Using Association Rules Mining to Characterize of Loss of Control Eating in Childhood

Contents

1	\mathbf{Des}	criptive Statistics	2
	1.1	Demographic Characteristics	2
	1.2	Family and Early Life Characteristics	
	1.3	Appetitive Traits	
	1.4	Feeding Practices and Attitudes	4
2	Cha	aracterization of LOC-Eating	4
	2.1	Association Rules Mining: Single Antecedent Attribute (Step 1)	4
	2.2	Association Rules Mining: Two Antecedent Attributes (Step 2)	
	2.3	Clustering of Rules	
	2.4	Testing Multiplicative Effects	16
3	Cha	aracterization of Absence of LOC-Eating	21
	3.1	Association Rules Mining: Single Antecedent Attribute (Step 1)	21
	3.2	Association Rules Mining: Multiple Antecedent Attributes (Step 2)	
	3.3	Clustering of Rules	
	3.4	Testing Multiplicative Effects	

1 Descriptive Statistics

1.1 Demographic Characteristics

Children with LOC-eating (N=37, 25%) and with no LOC-eating (N=112, 75%) did not differ by age, ethnicity, or socio-economic status as assessed by income and parental education (p's > 0.105; Table 1). However, children who reported LOC-eating had higher BMI-for-age percentile (t(65) = -2.56, p = 0.013; d = 0.47) despite not differing from those who did not report LOC-eating when weight status was tested as a categorical variable ($\chi^2 = 3.83$, p = 0.147). Additionally, there was trend for different racial distributions such that the sample of children who reported LOC-eating was slightly more diverse than the sample of those who did not report LOC-eating (Table 1).

1.1.1 Table 1

	Full Sample	L	OC
		Yes	No
Total(N (Male))	177 (91)	37 (19)	121 (63)
LOC Not Reported	19		
Age(Mean (SD))	9.19(1.32)	8.89(1.31)	9.28(1.37)
BMI percentile(Mean (SD))	60.02(28.48)	71.49 (26.24)	57.64 (27.64)
BMI $Status(N \%)$			
Obese	23 (13%)	8(22%)	13 (11%)
Overweight	24 (14%)	7 (19%)	14 (12%)
Healthy Weight	128(72%)	22(59%)	93 (77%)
Underweight	2 (1%)	0	1 (<1%)
Ethnicity $(N(\%))$, ,		, , ,
Hispanic/Latino	8 (5%)	2(2%)	5 (4%)
Not Hispanic/Latino	126 (71%)	33 (89%)	76 (63%)
Not Reported	42 (24%)	2(5%)	34 (28%)
$\operatorname{Race}^{A}(N(\%))$, ,	, ,	, ,
Black/African American	6(3%)	4 (11%)	2~2%
White	161 (91%)	31 (84%)	114 (94%)
Other	8 (5%)	1 (3%)	4 (3%)
Not Reported	2 (1%)	1 (3%)	1 (<1%)

BMI: body mass index; LOC: loss of control

Children with and without LOC were compared using independent samples t-tests, chi2 or Fisher tests as appropriate.

Note: percentages were rounded to nearest whole number so columns may not add to 100% due to rounding error.

1.2 Family and Early Life Characteristics.

Children who reported LOC-eating did not differ on average from those with no LOC-eating for reported breastfeeding duration, parental education, income, or parental weight status (Table 2). For both groups, the majority of children were breastfed for at least 4 months, had parents with education that went beyond high school, and had yearly family income of at least \$50,000. Overall, a greater proportion of fathers met criteria for overweight or obesity (66%) than mothers (35.6%).

1.2.1 Table 2

	Full Sample		LOC
		Yes	No
Breast Fed $Duration(N(\%))$			
10+ months	18 (11%)	5 (14%)	11 (9%)
7-9 months	36 (21%)	5 (14%)	31~(26%)
4-6 months	51 (30%)	13 (35%)	35 (29%)
1-3 months	15 (9%)	3 (8%)	12 (10%)
Never	53 (31%)	10(27%)	30 (25%)
Not Reported	4(2%)	1 (3%)	2(2%)
Maternal $\mathrm{Ed}^{A}(N(\%))$, ,	, ,	, ,
High School	26 (15%)	10(27%)	11 (9%)
Post High School	145 (82%)	26 (70%)	105~(87%)
Not Reported	6 (3%)	1 (3%)	5 (4%)
Paternal $Ed(N(\%))$,	,	` '
High School	37 (21%)	9 (24%)	22 (18%)
Post High School	129 (73%)	25(68%)	92 (76%)
Not Reported	11 (6%)	3 (1%)	7 (6%)
SES(N(%))	,	,	, ,
> \$100,000	49 (28%)	6 (16%)	40 (33%)
\$50,000 - \$100,000	83 (47%)	21(57%)	54 (45%)
< \$50,000	40 (23%)	10(27%)	24(20%)
Not Reported	5 (3%)	0	3(2%)
Maternal BMI Status(N (%))	,		,
Class II+ Obesity (BMI > 35)	20 (11%)	8 (22%)	11 (9%)
Class I Obesity	18 (10%)	4 (11%)	13 (13%)
Overweight	25 (14%)	5 (14%)	19 (16%)
Healthy Weight	75~(42%)	15 (41%)	57 (47%)
Underweight	4(2%)	2(5%)	2(2%)
Not Reported	35(20%)	3 (8%)	19 (16%)
Paternal BMI Status(N (%))	, ,	, ,	` ,
Class II+ Obesity (BMI > 35)	21 (12%)	5 (14%)	12 (10%)
Class I Obesity	30 (17%)	7 (19%)	22 (18%)
Overweight	66 (37%)	15 (41%)	46 (38%)
Healthy Weight	51 (29%)	9 (24%)	34 (28%)
Underweight	0	0	0
Not Reported	9 (5%)	1 (3%)	7 (6%)

BMI: body mass index; LOC: loss of control

Children who reported or did not report LOC were compared using independent samples t-tests, chi2 or Fisher tests as appropriate. Note, percentages were rounded to nearest whole number so columns may not add to 100% due to rounding error

1.3 Appetitive Traits

Parents reported significantly lower satiety responsiveness (t(53) = -2.42, p = 0.019) and greater food responsiveness (t(48) = 2.07, p = 0.044) for children who reported LOC-eating than those who did not (Table 3). The groups did not differ on average for any of the other CEBQ scales (p's > 0.05; Table 3).

