

Introduction to OpenStack Swift

CloudOpen Japan 2014

Yuji Hagiwara hagiwarayuj@nttdata.co.jp

Platform Engineer, NTT DATA Corp.

1.What is Swift?

2. Swift's Latest Information

3. Swift's Future

Yuji Hagiwara – Platform Engineer, NTT DATA Corp.

Since 2011 - Using OpenStack

Since 2013 - Developing Searching on Swift

Demo App for Searching on Swift

Data Explosion on Enterprise – Amount of Unstructured Data has been growing.

We need storage with Scalability, Durability, Availability.

Where should we store these data? One of the Solutions is **Swift**.

Swift is...

- A storage system with Scalability, Durability, Availability.
- The REST-ful Distributed Object Storage likely Amazon S3.
- One of OpenStack Core Components.
- Implemented by Python.
- A Open Source Software.

so simple.

\$ curl -XPUT --data-binary '@mydoc.txt'
http://swift.example.com:8080/v1/account/container/object

\$ curl -XGET
 http://swift.example.com:8080/v1/account/container/object

\$ curl -XDELETE
http://swift.example.com:8080/v1/account/container/object

Swift as a storage for a variety of applications

CMS

FTP-like use

Duck

Digital Distribution

Web Apps

OpenStack Swift deployments and use cases

Name of enterprise	Product/ service	Description
Rackspace (USA)	Cloud Files	Cloud file share service by Rackspace itself. They use same code as OSS except for features such as authentication, Accounting and CDN (<500PB)
Korean Telecom (Sourth Korea)	ucloud storage service	Object storage service using OpenStack/Swift (16PB+ size)
Sina (Republic of China)	Sina App Engine (SAE)	Public storage service. They moved to OpenStack from another technology MongoDB in 2012.
San Diego Supercomputer Center (USA)	SDSC Cloud Storage Services	Cloud storage service on SDSC. Users can select Amazon/S3 or Rackspace Swift.
SME Storage (USA)	SMEStorage Open Cloud Platform	Cloud storage service based on Rackspace Cloud File
SoftLayer (USA)	SoftLayer Object Storage	Public object storage service. Acquisition by IBM
SwiftStack (USA)	Swift Stack	Provide professional service and Operation and management product
HP (USA)	HP Cloud	Private cloud storage service uses OpenStack.
Wikimedia (USA)	Wikimedia storage	Media files store for Wikipedia.
NII (JAPAN)	Academic Cloud service	Academic cloud service by National Institute of Informatics in Japan (N I I) (Integrated and supported by NTT Data)

Swift consist of 2-type Nodes: Proxy Node and Storage Node.

The *Ring* (static table for data allocation on storage node) decide the optimal Storage Node by *Name*.

If you requested to **Store** the data "A", 3 Replica nodes store the data "A".

If you requested to **Get** the data "A", One of Nodes reply the data "A".

(1) Expand proxy server "Throughput"

More Throughput Proxy Proxy (expand) Storage Storage Storage

(2) Expand Storage servers or disks "volume"

Many processes working together

Replicator

Replicator

(1) Each nodes checks data in others

- (2) Disk defeat
- (3) Detect disk trouble

(4) Copy data to another node

Node 3
Node 4

Node 4

Node 3

- (5) Recover disk
- (6) recover data to original node

(7)Delete temporal data

Replicator

Replicator

Each Data has replicated.

Replicator

Reco

very

Replicator

Node 1 Node 2 Node 3 Node 4 (7)Delete temporal data

If a disk is broken...

Replicator detects the lost data and replicates the data to another node for temporary.

Replicator

Node 1

at

Replicator

Node 2

Node 3

(1) Each nodes checks data in others

- (2) Disk defeat
- (3) Detect disk trouble

(4) Copy data to another node

- (5) Recover disk
- (6) recover data to original node

(7)Delete temporal data

Node 4

When the broken disk is replaced to a fresh disk...

Replicator replicates the data and removes the temporary data.

Replicator

Replicator

(1) Each nodes checks data in others

(3) Detect disk trouble

(4) Copy data to another node

- (5) Recover disk
- (6) recover data to original node

(7) Delete temporal data

History and Trend of Community

Timeline in each functions

Developing Supported

Latest info: Storage Policy

Integrated Searchable Storage

Swift should be integrated with Searching. It means to need searching as *Scalable, Durable, Available* as Swift.

Use cases of Search

1.Content Search

2.Detection for de-duplication

3. Tiered storage

How do we implement?

<u>Internal</u>

External

	Internal	External
Where do search	Swift with search library (such as Lucene)	Search Engine (such as Solr)
Redundancy	High	Depend on Search engine
Availability	High	Depend on Search engine
Scalability	High	Depend on Search engine
Difficulty of implementation	Hard	Easy

Our Implementation

Internal Approach

Hack Swift to embed the search library.

Future: Intelligent Resource Management

Future: Intelligent Resource Management

- ✓ Resources are drained! IOPS, CPU, Network, Memory
- ✓ Performance Priorities of these functions are different by the Requirement.
 - Ex1) Store performance VS Search performance
 - Ex2) Service Level on Business Hour VS on Outside Hour

More Intelligent Resource Management is necessary. with cgroups

1.What is Swift?

Swift is a Great OSS, for storing unstructured data.

2. Swift's Latest Information

- Erasure Coding
- Storage Policy

3. Swift's Future

- Integrated Searchable Storage
- Intelligent Resource management

PR: Demonstration is Now Available!

We exhibit the Demo Application(Contents delivery system) built with Swift.

- On-demand Delivery a lot of contents(Pictures or movies) stored at Swift.
- Implemented Searching on Swift. (Our original implementation)

Q&A: Do you have any question?

Thank you for your attention!

Please contact to

hagiwarayuj@nttdata.co.jp,

if you have any questions or comments.

Challenges and Questions


```
How to integrate Swift with cgroups?

How to use cgroups?

What is the best toolset for cgroups?

VFS?

libcgroup?

systemd?

How to control multiple hosts with cgroups dynamically?
```

How to integrate Swift with search?

What is the best implementation way?

What is the best search middleware?

How to search Multilingual?