Распределения Пирсона χ^2 (хи – квадрат), Стьюдента и Фишера

Распределение суммы k квадратов независимых случайных величин со стандартным нормальным распределением называется распределением χ^2 (хи-квадрат) с k степенями свободы и обозначается H_k .

Пусть z_1, \dots, z_k — совместно независимые стандартные нормальные случайные величины, то есть: $z_i \sim N(0,1)$. Тогда случайная величина

$$x = z_1^2 + \ldots + z_k^2$$

имеет распределение хи-квадрат с k степенями свободы, то есть $x \sim f_{\chi^2(k)}(x)$, или, если записать по-другому:

$$x=\sum_{i=1}^k z_i^2 \sim \chi^2(k).$$

Плотности распределений H_k при k = 1, 2, 4, 8 показаны на рис.

Максимум функции плотности при k≥2 распределения H_k достигается в точке k-2 (мода)

Свойство 1. Если случайные величины $\chi^2 \in H_k$ и $\psi^2 \in H_m$ независимы, то их сумма $\chi^2 + \psi^2$ имеет распределение H_{k+m} .

Свойство 2. Если величина χ^2 имеет распределение \mathbf{H}_k , то

$$E\chi^2 = k$$
 и $D\chi^2 = 2k$.

Свойство 3. Пусть $\mathbf{\chi}_n^2 \in \mathbf{H}_n$. Тогда при $n \to \infty$

$$\frac{\chi_n^2}{n} \stackrel{\mathrm{p}}{\longrightarrow} 1, \qquad \frac{\chi_n^2 - n}{\sqrt{2n}} \Rightarrow \mathrm{N}_{0,1}.$$

Квантиль – это аргумент функции распределения, которой соответствует заданная вероятность.

Степени свободы (df)	Значение $\chi^{2[3]}$										
1	0,004	0,02	0,06	0,15	0,46	1,07	1,64	2,71	3,84	6,63	10,83
2	0,10	0,21	0,45	0,71	1,39	2,41	3,22	4,61	5,99	9,21	13,82
3	0,35	0,58	1,01	1,42	2,37	3,66	4,64	6,25	7,81	11,34	16,27
4	0,71	1,06	1,65	2,20	3,36	4,88	5,99	7,78	9,49	13,28	18,47
5	1,14	1,61	2,34	3,00	4,35	6,06	7,29	9,24	11,07	15,09	20,52
6	1,63	2,20	3,07	3,83	5,35	7,23	8,56	10,64	12,59	16,81	22,46
7	2,17	2,83	3,82	4,67	6,35	8,38	9,80	12,02	14,07	18,48	24,32
8	2,73	3,49	4,59	5,53	7,34	9,52	11,03	13,36	15,51	20,09	26,12
9	3,32	4,17	5,38	6,39	8,34	10,66	12,24	14,68	16,92	21,67	27,88
10	3,94	4,87	6,18	7,27	9,34	11,78	13,44	15,99	18,31	23,21	29,59
<i>p</i> -значение	0,95	0,90	0,80	0,70	0,50	0,30	0,20	0,10	0,05	0,01	0,001

Например, для χ^2 с 5 степенями свободы квантиль с фиксированной вероятностью 0,95 равен 11,07, т.к. $\textbf{\textit{P}}(\chi^2 \leq 11.07) = 1 - 0.05 = 0.95$

 $\mathbf{P}(\chi^2 > 11.1) = 0.05 \; .$

Задание. Попробуйте Excel, сравнивая с таблицей

ХИ2.РАСП,

ХИ2.РАСП.ПХ

ХИ2.ОБР

ХИ2.ОБР.ПХ

Распределение Стью́дента. Английский статистик Госсет, публиковавший научные труды под псевдонимом Стьюдент, ввёл следующее распределение.

О пределение Пусть $\xi_0, \ \xi_1, \ \dots, \ \xi_k$ независимы и имеют стандартное нормальное распределение. Распределение случайной величины

$$t_k = \frac{\xi_0}{\sqrt{\frac{\xi_1^2 + \ldots + \xi_k^2}{k}}}$$

называется $pacnpedenenuem\ Cmbiodenma$ с k степенями свободы и обозначается T_k .

Распределение Стьюдента совпадает с распределением случайной величины $t_k=\frac{\xi}{\sqrt{\chi_k^2/k}},$ где $\xi\in N_{0,1}$ и $\chi_k^2\in H_k$ независимы.

