

Reconsideration and Extension of Cartesian Genetic Programming

Dissertation defense

Roman Kalkreuth

Computational Intelligence Research Group Chair XI - Algorithm Engineering Department of Computer Science TU Dortmund University

27/07/2021

Conference papers (1):

Roman Kalkreuth, Günter Rudolph, and Jörg Krone. Improving Convergence in Cartesian Genetic Programming Using Adaptive Crossover, Mutation and Selection. In: IEEE Symposium Series on Computational Intelligence, SSCI 2015, Cape Town, South Africa, December 7-10, 2015, pages 1415–1422. IEEE, 2015. DOI: 10.1109/SSCI.2015.20

Roman Kalkreuth, Günter Rudolph, and Andre Droschinsky. A New Subgraph Crossover for Cartesian Genetic Programming. In: Genetic Programming - 20th European Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings, Lecture Notes in Computer Science, Volume 10196, pages 294–310, 2017. DOI: 10.1007/978-3-319-55696-3_19

Paul Kaufmann and Roman Kalkreuth. An Empirical Study on the Parametrization of Cartesian Genetic Programming. In: Genetic and Evolutionary Computation Conference, Berlin, Germany, July 15-19, 2017, Companion Material Proceedings, pages 231–232. ACM, 2017. DOI: 10.1145/3067695.3075980

Paul Kaufmann and Roman Kalkreuth. Parametrizing Cartesian Genetic Programming: An Empirical Study. In: KI 2017: Advances in Artificial Intelligence - 40th Annual German Conference on AI, Dortmund, Germany, September 25-29, 2017, Proceedings, Lecture Notes in Computer Science, Volume 10505, pages 316–322. Springer, 2017. DOI: 10.1007/978-3-319-67190-1.26

Conference papers (2):

Jakub Husa and Roman Kalkreuth. A Comparative Study on Crossover in Cartesian Genetic Programming. In: Genetic Programming - 21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018, Proceedings, Lecture Notes in Computer Science, volume 10781, pages 203–219. Springer, 2018. DOI: 10.1007/978-3-319-77553-1_13

Roman Kalkreuth and Andre Droschinsky. On the Time Complexity of Simple Cartesian Genetic Programming. In: Proceedings of the 11th International Joint Conferenceon Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019, pages 172–179. ScitePress, 2019. DOI: 10.5220/0008070201720179 (Best Poster Nomination)

Roman Kalkreuth. Two new Mutation Techniques for Cartesian Genetic Programming. In: Proceedings of the 11th International Joint Conference on Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019, pages 82–92. ScitePress, 2019. DOI: 10.5220/0008070100820092 (Best Student Paper Nomination)

Roman Kalkreuth. A Comprehensive Study on Subgraph Crossover in Cartesian Genetic Programming. In: Proceedings of the 12th International Joint Conferenceon Computational Intelligence, IJCCI 2020, Budapest, Hungary, November 2-4, 2020, pages 59–70. SCITEPRESS, 2020. DOI: 10.5220/0010110700590070

Book chapters:

Roman Kalkreuth: An Empirical Study on Insertion and Deletion Mutation in Cartesian Genetic Programming, In: Computational Intelligence: 11th International Joint Conference, IJCCI 2019, Vienna, Austria, September 17–19, 2019, Revised Selected Papers, Springer International Publishing, 2021. DOI: 10.1007/978-3-030-70594-7.4

Outline

- Genetic Programming (GP)
- 2 Cartesian Genetic Programming (CGP)
- 3 State of Scientific Knowledge in CGP
- Thesis Contributions
- **5** Advanced Genetic Operators
- 6 Evaluation
- **7** Conclusion

■ Genetic Programming is a search heuristic

- Genetic Programming is a search heuristic
- Evolutionary algorithm-based method for automatic derivation of computer programs

- Genetic Programming is a search heuristic
- Evolutionary algorithm-based method for automatic derivation of computer programs
- Inspired by Charles Darwin's theory of evolution¹

¹Charles Darwin: On the Origin of Species by Means of Natural Selection, 1859

Definition (Genetic Programming)

Let Θ be a population of $|\Theta|$ individuals and let Ω be the population of the following generation:

- Each individual is represented with a genetic program and a fitness value.
- Genetic Programming transforms $\Theta \mapsto \Omega$ by the adaptation of selection, recombination and mutation.

