Exercise sheet

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Stochastic learning

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. Show that: If g is convex function then f is convex function.

Solution. Let $u, v \in \mathbb{R}^d$ and $a \in [0, 1]$. It is

$$\begin{split} f\left(\alpha u + (1 - \alpha)\,v\right) &= g\left(<\alpha u + (1 - \alpha)\,v, x > + y\right) \\ &= g\left(<\alpha u, x > + < (1 - \alpha)\,v, x > + y\right) \\ &= g\left(\alpha\left(< u, x > + y\right) + (1 - \alpha)\left(< v, x > + y\right)\right) \qquad y = \alpha y + (1 - \alpha)\,y \\ &\leq &\alpha g\left(< u, x > + y\right) + (1 - \alpha)\,g\left(< v, x > + y\right) \\ &= &\alpha f\left(u\right) + (1 - \alpha)\,f\left(v\right) \end{split} \tag{g is convex}$$

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then, show that, f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Solution.

$$|f(w_1) - f(w_2)| = |g_1(g_2(w_1)) - g_1(g_2(w_2))|$$

$$\leq \rho_1 |g_2(w_1) - g_2(w_2)|$$

$$\leq \rho_1 \rho_2 |w_1 - w_2|$$

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then show that f is a $(\beta ||x||^2)$ -smooth.

Hint: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

$$f(v) = g(\langle w, x \rangle + y)$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\langle v - w, x \rangle)^{2} \qquad (g \text{ is smooth})$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\|v - w\| \|x\|)^{2} \quad (Cauchy-Schwatz inequality)$$

$$= f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta \|x\|^{2}}{2} \|v - w\|^{2}$$

Exercise 4. (*)Show that $f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Solution. \Longrightarrow Let $f: S \to \mathbb{R}$ be ρ -Lipschitz over convex set $S, w \in S$ and $v \in \partial f(w)$.

- Since S is open we get that there exist $\epsilon > 0$ such as $u := w + \epsilon \frac{v}{\|v\|}$ where $u \in S$. So $\langle u w, v \rangle = \epsilon \|v\|$ and $\|u w\| = \epsilon$.
- From the subgradient definition we get

$$f(u) - f(w) \ge \langle u - w, v \rangle = \epsilon ||v||$$

• From the Lipschitzness of $f(\cdot)$ we get

$$f(u) - f(w) \ge \rho ||u - w|| = \rho \epsilon$$

Therefore $||v|| \leq \rho$.

 \Leftarrow It is for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \leq \rho$.

• For any $u \in S$, it is

$$f\left(w\right)-f\left(u\right)\leq\left\langle v,w-u\right\rangle \qquad \qquad \text{(because }v\in\partial f\left(w\right)\text{)}$$
 (1)
$$\leq\left\|v\right\|\left\|w-u\right\| \qquad \text{by Cauchy-Schwarz inequality}$$

$$\leq\rho\left\|w-u\right\| \qquad \text{because }\left\|v\right\|\leq\rho$$

• Similarly it results $u, w \in S$

$$f(w) - f(u) \le \langle v, u - w \rangle ||v|| \le ||v|| ||u - w|| \le \rho ||u - w||$$

from (1) because w, u can be swaped in (1) as they both are any values in S.

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $f(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial f(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

Solution. Since g_k is convex, for all u

$$g_k(u) \ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

However $f(u) = \max_{\forall j} (g_j(u)) \ge g_k(u)$ for any j, and $f(w) = g_k(w)$ at w. Then

$$f(u) \ge g_k(u)$$

$$\ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

$$= f(w) + \langle u - w, \nabla g_k(w) \rangle$$

Then by the definition of the sub-gradient $\nabla g_k(w) \in \partial f(w)$

Exercise 6. (*)Consider the regression learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with predictor rule $h(x) = \langle w, x \rangle$ labeled by some unknown parameter $w \in \mathcal{W}$, loss function $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$, feature $x \in \mathcal{X}$, and target $y \in \mathbb{R}$. Let $\mathcal{W} = \mathcal{X} = \{\omega \in \mathbb{R}^d : |\omega| \leq \rho\}$ for some $\rho > 0$.

- (1) Show that the resulting learning problem is Convex-Lipschitz-Bounded learning problem.
- (2) Specify the parameters of Lipschitnzess.

Solution. According to the definitions given in the lecture:

• Convex-Lipschitz-Bounded Learning Problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with parameters ρ , and B, is called the learning problem whose the hypothesis class \mathcal{H} is a convex set, for all $w \in \mathcal{H}$ it is $||w|| \leq B$, and the loss function $\ell(\cdot, z)$ is convex and ρ -Lipschitz function for all $z \in \mathcal{Z}$.