1.3.1 Table 3

	Child Eat	ing Behavior Qu	estionr	naire
	Yes	No		
	Mean (SD)	Mean (SD)	d^a	p^b
CEBQ-FR	2.78 (0.88)	2.46 (0.63)	0.46	0.044
CEBQ-EOE	2.20(0.75)	2.10(0.61)	0.15	0.478
CEBQ-EF	3.90(0.63)	3.74(0.67)	0.25	0.178
CEBQ-DD	2.73(1.09)	2.55(0.84)	0.20	0.350
CEBQ-SR	2.63(0.67)	2.92(0.57)	0.49	0.019*
CEBQ-SE	2.59(0.87)	2.75(0.68)	0.19	0.310
CEBQ-EUE	2.48(0.64)	2.68(0.84)	0.25	0.129
CEBQ-FF	3.08(1.0)	2.77(0.84)	0.35	0.099^{\dagger}
	Child	Feeding Question	onnaire	
CFQ-PR	4(0.74)	4.02(0.68)	0.02	0.910
CFQ-PPW	3.22(0.57)	3.14(0.48)	0.15	0.460
CFQ-PCW	3.01 (0.33)	2.92(0.33)	0.29	0.137
CFQ-CONC	2.64(1.73)	2.88(1.68)	0.18	0.350
CFQ-REST	3.14(0.94)	3.24(0.87)	0.12	0.563
CFQ-PE	1.86(0.77)	2.24(0.89)	0.43	0.018*
CFQ-MON	3.85 (0.95)	3.61 (0.89)	0.26	0.194

LOC: loss of control; † p<0.10; *p<0.05

1.4 Feeding Practices and Attitudes

Parents of children who reported LOC-eating were less likely to report pressuring children to eat compared to parents of children with no LOC-eating (t(72) = -2.41, p = 0.018). No other feeding practices or attitudes differed on average between children who did and did not report LOC-eating (p's > 0.286; Table 3).

2 Characterization of LOC-Eating

2.1 Association Rules Mining: Single Antecedent Attribute (Step 1)

The first step identified 29 rules with one attribute each. There were 19 rules pruned due to $\kappa < 0.20$. The remaining 10 rules had κ that ranged from 0.21-0.31 indicating fair agreement.

a: Cohen's d

b: p-values from independent samples t-tests

Table 1: Determinants of LOC-Single Predictors

LHS	count	support	confidence	lift	addVal	kappa	oddsRatio	fisher.padj_holm	Cat
cebq12_gRarely	20	0.127	0.364	1.553	0.129	0.215	2.891	0.030	gR_FR
$cebq33_gSometimes$	17	0.108	0.378	1.613	0.144	0.212	2.823	0.030	gS_FF
$cebq34_gRarely$	16	0.101	0.457	1.952	0.223	0.281	4.090	0.006	gR_FR
$cebq7_gSometimes$	17	0.108	0.386	1.650	0.152	0.222	2.959	0.030	gS_FF
cfq20=Agree	19	0.120	0.365	1.560	0.131	0.211	2.815	0.030	gRest
$cfq23$ _lsNeutralAD	15	0.095	0.429	1.830	0.194	0.245	3.443	0.021	lsN_Rest
cfq26=Disagree	28	0.177	0.400	1.708	0.166	0.313	5.852	0.000	lsPE
cfq28 = Disagree	26	0.165	0.361	1.542	0.127	0.243	3.854	0.005	lsPE
cfq29=Always	15	0.095	0.395	1.686	0.161	0.213	2.905	0.030	gMon
${\it mEducation_HS}$	10	0.063	0.476	2.033	0.242	0.211	3.704	0.030	$mEducation_HS$

Table 2: Determinants of LOC-Cross Tab of Single Predictors

Cat	Freq
gMon	1
gR_FR	2
gRest	1
gS_FF	2
lsN_Rest	1
lsPE	2
${\it mEducation_HS}$	1

2.2 Association Rules Mining: Two Antecedent Attributes (Step 2)

In the second step, 48 rules with two attributes were identified. All 48 rules had $\kappa > 0.20$ (range: 0.27 – 0.41), indicating fair to moderate agreement. Additionally, all rules were significant after controlling for multiple comparisons.

