de ces deux joueurs (on peut jouer ce jeu sur un damier avec une aiguille à coudre ou une épingle sans tête.).

Pour le trouver je tire d'abord, entre les deux joints parallèles $\mathcal{A} B$ et $\mathcal{C} D$ du parquet, deux autres lignes parallèles ab et cd,

Buffon, G., Essai d'arithmétique morale, 1777.

Monte Carlo algorithms: Use repeated random sampling and statistical analysis to estimate parameters of interest

Monte Carlo algorithms: Use repeated random sampling and statistical analysis to estimate parameters of interest

Empirical mean:

1/ Repeat the experiment n times: n i.i.d. samples $x_1, ..., x_n \sim X$

2/ Output: $(x_1 + ... + x_n)/n$

Monte Carlo algorithms: Use repeated random sampling and statistical analysis to estimate parameters of interest

Empirical mean:

1/ Repeat the experiment n times: n i.i.d. samples x₁, ..., x_n ~ X

2/ Output: $(x_1 + ... + x_n)/n$

Law of large numbers:
$$\frac{x_1 + \ldots + x_n}{n} \xrightarrow{n \to \infty} \mathbf{E}(X)$$

Empirical mean:
$$\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$$
 with $x_1, \ldots, x_n \sim X$

Empirical mean:
$$\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$$
 with $x_1, \ldots, x_n \sim X$

Chebyshev's Inequality:

Hypothesis: $\mathbf{E}(X) \neq 0$ and $\mathbf{Var}(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 \neq 0$ finite

Objective:
$$|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$$
 with high probability multiplicative error $0 < \epsilon < 1$

Empirical mean:
$$\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$$
 with $x_1, \ldots, x_n \sim X$

Chebyshev's Inequality:

Hypothesis: $\mathbf{E}(X) \neq 0$ and $\mathbf{Var}(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 \neq 0$ finite

Objective: $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$ with high probability multiplicative error $0 < \epsilon < 1$

Number of samples needed:
$$O\left(\frac{\mathbf{E}(X^2)}{\epsilon^2 \mathbf{E}(X)^2}\right)$$
 (in fact $O\left(\frac{\mathbf{Var}(X)}{\epsilon^2 \mathbf{E}(X)^2}\right) = O\left(\frac{1}{\epsilon^2}\left(\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2} - 1\right)\right)$)

Empirical mean:
$$\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$$
 with $x_1, \ldots, x_n \sim X$

Chebyshev's Inequality:

Hypothesis:
$$\mathbf{E}(X) \neq 0$$
 and $\mathbf{Var}(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 \neq 0$ finite

Objective:
$$|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$$
 with high probability

multiplicative error
$$0 < \epsilon < 1$$
 Relative second moment

Number of samples needed:
$$O\left(\frac{\mathbf{E}(X^2)}{\epsilon^2 \mathbf{E}(X)^2}\right)$$
 (in fact $O\left(\frac{\mathbf{Var}(X)}{\epsilon^2 \mathbf{E}(X)^2}\right) = O\left(\frac{1}{\epsilon^2}\left(\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2} - 1\right)\right)$)

Empirical mean:
$$\widetilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$$
 with $x_1, \ldots, x_n \sim X$

Chebyshev's Inequality:

Hypothesis: $\mathbf{E}(X) \neq 0$ and $\mathbf{Var}(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 \neq 0$ finite

Objective:
$$|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$$
 with high probability

multiplicative error $0 < \varepsilon < 1$ Relative second

Number of samples needed:
$$O\left(\frac{\mathbf{E}(X^2)}{\epsilon^2 \mathbf{E}(X)^2}\right)$$
 (in fact $O\left(\frac{\mathbf{Var}(X)}{\epsilon^2 \mathbf{E}(X)^2}\right) = O\left(\frac{1}{\epsilon^2}\left(\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2} - 1\right)\right)$)

In practice: given an upper-bound
$$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$$
, take $n = \Omega\left(\frac{\Delta^2}{\epsilon^2}\right)$ samples

Other applications

Counting with Markov chain Monte Carlo methods:

Counting vs. sampling [Jerrum, Sinclair'96] [Štefankovič et al.'09], Volume of convex bodies [Dyer, Frieze'91], Permanent [Jerrum, Sinclair, Vigoda'04]

Data stream model:

Frequency moments, Collision probability [Alon, Matias, Szegedy'99] [Monemizadeh, Woodruff'] [Andoni et al.'11] [Crouch et al.'16]

Testing properties of distributions:

Closeness [Goldreich, Ron'11] [Batu et al.'13] [Chan et al.'14], Conditional independence [Canonne et al.'18]

Estimating graph parameters:

Number of connected components, Minimum spanning tree weight [Chazelle, Rubinfeld, Trevisan'05], Average distance [Goldreich, Ron'08], Number of triangles [Eden et al. 17]

etc.

