Aerofit_Case-Study

March 20, 2024

1 Aerofit Case Study

About Aerofit: Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

1.1 Business Problem

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

1.2 Dataset

Dataset that We will be using is here

The company collected the data on individuals who purchased a treadmill from the AeroFit stores during the prior three months. The dataset has the following features:

Product Purchased: KP281, KP481, or KP781

Age: In years

Gender: Male/Female Education: In years

MaritalStatus: Single or partnered

Usage: The average number of times the customer plans to use the treadmill each week.

Income: Annual income (in \$)

Fitness: Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 is the excellent

Miles: The average number of miles the customer expects to walk/run each week

1.3 Product Portfolio

Product Portfolio: - The KP281 is an entry-level treadmill that sells for \$1,500.

- The KP481 is for mid-level runners that sell for \$1,750.
- The KP781 treadmill is having advanced features that sell for \$2,500.

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[2]: |wget https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/
      ⇔original/aerofit treadmill.csv?1639992749
    --2024-03-20 19:07:31-- https://d2beiqkhq929f0.cloudfront.net/public_assets/ass
    ets/000/001/125/original/aerofit_treadmill.csv?1639992749
    Resolving d2beiqkhq929f0.cloudfront.net (d2beiqkhq929f0.cloudfront.net)...
    13.249.226.180, 13.249.226.102, 13.249.226.172, ...
    Connecting to d2beigkhq929f0.cloudfront.net
    (d2beiqkhq929f0.cloudfront.net)|13.249.226.180|:443... connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 7279 (7.1K) [text/plain]
    Saving to: 'aerofit_treadmill.csv?1639992749.1'
                                                     7.11K --.-KB/s
    aerofit treadmill.c 100%[=========>]
                                                                         in Os
    2024-03-20 19:07:31 (144 MB/s) - 'aerofit_treadmill.csv?1639992749.1' saved
    [7279/7279]
[3]: data = pd.read csv('aerofit treadmill.csv?1639992749')
         Going Through the Data
[4]: data.head()
[4]:
      Product Age
                    Gender
                             Education MaritalStatus Usage Fitness Income
                                                                             Miles
                       Male
         KP281
     0
                 18
                                    14
                                              Single
                                                          3
                                                                       29562
                                                                                 112
         KP281
                       Male
                                    15
                                                          2
                                                                                  75
     1
                19
                                              Single
                                                                       31836
                                                          4
     2
        KP281
                19 Female
                                    14
                                           Partnered
                                                                       30699
                                                                                  66
     3
        KP281
                 19
                       Male
                                    12
                                              Single
                                                          3
                                                                   3
                                                                       32973
                                                                                  85
        KP281
                 20
                       Male
                                    13
                                           Partnered
                                                          4
                                                                       35247
                                                                                  47
[5]: data.shape
[5]: (180, 9)
[6]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 180 entries, 0 to 179
    Data columns (total 9 columns):
         Column
                        Non-Null Count Dtype
     0
        Product
                        180 non-null
                                        object
```

