Computer Architecture

Kasper Engelen
Laurens De Wachter

Binary (12-bits)	Name	Assembly	Semantics
<pre><opcode> <rd> <rs> <rt> <func></func></rt></rs></rd></opcode></pre>			
000 ddd 000 000 0000	zero	zero rd	rd = 0
001 ddd sss ttt 0000	add	add rd rs rt	rd = rs + rt
001 ddd sss ttt 0001	sub	sub rd rs rt	rd = rs - rt
001 ddd sss ttt 0010	and	and rd rs rt	rd = rs & rt (bitwise)
001 ddd sss ttt 0011	or	or rd rs rt	rd = rs rt (bitwise)
001 ddd sss ttt 0100	lt	lt rd rs rt	rd = (rs < rt)
001 ddd sss ttt 0101	gt	gt rd rs rt	rd = (rs > rt)
001 ddd sss ttt 0110	eq	eq rd rs rt	rd = (rs == rt)
001 ddd sss ttt 0111	neq	neq rd rs rt	rd = (rs != rt)
010 ddd sss 000 0000	not	not rd rs	rd = !rs (bitwise)
010 ddd sss 000 0001	inv	inv rd rs	rd = -rs
010 ddd sss 000 0010	sll	sll rd rs	rd = (rs << 1)
010 ddd sss 000 0011	srl	srl rd rs	rd = (rs >> 1)
010 ddd sss 000 0100	sla	sla rd rs	rd = rs * 2
010 ddd sss 000 0101	sra	sra rd rs	rd = rs // 2 (integer division)
011 ddd iii iii iii 0	ldi	ldi rd imm (signed)	rd = imm
011 ddd iii iii iii 1	lui	lui rd imm (unsigned)	rd = imm << 6
100 ddd iii iii iii 0	addi	addi rd imm (unsigned)	rd = rs + imm
100 ddd iii iii iii 1	subi	subi rd imm (unsigned)	rd = rs - imm
111 ddd sss iii iii 0	lw	lw rd rs imm (unsigned)	rd = MEM[rs + imm]
111 ddd sss iii iii 1	sw	sw rd rs imm (unsigned)	MEM[rs + imm] = rd

Binary (12-bits)	Name	Assembly	Ser	nantics
<pre><opcode> <rd> <rs> <rt> <func></func></rt></rs></rd></opcode></pre>				
000 ddd 000 000 0000	zero	zero rd	rd	= 0
001 ddd sss ttt 0000	add	add rd rs rt	rd	= rs + rt
001 ddd sss ttt 0001	sub	sub rd rs rt	rd	= rs - rt
001 ddd sss ttt 0010	and	and rd rs rt	rd	= rs & rt (bitwise)
001 ddd sss ttt 0011	or	or rd rs rt	rd	= rs rt (bitwise)
001 ddd sss ttt 0100	lt	lt rd rs rt	rd	= (rs < rt)
001 ddd sss ttt 0101	gt	gt rd rs rt	rd	= (rs > rt)
001 ddd sss ttt 0110	eq	eq rd rs rt	rd	= (rs == rt)
001 ddd sss ttt 0111	neq	neq rd rs rt	rd	= (rs != rt)
010 ddd sss 000 0000	not	not rd rs	rd	= !rs (bitwise)
010 ddd sss 000 0001	inv	inv rd rs		= -rs
010 ddd sss 000 0010	sll	sll rd rs	rd	= (rs << 1)
010 ddd sss 000 0011	srl	srl rd rs	rd	= (rs >> 1)
010 ddd sss 000 0100	sla	sla rd rs		= rs * 2
010 ddd sss 000 0101	sra	sra rd rs	rd	= rs // 2 (integer division)
011 ddd iii iii iii 0	ldi	ldi rd imm (signed)	rd	= imm
011 ddd iii iii iii 1	lui	lui rd imm (unsigned)	rd	= imm << 6
100 ddd iii iii iii 0	addi	addi rd imm (unsigned)	rd	= rs + imm
100 ddd iii iii iii 1	subi	subi rd imm (unsigned)	rd	= rs - imm
111 ddd sss iii iii 0	Zero Instruction			= MEM[rs + imm]
111 ddd sss iii iii 1				[rs + imm] = rd

