Improvements in LARFT inside LAPACK

Johnathan Rhyne Advised by: Julien Langou

University of Colorado Denver

March 9, 2024

Overview

Preliminaries

Existing Behavior

New Behavior
Recursive LARFT
Matrix Operation LARFT

Numerical Results

Future work

What is LAPACK

LAPACK provides interfaces for:

- 1. Matrix multiplication
- 2. Solving linear systems of equations
- 3. Factorizing matrices and more!

Brief Linear Algebra Review

Householder reflectors are a way to to represent a matrix as a product of rank 1 updates of the form

$$(I - \tau_1 \mathbf{v}_1 \mathbf{v}_1^\top) \cdots (I - \tau_k \mathbf{v}_k \mathbf{v}_k^\top) = VTV^\top$$

Routines that use this¹

- SVD *GESVD
- Hessenberg Reduction *GEQRF
- QR Factorization *ORGQR

¹Collected by listing some functions found on the caller graph of DLARFT found here

LAPACK Implementation

```
The algorithm for DLARFT is given by<sup>2</sup>: for Each column of V do T(:,i) = -\tau_i V(:,1:i-1)^\top * V(:,i) T(:,i) = T(:,1:i-1) * T(:,i) T(i,i) = \tau_i end for
```

²Taken from the comments of DLARFT found here

Recursive Implementation

If we collect only some of the reflectors on the first and second half, we get

$$(I - V_1 T_1 V_1^{\top})(I - V_2 T_2 V_2^{\top})$$

= $I - V_1 T_1 V_1^{\top} - V_2 T_2 V_2^{\top} + V_1 T_1 V_1^{\top} V_2 T_2 V_2^{\top}$

Can be rewritten as:

$$I - VTV^{\top}$$

where:

$$T_3 = -T_1 V_1^\top V_2 T_2$$
$$V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$$

Matrix Operation Implementation

Based on the work done by Joffrain and Low ³ and Puglisi ⁴

$$T = V^{\top}V$$
 (Only upper triangular part) Scale the diagonal by $\frac{1}{2}$. $T = T^{-1}$.

For more details about why this works, see either Theorem 2 from Joffrain and Low or the algorithm from Puglisi

representation

³Accumulating Householder Transformations, Revisited

⁴Modification of the Householder method based on the compact wy

Numerical Results

We ran the following tests on the Alderaan⁵ cluster here at UC Denver

⁵Specifications for the cluster can be found here

Future work/open questions for Matrix Operation Based

- Complex arithmetic
- Stability