Athletix

A Fitness Intelligence Technology

Software Requirements Specification (SRS)

Team Members:

Khawaja Mohammad Abdullah Ishaq 22P-9375 Azhan Shoaib 22P-9054 Subhan Tariq 22P-9067

Supervised By:

Dr. Muhammad Amin

Contents

1	Intr	Introduction						
	1.1	Purpose	2					
	1.2	Scope	2					
	1.3	Definitions, Acronyms, and Abbreviations	2					
	1.4	References	3					
2	Overall Description							
	2.1	Product Perspective	4					
	2.2	Product Functions	4					
	2.3	User Characteristics	5					
	2.4	Constraints	5					
	2.5	Assumptions and Dependencies	5					
3	Specific Requirements							
	3.1	Functional Requirements	6					
	3.2	Non-Functional Requirements	6					
	3.3	Software Interfaces	6					
	3.4	Hardware Interfaces	7					
	3.5	Communication Interfaces	7					
4	System Design Constraints							
5	Future Enhancements							
6	Appendices							
	6.1^{-}	Tools & Technologies	7					

1 Introduction

1.1 Purpose

The purpose of this document is to define the software requirements for **Athletix** – **Fitness Intelligence Technology**, a cross-platform AI-powered mobile application that serves as a Virtual Fitness Trainer. It provides personalized workouts, culturally adaptable diet plans, and real-time form analysis using Computer Vision, Machine Learning, Reinforcement Learning, and Natural Language Processing.

The document serves as a reference for the development team, stakeholders, and evaluators to ensure a clear understanding of project objectives, functional requirements, and system behavior.

1.2 Scope

Athletix aims to bridge the gap between traditional personal training and AI-driven digital health solutions by providing:

- Real-time posture correction and exercise analysis via HRNet-based pose estimation.
- Adaptive workout planning and diet generation based on user goals, body attributes, and preferences.
- Reinforcement learning-enabled personalization that evolves as the user progresses.
- Conversational AI trainer (RAG + fine-tuned LLM) for guidance, exercise substitutions, and recovery tips.
- Culturally and medically adaptable diet planning (e.g., halal, diabetic, vegan options).
- Progress tracking and gamified visualization for engagement.

1.3 Definitions, Acronyms, and Abbreviations

Term	Description
AI	Artificial Intelligence
ML	Machine Learning
CV	Computer Vision
RL	Reinforcement Learning
LLM	Large Language Model
RAG	Retrieval-Augmented Generation
FAISS	Facebook AI Similarity Search (Vector Database)
HRNet	High-Resolution Network (Pose Estimation)
TFLite	TensorFlow Lite (for mobile inference)

1.4 References

- 1. Lewis et al. (2020), Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, NeurIPS.
- 2. Ahmad et al. (2022), Mobile Apps for Human Nutrition: A Review.
- 3. Riccio et al. (2021), Real-Time Fitness Exercise Classification and Counting from Video Frames.
- 4. United States Department of Agriculture (2023), FoodData Central.
- 5. World Health Organization (2024), Physical Activity Guidelines.
- 6. Expert Consultation: Dr. Znair Azam Certified Fitness Trainer & Nutritionist.

2 Overall Description

2.1 Product Perspective

Athletix is an intelligent fitness assistant that operates as a standalone mobile app. It integrates:

- Frontend: React Native (cross-platform)
- Backend: FastAPI with PostgreSQL & FAISS vector DB
- AI Modules: TensorFlow Lite, PyTorch, MediaPipe/HRNet, and Hugging Face Transformers

The system interacts with:

- Camera for real-time pose detection
- Nutrition databases (USDA API)
- Local data storage and cloud backup for user profiles and progress

2.2 Product Functions

- 1. User Authentication: Secure signup/login with profile setup.
- 2. User Profiling: Collect body attributes (height, weight, age, gender, fitness goal, medical/cultural constraints).

3. Form Analysis Module:

- Detect exercise form using HRNet keypoints.
- Compare with biomechanics-based correct pose templates.
- Provide instant feedback and correction suggestions.

