

在线烧录: Dual Image 架构

文件编码: AN0474SC

概述

简介

Holtek HT32 系列提供范例程序 "IAP_HID_Dual" ,此范例使用了 Dual Image 的架构,Dual Image 顾名思义就是将整个可执行的内存切成数个区段,每个区段皆有独立的程序。换句话说,整个程序是由多个独立的小程序所组成,所以当每次开机时,便通过固定的机制来决定该执行哪个小程序。因此藉由多个区段程序的切换,在更新韧体失败时,不会影响目前的系统,而 Dual Image 跟传统的 IAP(In Application Programming)/AP(Application)比起来有更高的弹性与稳定性。以下针对 Dual Image 架构作介绍。

Dual Image 特点

由于电子产品的功能日渐复杂,在线更新的功能相对越来越重要,为了让在线更新韧体能客制化,客户通常选择使用 IAP/AP 的架构,此架构会将 Main Flash 切为 IAP/AP 两个区域,应用程序在 AP 执行,当需要更新韧体时,先通过 Host 端下命令,让 AP 程序跳转到 IAP,接着通过 IAP 更新 AP,此架构虽然简单但有其限制(若要详细了解 IAP/AP 架构,请参考由 Holtek 发布的技术文件"HT32_ISP-IAP-UserManualvxxx.pdf")。

Dual Image 是由多个拥有 IAP 功能的 AP 所组成, AP 彼此间能相互更新。下表 1 通过两个架构的比较,来说明 Dual Image 的特点。

比较项目	IAP/AP	Dual Image	说明
占用内存大小	小	较大	Dual Image 因有多个 AP,所以占用的内存较大。
在线修改 IAP	否	是	Dual Image: 无区块专门规划给 IAP, 而是每个 AP 内都有 IAP 的功能。 IAP/AP: 如果需要修改 IAP, 必须通过 ICP 的方式烧录。
韧体更新中断, 不影响 AP	否	是	Dual Image: 烧录失败并不影响到目前的系统。 IAP/AP: 烧录失败,需重复烧录直到成功为止。
韧体更新过程中, AP能正常运作	否	是	IAP/AP 架构在更新韧体时只能执行更新程序。

表 1 IAP/AP 和 Dual Image 之间的比较

架构与流程

架构

内存的区段规划成四个区段包括:

● Loader: 可执行区段, 开机后负责跳转到目前有效 AP 区段

● Layout: RO区段,内存的配置表格

● Areal: 可执行区段,存放 AP。内有 Image Info 表格,说明 Areal 的信息

● Area2: 可执行区段,存放 AP。内有 Image Info 表格,说明 Area2 的信息

程序的一开始会先执行 Loader 的区段,而 Loader 的工作只负责判别可执行的区段。Loader 会通过读取 Layout 表格(表 2)和各 Area 的 Image Info(表 3)表格来判别可执行的区段,再跳跃到可执行区段。如果未发现任何可执行的区段,loader 将会停在死循环 (Dead loop),客户可自行修改,决定此情况处理方式。

位移	数据长度 (Bytes)	名称	默认值	说明
0x00000000	4	INFO_HEAD	"LAOT"	表头。
0x00000004	2	INFO_CNT	2	TOTAL_AREAS 表示总共几个 Area。
0x00000006	2	INFO_TYPE	'B'	A: IAP/AP。 B: Dual Image。
0x00000008	4	INFO_CK	0xXXXXXXXX	验证码 (Checksum)。
0x0000000C	4	INFO_A1	0x400	Areal 的开始位置。
0x00000010	4	INFO_A2	0x8000	Area2 的开始位置。

表 2 Layout 表格

位移	数据长度 (Bytes)	名称	默认值	说明
0x00000000	2	VER_LEN	6	版本字符串大小。
0x00000002	2	HEADER_STR	'FO'	表头。
0x00000004~ 0x0000000F	12	VER_STR0 ~ VER_STR11	"XXXXX"	韧体版本。最大长度 12 Bytes。
0x00000010	4	_HT32FWID	0xXXXXXXXX	芯片名称。
0x00000014	4	INFO_CK	0xXXXXXXXX	验证码 (Checksum)。

表 3 Image info 表格

Areal 与 Area2 内存放的是用户的程序,程序内除包含装置的所有功能外,还必须要有 IAP 的功能。换句话说,Areal 与 Area2 必须要有相互更新对方的功能。如下图 1,计算机端执行 TinyProgrammer,通过 USB 下命令,让 Area1 与 Area2 可以相互更新对方。