-1

Table 3: Determinants of LOC-Multiple Predictors

LHS2	LHS1	count	support	confidence	lift	addVal	kappa	oddsRatio	fisher.padj_holm	Cluster_gupta4
cebq10_gSometimesRev cebq10_lsSometimesRev cebq12_gRarely	cebq1_gSometimes cebq1_gSometimes cfq26=Disagree	13 13 16	0.082 0.082 0.101	0.500 0.500 0.500	2.135 2.135 2.135	0.266 0.266 0.266	0.272 0.272 0.315	4.500 4.500 5.000	0.009 0.009 0.005	4.
cebq14_gRarely cebq14_gRarely	cebq7_gSometimes cfq26=Disagree	13 19	$0.082 \\ 0.120$	$0.520 \\ 0.528$	2.221 2.254	$0.286 \\ 0.294$	$0.284 \\ 0.377$	$4.920 \\ 6.458$	0.009 0.000	4 2
cebq19_gRarely cebq26_lsSometimes cebq26_lsSometimes cebq26_lsSometimes cebq27_gRarely	cfq26=Disagree cebq19_gRarely cfq26=Disagree cebq12_gRarely cfq26=Disagree	21 16 17 13 21	0.133 0.101 0.108 0.082 0.133	0.538 0.571 0.515 0.619 0.512	2.299 2.440 2.200 2.644 2.187	0.304 0.337 0.281 0.385 0.278	0.411 0.364 0.340 0.336 0.388	7.510 6.921 5.578 7.651 6.628	0.000 0.001 0.002 0.002 0.000	- - - - - - - - - - - - - - - - - - -
cebq27_gRarely cebq27_gSometimes cebq30_lsSometimes cebq30_lsSometimes cebq30_lsSometimes	cfq27=Disagree cfq26=Disagree cebq12_gRarely cebq19_gRarely cebq14_gRarely	13 13 13 15 16	0.082 0.082 0.082 0.095 0.101	0.542 0.650 0.500 0.500 0.500	2.313 2.776 2.135 2.135 2.135	0.307 0.416 0.266 0.266 0.266	0.297 0.349 0.272 0.301 0.315	5.417 8.821 4.500 4.818 5.000	0.007 0.001 0.009 0.007 0.005	4 4 4 4 4 4 4 4
cebq33_gSometimes cebq33_gSometimes cebq33_gSometimes cebq33_gSometimes cebq33_gSometimes	BreastFed_ls7mo cebq1_gSometimes cfq28=Disagree cebq14_gRarely cebq22_gSometimes	15 16 13 13	0.095 0.101 0.082 0.082 0.082	0.556 0.571 0.722 0.520 0.565	2.372 2.440 3.084 2.221 2.414	0.321 0.337 0.488 0.286 0.331	0.338 0.364 0.377 0.284 0.309	6.193 6.921 12.567 4.920 6.013	0.002 0.001 0.000 0.009 0.005	4 4 4 4 4 5
cebq34_gRarely cebq34_gRarely cebq34_gRarely cebq34_gRarely cebq34_gRarely	cebq20_gSometimes cfq26=Disagree cAge_7.9yr cebq13_lsSometimes cfq28=Disagree	13 15 13 13	0.082 0.095 0.082 0.082 0.089	0.520 0.682 0.500 0.520 0.636	2.221 2.912 2.135 2.221 2.717	0.286 0.448 0.266 0.286 0.402	0.284 0.404 0.272 0.284 0.363	4.920 11.104 4.500 4.920 8.598	0.009 0.000 0.009 0.009 0.001	4
cebq34_gRarely cebq34_gRarely cebq34_gRarely cebq7_gSometimes cfq20_gNeutralAD	cebq22_gSometimes cebq5_gSometimes cebq25_lsSometimes cebq1_gSometimes cebq34_gRarely	15 15 13 15 13	0.095 0.095 0.082 0.095 0.082	0.500 0.556 0.565 0.577 0.500	2.135 2.372 2.414 2.464 2.135	0.266 0.321 0.331 0.343 0.266	0.301 0.338 0.309 0.351 0.272	4.818 6.193 6.013 6.818 4.500	0.007 0.002 0.005 0.001 0.009	
cfq21_lsNeutralAD cfq23_lsNeutralAD	$\begin{array}{l} {\rm cfq20{=}Agree} \\ {\rm cfq14_lsNeutralCon} \end{array}$	14 14	$0.089 \\ 0.089$	$0.583 \\ 0.500$	$2.491 \\ 2.135$	$0.349 \\ 0.266$	$0.337 \\ 0.287$	$6.757 \\ 4.652$	$0.002 \\ 0.009$	4 ∡ 4 €

Table 3: Determinants of LOC-Multiple Predictors (continued)

LHS2	LHS1	count	support	confidence	lift	addVal	kappa	oddsRatio	fisher.padj_holm	Cluster_gupta4
cfq23_lsNeutralAD	$cAge_7.9yr$	14	0.089	0.519	2.214	0.284	0.299	5.057	0.007	ç
$cfq23$ _lsNeutralAD	$cebq21_gRarely$	13	0.082	0.565	2.414	0.331	0.309	6.013	0.005	4
$cfq23_lsNeutralAD$	cfq14=Unconcerned	13	0.082	0.520	2.221	0.286	0.284	4.920	0.009	2
$cfq25$ _lsNeutralAD	$cBMI_OWOB$	14	0.089	0.500	2.135	0.266	0.287	4.652	0.009	ę
$cfq26_lsNeutralAD$	$cebq27_gSometimes$	13	0.082	0.500	2.135	0.266	0.272	4.500	0.009	4
$cfq26_lsNeutralAD$	$cebq34_gRarely$	16	0.101	0.571	2.440	0.337	0.364	6.921	0.001	2
$cfq26_lsNeutralAD$	$cebq33_gSometimes$	14	0.089	0.519	2.214	0.284	0.299	5.057	0.007	ę
$cfq26_lsNeutralAD$	$cebq7_gSometimes$	14	0.089	0.519	2.214	0.284	0.299	5.057	0.007	ę
cfq26=Disagree	cfq20=Agree	16	0.101	0.552	2.356	0.318	0.351	6.330	0.001	2
cfq26=Disagree	$cBMI_OWOB$	14	0.089	0.538	2.299	0.304	0.311	5.529	0.005	4
cfq26=Disagree	$mBMI_OBOW$	13	0.082	0.500	2.135	0.266	0.272	4.500	0.009	4
$cfq27_lsNeutralAD$	$cebq34_gRarely$	14	0.089	0.667	2.847	0.432	0.377	9.913	0.000	2
$cfq28_lsNeutralAD$	$cebq7_gSometimes$	14	0.089	0.583	2.491	0.349	0.337	6.757	0.002	2
$cfq28_lsNeutralAD$	$cebq27_gSometimes$	13	0.082	0.520	2.221	0.286	0.284	4.920	0.009	4
$cfq28_lsNeutralAD$	$cebq33_gSometimes$	14	0.089	0.560	2.391	0.326	0.324	6.087	0.003	٠ •
$cfq28_lsNeutralAD$	$cebq34_gRarely$	16	0.101	0.552	2.356	0.318	0.351	6.330	0.001	9

Almost half the rules (n = 21) paired a child appetitive behavior with a parental feeding behavior while just over a third of rules (n = 17) paired two appetitive behaviors together. Less common were rules that paired two parental feeding practices together (n = 5, 10%), rules that included a family/parent characteristic (i.e., maternal weight status; n = 1, 2%), or rules that included a child demographic characteristic (i.e., Age 7-9 years; n = 3, 6%).

