Tryby pracy skrzydła

Skrzydło pracuje w dwóch głównych trybach wybieranych przyciskiem. Kąt nachylenia mierzony jest za pomocą enkodera umieszczonego na osi montażowej skrzydła. Wartości kątów dobrane zostały intuicyjnie i należałoby je zweryfikować dokonując symulacji w odpowiednim środowisku do badań przepływu powietrza lub poprzez testy w tunelu aerodynamicznym albo na rzeczywistym pojeździe.

1. Tryb pracy wybierany przyciskiem.

a) Tryb zwiększonego docisku.

W tym trybie skrzydło ustawia się pod kątem 15 stopni do poziomu i utrzymuje tą pozycję niezależnie od prędkości. W trybie ten służy do sportowej jazdy i generowany jest doży docisk aerodynamiczny, ale kosztem zwiększonego oporu powietrza stawianego przez skrzydło.

Rys. 1 Skrzydło nachylone pod kątem 15 stopni do podłoża.

b) Tryb automatyczny.

W tym trybie nachylenie skrzydła zależy od prędkości z jaką porusza się pojazd:

- Poniżej 120km/h (prędkość autostradowa) spojler pozostaje w pozycji neutralnej
- Powyżej 120km/h skrzydło przechodzi w pozycję do jazdy szybkiej

2. Nachylenie skrzydła w zależności od prędkości – tryb automatyczny.

a) Pozycja neutralna

W tej pozycji skrzydło nachylone jest pod kątem 10 stopni do poziomu. Takie ustawienie zapewnia średnie wartości docisku i oporu powietrza.

Rys. 2 Skrzydło nachylone pod kątem 10 stopni do podłoża.

b) Pozycja do jazdy szybkiej.

Po przekroczeniu prędkości 120km/h skrzydło ustawia się kątem 0 stopni do poziomu. Jest to pozycja, w której opór powietrza generowany przez skrzydło osiąga minimalną wartość, podobnie jak docisk aerodynamiczny. Skrzydło pełni wtedy przede wszystkim funkcję stabilizującą.

Rys. 3 Skrzydło na równi z poziomem (0 stopni).

3. Nachylenie skrzydła w zależności od siły hamowania.

Skrzydło poza stabilizacją jazdy i generowaniu docisku pełni też funkcję hamulca aerodynamicznego. Siła z jaką kierowca chce hamować odczytywana jest na podstawie pozycji w jakiej znajduje się pedał hamulca. W tym celu wykorzystano 3 styczniki: jeden, który standardowo znajduje się pojeździe i dwa dodatkowe. Zakres ruchu pedału podzielono na trzy strefy, a załączenie kolejnych styczników pozwala stwierdzić w jakiej aktualnie jest strefie. Dodatkowo, poniżej 90km/h hamulec aerodynamiczny nie jest uruchamiany, ponieważ przy niskich prędkościach jest on mało efektywny (przy 90km/h generuje poniżej 10% z jego maksymalnej siły hamowania).

a) Słabe hamowanie.

By nie destabilizować jazdy, gdy kierowca chce tylko lekko przyhamować, skrzydło podnosi się pod kątem tylko 30 stopni. Zapewnia to lekkie hamowanie bez nagłego szarpnięcia.

Rys. 4 Skrzydło nachylone pod kątem 30 stopni do podłoża (lekkie hamowanie).

b) Średnie hamowanie.

Skrzydło ustawia się pod kątem 60 stopni do podłoża. Mocniejsza siła hamowania ale jeszcze nie maksymalna.

Rys. 5 Skrzydło nachylone pod kątem 60 stopnie do podłoża (średnie hamowanie).

Mocne hamowanie Pionowa pozycja skrzydła (90 stopni do poziomu). Sytuacja, w której wymagane jest szybkie wytracenie prędkości.

Rys. 6 Skrzydło w pozycji pionowej (maksymalna siła hamująca).