Random variable X over sample space Ω ⊂ R+

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Random variable X over sample space $\Omega \subset \mathbb{R}^+$

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one (controlled-)execution of a quantum sampler S_X or S_X^{-1} , where

$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$

with ψ_x = arbitrary garbage state

Yes! for additive error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon$

[Montanaro'15] Given $\sigma^2 \ge \text{Var}(X)$, σ/ϵ quantum samples vs σ^2/ϵ^2 classical samples

Yes! for additive error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon$

[Montanaro'15] Given $\sigma^2 \ge \text{Var}(X)$, σ/ϵ quantum samples vs σ^2/ϵ^2 classical samples

Yes! for additive error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon$ [Montanaro'15] Given $\sigma^2 \ge \text{Var}(X)$, σ/ϵ quantum samples vs σ^2/ϵ^2 classical samples

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	Δ2/ε2	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$

Yes! for additive error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon$

[Montanaro'15] Given $\sigma^2 \ge \text{Var}(X)$, σ/ϵ quantum samples vs σ^2/ϵ^2 classical samples

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	Δ2/ε2	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
[Brassard et al.'11] [Wocjan et al.'09] [Montanaro'15]	$\sqrt{\mathbf{B}}/\Big(\epsilon\sqrt{\mathbf{E}(X)}\Big)$	Sample space Ω ⊂ [0,B]

Yes! for additive error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon$

[Montanaro'15] Given $\sigma^2 \ge \text{Var}(X)$, σ/ϵ quantum samples vs σ^2/ϵ^2 classical samples

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	Δ2/ε2	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
[Brassard et al.'11] [Wocjan et al.'09] [Montanaro'15]	$\sqrt{\mathbf{B}}/\Big(\epsilon\sqrt{\mathbf{E}(X)}\Big)$	Sample space Ω ⊂ [0,B]
[Montanaro'15]	Δ <mark>2</mark> /ε	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$

Yes! for additive error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon$

[Montanaro'15] Given $\sigma^2 \ge \text{Var}(X)$, σ/ϵ quantum samples vs σ^2/ϵ^2 classical samples

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	Δ2/ε2	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
[Brassard et al.'11] [Wocjan et al.'09] [Montanaro'15]	$\sqrt{\mathbf{B}}/\Big(\epsilon\sqrt{\mathbf{E}(X)}\Big)$	Sample space Ω ⊂ [0,B]
[Montanaro'15] [Li, Wu'17]	Δ^2 /ε or (Δ/ε)*(H/L)	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ $L \le \mathbf{E}(X) \le \mathbf{H}$

Yes! for additive error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon$

[Montanaro'15] Given $\sigma^2 \ge \text{Var}(X)$, σ/ϵ quantum samples vs σ^2/ϵ^2 classical samples

??? for multiplicative error approximation $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$

	Number of samples	Conditions
Classical samples (Chebyshev's inequality)	Δ2/ε2	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$
[Brassard et al.'11] [Wocjan et al.'09] [Montanaro'15]	$\sqrt{\mathbf{B}}/\Big(\epsilon\sqrt{\mathbf{E}(X)}\Big)$	Sample space Ω ⊂ [0,B]
[Montanaro'15] [Li, Wu'17]	Δ^2 /ε or (Δ/ε)*(H/L)	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ $L \le \mathbf{E}(X) \le \mathbf{H}$
Our result	(Δ/ε)* <mark>log³</mark> (H/E(X))	$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2} \qquad \qquad \mathbf{E}(X) \le \mathbf{H}$

7

Our Approach

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

If
$$B \le \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

Ampl-Est:
$$O\left(\frac{\sqrt{B}}{\epsilon\sqrt{\mathbf{E}(X)}}\right)$$
 quantum samples to obtain $\left|\widetilde{\mu} - \frac{\mathbf{E}(X)}{B}\right| \le \epsilon \cdot \frac{\mathbf{E}(X)}{B}$ (output $B \cdot \widetilde{\mu}$)

If
$$B \le \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

If
$$B \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

Ampl-Est:
$$O\left(\frac{\sqrt{B}}{\epsilon\sqrt{\mathbf{E}(X)}}\right)$$
 quantum samples to obtain $\left|\widetilde{\mu} - \frac{\mathbf{E}(X)}{B}\right| \le \epsilon \cdot \frac{\mathbf{E}(X)}{B}$ (output $B \cdot \widetilde{\mu}$)

If
$$B \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

If
$$B \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0

Random variable X

Random variable X_{<b}

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

If
$$B \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

If
$$B \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

If
$$B \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

If
$$B \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0

Lemma: If
$$b \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$$
 then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_{< b}) \le \mathbf{E}(X)$.