```
int64
1
   Age
                   180 non-null
2
   Gender
                   180 non-null
                                    object
3
   Education
                   180 non-null
                                    int64
4
   MaritalStatus
                   180 non-null
                                    object
                                    int64
5
   Usage
                   180 non-null
6
   Fitness
                   180 non-null
                                    int64
   Income
                   180 non-null
                                    int64
   Miles
                   180 non-null
                                    int64
```

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

Product, Gender and Marital Status is in string formate and all other are in integer formate

[7]: data.isnull().sum()

[7]: Product 0
Age 0
Gender 0
Education 0
MaritalStatus 0
Usage 0
Fitness 0
Income 0
Miles 0

dtype: int64

There is No null value in the data set

[8]: data.sort_values(by="Income", ascending=True)

[8]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	\
	0	KP281	18	Male	14	Single	3	4	29562	
	2	KP281	19	Female	14	Partnered	4	3	30699	
	1	KP281	19	Male	15	Single	2	3	31836	
	80	KP481	19	Male	14	Single	3	3	31836	
	3	KP281	19	Male	12	Single	3	3	32973	
					•••	•••				
	171	KP781	33	Female	18	Partnered	4	5	95866	
	169	KP781	30	Male	18	Partnered	5	5	99601	
	168	KP781	30	Male	18	Partnered	5	4	103336	
	178	KP781	47	Male	18	Partnered	4	5	104581	
	174	KP781	38	Male	18	Partnered	5	5	104581	

[180 rows x 9 columns]

[9]: data.describe(include='all')

[9]:		Product		Age	Gender	Education	MaritalStatus	Usage	\
	count	180	180.	000000	180	180.000000	180	180.000000	
	unique	3		NaN	2	NaN	2	NaN	
	top	KP281		NaN	Male	NaN	Partnered	NaN	
	freq	80		NaN	104	NaN	107	NaN	
	mean	NaN	28.	788889	NaN	15.572222	NaN	3.455556	
	std	NaN	6.	943498	NaN	1.617055	NaN	1.084797	
	min	NaN	18.	000000	NaN	12.000000	NaN	2.000000	
	25%	NaN	24.	000000	NaN	14.000000	NaN	3.000000	
	50%	NaN	26.	000000	NaN	16.000000	NaN	3.000000	
	75%	NaN	33.	000000	NaN	16.000000	NaN	4.000000	
	max	NaN	50.	000000	NaN	21.000000	NaN	7.000000	
	Fitn		ess		Income	Miles			
	count	180.000	000	180.	.000000	180.000000			
	unique		NaN		NaN	NaN			
	-		NaN	N NaN		NaN			
	freq		NaN		NaN	NaN			
	mean	3.311	111	53719	.577778	103.194444			
	std	0.958	869	16506	.684226	51.863605			

1.5 Observations:

1.000000

3.000000

3.000000

4.000000

5.000000

min

25%

50%

75%

max

- The average income of customers is \$53,719.
- $\bullet\,$ The average distance a user walks on a treadmill is 103 Miles.
- More than 50% of people have a fitness score of 3.
- Average usage of a treadmill by a user is 3.3 times a week.

29562.000000

44058.750000

50596.500000

58668.000000

104581.000000

```
[10]: plt.figure(figsize=(10,10))
   plt.suptitle("Checking Outliers")

plt.subplot(2,2,1)
```

21.000000

66.000000

94.000000

114.750000

360.000000

```
sns.boxplot(data, x="Product", y="Usage")
plt.xlabel('Treadmill Models')
plt.ylabel('Usage (Avg # / Week)')
plt.title('Usage VS Product', fontsize = 15)
plt.subplot(2,2,2)
sns.boxplot(data, x="Product", y="Age")
plt.xlabel('Treadmill Models')
plt.ylabel('Age (years)')
plt.title('Age VS Product', fontsize = 15)
plt.subplot(2,2,3)
sns.boxplot(data, x="Product", y="Miles")
plt.xlabel('Treadmill Models')
plt.ylabel('Avg Miles / Week')
plt.title('Miles VS Product', fontsize = 15)
plt.subplot(2,2,4)
sns.boxplot(data, x="Product", y="Income")
plt.xlabel('Treadmill Models')
plt.ylabel('Income (Annual income in $)')
plt.title('Income VS Product', fontsize = 15)
plt.tight_layout(pad=3.0)
plt.show()
```

Checking Outliers

1.6 Observations:

- Usage per Week:
 - KP781 has the highest median usage per week among the three models.
 - All models have outliers, indicating varying usage patterns among users.
- Age of Users:
 - The median age of users is similar across all three models.
 - The range of ages differs slightly, with KP281 having the widest spread.
- Miles Run:
 - KP781 shows a higher median for miles run compared to the other models.
 - Outliers suggest some users run significantly more miles on this model.
- Income of Users:

- Users of KP781 have a noticeably higher median income compared to those using KP281 and KX481.
- Income distribution varies among the models.

2 Non-Graphical Analysis

```
[11]: | p_count=data['Product'].value_counts()
      p_count
[11]: Product
      KP281
               80
      KP481
               60
      KP781
               40
     Name: count, dtype: int64
[12]: vals = data['Product'].value_counts()
      labels = vals.index
      plt.title('Distribution of Treadmills Models', fontsize = 22)
      plt.pie(vals, labels=labels, explode = [0.02,0.02,0.02], autopct='%1.0f\%',
              startangle=90, counterclock=False, colors=['lightgreen', 'skyblue', __

