CS5340
 Name:
 EDDAMANI Soufiane

 Semester I, 2017/18
 ID :
 A0176636U

 Assignment
 Name:
 LANGE Robin

 19/11/2017
 ID :
 A0165184B

1. Data Denoising

(a) Model, Local Evidence term and Pairwise Potential

We are using Gibbs sampling for data denoising. Thus we have to model the full conditional probability. Each image is seen as a Markov Random Field. And we condition each variable on its Markov Blanket, that is its nearest neighbors.

Pairwise Potential $\psi_{st}(x_s, x_t)$:

In the case of a two-state variable, we used the **Ising model** for the pairwise potential, representing the neighboring effect. We choose $\psi_{st}(x_t, x_s) = \exp(\beta x_s x_t)$.

Local Evidence $\psi_t(x_t)$:

This part is modelling the noise. We choose a gaussian noise centered around the latent variable designing the "clear" image $\psi_t(x_t) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(y_t - x_t)^2}{2\sigma^2}}$ where y_t is the corrupted version.

We can therefore derive the full conditional where \mathbf{y} is the corrupted version and $\theta = (\sigma, \beta)$ is the parameter couple:

$$p(x_{t} = +1 \mid \mathbf{x}_{-\mathbf{t}}, \mathbf{y}, \theta) = \frac{\psi_{t}(+1) \prod_{s \in nbr(t)} \psi_{st}(+1, x_{s})}{\sum_{x_{t}} \psi_{t}(x_{t}) \prod_{s \in nbr(t)} \psi_{st}(x_{t}, x_{s})}$$

$$= \frac{\psi_{t}(+1) \exp \left[\beta \sum_{s \in nbrs(t)} x_{s}\right]}{\psi_{t}(+1) \exp \left[\beta \sum_{s \in nbrs(t)} x_{s}\right] + \psi_{t}(-1) \exp \left[-\beta \sum_{s \in nbrs(t)} x_{s}\right]}$$

$$= \frac{1}{1 + \exp \left[-2\beta \sum_{s \in nbrs(t)} x_{s} - \log \left(\frac{\psi_{t}(+1)}{\psi_{t}(-1)}\right)\right]}$$

$$= \operatorname{sigm} \left[2\beta S_{t} + \log \left(\frac{\psi_{t}(+1)}{\psi_{t}(-1)}\right)\right]$$

where $\operatorname{sigm}(x) = \frac{1}{1 + \exp(-x)}$ and $S_t = \sum_{s \in nbrs(t)} x_s$. Using this probability density we can apply Gibbs sampling.

(b) Brief Description of the Functions

- Additionnal library used: itertools in order to easily generate image coordinates.
- sigmoid(x) and normal(x,mu,sigma) respectively refer to sigm(x) and $\mathcal{N}(y_t \mid x_t, \sigma)$ in the previous part.

- normalize_img(image), unormalize_avg_img(image_list) and img_to_data(image) are pre-processing and post-processing functions to reshape data and map {0,255} to {-1,1} in order to use the model.
- neighbors_ix(pos,image) returns an array with the neighboring indices of a position pos in image.
- gibbs (X0, Beta, Y, sigma, niter=10) computes the probability calculated before for each position and samples from it. Parameters chosen (σ, β) are in [8, 15] and [3.5, 6] respectively depending on the image.

(c) Output Images from the Denoising Algorithm using Gibbs Sampling

2. Expectation-Maximization Segmentation

In this part we use N the number of the variables (i.e. number of pixels), K the number of clusters, and d the dimension of the used vectors and matrices (i.e. observed data, means, covariances). We have K = 2 for the foreground/background segmentation and d = 3 for Lab-colors.

(a) K-Means:

We used K-Means to provide $(\boldsymbol{\mu}_k)_{k \in \{0,1\}}$ values for the EM algorithm to converge faster:

• Astep We compute **R** which is a $N \times K$ matrix with:

$$r_{nk} = \mathbb{1}(k = \operatorname{argmin}_{j} || \mathbf{x}_{n} - \boldsymbol{\mu}_{j} ||^{2})$$

• Ustep We use the previously computed matrix to update the means computing:

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

• We repeat the steps above until the convergence. That is, until all the components of $|\boldsymbol{\mu}_k^{t+1} - \boldsymbol{\mu}_k^t|$ for all k are below \mathcal{E}_{KMeans} , which was set to 10^{-5} .

(b) Expectation-Maximization

We initialise $(\boldsymbol{\mu}_k)_{k \in \{0,1\}}$ with the output values of the K-Means algorithm, each π_k to 1/K and each Σ_k to the identity matrix.

• Estep We compute Γ which is a $N \times K$ matrix with:

$$\gamma_{nk}^{old} = \frac{\pi_k^{old} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{old}, \boldsymbol{\Sigma}_k^{old})}{\sum_k \pi_k^{old} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k^{old}, \boldsymbol{\Sigma}_k^{old})}$$

• Mstep We maximise the expectation of the log-likelihood:

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk}^{old} \left[\log \pi_k + \log \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

To do so we compute:

$$\begin{aligned} \pi_k &= \frac{N_k}{N} \\ \boldsymbol{\mu}_k &= \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{old} \mathbf{x}_n \\ \boldsymbol{\Sigma}_k &= \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{old} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^\top \end{aligned}$$

with
$$N_k = \sum_{n=1}^N \gamma_{nk}^{old}$$

• We repeat the steps above until the convergence. That is, until $\frac{|\mathcal{Q}^{t+1}(\boldsymbol{\theta},\boldsymbol{\theta}^{old}) - \mathcal{Q}^t(\boldsymbol{\theta},\boldsymbol{\theta}^{old})|}{|\mathcal{Q}^t(\boldsymbol{\theta},\boldsymbol{\theta}^{old})|} \text{ is below } \mathcal{E}_{EM}, \text{ which was set in the range } [10^{-5}, 10^{-2}].$

(c) Output Images from EM Segmentation Algorithm

(a) Mask

(b) Foreground

(c) Background

Figure 1: Output for cow.jpg

(a) Mask

(b) Foreground

(c) Background

Figure 2: Output for fox.jpg

(b) Foreground

(c) Background

Figure 3: Output for owl.jpg

(a) Mask

(b) Foreground

(c) Background

Figure 4: Output for zebra.jpg