HOSPITAL DATABASE MANAGEMENT SYSTEM

Complied by: Sapinderjeet Singh

Student Id: C0824372

Table of Contents

INTRODUCTION	3
ENTITIES	4
RELATIONSHIPS	12
RELATIONSHIP MATRIX	18
ENTITY RELATIONSHIP DIAGRAM(ERD):	19
BEFORE NORMALIZATION	19
NORMALIZATION:	20
RULES OF NORMAL FORM:	21
NORMALIZATION (TABLES):	
ENTITY RELATIONSHIP DIAGRAM(ERD):	36
AFTER NORMALIZATION	36
DATABASE QUERIES:	37
CREATING TABLES:	38
1. Constraints	40
2. SINGLE TABLE QUERIES	46
3. FUNCTIONS	50
4. Group By	54
5. SUB QUERIES	58
6. MULTIPLE TABLE QUERIES	63

Introduction

This project involves various entities related to hospital for instance, the patients and employees. Further, there are different type of employees that is doctor, nurse, patient etc. Moreover, each entity has various attributes which gives a clear view of how the information relating to the hospital will be stored according to the concepts of Database Management System. Also, i have included a discussion of how the relationship between the various entities exists and also the various keys have been identified accordingly. After designing the ERD the normalization will be implemented upto 3rd normal form. Therefore, as an overall structure the designed system would be good enough to store the information as per the required standards. Lastly, the tables will be implemented in the Oracle and to check the working, various meaningful queries are implemented and relevant screenshots are also provided.

ENTITIES

1) **Department:** The department entity shows the different departments to which doctors belong.

DEPARTMENT		
PK	DEPT_ID	
	Dept_name	

Primary Key: Dept_id

Mandatory attributes: Dept_name

Optional attributes: None

Description of Department attributes

Dept_id: Dept_id is the primary key.

Dept_name: The name of the department whether General doctor or Surgeon

2) Doctor: The Doctor is one of the main entity of the Hospital database system.

	DOCTOR		
PK	Doc_id		
	First_name		
	Last_name		
	Birth_date		
	Gender		
	Phone_no		
	Address		
	Speciality		
	Hire_date		
	Salary		

Primary Key: Doc_id

Mandatory attributes: First_name, Phone_no

Optional attributes: Address, Gender

Description of the DOCTOR entity is shown below:

Attributes	Data type	Comments
Doc_id	int	Unique id for a Doctor
First_name	varchar(20)	Doctor's first name
Last_name	varchar(20)	Doctor's last name
Speciality	varchar(20)	Doctor's specialty(for e.g. Surgeon)
Birth_date	Date	Doctor's date of birth
Gender	Varchar(20)	Whether Male or Female
Address	varchar(20)	Doctor's address
Phone_no	int	Mobile Number
Hire_date	Date	Doctor's experience in years
Salary	int	Salary of a doctor

3) Patient: This is the primary entity of the hospital database as all other entities like doctor provide service to this entity. It will act as the centre of the database,

	PATIENTS	
PK	Pat id	
	First_name	
	Last_name	
	Gender	
	Height	
	Weight	
	Allergies	
	Birth_date	
	Martial_status	
	Phone_no	
	Emergency_no	
	Address	

Primary Key: Pat_id

Mandatory attributes: First_name, Emergency_no,

Phone_no

Optional attributes: Martial_status, Gender

Description of the Patient entity is shown below:

Attributes	Data type	Comments
Pat_id	int	Unique id for a Patient
First_name	varchar(20)	Patient's first name
Last_name	Varchar(20)	Patient's last name
Height	Int	Patient's height
Weight	Int	Patient's weight
Allergies	Varchar(20)	Allergy if any
Gender	varchar(20)	Patient is Male or Female
Birth_date	Date	Date of Birth
Marital Status	Varchar(20)	Whether married or unmarried
Phone_no	int	Mobile Number
Emergency	Int	Emergency no should be different
Contact no		from the Phone_no
Address	varchar(20)	Patients address

4) Nurse: The Nurse is an employee in the hospital which assist Doctor during an operation and also checks on patient.

NURSE		
PK	Nurse_id	
Н	First_name	
	Last_name	
	Birth_date	
	Gender	
	Phone_no	
	Address	
	Work_shift	
	Hire_date	
	Salary	

PRIMARY key: Nurse_id

Mandatory attributes: First_name, Work_shift

Phone_no

Optional attributes: Gender

Description of the Nurse entity is shown below:

Attribute	Data type	Comments
Nurse_id	int	Unique id for a Nurse
First_name	varchar(20)	Nurse's first Name
Last_name	Varchar(20)	Nurse's Last name
Gender	Varchar(10)	Whether male or female
Birth_date	Date	Nurse's Date of birth
Phone_no	int	Mobile Number
Address	varchar(20)	Nurse's Address
Work_shift	varchar(20)	Shift e.g. = morning, evening, night
Hire_date	Date	Hire date
salary	int	Salary of a Nurse

5) Operation: Operations are conducted in the hospital and therefore it is necessary to store all data related to an operation.

