2017 Digital IC Design

Homework 4: Edge-Based Line Average interpolation

1. Introduction

The interlaced video comprises two types of fields in the sequence, one is the odd and another is the even field. The de-interlacing process is to convert the interlaced video into the non-interlaced form as shown in Fig. 1. The simplest method is intrafield interpolation, which use the existing pixels in the field to generate the empty lines. For instance, the empty lines can be filled via line doubling, which is quite easy to be implemented but the resulting image is not good enough in visual quality. In this homework, you are asked to implement the Edge-Based Line Average interpolation algorithm. As the direction of edge is considered, the de-interlaced image has a better quality than merely doubling the existing lines.

(a) (b) Fig. 1. The odd field of an interlaced video sequence (a) and the complete frame after de-interlacing (b).

Assume that the pixel to be interpolated is located at coordinate (i, j) and pixels a to f are the neighboring points, which is shown in Fig. 2. First of all, three different directions at the interpolated position is calculated using (1), and the value of interpolated pixel is obtained by (2) and output before rounding.

Fig. 2. The interpolated pixel and its neighboring points

$$\begin{cases}
D_1 = |a - f| \\
D_2 = |b - e| \\
D_3 = |c - d|
\end{cases}$$
(1)

$$x(i,j) = \begin{cases} (a+f)/2, & \text{if } \min(D_1, D_2, D_3) = D_1\\ (b+e)/2, & \text{if } \min(D_1, D_2, D_3) = D_2\\ (c+d)/2, & \text{if } \min(D_1, D_2, D_3) = D_3 \end{cases}$$
 (2)

If there are identical direction values, the priority of the three directions is $D_2>D_1>D_3$. For instance, $D_1=20$, $D_2=30$, $D_3=20$, then $min(D_1, D_2, D_3)=D_1$. The left and right boundary interpolation is fixed to (b+e)/2.

2. Design Specifications

2.1 Block Overview

2.2 I/O Interface

Signal Name	I/O	width	Description			
clk	I	1	clock for the ELA system			
rst	I	1	active high synchronous reset			
in_data	I	8	The 8-bit input pixel data.			
req	О	1	The request signal for a line of pixels.			
valid	О	1	Output signal. The output data is valid when the signal is high. The req signal must be 0 when you set valid to 1.			
out_data	О	8	The 8-bit output pixel data.			

2.3 File Description

File Name	Description		
ELA.v	RTL code for using Verilog		
testfixture.v	Test bench for verifying design		
test1.data	Input pattern 1		
test2.data	Input pattern 2		
golden1.data	Golden output pattern 1		
golden2.data	Golden output pattern 2		
cycloneii_atoms.v	Simulation library for gate-level simulation		

The given test patterns are 16x5 image, you have to output the complete 16x9 image!

3. Scoring

3.1 Functional Simulation (pre-sim) [60%]

All of the result should be generated correctly using two test patterns (modify the testfixture), and you will get the following message in ModleSim simulation. You can turn off the timing check in pre-sim only.

```
VSIM 10> run -all
# ------
# \^0^/ All data have been generated successfully! \^0^/
# -------
# ** Note: $finish : E:/2016DICHW/HW4/testfixture.v(67)
# Time: 7025 ns Iteration: 0 Instance: /test
# 1
# Break in Module test at E:/2016DICHW/HW4/testfixture.v line 67
```

3.2 Gate-Level Simulation (post-sim) [20%]

3.2.1 Synthesis

Your code should be synthesizable. After synthesizing in Quartus, the file named *ELA.vo* and *ELA.sdo* will be obtained.

Device: Cyclone II EP2C70F896C8

3.2.2 Simulation

All of the result should be generated correctly using two test patterns by *ELA.vo* and *ELA.sdo*, and you will get the pass message in ModleSim simulation. (There should be no setup or hold time violations.)

3.3 Performance **[20%]**

The performance is scored by the logic elements you used and the simulation time in post-sim. The scoring equation is (*Total logic elements* + *total memory bit* + 9*embedded multiplier 9-bit element) × (longest gate-level simulation time in <math>ns). (The smaller the better).

Flow Status	Successful - Thu Nov 17 21:39:38 2016				
Quartus II Version	10.0 Build 262 08/18/2010 SP 1 SJ Full Version				
Revision Name	ELA ELA Cydone II EP2C70F896C8 Final				
Top-level Entity Name					
Family					
Device					
Timing Models					
Met timing requirements	Yes				
Total logic elements	(459 / 68,416 (< 1 %)				
Total combinational functions	427 / 68,416 (< 1 %)				
Dedicated logic registers	159 / 68,416 (< 1 %)				
Total registers	159				
Total pins	20 / 622 (3 %)				
Total virtual pins	0				
Total memory bits	0 / 1,152,000 (0 %)				
Embedded Multiplier 9-bit elements	0 / 300 (0 %)				
Total PLLs	0/4(0%)				
	-, -, -, -, -, -, -, -, -, -, -, -, -, -				

4. Submission

4.1 Submitted files

You should classify your files into three directories and compressed to .zip format. The naming rule is **HW4_***studentID_name_version.*zip. The *vision* is v1 for the first submission, and v2, v3... for the revisions.

RTL category				
*.V	*.v All of your verilog RTL code			
Gate-Level category				
*.vo	Gate-Level netlist generated by Quartus			
*.sdo	SDF timing information generated by Quartus			
Documentary category				
*.pdf	The report file of your design (in pdf).			

4.2 Report file

You have to describe how the circuit is designed as detailed as possible, and the flow summary result and simulation results are necessary. **Please follow the specification in appendix.**

4.3 Please submit your .zip file to folder HW4 in the ftp site.

Deadline: 2017-12-12 23:59

ftp: 140.116.245.92

Usermame : ic_design Password : icdesign

5. If you have any problem, please contact the TA by email:

weiting84610@gmail.com p78031175@mail.ncku.edu.tw

2017 Digital IC Design

Homework 4: Edge-Based Line Average interpolation

NAME		10 11 0	2081				ige interpolati	
Student I	D							
Simulation Result								
Test	Functi					Pass or	Gate-level	simulation
pattern 1	simula	tion	Fail simul		ation	Fail	simulation time	time (ns)
Test	Functi	onal			evel	Pass or	Gate-level	simulation
pattern 2	simula	tion	Fail	simula	ition	Fail	simulation time	time (ns)
your pro	e-sim 1	esult	of two test	patterns		your post-s	sim result of two	o test patterns
				Synth	esis	Result		
Total logi	ic elem	nents						
Total mei								
			9-bit eleme	ent				
(your flow	w sum	mary)						
Description of your design								

 $Scoring = (Total\ logic\ elements + total\ memory\ bit + 9*embedded\ multiplier\ 9-bit$ $element) \times (longest\ gate-level\ simulation\ time\ in\ \underline{ns})$