

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

. • .

CHANICS' AND ENGINEERS'

POCKET-BOOK

OF

TABLES, RULES, AND FORMULAS

PERTAINING TO

CHANICS, MATHEMATICS, AND PHYSICS:

INCLUDING

REAS, SQUARES, CUBES, AND ROOTS, ETC.:

RITHMS, HYDRAULICS, HYDRODYNAMICS, STEAH AND THE STEAM-ENGINE, NAVAL ARCHITECTURE, MASONRY, STRAM VESSELS, MILLS, ETC.;

LIMES, MORTARS, CEMENTS, ETC.:

THOGRAPHY OF TECHNICAL WORDS AND TERMS, ETC., ETC.

Fifty-eighth Edition .- 121st Thousand.

BY CHAS. H. HASWELL,

LINE, AND MECHANICAL ENGINEER, MEMBER OF THE AM. SOC. OF CIVIL ENGINEERS, OF THE DITIONS OF CIVIL ENGINEERS, AND OF NAVAL ARCHITECTS, ENGLAND, OF THE ENGINEERS' USP, PHILLDEDEPHIA, OF THE N.Y. ACADEMY OF SCIENCES, HONORARY MEMBER OF THE BOSTON SOCIETY OF CIVIL ENGINEERS, AM. SOC. OF NAVAL ENGINEERS, CORRESOURDING MEMBER OF THE AMERICAN INSTITUTE OF ARCHITECTS, AND ASSOCIATE MEMBER OF THE N.Y. MICROSOPPICAL SOCIETY, ETC.

An examination of facts is the foundation of science.

NEW YORK: HARPER & BROTHERS, PUBLISHERS, PRANKLIN SQUARE. THE NEW YORK
PUBLIC LIBRARY
589816
ASTOR, LENOX AND
TILDEN FOUNDATIONS.
R 1913 L

By CHAS. H. HASWELL,

Civil, Marine, and Mechanical Engineer, M. Am. Soc. C. E. and Ins'n of C. E.

MENSURATION.

For Tuitton and Reference, containing Tables of Weights and Measures; Mensuration of Surfaces, Lines, and Solida, and Conic Sections, Centres of Gravity, &c. To which is added Tables of the Frees of Circular Segments, Sines of a Circle, Circular and Semi-elliptical Arcs, &c. By Chas. H. Haswell, Civil and Marine Engineer, &c. Sixth Egition. 12mo, Sheep, 90 cents.

The above work, or the Pocket Book, will be sent by mail, postage prepaid, on receipt of the price.

Copyright, 1884, by Harper & Brothers.

Copyright, 1887, by Harper & Brothers.

1901, 1890, by Harper & Brothers.

11, by Harper & Brothers.

POTHERS.

INSCRIBED

TO

CAPTAIN JOHN ERICSSON, I.L.D.,

S A SLIGHT TRIBUTE TO HIS GENIUS AND ATTAINMENTS,
AND IN TESTIMONY OF THE SINCERE REGARD
AND ESTEEM OF HIS FRIEND.

THE AUTHOR.

PREFACE

To the Forty-fifth Edition.

THE First Edition of this work, consisting of 284 pages, was submitted to the Mechanics and Engineers of the United States by one of their number in 1843, who designed it for a convenient reference to Rules, Results, and Tables connected with the discharge of their various duties.

The Twenty-first Edition was published in 1867, consisted of 664 pages, and, in addition to the original design of the work, it was essayed to embrace some general information upon Mechanical and Physical subjects.

The Tables of Areas and Crounferences of Circles have been extended, and together with those of Weights of Metals, Balls, Tubes, Pipes, etc., of this and some preceding editions were computed and verified by the author.

This edition is a revision and an entire reconstruction of all preceding, embracing amended and much new matter, as Masonry, Strength of Girders, Floor Beams, Logarithms, etc., etc.

To the young Mechanic and Engineer it is recommended to cultivate a knowledge of Physical Laws and to note results of observations and of practice, without which eminence in his profession can never be attained; and if this work shall assist him in the attainment of these objects, one great purpose of the author will be well accomplished.

NOTE 1.—Mechanical and Physical subjects, commencing at p. 427 and ending at p. 870, are given in alphabetical order.

^{2.—}Tons are given and computed at 2240 lbs.

³⁻Degrees of temperature are given by the Scale of Fahrenheit.

•

A.	Page	ı Pa
ABUTMENTS AND ARCHES (See Arches		AIR, ATMOSPHERIC, Pressure, Velocity,
and Abutments)604	-605	and Resistance of a Plane Sur-
ACCELERATED BODY, Distances, Ve-	_	face, To Compute 6.
locities, and Acceleration of 021-	-022	" Pressure of a Weight of, or other
Acids	188	Gas at 620 and 14.7 Lbs. Press-
Acreage, To Compute	337	ure, with Constant Volume for
Adulteration in Metals, Proportion		a Given Temperature 5:
of Two Ingredients in a Compound.	216	" Proportion of Oxygen and Car-
Aerodynamics	614	bonic Acid at Various Loca-
AEROMETRY	-676	tions43
(See also Pneumatics.)		" Rarefaction of 4: " Resistance of different Figures
" Course of Wind, etc	675	in, at different Velocities, and
" Cyclones, Direction of	075	to Falling Bodies646-647, 94
" Degree of Rarefaction	673	" Specific Heat of, and Other
" Discharge Pipes, Diameter of.	070	Gases
" Distance of Audible Sounds	974	" Temperature, for a Given Lati- tude and Elevation 67
" Force of Wind on a Surface.674- " Height of a Column of Mer-	-075	tude and Elevation 62
cury to Induce an Efflux of		Volume of a Weight of or Per-
Air, To Compute	625	manent Gas for cny
" Resistance of a Plane Surface	٠/3	manent Gas for cmy Pressure, To Compute 52
to Air, To Compute	675	and Weight of Vaphr 2n, 65-6
" Resistance to a Steam Vessel in	-/3	a, a reigns of, or Ferma-
Air or Water	911	nehl Gasforeny Pressure
Air or Water Weight or Pressure of Air	1	and Temperature521-52
under a Given Height of	1	to the tree tree to the tree received to 70
Barometer and Temperature	.	of Epilosed, at 5° that may be Heated by Une Sq.
Discharged in One Second.	675	. Wool of Iron Surface
" Wind, Velocity and Pressure		" 'Fool of Iron Surface 92
of	924	4 the arch on Omming and
Through an One of a sta		under a Pressure above
Through an Opening, etc.,	د ا	that of External Air 67
into a Vacuum		" Pressure, and Density of
AEROSTATICS427-431, "Clouds, Classification of	014	at Various Tempera-
" Distances, by Velocity of Sound	430	tures521-52
" Elevations, by a Barometer. 428-	420	" Required per Hour, for
" Thermometer	420	each Occupant in an
" Lightning, Classification of	420	Enclosed Space 52
" Velocity of Air flowing into	73-	Ajutage, Cylindrical 54
a Vacuum, To Compute.	428	ALCOHOL 19.
" " of Sound	428	" Elastic Force and Tempera-
"Weather Glasses and Barom-	ŀ	ture, of Vapor of 70
eter Indications430-	43I	" Proportion of, in Liquors. 191,20.
Age of Horses, To Ascertain	196	Ale and Beer Measures 4.
Ages of Animals192,	196	" Water in 20:
AIR, ATMOSPHERIC431-432, and Steam, Mixture of	912	ALGEBRAIC SYMBOLS AND FORMULAS, 22-21
" and Steam, Mixture of	737	Alimentary Principles 200
caroonic Acia Exhalea oy Man.	432	Alligation 100
"Compressors	940	Alloy, Expands in Cooling 95:
" Degrees of Temperature by 41	132	ALLOYS AND COMPOSITIONS634-635
" Decrease of Temperature by Al- titudes	- 1	"Bronze
" Discharge of, Coefficients of Ef-	522	" Compounds, Fusible and Solders 634
flux	574	" Of Steel 64
" Expansion of		D was ing I take that I have U:
" Flow of, in Pipes, Loss of 745. Co	00	" Solders 6
" Head of to Resist Priction in	- /	" Welding Cast Steel 6
Long and Rectilineal Dings	5 / A	LMANAC, Epacts and Dominical Let-
" Pressure of, in Rear of a Projectile 648		iers, 1800 to 1901
•		-, w 1901

Page 1	Pag
ALMANAC, Altitude of Sun at New	Arc. To Describe
York 932 Altitudes Decrease of Temperature by 522	Arch. Radius of, To Compute 601
Altitudes, Decrease of Temperature by 522	
Alum.num	ARCHES AND ABUTMENTS
Ammeters and Voltmeters951-962	(See also Masoury, 604-605.
ANALYSIS OF ORGANIC SUBSTANCES. 190	Churus, etc., wase weight of 77
of Foods and Fruits, 201	Bridges 60
of Meat, Fish, and Vegetables, etc. 200	" AND WALLS
	Area and Population of Dirisions
ANCHORS AND KEDGES and Units,	and Countries 18
To Delermine Weight and Number of, U.S. N 174-175	Arenes 58
"Number and Weight of	AREAS of CIRCLES by 8ths231-23
U. S. N. 174	and Circumferences of Cir-
Cables, Chains, etc., for a	cles by 10ths243-25
Given Tonnage, Am. Ship	" and Circumferences Greater
M. Ast'n173-174	than in Table, To Compute 25
" Experiments on and Compar-	by 12ths253-25
ative Resistance to Dragging 175	by Birmingham Wire Gauge 23
Proof Strain of	by Logarithms236, 25
Ancient and Scripture Lineal Meas-	Greater man in luste, 235, 2
ures and Weights! 53	The Proce terms Processes
Angles (See also Trigonometry)385-389	When Diameter is composed of an Integer and a Frac-
" and Distances Corresponding	tion, To Compute 2:
la Ovening of a Rule of Two Feels	44 A SPONDETTO OF A CIDATE OF OF
" Chard of to Plot and Compute: 150	" OF ZONES OF A CIRCLE 269-27
" Critical and Visual bbq	" " To Compute 2;
" Sinch of To Compute 302	ARITHMETICAL PROGRESSION 101-14
" To Describe, 815 222	Artesian Well
The Feet 100 Protested Computer 100 Protested and Visual 100 Protested Since of To Computer 100 Protested 100 Prot	Asbestos 91
ANIMAL AUDIT MURITIAN STREET CONCE. P 201	Treesing Conscient Care
Poster and Walk:432-440 Birds and Institute488, 440	Ash, Proportion of, in Woods 4
Poster and Wards432-440	ASPHALT481, 515, 689-66
" Gamel and Crossdill. 438, 440	" and Parement944-94 " Composition5
" Camel and Crosselle 438 " Coursing and Chasing. 440	" Mortars and Concrete 91
Day's Work 434	Astronomical Day
" " Dog 438	Atlantic and Pacific Oceans Q2
" " Horse. 435-437, 439-440, 918	" Tides of 15
" " Llama and Ox 438	Atmosphere91
Men433-435, 438-439 Mule and Azz437, 918	AVOIRDUPOIS WEIGHT 3
Mule and Ass437, 918	Axle, Compound, or Chinese Windlass, 62
THE LIEF CON MANAGE OF A VINNE	(See also Wheel and Axle, 626-627.)
" Stage Coaching 440	R.
Animals, Proportion of Food for 205	Babbitt's Anti-attrition Metal 63
" Ages of, etc192, 196	Bacteria in Earth soil
Annealing 785	Baking of Meats, Loss by 20
ANNUITIES	Balances, Fraudulent. 6
" Amount of, To Compute 110	Balks and Battens, Dimensions of 6
" at Compound	Balloons, Capacity and Diameter of. 21
Interest	Balls, Cast Iron and Lead 15.
" Present Worth of 110-111	Balls, Lead, Weight and Dimensions of 501
" Yearly Amount, that will	Barrer's Vill
Anti-attrition Metal, Habbitt's 636	Barker's Mill
ANTIDOTES for Poisons	Lbs. of Hay 203
Anvils, Weight of	BAROMETER (See also Aerostatics), 427-431
ments, Buildings, Ventilation of 524	Elevations by Readings. 420
'caries' or Fluid Mossure 46	Height of, To Compute. 420
Waln't 2	Indications
579–5ში	Weather Glasses
.912-955	Weather Indications

Page	Page
BARS, Wro't Iron, Square and Rolled,	Bells, Weight of180, 936
125-128	Belt, Equivalent, and Wire Rope 167
" Ottal Eleteral Delled	Delt, isquivalent, and wire hope 107
" Steel, Flat and Rolled 134-135	Belting, and Destructive Stress of, 907, 935
Davis D Garage Manager	" or Hose, To Preserve 877
BRAMS, BARS, OR GIRDERS, Transverse	
Strength of 802-811, 813-820	BELTS AND BELTING 441-443, 877, 960
(See also Girders, Beams, etc.)	" Adhesive Compound for Rubber. 877 " Dressing for 878
Il Dame Steel	" Dressing for 878
" Bars, Steel817, 827	" Dynamo and Link Leather 960
" Comparative Strength and De-	
flection of Cast Iron 809	" General Notes and Memoranda,
" Comparative Value of Bars,	442-443, 872, 877
Girders, or Tubes 824	India Rubber
Girders, or Tubes 824	" Width of, To Compute41-442
" Common Centre of Gravity, etc. 819	Donah Marka
" Cylinder and Cylindrical, Di-	Bench Marks85
ameter and Weight, To Com-	Beton or Concrete 593
pute 805	Bibliothèque National
pute	Birds Fluing
" Cylindrical, or Tubes, Trans-	16 Tombetion of
verse Strength of810	Birds, Flying
" Deflection of 770-782, 840-841	" and Insects
" Death of to Suppost a Load 909	Rissextile or Leap Year 70
" Depth of, to Support a Load 808	Blacking
" Dimensions of, which a Struct-	Black Furnace
ure can Bear, To Compute 644	Blast Furnace
" Elements of Wro't Iron and Steel,	Tipe of a Locomotive 907
_Rolled and Bars807-808	BLASTING443-445, 913, 916
" Elliptical Sided, To Determine	" Boring Holes in Granite. 444
Side on Chame of	
Side or Curve of 826	charge to transposate joi,
Factors of Sajety 821, 841	and Effects of 444
" Flanged, Dimensions and Pro-	" Weight of Explosive Mate-
portions of Wro't Iron 809	rials in Holes 444
" Floor Beams, Headers, Trim-	" Gelatine, Composition of 916
mers, etc., To Compute 835-838	" Paper, Composition of 912
	(
" Formulas for Transverse Stress,	1 2 444 444
To Compute801, 816	Drucing and menery 445
General Deauctions824=825	Blasts and Draughts, Comparative
"Inclined. Formula for 811	Effects of 746
" Lintels, etc822-823	Blower and Exhausting Fan 898
" Moments and Stress of621-622	
" " " of Decistance 0021-022	BLOWERS, Fan447-448
" " of Resistance 818	" Elements of, To Compute 448
nectangular, Giraers or Tubes. 800	" Memoranda48-440
Scarts, Resistance 07 841	" Power of a Centrifugal Fan. 448
" Shearing Stress 623	" Pressure of Blast, To Compute 447
" Solid Cylinder, Diameter of,	
To Compute804-805	BLOWING ENGINE, Friction of Air in
" Symmetrical Forms and Sec-	" Long Pipes, etc 925
	" ENGINES 445-440 808
tions, Conditions of825-826	"ENGINES445-449, 898 "Dimensions of a Driving
Trusted Notes on	Dimensions of a Driving
nequally Loaded 810	Engine, To Compute 446
" Various Figures and Sections,	" Elements of, To Compute 447
Dimensions of805, 813-814	" Memoranda
" Wrold Trees Tailed	" Power of and Power Re-
" Wro't Iron Rolled806-808	quired to Drive 446
Raixe, Inertia and Resistance, Mo-	11 Post's Potamy
ments of and Neutral Axis,	Root's Rotary449
	" Volume of Air transmitted. 447
To Compute818-820	Blowing Off of Steam726-727
circular or Emplic 815	Board and Timber Measure 61
Hollow or AnnuarXIE	
" Miscellaneous Illustrations 826	BOARDS, Volume that can be sawed
" of Unsymmetrical Section, and	from a Round Log 947
Ultimate Strength of 817, 820-821	BOLLER Steam 526 520 545
"OP Trape Filintical 9-20-021	BOILER, Steam526, 739-745
Bearings for Brandles Shall	
Bearings, for Propeller Shaft 473	Abut Straps and Stays753-754
■ ~~ Lean. Water in.	" Areas and Katio of Grate and
and Ale Measure 45	Heating Surface, Volume of
" Water in 201	WaterandWeight of Fuel.741-742
Root, Ratio of Flesh formers	" Coal, Utilization of, in a Ma-
and Sugar, Analysis of 207	coar, ounzanon of, en a ma-
	rine
Meres and Beef, Weights of	" Comparative Result of Experi-
Ma Ringing 35	ments with a Steam Jet

Boile	R, Consumption of Fuel in a	ROTTERS Rigging off To Commute
	Furnace, To Compute725-726	Loss of by 727
41	Draught739, 744-746	" Bottoms of, To Preserve 878
44	·· and Blasts, Compar-	Corragatou i taco
	ative Effect of 746	" Cylindrical Shells751-752, 913
"	Velocity of 746 Efficiency, Nominal and IH	If Wiemente of or Q
"	Efficiency, Nominal and IH	"Flued, Arched, or Circular Furnaces, U. S. Law754-755 "Shell Plates, Pressure and Thickness of, U. S. Law.750-751
	_ <i>of</i>	Furnaces, U. S. Law754-755
41	Evaporative Capacity of Tubes 742	" Shell Plates, Pressure and
•••	Evaporative Effects of, for	Worse Proper of
	Different Rates of Combus- tion and Surface Ratios 743	110/86-1 0000/ 0/
**	Evaporation, Power of757-758	
44	Eyes, Stays, Rods, etc 754	move
44	Fuel that may be Consumed	" Plates, Straps, and Stays 753
	per Sq. Foot of Grate 742	" Proportion of Grate and Heat-
*4	Girders for Furnaces 754	ing Surfaces, Result of Ex-
44	Grate, Heating Surface, Water,	periments
	Fuel, etc., To Compute 741, 927	" Saline Saturation in 726
	Heating Surfaces and Rela-	" Matter Proportionate
	tive Value of	Volumes of 727
"	Mean Strength of Riveted	
	Joints Compared to Plate.751-752	neys
41	Minimum Volumes of Fuel	December to Forcego Counter tes 935
	Consumed per Sq. Foot of	Bream Fracti Labe, 23/19050000
"	Grate740-741	and Results of 947
"	Plates and Bolts749-750 Thickness of for a Given	" Volume of Furnace Gas per Lb.
	Pressure and Pilch, etc. 753	of Coal
44	Power and IP of	that Evaporated 727
64	Proportion and Capacities	" Water Tube and Efficiency of,
	of. and Firing739-740	926, 947
"	Rate of Combustion 760	BOILING - POINTS of Various Sub-
44	Relation of Grate, Heating	stances 517
"	Surface, and Fuel 741	" at Different Degrees of
••	Results of Operation of and	Saturation 815
	under Varying Proportions of Grate, Surface, Draught,	BOLTS, Adhesion of Drifted 949
	Combustion etc. 242 024	" and Plates, U. S. Test749-750
64	Combustion, etc743, 924 Results of Operation of Va-	" Rods of Copper, Weight of 148
	rious Designs of Boiler and	" Round and Square, Relative
	Varying Proportions of Area	Driving Resistance of Steel. 970
	of Grate Surface, etc 744	" Tenacity and Resistance of.
**	Return Tubular, Elements of	Round, Square, and Screw 970
44	a Test 726	" Wro't Iron, Experiments on 783
44	Riviting755-757,907	" AND NUTS, Dimensions and
••	"General Formulas and	Weights of, and To Com-
66	Illustrations 757 Safety Valves746-747	pute156-159 "English and French Stand-
66	Saline Saturation in 726	ard
44	Scale, Removal of Incrusta-	" In Wood, Tenacity of 198
	tion of 726	
44	Stay Bolts, Diameter and Pitch	the Thread 016
	of, To Compute 754	" Square Heads 190
. "	" Tensile Strength of .753-754	Boring and Turning Metal 197 "Instruments, Tempering of 197
66	Steam Heating526, 957-958	" Instruments, Tempering of 197
**	Steam Room	Well
	Tubes, Evaporating Capacity of Various Lengths 742	Boyden Turbine
•	" Lap-welded Charcoal, Di-	
-	ensions of 139	BRASS
	Water per Lb. of	" of a Given Section, Weight of. 136,149
	7mpule 725	" Ornaments, To Clean 877
	dwith Water.759,929	" Plates, Weight of 118-119, 149
		Thickness of
	use per Lb. of	" Seamless Pipes
	748	81 " Sheet, Weight of

Page :	la	Lake
eight of, To Compute 155	CABLES, Ropes and Hawsers, Circum-	
ht of 142	ference of, To Compute "Weights of, To Compute	171
136	" "Weights of, To Compute	172
if of120-121	" Ropes and Hawsers	170
nd Sheathing 155	" Strain Borne with Safe-	-,-
Copper 131	ty, To Compute	171
ter Lost by Drying. 207	Calculus	24
181	Calendar, Ecclesiastical	70
568-570	Olegorian de M.D.	
rtions and Effect 569	Caloric	, 614
eness of 603	Engine, Ericsson's	903
-595, 597-598, 600, 801	Camel, Load of and Travel438,	ó18
595	Canal, Suez, and Via 177. 183,	013
sed Fuel con	" or Conduit, To Discharge a Given	y
sed Fuel	Volume of Water and To Commute	
590-000	Volume of Water, and To Compute	
800	Fall of	920
Resistance of 908	Canals, Dimensions, etc	181
and Number in a	Flow of Water in	550
ot of Masonry 599-600	" Locks and Capacities of, To	33-
a Tubular 178	Compails	
907	Compute183, 553-	255
	rower of a morse on.	
	Traction on	848
ie, and W. Railroad 178	" Transportation of	193
k and Brooklyn 178	Candles, Lamps, Fluids, and Gas. Light	
	of. etc	-884
ce of from a Model. 645	Cane Sugar or Saccharose	204
on, Elements of. 842	Cannon Pall Plicht of	207
	Cannon Ball, Flight of	495
	Capillary Tube	358
.178, 930, 936	Cargoes, To Ascertain Weight of 176-	-177
and Spans of 181-182	Units for Measurement of	170
on and Length of	Carrot, Ratio of Flesh-formers.	207
07178, 199, 842		20,
18, for Beams 838	" Value of, Compared to 100 Lbs.	
18, for Beams 838	of Hay	203
ic Measures, Com-	Cascades and Waterfalls	184
lents of 906	Case Hardening644,	786
207	CASK GAUGING.	277
637	Casks Ruonancu of	3//
5.	Casks, Buoyancy of Ullage, To Compute Volume of	192
		370
8 832	CAST AND WROUGHT IRON of a Given	
stes, Bolts, etc., and	Sectional Area, Weight of	136
s of 929	Weight of, To Compute	
using Liquid 874		1 5 5
B 46	CAST IRON, 131, 637-638, 765, 783-786,	708
nent, Requirements	CAST IRON. 131, 637-638, 765, 783-786, " and Lead Balls, Weight of	152
	" Balls, Weight and Diameter of.	.23
Fanguage and 907	Dar or Pod Weight of	+53
s, Expansion and	Bar or Rod, Weight of	131
184	" Bars, Experiments on	780
of English 189	" Characteristics of	637
	" Columns, Weight Borne Safely	
m of from Lightning 907	by	768
Application for 196	" Malleable Castings	639
#	" of a Given Sectional Area,	-39
r and Water in 201		
mterfort 696	Weight of	
	I the 10 House Ownedition.	927
C.	" Pipes and Tubes, Dimensions	
	and Weight of	147
J 207	" Weight of	-132
••••• 20I	" Plates, Weight of a Sq. Foot	146
_	I Tllimate Strength of	-0-
IAWSERS, ANCHORS,	Commence With raiding of ******	701
AINS	Castings, Shrinkage of	218
	" Holes in	
of, for a Given	" Weight of, by Patter	
of Anchor 175	Catenary, To Delineate	
d Steel, Strength	Cathedral, St. Peter's	
J-14 - P		
GBS 05 163	Cattle and Horses, Trans	
Hemp and Wire	" Dressed Weight o,	
uparis on of 169 l	pute	
2	Par	
2		

Page	Page
Cauliflower, Value of 207	Chinese Wall
Cave, Mammoth, of Kentucky 936	" Windlass To Compute 627
Cement Mortar 595	" or Indian Ink
" Cloth, etc., for Covering Steam	CHRONOLOGICAL ERAS and Cycles 26
Dines	Companyon and Distant Control of the
Pipes	CHRONOLOGY70-74
CEMENTS. 515, 589-590, 871-873, 907, 956, 958	" To Ascertain Years of Coinci-
(See Limes, Cements, Mortars, and	dence of a Given Day of the Week,
Concretes, 588-597.)	etc
CENTRAL FORCES449-454	Churches, Opera-Houses, and Thea-
" Formulas for Various	tres. Canacity of
	CIRCULAR ARCS, from 1° to 180° 268 Lengths of up to a
Elements 450	it from to of an to a
CENTRE OF GRAVITY	Compare of the total
" " and Vertical Distance be-	Semi-circle260-261
tween Centres of Crush-	" Length of, To Ascer-
ing and Tensile Strength	tain
of a Girder or Beam 819	" Motion
	" Measure of an Angle113-114
" Centre of any Plane Fig-	Circulating l'umps
ure, To Ascertain605-606	
" of Displacement of a	CIRCLE, to Ascertain Square that has
Vessel653,658	the Same Area of 259
CENTRE OF GYRATION609-611	" Sides of a Square Equal in
" " Flaments and Centre of 6-0 6-1	Area to258-259
Diements and Centre of.010,011	
CENTRES OF OSCILLATION AND PER-	CIRCLES, Areas of, by 8ths, 10ths, and
CUSSION, and To Compute. 612-614	12ths231-257
" Centre of, in Bodies of	Oy Lingui willies 240
Various Figures 613	" by Wire Gauge 236
	CIRCUMPERENCE of a Circle when
CENTRIFUGAL FAN, Elements and Pow-	Greater than Contained in
er of a Fan Blower, etc. 448	
(See Fan Blowers, 447-448.)	Tables, To Compute. 241-242, 252
" FORCE of any Body 450	" of Birmingham Wire Gauge. 242
" Forces	" When Diameter consists of an
" Formulas, to Determine Va-	Integer and a Fraction 242
	CIRCUMPERENCES OF CIRCLES by 8ths,
rious Elements 450	
" PUMPS	11 11 and Area of hundha are are
CHAIN, To Set out a Right Angle with. 69	and Area of by 10ms. 243-252
" Cable, Diameter and Length	· · · · · · · · · · · · · · · · · · ·
for a Given Weight of Anchor,	12ths252-257
U. S. N	" by Logarithms242, 252
" CABLES, Breaking Strain, Proof	" In Feet and Inches241-242
and Strength of . 169, 930	Cisterns and Wells, Excavation, Lin-
" "Anchors, etc., for a Given	ing, and Capacity of 63
Tonnage Am C Assim	Civil Day37, 70
Tonnage, Am. S. Ass'n. 173-174	
" Length of, for Anchors 175	" Year 70
	Cloth Measure27
Strength of108, 930	Clouds, Classification of 430
" " Stowage of 913	Clover, Value of, Compared to 100
Chaining over an Elevation 60	Lbs. of Hay 202
CHAINS AND ROPES for Cranes, Weight	COAL, Anthracite33, 480, 483, 485-486 "Composition of Average 485 "Fields of U.S., Areas of 191
of and Proof 457	" Composition of Average 48s
" of Equal Strength 165	" Fields of H. S. Areas of 101
Safe Working Load of 168	Comment of the state of the sta
	COALS, Average Composition of and Fuels, Heat of Combustion
CHARACTERS AND SYMBOLS21-22, 973	Fuels, Heat of Combustion
CHARCOAL33, 194, 480-481, 485	and Evaporative Power of 486
CHARCOAL33, 194, 480-481, 485 "Produce of from Woods 481	"Bituminous33, 479, 483, 485-486 "and Natural Gas, Relative
Cheese, Composition of Different	" " and Natural Gas, Relative
Countries	Water Eraporating Powers ore
Countries	Water Evaporating Powers 913 " "Caking, Splint or Hard,
pound Combustibles 461	Cherry or Soft and Connel
" Formulae To Conwert 100	Cherryor Soft, and Cannel 479
roimatas, ro Contilla Igo	l Classification, Chemicus
Chimney Draught and Chimneys, 907, 918	Composition and Varieties -
" Velocities of Current of Air	∫ _ of479
in One of 100 Feet 749	" Consumed per Hour, to Heat 100
CHIMINETS 170-180, 004, 016, 018, 025	Feet of Pipe 527-528
and Smoke Pipes 748-749	" Effective Value of
Height of and Commercial	"Effective Value of
Height of and Commercial *A Given Diameter of Flue 925	" Fields, Areas of U.S
- Journ Dusmeter up Fille 025	I T. PONTE, TIME OF C. P

COALS, Gas	
" Japan 909	ly Consumed in Complete
" Lignite479, 481	Combustion of 1 Lb. of Coal 459
" Measures	" Volumes of Air Required for
# Mr	Comband's
" Mine 936	Combustion464-465
" Miscellaneous Experiments 487	" Weight and Specific Heat of
". Production and Consumption	Products and Temperature
of the World 955	of Combustion, etc462-463
Contant Dam Commiss and Consu	Weight and Volume of Cassous
Coast and Bay Service and Scour 908	Weight and volume of Gaseous
Cocks, Composition, and Copper	Products of 1 Lb. Fuel 460
Pipes, Dimensions of 150	Compass, Degrees, etc., of Each Point. 54
Coffee and Tea, Water in 201	COMPOSITION Cocks, Dimensions of 150
	Corposition Coulding Class 6.
COHESION	Composition for Welding Steel 634
" Modulus of	COMPOSITIONS AND ALLOYS634-637
Coins, British Standards 38	(See Alloys and Compositions.)
ii Ma Comment IT C to Duitich	
" To Convert U. S. to British	Composition Sheathing Nails 135
Currency, and Contrariwise 39	Compound Axle or Chinese Windlass 627
" Tolerance of 38	" INTEREST108-109
" U.S., Weight and Fineness of. 38	" Proportion95-96
" Walne of Ma Commute	Weights of Impredients 0-2
" Value of, To Compute 39 " Foreign Silver and Gold, and	" Weights of Ingredients 218
" Foreign Silver and Gold, and	la 00
Weight, Fineness, and Mint	CONCRETE588-597
Value of39, 43	(See Limes, Cements, Mortars,
COKE, Evaporative Power of, etc 480	and Concretes.)
Wilk, Eduporative Power of, etc 400	11 Cojomet's
Cold, Extremes of, in Various Coun-	" Congositions of
tries and Snow Line191-192	" Compositions of 593
" Greatest, Artificial 908	" or Beton 593
College, Oxford	Concretes, Cements, etc 800
- 179	Correc
COLLISION OR IMPACT580-582	Company Company
" Velocities of 581-582	CONDENSATION, Surjace
Color Plindness	CONDENSATION, Surface
Color Blindness	CONDENSER, Results of an Operation
Colors for Drawings	of
Colors for Drawings	907
Columns, Towers, Domes, Spires, etc.,	CONIC SECTIONS379-380
	" Conoid and Ellipse, Elements of 380
180, 936	
"Crushing and Safe Load of 766	10 Describe, and Area, or-
" Long Solid, Comparative Value	dinate, Abscissæ, Diam-
of 769	eters, Circumference, Seg-
" of Cast Iron768-769	ment, and Length of Curve,
" "Weight Borne with Safety,	To.Compute380-382
	" Coneral Definitions
768-760	
	" Hyperbola, To Describe, and
COMBINATION112-113	119/2001a, 10 Describe, and
COMBINATION112-113	Abscissæ, Diameters, Length
COMBINATION	of an Arc, and Area, To Com-
COMBINATION	Abscissæ, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Abscisses, Diameters, Length of an Arc, and Area, To Compute379-380 "Parabola379-380, 382-383
COMBUSTION458-466 "Chemical Composition of some Compound Combustibles461 "Composition and Equivalents	Abscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Abscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute379-380 "Parabola379-380, 382-383 "To Describe Ordinate, Abscissæ, Curve, Area, and Segment of382-383 Constructions and Natural Forma.
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute379-380 "Parabola379-380, 382-383 "To Describe Ordinate, Abscissæ, Curve, Area, and Segment of382-383 Constructions and Natural Forma.
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute379-380 "Parabola379-380, 382-383 "To Describe Ordinate, Abscissæ, Curve, Area, and Segment of382-383 Constructions and Natural Forma.
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute. 379-380 "Parabola 399-383 "To Describe Ordinate, Abscisse, Curve, Area, and Segment of. 382-383 Constructions and Natural Forma tions, Largest 936 Contractility and Elasticity 614 Cooking of Meats. 206 COPPER, Tensile Strength of. 750, 788 "and Iron Riveted Pipes, Weight of. 148 "Braziers' and Sheathing 131
COMBUSTION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBUSTION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBUSTION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute
COMBINATION	Anscisse, Diameters, Length of an Arc, and Area, To Com- pute

	-				Page	
Jauly Jowers, Trible of	-07	T:zese	₩eil		173. 33¢ Le	
1. Common of Antecky	122		Vindiass.	To Compa	te 727	
Time no T man			r [mill	8 _ NAG	327	
The state of the s		TRUMPI	ت الدعانس	21.5 mui.	/CitE 25	
the for mering steam		·				
			P. Langer	7776	1790%	
TEMPTHE		1,000	of a rice	n Dzy · · ·	le otte	
		at				
H-F- 3. 105-507		7	g rem	Touses in	I Thea-	
Toward 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			* water Parts * 77 · .	*		
THE LET . SET . SET			A LEUN.	בים יי אחיים	::' 2012	
Elements			·	mytha !	:: 2012 1,2,17 L	
THERE I SECTION	-303			>: m		
				-nyen 🦶 💆		
				:22M	26z	
THE THREE PARTY OF THE PARTY OF			Wouns		723	
to the treatment of State Access	:::		4. 22.	· i ana ⊥negro	4	
and the second s		بحز يحدث		¥	49	
secretary	-220			na smare	202 1.28	
secret ment			100 007970	17-11 12	259	
* ster	. :==			. Simile	Truck 18	
		٠,	****		25-253	
Albert of Project of Control of Con-	. :::			i i the :		
The second secon			7.45	. 7 62.	10-41 was	
CONTRACT STREET, NOT THE CONTRACT OF THE CONTR					272-257	
1 Sec. 2 1 Tel. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•		, <i>april</i>	239	
77.44 7.37.		•	· .y .			
77.00	•••	7	\$25.57ac.2	25 A	CLT AND THE STATE	
Berger of Andrews and Com-			F-11.11	r273 74	. 2009ed 1/8 5. 242—2421, 252	
			Tarres.	m:u.		
Section Section as the		•	. 31-4:	nijili.im 🕨 r	1-120/c. 212	
1000 1000 2000 1100		•	5 cm 74	Service out	wa ir m	
The same of the same of the	• • •		. " 2", "."		CLV. 76 242	
is Somenes			Take Co	y Downs	n iy itu.	
The second of th			2794	~; '	- 454 ;-252	
Edges of the Committee	_	•			one mil	
the second of the contract					14 250-257	
The second second second			. ~,	, ry ··· Red	. 122.252 North 211 -242	
		•		794	10.19.31	
	* ::	. *	**	4 12 29		
The ring of the second	ena i			W. 7		
TOTAL PROPERTY.			1.00			
Star Lane Front E	· -	•			····· 7	
State Langue Front E	714	"	1 :05: ~		430	
Commerce :	si. 7	7.02	*	g, 1, 1, 21, 7 4		
Salestin of		317			353	
Termina		34 July 2	. i.			ż
THE PARTY AND THE PARTY OF THE	JIL	(1)11				4
/ ITEL		<u>:-</u> .				Ē
" " " " " " " " " " " " " " " " " " "						
	_			TELEV.	nin mi Amana	
	~:				100	é
	• • •	· z	."2~	dare Charles after a car		ċ
		.::	31.5	v 260	ing the second	
100	-116					-
		25.	,		- 1	•
- A Same 1				C-100	estregger acert ac – Etarrés 1. amail Tromas est	4
		274	.•	W.104	74. TRAINS	
		.00			s Turmusta um um um	
قس.	30					-
4	F.	_			ar i den er	
				A STATE OF THE STA	-	3
				' ~ `~		::
					See and street market	·
				Arrest .	.	

Page	Page
Distillers and Evaporators, Capaci-	Easter Day 71
ties of	Ecclesiastical Year 70
Dog, Power of, Coursing and Chasing,	Egg, Fowls', Composition of 207
438, 440	Egyptian and Hebrew Measures 53
Domes and Towers, Diameter and	ELASTIC FLUIDS, Specific Gravity of. 215
Heights of	ELASTICITY and Strength. 195, 614, 761-763
Dominical Testano and Process	" Coefficient of 761
Dominical Letters and Epacts 73	"Modulus of, and To Compute 762-763
" or Sunday Letter 70	"Relative, of Materials 780
DOVETAILS, Tenacity of	ELECTRIC AND GAS LIGHT 198
Drains Diameter and Grade of to	" Dynamo Engine954
Drains, Diameter and Grade of, to Discharge Rainfall 906	" Elevators, Power Required 050
" and Sewers, Velocity and Grade	" Launch
of692	" Light, Candle-Power of 908
DRAUGHT, Artificial745-746	" FANS, MOTORS, Power, Pumps. 959
" Natural 739-740,744	" WIRES AND CABLES, Tele-
" Steam Jet and Blast, Com-	graph, Telephone, and Light Wires
parative Effects of, and Result	and Cables
of Experiments with 746	ELECTRICAL Engineering, Units in 953
Drawing and Tracing Paper29, 964	" Resistance, etc34, 953
" or Pushing 433	ELEMENTARY BODIES, with their Sym-
" or Pushing	bols and Equivalents 190
" Dimensions of, for U.S. Patents 198	Elephant, Power and Weight of 918
Dredger, Steam Hopper, and Ma-	Elevations by a Barometer428-429 and Heights of Various
chines899-900	and Heights of Various
DREDGING, and Cost of	Places above the Sea
" Machines and Crane 899	ELLIPSE, To Describe and Construct,
DRILLING in Rock	etc226-227, 380
" in Metals 477	(See Conic Sections, 379-380.)
Drills, Mountings, etc	ELLIPTIC ARCS, Lengths up to a Semi-
Day Wassers	" ellipse of263-266 " To Ascertain Length of 266
DRY MEASURES	" To Ascertain Length of 266
	EMBANKMENTS, WALLS, AND DAMS, Ele-
DYNAMITE and Cellulose443-444	ments of700-703
_	(See also Revetment Walls, 694-
DYNAMICS	699, and Stability, 693-703.)
Ctreater Motion	" "Equilibrium, Stability and
" Decomposition of Force 620 " Motion on an Inclined Plane 619	Moment, To Compute 701 "Form of a Pier, To Determine 700
" Uniform Motion617-618	" "High Masonry Dams 703
" Work A ccumulated in Moving	" "Materials, Weight of a Cube
Bodies, and To Compute 619	Foot of 694
" By Percussive Force 620	" "Surcharged Revetments 699
DYNAMO Leather Bells 960	" " Various Elements, To Com-
	pute and Determine702-703
Е.	Endless Ropes 167
EARTH, Diameters and Density 188, 198	ENGINES AND MACHINES, Elements ,
" and Rock Excavation and	and Cost of
Embankment	and Sugar-mais, weights of, ac
Area and Fopulation of 100	Engravings, To Clean Soiled 874
" Boring and Heat of Mines 955 " Conductivity of Temperature in 914	Ensigns, Pennants, and Flags, U.S. 1950
	EPACTS, AND DOMINICAL LETTERS 7
	EQUATION OF PAYMENTS 109
" Elements of Figure of 61 " Influence of the Rotation of, on	EQUILIBRIUM, Angles of, at which Va-
Moving Bodies 942	rious Substances will Repose 694
" Motion of 70	" Of Forces 616)
" Weight of, per Cube Yard 468	Ericsson's Caloric 9035
" Weight of, per Cube Yard 468 " Weights of	Esquimau, Daily Food of 914
KARTHWORK467-468	Establishment of the Port for Several
" Bulk of Rock, etc., Original	Locations in Europe
Excavation Assumed at 1 468	Ether, Elastic Force of Vapor 70
" Number of Barrow and Horse-	Evaporation747-7
cart Loads and Shovelling, and Volume of, Transported per Day 008	of Water per Sq. Foot
romme vy, 1 ransperious per DUV 008	" " mar Month of Year

xvi index.

Page	rj Pape
Evaporative Power of Tubes per De-	FLOORS AND LOADS, Factor of Safety,
gree of Heat, etc 513	and Weights of and on
Evaporators and Distillers, Capaci-	(See Strength of Materials, 795–841.)
lies of	FLOUR, Consumption and Tests of .206-207
EVOLUTION	" Mills
" To Extract Square and Cube	FLUES, TUBES, and Cylinders747, 827
Roots 97	" Arched or Circular Furnaces. 754
" " any Root97-98	" and Furnace, Corrugated, and
EXCAVATION AND EMBANKMENT, Ele-	Formulas for
ments of, etc466-468	Fluid and Liquid Measures 90, 46
" " Bulk of Rock, Earthwork,	Fillius, Canaces, Lamps, and Gus 500
etc., Original Excavation	" Percussion of 579
Assumed as 1	
" Cost of per Cube Yard 462	Fluxes for Soldering or Welding 636
Assumed as 1	FLY WHEEL, Weight and Dimensions
" " Earthwork by Carts and	
Barrow Loads Removed	FLYING of Birds 440
by a Laborer per Day. 467-468	Fontaine Turbine 574
" " Labor and Work upon and	Foon Animal
Estimate of Cost of . 466-467	FOOD, Animal200-207 "Comparative Values, for Sheep. 938
" " in Blasting and Hauling	" Daily of an Francis and och old
Stone or Earthwork, etc. 468	"Daily, of an Esquimau206,914 "Digestion of, and Time Re-
" Loadsor Trips in Cube Yards	quired for 200
per Cart per Day 466-467	" Milk, Relative Richness of 207
per Cart per Day 466-467 " of Earth and Rock 192	" Nutritive Constituents and Val-
Expansion 614	ues of in Grains per Lb. 202
" and Contraction of Building	" Equivalents of from Amount
Stones, etc 184	of Nitrogen in when Dried 205
Expenditures in England for Various	" Proportion of Appropriated and
Purposes and of Articles, compared	Expended by Animals 205
with Spirituous Liquors 938	" " of Starch in Sundry Veg-
EXPLOSIVES, Relative Strength of,	etables 205
Fired under Water. 946	" Ratio of Flesh formers from
" High, Firing Point and Rela-	" Ratio of Flesh-formers from Tubers 207
tive Strength953,966	" Thermometric Power and Me-
**************************************	chanical Energy of when Ox-
F.	idized in the Animal Body 205
FALLING BODIES, Resistance of Air to, 949	FOODS and Fruits, Analysis of 201
Family of Mechanics, Cost of, in France, 908	" in Reference only to Heat
	and Strength 203
FAN BLOWERS	" Elements of Various 207
" Exhausting and Blower 898	" Milk, Nutritive Values and Con-
" Memoranda	stituents of 202
Farms, Sustaining Production of 207	" Nutritious Properties of Differ-
Fascines	ent Vegetables and Oil-cake
Frilowship99	Compared 204
Relting Hair Cement Cloth etc. 056	" Relative Values of202, 204
Felting, Hair, Cement, Cloth, etc 956 FINDE WIRE, Strength and Weight of	" " to make an Equal
single Thread and Cable Laid 164	Quantity of Flesh in
! MCING, Barbed Steel Wire 947	Cattle or Sheep 202
tel. Value of	" " Compared with 100 Lbs.
151, Value of	of Hay 203
Ber Beds 851	" " as Productive of Force
Melering Stone	when Oxidized in the
	Body 204
The Bricks	" Required by a Man 207
	" Volume of Oxygen to Oxidize
-ENGINE, Steam904, 909	as Consumed in the Body 204
Meat , and Vegetables, Analysis of 200	weight of, to Develop Power in
La Ensigns, and Pennants, U.S. 199	Human System 204
WILL 476	W I at the 1220 Graphs of
Bodies, Velocities of gog	Nitrogenous Matter 202
Paint for Canvas 015	FOOT-POUND 947
170 of Ohio River 012	FORCE, Decomposition of 620
ana, or wrought from, and	Forces, Composition and Resolution
From Centres	ος

Page Printed of Co.	Page	•
FORCES, Division of	FUEL, Area of Grate and Consumption	
" Equilibrium of	of, To Compute	í
incition a feedbang body.	Ase, I cue, una Lun	í
" Percussive, Work by 620	Alepantition of the control of the c	ì
FOREIGN MEASURES AND WEIGHTS 48-52	" Average Composition of, Heat,	
Formations, Natural, and Construc-	and Evaporative Power of 485-486	
tions Largest	" Bituminous Coal479-487	
Formulas and Algebraic Symbols 22-23	Brick or Compressed 907	
Fortress Monroe 179	" Charcoal and Coke480, 483	
FOUNDATION PILES. 198, 909	" Classification of Coal 479	,
Foundations, Maximum Pressure on. 781	" Comparative Value of, and	
FRACTIONS89-91	" Comparative Value of, and Weights	
Fraudulent Balances	Elements of the second	١.
Variational of Vancels 666 and	" Lignite and Wood 481-482	
Freezing, Effects of, to the Resistance	" Liquid, Petroleum, Coal Gas,	
ricering, Effects of, to the Resistance	and Oils 484	
of Stones, etc	" Miscellaneous483, 485-487	į
FRESH WATER, Distillation of 955	" Produce of Charcoal 481	
Faiction, Elements of, etc 469-478, 571	" Relative Values of 483	
" and Delivery in Hose 922	" Units of Heat in 927	
" and Rigidity of Cordage. 472-473	" Values, Weights, and Evapora-	
" Application of Results 474		
" Application of Results 474 " Bearings for Propeller Shaft. 473	tive Power of per Bulk 483	
" Coefficients of Axle 471	FURNACES528-529, 754-755	1
" is of Masanry on Masanry	FUSIBLE COMPOUNDS	
" of Masonry on Masonry, Clay, and Earths 696		
it it of Mation and Journals in	G,	
" of Motion and Journals. , 470	GALVANIZED SHEET IRON, Thickness	
" I To Determine 471	and Weight of124, 129	j
### Elements of	" Charcoal Iron 163	
in Launching of Verrels	" Iron Wire Rigging and Guys	
the Little thing of F coacte 4/0	and Steel Cables 162-163	
meentone Differe to 4/1-4/2	" Iron Wire and Diameter of 123	
Of Att the Long and Hectachett	Galvanizing 786	
Pipes, Head of in Lbs 925		
of Bottoms of Vessels 909 of Engines and Propellers.662-663	GAS, Elements of, etc 585-587, 676	
of Engines and Propellers . 662-663	" and Electric Light, etc 198, 969	1
" of Journals or Guigeons of a	" Atmospheric Engine and Engines,	
Water-wheel 571	th Candles Lamps Fluids etc. 587, 912	
of Journals of a Water-Wheel. 571	Cumutes, Lumps, Filleds, Co 504	
of Machinery, Results of Ex-		
periments upon475-478	" Diameter and Length of Pipe to	
of a Non-condensing Engine.478,918	Transmit Given Volume of 586	
of Pivots and Relative Value	" Flow of, in Pipes 586 " Light, Intensity of, equal Volumes	
of Angles of 472	Light, Intensity of, equal Volumes	
of Planed Brass Surfaces 909	from Different Burners 585	
of Roads 847	" Mains, Dimensions of, etc 587	
of Steam-Engines 475, 478, 918	" Natural and Bituminous Coal,	
of Screw Steamer 478	Relative Evaporating Powers. 913	
" of Tools 476	" Pipe Threads 160	1
of Tools	" Pipe Threads	
" of Winding Engines, Shearing,	" Steam and Hot-air Engines 909	į
Flax Mill, Tools, Planing,	" Tubing, and Number of Burners,	
Molding, Stotting, Turnings,	Regulation and Length of 586	
Grindstones, etc476-478	" Volume of per Lb. of Coal and Air 760	
" of Wall and Earth 698	" of a Weight of Air, or Perma-	
" Relative Value of Unquents 471	nent Gas for any Pressure. 520	
" Results of Experiments on Sev-	" of Discharged through a Pipe 587	
eral Instruments 474	" of per Hour under Pressure. 587	
" Rolling. 473	" from a Ton of Coal, Resin, etc. 586	,
	" Weight of a Cube Foot of 215	
" Wood-sawing 477		
ctional Resistance of a Railway	Gases, Expansion of and Volume of	
Frain. 916	Lb. at 320 under One Atmosphere 520	
igorific Mixtures193, 516	" Permanent, Volumes of 19	
CITS, Analysis of 201	" Temperature of	8.
Proportion of Acid and Sugar 203	II II at the least to a self and	c.
L. Blements of	Gauge, Mercurial	
Ameracite Coat480-486	Gauge, Mercurial	•

xviii Index.

GRORRAPHIC MEASURES and Distances and Levellings	rage	FAR
Gear, Spir	GAUGING Cask and Varieties of 377	GOVERNORS
Gear, Spur		" Renolations and Elements of are
Gedatine, Blasting. 916 GROGRAPHIC MEASURES and Distances and Levellings. 54-56 Geographical and Nautical Measures 25 GEOMETRY, Elements of, etc. 219-320 "Angles. 105-105 GEOMETRY, Elements of, etc. 219-320 "Angles. 125-227 "Calenary. 223-227 "Calenary. 223-227 "Calenary. 223-227 "Cycloid and Bricycloid. 223-229 "Definitions. 219-320 "Elipse. 222-227 "Gnomon. 219 "Herzdgon. 223 "Hyperbola and Spiral. 239 "Incolule. 229 "Length of Elements and Lines, 229 "Length of Elements and Lines, 229 "Retitineal Figures. 222-224 "Scales and Geodynamics. 614 GESTATION, Periods of and Number of Young of Animals. 927 GROEDER, Dimensions of and Greatest Weight of, of Various Figures and Sections, 803-840 "and Beams, Destructive Wiley of Mars. Tubes, etc. 824 "Fourters of Safety. 821, 841 "Figures and Sections, 803-840 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 199 "Comparative Value of Bars, Tubes, etc. 82-826 "Moments of Niress. 621-622 "Parte. 281-831 "Figures and Sections, 802-836 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 199 "General Formulas for Accelerating and Betting Stress. 199 "Forest. 303-840 "Space Fallen Through, 489, 49 "Forests of Safety. 821, 841 "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 811-811" "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 811-811" "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 821-811" "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 821-811" "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 821-811" "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 821-811" "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 821-811" "Figures and Sections, 802-836 "Moments of Niress. 621-622 "Parte. 821-811" "Figures of Safety. 821-811" "	Class Small	CRAPE Poduction of to Dogreson
Geographical and Nautical Measures 26 GROMETRICAL PROGRESSION. 103-105 GROMETRICAL PROGRESSION. 103-105 GROMETRY, Elements of, etc 219-230 Angles 222-227 Cadenary 225-227 Cadenary 225-227 Calenary 224-225 Cycloid and Epicycloid 228-229 Definitions 220-220 Ellipse 220-227 GROMON 219 Hezagon 229 Length of Elements and Lines, 221-222 Octagon and Polygon 223 Parabola 229-230 Rectitineal Figures 222-224 Costales and Geodynamics 614 GESTATIOS, Periods of and Number of Young of Animals 192 GIRDER, Dimenvious of and Greatest Load, To Compute 839-840 Bowstring 839-840 Bowstring 839-840 Bowstring 812 GIRDER, Beams, etc., General Deductions from Experiments 824 (See Brams, Bars, of Girders, 802-820.) and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress 819 Comparative Value of Bars, Tules, etc 822-826 Deflection of, 840-841 Factors of Stifely 821, 811 Lindels, Beams, etc 822-826 Moments of Stress 621-622 Plate Moments 621-622 Plate 822-826 Moments		GRADA, Reduction of, to Degrees 359
Geographical and Nautical Measures 26 GROMETRICAL PROGRESSION. 103-105 GROMETRICAL PROGRESSION. 103-105 GROMETRY, Elements of, etc 219-230 Angles 222-227 Cadenary 225-227 Cadenary 225-227 Calenary 224-225 Cycloid and Epicycloid 228-229 Definitions 220-220 Ellipse 220-227 GROMON 219 Hezagon 229 Length of Elements and Lines, 221-222 Octagon and Polygon 223 Parabola 229-230 Rectitineal Figures 222-224 Costales and Geodynamics 614 GESTATIOS, Periods of and Number of Young of Animals 192 GIRDER, Dimenvious of and Greatest Load, To Compute 839-840 Bowstring 839-840 Bowstring 839-840 Bowstring 812 GIRDER, Beams, etc., General Deductions from Experiments 824 (See Brams, Bars, of Girders, 802-820.) and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress 819 Comparative Value of Bars, Tules, etc 822-826 Deflection of, 840-841 Factors of Stifely 821, 811 Lindels, Beams, etc 822-826 Moments of Stress 621-622 Plate Moments 621-622 Plate 822-826 Moments	Gelatine, Blasting 910	GRAIN, AND ROOTS, Weights of 34
Geographical and Nautical Measures 26 GROMETRICAL PROGRESSION. 103-105 GROMETRICAL PROGRESSION. 103-105 GROMETRY, Elements of, etc 219-230 Angles 222-227 Cadenary 225-227 Cadenary 225-227 Calenary 224-225 Cycloid and Epicycloid 228-229 Definitions 220-220 Ellipse 220-227 GROMON 219 Hezagon 229 Length of Elements and Lines, 221-222 Octagon and Polygon 223 Parabola 229-230 Rectitineal Figures 222-224 Costales and Geodynamics 614 GESTATIOS, Periods of and Number of Young of Animals 192 GIRDER, Dimenvious of and Greatest Load, To Compute 839-840 Bowstring 839-840 Bowstring 839-840 Bowstring 812 GIRDER, Beams, etc., General Deductions from Experiments 824 (See Brams, Bars, of Girders, 802-820.) and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress 819 Comparative Value of Bars, Tules, etc 822-826 Deflection of, 840-841 Factors of Stifely 821, 811 Lindels, Beams, etc 822-826 Moments of Stress 621-622 Plate Moments 621-622 Plate 822-826 Moments	Crock third Materians and Die.	" Conveyers, Operation of, etc 478
Geographical and Nautical Measures 26 GROMETRICAL PROGRESSION. 103-105 GROMETRICAL PROGRESSION. 103-105 GROMETRY, Elements of, etc 219-230 Angles 222-227 Cadenary 225-227 Cadenary 225-227 Calenary 224-225 Cycloid and Epicycloid 228-229 Definitions 220-220 Ellipse 220-227 GROMON 219 Hezagon 229 Length of Elements and Lines, 221-222 Octagon and Polygon 223 Parabola 229-230 Rectitineal Figures 222-224 Costales and Geodynamics 614 GESTATIOS, Periods of and Number of Young of Animals 192 GIRDER, Dimenvious of and Greatest Load, To Compute 839-840 Bowstring 839-840 Bowstring 839-840 Bowstring 812 GIRDER, Beams, etc., General Deductions from Experiments 824 (See Brams, Bars, of Girders, 802-820.) and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress 819 Comparative Value of Bars, Tules, etc 822-826 Deflection of, 840-841 Factors of Stifely 821, 811 Lindels, Beams, etc 822-826 Moments of Stress 621-622 Plate Moments 621-622 Plate 822-826 Moments		" Standard Weights per Bushel. 32
GEOMETRY, Elements of, etc 219–230 "Angles 225–227 "Catenary 225–227 "Catenary 225–227 "Catenary 229–230 "Circles 226–227 "Gromon 219 "Hezagon 220–227 "Gromon 219 "Hezagon 220–227 "Cotagon and Polygon 223 "Parabola 222–224 "Scales 222–224 "Scales 222–230 "Rectitineal Figures 222–230 "Rectitineal Figures 222–230 "Restration, Periods of and Number of Young of Animals 192 Gender, Dimensions of and Greatest Load. To Compute 839–840 "Boustring 839–840 "Boustring 840 "Gender of Polyman and Retarding for an Inclined Plane 493–49 "Girberton and Sections. 805–806 "Centre of, and Vertical Distance of Centre of, and Vertical Distance of Centre of Surfay 843–841 "Comparative Value of Bars, Tubes, etc 824 "Deflection of, 840–841 "Entirely Beams, etc 824 "Deflection and Weight of 775 "General Compute Resident Distance of Compute Surfay 822–826 "Moments of Stress. 621–622 "Park 841 "Entirely Beams, etc 824 "Entirely Beams, etc 824 "Deflection and Weight of 775 "General Compute Resident Cylinders, Resistance to Laternal Pressure and Colling of Compute Compute Compute Angles of Agents Compute Compute Compute Compute Agency Compute Compute Compute Agency Compute Compute Compute Compute Compute Agency Compute C	tances and Levellings54-50	Cranita Masonry
GEOMETRY, Elements of, etc. 219-230 "Angles. 223-227 "Catenary. 230 "Circles. 224-225 "Cycloid and Epicycloid. 228-229 "Definitions. 219-220 "Ellipse. 224-225 "Gromon. 219 "Hezagon. 221-222 "Octagon and Polygon. 223 "Parabola. 222-224 "Scales. 222-224 "Scales. 222-225 "Cottinents and Lines, and Price and English of Elements and Lines, and Price and Spiral. 230 "Rectilineal Figures. 222-230 "Rectilineal Figures. 222-230 "Rectilineal Figures. 222-230 "Rectilineal Figures. 222-230 "Round. 220-230 "Round. 220-230	Geographical and Nautical Measures 26	Granite masonry
GEOMETRY, Elements of, etc. 219-230 "Angles. 222 " and Distances. 160 "Arcs. 225-227 "Catenary. 230 "Circles. 224-225 "Cycloid and Epicycloid. 228-229 "Definitions. 210-220 "Elipse. 226-227 "Gnomon. 2219 "Hexagon. 220-227 "Gnomon. 2219 "Hisperbola and Spiral. 230 "Involute. 222222 "Cottagth of Elements and Lines, 221-222 "Octagon and Polygon. 223 "Parabola. 220-230 "Rectlineal Figures. 222-224 "Scales. 222-244		Graphic Operation, Solution of Ques-
"Angles. 222-227 " and Distances. 160 " Arcs. 223-227 " Catenary. 230 " Circles. 224-225 " Cycloid and Epicycloid. 228-229 " Definitions. 2219-220 " Ellipse. 220-227 " Gnomon. 219 " Hexagon. 223 " Hyperbola and Spiral. 230 " Involute. 229 " Length of Elements and Lines, 220 " Parabola. 229-230 " Rectilineal Figures. 222-224 " Scales. 222-230 " Rectilineal Figures. 222-224 " Scales. 222-230 " Rectilineal Figures. 222-234 " Scales. 221 " Geostatics and Geody namics. 614 GESTATION. Periods of and Number of Young of Animals. 220 " Bowstring. 192 GIRDER, Dimensions of and Greatest Load. To Compute. 839-840 " Bowstring. 192 GIRDER, Dimensions of and Greatest Load. To Compute. 802-820. 193 " and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 " Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 " Comparative Value of Bars, Tubes, etc. 824 " Peffection of. 840-841 " Factors of Safety. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Tubes, etc. 822-826 " Moments of Stress. 621-622 " Plate. Moving Proposition of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Butter, Waldow, Thickness, etc. 124 " Group Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Trusted Stress Stress Stress Stress Stress Stress Stress Str	• • • • • • • • • • • • • • • • • • • •	tions by
"Angles. 222-227 " and Distances. 160 " Arcs. 223-227 " Catenary. 230 " Circles. 224-225 " Cycloid and Epicycloid. 228-229 " Definitions. 2219-220 " Ellipse. 220-227 " Gnomon. 219 " Hexagon. 223 " Hyperbola and Spiral. 230 " Involute. 229 " Length of Elements and Lines, 220 " Parabola. 229-230 " Rectilineal Figures. 222-224 " Scales. 222-230 " Rectilineal Figures. 222-224 " Scales. 222-230 " Rectilineal Figures. 222-234 " Scales. 221 " Geostatics and Geody namics. 614 GESTATION. Periods of and Number of Young of Animals. 220 " Bowstring. 192 GIRDER, Dimensions of and Greatest Load. To Compute. 839-840 " Bowstring. 192 GIRDER, Dimensions of and Greatest Load. To Compute. 802-820. 193 " and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 " Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 " Comparative Value of Bars, Tubes, etc. 824 " Peffection of. 840-841 " Factors of Safety. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Tubes, etc. 822-826 " Moments of Stress. 621-622 " Plate. Moving Proposition of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-811 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Butter, Waldow, Thickness, etc. 124 " Group Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Sherring Stress Deduced by Grophic betinaction of, 233 " Trussed. 821-821 " Trusted Stress Stress Stress Stress Stress Stress Stress Str	GEOMETRY. Elements of. etc 210-230	GRAVEL 600
GRAVITES of Boilers, To Compute Areas, 92 "Arcs		" or Earth Roads 688
**Arcs		Co. man of Dellara Ma Communication Assess
Catenary	and Distances 100	GRATES of Botters, 10 Compute Areas, 927
"Cycloid and Epicycloid 228-229 "Definitions	A/Co	Q
"Cycloid and Epicycloid 228-229 "Definitions	" Catenary 230	GRAVITATION487-496
"Cycloid and Epicycloid 228-229 "Definitions		" Accelerated and Retarded Mo-
"Gnomon	the Chalaid and Primalaid and and	tion
"Gnomon	getota ana 11pagetota220-229	" Action of hy a Dodge Dwo
"Gnomon	1)-junitons	Action of, by a Body Fro-
"Gnomon	" Ellipse226-227	jected Upwara or Down-
"Hexagon	" Gnomon 210	ward, To Compute490-491
"Hyperbola and Spiral. 230 "Involute		" Average Velocity of a Moving
"Length of Elements and Lines, "Qatagon and Polygon		Rody Uniformly Acceler
"Length of Elements and Lines, "Qatagon and Polygon		ated on Detauled
"Length of Elements and Lines, "Qatagon and Polygon	1/1/cotate	area or Relaruea 495
"Octagon and Polygon. 223 "Parabola. 229-230 "Rectilineal Figures. 222-224 "Scales. 221 Geostatics and Geodynamics. 614 GESTATION, Periods of and Number of Young of Animals . 192 GIRDER, Dimensions of and Greatest Load, To Compute. 839-840 "Bovestring. 812 GIRDERS, Beams, etc., General Deductions from Experiments. 824 (See Beams, Bars, or Girders, 802-820.) "and Beams, Destructive Wieight of, of Various Figures and Sections 805-866 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 82-826 "Deflection of 840-841 "Enterts, Beams, Ctc. 82-826 "Moments of Steess. 621-622 "Pinters, and Sections of Safely 821, 841 "Lintels, Beams, Ctc. 82-826 "Moments of Stress. 621-622 "Pinters, Beams, Ctc. 82-826 "Moments of Stress 621-622 "Pinters, Beams, Ctc. 82-826 "Moments of Stress 621-622 "Trusselt. 823 "Trusselt. 824 "Miscellaneous Illustrations. 49 "Retarded Motion at am Inclination of Time, Space, and Velocities. 488-49 "Retarded Motion of 492-49 "Miscellaneous Illustrations. 49 "Retarded Motion of 57 and Vertical Distance of Water, To Compute 49 "Space Fallen Through. 489, 49 "Velocity of a Falling Stream of Welgett, To Compute 49 "A various Locations at Level of Bars, Tubes, etc. 82-826 "Moments of Stress 621-622 "Pinters, Compute 49 "Centre of Bodies. Anti-friction. 89 "Formuse Compute 49 "A various Locations at Level of Sea. 41 "at Various Locations at Level of Sea. 41 "at Various Locations at Level of Sea. 41 "retroited Plane. 493-49 "Miscellaneous Illustrations. 49 "Retarded Motion 4 am Inclination of Fallen Through. 488, 49 "Retarded Motion of Time, Space, and Velocities. 488-49 "Retarded Motion of Fallen Through. 489, 49 "Velocity of a Falling Stream of Fallen Through. 488-49 "Velocity of a Falling Stream of Fallen Through. 488-49 "Velocity of a Falling Stream of Fallen Through. 489-49 "Space Fallen Through. 495-49 "Space Fallen Through. 495-49 "Space Fallen Through. 495-49 "Miscellaneous Illustrations. 49 "Retarded Motion of Time, Space, and Vel	" Length of Elements and Lines.	" Formua jor Fught of a Can-
"Parabola		non Ball405-406
"Parabola		" Formulas to Determine the
"Rectilineal Figures	" Octagon and Polygon 223	
"Rectilineal Figures. 222-224 "Scales. 221 Geostatics and Geodynamics. 614 GESTATION, Periods of and Number of Young of Animals. 192 GIRDER, Dimentions of and Greatest Load, To Compute. 839-840 "Bowstring. 812 GIRDERS, Beams, etc. General Deductions from Experiments. 824 (See Beams, Bars, or Girders, 802-820.) "and Beams, Destructive Weight of, of Various Figures and Sections 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 824 "Enterty of and Section of Safety 821, 841 "Eactors of Safety 821, 841 "Eintels, Beams, etc. 822-826 "Moments of Stress. 621-622 "Prote. 811-812 "Stressed. 824 "Moments of Stress 621-622 "Trisadar. 822-826 "Moments of Stress 621-622 "Trisadar. 824 "Entels, Beams, etc. 822-826 "Trisadar. 824 "Trisadar. 825 "Trisadar.	" Parabola229-230	the total Elements of 490
"Scales "Scales" 192 Gestaton, Periods of and Number of Young of Animals 192 GIRDER, Dimensions of and Greatest Load, To Compute. 839-840 "Bouestring 812 GIRDERS, Beams, etc., General Deductions from Experiments 824 (See Brams, Bars, or Girders, 80-28-0) "and Beams, Destructive Wight of, of Various Figures and Sections 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress 819 "Comparative Value of Bars, Tubes, etc. 84-841 "Enters of Safety 821, 841 "Enters	" Rectilineal Figures222-224	to Determine various
Geostatics and Geody namics. GESTATION, Periods of and Number of Young of A nimals. GIRDER, Dimensions of and Greatest Load, To Compute839-840 Bowstring839-840 GIRDERS, Beams, etc., General Deductions from Experiments824 (See Brans, Birs, or Girders, 802-820) "and Beams, Destructive Wiright of, of Various Figures and Sections. 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress819 "Comparative Value of Bars, Tubes, etc	" Scales 221	Elements of on an
GESTATION, Periods of and Number of Young of Animals	Contation and Condumnming 6x4	Inclined Plane. A03-A0A
of Young of Animals	Geostatics and Geody namics	" of Retarded Motion 100
GHRDER, Dimensions of and Greatest Load, To Compute839-840 Bowstring839-840 GIRDERS, Beams, etc., General Deductions from Experiments824 (See Brains, Bars, or Girders, 802-820.) "and Beams, Destructive Wight of, of Various Figures and Sections. 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress819 "Comparative Value of Bars, Tubrs, etc82-826 "Better of Safety821, 841 "Eintels, Brains, Civ82-826 "Moments of Stress621622 "Plate81-812 "Nouring Stress814" "South of the stress of Safety821, 841 "Eintels, Brains, Civ82-826 "Moments of Stress621622 "Plate81-812 "Nouring Stress of Safety821, 841 "Eintels, Brains, Civ82-826 "Moments of Stress621622 "Plate81-812 "Nouring Stress of Safety821, 841 "Various Locations at Level of Sca		(Comment Florence for As
GIRDER, Dimensions of and Greatest Load, To Compute839-840 Growstring	of Young of Animals 192	General Formulas jor Ac-
Bowstring. Boams, Comments. Boystriction. Boystriction	GIRDER, Dimensions of and Greatest	celerating and Retarding
GINDERS, Beams, etc., General Deductions from Experiments. 824 (See Beams, Bars, or Girders, 802-820.) "and Beams, Destructive Weight of, of Various Figures and Sections 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 824 "Deflection of. 840-841 "Lintels, Beams, etc. 82-826 "Moments of Stress. 621-622 "Plate. Beams, etc. 82-826 "Moments of Stress Deduced by Graphic Delincation of. 623 "Trussed. 81-812 "Space Fallen of, To Compute 49 "Centre of, To Compute 49 "Centre of, Sea. 82-826 "Of Biodiss. 821 "Various Formulas for. 488-49 "Various Formulas for	Lund To Commute 820-840	Forces 405
GIRDERS, Beams, etc., General Deductions from Experiments. 824 (See Beams, Bars, or Girders, 802–820.) "and Beams, Destructive Wight of, of Various Figures and Sections. 805–806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 824 "Indeed, Endanged of Comparative Value of Given Height of Factors of Safety. 821, 841 "Indeed, Endanged of Stress. 819 "Comparative Value of Bars, Tubes, etc. 82–826 "Moments of Stress. 840–841 "Factors of Safety. 821, 841 "Lindels, Brams, etc. 82–826 "Moments of Stress. 621–622 "Plate. 81–812 "Novering Stress beduced by Graphic Delincation of. 831–812 "Trussed. 831–812 "Trussed. 831–813 "Trussed. 832–820 "Trussed. 831–813 "Trussed. 832–820 "Trussed. 832–82 "Trussed. 83		" Gravity and Motion at an
GIRDERS, Beams, etc., General Deductions from Experiments. 824 (See Beams, Bars, or Girders, 802-820.) "and Beams, Destructive Weight of, of Various Figures and Sections 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 840-84 "Factors of Safely 821, 841 "Entiels Beams, etc. 82-826 "Moments of Stress. 621-622 Filter, Beams, etc. 82-826 "Moments of Stress. 621-622 Filter, Beams, etc. 82-826 "Moments of Stress. 621-622 Filter, Beams, etc. 82-826 "Transell. 823 "Transell. 823 "Transell. 824 "Miscellaneous Illustrations. 488-49 "Retation of Time, Space, and Velocities. 488-49 "Retarded Motion. 488-49 "Velocities 488-49 "Velocities 488-49 "Velocities 488-49 "Velocity of a Falling Stream of Fall and Height of Fall and Height of Fall and Height of Stream of Safely 82-826 "Moments of Stress. 621-622 "Province Formulas for 488-49 "Velocity of a Falling Stream of Fall and Height of Fall and Height of Fall and Height of Sea. Centre of Sea. 605-60 "Of Boots. 201-622 "Province Formulas for 488-49 "Velocity of a Falling Stream of Fall and Height of Fall and Height of Fall and Height of Sea. 40 "Various Formulas for 488-49 "Velocity of a Falling Stream of Weight To Compute 49 "Autority of Fall and Height of Fall and Height of Sea. 40 "Various Formulas for 488-49 "Velocity of a Falling Stream of Weight To General Measures and Weight To Compute 49 "Various Formulas for 488-49 "Various Formulas fo	" Bowstring 012	
tions from Experiments. 324 (See Beams, Bars, or Girders, 802-820) "and Beams, Destructive Weight of, of Various Figures and Sections 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 319 "Comparative Value of Bars, Tubes, etc. 824 "Deflection of, 840-841 "Factors of Safety. 821, 841 "Lintels, Brams, etc. 822-826 "Moments of Stress. 621-622 "Plate. 811-812 "New Indian Stress Deduced by Graphic Delineation of, 623 "Transet. 923 "Transet. 9	Communica Designation of the Communical Designation	Incititation492-493
(See Beams, Bars, or Girders, 802-820.) "and Beams, Destructive Weight of, of Various Figures and Sections, 805-806 "Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 824-81 "Factors of Safely 821, 811 "Lintels, Beams, etc. 822-826 "Moments of Stress. 621-622 "Plates, Beams, etc. 822-826 "Moments of Stress. 621-622 "Plates, Beams, etc. 822-826 "Section Minerts of Stress. 621-622 "Plates, Beams, etc. 822-826 "Transeld. 823 "Transeld. 824 "Various Formulas for . 488-49 "Various Formulas for . 488-49 "Various Formulas for . 488-49 "Valocities		misceuaneous Illustrations 490
" and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 " Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress 819 " Comparative Value of Bars, Tubes, etc 824 " Petlection of 840-841 " Factors of Safety 821, 841 " Factors of Safety 821, 841 " Lintels, Brams, etc 822-826 " Moments of Stress 621-622 " Plate 811-812 " Sheetring Stress Deduced by Graphic Delineation of 623 " Trassed 923 " Trassed 924 " Warious Formulas for 488-48 " Give Window. Thickness, etc 124 Give Window. Thickness	tions from Experiments 824	" Relation of Time, Space, and
" and Beams, Destructive Weight of, of Various Figures and Sections. 805-806 " Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress 819 " Comparative Value of Bars, Tubes, etc 824 " Petlection of 840-841 " Factors of Safety 821, 841 " Factors of Safety 821, 841 " Lintels, Brams, etc 822-826 " Moments of Stress 621-622 " Plate 811-812 " Sheetring Stress Deduced by Graphic Delineation of 623 " Trassed 923 " Trassed 924 " Warious Formulas for 488-48 " Give Window. Thickness, etc 124 Give Window. Thickness	(See Beams, Bars, or Girders, 802-820.)	Velocities488-402
Weight of, of Various Figures and Sections 805-806 "Centre of, and Vertical Distance of Centres of Crashing and Tensile Stress 819 "Comparative Value of Bars, Tubes, etc	" and Beams, Destructive	" Retarded Motion 100
"Velocity of a Falling Stream of Water, To Compute 45 "Centre of and Vertical Distance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 824 "Deflection of 840-841 "Evaluates Barns, etc. 82-856 "Moments of Safety 821, 841 "Lintels Barns, etc. 82-856 "Moments of Stress. 621-622 "Plates, Barns, etc. 82-856 "Moments of Stress 621-622 "Plates, Graphic Delineation of 623 "Trussed 831 "GLAN GLANDS and Cylinders, Resistance to Laternal Pressure and Collapse Graphics of Sea. 124 "GLANDS GLANDS COLLEGE OF STATES OF STAT	Waight of of Various	ii Gunes Fallen Mhusush . 0.
"Centre of, and Vertical Distance of Centres of Crushing and Tensile Stress	Himme and Cartions Con O.C.	Space Funch Introduct. 409, 491
tance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 824 "Deflection of 840-841 "Evators of Safety 821, 841 "Lintels Branns, etc. 822-826 "Moments of Stress 621-622 "Proving Control of Safety 821, 841 "A Various Locations at Level of Sea. 81-622 "Of Bodies. 82 - 86 "Centre of Sea. 82 - 86 "Centre of Sea. 82 - 86 "Various Formulas for 488-48 "Various Formulas for 488-48 "Various Formulas for 488-48 "Transel 82 - 83 "Transel 82 - 83 "Transel 83 - 83 "Transel 84 - 83 "Transel 85 - 84 "Glass Glasses and Cylinders, Resistance to Laternal Pressure and Collapse (Gregorian Year and Calendar 90-7) "Glass Window, Thickness, etc. 124 "Grouting. 593-594, 59 "Gun Barrels, Length of 119 "Rrowning. 88 "Cotton. 44 "Steel, Krupp's. 19	Figures and Sections. 805-800	recovery of a running issueam
tance of Centres of Crushing and Tensile Stress. 819 "Comparative Value of Bars, Tubes, etc. 824 "Deflection of 840-841 "Evators of Safety 821, 841 "Lintels Branns, etc. 822-826 "Moments of Stress 621-622 "Proving Control of Safety 821, 841 "A Various Locations at Level of Sea. 81-622 "Of Bodies. 82 - 86 "Centre of Sea. 82 - 86 "Centre of Sea. 82 - 86 "Various Formulas for 488-48 "Various Formulas for 488-48 "Various Formulas for 488-48 "Transel 82 - 83 "Transel 82 - 83 "Transel 83 - 83 "Transel 84 - 83 "Transel 85 - 84 "Glass Glasses and Cylinders, Resistance to Laternal Pressure and Collapse (Gregorian Year and Calendar 90-7) "Glass Window, Thickness, etc. 124 "Grouting. 593-594, 59 "Gun Barrels, Length of 119 "Rrowning. 88 "Cotton. 44 "Steel, Krupp's. 19	" Centre of, and Vertical Dis-	of Water, To Compute 496
ing and Tensile Stress \$19 "Comparative Value of Bars, Tubes, etc	tance of Centres of Crush-	" due to a Given Height
"Comparative Value of Bars, Tubes, etc. 824 "Deflection of 840-841 "Evaluates Brans, etc. 822-86 "Moments of Stress 621-622 "Plate Stress 621-622 "Plate Stress 621-622 "Transid 94 "Transid 95 "Transid 95 "Deflection and Weight of 775 "GLAY Grants and Colinders, Resistance to Laternal Pressure and Coling 96 "Glay Window, Thickness, etc. 124 "GLANS Window, Thickness, etc. 124 "GLANS Window, Thickness, etc. 124 "Glay Strest Transid 97 "Thickness of 109 "Transid 98 "Transid		of Fall and Height
Tubes, etc. 824 " Pellection of . 840-84 " Factors of Safety . 821, 841 " Factors of Safety . 821, 841 " Lintels, Brams, etc. 822-826 " Moments of Stress . 621-622 " Plate . 811-812 " Sheetring Stress Deduced by Graphic Delineation of . 623 " Transed . 923 " Promiscious Examples of . 488-48 " Various Formulas for . 488-48 " Various Examples of . 605-60 " Of Bodies . 207 " Promiscious Examples of . 488-48 " Various Formulas for . 488-48 " Various Examples of . 605-60 " Various Formulas for . 488-48 " Various Examples of . 605-60 " Various Formulas for . 488-48 " Various Examples of . 605-60 " Various Formulas for . 488-48 " Various Location & Lamples of . 605-60 " Of Bodies . 207 " Form Stone or Marble, 70 Re- " Grease, Anti-friction		due to Cline Valorita 00
"Factors of Safely 821, 841 "Lintels Brams, etc 822-826 "Moments of Stress 621-622 "Plate Streeting Stress 621-622 "Note of Books 234 "Note of Books 244 "Various Formulas for 488-48 "Various Formula	" Comparative value of Bars,	aue to Given Velocity 488
"Factors of Safely 821, 841 "Lintels Brams, etc 822-826 "Moments of Stress 621-622 "Plate Streeting Stress 621-622 "Note of Books 234 "Note of Books 244 "Various Formulas for 488-48 "Various Formula	Tubes, etc 824	GRAVITY, Action of To Compute, 488-480
"Factors of Safely 821, 841 "Lintels Brams, etc 822-826 "Moments of Stress 621-622 "Plate Streeting Stress 621-622 "Note of Books 234 "Note of Books 244 "Various Formulas for 488-48 "Various Formula	" " I)cflection of 840-841	" at Various Locations at Level
"Lintels, Brams, etc. 822-826 "Moments of Stress. 621-822 "Plate. 811-822 "Plate. 811-822 "Provisions Stress Deduced by Graphic Delineation of . 63 "Trassed. 923 "Trassed. 923 "Trassed. 923 "Trassed. 923 "Trassed 924 "Various Formulas for . 488-48 "Various Formulas for . 488-48 "Various Formulas for . 488-48 "From Stone or Marble, To Remove. 924 "From Stone or Marble, To Remove. 935 "From Measures and Weights. Gregorian Year and Calendar . 70-7 "Gredian Measures and Friction of . 47 "Grouting. 593-594, 59 "Grouting. 593-594, 59 "Grouting. 934 "Golden Marrels, Length of . 11 "From Stone or Marble, To Remove. 98 "Gregorian Year and Calendar . 70-7 "Gregorian Year and Calendar . 70-7 "Grouting. 593-594, 59 "Grouting. 934 "Golden Marrels, Length of . 11 "Browning. 84 "Golden Marrels, Length of . 12 "Browning. 84 "Colton. 44 "Steel, Krupp's.	" Factors of Safety 821. 841	
" Moments of Stress 621-622 " Plate. 811-812 " Nivering Stress Deduced by Graphic Delineation of 623 " Transact. 8-3 " Transac		" Contra of
OF BODES. OF COMPSION OF ASSO, 488-46 OF COLORS. OF COMPSION OF ASSO, 489-45 OF COLOR. OF COLORS. OF BODES. OF COLORS. OF BODES. OF COLORS. OF COLORS. OF COLORS. OF COLORS. OF COLORS. OF COLORS. OF BODES. OF COLORS. OF C	ti v U.mante of Clause 4 4	Centre 19
*** Searring Stress D-duced by Graphic Delineation of. 523 *** Transel . 8-3 *** Transe	.a me nes by istress 021-022	0. 100000000000000000000000000000000000
** Various Formulas for 488-48 Greats Choises and Cylinders, Resistance to Labernal Pressure and Colleges GLAN Grander 197 GLAN Grander Tressure and Colleges Grander Tressure and Weights Grander Tressure and Colleges Grander Tressure and Weights Grander Tressure and Colleges Grander Tressure and Colleges Grander Anti-friction Grander Tressure and Weights Grander Tressure and Colleges Grander Anti-friction Grander Anti-friction Grander Anti-friction Grander Anti-friction Grander Anti-friction Grander Anti-friction Grander Tressure and Colleges Grander Anti-friction Grander Tressure and Colleges Grander Anti-friction Grander Anti-f		
Graphic Delineation of . 623 Transed	" S'overing Stress Deduced by	" Various Formulas for 189-190
From Stone or Marble, To Re- Tabular	Graphic Delineation of 622	Caree Anti friction
Tabalar		Grease, Anti-friction
GLAN GLORES and Cylinders, Resistance to Labernal Pressure and Col. Laps 831 GPA Window, Thickness, etc. 124 GLANN Mindow, Thickness, etc. 124 GLANN Mindow, Clark, Society of the Sect. Thickness of the Sect. 134 Grant March Sect. 134 Grant Ma	11105010	" from Stone or Marble, To Re-
GLAN GLORES and Cylinders, Resistance to Labernal Pressure and Col. Laps 831 GPA Window, Thickness, etc. 124 GLANN Mindow, Thickness, etc. 124 GLANN Mindow, Clark, Society of the Sect. Thickness of the Sect. 134 Grant March Sect. 134 Grant Ma	" " 1 nomar	more 878
GLAN GLORES and Cylinders, Resistance to Labernal Pressure and Col. Laps 831 GPA Window, Thickness, etc. 124 GLANN Mindow, Thickness, etc. 124 GLANN Mindow, Clark, Society of the Sect. Thickness of the Sect. 134 Grant March Sect. 134 Grant Ma	··· ·· Deflection and Weight of 775	Constant Manager and Waterland
ance to Laternal Pressure and Col. Apple		Greatian Vear and Calendar
Laps	The second state of the second of the second	(trivialetimes and Emission of
GLATS Muchage etc. 874 Gun Barrels Length of 11		Grinasiones and Friction of 478
GLATS Muchage etc. 874 Gun Barrels Length of 11	<i>Iπρε</i> σ 83τ	(Frouting593-594, 598
GLATS Muchage etc. 874 Gun Barrels Length of 11	Glass, Window, Thickness, etc 121	GUDGEONS, Diameter of, To Com-
Gold Short, Thickness of 119 "Browning 8 " Cotton 4 " Steel, Krupp's " " Steel, Krupp's " " Steel, Krupp's " " Steel, Krupp's " " " Steel, Krupp's " " " " " " " " " " " " " " " " " " "	GLAZINE	mute
Gold Short, Thickness of 119 "Browning 8 " Cotton 4 " Steel, Krupp's " " Steel, Krupp's " " Steel, Krupp's " " Steel, Krupp's " " " Steel, Krupp's " " " " " " " " " " " " " " " " " " "	Carlo Musilians ote	Cun Barrele Length of
Golden N Lunar Cycle, To "Collon	11.5 L.S. 21 m maye, VII	Gun Dai reis, Dengin oj
Golden N Lunar Cycle, To "Collon	Lind Said, Thuckness of 119	Browning 875
Lunar (yele, 10	Talus 1501 to 1880 034	" Cotton 443
Commercial and of a Clines	Lunar Cycle, 10	" Steel, Krupp's 012
	Comme	a Mr. alt of and of a Cine
Tunes II		
207 Sectional Area36,	7 207	Sectional Area

Page		Page 1
TERY, Elements of, etc 497-503	Heat	rage r, Elements of, etc504-529
Chance Bones Plantin and		
Charge, Range, Elevation, and	**	Absolute Temperature 504
Velocity, and To Compute 497, 499	**	Absorption of, in Generation of
Comparison of Force of a		1 Lb. Steam at 2120 705
Charge in Various Arms 502	44	Allitudes, Decrease of by 522
Experiments with Ordnance	**	Available Expended per 112 909
and Penetration of Shot	**	Boiling-Points of Pure Water,
and Shells498, 500		etc., Corresponding to Alti-
Initial Velocity and Itanges		tudes of Barometer 518
of Shot and Shells408-400	46	Capacity for
Lead Balls, Weight and Di-		Communication and Transmis-
mensions of 501		sion of, and Relative Power
Number of Percussion Caps		of, of Various Substances 510
corresponding to B Change 502	- 64	
		CONDENSATION and of Sleam in
" of Pellets in an Os. of Lead	44	Cast-iron Pipes515-516
Shot of all Sizes 501		" of Steam per Sq. Foot and per
Penetration of Lead Balls in		Degree per Hour 516
Small Arms 500	••	Conducting Process, Relative, of
Ranges for Small Arms 502		Various Substances and De-
Report of Board of Engineers,		ductions from Results 514-515
U.S.A., Fortifications, etc. 499	"	CONDUCTION or Convection of 514
Summary of Practice in Eu-	44	CONGRELATION and LIQUEFACTION 516
Summary of Practice in Eu- rope with Heavy Guns 500	44	Degrees of Different Scales, To
Time of Flight, Rule for 497	1	Reduce, and Contrariwise 523
Velocity of a Shot or Shell 497	44	Densities of Some Vapors 521
Windage and Waddings, Loss	66	Density of Water, To Compute 520
and Effect of 501	"	DESICCATION513-514
unu 21 juu vj		District ATION
VDER443, 502		DISTILLATION 514 Effect upon Various Bodies by. 518
Charges of, and To Compute. 444	66	EVAPORATION or Vaporization,
Heat and Explosive Power		
of 503	66	Elements of, etc 512-513
Manufacture of 503		Articop trutt and ruce
Proof of 502	"	for, To Compute 513
Proof of502 Properties and Results of, De-		ty water per 154. I tool by
termined by Experiments 503	44	Surface per Hour 514
Proportion of, to Shot 502	•••	" To Evaporate 1 Lb. of
Relative Strength of Different,	44	Water 512
for Use under Water 503	••	Evaporative Power of Tubes per
я Спар		Degree of Heal, etc 513 Expansion of Water, Liquids,
SCHAIN	**	Expansion of Water, Liquids,
's Pump, Centrifugal 579, 917	١	Guere, and A
	"	Extremes of and Cold in Va-
N, and Centres of609-611 entre of, of a Water-wheel 611		rious Countries191-192
im and Barmarian	٠,	Fluids, Expansion of in Vol-
eneral Formulas 611		ume, To Compute 523-524
oment of Inertia of a Revolv-		Frigorific Mixtures 193, 516
ing Body, To Compute 609		Heating and Evaporating Water
adius, To Compute 609		by Steam in Pipes and Boilers 511
***	**	Height Corresponding to Boil-
H.	ŀ	ing-Point of Water 519
Steam 179	66	LATENT, and To Compute 508-509
Inspiratorgor		" of Fusion of Solids, and of a
s and Portable Railroad 908	•	Non-Metallic Substance, 509
, WIRE, AND HEMP ROPES	44	" of Steam, To Compute 707
AND CABLES, Comparison of. 169		Length of 4-Inch Pipe to Heat
Cables, Ropes, etc. , 163-178.)		1000 Cube Feet of Air 526
1 Warps, Length of 173		Linear Expansion or Dilatation
bles and Rones		
tles and Ropes 170 cumference of, To Compute 171		of a Bar, Prism, or Substance, 519 Liquids, Volume of Several at
its for Computing Saf:		
		their Boiling Point 518
Strain Borne by and for	1	Mean Temperatures of Various
lew Ropes and Hawsers,		Localities
170-171	"	Mechanical Equivalent
ght of, To Compute 172	"	" of, Contained
ive Value of Foods com-	•••	Melting and Boiling
ad with 100 Lbs. of 912		Various Substance
štraw, Weights, etc 198	44	of Mines

xxii index.

Hydra	TL	cs, Sluice Weirs or Sluices. 535	Hydro	DYN	AMICS AND HYDROSTATICS.
16		" Impeded or Unim-	, "		Pressure of a Column of
	~	peded Discharge of535-536 thmerged or Drowned Ori- fices and Weirs553			a Fluid per Sq. Inch 560
"	Si	ibmerged or Drowned Ori-		"	Rankine Wheel 580 Ratio of Effect to Power
"	17	riable Motion of Water in		••	of Several Turbines 577
		Beds of Rivers or Streams. 543	"	44	Reaction Wheel 576
46	V	locity in Profile of a		44	Swain Turbine575-576
		Navigable River, To Com-	44	"	Tangential Wheel 576
		pute 551	"	44	Tremont Turbine 576
"		elocity of Water or of Fluids,	44	"	Turbine and Water Wheels,
44		Coefficients of Discharge.531–532		"	Comparison Between 579
"	Ve	na Contracta	"		Turbines, Elements, Power,
•••	V	Projected from Pine of a	"	"	and Results572-577 "High Pressure and
		Fire-Engine, To Compute. 549			Downward Flow. 574
"	V	lume of Water Flowing in	"	66	Undershot Wheel, Power of 566
		a River, To Compute 543	44	"	Victor Turbine 576
"	W	eirs, Gauging of 922	4.6	"	Water Power 562
46		" or Notches539	. 46	"	" Fall of 563
			"	"	" Motors, Ratio of Ef-
Hydro	DY:	MAMICS AND HYDROSTATICS,		"	fective Power 563
44	"	Elements of, etc. 558-580, 614	44	"	" Pressure Engine 579
"	"	Appold's Wheel 580	••	••	" Wheels, Dimensions
"			44	"	of Arms, etc571
44	"	Boyden Turbine 574 Breast Wheel, Proportion,			" Wheels, Divisions of, etc 563
		Effect, and Power of. 569-570	"	"	etc
66	"	Centrifugal Pumps579-580	Hydro	met	ers
44	"	Current Wheel 570	. St	ren	th of or Volume of a Spirit,
"	"	Current Wheel 570 Flutter or Saw-mill Wheel 571		To (Compute, etc 67
44	"	Fontaine Turbine 574	Hydro	STA	FIC RAIL OR SLIP RAILWAY,
"	"	Horizontal Wheels 572-577	_ Pow	er R	equired to Draw a Vessel. 910
"	"	Hydraulic Ram, Elements	Hydro	STA	rio Press561, 901
	"	of and Operation561-562	Hygron	met	or
"	"	Hydrostatic Press561, 901 "Thickness of Metal 561	••		v-point, and to Ascertain
46	"	" Motors, Effective Pow-			folume of Vapor in Atmos- here68
		er of Water 563	"	Ex	here
44	"	Impact and Reaction Wheel. 576	"	Va	por, Weight of, in Air 69
"	"	Impulse and Resistance of	"	Vol	ume of Vapor in Air 68
		Fluids577-578 Inward Flow Turbines,	Hyperl	bola	, To Describe 230
"	٠.	Inward - Flow Turbines,			C LOGARITHMS331-334, 712
		Description of 575			
**	"	Jonval Turbine, Elements			I.
44	"	and Results 575	ICE, St	reng	oth of. etc195, 912, 939, 943
	"	Low-Pressure Turbines 575 Memoranda on Water-	" and	Sn	ow. Weight and Volume 840
		Wheels571-572	Boa	ts a	nd Speed of896, 909
44	"	Overshot Wheel, Elements,	" Mai	King	and Refrigeration.943, 967-968
		Power of, etc 563-566	- Mai	пији	clure of 943, 967
"	"	Power of, etc 563-566 "Power and Effect of,	IMPACT		d Reaction Wheel 576
		To Compute565-566		OR	COLLISION580-582
"	"	Percussion of Fluids 579		ve	locities of Inelastic Bodies fler, To Compute581-582
**	• •	Pipes, Elements and Weight	Impen	u etra	bility 195
44		of, etc., To Compute. 560-561			•
••	••	Poncelet's Wheel, Propor-	INCLIN	KD l	LANE, Motion on 619
66	44	tion and Power of. 567-568 "Turbine, Elements of 574	Incube	etio:	lements of, To Compute.625-630 1 of Birds. Periods of 192
44		Power of a Fall of Water,	India.	Rut	ber. To Cut
		To Compute 562	Indica	tor	ther, To Cut 877 To Compute Pressure by 724
46	44	Pressure and Centre of. 558-560	INERTI	A, M	oment of a Revolving Body. 600
44	"	" of a Fluid upon Bottom	"	Mon	ent of, Approximately to
		of Vessel, Vertical, In-	i .		Ascertain 659
	_	clined, Curved, or any	.:. ا	- "	of a Solid Beam 819
	•	Surface, and also on	۱ "	of o	Revolving Body, To Com-
	7	a Sluice559-560	1	1	nute 616

Page	Page
m	LATITUDE N. reached by Explorers 930
To Compute 736	Launching Vessels, Friction of 478
of Water required per	
	LEAD, Sheet, Cast or Milled 640
P per Hour, To Compute 736	" Balls, Weight and Dimensions
'eed Water required per	
P per Hour 736	of501 "Encased Tin Pipe, Weight of 151
w India	" Encased Tin Pipe, Weight of 151
r India 907	" Giren Sectional Area, Weight
o Remore 935	
"o Remore	of
irds196	December 6
ancock's	" Pipe, Resistance, Thickness,
ancock's 901	Weight, and Bursting Press-
24-25	
nple and Compound. 107-109	ure of, To Compute 831
	I spea unu I sh sineu, vi eight of,
Origin and Period of	per Foot and Thickness 137, 150
937	" Plates, Weight of per Sq. Foot. 146
Describe 229	" " Thickness of 121
	44 01 -4 111-1-14 6
96	Sheet, Weight of 151
te of atr 60- 60	" Shot, Number of Petiets in an
ts of, etc637-640 sight-iron, 130-136, 639-640,	Ounce 501
ugni-tron, 130-130, 039-040,	Ounce
5, 773, 780, 785-780.)	and Volume of
Corresion of 908	and Volume of 153
Wood. Tenacity of 198	"Weight of, To Compute 155
and Town Was Dallas	Leap or Bissextile Year 70
and Iron Pipe Bridge. 178	Leaping. Jumping, etc439-440
Remove 871	Learner Kalas of etc
, Corrosive Effects of	Leaves, Value of, etc 207, 481
M Water on	Lee way or Drift of a Vessel 910
2 Water on 916	Legal Tenders
of, Requirement of Air. 445	
tion of 955	Lenses and Mirrors, Elements of 670-671
Remove 935	Level, Apparent, of Objects at or upon
Pinst Duilt	Surface of Land or Sea
, First Built 915	Tameline Comments
y, Volume of, To Compute 870	Levelling, Geographic55-57
lost of, per Acre 952	" by Boiling-Point of Water,
7.2	Surface of Lawl or Sea
J.	" Height of Ahome on Reloan Level
913	of Sea, To Compute 55
550	LEVER, Elements of, To Compute 624-626
1res 53	7.16: 1 16
	Lifting by Men
ne 575	
ne 575 y of, and Dead Sea 934	LIGHT, Elements of, etc583-587
ne 575 y of, and Dead Sea 934	LIGHT, Elements of, etc583-587
ne	LIGHT, Elements of, etc583-587
ne	LIGHT, Elements of, etc583-587 " Sun's Rays195 " Candles, Lamps, Fluids, and Gas 584
ne	LIGHT, Elements of, etc583-587 "Sun's Rays
ne. 575 y of, and Dead Sea. 574 malent. 504 lar. 70 uping, etc., by Men. 439	LIGHT, Elements of, etc583-587 "Sun's Rays
ne	LIGHT, Elements of, etc
ne	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. Anchors, Weight and	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 904 lar. 70 uping, etc., by Men. 439 K. Anchors, Weight and Units to Determine. 174	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 valent. 504 lar. 70 uping, etc., by Men. 439 K. ANCHORS, Weight and Units to Determine. 174 mps, etc. 872	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 904 lar. 70 uping, etc., by Men. 439 K. Anchors, Weight and Units to Determine. 174	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. Anchors, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. ANCHORS, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592 27	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. Anchors, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. ANCHORS, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592 et, etc. 978	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. Anchors, Weight and Units to Determine 174 mps, etc. 872 r Turkish Mortar 592 ez, etc. 978	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. Anchors, Weight and Units to Determine 174 mps, etc. 872 r Turkish Mortar 592 ez, etc. 978	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. ANCHORS, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592 ez, etc. 978 L. and Horse. 433-434, 436, 468	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 valent. 504 lar. 70 lar. 70 lar. 84 Lar. 84 Lar. 84 Lar. 85 Lar. 95 Lar. 97 La	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. ANCHORS, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592 ex, etc. 978 I. and Horse. 433-434, 436, 468	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. ANCHORS, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592 ex, etc. 978 L. and Horse.433-434, 436, 468 575 t Elevation of. 968	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 uping, etc., by Men. 439 K. ANCHORS, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592 ex, etc. 978 L. and Horse.433-434, 436, 468 575 t Elevation of. 968	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 lar. 70 uping. etc., by Men. 439 K. Anchors, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar. 502 sz, etc. 978 L. and Horse. 433-434, 436, 468 Elevation of 503 tf Elevation of 575 to 1574 to 1	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 nalent. 504 lar. 70 la	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 valent. 504 lar. 70 lar. 70 lar. 839 K. ANCHORS, Weight and 174 lar. 872 Turkish Mortar 592 es, etc. 978 L. and Horse. 433-434, 436, 468 10f, in Europe, Asia, and a Depths and Heights of Lern of U.S. 181-182	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 nalent. 504 lar. 70 la	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 valent. 504 lar. 70 lar. 70 uping. etc., by Men. 439 K. Anchors, Weight and Units to Determine. 174 mps, etc. 872 r Turkish Mortar 592 es, etc. 978 L. and Horse. 433-434, 436, 468 Elevation of 593 t Elevation of 593 tof, in Europe, Asia, and a Depthe and Heights of thern of U.S. 181-182 lies, Fluids, and Gas. 584	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 lar. 70 lar. 70 lar. 839 K. ANCHORS, Weight and 70 lar. 872 Turkish Mortar 592 ex, etc. 978 I. and Horse. 433-434, 436, 468 10f. in Europe, Asia, and d Depths and Heights of thern of U.S. 81-182 lies, Fluids, and Gas. 584 lies, Fluids, and	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 lar. 70 lar. 70 lar. 8439 K. Anchors, Weight and Units to Determine. 174 mps, etc. 978 z, etc. 978 L and Horse. 433-434, 436, 468 656 Elevation of 593 to fine Europe, Asia, and a Depths and Heights of therm of U.S. 81-182 lles, Fluids, and Gas. 584 re. 226	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 lar. 70 uping. etc., by Men. 439 K. ANCHORS, Weight and Junits to Determine. 174 mps, etc. 872 r Turkish Mortar 592 et, etc. 978 I. and Horse.433-434, 436, 468 16. 875 t Elevation of 968 tof, in Europe, Asia, and a Depths and Heights of thern of U. S. 181-182 tles, Fluids, and Gas. 584 re. 596 nsions, etc. 603	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 lar. 70 uping. etc., by Men. 439 K. ANCHORS, Weight and Junits to Determine. 174 mps, etc. 872 r Turkish Mortar 592 et, etc. 978 I. and Horse.433-434, 436, 468 16. 875 t Elevation of 968 tof, in Europe, Asia, and a Depths and Heights of thern of U. S. 181-182 tles, Fluids, and Gas. 584 re. 596 nsions, etc. 603	LIGHT, Elements of, etc
ne. 575 y of, and Dead Sea. 934 salent. 504 lar. 70 lar. 70 lar. 70 lar. 8439 K. Anchors, Weight and Units to Determine. 174 mps, etc. 978 z, etc. 978 L and Horse. 433-434, 436, 468 656 Elevation of 593 to fine Europe, Asia, and a Depths and Heights of therm of U.S. 81-182 lles, Fluids, and Gas. 584 re. 226	LIGHT, Elements of, etc

la ngua

arrel30	MEASURES, Shoemaker's 27
Beer 45	Timber, English., 62
	Time 37
uries'32, 46–47	Manual 3/
pois32, 47 nd Timber61	" Troy32, 47
nd Timber 61	Vernier Scale, 27
and Metric, and Com-	Wine and Spirit.
I Bandantanta of	Wood
il Equivalents of 906	W 9906
4 46	Meat, Analysis of, and of Fish and
f Congress and Metric	Vegetables
	Vegetables
<i>station</i> 36	Meat To Freserve
nd Ropes 26	Meats, Loss of, by Boiling, Roasting,
	or Baking 206
27	MECHANICAL CENTERS
	MECHANICAL CRAPTERS, Treatments Com
29	" and Physical Elements, Con-
	structions and Results907-918
198	If Controve of Gravity has hos hol
30, 934	" Centres of Gravity
il, Solar, and Sidereal. 37	
	Figure, To Ascertain 605
1 32	" of Gyration for fire
3º	" of Gyration
and French44-45	of a Water-wheel bir
	" " General Formulas for 611
L British Ass n 34	" Elements of Gyration 610
nts of Old and New	it Moment of Inantia of a December
nd of Metric Denom-	" Moment of Inertia of a Revolv-
u, To Compute 36	ing Body and Radius of Gy-
	ration of, To Compute 609
	ii Powena for for
48-53	" Powers
	"Compound Axle or Chinese
	Windlass 627
nic, and Distances 54	" " Screw 631
and Nautical 26	
32, 45	1/1001/1004 2 100/100-030-030-030-030-030-030-030-030-030-
	" Lever624-626
53	" Pulley
Chain 26	" Rack and Pinion 628
und Egyptian 53	Auca unu Finion 028
	" Screw and Wedge630-631
	" Differential 632
	" Wheel and Axle626-627
d U. S. Standard . 26, 934	White the state st
.30, 46, 934	unit Timon, Compline
	tion, Chinese Windlass, etc627-628
27	
	MECHANICS, .614-634
	Accumulated Work in Moving
alent Value, U.S., and	
zlent Value, U. S., and and New U. S	Radies and To Compute 6-4
and New U.S 28, 33	Bodies, and To Compute 610
and Work 36	Bodies, and To Compute 610
and New U.S 28, 33	Bodies, and To Compute 610
and Work 36 ratures 37	Bodies, and To Compute 619 " Couple
and Work	Bodies, and To Compute 619 " Couple
and New U.S	Bodies, and To Compute 619 4 Couple 614 1 Decomposition of Forces 620 1 Dynamics 614, 616-620 1 Moment 614
and New U.S. 25, 33 and Work 36 ratures 37 tes 36, 46 ts and Pressures 36	Bodies, and To Compute 619 " Couple
and New U.S. 25, 33 and Work 36 ratures 37 tes 36, 46 ts and Pressures 36	Bodies, and To Compute 619 " Couple
and New U.S. 28, 33 and Work 36 ratures 37 ies 37 ies 36, 46 is and Pressures 36 Weight of Value, 40-43	Bodies, and To Compute 619 4 Couple
and New U.S	Bodies, and To Compute 619 "Couple 614 "Decomposition of Forces 620 "Dynamics 614, 616-620 "Moment 614 "Moments of Stress on Girders, 622-623 "Motion on an Inclined Plane 619
and New U.S. 28, 33 and Work. 36 ratures. 37 tes. 37 tes. 36, 46 ts and Pressures. 36 Weight of Value. 40-43 2014. 27, 29, 31, 44, 40 26, 30, 44	Bodies, and To Compute 619 "Couple
and New U.S. 28, 33 and Work 36 ratures 37 kes 36, 46 ke and Pressures 36, 46 Weight of Value. 40-43 2014. 27, 29, 31, 44, 46 Clay, Sand, etc. 33	Bodies, and To Compute 619 "Couple
and New U.S. 28, 33 and Work 36 ratures 37 kes 36, 46 ke and Pressures 36, 46 Weight of Value. 40-43 2014. 27, 29, 31, 44, 46 Clay, Sand, etc. 33	## Bodies, and To Compute 619 ## Couple
and New U.S. 28, 33 and Work 36 ratures 37 kes 36, 46 ke and Pressures 36, 46 Weight of Value. 40-43 2014. 27, 29, 31, 44, 46 Clay, Sand, etc. 33	Bodies, and To Compute 619 "Couple 614 "Decomposition of Forces 620 "Dynamics 614, 616-620 "Moment 614 "Moments of Stress on Girders, 621-623 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies 614 "Uniform and Variable Motion 617 "Uniform and Variable Motion 617
and New U.S. 28, 33 and Work. 36 ratures. 37 kes 37 kes 36, 46 te and Pressures. 36, 46 Weight of Value. 40-43 tous. 27, 29, 31, 44, 46 Clay, Sand, etc. 33	Bodies, and To Compute 619 "Couple
and New U.S. 28, 33 and Work. 36 ratures. 37 kes 36, 46 ke and Pressures. 36, 46 Weight of Value. 40-43 ious. 27, 29, 31, 44, 46 Clay, Sand, etc. 33 26, 44 29, 44, 934 Local Standards.	Bodies, and To Compute 619 "Couple 614 "Decomposition of Forces 620 "Dynamics 614, 616-620 "Moment 614 "Moments of Stress on Girders, 621-623 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies 614 "Uniform and Variable Motion 617 "Uniform and Variable Motion 617
and New U.S. 28, 33 and Work. 36 ratures. 37 kes 36, 46 ke and Pressures. 36, 46 Weight of Value. 40-43 ious. 27, 29, 31, 44, 46 Clay, Sand, etc. 33 26, 44 29, 44, 934 Local Standards.	Bodies, and To Compute 619 "Couple 614 "Decomposition of Forces 620 "Dynamics 614, 616-620 "Moment 614 "Moments of Stress on Girders, "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies 614 "Uniform and Variable Motion 617 "Work by Percussive Force 620 Mechanic's, Cost of Pamily in France 908
and New U.S. 28, 33 and Work. 36 ratures. 37 tes. 37, 29 and Pressures. 36, 46 Weight of Value. 40-43 tous. 27, 29, 31, 44, 46 Clay, Sand, etc. 33 26, 44 29, 44, 934 r, Local Standards, Compute. 61-62	Bodies, and To Compute 619 "Couple
and New U.S. 28, 33 and Work. 36 ratures. 37 Ses 36, 46 be and Pressures. 36, 46 Weight of Value. 40-43 tous. 27, 29, 31, 44, 46 Clay, Sand, etc. 33 29, 44, 934 r, Local Standards, Compute. 61-62 38-39	Bodies, and To Compute 619 "Couple
and New U.S. 28, 33 and Work 36 ratures 37 kes 37 kes 36, 46 te and Pressures 36, 46 Weight of Value 40-43 rous 27, 29, 31, 44, 46 Clay, Sand, etc. 33 26, 44 - 29, 44, 934 - Local Standards, Compute 61-62 38-39	Bodies, and To Compute 619 "Couple 614 "Decomposition of Forces 620 "Dynamics 614, 616-620 "Moment 614 "Moments of Stress on Girders, 621-623 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies 614 "Uniform and Variable Motion 617 "Work by Percussive Force 620 Mechanic's, Cost of Family in France 908 Melting Points 517
and New U.S. 28, 33 and Work. 36 ratures. 37 Xes 37 Xes 36, 46 ts and Pressures. 36, 46 Weight of Value. 40-43 27, 29, 31, 44, 40 Clay, Sand, etc. 33 20, 44, 934 *, Local Standards, Compute. 61-62 38-39 43-39-31, 45, 934	Bodies. and To Compute. 619 "Couple. 614 "Decomposition of Forces. 620 "Dynamics. 614, 616-620 "Moment. 614 "Moments of Stress on Girders. 621-623 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies. 614 "Uniform and Variable Motion 617 "Work by Percussive Force. 620 Mechanic's, Cost of Family in France 908 Melting Points. 517 Memanda. Physical and Mechanical Elements and Results. 907-918
and New U.S. 28, 33 and Work. 36 ratures. 37 Xes 37 Xes 36, 46 ts and Pressures. 36, 46 Weight of Value. 40-43 27, 29, 31, 44, 40 Clay, Sand, etc. 33 20, 44, 934 *, Local Standards, Compute. 61-62 38-39 43-39-31, 45, 934	Bodies. and To Compute. 619 "Couple. 614 "Decomposition of Forces. 620 "Dynamics. 614, 616-620 "Moment. 614 "Moments of Stress on Girders. 621-623 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies. 614 "Uniform and Variable Motion 617 "Work by Percussive Force. 620 Mechanic's, Cost of Family in France 908 Melting Points. 517 Memanda. Physical and Mechanical Elements and Results. 907-918
and New U.S. 28, 33 and Work. 36 ratures. 37 Xes 37 Xes 36, 46 ts and Pressures. 36, 46 Weight of Value. 40-43 27, 29, 31, 44, 40 Clay, Sand, etc. 33 20, 44, 934 *, Local Standards, Compute. 61-62 38-39 43-39-31, 45, 934	Bodies, and To Compute. 619 "Couple. 614 "Decomposition of Forces. 620 "Dynamics. 614, 616-620 "Moment. 614 "Moments of Stress on Girders. "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies. 614 "Uniform and Variable Motion 617 "Work by Percussive Force. 620 Mechanics, Cost of Pamily in France 98 Melting-Points. 517 MEMORANDA, Physical and Mechanical Elements and Results. 907-918
and New U.S. 28, 33 and Work. 36 ratures. 37 tes 37 tes 36, 46 te and Pressures. 36, 46 te and Pressures. 36 Weight of Value. 40-43 tous. 27, 29, 31, 44, 46 Clay, Sand, etc. 33 - 26, 30, 44 Clay, Sand, etc. 61, 46 - 38-39 - 38-39 - 30-31, 45, 934 - 24, 7934 - 30-31, 45, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 32, 47, 934 - 34, 47, 934 - 36, 47, 934 - 37, 47, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 37, 47, 934 - 3	Bodies, and To Compute 619 "Couple
and New U.S. 28, 33 and Work. 36 ratures. 37 Ses 36, 46 te and Pressures. 36, 46 te and Pressures. 36, 46 te and Pressures. 36, 30, 44 Clay, Sand, etc. 33	Bodies and To Compute 619 "Couple
and New U.S. 28, 33 and Work. 36 ratures. 37 Ses 36, 46 te and Pressures. 36, 46 te and Pressures. 36, 46 te and Pressures. 36, 30, 44 Clay, Sand, etc. 33	Bodies and To Compute 619 "Couple
and New U. S. 28, 33 and Work. 36 ratures. 37 kes 37 kes 36, 46 ke and Pressures. 36, 46 Weight of Value. 40-43 sous. 27, 29, 31, 44, 40 Clay, Sand, etc. 33 -, Local Standards, Compute. 61-62 -32, 47, 934 New U. S.; Approx- mate Equivalents. 33 stivalents of 36	Bodies, and To Compute. 619 "Couple Composition of Forces. 620 "Dynamics. 614, 616-620 "Moment. 614 "Moments of Stress on Girders. 620 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies. 620 "Uniform and Variable Motion 617 "Work by Percussive Force. 620 Mechanics, Cost of Family in France 98 Melting-Points. 517 MEMORANDA, Physical and Mechanical Elements and Results. 907-918 "Cast and Word 'Iron and Steel 832 Men and Women, Weights of 38 "Performances of 38 "Power of . 38
and New U.S. 28, 33 and Work. 36 ratures. 37 kes 37 kes 36, 46 te and Pressures. 36, 46 te and Pressures. 36 Weight of Value. 40-43 tous. 27, 29, 31, 44, 40 Clay, Sand, etc. 33 - 26, 34, 49, 934 r. Local Standards, Compute. 61-62 - 38-39 - 30-31, 45, 934 New U.S.; Approace mate Equivalents. 33 usvalents of 36	Bodies and To Compute 619 "Couple
and New U.S. 28, 33 and Work. 36 ratures. 37 les 37 les 36, 46 le and Pressures. 36, 46 le and Pressures. 36, 46 le and Pressures. 36, 30, 44 louis. 27, 29, 31, 44, 40 Clay, Sand, etc. 33 26, 49, 934 r, Local Standards, Compute. 61-62 38-39 45 32-31, 45, 934 New U.S.; Approx- male Equivalents. 33 usivalents of 36 29 36 39 30-31, 45, 30 30-31, 45, 30 30-31, 45, 30 30-31, 45, 30 30-31, 45, 30 30-31, 30-31, 35, 30 30-31, 30-31, 30	Bodies, and To Compute 619 "Couple
and New U.S. 28, 33 and Work. 36 ratures. 37 kes 37 kes 36, 46 te and Pressures. 36, 46 te and Pressures. 36 Weight of Value. 40-43 tous. 27, 29, 31, 44, 40 Clay, Sand, etc. 33 -29, 44, 934 r. Local Standards, Compute. 61-62 -38-39 -30-31, 45, 934 New U.S.; Appross mate Equivalents. 33 uivalents of 36 29 27	Bodies, and To Compute. 619 "Couple Composition of Forces. 620 "Dynamics. 614, 616-620 "Moment. 614 "Moments of Stress on Girders. 620 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies. 620 "Uniform and Variable Motion 617 "Work by Percussive Force. 620 Mechanics, Cost of Family in France 98 Melting-Points. 517 MEMORANDA, Physical and Mechanical Elements and Results. 907-918 "Cast and Word 'Iron and Steel 832 Men and Women, Weights of 38 "Performances of 38 "Power of . 38
and New U.S. 28, 33 and Work. 36 ratures. 37 kes 37 kes 36, 46 te and Pressures. 36, 46 te and Pressures. 36 Weight of Value. 40-43 tous. 27, 29, 31, 44, 40 Clay, Sand, etc. 33 -29, 44, 934 r. Local Standards, Compute. 61-62 -38-39 -30-31, 45, 934 New U.S.; Appross mate Equivalents. 33 uivalents of 36 29 27	Bodies. and To Compute. 619 "Couple. 614 "Decomposition of Forces. 620 "Dynamics. 614, 616-620 "Moment. 614 "Moments of Stress on Girders. 621-623 "Motion on an Inclined Plane 619 "Solid, Fluid, and Aeriform Bodies. 614 "Uniform and Variable Motion 617 "Work by Percussive Force. 620 Mechanic's. Cost of Family in France 908 Melting-Points. 614 Elements and Results. 907-918 "Cast and Wro't Iron and Steel 832 Men and Women, Weights of 38 "Performances of 38 "Pener of. 38 Mensuration of Arras.
and New U.S. 28, 33 and Work. 36 ratures. 37 les 37 les 36, 46 le and Pressures. 36, 46 le and Pressures. 36, 46 le and Pressures. 36, 30, 44 louis. 27, 29, 31, 44, 40 Clay, Sand, etc. 33 26, 49, 934 r, Local Standards, Compute. 61-62 38-39 45 32-31, 45, 934 New U.S.; Approx- male Equivalents. 33 usivalents of 36 29 36 39 30-31, 45, 30 30-31, 45, 30 30-31, 45, 30 30-31, 45, 30 30-31, 45, 30 30-31, 30-31, 35, 30 30-31, 30-31, 30	Bodies, and To Compute 619 "Couple

xxvi

Management on April of April	METALS, Alloys and Compo.
MENSURATION OF AREAS, etc., Any	
Figure of Revolution 358, 376	" Adulteration in, To 1
" Arc and Chard, etc., of a Circle,	" and Elements of
343-345	" Comparative Quality
" Area Bounded by a Curve 342	" Lustre, Degrees of
of any Plane Figure 359	" Values of some Precio
Capillary Tube 358	" Various Weight of
Cask Gauging and Ullaging,	" Weight of, To Comput
	" by Dattern T
377-378	og Fattern, I
" Chord of an Angle, To Compute 359	"of a Given Section
" Sector and Segment of 346-347	Weight of
" Sector and Segment of . 346-347	METER, and Value of
Circular Zone 349	Meters, Water
Cones assumed after the	METRIC Measures
Cuber and Paralleloninedon afor	" Factors
G Cudoid	MILK, Nutritive Values an
"Cubes and Parallelopipedon 360 "Cycloid	
Cylinder350, 303	uents of
Sections 357	1 crocinage of Cream,
Ellipsoid. Paraboloid, or Hy-	" and Relative Richness
perboloid of Revolution,	eral Animals
357, 375-376	" To Detect Starch in
" Gnomon 335	Mineral Constituents Absor
"Heliz (Screw)354-355	an Acre of Soil.
Interior Dedier	
Irregular Bodies	maters, Analysis ii
1 04760 341, 350	Minerals, Relative Hardnes
Link353, 370	Miner's Inch
Lune 352	Mines, Temperature of
"Plot Angles without a Pro-	Mining, for Blasting
" Plot Angles without a Pro-	" Engines and Boiler
tractor 359	" Flat Ropes
4 Delugana	Mirage
Polygons	Minney and Tanasa
Polyhedrons 352	Mirrors and Lenses
" Prismoids	Miscellaneous Elements
Priems	" Mixtures, Cements, G
Firamuls354, 305-3001	Lacquers, Soldering
Reduction of Ascending or De.	Staining, etc
scending Line to Horizontal	" Operations and Illi
Measurement 359	Transition until 1100
4 December Podies are as as as	Mississippi River, Silt in
nings, circular una cgin-	Models, Strength of
drical	" Bridge, Resistance of.
Side of Greatest Square in a	" Dimensions of a Beam.
Circle 243	a Structure can Bea
Sphere347-348, 367-368 "Segment of347	Molasses, Analysis of
" Seament of	" Sugar and Water in.
Spherical Sector 370	Molding and Planing
" Triangle 387	Molecules, Velocity, Weight,
	ume of
Spheroids or Ellipsoids,	Moment, Quantity of, etc
348-349, 368-369	Momentum
Spindles355, 370-374	Monoliths
Spirals	Month, Mean Lunar
To Plot Angles without a Pro-	Months, Numbers of
traction 359	MOON'S AGR, To Compute
Trapezium337-338	Mortar590
Trapezoid	" Sugar in
Photographer	Sugar th
Pringles335-337	MORTARS, Limes, Cements,
2 Figureauteury, 305-309.)	creles
*ds351-352, 366-367	and the same of th
of an Irregular Body, 870	MOTION, Accelerated, Reta
of an Irregular Body, 870	Uniform Variable.
******350, 361-362	" of Bodies in Fluids
wel Circular,	" Pressure, Velocity, Ti
348-349	" Resistances of Areas
340-349	"Resistances of Areas ferent Figures in Water
- 100	Mother Down
(19)	Motive Power