I have:

Convexity: The function $g: \mathbb{R} \to \mathbb{R}$, defined by $g(a) = a^2$ is convex convex. Eg. $\frac{d^2}{da^2}g(a) = 1 \ge 0$ is non-negative. The convexity of $\ell(w, z = (x, y))$ for all z follows as a composition of g with a linear function.

Lipschitzness: The function $g\left(a\right)=a^{2}$ is 1-Lipschitz since It is

$$|g(a_2) - g(a_1)| = |a_2^2 - a_1^2| = |(a_2 + a_1)(a_2 - a_1)| \le 2\rho(a_2 - a_1) = 2\rho|a_2 - a_1|$$

Hence because $|x| \le \rho$, g(a) is $2\rho^2$ -Lipschitz as a composition.

Boundness: The norm of each hypothesis w is bounded by ρ according to the assumptions. Therefore,

- (1) the learning problem under consideration is a Convex-Lipschitz-Bounded learning problem.
- (2) the parameter of Lipschitzness is $2\rho^2$.

The following is given as a homework (Formative assessment 1)

Exercise 7. (*)Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \le L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w : \mathbb{R}^d \to$

 $\{-1, +1\}$ with

$$(2) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$= \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class of prediction rules be

$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$ it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$.

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

(4)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\mathsf{T}}x) + \lambda \|w\|_{2}^{2}$$

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following tasks.

Hint-1:: We denote

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0 \\ +1, & \text{if } \xi > 0 \end{cases}$$

Hint-2:: The notation ± 1 means either -1 or +1.

HInt-3:: We define $\mathbb{R}_+ := (0, +\infty)$

Hint-4:: We denote $\|x\|_2 := \sqrt{\sum_{\forall j} (x_j)^2}$ the Euclidean distance.

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (4) is convex.

Hint: You may use Example 13 from Handout 1.

(2) Show that the loss $\ell(w, z)$ for $\lambda = 0$ (4) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \le L\}$.

Hint:: You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 - yw_2^\top x \le 1 - yw_1^\top x$, and then take cases $1 - yw_2^\top x > \text{or} < 0$ and $1 - yw_1^\top x > \text{or} < 0$ to deal with the max.

(3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in

order to discover w^* such as

(5)
$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm have to be tailored to 4.

- (5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using appropriate values for m, η_t and $T_{\rm max}$, code in R the algorithm you designed in part 4, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
 - (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (5).
 - (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z \leftarrow matrix(z, nrow = n, ncol = 3)
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x <- z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_{obs} < 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
#z_obs2[z_obs[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```

Solution.

- (1) $f_1(x) = 0$ is convex, $f_2(x) = 1 x$ is convex, hence from the example in Handout 1, $f(x) = \max(f_1(x), f_2(x))$ is convex as well. Regarding the loss function, we just have $f_2(w) = 1 yx^{\top}w$ which is convex as a composition due to linearity.
- (2) Given a fixed example $(x,y) \in \{x \in \mathbb{R}^d : ||x'||_2 \le R\} \times \{-1,1\}$. Assume $w_1, w_2 \in \mathbb{R}^d$. Let $\ell_i = \max\{0, 1 - yx^\top w_i\}$, for i = 1, 2. It suffices to show that $|\ell_1 - \ell_2|_2 \le R |w_1 - w_2|_2$. I take cases

Case-1: Assume $yx^{\top}w_1 \ge 1$ and $yx^{\top}w_2 \ge 1$ then $|\ell_1 - \ell_2|_2 = 0 \le R|w_1 - w_2|_2$

Case-2: Assume that at least one of $yx^{\top}w_1 < 1$ or $yx^{\top}w_2 < 1$ but not both is true. Assume without loss of generality that $1 - yx^{\top}w_1 < 1 - yx^{\top}w_2$. Then

$$\begin{aligned} \left| \ell_{1} - \ell_{2} \right|_{2} &= \ell_{1} - \ell_{2} \\ &= 1 - yx^{\top}w_{1} - \max\left(0, 1 - yx^{\top}w_{2}\right) \\ &\leq 1 - yx^{\top}w_{1} - \left(1 - yx^{\top}w_{2}\right) \\ &= yx^{\top}\left(w_{2} - w_{1}\right) \\ &\leq y \left\| x^{\top} \right\|_{2} \left\| w_{1} - w_{2} \right\|_{2} \quad \text{because} \quad a^{\top}b \leq \left\| a \right\| \left\| b \right\| \end{aligned}$$

(3) It is

$$f(x) = \max(0, 1 - x) = \begin{cases} 0 & x > 1 \\ 0 & x = 1 \\ 1 - x & x < 1 \end{cases}$$

