Question 10.1

It is advantageous to have more than one possible path through a network for each pair of stations to enhance reliability in case a particular path fails.

Question 10.2

Subscribers: The devices that attach to the network, such as telephones and modems.

Subscriber line: the link between the subscriber and the network.

Exchanges: the switching centers in the network.

Trunks: the branches between exchanges. Trunks carry multiple voice-frequency circuits using either FDM or synchronous TDM.

Question 10.3 Telephone communications.

Question 10.4

- (1) Line efficiency is greater, because a single node-to-node link can be dynamically shared by many packets over time.
- **(2)** A packet-switching network can perform data-rate conversion. Two stations of different data rates can exchange packets because each connects to its node at its proper data rate.
- (3) When traffic becomes heavy on a circuit-switching network, some calls are blocked; that is, the network refuses to accept additional connection requests until the load on the network decreases. On a packet-switching network, packets are still accepted, but delivery delay increases.
- **(4)** Priorities can be used. Thus, if a node has a number of packets queued for transmission; it can transmit the higher priority packets first. These packets will therefore experience less delay than lower-priority packets.

Question 10.5

In the **datagram** approach, each packet is treated independently, with no reference to packets that have gone before. In the **virtual circuit** approach, a preplanned route is established before any packets are sent. Once the route is established, all the packets between a pair of communicating parties follow this same route through the network.

Question 10.6

There is a significant relationship between packet size and transmission time. As a smaller packet size is used, there is a more efficient "pipelining" effect. However, if the packet size becomes too small, then the transmission is less efficient.

Problem 10.5

a. Circuit Switching

T = C₁ + C₂ where
C₁ = Call Setup Time
C₂ = Message Delivery Time
C₁ = S = 0.2
C₂ = Propagation Delay + Transmission Time
= N x D +
$$\frac{L}{B}$$

= 4 x_.(0.001) + $\frac{3200}{9600}$ = 0.337
T = 0.2 + 0.337 = 0.537 sec

Datagram Packet Switching

 $T = D_1 + D_2 + D_3 + D_4$ where

D₁ = Time to Transmit and Deliver all packets through first hop

D₂ = Time to Deliver last packet across second hop

D₃ = Time to Deliver last packet across third hop

D₄ = Time to Deliver last packet across forth hop

There are P - H = 1024 - 16 = 1008 data bits per packet. A message of 3200 bits requires four packets ($\frac{3200bits}{1008bits/packet}$ = 3.17 packets which we round up

 $D_1 = 4 \times t + p$ where

t = transmission time for one packet

p = propagation delay for one hop

$$D1 = 4 \times \frac{P}{B} + D$$

$$= 4 \times \frac{1024}{9600} + 0.001$$
$$= 0.428 \sec$$

D₂ = D₃ = D₄ = t + p
=
$$\frac{P}{B}$$
 + D
= $\frac{1024}{9600}$ + 0.001 = 0.108

$$T = 0.428 + 0.108 + 0.108 + 0.108$$
$$= 0.752 \text{ sec}$$

Virtual Circuit Packet Switching

$$T = V_1 + V_2$$
 where
 $V_1 = Call$ Setup Time
 $V_2 = Datagram$ Packet Switching Time
 $T = S + 0.752 = 0.2 + 0.752 = 0.952$ sec

b. Circuit Switching vs. Diagram Packet Switching

T_c = End-to-End Delay, Circuit Switching

$$T_c = S + N \times D + \frac{L}{R}$$

T_d = End-to-End Delay, Datagram Packet Switching

$$N_p$$
 = Number of packets = $\frac{L}{P-H}$

$$T_d = D_1 + (N - 1) \times D_2$$

D₁ = Time to Transmit and Deliver all packets through first hop

D₂ = Time to Deliver last packet through a hop

$$D1 = N_p \times \frac{P}{B} + D$$

$$D_2 = \frac{P}{B} + D$$

$$T = (N_p + N - 1) \times \frac{P}{B} + N \times D$$

$$T = T_d$$

$$S + \frac{L}{B} = (N_p + N - 1) \times \frac{P}{B}$$

Circuit Switching vs. Virtual Circuit Packet Switching

 T_V = End-to-End Delay, Virtual Circuit Packet Switching T_V = S + T_d T_c = T_V

$$\frac{L}{B} = (N_p + N - 1) \times \frac{P}{B}$$

Datagram vs. Virtual Circuit Packet Switching

$$T_d = T_V - S$$