

IR.3504 Convergent Services and Technologies IP Network Basics

Sofiane Imadali, PhD <sofiane.imadali@orange.com>

Summary

At the end of this talk, you should be able to answer the following questions:

- What happens (protocols, messages exchanged, entities, programs) when I first connect my PC to a network?
- What happens when I send a message to be routed somewhere? (ping, traceroute, http)
- What are the networking tools/programs you would use to diagnose a non-responding website, local service, a database connection?
- How do I build my own IPv6 address based on a prefix that I know? Do I need to be connected to the Internet to have a globally-scoped address?
- ➤ Some of the information, tests and experiments that we do are present in: https://github.com/sofianinho/training (the network folder)

OSI model

IP is the universal part

Some IP basics (1/2)

- Usage : Internet, Intranet, Extranet
- Single IP Address for every machine.
 - ☐ Possiblity to add multiple adresses thanks to virtual interfaces (labels, dummy kernel module of linux)
 - Example: 192.168.0.1
- > A general rule of thumb: One interface has a unique address, assigned for a certain duration.
 - ☐ The exceptions arise when you want services with failovers
- > IP Network Role:
 - Information transfer

Some IP basics (2/2)

- > An IP address MUST be unique in a network
 - ☐ The case when multiple hosts are provided with the same address is called "an address collision" or "a duplicate address"
- > RFC 2131 Dynamic Host Configuration Protocol (DHCP)
 - Every IP stack (meaning every OS) is provided with an implementation of DHCP

■ A DHCP Server gives a lease for a network configuration to a

host

DHCP offer example

DHCP protocol classic exchange

IP Addresses

- > Allows addressing machine <u>interfaces</u> and communication between them.
 - ☐ The IP address (v4 or v6) is for an interface and not a host.
- ≥ 255 possibilities for every byte (with some restrictions) → there are 4
- Some of them are private, RFC 1918
 - ☐ These addresses allows communication in a private domain, without any risk of conflict with public addresses
 - 1 A Class :

10.0.0.0 to 10.255.255.255

16 B Classes :

172.16.0.0 to 172.31.255.255

255 C Classes :

192.168.0.0 to 192.168.255.255

Special IP Addresses (RFC 6890)

Address Block	Present Use	Reference	
0.0.0.0/8	"This" Network	RFC 1122, Section 3.2.1.3	
10.0.0.0/8	Private-Use Networks	RFC 1918	
100.64.0.0/10	Shared Address Space	RFC 6598	
127.0.0.0/8	Loopback	RFC 1122, Section 3.2.1.3	
169.254.0.0/16	Link Local	RFC 3927	
172.16.0.0/12	Private-Use Networks	RFC 1918	
192.0.0.0/24	IETF Protocol Assignments	RFC 5736	
192.0.2.0/24	TEST-NET-1	RFC 5737	
192.88.99.0/24	6to4 Relay Anycast	RFC 3068	
192.168.0.0/16	Private-Use Networks	RFC 1918	
198.18.0.0/15	Network Interconnect Device	ce Benchmark Testing	RFC 2544
198.51.100.0/24	TEST-NET-2	RFC 5737	
203.0.113.0/24	TEST-NET-3	RFC 5737	
224.0.0.0/4	Multicast	RFC 3171	
240.0.0.0/4	Reserved for Future Use	RFC 1112, Section 4	
255.255.255.255/3	2 Limited Broadcast	RFC 919, Section 7	
		RFC 922, Section 7	

IP Principles

Principle: message exchanges (TCP, UDP, ICMP, etc) through Routers Networks

- No result Guaranty: Best effort
- > Jitter
- Every packet journey is determined by the Network: can change during the span of some seconds/minutes

Tell me a story...

- What happens (protocols, messages exchanged, entities, programs) when I first connect my PC to a network?
- What happens when I send a message to be routed somewhere? (ping, traceroute, http)
- What are the networking tools/programs you would use to diagnose a non-responding website, local service, a database connection?
- □ How do I build my own IPv6 address based on a prefix that I know? Do I need to be connected to the Internet to have a globally-scoped address?