The entity diagram for OPERATION is shown below:

OPERATION_NAME		
PK,	Ot_id	
	Ot_name	
	Ot_date	

PRIMARY key: Ot_id

Mandatory attributes: Ot_date, Ot_name

Optional attributes: None

Description of the OPERATION entity is shown below:

Attributes	Data type	Comments
Ot_id	int	Unique id for an Operation Theatre (OT)
Ot_name	Varchar(20)	Name of the operation which are conducted in the hospital for e.g. Dialysis.
Ot_date	date	Date of the operation

6) Room: Room is also an important entity as sick patient are admitted here.

The entity diagram for Room is shown below:

ROOM		
PK	Room no	
	Room_type	
	Total_beds	
	Floor_no	
	Occupied	

Primary key: Room_no

Mandatory attributes: Total_beds, Occupied,

Floor_no, Room_type

Optional attributes: None

Description of the ROOM entity is shown below:

Attributes	Data type	Comments
Room_no	int	Room number which will act as the primary key.
Room_type	varchar(20)	Room is VIP or Normal
Floor_no	int	On which floor the room is.
Total_beds	Int	Total beds in a room.
Occupied	int	Total beds occupied which are not vacant.

7) Test: In a hospital various types of test are conducted to assess the health of a patient.

TEST_NAME							
PK	Test_id						
	Name						
	Date						

Primary key: Test_id

Mandatory attributes: Name, Date

Optional attributes: None

Description of the Test entity is shown below:

Attributes	Data type	Comments
Test_id	int	Unique id for a Test
Name	varchar(20)	Name of the Test. For e.g. Blood test etc.
Date	Date	Date and time of Test

8) Payment: Whenever a patient is discharged from the hospital has to clear the bill and therefore, it is necessary to have a record of all the transactions.

The entity diagram for Payment is shown below:

PAYMENT							
PK	Bill_id						
	Total_amount						
	Discount						
	Pay_date						

Primary key: Bill_id

Mandatory attributes: Total_amount, Pay_date

Optional attributes: Discount

Description of the Test entity is shown below:

Attributes	Data type	Comments
Bill_id	int	Unique id for a payment
Total_amount	Int	Total bill of a patient.
Discount	Int	Discount offered
Pay_date	Date	Date of the payment

9) Accountant: In a hospital accountant takes care of all the transactions.

The entity diagram for ORDER is shown below:

ACCOUNTANT							
PK	Acc_id						
H	First_name						
	Last_name						
	Phone_no						
	Gender						
	Hire_date						
	Address						
	Work_shift						
Н	Salary						

Primary key: Acc_id

Mandatory attributes: First_name,

Phone_no,

Work_shift.

Optional attributes: Address

Description of the Nurse entity is shown below:

Attribute	Data type	Comments
Acc_id	int	Unique id for an Accountant
First_name	varchar(20)	Accountant first Name
Last_name	Varchar(20)	Accountant's Last name
Gender	Varchar(10)	Whether male or female
Phone_no	int	Mobile Number
Address	varchar(20)	Accountant's Address
Work_shift	varchar(20)	Shift e.g. = morning, evening, night
Hire_date	Date	Hire date
salary	int	Salary of an Accountant

NOTE: It is understandable that all employees should have a single table but to reduce complexity the Doctor and Nurse are taken as separate entities as they connect with almost all the entities present in this database and after Doctor and Nurse only one Accountant table was left which works in a hospital therefore it is also taken as a separate table.

NOTE: Other entities which should also be present in a hospital database but were ignored to reduce complexity are:

- Ambulance
- Driver
- Medicine
- Prescription
- Ward boy
- Receptionist

RELATIONSHIPS

I. Relationship between Department and Doctor:

- One doctor can belong to one department only.
- One department can have one or more doctors.

II. Relationship between Doctor and Patient:

- One doctor can examine zero, one or many patients.
- One patient can see one or many doctors in a day.

Therefore, to resolve this many to many relationships a junction table

APPOINTMENT is created.

