Rojin and Suresh Assignment 15 Group - 3

If an adjacency matrix has rows {0, 1, 0, 0}, {1,0,1,1},{0,1,0,0}, Problem 2 and {0,1,0,0}, what is the corresponding adjacency list? You can assume any names for your vertices.

Adjacency Matrix

	α	Ь	J	4
9	0	1	0	0
ь	1	9	1	-
C	0	1	0	0
d	0	1	0	0

Graph

Adjacency List

a	Ь
6	a, c,d
C	6
7	Ь

Problem 1

A) Is G connected?

 \rightarrow No. the given graph is not connected.

How many connected compants are in G?

→ There are to connected components are in graph G.

- → No, because there is no connection or path between two components in the given graph G.
- C) Is there spanning tree for G. Explain
- → First, given graph is not a tree. There is a cycle.

No, there is no spanning thee for graph G, because, there is neither any path nor any connection between given graph component.

Problem 3

A simple connected undirected graph must have a cycle if

- A any vertex can be reached from some other vertex.
- B the number of paths is greater than the number of vertices.
- C the number of edges is equal to the number of vertices.

Problem 4 - DFS

Step 1: Pick B as start point and mark B as visited and push.

S.push(B)

STACK B

Step 2: Pick A as adjacent of B and mark A as visited and push. S.push(A)

 $T = \{ BA \}$

STACK
A
B

Step 3: Pick D as adjacent of B and mark D as visited and push.

S.push(D)

T = { BA, AD }

STACK

D

A

B

Step 4: Pick F as adjacent of D and mark F as visited and push.

S.push(F)

T = { BA, AD, DF }

F D A B

Step 5: Pick C as adjacent of F and mark C as visited and push. S.push(C)

 $T = \{ BA, AD, DF, FC \}$

STACK

C

F

D

A

B

Step 6: Pick E as adjacent of C and mark E as visited and push.

S.push(E)

T = { BA, AD, DF, FC, CE}

E C F D A B

Pop steps:	STACK	STACK	STACK	STACK	STACK	STACK
S.pop() → E	E					
S.pop() → C S.pop() → F	C	С				
	F	F	F			
S.pop() → F	D	D	D	D		
S.pop() → D	A	Α	A	A	A	
S.pop() → A	В	В	В	В	В	В
3.pop() - A						

S.pop() \rightarrow B Now whole stack is empty.

STACK

Problem 5 - BFS

Start with B, add (B), Mark

$$Q = B$$

Step 2:

Loop is Started.

Dequeue() -> B
$$Q = A C E$$

T = { (B, A) , (B, C), (B, E)}

Step 3:

Dequeue() -> A
$$Q = C E D$$

T = { (B, A) , (B, C), (B, E), (A, D)}

Step 4:

Dequeue() -> C Q=
$$E D F$$

T = { (B, A) , (B, C), (B, E), (A, D), (C, F) }

Step 5:

Dequeue() -> E
$$Q = D F$$

T = { (B, A) , (B, C), (B, E), (A, D), (C, F) }

Step 6:

Dequeue() -> D
$$Q = F$$
 $T = \{(R, \Delta), (R, C), (R, E), (\Delta, D), (C, E)\}$

$$T = \{ (B, A), (B, C), (B, E), (A, D), (C, F) \}$$

Step 7:

Dequeue() -> F
$$Q =$$
 $T = \{ (B, A), (B, C), (B, E), (A, D), (C, F) \}$

No, The Spanning Tree is different from Problem 4.

