

第五课 决策树分类

主讲人: 丁兆云

01

回顾

 $\begin{bmatrix} 02 \end{bmatrix}$

深入

03

买选

1 决策树回顾

训练集如右图所示:

根据训练集数据建立决策树,并判断顾客:

(青年,低收入,无游戏爱好,中等信用度)

是否有购买电脑的倾向

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	否
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	否
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

1 决策树回顾

训练集如右图所示:

根据训练集数据建立决策

树,并判断顾客:

(青年, 低收入, 无游戏爱好,

中等信用度)

是否有购买电脑的倾向

C0:9

C1:4

纯性小

(不确定性大)

购 否 否 是 是 是 否 是

否

否

1.1 Entropy 基于熵 —— 信息增益算法ID3

1、假设以年龄为树的根节点

id	年龄	收入	爱好	信用	购买
Iu					
1	青	高	否	中	否
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	否
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

id	收入	爱好	信用	购买
4	中	否	中	是
5	低	是	中	是
6	低	是	优	否
10	中	是	中	是
14	中	否	优	否

id	收入	爱好	信用	购买
1	高	否	中	否
2	高	否	优	否
8	中	否	中	否
9	低	是	中	是
11	中	是	优	是

id	收入	爱好	信用	购买
3	高	否	中	是
7	低	是	优	是
12	中	否	优	是
13	高	是	中	是

1.1 Entropy 基于熵 —— 信息增益算法ID3

1、假设以年龄为树的根节点

C0:4 C1:0

纯性大

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	否
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	否
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

id	收入	爱好	信用	购买
4	中	否	中	是
5	低	是	中	是
6	低	是	优	否
10	中	是	中	是
14	中	否	优	否

id	收入	爱好	信用	购买
1	高	否	中	否
2	高	否	优	否
8	中	否	中	否
9	低	是	中	是
11	中	是	优	是

id	收入	爱好	信用	购买
3	高	否	中	是
7	低	是	优	是
12	中	否	优	是
13	高	是	中	是

1.1 Entropy 基于熵 —— 信息增益算法ID3

$$Entropy(S) = -\sum_{i=1}^{C} p_i \log(p_i)$$
 不确定性

Gini

- 熵值越高,数据越混乱
- 熵值越低,数据越纯

回顾

(02) 深入

2.1 讨论一:属性分裂对ID3算法的影响

1、假设以年龄为树的根节点

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	否
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	否
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

id	收入	爱好	信用	购买
4	中	否	中	是
5	低	是	中	是
6	低	是	优	否
10	中	是	中	是
14	中	否	优	否

id	收入	爱好	信用	购买
1	高	否	中	否
2	高	否	优	否
8	中	否	中	否
9	低	是	中	是
11	中	是	优	是

id	收入	爱好	信用	购买
3	高	否	中	是
7	低	是	优	是
12	中	否	优	是
13	高	是	中	是

2.1.1 思考, 哪棵树子节点纯性最高?

在划分前: 10 个记录 class 0,

10 个记录 class 1

$$Entropy(S) = -\sum_{i=1}^{C} p_i \log(p_i)$$

Entropy Bias

基于熵,会趋向于具有大量不同值的划分如:利用雇员id 产生更纯的划分,但它却毫无用处。

2.1.2 考虑增益率 (Gain Ratio) C4.5算法

解决该问题的策略有两种:

- 限制测试条件只能是二元划分
- 使用增益率,K越大,SplitINFO越大,增益率被平衡。

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	否
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	否
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

2.1.2 考虑增益率 (Gain Ratio) C4.5算法

$$Gain(age) = 0.246$$

$$Gain(income) = 0.029$$

$$Gain(fancy) = 0.151$$

$$Gain(credit_rating) = 0.048$$

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	否
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	否
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2(\frac{4}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14}) - \frac{4}{14} \times \log_2(\frac{4}{14}) = 1.557$$

 $gain_ratio(income) = 0.029/1.557 = 0.019$

决策树特征构造适合采用如下哪种方法

- A 单调变换
- **B** 线性组合

$$Gain(S, A) = Entropy(S) - \sum_{v \in A} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Entropy(S) = -\sum_{i=1}^{C} p_i \log(p_i)$$

作答

1	Œ		
2	正		
3	正		
4	正		
6	正		
5	负		
7	负 负		
8	负		
9	负		
10	负		

1	Œ	1	
2	正	2	
3	正	3	
4	正	6	
6	正	5	
5	负	7	
7	负	8	
8	负	9	
9	负	10	
10	负	11	

1	Œ	1	2	
2	正	2	4	
3	正	3	6	
4	正	6	10	
6	正	5	11	
5	负	7	12	
7	负	8	15	
8	负	9	17	
9	负	10	19	
5 7 8	负 负 负	7 8 9	12 15 17	

负

• 特点:

- 决策树是一种构建分类模型的非参数方法
- 不需要昂贵的的计算代价
- 决策树相对容易解释
- 决策树是学习离散值函数的典型代表
- 决策数对于噪声的干扰具有相当好的鲁棒性
- 冗余属性不会对决策树的准确率造成不利影响
- 数据碎片问题:随着数的生长,可能导致叶结点记录数太少, 对于叶结点代表的类,不能做出具有统计意义的判决
- 子树可能在决策树中重复多次, 使决策树过于复杂
- 决策树无法学习特征之间的线性关系:特征构造

01

回顾

 $\begin{bmatrix} 02 \end{bmatrix}$

深入

03

实践

3 决策树分类编程实践

- from sklearn import tree
- from sklearn import svm
- from sklearn.naive_bayes import GaussianNB
- import pandas as pd
- data url = "iris.csv"
- df = pd.read_csv(data_url)
- x = df.ix[:, 1:5]
- y = df.ix[:, 5]
- clf = GaussianNB() 【同学们自己思考修改该函数】
- clf = clf.fit(x, y)
- data_urltest = "iristest.csv"
- dftest = pd.read_csv(data_urltest)
- xtest = dftest.ix[:, 1:5]
- print(clf.predict(xtest))

https://scikit-

learn.org/stable/modules/tree.html

https://scikit-

<u>learn.org/stable/modules/ensemble.</u>

html#forests-of-randomized-trees

Any Questions?

谢 谢!