Binary (12-bits)	Name	Assembly	Sen	nantics
<pre><opcode> <rd> <rs> <rt> <func></func></rt></rs></rd></opcode></pre>				
000 ddd 000 000 0000	zero	zero rd	rd	= 0
001 ddd sss ttt 0000	add	add rd rs rt	rd	= rs + rt
001 ddd sss ttt 0001	sub	sub rd rs rt	rd	= rs - rt
001 ddd sss ttt 0010	and	and rd rs rt		= rs & rt (bitwise)
001 ddd sss ttt 0011	or	or rd rs rt	rd	= rs rt (bitwise)
001 ddd sss ttt 0100	lt	lt rd rs rt	rd	= (rs < rt)
001 ddd sss ttt 0101	gt	gt rd rs rt	rd	= (rs > rt)
001 ddd sss ttt 0110	eq	eq rd rs rt	rd	= (rs == rt)
001 ddd sss ttt 0111	neq	neq rd rs rt	rd	= (rs != rt)
010 ddd sss 000 0000	not	not rd rs	rd	= !rs (bitwise)
010 ddd sss 000 0001	inv	inv rd rs	rd	= -rs
010 ddd sss 000 0010	sll	sll rd rs	rd	= (rs << 1)
010 ddd sss 000 0011	srl	srl rd rs	rd	= (rs >> 1)
010 ddd sss 000 0100	sla	sla rd rs	rd	= rs * 2
010 ddd sss 000 0101	sra	sra rd rs	rd	= rs // 2 (integer division)
011 ddd iii iii iii 0	ldi	ldi rd imm (signed)	rd	= imm
011 ddd iii iii iii 1	lui	lui rd imm (unsigned)	rd	= imm << 6
100 ddd iii iii iii 0	addi	addi rd imm (unsigned)	rd	= rs + imm
100 ddd iii iii iii 1	subi	subi rd imm (unsigned)	rd	= rs - imm
111 ddd sss iii iii 0	Da			= MEM[rs + imm]
111 ddd sss iii iii 1	Register Instructions [rs + imm] = rd			[rs + imm] = rd

Binary (12-bits)	Name	Assembly	Semantics
<pre><opcode> <rd> <rs> <rt> <func></func></rt></rs></rd></opcode></pre>			
000 ddd 000 000 0000	zero	zero rd	rd = 0
001 ddd sss ttt 0000	add	add rd rs rt	rd = rs + rt
001 ddd sss ttt 0001	sub	sub rd rs rt	rd = rs - rt
001 ddd sss ttt 0010	and	and rd rs rt	rd = rs & rt (bitwise)
001 ddd sss ttt 0011	or	or rd rs rt	rd = rs rt (bitwise)
001 ddd sss ttt 0100	lt	lt rd rs rt	rd = (rs < rt)
001 ddd sss ttt 0101	gt	gt rd rs rt	rd = (rs > rt)
001 ddd sss ttt 0110	eq	eq rd rs rt	rd = (rs == rt)
001 ddd sss ttt 0111	neq	neq rd rs rt	rd = (rs != rt)
010 ddd sss 000 0000	not	not rd rs	rd = !rs (bitwise)
010 ddd sss 000 0001	inv	inv rd rs	rd = -rs
010 ddd sss 000 0010	sll	sll rd rs	rd = (rs << 1)
010 ddd sss 000 0011	srl	srl rd rs	rd = (rs >> 1)
010 ddd sss 000 0100	sla	sla rd rs	rd = rs * 2
010 ddd sss 000 0101	sra	sra rd rs	rd = rs // 2 (integer division)
011 ddd iii iii iii 0	ldi	ldi rd imm (signed)	rd = imm
011 ddd iii iii iii 1	lui	lui rd imm (unsigned)	rd = imm << 6
100 ddd iii iii iii 0	addi	addi rd imm (unsigned)	rd = rs + imm
100 ddd iii iii iii 1	subi	subi rd imm (unsigned)	rd = rs - imm
111 ddd sss iii iii 0	11.		= MEM[rs + imm]
111 ddd sss iii iii 1	Una	ary Operations	[rs + imm] = rd

