Motivation and Background

- Goal: Learn dynamical system $s_{t+1} = f(s_t, a_t)$ using data-driven methods
- Problem: Collecting real-world training data is costly and time-intensive
- Solution: Utilize active learning methods to reduce required training data
- Challenges in active learning for dynamical systems:
- System cannot be directly set to an arbitrary state
- Identify action sequence to reach the desired state
- Finding such sequences requires an accurate system model

Active Learning for Dynamical Systems

• T: Horizon of full trajectory

Optimization Problem

$$a_{0:T-1}^* = \arg\max_{a_{0:T-1}} \sum_{t=0}^{T-1} \mathbb{E}_{s_t} \Big[\mathcal{H} \big(f(s_t, a_t) \big) \Big]$$

s.t. $s_{t+1} \sim p \big(s_{t+1} \mid s_t, a_t \big),$
 $s_0 \sim p(s_0), \ a_{\min} \leq a \leq a_{\max}$

Differential Entropy $\mathcal{H}\big(f(s_t,a_t)\big) \propto \ln \|\sigma_t\|_1$

- σ_t^2 : Variance of BNN model $f(s_t, a_t)$
- \bullet \mathcal{H} : Measure of informativeness

Random Sampling Shooting with Model Predicitve Control

• *H*: Model predictive control horizon

Soft Actor Critic

- Reward function $r_t = \mathcal{H}[f(s_t, a_t)]$ measures informativeness at time t
- Exploration-exploitation trade-off trough entropy regularization

$$\pi^* = \arg\max_{\pi} \sum_{t=0}^{T-1} \mathbb{E}_{s_t, a_t} \left[r_t + \alpha \mathcal{H} \left[\pi(\cdot | s_t) \right] \right]$$

Off-policy algorithm → sample efficient

Challenges and Solutions

Feature Expansion for Reliable Uncertainty Estimation

 In Bayesian Neural Networks, predictive variance is proportional to the input norm → uncertainty comparisons across different norms invalid

Proposition: Consider a neural network with one hidden layer of h neurons and ReLU activation, where the parameters are initialized from $\mathcal{N}(0, \sigma^2)$. For a given deterministic input x, Bayesian inference has the following output variance:

 $\operatorname{Var}(y_k) = \frac{h\sigma^4}{2} \|\mathbf{x}\|_2^2$

Thus, the variance of the output scales proportionally to $\|\mathbf{x}\|^2$.

Solution: Nonlinear Feature Expansion

 For uniform initial uncertainty across the input space, the input norm ||x||should remain constant

• For an original input \mathbf{x} loosely constrained by $[-\mathbf{B}, \mathbf{B}]$ construct non-linear feature transformation

$$\mathbf{x}_{\text{exp}} = \begin{bmatrix} \tanh\left(\frac{2\mathbf{x}}{\mathbf{B}}\right) \\ \sqrt{1 - \tanh^2\left(\frac{2\mathbf{x}}{\mathbf{B}}\right)} \end{bmatrix}$$

ensuring that $\|\mathbf{x}_{exp}\|^2 = 1$

BNN: Laplace Approximation vs. Monte-Carlo Dropout

- Monte-Carlo Dropout: Easy to implement but sensitive to dropout probability and yields less accurate predictions
- Laplace Approximation: More complex to implement but allows deterministic inference like standard fully connected neural network with additional uncertainty estimation

 \rightarrow For small networks and dynamic learning task, Laplace Approximation is superior, providing accurate predictions with acceptable computational cost

Experiments and Results

Environments

Random Sampling Shooting

Prediction Error Curves

Faster error reduction: Algorithm collects more informative samples and BNN learns dynamics with less data

Uncertainty Maps

Active Learning Iteration

- Random Exploration: High uncertainty remains, trajectories stay close to the origin
- Random Sampling Shooting: Improves state space exploration, trajectories reach out further
- Soft Actor Critic: Even lower uncertainty, trajectories are smoother