Routing

- Notion :
 - Gateway
 - ☐ Routing: static, dynamic or default mode
- > Routing protocol:
 - □ BGP, OSPF, EIGRP, RIP, etc

IP Packet

- > IP Packet length and size are variable
- > All messages UDP, TCP, etc. are encapsulated into IP Packet

IPv4 Header Format

Offsets	Octet					0					1 2									3									
Octet	Bit	0	1	2	3	4	5	6	7	8	9	1	10 11	12	!	13	14	15	5 16 17 18 19 20 21 22 23 24 25 26 27						7	28 2	29	30	31
0	0		Vers	sion			IH	lL				[DSCP				EC	CN	Total Length										
4	32		Identification									Flag	s	Fragment Offset															
8	64		Time To Live Protocol Header C							Checksum																			
12	96		Source IP Address																										
16	128		Destination IP Address																										
20	160		Ontines (EUI) v. EV																										
24	192																												
28	224		Options (if IHL > 5)																										
32	256																												

IP Packet

IP Headers

Source Address ex: 192.168.0.1

Destination Address ex: 194.2.0.20

- Protocol (TCP=6, UDP=17, ICMP=1)
- > TTL
- Length
- Checksum
- Data (Message TCP, UDP or ICMP)
- Pour la fragmentation (DF, MF, Offset)
- > Some well known protocol numbers:

Protocol Number	Protocol Name	Abbreviation
1	Internet Control Message Protocol	ICMP
2	Internet Group Management Protocol	IGMP
6	Transmission Control Protocol	TCP
17	User Datagram Protocol	UDP
41	IPv6 encapsulation	ENCAP
89	Open Shortest Path First	OSPF
132	Stream Control Transmission Protocol	SCTP

TTL

> IP Packet Lifetime

■ Hop number

```
U:\>ping 194.2.0.20

Envoi d'une requête 'ping' sur 194.2.0.20 avec 32 octets de données :

Réponse de 194.2.0.20 : octets=32 temps=64 ms TTL=55
Réponse de 194.2.0.20 : octets=32 temps=64 ms TTL=55
Réponse de 194.2.0.20 : octets=32 temps=64 ms TTL=55
Réponse de 194.2.0.20 : octets=32 temps=73 ms TTL=55
Statistiques Ping pour 194.2.0.20:

Paquets : envoyés = 4, reçus = 4, perdus = 0 (perte 0%),

Durée approximative des boucles en millisecondes :

Minimum = 64ms, Maximum = 73ms, Moyenne = 66ms
```

IP Fragmentation

Tell me a story...

- ☐ What happens (protocols, messages exchanged, entities, programs) when I first connect my PC to a network?
- What happens when I send a message to be routed somewhere? (ping, traceroute, http)
- What are the networking tools/programs you would use to diagnose a non-responding website, local service, a database connection?
- □ How do I build my own IPv6 address based on a prefix that I know? Do I need to be connected to the Internet to have a globally-scoped address?

ICMP – Internet Control Message Protocol

- Used to carry error and control messages.
- Main service : « ping »
- > Example : « ping » features

ICMP – Internet Control Message Protocol

- Not only to verify machine access.
- ➤ It allows retrieving relevant information : application port closed; network or machine unknown by router; TTL expiration, etc....
- Example TTL expiration :

ICMP – Internet Control Message Protocol

	@Source	@Destination	M	essage IC	MP
***	192.168.0.1	194.2.0.20	 Туре	Code	

Type: 3 Code: 0 à 15

Message: destinataire inaccessible

Le code dépend de la cause du problème, respectivement :

- 0 : le réseau n'est pas accessible
- 1 : la machine n'est pas accessible
- 2 : le protocole n'est pas accessible
- 3 : le port n'est pas accessible
- 4 : fragmentation nécessaire mais impossible à cause du drapeau (flag) DF
- 5 : le routage a échoué
- 6 : réseau inconnu
- 7 : machine inconnue
- 8 : machine non connectée au réseau (inutilisé)
- 9 : communication avec le réseau interdite
- 10 : communication avec la machine interdite
- 11 : réseau inaccessible pour ce service
- 12 : machine inaccessible pour ce service
- 13 : communication interdite (filtrage)
- 14 : priorité d'hôte violé
- 15 : limite de priorité atteinte