Termination criteria ightarrow predefined fitness reached or budget of generations exceeded

Definition (Genetic Program)

A genetic programm \mathcal{P} is an element of $\mathcal{T} \times \mathcal{F} \times \mathcal{E}$:

- lacksquare $\mathcal F$ is a finite non-empty set of functions
- lacksquare $\mathcal T$ is a finite non-empty set of terminals
- lacksquare $\mathcal E$ is a finite non-empty set of edges

Let $\phi: \mathcal{P} \mapsto \Psi$ be a decode function which maps \mathcal{P} to a phenotype Ψ

lacksquare Genetic Programming o traditionally tree representation

- lacksquare Genetic Programming o traditionally tree representation
- $lue{}$ Cartesian Genetic Programming ightarrow graph representation

- lacksquare Genetic Programming o traditionally tree representation
- $lue{}$ Cartesian Genetic Programming ightarrow graph representation
- Extension of Genetic Programming

■ Program representation → acyclic and directed graph

- $lue{}$ Program representation ightarrow acyclic and directed graph
- lacksquare Genotype-phenotype mapping o encoding-decoding of the graph

- $lue{}$ Program representation ightarrow acyclic and directed graph
- $lue{}$ Genotype-phenotype mapping ightarrow encoding-decoding of the graph
- Predominantly used without recombination $o (1+\lambda)$ selection scheme

Definition (Cartesian Genetic Program)

A cartesian genetic program \mathcal{P} is an element of $\mathcal{N}_i \times \mathcal{N}_f \times \mathcal{N}_o \times \mathcal{F}$:

- \mathbf{N}_{i} is a finite non-empty set of input nodes
- \mathcal{N}_f is a finite set of function nodes
- \blacksquare \mathcal{N}_{o} is a finite non-empty set of output nodes
- lacksquare $\mathcal F$ is a finite non-empty set of functions

One-sided and incomplete

- One-sided and incomplete
- Empirical findings → illegitimate generalization

- One-sided and incomplete
- $lue{}$ Empirical findings ightarrow illegitimate generalization
- Overemphasis on Boolean function learning

Urgent open issues:

 \blacksquare Theoretical work \rightarrow lack of formalism and runtime analysis

²Julian Miller: *Cartesian Genetic Programming: its status and future*, Genetic Programming and Evolvable Machines, 2020

Urgent open issues:

- \blacksquare Theoretical work \rightarrow lack of formalism and runtime analysis
- Genetic variation \rightarrow recombination and mutation²

²Julian Miller: *Cartesian Genetic Programming: its status and future*, Genetic Programming and Evolvable Machines, 2020

Urgent open issues:

- $lue{}$ Theoretical work ightarrow lack of formalism and runtime analysis
- Genetic variation \rightarrow recombination and mutation²
- $lue{}$ Recombination ightarrow long standing open question in CGP

²Julian Miller: *Cartesian Genetic Programming: its status and future*, Genetic Programming and Evolvable Machines, 2020

Urgent open issues:

- $lue{}$ Theoretical work ightarrow lack of formalism and runtime analysis
- Genetic variation \rightarrow recombination and mutation²
- $lue{}$ Recombination ightarrow long standing open question in CGP
- $lue{}$ Parametrization ightarrow illegitimate generalization

²Julian Miller: *Cartesian Genetic Programming: its status and future*, Genetic Programming and Evolvable Machines, 2020

Recombination in CGP: A two decades-old open issue

```
1999 Miller: Genotypic crossover
2007 Clegg, Walker, Miller: Arithmetic crossover
2008 Kaufmann, Platzner: Cone-based crossover (Modular CGP)
2015 Kalkreuth, Rudolph, Krone: Adaptive arithmetic crossover
2017 Kalkreuth, Rudolph, Droschinsky: Subgraph crossover
2018 Husa, Kalkreuth: Block crossover
2020 Kalkreuth: Comparative study on crossover
```


lacksquare Genetic variation ightarrow new operators for recombination and mutation

