Universidade Federal de Santa Maria UFSM Centro de Tecnologia Departamento de Eletrônica e Computação Anexo I. Sala 271 – A

ELC1011 – Organização de Computadores

ELC1011 - Organização de Computadores

Trabalho 2

Prof. Giovani Baratto

Giovani.Baratto@ufsm.br

5 (55) 98116-2420

Entregar as respostas do trabalho, usando a ferramenta Moodle, na data acordada pelo professor. Envie as soluções dos problemas em um arquivo compactado (tipo ZIP). Para cada problema, descreva detalhadamente a solução (use os arquivos no formato PDF), comentando sempre o resultado. Adicione sempre os arquivos fonte usados na solução.

- 1. Escreva um procedimento, em assembly para o MIPS, para dividir dois números inteiros de 32 bits. Use o segundo algoritmo da divisão, apresentado em sala de aula. Escreva um programa, em assembly para o MIPS, usando este procedimento para realizar a divisão $x \div y$, com x = 0x90357274 y = 0x12341234. Repita a divisão com x = 0x12341234 y = 0x90357274. Mostre a saída da execução do seu programa no programa MARS. Verifique se o resultado da divisão apresentado pelo programa está correto.
- 2. Escreva um procedimento double cos(double x), em assembly para o MIPS, para calcular o cosseno de um ângulo x, dado em radianos. O procedimento calcula o cosseno usando uma série de Taylor expandida em x=0 (veja a equação 1). No procedimento, trunque a a série em n = 7 (até o termo $x^{14}/14!$).

$$\cos\left(x\right) = \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{\left(2 \cdot n\right)!} x^{2 \cdot n} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \frac{x^{14}}{14!} + \dots \tag{1}$$

Crie um programa em assembly para o MIPS. O programa permite a entrada de um ângulo x em graus (°), converte o ângulo para radianos, calcula o cosseno do ângulo usando o procedimento chama o procedimento $\cos()$ e imprime o resultado. Use o programa para calcular o seno de $40,67^{\circ}$. Mostre a saída da execução do seu programa no programa MARS. Verifique se o resultado apresentado pelo seu programa está correto.

3. Represente o número $x=114{,}554\,69$ em ponto flutuante, precisão simples. Mostre os passos na solução deste problema.

- 4. Qual o valor decimal do número x=0x34343400, representado em ponto flutuante, precisão simples. Mostre os passos na solução deste problema.
- 5. Explique detalhadamente, usando as tabelas 1 e 2 e o diagrama de blocos do processador na figura 1, como a instrução sw \$a0, 48(\$at) é executada pelo processador monociclo. Converta a instrução para linguagem de máquina, apresentando os campos. Apresente na figura os sinais de controle. Escreva um texto explicando como a instrução é executada.
- 6. Explique detalhadamente, usando as tabelas 1 e 2 e o diagrama de blocos do processador na figura 1, como a instrução beq \$50, \$1, loop é executada pelo processador monociclo. O endereço desta instrução é 0x004000038 e loop é um rótulo para o endereço 0x00400014. Converta a instrução para linguagem de máquina, apresentando os campos. Apresente na figura os sinais de controle. Escreva um texto explicando como a instrução é executada.
- 7. Explique detalhadamente, usando as tabelas 1 e 2 e o diagrama de blocos do processador na figura 1, como a instrução $j \log f$ é executada pelo processador monociclo. O endereço desta instrução é 0×004000038 e $\log f$ é um rótulo para o endereço 0×00400018 . Converta a instrução para linguagem de máquina, apresentando os campos. Apresente na figura os sinais de controle. Escreva um texto explicando como a instrução é executada.

Tabela 1: Instruções e valores dos sinais na unidade de controle do processador monociclo.

Controle	Sinal	Formato R (0)	lw (35)	sw (43)	beq (4)
Entradas	OP5	0	1	1	0
	OP4	0	0	0	0
	OP3	0	0	1	0
	OP2	0	0	0	1
	OP1	0	1	1	0
	OP0	0	1	1	0
Saídas	RegDst	1	0	Х	X
	UALFonte	0	1	1	0
	MemParaReg	0	1	Χ	Χ
	EscReg	1	1	0	0
	LerMem	0	1	0	0
	EscMem	0	0	1	0
	DvC	0	0	0	1
	UALOp1	1	0	0	0
	UALOp0	0	0	0	1

Tabela 2: Operação da ULA para a combinação de UALOp e o campo de função.

UALOP		Campo de Função							
UALOp1	UALOp0	F5	F4	F3	F2	F1	F0	Operação da ULA	
0	0	Χ	Χ	Χ	Χ	Χ	Χ	0010	soma
X	1	Χ	Χ	Χ	Χ	Χ	Χ	0110	subtração
1	Χ	Χ	Χ	0	0	0	0	0010	soma
1	Χ	Χ	Χ	0	0	1	0	0110	subtração
1	Χ	Χ	Χ	0	1	0	0	0000	and
1	Χ	Χ	Χ	0	1	0	1	0001	or
1	Χ	Χ	Χ	1	0	1	0	0111	slt

Figura 1: Diagrama de blocos do processador monociclo