

IIS5008 Hardware Security

PA2 Explanation

Andy, Yu-Guang Chen
Associate Professor, Department of EE
National Central University
andyygchen@ee.ncu.edu.tw
Slides Credit: TA Wen-Ti, Tsai

2025/4/18

Andy Yu-Guang Chen

Outline

- **◆**Background
- ◆Problem Description
- ◆Part 1: AES
- ◆Part 2: Hardware Trojan
- ◆ Submission Requirement
- **◆**Evaluation

- **◆**Background
- Problem Description
- Part 1: AES
- ◆ Part 2: Hardware trojan
- Submission Requirement
- **◆** Evaluation

2025/4/18 Andy Yu-Guang Chen

3

Background

◆What is hardware Trojan?

Background

- ◆ Modern chip design flow
 - ➤ Collaboration among SoC integrators, 3PIP vendors, and offshore foundries

2025/4/18

Andy Yu-Guang Chen

_

- ◆ Hardware Trojan attacks
 - Malicious additions or modifications to ICs

S

- Background
- ◆Problem Description
- Part 1: AES
- ◆ Part 2: Hardware trojan
- Submission Requirement
- Evaluation

2025/4/18 Andy Yu-Guang Chen

7

Problem Description

- ◆ Part 1 : Complete the AES-128 system
- Part 2: Implement the hardware Trojan you designed in this system
 - > Implement the sample hardware Trojan
 - ➤ Implement the hardware Trojan described in the paper "A Novel Tampering Attack on AES Cores with Hardware Trojans"
 - (Bonus) Design and implement your own novel hardware Trojan

- Background
- Problem Description
- ◆ Part 1: AES-128
- ◆ Part 2: Hardware Trojan
- Submission Requirement
- **◆**Evaluation

2025/4/18

Andy Yu-Guang Chen

9

◆ Implement an AES-128 cryptographic engine

AES-128 cryptographic engine

10

Part 1: AES-128

◆ Data elements explanation

AES-128 cryptographic engine

2025/4/18 Andy Yu-Guang Chen

11

Part 1: AES-128

◆ Functional explanation

key[127:0]

[127:120]	[119:112]	[111:104]	[103:96]
[95:88]	[87:80]	[79:72]	[71:64]
[63:56]	[55:48]	[47:40]	[39:32]
[31:24]	[23:16]	[15:8]	[7:0]

state[127:0]

[127:120]	[119:112]	[111:104]	[103:96]
[95:88]	[87:80]	[79:72]	[71:64]
[63:56]	[55:48]	[47:40]	[39:32]
[31:24]	[23:16]	[15:8]	[7:0]

Part 1: AES-128

◆ Functional explanation - SubBytes

2025/4/18

Andy Yu-Guang Chen

13

◆Functional explanation — SubBytes

>module S in table.v

/* S box */

44 module S (clk, in, out);

45 input [7:0] in;
46 output reg [7:0] out;

48

49 always @ (posedge clk)

50 case (in)

51 8'h00: out <= 8'h63;

52 8'h01: out <= 8'h7c;

53 8'h02: out <= 8'h7r;

54 8'h03: out <= 8'h7b;

55 8'h04: out <= 8'h6b;

57 8'h06: out <= 8'h6f;

58 8'h07: out <= 8'h6f;

58 8'h07: out <= 8'h65;

59 8'h08: out <= 8'h30;

60 8'h09: out <= 8'h01;

61 8'h0a: out <= 8'h01;

62 8'h0b: out <= 8'h1p;

63 8'h0c: out <= 8'h1p;

64 8'h0a: out <= 8'h1p;

65 8'h0a: out <= 8'h1p;

66 8'h0a: out <= 8'h1p;

67 8'h0a: out <= 8'h1p;

68 8'h0a: out <= 8'h1p;

69 8'h0a: out <= 8'h1p;

60 8'h0a: out <= 8'h1p;

61 8'h0a: out <= 8'h1p;

62 8'h0b: out <= 8'h1p;

