Data-Warehouse Architecture

Part II

Data-Warehouse Architecture

- Requirements
- Reference Architecture
- Phases of the Data Warehousing
- Components

Requirements

Requirements of the Data Warehousing

- Independence between data sources and analytical systems (w.r.t. availability, load, ongoing changes)
- Continuous provision of integrated and derived data (Persistence)
- Reusability of provided data
- Possibility to conduct arbitrary evaluations
- Support of custom views (e.g., w.r.t. time horizon, domain and structure)
- Extensibility (e.g., Integration of new sources)
- Automation of processes
- Uniqueness of data structures, access rights and processes
- Orientation on the main purpose: data analysis

12 OLAP rules by Codd

- Multidimensional, conceptual view
- Transparency
- Accessibility
- Performance
- Scalability
- Generic Dimensionality
- Dynamic handling of sparse multidimensional structures
- Multi-user mode
- Unrestricted operations
- Intuitive user interface
- Flexible reporting
- Any number of dimensionens und aggregation levels

FASMI

Fast Analysis on Shared Multidimensional Information

- Short response times (on average less than five seconds)
- Simple and flexible ways of evaluation
- Heterogeneous users with different rights
- Multidimensionality is an important criterion
- Questions on the number of required dimensions and ranges of values of associated attributes

Reference Architecture

Reference Architecture

Phases of the Data Warehousing

Phases of the Data Warehousing

- Controlling the sources for changes by using monitors
- Copying relevant data by extraction into the staging area
- Transformation of the data in the staging area (cleansing, integration)
- Copying of the data in an integrated database as the foundation base for various analyzes
- Filling the data cubes (databases for analysis purposes)
- Analysis: operations on data of the DW

Basic database and data cubes represent the data warehouse.

Components

Data Warehouse Manager

- Central component of a DW system
- Initiation, control and monitoring of the individual processes (flow control).
- Initiation of the data collection process
 - At regular time intervals (every night, on weekends, etc.): Starting
 of the data extraction from sources and transferring to the staging
 area
 - For a change in a source: starting of the respective extraction component
 - On explicit request of the administrator
 - Push vs. Pull strategy
 - Timeliness is a requirement for analytical tasks

Data Warehouse Manager

- After triggering the loading process:
 - Monitoring of the further steps (cleansing, integration, etc.)
 - Coordination of the processing order
- Event of a fault
 - Documentation of errors
 - Restart mechanisms
- Access to metadata from the repository
 - Controlling the flow
 - Parameters of the components

Data sources

- Suppliers of data for the data warehouse
 - Do not belong directly to the DW
 - Can be internal (company) or external (e.g., state institution)
 - Heterogeneous with respect to the structure, content and interfaces (databases, files)
 - Selection of sources and quality of the data of particular importance
- Factors for selection
 - Purpose of the DW
 - Quality of the source data
 - Availability (legal, social, technical)
 - Price for data acquisition (especially for external sources)

Data sources: classification

- Origin: internal, external
- Time: current, historical
- Use level: primary data, meta data
- Content: number, string, graphic, reference, document
- Display: numeric, alpha-numeric, BLOB
- Language and character set
- Degree of confidentiality

Data sources: quality requirements

- Consistency (absence of contradictions),
- Correctness (matching reality),
- Completeness (e.g., the absence of missing values or attributes),
- Reliability (e.g., confidence in the data sources),
- Accuracy (e.g., number of decimal places),
- Granularity (e.g., daily or monthly data),
- Timeliness (When was the last change performed vs. the occurence of the data change),
- Relevance (How important is the data?),
- ...

