2D Linearized Potential Flow equations for compressible flow

We start with 2D - unsteady - inviscid equations in the conservative form

where
$$\bar{q} = \begin{bmatrix} 3 \\ 3u \\ 8v \\ 3ve_t \end{bmatrix}$$
, $\bar{E} = \begin{bmatrix} 8u \\ 3uv \\ 3ve_t + pu \end{bmatrix}$, $\bar{F} = \begin{bmatrix} 8v \\ 3uv \\ 3v^2 + p \\ 8ve_t + pv \end{bmatrix}$, $\bar{H} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3q \end{bmatrix}$

U -> n component of the velocity

12 to 1/8 as we have used throughout the

Also,
$$C_{t} = C_{t} + \frac{U^{2} + U^{2}}{2}$$

$$h_0 = h + \frac{u^2 + v^3}{2}$$

$$= e + \frac{v^2 + v^3}{2}$$

Enercise. - Try to apoply the assumptions of 1D - steady - inviscid--constantarea - adiabatic flow conditions

and derive the three conservation eggs that derived earlier in the course.

Note: - Governing equi for Quasi-1D-CD nossle connot be derived directly from above general equations.

This is termed as the conservative form of equations because we are using [8,84,80, 8et] as the thermodynamic variables instead of [P, n, v, P]

- -> Direct solution of these equations is difficult.
- -> Also, these equations do not assume isentropic conditions (as we have assumed throughout in the ID flow).
 - So the question is, How to impose isentropicity on these eggs?
- Answer, comes in the form of Crocco's theorem.

If a flow is irrotational, then it is also isentropic.

So in order to derive the governing equations under is entropic condition, all 9 have to do is impose irrotationality. what is Irrotational flow? Definition of rotation of a fluid element. At time to,
point 0 has reloutly (U,0) Point A

(ut an an v + av an) $\left(u + \frac{\partial y}{\partial y} \Delta y, v + \frac{\partial v}{\partial y} \Delta y\right)$ Rotation of a fluid element is defined as the average of the protations of two fluid elements placed perpendicular to each other. In time st, elements (A) & (B) will more for refertion, only 9/ & U/8 are of interest. Rotation W/o= W/A+W/B = 0/B + 0/B or st How, Ola = (Ut du Du - U) - At Also, Ola = (u+ du Ay - u) - At = du st Ols is negative. Also by right hand rule, Ola is positive & 1. 0|B = - 24 Dt $\frac{1}{2} \left(\frac{\partial v}{\partial \lambda} - \frac{\partial u}{\partial \gamma} \right)$ It can be shown for a general 3) case that, where w= wn+jwy+kwz $\widetilde{\omega} = \frac{1}{2} \left(\overrightarrow{\nabla} \times \overrightarrow{\nabla} \right)$ V=ui+vj+wk Rotation vector Curl

Also, vorticity (Z) is defined as
So, now have a definition of rotation of a fluid element.
Clearly, in a 2D flow, if
dy de everywhere
then 9 have a irrotational flow-
Crocco tells me that such a flow will also be
isentropic.
So now the question is '-
can 9 derive simpler set of equations under these
assumptions of steady, 20, adiabatic, isentropic flow.
I can follow the lead from incompressible flow,
and define a velocity potential. Just an idea.
Note: - Please remember the potential flow equation $525=0$ that you derived in Aerodynamics we wish to derive something
you derived in Aerodynamics we wish to derive something
Similar for compressible flow.
Velocity potential
Nov, under the assumption of isentropyc flow,
Crocco's theorem
Irrotational from
Irrotational flow