C: > Users > ASUSZE~1 > AppData > Local > Temp >

≣ table.v ×

2025/4/18

Andy Yu-Guang Chen

◆ Functional explanation - ShiftRows

AES-128 cryptographic engine

2025/4/18

Andy Yu-Guang Chen

15

Part 1: AES-128

◆ Functional explanation - ShiftRows

No change	a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}		a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
Shift 1	a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	ShiftRows	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,0}
Shift 2	a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}		a _{2,2}	a _{2,3}	a _{2,0}	a _{2,1}
Shift 3	a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}		a _{3,3}	a _{3,0}	a _{3,1}	a _{3,2}

16

◆ Functional explanation — MixColumns

AES-128 cryptographic engine

2025/4/18

Andy Yu-Guang Chen

17

Part 1: AES-128

◆ Functional explanation— MixColumns

18

- ◆ Functional explanation— MixColumns
 - ➤ MixColumns → module xS in table.v

```
≣ table.v
C: > Users > ASUSZE~1 > AppData > Local > Temp > Mxt21
       module xS (clk, in, out);
           input clk;
           input [7:0] in;
           output reg [7:0] out;
           always @ (posedge clk)
           case (in)
           8'h00: out <= 8'hc6;
           8'h01: out <= 8'hf8;
           8'h02: out <= 8'hee;
           8'h03: out <= 8'hf6;
           8'h04: out <= 8'hff;
           8'h05: out <= 8'hd6;
           8'h06: out <= 8'hde;
             Andy Yu-Guang Chen
```


2025/4/18

19

Part 1: AES-128

◆ Functional explanation—AddRoundKey

20

◆ Functional explanation— AddRoundKey

2025/4/18

Andy Yu-Guang Chen

21

- ◆ Your objective is to complete two modules in the file named as "round.v"
 - module one_round
 - module final_round

22

• round.v

2025/4/18 Andy Yu-Guang Chen 23

Outline

- Background
- Problem Description
- ◆ Part 1: AES-128
- ◆Part 2: Hardware Trojan
- Submission Requirement
- **◆** Evaluation

- ◆Implement a hardware Trojan for an AES system. (Including triggers and payloads)
 - > Implement the sample hardware Trojan
 - ➤ Implement the hardware Trojan described in the paper
 - "A_Novel_Tampering_Attack_on_AES_Cores_with _ _Hardware_Trojans"
 - ➤ (Bonus) Design and implement your own novel hardware Trojan

2025/4/18

Andy Yu-Guang Chen

25

Part 2: Hardware trojan

- ◆Implement a hardware Trojan for an AES system
 - ➤ The sample hardware Trojan

2025/4/18

Andy Yu-Guang Chen

- Background
- Problem Description
- ◆ Part 1: AES-128
- ◆ Part 2: Hardware trojan
- ◆Submission Requirement
- **◆** Evaluation

2025/4/18 Andy Yu-Guang Chen

27

Submission Requirement

- ◆StudID_PA2_AES.zip
 - > Related to the purely AES system in part one
- ◆StudID_PA2_HT.zip
 - ➤ Related to the hardware Trojan you implemented in part two
- ◆StudID_Name_PA2_report.pdf

- Background
- Problem Description
- ◆ Part 1: AES-128
- ◆Part 2: Hardware trojan
- Submission Requirement
- **◆**Evaluation

2025/4/18 Andy Yu-Guang Chen

29

Evaluation

- ◆ Complete the AES-128 cryptographic engine: 30%
- ◆Sample hardware Trojan implement: 30%
- ◆ Reference hardware Trojan implement: 10%
- ♦The report: 10%
- ◆ Demo: 20%
- Design a novel hardware Trojan and implement: 10% (bonus)

The report

- ◆In your report, you have to include at least:
 - ➤ How to compile and execute your program
 - > The completion of the assignment
 - The hardware Trojan you design (Including Trojan trigger and payload)
 - ➤ Your simulation waveform and explain it;
- ◆We don't restrict the report format and length

2025/4/18 A

Andy Yu-Guang Chen

31

Demo session

- ◆Attendance(8%)
- **◆**Three Questions(4% * 3 = 12%)

Andy, Yu-Guang Chen
Assistant Professor, Department of EE, NCU

Email: andyygchen@ee.ncu.edu.tw

FB: Yu-Guang Chen IG: ncu.eda.andy

Google account: andyygchen.ncu