INDEX. XXVII

Page	Page
on, for Street	NAVAL ARCHITECTURE, Metalling,
915	Loss of Weight per Sq. Fool
and Passes,	Luss of Weight per Sq. Fool of on a Vessel's Boltom, Cc7 "Moment of Inertia Approx
182-183	Mamont of Inertia Approx.
	imately, To Ascertain 1.59-600
433	
910	Pitch of Screw Propeller and
9 437, 918	Slip of Side Wheels
593	Finning from Hally
	Proportion of Power Chilized
	in a Steam Vernel and Fric-
mber of153-154	tion of Engines. 673
Nucreas of 159	" Resistance of Bottoms of Hulls. (4.2
	" of Air to a Vessel (to
Ming 135	
178	" " to Wet Surface of Hull. 1:53
178	Extended Allegary
and Construc-	Sailing Power and Carrening
st 936	Power of a Venel 665 " Ratio of Effective Area
	Ratio of Effective Area
30	of Sails, etc. and of
•	Vessel Speed to Wind, 662
649-667	Sails Propulsion and Area of 603
649-667 t and Sails 665	Area and Trimming of. 664-665
mel Immerced	Screw Propeller, Experiments
<u> </u>	upon Resistance of at High
idea of Baddom	Velocities etc.
neg uj Dunum	Velocities, etc
ill	" Slip of Propeller and Sul-
B OF HEU, Ar-	wheels. 666 Speeds, Relative of Forms of
ml, Engines,	Speeds, Relative of Forms of
To Compute 658	Vessels.
for Buoyancy	" Stability, Elements of, etc. 649-653 " and Speed of Models of
Mela-Centre.	" " and Speed of Models of
usimately.656-657	different Sections, etc. 650
Lateral Re-	" Elements of Power Re
Relative Posi-	quired to Careen a Body
659	or 'essel To Compute,
al Resistance	652-653
- Compute. 658-659	Power Required in a
22	Steam vessel, Capacity
ed its Centre	of another being given, 661
, To Compute,	of another being given, 661 "Results of Experiments
653-655	upon Bodies 649-650
ly, and Corff-	" Statica Statical Surface
Compute 655	and Dynamical Surface
7	Stability, To Compute,
Delineale, and	651-652
	" Measure of, of Hull of a
TO COM-	Vessel To Determine 650-652
and Speed of mee of Steam	Steam Vessels, Approximate
and Speed of	Rule for Speed and IP of,
man of Steam-	To Compute
660	" Trim Change of
rigale, Weight,	" Weight, Curve of
oto, weight,	All the desired the second the second terms
etc 656	Tribit Affice and ample and
M Forms of	Course with Military City
∌ √ 642	Course of
	Needle, Magnetic, Variation of 57
Heel, An-	Decennial Variation of 57
mpute664-665	Variation of it in U.S. and
Ardency and	Canada 59
666	
	Needles, First Introduced. Neutral Axis of a Bear
667	New and Old Style
Ch7	Vigorara Falla Hatak
664	Niagara, Falls, Heigh
Toights and	" Volume of Wo
20000000 667 ≥	on-conductibility
of a Ves N	on-conductibility
659, 919	" -condensing En
-27.791	The state of the s
F	

Page	Page
RAILROADS, Street, and Cost of Main-	Reciprocals304
tenance of	Rectilineal Figures, To Describe 222-223
" Result of Experiments on Mo-	REFRACTION and Indices of 584, 668
tors for 915	" and Curvature of the Earth. 55
" Street or Tramway848, 915	" of Light 584
" " Engine 902	REFRIGERATING943, 965-967
halls, Irim and Seece, Strenger of, 10	" and Ice-making967-968
Compute	and Machine
"Tangential Angles for Chords and Curves	" Elements of a Test of 943, 966
" Elevation of Outer Rail, To De-	Refrigerator, Surface of 512
	Remedials, Domestic
termine 679	Remedy of the Mint 38
RAILWAY TRAINS, Frictional Resist-	Rendering, Laying, etc 598
ance of	Resilience of Woods 763
" Power and Resistance of 911	RETAINING WALLS, Memoranda 695
RAILWAYS, Elements of, etc677-685	" of Iron Piles 196
" Adhesion on a Given Grade and	REVETMENT WALLS, Elements of 694-700
Curve, To Compute 685	" Elements of, To Compute, 606-608
" Curve, To Define, etc 677, 685	" Friction, Effects of 608
" Curves by Offsets 678	"Memoranda
" Curving, Versed Sines and Or-	" Moment of Pressure, Point of. 698
dinates of, To Compute 678	" Pressure of Earth 695, 698
" Driving-wheels, Coefficients of	" Surcharged 699
Adhesion on, per Ton 681	(See Embankments, Walls, and Dams,
" Gradient 685	700-703, and Stability, 693-703.)
" Load a Locomotive will Draw	Rigging, Circumference of Hemp or
up an Inclination 680	Wire Rope for Fore and Main. 172
" Locomotives, Adhesion of 681	"Vessels and Guys
" Maximum Load that can be Drawn up the Maximum	Kinging Engine
Grade it can Attain 680	River Steamboat, Side-wheels 919
" Memoranda on English 685	" Steamboats and Engines892, 919
" Operation of Locomotives, Ele-	RIVERS, Current of 193
ments of	" Descent of Western 188
" Points and Crossings 678	" Flow of Water in 550, 551, 933
" Radii of Curves 670	" Lenguis of 183
" Radius of Curve and Wheel	551
Base 679	RIVETED JOINTS, Comparative Strength
" Regulations for Crossing Roads,	of, etc751, 752, 755, 829
Parliamentary, English 685	"Experiments on
" Relation of Base of Driving or	RIVETING of Plates755-757
Rigid Wheels to Curve 678	RIVETS, Pitch, Lap, etc., Dimensions
" Resistance of Gravity upon an	and Proportions of829-830
Inclination, To Compute, 679 "Rise per Mile and Resistance	" in Steel Plates
to Gravity per Ton 679	" Memoranda 830
" Sidings	
" Tangential Angle for Curves 678	Diameter and Length of, for
" Traction, Retraction, and Ad-	Hulls of Vessels 830 "Proportion of Single for Wro't-
hesive Power of a Locomotive	iron Limits
or Train, To Compute 680	iron Joints
" Tractive Power 681	" Result of Experiments on Double
" Train Resistances 682-684	Riveted and Strapped Plate
" Tangential Angles for Chords	Joints 829
of One Chain 677	
"Turnout of Unequal Radii 677	ROADS, STREETS, AND PAVEMENTS. 686-690
Velocity of Trains 680, 930, 951	" Aqueducts, and Railroads 178
Ramfall. Annual and Volume of 850 Diameter and Grade of Drains,	
To Discharge 906	" Bituminous 690
Pand Rock Drilling Co	" Blinding and Darning 690 " Block Stone
Parkine Wheel	" Classification of
Religion of an Faminan 206	" Concrete
CLUCTION AND IMPACT WHERE \$76	" Construction, and Estimate of
422	Labor 686
WATE OR DISCOUNT 100	" Corduroy 688

INDEX. XXXi

lches		Ropus, Stress, Tension, and Deflection	5.
	689	of, To Compute	166
rillers, and Wheelers,	. 1	" Tarred Hemp and Wire, Circum-	
ion of, in Different		ference of	169
• • • • • • • • • • • • • • • • • • •	688	" " and Destructive and	
	686	Breaking Strength of	171
nd Hoggin	690	"Transmission of Power	167
Earth	688	Units for Computing Safe Strain	
ized 687	-090	for New, Hawsers, and Cables,	
and Metalled	090	U. S. N	-171
ous Notes		WIRE, Elements of, etc 161-	-172
4. 60 41 6 . 04	688	dute Policinguese Detervier	107
: to Traction of a Stage		" Experiments on, U. S. N " and Hemp, Circumference	100
	848	of for Standing Rigging	
One	400	" Iron, Steel, and Hemp, Rel-	172
Stone-breaking		ative Dimensions of	
Sprinkling, Watering,	1	U. S. N.	
, Washing, and Fas-	600	" White, Durability of	172
•••••		Rotation of the Earth, Influence of	270
Cube Yard of Stone.	600	Rowing	422
ral Width of, in Cut.	090	Rubble-Stone Pavement	686
rtion of	687	RULE OF THUESE	009
ction of. lative Resistance to	٠, ١	RULE OF THUEE. Running, Men and Horses,438-	.440
	945	Rye Straw, Relative Value of com-	44~
ud Volume of	467		203
, Excavation and Em-	40/	put to more of many transfer	•••
t of		8.	
f, and Earthwork.	468 !	Saccharose, or Cane Sugar	207
/3 00000 000000000000000000000000000000	040	SAFETY VALVE, Adjustable Pop .	
per Cube Yard		VALVES	023
ir	71	Sago, Value of.	
		Sailing, Area of Sails and Vessel's	,
usures	53	Speed	66-
rugated, Weight of	131	" Vessels, Iron894-	805
ings179,		Sails, Propulsion and Area of	662
l'o Compute	952	" To Preserve	870
id Pressure on	952	" Trimming of	66=
	189	Saline Saturation	726
n Power Greater than	- 1	Saline Saturation. Proportional Volumes of Matter	,
ed in Table	98		72 7
any whatever	97	SALT WATER, Corrosive Effects of, on	,-,
ins, Weights of	34	Steel or Iron.	016
AND CUBES272-	-302 :	Sand, Composition, etc.,	
vd 6th, To Compute. 302.			599
		Sandstones.	599 193
	-304	Sandstones.	599 193
! Load	78 ₂	Sandstones. Saw-Mill, Elements of904. Sawing and Hewing Timber, Loss in,	599 193
Load	78 ₂	Sandstones. Saw-Mill, Elements of	599 193 913 62
Load. s, Measure of	782 26 165	Sandstones. Saw-Mill, Elements of	599 193 913 62 904
s, Mrasure of s of Equal Strength, nation, Stress of	782 26 165 166	Sandstones. Saw-Mill, Elements of	599 193 913 62 904
Load. s, Measure of	782 26 165 166	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912
s, Measure of	782 26 165 166 -175	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477
s, Measure of	782 26 165 166 -175	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477 726 221
s, Measure of	782 26 165 166 -175	Sandstones. 904. Sawing and Hewing Timber, Loss in, Slome and Wood. 196, SAWS, Circular. 197, 477, 911 Vertical and Band. Scales rectiment, Removal of Incrustation in Boilers. SCALES, To Divide a Line, etc. Weighing without.	599 193 913 62 904 912 477 726 221 66
s Mrasure of. s of Equal Strength. mation, Stress of. MINS, etc. 161. MINS, etc. 162. MINS, etc. 163. Mac of Wire, etc., To pute. d of Hauser Cable a Given Strain of.	782 26 165 166 -175	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477 726 221
Noad Nature of Nature of Nature of Strength Mation, Stress of MNS, etc IANS, etc to pute d of Hunser Cable a Given Strain of nd Cables 170	782 26 165 166 -175 169	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477 726 221 66
Noad Nature of Nature of Nature of Strength Mation, Stress of MNS, etc IANS, etc to pute d of Hunser Cable a Given Strain of nd Cables 170	782 26 165 166 -175 169	Sandstones. Saw-MILL, Elements of	599 193 913 62 904 912 477 726 221 66 841
Noad	782 26 165 166 -175 169 171 167 -172 171	Sandstones. 904. Sawing and Hewing Timber, Loss in, Slome and Wood. 196, Saws, Circular. 197, 477, 911 Vertical and Band. Scale or Sediment, Removal of Incrustation in Boilers. Scales, To Divide a Line, etc. Weighing without. Scarfs, Resistance of SCREW, Length, Power, Weight, Pitch, etc., To Compute. 3	599 193 913 62 904 912 477 726 221 66 841
Noad Nature of Nature of Nature of Strength Mation, Stress of MNS, etc IANS, etc to pute d of Hunser Cable a Given Strain of nd Cables 170	782 26 165 166 -175 169 171 167 172 171	Sandstones	599 193 913 62 904 912 477 726 221 66 841
s Mrasure of. s Mrasure of. s of Equal Strength. mation, Stress of. Lans, etc	782 26 165 166 -175 169 171 167	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477 726 841 -668 477 673
Nead	782 26 165 166 -175 169 171 167 172 171 172 167 172	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477 726 841 -668 477 673
Negative of the strength of th	782 26 165 166 -175 169 171 167 172 171 172 167 172 164	Sandstones. 904. Sawing and Hewing Timber, Loss in, Slome and Wood. 196, Saws, Circular. 197, 477, 911 Vertical and Band. Scale or Sediment, Removal of Incrustation in Boilers. Scales, To Divide a Line, etc. Weighing without. Scarfs, Resistance of SCREW. Length, Power, Weight, Pitch, etc., To Compute. (3- Bolts, Power of. (3- Cutting. Compound. Pifferential. Propeller, Pitch and S	599 193 913 62 904 912 477 726 841 -668 477 673
Negative of the strength of th	782 26 165 166 -175 169 171 167 172 171 172 167 172 164	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477 726 841 -668 477 673
Negative of the strength of th	782 26 165 166 -175 169 171 167 172 171 172 164 168	Sandstones. 904. Sawing and Hewing Timber, Loss in, Slome and Wood. 196, Saws, Circular. 197, 477, 911 Vertical and Band. Scale or Sediment, Removal of Incrustation in Boilers. Scales, To Divide a Line, etc. Weighing without. Scarfs, Resistance of SCREW. Length, Power, Weight, Pitch, etc., To Compute. (3- Bolts, Power of. (3- Cutting. Compound. Pifferential. Propeller, Pitch and S	599 193 913 62 904 912 477 726 841 -668 477 673
Negative of the state of the st	782 26 165 166 -175 169 171 167 172 171 172 164 168 165	Sandstones. Saw-Mill, Elements of	599 193 913 62 904 912 477 726 841 -668 477 673

SECANTS AND COSEGANTS	Seas and Oceans, Depths and Area	Sides of Squares, Equal in Area to a
SEEDS, Number of, in a Bushel, and per Sq. Fool per Acre 193, 938 "Proportion of Oil in Air-dry. 293, 939 "Yield of Oil in Several 184 SEGMENTS OF A CIRCLE, Area of 69, 656 Sewnge, Volume of, etc 694 Sewnge, Volume of, etc 695 Sewner Classification of 691, 692 "Drains, Diameter and Grade of, 691, 692 "Maintend per Lineal Fool of Egg. shaped, Dimensions of 693 "Minimum Velocity and Grade of, 691 "Sewer Pipes 691 "Sewer Pipes 692 "Surface, which will Dickarge a Volume of an Inch and also of Two Inches per Hour, etc 692 Shaft, Dearings for Propeller 493 Shaft Tealing for Propeller 493 Shaft Tealing for Propeller 493 "Shaft Dearings for Propeller 493 "Weight of Castings for Propeller 494 "Weight of Castings for Propeller 494 "Weight of Castings for Proper Industry of Dearest Order of Proper Industry of Shafts 494 "Weight of Oil in Several Solids 493 "Weight of Oil state of the Weight of One Sg. Fool 64 "Weight of Oil state of Castings 494 "Weight of Oil s		Circle258-250
SEEDS, Number of, in a Bushel, and per Sq. Fool per Acre 193, 938 "Proportion of Oil in Air-dry. 293, 939 "Yield of Oil in Several 184 SEGMENTS OF A CIRCLE, Area of 69, 656 Sewnge, Volume of, etc 694 Sewnge, Volume of, etc 695 Sewner Classification of 691, 692 "Drains, Diameter and Grade of, 691, 692 "Maintend per Lineal Fool of Egg. shaped, Dimensions of 693 "Minimum Velocity and Grade of, 691 "Sewer Pipes 691 "Sewer Pipes 692 "Surface, which will Dickarge a Volume of an Inch and also of Two Inches per Hour, etc 692 Shaft, Dearings for Propeller 493 Shaft Tealing for Propeller 493 Shaft Tealing for Propeller 493 "Shaft Dearings for Propeller 493 "Weight of Castings for Propeller 494 "Weight of Castings for Propeller 494 "Weight of Castings for Proper Industry of Dearest Order of Proper Industry of Shafts 494 "Weight of Oil in Several Solids 493 "Weight of Oil state of the Weight of One Sg. Fool 64 "Weight of Oil state of Castings 494 "Weight of Oil s		Signals, Night, U.S. N 199
SEEDS, Number of, in a Bushel, and per Sq. Foot per Acre	" Degrees, Minutes, etc., of.	Railroad, and Significations. 954
mer Sq. Foot per Acre	To Compute 414	Silver Sheet Thickness of
"Proportion of Oil in Air-dry, 203, 959 "Yield of Oil in Several	SEEDS, Number of, in a Bushel, and	SIMPLE INTEREST.
"Vielat of Oil in Several. 1859 SEGMENTS OF A CIRCLE, Area of . 267, 266 "Area of, To Compute. 268-265 SEWERS, Classification of. 691, 692 SEWERS, Classification of. 691, 692 "Draina, Diameter and Grade of, to Discharpe Rainfall. 296 "Drainage of Lands by Pipes. 692 "Material per Lineal Foot of Egg- shaped, Dimensions of. 692 "Surface, Which will Discharge a Volume of an Inch and also of Two Inches per Hour, etc. 692 Shaft, Ecarings for Propeller. 473 SHAFTING for Lathes and Mills. 948 SHAFTES. 778, 793, 794-797. 914 (See also Torsion, 790-797.) "And Grade of Two Inches per Hour, etc. 692 Shaft, Ecarings for Propeller. 473 SHAFTES. 778, 793, 794-797. 914 (See also Torsion, 790-797.) "And Grade of Two Inches per Hour, etc. 692 "And Ordingeons. 798-793." "Diameter and Journal of, Stress Uniformly along its Length, To Compute. 978." "Diameter and Journal of, Stress Uniformly along its Length, To Compute. 978." "Journals or Bearings of, etc. 796" "Loaded Transversely and Journals of. Stress Uniformly along its Length, To Compute. 978." "Flakes. 195 "Flakes. 195 "Flakes. 195 "Fore to Punch Iron, Brass, or Copper To Compute. 783." "Fore to Punch Iron, Brass, or Copper To Compute. 783." "Fore to Punch Iron, Brass, or Copper To Compute. 783." "Fore to Punch Iron, Brass, or Copper To Compute. 783." "Sheatling and Iraziers' Sheels. 155 "Sheatling of God Shands of Pelitals in an Oc. 591 "Sheatles Measure. 275 "Shoomaker's Measure. 275 "Shoomak	"Proportion of Oil in Air-dry, 202, 030	Simpson's Rule, Area, To Compute 342
SEGENTS OF A CIRCLE, Area of 267, 260 Sewage, Volume of, etc	" Yield of Oil in Several 189	" "Volume of an Irregular Body 870
" "Area of, To Compute. 268-265 Sewgers, Volume of, etc. 692 Sewgers, Classification of 691, 693 " Drains, Diameter and Grade of, to Discharge Rainfall. 900 " Drainage of Lands by Pipes. 693 " Material per Lineal Foot of Egg- shaped, Dimensions of 692 " Minimum Velocity and Grade of, of 691 " Sewer Pipes. 694 " Sewer Pipes. 694 " Surface, which will Discharge a Volume of an Inch and also of Two Inches per Hour, etc. 692 Shaft, Ecarings for Propeller 473 (Sre also Torsion, 790-797.) 914 (Sre also Torsion, 790-797.) 914 (Sre also Torsion, 790-797.) 914 (Sre also Torsion, 790-797.) 915 (Sre also Torsion, 790-797.) 916 " Diameter and Journal of, Stress Uniformly along its Length, To Compute 577 " Journals or Bearings of, etc. 796 " Loaded Transversely and Journals of Stress Experiments in Cast-iron, Steel, Treenails, and Wood 783 " Power to Punch Iron, Brass, or Copper To Compute 782 " Results of Experiments on, with a Punch 782 " Wrift iron Bults, Riveted Joints, and Various Materials 782 " Wrift iron Bults, Riveted Joints, and Various Materials 782 " Wright of 795 Sheet Iron, Black and Grade of, 192 Sheet Iron, Black and Grade of, 193 Sheet Iron, Black and Grade of, 194 Sheet Iron, Black and Shot, Piling of, 65 O' Chilled and Drop, 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 501 Shundes 795 Namber of Pellets in an Oz. 5		SINES AND COSINES390-402
SEWERS, Classification of 691, 693 "Drains, Diameter and Grade of to Discharge Rainfalk 906 "Drainage of Lands by Pipes 906 "Minimum Velocity and Grade of 691 "Sewer Pipes 692 "Swifuce, which will Discharge a Volume of an Inch and also of 692 Shaft, Bearings for Propeller 473 Shaft, Bearings for Propeller 473 SHAFTIS, 778, 793, 794-797, 914 (See also Torsion, 790-797.) "Deflection of Shafts 778-799, "Deflection of Shafts 778-799, "Deflection of Shafts 778-799, "Deflection of Shafts 778-799, "Diameter and Journal of, Stress Uniformly along its Length, To Compute 571 "Journals or Bearings of, etc. 796 "Loaded Transversely and Journals of Perpetual Congelation 192 "Results of Experiments in Cast-iron, Steed, a Planch 782 "Results of Experiments on, with a Punch 782 "Wro't iron Bolts, Riveted Joints, and Various Materials 783 Sheathing and Brazier's Sheets 155 Sheathing and Brazier's Sheets 155 Sheet Iron, Black and Galvanized 124 Shore Iron, Black and Galvanized 125 Sheet Iron, Black and Shot, Piling of 652 "No Dameter and Numbers of 692 Namber of Pellets in an O. 2. 501 Shunder of Enpines 662 "Weight of Imperiments that of Compute 218 "Weight of Imperiments that of Compute 218 "Weight of Imperiments of Compute 218 Weight of Imperiments 662 "Weight of Imperiments 662 "Weight of Imperiments 662 "Weight of Imperiments 662 "On Distance and Nills 662 "Weight of Imperiments 662 "On Distance and Nills 662 "Weight of Imperiments 662 "Child and Drop 693 "On Distance and Nills 662 "Weight of Imperiments 662 "Weight of Imperiments 662 "Weight of Imperiments 662 "Weight of Imperiments 662 "Weight	" Area of To Compute, 268-260	" Number of Degrees, Min-
SEWERS, Classification of 691, 692 "Drainage of Lands by Pipes. 691 Material per Lineal Foot of Egg- shaped, Dimensions of 692 "Starfine, which will Discharge a Volume of an Inch and also of Two Inches per Hour, etc. 692 Shaft, Bearings for Propeller 473 Shafting for Lathes and Mills 943 SHAFTIS. 778, 793, 794-797, 914 (See also Torsion, 790-797.) "and Gudgeons. 778-793. "Diameter and Journal of, Stress Uniformly along its Length, To Compute. 571 "Journals or Bearings of, etc. 796 "Doubled Transversely and Journals or Delrusive Strength, 782-783 "Power to Punch Iron Brass, or Copper 17 Compute. 782 "Proper to Punch Iron Brass, or Copper To Compute. 782 "Results of Experiments on, with a Punch and Various Materials 884 "Results of Experiments on, with a Punch Sheathing and Brazier's Sheets. 155 Sheathing and Brazier's Sheets. 155 Sheathing and Brazier's Sheets. 155 Sheat Iron. Black and Galvanized. 124, 129 Wrott-iron Bills. Riveted Joints, and Various Materials. 315 Sheet Iron. Black and Galvanized. 124, 129 Wrott-iron Bills. Riveted Joints, and Various Materials. 315 Sheet Iron. Black and Galvanized. 124, 129 Wroght of 192 Sheet Iron. Black and Shot. Piling of 65 "Chilled and Drop. 966 "No. Dameter and Numbers of 966 "No. Dameter and Numbers of 966 "No. Dameter and Numbers of 966 "No. Dameter, and Numbers of 966 "No. Dameter of Pellets in an O. 25 "Of Oppound being Given 1218 "O	Sewage, Volume of, etc 692	ules, etc., of, To Compute 402
to Discharge Rainfall. Drainage of Lands by Pipes. Material per Lineal Foot of Eggshaped, Dimensions of. Minimum Velocity and Grade of. Sewer Pipes. Surfuce, which will Discharge a Volume of an Inch and also of Two Inches per Hour, etc. Shaft, Ecarings for Propeller. (See also Torsion, 190-197.) SHAFTSS. To Compute. To Compute. Journals or Bearings of, etc. Journals or Detrusive Strength, 782-783. Experiments in Cast-iron, Steel, Trenails, and Wood. Results of Experiments on, with a Punch of Copper. To Compute. Weight of One Sq. Foot. And Various Materials. And Variation of Shafts. To Compute. Shower Pressure of, on Roofs. Soldering. Soun, Velocity of. Distances by Velocity of, To Compute. Velocity of. In Several Solids. Soundings, to Reduce to Low Water. Soundings, to Reduce to Low Water. Specific Gravity And Weight of a Body, To Compute. Sheathing and Braziers' Sheets. Sheathing of Casting Advances and Sheet Plings of Casting Advances and Sheet Plings of Casting Advan	Sewers, Classification of691, 692	Sixth Power of a Number
**Such and serial seria	" Drains, Diameter and Grade of,	
"Material per Lineal Foot of Egg- shaped, Dimensions of, 692 "Minimum Velocity and Grade of, Minimum Velocity and Grade of, Swer Pipes. 692 "Swer Pipes. 694 "Swer Pipes. 695 "Surface, which will Discharge a Volume of an Inch and also of Two Inches per Hour, etc. 692 Shaft, Ecarings for Propeller. 473 Shaft, Ecarings for Propeller. 473 Shaft, Ecarings for Propeller. 473 Shaft Bearings for Propeller. 473 Shaft Bearings for Propeller. 473 Shafts 778, 793, 794-797, 914 (See also Torsion, 790-797.) "and Gulgeons. 790 "Deflection of Shafts. 778-779 "Diameter and Journal of, Stress Uniformly along its Length, To Compute. 571 "Journals or Bearings of, etc. 795 "Loaded Transversely and Journals of. 914 Steaking or Defrusive Strength, 782-783 "Experiments in Cast-iron, Steel, Treenaits, and Wood. 783 "Power to Punch fron, Brass, or Copper, To Compute. 782 "Results of Experiments on, with Results of Experiments on, with	" Drainage of Lands by Pines 601	Slackwater Canal etc Traction on 9.9
"Minimum Velocity and Grade of		Slaking of Lime 594
"Minimum Velocity and Grade of	shaped, Dimensions of 692	Savares To Commute
"Sewer Pipes." "Surfuce, which will Discharge a Volume of an Inch and also of Two Inches per Hour, etc. 692 Shaft, Bearings for Propeller." SHAFTING for Lathes and Mills. 948 SHAFTING for Lathes and Shot. 788 SHOW PIPER AND CHIMNEYS. 748-749 SMOKE PIPER AND CHIMNEYS. 748-749 SMO	" Minimum Velocity and Grade	Squares, 10 Companies
"English of Volume of an Inch and also of Two Inches per Hour, etc. 692 Shaft, Bearings for Propeller 473 SHAFTING for Lathes and Mills 948 SHAFTS 778, 793, 794-797, 914 (See also Torsion, 790-797). "and Gudgeons 790 "Deflection of Shafts 778-779 "Diameter and Journal of, Stress Uniformly along its Length, To Compute 791 "Journals or Bearings of, etc. 795 "Loaded Transversely and Journal of, Stress Uniformly along its Length, To Compute 791 "Journals or Bearings of, etc. 795 "Loaded Transversely and Journal of, Stress Uniformly along its Length, Te-compute 792 "Journals or Bearings of, etc. 795 "Loaded Transversely and Journal of, Welcotty of, To Compute 793 "Power to Punch Iron, Brass, or Copper. 70 Compute 782 "Results of Experiments on, with Parallel Cutters, Worlt-iron Bolts, Riveted Joints, and Various Materials 783 Sheathing and Braziers' Sheels 155 Sheet Iron, Black-and Galeanized. 124, 129 "Weight of 129 Sheet Iron, Black-and Galeanized. 124, 129 "Weight of 129 Sheet Iron, Black-and Galeanized. 124, 129 "Weight of 129 Sheet Iron, Black-and Galeanized. 124, 129 "Weight of 129 Sheet Iron, Black-and Galeanized. 124, 129 "Weight of 129 Sheet Iron, Black-and Galeanized. 124, 129 "Weight of 129 Sheet Iron, Black-and Galeanized. 124, 129 "Weight of 129 Sheet Iron, Black-and Galeanized. 124, 129 "Of a Body Soluble in Water. 209 "Of a Body Soluble in Water. 209 "Of a Body Soluble in Water. 209 "Of a Fluid. 209 "Of a Fluids. 216-216 "Of Proportions of Two Ingredients, that of Compute 706 "Proportions of Two Ingredients, that of Compute 707 "Of Discover Adulteration. 216 "Weight of Ingredients, that of Compute 708 "Weight of Ingredients, that of Compute 218 "Weight of Lawring of Castings. 218 "Weight of Lawring of Castings. 218 "Weight of Lawring of Castings. 218 "Weight of Universe of Castings. 218 "Weight	of	BLATES and Slating
a Volume of an Inch and also of Two Inches per Hour, etc. of Shaft, Bearings for Propeller Shaft, Bearings for Propeller SHAFTING for Lathes and Mills. 948 SHAFTS 778, 793, 794-797, 914 (See also Torsion, 790-797) " and Gudgeons 778, 793, 794-797, 914 (See also Torsion, 790-797) " and Gudgeons 778, 793, 794-797, 914 " and Gudgeons 798-779 " Diameter and Journal of, Stress Uniformly along its Length, To Compute 795 " Loaded Transversely and Journals or Bearings of, etc 796 " Loaded Transversely and Journals or Bearings of, etc 796 " Loaded Transversely and Journals or Bearings of, etc 796 " Loaded Transversely and Journals or Bearings of, etc 796 " Loaded Transversely and Journals or Bearings of, etc 796 " Loaded Transversely and Journals of, English of Solar Day and Year 37, 70 Solar Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 875 Solut Day and Year 37, 70 Solders 634-636 Soldering 634-636 Soldering.	" Surface which will Discharge	" Dimensions of
Shaft, Bearings for Propeller. 473 Shaft, Bearings for Propeller. 473 SHAFTING for Lathes and Mills. 948 SHAFTING for Lathes and Shafts. 778-779, 914 (See also Torsion, 790-797). 920 "Deflection of Shafts. 778-779 "Diameter and Journal of, Stress Uniformly along its Length, To Compute. 571 "Journals or Bearings of, etc. 796 "Loaded Transversely and Journal of. 192 "Melled, Volume of, 192 "Melled, Volume of, 192 "Melled, Volume of, 192 "Melled, Volume of, 192 Solders. 634-636 Solders. 634-636 Solders. 634-636 Solders. 634-636 Soundings, to Reduce to Low Water. 60 Spars and Poles. 62 Specific Gravitry And Wildett. 209 "Of a Body Solubte in Water. 209 "Of a Fluids. 215 "Of Miscellaneous Substances 214 "Of Discover Adulteration. 216 "Weight and Volumes of Various Materation. 216 "Weight of Ingredients, that of Compute. 317 "Of Discover Advicted Low Water. 477 "Of Discover Advicted Low Students in Compute. 478 "Of Discover Advicted Low Students in Compute. 319 "Compute. 578 "Compu	a Volume of an Inch and also	Engius 64
SHAFTING for Lathes and Mills. 948 SHAFTS	of Two Inches per Hour, etc 692	" weight per 1000 and Number
SHAFTS	Shaft, Bearings for Propeller 473	
(See also Torsion, 790-797) "and Gudgeons		Smelting of Iron Ore
"and Gudgeons	SHAPTS	Slotting. 445
"Deflection of Shafts. 778-779 "Diameter and Journal of, Stress Uniformly along its Length, To Compute. 571 "Journals or Bearings of, etc. 795 "Loaded Transversely and Journals of, Earnings of, etc. 796 "Loaded Transversely and Journals of, Earnings of, etc. 796 "Experiments in Cast-iron, Steet, Treenails, and Wood. 783 "Power to Punch Iron, Brass, or Copper, To Compute. 782 "Results of Experiments on, with a Punch Tron, Brass, or Copper, To Compute. 782 "Worlt-iron Bolts, Riveted Joints, and Various Materials. 783 Sheathing and Braziers' Sheets. 155 "Copper 131 Nails, Weight of. 135 Sheet Iron, Black and Galeanized. 124, 129 "Weight of 65 Shingles. 63 Shoemaker's Measure. 27 Siells and Shot, Piling of. 65 "Non Diameter, and Numbers of, 966 "Number of Pellets in an Oz. 501 Brankage of Castings. 218 Sarouds, Hemp and Wire. 173 Store Liants, Frisibility of a Vessel's, 918 "Weight of Ingredients, that of Compute. 218 "Weight of Vessel's 918 "Weight of	(See also Torsion, 790-797.)	SMOKE PIPES AND CHIMNEYS 748-740
"Diameter and Journal of, Stress Uniformly along its Length, To Compute. "Journals or Bearings of, etc. 796 "Loaded Transversely and Journals or Bearings of, etc. 796 "Loaded Transversely and Journals or Bearings of, etc. 796 "Experiments in Cast-iron, Steet, Treenails, and Wood. 783 "Power to Punch Iron, Brass, or Capper, To Compute. 782 "Results of Experiments on, with a Punch Punch Iron, Brass, or Cupper, To Compute. 782 "Weilt of Iron Bolts, Riveted Joints, and Various Materials. 783 Sheathing and Braziers' Sheets. 155 "Sheathing and Braziers' Sheets. 155 "Nails, Weight of. 135 Sheathing and Braziers' Sheets. 155 "Steet Iron, Black and Galanized. 124, 129 "Weight of. 129 "Steet Iron, Black and Galanized. 124, 129 "Weight of Shingles. 65 Shingles. 65 "Online on Pellets in an Oz. 501 Shingles of Castings. 218 Sirouds, Hemp and Wire. 173 Stor Liants, Fisibility of a Vessel's, 918 "Wight of Ingredients, that of Compute. 218 "Weight of Ingredients, that of Compute of Compute of Compute of Compute. 219 "Of Body Heavier or Lighter than Water. 209 "Of Blastic Fluids. 210-214 "Of Proportions of Two Ingredients, that of Solids. Accompute, 126 "Of Proportions of Two Ingredients, that of Compound being Given, 170 Compute. 218 "Weight of Ingredients, that of Compute of Compound being Given, 170 Compute. 218 "Weight and Volumes of Various Substances in Ordi."	" Deflection of Shafts778-770	
Uniformly along its Length, To Compute	" Diameter ana Journal of, Stress	" and Ice 840
"Journals or Bearings of, etc. 796 "Loaded Transversely and Journals of	Uniformly along ils Length,	" Flakes 105
"Melled, Volume of 195 "Melled, Volume of 195 SIEARING or Detrusive Strength 782-783 "Experiments in Cast-iron, Steel, Treenails, and Wood. 783 "Power to Punch Iron, Brass, or Copper, To Compute. 782 "Results of Experiments on, with a Punch 195 "Worl iron Bolts, Riveted Joints, and Various Materials. 783 Sheathing and Braziers' Sheets. 155 "Nails, Weight of 195 "Nails, Weight of 195 Simer Phase. 672 Simer Phase. 673 Shoeth Iron, Black and Galdanized 124, 129 "Weight of 674 Shoemaker's Measure. 275 Shougles. 63 Shoemaker's Measure. 275 Should Pag. 655 "On India and Drop 906 "Number of Pellets in an Oz 501 Barouds, Hemp and Wire. 175 Store Learns, Fisibility of a Vessel's 918 "Wishels, Arran of Hules and Slip 662 "Weight of Ingredients, that of Compute. 218 "Weight of Ingredients, that of Compute 218 "Weight of Vessel's 1918 "Weight and Volumes of Various Substances in Ordi-	To Compute	" Line or of Perpetual Congela-
Solar Day and Year. 37, 705 SHEARING OF Detrusive Strength. 782-783 "Experiments in Cast-iron, Steel, Treenails, and Wood. 783 "Power to Punch Iron, Brass, or Copper, To Compute. 782 "With Taratlel Cutters, With Taratlel Cutters, and Various Materials. 783 Sheathing and Braziers' Sheets. 155 "Nails, Weight of. Copper. 131 "Nails, Weight of. Copper. 135 Sheet Iron, Black and Galvanized. 124, 129 "Weight of. 129 SHELIS and Shot, Piling of. 65 Shingles. 63 Shoemaker's Measure. 27 Short and Shells, Piling of. 65 "Namber of Pellets in an Oz. 501 Strinkage of Castings. 218 Sarouds, Hemp and Wire. 173 Side Light, Array of Hudes and Slip 62 "Wight of Engines. 662 "Wight of Engines. 662 "Namber of Pellets in an Oz. 501 "Brinkage of Castings. 218 "Wights, Array of Hudes and Slip 662 "Weight of Engines. 662 "Weight of Ingredients, that of Compute. 228 "Weight of Ingredients, that of Compute bing Given, To Compute. 228 "Weight of Ingredients, that of Compute bing Given, To Compute. 228 "Weight of Miscellances in Ordi."	" Loaded Transpersely and Jour-	" Melted Volume of
SHEARING or Defrusive Strength, 782-783 "Experiments in Cast-iron, Steel, Treenaits, and Wood		Solar Day and Year
Experiments in Cast-iron, Sleet, Treenails, and Wood. 783 "Power to Punch Iron, Brass, or Copper, To Compute. 782 "Results of Experiments on, with a Punch Iron on With Parallel Cutters, Wro't-iron Bolts, Riveled Joints, and Various Materials. 783 Sheathing and Braziers' Sheets. 155 "Nails, Weight of. 135 Sheet Iron, Black and Galanized. 124, 129 "Weight of. 129 "Weight of. 129 "Sheet Iron, Black and Galanized. 124, 129 "Weight of. 129 Sheet Iron, Black and Galanized. 124, 129 "Weight of. 129 Sheet Iron, Black and Galanized. 124, 129 "Weight of. 129 Sheet Iron, Black and Galanized. 124, 129 "Of Body Heavier or Lighter than Water. 209 "Sheet Iron, Black and Galanized. 124, 129 "Of Blastic Fluids. 216 "Of A Fluid 209 "Of Mincellaneous Substances 114 "Of Proportions of Two Ingredients, that of Compound, or to Discover Adulleration. 216 "Weight of Ingredients, that of Compound being Given, To Compute. 218 "Weight of Ingredients, that of Compound being Given, To Compute. 218 "Weight and Volumes of Various Substances in Ordi."		Solders634-636
"Results of Experiments on, with a Parach "Results of Experiments on, with a Parach "" with Parallel Cutters, Wro't-iron Bolts, Riveled Joints, and Various Materials. "Sheathing and Brazier's Sheets "" Copper "" Nails, Weight of "" Copper "" Nails, Weight of "" Copper "" Of Body Soluble in Water "" Of Body Heavier or Lighter "" Of A Body Heavier or Lighter "" Of A Body Heavier or Lighter "" Of Liquids "" Of Miscellaneous Substances "" Of Miscellaneous Substances "" Of Dissoover Adulteration "" Of Dissoover Adulteration "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulter	" Experiments in Cast-iron, Steel,	Soldering 875
"Results of Experiments on, with a Parach "Results of Experiments on, with a Parach "" with Parallel Cutters, Wro't-iron Bolts, Riveled Joints, and Various Materials. "Sheathing and Brazier's Sheets "" Copper "" Nails, Weight of "" Copper "" Nails, Weight of "" Copper "" Of Body Soluble in Water "" Of Body Heavier or Lighter "" Of A Body Heavier or Lighter "" Of A Body Heavier or Lighter "" Of Liquids "" Of Miscellaneous Substances "" Of Miscellaneous Substances "" Of Dissoover Adulteration "" Of Dissoover Adulteration "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulteration "" Of Compute "" Of Dissoover Adulter	Treenails, and Wood 783	SOUND, Velocity of 195
" Velocity of, in Several Solids. 428 " With Parallet Catters,		mile
a Punch. 782 Wro't-iron Bolts, Riveted Joints, and Various Materials. 783 Sheathing and Braziers' Sheets. 155 Sheathing and Braziers' Sheets. 155 Sheet Iron, Black and Galvanized. 124, 129 Wright of. 129 SHEET FLEIS. 672 SHEELS and Shot, Piling of. 65 Shingles. 63 Shoemaker's Measure. 27 Short and Shells, Piling of. 65 Chalted and Drop. 96 No. Diameter, and Numbers of. 96 No. Diameter, and Numbers of. 96 Number of Pellets in an Oz. 501 Shrinkage of Castings. 218 Sarouds, Hemp and Wire. 173 SIDE LIGHTS, Fisibility of a Vessel's, 918 Weight of Engines. 662 Weight of Soluble in Water. 209 of Body Soluble in Water. 209 of a Pluid. 209 of Elastic Fluids. 215 of Allied and Drop. 966 No. Diameter, and Numbers of. 966 Window of Pellets in an Oz. 501 Shrinkage of Castings. 218 Sarouds, Hemp and Wire. 173 SIDE LIGHTS, Fisibility of a Vessel's, 918 Weight and Volumes of Various Substances in Ordi.		" Velocity of, in Several Solids 428
Wro't iron Bolts, Riveled Joints, and Various Malerials	a Punch 782	Soundings, to Reduce to Low Water. 60
Sheathing and Braziers' Sheets. 155 Sheathing and Braziers' Sheets. 155 Nails Weight of Copper. 131 Sheet Iron Black and Galvanized. 124, 129 Weight of. 129 SHELLS and Shot, Piling of. 65 Shingles. 63 Shoemaker's Measure. 27 Shoemaker's Measure. 29 of Liquids. 214-215 of Miscellaneous Substances 214 of Shilds. 210-214 of Poportions of Two Ingredients, that 20 of Compound being Given, 218 Weight and Volumes of Various Substances in Ordi.	" with Parallel Cutters,	Spars and Poles 62
Sheathing and Braziers' Sheets. 155 Copper 131 Nails, Weight of. 135 Sheet Iron, Black and Galvanized. 124, 129 Weight of. 129 SHEET PRENG. 672 SHEELS and Shot, Piling of. 65 Shingles. 63 Shoemaker's Measure. 27 Shoemaker'		SPECIFIC GRAVITY AND WEIGHT208-215
Nails Weight of. 135 Sheet Iron Binekand Galvanized. 124, 129 Winght of. 129 Winght of. 129 Sheet Iron Binekand Galvanized. 124, 129 Sheet Iron Galvanized. 124, 125 Sheet Iron Galvanized. 124, 129 Sheet Iron Galvanized. 124, 125 Sheet Iron Galvanized. 124, 12		" Given Weight of a Body, To
Sheet Iron, Black and Galvanized. 124, 129 World of. 129 SHEET FLEISH 672 SHEELS and Shot, Piling of. 65 Shingles. 63 Shoemaker's Measure. 27 Shor and Shells, Piling of. 65 Chalket and Drop. 96 No. Diameter, and Numbers of. 96 Number of Pellets in an Oz. 501 Shrinkage of Castings. 218 Sarouds, Hemp and Wire. 173 SIDE LIGHTS, Visibility of a Vessel's, 918 Wights, Area of Hlades and Slip 662 May Gengines. 662 World Indiana. 135 Wights, Area of Hlades and Slip 662 World Engines. 662 Weight and Volumes of Various Substances in Ordi.	Copper 131	" of a Rody Soluble in Water one
Weight of		" of a Body Heavier or Lighter
SEELS and Shot, Piling of. 65 Shingles. 63 Shoemaker's Measure. 27 Shor and Shells, Piling of. 65 Childe and Drop. 966 No. Diameter, and Numbers of. 966 Namber of Pellets in an Oz. 501 Shrinkage of Castings. 218 Saronds, Hemp and Wire. 173 Side Liants, Visibility of a Vessel's, 918 Wights, Area of Hudes and Slip 662 an of Engines. 662 "Of Liquids. 214-215 of Miscellaneous Substances 214 of Solids 2210-214 of Poportions of Two Ingredients, of the Discover Adulteration. 216 Weight of Ingredients, that of Compute. 228 "Weights and Volumes of Various Substances in Ordi-	Sheet Iron, Black and Galvanized, 124, 129	then Water
SEELS and Shot, Piling of. 65 Shingles. 63 Shoemaker's Measure. 27 Shor and Shells, Piling of. 65 Childe and Drop. 966 No. Diameter, and Numbers of. 966 Namber of Pellets in an Oz. 501 Shrinkage of Castings. 218 Saronds, Hemp and Wire. 173 Side Liants, Visibility of a Vessel's, 918 Wights, Area of Hudes and Slip 662 an of Engines. 662 "Of Liquids. 214-215 of Miscellaneous Substances 214 of Solids 2210-214 of Poportions of Two Ingredients, of the Discover Adulteration. 216 Weight of Ingredients, that of Compute. 228 "Weights and Volumes of Various Substances in Ordi-	Sheer Pring	" of Elastic Fluids 215
Shingles. 63 Shoemaker's Measure. 27 Short and Shells, Piling of. 65 • Chilled and Drop. 966 • No. Demacter, and Numbers of. 966 • Number of Pellets in an Oz. 501 Shrinkage of Castings. 218 Sarouds, Hemp and Wire. 173 Sine Liaurs, Fisibility of a Vessel's, 918 **Wights, Arraof Hudes and Slip 662 on of Engines. 662 **Weight and Volumes of Various Substances in Ordi-	SHELLS and Shot, Piling of 65	9 0 1 1000 1111111111111111111111111111
Shore Haker's Massiles of Solids 210-214 Shore Shells Piling of 65 Chilled and Drop 950 No. Diameter, and Numbers of 950 Nimber of Pellets in an Oz 501 Shrinkage of Castings 218 Shrouds, Hemp and Wire 173 Stor Laurs, Visibility of a Vessel's, 918 Wissels, Arraof fluites and Slip 662 On of Engines 662 "Weight and Volumes of Various Substances in Ordi-	Shingles 63	5 Billiania
**O' Chilled and Drop. 906 No. Donneter, and Numbers of. 906 Nouther of Pellets in an Oz. 501 Shrinkage of Castings. 218 Sirouds, Henp and Wire. 173 Side Liants, Visibility of a Vessel's, 918 **Wight of Ingredients, that of Compound being Given, To Compute. 218 **Wight of Audies and Slip 662 on of Engines. 662 **Weight of New York 1909 Compound being Given, To Compute. 218 **Weights and Volumes of Various Substances in Ordinary 1909 **Weight of Market 1909 **Weight of Steam. 706 **Proportions of Two Ingredients in Compound, or to Discover Adulteration. 216 **Weight of Market 1909 **Weight of Market		" of Solids210-214
No. Diameter, and Numbers of. 906 Number of Pellets in an Oz. 501 Shrinkage of Castings. 218 Sarouds, Henp and Wire. 173 Side Ligars, Visibility of a Vessel's, 918 Wiggers, Area of Hudes and Slip 662 On of Engines. 662 Weight of Ingredients, that of Compound being Given, To Compute. 218 Weights and Volumes of Various Substances in Ordi-	* Chilled and Drop	" or Density of Steam 706
Number of Pellets in an Oz	No. Diameter, and Numbers of, 906	I roportions of 1 wo Ingre-
Stronds, Hemp and Wire	" Number of Pellets in an Oz 501	to Discover Adulteration 216
Sine Lights, Visibility of a Vessel's, 918 Sine Lights, Area of Bludes and Slip 662 Weights and Volumes of Various Substances in Ordi	Shrinkage of Castings 218	" Weight of Ingredients, that
"Weights and Volumes of Va- m of Engines		of Compound being Given,
on of Engines 662 rious Substances in Ordi-	** WHEEL Area of Plates and Str. Co.	To Compute 218
Wayd Vaan / nami Tas as as as	ion of Engines	rious Substances in Ordi.
	Maul Vaan	() manus T700

Page	Page
of Vessels 971	STATICE, Equilibrium of Force 616
SHIP, BOAT, and Railroad. 152, 154	" Inerlia of a Revoluing Rody 6.6
ud Horseshoes	"Spherical Triangles 387
A Maile Detention of	" Specific Heat505-507
id Nails, Retentiveness of 159	of Air and Gases. 505
meral Remarks159-160	Statues Dumamida ata
up and Railway 970	Statues, Pyramids, etc
ro't-iron Nails and Tacks 154	STAY BOLTS, Diameter, Pitch, etc 754
To Describe 230	
Towers, Columns, etc 180, 032	STEAM, Elements of, etc640-643. 704-727
Strength of, To Compute 67	and Air, Mixture of 737
Strength of, To Compute 67 nus Liquors, Dilution per Cent. 191	"Blowingoff, Salurated Water, Loss
" Dilution To Reduce 101	of Heat by, To Compute 726-727
" Proof of 218	" "Volume Blown off to that
" Proportion of Alcohol 191	Evaporated, To Compute 222
Deflection of 779	" Clearance, Effect of 715
ar 911	"Coal, Utilization of, in a Boiler, 726
_	"Combined Ratio of Expansion
AND CUBE ROOT, Square or	and Final Pressure in 2d Cul.
Cube, and when Number is	inder, To Attain 723
an Odd Number300-302	Concensation of in Cast iron
f Decimals alone, To A scertain, 302	Pipes
f a Higher Number than con-	Pipes515-516 " Condensed per Sq. Foot and per
tained in Table, To Compute 301	
f a Number consisting of In-	" of Expanded, per H of Ef.
tegers and Decimals, To As-	fact new House
certain301-302	fect per Hour 716 Consumption of Fuel in a Fur-
loom To Enforce	mass To Commute
" or CUBE ROOTS of Roots,	mace. To Compute725-726 "Cutting Off, Point of, for a Given
Whole Numbers, and of	Datie of Borne
Integers and Decimals,	Ratio of Expansion 711
	" Point of, to Attain Limit
To Ascertain97-98	of Expansion
o Ascertain One that has	Cylinder, Net Volume of for
trea as a given Circle 259	Given Weight of Steam, etc.,
CUBES, AND SQUARE AND	To Compute
CUBE ROOTS272-302	Denien of Special Grantu of 206
ides of, Equal in Area to a	" Effect for One Stroke and a
	Given Combined Ratio of
Circle258-259	Expansion723-724
r, Elements, etc693-703	Retaile, of Equal Volumes. 714
gles of Equilibrium of 604	" Total of 1 Lb. of Expanded,
namical and Statical 651	714-715
rthwork, Centre of Pressure	" Effective Work in One Stroke as
f 696	Given by an Indicator Dia.
silibrium and Stability, To	gram, To Compute
Compute701	" In the second of the second
MOTANAA	Blushe Force and Temperature
nent of, and To Compute. 693, 701	of Vapors of Alcohol, Ether, Sulphuret of Carbon, Petro-
a Body on a Horizontal	Sulphuret of Carbon, Petro-
Plane or on an Inclination,	leum, and Turpentine 707
694-695	leum, and Turpentinc 707 "Expanded, Consumption of per
Fixed or Floating Body. 693	HO Effect per Hour 716
full of a Vessel or Floating	" Expansion, Points of
ody, To Determine 650	Effects of
arying Models 649	" Point of Cutting off Actual
ical and Dynamical, To	Ratio of, Pressure at any Point
ompute	of. Mean or Average, and Final
7ht of a Body, To Sustain a	Effective or Initial, To Com-
inen Thrust	pule
iven Thrust693-694	" Expansive Force of
Food and Inom	pute
Food and Ivory 876	Temperature, To Compute 719
Remove	" Gain in, and Initial Pressure,
oportion of, in Vegetables. 205	inhen Acting Programming
city of 198	when Acting Expansively,
615-616	compared with Non-expan-
esition and Resolution of	sion or Full Stroke
ves 615	"Gaseous, Total Heat, and ity of, To Compute
015	uy of, To Compute

Simo on Studence Co. of K. V.	Page	:
ALABAMA RECOMMENDS NO. 10. 12. T	004	STRAIL COMPOUND EXPLINED
and Isoliers	937	for One Broder und
· increasion of boar or bob		
ment To Hemore	726	To Compute
" indicator Mean Pressure by To		" Effect for Our Strok
Compute	724	Given Combined
· Injector by Hyperbolic	73É	Ratio of To Comen
" Mean Premure by Hyperbolic		" Expansion in a Co
Logarilani. To Compute712	-7 3	" Expansion in a Co Engine. To Co
" Mercennical Rentication of	700	" " From Bessiner.
	954	" "Fina! Pressure
Pripa and Janag	212	" " Weelf Engine, Ratio
* Poper Gar. etc., Dimensions and		pansion, suc
Weight of	т3B,	" SATURATED, Total Heat 1
" Fiam! Cut of Coal and Labor in		zorution of
Superation of rest 11	951	" Energy and Effici
Fremoure in Line of Mercury	70£	To Committe
" Weight of a Cube Foot. Fremure and Tempera-		" " Latent and Total 1
Pressure and Tempera-		Tr. Comments
ture. To Compute	795	" "Pressure Temperara
" na c Offinder, at any Point		ume, and Dennite
of Exponenium, or at End		" Properties of, of Hi
of Mirole. To Compute	711	Density
" Premurex Mean Final Effective.		" " Vapors. Pressure (
Initial or Total Average. To		4. Seminary comp. Black or
Compute	711 .	" SUPERHEATED. Emergy on
Saline Matter Proportion of in Sea water Saturation in Boilers.	•	
dea-water	727	" Expansion Effect
" baturation in Boilers	726	Equal Volumes and One
" Specific Granity of724,	705	100 Lbs. Pressure
" of compared with Air, To	•	STEAMBOAT, Iron, First built.
Commende	706 .	SIEREMAL, 170A, 2 av at Osmit.
Compade * Surface Condenuation, Experi-	•	STEAMBOATS, RIVER, AND ENGI
mente ou	011	Passages of
wente on	036	" Wood and Biver Side-wi
" of orde a Vacuum	704	" " Ferry. Passenger, To
" Volume of Cylinder for a Given	i	Tow-Boats
Effect. esc	715	
		" Passenger and Deck.
" of Water at any Given		1 meeting trees trees
Effect. etc of Water at any Given Temperature Mixed with		" Passenger and Deck. " Stern-wheels
" of Water at any Given Temperature Mixed with it to Raise or Reduce		" Passenger and Deck. " Stern-wheels STEAM-ENGINE, Elements of, et
it. (v Baise vr Beduce		" Stern-wheels
il le Baise messa with it le Baise or Reduce Misture to any Required Temperature, To Ormande		STEAM-ENGINE, Elements of, et and Sugar-Mill, Weigh
il le Baise messa with it le Baise we Reduce Misture to any Required Temperature, To Ormande		" "Stern-wheels STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Bollers in Foreign Co " and Bollers, Cost of Ox
il le Baise messa with it le Baise we Reduce Misture to any Required Temperature, To Ormande		" "Stern-wheels STEAN-ENGINE, Elements of, et and Sugar-Mill, Weigh "Boilers in Foreign Co and Boilers, Cost of Opper Day of 10 Hours.
10 mgcranar mena wil. (v Reise or Reduce Misture to any Required Femperature. To Ownpute " of Water Evayorated per Lh. of Coal, To Com-	707	" "Stern-wheels STEAN-ENGINE, Elements of, et and Sugar-Mill, Weigh "Boilers in Foreign Co and Boilers, Cost of Opper Day of 10 Hours.
10 mgcranar mena wil. (v Reise or Reduce Misture to any Required Femperature. To Ownpute " of Water Evayorated per Lh. of Coal, To Com-	707	" Siern-wheels. STRAM-ENGINE, Elements of, el " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers, Cost of Oy per Day of 10 Hours. " Circulating Pumps, Vo etc.
1 congercature memor and to the Residence Master to any Required Femographer To Compute to Grant To Computer to Conference of Water in a Given Volume of and of a Cute Foot of.	7º7 7º5	" Sicra-wheels." STRAN-ENGINE, Elements of elements of elements of Sugar-Mill, Weight "Bollers in Foreign Co " and Bollers. Cost of Ogper Day of 10 Hours. "Circulating Pumps, Vo etc. "Condenser or Reserve
1 congercature memor and to the Residence Master to any Required Femographer To Compute to Grant To Computer to Conference of Water in a Given Volume of and of a Cute Foot of.	7º7 7º5	" Sicra-wheels." STRAN-ENGINE, Elements of elements of elements of Sugar-Mill, Weight "Bollers in Foreign Co " and Bollers. Cost of Ogper Day of 10 Hours. "Circulating Pumps, Vo etc. "Condenser or Reserve
1 congercature memor and to the Residence Master to any Required Femographer To Compute to Grant To Computer to Conference of Water in a Given Volume of and of a Cute Foot of.	7º7 7º5	" Siern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers. Cost of Og per Day of 10 Hours. " Circulating Pumps, Vo etc. " Condenser or Reservoo perature of Water Connect.
Mintere to any Required Mintere to any Required Temperature. To Compute "I Water Evaporated per Liv. of Coal, To Compute "Of Water in a Given Volume of and of a Cube Foot of, To Compute. "Of Water and Given Volume of the Raise a Given Volume "I Water and Given Volume "I Water a	7º7 7º5	" Siern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers. Cost of Og per Day of 10 Hours. " Circulating Pumps, Vo etc. " Condenser or Reservoo perature of Water Connect.
1 congertante m was a visit to Review or Reduce Misther to any Required Temperature. To Compute "of Water Evaporated per Lt. of Coal. To Compute "of Water in a Given Volume of and of a Cube Foot of, To Compute "Of Water to any Given of Water to any Given	7º7 7º5 7º6	" Siern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers. Cost of Og per Day of 10 Hours. " Circulating Pumps, Vo etc. " Condenser or Reservoo perature of Water Connect.
1 congertante m was a visit to Review or Reduce Misther to any Required Temperature. To Compute "of Water Evaporated per Lt. of Coal. To Compute "of Water in a Given Volume of and of a Cube Foot of, To Compute "Of Water to any Given of Water to any Given	7º7 7º5 7º6	" "Stern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh "Boilers in Foreign Co " and Boilers. Cost of Ogper Day of so Hours. "Circulating Pumps, Vo etc. "Condenser or Reservous perature of Water Compute. "Dimensions of Cytinder and Heating Surfo
icingeraume muse and min is to Reduce Master to any Required Temperature. To Compute " of Water Evaporated per Li. of Coal, To Compute of Mater in a Given Volume of and of a Cute Foot of, To Compute. " of to Raise a Given Volume of Water to any Given Temperature	7º7 7º5 7º6	" Stern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers. Cost of Ogper Day of so Hours. " Circulating Pumps, Vo etc. " Condenser or Reservon perature of Water Compute. " Dimensions of Cytinder and Heating Surfo. " Distance of Pistan for
Mindre Russe or Reduce Mindre to any Required Femperature To Oumpute "of Water Evaporated per Li. of Coal, To Compute "of Water in a Given Volume of and of a Cube Poot of, To Compute. "of Water to any Given of Water to any Given Temperature	707 725 706 -707	" Stern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers. Cost of Ogper Day of so Hours. " Circulating Pumps, Vo etc. " Condenser or Reservon perature of Water Compute. " Dimensions of Cytinder and Heating Surfo. " Distance of Pistan for
Mindre Russe or Reduce Mindre to any Required Femperature To Oumpute "of Water Evaporated per Li. of Coal, To Compute "of Water in a Given Volume of and of a Cube Poot of, To Compute. "of Water to any Given of Water to any Given Temperature	707 725 706 -707	" Stern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers. Cost of Ogper Day of so Hours. " Circulating Pumps, Vo etc. " Condenser or Reservon perature of Water Compute. " Dimensions of Cytinder and Heating Surfo. " Distance of Pistan for
Minderature Manda with the Rose or Reduce Mintere to any Required Temperature. To Ormpute of Water Evaporated per Lt. of Coal, To Compute of Water in a Given Volume of and of a Cube Foot of, To Compute. """ Of Water in a Given Volume of Water to any Given Tomperature. "To Mater to any Given Temperature. "To "Weight and Effect of, for other Pressures than 100 Lis., Multipliers for." "Wire-drawing of, "Yeduta, Relative Velocities of,"	707 725 706 -707	" Stern-wheels." STEAN-ENGINE, Elements of, et " and Sugar-Mill, Weigh " Boilers in Foreign Co " and Boilers. Cost of Ogper Day of so Hours. " Circulating Pumps, Vo etc. " Condenser or Reservon perature of Water Compute. " Dimensions of Cytinder and Heating Surfo. " Distance of Pistan for
Minderature Manda with the Rose or Reduce Mintere to any Required Temperature. To Ormpute of Water Evaporated per Lt. of Coal, To Compute of Water in a Given Volume of and of a Cube Foot of, To Compute. """ Of Water in a Given Volume of Water to any Given Tomperature. "To Mater to any Given Temperature. "To "Weight and Effect of, for other Pressures than 100 Lis., Multipliers for." "Wire-drawing of, "Yeduta, Relative Velocities of,"	707 725 706 -707	" Sicra-wheels." STEAN-ENGINE, Elements of, et and Sugar-Mill, Weigh Bollers in Foreign Co and Bollers. Cost of Og- per Day of so Hours. "Circulating Pumps, Vo etc
Mindergramme Minde with the Rose or Reduce Mistarct to any Required Femogramer To Compute "of Water Evaporated per Li. of Coal, To Compute of Mater in a Given Volume of and of a Cute Foot of, To Compute. "Of to Raise a Given Volume of Water to any Given To Weight and Effect of, for other Pressures than 100 Lis., Multipliers for" Wire-drawing of. "I what, Relative Velocities of, from Elements of their Conference of Mindel, Relative Velocities of, from Elements of their Con-	707 725 706 -707 719 718	" Sicra-wheels." STEAN-ENGINE, Elements of, et and Sugar-Mill, Weigh Bollers in Foreign Co and Bollers. Cost of Og- per Day of so Hours. "Circulating Pumps, Vo etc
Ministrate to any Required Ministrate to any Required Temperature To Compute "of Water Evaporated per Li. of Coal, To Compute "of Water in a Given Volume of and of a Cute Foot of, To Compute. "of to Raise a Given Volume of Water to any Given Temperature	7°7 7°5 7°6 -7°7 7°19 7°18	" Stern-wheels." STEAN-ENGINE Elements of et and Sugar-Mill, Weigh Boilers in Foreign Co and Boilers. Cost of Ogper Day of so Hours. "Circulating Pumps, Voetle." "Condenser or Reservous perature of Water Compute. "Dimensions of Cylinder and Heating Surfo Compute. "Distance of Piston fre of Stroke, when Lee duces its Effect, and Steam is Admitted turn Stroke.
10 in geraunt m was a with the Rose or Reduce Missisure to any Required Temperature. To Oungoate of Water Evaporated per Lt. of Coal, To Compute of Mater in a Given Volume of and of a Cube Foot of, To Compute	725 706 707 719 718	" Sicra-wheels." STEAN ENGINE, Elements of, elements of elements of elements of elements of elements of or and Sudiers in Foreign Co. and Boilers. Cost of Organ Day of 10 Hours. "Circulating Pumps, Vocit." "Companier of Water Compute. "Dimensions of Cylinder and Heating Surfo Compute. "Distance of Piston free of Stroke, when Lee duces its Effect, and Steam is Admitted turn Stroke. "Feed Pump, Area 47, 1 pute. "Fire, Elements, etc"
10 in geraunt m was a with the Rose or Reduce Missisure to any Required Temperature. To Oungoate of Water Evaporated per Lt. of Coal, To Compute of Mater in a Given Volume of and of a Cube Foot of, To Compute	725 706 707 719 718	" Stern-wheels." STEAN-ENGINE, Elements of el and Sugar-Will, Weigh Boilers in Foreign Co and Boilers. Cost of Oxper Day of 10 Hours. "Circulating Pumps, Voetc." "Condenser or Reservor perature of Water Compute. "Dimensions of Cylinder and Heating Surfa Compute. "Distance of Piston fre of Stroke, when Lea duces its Effect, an Steam is Admitted furn Stroke. "Feed Pump, Area y, 1 pute. "Fire, Elements, etc" "Fire, Elements, etc"
10 in geraunt m was a with the Rose or Reduce Missisure to any Required Temperature. To Oungoate of Water Evaporated per Lt. of Coal, To Compute of Mater in a Given Volume of and of a Cube Foot of, To Compute	725 706 707 719 718	" Sicra-wheels." STEAN-ENGINE, Elements of, et and Sugar-Mill, Weigh Boilers in Foreign Co and Boilers. Cost of Or per Day of so Hours. "Circulating Pumps, Vo etc
1 Comportance Musica visita in the Raise or Reduce Mistare to any Required Temperature To Compute "of Water Evaporated per Li. of Coal. To Compute of Mater in a Given Volume of and of a Cube Foot of, To Compute. "of the Raise a Given Volume of Water to any Given Temperature. "The Compute of Water to any Given Temperature. "The Resures than 100 List. Multipliers for "Wire drawing of." Velocities of, from Elements of their Construction, To Compute. "Composed Expansion, Elements of, etc. "12, 72." "Combined Batio of and Final "Combined Batio of and Final	725 706 -707 719 718 928	" "Stern-wheels." STEAN-ENGINE, Elements of, et and Sugar-Mill, Weigh Boilers in Foreign Co and Boilers. Cost of Or per Day of 10 Hours. "Circulating Pumps, Vo etc" Condenser or Reservon perature of Water Compate "Dimensions of Cytinder and Heating Surfo Compute" Distance of Piston fre of Stroke, when Lee duces its Effect, am Steam is Admitted turn Stroke "Feed Pump, Area 9, 1 pute
1 Comportance member with the Rose or Reduce Mistare to any Required Temperature To Compute "of Water Evaporated per Lt. of Coal. To Compute of Mater in a Given Volume of and of a Cute Foot of, To Compute a Given Volume of the Raise a Given Volume of Water to any Given Temperature	725 706 707 719 718 928	" Stern-wheels." STEAN-ENGINE, Elements of, et and Sugar-Will, Weigh "Bollers in Foreign Co and Bollers in Foreign Co and Bollers. Cost of Ogper Day of 10 Hours. "Circulating Pumps, Voetc." Condenser or Reserved perature of Water Compate. "Dimensions of Cylinder and Heating Surfo Compute." "Distance of Piston fre of Stroke, when Lea duces its Effect, and Steam is Admitted turn Stroke" "Feed Pump, Area 9, 1 pute" "Fire, Elements, etc" "Fire, Elements, etc" "Pof, To Compute" "Admirally and F" "Inicetion Pine. Area
1 Comportance member with the Rose or Reduce Mistare to any Required Temperature To Compute "of Water Evaporated per Lt. of Coal. To Compute of Mater in a Given Volume of and of a Cute Foot of, To Compute a Given Volume of the Raise a Given Volume of Water to any Given Temperature	725 706 707 719 718 928	" Stern-wheels." STEAN-ENGINE, Elements of, et and Sugar-Will, Weigh "Bollers in Foreign Co and Bollers in Foreign Co and Bollers. Cost of Ogper Day of 10 Hours. "Circulating Pumps, Voetc." Condenser or Reserved perature of Water Compate. "Dimensions of Cylinder and Heating Surfo Compute." "Distance of Piston fre of Stroke, when Lea duces its Effect, and Steam is Admitted turn Stroke" "Feed Pump, Area 9, 1 pute" "Fire, Elements, etc" "Fire, Elements, etc" "Pof, To Compute" "Admirally and F" "Inicetion Pine. Area
Mindre Mindre Mindre Mindre Mindre Mindre Mindre Longueratore To Compute of Water Evaporated per Lt. of Coal, To Compute of Water in a Given Volume of and of a Cube Foot of, To Compute. "" of Water in a Given Volume of and of a Cube Foot of, To Compute. "" of the Raise a Given Volume of Water to any Given Temperature. 706. "Weight and Effect of, for other Pressures than 100 Lbt., Multipliers for. "Yealts, Belative Velocities of, from Elements of their Construction, To Compute. "Compored Expansion, Elements of, etc. 712, 720 "Combined Ratio of and Final Pressure in 2d Cylinder, Pressure in 2d Cylinder.	725 706 707 719 718 928	" Stern-wheels." STEAN-ENGINE, Elements of, et and Sugar-Will, Weigh "Bollers in Foreign Co and Bollers in Foreign Co and Bollers. Cost of Ogper Day of 10 Hours. "Circulating Pumps, Voetc." Condenser or Reserved perature of Water Compate. "Dimensions of Cylinder and Heating Surfo Compute." "Distance of Piston fre of Stroke, when Lea duces its Effect, and Steam is Admitted turn Stroke" "Feed Pump, Area 9, 1 pute" "Fire, Elements, etc" "Fire, Elements, etc" "Pof, To Compute" "Admirally and F" "Inicetion Pine. Area

Page	1	Page
Portable, Standard	STEEL640-643, 750, 783, 787-788, " and Iron, Corronion of	827
m of, and Elements	" and Iron, Corrosion of	908
737	" and Iron, Corrosive Effects of	
Slip and Thrust, To	Salt Water	916
730-731	" Guns	913
n of Parts, Condens	" Hemp, Iron and Steel Wire Ropes,	
Non-condensing.727-729	Relative Dimensions of	172
f Experiments on	" and Iron Rope, Round and Flat and Safe Load164-	
n of	" " Iron and Steel Wire Rope	164
, Friction of 478	" Hexagonal, Octagonal, and Oval.	125
ector and Volume of	" Locomotive Tubes	118
Discharged per Hour 736	" Manufacture of, Remarks on	642
, Elements and Ca-	" of a Given Section, Weight of. 136,	149
es of	" Plates	830
Beam, Jet Condens-	" "Thickness of	121
int of, To Compute 759	" "Weight of118-119,	140
f Water Required to	" Weight of	134
Evaporated in734-735 Circulating Water	Wire Weight of	135
	" Wire, Weight of120- Sterling, Pound, etc	131
ruired in 735 Feed Water and In-	Stings and Burns. Application for	106
ion Water Required	Stings and Burns, Application for Stirling's Mixed Iron	785
IP per Hour 736	Stirrups or Bridles, for Beams	838
w through an Injec-	STONE and Ore Breakers and Crusher,	-
. Dina	903.	057
100ls, Radial and	" Dressed, Modes of	603
ng, and Elements of. 730	" Hauling	468
VES, To Compute and	" Load per Sq. Foot	915
n Lap and Breadth	" Load per Sq. Fool	600
731	" Asniar and Idiooleboo-	OOL
of Piston from Rad	Acceptance of, to A recently	184
e given, To Compute	"Sawing196, "and Dressing, Cost of	904
Lead of Locomotive	" Voids in a Cube Yard of	949
	7 0000 000 0000 1 000 0000	-
roke any Given Lap	STONES, CEMENTS, etc., Crushing of.	700
off, To Compute 731	(See Crushing Strength, 764–769.) "Building, Expansion and Con-	
which Exhausting	traction of	184
t is Closed, etc 732		198
) Compute 732	Streams, Rivers, and Canals, Flow of	-,-
Results of Operation		550
727 024 023 054		
737, 924, 933, 954 rs, Weights of with	STREET RAILS OR TRAMWAYS. 435, 915, "RAILE ADS, Experiments on Mo-	910
ater 929	tors Result of	
ults of Performances	tors, Result of " Cost of Maintenance	0:8
nd Relative Cost of	" ROADS and Parements686-	600
nd Relative Cost of		•
al Effects 757 Efficiency of 737	STRENGTH OF MATERIALS, Elements	0
ls, Propeller and Ma-	of761-	041
	" ELASTICITY AND STRENGTH, Co-	_
ights of758–759	hesion and Resilience.761-	703
	" "Coefficient of761- " Modulus, Height of Weight	702
Power Utilized in 662	of, Various Materials. 762-	-760
to, in Air and Waler 911	" of To Compute	702
R. Ordinary Distri- of Power in 911	" of To Compute " of Elasticity, Height of To	
	Compute 763-	764
Eastern " 173	" "Resilience, Comparative, of	
ion of Screw 478	Woods	7' 3
** Built 915	" "Weight a Material will Bear	
Velocities of Yachts,	without Permanent Alter	
ts of Construction,	ation of its Length	•
	" COHESION, Modulus of	
86 86		

Page	Page
STRENGTH OF MATERIALS, CRUSHING,	STRENGTH OF MATERIALS, Results of
Elements of, etc764-769	Experiments on Subjec-
" "Bricks	tion of Cast-iron Bars to
" " Cast and Wro't Iron, Woods	Continued Strains 780
and Various Metals 765	" "Riveted Beams of Wro't
" " Column of Wood, Destruc-	Iron and Weight of 774-775
tive Weight of and Coeffi-	" "Rolled Beams of Wro't
	7
cients of, To Compute 769	" "Shaft from its Weight alone 778
Cotamina, Arches, Chorus,	" Shafts and Distributed
etc., of Cast Iron, Safe	Shoyle and Distributed
Load of766-767	Weight for Limit 778
" " Weight of, To Compute. 768	" " Mill and Factory, and
" "Cylinders and Rectangular	To Compute 779
Tubes of Wro't Iron 767	" "Springs, Carriage and In-
" Elastic Limit compared to 764	dia-rubber779
" "Granite, Limestone, Marble,	" "Working Strength or Fac-
and Candatana	town of Carfely
and Sandstone 767	tors of Safety781-782
110000 Cotamina of Lages,	
Safe Load of 768-769	" DETRUSIVE OR SHEARING, Ele-
" " Ice 912	ments of, etc782-783
" "Long Solid Columns, Com-	" " Comparison between Trans-
parative Value of 769	verse
" " Notes and Effects, Season-	" Length of Surface of Wood
ing ota	to Hamisantal Thurst -0-
ing, etc	to Horizontal Thrust 782
	oj metaus with a Funch 782
Tecacio Paras of Prious,	of Reveleu Joines, Cast Iron,
Strength and Stiffness	Steel, Treenails, and Woods 783
Combined 769	" of Rivets and Memoranda, 830
" Sandstones, Stones, Cements,	" of Various Metals by Par-
Masonry. etc765-766	allel Cutters 783
" " Various Materials765-769	" of Woods 782
7 W 15 W 11 W 12 W 13 W 15	ii ii of Wro't iron -0-
" DEFICION Flomente of ato	" " of Wro't-iron
DEFERGITION, Elements of, etc.,	
770-781	on and by U. S. N 783
" " and Weight Borne by a Bar	" Power to Punch Iron, Brass,
or Beam of Wro't Iron 773	or Copper, To Compute 782
" "Bars, Beams, Girders, etc.,	/ /
770-771	"TENSILE, Elements of, etc 784-790
" " Beams of Rectangular Sec-	" " Average Elasticity of Steel
tion, Formulas for 771-773	Bars and Plates 788
" "and Comparative Strength	" " Cast Iron, Stirling's Mal-
and Comparative Strength	Cast Iron, Burting a Mat-
of Flanged 778	leable, and Wrought784-785
ana triacis	Ducting and maneability
" " Elastic Strength of, of	of Metals, Ratio of 787
Unsymmetrical Section 778	" "Elements connected with
" " Flanged, and Weight of	Various Substances 786
that may be Borne by	" "Manganese Bronze 832
One of Cast Iron 777-778	" "Memoranda on Reheating,
" " of Cast and Wro't-iron,	Temperature, Annealing,
and Woods 772-774	Cold Rolling, Hammer-
" " or Girders, Continuous. 772	
" " Pagrings Admissible Dis.	ing, Welding, Culting
British, Mantabatoto Bib-	Threads, Case Harden-
tances between 778	ing, and Galvanizing 786
" " Cast Iron Flanged Beams	of various metats, woods,
and ComparativeStrength	and Miscellaneous Sub-
of 80g	stances788-790
" " General Deductions 779-780	" of Wood in Various Posi-
" " Girders, Tubular, of Wro't	tions 870
	tions
Iron	by Cos of O F -000
Time, Transpea, Tron and	by Soc. of C. E787-788
Steel	Attocirit with Weinen Joines
Recidingular Beam of Iron	of Wro't-iron Plates 828
and Woods, Load that	" "Steel, Crucible, Bessemer,
may be Borne by 773	Fagersta's and Siemen's
" " Bars and Beams of Cast	Experiments on 787
Iron and Various Sec-	" Wro't Iron Tie-rods, Exper-

INDEX.

	Page	Page
GTH	OF MATERIALS. Relative	STRENGTH OF MATERIALS, Cast Iron
	Resistance of Wro't-iron	Beams or Girders of Va-
	and Copper to, and Com-	rious Figures, To Com-
	pression	pule814-821 " " of Various Figures of,
Tope	HONAL, Elements of, etc. 790-797	" " " of Various Figures of,
1080	he Co and Cudgoons	708, 800, 813-817
9	hafts and Gudgeons 790-792	" " Centres of Gravity and of
6	ast Steel and Coefficients	Crushing and Tensile
	of	Strength of a Girder or
" G	udgeons, Diameter of, To	Beam, To Compute 819
	Compute 795	ii ii Congresse Compute oto 9-0
11 F	Iollow, Round, and Square	Concretes, Cements, Cu 800
-		" "Cylinders, Flues, and Tubes,
	Shafts and Cylinders, To	Elements of within Elas-
	Compute792-794 hafting, Coefficients for	ticity, To Compute827-828
" S	hafting, Coefficients for	" " Cylindrical and Elliptical
	Uurmate Kesistance oj., 797	Beams or Tubes of Wro't
"S	hafts of Oak or Pine, To	
	Compute793-794	Iron
66	"Couplings or Sleeves,	Diameter of a Cyciniter to
	and Supports for 796	Support a Given Weight,
44	" Diameter of, to Resist	804-805
	Lateral Stress, To	" " Depth of Beam to Support
	Commute	a Uniform Load 808
46	" " and Townel of for	" " Elastic of Wro't Iron Bars. 808
•••	Compute791-792 "" and Journal of for a Water-wheel 571	" " Elliptical-sided Beams, Side
	" " of a Wron't Imam Cam	or Curve, To Determine 826
••	Of the Man of Those Cess.	" "Equilateral Triangle or T
	tre Shaft 794	Beam, To Compute 804
"	" " of to Resist Torsion	" " Flanged Beams of Cast Iron,
	and Weight 792	Comparative Strength
44	" Hollow, Diameter of to	and Deflection of 804
	Sustain its Load, etc. 792	" " Dimensions and Pro-
**	" Journals of, etc 796	portions of 809
44	" Mill and Factory, For-	" " Hollow or Annular
	mulas for 797 " of Wro't Iron for Ma-	Beams of Symmetri-
66	"of Wro't Iron for Ma-	cal Section 815
	rine Engines, For-	" " Floor Beams, Girders, etc.,
	mulas for Diameter. 796	1 too Beams, Graces, etc.,
66	" Round and Square, Ul-	of Wood, Capacity and El-
	timate Strength of, To	ements of, To Compute.835-838
	Compute	1 For matas and reacts for rec-
**	" to Resist Lateral Stress of 797	tangular Bars, Beams,
14.0	Various Metals and Woods,	or Cylinders801-803
0		" " for Destructive Weight
	793-794	of Solid Beams of Un-
RAT	ISVERSE, Elements of, etc.,	symmetrical Section,
	798-841	816-819
	officient or Factor of	" "General Deductions from
	Safety of Materials 802	Experiments824-825
4 1	Dan on Deam Fined on Sun	" "Girderor Cylindrical Shaft,
. 7	Bar or Beam, Fixed or Sup-	
	ported, bears Weights	Lower Flange of, Sec-
	at Unequal Distances. 803	tion to Sustain a Safe
' <i>E</i>	Bars of Steel, To Compute,	Load in its Middle, To
	817, 827	Compute 817
•	" Hollow Girdersor Tubes,	" " Beam, etc., Factors of
C	omparative Value of 824-825	Safety 821
В	leam or Girder of any Sec-	" " Dimensions of and Load
	tion or Material, For-	on, To Compute 830-840
	mulas for817-818	" " Graphic Delineation of
	" or Shaft, Rectangular,	Stress 840
	Diagonal, etc., For-	" " Girders and Beams of Va-
	mulas for 817	rious Figures and
	Beams of Various Woods,	Sections, Symmetrical
•	Safe Statical Load of and	and Unsymmetrical
,	Coefficients for834-835	
	Sottom Plate Area and De-	" " Beams, Lintels,
D	structive Weight of 810	Elements of.
Di	owstringGirder, Diameter	The country of the co
	of Tie-rod, To Compute 812	metrical Sect.

	Page	Page
STRENG	TH OF MATERIALS, Girders of	Strength of Materials, Solid Cylin-
	Wro't-iron, Plate 811-812	der and Hollow Cyl-
44	" Class Clobes and Culin	
••	"Glass Globes and Cylin-	inders of Various Ma-
	ders, Resistance to Inter-	terials
	nal Pressure and Collapse 831	" " Diameter of to Support
44	" Headers and Trimmers or	a Given Weight804-805
		(Statical Deador Line Load
	Carriage Beams, Elements	State at Dead of Live Louis
	of, To Compute836-838	Factors of Safety 841
44	" Homogeneous Beams of Un-	" " Steel and Bridge Plates and
	symmetrical Section, Ul-	
	dim at Changet at Ma	Rivets
	timate Strength of, To	Burs, 10 Compate 627
	Compute820-821	" "Stiffness of Materials 798
44	" Inertia of Beams, Moment	" "Stirrups or Bridles, Dimen-
	of 8.8_8.0	sions of, To Compute 838
"	"Inclined Beams, etc., of	" I Commetrical Cinder on
••	"Inclined Beams, etc., of	Symmetrical Giraer or
	Wro't Iron 811	Beam, Conditions of
44	" Lead Pipes, Resistance to,	Forms, etc825-826
		" " Trussed Beams or Girders,
	Thickness of, Weight, and	1 russed Dealles of Griders,
	Bursting Pressure, To	823-824
	Compute 831	" "Unequally Loaded Beams,
	" Manganese Bronze 832	etc 810
44	" Management Dromac	" " Various Materials and of
	" Memoranda on Joints, etc 830	ranous materials and by
"	" " on Metals 832	Various Figures. 798–801
"	" Metals 798	" " Metals, Comparative
46	" Miscellaneous Illustrations 826	Qualities of 821
"	Miscenditions Itemstrations 020	U U Wasa I ama Winter M.
••	" Neutral Axis of a Beam of	" "Woods, Large Timber, To
	Unsymmetrical Section,	Compute 833
	To Compute 820	" " Wro't-iron Joints, Propor-
64	" of a Beam in an Inclined	tion of Single Rivels. 829
	of a Beam in an Incined	tion of Bingie Ittocia. 629
	or Oblique Position 799, 804	C
"	" of Brick-work 801	STRENGTH OF MODELS644-645
44	" of Woods798-799, 800	" Dimensions of a Beam which a
44	" Data Jointa Double Pinet	Structure will Bear, To Com-
•••	" Plate Joints, Double Rivet-	
	ed and Strapped, Experi-	pute
	ments on 829	" Resistance of a Bridge from a
66	" Pressure on Ends or Sup-	Model, To Compute 645
		Stress, Moment of621-622
	ports of a Bar, Beam, etc. 803	Street Poilreads on Mrammans and
"	"Rails, Iron and Steel, To	Street Railroads or Tramways, and
	Compute 812	Result of Experiments on
44	" Rectangular and Cylindri-	Motors for 915
		" Cost of Maintenance 918
	cal Beams, Formulas	Cool of Mathematica gib
	and Coefficients for 805	Stucco591-592
44	" "Girders or Tubes 809	Suez Canal, Via
44	" Durintana Moment and	
	"Resistance, Moment and Work of, To Compute 818	Sugar Cane, and Beet Root 207
	work of, To Compute 818	" and Acid in Fruits 203
"	" Riveted Joints, Compara-	" and Water in Various Products 201
	tive Strength of 828	" in Mortar
**	" Rivets, Pitch, Lap, and Di-	" Mill Pollors
		Mill Rollers grr
	ameter of 829	" -Mills, and Engines, Weights of,
44	" Rolled Beams and Channel	759, 903, 908
	Bars, Safe Load and	Sulphuret of Carbon, Elastic Force
		Sulphinet of Carbon, Prastic Porce
	Weight of807-808	and Temperature of Vapor of 707
•••	·· ·· and Girders or Riveled	Sun, Heat, Diameter, etc 188
	Tubes of Wro't Iron,	" Heat of
	of Various Figures	Sunday Cycle on Cycle of the Parm
		the Demainised Yester
	and Sections, Destruc-	" or Dominical Letter 70
	tive Weight, To Com-	Sun-dial. To Set
	pate805	Sunstroke Remedy 938
"	" " and Channel Bars of	
		Surveying, Usejui Number in 09
	Wro't Iron of Various	a
	Sections806-808	Suspension Bridges178, 199, 842
66	" " Steel Beams 808-809	" Elements, Stress, and
44	" Scarfs, Relative Resistance	Pressure, To Compute 842
		" Horizontal Stress and
	<i>of</i> 841	1107 (20 mut Stress and
"	"Seasoning, Increase in	Vertical Pressure on
_	Strength of Woods 800	
	d Culinday To Compute 90	" Steel Cobles for ste

INDEX. XXXIX

Page	Page
DGES, Ratio of Stress	Theatres and Opera-Houses 180
ables at Point of Sus-	Thermometers, Reduction of 523
to whole Weight of	
	Throwing Weights by Men 439
Load, To Compute 842	Thrust, Weight of a Body, to Sustain a
nan and Animal 203	Given, To Compute 693
ments of a Working-	Tidal Phenomena 75
	Tide Table for Coast of H & S. S.
	The Table for Court of C. Is
207	11DES04, 198
439	Tide Table for Coast of U. S
	" of Pacific Coast
zic, and Formulas.22-23	" Rise and Fall of, Gulf of Mexico. 85
clers21-22	11 Mine of High Water
alents 190	" Time of High Water74-75
ts and Formulas 979	Tie-rods, Experiments on 787
na and Designations	TIMBER AND BOARD MEASURE 61
ng and Designations 932	
_	" AND WOODS, Elements, Notes,
T.	Treatment, etc865–870 "Comparative Weight of Green
ikes, etc., Wro't Iron 154	"Comparative Weight of Green
.0-	and Seasoned 217
	(See Wood and Timber, 865-870.)
1 570	
0-TANGENT8415-426	" Measure, and Volume of, To Com-
Compute 426	pule
" Degrees, Minutes,	" Strength of 870
	" Volume of Squared, To Compute 62
426	
of, in Substances 190	" Waste in Hewing or Sawing 62
in, to Sel out a Right	TIME, after Apparent Noon, before
69	Moon next passes meridian 75
,Orthography of. 970-977	C 60'66 Grid Ag G/ 6/60
501 chography 07.970-977	" Difference in81-83
in Masonry597-599	"Difference in81-83 " of, between New York and
on, Weight of 130	Greenwich and any Location
	Greenwich, and any Location,
of a Tooth, etc., To	To Compute
	" Measures of, and New Style 37
	" Sidereal and Solar 37
u of, To Compute 861	
us of, To Compute 861 	
Span of 120 026	Tin, Plate and Block
Wines and Cables	" Lined, and Lead Pipes, Weights of
Wires and Cables. 960	per Foot
-Glasses, etc671, 942	" Pines Lend Engaged Weight of
688, 6go	(i Dietes Mente and Weight of 131
	" Plates, Marks and Weights 137
d Extremes of 914, 952	TOBIN BRONZE, Elements of, etc 929
504	Tolerance, of Coins
and of Earth 195	Tonite, or Cotton Powder 443
han and an interest in its	
ion 524	TONNAGE, of Vessels, To Compute. 175-177
of, by Altitude 522	" Approximate Rule 176
of	" Builder's Measurement 176
luctors of 933	(Controlling Non Manua and
ed Spaces	" Corinthian, New Thames, and
ed Spaces 526	Royal Thames Yacht Clubs 177
918	" English Registered175-176
ated Steam, Latent	" Freight or Measurement 177
and Total Heat of,	" of Suez Canal 177
To Compute 707	" To Compute
	10 Compare
To Compute 705	"Units for Measurement, and
us Localities 192	Dead weight Cargoes176-177
e Degrees of Differ-	" Weight of Cargo, To Ascertain. 177
les, 523	Tools Height by Cargo, 10 Macertain. 177
sion or Conductiv-	Tools, Friction of
	Tornado, Pressure of
···· <u>·</u> ····· 914	TORPEDORS, Submarine 046
und 519	
tric 37	TORSIONAL STRENGTH (See &
	of Materials) Towers, Spires, and Domes.
	Towers, Spires, and Domes.
Bolts in Woods 198	Towing, on Eric Canal and
E (See Strength o)	River
	TRACTION, Elements of, etc
124	" and Statical Revistance
602	vations
ater 928	"Conflicients of, for Ross
•	

xl INDEX.

TRACTION, Priction of Roads and	TURBINES (See Hydrodynamics)572-577
Coefficients of in Proportion to Load 847	" and Water-Wheels Compared. 579 Turkish Plaster and Mortar591-592
" Maximum Power of a Horse on	Turning, Friction of
a Canal	" and Boring Metal
" of Omnibus and Speed 844 " on Canal, Slack-water, River,	Turnips, Ratio of Flesh-formers 207 Turpentine, Elastic Force and Tem-
and on Street Railroads 848	perature of Vapor of 707
" on Various Roads and of Va-	U.
rious Vehicles845, 847–848 "Power Necessary to Sustain a	Underground Temperature 519
Vehicle on an Inclined Road,	UNDERSHOT - WHEEL (See Hydrody-
To Compute845-846 "Power Necessary to Move and	namics)566-571 Unguents, Relative Value of471
Sustain a Vehicle Ascending	Units for Computing Safe Strain of
or Descending an Elevation,	New Ropes, Hawsers, etc 170
To Compute	v.
" of Gravity and Grade 847	Value of Coins, To Compute 39
" on an Inclined Road 846	" and Weight of Foreign Coins. 40-45
" on Paved, Rough, and Common Roads843-844	" of the Metre in terms of the Brit-
" to on Common Roads.843-845	ish Imp. Yard
"Results of Experiments of, on	VAPOR IN ATMOSPHERE, Volume and Weight of, To Compute68-69
Roads and Pavements 843 Tramways or Street Railroads,	" Elastic Force of, of Alcohol,
435, 848, 915	Ether, Sulphuret of Carbon, Petro-
Transportation, Canal 193	leum, and Turpentine 707 VAPORS, Relative Density of Some 521
" of Horses and Cattle 192	Variation of Magnetic Needle 57
Transverse Strength (See Strength	" Decennial, of Needle 58
of Materials)798-841	" of, in U. S. and Canada 59 Varnishes 876
Trass or Terras	Vegetable Marrow, Composition of 207
Treenails, Strength of, etc 783	Vegetables, Analysis of Meat and Fish and Foods200-201
Trees, Large, in California 184	" and Oil-cake, Nutritious Prop-
in Australia	erties of Compared 204
Trigonometry, Plane, Angles, Sides,	" Elements of Various 207 " Proportion of Starch in 205
etc., To Compute385-389	" Tubers, Ratio of Flesh formers 202
" Distances of Inaccessible Objects, To Ascertain388-389	Vegetation, Limits of 192
" Height of an Elevated Point,	Velocities, Metric37, 923 "Acceleration and Distance of a
To Compute	Body, To Compute
Tripolith, Composition of	" of Different Figures in Air,
Trotting	Resistance of
Troy Measure	pute 648
Truss, Iron	" and Time, To Compute 648 " and Volume of Molecules 194
Tubes, and Flues747, 827 and Pipes, Weight of, To Compute,	" of Current of a Bay or River 971
" and Pipes, Weight of, To Compute,	VENTILATION, Buildings, Apartments,
" Brass and Scamless Brass, Weight	etc 524
of 142	" Length of Iron Pipe required to Heat Air, To Compute.525-526
"Copper, Seamless Drawn, Weight of140-142, 144	" of Mines 449
" English Wro't Iron, Weight of. 143, 145	" Proper Temperatures of En-
" Evaporative Capacity of Varying	closed Spaces
Length	through a Ventilator, 524
or Girders, Dimensions and Pro-	" of Air per Hour for
portions of	each Occupant of a House. 525 Vernier Scale
** Sizel and Semi-Steel Locomotive 138	VESSEL, Elements of, To Compute 653
<u> ACI</u> age. Britannia 178	"Hulls of Iron, Thickness of
of179, 936	Plates and Rivets

Page	Page
WEIGHT of Wrought and Cast Iron	Weights of Steamers, Steamboats,
Tubes143-145	Engines Roilers Launches
" " " Clast Compan and	Engines, Boilers, Launches, Yachts, Cutter, Pilot-Boat,
" " Steel, Copper, and	Tucius, Cutter, I tiot-Boat,
Brass Plates, per	Sailing Vessels, and Dredgers,
Sq. Ft. per Gauge,	888-895, 900
118-119	" of Substances in Bulk 217
" on Floors and of Structures 841	of Sugar Wille
on Floors and of Structures 641	" of Sugar-Mills903, 908
" Rocks, Earth, etc	1 9 0. 5. 000000
" Silver 155	" of wire, Iron
" Special, Locomotive 138	" on Roofs 952
" Steel, Copper, Iron, and Brass. 136	" on Structures per Sq. Foot 841
" " Commer Press and West	Pines Steam Cas and Water
" "Copper, Brass, and Wro't Iron Plates18-119, 155	1 ipes, sieum, tras, una rraier,
Iron Plates118-119, 155	Standard Dimensions. 138
" "Copper, Brass, and Iron	" Cast-iron132-133 " Iron and Copper, Riveted 148
Wire120-121	" Iron and Copper, Riveted 148
" Terne Plates, and Thickness 124	" " Lap-welded, Steam, Gas,
" The Cart	
"Tin Cast	and Water
" U.S. ana Standara Measures. 934	Lead and 1th137, 150-151
" Water Pipe 137	" " Metal, To Compute 147-148
"Water Pipe 137 "Wrought and Cast Iron, Steel,	" " Seamless Brass, to Corre-
Copper, Lead, Brass, and	spond with Iron 142
Zina Plates man Ca Foot - 6	" Poman "
Zinc Fulles, per Sq. Foot. 140	
Zinc Plates, per Sq. Foot. 146 "Steel, Copper, and Brass	1 wes, Dap-wewer, Steel, Sent-
W176	Steet, Special Locomotive,
" "Wire, and Strength 124	and Boiler 138-139 " Charcoal Iron, Boiler 139
" Zinc Sheets123, 151-152	" Charcoal Iron Boiler 120
" "Plates and Dimensions of. 146, 151	" U.S. Old & New, Approximate,
" " Dallad	C.B. Old & Irea, 11pproximate,
" " Rolled	Equivalents, & To Compute. 33, 36
branca and a second and a	" Water 852
WEIGHTS, Various Materials118-175	" Water
" AND MEASURES, U. S. Stand-	Round, and Flat125-128
ard26-36, 934	Weirs, Guaging of 922
" Ancient and Scripture 53	Welding #86
" and Draggerman Matric	Welding
" and Pressures, Metric 923	Cast Steet, Composition for 034
" and Volumes of Various Sub-	" or Soldering, Fluxes for 636
stances in Ordinary Use 216	Well, Artesian
" Apothecaries' 32	" Boring
" Avoirdupois 32	Wells or Cisterns, Excavation of, etc. 63
	Whales, Length and Weight of 918
"Coal, Earth, and Wood 33	Wheat, Yearly Consumption of 206
" Engine and Sugar Mill 908	" Straw and Bran, Relative Value
" Emalish and French AA AT	of, Compared with 100 Lbs. Hay 203
roreign Countries	0), Compared with 100 1003.11 ay 203
" Grain, Lead, and Troy32, 47	WHEEL AND AXLE
" Grecian	" and Pinion, Combinations or
"Hebrew, Jewish, and Egyptian. 53	Complex Wheel work
" Heorew, Jewish, and Egyptian. 53	Complex Wheel-work627-628
"Measures of32-47 "and Pressures, Metric36	"GEARING, Elements of854-862 "General Illustrations of858
" " and Pressures, Metric 36	"General Illustrations of 858
" Metric27-33, 36-37, 46-47, 923	" HP of a Tooth, To Compute 861
" Miscellaneous Articles and	" Pitch, Diameter, Number of Treth,
	Velocity, Circumference of, Rev-
Substances33, 46, 214-217	
" of Bells	olutions, etc., To Compute855-858
of Boulers 759	" Spur Gear 911
" of Brain, Relative 192	
" of Chains and Anchors 174	WHEELS, Toothed, Proportions of 862
" of Fuels, Coals and Woods,	" Depth, Pitch, Breadth, Propor-
92 400, 00000 0000 11 0000,	tions, and Resistance to Stress,
" of Grand (Onder man) 483–484, 486	To Compute859-862
" of Guns (Ordnance) 498	To Compute859-862 "Teeth, Elements of, To Compute,
" of Lead Balls, and Shot500-502	859-862
" Pipe, To Compute 831	Whiteless's Wheel
" of Rope, Hemp, Iron and	Whitelaw's Wheel 576
Steel 164-166 170	Whitewash or Grouting 594
Steel164-166, 172 " of Slating per Sq. Foot 64	WIND Course of
" of Class Finance	WIND, Course of. 675
" of Steam-Engines,	" Effective Impulse of 665
758-759, 911, 929, 954	" Force of, To Compute 674
	" Pressure of 91
" of Steamers' Engines911, 954	" Valorita and Durana of 654 0
	" Velocity and Pressure of 674, 9
<i>B</i> ∓	

	Page	Page
W B	GRT, Brass and Various Metals	WEIGHT of a Cube Foot of Steam, To
	per Cube Inch and Foot and Wire 155	Compute 705
6	" and Gun-Metal of a Given	or an Elastic Fluid, To Ascer-
	Sectional Area136, 149	tain
•	" "Wro't and Cast Iron	" of Cube Foot of Gases at 320 215
	and Steel, Lead, Copper,	" of Embankments, Walls, and Dams, per Cube Foot 694
	and Zinc Plates per Sq. Foot 146	" of Fence Wire 164
		" of Flat Mining Ropes 165
	and Gun-Metal, of a Given	" of Flat Rolled Iron126-128
	Sectional Area 149	" of Flat Rolled Iron126-128 " of Food, Articles of204
6	" Casungs 155	of Foods, to Furnish Nitroge-
•	Iron, and Steel, of a Given	nous Matter
	Sectional Area 136	" Sheet Iron124, 129
64	" " Iron, etc., Wire120-121	" of Gaseous Products of Combus-
"	" of Sheets 142	tion, To Compute 460
41	1 tpcs corresponding to 11 or	" of Gun-Metal of a Given Sec-
44	and Iron Pipe Fittings 142	tional Area, and per Cube
	"Wrought Iron, Steel, and Copper Plates118-119	Inch or Foot149, 155 " of Hemp, Iron, and Steel Rope. 164
"	Cables, Galvanized Steel, for	" of Hoop and Sheet Iron129, 131
	Bridges	" of Horses 35
	Cattle, To Compute Dressed	" of Ingredients, that of Compound
	Centrifugal Pump	being given, To Compute 218 " of Iron, Round Rolled 126
46	Crane Chains and Ropes 457	" Square Rolled 125
"	Diamond, and of Diamonds. 32, 193	" Wire and Strength of 724
44	Earth 33	" of Lead and Tin-lined Pipe 137
44	Electrical Resistance 34	" of Men and Women 35
46	Fire-Engine 904 Gun-Metal 155	" of Metals of a Given Sectional Area, per Lineal Foot136, 149
66	Hay and Straw	" of Molecules, Volume and Ve-
"	Hemp and Wire Rope162, 166	locity 104
44	Lead, and of, To Compute. 32, 151, 155	" of Oak and Yellow Pine 870
"	" Pipes137, 150, 831 Plates, Weight of Sq. Foot. 146	" of Offal in a Beef and Sheep 35
"	" Sheet	" of Products of Combustion 462 " of Riveted Iron and Copper
"	"Sheet	Pipes 148
44	of Anvils	" of Ropes, Hawsers, and Cables,
"	of Articles of Food Consumed	To Compute
	in Human System to Develop	" of Silver and Tin 155
	Power of Raising 140 Lbs. to a Height of 10,000 Feet 204	" of Steam-Engine, Vertical, Beam, Condensing, To Compute 759
"	of a Body or Substance when	" of Steel Rolled and Bar, Square
	Specific Gravity is given, To	and Round, Flat, Hexagonal,
	Compute	Octagonal, and Oval134-135 of Stud-link Chain Cables 168
"	of Beeves and Beef, Comparative 35	" of Stud-link Chain Cables 168
46	of Bolts and Nuts156-157, 159 of Cast and Wrought Iron Bar	" of Timber, Green and Seasoned 217 " of Tin Pipes 151
	or Rod, To Compute 131	" Plates and Marks 137
"	" Pipes or Cylinders132-133	" of Tubes of Copper, Brass, and
"	of Cast Metal by Weight of Pat	Iron140-147
44	of Composition Sheathing Nails 135	of Diass, 10 Compace 142
"	of Copper, Cast and Wro't Iron,	" of Various Materials 763 " of Various Substances per Cube
	and Lead, To Compute 155	Foot in Rulk 219
"	of Copper, Braziers' and Sheath-	·· of volume of Air Consumea per
	ing 131	Lo. of Combustible 461
.	"Pipes and Composition Cocks 150 Roll on Polls	" of Water-Pipes, To Compute 561
	**140-142, 144	" of Wire and Wire Rope 162 " Length and Gauge 163
	ool 135	" Iron, and Steel 164, 172
	'Plates 131 \	" of wro t and Cast Iron per Sq.
	f Oak and	Foot
	870	" of Zinc, Rolled

INDEX.

Page	Y. Page
VECULARY IRON of a Given Sectional Area, Weight of.	Yachts, Steam, Relative Velocities, from Elements of their Construc-
136, 149 " Plates, Weight of a Sq. Foot	tion, To Compute
"Plates and Bolls, Strength and Test of	clesiastical
" " Weight of118-119, 146	Years of Coincidence, To Ascertain. 74 Z.
"Rope, Hemp, and Steel, Strength and Safe Load	ZENITH AND MERIDIAN Distances and Altitude of Sun at New York 932
of164-165 " Round Rolled126 " Sheet and Hoop, Thickness	ZINC, Elements of
and Weight of129, 131 "Shell Plates, Pressure and	"Plates, Weight of per Sq. Foot 146 "Sheets, Thickness and Weight of,
Thickness (U. S. Law) 750 " Square Rolled, and To Compute Weight of 125	" Foil in Steam Boilers 912
"Weight of, To Compute 155 "Wire, Weight of120-121	ZONES OF A CIRCLE, Areas of269-271 "To Compute Area of. 271
ADDE	NDUM.
Aminum Page Ancherage of Bolls in Stone. 976 Ancherage of Bolls in Stone. 974 Barrings without Lubricants. 974 Bast Draught in a Marine Boller. 974 Balls Stine. 976 Balls is Stone, Anchorage of 974 Draught, Blast 974 Edit Valve. 975 Piction of Engines and Gearing. 976 Piction of Engines and Gearing. 976 Piction of Engines and Gearing. 976	Page Gate Valves. 975 Glue. 976 Hydrants, Eddy. 975 Magnesium. 976 Memobanda (additional). 974, 976-977 Steff. 976 Steam-Launch. First. 974 Stee Springs, Elements of. 973 To Color Brass, Copper, etc. 972 n Pipes. 977
Y to and a second a	- ***

Note.—Tons are given and computed at 2240 lbs.

Degrees of temperature are given by the Scale of Fahrenheit.

Page	Lill Page
	WIRES AND CABLES, Telegraphic, Tele-
WINDING ENGINES476, 862-863	
" Diameter of a Drum and Roll,	phone, Electric, etc 960
	50
and Number of Revolutions,	Wood, Elements, etc 48
To Compute862-863	
Windless 422	Bituminous or Lignite 479
Windlass	" Evaporative Power of 482
" Chinese, Elements of, To Com-	
merta 600	1. 1007 Dodina
_pute	" Measure 47
" Power of 433	" Panement
pute	
MINDRIDG, Dicheme of	" Tensile Strength of 870
Deductions and Results of,	tt Malana Chamath on Fastone
from Experiments on Effect	" Working Strength, or Factors
J1010 Euper success 51. 25 600	of Safety 781
and of Operation864-865, 924	- I
" Elements of, To Compute 864	Wash ten Trump Plements of Shr. Sec.
Elements of 10 Company	WOOD AND TIMBER, Elements of 865-870
Window-Glass, Thickness and Weight 124	(See also Timber and Wood,
Wine and Spirit Measures 45	
Title Cours Franch	865-870.)
Wire Gauge, French 123	" and Stone Sawing 196
" Area of Circles by 236	"Cressoting, Effect of
" Circum ference of Circles by 242	(Character San Conserving
	" Decrease by Seasoning 869
" for Galvanized Iron 123	" Defects of 866
" Standard of Great Britain 122	"Immeanation of 868_860
	1 mpregnation of
" Gauges122-123	" Jarrah 913
" Iron, Gauge, Weight and Length	11 Seconing and Preserving
TIVE, Grande, it ordine mine monday	December with I reactions,
of 163	866 –868
•	" Selection of Standing Trees 865
Tree Tourston Acres Dounds	Desertion of Diametric Lices. 603
WIRE, Lengths of 100 Pounds 124	" Transverse Strength of Large,
" ROPE, HEMP, IRON, AND STEEL,	To Committe Raa
Dimensions, Safe Load, and	To Compute 833
Difficitisions, Buje Louis, and	" Weight of Oak and Lellow
Strength of	Pine per Cube Foot 870
" ROPE	I the per case I series to the
KOPE	
" and Equivalent Belt 167	Woods
" " Elements of Standing and	" Absorption of Preserving Solu-
Enclineared of Promiserable and	A COUNTY AND A POOL OF THE PARTY AND APPLICATION OF THE PARTY AND APPLICAT
Running 162	tion by
" Results of an Experiment	" Coefficients for Safety781, 835
mith Calmanised -A.	U Composition of
with Galvanized 161	" Composition of 485
" of Experiments on, at	" Detrusive Strength of 782
U. S. Navy-Yard 169	
" Rolling Friction of 473	" Extension of, by Water 952
" and Hemp Rope, Iron and Steel,	" Proportion of Water in 869
and Henry Lupe, Livis wise Buch,	Troportion of water in
Relative Dimensions of 172	" Relative Value of their Crush-
" and Hemp Ropes, Weight and	ing Strength and Stiffness
una Henry Lopos, it organ and	
Strength of	combined 769
" and Tarred Hemp Rope, Haw-	" Safe Statical Loads for Beams. 824
and Oables Companion	() Cleanath of
sers, and Cables, Comparison	" Safe Statical Loads for Beams. 834 " Strength of. 833 " Weights of. 33
of 169	" Weights of 33
" and Hemp Ropes, General Notes 167	" and Comparative Values
and Henry Hopes, Henry as House 10	
" Weight of 100	of Various 484
" and U. S. Navy Hemp Rope,	Woolf Engine 722
unit U. 15. Ittedy as mr 200po	TOOL MAGINO.
Breaking Weight of 168	Work, Animal Power 432, 440
" Brass, Weight of 155	" Accumulated in Moving Bodies. 619
Galla Calmaniand Steel .64	14 and Dornen Malmin of one
" Cables, Galvanized Steel 163	" and Power, Metric36, 923
" Diameter and Weight of 120-121	Works of Magnitude, Miscellaneous,
" Fence, Weight and Strength of. 164	700 000 000
Frace, weight and Berengul of . 104	178-179, 936
" (falranized Iron 162-163	NE
" Iron Gauge, Weight and Length 163	WROUGHT-IRON, Elements of130-130,
Tront trange, it tight this Bright 10	620-640 765, 768 772 780 785-786
" Rope, Circumference of with	639–640, 765, 768, 773, 780, 785–786 " and Cast, Weight of 155
Hemp Core of Correspond-	" and Cast, weight of 155
Changth to Hamn	" Angle and T, Weight of. 125, 130
ing Strength to Hemp,	U Dormo as Affected by the
and of Hemp to Circum-	" Bolts, as Affected by the
Common of Wire To Com-	Thread 916
ference of Wire, To Com-	
pute 16	Check Ti men' To succise source
" " for Standing Rigging, Cir-	and Weights156-159
	" Correction of OES
cumference of, To Compute 17	
" Ropes Endless, Transmission of	"Crushing Weight of Columns 768 "Deflection of Bars, Beams,
Entities Citations' Times incompany of	. Deflection of Rara Reams
Power of 16	Cludence at a series
11 Shrouds 17	1 Girders, euc 773-775
at model of	
Weight of 15	" Flat Rolled26-198
and Strength of 19	THE PROPERTY OF THE PARTY OF TH

EXPLANATIONS OF CHARACTERS AND SYMBOLS

Used in Formulas, Computations, etc., etc.

- = Equal to, signifies equality; as 12 inches = 1 foot, or $8 \times 8 = 16 \times 4$.
- + Plus, or More, signifies addition; as 4+6+5=15.
- Minus, or Less, signifies subtraction; as 15-5=10.
- \times Multiplied by, or Into, signifies multiplication; as $8 \times 9 = 72$. $a \times a$ a.d. or ad, also signify that a is to be multiplied by d.
 - \div Divided by, signifies division; as $72 \div 9 = 8$.
- : Is to, :: So is,: To, signifies Proportion, as 2: 4:: 8:16; that is, as 2 i to 4, so is 8 to 16.
 - : signifies Therefore or Hence, and : Because.
- Vinculum, or Bar, signifies that numbers, etc., over which it i placed, are to be taken together; as 8-2+6=12, or $3\times5+3=24$.
- . Decimal point, signifies, when prefixed to a number, that that numbe has some power of 10 for its denominator; as .1 is $\frac{15}{100}$.15 is $\frac{15}{100}$ etc.
 - © Difference, signifies, when placed between two quantities, that thei difference is to be taken, it being unknown which is greater.
 - $\sqrt{Radical\ sign}$, which, prefixed to any number or symbol, signifies tha square root or that number, etc., is required; as $\sqrt{9}$, or $\sqrt{a+b}$. The degre of the root is indicated by number placed over the sign, which is terme index of the root or radical; as $\sqrt[3]{\sqrt{2}}$, etc.
 - $\supset \cap$, $< \mid$, signify *Inequality*, or *greater*, or *less than*, and are put betwee two quantities; as $a \cap b$ reads a greater than b, and $a \mid b$ reads a less than $b \mid b$ reads $a \mid b$ rea
 - () [] Parentheses and Brackets signify that all figures, etc., within there are to be operated upon as if they were only one; thus, $(3+2) \times 5 = 25$ $[8-2] \times 5 = 30$.
 - $\pm \mp$ signify that the formula is to be adapted to two distinct cases, a $c \mp v = a$, either diminished or increased by v. Here there are expresse two values: first, the difference between c and v; second, the sum of c and c

In this and like expressions, the upper symbol takes preference of the lower.

