Admin

Hans Buchmann FHNW/IME

12. September 2014

Admin

Folien/Code websvn.fhnw.ch/trac/edu/browser/linux-lab Prüfung mündliche MSP

Copyright

- Alles öffentlich zugängliche Material zu dieser Vorlesung unterliegt der GNU GENERAL PUBLIC LICENSE, auch wenn das in den einzelnen Dokumenten nicht explizit angegeben ist.
- http://www.gnu.org/copyleft/gpl.html

Wichtig

- ► GNU/Linux from Scratch
- ► Einblick in die Mechanismen
- Umgang mit verschiedenen Tools
- Weniger programmieren, mehr konfigurieren
- Schrittweises Vorgehen: (fast) immer lauffähiges System

Laborbuch

▶ Führen Sie ein Laborbuch bzw. Laborfile

Das Board SAM-9260 Beachten Sie:

- Ausleihe
- ► Spannung 4.5-6 Volt: nicht mehr

The Big Picture

-sourcefile- -revision- -time- -owner-

Hans Buchmann FHNW/IME

12. September 2014

The Big Picture

- ► GNU/Linux ist:
 - Software mit klassischen Methoden hergestellt
 - gross
 - ► komplex nicht kompliziert
- Darum:
 - ▶ Die grundlegenden Mechanismen beachten
 - Übersicht bewahren
 - Verzeichnisstrukturen: wo ist was.

Ein paar Daten: zum GNU/Linux (Kernel)

- ▶ $\approx 10M$ SLOC (Source Lines of Code)
- $\triangleright \approx 2.3K$ Verzeichnisse
- $\triangleright \approx 33K$ Files davon
 - ▶ $\approx 30K \{c|h\}$ -Files
 - $ho \approx 1K$ Assembler Files
 - $> \approx 1.4 K$ Makefiles
 - Rest: Makefile, Scripts etc.

Remark(s):

- $M = 10^6 K = 10^3$
- ► Gemacht mit sloccount

Die ProgrammierSprachen

C Unabhängig von Rechnerarchitektur, Hauptsprache für Bootloader, Kernel, libc

Assembler Für kleine Anpassungen

Skript Für Routineaufgaben

Makefile Für den Zusammenbau

Die wichtigsten Werkzeuge

```
Compiler gcc gcc.gnu.org
binutils Sammlung von Programmen<sup>1</sup>
(www.gnu.org/software/binutils)
Assembler as
Linker ld
Maker make www.gnu.org/software/make
```

¹Liste nicht vollständig

Die Komponenten

BootLoader reset Handler, SingleUser

Kernel Prozessverwaltung, Treibersammlung

libc Normierte (POSIX) Schnittstelle, Kernel-UNIX

UNIX Filesystem, Sammlung von Programmen und Daten

Die Komponenten:Eigenschaften

Komponenten lassen sich:

- einzeln hergestellen
- kombinieren
- austauschen

BootLoader nicht flüchtiger Speicher: z.B. Flash
Kernel RAM
libc RAM
UNIX RAM, Harddisk, Memory Card, NFS

Bestehende Systeme:Kritik

- openEmbedded/buildroot ► Grosse Systeme
 - ▶ Braucht zusätzliche tools
 - ► Führen zusätzliche Komplikationen ein

CLFS Sehr rezeptartiger Aufbau

Warum?

- Basiert auf der originalen Software
- Die klassischen Tools (Makefile) sind schon sehr gut ausgebaut.
- Brauchen tieferen Einblick in das ganze System
- Nur ein bis zwei Rechnerarchitekturen

```
0-intro Diese Folien
```

- 1-tools Die Werkzeuge
- 2-unix-use UNIX aus Benutzersicht: Host und Target
 - 3-uboot Wie startet ein Rechner
 - 4-kernel Das GNU/Linux : Konfiguration/Herstellung
 - 5-libc Verbindung GNU/Linux UNIX
 - 6-unix UNIX Konfiguration/Herstellung
 - 7-build ein build System

Entwicklungsumgebung

-sourcefile- -revision- -time- -owner-

Hans Buchmann FHNW/IME

12. September 2014

Begriffe

Host Entwicklungsrechner, GNU/Linux Betriebssystem Target *SAM9-L9260*

$Verbindungen: \overline{Host} \leftrightarrow \overline{Target}$

RS232 u-boot *shell*,GNU/Linux console Ethernet IP,TFTP etc. IP Stack MemoryCard u-boot,Kernel,UNIX

Host:Tools

Editor ASCII Editor, joe, nedit etc. etc.

Compiler gcc

mkimage Erzeugt u-boot Image

Terminal minicom ev. USB \leftrightarrow RS232 Kabel

UNIX Basibefehle 1s,cp, etc.

Codeverwaltung svn cvs git etc.

Eclipse kommt später