BB101 Tutorial Physiology Module

Q1. A mammalian excitable cell at room temperature (37° C) has its membrane potential (V_m) determined by two ions as given in the table. The plot of V_m with respect to time has a form as shown in the figure. At the instant t_1 , an external stimulus applied to the cell membrane caused a change in the resting membrane potential due to a change in the permeability of the membrane to Na⁺ and K⁺ ions. In the following context, study the information given in the table and figure to answer the questions that follow (Use R = 8.314 J/K/Mol; T = absolute temperature; z = valency; F = 96500 C/Mol).

Parameter	Intracellular	Extracellular
[K ⁺] ion	180 mM	10 mM
[Na ⁺] ion	20 mM	145 mM
$\alpha = (P_{Na}/P_{K})$	Value at time t_4 is 5 times the value at rest. P_{Na} = permeability of	
	cell membrane to Na^+ ions and P_K = permeability of cell	
	membrane to K ⁺ ions	
Peak amplitude of action	+30 mV	
potential (AP)		

- (a) Calculate the Nernst/ equilibrium potential of Na⁺ and K⁺ ions.
- (b) Which of the two ions is closer to resting membrane potential? What does this signify?
- (c) Calculate the value of α at rest.
- (d) At the time instant t_4 a second external stimulus was applied to the cell membrane that led to a change in V_m (dotted right end of the graph) such that $\alpha_{t4} = 5$ times the value at rest. Calculate the value of the membrane potential corresponding to the stimulus applied at t_4 .
- (e) Complete the dotted right end of the graph taking into account the values calculated by you in (d).
- (f) In order to attain the value of V_m calculated in (d), what should be the change in temperature (in degree celsius) of the cell? Consider the situation where P_{Na}/P_K does not change with time and a change in the temperature is the only mechanism via which V_m can be changed.
- (g) In order to attain the value of V_m calculated in (d), what should be the $[Na^+]$ ion concentration in extracellular medium? Consider the situation where P_{Na}/P_K as well as other parameters do not change with time and a change in Na^+ ion concentration is the only mechanism via which V_m can be changed.
- (h) Are the mechanisms suggested in (f) and (g) for changing V_m desirable as compared to a change in the permeability of cell membrane to ions. Give reasons to justify your answer.