Studying various models of computation

* we have a function $f: A \rightarrow B$

* We want to compute f.

* The computation involves a finite set of operations (chosen from a finite and predefined set of operations) that are applied to x, generating output for).

* The set of predefined operations and the way we give the input and take the output define our computational model.

* We say f is computable in our model if we can find a finite set of operations (a program) that gives the right out put for +X EA.

The SCRAMBLE machine

	infinite number of rows.	00000
	Some of these rows may contain a finite number of balls.	: :
*	There is a lever that points at we have some operations to	a row.

the balls or the lever.

* The machine has a single bit of memory,

which we denote MEM (MEM=false

or true)

o perations

LOWER-LEVER: the lever goes one row below it RAISE-LEVER: " " " " " " above it.

CHECK_EMPTY: checks whether the row that the lever points to is empty.

If so, then sets MEM=TRUE.

OTHERWIS SETS MEM=FALSE.

RESET-BALLS: puts all the balk in the first row.

SCRAMBLE_DOWN:

0000

the balls in rows above the lever will start to fall down until #balls in each row (above the lever) is smaller or equal to its bottom row.

* At the end, if any ball maked, MEM=TRUE 50. W. MEM=FALSE

000 000

SCRAMBLE_UP:

the balls in rows on or above the lever will start to rise until # balls in each row on or above the lever is smaller or equal the lever is smaller or equal to its above row **
** MEM is set like above.

RETURN_FALSE-IF_ MEM_FALSE:

n n n n TRUE:

a TRUE a a a

n ~ FALSE:

these terminate the program only if the condition holds.

LOOP:

LOOP : loops over the ops forever.

Example: Assume $X \in \mathbb{N}$ and we want to compute whether X is even or not. $f(X) = \begin{cases} TRUE, X \text{ is even} \\ FALSE, X \text{ is odd} \end{cases}$

Assume we put the same number of balls as x on the first row, and the lever also points to first row. Write a program that computes f?

write a program that computes f?

LOWER_LEVER

SCRAMBLE_DOWN

SCRAMBLE_UP

RETURN_TRUE_IF_MEM_FALSE

RETURN_FALSE_IF_MEM_TRUE

Write a program that determines if $X \in \mathbb{N}$ is a prime number. $f(x) = \begin{cases} TRUE & x \text{ is prime} \\ FALSE & o.\omega. \end{cases}$

Is there a simple of that cannot be implemented with our scramble machine.