Table 4: Determinants of LOC-Cross tabs Multiple Predictors

	gN_Rest	gR_EOE	gR_FR	gS_EOE	gS_FF	lsN_PE	lsN_Rest	lsPE	lsS_FF	lsS_SR
BreastFed_ls7mo	0	0	0	0	1	0	0	0	0	0
$\mathrm{cAge}_7.9\mathrm{yr}$	0	0	1	0	0	0	1	0	0	0
$cBMI_OWOB$	0	0	0	0	0	1	0	1	0	0
gR_FR	1	0	0	0	1	3	0	0	0	5
gR_SR	0	0	0	0	0	0	1	0	0	0
gRest	0	0	0	0	0	0	1	1	0	0
gS_EF	0	0	3	0	4	0	0	0	1	0
gS_EOE	0	0	0	0	0	2	0	0	0	0
gS_FF	0	0	1	0	0	4	0	0	0	0
lsConc	0	0	0	0	0	0	1	0	0	0
lsN_Conc	0	0	0	0	0	0	1	0	0	0
lsPE	0	2	5	1	1	0	0	0	0	1
lsS_EOE	0	0	1	0	0	0	0	0	0	0
lsS_EUE	0	0	1	0	0	0	0	0	0	0
$mBMI_OBOW$	0	0	0	0	0	0	0	1	0	0

2.3 Clustering of Rules

The 48 rules identified in Step 2 were clustered using PAM, which resulted in four clusters (see Supplementary Materials for cluster metrics).

Table 5: Determinants of LOC-Cluster Metrics

measure	$score_at5$	method	clusters
Connectivity	0	pam	2
Dunn	0.593	pam	10
Silhouette	0.498	pam	4
APN	0	pam	4
AD	0.5054	pam	10
ADM	0	pam	4
FOM	0.0753	pam	10

Silhouette plot of pam(x = dist_pruned.rules_lhs2_conf5

 $_{\rm Average\ Silhouette\ Widths}$ Average silhouette width : 0.4

Cluster plot, k = 2

Cluster Plot

2.3.1 Cluster 1

Table 6: Determinants of LOC-Cluster 1

	gR_EOE	gR_FR	gS_FF	rowtotals
lsPE	1	2	1	4
coltotals	1	2	1	4

Table 7: Determinants of LOC-Cluster 1 Question Frequency

LHS1	Freq.x	Freq.y
cfq26=Disagree	3	NA
cfq28=Disagree	1	NA
$cebq19_gRarely$	NA	1
$cebq27_gRarely$	NA	1
$cebq33_gSometimes$	NA	1
$cebq34_gRarely$	NA	1

2.3.2 Cluster 2

Table 8: Determinants of LOC-Cluster 2 Question Frequency

	gR_FR	gS_EOE	gS_FF	lsN_PE	lsN_Rest	lsPE	lsS_SR	rowtotals
gR_FR	0	0	0	3	0	0	2	5
gRest	0	0	0	0	1	1	0	2
gS_EF	1	0	2	0	0	0	0	3
gS_FF	0	0	0	1	0	0	0	1
lsConc	0	0	0	0	1	0	0	1
lsPE	3	1	0	0	0	0	1	5
coltotals	4	1	2	4	2	1	3	17

Table 9: Determinants of LOC-Cluster 2 Question Frequency

LHS1	Freq.x	Freq.y
cebq1_gSometimes	2	NA
$cebq12_gRarely$	1	1
$cebq19_gRarely$	1	NA
$cebq34_gRarely$	3	2
$cebq5_gSometimes$	1	NA
$cebq7_gSometimes$	1	1
cfq14=Unconcerned	1	NA
cfq20=Agree	2	NA
cfq26=Disagree	4	1
cfq28=Disagree	1	NA
cebq14_gRarely	NA	1

Table 9: Determinants of LOC-Cluster 2 Question Frequency (continued)

LHS1	Freq.x	Freq.y
cebq26_lsSometimes	NA	3
cebq27_gSometimes	NA	1
cebq33_gSometimes	NA	1
cfq21_lsNeutralAD	NA	1
cfq23_lsNeutralAD	NA	1
cfq26_lsNeutralAD	NA	1
cfq27_lsNeutralAD cfq28_lsNeutralAD	NA NA	1 2

2.3.3 Cluster 3

Table 10: Determinants of LOC-Cluster 3

	gR_EOE	gR_FR	gS_FF	lsN_PE	lsN_Rest	lsPE	lsS_SR	rowtotals
BreastFed_ls7mo	0	0	1	0	0	0	0	1
$cAge_7.9yr$	0	0	0	0	1	0	0	1
cBMI_OWOB	0	0	0	1	0	1	0	2
gR_FR	0	0	0	0	0	0	1	1
gS_EF	0	1	1	0	0	0	0	2
gS_FF	0	0	0	3	0	0	0	3
lsN_Conc	0	0	0	0	1	0	0	1
lsPE	1	0	0	0	0	0	0	1
lsS_EUE	0	1	0	0	0	0	0	1
coltotals	1	2	2	4	2	1	1	13

