16 Linear Constraint

- · Reduced gradient
 · Optimality conditions

Linear Constrained Optimization

min f(x) s.t Ax = b, $x \in \mathbb{R}^n$

Vorable reduction

Reformulate the linear constrained problem into an un constrained problem (Change of variable)

Feasible set:

Reduced Unconstrained problem min f(x) sit Ax = b (=) $x \in \mathbb{R}^n$

2nd order sufficient cord.

Optimality conditions.

Reduced objective function $f_{z}(p) = f(\bar{x} + Zp)$

The grade and of fz at p is:

Stationary:

First Order Newsy Cond.

Show Null(ZT) = Longe (AT) · A & Rankn Z & Rnx(n-m)

First order necessary cond.

Interretation

The optimality could:

Second order necessary cond.
$$f_{z}(\rho) = f(\bar{x} + Z\rho), \quad \nabla f_{z}(\rho) = Z^{T} \nabla f(\bar{x} + Z\rho)$$

The Hessian of fz at p is:

Second order necessary cond.

Optimality condition.

Second order sufficient condition.

- 1. (Feasibility)
 2. (Stationary)
- 3 (Positivity)

Example

Conside

min $||x||_2$ s.t. Ax = b. $x \in \mathbb{R}^n$

Example contd.