- For x > 1, f is differentiable so $\partial f(x) = \{f'(x)\} = \{0\}$.
- For x < 1, f is differentiable so $\partial f(x) = \{f'(x)\} = \{-1\}$.
- For x = 1, f is not differentiable. By definition I have that v is subgradient of f(x) at $x = 0 \in S$ if

$$\forall u \in \mathbb{R}, \ f(u) \ge f(x) + \langle u - x, v \rangle$$

So, for $u \ge 1$, it is $0 \ge (u-1)v \implies v \le 0$, and for u < 1 it is $(1-u) \ge (u-1)v \implies v \ge -1$. Hence the common space is $v \in [0,1]$ So $\partial f(x) = [0,1]$. Hence,

$$\partial f(x) = \begin{cases} 0, & x > 1 \\ [-1, 0], & x = 1 \\ -1, & x < 1 \end{cases}$$

Now regarding the loss $\partial_{w}\ell\left(w,z=\left(x,y\right)\right)$

• for $yw^{\top}x > 1$ it is differentiable so $\nabla_w \ell(w, z = (x, y)) = \nabla_w \left(0 + \lambda \sum_{j=1}^d w_j^2\right) = 2\lambda w;$ as

$$\frac{\mathrm{d}}{\mathrm{d}w_j} \sum_{j'=1}^d w_{j'}^2 = 2\lambda w_j$$

• for $yw^{\top}x > 1$ it is differentiable so $\nabla_w \ell(w, z = (x, y)) = \nabla_w \left(1 - yw^{\top}x + \lambda \sum_{j=1}^d w_j^2\right) = yx + 2\lambda w$ as

$$\frac{\mathrm{d}}{\mathrm{d}w_j} \left(1 - y w^\top x \right) = \frac{\mathrm{d}}{\mathrm{d}w_j} \left(1 - y \sum_{j'=1}^d w_{j'} x_{j'} \right) = -y x_j$$

• for $yw^{\top}x = 1$, v = 0 satisfies the definition of the sub-gradient

$$\forall u, \ f(u) \ge f(w) + \langle u - w, v \rangle$$
$$\max \left(0, 1 - yu^{\top} x \right) \ge 0 + (u - w)^{\top} 0$$

So

$$\partial \ell (w, z = (x, y)) = \partial \left(\max \left(0, 1 - y w^{\top} x \right) + \lambda \|w\|_{2}^{2} \right)$$

$$= \partial \left(\max \left(0, 1 - y w^{\top} x \right) \right) + \partial \left(\lambda \|w\|_{2}^{2} \right)$$

$$= \partial \left(\max \left(0, 1 - y w^{\top} x \right) \right) + \nabla \left(\lambda \|w\|_{2}^{2} \right)$$

$$0 + 2\lambda w$$

but $\partial \left(\lambda \|w\|_2^2\right) = \left\{\nabla \left(\lambda \|w\|_2^2\right)\right\}$ because $\lambda \|w\|_2^2$ is differentiable. Hence $\partial \ell \left(w, z = (x, y)\right) = 0 + 2\lambda w$

Hence

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

(4)

Algorithm. For t = 1, 2, 3, ... iterate:

- (a) Get a random sub-sample $\left\{\tilde{z}_{i}^{(t)} = \left(\tilde{x}_{i}^{(t)}, \tilde{y}_{i}^{(t)}\right); i = 1, ..., m\right\}$ of size m with or without replacement from the complete data-set \mathcal{S}_{n} .
- (b) For j = 1, ..., d (index j indicates the dimension of w) compute

$$w_j^{(t+1)} = w_j^{(t)} - \eta_t \frac{1}{\sqrt{[G_t]_{j,j} + \epsilon}} \bar{v}_{t,j}$$

$$[G_t]_{j,j} = [G_{t-1}]_{j,j} + (\bar{v}_{t,j})^2$$
 where $\bar{v}_t = \frac{1}{m} \sum_{i=1}^m \tilde{v}_{t,i}$ and

$$\tilde{v}_{t,i} = \begin{cases} 2\lambda w^{(t)}, & \tilde{y}_{i}^{(t)} \left(w^{(t)}\right)^{\top} \tilde{x}_{i}^{(t)} > 1\\ 2\lambda w^{(t)}, & \tilde{y}_{i}^{(t)} \left(w^{(t)}\right)^{\top} \tilde{x}_{i}^{(t)} = 1\\ -\frac{1}{m} \tilde{y}_{i}^{(t)} \tilde{x}_{i}^{(t)} + 2\lambda w^{(t)}, & \tilde{y}_{i}^{(t)} \left(w^{(t)}\right)^{\top} \tilde{x}_{i}^{(t)} < 1 \end{cases}$$

where index i indicates the sub-sample, and $\epsilon > 0$ small.

