

Matrix Diagonalization

SENG440: Embedded Systems

By: Michail Roesli & Robbie Tulip

Contents

- Introduction
 - What is Matrix Diagonalization?
 - Problem Specification
- Background
 - Methodology
- Implementation & Optimization
 - Algorithm improvements
 - Fixed point arithmetic
 - SIMD optimizations
 - ASIP considerations
- Future Work
- Conclusion

Introduction: Matrix Diagonalization

- Diagonalized matrices have desirable properties
- Matrix diagonalization is a process to diagonalize a matrix
 - Difficult to calculate quickly
- Used in various fields:
 - Wireless communications
 - Control applications
 - o Image processing/compression
 - Molecular dynamics
 - Small angle scattering
 - Information retrieval
 - o Etc.
- Singular Value Decomposition (SVD)
 - Complex algorithm to diagonalize a matrix

Introduction: Problem Specification

- 4x4 square matrix input
- Real input values range $[-2^7, 2^7]$
- Use of 14 bit signed integers for fixed point arithmetic
- Output is returned as real values
- 32-bit ARMV7L processor

Background

- Jacobi Method
 - Iterative process for performing SVD
 - Moves energy onto the diagonal through rotation
 - Convergence

• Fixed-Point Arithmetic

- Uses Scale factors
- Fixed point notation values that come before/after decimal point
- State of mind
- Addition increases word length by 1
- Multiplication increases word length by 2x (2x-1 if unsigned val)
- Division increases / decreases
 wordlength by the difference in bits
 between num and denom

Naive Implementation

- First task was to produce a naive unoptimised implementation
- Areas to optimize
 - Remove floating point operations
 - Arctangent/Sine/Cosine operations
 - Matrix multiplication
 - Remove unnecessary copies

Optimization 1: Reducing copies.

- Change to algorithm
- Use two matrices for calculations:
 - o Input
 - Output
- Swap matrices every iteration
- Reduces 96 copies to 16

```
jacobi sweep(matrix M, matrix U, matrix V)
   matrix M prime 1, U prime 1, V prime 1;
   matrix M prime 2, U prime 2, V prime 2;
   matrix *M input = &M prime 1, M output = &M prime 2;
   matrix *U input = &U prime 1, U output = &M prime 2;
   matrix *V input = &V prime 1, V output = &V prime 2;
   for (int i = 0; i < MATRIX SIZE - 1; i++)
       for (int j = i; j < MATRIX SIZE; j++)
           // Init U ij, U ij trans, and V ij trans
      Copy input matricies into M, U, and V.
```

Optimization 2: Fixed-Point Arithmetic

Optimization 3: Trigonometric Functions

- Native trigonometric functions use floating point operations
 - Mult, div, powers Costly
 - Need to convert to fixed-point notation more computation
- Multiple methods of optimization
 - Piecewise linear approximation
 - Lookup tables
- Chose Lookup Tables
 - More customizable
- Lookup Table Cost
 - Convert fixed point integer to table index
 - Requires a division, a shift, and some multiplication
 - Less accurate, more performant

Optimization 4: Matrix Multiplication

• Naive matrix multiplication is O(n³) operation

```
matrix_multiply(matrix LHS, matrix RHS, matrix RESULT){
    for (int i = 0; i < MATRIX_SIZE; i++){
        for (int j = 0; j < MATRIX_SIZE; j++){
            RESULT[i][j] = 0;
            for (int k = 0; k < MATRIX_SIZE; k++){
                 RESULT[i][j] += LHS[i][k] * RHS[k][j];
            }
        }
    }
}</pre>
```

Optimization 4: Matrix Multiplication - Continued

• Matrix Multiplication is O(n) with SIMD vector operations

```
matrix multiply(matrix LHS, matrix RHS, matrix RESULT){
    int32x4 t RHS row 0 = load int32x4(RHS[0][0]);
    int32x4 t RHS row 1 = load int32x4(RHS[1][0]);
    int32x4 t RHS row 2 = load int32x4(RHS[2][0]);
    int32x4 t RHS row 3 = load int32x4(RHS[3][0]);
   int32x4 t RESULT row;
    for (int i = 0; i < MATRIX SIZE; i++){
       RESULT row = multiply int32x4 by scalar(RHS row 0, LHS[i][0]);
        RESULT row += multiply int32x4 by scalar(RHS row 1, LHS[i][1]);
       RESULT row += multiply int32x4 by scalar(RHS row 2, LHS[i][2]);
       RESULT row += multiply int32x4 by scalar(RHS row 3, LHS[i][3]);
        RESULT[i][0] = store int32x4(RESULT row);
```


- Considered the benefits of a theoretical hardware instruction
- Instruction input:

 4x 14 bit integers packed into two 32 bit integers

- Instruction output:
 - o 1x 32 bit output
 - 2x 14 bit output
 - 2x 2 bit output
- Expected Benefit:
 - Without ASIP: ~1500 clock cycles
 - Assume ASIP takes ~1000 clock cycles
 - Expect 33% speed up

Future Work

- Input variation: complex values and matrix size
- Lookup table
 - Input accuracy improvement rounding
 - Cache misses hit rate
 - Experiment with table parameters size, density
 - Size vs accuracy tradeoffs
- Choosing next 2x2 matrix rotation optimally
- Code review and optimization
 - Remove branching where possible
- Problems
 - Energies decreasing after convergence

Conclusion

- Matrix diagonalization program in C
- 32-bit ARM machine
- Jacobi Method
- Fixed point arithmetic
- Lookup Table
- Parallelization
- Speed-Accuracy trade-off