Appointment table: Primary key: Appt_id

Foreign key: Pat_id and Doc_id

Other attributes: Start_time and End_time (of appointment)

III. Relationship between Patient and nurse:

- One nurse can attend zero, one or many patients.
- One patient can be checked by one or many nurses.

Therefore, a junction table is created to resolve this many to many relationships.

IV. Relationship between Operation and Doctor:

- One Doctor can do zero, one or more operation.
- One operation is done by one doctor.
 (Note: to reduce complexity)

V. Relationship between Operation and Nurse:

- One Nurse can assist in zero, one or many operations.
- One operation can be assisted by one nurse.
 (Note: to reduce complexity)

VI. Relationship between Operation and Patient:

- One patient can have zero, one or more operation in a day.
- One operation is done on one patient.

VII. Relationship between Test and Patient

- One patient can undergo zero, one or many test.
- Each test report belongs to one patient only.

VIII. Relationship between Room and Patient:

- One room can have zero, one or many patients.
- One patient can be assigned one room only.

IX. Relationship between Bill and patient.

- One patient can have one or many bills.
- Each bill is paid by one patient.

X. Relationship between Payment and accountant:

- One accountant can receive zero, one or many payments.
- One bill is received by one accountant only.

Relationship matrix

	Depart ment	Doctor	Patient	Nurse	Room	Opera tion	Test	Account ant	Payment
Department		has							
Doctor	Belong s to		Examines			do	prescrib e		
Patient		Examined by		Checked by	Admitted in		Takes		pays
Nurse			Checks on			Assist in			
Room			has			host			
Operation		Done by	Done on	Assisted by					
Test		Prescribed by	Taken by						
Accountant									receives
Payment			Done by					Received by	

Entity Relationship Diagram(ERD):

Before Normalization

Normalization:

Normalization is the process of organizing data in a database. This includes creating tables and establishing relationships between those tables according to rules designed both to protect the data and to make the database more flexible by eliminating redundancy and inconsistent dependency.

It has mainly two goals: -

- ✓ First goal: eliminate redundant data.
- ✓ Second Goal: ensure data dependencies make sense.

Benefits of Normalization:

- Less storage space
- Quicker updates
- Less data inconsistency
- Clearer data relationships
- Easier to add data
- Flexible Structure

Bad database designs result in:

- Redundancy: inefficient storage.
- Anomalies: data inconsistency, difficulties in maintenance.

1NF, 2NF, 3NF are some of the early forms in the list that address this problem.

RULES OF NORMAL FORM:

❖ First normal form(1NF):

- No repeating groups
- No multi-valued columns
- A primary key has been defined
- All columns in the table are dependent on primary key

Second normal form(2NF):

- Should already be in 1NF.
- No partial dependencies i.e. All non-key columns are fully dependent on the entire primary key.

***** Third normal form(3NF):

- Should already be in 2NF.
- A non-key column cannot determine the value of another non-key column must depend directly on primary key

Normalization (Tables):

1. DEPARTMENT:

Dept id	Dept_name
1	General
2	Surgeon

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every cell of the Department table is different from each other.
- No multi-valued columns could appear to exist because every department has a single set of information to be stored.
- A primary key "**DEPT_ID**" has been defined.
- All columns in the table are dependent on primary key because each product holds a unique set of information.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have concluded above that given table is already in 1NF, therefore it satisfies the first condition for 2NF.
- Also, no partial dependencies occur in the DEPARTMENT table because every set of non-key elements are fully dependent on the entire primary key.
- This means every Department name holds a unique set of information which does not co-relates with any other one.

• Third Normal Form (3NF):

• As we have concluded above that given table is already in 2NF, therefore it satisfies the first condition for 3NF.

- A non-key column cannot determine the value of another non-key because clearly each department has a unique department id. Hence, no transitive dependency occurs. This table is in 3NF.
- 2) **DOCTOR:** This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization.

Doc_i	First_nam	Last_nam	Gende	Birth_dat	Phone_no	Addres	Speciality	Hire_dat	Salar	Dept_id
<u>d</u>	e	e	r	e		S		e	у	
1	Sara	Davis	Male	3/06/197	98034387 65	Mumb ai	Orthopaed ist	5/06/201 8	3000 00	1
2	Ross	Taylor	Male	6/03/198	96666387 65	Delhi	Surgeon	9/07/201 7	2000 00	2
3	Jaspreet	Kaur	Femal e	17/10/19 67	97813701 21	Nabha	Heart Specialist	14/09/20 15	4000 00	2
4	Manoj	Singla	Male	16/02/19 84	97646464 64	Delhi	Surgeon	15/01/20 20	1000 00	2
5	Deepak	Sharma	Male	11/09/19 67	98055587 65	Delhi	Orthopaed ist	5/11/201 6	3500 00	1

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every cell of the Doctor table is different from each other.
- No multi-valued columns could appear to exist because every doctor has a single set of information to be stored.
- A primary key "**Doc_id**" has been defined.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

• As we have concluded above that given table is already in 1NF, therefore it satisfies the first condition for 2NF.