(c) Terminate if a termination criterion is satisfied

(5)

- (a) The R code can be found in the link https://raw.githubusercontent.com/georgios-stats/Machine_Learning_and_Neural_Networks_III_Epiphany_2023/main/Exercises/supplementary/q6_adagrad.R
- (b) The figures are presented below

FIGURE 1. trace plots

- (c) I found w = (-2.674615, 3.205785)
- (d) It belongs to -1

Exercise 8. (\star) Assume a Bayesian model

$$\begin{cases} z_i | w & \stackrel{\text{ind}}{\sim} f(z_i | w), \ i = 1, ..., n \\ w & \sim f(w) \end{cases}$$

and consider that our objective is the discovery of MAP estimate w^* i.e.

$$w^* = \arg\min_{\forall w \in \Theta} \left(-\log\left(L_n\left(w\right)\right) - f\left(w\right)\right) = \arg\min_{\forall w \in \Theta} \left(-\sum_{i=1}^n \log\left(f\left(\mathbf{z}_i|\mathbf{w}\right)\right) - \log\left(f\left(w\right)\right)\right)$$

by using SGD with update

$$w^{(t+1)} = w^{(t)} + \eta_t \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) + \nabla_w \log \left(f\left(w^{(t)}\right) \right) \right)$$

for some randomly selected set $\mathcal{J}^{(t)} \subseteq \{1,...,n\}^m$ of m integers from 1 to n via simple random sampling (SRS) with replacement. Show that

$$\mathbb{E}_{\mathcal{J}^{(t)} \sim \text{simple-random-sampling}} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) \right) = \sum_{i=1}^n \nabla_w \log \left(f\left(z_i | w^{(t)}\right) \right)$$

Solution. It is

$$E_{\mathcal{J}^{(t)} \sim SRS} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right) = \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} E_{\mathcal{J}^{(t)} \sim SRS} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right)$$

$$= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} E_{\mathcal{J}^{(t)} \sim SRS} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right)$$

$$= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \frac{1}{n} \sum_{i=1}^{n} \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right)$$

$$= \sum_{i=1}^{n} \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right)$$

It is $E_{\mathcal{J}^{(t)} \sim SRS}\left(\nabla_w \log\left(f\left(z_j|w^{(t)}\right)\right)\right) = \frac{1}{n}\sum_{i=1}^n \nabla_w \log\left(f\left(z_i|w^{(t)}\right)\right)$ because the expectation is under the probability I get randomly an integer and for the *j*th on the probability is 1/n due to the random scheme. Also $|\mathcal{J}^{(t)}| = m$.

Part 2. Artificial Neural Networks

Exercise 9. (*)Consider the regression problem, with a predictive rule $h_w : \mathbb{R}^d \to \mathbb{R}$, as a classification probability, that receives values $x \in \mathbb{R}^d$ returns vales in \mathbb{R} . Let $h_w(x)$ be modeled as an ANN

$$h(x) = \sigma_2 \left(\sum_{j=1}^{c} w_{2,1,j} \sigma_1 \left(\sum_{i=1}^{d} w_{1,j,i} x_i \right) \right)$$

and let the associated activation function be

$$\sigma_2(a) = a\Phi(a)$$

where $\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$ is considered as known function, and $\phi(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}t^2\right)$ and

$$\sigma_1\left(a\right) = \exp\left(-a^2\right)$$

Consider a loss

$$\ell(w, z = (x, y)) = \frac{1}{2} (y - h_w(x))^2$$

at w and example z=(x,y), where $x\in\mathbb{R}^d$ is the input vector (features), and y is the output vector (targets) with $y\in\mathbb{R}$. Consider that d, c, and q are known integers.

- (1) Perform the forward pass of the back-propagation procedure to compute the activations which may be denoted as $\{a_{t,i}\}$ and outputs which may be denoted as $\{o_{t,i}\}$ at each layer t.
- (2) Perform the backward pass of the back-propagation procedure in order to compute the elements of the gradient $\nabla_w \ell(w,(x,y))$.

Solution.