- $lue{}$ Genetic variation ightarrow new operators for recombination and mutation
- $lue{}$ Parametrization studies ightarrow covering different problem domains

- $lue{}$ Genetic variation ightarrow new operators for recombination and mutation
- \blacksquare Parametrization studies \rightarrow covering different problem domains
- First runtime analysis and formal description of CGP

Advanced Genetic Operators in CGP

 \blacksquare Genotypic variation \rightarrow traditional approach

Advanced Genetic Operators in CGP

- \blacksquare Genotypic variation \rightarrow traditional approach
- Phenotypic variation \rightarrow new approach

Advanced Genetic Operators in CGP

- \blacksquare Genotypic variation \rightarrow traditional approach
- Phenotypic variation \rightarrow new approach
- Inspired by Epigenetics and Lamarckian thought³

 $^{^3}$ Jean-Baptiste Lamarck : Zoological Philosophy: An Exposition with Regard to the Natural History of Animals, 1809

The Subgraph Crossover

 $lue{}$ Underlying idea o subtree crossover found in tree-based GP

The Subgraph Crossover

- $lue{}$ Underlying idea o subtree crossover found in tree-based GP
- Joins and links subgraphs of two selected parents

The Subgraph Crossover

- $lue{}$ Underlying idea o subtree crossover found in tree-based GP
- Joins and links subgraphs of two selected parents
- Produces one offspring

Inspiration: Subtree Crossover (GP)

(c) First Offspring

(b) Second Parent

(d) Second Offspring

The Subgraph Crossover (CGP)

Offspring

The Subgraph Crossover (CGP)

Selects and swaps blocks of function genes

- Selects and swaps blocks of function genes
- \blacksquare Phenotypic variation \rightarrow only active function genes

- Selects and swaps blocks of function genes
- lacktriangle Phenotypic variation o only active function genes
- Produces two offsprings

First Parent

First Offspring

Second Parent

Second Offspring

Experimental Setup

■ Benchmark problems → diverse set of Boolean function and symbolic regression problems⁴

⁴McDermott et al.: *Genetic Programming Needs Better Benchmarks*, GECCO '12: Proceedings of the Genetic and Evolutionary Computation Conference, 2012

Experimental Setup

- Benchmark problems → diverse set of Boolean function and symbolic regression problems⁴
- lacksquare Search performance evaluation o number of fitness evaluations or best fitness value

⁴McDermott et al.: *Genetic Programming Needs Better Benchmarks*, GECCO '12: Proceedings of the Genetic and Evolutionary Computation Conference, 2012

Experimental Setup

- Benchmark problems → diverse set of Boolean function and symbolic regression problems⁴
- lacksquare Search performance evaluation o number of fitness evaluations or best fitness value
- $lue{}$ Statistical validity ightarrow 100 runs per problem

⁴McDermott et al.: *Genetic Programming Needs Better Benchmarks*, GECCO '12: Proceedings of the Genetic and Evolutionary Computation Conference, 2012

List of evaluated CGP algorithms

Algorithm	Description
$(1 + \lambda)$ -CGP	Standard (1 $+$ λ)-CGP algorithm
$(1 + \lambda)$ -CGP-ID \star	$(1+\lambda)$ -CGP with insertion and deletion mutation
$(\mu + \lambda)$ -CGP (Subgraph) \star	$(\mu + \lambda)$ -CGP with subgraph crossover
$(\mu + \lambda)$ -CGP (Block) \star	$(\mu + \lambda)$ -CGP with block crossover
$(\mu + \lambda)$ -CGP-ID (Subgraph) \star	$(\mu + \lambda)$ -CGP with insertion/deletion mutation and subgraph crossover
$(\mu + \lambda)$ -CGP-ID (Block) \star	$(\mu + \lambda)$ -CGP with insertion/deletion mutation and block crossover
Canonical-CGP (Subgraph) *	Canonical EA with subgraph crossover and tournament selection
Canonical-CGP (Block) *	Canonical EA with block crossover and tournament selection
Real-valued CGP	Real-valued CGP with decimal representation
Adaptive real-valued CGP *	Real-valued CGP algorithm with self-adaptive strategy