¬'red'])
[12]: ([<matplotlib.patches.Wedge at 0x7f5f718db390>,
        <matplotlib.patches.Wedge at 0x7f5f9c977950>,
        <matplotlib.patches.Wedge at 0x7f5f9c98d210>],
       [Text(1.1029846853969052, 0.1944859475126421, 'KP281'),
        Text(-0.7199221674761052, -0.8579697388466023, 'KP481'),
        Text(-0.7199220469827118, 0.8579698399525605, 'KP781')],
       [Text(0.6105808079875725, 0.10766186380164114, '44%'),
        Text(-0.3985283427099867, -0.47494753400436907, '33%'),
        Text(-0.3985282760082869, 0.4749475899737388, '22%')])
```

Distribution of Treadmills Models

2.0.1 Observations:

- KP281 which is a entry level treadmill is purchesed the most.
- After KP481 which is mid range treadmill is purchesd most.
- KP781 which is advanced treadmill is purchased least by the custom

```
[13]: data['Gender'].value_counts()
[13]: Gender
     Male
                104
                 76
     Female
     Name: count, dtype: int64
[14]: data_p = data['Gender'].value_counts()
      labels = data_p.index
      plt.title('Distribution of Gender', fontsize = 20)
      plt.pie(data_p, labels=labels, explode = [0.01,0.01], autopct='%1.0f\%',
              startangle=90, counterclock=False, colors=['skyblue', 'pink'])
[14]: ([<matplotlib.patches.Wedge at 0x7f5f9c998bd0>,
        <matplotlib.patches.Wedge at 0x7f5f9c7ce490>],
       [Text(1.0770282349354128, -0.268533389268279, 'Male'),
```

```
Text(-1.0770282097934978, 0.2685334901069388, 'Female')], [Text(0.5918803813609025, -0.14757240311139658, '58%'), Text(-0.5918803675441744, 0.1475724585272366, '42%')])
```

Distribution of Gender

2.0.2 Observations:

- 58% of the customers are male
- 42% of the customers are female

```
[15]: data['MaritalStatus'].value_counts()
```

```
[15]: MaritalStatus
Partnered 107
Single 73
Name: count, dtype: int64
```

Distribution of Marital Status

2.0.3 Observations:

- 58% of the customers are married
- 41% of the customers are single

3 Graphical Analysis

```
[17]: plt.figure(figsize=(10,15))
  plt.suptitle('Univariate Analysis', fontsize=20)

# Treadmill Model Counts
  plt.subplot(4,3,1)
  sns.countplot(data, x= 'Product')
```

```
# Age Count
plt.subplot(4,3,2)
sns.histplot(data, x= 'Age')
# Gender Count
plt.subplot(4,3,3)
sns.countplot(data, x= 'Gender')
# Education Count
plt.subplot(4,3,4)
sns.countplot(data, x= 'Education')
# Marital Status Count
plt.subplot(4,3,5)
sns.countplot(data, x= 'MaritalStatus')
# Usage Count
plt.subplot(4,3,6)
sns.countplot(data, x= 'Usage')
# Fitness Count
plt.subplot(4,3,7)
sns.countplot(data, x= 'Fitness')
# Income Count
plt.subplot(4,3,8)
sns.histplot(data, x= 'Income')
# Miles Count
plt.subplot(4,3,9)
sns.histplot(data, x= 'Miles')
plt.tight_layout(pad=2.0)
```


3.0.1 Observations:

- Maximum Number of customers are in Age group of 20 to 30 Years.
- The Company has more number of Male customers than Female customers.
- Maximum Customers have 14-16 Years of Education.
- Maximum Number of customers Lies between 60k Income Group