- p or π is used to express ratio of circumference of a circle to its diamete = 3.1416; $\frac{7}{4}p = .7854$, and $\frac{7}{6}p = .5236$.
 - o'" " signify Degrees, Minutes, Seconds, and Thirds.
- "set superior to a figure or figures, signify, in denoting dimensions, Fee and Inches.
 - a' a" a'" signify a prime, a second, a third, etc.
- 1, 2, added to or set *inferior* to a symbol, reads sub 1 or sub 2, and is used to designate corresponding values of the same element, as h, h1, h2, etc.
- ², ³, ⁴, added or set superior to a number or symbol, signify that that number, etc., is to be squared, cubed, etc.; thus, 4^2 means that 4 is to be multiplied by 4; 43, that it is to be cubed, as $4^3 = 4 \times 4 \times 4 = 64$. The power number of times a number is to be multiplied by itself, is shown by sumber added, as ², ³, ⁴, 5, etc.

· .

1

NATIONS OF CHARACTERS AND SYMBOLS

Used in Formulas, Computations, etc., etc.

signifies equality; as 12 inches = 1 foot, or $8 \times 8 = 16 \times 4$. Ore, signifies addition; as 4 + 6 + 5 = 15.

Less, signifies subtraction; as 15-5=10.

by, or Into, signifies multiplication; as $8 \times 9 = 72$. $a \times d$, signify that a is to be multiplied by d.

, signifies division; as $72 \div 9 = 8$.

is, : To, signifies Proportion, as 2 : 4 :: 8 : 16; that is, as 2 is

herefore or Hence, and : Because.

um, or Bar, signifies that numbers, etc., over which it is a taken together; as 8-2+6=12, or $3\times5+3=24$.

int, signifies, when prefixed to a number, that that number of 10 for its denominator; as .1 is $\frac{1}{10}$.15 is $\frac{15}{10}$, ctc.

, signifies, when placed between two quantities, that their be taken, it being unknown which is greater.

gn, which, prefixed to any number or symbol, signifies that hat number, etc., is required; as $\sqrt{9}$, or $\sqrt{a+b}$. The degree adicated by number placed over the sign, which is termed of or radical: as $\sqrt[3]{\cdot}$, etc.

gnify Inequality, or greater, or less than, and are put between as $a \mid b$ reads a greater than b, and $a \mid b$ reads a less than b. theses and Brackets signify that all figures, etc., within them ted upon as if they were only one; thus, $(3+2) \times 5 = 25$;

that the formula is to be adapted to two distinct cases, as r diminished or increased by v. Here there are expressed t, the difference between c and v; second, the sum of c and v. sexpressions, the upper symbol takes preference of the lower.

l to express ratio of circumference of a circle to its diameter = .785 4, and $\frac{1}{6}p$ = .523 6.

- r Degrees, Minutes, Seconds, and Thirds.
- r to a figure or figures, signify, in denoting dimensions, i

ILLUSTRATION.—When a number, hyp. log. of which = a given figure or number, is required.

Multiply figure or number (hyp. log.) by .434294 (modulus of com. log.) = com. log. of figure.

Thus, Required the number, hyp. log. of which = .02. $.02 \times .434294 = .00868588$, com. log., and 1.0202 = number.

Log. 100 $^{.059}$ = .059 \times log. of roo = .059 \times 2 = .118; the number corresponding to log. .118, is 1.3122; hence, 100 $^{.059}$ = 1.3122. That is, if 100 is raised to 59th power, and the rooth root is extracted, the result will be 1.3122.

Differential and Integral Calculus.—In Equation, $u=3x^2-2x$, u is termed a function of x. If it is desired to indicate the fact that u thus depends for its value upon value of x, without expressing exact value of u in terms of x, following notation is used:

$$u = f(x), \quad u = F(x), \quad \text{or } u = \phi(x).$$

Each of these notations is read, u is a function of x. If in such function of x value of x is assumed to commence with 0 and to increase uniformly, the notation indicating rate of increase is dx, and is read "the differential of x."

Differentiation. d is its symbol, and it is the process of ascertaining the ratio existing between the rate of increase or decrease of a function of a variable and the rate of increase or decrease of the variable itself. If $y = 3x^2$, y or its equal $3x^2$ is the function of x, and x is the independent variable, while the exponent of the variable or the primitive exponent is 2.

By the operation of Calculus, such expressions are differentiated by diminishing the exponent of the variable by unity, multiplying by the primitive exponent, and attaching the dx.

Hence, $dy = 2 \times 3x dx = 6x dx$. This indicates the relation between the differential of y, the function of x, and the differential of x itself.

Assume that x increasing at rate of 3 per second becomes 4; that is, x=4, and dx=3; hence $dy=6\times 4\times 3=72$. That is, if x is increasing at rate of 3 per second, at the time that x=4, the function itself is increasing at rate of 72 per second.

To differentiate an expression of two or more terms, it is necessary to differentiate them separately and connect the results with the signs with which the terms are connected.

Thus, differentiating $u = 3x^2 - 2x$, we have $du = d(3x^2 - 2x) = 6x dx - 2 dx = (6x - 2) dx$.

Assuming x = 4 and dx = 3, we have $du = (6 \times 4 - 2) \times 3 = 66$. This indicates that when x = 4, and is increasing at rate of 3 per second, the function u, or $3x^2 - 2x$, is at same instant increasing at rate of 66 per second.

Integration. Its symbol f was originally letter S, initial of sum, the symbol of an operation the reverse of differentiation; and when the operation of integration is to be performed twice, thrice, or more times, it is written ff, fff, etc.

By the operation of Calculus, expressions are integrated by increasing the exponent of the variable by unity, dividing by the new exponent, and detaching the dx.

Hence, integrating the differential 6x dx, we have $\int 6x dx = 3x^2$. This it is the function, the differential of which is 6x dx.

the terms separately and connect the results with the signs with which ms are connected.

:-2) dx, we have $\int (6x-2) dx = \int (6x dx - 2 dx)$ ilt is the function the differential of which is (6x dx - 2 dx)

the exponent o, as wo or 30, is equal to unity.

The operation of summation may also be illustrated in use of the symbol f. Assuming x=4, the former of the preceding results becomes $f6xdx=3x^2=48$, the latter $f(6x-2)dx=3x^2-2x=40$. Here x is assumed to commence at o and to continue to increase by in-

Here x is assumed to commence at o and to continue to increase by infinitely small increments of dx until it becomes 4. The summation is the addition of all these values of x from o to A.

Arithmetically.—The first formula may be written

for a session of x and x is to advance from x to 4 by increments of x, we have x in the x is to advance from x to 4 by increments of x, we have x in the following form of x is assumed to be x, the result is x. The correct result is obtained only when x is taken infinitely small. By Arithmetic this is approximated, but it is reached by the operations of Calculus alone.

The second formula may be written

(6[x'+x''+x'''+ etc.] -2[x''+x'''+x'''+ etc.]) dx. Assuming x=4, and dx=1, we have (6[1+2+3+4] -2[1+1+1+1]) $\times 1=52$, which exceeds 40. If dx=.25, the result would be 43, and if .125 it would be 41.5, ever approaching but never reaching 40, so long as a finite value is assigned to dx.

A, Delta, when put before a quantity, signifies an absolute and finite increment of that quantity, and not simply the rate of increase.

 Σ , Sigma, signifies the summation of finite differences or quantities. Thus, $\Sigma y' \Delta x = (y'^2 + y''^2 + y'''^2 + \text{etc.}) \Delta x$. Assume y' = 6, y'' = 8, y''' = 4, and Δx the common increment of x = 5, then $\Sigma y^2 \Delta x = (36 + 64 + 16) \times 5 = \frac{4}{36}$.

NOTATION.

```
20 = XX
                                          1000 = M, or CIO.
t = T.
2 = II.
               30 = XXX
                                         2000 = MM.
                                         5 \infty = \overline{V}, or IOO.
3 = III.
               40 = XL.
4 = IV.
                                         6 000 = \overline{VI}
                50 == L.
s = V.
               60 = LX.
                                        10000 = \overline{X}, or CCIOO.
6 = VI.
                70 = LXX.
                                        50000 = L, or IOOO.
 7 = VIL
               80 = LXXX.
                                        60000 = \overline{LX}
8 = VIII.
               \infty = XC.
                                       100000 = \overline{C}, or CCCIOOO.
q = IX.
              100 = C.
                                     1 000 000 = \overline{M}, or CCCCIOOO).
x = x
               500 = D, or IO.
                                     2000000 = \overline{MM}.
```

As often as a character is repeated, so many times is its value repeated, as CC = 200.

A less character before a greater diminishes its value, as IV = V - I.

A less character after a greater increases its value, as XI = X + I.

For every O annexed to IO the sum as 500 is increased to times.

If C is placed on left side of I as many times as O is on the right, the number is doubled.

A bar, thus -, over any number, increases it 1000 times.

Illustration 1.—1880, MDCCCLXXX. 18 560, XVIIIDLX.

2 - IO = 500. CIO = 500 \times 2 = 1000. IOO = 500 \times 10 = 5000. CCCIOOC = 5000 \times 2 = 100000. IOOO = 500 \times 10 \times 10 = 50000. CCCIOOC = 50000 \times 2 = 100000.

OGICAL ERAS. -- MEASURES AND WEIGHTS.

ARONOLOGICAL ERAS AND CYCLES FOR 1802.

.692, or the 117th year of the Independence of the United States of America, sponds to

10 year 7400-13 of the Byzantine Era;
6606 of the Julian Period:

" 5652-53 of the Jewish Era;

- 2668 of the Olympiads, or the last year of the 667th Olympiad, commencing in July (1892), the cra of the Olympiads being placed at 775.5 years before Christ, or near the beginning of July of the 3938th year of the Julian Period;
- 46 2645 since the foundation of Rome, according to Varro;
- " 2204 of the Grecian Era, or the Era of the Seleucidæ;

" 1608 of the Era of Diocletian.

The year 1310 of the Mohammedan Era, or the Era of the Hegira, begins on the 26th of July. 1802.

The first day of January of the year 1892 is the 2,412,1018t day since the commencement of the Julian Period.

Roman Indiction was a period of 15 years, in use by the Romans. The precise time of its adoption is not known beyond the fact that the year 313 A.D. was a first year of a Cycle of Indiction.

Julian Period is a cycle of 7980 years, product of the Lunar and Solar Cycles and the Indiction (19 \times 28 \times 15), and it commences at 4714 years B.C.

6513 + (given year - 1800) = year of Julian Period, extending to 3267.

Note.—If year of Julian Period is divided by 19, 28, 15, or 32, the remainders will respectively give the Lunar and Solar Cycles, the Indiction, and the Year of the Dionysian.

MEASURES OF LENGTH.

Standard of measure is a brass scale 82 inches in length, and the yard is measured between the 27th and 63d inches of it, which, at temperature of 62° , is standard yard.

Lineal.

12 inches		Inches. Feet. Yards. Rods. Furl.
3 feet	= 1 yard.	36 = 3
5.5 yards		108= 16.5= 5.5.
	= 1 furlong.	7920 = 660 = 220 = 40.
8 furlong	s= 1 mile.	63360=5280 =1760 =320=8.

Inch is sometimes divided into 3 barleycorns, or 12 lines. A hair's breadth is .02083 (48th part) of an inch.

1 vard = .000 568, and 1 inch = .000 015 8 of a mile.

Gunter's Chain.

7.92 inches = 1 link. | 100 links = 1 chain, 4 rods, or 22 yards. 80 chains = 1 mile.

Ropes and Cables.

r fathern = 6 feet. | 1 cable's length = 120 fathoms.

Geographical and Nautical.

***eming the Equatorial radius at 6 967 459.893 vards (3958.784 II. 8. Coast Survey, == 69.094 Statute miles. ds or 6080.27 feet.

Log Lines.

mating a mile at 6080.27 feet, and using a 30" glass, knot = 50 feet 8.03 inches. | 1 fathom = 5 feet .08 inch.

28" glass is used, and 8 divisions, then

- t knot = 47 feet 5 inches. | 1 fathom = 5 feet 11.25 inches. ine should be about 150 fathoms long, having 10 fathoms between chip and of for stray line.
- .—This estimate of a mile or knot is that of U. S. Coast Survey, assuming fal radius of Earth to be 6967 459.893 yards and a Meter to be 39.370 432 of the Troughton scale at 62°.

Cloth.

uail = 2.25 inches. | 1 quarter = 4 nails. | 5 quarters = 1 ell.

Pendulum.

6 points = 1 line. | 12 lines = 1 inch.

Shoemakers'.

: is 4.125 inches, and every succeeding number is .333 of an inch. 3 are 28 numbers or divisions, in two series or numbers—viz., from 1 ad 1 to 15.

Miscellaneous.

lines or 72 points = 1 inch.
palm = 3 inches.

1 hand = 4 inches.
1 span = 9 inches.

r cubit = 18 inches.

Vernier Scale.

er Scale is $\frac{1}{10}$, divided into 10 equal parts; so that it divides a scale 1 into 100ths when two lines of the two scales meet.

ric, by Act of Congress of July 28, 1866.

'Measurement is the Meter, which by this Act is declared to be 39.37 ins.

minations.	Meters.	Inches.	Feet.	Yards.	Miles.
>ter	100.	.0394	-		_
eter	.or	•3937	_	_	
ter	.1	3-937	.328083	_	_
	1.	39-37	3.28083	1.00361	_
eter		393-7	32.808 33	10.93611	
neter	100.		328.083 33	109.36111	
ter	1 000.		3280.83333	1093.61111	.621 37
leter	10 000.	l —		"-	6.2137

exc system, values of the base of each measure—viz., Meter. Liter, Stere, 3ramme—are decreased or increased by following prefix. Thus,

sth fart or .cor. | Deci, roth part or .r. | Hekto, roo times value. | Deka, ro times value. | Kilo, roco '... | Myria, roco times value. | Hekto, roo times value.

The Meter, as adopted by England, France, Belgium, Pruss a, and Russia, termined by Capt. A. R. Clarke, R. E., F. R. S., 1866, which at 52° in terms al standard at 62° F. is 30,370.432 inches or 1.093.623.11 yerds, its legal t by Metric Act of 1864 being 39.3708 inches, the same as adopted in

Kater's comparison, and the one formerly adopted by the V.S. Order = 39.370 797 1 inches, or 3.280 899 76 feet, and the one adopted is survey, as above noted, is = 39.370 432 35 inches.

Equivalent Values in Metric Denominations of U. S

Denominations.	Value in Meters.	Denominations.	Values in Meters.
Inch	.304 800 6	Rod Furlong	5.029 209 9 201.168 396 1609.347 168

Approximate Equivalents of Old and Metric U.S. Measures of Length.

1 Kilometer= .625 mile. 1 Mile= 1.6 kilometers. 1 Pole or Perch .= 5 meters.	1 Chain = 20 meters. 1 Furlong = 200 " 5 Furlongs = 1 kilometer.
- Foot - a decimeters	or an centimaters

1 Foot = 3 decimeters or 30 centimeters.

1 Metre = 3.280 833 feet = 3 feet 3 ins. and 3 eighths.

11 Meters = 12 yards. | 1 Decimeter . . . = 4 inches.

1 Millimeter .. = 1 thirty-second of an inch.

To Convert Meters into Inches.—Multiply by 40; and to Convert Inche into Meters.—Divide by 40.

Approximate rule for Converting Meters or parts, into Yards.—Add on eleventh or .0009.

Inches Decimally = Millimeters.

Inches.	Milli- meters.								
.01	-25	.2	5.08	.48	12.2	-76	19.3	2	50.8
.02	.51	+22	5-59	-5	12.7	.78	19.8	3	76.2
.03	.76	.24	6.1	-52	13.2	.8	20.3	4	101.6
.04	1.02	.26	6.6	-54	13.7	.82	20.8	5 6	127
.05	1.27	+28	7.11	.56	14.2	.84	21.3	6	152.4
.06	1.52	+3	7.62	.58	14-7	.86	21.8	7 8	177.8
.07	1.78	.32	8.13	.6	15.2	.88	22.4	8	203.2
80.	2.03	-34	8.64	.62	15.7	.9	22.9	9	228.6
.09	2.29	136	9.14	.64	16.3	-92	23.4	10	254
·I	2.54	+38	9.65	.66	16.8	-94	23.9	11	279-4
.12	3.05	-4	10.2	.68	17.3	.96	24.4	12	304.8
-14	3.56	.42	10.7	17	17.8	,98	24.9	=1	foot.
.16	4.06	144	11.2	+72	18.3	I.	25.4		
-x8	4.57	.46	11.7	.74	18.8	1		1	

Inches in Fractions = Millimeters.

		Six- teenths. Thirty- seconds.	Milli- meters.	Eighths	Six-	Thirty-	Milli-
1 .79 5 7.14 2.38 11 8.72 -17 3 - 95 97 7 11 11.11 2.6 7 7 11.11	5	9 - 19 - 21 11 - 23	15.9	7	13	25 27 29 31	100

equivalent values of inches and millimeters centimeters, decimeters, and meters, may b of decimal point.

er, and remove decimal point successively by on centimeter, decimeter, and meter become

 $3.94 \begin{vmatrix} 3.2 & \text{lnch} = 8.13 & \text{millimeters} \\ 3.9 & \text{lnches} = 81.3 & \text{millimeters} \end{vmatrix}$

MEASURES OF SURFACE.

iches = I square foot. | 9 square feet = I square yard. 1rchitect's Measure, 100 square feet = 1 square.

Land.

	= 1 square rod.	Yards.	Rods.	Roods.	
re rods	= 1 square rood.	1210.			
re chains	= 1 acre.	4840=	: 160.		
3	= 1 square mile.	3097600=	102 400	= 2560.	
feet, 69.570 109 yards square, or 220 by 198 feet square = 1 Acre.					

Paper.

quire. | 20 quires = 1 ream. | 21.5 quires = 1 printer's ream. ams = 1 bundle. | 5 bundles = 1 bale.

Drawing.

13 × 16 inches.	Columbier 23 × 34	inches.
15 X 20 "	Atlas 26 × 34	46
17 × 22 "	Theorem 28 × 34	44
19 × 23 "	Doub. Elephant, 27 × 40	4.
l 10 X 27 "	Antiquarian 31 × 53	
22 × 30 "	Emperor 40 × 60	
23 × 28 "	Uncle Sam 48 × 120	
Peerless	. 18 × 52 inches.	

Tracing.

1 20 × 30 inches.	Grand Royal 18 × 24 inches. Grand Aigle 27 × 40 "
own 30 × 40 " Crown, 40 × 60 "	Vellum Writing, 18 to 28 ins. in width.
Mounted on cloth	. 28 ins. in width.

Miscellaneous.

cheet = 4 pages. quarto = 8 "	1 duodecimo = 24 pages. 1 eighteenmo = 36 "				
octavo = 16 "	ı bundle = 2 resms.				
r piece wall-paper, 20 ins. by 12 yards. French, 4.5 sq. yards.					

Roll of Parchment = 60 sheets.

Copying.

100 Words = 1 Folio.

by Act of Congress of July 28, 1866. Unit of Surface is Are or Square Dekameter.

er $(39-37^2) = 1549.9969$ sq. ins., but by this Act is declared to be 1550 SQ. 188.

m. !	Sq. Meters.	Sq. Inches.	Sq. Fort.	Sq. Yards.	Acres
	.0001	.155	.107 638	=	(-
	I.	1550.	50.763 888	1.19f	/
	200a. 0000a.	_	3076.388 88	11000	•

Equivalent Values in Metric Denominations of U. S.

Denominations.	Sq. Meters.	Denominations.	Sq. Meters.	Sq. Hectares.	Sq. Ares.
Sq. Inch " Foot " Yard " Rod	.092 903 23 .836 129 07		1011.716 175	.404 686	4.046 865 10.117 162 40.468 647 25 899.934 074

Approximate Equivalents of Old and Metric U. S. Square Measures.

6.5 square centimeters = 1 sq. inch. 1 acre = 1.16 per cent. over 4000 sq. meters. 1 square mile = 259 hectares.

MEASURES OF VOLUME.

Standard gallon measures 231 cube ins., and contains 8.3388822 avoirdupois pounds, or 58 373 Troy grains of distilled water, at temperature of its maximum density (39.1°), barometer at 30 ins.

Standard bushel is the *Winchester*, which contains 2150.42 cube ins., or 77.627 413 lbs. avoirdupois of distilled water at its maximum density.

Its dimensions are 18.5 ins. diameter inside, 19.5 ins. outside, and 8 ins. deep; and when heaped, the cone must not be less than 6 ins. high, equal 2747.715 cube ins. for a true cone.

A struck bushel contains 1.244 45 cube feet.

Liquid.

4 gills = 1 pint.	28.875	Gills. Pints.
2 pints = 1 quart.	57.75	8.
4 quarts = 1 gallon.	231.	32 = 8.

Dry.

	Cube Ins.	
2 pints = 1 quart.	67.2006	Pints. Quarts. Galls.
4 quarts = 1 gallon.	268.8025	8.
2 gallons = 1 peck.	537.605	16 = 8.
4 pecks = 1 bushel.	2150.42	64 = 32 = 8

Cube.

Note. - A cube foot contains 2200 cylindrical inches, or 3300 spherical inches.

Fluid.

60 minims = 1 dram.	Minims. Drams. Ounces.
8 drams = 1 ounce.	480.
16 ounces = 1 pint.	7680 = 128.
8 pints = 1 gallon.	61240 = 1024 = 128.

Nautical.

lacement in salt water = 35 cube feet, tered internal capacity = 40 " "

Dimensions of a Barrel.

v ina; bung, 19 ina; length, 28 ina; volume, 7689 cube ina

Miscellaneous.

1/1190911	anous.
r cube foot r bushel 36 bushels, or . r cord of wood r perch of stone quarter = 8 bushels.	9.309 18 gallons. 57.244 cube feet. 128 cube feet.
Galla. 32 e	Galla. Galla.

etric, by Act of Congress of July 28, 1866.

Base of Measurement is a cube Decimeter or Liter, which is declared to be
61.022 cube ins.

Cube Measures.

nominations.	Values.	Cube Inches.	Cube Feet.	Cube Yards.
ntimeter cimeter	.001 cube milliliter 1 cube liter	.061 022 61.022 —	.035 313 657 35.313 657	1.308

Dry Measures.

ations.	Values.	Cube Ins.	Quarts.	Pecks.	Bushels.	Cube Yards.
	z cube centimeter.	.061	_			_
r	10 "	.6102	_	l —	l 	—
	.r " decimeter	6.1022	— .	l —	_	l —
•••••		61.022	.908*	.1135		l —
f			9.08	1.135	.28375	
¥	.r " meter	l —	_	11.35	2.837 51	.1308
,}	ı " "	_	-	-	28.375	1.308

* Or .227 gallon. † 3.531 365 7 cube feet.

 In practice, term cube Centimeter, abbreviated to cc, is used instead of and cube Meter instead of Kilometer.

alent Values in Metric Denominations of U.S. Dry Measures.

mominations.	Centiliters.	Deciliters.	Liters.	Dekaliters.
	_		l –	_
	_	l —	-	l –
	_	.110 125	1.10125	11.0125
	_	.4405	4.405	
	.088z	.88z	8.81	44.05 88. I
	.3524	3.524	35.24	352.4

Liquid Measures.

ations.	Liters.	Drams.	Ounces.	Pints.	Quarts.	Gallons.
	.001	.27	_	_	_	_
		2.7	.338	-	-	_
• • • • • • •	1	27	3.38	.211 -	•	_
	. 1	_	33.8	2.11		.26417
	. 10) —	l —	21.1		- 9
,	./ 100	<i>l</i> –	I —			
<i>}</i>	1000	-	_	١.		

Approximate Equivalents of Old and Metric U.S. Measures of Volume.

```
r Gallon.....=4.5 liters.
r Liter.....= .26 gallon.
r cube foot ....=28.3 liters.

r Cube meter ....=1.33 cube yards.
r "yard.....=.75 "meter.
r "kiloliter = 2240 lbs. nearly of water.
```

MEASURES OF WEIGHT.

Standard avoirdupois pound is weight of 27.7015 cube inches of distilled water weighed in air, at (39.83°) barometer at 30 inches.

A cube inch of such water weighs 252.6937 grains.

Avoirdupois.

10 drams = 1 ounce.	Drams. Ounces. Pounds.
16 ounces = 1 pound.	256.
112 pounds == 1 cwt.	28 672 = 1 792.
20 cwt. = 1 ton.	573 440 = 35 840 = 2240.
1 pound == 14 oz. 11 dwts. 16	
1 ounce = 18 dwts. 5.5 grai	ns Troy, or 437.5 grains.
1 dram = 1 dwt. 3.34375 g	rains Troy, or 53.5 grains.
1 stone = 14 pounds.	
Tr	юy.
24 grains $= 1$ dwt.	Grains. Dwt.
20 dwt. = 1 ounce.	480.
12 ounces == 1 pound.	5760 == 240.
Trong amains	1h avoirduncia

unces = 1 pound. | 5760 = 240.

7000 Troy grains = 1 lb. avoirdupois.

437.5 " = 1 oz. "

27.343.75 Troy grains = 1 dram "

175 Troy pounds = 144 lbs. "

175 " ounces = 192 oz. "

1 " ounce = 480 grs. "

1 " ounce = 480 grs. "
1 " pound = .822 857 lb.
1 avoirdupois pound = 1.215 278 lbs. Troy.

Apothecaries.

20 grains	= 1 scruple.	Grains. Scruples. Drams,
3 scruples	= 1 dram.	60.
8 drams	= 1 ounce.	480 = 24.
12 ounces	= 1 pound.	5760 = 288 = 96.
45 drops	= r teaspoonful	or a fluid dram.
2 tablespoonfu	ds = 1 ounce.	

The pound, ounce, and grain are the same as in Troy weight.

Diamond.

```
1 grain = 16 parts. 4 grains = 3.2 Troy grains. 16 parts = .8 Troy grain. 1 carat = 4 grains. 15.5 carats = 1 Troy ounce.
```

Lead.

der of lead = 8 pigs.
-6.5 to 7.5 feet in width and from 30 to 35 feet in length.

ain. its per Bushel.

.... 56 Oats.... 32 Barley ... 48

Miscellaneous.

riscentance	us.
COAL	

	•					
Inthracite						
44		50 to	55 lbs.	per	cube :	loot.
	41	to 45 cube	feet =	ı to	n pro	ken.
		70 to 78 lb	s. per b	ıeapı	ed bw	shel.
"		40 to	50 lbs.	per	cube :	loot.
44	Cumberland		53 "	• "	66	"
44	Cannel	50.	3 lbs. p	er c	ube f	ot.
66	Welsh		3 cube	fee	t = 1	ton.
"	Lancashire	4	ŭ "	"	= 1	**
44	Newcastle		15 "		= 1	
46	Scotch		13 "		= 1	
"	R. N. allowance	4	ı8 "	"	= 1	44
	nardwood			per	cube :	foot.
" T	oine wood	18	. "	- 44	"	

WOOD.

is pine . . 2700 lbs. = 1 cord. | Southern pine . 3300 lbs. = 1 cord.

BARTH.

nd ... 21 cube feet = 1 ton. pravel, 23 " " = 1" | Marl or Clay, 28 cube feet = 1 ton. mold 33 " " = 1"

tric, by Act of Congress of July 28, 1866.

Veight is the GRAM, which is weight of one cube centimeter of pure water had in vacuo at temperature of 4° C., or 39.2° F., which is about its temistre of maximum density = xy.432 grains.

Instions.	Values.	Grains.	Ounces.	Lba.	Ton.
1	z cube millimeter		_		_
L		.154 32			_
	.r " centimeter	1.5432	_	_	_
,	I * " "	15-432	.035 27	_	_
L		_	.3527	_	_
3	r deciliter	_	3-527	.22046	_
er Kilo		l —	35-27	2.2046	l –
B			_	22.046	l —
•••••	z hektoliter	 —	-	220.46	.098 419
fonneau.	z cube meter	I —	l —	2204.6	984 196

B= 2.679 17 lbs. Troy, or 2 lbs. 8 os. 3 dwts. .3072 grain.

dent Values in Metric Denominations of U.S.

milons.	Grams.	Dekagrams.	Denominations.	Grams.	Kilograms.
•••••	.0648	_	Ounce		.028 35
ht	1.5552		Pound	453.6028	.4536
pth.)	3.888	17.7187 38.88	Ton	373-2504	. 373 25

ximate Equivalents of Old and New U. S. Measures of Weight.

and the gram are at nearly equal distances above and below the Thus,

.. = 1 016 057.28 grams. | 1 kilogram ..

nearly 15.5 grains (about .5 per cent. less m about 2.2 pounds avoirdupois (about .25 prams, or a metric ton, nearly 1 Engl. ton (a

Electrical. (British Association.)

Resistance.—Unit of resistance is termed an Ohm, which represents resistance of a column of mercury of x sq. millimeter in section and x.0486 meters in length, at temperature o° C.

1 000 000 Microhms=		Ohm.			
1 Microhm ==	1000	absolute	electro	-magnetic	units.
1 Ohm=	1 000 000 000	44	**	-66	"
1 000 000 Ohms = 1	Megohm or 10	15 "	"	"	"

Electro-motive Force.—Unit of tension or difference of potentials is termed a Volt.

```
1 000000 Microvolts... = x Volt.

1 Volt. ...... = 100000000 absolute electro-magnetic units.

1 Megavolt... = 1 000 000 Volts.
```

Current.—Unit of current is equal to 1 Ampere, or the current in a circuit which has an electro-motive force of 1 Volt and a resistance of one Ohm.

```
Capacity.—Unit of capacity is termed a Farad.

1000000 Microfarads or 10^{-9} absolute units of capacity..... = 1 Farad.
```

Heat.—Unit of heat is quantity required to raise one gramme of water from $\circ \circ C$. to $\circ \circ C$. of temperature.

Quantity.—Unit of Quantity, one Coulomb, and is the quantity of Electricity transferred by one ampere during one second.

Note. - For additional Elements, see p. 953.

Weights of Grain and Roots.

Following weights have been fixed by statute in many of the States; and these weights govern in buying and selling, unless a specific agreement to the contrary has been made.

Pounds in a Bushel.

ARTICLES.	California.	Connecticut,	Delaware.	Illinois.	Indiana.	Iowa.	Kentucky.	Louisiana.	Maine.	Massachusetta	Michigan.	Minnesota.	Missourt	N. Hampshire	New Jersey.	New York.	Obio.	Oregon,	Pennsylvania,	Rhode Island.	Vermont.	Washington T	Wisconsin.
Barley	50	\equiv	=				48	32	_	46	48	48		Ξ	48	48	48	46	47	_	46	45	48
Beans	-	-	-		60			-	-	-	-	-	60	-	-	62	-	-	-	-	-	-	-
Blee Grass Seed.	-				14			50		7		7.	14		3	-	-	=	-	-	-	-	-
Buckwheat Castor Beans	40	45		40	46	52	52		0	40	42	42	46		50	40		42	40		40	42	42
Clover Seed					60		60	U.		Ξ	бо	60			64	бо	60	60				60	60
Dried Apples			_		25			_		_	28	28	24	_	-4	_	_	28	_			28	
Dried Peaches	-	-	_					-	_	_	28	28	33	_	-	_	_	28	-	_	_	28	
Flaxseed	-	-	-	56	33 56	56	56	-	-	-	-	-	56		55	55	56	-	-	-	-	-	56
Hemp Seed	-	-	-	44	44	44	44	7	-	-	-	-	44	-	-	-	-	-	-	-	-	-	-
Corn	52	56	50	52	50	50	56	56		50	50	50	52	-	50	58	50	56	50	-	56	50	5
Corn in ear					68 50		50		-	50										-		Ε.	
i meal,	Ξ			80	70		50		20	50			80							50	Ξ		
	32	28	_				33¥	32	30	30	32	32			30	32	32	34	32	_	12	36	3
*******	-	-	-	57	48	57	57	-	-	52	-	-	57	-	-	-	-	-	-	50		50	
*******	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60	-	-	-	-	-	-	-
	-	60			60			-	60	-	-	-			60			60		60			
***	54	56		54	56	50	56	60	-			50	56	-	50	50	50	56	56		50	56	5
***					-	-	50		50	50			-			-6				50		-	П
	-	-		45			45						50			56							1
		- 1	60	60	60	60	60	60	-	60	60	60	60	1	60	160	(60	60	60	(_	60	60	6
		- 1		20				1	-	1-	1	1	1/2	1-	1-	1-	1-	1	1	1-	1	1	7.

Weight of Men and Women.

rage weight of 20000 men and women, weighed in Boston, 1864, was 1, 141.5 lbs.; women, 124.5 lbs. Average of men, women, and chil-05.5 lbs. A mass of people, densely packed, weighs 85 lbs. per sq. foot, ccupying .8 of one sq. foot of area = 54 450 per acre.

Weight of Horses.-(U. S.) ght of horses ranges from 800 to 1200 lbs.

WEIGHT OF CATTLE.

To Compute Dressed Weight of Cattle.

E.—Measure as follows in feet:

firth close behind shoulders, that is, over crop and under plate, istely behind elbow.

ength from point between neck and body, or vertically above n of cervical and dorsal processes of spine, along back to bone at d in a vertical line with rump.

nultiply square of girth in feet by length, and multiply product ors in following table, and quotient will give dressed weight of s.

ition.	Helfer, Steer, or Bullock.	Bull.	Condition.	Heifer, Steer, or Bullock.	Bull.
fat	3. 15 3. 36 3. 5	3.36 3.5 3.64	Very prime fat Extra fat		3.85 4.06

RATION.—Girth of a prime fat bullock is 7 feet 2 ins., and length measured 4 feet 5 ins.

:7.17, and $7.17^2 = 51.4$, which $\times 4'$ 5" and by 3.5 = 794.5 lbs. Exact as 799 lbs.

-r. Quarters of a beef exceed by a little, half weight of living animal. weighs about eighteenth part, and tallow twelfth part of animal.

parative Weights of Live Beeves and of Beef.

	Lbs.	Per cent.	1	Lbs.	Per cent.
	2800	72 to 78	Bullocks	1550	} 61 to 64
	2600 2600	} 70 to 76	Heifers	1550	3 01 10 04
	2400	}	Heifers	1260 1200	58 to 61
• • • • • • • • •	2400	66 to 70	Bullocks	1050	57 to 58
•••••	2100	64 to 68	Heifers	1050 980	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	1800	63 to 66	Heifers	950	50 to 56

Weight of Offal in a Beef and Sh

BEEF. Lba. [air 56 to 98 42 " 140 ongue . 28 " 49 21 " 35	8HEEP. Lbs. 8 to 16* 5 " 14 6 " 11† 2 " 3	Kidneys, Heart, Liver, etc
ing a to 6 lbs. for floocs.	,	† Including a to

To Compute Equivalents of Old and New U. S. and of Metric Denominations.

By Act of Congress, July 28, 1866.

RULE. - Divide fourth term by second, multiply quotient by first term, and divide product by third term.

Or. Ascertain relative ratio of first and second terms, and multiply result by ratio of third and fourth terms.

Note. - When result is required in French or other Metric denominations than those of U.S., use exact denominations, as, 61.025 387 for 61.022, 39.370 432 for 39.37,

EXAMPLE 1. - If one gallon (1st), per sq. foot, yard, acre, etc. (2d); how many liters. (3d), per sq. foot, yard, acre, etc. (4th)?

 $\frac{1}{2} \times 231 \div 61.022.... = 3.7851$ liters of 3.7848 liters.

Or,
$$\frac{231}{144}$$
 = 1.604, and $\frac{144}{61.022}$ = 2.3598; hence, 1.604 × 2.3598 = 3.7851 liters.

Note.—In computing ratios, first term is to be divided by second, and fourth by third. EXAMPLE 2. —If one ton per cube foot, how many kilograms per cube decimeter?

$$\frac{61.022}{1728}$$
 × 2240 ÷ 2.2046 = 35.881 liters, or 35.882 litres.

MEASURES.

By Act of Congress of U.S.

By Metric Computation.

I Liter per sq. foot, etc. = .2642 Gallon per sq. foot, or .264 2 gallon.

Liter per sq. meter . = .0245 Gallon per sq. foot, .024 5 gallon. I Gallon per sq. foot . = 40.746 Liters per sq. meter, or 40.745 4 litres.

1 Sq. foot per acre ... = .2296 Sq. meters per hecture, or 2.296 og metres.

WEIGHTS AND PRESSURES.

By Act of Congress of U.S. By Metric Computation.

Per sq. inch. Per sq. inch. I Centimeter = .3937 Ins.

or ·393 704 32 Ins. 6.6679 Kilograms, or 6.6678 kilogrammes. 1 Atmosphere =

I Inch mercury .. = 2.54 Centimeters, or 2.54 centimetres.

r Pound = 453.6029 Grams, or 453.5926 grammes.

1 Kilogram = 317.4624 Lbs. per sq. foot, or 317.465 lbs.

Note. —30 ins. of mercury at 62° = 14.7 lbs. per sq. inch; hence, 1 lb. = 2.0408 ins., and a centimeter of mercury = 30 ÷ .3937 for U. S. computation, and 30 ÷ .393 704 35 for French or Metric.

POWER AND WORK.

- 1 Horse power = Cheval or Cheval vapeur = $4500 \text{ k} \times m = 33000 \div$ $(4500 \times 2.2046 \times \overline{39.37 \div 12}) = 1.01388$ chevaux.
 - I Cheval or Cheval-vapeur (75 $k \times m$ per second) = horse-power. $(4500 \times 2.2046 \times 39.37 + 12) + 33000 = .9863$ horse-power.

wess of U.S. By Metric Computation.

== 7.233 foot-lbs.; hence,

= .13826 Kilogrammeter, or .13825 kilogrammetre. :.0279 Cube meter per cheval, or .0279 cheval. 47 38 Kilomam per cheval, or .447 38 kilogramme.

TEMPERATURES.

oric or French unit = 3.968 *Heat-units*, and 1 heat-unit = $1 \div 3.968$ caloric.

S. Mechanical equivalent (772 foot-lbs.) = $772 \div 7.233 = 106.733$ mmeters and 106.733 kilogrammeters.

mch Mechanical equivalent $(423.55 k \times m) = 3.280833 \times 2.2046 \times m$

= 3063.505 foot-lbs., or 3063.566 foot-lbs. Metric. it-unit per pound = .5556 Kilogram, or .5556 kilogramme.

it-unit per sq. foot = .2715 Caloric per sq. meter, or .2713 per sq. metre.

VELOCITIES.

t per second...... = .3047 Meter per second, or .3047 metres. e per hour..... = .447 " " or .447 "

MEASURES OF TIME.

to thirds = I second.

60 minutes = 1 degree.

o seconds = I minute.

30 degrees = 1 sign.

360 degrees = 1 circle.

or apparent time is that deduced from observations of the Sun, ame as that shown by a properly adjusted sun-dial.

Solar time is deduced from time in which the Earth revolves xis, as compared with the Sun; assumed to move at a mean ts orbit, and to make 365.242218 revolutions in a mean Solar rian year.

al time is period which elapses between time of a fixed star meridian of a place and time of its return to that place.

rd unit of time is the sidereal day.

d day = 23 h. 56 m. 4.002 sec. in solar or mean time.

I year, or revolution of the earth, 365 d. 5 h. 48 m. 47.6 sec. in solar ime = 365.242 24 solar days.

ny, mean = 24 h. 3 m. 56.555 sec. in sidereal time.

2017 (Equinoctial, Calendar, Civil or Tropical) = 365.242 218 solar is d. 5 h. 48 m. 47.6 sec.

zy commences at midnight. Astronomical day commences at ne civil day, having same designation, that is, 12 hours later ivil day.

or sea day commences 12 hours before civil time or 1 day ronomical time.

's was introduced in England in 1752.

a Russia days are reckoned by Old Style, a prian record.

MEASURES OF VALUE.

10 mills = 1 cent. 10 dimes = 1 dollar. 10 cents = 1 dime. 10 dollars = 1 eagle.

Standard of gold and silver is 900 parts of pure metal and 100 of alloy in 1000 parts of coin.

Fineness expresses quantity of pure metal in 1000 parts.

Remedy of the Mint is allowance for deviation from exact standard fineness and weight of coins.

Nickel cent (old) contained 88 parts of copper and 12 of nickel. Bronze cent contains 95 parts of copper and 5 of tin and zinc.

Pure Gold 23.22 grains = \$100. Hence value of an ounce is \$20.67.183+.

Standard Gold, \$18.60.465+ per ounce.

WEIGHT, FINENESS, ETC., OF U. S. COINS.

Gold.

Denomination.	of Coi	Weigh n.	of Pure Metal.	Denomination.	of Coin	Weigh	of Pure Metal
DollarQuarter Eagle	· 134 375	25.8 64.5 77.4	Grs. 23.22 58.05 69.66	Half Eagle Eagle Double Eagle	.5375	Grs. 129 258 516	Grs. 116.1 232.2 464.4

Silver.

Dime	38.58 34.72	Half Dollar	.401 875	192.9 173.61
20 Cent	77.16 69.44	Trade Dollar	.875	420 378
Quarter Dollar 200 937	5 96.45 86.80	5 Silver Dollar	.859 375	412.5 371.25

Copper and Nickel.

	Weight.	Copper.	Zinc.		Weight.	Copper.	Tin and Zinc.
One Cent Two Cents	48	Per cent. 95 95		Three Cents. Five Cents	30	Per cent. 75 75	Per cent. 25 25

Tolerance.—Gold, Dollar to Half Eagle, .25 grains. Eagles, .5 grains.
—Silver, 1.5 grains for all denominations.—Copper, 1 to 3 cents, 2 grains; 5 cents, 3 grains.

Legal Tenders.—Gold, unlimited.—Silver. Dollars of 412.5 grains unlimited; for subdivisions of dollar, \$10. (Trade dollars [420 grains] are not legal tender.)—Copper or cents, 25 cents.

Note. —Weight of dollar up to 1837 was 416 grains, thence to 1873, 412.5. Weight of \$1000, @ 412.5 gr. = 859.375 oz.

British standards are: Gold, \$\frac{2}{2}\$ of a pound,* equal to 11 parts pure gold and 1 of alloy; Silver, \$\frac{2}{2}\$ of a pound, or 37 parts pure silver and 3 of alloy \$\frac{2}{2}\$ fine.

womes of standard gold is coined into £3 17s. 10d. 2f., and an Alver into 5s. 6d. 1 lb. silver is coined into 66 shillings. Proportion of 2 shillings to pound avoirdupois.

86.65; hence $\frac{1}{140}$ of this = value of 1 penny =

To Compute Value of Coins.

- Divide product of weight in grains and fineness, by 480 an ounce), and multiply result by value of pure metal per

tiply weight in ounces by fineness and by value of pure metal

1.-When fine gold is \$20.67.183+ per oz., what is value of a British

ing tables, p. 40. Sovereign weighs .2567 oz., and .2567 \times 480 = 123.216 has a fineness of .9165.

Hence,
$$\frac{123.216 \times .9165}{480} \times 20.67.183 + = $4.86.34$$
.

2.—When fine silver is \$1.15.5 per ox., what is value of U. S. Trade dollar? p. 38, Dollar weighs .875 oz. and has a fineness of .900.

Hence, .875 × .900 × 1.15.5 = 90.956 25 cents.

3.—A 4-Florin (Austrian) weighs 49.92 grains and has a fineness of .900.

$$\frac{49.92 \times .900}{480} \times 20.67.183 + = $1.93.49.$$

vert U.S. to British Currency and Contrariwise.

.—Divide Cents by 2.027 71 — (2.027 708 33), or, Multiply by (.493 118 26), and result is Pence.

iply Pence by 2.02771-, or divide by .49312-, and result

-What are roo cents in pence?

 $100 \times .40312 - = 40.312 - pence = 48.1.312d$

s a Pound sterling in cents?

20 X 12 = 240 pence, which X 2.02771- = \$4 86.65.

FOREIGN MEASURES OF VALUE.

- t, Fineness, and Mint Values of Foreign Silver and Gold Coins.
- s of Congress, Regulations of the Mint, and Reports of its Directors.
- Value of silver coins is necessarily omitted, as the value of variable element. Hence, in order to compute current value r coin, the price of fine or a given standard of silver being

as per above rule to compute value of coins.

se of silver should be taken as that of the London market for andard (925 fine), it being recognized as t d value, ning rates in all countries.

—If it is required to determine value of a Mexic 57.5 or .903 fine. Value of Silver in London 51

 $\frac{267.5 \times .903}{925}$ = .846 867— and 106.9616 × .846 867.

Weight and Mint Values of Foreign Coin. (The Value of the Silver Coins is based on their Value on January, 1888.)

Countries given in Italics have not a National Coinage.

Country and Denomination.	Weight.	Fine-	Pure Silver or	Current	_	0 l d.
			Gold.	Nominal.	U. S.	British.
Arabia.	Oz.	Thous's.	Grains.	Cents.	\$ c.	T = T
Piastre or Mocha Dollar Argentine Republic.	_	-	-	83.14	_	-
Dollar = 100 Centisimos	-		-	50.60	_	-
Peso, Double	_	-	-	-	96.5	-
Australasia. Same as British. Australia.						
Sovereign, 1855 Pound, 1852		916 916.5	=	=	4.85.7 5.32.37	19 11-5 1 1 10-5
Austria. Kreutzer (copper)		١ _	l	.41		
Florin, new	.397	900	171.47		34-5	_
Dollar. "		900	257-47	=	I — 1	_
4 Florins		900	_	=	I.93.49	7 II 9 46
Souverain	.363	900	=		2.28.3 0.75.4	1 7 91
Belgium.	13.5	,,,,	ļ	1	5.75.4	- ' '
Same as France. Bolivia.		1	1			
Centena	_		l	-		.3
Dollar, new		900	346.03	·75	69.9	
Doubloon, 1827-36	.867	870	362.06	-	15.59.3	3 4 1
Brazil. Rei.			ļ	1		.#
Milreig	.028.8	916.66	12.67	•547	54.50	96.98
Double Milreis	.82	918.5	393.6		-54-59	-
20 Milreis, 1854-56	.575	917.5	-	-	10.90.6	2 4 984
Moidore, 4000 Reis	.261	914	-		4.92	1 0 263
Canada. Mil, sterling	i	l _			1	.05
Cent "	_	_	_	1.01	_	.5
20 Cent, currency	.15	925	66.6		_	-
25 " "		925	83.25		l —	<i>-</i>
Penny " Shilling "	=	-	_	1.52	_	75
Dollar, sterling.		=		_		4.5
4 " _2 h llings, currency		_	i —	-	3.97.43	10 4
Pound	-	-	-	-	3.99.97	z6 5-25
Cape of Good Hope.	1	1	i	1	1	İ
Central America.	l		i		l	1
4 Reals	.027	875	11.34	_	_	-
Dollar		850	353-33	-	! =.	- "
2 Escudos Doubloon ante 1834	.209 .869	853.1		-	3.68.8	15 1.88
Ch.li.	.009	833	_	_	14.96.39	3 I 59
Centaro	l —	_	!	٠. ا	l _	ند
Doll ar, new	.801	900.5	346.22	9	91.2	-
r - Pes is Penddo in	.492 .867	900	-	-	9.15.4	2 27 74
Ch u i.	-607	870	-	-	15-59-3	3 4 ¹
Cash, Le	_	l —	_	.14	_	.0
1 - Cents, Leang	.087	901	37.98			`
Dollar Cochen China.	.866	/201	374.63	\ -	(-)	_
Mas, 60 Sapeks	.1	\ _	\ _	6.75	\ _	\ •
zo Mas, z Quan	.1 –	\ _	\ _	67.5	. \ _	1 09

Weight and Mint Values.

Country and Denomination.	Weight.	Fine-	Pure Silver or Gold.	Current or Nominal.	VALUE G. U.S.	o I d. British.
Cu.	Oz.	Thous's.	Grains.	Cents.	8 c.	£ s. d.
Cuba. Same as Spain. Colombia. Contaro.	_	_	_	1.01	_	.5
Peso, new. 4 Escudos. Dubloon, old. Costa Rica. Same as Mexico. Demmark.	.801 ·433 .867	900 844 870	346.03	=	69.9 7.55.5 15.59.3	1 11 0.58 3 4 1
Mark, 16 Skilling. Crown. 2 Rigadaler 10 Thaler East Indies. See Hindostan and Japan. Ecuador.	.025 .927 .427	900 877 895	 390.23 	8. <u>94</u> —	26.8 7.90	4·39 13·22 ———————————————————————————————————
Centaro. Peso. England.	.8oz	900	 346.03	1.01	- 69.9	_ ·5
Fenny. Great. Shilling, new " average. Half Crown Form. Sovereign or Pound, new " average. Egypt.	·454·5 •363·6 •256·7	925 924.5 925 925 925 925 916.5 916.5	26.82 80.99 79.03 201.8 161.44	2.02+*	4.86.65 4.85.1	1 0 0 1 0 0
Pastre, 40 Paras Guinea, Bedidlik, Pound, Purse, 5 Guineas Panoa	·275 ·275 I·375	755 875 875 875 8 75	14.5 —	=	4.9 5. 0.52 4.97.4 25. 2.6	1 0 6.84 1 0 5.3 5 2 10.2
Centime. Son. 5 Centimes. Franc, 100 Centimes. 5 Francs. 20 Francs, Napoleon, new. 25 Francs 20 centimes = £1 Stg. Germany.	.161	900 900 899	69.55 347.76	.2 1.01 — —	 19.3 96.45 3.85.8	.1 -5 - 15 10.26
Groschen, 10 Pfenning	.012.8 .128 .595 .112	900 900 900 986	 	2.38 — — —	23.8 2.38.24 2.28.38	9 9.5 - 9 4.63
Drachma, 100 Lepta 5 Drachmas 20 Drachmas Pound Guatemala.	.010.4 .719 .185	900 900 —	310.61 —	= =	19.3 44.2 5. 6.11	9.5 14 1.75 1 0 9.6
Guerra, British, French, and Dutch. Same as that of their Countries. Basse Towns. Mark. Holland. Cant.	.012.8	900	_	-	23.8	11.74

Weight and Mint Values.

Country and Denomination.	Weight.	Fine-	Pure Silver	Current	VALUE	14,
			Gold.	Nominal.	U. S.	British.
Holland. Florin or Guilder, 100 cents.	.021.6	Thous's.	Grains.	Cents.	\$ c. 41.2	2 8 . d.
ro Guilders	.215 ·374	899 916.5	164.53	_	3-99-7	16 5.11 1 10.5
Honduras. Same as Mexico.	-3/4					,
Italy. Same as France. Lira. 100 Centimes Scudo	.16 .864	835 900	65. 12 373. 24	-	19.3	11
Indian Empire. Pic, nominal	- - -375	<u> </u>	_ 165	.25 3.03	_ 35-2	.115 2.5
ro Rupees, and 4 Annas Mohur, 15 Rupees Japan.	.375	916.5	=	=	4.86.65 6.84.36	1 0 0 1 8 15
Sen	.279 .866.7 .053.6		119.19 374.4	1 - -	 75·3 99·72	-5 - 4 12 13
Cobang, old	.289 .362 1.072	572 568 900	=	=	3.57.6 4.44 19.94.4	14 835 18 200 4 1 110
Same as Holland. Liberia. U.S. Currency. Malta.						
12 Scudi == 1 Sovereign Mexico.	_	_	-	_	4.86.65	100
Peso, new	.867.5 .861 .867.5	903 902.5 870.5 873	377.17 372.98 —		75.9 15. 6.1 19.51.5	4 2 3 4 188 4 0 24
Morocco. Ounce, 4 Blankeels 10 Ounces, Mitkeel	=	=	=	=	_	=
Naples, Scudo 6 Ducati Netherlands.	.844 ·245	830 996	336.25	=	_ 5- 4-4	1 0 875
Same as Holland. New Brunswick. Same as Canada. Newfoundlind. Some as Canada.						•
New Granada. Dollar 1857 Doubloon, Popayan. Norway	.803 .867	896 858	=	-	 15.37.8	3 3 3-39
Mark, 24 Skillingen Nova Scotia.	_	_	-	21.63	_	10.66
Same as Canada. Parala. Kasara	' –	=	=	18.68	=	::. :

Weight and Mint Values.

i Denomination.	Weight.	Fine-	Pure Silver	Current	VALUE. Gold.	
1 Denomination.	wedgar	Bess.	or Gold.	or Nominal.	U. S.	British.
	Oz.	Thous's.	Grains.	Cents.	\$ c.	£ a. d.
id	.766 .802 .867	900 900 868	341.01 346.46	Ξ	69.9 15.55.7	3 3 11.22
, 10 000 Reis	.308 .095	912 912	=	=	10.81.78 10.8	2 4 55
•••••	.322	835	129.06	-	-	-
Roubleunds.	.667 .21	500 875 916.6	 277:73	-77 	 55.9 3.97.6	38 _ 16 4.8
•••••	.16	835	65.12	_	-	_
o, Pesetaseta	.16 .8 .268 .270.8	835 900 896 896	64.13 345.6 —	.19 	 19.3 92.6 4.96.4 5. 1.5	.095 1 0 4.8 1 0 7.32
Francs	.273 1.092 .104	750 750 900	98.28 393.12 —	Ξ	_ z.93.5	7 11.42
nce.						
o Cents	_	-	-	6.33	_	3. 125
Karubs	.511 .161	898.5 900	220.38 —	11.83	2-99-5	5.83 12 3.7
Paras	.77 .231	830 915	306.77	4-39 —	<u>-</u> 436.9	2.16 18 o
equin	.112	900	-	-	2.31.3	9 6.z
Mahbub	_	_		74-3	63	3 0.39
Centimes British. agland.	-	-	-	-	-	_
ranc	=	=	=	<u> </u>	19.3	5

Memoranda.

ronze coins 9.5 copper, 4 tin, and 1 zinc.

s.—Monetary system same as that of German Empiro.

n.—The Centime is termed a Rappe.
Poseta piece is 198.9-5d. Stg.; Real vollon was 2.5d. Stg.
coins same weight and fineness as those of France.
Fari and 4 Grani = 1 Shilling Sterling.

Para = .661 sd. Sterling, and 97.22 Plastres = 1 Sovereign.

12 -1 Lac Rupees = £10 coo Sterling. In CEYLON, Rupee = 1

ENGLISH AND FRENCH MEASURES AND WEIGHTS.

MEASURES OF LENGTH.

b.sch.-n.—Imperial standard yard is referred to a natural standard, when it is pendulum 39.1393 ins. in length vibrating seconds in vacuo in London, at level of sea; measured between two marks on a brass and at temperature of 62°.

ore. In consequence of destruction of standard by the in 1834, and difficulty of replacing a by measurement of a pendulum, the present standard is held to be execute port in 174 as less that of C. S. equal to 2.07 ms, in a mile.

Miscellaneous.

| Lond. = Woodland pole or perch or Fen = 13 feet. | Forest pole = 21 |

frish mile...... = 2240 yards. | Scotch mile = 1984 yards. | Scotch mile = 1984 yards. | Scotch mile ... = 1985 yards. | Scotch mile or two = 2080 feet, or 1.1510 Statute miles. | Admiralty or Nantical mile or knot = 2080 feet.

quilles = r league. to Nautical or og.004 Statute miles or 20 Leagues = r degree.

Moon length of a minute of Latitude at mean level of the sea = x.x451 statute with s.

Nantical mile is taken as length of a minute at the Equator.

Nantical fathom is recoth part of a nantical mile, and averages about 25 longer than the common fathom.

Finance.—Standard Metre or unit of measurement is defined as the ten millionth part of the terrestrial meridian, or the distance from the Equation to the Pole, passing through Paris. Actual standard is a platitude of the deposited in the Palais des Archives, Paris.

Motric Length in Inches, Feet, etc.

		 	!!!			
•		Metres.	Inches	Sec.	Yanis.	Miles
7.1	•••	 .vor	219.17			_
	• • •	 r	10.17		_	_
	• • •	 . t	3-937-04		_	_
۲.		Ţ	39-370-43	1. 100 37	1/243/02	_
		 10	_	11.505.00	103 439 23	_
		 : >0	-	125, 360 4	104, 992 (1	
		 2,000	_	1200 500	1003.7231	. 521 36
1	•	3.100	_		10.430.231	5.213 77

and in the see p. 24.

Old Mensure.

 - : 519 net	t Terrestrial league = 4-444 Elometra.
= corp diametres.	r Nautical league . = 5.555
 */ = : 455	1 Arpent = 900 sq. :01305

MEASURES OF SURFACE.

ENGLISH .- Same as that of United States of America.

attent, o inches dente,

FRENCH.

Metric Surfaces in Square Inches, Feet, etc.

Denomination.	Sq. Inches.	Sq. Foot.	Sq. Yards.	Sq. Acres.
are millimetre	.001 55			
" centimetre	.155003	l' —	_	_
decimetre	15,500 300	. 107 641		
Metre or Centiare	1550.030 916	10.764 104	1.10601	
dekametre or arc	-	1076.410 358	110.601 15	
hektometre or kectare	_	' - "	11 960.115 or,	2.471 098
* kilometre	_	-		247.109 816
* myrtametre*	_	l –		24 710.081 6
•	Equal 38.610 90	8 og. miles.	•	

014 8----

Old System.

square inch = 1.135 87 inches. toise = 6.394 6 feet.

arpent (Paris) = 900 square toises = 4089 square yards.

urpent (woodland) = 100 square royal perches = 6108.24 square yards.

MEASURES OF VOLUME.

uperial gallon measures 277.123 cube ins., but by Act of Parliament its volume is 277.274 cube ins., equal to 10 lbs. avoirdupois of led water, weighed in air, at temperature of 62°, barometer at 30 s. 6.2355 gallons in a cube foot.

perial bushel, 18.5 ins. internal diameter, 19.5 external, and 8.25 pth, contains 2218.192 cube ins., and when heaped in form of a cone, at least .75 depth of the measure, must contain 2815.4872 ins. or 1.6293 cube feet.

rin.- 1 quarter = 8 bushels or 10.2694 cube feet.

sels. — I ton displacement = 35 cube feet; I ton freight by measure= 40 cube feet.

m internal capacity = 100 cube feet, and 1 ton ship-builders = 94 eet.

lish standard No. $_{5}$ is .008 grain heavier than the pound, and U. S. pound is ain lighter than English.

Wine and Spirit Measures. ·

4 Qu	arts (231 cube ins.)	= .8333 Imperial gallon.
	llons	
18	" (15 imperial)	= 1 runlet.
31.5	" `26.25 " '	= 1 barrel.
42	" 35 "	= 1 tierce.
31.5 42 63 84 126	" 52.5 "	= 1 hogshead.
84	" 70 "	= I puncheon.
126	" 105 " ······	= 1 puncheon. = 1 pipe or butt.
2 pi	pes or }	+
3 pu	pes or }	= 1 1411.

Ale and Beer Measures.

Imp'l gali's.	1	Imp'l gell'e
bs (282 cube ins.) . = 1.017 = 1 firkin = 9.153	2 kilderkins = 1 barre	- 7/2
p= 1 kilderkin = 18.306	108 " = 1 butt	

46 ENGLISH AND FRENCH MEASURES AND WEIGHTS.

40 ENGLISH AND FRENCH	MEASURES AND WEIGHTS.	
Apothecaries o 1 drop = 1 grain. 60 drops = 1 drachm.	r Fluid Measures. 4 drachms = 1 tablespoon 2 ounces (875 grains) = 1 wineglass.	
Coal I	Measures.	
50 pounds = 1 cube foot. 83	12 sacks 1 chaldron . 1 chaldron . 5.86548 cube ft 5.25 chaldrons . 1 room . 1 London chaldron 26.5 cube . 1 Newcastle " 53 " 1 ton 44.5 cube feet . 1 room 7 tons . 21 chaldrons 1 score . 1 barge or keel . 21.2 tons .	
Misce!	llaneous.	
1 last corn. = 80 bushels. 1 ton water. = 35.9 cube feet. 1 dicker hides. = 10 skins. 1 last hides. = 20 dickers. 1 barrel tar. = 25.5 gallons. 6 bushels wheat. = 1 sack flour. 1 clove. = 7 pounds. 1 score. = 20 " 1 sack flour. = 28.2 " 1 truss straw. = 36 " 35.9 cube feet.	I truss old hay = 50 pounts. I " new " = 60 " I bushel oats = 40 " I " barley = 47 " I " wheat = 60 " I cube yard new hay = 84 " I " " old " = 126 " I quintal = 100 " I boll = 140 " I sack wool = 364 " # I ton water.	
Lı	QUID.	
1 wine gallon = 231 cube ins. 1 beer " = 282 " " 1 litre = .220 09 gallon. 1 gallon = 4.544 litres. 1 cube foot . = 6.2321 gallons. 1 anker = 8.333 "	I hogshead wine = 52.5 gallons. I "beer = 54.918 " I puncheon wine = 70 " I pipe or butt wine = 105 " I " "beer = 109.836 " I tun = 210 " 20 = 224 gallons.	
Bui	LDERS.	
I solid part	1 square = 100 sq. feet. 1 bundle laths = 120 laths. 1 rod brickwork = 306 cube feet. 1 rood masonry = 648 " " Batten, in section = 7 × 2.5 ins. Deal, " = 9 × 3 " Plank, " = 11 × 3 "	
Metric Volumes in Cube Inches, Feet, etc.		

Metrio	Vol	umes.	in	Cube	Inches,	Feet, e	to.

Denominations.	Line	Cille.	Pints.	Quarts.	Gallons.	Bushels.	Quarters.
Centilitre	,	-		1	_	_	_
Pacilitra,					- -		l —
,*				24	.2201	_	l –
•				ا هــ	9.2009	.275 11	l —
					709E	2.751 13	·3439
					*006	/ #1-6xx 32	3.4389

Wood Measure.

Stere or cube metre = 35.3150 cube feet or 1.308 cube yards. Voie de bois (Paris) = 70.6312 cube feet; 1 voie de charbon (charcoal) .063 cube feet; I corde = 4 cube metres = 141,26 cube feet.

MEASURES OF WEIGHT.

18H.—I Troy grain = .003 961 cube inches of distilled water. I Troy pound = 22.815 689 cube inches of water.

I Avoir drachm = 27.343 75 Troy grains.

Avoirdupois.

schms, or } 5 grains } unces. or	I bance,	14	44	=	r stone (for meat) r stone. r quarter.	•
grains	$\dots = r$ pound.	112	66	=	ı cwt.	
20 hundredweights = 1 ton.						

e grain, of which there are 7000 to the pound avoirdupois, is same as grain, of which there are by the revised table 7000 to the Troy pound. ace Troy pound is equal with the Avoirdupois pound. Wales, the iron ton is 20 cwt, of 120 lbs, each.

Troy.

$ins \dots = i dwt.$	16 ounces = 1 pound.
myweights, or \	25 pounds = 1 quarter. 4 quarters, or 100 pounds = 1 cwt.
7.5 grains \ \ \cdots = 1 ounce.	4 quarters, or 100 pounds = 1 cwt.
this are weighed gold, silver, j	ewels, and such liquors as are sold by

old Troy ounce to the Avoirdupois ounce was as 480 grains, the of the former, to 437.5 grains, weight of the latter; or, as 1 to .0115.

Anothecaries.*

437.5 grains = 1 ounce. 16 ounces = 1 pound.

FRENCH.

Metric Weights in Avoirdupois.

ominations.	Grammes.	Grains.	Ounces.	Pounds.	Ton.
mme	100	.01543	_	-	_
ımme	.01	.154 32	_	- !	_
nme	.1	I 543 23		_ i	_
L	1	15.432 35	_	1	
mme	10	154-32349	·3527	,	
amme	100	1 543.234 87	3.5274	. 220 46	_
nmet	1 000	15 432.348 74	35-2739	2.20462	_
ımme	10 000		·	22.04621	
	100 000		-	220.46212	
r Ton	1 000 000	_	l —	2204.621.25	.9842

[†] Kilogramme = 2 lbs. 3 oz. 4 drachms, 10.4734 grains.

-For the values of the prefixes, as Milli, Centi, etc., see p. 27.

Old System.

$\mathbf{n} \cdot \mathbf{r} = \mathbf{r} \cdot 0.8188$ grains $Tr dy$.	1 ounce = 1.0780 oz. Avoirdupois.
s = 58.9548 "	1 livre = 1.0780 lbs.

FOREIGN MEASURES AND WEIGHTS.

It being wholly impracticable to give all the denominations of measures and weights of all countries, the following cases are selected as essential and as exponents.

With parent countries, as England, France, etc., their denominations extend to their colonies and dependencies. Thus, the denominations of England extend to Canada, a large portion of the East and West Indies, and parts of South America, and those of France to a part of the West Indies, Algiers, etc.

	, , , ,
Abyssinia.	Arabia, Bassora, and
Pic, Stambouili 26.8 ins.	Mocha.
" geometrical 30.37 "	Foot, Arabic 1.0502 ft.
Madega 3.466 bush.	Covid, Mocharg ins.
Ardeh	Guz, "25 "
Ardeb	Kassaba 12.3 ft.
Wakea 400 grains.	Mile, 6000 feet 2146 yds.
Mochaı Troy oz.	Baryd, 4 farsukh 21 120 "
Rottolo 10 " "	Feddan 57 600 sq. ft.
Also, same as in Egypt and Cairo.	Noosfia, Arabic 138 cub. ing.
,	Gudda 2 galls.
Africa, Alexandria, Cairo,	Maund 3 lbs.
and Egypt.	Tomand 168 "
Cubit 20.65 ins.	Other Measures like those of Egypt.
Derah25.49 "	Outer measures time mose of Egypt.
Pic, cloth 26.8 "	Argentine Confederation.
" geometrical 29.53 "	Paraguay, and Uruguay.
Kassaba, 4.73 Pics 11.65 ft.	Fanega 1.5 bush.
Mile 2146 yds.	Arroba 25.35 lbs.
Feddan al-risach552 48 acre.	Quintal 101,4 "
Roobak	Also Decimal System in Argentine Con-
Ardeb 4.9 bush.	federation and Paraguay.
Rottol	1
Distances are measured by time.	Australasia.
A Maragha = 15 Déréghé or 1 hour.	Land Section 80 acres
Aleppo and Syria.	Other Measures same as English.
Dra Mesrour	Austria.
Pic 26.63 "	Zoll 1.0371 ins.
Road Measures are computed by time.	Fuss 1 0371 ft.
	Meile 24 000 ft.
Algeria.	Klafter, quadrat 35.854 sq. yds.
Rob, Turkish 3.11 ins.	Jochart 6.884 "
Pic, " 24.92 " " Arabic	Cube Fuss 1.1155 cub. ft.
" Arabic	Achtel 1.692 galls.
Also Decimal System.	Eimer12.774 "
Alicante.	Viertel 3.1143 "
l'almo 8.908 ins.	Metze 1.6918 bush.
Vara 35. 632 "	Unze
Amsterdam.	Pfund (1853, 500 grammes), 1.2347 lbs. Centner
Voet 11.144 ins.	
El21.979 **	Also Decimal System.
Faden 5.57 ft.	· Babylon.
Lieue 6.383 yds.	Pachys Metrios 18.205 ins.
Maat	,
Morgen 2.0005 44	Baden.
Vat	Fuss
Vat40 cub. ft. Also Decimal System.	Klafter 5.9055 ft.
Antwerp.	Ruthe 9.8427 '' Stunden 4860 yds.
Fues zerozena zz. 275 ins.	Morgan
Eile, cloth	Stutme 3.3014 galls.
Eile, cloth	4 1268 bush.
Bounder	1.1023 lbs.
••	· Also Decimal System.
• •	

Bagdad.	Brazil.
31.665 ins.	Palmo, Bahia 8.5592 ins. Vara 3.566 ft.
3arbary States.	Braca 7.132 "
3 linen 18.62 ins.	Geira 1.448 acres.
cloth	Also same as Portugal, and sometimes
Batavia.	as in England.
12.357 ins.	Buenos Ayres.
27 "	Vara
27.75 "	Suertes de Estancia 27 000 sq. varas.
Bavaria.	Also same as Spain.
11.49 ins.	Burmah.
5.745 36 ft. 3.1918 yds. 8060 "	Paulgat 1 inch.
8060 "	Dain
ıadrat 10. 1876 aq. yds. r Tagwerk8416 acre.	Viss. 3.6 lbs. Taim. 5.5 "
ube 4.007 cub. yds. 15.058 56 galls.	Saading22
15.058 56 galls.	Also same as England
6.119 " 1 0196 bush.	Canary Isles.
8642 grains.	Onza
Also Decimal System.	Almude
Belgium.	Fanegada 5 "
2.132 yds.	Libra 1.0148 lbs. Also same as Spain.
Also Decimal System.	<u>-</u>
Benares.	Cape of Good Hope.
lor's	Morgen 2.116 54 acres.
1, Bombay, and Cal- cutta.	Also same as in England.
3 ins.	Ceylon.
	Seer
	Also same as in England.
bay27 " ral36 "	China.
ZEI	I.i
inimum 3.417 ft. gal 1.136 miles.	Chih, Engineer's 12.71 ins.
nutta 1.2273 " 9.8175 sq. yds.	" or Covid 13.125 " " legal 14.1 "
engal3306 acre.	Chang
kombay8114 "	Chang 131.25 " legal
nbay 12.704 cub. ins.	Pu 4.05 ft. Chang, fathom 10.9375 ft.
1bay 1.234 pints.	Li
4.4802 galls.	Pú or Kung 3.32 sq. yds. King, 100 Mau 16.485 acres.
med Grain measured by weight.	Tau 1.13 galls.
Bohemia.	Tael 1.333 0z.
rue 11.88 ins.	Catty 1.333 lbs.
erial 12.45 "	Cochin China.
Also same as Austria.	Thuoc or Cubit 10.2 ins.
ia, Chili, and Peru.	Mao
33.333 ins.	Hao. 6. 222 galls. Shita 12-444
	Nen
4 I.572 "	Colombia and Venezuela.
1.014 lbs.	Libra 1.102 lbs
in Spain; now Decimal in Chili and Peru.	Oncha
in Chili and Peru.	Aldo

Denmark,* Greenland, Ice- land, and Norway.	Hungary. Fuss
Ecuador. Decimal System. Genoa, Sardinia, and Turin. Palmo	Milan and Venice. Decimal System. The Metre is termied Metra; the Are, Ara; the Stere, Stero; the Litro; the Gramme, Gramma, and the Tonness, Tonnelata de Mare.
"Liprando, 12" 20.23 " Trabuco or Tesa. 10.113 ft. Miglio 1.3835 miles. Starello 9804 acre. Giomaba 9394 " Germany. The old measures of the different States	Naples and Two Sicilies. Palmo
differ very materially; generally, however, Foot, Rhineland	Roman States. Old Measure. Foot
Also Decimal System. Guinea. Jachtan	Lucca and Tuscany. Pie
2.300 across. Cube Fuss. 831 cub. ft. Tchr. 99-73 " Viertel 1.594 7 galls. Pfund (500 grammes) 1.102 32 lbs. Ton 2135.8 lbs. Also Decimal System. Hanover.	Japan Sancato Japan Sun, 30303 Metres 1.193* ins. Shaku, 3.0303 Metres 1.19305* ins. Jo, 30.303 9.9421* ft, Ken, 5.5 5.9653* in Shaku Sancata Sancat
Fuss	Hiro 4.971* feet. Momme 3.756 521 7 grammes Fr. Hiyaku-me 8.28 17 lbs. Kwam-me 8.281 71 " Hiyak-kin 132.507 32 " Man's load 57.972 " Eokt 331.268 32 " Hiyak-koku 331.268 32 " Tirak-koku 331.268 38 "

_	
Java.	Archin, Schah 31.55 ins.
I.3 ins.	" Arish 38.27 "
27.08 " 7.015 8CTGS .	Parasang
	Artaba 1.809 bush.
503.6 grains.	Miscal 71 grains.
61.034 lbs.	Ratel a read line
122.068 "	Batman Maulu 6.49 "
1.356 "	Liquids are measured by weight.
Madras.	Poland.
10.46 ins.	Trewice
18.6 "	Precikow
	Pretow 4.7245 yds.
3472 yda.	Mile, short
	Morgen 1.3843 acros
2.704 "	Portugal and Mozambique.
180 grains.	Foot
	Milha
3.086 "	Almude
	Alguieri 3.6 "
Malabar.	Libra 1.012 lbs.
10.46 ins.	Also Decimal System.
Malacca.	Prussia.
1 18.125 ins.	Fuss 12.358 ins.
6 ft. 80 yds.	Ruthe 4.1192 yds.
······································	Meile 24 000 feet,
Malta.	Quadrat Fuss 1.0603 sq. ft.
10.3125 ins.	Morgen
	Cube Fuss 1.092 cub. ft. Scheffel
02.5	Anker 7.550 galls.
so as in Sicily.	Pound
av us in bung.	Tallmound , , , , , , , , , , , , , , , , , , ,
	Zollpfund 1.1023 lbs.
Moldavia.	Centiner 1.1023 lbs.
8 ins.	Centner
8 ins. 24.86 ins.	Centner
	Centiner
8 ins	Centner
	Russia. 113.43 lbs.
8 ins. 24.86 ins. 8 ft. 100a Islands. 18.333 ins.	Centner 113.43 lbs. Russia. Vershok 1.75 ins. Foot 12 ins. Arschine 28 " Rhein Fuss 1.03 ft. Sajene 7 ft.
	Centner 113.43 lbs. Russia. Vershok 1.75 ins. Foot 12 ins. Arschine 28 " Rhein Fuss 1.03 ft. Sajene 7 ft. Verst 3500 " Mila 5.5574 miles.
	Centner 113.43 lbs. Russia. Vershok 1.75 ins. Foot 12 ins. Arschine 28 " Rhein Fuss 1.03 ft. Salene 7 ft. Verst 3500 " Mila 5.5574 miles. Dessatins 2.4954 acres.
	Cantner
	Cantner
	Centner
	Russia. Russia. Pajak Russia. Russia. Pajak Paja
	Centner
	Centner
	Taylor Taylor Taylor
24.86 ins. 24.86 ins. 24.86 ins. 24.86 ins. 8 ft. 18.333 ins. Microcco. 28.10.25 ins. 20.34 ins. 21 ins. 3.356 in	Centner
8 ins. 24.86 ins. 25.86 ins. 8 ft. 26.82 ins. 28.333 ins. Microcco. 28.10.25 ins. 20.34 ins. 21 " 3.051.35 galls. 3.356 " 1.12 lbs. than oil are sold by weight. Mysore. 2.12 ins. 10.1 "	Cantner 113.43 lbs. Russia. Vershok 1.75 ins. Foot 12 lns. Arschine 28 " Rhein Fuss 1.03 ft. Sajene 7 ft. Verst 3500 " Mila 5.5574 miles. Dessatins 2.4954 acres. Vedro 2.7049 galls. Tschel-werha 1.4424 " Pajak 1.4426 bush. Tschetwert 5.7704 " Pound 6317 grains. Funt 9.0285 lbs. Decimal System adopted in 1872. Siann. K'up 9.75 ins. Covid. 18 lins.
8 ins. 24.86 ins. 24.86 ins. 8 ft. 26.86 ins. 18.333 ins. Morocco. 28.10 25 ins. 20.34 ins. 21 " 3.051 35 galls. 3.356 " 1.12 ibs. 4 ins. 21 ins. 3.21 ins. 3.21 ins. 3.22 " 3.22 ins. 3.32 ins.	Centner
8 ins. 24.86 ins. 24.86 ins. 8 ft. 26.87 ins. 28.333 ins. Morocco. 28.10 25 ins. 20.34 ins. 21 " 3.081.35 galls. 3.356 " 1.12 ibs. than oil are sold by weight. Mysore. 2.12 ins. 38.2 " 500 ibs.	Cantner
## 18 ins. ## 24.86 ins. ## 23.33 ins. ## 22 ins. ## 23.35 ins	Cantner
## 19.1 ## 19.	Centner
## 18 ins. ## 24.86 ins. ## 20.33	Cantner
## 19	Centner
8 ins. 24.86 ins. 25.86 ins. 8 ft. 26.26 ins. 26.33 ins. Morocco. 28.10.25 ins. 20.34 ins. 21 ins. 3.356 ins. 1.12 ibs. 6 in oil are sold by weight. Mysore. 2.12 ins. 19.1 ins. 19.1 ins. 38.2 ins. 25.26 ins. 26.27 ins. 27.27 ins. 27.27 ins. 27.27 ins.	Cantner

Carlo Control Control	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Singapore.	Tunnland 1.2198 acres
Hasta or Cubit 18 ins.	Anker 8.641 galls
Dessa 6 ft.	Spann 1.962 bush.
Orlong 80 yds.	Centner 112.05 lbs.
Smyrna.	Also Decimal System.
Pic	Switzerland,
Indise24.648 "	Fuss, Berne 11.52 ins.
Berri 1828 yds.	11
	Vaud
Spain, Cuba, Malaga, Ma-	Klafter 5.77 ft.
nilla, Guatemala, Hondu-	Meile 4.8568 miles
ras, and Mexico.	Juchart, Berne 85 acre.
Pie 11.128 ins.	Maas 2.6412 pints.
Vara 33-384 "	Eimer 8.918 galls.
Milla	Malter 4-1268 bush
Legua, 8000 varas 4.2151 miles.	Pfund 1.1023 lbs.
Fanegada 1.6374 acres.	Also Decimal System.
Vara, cubo 21.531 cub. ft.	m-ili
Arroba, Castile 3.554 gulls.	Tripoli.
Fanega 1.5077 bush.	Pik, 3 palmi 26.42 ins.
Libra 1.0144 lbs.	Almud
Tonelada 2028.2 lbs.	Killow
Also Decimal System.	Barile 14.267 galls. Temer7383 bush.
Also December Bysicin.	Rottol
. Stettin.	Oke 2.8286 lbs.
Fuss 11.12 ins.	Company of the Compan
Foot, Rhineland 12.357	Turkey.
Elle 25.6 ins.	Pic, great
Morgen 1.5729 acres.	" small
The state of the s	Berri 1.828 yds.
Sumatra.	Alma I.154 galls
Jankal or Span 9 ins.	Also Decimal System.
Elle 18 "	Würtemberg.
Hailoh36 11	Fuss 11.20 ins.
Fathom 6 ft. Tung 4 yds.	Elle 2.015 ft.
rang 4 yas.	Meile 8146.25 yds.
Surat.	Morgen
Tussoo, cloth 1.161 ins.	Cube Fuss 830 45 cub. ft.
Guz, " 27.864 "	Eimer 64-721 galls.
Hath 20.9 "	Scheffel 4.878 bush.
Covid 18.5 "	Pound 7217 grains.
Biggah5r acre.	Zurich.
Sweden.	Foss 11.812 ins.
Fot 11.6928 ins.	Elle 23.625 "
Ref 32.4703 yds.	Klafter 5.9062 ft.
Faden 5.845 ft.	Meile 4.8568 miles
League 3.3564 miles.	Jachart
Melle 6.6417 "	Cube Klafter 144 cub. ft.
Holl	and.
***************************************	Maria Cara Cara Cara Cara Cara Cara Cara

Denominations corresponding to the French are as follows:

Length.—Millimotre, Streep; centimetre, Duim; decimetre, Palm; metre, El; decametre, Boode; kilometre, Will.

Surface.—Equare millimetre, Vierkante Streep; square centimetre, Vierkante Duim; and ao on. Hectare, Vierkante Bunder.

Cube Monutre.—Millistere, Kubicke Streep, and so on.

Cupacing.—Centilitre, Vingerhoed; decilitre, Manie; liquid litre, Kan; dry litre, Kop; decallire, Schepel; liquid hectolitre, Vat or Ton; dry hectolitre, Mud or Zak; phelolitres = 1 Last = 10, 223 quarters.

Limitate.—Beilgramme, kor.—cramme, Wigteje; decagramme, Lood; hectolitre, Elizgramme, Lood; hectolitres; kilogramme.

instituted for kilogramme, Litron for litte,

SCRIPTURE AND ANCIE	NT LINEAR MEASURES.
Scrip	ture.
	Span, 3 palms
Hebrew and	d Egyptian.
1 cubit	Babylonian foot
	cian.
Alexandrian or Phileterian stadi	(16 Egyptian fingers)) Arabian foot 1.095 feet Stadium 604.0375 " Olympic stadium 606.20 "
Text	rish.
	Mile, 4000 cubits 7296 feet. Day's journey
Roman Lon	g Measures.
inch)	Cubit
ANCIENT	WEIGHTS.
	d Egyptian.
Troy grains.	Troy grains,
01us) 0.1†	Denarius, Roman
achma	8hekel
nina 3.892 mina 5.46	Ounce
1 mina 8.326** ke '' 8.985* rian " 9.992*	Drachm 146. «
Telent (60 mins) 4.63	56 lbs. avoirdupois.
•	
Gre- Troy grains.	cian. Troy ounces.
ncient 8.33	Mina 10.41
11.57	Talent
23.15	" Attic
great 69.47	1
Ror	nan.
416.82 grains.	Pound
* Christiani. † Arb	uthnot.

GEOGRAPHIC MEASURES AND DISTANCES.

To Reduce Longitude into Time.

RULE.—Multiply degrees, minutes, and seconds by 4, and product is the time.

Example. - Required time corresponding to 50° 31'. 50° 31' X 4 = 3h. 22m. 45.

To Reduce Time into Longitude.

Ruce -Reduce hours to minutes and seconds, divide by a and quotient is the longitude. Or, Multiply them by 15.

EXAMPLE. - Required longitude corresponding to 5h. 8m. 11.25.

5h. 8m. 11.28. = 308m. 11.28., which ÷ 4 = 770 2' 45.5".

Or, multiplying by 15: 5h. 8m. 11.28. × 15=77° 2' 45.5".

Table of Departures for a Distance run of 1 Mile.

Course.	Departure.	Course.	Departure.	Course.	Departure.
3.5 points.	·773 ·707	4.5 points. 5	.634 .556	5.5 points.	·471 ·383

Thus, if a vessel holds a course of 4 points, that is without leeway, for distance of 1 mile, she will make .707 of a mile to windward.

Or, a vessel sailing E. N. E. upon a course of 6 points for 100 miles will make 38.3 (100 \times .383) miles of longitude.

Degrees, Minutes, and Seconds of each Point of the Compass with Meridian.

NORTH.	South.	Points.	0 1 11	Sin. A.*	Cos. A.*	Tan. A.*
N	s	.25 .5 .75	2 48 45 5 37 30 8 26 15	.0489 .098 .1467	.9988 .9952 .9891	.0491 .0985 .1484
N. by E N. by W	S. by E	1 1.25 1.5 1.75	11 15 14 3 45 16 52 30 19 41 15	.195 .2429 .2903 .3368	.9808 +97 -9569 -9415	.1989 .2504 .3034 .3578
N.N.E N.N.W	S.S.E S.S.W	2 2.25 2.5 2.75	22 30 25 18 45 27 7 30 30 56 15	-3827 -4275 -4714 -5141	.9239 .904 .8819 .8577	-4142 -4729 -5345 -5994
N.E. by N N.W. by N	S.E. by S	3 3-25 3-5 3-75	33 45 36 33 45 39 22 30 42 11 15	-5556 -5957 -6344 -6715	.8315 .8032 -773 -7409	.6682 .7416 .8207 .9063
N. F	S.E	4 4-25 4-5 4-75	45 47 48 45 50 37 30 53 16 15	.7071 .7404 .773 .8032	.7071 .6715 .6344 .5957	1.103 1.218 1.348
N. E. by E N. W. by W	R.E. by E {	5 5-25 5-5 5-75	56 15 59 3 45 61 52 30 64 41 15	.8315 .8577 .8819	-5556 -5141 -4714 -4275	1.497 1.668 1.871 2.114
E.N.R W.N.W	E.S.E {	6.45 6.5 6.75	67 30 70 18 45 73 7 30 75 56 15	-9239 -9415 -9569 -97	-3827 -3368 -2903 -2429	2.414 2.795 3.296 3.941
R by N W. br as	P. by H	7 7.25	78 45 51 33 45 84 22 30 17 11 15	.9808 .9891 .9952 .9988	.195 .1467 .098 .0489	5.027 6.741 10.153 20.555
	for White.		1	1	.0000	00

ate from the muridian.

GEOGRAPHIC LEVELLING.

Curvature and Refraction.

rrection for Curvature of Earth, to be subtracted from reading of elling-staff, is determined as follows:

vide square of distance in feet from level to staff, by Earth's Equadiameter—viz., 41 852 124 feet.

. Two thirds of square of distance in statute miles equal the cure in feet.

rection for Refraction is to be subtracted from reading, and as a mean se taken at about one sixth of that for curvature.

rection for Curvature and Refraction combined, is to be added to 1g on staff.

Formulas of Capt. T. J. Lee, U. S. Engineers.

= correction for curvature, $\frac{D^2}{R}$ m = correction for refraction, and $\frac{D^2}{2R}$ = correction for curvature and refraction. D representing ce, R radius of earth, and m a coefficient of refraction = .075, all

STRATION. — A distance is 3 statute miles, what is correction for curvature fraction?

$$(1-2\times.075)\frac{\overline{5280\times3}^2}{41852124}=.85\times5.996=5.097$$
 feet.

varimately, $\frac{2}{3}$ $D^2 = curvature$ in feet.

Levelling by Boiling Point of Water.

Compute Height Above or Below Level of Sea.

TRATION. — What is height of an elevation, when boiling point of water is 1820?

$$517 \times \overline{212^{\circ} - 182^{\circ} + 212^{\circ} - 182^{\circ}} = 517 \times 30 + 30^{\circ} = 16410$$
 feet.

ctions for Temperature to be made in Connection with Formula.

orrec- tion.	Temp.	Correc-	Temp.	Correc-	Temp.	Correc- tion.	Temp.	Correc- tion.	Temp.	Correc-
936	18	.972	36	1.008	54	1.046	72	1.083	90	1.12
	20	.976	38	1.012	56	1.05	74	1.087	92	1.124
9448 948 956 956 956 956 956 958	22	.98	40	1.016	58	1.054	76	1.001	94	1.128
948	24 ·	.984	42	1.02	60	1.058	78	1.096	- 96	1.132
952		.988	44	1.024	62	1.062	80	I. I	98	1.136
956	28	.992	40	1.028	64	1.066	82	1.104	100	1.14
96	30	.996	48	1.032	66	1.071	8.4	1.103	102	1.144
764	32	I	50	1.036	68	1.075	86	1.1		1.148
≥68 .	U 34 I	1.004	52	1.041	70	I.07Q	ll 88	\ x		

Assume temperature in preceding illustration then 16410 × 1.1 = 18051 feet.

Pharent Level of Objects at or upon Surface of Land or Sea, and Differences between True and Apparent Levels, Curvatures, etc.

Apparent Level including Curvature and Refraction, 11.86 II.I 13.27 26.54 29.67 32.51 41.96 Sea. 28.88.99.01 28.89.99.11 28.89.99.11 11.93 12.65 8.33 23.09 29.81 32.65 35.28 42.23 73.03 84.32 94.28 Land. 255.28 340.66 5295.89 681.17 768.87 34.02 127.63 851.57 45.83 46.83 51.04 59.56 99.90 70.2 3406.3 5 182.5 10 366 15 546 Sen. 1 703.2 of Curvature and Refraction. 33.73 37.95 50.59 50.59 67.5 84.35 126.51 337.66 756.15 253.03 590.36 844.07 1 688.3 2 531.8 3 376.3 Land. EIGHT 24,554,555 24,456 24,556 24,565 24,56 Curvature H 9.262 295.4 293.9 393.1 992.5 above Land. 12081 18119 397 3970 2977 ď Distances in Geographic or Nautical Miles. of Line of Sight. Soco I Mile, 2 Miles. 88 150 200 300 900 000 00 800 000 000 0000 0000 000 4 Distance. 35.09 47.88.99.99 44.88.884.99 10.24 10.95 12.24 14.99 24.49 25.33 29.33 29.33 29.33 29.33 29.75 29.75 29.75 21.2 Apparent Level including Curvature and Refraction. 1,08 2.65 2.97 22.25.00 Land. 6.53 60 2.31 3.27 66.4 .558 .842 13.76 6.89 8.51 9.30 10.2I 1.05 17.91 14-43 17.06 19.57 of Curvature and Refraction. .835 1.69 Land. 10.12 15.16 16.91 Feet. 4 4 3 3 3 12.65 13.52 20.13 14.3 19.4 HEIGHT Curvature abilite Laund. Feet. 986 2.98 10.01 15.89 17.83 19.83 19.83 13.89 20.83 22.81 6 of Line of Sight, .667 Feet.

Nors I.—Height or elevation in second column of table is also curvature of Earth at Ocean.

29.72

M. and 4 P. M.

ETEATION. — Curvature of Earth independent of refraction is computed at 10t = 8.004 ins. for 1 geographical mile, and as refraction on land is taken as 10t or 1.188 ins., and on ocean at 100 foot or 1.188 ins., relative visible disof an object, including curvature and refraction, for an elevation of

ference between two levels in feet is as square of their distance in

STRATION.—At what elevation can an object be seen, at surface of ocean, when miles distant?

$$x^2: 2^2::.568: 2.272$$
 feet = 2 feet 3.25+ ins.

erence between two distances in miles is as square root of their heights

STRATION I. — At an elevation of 9 feet above level of sea, at what distance object be seen upon its surface?

$$\sqrt{.568} = .754 : 1 :: \sqrt{9} : 3.98$$
 miles.

f a man at the fore-topgullant mast-head of a vessel, 100 feet from water, sees r and a large vessel "hull to," how far are the vessels apart?

en an observation for distance is taken from an elevation, as from house, a vessel's mast, etc., of an object that intervenes between er and horizon, or contrariwise, observer being at a horizon to d object, distance of observer from intervening object can be ined by ascertaining or estimating its elevation from horizon, and ting its distance from whole distance between observer and rom which observation is taken, and remainder will give distance et from observer.

TRATION.—Top of smoke-pipe of a steamer, assumed to be 50 feet above survater, is in range with horizon from an elevation of 100 feet; what is dissteamer from elevation?

simately.—Curvature less Refraction = .566 $\rm D^2$ for land and .563 $\rm D^2$ for sea rating distance in miles.

MAGNETIC VARIATION OF NEEDLE.

ica. — Needle reached a Westerly maximum in 1660, and then o East until 1800, when it reversed to West.

m (Eng.). — From 1576 to 1815 variation ranged from 11° 15' 24° 27' West, when it receded gradually to 21° in 1865. ica (W. I.).—No variation from year 1660.

val Variation.—There is a small diurnal variation, being greatest isr (15'), and least in winter (7' 30"), added to which a instant affects a needle.

Variation in U. S. — Professor Loomis concludes that the Westerly variation is increasing and Easterly diminishing in every part of Unite States; that this change occurred between 1793 and 1819, and the present annual change is about 2' in Southern and Western States, from 3' to 4' in Middle States, and 5' to 7' in Eastern States.

Rules for computation of variation are empirical, except in each particular locality, as the annual and diurnal variations of the needle added to local attraction, render it altogether unreliable.

Decennial Variation of Needle.

Mr. Schott, U. S. Coast and Geodetic Survey.

From January 1, 1790, to January 1, 1880.

LOCATION.	1790.	1800.	1810.	1820.	1830.	1840.	1850.	1860.	1870.	188
	W.	W.	W.	W.	W.	W.	W.	W.	W.	W
Halifax, N. S		15.0	16.7	17.4	18. T	18.7	19.3	10.8	20.1	20.
Quebec, Can	-3.2	-2.9	11.2	12.3	13.4	14.4	15.3	16	16.4	
Portland, Me	8.5	8.9	9.4	10	10.6	11.23	11.82	12.35	12.8	13.
Burlington, Vt	7.7	7.52	7-39	7.58	8.17	8.94	9.62	10.21	10.97	II.
Newburyport, M's.	7.2		7.8	8.4	9	9.6	10.23	10.83	11.4	II.
Portsmouth, N. H.	7.8	7.4	8.4	8.8	9.35	9.94	10.55	11.15	11.7	12.
Rutland, Vt	6.5	6.2	6.14	6.39	6.9	7.64	8,53	9.53	10.54	II.
Salem, Mass	6.2	6.2	6.5	7	7.8	8.7	9.8	10.0	II.Q	12.
Boston, Mass	6.7	7	7.4	7.9	8.43	9.05	9.69	10.32	10.9	II.
Cambridge, Mass	6.9	7.1	7.5		8.64	9-33	10.03	10.67	11.21	II.
Providence, R. I	6.24	6.37	6.45	6.73	7-43	8.31	9.09	9.65	10.21	10.
Hartford, Conn	5.2	5.16	5.24	5-46	5.8	6.24	6.77	7.36	7-99	8.
New Haven, Conn.	4.8	4-7	4.8	5	5-43	5.99	6.67	7.41	8.18	8.
New York, N. Y	4.29	4.28	4.3	4-47	. 4.91	5-59	6.34	6.95	7-43	7.
Philadelphia, Pa	2.4	2.1	2.1	2.28	2.71	3.33	4.11	4.99	5.89	6.
Baltimore, Md	-	-	.6	.8	1.2	1.7	2.4	2.9	-	-
Albany, N. Y	-	E.	5-4	5.79	6.32	6.97	7.7	8.47	9.2	9
Buffalo, N. Y	E. 14	10.	.05 E.	É.3	£74	1-33	2.05	2.85	3.68	4
Erie, Pa	.03	+35	-49	-43	.17	E. 25	.83 E.	1.5	2.23	2
Cleveland, O	2.2	2	1.8	1.5	1.05	.6	.14	.31	.72	1
Datuste Mich	1.50	0	1000	1000		100	100.00	E.	E.	
Detroit, Mich	-	3.18 W.	W.	W.	2.55 W.	2.09 W.	1.56 W.	w. 99	w.	
Washington, D. C.	·I	E.	Ė.	.6 E.	E.	I.49 E.	I.99 E.	2.47 E.	2.9 E.	3)
Acapulco, Mex	7.2	7.8	8.3	8.68	8.88	8.91	8.79	8.5	8.06	7
Charleston, S. C	5.I	4.9	4.5	4.04	3.44	2.78	2.12	1.52	I	100
Havana, Cuba	-	6.2	6.26	6.22	6.12	5.94	5.71	5.44	5.1	1/3
Kingston, W. L	6.3	6	5.7	5.4	5	4.6	4.2	3.8	3.4	
San Diego, Cal	II	II.I	11.3	11.6	11.9	12.2	12.54	12.88	13.2	13
Savannah, Ga	-	-	4.9	4.8	4.5	4.14	3.65	3.08	2.48	1
Mobile, Ala	-	7.I	7.2	7.3	7.2	7.I	7	8.8	-	1 6
Key West, Fla	1000	-	-	6.9	6.52	6.03	5-47	4.86	4.24	16
Monterey, Cal	11.4	12	12.6	13.3	13.9	14-44	14.95	15.42	15.79	16
Mexico, Mex	7.I	7.7	8.3	8.6	8.8	8.9	8.76	8.48	8.04	7
New Orleans, La	7	7-5	7-9	8.1	8.2	8,14	7-94	7.61	7.15	6
San Blas, Mex	7.41	7.88	8.28	8.61	8.84	8.97	9.9	8.91	-	
San Francisco, Cal.	12.8	13.4	13.9	14.42	14-92	15.38	15.78	16.11	16.36	16
Sitka, Alaska	-	26.12	27.11	27.89	28.48	28,88	29.08	29.08	28,88	28
Vera Cruz, Mex	8.37	8.95	9.32	9.48	9.42	9.14	8.66	7.98	7.15	1 ,

For variation in other locations in United States and North Ameri see Treatises of J. B. Stone, C.E., New York, and Heller and Bright Philadelphia, 1878.

br Reducing Observed Daily Variation of Needle to Mean Variation of the Day.

U. S. Coast and Goodetic Survey, 1878.

.	Nec	Needle East of Mean Mag- netic Meridian.					Needle West of Mean Magnetic Meridian.								
	A.M.	A.M.	A.M.	A.M.	A.M.	A.M.	M. NOON.		P.M.	P.M.	P.M.	P.M.	P.M.		
	h.	h.	h.	h.	h.	h.		h.	h.	h.	h.	h.	h.		
	0	7	8	9	10	11	Noon.	,	2	3	1	5	6		
	3	4	4	3	I	I.	4	5	5	4	3	2	1		
	4	5	5	4	I.	2	4	6	5	4	3	2	I		
*****	2	3	3	2	-	2	3	4	3	2	I	X	-		
	I	1	2	2	I	-	2	3	5	2	1	1	-		

on of Needle at Locations in United States and Canada, 1875.

U. S. Coast and Geodetic Survey.

EAST.

LOCATION.	Vari	ation.	LOCATION.	Varia	tion.
	0			•	,
T	21	30	Montgomery, Ala	5	
A	2	28	Natchez, Miss	7	26
	0	15.	Nebraska, Neb.	ıí	20
Dak		6	New Orleans, La	6	50
		- 5.	Olympia, W. T	22	ž
0		55	Omaha, Neb	11	•
orings, Col		18	Oregon City, Or	20	55
. C		45	Paducah, Kan	-6	33 2
0		8	Portland, Or	81	
		20	Port Townsend, W. T		4
Dak			Sacramento, Cal	23	_
ķ		45	Sacramento, Cal.	17	4
h		3	Salt Lake City, Utah	17	
		12	San Antonio, Tex	9	17
rex		13	Santa Barbara, "	14	58
Wis	6		Santa Fé, N. Mex	13	18
exx		7:1	Springfield, Ill	6	3
s, Ind	3	38	St. Augustine, Fla		55
iss		1	St. Louis, Mo	6	30
e, Fla			St. Paul, Minn	10	30
n		20	Tallahassee, Fla	4	14
		55	Toledo, O	1	-7
, Ark		5	Topeka, Kan	10	12
Ку		3	Vincennes, Ind	5	
. Wis		48	Yazoo, Miss		2
, 17.00	5		EST.	' '	-
_		**			
[e		34	Newburgh, N. Y	8	
e. <u> </u>			Newport, R. I.	10	4
. Y	4	40	Norfolk, Va.	2	35
·	15	22	Ogdensburgh, N. Y	8	²⁵
, Conn	\ 8	12	Oswego, N. Y	6	
·	18		Ottawa, Can	9	38
т. н	11	42	Pittsburgh, Pa	ī	28
	4		Raleigh, N. C.	I	24
Mass			Richmond, Va	1 1	48
Can			Rochester, N. Y.	5	20
ζ, Pa			Saratoga, N. Y.		
, Y		48	Stamford, Conn.	8	-
Me		•	Syracuse, N. Y.		
			Toronto Con	1 4	50
188		-	Toronto, Can.	7	30
r, Vt			Trenton, N. J.	٠/ ٢	
Can.			// Troy, N. Y.	٠\	g 25
ord, Mass		30	// Utica, N. Y	••\	ď
р <u>п</u> , Сопп		15	Wilmington, Del	/	4 :
J	./ 7	18	Wilmington, N. C	١	,

Dip of Horizon.

Approximate, 57.4 VH = dip in seconds, varying with temperature of air. H representing height of observer's eye in feet.

.667 $n^2 = H$: .498 $s^2 = H$: 1.42 $\sqrt{H} = s$: 1.23 $\sqrt{H} = n$. n representing distance in geographical miles and s in statute.

Measurement of Heights with a Sextant.

Multi-	Angle.	Multi- plier.	Angle.	Multi- plier.	Angle.	Multi- plier.	Angle.	Multi-	Angle.
1.5	45 0 56 18	2.5	68 11 71 34	4 4.5	75 58 77 29	5.5	79 42 80 32 8r 52	8 9	82 52 83 40 84 17

Operation. —Set sextant to any angle in table, and height will equal distance multiplied by number opposite to it.

ILLUSTRATION. — When sextant is set at 80° 32′, and horizontal distance from object in a vertical line is 100 feet, what is its height?

By Trigonometry: 1: 100 :: 5.997 (tan. angle) : 599.7 feet.

To Reduce a Sounding to Low Water.

 $\frac{h}{2}\left(1 \mp \cos \frac{180 t}{t}\right) = h'$. h representing vertical rise of tide, and h' sounding or depth at low water, both in feet; t time between high and low water, and t' time from time of sounding to low water, in hours. $-\cos$ when $>00^\circ$.

ILLUSTRATION. — Low water occurring at 3.45, and high water at 10.15 P.M., 8 sounding taken at 5.30 P.M. was 18.25 feet; what was depth at low water, vertical rise being 10 feet?

$$h = 10$$
 feet; $t' = 5h$, $30m$, $-3h$, $45m$, $= 1h$, $45m$, $= 1.75$ hours, $t = 10h$, $15m$, $-3h$, $45m$, $= 6h$, $30m$, $= 6.5$ hours.

Then
$$\frac{10}{2}$$
 $\left(1 \mp \cos \frac{180 \times 1.75}{6.5}\right) = 5 \left(1 - \cos 48^{\circ} 27' 41''\right) = 5 \times (1 - .663 124) = 1.68438$ feet.

Lengths of a Degree of Longitude on parallels of Latitude, for each of its Degrees from Equator to Pole.

Lat.	Miles.	Lat.	Miles.	Lat.	Miles.	Lat.	Miles.	Lat.	Miles.	Lat.	Miles.
	50.00	160	57.67	310	51.43	460	41.68	610	20.00	76 ⁰	14.52
2	59.90	17	57.38	32	50.88	47	40.02	62	28.17	77	13.5
3	59.92	18	57-06	33	50.32	48	40.15	63	27.74	78	12.48
4	59.85	10	56.73	34	49-74	49	39.36	64	26.3	79	11.45
5	59-77	20	56.38	35	49.15	50	38.57	65	25.36	80	10.42
5 6	59.67	21	56.01	36	48.54	51	37.76	66	24.4	SI	9.38
7	59-55	22	55.63	37	47-92	52	36,94	67	23-44	82	8.35
8	59.42	23	55.23	38	47 28	53	36,11	68	22.48	83	7.31
9	59.20	24	54.81	39	46.63	54	35.27	69	21.5	84	6.27
10	50-00	25	54.38	40	45.96	55	34-41	70	20.52	85	5.23
11	58.89	26	53-93	41	45.28	56	33-45	71	19.53	86	4.18
12	50.69	27	53.46	42	44-59	57	32.68	72	18.54	87	3.14
13	58:46	28	52.97	43	43.88	58	31.79	73	17.54	88	2
14	58.22	29	52.48	44	43.16	59	30.9	74	16.54	89	1.05
15	57.95	30	51.90	45	42.43	60	30	75	15-53	90	.00

Note - Degrees of longitude latitudes.

as Cosines of their

URE OF EARTH,-BOARD AND TIMBER MEASURE. 61

Elements of Figure of the Earth. Capt. A. R. Clarke, 1866.

Feet. r semi-axis of Equator (longitude 15° 34′ E.) 20926 350 r	Miles. 3 963. 324.
r " " " (" 105° 34′ E.) 20 919 972	3 962. 115.
. " "	3 949. 513. 3 963. 269.
imference, mean	24 898. 562.
leter. "	7 010.

BOARD AND TIMBER MEASURE.

BOARD MEASURE.

Board Measure, all boards are assumed to be I inch in thickness.

To Compute Measure or Surface.

When all Dimensions are in Feet.

.E.—Multiply length by breadth, and product will give surface in a feet.

When either of Dimensions are in Inches.

PLE. — What are number of square feet in a board 15 feet in length and 16 in width?

 $15 \times 16 = 240$, and 240 + 12 = 20 sq. feet.

When all Dimensions are in Inches.

L-Multiply as before, and divide product by 144.

TIMBER MEASURE.

To Compute Volume of Round Timber.

When all Dimensions are in Feet.

.—Add together squares of diameters of greater and lesser ends, duct of the two diameters; multiply sum by .7854, and product third of length.

 $+a'+a'' \times \frac{1}{3} = V$, and $c^2+c'^2+\overline{c \times c'} \times .07958 \times \frac{1}{3} = V$. a and enting areas of ends, a'' area of mean proportional, l length, and c reum ference of ends.

-Mean proportional is square root of product of areas of both ends.

ATION.—Diameters of a log are 2 and 1.5 feet, and length 15 feet.

$$^{2}+1.5^{2}+2\times1.5$$
 = 9.25, which \times .7854 and $^{15}=36.3245$ cube feet.

nen Length in Feet, and Areas or Circumferences in Inches.

-Proceed as above, and divide by 144.

When all Dimensions are in Inches.

-Proceed as before, and divide by 1728.
Ordinary rule of Hutton, Ordinarce Manual of U.S., and Molesworth, et

To Compute Volume of Squared Timber.

When all Dimensions are in Feet.

Rule.—Multiply product of breadth by depth, by length, and product will give volume in cube feet.

When either Dimension is in Inches.

RULE.-Multiply as above, and divide product by 12.

When any two Dimensions are in Inches.

Rule.-Multiply as before, and divide by 144.

Example -A piece of timber is 15 inches square, and 20 feet in length; required its volume in cube feet.

15 × 15 × 20 = 31.25 cube feet.

Allowance is to be made for bark, by deducting from each girth from .5 inch in logs with thin bark, to 2 inches in logs with thick bark.

Measures of Timber .- (English.)

100 superficial feet \ = 1 square.
of planking \ = 1 square.
120 deals = 1 hundred.
600 superficial feet of inch planking = 1 load.

Deals.

Deals. — Boards exceeding 7 ins. in width, and if less than 6 feet in length, are termed deal ends.

Battens are similar to deals, but only 7 inches in width.

Balk.—Roughly squared log or trunk of a tree.

Local Standards.

Country.	Long.	Broad.	Thick.	Volume.	Country.	Long.	Brond.	Thick.	Volume.
Russia and	Ft.	Ins.	Ins.	Cub. ft.	Norway	Ft. 12	Ins,	Ins.	Cub. ft. 2.25
Prussia	12	11	1.5	1.375	Christiana	ii	9	1.25	
Sweden	14	9	3	2.625	Quebec	12	II	2.5	2.292

100 Petersburgh standard deals equal 60 Quebec deals.

SPARS AND POLES.

Pine and Spruce Spars, from 10 to 4.5 inches in diameter inclusive, are to be measured by taking their diameter, clear of bark, at one third of their length from abut or large end.

Spars are usually purchased by the inch diameter; all under 4 inches are termed Poles.

Spars of 7 inches and less should have 5 feet in length for every inch of diameter, and those above 7 inches should have 4 feet in length for every inch of diameter.

Loss or Waste in Hewing or Sawing of Timber.

				free man					
D:	k, English	200	per	cent.	Yellow Pine from planks	TO I	er	cent	į
	African	100			Teak			66	
"	Dantz'	ro.	- 66	"	Elm, English 3	oos.	"	"	
"	Amer		"	66	" American	15	"	a	

CISTERNS.

pacity of Cisterns in Cube Feet and Gallons. For each 10 Inches in Depth.

l.	Cub. ft.	Gallons.	Diam.	Cub. ft.	Gallons.	Diam.	Cub. ft.	Gallons.
			Feet.		-	Feet.		
	2.618	19.58	9.5	59.068	441.8	17	189.15	1414.94
	4.091	30.6	10	65.449	489.6	17.5	200.432	1499.33
	5.89	44.07	10.5	72.158	539.78	18	212.056	1586.28
	8.018	59.97	11	79.194	592.4	19	236.274	1767.45
	10.472	78.33	11.5	86.558	647.5	20	261.797	1958.3
	13.254	99.14	12	94.248	705	21	288.632	
	16.362	122.4	12.5	102.265	764.99	22	316.776	2369.64
	19.798	148.1	13	110.61	827.4	23	346.23	2589.97
	23.562	176.24	13.5	119.282	892.29	24	376.992	2820.09
	27.652	206.84	14	128.281	959.6	25	409.062	3059.8
	32.07	239.88	14.5	137.608	1029.38	26	442.44	3309.67
	36.816	275-4	15	147.262	1101.6	27	471.13	3569.17
	41.888	313.33	15.5	157.243	1176.26	28	513.126	3838.44
	47.288	353.72	16	167.552	1253.37	29	550.432	4117.51
	53.014	396.55	16.5	178.187	1332.93	30	589.048	4406.08

Excavation and Lining of Wells or Cisterns. For each 10 Inches in Depth.

Exenvation.	Bricks.		Masonry.		eter.	vation.	Bricks,		Masonry.	
Exca	Num- ber,	Laid dry.	8 inches thick.	1 foot thick.	Dian	Eres	Num- ber.	Laid dry.	8 Inches thick.	I foot thick.
Cub. ft.	1	Cub. ft.	Cub. ft.	Cub. ft.	Foet.	Cub. ft.		Cub. ft.	Cub. ft.	Cub.ft.
12.29	126	5.24	6.4	10.47	8.5	63.29	356	14.83	16	24.87
15.29	147	6.11	7.27	11.78	9	69.89	377	15.71	16.87	26.18
18.62	168	6.98	8.14	13.09	9.5	76.81	398	16.58	17-75	27.49
22.27	188	7.85	9.02	14-4	10	84.07	410	17-45	18.62	28.8
26.25	200	8.73	9.89	15.71	10.5	91.65	440	18.33	19.49	30.11
30.56	230	9.6	10.76	17.02	11	99.56	461	19.2	20.36	31.42
35.2	251	10.47	11.64	18.33	12	116.36	503	20.94	22.11	34.03
40.16	272	11.34	12.51	19.63	13	134.46	545	22.60	23.85	36.65
45-45	293	12.22	13.38	20.94	14	153.88	586	24-43	25.6	39.27
51.07	314	13.00	14.25	22.25	15	174.61	628	26.18	27-34	41.89
57.02	335	13.96	15.13	23.56	16	196.64	670	27.92	29.09	44.5I

ber of bricks and width of curb are taken at dimensions of ordinary viz., 8 by 4 by 2.25 ins. = 72 cube ins.

mputing number of bricks required, an addition of 5 per cent. should it for waste. It is to be considered, also, that diameter of excavation ily exceeds that of masonry.

SHINGLES.

lly of white Cedar and Cypress; 27 inches in length and 6 to 7 in width, dressed to light .25 inch at point and .3125 inch at

in three thicknesses and courses of about 8 inches. 3 of a shingle is exposed to air, or about 2.25 shi wer square foot of roof.

les, alike to Slates, are laid upon boards or batter

7.68 1683

SLATES AND SLATING.

A Square of Slate or Slating is 100 superficial feet.

Gauge is distance between the courses of the slates.

Lap is distance which each slate overlaps the slate lengthwise next but one below it, and it varies from 2 to 4 inches. Standard is assumed to be 3 inches.

Margin is width of course exposed or distance between tails of the

slates.

Pitch of a slate roof should not be less than I in height to 4 of length.

To Compute Surface of a Slate when laid, and Number of Squares of Slating.

RULE. — Subtract lap from length* of slate, and half remainder will give length of surface exposed, which, when multiplied by width of slate, will give surface required.

Divide 14 400 (area of a square in inches) by surface thus obtained,

and quotient will give number of slates required for a square.

Example. —A slate is 24×12 inches, and lap is 3 inches; what will be number required for a square?

24 - 3 = 21, and $21 \div 2 = 10.5$, which $\times 12 = 126$ inches; and $14400 \div 126 = 114.29$ slates.

Dimensions of Slates.

	[AMERICAN.]										
Ins.	Ins.	Ins.	Ing.	Ina.	Ins.	Ins.					
14×7	14 X 10	16 X 10	18 × 11	20 X 11	22 X 12	24 X 13					
14 × 8	16 × 8	18 × 9	18 × 12	20 X 12	22 X 13	24 X 14					
14×9	16 × 9	18 X 10	20 X 10	22 X 11	24 X 12	24 X 16					

ENGLISH.

	Ins.	1	Ins.		Ins.
Tameations	13× 7 11× 6 10× 5 12×10 13×10	Ladies	14× 8 14×12 15× 8 16× 8 16×10	Marchioness	24 X 12 30 X 24 36 X 24 36 X 24 26 X 15

Thickness of slates ranges from .125 to .3125 of an inch, and their weight varies from 2 to 4.53 lbs. per sq. foot.

Weight of One Square Foot of Slating.

.125 in thick on laths 4.75 lbs.	.25 in. thick on laths 9.25 lbs
" 1 in. boards 6.75	.25 in. thick on laths 9.25 lbs-
.1875 in. thick on laths 7 "	.3125 in. thick on laths 11.15 "
to at the in housedge of the	if it if it in honrite rate it

Slate weighs from 167 to 181 lbs. per cube foot, and in consequence of laps, it requires an average of nearly 2.5 square feet of slate to make one of slating.

Weights per 1000 and Number Required to Cover a Square.

	**	- 3	No.		Lbs.	No.
Doubles 1?			180	Countess 20 X 10	6720	171
Ladies 1				Countess 20 × 10 Duchess 24 × 12	4480	125

PILING OF SHOT AND SHELLS.

To Compute Number of Shot.

Triangular Pile. Rule.—Multiply continually together, number of shot in one side of bottom course, and that number increased by 1, and again by 3 and one sixth of product will give number.

Example —What is number of shot in a triangular pile, each side of base containing so shot?

$$\frac{30 \times 30 + 1 \times 30 + 2}{6} = \frac{29760}{6} = 4960$$
 shot.

Square Pile. RULE.—Multiply continually together, number in one side of bottom course, and that number increased by 1, double same number increased by 1, and one sixth of product will give number.

EXAMPLE.—How many shells are there in a square pile of 30 courses?

$$30 \times 30 + 1 \times 30 \times 2 + 1 = \frac{56730}{6} = 9455$$
 shells.

Oblong Pile. RULE.—From 3 times number in length of base course subtact one less than number in breadth of it; multiply remainder by number in breadth, and again by breadth, increased by r, and one sixth of product will give number.

Example.—Required number of shells in an oblong pile, numbers in base course being 16 and 7?

$$\frac{16 \times 3 - 7 - 1 \times 7 \times 7 + 1}{6} = \frac{2352}{6} = 392 \text{ shells.}$$

Incomplete Pile. RULE.—From number in pile, considered as complete, subtract number conceived to be in that portion of pile which is wanting, and remainder will give number.

FRAUDULENT BALANCES.

To Detect Them.—After an equilibrium has been established between weight and article weighed, transpose them, and weight will preponderate if article weighed is lighter than weight, and contrariwise if it is heavier.

To Ascertain True Weight. Rule.—Ascertain weight which will produce equilibrium after article to be weighed and weight have been transposed; reduce these weights to same denomination, multiply them together, and square root of their product will give true weight.

Example. — If first weight is 32 lbs., and second, or weight of equilibrium after transposition, is 24 lbs. 8 oz., what is true weight?

$$24 \text{ lbs. 8 oz.} = 24.5 \text{ lbs.}$$

Then $32 \times 24.5 = 784$, and $\sqrt{784} = 28$ lbs.

Or, when a represents longest arm,
b "shortest arm,
B least weight, and
B least weight.

Then Wa = Ab, and Wb = Ba; multiplying these two equations, $W^2ab = ABab$, $r W^2 = AB$, and $W = \sqrt{AB}$.

ILLUSTRATION.—A = 32; B = 24.5; W = 28. Assume length of longest arm = 10.