Графики плотностей стандартного нормального распределения и распределения Стьюдента приведены для сравнения на рис.

 $E(T_k)=0;$ $D(T_k)=k/(k-2),$ при k>2

<u> </u>	$f_k(t)$	<u></u>									
Число	Вероятность, р										
степеней свободы k	0,9	0,95	0,975	0,99	0,995	0,9995					
1	2	3	4	5	6	7					
1	3,078	6,314	12,706	31,821	63,657	636,619					
2	1,886	2,920	4,303	6,965	9,925	31,598					
3	1,638	2,353	3,182	4,541	5,841	12,941					
4	1,533	2,132	2,776	3,747	4,604	8,610					
5	1,476	2,015	2,571	3,365	4,032	6,869					
6	1,440	1,943	2,447	3,143	3,707	5,959					
7	1,415	1,895	2,365	2,998	3,499	5,405					
8	1,397	1,860	2,306	2,896	3,355	5,041					
9	1,383	1,833	2,262	2,821	3,250	4,781					
10	1,372	1,812	2,228	2,764	3,169	4,587					
12	1,356	1,782	2,179	2,681	3,055	4,318					
14	1,345	1,761	2,145	2,625	2,977	4,140					
16	1,337	1,746	2,120	2,584	2,921	4,015					
18	1,330	1,734	2,101	2,552	2,878	3,922					
20	1,325	1,725	2,086	2,528	2,845	3,850					
22	1,321	1,717	2,074	2,508	2,819	3,792					
24	1,318	1,711	2,064	2,492	2,797	3,745					
26	1,315	1,706	2,056	2,479	2,779	3,707					
28	1,313	1,701	2,048	2,467	2,763	3,674					
30	1,310	1,697	2,042	2,457	2,750	3,646					
60	1,296	1,671	2,000	2,390	2,660	3,460					
120	1,289	1,658	1,980	2,358	2,617	3,373					

Задание. Попробуйте Excel, сравнивая с таблицей

Распределение Фишера. Следущее распределение тоже тесно связано с нормальным распределением, но понадобится нам не при построении доверительных интервалов, а чуть позже—в задачах проверки гипотез. Там же мы поймём, почему его называют распределением дисперсионного отношения.

Определение — . Пусть χ_k^2 имеет распределение H_k , а ψ_n^2 — распределение H_n , причём эти случайные величины независимы. Распределение случайной величины

$$f_{k,n} = \frac{\chi_k^2/k}{\Psi_n^2/n} = \frac{n}{k} \cdot \frac{\chi_k^2}{\Psi_n^2}$$

называется $pacnpedenenuem \Phi u u epa$ с k и n степенями свободы и обозначается $\mathbf{F}_{k,\,n}$.

Свойства распределения Фишера (или $\Phi u u e p a - C n e d e \kappa o p a$):

Свойство Если случайная величина $f_{k,n}$ имеет распределение Фишера $\mathbf{F}_{k,n}$, то $1/f_{k,n}$ имеет распределение Фишера $\mathbf{F}_{n,k}$.

Заметим, что распределения $\mathbf{F}_{k,\,n}$ и $\mathbf{F}_{n,\,k}$ различаются, но связаны соотношением: для любого x>0

$$F_{k,n}(x) = \mathsf{P}(f_{k,n} < x) = \mathsf{P}\left(\frac{1}{f_{k,n}} > \frac{1}{x}\right) = 1 - F_{n,k}\left(\frac{1}{x}\right).$$

Свойство . Распределение Фишера ${\rm F}_{k,\,n}$ слабо сходится к вырожденному в точке c=1 распределению при любом стремлении k и n к бесконечности.

Доказательство. Пусть ξ_1, ξ_2, \ldots и η_1, η_2, \ldots — две независимые последовательности, составленные из независимых случайных величин со стандартным нормальным распределением. Требуемое утверждение вытекает из того, что любая последовательность случайных величин $f_{k,n}$, распределение которой совпадает с распределением отношения двух средних арифметических

$$\frac{\xi_1^2 + \ldots + \xi_k^2}{k} \quad \text{if} \quad \frac{\eta_1^2 + \ldots + \eta_n^2}{n},$$

сходится к единице по вероятности при $k \to \infty$, $n \to \infty$ по ЗБЧ.

Свойство 11. Пусть $t_k \in T_k$ —случайная величина, имеющая распределение Стьюдента. Тогда $t_k^2 \in F_{1,\,k}$.