Thunderstorm Identification Tracking Analysis and Nowcasting TITAN Data Model Storm and Track Properties in NetCDF

Michael Dixon

2025/08/12

1. Overview

The Titan application reads radar volume scans sequentially in time, identifies the storms in each volume, and tracks those storms from one time to the next.

On the input side, the radar volume scans are stored in Cartesian coordinates, in NetCDF files that follow the CF conventions and conform to the NCAR MDV (Meteorological Data Volume) format.

On the output side, the current version of Titan writes the storm and track property data into daily binary files. Specific Titan-related applications convert those binary files as follows:

- Tstorms2Ascii converts to CSV text files.
- Tstorms2XML converts to XML text files.
- Tstorms2NetCDF converts to NetCDF-4 files, using groups.

This document details the data model used for the NetCDF files.

NOTE: the scan and storm properties are discussed first, followed by the track properties. However, after using the track sections to locate track entries you will need to go back to the storm sections to locate the storm properties associated with the track entries.

2. Storm identification and properties

Titan identifies storms as contiguous volumes with reflectivity exceeding a specified threshold. Figure 2.1 (a) below shows an example with a reflectivity threshold of 35 dBZ. The storm overall outline is shown by the cyan polygon.

Global properties (*gprops*) are computed for the storm as a whole.

Layer properties (*Iprops*) are computed for each height in the Cartesian volume. The vertical section (Figure 2.1 (b)) shows the Cartesian layers for which the layer properties are computed.

For each storm Titan computes the reflectivity distribution as a histogram (*hist*), both in 3D and 2D. The 2D properties are generally a 2D column maximum of the 3D values. Figure 2.2 (b) shows a time history of the reflectivity histogram.

Figure 2.1: storm identification (a) and vertical section through the storm (b). The storm is moving west to east, with a strong line behind which is a trailing stratiform region.

Figure 2.2: (a) Grid runs (rectangles) plotted on top of the reflectivity for a storm.

(b) Example of a time history of the reflectivity distribution (2D histogram) for a storm track.

Titan also saves the 3D grid locations (*runs*) that make up each storm. We refer to these as 'runs', which comprise a starting (x, y, z) location and a run length. Figure 2.2 (a) shows the runs plotted for an example storm, overlain by an ellipse that represents the shape and orientation of the storm.

In addition to the 3D runs, there is a set of 2D runs called **proj_runs** (for projected-area runs). These are the runs computed by collapsing the 3D runs in the vertical column to produce a 2D version of the storm envelope.

3. Tracking

3.1 Simple tracks

Titan tracks the storms over time, from one volume scan to the next.

A **simple track** refers to a track that has no mergers or splits. See Figure 3.1. This storm is moving from SW to NE.

Figure 3.1: example of simple track (number 47) with no mergers or splits over its lifetime.

3.2 Complex tracks

Most storm tracks include mergers and/or splits during their lifetime. A **complex track** is made up of a set of simple tracks. Each individual simple track has no mergers or splits, but may have multiple parents and/or multiple children.

Figure 3.2 shows an example of a complex track. The motion is from NW to SE.

Figure 3.2: example of complex track (number 0), comprising a set of simple tracks containing multiple parents and children.

3.3 Track numbers

Each of the nodes (filled circles) shown in Figure 3.2 is referred to as a **track entry**. There is a one-to-one correspondence between track entries and the storms identified in a scan.

A simple track is a sequence of one or more entries.

When a simple track is first identified, it is assigned a **simple_track_number**, the next in the sequence. There are no gaps in the sequence of simple track numbers.

At its start a simple track is also assigned a **complex_track_number**. This is initially set equal to the simple track number. A track with no mergers or splits in its lifetime will have the same simple and complex track number throughout.

When a merger does occur, the parent tracks are combined to form a complex track. Each parent in a merger will have a unique complex track number. Titan selects the lowest of these and that becomes the complex track number of the merged track. The other complex numbers are discarded. Therefore the sequence of complex numbers will contain gaps.