• Also, no partial dependencies occur in the DOCTER table because every set of nonkey elements are fully dependent on the entire primary key.

• Third Normal Form (3NF):

- As you see above, that given table is already in 2NF, therefore it matches the first condition for 3NF.
- A non-key column cannot determine the value of another non-key because already the given table has one foreign key i.e. department id, which reduces its data redundancy up to the greatest extent.
- Therefore, no Transitive Dependency. Hence, this table is in 3NF.
- 3) **Patient:** This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization.

Pat id	First_ name	Last_ name	Gen der	Hei ght	Wei ght	Aller gies	Birth_date	Martial_ status	Phone_ no	Emergency_c ontact_no	Addre ss	Roo m_no
1	Rajiv	Sharm a	Mal e	5.5	48	Late x	10/01/ 1988	Married	980343 8765	9458966632	Sangr ur	234
2	Neetu	Kaur	Fem ale	5.8	58	Null	10/11/ 1968	Unmarri ed	980789 8765	9455566632	Rajpur a	372
3	Ravi	Kuma r	Mal e	6.0	80	Dust Mite s	15/05/ 2010	Married	980456 8765	9888966632	Patiala	373
4	Rajne sh	Kuma r	Mal e	5.1	47	Null	15/05/ 2004	Married	986663 8765	9333966632	Chand igarh	375
5	Navpr eet	Kaur	Fem ale	5.6	50	Null	10/11/ 1978	Unmarri ed	978137 0121	9666966632	Nabha	276

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every cell of the Patient table is different from each other.
- No multi-valued columns could appear to exist because every patient has a single set of information to be stored.
- A primary key "Pat_id" has been defined.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have concluded above that given table is already in 1NF, therefore it satisfies the first condition for 2NF.
- Also, no partial dependencies occur in the PATIENT table because every set of nonkey elements are fully dependent on the entire primary key.

• Third Normal Form (3NF):

- As you see above, that given table is already in 2NF, therefore it matches the first condition for 3NF.
- A non-key column cannot determine the value of another non-key because already the given table has one foreign key i.e. room_no, which reduces its data redundancy up to the greatest extent.
- Therefore, no Transitive Dependency. Hence, this table is in 3NF.
- **4) Nurse:** This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization. Table is shown below:

Nurse_i	First_na	Last_na	Gende	Birth_dat	Phone_no	Address	Work_shi	Hire_dat	Salar
<u>d</u>	me	me	r	е			ft	e	у
1	Savita	Kaur	Femal e	10/01/19 77	98034387 65	Delhi	Morning	5/06/201 8	10,00
2	Raj	Singh	Male	10/01/19 78	96666387 65	Rajnagar	Evening	5/06/201	20,00
3	Rasel	Patel	Femal e	10/01/19 99	99997773 46	Ropar	Night	5/06/202	8000
4	Karim	Sharma	Male	10/01/19 78	97646464 64	Gurdasp ur	Morning	5/06/201 7	2000
5	Jhanvi	Sharma	Femal e	10/01/19 77	98055587 65	Nabha	Morning	5/06/201	3000

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every row of the Nurse table is relatively different in nature.
- No multi-valued columns exist because every column has a single set of information to be stored.
- A primary key "Nurse_id" has been defined.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have seen above that given table is already in 1NF, therefore it matches the first condition for 2NF.
- Also, no partial dependencies occur in the Nurse table because every non-key element is fully dependent on the entire primary key.

• Third Normal Form (3NF):

- As we have seen above that given table is already in 2NF, therefore it satisfies the first condition for 3NF.
- A non-key column cannot determine the value of another non-key attribute.

5) Operation: This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization.

Ot_id	Ot_name	Ot_date	Doc_id	Pat_id	Nurse_id
1	Dialysis	04-07-2021, 11-07-2021	3	2,3	5
2	Haemorrhoidectomy	05-07-2021	2	2	2
3	Joint Replacement	19-07-2021, 14-07-2021	3	4,5	3

• First Normal Form (1NF):

 AS we can see that when one operation is done on two patients on two different dates the multivalued columns will exist. Therefore, to resolve this we will do as shown below.

