Методы оптимизации. Семинар 1. Введение. Выпуклые множества. Конусы

Александр Катруца

Московский физико-технический институт Факультет Инноваций и Высоких Технологий

4 сентября 2018 г.

Вопросы к студентам

- Имя
- Кафедра
- Знание ТЕХ/РТЕХ
- Ожидания от курса

• Семинар и лекция раз в неделю

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра и промежуточная в середине семестра

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра и промежуточная в середине семестра
- Piazza для Q&A

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра и промежуточная в середине семестра
- Piazza для Q&A
- ? Проект

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра и промежуточная в середине семестра
- Piazza для Q&A
- ? Проект
- Итоговая оценка взвешенная сумма баллов за все активности

• Формализация задачи выбора элемента из множества

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике
 - и другие

О чём этот курс?

Теоретическая половина (сентябрь-октябрь):

- Основы выпуклого анализа
- Условия оптимальности
- Теория двойственности

О чём этот курс?

Теоретическая половина (сентябрь-октябрь):

- Основы выпуклого анализа
- Условия оптимальности
- Теория двойственности

Практическая половина (ноябрь-декабрь):

- Методы безусловной минимизации первого и второго порядка
- Методы условной оптимизации
- Линейное программирование: симплекс-метод и пр.
- Оптимальные методы
- ...

Предварительные навыки

- Линейная алгебра
- Математический анализ
- Программирование: Python (NumPy, SciPy, CVXPY)
 или MATLAB
- Элементы вычислительной математики

Основные этапы использования методов оптимизации при решении реальных задач:

1. Определение целевой функции

- 1. Определение целевой функции
- 2. Определение допустимого множества решений

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи
- 5. Реализация алгоритма и проверка его корректности

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p+1, \dots, m,$$

ullet $\mathbf{x} \in \mathbb{R}^n$ — искомый вектор

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- ullet $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- ullet $f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ целевая функция

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- ullet $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- ullet $f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ целевая функция
- ullet $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ функции ограничений

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- ullet $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- \bullet $f_0(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ целевая функция
- ullet $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R} \mathbf{\phi}$ ункции ограничений

Пример: выбор объектов для вложения денег и определение в какой объект сколько вкладывать

- х размер инвестиций в каждый актив
- f_0 суммарный риск или вариация прибыли
- f_k бюджетные ограничения, min/max вложения в актив, минимально допустимая прибыль

Как решать?

В общем случае:

- NP-полные
- рандомизированные алгоритмы: время vs. стабильность

НО определённые классы задач могут быть решены быстро!

- Линейное программирование
- Метод наименьших квадратов
- ullet Малоранговое приближение порядка k
- Выпуклая оптимизация

История развития

- 1940-ые линейное программирование
- 1950-ые квадратичное программирование
- 1960-ые геометрическое программирование
- 1990-ые полиномиальные методы внутренней точки для произвольной задачи выпуклой оптимизации

Современные направления

ullet Решение задач огромной размерности $(\sim 10^8-10^{12})$

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка
- Стохастические алгоритмы: масштабируемость vs. точности

- Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка
- Стохастические алгоритмы: масштабируемость vs. точности
- Невыпуклые задачи определённой структуры

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка
- Стохастические алгоритмы: масштабируемость vs. точности
- Невыпуклые задачи определённой структуры
- Приложения выпуклой оптимизации

Линейное программирование

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\mathsf{T} \mathbf{x} \\ \text{s.t. } \mathbf{a}_i^\mathsf{T} \mathbf{x} \leq b_i, \ i = 1, \dots, m \end{aligned}$$

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология
- симплекс-метод входит в Top-10 алгоритмов XX века¹

Александр Катруца Семинар 1 12/21

¹https://archive.siam.org/pdf/news/637.pdf

Задача наименьших квадратов

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$.

- ullet имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{b}$
- существуют эффективные алгоритмы
- разработанная технология
- имеет статистическую интерпретацию

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

$$f(\alpha {\bf x}_1+\beta {\bf x}_2) \leq \alpha f({\bf x}_1)+\beta f({\bf x}_2),$$
 где $\alpha,\beta \geq 0$ и $\alpha+\beta=1.$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

• f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

• нет аналитического решения

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \leq b_i, \ i = 1, \dots, m$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- часто сложно «увидеть» задачу выпуклой оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- часто сложно «увидеть» задачу выпуклой оптимизации
- существуют приёмы для преобразования задачи к стандартному виду

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

• Локальный оптимум является глобальным

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

• Любую ли задачу выпуклой оптимизации можно эффективно решить?