 $\star \rightarrow \mathsf{new}$

Symbolic Regression Benchmarks

Problem	Objective Function	Vars	Training Set	Function Set
Koza-1	$x^4 + x^3 + x^2 + x$	1	U[-1,1,20]	Koza*
Koza-2	$x^5 - 2x^3 + x$	1	U[-1,1,20]	Koza
Koza-3	$x^6 - 2x^4 + x^2$	1	U[-1,1,20]	Koza
Nguyen-4	$x^6 + x^5 + x^4 + x^3 + x^2 + x$	1	U[-1,1,20]	Koza
Nguyen-5	$\sin(x^2)\cos(x)-1$	1	U[-1,1,20]	Koza
Nguyen-6	$\sin(x) + \sin(x + x^2)$	1	U[-1,1,20]	Koza
Nguyen-7	$\ln(x+1) + \ln(x^2+1)$	1	U[0,2,20]	Koza
Keijzer-6	$\sum_{i=1}^{x} 1/i$	1	E[1,50,1]	Keijzer [†]
Pagie-1	$1/(1+x^{-4})+1/(1+y^{-4})$	2	E[-5,5,0.4]	Koza

```
*Koza = { +, -, *, /, sin, cos, ln(|n|), e^n }

†Keijzer = { +, *, n^{-1}, -n, \sqrt{n} }
```


Problem	Algorithm	Mean Fitness Evaluations	Standard deviation	Median
Koza-1	$(1 + \lambda)$ -CGP	5734303	12623995	1210536
Noza-1	Canonical-CGP (Subgraph)	997014	1164434	644976
	Canonical-CGP (Block)	351981	775846	61776
Koza-2	$(1 + \lambda)$ -CGP	4846164	1042512	1042512
Noza-2	Canonical-CGP (Subgraph)	768608	341328	341328
	Canonical-CGP (Block)	248863	60048	60048
Koza-3	$(1 + \lambda)$ -CGP	742311	1846722	118576
Noza-3	Canonical-CGP (Subgraph)	87657	129750	46680
	Canonical-CGP (Block)	95869	326758	14184
Nguyen-4	$(1 + \lambda)$ -CGP	2327772	11592888	29648
Nguyen-4	Canonical-CGP (Subgraph)	28464	30350	16320
	Canonical-CGP (Block)	76736	167352	31176
Nguyen-5	$(1 + \lambda)$ -CGP	3831520	9956078	721312
Nguyen-5	Canonical-CGP (Subgraph)	161028	271872	80160
	Canonical-CGP (Block)	314377	544622	123120
Nguyen-6	$(1 + \lambda)$ -CGP	10461344	22773705	445672
Nguyen-6	Canonical-CGP (Subgraph)	356406	1087258	24432
	Canonical-CGP (Block)	227955	470109	59040

Problem	Algorithm	Total Runtime hh:mm:ss	Unfinished Runs
Koza-1	$(1 + \lambda)$ -CGP	02:25:48	2
Koza-1	Canonical-CGP (Subgraph)	00:12:47	0
	Canonical-CGP (Block)	00:09:08	0
V 0	$(1 + \lambda)$ -CGP	02:02:04	0
Koza-2	Canonical-CGP (Subgraph)	00:15:53	0
	Canonical-CGP (Block)	00:07:54	0
Koza-3	$(1 + \lambda)$ -CGP	00:17:45	0
Noza-3	Canonical-CGP (Subgraph)	00:02:01	0
	Canonical-CGP (Block)	00:02:59	0
Nauron 4	$(1 + \lambda)$ -CGP	04:00:16	2
Nguyen-4	Canonical-CGP (Subgraph)	00:04:42	0
	Canonical-CGP (Block)	00:04:47	0
N 5	$(1 + \lambda)$ -CGP	01:42:24	1
Nguyen-5	Canonical-CGP (Subgraph)	00:05:57	0
	Canonical-CGP (Block)	00:17:46	0
N 6	$(1 + \lambda)$ -CGP	04:33:37	7
Nguyen-6	Canonical-CGP (Subgraph)	00:06:56	0
	Canonical-CGP (Block)	00:07:38	0