Table 11: Determinants of LOC-Cluster 3 Question Frequency

LHS1	Freq.x	Freq.y
BreastFed_ls7mo	1	NA
$cAge_7.9yr$	1	NA
$cBMI_OWOB$	2	NA
$cebq19_gRarely$	1	NA
$cebq22_gSometimes$	2	NA
$cebq25_lsSometimes$	1	NA
$cebq33_gSometimes$	2	2
$cebq7_gSometimes$	1	NA
$cfq14_lsNeutralCon$	1	NA
cfq27=Disagree	1	NA
cebq27_gRarely	NA	1
$cebq30_lsSometimes$	NA	1
$cebq34_gRarely$	NA	2
cfq23_lsNeutralAD	NA	2

Table 11: Determinants of LOC-Cluster 3 Question Frequency (continued)

LHS1	Freq.x	Freq.y
$cfq25_lsNeutralAD$	NA	1
$cfq26_lsNeutralAD$	NA	2
cfq26=Disagree	NA	1
$cfq28_lsNeutralAD$	NA	1

2.3.4 Cluster 4

Table 12: Determinants of LOC-Cluster 4

	gN_Rest	gR_FR	gS_FF	lsN_PE	lsN_Rest	lsPE	lsS_FF	lsS_SR	rowtotals
cAge_7.9yr	0	1	0	0	0	0	0	0	1
gR_FR	1	0	1	0	0	0	0	2	4
gR_SR	0	0	0	0	1	0	0	0	1
gS_EF	0	1	1	0	0	0	1	0	3
gS_EOE	0	0	0	2	0	0	0	0	2
gS_FF	0	1	0	0	0	0	0	0	1
lsS_EOE	0	1	0	0	0	0	0	0	1
$mBMI_OBOW$	0	0	0	0	0	1	0	0	1
coltotals	1	4	2	2	1	1	1	2	14

Table 13: Determinants of LOC-Cluster 4 Question Frequency

LHS1	Freq.x	Freq.y
cAge_7.9yr	1	NA
$cebq1_gSometimes$	2	NA
$cebq12_gRarely$	1	NA
$cebq13_lsSometimes$	1	NA
$cebq14_gRarely$	2	1
$cebq20_gSometimes$	1	NA
$cebq21_gRarely$	1	NA
$cebq27_gSometimes$	2	NA
$cebq34_gRarely$	1	3
$cebq7_gSometimes$	1	NA
$mBMI_OBOW$	1	NA
$cebq10_gSometimesRev$	NA	1
$cebq10_lsSometimesRev$	NA	1
$cebq30_lsSometimes$	NA	2
$cebq33_gSometimes$	NA	1
$cfq20_gNeutralAD$	NA	1
$cfq23_lsNeutralAD$	NA	1
$cfq26_lsNeutralAD$	NA	1
cfq26=Disagree	NA	1

Table 13: Determinants of LOC-Cluster 4 Question Frequency (continued)

LHS1	Freq.x	Freq.y
cfq28_lsNeutralAD	NA	1

2.4 Testing Multiplicative Effects

To test for possible multiplicative effects, rules were limited to those that contained at least one of the attributes that individually characterized children with LOC-eating in step 1 (Table 4). This resulted in 39 rules, however, only nine rules had odds ratios that exceeded the 95% confidence intervals for the odds ratios from single attributes (Table S1).

Table 14: Determinants of LOC-Significant Additive

LHS2	LHS1	oddsRatio	OR_lowerCI	OR_upperCI	fisher.p	fisher.padj_holm	Cluster_gupta4	Cat1
cebq12_gRarely	cfq26=Disagree	5.000	2.166	11.541	0.000	0.005	2	lsPE
$cebq14_gRarely$	cfq26=Disagree	6.458	2.834	14.717	0.000	0.000	2	lsPE
$cebq14_gRarely$	$cebq7_gSometimes$	4.920	1.999	12.108	0.001	0.009	4	gS_FF
$cebq19_gRarely$	cfq26=Disagree	7.510	3.305	17.066	0.000	0.000	1	lsPE
$cebq26_lsSometimes$	cfq26=Disagree	5.578	2.424	12.837	0.000	0.002	2	lsPE
$cebq26_lsSometimes$	$cebq12_gRarely$	7.651	2.858	20.483	0.000	0.002	2	gR_FR
$cebq27_gRarely$	cfq26=Disagree	6.628	2.954	14.872	0.000	0.000	1	lsPE
$cebq27_gSometimes$	cfq26=Disagree	8.821	3.185	24.436	0.000	0.001	2	lsPE
$cebq30_lsSometimes$	$cebq12_gRarely$	4.500	1.854	10.925	0.001	0.009	4	gR_FR
$cebq33_gSometimes$	$BreastFed_ls7mo$	6.193	2.552	15.030	0.000	0.002	3	$BreastFed_ls7mc$
$cebq33_gSometimes$	$cebq1_gSometimes$	6.921	2.864	16.723	0.000	0.001	2	gS_EF
$cebq33_gSometimes$	cfq28 = Disagree	12.567	4.095	38.560	0.000	0.000	1	lsPE
$cebq33_gSometimes$	$cebq14_gRarely$	4.920	1.999	12.108	0.001	0.009	4	gR_FR
$cebq33_gSometimes$	$cebq22_gSometimes$	6.013	2.360	15.316	0.000	0.005	3	gS_EF
$cebq34_gRarely$	$cebq20_gSometimes$	4.920	1.999	12.108	0.001	0.009	4	gS_EF
$cebq34_gRarely$	cfq26=Disagree	11.104	4.058	30.383	0.000	0.000	1	lsPE
$cebq34_gRarely$	$cAge_7.9yr$	4.500	1.854	10.925	0.001	0.009	4	$cAge_7.9yr$
$cebq34_gRarely$	$cebq13_lsSometimes$	4.920	1.999	12.108	0.001	0.009	4	lsS_EOE
$cebq34_gRarely$	$cebq25_lsSometimes$	6.013	2.360	15.316	0.000	0.005	3	lsS_EUE
$cebq34_gRarely$	cfq28=Disagree	8.598	3.235	22.853	0.000	0.001	2	lsPE
$cebq34_gRarely$	$cebq5_gSometimes$	6.193	2.552	15.030	0.000	0.002	2	gS_EF
$cebq34_gRarely$	$cebq22_gSometimes$	4.818	2.059	11.277	0.000	0.007	3	gS_EF
$cebq7_gSometimes$	$cebq1_gSometimes$	6.818	2.765	16.816	0.000	0.001	2	gS_EF
$cfq20_gNeutralAD$	$cebq34_gRarely$	4.500	1.854	10.925	0.001	0.009	4	gR_FR
$cfq21_lsNeutralAD$	cfq20=Agree	6.757	2.673	17.081	0.000	0.002	2	gRest
$cfq23_lsNeutralAD$	cebq21_gRarely	6.013	2.360	15.316	0.000	0.005	4	gR_SR
$cfq23$ _lsNeutralAD	$cfq14_lsNeutralCon$	4.652	1.955	11.071	0.001	0.009	3	lsN_Conc
$cfq23$ _lsNeutralAD	cfq14=Unconcerned	4.920	1.999	12.108	0.001	0.009	2	lsConc
$cfq23$ _lsNeutralAD	$cAge_7.9yr$	5.057	2.100	12.178	0.000	0.007	3	$cAge_7.9yr$
$cfq26_lsNeutralAD$	$cebq7_gSometimes$	5.057	2.100	12.178	0.000	0.007	3	gS_FF
cfq26_lsNeutralAD	cebq33_gSometimes	5.057	2.100	12.178	0.000	0.007	3	gS_FF
cfq26_lsNeutralAD	cebq34_gRarely	6.921	2.864	16.723	0.000	0.001	2	gR_FR
-								-