(1)

Set:
$$o_{0,i} = x_i$$
 for $i = 1, ..., d$
Compute:
at $t = 1$: for $j = 1, ...c$
comp: $\alpha_{1,j} = \sum_{i=1}^{d} w_{1,i,j} x_i$
comp: $o_{1,j} = \exp\left(-\alpha_{1,j}^2\right)$
at $t = 2$:
comp: $\alpha_{2,1} = \sum_{j=1}^{c} w_{2,1,j} o_{1,j}$
comp: $o_{2,1} = \alpha_{2,1} \Phi\left(\alpha_{2,1}\right)$
get: $h_1 = o_{2,1}$

(2) It is

$$\frac{\mathrm{d}}{\mathrm{d}a}\sigma_1\left(a\right) = -2a\exp\left(-a^2\right)$$

and

$$\frac{\mathrm{d}}{\mathrm{d}a}\sigma_{2}\left(a\right) = \Phi\left(a\right) + a\phi\left(a\right)$$

and

$$\frac{\mathrm{d}\ell_{2}}{\mathrm{d}\alpha_{2,1}} = \frac{\mathrm{d}\ell_{2}}{\mathrm{d}o_{2,1}} \frac{\mathrm{d}o_{2,1}}{\mathrm{d}\alpha_{2,1}} = (o_{2,1} - y_{1}) \left(\Phi\left(\alpha_{2,1}\right) + \alpha_{2,1}\phi\left(\alpha_{2,1}\right)\right)$$

Backward pass:

at
$$t=2$$
:
comp: $\tilde{\delta}_{2,1} = \frac{\mathrm{d}}{\mathrm{d}\alpha_{2,1}} \ell_T = (o_{2,1} - y_1) \left(\Phi\left(\alpha_{2,1}\right) + \alpha_{2,1}\phi\left(\alpha_{2,1}\right) \right)$
at $t=1$: for $j=1,...c$
comp:

$$\tilde{\delta}_{1,j} = \frac{\mathrm{d}}{\mathrm{d}\xi} \sigma_1(\xi) \bigg|_{\xi = \alpha_{1,j}} \sum_{k=1}^{1} w_{2,k,j} \tilde{\delta}_{2,k}$$
$$= -2\alpha_{1,j} \exp\left(-\alpha_{1,j}^2\right) \sum_{k=1}^{1} w_{2,1,j} \tilde{\delta}_{2,k}$$

Output:

$$\frac{\mathrm{d}}{\mathrm{d}w_{1,j,i}}\ell=\tilde{\delta}_{1,j}x_i \text{ and } \frac{\mathrm{d}}{\mathrm{d}w_{2,1,j}}\ell=\tilde{\delta}_{2,1}o_{1,j}$$

Exercise 10. (\star) Students are encouraged to practice on the Exercises 5.1-5.28 from the textbook

• Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.

available from

 $\bullet \ https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf \\$

The solutions are available from

 $\bullet \ https://www.maths.dur.ac.uk/users/georgios.karagiannis/Solutions-Machine-learning-and-pattern-recognition-Bishop/ \\$

The following is given as a homework (Formative assessment 2)

Exercise 11. (*)Consider the multi-class classification problem, with a predictive rule $h_w : \mathbb{R}^d \to \mathcal{P}$, as a classification probability i.e, $h_{w,k}(x) = \Pr(x \text{ belongs to class } k)$, that receives values $x \in \mathbb{R}^d$ returns vales in $\mathcal{P} = \left\{ p \in (0,1)^q : \sum_{j=1}^q p_j = 1 \right\}$. Let $h_w = (h_{w,1}, ..., h_{w,q})^\top$, let $h_w(x)$ be modeled as an ANN

$$h_k(x) = \sigma_2 \left(\sum_{j=1}^{c} w_{2,k,j} \sigma_1 \left(\sum_{i=1}^{d} w_{1,j,i} x_i \right) \right)$$

for k = 1, ..., q, and let the associated activation functions be

$$\sigma_2(a_k) = \frac{\exp(a_k)}{\sum_{k'=1}^q \exp(a_{k'})}, \text{ for } k = 1, ..., q$$

(called softmax function) and $\sigma_1(a) = \arctan(a)$. Consider a loss

$$\ell(w, z = (x, y)) = -\sum_{k=1}^{q} y_k \log(h_{w,k}(x))$$

at w and example z=(x,y), where $x \in \mathbb{R}^d$ is the input vector (features), and $y=(y_1,...,y_q)$ is the output vector (labels) with $y \in \{0,1\}^q$ and $\sum_{k=1}^q y_k = 1$. Consider that d, c, and q are known integers.

Hint: You may use

$$\frac{\mathrm{d}}{\mathrm{d}x}\arctan\left(x\right) = \frac{1}{1+x^2}$$

- (1) Perform the forward pass of the back-propagation procedure to compute the activations which may be denoted as $\{a_{t,i}\}$ and outputs which may be denoted as $\{o_{t,i}\}$ at each layer t.
- (2) Show that

$$\frac{\partial}{\partial a_k} \sigma_2(a_j) = \sigma_2(a_j) \left(1 \left(j = k \right) - \sigma_2(a_k) \right)$$

for
$$k = 1, ..., q$$
. Let $1 (j = k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$.