```
[18]: plt.figure(figsize=(10,15))
      plt.suptitle('Some analysis', fontsize = 24)
      plt.subplot(3,2,1)
      sns.barplot(data, x='MaritalStatus', y='Usage')
      plt.xlabel('Martial Status')
      plt.ylabel('Usage')
      plt.title('MartialStatus v/s Usage')
      plt.subplot(3,2,2)
      sns.barplot(data, x='Income', y='Usage')
      plt.xlabel('Income')
      plt.ylabel('Usage')
      plt.title('Income v/s Usage')
      plt.subplot(3,2,3)
      sns.lineplot(data, x='Usage', y='Fitness')
      plt.xlabel('Usage')
      plt.ylabel('Fitness')
      plt.title('Education v/s Usage')
      plt.subplot(3, 2, 4)
      sns.barplot(data, x='Gender', y='Usage')
      plt.xlabel('Gender')
      plt.ylabel('Usage')
      custom_palette = ['skyblue', 'pink']
      plt.subplot(3, 2, 5)
      sns.countplot(data, x='Product', hue='Gender', palette=custom_palette)
      plt.title('Product Purchased VS Gender', fontsize= 18, color= 'black')
      plt.ylabel('No. of Treadmills Purchased', fontsize= 15, color= 'skyblue')
      plt.xlabel('Treadmills Purchased', fontsize= 15, color= 'skyblue')
      plt.tight_layout(pad=2.0)
      plt.show()
```

Some analysis

3.0.2 Observations:

- We observe an almost linear relation between education and usage.
- There is almost no relation between martial status and usage

```
[19]: fig,ax=plt.subplots(3,2,figsize=(10,11))
      fig.subplots_adjust(wspace=.5,hspace=.5)
      fig.suptitle('Bivariate Analysis',y=.95,fontsize=16,color='green')
      sns.countplot(data,x='Product',hue='Gender',ax=ax[0,0])
      sns.countplot(data,x='Product',hue='MaritalStatus',ax=ax[0,1])
      sns.countplot(data,x='Usage',hue='Product',ax=ax[1,0])
      sns.countplot(data,x='Fitness',hue='Product',ax=ax[1,1])
      sns.countplot(data,x='Education',hue='Product',ax=ax[2,0])
      sns.countplot(data,x='Fitness',hue='Gender',ax=ax[2,1])
      ax[0,0].set_title('Product vs Gender')
      ax[0,1].set_title('Product vs MaritalStatus')
      ax[1,0].set_title('Usage vs Product')
      ax[1,1].set_title('Fitness vs Product')
      ax[2,0].set_title('Education vs Product')
      ax[2,1].set_title('Fitness vs Gender')
      plt.show()
```

Bivariate Analysis

3.0.3 Observation:

- Customer with 16 years of education prefer to buy KP281
- Customer whose usage is more than 3 days a week prefer machine KP781
- Customer with more than 16 years of education prefer to use KP781

4 Probability

```
[20]: p_count=data['Product'].value_counts(normalize=True)
      p_count
[20]: Product
      KP281
               0.44444
      KP481
               0.333333
      KP781
               0.22222
      Name: proportion, dtype: float64
        • Probability that people will buy KP281 is 44%
        • Probability that people will buy KP481 is 33%
        • Probability that people will buy KP781 is 22%
[21]: filtered_data = data[['Product', 'Gender']]
      pd.crosstab(filtered_data['Product'], filtered_data['Gender'], margins=True)
[21]: Gender
               Female Male All
      Product
      KP281
                   40
                          40
                               80
      KP481
                    29
                          31
                               60
      KP781
                    7
                          33
                               40
                   76
      All
                         104
                              180
        • the P(Male buying KP781) = 31.7\%
        • the P(Male buying KP481) = 29.8\%
        • the P(Male buying KP281) = 38.4\%
[22]: print("Probability (Product | Partnered)")
      print(data[data["MaritalStatus"] == "Partnered"]["Product"].
       ⇔value_counts(normalize=True))
      print("\nProbability (Product | Single)")
      data[data["MaritalStatus"] == "Single"]["Product"].value_counts(normalize=True)
     Probability (Product | Partnered)
     Product
     KP281
              0.448598
     KP481
              0.336449
     KP781
              0.214953
     Name: proportion, dtype: float64
     Probability (Product | Single)
[22]: Product
      KP281
               0.438356
      KP481
               0.328767
      KP781
               0.232877
```

Name: proportion, dtype: float64

Observation: Single users have higher probability of buying KP781 than Partnered users Partnered users have higher probability of buying KP481.