Then 3z:28::10:8.75. Hence, a=10, b=8.75, or $28^2=32\times 24.5$, and $\sqrt{.32\times 24.5}=28$. F*

Vieighing without Scales.

To Ascert

Weight of a Bar, Beam, etc., by Aid of a known Weight. ance bar, etc., over a fulerum, and note distance between OPERATION

it and end of and move bar in equilibrio; longest arm t divide produce

EXAMPLE.—A p-when 13 feet from pended from crum is 12 fe

gest arm. Suspend a known weight from longest arm, pon fulcrum, so that bar with attached weight will be ct distance between the two positions of fulcrum from tained: multiply this remainder by weight suspended. stance between fulcrums, and quotient will give weight. of tapered timber 24 feet in length is balanced over a fulcrum end; but when the body of a man weighing 210 lbs. is sus-of longest arm, the piece and weight are balanced when fulis end. What is weight of the timber?

ind 13-1=12 feet. Then 12 × 210 ÷ 1 = 2520 lbs. 13-14-

I pound of pair 6 yards for each

yards for a first coat and about

Proportions

Paints .- By Weight.

- coperce		-						-5	255		
Colors.	White Lend.	Lamp- black,	Red Lend.	Red Ochra.	Colors.	White Lend.	Lamp- black.	Red Lead.	Red Ochre.	Verdi-	Spanish Brown.
White Black Green	100	100		= = :	late	98	2 4	50	50	Ξ	- 96

These are the colors alone, to which boiled and spirits turpentine are to be added according seed oil, litharge, Japan varnish, o the application of the paint.

Lamp-black and litharge are ground sepai... y with oil, then stirred into the

Thus for black paint: Lamp-black 25 parts, litharge 1, Japan varnish 1, boiled linseed oil 72, and spirits turpentine 1.

Tar Paint .- Coal tar o gallons, slaked lime 13 lbs., turpentine or naphtha 2 or 3 quarts.

A GALLON OF PAINT WILL COVER	Superficial feet.	A GALLON OF PAINT WILL COVER	Superficial feet.
On stone or brick, about On composite, etc., from On wood, from	300 " 375		600 90 160

Boiled Oil .- Raw linseed oil or parts, copperas 3, and litharge 6.

Put litharge and copperas in a cloth bag and suspend in middle of a kettle. Boil oil four hours and a half over a slow fire, then let it stand and deposit the sediment.

White Paint.

Inside work, Outside work. Inside work. Outside work. White lead, in oil .. 80 80 9 Spirits turpentine. Boiled oil 14.5 9

New wood work requires 1 lb. to square yard for three coats.

Coats for 100 Square Yards New White Pine.

Issue.	White lead.	Raw oil.	Turpen-	Drier.	Outside.	White lead.	Raw oil,	Boiled oil,	Turpen-
Priming	Lbs.	Pts.	Pts.	Lbs.	Priming	Lbs. 18.5	Pts.	Pts.	Pu.
2d coat	15	3.1			ed and 3d	15	2	2	-5

I lb. of drier with p.

HYDROMETERS.

U.S. Hydrometer (Tralle's) ranges from o (water) to 100 (pure spirit); is has not any subdivision or standard termed "Proof," but 50, upon stan of instrument, at a temperature of 60°, is basis upon which computations of duties are made.

In connection with this instrument, a Table of Corrections, for differences in templature of spirita, becomes necessary; and one is furnished by the Treasury De-Pattnest, from which all computations of value of a spirit are made.

LUCTRATION. — A cask contains 100 gallons of whiskey at 70°, and hydrometer sinks in the spirit to 25 upon its stem.

Then, by table, under 70°, and opposite to 25; is 22.99, showing that there are 22.99 pallons of pure spirit in the 100.

Commercial Hydrometer (Gendar's) has a "Proof" at 60°, which is equal to 50 upon U. S. Instrument and its gradations, run up to 100 with it, and down to 10 below proof, at 0 upon U. S. Instrument; or 0 of the Commercial Instrument is at 50 upon U. S. Instrument, from which it progresses numerically each way, each of its divisions being equal to two of latter.

In testing spirits, Commercial standard of value is fixed at proof; hence any difference, whether higher or lower, is added or subtracted, as case may be, to or from value assigned to proof.

A scale of Corrections for temperature being necessary, one is furnished with a Thermometer.

Application of Thermometer.—Elevation of the mercury indicates correction to be added or subtracted, to or from indication upon stem of hydrometer. When elevation is above 60°, subtract correction; and when below, add it.

ILLUSTRATION.—A hydrometer in a spirit indicates upon its stem $_{50}$ below proof, and thermometer indicates 4 above 60° in appropriate column.

Then 50-4=46= strength below proof.

To Compute Strength of a Spirit, or Volume of its Pure Spirit, by Commercial Hydrometer, and Convert it to Indication of a U.S. Hydrometer.

When Spirit is above Proof. RULE.—Add 100 to indication, and divide sum by 2.

When Spirit is below Proof. RULE.—Subtract indication from 100, and divide remainder by 2.

EXAMPLE. — A spirit is 1x above proof by a Commercial Hydrometer; what proportion of pure spirit does it contain?

 $11 + 100 \div 2 = 55.5 per cent.$

To Compute Strength, etc., by a U.S. Hydrometer.

When Spirit is above Proof. RULE.—Multiply indication by 2, and subtract 100.

When Spirit is below Proof. RULE - Multiply indication by 2, and subtract it from 100.

Example.—A spirit is 55.5; what is its per centage above proof?

55.5 × 2 - 100 = 11 per cent.

Commercial practice of reducing indications of a hydrometer is as follows:

Multiply number of gallons of spirit by per centage or number of degrees above problew proof, divide by roo, and quotient will give number of gallons to be added problems to be added to subtracted as case may be.

ILLUSTRATION.—50 gallons of whiskey are 11 per cent. above proof.

Then $50 \times 11 \div 100 = 5.5$, which added to 50 = 55.5 gallons.

HYGROMETER.

Dew-point.—When air is gradually lowered in its temperature at a constant pressure, its density increases, and ratio of increase is sensibly same for the vapor as for the air with which it is combined, until a point is reached at which the density of the vapor becomes equal to the maximum density corresponding to the temperature.

This temperature is termed dev-point of given mass, and any further reduction of it will induce the condensation of a portion of the vapor in form of dew, rain, snow, or frost, according as temperature of surface is above or

below freezing point.

Mason's or like Hygrometer.

To Ascertain Dew-point.

 $\ensuremath{\mathtt{Rull}} \mathbf{z}$.— Subtract absolute dryness from temperature of air, and remainder is dew-point.

EXAMPLE.—Temperature of air 57° , and absolute dryness 7° . Hence $57^{\circ} - 7^{\circ} = 50^{\circ}$ dev. point.

To Ascertain Absolute Existing Dryness.

Rule.—Subtract temperature of wet bulb from temperature of air, as indicated by a dry bulb, add excess of dryness from following table, multiply sum by 2, and product will give absolute dryness in degrees.

EXAMPLE.—Temperature of air 57°, wet bulb 54°.

Then $57^{\circ} - 54^{\circ} = 3^{\circ}$, and $3^{\circ} + .5^{\circ}$ (from table) $\times 2 = 7^{\circ}$ absolute dryness.

Observed Dryness.	Excess of Dryness,	Observed Dryness.	Dryness.	Observed Drypess.	Excess of Dryness.	Observed Dryness.	Excess of Drypess.	Observed Dryness.	Excess of Dryness.
-5	.083	5	.833	9.5	1.582	14	8.333	18.5	3.083
1	.166	5.5	.9165	10	1.666	14-5	2.4165	19	3.166
1.5	-2495	6	1	10.5	1.7495	15	2.5	19.5	3-2495
2	-333	6.5	1.083	11	1.833	15.5	2.583	20	3-333
2.5	.4165	7	1.166	11.5	1.9165	16	2.666	20.5	3.4165
3	-5	7·5	1.2495	12	2	16.5	2.7495	21	3.5
3.5	. 583	8	1.333	12.5	2.083	17	2.833	21.5	3.583
4	.666	8.5	1.4165	13	2.166	17.5	2.9165	22	3.666
4.5	.7495	9	1.5	13.5	2.2495	18	3	22.5	3.7495

To Compute Volume of Vapor in Atmosphere. By a Hygrometer.

When temperature of atmosphere in shade, and of deve-point are given.—If temperature of air and deve-point correspond, which is the case when both thermometers are alike, and air consequently saturated with moisture, then in table* opposite to temperature will be found corresponding weight of a cube foot of vapor in grains.

ILLUSTRATION.—Assume temperature of air and dew-point 70° . Then opposite temperature weight of a cube foot of vapor = 8.392 grains.

But if temperature of air is different from dew-point, a correction is necessary to obtain exact weight.

ILLESTRATION.—Assume dow-point 70° as before, but temperature of air in shade 80°, then the vapor has suffered an expansion due to an excess of 10°, which requires a correction.

In table of corrections for 10° is 1.0203. Then divide 8.392 grains at dew-point-viz., 70° by correction corresponding to degrees of absolute dryness-viz., 10°.

1.02 3 = 8.221 grains of existing vapor, which, subtracted from weight of vapor corresponding to temperature of 80°, will give number of grains required for saturation at that temperature.

11. 11. 11. grain: 1 comperature of 800 — 8.221 contained in the air = 3.112 required for saturation.

For table

lished by Pike & Sons, New York, and compared with Six John

ascertain relations of those conditions on natural scale of humidity (complete ation being 1000), divide weight of vapor at dev-point by weight at temperatoriar, and quotient will give degrees of saturation.

USTRATION.—Dew-point = 70° , weight = 8.392.

hen $8.392 \div 11.333$ (at 80°) = .7405 degrees of humidity; saturation = 1000.

To Compute Weight of Vapor in a Cube Foot of Air.

e Pressures, Temperatures, Volumes, and Density of Steam, p. 708. us. Required weight of vapor in a cube foot of saturated air at 212°.

a temperature of 212° density or weight of 1 cube foot of air = .038 lb. density is required for any temperatures not in table, see rule, p. 706.

midity.—Condition of air in respect to its moisture involves amount of r present in air and ratio of it to amount which would saturate it at its erature, and it is this element which is denoted by term humidity, and expressed as a per centage; thus, if weight of vapor present is .7 of that red for saturation, the humidity is 70.

y Air is air, humidity of which is below zero, but it is customary to it dry when its humidity is below the average proportion.

E.—Air in a highly heated space contains as much vapor (when weight of it al) as a like volume of external air, but it is drier as its capacity for vapor ter.

SUN - DIAL.

To Set a Sun-dial.

column on which dial is to be placed perpendicular to horizon. Ascertain by evel that upper surface is perfectly horizontal; screw on plate loosely by means re screw, and bring gnomon as nearly as practicable to its proper direction.

bright day set dial at 9 A.M. and 3 P.M. exactly, with a correctly regulated observe difference between them, and correct dial to half difference. Prosame manner till watch and dial are found to agree perfectly. Then fix rmly in that situation, and dul will be correctly set.

is obvious; for, if there were any defects, the Sun's shadow would not agree me indicated by watch, both before and after he passed meridian. Take owever, to allow for equation of time, or you may set dial wrong. Best day rear to set a dial is 15th of June, as there is no equation to allow for, and no marise from change of declination. A dial may be set without a watch, by 2 a circle around centre, and marking spot where top of shadow of an upright piece of wire, placed in centre, just touches circle in a.m., and again in P.M. should be drawn from one spot to the other, and bisected exactly; then a mr from centre of dial through that bisection will be a true meridian line, in the XII hours' mark should be set.

CHAINING OVER AN ELEVATION.

 $l \subset L$, and C = cos, angle.

resenting length of line chained, C cos. angle of elevation with horizon, length of line reduced to horizontal.

rration.—Length of an elevation at an angle of 30° 17' is 100 feet; what is tal distance?

ble of Cosines, 30° 17' = .86354. Hence, $100 \times .86354 = 86.354$ feet.

t out a Right Angle with a Chain, Tape-line, etc. polinks on chain or feet of line for base, 30 links or feet for perpendicular, or hypothenuse, or in this ratio for any length or di

USERUI.	NUMBERS	IN	SURVEYING

nverting	Multiplier.	Converse.	For Converting	
to links	1.515 4.545	.66 .22	Square feet into a Square yards "	ί

CHRONOLOGY.

Solar day is measured by rotation of the Earth upon its axis with respect to the Sun.

Motion of the Earth, on account of ellipticity of its orbit, and of perturbations produced by the planets, is subject to an acceleration and retardation. To correct this fluctuation, timepieces are adjusted to an average or mean solar day (mean time), which is divided into hours, minutes, and seconds.

In Civil computations day commences at midnight, or A.M., and is divided into two portions of 12 hours each.

In Astronomical computations and in Nautical time day commences at M., or 12 hours later than the civil day, and it is counted throughout the 24 hours.

Solar Year, termed also Equinoctial, Tropical, Civil, or Calendar Year, is the time in which the Sun returns from one Vernal Equinox to another; and its average time, termed a Mean Solar Year, is 365.242218 solar days, or 365 days, 5 hours, 48 minutes, and 47.6 seconds.

Year is divided into 12 Calendar months, varying from 28 to 31 days.

Mean Lunar Month, or lunation of the Moon, is 29 days, 12 hours, 44 minutes, 2 seconds, and 5.24 thirds.*

Bissextile or Leap Year consists of 366 days; correction of one year in four is termed Julian; hence a mean Julian year is 365, 25 days.

In year 1582 error of Julian computation of a year had amounted to a period of 10 days, which, by order of Pope Gregory VIII., was suppressed in the Calendar, and 5th of October reckoned as 15th.

Error of Julian computation, .co776 days, is about r day in r28.76 years, and adoption of this period as a basis of intercalation is termed Gregorian Calendar, or New Style, † Julian Calendar being termed Old Style.

Error of Gregorian year (365.2425 days) amounts to 1 day in 3571.4286 years.

New Style was adopted in England in 1752 by reckoning 3d of September as 14th.

By an English law, the years 1900, 2100, 2200, etc., and any other 100th year, excepting only every 400th year, commencing at 2000, are not to be reckoned bissextile years.

Dominical or Sunday Letter is one of the first seven letters of alphabet, and is used for purpose of determining day of week corresponding to any given date. In Ecclesiastical Calendar letter A is placed opposite to set day of year, January 181; B to second; and so on through the seven letters; then the letter which fulls opposite to first Sunday in year will also fall opposite to every following Sunday in that year. See table, p. 73.

Norn.—In bissextile years two Dominical letters are used, one before and the other after the intercalary day.

In Ecclesiastical Year the intercalary day is reckoned upon 24th of February; hence 24th and 25th days are denoted by same letter, the dominical letter being set back one place.

In Civil Year the intercalary day is added at end of February, the change of letter taking place at 1st of March.

Dominical Cycle is a period of 400 years, when the same order of dominical letters and days of the week will return.

Cycle of the Sun, or Sunday Cycle, is the 28 years before same order of Dominical letter return to same days of month, and it is considered as having commenced 9 years before the era of Julian Calendar.

To Compute Cycle of the Sun.

RULE.—Add o to given year; divide sum by 28; quotient is number of cycles that have elapsed, and remainder is number or years of cycle.

Use of this computation is determination of dominical letter for any given ian Calendar for each of the 28 years of a cycle.

y adoption of Gregorian Calendar, order of the letters is necessarily interrupted uppression of the century bissextile years in 1900, 2100, etc., and a table of Doical letters must necessarily be reconstructed for following century.

unar Cycle, or Golden Number, is a period of 19 years, after which the new as fall on same days of the month of Julian year, within 1.5 hours.

ear of birth of Jesus Christ is reckoned first of the Lunar Cycle.

To Compute Lunar Cycle, or Golden Number.

JLE.—Add 1 to given year; divide sum by 10, and remainder is Golden Number.

AMPLE. - What is Golden Number for 1870?

 $1879 + 1 \div 19 = 98$, and remainder = 18 = Golden Number.

eact for any year is a number designed to represent age of the moon on 1st day nuary of that year. See table, p. 73.

To Compute the Roman Indiction.

LE.—Add 3 to given year; divide sum by 15, and remainder is Indiction. TE.—If o remain, Indiction is 15.

1E.—II O lemain, indiction is 15.

TE.-If o remain, it is 10.

imber of Direction is the number of days that Easter-day occurs after 21st of h.

ster-day is first Sunday after first full moon which occurs upon or next after if March; and if full moon occurs upon a Sunday, then Easter-day is Sunday and it is ascertained by adding number of direction to 21st of March. It is fore March N+21, or April N-10.

USTRATION. — If Number of Direction is 19, then for March, 19 + 21 = 40, and 31 = 9 = 9th of April;

for April,

19-10=9=9th of April.

E.—Moon upon which Easter immediately depends is termed Paschal Moon. l Moon is 14th day of moon, that is, 13 days after preceding day of new moon.

Days of the Roman Calendar.

inds were the first 6 days of a month, Nones following 9 days, and Ides remain-

ys. (arch; May, July, and October, *Ides* fell upon 15th and *Nones* began upon 7th. er months *Ides* commenced upon 13th and *Nones* upon 5th. Roman Indiction and Julian Period see p. 26

Chronology.

reation of World (according to Julius Africanus, Sept. 1, 5508; Samaritan Pentateuch, 4700; Septuagint, 5872; Josephus, 4658; Talmudists, 5344; Scaliger, 3950; Petavius, 3984; Hales, 5411).

eluge (according to Hales, 3154). ricks made and Cement first used. Tower of Babel finished.

hinese Monarchy.

irst Egyptian Pyramid and Canal. old and Silver Money first introduced.

etters first used in Egypt. emnon invents the Egyptian Al-

ockery introduced.

xe, Wedge, Wimble, Lever, Masts and Sails invented by Daedalus of Athens.

ov destroved.

ariner's Compass discovered in China.

undation of Rome.

tales asserts Earth to be spherical.
cometry, Maps, etc., first intro-

576. Money coined at Rome.

562. First Comedy performed at Athens. 480. First recorded Map by Aristagoras.

420. First Theatre built at Athens.

336. Calippus calculates the revolution of Eclipses.

320. Aristotle writes first work on Mechanics.

310. Aqueducts and Baths introduced in Rome.

306. First Light-house in Alexandria. 289. First Sun-dial.

267. Ptolemy constructs a Canal from the Nile to the Red Sea.

224. Archimedes demonstrates of erties of Mechanical Pothe Art of measuring Surfids, and Sections.

219. Hannibal crossed the Alps 219. Surveying first introduced

202. Printing introduced in Chi.

198. Books with leaves of vellum first introduced by Attalus.

170. Paper invented in China.

168. An eclipse of the Moon which was predicted by Q. S. Gallus,

162. Hipparchus locates the first degree of Longitude and the Latitude at

A.D. 60. Destruction of Jerusalem.

79. Destruction of Herculaneum and Pompeii.

214. Grist-mills introduced.

622. Year of Hegira, commencing 16th July; Glazed windows first intro-duced into England in this cent'y. 667. Glass discovered.

670. Stone buildings introduced into England.

842. Lands first enclosed in England. 933. Printing said to have been invented

by the Chinese 991. Arabic Numerals introduced.

1066. Battle of Hastings.

1111. Mariner's Compass discovered.

1180. Mariner's Compass introduced in Europe.

1368. Chimneys first introduced into Rome from Padua.

1383. Cannon introduced.

1390. Woollens first made.

1434. Printing invented at Mayence.

1460. Wood-engraving invented and First Almanac. 1471. Printing in England by Caxton.

1477. Watches first introduced at Nuremberg.

1402. America discovered.

1497. Vasco de Gama discovers passage to India.

1500. Variation of Mariner's Compass observed. 1522. F. de Magellan circumnavigates the

1530. Incas conquered by Pizarro.

1545. Needles first introduced.

1586. Potato introduced into Ireland from America.

1590. Telescopes invented by Jansen and used in London in 1608.

1616. Tobacco first introduced into Virginin.

1620. Thermometer invented by Drebel.

1627, Barometer invented. 1629. First Printing press in America. 639. First Printing office in America at Cambridge.

. Otto Van Gueriche constructed first '-ctric machine.

ads with wooden ralls intro-near Newcastle.

apaper Advertisement. spaper in America. st made at Bristol, Eng-

159. Clepsydra, or Water-clock, invent-

146. Carthage destroyed.

70. First Water-mill described. 51. Cæsar invaded Britain.

45. First Julian Year by Cæsar.

8. Augustus corrects the Calendar.

A.D. Benjamin Franklin demonstrated 1752. identity of the electric spark and lightning, by aid of a kite.

1752. New Style, introduced into Britain;

Sept. 3 reckoned Sept. 14. 1753. First Steam-engine in America.

1769. James Watt-First design and patent of a Steam-engine with separate vessel of condensation.

1772. Oliver Evans-Designed the Noncondensing Engine. 1792. Applied for a patent for it. 1801. Constructed and operated it.

1774. Spinning-jenny invented by Robert Arkwright.

1776. Iron Railway at Sheffield, England. 1783. First Balloon ascension, and Vessel's

bottoms coppered. 1790. Water-lines first introduced in models of Vessels in the U.S.

1797. John Fitch-Propelled a yawl-boat by application of Steam to sidewheels, and also to a screw-propeller, upon Collect Pond, New York.

1807. Robert Fulton - First Passenger Steamboat.

1824. Compound marine steam-engines first introduced by James P. Allan, New York.

1825. Introduction of steam towing by Mowatt, Bros. & Co., of New York, by steam-boat "Henry Eckford,"

New York to Albany.* 1826. Voltaic Battery discovered by Alex. Volta, and First Horse-railroad. 1827. First Railroad in U.S., from Quincy

to Neponset.

1829. First Lucifer Match and first Locomotive in America. 1830. Liverpool and Manchester Railroad

opened. First Steel Pen and first Iron Steamer.

1832. S. F. B. Morse invents the Magnetic Telegraph.

1836. Robert L. Stevens first burned Anthracite Coal in furnace of boiler of steamboat "Passaic."

1840. First steam-boiler constructed for burning Anthracite Coal in steam-boat "North America," N. Y.

1844. Telegraph line from Washington to Baltimore, Md.

1846. First complete Sewing - machine. Elias Howe, inventor.

1866. Submarine Telegraph laid from Valencia to Newfoundland, N.S.

ss of Day of Week, corresponding to Day determined by following Table.

ry, iber.	February,* August.	May.	January, October.	January,* April, July.	September, December.	June.
t	2	3	4	5	6	7
3	9	10	11	12	13	14
5	16	17	18	19	20	21
3	23	24	25	26	27	28
	1 30	31	1	1		

s, if Monday is the day determined by the year given, the following dates are indays in that year.

ects, Dominical Letters, and an Almanac, from 1800 to 1901.

OF TABLE. —To ascertain day of the week on which any given day of the I falls in any year from 1800 to 1901.

osite 1835 is Sunday; and by preceding table, under December, it is ascertained 3th was Sunday; consequently, 16th was Wednesday.

Days.	Dom. Let- ters.	Epact.	Years.	Days.	Dom. Let- ters.	Epact.	Years.	Days.	Dom. Let- ters.	Epact.
Saturday.	E	4	1834	Saturday.	E	20	1868	Sunday.*	ED	6
Sunday.	D	15	1835	Sunday.	D	1	1869	Monday.	C	-17
Monday.	C	26	1836	Tuesday.*	CB	12	1870	Tuesday.	B	28
Tuesday.	B	7	1837	Wednesd,	A	23	1871	Wednesd.	A	9
Thursday.*	AG	18	1838	Thursday.	G	4	1872	Friday. *	GF	20
Friday.	F	20	1839	Friday.	F	15	1873	Saturday.	E	1
Saturday.	E	II	1840	Sunday.*	ED	26	1874	Sunday.	D	12
Sunday.	D	22	1841	Monday.	C	7	1875	Monday.	C	23
l'uesday.*	CB	3	1842	Tuesday.	В	18	1875	Wednesd.*	BA	4
Wednesd.	A	14	1843	Wednesd.	A	20	1877	Thursday.	G	15
Chursday.	G	25	1844	Friday.*	GF	II	1878	Friday.	F	26
?riday.	F	6	1845	Saturday.	E	22	1879	Saturday.	E	7
lunday.*	ED	17	1846	Sunday.	D	3	1880	Monday. *	DC-	18
fonday.	C	28	1847	Monday.	C	14	1881	Tuesday.	В	20
'nesday.	B	9	1848	Wednesd.*	BA	25	1882	Wednesd.	A	11
Vednesd.	A	20	1849	Thursday.	G	6	1883	Thursday.	G	22
'riday.*	GF	1	1850	Friday.	F	17	1884	Saturday.*	FE	3
aturday.	E	12	1851	Saturday.	E	28	1885	Sunday.	D	14
unday.	D	23	1852	Monday.*	DC	9	1886	Monday.	C	25
Ionday.	C	4	1853	Tuesday.	В	20	1887	Tuesday.	B	6
7ednesd.*	BA	15	1854	Wednesd.	A	1	1888	Thursday.*	AG	17
hursday.	G	26	1855	Thursday.	G	12	1880	Friday.	F	17 28
riday.	F	7	1856	Saturday,*	FE	23	1800	Saturday.	E	9
sturday.	E	18	1857	Sunday.	D	4	1801	Sunday.	D.	20
onday.*	DC	20	1858	Monday.	C	15	1892	Tucsday.*	CB	1
1esday.	В	11	1859	Tuesday.	В	26	1893	Wednesd.	A	12
ednesd.	A	22	1860	Thursday. *	AG	7	1804	Thursday.	14	23
tursday.	G	3	1861	Friday.	F	18	1895	Friday.	F	4
durday.*	FE	14	1862	Saturday.	E	20	1896	Sunday "		15
inday.	D	25	1863	Sunday.	D	11	1897	Monda		
onday.	C	6	1864	Tuesday.*	CB	22	1898	Tuesr'		
esday.	B	17	1865	Wednesd.	A	3	1899	Wedı		
ursday.*	AG	28	1866	Thursday.	G	14	1900	Thur		
iday.	F	Q	1867	Friday.	F	25	1001	Frid:		

[·] In lesp-year, January and February must be taken in columns marke

U

To Ascertain Year or Years of Coincidences of a given Day of the Week with a given Day of a Month.

Look in preceding table and ascertain day of week opposite to year of occurrence, and every year in which same day is given will be year of coincidences required.

ILLUSTRATION.—If a child was born on Saturday, 19th Sept. 1829, when could and can his birthdays be celebrated, that occurred or are to occur on same day of week and date of month?

Opposite to 1820 is Sunday, and in preceding table the Sundays for September of that year were 6th, 13th, 20th; hence, if 20th was Sunday, the 19th was Saturday.

Hence, every year in table opposite to which is Sunday are the years of the coincidence required, as 1835, 1840, 1846, 1857, 1863, 1868, 1874, 1885, etc.

MOON'S AGE.

To Compute Moon's Age.

RULE.—To day of month add Epact and Number of month; from sum subtract 29 days, 12 hours, 44 min. and 2 sec., as often as sum exceeds this period, and result will give Moon's age approximately at 6 o'clock A.M. in United States, east of Mississippi River.

Numbers of the Months.

d. h.	d. h.	d. h.	d. b.
February 1 22	May 8	July 4 7 August 5 18 September 7 5	November 9 4

EXAMPLE. - Required age of Moon on 25th February, 1877?

Given day 25 + epact 15 + number of month 1.22 = 41 d. 22 h. -29 d. 12 h. 44 m. 2 sec. = 12 d. 9 h. 15 min. 58 sec.

In Leap-years add 1 day to result after 28th February.

To Compute Age of Moon at Mean Noon at any other Location than that Given.

RULE.—Ascertain age, and add or subtract difference of longitude or time, according as place may be West or East of it, to or from time given.

Or, when time of new Moon is ascertained for a location, and it is required to ascertain it for any other, add difference of longitude or time of the place, if East, and subtract it if it is West of it.

Moon's Southing, as usually given in United States Almanacs, both Civil and Nautical, is computed for Washington.

To Compute Time of High-water by Aid of American Nautical Almanac.

RULE.—Ascertain time of transit of Moon for Greenwich, preceding time of the high-water required.

For any other location (west of Greenwich), multiply the time in column "dill, for one hour" by longitude of location west of Greenwich, expressed in hours, and add product to time of transit.

Norn -It is frequently necessary to take the transit for preceding astronon day, as the latter does not end until noon of day under computation.

Example —Required time of high-water at New York on 25th of August, a toute of New York from Greenwich = 4 h. 56 m. 1.65 sec., which, a tout, the difference for 1 hour = 10.71 min. for correction to be add to obtain time of transit at New York.

e of transit, 18 A 38.8 m.; then 18 A 38.8 m. + 10.71 m. = 18 hours 49.51 min. e of transit at New York, 24 d 18 A 50 m.

blishment of the Port, 8 13

25 d. 3 h. 3 m. = time of high-water.

E. — Time of 25th at 3 h. 3 m. Astronomical computation = 25th at 3 h. 3 m. will Time.

Compute Time of High-water at Full and Change of Moon.

Time of High-water and Age of Moon on any Day being given.

LE.—Note age of Moon, and opposite to it, in last column of following take time, which subtract from time of high-water at this age of, added to 12 h. 26 m., or 24 h. 52 m., as case may require (when sum to btracted is greatest), and remainder is time required.

MPLE.—What is time of high-water at full and change of Moon at New York? e of high-water at Governor's Island on 25th of Jan. 1864, was 9 h. 20 m. A.M. ime. Age of Moon at 12 m. on that day was 16 d. 8 h. 59 m.

osite to 16 days, in following table, is 13 h. 28 m., and difference between 16 d. 5 d. 12 h. = (16.5 - 16, or 13.53 - 13.28) is 25 m.; hence, if 12 h. = 25 m., 16 d. m. - 16 d. = 8 h. 59 m. = 18.71 or 19 m., which, added to 13 h. 28 m. = 13 h.

a 9 h. 20 m. + 12 h. 26 m. (as sum to be subtracted is greater than time) - 13 h. = 21 h. 46 m. - 13 h. 47 m. = 7 h. 59 m is a difference of but 13 minutes from Establishment of Port.

ne after apparent Noon before Moon next asses Meridian, Age at Noon being given.

(S. H. Wright, A. M., Ph.D.)

(S. A. WTYM, A. A., FR. D.)											
Moon at Meridian.		Moon at Meridian.				Moon at Meridian.		Moon at Meridian.			
н. м. Р. м .	Days.	н. м. Р. М.	Days.	н. м. Р. М.	Days.	н. м. А. м.	Days.	н. м.			
1 0	6	5 3	12	10 6	18	15 8	24	20 11			
25	6.5	5 28	12.5	10 31	18.5	15 34	24.5	20 37			
50	7	5 53	13	10 56	19	15 59	25	21 2			
1 16	7·5	6 19	13.5	11 21	19.5	16 24	25.5	21 27			
1 2 42	8	6 44	14	11 47	20	16 49	26	21 52			
1	1	1	1	A. M.	1	1	ł				
26	8.5	7 9	14.5	12 12	20.5	17 15	26.5	22 17			
2 31	9	7 34	15	12 37	21	17 40	27	22 43			
2 57	9.5	7 59	15.5	13 2	21.5	18 5	27.5	23 8			
3 22	10	8 25	16	13 28	22	18 30	28	23 33			
3 47	10.5	8 50	16.5	13 53	22.5	18 56	28.5	23 58			
4 12	11	9 15	17	14 28	23	19 21	29	24 24			
4 38	11.5	9 40	17.5	14 43	23.5	19 46	29.5	24 48			

Tidal Phenomena.

levation of a tidal wave towards the Moon slightly exceeds that of the opne, and the intensity of it diminishes from Equator to the Poles.

un by its action twice elevates and depresses the sea every day, following on of the Moon, but with less effect.

g Tides arise from the combined action of the Sun and Moon when they are sides of the Earth.

Tides are the consequence of the divided action of the Sun and Moon, when on opposite sides of the Earth, and the greatest elevations and depressions ecur until the 2d or 3d day after a full or a new Moon.

ocur until the 2d or 3d day after a full or a new Moon. Sun and Moon are in conjunction, and the time is near to the Faninayas

rare fullest. The mean effect of the Moon on the tidal wave he Sun. If, therefore, the Moon caused a tide of 6 feet, the Sr 33 feet; hence a spring tide will be 7.33 feet, and a neap tide a lar locations as to contour of shores, straits, capes, and river f channels, shoals, etc., disturb these general rules.

LATITUDE AND LONGITUDE.

Latitude and Longitude of Principal Locations and Observatories.

Compiled from Records of U.S. Coast and Geodetic Survey and Topographical Engineer Corps, Imperial Gazetteer, and Bowditch's Navigator.

Longitude computed from Meridian of Greenwich.

A., represents Academy; Az., Azimuth; A. S., Astronomical Station; C., College; Cap., Capitol; Ch., Church; C. H., City Hall; C. S., Coast Survey; Ct., Court-house; Cy., Chimney; F. S., Flagstaff; G. S., Geodetic Station; Hos., Hospital; L. Lighthouse; Obs., Observatory; S. H., State-house; Sp. Spire; Sq., Square; S. S., Signal Station; T., Telegraph; T. H., Town Hall; U., University; Un., Union; B., Baptist; Con., Congregational; E., Episcopal; P., Presby.; and M.Ch., Meth. Churches.

LOCATION.	Latitude. Lougitude.			gitu	de.	LOCATION.	Latitude.		Longitude.	
NORTH AND SOUTH AMERICA.	o N		0	W.		NORTH AND SOUTH	N.	,,	W.	
Acapulco Mex.	16 5	0 10	90	49	9	Canandaigua N. Y.	42 54	"o	77 17	"
Albany, P.Ch N. Y.					24	Cape Ann, S. L Mass.	42 38	II	70 34	10
Ann ArborMich.			83	43		Cape Breton Va.	45 57		59 48	5
Annapolis Md.				20		Cape Canaveral Fla.	28 27	30	80 33	-
Apalachicola, F.S. Fla.				59		Cape Cod, L.P.LMs.		-	70 9	48
Astoria, F.SOr.	40 I	I IG	123			Cape Fear N.C.	33 48		77 57	
Atlanta, C. HGa.	33 4	4 57	84		22	Cape Flattery, L. W.T.	48 23	15	124 43	54
Auburn N.Y.	42 5	5	76	28		Cape Florida, L Fla.	25 39	54	80 9	
AugustaGa.	33 2	8	8r	54		Cape Hancock, Colo. R.	46 16	35	124 I	45
Augusta, B.Ch Me.	44 1	8 52	60	46		Cape Hatterns, L., N.C.	35 15	2	75 30	
AustinTex.	30 1	6 21	97	44	12	Cape Henlopen, L., Del.	38 46	6	75 4	7
BalizeLa.	29	8 5	89	1	4	Cape Henry, L Va.	36 55	30	76 0	2
Baltimore, Mon't . Md.	39 1	7 48	76	36	59	Cape Horn, S. Pt., Her-	S.	50		
Bangor, Tho's Hill. Me.	44 4	8 23	68	46	59	mit's Island	55 59		67 16	
Barbadoes, S. Pt W. I.	13	3	50	37			N.		100	
Barnegat, L N. J.		6		6		Cape May, L N. J.	38 55	48	74 57	18
Bath, W.S.ChMe.	43.5	4 55	60	49		Cape RaceN. S.	46 39	24	53 4	3
Baton Rouge La.				18		Cape SableN.S.	43 24	1	65 36	-
Beaufort, Ct N.C.	34 4	3 5	76	39	48	Cape Sable, C.S Fla.		53	81 15	
Beaufort, E.ChS.C.	32 2	6 2		40			S.	-		
Belfast, M.ChMe.					19	Cape St. Roque, Brazil	5 28		35 17	
Benicia, Ch Cal.	38	3 5	122	q	23		N.			
BeningtonVt.	42 4	0	73	18		Carthagena N. G.	10 26		75 38	
Bismarck, S. S Neb.	40 4	8	100			CastineMe.	44 22	30	68 45	
Boston, L Mass.	42 1	9 6	70	53	6	Cedar Keys, Depot Isl.	29 7	30	83 2	45
	42 2		71	3	30	Chagres	0.20		80 I	
Brazos Santiago Tex.	26	6		12	-	Charleston, C. Ch., S. C.	32 46	44	79 55	39
BridgeportConn.	41 1	0 30	73	11	4	Charlestown, Mon., Ms.	42 22	36	71 3	18
Bristol R. I.	41 4	0 11	71	16	5	Cheboygan, L Mich.	45 40	9	84 24	37
Brooklyn, C. H N. Y.	40 4	1 31	73	59	27	Chicago, C.Ch Ill.	41 53	48	87 37 4	17
Brownsville, S.S., Tex.			97	30		Chickasaw Miss.	35 53	30	88 6	
Brunswick, AGa.	31	3 51			26	Cincinnati, ObsO.	39 6	26	84 29 4	15
Brunswick, C.Sp., Me.	43 5	4 29		57	24	Cleveland, Hos "	41 30	25	81 40 3	0
Buffalo, LN. Y.	42 5)	78	59	1	Colorado Springs. Col.	38 50	0	104 49	8
Burlington N. J.	40	52	74	52	37	Columbia, S. H S. C.	33 59	58	81 2	3
Burlington, CVt.			78	10		Columbus, CapO.	39 57	40	82 59 4	0
Burlington, Pub. Sq., Ia.	40 4	3 22	91	6	25	Concord, S. H N. H.	43 12	29	71 29	
Bushnell Neb.	41 1	3 54	103	52	57	Corpus ChristiTex.	27 47	18	97 27	2
Cairo	36 5	48	89	11	14	Council Bluffs. Neb. T.	41 30		95 48	
Calais, C.S. Obs Me.	45 1	5	67	16	5	Crescent City, L., Cal.	41 44	34	124 11 2	2
	S		100			Cumberland Md.	30 30	14	78 45 3	5
F.S Peru	12		77	13	- 1	Darien, W.HGa.	31 21	54	81 25 3	9
J	N		1			Davenport, S. SIa.	41 32		90 38	
· ' *	42 22	52	71	7	43	Dayton	39 44	- 1	84 11	
	4 17		80	33	1	Deadwood, S. S Dak.	44 22	1	1203 34	
	9 49		90	33		Decatur, S. S Tex	133 10		1 97 30	

Latitude and Longitude-Continued.

LOCATION.	Lat	litu	de.	Lon	gitu	de.	LOCATION.	Latitude.	Long	ritu	le.
RTH AND SOUTH		N.			W.		NORTH AND SOUTH	N.	V	٧.	
er, S. H.Sp., Col.	0		"	0		"	AMERICA.	0 1 "	78	ړ!	"
Moines, C.HIa.	47	45		03	37	33	LockportN. Y. Los AngelesCal.	24 2 5	118		22
oit, St. P.Ch., Mich.			46	83	3,2	23	LouisvilleKy.	38 3	85		3-
r Del	20	10	•	75	30		Lowell, St. Ann's Ch.,	_	1	•	
r N. H.	43	13		70	54		Machias, ThMe.	42 38 46	71		
queIa. th, S.SMin.	42	28	55	90	39	57	Macon Arcanal Gu	44 43 1	83		
ort, Con.Ch Me.	44	54	15	66	50	14	Macon, ArsenalGa. Madison, DonieWis.	43 4 33	89		3
ton, C. HN. C.	30	3	24	70	30	31	Marbienead, L Mass.	42 30 14	70		
beth City, Ct. "LPenn.	36	17	58	76	13	23	Martinique, S. P't. W. I.	14 27	60		
LPenn.	42	8	43	80	4	12	Matagorda, G.STex.	28 41 29	95		
St. Anth'y. Minn.	40	48	11	124	.9	41	MatamorasCuba		87	27	50
indina A.S. Fla	20	40	₹.8	N.			Memphis, S.S Tenn.		8i .	7	
libsonInd. T.	34	47	13	87	41	40	MexicoMex.	10 25 45	100	5	6
libson Ind. T.	35	47	35	95	15	10	MilwaukeeMich.	42 2 24	1 67		4
HenryTenn.	36	30	22	88	3	40	Minneapolis, U.C., Min. Mississippi City, G. S.,	44 58 38	93		8
aramie, Wyo. T.	42	12	10	104	47	43	Mississippi City, G. S.,		i		
cavenworth, Ks.	39	21	14	94	44		Mobile F Ch Ale	30 22 54	89	I	5.7
fortKy.	30	24		77	18	i	Mobile, E. ChAla. Monterey, Az. SCal.	36 41 20			. O
ricksburg, E.Ch.,	39			ı				S. 21	*** '	J-	59
Va.	38	18	6	77	27	38	MontevideoRat Is'd	34 53	56	13	
ictonN.B.	46	3		00	30	25		N.	1.		
ton, Cath'l. Tex.	29	18	17	94	47	26	Montgomery, S. H., Ala.	32 22 45			,
town E.Ch., S.C.	33	22	8	64	37	49	MontrealC. E.	45 31	73		50
ster. U.Ch Ms.	33	26	46	79		59		37 4 47	δ9 70		24
ster, U.Ch Ms. Haven, S. S.,	7-	30	40	,,,	39	39	Nantucket, S. Tower,	41 23 24	/	•	-4
Mich.	43	5		86	18		Mass.	41 16 57	70	5	57
CODEN.S.	12.2	20	4	63	35		Nashville, UTenn. Nassau, LN. P.	36 9 33	86	49	3
ourgPenn.	40	16			50		Nassau, LN. P.	25 5 2	77	21	2
rd, S.H Conn. L. Moro Cuba	41	45	59	82	40	45 23	Natchez Miss. Nebraska, Junction of	31 34	91	24	42
1 the Wall, I	-3	y		"		٠,	Forks of Platte Riv.		101	21 :	24
Bahamas	25	51	5	77	10	6	New Bedford, B. Ch.,		1		
or Hole Ch. Ms.	AY	27	13	70	35		Mass.	41 38 10	70 :	55	36
N.Y.	42	14		7,3	46 57		New maven, Col., Conn.	41 IÖ 28	172		
ille Ala. polis Ind.	34	30		86	57 5	- 1	New London, P.Ch. "New Orleans, Mint, La.	41 21 10	72	3 :	
la G.STex.	28	22	28	96		1				-	
Miss.	32	23		90	8	-1	NEW YORK, C. H., N. Y.	40 42 44	74	:	24
wille, M. Ch.,	-	_		1		ı	Newbern, E. Sp N.C.	35 6 21	77	5	
FIII.	30	19	43	81	39	14	Newborn, E. Sp., N.C. Newburg, A. Sp., N. Y. Newburyport, L., Mass. New Castle, E. Ch., Del.	41 30 6	74		33
n City Mex.	19	30	8	90	54	30	New Castle E Ch Del	42 48 30	70		
lity Gas Ch'v	40	42	28	74	2	24	Newport, SpR. I.	39 39 30 41 20 12	75 3 71	18	40
M. Ch W. T. S. S In.	46	2 6		122			Norfolk, C. H Va.	36 50 47	76	7 :	
, S. S In.	40	23		91	25		Norwalk	41 2 50		25 ;	35
st, T.Obs., Fla.	24	33	31		48	31	Norwich	41 33	72	7	
Jamaica CH CW	17	58		76	40	_	Ocracoke, I N.C. Ogdensburg, L N.Y.	35 6 28			51
ieTenn	25	50		83	54	37	Old Point Comfort, Va.	44 45	! 75 3 ! 76 1	18	6
e. Ct. S Wis.	43	58	50	OI	14	48	OlympiaWash.T.	37 - 47 ?	1122	55	
r Penn.	40	2	30	76	20	33	OlympiaWash.T. Omaha, P. ChNeb.	41 15 43	95	56 1	14
A. S Tex.	28	37	36	96	37	21	Oswego, S. S N. Y. '	12 28 22	70 3	25	5
orth, S.S. Ks. n Ky.	39	29		94	58	- 1	Ottawa	45 23	75	(2	
пку.	30	s.		84	18	J.	Parkorshurg W Vo	0 57 0	130	-27	17
Peru			- /	77	6	- [[PascagoulaMiss	144	01	. 5	45
1	Λ	<i>3</i> 7.	1	′′	-	- 11	Pensacola, Sq're . Fla				7.
ok Ark. /34	40	,	1	92 I	2	-11	Petersburg, C. H Ve				
						G			-		

Latitude and Longitude-Continued.

LOCATION.	Latitude. Longitude.		LOCATION.	Latitude.	Longitude	
NORTH AND SOUTH	N.	W.	NORTH AND SOUTH	N.	W.	
AMERICA.	0 1 11	0 1 11	AMERICA.	0 1 11	0 1 11	
Philadelphia, S. H., Pa. Pike's Peak, S.S., Col.	39 50 53	75 9 3 104 59	St. Augustine, P. Ch.,	29 53 20	81 18 41	
PittsburgPenn.	40 32	80 2	St. Bartholomew. S.	2000		
Pittsburg, Sp, N.Y.	44 41 57	73 26 54	Point W. L.	17 53 30	62 56 54	
Plymouth, Pier Ms. Point Hudson W.T.	48 7 3	70 39 12	St. Christopher, N. Pt., W. I.	17 24	62 50	
Port au PrinceW. I. Port Townshend, A.S.,	18 33	72 16 3	St. Croix. Obs "	17 44 30		
Port Townshend, A.S.,			St. Domingo "	18 29	69 52	
Portland, C. H Me.		122 44 58	St. Eustatia, Town. " St. Jago de Cuba, En-	17 29	63	
Portland, S. S O.	45 30	122 27 30	trance W. I.	19 58	75 52	
Portland, S. S O. Porto Bello N. G.	9 34	79 40	St. John N. B.	45 14 6	66 2 30	
Porto Cabello, Mara-	10 28	68 7	St. Joseph L. Cal. St. Louis, W. U	23 3 13	109 40 44	
Portsmouth, L. N. H.	42 A 16		St. Mark's, Fort Fla.	30 Q I	84 12 30	
Prairie du Chien. Wis.	43 2	91 8 35	St. Martin's, Fort, W. I.	18 5	63 3	
Princeton, S. Cap., N.J.	40 20 40	74 39 55	St. Mary's, M. H Ga.	30 43 12		
Providence, U.Ch., R.I. Provincetown, Sp.,	41 49 20	71 24 19	St. Paul Minn. St. Thomas, Fort Ch'n,	44 52 40	95 4 54	
Mass.	42 3	70 11 18	W. I.	18 21	64 55 18	
Puebla de los Angelos,	100	17	St. Vincent's, S. Point,	700	A STATE OF THE PARTY OF	
Onohoo Citadal Can'n			StauntonVa.	13 9	61 14	
Quebec, Citadel , Can'a Queenstown "	43 9	79 8	Stockton, S.S, Tex.	30 50	79 4 15	
Raleigh, Square. N.C.	35 46 50	78 38 5	Stonington, LConn.			
Richmond, CapVa.	37 32 16	77 26 4	Sweetwater River	100 2000		
Rio de Janeiro S Losf	20.	12 0	Mouth of Wyo. T.	42 27 18	60 12	
Rio de Janeiro, S. Loaf.	N.	43 9	Sydney, S. S N. S. Syracuse N. Y.	43 3	76 9 16	
Rochester, R. H N. Y.			TallahasseeFla.	30 28	84 36	
Rockland, E.ChMe.	44 6 6	69 6 52	Tampa Bay, E. Key "	27 36	82 45 15	
Sackett's Harbor, N. Y. SacramentoCal.	43 55	75 57	Tampico, BarMex. Taunton, T.C. Ch., Mass.	22 15 30	97 51 51 71 5 55	
Salem, So Mass.	42 31 10	70 53 58	Tobago, N. E. P'r. W. L.	11 20	60 27	
Salt Lake City, Obs.,		100000	TorontoCan.	43 39 35	79 23 21	
Caltilla Way	40 46 4	111 53 47	Trenton, P.Ch N. J.	40 13 10	74 45 50 61 32	
San AntonioTex.			Trinidad, FortW. L. Troy, D.ChN.Y.	10 39	73 2 16	
San Buenaventura,	-9-5-4-	30-7-3	Tuscaloosa Ala.		87 42	
G. S , Cal.			Utica, Dut.ChN.Y.	43 6 49	75 13	
San Diego, A.S "San Francisco, C. S.	32 43 08	117 9 40	Valparaiso, Fort Chili	S.	** **	
	37.48	122 23 10	varparaiso, rotte, Chin	33 N.	71 41	
San José, Sp	37 19 58	121 53 39	VandaliaIll.	38 50	89 2	
San Luis Obispo "	35 10 38	120 43 31	Vera CruzMex.	19 11 52		
Sandusky, LO.	33 43 20	82 42 15	Vicksburg, S. S Miss. Victoria Tex.		90 54 97 I	
Sandy Hook, LN.J.			VincennesInd.		87 25	
Santa Barbara, M. Ch.,		100	Virginia City, S.S., M.T.	45.20	112 3	
unta Clara C Ch	34 26 10	119 42 42	WASHINGTON Capitol	38 53 20	77 36	
to Cruz, F. S	36 57 31	121 1 20 50	Watertown, Ars'l Ms.	42 21 A1	71 0 45	
7 Fo N. Mox.	35 41 6	106 1 22	West Point N. Y	41 23 26	73 57 1	
andy N. Y.	32 4 52	81 5 26	WheelingVa. Wilmington, E. Ch.,	40 7	80 42	
R.D. Wy	42 48	73 55	N. C.	24 14 2	77 56 38	
2 . Ja	32 30	93 45	Wilmington, T.H., Del.	20 44 27	75 33 3	
N.C.	32 30 33 54 58	78 x 8	Worcester, Ant. H Ms.	42 10 17	71 48 13	
1,6%			Yankton, S.S Dak.	42 45	97 30	
111.	39 47 57	72 36	Vork Pen	1/33 5	90 20	
		31 35	Yazoo Miss York Penn Yorktown V	a. 37 23	13034	
			The second secon			

Latitude and Longitude—Continued

N. |Latitude, |Longitude, || Location. |Latitude, |Longitude.

N.	Latitude.	Langitude.	LOCATION.	Latitude.	Longitude.
AFRICA,	N.	E.	EUROPE, ASIA, AFRICA,	N.	E.
EANS.	1 22		AND THE OCEANS.		
	-6	37 10 "	Genoa	44 24 "	8 43 "
	31 12	29 53	See as a series of the series	т-т	8 53 W.
******	36 47	3 4	Gibraltar	36 7	5 22
		4 53	Glasgow		4 16
	51 13	4 24	GREENWICH		l '_
*******	04 32	40 33	GRADINICA	32 20 30	-
*******	37 58	23 44	Promotories		E.
*******	41 23 S.	2 11	Hamburg		9 58 6
	6 8	6	Havre	49 29 S	w.
rt, Su'a.		106 50	Hawaii or Owyhee		
tel ou a	3 48 N.	102 19	In the second	N.	155 54 E.
	52 30 16	13 23 45	Hongkong	22 16 30	TT4 T4 45
******	18 56	72 54	Honolula	21 18 12	157 30 36
	8.		many from a control of the control	l	, ₩.
Roads.	34 2	151 13	Hood Isl'd, Gallapagos.		89 46 E.
	N.		Hood's Island, Mar-		
******	53 5	8 49 W.	quesas	9 26	138 57
			Todds or Tokio	N.	l
******	51 27	2 35 E.	Jeddo or Tokio	35 40	139 40
	50 51 11		Jerusalem Leghorn, L	42 22	37 20
	30 30	48	Leipsic	51 20 20	12 22
	20 30	W.	Leyden	52 9 28	4 20 15
	36 32	6 18		J. ,	4 29 15 W.
		E.	Lisbon	38 42	99
		31 18	Liverpool, Obs	53 24 48	3
		1 51			E.
******		68 20	Madras	14 4 9	80 15 45
*******		25 8	Madeid		W.
*******	23 7	113 14 W.	Madrid	40 25	3 42 E.
	51 26	0.20	Majorca, Castle	30 34	2 23
2007	S.	E.		77 54	w.
be, Obs		18 28 45	Malaga	36 43	4 26
Mad'r	25 39	45 7		1	E.
	N,		Malta, Valetta	35 54	14 30
edro	9 49	80 23	Manila	14 30	121 2
*******	59 55 S.	10 43	Marseilles		5 22
	6 8	12 9	Mocha		15 35 43 12
	N.	12.9	Moscow		35 33
3, St. S		28 59	Muscat		35 33 58 35
		12 34	Naples, L		14 16 W.
	37 54	22 52		_	
	59 59	29 47	New Castle		1 37
	51 8	1 19	New Hebrides, Table	8.	E.
		W.	Island	15 28	167 7
******				N.	128 to 25
ids, St.	55 57 S.	3 12	Odessa	34 36 3 46 28	138 50 35 30 44
******	July 72.	5 45	Palermo, L	38 8	13 22
******	N.	3 43	Paris, Obs		2 20
nt	38 30	28 42	Pekin	39 54	116 28
Ovolau,	S.	E.		1	W.
	17 41 N.	178 53	Plymouth	50 21	149
			Don't Tealmen Nove	l.	
******	43 40	11 16	Port Jackson . N.S.W.		
ira	22.28	16 55	Porto Praya, Cape Vere	4	
	3= 30	E 55	Islands	•	
	6 11 50	6 9 15	Prince of Wales Islan	a \.	
19	39	9 15	THE OF WHICH ISIND	la	

Latitude and Longitude-Continued.

			_		
LOCATION.	Latitude.	Longitude.	LOCATION.	Latitude.	Longitude
BUROPE, ASIA, AFRICA, AND THE OCEANS.	N.	w.	EUROPE, ASIA, AFRICA, AND THE OCEANS.	1	E.
Queenstown	o , "	8 19 " E.	St. Petersburg		30 19 "
Rome, St. Peter's		12 27	Suez Surat, Castle	29 59 21 11 .S.	32 34 72 47
Rotterdam		4 29 W.	SydneyN.S.W.		151 23
Santa CruzTen'fe Scilly, St. Agnes, L	49 54	16 16 6 21	Tahiti or Otaheite	17 45	W. 149 30 E.
Senegal, Fort		16 32 E.	Tangier	35 47	E. 5 54
Sevastopol Seville		33 30 5 58	ToulenTripoli	34 54	5 22 13 11
Siam	14 55 S.	100 W.	Tunis, City Venice	36 47	10 6 14 26
Sierra Leone	8 30 N.	13 18 E.	Vienna Warsaw, Obs	48 13	16 23 21 2 9
Singapore		103 50 27 7	WellingtonNew Z'd	S.	174 44
Southampton		W. 1 30	Yokohama		139 39
St. Helena	S. 15 55	5 45	Zanzibar Island, Sp	6 28	39 33

${\bf Observatories.} {\bf -Not\ included\ in\ previous\ Table.}$

Longitude given in Time.

	L	onguuae g	iven in 1 ime.		
LOCATION.	Latitude.	Longitude.	LOCATION.	Latitude.	Longitude.
	N.	W.		N.	E.
Albany, Dudley Alleghany, Penn Birr Castle, Earl	40 27 36	h. m. s. 4 54 59 52 5 20 2.9	Madras	0 , 4, 4, 13 4 8.1 43 17 50	h. m. a. 5 20 57-3 21 29 W.
of Rosse		31 40.9	Mitchell's, Cin., O.	39 6 26	5 37 59 E.
Cambridge, U.S Cambridge, Eng		4 44 30.9 E. ^{22.} 75	Moscow Munich, Bogenh'n Palermo	48 8 45	2 30 16.96 46 26.5 53 24-17
Cape of G. Hope	N.	1 13 55	Portsmouth	50 48 3 46 48 30	W. 4 23.9 4 44 49.02
Copenhagen, Un'y. Crescent City, A. S., Cal Dublin	41 44 43	50 19.8 W. 8 16 49.1 25 22	Rome, College Salt Lake City, Utah	41 53 52.2 40 46 4	49 54-7 W. 7 27 35-1
Edinburgh	55 57 23.2	12 43.6 E. 45 3.6	San Francisco, Sq., Cal	37 47 55 S.	8 9 38.1
Geneva		24 37·7	Santiago de Chili.	33 26 24.8 N	4 42 18.9
Georgetown, U.S., Gibbes's, Charles-		5 8 12.5	St. Croix, W. I	/	4 18 42.8 E.
U. S		5 19 44.7	St. Petersburg, A Stockholm	59 56 29.7 59 20 31	2 1 13.5 1 12 24.8
1	53 33 5	E. 39 54-1	Sydney Tifft's, Key West.	33 51 41.1 N.	10 4 59.86 W.
	9 28.2	49 28.5 17 57.5	FlaUnkrechtsberg,Ol-	24 33 31	5 27 14 1 E.
	: 47.8	W. 12 0.11	mutz Washington	/	2 8 22-03 2 0 02
		57	West Point, N.Y.		1 4 55 4

DIFFERENCE IN TIME.

rence in Time at following Locations.

ngitude computed both from New York and Greenwich.

ifference of Time between New York and Greenwich is 4 h. 56 m.: in following table 2 seconds are given when the decimal in any xceeds .5 seconds.

F representing Fast, and S Slow.

A. m. s. S. A. m. s. S. A. m. s. S. A. m. s. S. S. 39 s. T. S.	r.	New York.	Greenwich.	LOCATION.	New York.	Greenwich.
Egypt 6 55 34		Å. m. e.	A. m. s.	AUTHOR ACTOR	A. m. s.	å. m. e.
Egypt 6 55 34		1 43 15 S.	6 39 17 8.	Cedar Keys		
Egypt 6 55 34		i F.	4 55 2	Chagres		5 20 5
S 8 8 12 16 Charlestown		6 55 34	1 59 32 F.	Charleston	23 41	
Social State				Charlestown	11 48 F.	
43 548. 5 39 568. Chickasaw 56 24 5 37 59 260 44 32 5 37 33		5 16 5	19 32	Cheboygan	41 37 S.	5 37 38
3 9 17	• • • • • •					5 50 31
4 4 32 5 37 33 Clovenand. 30 40 5 20 42 5 37 33 Clovenand. 31 34 5 4 5 8 7 36 Columbia. 28 7 5 24 8 8 7 5 24 8 8 7 5 24 8 8 7 5 24 8 8 7 5 24 8 8 7 5 24 8 8 7 5 24 8 8 7 5 24 8 8 7 5 24 8 8 7 7 28 5 8 1 2 2 8 5 8 5 2 2 2 2 8 7 7 28 5 8 1 2 3 4 5 8 5 2 2 2 2 8 7 7 28 5 8 1 2 3 4 5 8 5 2 2 2 2 8 7 7 28 5 8 1 2 3 4 4 1 4 1 8 8 1 2 2 8 5 8 7 2 8 5 1 2 3 5 1 2	• • • • • •	43 54 S.	5 39 56 8.		50 24	5 52 26
Ga. 31 34 5 5 7 36 Ga. 31 34 5 5 7 36 Ga. 31 34 5 5 7 36 Me. 10 55 F, 4 39 6 Columbia. 35 57 Columbia. 35 57 10 26 20 54 F, 4 35 8 Constantinople. 6 51 58 20 54 F, 4 55 62 Constantinople. 6 51 58 20 54 F, 4 55 62 Constantinople. 6 51 58 20 54 F, 4 55 62 Copenhagen. 5 46 18 20 20 14 No.C. 10 38 S.C. 26 39 20 1 F, 4 39 16 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 29 48 S. 6 20 Corpos Christi. 1 33 47 S. 6 23 12 Corpos Christi. 1 33 47 S. 6 23 12 Corpos Christi. 1 33 47 S. 6 23 12 Corpos Christi. 1 33 47 S. 6 23 12 Davienport. 1 12 20 6 2 33 12 Corpos Christi. 1 32 47 S. 6 23 12 Davenport. 1 12 20 6 2 32 Davenport. 1 12 20 6 2 32 Denver. 2 3 57 6 5 36 44 Denver. 2 3 57 6 5 36 44 Denver. Del. 35 58 5 2 2 10 Dover. N.H. 1 20 6 7 5 32 10 Dover. N.H. 1 20 6 7 5 32 10 Dover. N.H. 1 20 6 7 5 32 10 Dover. N.H. 1 20 6 7 5 32 10 Dover. N.H. 1 20 6 8 32 Edenton. 1 24 5 6 24 Edenton. 1 24 5 5 6 26 Edenton. 1 24 5 5 6 26 Edenton. 1 24 5 5 6 26 Edenton. 1 24 5 5 6 20 7 7 Edenton. 1 24 5 5 6 20 7 Edenton. 1 24 5 6 22 7 Edenton. 1 24 5 5 6 20 7 Ed			8 15 19	Cincinnati		
Me. 16 55 F. 4 39 6 12 34 55 8. 6 39 27 66 12 34 55 8. 6 39 6 28 10 26 5 6 28 20 54 F. 43 58 16 46 F. 43 91 6 19 10 S. 5 512 10 38 5 50 512 10 38 5 5 639 8. C. 20 39 5 22 40 N.C. 10 38 5 5 639 20 1F. 43 61 19 10 S. 5 512 14 63 08 8 8 38 20 1F. 43 61 19 10 S. 5 639 20 1F. 43 61 19 10 S. 5 639 20 1F. 43 61 19 10 S. 5 639 20 1F. 43 61 19 10 S. 5 639 20 1F. 43 61 19 10 S. 5 639 20 1F. 43 61 20 20 1F. 43 67 20 1F. 44 41 48 20 1F. 44				Coloreda Contra		
Me. 16 55 F, 4 39 6 Columbus. 35 57 5 31 59 10 26 5 6 28 Concord. 10 6 F, 4 45 56 Concord. 10 6 F, 4 45 56 Concord. 10 6 F, 4 45 56 Concord. 10 6 F, 4 55 6 F, 50 16 Concord. 10 6 F, 4 55 6 F, 50 16 Concord. 10 6 F, 4 55 6 F, 50 16 Concord. 10 6 F, 4 55 6 F, 50 16 Concord. 10 6 F, 4 55 6 F, 50 16 Concord. 10 6 F, 4 55 6 F, 50 16 Concord. 10 6 F, 4 55 6 F, 50 16 Concord. 10 6 F, 4 45 56 F, 50 16 Concord. 10 6 F, 4 55 6 F, 50 16 F, 50					2 -2	
Concord					100000000000000000000000000000000000000	
To 26		10 55 5.	4 39 0			
Pt. 57 34 F						
Pt. 5734 3 18 28 8 Corpos Christi. 1 23 47 8 6 29 48 8. 16 46 F. 4 39 16 Crescent City. 3 20 44 8 16 45 16 45 16 16 18 18 16 45 18 18 18 18 18 18 18 18 18 18 18 18 18						
28						
16 46 F		3/ 34 22 S				
N.C. 10 38 5 6 39 Dayton 29 41 5 25 43				Crescent City		
N.C. 16 38 5 6 39 5 22 40 S.C. 26 39 5 22 40 Dayton				Darien		
26 39 5 22 40 Dayton 40 42 5 36 44 32 S				Davenport		
20 1 F	S. C.			Dayton	40 42	
3 12 36 8 8 8 38 Denver 2 3 57 6 59 58 52 10 24 36 76 32 10 25 22 26 26 26 26 26 26 26 26 26 26 26 26		20 1 F.	4 36 Y		r 58 30	6 54 32
1 46 30 8. 6 48 34 8. Dover N. H. 35 58 5 2 20 20 25 25 31 8 35 16 F. Dubuque 1 6 38 8. 6 2 40 25 22 20 25 8. 5 25 8. Mass 12 28 58 25 12 25 25 25 25 32 30 F 10 49 22 5 58 25 8. Mass 12 28 58 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 12 25 65 25 25 12 25 65 25 25 12 25 65 25 25 25 12 25 65 25 25 25 25 25 25 25 25 25 25 25 25 25	•••••	3 12 36 8.	8 8 38		2 3 57	
9 47 38 F. 4 43 36 11 47.6 5 31 18 5 31 7 4 4 14 8. 5 35 16 F. Dubuque	•••••	5 49 37 F.	53 35 F.			5 32 10
11 47.6	• • • • • •	1 46 30 8.	6 42 32 8.			
S 31 R		9 47 38 F.				
Yard. Me. 16 12 4 55 58 4 39 50 Ga. 29 568. 5 12 30 F. 17 28 F. 18 1 2 34 18 24 19 12 85 10 18 24 10 18 25 12 10 18		11 47.0	4 44 148.			
Yard. 4 455.38 Eastport. 28 6F. 427.50 Me. 16 12 439.50 Edenton. 10 24.8 5 6.26 S. 1 2 34 35.38 Ellanburgh. 4314F. 12 48 I.a. 1 2 34 35.288. Ellzabeth City. 28 5 4 54 5 50.17 I.a. 1 8 24 4 26 Ells. 1 6 40 6 12 42 1 50.17 N.J. 3 29 4 59 30 Fort Balls St. Anthony. 1 16 40 6 12 42 Fort Honry. 5 16 458. 5 50 47 7 50 458. 7 35 12 Fort Honry. 7 50 13 5 52 15 7 50 14 5 25 15 7 50 47 7 50 14 8 50 13 5 50 458. 7 32 56 F 7 50 14 8 50 13 5 50 458. 7 32 56 F 8 52 8. 8 52 8. 8 52 8. 8 52 8. 8 52 8. 8 52 8. 8 52 8. 8 52 8. 8 52 8. 8 52 8. 8 50 8. 8 50 9. 9 50 7 9 50 7 9 50 7 9 50 7 9 50 7 9 50 7 9 50 7 9 70 7 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th></th<>						
			4 52 44 5.			
Ga. 29 56S. 5 25 58 1 23 4 7 28 F Elizabeth City, N.C. 8 52 S. 5 4 54 Elizabeth City, N.C. 24 15 5 20 17 I.a. 1 8 24 6 4 26 I.b. 1 6 38 5 12 40 I.V. 1 6 38 5 12 40 I.V. 1 6 38 5 12 40 I.V. 1 6 57 F. 29 12 III. 1 43. 5 55 45 S. III. 1 43. 5 55 55 45 S. III. 1 43. 5 55 55 55 55 55 55 55 55 55 55 55 55						
5 13 30 F 17 28 F Elizabeth City, N. C. 8 52 S 5 4 54 1 2 34 3 53 28 S. Eureka 24 15 5 20 17 10 54 S 5 15 56 1. La 1 8 24 6 4 26 1. N. J. 3 29 1. Vt. 16 38 5 12 40 1. N. D. 1 59 30 6 55 32 1. Vt. 16 38 5 12 40 1. N. D. 2 50 5. 32 1. N. D. 2 50 5. 50 1. N. D. 2 50 50 1. N. D. 2 50 5. 50 1. N. D. 2 50 50 1						
8.			17 28 F			
10 54 8 5 15 56 Eureka 3 20 37 8 16 39						
Ia. 1 8 24 6 4 26 N.J. 3 29 4 59 30 Vt. 16 38 5 12 40 Neb. 1 59 30 6 55 32 12 36 57 F. 4 29 4 10 49 22 5 53 20 Fort Leavenworth. 1 22 54 6 18 56 12 28 58 12 28 58 12 36 57 F. 1 35 55 12 S. 12 28 58 2 56 8 2 56 8 2 56 8 2 56 8 2 56 8 2 56 8 2 36 58 3 32 16						
N.J. 3 29 4 59 30	Ia.	1 8 24				6 12 42
Ne. 1	. N. J.			Fernandina		
Ne. 1		ző 38	5 12 40		3 10 F.	4 52 51
4 30 50 F 25 12 F Fort Henry Tenn. 1 24 59 0 21 1	Neb.	I 59 30	6 55 32		54 45 8.	
III. 1 438. 5 56 458. Fort Laramie 2 3 9 6 59 11 25 6 6 18 56 Fort Lavenworth. 1 22 54 6 18 56 Fredericks 13 10 5 9 12 12 50 8. 7 32 56 Fredericks 13 10 5 9 12 12 30 8 8 7 32 56 Fredericks 13 10 5 9 5 9 51 12 28 58 7 32 56 Fredericks 13 10 5 9 12 12 10 8. 58 12 8. Fredericks 13 49 5 9 51 Fredericks 12 3 88 6 19 10 10 10 10 10 10 10 10 10 10 10 10 10	•••••	4 30 50 F.	25 12			621 1
	••••	7 1 14_			56 13	5 52 15
To 49 22 5 53 20 F Fredericks g. Va. 13 10 5 9 12		I 43 S.				6 59 11
Mass. 12 50 S. 5 8 52 S. Fredericksb'g. Va. 13 49 5 0 51			4 29 4			
Mass			5 53 20 F	Frederick Va		
12 28 58		12 50 S.			13 49 F	
Hope. 6 9 57 F. 1 13 55 F. Galveston. 1 23 8 S. 6 19 10 Geneva		M 30 F.				
Hope. 6 9 57 F. 1 13 55 F. Geneva						
26 58 4 29 48. GenevaN.Y. 5 2 56 8. 4 58 58 Genova					5 20 20 F	
2 568. 4 58 58 Genos					1	
GeorgetownBer. 6 30 S. 5 2 32 GeorgetownS.C.						
6 30 S. 5 2 32 Georgetown S. C.		I 23 46 F.				
		6 30 S.	5 2 32			
	••••/	21 2F.		Gibraltar		

Difference in Time-Continued.

LOCATION.	New York.	Greenwich.	LOCATION.	New York.	Greenwich,
	A. m. s.	A. m. s.		Å. m. s.	Å. m. e.
Glasgow		17 48.	Milwaukee	55 3 5 S .	5 51 36 8 .
Gloucester	13 22	4 42 40	Minneapolis	1 16 55	5 51 368. 6 12 57 5 56 8
Grafton	24 5 S.	5 20 7	Mississippi City	1 6	5 50 8
Grand Haven	49 10	5 45 12	Mobile Montauk Point	56 7 18 22 F.	5 52 9
GREENWICH	4 56 1.6	- 1	Monterey		4 37 40 8 7 32
Halifax	41 42 F.	4 14 40_	Montevideo	3 11 30 S.	8 7 32 3 44 52
Hamburg		39 52 F.	Montgomery	49 10 8.	5 45 12
Harrisburg		5 7 20 S.	Montreal	1 50 F.	
Hartford	5 19 F.	4 50 43	Montserrat	47 14	4 54 12 4 8 48
Havana, Morro	33 24 S.	5 20 26	Moscow	7 18 14	2 22 12 .
Havre	4 56 26 F.	24 F.	Mound City	1 26 S.	5 56 28 5
Hawaii or Owyhee	5 27 34 S.	10 23 36 S.	Nantucket	15 38 F.	4 40 94
Hongkong	12 27 1 F.	7 36 59 F.	Naples.	5 53 6	57 41.
Honolulu	15 27 30	10 31 28	Nashville	51 15 S.	5 47 10 4
Hudson Huntsville		4 54 40 S.	Nassau	13 23	5 9 24
Indianapolis		5 47 48	Natchez Nebraska	I 9 37	6 5 39 6 45 26
Indianola		5 44 20 6 26 4	New Bedford	1 49 24 12 19 F.	
Jackson		6 0 32	New Haven	4 19	4 43 49 4 51 43
Jacksonville	30 35	5 26 37	New London	7 40	4 48 22
Jalapa	1 31 36	6 27 38	New Orleans	1 4 12 S.	6 14
Jeddo or Tokio	14 16 2 F.	g 20 F.	NEW YORK		4 56 ±.6
Jefferson City		6 8 32 8.		- .	
Jersey City		4 56 10	Newbern	12 18	5 8 20
Jerusalem Kalama	7 25 22 F.	2 29 20 F.	Newburg	ı "	4 56 2
Keokuk		8 11 23 S.	Newburyport New Castle	12 32 F.	4 43 30 6 28
Key West		6 5 40 5 27 14	New CastleDel.	4 49 34 6 13 S.	
Kingston Can.	9 53	5 5 54	Newport	10 46 F.	5 2 15 4 45 15
KingstonJam.	11 2	5 7 4	Norfolk	9 8 S.	5 5 9
Knoxville	39 34	5 35 36	Norwalk	2 19 F.	4 53 48
La Crosse		6 4 59	Norwich	7 34	4 48 28
La Guayra		4 28 8	Ocracoke		E 255
Lancaster			Odessa		2 2 50 1.
Lavaca Leavenworth		6 26 29	Ogdensburg Old Point Comfort	5 58 8.	5 2 8.
Leghorn		6 19 52 41 12 F.	Olympia		5 5 12 8 11 40
Lexington	41 108.	5 37 12 S.	Omaha	1 27 43	6 23 45
Lima	12 22	5 8 24	Oswego	10 19	5 6 20
Lisbon		36 36 F.	Ottawa	6 46	5 2 48
Little Rock	I 12 46 S.	6 8 48 5.	Paducah	58 22	
Liverpool	4 44 2 F		Palermo	5 49 30 F.	5 54 24 53 28 F.
Lockport	19 28.	5 15 4	Panama		5 17 49 B
Los Angeles		7 52 18	Paris	5 5 22 F.	9 20 F.
Louisville Lowell	45 58	5 42	Parkersburg		5 26 37 8
Machias Bay	10 45 F. 26 12	4 45 16	Pensacola	12 41 54 F. 52 50 S.	7 45 52 F. 5 48 52 S.
Macon		4 29 49 5 34 30	Petersburg	13 35.	
Madison	1 1 35	5 57 36	Philadelphia	4 34 6	5 9 37 5 36 9
Madrid	4 41 14 F.	14 48	Pike's Peak		6 59 52
Malaga	4 38 18	17 44	Pittsburg	24 6	5 20 8
Malta	5 54 2	58 F.	Plattsburg	2 14 F.	4 53 48
Manila		8 4 8	Plymouth	4 39 26	16 30
Maracaibo	9 2	4 47 S.	PlymouthMass.	13 25	4 42 37
Marsoilles	12 41 5 17 20	4 43 21 21 28 F.	Port Au Prince, St. Domingo	16.24	4
Martiniar	52 22	4 3 40 8.	Port Townshend.	16 34 3 14 58 S.	4 39 28 8 11
*	7 50 S.	6 23 52	Portland	15 2 F.	4 41
	3 50	6 29 5I	PortlandOr.		8 9 50
	» 38	5 26 40	Porto Praya	3 23 50 F.	1 32 18
	• =6	6 0 28	Porto Rico	.\ 33.26	4 33 36
		6 36 20	Portsmouth	/ 13 11	/ 4 45 82

Difference in Time-Continued.

			T IIIIe-Omin	wcu.	
LOCATION.	New York.	Greenwich.	LOCATION.	New York.	Greenwich.
Prairie du Chien . Prairie du Chien . Providence . Provincetown . Quebec . Queenstown , L . Raleigh . Richmond . Rio de Janeiro . Rochester . Rochester . Rome . Rome .	New York. A. m. e. 1 8 33 S. 2 38 10 24 F. 15 16 11 13 4 42 46 18 31 S. 13 43 2 3 26 F. 15 22 S. 19 34 F. 5 45 50 5 13 58	Greenwich. h. m. e. 6 4 34 S. 4 58 40 4 45 37 4 40 45 4 44 49 33 16 5 14 32 5 9 44 2 5 2 36 5 11 24 4 36 27 49 48 F. 17 56	St. Louis. St. Mary's. St. Mary's. St. Petersburg. St. Thomas, Fort. Staunton. Stockholm. Stonington. Suez. Sweetwater River, Mouth of. Sydney. N.S.	New York. A. m. e. 4 47 S. 40 48 30 10 11 24.18 6 57 18 F. 36 20 20 15 S. 6 8 26 F. 8 26 7 6 18 2 15 S. 8 2 F.	h. m. s. 6 48 S. 5 36 50 5 26 12 6 20 20 2 1 16 F. 4 19 41 S. 5 16 17 1 12 25 F. 4 37 36 S. 2 10 16 F.
Sackett's Harbor.	7 46 S.	5 3 48 S.	SydneyN.S.W.	15 1 34	10 5 32 F.
Sacramento	3 9 49	8 5 51	Syracuse	8 35 S.	5 4 37 S. 9 48 F.
Salem	12 26 F. 2 31 34 S.	4 43 36	Tahiti or Otaheite. Tallahassee	14 44 2 F. 42 22 S.	9 40 F. 5 38 24 S.
Saltillo	1 48 17	7 27 35 6 44 19	Tampa Bay	34 59	5 31 I
San Antonio	I 37 55	6 33 57	Tampico Bar	I 25 25	6 31 27
San Buenaventura	3 1 2	7 57 4	Taunton	11 38 F.	4 44 24
San Diego	2 52 37	7 47 39	Toronto	21 32 5.	5 17 33
San Francisco,			Toulon	5 17 30 F.	21 28 F.
C. S. S. San Francisco, P.	3 13 32	8 9 33 8 9 51	Trenton	3 2 S. 5 48 36 F.	4 59 3 S. 52 44 F.
San Jose	3 13 50 3 11 33	8 9 51	Troy.	3 54	4 52 9 S.
Sandusky	34 47	5 30 49	Tunis	5 36 26	40 24 F.
Nendy Hook	ıF.	4 56 I	Turk's Island	II 22	4 44 40 S.
Santa Barbara		7 58 50	Tuscaloosa	54 46 S.	5 50 48
Santa Clara	3 9 46		Utica	4 50	5 52
Santa Cruz Santa Cruz. Ten'fe	3 12 4		Valparaiso Vandalia	9 18	4 46 44
Santa Fé	3 50 58 F. 2 8 4 S.	I 5 4 7 4 5	Vanualia Venice	1 6 5 53 46 F.	5 56 8
Savannah	28 20	5 24 22	Vera Cruz	5 53 46 F. 1 28 33 S.	57 44 F. 6 24 34 S.
Schenectady	22 F.	4 55 40	Vicksburg	1 7 34	6 3 36
Seville	4 32 10	23 52	Victoria Tex.	1 32 2	6 28 4
Sherman	2 5 33 S.	7 1 34	Vienna	6 1 34 F.	1 5 32 F.
Shreveport	1 18 58	6 15	Vincennes	53 38 S.	5 49 40 S.
Siam Sierra Leone	11 36 2 F.	6 40 F.	Virginia City Warsaw	2 32 10 F	7 28 12
Singapore	4 2 50 S.	53 12 S. 6 55 20 F.	WASHINGTON, Obs.	6 20 11 F.	1 24 9 F. 5 8 12 S.
8mithville	16 3 S.	5 12 5 S.	West Point	14 F.	4 55 48
Smyrna	6 44 30 F.	1 48 28 F.	Wheeling	26 46 S.	5 22 48
Southampton	4 50 2	6 S.	WilmingtonDel.	6 11	5 2 12
SpringfieldIll.	i 2 36 S.	5 58 37	Wilmington. N.C.	15 45	5 11 47
Springfield Mass.	5 39 F.	4 50 24	Worcester	8 49 F.	4 47 13
St. Augustine St. Croix, Obs	29 13 S.	5 25 15	Yankton Yazoo		6 30
St. Helena	37 19 F. 4 33 2	4 18 43	Yeddo		6 120 91840F.
St Jago de Cuba	7 26 S.	5 3 28	Yokohama	14 14 42 1	9 18 41
St. John	31 48 F.	4 24 14	York	10 38 S.	5 6 40 S.
St. JosephL. Cal.	2 22 41 S.	7 18 43	Yorktown		5 6 16

To Compute Difference of Time between New York and Greenwich and any Location not given in Table.

Rule. — Reduce longitude of location to time, and if it is W. of assumed meridian it is Slow; if E., it is Fast.

If difference for New York is required, and it exceeds 4 h. 56 m. 2 sec., subtract this time, and remainder will give difference of time, S.; and if it (4 h. 56 m. 2 sec.) does not exceed it, subtract difference from it ad remainder will give difference of time, F.

TIDES.

Tide-Table for Coast of United States,
Showing Time of High-water at Full and New Moon, termed Establish
ment of the Port, being Mean Interval between Time of Moon's Transit
and Time of High-water. (U. S. Coast and Geodetic Survey.)

COAST FROM EASTPORT TO NEW YORK. EastportMe. II 30 15 Campo Bello* 11 25 Campo Bello* 7 51	Spring.	Noap.
TO NEW YORK. A. m. Feet. Feet. Old Pt. Comforts. Va. 8 17 Campo Bello* 11 30 15 Campo Bello* 12 25 Cape Henry * 17 7 51		-
TO NEW YORK. A. m. Feet. Feet. Old Pt. Comforts Va. 8 17 Campo Bello* 11 25 Campo Henry* 7 51	- 1	_
EastportMe. 11 30 15 Campo Bello*" 11 25 Cape Henry*		Feet.
Campo Bello* " 11 25 Cape Henry* " 7 51 (2
	3	
	1.9	
Cape Ann* " 11 30 11 Annapolis " 17 4		.8
	13	.8
	1.5	.9
Control of the state of the sta	3	2.5
Company of the Compan		2.3
Boston Light " 11 12 10.9 8.1	3-4	3
Boston 1 " 11 27 10.3 8.5 COASTS OF N. AND S.	- 1	
Nantucket " 12 24 3.6 2.6 CAROLINA, GEORGIA,	- 1	
Edgartown " 12 16 2.5 1.6 AND FLORIDA.	- 1	
12 10 2.5 1.0		- 0
m 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.2	1.8
Tarpatini Covo.	5	2.2
N. Bedford (Dumn)	3-3	2.2
N. Bedford (Dumping Rock) 7 57 4.6 2.8 Smithvie (C. Fear) 7 19 5	5-5	3.8
7 26	5	4-I
	.	6
	3	5-9
TOYO TOTAND COURT	7.6	5.5
	4-9	3.6
	1.8	1.2
	1.6	1
	1.8	1
	3.2	1.6
	- 1	
Stonington Ct. 9 7 3.2 2.2 WESTERN COAST. Little Gull Isl'd. N.Y. 9 38 2.9 2.3 San Diego Cal. 9 38 2	. 1	
Little Gull Isl'd. N.Y. 9 38 2.9 2.3 San Diego Cal. 9 38 1	5	2.3
	4-7	2.2
	5.1	2.8
	4.8	2.4
Oyster Bay N.Y. 11 7 9.2 5.4 Monterey	1.3	2.5
	1-4	2.8
New Rochelle " 11 22 8.6 6.6 San Francisco " 12 6	4.3	2.8
Throg's Neck " 11 20 9.2 6.1 Mare Island " 13 40 Hell Gate* " 9 35 6 Renicia " 14 10	5.2	4. I
	5.1	3.7
Ravenswood " 12 36	7-3	4.9
COAST OF NEW JERSEY. Bodega " 11 17	1.7	2.7
	5.5	3.5
Sandy Hook N.J. 7 29 5.6 4 Astoria Or. 12 42 7	7-4	4.6
Amboy ' 8 15 5 Nee-ah Harbor, Wash.' 12 33	7.4	4.8
Amboy	5.5	4
Egg Harbor* " 9 34 5	201	
MISCELLANEOUS		
WARE BAY AND Bay of Fundy*N.S. 12 66	0	
Blue Hill Bay* " II II	2	
nakwater 8 4.5 2 St. John's " 12 30		
May. 8 33 6.2 3.9 St. John's*Jam. 2 30 3		
N.J. Q 4 7 S.I Halifax*	7.5	.5
Pal - 3 6.6 Pensacola*Fla.	1.5	
6.8 5.r Galveston*Tex.	1.6	.8

[&]quot; of this alone.

veti jamen gés) (os name bosja ja De

con the mouth; hence 12 h. 26 min. is that, to give the interval required.

85 TIDES.

Bench Marks referred to in preceding Table.

† Boston. - Top of wall or quay, at entrance to dry-dock in Charlestown navy-

Together above mean low-water.

New York.—Lower edge of a straight line, cut in a stone wall, at head of wooden wharf on Governor's Island, 14.56 feet above mean low-water.

I OLD POINT COMFORT, Va. -A line cut in wall of light-house, one foot from ground,

on southwest side, 11 feet above mean low-water. Charleston, S. C. - Outer and lower edge of embrasure of gun No. 3, at Castle Pinckney, 10.13 feet above mean low-water.

Establishment of the Port for several Locations in

Poer.	TIME.	PORT.	TIME.	PORT.	TIME.
Amsterdam Antwerp Beachy Head Eng Belfast Bordeaux Bressen Bress Harbor Bristol Cadig Cadig Calaig Calof Man Cape St. Vincent	4 25 11 7 10 6 50 6 3 47 7 21 6 27 1 40 11 49	Clear Cape	7 49 4 10 46 11 12 11 12 11 30 1 14 8 10 11 6 29 3 57	London Bridge Newcastle Portsmouth Dyard,	2 7 1 22 11 41 8 10 27 11 20 8 15 11 40

Rise and Fall of Tides in Gulf of Marico

Locations.	Menn.	Spring.	Neap.	LOCATIONS.	Mean.	Spring.	Neap.
St George's IslandFla. Fort Morgan (Mobile)	1.1	Feet. 1.8	Feet. .6	Isle DernièreLa. Entrance to Lake Cal-)		Feet.	100021
Bay)Ala. f Cat IslandMiss. Southwest PassLa.	1.3	1.9	.6	CasieuLa. j Aransas Pass	1.1	100	.6

Tides of Gulf of Mexico.

On Coast of Florida, from Cape Florida to St. George's Island, near Cape San Blas, th coast of Forda, from cape Florica to St. deorge's Island, near cape San Blas, be tides are of the ordinary kind, but with a large daily inequality. From St. George's Island, Apalachicola entrance, to Dernière Isle, the tides are usually of the lagle-day class, ebbing and flowing but once in 24 (lunar) hours. At Calcasieu entance, double tides reappear, and except for some days about the period of Moon's geatest declination, tides are double at Galveston, Texas. At Aransas and Brazos antiago the single-day tides are as perfectly well marked as at St. George's, Pensatoh, Fort Morgan, Cat Island, and the mouths of the Mississippi. For some 3 to 5 ays, however, about the time when the Moon's declination is nothing, there are smerally two tides at all these places in 24 hours, the rise and fall being quite small. Highest high and lowest low waters occur when greatest declination of Moon appens at full or change. Least tides when Moon's declination is nothing at first or last quarter.

Tides of Pacific Coast.

On Pacific coast there is, as a general rule, one large and one small tide during ach day, heights of two successive high-waters occurring, one A.M., and other P.M. of same 24 hours, and intervals from next preceding transit of Moon are very fifterent. These inequalities depend upon Moon's declination. When Moon's dedination is nothing, they disappear, and when it is greatest, either North or South, they are greatest. The inequalities for low water are not same as for high, though they disappear, and have greatest value at nearly same time.

When Moon's declination is North, highest of two high tides of the 24 hours occors at San Francisco, about 11.5 hours after Moon's southing (transit); and when declination is South, lowest of the two high tides occurs about this interval.

Lowest of two low-waters of the day is the one which follows next highest hig

water.

STEAMING DISTANCES.

Distances between various Ports of United States and Canada.

By Lake, River, and Canal.

LOCATIONS.	Lake and River.	Canal.	Total.	LOCATIONS.	Lake and River.	Canal.	Total.
Duluth to Buffalo	Miles. 1024	Milos.	Miles.	Chicago to New York.	Miles.	Miles.	Miles.
Chicago to Buffalo Duluth to Oswego Chicago to Oswego	925	27 26	925 1160 1060	via Oswego Chicago to Montreal. Buffalo to Colborne.	1195	232 71	1427 1261
Duluth to New York,			-	via Welland Canal.	_	26.77	26.77
via Buffalo via Oswego	1166	353 233	1519	Buffalo to New York. Welland Canal to	142	352	494
Duluth to Montreal. Chicago to New	1289	72	1361	Montreal to Kingston	304.5 126.25	70.5	375 246.25
York, via Buffalo.	1067	352	1419			126.25	

Distances between various Ports and New York and London.

Not included in preceding Table.

Роптв.	Miles.	Miles.	PORTS.	Miles.	Miles.	Ponts.	Miles.	Miles.
	N.Y.	Lond.		N.Y.	Lond.	17.5	N.Y.	Lond.
Alexandria	4893	3102	Cape Race	1 004	2 240	New Orleans.	1700	4730
Amsterdam	3291	262	Cowes	3 092	200	Norfolk	308	3 447
Barbadoes	1855		Funchal	2760				4 654
Batavia			Galway			Philadelphia,		3 404
Bermudas			Gibraltar		1 325	Quebec	1360	3 080
Bombay			Glasgow		765	Queenstown.	2780	551
Boston			Halifax			Rio Janeiro	4970	5 200
Bremen	3428		Havana			St. Johns		2214
Bristol			Hobart Town			Southampton		211
Buenos Ayres			Kingston, Jam.	1 456		Swan River.		10661
Cadiz			Lima		10149	Tortugas	1151	4 182
Calcutta	9350	11 531	Madras	8707	10888	Washington .	401	3612

Distances between various Ports of England, Canada, United States, etc.

Not included in preceding Table.

D	1 200	II	ları.	I	la au
Ponts.	Miles.	Ports.	Miles.	Ports.	Miles.
Halifax to		Liverpool to	1	Panama to	
Liverpool		Havana	4100	San Diego	2807
St. Thomas		Portland	2770	Monterey	3198
St. Johns, N. F				San Francisco	3240
Quebec to Glasgow.	2 562	N. Orleans to Havana	570	San Francisco to	
Liverpool to		Cape Race to		San Juan del Sud.	2685
Boston			1711	Acapulco	TR4T
Quebec	2855	Halifax	457	Manzanilla	1543
Philadelphia	3 147	Boston	835	San Diego	474
Callao	11 379	St. Johns, N. F., to	. 1	Monterey	105
Fastnet		Quebec	891	Humboldt	200
Cape Race	1 992	Boston	890	Columbia R. Bar	530
Aspinwall		Greenock	1848	Vancouver	638
Dart Quid		Bermudas to Nassau.	804	Portland	650
ne		Panama to		Port Townshend	732
Mr o		San Juan del Sud.	570	Victoria	715
	13800	Gulf of Fonseca	739	Yokohama	
 /	7 378	Acapulco	1416	plulogoH_	2080
epec/	6400	Manzanilla	1724	osliko callao	2457

Batavia	1900	2300	(8820*)	{8720t}	12250*	12140	10330	11800	11340	•oo66.	11310	11500	*00011	12470*	12000	3910	12570	7650	
	Canton	900	9	9	Constantinople S400 7040 14020 12250	Copenhagen 3673 8150 6900 13940 12140	12140* 10330*	13600* 11800*	7460 6130 13140 11340	•0066. •00LII	13100* 11310*	3278 7510 6260 13300* 11500*	12800 11000	5370 6400 7600 7260 16440f 1247u*	New York 1790 3850 3295 2986 2980 3068 3540 3260 3873 5100 7232 6790 160701 12000*	4680	St. Petersburg 13620 4100 6100 3400 1412 2060 2565 1560 1222 2653 730 4573 8880 7630 14670 12870		
		Hope		3010	2040	0069	6470 5123	7810 6560	6130	2213 6020 4700	7400 6080	929	1470 50 5800	952	0629	9665	2630	CHARLES	
		G00d	1	Cape norn joro	9400	8150			2460	9000	7400	7510	85	2600	7232	5063	.383°	63%	
116. 1210	5470	Cape of Good Hope 7000	į	3	tinople	3673	1920	3577	3109	2213	3224			6 400	5100	13020	4573	14770	
Nausical Miles. ama 1210			2165	ç.	onstan	bagen	1953	492	830	1835	1329	682	9292	5370	3873	12890*	730	145201	Hora.
Nanikal Miles. Shanghal to Yokohama 1210	Sydney to Cape Horn 5470 Aspinwall to Panama 51	ortsmouth to Jamaica4050	Halifax to Galway 2165		0	Cope	Gibrultar 1953	1657	1189	293	1312	1358	8	4485	3560	Port Jackson 129001 132601 11800* 12250* 12100 10690* 12120* 12550* 11110* 12890* 13020* 5663 5990	2653	12°50	Around Cape Horn
hal to	wall 50	Portsmouth to Jamaica	x to Ga		•		ē	Hamburg 1657	492	1498	992	417	2336	5030	3540	12550	1222	14200t,	† Ar
		ĭ,	E 2					Ha	Havre 492	oto.	550	8	3896	4570 5030 4485	3068	12120*	1560	138401	
1 Miles. 13 500	9650	9 8 8	3055	3368	11 355	888	1880	4326		Lisbon ro40	1010	9611	973	4370	2980	106304	2565	124cot	
ondon to Nautical Miles. Canton via Pacific R. R 13 500	Manila via Suez Canal 10 000	Damp.	BormudaRio de Janeiro	Port Said	Melbourne via Cape Horn. 11355	Rio de Janeiro	Hongkong to Yokohama	Konolulu			Liverpool 1010	8	1846	New Orleans 5165 4730 4700 4370	9862	12100	3060	13800t	
acific F	Suez Ca	ia Yoke	2		ia Cape	2	okobar				Ŀ	London 689	Marseilles 2036 1846	4730	3295	12250*	1412	1388ot	d Hope.
n to on via I	la eta	recong v nstown	nuda.	Sald	ourne t	lo Jane	ong to) ghai	inlu				-	seilles.	53165	3850	11800*	3400	135001	Around Cape of Good Hope.
London	Man C		Bern	Port Said.	Melb	5 1	=	Hone					Mar	rleans	1790	132601	0019	13980	round Ca
Nautical Miles. London to	88	88	8 102	Helbourne via Cape Horn 12720	21		2 230	2 321	13.50			3 365 787	140	New 0	York	129001	814	36101	٠,
Nauton via Pacific R. R 10 500	" Suez Canal 11 500	San Blas via Panama 3500	Yokohama via San Francisco, 8 102	E	Puerto Cabello (Honduras)	Aspinwall.	Calcutta 17 500	Valparnisot 12 900 Galway	Callaot 1350	St. Thomas	Brest	Port Said Orleans to Tehuantepec	:		New	lison	13620	6454	
я я	Sanal.	ama	in Frai	pe Ho	Iondur							nuante	:			ort Jac	burg;	2501	
Pacifi	Suez	ranam ia Pan	ata Se	via C	ello (I			÷				to Tel				Ĥ	Peters	50 13	
New A OFF TO	: :	Blas v	ohama	bourne	5	inwall.	nandin :utta	paraiso NaV.	aot 131act	Choma	øt nburg.	Said.	Aspinwall				St	, rapcis	.
Par S	: : :		ڰۣٷ	ĒĒ	28	\$,	. B	ਰ ਵੱ ਹ	2	8	Bre Han	Por	ABP						

Distances between Principal Ports of United States, eto.

	ILLUM	RATION	OF TAB	LESan	ILLUSTRATION OF TABLE Sandy Hook to New Orleans, 1677 miles.	to New	Orleans,	1677 mile	8					
B	y Rivers Excl	rs Excl		usively,	ın Statı	ute Mile		By	By Land, in Statute Miles.	n Stat	te Mil	*		
1969 Pittsburg to Cincinnati 500 1946 Cincinnati "Louisville 150	Pittsburg to Cincinnati	urg t		Cincin	nati	: 50	žž	w York w Orle	New York to San Francisco 3344 New Orleans to Cairo 548	Franc	isco	334	4 ∞	Halifax
0	Louisville '	, ille		St. Lo.	" Cairo 400	::	žž	St. Louis to 0 New York to	St. Louis to Omaha	pg	:	47		Boston
2021 St. Louis "680 Cairo "				Cincin	Cincinnati 730 Memphis 240	730	•	Omaha Galvest	Omaha1393 Galveston 1000	1393	Nan	Nantucket Light	Light	103,
962 " " "				New (New Orleans1040	0,00					Sandy Hook	Hook	257	338
				Port	Port Hudson 650	: : 3 %				New	New York	18	275	356
•				New 3, 1	New Orieans 800	r450		Ü	Capo Henlopen	lopen	168	150	326	407
1004 Natchez "816	Natchez	ez Z		3	:	.: 330		Philad	Philadelphia	2	362	244	420	Sor
945							Cape	Cape Henry	246	152	275	257	430	211
379						Balt	Baltimore	991	412	318	441	423	296	212
888					Wash	Washington	183	186	432	338	19t	443	919	269
308 154				74	Norfolk	190	158	33	279	185	308	290	463	544
472 Rich	Rich	Rich		Richmond	IOI	275	223	129	375	281	404	386	559	049
Cape Hatteras	ape Hatteras	tterns		253	157	310	290	124	316	222	348	330	489	570
Charleston 265		592		527	431	584	264	398	265	503	623	909	192	842
Savannah 98 341	_	341		603	202	099	org	474	673	579	669	189	837	816
564 594 764	_	192		9201	930	1083	Egor.	897	960I	1002	122	1104	1260	1341
609 629 god 1	809	_	-	1001	975	1128	1108	943	1141	2tor	191	1149	1305	1386
1137 1167 1337 1	1337	_	-	1599	503	1656	1636	1470	6991	1575	1790	1677	1833	1914
1413 1443 1613	1613			1875	277	1932	2161	1746	1945	1851	161	1953	2109	2190
guerto Bello i 1558 1410 972 1142 1650 1643 1682 1928 1832 1985 1965 1799 1996 2005	1643 1682 16	1682 x	H	328	832	1985	1962	1799	1990	1896	2002	1981	2057	2138 2293

FRACTIONS.

Fraction, or broken number, is one or more parts of a Unit. LUSTRATION. -12 inches are 1 foot. Here, 1 foot is unit, and 12 inches its parts;

thes therefore, are one fourth of a foot, for 3 is fourth or quarter of 12.

Vulgar Fraction is a fraction expressed by two numbers placed one re the other, with a line between them; as, 50 cents is the 1 of a dollar. oper number is termed Numerator, the lower Denominator. Terms of a fracexpress numerator and denominator; as, 6 and 9 are terms of $\frac{6}{9}$.

Proper fraction has numerator equal to, or less than denominator; as, 1, etc. 1 Improper fraction is reverse of a proper one; as, \$, etc.

Mixed fraction is a compound of a whole number and a fraction; as, 5%, etc. Compound fraction is fraction of a fraction; as, 1 of 1, etc.

Complex fraction is one that has a fraction for its numerator or denominator.

xh; as,
$$\frac{1}{6}$$
, or $\frac{5}{4}$, or $\frac{2}{8}$, or $\frac{3\frac{1}{8}}{6}$, etc.

TR.-A Fraction denotes division, and its value is equal to quotient, obtained by ing numerator by denominator; thus, 12 is equal to 3, and 21 is equal to 41.

Reduction of Fractions.

Compute Common Measure or greatest Number hat will divide Two or more Numbers without a temainder.

.z. - Divide greater number by less; then divide divisor by remainder; and so viding always last divisor by last remainder, until there is no remainder, and visor is greatest common measure required.

MPLE I. -- What is greatest common 936) 1908 (2 re of 1908 and 936?

36) 936 (26

How many squares can there be obtained in an area of 90 by 160 feet? to is greatest common measure.

Hence,
$$\frac{160}{10} = 16$$
, and $\frac{90}{10} = 9$; $16 \times 9 = 144$, and $\frac{90 \times 160}{144} = 100$.

compute least Common Multiple of Two or more Numbers.

-Divide given numbers by any number that will divide the greatest numhem without a remainder, and set quotients with undivided numbers in a eath.

e second line in same manner, and so on, until there are no two numbers the divided; then the continued product of divisors and last quotients will nmon multiple required.

5) 40 . 50 . 25 PLE. - What is least multiple of 40, 50,

 $\frac{2) \ 8. \ 2. \ 1}{4. \ 1. \ 1}. \ \text{Then } 5 \times 5 \times 2 \times 4 \times 1 \times 1 = 2\infty.$

To Reduce a Fraction to its Lowest Term.

-Divide terms by any number or series of numbers that will divide them a remainder, or by their greatest common measure.

zz.—Reduce 220 of a foot to its lowest terms.

$$\frac{180}{180} \div 10 = \frac{78}{18} \div 8 = \frac{9}{18} \div 3 = \frac{3}{4}, \text{ or } 9 \text{ ins.}$$

$$H^{*}$$

To Reduce a Mixed Fraction to its Equivalent, an Improper Fraction.

RULE. — Multiply whole number by denominator of fraction and to product aid numerator; then set that sum above denominator.

EXAMPLE 1.—Reduce 23 $\frac{2}{6}$ to a fraction. $\frac{23 \times 6 + 2}{6} = \frac{140}{6} = \frac{70}{3}$.

2.—Reduce $\frac{188}{6}$ inches to its value in feet. $123 \div 6 = 20\frac{3}{6} = 1$ foot $8\frac{1}{2}$ inc.

To Reduce a Complex Fraction to a Simple one.

Rule.—Reduce the two parts both to a simple fraction, multiply numerator of reduced fraction by denominator of reduced denominator, and denominator of numerator fraction by numerator of denominator fraction.

Example.—Simplify complex fraction $\frac{2\frac{5}{4}}{4\frac{5}{8}}$. $2\frac{5}{4} = \frac{5}{8}$ $\frac{8 \times 5 = 40}{3 \times 24 = 72} = \frac{5}{9}$

To Reduce a Whole Number to an Equivalent Fraction having a given Denominator.

Rule.—Multiply whole number by given denominator, and set product over said denominator.

EXAMPLE.—Reduce 8 to a fraction, denominator of which shall be 9.

 $8 \times 9 = 72$; then $\frac{78}{9}$ result required.

To Reduce a Compound Fraction to an Equivalent Simple one.

Rule.—Multiply all numerators together for a numerator, and all denominators together for a denominator.

Note.—When there are terms that are common, they may be cancelled.

EXAMPLE.—Reduce & of & of & to a simple fraction.

 $\frac{1}{2} \times \frac{3}{4} \times \frac{2}{3} = \frac{6}{24} = \frac{1}{4}$. Or, $\frac{1}{3} \times \frac{3}{4} \times \frac{3}{3} = \frac{1}{4}$, by cancelling 2's and 3's.

To Reduce Fractions of different Denominations to Equivalents having a Common Denominator.

Rule.—Multiply each numerator by all denominators except its own for new memorators; and multiply all denominators together for a common denominator.

Note. — In this, as in all other operations, whole numbers, mixed or compound fractions, must first be reduced to form of simple fractions.

 When many of denominators are same, or are multiples of each other, ascertain their least common multiple, and then multiply the terms of each fraction by quotient of least common multiple divided by its denominator.

Addition.

Rule.—If fractions have a common denominator, add all numerators together, and place sum over denominator.

TOTE.—If fractions have not a common denominator, they must be reduced to leso, compound and complex must be reduced to simple fractions.

LE I. — Add
$$\frac{1}{4}$$
 and $\frac{3}{4}$ together. $\frac{1}{4} + \frac{3}{4} = \frac{4}{4} = I$.

$$\begin{array}{l} {}_{7} \text{ of } \frac{8}{4} \text{ of } \frac{6}{10} \text{ to } 2\frac{1}{8} \text{ of } \frac{8}{4}. \\ \times \frac{7}{4} \times \frac{7}{10} = \frac{8}{8} \frac{3}{6}. \quad 2\frac{1}{8} \text{ of } \frac{8}{4} = \frac{17}{8} \times \frac{8}{4} = \frac{81}{52}. \end{array}$$

 $\frac{61}{8} = \frac{4080}{8580} + \frac{576}{8560} = 1\frac{131}{160}$, reduced to equivalent fractions having instor and thence to its lowest terms.

Subtraction.

LE .—Prepare fractions same as for other operations, when necessary; then act one numerator from the other, and set remainder over common denom-

:AMPLE.—What is difference een & and &?

$$\begin{cases}
6 \times 9 = 54 \\
3 \times 8 = 24 \\
8 \times 9 = 72
\end{cases} = \frac{5}{7} \frac{4}{3} - \frac{84}{7} \frac{1}{3} = \frac{80}{7} \frac{15}{3} = \frac{5}{13}.$$

Multiplication.

ILE.—Prepare fractions as previously required; multiply all numerators toer for a new numerator, and all denominators together for a new denominator.

AMPLE I.—What is product of
$$\frac{3}{4}$$
 and $\frac{3}{6}$? $\frac{3}{4} \times \frac{3}{6} = \frac{9}{16} = \frac{1}{4}$.

-What is product of 6 and
$$\frac{2}{5}$$
 of $\frac{6}{5}$ $\times \frac{2}{5}$ of $\frac{6}{5}$ $\times \frac{10}{5}$ $= \frac{60}{5}$ $= 20$.

Division.

LE.—Prepare fractions as before; then divide numerator by the numerator, enominator by the denominator, if they will exactly divide; but if not, inverterms of divisor, and multiply dividend by it, as in multiplication.

IMPLE 1.—Divide
$$\frac{25}{5}$$
 by $\frac{5}{3}$. $\frac{25}{5} \div \frac{5}{3} = \frac{5}{3} = 1\frac{3}{3}$.

Divide
$$\frac{5}{9}$$
 by $\frac{2}{15}$. $\frac{5}{9} \div \frac{2}{15} = \frac{5}{9} \times \frac{15}{15} = \frac{15}{9} \times \frac{5}{3} = \frac{75}{18} = \frac{25}{6} = 4\frac{1}{6}$.

Application of Reduction of Fractions.

Compute Value of a Fraction in Parts of a Whole Number.

m.—Multiply whole number by numerator, and divide by denominator; then, thing remains, multiply it by the parts in next inferior denomination, and by denominator, as before, and so on as far as necessary; so shall the quoplaced in order be value of fraction required.

$$\frac{1}{8}$$
 of $\frac{3}{8} = \frac{3}{6}$, and $\frac{3}{6} \times \frac{9}{1} = \frac{18}{6} = 3$.

Reduce \$ of a pound to an avoirdupois ounce.

4) 3 (0 lbs. 16 ounces in a lb. 4) 48 (12 ounces.

Reduce a Fraction from one Denomination to another.

.—Multiply number of required denomination contained in given denominanumerator if reduction is to be to a less name, but by denominator if to a

PLE 1.-Reduce 1 of a dollar to fraction of a cent.

$$\frac{1}{4} \times 100 = \frac{100}{4} = \frac{25}{1}$$

educe & of an avoirdupois pound to fraction of an ounce.

$$\frac{1}{6} \times 16 = \frac{16}{6} = \frac{8}{8} = 2\frac{2}{3}$$
.

educe & of & of a mile to the fraction of a foot.

$$\frac{3}{8}$$
 of $\frac{3}{4} = \frac{6}{18} \times 5280 = \frac{81680}{180} = \frac{2640}{180}$

s of Three in Vulgar Fractions, see Decimals, page 94.

DECIMALS.

A DECIMAL is a fraction, having for its denominator a UNIT with as many ciphers annexed as the numerator has places; it is usually expressed by writing the numerator only, with a point at the left of it. Thus, $\frac{4}{10}$ is .4; $\frac{85}{100}$ is .85; $\frac{6075}{10000}$ is .0075; and $\frac{125}{100000}$ is .00125. When there is a deficiency of figures in the numerator, prefix ciphers to make up as many places as there are ciphers in denominator.

Mixed numbers consist of a whole number and a fraction; as, 3.25, which is the

same as $3\frac{26}{100}$, or $\frac{326}{100}$. Ciphers on right hand make no alteration in their value; for .4, .40, .400 are decimals of same value, each being 4, or 2.

Addition.

RULE. - Set numbers under each other according to value of their places, as in whole numbers, in which position the decimal points will stand directly under each other; then begin at right hand, add up all the columns of numbers as in integers, and place the point directly below all the other points.

Example. - Add together 25,125 and 203,7325. 25.125 293-7325 318.8575 sum.

Subtraction.

RULE .- Set numbers under each other as in addition; then subtract as in whole numbers, and point off decimals as in last rule.

EXAMPLE. - Subtract 15.15 from 89.1759. 89.1759 15.15 74.0250 remainder.

Multiplication.

RULE. -Set the factors, and multiply them together same as if they were whole numbers; then point off in product just as many places of decimals as there are decimals in both factors. But if there are not so many figures in product, supply deficiency by prefixing ciphers.

EXAMPLE. - Multiply 1.56 by .75. 1.56 -75 780 1092 1.1700 product.

By Contraction.

To Contract the Operation so as to retain only as many Decimal places in Product as may be required.

RULE .- Set unit's place of multiplier under figure of multiplicand, the place of which is same as is to be retained for the last in product, and dispose of the rest of figures in contrary order to which they are usually placed.

"multiplying, reject all figures that are more to right hand than each multiply-

ore, and set down the products, so that their right-hand figures may fall in a directly below each other, and increase first figure 1 inc with what would have arisen from figures 1,574,93 thus, add 1 for every result from 5 to 14, 2 from on 25 to 34, 4 from 35 to 44, etc., and the sum

v 13.574 93 by 46.2051, and retain only in the product.

1 502.64 54 299 72 8 144 96 + 2 for 18 271 50 + 2 " 18 " 35 627.23 11

is required, increase last figure with what would have arisen from all the

Division.

RULE—Divide as in whole numbers, and point off in quotient as many places for decimals as decimal places in dividend exceed those in divisor; but if there are not so many places, supply deficiency by prefixing ciphers.

EXAMPLE. Divide 53 by 6.75. 6.75) 53.000 00 (=7.851+.

Here 5 ciphers are annexed to dividend to extend division.

By Contraction.

RUE.—Take only as many figures of divisor as will be equal to number of figures, both integers and decimals, to be in quotient, and ascortain how many times they may be contained in first figures of dividend, as usual.

Let each remainder be a new dividend; and for every such dividend leave out one signs more on right-hand side of divisor, carrying for figures cut off as in Contration of Multiplication.

Non.—When there are not so many figures in divisor as there are required to be in quotient, confine first operation until number of figures in divisor are equal to those remaining to be found in quofest, after which begin the contraction.

Reduction of Decimals.

To Reduce a Vulgar Fraction to its Equivalent Decimal.

Rule.—Divide numerator by denominator, annexing ciphers to numerator to exeat that may be necessary.

EXAMPLE -Reduce & to a decimal. 5) 4.0

Fo Compute Value of a Decimal in Terms of an Inferior Denomination.

RULE.—Multiply decimal by number of parts in next lower denomination, and at off as many places for a remainder, to right hand, as there are places in given letimal.

Multiply that remainder by the parts in next lower denomination, again cutting off for a remainder, and so on through all the parts of integer.

EXAMPLE I.-What is value of .875 dollars?

Mills, 5.000 = 87 cents 5 mills.

2. - What is volume of . 140 cube feet in inches?

1728 cube inches in a cube foot. 241.920 cube ins.

2.-What is value of .oor20 of a foot?

.01548 ins.

Fo Reduce a Decimal to an Equivalent Decimal of a Higher Denomination.

RULE.—Divide by number of parts in next higher denomination, continuing operation as far as required.

EXAMPLE 1.—Reduce 1 inch to decimal of a foot.

12 1.000 00 .083 33+ foot

2.—Reduce 14" 12" to decimal of a minute.

When there are several numbers, to be reduced all to decimal of highest Rule.—Reduce them all to lowest denomination, and proceed as for one denomination.

Feet. Ins. Be.

EXAMPLE. — Reduce 5 feet 10 inches and 3 barleycorns to decimal of a yard.

Rule of Three.

Rule. — Prepare the terms by reducing vulgar fractions to decimals, composed numbers to decimals of the highest denomination, first and third terms to and denomination; then proceed as in whole numbers.

EXAMPLE.—If .5 of a ton of iron cost .75 of a dollar, what will .625 of a ton cost?

DUODECIMALS.

In Duodecimals, or Cross Multiplication, the dimensions are taken in feet, inches, and twelfths of an inch.

RULE.—Set dimensions to be multiplied together one under the other, feet under

feet, inches under inches, etc.

Multiply each term of multiplicand, beginning at lowest, by feet in multiplier, and set result of each immediately under its corresponding term, carrying x for every 12 from one term to the other. In like manner, multiply all multiplicand by including of multiplier, and then by twelfth parts, setting result of each term one place farther to right hand for every multiplier. And sum of products will give result.

EXAMPLE.—How many square inches are there in a board 35 feet 45 inches long and 12 feet 3\frac{1}{3} inches wide?

Value of Duodecimals in Square Feet and Inches.

ILLUSTRATION. — What number of square inches are there in a floor roo feed 6 inches long and 25 feet 6 inches and 6 twelfths broad?

2566 feet 11 ins. 3 twelfths = 2566 feet 135 ins.

MEAN PROPORTION.

EAN PROPORTION is proportion to two given numbers or terms.

Multiply two numbers or terms together, and extract square root of their

-What is mean proportionate velocity to 16 and 81? $16 \times 81 = 1296$, and $\sqrt{1296} = 36$ mean velocity.

RULE OF THREE.

ULE OF THREE. - It is so termed because three terms or numbers are n to ascertain a fourth.

is either DIRECT or INVERSE.

is Direct when more requires more, or less requires less; thus, if 3 barof flour cost \$18, what will to barrels cost?

this case Proportion is Direct, and stating must be,

As 3: 10:: 18:60.

is Inverse when more requires less, or less requires more; thus, if 6 men build tain quantity of wall in 10 days, in how many days will 8 men build like quan-Or, if 3 men dig 200 feet of trench in 7 days, in how many days will 2 men rm same work?

re the Proportion is Inverse, and stating must be,

of fourth term is always ascertained by multiplying 2d and 3d terms together, ividing their product by 1st term.

the three given numbers necessary for the stating, two of them contain the sition, and the third a demand.

.E.—State question by setting down in a straight line the three necessary ers in following manner:

third term be that of supposition, of same denomination as the result, or 4th is to be, making demanding number 2d term, and the other number 1st term question is in Direct Proportion, but contrariwise if in Inverse Proportion; i, let demanding number be 1st torm. it iply 2d and 3d terms together, and divide by 1st, and product will give re-

r 4th term sought, of same denomination as 2d term.

.—If first and third terms are of different denominations, reduce them to same. If, after divis-re is any remainder, reduce it to next lower denomination, divide by divisor as before, and i will be of this last denomination.

etimes two or more statings are necessary, which may always be known by of question.

MPLE I.-If 20 tons of iron cost \$225, what will IS COST ?

Tons. Tons. Dolls. 20:500:225 500

20) 11 2500 5 625 dollars.

I wall that is to be built to height of 36 feet, was raised 9 feet by 16 men in how many men could finish it in 4 days at same rate of working?

Days. Days. Men. Men. 4: 6: 16: 24

, if 9 feet requires 24 men, what will 27 feet require?

Q: 27 :: 24: 72 men.

COMPOUND PROPORTION.

POUND PROPORTION is rule by means of which such questions as require two or more statings in simple proportion (Rule of Three) resolved in one.

le, however, is but little used, and not easily acquired, it is deemed preferomit it here, and to show the operation by two or more statings in Simple

TRATION L.—How many men can dig a trench 135 feet long in 8 can dig 54 feet in 6 days?

Feet. Feet. Men. Men. Days. Days. Men. Men. Men. As 8: 6: 40: 30

96 COMPOUND PROPORTION.—INVOLUTION.—EVOLUTION.

2.—If a man travel 130 miles in 3 days of 12 hours each, how many days of 10 hours each would be require to travel 360 miles?

3.—If 12 men in 15 days of 12 hours build a wall 30 feet long, 6 wide, and 3 deep, in how many days of 8 hours will 60 men build a wall 300 feet long, 8 wide, and 6 deep?

By Cancellation.

