Simulation Reporting Guidelines

Isaac Griffith

CS 6620 Department of Informatics and Computer Science Idaho State University

Report Identification

- Similar to all reports, a simulation study should contain the following identifying components
 - **Authorship** information
 - Title and keywords to objectively identify the report
 - Structured abstract summarizing the contents

Context and Research Questions

- Simulation studies are performed both
 - in virtuo where human subjects interact with a computerized environment
 - in silico where both subjects and the environment are computerized
- In both the object of the study is related to the simulation model
 - May be the simulation itself
 - May be the phenomenon/system/process abstracted over time

Context

- We should use a broad perspective approach to describe the context
- Essentially describing the context in a way to answer questions like
 - "What technology is most effective for whom, performing that specific activity on that kind of system, under which set of circumstances"

Research Goals

- The problem statement is then situated in the defined context
- Problem statements should be of the following structure:
 - (Description of ideal scenario). However (or other adversative conjunction),
 - (The reality of the situation). Thus (or other conclusive conjunction),
 - (The consequences for the involved people).
- We can then utilize the GQM to define our research goals
 - Noting that the goals should match the capabilities of the simulation model
 - Common goals include:
 - developing a basic understanding (characterization) of a particular simulation model of the phenomena
 - finding robust or optimum decisions
 - comparing the merits of various decisions

Metrics and Statistics

- With the goal and questions defined
 - Use the questions to identify needed metrics
 - Metrics allow us to transform questions into hypotheses
- With the hypotheses in hand
 - Identify statistical tests and methods

Feasibility

- With the study definition documented, feasibility analysis can be performed
- Feasibility analysis should follow Balci (1990)'s approach
 - cost
 - time
 - benefits
 - relationships between
- Remember: goal of simulation is beyond its output
 - explain how the phenomenon occurs
 - what changes in processes, products, or people give a suitable solution
 - designed to support decision making

Background and Related Work

- Only describe essential background knowledge
- Only provide essential related works

Sim Environment

- You must know the model in detail
 - Know the simulation approach
 - Know the underlying conceptual model
 - variables
 - parameters
 - metrics
 - Know the underlying assumptions
 - Know the calibration procedures
- In addition to this information, the report should include
 - diagrams presenting the whole idea
 - diagrams presenting the conceptual model
 - equations underlying the model (for replication)
 - text descriptions to clarify

Validation

- Model validity should be addressed
 - Study validity relies upon model validity
 - Experimenter should be aware of model V&V procedures
 - Necessary if using an unvalidated model
- Should (though not usual in SE) evaluate performance measures (Burton et al. 2006)
 - Bias
 - Accuracy
 - Coverage
 - Confidence Intervals

Subjects

- Human Subjects Characterization influences in virtuo results
 - characteristics (level of expertise, etc.)
 - number per group (treatment, control, etc.)
 - assignment process used

Experimentation

- Need to identify the following elements
 - Causal model
 - Independent and Dependent variables
 - Nature of cause-effect
- · Select an experimental design method
 - Factorial
 - Response-surface for max/min of parameter combinations
 - Variation reduction techniques
 - Ranking and selection techniques

Experimentation

- What is the experiment that is being ran?
 - Validated models as control, other models as treatments
 - Single model, different datasets as treatments

Number of Runs

- Need to identify the number of simulation runs to execute
 - More scenarios yields more required replications (runs) (see Houston et al. 2001 and Wakeland et al. 2004)
 - Stochastic modeling requires many runs of the same scenario
 - replications utilize PRNs to simulate the same scenario (see Burton et al. 2006)

Data & Calibration

- Though the simulation model is important supporting data is as well
- Data availability factors into feasibility and must be reported
- Data is necessary for calibration
 - generation of equations and parameters
 - determination of random variable distributions
 - should report if/if not the model was calibrated
- We can use synthetic data
 - must be based on evidence of validity
 - must report "how far is the simulated data from real-system data?"

Data Collection

- Data collection
 - planned to avoid measurement errors
 - needs to include quality assurance procedures
 - consistency
 - accuracy
 - outlier avoidance

Environment and Tools

- We need to describe the simulation environment
- This should include the following:
 - supporting tools
 - associated costs
 - decision to use a specific simulation package

Output Analysis

- Concentrates on understanding and quantifying tends of output variables
 - Typically done using charts
 - Often better to combine with statistical tests or descriptive statistics
- Regardless of method, need to ensure they are adequately selected

Threats to Validity

- Model Validity ensures that the study can represent the actual phenomena
 - Model structure
 - Supporting data
 - Input parameters
 - Scenarios
 - Simulation output

Experimental Validity

- External validity concerns the possibility of reproducing empirical behaviors and consistent behaviors across different simulation studies
- Conclusion validity related to
 - sample size
 - number of simulation runs
 - model coverage
 - degree of representation of the simulation scenarios for possible situations

Conclusions and Future Works

- Express the main contributions of the study
 - key findings
 - linked to original research goals
- Should include implications of the applicability of the solution to real situations (practical use)
- Future works
 - further work
 - research challenges
 - hot topics

Are there any questions?