```
[23]: print("Probability (MaritalStatus | KP281)")
      print(data[data["Product"] == "KP281"]["MaritalStatus"].
       ⇔value_counts(normalize=True))
      print("\nProbability (MaritalStatus | KP481)")
      print(data[data["Product"] == "KP481"]["MaritalStatus"].
       →value_counts(normalize=True))
      print("\nProbability (MaritalStatus | KP781)")
      print(data[data["Product"] == "KP781"]["MaritalStatus"].
       ⇔value_counts(normalize=True))
     Probability (MaritalStatus | KP281)
     MaritalStatus
     Partnered
                  0.6
     Single
                  0.4
     Name: proportion, dtype: float64
     Probability (MaritalStatus | KP481)
     MaritalStatus
     Partnered
                  0.6
                  0.4
     Single
     Name: proportion, dtype: float64
     Probability (MaritalStatus | KP781)
     MaritalStatus
     Partnered
                  0.575
                  0.425
     Single
     Name: proportion, dtype: float64
[24]: print("\nProbability (Product | Single & Male)")
      data[(data["MaritalStatus"] == "Single") & (data["Gender"]=="Male")]["Product"].
       ⇔value_counts(normalize=True)
     Probability (Product | Single & Male)
[24]: Product
     KP281
               0.441860
      KP781
               0.325581
      KP481
               0.232558
      Name: proportion, dtype: float64
```

```
[25]: print("\nProbability (Product | Partnered & Male)")
     data[(data["MaritalStatus"] == "Partnered") &⊔
       →(data["Gender"]=="Male")]["Product"].value_counts(normalize=True)
     Probability (Product | Partnered & Male)
[25]: Product
     KP281
              0.344262
     KP481
              0.344262
     KP781
              0.311475
     Name: proportion, dtype: float64
[26]: print(" \nProbability (Product | Single & Female)")
     data[(data["MaritalStatus"] == "Single") &___
       Probability (Product | Single & Female)
[26]: Product
     KP481
              0.466667
     KP281
              0.433333
     KP781
              0.100000
     Name: proportion, dtype: float64
[27]: print("\nProbability (Product | Partnered & Female)")
     data[(data["MaritalStatus"] == "Partnered") & ⊔
       → (data["Gender"] == "Female")]["Product"].value_counts(normalize=True)
     Probability (Product | Partnered & Female)
[27]: Product
     KP281
              0.586957
     KP481
              0.326087
     KP781
              0.086957
     Name: proportion, dtype: float64
        Correlation among different factors
[28]: continuous_columns = ["Age", "Education", "Usage", "Fitness", "Income", "Miles"]
     sns.heatmap(data=data[continuous_columns].corr(), annot=True, vmin=-1, vmax=1)
     plt.title("Correlation of the dataset")
     plt.show()
```


6 Observations

- Best Selling Treadmill model is 'KP281' while the least sold Treadmill is 'KP781'
- There are more Male customers than Female customers.
- Maximum Number of customers are in Age group of 20 to 30 Years.
- Maximum Customers have 14-16 Years of Education.
- Maximum Number of customers Lies between 60k Income Group
- The company has more number of Married customers than Single Customers.
- Majority of the Customers use the Treadmill for 3 days a week.
- Most of the customers gave them a self rated Fitness score of 3 while only some customers gave them 1.
- Maximum number of customers runs 94 miles per week on an average on Treadmills.

7 Recomendations

• KP281::

- Both Male and Female customers are equally likely to buy the model. The company should target more customers with 3 days/week usage for 'KP281'.
- The company should target more Partnered customers than Single customers for 'KP281'.
 The company should target more customers with 16 years of education for 'KP281'.

• KP481:

- Male and Female customers are almost equally likely to buy 'KP481'. so, company should target both of them.
- The company should target more customers with 14-16 years of education for 'KP481'
- The company should target more Partnered customers than Single customers for 'KP481'.
- Company should target more customers with 3 days/week usage for 'KP481'.

• KP781:

- Male customers are more likely to buy this product. The company should target more customers with 18 years of education for 'KP781'.
- Company should target more customers with Usage of 4 days/week for 'KP781'.
- $-\,$ The company should target more Partnered customers than Single customers for 'KP781'.