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

If
$$B \leq \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: the number of samples is $O\left(\frac{\sqrt{\mathbf{E}(X^2)}}{\epsilon \mathbf{E}(X)}\right)$

If
$$B \gg \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$$
: map the outcomes larger than $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)}$ to 0

Lemma: If
$$b \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$$
 then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_{\le b}) \le \mathbf{E}(X)$.

Problem: given
$$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$$
 how to find a threshold $b \approx \mathbf{E}(X) \cdot \Delta^2$?

Problem: given $\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ how to find a threshold $b \approx \mathbf{E}(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm to do a logarithmic search on b (given an upper-bound H ≥ E(X))

Problem: given
$$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$$
 how to find a threshold $b \approx \mathbf{E}(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm to do a logarithmic search on b (given an upper-bound H ≥ E(X))

Threshold	Estimated value	Number of samples	Estimation
$b_0 = H\Delta^2$	$\frac{\mathbf{E}(X_{< b_0})}{b_0}$	Δ	$\widetilde{\mu}_0$
$b_1 = (H/2)\Delta^2$	$\frac{\mathbf{E}(X_{< b_1})}{b_1}$	Δ	$\widetilde{\mu}_1$
$b_2 = (H/4)\Delta^2$	$\frac{\mathbf{E}(X_{< b_2})}{b_2}$	Δ	$\widetilde{\mu}_2$

Stopping rule: $\widetilde{\mu}_i \neq 0$ **Output:** b_i

Problem: given
$$\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$$
 how to find a threshold $b \approx \mathbf{E}(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm to do a logarithmic search on b (given an upper-bound H ≥ E(X))

Threshold	Estimated value	Number of samples	Estimation
$b_0 = H\Delta^2$	$\frac{\mathbf{E}(X_{< b_0})}{b_0}$	Δ	$\widetilde{\mu}_0$
$b_1 = (H/2)\Delta^2$	$\frac{\mathbf{E}(X_{< b_1})}{b_1}$	Δ	$\widetilde{\mu}_1$
$b_2 = (H/4)\Delta^2$	$\frac{\mathbf{E}(X_{< b_2})}{b_2}$	Δ	$\widetilde{\mu}_2$

Stopping rule: $\widetilde{\mu_i} \neq 0$ **Output:** b_i

Theorem: the first non-zero $\widetilde{\mu}_i$ is obtained w.h.p. when:

$$2 \cdot \mathbf{E}(X)\Delta^2 \le b_i \le 10^4 \cdot \mathbf{E}(X)\Delta^2$$

Analysis

• If
$$b_i \approx \mathbf{E}(X) \cdot \Delta^2 \to \frac{\mathbf{E}(X_{< b_i})}{b_i} \approx \frac{\mathbf{E}(X)}{b_i} \approx \frac{1}{\Delta^2} \to \Delta$$
 samples are enough

Analysis

- If $b_i \approx \mathbf{E}(X) \cdot \Delta^2 \to \frac{\mathbf{E}(X_{< b_i})}{b_i} \approx \frac{\mathbf{E}(X)}{b_i} \approx \frac{1}{\Delta^2} \to \Delta$ samples are enough
- If b_i is $\underbrace{\text{very large}}_{}$ $\rightarrow \frac{\mathbf{E}(X_{< b_i})}{b_i}$ is very small $\rightarrow \Delta$ samples is not enough to distinguish $\underbrace{\mathbf{E}(X_{< b_i})}_{b_i}$ from 0

Analysis

- If $b_i \approx \mathbf{E}(X) \cdot \Delta^2 \to \frac{\mathbf{E}(X_{< b_i})}{b_i} \approx \frac{\mathbf{E}(X)}{b_i} \approx \frac{1}{\Delta^2} \to \Delta$ samples are enough
- If b_i is $\underbrace{\text{very large}}_{}$ \rightarrow $\frac{\mathbf{E}(X_{< b_i})}{b_i}$ is very small \rightarrow Δ samples is not enough to distinguish $\underbrace{\mathbf{E}(X_{< b_i})}_{b_i}$ from 0