4. Workout Planner:

- Generate customized workout plans using ML models based on user profile and goal.
- Reinforcement Learning adapts plans weekly based on progress.

5. Diet Planner:

- Generate diet plans via constraint-based optimization and contextual bandits.
- Ensure macro balance and cultural/medical compliance.

6. Virtual AI Trainer (RAG + LLM):

- Provide natural language answers to user queries.
- Offer modifications, recovery tips, and machine usage guidance.

7. Progress Tracker:

- Visual graphs showing progress in body metrics, calorie intake, and workout adherence.
- Gamified badges for motivation.

8. Offline Mode:

• On-device inference using TensorFlow Lite for real-time analysis without cloud dependency.

2.3 User Characteristics

User Type	Description
Beginner	Users new to fitness who need step-by-step guidance and visual form feedback.
Intermediate	Users with experience seeking adaptive plans and diet tracking.
Medical/Cultural Users	Users requiring restrictions (e.g., halal, diabetic).

2.4 Constraints

- Real-time processing limited by mobile hardware.
- Requires camera permissions for pose detection.
- Limited connectivity may affect RAG model responses.
- Dataset collection requires diversity to avoid bias.

2.5 Assumptions and Dependencies

- Users provide accurate input for body attributes.
- External APIs (USDA, WHO) remain accessible.
- TensorFlow Lite supports optimized HRNet on targeted devices.

3 Specific Requirements

3.1 Functional Requirements

ID	Requirement	Description
FR-1	User Authentication	Login and registration via email or Google account.
FR-2	User Profiling	Collect personal and fitness data for plan generation.
FR-3	Pose Detection	Capture live video, extract body keypoints, analyze form using HRNet.
FR-4	Workout Generation	ML-based personalized workout plan based on goal.
FR-5	Diet	Constraint-based optimizer generates daily diet
	Recommendation	plan.
FR-6	Virtual Trainer	RAG + fine-tuned LLM handles all
		fitness-related Q&A.
FR-7	Reinforcement	Adapt workout/diet plans weekly based on
	Learning Engine	feedback and progress.
FR-8	Progress Tracking	Visual analytics dashboard for calories, weight, workout adherence.
FR-9	Data Storage	PostgreSQL for structured data; FAISS for vector retrieval.
FR-10	Offline Functionality	On-device inference for pose and progress tracking.

3.2 Non-Functional Requirements

Category	Description
Performance	App should provide feedback within 500ms after each pose frame.
Security	Encrypt all user data; JWT authentication for API access.
Scalability	Support multiple concurrent users via asynchronous FastAPI.
Portability	Run on both Android and iOS via React Native.
Usability	Simple, intuitive UI with real-time visual feedback.
Reliability	Maintain

3.3 Software Interfaces

 $\bullet \ \mathbf{Frontend} \leftrightarrow \mathbf{Backend:} \ \mathrm{REST} \ \mathrm{APIs} \ (\mathrm{FastAPI})$

 \bullet Backend \leftrightarrow AI Models: TensorFlow Lite and PyTorch

- Backend ↔ Database: PostgreSQL (user data), FAISS (LLM retrieval)
- External APIs: USDA, WHO, Nutritionix

3.4 Hardware Interfaces

- Mobile camera (for form analysis)
- Microphone (for future voice-based trainer queries)
- Local storage (for temporary data caching)

3.5 Communication Interfaces

- HTTPS for all API communication
- WebSocket for real-time updates

4 System Design Constraints

- Model quantization and pruning required for HRNet on mobile.
- RAG responses must be filtered for medical accuracy.
- Offline caching for rural or low-connectivity users.

5 Future Enhancements

- Integration of wearable sensor data (heart rate, steps).
- Voice-based interaction for hands-free training.
- Community and leaderboard features.
- Multi-language support.

6 Appendices

6.1 Tools & Technologies

Component	Technology
Frontend	React Native
Backend	FastAPI
Database	PostgreSQL + FAISS
AI Models	HRNet, MediaPipe, Hugging Face Transformers
ML Frameworks	TensorFlow Lite, PyTorch
Optimization	Scipy, Pyomo
Version Control	GitHub