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

- Любую ли задачу выпуклой оптимизации можно эффективно решить?
- Можно ли эффективно решить невыпуклые задачи оптимизации?

Выпуклое множество

Выпуклое множество

Множество C называется выпуклым, если

$$\forall x_1, \ x_2 \in C, \theta \in [0, 1] \to \theta x_1 + (1 - \theta)x_2 \in C.$$

 \emptyset и $\{x_0\}$ также считаются выпуклыми.

Примеры: \mathbb{R}^{n} , аффинное множество, луч, отрезок.

Выпуклая комбинация точек

Пусть $x_1,\ldots,x_k\in G$, тогда точка $\theta_1x_1+\ldots+\theta_kx_k$ при $\sum_{i=1}^k\theta_i=1,\;\theta_i\geq 0$ называется выпуклой комбинацией точек x_1,\ldots,x_k .

Выпуклая оболочка точек

Множество $\left\{\sum\limits_{i=1}^k \theta_i x_i \mid x_i \in G, \sum\limits_{i=1}^k \theta_i = 1, \theta_i \geq 0\right\}$ называется выпуклой оболочкой множества G и обозначается $\operatorname{conv}(\mathsf{G})$.

Операции, сохраняющие выпуклость

- Пересечение любого (конечного или бесконечного)
 числа выпуклых множеств выпуклое множество
- Образ аффинного отображения выпуклого множества — выпуклое множество
- Линейная комбинация выпуклых множеств выпуклое множество
- Декартово произведение выпуклых множеств выпуклое множество

Примеры

Проверьте на аффинность и выпуклость следующие множества:

- 1. Полупространство: $\{\mathbf{x}|\mathbf{a}^{\mathsf{T}}\mathbf{x}\leq c\}$
- 2. Многоугольник: $\{x|Ax \leq b, Cx = 0\}$
- 3. Шар по норме в \mathbb{R}^n : $B(r, x_c) = \{x \mid ||x x_c|| \le r\}$
- 4. Эллипсоид:

$$\mathcal{E}(x_c, \mathbf{P}, r) = \{x \mid (x - x_c)^\mathsf{T} \mathbf{P}^{-1} (x - x_c) \le r^2 \}$$

5. Множество симметричных положительно-определённых матриц:

$$\mathbf{S}_{+}^{n} = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X}^{\mathsf{T}} = \mathbf{X}, \ \mathbf{X} \succeq 0 \}$$

6. $\{\mathbf{X} \in \mathbb{R}^{n \times n} \mid \operatorname{Tr}(\mathbf{X}) = const\}$

Конус

Конус (выпуклый)

Множество C называется конусом (выпуклым конусом), если $\forall x \in C, \theta \geq 0 \to \theta x \in C$ $(\forall x_1, x_2 \in C, \theta_1, \theta_2 \geq 0 \to \theta_1 x_1 + \theta_2 x_2 \in C)$

Примеры: \mathbb{R}^n , аффинное множество, проходящее через 0, луч.

Коническая (неотрицательная) комбинация точек

Пусть $x_1,\dots,x_k\in G$, тогда точка $\theta_1x_1+\dots+\theta_kx_k$ при $\theta_i\geq 0$ называется конической (неотрицательной) комбинацией точек x_1,\dots,x_k .

Коническая оболочка точек

Множество $\left\{\sum_{i=1}^k \theta_i x_i \mid x_i \in G, \theta_i \geq 0\right\}$ называется конической оболочкой множества G и обозначается $\operatorname{cone}(\mathsf{G})$.

Примеры конусов

- 1. \mathbf{S}^n_{\perp}
- 2. Нормальный конус: $\{(\mathbf{x},t)\in\mathbb{R}^{n+1}\mid\|\mathbf{x}\|\leq t\}$ Для ℓ_2 -нормы называется конусом второго порядка или Лоренцевым конусом

Резюме

- Организация работы
- Предмет курса по оптимизации
- Общая формулировка оптимизационной задачи
- Классические оптимизационные задачи
- Выпуклые множества
- Конусы