Problem	Algorithm	Mean Best Fitness value	Standard deviation	Median
Nguyen-7	$(1 + \lambda)$ -CGP	0.71	0.45	0.67
inguyen-7	Canonical-CGP (Subgraph)	0.60	0.35	0.60
	Canonical-CGP (Block)	0.72	0.52	0.65
Keijzer-6	$(1 + \lambda)$ -CGP	3.38	2.52	3.03
Keijzer-0	Canonical-CGP (Subgraph)	2.81	1.13	2.90
	Canonical-CGP (Block)	3.71	2.28	3.15
Pagie-1	$(1 + \lambda)$ -CGP	120.75	44.95	120.91
ragie-1	Canonical-CGP (Subgraph)	98.52	50.95	85.31
	Canonical-CGP (Block)	119.97	47.15	115.41

The work of my thesis...

introduced advanced phenotypic variation in standard CGP

The work of my thesis...

- introduced advanced phenotypic variation in standard CGP
- demonstrated the feasibilities of recombination in CGP

The work of my thesis...

- introduced advanced phenotypic variation in standard CGP
- demonstrated the feasibilities of recombination in CGP
- gave significant insight into the search mechanisms of CGP
- had already a directional impact in graph-based GP⁵

The work of my thesis...

- introduced advanced phenotypic variation in standard CGP
- demonstrated the feasibilities of recombination in CGP
- gave significant insight into the search mechanisms of CGP
- had already a directional impact in graph-based GP⁵

 $^{^5}$ Aktinson et al. : *Evolving graphs with horizontal gene transfer*, GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference, 2019

A first runtime analysis of (1+1)-CGP...

was performed on two artificial problems

A first runtime analysis of (1+1)-CGP...

- was performed on two artificial problems
- utilized Drift Analysis⁶

⁶Doerr et al.: Multiplicative Drift Analysis, Algorithmica 64, 2011

A first runtime analysis of (1+1)-CGP...

- was performed on two artificial problems
- utilized Drift Analysis⁶
- proved that SUM is solved in expected time $\Theta(n \log n)$

⁶Doerr et al.: Multiplicative Drift Analysis, Algorithmica 64, 2011

A first runtime analysis of (1+1)-CGP...

- was performed on two artificial problems
- utilized Drift Analysis⁶
- proved that SUM is solved in expected time $\Theta(n \log n)$
- proved an upper bound of $\mathcal{O}(n^2 \log n)$ and a lower bound of $\Omega(n^2)$ for COUNTING OPERATORS

⁶Doerr et al.: Multiplicative Drift Analysis, Algorithmica 64, 2011

The work of my thesis...

has already been internationally recognized and acknowledged

New mutation operators and search algorithms

- Kalkreuth recently (arXiv 2018) investigated some new mutation operators: insertion and deletion
 - Insertion: chooses an inactive node and changes one or more connection genes in the genotype to make it active.
 - □ Deletion: alters connections to an active node so that the node becomes inactive.
 - □ He examined the impact of the new mutation operators (operating together with the standard point mutation) on three Boolean benchmarks and a suite of symbolic regression problems. On all problems, the use of the two operators gave improved performance.
- Kaufmann and Kalkreuth (2020) extensively investigated various parameters in CGP for effectiveness. Using Goldman's single active mutation strategy, they found
 - ☐ 1+1-ES is usually the most efficient algorithm
 - ☐ Randomizing all inactive genes before an active gene mutation works well.
 - ☐ Mutation of function genes is unnecessary

Crossover or not?

