

НИС Машинное обучение и приложения

РАСПРЕДЕЛЁННОЕ ОБУЧЕНИЕ НЕЙРОСЕТЕЙ

Другие оптимизации

Как сэкономить память, когда мы работаем с большими массивами вещественных чисел?

Как сэкономить память, когда мы работаем с большими массивами вещественных чисел?

float (32 bit) → half (16 bit)

В большинстве вычислений будем использовать FP16 В местах, требующих бОльшей точности, будем использовать FP32

- Процесс только частично на 16-битной точности
- В итоге сама итоговая модель всё равно будет в 32-битной точности

Модель в полном разрешении хранится в Оптимизаторе Оттуда она подаётся в процесс обучения

Forward-pass и Back-prop проводятся в FP16

[from https://towardsdatascience.com/understanding-mixed-precision-training-4b246679c7c4]

- Можно обучать модели бОльшего размера
- Ускорение вычислений в forward/backward pass'e позволяет в 3 раза сократить время обучения модели
- Быстрее коммуникация между нодами благодаря сжатию градиентов

Важно — поскольку обычно абсолютные значения градиентов занимают малый диапазон, перед переводом в FP16 домножают на какой-то *scale*, чтобы минимально потерять в точности

GPU Tensor Cores добавляют встроенную поддержку для ускоренных вычислений в FP32, FP16, INT8, INT4

В 2018 Nvidia разработала расширение для РуТогсh под названием <u>Арех</u> для **Automatic Mixed Precision**

Пример на обучении bigLSTM English

Gradient checkpointing: Обменяем время на память

Возьмём за пример последовательную нейросеть Каждый следующий слой высчитывается напрямую из предыдущего

Много памяти во время обучения тратится на хранение промежуточных значений в сети

Поэтому надо использовать torch.no_grad()!

Orange nodes are the ones kept in memory to compute the gradient update for this node

[from https://twitter.com/rasbt/status/1341430378834382859]

Примерно так выглядит один Forward+Backward pass

Посмотрим на один конкретный шаг Backprop'a

Значение только этого слоя нам нужно на этом шаге

Backward pass

БИНГО!

Будем не сохранять эти значения, а каждый раз считать их заново

Для каждого шага Backprop'a просто заново посчитаем это значение

Forward pass

Backward pass

Также вместо полного пересчёта можем сохранить значения для какого-то слоя посередине, использовать его для пересчёта значений после

Также вместо полного пересчёта можем сохранить значения для какого-то слоя посередине, использовать его для пересчёта значений после

Backward pass

Для сети с N слоями, используя K чекпоинтов:

- Сокращаем затраты по памяти примерно в $\frac{K}{N}$ раз
- Увеличиваем время работы примерно в $\frac{N}{K}$ раз

Если вам время и память примерно одинаково ценны, можете показать что оптимально будет использовать $K = \sqrt{N}$

Обучаемся на мобильных устройствах бедных пользователей

Причём работа этой модели может быть персонализирована под конкретного пользователя. (Например, умные подсказки гугла в смартфоне)

[from https://ai.googleblog.com/2017/04/federated-learning-collaborative.html]

- 1. Делает персонализированные обновления на основе действия пользователей
- 2. Персонализированные обновления отправляются в облако где они смешиваются
- 3. Это глобальное обновление отправляется всем пользователям

- 1. Делает персонализированные обновления на основе действия пользователей
- 2. Персонализированные обновления отправляются в облако где они смешиваются
- 3. Это глобальное обновление отправляется всем пользователям

[from https://ai.googleblog.com/2017/04/federated-learning-collaborative.html]

- 1. Делает персонализированные обновления на основе действия пользователей
- 2. Персонализированные обновления отправляются в облако где они смешиваются
- 3. Это глобальное обновление отправляется всем пользователям

[from https://ai.googleblog.com/2017/04/federated-learning-collaborative.html]

- 1. Делает персонализированные обновления на основе действия пользователей
- 2. Персонализированные обновления отправляются в облако где они смешиваются
- 3. Это глобальное обновление отправляется всем пользователям

Google в своей статье про это упоминает ещё такое:

- Сжатие используется для передачи обновлений по сети
- Шифрование обновлений используется для того, чтобы третье лицо не смогло восстановить по обновлениям действия пользователя
- Высчитывание обновления происходит в неактивное время телефона, чтобы не вредить пользовательскому опыту

[from https://ai.googleblog.com/2017/04/federated-learning-collaborative.html]

Спасибо за внимание!