Table 14: Determinants of LOC-Significant Additive (continued)

LHS2	LHS1	oddsRatio	OR_lowerCI	OR_upperCI	fisher.p	$fisher.padj_holm$	$Cluster_gupta4$	Cat1
cfq26=Disagree	cBMI_OWOB	5.529	2.265	13.499	0.000	0.005	3	cBMI_OWOB
cfq26=Disagree	cfq20=Agree	6.330	2.656	15.084	0.000	0.001	2	gRest
cfq26=Disagree	$mBMI_OBOW$	4.500	1.854	10.925	0.001	0.009	4	$mBMI_OBOW$
$cfq27_lsNeutralAD$	$cebq34_gRarely$	9.913	3.604	27.269	0.000	0.000	2	gR_FR
$cfq28_lsNeutralAD$	$cebq33_gSometimes$	6.087	2.454	15.101	0.000	0.003	3	gS_FF
$cfq28_lsNeutralAD$	$cebq34_gRarely$	6.330	2.656	15.084	0.000	0.001	2	gR_FR
$cfq28_lsNeutralAD$	$cebq7_gSometimes$	6.757	2.673	17.081	0.000	0.002	2	gS_FF

2.4.1 CEBQ 7

Table 15: Determinants of LOC: CEBQ 7 > Sometimes (FF)

	Beta	SE	Z	Р	e^beta	e^se	NA	NA
(Intercept)	-1.548	0.246	-6.285	0.000	0.213	1.279	0.002	1.000
$cebq7_gSometimesTRUE$	1.085	0.396	2.743	0.006	2.959	1.485	15.526	1.006

Table 16: Determinants of LOC: CEBQ 7 > Sometimes (FF) + CEBQ 1 > Sometimes (EF)

	Beta	SE	\mathbf{z}	P	e^beta	e^se
$cebq7_gSometimesTRUE$	-0.598	0.899	-0.665	0.506	0.550	2.457
$cebq1_gSometimesTRUE$	-0.087	0.571	-0.152	0.879	0.917	1.770
$cebq7_gSometimesTRUE: cebq1_gSometimesTRUE$	2.477	1.023	2.421	0.015	11.901	2.781

Table 17: Determinants of LOC: CEBQ 7 > Sometimes (FF) + CFQ 28 < Neutral (PE)

	Beta	SE	Z	P	e^beta	e^se
cebq7_gSometimesTRUE	1.455	1.206	1.207	0.228	4.286	3.340
$cfq28_lsNeutralADTRUE$	1.829	1.058	1.729	0.084	6.230	2.880
$cebq7_gSometimes TRUE: cfq28_ls Neutral ADTRUE$	0.048	1.302	0.037	0.971	1.049	3.676

2.4.2 CEBQ 33

Table 18: Determinants of LOC: CEBQ 33 > Sometimes (FF)

	Beta	SE	${f z}$	Р	e^beta	e^se	NA	NA
(Intercept)					0.204	1.286	0.002	1.000
cebq33_gSometimesTRUE	1.089	0.397	2.741	0.006	2.972	1.488	15.499	1.006

Table 19: Determinants of LOC: CEBQ 33 > Sometimes (FF) + Breastfeeding < 7 mo

	Beta	SE	\mathbf{z}	Р	e^beta	e^se
$cebq33_gSometimesTRUE$	-0.665	0.864	-0.770	0.442	0.514	2.373
$BreastFed_ls7moTRUE$	-0.427	0.535	-0.797	0.425	0.653	1.707
$cebq33_gSometimesTRUE:BreastFed_ls7moTRUE$	2.665	1.001	2.661	0.008	14.362	2.722

