Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation

Caner Hazırbaş

Joint work with Julia Diebold and Daniel Cremers

Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation

Caner Hazırbaş

Joint work with Julia Diebold and Daniel Cremers

Optimizing the Relevance-Redundancy Tradeoff

Feature Set

Feature Analysis

Feature Ranking

Objective:

- maximize the relevance between the feature and its class
- *minimize* the redundancy between the feature pairs

$$\max \Phi (Rel, Red)$$
,

$$\Phi = Relevance - Redundancy$$

max Φ (Rel, Red),
$$\Phi = \text{Relevance} - \text{Redundancy}$$

$$= \text{MI}(f_i; class) - \frac{1}{m-1} \sum_{i \neq j} \text{MI}(f_i; f_j)$$

$$MI(X;Y) = \int_{Y} \int_{X} \log \frac{p(x,y)}{p(x)p(y)} dxdy$$

- iteratively rank the features, select one feature at a time
- maximize the objective function at each iteration:

$$f_{m} = \underset{f_{i} \in \mathcal{F} \setminus \mathcal{F}_{m-1}}{\operatorname{arg max}} \left[\mathsf{MI}\left(f_{i}; c\right) - \frac{1}{m-1} \sum_{f_{j} \in \mathcal{F}_{m-1}} \mathsf{MI}\left(f_{i}; f_{j}\right) \right]$$

Incremental Feature Analysis

Relevance of Haar-Like Features

Relevance of Texton Features

Relevance of Color Features

Relevance of Location Features

Relevance of Depth Features

Feature Selection

Number of Selected Features

Semantic Image Segmentation

Classification & Segmentation

Improved Runtime

	Training Time (in seconds)				Testing Time (in seconds)					
	eTrims	Corel	Sowerby	NYUv1	NYUv2	eTrims	Corel	Sowerby	NYUv1	NYUv2
Shotton et al.	_	1800	1200	_	_	_	1.10	2.50	_	_
Fröhlich et al.	_	_	_	_	_	17.0	_	_	_	_
Couprie et al.	_	_	_	_	172800	_	_	_	_	0.70
Hermans et al.	_	_	_	_	_	_	_	_	0.38	0.38
Proposed	143	20	2	133	183	6.6	0.27	0.07	0.32	0.26

On average we improve the runtime by a factor of 7.7

Competitive Results

	Classification				Segmentation					
	eTrims	Corel	Sowerby	NYUv1	NYUv2	eTrims	Corel	Sowerby	NYUv1	NYUv2
Shotton et al.	_	68.4	85.6	_	_	_	74.6	88.6	_	_
Fröhlich et al.	_	_	_	_	_	77.2	_	_	_	_
Couprie et al.	_	_	_	_	_	_	_	_	_	52.4
Hermans et al.	_	_	_	65.0	_	_	_	_	71.5	54.2
Proposed	77.1	74.4	87.1	65.0	44.0	77.9	78.2	88.8	66.5	45.0

Image

Others

Class.

Segm.

Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation

Caner Hazırbaş | hazirbas@cs.tum.edu

Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic Segmentation

Caner Hazırbaş | hazirbas@cs.tum.edu

References

- TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi IJCV'07
- Semantic Segmentation with Millions of Features: Integrating Multiple
 Cues in a Combined Random Forest Approach
 Björn Fröhlich, Erik Rodner, and Joachim Denzler ACCV'12
- Indoor Semantic Segmentation using depth information
 Camille Couprie, Clément Farabet, Laurent Najman, and Yann LeCun ICLR'13
- Dense 3D Semantic Mapping of Indoor Scenes from RGB-D Images Alexander Hermans, Georgios Floros and Bastian Leibe ICRA'14