Demo Problem 1: Introduction to R

- a) Change your working directory. Try the commands help(c) and help(matrix).
- b) Calculate the affine transformation $y = xA^{-1} + b$, where

$$m{A} = egin{pmatrix} 2 & 1 & 5 \ -2 & 7 & 0 \ 5 & -8 & -1 \end{pmatrix}, \qquad m{x}^T = egin{pmatrix} 8 \ -4 \ 2 \end{pmatrix}, \qquad m{b}^T = egin{pmatrix} 3 \ 10 \ -19 \end{pmatrix}.$$

c) Install the package mvtnorm and load the corresponding functions to your workspace. Set the seed to 123 using the command set.seed(123). Generate 100 observations from a two dimensional normal distribution with expected value μ and covariance matrix Σ . Visualize the observations.

$$\mu = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$.

- d) Use the data from part c) and calculate the sample mean \bar{x} and the sample covariance matrix S_x . Calculate the eigenvalues and eigenvectors from the matrix S_x . Verify from the data, that the following equations hold: $\operatorname{Tr}(S_x) = \lambda_1 + \lambda_2 + \ldots + \lambda_p$ and $\operatorname{Det}(S_x) = \lambda_1 \lambda_2 \ldots \lambda_p$, where λ_i are the eigenvalues of S_x .
- e) Calculate the affine transformation $y_i = Ax_i + b$, where

$$\boldsymbol{b} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 and $\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$,

verify that $\bar{y} = A\bar{x} + b$ and $S_y = AS_xA^T$. What does affine equivariance mean in practice?

f) Upload the data from the file data.txt into your workspace. Create a function, that centers your data (removes the mean) and pairwise scatterplots the variables. Calculate the sample covariance and correlation matrices and the corresponding eigenvalues- and vectors.

Demo problem 2: The Eigenvalues of a Symmetric Matrix

Show that the eigenvalues of a real valued symmetric matrix are always real valued.

Homework Problem 1: Functions

In this exercise do not use the built-in functions cov, cor, cov2cor or any additional R packages.

- a) Create an R function that takes a data matrix $X \in \mathbb{R}^{n \times p}$, n > p, as an argument and returns the unbiased estimator of the covariance matrix.
- b) Create an R function that takes a full-rank covariance matrix $A \in \mathbb{R}^{p \times p}$ as an argument and returns the square root of the inverse matrix such that $A^{-\frac{1}{2}}A^{-\frac{1}{2}}=A^{-1}$.
- c) Create an R function that takes a full-rank covariance matrix \boldsymbol{A} as an argument and returns the corresponding correlation matrix.