RULE.—On right of a vertical line put the number of same denomination as that of required answer.

Examine each simple proportion separately, and if its terms demand a greater result than 3d term, put larger number on right and lesser on left of time; but if its terms demand a less result than 3d term, put smaller number on right and larger on left of line.

Then Cancel the numbers divisible by a common divisor, and evolve the 4th term

or result required.

Take Illustration 1, page 95: 3d term, or term of supposition of same denomination as required result, 16 men.

Stat	ement.	135 feet require more men than 54 feet, and 8 days less men than 6 days.	Result b	y Cancellat	
54 8	135 6	$2 \times 5 \times 3 = 30$ men.	2 34	135 5	5
_	1 ~	2 × 3 × 3 == 30 mers. x 3.—3d term, 15 days.	ø	ם שען	•
Stat	ement.	60 men require less days than 12 men, 8 hours more days than 12 hours, 300 feet	Result b	y Cancellat	ion.
60	12	more days than 30 feet, 8 feet more days than 6 feet, and 6 feet more days than	4 ØØ	12 8	3
8 30	12 300	3 feet.	8Ø	72 4 300 10)
6	8		g 3	8	
3	6	$3 \times 4 \times 10 = 120 \ days.$	3	ø	

INVOLUTION.

INVOLUTION is multiplying any number into itself a certain number of times. Products obtained are termed *Powers*. The number is termed the *Root*, or first power.

When a number is multiplied by itself once, product is square of that number; twice, cube; three times, biquadrate; etc. Thus, of the number 5.

5 is the Root, or 1st power. $5 \times 5 = 25$ " Square, or 2d power, and is expressed 5^2 . $5 \times 5 \times 5 = 125$ " Cube, or 3d power, and is expressed 5^3 .

 $5 \times 5 \times 5 \times 5 = 625$ "Biquadrate, or 4th power, and is expressed 54.

The lesser figure set superior to number denotes the power, and is termed the Index or Exponent.

 ILLUSTRATION I. — What is cube of 9?
 729

 2. — What is cube of \(\frac{4}{2} \)?
 \(\frac{27}{64} \)

 3. — What is 4th power of 1.5?
 5.0625.

EVOLUTION.

EVOLUTION is ascertaining Root of any number.

naracte

/ placed before any number indicates that square root of that number is reshown.

any other root by placing the index above it.

 $\sqrt{25}=5$; $4+2=\sqrt{36}$. $\sqrt[3]{27}=3$, and $\sqrt[3]{64}=4$. From termed Burd Roots.

To Extract Square Root.

—Point off given number from units place, into periods of two figures each.
tain greatest square in left-hand period, and place its root in quotient; subquare number from this period, and to remainder bring down next period
vidend.

le this root for a divisor; ascertain how many times it is contained in diviclusive of right-hand figure, which, when multiplied by number to be put t hand of this divisor, product will be equal to, or next less than dividend; sult in quotient, and also at right hand of divisor.

ply divisor by last quotient figure, and subtract product from dividend; own next period, and proceed as before.

-Mixed decimals must be pointed off both ways from units.

PLE L.-What is square root of 2?

Square Roots of Fractions.

.—Reduce fractions to their lowest terms, and that fraction to a decimal, ceed as in whole numbers and decimals.

—When terms of fractions are squares, take root of each and set one above the other; as re root of $\frac{85}{36}$.

.866 025 4.

Compute 4th or 8th Root of a Number, etc.

For the 4th root extract square root twice, and for 8th root thrice, etc.

To Extract Cube Root.

-From table of roots (page 272) take nearest cube to given number, and he assumed cube.

as given number added to twice assumed cube, is to assumed cube added given number, so is root of assumed cube to required root, nearly; and by like manner the root thus found as an assumed cube, and proceeding in ner, another root will be found still nearer; and in like manner as far as seemed necessary.

LE. - What is cube root of 10517.9?

sertain or to Compute the Square or Cube Roots of ts, Whole Numbers, and of Integers and Decimals, Table of Squares and Cubes, and Rules, pp. 272, 300.

To Extract any Root whatever.

esent number. Let A represent assumed power. r its root. R required root of P.

sum of $n+1 \times A$ and $n-1 \times P$ is to sum of $n+1 \times P$ and $n-1 \times A$, and root r to required root R.

ATION. -What is cube root of 1500?

cube, page 272, is 1331, root 11.

P=1500, n=3, A=1331, r=11;
then,
$$n+1 \times A = 5324$$
, $n+1 \times P = 6000$
 $n-1 \times P = 3000$, $n-1 \times A = 266n$
 8324

To Compute the Root of an Even Power greater the any given in Table of Square and Cube Roots.

Rule.—Extract square or cube root of it, which will reduce it to half the gipower; then square or cube root of that power; and so on until required root is tained.

EXAMPLE I.—Suppose a 12th power is given; the square root of that reduces i a 6th power, and the square root of 6th power to a cube.

2. - What is biquadrate, or 4th root, of 2 560 000?

√2 560 000 = 1600, and √1600 = 40.

Note .- For other rules for extraction of roots see pp. 301-4.

PROPERTIES OF NUMBERS.

- I. A Prime Number is that which can only be measured (divided without a mainder) by I or unity.
- A Composite Number is that which can be measured by some number gre than unity.
- 3. A Perfect Number is that which is equal to the sum of all its divisors or quot parts; as $6 = \frac{6}{5}, \frac{5}{9}, \frac{6}{9}$.
- 4. If sum of the digits constituting any number be divisible by 3 or 9, the w is divisible by them.
- 5. A square number cannot terminate with an odd number of ciphers.
- 6. No square number can terminate with two equal digits, except two cipher two fours.
- 7. No number, the last digit of which is 2, 3, 7, or 8, is a square number.

Powers of the first Nine Numbers. 5th. 6th. 7th. Sth. 9th. rst. 2d. 3d. 4th. I T 1 ï I T I 8 128 16 64 256 2 4 32 512 81 729 2187 6 561 1068 27 243 3 9 16 384 65 536 262 1 16 64 256 1024 4 006 4 390 625 125 625 3 125 15 625 78 125 1 953 1 5 6 46656 1679616 36 216 1296 7776 279 936 10 077 7 2401 16807 117640 823 543 5764801 40 353 49 343 8 262 144 16 777 216 64 512 4006 32768 2 007 152 134 217 81 6561 4782969 43 046 721 531 441 387 420 729 59 049

POSITION.

Position is of two kinds, Single and Double, and it is determined number of Suppositions.

Single Position.

Rule.—Take any number, and proceed with it as if it were the correct one; t as result is to given sum, so is supposed number to number required.

Example 1.—A commander of a vessel, after sending away in boats $\frac{1}{3}$, $\frac{1}{6}$, at of his crew, had left 300; what number had he in command?

Suppose he had 600.

\$ of 600 is 200 \$ of 600 is 100 \$ of 600 is 150

450

150 : 300 :: 600 : 1200 men.

2-A person asked his age, replied, if \$ of my age be multiplied by 2, and that product added to half the years I have lived, the sum will be 75. How old was he i 97.5 years.

Double Position.

BULE -Assume any two numbers, and proceed with each according to conditions of question; multiply results or errors by contrary supposition; that is, first position by last error, and last position by first error.

Suppose it cost him....

If errors are too great, mark them +; and if too little, -.
Then, if errors are alike, divide difference of products by difference of errors; but if they are unlike, divide sum of the products by sum of errors.

EXAMPLE L.-A asked B how much his boat cost; he replied, that if it cost him 6 times as much as it did, and \$30 more, it would have cost him \$300. What was price of the boat?

· · · · · · · · · · · · · · · · · · ·	• 60 6	times.	•••••	• 30 6	times.
and	360 30	 more	and	180 30	more
•	390 300	:	•	300	
	90-	+ o 2d positi	on.	90	 o set position.
	700		_	5400	
	3400 3100	(45 dolla	78.		

2.-What is length of a fish when the head is a inches long, tail as long as its head and half its body, and body as long as both head and tail? 6 feet

TELLOWSHIP.

FELLOWSHIP is a method of ascertaining gains or losses of individuals engaged in joint operations.

Single Fellowship.

RULE.—As the whole stock is to the whole gain or loss, so is each share to the gain or loss on that share.

Example.—Two men drew a prize in a lottery of \$0500. A paid \$3, and B \$2 for the ticket: how much is each share?

```
5:9500::3:5700, A's share.
5:9500::2:3800, B's share.
```

Double Fellowship.

Or Fellowship with Time.

Rule.-Multiply each share by time of its interest; then, as sum of products is to product of each interest, so is whole gain or loss to each share of gain or loss.

Example.—A cutter's company take a prize of \$10000, which is to be divided ac cording to their rate of pay and time of service on board. The officers have been on board 6 months, and the crew 3 months; pay of lieutenants is \$100, ensigns \$50 and crew \$10 per month; and there are 2 lieutenants, 4 ensigns, and 50 mon; who is each one's share?

2 lieutenants	. \$100 == 200	X6=1200	
4 ensigns			
50 men	. 10=500	X3=1500	
		3900	
leulenanis 3900 : 1200 :: 10 000 :	: 3076.92÷	2=1538.46 d	o
signs	3076.02 -	4 = 760.23	

PERMITATION.

PERMUTATION is a rule for ascertaining how many different ways any given number of numbers of things may be varied in their position.

Permutation of the three letters abc, taken all together, are 6; taken to and two. are 6; and taken singly, are 3.

RULE.—Multiply all the terms continually together, and last product will give result.

EXAMPLE I.—How many variations will the nine digits admit of?

$$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 = 362880$$
.

2.—How many years would there be required to elapse before no persons could be seated in a varied position collectively, each day at dinner, including, one day in every 4 years for a leap year?

935 years, 42 days.

When only part of the Numbers or Elements are taken at once. RULE—Take a series of numbers, beginning with number of things given, decreasing by 1, until number of terms equals number of things or quantities to be taken at a time, and product of all the torms will give sum required.

EXAMPLE I.—How many changes can be made with 2 events in 5?

$$5-1=4$$
, and $4\times 5=2$ terms. Hence, $5\times 4=20$ changes.

2. - How many changes of 2 will 3 playing cards admit of?

$$3-1=2$$
, and $2\times 3=2$ terms. Hence, $2\times 3=6$ changes.

3.—How many changes can be rung with 4 bells (taken 4 and 4 together) out of 6?

$$4-1=3$$
, and $3\times4\times5\times6=4$ terms or changes.
Hence, $3\times4\times5\times6=360$ changes.

When several of the Elements are alike. Rule.—Ascertain the permutations of all the numbers or things, and of all that can be made of each separate kind or division; divide number of permutations of whole by product of the several partial permutations, and quotient will give number of permutations.

EXAMPLE.—How many permutations can be made out of the letters of the word persevere (9 letters, having 4 e's and 2 r's)?

$$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 = 362880;$$

 $1 \times 2 \times 3 \times 4 = 24$ for the e's; $1 \times 2 = 2$ for the r's, and $24 \times 2 = 48$.
Hence, $362880 \div 48 = 7560$.

Or, Add logarithms of all the terms together, and number for the sum will give result.

EXAMPLE I.—How many permutations can be made with three letters or figures?

2.—How many variations will 15 numbers in 16 places admit of?

Add logarithms of numbers 1 to 16 and take logarithm of their sum-

$$viz.$$
, 13.32066197 = 20922789888000.

Number of positions of the blocks in the "15 puzzle" is as above for their 16 permutations.

Permutations.

Whereby any questions of Permutation may be solved by Inspection, number of terms not exceeding 20.

ARITHMETICAL PROGRESSION.

ETICAL PROGRESSION is a series of numbers increasing or dey a constant number or difference; as, 1, 3, 5, 7, 12, 9, 6, 3. The which form the series are designated *Terms*; the first and last *Extremes*, and the others *Means*.

y three of following elements are given, the remaining two can be ascer., First term, Last term, Number of terms, Common Difference, and Sum rms.

To Compute First Term.

st term, Number of terms, and Sum of series are given. RULE. — From twice sum of series, divided by number of terms, subtract last term.

;
$$\frac{8}{n} - \frac{d}{n-1}$$
; and $\sqrt{(l+.5d)^2 - 2dS} \pm .5d = a$. a represent-
t, n number of, and 8 sum of all terms, and d common difference.

rios.—A man travelled 390 miles in 12 days, travelling 60 miles last day. I he travel first day?

$$\frac{390 \times 2}{12}$$
 = 65, and 65 - 60 = 5 first term.

To Compute Last Term.

rst term, Common Difference, and Number of terms are given. Rule — e number of terms less 1, by common difference, and to product add first

.—A man travelled for 12 days, at the rate of 5 miles first day, 10 second, how far did he travel the last day?

$$12-1 \times 5 = 55$$
, and $55+5=60$ miles.

rst term, Number of terms, and Sum of series are given. RULE. — Divide of series by number of terms, and from quotient subtract first term.

$$-a$$
; $\sqrt{2dS+(a-.5d)^2}\pm.5d$; and $\frac{S}{n}+\frac{d(n-1)}{2}=l$.

TION.—A man travelled 360 miles in 12 days, commencing with 5 miles ow far did he travel last day?

$$\frac{360 \times 2}{12}$$
 = 65, and 65 - 5 = 60 miles.

To Compute Number of Terms.

mmon Difference and Extremes, or First and Last term, are given. ide difference of extremes by common difference, and add r to quotient.

.—A man travelled 3 miles first day, 5 second, 7 third, and so on, till he les in one day; how many days had he travelled at close of last day?

$$57 - 3 \div 2 = 27$$
, and $27 + 1 = 28$ days.

m of series and Extremes are given. Rule.—Divide twice sum of series list and last terms.

Or,
$$\frac{l-a}{d} + 1$$
; $\sqrt{\frac{2S}{d} + \left(\frac{2a-d}{2d}\right)^2} \pm \frac{d-2a}{2d}$;
and $\sqrt{\left(\frac{2l+d}{2d}\right)^2 - \frac{2S}{d}} \pm \frac{2l+d}{2d} =$

mon.—A man travelled 840 miles, walking 3 1 many days was he travelling?

 $\frac{\frac{840 \times 2}{3+57}}{\frac{60}{60}} = 28 \text{ days.}$

taal -

To Compute Common Difference.

When Number of terms and Extremes are given. Rule.—Divide differ extremes by 1 less than number of terms.

Or,
$$\frac{2S-2an}{n(n-1)}$$
; $\frac{l+a \times \overline{l-a}}{2S-l-a}$; and $\frac{2nl-2S}{n(n-1)} = d$.

ILLUSTRATION.—Extremes are 3 and 15, and number of terms 7; what is a

$$15-3\div(7-1)=\frac{12}{6}$$
, and $\frac{12}{6}=2$ com. dif.

To Compute Sum of the Series or of all Term When Extremes and Number of terms are given. Rule.—Multiply nuterms by half sum of extremes.

Or,
$$2a+\overline{d(n-1)}\times.5n$$
; $\frac{l+a\times(l-a)}{2d}+\frac{l+a}{2}$; and $2l-(d\times\overline{n-1})\times.5n=8$.

ILLUSTRATION.—How many times does hammer of a clock strike in 12 hou

To Compute any Number of Arithmetical Mean Terms between two Extremes.

Rule. — Subtract less extreme from greater, and divide difference by than number of means or terms required to be ascertained, and then prein rule.

To Compute Two Arithmetical Means or Terms bet two given Extremes.

Rule.—Subtract less extreme from greater, and divide difference by 3, 5 will be common difference, which being added to less extreme, or taken from er, will give means.

EXAMPLE 1.-Compute two arithmetical means between 4 and 16.

2.-Compute four arithmetical means between 5 and 30.

$$30-5=25$$
, and $25\div 4+1=5=com. dif.$
 $5+5=10=18l mean.$
 $15+5=20=3l mean.$
 $15+5=25=4lh$ "

Miscellaneous Illustrations.

r. A steamer having been purchased upon following terms—viz.: \$500 transfer of bill of sale and balance in monthly instalments, commencing a for first month, and decreasing \$500 in each month, until whole sum is paid.

1st. How many months must elapse before final payment?

2d. What was amount of purchase money, or sum of series?

Here are first and last terms - viz., 500 and 5000, and common different Hence, To compute number of terms and amount of purchase,

 $5000 - 500 \div 500 = 9$, and 9 + x = 10 = number of terms or months, an

 If 100 stones are placed in a right line, one yard apart; how many yar a rerson walk, to take them up one at a time and put them into a basket, of a first stone?

"st term 2, last term 200, and number of terms 100.

Hence,
$$100 \times \frac{200+2}{2} = 10100$$
 yards.

3. If in the sinking of curb of a well, \$3 is to be given for first foot in depth, \$5 for second, \$7 for third, and increasing in like manner to a depth of 20 feet, what would it cost?

First term 3, common difference 2, and number of terms 20.

Hence, so $-1 \times s + 3 = 41$, last term.

Then,
$$3+4x \times \frac{20}{3} = 440$$
, sum of all terms, or cost of curb.

4. If a contractor engaged to sink a curb to depth of 20 feet for \$400, and the contract was annulled when he had reached a depth of 8 feet; how much had he expect?

too -: 20 == manmber of terms. But insamuch as 400 may be divided into 20 terms in arithmetical proportion in many different ways, according to value of 1st term, it becomes necessary to assume the value of the first foot as value of 1st term.

Assuming it at \$5, the required proportion will be, 1st term 5, number of terms 20,

Hence,
$$\frac{400-5\times20\times2}{20\times(20-1)} = \frac{600}{380} = 1\frac{11}{19}$$
, common difference.

Then, $5+\overline{1+\frac{1}{3}}\times 7=16\frac{1}{19}=1st$ term + product of common difference and 8th term less 1, which added to $5=21\frac{1}{19}$, and $\times 4=half$ number of terms for which act is sought = $84\frac{1}{15}$ dollars, sum carned.

GEOMETRICAL PROGRESSION.

GEOMETRICAL PROGRESSION is any series of numbers continually increasing by a constant multiplier, or decreasing by a constant divisor, as 1, 2, 4, 8, 16, etc., and 15, 7.5, 3.75, etc.

The constant multiplier or divisor is the Ratio.

When any three of following elements are given, remaining two can be computed, viz: First term, Last term, Number of Terms, Ratio, and Sum of all Terms.

When Ratio, Last Term, and Number of Terms are given. Rule. — Divide last term by ratio raised to a power denoted by number of terms less 1.

Or, $\frac{8(r-1)}{r^n-1}$ and rl-S(r-1)=a. a representing 1st term, l last, n number of, l mus of all terms, and r ratio.

ILLUSTRATION. — Last term is 4374, number of terms 8, and ratio 3; what is first term?

$$\frac{4374}{38-1} = \frac{4374}{2187} = 2$$
, first term.

To Compute Last Term.

When First Term and Ratio are Equal. Rule.—Write a few of leading terms of series and place their indices over them, beginning with a unit. Add together the most convenient and least number of indices to make the index to term required. Multiply terms of the series of these indices together, and product will give term required.

0r, Multiply first term by ratio raised to a power, denoted by number of terms has r.

EXAMPLE 1.—First term is 2, ratio 2, and number of terms 13; what is last term?

Then, 5+5+3=13=sum of indices, and $32\times32\times8=8192=last$ term.

 $07, 2 \times 2^{13-1} = 8192$. Also by inspection of table, page 105, 13th term = 819

2.—The price of 12 horses being 4 cents for first, 16 for second, and 64 for this and so on; what is price of last horse?

Then, $4+4+4=12=sum\ of\ indices$, and $256\times256=256^3=$1677725$

When First Term and Ratio are Different. Rule.—Write a few of leading term of series, and place their indices over them, beginning with a cipher. Add together the most convenient indices to make an index less by 1 than term sought.

Multiply terms of these series belonging to these indices together, and the product for a dividend.

Or. Raise first term to a power, index of which is x less than number of term multiplied; take result for a divisor; proceed with their division, and quotient will give term required.

EXAMPLE I.—First term is 1, ratio 2, and number of terms 23; what is the ist term?

Or, $1 \times 2^{23-1} = 4194304$. By inspection of table, page 105, 23d term = 4194394

2.—If r cont had been put out at interest in 1630, what would it have amounted to in 1834, if it had doubled its value every 12 years?

1834 - 1630 = 204, which + 12 = 17, and 17 + 1 = 18 = number of terms.

Then, 7+4+3+2+1=17, and $128\times16\times8\times4\times2\times1=131$ 072, and 131073 \div 1, the 4th power (5-1) of 1 = \$1310.72.

When First Term, Ratio, and Sum of the series are given. Rule.—From sum of series subtract quotient of first term subtracted from sum of series, divided by ratio.

Or. $a \times r^{n-i} = L$

EXAMPLE.—First term is 2, ratio 3, and sum of series 2186; what is last term?

$$2186 - \frac{2186 - 2}{3} = 2186 - 728 = 1458$$
, last term.

To Compute Number of Terms.

When Ratio, First, and Last Terms are given. Rule.—Divide logarithm of quetient of product of ratio and last term, divided by first term, by logarithm of ratio.

Or,
$$\frac{\log (a+8\overline{r-1})-\log a}{\log r}; \qquad \frac{\log (l-\log a)}{\log (8-a)-\log (8-l)}+1;$$
and
$$\frac{\log (l-\log (rl-r-1))}{\log r}+1=n.$$

EXAMPLE. — Ratio is 2, and first and last terms are 1 and 131 072; what is number of terms?

$$\log \frac{2 \times 131072}{1} = \log 262144 = 5.41854$$
, and $5.41854 \div \log 062 = \frac{5.41854}{.30103} = 18$.

To Compute Sum of Series.

When First Term, Ratio, and Number of Terms are given. RULE.—Raise ratio to a rindex of which is equal to number of terms, from which subtract z; then remainder by ratio less z, and multiply quotient by first term.

$$\frac{\sqrt[n-1]{l-n-1}/a}{\sqrt[n-1]{l-n-1}} \text{ and } \frac{\sqrt[n-1]{l-n-1}}{\sqrt[n-1]{l-n-1}} = \beta^n$$

STRATION I.—First term is 2, ratio 2, and number of terms 13; what is sum is?

1-x=8192-x=8191, and 819x+(2-x)=8191, and $819x\times 2=16382$.

If a man were to buy 12 horses, giving 2 cents for first horse, 6 cents for, and so on, what would they cost him?

s First Term, Last Term, and Numbers of Terms are given. RULE.—Divide m by first, and quotient will be equal to ratio raised to power denoted by 1 number of terms; then extract root of this quotient.

Or,
$$\frac{8-a}{8-i}=r$$
.

TRATION.—First term is 2, last term 4374, and number of terms 8; what is

$$\frac{4374}{2}$$
 = 2187, and $\sqrt[8-z]{2187}$ = 3, ratio.

Miscellaneous Illustrations.

at is 9th term in geometrical progression 3, 9, 27, 8r, etc.? and what is erms?

1st term = 3, number of terms 9, and ratio 3.

, by rule to compute last term, 1st term and ratio being equal-

z+3+4=9= sum of indices, and $9 \times 27 \times 8z = 19683 = last term.$

$$\frac{3^9-1}{3-1} \times 3 = \frac{19682}{2} = 9841 \times 3 = 29523$$
, sum of terms.

t term is 1, ratio 2, and last term 131072; what is sum of series?

$$131072 \times 2 - 1 = 262143$$
, and $262143 \div 2 - 1 = 262143$.

t are the proportional terms between 2 and 2048?

$$4+2=6$$
, and $6-1=5$, and $\sqrt[5]{\frac{2048}{2}}=4$

Hence, 2:8:32:128:512:2048.

of series is 6560, ratio 3, and number of terms 8; what is first term?

$$6560 \times \frac{3-1}{38-1} = 6560 \times \frac{2}{6560} = 2$$
, first term.

Geometrical Progressions.

iny questions of Geometrical Progression and of Double Ratio may be solved by Inspection, number of terms not exceeding 56.

1	1 15	16384	29	268 435 456	43	4 398 046 511 104
	15	32 768	30	536 870 912	44	8796 093 022 208
	17	65 536	31	1073741824	45	17 592 186 044 416
	18	131 072	32	2147483648	46	35 184 372 088 832
	19	262 144	33	4 294 967 296	47	70 368 744 177 664 140 737
	20	524 288	34	8 589 934 592	48	140737
	21	z 048 576	35	17 179 869 184	49	281 47
	22	2097152	36	34 359 738 368	50	5629.
	23	4 194 304	37	68 7 19 476 736	51	1 125 8
-	24	8 388 608	38	137 438 953 472	52	2 251 7
	25 26	16 777 216	39	274 877 906 944	53	4 503 5
	26	33 554 432	40	549 755 813 888	54	90071
- 1	27	67 108 864	41	1 099 511 627 776	55 56	180145.
1	28 1	134 217 728	42	2 199 023 255 552	1 56	360287

mone - 12th power of 2 = 4096, and 7th root of 128 = 2.

ALLIGATION.

ALLIGATION is a method of finding mean rate or quality of different meterials when mixed together.

To Compute Mean Price of a Mixture.

h.

t s

k.

ìr.

H

When Prices and Quantities are known. Rule. — Multiply each quantity by it rate, divide sum of products by sum of quantities, and quotient will give rate of its composition.

EXAMPLE. — If 10 lbs. of copper at 20 cents per lb., 1 lb. of tin at 5 cents, and 1 h of lead at 4 cents, be mixed together, what is value of composition?

10
$$\times$$
 20 = 200
1 \times 5 = 5
1 \times 4 = 4
12) 209 (17.416 cents.

To Compute Quantity of each Article.

When Prices and Mean Price are given. RULE.—Write prices of ingredients, on under the other in order of their values, beginning with least, and set mean price at left. Connect with a line each price that is less than mean rate with one or more that is greater.

Write difference between mixture rate and that of each of simples opposite present with which it is connected; then sum of differences against any price will exprese quantity to be taken of that price.

EXAMPLE.—How much gunpowder, at 72, 54, and 48 cents per pound, will compose a mixture worth 60 cents a pound?

$$60 \begin{pmatrix} 48 \\ 54 \\ 72 \end{pmatrix}$$
12, at 48 cents.
12, at 54 cents.
12+6 = 18, at 72 cents.

Here, 72-60=12 at 48, 72-60=12 at 54, 60-48=12, and 60-54=6=12+6=18 at 72.

Then $12 \times 48 + 12 \times 54 + 18 \times 72 = 2520$, and $2520 \div 12 + 12 + 12 + 6 = 60$ cents

Note. — Should it be required to mix a definite quantity of any one article, the quantities of each determined by above rule, must be increased or decreased in proportion they bear to defined quantity.

Thus, had it been required to mix 18 pounds at 48 cents, result would be 18 at 48, 18 at 54, and 27 at 72 cents per pound.

When the whole Composition is limited. Rule.—As sum of relative quantities, as ascertained by above rule, is to whole quantity required, so is each quantity so ascertained to required quantity of each.

EXAMPLE.—Required 100 pounds of above mixture

```
Then, 12 + 12 + 18 = 42. Then, 42 : 100 :: 12 : 28.571 pounds.

42 : 100 :: 12 : 28.571 pounds.

42 : 100 :: 18 : 42.857 pounds.
```

When Price of Several Articles and Quantity of one of them is given. RULE.—Ascertain proportionate quantities of ingredients by previous rule.

Then, as number opposite ingredients, quantity of which is given, is to given quantity; so is number opposite to each ingredient to quantity required of that ingredient.

EXAMPLE. — Having 35 lbs. of tobacco, worth 60 cents per pound, how much of other qualities, worth 65, 70, and 75 cents per pound, must be mixed with it, so as to sell mixture at 68 cents per pound?

By previous rule, it is ascertained there must be 7 lbs. at 60, 2 at 65, 3 at 70, and 8 at 75 cents; but as there are 35 lbs. at 60 cents to be taken, other quantities and kinds must be increased in like manner.

Hence, 7:35::2:10=10 at 65 cents.
7:35::3:15=15" 70 cents.
7:35::8:40=40" 75 cents.

SIMPLE INTEREST.

pute Interest on any Given Sum for a Period of One or more Years.

altiply given sum or principal by rate per cent, and number of years; it is to right of product, and result will give interest in dollars and ear.

-What is interest upon \$ 1050 for 5 years at 7 per cent.?

$$1050 \times 7 \times 5 = 36750$$
, and $367.50 = 367.50 .

ie is less than One Fear. RULE.—Proceed as before, multiplying by nonths or days, and dividing by following units—viz., 12 for months, 66, as the case may be, for days.

-What is interest upon \$1050 for 5 months and 30 days at 7 per cent.?

and 30 days = 183 days.
$$\frac{1050 \times 7 \times 183}{365}$$
 = 3685, and 36.85 = \$36.85.

tion of computing interest may be performed thus:

interest upon any sum at 6 per cent. = 1 per cent. for 2 months.

, 5 per cent. is 1th less than at 6 per cent.

. 7 per cent. is th greater than at 6 per cent.

rence between this amount and preceding arises from 183 days being taken in one case, , or 182.5 days, in the other.

computation of interest there are four elements—viz., Principal, Time, iterest or Amount, any three of which being given, remaining one can ed.

To Compute Principal.

se, Rate per Cent., and Interest are given. Rule.—Divide given interest of \$1, etc., for given rate and time.

-What sum of money at 6 per cent. will in 14 months produce \$ 14?

To Compute Rate per Cent.

incipal, Interest, and Time are given. RULE.—Divide given interest by iven sum, for time, at r per cent.

— If \$32.66 was discounted from a note of \$400 for 14 months, what r cent.

n 400 for 14 months at 1 per cent = 4.66.

Then
$$32.66 \div 4.66 = 7$$
 per cent.

incipal, Rate per Cent., and Interest are given. Rule.—Divide given interest of sum, at rate per cent. for one year.

—In what time will \$ ro8 produce \$ rr.34, at 7 per cent. ? a ro8 for one year is 7.56.

$$11.34 \div 7.56 = 1.5$$
 years.

mon i. — If an amount of \$2175 is returned for a period having been 7 per cent., what was principal inves-

o in 18 months will produce \$ 1090, what is rate?

COMPOUND INTEREST.

If any Principal be multiplied by number (in following table) opposite years, and under rate per cent., sum will be amount of that principal at compound interest for time and rate taken.

EXAMPLE.—What is amount of \$500 for 10 years at 6 per cent. ?

Tabular number.... 1.700 84, and 1.700 84 \times 500 = 805.42 dollars.

Year.	3 Per Cent.	4 Per Cent.	5 Per Cent.	6 Per Cent.	Years.	3 Per Cent.	4 Per Cent.	5 Per Cent.	6 Per Cent.
	1.03	1.04	1.05	1.06	13	1.468 53	1.665 07	1.885 64	2.13295
2	1.0609	1.0816	1.1025	1.1236	14	1.515 29	1.731 67	1.97993	2.2009
3	1.09273	1.124 86	1.157 62	1.19101	15	1.557 97	1.800 95	2.078 92	2.39655
4	1.125 51	1.169 86	1.2155	1.26247	16		1.872 98		2.54035
5	1.15927	1.216 68	1.276 98	1.33822	17	1.65285	1.947 99	2.292 01	2.69277
6		1.265 32		1.41851	18	1.702 44	2.02581	2.406 6x	2.85433
7		1.315 93		1.50363	19	1.7535	2. 106 84		3.02559
8	1.266 77	1.368 57	1.477 45	1.59384		1.80611			3.20713
9	1.304 77	1.423 31		1.68947		1.860 29	2.278 76	2.78596	
10	1.34392	1.480 24	1.628 89	1.79084			2.36992		
11	1.384 24	1.539 45	1.71033	1.898 29		1.9736	2.464 21		
12	1.425 76.	1.601 03	1.795 85	2.012 19	24	2.032 79	2.5633	3.225 09	4.04873

For any other Rate or Period.—Multiply logarithm of rate + 1 by period, and number for logarithm will give tabular amount as above.

ILLUSTRATION. - What is tabular number for 4 per cent. for 10 years?

Log. of 1.04 = .0170333, which \times 10 = .170333, and number for log. = 1.48024

Time in Years in which a Sum of Money will be doubled at Several Rates of Interest.

Rate.	Time.	Rate.	Time.	Rate.	Time.	Rate.	Time.
Per cent.		Per cent.		Per cent.		Per cent.	
1	69.68	4	17.67	7	10.34	10	7.27
2	35	5	14.21	8	9.01	20	3.8
3	23.44	6	. 11.88	19	8.04	30	2.64

Value of \$1, etc., Computed Semi-annually for a Period of 12 Years.

Years.	3 Per Cent.	4 Per Cent.	5 Per Cent.	6 Per Cent.	Years.	3 Per Cent.	4 Per Cent.	5 Per Cent.	6 Per Cent
5	1.015	1.02	1.025	1.03	6.5	1.2134	1.2936	1.3785	1.4684
1	1.0302	1.0404	1.0506	1.0609	7	1.2317	1.3195	1.413	I 5102
1.5	1.0457	1.0512	1.0769	1.0927	7.5	1.2502	1.3459	1.4483	z.558
2	1.0614	1.0824	1.1038	1.1255	8	1.269	1.3728	1.4845	z.6047
2.5	1.0773	1.1041	1.1314	1.1593	8.5	1.288	1.4002	1.5216	z.6598
3	1.0934	1.1262	1.1597	1.1941	9	1.3073	1.4282	1.5597	1.7024
3.5	1.1098	1.1487	1.1887	1.2299	9.5	1.3269	1.4568	1.5987	1.7535
4	1.1265	1.1717	1.2184	1.2668	10	1.3469	1.486	1.6386	1.8061
4.5	1.1434	1.1951	1.2489	1.3048 .	10.5	1.3671	1.5157	1 6796	z.8603
5	1.1604	1.219	1.2801	1.3439	11	1.3876	1 546	1.7216	1.9161
5.5	1.178	1.2434	1.3121	1.3842	11.5	1.4084	1.5769	1.7606	1.9736
6	1.1056	1.2080	1.3440	1.4258	12	1.4205	1.6084	1.8687	2.0356

ILLUSTRATION.—What is amount of \$500 at semi-annual interest of 5 per cent compounded for 10 years?

Tabular number 1.6386. Then, $500 \times 1.62889 = $814.44.5$.

To Compute Interest on any Given Sum.

2 Period of Years.
$$P(t+r)^n = A$$
; $\frac{A}{(t+r)^n} = P$; $\sqrt[n]{\frac{A}{P}} - t = r$.

 $\frac{\log P}{e^t} = n$. P representing principal, r rate per cent. per annum, so that of principal and interest.

STRATION.—Assume as preceding, \$500 at 5 per cent, for 10 years.

$$(1.05^{10} = 500 \times 1.62889 = $814.44.5, amount.$$
 $\frac{814.44.5}{(1+.05)^{10}} = 500, principal.$

$$\frac{-44.5}{\infty} - 1 = .05, rate. \cdot \frac{\log. 814.44.5 - \log. 500}{\log. (1 + .05)} = 10, main ber of years.$$

any Period. — Assume elements of preceding case, interest payable semily. $10 \times 2 = 20$, number of payments; $\frac{.05}{.025} = .025$, rate.

Then, $500 \times 1.025^{20} = 500 \times 1.63862 = 819.31 .

n term of payments and rate are not given in table.

$$\left\lceil \log \left(\frac{r}{2} + 1 \right) \times n \right\rceil = \log A.$$

STRATION.—Assume \$1000 for 30 years, at 7 per cent. half-yearly.

$$\log_{100} \frac{.07}{2} + 1 = .0149403$$
, and $\log_{100} \frac{.0149403 \times 30}{.0149403 \times 30} \times 1000 = 2806.78 .

DISCOUNT OR REBATE.

COUNT OF REBATE is a deduction upon money paid before it is due.

To Compute Rebate upon any Sum.

:—Multiply amount by rate per cent and by time, and divide product by product of rate per cent. and time, added to 100.

FPLE 1.—What is discount upon \$12075 for 3 years, 5 months, and 15 days, r cent?

3 years 5 months and 15 days = 3.4574 years.

$$\frac{12.075 \times 6 \times 3.4574}{100 + (6 \times 3.4574)} = \frac{250.488.63}{120.7444} = 2074.53 = $2074.53.$$

That is present value of a note for \$963.75, payable in 7 months, at 6 per

7 months =
$$\frac{7}{18}$$
 of 1 year = 6 × 7 ÷ 12 = 3.5, and 3 5 + 100 = 103.5 ÷ 100 = 1.035. 963 75 ÷ 1 035 = \$931.16

mpute the Sum for a given Time and Rate, to yield a Certain Sum.

-Divide given sum by proceeds of \$ 1 for given time and rate.

TR.—For what sum should a note be drawn at 90 days, that when disat 6 per cent. it will net \$200?

Discount on \$ 1 for 90 + 3 days at 6 per cent. = \$.0155.

Hence, \$ 1 -. 0155 = .9845, proceeds, and \$ 200 ÷ .9845 = \$203.14.9.

EQUATION OF PAYMENTS.

-Multiply each sum by its time of payment in days, and divide sum of by sum of payments.

LR.—A owes B \$300 in 15 days, \$60 in 12 days, and \$350 in 20 ds ole due?

;

ANNUITIES.

To Compute Amount of Annuity.

When Time and Ratio of Interest are Given. Rule.—Raise the ratio to a power denoted by time, from which subtract r; divide remainder by ratio less r, and quetient, multiplied by annuity, will give amount.

Nors.—8: added to given rate per cent is ratio, and preceding table in Compound Interest is a table of ratios.

EXAMPLE.—What is amount of an annual pension of \$100, interest 5 per cent, which has remained unpaid for four years?

1.05 ratio; then 1.054 - 1 = 1.21550625 - 1 = .21550625, and .21550625 \div (1.05 - 1).05 = 4.310125, which \times 100 = \$431.01.25.

To Compute Present Worth of an Annuity.

When Time and Rate of Interest are Given. Rule.—Ascertain amount of it for whole time: divide by ratio, involved to time, and result will give worth.

Example.—What is present worth of a pension or salary of \$500, to continue to years at 6 per cent. compound interest?

\$500, by last rule, is worth \$6590.3975, which, divided by 1.06^{10} (by table, page 108, is 1.79084) = \$3680.05.

Or, Multiply tabular amount in following table by given annuity, and product will give present worth.

ILLUSTRATION I.—As above; 10 years at 6 per cent. = 7.36008, and 7.36008 $\times 500$ = 3680.04 dollars.

2. What is present worth of \$150 due in one year at 6 per cent. interest per annum! $.94339 \times 150 = $141.50.85$.

Present Worth of an Annuity of \$1, at 4, 5, and 6 Per Cent. Compound Interest for Periods under 25 Years.

Years.	4 Per Cent.	5 Per Cent.	6 Per Cent.	Years.	4 Per Cent.	5 Per Cent.	6 Per Cent.
	.961 54	.952 38	-943 39	13	9.98562	9-393 57	8.852 68
2	r.886 og	1.85941	z.83339	14	10.56307	9.89864	9.29498
3	2.775 I	2.72325	2.67301	15	11.11843	10.37966	9.71225
4	3.6299	3-54595	3.465 1	16	11.651 28	10.837 78	10.10589
5	4.452 03	4.32948	4.21236	17	12.166 26	11.27407	10.477 20
ĕ	5.242 15	5.07569	4.91732	18	12.659 26	11.689 58	10.8276
7	6.002 03	5.786 37	5.582 38	19	13.13388	12.085 32	11.15811
8	6.731 76	6.46321	6.20979	20	13.59029	12.462 21	11.46992
9	7.4364	7.10782	6.80169	21	14.029 12	12.821 15	11.76407
10	8.11085	7.721 73	7.360 08	22	14.451 12	13.163	12.041 58
11	8.76044	8.30641	7.88687	23	14.85682	13.488 07	12.30338
12	9.38505	8.86325	8.38384	24	15.246 95	13.79864	12.55035

For a Rate of Interest and Term of Years not given in either Table.

$$\frac{P}{r}\left[1-\frac{1}{(1+r)^n}\right] = A. \quad Notation \ as \ preceding.$$

ILLUSTRATION. -Take \$ 1 at 4 per cent. for 24 years.

Log. 1.04 = .017033, which \times 24 = .408799. log. .408799 = 2.5633 = ratio raised to power of 24.

Then,
$$\frac{1}{.04} \times \left(1 - \frac{1}{2.5633}\right) = 25 \times 1 - 390122 = $15.24.695.$$

Compute Yearly Amount that will Liquidate a Debt Given Number of Years at Compound Interest.

""STEATION. — What is amount of an annual payment that
in 6 years at 5 per cent. compound interest?

$$\frac{100 \times .05}{(x+.05)^6-x} = \frac{5 \times 1.34}{1.34-x} = \frac{6.7}{.34} = $19.76.$$

Annuities do not commence till a certain period of time, they are taid to be

mpute Present Worth of an Annuity in Reversion.

—Take two amounts under rate in above table—viz., that opposite sum of an times and that of time of reversion; multiply their difference by anapproduct will give present worth.

PLE.—What is present worth of the reversion of a lease of \$40 per annum, nue for 6 years, but not to commence until end of 2 years, at rate of 6 per

unt of Annuity of \$1, etc., Compound Interest, from 1 to 20 Years.

4 Cent.	5 Per Cent.	6 Per Cent.	7 Per Cent.	Years.	4 Per Cent,	5 Per Cent.	6 Per Cent.	7 Per Cent.
	I.	ı.	1.	11	13.486 35	14.206 70	14.971 64	15.7836
24	2.05	2.06	2.07	12	15.025 8	15.917 13	16.869 94	17.888 45
1216	3.1525	3.1836	3.2149	13	16,626 84	17.712 98	18.882 14	20 140 64
246 46	4.31012	4-37462	4-439.94	14	18.291 91	19.598 63	21.01507	22.55049
416 32	5.525 63	5.637 09	5-75074	15	20.023 59	21.578 56	23.275 97	25.129 62
532 97	6.801 91	6,975 32	7-153 29	16	21.824 53	23.657 49	25.67253	27.88805
898 29	8.14201	8,393 84	8.654.02	17	23.697 51	25.84037	28.212 88	30.840 22
214 23	9-54911	9.897 47	10.2598	18	25.64541	28.132 38		
582 79	11.026 56	11.491 32	11.977 99	19	27.671 23	30.539	33-759 99	37.37896
206 11	12.577 89	13.18079	13.816 45	20	29.778 08	33-065.95	36.785 59	40.99549

TRATION. - What is amount of \$ 1000 for 20 years at 5 per cent.?

per cent. for 20 years = 33.065 95; hence, 1000 \times 33.065 95 = \$ 33.06.595.

compute Amount of an Annuity for any Period and Rate.

.—From table for Compound Interest, page 108, take value for rate per cent.

ar, and raise it to a power determined by time in years, from which subtract

remainder by rate, and quotient multiplied by annuity will give amount

FLE.—What will an annuity of \$ 50, payable yearly, amount to in 4 years, at nt?

ble, page 108, 1.054 = 1.2155

$$1.2155 - 1 \div (1.05 - 1) = 4.31$$
, and $4.31 \times 50 = 215.50 .

For Half-yearly and Quarterly Payments.

ly annuity for given time by amount in following table:

mt.	Half-yearly.	Quarterly.	Rate per cent.	Half-yearly.	Quarterly.
	1.007 445	1.011 181	5-5	1.013 567	1.020 395
	1.008675	1.013031	6	1.014781	1.022 227
	1.009 902	1.014877	6.5	1.015993	1.024 055
1	1.011 126	1.016729	7	1.017 204	1.02588
	1.012 348	1.018 559	7.5	1.018414	1.027 704

LATION L.—Annuity as determined in previous case = \$215.50.

215.50 X 1.012 348 from above table =\$218.16 for half yearly payments.

rson 30 years of age has an annuity for 10 years, present wor wided he may live for 10 years. What is annuity worth, 1 sont of every 3550, between the ages of 30 and 40, die annu

3550 – 600 (60 \times 10) = 2950 would therefore be living. And, 3550: 2950:: 1000 = \$830.98.

PERPETUITIES.

PERPETUITIES are such Annuities as continue forever.

To Compute Value of a Perpetual Annuity.

RCLE.—Divide annuity by rate per cent,, and multiply quotient by unit in preceding table.

EXAMPLE.—What is present worth of an annuity for \$100, payable semi-annually, at 5 per cent.?

$$100 \div .05 = 2$$
, and 2×1.012348 , from preceding table = 2.024.70.

To Compute Value of a Perpetuity in Reversion. Rule.—Subtract present worth of annuity for time of reversion from worth of annuity, to commence immediately.

EXAMPLE.—What is present worth of an estate of \$50 per annum, at 5 per cent, to commence in 4 years?

$$50 \div .05$$
 ... = 1000
\$50, for 4 years, at 5 per cent. = 3.545 95 (from table, page 110) \times 50 = 177.2975
822.7035

which in 4 years, at 5 per cent. compound interest, would produce \$1000.

COMBINATION.

COMBINATION is a rule for ascertaining how often a less number of numbers or things can be chosen varied from a greater, or how many different collections may be formed without regard to order of each collection.

Combinations of any number of things signify the different collections which may be formed of their quantities, without regard to the order of their arrangement.

Thus, 3 letters, a, b, c, taken all together, form but one combination, abc. Taken two and two, they form 3 combinations, as ab, ac, bc.

Note.—Class of the combination is determined by number of elements or things to be taken; if two are taken, the combination is of 2d class, and so on.

Rule.—Multiply together natural series 1, 2, 3, etc., up to the number to be taken at a time. Take a series of as many terms, decreasing by 1, from number out of which combination is to be made, ascertain their continued product, and divide this last product by former.

Example 1.—How many single combinations, as ab, ac, may be made of 2 letters out of 3?

1 × 2 2 6

$$\frac{1 \times 2}{3 \times 2} = \frac{2}{6} = \frac{6}{2} = 3.$$

2.—How many combinations may be made of 7 letters out of 12?

$$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 = \frac{5040}{3991680}$$
, and $\frac{3991680}{5040} = 792$.

3.—How many different hands of cards may be held, as at whist, combinations 13 out of 52? 635 or 3 559 600.

When two Numbers or Things are Combined.

Rule.—Multiply together natural series 1, 2, 3, etc., to one less term than number of combinations; ascertain their continued product, and proceed as before.

Example. —There are 3 cards in a box, out of which two are to be drawn in a required order. How many combinations are there?

Here there are 2 terms; hence,
$$2-1=1$$
, and $\frac{1}{2\times 2}=\frac{1}{6}=6\div 1=6$.

To Compute Number of Ways in which any Number of 'act Objects can be Divided among any Number.
'ltiply together numbers equal to number given, as often as objects

Combinations with Repetitions.

is case the renetition of a term is considered a new combination. Thus, nits of but one combination, if not repeated; if repeated, however, it admits combinations, as 1, 1; 1, 2; 2, 2.

.-To number of terms of series add number of class of combination, less 1; y sum by successive decreasing terms of series, down to last term of series; vide this product by number of permutations of the terms, denoted by class ination.

PLE .- How many different combinations of numbers of 6 figures can be ut of xx?

(6-1)=16= sum of number of terms, and number of class, less 1.

15 × 14 × 13 × 12 × 11 = 5765760 = product of sum, and successive terms to

 \times 3 \times 4 \times 5 \times 6 = 720 permutations of class of combination.

Then,
$$\frac{5765760}{730} = 8008$$
.

Variations with Repetitions.

r different arrangement of individual number or things, including repotitermed a Variation.

of Variation is denoted by number of individual things taken at a time.

-Raise number denoting the individual things to a power, the exponent h is number expressing class of variation.

PLE I.-How many variations with 4 repetitions can be made out of 5 fig-54 = 625.

low many different combinations of 4 places of figures can be made out of gits?

$$9 + (4 - 1) = 12$$
, and $\frac{12 \times 11 \times 10 \times 9}{1 \times 2 \times 3 \times 4} = \frac{11880}{24} = 495$.

Combination without Repetitions.

.-From number of terms of series subtract number of class of combination. multiply this remainder by successive increasing terms of series, up to last series; then divide this product by number of permutations of the terms, I by class of combination.

IPLE I —How many combinations can be made of 4 letters out of 10, excludrepetition of them in any second combination?

(4-1) = 7 = number of terms - number of class, less 1. $1 \times 9 \times 10 = 5040 = prod. of remainder 7, and successive terms up to last term.$ $1 \times 3 \times 4 = 24 = permutations of class of combination.$

Then,
$$\frac{5040}{24} = 210$$
.

low many combinations of the 5th class, without repetitions, can be made Gerent articles?

$$12-(5-1)=8$$
, and $\frac{8\times 9\times 10\times 11\times 12}{1\times 2\times 3\times 4\times 5}=\frac{85040}{120}=792$.

CIRCULAR MEASURE.

of Circular Measure is an angle which is subtended at re equal to radius of that circle, being equal to

$$\frac{180^{\circ}}{3.1416} = 57.296^{\circ}$$

ar measure of an angle is equal to a fraction which has blended by that angle at centre of any circle, and for it. that circle.

Wrought Iron, Steel, Copper, and Brass Wi American Gauge. f. full, l. light.

No. of	1	1	PER LINEA	L FOOT.		
Gauge.	Diameter.	Iron.	Steel.	Copper.	Bro	
-	Inch.	Lbs.	Lbs.	Lbs.	L	
0000	.46 or 7 f.	.560 74	.566 03	.640 513	.605	
000	.409 64	.444 683	.448 879	.507 946	+479 5	
00	.364 8 or 8 1.	.352 659	-355 986	.402 83	.380	
0	.324 86 or 5 f.	.279 665	.282 303	-319 451	.301	
1	.2893	.221 789	.223 891	.253 342	.239	
2	.257 63 or 1 f.	.175 888	.177 548	.200 911	.189	
3	.229 42	.139 48	.140 796	.159 323	.150	
4	.204 31 or 1 f.	,110 616	.111 66	.126 353	.119	
5	.181 94 or 3 l.	.087 72	.088 548	,100 2	.094	
5	.162 02	.069 565	.070 221	.079 462	.075	
7	.144 28	.055 165	.055 685	,063 013	.059	
8	.128 49 or 1 f.	.043 751	.044 164	.049 976	.047	
9	.114 43	.034 699	.035 026	.039 636	.037	
10	.101 89 or 1 f.	.027 512	.027 772	.031 426	.029	
11	.090 742	.021 82	.022 026	.024 924	.023	
12	,080 808	.017 304	.017 468	.019 766	.013	
13	.071 961	.013 722	.013 851	.015 674	.014	
14	.064 084	.010 886	.010-989	.012 435	.011	
15	.057 068	.008 631	.008 712	.009 859	.009	
16	.050 82 or 1 f.	.006 845	.006 909	.007 819	.007	
17	.045 257	.005 427	.005 478	.006 199	.005	
18	.040 303	.004 304	.004 344	.004 916	.004	
19	.035 89	.003 413	.003 445	.003 899	.003	
20	.031 961	.002 708	.002 734	.003 094	.002	
21	.028 462	.002 147	.002 167	.002 452	.002	
22	.025 347	.001 703	.001 719	.001 945	1001	
23	.022 571	.001 35	.001 363	.001 542	.001	
24	.020 I or 1 f.	.001 071	180 100.	.001 223	100.	
25	.0179	.000 849 I	,000 857 I	.000-969 9	.000	
26	-015 94	.000 673 4	.000-679 7	.000 769 2	.000	
27	.014 195	.000 534	.000 539 1	.000 609 9	.000	
28	.012 641	.000 423 5	,000 427 5	.000 483 7	.000	
29	·OII 257	.000 335 8	.000 338 9	.000 383 5	.000	
.30	.010 025 or 1 00 f.	.000 266 3	.000 268 8	.000 304 2	.000	
31	.008 928	.000 211 3	,000 213 2	.000 241 3	.000	
32	-007 95	.000 167 5	1 691 000	.000 191 3	,000	
33	-007 08	.000 132 8	.000 134 1	.000 151 7	.000	
34	.006 304	.000 105 3	.000 106 3	.000 120 4	.000	
35	.005 614	.000 083 66	.000 084 45	.000 095 6	.000	
26	.005 or 1	.000 066 25	.000 066 87	-000 075 7	,000	
	-1 A53	.000 052 55	.000 053 04	.000 060 03	.000	
	*	.000 041 66	.000 042 05	.000 047 58	.000	
		1000 033 05	.000 033 36	.000 037 75	,000	
		.000 026 3	.000 026 44	.000 029 92	.000	
		7-774	7.847	8.88	8.	
		-87	490,45	554.988	524.	
		512	.2838	,3212	1000	

computations of these weights were usarpe, Providence, R. I.

imber of cases which favor drawing of a white ball from both bags is $5 \times 7 = 35$. very one of the 5 white balls in one bag may be drawn in combination with every of the 7 in the other. For a like cause, number of cases which favor drawing of ite ball from 1st bag and a black one from 2d is $5 \times 3 = 15$; a black ball from 1st and a white ball from 2d is $7 \times 2 = 14$; and a black ball from both is $3 \times 2 = 6$. obability, therefore, of drawing is as

$$\frac{67}{6} = \frac{35}{70} = \frac{x}{2} = 1 \text{ to } x, a \text{ white ball from both bags.} \quad \frac{5 \times 3}{70} = \frac{15}{70} = \frac{3}{14} = 3 \text{ to } 11,$$

tite ball from 1st, and a black from 2d. $\frac{7 \times 2}{11} = \frac{1}{11} = 1$ to 4, a black

from 1st, and a white from 2d. $\frac{3\times 2}{70} = \frac{6}{70} = \frac{3}{35} = 3$ to 32, a black ball from $\frac{5 \times 3 + 2 \times 7}{70} = \frac{29}{70} = 29$ to 41, a white ball from one, and a black from other,

oth 2d and 3d cases favor this result; hence, $\frac{x}{5} + \frac{3}{14} = \frac{29}{70}$. $\frac{5 \times 7 + 5 \times 3 + 2 \times 7}{70}$

 $=\frac{3^2}{3^5}=3^2$ to 3, at least one while ball, for the 1st, 2d, and 3d cases favor this

1; hence, $\frac{1}{2} + \frac{3}{14} + \frac{1}{5} = \frac{3^2}{35}$

in, if number of white and black balls in each bag are same, say 5 white and $k_1 + 2 \times 5 + 2 = 40$, then probability of drawing is as

 $\frac{5}{5} = \frac{25}{49} = 25 \text{ to 24, a white ball from both.} \quad \frac{5 \times 2}{49} = \frac{10}{49} = 10 \text{ to 39, a white ball}$ 1st, and a black from 2d. $\frac{2 \times 5}{49} = \frac{10}{49} = 10 \text{ to 39, a black ball from 1st, and a}$

from 2d. $\frac{2 \times 2}{10} = \frac{4}{10} = 4$ to 45, a black ball from both.

When two dice are thrown, probability that sum of numbers on upper sides given number, say 7, is as follows:

very one of the six numbers on one die may come up alike to, or in combi-

with the other, number of throws is $6 \times 6 = 36$.

ther 7 may be a combination of $\begin{cases} x \text{ and } 6 \\ 2 & 5 \\ 3 & 4 \end{cases}$; and as these numbers may be ither die, there are $3 \times 2 = 6$ throws in favor of the combination of 7; hence ility of throwing 7 is $\frac{6}{26} = \frac{1}{6}$, or as 1 to 5.

robability of a player's partner at Whist holding a given card is as follows: ber of cards held by the other 3 players is 3 × 13 = 39; probability, thereat it is held by partner is $\frac{1}{20}$, but it may be one of the 13 cards which he

hence probability is $\frac{1}{20} \times 13 = \frac{13}{20} = \frac{1}{3}$, or as 1 to 2.

robability of a player's partner at Whist holding two given cards is as follow er of combinations of 39 things, taken 2 and 2 together, is $\frac{39 \times 38}{1 \times 2} = 7$

e, probability that these 2 cards are in partner's hand is $\frac{1}{30 \times 38} = \frac{1}{30 \times 38}$

: 1 to 740; but they may be any 2 cards in partner's hand; therefore, sincl. of combinations of 13 cards, taken 2 and 2 together, is $\frac{13 \times 12}{1 \times 2} = \frac{150}{1}$

ty required is $\frac{78}{241} = \frac{2}{10}$, or as 2 to 17.

rly, probability that he holds any 3 given cards is as $\frac{22}{703}$, or

WEIGHT AND STRENGTH OF WIRE, IRON, ETC. Weight and Strength of Warrington Iron Wire. Manufactured by Rylands Brothers. (England.)

Weight per 100 Lineal Feet.

No.	Diame- ter.	Weight	An- nealed.	Weight.	No.	Diameter.	Weight.	Breaking An- nealed.	Weight, Bright,
Gauge.	Inch	Lbs.	Lbs.	Lbs.	Gauge.	Inch.	Lbs.	Lbs.	Lba
7/0	1/2	64.46	3490	5233	9	.146	5.5	298	447
6/0	15/30	56.66	3066	4603	10	.133	4.43	247	370
5/0		49.36	2673	4000	10.5	.125	4 03	218	327
4/0	13/33	42.53	2303	3457	11	.117	3.53	191	288
3/0	3/8	36.26	1963	2945	12	.I	2.66	145	217
2/0	8/8 11/32	30.46	1653	2473	13	.09	2.1	113	169
0	.326	27.36	1486	2226	14	.079	1.6	87	130
1	-3	23.3	1257	1885	15	.069	1.23	66	99
2	.274	19.36	1046	1572	16	.062 5	.96	53	77
3	.25	16.13	873	1309	17	.053	•73	39	50
4	.229	13.53	732	1098	18	.047	.56	31	46
5	.209	11.26	610	913	19	.041	-43	23	35
6	.191	9.4	509	763	20	.036	-33	18	27
7	.174	7.8	422	633	21	.031 25	.26	14	21
8	.159	6.53	353	519	22 •	.028	.2	11	16

To Compute Length of 100 Pounds of Wire of a Given Diameter.

RULE.—Divide following numbers by square of diameter, in parts of an inch, and quotient is length in feet.

37.68 for wrought iron. 37.45 for steel.	33.42 for copper. 34.41 for brass.	28 for silver. 15.3 for gold.
	13.64 for platinum.	

WINDOW GLASS.

Thickness and Weight per Square Foot.

No.	Thickness.	Weight.	No.	Thickness.	Weight.	No.	Thickness.	Weight.
	Inch.	Oz.	-	Inch.	Oz.		Inch.	Oz.
12	.059	12	17	.083	17	26	.125	26
13	.063	13	19	.091	19	32	.154	32
15	.071	15	21	.1	21	36	.167	36
16	.077	16 1	1 24	.111	24	42	.2	43

Terne Plates.

Terne Plates—Are of iron covered with an amalgam of lead.

Thickness and Weight of Galvanized Sheet Iron. Sheet 2 Feet in Width by from 6 to 9 Feet in Length (M. Lesferts).

Weight Per Sun	Weight Per Sq. Foot.	Wire Gauge.	Weight Per Sq Foot.	Wire Gauge.	Weight per Sq. Foot.	Wire Gauge.	Weight per Sq. Foot.	Wire Gauge.	Weight per Sq. Foot
No.	Oz,	No.	Oz.	No.	Oz.	No.	Oz.	No.	Os.
🤰 26	15	23	20	20	27	17	36 (14	53 61
- 25	16	22	22	19	30	<i>∂ı</i> //	\ 42 '	€ 1 //	/ 61
// 24 !	18	21	24	81	1 35	// z<	.\ Δ 6	// 13	/ 70

WROUGHT IRON.
Weight of Square Rolled Iron,

From .125 Inch to 10 Inches. ONE FOOT IN LENGTH.

le.	Weight.	Side.	Weight.	Side.	Weight.	Side.	Weight.
8.	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lbs.
25	.053	2.125	15.263	4.125	57.517	6.25	132.04
5	.211	.25	17.112	.25	61.055	.5	142.816
75	-475	-375	19.066	-375	64.7	.75	154.012
	-845	-5	21.12	-5	68.448	7	165.632
25	1.32	.625	23.292	.625	72 305	.25	177.672
5	1.001	•75	25.56	.75	76.264	.5	190.136
75	2.588	.875	27.939	.875	80.333	.75	203.024
	3.38	3	30.416	5	84.48	8	216.336
?5	4.278	.125	33.01	.125	88.784	.25	230.068
•	5.28	•75	35.704	.25	93.168	-5	244.22
'5	6.39	-375	38.503	·375	97.657	.75	258.8
- 1	7.604	-5	41.408	·5	102.24	9	273.792
5	8.926	.625	44.418	.625	106.953	.25	289.22
-	10.352	•75	47.534	.75	111.756	.5	305.056
5	11.883	.875	50.756	.875	116.671	.75	321.33
	13.52	4	54.084	6	121.664	10	327.92

ISTRATION.—What is weight of a bar 1.5 inches, by 12 inches in length? olumn 1st, find 1.5; opposite to it is 7.604 lbs., which is 7 lbs. and .604 of a lb. er denomination of ounces is required, result is obtained as follows:

ltiply remainder by 16, point off the decimals, and the figures remain-1 left of the point will give number of ounces.

Thus, .604 of a lb. $= .604 \times 16 = .9.664 = 7$ lbs. 9.664 ounces.

Compute Weight for less than a Foot in Length.

AATION.—What is weight of a bar 6.25 inches square and 10.5 inches long?

llumn 7th, opposite to 6.25 is 132.04, which is weight for a foot in length.

Weight of Angle Iron,
From 1.25 to 4.5 Inches. ONE FOOT IN LENGTH.
Thickness measured in Middle of each Side.

EQUAL SIDES. L UNEQUAL SIDES. L UNEQUAL SIDES. Thick-Thick-Thick-Weight Weight. Sides. Sides. Weight. DASS. ness. Dess. Inch. Lbs. Inch. Lbs. Ins. Inch. Ins. Lbs. 6.25 6 1.25 .1875 1.5 3 X2.5 -375 X3.5 .625 18 .1875 7.75 X4.5 .625 1.5 2 3.5×3 ·4375 20 9.6 1.75 .25 3.5×3 ·4375 .25 3.5 4 X3 ٠5 11 2 ×2.375* .375 X3.5 2.25 .3125 4.5 ٠5 11.5 5.5 2.5×2.875 6.5 ×3.5 ٠5 11.75 2.5 . .3125 5 4 375 11.75 10.5 7 4.5×3 ٠5 3.5×3.5 .375 +4375X3 12.65 Q 5 ٠5 3.5 ·4375 ·4375 X3.5 12.5 X3 .5625 13.7 ٠5 5.5×3.5 ٠5 14.5 X3.5 1.5 *i.5* | .5625 | 16 || 5.5×3.5 | .5625 | 15.6

^{*} This column gives depth of web added to the thickness of base or fit

WEIGHTS OF IRON, STEEL, COPPER, ETC.

Wrought Iron, Steel, Copper, and Brass 1

SOFT ROLLED. (American Gauge.)

in. of ange.	Thickness.	Iron.	Steel.	Copper.
0.5	Inch.	Lbs.	Lbs.	Lbs.
0000	.46 or 7 full	18.4575	18.7036	20.838
000	.400 64	16.4368	16.6559	18.556 7
000	.364 8 or 8 light		14.8328	16.550 7
	.324 86 or 1 "	14.6376		16.5254
0	.289 3	13.0351	13.2088	14.716 2
1				13.105 3
2	.257 63 or 1 full	10.3374	10.4752	11.670 6
3	.229 42 .204 31 or ½ full	9.2055	9.3283	10.392 7
4		8.1979	8.3073	9.255 2
5	.181 94 or 3 light	7.3004	7.3977	8.2419
		6.5011	6.5878 5.8664	7-339 5
7 8	.144 28	5.7892		6.535 9
	.128 49 or 1 full	5.1557	5.2244	5.8206
9	.114 43	4.5915	4.6527	5.183 7
10	.101 89 or 15 full	4.0884	4.1428	4.6156
11	.090 742	3.641	3.6896	4.1106
12	.080 808	3.2424	3.2856	3.6606
13	.071 961	2.8874	2.9259	3.2598
14	.064 084	2.5714	2.6057	2.903
15	.057 068	2.2899	2.3204	2.585 2
16	.050 82 or 1 full	2.0392	2.0664	2.302 1
17	.045 257	1.8159	1.8402	2.050 1
18	.040 303	1.6172	1.6387	1.825 7
19	.035 89	1.44	1.4593	1.6258
20	.031 961	1.2824	1.2995	1.4478
21	.028 462	1.142	1.1573	1.2893
22	.025 347	1.017	1.0306	1.1482
23	.022 571	.9057	.9177	1.0225
24	.021 I	.8065	.8173	.910 53
25	.0179	.7182	.7278	.810 87
26	.015 94	.6396	.6481	.722 08
27	.014 195	.5696	-5772	.643 03
28	.012 641	.5072	-514	-572 64
29	.011 257	-4517	-4577	-509 94
30	.010 025	-4023	.4076	•454 13
31	.008 928	-3582	.363	-404 44
32	-007 95	-319	.3232	.360 14
33	.007 08	.2841	.2879	-320 72
34	.006 304	.2529	.2563	.285 57
35	.005 614	.2253	.2283	,254 31
36	.005	.2006	-2033	.226 5
37	.004 453	.1787	.181	.201 72
38	.003 965	.1591	.1612	.179 6I
39	.003 531	.1417	.1436	-159 95
40	.003 144	1261	.1278	.142 42
ecific	Gravities	7.704	7.806	8.698
ights	of a Cube Foot	18x.75	487.75	543.6
80	" Inch	.278 7	.2823	3146

Wrought Iron, Steel, Copper, and Brass Plates.
(Birmingham Gauge.)

	,		PER SQUARE FOOT.							
No. of	Thickness.	١ _			_					
Gauge.	THIORITON	Iron.	Steel.	Copper.	Brass.					
	Inch.	Lbs.	Lba.	Lbs.	Lbs.					
0000	454 or 7 full	18.2167	18.4596	20.5662	19.4312					
000	·425	17.0531	17.2805	19.2525	18.19					
00	.38 or 🖁 full	15.2475	15.4508	17.214	16.264					
0	.34 or 1 "	13.6425	13.8244	15.402	14.552					
1	-3	12.0375	12.198	13.59	12.84					
2	.284	11.3955	11.5474	12.8652	12.1552					
. 3	.259 or 1 full	10.3924	10.5309	11.7327	11.0852					
4	.238	9.5497	9.6771	10.7814	10.1864					
5 6	.22	8.8275	8.9452	9.966	9.416					
	.203 or 🖁 full	8.1454	8.254	9.1959	8.6884					
7	.18 or 8 light	7.2225	7.3188	8.154	7.704					
8	.165 or } "	6.6206	6.7089	7-4745	7.062					
9	.148 or 🖟 full	5.9385	6.0177	6.7044	6.3344					
10	.134	5.3767	5.4484	6,0702	5.7352					
. 11	.12 or 1 light	4.815	4.8792	5.436	5.136					
. 12	.100	4.3736	4.4319	4.9377	4.6652					
13	.095 or 10 light	3.8119	3.8627	4.3035	4.066					
14	.083	3.3304	3.3748	3.7599	3.5524					
15	.072	2.889	2.9275	3.2616	3.0816					
16	.065	2.6081	2.6429	2.9445	2.782					
17	.058	2.3272	2.3583	2.6274	2.4824					
18	.049 or 10 light	1.9661	1.9923	2.2197	2.0972					
19	.042	1.6852	1.7077	1.9026	1.7976					
20	.035	1.4044	1.4231	1.5855	1.498					
21	.032	1.284	1.3011	1.4496	1.3696					
22	.028	1.1235	1.1385	1.2684	1.1984					
23	.025 or $\frac{1}{40}$	1.0031	1.0105	1.1325	1.07					
24	.022	.8827	.8945	.9966	.9416					
25	.02 or 10	.8025	.8132	.906	.856					
26	.018	.7222	.7319	.8154	.7704					
27	.016	.642	.6506	.7248	.6848					
28	• 014	.5617	.5692	.6342	.5992					
29	.013	.5216	.5286	.5889	.5564					
30	·OI2	.4815	.4879	.5436	.5136					
31	or or 100	-4012	.4066	•453	.428					
32	.009	.3611	.3659	-4077	.3852					
33		.321	·3253	.3624	-3424					
34	·007	.2809	.2846	.3171	.2996					
35	•005 or 200	•2006	.2033	.2265	.214					
36	.004 or 280	.1605	.1626	.1812	.1712					

Thickness of Sheet Silver, Gold, etc.

By Birmingham Gauge for these Metals.

No.	Inch.	No.	Inch.	No.	Inch.	No.	Inch.	No.	Inch.	No.	Inch.
I	.004	7	.015	13	.036	19	.064	25	.095	31	.133
2	.005	8	.016	14	.041	20	.067	26	.103	32	.143
3	.008	9	.019	15	.047	21	.072	27	.113	33	.145
4	.01	10	.024) 16	.051	22	.074	28	.12	∖∖ 34	841.
(قِ	.013	/ II /	.029	17 /	.057	23	.077	29	.124	1 35	, \ .158
0 /	.013 //	12 /	.034	18	.061	24	.082	30	1.126	1 30	

Thickness.	Weight.	l hickness.	Weight.	Thickness.	Weight.	Thickness.	Weight.
Ins.	Lbs.	Ins.	Lba.	Ins.	Lbs.	Ins.	Lbs.
	3.25	\\ _	3.75	\{	4.5	'{	5
1.375	15.102	1.875	23.762	.75	11.406	3.25	54.916
1.5	16.475	2	25.346	1	15.208	3.5	59.14
1.625	17.848	2.25	28.514	1.25	19.01	3.75	63.365
1.75	19.221	2.5	31.682	1.5	22.812	4	67.589
1.875	20.594	2.75	34.851	1.75	26.614	4.25	71.813
2	21.967	3	38.019	2	30.415	4.5	76.038
2.25	24.712	3.25	41.187	2.25	34.217	4.75	80.96
2.5	27.458	3.5	44.355	2.5	38.019	i i	5.25
2.75	30.204	!	4	2.75	41.82		
3	32.95	100	1.60	3	45.623	.25	4.436
	3.5	.125	3.38	3.25	49 425	-5_	8.871
.125	1.479	.25 •5	6.759	3.5	53.226	.75	13.307
.25	2.957		10.138	3.75	57.028	I	17.742
·25 ·375	4.436	.75	13.518	4 25	60.83 64.632	1.25	22.176 26.613
·3/3	5.914	1.25	16.897	4.25		1.5	
·5 .625	7.393	1.5	20.277	()	4.75	1.75	31.049 35.484
•75	8.871	1.75	23.656	.25	4.013	2.25	
.875	10.35	2.73	27.036	.25	8.026		39.92
1 73	11.828	2.25	30.415	·5 ·75	12.036	2.5 2.75	44-355 48.791
1.125	13.307	2.5	33.795	1.75	16.052		53.226
1.25	14.785	2.75	37.174	1.25	20.066	3 3.25	57.662
1.375	16.264	3	40.554	1.5	24.079	3.25	62.097
1.5	17.742	3.25	43.933	1.75	28.092	3.75	66.533
1.625	19.221	3.5	47.313	2.73	32.105		70.968
1.75	20.699	3.75	50.692	2.25	36.118	4.25	75.404
1.875	22.178	1:		2.5	40.131	4.5	79.839
2	23.656	١,	4.25	2.75	44.144	4.75	84.275
2.25	26.613	.125	1.795	3	48.157	5	88.71
2.5	29.57	.25	3.591	3.25	52.17		
2.75	32.527	.5	7.181	3.5	56.184	11)	5.5
3	35.485	.75	10 772	3.75	60.197	.25	4.647
3.25	38.441	1	14.364	4	64.21	.5	9.294
	3.75	1.25	17.953	4.25	68.223	.75	13.94
	. }	1.5	21.544	4.5	72.235	1,2	18.587
.125	1.584	1.75	25 135	ij	5	1.25	23.234
.25	3.168	2	28.725	j.		1.5	27.881
∙375	4.752	2.25	32 316	.25	4.224	1.75	32.527
•5	6.336	2.5	35.907	-5	8.449	2	37.174
.625	7.921	2.75	39.497	∙75	12 673	2.25	41.821
•75	9.505	3	43 088	I	16.897	2.5	46.468
.875	11.089	3.25	16 679	1.25	21.122	2.75	51.114
1 125	12 673	3.5	50 269	1.5	25.346	3	55.761
1.125	14 257	3.75	53.86	1.75	29.57	3.25	60.408
1 25	15.841	, 4	57.45	2	33.795		65 055
1.375	17.425	\{	4.5	2.25	38.019	3.75	69.701
1.5 1.625	19.009	h 1	1 - 1	2.5	42.243		74.348
1.025	20.594	.25	3.802	2.75	46.468	4.25	78.995
ILLESTE	22.178	hat is weigh	7.604	3	50.692	4.5	83.643

ILLUSTRATION. - What is weight of a bar of iron 5.25 ins. in breadth by .75 inch in thickness

In column 7, as above, find 5.25; and below it, in column, .75; and opposite to take 13.307, which is 13 lbs. and .307 of a pound.

- parts of a pound and of a foot, operate according to rule laid down for table.

25.

Weight of Sheet Iron. (English. D. K. Clark.) PER SQUARE FOOT (at 480 lbs. per Cube Foot).

As by Wire-gauge used in South Staffordshire, England.

D000.	Weight.	Square Feet in r ton.	ТЪ	iokness.	Weight.	Square Feet in 1 ton.		ickness.	Weight.	Square Feet in 1 top
nch.	Lbs.	No.	No.	Inch.	Lbs.	No.	No.	Inch.	Lbs.	No.
)125	-5	4480	2	.0344	1.38	1623	10	.1406	5.63	398
)141	.562	3986	20	.0375	1.5	1493	9	.1563	6.25	358
>156	.625	3584	19	.0438	1.75	1280	8	.1719	6.88	326
)172	.688	3256	18	.05	2	1120	7	.1875	7.5	299
)188 168	.75	2987	17	.0563	2.25	996	6	.2031	8.13	276
1203	.813	2755	16	.0625	2.5	896	5	.2188	8.75	256
2219	.875	2560	15	.075	3	747	4	-2344	9.38	239
1234	.938	2388	14	.0875	35	640	3	.25	10	224
125	1	2240	13	.ı	4	560	2	.2813	11.25	199
182	1.13	1982	12	.1125	4.5	498	1	.3125	12.5	179
313	1.25	1792	11	.125	5	448		1	_	

Weight of Hoop Iron. (English.) PER LINEAL FOOT.

	W.G.	Weight.	Width.	W.G.	Weight.	Width.	W. G.	Weight.
-	No.	Lba,	Ins.	No.	Lbs.	Ins.	No.	Lbs.
	21	.067	1.125	17	.21	1.75	14	.484
	20	.0875	1.25	16	.27	2	13	.634
	19	.1216	1.375	15	-33	2.25	13	.714
	18	.1636	1.5	15	.36	2.5	12	.01

eight of Black and Galvanized Sheet Iron.

n's Table, founded upon Sir Joseph Whitworth & Co.'s Standard Birmingham Wire-Gauge.) (D. K. Clark.)

-Numbers on Holtzapffel's wire gauge are applied to thicknesses on Whitauge.

and We	ight of	of Sq. F	nate number ft. in 1 ton. Galvanised.	Gang	re and Wei Black Shee	ight of	of Sq. F	nate number t. in x ton Galvanized
Inch.	Lbs.	Sq. Ft.	Sq. Ft.	No.	Inch.	Lbs.	Sq. Ft.	Sq. Ft.
-3	12	187	i85	17	.06	2.4	933	876
28	11.2	200	197	18	.05	2	1120	1038
26	10.4	215	212	19	.04	1.6	1400	1274
24	9.6	233	229	20	.036	1.4	1556	1403
22	8.8	254	250	21	.032	1.28	1750	1558
2	8	280	275	22	.028	1.12	2000	1753
18	7.2	311	304	23	.024	.96	2333	2004
165	6.6	339	331	24	.022	.88	2545	2159
15	6	373	363	25	.02	.8	2800	2339
135	5.4	415	403	26	.018	.72	3111	2552
12	4.8	467	452	27	.016	.64	31	
I X	4.4	509	491	28	.014	.56	4	
195	3.8	589	<u>5</u> 66	29	.013	.52	\ 4	
185	3.4	659	630	30	.012	.48	\	
7 /	2.8	800	757 .	31	10.	1 .4	\	
6 5 /	2.6 /	862	813	32	.009	1 .36	ن ∖ د	

Weight of English Angle and T Iron. (D. K. Ch ONE FOOT IN LENGTH.

Note. - When base or web tapers in section, mean thickness is to be measure

Thick- ness.	1.5	1.625	1.75	1.875	2	2.125	2.25	2.375	1 2.5	2.625
Inch.	Lbs.									
125	-57	.62	.68	.73	.78	.83	.88	.94	.99	1.04
1875	.81	.89	97	1.05	1.13	1.21	1.20		1.45	1.52
	1.04	1.15	1.25	1.36	1.45	1.56	1.67	1.37	1.88	1.98
25			1.5				2.02		2.28	
3125	1.24	1.37	1.5	1.63	1.76	1.89	2.02	2.15	2.20	2.41
	2.875	3	3.125	3.25	3.375	3.5	3.625	3.75	3.875	4
125	1.14	1.2	1.25	1.3	1.45	1.41	1.46	1.51	1.56	1.62
1875	1.68	1.76	1.84	1.91	1.99	2.07	2.15	2.23	2.3	2.38
25	2.19	2.20	2.4	2.5	2.6	2.71	2.81	2.92	3.02	3.13
3125	2.67	2.8	2.93	3.06		3.32	3.45	3.58	3.71	3.84
375	3.13	3.28	3.44			3.91	4.06	4.22	4.38	4.53
4375	3.57	3.75	3.93	4.11	4.29	4.48	4.66	4.84	5.02	5.2
	4.5	4.75	5	5.25	5.5	5-75	6	6.25	6.5	6.75
1875	2.7	2.85	3.01	3.16	3.32	3.48	3.63	3.79	3.95	4.1
25	3.54	3.75	3.96		4.38	4.	4.79	5	5.21	5.42
3125	4.36	4.62	4.88	5.14	5.4	5.66	5.92	6.18	6.45	6.71
	5.16		5.78		6.41	6.72	7.03	7.34	7.66	7.97
375		5.47	6.65				8.11	8.48	8.84	9.21
1375	5.92			7.02	7.38	7.75			10	
	6.67	7.08	7.5	7.92	8.33	8.75	9.17	9.58		10.42
5625	7.38	7.85	8.32	8.79	9.26	9.73	10.2	10.66	11.13	12.6
	7.25	7.5	7-75	8	8.25	8.5	8.75	9	9.25	9.5
25	5.83	6.04	6.25	6.46	6.67	6.88	7.08	7.29	7.5	7.71
3125	7.23	7.49	7.75	8.01	8.27	8.53	8.79	9.05	9.31	9.57
375	8.59	8.91	9.22	9.53	9.84	10.16	10.47	10.78	11.09	11.41
375	9.93	10.3	10.66	11.03	11.30	11.76	12.12	12.49	12.85	13.22
5	11.25	11.67	12.08	12.5	12.92	13.33	13.75	14.17	14.58	15
625	12.54	13.01	13.48	13.94		14.88	15.35	15.82	16.20	16.76
25	13.8	14.32	14.84	15.36	15.89	16.41	16.93	17.45	17.97	18.49
	1.0	10.5	E.	11.5	12	12.5	13	13.5	14	14.5
375	12.03	12.66	13.28	13.91	14.53		-11			0.5
375	13.95	14.67	15.4	16.13	16.86	17.59	18.31	19.04	19.77	20.5
,	15.83	16.67	17.5	18.33	19.17	20	20.84	21.67	22.5	23.34
625	17.7	18.63	19.57	20.51	21.44	22.38	23.31	24.25	25.19	26.12
25	19.53	20.57	21.61	22.66	23.7	24.74	25.78	26.83	27.87	28.91
5	23.13	24.38	25.63	26.88	28.13	29.37	30.63	31.88	33.13	34.38
	12	12.5	13	13.5	14	15	16	17	18	19
25	23.7	24.74	25.78	26.83	27.87	20.05	32.03	34.12	36.2	38.28
	28.13		30.63	31.88	33.13	35.63	38.13			43.63
	.45	33.91	35.36	36.82	38.28		44.12			52.87
		38,33	22.20	41.67					56.67	

imerican rolled is slightly heavier.

Weight of Hoop Iron. (D. E. Clark) ONE FOOT IN LENGTH.

As by Wire-gauge used in South Staffordshire (England).

1					Widt	n is is	CHES.				
TESS.	.625	-75	.875	- 1	1.125	1.25	1.375	1.5	1.625	1.75	2
ıch.	Lb.	Lb.	Lb.	Lb.	Lb	Lb.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
344	.0716	.0861	·I	.115	.129	.144		.172		.201	.229
375	.0781	.0938	.109	.125	141	.156	.172	.188	.203	.219	.25
	.0911	.109	.128		.164		.2	.219	.238	.257	.292
15	.104	.125	.146	.167	.188	.208	.229	.25	.271		•333
1563	.117	.141	.164	.188	.211	.234	.258	.281	.305	.328	-375
1625	.13	.156	.182	.208	.234	.26	.286	.313	-339	.365	-417
75	.156	.188	.219	.25	.281	313	-344				-5
1875	.183	.219	.256	.293	.329	.366	.402	-438	475	.512	
:	.208	.25	.292	333	.375	.416	.458	.5	.543	.584	.667
:125	.234	.281	.328	375	.422	.469	.516	.563	.609	.656	•75
125	.26	-313	.365	417	.469	521	-573	.625	.677	.729	.833
	.293	.352	.4I	469	.527	.586	.645	.703	.762	.82	.938
:563	.326	.391	-456	-522	.587	.652	.717	.783		.913	1.04
719	.358	.43	.501	.573	.644	716	.788	.859	.931		1.15
875	.391	.469	-547	.625	.703	.781	.859	-938	1.02	1.09	1.25
031	.423	.508	-593	.677	.762	.836	.931	1.02	1.1	1.19	1.35
188	.456	-547	.638			912	1	1.09	1.19	1.28	1.46
344	-488	.586	.683		.879	977	1.07	1.17	1.27	1.37	1.56

CAST IRON.

Compute Weight of a Cast Iron Bar or Rod. ertain weight of a wrought iron bar or rod of same dimensions in ing tables, or by computation, and from weight deduct 2. th part. As . 1000: .9257: weight of a wrought bar or rod: to weight re. Thus, what is weight of a piece of cast iron 4 × 3.75 × 12 inches? bble, page 128, weight of a piece of wrought iron of these dimensions 32 lbs.

Then, 1000: .9257:: 50.692: 46.93 lbs.

Braziers² and Sheathing Copper.

ERS' SHEERS, 2 × 4 feet from 5 to 25 lbs, 2.5 × 5 feet from 9 to 250 lbs., and et and 4 × 6 feet, from 16 to 300 lbs. per sheet.

EING COPPER, 14 × 48 inches, and from 14 to 34 oz. per square foot.

W METAL, 14 × 48 inches, and from 16 to 34 oz. per square foot.

Weight of Corrugated Iron Roof Plates. FER SQUARE FOOT. (Birmingham Gauge.)

	I BIG ON	UARE FU	OI. (DI	n meenymeene v	cruuyc. j			٠.
Black.	Galvanized.	No.	Black.	Galvanized.	No.	Black.	Galvanized.	i
Oz.	Oz.		Oz.	Oz.		Oz.	Oz.	
26	29	23	20	22	25	16	18	
22	24 (24	18	20	26	14	16	

METALS.

Compute Weight of Metals of any I sions or Form.

les in Mensuration of Solids (page 360), ascertain viltiply it by weight of a cube inch, and product wil

WEIGHT AND STRENGTH OF WIRE, IRON, ETC. Weight and Strength of Warrington Iron Wire.

Manufactured by Rylands Brothers. (England.)

Weight	per	100	Lineal	Feet.
--------	-----	-----	--------	-------

No.	Diame- ter.	Weight	Breaking An- nealed.	Weight.	No.	Diameter.	Weight.	An- nealed.	Weight.
Gauge.	Inch	Lbs.	Lbs.	Lbs.	Gange.	Inch.	Lbs.	Lbs.	Lhs.
7/0	1/2	64.46	3490	5233	9	.146	5.5	298	447
6/0	11/30	56,66	3066	4603	10	.133	4.43	247	370
5/0		49.36	2673	4000	10.5	.125	4 03	218	327
4/0	135	42.53	2303	3457	II	.117	3.53	191	288
3/0	8/8 1/81	36.26	1963	2945	12	T.	2.66	145	217
2/0	11/30	30.46	1653	2473	13	.09	2.1	113	169
0	.326	27.36	1486	2226	14	.079	1.6	87	130
I	-3	23.3	1257	1885	15	.069	1.23	66	99
2	.274	19.36	1046	1572	16	.0625	.96	53	77
3	.25	16.13	873	1309	17	.053	.73	39	50
4	.229	13.53	732	1098	18	.047	.56	31	46
5	.209	11.26	610	913	19	.041	.43	23	35
6	.191	9.4	509	763	20	.036	-33	18	27
7 8	.174	7.8	422	633	21	.031 25	.26	14	21
8	.159	6.53	353	519	22 .	.028	.2	11	16

To Compute Length of 100 Pounds of Wire of a Given Diameter.

RULE.—Divide following numbers by square of diameter, in parts of an inch, and quotient is length in feet.

37.68 for wrought iron. 37.45 for steel. 33.42 for copper. 34.41 for brass. 13.64 for platinum. 28 for silver. 15.3 for gold.

WINDOW GLASS.

Thickness and Weight per Square Foot.

No.	Thickness.	Weight,	No.	Thickness.	Weight.	No.	Thickness.	Weight.
	Inch.	Oz.	1	Inch.	Oz.	1000	Inch.	Oz.
12	.059	12	17	.083	17	26	-125	26
13	.063	13	19	.001	19	32	.154	32
15	.071	15	21	.T	21	36	.167	36
16	.077	16	24	III	24	42	.2	42

Terne Plates.

Terne Plates-Are of iron covered with an amalgam of lead.

Thickness and Weight of Galvanized Sheet Iron.

Sheet 2 Feet in Width by from 6 to 9 Feet in Length (M. Lesferts).

Wire Gauge.	Weight per Sq. Foot.	Wire Gauge,	Weight per Sq. Foot.	Wire Gauge.	Weight per Sq. Foot.	Wire Gauge.	Weight per Sq. Foot.	Wire Gauge,	Weight per Sq. Foot.	Wire Gauge.	Weight per Sq. Foot
No	Oz.	No.	Oz.	No.	Oz.	No.	Oz.			No.	Oz.
20	12 /	26	15	23	20	20	27	17	36	14	53
8/	13 /	25	16	22	22	19		16	42	13	10
1	14	24	18	21	24	18	35	1 15	1 46	1 13	10

ter.	Thickn.	Weight.	Diameter.	Thickn.	Weight.	Diameter.	Thickn.	Weight.
	Inch.	Lbs.	Ins	ins.	Lbs.	Ins.	Ins.	Lbs.
.5	.875	157.59	29	.75 .875	218.7	40	.875	350.56
	I	181.33	i .		256.23	i	1	401.86
i	.625	114.1	1	1	294.05		1.125	453.46
	· <u>7</u> 5	137.84	30	.75	226.05	1	1.25	505.41
	.875	161.88	i	.875	264.8	42	.875	367.69
	I	186.23	į.	1	303.86	1	1	421.45
,	.625	120.23	1	1.125	343.22		1.125	472.52
	•75	145.19	31	•75	233.41		1.25	529.87
	.875	170.46	Ì	.875	273.38	44	.875	384.88
	1	196.03		I	313.66		1	441.1
,	.625	126.35		1.125	354-24	1	1.125	497.58
	•75	152.54	32	.75	240.75		1.25	554-42
	.875	179.03	H	.875	281.95	46	.875	402.01
	I	205.84	ll.	1	323.46		I	460.07
	.625	132.48	l l	1.125	365.27		1.125	519.64
	-75	159.89	33	• <u>7</u> 5	248.11		1.25	578.88
	.875	187.61		.875	290.53	48	.875	419.17
	1	215.64	11	I	333.26	1	1	480.29
ţ	.625	138.61	ll .	1.125	376.29	ì,	1.125	541.69
	•75	167.24	34	75	255 46	1	1.25	603.44
	.875	196.19	!	.875	299.11	50	.875	436.43
	1	225.44	li	I	343.06	1 1	I	499.89
ì	.625	144.73		1.125	387.33	1	1.125	563.75
	•75	174-59	35	.75	262.81	1 1	1.25	627.93
	.875	204.76	1	.875	307.68	52	.875	453.49
	I 60-	235.24	ļ	I	352.87		I	519.5
	.625	150.86	ء ا	1.125	398.35		1.125	585.81
	.75	181.95	36	.75	270.16	1	1.25	654.42
	.875	213.34	1	.875	316.26	55	.875	479.23
	.625	245.04 156.98	1	1	362.67	!	I	548.9
		189.3	:	1.125	409.28	1	1.125	618.91
	·75 .875		:	1.25	456.37		1.25	689.21 578.29
	1.0/3	221.92 254.85	37	·75 .875	277.51	. 58	1	
	.625	163.11	li	1.0/3	324.84	i I	1.125	
	.75	196.65	H	1.125	420.4	! .	1.25	725.93 800.22
	.875	230.5	1	1.25	468.65	60	1.375	597.92
	1.0/3	264.65	38	.75	284.86	, ω	1.125	674.01
	.625	169.23	30	.875	333 41	: :	1.125	750.45
	.75	204	!	1.0/3	382.27	1	1.375	827.17
	.875	239.07	i i	1.125	431.41	65	1.3/3	646.93
	1.0/3	274.45	11	1.25	480.89	0,	1.125	729.18
	.625	175.36	39	.75	292.21	1	1.25	811.73
	.75	211.35	39	.875	341.97		1.375	894.6
	.875	247.05		1.073	392.08	70	1.3/3	695.92
	1 1 1	284.25	ii .	1.125	442.44	, ,-	1.25	872.98
	.625	181.49	1	1.25	493.14	1	1.5	1051.25
	,3		••	,3	1 773-4	1		,,3

Equivalent Length of Pipe for a Socket.

 $\frac{d}{15} = l$. d representing diameter of pipe and l length in inchesional weight of two flanges for any diameter is computed equalible pipe.

.—These weights do not include any allowance for spigot and so or rule to compute thicknesses of pipes, flanges, etc., see page 5.

134 WEIGHT OF FLAT BOLLED BAR AND SQUARE STEEL

Weight of Flat Rolled Bar Steel. (D. K. Clark.) From .5 Inch to 8 Inches in Width. ONE FOOT IN LENGTH.

WIDTH IN INCHES.

Thick- ness.	-5	,625	.75	.875	1	1.25	1.5	1.75	2	2,25	2.5	2.75
Inch.	Lb.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbe.	Lia.	Lbs.	Lbs.	Lbs.	Lbs.
1/4	.425	.533	.64	•743	.85	1.06	1.28	1.49	1.7	1.91	2.13	2.34
216	.531	.665	.8	.929	1.06	1.33	1.59	1.86	2.13	2.39	2.66	2.93
3/8	.638	.798	.96	1.11		1.59			2.55	2.87	3.19	3.51
718	.744	.931	1.12	1.3	1.49	1.86	2.23	26	2.98	3-35	3.72	4.09
3/2	.85	1.06	1.28	1.49	1.7	2.13	2.55	2.98	3-4		4.25	4.68
2/16	-	1.2	1.44	1.67	1.91	2.39	2.87	3.35	3.83	4.3	4.78	5.26
%	-	1.33		1.86	2.12	2.66	3.19	3.72	4.25	4.78	5.31	
n	-	-	1.76	2.04	2.34	2.92	3.51	4.09	4.68	5.26	5.84	6.43
8/4	\equiv	-	1.92	2.23	2.55	3.19	3.83	4.46	5.	5.74	6.38	7.01
13/16	-	-	_	2.41	2.76	3.45	4.14	4.83	5.53	6.22		7.6
3/8	-	-	l —	2.6	2.98	3.72	4.46	5.21	5.95	6.69	7.44	8.18
145686145614561456145614561456145614561456145	-	-	—	_	3.19		4.78	5 58	6.38	7.17		8.77
1	-	-	_		3.4	4.25	5.1			7.65	8.5	9-35

WIDTH IN INCHES.

3	3.25	3.5	4	4.5	5	5.5	6	б.5	7	7-5	8
Lhs.	Lba.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.		Lbs.	Lbs.		Lbs.
2.55	2.76	2.98			4.26		5.1			6.38	6.8
3.19	3.45	3.72	4.25	4.78	5.32	5.84	6.38	6.9	7.44	7.97	8.5
3.83	4 14	4 46	5.1	5.74	6.38	7.02	7.66	8.28	8.92	9.56	10.2
4.46	4.83	5.21	5.95	6.7	7-44	8.18	8.92	9.66	10.4	11.2	11.9
5.1	5.53	5 95	6.8	7.66	85	9.36	10.2	I.I	11.9	12.8	13.6
5.74	6.22	6.69	7.65	86	9.56	10.5	11.5	12.4	134	14.3	15.3
	6.91	7.44	8.5	9.56	10.6	11.7	12.8	13.8	149	-5.9	17
7.01	7.6	8.18	9.35	10.5	11.7	12.9	14	15.2	16.4	17.5	18.7
7.65	8.29	8 93	10.2	11.5	12.8	14	15.3	16.6	17.9	19.1	20.4
8.20	8.98	9.67	11.1	124	13.8	15.2	16.6	18	19.3	20.7	22.3
	9.67										23.8
	10.4										
	11.1										

Weight of Rolled Square Steel.

From .125 Inch to 6 Inches Square. ONE FOOT IN LENGTH.

Side.	Weight.	Side.	Weight.	Side.	Weight.	Side.	Weight.	Side.	Weight
Inch.	Liss.	Ins.	Llis.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lls.
.125	.053		1.92	1.375	6.43	2.125	15.4	3.75	47.8
.1875	.119	.8125	2.24	1.4375	7.03	2.25	17.2	4	54.4
.25	.212	.875	2.6	1.5	7.65	2.375	19.2	4.25	61.4
.3125	-333	-9375	3.06	1.5625	83	2.5	21.2	4.5	68.9
·375	.478	I	34	1.625	8 98	2.625	23.5	4.75	76.7
-4375	.651	1.0625	3.83	1.6875	9.79	2.75	25.7	5	85
·8	.85	1.125	4.3	1.75	10.4	2.875	28.2	5.25	93.7
		1875	4.79	1.8125	11.2	∖ 3	∖ 30.6 ∖	5 5	102.8
		:	5.31	1.875	11.9	∖∖ 3.25	/ 32.9	// 5 75	/ 115 4
		15	5 86	2	13.6	3.5	0 r4 /	116	/ 133.4

Weight of Round Rolled Steel.

From .125 Inch to 12 Inches Diameter. ONE FOOT IN LENGTH.

am.	Weight.	Diameter.	Weight.	Diameter.	Weight.	Diam.	Weight.	Diam.	Weight.
:h.	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lbs.
5	.0417	.875	2.04	1.625	7.05	2.875	.22	5.75	88.3
75	.0939	-9375	2.35	1.6875	7.61	3	24.I	6	96.1
	.167	I	2.67	1.75	8.18	3.25	28.3	6.5	113.2
25	.26	1.0625	3	1.8125	8.77	3 5	32 7	7	130.8
5	·375	1.125	3.38	1.875	9.38	3.75	34.2	7.5	136.8
75	.511	1.1875	3.76	2	10.7	4	42.7	8	170.8
	.667	1.25	4.17	2.125	12	4.25	48.3	8.5	193.2
25	.845	1.3125	4.6	2.25	13.6	4.5	54.6	9	218.4
5	1.04	1.375	5.05	2.375	15.1	4.75	60.3	9.5	241.2
75	1.27	1.4375	5.18	2.5	16.7	5	66.8	10	267.2
	1.5	1.5	6.01	2.625	18.4	5.25	73.6	11	323
35	1.76	1.5625	6.52	2.75	20.2	5⋅5	80.8	12	334-3

Weight of Hexagonal, Octagonal, and Oval Steel. ONE FOOT IN LENGTH.

	BEXAG	HONAL.		1	OCTAG	ONAL	1	1	DVAL.	
1. r h	Weight	Diam. over Sides.	Weight.	Diam. over Sides.	Weight.	Diam. over Sides.	Weight.	Diam. over Sides.	Area.	Weight.
-	Lb.	Ins.	Lbs.	Inch.	Lbs.	Ins.	Lbs.	Ins.	Sq. In.	Lbs.
	.414	I	2.94	1%	.396	I	2.82	¾×%	.251	.853
	-736	11/8	3.73	36	.704	11/8	3.56	1/8×1/3	•344	1.17
	1.15	11/4	4.6	5%	I.I	11/4	4.4	1 X 1/2	.446	1.52
	1.66	13%	5.57	34	1.58	13%	5.32	11/4 × 1/8	.697	2.37
	2.25	13/2	6.63	3%	2.16	11/2	6.34	11/4 × 3/4	.884	3

Weight of a Square Foot of Sheet Copper. Wire Gauge of Wm. Foster & Co. (England.)

hic	kness.	Weight.	Thic	kness.	Weight.	Thic	kness.	Weight.
.1	Inch.	Lbs.	W. G.	Inch.	Lbs.	W. G.	Inch.	Lbs.
- 1	.306	14	11	.123	5.65	21	.034	1.55
- 1	.284	13	12	.109	5	22	.029	1.35
- 1	.262	12	13	.098	4.5	23	.025	1.15
- 1	.24	11	14	.088	4	24	.022	I
- 1	.222	10.15	15	.076	3.5	25	.019	.89
- 1	.203	9.3	16	.065	3	26	.017	.79
- 1	.186	8.5	17	.057	2.6	27	.015	.7
- 1	.168	7.7	18	.049	2.25	28	.013	.62
- [.153	7	19	.044	2	29	.012	.56
-	.138	6.3	20	.038	1.75	30	.011	.5

Weight of Composition Sheathing Nails.

ength.	Number in a Pound.	No.	Length.	Number in a Pound.	No.	Length.	oth. Number in a Pound.
inch.			Ins.			Ins.	
•75	290	4	1.125	201	7	1.125	IOI.
.875	260	5 /	1.25	199	8	1.25	٠-
- /	212	6	1	190	9	1.5	l

	Thick-	.625	of Flat ch to 8 Inc	A 9/3/07/08	Foot	dollar single
-	Inch. 4231 4231 4231 4231 4231 4231 4231 4231	.665 .798 .931 1.05 1.2 1.33	148. Lbs. 64 .743 .8 .929		1.5-1 1.92, 2.312 2.698 3.083 3.469 3.854 4.24 4.625 5.01 5.396	4. 4.9. 5.414 5.966 6.398 6.89
	Thick mas. Inch. 1. Lin. 2. 3 Lin. 2. 3 2. 78		4.38 4.93 4.093 5.006 5.319 5.632 5.945 6.258 6.57 6.883 7.196 7.509 7.822 8.448 8.76 9.073 9.386 9.073 9.386 9.099 10.01 10.32 10.64 10.95 11.26 11.28 11.89 12.2 12.51 12.83 13.14 13.45 13.77 14.08 14.39 14.7 15.02	5-081 5-081 5-082 5-087 6-097 6-436 6-775 7-114 7-452 7-791 8-13 8-469 8-807 9-824 10.5 10.88 11.52 11.89 12.19 12.53 12.87 13.21 13.25 13.89 14.57 14.91 15.58 15.58 15.92 16.66	5.781 6.167 6.527 7.323 7.708 8.474 8.864 9.635 10.02 10.41 10.79 11.186 11.95 12.33 12.72 13.49 13.49 14.64 15.03 16.57 16.96 17.34 16.57 16.96 17.34 18.51 18.51 18.51 18.51 18.51 18.51 18.51 18.51 18.51	7.383 7.875 8.367 8.367 9.381 9.843 10.33 10.83 11.32 11.32 11.32 11.37 12.3 12.8 13.78 14.27 14.76 15.75 16.73 17.22 17.72 18.21 18.7 19.19 20.18

Weight of English Angle and T Iron. (D. K. Class ONE FOOT IN LENGTH.

Note.—When base or web tapers in section, mean thickness is to be measured.

Thick-				SUM OF	WIDTH	AND DE	EPTH IN	INCHES.			
ness.	1.5	1.625	1.75	1.875	2	2.125	2.25	2.375	2.5	2.625	2.75
Inch. .125 .1875 .25 .3125	Lbs. •57 .81 1.04 1.24	Lbs. .62 .89 1.15 1.37	Lbs. .68 .97 1.25 1.5	Lbs. •73 1.05 1.36 1.63	Lbs. .78 1.13 1.46 1.76	Lbs. .83 1.21 1.56 1.89	Lbs. .88 1.29 1.67 2.02	Lbs94 1.37 1.77 2.15	Lbs. .99 1.45 1.88 2.28	Lbs. 1.04 1.52 1.98 2.41	1.00 1.00 1.0 2.05 2.54
	2.875	3	3.125	3.25	3.375	3.5	3.625	3.75	3.875	4	4-25
.125 .1875 .25 .3125 .375 .4375	1.14 1.68 2.19 2.67 3.13 3.57	1.2 1.76 2.29 2.8 3.28 3.75	1.25 1.84 2.4 2.93 3.44 3.93	1.3 1.91 2.5 3.06 3.59 4.11	1.45 1.99 2.6 3.19 3.75 4.29	1.41 2.07 2.71 3.32 3.91 4.48	1.46 2.15 2.81 3.45 4.06 4.66	1.51 2.23 2.92 3.58 4.22 4.84	1.56 2.3 3.02 3.71 4.38 5.02	1.62 2.38 3.13 3.84 4.53 5.2	1.72 2.54 3.33 4.1 4.86 5.56
	4.5	4.75	5	5-25	5.5	5-75	6	6.25	6.5	6.75	7
.1875 .25 .3125 .375 .4375 .5 .5625	2.7 3.54 4.36 5.16 5.92 6.67 7.38	2.85 3.75 4.62 5.47 6.29 7.08 7.85	3.91 3.96 4.88 5.78 6.65 7.5 8.32	3.16 4.17 5.14 6.09 7.02 7.92 8.79	3.32 4.38 5.4 6.41 7.38 8.33 9.26	3.48 4. 1 5.66 6.72 7.75 8.75 9.73	3.63 4.79 5.92 7.03 8.11 9.17 10.2	3·79 5 6.18 7·34 8.48 9·58 10.66	3.95 5.21 6.45 7.66 8.84 10 11.13	4.1 5.42 6.71 7.97 9.21 10.42 12.6	4.26 5.63 6.97 8.28 9.57 10.83 12.07
	7,25	7.5	7.75	8	8.25	8.5	8.75	9	9.25	9.5	9.75
.25 .3125 .375 .4375 .5 .5625 .625	5.83 7.23 8.59 9.93 11.25 12.54 13.8	6.04 7.49 8.91 10.3 11.67 13.01 14.32	6.25 7.75 9.22 10.66 12.08 13.48 14.84	6.46 8.01 9.53 11.03 12.5 13.94 15.36	6.67 8.27 9.84 11.39 12.92 14.41 15.89	6.88 8.53 10.16 11.76 13.33 14.88 16.41	13.75 15.35	7.29 9.05 10.78 12.49 14.17 15.82 17.45	7.5 9.31 11.09 12.85 14.58 16.29 17.97	7.71 9.57 11.41 13.22 15 16.76 18.49	13.58
	10	10.5	111	11.5	12	12.5	13	13.5	14	14.5	15
·375 ·4375 ·5 ·5625 ·625 ·75		12.66 14.67 16.67 18.63 20.57 24.38	13.28 15.4 17.5 19.57 21.61 25.63	13.91 16.13 18.33 20.51 22.66 26.88	14.53 16.86 19.17 21.44 23.7 28.13	17.59 20 22.38 24.74 29.37	18.31 20.84 23.31 25.78 30.63	19.04 21.67 24.25 26.83 31.88	19.77 22.5 25.19 27.87 33.13	20.5 23.34 26.12 28.91 34.38	21.22 24.17 27.06 29.95 35.63
	12	12.5	13	13.5	14	15	16	1.7	18	19	20
.625 .75 .875		24.74 29.37 33.91 38.33	30.63 35.36	26.83 31.88 36.82 41.67	33.13 38.28	35.63		34.12 40.63 47.02 53.33	49.95	38.28 43.63 52.87 60	

Note. - American rolled is slightly heavier.

Weight of Cast and Wrought Iron, Steel, Copper, and Brass, of a given Sectional Area.

PER LINEAL FOOT.

Area.	Wrought Iron.	Cast Iron.	Steel.	Copper.	Lend.	Brass.	Gun-mete
Sq. Ins.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lha.
.I	.336	-313	-339	-385	.492	-357	.38
.2	.671	.626	.677	-771	.984	-713	-759
.3	1.007	-939	1.016	1.156	1.476	1.07	1.130
-4	1.343	1.251	1.355	1.542	1.967	1.427	1.510
	1.678	1.564	1.694	1.927	2.461	1.783	1.804
.5	2.014	1.877	2.032	2.312	2.953	2.14	2.27
	2.35	2.10	2.371	2.608	3.445	2.497	2.65
·7	2.685	2.503	2.71	3.083	3.937	2.853	3.03
.9	3.021	2.816	3.049	3.469	4.429	3.21	3.41
1	3.357	3.129	3.387	3.854	4.922	3.567	3.79
I.I	3.692	3.442	3.726	4.24	5.414	3.923	
1.2	4.028		4.065	4.625	5.906	4.28	4.17
		3.754				4.20	4.55
1.3	4.364	4.067	4.404	5.01	6.398	4.636	4.93
1.4	4.699	4.38	4.742	5.396	6.89	4.993	5.31
1.5	5.035	4.693	5.081	5.781	7-383	5.35	5.69
1.6	5.371	5.006	5.42	6.167	7.875	5.707	6.07
1.7	5.706	5.319	5.759	6.552	8.367	6.063	6.45
1.8	6.042	5.632	6.097	6.937	8.859	6.42	6.83
1.9	6.378	5.945	6.436	7.323	9.351	6.777	7.21
2	6.714	6.258	6.775	7.708	9.843	7.133	7.59
2.1	7.049	6.57	7.114	8.094	10.33	7.49	7.97
2.2	7.385	6 883	7.452	8.474	10.83	7.847	8.35
2.3		7.196	7.791	8.864	11.32	8.203	8.73
2.4	7.721 8.056	7.509	8.13	9.25	11.81	8.56	9.11
2.5	8.392	7.822	8.469	9.635	12.3	8.917	9.49
2.6	8.728	8.135	8.807	10.02	12.8	9.273	9.87
2.7	9.063	8,448	9.146	10.41	13.20	9 63	10.25
2.8	9.399	8.76	9.485	10.79	13.78	9.98	10.63
2.9	9.734	9.073	9.824	11.18	14.27	10.34	10.03
	10.07	9.386	10.16	11.56	14.76	10.7	11.39
3							
3.1	10.41	9.699	10.5	11.95	15.26	11.06	11.77
3.2	10.74	10.01	10.84	12.33	15.75	11.41	12.15
3-3	11.08	10.32	11.18	12.72	16.24	11.77	12.53
3.4	11.41	10.64	11.52	13.1	16.73	12.13	12.91
3.5	11.75	10.95	11.86	13.49	17.22	12.48	13.29
3.6	12.08	11.26	12.19	13.87	17.72	12.84	13.67
3.7	12.42	11.58	12.53	14.26	18.21	13.2	14.05
3.8	12.76	11.89	12.87	14.64	18.7	13.55	14-43
39	13.09	12.2	13.21	15.03	19.19	13.91	14.81
4	13.43	12.51	13.55	15.42	19.69	14.27	15.19
4.1	13.76	12.83	13.89	15.8	20.18	14.62	15.57
4		13.14	14.23	16.19	20.67	14.98	15.95
		13.45	14-57	16.57	21.16	15.34	16.33
		13.77	14.91	16.96	21.65	15.69	16.71
		14.08	15.24	17.34	22.15	16.05	17.09
		14.39	15.58	17.73	22.64	16.41	1747
		14.7	15.92	18.11	23.13	16.76	17.85
		15.02	16.26	18.5	23.62	17.12	18.53
		15.33	16.6	18.88	24.12	84.51	1881
		15.64	16.94	19.27	24.61	17.83	

7eight of Lead and Tin Lined Pipe per Foot. From .375 Inch to 5 Inches in Diameter. (Tatham & Bros.)

		-PIPE.		l		BLOCK-1	IN PIPE.		
ım.	Weight.	Diam.	Weight.	Diam.	Weight.	Diam.	Weight.	Diam.	Weight.
8.	Lbs.	Ins.	Lbs.	Inch.	Lb.	Inch.	Lbs.	Ins.	Lbs.
5	2	4	8	·3 7 5	-3594	.625	-5	1.25	1.25
	3	4.5	6	∙375	∙375	.625	.625	1.25	1.5
	3.5	4.5	8	•375	-5	·75	.625	1.5	2
	5	5	8	∙5	∙375	·75	•75	1.5	2.5
	5	5	10	∙5	•5	I	·93 75	2	2.5
	6	5	12	∙5	.625	I	1.125	2	3

WATER-PIPE. From .375 Inch to 5 Inches in Diameter.

					•						
١.	Thick- ness.	Weight.	Diam.	Thick- ness.	Weight.	Diam.	Thick- ness.	Weight.	Diam.	Thick- ness.	Weight.
	Inch.	Lbs.	Ins.	Inch.	Lbs.	lns.	Inch.	Lbs.	Ins.	Inch.	Lbs.
	.08	.625	.625	.25	3.5	1.25	.19	4.75	2.5	.3125	14
	.12	I	•75	.I	1.25	1.25	.25	6	2.5	-375	17
	.16	1.25	•75	.12	1.75	1.5	.12	3	3	.1875	9
	.19	1.5	.75	.16	2.25	1.5	.14	3.5	3	.25	12
	.34	2.5	.75	.2	3	1.5	.17	4.25	3	.3125	16
	.07	.0545	•75	.23	3.5	1.5	.19	5 6.5	3	-375	20
	.09	.75	•75	-3	4.75	1.5	.23	6.5	3.5	.1875	9.5
	.11	I	I	·I	1.5	1.5	.27	8	3.5	.25	15
	.13	1.25	I	·II	2	1.75	.13	4	3.5	.3125	18.5
	.16	1.75	I	.14	2.5	1.75	.17	5 6.5	3.5	.375	22
	.19	2	I	.17	3.25	1.75	.21	6.5	4	.1875	
	.25	3	I	.21	4	1.75	.27	8.5	4	.25	16
	.08	.0727	I	.24	4.75	2	.15	4.75	4	.3125	21
	.09	I	I	•3	6	2	.18	6	4	-375	25
	٠13	1.5	1.25	.I	2	2	.22	7	4.5	.1875	14
	.16	2	1.25	.12	2.5	2	.27	9	4.5	.25	18
	.2	2.5	1.25	.14	3	2.5	.1875	8	5	.25	20
	.22	2.75	1.25	.16	3.75	2.5	.25	II	5	-375	31

Marks and Weight of Tin-plates. (English.)

ARK BAND.	Plates per Box.	Dimensions.	Weight per Box.		Plates per Box.	Dimensions.	Weight per Box
	No.	Ins.	No.		No.	Ins.	No.
1 Com.	225	13.75×10	112	DXXXX	100	16.75 × 12.5	189
••••	225	13.25X 9.75	105	SDC	200	15 X 11	168
• • • • • •	225	12.75X 9.5	98	SDX	200	15 X 11	188
	225	13.75×10	119	SDXX	200	15 X 11	200
	225	13.75×10	157	SDXXX	200	15 X11	230
• • • • • •	225	13.75×10	140	SDXXXX	200	15 X 11	251
	225	13.25X 9.75	133	SDXXXXX.	200	15 X 11	272
• • • • • •	225	12.75X 9.5	1/26	SDXXXXXX.	200	15 X11	293
	225	13.75×10	161	Leaded IC	112	20 X 14	112
	225	13.75×10	182	" IX	112	20 X 14	140
X	225	13.75×10	203	ICW	225	13.75×10	112
XX	225	13.75×10	224	IXW	225	13.75×10	140
XXX.	225	13.75×10	245	CSDW	200	15 X-	' - 3
	100	16.75×12.5	98	CHW	100	16.75	
	100	16.75×12.5	126	XIIW	001	16.75	
	100	16.75×12.5	147	TT	.\ 450	13.7	
	1 200 l	16.75×12.5		XTT	.\ 450	13.	

When the plates are 14 by 20 inches, there are 112 in a

Weight of Cast and Wrought Iron, Steel, Coppe Brass, of a given Sectional Area.

PER LINEAL FOOT.

Sectional Area.	Wrought Iron.	Cast Iron.	Steel.	Copper.	Lead.	Brass.
Sq. Ins.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
I.	.336	.313	-339	-385	-492	-357
.2	.671	.626	.677	-771	.984	.713
•3	1.007	-939	1.016	1.156	1.476	1.07
-4	1.343	1.251	1.355	1.542	1.967	1.427
-5	1.678	1.564	1.694	1.927	2.461	1.783
.5 .6	2.014	1.877	2.032	2.312	2.953	2.14
·7 .8	2.35	2.19	2.371	2.698	3.445	2.497
.8	2.685	2.503	2.71	3.083	3.937	2.853
.9	3.021	2.816	3.049	3.469	4.429	3.21
I	3.357	3.129	3.387	3.854	4.922	3.567
I.I	3.692	3.442	3.726	4.24	5.414	3.923
1.2	4.028	3.754	4.065	4.625	5.906	4.28
1.3	4.364	4.067	4.404	5.01	6.398	4.636
1.4	4.699	4.38	4.742	5.396	6.89	4.993
1.5	5.035	4.693	5.081	5.781	7.383	5.35
1.6	5.37I	5.006	5.42	6.167	7.875	5.707
1.7	5.706	5.319	5.759	6.552	8.367	6.063
1.8	6.042	5.632	6.097	6.937	8.859	6.42
1.9	6.378	5.945	6.436	7.323	9.351	6.777
2	6.714	6.258	6.775	7.708	9.843	7.133
2.1	7.049	6.57	7.114	8.094	10.33	7.49
2.2	7.385	6 883	7.452	8.474	10.83	7.847
2.3		7.196	7.791	8.864	11.32	8,203
2.4	7.721 8.056	7.509	8.13	9.25	11.81	8.56
2.5	8.392	7.822	8.469	9.635	12.3	8.917
2.6	8.728	8.135	8.807	10.02	12.8	9.273
2.7	9.063	8.448	9.146	10.41	13.29	963
2.8	9.399	8.76	9.485	10.79	13.78	9.98
2.9	9.734	9.073	9.824	11.18	14.27	10.34
3	10.07	9.386	10.16	11.56	14.76	10.7
3.1	10.41	9.699	10.5	11.95	15.26	11.06
3.2	10.74	10.01	10.84	12.33	15.75	11.41
3.3	11.08	10.32	11.18	12.72	16.24	11.77
3.4	11.41	10.64	11.52	13.1	16.73	12.13
3.5	11.75	10.95	11.86	13.49	17.22	12.48
3.6	12.08	11.26	12.19	13.87	17.72	12.84
3·7	12.42	11.58	12.53	14.26	18.21	13.2
3.8	12.76	11.89	12.87	14.64	18.7	13.55
3.9	13.09	12.2	13.21	15.03	19.19	13.91
4	13.43	12.51	13.55	15.42	19.69	14.27
4.I	13.76	12.83	13.89	15.8	20.18	14.62
4.2	14.1	13.14	14.23	16.19	20,67	14.98
4.3	14.43	13.45	14-57	16.57	21.16	15.34
4.4	14.77	13.77	14.91	16.95	21.65	15.69
4-5	15.11	14.08	15.24	17.34	22.15	16.05
4.6	15.44	14.39	15.58	17.73	22.64	16.41
	15.78	14.7	15.92	18.11	23.13	16.76
	11	15.02	16.26	18.5	23.62	17.12
	5	25.33	16.6	18.88	24.12	17.48
	Ž	15.64	16.94	19.27	24.61	17.83

eight of Lead and Tin Lined Pipe per Foot.