- Recombination doesn't seem to add anything (Miller 1999, "An empirical study...")
- However if there are multiple chromosomes with independent fitness assessment then it helps a LOT (Walker, Miller, Cavill 2006, Walker, Völk, Smith, Miller, 2009)
- Some work using a floating point representation of CGP has suggested that crossover might be useful (Clegg, Walker, Miller 2007)
- Cone-based crossover with modular CGP (Kaufmann, Platzner 2008)
- Kalkreuth has recently investigated sub-graph crossover where active nodes are swapped either side of single-point crossover (Kalkreuth 2017)

Source: Cartesian Genetic Programming Tutorial - IEEE Congress of Evolutionary Computation (2021) by Dr. Julian Miller (Founder of CGP)

"It is known that every science must have its philosophy, and that it cannot make real progress in any other way."

"If the philosophy of science is neglected her progress will be unreal, and the entire work will remain imperfect."

> **Jean-Baptiste Lamarck**: Zoological Philosophy Chapter II: Importance of the Consideration of Affinities

> > ′

The SUM problem

The COUNTING OPERATOR problem

Drift analysis

Active Function Node Range

Problem	Algorithm	Mean Active Function Node Range	Median
Koza-1	$(1 + \lambda)$ -CGP	2.98	3
Noza-1	Canonical-CGP (Subgraph)	6.72	7
Koza-2	$(1 + \lambda)$ -CGP	3.98	4
NOZa-Z	Canonical-CGP (Subgraph)	6.72	7
Koza-3	$(1 + \lambda)$ -CGP	3.59	4
NOZa-3	Canonical-CGP (Subgraph)	6.71	7
Nguyen-4	$(1 + \lambda)$ -CGP	3,19	3
raguyen-4	Canonical-CGP (Subgraph)	6.05	6
Nguyen-5	$(1 + \lambda)$ -CGP	3.47	3
ivguyen-5	Canonical-CGP (Subgraph)	6.14	6
Nguyen-6	$(1 + \lambda)$ -CGP	2.91	3
Nguyen-0	Canonical-CGP (Subgraph)	5.54	6

Evaluation (Boolean function problems)

Problem	Algorithm	Mean Fitness Evaluations	Standard deviation	Median
D : E 0	$(1 + \lambda)$ -CGP	2305	3409	1437
Parity-Even-3	$(1 + \lambda)$ -CGP-ID	1208	841	1047
	$(\mu + \lambda)$ -CGP-ID (Subgraph)	1294	927	1025
Parity-Even-4	$(1 + \lambda)$ -CGP	9615	6228	7703
Farity-Even-4	$(1 + \lambda)$ -CGP-ID	5942	4008	4983
	$(\mu + \lambda)$ -CGP-ID (Subgraph)	6083	3376	5176
Parity-Even-5	$(1 + \lambda)$ -CGP	32099	28146	26037
ranty-Even-5	$(1 + \lambda)$ -CGP-ID	21781	12696	18142
	$(\mu + \lambda)$ -CGP-ID (Subgraph)	25142	14411	2208
Parity-Even-6	$(1 + \lambda)$ -CGP	92506	62113	77795
ranty-Even-0	$(1 + \lambda)$ -CGP-ID	69167	42159	55786
	$(\mu + \lambda)$ -CGP-ID (Subgraph)	74848	53501	58689
Parity-Even-7	$(1 + \lambda)$ -CGP	263711	171045	239777
Parity-Even-7	$(1 + \lambda)$ -CGP-ID	243992	178689	172468
	$(\mu + \lambda)$ -CGP (Subgraph)	201532	131936	172038
Davita Com O	$(1 + \lambda)$ -CGP	643263	347129	591060
Parity-Even-8	$(1 + \lambda)$ -CGP-ID	433957	285093	332100
	$(\mu + \lambda)$ -CGP (Subgraph)	422444	273254	315086

Evaluation (Boolean function problems)