Ot_id	Ot_name	Ot_date	Doc_id	Pat_id	Nurse_id
1	Dialysis	04-07-2021	3	2	5
2	Haemorrhoidectomy	05-07-2021	2	2	2
3	Joint Replacement	19-07-2021	3	4	3
1	Dialysis	11-07-2021	5	3	5
3	Joint Replacement	14-07-2021	3	5	3

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every row of the operation table is now relatively different in nature.
- Multivalued columns which existed previously have been removed.
- A composite primary key Ot_id and Pat_id has been identified.

• Second Normal Form (2NF):

- Table is already in first normal form
- Partial dependency exists in this table as **Ot_name** does not depend on the entire primary key as it only depends on the OT_id. Therefore, a new table will be created named Operation_name.

Ot id	Ot_name
1	Dialysis
2	Haemorrhoidectomy
3	Joint Replacement

Ot_id	Pat_id	Ot_date	Doc_id	Nurse_id
1	2	04-07-2021	3	5
2	4	05-07-2021	2	2
3	2	19-07-2021	3	3
1	3	11-07-2021	5	5
3	5	14-07-2021	3	3

• Third Normal Form (3NF):

- The given table is already in 2NF; therefore, it satisfies the first condition for 3NF.
- No Transitive Dependency occurs in this table. Therefore, the table follows Third Normal Form.

6) TEST:

Test_id	Test_Name	Date	Doc_id	Pat_id
1	Blood	10/06/2021, 11/06/2021	3	4,1
2	Urine	08/05/2021	1	3
3	Ultrasound	18/05/2021	2	5
4	X-Ray	10/06/2021	3	4
5	Angiogram	26/06/2021	5	1

• First Normal Form (1NF):

• Multivalued column exists in the above table as doctor can assign same test

To different patients. Therefore, the table is not in the first normal form.

Test_id	Test_Name	Date	Doc_id	Pat_id
1	Blood	10/06/2021	3	4
1	Blood	11/06/2021	3	1
2	Urine	08/05/2021	1	3
3	Ultrasound	18/05/2021	2	5
4	X-Ray	10/06/2021	3	4
5	Angiogram	26/06/2021	5	1

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every row of the operation table is now relatively different in nature.
- Multivalued columns which existed previously have been removed.
- A composite primary key **Test_id** and **Pat_id** has been identified.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have seen above that given table is already in 1NF, therefore it satisfies the first condition for 2NF.
- Partial dependency exists in the table as the Test_name does not depend on the entire primary key and it solely depends on the Test_id. Therefore, a new table named Test_name is created.

Test_id	Pat_id	Doc_id	Date
1	4	3	10/06/2021
1	1	3	11/06/2021
2	3	1	08/05/2021
3	5	2	18/05/2021
4	4	3	10/06/2021
5	1	5	26/06/2021

→	
Test id	Test_name
1	Blood
2	Urine
3	Ultrasound
4	X-Ray
5	Angiogram

• Third Normal Form (3NF):

- The given table is already in 2NF; therefore, it satisfies the first condition for 3NF.
- No Transitive Dependency occurs in this table. Therefore, the table follows Third Normal Form.
- 7) **Accountant:** This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization.

Acc_i	First_nam	Last_nam	Gende	Phone_no	Address	Work_shif	Hire_dat	Salar
<u>d</u>	e	e	r			t	e	У
1	Surendra	Sharma	Male	980343876 5	Delhi	Morning	5/06/2018	6000
2	Joey	Mike	Male	966663876 5	Rajnagar	Evening	5/06/2016	7000
3	Sheldon	Cooper	Male	999977734 6	Ropar	Night	5/06/2020	6000
4	Priyanka	Chopra	Female	976464646 4	Gurdaspu r	Morning	5/06/2017	6000

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every row of the Accountant table is relatively different in nature.
- No multi-valued columns exist because every column has a single set of information to be stored.
- A primary key "Acc_id" has been defined.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have seen above that given table is already in 1NF, therefore it matches the first condition for 2NF.
- Also, no partial dependencies occur in the Accountant table because every non-key element is fully dependent on the entire primary key.

• Third Normal Form (3NF):

- As we have seen above that given table is already in 2NF, therefore it satisfies the first condition for 3NF.
- A non-key column cannot determine the value of another non-key attribute.

8) Appointment: This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization.