[Brassard et al.'02]

The output of the Amplitude-Estimation algorithm is 0 w.h.p. when the **estimated value** is below the inverse-square of the **number** of samples

$$\frac{\mathbf{E}(X_{< b_i})}{b_i}$$

Analysis

• If
$$b_i \approx \mathbf{E}(X) \cdot \Delta^2 \to \frac{\mathbf{E}(X_{< b_i})}{b_i} \approx \frac{\mathbf{E}(X)}{b_i} \approx \frac{1}{\Delta^2} \to \Delta$$
 samples are enough

• If
$$b_i$$
 is $\underbrace{\text{very large}}_{}$ \rightarrow $\frac{\mathbf{E}(X_{< b_i})}{b_i}$ is very small \rightarrow Δ samples is not enough to distinguish $\frac{\mathbf{E}(X_{< b_i})}{b_i}$ from 0

[Brassard et al.'02]

The output of the Amplitude-Estimation algorithm is 0 w.h.p. when the **estimated value** is below the inverse-square of the **number** of samples

$$\frac{\mathbf{E}(X_{< b_i})}{b_i}$$

Lemma: If
$$b \ge 10^4 \cdot \mathbf{E}(X)\Delta^2$$
 then $\frac{\mathbf{E}(X_{< b})}{b} \le \frac{1}{10^4 \cdot \Delta^2}$

Applications

Application 1: approximating graph parameters

Input: graph G=(V,E) with n vertices, m edges, t triangles

Query access: unitaries $O_{\deg} |v\rangle |0\rangle = |v\rangle |\deg(v)\rangle$ (degree query) $O_{\mathrm{pair}} |v\rangle |w\rangle |0\rangle = |v\rangle |w\rangle |(v,w) \in E ?)$ (pair query) $O_{\mathrm{ngh}} |v\rangle |i\rangle |0\rangle = |v\rangle |i\rangle |v_i\rangle$ (neighbor query)

Application 1: approximating graph parameters

Input: graph G=(V,E) with n vertices, m edges, t triangles

Query access: unitaries $O_{\deg}|v\rangle|0\rangle = |v\rangle|\deg(v)\rangle$ (degree query) $O_{\mathrm{pair}}|v\rangle|w\rangle|0\rangle = |v\rangle|w\rangle|(v,w) \in E ?\rangle$ (pair query) $O_{\mathrm{ngh}}|v\rangle|i\rangle|0\rangle = |v\rangle|i\rangle|v_i\rangle$ (neighbor query)

Result:
$$\widetilde{\Theta}\left(\frac{\sqrt{n}}{m^{1/4}}\right)$$

degree/neighbor quantum queries to approximate m

$$\widetilde{\Theta}\left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}}\right)$$
 degree/pair/neighbor quantum queries to approximate t

Application 1: approximating graph parameters

Input: graph G=(V,E) with n vertices, m edges, t triangles

Query access: unitaries
$$O_{\deg}|v\rangle|0\rangle = |v\rangle|\deg(v)\rangle$$
 (degree query)
$$O_{\mathrm{pair}}|v\rangle|w\rangle|0\rangle = |v\rangle|w\rangle|(v,w) \in E ?\rangle$$
 (pair query)
$$O_{\mathrm{ngh}}|v\rangle|i\rangle|0\rangle = |v\rangle|i\rangle|v_i\rangle$$
 (neighbor query)

Result:
$$\widetilde{\Theta}\left(\frac{\sqrt{n}}{m^{1/4}}\right)$$

degree/neighbor quantum queries to approximate m

(vs.
$$\widetilde{\Theta}\left(\frac{n}{\sqrt{m}}\right)$$
 classical degree/neighbor queries)
 [Goldreich, Ron'08] [Seshadhri'15]

ith neighbor of v

$$\widetilde{\Theta}\left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}}\right)$$

$$\widetilde{\Theta}\left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}}\right) \ \ degree/pair/neighbor quantum queries to approximate t \\ \left(\text{vs. } \widetilde{\Theta}\left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}\right) \ \text{classical degree/pair/neighbor queries}\right) \\ \left[\text{Eden, Levi, Ron'15}\right] \ \ [\text{Eden, Levi, Ron, Seshadhri'17}]$$

Input: (finite) stream of updates $\mathbf{x_i} \leftarrow \mathbf{x_i} + \delta$ on $\mathbf{x} = (0,...,0)$ of dimension n

Output: (at the end of the stream) approximate of $F_k = \sum_{i=1}^n |x_i|^k$ (moment of order $k \ge 3$)

Input: (finite) stream of updates $x_i \leftarrow x_i + \delta$ on x = (0,...,0) of dimension n

Output: (at the end of the stream) approximate of
$$F_k = \sum_{i=1}^n |x_i|^k$$
 (moment of order $k \ge 3$)

Algorithm with smallest possible memory M using P passes over the same stream?