Data sources: quality requirements (2)

- Reliability (traceability of the origin, trustworthiness of the supplier),
- Understandability (content-wise and technical / structural for the respective target group),
- Usability (suitable format, expedience),
- Uniformity (data format),
- Intellegibility (interpretability) and
- Key integrity (keys and references)

Monitors

- Task:
 - Discovery of data manipulations in a data source
- Strategies:
 - Trigger-based
 - Active data base mechanisms
 - → Activation of triggers due to data changes
 - → Copy the modified tuple in another area
 - Replication-based
 - ★ Use of replication mechanisms for the transmission of changed data

Monitors (2)

- Strategies (contd.):
 - Log-based
 - Analysis of transaction log data of the DBMS to detect changes
 - Timestamp-based
 - * Assigning a timestamp to tuples * Update in case of changes
 - ★ Identification of changes since the last extraction by time comparison
 - Snapshot-based
 - Periodic copy of the dataset in a file (snapshot)
 - Comparison of snapshots to identify changes

Staging DB

- Task:
 - Central data management component for data cleaning
 - Temporary buffer for integration
- Use:
 - Execution of transformations (cleaning, integration, etc.) directly in the intermediate storage
 - Loading of transformed data into DW or core database only after successful completion of the transformation
- Advantages:
 - No influence on the sources or the DW
 - No acceptance of erroneous data

Extraction component

- Task: Transfer data from sources in the data staging area
- Function: dependent on the monitoring strategy
 - Periodically
 - On request
 - Event-controlled (e.g., when reaching a defined number of changes)
 - Immediate extraction
- Implementation:
 - Use of standard interfaces (e.g., ODBC, JDBC)
 - Exception handling in case of an error

Transformation component

- Preparation and adjustment of the data to load
 - Content-wise: data / instance integration and cleaning
 - Structural: schema integration
- Transferring all data in a uniform format
 - Data types,
 - Dates,
 - ▶ Units,
 - Encodings, etc.
- Removal of impurities (Data Cleaning or Data Cleansing)
 - Incorrect or missing values,
 - Redundancies.
 - Outdated values.

Transformations component (2)

- Data Scrubbing:
 - Utilization of domain-specific knowledge (e.g. business rules) to detect impurities
 - Example: detection of redundancies
- Data Auditing:
 - Application of data mining methods to uncover rules
 - Detection of deviations

Loading component

Task:

 Transfer of the adjusted and processed (e.g., aggreated) data to the core database or the DW

Features:

- Use of special loading tools (e.g, SQL*Loader by Oracle)
 - → Bulk loading
- Historicization: Changes in sources may not overwrite DW data, instead they are stored in addition

Loading process:

- Online: Core database or DW is still available
- Offline: not available (time window: at night, during weekends)

Core database

- Task:
 - Integrated database for various analyses
 → independent of specific analyses, i.e., no aggregations yet
 - Supply of the DW with adjusted data (possibly by compression)
- Notes:
 - Often ommitted in practice
 - Equivalent to Operational Data Store (ODS) by Inmon

Data Cube

- Task: databases for analysis purposes (relational or multi-dimensional)
- Structure based on analysis needs
- Basis: DBMS
- Features:
 - Support the load process
 - * Fast loading of large amounts of data
 - → Bulk loader, bypassing multi-user coordination and consistency checks
 - Support of the analysis process
 - Efficient query processing (index structures, caching)
 - ★ Multidimensional data model (e.g., via OLE DB for OLAP)

Data Warehouse

In a narrower sense:

Core database and data cubes represent the data warehouse.

 In a broader sense, the data marts also provide components of the data warehouse.

Data Marts

- Task:
 - Providing a content-restricted view of the DW (e.g., Department)
- Reasons:
 - Autonomy, privacy, load balancing, data volume, etc.
- Implementation:
 - Distribution of the DW data
- Forms:
 - Dependent data marts
 - Independent data marts

Dependent Data Marts

- Distribution of the data set after
 - Integration and cleanup (core database) and
 - Organization in accordance with the analysis needs (data cube)
- "Hub and Spoke" architecture
- Data Mart:
 - Only excerpt (including aggregation) of the Data Warehouse
 - No adjustment or normalization
- Analyses on data mart consistent with analyses on DW
- Simple implementation:
 - Replication or view mechanisms of DBMS