Appt_id	Pat_id	Doc_id	Start_time	End_time
132	1	1	18-06-2021 10:00	18-06-2021 11:00
265	2	2	18-06-2021 10:00	18-06-2021 11:00
365	1	1	18-06-2021 11:00	18-06-2021 12:30
468	4	4	18-06-2021 10:00	18-06-2021 11:00
598	4	3	19-06-2021 11:00	19-06-2021 12:00
769	1	5	20-06-2021 11:30	20-06-2021 12:00
862	5	2	20-06-2021 10:00	20-06-2021 11:00
622	2	5	20-06-2021 12:00	20-06-2021 12:30

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every row of the Payment table is relatively different in nature.
- No multi-valued columns exist because every column has a single set of information to be stored.
- A primary key "Appt_id" has been defined.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have seen above that given table is already in 1NF, therefore it matches the first condition for 2NF.
- Also, no partial dependencies occur in the Appointment table because every non-key element is fully dependent on the entire primary key.

• Third Normal Form (3NF):

- As we have seen above that given table is already in 2NF, therefore it satisfies the first condition for 3NF.
- A non-key column cannot determine the value of another non-key attribute.
- **9) Payment:** This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization.

Bill_id	Pat_id	Acc_id	Total_amount	Discount	Pay_date
111	2	3	10000	0.10	20-07-2021
222	1	3	30000	0.05	21-07-2021
333	3	2	8000	0.08	28-07-2021
444	5	1	30000	NILL	05-07-2021
555	4	4	20000	NILL	18-07-2021

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every row of the Payment table is relatively different in nature.
- No multi-valued columns exist because every column has a single set of information to be stored.
- A primary key "Bill_id" has been defined.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have seen above that given table is already in 1NF, therefore it matches the first condition for 2NF.
- Also, no partial dependencies occur in the Payment table because every non-key element is fully dependent on the entire primary key.

• Third Normal Form (3NF):

- As we have seen above that given table is already in 2NF, therefore it satisfies the first condition for 3NF.
- A non-key column cannot determine the value of another non-key attribute.

10) Room: This table contain the sample data as follow and we will check whether it matches with the different criteria of three normal form of normalization.

Room_no	Room_type	Floor_no	Total_beds	Occupied
22.4	X 7 *	2	1	1
234	Vip	2	1	1
342	Normal	3	20	5
242	Vip	2	1	0
312	Normal	3	10	8
372	Normal	3	15	15

• First Normal Form (1NF):

- No repeating groups could occur for the given table because every row of the Payment table is relatively different in nature.
- No multi-valued columns exist because every column has a single set of information to be stored.
- A primary key "Room_no" has been defined.

Therefore, the given table is already in First Normal Form. So, now we could move further to check the table for 2NF.

• Second Normal Form (2NF):

- As we have seen above that given table is already in 1NF, therefore it matches the first condition for 2NF.
- Also, no partial dependencies occur in the Room table because every non-key element is fully dependent on the entire primary key.

• Third Normal Form (3NF):

- As we have seen above that given table is already in 2NF, therefore it satisfies the first condition for 3NF.
- A non-key column cannot determine the value of another non-key attribute.

Entity Relationship Diagram(ERD): After Normalization

Before Normalization: 9 Tables

After Normalization: 13 Tables

New Tables Added: Nurse_patient, Appointment, Test_name, Operation_name

DATABASE QUERIES:

For this project, the name of my database connection is
 Sapinderjeet as shown below:

- This project is implemented using oracle 18c and sql developer.
- All the table data will be implemented in the sql developer further different Queries will be implemented to retrieve data.

CREATING TABLES:

A. Doctor table:

B. Patient Table

C. Nurse Table:

```
(soi Sapinderjeet
Worksheet
        Query Builder
   CREATE TABLE Nurse (
        Nurse id
                  int,
        First name varchar(20),
                  varchar(20),
        Last name
        Gender varchar(10),
        Birth date date,
                       int,
        Phone no
        Address varchar(20),
        Work shift varchar(20),
        Hire date
                  date,
                        DEFAULT 5000,
        salary
                  int
        CONSTRAINT nurse pk PRIMARY KEY (Nurse id)
     );
```

D. Appointment Table

```
Sapinderjeet
🕟 🕎 👸 🗸 | 🔯 🕵 | 🦀 🥟 👩 ધ |
Worksheet Query Builder
    CREATE TABLE Appointment (
         Appt_id int ,
         Pat_id
                     int REFERENCES Patient (Pat_id),
                     int REFERENCES Doctor (doc id),
         Doc id
         Start_time TIMESTAMP,
         End time TIMESTAMP,
         CONSTRAINT app_pk PRIMARY KEY (Appt_id)
     );
Script Output X Duery Result X
📌 🧽 🔡 📕 | Task completed in 0.288 seconds
Table APPOINTMENT created.
```

Similarly, all the tables were created.