Input: (finite) stream of updates $x_i \leftarrow x_i + \delta$ on x = (0,...,0) of dimension n

Output: (at the end of the stream) approximate of $F_k = \sum_{i=1}^n |x_i|^k$ (moment of order $k \ge 3$)

Algorithm with smallest possible memory M using P passes over the same stream?

Result:
$$M = \widetilde{O}\left(\frac{n^{1-2/k}}{P^2}\right)$$
 qubits of memory

(vs.
$$M = \widetilde{\Theta}\left(\frac{n^{1-2/k}}{P}\right)$$
 classical bits of memory)

[Monemizadeh, Woodruff'10]
[Andoni, Krauthgamer, Onak'11]

Conclusion

The mean of any quantum sampler S_X is estimated with multiplicative error ϵ

using
$$\widetilde{O}\left(\frac{\Delta}{\epsilon} \cdot \log^3\left(\frac{H}{E(X)}\right)\right)$$
 quantum samples, given $\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ and $H \ge \mathbf{E}(X)$.

arXiv: 1807.06456

The mean of any quantum sampler S_X is estimated with multiplicative error ϵ

using
$$\widetilde{O}\left(\frac{\Delta}{\epsilon} \cdot \log^3\left(\frac{H}{E(X)}\right)\right)$$
 quantum samples, given $\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ and $H \ge \mathbf{E}(X)$.

Lower bound: For any \triangle , ε there exists two samplers $\begin{cases} S_X | 0 \rangle = \sqrt{1 - p} \rangle | 0 \rangle + \sqrt{p} | 1 \rangle \\ S_Y | 0 \rangle = \sqrt{1 - q} \rangle | 0 \rangle + \sqrt{q} | 1 \rangle \end{cases}$

with
$$\mathbf{E}(Y) \ge (1+2\epsilon) \cdot \mathbf{E}(X)$$
 and $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}, \frac{\mathbf{E}(Y^2)}{\mathbf{E}(Y)^2} \in [\Delta^2, 2\Delta^2]$

such that distinguishing between X and Y requires:

$$\Omega\left(\frac{\Delta-1}{\epsilon}\right)$$

Quantum samples from S_X / S_Y

arXiv: 1807.06456

The mean of any quantum sampler S_X is estimated with multiplicative error ϵ

using
$$\widetilde{O}\left(\frac{\Delta}{\epsilon} \cdot \log^3\left(\frac{H}{E(X)}\right)\right)$$
 quantum samples, given $\Delta^2 \ge \frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}$ and $H \ge \mathbf{E}(X)$.

Lower bound: For any \triangle , ε there exists two samplers $\begin{cases} S_X|0\rangle = \sqrt{1-p}\rangle |0\rangle + \sqrt{p}|1\rangle \\ S_Y|0\rangle = \sqrt{1-q}\rangle |0\rangle + \sqrt{q}|1\rangle \end{cases}$

with
$$\mathbf{E}(Y) \ge (1+2\epsilon) \cdot \mathbf{E}(X)$$
 and $\frac{\mathbf{E}(X^2)}{\mathbf{E}(X)^2}, \frac{\mathbf{E}(Y^2)}{\mathbf{E}(Y)^2} \in [\Delta^2, 2\Delta^2]$

such that distinguishing between X and Y requires:

$$\Omega\left(\frac{\Delta-1}{\epsilon}\right)$$
 or $\Omega\left(\frac{\Delta^2-1}{\epsilon^2}\right)$

Quantum samples from S_X / S_Y

Copies of
$$S_X | 0 \rangle / S_Y | 0 \rangle$$

arXiv: 1807.06456

Extra slides

Subroutine: the Amplitude Estimation algorithm

Sampler: $S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$ on sample space $\Omega \subset [0,B]$

Result:
$$O\left(\frac{\sqrt{B}}{\epsilon\sqrt{\mathbf{E}(X)}}\right)$$
 quantum samples to obtain $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$

Subroutine: the Amplitude Estimation algorithm

Sampler: $S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$ on sample space $\Omega \subset [0,B]$

Result: $O\left(\frac{\sqrt{B}}{\epsilon\sqrt{\mathbf{E}(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$

