Clase 8

Análisis de bienestar del consumidor

¿Qué pasa cuando precios cambian?

- Imagina un consumidor que tiene un ingreso (m) y con precios (p) elige una canasta (x,y)
- Imagina ahora que el precio del bien x sube
 - Sabemos que la utilidad del consumidor ha bajado (no-saciabilidad)
 - Pero, ¿comó podemos cuantificar el cambio de utilidad

Variación compensatoria

 Mide la diferencia de ingreso necesaria para que el consumidor obtenga el mismo nivel de utilidad que antes pero con los nuevos precios

$$VC = E(p_1^0, p_2^0, u_0) - E(p_1^1, p_2^1, u_0)$$

$$VC = E(p_1^1, p_2^1, u_1) - E(p_1^1, p_2^1, u_0)$$

Variación compensatoria y demanda hicksiana

- Imagina que sólo el precio del bien 1 cambia
- Usando el Lema de Shephard, podemos escribir la variación compensatoria como:

$$VC = \int_{p_1^1}^{p_1^0} \frac{\partial E(p_1, p_2, u_0)}{\partial p_1} dp_1 = \int_{p_1^1}^{p_1^0} x_1^H(p_1, p_2, u_0) dp_1$$

VC: gráficos

Variación equivalente

 Mide la diferencia de ingreso necesaria para que el consumidor haría tenido el mismo nivel de utilidad que ahora pero con los precios antiguos

$$VE = E(p_1^0, p_2^0, u_1) - E(p_1^1, p_2^1, u_1)$$

$$VE = E(p_1^0, p_2^0, u_1) - E(p_1^0, p_2^0, u_0)$$

Variación equivalente y demanda hicksiana

- Imagina que solo el precio del bien 1 cambia
- Usando el Lema de Shephard, podemos escribir la variación compensatoria como:

$$VE = \int_{p_1^1}^{p_1^0} \frac{\partial E(p_1, p_2, u_1)}{\partial p_1} dp_1 = \int_{p_1^1}^{p_1^0} x_1^H(p_1, p_2, u_1) dp_1$$

VE: gráficos

Excedente del consumidor (demanda marshalliana)

$$EC = \int_{p_i}^{\infty} x_i^M (p_1, p_2, m) dp_i$$
$$\Delta EC = \int_{p_i^1}^{p_i^0} x_i^M (p_1, p_2, m) dp_i$$

Comparación entre las medidas de bienestar del consumidor

- Si el bien es normal: VC<ΔEC<VE
- VC=verde+lila+rojo, ΔEC=verde+lila, VE=verde

Comparación entre las medidas

- La diferencia entre las medidas depende de la elasticidad ingreso de la demanda
- Las tres medidas deberían estar muy cerca cuando el bien no es una proporción grande de los gastos

$$\eta_{lk}^{M} = \eta_{lk}^{H} - \eta_{lm}^{M} \left(\frac{p_{l} x_{l}^{H}}{m} \right)$$

Medir cambios de bienestar a través de índices de precios

- La VE y VC necesitan que el analista sepa exactamente la función de utilidad del consumidor
 - Raramente el caso en tema de políticas públicas
- ¿Cómo puedo el gobierno ajustar el ingreso de los consumidores en respuesta a cambios de precios?

Índices de precios

- La idea de los índices de precios es de ponderar los cambios de precios de manera que reflejen la importancia de cada bien en una canasta promedio.
- Si la gente consume mucho de un bien y que el precio de este bien sube, el ingreso que los consumidores necesita sube más que si es el precio de un bien que casi nada usa

Ponderaciones

- Si el consumidor siguiera comprando misma canasta sin importar los precios
 - Muy fácil de construir un índice de precios
- Pero, en realidad, no es así: los consumidores cambian su canasta optima al frente de nuevos precios
 - Cual canasta usamos como ponderación? La antigua, la nueva, una mezcla de los dos?

Índice de Precios de Laspeyres

Usa la canasta inicial

$$IPL = 100 * \frac{\sum_{i=1}^{n} x_{i}^{0} p_{i}^{1}}{\sum_{i=1}^{n} x_{i}^{0} p_{i}^{0}}$$

$$IPL = 100 * \frac{\sum_{i=1}^{n} x_{i}^{0} p_{i}^{0}}{m_{0}}$$

$$IPL = 100 * \sum_{i=1}^{n} \alpha_{i}^{0} \frac{p_{i}^{1}}{p_{i}^{0}}$$

$$IPL = 100 * \sum_{i=1}^{n} \alpha_{i}^{0} \frac{p_{i}^{1}}{p_{i}^{0}}$$

Índice de Precios de Paasche

Usa la canasta final

$$IPP = 100 * \frac{\sum_{i=1}^{n} x_{i}^{1} p_{i}^{1}}{\sum_{i=1}^{n} x_{i}^{1} p_{i}^{0}}$$

$$IPP = 100 * \frac{m_{1}}{\sum_{i=1}^{n} x_{i}^{1} p_{i}^{1} \frac{p_{i}^{0}}{p_{i}^{1}}}$$

$$IPP = 100 * \frac{1}{\sum_{i=1}^{n} \alpha_{i}^{1} \frac{p_{i}^{0}}{p_{i}^{1}}}$$

Otros indices de precios

- Índice de Marshall-Edgeworth usa el promedio de las dos canastas
- Indice de Fisher es la mediana geometrica de los de Laspeyres y de Paasche: √IPL*IPP

Aplicación: El sesgo de sustitución

- Como los consumidores eligen nuevas canastas cada vez que los precios cambian, ni el IPL ni el IPP son los más adecuados
- El "sesgo de sustitución" puede ser muy alto:
 - o en EEUU, el sesgo constituía la cuarta fuente de gastos federales más alta después pensiones, salud y defensa
- El BLS ha cambiado de un IPL a un índice de Fisher y también ahora construye la canasta de bienes cada 2 años

Aplicación: Colegios y precios de casa

- Muchos países tienen sistemas escolares donde el aceso a colegios esta determinado por el lugar de residencia
- ¿Cómo se mide el valor que la gente pone en acceder a un buen colegio?
- Se puede usar los precios de las casas que entregan información sobre la disposición a pagar por un tipo de colegio.