Exemples de valeurs du champ Type:

- 0 Réponse Echo
- 3 Destination non accessible
- 4 Contrôle de flux
- 5 Redirection 8 Echo
- 11 Durée de vie écoulée
- 12 Erreur de Paramètre
- 13 Marqueur temporelle
- 14 Réponse à marqueur temporel
- 15 Demande d'information
- 16 Réponse à demande d'information

UDP – User Datagram Protocol

- Simple transmission between 2 IP machines.
- Non connected mode : no acknowledgment
- Unsecured transport mode (checksum from upper layers).
- > BUT : very fast transmission
- Example UDP transmission (Syslog = events planning):

TCP – Transmission Control Protocol

- Port notion (Source & destination)
 - □ telnet 23/TCP, smtp 25/tcp, http 80/tcp, etc.....
- Session Notion
 - ☐ Retransmission of non-acknowledged packets
 - ☐ Unique Sequence number for every TCP Packet
 - ☐ Connection Establishment way
 - Flag Notion (SYN, ACK, FIN, RST, etc...)

TCP – Transmission Control Protocol

Main TCP headers :

- ☐ Source Port
- Destination Port
- Sequence Number
- ☐ Flags
 - SYN Establish connection
 - ACK Packet Acknowledgment
 - RST Reset session
 - FIN End Session
 - PSH Prevent temporary storage
 - URG Indicate emergency
- ☐ Checksum (Integrity Control)
- Data

TCP - Transmission Control Protocol

> TCP Session:

The modern IT/Network engineer toolbox

- Know the content of /proc/sys/net and /sys/class/net, the structure and meaning of the files
 - An example experiment, cat 10 > /sys/class/net/eth1/mtu, and then do a "curl google.com", put the 1500 inside the mtu and see if it works
- Scapy*
- Wireshark, tshark, tcpdump**, packetbeat***
- nmap, etherape
- Curl (and its library libcurl, the origin story of everything worthy in the networking community)
 - Listen to: http://podcast.sysca.st/podcast/4-curl-libcurl-future-web-daniel-stenberg/
 - Read on: https://daniel.haxx.se/blog/

- Ettercap: Man in the middle attacks
- Medusa: network login with brute force
- Yersinia: known vulnerabilities in network protocols
- Anything here: https://tools.kali.org/tools-listing

Applications internet

> Application list used over the Internet

	Applications utilisant TCP	Applications utilisant UDP							
N° Port	Applications	N° Port	Applications						
80 / 8080	Worl Wild Web (HTTP)	53	Domain Name Server (DNS)						
443	HHTP over TSL/SSL (HTTPS)	113	Authentification Service						
20 / 21	File Transfert Protocol (FTP)	123	Network Time Protocol (NTP)						
23	Telnet	514	Syslog						
119	Network News Transfert Protocol (NNTP)								
25	Simple Mail Transfert (SMTP								
110	Post Office Protocole V3 (POP3)								
66	Oracle SQL Net								
1352	Lotus Notes	1							

➤ Link to TCP & UDP Ports

DNS – Domain Name Server

- Over Internet or Intranet, servers are often referenced by URL, and not their IP address, not easy to remember
 - ☐ Easy to remember
 - More flexible : allows to change IP address, without any configuration of all users
- From all over the world, any user shall retrieve the IP address of a server from its URL. This feature is called Domain Name Server (DNS)
- URL is composed of several hierarchical zones :
 - ☐ Ex: www.google.fr
 - Zone www in zone google in zone fr

DNS – Domain Name Server

- ➤ A Domain Name (DN) is an identifier registered in proprietary organization (Registrar) which makes sure it is unique
- > To store an DN, user must describe on main DNS
- This description is:
 - □ Domain Name = zone (ex: **google** under zone **fr**)
 - □ NS field = IP addresses DNS of parent zone
 - ☐ TTL field = Lifetime of domain information
 - MX field = reception server of sent messages to DN
 - ☐ For each under-zones of this domain, A field = server @ IP
 - Ex: www
 A
 212.35.125.165
 Web Server domain
- DNS replicate registration of Domain Name, optimizing URL resolution delay. DNS knows a replicated Domain Name is called a secondary DNS.