Table 20: Determinants of LOC: CEBQ 33 > Sometimes (FF) + CEBQ 1 > Sometimes (EF)

	Beta	SE	${f z}$	Р	e^beta	e^se
cebq33 gSometimesTRUE	-1.473	1.129	-1.305	0.192	0.229	3.093

Table 20: Determinants of LOC: CEBQ 33 > Sometimes (FF) + CEBQ 1 > Sometimes (EF) (continued)

	Beta	SE	\mathbf{z}	Р	e^beta	e^se
cebq1_gSometimesTRUE cebq33_gSometimesTRUE:cebq1_gSometimesTRUE					0.671 31.776	

Table 21: Determinants of LOC: CEBQ 33 > Sometimes (FF) + CFQ 28 = Disagree (PE)

	Beta	SE	Z	Р	e^beta	e^se
$cebq33_gSometimesTRUE$	0.185	0.686	0.269	0.788	1.203	1.986
$cfq28_DisagreeTRUE$	0.514	0.525	0.980	0.327	1.672	1.690
$cebq33_gSometimesTRUE:cfq28_DisagreeTRUE$	1.999	0.925	2.162	0.031	7.384	2.521

2.4.3 CEBQ 34

Table 22: Determinants of LOC: CEBQ 34 > Rarely (FR)

	Beta	SE	Z	Р	e^beta	e^se	NA	NA
(Intercept)	-1.580	0.240	-6.596	0.000	0.206	1.271	0.001	1.000
$cebq34_gRarelyTRUE$	1.409	0.415	3.391	0.001	4.090	1.515	29.697	1.001

Table 23: Determinants of LOC: CEBQ 34 > Rarely (FR) + CFQ 27 < Neutral (PE)

	Beta	SE	\mathbf{z}	Р	e^beta	e^se
$cebq34_gRarelyTRUE$	-0.811	0.835	-0.971	0.332	0.444	2.306
$cfq27_lsNeutralADTRUE$	-0.811	0.494	-1.641	0.101	0.444	1.639
$cebq34_gRarelyTRUE:cfq27_lsNeutralADTRUE$	3.296	1.021	3.229	0.001	27.000	2.775

Table 24: Determinants of LOC: CEBQ 34 > Rarely (FR) + CFQ 28 = Dissagree (PE)

	Beta	SE	Z	Р	e^beta	e^se
cebq34_gRarelyTRUE	-0.031	0.850	-0.036	0.971	0.970	2.340
$cfq28_DisagreeTRUE$	0.521	0.492	1.061	0.289	1.684	1.635
$cebq34_gRarelyTRUE:cfq28_DisagreeTRUE$	1.743	1.014	1.718	0.086	5.715	2.758

2.4.4 CFQ 20

Table 25: Determinants of LOC: CFQ 21 = Agree (Restrict)

	Beta	SE	Z	Р	e^beta	e^se	NA	NA
(Intercept)	-1.386	0.264	-5.261	0.000	0.250	1.302	0.005	1.000

Table 25: Determinants of LOC: CFQ 21 = Agree (Restrict) (continued)

	Beta	SE	Z	Р	e^beta	e^se	NA	NA
$cfq20_AgreeTRUE$	0.834	0.390	2.137	0.033	2.303	1.478	8.475	1.033

Table 26: Determinants of LOC: CFQ 21 = Agree (Restrict) + CFQ 21 < Neutral (Restrict)

	Beta	SE	Z	Р	e^beta	e^se
$cfq20_AgreeTRUE$	-0.214	0.652	-0.328	0.743	0.807	1.919
$cfq21_lsNeutralADTRUE$	-0.119	0.542	-0.219	0.827	0.888	1.720
$cfq20_AgreeTRUE:cfq21_lsNeutralADTRUE$	1.981	0.842	2.353	0.019	7.251	2.321

2.4.5 CFQ 26

Table 27: Determinants of LOC: CFQ 26 = Dissagree (PE)

	Beta	SE	Z	Р	e^beta	e^se	NA	NA
(Intercept)	-1.946	0.356	-5.461	0	0.143	1.428	0.004	1
$cfq26_DisagreeTRUE$	1.540	0.432	3.567	0	4.667	1.540	35.409	1

Table 28: Determinants of LOC: CFQ 26 = Dissagree (PE) + CEBQ 12 > Rarely (FR))

	Beta	SE	Z	Р	e^beta	e^se
$cebq12_gRarelyTRUE$	0.388	0.767	0.506	0.613	1.474	2.153
$cfq26_DisagreeTRUE$	1.399	0.655	2.136	0.033	4.053	1.925
$cebq12_gRarelyTRUE:cfq26_DisagreeTRUE$	0.159	0.926	0.172	0.864	1.172	2.524

3 Characterization of Absence of LOC-Eating

3.1 Association Rules Mining: Single Antecedent Attribute (Step 1)

The first step identified 107 rules with one attribute, only one of which had $\kappa > 0.20$ ($\kappa = 0.28$) indicating this rule had fair to moderate agreement. This individual rule was also significant (p = 0.001).

Table 29: Determinants of No LOC-Single Predictors

LHS	count	support	confidence	lift	addVal	kappa	oddsRatio	fisher.padj_holm	Cat
$cebq34_lsSometimes$	102	0.646	0.829	1.083	0.063	0.281	4.09	0.001	lsS_FR

3.2 Association Rules Mining: Multiple Antecedent Attributes (Step 2)

In the second step, 1335 rules with two antecedents were identified, 11 of which had $\kappa > 0.20$ ($\kappa = 0.21$ – 0.28), indicating all rules had fair agreement. All 11 rules remained significant after controlling for multiple comparisons (Table 8).