Figure 3.3 below shows the same track as figure 3.2, but with the track numbers plotted for each node. The numbers are shown as complex/simple. The figure shows a single complex track with number 0 - i.e. the first track identified in this tracking example. The first number in the pair is this complex track number. The second number is the simple track number, which obviously changes from one simple track to the next. At the extreme left of the plot you will see nodes with just '0' as the label. These are for simple track 0. If the simple and complex track numbers are the same only one number is plotted.

Figure 3.3: the same complex track as in Figure 3.2, but with the track numbers shown. The first number is the complex track number (in this case 0), and the second is the simple track number.

As mentioned above this is a single complex track, number 0. It is made up of simple track numbers 0, 400, 401, 428, 436, 437, 454, 482, 483, 507, 582, 583, 601, 623 and 625. The cyan circles represent the final nodes in this track.

4. Data model for storms and tracks

4.1 Group hierarchy

Figure 4.1 shows the hierarchy of groups in a Titan netCDF data file:

Figure 4.1: hierarchy of groups in Titan data netCDF file
The numbers for the relevant sections below are listed in parentheses.

4.2 root group

The **root** group has the top-level variables and the global attributes for the data set.

The variables include the **start_time** and **end_time** of the data set, and **n_scans** analyzed. These are all scalars.

4.3 scans group

The **scans** group contains 1-D arrays for the details of the volume scans analyzed. For each scan one or more storms may be identified. The properties of each storm are stored in the **gprops** group. In the **scans** group you will find the **scan_nstorms** and **scan_gprops_offset** variables. You use these variables to navigate to the global properties in the **gprops** group.

4.4 storms group

The **storms** group contains the parameters used for identifying the storms. These are scalars.

It also contains the following sub-groups: gprops, layer, hist, runs and proj_runs.

4.5 gprops group

The **gprops** group contains concatenated 1-D arrays with properties for the storms identified, for all of the scans combined. We need to locate the storm properties for a selected scan.

Figure 4.2: locating the storm properties from the scan properties.

4.6 layers group

The **layers** group contains concatenated 1-D arrays of layer properties, for all of the storms identified in all of the scans combined. We need to locate the layer properties for a selected storm.

Figure 4.3: locating the layer properties from the storm global properties.

4.7 hist group

The **hist** group contains concatenated 1-D arrays for the dbz histogram entries, for all of the storms identified in all of the scans combined. We need to locate the histogram entries for a selected storm.

Figure 4.4: locating the histogram properties from the storm global properties.

4.8 runs group

The **runs** group contains concatenated 1-D arrays for the 3D storm runs, for all of the storms identified in all of the scans combined. We need to locate the **runs** entries for a selected storm.

Figure 4.5: locating the runs array from the storm global properties.

4.9 proj_runs group

The **proj_runs** group contains concatenated 1-D arrays for the 2D storm projected area runs, for all of the storms identified in all of the scans combined. We need to locate the **proj_runs** entries for a selected storm.

Figure 4.6: locating the proj_runs array from the storm global properties.

4.10 tracks group

The **tracks** group contains the parameters used for tracking storms from one scan to the next, and for producing forecasts. These are scalars, except for **forecast_weights**, which is a 1-D array containing the weights used for computing the forecast.

Also at the top-level are:

- n complex tracks
- n_simple_tracks

n_complex_tracks is always <= n_simple_tracks.</pre>

The group also contains the following sub-groups: complex, simple and entries.

4.11 complex group

The **complex** group contains the arrays of properties for the complex tracks in the data set. These are 1-D arrays.

The complex group contains two array types:

- the complex_track_nums array for determining the complex track numbers in the data set.
- arrays that contain the properties of each complex track.

The **complex_track_nums** array contains the numbers of the complex tracks. It has a logical length of **n_complex_tracks** (the size in the NetCDF file may be larger). This is a contiguous array with no gaps. To traverse the set of complex tracks, read in this array and then process the tracks one by one, i.e. for each complex track.

