Problem 4

Fix any matrix $A \in M_{n \times n}(F)$.

Let A^* denote a conjugate transpose of A.

Consider the standard inner product $\langle \cdot, \cdot \rangle$ on \mathbb{F}^n .

Lemma 0.1

For any $A, B \in M_{n \times n}(\mathbb{F}), (BA)^T = A^T B^T$.

Proof. Note that
$$(ba)_{ki}^T = (ba)_{ik} = \sum_{j=1}^n b_{ij} a_{jk}$$
, while $(a^T b^T)_{ki} = \sum_{j=1}^n (a)_{kj}^T (b)_{ji}^T = \sum_{j=1}^n a_{jk} b_{ij} = \sum_{j=1}^n b_{ij} a_{jk}$.

a) Claim.

For any $x, y \in F^n$ (thought of as column vectors) we have $\langle x, Ay \rangle = \langle A^*x, y \rangle$.

Proof.

Note that, by definition, for all $x, y \in \mathbb{F}^n$, $\langle x, Ay \rangle = \sum_{i=1}^n (x)_i \overline{(Ay)_i}$, where $(x)_i$ and $(y)_i$ are ith entries in x and Ay respectively.

Therefore, by definition of matrix multiplication,

$$\langle x, Ay \rangle = x^T \times (\overline{A} \times \overline{y}) = (x^T \times \overline{A}) \times \overline{y}$$
 (1)

$$= ((\overline{A})^T \times x)^T \times \overline{y} \tag{2}$$

$$= \langle (\overline{A})^T \times x, y \rangle \tag{3}$$

$$= \langle A^*x, y \rangle, \tag{4}$$

where (2) comes from Lemma 0.1.

b) Claim.

Suppose that $B \in M_{n \times n}(\mathbb{F})$ and that $\langle x, Ay \rangle = \langle Bx, y \rangle$ for all $x, y \in \mathbb{F}^n$.

Then $B = A^*$.

Proof. From a), for any $x, y \in \mathbb{F}^n$ we have $\langle x, Ay \rangle = \langle A^*x, y \rangle$.

We are also given that $\langle x, Ay \rangle = \langle Bx, y \rangle$. Therefore,

$$\langle A^*x, y \rangle - \langle Bx, y \rangle = \langle x, Ay \rangle - \langle x, Ay \rangle \tag{5}$$

$$\langle A^*x - Bx, y \rangle = 0 \tag{6}$$

$$\langle (A^* - B)x, y \rangle = 0 \tag{7}$$

Since this holds for any $x, y \in M_{n \times n}(\mathbb{F})$, take $y = (A^* - B)x$.

Suppose, on the contrary, that $A^* - B \neq \mathbf{0}$. Therefore, neither input is zero, and thus $\langle (A^* - B)x, y \rangle$ is greater than zero, which is a contradiction. Therefore, $A^* = B$.