AN0474SC V1.10 2 / 14 February 26, 2020

图 1 Dual Image 架构图

流程

此章节将探讨烧录的起始位置,更新流程以及当烧录失败的处理程序。

烧录的起始位置

当韧体更新时,计算机端不需知道旧韧体的绝对位置,因目前执行的韧体会算出旧韧体的绝对位置,烧录的起始位置从 0x400(Loader+Layout = 0x400)开始。举例如下,假设目前执行的韧体是 Areal 时,计算机端下 Erase 命令,当韧体收到命令时会将烧录的起始位置位移 0x7C00(0x400 位移 0x7C00 等于 0x8000,Area2 的起始位置 0x8000)。然而执行的韧体是在 Area2 时,计算机端下 Erase 命令,当韧体收到时不会改变烧录的起始位置,还是 0x400(Area1 的起始位置 0x400)。

换句话说使用者并不需要知道目前执行的韧体在哪个区域,只需知道若要更新韧体一律从 0x400 的位置开始更新。

更新韧体流程

更新韧体有六个程序包括擦除内存(Erase) \rightarrow 程序(Program) \rightarrow 验证(Verify) \rightarrow 循环冗余校验 (CRC) \rightarrow 写入 image information \rightarrow 复位系统。(如需要知道详细细节可以参考"HT32 ISP-IAP-UserManualvxxx.pdf"。

烧录中断处理流程

在过去的 IAP/AP 架构在烧录前会先将 AP 区域 Erase, 当烧录失败后 AP 程序的部分并不完整, 因此程序会停在 IAP 等待使用者重新烧录。而 Dual Image 通过其架构的优势对此状况做了补强, 为了让使用者方便了解, 以下用举例的方式说明, 假设正执行的韧体在「Areal区段」、更新的目标是「Area2区段」、烧录的韧体是「AP.bin」。烧录程序开始, 计算机端下

AN0474SC V1.10 3 / 14 February 26, 2020

命令给 Area1, Area1 会根据命令将 AP.bin 烧录到 Area2, 当烧录的过程发生当机或任何原因中断烧录,此时 Area2 内的程序代码因为不完整无法执行,但是 Area1 并无任何的改变(被破坏的只有 Area2)。如下图 2。

图 2 烧录失败流程图

尽管 Area2 没有完整烧录,但对用户而言,系统并无任何影响,系统还是可以正常运作,旧版本的韧体没有被影响。当烧录失败后建议先复位系统,并检查软硬件是否有任何异常,检查完成后再重新开始烧录流程。

若是烧录成功,程序执行的位置会从 Areal 跳到 Area2,并在程序的一开始藉由修改 image info (在 Area2 区段内)将 Area2 改成为"执行区域"。当系统复位,Loader 会借着读取 image info 表格得知程序要执行 Area2。此时执行的韧体会停在 Area2,而下次更新的目标就是 Area1。如下图 3。

图 3 烧录成功流程图

AN0474SC V1.10 4 / 14 February 26, 2020

范例程序

范例文件名与编译前准备

范例程序的文件名如下:

Crotex® M0+ : HT32_APPFW_5xxxx_IAP_HID_Dual_vn_m.zip

Crotex® M3: HT32_APPFW_1xxxx_IAP_HID_Dual_vn_m.zip

文件名格式说明请看下图 4:

图 4 范例程序文件名介绍

使用范例前请先确认已下载最新的 Holtek HT32 Firmware Library,下载位置如图 5,下载完后请将其解压缩。

图 5 HT32 Firmware Library 下载网页

AN0474SC V1.10 5 / 14 February 26, 2020

Application Code 范例程序并不包含 Firmware Library 相关档案,因此在开始编译前,需将 Application Code 及 Firmware Library 解压缩的档案,放置到正确的路径。HT32 系列 Application Code 发行的压缩文件会包含一个"application"文件夹,只需将此文件夹放到 Firmware Library 根目录下,就可以完成档案路径的配置,请参考图 6。您也可以选择将 Application Code 及 Firmware Library 两个压缩文件,同时解压缩到相同路径,此操作具有同样的效果。以此范例来说,解压缩后在 application 文件夹内会看到 IAP_HID_Dual 的目录。