(3) Perform the backward pass of the back-propagation procedure in order to compute the elements of the gradient $\nabla_w \ell(w,(x,y))$.

Solution.

(1) Forward pass

Set:
$$o_{0,i} = x_i$$
 for $i = 1, ..., d$

Compute:

at
$$t = 1$$
: for $j = 1, ...c$
comp: $\alpha_{1,j} = \sum_{i=1}^{d} w_{1,i,j} x_i$
comp: $o_{1,j} = \arctan(\alpha_{1,j})$

at
$$t = 2$$
: for $k = 1, ...q$
comp: $\alpha_{2,k} = \sum_{j=1}^{d} w_{2,k,j} o_{2,j}$
comp: $o_{2,k} = \frac{\exp(\alpha_{2,k})}{\sum_{k'=1}^{q} \exp(\alpha_{2,k})}$
get: $h_k = o_{2,k}$

(2) It is

$$\frac{\mathrm{d}}{\mathrm{d}a_{k}}\sigma_{2}\left(a_{j}\right) = \frac{\mathrm{d}}{\mathrm{d}a_{k}} \frac{\exp\left(a_{j}\right)}{\sum_{j'} \exp\left(a_{j'}\right)} = \begin{cases} \sigma_{2}\left(a_{j}\right)\left(1 - \sigma_{2}\left(a_{j}\right)\right) & j = k\\ -\sigma_{2}\left(a_{j}\right)\sigma_{2}\left(a_{k}\right) & j \neq k \end{cases}$$
$$= \sigma_{2}\left(a_{j}\right)\left(1\left(j = k\right) - \sigma_{2}\left(a_{k}\right)\right)$$

(3) It is

$$\frac{\mathrm{d}}{\mathrm{d}a}\sigma_1\left(a\right) = \frac{1}{1+a^2}$$

and

$$\frac{\mathrm{d}}{\mathrm{d}a_k}\sigma_2\left(a_k\right) = \sigma_2\left(a_j\right)\left(1\left(j=k\right) - \sigma_2\left(a_k\right)\right)$$
$$= o_j\left(1\left(j=k\right) - o_k\right)$$

and

$$\frac{\mathrm{d}\ell_2}{\mathrm{d}o_{2,j}} = -y_j \frac{1}{o_{2,j}}$$

and

$$\frac{\mathrm{d}\ell_2}{\mathrm{d}a_{2,k}} = \sum_{j=1}^q \frac{\mathrm{d}\ell_2}{\mathrm{d}o_{2,j}} \frac{\mathrm{d}o_{2,j}}{\mathrm{d}o_{2,k}}$$

$$= \sum_{j=1}^q \left(-y_j \frac{1}{o_{2,j}} o_{2,j} \left(1 \left(j = k \right) - o_{2,k} \right) \right)$$

$$= \sum_{j=1}^q \left(-y_j \left(1 \left(j = k \right) - o_{2,k} \right) \right)$$

$$= o_{2,k} - y_k$$

Backward pass:

at
$$t = 2$$
: for $k = 1, ...q$
comp: $\tilde{\delta}_{2,k} = \frac{d}{d\alpha_{2,k}} \ell_T = o_{2,k} - y_k$
at $t = 1$: for $j = 1, ...c$
comp:

$$\tilde{\delta}_{1,j} = \frac{\mathrm{d}}{\mathrm{d}\xi} \sigma_1(\xi) \bigg|_{\xi = \alpha_{1,j}} \sum_{k=1}^q w_{2,k,j} \tilde{\delta}_{2,k}$$
$$= \left(\frac{1}{1 + \alpha_{1,j}^2}\right) \sum_{k=1}^q w_{2,k,j} \tilde{\delta}_{2,k}$$

Output:

$$\frac{\mathrm{d}}{\mathrm{d}w_{1,j,i}}\ell = \tilde{\delta}_{1,j}x_i \text{ and } \frac{\mathrm{d}}{\mathrm{d}w_{2,k,j}}\ell = \tilde{\delta}_{2,k}o_{1,j}$$

Part 3. Support Vector Machines

The following is given as a homework (Formative assessment 3)

Exercise 12. $(\star\star)$ Consider a training data set $\mathcal{D} = \{z_i = (x_i, y_i)\}_{i=1}^m$. Consider the Soft-SVM Algorithm that requires the solution of the following quadratic minimization problem (in a slightly modified but equivalent form to what we have discussed)

Primal problem:

(6)
$$(w^*, b^*, \xi^*) = \underset{(w,b,\xi)}{\operatorname{arg \, min}} \left(\frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^m \xi_i \right)$$

(7) subject to:
$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i, \ \forall i = 1, ..., m$$

(8)
$$\xi_i \ge 0, \ \forall i = 1, ..., m$$

for some user-specified fixed parameter C > 0.

