Cairo University FCI

Parsing

- CFG grammar is about categorizing the statements of a language.
- Parsing using CFG means categorizing a certain statements into categories defined in the CFG.
- Parsing can be expressed using a special type of graph called Trees where no cycles exist.
- •A parse tree is the graph representation of a derivation.

Parse tree

(1)A vertex with a label which is a Non-terminal symbol is a parse tree.

(2) If $A \rightarrow y_1 y_2 ... y_n$ is a rule in R, then the tree

is a parse tree.

Ambiguity

- A grammar can generate the same string in different ways.
- Ambiguity occurs when a string has two or more leftmost derivations for the same CFG.
- There are ways to eliminate ambiguity such as using Chomsky Normal Form (CNF) which does n't use Λ.

Ex 1

Even-Plaindrome grammar

- i.e. {Λ, ab, abbaabba,... }
- \bullet S \rightarrow aSa| bSb| Λ

Derive abaaba

- Deduce CFG of a addition and parse the following expression 2+3+5
- $\odot 1] S \rightarrow S + S | N$
- \bullet 2] N \rightarrow 1|2|3|4|5|6|7|8|9|0

Can u make another parsing tree?

- Deduce CFG of a addition/multiplication and parse the following expression 2+3*5
- \odot 1] S \rightarrow S+S|S*S|N
- $\odot 2] N \rightarrow 1|2|3|4|5|6|7|8|9|0| N$

Can u make another parsing tree?

Ex4 CFG without ambiguity

- Deduce CFG of a addition/multiplication and parse the following expression 2*3+5
- 1] $S \rightarrow Term \mid Term + S$
- 2] Term \rightarrow N|N * Term
- 3] $N \rightarrow 1|2|3|4|5|6|7|8|9|0$

Can u make another parsing tree?

$$S \rightarrow A \mid A \mid B$$

 $A \rightarrow \Lambda \mid a \mid A \mid b \mid A \mid A$
 $B \rightarrow b \mid b \mid c \mid B \mid c \mid b \mid B$

Sample derivations:

$$S \Rightarrow AB \Rightarrow AAB \Rightarrow$$
 $aAB \Rightarrow aaB \Rightarrow aabB \Rightarrow aabb$

$$S \Rightarrow AB \Rightarrow AbB \Rightarrow Abb \Rightarrow AAbb \Rightarrow Aabb \Rightarrow aabb$$

$$S \rightarrow A \mid A B$$

 $A \rightarrow \Lambda \mid a \mid A b \mid A A$
 $B \rightarrow b \mid b c \mid B c \mid b B$

$$w = aabb$$

PDA

- A Pushdown Automata (PDA) is a DFA equipped with a single stack.
- ullet A PDA is a 6-tuple $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ where
 - -Q: finite set of states
 - $-\Sigma$: finite input alphabet
 - $-\Gamma$: finite stack alphabet
 - $-\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \longrightarrow 2^{Q \times \Gamma_{\epsilon}}$

e.g.:
$$\delta(q, a, Z) = \{(p_1, r_1), (p_2, r_2), \cdots, (p_n, r_n)\}$$

- $-q_0 \in Q$: start state
- $-F \subseteq Q$: set of accept states

PDA as a deterministic machine

Its inputs are

- 1. The current state (of its "NFA"),
- 2. The current input symbol (or Λ), and
- 3. The current symbol on top of its stack.

4 3 2 1

Its actions are:

- 1. Change state.
- 2. Change stack if needed.

THANK YOU