All other arrays in this group have a logical length of **n_simple_tracks** (the size in the NetCDF file may be larger). These are sparse arrays, with gaps (containing the missing value), because the complex track numbers are not contiguous. You use the complex_track_num as the index into these arrays.

Figure 4.7: locating the complex track properties using the complex_track_nums array.

4.12 simple group

The simple group contains two array types:

navigation arrays for determining the simple track numbers that make up a complex track

arrays that contain the properties of each simple track.

Locating the simple track properties

3 arrays are used to determine the simple track numbers for a specified complex track:

- n_simples_per_complex
- simples_per_complex_offsets
- simples_per_complex

Figure 4.8: locating the simple track numbers for a complex track

We start with the complex_track_num determined from the complex group (see Figure 4.7).

For that **complex_track_num** we look up:

- the offset from the simples_per_complex_offsets array.
- the number of simple tracks from the **n_simples_per_complex** array.

Using those values as the index and count, we locate the set of simple track numbers in the **simples_per_complex** array (see green cells in Figure 4.8).

Simple track properties

Using the procedure described above, you can locate the **simple_track_num** for each simple track in the complex track. You use the simple track numbers as indices into the simple track properties arrays.

The **simple** group contains the arrays for the properties for all of the simple tracks in the data set. These are 1-D arrays, except for the **parent** and **child** arrays, which are 2-D arrays of maximum length 8. Each track can have multiple parents or children (up to a maximum of 8). The properties **nparents** and **children** indicate the number of parents and/or children.

A simple track comprises one or more track **entries**. We use the simple track properties to locate the properties of the track entries, which in turn allow us to locate the relevant storm properties for each entry. See below for details.

4.13 entries group

The **entries** group contains arrays of the track entry properties for all of the entries in the data set.

There is a 1-to-1 correspondence between the track entries and the storms that are identified. We can use the track entry properties to locate the associated storm properties.

Section 4.12 above shows how to find the properties of each simple track. In those properties are 2 items that allow us to locate the entries:

- first entry offset the index of the first entry in the simple track
- duration_in_scans the number of entries in the simple track

Figure 4.9: locating the track entries from the simple track properties

The track entry properties contain the following items:

- scan_num
- storm_num

These allow us to locate the storm properties (section 4.3, 4.5).

5. Details of group contents

In this section we describe the variables that are included in each group.

Note that table entries that are highlighted are used for locating properties across the groups.

5.1 root group

Top level variables

Var type	Var name	Description
int64	file_time	unix time for last file modification units = "seconds since 1970-01-01T00:00:00";
int64	start_time	unix time of first scan
int64	end_time	unix time of last scan
int32	n_scans	number of scans
int32	sum_storms	total number of storms, summed for all scans
int32	sum_layers	total number of layer entries, summed for all storms
int32	sum_hist	total number of histogram entries, summed for all storms
int64	sum_runs	total number of grid runs (3D), summed for all storms
int64	sum_proj_runs	total number of grid runs (2D), summed for all storms
int32	max_simple_track_num	highest simple track number
int32	max_complex_track_num	highest complex track number

5.2 scans group

Scan properties

Туре	Name	Description
int64	scan_time	unix time of scan in seconds since 00:00 on 1970/01/01
int32	scan_num	scan number
int32	scan_nstorms	number of storms in this scan
int64	scan_gprops_offset	index of first storm gprops in scan
fl32	scan_min_z	mean sea level height of lowest layer in storm (km)
fl32	scan_delta_z	layer thickness (km)