Binary (12-bits)	Name	Assembly	Sen	nantics
<pre><opcode> <rd> <rs> <rt> <func></func></rt></rs></rd></opcode></pre>				
000 ddd 000 000 0000	zero	zero rd	rd	= 0
001 ddd sss ttt 0000	add	add rd rs rt	rd	= rs + rt
001 ddd sss ttt 0001	sub	sub rd rs rt		= rs - rt
001 ddd sss ttt 0010	and	and rd rs rt	rd	= rs & rt (bitwise)
001 ddd sss ttt 0011	or	or rd rs rt	rd	= rs rt (bitwise)
001 ddd sss ttt 0100	lt	lt rd rs rt	rd	= (rs < rt)
001 ddd sss ttt 0101	gt	gt rd rs rt	rd	= (rs > rt)
001 ddd sss ttt 0110	eq	eq rd rs rt	rd	= (rs == rt)
001 ddd sss ttt 0111	neq	neq rd rs rt	rd	= (rs != rt)
010 ddd sss 000 0000	not	not rd rs	rd	= !rs (bitwise)
010 ddd sss 000 0001	inv	inv rd rs	rd	= -rs
010 ddd sss 000 0010	sll	sll rd rs	rd	= (rs << 1)
010 ddd sss 000 0011	srl	srl rd rs	rd	= (rs >> 1)
010 ddd sss 000 0100	sla	sla rd rs	rd	= rs * 2
010 ddd sss 000 0101	sra	sra rd rs	rd	= rs // 2 (integer division)
011 ddd iii iii iii 0	ldi	ldi rd imm (signed)	rd	= imm
011 ddd iii iii iii 1	lui	lui rd imm (unsigned)	rd	= imm << 6
100 ddd iii iii iii 0	addi	addi rd imm (unsigned)	rd	= rs + imm
100 ddd iii iii iii 1	subi	subi rd imm (unsigned)	rd	= rs - imm
111 ddd sss iii iii 0	Binary Operations			= MEM[rs + imm]
111 ddd sss iii iii 1				[rs + imm] = rd

Binary (12-bits)	Name	Assembly	Semantics
<pre><opcode> <rd> <rs> <rt> <func></func></rt></rs></rd></opcode></pre>			
000 ddd 000 000 0000	zero	zero rd	rd = 0
001 ddd sss ttt 0000	add	add rd rs rt	rd = rs + rt
001 ddd sss ttt 0001	sub	sub rd rs rt	rd = rs - rt
001 ddd sss ttt 0010	and	and rd rs rt	rd = rs & rt (bitwise)
001 ddd sss ttt 0011	or	or rd rs rt	rd = rs rt (bitwise)
001 ddd sss ttt 0100	lt	lt rd rs rt	rd = (rs < rt)
001 ddd sss ttt 0101	gt	gt rd rs rt	rd = (rs > rt)
001 ddd sss ttt 0110	eq	eq rd rs rt	rd = (rs == rt)
001 ddd sss ttt 0111	neq	neq rd rs rt	rd = (rs != rt)
010 ddd sss 000 0000	not	not rd rs	rd = !rs (bitwise)
010 ddd sss 000 0001	inv	inv rd rs	rd = -rs
010 ddd sss 000 0010	sll	sll rd rs	rd = (rs << 1)
010 ddd sss 000 0011	srl	srl rd rs	rd = (rs >> 1)
010 ddd sss 000 0100	sla	sla rd rs	rd = rs * 2
010 ddd sss 000 0101	sra	sra rd rs	rd = rs // 2 (integer division)
011 ddd iii iii iii 0	ldi	ldi rd imm (signed)	rd = imm
011 ddd iii iii iii 1	Memory Instructions		= imm << 6
100 ddd iii iii iii 0			= rs + imm
100 ddd iii iii iii 1			= rs - imm
111 ddd sss iii iii 0	lw	lw rd rs imm (unsigned)	rd = MEM[rs + imm]
111 ddd sss iii iii 1	sw	sw rd rs imm (unsigned)	MEM[rs + imm] = rd