Reduction to a Bernoulli sampler [Brassard et al.'11] [Wocjan et al.'09] [Montanaro'15]:

$$\sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle |0\rangle \xrightarrow{\text{rotation}} \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle \left(\sqrt{1 - \frac{x}{B}} |0\rangle + \sqrt{\frac{x}{B}} |1\rangle\right)$$

$$\xrightarrow{\text{Reordering}} \sqrt{1 - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{B}}} \, | \, \varphi_0 \rangle \, | \, \mathbf{0} \rangle \, + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{B}}} \, | \, \varphi_1 \rangle \, | \, \mathbf{1} \rangle = \frac{S_Y}{\mathbf{0}} \, | \, \mathbf{0} \rangle$$

Subroutine: the Amplitude Estimation algorithm

Sampler:
$$S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$$
 on sample space $\Omega \subset [0,B]$

Result:
$$O\left(\frac{\sqrt{B}}{\epsilon\sqrt{\mathbf{E}(X)}}\right)$$
 quantum samples to obtain $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$

Expectation of a Bernoulli sampler [Brassard et al.'02]:

$$\frac{\mathbf{S_Y} \,|\, \mathbf{0}\rangle}{\mathbf{B}} = \sqrt{\mathbf{1} - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{B}}} \,|\, \varphi_0\rangle \,|\, \mathbf{0}\rangle + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{B}}} \,|\, \varphi_1\rangle \,|\, \mathbf{1}\rangle$$

Sampler: $S_X|0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle$ on sample space $\Omega \subset [0,B]$

Result: $O\left(\frac{\sqrt{B}}{\epsilon\sqrt{\mathbf{E}(X)}}\right)$ quantum samples to obtain $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$

Expectation of a Bernoulli sampler [Brassard et al.'02]:

$$\frac{\mathbf{S_Y}\,|\,\mathbf{0}\rangle}{\mathbf{B}} = \sqrt{\mathbf{1} - \frac{\mathbf{E}(\mathbf{X})}{\mathbf{B}}}\,|\,\varphi_0\rangle\,|\,\mathbf{0}\rangle + \sqrt{\frac{\mathbf{E}(\mathbf{X})}{\mathbf{B}}}\,|\,\varphi_1\rangle\,|\,\mathbf{1}\rangle$$

Step 0: the Grover's operator $\mathbf{G} = \mathbf{S}_{\mathbf{Y}}^{-1}(I-2|0\rangle\langle 0|)\mathbf{S}_{\mathbf{Y}}(I-2I\otimes|1\rangle\langle 1|)$ has eigenvalues $e^{\pm 2i\theta}$, where $\theta = \sin^{-1}(\sqrt{\mathbf{E}(X)/B})$.

Step 1: use the Phase Estimation Algorithm on G for $t \ge \Omega(\sqrt{B}/(\epsilon\sqrt{E(X)}))$ steps (i.e. using t quantum samples), to get an estimate $\tilde{\theta}$ of $\pm \theta$.

Step 2: output $\sin^2(\widetilde{\theta})$ as an estimate to E(X)/B. $(\widetilde{\mu} = B \cdot \sin^2(\widetilde{\theta}))$

Result: There is an optimal algorithm that approximates the mean of any quantum sampler S_X over $\Omega \subset [0,B]$ with

$$\widetilde{\Theta} \left(\frac{\sqrt{B}}{\sqrt{\epsilon \mathbf{E}(X)}} + \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)} \right)$$

quantum samples, when there is no a priori information on X.

→ Quantization of [Dagum, Karp, Luby, Ross'00]

*

Lemma: If
$$b \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$$
 then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_{< b}) \le \mathbf{E}(X)$.

Lemma: If $b \ge 10^4 \cdot \mathbf{E}(X)\Delta^2$ then $\frac{\mathbf{E}(X_{< b})}{b} \le \frac{1}{10^4 \cdot \Delta^2}$

*

Lemma: If
$$b \ge \frac{\mathbf{E}(X^2)}{\epsilon \mathbf{E}(X)}$$
 then $(1 - \epsilon)\mathbf{E}(X) \le \mathbf{E}(X_{< b}) \le \mathbf{E}(X)$.