fl32	scan_ht_of_freezing	height of freezing level in km
fl64	grid_minx	x coord of center of cell in SW corner of grid
fl64	grid_miny	y coord of center of cell in SW corner of grid
fl64	grid_minz	z coord of center of lowest layer of grid
fl64	grid_dx	delta x for grid
fl64	grid_dy	delta y for grid
fl64	grid_dz	delta z for grid
fl64	grid_sensor_x	x coord for radar
fl64	grid_sensor_y	y coord for radar
fl64	grid_sensor_z	z coord for radar
fl64	grid_sensor_lat	latitude of radar (deg)
fl64	grid_sensor_lon	longitude of radar (deg)
int32	proj_type	projection type • LAT_LON = 0 • LAMBERT_CONFORMAL = 3 • MERCATOR = 4 • POLAR_STEREO = 5 • POLAR_STEREO_ELLIP = 6 • CYLINDRICAL_EQUIDIST = 7 • AZIMUTHAL_EQUIDIST = 8 • POLAR_RADAR = 9 • OBLIQUE_STEREOGRAPHIC = 12 • TRANSVERSE_MERCATOR = 15 • ALBERS_EQUAL_AREA = 16 • LAMBERT_AZIMUTHAL = 17
int32	dz_constant	flag to indicate delta z is constant in the grid
int32	grid_nx	number of grid cells in x
int32	grid_ny	number of grid cells in y
int32	grid_nz	number of grid cells in z
string	unitsx	grid units for x coordinate
string	unitsy	grid units for y coordinate
string	unitsz	grid units for z coordinate
fl64	proj_origin_lat	projection origin latitude
fl64	proj_origin_lon	projection origin longitude
fl64	proj_rotation	rotation of grid relative to TN

fl64	proj_lat1	latitude-1 applies to selected projections
fl64	proj_lat2	latitude-2 applies to selected projections
fl64	proj_tangent_lat	tangent-latitude applies to selected projections
fl64	proj_tangent_lon	tangent-longitude applies to selected projections
fl64	proj_pole_type	north or south pole applies to selected projections
fl64	proj_central_scale	central-scale applies to selected projections

5.3 storms group

Storm identification parameters

Туре	Name	Description
fl32	low_dbz_threshold	dbz - low limit for dbz values
fl32	high_dbz_threshold	dbz - high limit for dbz values
fl32	dbz_hist_interval	dbz - bin interval for dbz histograms
fl32	hail_dbz_threshold	dbz - threshold above which precip is assumed to be hail
fl32	base_threshold	km - min ht for storm base - echo below this is ignored
fl32	top_threshold	km - max ht for storm top - echo above this is ignored
fl32	min_storm_size	km2 or km3 min size for storm definition (km2 for 2D data km3 for 3D data)
fl32	max_storm_size	km2 or km3 max size for storm definition (km2 for 2D data km3 for 3D data)
fl32	morphology_erosion_threshold	threshold to which morphology erosion is performed (km)
fl32	morphology_refl_divisor	The morphology field is obtained by adding the euclidean distance to storm edge (km) to the reflectivity excess (above threshold) divided by this value (dbz/km)
fl32	min_radar_tops	(km) min tops for valid radar data - if checked
fl32	tops_edge_margin	(km) margin placed on min_tops field to allow for tilted storms
fl32	z_p_coeff	Z - precip coefficient
fl32	z_p_exponent	Z - precip exponent
fl32	z_m_coeff	Z - mass coefficient
fl32	z_m_exponent	Z - mass exponent
fl32	sectrip_vert_aspect	vertical aspect ratio threshold above which storm is considered to be second trip