So clearly if I define a function of (2,4) which is 8 mouth enough and also for which $u = \frac{\partial \phi}{\partial x}$, $v = \frac{\partial \phi}{\partial y}$, then the flow represented by such a function we always be irrotational $\frac{\partial y}{\partial \dot{x}} - \frac{\partial v}{\partial \dot{x}} = \frac{\partial^2 \phi}{\partial y \partial x} - \frac{\partial^2 \phi}{\partial x \partial y} = 0$ of is sufficiently. So a potential flow is always irrotational and Crocco's theorem tells us that an irrotational flow is isentropic So all 9 have to do is get a equation for &, solve it and 9 will know the flow peroperties everywhere. This equation is called potential equation. we will replace, 3 governing equations with a single one. So by considering the mass conservation, we have $(\beta \phi_n)_n + (\beta \phi_y)_y = 0$ $3_{2}\phi_{n} + 3_{y}\phi_{y} + 3(\phi_{n} + \phi_{yy}) = 0$ $\left(3u^2+P\right)_{\mathcal{A}}+\left(3uv\right)_{\mathcal{Y}}=0$ $(8uv)_{2} + (3v^{2} + p)_{y} = 0$ Adding, Gdn+ Ddy Prant Rydy + (8,42) + 8(42) + (80) y 4 + 4y (80) dr + [syv2+ 8(v2)y+(su)2 v + vn (su)] dy = 0 Clearly, dp= prdn+ Rydy,/4y=Vn/(8v)y=-(8u)n
Total
derivative dp + 3 [(12)2-dn + (12)4dy] - [(84)24dn + (8v)4vdy] + Snu2dn + Syv2dy + Uy(Sv)dn + Un(Su)dy = 0

Now, the blue part can

$$d\rho + 8\left[\frac{(i^2)}{n}dn + \frac{(v^3)}{y}dy\right] - \frac{8vv^2dn - 9uvudn - 8yv^2dy - 9vyvdy}{t^2u^2dn + \frac{vv(8v)}{y}dn + \frac{uy(8u)}{y}dy = 0}$$

Irrotational

$$\int_{-2}^{2} - \frac{1}{2} \left(\frac{u^{2}}{2} \right)_{n} dn - \frac{1}{2} \left(\frac{u^{2}}{2} \right)_{y} dy$$

$$+ \frac{1}{2} \left(\frac{u^{2}}{2} \right)_{n} dn + \frac{1}{2} \left(\frac{u^{2}}{2} \right)_{y} dy - 0$$

Gives,
$$\frac{dp}{s} + \frac{d(u^2 + v^2)}{2} = 0$$

In terms of velocity potential,

$$d\rho = -\frac{9}{2} d \left[(\phi_n)^2 + (\phi_y)^2 \right]$$
Since for isentropic flow,
$$a^2 = d\rho$$

$$dg$$

$$a^2 = \frac{d\rho}{d\theta}$$

$$d\rho = a^{2} ds = -\frac{s}{2} d \left[(\rho_{n})^{2} + (\rho_{y})^{2} \right]$$

Since ds = Sadar Sydy, ve com write

$$S_{n} = \frac{S}{a^{2}} \left(p_{n} p_{nx} + p_{y} p_{ny} \right)$$

$$S_{y} = \frac{S}{a^{2}} \left(p_{n} p_{xy} + p_{y} p_{yy} \right)$$

$$S_{y} = \frac{S}{a^{2}} \left(p_{n} p_{xy} + p_{y} p_{yy} \right)$$

$$\phi_{nx} + \phi_{yy} - \frac{1}{a^2} \left[\left(\phi_n \right)^2 \phi_{nx} + \left(\phi_y \right)^2 \phi_{yy} \right] - \frac{2}{a^2} \left[\phi_n \phi_y \beta_{ny} \right] = 0$$

a - what type of PDE is this?

Novy still we do not have a PDE for of as, "a" is not known. we need to get 'a" in terms of β . we use emergy equation for that. Now ho = comst. , ho = 40To = 40T + 42 +02 For a perfect gas, Cp = TR V-1 T = To - 4 70 2Cp $YR7 = YR70 - \frac{YR(Y-1) \cdot (u^2 + v^2)}{2 YR}$ $a^2 = a_0^2 - \frac{r_1}{r_2} (u^2 + v^2)$ $a^{2} = a_{0} - \frac{V}{2} \left(\left(\varphi_{x} \right)^{2} + \left(\varphi_{y} \right)^{2} \right)$ Speed of sound at stagnation condition remains constant as To is constant thene this not a variable. But a constant. we get the complete Putting (S) in (Y) potential flow equation Difficult to solve in all general cases. But analytical solms exist for some simple peroblems Linearise the eggs about a given condition - u= Day up 20 20 AVP Similarity rules (I-M2) Prat Pyy =0 LID, Thin airfoil > Linearised

potential

flow eqn