Problem	Algorithm	Mean Fitness Evaluations	Standard deviation	Median
A LL ADD	$(1 + \lambda)$ -CGP	5226	5836	3215
Adder-1Bit	$(1 + \lambda)$ -CGP-ID	3879	3166	2827
	$(\mu + \lambda)$ -CGP (Subgraph)	3631	3228	2605
Adder-2Bit	$(1 + \lambda)$ -CGP	86168	84130	58135
Adder-2Dit	$(1 + \lambda)$ -CGP-ID	62574	51022	42831
	$(\mu + \lambda)$ -CGP (Subgraph)	73312	62167	50795
Adder-3Bit	$(1 + \lambda)$ -CGP	293639	232145	222136
Adder-3Dit	$(1 + \lambda)$ -CGP-ID	270504	210430	215443
	$(\mu + \lambda)$ -CGP (Subgraph)	266449	153200	252469
Multiplier-2Bit	$(1 + \lambda)$ -CGP	7381	7135	4988
wuitiplier-26it	$(1 + \lambda)$ -CGP-ID	6207	4582	4998
	$(\mu + \lambda)$ -CGP-ID (Subgraph)	6037	4069	4863
Multiplier-3Bit	$(1 + \lambda)$ -CGP	80884	104704	54493
wuitipiler-36it	$(1 + \lambda)$ -CGP-ID	63651	51526	48538
	$(\mu + \lambda)$ -CGP (Subgraph)	70830	60434	45230
Subtractor-2Bit	$(1 + \lambda)$ -CGP	14216	14347	10657
Subtractor-2Bit	$(1 + \lambda)$ -CGP-ID	10352	9240	7728
	$(\mu + \lambda)$ -CGP (Subgraph)	13525	15077	8474

Active Function Node Range

Problem	Algorithm	Mean Active Function Node Range	Median
Parity-Even-3	$(1 + \lambda)$ -CGP	130	131
Farity-Even-3	$(1 + \lambda)$ -CGP-ID	140	147
Parity-Even-4	$(1 + \lambda)$ -CGP	139	139
Parity-Even-4	$(1 + \lambda)$ -CGP-ID	160	161
Parity-Even-5	$(1 + \lambda)$ -CGP	173	174
Parity-Even-5	$(1 + \lambda)$ -CGP-ID	216	214
Davita From 6	$(1 + \lambda)$ -CGP	189	188
Parity-Even-6	$(1 + \lambda)$ -CGP-ID	227	232
Davita From 7	$(1 + \lambda)$ -CGP	163	159
Parity-Even-7	$(1 + \lambda)$ -CGP-ID	195	192
Parity-Even-8	$(1 + \lambda)$ -CGP	165	164
Parity-Even-8	$(1 + \lambda)$ -CGP-ID	191	190

Active Function Node Range

Problem	Algorithm	Mean Active Function Node Range	Median
Adder-1Bit	$(1 + \lambda)$ -CGP	43	43
Adder-1Bit	$(1 + \lambda)$ -CGP-ID	48	48
Adder-2Bit	$(1 + \lambda)$ -CGP	48	47
Adder-2Dit	$(1 + \lambda)$ -CGP-ID	77	78
Adder-3Bit	$(1 + \lambda)$ -CGP	153	152
Adder-3bit	$(1 + \lambda)$ -CGP-ID	159	158
Multiplier-2Bit	$(1 + \lambda)$ -CGP	136	136
Wultiplier-2Bit	$(1 + \lambda)$ -CGP-ID	139	138
Multiplier-3Bit	$(1 + \lambda)$ -CGP	161	159
Multiplier-3Bit	$(1 + \lambda)$ -CGP-ID	165	164
Subtractor-2Bit	$(1 + \lambda)$ -CGP	163	159
	$(1 + \lambda)$ -CGP-ID	173	173

Insertion Mutation

Deletion Mutation

 Parent
 2 0 0
 2 1 0
 0 2 1
 3 3 3
 0 4 5
 6

 Wutant Deletion
 2 0 0
 2 1 0
 0 3 1
 3 3 3
 0 4 5
 6

 Node number
 2 0 0
 2 1 0
 0 3 1
 3 3 3
 0 4 5
 6

 OP1