- (1) Specify the Lagrangian function L associated to the above primal quadratic minimization problem, where $\{\alpha_i\}$ are the Lagrange coefficients wrt (7), and $\{\beta_i\}$ are the Lagrange coefficients wrt (8). Write down any possible restrictions on the Lagrange coefficients.
- (2) Compute the dual Lagrangian function denoted as \tilde{L} as a function of the Lagrange coefficients and the data points \mathcal{D} .
- (3) Apply the Karush–Kuhn–Tucker (KKT) conditions to the above problem, and write them down.
- (4) Derive and write down the dual Lagrangian quadratic maximization problem, along with the inequality and equality constraints, where you seek to find $\{\alpha_i\}$.
- (5) Justify why the *i*-th point x_i lies on the margin boundary when $\alpha_i \in (0, C)$ (beware it is $\alpha_i \neq C$), and why the *i*-th point x_i lies inside the margin when $\alpha_i = C$.
- (6) Given optimal values $\{\alpha_i^*\}$ for Lagrangian coefficients $\{\alpha_i\}$ as they are derived by solving the dual Lagrangian maximization problem in part 4, derive the optimal values w^* and b^* for the parameters w and b as function of the support vectors. Regarding parameter b it should be in the derived in the form

$$b^* = \frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \left(y_i - \sum_{j \in \mathcal{S}} \alpha_j^* y_j \langle x_j, x_i \rangle \right)$$

where you determine the sets \mathcal{M} and \mathcal{S} .

(7) Report the halfspace predictive rule $h_{w,b}(x)$ of the above problem as a function of α^* and b^* .

Solution.

(1) It is

(9)
$$L(w, b, \xi, \alpha, \beta) = \frac{1}{2} \|w\|_{2}^{2} + \sum_{i=1}^{m} C\xi_{i} + \sum_{i=1}^{m} \alpha_{i} (1 - y_{i} (\langle w, x_{i} \rangle + b) - \xi_{i}) - \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

(2) Let α, β be fixed. We minimize (9) wrt w, b and we get

(10)
$$0 = \frac{\partial L}{\partial w}(w, b, \xi, \alpha, \beta) \implies w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
$$0 = \frac{\partial L}{\partial b}(w, b, \xi, \alpha, \beta) \implies 0 = \sum_{i=1}^{m} \alpha_i y_i$$
$$11)
$$0 = \frac{\partial L}{\partial \xi_i}(w, b, \xi, \alpha, \beta) \implies \alpha_i = C - \beta_i$$$$

and we substitute (10)-(11) in (9) and we get

$$\tilde{L}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \langle x_j, x_i \rangle$$

(3) The Karush-Kuhn-Tucker (KKT) conditions applied to the above problem are

$$0 = \nabla \frac{1}{2} \|w\|_{2}^{2} + \nabla \sum_{i=1}^{m} C\xi_{i} + \nabla \sum_{i=1}^{m} \alpha_{i} \left(1 - y_{i} \left(\langle w, x_{i} \rangle + b\right) - \xi_{i}\right) - \nabla \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

$$1 - y_{i} \left(\langle w, x_{i} \rangle + b\right) - \xi_{i} \leq 0, \quad \forall i = 1, ..., m$$
Primal feasibility
$$\xi_{i} \geq 0$$

(12)

$$\alpha_i \geq 0 \ \forall i = 1, ..., m$$

Dual feasibility

(13) $\beta_i > 0 \ \forall i = 1, ..., m$

(14) $\alpha_i (1 - y_i (\langle w, x_i \rangle + b) - \xi_i) = 0, \ \forall i = 1, ..., m$

Complementary slackness

 $\beta_i \xi_i = 0, \ \forall i = 1, ..., m$

(4) It is

(16)
$$\alpha^* = \arg\max_{\alpha \in \mathbb{R}^m : \alpha \ge 0} \left(\sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j \langle x_j, x_i \rangle \right)$$

subject to
$$0 = \sum_{i=1}^{m} \alpha_i y_i$$

(17)
$$\alpha_i \in [0, C] \quad \forall i = 1, ..., m$$

constrain (17) results from (11), (13), and (12).

