

Announcements

 If you have changed groups (let me know via email ASAP) - what was your old group (6-digit ID and group member names) and what is your new group (6-digit ID and group member names).

Temperature Data from Assignment #2

Let's open up R...

Differences

- t-test and z-test are used to determine if there is a statistically significant difference between 2 distributions
- Analysis of Variance (ANOVA) is a test to determine if there is a statistically significant difference between 3 or more distributions

Is there a difference?

Variability between groups

Variability within groups

$$F = \frac{MS_B}{MS_W}$$

Is there a difference?

Step 1: Calculate the average of all samples weighted by # of observations in a sample
 (n) and the total number of samples (N)

$$\overline{X}_T = \frac{\sum n_i \overline{X}_i}{N}$$

 Step 2: Calculate between-group sum of squares (SS_B)

$$SS_B = \sum n_i (\overline{X}_i - \overline{X}_T)^2$$

$$F = \frac{MS_B}{MS_W}$$

 Step 3: Calculate the between-group mean squares (MS_B) based on the number of samples (k)

$$MS_B = \frac{SS_B}{df} = \frac{SS_B}{k - 1}$$

 Step 4: Calculate the within-group sum of squares based on number of observations in each sample and the standard deviation

$$SS_W = \sum (n-1)s^2$$

$$F = \frac{MS_B}{MS_W}$$

 Step 5: Calculate the within group mean squares (MS_w) based on total number of samples (N) and the number of groups (k)

$$MS_{W} = \frac{SS_{W}}{df} = \frac{SS_{W}}{N - k}$$

Step 6: Calculate the test statistic (F-Statistic):

$$F = \frac{MS_B}{MS_W}$$

$$F = \frac{MS_B}{MS_W}$$

Case A: If the samples are from the same population then the between-group and within-group variance will be approximately the same and F=1

$$F = \frac{MS_B}{MS_W}$$

Case B: If the samples are not from the same population then the between-group variance will be greater than the within-group variance and F>1

Between group degrees of freedom (*k-1*)

Within group degrees of freedom N-k

Critical value of F for result to be significant at 95% confidence level

Significant if F>F_{critical}

Not Significant if F≤F_{critical}

																			_
							df _B												
dfw	1	2	3	4	5	0	7	8	9	10	12	15	20	24	30	40	60	120	$ \infty $
1	61.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	1).13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	5.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4./5	3.89	49.د	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.60	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.92	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65

	Sample A	Sample B	Sample (
1	30.7	25.7	27.0
2	29.6	27.6	28.3
3	26.8	26.6	28.9
4	33.4	28.0	28.3
5	31.4	27.3	27.9
6	31.1	26.7	27.8
7	30.6	27.3	28.2
8	28.2	26.7	27.0
9	30.4	26.8	26.4
10	28.6	27.4	26.6
11	28.2	30.2	26.3
12	30.6	30.3	26.2
13	29.8	31.8	27.4
14	28.9	28.1	28.0
15	29.9	30.1	28.5
16	29.8	34.1	27.3
17	30.3	33.9	27.4
18	32.3	30.8	26.6
19	29.6	30.7	26.7
20	31.4	30.4	26.1
Mean	30.1	29.0	27.3
Stdev	1.5	2.5	0.9

Temperature Data

Research Question: Is there is a significant difference between surface temperatures on pavement, cement and grass

Alternate Hypothesis

Significant Difference

Null Hypothesis

No Significant Difference

	Sample A	Sample B	Sample C
1	30.7	25.7	27.0
2	29.6	27.6	28.3
3	26.8	26.6	28.9
4	33.4	28.0	28.3
5	31.4	27.3	27.9
6	31.1	26.7	27.8
7	30.6	27.3	28.2
8	28.2	26.7	27.0
9	30.4	26.8	26.4
10	28.6	27.4	26.6
11	28.2	30.2	26.3
12	30.6	30.3	26.2
13	29.8	31.8	27.4
14	28.9	28.1	28.0
15	29.9	30.1	28.5
16	29.8	34.1	27.3
17	30.3	33.9	27.4
18	32.3	30.8	26.6
19	29.6	30.7	26.7
20	31.4	30.4	26.1
Mean	30.1	29.0	27.3
Stdev	1.5	2.5	0.9

Temperature Data

$$\overline{X}_T = \frac{\sum n_i \overline{X}_i}{N}$$

$$SS_B = \sum n_i (\overline{X}_i - \overline{X}_T)^2$$

$$MS_B = \frac{SS_B}{df} = \frac{SS_B}{k-1}$$

$$SS_W = \sum (n-1)s^2$$

$$MS_{W} = \frac{SS_{W}}{df} = \frac{SS_{W}}{N - k}$$

$$F = \frac{MS_B}{MS_W}$$

28.8

76.1

38.1

171.9

3.01

12.6

3-1=2 Between group degrees of freedom (k-1)