Proof: •
$$\mathbf{E}(X_{\geq b}) \leq \frac{\mathbf{E}(X^2)}{b} \leq \epsilon \mathbf{E}(X)$$

•
$$\mathbf{E}(X_{\leq b}) = \mathbf{E}(X) - \mathbf{E}(X_{\geq b}) \ge (1 - \epsilon)\mathbf{E}(X)$$

Lemma: If
$$b \ge 10^4 \cdot \mathbf{E}(X)\Delta^2$$
 then $\frac{\mathbf{E}(X_{< b})}{b} \le \frac{1}{10^4 \cdot \Delta^2}$

Proof:
$$\frac{\mathbf{E}(X_{< b})}{b} \le \frac{\mathbf{E}(X)}{10^4 \mathbf{E}(X) \Delta^2} \le \frac{1}{10^4 \cdot \Delta^2}$$

Example

Example

Example

Final algorithm:

Step 1: Logarithmic search on b until **Amplitude-Estimation** $(S_{X_{\leq b}}, \Delta) \neq 0$

get
$$2 \cdot \mathbf{E}(X)\Delta^2 \le b \le 10^4 \cdot \mathbf{E}(X)\Delta^2$$
 with high probability

$$\Delta \cdot \log^3 \left(\frac{H}{\mathbf{E}(X)} \right)$$

Step 2: Set threshold $d = b/\epsilon$ and output **Amplitude-Estimation** $(S_{X_{< d}}, \Delta/\epsilon^{3/2}) \neq 0$

$$\longrightarrow$$
 get $|\widetilde{\mu} - \mathbf{E}(X)| \le \epsilon \mathbf{E}(X)$ with high probability

$$\Delta/\epsilon^{3/2}$$

Step 2bis: Slightly refined algorithm, adapted from [Heinrich'01, Montanaro'15]

 Δ/ϵ

Estimator X :=

- 1. Sample a vertex $v \in V$ uniformly at random
- 2. Sample a neighbor w of v uniformly at random
- 3. If deg(v) < deg(w) (or deg(v) = deg(w) and $v <_{lex} w$)

Estimator X :=

- 1. Sample a vertex $v \in V$ uniformly at random
- 2. Sample a neighbor w of v uniformly at random
- 3. If deg(v) < deg(w) (or deg(v) = deg(w) and $v <_{lex} w$)

Lemma: E(X) = m and $E(X^2)/E(X)^2 \le O(\sqrt{n})$. (when $m \ge \Omega(n)$) [Goldreich, Ron'08] [Seshadhri'15]

Estimator X :=

- 1. Sample a vertex $v \in V$ uniformly at random
- 2. Sample a neighbor w of v uniformly at random
- 3. If deg(v) < deg(w) (or deg(v) = deg(w) and $v <_{lex} w$)

Output
$$n*deg(v)$$
Else
Output 0
 $\lambda(v,w)$

Lemma: E(X) = m and $E(X^2)/E(X)^2 \le O(\sqrt{n})$. (when $m \ge \Omega(n)$) [Goldreich, Ron'08] [Seshadhri'15]

$$S_X | 0 \rangle = \sum_{v \in V} \sum_{w \in N(v)} \frac{1}{\sqrt{n \cdot \deg(v)}} |v\rangle |w\rangle |\lambda(v, w)\rangle$$

Estimator X :=

- 1. Sample a vertex $v \in V$ uniformly at random
- 2. Sample a neighbor w of v uniformly at random
- 3. If deg(v) < deg(w) (or deg(v) = deg(w) and $v <_{lex} w$)

Output
$$n*deg(v)$$
Else
Output 0
 $\lambda(v,w)$

Lemma: E(X) = m and $E(X^2)/E(X)^2 \le O(\sqrt{n})$. (when $m \ge \Omega(n)$) [Goldreich, Ron'08] [Seshadhri'15]

$$S_X | 0 \rangle = \sum_{v \in V} \sum_{w \in N(v)} \frac{1}{\sqrt{n \cdot \deg(v)}} |v\rangle |w\rangle |\lambda(v, w)\rangle$$

Result: $O(n^{1/4}/\epsilon)$ quantum samples (= quantum queries) to approximate m.

(when $m \ge \Omega(n)$)

Estimator X :=

[Seshadhri'15]

- 1. Sample a vertex $v \in V$ uniformly at random
- 2. Sample a neighbor w of v uniformly at random
- 3. If deg(v) < deg(w) (or deg(v) = deg(w) and $v <_{lex} w$)

Output
$$n*deg(v)$$
Else

Output 0
 $\lambda(v,w)$

Lemma: E(X) = m and $E(X^2)/E(X)^2 \le O(n/\sqrt{m})$, but we don't know n/\sqrt{m} ... [Goldreich, Ron'08]

$$S_X | 0 \rangle = \sum_{v \in V} \sum_{w \in N(v)} \frac{1}{\sqrt{n \cdot \deg(v)}} |v\rangle |w\rangle |\lambda(v, w)\rangle$$

