ST544, Practice Midterm Exam 1

Some critical values from χ^2 distributions

\overline{df}	1	2	3	4	5	6	7	8
$\chi^{2}_{0.05,df}$	3.841	5.991	7.815	9.488	11.070	12.592	14.067	15.507
$\chi^2_{0.025,df}$	5.024	7.378	9.348	11.143	12.833	14.449	16.013	17.535
$\chi^{2}_{0.01,df}$	6.635	9.210	11.345	13.277	15.086	16.812	18.475	20.090

- 1. (10 pts) For each problem, identify all correct answers.
 - (a) (2 pts) If X and Y are conditionally independent given Z, then
 - (I) X and Y have homogeneous association across Z;
 - (II) X and Y are marginally independent;
 - (III) X and Z are marginally independent;
 - (IV) Y and Z are marginally independent.
 - (b) (2 pts) Which of the following is true for a GLM with ressponse Y, covariate x and log link:
 - (I) $\log(Y) = \alpha + \beta x$;
 - (II) $\log\{E(Y)\} = \alpha + \beta x + \epsilon$; where $E(\epsilon) = 0$;
 - (III) $E(Y) = e^{\alpha + \beta x}$;
 - (IV) $Y = e^{\alpha + \beta x} + \epsilon$, where $E(\epsilon) = 0$.
 - (c) (2 pts) The LRT statistics for testing $H_0: X$ (I levels) and Y (J levels) to be independent
 - (I) has large sample null distribution $\chi^2_{(I-1)(J-1)}$ under multinomial sampling;
 - (II) cannot be used for data from case-control studies;
 - (III) has large sample null distribution χ^2_{I-1} for data from product-multinomial sampling;
 - (IV) is approximately standard normal under null.
 - (d) (2 pts) Under a multinomial sampling, the ANOVA type of Cochran-Mental-Haenszel test (CMH2) for testing H_0 : I-level nominal X and binary Y to be independent has a large sample null distribution
 - (I) χ_1^2 ;
 - (II) χ_2^2 ;
 - (III) χ^2_{I-1} ;
 - (IV) χ^2_{2I-1} .

- (e) (2 pts) If two-level categorical variables X and Y are independent, then for a third variable Z (with K > 1 levels), we have
 - (I) $\theta_{XY|Z=k} = 1$ for all k;
 - (II) $\theta_{XY|Z=k} > 1$ for all k;
 - (III) $\theta_{XY|Z=k} < 1$ for all k;
 - (IV) $\theta_{XY} = 1$.
- 2. (20 pts) In the following SAS program we presented the coronary deaths for smokers from homework 4, where age is the mid-value of each age category, py is the pearson-year and death is the # of coronary death. We then fit a GLM to the data. Part of the output of the SAS program is given.

Criterion	DF	Value	Value/DF
Deviance	3	55.1337	18.3779
Pearson Chi-Square	3	52.8538	17.6179

Analysis Of Maximum Likelihood Parameter Estimates

Parameter	DF	Estimate	Standard Error	Wald Confiden	95% ce Limits	Wald Chi-Square	Pr > ChiSq
Intercept	0	0.0000	0.0000	0.0000	0.0000		
newpy	1	-13.5256	0.6616	-14.8224	-12.2288	417.89	<.0001
newpy*age	1	0.3505	0.0158	0.3194	0.3815	489.11	<.0001
Scale	0	1.0000	0.0000	1.0000	1.0000		

Do the following:

- (a) (5 pts) What distribution is assumed for the # of coronary death? Is this assumption reasonable?
- (b) (5 pts) Write down the fitted model for the coronary death rate per 1000 pearson-years.
- (c) (5 pts) Interprete the age effect on the coronary death rate. Find a 95% CI for the effect.
- (d) (5 pts) Use the fitted model, find an estimate and a 95% CI of the difference of coronary death *rate* per 1000 pearson-years between the oldest and youngest groups.

