Elementary Statistical Inference
Ringmial distribution;
Let X = { 1 succes, X~ Bin(n, +), & \in(n, +), \in(n, +)
Bayes estimator (continuous case) The Bayes estimator w.r.t. the prior donsity T is the estimator T that minimizes R(T;T) over all T. The Bayes estimate for g(B) w.r.t. the posterior The Bayes estimate for g(B) w.r.t. the posterior density T is given by: \[\int g(\theta) P_\theta(x) T(\theta) d\theta \] \[\int P_\theta(x) T(\theta) d\theta \]
$\int \rho_{\theta}(x) II(\theta) d\theta$
Nown; Θ ∈ [0,1] to estimate; Beta prior (1) = \(\frac{1}{\pi(\beta)} \\ \text{θ}^{\alpha-1} \((\beta) \) We find that \(\text{θ}_{bay} = \left _{\beta,\beta}(X) = \frac{X+\alpha}{n+\alpha+\beta} \) We find a different of the class of Bayes as imator for each combination of parameters (\alpha, \beta); \alpha > 0; \beta > 0. Note: \(\text{θ}_{mle} = \text{X/n is not in the class of Bayes estimators.} \) Reference: \(\text{An introduction to mathematical statistics}, \) Reference: \(\text{An introduction to mathematical statistics}, \) Bijma; \(\text{Jonker}; \text{van der Vaait}, \text{2016}\)