From .375 Inch to 5 Inches in Diameter. (Tatham & Bros.)

	WASTE	-PIPE.				BLOCK-1	IIN PIPE,		
m.	Weight.	Diam.	Weight.	Diam.	Weight.	Diam.	Weight.	Diam.	Weight.
3.	Lbs.	Ins.	Lbs.	Inch.	Lb.	Inch.	Lbs.	Ins.	Lbs.
5	2	4	8	·375	-3594	.625	-5	1.25	1.25
-	3	4.5	6	-375	-375	.625	.625	1.25	1.5
	3.5	4.5	8	-375	-5	.75	.625	1.5	2
	5	5	8	.5	-375	.75	•75	1.5	2.5
	5	5	10	∙5	-5	I	9375	2	2.5
	6	5	12	∙5	.625	1	1.125	2	3

WATER-PIPE. From .375 Inch to 5 Inches in Diameter.

			0,0							
Thick- ness.	Weight.	Diam.	Thick- ness.	Weight.	Diam.	Thick- ness.	Weight.	Diam.	Thick- ness.	Weight.
Inch.	Lbs.	lns.	Inch.	Lbs.	Ins.	Inch.	Lbs.	Ins.	Inch.	Lbs.
.08	.625	.625	.25	3.5	1.25	.19	4.75	2.5	.3125	14
.12	I	.75	.I	1.25	1.25	.25	6	2.5	-375	17
.16	1.25	.75	.12	1.75	1.5	.12	3	3	.1875	9
.19	1.5	.75	.16	2.25	1.5	.14	3.5	3	.25	12
1.34	2.5	.75	.2	3	1.5	.17	4.25	3	.3125	16
.07	.0545	•75	.23	3.5	1.5	.19		3	.375	20
.00	.75	.75	.3	4.75	1.5	.23	5 6.5	3.5	.1875	9.5
.11	1	1	.1	1.5	1.5	.27	8	3.5	.25	15
.13	1.25	1	.11	2	1.75	.13	4	3.5	.3125	18.5
.16	1.75	1	.14	2.5	1.75	.17	5	3.5	-375	22
.19	2	1	.17	3.25	1.75	.21	6.5	4	.1875	12.5
.25	3	1	.21	4	1.75	.27	8.5	4	.25	16
l.oš	.0727	1	.24	4.75	2	.15	4.75	4	.3125	21
.00	1	1	.3	6	2	81.	6	4	.375	25
.13	1.5	1.25	ı.i	2	2	.22	7	4.5	.1875	
.16	2	1.25	.12	2.5	2	.27		4.5	.25	18
.2	2.5	1.25	.14	3	2.5	.1875	9	5	.25	20
.22	2.75	1.25	.16	3.75	2.5	.25	II	5	.375	31

Marks and Weight of Tin-plates. (English.)

IRK RAND.	Plates per Box.		Weight per Box.	MARK OR BRAND.	Plates per Box.	Dimensions.	Weight per Box
	No.	Ins.	No.		No.	Ins.	No.
r Com.	225	13.75×10	112	DXXXX	100	16.75×12.5	189
	225	13.25X 9.75	105	SDC	200	15 X11	168
	225	12.75X 9.5	98	SDX	200	15 X 11	188
	225	13.75×10	119	SDXX	200	15 X 11	200
	225	13.75×10	157	SDXXX	200	15 X11	230
	225	13.75×10	140	SDXXXX	200	15 X11	251
• • • • • •	225	13.25X 9.75	133	SDXXXXX.	200	15 ×11	272
	225	12.75X 9 5	1/26	SDXXXXXX.	200	15 X 11	293
	.225	13.75×10	161	Leaded IC	112	20 X 14	112
	225	13.75×10	182	" IX	112	20 X 14	140
X	225	13.75×10	203	ICW	225	13.75×10	112
XX	225	13.75×10	224	IXW	225	13.75×10	140
XXX.	225	13.75×10	245	CSDW	200	15	
	100	16.75×12.5	98	CHW	100	16.7!	
	100	16.75×12.5	126	XIIW	100	16.7	
	100	16.75×12.5	147	TT	.\ 450	/ 13.	
	100	16.75×12.5	168	XTT	.\ 450	13.	

When the plates are 14 by 20 inches, there are 112 in a

Iron Welded Steam, Gas, and Water Pipe. Standard Dimensions.

National Tube Works Company.

D	iameter.		Thickness.	Circum	ference.	Tran	sverse A	eas.	per Sq	of Pipe Foot of	252	4)
In- ternal.	Ex- ternal.	Actual Int'nal.	Thie	Ex- ternal.	In- ternal.	Ex- ternal.	In- ternal.	Metal.	Ex- ternal.	In- ternal,	Lengthe taining Cube Fo	Weight
Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Sq. Ins.	Sq. Ins.	Sq.Ins.		Feet.	Feet.	Lbi
.125	-4	.27	.07	1.27		.13	.06	.07	9.44	14.15	1	4
.25	.54	.36	.09	1.7	1.14		.I	.12		10.49		-4
-375	.67		.09	2.12				.17	5.66	7.73	751.2	1
-5	.84		.II	2.64	1.96		.3	.25			472.4	.2
-75	1.05		.II	3.3	2.59			•33	3.64	4.63	270	1.1
1	1.31	1.05		4.13	3.29		.86	+49	2.9	3.64	166.9	
1.25	1.66				4.33	2.16	1.5	.67	2.3	2.77	96.2	2.5
1.5	1.9	1.61	.14	5.97			2.04	.8	2.01	2.37	70.7	2.6
2	2.37	2,07	.15	7.46	6.49	4.43	3.36	1.07	1.61	1.85	42.9	3.6
2.5	2.87	2.47	,20	9.03	7.75	6.49	4.78	1.71	1.33	1.55	30.1	5-1
3	3.5	3.07	.22	II	9.64	9.62	7.39	2.24	1.00	1.24	19.5	7.
3.5	4	3-55	.23	12.57	11.15	12.57	9.89	2.68	-95	1.08	14.6	9
4	4.5	4.03	.24	14.14	12.65	15.9	12.73	3.17	.85	.95	11.3	10.0
4.5	5	4.51	.25	15.71	14.16	19.63	15.96	3.67	.76	.85	9	12.
5	5.56	5.04	.26	17.48	15.85	24.31	19.99	4.32	.69	.76	7.2	14.5
6	6 62	6.06	.28	20.81	19.05	34.47	28.89	5.58	.58	.63	5	18.
7	7.62	7.02	.30	23.95	22,06	45.66	38.74	6.93	.5	-54	3.7	23.4
8	8.62	7.98	.32	27.1	25.08	58.43	50.04	8,39	-44	+48	2.9	28.1
9	9.62			30.24	28.08	72.76	62.73	10.03	-4	-43		33-7
10	10.75	10,02	.37	33.77	31.48	90.76	78.84	11.92	-35	-38	1.8	40.0
11	12	11.25			35-34		99.4	13.7	.32	-34	1.5	45.9
12	12.75	12	.37	40.06	37.7	127.68	113.1	14.58	-3	.32	1.3	48.9
13	14	13.25	.37	43.98	41.63	153.94	137.89	16.05	,27	.20		53.9
14	15	14.25				176.72			.26	.27		57.8
15	16	15.25		50.27	47.91	201 06	182.66	18.41	.24	.25	.8	61.7
-	18	17.25		56.55	54.19	254-47	233.71	20.76	.21	.22	.6	69.6
-	20	19.25		62,83	60.48	314.16	291.04	23.12	.19	,20		77.5
-	22	21.25	.37	69.12	66,76	380.13	354.66	25.48	.17	.18		85.4
-	24	23.25	.37	75.4	73.04	452 39	424.56	27.83		.16		93.3

Lap-welded Steel, Semi-steel, Special Locomotive and Franklinite Boiler-Tubes.

STANDARD DIMENSIONS. National Tube Works Company.

Diam	neter.	chess.	989	Circum	ference.	Tra	nsverse A	reas.	Lengt Sq. of Su	Foot	elght r Foot
Ex- ternal.	ternal.	Thickn	Wire	Ex- ternal.	In- ternal.	Ex- ternal.	In- ternal.	Metal.	Ex- ternal.	Iu- ternal.	* 2
Ins.	Ina.	Ins.	No.	Ins.	Ins.	Sq. Int.	Sq. Ins.	Sq. Ins	Feet.	Feet.	Lbs.
1	.834	.083	14	3.142	2.62	.785	.546	.239	3.82	4.58	.8:
1.25	1.084	.083	14	3.927	3.405	1.227	.923	.304	3.056	3.524	1.0
	- 21	,095	13	4.712	4.115	1.767	1.348	.419	2.546	2.916	1.4
		JOQ	12	5.498	4.813	2.405	1.843	.562	2.183	2.493	1.9
		*00	12	6.283	5.598	3.142	2.494	.648	1.91	2.144	2.3
			-	7.060	6.384	3 976	3.243	•733	1.698	1.88	2.4
				954	7.1	4.909	4.011	8 08. /	1.528	1.69	3.0
				, y	7.885		4.948	1000		7.523	133
				5	8.67	7.00		80.1 / E	6/1.27		4/3

Lap Welded Charcoal Iron Boiler Tubes. Standard Dimensions.

National Tube Works Company.

iam	eter.	mess.	. 4	Circum	ference.	Trat	sverse A	resa.	Sq.	h per Foot rface.	Weight
á.	In- ternal.	Thickn	Wire	Ex- ternal.	In- ternal.	Ex- ternal.	In- ternal.	Metal.	Ex- ternal.	In- ternal.	Foot.
	Ins.	Ins.	No.	Ins.	Ins.	Sq. Ins.	Sq. Ins.	Sq. Ins.	Feet.	Feet.	Lbs.
	.86	.072	15	3.14	2.69	.78	-57	21	3.82	4.46	.71
25	.98	.072	15	3.53	3.08	.99	.76	24	3.39	3.89	.8
5	1.11	.072	15	3.93	3.47	1.23	.96		3.06	3.45	.89
3	1.15	.083	14	4.12	3.6	1.35	1.03	.32	2.91	3.33	1.08
75	1.21	.083	14	4.32	3.8	1.48	1.15	-34	2 78	3.16	
100	1.33	.083	14	4.71	4.19	1.77	1.4	-37	2.55	2.86	1.24
15	1.43	.095	13	5.1	4.51	2.07	1.62	.46	2.35	2.66	1.53
;	1.56	.095	13	5.5	4.9	2.4	1.91	-49	2.18	2.45	1.66
15	1.68	.095	13	5.89	5.29	2.76	2.23	-53	2 04	2.27	; 1.78
	1.81	.095	13	6.28	5.69	3.14	2.57	.57	1.91	2.11	1.91
15	1.93	.095	13	6.68	6.08	3.55	2.94		1.8		
ĭ	2,06	.095	13	7.07	6.47	3.98	3.33			1.85	2.16
5	2,16		12	7.46	6.78	4.43	3.65	.78	1.61		
_	2.28	,TOO	12	7.85	7.17	491	4.00	.82	1.53	1.67	2.75
	2.53	.100	12	8.64	7.95	5.94	5.03	.9	1.39	1.51	
5	2.66	.100	12	9.03	8.35	6.49	5.54	-95	1.33	1.44	3.18
-	2.78	.100	12	9.42	8.74	7.07	6.08	.99	1.27	1.37	
	3.01	.12	II	10.21	9.46	8.3	7.12	1.18	1.17	1.26	3.96
	3.26		11	II	10.24	9.62	8.35		1.09	1.17	
	3.51	.12	II	11.78	11.03	11.04	9.68	1.37	1.02	1.00	
	100000	1	10	12.57	11.72	12.57	10.04			.02	
	3-73	.134	10	13.35	12.51		12.45	1.73	.95	.96	5.47 5.82
	3.98	.134	1 -7	14.14	13.29	14.19	14.07		.85		6.17
	4.48	.134	10	14.92	14.08					.9	
	1	.134		1			15.78			.85	6.53
	4.7	.148	9	15.71	14.78				.76	.81	7.58
	4-95		9	16.49	15.56	21.65	19.27			-77	7.97
	5.2	.148	9	17.28	16.35	23.76	21.27		.7	.73	8.36
	5.67		8	18.85	17.81	28.27	25.25	3.02	.64	.67	10.16
	6.67		8	21.99	20.95	38.48	34.94		.55	.57	11.9
	7.67	.165	8	25.13	24.I	50.27		4.06	.48	.50	13.65
	8.64		7	28.27	27.14		58.63		.42	.44	16.76
	9.59		6	31.42	30.14		72.29		.38	4	20.99
	10.56		. 5	34.56	33.17				.35	.36	25.03
	11.54	.229	4.5	37.7	36.26		104.63		.32	.33	28.46
	12.52		4	40.84	39.34				.29	.3	32.06
	13.5	.248	3.5		42.42		143.22			.28	36
	14.48		3	47.12	45.5		164.72			.26	40.3
	15.43	.284	2	50.26	48.48	201.06	187.04	14.02	.24	.25	47.11

E 1.—For diameters from 16 up to and including 24 ins. O D. details conformance with the circumstances, as there is not a 28 varying.

in estimating effective heating or evaporating surfa; "Aquids by steam, superheating steam, or transferrin mean surface of Tubes is to be mean surface of the steam of the ste

Weight of Seamless Drawn Copper Tubes
American Tube Works. (Boston.)
BY EXTERNAL DIAMETER, ONE FOOT IN LENGTH,

Stubs' W. G. From 25 Inch to 12 Ins.—f full, I light.

No.	20	19	18	17	16	15	14	13	12
Ins.	1/32 /	3/64 1	3/64 1	1/16/	1/16 f	5/64 1	5/64 f	3/32 f	7/64
Diamet'r.	Lbs.	Lbs.	Lba.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
.25	.09	.I	,12	.13	.14	.15	.17	.18	1 .19
-375	.14	.16	.19	.23	.24	.26	.29	.32	-35
-5	.2	.23	.27	.31	-34	-37	.42	.47	.52
.625	.25	.29	-34	-4	-44	.48	-55	.61	.69
-75	-3	.36	.42	-49	-54	.59	.67	.76	.85
.875	.36	.42	-49	.58	.64	•7	.8	.9	1.02
1	.4I	.48	-57	.67	174	.Sr	-93	1.05	1.18
1.125	.46	-55	.64	.76	.83	.92	1.05	1.19	1.35
1.25	.52	.61	.71	.84	-93	1.03	1.18	1.34	1.52
1.375	-57	.68	-79	.93	1.03	1.14	1.31	1.48	1.68
1.5	.62	-74	.86	1.02	1.13	1.25	1.43	1.63	1.85
1.625	.68	.8	-94	I.II	1.23	1.36	1.56	1.77	2.02
1.75	-73	.87	1.01	1.2	1.33	1.47	1.69	1.92	2.18
	.78	.93	1.00	1.29	1.43	1.58	1.81	2.06	
1.875	.84	1 93	1.16						2.35
2		100000		1.37	1.53	1.69	1.94	2.21	2.51
2.125	.89	1.06	1.24	1.46	1.63	1.8	2.07	2.35	2.68
2.25	-94	1.13	1.31	1.55	1.73	1.91	2.19	2.5	2.85
2.375	1	1.19	1.39	1.64	1,82	2.02	2.32	2.64	3.01
2.5	1.05	1.25	1.46	1.73	1.92	2.13	2.45	2.79	3.18
2.625	1.1	1.32	1.54	1.82	2.02	2,23	2.57	2.93	3.35
2.75	1.16	1.38	1.61	1.9	2,12	2.34	2.7	3.08	3.51
2.875	1.21	1.45	1.68	1.99	2.22	2.45	2.83	3.22	3.68
3	1.26	1.51	1.76	2.08	2.32	2.56	2.95	3.37	3.84
3.25	1.37	1.64	1.91	2.26	2.52	2.78	3.21	3.66	4.18
3.5	1.48	1.77	2.06	2.43	2.72	3	3.46	3.95	4.51
3.75	1.58	1.9	2.21	2.61	2.92	3.22	3.71	4.24	4.84
4	1.69	2.02	2.36	2.79	3.11	3.44	3 97	4.53	5.17
4.25	1.8	2.15	2.51	3.14	3.31	3.66	4.22	4.82	5.51
4.5	1.9	2.28	2.65	3.32	3.51	3.88	4.47	5.11	5.84
4.75	2.01	2.41	2.8	3.49	3.71	4.1	4.73	5.4	6.17
5	2.12	2.54	2.95	3.67	3.91	4.32	4.98	5.69	6.5
5.25	2.23	2.66	3.1	3.85	4.11	4.54	5.23	5.98	6.84
5.5	2.34	2.79	3.25	3.85	4.3	4.76	5.49	6.27	7.17
5.75	2.44	2.92	3.4	4.02	4.5	4.98	5.74	6.56	7.5
6	2.55	3.05	3.55	4.2	4.7	5.2	5.99	6.85	7.83
6.25	2.66	3.18		4.38		5.41	6.25	7.14	8.17
6.5	2.76	3.31	3.85	4.55	4.9	5.63	6.5		8.5
6.5	2.87			4.73	5.1	5.85	6.75	7-43	8.83
6.75		3.44	4		5.3	6.07		7.72	
7	2.98	3.56	4.15	4.91	5.49		7.01	8.01	9.16
7.25	3.09	3.69	4.3	5.09	5.69	6.29	7.26	8.30	9.5
7.5	3.19	3.82	4.45	5.26	5.89	6.51	7.51	8.59	9.83
7.5	3.41	4.08	4.74	5.62	6.29	6.95	8.02	9.17	10.49
X.s		4.33	5.04	5.97	6.68	7.39	8.52	9.75	11.16
		4.59	5.34	6,33	7.08	7.83	9.03	10.33	11.82
			5.64	6,68	7.48	8.26	9.54	10.91	12.49
			14	7.03	7.87	8.7	10.05	11.49	13.15
				. 70	8.27	9.14	10.55	12.07	13.82
					8.67	9.58	00.11	12.65	14.48

0.	10	9	8	7	6	5	4	3	2	1
	9/64 1	9/64 1	11/64 1	3/16 1	13/64	7/32 f	15/64 f	1/45	9/32 /	19/64
t'r.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
75	-4	-41	-42	-44	-	-	-	-	-	l —
-	.61	.64	.67	.71	-73	.75	.76	-	_	-
25	.81	.86	.92	.99	1.04	1.00	1.12	1.13	1.18	l
5	1.01	1.09	1.17	1.26	1.35	1.42	1.49	1.53	1.61	1.6
75	1.22	1.31	1.42	1.53	1.66	1.76	1.85	1.92	2.04	2.0
13	1.42	1.54	1.67	1.81	1.97	2.00	2.21	2.32	2.48	2.
25	1.63	1.78	1.93	2.08	2.28	2.43	2.58	2.71	2.91	3
5	1.83	2	2.18	2.36	2.59	2.76	2.94	3.11	3.34	13.4
	2.03	2.22	2.43	2.63	2.9					
15		1.1.1.1.1.1	2.68			3.1	3.3	3.5	3.77	3.9
	2.24	2.44		2.91	3.21	3.43	3.67	3.9	4.21	4
5	2.44	2.67	2.93	3.18	3.52	3.77	4.03	4.29	4.64	4.8
,	2.65	2.89	3.18	3.45	3.83	4.11	4.39	4.69	5.07	5.3
5	2.85	3.12	3.44	3.73	4.14	4-44	4.76	5.08	5.51	5.3
	3.06	3.34	3.69	4	4.45	4.78	5.12	5.48	5.94	6.2
5	3.26	3.57	3.94	4.28	4-75	5.11	5.48	5.87	6.81	6.0
1.1	3.46	3.8	4.19	4.55	5.06	5.45	5.84	6.27	6.81	7.
5	3.67	4.02	4.44	4.82	5.37	5.78	6.21	6.66	7.24	7.5
	3.87	4.25	4.69	5.1	5.68	6.12	6.57	7.06	7.67	8.6
5	4.08	4-47	4.95	5.37	6	6.45	6.93	7.45	8.1	8.4
۲.	4.28	4-7	5.2	5.65	6.3	6.79	7.29	7.85	8.54	8.0
5	4.48	4.92	5.45	5.92	661	7.12	7.66	8.24	8.97	9
1	4.69	5.15	5.7	6.2	6 92	7.46	8.02	8.64	9.4	9.8
	5.1	5.6	6.2	6.74	7.54	8.13	8.75	9.43	10.27	10.
	5.51	6.05	6.71	7.29	8.16	8.8	9.47	10.22	11.14	11.
	5.91	6.5	7.21	7.84	8.78	9.47	10.2	11.01	12	12.0
	6.32	6.95		8.39	94	10.14	10.02	11.8	12.87	13.
	6.73		7.71 8.22	8.94	10.02	10.81	11.65			
		7.4			10.64			12.59	13.73	14.
	7.14	7.85	8.72	9.49		11.48		13.38	14.6	15.
	7.55	8.3	9.22	10.04	11.20	12.16	13.1	14.17	15.46	
	7.96	8.75	9.73	10.58	11.88	12.83		14.96	16.33	17.
	8.36	9.21	10.23	11.13	12.49	13.5	14.55	15.75	17.2	18.
	8.77	9.66	10.73	11.68	13.11	14.17	15.28	16.54	18.06	19.0
	9.18	10.11	11.24	12.23	13.73	14.84	16	17-33	18.93	19.
	9.59	10.56	11.74	12.78	14.35	15.51	16.73	18.12	19.79	20.
	10	11.01	12.24	13.33	14.97	16.18	17.46	18.91	20.66	21.
	10.41	11.46	12.75	13.88	15.59	16.85	18.18	19.7	21.53	22.0
	10.82	11.91	13.25	14.42	16.21	17.52	18.91	20.49	22.39	23.
	11.22	12.36	13.75	14.97	16.83	18.19	1963	21.28	23.26	24.
	11.63	12.81	14.26	15.52	17.45	18.86	20.36	22.07	24.13	25.
	12.04	13.26	14.76	16.07	18.07	19.54	21.08	22 86	25	26.
	12.45	13.71	15.26	16.62	18.68	20.21	21.81	23.65	25.86	27.
	12.86	14.17	15.77	17.17	19.3	20.88	22.54	24.44		28.
	13.27	14.62	16.27	17.71	19 92	21.55	23.26	25.23	27.59	29.0
	13.67	15.07	16.77	18.26	20.54	22.22	23 99	26.02	28.45	30
	14.08	15.52	17.28	18.81	21.16	22.89	24.71	26.81	29.32	30.
	14.49	15.97	17.78	19.36	21.78		25.44	27.6	30.18	31.
			18.28							
	14.9	16.42	100	19.91	22.4	24.23		28.39	31.05	32.
	15.31	16.87	18.79	20.46	23.02	24.9	26.89	29.18	31.92	33.
	15.72	17.32	19.29	21.01	23.64	25.57	27.62	29.97	33 AK	34.
	16.12	17.77	19.79	21.55	24.26	26.24	28.34	30.7		
	16.94	18.68	20.8	22.65	25.5	27.59	29.79	32.		
	17.76	19.58	21.81	23.75	26.73	28.93	31.25	33		
	18.57	20.48	22.81	24.84	27.97	30.27	32.7	35		
	10.20	21.38	23.82	25 94	20.21	31.61				

142 WEIGHT OF COPPER AND BRASS TUBES, ETC.

By Internal Diameter.

Add following Units to Weights for External Diameter in preceding tables

No.	1	2	3	4	5	_ 6	7	8	9	10
	2.21	1.97	1.66	1.38	1.18	1.01	.78	.67	·53	-43
No.	11	12	13	14	15	16	17	18	19	20
	-35	.29	.22	.17	.13	.11	.08	.06	.05	-03

ILLUSTRATION.—What is weight of a copper tube 6 ins. in internal diameter No. 3 gauge, and one foot in length?

By preceding table 6 ins. external, No. 3 gauge = 18.12, and 18.12 + 1.66 = 20.78 ibs.

WEIGHT OF BRASS TUBES.

To Compute Weight of Brass Tubes.

American Tube Works. (Boston.)

RULE.—Deduct 5 per cent. from weight of Copper tubes.

EXAMPLE. — What is weight of a brass tube 6 ins. in external diameter, Ne.; gauge, and one foot in length?

By preceding table 6 ins. = 18.12, from which deduct 5 per cent. = 17.21 lbs.

By Internal Diameter.

RULE.—Proceed as above for internal diameter, and deduct 5 per cent.

EXAMPLE.—Weight of a copper tube 6 ins. internal diameter, No. 3 gange, as 1 foot in length = 19.78 lbs.

Hence, 19.78 — 5 per cent. = 18.79 lbs.

Note. — Diameter of Tubes, as for Boilers, is given externally, and that for Pipe internally.

Weights of English are essentially alike to the preceding. (D. K. Clark)

Seamless Brass Pipes.

Made to Correspond with Iron Pipes and to Fit Iros Pipe Fittings.

American Tube Works. (Boston.)

WEIGHT PER LINEAL FOOT.

Diameter of Internal.	Iron Pipe. External.	Weight.	Diameter o Internal.	f Iron Pipe. External.	Weight.	Diameter of Internal.	Iron Pipe. External.	Weight
Inch.	lns.	Lbs.	Ins.	Ins.	Lbs.	Ins.	Ins.	Lbs
.125	•375	.25	I	1.3135	1.7	3	3.5	8.3
.25	.5625	-43	1.25	1.625	2.5	3.5	4	10.6
·375	.6875	.63	1.5	1.875	3	4	4.5	12.7
∙5	.8125	.9	2	2.375	4.125	5	5.5625	15.7
•75	1.0625	1.25	2.5	2.875	5.75	6	6.625	20.6

Seamless Copper pipes of like diameter are one nineteenth heavier.

Weight of Sheet Brass.

ONE SQUARE FOOT. (Holtzanffel's Gauge.)

Thi	ckness.	Weight.	Thickness.		Weight.		kness.	Weight.		kness.	Welg
No.	Inch.	Lbs.	No.	Inch.	Lhs.	No.	Inch,	Lbs.	No.	Inch	Lbs
3	.259	10.9	9	.148	6.23	15	.072	3.03	21	.032	1.35
_	238	10	10	.134	5.64	16	.065	2.74	22	.028	M.18
<i></i>		9.26	II	.12	5.05	17	.058	2.44	23	.025	1105
F	1	8.55	12	.109	4.59	18	.049	2.06	24	.022	.002
		7.58	13	.095	4	PI	.042	1.77	25	.02	.84
-		6.95	14	.083	3.49	20	1.035	1.47	1	1	1 4

Weight of Wrought Iron Tubes. (English.) EXTERNAL DIAMETER. ONE FOOT IN LENGTH.

Holtzapsel's Wire-Gauge. f full, l light.

ſo.	-	-	1 4	- 1	5	- 1		6		7	8	9
	.3125	.281	.23	8	.22	_	. 2	103	_	. 18	.165	.148
36.	5/16	9/32			7/3	2	13	/64	3	/16 8	11/64 2	9/64 1
am.	Lba.	Lbs.	Lbe		Lbe		L	bs.		Lbe.	Lbs.	Lba.
7	21.9	19.8	16.	9	15.	6	1.	4.5	1	12.9	11.8	10.6
7.5	23.5	21.3	18.	1	16.	8	I,	5.5		13.8	12.7	11.4
В	25.2	22.7			17.	9	1	6.6		14.7	13.5	12.2
8.5	26.8				19.			7.6		15.7	14.4	12.9
9	28 4				20.			8.7		166	15.3	13.7
9.5	30.1				21.			9.8		17.6	16.1	14.5
0	31.7	28.6	24.	3	22.	5	2	0.8		18.5	17	15.3
0	7	8	9	- 1	10	. (1	12	_!	13	:4	:5
	18	.165	.148	.1	34	. 1	2	. 109)	.095	.083	.072
	3/16 1	11/64 1	9/64 1	9/	64 1	1/	8 1	7/64	.	3/32 f	5/64 \$	5/64 2
m.	Lbs.	Lbs.	Lbs.		.bs.	13		Lbs.		Lbs.	Lba.	Lbs.
V-	1.55	1.44	1.32		,22	I.		1.02		.9	.797	.7
25	1.78	1.66	1.51		.39	1.		1.16	١ ١	1.3	.906	.794
5	2.02	1.88	1.71		-57	1		1.3		1.15	1.01	.888
75	2.25	2.09	1.9		-74	I.		1.45		1.27	1.12	983
	2.49	2.31	2.1		.92		73	1.59	2	1.4	1.23	1.08
35	2.72	2.52	2.29		.09	1,		1.7	3 j	1.52	1.34	1.17
5	2.96	2.74	2.48		.27	2.		1.8		1.65	1.45	1.27
15	3.19	2.96	2.68		45	2.		2.02		1.77	1.56	1.36
	3.43	3.17	3.06		.62	2.		2.10		1.9 2.02	1.67	1.45
15	3.67	3.39	3.26		.97	2.		2.3		2.14	1.78	1.55
5	3.9	3.82	3.45		15	2.		2.4		2.27		1.64
3	4.14	4.04	3.65		.32		99	2.73		2.39	2.1	1.74
5	4.61	4.25	3.84	3	-5	3.		2.8		2.52	2.21	1.93
3	4.84	4.47	4.03	2	.67	3.		3.02		2.64	2.32	2.02
5	5.08	4.68	4.23	3	.85	3.		3.10		2.77	2.43	2.11
3	5.32	4.9	4.42		.02	3.	52	3.3		2.89	2.54	2.21
	5.79	5.33	4.81		.37	3.		3.59		3.14	2.75	2.4
- 1	6.26	5.76	5.2		.72	4		3.8		3.39	2.97	2.59
	6.73	6.19	5.58		.07	4.		4.16		3.64	3.19	2.77
	7.2	6.63	5.97		43	4		4.4		3.89		2.96
	7.67	7.06	6.36		.78	5.		4.7		4.13	3.62	3.15
	8.14	7.49	6.45	6	.13	5.	51	5.0		4.38	3.84	3.34
	8.61	7.91	7.13	6	.48	5-	32	5.3	i	4.63	4.06	3.53
	9.08	8.35	7.52		.83	6.		5.58	3 !	4.88	4.27	3.72
	9.56	8.79	7.91	7	.18	6	11	5.8	7	5.13	4.49	3.9
	10	9.22	8.3	7	-53	6.	76	6.15		5.38	4.71	4.09
	10.5	9.65	8.68	7	.88	7.	7	6.4		5.63	4.93	4.28
	II	10.1	9.07		.23	7.	39	6.7		5.87	5.14	4.47
	11.4	10.5	9.46		58	7.	7	7.01		6.12	5.36	4.66
	11.9	109	9.85		.93	8.	02	7.3	. ;	6.37	5.58	4.85
	12.4	11.4	10.2		.28	8.		7.58	5	6.62	5.79	5.03
	12.9	11.8	10.6		.63	8.0		7.87	7	6.87	~ ~ •	5,22
	13.3	12.2	11		99	8.		8.1		7.12		
	13.8	12.7	11.4	10	.3		27	8.4		7.3		
1	14.3	13.1	11.8	10	.7		59	8.7		7.6	ı	
	14.7 /	13.5	12.2	11		9	9	9.9	ΣC	1 7.8		

Weight of Seamless Drawn Copper Tubes. (English) For Diameters and Thicknesses not given in preceding Tables. (D. K. Clark)

INTERNAL DIAMETER. ONE FOOT IN LENGTH. Holtzapffel's Wire-Gauge. f full, l light. Specific Weight = 1.16. Wrought Iron = 1.

No.	0000	000	00	0	No.	0000	000	00	. 0
Ins.	·454 29/64	·425 27/64 f	.38 3/8 f	·34 11/32	Ins.	·454 29/64	.425 27/64 f	.38 3/8 f	·34 11/32
Diam.	Lbs.	Lbs.	Lbs.	Lbs.	Diam.	Lbs.	Lbs.	Lbs.	Lbs.
.75	-	-	-	4-5	5.75	34.2	31.9	28.3	25.2
.875	-	-	5.79	5.02	6	35.6	33.2	29.5	26,2
1	8.02	7.36	6.37	5.53	6.5	38.4	35.8	31.8	28.3
1.125	8.71	8	6.95	6.05	7	41.1	38.3	34.1	30.3
1.25	9.4	8.65	7.52	6.57	7·5	43.9	40.9	36.4	32.4
1.375	10.1	9.3	8.1	7.08	8	46.6	43.5	38.7	34.5
1.5	10.8	9.94	8.68	7.6	9	52.1	48.7	43-3	38.6
1.625	11.5	10.6	9.26	8.12	10	57-7	53.8	47-9	42.7
1.75	12.1	11.2	9.83	8.63	11	63.2	59	52.5	46.8
1.875	12.8	11.9	10.4	9.15	12	68.7	64.2	57-2	51
2	13.5	12.5	II	9.66	13	74.2	69.3	61.8	.55.I
2.125	14.2	13.3	11.6	10.2	14	79-7	74-5	66.4	59.2
2.25	14.9	13.8	12.1	10.7	15	85.2	79.6	71	63.4
2.375	15.6	14.5	12.7	11.2	16	90.7	84.8	75.6	67.7
2.5	16.3	15.1	13.3	11.7	17	96.3	90	80.2	71.8
2.625	17	15.8	13.9	12.2	18	101.8	95.1	84.9	76
2.75	17.7	16.4	14.5	12-8	19	107.3	100.3	89.5	80.1
3	19.1	17.7	15.6	13.8	20	112.8	105.5	94.1	*84.2
3.25	20.4	19	16.8	14.8	21	118.3	110.7	98.7	88.3
3.5	21.8	20.3	17.9	15.9	22	123.8	115.8	103.3	92.5
3.75	23.2	21.6	19.1	16.9	23	129.3	120.9	107.9	96.6
4	24.6	22.9	20,2	17.9	24	134.8	126.1	112.6	100.6
4.25	25.9	24.2	21.4	19	26	146	136.4	121.8	108.8
4.5	27.3	25.4	22.5	20	28	157.2	146.7	131	117.1
4.75	28.7	26.7	23.7	21	30	168.4	157.1	140.2	1254
5	30.1	28	24.8	22.I	32	179.6	167.4	149-5	133.6
5.25	31.5	29.3	26	23.1	34	190.7	177-7	158.7	141.9
5.5	32.8	30.6	27.1	24.1	36	201.9		167.9	150-I

For Diameters from 12 to 24 Inches.

No.	1	2	3	4	5	6	7	8	9	10
Ins.	·3 19/64 f	.284 9/32 f	.259 1/4 f	.238 15/64 f	.22 7/32 f	.203	.18	.165 11/64 l	.148 9/64 f	-13
Diam.	Lhs. 48.5	Lbs. 45.8	Lbs. 41.7	Lbs. 38.3	Lbs. 35-3	Lbs. 32.6	Lbs. 28.8	Lbs. 26.4	Lbs. 23.6	2
15	55.8	49.3 52.7	44.9	41.2 44.1	38 40.7	35.1	33.2	28.4 30.4	25.4	1
16 17 18	59.4 63 66.7	56.2 59.6 63.1	51.2 54.3 57.4	46.9 49.8 52.7	43.4 46 48.7	42.5	35.4	32.4 34.4 36.4	30.8 32.6	V
19	70.3	66.5	60,6	55.6 58.5	51.4	45 47-4 49-9	39·7 41.9 44.1	38.4	34.4 36.2	1
21	77.6	73-4	66.9	61.4	56.7	52.4	46.3	42.4	38 39.8	1
	1	80.3	73.2 76.3	67.2 70.1	62.1	57.3	50.7	46.4	434	

For Diameters from 13 to 24 Inches.

٠	11	12	13	14	15	16	17	18	19	20
_	.12	.109	.095	.083	.072	.065	.058	.049	.042	.035
•	1/8 l	7/64	3/32 f	5/64 5	5/64 2	1/16 f	1/16 2	3/64 f	3/64 2	1/32 f
٦.	Lbs.	Lba.	Lbs.	Lbs.	Lbs.	Lba.	Lbs.	Lbe.	Lbs.	Lbs.
	19.1	17.4	15.1	13.2	11.4	10.3	9.2	7.77	6.65	5.55
	20.6	18.7	16.3	14.2	12.3	11.1	9.9	8.37	7.16	5.98
	22.I	20	17.4	15.2	13.2	11.9	10.6	8.96	7.67	6.4
	23.5	21.3	18.6	16.2	14.1	12.7	11.3	9.56	8.18	
	25	22.7	19.7	17.2	14.9	13.5	12.1	10.2	8.69	
	26.4	24	20.9	18.2	15.8	14.3	12.7	10.7	9.2	7.69
	27.9	25.3	22	19.2	16.7	15.1	13.4	11.3	9.71	8.12
	29.3	26.6	23.2	20.2	17.6	15.9	14.1	11.9	10.2	8.54
	30.8	27.9	24.3	21.3	18.4	16.6	14.8	12.5	10.7	8.96
	32.3	29.3	25.5	22.3	19.3	17.4	15.5	13.1	11.2	9.39
	33.7	30.6	26.7	23.3	20.2	18.2	16.2	13.7	11.8	9.81
	35.2	31.9	27.8	24.3	21.1	19	16.9	14.3	12.3	10.2

Weight of Wrought Iron Tubes. (English.)

Diameters and Thicknesses not given in preceding Tables. (D. K. Clark.)

INTERNAL DIAMETER. ONE FOOT IN LENGTH.

Holtzapsfel's Wire-Gauge. f full, l light.

				-	•					
1							4	5	6	7
İ		THICKN	ess in l	CHES.			.238	.22	.203	. 18
5/8	9/16	1/2	7/x6	3/8	5/16	1/4	15/64 f	7/32 f	13/64	3/16 l
Lbs.	Lbs.	Lba.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lba.	
128.5	115.2	102.1	89.1	76.T	63.2		48	44.2	40.8	36.2
135	121.1	107.3	93.6	80	66.5		50.4	46.5	42.9	
141.5	127	112.6	98.2	83.9	69.7	55.6		48.8	45.1	39. 9
148.1	132.9	117.8	102.8	87.9	73	58.3		51.1	47.2	41.8
154.6	138.8	123.1	107.4	91.8	76.3	60.9	57.9	53.4	49.3	43.7
161,2	144.7	128.3	112	95.7			60.4	55.7	51.5	45.6
174.3	156.5	138.8	121.1	103.6		68.7	65.4	60.3	55.7	49.3
187.4	168.3	149.2	130.3	111.4		1 - 74	70.4	64.9	60	53.1
200.4	180	159.7	139.5					69.5	64.2	56.8
213.5	191.8	170.2	148.6			84.4	80.4	74.1	68.5	
₹26.6	203.6	180.6	157.8		112.	89.7	85.4	78.7	72.8	64.4
139.7	215.4	191.1	167	142.9	118.	94.9	90.4	83.4	77	68.1
8	9	10	. 11	12	13	14	15	16	17	18
.165	.148	.134	.12	.100	.005.	.083	.072	.065	.058	.049
11/64 1	9/64 f		1/8 2	7/64	3/32 f	5/64 1	5/64 1	1/16 f	1/16 1	3/64 f
Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lhs.	Lbs.	Lbs.	Lbs.	Lbs.
33.1	29.7	26.9	24	21.8	19	16.6	14.4	13	11.6	9.78
34.8		28.3	25.3	22.9	20	17.5	15.1	13.7	12.2	10.3
36.6	32.8	29.7	26.5	24.1	21	18.3	15.9	14.3	12.8	10.8
38.3	34.3	31.1	27.8	25.2	22	19.2	16.6	15	13.4	11.3
40	35.9	32.5	29.1	26.4	23	20.1	17.4	15.7	14	11.8
41.8		33.9	30.3	27.5	24	20.9	18.1	16.4	14.6	12.6
45.2	40.5	36.7	32.8	29.8	26	22.6	19.7		3	13.4
48.7	43.6	39.5	35.3	32.1	28	24.4	21.2			4.4
52.1	46.7	42.3	37.8	34-4	30	26.1	22.7			•
55.5	49.8	45.1	40.4	36.7	32	27.9	24.5			
50	52.0	48	42.9	39	34	29.7	25.1			
2.4	50 /	50.8	45.4	41.3	36	31.4	27.3			

N

Weight of a Square Foot of Wrought and (Iron, Steel, Copper, Lead, Brass, and Zinc Plan From .0625 to 1 Inch in Thickness.

Thickness.	Wrought Iron.	Cast Iron.	Steel.	Copper.	Lead.	Brass.	Gun- metai.	
Inch.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	-
.0625	2.517	2.346	2.541	2.89	3.691	2.675	2.848	ı
.125	5.035	4.693	5.081	5.781	7.382	5-35	5.696	ı
.1875	7.552	7.039	7.622	8.672	11.074	8.025	8.545	1
.25	10.07	9.386	10.163	11.562	14.765	10.7	11.393	1
.3125	12.588	11.733	12.703	14.453	18.456	13.375	14.241	1
-375	15.106	14.079	15.244	17.344	22.148	16.05	17.089	1 1
-4375	17.623	16.426	17.785	20.234	25.839	18.725	19.938	l ı
.5	20.141	18.773	20.326	23.125	29.53	21.4	22.786	1 1
.5625	22.659	21.119	22.866	26.016	33.222	24.075	25.634	ء ا
.625	25.176	23.466	25.407	28.906	36.913	26.75	28.483	ء ا
.6875	27.604	25.812	27.948	31.797	40.604	29.425	31.331	ء ا
-75	30.211	28.159	30.488	34.688	44.296	32.1	34.179	١:
.8125	32.729	30.505	33.029	37.578	47.987	34.775	37.027	1 :
.875	35.247	32.852	35.57	40.469	51.678	36.656	39.875	}
-9375	37.764	35.199	38.11	43.359	55.37	39.331	42.723	13
1	40.282	37.545	40.651	46.25	59.061	42.8	45.572	1

From One Twentieth Inch to Two Inches in Thickness.

	rro	m One 1	ibenitein	11606 60 1	too mene	8 176 176		
Thickness.	Wrought Iron.	Cast Iron.	Steel.	Copper.	Lead.	Brass.	Gun- metal.	
Inch.	Lbs.	Lbs.	Lbs.	Lus.	Lbs.	Lbs.	Lbs.	1-
.05	2.014	1.877	2.033	2.312	2.593	2.14	2.279	
.1	4.028	3.754	4.065	4.625	5.906	4.28	4.557	1
.15	6.042	5.632	6.098	6.938	8.859	6.42	6.836	1
.2	8.056	7.509	8.13	9.25	11.812	8.56	9.114	i
.25	10.071	9.386	10.163	11.562	14.765	10.7	11.393	l
.3	12.085	11.264	12.195	13.875	17.718	12.84	13.672	1
•35	14.099	13.141	14.228	16.187	20.671	14.98	15.95	1,
.4	16.113	15.018	16.26	18.5	23.624	17.12	18.229	1.
.45	18.127	16.895	18.293	20.812	26.577	19.26	20.507	I.
•5	20.141	18.773	20.325	23.125	29.53	21.4	22.786	1
•55	22.155	20.65	22.358	25.437	32.484	23.54	25.065	21
.6	24.169	22.527	24.391	27.75	35.437	25.68	27.343	2:
.65	26.183	24.409	26.423	30.063	38.39	27.82	29.622	2,
.7	28.197	26.281	28.456	32-375	41.343	29.96	31.9	2(
•75	30.211	28.154	30.488	34.687	44.296	32.1	34.179	21
.8	32.226	30.035	32.521	37	47.249	34.24	36.458	24
.85	34.24	31.912	34.553	39.312	50.202	36.38	38.736	31
.9	36.254	33.79	36.586	41.625	53.154	38.52	41.015	3.
•95	38.268	35.668	38.628	43.937	56.108	40.66	43.293	3.
I	40.282	37.545	40.651	46.25	59.061	42.8	45.572	3;
1.125	45.317	42.238	45.732	52.031	66.443	48.15	51.268	42
1.25	50.352	46.931	50.814	57.813	73.826	53.5	56.965	46
h "	52.87	49.278	53.354	60,703	77-517	56.17	59.813	49
7	55.387	51.624	55.895	63.594	81.209	58.85	62.661	51
'	57.905	53.971	58.436	66,484	84.9	61.53	65.51	53
	60.422	56.317	60.976	69.375	88.591	64.2	68.358	5É
	62.94	58.663	63.517	72.266	92.283	66.88	71.206	58
	. 48	61.011	66 .058	75.156	95-974	69.55	74.054	60
		65.704	71.139	80.938	103.350	74.9	79.751	65
		70.397	76.22	86.719	110.739	80.25	85.447	1
		75.09	81.3	92.5	118.122	85.6	01.10	1,

Standard Cast Iron Water Pipes. (English.) For a Head of 200 Feet.

Thickness.	Depth of Socket,	Thickness of Socket.	Packing.	Weight per Yard.	Lead Joint,	Diameter.	Thickness.	Depth of Socket,	Thickness of Socket.	Packing.	Weight per Yard.	Lead Joint.
Inch.	Ins.	Inch.				Ins.	Inch.	Ins.	Inch.	Inch.	Lbs.	Lbs.
.3125	3.5	.625	.25	36	.8	8	-4375	3.75	.625	-375	113	3.3
.3125	3	.625	.25	51 61	1.2	9	-4375	3.75	-75	-375	128	4.6
-375	3	.625	-375	61	2	10		4	-75	-375	168	4.9
-375	3.75	.625	-375	75	2.7	II	-5	4	.75	.375	175	5.3
.375	3.75		-375	85	2.9	12		4	.875	-375	213	5.7
				• 1	Messur	ed as	laid.				,	

To Compute Weight of Metal Pipes.

18t Iron 2.45. Wrought Iron 2.64. Brass 2.82. Copper 3.03. Lead 3.86.

Compute Weight of Metal Tubes and Pipes per Lineal Foot.

	E1	vm .5 ™	ich to o then	es muer	ruu Dunnen	er.	
۱.	Area of Plate.	Diam.	Area of Plate.	Diam.	Area of Plate.	Diam.	Area of Plate.
_	Sq. Foot.	Ins.	Sq. Foot.	Ins.	Sq. Feet.	Ins.	Sq. Feet.
	.1309	1.3125		2.75	.7199	4.5	1.1781
:5	.1473	1.375	.36	2.875	.7526	4.625	1.2108
,-	.1636	1.4375		3	.7854	4.75	1.2435
5	.18	1.5	.3927	3.125	.8181	4 875	1.2763
	.1964	1.625	·4254	3.25	.8508	5	1.309
5	.2127	1.75	.4581	3.375	.8836	5.125	1.3417
	.2291	1.875	.4909	3.5	.9163	5.25	1.3744
5	.2454	2	.5236	3.625	-949	5.375	1.4072
	.2618	2.125	-5543	3.75	.9818	5.5	1.4399
5	.2782	2.25	.587	4	1.0472	5.625	1.4726
	-2945	2.375	.6198	4.125	1.0799	5.75	1.5053
i	.3105	2.5	.6545	4.25	1.1126	5.875	1.5381
	.3272	2.625	.6872	4.375	1.1454	6	1.5708

Application of Table.

When Thickness of Metal is given in Divisions of an Inch.

internal diameter of tube or pipe add thickness of metal; take if the plate in square feet, from table for a diameter equal to if diameter and thickness of tube or pipe, and multiply it by of a square foot of metal for given thickness (see table, page and again by its length in feet.

TRATION.—Required weight of 10 feet of copper tube 1 inch in diameter and an inch in thickness.

:+.125 = 1.125 × 3.1416 ÷ 12 = .2945 square feet for 1 foot of le:
ht of 1 square foot of copper .125th of an inch in thickness, I
1781 lbs.; then, .2945 (from table above) × 5.781 × 10 = 17.02!
ien Thickness of Metal is given in Numbers of a Wire
nternal diameter of tube or pipe add thickness of t
17.120 or 121; multiply sum by 3.1416, divide produc
18 will give area of plate in square feet. Then procees.

 $[\]frac{a^2-d^2}{c}$ C. D and d representing external and internal diameters in inches, C coefficient.

148 WEIGHT OF IRON AND COPPER PIPES, BOLTS,

ILLUSTRATION.—Required weight of 10 feet of copper pipe 2 inches in and No. 2 American wire gauge in thickness.

2+.25763 × 3.1416 ÷ 12=2.25763 × 3.1416 ÷ 12=.591 square feet; th × 11.6706 (weight from table, page 118) = 6.897 lbs.

Weight of Riveted Iron and Copper Pip From 5 to 30 Inches in Diameter.

ONE FOOT IN LENGTH.

Diameter.	Thickness.	Iron.	Copper.	Diameter.	Thickness.	Iron.	1
ins.	Inch.	Lbs.	Lbs.	Ins.	Inch.	Lbs.	1
5	.125	7.12	8.14	9	.25	25.01	L
	.1875	10.68	12.21		.25	26.33	
	.25	14.25	16.28	IO	.25	27.75	
5.5	.125	7.78	8.89	10.5	.25	29.19	8
	.1875	11.66	13.33	II	.25	30.49	1
	.25	15.56	17.78	12	.25	33.13	
6	.125	8.44	9.64	13	.25	35.88	
	.1875	12.65	14.46	14	.25	38.52	1
	.25	16.88	19.29	15	.25	41.26	
6.5	.125	9.1	10.4	1	-3125	51.57	1
	.1875	13.65	15.6	16	.25	43.9	1
	.25	18.2	20.8	1	.3125	54.87	
7	,125	9.78	11.18	17	.25	46.53	10
	.1875	14.68	16.78	1	-3125	58.17	n
	.25	19.57	22.37	18	.25	49.17	
7-5	.125	10.49	11.99		-3125	61.47	ш
0.20	.1875	15.73	17.98	20	-3125	68.07	ш
	.25	20.89	23.87	24	-3125	81.33	
8	.1875	16.7	19.08	25	-3125	84.57	
	.25	22.26	25.44	28	-3125	94.56	1
8.5	.25	23.59	26.96	30	-3125	101.14	-

Above weights include laps of sheets for riveting and calking.

Weights of the rivets are not added, as number per lineal foot of pipe upon the distance they are placed apart, and their diameter and length upon thickness of metal of the pipe.

Weight of Copper Rods or Bolts,

From .125 Inch to 4 Inches in Diameter.

ONE FOOT IN LENGTH.

Diameter.	Weight.	Diameter.	Weight.	Diameter.	Weight.	Diameter.	V
Inch.	Lbs.	Ins.	Lbs.	Ins.	Lhs.	Ins.	
.125	.047	.8125	1.998	1.5	6.811	2.75	2
.1875	.106	.875	2.318	.5625	7.39	.875	2
.25	.189	-9375	2.66	.625	7.993	3	2
,3125	.296	I	3.03	-75	9.27	.125	2
-375	.426	1.0625	3.42	.875	10.642	.25	3
-4375	-579	.125	3.831	2	12.108	-375	3
+5	-757	.1875	4.269	.125	13.668	-5_	3
.5625	.958	.25	4.723	.25	15.325	.625	3
625	1.182	-3125	5.21	-375	17.075	-75	4
175 /	1.431	-375	5.723	1 -5	010.81	.875	1 4
1	1.703	-4375	6.255	.625	20.856	1 4	1

Veight of Metals of a Given Sectional Area.

From .: Square Inch to 10 Square Inches.

PER LINEAL FOOT. (D. K. Clark.)

			PER I	INEAL	FOOT.	•					
. 1	Wrought	Cast	Steel.	Brass.	Gun-	SECT.	Wrought	Cast	Steel.	Brass.	Gun-
1.	Iron.	Iron. •9375•	1.02.	1.052.	1.092.	ARBA.	Iron.	Iron. -9375-	1.02.	1.052.	metal. 1.092.
19.	Lba.	Lbs.	Lba.	Lba.	Lbs.	Sq.Ins.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
	-33	.31	-34	-35	.36	5.1	17	15.9	17.3	17.9	18.6
- ; ;	.67	.Ğ2	.68	.7	•73	5.2	17.3	16.3	17.7	18.2	18.9
- ; [Ι.	.94	1.02	1.05	1.00	5.3	17.7	16.6	18	18.6	19.3
	1.33	1.25	1.36	1.43	1.46	5-4	18	16.9	18.4	18.9	19.7
- ;	1.67	1.56	1.7	1.75	1.82	5.5	18.3	17.2	18.7	19.3	20
٠, ا	2	1.88	2.04	2.11	2.18	5.6	18.7	17.5	19	19.6	20.4
٠, ا	2.33	2.19	2.38	2.46	2.55	5.7	19	17.8	19.4	20	20.8
- ; ;	2.67	2.5	2.72	2.81	2.91	5.8	19.3	18.1	19.7	20.3	21.1
-)]	3	2 8 t	3.06	3.16	3.28	5.9	19.7	18.4	20.1	20.7	21.5
ļ	3.33	3.15	3.4	3.51	3.64	6	20	18.8	20.4	21	21.8
į	3.67	3.44		3.86	4	6.1		19.1		21.4	22.2
!	4	3 75	4.08	4.21	4.37	6.2	20.7	19.4		21.7	22.6
- 1	_ 4. <u>3</u> 3 ¹			4.56	4.73	6.3		19.7	21.4	22.1	22.9
1	4.67	4.38	4.76	4.91	5.1	6.4	21.3	20	21.8	22.4	23.3
- 1	5	4.69		5.26	5.46	6.5	21.7	20.3	22.1	22.8	23.7
	5.33	5	5.44	5.61	5.82	6.6	22	20.6	22.4	23.1	24
- 1	5.67 6	5.31	5.78	5.96	6.19	6.7	22.3	20.9	22.8	23.5	24.4
		5.63	6.12	6.31	6.55	6.8	22.7	21.3	23.1	23.9	24.8
- 1	6.33	5.94	6.46 6.8	6.66	6.92	6.9	23	21.6	23.5	24.2	25.1
	6.67	6.25		7.01	7.28 7.64	7	23.3	21.9		24.6	25.5
1	7	6.56 6.88	7.14 7.48	7.36	8.01	7.1	23.7	22.2		24.9	25.8
1	7.33 7.67	7.19	7.82	7.72 8.07	8.37	7.2	24	22.5		25.3	26.6
	8		8.16	8.42	8.74	7.3	24.3	23.1	24.8	25.6	26.9
	8.33	7.5 7.81	8.5	8.77	9.1	7.5	24.7 25	23.4		26.3	27.3
	8.67	8.13	8.84	9.12	9.46	7.6	25.3	23.8	25.9	26.7	27.7
	9	8.44	9.18	9.47	9.83	7.7	25.7	24.1	26.2	27	28
	9.33	8.75	9.52	9.82	10.2	7.8	26	24.4	26.5	27.4	28.4
	9.67	9.06	9.86	10.2	10.6	7.9		24.7	26.9	27.7	28.8
	10	9.38	10.2	10.5	10.9	8	26.7	25	27.2	28.1	29.I
	10.3	9.69	10.5	10.9	11.3	8.1	27	25.3	27.5	28-4	29.5
	10.7	10	10.9	11.2	11.7	8.2	27.3	25.6	27.9	28.8	29.9
	II	10.3	11.2	11.6	12	8.3	27.7	25.9	28.2	29·I	30.2
	11.3	10.6	11.6	11.9	12.4	8.4	28	26.3	28.6	29.5	30.6
	11.7	10.9	11.9	12.3	12.7	8.5	28.3	26.6	28.9	29.8	30.9
	12	11.3	12.2	12.6	13.1	8.6		26.9	29.2	30.2	31.3
	12.3	11.6	12.6	13	13.5	8.7	29	27.2	29.6	30.5	31.7
	12.7	11.9	12.9	13.3	13.8	8.8	29.3	27.5	29.9	30.9	32
	13	12.2	13.3	13.7	14.2	8.9	29.7	278	30.3		32.4
	13.3	12.5	13.6	14	14.6	9	30	28.1	30.6		32.8
	13.7	12.8	13.9	14.4	14.9	9.1	30.3	28.4	30.9		
	14 14.3	13.1	14.3	14.7	15.3	9.2	30.7	28.8	31.3	32.3	33.5
	14.7	13.4 13.8		15.1	15.7 16	9.3	31	29.1	31.6		33.9
	15.7	14.1	15.3	15.4 15.8	16.4	9.4	31.3	29.4	.,-	33 33.3	34.2 34.6
	15.3	14.4	15.6	16.1	16.7	9.5	31.7	29.7	12. 1		34.0 2.0
	15.7	14.7	16	16.5	1/.1	9.7	32	30			-2443
	16	15	16.3	16.8	17.5	9.8	32.3	30.1			
	16.3	15.3		17.2	17.8		32.7				
					18.2	9.9		30			
		- ,	- /-		N		1 33-3	/ 31.	٠.		
-	•				74.						

Weight of Lead Pipe. (English.) ONE FOOT IN LENGTH.

Diam.	Thick- ness.	Weight.	Diam.	Thick-	Weight,	Diam.	Thick-	Weight,	Dlam.	Thick- ness.
Inch.	Inch.	Lbs.	Ine.	Inch.	Lbs.	Ins.	Inch.	Lbs.	Ins.	Inch.
.5	.097	-93	1	.136	2.4	1.75	.166	5	3	.275
	.112	1.07		.156	2.8		.199	6	3.5	.225
	.124	1.2		.2	3.73		.228	7	1 -	.273
	.146	1.47		.225	4.27		.256	8	4	.257
.625	.089	1	1.25	.139	3	2	.178	6	1	.3125
	.IOI	1.13	-	.16	3.5		.204	7		.327
	.121	1.4	1	.18	4		.231	8	4.25	.3125
	.14	2	1	.193	4.33		.266	9.33	4.5	.232
-75	.112	1.6	1.5	.156	4	2.5	.2	8.4	•	.295
25.0	.147	1.87	1	.179	4.67	100	.227	9.6	1	.3125
	.181	2.13		.224	6	1	.261	11.2	4.75	.3125
	.215	2.4		.257	7	3	.218	11.2	5	.3125

Dimensions of Copper Pipes and Composit Cocks.

From 1 Inch to 23 Inches in Diameter.

Diam. of Pipe and Cock.	Flange D	lameter.	Thick-	B	olts.	Diam, of Pipe and Cock.	Flange Diam.	Thick-	В
Dian	Pipe.	Cock.	ness.	No,	Diam.	and Pile	Pipe.	ness.	No.
Ins.	Ins.	Ins.	Inch.	177	Inch.	Ins.	Ins.	Inch.	
1	3.375	3.5	∙375	3	-5	9	12.75	.625	9
1.25	3.625	3.75	·375	3	-5	9.25	13.125	.625	10
1.5	3.875	4.25	∙375	3	-5	9.5	13.375	.6875	10
1.75	4.125	4-375	·4375	4	.5	9.75	13.625	.6875	10
2	4-375	4.75	-4375	4	-5	10	13.875	.6875	10
2.25	4.625	5.25	·4375	5	-5	10.5	14.5	.6875	10
2.5	4.875	5.5	·4375	5	.5	II	15	.6875	10
2.75	5.25	5.75	·4375	5	-5	11.5	15.625	.75	10
3	6	6.25	·5	5	.625	12	16.125	.75	10
3.25	6.125	6.625	.5		.625	12.5	16.625	.75	10
3.5	6,375	6.875	-5	6	.625	13	17.25	•75	10
3.75	6,625	7.25	.5	6	.625	13.5	17.875	.75	10
4	6.875	7.375	-5	6	.625	14	18.375	•75	10
4.25	7.125	7.625	.5	6	.625	14.5	18.875	•75	10
4.5	7-375	8.25	.5	6	.625	15	19.5	.75	10
4.75	7.625	8.5	.5	6	.625	15.5	20	•75	10
5	8	9	-5	6	.625	16	20.5	.75	10
5.25	8.25	9.25	-5	6	-625	16.5	21.125	•75	10
5.5	8.5	9.5	.5	6	.625	17	21.625	.75	11
5.75	9	9.875	.5	6	.625	17.5	22.125	.75	11
6	9.25		.625	8	.625	18	22.75	.75	11
6,25	9.75		.625	8	.625	18.5	23.25	.75	11
6.5	10		.625	8	.625	19	23.75	.75	12
6.75	10		.625	8	.625	19.5	24.375	.75	12
7	10.5		.625	8	.625	20	24.875	.75	12
7.25	10.75		.625	8	-625	20.5	25.375	.75	13
24	25		.625	8	.625	21	26	.75	13
	5		.025	8	-625	21.5	26.5	.75	13
	5		625	9	.625	22	27	.75	13
	1		.625	9	-625	22.5	27.625	.75	14
	- 1		.625	9	.625	N 23	28.125	1.75	14
	- 1		-625	19	.625	(1)	\	\	\ '

Weight of Sheet Lead.

PER SQUARE FOOT.

ckness.	Weight.	Thickness.	Weight.	Thickness.	Weight.	Thickness.	Weight.
nch.	Lbs.	Inch.	Lbs	Inch.	Lbs.	Inch.	Lbs.
)17	1	.068	4	811.	7	.169	10
34	2	.085	5	.135	8	.186	11
751	3	.101	6	.152	9	.203	12

Weight of Tin Pipe. ONE FOOT IN LENGTH.

Diam.	THIC	KNESS.	Diam.	THE

1.		NESS.	Diam. External. % inch. % inch.		Diam.	THICKY.	Diam.	THICKN.	
āl.	% inch.	⅓ inch.	External.	% inch.	⅓ inch.	External.	⅓ inch.	External.	⅓ inch.
	Lb.	Lbs.	Ins.	Lba.	Lbs.	Ins.	Lts.	Ins.	Lbs.
- ;	.148	-	1.25	1.095			5.04	3.25	7.56
	. 384	-472	1.5	1.328	1.732	2.5	5.67	3.5	8.19
	.62	.787	1.75	1.564	2.047	2.75	6.3	3.75	8.82
1	.856	1.103	2	1.802	2.362	3	6.93	4	9.45

Weight of Lead Encased Tin Pipes.

er.	Li	ght Weigh	its.	For Supply of Water Head.* go feet and under. 51 to 250 feet. 251 to 500 fee				
_	Lbs.	Lba,	Lbs.	Lbs.	Lbs.	Llis.		
5	I	1.5	2	2.5 to 4	3 to 4.5	3.5 to 5		
-	2	2.5	3	3.5 " 5	4 " 6	4.5 " 7		
5	3	3.5	4	4.5 " 7	5.25 " 8	6 " 9		
•	3.5	4	4.5	5.5 " 8	6 " 9	7 " 10		
	4.5	5		7.25 " 10	8 "11	9 " 12		
1	6.5	7	5·5 8	9 " 12.5	10 " 14	12 " 16		
	8	ġ	10	11 "16	12.5 " 18	14 " 21		
	11	13	—	16 " 23	18.5 " 26	21 " 30		

^{*} The extreme weights are for extra heavy pipe with less proportion of tin.

ensions and Weight of Sheet Zinc. (Vielle-Montagne.) PER SQUARE FOOT.

Thickness.			metres ; sare metre.		metres ; sq. metres.		metres ; sq. metres.	Weight.	
Thi	ckness.	6.56X 1.64 10.76 sq	6.56×1.64 feet; area, 10.76 square feet.		6.56×2.13 feet; area, 13.99 square feet.		6 56×2.62 ft.; area, 17.22 square feet.		
llim.	Inch.	Kilom.	Lba.	Kilom.	Lbs.	Kilom.	Lbs.	Lbs.	
.4I	.0161	2.9	6.39	3.7	8.16	4.6	10.14	.589	
·51	.0201	3.45	7.61	4.45	9.81	ე∙5	12.12	.704	
6	.0236	4.05	8.93	5.3	11.68	6.5	14.33	.832	
69	.0272	4.65	10.25	6.1	13.45	7.5	16.53	.96	
78	.0307	5.3	11.68	6.9	15.21	8.5	18.74	1.088	
87	.0343	5.95	13.12	7.7	16.94	9.5	20.94	1.216	
96	.0378	6.55	14.44	8.55	18.85	10.5	23.15	1.344	
I	.0433	7.5	16.53	9.75	21.5	12	26.46	1.536	
23	,0485	8.45	18.63	10.95	24.14	13.5	29.97	1.74	
36 48 36	.0536	9.35	20.61	12.2	26.9	15	33.07	1.92	
‡8	.0583	10.3	22.71	13.4	29.54	16.5	36.38	2.112	
	.0654	11.25	24.8	14.6	32.19	18	39.20	~ 204	
35	.0729	12.5	27.56	16.25	35.82	20	4		
12	.0795	13.75	30.31	17.9	39.46	22	4		
9	.0862	15	33.07	19.5	42.99	24	١.		
37)	.0933 /	16.25	35.82	21.1	46.52	26	١.		
2 /	.0992	17.5	38.58	22.75	50.15	28	\ ι		
6 /	6 .1047 18.8 41.44				53.79	\ 31	١ د		

Table—(Continued). Special Sizes for Sheathing Ships.

			1	Dimension	s of Sheets.		
No.	o. Thickness.		area, .402	sq. metre. sq. metre. feet; area, q. feet.	1.3 X .4 area, .52 4.26 X 1.31 5.6 sc	Weight per Sq. Foot.	
	Millim.	Inch.	Kilom.	Lbs.	Kilom.	Lbs	Lhs.
15	.96	.0378	2.65	5.84	3.4	7.5	1.344
15 16	1.1	.0433	3	6.61	3.9	8.6	1.536
17	1.23	.0485	3.4	7.5	4.4	9.7	1.74
18	1.36	.0536	3.75	8.27	4.9	10.8	1.93
19	1.48	.0583	4.15	9.15	5.35	11.79	2.113
20	1.66	.0654	4.55	10.03	5.85	12.9	2.304

Note. —A deviation of 25 dekagrammes, or about half a pound, more or less, free

the proper weight of each number of sheet, is allowed.

Nos. 1 to 9 are employed for perforated articles, as sieves, and for article #Paris. Nos. 10 to 12 are used in manufacture of lamps, lanterns, and tin-ware really, and for stamped ornaments. The last numbers are used for lining reserved. and for baths and pumps.

Ship and Railroad Spikes. DIMENSIONS AND NUMBER PER POUND. (P. C. Page, Mass.) Ship Spikes.

1/4 I	n. Sq.	% I	n. Sq.	% In	a. Sq.	1/2 I	n. Sq.	% In.	Sq.	% I	n. Sq.	% li	.84
Length.	No. in Pound.	Length.	No. in Pound.	Length.	No. in Pound.	Length.	No. in Pound.	Length.	No. fn Pound,	Length.	No. in Pound.	Length.	No. in Pound.
Ins. 3 3.5 4	19 15.8 13.2	Ins. 3 3.5 4	10 9.6 8	Ins. 4 4.5	5·4 5 4.6	Ina. 5 5.5	3.4 3.1 3	Ina. 6 6.5	2.2 2 1.0	Ins. 8 9	1.4 1.2 1.1	Ins. 10 15	.8
4.5	12.2	4.5	6	5.5	4.2	6.5	2.8	7.5	1.8	11	1	-	-
5	10.2	5	5.8	6	4	7	2.6		1.7	-	-	-	1
-	-	6	5.2	6.5	3.2	7.5	2.4	8.5	1.6	-	-	-	1
-	-	-	-	-		8	2.2	9	1.5	-	-	-	-
-	-	-	-	-		-	-	10	1.4	-	-	-	-

Railroad Spikes 5 inch square × 5.5 ins. 2 per lb. " × 5.5 " 1.6 "

Spikes and Horseshoes.

LENGTH AND NUMBER PER POUND. (H. Burden, Troy, N. Y.)

		Ship S	Spikes.	1	Heek Head.		Horsesboss.		
Length.	Length. No. in Lb.	Length.	No.in Lb.	Length.	No.in Lb.	Length.	No.in Lb.	Length.	No. fa
3 17.5 3.5 14.68 12.47	Ins. 6.5 4.78 7 3.62 7.5 3.37 8 2.95 8.5 2.9 9 2.1	4.5	8 6.5 4.37 4.3 4.2 3.77	Ins. 7.5 8 8.5 9 10	2.5 1.74 1.63 1.55 1.15	Ins. 4 × 375 4.5 × 4375 5 × 5 5.5 × 5 6 × 5025 6 × 5025	5.55 4.14 2.52 2.41 1.87 1.72	Ins. 1 2 3 4 5 5	.87693

ght and Volume of Cast Iron and Lead Balls.

From 1 Inch to 20 Inches in Diameter.

r.	Volume.	Cast Iron.	Lead.	Diameter.	Volume.	Cast Iron.	Lead.
-	Cube Ins.	Lbs.	Lbs.	Ins.	Cube Ins.	Lbs.	Lbs.
- 1	·523	.136	.215	9	381.703	99.51	156.553
- 1	1.767	.461	-725	9.5	448.92	117.034	184.121
,	4.189	1.092	1.718	10	523.599	136.502	214.749
- 1	8.181	2.133	3.355	10.5	606.132	158.043	248.587
- 1	14.137	3.685	5.798	11	696.91	181.765	285.832
	22.449	5.852	9.207	11.5	796.33	207.635	
	33.51	8.736	13.744	12	904.778	235.876	371.096
	47.713	12.439	19.569	12.5	1022,656	266.647	419.512
	65 45	17.063	26.843	13	1150.346	299.623	471.806
	87.114	22.721	35.729	14	1436.754	374.563	589.273
	113.097	29.484	46.385	15	1767.145	460.696	724.781
	143.793	37-453	58.976	16	2144.66	559.114	879.616
	179-594	46.82	73.659	17	2572.44	670.717	1055.066
	220.893	57-587	90.598	18	3053.627	796.082	1252.422
	268.082	69.889	109-952	19	3591.363	936.271	1472.97
	321.555	83.84	131.883	20	4188.79	1092.02	1717.995

E.—To compute weight of balls of other metals, multiply weight given in by following multipliers:

Wrought Iron 1.067.	Brass	
tel	Brass	j.

Weight and Diameter of Cast Iron Balls.

Diameter.	Weight	Diameter.	Weight.	Diameter.	Weight.	Diameter.	Weight.	Diameter.
Ins.	Lbs.	Inc.	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.
1.94	12	4.45	50	7.16	224	8.11	1344	21.44
2.45	14	4.68	56	7.43	336	13.51	1568	22.57
2.8	16	4.89	60	7.6	448	14.87	1792	23.6
3.08	18	5.09	70	8.01	560	16.02	2016	24.54
3.32	20	5.27	8o	8.37	672	17.02	2240	25.42
3.53	25	5.68	90	8.71	784	17.91	2800	27.38
3.72	28	5.9	100	9.02	896	18.73	3360	20.1
3.89	30	6.04	112	9.37	1008	19.48	3920	30.64
4.04	40	6.64	168	10.72	1120	20.17	4480	32.03

Length of Horseshoe Nails.

By Numbers.

1.5 Ins.	No. 7 1	.875 Ins. No. 9.	2.25 Ins.
1.75 "	" 82	" " 10.	2.5 "

gths of Iron Nails, and Number in a

. No. Size. L'gth	. No.	Size.	L'gth.	No.	Size.	L'gth.	No.	Siza
420 5d. 1.75 270 6 2	//	//	Ins.			Ina	//	$\overline{}$
420 5d. 1.75	220	8d.	2.5	100	12d.	3.25	52	1/ 20c
1270/6 /2 /	175	το I	2	6=	200	13.23	138	1

Wrought Iron Cut Nails, Tacks, Spike (Cumberland Nail and Iron Co.) Longths and Number and Ib

		L			mber per 1		
C	ordina:			finish			Shin
Size.	Length.	No. per Lb.	Size.	Length.	No. per Lb.	Size.	Lengtl
	Ins.			Ins.			Ins.
2 d	.875	716	4 d	1.375	384	54	1.75
3 fine	1.0625	588	5	1.75	256	8	2.5
3	1.0625	448		2	204	9	2.75
	1.375	336	8	2.5	102	10	3
4 5 6	1.75	216	10	3	80	and the	Tac
ő,	2	166	12	3.625	65	I 02.	.125
7	2.25	118	20	3.875	46	1.5	.187
7 8	2.5	94			1400	2	.25
10	2.75	72	24	Cor		2.5	.312
12	3.5	50	6d	2	143	3	-375
20	3.75	32	8	2.5	68		-437
30	4.25	20	10	2 333	60	6	.562
40	4.75	17	12	3.125	42	8	.625
50	5	14	20	3.75	25	10	.687
60	5.5	10	30	4.25	18	12	•75
	Ligh	t.	40	4.75	14	14	.812
4 ^d	1.375	373	WH	2.5	69	16	.875
4	1.75	272	WHL	2 25	72	18	-937
5	2.73	196		Cline	oh.	20	1 .93
U	•		64	2	152	20	000
	Brad		7	2.25	133	Size	Bo
6 a	2	163	8	2.5	92		-
8	2.5	96	10	2.75	72	Ins.	
10	2.75	74	-	3	60	1.5	
12	3.125	50		3.25	43		Spil
	Fenc	e.				3.5	1
6 d	2	96		Slat	е.	4	
7	2.25	66	34	1.625	288	4.5	
7 8	2.5	56	4	1.4375	244	5	
10	2.75	50		1.75	187	5.5	
	3	40	5	2	146	5.5	

Railroad Spikes. Number in a Keg of 150 lbs.

Length.	No.	Length.	No.	Length.	No.	Len
No.		Ins.	_	Ins.		In
3 × ·375	930	3.5 × .4375	675	4 × .5	450	5 X
$3.5 \times .375$	890	4 × .4375	540	4.5 × .5	400	5.5 ×
4 X .375	760	4.5 X .4375	510	5 X .5	340	I

 $5.5\times.5625$ standard for a gauge of 4 feet 8.5 ins.

Ship and Boat Spikes. Number in a Keg of 150 lbs.

Length.	No.	Length.	No.	Length.	No.	Leng
Ins.		Ins.		Ins.		In
4 X.25	1650	5×.3125	930	8×.375	455	IOX.
4.5×.25	1464	6×.3125	868	9×.375	424	8x.
5 X.25	1380	7×.3125	662	10X.375	/ 300 /	√ 9x.
6 X.25	1292	6×.375	570	8 × ⋅ 4375	/ 384	// sox
7 X.25	1161	7×.375	482	. ∥ 9×.437	s / 30x	o ∥ 11.

Weight of Various Metals. Don Cube Inch and Foot

TALS.	Spec. Gravi- ty.	W'ght in an Inch.	Ins. in a Lb.	Weight in a Foot,	METALS.	Specific Gravi- ty.	W'ght in an lnch.	Ins.	Weight in a Feet.
ght-iron plates wire. ron plates wire ed { netal,}	7734 7774 7209 7804 7847 8697 8880 8750	Lb, .2797 .2812 .2607 .2823 .2838 .3146 .3212 .3165	-	Lbs. 483.38 485.87 450.54 487.8 490.45 543.6 555 546.875	Brass, rolled. " cast Lead, rolled. Tin, cast Zinc, rolled Alumini- um, cast Silver Tobin Bronze.	10 480	.4101 .2673 .26 .0926	3.42 2.44 3.74 3.85 10.8 2.64	Lb. 513.6 505 708.73 462 449.28 160 655 523.60

English, (D. K. Clark.)

3ht iron 7.698 .:	278 3.6 480	Tin	7.409 .268	3.74 462	
ron 7.217 .:	26 3.84 450	Zinc	7.008 .253	3.95 437	
7.852].	283 3.53 480.0	Lead	11.418 .412	2.43 712	
r plates 8.805	318 3.15 549	Brass, cast	8.099 .292	3.42 505	
netal 8.404 .	304 2.02 524	" wire	8.548 .308	3.24 533	

WROUGHT AND CAST IRON.

To Compute Weight of Wrought or Cast Iron.

E.—Ascertain number of cube inches in piece; multiply sum by .2816 * for ht iron and .2607* for cast, and product will give weight in pounds.

or cast iron multiply weight of pattern, if of pine, by from 18 to 20, accordits degree of dryness.

MPLE. - What is weight of a cube of wrought iron 10 inches square by 15

10 × 10 × 15 × .2816 = 422.4 lbs.

COPPER.

To Compute Weight of Copper.

.-Ascertain number of cube inches in piece; multiply sum by .321 18.* duct will give weight in pounds.

Sheathing and Braziers' Sheets.

limensions and weights see Measures and Weights, pages 118-121, 131, 142,

LEAD.

To Compute Weight of Lead.

-Ascertain number of cube inches in piece; multiply sum by .410 15.* duct will give weight in pounds.

PLE. - What is weight of a leaden pipe 12 feet long, 3.75 inches in diameter, ch thick?

Rule in Mensuration of Surfaces, to ascertain Area of Cylindrical Rings.

Area of
$$(3.75+1+1)=25.967$$

" 3.75 = 11.044

Difference, 14.923 (area of ring) \times 144 (12 feet) = 2148.9

: = 881.376 lbs.

in length?

BRASS.

Compute Weight of Ordinary Bras ? atings. -Ascertain number of cube inches in piece; multibas * . will give weight in pounds.

is of a cube inch as here given are for the ordinary metals the metal under consideration is accurately known, the weig ed for the units here given.

Dimensions and Weights of Wrought Iron Bolts and Nuts.

SQUARE AND HEXAGONAL HEADS AND NUTS. Rough, and from .25 Inch to 4 Inches in Diameter.

Square Head and Nut.

Diameter	Width.		Diagonal.		Depth.		Weight.		Thomas
of Bolt.	Head.	Nut.	Head.	Nut.	Head.	Nut.	Head and Nut.	Bolt per Inch.	per lack
Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Lbs.	Lbs.	No.
.25	.36	-49	.51	.69	.25	.25	.024	.014	20
.3125	-45	.58	.64	.82	•3	.3125	.043	.022	18
· 3 75	•54	.67	.76	•95	•34	•375	.068	.ogr	16
•4375	.63	.76	.89	1.07	•4	•4375	.104	.042	14
٠5 ِ	.72	.84	1.02	1.19	•44	•5_	•145	.055	13
. 5625	.82	-94	1.16	1.33	.48	.5625	.204	.07	12
.625	.91	1.03	1.29	1.46	∙53	.625	.273	.086	11
.6 875	1	1.12	1.41	1.58	.58	.6875	.356	.104	11
•75	1.09	1.21	1.54	1.71	.63	•75	•454	.124	10
.8125	1.18	1.3	1.67	1.84	.67	.8125	.565	.145	10
.875	1.27	1.39	1.8	1.96	.72	.875	.696	.168	9
I	1.45	1.57	2.05	2.22	.81	I	1.013	.22	8
1.125	1.63	1.75	2.3	2.47	.9	1.125	1.416	.278	7
1.25	1.81	1.94	2.56	2.74	1	1.25	1.923	-344	7 6
1.375	1.99	2.12	2.81	3	1.1	1.375	2.543	.416	
1.5	2.17	2.3	3.07	3.25	1.18	1.5	3.234	-495	6
1.625	2.36	2.48	3.34	3.51	1.28	1.625	4.105	.581	5.5
1.75	2.54	2.66	3.59	3.76	1.37	1.75	5.087	.6 ₇₄	5
1.875	2.72	2.84	3.85	4.02	1.46	1.875	6.182	.773	5
2	2.9	3.02	4·I	4.27	1.56	2	7.491	.88	4-5
2.125	3.08	3.21	4.35	4.54	1.65	2.125	8.936	-993	4.5
2.25	3.26	3.39	4.61	4.79	1.75	2.25	10.543	1.113	4.5
2.375	3.44	3.57	4.86	5.05	1.84	2.375	12.335	1.24	4-375
2.5	3.62	3.75	5.12	5.3	1.94	2.5	14.359	1.375	. 4.25
2.625	3.81	3.93	5.49	5.56	2.03	2.625	16.549	1.515	4
2.75	3.99	4.11	5.64	5.81	2.12	2.75	18.897	1.663	4
2.875	4.17	4.29	5.9	6.07	2.22	2.875	21.545	1.818	3.75
3	4.35	4.47	6.15	6.32	2.31	3	24.464	1.979	3.5
3.25	4.71	4.84	6.66	6.84	2.5	3 25	30.922	2.323	3.5
3⋅5	5.07	5.2	7.17	7.35	2.68	3.5	38.391	2.694	3.25
3.75	5.44	5.56	7.69	7.86	2.87	3.75	47.168	3 093	3
4	5.8	5.92	8.2	8.37	3.06	4	56.882	3.518	! 3

FINISHED.—Deduct .0625 from diameters of bolts and depths of all heads and nuts.

Screws with square threads have but one half number of threads of those with triangular threads.

Note.—The loss of tensile strength of a bolt by cutting of thread is, for one of 1.2; ins. diameter, 8 per cent. The safe stress or capacity of a wrought iron bolt and not may be taken at 5000 lbs. per square inch.

Preceding width, depth, etc., are for work to exact dimensions, whether forged or finished.

To Compute Weight of a Bolt and Nut.

-Ascertain from table weight of head and nut for given di, and add thereto weight of bolt per inch of its length, multi angth of its body from inside of its head to end.

h of a bolt and nut for measurement, as such, is taken from had not not or its greatest capacity when in position.

JUSTRATION. -- A wrought iron bolt and nut with a square head and nut is x inch ameter and 10 inches in length; what is its weight?

Hexagonal Head and Nut.

t w		dth.	Diagonal.		Depth.		Weight.		I
eter	Head.	Nut.	Head.	Nut.	Hend.	Nut.	Head and Nut.	Bolt per Inch.	Threads per Inch.
1.	Ins.	Ins.	Ins.	Ina.	Ins.	lns.	L be.	Lbs.	No.
5	-375	-5	-43	-58	.25	.25	.022	.014	20
125	-4375	,5625	-5	.65	-3	.3125	.037	.022	18
15	.5625	.6875	.65	-79	-34	•375	.062	.031	16
375	,625	-75	.72	.87	-4	-4375	.094	.042	14
175	-75	.875	.87	1	-44	-5	.134	.055	13
525	.8125	-9375	.94	1.08	-48	.5625	.18	.07	12
25	.9375	1.0625	1.08	1.23	-53	.625	.249	.086	11
375	1	1.125	1,16	1.3	.58	.6875	.318	.104	11
5	1.125	1.25	1.3	1.44	.63	•75	.413	.124	10
125	1.25	1.375	1.44	1.59	.67	.8125	.522	.145	10
75	1.3125	1.4375	1.52	1.66	.72	.875	.639	.168	9
23	1.5	1.625	1.73	1.88	.81	I	.931	.22	8
25	1.6875	1.8125	1.95	2.09	.9	1.125	1.299	.278	7
5	1.875	2	2.17	2.31	1	1.25	1.759	•344	7
15	2	2.1875	2.31	2.53	I.I	1.375	2.263	.416	5
	2.25	2.375	2.6	2.74	1.18	1.5	2.958	•495	6
15	2.4375	2,5625	2,81	2.96	1.28	1.625	3.741	.581	5.5
1	2.625	2.75	3.03	3.18	1.37	1.75	4.654	.674	5
'5	2.8125	2.9375	3.25	3.39	1.46	1.875	5.675	•773	5
	3	3.125	3.46	3.61	1.56	2	6.854	.88	4.5
5	3.1875	3.3125	3.68	3.83	1.65	2.125	8.163	-993	4.5
1	3.375	3.5	3.9	4.04	1.75	2.25	9.658	1.113	4.5
5	3.5625	3.6875	4.11	4.26	1.84	2.375	11.263	1.24	4.375
	3.75	3.875	4.33	4.47	1.94	2.5	13.149	1.375	4.25
5	3.9375	4.0625	4.55	4.69	2.03	2.625	15.15	1.515	4
	4.125	4.25	4.77	4.91	2.12	2.75	17.285	1.663	4
5	4-3125	4-4375	4.99	5.12	2.22	2.875	19.751	1.818	3.75
	4.5	4.625	5.2	5.34	2.31	3	22.378	1.979	3.5
	4.875	5	5.63	5.77	2.5	3.25	28.258	2.323	3.5
	5.25	5.375	6.06		2.68	3.5	35.081	2.694	3.25
	5.625	5.75	6.5	6.64	2.87	3.75	43.178	3.093	3
	6	6.125	6.93	7.07	3.06	4	51.942	3.518	3

NISHED.—Deduct .0625 from diameters of bolts and depths of all heads ıuts.

For Wood or Carpentry.

ad and Nut (Square), 1.75 diameter of bolt. Depth of Head, .75,

usher.—Thickness, .35 to .4 of diameter of bolt, on Pine 3.5 diame lak 2.5.

English.

lesworth gives following elements of Thread of Bolts: gle of thread, 55°. Depth of thread = Pitch of screw. mber of threads per Inch. - Square, half number of

th of thread.—.64 pitch for angular and .475 for a

158 DIMENSIONS AND WEIGHTS OF BOLTS AND NUTS.

French Standard Bolts and Nuts. (Armengend's) HEXAGONAL HEADS AND NUTS.

	Equilateral Triangui				ular I	Threa	d.		Square	e Thr	ead.	
	Diamet		Threads per Inch.	Thic		Brendth across Flats.	Safe Tensile Stress.	Diameter of Bolt,	Depth of Thread.	Threads per Inch.	Thickness of Nut.	Safe Tennile Stress.
Mm.	Ins.	Ins.	No.	Ins.	Ins.	Ius.	Lbs.	Mm. Ins.	Ins.	No.	Ins.	Lbs.
5	.2	.13	18.1	.24	.2	-55	44	20 .79	.072	6.57	1.82	717
7-5	.3	.22	16	-3	-3	.68	99	25 .98		5-97	2.01	1 142
10	-39	.31	14.1	.38	-39	.88	178	30 1.18	.093	5-4	2.22	1 635
12.5	.49		12.7	-44	-49	1.04	277	35 1.38	.1	4.93	2.41	2 218
15	-59	-48		.52	-59	1.2	400	40 1.57	.106	4.53	2.63	2912
17.5	.69		10.6	.58	.69	1.4	545	45 1.77	.114	4.2	2.85	3674
20	.79	.66	9.8	.66	-79	1.5	713	50 1.97	.128	3.91	3.07	4 547
22.5	.89			.72	.89	1.68	902	55 2.17	.13	3.65	3.3	5 288
25	.98	.84	8.5	.8	.98	1.84	1 120	60 2.36	.14	3 43	3.5	6 540
30		1.02		.94	1.18	2,16	1 635	65 2.56		3.23	3.7	7 660
35	1.38	1.2	6.7	1.08	1.38	2.48	2218	70 2.76	.158	3.06	3.92	8 893
40	1.58	1.4	6	1.22	1.58	2.8	2912	75 2.95		2.92	4.13	10214
45	1.77	1.56	5.5	1.36	1.77	3.2	3674	80 3.15			4.36	11 603
50	1.97	1.74	5.1	1.5	1.97	3.44	4 547	85 3.35	.183	2.63	4.58	13100
55	2.17	1.92	4.7	1.64	2.17	3.76	5 288	90 3.54	.192	2.51	4.78	14 794
60	2.36	2.08	4-4	1.74	2.36	4 08	6 540	95 3.74	.2	2.41	5	16 352
65	2.56	2.26		1.92	2.56	4.4	7660	100 3.94	,209	2.31	5.22	18 144
70	2.76	2,44	3.8	2.06	2.76	4.7	8 893	105 4.13		2.22	5.43	20 000
75	2.95	2.6	3.5	2.2	2.95	5	10214	110 4.33	.226		5.66	21 950
80	3.15	2.78	3.4	2.34	3.15	5.35	11 468	115 4.53	.23	2.06	5.87	23990

English Bolts and Nuts. (Whitworth's.) Hexagonal Heads and Nuts, and Triangular Threads.

Diame	1	20	De	pth.	Width	Diam	eter.	اغو	Dep	oth.	Width
Bolt.	Base of Thread.	Threads per Inch.	Head.	Nut.	of Hend and Nut.	Bolt.	Base of Thread.	Threads per Inch.	Head.	Nut.	ef Head and Nut.
Ins	Inch.	No.	Inch.	Ins.	Ins.	Ins.	Ins.	No.	Ins.	Ins.	Ins.
.125	.093	40	.109	.125	.338	1.25	1.067	7	1.094	1.25	2.048
.1875		24	.164	.1875	.448	1.375	1.161		1.203	1.375	2.215
.2187		24	-			1.5	1.286		1.312	1.5	2.413
.25	.186	20	.219	.25	.525	1.625	1.369	5	1.422	1.625	2.576
.3125	.241	18	.273	.3125		1.75	1.494	5	1.531	1.75	2.758
.375	.295	16	.328	•375		1.875	1.59	4.5	1.641	1.875	3.018
•4375	.346	14	-383	·4375	.82	2	1.715	4.5	1.75	2	3.149
.5	.393	12	-437	•5	.919	2.125	1.84	4.5	1.859	2.125	3-337
.5625	.456	12	-492	.5625	1.011	2.25	1.93	4	1.969	2.25	3.546
.625	.508	4	.547	.625	1.101	2.375	2.055	4	2.078	2.375	3.75
.6875	·571	13	.601	.6875	1.201	2.5	2.18	4	2.187	2.5	3.894
•75	.622	10	.656	•75	1.301	2.625			2.297	2.625	4.049
Aros.	.684	10	.711	.8125	1.39	2.75	2.384	3.5	2.406	2.75	4.181
1	-133	9	.766	.875	1.479	2.875		3.5	2.516	2.875	
		100	.82	·9375	1.574	3	2.634	3.5	2.625	3	4-531
					1.67	\\3.25	2.84	3.25	/	-	-
					.86	13.5	/3.06	/3.3	5/	1 -	1 -

Square Heads and Nuts. (Whitworth's)

Dia	meter.	Threads	Dia Dia	meter.	Threads	Dia	Threads.	
lt.	Base of Thread.	per Inch.	Bolt.	Base of Thread.	per Inch.	Bolt.	Base of Thread.	per Inch.
4.	Ins.	No.	Ins.	Ins.	No.	Ins.	Ins.	No.
75	3.25	3	4.5	3.875	2.875	5.25	4-4375	2.625
	3.5	3	4.75	4.0625	2.75	5.5	4.625	2.625
35	3.75	2.875	5	4.25	2.75	6	4.875	2.5

Weight of Heads and Nuts in Lbs. (Molesworth.) exagonal, 1.07 D³. Square, 1.35 ³ D³. D representing diameter of bolt whes.

tentiveness of Wrought Iron Spikes and Nails. Deduced from Experiments of Johnson and Bevan.

abr	v.	DΟ	

špinu.	Wood.	Breadth.	Depth.	Depth of Insertion.	Force required to draw it.	Ratio of force to weight.	Remares.
re	Hemlock† Chestnut	Ins. -39 -37	Ins. .3 .38	Ins. 3.5 3.5	Lbs. 1297 1873	1.58	Seasoned in part. Unseasoned.
*	Yellow pine White oak Locust	·375 ·375 ·4	·375 ·375 ·4	3·375 3·375 3·5	3910 5967	2.37 4.52 6.33	Seasoned.
arrow	Chestnut White oak Locust	·39 ·39 ·39	.25 .25	3·5 3·5 3·5	2223 3990 5673	3.93 7.05 9.32	Unseasoned. Seasoned.
broad	Chestnut White oak Locust	·539 ·539 ·539	.288 .288	3.5 3.5 3.5	2394 5330 7040	2,66 5.71 7.84	Unseasoned. Seasoned.
Dra¥ filed.	Hemlock† Chestnut† Locust†	.4 .4	·39 ·39 ·39	3.5 3.5 3.5	1638 1790 3990	1.75 1.81 4.17	Seasoned in part. Unseasoned. Seasoned in part.
l and }	Ash "	Dian	5	3·5 3·5	2052 2451	2.21	Seasoned.
44	White oak	44	.48	3.5	3876	3.2	"

Burden's patent.

† Soaked in water after the spikes were driven.

NAILS.

		Danih at	ŀ	Force re		Pressure required			
-	Length.	Depth of Insertion.	Pine.	Hemlock.	Elm.	Oak.	Beech.	to force them into Pine.	
	Ins.	Ins.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbe.	
шy	2 2	1	187	312	327	507 675	667 88		
	2	1.5 2	327 530	539 857	571 899	1394	18		

General Remarks.

1 a given breadth of face, a decrease of depth will oft woods, a blunt-pointed spike forces the fibr urds so as to leave the fibres longitudinally in controls. To obtain greatest effect, fibres of the wood should press faces of the spile in direction of their length; thus, a round blunt bolt, driven into a hole of a less diameter, has a retention equal to that of any other form, when wholy driven, as without boring.

The retention of a spike, whether square or flat, in unseasoned chestau, from two to four inches in length of insertion, is about 800 lbs, per square inch of the two surfaces which laterally compress the faces of the spike.

inch of the two surfaces which laterally compress the faces of the spike.

When wood was soaked in water, after spikes were driven, order of their retentive power was Locust, White oak, Chestnut, Hemlock, and Yellow Pias.

Gas Pipe Threads.

									i and	
Diameter in Inches	.125	.25	-375	.5	.75	1	1.25	1.5	1.75	(12)
(D) T 1			010			122				100
Threads per inch	28	IO	10	14	14	II	11	II	- AMERIC	- 38

ANGLES AND DISTANCES.

Angles and Distances corresponding to Opening of Rule of Two Feet.

Angle.	Distance.	Angle.	Distance.	Angle.	Distance.	Angle.	Distance.	Angle.	Distance
•	Ins.	0	Ins.	0	Ins.	0	Ins.	0	Ina
1	.2	19	3.96	37	7.61	55	11.08	73	14.28
2	.42	20	4.17	38	7.81	56	11.27	74	14.44
3	.63	21	4.37	39	8.01	57	11.45	75	14.61
4	.84	22	4.58	40	8.2	58	11.64	76	14.78
5	1.05	23	4.78	4I	8.4	59	11.82		14.94
5 6	1.26	24	4.99	42	8.6	60	13	77 78	15.11
7	1.47	25	5.19	43	8.8	61	12.18	79	15.27
7 8	1.67	26	5.4	44	8.99	62	12.36	80	15.43
9	1.88	27	5.6	45	9.18	63	12.54	81	15.59
IÓ	2.09	28	5.81	46	9.38	64	12.72	82	15.75
II	2.3	29	6.01	47	9.57	65	12.9	83	15.9
12	2.51	30	6.21	48	9.76	66	13.07	84	16.00
13	2.72	31	6.41	49	9.95	67	13.25	85	16,21
14	2.92	32	6.62	50	10.14	68	13.42	86	16.37
15	3.13	33	6.82	51	10.33	69	13.59	87	16.52
ıŏ	3.34	34	7.02	52	10.52	70	13.77	88	16.67
17	3.55	35	7.22	53	10.71	71	13.94	89	16.82
18	3.75	36	7.42	54	10.9	72	14.11	90	16.97

Distances and Angles corresponding to Opening of a Rule of Two Feet.

Distance.	Angle.	Distance.	Angle.	Distance,	Angle.	Distance.	Angle,	Distance.	Angle
Ins.	0	Ins.	0	Ins.	0	Ins.	0	Ins.	0
.25	1.12	3	14.22	6.5	31.26	10	49.14	13.5	68.23
•375	1.48	3.25	15.34	6.75	32.4	10.25	50.34	13.75	69.54
•5	2.24	3.5	16.46	7	33.54	10.5	51.54	14	71.23
.625	2.59	3.75	17.58	7.25	35.09	10.75	53.14	14.25	72.5
	3.35	4	19.11	7.5	36.24	11	54-34	14.5	74.2
	4.13	4.25	20.24	7.75	37.4	11.25	55-54	14.75	75.5
	4.48	4.5	21.37	8	38.56	11.5	57.16	15	77.22
	5.58	4.75	22.5	8.25	40.12	11.75	58.38	15.25	78.5
	'.I	5	24.4	8.5	41.28	12	60	15.5	80.5
	23	5.25	25.16	8.75	42.46	12.25	61.23	15.75	80
			26.3	9	44.2	12.5	62.46	16	14
			27.44	9.25	45.2	12.75	64.1	16.25	
			1.58	9.5	46.38	13	65.36	16.5	1
			.12	9.75	47-5	13.25	161.03	# 16.75	

WIRE ROPE.

Vire rope will run over sheaves of like diameter to Hemp rope of same ngth; but larger sheaves reduce wear. Adhesion is the same as that of ip rope. Wear increases rapidly with speed. Short bends should be ided. In substituting wire rope for hemp, allow same weight per footking wire rope materially damages and often destroys it.

or transmission of power, wire rope can be used up to distances of 3. For distances less than 100 feet, it is not advised for long transion; sheaves are placed at intervals, dividing it into a number of ter ones of 250 to 300 feet.

rength per square inch of section of rope is about 50 per cent. of an l section of solid metal of same strength per square inch.

ationary wire ropes should be kept well painted or tarred to prevent oxidation. Running ropes should always be well lubricated and pro1 from grit with linseed-oil, pine tar, graphite grease, or any similar wid substances.

undard wire rope is made of 6 strands of 7, 12, or 19 wires each, with or wire centre. Wire centre adds 10 per cent. to strength and weight e, but reduces its flexibility proportionally.

'e working load for standing ropes is about one fourth ultimate strength, ir running ropes it is from one fifth to one seventh.

es for hoisting are composed of 6 strands of 19 wires each around a centre.

es for transmission of power, for guys and rigging, are composed of ids of 7 or 12 wires each.

ultimate strength of wires of which wire ropes are made are for: ire, 70 000 to 90 000 lbs. per sq. inch; Bessemer steel wire, 100 000 to 20 lbs.; Crucible cast-steel wire, 150 000 to 180 000 lbs., and Special-steel wire, 210 000 to 300 000 lbs.

ial ropes can be made of 4, 6, 8, etc., strands of varied construction. ropes are also made flat, composed of several strands alternately 1 to right and left, laid alongside each other, and sewed together off iron wire.

hawsers of steel are made of 6 strands of 12 wires each with hemp around a common hemp centre, and are as flexible as hemp hawsers 1 strength.

anized wire rope replaces hemp for rigging, because of its cheapne ity, and resistance to stretch. It is one fifth bulk for equal streng o rope, and offers less surface to wind.

ropes for vessel-steering gear are made of 6 small centre, each small rope composed of 6 strands of 7 ntre—252 wires in all in the rope, giving great flexi

: rigging of galvanized cast-steel rope is one third to crime rope of equal strength.

Elements of Running and Standing Wire Ropa John A. Roebling's Sons Co., New York.

HOISTING ROPE.

19 Wires in a Strand. Hemp Centre.

			A PRODUCT					MARK 19	A PURSUE	
Diam.	Circum.	Weight per Foot,	Ultimate Strength.	Safe Load .2	Circum. Equivalent to New Hemp Rope.	Min	Ultimate Strength.	Safe Load .2	Equivalent to New Hemp Rope.	Mis
Ins.	Inc.	Lba.	Lbs.	Lbs.	Ins.	Ft.	Lbs.	Lbs.	Ins.	B.
-375	1.178	.26	5 000	1 000	2.5	1.5	9 000	1 800	3-5	2
-5	1.708	-35	6 960	1 392	3	2.25	14 000	2800	4-5	1.5
.625	1.964	.6	10 260	2052	3.75	3.5	24 000	4 800	5-75	2.35
	2.256	.88	17 280	3 456	4-75	4	36 000	7 200	7 8.5	3
·75	2.749	1.2	23 000	4 600	5.5	4.5	50 000	10 000	8.5	35
1	3.142	1.58	32 000	6 400	6.5	5.25	66 000	13 200	9.5	1831
1.125	3-534	2	40 000	8 000	7.5	6	84 000	16 800	II	45
1.25	3-927	2.5	54 000	10 800	7·5 8·5	6.5	104 000	20 800	12	3,1
1.375	4-32	3	66 000	13 200	9.5	7	126 000	25 200	13	55
1.5	4-712	3.65	78 000	15 600	10	7·5 8.5	154 000	30 800	24 1	5.73
1.625	5.105	4.I	88 000	17 600	H	8.5	176 000	35 200	75 H	6.25
1.75	5.498		108 000	21 600	12	10	212 000	42 400	-	7,25
2	6.283	6.3	130 000	26 000	13	12	250 000	50 000	100	8.5
2.25	7.009	8	148 000	29 600	14	13	310 000	62 000	-	03

Transmission and Standing Rope.

7 Wires in a Strand. Hemp Centre.

			IRON.	. 1	CAST STEEL					
Diam.	Circum.	Weight per Foot,	Ultimate Strength.	Safe Load .2	Circum. Equiv- alent to New Hemp Rope.	Min, Size Sheave,	Ultimate Strength.	Safe Load .2	Circum. Equivalent to New Hemp Rope,	Mis. Sou Shave
Ins.	Ins.	Lbs.	Lbs.	Lbs.	Ins.	Ft.	Lbs.	Lbs,	Ins.	n.
•375	1.178	.19	3 300	660	2.25	2.75	8 000	1 600	3.25	2.
•5	1.571	.31	5 660	1 132	2.75	4	12 000	2 400	4	2.5
.625	1.964	·57	11600	2 320	4	5.25	22 000	4 400	5-5	35
.75	2.356	.88	17 600	3 520	4-75	6.75	34 000	6800	7	4.5
·75 .875	2.749	1.12	24 600	4 920	5-75	7.5	44 000	8800	8	25
1	3.142	1.5	32 000	6400	6.5	7·5 8.5	60000	12 000	9	575
1.125	3-534	1.82	40 000	8 000	7.5	9.5	72 000	14 400	10	6.25
1.25	3.927	2.28	50 000	10 000	8.5	10.75	88 000	17 600	II	7/25
1.375	4.320	2.77	60 000	12 000	9	12	104 000	20 800	12	8
1.5	4-712	3-37	72 000	14 400	10	13	124 000	24 800	13	8.5

NOTE. - Add to per cent, to weight for wire centre.

Galvanized Charcoal Iron Wire Rope. Vessels' Rigging and Derrick Guys.

ls' Rigging and Derrick Guys

Circum.	Weight per Fathom.	Ultimate Strength.	Safe Load .25	Circum. Equivalent to New Hemp Rope.	Circum.	Weight per Fathom,	Ultimate Strength.	Safe Load .25	Circuit. Equivalent to New Hessa Rops.
_	Lbs.	Lbs. 21 000	Lbs. 6 000 7 000 8 000	Ins. 5-75 6 6.5 7-5	Ins. 4-5 4-75 5 5-25 5-5	1.bs. 19 21 22 24-5 26.5	Lbs, 60 000 66 000 70 000 80 000 86 000	1.bs. 15,000 16,500 17,500	1m. 9 -9.5

Falvanized Charcoal Iron Wire Rope, Vessels' Rigging and Derrick Guys.

John A. Roebling's Sons Co., New York.

7 Wires in a Strand.

eight per .thom.	Ultimate Strength.	Safe Load .25	Circum. Equivalent to New Hemp Rope.	Circum.	Weight per Fathom.	Ultimate Strength,	Safe Load .25	Circum. Equivalent to New Hemp Rope.
Lba,	Lbs.	Lbs.	Ine.	Ins.	Lbs.	Lba,	Lba,	Ins.
.25	750	187.5	1.125	1.5	2	7000	1750	3
·375	1250	312.5	1.25	1.75	2.5	10 000	2500	3.75
٠5	1500	375	1.5	2	3.5	14 000	3500	4.5
	2000	500	1.75	2.25	4.5	16 000	4000	4.75
·75 ·875	4000	1000	2.25	2.5	5.5	18000	4500	5
.25	4500	1125	2.375	2.75	6.75	20 000	5000	5.25
.75	5000	1250	2.5	I —		-	-	""

Galvanized Steel Hawsers.

For Sea and Lake Towing.

		Circum. equival't to New Hemp Hawser.			Circum, equival't to New Hemp Hawser.
	Lbs.	Inc.	Ins.	1.ba.	Ine.
1	30,000	6.5	3.5	58 ooo	9
	36∞∞	1 7 1	4	70 000	10
	44 000	8.5	_	ı -	ı —

nized Steel Cables for Suspension Bridges.

Ultimate Strength.	Weight per Foot.	Diameter.	Ultimate Strength.	Weight per Foot.	Diameter.	Ultimate Strength.	Weight per Foot.
Lba.	Lbs.	Ins.	Lbs.	Lbs.	Ins.	Lba.	Lba,
130 000	3.7	1.875	200 000	5.8	2.375	360 000	10
150 000	4-35	2	220 000	6.5	2.5	400 000	11.3
100 000	5.6	2.25	310 000	8.6₄	2.625	440 000	12

uge, Weight, and Length of Iron Wire.

Weight per 100 Feet.	Weight of one Mile.	63 lbs. Bundle.	Area.	Gauge.	Diam.	Weight per 100 Feet.	Weight of one Mile.	63 lba. Bundle.	Area.
Lba,	Lba.	Feet.	Sq. Inch.	No.	Inch.	Lba.	Lba.	Fret.	Sq. Inch.
56. z	2962	112	.166 19	16	.063	1.05	55	6 000	.003 117
49.01	2588	129	.14522	17	.054	.77	41	8 182	002 20
40.94	2162	154	.121 304	18	.047	.58	31	10 862	.001 734
34-73	1834	181	.102 921	19	.041	-45	24	14 000	001 32
29.04	1533	217	.086 049	20	.035	.32	17	19687	.000 962
27.66	1460	228	.074 023	21	.032	.27	14		.000 804
21.23	1121	296	.062 901	22	.028	.21	11	30 000	.000 615
18.34	968	343	.054 325	23	.025	.175	9.24	36 000	.000 40*
15.78	833	399	.046 759	24	.023	.14	7.39	45 000	.000
13.39	707	- 470	.039 76	25	.02	.116	6.124	54 310	.00x
11.35	599	555	.033653	26	.018	.093	4.91	67 742	
9.73	514	647	.028 952	27	.017	.083	4.382	75 903	
8.03	439	759	.024 605	28	.016	.074	3.907	85 135	.001
6.96	367	905	.020 612	20	.015	.061	3.22	103 278	.00
5.08	306	1086	.017 203	30	.014	ŀ	3.851	116 666	
4.83	255	1304	.014 313	31			54	126 000	.ooc
3.82	202	1649	011 309	32				136 956	.000 -
2.92	154	2158	.008 659						,000 C.
2.24	118	2813	.006 647	34				- 00	0/.000
z:69 /	89 /	3728	.005 026	35					m/.000 c
z.37 /	72 /		004 071	36					000

É

Weight and Strength of Single Strand and Cable laid Fence Wire. (F. Morton & Co.)

Strands.	No.	of	le Wire equal meter.	Length per 1000 lbs. Of a Of Strand. Rope.		Strands.	No.	Single Wire of equal Diameter.		per so Of a Strand.	oo ika Of Rope
No.	1.0		Inch.	Feet.	Feet.	No.		No.	Inch.	Feet.	Frei.
3	2A	8	.159	20 090	15 270	7	00	4	.229	8300	
4	2	7	.174	14 730	12 790		3/0	3	.25	8036	6228
7	1	6	.191	13 125		7	4/0	2	.274	7500	5150
7	0	5	,209	10 446	8 928	7	5/0	1	-3	5090	4280

No. and diameter of wire is that of Ryland's Bros., pp. 122-4-

Hemp, Iron, and Steel. (R. S. Newall & Co.)

HEMP.	1	IRON.		STEEL	0.1	Tensile	Strength.
Circumference.	Weight per Foot.	Circumference.	Weight per Foot.	Circumference,	Weight per Foot.	Safe Load.	Ultimate Strength
Ins.	Lbs.	Ins.	Lbs.	Ins.	Lba.	Lbs.	Lisa
2.75	-33	1	.16	-	-	672	⇒4480
		1.5	.25	1	.16	1 008	6 720
3.75	.66	1.625	-33	_	-	1344	8 gbu
2.65	1.59	1.75	.42	1.5	.25	1680	11 200
4.5	.83	1.875	.5	7	1	2016	13 440
	1	2	.58	1.625	-33	2352	15680
5.5	1.16	2.125	.66	1.75	.42	2688	17 920
		2.25	•75	- 0	-	3024	20 160
6	1.5	2.375	.83	1.875	-5	3360	22400
4.	1.66	2.5	.92		-0	3696	24 640
6.5	1.00	2.625	I	2	.58	4032	
	. 1	2.75	1.08	2.125		4368	29 120
7	2	2.875		2.25	.75	4 704	31 360
	2.22	3	1.25	0.000	.83	5040	36 840
7.5	2.33	3.125	1.33	2.375	.03	5672	38 080
8	2.66	3.25	1.41	2.5	.92	6048	40 320
0	2.00	3·375 3·5	1.66	2.625	1 1	6720	44 800
8.5	3	3.625	1.83	2.75	1.08	7 392	49 280
0.5	3	3.75	2	2.73		8064	53 760
9.5	3.66	3.875	2.16	3.25	1.33	8 736	58 240
10	4.33	4	2.33	33	33	9408	62 720
	4.33	4.25	2.5	3-375	1.5	10080	67 200
II	5	4-375	2.66	3373	-3	10 752	71680
		4.5	3	3.5	1.66	12 096	80640
12	5.66	4.625	3.33		2	13440	
			FLAT				,
Dimensions.		Dimensions.		Dimensions.			
4 × .5	3.33	2.25 X.5	1.85		-	4 928	
5 ×1.25	4	2.5 X.5	2.16	_	-	5824	51520
5.5 × 1.375	4-33	2.75 × .625	2.5			6720	60480
5.75×1.5	4.66	3 X.625	2.66	2 X.5	1.66	7168	62 720
6 X1.5	5	3.25 X.625	3	2.25×.5	1.83	8 0 64	71 680
7 ×1.875	6	3.5 ×.625	3.33	2.25×.5	2	8960	80 640
8.25×2.125	0.00	~ 75 × 6875	3.66	2.5 X.5	2.16	9850	89,600
Rr V		×.6875	4.16	2.75×-375	2.5	11 200	100 800
		×.75	4.66	3 X.375		13 244	112000
		X.75	5.33	3.25×.37	5/3	1433	725 44
		×.75	5.60	3.5 X.37	21.2.2	211 +2 +1	See Print Street

1 preceding tables following results are determined:

I	Ultimate Strength	SAFE LOAD					
	per Lb. Weight per Foot.	per Lb. Weight per Foot.	per Square of Circum- ference in Inches.				
	Lbs.	Lbs.	Lbs.				
	15 000	4550	100				
	22 000	4500	60ò				
1	∫3 0 ∞∞	∫6000	∫ 1000				
	(45 500	1 8000	1300				

FLAT MINING ROPES.

John A. Roebling's Sons Co., New York.

Thickness.	Weight per Foot.	Safe Load.	Width.	Thickness.	Weight per Foot.	Safe Load.
Ins.	Lbs.	Lbs.	Ins.	Ins.	Lbs.	Lba,
•375	1.19	63 ∞	5.5	•375	3.9	156 000
•375	1.86	74 000	5.5	•5	4.8	193 000
•375	2.32	93 000	6	·375	4.34	173 000
.5	2.97	118000	6	·4375	4.5	160 000
•375	2.86	114 000	6	.5	5.1	210 000
-5	3.3	130 000	6.5	1 .5	5.5	224 000
-375	3.12	125 000	7	·5	5.9	238 000
-5	4	160 000	7.5	•5	6.25	250 000
-375	3.4	125 000	6	-5	6.75	270 000
1 .5	4.27	170 000	l	1		· ·

Ropes and Chains of Equal Strength.

	CIRC	UMPEREN	CE.	WEIGHT PER FOOT.							
ain.	Hemp Rope.	Crucible Steel Rope.	Charcoal Iron Rope.	Steel Rope.	Iron Rope.	Hemp Rope.	Iron Chain.	Safe Load.			
	Ins.	Ins.	Ins.	Lbs.	Lbs.	Lbs.	Lbs.	Tons.			
7 5	2.75	-	1	_	.14	-34	•5	-3			
•	3	—	1.18	<u> </u>	.21	.46	.ŏ5	-4			
25	3.5	1	1.39	.17	.28	.67	.81	-5			
5	4.25	1.26	i.57	.25	.33	-75	.96	.5 .6			
	4.5	1.45	1.77	-3	-45	.83	1.38	.8			
5	5	1.57	1.97	•35	-57	1.16	1.76	I			
75	5.5	1.77	2.19	-45	•7	1.2	2.2	1.3			
	5.75	1.96	2.36	-59	.83	1.6	2.63	1.5			
	6.75	2.36	2.75	.85	1.08	2	4.21	2.3			
5	7.75	2.75	3.14	1.1	1.43	2.65	4.83	3.1			
	8.75	2.95	3.53	1.28	1.8	3.35	5.75	3.8			
	9.75	3.14	3.93	1.45	2.3	4.6	7.5	4.8			
5	10.5	3.53	4.32	1.83	2.94	4.92	9.33	Ė			
5 5	11.75	3.93	4.71	2.33	3.56	5.83	10.6	1			
	12.75	4.32	5.1	2.98	4	6.2	11.9	 {			
	14.75	4.71	5.5	3.58	4.8	8.7	14.5	9			
	15.25	4.81	5.89	3.65	5.6	9	17.6	1:			
	15.75	5.1	6.28	4.04	6.3	•	20	12			
	17.75	5.8	7.07	5.65	7.9.		.3.3	15.			
	19.5	6.35	7.85	6.5	9.8			2.01			

periments of U. S. Navy, hemp rope of this gray of bs., and a wire rope of 5.34 ins. has

Weight of Hemp and Wire Rope. (Wolcowsk) In Lis. per Fution.

Classes.	Henr. Common, Good.		Inco.	See. 1	Circum-	Common 4 Said	
					-		734
les.	104.	Lbs.	Lha.	Lbs.	Ins.	Link.	201
1	.18	.24	.87	-89	5	4-5	394
1.5	-41	-54	1.96	2	5.5	5-45 6.48	7.20
1.75	-55	-74	2.66	2.73	6		-8.64
2	.72	.96	3.48	3.56	6.5	7.61	10.14
2.25	.gt	1.22	4-4	4-51	7	8.82	11.70
2.25 2.5	1.13	1.5	5-44 6.58	5-56	7-5 8	10.13	13.5
2-75	1.36	1.82	6.58	6.73	8	11.52	15.30
3	1.62	2.16	7.83	8.01	8.5	13.05	17.34
3 3-25 3-5 3-75	1.9	2.54	9.19	94	9	14-58	1944
3-5	2.21	2.94	10.66	10.9	10	18	24
3-75	2.53	3-38	12.23	12.52	12	26	34.50
4	2.53 2.88	3-84	13.92	14-24	15	40.52	54

To Compute Stress upon a Rope set at an Inclination

BULE.—Multiply sine of angle of elevation by strain in lbs., add an allowance for rolling friction and weight of rope, and multiply by factor of safety.