fl32	sectrip_horiz_aspect	horizontal aspect ratio threshold above which storm is considered to be second trip
fl32	sectrip_orientation_error	deg - error in ellipse orientation from radar within which storm is considered second trip
fl32	poly_start_az	deg azimuth from T.N. for first polygon point
fl32	poly_delta_az	deg azimuth delta between polygon points (pos is counterclockwise)
int32	check_morphology	check_morphology flag
int32	check_tops	check_tops flag
int32	vel_available	vel data availability flag
int32	n_poly_sides	number of sides in storm shape polygons
fl32	Itg_count_time	number of seconds over which the lightning strikes are counted.
fl32	ltg_count_margin_km	margin from storm edge to describe outer region for counting Itg strikes
fl32	hail_z_m_coeff	Z - mass coefficient
fl32	hail_z_m_exponent	Z - mass exponent
fl32	hail_mass_dbz_threshold	dbz - threshold above which hail mass is calculated
fl32	tops_dbz_threshold	dbz threshold for computing storm tops
fl32	precip_plane_ht	CAPPI ht for which precip is computed (km MSL). See precip_computation_mode
fl32	low_convectivity_threshold	used if Ecco convectivity thresholds applied, otherwise missing
fl32	high_convectivity_threshold	used if Ecco convectivity thresholds applied, otherwise missing
int32	precip_computation_mode	PRECIP_FROM_COLUMN_MAX = 0 PRECIP_AT_SPECIFIED_HT = 1 PRECIP_AT_LOWEST_VALID_HT = 2 PRECIP_FROM_LOWEST_AVAILABLE_REFL = 3

5.4 gprops group

Storm global properties

Туре	Name	Description
int32	storm_num	storm number
int32	base_layer	the layer number of the storm base
int32	n_layers	the number of layers in this storm

int64	layer_props_offset	index of layer props data in layer group
int32	n_dbz_intervals	the number of intervals in the dbz distribution histograms
int64	dbz_hist_offset	index of dbz hist data in hist group
int64	n_runs	number of runs above threshold for this storm
int64	runs_offset	index of storm runs data in runs group
int64	n_proj_runs	number of runs in the projected area for this storm
int64	proj_runs_offset	index of projected area runs data in proj_runs group
fl32	vol_centroid_x	km or deg
fl32	vol_centroid_y	km or deg
fl32	vol_centroid_z	km
fl32	refl_centroid_x	km or deg
fl32	refl_centroid_y	km or deg
fl32	refl_centroid_z	km
fl32	top	km
fl32	base	km
fl32	volume	km3
fl32	area_mean	km2
fl32	precip_flux	m3/s
fl32	mass	ktons
fl32	tilt_angle	deg
fl32	tilt_dirn	degT
fl32	dbz_max	dbz
fl32	dbz_mean	dbz
fl32	dbz_max_gradient	dbz/km
fl32	dbz_mean_gradient	dbz/km
fl32	ht_of_dbz_max	km
fl32	rad_vel_mean	m/s
fl32	rad_vel_sd	m/s
fl32	vorticity	/s
fl32	precip_area	km2
fl32	precip_area_centroid_x	km or deg

fl32	precip_area_centroid_y	km or deg
fl32	precip_area_orientation	degT
fl32	precip_area_minor_radius	km or deg - minor radius of precip area ellipse
fl32	precip_area_major_radius	km or deg - standard dev of precip area along the major axis of the precip area shape
fl32	proj_area	km2
fl32	proj_area_centroid_x	km or deg
fl32	proj_area_centroid_y	km or deg
fl32	proj_area_orientation	degT
fl32	proj_area_minor_radius	km or deg - minor radius of proj area ellipse
fl32	proj_area_major_radius	km or deg - standard dev of proj area along the major axis of the proj area shape
fl32	proj_area_polygon[72]	in grid units the length of rays from the proj area centroid to the polygon vertices
int32	top_missing	flag to indicate that top of storm was not sampled: set to 1 of top missing 0 otherwise
int32	range_limited	flag to indicate that storm was not fully sampled because of range limitations: set to 1 for range-limited 0 otherwise
int32	second_trip	flag to indicate that storm is probably second trip
int32	hail_present	flag to indicate dBZ values above the hail threshold
int32	anom_prop	flag to indicate anomalous propagation
int32	bounding_min_ix	bounding box min x index in grid coords
int32	bounding_min_iy	bounding box min y index in grid coords
int32	bounding_max_ix	bounding box max x index in grid coords
int32	bounding_max_iy	bounding box max y index in grid coords
fl32	vil_from_maxz	vertically-integrated liquid from max dbz per height layer
fl32	ltg_count	Itg strike count in x minutes before storm time with x km of storm
fl32	convectivity_median	used if convectivity thresholds applied
int32	hailFOKRcategory	category 0-4
fl32	hailWaldvogelProb	0 <= probability <= 1.0
fl32	hailMassAloft	ktons
fl32	hailVertIntgMass	kg/m2 from maxz