图 6 解压缩路径

档案结构

Holtek 针对 Dual Image 架构所提供的范例为"IAP_HID_Dual",此范例内有五个文件夹,各文件夹的说明请看下表 5。

文件夹名称	说明	
AP\	Application FW Source Code	
Loader\	Loader FW Source Code	
Maker\	产生 Loader + Layout + AP 单一 Bin/Hex,用于量产烧录	
预先产生的 IAP exe,用于测试,例如:		
Tools\	IAP_Test_52341_v001.exe、IAP_Test_52341_v002.exe	
TPMakerExe\	产生 IAP 执行档的脚本	

表 5 范例文件夹表格

AP内各档案介绍请看下表 6。

路径	文件名称	说明
	fromelf.txt	Fromelf 命令
	ht32_op.s	Option byte 设定
AP\MDK ARMv5\	HT32F5xxxx_01_DebugSupport.ini	Debug Mode 相关设定
APWIDK_ARWIV3\	image_info.s	Image info 区段的参数值
	Project_xxxxx.uvprojx	HT32Fxxxxx 的 MDK_ARM 专案
	startup_ht32f5xxxx_01.s	MDK_ARM AP 启动文件
AP\Src_IAP_Image\	image_info.c / .h	读写 Image info 区段相关程序
	_HT32_USBBufCheck.lib / .h	混淆 USB 通讯封包
	arc4.c / .h	ARC4 数据加密
AP\Src_IAP_Update\	iap_buffer.c / .h	环状缓冲区(Ring Buffer)的相关控制
	iap_config.h	IAP 相关设定
	iap_crc16.c / .h	计算 CRC 相关控制

AN0474SC V1.10 6 / 14 February 26, 2020

路径	文件名称	说明
	iap_handler.c / .h	控制更新过程的 IAP 处理程序
	_Clean.bat	清除项目的输出
	ht32_board_config.h	芯片外围 I/O 相关设定
	ht32_usbd_class.c \ .h	控制 USB 应用层的处理程序
	ht32_usbd_descriptor.c \ .h	USB 描述元
AP\	ht32f5xxxx_01_it.c \ .h	中断相关控制
	ht32f5xxxx_01_usbdconf.h	USB 驱动装置相关设定
	ht32f5xxxx_conf.h	Firmware Library 相关设定
	main.c	应用主程序
	system_ht32fxxxxx_n.c	系统配置文件

表 6 AP 档案表格

Loader 内各档案介绍请看下表 7。

路径	文件名称	说明
	MDK_\startup_ht32fxxxxx_n.s	创建项目的来源,请勿修改
Loader_CreateProjectSrc\	Root\system_ht32fxxxxx_n.c	创建项目的来源,请勿修改
	_StackHeapSize.bat	设定 Stack 与 Heap
Loader\Src_IAP_Image\	image_info.c / .h	读写 Image info 区段相关程序
Loader\Src_IAP_Layout\	layout_page.c / .h	读写 layout 区段相关程序
Loader\Src_IAP_Loader\	loader.c / .h	Loader 相关控制程序
	_Clean.bat	清除 MDK_ARM 相关项目
	_CreateProject.bat	创建 MDK_ARM 相关项目
Loader\	_ht32_project_source.h	项目使用的资源
Loader	ht32_board_config.h	芯片外围的 I/O 相关设定
	ht32fxxxxx_n_it.c	中断相关控制
	main.c	应用主程序

表7 Loader 档案表格

Maker 内各档案介绍请看下表 8。

路径	文件名称	说明	
Maker\flash_main_keil\	images\	AP 与 Loader 产出的 image 存放位置。预设没有任何档案,当 AP 与 Loader 编译完后会产生 AP.bin 与 Loader.bin	
	maker.s	Layout 表格的规划,以及连接 AP.bin 与 Loader.bin	
	linker.lin	链接脚本	
Maker\MDK_ARM\	Project.uvopt	MDK_ARMv4 的项目选项	
	Project.uvproj	MDK_ARMv4 的项目	
	linker.lin	链接脚本	
Maker\MDK_ARMv5\	Project.uvproj x	MDK_ARMv5 的项目	
Maker\Output_keil\	Empty Folder	预设没有任何档案,Maker 编译完后存放位置	
Maker\	_Clean.bat	清除 Maker 的产出	