1. Constraints

1.1) Primary Key constraint: Table Doctor

Checking: Here, sql gives error as primary key constraint is violated.

```
Sapinderjeet
Worksheet
         Query Builder
   INSERT INTO Doctor (Doc id, First name, Last name, Gender, Speciality, Birth date,
                        Address, Phone no, Hire date, Salary, Dept id)
         VALUES (1, 'Sara', 'Davis', 'Male', 'Orthopedist', TO DATE('10/01/1964', 'DD/MM/RR'),
                 'Mumbai', 9803438765, TO DATE('10/01/1990', 'DD/MM/RR'), 100000, 1);
Script Output X DQuery Result X
📌 🥜 🔡 🖺 📗 | Task completed in 1.088 seconds
Error starting at line : 1 in command -
INSERT INTO Doctor (Doc id, First name, Last name, Gender, Speciality, Birth date,
                  Address, Phone no, Hire date, Salary, Dept id)
   VALUES (1, 'Sara', 'Davis', 'Male', 'Orthopedist', TO_DATE('10/01/1964', 'DD/MM/RR') ,
            'Mumbai', 9803438765, TO DATE ('10/01/1990', 'DD/MM/RR'), 100000,1)
Error report -
ORA-00001: unique constraint (SYSTEM.DOC PK) violated
```

1.2) Unique Constraint: Phone_no should be unique.

CHECKING: Here, the system will give error as phone number is not unique.

1.3) Check Constraint: Length of phone_no should be between 9 and 11.

CHECKING: Here, the system will give error as the length of mobile no. is greater than 11.

1.4) Default Constraint: By default, the address will be 'India'

CHECKING:

1.5) Foreign Key Constraint:

CHECKING: Here system will give error as foreign key constraint is violated.

1.6 Constraints on other main tables:

a. Unique, Not Null, Primary Key constraint on Patient Table.

```
Worksheet Query Builder
   CREATE TABLE Patient (
         Pat_id
         First_name varchar(20) NOT NULL,
        Last_name varchar(20),
Gender varchar(20),
                    int,
         Height
                     int,
         Weight
         Allergies
                     varchar(20),
         Birth date Date,
         Martial_status varchar(10),
         Phone_no int NOT NULL UNIQUE,
Emergency_no int NOT NULL UNIQUE,
                   varchar(20),
         Address
         Room no
                     int.
        CONSTRAINT pat_pk PRIMARY KEY(Pat_id));
Script Output × Duery Result ×
  🧼 🔡 🚇 📘 | Task completed in 2.311 seconds
Table PATIENT created.
```

b. Default, Primary Key constraint on Nurse Table

```
Sapinderjeet *
Worksheet
        Query Builder
   CREATE TABLE Nurse (
       Nurse id int,
        First name varchar(20),
       Last name varchar(20),
       Gender varchar(10),
        Birth date date,
        Phone no
                      int,
        Address varchar(20),
        Work shift varchar(20),
        Hire date date,
       salary
                  int
                         DEFAULT 5000,
        CONSTRAINT nurse pk PRIMARY KEY (Nurse id)
    );
```

Similarly, all the other tables are created with constraints wherever necessary.

2. Single table queries

2.1) List all the nurses hired between 1 Jan 2016 and 1 Jan 2019.

SCRIPT:

SELECT first_name ||' '|| last_name AS Full_name, Salary, Hire_date FROM Nurse
WHERE Hire_date between '01/01/2016' AND '01/01/2019';

Output:

2.2) Display salary of Accountants along with new salary (1.25) times the original salary.

SCRIPT:

SELECT first_name, Salary AS Current_Salary, salary*1.25 AS New_Salary FROM Accountant

2.3) Display the salary of the doctor whose last_name starts with 'T'.

Script:

SELECT first_name, Last_name, Speciality, Salary FROM Doctor
WHERE last_name LIKE 'T%'

Output:

2.4) Return the First_name, Last_name, Work_shift and salary from Nurses table. Order by salary descending.

SCRIPT:

SELECT First_name, Last_name, Work_shift, Salary FROM Nurse
ORDER BY Salary DESC;

2.5) Find all the male doctors who earn more than 10,000.

SCRIPT:

SELECT First_name, Birth_date, Address, Salary FROM Doctor
WHERE Salary > 100000 AND Gender = 'Male';

3. FUNCTIONS

3.1) Find the age of all the doctors and show the full name in one columns as Full name with space.

Functions Used: Round, Months_between

SCRIPT:

SELECT first_name||''||last_name AS Full_name, Salary, round ((months_between (SYSDATE, Birth_date)/12),0) Age FROM Doctor;

OUTPUT:

3.2) Find the average weight and height of all the patients.

