There is an $m \times n$ rectangular island that borders both the **Pacific Ocean** and **Atlantic Ocean**. The **Pacific Ocean** touches the island's left and top edges, and the **Atlantic Ocean** touches the island's right and bottom edges.

The island is partitioned into a grid of square cells. You are given an $m \times n$ integer matrix heights where heights [r] [c] represents the **height above sea level** of the cell at coordinate (r, c).

The island receives a lot of rain, and the rain water can flow to neighboring cells directly north, south, east, and west if the neighboring cell's height is **less than or equal to** the current cell's height. Water can flow from any cell adjacent to an ocean into the ocean.

Return a **2D list** of grid coordinates result where result[i] = $[r_i, c_i]$ denotes that rain water can flow from cell (r_i, c_i) to **both** the Pacific and Atlantic oceans.

Example 1:

Pacific Ocean						
Pacific Ocean	1	2	2	3	5	Atlantic Ocean
	3	2	3	4	4	
	2	4	5	3	1	
	6	7	1	4	5	
	5	1	1	2	4	
Atlantic Ocean						

Input: heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]

Output: [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[4,0]]

Note that there are other possible paths for these cells to flow to the Pacific and Atlantic oceans.

Example 2:

```
Input: heights = [[1]]
Output: [[0,0]]
Explanation: The water can flow from the only cell to the Pacific and Atlantic oceans.
```

Constraints:

- m == heights.length
- n == heights[r].length
- $1 \le m$, $n \le 200$
- 0 <= heights[r][c] <= 10⁵

[3,1] -> [4,1] -> Atlantic Ocean

[4,0]: [4,0] -> Pacific Ocean

[4,0] -> Atlantic Ocean