Estimator X :=

- 1. Sample a vertex $v \in V$ uniformly at random
- 2. Sample a neighbor w of v uniformly at random
- 3. If deg(v) < deg(w) (or deg(v) = deg(w) and $v <_{lex} w$)

Output
$$n*deg(v)$$
Else

Output 0
 $\lambda(v,w)$

Lemma: E(X) = m and $E(X^2)/E(X)^2 \le O(n/\sqrt{m})$, but we don't know n/\sqrt{m} ... [Goldreich, Ron'08] [Seshadhri'15]

$$S_X | 0 \rangle = \sum_{v \in V} \sum_{w \in N(v)} \frac{1}{\sqrt{n \cdot \deg(v)}} |v\rangle |w\rangle |\lambda(v, w)\rangle$$

Result: Θ(n^{1/2}/m^{1/4}) quantum samples (= quantum queries) to approximate m.

Stream of **updates** to x:

Stream of updates to x: (3,+5)

Stream of **updates** to x: (3,+5); (2,-6)

Stream of **updates** to x: (3,+5); (2,-6); (3,-1)

Stream of updates to x: (3,+5); (2,-6); (3,-1)

Frequency moment of order
$$k \ge 3$$
: $F_k = \sum_{i=1}^n |x_i|^k$

Stream of updates to x: (3,+5); (2,-6); (3,-1)

Frequency moment of order
$$k \ge 3$$
: $F_k = \sum_{i=1}^n |x_i|^k$

Best P-pass algorithm with space memory M approximating F_k?

Stream of updates to x: (3,+5); (2,-6); (3,-1)

Frequency moment of order
$$k \ge 3$$
: $F_k = \sum_{i=1}^n |x_i|^k$

Best P-pass algorithm with space memory M approximating F_k?

Classically:
$$PM = \Theta(n^{1-2/k})$$

1 pass + memory
$$M = \frac{n^{1-2/k}}{P}$$

Ш

1 sample from a random variable X with

$$E(X) \approx F_k \text{ and } E(X^2)/E(X)^2 \leq P \cdot F_k^2$$

Stream of updates to x: (3,+5); (2,-6); (3,-1)

Frequency moment of order
$$k \ge 3$$
: $F_k = \sum_{i=1}^n |x_i|^k$

Best P-pass algorithm with space memory M approximating F_k?

Classically: $PM = \Theta(n^{1-2/k})$

1 pass + memory
$$M = \frac{n^{1-2/k}}{P}$$

1 sample from a random variable X with

$$E(X) \approx F_k$$
 and $E(X^2)/E(X)^2 \le P \cdot F_k^2$

[Monemizadeh, Woodruff'10] [Andoni, Krauthgamer, Onak'11] Quantumly: $P^2M = O(n^{1-2/k})$

1 pass + memory
$$M = \frac{n^{1-2/k}}{P^2}$$

1 quantum sample* S_X from a r.v. X with

$$E(X) \approx F_k$$
 and $E(X^2)/E(X)^2 \le (P \cdot F_k)^2$

* S_X^{-1} can be done in one pass also

More complicated than edges... [Eden, Levi, Ron'15] [Eden, Levi, Ron, Seshadhri'17]

Main subroutine: estimator X for the number of triangles adjacent to any vertex v

More complicated than edges... [Eden, Levi, Ron'15] [Eden, Levi, Ron, Seshadhri'17]

Main subroutine: estimator X for the number of triangles adjacent to any vertex v

1 classical sample = O(1) queries in expectation but O(\sqrt{m}) in the worst case

More complicated than edges... [Eden, Levi, Ron'15] [Eden, Levi, Ron, Seshadhri'17]

Main subroutine: estimator X for the number of triangles adjacent to any vertex v

1 classical sample = O(1) queries in expectation but $O(\sqrt{m})$ in the worst case

Variable-time Amplitude Estimation: estimate the amplitude when some "branches" of the computation stop earlier than the others

More complicated than edges... [Eden, Levi, Ron'15] [Eden, Levi, Ron, Seshadhri'17]

Main subroutine: estimator X for the number of triangles adjacent to any vertex v

1 classical sample = O(1) queries in expectation but O(\sqrt{m}) in the worst case

Variable-time Amplitude Estimation: estimate the amplitude when some "branches" of the computation stop earlier than the others

Result:

$$\Theta\left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}}\right)$$
 quantum queries for triangle counting

vs.
$$\widetilde{\Theta}\left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}\right)$$
 classical queries