Factor of safety.- For standing rope 4, for running 5, and for incline planes from 5 to 7.

ILLEGERATION. —Inclination of rope 92.5 feet in 100, velocity 1500 feet per minule and strain 2000 lbs.; what should be diam. of iron rope, 7 wires to a strand?

Angle of q_2 5 feet in $roo = 43^\circ$, and sme of $43^\circ = .682$. $.682 \times 2000 = 1304$ b which is to be added rolling friction and weight of rope, assumed to be 11; hear, 1354 + 11 = 1375.

Factor of safety assumed at 6, consequently 1375 × 6 = 8250 lbs., capacity or breaking weight or stress of rope.

By table, page 162, 8200 lbs. is breaking weight of a wire rope of 7 strands, is inch in diam.

To Compute Tension of a Rope.

 $\frac{\mathbf{P}}{v} = t$. v representing velocity of rope in feet per minute, \mathbf{P} horses' power, and t tension in the.

ILLUSTRATION.—Assume wheel 7 feet in diameter, revolution 140 per minute, and IP as per preceding table, 29.6.

Then
$$\frac{29.6 \times 33000}{7 \times 3.1416 \times 140} = \frac{976800}{3079} = 317.2 lbs.$$

To Compute Operative Deflection of a Rope.

 $\frac{1}{10.7}\frac{m}{t} = d$. D representing distance between centres of wheels or drum in feet, in result of rome in feet per b, t tension, or power required to module

feet, w weight of rope in feet per lb., t tension, or power required to product required power or tension of rope when at rest, and d deflection in feet.

ILLUSTRATION.—Take elements of preceding case; diam. of wire rope of 7 strands = .5625 inch, and by table, page 162, w = .41 lb., and D = 300 feet.

Then
$$\frac{300^2 \times .41}{10.7 \times 317.2} = 10.87$$
 feet.

of the river Rhine there is a wire rope in open.

In horses for a distance exceeding one will

Endless Ropes.

e Ropes, when practicable and proper for application, can be used for assion of power at a less cost than belting or shafting.

Transmission of Power.

Revolu- tions per Minute.	Diameter of Rope,	Horse Power.	Diameter of Wheel.	Revolu- tions per Minute.	Diameter of Rope.	Horse Power.	Diameter of Wheel.	Revolu- tions per Minute.	Diameter of Rope.	Horse Power.
12.0	Ins.		Feet.		Ini.	75	Feet.		Ine.	
80	-375	3.3	7	100	.5625	21.1	11	140	.6875	132.1
100	-375	4.1	7 8	140	.5625	29.6	12	80	-75	99.3
120	-375	5	8	80	.625	22	12	100	.75	124.1
140	-375	5.8	8	100	.625	27.5	12	140	.75	173-7
80	-4375	6.9	8	140	.625	38.5	13	80	-75	122.6
100	-4375	8.6	9	80	.625	41.5	13	100	-75	153.2
120	-4375	10.3	9	100	.625	51.9	13	120	.75	183.9
140	-4375	12.1	9	140	.625	72.6	14	80	.875	148
80	-5	10.7	10	80	.6875	58.4	14	100	.875	176
100	-5	13.4	10	100	.6875	73	14	120	.875	222
120	-5	16.1	IO	140	.6875	102.2	15	80	.875	217
140	.5	18.7	II	80	.6875	75.5	15	100	.875	259
80	.5625	16.9	11	100	.6875	94-4	15	120	.875	300

Wire Rope and Equivalent Belt.

abstituting wire rope for an ordinary flat belt, the diameter is deterby rule in practice for estimating power transmitted by a belt—viz.,

horse power for every 70 square feet of running belt surface per 1. Thus, a belt 15 inches wide running at rate of 1400 feet per minpower would be equal to $(1400 \times 15) \div (70 \times 12) = 25$ horses' power. same result is obtained by the use of a wire rope .5625 inch in diamenning over a wheel 6 feet in diameter, making 130 revolutions per

rage life of iron wire rope with good care is from 3 to 5 years, and steel rope is greater. Wear increases rapidly with velocity.

General Notes .- Hemp and Wire Ropes.

e Rope, 2 inches in circumference, of different manufactures, parted at of from 4413 to 6160 lbs.

mens of Italian, Russian, and French manufacture parted with an stress of 5128 lbs. = 1633 lbs. per square inch of rope.

ng capacity of a hemp rope is proportional to its thickness, number trands, slackness with which they are twisted, and quality of the

and Wire Ropes.—Ultimate Strength is 2240 lbs. per lb. per fathor d hemp, 3300 lbs. for iron, 7000 lbs. for cast-steel, and 10000 lbs. for itsel.

ing Load is 336 lbs. per lb. weight per fathom for round hemp, 66c iron, 1400 lbs. for cast-steel, and 2000 lbs. for plough-steel.

3 times square of circumference in inches for round hemp, 5 times decircumference for iron, and 9 times square of circumference D. K. Chark.)

Ropes may be one half less in weight than iron or hemp loads.

IRON WIRE AND UNITED STATES NAVY HEMP ROPE. Wire 6 Strands, Hemp Core. Rope 4 Strands.

		WIRE.		1		HE	MP.	ME
Actual.	Nominal.	Core.	Wires.	Breaking Weight.	Actual.	mference. Nominal.	Yarns.	Brenking Weight
Ins.	Ins.	Ins.	No.	Lbs.	Ins.	Ins.	No.	Lie.
7	7	2.35	108	187 400	12	13.25	1168	75 956
6	6	2.25	108	104 050	11	12.25	1036	77 633
4.937	4.9	1.57	114	65 409	10.5	11.875	928	76 933
4.375	4-5	1.57	114	55316	10	11.375	876	70 533
3.5	3.36	1.27	114	34 480	9.5	10.5	800	58 766
3.187	2.98	1.17	114	28 606	9	10.312	712	56466
2.75	2.68	.78	114	21 846	8.5	9.437	640	42.866
2.5	2.45	.78	114	15692	8	8.812	560	40 000
2.375	2.4	.78	42	15718	7.5	8.437	484	35 500
2	2.00	-39	114	10 925	7	7.812	436	32 166

Weight and Strength of Stud-link Chain Cable (English.)

Diam. of each Side.	Length of Link.	N. Samuel Co., or	Weight per Fathom,		Diam.	Length of Link,	Width of Link.	Weight per Fathem,	Admiralty Proof-stress (adopted by Lloyds')
Ins. •4375	Ins. 2.625		Lbs. II.3	Tons, 3.5	Ins. 1.5	Ins. 9	Ins. 5.4	Lha. 121	Tons, 40.5
·5 ·5625	3 3·375	1.8 2.025		5-5	1.625	10.5	5.85	164.6	
.625 .6875		2.25		7 8.5	1.875	12	6.75 7.2	189	63.25 72
.75 .875	4·5 5·25 6	3.15 3.6	30.2 41.2 53.8	13.75	2.125 2.25 2.375	12.75 13.5 14.25	7.65 8.1 8.55	242.8 276.2 303.2	81.25 91.125
1.125	6.75 7·5	4.05	69	22.75 28.125	2.5	15	9	336	112.5
1.375	8.25	4.95	101.6	34			1		

NOTE I.—Safe Working-stress is taken at half Proof-stress, 3.82 tons per sq. inch of section.

 Proof-stress and Safe Working - stress for close-link chains are respectively two-thirds of those of stud-link chains.

3.—Proof-stress averages 72 per cent, ultimate strength, and Ultimate Strength averages 8 tons per square inch of section of rod or one side of a link.

Weight of close-link chain is about three times weight of bar from which it is made, for equal lengths.

Karl von Ott, comparing weight, cost, and strength of the three materials, hemp, iron wire, and chain iron, concludes that the proportion between cost of hemp rope, wire rope, and chain is as 2:1:3. and that, therefore, for equal resistances, wire rope is only half the cost of hemp rope, and a third of cost of chains.

Safe Working Load of Chains, (Molesworth)

Diameter of Iron.	Load.	Diameter of Iron.	Load.	Diameter of Iron.	Lond.	Diameter of Iron.	Load.
. 15	Lba, 2240 3800	.6875 -75	Lis. 7 390 8 960	Ins. -9375	Lbs. 13 700 15 680	Ins. 1.1875 1.25	1,lis. 202 400
1	4900 6270	.8125	10 280	1.0625	17 920	1.3125	4

Breaking Strain and Proof of Chain Cables.

liam. Chain.	Breaking Strain.	Diam. of Chain.	Breaking Strain.	Diam. of Chain.	Breaking Strain.	Diam. of Chain.	Breaking Strain.
Ine.	Lba. 67 700	Ins. 1.1875	Lbs. Q2 Q40	Ins. 1.5	Lbs. 143 100	Ins.	Lbs. 243 180
0625	75 640		102 160	1.625	165 920	2.125	272 580
125	84 100	1.375	121 840	1.75	216 120		303 280

'roof-stress is 50 per cent. of estimated strength of weakest link and 46 cent. of strongest.

mparison of Wire Ropes and Tarred Hemp Rope, Hawsers, and Cables.

	D.	NE LAII	FI		1		AID.	RSE L	COA		
Cables.	Haws'rs.	Ropes.	1		Cables.	Haws'rs.	pes.	Roj	1		
Three Strande.	Three Strands.	Four Strands.	. Safe Load.	Diam- eter.	Three Strands.	Three Strands.	Four Strands.	Three Strands.	Safe Load.	Circum,	n-
lns.	Ins.	Ins.	Lbs.	Ins.	Ins.	Ins.	Ins.	Ins.	Lbs.	Ins.	
_	2.87	3.12	z 875	-5	-	-	-	1.25	425	.78	
4.87	3.25	3.56	2 420	.5625	-	3.32	2.25	2.43	690	1	15
5.25	3.62	3.93	2 900	.625	-		2.375	2.68	825	1.25	1
6.37	4-37	4.81	4 320	.75	-	3.87	2.62	2.87	1 600	I.375	10
7.25	5	5.5	5700	.75 .875	-	5.18	3-5	3.81	2 800	1.75	15
8.75	6.25	7.25	8 200	1	-	6.12	4.25	4-75	3800	2.125	5
9.5	7	8.18	10 100	1.125	-	7	4.87	5.25	4 400	2.375	17
11	8.06	8.8z	13600	1.25	8	8	5.75	6.12	6150	2.625	
12.5	9.75	10	17 500	1.5	8.62	8.62	6.12	6.62	8 400	3	117
_	10.93	11.18	21 800	1.625	10.93	10.93	8.5	8.8r	13400	3-75	
—	12.12	12.5	27 000	1.75	12.12	12.25	9.56	9.87	16 800	4.25	111
_	_		32 500	1.875	13.12	13	10.5	10.75		4.625	ш
_	_	- 1	37 000	2	11.75	11.56	11.87	-	24 600	5	-11

above table, determination of circumference of rope, etc., is based upon king Weight or Tensile resistance of wire being reduced by one fourth, iltimate resistances of rope, etc., are reduced one third.

ult of Experiments upon Wire Rope at U. S. Navy Yard, Washington. (J A. Roebling's Sons.)

					_	•		•			
	Nom-	Wire in each Strand.	Diam. of Wire by W. G.	Weight per Foot.	Breaking Weight.	Circumfe	Nom-	Wire in each Strand.	Diam. of Wire by W. G.	Weight per Foot,	Breaking Weight.
Т	Ins.	No.	No.	Lbs.	Lbs.	Ins.	Ins.	No.	No.	Lbs.	Lbs.
5	4.9	19	11	3.14	65 409	2.375	2.4	7	13	14	15 718
	4.5	19	13	2.15	55 316	2.1875	2.12	7	14	.1	14 478
5	3.91	19	14	2.0875	44 420	2	2.06	19	19		10 925
9	3.36	19	14	1.1525	34 840	1.9375	1.9	7	14		10118
5		19	15	1.09	28 606	1.75	1.85	7	17	.07	7 880
-	2,68	19	17	1.0275	21 846	1.4375	1.45	19	20	.06	5 687
5	2.56	7	13	1.0225	18810	1.3125	1.31	7	18	.05	4 428
-6	2.45	19	18	.14	15692	1.125	1.11	7	19	.035	3 729

Compute Circumference of Wire Rope with Hemp ore, of Corresponding Strength to Hemp Rope, and 'Hemp Rope to Circumference of Wire Rope.

LE 1.—Multiply square of circumference of hemp rope by .223 for iron nd .12 for steel, and extract square root of product.

Multiply square of circumference of hemp-core wire rope by 4.5 for tire and 8.4 for steel wire.

mple.—What are the circumferences of an iron and steel wire rope correspond to one of hemp-core, having a circumference of 8 ins.?

$$\sqrt{8^2 \times .223} = 3.78$$
 ins. iron, and $\sqrt{8^2 \times .12} = 2.77$ ins. steel.

ROPES, HAWSERS, AND CABLES.

Ropes of hemp fibres are laid with three or four strands of twisted fi and are made up to a circumference of 12 ins., and those of four strand to 8 ins. are fully 16 per cent. stronger than those of three strands.

Hawsers are laid with three or four strands of rope. Cables are laid but three strands of rope. Hawsers and Cables, from having a less pr tionate number of fibres, and from the irregularity of the resistance of fibres in consequence of the twisting of them, have less strength than t difference varying from 35 to 45 per cent., being greatest with least cir ference, and those of three strands up to 12 ins. are fully 10 per cent. ster than those having four strands.

Tarred ropes, hawsers, etc., have 25 per cent. less strength than v ropes; this is in consequence of the injury fibres receive from the high perature of the tar, viz. 290°.

Tarred hemp and Manila ropes are of about equal strength, and have 25 to 30 per cent. less strength than white ropes.

White ropes are more durable than tarred.

The greater degree of twisting given to fibres of a rope, etc., les strength, as exterior, alone resists greater portion of strain.

Ultimate strength of ropes varies from 7000 to 12000 lbs. per square of section, according as they are wetted, tarred, or dry. One sixth of mate strength is a safe working load = 1166 to 2000 lbs. per square inc

Units for computing Safe Strain that may be borne New Ropes, Hawsers, and Cables. (U.S. Navy.)

	ı	ı	Rope	ta.		HAW	SERS.	CAE	LE
DESCRIP-	Circumference.		nite. 4 strands.		rred. 4 str'ds.			White. 3 str'ds.	
	Ins.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	7
White	2.5 to 6	1140	1330	_	_	600	_		ĺ
"	6 " 8	1090	1260	_	-	570	_	510	
"	8 " 12	1045	88o	_	-	530	_	530	
44	12 " 18	_	l —	_	 —	550	_	550	
"	18 "26	 	 —	_	l —	_	_	560	
Tarred	2.5 " 5	l —	_	855	1005	_	460	_	
44	2.5 " 5	_	_	825	940	_	480	1	
4.	5 " 8 8 " 12		_	78o	820	_	505		1
"	12 " 18	_		<u> </u>	l — l		3-3		i
"	18 " 26				l —	_		_	•
Manila	2.5 " 6	810	950	_		440			•
"	6 " 12	760	835	_		465	_	510	
"	12 " 18	<u> </u>		_			_	535	
44	18 " 26	-	-	_	_	 	_	560	

ILLUSTRATION.—What weight can be borne with safety by a Manila rope strands, having a circumference of 6 inches? (See Rule, page 167.)

 $6^2 \times 760 = 27360 lbs.$

When it is required to ascertain weight or strain that can be born ropes, etc., in general use, preceding Units should be reduced from one t to two thirds, in order to meet their condition or reduction of their stree by chafing and exposure to weather. Molesworth's table is based up reduction of three fourths.

ILLUSTRATION.—What weight can be borne by a tarred hawser of 3 strand

$$10^2 \times (505 - \overline{505 \div 3}) = 100 \times 336.67 = 33.667$$
 When

Destructive Strength of Tarred Hemp Ropes. (D. K. Clark.)

1		Reg	ister.	11	l	Register.		
reum.	Diam.	Common Cold.	Russian Warm.	Circum.	Diam.	Common Cold.	Russian Warm.	
ins.	Ins.	Lbs.	Lbs.	Ins.	Ins.	Lbs.	Lbs.	
3	-95	7390	8620	5.5	1.75	24 800	20 120	
3.5	I.II	11 200	11760	6	1.91	28 985	33 150	
4	1.27	13100	15340	6.5	2.07	34 030	40 550	
1-5	1.43	16330	19440	7	2.24	40 320	47 041	
5	1.59	10 580	23 000	8	2.54	52.180	61 420	

ecimens furnished by National Association of Rope and Twine Spinners, As tested by Mr. Kirkaldy.

Rops.			Extreme Strength.		at Stre	ss per lb. r Fathom	Weight
ssian rope 48 thr'ds.	Ins. 5.26	Lbs. .026	Lbs. 11 088	Lbs.	Ins.	Ins.	Ins.
chine yarn50 "	5.37	.891	11 514	1933	5.29 4.53	6.56	_
nd-spun yarn, 51 "	5.39	1.006	18 278	3024	4.46	5.91	6.63

eaking Strength of Tarred Hemp Ropes. (Mr. Glunn.)

اء	Old M	ethod.	By Re	gister.	iii.	· ·	Old N	lethod.	By Re	gister.
Diem	Common Hemp.	Best Russian.	Cold.	Warm.	Clre	Diar	Common Hemp.	Best Russian.	Cold.	Warm.
Ins.	Lbs.	Lbs.	Lbs.	Lbs.	Ins.	Ins.	Lbs.	1.bs.	Lbs.	Lbs.
·95	5 056 7 466	6 248 8 668	7 392	8 624	6					29 120 33 150
1.27				17810		2.07	20 518	23610	34 630	40 544
				19 443 23 990						47 040 61 420

Compute Strain that may be borne with safety by new Ropes, Hawsers, and Cables.

educed from experiments of Russian Government upon relative strength ifferent Circumferences of Ropes, Hawsers, etc.

. S. Navy test is 4200 lbs. for a White rope of three strands of best Riga 2, of 1.75 inches in circumference (= 17000 lbs. per square inch of fibre), in preceding table (page 166) 14000 lbs. is taken as unit of strain that be borne with safety.

JLE.-Square circumference of rope, hawser, etc., and multiply it by s in table.

Compute Circumference of a Rope, Hawser, or Cable for a Given Strain.

JLE.—Divide strain in pounds by appropriate units in preceding table, square root of product will give circumference of rope, etc., in ins.

AMPLE I. -Stress to be borne in safety is 165 550 lbs.; what should be circumce of a tarred cable to withstand it?

$$165552 \div 550 = 301$$
, and $\sqrt{301} = 17.35$

-What should be circumference of a Manila cable al use, of 149 336 lbs.? uming circumference to exceed 18 ins., unit = 560.

a strain, in

$$149336 \div (560 - 560 \div 3) = 400$$
, and $\sqrt{40}$

To Compute Weight of Ropes, Hawsers, and Cables.

RULE.—Square circumference, and multiply it by appropriate unit is following table, and product will give weight per foot in lbs.:

	_	•	- н	WSER	.s.		-		H	WSEE	.s.
			ROPES.		CABLES.				ROPES.		CABLE
3-strand	Hemp.		.032	.031	.031	4-strai	ad Her	np	033	_	_
3-strand	tarred	Hemp,	.042	.041	.041	4-strai	nd tarr	ed Hemp	, .048		
3-strand	Manila		.032	.031	.031	4-stra	ad Mar	nila	.035	.034	.034

Units for Thread Ropes is same as that for Ropes of like material.

EXAMPLE.—What is weight of a coil of 10-inch Manila hawser of 4 strands of m fathoms?

$$10^2 \times .034 = 3.4$$
, and $120 \times 6 \times 3.4 = 2448$ lbs.

Weight and Strength of Hemp and Wire Ropes.
(Molesworth.)

$$C^2 y = W;$$
 $C^2 k = L;$ $C^2 x = S;$ and $\sqrt{\frac{L}{k}} = C$

C representing circumference in ins., W weight of rope in lbs. per fathon L working load in tons, and S destructive stress in tons.

VALUES OF y, x, AND k.

ROPES.	y		k	ROPES.	_ ,	-	
Hawser, hemp	.131			Warm register, hemp		-7	.12
Cable "	.117	_	_	Manila hawser	.177	.27	.04!
Tarred hawser, hemp.	.235	.22	.037	" cable	.155	.19	.03
" cable, ".	.207	.15	.025	Iron rope	.87	1.8	.29
Cold register, " .		.6	.1	Steel "	.89	2.8	-45

To Compute Circumference of Hemp or Wire Rope for Fore or Main Standing Rigging. (U. S. Navy.)

RULE.—To length of mast between partners and deck, add half extreme breadth of beam of vessel and divide sum by half extreme breadth. Mutiply quotient by half square root of tonnage (OM) and extract square roof product.

For Mizzen, take .74 of Fore and Main.

EXAMPLE. — Required circumference of hemp rope, for main mast of a vess having a breadth of beam of 45 feet and a burden of 3213 tons?

$$58 + \frac{45}{2} \div \frac{45}{2} = 3.58$$
, and $\sqrt{(3.58 \times \frac{\sqrt{3213}}{2})} = \sqrt{101.46} = 10.11$ ins.

Then if circumference for a wire rope is required, see table, page 164.

Thus, a hemp rope 10 ins. in circumference has equivalent strength of an in wire rope of 4 ins. and a steel rope of 3.25+ ins.

Galvanized Iron Wire.—Experiments at Navy Yard, Washington, gave for fle tiltly a mean loss of 30 per cent., and for tensile strength a like loss of 13.5 pent.

Relative Dimensions of Hemp Rope and Iron and Ster Wire Rope. (U. S. Navy.)

Circumference in Inches.

ANCHORS, CABLES, ETC.

ra, Chains, etc., for a Given Tonnage. (American Sispenser' Association.)

BAILS

	Awarea		CRAIS CARLS.—Serra.						
b.) Det	ning 30	ME.	X.	ندا	A.fm:	West	ii per Fe	dan.
No.	Street.	Kelgu.	pd Kedge	Diameter.	Langth.	Test	SteL	Short Late	Eng-
one.	Lin	Lbs.	Lin	Int.	1	Time		Lin	
7	168	84	_	.S125	90	11	\$2	42	35
8	196	112	-	.875	105	13	++	43	_
9	224	112	-	9375	105	15	5:	55	ڏڊ
0	280	140	_) I	130	17.5	5-3	¢3	54
1	336	168	-	2.0625	130	3 0	CO	70	-
2	392	136	-	1.125	130	22 5	75		68
3	448	224	112	1.1875	135	25	3.3	.79 88	-
4	504	252	126	1.25	135	2ડે	ÇI	98	84
5-5	560	280	140	1.3125	130	31	100	r xó	
7	616	308	154	1.3125	150	31	1 23	136	-
8.5	672	336	168	1.375	165	37	1:5	113	133
0	784	392	190	1-4375	165	40	:20	_	_
2	806	448	224	1.5	180	44	132	_	122
4	1008	504	252	1.5625	180	47	145	-	_
5	1120	550	280	1.625	130	Šī	150		143
8	1232	616	308	1.6875	180	55	:02	=	
9.5	1344	672	336	1.75	180	59	175	-	156
1	1450	738	304	1.875	130	őź	139	_	191
2.5	1568	784	302	1.9375	180	67	æ5		_
	1680	840	420	2 20.0	130	72	219	_	-
5-5	1792	806	448	2	130	72	ဆုပ်	_	: 217
7	1904	952	504	2.0625	130	Śī	_	_	
5	2128	1120	560	2.125	190	86	_	_	244
t	2353	1232	616	2.1875	150	gó	_	_	

† Brown, Leanux, & Co.

To Compute Tonnage.

sions as follows: Length. — From after-side of stem to fivetern-post, measured on spar or upper dock in vessels having lunder, and on main deck in vessels having three or more th.—Extreme at widest point. Depth.—At forward oraning from top of ceiling at side of keels at to under side of leck, ply these dimensions together, divide predict by roc, and these.

• have a bowers and x each stream an i keeling another, and for using 2400 a third bower is recommended.

Werpe to be 90 fathoms in language

Shrouds.

carp. Hemp.—5.75 ins. in diameter for a connect of the inmakedy up to 12.75 ins. for 3000 tens.

Conster of hemp, increasing very slightly as too tons, 12.75 ins. for hemp and 6.875 ins.

(American Shipmasters' Association.)

STEAM.

2:	100		NUMBER		201	CHAIN CABLE.—STUD.						
uted Rule Iling.	Bow	91,50		ding St			1 2	44	A.C.	Weig	ht per	24
Tonnage computed as per Rul preceding	With out Stock	Admi- ralty Test.	Stream.	Kedge.	Eedge.	Diam- eter.	Length.	Admiral-	Diam. Stream.	Stud.	Short Link.	
	Lbs.	Tons.	Lbs.	Lbs.	Lbs.	Ins.	Faths.	Tons.	Ins.	Lbs.	Lbs.	31
100	-336	4.9	112	-	-	.6875	105	8.1	-5	-	-	Æ
150	448	6.4	196	-	-	.8125	120	11.9	.5625	40	42	
200	616	7.6	224	-	-	.875	120	13.8	.5625	44	48	Ð
250	672	8.2	280	-	-	-9375	120	15.8	.625	51	55	ı
300	812	9.5	308	-	-	1	120	18	.625	59	63	a
350	924	10.4	336	-	-	1.0625	120	20.3	.6875	66	70	43
400	1120	12	532	252	-	1.125	135	22.8	.6875	75	79	Æ.
450	1344	13.9	560	280	-	1.1875	135	25.4	-75	82	88	
500	1512	15.2	672	336	-	1.25	150	28.1	-75	91	98	æ
600	1708	16.7	738	364	-	1.3125	150	31	.8125	100	106	
700	1876	18	784	392	-	1.375	165	34	.8125	115	118	13
800	2026	19	896	448	224	1.4375	165	37.2	.875	120		æ
900	2352	21.6	1008	504	252	1.5	180	40.5	.875	132	-	1
1000	2632	23.5	1120	560	280	1.5625	180	44	-9375	145	III	B
1200	2856	25.2	1176	588	308	1.625	180	47-5	-9375	156	-	1
1400	3108	26.9	1232	616	308	1.6875	180	51.2	1	162	-	li
1600	3360	28.6	1344	672	336	1.75	180	55.1	1	175	-	1
1800	3584	30.I	1456	738	364	1.8125	180	59.1	1 0625	189	-	В
2000	3808	31.6	1512	766	364	1.875	180	63.3	1.0625	205	-	1
2300	4088	33.4	1568	784	392	1.9375	180	67.6	1.125	215	-	ľ
2600	4256	34.5	1624	812	392	2	270	72	1.125	240		12
3000	4480	35.7	1680	840	420	2.0625		76.6	1.1875		-	Œ
3500	4592	37	1792	896	476	2.125	270	81.3	1.1875	-	-	2
4000	4816	38	1960	952	504	2.1875	270	86.1	1.25	-	-	li
4500	5040	39.2	2128	1064	532	2.25	270	91.1	1.25	-	=	ŀ
5000	5264	41	2352			2.3125	270	96	1.3125	-	-	Æ

ANCHORS AND KEDGES.

(U. S. Navy.)

To Compute Weight of a Bower Anchor for a Vest of a given Character and Rate.

RULE.—Multiply approximate displacement in tons, by unit in follows table, and product will give weight in lbs., inclusive of stock.

Units to determine Weights and Number of Andre or Kedges.

Displacement of Vessel in Tons.	Unit.	Bower.	Sheet.	Stream	Kødge.	Displacement of Vessel in Tons.	Unit.	Bower.	1	
Over 3700	1.75	2 2	2 2	I	4 3	Over 1500	2.75	2 2	9	1
-," Igoo	2.25	2	2	1	3	900 and under	3	2	I	1 1

EXAMPLE.—Tonnage of a bark-rigged steamer is 1500.

 $1500 \times 2.5 = 3750$ lbs., weight of anchor.

r and Sheet Anchors should be alike in weight.

mpute Diameter of a Chain Cable corresponding to a Given Weight of Auchor.

(U. S. Navy.)

.—Cut off the two right-hand figures of the anchor's weight in lbs., r square root of remainder by 4, and result will give diameter of sixteenths of an inch.

LE.—The weight of an anchor is 2500 lbs.

 $\sqrt{25.00} \times 4 = 20$ sixteenths = 1.25 ins.

-Diam, of a messenger should be .66 that of the cable to which it is applied.

Lengths of Chain Cables for each Anchor.

(U. S. Nary.)

Anchor.	Bower.	Sheet.	Stream.	Weight of Anchor.	Bower.	Sheet.	Stream.
h	Fathous.	Fathoms.	Fathoms.		Fathoms.	Fathonia.	Fathoms
800	60	60	60	Over 2000	120	120	90
800	90	90	60	" 3000	120	120	90
1200	90	90	75	" 5000	120	120	105
1600	105	105	75	" 7500	135	135	105

ANCHORS.

Experiments of a Joint Committee of Representatives of Shipowners and Admiralty of Great Britain.

nchor of ordinary or Admiralty pattern, Trotman or Porter's im-(pivot fluke), Honiball, Porter's, Aylin's, Rodgers's, Mitcheson's, and s, each weighing, inclusive of stock, 27000 lbs., withstood without proof strain of 45 000 lbs.

ting weights between a Porter and Admiralty anchor, as tested at ch Dock-yard, were as 43 to 14.

Comparative Resistance to Dragging.

nan's dragged Aylin's, Honiball's Mitcheson's and Lennox's; Aylin's tcheson's dragged Rodgers's; and Rodgers's and Lennox's dragged lty's.

TONNAGE OF VESSELS.

To Compute Tonnage of Vessels.

aws of United States of America, with amendments of 1882 relative n-vessels, see Mechanics' Tables, with rule and illustrated diagrams, L. H. Haswell, 3d edition, Harper & Bros., New York, 1878.

English Registered Tonnage. (New Measurement.)

length of upper deck between after-part of stem and fore-part of stern-6 equal parts, and note foremost, middle, and aftermost points of division. depths at these three points in feet and tenths of a foot; also depths from ie of upper deck to ceiling of limber strake; or in case of a break in the ck, from a line stretched in continuation of the deck. For breadths, divide th into 5 equal parts, and measure the inside breadths at following points, b.2 and .8 from upper deck of foremost and aftermost depths; and from from upper deck of amidship depth. Take length at half amidship depth er-part of stem to fore-part of stern-post.

to twice amidship depth add foremost and aftermost depths for sum of nd add together foremost upper and lower breadths, 3 times upper breadth er breadth at amidship, and upper and twice lower breadth at after division

of breadths.

The together sum of depths, sum of breadths, and length, and divide product

which will give number of tons.

vessel has a poop or half-deck, or a break in upper deck, measure '
igth, breadth, and height of such part thereof as may be included ad; multiply these three measurements together, divide produc ent will give number of tons to be added to result as above asce

For Open Vessels. - Depths are to be taken from upper edge of upper strake.

For Steam Vessels.—Tonnage due to engine-room is deducted from total tonnage computed by above rule. To determine this, measure inside of the engine-room from foremost to aftermost bulkhead; then multiply this length by amidship depth of vessel, and product by inside amidship breadth at .4 of depth from deck, and divide final product by 92.4.

The volume of the poop, deck houses, and other permanently enclosed spaces, available for cargo or passengers, is to be measured and included in the tonnage, but following deductions are allowed, the remainder being the Register tonnage.

Deductions.—Houses for the shelter of passengers only; space allotted to crew (12 square feet in surface and 72 cube feet in volume for each person); and space occupied by propelling power.

Approximate Rule.

Gross Register.—Tonnage of a vessel expresses her entire cubical volume in tons of 100 cube feet each, and is ascertained by following formula;

 $\frac{\text{L B D}}{100}$ = Gross tonnage, and $\frac{\text{L B D}}{100}$ c = Register tonnage. L representing length of keel between perpendiculars, B breadth of vessel, and D depth of hold, all in feel.

Builders' Measurement.

$$\frac{(L - .6 B) \times B \times .5 B}{94} = Tonnage.$$

Fore-perpendicular is taken at fore-part of stem at height of upper deck.

Aft-perpendicular is taken at back of stern-post at height of upper deck.

In three-deckers, middle deck is taken instead of upper deck.

Breadth is taken as extreme breadth at height of the wales, subtracting difference between thickness of wales and bottom plank. Deductions to be made for rake of stem and stern.

Iron Vessels.
$$\frac{18}{10000} \left(\frac{Girth + Breadth}{2} \right)^2 \times length = Gross tonnage.$$

Length measured on upper deck, between outside of outer plank at stem and the after-side of stern-post and rabbet of stern-post, at point where counter-plank crosses it. Girth measured by a chain passed under bottom from upper deck at extreme breadth, on one side, to corresponding point on the other.

 $\begin{array}{c} \text{Register tonnage} = \frac{L \times B \times D}{100} \times C. \quad C \ \text{representing a coefficient for vessels at } \\ \text{follows:} \\ \text{Ships of usual form.} \qquad \qquad \begin{array}{c} 7 \\ \text{Ships of usual form.} \\ \text{Clippers and Steamers} \\ \begin{array}{c} 2 & \text{decks.} \\ 3 & \text{u} \end{array} \begin{array}{c} .65 \\ .68 \end{array} \end{array} \right] \\ \text{Yachts above 60 tons.} \\ \text{Small vessels} \\ \begin{array}{c} \text{sharp.} \\ \text{very sharp.} \\ \end{array}$

Units for Measurement and Dead-weight Cargoes. (C. Mackrow, M. S. N. A.)

To Compute Approximately for an Average Length of Voyage the Measurement Cargo, at 40 feet per Ton, which a Vessel can carry.

RULE.—Multiply number of register tons by unit 1.875, and product will give approximate measurement cargo.

To Compute Approximately Dead-weight Cargo in Tons which a Vessel can earry on an Average Length of Voyage.

RULE.—Multiply number of register tons by 1.5, and product will give approximate dead-weight cargo required.

With regard to cargoes of coasters and colliers, as ascertained above, about per cent. may be added to said results, while about 10 per cent. may be fueted in cases of larger vessels on longer voyages.

case of measurement cargoes of steam-vessels, spaces occupied by maery, fuel, and passenger cabins under the deck must be deducted from e or tonnage under deck before application of measurement unit thereto,

case of dead-weight cargoes, weight of machinery, water in boilers, and must be deducted from whole dead weight, as ascertained above by ication of dead-weight unit.

ne deductions necessary for provisions, stores, etc., are allowed for in tion of the two units.

scertain Weight of Cargo for an Average Length of Voyage. (Moorsom.) sduct tonnage of spr. ses of passenger accommodations from net register age, and multiply remainder by 1.5.

verage space for each ton weight of cargo on such a voyage 67 cube feet.

Freight Tonnage or Measurement Cargo.

eight Tonnage or Measurement Curgo is 40 cube feet of space for cargo, it is about 1.875 times net register tonnage less that for passenger space.

Royal Thames Yacht Club.

asure length of yacht in a straight line at deck from fore-part of stem to afterof stern-post, from which deduct extreme breadth (measured from outside of de planking), both in feet; remainder is length for tonnage. Multiply length nnage by extreme breadth, that product by half extreme breadth, divide reny 04, and quotient will give tonnage.

any part of stem or stem-post projects beyond length as taken above, such etto nor projections shall, for purpose of computing tonnage, be added to length as before mentioned.

fractional parts of a ton are to be considered as a ton.

ssurements to be taken either above or below main walcs.

$$\frac{L - B \times B \times .5 B}{94} = \text{Tons.} \quad L \text{ representing length and B breadth, in feet.}$$

Corinthian and New Thames Yacht Club.

sure length and breadth as in foregoing rule, and depth to top of covering multiply length, breadth, and depth together, divide result by 200, and quorill give tonnage.

$$\frac{L \times B \times D}{200} = Tons.$$

Suez Canal Tonnage.

s Tonnage.—Spaces under tonnage deck, below tonnage and uppermost deck. sred or closed in spaces, such as poop, forecaste, officers' cabins, gallack, and wheel houses, and all inclosed or covered-in spaces for working

which are to be deducted berthing accommodations for crew, not include for stewards and passengers' servants; berthing accommodations for office captain; galleys, cook-houses, etc., used exclusively for crew, and include bove uppermost deck, designed for working the vessel. In none of the captaints of the cook of the

mees must not exceed 5 per cent of gross ionnage.

amers with standing coal-bunkers, English rule may be followed, or owne.

et to have tonnage of his vessel computed by "Danube rule," which he are

set of 50 per cent. above space allowed to machinery in side-wheel officers.

series steamers.

case, however, except with tow-boats, must deduction for proper cent. of gross tonnage.

WORKS OF MAGNITUDE.

American.

Aqueducts, Roads, and Railroads.

Croton Aqueduct, N. Y.—Has a section of 53.34 square feet and capacity of 100000000 to 118000000 gallons per day, and from Dam to Receiving Reservoir is 38.134 miles in length.

Aqueduct, Washington.—Cylinder of masonry 9 feet in diameter. Stone are over Cabin John's Creek, 220 feet span, 57.25 feet rise.

National Road.—Over the Alleghany Mountains, Cumberland to Illinois Town, 650.625 miles in length, and 80 feet in width. Macadamized for a width of 30 feet

Illinois Central Railroad.—Chicago to Cairo, length 365 miles, Centralia to Duleith 344 miles, total 700 miles.

Bridges.

Suspension Bridge, Niagara River. - Wire, Span 1042 feet 10 ins.

Suspension Bridge, New York and Brooklyn. — Length of river span 1595 feets ins.; of each land span 930 feet; length of Brooklyn approach 971 feet; of N.T. approach 1562 feet 6 ins.; total length of bridge 5985 feet; width 85 feet; number of cables 4; diameter of each cable 15.5 ins.; each consisting of 6300 parallel steel wires No. 7 gauge, closely laid and wrapped to a solid cylinder; ultimate strength of each cable 11200 tons; depth of tower foundation below high water, Brooklya, 45 feet.—New York 78 feet; towers at high-water line 140×59 feet; towers at row course 136×53 feet; total height of towers above high water 27 feet; clear height of bridge in centre of river span above high water, at 50°, 135 feet; height of foor at towers above high water 1719 feet 3 ins.; grade of roadway 3 feet in 100; anchorages, at base 129×179 feet, at top 117×104 feet; weight of each anchor-plate 23 toms.

Iron Pipe Bridge over Rock Creek.—200 feet span, 20 feet rise. Arch of 2 lateral courses of cast-iron pipe, 4 feet internal diameter, and z inch thick. These pipes conveying the water not only sustain themselves over the great span, but support a street road and railway.

Iron Bridge over Kentucky River near Shakers' Ferry, Md.—3 spans, each 375 feet, and 275.5 feet above low water.

Bridge on line of New York, Erie, and Western Railroad across the Kinsua.—
Of iron; length 2060 feet; central span 301 feet in height.

Iron Truss. - Cincinnati and Southern Railway, over Ohio River, 519 feet.

Foreign.

Pyramids, Statues, etc.

Pyramid of Cheops, Egypt.—Length of side at base 762 feet; height to present summit 45.3.3 feet; to original summit 485.2 feet; inclined length 568.25 feet; angle of side $51^\circ 51^\prime 14^\prime$; area of each face = square of height; weight 5272600 tons; built 2170 years B.C.

Peter the Great, St. Petersburg, Russia.—Bronze; height of horse 17 feet; of man 11 feet; base of rock 42 feet at bottom, 36 at top, 21 wide, and 17 high, weighing 2100 tons.

Liberty, New York Harbor.—Bronze; 110 feet in height from head to foot and 151.1 feet to flambeau; including base, 305.6 feet. Weight of statue 225 tons.

Daibutsu, of stone, Japan. —Sitting posture; height 44 feet, circumference 37 feet; face 8.5 feet; circumference of thumb 3.5 feet.

Colossus of Rhodes. - Height, 105 feet.

Bridge.

lar Bridge.—Of iron, with a double line of Railway, 964 and a pproaches of 230 feet each. Weight 3658 tons.

Monoliths.

belisk at Karnak, Egypt.—Of granite, 108 feet 10 ins.; pedestal 13 feet 2 ins.; ght 400 tons.

belisk in Central Park, N. Y.-Of granite, 68 feet 11 ins.; weight 168 tons,

7. S. Treasury, Washington.—Some stones of, are heavier than any in the Pyrais of Egypt.

Steam Hammers.

t workshops of Herr Krupp, at Essen, there is a steam hammer weighing 50 tons ring a fall of 3 metres; and at Creusot there is a hammer weighing between 75 1 80 tons having a fall of 5 metres.

Crane.

at Creusot there is a steam crane having a capacity to lift and revolve with 150 s.

Chimneys.

. Townsend's chemical works, Glasgow, diameter at foundation 50 feet; at top eet 8 ina; height from foundation 488 feet; from ground 474 feet.

ew York Steam Heating Co., 220 feet in height.

Pillar.

t a gate near Delhi is a wrought-iron pillar having diameters of 16.4 ins. at 22 in its height above ground and 12 ins. at its top. It is estimated from the reof excavations at its base to be 60 feet in length or height and to weigh 17. Its period of structure is assigned to the 3d or 4th century A.D.

Roofs.

and Railway Station, London. 240 ft. | Union Railway Station, Glasgow. 195 ft. erial Riding-School, Moscow. 235 " | Grand Central Station, N. Y..... 200 "

Diameters of Domes.

DOMES.	Feet.	Domes.	Feet.	Domes.	Feet.
tol, Washington ow W. Railw'y	124-75 198	St. Paul's, London. St. Peter's, Rome.	112	Midl'nd Rail'y, Lon. Great North'n, Eng.	240 210

Lengths of Tunnels.

TUNNELS.	Feet.	TUNNELS.	Feet.	TUNNELS.	Feet.
Ridge	4 280 25 03 I	Gunpowder, Md Sutro Semmering	20 028 5 630	Nochistongo	21 650

Thames and Medway, 11880 feet. Weehawken, 4000 feet.

nt Cenis 7.5 miles 242 yards, rises 1 in 45, and descends 1 in 2000.

Gothard Tunnels and Roads 9 miles 477 yards in length; tunnels 116 156.5 feet, ises 1 in 233 in whole length; 26.5 feet in width; 19 feet 10 ins. in height mum grade 2.7 feet per 100. Schemnitz, 10.27 miles in length, 9 feet 10 ins. light by 5.25 feet in width.

Miscellaneous.

tress Monroe, Old Point Comfort, Va. - Largest fortress.

graph Wire.—Span over river Kistnah between Bezorah and Sectanage set in length.

r Park, Copenhagen. -4200 acres.

brd College, England .- Largest University; said to have been founder

ledral. St. Peter's, Rome.—Width of front 216 feet; of the cross 251 feet; to 469.5 feet.

mer Great Eastern.—Of iron, 680 feet in length; 83 feet width of beam pth of hold; 22927 tons; built at Millwall, England, 1857.

wese Wall.—25 feet at base; 15 at top; height, with a parapet of

nian Well, Perth.—3050 feet in depth; temperature of wat harge 18000 gallons per day.

	We	ights	of	Bells	!•	
BELLS.	Lbs.	BELLS.		Lbs.	BELLS.	Lhe
Pekin	120 000 Oxf	ord, "	Great		St. Peter's, Rome.	18000
Lewiston, Me	10233 To	m,'' Eng	٠٠.٠٠		Vienna	40 200
Montreal, Can	28 560 Olm	utz, Boh	emia.	40 320	Westm'ster, "Big	
Moscow, Russia Erfurt, Saxony	30 800 St. 1	en, Fran 'aul's, E		40 000 42 000	Ben,'' England. York	35 620 24 080
Notre Dame, Paris	28 670 St. 1	van's, Mo	SCOW		State House, Phila.	
,		on, Burn			•	
	-	•	•			
					d Opera Ho	u. 505 .
Estima	ting a person				9.7 Ins. Square.	
		Chur				
St. Peter's		. 54 000	St. J	ohn, Lat	eran	22 901
Milan Cathedral	• • • • • • • • • • • • • • • • • • • •	. 37 000	Noti	Cathode	Paris	21300
St. Paul's, Rome St. Paul's, London	• • • • • • • • • • • • • • • • • • •	. 25 600	St. S	tephen's	al , Vienna	13000 19400
St. Petronio, Bologi	1a	. 24 400	StI	Dominic's	s, Bologna	12009
Florence Cathedral		. 24 300	Tab	ernacle, 1	London	7000
Antwerp Cathedral	ntinonla	. 24 000	g. 1		Brooklyn enice	5500
or politic s, coust	muniopio	. 23000	1 100. 1	ualk D, Y	ошов	7000
	Opera H			1 The		
Carlo Felice, Genoa			Teat	ro del Li	ceo, Barcelona	4000
Opera House, Muni Alexander, St. Pete					en, London , Berlin	
San Carlos, Naples.			New	York A	cademy	202
Imperial, St. Peters			Met	ropolitan	cademy Opera, N. Y	5000
La Scala, Milan		2113	Phil	adeiphi a	Academy	3134
Academy of Paris	• • • • • • • • • • • • • • • • • • • •	2092	Chic	ago	"	3000
Heights of	Column	s, To	wei	rs, Do	mes, Spires	s, etc.
Locatio	NS.	Feet.			LOCATIONS.	Foot
СПІМИЕ					RS AND DOMES.	
Townsend's			Cat	hedral	Florence	3925
St. Rollox Musprat's	Livernool	455.5	l		Magdeb'r Milan	g 3399
Gas Works			k	•••	Petersbu	437
New England Glass	Co. Boston	. 230		ning	Pisa	188
Steam Heating Co.	New York	. 220			China	200
COLUM	NS.				Venice	
Alexander		g 175.	1 36. 1	aui s	London.	355.1
Bunker Hill	Mass	. 221	1		SPIRES.	1
City	London	. 202	Catl		New Yorl	
July	Paris	157	11		Strasburg	
Napoleon	Dublin	132	Gra		Antwerp hNew Yorl	. 4048 C. 278
Nelson's	London	171				
Place Vendôme	Paris	. 136	Sali	sbury		. 450
Pompey's Pillar		. 114			New Yorl	
Trajan	Kome	145	St.	raul's	Lübeck	900
York			Trin	nary s	chNew York	: 얼
		30	Balı	istrado	of Notre	
TOWERS AND		1	D	ame	Paris	
Babel		. 68o	Tow	ers of di	tto "	232-9
Balbec			Hot	ei des in	valides '' 	344
*TE	Rome	469.5			Vie nna	
٦	Cologne	1 524-9				
	_		11			

reas of Lakes in Europe, Asia, and Africa.

ES.	Sq. Miles.	Lakes.	Sq. Miles.	LAKES.	Sq. Miles.
ica	400 11 600	Dembia, Abyssinia.	13 000	Lough Neagh, Irel'd Tonting, China	80 1200

Lengths of Bridges.

ges.	Feet.	BRIDGES.	Feet.	Bridges.	Feet.
	1710	Lyons	1560	Potomuc	5300
		Menai	1050	Riga	2600
• • • • • • • •	2500	N. Y. and Brook.	_ '	St. Lawrence Riv'r	9144
8		lyn spans and	5989	Strasburg	3390 860
• • • • • • • •	3483	approaches)		Vauxhall	
	950	Pont St. Esprit	306 0	Westminster	1223

Lengths of Spans of Bridges.

GES.	Feet.	BRIDGES.	Feet.	BRIDGES.	Feet.
	460	Niag'a at the Falls	1268	Schuylkill	340
	400	" at Queens-		Southwark Wheeling	240
	580	town	1040	Wheeling	1010

Canals.

—Lake Erie to Albany 352 miles; Chesapeake and Ohio 307; Schuylkill ware and Hudson 109; Rideau 132; London to Liverpool 205; Caledonia 001 and Leeds 127.5; Rhone to Rhine 203.

7 of Locks of Erie 240 tons, and of Welland 1500.

26.77 miles. Lake Erie to Montreal via Canal 70.5; Lake and River

l to Kingston.-Canal 120 miles; River 126.25. Suez. see page 183.

Breakwaters.

z.—Average depth of water 29.4 feet below low-water level; range of tide Outer slope 45°; Inner slopes 1.5, 5, 3, and 1.3 to 1; length of base 172.12

3h.—Outer slopes 1.75 to 1 from bottom to 7 feet 6 ins. below low-water z to low-water line; 16 to z to 4 feet 6 ins. above low-water line; 5 to z ter; Inner slope z. 5 to z above low-water line; 2 to z below low-water line. f water at high tide 46.5 feet; at low tide 30 feet. breakwater cased with large squared stones cramped together.

d.—Depth of high water 58 feet; of low water 51 feet, Outer slopes 1 to 1 m to 20 feet below low water; 2 to 1 to 12 feet below low water; 6 to 1 ter line; 4 to 1 to high-water line; Inner slope 1.25 to 1. breakwater, rubble, with crest wall of ashlar.

-Depth of high water line 6: feet; of low-water line $_{42}$ feet. The hardwater, concrete blocks faced with granite; batter $_3$ inches to the ed up in each course.

les. - Depth of water 33 feet; Outer casing of beton 25.5 tons each; average of casing from 14 to 20 feet; slope 1 to 1 from bottom to water line; 2.5 e water-line; all other slopes .33 to 1; Inner casing of first-class rubble 2 to 5 tons weight), about 12 feet thick; Hearting, second-class rubb'

.5 to 2 tons weight), about 6 feet thick; Nucleus, of quarry rubbish.

-Depth of water 50 feet; rubble base carried up to 33 feet from surface remainder composed of large beton blocks 25.5 tons each; slopes of rul ; Outer slope of beton blocks 1.25 to 1; Inner slope of beton blocks 1 t sid (Suez Canal). - Concrete blocks, to cubic metres each, composed lic lime to 13 of sand, mixed with sea water; 4 days in the mold and dr the before being put in position. In some instances the composition iks is .33 lime or cement to .66 sand and broken stone, about the size c.

Filling.—Proportion of interstices to volume of breakwater ? rubble, quarry chips, etc., .16; beton blocks, 15 to 25 tons, ..

For force of water, see Waves of the Sea, page 853.

Areas, Depths, and Heights of Great Northern Lakes of United States.

Lakes.	Length.	Breadth.	Mean Depth.	Height above Sea.	Area.
Erie	Miles. 250	Miles. So	Feet.	Feet. 564	Sq. Miles.
Huron Michigan	200	160	120	574 587	9 900 23 800
Ontario	18o	109 65	900 500	234	22 000 7 200
Superior *	400	160	288	635	32 000

Greatest depth 5400 feet.

Elevation Above Tide-water at Albany. — Lake Erie 570.6 feet; Hudson River 2.46 feet.

Mean Depths and Areas of the Oceans and Seas. (Herr Krümmel)

	Fathoms.	Area Sq. Miles.		Fathoms.	Area Sq. Miles.
Atlantic Archipelago Azof Baltic Sca Black Sca Behring's Straits Caspian Sca China (East) Sca Dead Sca English Channel, etc.	4 ⁸⁷ 36 550 66	29 514 275 3 046 600 8 800 159 690 150 000 864 555 120 000 472 210 370 78 416	Gulf of Mexico " "St. Lawrence Indian Japan Mediterranean North Sea North Ice Sea Persian Gulf Pacific Red Sea	160 1829 1200 729 48 845 20 3887	1 765 gas 101 075 28 369 595 383 205 1 109 236 210 505 5 264 600 90 100 60 343 690 170 8st

Mean depth of Ocean surrounding land 1877 fathoms = 2.19 miles.

In his subsequent computations he estimates ocean area at 143703000 square lines and determines area of land to water as 1 to 2.75, and that mean height of land = 1377 feet, or one eighth that of Ocean.

Heights of Mountains, Volcanoes, and Passes above Level of Sea.

MOUNTAINS.	Feet.	MOUNTAINS.	Feet.	MOUNTAINS.	Fest.
EUROPE. Azores Pico Barthélemy, France		Petcha	29 003 9 523 15 000	Mount Pitt	25 248 18 870
Ben Lomond Ben Nevis Elbrus, Caucasus Guadarama, Spain Hecla	17 776 8 520	AFRICA. Atlas		Potosi	18000 15700 10895 6230
Ida Jungfrau, Switz'd. Mont Blanc. " Cenis.	5 147 4 960 13 725 15 797 6 780	Good Hope		VOLCANOES. Cotopaxi	18 887 10 874 5 000
Mont d' Or, France. Mulahassen, Gren'a. Nephin, Ireland Olympus	6 510 11 663 2634 6 510		5 160	l'opocatapetl Sahama St. Helen's, Oregon. Vesuvius	1774 2839 1339 399
Parnassus Plynlimmon, Wales. The Cylinder, Pyr Wetterhorn	6 000 2 463 10 930 12 154	Blue Mount, Jam'a. Catskill	23 910 8 000 3 804	Cordilleras {	135% 159%
ASIA.	16 433	Chimborazo Correde, l'otosi Crows' Nest, High- lands, N. Y	16 036	Pont d' Or St. Bernard, Great	6776 11 301 984 817
	28 077 8 500 12 000	Great Peak, New Mexico Mauna Lou, Hawai	88r oz I.	St. Gothard	1

Dimensions of Canal Locks.—(V. S.)

CANAL	Length.	Breadth	Depth.	Length of Canal.	CANAL.	Length.	Breadth,	Depth.	Length of Canal.
	Feet.	Ft.	Ft.	Miles.	Les Europe	Feet.	Feet.	Feet.	Miles.
emarle and	220	40	6	14	Champlain	110	18	5	66.75
Chesapeake		'n		333	Seneca	110	13	7	24-75
Chenango,	1	20	4	77	Raritan	220	24	7	43
Themung,	90	15	4	1 97	Dismal Swamp	90	17.5	5.5	44
nd Genesee		11		33	Erie	110		7	352
Talley				C3-13	Falls of Ohio, Ky.	350	60	2-60	- 0
elaware	220	24	9	14	Welland, Canada	270	45	14	38 28

ength of vessel that can be transported is somewhat less than lengths of locks.

Suez Canal. — Width 196 to 328 feet at surface, 72 at bottom, and 26 deep, gth 99 miles.

eights of obtained Elevations, and various Places and Points above the Sea.

LOCATIONS.	Feet.	LOCATIONS.	Feet.	LOCATIONS.	Feet.
Locations. acagua, Chili isana, highest tablished eleva- m (Farmhouse) on (Gay Lussac) (Green, 1837) (Glaisher and xwell) il, Quito, and { xico plains. }	23 910 13 434 22 900 27 000 37 000 6 000	Geneva city Geneva Lake Gibraltar Humboldt's highest	1 220 1 096 1 439 19 400 645 13 725 12 225 2 000	LOCATIONS. MONT ROSA, Alps. MOUNT Adams MOUNT KATAHDIN. MOUNT Pitt MOUNT WASHINGTON. PARIS, CITY. PONT d' Oro, Pyr's. POSTHOUSE. Alp., Peru POTOSI, BOlivia. Quito.	15 155 5 930 5 360 9 549 6 426 115 9 843 14 377 13 223
	16 500	Madrid Mexico, city of Mont Blanc, Alps	7 525	St. Bernard's Mon'y Vegetation White Mountain	17 000

Lengths of Rivers.

RIVERS.	Miles.	RIVERS.	Miles.	Rivers.	Miles.
		Ganges	1514	Kansas	1400
EUROPE.		Hoang Ho	3040	La Platte	850
e	1800	Indus	1800	Mackenzie	2440
er	1243	Jordan	176	Mississippi	3160
<i>.</i>	400	Lena	2762	Missouri	3030
	1035	Tigris	1160	Ohio and Allegheny	1480
	780	Yenesei and Se-	1	Potomac	420
ne	442	lenga	3580	Red	1520
	545	Yang-Tse	3314	Rio Bravo	230
	420			Rio Grande	ıĕ
	760	AFRICA.	1	St. Lawrence	2
	510	Gambia	700	Susquehanna	i
	450	Niger	2400	Tennessee	
on	250	Nile	4000		,
	510		·	SOUTH AMP	
8	220	NORTH AMERICA.		Amazon	
	190	Arkansas	2070	Essequibo	
	630	Colorado	1050	Magdalens	
Russia	2400	Columbia	1200	Orinoco	
		Connecticut	410	Platte	
ARIA.	, ,	Dclaware	420	Rio Made.	
·/	2500	Hudson and Mo-		Rio Negro	
\$08	2786	hawk.	325	Uruguay	

Large Trees in California.

"Keystone State."-Calavera Grove, is 325 feet in height.

"Father of the Forest."—Felled, is 385 feet in length, and a man on horseback can ride erect 90 feet inside of its trunk.

"Mother of the Forest."—Is 315 feet in height, 84 feet in circumference (26.75 feet in diameter) inside of its bark, and is computed to contain 537 coo feet of sounds inch lumber.

Sea Depths.

1	Feet.		Feet.		Feet-
Baltic Sea	130 300	Coast of Spain West of St. Helena. Tortugas to Cuba Gulf of Florida Off Cape Florida	27 000 4 200 3 720	" Charleston	4200 3120 4200

250 miles off Cape Cod, no bottom at 7800 feet.

Cascades and Waterfalls.

LOCATION.	Feet.	LOCATION.	Feet,	LOCATION.	Feet.
		Genesee, N. Y		Niagara	164
Cascade, Alps		Lidford, England		Great Fall	152
G	(30	Lulea, Sweden		Passaic	
Cataracts of the Nile.		Mohawk	68	Potomac	74
m	(40		(50	Ribbon, Yosemite)	3300
Chachia, Asia		Missouri	180	Valley	
Foyers, Scotland	197	CALL DOWNSON WALKS	(94	Ruican, Norway	800
		Montmorenci			
Gavarny, Pyrenees	1260	Nant d'Apresias	800	Tendon, France	125
The state of the s	Yose	mite Valley	. 2600	feet.	~

Expansion and Contraction of Building Stones for each Degree of Temperature. (Lieut. W. H. C. Bartlett, U. S. E.)

A	For One Inch.		For One Inch.
Granite	+000 004 825	Sandstone	.000 000 532
Marble	.000 005 668	Whitepine	000000005

Resistance of Stones, etc., to the Effects of Freezing.

Various experiments show that the power of stones, etc., to resist effects of freeing is a fair exponent of that to resist compression.

Magnetic Bearings of New York.

The Avenues of the City of New York bear 280 50' 30" East of North.

Filters for Waterworks.

I square yard of filter for each 840 U.S. and 700 Imp'l gallons in 24-hours; formed of 2.5 feet of fine sand or gravel and 6 inches of comma sand or shells.

Led off by perforated pipes laid in lowest stratum.

Distances between New York, Boston, Philadelphia, Baltimore, and Western Cities of U. S.

Assuming Boston as standard, New York averages 12 per cent. nearer to the cities, Philadelphia 18 per cent., and Baltimore 22 per cent.

Between New York and Chicago the line of the Pennsylvania Railroad is 47 miles shorter than that by the Eric and its connections, 50 miles shorter than that by the N. Y. Central and Hudson River and its connections, and 114 miles shorter than that by the Baltimore and Ohio and its connections.

for Distances between these and other cities of the U.S., see page 88.

Weather-foretelling Plants. (Hanneman.)

zin is imminent.—Chickweed,* Stellaria media; its flowers droop not open. Crowfoot anemone, Anemone runnucloides; its blossoms Bladder Ketmia, Hibiscus trionum; its blossoms do not open. Thistle, acaulis; its flowers close. Clover, Trifolium prutense, and its allied and Whitlow grass, Druba verna; all droop their leaves. Nippleampsana communis; its blossoms will not close for the night. Yeldstraw, Galium verum; it swells, and exhales strongly; and Birch, alba, exhales and scents the air.

ations of Rain.—Marigold, Calendula pluvialis; when its flowers do n by 7 A. M. Hog Thistle, Sonchus arvensis and oleraceus; when its is open.

of short duration,—Chickweed, Stellaria media; if its leaves open tially.

oudy. — Wind-flower, or Wood Anemone, Anemone memorasa; its droop.

sination of Rain. — Clover, Trifolium pratense; if it contracts its Birdweed and Pimpernel, Convolvulus and Anagallis arvensis; if sread their leaves.

from Weather.—Marigold, Calendula pluviulis; if its flowers open early 1. M. and remain open until 4 P. M.

Weather.—Wind-flower, or Wood Anemone, Anemone memorasa; ars its flowers erect. Hog Thistle, Sonchus arrensis and oleraceus; eads of its blossoms close at and remain closed during the night.

ment and Antidotes to Severe Ordinary Poisons.

Antidotes in very small doses.

oform and Ether.—Cold affusions on head and neck, and ammonia ils. Antidote.—Camphor, potroleum, sulphur,

stools .- (Inedible mushroom). Antidote. - Same as for chloroform.

sic or Fly Powder.—Emetic; after free vomiting give calcined mageely. If poison has passed out of stomach, give castor oil. oke.—Camphor, nux vomica, ipecacuanha.

ute of Lead (Sugar of lead). — Mustard emetic, followed by salts, lraughts of milk with white of eggs.

ote. -Alum, sulphuric acid alike to lemonade, belladonna, strychnine.

wive Sublimate (Bug poison).—White of eggs in r quart of cold give cupful every two minutes. Induce vomiting without aid of . Soapsuds and wheat flour is a substitute for white of eggs.

ote. - Nîtric acid, camphor, opium, sulphate of zinc.

ohorus Matches.—Rat Puste.—Two teaspoonfuls of calcined magnewed by mucilaginous drinks. Antidote.—Camphor, coffee, nux vomica mic Acid (Charcoal fumes), Chlorine, Nitrous Oxide, or Ordinary Fresh air, artificial respiration, ammonia, ether, or vapor of hot water. ote.—Camphor, coffee, nux vomica.

donna (Nightshade). — Emetic and stomach pump, morphine and coffee. Antidote.—Camphor.

n.—Stomach pump or emetic of sulphate of zinc, 20 or 30 grains, or 1 or salt. Keep patient in motion. Cold water to head and chest.

26.—Strong coffee freely and by injection, camphor, ether, and max vomica.

haine (Nux vomica).—Stomach pump or emetic, ... cam-

te.—Wine, coffee, camphor, opium freely, and alcohol

able Poisons.—As a rule, an emetic of mustard trater.

^{*} Spreads its leaves about 9 A. M., and they remain open un.

Veterinary.

Horses.—Cathartic Ball.—Cape Aloes, 6 to 10 drs.; Castile Soap, r dr.; Sind of Wine, r dr.; Sirup to form a ball. If Calomel is required, add from so grains. During its operation, feed upon mashes and give plenty of water.

Cattle.—Cathartic.—Cape Aloes, 4 drs. to 1 oz.; Epsom Salts, 4 to 6 cz.; ger, 3 drs. Mix, and give in a quart of gruel. For Calves, one third will be suffer.

Horses and Cattle.—Tonic.—Sulphate of Copper, 1 oz. to 12 dra.; 5. cz. Mix. and divide into 8 powders, and give one or two daily in food.

Cordial.—Opium, r dr.; Ginger, 2 drs.; Allspice, 3 drs., and Caraway Seed drs., all powdered. Make into a ball with sirup, or give as a drench in grael.

Cordial Astringent Drench, for Diarrhea, Purging, or Scouring. — Tincture of Opium, 50z; Allspice, 2.5 drs; powdered Caraway, 50z; Catechu Powder, 26x; strong Ale or Gruel, 1 pint. Give every morning till purging ceases. For Sheep this quantity.

Alterative.—Ethiop's Mineral, . 5 oz.; Cream of Tartar, 1 oz.; Nitre, 2 drn. Dividinto from 16 to 24 doses, one morning and evening in all cutaneous discases.

Diuretic Ball.—Hard Soap and Turpentiue, each 4 drs.; Oil of Juniper, so dre and powdered Resin to form a ball.

For Dropsy, Water Farcy, Broken Wind, or Febrile Diseases, add to above, a spice and Ginger, each 2 drs. Divide into 4 balls, and give one morning and events.

Alterative or Condition Powder.—Resin and Nitre, each 2 oz.; levigated Amony, 1 oz. Mix for 8 or 10 doses, and give one morning and evening. When give to Cattle, add Glauber Salts, 1 lb.

Fever Ball.—Cape Aloes, 2 oz.; Nitre, 4 oz.; Sirup to form a mass.

12 balls, and give one morning and evening until bowels are relaxed; then give alterative Powder or Worm Ball.

Hoof Ointment. -Tar and Tallow, each z lb.; Turpentine .5 lb. Meit and mix. "

Dogs. — Cathartic. — Cape Aloes, .5 dr. to 1 oz.; Calomel, 2 to 3 grs.; Ol d Caraway, 6 drops; Sirup to form a ball. Repeat every 5 hours till it operates.

Emetic.—2 to 4 grs. of Tartar Emetic in a meat ball, or a teaspoonful or two of common salt. Give twice a week if required.

Distemper Powder. —Antimonial Powder, 2, 3, or 4 grs.; Nitre, 5, 10, or 15 grs.; powdered Inecacuanha, 2, 3, or 4 grs. Make into a ball, and give two or three times a day. If there is much cough, add from .5 gr. to 1 gr. of Digitalis, and every 3 et 4 days give an Emetic.

Mange Ointment.—Powdered Aloes, 2 drs.; White Hellebore, 4 drs.; Sulphur, 4 oz.; Lard, 6 oz.—Red Mange, add 1 oz. of Mercurial Ointment, and apply a music

Note. —Physic, except in urgent cases, should be given in morning, and upon an empty stomach; and, if required to be repeated, there should be an interval of several days between each dose.

Age of Horses.

To Ascertain a Horse's Age.

A foal of six months has six grinders in each jaw, three in each side, and also six nippers or front teeth, with a cavity in each.

At age of one year, cavities in front teeth begin to decrease, and he has ther grinders upon each side, one of permanent and remainder of milk set.

At age of two years he loses the first milk grinders above and below, and frest teeth have their cavities filled up alike to teeth of horses of eight years of age.

At age of three years, or two and a half, he casts his two front uppers, and in a short time after the two next.

At four, grinders are six upon each side; and, about four and a half, his nippess are permanent by replacing of remaining two corner teeth; tushes then appear, and he is no longer a colt.

At five, a horse has his tushes, and there is a black-colored cavity in centre of all

'ack cavity is obliterated in the two front lower nippers.

es of next two are filled up, and tushes blunted; and at eight teeth. Horse may now be said to be aged. Cavities in mi not obliterated till horse is about ten years old, after which and simpers project and change their surface.

stances between Principal Cities of East and West. In Niles.

CITIES.	Boston.	New York,	Phila- delphia.	Balti- more.		Boston.	New York,	Phila- delphia.	Balti- more.
lington, la	1216	1106	1030		Louisville		870	794	705
ago	1000	900	823		Memphis		1247	1171	1083
nnnati	927	743	667		Milwaukee		947	908	887
eland	671	580	504		Omaha		1393	1317	1294
mbus, O	807	623			St. Joseph		1350	1280	1223
oit	724	673	682		St. Lou:8		1050	973	917
anapolis		810	735		St. Paul		1308	1232	1211
sas City	1487	1324	1248	1192	Toledo	784	693	617	590

Population of Principal Cities (1882).

lon	3 832 440	Marseilles 357 530	Stockholm	168 770
3		St. Louis 350 518	Brussels	161 820
n		Warsaw 339 400	Cleveland	160 146
York	1 206 200	Baltimore 332 313	Pittsburgh	156 389
na	1 103 110	Milan 321 440	Buffalo	155 134
etersburg	876 570	Amsterdam 317010	Antwerp	
idelphia	847 170	Rome 300 470	Washington	147 293
ow	611 970	Lisbon 246 300	Cologne	144 770
tantinople	600 000	Palermo	Frankfort	136 820
1go	583 185	Copenhagen 234 850	Newark	136 508
klyn	566 663	San Francisco 233 959	Venice	132830
burg		Munich 230 200	Louisville	123758
38		Cincinnati 225 139	Jersey City	120 722
8		Bucharest 221 800	Detroit	
1d		Dresden 220 820	Milwaukee	
m	362839	New Orleans 216 190	Providence	104 857
-Pesth	360 580	Florence 169 000	Rouen	104 010

Treatment of Drowning Persons.

ractice adopted by Board of Health, New York.

ce patient face downward, with one of his wrists under his forehead. Cleanse outh. If he does not breathe, turn him on his back with shoulders raised on port. Grasp tongue gently but firmly with fingers covered with end of a handlef or cloth, draw it out beyond lips, and retain it in this position.

Produce and Imitate Movements of Breathing.—Raise patient's extended arms of to sides of his head, pull them steadily, firmly, slowly, outwards. Turn elbows by patient's sides, and bring arms closely and firmly across pit of ch, and press them and sides and front of chest gently but strongly for a mothen quickly begin to repeat first movement.

these two movements be made very deliberately and without ceasing until the treathes, and let the two movements be repeated about twelve or fifteen in a minute, but not more rapidly, bearing in mind that to thoroughly fill the with air is the object of first or upward and outward movement, and to expel the air as practicable is object of second or downward motion and pressure, rtificial respiration should be maintained for forty minutes or more, when the tappears not to breathe; and after natural breathing begins, let same motion y gently continued, and give proper stimulants in intervals.

it Else is to be Done, and What is Not to be Done, while the Movements are Made.—If help and blankets are at hand, have body stripped, wrapped in this, but not allow movements to be stopped. Briskly rub feet and legs, pressom firmly and rubbing upward, while the movements of the arms and chest progress. Apply hartshorn, or like stimulus, or a feather within the nostrismally, and sprinkle or lightly dash cold water upon face and neck. The id feet should be rubbed and wrapped in hot blankets, if blue or cold, it is cold.

tto Do when Patient Begins to Breathe.—Give stimulants by teaspoonle times a minute, until beating of pulso can be felt at wrist, but be t give more of stimulant than is necessary. Warmth should be ket diegs, and as soon as patient breathes naturally, let him be carefully a aclosure, and placed in bed, under medical care.

Uncor

MISCELLANEOUS ELEMENTS.

Earth.

Polar diameter 7800.3 miles. Mean density or specific gravity of mass 5.672. 5 272 600 000 000 000 000 000 000 tons. Apparent diameter as seen from Sun 17 sees

Sun.

Heat of Sun equal to 322 794 thermal units per minute for each sq. foot of the tosphere or solar surface.

Diameter of Sun 882 000 miles, tangential velocity 1.25 miles per second or 4.0 times greater than that of the Earth.

Distance from Earth or, 5 to 92 millions of miles.

Mason and Dixon's Line.

30° 43' 26.3" N. mean latitude. 68.895 miles.

Area and Population. (Behm and Wagner.)

Divisions.	Area.	Population.	Divisions.	Area.	Population.
AmericaEuropeAsiaAfrica	3760000 16313000	315 929 000 834 707 000	Iceland 5 · · ·		4 031 000 8e 000 1 455 983 900

1 --- -- --- -- - - -

Countries.						
Austria Hungary 38 000 000 China	{Russia66 000 000 Territories22 000 000	Mexico 9485000 Brazil II 100000				
(United States50 000 000 (Turkey 8 866 000						

[Indians 300 000] (" in Asia. . 16 320 000

About one thirtieth of whole population are born every year, and nearly an comnumber die in same time; making about one birth and one death per second.

Earlier authority estimated population at 1 288 000 000, divided as follows:

Caucasians360 000 000 Mongolians552 000 000	Malays and	Mohammedans, 100 000000
Mongolians 552 000 000	Indo Amer's } 177 000 000	Pagans300 000000
Ethiopians190 000 000	Protestants 80 000 000	Cetholice
Asiatics forces	Israelites con on	Rom & Greek 25000000

Descent of Western Rivers.

Slope of rivers flowing into Mississippi from East is about a inches per mile: and from West 6 inches.

Mean descent of Ohio River from Pittsburgh to Mississippi, 975 miles, is about 5.2 inches per mile; and that of Mississippi to Gulf of Mexico, 1180 miles, about 28 inches.

Transmission of Horse Power.

Largest, and perhaps most successful, wire rope transmission is one at Schaffhausen, at Falls of the Rhine. Here, power of a number of turbines, amounting to over 600 IP, is conveyed across the stream, and thence a mile to a town, where it is distributed and utilized.

At mines of Falun, Sweden, a power of over 100 horses is transmitted in like manner for a distance of three miles.

Acetic Acid (Vinegar), acid of Malt beer, etc. Tartaric Acid, acid of Grape wist Lactic Acid, acid of Milk, Millet beer, and Cider.

Manures.

Relative Fertilizing Properties of Various Manures.

Peruvian Guano I	Horse	Farm-yard	0298
numan, mixed	Swine	[Cow	0259
Or, 1 lb. guano == 14.5 human,	21 horse, 22.5 swine, 33	.5 farm-yard, and 3	8.5 COW.

Relative Value, Covered and Uncovered, on an Acre of Ground.

Covered

Yield of Oil of Several Seeds.

Per Cent. | Per Ce

Thickness of Walls of Buildings. (English.) (Molesworth.)

		Maximum	Width	Minimum Width of Walls.						
OCTER	WALLS.	Height of Wall.	of Footings.	Ground Floor.	Floor.	Floor.	Floor.	Floor.	5th Floor.	Floor.
		Feet.	Ins.	Ins.	Ins.	Ine.	Ins.	Ins.	Ine	Ins.
	dwelling.	85	38.5	21.5	21.5	17.5	17.5	17.5	13	13
٠٠.	**	70	30.5	17.5	17.5	17.5	13	13	13	_
44	44	52	30.5	17.5	13	13	13	13		_
p "	44	38	21.5	13	13	8.5	8.5	-		-
PARTY	WALLS.									
t class	dwelling.	85	38.5	21.5	21.5	17.5	17.5	17.5	13	13
44	"	70	30.5	17.5	17-5	17.5	13	13	13	_
"	44	52	30.5	17.5	13	13	13	8.5		_
1 "	и	38	21.5	13	8.5	8.5	8.5	-		_
e 11 -			1			Lauran				

f walls are more than 70 feet in length, those of lower stories must be widened half a brick.

Warehouses Minimum	Warehouses Minimum 2d Class. Weld with 2d Class. For a height of 22 feet below Instrument 13 For a height of 36 feet lower 17.5 " 8 feet lower 21.5 For footings 34.5
3d Class.	4th Class.
a height of 28 feet below pmost ceiling	For a height of 9 feet below topmost ceiling 8.5 For a height of 13 feet below 13 For footings

Wooden Roofs. (English.)

et.	Principal Beam.	Tie Beam.	King Posts.	Queen Posts.	Small Queens.	Straining Beam.	St	ruts.
)	4 × 4	9×4	4×4	<u> </u>	-	_	3	× 3
5	5 × 4	10 X 5	5 × 5		_	_	5	× 3
•	6×4	11 × 6	6 × 6	_	_	_	6	× 3
;	5 × 4	11 × 4	_	4×4	_	7 × 4	4	X 2
	6 x 5	13 × 6	_	6×6	_	7×6	5	×з
,	8×6	13 × 8	-	8 × 8	8 × 4	9×6	5	X 3
;	8 × 7	14 × 9	-	9×8	9×4	10 × 6	5.5	$\times 3$
	8×8	15 × 10	-	10 X 8	10 X 4	11×6	6	ך

ineral Constituents absorbed or removed from an Acre of Soil by several Crops. (Johnson.)

	1	1	1 -	1		15.78			
Rops.	Wheat, 25 bushels.	Barley,	Turnipe,	Hay, r.5 tons.	Crops.	Wheat,	Barley an Purifiels,	Turnips 20 tons.	Hay, 1.5 tons.
esia	Lbs. 29.6 3 12.9 10.6 2.6	Lbs. 17.5 5.2 17 9.2 2.1	Lbs. 47.1 8.2 29.9 19.7 7.1	Lbs. 38.2 12 44- 7- .6	Sulphuric) Acid Chlorine Silica Alumina	Lbs. 10.6	[] 2: 16	13.3 3.6	9.2 4.1 78.2
horic }	20.6	25.8	46.3	15-1	Total	. 210			

Average Quantity of Tannin in Several Substances. (Morfil)

Catechu.	Per Cent.	Oak. Pe	r Cent.	Sumac. P	er Cont.
Bon:bay	55	! Young, inner b'k		Sicily and Malaga	16
Bengul	44	" entire b'k.	6	Virginia	10
Kino	75	" spring- }	22	Carolina	5
Aleppo	65	" root bark .	8.a	Inner bark	x6
Chinese		Chestnut.	,	Weeping	16
Ouk.	•	Amer. rose, bark	8	Sycamore bark	16
Old, inner bark	. 14.2	Horse,	2	Tan shrub "	13
Old, inner bark	(2i	Sassufras, root bark	58	Cherry-tree	24
	Ald	er bark			•

To Convert Chemical Formulæ into a Mathematical Expression.

Rule.—Multiply together equivalent and exponent of each substance, and product will give proportion in compound by weight. Divide 1000 by sum of their products, and multiply this quotient by each of these products, and products will give respective proportion of each part by weight in 1000.

EXAMPLE.—Chemical formula for alcohol is $C_4 H_6 O_2$. Required their proportional parts by weight in 1000?

$$C_4$$
 Carbon = 6.1 × 4 = 24.4
 H_6 Hydrogen = 1 × 6 = 6
 O_2 Oxygen = 8 × 2 = 16
 $1000 + 46.4$ = 21.55 $\begin{cases} 525.82 \\ 129.3 \\ 344.8 \\ 999.92 \end{cases}$ by weight.

Elementary Bodies, with their Symbols and Equivalents.

Boov.	Symb.	Equiv. !	Bony.	Symb.	Equiv.	Boov.	Symb.	Equiv.
Aluminium	Al	13.7	Gold	Au	105.6	Platinum	12	98.8
Antimony	Sb		Hydrogen	H		Potassium		39.2
Arsenie	Аs	37.7	Iodine	I		Rhodium		52.2
Barium	Bı	63.6	Iridium	Ir	98.5	Selenium	Se	40
Bismuth	Bi	71.5	Iron	Fe	28	Silicon	Si	22
Boron	В	11	Lead	· Pb		Silver		108.3
Bromine	Br		Lithium	L	7	Sodium		23-5
Cadmium	Cd	55.8	Magnesium	Mg	12.7	Strontium	Sr	43.8
Cal rium	C3.	20.5	Manganese	Mn	25	Sulphur	S	16.1
Carbon	C	6.1	Mercury	Hg	200	Tellurium	Te	64.2
Chlor.ne	CI		Molybdenum.	Mo		Tin	. Sn	58.9
Chromium	Cr	26.2	Nickel	Ni	20.5	Titanium	Ti	24.5
Cobait	Co		Nitrogen	N		Tungsten	w	
Columbatin	Та		Osmium	()s		Ur nium	T I	92 60
Copper	Cu		Oxygen	o i		Yttrium		32
Floorage	F		Palladium	Pd	52.2	Zinc	Żn	32.3
Glue:num	G		Phosphorus			Zircon.um		34

Analysis of certain Organic Substances by Weight.

	Car- b-a.	Hydro-		Nitra-	Body.	Car- bon.	Hydro- gen.		Nitro-
Albumen			23.9	15-7	Morphine		6.4	16.3	5
Alcohol		12.9	34-4	-	Narcotine		5-5	27	2.5
Atmospheric air		_	77	23	Oil, Castor		10.3	15-7	-
Camphor	73-4	10.7	15.6	-3	Linseed	75	11.3	12.7	-
Canntehouc	87.2	12.8	_	-	Spermaceti.	78	11.8	10.2	-
	50.8	7-4	II.4	21.4	Quinine	75.8	7.5	8.6	8.1
	53-4	7	19.7	19.9	Starch	44.2	6.	40-I	-
	47.0	7.9	27.2	17	Strychnine	70.4	6.7	II.I	5.8
			50.9	-	Sugar	42.2	6.6	51.2	-
			7.0	1.8	Tannin	52.6	1 3.8	12.6	-
			.8	-	Urea	181	2/ 2.7	36.3	1450

ilution Per Cent. Necessary to Reduce Spirituous Liquors.

ater to be added to 100 volumes of spirit when of following strength:

ngth rired.	90	85	80	75	70	65	60	55	50
cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per ceut.	Per cent.	Per cent.
35	5.9	l —		I — .	J	_	-	! —	_
lo	12.5	6.3	l —		-	-		i —	_
'5	20	13.3	6.7	l —	I			! —	_
'Õ	28.6	21.4	14.3	7.1	l —	i —			-
15	38.5	30.8	23.1	15.4	7.7	-		-	_
15 10	50	41.7	33.3	25	16.7	8.3	l —	i —	
15	63.6	54-5	45-5	36.4	27.4	18.2	Q. I	-	_
jo	80	70	60	50	40	30	20	10	_
ю	125	112.5	100	87.5	75	62.5	50	37-5	25
jo	200	183.3	166.7	150	133.3	116.7	130	83.3	66.7

LUSTBATION.-100 volumes of spirituous liquor having 90 per cent. of spirit con-

s: alcohol 90, water 10, = 100.
) reduce it to 30 per cent, there is required 200 volumes of water.

Hence
$$200 + 10 = 210$$
, and $\frac{90}{210} = \frac{30}{70} = \frac{30}{70}$ spirit, or 30 per cent.

Proportion of Alcohol Per Cent. In 100 Parts of Spirit, by Weight or Volume, at 60°.

nhol.	Specific Gravity.	Alcohol.	Specific Gravity.	Alcohol.	Specific Gravity.	Alcohol.	Specific Gravity.
o	1	20	.972	50	.918	80	.848
5	.991	30	.958	60	.896	90	.823
0	.984	40	.94	70	.872	100	•794

In 100 Parts of Alcohol and Water, by Weight, at 60°.

hol.	Specific Gravity.	Alcohol.	Specific Gravity.	Alcohol.	Specific Gravity.	Alcohol.	Specific Gravity.
i3 12	1 .999 .998	1.99 3.02 4.02	.996 .994 .993	5.01 6.02 7.02	.99z .99 .988	7.99 9.05 10.07	.987 .985 .984

ides of Atlantic and Pacific Oceans at Isthmus of Panama. (Totten.)

lantic, Navy Bay.—Highest tide 1.5 feet; lowest .63 feet.

cific, Panama Bay.—Highest tide 17.72 to 21.3 feet; lowest 9.7 feet.

STATE.	Sq. Miles.	STATE.	Sq. Miles.	STATE.	Sq. Miles.
niasylvania*	21 000 15 437	Indiana	7 700 6 000	Tennessee	3400 550
		md Amthunalta		A Auchanate.	. •

* Bituminous and Anthracite. † Anthracite.

Areas of U.S. Coal Fields.

Extremes of Heat in Various Countries.									
nd 96° 20 106.5°	Denmark Sweden	99.5°	Greece105° Italy104° Spain102° Tunis	Egypt116.10 Africa133.40					
nd . 1020	Norway Russia	1020	Spain 1020 Tunis 112.50	Asia 1260 Suez 126.50					
Cormony	1000	Manilla	OIN Ameri	CB 1000					

remes of temperature upon the Earth 240°.

Extremes of Cold in Various Cou ad... - 5° | Denmark) . | France... - 24° | Italy B | -12° | Norway | Germany... - 32° | Sem

Mean Temperatures of Various Localities.

London 510	Rome 60°	Poles	-13°	Polar Regions. 360
Edinburgh 410	Rome 60° Equator 82°	Torrid Zone.	75°	Globe 500

Line of Perpetual Congelation, or Snow Line.

Latitude.	Height.	Latitude.	Height.	Latitude.	Height.	Latitude.	Height.
0	Feet.	0	Feet.	0	Feet.	0	Fort.
10	14764	30	11484	50	6334	70	1278
15	14 760	35	10287	55	5020	75	2016
20	13478	40	9000	60	3818	8o	45I
25	12 557	45	7 670	65	2230	85	327

At the Equator it is 15 260 feet; at the Alps 8120 feet; and in Iceland 3084 feet.

At Polar Regions ice is constant at surface of the Earth.

Limits of Vegetation in Temperate Zone.

The Vine ceases to grow at about 2300 feet above level of the sea, Indian Corn at 2800, Oak at 3350, Walnut at 3600, Ash at 4800, Yellow Pine at 6200, and Fir at 670a

Periods of Gestation and Number of Young.

			14 14	eeks.	No.	Weeks.	No.	Week		
Elephant.	100	1	Cow	41	x I	Sheep 21	2	Dog	9 6	6
Worse (43	_	Buffalo	40	1	Goat 22 Beaver 17	2	Fox	؛ ا وَ	5
noise }	50		Stag	36	1	Beaver 17	3	Cat	B 6	6
Camel	45	1	Bear	30	1 2	Pig 17	12	Rat	5 8	8
Ass	43	1	Deer	24	2	Wolf 10	5	Squirrel	4 6	5
			Rabbit	4	6	Guinea Pig. 2	•			

Periods of Incubation of Birds.

Swan, 42 days; Parrot, 40 days; Goose and Pheasant, 35 days; Duck, Turkey, and Peafowl. 28 days; Hens of all gallinaceous birds, 2r days; Pigeon and Canary, 4 days. Temperature of incubation is ro4°.

Ages of Animals, etc.

Whale, estimated 1000 years; Elephant, 400; Swan, 300; Camel, 100; Eagle, 100; Raven, 100; Tortoise, 100 to —; Lion, 70; Dolphin, 30; Horse, 30; Porpoise, 30; Bear, 20; Cow, 20; Deer, 20; Rhinoceros, 20; Swine, 20; Wolf, 20; Cat, 15; Fox, 15; Dog, 15; Sheep, 10; Hare, Rabbit, and Squirrel, 7.

Relative Weights of Brain.

Man, 154.33; Mammifers, 29.88; Birds, 26.22; Reptiles, 4.2; Fish, 1.

Buoyancy of Casks.

Buoyancy of a cask in fresh water in lbs. = 11.97 times volume of it in U. S. pallons and 10 times in Imperial gallons, less weight of cask.

Transportation of Horses and Cattle.

Space required on board of a Marine Transport is: for Horses, 30 ins. by 9 feet; Beeves, 32 ins. by 9 feet. Provender required per diem is: for Horses, Hay, 15 lbs; Oats, 6 quarts; Water, 4 gallons. Beeves, Hay, 18 lbs; Water, 6 gallons.

Rock and Earth Excavation and Embankment.

Number of Cube Feet of various Earths in a Ton.

Tanea Earth 24	Earth with Gravel 17.8	Common Soil 15.6
Earth an	d Sand in embankment exc	ends that in a primary ex-

Hills or Plants in an Area of One Acre.

part.	No.	Feet apart.	No.	Feet apart.	No.	Feet apart.	No.
	43 560	5	1742	9	538 482	16	171
1	19 360	5.5	1440	9.5	482	17	151
- 1	10890	6	1210	10	435	18	135
. 1	6969	6.5	1031	10.5	435 361	20	108
201	4840	7	889	12	302	25	69
1	3 556	7-5	775 680	13	258	30	48
- 1	2722	8		14	223	35	35
1	2151	8 5	692	1 15	193	40	27

mber of several Seeds in a Bushel, and Number per Square Foot per Aore.

 No.	Sq. Foot.	1	No.	Sq. Foot.
41 823 360	960	Rye	888 390	20.4
16 400 960	376	Wheat	556 290	12.8

Volumes.

manent gases, as air, etc., are diminished in their volume in a ratio direct that of pressure applied to them. With vapor, as steam, etc., this rule is I in consequence of presence of the temperature of vaporization.

Minerals.

Relative Hardness of some Minerals.

•••••	I	Barytes	3.5	Opal Quartz Tourmalin	6	Emerald	8
m	2	Fluor-spar	4	Quartz	7	Topaz	8
	2.5	Feldspar	6	Tourmalin	7	Ruby	Q
nate of lime.	3	Lapis Lazuli .	6	Garnet 7	٠5	Diamond	ю

Weight of Diamonds.

Carata.	Carats.	Carata,
n 367		Dresden76.5
Mogul*279.9	Star of the South † 125	Sancy53.5
194.25		Eugenie, brilliant . 51
tine, brilliant . 139.5		Hope (blue) 48.5
of Portugal 138.5	Napac 78.625	Polar Star 40.25
жgh 900.	† Rough 254.5.	1 Originally 703.

Heat of the Sun.

ac Newton	Waterston	16 000 000 ⁰
ry others ranging from 25200 to 18:	600°.	

L-Distance of Moon from Earth 237 000 miles.

Frigorific Mixture.

st temperature yet procured. Faraday obtained 166° by evaporation of a sof solid carbonic acid and sulphuric ether.

Current of Rivers.

of .x of an inch in a mile will produce a current in rivers.

Sandstones.

tures of sandstone erected in England in 12th century are yet in good in.

Canal Transportation.

Canal and Hudson River.—From Buffalo to New York, 495 miles, cost of tation 2.46 mills per ton (inclusive of tolls) per mile. Transportation of notes when it reaches New York 4.72 cents per bushel, and .61 cents per belevating and trimming.

Eric Canal.—Four mules will tow 22involving a period of 30 days, at a cost freight down and 100 mile for a course

Matter.

Unit of the Physicist is a molecule, and a mass of matter is composed α

having same physical properties as parent mass.

It exists in three forms, known as solid, liquid, and gaseous. Solids haviduality of form, and they press downward alone. Liquids have not indiviof form, except in spherical form of a drop, and they press downward and si Gases are wholly deficient in form, expanding in all directions, and conse they press upward, downward, and sideward.

Liquids are compressible to a very moderate degree. Water has been through porce of silver, and it may be compressed by a pressure of one po

square inch to the 3 300 000th part of its volume.

Gases may be liquefled by pressure or by reduction of their temperature. Combustible matter (as coal) may be burned, a structure (as a house) destroyed as such, and the fluid (of an ink) may be evaporated, yet the m which coal and house were composed, although dissipated, exists, and the and coloring matter of the ink are yet in existence.

Spaces between the particles of a body are termed porcs.

All matter is porous. Polished marble will absorb moisture, as evidence discoloration by presence of a colored fluid, as ink, etc.

Silica is the base of the mineral world, and Carbon of the organized.

Minuteness of Matter.

A piece of metal, stone, or earth, divided to a powder, a particle of it, I minute, is yet a piece of the original material from which it was separated ing its identity, and is termed a molecule.

It is estimated there are 120000000 corpuscles in a drop of blood of the mu. Thread of a spider's web is of a cable form, is but one sixth diameter of a silk, and 4 miles of it is estimated to have a weight of but 1 grain.

One imperial gallon (277.24 cube ins.) of water will be colored by mixture of a grain of carmine or indigo.

A grain of platinum can be drawn out the length of a mile.

Film of a soap-and-water bubble is estimated to be but the 300 cooth painch in thickness.

It is computed that it would require 12000 of the insect known as the monad to fill up a line one inch in length.

A drop of water, or a minute volume of gas, however much expanded—the volume of the Earth—would present distinct molecules.

Gold leaf is the 280 cooth part of an inch in thickness. A thread of silk is 2500th of an inch in diameter.

A cube inch of chalk in some places in vicinity of Paris contains roocoof the foraminifera.

There are animalcules so small that it requires 75 000 000 of them to weigh

Velocity, Weight, and Volume of Molecules. Velocity.—Collisions among the particles of Hydrogen are estimated to the rate of 17 million-million-million per second, and in Oxygen less than number.

Weight.—A million-million-million molecules of Hydrogen are et to weigh but 60 grains.

Volume.—19 million-million-million molecules of *Hydrogen* have a volum cube ins. *Diameter.*—Five millions in a line would measure but .r inch.

Charcoal, Alcohol.

Charcoal as yet has not been liquefied, nor has Alcohol been solidified.

Metals.

Metals have five degrees of lustre—splendent, shining, glistening, glimmer

can be vaporized, or exist as a gas, by application to them of t

"" renders it brittle; reheating it restores its i renders it harder, and up to twelfth time it

of all metals.

Impenetrability.

penetrability expresses the inability of two or more bodies to occupy same at same time.

nixture of two or more fluids may compose a less volume than that due to sum eir original volume, in consequence of a denser or closer occupation of their cules. This is evident in the mixture of alcohol and water in the proportion 5 volumes of former to 25 of latter, when there is a loss of one volume.

Elasticity.

sticity is the term for the capacity of a body to recover its former volume,

being subjected to compression by percussion or deflection.

us, ivory, and steel are the most elastic of all bodies, and clay and putty are
rations of bodies almost devoid of elasticity. Caoutchouc (India rubber) is but erately elastic; it possesses contractility, however, in a great degree.

Momentum.

mentum is quantity of motion, and is product of mass and its velocity. Thus, nomentum of a cannon ball is product of its velocity in feet per second and its ht, and is denominated foot-pounds.

foot-pound is the power that will raise one pound one foot.

Sound.

locity of sound is proportionate to its volume; thus, report of a blast with 2000 of powder passed 967 feet in one second, and one of 1200 lbs. 1210 feet. It passes ater with a velocity of 4708 feet per second. Conversation in a low tone has maintained through cast-iron water pipes for a distance of 3120 feet, and its city is from 4 to 16 times greater in metals and wood than air.

Light.

n's rays have a velocity of 185000 miles per second, equal to 7.5 times around Earth.

Color Blindness

sence of elementary sensation corresponding to red.

Luminous Point.

produce a visual circle, a luminous point must have a velocity of 10 feet in a ad, the diameter not exceeding 15 ins.

I solid bodies become luminous at 800 degrees of heat.

Mirage.

hen air near to surface of Earth becomes so highly heated, as upon a sondy , that its density within a defined distance from it increases upwards, a line sion directed obliquely downwards will be rendered by refraction, gradually asing, more and more nearly horizontal as it advances, until its direction is so as to produce a total reflection, and the reflected ray then, by successive reions, is gradually elevated until it meets the eye of the observer.

oming is inverted mirage, frequently seen over calm water, and is effect of or surface stratum of air being colder than that above it.

Snow Flakes.

forms of snow flakes have been observed.

Melted Snow

duces from .25 to .125 of its bulk in water.

Strength of Ice.

inches thick will support men in single file on planks 6 feet apart: 4 inches upport cavalry, light guns, and carts; and 6 inches wagons drawn by horses.

Temperature.

phuric acid and water produce a much greater proportionate contraction than and water. Both of these mixtures, however low their temperature, proneat which is in a direct proportion to their diminution in volume. the depth of 45 feet, the temperature of the Earth is uniform throughout the

sperature of Earth increases about 10 for every 50 to 60 feet is estimated at 30 miles.

My at Equator weighs two hundred and eighty-nine parts less

Ages of Animals, Fishes, etc.

(Additional to page 192.)

Tiger, Leopard, Jaguar, and Hyena (in confinement), 25 years; Beaver, 50; Stag niger, Leopard, asguar, and nyens (in Connettend), 25 years; Besser, 56; 584; under 50; Ox and Ass, 30; Chamois, 25; Llama, Monkey, and Baboon, 15 to 18; Prot, 200; Tortoise, 100 to 200; Croccodile, 100; Carp, 70 to 150; Goose, 80; Pelica, 45; Hawk, 30 to 40; Crane, 24; Peacock, Goldfinch, Chaffinch, from 10 to 25; bimestic Fowls, Pigeons, Blackbird, Nightingule, and Linnet, 10 to 16; Thrush, Ross, and Starling, 8 to 12; Wren, 2 to 23; Salmon, 16; Ecl, 10; Codfish, 4 to 17; Pika, 2 to 40; Queen Bec, 4; Bec, 6 months, and Drones, 4 months. (Houghtaing.)

Birds and Insects.-(M. De Lacy.)

Elements of Flight.—Resistance of air to a body in motion is in ratio of surface of body and as square of its velocity.

Wing Surface. - Extent or area of winged surface is in an inverse ratio to well of bird or insect.

A Stag-beetle weighs 460 times more than a Gnat, and has but one fourteenth its wing surface; 150 times more than a Lady Bird (bug), and has but one that An Australian Crane weighs 339 times more than a sparrow, and has but one enth; 3000000 times more than a Gnat, and has but one hundred and fortieth A Stork weighs eight times more than a Pigeon, and has but one half. A Pigeon weighs ten times more than a Sparrow, and has but one half; 97 000 times more a Gnat, and has but one fortieth.

A resisting surface of 30 sq. yards will enable a man of ordinary weight to des safely from a great elevation.

Strength of Insects. —Insects are relatively strongest of all animals. A Crist can leap 80 times its length, and a Flea 200 times.

Application for Stings and Burns.

Sting of Insects.—Ammonia, or Soda moistened with water, and applied as a page Burns.—Hot alcohol or turpentine, and afterwards bathed with lime water we sweet oil. Cold water not to be applied.

To Preserve Meat.

Meat of any kind may be preserved in a temperature of from 800 to 1000, in period of ten days, after it has been soaked in a solution of 1 pint of salt disso in 4 gallons of cold water and .5 gallon of a solution of bisulphate of calcium. By repeating this process, preservation may be extended by addition of a solution

of gelatin or white of an egg to the salt and water.

To Detect Starch in Milk.

Add a few drops of acetic acid to a small quantity of milk; boil it, after it has cooled filter the whey. If starch is present, a drop of iodi solution will produce a blue tint.

This process is so delicate that it will show the presence of a milligram of star in a cube centimeter of whey (1 grain of starch in 2.16 fluid-ounces).

Retaining Walls of Iron Piles.

Sheet Piles .-- 7 feet from centres, 18 ins. in width and 2 ins. in thickness, strength ed with 2 ribs 8 ins. in depth.

tates. - 7 feet in length by 5 feet in width and 1 inch in thickness, with a onal feather r by 6 ins.

e-rods a ins. in diameter.

Stone Sawing.

nond Stone Sawing.—(Emerson.) Alabama marble 6 feet imes 2.5 feet in 22 f mAI SQ. feet per hour.

Wood Sawing.

and measure, from a round logs in a hour. Engine 12

oom.

Cost of Dredging.

il cost, if on an extended work, inclusive of Delivery, if dredging into or on a vessel alongside of dredger, -(Trautwine.)

Labor at \$ - per day and Repairs of Plant included.

h.	Cents.	Depth.	Cents.	Depth.	Cents.	Depth.	Cents.
	Cube Yards.	Feet.	Cube Yards.	Feet.	Cube Yards.	Feet.	Cube Yards.
	6	20	8 j	25	10	35	18
	7	22	0	30	13	40	25

charge of Scows or Camels.-Towing .25 mile 4 cents per cube yard, .5 mile 6 ..75 mile 8 cents, and 1 mile 10 cents.

re. - A Scow is a flat-bottomed vessel or boat. A Camel is a shallow, flatmed and decked vessel, designed for the transportation of heavy freight or the ining of attached bodies, as a vessel, by its buoyancy.

Dredging.

team dredge will raise 6 cube yards, or 8.5 tons, per hour per IP.

Metal Boring and Turning.

RING .- Cast iron .- Divide 25 by the diameter of the cylinder in inches for the ations per minute.

rought iron. - The speed is one fourth to one fifth greater than for cast iron. ass. -The speed is about twice that for cast iron.

RNING. - Cast iron. - The speed is twice that of boring.

rought iron. -The speed is one fourth to one fifth greater than that for cast iron. ass .- The speed is twice that of boring.

rtical boring. -The speed may be twice that of horizontal boring.

e feed depends upon the stability of the machine and depth of the cut.

Well Boring.

Coventry, Eng., 750 000 galls. of water per day are obtained by two borings of 18 ins., at depths of 200 and 300 feet.

Liverpool, Eng., 300000 galls, of water per day are obtained by a bore 6 ins. ameter and 161 feet in depth.

is large yield is ascribed to the existence of a fault near to it, and extending to th of 484 feet. Kentish Town, Eng., a well is bored to the depth of 1302 feet.

Passy, France, a well with a bore of 1 meter in diameter is sunk to a depth of feet, and for a diameter of 2 feet 4 ins. it is further sunk to a depth of 100 feet L, or 1903 feet 10 ins., from which a yield of 5 582 000 galls. of water are obtained

Tempering Boring Instruments.

it the tool to a blood-red heat; hammer it until it is nearly cold; reheat it to d-red heat, and plunge it into a mixture of 2 oz. each of vitriol, soda, sal-amic, and spirits of nitre, r oz. of oil of vitriol, .5 oz. of saltpetre, and 3 galls. of retaining it there until it is cool.

Circular Saws.

olutions per Minute. - 8 ins. 4500, 10 ins. 3600, and 36 ins. 1000.

Masonry.

crete or Beton should be thrown, or let fall from a height of at least 10 feet, l beaten down.

average weight of brickwork in mortar is about 102 lbs. per cube foot.

Plastering.

ceasuring Plasterers' work all openings, as doors, winder at one half of their areas, and cornices are measured u including that cut off by mitring.

Glazing.

insiers' work, oval and round windows are measured as se

- S. ENSIGN, PENNANTS, AND FLAGS.

(From July 4, 1890.)

-Head (Depth, or Hoist).-Ten nineteenths of its length.

Tteen horizontal stripes of equal breadth, alternately red and lig with red.

Due field in upper quarter, next the head, .4 of length of field, pes in depth, with white stars ranged in equidistant, horizontal staggered, equal in number to number of States of the Union.

(Narrow).—Head.—6.24 ins. to a length of 70 feet; 5.04 ins. to a length of 35 feet. Night, 3.6 ins. to a length of 20 to a length of 9 feet.—Boat, 2.52 ins. to a length of 6 feet.

Ite field at head, one fourth the length, with 13 white stars in a hori-Field.— A red and white stripe uniformly tapered to a point, red upth and Boat Pennants.—Union to have but 7 stars.

Jack .- Alike to the Union of an Ensign in dimensions and stars.

-President.-Rectangle, with arms of the U.S. in centre of over which are 13 stars in an arc.

iny of Navy.—Rectangle, with a vertical white foul anchor a blue field, with four white stars in a rectangle, set quadrilateral all anchor.

al.—Rectangle, with 4 white stars in centre of a blue field, set as

.dmiral.—Same as Admiral's, with 3 white stars set as an triangle.

Admiral.—Same as Admiral's, with 2 white stars set vertically. nore Rear-Admirals in command affoat should meet, their seniority is ted respectively by a Blue flag, a Red with White stars, and a White is, and another or all others, a White flag with Blue stars.

octore. (Broad Pennant.)—Blue, Red, or White, according to one star in centre of field, being white in blue and red pennants, white.

iled, angle at tail, bisected by a line drawn at a right angle from centre oist, and at a distance from head of three fifths of length of pennant; e rectangular with head or hoist; upper side tapered, running the width t the tails.r. the hoist. Head.— 6 length. Fly 1.66 hoist.

mai Marks.—Triangle, 1st Blue, 2d Red, 3d White, Blue leserve Division.—Yellow, Red vertical. Division mark is worn ader of a division of a squadron at mizzen, when not authorized ad Pennant of a Commodore or Flag of an Admiral. Fly, 8 hoist,

Numbers.—Fly 1.25 hoist. Signal Pennants, Fly 4.6 hoist. 89 hoist.

ctive Pennants.—Of a Senior Officer Present, is the Disrk of the First Division of a fleet.

Signals.—Very's System.

mal, Signal Number, Square, and Signal Pennants. Fly .3 hoist.

Suspension Bridge	s. Length of Spans in Feet.	
'hila.)	Cincinnati	1040
96) 660	Niagara Fall	1380
and Brooklyn, 930, 1595.5, 81	nd 930; clea	. 17đ.

Alimentary Principles.

Primary division of Food is into Organic and Inorganic.

Organic is subdivided into Nitrogenous and Non-Nitrogenous: Incremis is composed of water and various saline principles. The former elements are destined for growth and maintenance of the body, and are termed "platic elements of nutrition." The latter are designed for undergoing oxidate. and thus become source of heat, and are termed "elements of respiration." "Calorificient,"

Although Fat is non-nitrogenous, it is so mixed with nitrogenous matter that & becomes a nutrient as well as a calorificient.

Alimentary Principles. — I. Water; 2. Sugar; 3. Gum; 4. Starch; 5. Pecties; 6. Acetic Acid; 7. Alcohol; 8. Oil or Fat. Vegetable and Animal.— Albuma; 10. Fibrine; 11. Caseine; 12. Gluten; 13. Gelatine; 14. Chloride of Sodium.
These alimentary principles, by their mixture or union, form our ordinary fact, which, by way of distinction, may be denominated compound aliments; thus, mass

is composed of fibrine, albumen, gelatine, fat, etc.; wheat consists of starch, date. sugar, gum, etc.

Analysis of Meats, Fish, Vegetables, etc.

Food.	Water.	Nitro- genous Matter.	Fat.	Saline Matter.	Non-Nitro- genous Matter.	Sugar.	Cellu- ioss.	44,4
Arrowroot	18	_	-		82	_	_	-
Barley Meal	15	6.3	2.4	2	69.4	49	-	- :
Beans, White	9.9	25.5	2.8	_	55-7	_	2.9	ز جو ا
Beef, roast	54	27.6	15.45	2.95	_	-		=
fat	51	14.8	29.8	4-4	_	_	=	1
lean	72	19.3	3.6	5. ž	- 1	_	-	
salt	49. I	29.6	.2	21. I		1111	_	=]
Beer and Porter	91	·I	<u> </u>	.2	8.7	-	_	- 1
Buckwheat	13	13.1	83	-4	64.5	_	3-5	25
Butter and Fats	15	-	83	2	-		-	= 1
Cabbage	δı	2	∙5	.7	5.8	_	-	
Carrots	83	1.3	.2	I	7-4	6. r		1
Cheese	36.8	33-5	24.3	5-4	-	-	-	-
Corn Meal	14	11.1	8. r	1.7	57.6	·4 2.8	5.9	L.S
Cream	66	2.7	26.7	1.8	_	2.8	=	- 1
Egg	74	14	10.5	1.5	- 1	_		Ξ
yolk	52	16	30.7	1.3	. –	_	- 1	- [
Fish, white flesh	78	18.1	2.9	1	· -	_	=	- [
Eels	75	9.9	13.8	1.3		_	- 1	=
Lobster, flesh.	76.6	19.17	1.17	1.8	1.26	_		- 1
Oysters	80.39	14.01	1.52	2.7	1.38	-	-	-
Liver, Calf's	72.33	20.55	5.58	1.54	-	_	-	=
Milk, Cow's	86	4. I	3.9	.8	-	5.2	=	_ = 1
Mutton, fat	53	12.4	31.1	3.5	-	_	_	
Oatmeal	15	12.6	5.6	3	58.4	5∙4		- 1
Oats	21	14.4	5.5	_	48.2	_	7.6	3-3
Parsnips	82	1.1	∙5	1	9.6	5.8	_	- 1
Peas	15	23	2.1	2.5	50.2	2	3.1	2.1
Bacon, dry	39	9.8 8.8	48.9	2.3	-		_	= [
Potatoes	15		73.3	2.9	16.8		_	<i>-</i>
Poultry	75	2.1	.2 3.8	.7	10.6	3.2	1	
Rice	74	21		1.2	78.1		-	
Rye Meal	13	6.3 8	.7	·5 1.8		.4	- 1	·
Sugar	5	°	2	1.0	69.5	3.7	- 1	_ [
Tripe	68	13.2	16.4	2.4	95	_	_	Ξ
Tarnips	01	13.2	10.4	.6		2.1		.8
Veal	63	16.5	15.8	4.7	4.3	2.1		
Wheat Flour	15	10.8	2	1.7	61.1	4.2	3-5	1.7
Bread*	27	8.1	1.6	2.3		3.6		
Bran	31	τ8	6	3	45.4	(=	(=1	i

^{*} Water absort ing most. 100 l

am 40 to 60 per cent. of weight of flour, the best quality

Analysis of Different Foods In their Natural Condition.

	NI- trates.	Carbon- ates.	Phos-	Water.		Ni- trates,	Carbon-	Phos-	Water.
M	5	10	1	84	Milk of cow	5	8	1	86
y	17	69.5	3-5	10	Mutton	12.5	40	4.5	43
8	24	57-7	3-5	14.8	Oats	17	66.4	3	13.6
*******	15	30	5	50	Parsnips	9.2	7	1	82.8
wheat	8.6	75-4	1.8	14.2	Pork	10	50	1.5	38.5
age	4	5	I	90	Potatoes	2.4	22.5	-9	74.2
ten	19	3.5	4-5	73	" sweet	1.5	28.4	2.6	67.5
North'n	12	73	1	14	Rice	6.5	79-5	.5	13.5
South'n	35	48	3	14	Turnips	5	4	-5	90.5
mbers	1.5	1	-5	97	Veal	16	16.5	4-5	63
	11	35.5	3-5	50	Wheat	15	69.2	1.6	14.2

trates-Are that class which supplies waste of muscle.

rbonates—Are that class which supplies lungs with fuel, and thus furnishes heat a system, and supplies fat or adipose substances.

osphates—Are that class which supplies bones, brains, and nerves, and gives power, both muscular and mental.

om above it appears, that Southern corn produces most muscle and least fat, contains enough of phosphates to give vital power to brain, and make bones g. Mutton is the meat which should be eaten with Southern corn.

on trates in all the fine bread which a man can eat will not sustain life beyond days; but others, fed on unbolted flour bread, would continue to thrive for an laite period. It is immaterial whether the general quantity of food be reduced ow, or whether either of the muscle-making or heat-producing principles be drawn while the other is fully supplied. In either case the effect will be the Laman will become weak, dwindle away and die, sooner or later, according to seficiency; and if food is eaten which is deficient in either principle, the appervill demand it in quantity till the deficient element is supplied. All food, bethe amount necessary to supply the principle that is not deficient, is not only sl, but burdens the system with efforts to dispose of it.

Analysis of Fruits.

	An	aras	, 01 1	Fulls	•		
FRUIT.	Water.	Sugar.	Acid.	Albumi- nous sub- stances.	Insoluble matter.	Pectous sub- stances.	Ash.
, white	85	7.6	1	.22	1.83	3.88	.47
ot, average	83.5	1.8	1.1	.51	4.7	7.55	.84
berry	86.4	4-44	1.19	.51	5.26	1.72	.48
y, red	75-4	13.1	-35	.9 .83	5.83	3.73	.69
sour	80.5	8.77	τ.28	.83	5.91	2.07	.64
black	79.7	10.7	.56	I	6.04	1.33	.67
1t, red	85.4	5.6 8	1.7	.36	3.74	2.4	.8
perry, red	85.6	8	1.35	-44	2.92	1.26	-43
yellow	85.4	7	1.2	1.46	3.17	2.4	∙37
white	8o	13.78	1	.83	2.48	1.44	-47
Dutch	85	1.58	.61	.46	5.49	6.4	.46
'ed	83.5	7.5	.07	.25	3-54	4.8	-34
yellow gage	80.8	2.96	.96	.48	3.98	10.48	-34
large "	79.7	3.4	.87	-4	3.91	11.3	.42
black blue	88.7	2	1.27	-4	6.86	.23	-54
" red	85.3	2.25	1.33	.43	4.23	5.85	.61
Italian, sweet	81.3	6.73	.84	.83	4.01	5.63	.66
rry, wild	83.9	3.6	2	.55	8.37	1.28	-4
erry, "	87	4	1.5	.6	5.5	.4	1
h	73.0	Sugar.	Pectin,	Salt, Acid	d, etc., 26.	I.	

r and Water in Various Products not Included in the Table. (Per Cent.)

Sugar.	Water.	717 . b.m.
rude 05	Molasses	Cabbage
¥8 77	Lean beef	Ale and Be
milk 6.4	Lean beef	Coffee and

Relative Values of Foods or Assimilating Quality to make an Equal Quantity of Flesh in Cattle or Sheep. (Evart.)

ARTICLE.	Cattle.	Sheep.	ARTICLE.	Cattle.	Sheep-
Turnips	800	400	Wheat bran	45	105
Carrots	630	-	Corn and Barley meal	35	100
Beets	600	300	Oatmeal	34	15
Parsnips and Swedes	600	200	Beanmeal	33	1.00
Meadow grass in bloom.	400	-	Peameal	32	-
Vetches, pods open	360	90	Cabbage	-	500
Potatoes at maturity	280	200	Pea straw	-	200
Oat straw, out green	125	-	Rye bran	-	100
Bean or Vetch straw	-	200	Oats	-	70
Meadow hay	100	100	Buckwheat	-	65
Vetch "	QO	_	Barley	-	60
Linseed cake	50	-	Pease or Beans	1000	54

Note. — When these values express weight in lbs., then such food will produce about 4 to 5 lbs. beef or mutton.

Nutritive Constituents and Values of Food in Grains per Pound.

Foon.	Carbon.	Nitrogen.	Foop.	Carbon.	Nitrogen
Bakers' Bread		88	Mutton	1900	189
Barley Meal	2563	68	New Milk	599	44
Beef	1854	184	Oatmeal	2831	136
Beer and Porter	274	i	Parsnips	554	12
Bullock's Liver	934	204	Pearl Barley	2660	gr
Buttermilk	387	44	Potatoes	769	22
Carrots	508	14	Red Herrings	1435	217
Cheddar Cheese	3344	306	Rice	2732	68
Cocoa	3934	140	Rye Meal	2603	86
Dry Bacon	5987	95	Salt Butter	4585	-
Fat Pork	4113	106	Skim Cheese	1947	483
Flour, Seconds	2700	116	Skimmed Milk	438	43
Fresh Butter	6456	-	Split Pease	2698	248
Green Bacon	5426	76	Suet	4710	1
Green Vegetables	420	14	Sugar	2055	
Indian Meal	3016	120	Turnips	263	13
Lard	4819	- /	Whey	154	13
Molasses	2395	- 1	Whitefish	871	195

The Full Daily Diet of a man is held to be 12 oz. bread, 8 oz. potatoes 6 oz. meat, 4 oz. boiled rice with milk, .375 pint of broth or pea soup, 1 pin milk, and 1 pint of beer.

Nutritive Values and Constituents of Milk .- (Payen)

ANIMAL.	Matter and insoluble Salts.	ACC.	Lactic and soluble Salts.		Animal.	Matter and insoluble Salts.	Butter.	Lactic and soluble Salts.	***	
Goat Cow Woman.	4-55	4·1 3·7 3·34	5.8 5.35 3.77	86.4	Ass Mare Ewe	1.62	1.4 .2 4.2	6.4 8.75 5.5	90.5 89.43 85.62	

Weight of some Different Foods required to furnish 1220 Grains of Nitrogenous Matter.

Lb		Lbs.	Lbs.	Lh
Cheese	4 Meat, fat	1.3	Bacon, fat 1.8	Barley Meal 2
Pease	7 Oatmeal	1.5	Bread 2.1	Milk.
Meat, lean	Corn Meal	16	Rye Meal 2.3	Potatoos 8
Fish. White	Wheat Flour		Rice 2.8	Paronina
and manering	witten Flour.	. 7.7	Tereo	I raramhavive 12

Turnips, 15.9 lbs.; Beer or Porter, 158.6 lbs.