fl32	hda_poh	Waldvogel Probability %
fl32	hda_shi	Severe Hail Index J.m-1.s-1
fl32	hda_posh	probability of severe hail %
fl32	hda_mehs	Maximum Expected Hail Size mm

5.5 layers group

Storm layer properties

Туре	Name	Description
fl32	vol_centroid_x	km or deg
fl32	vol_centroid_y	km or deg
fl32	refl_centroid_x	km or deg
fl32	refl_centroid_y	km or deg
fl32	area	km2
fl32	dbz_max	dbz
fl32	dbz_mean	dbz
fl32	mass	ktons
fl32	rad_vel_mean	m/s - radial velocity mean
fl32	rad_vel_sd	m/s - radial velocity standard deviation
fl32	vorticity	/s - rotation around the storm centroid
fl32	convectivity_median	median convectivity if Ecco is used to constrain the storm to convective regions

5.6 hist group

Storm DBZ histograms

Туре	Name	Description
fl32	percent_volume	Bin values for histogram of reflectivity by volume
fl32	percent_area	Bin values for histogram of reflectivity by area

5.7 runs group

Storm grid 3-D runs

Туре	Name	Description
int32	run_ix	Starting x coord for run in grid location
int32	run_iy	Starting y coord for run in grid location
int32	run_iz	Starting z coord for run in grid location
int32	run_len	Length of run in grid counts

5.8 - proj_runs group

Storm projected area grid 2-D runs

Туре	Name	Description
int32	run_ix	Starting x coord for run in grid location
int32	run_iy	Starting y coord for run in grid location
int32	run_len	Length of run in grid counts

5.9 tracks group

Tracking header

Var type	Var name	Description
int32	n_complex_tracks	number of complex tracks in data set
int32	n_simple_tracks	number of simple tracks in data set

Tracking algorithm parameters

Туре	Name	Description
int32	max_children	max number of children in a storm split (8)
int32	max_parents	max number of parents in a storm merge (8)
fl32	forecast_weights[10]	weights for forecast regression
fl32	weight_distance	weight for distance moved in tracking algorithm

fl32	weight_delta_cube_root_volume	weight for delta of cube root of volume in tracking algorithm
fl32	merge_split_search_ratio	ratio of search radii used when searching for mergers or splits
fl32	max_tracking_speed	km/hr
fl32	max_speed_for_valid_forecast	km/hr
fl32	parabolic_growth_period	number of seconds for positive growth - this is used with the PARABOLA trend growth forecast
fl32	smoothing_radius	km
fl32	min_fraction_overlap	This is the min individual fraction overlap for a valid match
fl32	min_sum_fraction_overlap	When determining the overlap of a storm at successive times we sum the overlap as a fraction of the storm area at time1 and time2. This is the min sum for a valid match
int32	scale_forecasts_by_history	flag for scaling the forecasts based on the ratio of the history to min_history_for_valid_forecast
int32	use_runs_for_overlaps	flag for using runs to find the overlaps for mergers and splits
int32	grid_type	See section 5.2
int32	nweights_forecast	number of weighted points to be used in the forecast data
int32	forecast_type	FORECAST_BY_TREND = 1 FORECAST_BY_PARABOLA = 2 FORECAST_BY_REGRESSION = 3
int32	max_delta_time	secs
int32	min_history_for_valid_forecast	secs
int32	spatial_smoothing	TRUE or FALSE

5.10 complex group

complex_track_nums array

The **complex_track_nums[n_complex_tracks]** array holds the track number for each complex track. This is a contiguous array with no gaps. The logical length is n_complex_tracks. The actual length in the NetCDF file may exceed the logical length.