Functions Used: Average(Avg)

Script:

SELECT AVG(Weight), AVG(height) FROM Patient;

OUTPUT:

3.3) Find total number of operations conducted in the hospital.

Functions Used: Count

Script:

SELECT count(pat_id) AS "Total operations conducted" FROM Operation;

3.4) Find number of beds free in each room. Also if bed is not free show "Occupied" else show "Vacant".

Function Used: Select Case

Script:

```
SELECT Room_no, (total_beds - occupied) AS Spaceleft,

CASE

WHEN total_beds - occupied = 0 THEN 'Room not free'

WHEN total_beds - occupied > 0 THEN 'Vacant'

END AS "Vacant or not"

FROM Room;
```

Output:

3.5) Display the address of all the patient along with the length of the place.

Functions Used: Length

Script:

SELECT DISTINCT Address, LENGTH (address) AS Address_length FROM Patient;

4. Group By

4.1) Write a query in SQL to find the name of the patients and the number of Appointments they have taken group by first_name.

Script:

4.2) Use Group by to find total number of male and female accountant present in the hospital.

SCRIPT:

SELECT COUNT(Acc_id), Gender FROM Accountant GROUP BY Gender;

OUTPUT:

4.3) Use Group by to find total number of nurses working in different shifts i.e. Morning, Evening, Night.

SCRIPT:

SELECT Work_shift, COUNT(Nurse_id)
FROM Nurse
GROUP BY Work shift;

OUTPUT:

4.4) Write a query in SQL to find the total doctors belonging to each department group by Dept_name.

SCRIPT:

4.5) Write a query in SQL to find the total free beds on each floor group by Floor_no.

SCRIPT:

```
SELECT floor_no AS "Floor",

SUM (total_beds - occupied)

FROM room

WHERE Total_beds - occupied > 0

GROUP BY floor_no;
```


5. SUB QUERIES

5.1) Find the name and address of all doctors which works in the same department as the doctor "Manoj".

SCRIPT:

OUTPUT:

5.2) List name all the patients who have total_bill greater than 25,000 using sub queries.

SCRIPT:

```
SELECT First_name
FROM Patient
WHERE Pat_id IN

(SELECT Pat_id
FROM Payment
WHERE Bill total > 25000);
```

OUTPUT:

5.3) Display all the doctors which have salary greater than the average salary.

SCRIPT:

5.4) List all the payments where total_bill is greater than 10,000 and Discount is NOT NULL.

SCRIPT:

```
SELECT Bill_id, Pat_id, discount, Bill_total
FROM Payment
WHERE discount > ANY
(SELECT discount
FROM Payment
WHERE Bill_Total >10000
AND Discount IS NOT NULL);
```


5.4) Find which doctors has the highest salary department wise. Display their first name, last name, department id and salary using sub queries.

SCRIPT:

```
SELECT First_name, Last_name, dept_id, salary
FROM Doctor
WHERE Salary IN

(SELECT MAX(Salary)

FROM Doctor

WHERE dept_id IS NOT NULL

GROUP BY dept_id);
```


6. MULTIPLE TABLE QUERIES

6.1) Write a query in SQL to find the name of the patients who taken the appointment on the 18 June at 10 am, and also display their Doctor along with the Appointment id.

Script:

6.2) Find which patient is admitted in which room and which patients are not admitted.

Sol: Here left join will be used and those which will have null values will be the one that are not admitted in any room.

SCRIPT:

```
Select first_name AS "Name of the Patient",
room_no,
floor_no
FROM Patient
LEFT JOIN room USING (room_no);
```


6.3) Display all the patients along with their operation id and also those patients who did not have any operation scheduled.

Sol: Here right join will be used and those which will have null values will be the one that do not have any operation scheduled.

SCRIPT:

SELECT Ot_id, first_name
FROM operation
RIGHT OUTER JOIN patient USING (pat_id);

6.4) List all the operations conducted by the doctors along with the nurse assisting it with date and patient name.

SCRIPT:

6.5) Find all the test which "Doctor Manoj" assign to patients.

SCRIPT:

```
SELECT ts.test_name AS "Test Name",

d.first_name AS "Doctor",

t.test_date,

p.first_name AS "Patient"

FROM Tests t

JOIN Doctor d ON d.doc_id = t.doc_id

JOIN Test_name ts ON ts.test_id = t.test_id

JOIN Patient p ON p.pat_id = t.pat_id

WHERE d.first_name = 'Manoj';
```