"Hub and Spoke" architecture

Dependent Data Marts: Extraction process

- Structural extracts
 - Limited to parts of the schema
 - Example: only certain metrics or dimensions
- Content-based extracts
 - Content-based restriction
 - Example: only certain branches or the last year's result
- Aggregated extracts
 - Reducing the granularity
 - Example: restriction on monthly results

Independent Data Marts

- Independently created "small" data warehouses (e.g., of individual organizations).
- Subsequent integration and transformation
- Problems:
 - Different analysis views (Data Mart, global Data Warehouse)
 - Consistency of the analysis due to additional transformation

Independent Data Marts

Analysis tools

- Business Intelligence Tools
- Task:
 - Presentation of the data collected
 - Interactive navigation
 - Analysis options
- Analysis:
 - Simple arithm. operations (e.g., aggregation) ... complex statistical analysis (e.g., data mining)
 - Preparation of the results for further processing or forwarding

Analysis tools: Representation I

Tables

- Pivot Tables: = crosstabs feature values in the row and column header
- Analyzing by interchanging rows and columns
- Change of table dimensions
- Nesting of table dimensions

Revenue		Beer	Red wine	Summe
2009	Sachsen-Anhalt	45	32	77
	Thüringen	52	21	73
	Summe	97	53	150
2010	Sachsen-Anhalt	60	37	97
	Thüringen	58	20	78
	Summe	118	57	175

Analysis tools: Representation II

- Graphics
 - Visualization of large data sets
 - Net, dot, surface graphs
- Text and multimedia elements
 - Addition of audio or video data
 - Inclusion of document management systems

Analysis tools: Functionality

- Data Access
 - Reporting Tools
 - Reading of data, changing Presentation in reports
 - Presentation in reports
 - "Traffic lights": rule-based formatting
 - ▶ Base: SQL

Analysis tools: Example [Cognos, 2012]

Analysis tools: Functionality

OLAP

- Interactive data analysis, classification navigation
- Reports with aggregated values (metrics / indicators)
- Navigation operations:
 - ★ Drill Down,
 - Roll Up
 - Drill Across,
 - Dice und
 - Slice
- Aggregation and calculation functions (statistic, economic)
- Validating hypotheses, plausibility check

Analysis tools: Example [Cognos, 2012]

Analysis tools: Functionality

- Data Mining
 - Uncovering previously unknown relationships
 - \rightarrow Patterns, paths, rules
 - Methods (among others):
 - ★ Classification: assignment of data to predefined classes
 - * Association rules
 - Clustering: segmentation, i.e., grouping data regarding their characteristic values
 - ★ Forecast

Data Mining: Examples

Types of analyses

Analysis tools: Implementation

- Standard Reporting:
 - Reporting tools of classical reporting
- Record books:
 - Graphical development environment for creating presentations of tables, graphs, etc.
- Ad-hoc Query & Reporting:
 - Tools for the creation and presentation of reports
 - Hide database connection and query languages

Analysis tools: Implementation

- Analysis Clients:
 - Tools for multidimensional analysis
 - Include navigation, manipulation (computing), advanced analysis and presentation functions
- Spreadsheet add-ins:
 - Extension of spreadsheets for data connection and navigation
- Development Environments:
 - Supporting the development of own analytic applications
 - Provision of operations on multidimensional data

Repository

- Task:
 - Storing the metadata of the DW system
- Metadata:
 - Information simplifying the construction, maintenance and administration of the DW system and enabling information retrieval
 - Examples:
 - Database schemas,
 - Access rights,
 - ★ Process information (processing steps and parameters), etc.

Metadata Manager

- Tasks:
 - Control of the metadata management
 - Access, query, navigation
 - Version and configuration management
- Forms:
 - General use: extensible base schema
 - Tool-specific: fixed part of tools
- Frequently integration and exchange between decentralized metadata management systems necessary

Summary

- Reference architecture for Data Warehouse systems
- Process of the Data Warehousing
- Roles of components
- Data Marts as extracts of the DW
- Analysis tools: Classification and examples