DNS – Domain Name Server

DNS resolution is performed with IP requests (UDP port 53). Request is forwarded from zone to zone, up to one DNS is answering.

Tell me a story...

- ☐ What happens (protocols, messages exchanged, entities, programs) when I first connect my PC to a network?
- ☐ What happens when I send a message to be routed somewhere? (ping, traceroute, http)
- What are the networking tools/programs you would use to diagnose a non-responding website, local service, a database connection?
- □ How do I build my own IPv6 address based on a prefix that I know? Do I need to be connected to the Internet to have a globally-scoped address?

NAT – Network Address Translation

➤ IP Address translation mechanism, used mainly to interconnect Internet to Intranet (public IP addresses to reserved private addresses).

> This feature can be implemented on the Internet access router, or on the Firewall.

There are 3 address translation modes:

- Static NAT
- Dynamic NAT : PAT
- Port redirection

NAT – Static NAT

- > This feature allows private to public address correspondence.
- ➤ This feature is mainly used when administrator has enough public IP addresses to address private servers (SMTP, WEB, PROXY, etc...)

NAT – Dynamic NAT

- > This feature allows private to public address correspondence.
- ➤ This feature is mainly used to allow Internet access for worker of an enterprise. Source port is modified to isolate the flow and to redirect to the regular IP address.

Some IPv6 basics (1/2)

- Usage : Internet, Intranet, Extranet
- First drafts in 1996, called nglP back then
- ➤ Had a lot of difficulties to become the default version due to resistance, legacy, technical problems and lack of luck
- Multiple IPv6 addresses per interface!
 - Example: 2001:0db8:85a3:0000:0000:8a2e:0370:7334
 - □ Can be compressed to: 2001:db8:85a3::8a2e:370:7334
- 128 bits for one address. That's a lot!
- IPv6 address scopes :
 - □ Local: ::1/128, fe80::/10. Associated with interfaces.
 - ☐ Unique Local addresses (ULA): fc00::/7 (globally scoped)
 - ☐ Globally scoped: e.g. 2001::/32, 2002::/16 (6to4)

Some IPv6 basics (2/2)

- > An IPv6 address MUST be unique in a network
 - □ RFC 4861 Neighbor Discovery is the default IPv6 addressing protocol implemented in every stack
 - You need to "hear" a Router Advertisement with a Globally-scoped prefix
 - Create the Interface ID part using the MAC (deprectaed) or generating an random IID
 - Combine them and associate it to the interface
 - □ RFC 3315 Dynamic Host Configuration Protocol (DHCP) version 6
 - Not every IPv6 stack is provided with an implementation of DHCPv6
 At least at the beginning...
 - A DHCPv6 Server gives a lease for a network configuration to a host
 - Functions more or less the same as v4 DHCP, with some changes...

IPv6 Addresses

- Allows addressing machine <u>interfaces</u> and communication between them.
 - ☐ The IP address (v4 or v6) is for an interface and not a host.
- > 16 bytes for an address

v4	IHL	DiffServ		Total Length						
	ldentif	ication	FF Fragment Offse							
TTL Protocol Header Checksun										
	Source Address (32 bits)									
	Destination Address (32 bits)									
Options (0-10 32 bits lines)										
Payload (Upper Layer)										

Tell me a story...

- ☐ What happens (protocols, messages exchanged, entities, programs) when I first connect my PC to a network?
- ☐ What happens when I send a message to be routed somewhere? (ping, traceroute, http)
- What are the networking tools/programs you would use to diagnose a non-responding website, local service, a database connection?
- □ How do I build my own IPv6 address based on a prefix that I know? Do I need to be connected to the Internet to have a globally-scoped address?