表 8 Maker 档案表格

Tools 内各档案介绍请看下表 9。

路径	文件名称	说明
Tools\	IAP_Test_52341_v001.exe IAP_Test_52341_v002.exe	测试烧录的 UI

表 9 Tool 档案表格

AN0474SC V1.10 7 / 14 February 26, 2020

TPMakerExe 内各档案介绍请看下表 10。

路径	文件名称	说明
TPMakerExe_TPMaker\	AP2.EXE、AP2.exe_UI_only、Command_Key.bin ···	烧录 UI 的产生程序 TimyProgrammerMakerIII,不需做任何修改。
	Command_Key.bin	加密表格
	Encrypt_Key.bin	加密值
TPMakerExe\Config\	HTEncrypt32.ini	加密值相关设定
	make_config.bat	产生烧录执行文件程序的相关设定
	setting.ini	TimyProgrammerMakerIII 相关设定
TPMakerExe\Image\	Empty Folder	预设没有任何档案,完成 make.bat 程序后会产生加密映像档
TPMakerExe\Image_Bak\	Empty Folder	预设没有任何档案,完成 make.bat 程序后会产生所有的映像档,与 UI 执行档
		预设没有任何档案,完成 make.bat 程序后会产生
TPMakerExe\Output\	Empty Folder	1. UI 执行档
		2. 压缩的 Image_Bak 3. 压缩的 Source Code
TPMakerExe\	gsar.exe	产生 UI 的相关工具
TI TIME CENTER	make.bat	产生 UI 的主要程序

表 10 TPMakerExe 档案表格

操作步骤

操作步骤的环境如下:

- 1. Keil 版本: v5.x。
- 2. 芯片名称: HT32F52341。

在开发阶段请参考"手动编译及第一次烧录"的操作说明,在完成开发及测试 IAP 的阶段,请参考"自动编译及产生 IAP Exe 流程"。

手动编译及第一次烧录

- 1. 执行 "Loader_CreateProject.bat" 产生 MDK_ARM 项目档。
- 2. 开启专案 "Loader\MDK_ARMv5\Project_52341.uvprojx" 并编译,产出档案会自动复制到 "Maker\flash main keil\Loader.bin"。
- 3. 开启专案 "AP\ MDK_ARMv5\ Project_52341.uvprojx" 并编译,产出档案会自动复制到 "Maker\flash_main_keil\AP.bin"。
- 4. 开启专案 "Maker\MDK_ARMv5\Project.uvproj"并编译,此步骤会产生 "Maker\Output_keil\ALL.bin 和 ALL.hex",ALL.bin 或是 ALL.hex 都包含了 Loader + Layout + AP,可用于量产时 e-writer32 的烧录。编译完成后请在此项目下进行第一次烧录,此操作会烧录 Loader + Layout + AP 到芯片。
- 5. 完成上述步骤后,回到 AP 项目下修改及开发程序,此时直接在 AP 项目下进行烧录即可 (Loader/Layout 只需烧录一次)。

自动编译及产生 IAP Exe 流程

- 1. 执行 "Loader\ CreateProject.bat" (如果此步骤已经执行过请忽略)。
- 2. 修改 "TPMakerExe\Config\make_config.bat",依据您的 Keil 安装路径修改 "SET KEIL_EXE" 设定,例如 SET KEIL EXE = "C:\Keil \UV4\UV4.exe"。
- 3. 执行 "TPMakerExe\make.bat",参考命令提示字符的说明进行输入与操作。
 - (1) 执行到 Step2 会开启加密工具 "Holtek_Encrypt Tools.exe",请按照命令行的提示按下 Make 如图 7,并产生出 Digest(此范例产生的 Digest: 3B35),并将其复制下来,如图 8。并关闭 "Holtek_Encrypt Tools.exe",关闭后批次档的程序才会继续。

图 7 Holtek Encrypt Tool 图 I

图 8 Holtek_Encrypt Tool 图 II

(2) 执行到 Step3 时提示字符会要求输入 digest (图 9),请将方才复制的 digest 贴上,或是直接输入 digest,并按下 enter 键即可继续。

图 9 批次档要求输入 Digest 图

(3) 执行 Step3.2 时会开启 "TinyProgrammer MakerIII",程序一开始会由批次配置文件自动 修改 INI 文件(路径\TPMakerExe_TPMaker\setting.ini),来做 USB 的相关设定,详细 可以参考本文的章节 "设定修改"。若是 VID、PID 和 Usage Page 需要修改也可以通过 UI 直接填写,详细操作请参考图 10。完成后关闭 "TinyProgrammer MakerIII",关闭后 批次档的程序才会继续。