3. (20 pts) In a study to investigate the association between alcohol drinking and high blood pressure, we obtained a random sample in the following 2×2 table:

	High BP			
Alcohol drinking	Yes	No		
Yes	30	80		
No	20	120		

We fit three GLMs to the above data and obtained the following output:

```
data bp;
  input alcohol y y0;
  n = y + y0;
  cards;
   30 80
20 120
proc genmod data=bp;
  model y/n=alcohol / dist=bin link=identity;
run;
              Analysis Of Maximum Likelihood Parameter Estimates
                                          Wald 95%
                           Standard
                                      Confidence Limits
                                                          Chi-Square
                                                                      Pr > ChiSq
 Parameter
            DF
               Estimate
                              Error
 Intercept
             1
                  0.1429
                             0.0296
                                       0.0849
                                                  0.2008
                                                               23.33
                                                                           <.0001
                  0.1299
                                       0.0284
                                                 0.2313
 alcohol
             1
                             0.0517
                                                                6.30
                                                                          0.0121
************************************
proc genmod data=bp;
  model y/n=alcohol / dist=bin link=log;
run;
              Analysis Of Maximum Likelihood Parameter Estimates
                                          Wald 95%
                           Standard
                                                          Chi-Square
 Parameter
            DF
                Estimate
                              Error
                                      Confidence Limits
                                                                      Pr > ChiSq
                                                               88.35
             1
                             0.2070
                                      -2.3517
                                                -1.5402
                                                                          <.0001
 Intercept
                 -1.9459
 alcohol
             1
                  0.6466
                             0.2590
                                       0.1389
                                                 1.1543
                                                                6.23
                                                                          0.0126
proc genmod data=bp;
 model y/n=alcohol / dist=bin link=logit;
run;
              Analysis Of Maximum Likelihood Parameter Estimates
                                      Wald 95% Wald Confidence Limits Chi-Square
                           Standard
Error
            DF
               Estimate
                                                                      Pr > ChiSq
 Parameter
                                      -2.2651
                                                -1.3184
 Intercept
             1
                 -1.7918
                             0.2415
                                                               55.04
                                                                          <.0001
                  0.8109
                             0.3227
                                       0.1784
                                                 1.4435
                                                                          0.0120
 alcohol
             1
                                                                6.31
```

Use the above output to do the following:

- (a) (5 pts) Find an estimate of and a 95% CI of the relative risk of having high blood pressure between alcohol drinkers and non-drinkers. Interpret.
- (b) (5 pts) Find an estimate of and a 95% CI of the odds-ratio of having high blood pressure between alcohol drinkers and non-drinkers. Interpret.
- (c) (5 pts) Find an estimate of and a 95% CI of the risk difference of having high blood pressure between alcohol drinkers and non-drinkers. Interpret.

- (d) (5 pts) Show how the standard error of the risk difference estimate is calculated.
- 4. (20 pts) In a case-control study to investigate the association between smoking and lung cancer, we obtained the following data

	Lung Cancer		
Smoking	Yes	No	
Yes	60	20	
No	40	80	

Do the following:

- (a) (5 pts) Can you estimate the lung cancer probabilities for smokers and non-smokers in the population. Explain briefly (with 1-2 sentences).
- (b) (5 pts) Estimate the odds-ratio of getting lung cancer between smokers and non-smokers, and construct a 95% CI for the true odds-ratio.
- (c) (5 pts) Can you infer the relative risk of getting lung cancer between smokers and non-smokers? Interpret it if you can.
- (d) (5 pts) Construct the Pearson χ^2 test for H_0 : smoking and lung cancer are independent at level 0.05.
- 5. (15 pts) In a small study to evaluate the effect of a treatment on curing a disease, we obtained the following data:

$$\begin{array}{c|cccc} & & & & & Y \\ & & & S & F \\ X & Treatment & \hline 4 & 2 \\ & Placebo & \hline 1 & 4 \\ \end{array}$$

where \mathbf{S} (\mathbf{F}) stands for the disease (not) being successfully cured. The conditional probabilities for n_{11} (except for observed table) given all margins are

n_{11}	0	1	2	3	4	5
Probability	0.0022	0.0649	0.3247	0.4329	??	0.0130

Do the following:

- (a) (4 pts) Give the formula for the missing probability and calculate it.
- (b) (4 pts) Conduct Fisher's exact test for testing $H_0: X \perp Y \ v.s \ H_a$: the treatment is better than the placebo at level 0.05.

4

- (c) (3 pts) Find the mid p-value for Fisher's exact test.
- (d) (4 pts) Conduct two sided Fisher's exact test at level 0.05.
- 6. (15 pts) A test device has 80% sensitivity and 85% specificity for screening a certain disease. Suppose the proportion of individuals with the disease in the population is 10%. Do the following:
 - (a) (5 pts) What is the probability that a random person will have a positive test result?
 - (b) (5 pts) What is the probability that the person with the positive test result indeed has the disease?
 - (c) (5 pts) What is the probability that the person with a negative test result indeed does not have the disease?