60-3=57

Within group degrees of freedom

N-k

Critical value of F for result to be significant at 95% confidence level

Significant if F>F_{critical}

Not Significant if F≤F_{critical}

Critical Values of the F Distribution

STATISTICAL TABLES

df_2	1	2	3	4	5	6	7	8	9	10	11	12	
1	161	200	216	225	230	234	237	239	241	242	243	244	
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	
3	10.1	9.6	9.3	9.1	9.0	8.9	8.9	8.8	8.8	8.8	8.8	8.7	
4	7.7	6.9	6.6	6.4	6.3	6.2	6.1	6.0	6.0	6.0	5.9	5.9	
5	6.6	5.8	5.4	5.2	5.1	5.0	4.9	4.8	4.8	4.7	4.7	4.7	
6	6.0	5.1	4.8	4.5	4.4	4.3	4.2	4.2	4.1	4.1	4.0	4.0	
7	5.6	4.7	4.4	4.1	4.0	3.9	3.8	3.7	3.7	3.6	3.6	3.6	
8	5.3	4.5	4.1	3.8	3.7	3.6	3.5	3.4	3.4	3.4	3.3	3.3	
9	5.1	4.3	3.9	3.6	3.5	3.4	3.3	3.2	3.2	3.1	3.1	3.1	
10	5.0	4.1	3.7	3.5	3.3	3.2	3.1	3.1	3.0	3.0	2.9	2.9	
11	4.8	4.0	3.6	3.4	3.2	3.1	3.0	3.0	2.9	2.8	2.8	2.8	
12	4.8	3.9	3.5	3.3	3.1	3.0	2.9	2.8	2.8	2.8	2.7	2.7	
13	4.7	3.8	3.4	3.2	3.0	2.9	2.8	2.8	2.7	2.7	2.6	2.6	
14	4.6	3.7	3.3	3.1	3.0	2.8	2.8	2.7	2.6	2.6	2.6	2.5	
15	4.5	3.7	3.3	3.1	2.9	2.8	2.7	2.6	2.6	2.6	2.5	2.5	
16	4.5	3.6	3.2	3.0	2.8	2.7	2.7	2.6	2.5	2.5	2.4	2.4	
17	4.4	3.6	3.2	3.0	2.8	2.7	2.6	2.6	2.5	2.4	2.4	2.4	
18	4.4	3.6	3.2	2.9	2.8	2.7	2.6	2.5	2.5	2.4	2.4	2.3	
19	4.4	3.5	3.1	2.9	2.7	2.6	2.5	2.5	2.4	2.4	2.3	2.3	
20	4.4	3.5	3.1	2.9	2.7	2.6	2.5	2.4	2.4	2.4	2.3	2.3	
21	4.3	3.5	3.1	2.8	2.7	2.6	2.5	2.4	2.4	2.3	2.3	2.2	
22	4.3	3.4	3.0	2.8	2.7	2.6	2.5	2.4	2.3	2.3	2.3	2.2	
23	4.3	3.4	3.0	2.8	2.6	2.5	2.4	2.4	2.3	2.3	2.2	2.2	
24	4.3	3.4	3.0	2.8	2.6	2.5	2.4	2.4	2.3	2.3	2.2	2.2	
25	4.2	3.4	3.0	2.8	2.6	2.5	2.4	2.3	2.3	2.2	2.2	2.2	
26	4.2	3.4	3.0	2.7	2.6	2.5	2.4	2.3	2.3	2.2	2.2	2.2	
27	4.2	3.4	3.0	2.7	2.6	2.5	2.4	2.3	2.2	2.2	2.2	2.1	
28	4.2	3.3	3.0	2.7	2.6	2.4	2.4	2.3	2.2	2.2	2.2	2.1	
29	4.2	3.3	2.9	2.7	2.6	2.4	2.4	2.3	2.2	2.2	2.1	2.1	
30	4.2	3.3	2.9	2.7	2.5	2.4	2.3	2.3	2.2	2.2	2.1	2.1	
40	4.1	3.3	2.9	2.7	2.5	2.4	2.3	2.3	2.2	2.1	2.0	2.0	
50	4.0	3.2	2.8	2.6	2.4	2.3	2.2	2.1	2.1	2.0	2.0	2.0	
60	4.0	3.2	2.8	2.5	2.4	2.2	2.2	2.1	2.0	2.0	2.0	1.9	
70	4.0	3.1	2.7	2.5	2.4	2.2	2.1	2.1	2.0	2.0	1.9	1.9	
80	4.0	3.1	2.7	2.5	2.3	2.2	2.1	2.0	2.0	2.0	1.9	1.9	
100	3.9	3.1	2.7	2.5	2.3	2.2	2.1	2.0	2.0	1.9	1.9	1.8	
120	3.9	3.1	2.7	2.4	2.3	2.2	2.1	2.0	2.0	1.9	1.9	1.8	
∞	3.8	3.0	2.6	2.4	2.2	2.1	2.0	1.9	1.9	1.8	1.8	1.8	

 $\alpha = .05$

 df_1

Let's watch a video...

https://www.youtube.com/watch?v=-yQb_ZJnFXw

Assumptions and Limitations

- Normality Assumption: The two populations are assumed to both follow a normal curve
- Independence Assumption: Two independent random samples
- Data Type Assumption: Interval or ratio data
- Variance Assumption: All samples have approximately the same variance

Variability between groups

Variability within groups

$$F = \frac{MS_B}{MS_W}$$

Let's open up R... again!