AN0474SC V1.10 9 / 14 February 26, 2020

图 10 TinyProgrammer MarkerIII Tool 图

(4) 完成操作后如下图。

图 11 make.bat 执行图

- 4. 操作完成后会在 TPMakerExe\Output 目录下产生相关档案:
 - (1) yyyymmdd_IAP_vnnn.exe: IAP 执行档。
 - (2) yyyymmdd _vnnn_BINEXE_Backup: Binary 及 Hex 备份。
 - (3) yyyymmdd_vnnn_ALL.bin/hex 为 Loader + Layout + AP, 可用于 writer 烧录。
 - (4) yyymmdd_vnnn_Src_Backup.zip: AP, Loader, Maker Source code 备份。

AN0474SC V1.10 10 / 14 February 26, 2020

IAP Exe 更新操作

请先用 Starter Kit 执行此范例,并连接 Starter Kit 的 USB 端。更新 IAP 只需用到 TPMakerExe\Output\yyyymmdd_IAP_vnnn.exe, 其它的档案皆不需要。在此为了方便说明 yyyymmdd IAP vnnn.exe (以下简称为IAP.exe)。操作步骤如下:

- 1. 执行 IAP.exe。
- 2. 点选 Connect, IAP.exe 若是成功通过 USB 跟芯片通讯, IAP.exe 会显示出芯片名称与 IAP 的版本。
- 3. 点选 Program, IAP.exe 会执行 FW 更新的流程,完成后如图 12。
- 4. 关闭 IAP.exe。

完成烧录后韧体会在 AP1 区段,执行时会闪烁 LED1。而在 AP2 执行时会闪烁 LED2。

图 12 IAP 更新完成图

IAP Exe 命令行模式

产生的IAP.exe 支持命令行模式,可用管线重导信息。支持指令及烧录使用方法可参考图13,执行后烧录信息如下图14。

```
Holtek TinyProgrammer 2.0.1, Copyright (C) Holtek Semiconductor Inc. All rights reserved.

Usage: IAP.exe [/s] [/v] [/n] [/p] [/h]
/s Silent mode.
/v Show firmware version of the chip.
/n Show firmware version of the EXE file.
/p Start firmware update.
/h Show help.

Use %errorlevel% to get the error code. O for success, 1 for error.
```

图 13 IAP.exe 功能图

```
Connecting APConnecting IAP-->OK
Connected
F/W version in the chip is:v002
Eraseing internal...
Programming internal...
Verifing...
Digest Check...
Reset to AP...
Operation Success.
```

图 14 IAP.exe 执行图

AN0474SC V1.10 11 / 14 February 26, 2020

设定修改

修改 Area 区段的起始位置

Maker 项目负责内存配置,因此用户若是需要修改 Area 的起始位置,请打开 Maker 文件夹内的 keil 项目,修改的档案有两个 Linker 脚本与 maker.s,详细请看以下说明:

- 1. 修改 Linker 脚本: Linker 脚本内定义了各映像文件的起始位置,Linker 脚本存在的目地 是当 Keil 项目编译完成后,Linker 会通过 Linker 脚本得知各映像档应该放的绝对位置。 修改此文件时,请特别注意;除了修改"Area"的位置,"Loader 与 Layout"的起始位置 请勿修改(Linker 脚本的路径在\Maker\MDK ARMv5\linker.lin)。
- 2. 修改 maker.s: maker.s 整合了所有的映像档以及定义 Layout 表,请修改此表中的常数 INFO_Ax, 此常数值即代表 Area 的起始位置。Layout 表决定了 Loader 加载 Area 的规则, 因此除了修改 INFO Ax, 其它常数值请勿更动。

修改 TinyProgrammerMakerIII 的设定值

请修改 \TPMakerExe\Config\setting.ini, setting.ini 内并不是每个设定值皆可让使用者修改,修改时请特别注意。各设定值说明如下表 11。

请特别注意 IAPINFString,IAPINFString 必须与 AP 的 Usage Page 相同,假使不同,依然可以产出 IAP.exe;但 IAP.exe 会无法通过 USB 跟芯片连线。