Complex track properties

All other arrays in the complex group have a logical length of **n_simple_tracks**. These are sparse arrays, with gaps because some complex tracks have more than one simple track. To locate the complex properties look up the **complex_track_num** in the **complex_track_nums[]** array, and then use that as the index into all of the other arrays in this group.

Туре	Name	Description
int64	start_time	time for first scan of complex track
int64	end_time	time for last scan of complex track
int32	complex_track_num	number of this complex track
int32	n_simple_tracks	number of simple tracks in this complex track
int32	start_scan	start scan number of complex track
int32	end_scan	end scan number of complex track
int32	duration_in_scans	duration in scans for track - 1 or more
int32	duration_in_secs	duration in seconds for track
fl32	volume_at_start_of_sampling	km3 - volume at start of track
fl32	volume_at_end_of_sampling	km3 - volume at end of track
int32	n_top_missing	number of scans for which top was not completely sampled
int32	n_range_limited	number of scans for which storm sampling was incomplete due to range
int32	start_missing	flag to indicate storm existed when sampling began - start volume stored
int32	end_missing	flag to indicate storm existed when sampling ended - end volume stored
int32	n_samples_for_forecast_stats	number of samples used to compute statistics for forecast verification

5.11 simple group

Simple track properties

Туре	Name	Description
int64	start_time	for the simple track only
int64	end_time	for the simple track only
int64	time_origin	time for first storm in any branch which led to this entry
int64	last_descendant_end_time	end time for the last descendant of this storm
int32	duration_in_secs	duration of this simple track in secs
int32	duration_in_scans	duration of this simple track in scans
int64	first_entry_offset	file offset of first track entry struct
int32	simple_track_num	number of this simple track

int32	complex_track_num	number of track complex if track is part of a complex
int32	nparents	number of parents, max 8. In the case of a merge this will be > 1.
int32	nchildren	number of children, max 8. In the case of a split this will be > 1.
int32	parent[8]	simple track numbers of nparents
int32	child[8]	simple track numbers of nchildren
int32	last_descendant_simple_track_num	simple track num of last descendant of this storm
int32	start_scan	first scan in this simple track
int32	end_scan	last scan in this simple track
int32	last_descendant_end_scan	end scan of last descendant of this storm
int32	scan_origin	scan for first storm in any branch which led to this simple track
int32	history_in_scans	number of scans of history data for making forecast - in the case of a merger or a split this will be longer than the duration in scans
int32	history_in_secs	time in secs since the start of the earliest branch of this storm

5.12 entries group

There is a 1-to-1 correspondence between track entries and storms. Each entry in a simple track is associated with a single storm in a single scan.

Track entry

Туре	Name	Description
int64	time	time for this entry - i.e. scan time
int64	time_origin	time for scan of first storm in any branch which led to this entry
int32	scan_num	scan number in storm file
int32	storm_num	storm number in scan
int64	prev_entry_offset	offset to previous entry in track (doubly linked list)
int64	this_entry_offset	offset to this entry
int64	next_entry_offset	offset to next entry in track (doubly linked list)
int64	next_scan_entry_offset	offset to next entry in this scan

int32	scan_origin	scan number for first storm in any branch which led to this entry
int32	simple_track_num	simple track number for this entry
int32	complex_track_num	complex track number for this entry
int32	history_in_scans	number of scans of history data for making forecast - in the case of a merger or a split - this will be longer than the duration in scans
int32	history_in_secs	time in secs since the start of the earliest branch of this track
int32	duration_in_scans	duration of the simple track in scans
int32	duration_in_secs	duration of the simple track in seconds
int32	forecast_valid	flag to indicate if the forecast is valid