Table 30: Determinants of No LOC-Multiple Predictors

LHS2	LHS1	count	support	confidence	lift	addVal	kappa	oddsRatio	$fisher.padj_holm$	Cluster_gupta2 (
	cebq34_lsSometimes	102	0.646	0.829	1.083	0.063	0.281	4.090	0.006	2 1
$cebq34_lsSometimes$	cBMI=HW	80	0.506	0.851	1.111	0.085	0.226	3.206	0.006	2 0
$cebq34_lsSometimes$	$cebq1_gRarely$	99	0.627	0.832	1.086	0.066	0.273	3.825	0.006	2 g
$cebq34_lsSometimes$	$cebq14_lsSometimes$	67	0.424	0.882	1.151	0.116	0.218	3.860	0.006	2 1
$cebq34_lsSometimes$	$cebq15_lsSometimes$	93	0.589	0.830	1.084	0.065	0.235	3.147	0.006	2 l
$cebq34_lsSometimes$	$cebq20_gRarely$	93	0.589	0.838	1.094	0.072	0.258	3.506	0.006	2 §
$cebq34_lsSometimes$	$cebq13_lsSometimes$	92	0.582	0.836	1.092	0.071	0.248	3.349	0.006	2 1
$cebq34_lsSometimes$	$cebq5_gRarely$	97	0.614	0.836	1.092	0.070	0.275	3.829	0.006	2 g
$cebq34_lsSometimes$	$cebq8_gRarely$	81	0.513	0.862	1.125	0.096	0.254	3.738	0.005	2 ϵ
$cebq34_lsSometimes$	$income_g50K$	61	0.386	0.897	1.171	0.131	0.210	4.357	0.005	1 i
${\tt cebq34_lsSometimes}$	$income_g75K$	61	0.386	0.897	1.171	0.131	0.210	4.357	0.005	1

Table 31: Determinants of No LOC-Cross Tab Mulitple Predictors

	lsS_FR
cBMI=HW	1
gR_EF	3
gR_SE	1
$income_g50K$	1
$income_g75K$	1
lsS_EOE	2
lsS_FR	1

3.3 Clustering of Rules

The 11 significant rules were clustered using PAM, which resulted in 2 clusters (see Supplemental Materials)

Plot of cluster metrics $\,$

Cluster Metrics

Table 32: Determinants of No LOC-Cluster Metrics

measure	$score_at3$	method	clusters
Connectivity	5.7579	pam	2
Dunn	\inf	pam	10
Silhouette	0.6516	pam	2

APN	0 0	pam	5
AD		pam	10
ADM	0	pam	5
FOM	0	pam	10

Table 33: Determinants of NO LOC-Clusters

Cluster_gupta2	Freq
1	2
2	9

Silhouette plot of pam(x = dist_pruned.rules_lhs2_conf5

Average Silhouette Widths

Average silhouette width: 0.61

Cluster plot, k = 3

Cluster Plot

These two components explain 75.22 % of the point variability.

3.3.1 Cluster 1

Table 34: Determinants of NO LOC-Cluster 1

	$income_g50K$	$income_g75K$	rowtotals
lsS_FR	1	1	2
coltotals	1	1	2

Table 35: Determinants of NO LOC-Cluster 1 Question Frequency

LHS1	Freq
income_g50K	1
$income_g75K$	1

3.3.2 Cluster 2

Table 36: Determinants of NO LOC-Cluster 2

	lsS_FR	rowtotals
cBMI=HW	1	1
gR_EF	3	3
gR_SE	1	1
lsS EOE	2	2

Table 36: Determinants of NO LOC-Cluster 2 (continued)

	lsS_FR	rowtotals
lsS_FR	1	1
coltotals	8	8

Table 37: Determinants of NO LOC-Cluster 2 Question Frequency

LHS1	Freq
cBMI=HW	1
$cebq1_gRarely$	1
$cebq13_lsSometimes$	1
$cebq14_lsSometimes$	1
$cebq15_lsSometimes$	1
$cebq20_gRarely$	1
$cebq34_lsSometimes$	1
$cebq5_gRarely$	1
$cebq8_gRarely$	1

3.4 Testing Multiplicative Effects

All 11 rules contained the significant attribute from step 1 (CEBQ34 < 'Sometimes'), however, none of the rules with two attributes had odds ratios that exceeded the 95% confidence interval for the odds ratio from the single attribute rule (Table S1).

Table 38: Determinants of No LOC-Additive Effect OR Comparisons

LHS2	LHS1	oddsRatio	OR_lowerCI	OR_upperCI	fisher.p	$fisher.padj_holm$	Cluster_gupta2	Cat1
cebq34_lsSometimes	cBMI=HW	3.206	1.494	6.879	0.002	0.006	2	cBMI=HW
$cebq34_lsSometimes$	$cebq1_gRarely$	3.825	1.728	8.467	0.001	0.006	2	gR_EF
$cebq34_lsSometimes$	$cebq14_lsSometimes$	3.860	1.680	8.872	0.001	0.006	2	lsS_FR
$cebq34_lsSometimes$	$cebq15_lsSometimes$	3.147	1.456	6.801	0.003	0.006	2	lsS_EOE
$cebq34_lsSometimes$	$cebq20_gRarely$	3.506	1.622	7.578	0.001	0.006	2	gR_EF
$cebq34_lsSometimes$	$cebq13_lsSometimes$	3.349	1.554	7.218	0.002	0.006	2	lsS_EOE
$cebq34_lsSometimes$	$cebq5_gRarely$	3.829	1.748	8.390	0.001	0.006	2	gR_EF
$cebq34_lsSometimes$	$cebq8_gRarely$	3.738	1.724	8.106	0.001	0.005	2	gR_SE
$cebq34_lsSometimes$	$income_g50K$	4.357	1.778	10.680	0.000	0.005	1	$income_g50K$
$cebq34_lsSometimes$	$income_g75K$	4.357	1.778	10.680	0.000	0.005	1	$income_g75K$