Construct a Markov chain that explores the typical set

- Construct a Markov chain that explores the typical set
- Anything you would want to do if you could write it analytically, you can do to any accuracy with the draws (history) of the chain

- Construct a Markov chain that explores the typical set
- Anything you would want to do if you could write it analytically, you can do to any accuracy with the draws (history) of the chain

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N} f(\theta_n) \to E_{\pi}[f]$$

- Construct a Markov chain that explores the typical set
- Anything you would want to do if you could write it analytically, you can do to any accuracy with the draws (history) of the chain

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N} f(\theta_n) \to E_{\pi}[f]$$

> Gibbs, RW Metrop are usually very inefficient, hard to diagnose

- Gibbs, RW Metrop are usually very inefficient, hard to diagnose
- To explore complicated high-dimensional spaces we need to leverage what we know about the **geometry** of the typical set

- Gibbs, RW Metrop are usually very inefficient, hard to diagnose
- To explore complicated high-dimensional spaces we need to leverage what we know about the **geometry** of the typical set
- Hamiltonian Monte Carlo

Parameter space

Parameter space

At this point, let's abstract away the distinction between prior and posterior and just let

$$\pi(\theta)$$

refer to the target distribution in parameter space, and

At this point, let's abstract away the distinction between prior and posterior and just let

$$\pi(\theta)$$

refer to the target distribution in parameter space, and

$$\pi(\theta, \rho)$$

refer to the joint distribution of the parameters and momenta in phase space.

We can explore the the typical set of the target distribution by simulating **Hamiltonian dynamics** in phase space

Hamiltonian Function

$$\begin{split} \pi(\theta,\rho) &= \exp\left\{-H(\theta,\rho)\right\} \\ H(\theta,\rho) &= -\log \pi(\theta,\rho) \\ &= -\log \pi(\rho|\theta) - \log \pi(\theta) \\ &= K(\rho,\theta) + V(\theta) \\ \text{kinetic} \end{split}$$

We can explore the the typical set of the target distribution by simulating **Hamiltonian dynamics** in phase space

Hamiltonian Function

$$\pi(\theta, \rho) = \exp \{-H(\theta, \rho)\}$$

$$H(\theta, \rho) = -\log \pi(\theta, \rho)$$

$$= -\log \pi(\rho|\theta) - \log \pi(\theta)$$

$$= K(\rho, \theta) + V(\theta)$$
kinetic potential

Hamilton's Equations

$$\frac{d\theta}{dt} = +\frac{\partial H}{\partial \rho} = \frac{\partial K}{\partial \rho}$$

$$\frac{d\rho}{dt} = -\frac{\partial H}{\partial \theta} = -\frac{\partial K}{\partial \theta} - \frac{\partial V}{\partial \theta}$$

We can explore the the typical set of the target distribution by simulating **Hamiltonian dynamics** in phase space

Hamiltonian Function

$$\pi(\theta, \rho) = \exp \{-H(\theta, \rho)\}$$

$$H(\theta, \rho) = -\log \pi(\theta, \rho)$$

$$= -\log \pi(\rho|\theta) - \log \pi(\theta)$$

$$= K(\rho, \theta) + V(\theta)$$
kinetic potential

Hamilton's Equations

$$\frac{d\theta}{dt} = +\frac{\partial H}{\partial \rho} = \frac{\partial K}{\partial \rho}$$

$$\frac{d\rho}{dt} = -\frac{\partial H}{\partial \theta} = -\frac{\partial K}{\partial \theta} - \frac{\partial V}{\partial \theta}$$

gradient of (log) target dist.

Phase space decomposes into concentric **energy** level sets

Phase space decomposes into concentric **energy** level sets

Phase space decomposes into concentric **energy** level sets

$$H^{-1}(E) = \{\theta, \rho \mid H(\theta, \rho) = E\}$$

Pick an initialization point

Pick an initialization point

Sample momenta to lift into phase space

Deterministic exploration within energy levels sets

Deterministic exploration within energy levels sets

Project back down to parameter space

The auxiliary momenta are discarded and we are left with a point in the typical set of the target distribution

Parameter space

Integrating Hamilton's equations

$$\frac{d\theta}{dt} = +\frac{\partial H}{\partial \rho} = \frac{\partial K}{\partial \rho}$$
$$\frac{d\rho}{dt} = -\frac{\partial H}{\partial \theta} = -\frac{\partial K}{\partial \theta} - \frac{\partial V}{\partial \theta}$$

Integrating Hamilton's equations

$$\frac{d\theta}{dt} = +\frac{\partial H}{\partial \rho} = \frac{\partial K}{\partial \rho}$$
$$\frac{d\rho}{dt} = -\frac{\partial H}{\partial \theta} = -\frac{\partial K}{\partial \theta} - \frac{\partial V}{\partial \theta}$$

- Discrete-time approximation
 - Symplectic integrator
 - Informed by geometry of the system

Integrating Hamilton's equations

$$\frac{d\theta}{dt} = +\frac{\partial H}{\partial \rho} = \frac{\partial K}{\partial \rho}$$
$$\frac{d\rho}{dt} = -\frac{\partial H}{\partial \theta} = -\frac{\partial K}{\partial \theta} - \frac{\partial V}{\partial \theta}$$

- Discrete-time approximation
 - Symplectic integrator
 - Informed by geometry of the system
- Motivates new MCMC diagnostics
 - Divergent transitions
 - Comparison of marginal & conditional energy distributions

Most numerical integrators suffer from drift

Trajectories deviate from typical set

• The size of the error increases rapidly with dimension

Most numerical integrators suffer from drift

- Trajectories deviate from typical set
- The size of the error increases rapidly with dimension

Symplectic integrators preserve volume in phase space

- Trajectories oscillate around exact energy level set, even for long integration times
- Scale well to higher dimensions
- Pathologies easy to diagnose (divergence)

 Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000

- Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- •Do **1,000** draws using Stan's NUTS algorithm (no thinning)

- Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- •Do **1,000** draws using Stan's NUTS algorithm (no thinning)
- •Do 1,000 independent draws (we can do this for multivariate normal)

- Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- •Do **1,000** draws using Stan's NUTS algorithm (no thinning)
- •Do 1,000 independent draws (we can do this for multivariate normal)

- Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- Do 1,000 draws using Stan's NUTS algorithm (no thinning)
- •Do 1,000 independent draws (we can do this for multivariate normal)

- Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- Do 1,000 draws using Stan's NUTS algorithm (no thinning)
- •Do 1,000 independent draws (we can do this for multivariate normal)

- Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- Do 1,000 draws using Stan's NUTS algorithm (no thinning)
- •Do 1,000 independent draws (we can do this for multivariate normal)