(5)

- By (10), if $\alpha_i = 0$ then x_i does not contribute to the computation of the weights.
- By (10), if $\alpha_i \neq 0$, then x_i is a support vector and contributes.
- If $\alpha_i \in (0, C)$ (where $\alpha_i \neq C$) then (11) implies that $\beta_i > 0$. By (15) if $\beta_i > 0$ then $\xi_i = 0$. Hence, given these, from (14), it is $1 = y_i (\langle w, x_i \rangle + b)$ i.e. x_i lies on the boundary.
- If $\alpha_i = C$, then x_i lies inside the boundary.
- (6) From (14), it is either $\alpha_i = 0$ or $(1 y_i (\langle w, x_i \rangle + b) \xi_i) = 0$. Let $\mathcal{S} = \{i : y_i (\langle w, x_i \rangle + b) = 1 \xi_i\}$. From (10), it is

$$(18) w^* = \sum_{i \in S} \alpha_i^* y_i x_i$$

Using (14) and summing up indexes in $\mathcal{M} = \{i : \alpha_i \in (0, C)\}$ for which $\xi_i = 0$ it is

$$b^* = \frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \left(y_i - \sum_{j \in \mathcal{S}} \alpha_j^* y_j \langle x_j, x_i \rangle \right)$$

(7) The formula is

(19)
$$h_{w,b}(x) = \operatorname{sign}(\langle w^*, x \rangle + b^*)$$
$$= \operatorname{sign}\left(\sum_{i=1}^m \alpha_i^* y_i \langle x_i, x \rangle + b^*\right)$$

Exercise 13. $(\star\star)$ Show that K with

$$K(x,y) = \frac{\sin\left(2\pi\left(N + \frac{1}{2}\right)(x - y)\right)}{\sin\left(\pi(x - y)\right)}$$

is a valid kernel.

Hint-1: You may use that $\sum_{n=0}^{r} z^n = \frac{1-z^{r+1}}{1-z}$

Hint-2: You may use that $e^{ix} = \cos(x) + i\sin(x)$

Solution. It is

$$K(x,y) = \frac{\sin\left(2\pi\left(N + \frac{1}{2}\right)(x - y)\right)}{\sin\left(\pi\left(x - y\right)\right)} = \frac{-2i\sin\left(2\pi\left(N + \frac{1}{2}\right)(x - y)\right)}{-2i\sin\left(\pi\left(x - y\right)\right)}$$

$$= \frac{e^{-2\pi\left(N + \frac{1}{2}\right)i(x - y)} - e^{2\pi\left(N + \frac{1}{2}\right)i(x - y)}}{e^{-\pi i(x - y)} - e^{\pi i(x - y)}}$$

$$= \frac{e^{\pi i(x - y)}}{e^{\pi i(x - y)}} \frac{e^{-2\pi\left(N + \frac{1}{2}\right)i(x - y)} - e^{2\pi\left(N + \frac{1}{2}\right)i(x - y)}}{e^{-\pi i(x - y)} - e^{\pi i(x - y)}}$$

$$= e^{-2\pi iN(x - y)} \frac{1 - \left(e^{2\pi i(x - y)}\right)^{2N + 1}}{1 - e^{2\pi i(x - y)}}$$

$$= e^{-2\pi iN(x - y)} \sum_{n = 0}^{2N} \left(e^{2\pi i(x - y)}\right)^{n} = \sum_{n = -N}^{N} e^{2\pi in(x - y)} = \sum_{n = -N}^{N} e^{2\pi inx} e^{-2\pi iny}$$

$$= \sum_{n = -N}^{N} e^{2\pi inx} e^{-2\pi iny} = \langle \psi(x), \psi(y) \rangle$$

with $\psi(x) = \left(e^{-2\pi iNx}, e^{-2\pi i(N-1)x}, ..., 1, ..., e^{2\pi i(N-1)x}, e^{2\pi iNx}\right)^{\top}$. Based on the theorem in the Handout, the Kernel can be expressed as an inner product of a vector of bases, hence it is a valid kernel.

Note that given Hint 2 it is

$$e^{-2\pi i n y} = \cos(-2\pi n y) + i \sin(-2\pi n y)$$
$$= \cos(2\pi n y) - i \sin(2\pi n y)$$
$$= \overline{\cos(2\pi n y) + i \sin(2\pi n y)}$$
$$= \overline{e^{2\pi i n y}}$$

Exercise 14. (*) Students are encouraged to practice on the Exercises 6.1-6.19 from the textbook

• Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.

available from

 $\bullet \ https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf \\$

The solutions are available from

 $\bullet \ https://www.maths.dur.ac.uk/users/georgios.karagiannis/Solutions-Machine-learning-and-pattern-recognition-Bishop/ \\$

Part 4. Gaussian process regression

Exercise 15. (\star) Students are encouraged to practice on the Exercises 6.19-6.27 from the textbook

• Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.

available from

 $\bullet \ https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf \\$

The solutions are available from

 $\bullet \ https://www.maths.dur.ac.uk/users/georgios.karagiannis/Solutions-Machine-learning-and-pattern-recognition-Bishop/$