Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 12

Hausaufgaben (Abgabe bis 05.07.2022, $10^{\underline{00}}$ Uhr)

Hausaufgabe 12.1: Newton-Cotes-Formeln

(3 P.) Approximieren Sie $\int_{1.1}^{1.5} e^x dx$ jeweils mit der Simpson- und der Boole-Regel und berechnen Sie jeweils obere Schranken für den Betrag des Quadraturfehlers, natürlich ohne den exakten Wert des Integrals zu verwenden.

Hausaufgabe 12.2: Quadraturfehler der Trapezregel

(3 P.) Weisen Sie die Formel für den Quadraturfehler der Trapezregel nach, also $\forall f \in \mathscr{C}^2([a,b],\mathbb{R}) \colon \exists \xi \in [a,b] \colon E(I_{a,b}^{(1)},f) = \frac{(b-a)^3}{12}f''(\xi).$ **Hinweis:** Analog zum Beweis der Fehlerabschätzung für die Simpson-Regel zu

Lemma 6.7, aber viel leichter.

Hausaufgabe 12.3: Berechnung von Integrationsgewichten

Sei $\omega : [-1,1] \to \mathbb{R}$ gegeben durch $\omega(t) := 1 - t^2$. Wir stören uns hier nicht daran, dass $\omega(-1) = \omega(1) = 0$ und betrachten ω als Gewichtsfunktion, denn ω ist stetig und abgesehen von den zwei Ausnahmepunkten ist ω auf [-1,1] positiv.

(4 P.) Sei $\underline{t} := (-1, -\frac{1}{3}, \frac{1}{3}, 1)$. Berechnen Sie die Integrationsgewichte von $Q_{\omega,\underline{t}}$. Hinweis: Die relevante Stelle im Skript ist Beobachtung 6.5. Aber: Wir wissen, dass der Exaktheitsgrad von Q mindestens 3 ist; die Bedingung für Exaktheitsgrad mindestens 3 führt auf Bestimmungsgleichungen für die Integrationsgewichte, und wenn sie eine eindeutige Lösung haben, sind durch diese Lösung die gesuchten Integrationsgewichte gegeben.

Bitte wenden

Programmieraufgabe 12.4: Spline-Quadratur

Sei $\underline{t} := (t_0, ..., t_6)$ mit $t_i := i - 3$. Für $i \in \{0, ..., 6\}$ sei s_i der natürliche kubische Spline mit $\forall j \in \{0, ..., 6\} \colon s_i(t_j) = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}$. Dann ist $s := \sum_{i=0}^6 f(t_i) s_i$ der interpolierende natürliche kubische Spline für $f : [-3, 3] \to \mathbb{R}$ auf \underline{t} . Für alle $i \in \{0, 6\}$ sei $\gamma_i := \int_{-3}^3 s_i(t) \, \mathrm{d}t$. Dann ist durch $Q(f) := \int_{-3}^3 s(t) \, \mathrm{d}t = \sum_{i=0}^6 f(t_i) \gamma_i$ eine interpolatorische Quadraturformel gegeben.

- a) (3 P.) Schreiben Sie ein Programm, dass $\gamma_0, ..., \gamma_6$ berechnet. **Hinweis:** Modifizieren Sie Ihre für das vorige Übungsblatt geschriebenen Programme. Für die Integration der polynomialen Teilstücke der Splines dürfen Sie Bibliotheksfunktionen verwenden.
- b) (3 P.) Sei nun $f \colon [-3,3] \to \mathbb{R}$ gegeben durch $f(t) := \frac{1}{1+t^2}$. Berechnen Sie Q(f) sowie $I_{-3,3}^{(6)}(f)$ (Weddle-Regel) und vergleichen Sie mit dem exakten Wert $\int\limits_{-3}^{3} \frac{\mathrm{d}t}{1+t^2} = \arctan(t)\Big|_{-3}^{3}$.

Erreichbare Punktzahl: 16