可否修改	参数名称	说明
	TitleString	IAP.exe 相关信息,不影响 FW 行为
	TextString	IAP.exe 相关信息,不影响 FW 行为
	NoteString	IAP.exe 相关信息,不影响 FW 行为
可修改	IAPINFString	USB 的 Usage Page
	IDigestEn	开启\关闭加密机制
	CMDKEYEn	开启\关闭表格加密
	CMDKEYPath	加密表格的位置
	ImagePath1	映像文件位置,由批次档产生,不可修改
	ImagePath2	映像文件位置,由批次档产生,不可修改
	VersionString	版本,由批次档产生,不可修改
	IDIGESTString	签章,由批次档产生,不可修改
不可修改	APVIDString	留白,不可填值
	APPIDString	留白,不可填值
	APINFString	留白,不可填值
	IAPVIDString	USB VID 由批次档产生,不可修改
	IAPPIDString	USB PID 由批次档产生,不可修改

表 11 TinyProgrammerMakerIII 的设定值

AN0474SC V1.10 12 / 14 February 26, 2020

修改 make.bat 的设定值

请修改 \TPMakerExe\Config\make_config.bat, 各设定值说明如下表 12。请特别注意下面两个设定值:

- 1. KEIL_EXE: 此设定值表示 Keil 的路径,假使路径错误,make.bat 的程序将无法运行。
- 2. VID\PID_IAP: 必须跟 AP 的 VID\PID 相同,假使不同,尽管可以产出 IAP.exe,但 IAP.exe 会无法通过 USB 跟芯片连线。

参数名称	说明
KEIL_EXE	Keil 的路径。
ISS_EXE	ISS 的路径。
ZIP_EXE	压缩工具的路径。
LOG_FILE	Log 檔檔名。
ROOT_PATH	Root 的路径。请勿修改。
VID	USB 的 VID
PID_IAP	USB 的 PID
CURR_PATH	目前文件夹位置。请勿修改。

表 12 make_config.bat 的设定值

问题排除

- Q: AP 项目无法编译,出现错误 "Fatal error: C3903U: Argument ·····.?"
- A: 请使用完整版 Keil MDK-ARM 进行编译。
- Q: 使用 TPMakerExe 目录下 make.bat, 无法顺利完成所有操作, 显示错误?
- A: 请确认下列事项:
 - 1. Loader 的项目是否产生了 (执行 "Loader\ CreateProject.bat")?
 - 2. 确认 "TPMakerExe\Config\make_config.bat" 配置文件案内的 KEIL_EXE 路径设定是否正确?
 - 3. 手动开启 AP, Loader, Maker 项目, 确认编译是否正确无误, 没有任何 Warning 或 Error。 TPMakerExe 自动编译 script 不允许编译结果有任何 Warning 或 Error,请先修正后再次操作"make.bat"。
- O: 烧录失败如何处理?
- A: 请先复位系统,检查硬件线路是否正常?芯片供电是否稳定? USB 线与 USB 连接器是 否脱落?检查完再重新烧录。
- Q: 烧录失败后系统当机?
- A: 请通过"硬件复位"复位系统。

版本及修改信息

版本信息

日期	作者	发行
2020.01.20	王宏纶	V1.10
2017.11.30	王宏纶	V1.00

修改信息

V1.10: 修正表 2 内存位置。

免责声明

本网页所载的所有数据、商标、图片、链接及其他数据等(以下简称「数据」),只供参考之用,盛群半导体股份有限公司及其关联企业(以下简称「本公司」)将会随时更改数据,并由本公司决定而不作另行通知。虽然本公司已尽力确保本网页的数据准确性,但本公司并不保证该等数据均为准确无误。本公司不会对任何错误或遗漏承担责任。

本公司不会对任何人士使用本网页而引致任何损害(包括但不限于计算机病毒、系统故障、数据损失)承担任何赔偿。本网页可能会连结至其他机构所提供的网页,但这些网页并不是由本公司所控制。本公司不对这些网页所显示的内容作出任何保证或承担任何责任。

责任限制

在任何情况下,本公司并不须就任何人由于直接或间接进入或使用本网站,并就此内容上或任何产品、信息或服务,而招致的任何损失或损害负任何责任。

管辖法律

本免责声明受中华民国法律约束,并接受中华民国法院的管辖。

免责声明更新

本公司保留随时更新本免责声明的权利,任何更改于本网站发布时,立即生效。

AN0474SC V1.10 14 / 14 February 26, 2020