Proportion of Sugar and Acid in Various Fruits. (Freenius.)

FRUIT.	Sugar.	Acid.	Fautt.	Sugar.	Acid.
	Per Cent.			Per Cent.	Per Cent.
le	8.4	.8	Plum	2. I	1.3
icot		1.1	Prune	6.3	
skberry	4·4 6.1	1.2	Raspberry	4	1.5
rants		2	Red Pour	7.5	. 1
seberry	7.2	1.5	Sour Cherry	8.8	1.3
pe		.7	Strawberry	5.7	1.3
berry	9.2	1.9	Sweet Cherry	10.8	6.
ch	1.6	1 .7	Whortleberry	5.8	1.3

halysis of different Articles of Food, with Reference ally to their Properties for giving Heat and Strength.

(Paven.) In 100 Parts.

BSTANCES.	Car- b. n.	Nitro- gen.	SUBSTANCES.	Car- bon.	Nitro- gen.	SUBSTANCES.	Car- bon.	Nitro-
hol	52	-	Coffee	9	1.1	Oil, Olive	98	_
	40	19	Corn	44	1.7	Oysters	7.18	2.13
05	42	4-5	Eels	30.05	2	Pease	44	3.66
	T I	3	Eggs		1.9	Potatoes	' 11	.33
r, strong	4.5	108	Figs, dried	34	.92	Rice	41	1.8
	28	1.07	Herring, salt-			Rye Flour	41	1.75
cwheat	42.5	2.2	ed		3.11	Salmon	16	2.00
er	83	.64	Liver, Calf's		3.93	Sardines		6
ots	5.5	-31	Lobster		2.93	Tea		.2
	27.41	4-49	Mackerel	19.26	3.74	Truffes	9.45	1.35
	41.04	4.13	Milk, Cow's	8	.66	Wheat	41	3
	58	1.52	Nuts	10.65	1.4	" Flour		1.64
fish, salt'd	16	5.02	Oatmeal	44	1.95	Wine	4	.015

rrs.—Multiply figures representing nitrogen by 6.5, and equivalent amount of genous matter is obtained.

Human and Animal Sustenance.

. Least Quantity of Food required to Sustain Life. (E. Smith, M.D.)

Carbon. Hydrogen. Grs.
Adult Man. 4300 Mean, 4100. 200 Mean, 190.
Adult Woman, 3900

1 adult man, for his daily sustenance, requires about 1220 grs. nitrogs matter or 200 of nitrogen, and bread contains 8.1 per cent, of it.

nce, $\frac{1220}{081}$ = 15062 grains which ÷ 7000 in a lb. = 2 lbs. 2.43 oz. of bread.

ese quantities and proportions are also contained in about 16 lbs. of ips.

18, by table of nutritive values, page 202, turnips have 263 grains of carbon and nitrogen.

ace, $\frac{4300}{203}$ and $\frac{200}{13} = 16.35$ lbs. for the necessary carbon and 15.4 lbs. for the

plative Value of Foods compared with 100 lbc of Good Hay.

Weight of Articles of Food required to be consumed a
the human system to develop a power equal to rele
ing 140 lbs. to a height of 10000 feet. (Frankland)

SUBSTANCES.	Weight.	SUBSTANCE	s	Weight.	l Sur	STANCES.	West
	Lbs.	DUBITANCE		Lbs.			-
Cod-liver oil		Rice		1.341	Salt Be	ef	
Beef, fat	.555	Isinglass			Veal, le	an	42
Bacon		Sugar, lump					
Butter	.693	Cream	• • • • • •	2.062		8	
Cocoa	.797	Egg, boiled					
Fat of Pork	.97	Bread					
Cheese	1.156	Salt Pork		2.826	Milk		l Anna I
Oatmeal	1.281	Ham, lean, bo	oiled	3.001	Egg, w	hite of	
Arrowroot	1.287	Mackerel		3.124	Carrots		9.66
Wheat flour	1 311	Alc, bottled		3.46i	Cabbag	е	12.01
		_	_				_ 1
Relative Val	ue of V	Various F	Loog	sas P	roduc	tive of	Fores
	when	Oxidized	1 in	the 1	Body.		
Cabbage 1	Porter	2.6	Egg.	hard boi	l'd 5.4 1	Oatmeal	93 [
Carrots 1.2	: Veal, l	ean 2.8	Crea	m	5.9	Cheese	
Skimmed Milk. 1.2	: Salt Be	ef 3.3	Egg,	yolk	7.9	Fat of Por	
White of Egg. 1.4	Poultry	y 3.3	Suga	r	8	Cocoa	
Milk 1.5	Lean 1	3eef 3.4	Ising	lass	8.7	Pemmican	169
Apples 1.5	Macke	rel 3.8	Rice		8.9	Butter	
Ale 18	Ham, l	can 4	Pea	Meal	9.	Bacon	174
Fish 1.9		rk 4.3	Whe	at Flour	9.1	Fat of Beef	26.
Potatoes 2.4	Bread,	crumb 5.1	Arro	wroot	9.3	Cod-liver 0	il 21.7
Nutritious I	Proper	ties of di	iffere	ent V	egeta in Q	bles and uantitie	. Oi-
Oil-cake 1	Rva	2.5	Clos	or how	4.1	Cabbage	. 4
Pease and Beans 1.5	, ityo	(2.5	How	ст цау	*** 4	Wheat etre	
Wheat, flour 2	Bran,	wheat $\begin{cases} 2.75 \\ 3 \end{cases}$	Pote	toes	14	Wheat stra Barley "	26
" grain 2.5	Corn	3	1 000		20		
Oats 2.5	Barley	3	Carr	ots	17.5	Turnips	
=							••••
ILLUSTRATION		•				F	
17.2 C O			100	purus oj	i iouow	ing rooas	as com
Volume of Oxygen	_	sumed in	the B	ody.	_		
Volume of Oxygen Grape Sugar 106	_	sumed in	the B	ody.	_	Fat	95
Grape Sugar 106	Starch	sumed in 120	<i>the B</i> Albu	ody. men	150		
•	Starch	sumed in 120 for oxidation	the B Albu 1 as a	ody. men measure	150 e, albume	en has half	value d
Grape Sugar 106	5 Starch ; capacity cing clem	sumed in 120 for oxidation lent, and a gr hol in 100	the B Albu as a cater v	ody. men measure value the	150 e, albume in either	en has half starch or s	value d sugar.
Grape Sugar 106 Hence, assuming fat as a food-product Proportion o	Starch capacity cing elem	sumed in 120 for oxidation tent, and a gra hol in 100 (Bra	the B Albu as a cater v Pa unde.)	nen measurc value the	150 e, albume in either	en has half starch or a	value d sugar. Luors
Grape Sugar 100 Hence, assuming fat as a food-production of Small Beer 1	Starch capacity cing clem	sumed in 120 for oxidation tent, and a gr hol in 100 (Bra Hermitage, r	the B Albu as a cater v Pa unde.)	measure ralue the	150 e, albume in either follov	en has half starch or a ving Lic	value d sugar. 1 u.ors
Grape Sugar 106 Hence, assuming fat as a food-product Proportion of Small Beer 1 a Porter 3 5 a	Starch capacity cing elem	sumed in 120 for oxidation tent, and a gra hol in 100 (Bra	the B Albu n as a cater v O Pa unde.)	measure rts of	150 e, albume in either follov Lisbor Lachry Teneri	en has half starch or a ving Lic yma ffe	value d sugar. 1 12 0 r s 18 9 19 7
Grape Sugar 106 Hence, assuming fat as a food-product Proportion of Small Beer 1 a Porter 3 5 a	Starch capacity cing elem	sumed in 120 for exidation ent, and a graph of the folion 100 (Bra Hermitage, r Champagne.	the B Albu as a cater v Pa unde.) red	rts of	150 e, albume in either follov Lisbor Lachry Teneri	en has half starch or a ving Lic yma ffe	value d sugar. 1 12 0 r s 18 9 19 7
Grape Sugar 106 Hence, assuming fat as a food-product Proportion o Small Beer 1 a Porter 3.5 a Gider 5.2 a Brown Stoat. 5.5 a	capacity cing clem f Alcolund 1.03 and 5.26 and 9.8 and 6.8	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, Champagne, Amontillado	the B Albu as a cater v O Pa ande.)	rts of	150 e, albume in either follov Lisbor Lachry Teneri Currai	en has half starch or a ving Lic	value d sugar. 1 U.OFS 18.9 19.7 19.7 20.5
Grape Sugar 106 Hence, assuming fat as a food-product Proportion of Small Beer 1 a Porter 3-5 a Gider 5-2 a Brown Stoat . 5-5 a Ale 6-87 a	f Alcolord 1.08 and 1.08 and 5.26 and 5.8 and 1.0 and	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignae. Barsae. Sauterne.	the B Albu as a cater v O Pa unde.)	men measurd value the rts of 12.32 12.61 12.83 12.86 13.86 14.22	150 e, albume in either follov Lisbor Lachry Teneri Curran Madein Port	en has half starch or s ving Lic ying Lic yma ffe t Wine ra	value di sugar. 1110rs 189 197 197 205 222
Grape Sugar 106 Hence, assuming fat as a food-product Proportion o Small Beer 1 a Porter 3.5 a Gider 5.2 a Brown Stoat. 5.5 a	f Alcolors of Alco	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignae. Barsae. Sauterne.	the B Albu as a cater v O Pa unde.)	men measurd value the rts of 12.32 12.61 12.83 12.86 13.86 14.22	150 e, albume in either follov Lisbor Lachry Teneri Curran Madein Port	en has half starch or s ving Lic ying Lic yma ffe t Wine ra	value di sugar. 1110rs 189 197 197 205 222
Grape Sugar 106 Hence, assuming fat as a food-product Proportion o Small Beer . 1 a Porter 3.5 a Gider 5.2 a Brown Stoat. 5.5 a Ale 6.87 a Rhenish	f Alcolomber of	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignac. Barsac.	the B Albu as a cater v O Pa unde.) red Burg'd	measurd ralue the rts of 12.32 12.61 12.63 12.89 13.82 14.82 14.82	o, albumen either follov Lisbor Lachry Teneri Currat Madeir Port Sherry Marsal	en has half starch or a ving Lic yma gra at Wine r, old	value di sugar. 1 11 0 rs 189 197 197 205 23 23 23
Grape Sugar . 106 Hence, assuming fat as a food-product Proportion of Small Beer 1 a Porter 3.5 a Cider 5.2 a Brown Stoat. 5.5 a Ale 6.87 a Rhenish	f Alcolors of Alco	sumed in 120 for oxidation tent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignac Barsac. Sauterne Champagnel	the B Albu as a cater v O Pa unde.) red Burg'd	redy. men measure the rts of 12.32 12.61 12.63 12.89 13.86 14.22 y, 14.57	e, albumen either follov Lisbor Lachry Teneri Currat Madeil Port. Sherry Marsal Raisin	en has half starch or a ving Lic yma ffe the wine the wine conditions wine wine wine wine wine wine	value di sugar. 1 11 Ors 189 197 197 205 23 23 23 25 25
Grape Sugar . 106 Hence, assuming fat as a food-product Proportion of Small Beer . 1 a Porter . 3.5 a Gider . 5.2 a Brown Stoat . 5.5 a Ale 6.87 a Rhenish . Moselle . Johannisberger	f Alco and 1.03 and 5.26 and 6.8 and 6.8 and 1.08 and 2.8 and 3.8 and 5.8 and	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignac. Barsac. Sauterne. Champagne I White Port.	the B Albu as a eater v D Pa unde.) red Burg'd	rts of	e, albumen either follov Lisbor Lachry Teneri Currat Madeil Port. Sherry Marsal Raisin	en has half starch or s ving Lic yma offe t Wine r, old	value di sugar. 1 11 Ors 189 197 197 205 23 23 23 25 25
Grape Sugar . 106 Hence, assuming fat as a food-product of the propertion of the propertion of the propertion of the properties of the pr	f Alco and 7.03 and 5.26 and 6.8 and	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignac. Barsac. Sauterne. Champagne I White Port.	the B Albu as a cater v O Pa unde.) red Burg'd	men measure rts of	a, albuman either follov Lisbor Lachry Teneri Currat Madeit Port Sherry Marsal Raisin Madeit Mad	en has half starch or a ving Lic yma It Wine ra , old a. Wine ra, Servial	value di sugar. 1 12 078 189 197 205 238 238 250
Grape Sugar . 106 Hence, assuming fat as a food-product of the sugar in the sugar	f Alco and 1.03 and 5.26 and 5.26 and 6.8 and 6.8	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignac. Barsac. Sauterne. Champagnet White Port. Bordeaux. Malmsey.	the B Albu as a eater v Pa ande.)	rts of 12.32 12.61 12.63 12.89 13.86 13.86 14.22 y, 14.57 15 15.1	150 b, albumon either follow Lisbon Lachr Teneri Currat Madeit Port Sherry Marsal Raisin Madeit Cape Magin	en has half starch or a ving Lie yma. ffe. at Wine. r, old a. Wine. ra, Sercial Jadeira.	value of sugar. 1 11 Ors 189 197 205 23 23 250 251 274
Grape Sugar . 106 Hence, assuming fat as a food-product of the second o	f Alco and 1.03 and 5.26 and 5.26 and 6.8 and 6.8	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignac. Barsac. Sauterne. Champagnet White Port. Bordeaux. Malmsey.	the B Albu as a eater v D Pa ande.)	men measure rts of12.3212.6112.6312.8913.8614.22 y, 14.5715.116.417.17	o, albumen either follow Lisbor Lachry Teneri Curran Madeir Port Sherry Marsal Raisin Madeir Cape Main Madeir Cape Marsal Brand	en has half starch or a ving Lic in yma ffe t Wine a Wine a Wine a., Sercial Jadeira	value of sugar. 1 11 Ors 189 197 205 222 23 250 274 291 295 251
Grape Sugar . 106 Hence, assuming fat as a food-product of the sugar in the sugar i	Factor of the state of the stat	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne. Amontillado Frontignac Barsac Barsac Champagnel White Port Bordeaux Malmsey Sherry Malaga	the B Albu as a cater was	measure raise of the second se	J. 150 b, albumen either follow Lisbor Lachry Teneri Currat Madeit Port. Sherry Marsal Raisin Madeit Cape N Gin Brand, Rum.	en has half starch or s ving Lic yma. ffe to twine. r, old a. Wine. ra, Sercial dadeira.	value of sugar. 1110rs1891972052382382502512742553
Grape Sugar . 106 Hence, assuming fat as a food-product of the second of	Factor of the state of the stat	sumed in 120 for oxidation ent, and a gr hol in 100 (Bra Hermitage, r Champagne, Amontillado Frontignac Barsae. Santerno. Champagne I White Port. Bordeaux Malmsey Sherry. Malaga. Hermitage, r Cano Musca	the B Albu as a cater v O Pa unde.) red Burg'd	measurcalue the rts of 12.32 12.61 12.63 12.63 12.63 12.89 13.86 14.22 y, 14.57 15.1 16.4 17.12 17.26 17.26 17.26 17.26 17.26 17.43 18.22 18.22	150 , albuman either follov Lisbor Lachry Teneri Curran Madeii Port Sherry Marsai Raisin Madeii Cape M Gin Brand Rum. Lisbor	en has half starch or s ving Lic yma. ffe. t Wine. ra. yma. Wine. ra. Jadeira. ywww. Whiskey.	value of sugar. 1 12 Ors 189 197 205 238 250 251 274 533

oportion of Food Appropriated and Expended by following Animals.

Proportion	appropriated	0xen. 6. 2	Sheep. 8	5wine. 17.6
"	in manure	36.5	31.9	16.9
44	respired	57-3	60.1	65.5
		100	100	700

ecific Gravity of Milk and Percentage of Cream, etc.

32
29
2 6
23

* For a method of testing the purity of milk, see Pavy on Food (Philadelphia, 1874), page 106. OTE. -The average proportion of cream is 10, or 10 per cent.

oportion Per cent. of Starch in sundry Vegetables. wroot...82 | Wheat flour...66.3 | Oatmeal.....58.4 | Potatoes....18.8 |79.1 | Corn meal...64.7 | Pease......55.4 | Turnips....5.1

mposition of Cheese of Different Countries.-(Payen)

	Fat.	Nitrogen.	Salt.	Water.	1	Fat.	Nitrogen.	Salt.	Water.
		2.28	4.25	61.87	Chester	25.41	5.56		30.39
iesan		2.39	5.63	53.99	Gruyères Marolles	28.73	3.73		32.05 40.07
nd	25.06	41	6.21	41.41	Roquefort	32.31	5.07	4.45	26.53

tritive Equivalents. Computed from Amount of Nigen in Substances when Dried. Human Milk at 1.

	.8r	Bread, White.	1.42	Cheese	3.31	Lamb 8.33	
Des	.8₄	Milk. Cows'	2.37	Eel	4.34	Egg. White 8.45	
	T 1	Pease	2.20	Mussel	5.28	Lobster 8.50	
	1.06	Lentils	2.76	Liver, Ox	5.7	Veal 8.73	
t	1.10	Egg, Yolk	3.05	Pigeon	7.56	Beef 8.8	
7	1.25	Oysters	3.05	Mutton	7.73	Pork 8.03	ı
	1.38	Beans	3.2	Salmon	7.76	Veal	
		··	Corrin			. ,,	

Herring, 9.14.

rmometric Power and Mechanical Energy of 10 rains of Various Substances in their Natural Contion, when Oxidized in the Animal Body into Carnic Acid, Water, and Urea.-(Frankland.)

MANCE.	Water raised	Lifted 1 foot high.	SUBSTANCE.	Water raised	Lifted 1 foot high.	SUBSTANCE.	Water raised 1°.	Lifted 1 foot high.
ıss's	Lbs. 1.99 1.48	Lbs. 1.54 1.29	Cheese Cocoa-nibs	Lbs. 11.2 17	Lhs. 8.65 7.3	Mackerel Milk	Lbs, 4.14 1.64	Lbs. 3.2 1.25
coot	3.66	2.83	Cod-liver oil. Egg, h'd boil.	5.86	4-53	Oatmer Pea m	•	7.8
•••••	5.52 18.68	4.26 14.42	" yolk " white	8.5		Potate Porte		
,e/	1.08	1.03	Flour, wheat. Ham, boiled.	9.87		Rice, Suga		

Digestion.

Time required for Digestion of several Articles of Fool (Beaumont, M.D.)

Food.	Time.	FOOD.	Time
Apple, sweet and mellow	h. m. I 50	Heart, Animal, fried	4
sour and mellow	2	Lamb, boiled	2 30
sour and hard	2 50	Liver, Beef's, boiled	2
Barley, boiled	2	Meat and Vegetables, hashed.	2 3
Bean, boiled	2 30	Milk, boiled or fresh	3.,
Bean and Green Corn, boiled.	3 45	l)	2 15
Beef, roasted rare	3	Mutton, roastedbroiled or boiled	3 1
roasted dry	3 30		3 2 5
boiled	3	Oysterroasted.	3 15
boiled, with mustard, etc.	2 45 3 30	stewed	3 3
Tendon, boiled	5 30	Parsnip, boiled	2 3
" fried	4	Pig, sucking, roasted	2 3
old salted, boiled	4 15	Feet, soured, boiled	1
Beet, boiled	3 45	Pork, fat and lean, roasted	5 45
Bread, Corn, baked	3 15	recently salted, boiled	43
Wheat, baked, fresh	3 30	" " fried !	4 15
Butter, melted	3 30	" " broiled .	3 13
Cabbage, crude	2 30	" " raw	3
crude, vinegar	2	Potato, boile 1	3 %
crude, vin'r, boiled {	4	baked	3 🛎
	4 30	roasted	2 3
Carrot, boiled	3 15	Rice, boiled	1
Cartilage, boiled	4 15	Sago, boiled	1 4
Cheese, old and strong	3 30	Sausage, Pork, broile1	3 20
Chicken, fricasseed	2 45	Soup, Barley	1 39
Custard, baked	2 45	Beef and Vegetables	4
Duck, roasted	4	Chicken	3 3
Dumpling, Apple, boiled	4 30	Sponge-cake, baked	33
Egg	3	Suet, Beef, boiled.	53
whipped	1 30	Mutton, boiled	4 3
boiled hard	3 30	Tapioca, boiled	3
" soft	3 3	Tripe, soured.	1
fried	3 30	wild	2 18
Fish, Cod or Flounder, fried	3 30	Turkey, roasted \{ \begin{aligned} \text{Wild} \\ \text{Domestic} \end{aligned}	239
Cod, cured, boiled	2	boiled	2 3
Salmon, salt'd and boil'd	4	Turnip, boiled	339
Trout, boiled or fried	1 30	Veal, roasted	4
Fowl, boiled or roasted	4	fried	49
Grose, roasted	3	Brain, boiled	I 45
Genatine, boiled	2 30	Venison Steak, broiled	135

General Notes.

The per-centage of loss in the cooking of meats is as follows: Boiling 23; Birl 31; Roasting 34.

Potatoes possess anti-scorbutic power in a greater degree than any other of the succulent vegetables.

The average yearly consumption of wheat and wheat flour in Great Britain by shels per capita of its population.

The daily ration of an Esquimaux is 20 lbs. of fiesh and blubber.—(Str 140)

n adult healthy man, according to Dr. Edward Smith, requires daily of

Potash 27 Soda 80	
Lime 2.3	

common fowl's egg contains 120 grains of Carbon and 17.75 of Nitrogen.

an ordinary working-man requires for his daily sustenance

Oxygen	Starch
- a aa lha	

= 7.23 lbs. avoirdupois.

Wilk.—If the milk of an animal is taken at three immediately successive periods, t which is first received will not be as rich in milk-fat as the last.

n a Devon cow, milked in this manner, the first milk gave but 1.166 per cent. of and the last, or that known as "strippings," 5.81 per cent.

Relative Richness of Milk of Several Animals.

Human Milk = 1. Milk-fat. Casein. Milk-fat. Casein. Sugar. Sugar. . 38 V..... 1.66 1.38 Ass 5 -94 .72 Sheep..... 2.52 2. I re...... 1.10 .75 Camel. 1.4 .ġ6 it.....2 1.04

he condensation of milk reduces it to about one third of its original volume.

Farm of second-rate quality, properly cultivated, will sustain 100 head of cattle 100 acres, besides laboring stock (employed in cultivation of farm), and swine. Swart)

hus, calves 25; do. 1 year 25; do. 2 years 25; cows 25.

ane Supar (Saccharose)—Is insoluble in absolute alcohol, and in diluted alcohol soluble only in proportion to its weakness. Loaf sugar, as a rule, is chemically a.

eet Root Sugar—Contains 85 to 96 per cent. of cane sugar, 1.6 to 5.1 of organic ter, and 2 to 4.3 of water.

'oney—Contains 32 per cent. of sugar (levulose), 25.5 of water, 27.9 of dextrine, 14.6 of other matter, as mannite, wax, pollen, and insoluble matter.

olasses—Contains 47 per cent of cane sugar, 20.4 of fruit sugar, 2.6 of salts, 2.7 active and coloring matter, and 27.3 of water.

lour. -Tests of flour, see A. W. Blyth, London, 1882, page 152.

read. —Wheat, water lost by drying after 1 day 7.71 per cent., 3 days 8.86, and 98.405 per cent.

190.-2.5 lbs. per day will support a healthy man.

g—Contains nearly as much gluten as wheat bread (as 6 to 7), and in starch and r it is 16 per cent richer.

voseberry (dry)-Is as nutritious as wheat bread.

atermelon, Vegetable marrow, and Cucumber—Contain 94, 95, and 97 per cent. ater respectively.

tion (dry)-Contains 25 to 30 per cent. of gluten. Potato containing but 5.

bbage, Cauliflower, Broccoli, and Leaves are generally rich in gluten, while the to is poor.

Ratio of Flesh-formers of Tubers.

Per Cent.

UBERS.	Flesh- formers,		Ratio to Heat-giv'rs.		Flesh- formers.		Ratio to Heat-giv'rs.
root ip	.ġ .5	13.4 4 5 18	1:8	Parsnip Onion Sweet Potato. Yam	1.5	8.7 4.8 20.1 16.	,

Gravitating forces of bodies are to each other,

- 1. Directly as their masses.
- 2. Inversely as squares of their distances.

Gravity of a body, or its weight above Earth's surface, decreases square of its distance from Earth's centre in semi-diameters of Earth

ILLUSTRATION I.—If a body weighs 900 lbs. at surface of the Earth, what will weigh 2000 miles above surface?—Earth's semi-diameter is 3063 miles (say 400)

Then
$$2000 + 4000 = 6000 = 1.5$$
 semi-diam's, and $900 \div 1.5^2 = \frac{900}{2.25} = 400$ like

Inversely, If a body weighs 400 lbs. at 2000 miles above Earth's surface, what w it weigh at surface?

400 X 1.52 = 900 lbs.

2. — A body at Earth's surface weighs 360 lbs.; how high must it be elevated to weigh 40 lbs.?

= o semi-diameters, if gravity acted directly; but as it is inversely as and of the distance, then $\sqrt{9} = 3$ semi-diameters = 3 \times 4000 = 12000 miles.

2.—To what height must a body be raised to lose half its weight?

As $\sqrt{1}:\sqrt{2}::4000:5656=$ as square root of one semi-diameter is to square π of two semi-diameters, so is one semi-diameter to distance required.

Hence 5656 - 4000 = 1656 = distance from Earth's surface.

Diameters of two Globes being equal, and their densities different, weigh of a body on their surfaces will be as their densities.

Their densities being equal and their diameters different, weight of the will be as their diameters.

Diameters and densities being different, weight will be as their product. ILLUSTRATION. - If a body weighs to lbs. at surface of Earth, what will it weight surface of Sun, densities being 392 and 100, and diameters 8000 and 883 000 miles!

 $883000 \times 100 \div 8000 \times 392 = 28.157 = quotient of product of diameter of Sun and$ its density, and product of diameter of Earth and its density.

Then $28.157 \times 10 = 281.57$ lbs.

Note.—Gravity of a body is .003 46 less at Equator than at Poles.

SPECIFIC GRAVITY AND WEIGHT.

Specific Gravity or Weight of a body is the proportion it bears to the weight of another body of known density or of equal volume, and which is adopted as a standard.

If a body float on a fluid, the part immersed is to whole body as specific

gravity of body is to specific gravity of fluid.

When a body is immersed in a fluid, it loses such a portion of its own

weight as is equal to that of the fluid it displaces.

An immersed body, ascending or descending in a fluid, has a force equal to difference between its own weight and weight of its bulk of the fluid less resistance of the fluid to its passage.

Water is well adapted for standard of gravity; and as a cube foot of 🐔 weighs 997.68 ounces avoirdupois, its weight is taken as the 🖼 Timately 1000.

Œ Z

ċ

ench standard temperature for comparison of density of solid bodies determination of their specific gravities, is that of maximum density of r, at 4° C. or 39.1° F., and for gases and vapors under one atmosphere or sentimeters of mercury is 32° F. or 0° C., and specific gravity of a body pressed by weight in kilogrammes of a cube decimeter of that body.

ensities of metals vary greatly.

stassium, Sodium, Barium, and Lithium are lighter than water. Mercury aviest liquid and l'latinum heaviest metal. Volcanic scoriæ is lighter water.

megranate and Lignum-vitæ are heaviest of woods. Pearl is heaviest nimal substances, and Flax and Cotton are heaviest of vegetable subes, former weighing nearly twice as much as water.

rcon is heaviest of precious stones, being 4.5 times heavier than water. iet is 4 times heavier. Diamond 3.5 times, and Opal, lightest of all, is but e as heavy as water.

Ascertain Specific Gravity of a Solid Body heavier than Water.

JLE.—Weigh it both in and out of water, and note difference: then, as ht lost in water is to whole weight, so is 1000 to specific gravity of body.

 $\frac{W \times 1000}{W}$ = G, W and w representing weights out and in water, and G $\overline{W-w}$ fic gravitu.

AMPLE. — What is specific gravity of a stone which weighs in air 15 lbs., in r to lbs.?

15-10=5; then 5: 15:: 1000: 3000 Spec. Grav.

Ascertain Specific Gravity of a Body lighter than Water.

JLE. -- Annex to lighter body one that is heavier than water, or fluid ; weigh piece added and compound mass separately, both in and out of r. or fluid; ascertain how much each loses, by subtracting its weight its weight in air, and subtract less of these differences from greater. ien, as last remainder is to weight of light body in air, so is 1000 to fic gravity of body.

AMPLE. - What is specific gravity of a piece of wood that weighs 20 lbs. in air; red to it is a piece of metal that weighs 24 lbs. in air and 21 lbs. in water, and wo pieces in water weigh 8 lbs.?

20+24-8=44-8=36=loss of compound mass in water;
24-21 =
$$3 = loss$$
 of heavy body in water.
33: 20:: 1000: 606 05 Spec. Grav.

To Ascertain Specific Gravity of a Fluid.

TLE.—Take a body of known specific gravity, weigh it in and out of luid; then, as weight of body is to loss of weight, so is specific gravity dy to that of fluid.

LMPLE. — What is specific gravity of a fluid in which a piece of copper (spec. = 9000) weighs 70 lbs. in, and 80 lbs. out of it?

80:80 - 70 = 10: 9000: 1125 Spec. Grav.

Ascertain Specific Gravity of a Solid Body which is soluble in Water.

LE.—Weigh it in a liquid in which it is not soluble, divide it f the liquid by loss of its weight in the liquid, and multiply ecific gravity of liquid; the product is specific gravity.

MPLE.—What is specific gravity of a piece of clay, which weighs 15 lbs in a liquid of a specific gravity of 1500, in which it is insoluble

2 .

SOLIDS,

SUBSTANCES.	Specific Gravity.	Weight of a Cube Inch.	SUESTANCES.	Specific Gravity.
Metals.		Lb.	Metals.	
Aluminum, cast	2560	.0026	Mercury 600	13 569
" wrought	2670	.0906	" 212 ⁰	13 370
" Bronze	7,700	.2785	Molybdenum	8 600
Antimony	6712	.2428	Nickel	8800
Arsenic	5763	.2084	" cast	8279
BariumBismuth	9823	.017	Osmium	10 000
Boron	2 000	·3553 .0723	Platinum, hammered	20 337
Brass.	12.3	CONT.	" native	16 000
Sheet, cop. 75, zinc 25. Yellow " 66, " 34.	8 450	.3056	" rolled Potassium, 59°	22 069
Muntz " 60, " 40.	8 200	.2997	Red lead	865
Plate	8 380	.3026	Rhodium	10 650
Cast	8100	.2930	Rubidium	1 520
Wire	8214	.2072	Ruthenium	8 600
Bromine	3 000 8 750	.1085	Selenium	4 500
Bronze, gun metal	8750	.3165	Silver, pure, cast hammered.	10474
ordinary mean .	8217	.2972		10511
	8832	.3194	Sodium	970
" Tobin	8700	-2929	Steel, minimum	7700
35, tin 65	8 379 8 060	.3021	" plates, mean	7 900 7 806
" 21, tin 74	7 390	.2668	soft	7 833
Cadmium	8650	-3129	" temper'dandhard-	1-33
Calcium	1580	-057	ened	7818
Chromium	5 900	.2134	" wire	7 847
Cinnabar	8098	-2929	" blistered	7 823
Cobalt	8 600	.3111	crucible	7842
Columbium	6000	.217	a cast	7 848
Copper, cast	8 6o8 8 6o8	-3113	" ordinary mean	7 852
" wire and bolts	8 880	·3146 ·3212	Strontium	7 834
ordinary mean.	8 880	.3212	Tellurium	6110
Gold, pure, cast	19258	-6965	Thalium	11850
" hammered	19361	.7003	Tin, Cornish, hammered.	7 390
" 22 carats fine	17 486	.6325	" pure	7 291
" 20 " " ·····	15709 18680	.5682	Titanium	5 300
Iridium,	18 680	-6756	Tungsten	17 000
" hammered Iron, Cast, gun metal	23 000	.8319	Uranium	18 330
minimum	7 308	-264 -2491	Zinc, cast	7119 6861
" maximum	7 500	.2707	" rolled	7191
" ordinary mean	7 207	.2607		1.91
mean, Eng	7217	.2600	Woods (Dry).	0 1077
" cast, hot blast	7 065	-2555	AND A STATE OF THE PARTY OF THE	
" cold "	7218	.2611	Alder	800
Wrought bars	7788	.2817	Apple	793
WILC	7774	.2811	Ash	845
Totted plates	7704	.2787	and the same of th	690
" average	7 698	.2779	Bamboo	822
" Lowmoor	7 540	.2722	Baytree	852
" pure	7 808 8 140	.2938	Beech	600
" ordinary mean	7744	.2801	Binah	567
Lead, cast	11 352	.4106	Birch	720
" rolled	11388	-4119	Blackwood, India	898
Lithium	590	.0213	Boxwood, Brazil	1031
Magnesium	1750	.0633	" France	1 328
працеве	8 000	.2894	Tronging	912
Ty -400	15632	.5661	Bullet-wood	376
+320	13598	4918	Butternut	./ 3

ds (<i>Dry</i>).		Foot.	SUBSTANCES.	Specific Gravity.	of a Cube Foot.
V		Lbs.	Woods (Dry).		Lbs.
,	913	57.062	Oak, English	858	53.625
	561	35.062		932 1146	58.25 71.625
in	1315	82.157	heart, 60 years	1170	73.125
resh burned.	441 380	27.562	" live, green	1260	78.75
xak	1573	98,312	" seasoned	1068	66.75
oft wood	280	17.5	white	86o	53.75
riturated	1380	86.25	Olive	68o	42.5
	715 610	44.687	Orange	705 661	44.062
sweet	726	38.125	Pear Persimmon	710	41.312 44.375
	1040	45·375 65	Plum.	785	49.062
	240	15	Pine, pitch.	660	41.25
manish	644	40.25	" red	590	36.875
	756	47.25	" white	554	34.625
ierican	1331	83.187	Jenow	461	28.812
lian	1209	75 562	Norway	740 1354	46.25 84.625
	695	43-437 35 625	Poon .	580	36 25
	570 671	41 937	Poplar.	383	23.937
	800	50	** white	529	33.062
lia	1014	63.375	Quince	705	44.062
	600	37-5	Rosewood	728	45-5
y Spruce	512	32	Sassafras	482 885	30.125
IC	582	36.375 60.625	Satinwood	500	55.312 31.25
or Sipiri	970 1055	65.95	Sycamore	623	38.937
	843	52.687	Tamarack	383	23.937
r	1000	62.5	Teak (African oak)	657	41 002
ж	592	37		980	61.25
	910	56,875	Walnut	671	41 937
•••••	86o	53.75	omon	500 486	31.25
ig-nut	368 792	49-5	Willow	585	30.375 36.562
iell-bark	600	43.125	Yew, Dutch	788	49.25
	760	47.5	" Spanish	807	50.437
	990	61.875	/Well Segrenad #)		
	770	48.125	(Well Seasoned.*)		
	566	35-375	Ash	722 624	45.125
ia L mean	720	73.187	Cherry	606	39 37.875
ं त	544	34	Cypress	441	27.562
{	560	35	Hickory, red	838	52-375
	703	43-937	Mahogany, St. Domingo.	720	45
:ae	650	40.625	Pine, white	473	29.562
(1333 804	50.25	Poplar	541 587	33.812
	604	37.75	White Oak, upland	687	42.937
	728	45-5	" James River	759	42.437
	913	57 062	544 m		
	720	45	Stones, Earths, etc.		
(1	1063	66.437	Alabaster, white	0770	170.625
Honduras	560	35	yellow	2730 2600	168.687
Spanisn	852 750	53-25 46.875	Alum.	1714	107.125
8-eye	576	36	Amber		67.375
	849	53.062	Ambergris		
	56z	135.062	Asbestos, starry.		2.062
{	897	56.062	Asphalte.		. 12
ilen	823	51.437	Barytes, sulphate		
ia /	872 759	54-5 47-437	Beton, N Y, St.Con		
,			Manual, 1841.		

SUESTANCES.	Specific Gravity.	Weight of a Cube Foot.	SUBSTANCES,	Specific Gravity.	Weight of a Cube Foot.
Stones, Earths,		Lbs.	Stones, Earths,		Lie.
Basalt	2740	171.25	Glass, green	2642	165.125
The state of the s	2864	179	optical	3450	215.025
Bitumen, red brown	1160	72.3	" white	2892	180.75
Borax	830	51.7	soluble	1250	78.125
The state of the s	1367	85.437	Gniess, common	270	15.875
Brick	1900	118.75	Granite, Egyptian red	2654	165.875
" pressed	2400	150	" Patapsco	2640	165
if fire	2201	137.562	" Quincy		165.75
work in cement.	1800	112.5	DEGREE		164.060
" " " mortar. {	1000	100	" Susquehanna	2704	175
Carbon	3500	218.75	Graphite	2200	137-5
Cement, Portland	1300	81.25	Gravel, common	1749	109.312
" Roman	1560	97.25	Grindstone	2143	133.937
Chalk	1520	95	Gypsum, opaque	2168	135.5
The second secon	2784	174	Hone, white, razor	2876	179-75
" with gravel	1930	120.625	Hornblende	3540	221.25
with graver	1350	155 84.375		4940 1710	106.875
Coal, Anthracite }	1436	89-75	Lava, Vesuvius	2810	175.625
	1640	102.5	Lias	1350	146.875
" Borneo	1290	80.625	Lime, quick	804	50.25
" Cannel	1238	77-375	" hydraulic	2745	171.562
	1318	82.375	Limestone, white	3156	197-25
Caking	1277	79.812	Magnesia, carbonate	3180	198.75
" Cherry	1276	79-75 80.625	Magnetic ore	5094	317.6
" Derbyshire	1292	80.75	Marble, Adelaide	2715	169.687
" Lancaster	1273	79.562	" African	2708	169.25
" Maryland	1355	84.687	" Biscayan, black.	2695	168.437
" Newcastle	1270	79-375 81-25	" Carrara	2716	169-75
Mivesde Gier	1300	81.25	common	2686	167.875
" Scotch	1259	78.687 81.25	" Egyptian	2668	166.75
a Splint	1300	81.375	" Italian, white	2708	169.25
" Wales, mean	1315	82.187	" Parian	2838	177-375
Coke	1000	62.5	" Vermont, white.	2650	165-57
" Nat'l, Va	746	46.64	" Silesian	2730	170.625
Concrete, in cement	2200	137.5	Marl, mean	1750	109.375
mean	2000	125	tought	2340	146.25
Earth,*common soil,dry	1210	70	Masonry, rubble	2050	165
" moist sand	2050	93-75	" Limestone	2640	165
" mold, fresh	2050	128.125	" Sandstone	2160	135
" rammed	1600	100	" Brick	2240	140
" rough sand	1920	120	" rough work	1600	100
" with gravel	2020	126.25	Mica	2800	175
Potters'	1900	118.75	Millstone	2484 1260	155.25
Emery	4000	87.5		1384	78.75 86.5
Feldspar	2500	162.5	Mortar	1750	109-375
Flint, black	2582	161.375	Mud	1630	101.875
" white	2594	162.125	" wet and fluid	1782	112
Fluorine	1320	82.5	" " pressed	1920	120
Fuel, Warlich's	1150	71.875	Nitre	1900	118.75
Glass, bottle	1300	81.25	Oyster-shell	2092	130.75
" Crown	2732 2487	170.75	Peat, Irish, light	278	17.375
The state of the s	2933	183.312	I is in dampa	562	35 125
" flint		196		675	42.18

^{*} Specific gravity of earth is estimated at from 1520 to 2200.

SPECIFIC GRAVITY AND WEIGHT. 213

SUBSTANCES.	Specific Gravity.	Weight of a Cube Foot,	SUBSTANCES.	Specific Gravity.	Weight of a Cub Foot,
ones, Earths, etc.		Lbs.	Granite. (Gen'l Gillmore, U. S. A.)	di	Lbs.
, black {	1058	66.125	Duluth, Minn., dark	2780	173-7
	1329	83.062	Fall River, Mass., gray Garrison's, N. Y.	2635	164.7
sphorus	1770	110.625	Garrison's, N. Y.	2580	161.2
ter of Paris	1170	73-5	Jersey City, N. J., soap	3030	189.3
" " dry	3400	212.5	Keene, N. H., bluish gray	2656	166
abago	2100	87.5	Maine Millstone Pt., Conn	2635	164.7
elain, China	2300	143-75	New London. "	2660	166.25
hyry, red		172.812	New London, " Quincy, Mass., light	2605	168.5
lice-stone	915	57.187	Richmond, Va	2727	170.5
rtz	2000	166.25	gray	2030	164.4
lead	8940	558.75	Staten Island, N 1	2861	178.8
n	1089	68.062	Westchester Co., N. Y	2655	165.9
k, crystal	2735	170.937	Westerly, R. I., gray	2070	166.9
en-stone	1981	123.812	Limestone.	1	
rock	2200				
petre	2090	137.5	(Gen't Gillmore, U.S. A.)	100	Wat In
1, coarse	1800	112.5	Bardstown, Ky., dark	2670	166.9
common	1670	104-375	Caen, France	1900	118.8
damp and loose	1392	87	Canajoharie, N. Y	2685	167.8
dried " "	1500	97-5	Frie Co. N. V. blue	2320	141.3
dry	1420	88.75	Cooper Co., Mo., d'k drab Erie Co., N. Y., blue Garrison's, N. Y	2635	164.7
mortar, Ft. Richm'd	1659	103.66	Glens' Falls, "	2700	168.7
silicious	1716	107.25	Joliet, Ill., white	2540	158.7
dstone, mean	1701	106.33	Kingston, N. Y	2690	168.z
Sydney	2237	130.81	Lake Champlain, N. Y	2750	171.9
orl	3170	198.125	Lime Island, Mich., drab		156.3
ria, volcanic		51.875	Marblehead, Ohio, white		150
er pipe, mean		140.625	Marquette, Mich., drab .	2340	146.25
le	2600	162.5	Sturgeon Bay, Wis., blu- ish drab	2780	172.7
e	2672	167	led diabitition	2700	173-7
Durple	2900	181.25	Marble.		
ut	2784	174	(Gen'l Gillmore, U.S. A.)		
pstone	2730	170.625			21-
r, calcareous	2735	170.937	East Chester, N. Y	2635	164.7
Feld, blue	2693	168.312	Italian, common	2875	179.7 168.1
" green	2704	169	Mill Creek, Ill., drab	2570	171.9
Fluor	3400	212.5	North Bay, Wis., "	2800	175
ular ore	5251	328.187			
e, Bath, Engl	2415	150.937	Sandstone.		1
Blue Hill	1961 2640	122.562	(Gen'l Gillmore, U. S. A.)		
Bluestone (basalt)		164.062	Albion, N.Y., brown	2420	151.25
Breakneck, N.Y		160	Belleville, N. J., gray	2259	141.2
Bristol, Engl	2510	156.875	Berea, Ohio, drab	2110	131.9
Caen, Normandy.	2076	129.75	Cleveland, " olive green	2240	140
common	2520	157.5	Edinb'h, Sc'tl., Craigleith		141.25
Craigleith, Scotl.	2316	144-75	Fond du Lac, Wis., purple	2220	138.7
Kentish rag Kip's Bay, N.Y	2651	165.687	Fontenac, Minn. J'g't buff Haverstraw, N. Y., red		145.31
Norfolk (Parlia-	2759	172	Kasota Minn, pink	2130	154.37
ment House)	2304	144	Kasota, Minn., pink Little Falls, N. Y., b	1	140.0
Portland, Engl	2368	148	Marquette, Mich., F		142.5
Staten Isl'd, N.Y.	2076	186	Masillon, O., yellow		-87
Sullivan Co., "	2688	168	Medina, N. Y., pins	-	
ur, native	2033	127.062	Middletown, Ct., bi	-	
Cotta	1952	122	Seneca, Ohio, red		
,	1815	113.437	Vermillion, Ohio, d. Warrensburgh, Mo		

Precious Stones.

Amethyst	Emerald, aqua ma-	Opal
	1 Waloht ()	

SUBSTANCES.	Specific Gravity.	Weight of a Cube Foot,	SUBSTANCES.	Specific Gravity.	of a Cult Fast.
Miscellaneous.	100	Lbs.	Liquids.		Lha
Amber	1000	68.125	Acid, Acetic	1062	66.375
tmospheric Air			" Benzoic		41.00
Beeswax	965	60.312		667	64.605
		118.75	" Citric	1034	95.00
Bone	1900	58.875	Concentrated	1521	95.00
Butter	942		Finoric	1500	93-75
Camphor	988	61.75	Mariatio		75.0H
Caoutchouc	930	58.125	7416610	1217	
Cotton	950	59-375	Attitions	1550	96.875
Dynamite	1650	103,125	THOSPHOLIC	1558	97-375
Egg	1000		EUIIU.	2800	175
Fat of Beef	923	57.687	" Sulphuric	1849	115.50
" Hogs	936	58.5	Alcohol, pure, 60°	794	49.00
" Mutton	923	57.687	" 95 per cent	794 816	51
Flax	1790	111.875	" 80 " ····	863	539N
Gamboge	1222	-	4 50 4	934	5B.378
Glycerine, 60°	1261	78.752	" 40 "	951	
Grain, Barley	590	36.875	" 25 "	970	59 457 60,005
" Wheat	750	46.875	4 10 4	986	61.605
" Oats	500	31.25	11 5 11		62
Gum Arabic	1452	90.75	" proof spirit, * 50	992	1920
Gunpowder, loose	900	56.25	per cent., 600		58.375
shaken		62.5	" proof spirit, 50	4	1/460
1		96.875			54.689
" solid }	1550		per cent., 800		.55.68
	1800	112.5	Ammonia, 27.9 per cent.	891	.55
Gutta-percha	980	61.25	Aquafortis, double	1300	81.15
Hay, old compact		8.05	mimPro		64.60
Horn	1689	105.562	Beer	1034	
Human body	1070	66.935	Benzine	850	53.125
Ice, at 320	922	57-5	Bitumen, liquid	848	53 65.815
Indigo	1009	63.062	Blood (human)	1054	65.075
Isinglass	IIII	69.437	Brandy, .83 or .5 of spirit	924	57-75
Ivory	1825	114.062	Bromine	2966	185 37
Lard	947	59.187	Cider	1018	63.02
Leather	960	60	Ether, Acetic	866	54.12
Mastic	1074	67.125	" Muriatic	845	52,It
Myrrh	1360	85	" Nitric	1110	60.37
Nitro-Glycerine	1600	100	" Sulphuric	715	44.60
Opium	1336	83.5	Honey		00.60
Potash	2100	131.25	Milk	1450	64.5
Resin	1080	68.062	Oil, Anise seed	1032	61.62
			" Codfish	986	57.68
Snow	.0833			923	57.68
Soap, Castile	1071	66,937	**************	923	57.00
Spermaceti	943	58.937	Thingcom	940	58.75
Starch	950	59-375	Trabucua	850	53.12
Sugar	1606	100,375	Chitchesters	915	57.18 60.50
11 66	972	60.25	" Palm	969	
" .66	1326	82.875	" Petroleum	880	5"
Tallow	941	58.812	** Rape	014	
(964	60.25	" Sunflower	026	D
***********	970	60.625		870	ľ

Substances.	Specific Gravity.	Weight of a Cube Foot.	Substances.	Specific Gravity.	Weight of a Cube Foot.
Liquids.		Lbs.	Liquids.		Lbs.
rit, rectifiedam, at 2120		51.5 .038*	Water, Dead Sea " Mediterranean	1240 1029	77-5 64-312
egarter, at 32°	1015 1080 998.7	63.437 67.5 62.418	" sea" Black Sea rain	1016	64.312 63.5 62.5
" 62°†	998.8	62.425 62.355	Wine, Burgundy "Champagne	997	62.312
" distilled, at 39°	956.4 998	59.64 62.379 t 1 cube in	" Madeira	997	64.375 62.312

ompression of following fluids under a pressure of 15 lbs. per square inch;

onpression of following indias under a pressure of 15 lbs. per square inca:
ohol...ooo o21 6 | Mercury...ooo o02 65 | Water...ooo o46 63 | Ether...ooo o61 58

Elastic Fluids.

ube Foot of Almospheric Air at 32° weighs .080 728 lbs. Avoirdupois = 565.096 grains, and at 62° 532.679 grains.

Its assumed Gravity of 1 is Unit for Elastic Fluids.

Spec. Grav.	Spec. Grav.	Spec. Grav.
tic Ether 3.04	Nitric acid 1.217	Vapor.
monia	" Oxide 1.094	Alcohol 1.613
108. air, at 320 I	Nitrogen	Bisulphuret of
te	Nitrous acid 2.638	Carbon 2.64
onic acid 1.53	Nitrous oxide 1.527	Bromine 5.4
" oxide972	Oleflant gas9672	Chloric Ether 3.44
paret'd Hydrog559	Oxygen 1.106	Chloroform 4.2
rine 2.421	Phosphurett'd Hy-	Ether 2.586
ro-carbonic 3.389	drogen 1.77	Hydrochlor. Ether 2.255
roform 5.3	Sulphuretted Hy-	Iodine 8.716
10gen 1.815	drogen 1.17	Nitric acid 3.75
-438	Sulphurous acid. 2.21	Spirits of Turpen-
coal \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Steam, 1 at 212047295	tine 5.013
rochloric acid. 1.278	Smoke.	Sulphuric acid 2.7
rocyanic " . 942	Bitum. Coal102	" Ether 2.586
ogen	Coke105	Sulphur 2.214
atic acid 1.247	Wood 09	Water623
Intohis of a suba foot of a of	males and sommand with mater of	6-9iffa amamitus — 6

'eight of a cube foot 267.26 grains, and compared with water at 62° specific gravity = .000 612 3.

7ht of a Cube Foot of Gases at 32° F., and under Pressure of one Atmosphere, or 2116.4 lbs. per Square Foot.

	8 Chlorine	Oxygen			
Sulphurous acid 1814 lbs.					

Compute Weight of a Body or Substance when Specific Gravity is given.

LE.—Multiply specific gravity by unit or stand or sube, and product is the weight.

Divide specific gravity of body or substance by

Divide specific gravity of body or substance by weight of a cube foot of it in lbs.

MPLE—Specific gravity is 2250; what is weight of a Ct $2250 \times 62.5 = 140.625$ lbs.

Weights and Volumes of various Substances in Ordinary Use.

to a constant II

Substances.	Cube Foot.	Cube Inch.	SUBSTANCES.	Cube Foot.	Cabe No. 15 in a Sin. 16
Metals.	Lbs.	Lbs.	Woods.	Lbs.	i.
Brass { copper 67 }	488.75	.2829	Spruce	31.25	72.6
(Ziuc 33)	400.75	.2029	Walnut, black, dry	31.25	716 1
" gun metal.	543-75	-3147	Wislow	36,562	ôL#5 ⊯
" sheets	513.6	.297	" dry	30.375	737#
" wire	524.16	.3033		10. 2000	
Copper, cast	547-25	-3179	Miscellaneous.		Œ
plates	543.625	.3167	Air	.075291	- 1.
Iron, cast	450.437	.2607	Basalt, mean	175	12.8
" gun metal	466.5	.27	Brick, fire	137.562	16.04
" heavy forging	479-5	.2775	" mean	102	21.04 B
" plates	481.5	.2787		89.75	24.85
" wrought bars	486.75	.2816	Coal, anthracite	102.5	21.6
Lead, cast		.4106	" bitumin., mean.	80	
" rolled	711.75	.4110	" Cannel	94.875	fre
Mercury, 60°	848.7487		" Cumberland	84.687	200
Steel, plates	487.75	.2823	" Welsh, mean	81.25	27.57)
" soft	489.562	.2833	Coke	62.5	35-4
Tin	455.687	.2637	Cotton, bale, mean		1544
Zinc, cast	428.812	.2482		14.5	
" rolled		2601	" " pressed {	20	114 80.6
Toned	449-437	And the second second	Earth, clay	25	134
Woods.		Cube Feet		120.625	
	0	in a Ton.	Common son.	137.125	16.35
Ash	52.812	42 414	Braver		20.4
Bay	51.375	43.601	ury, manuerses	120	18.04
Blue Gum	64.3	34.837	10000	93-75	23.00
Cork	15	149-333	moist, sand	128.125	17-4
Cedar	35.062	63.886	mordinini	128.125	17 4 ⁸ 2
Chestnut	38.125	58.754	munt	101.875	21.97
Hickory, pig nut	49.5	45.252	WILL BIRTOLOG	126.25	17-74
" shell-bark	43.125	51,942	Granite, Quincy	165.75	13-54
Lignum vitæ	83.312	26.886	" Susquehanna	169	13.254
Logwood	57.062	39-255	Gypsum	135-5	10.53
Mahoga'y, Hondur's {	35	64	Hay, bale	12	186.66
()	66.437	33-714	" hard pressed	25	89.6
Oak, Canadian	54.5	41.101	Ice, at 320	57-5	38.95
" English	58.25	38.455	India rubber	56.437	39.69
" live, seasoned	66.75	33.558	" vulcanized		'- I:
" white, dry	53.75	41.674	Limestone	197.25	11.355
" upland	42.937	52.169	Marble, mean	167.875	13-343
Pine, pitch	41.25	54-393	Mortar, dry, mean	97.98	22.868
** red	36.875	60,745	Plaster of Paris	73.5	30.476
" white	34.625	64.603	Water, rain	62.5	35.84
" well seasoned	29.562	75-773	" salt	64.312	34-83
Pine, yellow	33.812	66.248	" at 620	62.355	35.955
, ,	33.012	50, 440		02.335	32700

Metals.—Tobin Bronze...... Cube foot. 522.02 lbs. 3021 lbs.

To Compute Proportions of Two Ingredients in a Compound, or to Discover Adulteration in Metals.

RULE.—Take differences of each specific gravity of ingredients and specific gravity of compound, then multiply gravity of one by difference of ear; and, as sum of products is to respective products, so is specific wity of body to proportions of the ingredients.

America. — A compound of gold (spec. grav. = 18.888) and silver (spec. grav.)

"0.535=51.495. 14-10.535=3.465×18.888=64.44 :14:7.835 gold, 65.447+51.495:51.495:14:6.105.000

ights of Various Substances per Cube Foot in Bulk.

Lbs.	Lbs.	Ll.s.
in pigs 567 Potters' cla	y 130	Coal, caking 50
" 360 Loam		wneat48
e, in blocks) Gravel	109	Barley
e, in blocks 172 Gravel Sand	95	Fruit and vegetables 22
170 Bricks, con	ımon 93	Cotton seeds 12
te, in blocks 164 Ice, at 320.	57.5	Cotton 10
itone 141 Oak, season	ed 52	Hay, old 8
• • •	-	•
iry, 100 feet BM 175 ton.	Earth, loose	93.75 lbs.
white, " "141 "		feet BM13 ton.
nt, struck bushel and	Gypsum, gro	und, str. bush. 70 lbs.
packed* 100 lbs.	1 "	' well shaken 80 ''
nt, Portland, bushel. 110 lbs.	Hemlock, dr	y, roo feet BM
y, dry, 100 BM 156 ton.	Hickory, "	" "197 "
nut, dry, 100 BM153 "		nite, dressed 165 lbs.
anthracite, 1 cub. vd.	" "	" rough 126 "
broken and loose 1.75 yds.		nestone, dres'd 165 "
" " 1 ton 41.5 cub. fee		dstone 135 "
ton =80 to 97 cub. feet.		ck, pressed 140 "
, common soil137.125 lbs.		com'n, rough, 100 "
,	. '	

* One packed bushel = 1.43 loose.

aparative Weight of Green and Seasoned Timber.

TIMBER.	Weight of a Green.	Cube Foot.			Cube Foot.
ican Pine	58.18		Cedar	71.6	Lbs. 28.25 43.5 35.5

Application of the Tables.

hen Weight of a Solid or Liquid Substance is required. Rule.—Ascervolume of substance in cube feet; multiply it by unit in second column bles (its specific gravity), and divide product by 16; quotient will give it in lbs.

hen Volume is given or ascertained in Inches. RULE.—Multiply it by in third column of tables (weight of a cube inch), and product will give ht in lbs.

MPLE. - What is weight of a cube of Italian marble, sides being 3 feet?

 $33 \times 2708 = 73 \times 116 \text{ oz., } \text{ which } \div 16 = 4569.75 \text{ lbs.}$

of a sphere of cast iron 2 inches in diameter?

 $2^3 \times .5236 \times .2607$ weight of a cube inch = 1.092 lbs.

hen Weight of an Elastic Fluid is required. RULE.—Multiply specific ty of fluid by 532.679 (weight of a cube foot of air at 62° in grains), 3 product by 7000 (grains in a lb. Avoirdupois), and quotient will give the of a cube foot in lbs.

MPLE.—What is weight of a cube foot of hydrogen?

sific gravity of hydrogen .0602.

532.679 × .0692 ÷ 7000 = .005 265 9 lbs.

compute Weight of Cast Metal by Weight mattern is of White Pine. Rule.—Multiply weight following multipliers, and product will give weight 14; Brass, 15; Lead, 22; Tin, 14; Zinc, 13.5.

m there are Circular Cores or Prints. Multiply squer print by its length in inches, the product by .o. pattern of core or print to be deducted from weight

rn. n in To Compute Weights of Ingredients, that of Computation being given.

RULE.—As specific gravity of compound is to weight of compound, so each of the proportions to weight of its material.

Example.—Weight, as p. 216, being 28 lbs., what are weights of the ingredient

11.018

S

4

C

7

Ě

I. S

NOTE.—Specific gravity of alloys does not usually follow ratio of their components, it being sometimes greater and sometimes less than their mean.

To Compute Capacity of a Balloon.

RULE.—From specific gravity of air in grains per cube foot, subtract the first gas with which it is inflated; multiply remainder by volume of beloon in cube feet; divide product by 7000, and from quotient subtract well of balloon and its attachments.

EXAMPLE.—Diameter of a balloon is 26.6 feet, its weight is 100 lbs., and specific gravity of the gas with which it is inflated is .07 (air being assumed at 1); when its capacity, specific gravity of air assumed at 527.04 grains.

$$527.04 - (527.04 \times .07) \times 20.63 \times .5236 - 100 = 590.04$$
 lbe.

To Compute Diameter of a Balloon.

Weight to be raised being given .- By inversion of preceding rule.

$$\sqrt{\frac{3/W \div 7000 + s \div s}{5236}} = d$$
. s and s representing weight of air and so in grains per cube foot, W weight to be raised in lbs., and d diameter of botom in feet.

ILLUSTRATION. -Given elements in preceding case.

Then
$$\sqrt[3]{\frac{590.04 + 100 \times 7000 \div 527.04 - 36.89}{.5236}} = \sqrt[3]{\frac{9854.69}{.5236}} = 26.6$$
 feet

Proof of Spirituous Liquors.

A cube inch of *Proof Spirits* weighs 234 grains; then, if an immeral cube inch of any heavy body weighs 234 grains less in spirits than air, shows that the spirit in which it was weighed is *Proof.*

If it lose less of its weight, the spirit is above proof; and if it lose mention it is below proof.

ILLESTRATION.—A cube inch of glass weighing 700 grains weighs 500 grains weighed in a certain spirit; what is the proof of it?

$$700 - 500 = 200 = grains = weight lost in spirit.$$

Then 200: 234:: 1: 1.17 = ratio of proof of spirits compared to proof spirits, since 1 = 1.17 above proof.

Note.—For Hydrometers and Rules for ascertaining Proof of Spirits, see per 67; and for a very full treatise on Specific Gravities and on Floatation, see James 800's Mechanics of Fluids. Lond. 1837.

Shrinkage of Castings.

It is customary, in making of patterns for eastings, to allow for shrinks, per lineal foot of pattern as follows:

GEOMETRY.

Definitions.

Point has position, but not magnitude. Line is length without breadth, and is either Right, Curved, or Mixed. Eight Line is shortest distance between two points. Jurved Line is one that continually changes its direction. Wixed Line is composed of a right and a curved line. Superficies has length and breadth only, and is plane or curved. Solid has length, breadth, and thickness, or depth. Inole is opening of two lines having different directions, and is either

ht, A cute, or Obtuse. Eight Angle is made by a line perpendicular to another falling upon it.

I cute Angle is less than a right angle.

Ibtuse Angle is greater than a right angle.

Triangle is a figure of three sides. Zquilateral Triangle has all its sides equal. sosceles Triangle has two of its sides equal. Icalene Triangle has all its sides unequal. dight-angled Triangle has one right angle. btuse-angled Triangle has one obtuse angle. Lcute-angled Triangle has all its angles acute. blique-angled Triangle has no right angle.

hadrangle or Quadrilateral is a figure of four sides, and has following ticular designations-viz..

Parallelogram, having its opposite sides parallel.

lquare, having length and breadth equal.

lectangle, a parallelogram having a right angle. thombus or Lozenge, having equal sides, but its angles not right angles.

homboid, a parallelogram, its angles not being right angles.

rapezium, having unequal sides.

rapezoid, having only one pair of opposite sides parallel.

TE. - Triangle is sometimes termed a Trigon, and a Square a Tetragon.

nomon is space included between the lines forming two similar parallelons, of which smaller is inscribed within larger, so as to have one angle ach common to both.

olygons are plane figures having more than four sides, and are either war or Irregular, according as their sides and angles are equal or und, and they are named from number of their sides or angles. Thus:

Pentagon has five sides. Nonagon has nine sides. Hexagon " six " ten Decagon Undecagon " eleven " Heptagon " seven" " eight " Dodecagon " twelve" Octagon

rcle is a plane figure bounded by a curved line, termed Circumference

ameter is a right line passing through centre of a circle or sphere, and inated at each end by periphery or surface.

c is any part of circumference of a circle. ord is a right line joining extremities of an arc. qment of a circle is any part bounded by an arc and dius of a circle is a line drawn from centre to circu for is any part of a circle bounded by an arc and it.

nicircle is half a circle. adrant is a quarter of a circle.

is a part of a circle included between two parallel is space between the intersecting arcs of two ecces

Secant is line running from centre of circle to extremity of tangent of me Cosecant is secant of complement of an arc. or line running from centred circle to extremity of cotangent of arc.

Sine of an arc is a line running from one extremity of an arc perpendiclar to a diameter passing through other extremity, and sine of an angle

sine of arc that measures that angle.

Versed Sine of an arc or angle is part of diameter intercepted between

Cosine of an arc or angle is part of diameter intercepted between sine and

Coversed Sine of an arc or angle is part of secondary radius intercental between cosine and circumference.

Tangent is a right line that touches a circle without cutting it.

Cotangent is tangent of complement of arc.

Circumference of every circle is supposed to be divided into also come parts, termed Degrees; each degree into 60 Minutes, and each minute into 60 Seconds, and so on.

Complement of an angle is what remains after subtracting angle from 9

Supplement of an angle is what remains after subtracting angle from the degrees.

To exemplify these definitions, let A c b, in following Figure, be an assess arc of a circle described with radius B A:

Acb, an Arc of circle ACED. A b. Chord of that arc. B A, an Initial radius. BC, a Secondary radius. e D d, a Segment of the circle. A B b, a Sector. A D E, a Semicircle. CBE, a Quadrant. Aed E, a Zone. noh, a Lune. B g, Secant of arc A cb; written Sec. bk, Sine of arc A cb; written Sin. A k, Versed Sine of arc A cb; written Versia Bk or mb, Cosine of arc Acb. g. Tangent of arc A c b. CBb, Complement, and bBE, Supplement of arc A cb.

Cs. Cotangent of arc, written Cot. Bs, Cosecant of arc; written Cosec. m C. Coversed sine of arc, or, by convention, of angle A B b; written Coversin.

Vertex of a figure is its top or upper point. In Conic Sections it is point irough which generating line of the conical surface always passes. Altitude, or height of a figure, is a perpendicular let fall from its vertex

consite side, termed base,

If were of an anorle is an arc of a circle contained between the two lines · · · · · · m the "stimated by number of degrees in arc.

Total in a plane, parallel to base. after segment is cut off. r of s m of all its sides. d to be done.

> o be demonstrated. render what follows more easy. on a preceding demonstration. ng going before it.

> > r Auriaces and Bolids, and Conio Sect

Lengths of following Elements, Radius = 1.

	Angle 45°.	Angle 60°.	1	Angle 45°.	Anglo 60°.
1	.707 107		Cosecant		1.154 7
ne	.707 107	-5	Tangent	1	1.732 05
sed Sine	.292 893	.5	Cotangent	1	•577 349
ersed "	.292 893	·133 975	Chord	.765 366	1
.nt	1.414214	2	Arc	.785 398	1.0472

Scales.

Divide a Line, as AB, with any required Number of Equal Parts .- Fig. 1.

From A and B draw two parallel lines. A o, B r, to an indefinite length, and upon them point off required number of equal parts, as A 1, 2, 3, 4, and B 1, 2, 3, 4; join B, 4 1, etc. Or, point off on A o, join o B, and draw

the other lines parallel thereto.

To Construct a Diagonal Scale, as A B.-Fig. 2.

Divide a line into as many divisions as there are hundreds of feet, spaces of ten feet, feet, or inches required.

Draw perpendiculars from each division to a parallel line, C D. Divide one of divisions, A E, C F. into spaces of ten if for feet and hundredths, and twelve if for feet and inches; draw the lines A 1,

3, etc., and they will complete scale. us: Line A B representing ten feet; A to E, E to G, etc., will measure one A to a, C to 1, 1 to 2, etc., will measure 1 toth of a foot. The several lines 6 2, etc., will measure upon lines k, l, etc., 1-100th of a foot; and op will ure upon k, l, etc., divisions of 1-10th of a foot.

distance apart, describe arcs cutting at A 1

(Fig. 6.)

and connect them.

To Bisect a Right Line or an Arc of Circle, and to Draw a Perpendimlar to a Circular or Right Line.ors Radial Arc.-Fig. 7.

From A B as centres describe arcs cutting each other at c and d, connect c d, and line and arc are bisected at e and o.

Line cd is also perpendicular to a right line as AR and radial to a circular arc as A o B.

To Draw a Line Parallel to a Given Right Line, as cd. Fig. 8.

From AB describe arcs Ac, Bd, and draw a line per allel thereto, touching arcs c and a

Angles.

To Describe Angles of 30° and 60°, Fig. 9, and 45°, 9.

From A, with an / radius, A o, describe or, and from o with a like radius cut it at r, let fall perpendicular rs; then $o A r = 60^{\circ}$, and $A rs = 30^{\circ}$. (Fig. q.)

Set off any distance, as A B, erect perpendicular Ao = AB, and connect o B. (Fig. 10.)

10.

'n

To Bisect Inclination of Two Lines, when Point of Intersection is Insocessible.-Fig. 11.

Upon given lines, A B, C D, at any points draw perperdiculars eo, sr, of equal lengths, and from o and sdraw parallels to their respective lines, cutting at n; bised angle ons, connect nm, and line will bisect lines as required.

Rectilineal Figures.

12.

To Describe an Octagon upon a Line, as A B.-Fig. 12. From points A B erect indefinite perpendiculars Af, Be; produce AB to m and n, and bisect angles m Ao and aBp with Au and Br.

Make A u and B r equal to A B, and draw uz, rv parallel to A f, and equal to A B.

From z and v, as centres, with a radius equal to AB. describe arcs cutting Af, Be, in f and e. Connect sf, f4 and ev.

Inscribe any Regular Polygon in \$ Circle, or to Divide Circumference into given Number of Equal Parts.-Fig. 13.

Nircle is to contain a Heptagon. — Draw angle A . B # " for 360° ÷ 7 = 51° 42' 51"+, or 51\$, then set of ape mos distance A B or remaining angles A o B.

Inscribe a Hexagon in To Inscribe a Pentagon in a Circie.-Fig. 14.

Draw a diameter, AoB. From A and B as centres, with Ao and Bo, cut circle at cm and en, and connect.

a Circle.-Fig. 16.

one side of a pentagon.

Draw diameters Ac and mn, at right angles to each other; bisect on in r. and with r A describe A s: from A with A s describe & B.

Connect AB, and distance is equal to

Describe a Hexagon bout a Circle.-Fig. 15.

Draw a diameter as a ob; and with ao cut circle atc; join ac, and bisect it with radius or, through r draw er parallel to ca, cutting diameter at m; then with radius

lescribe circle, within which describe ragon as above.

a Pentagon $\mathbf{T}_{\mathbf{0}}$ Describe upon a Line, as AB-Fig. 17.

Draw B m perpendicular to A B. and equal to one half of it; extend A m until m n is equal to B m.

From A and B, with radius Bn. describe arcs cutting each other in o;

then from o, with radius o B, describe circle ACB, and line AB is equal to one side of a pentagon upon circle described.

Describe a Regular Polygon of any required Number of Sides .- Fig. 18.

From point o, with distance o B, describe semicircle B b A, which divide into as many equal parts, A a, a b, b c, etc., as the polygon is to have sides.

Thus, let a Hexagon be required:

From o to second point b of six divisions draw ob, and through other points, c, d, and e, draw o C, o D, etc.

Apply distance o B, from B to E, from E to D, from D to C. etc. Join these points, as b C, C D, etc.

Rectangle on a given ine.-Fig. 19.

tres, with AB as radius, describe arcs cutting at c; on c describe arcs cutting at or; and on or describe others, cutting at mn; draw Am and

Construct a Square or | To Construct a Hexagon upon a given Line.-Fig. 2Ò.

From ends of line. A B. describe arcs cutting each other at o, and from o as a centre, with radius A. describe a circle, and with same radius set off A c. cd. Bf. fe. and connect them.

To Inscribe an Octagon in a Circle.-Fig. 21. 22.

Draw diameters, A C, B D, at right angles, bisect arcs, A B, B C, etc., at s, r, o, e, and join Ao, o B, etc. (Fig. 21.)

To Describe an Octagon about a Circle.-Fig. 22.

Describe a square about circle A B. draw diagonals cf. ed. draw oi, etc., perpendicular to diagonals and touching circle. (Fig. 22.)

To Inscribe a Square in a Circle.-Fig. 23.

28.

Draw line A B through centre of circle: take any radius, as A e, and describe the arcs Aee, Bee; connect ee, continuing line to C and D; join AC, AD, etc. (Fig. 23.)

R To Describe a Square about A a Circle.-Fig. 24.

Draw line A B through centre of circle. Take any radius, as A e; describe ares Aee, Bee; connect ee, continuing line to CD.

Describe Br and Dr; draw and extend Br and Dr, and sides A and C parallel to (Fig. 24.)

To Describe an Octagon in a Square .- Fig. 25. 95. Let A B C D be given square.

Describe Aorr, Borr, etc.; join intersections rrrr, etc., and figure formed is octagon required. (Fig. 25.)

To Inscribe an Equilateral Triangle in a Circle. -Fig. 26.

From point A, with A o equal to radius

of circle, describe oo; from o and o describe or, or; join Ar, rr, and r A. (Fig. 26. Note. - All figures of 10 or 20 sides are readily determined from side of a pentagon. being halved or quartered; and in like manner, all figures of 6, 12, or 24 sides are readily determined from radius of a circle, being equal to the side of a hexagon.

Circles.

To Describe an Arc of a Circle, through Two given Points, with a given Radius .- Fig. 27.

On A B as centres, with given radius, describe arcs cutting at o, and from o with same radius describe arc A B. (Fig. 27.)

To Ascertain Centre of a Circle or of an Arc of a Circle .- Fig. 28.

Draw chord A B, bisect it with perpendicular c d, then bisect c d for centre a (Fig. 28.)

To Describe a Circular Segment that will both fill the angle between two diverging lines and touch them. Fig. 29.

Bisect inclined lines, A B, D E, by line e f, and connect perpendicular thereto, B D, to define boundary of segment to be described. Bisect angles at B and D by lines cutting at o, and from o, with radius o c, describe are men.

Draw a Series of Circles between Two Inclined Lines, touching them and each other.-Fig. 30.

Bisect given lines AB, CD, by line od From a point r in this line erect rs perpendicular to A B, and on r describe circle a m, cutting centre line at u; from u erect un perpendicular to centre line, cutting A B at n, and from n describe an arc n u v, cutting AB at v, erect & v parallel to rs, making centre of next circle to be described, with

radius x u, and so on.

.- Largest circle may be described first.

Describe a Circle that shall pass through any three given Points, as A B C .- Figs. 31 and 32.

Upon points A and B. with any opening of a dividers, describe arcs cutting each other at ee.

On points B C describe two more cutting each other in points c c.

Draw lines ee and cc. and intersection of these lines, o, is centre of circle A B C. (Fig. 31.)

m Centre is not attainable. - From A B as centres, describe arcs A a, B h; th C draw A e. B c. Divide A e and B c into any number of equal parts, also d B A into a like number. Draw A 1, 2, 3, etc., and B 1, 2, etc., and intersecthese lines as at o are points in the circle required. (Fig. 32.)

Or, let A B C be given points, connect. AB, AC, CB, and draw ec parallel to AB. Divide C A into a number of equal parts, as at 1, 2, and 3, and from C describe arcs through these points to meet right lines from C to points 1, 2, and 3. on Ae, and these are points in a circle, to be drawn as

directed. (Fig. 33.)

Draw a Tangent to a role from a given Point Circumference. - Fig.

To Draw Tangents to a Circle from a Point without it.—Fig. 35.

From A draw A o, and bisect it at s; agh point A draw radial line Ao, describe arc through o, cutting circle at mn; join Am or An.

ect perpendicular ef. (Fig. 34.)

Draw from or to Circumference of a Circle, Lines ading to an Inaccessible Centre.-Fig. 36.

Divide whole or any given portion of circumference into desired number of parts; then, with any radius less than distance of two divisions, describe arcs cutting each other, as A r, b r, c r, d r, etc.; draw lines b r, c r, etc., and they will lead to centre.

raw end lines, as Ar, Fr. From b describe arc o, and with radius b 1, from es centres, cut arcs A r, etc., and lines A r, F r, will lead to centre.

Describe an Arc, or Segment of a Circle, of a large Radius .- Fig. 37.

Draw chord A c B; also line h D i parallel with dat a distance equal to he ment; bisect chord in a rpendicular cD; join A i A bas 🛦

Henlar to A D, B D; erect also perpendiculars A n mber of equal parts; draw lines 1 1, 2 2, etc., wnamber of equal parts in A B; draw lines t. and at points of intersection with former line.

Ellipse.

To Describe an Ellipse to any Length and Br given.-Fig. 38.

Let longest diameter be C D, and shortest E) distance C o or o D, and with it, from points F describe arcs h and f upon diameter C D.

Insert pins at h and at f, and loop a string them of such a length that when a pencil is in within it it will just reach to E or F. Be string, sweep it around centre o, and it will ellipse.

Norm.—It is a property of Ellipse that sum of two lines drawn from foci to meet in an curve is equal to transverse diameter.

Bisect transverse axis A B at o, and on erect perpendicular C D, making o D and equal to half conjugate axis. From C or radius A o, cut transverse axis at ss for foci A o into any number of equal parts, as s, with radii A s, B s, on s and s as centres, arcs, and repeat this operation for all oth ions s, s, s, etc., and these points of intersec give line of curve.

To Ascertain Centre and Two Diameters of an El

Let A B c u be diameters of an Ellipse. Draw at pleasure two lines, q, o m, preach other, and equidistant from A and I them in points h n, and draw line u r; in s, and upon s, as a centre, describe a pleasure, as f l v, cutting figure in points l

Draw right line fv; bisect it in i, and points is draw greatest diameter A B, and centre, s, draw least diameter cu, parallel

To Describe an Ellipse approximately by Circular -Fig. 41.

Set off differences of axes from centre o c on o A and o C; draw a c and bisect it, an its half to r; draw rs parallel to a c, se equal to o r, connect n s, and draw parall n m; from m, with radii m s and s m, describrough C and D, and from n and r describrough A and B.

Nore.—This method is not satisfactory w jugate axis is less than two thirds of transve

With Arcs of Three Radii.

On transverse axis AB draw rectangle on height $o \in$; to diagonal A e draw perpe dh O; set off or equal to oe, describe a st on A r, and produce O e to l; set off or el, and on o describe an are with radius A, with radius ol, cut this are at a. Thus centres, O, a, a', b, h', are found, from whare described to form ellipse.

Note —This process answers for nearly portions of ellipses. It is used in strikin stone bridges, etc.

To Construct an Ellipse from Two Circles.-Fig. 43.

Describe two semicircles, as A B, C D, diameters of which are respectively lengths of major and minor axes. The intersection of the horizontal and vertical lines drawn from any radial line will give a point in D the curve CD.

To Construct an Ellipse, when Two Diameters are Given .- Fig. 44.

Make co and Av equal to each other, but less than half breadth. Draw vo, and from its centre idraw and extend perpendicular at i to d, draw dvm, make B u = A v, draw d u r, from u and v describe Br and Am, from d describe mcr, extend cz to s, and it will be centre for other half of figure.

Construct an Ellipse by Ordinates .- Fig. 45.

Divide semi-transverse axis, as A b, into 8 or 10 divisions, as may be convenient, and erect ordinates, the lengths of which are equal to semi-conjugate, multiplied by the units for each division as follows:

Dimisions

Eighths.		1	Tenths.
4 12	5927 03	z · 435 385	5 — . 866 o2
1 44	6968 24	26	6 — .916 5 1
ю63	7 — .99216	371414	7953 94
i6 a3	81	48	8979 79

istruct an Ellipse when Diameters do not Intersect at Right Angles .- Fig. 46.

Let A B and C D be given diameters.

Draw boundary lines parallel to diameters. divide longest diameter into any number of equal parts, and divide shortest boundary lines into same number of equal parts.

From one end of shortest diameter, D, draw radial lines through divisions of longest diameter, and from opposite end, C, draw radial lines to divisions on shortest boundary lines; the intersection of these lines will give points in the curve.

Arcs.

Take line AB. At points A and B draw arcs Ba and Ac. and it will describe are required.

scribe an Elliptic Arc, Chord and Height being given .- Fig. 48.

Bisect AB at c; erect perpendicular Aq, and draw line q D equal and parallel to A c.

Bisect A c and A q in " c D, and draw line l r q s D with a line at ru c D at o; draw line o; draw line op i.

Then, from o as a con arc s Di; and from k a Ak, describe arcs A s al. nake cleaual to nsD; bisect cutting line I to ck. and

- •994 99

odinse 'n

To Describe a Gothic Arc.-Figs. 49 and 50.

49.

Divide line A B into three equal parts, ec: from points A and B let fall perpendiculars A o and B r. equal in length to two of divisions of line A B; draw lines oh and rg from points e, c; with length of c B, describe arcs

Ag and Bh, and from points o and r describe arcs g i and i h. (Fig. 40.) Or, divide line A B into three equal parts at a and b, and on points

A. a. b. and B. with distance of two divisions, make four arcs intersecting at c and o.

Through points c, o, and divisions a, b, draw lines cf and o e, on points a and l describe arcs A e and B f, and on points c o arcs f s and e s. (Fig. 50.)

Cycloid and Epicycloid.

To Describe a Cycloid .- Fig. 51.

When a circle, as a wheel, rolls over straight right line, beginning as at A an ending at B, it completes one revolution and measures a straight line, A B, exactly equal to circumference of circle cer, which is termed the generating circle, and a point or pencil fixed at point r in circumferent traces out a curvilinear path, ArB, termed cycloid. AB is its base and cr its axis.

Place generating circle in middle of Cy cloid, as in figure; draw a line, m n, para lel to base, cutting circle at e; and tanger

Horizontal line en = arc of circle er.

Half-base A c=half-circumference cer. Arc of Cycloid rn = twice chord re. Half-arc of cycloid Ar=twice diameter of circle r c.

Or, whole are of Cycloid A r B = four times axis cr.

Area of Cycloid Ar BA = three time area of generating circle r c. Tangent n i is parallel to chord er.

To Describe Curve of a Cycloid .- Fig. 52.

On an indefinite line, A B, set off co= circumference of generating circle, di vide this line into any number of equa parts (8 in figure), and at points of divis ion erect perpendiculars thereto. Upot each of these lines describe a circle= generating circle. On c 1 take 1 2 =

.25 c 1, and with x as a centre, with radius xc = .75 c 1, describe an arc cutting circle at r'; from 2 on next circle, with two distances of 1 1', measured as chords, cu circle at 2'; from 3 on next circle, with three distances of 1 1', cut circle at 3', and proceed in like manner from each side until figure is complete.

To Describe an Interior Epicycloid or Hypocycloid. Fig. 53.

explanation, Fig. 54.

If generating circle is rolled on inside of fundamenta circle, * as in Fig. 53, it forms an interior epicycloid, or hypocycloid, AcB, which becomes in this case nearly straight line. Other points of reference in figure correspond to those in Fig. 51. When diameter of general ing circle is equal to half that of fundamental circle epicycloid becomes a straight line, being diameter of the larger circle.

To Describe an Exterior Epicycloid .-Fig. 54.

An Epicycloid differs from a Cycloid in this, that it is generated by a point, $o^{\prime\prime\prime}$, in one circle, o r, rolling upon circumference of another, A r s, instead of upon a right line or horizontal surface, former being generating circle and latter fundamental circle.

Generating circle is shown in four positions, in which its generating point is indicated by o o' o" o". A o" s is an Epicycloid.

Involute.

To Describe an Involute.-Fig. 55.

Assume A as centre of a circle, b c o; a cord laid partly upon its circumference, as be; then the curve eimn, described by a tracer at end of cord, when unwound from a circle, is an involute.

This curve can also be defined by a batten, x, rolling on a circle, as s u.

Parabola.

To Construct a Parabola by Ordinates or Abscissa.-Figs. 56 and 57.

By Ordinates.

Divide ordinate a b into 10 equal parts, and erect perpendiculars, length of which will be determined by multiplying abscissa. a c by respective units for each perpendicular, as follows:

Divisions.

By Abscissa.

ide abcissa a c into 8 or 10 equal parts, as may be convenient, raw ordinates thereto, the lengths of which will be deterby multiplying half ordinate a b by respective units for ordinate, as follows:

59.

		200000	1 enins.	-
Eighths.		1	1 — . 316 23	6— .7746 7— .83666
 ⋅353 5	5790 57		2447 21	
<u>5</u>	6866 02		3 547 72	8894 43
—.61237	7	1	4632 45	994868
707 II	8 1		5707 11	10 — 1

Divisions

With a Square and Cord .- Fig. 58.

Place a straight edge to directrix A B, and apply to it a square, co.

Attach to end o end of a cord equal to o A, and attach other end to focus e; slide square along straight edge, maintaining cord taut against edge of square, by a point or pencil, and curve will be traced. (Fig. 58.)

When Height and m Base are given. Fig. 59.

TIME AB axis and cd a double ordinate or base. agh A draw m n parallel to cd, and through c draw em, da, parallel to axis AB. Divide cm, any number of equal parts, as at a c e o, also into a like number of parts. Through points c d 4 draw lines parallel to axis, and through

lines to vertex A, cutting these perpendiculars, and traced. (Fig. 59.)

60.

To Describe Curve of a Parabola, Base and Height being given.—Fig. 60.

Draw an isosceles triangle, as $a \ b \ d$, base of which shall be equive, and its height, $c \ b$, twice that of proposed parabola. Divise each side, $a \ b$, $d \ b$, into any number of equal parts; then draw liest $x \ x_1 \ 2 \ x_3 \ 3$, etc., and their intersection will define curve. (Fig 6a)

To Describe a Parabola, any Ordinate to Axis and its Abscissa being given.—Fig. 61.

Bisect ordinate, as A o in r; join Br, and drawrs perpendicular to it, meeting axis continued to s. Set off Bc, Be, each equal to os; draw mr to Bs, then mu is directrix and

c u perpendicular to B s, then m u is directrix and B e focus; through e and any number of points, r, r, r, etc., in axis, draw double ordinates v r, and on centre e, with radii e c, r c, etc., cut respective ordinates at v v, etc., and trace curve through these points.

| B | 61

Note.—Line vev passing through focus is parameter.

62. To Dra

To Draw a Spiral about a given Point-Fig. 62.

Spiral.

Assume c the centre. Draw A h, divide it into twice number of parts that there are to be revolutions of line. Upon $e^{i\phi}$ scribe re, os, A h, and upon e describe rs, os, etc.

Hyperbola.

To Describe a Hyperbola, Transverse and Conjugate Diameters being given.—Fig. 63.

68.

C

D

Thinhhh

Let A B represent transverse diameter, and CD conjugate.

Draw Ce parallel to AB, and er parallel to Cl. draw oe, and with radius oe, with o as a central describe circle Fer, cutting transverse axis produced in F and f; then will F and f be foci of forms.

In o B produced take any number of points, s. s. etc., and from F and f as centres, with A n and B as radii, describe ares cutting each other in s. s. etc.. Through s. s, etc., draw curve **s** s**B **s***

Note.—If straight lines, as oey and ory, are drawn from centre o through extremities er, they will be asymptotes of hyperbola, property of which is to proach continually to curve, and yet never to touch it.

When Foci and Conjugate Axis are given.—Let F and f be foci, and C D conjugate axis, as in preceding figure.

Through C draw g C e parallel to F and f; then, with o as a centre and o F as a radius, describe an arc cutting g C e at g and e; from these points let fall perpendiculars upon line connecting F and f, and part intercepted between them, as λR will be transverse axis.

Catenary.

To Delineate a Catenary, Span and Versed Sine being 64. given.—Fig. 64. (W. Hildenbrand.)

Divide half span, as A B, into any required number of equal parts, as 1, 2, 3, and let fall BC and A O, cach equal to versed sine of curve; divide A O into like number of parts, 1', 2', 3', as A B Connect C 1', C 2', and C 3', and points of intersection of perpendiculars let fall from A B will give points through which curve is to be drawn.

O Or, suspend a finely linked chain against a retrace curve from it on the plane in accordance with conditions of given height, or of given width or length of arc.

r other methods see D. R. Clark's Manual, pp. 18, 10.

Areas of Circles, from $\frac{1}{64}$ to 150.

Апил.	DIAM.	AREA.	Diam.	AREA.	Diam.	AREA.
.000 192	3	7.0686	7	38.4846	14	153.938
.000 767	70	7.3662	18	39.8713	35	156.7
.003068	8	7.6699	8/2	41.2826	36	159.485 162.266
.012 272	14	8.2958	34	44.1787	33	165.13
.027612	5/16	8.618	28	45.6636	26	167.99
.049087	78	8.9462 9.2807	74	47.1731	7%	170.874
.076699	1/2	9.6211	8	50.2656	15	176.715
	218	9.968	18	51.8487	18	179.673
.110447	118	10.3206	36	53.4563 55.0884	86	182.655 185.661
.15033	84	11.0447	1/2	56.7451	3%	188.692
.19635	216	11.416	%	58.4264	28	191.748
.248 505	15/8	11.7933	3/4	60.1322	63	194.828
.306 796	4	12.5664	9	63.6174	16	201.062
.371 224	310	12 962	18	65.3968	1/8	204.216
-441 787	3/8	13.3641	86	67.2008	33	207.395
-518487	14	14.1863	3%	70.8823	34	213.825
.601 322	200	14 606	%	72.7599	28	217.077
.690 292	1/8	15.033 15.465	36	74.6621	36	220.354
.7854	1/2	15.9043	10	78.54	17	226.981
.8866	216	16.349	18	80.5158	1/8	230.331
.99402 1.1075	18	16.8002	82	82.5161	14	233.706
1.2272	3%	17.7206	1/2	86.5003	13	240.529
1.353	110	18.19	2/8	88.6643	28	243.977
1.4849	18	18.6655	74	90.7628	24	247·45 250.948
1.7671	5	19.635	11	95.0334	18	254.47
1.9175	10	20.129	1/8	97-2055	1/8	258.016
2.0739	18	20.629	82	99.4022	14	261.587 265.183
2.2365	14	21.6476	3/6	101.6234	13	268.803
2.58	8/16	22.166	5%	106.1304	1/8	272.448
2.7612	36	22.6907	34	108.4343	3/4	276.117
2.9483 3.1416	1/6	23.221	12	113.098	10	283.529
3.338	9/16	24.301	1/8	115.466	1/8	287.272
3.5466	9/8	24.8505	1/4	117.859	1 74	291.04
3.7584 3.9761	3/8	25.406 25.9673	18	120.277	18	294.832 298.648
4.2	18/16	26.535	5/8	125.185	5/8	302.489
4.4301	1/8	27.1086	3/4	127.677	84	306.355
4.6664	6 10	27.688	12	130.192 132.733	20	310.245 314.16
4.9087 5.1573	1/6	29.4648	1/8	135.297	1/8	318.099
5.4119	14	30.6797	14	137.887	34	322.063
5.6723	1/8	31.9191	28	140.501	\\ \\ \\ \\ \\ \\ \\ \\ \	326.051
6.2126	56	34.4717	5%	143.139	// E	330.004
6.4918	84	35.7848	8/4	148.49	1/ 8	<u> </u>
6.7772	1/8	37.1224	1/8	151.202	- //	ን

DIAM.	AREA.	DIAM.	AREA.	DIAM.	AREA.	DIAM.	AREA.
21 1/8 1/4 8/8 1/3 5/8 8/4 7/8	346.361 350.497 354.657 358.842 363.051 367.285 371.543	28	615.754 621.264 626.798 632.357 637.941 643.549 649.182	35 1/8 1/4 8/8 1/9 5/8 8/4	962.115 969 975.999 982.842 989.8 996.783 1003.79	42 1/8 1/4 8/8 1/3 5/8 4	1385.45 1393.7 1401.99 1410.3 1418.63 1426.99 1435.37
22 1/8 1/4 8/4 1/9 5/8 1/8 23	375.826 380.134 384.466 388.822 393.203 397.609 402.038 406.494 410.973 415.477 420.004	29 1814 1814 18 18 18 18 18 18 18 18 18 18 18 18 18	654.84 660.521 666.228 671.959 677.714 .683.494 689.299 695.128 700.982 706.86 712.763	36 18 18 18 18 18 18 18 18 18 18 18 18 18	1010.822 1017.878 1024.96 1032.065 1039.195 1046.349 1053.528 1060.732 1067.96 1075.213 1082.49	43 18 14 18 18 18 18 18 18 18 18 18 18 18 18 18	1443.77 1452.2 1460.66 1469.14 1477.64 1486.17 1494.73 1503.3 1511.91 1520.53
1/8/4/8/2/8/4/8	424.558 429.135 433.737 438.364 443.015 447.69	14 38 14 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 34 34 34 34 34 34 34 34 34 34 34 34	718.69 724.642 730.618 736.619 742.645 748.695	38	1089.792 1097.118 1104.469 1111.844 1119.244 1126.669	3/8/8/8/4/8	1537.86 1546.56 1555.29 1564.04 1572.81 1581.61
24 1/8/4/8 1/9/8/4/8	452-39 457.115 461.864 466.638 471.436 476.259 481.107 485.979	31 1/8 1/4 8/8 1/2 5/8 8/4 1/8	760.869 766.992 773.14 779.313 785.51 791.732 797.979	36 1/4 3/8 1/4 1/4 3/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	1134.118 1141.591 1149.089 1156.612 1164.159 1171.731 1179.327 1186.948	45 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	1590.43 1599.28 1608.16 1617.05 1625.97 1634.92 1643.89 1652.89
25 1/8 1/4 8/8 1/3 5/8 8/4 7/8	490.875 495.796 500.742 505.712 510.706 515.726 520.769 525.838	32 18 14 88 1/2 5/8 3/4 1/8	804.25 810.545 816.865 823.21 829.579 835.972 842.391 848.833	39 18 14 58 14 78	1194.593 1202.263 1209.958 1217.677 1225.42 1233.188 1240.981 1248.798	46	1661.91 1670.95 1680.02 1689.11 1698.23 1707.37 1716.54
26 1/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	530.93 536.048 541.19 546.356 551.547 556.763 562.003 567.267	33 1/8 1/4 1/6 1/6	855.301 861.792 868.309 874.85 881.415 888.005 894.62 901.259	40 1/8 1/4 3/8 1/8 1/8 1/8	1256.64 1264.506 1272.397 1280.312 1288.252 1296.217 1304.206 1312.219	47 18 18 18 18 18 18 18 18 18 18	1734.95 1744.19 1753.45 1762.74 1772.06 1781.4 1790.76 1800.15
	172-557 177.87 1209 1571 1959 1371 1.807 1.268	34 1/8 1/4 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	907.922 914.611 921.323 928.061 934.822 941.609 948.42 955.255	41 1/8 1/4 8/8 1/2 8/8 1/2 8/4 8/4 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	1320.257 1328.32 1336.407 1344.519 1352.655 1360.816 1369.001	48 1/8 1/4 8/8	1809.56 1819 1828.46 1837.95 1847.46 1856.99 1866.55 1876.1

M.	ARRA.	DIAM.	AREA.	DIAM.	AREA.	DIAM.	AREA.
40-10-10-10-10-10-10-10-10-10-10-10-10-10	1885.75 1895.38 1905.04 1914.72 1924.43 1934.16 1943.91 1953.69	56	2463.01 2474.02 2485.05 2496.11 2507.19 2518.3 2529.43 2540.58	63 14 14 14 14 14 14 14 14 14 14 14 14 14	3117.25 3129.64 3142.04 3154.47 3166.93 3179.41 3191.91 3204.44	70 14 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	3848.46 3862.22 3876 3889.8 3903.63 3917.49 3931.37 3945.27
מישומים מישומים	1963.5 1973.33 1983.18 1993.06 2002.97 2012.89 2022.85 2032.82	57	2551.76 2562.97 2574.2 2585.45 2596.73 2608.03 2619.36 2630.71	64 18 18 18 18 18 18 18 18 18 18 18 18 18	3217 3229.58 3242.18 3254.81 3267.46 3280.14 3292.84 3305.56	71 18 18 18 18 18 18 18 18 18 18 18 18 18	3959.2 3973.1 3987.1 4001.1 4015.10 4029.2 4043.20 4057.39
-	2042.83 2052.85 2062.9 2072.98 2083.08 2093.2 2103.35 2113.52	58	2642.09 2653.49 2664.91 2676.36 2687.84 2699.33 2710.86 2722.41	65	3318.31 3331.09 3343.89 3356.71 3369.56 3382.44 3395.33 3408.26	72 1/8 1/4 8/8 1/9 8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	4071.5: 4085.60 4099.80 4114.00 4128.20 4142.5: 4156.70 4171.00
	2123.72 2133.94 2144.19 2154.46 2164.76 2175.08 2185.42 2195.79	59 18 18 18 18 18 18 18 18 18 18 18 18 18	2733.98 2745.57 2757.2 2768.84 2780.51 2792.21 2803.93 2815.67	66	3421.2 3434.17 3447.17 3460.19 3473.24 3486.3 3499.4 3512.52	73	4185.4 4199.7 4214.1 4228.5 4242.9 4257.3 4271.8 4286.3
	2206.19 2216.61 2227.05 2237.52 2248.01 2258.53 2269.07 2279.64	60 1814 1818 1818	2827.44 2839.23 2851.05 2862.89 2874.76 2886.65 2898.57 2910.51	67 164 188 188 188 188 188 188 188 188 188 18	3525.66 3538.83 3552.02 3565.24 3578.48 3591.74 3605.04 3618.35	74 14 14 14 14 14 14 14 14 14 14 14 14 14	4300.8 4315.3 4329.9 4344.5 4359.1 4373.8 4388.4 4403.1
	2290.23 2300.84 2311.48 2322.15 2332.83 2343.55 2354.29 2365.05	61	2922.47 2934.46 2946.48 2958.52 2970.58 2982.67 2994.78 3006.92	68	3631.69 3645.05 3658.44 3671.86 3685.29 3698.76 3712.24 3725.75	75	4417.8 4432.6 4447.3 4462.1 4476.9 4491.8 4506.6 4521.5
/	2375.83 2386.65 2397.48 2408.34 2419.23 2430.14 2441.07 2452.03	62	3019.08 3031.26 3043.47 3055.71 3067.97 3080.25 3092.56 3104.89	69 1/8 1/4 3/8 1/4 1/4 3/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	3739.29 3752.85 3766.43 3780.04 3793.68 3807.34 3821.02 3834.73	76	4536.4 4551.4 4566.30 4381.7

U

DIAM.	AREA.	DIAM.	ARRA.	DIAM.	ARRA.	DIAM.	AREA.
77 1/8 1/4 8/8 1/2 5/8 8/4 1/8	4656.64 4671.77 4686.92 4702.1 4717.31 4732.54 4747.79 4763.07	84 1/8 1/4 5/8 8/4 1/8	5541.78 5558.29 5574.82 5591.37 5607.95 5624.56 5641.18 5657.84	91 1/8	6503.9 6521.78 6539.68 6557.61 6575.56 6593.54 6611.55 6629.57	98 18 14 86 14 56 84 78	7542.98 7562.24 7581.52 7600.82 7620.15 7639.5 7658.88 7678.28
78 1/8 1/4 1/2 6/8 1/2 6/8 1/8	4778.37 4793.7 4809.05 4824.43 4839.83 4855.26 4870.71 4886.18	85 1/9 4/8	5674.51 5691.22 5707.94 5724.69 5741.47 5758.27 5775.1 5791.94	92 1/8 1/2 1/2 1/8 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	6647.63 6665.7 6683.8 6701.93 6720.08 6738.25 6756.45 6774.68	99 1/8 1/4/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1	7697.71 7717.16 7736.63 7756.13 7775.66 7795.21 7814.78 7834.38
79 1/8 1/4 8/8 1/2 5/8 8/4 7/8	4901.68 4917.21 4932.75 4948.33 4963.92 4979.55 4995.19 5010.86	86	5808.82 5825.72 5842.64 5859.59 5876.56 5893.55 5910.58 5927.62	93 18 14 18 18 18 18 18 18 18 18 18 18 18 18 18	6792.92 6811.2 6829.49 6847.82 6866.16 6884.53 6902.93 6921.35	100 14 1/2 8/4 101 1/4 1/2 8/4	7854 7893.32 7932.74 7972.25 8011.87 8051.58 8091.39 8131.3
80 1/8 1/4 8/8/2 9/8/1/2 9/8/4/8	5026.56 5042.28 5058.03 5073.79 5089.59 5105.41 5121.25 5137.12	87 1/4 3/4 3/4 3/4 3/4 3/4 3/4	5944.69 5961.79 5978.91 5996.05 6013.22 6030.41 6047.63 6064.87	94 1/8 1/4 1/6	6939.79 6958.26 6976.76 6995.28 7013.82 7032.39 7050.98 7069.59	102	8171.3 8211.41 8251.61 8291.91 8332.31 8372.81 8413.4 8454.09
81 1/8 1/4 8/3 1/2 5/8 8/4 1/8	5153.01 5168.93 5184.87 5200.83 5216.82 5232.84 5248.88 5264.94	88 1/8 1/4 8/8 1/2 5/8 8/4 1/8	6082.14 6099 43 6116.74 6134.08 6151.45 6168.84 6186.25 6203.69	95 1/8 1/4 3/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	7088.23 7106.9 7125.59 7144.31 7163.04 7181.81 7200.6 7219.41	104 14 15 84 105 14 18	8494.89 8535.78 8576.76 8617.85 8659.03 8700.32 8741.7 8783.18
82 ½	5281.03 5297.14	89	6221.15	96	7238.25 7257.11	106	8824.75 8866.43

ım.	Area.	DIAM.	AREA.	DIAM.	Area.	DIAM.	AREA.
,	9 503.34	120	11 309.76	130	13273.26	140	15 393.84
X	9 546.59	*	11 356.93	1/4	13 324.36	1/4	15448.87
×	9 589.93	* *	11404.2	* *	13 375.56	34	15 503.99
**	9633.37	8/4	11451.57	84	13 426.85	8/4	15 559.22
1	9676.91	121	11499.04	131	13478.25	141	15614.54
X X	9 720.55	1/4 1/4	11 546.61	1/4	13 529.74	1/4	15669.96
*	9764.29	1/4	11 594.27	1/2 8/4	13 581.33	1/2 8/4	15 725.48
%	9808.12	84	11642.03	%	13633.02	%	15 781.09
**************************************	9852.06	122	11 689.89	132	13684.81	142	15 836.81
X	9896.09	1/4	11 737.85	*	13 736.69	1/4	15892.62
*	9940.22	1/4 8/4	11 785.91	1/2 8/4	13 788.68	1/2	15948.53
%	9984.45		11834.06		13840.76	3/4	16 004.54
3 1/4 1/4 1/4	10028.77	123	11 882.32	133	13892.94	143	16 060.64
X	10073.2	X	11930.67	1/4	13945.22	*	16 116.85
*3	10117.72	1 %	11 979.12	1/2 8/4	13997.6	34	16 173.15
74	10 162.34	8/4	12027.66		14 050.07		16 229.55
***	10 207.06	124	12076.31	134	14 102.64	144	16 286.05
74	10251.88	*	12 125.05	14	14 155.31	X	16 342.65
79	10 296.79	1/4 8/4	12 173.9	½ ¾	14 208.08	29	16 399.35
74	10341.8		12 222.84		14 253.09	84	16456.14
5 14 14 14	10 386.91	125	12 271.87	135	14 313.91	145	16513.03
74	10432.12	X	12 321.01	X	14 366.98	*	16 570.02
79 8/	10477.43	84	12 370.25	32 34	14 420.14	34	16684.3
· 6/4	10 568.34	126	12469.01		14 526.76		16 741.50
6 14 14 14 14	10 500.34	120	12 518.54	136	14 580.21	146	16 798.97
1	10659.65	12	12 568.17	1/2	14633.77	12	16856.45
8%	10 705.44	1/2 8/4	12618.00	1/2 8/4	14687.42	84	16914.03
7	10751.34	127	12667.72	137	14741.17	147	16971.71
' ½	10 797.34	1 1/4	12717.64	13/14	14 795.02	14/1/	17029.48
1/2	10843.43		12 767.66	1/8	14 848.97	12	17087.36
7 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	10889.62	1/2 8/4	12817.78	1/2 8/4	14903.01	8%	17 145.33
8	10935.91	128	12867.99	138	14957.16	148	17203.4
* * *	10982.3	1/4	12918.31	1 1/4	15011.4	1/4	17261.57
1/8	11028.78	1/2 8/4	12968.72	1/3	15065.74	1/3	17319.84
¾	11075.37	8/4	13019.23	1/2 3/4	15 120.18	1/4 1/2 8/4	17 378.2
9 1/4 1/4 1/4	11 122.05	129	13069.84	139	15 174.71	149	17436.67
14	11 168.83	1/4	13 120.55	1/4	15 229.35	1/4 1/4	17495.23
*	11215.71	1/2	13 171.35	1/2	15 284.08		17 553.89
%	11 262.69	1 3/4	13222.26	1 1/4	15 338.91	150	17671.5

Compute Area of a Circle greater than any in Table.

ULE.—Divide dimension by two, three, four, etc., if practicable to do so, il it is reduced to a diameter to be found in table.

ake tabular area for this diameter, multiply it by square of divisor, and duct will give area required.

MANPLE. - What is area for a diameter of 1050?

 $1050 \div 7 = 150$; tab. area, 150 = 17671.5, which $\times 7^2 = 865903.5$, area.

Compute Area of a Circle in Feet and Inches, etc., by preceding Table.

VLE -Reduce dimension to inches or eighths, as the case may be, ares in that term from table for that number.

Divide this number by 64 (square of 8) if it is in eighths, and quotient will give area in inches, and divide again by 144 (square of 12) if it is in inches, and quotient will give area in feet.

EXAMPLE. - What is area of 1 foot 6.375 ins.?

1 foot 6.375 ins. = 18.375 ins. = 147 eight/s. Area of 147 = 16971.71, which $\div 64$ = 265.181.25 ins.; and by 144 = 1.84.125 feet.

To Compute Area of a Circle Composed of an Integer and a Fraction.

Rule.—Double, treble, or quadruple dimension given, until fraction is increased to a whole number, or to one of those in the table, as $\frac{1}{2}$, $\frac{1}{2}$, etc., provided it is practicable to do so.

Take area for this diameter; and if it is double of that for which area is required take one fourth of it: if treble take one sixteenth of it. etc.

EXAMPLE. - Required area for a circle of 2.1875 ins.

 $2.1875 \times 2 = 4.375$, area for which = 15.0331, which $\div 4 = 3.758$ ins.

When Diameter is composed of Integers and Fractions contained in Table.

RULE.—Point off a decimal to a diameter from table, and add twice as many figures or ciphers to the right of the area as there are figures cut off from the diameter.

EXAMPLE I.-What is area of 0675 feet diameter?

Area of 96.75 = 7351.79; hence, area = 73517900 feet.

2. - What is area of 24 375 feet diameter?

Area of 2.4375 = 4.6664; hence, area = 466640000 feet.

To Ascertain Area of a Circle as 300, 3000, etc., not contained in Table.

RULE.—Take area of 3 or 30, and add twice the excess of ciphers to the result.

EXAMPLE.—What is area of a circle 3000 feet in diameter?

Area of 30 = 706.86, hence area of 3000 = 7068600 feet.

To Compute Area of a Circle by Logarithms.

RULE.—To twice log. of diameter add 1.895 091 (log. of .7854), and sum is log. of area, for which take number.

EXAMPLE. - What is area of a circle 1200 feet in diameter?

Log. $1200 \times 2 + \overline{1.895}$ og 1 = 6.158 $362 + \overline{1.895}$ og 1 = 6.053 453, and number for which = 1130 976 feet.

Areas of Birmingham Wire Gauge.

Diam.	Area.	Diam.	Area.	Diam.	Area.	Diam.	Area.
No.	Sq. Inch.	No.	Sq. Inch.	No.	Sq. Inch.	No.	Sq. Inch.
I	.070 686	10	.014 103	19	.001 385	28	.000 154
×	, .063,347	11	.011309	20	.000 962	29	.000 133
40	.052685	12	.009 331	21	.000 804	30	.000 113
-	.044 488	13	.007 088	22	.000 616	31	.000 078
	.038013	14	.005411	23	.000 491	32	.000 064
	.032,365	15	.004.071	24	.000 38	33	.000 05
	.025 447	16	.∞3 318 ∖	25	.000 314	34	.000 038
	.021 382	17	.002 642	26	.000 254	35	.000 02
	.017 203	18	.001 886	₩ 27	100 201	36	Ero coco.

Streumferences of Circles, from 1 to 150.

Стисти.	! DIAM.	Спсси	DIAM.	Стисти.	DIAM.	Cincin.
.049 09	3	9-4248	8	25.1328	15	47.124
.09818	28	9.6211	18	25.5255	56	47.5167
	39	9.8175		25.9182	24	47.0004
.196 35	133	10.014	18	26.3100	28	48.3021
.392 7	1 3	10.2102	29	26.7030	9.5	48.0048
.589	216	10.406	25	27.09/13	26	40.0875
.7854	78	10.6029	73	27.4%) 27.8817	58	40.4802
	139	10.799	28	28.27.1.1	2	49.8720 50.2050
.981 75	23	11.191	14	28.6071	120	50.0583
1.1781	30	11.3883	12	29.0508	128	51.051
	12	11.584	86	29.4525	8.0	51.4437
1.374 45	36	11.781	16	29.8452	52	51.8304
1.5708	102	11.977	96	30.2379	96	52,2201
1.767 15	3%	12,1737	34	30.6300	92	52.6218
1.9635	15/18	12.369	3%	31.0233	3%	53.0145
	4	12.5664	10	31.410	17	53.4072
2.15985	1/16	12.762	<u>¼</u>	31.8087	1/4	53-7999
2.3562	1/8	12.9591	X	32.2014	14	54.1926
	<u>*</u>	13-155	%	32.5941	**	54-5853
2.552 55	1	13.3518	1 24	32.9868	- 14	54-978
2.7489	25	; 13·547	%	33-3795	%	55-3707
2.945 25	29	13.7445	24	33.7722	. 4	55.7034
	716	13 94	78	34.1649	/n	50.1501
3.1416	72	14.1372	11	34.5576	10	50.5488
3.3379	<i>7</i> 9	14.333	79	34 9503	72	50.0415
3.5343 3.7306	73	14.5299	74 8/	35-343		57-3342
3.7300	8/	14.725 14.9226	73	35.7357 36.1284	72	57.72/1) 58.119/0
4.1233	24	15.119	62	36.5211	37	58.5123
4.3197	. 🤣	15.3153		36.9138	(2)	58.905
4.516	152	15.511	12	37.3/15	1 2	59.2977
4.7124	. 🐔	15.708	12	37.6/12	19	59.6004
	. بر	16.1007	1/4	38.0010	· / _{1/}	Greeks.
5.105 1	. 14	16.40.24	12	38.4846	37	60.4778
5.361.4	· %	15.8%1	- 92	38.8773	2.7	100.71.7
5-4978	3.3	17-2788	1.7	39.27	32	61.2612
5.6941	*	17.6715	6/3	37 1627	1/4	61.10.41
5-890 5	34	18.0642	26	40 0554	26	121.46
6.0363	1/3	18.4569	7/1	40 44 1	/.	12.4413
6.28.3 2	٠,	18-84%	13.	والمركان الأوكالية	21,	62.832
6.47% 5	- 7	13.2423	- 35	41.2735	- ;/;	1.1.2/47
6.6759	- 3	196:5		4: 6.612	- 35	636174
6.572.2	24	20 6277		426.9	7,	Carrie
7.063.5 7.264.5	3.4	20 4204	1.	42 41 15	1,1	Ca gate
ر عدد. 3 : که-7	4.3	266131 21.26.56		12 (0.13	1.	65 1155
7.55		21.50.5		40,5197	1.5	1. 11
7-354	_ 1	2: 55:2		* . 5 %	21	1.10
Auges 3		22.31.10	••.	41.	· .	11. 16
3. Jul	1.	22.775	٠.	44.00		4.73
8.443	្វើ	23.1503		17. 18.		19.15
36764	٠,	27.462			•	474
8.3357	15	2 3. 5 5.2 7	• •	45.74.55	;'	60.00
9.072 E	1	24 2474		10° 00°	· .	وير. ردء
9.228.4	75	24 - 11: 2	-			49. 7/27

DIAM.	CIRCUM.	DIAM.	CIRCUM.	DIAM.	CIRCUM.	DTAM.	C
22	69.1152	29	91.1064	36	113.098	43	13
1∕8	69.5079	1/8	91.4991	1/8	113.49	13/8	13
×	69.9006	1/4	91.8918	1/4	113.883	1/4	13
%,	70.2933	1 %	92.2845	%	114.276	8 %	13
79	70.686	79	92.6772	1/3	114.668	1/3	13
88	71.0787 71.4714	88	93.0699 93.4626	%	115.061	88	13
74	71.8641	7/2	93.4020	1 3	115.454	74	13
23	72.2568	20	93.0333	1	115.040	78	13
- 3¼	72.6495	30	94.6407	37	116.632	144 _{1/}	13
浆	73.0422	122	95.0334	12	117.025	12	13
% €	73-4349	8%	95.4261	8	117.417	8	13
1/4	73.8276	1/8	95.8188	1/3	117.81	1%	13
%	74.2203	%	96.2115	1 %	118.203	5/8	14
24	74.613	24	96.6042	34	118.595	3/4	14
1/8	75.0057	1/8	96.9969	1/8	118.988	1/8	14
24 _{1/}	75.3984	31,	97.3896	38	119.381	45,	14
<i>7</i> 8	75.7911 76.1838	78	97.7823	19	119 773	18	14
82	76.5765	82	98.175 98.5677	82	120.166 120.559	8/	14
1%	76.9692	1%	98.9604	1%	120.559	1%	14
%	77.3619	5%	99 3531	5%	121.344	5%	14
8%	77.7546	8%	99.7458	8%	121.737	8%	12
%	78.1473	⅓ 8	100.1385	1 /8	122.13	1/8	14
25	78.54	32	100.5312	39	122.522	46	ΙZ
<i></i> ₹	78.9327	1/8	100.9239	1/8	122.915	1/8	14
74	79.3254	74	101.3166	4	123.308	1 14	Ιı
128	79.7181 80.1108	98	101.7093	1 %	123.7	18	Ιı
5½ 5%	80.5035	52	102.102 102.4947	79 52	124.093 124.486	52	14
8%	80.8962	88	102.8874	88	124.460	88	14
7 8	81.2889	1%	103.2801	1/3	125.271	1/2	I.
26	81.6816	33	103.673	40	125.664	47	1.
⅓	82.0743	1/8	104.065	1/8	126.057	1/4	1,
1/4	82.467	14	104.458	14	126.449	14	1,
%	82.8597	8/8	104.851	8 %	126.842	8/8	1.
1/3	83.2524	1/3	105.244	1/2	127.235	1/3	1.
88	83.6451	8 8	105.636	89	127.627	%	1.
7/	84.0378 84.4305	74	106.029 106.422	7/	128.02 128.413	7/	1
27	84.8232	24/8	106.814	/8	128.806	.9	I.
27 1/6	85.2159	34	100.814	1/1/	120.000	40	I
12	85.6086	13	107.6	1%	129.591	1,8	I. I.
87	86.0013	3%	107.992	8%	129.984	8%	1
1/2	86.394	1/3	108.385	1/3	130.376	1/2	I.
%	86.7867	%	108.778	5/8	130.769	5/8	1
34	87.1794	84	109.171	24	131.162	7/8	I,
1/8	87.5721	1/8	109 563	1/8	131.554	1/8	1.
28	87.9648	35	109.956	42	131.947	49,	1.
*	88.3575	18	110.349	18	132.34	18	I.
73	88.7502 89.1429	74 8/	110.741	74 8/	132.733 133.125	8/	I.
	89.5356	1%	111.134	1%	133.518	1/8	1,
	2283	6%	111.919	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	133.911	6%	1
	-5	8%	112.312	\\ 3 %	134.303	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\ i
	- 1	36	112,705	\\ X	134.696	»// %	.\

	CIRCUM.	Diam.	Cincum.	DIAM.	CIRCUM.	DIAM.	CIRCUM.
_	157.08	57	179.071	64	201.062	71	223.054
ź	157-473		179.464	1/6	201.455	1/8	223.446
í	157.865	X	179.857	1 1/4	201.848	1	223.839
į	158.258	%	180.249	. %	202.24	7 8	224.232
į	158.651	1 25	180.642	. 79	202.633	79	224.624
	159.043	26	181.035	% % %	203.026	28	225.01 7 225.41
ķ	159.436	3/8	181.427 181.82	74	203.419	3/8	225.802
,	160.222	, , ,	: 1		204.204	ł .	226.195
,	160.222	. 58	182.213 182.605	65 ₁	204.597	72	226.588
į	161.007	X X	182.005	1,8	204.989	1,8	226.981
•	161.4	86	183.391	8%	205.382	8%	227.373
	161.792	1%	183.784	1%	205.775	133	227.766
1	162.185	1/3 5/4 1/4	184.176	%	206.167	%	228.159
3	162.578	84	184.569	8% 1%	206.56	8/4	228.551
ì	162.97	1/8	184.962	1/8	206.953	1 %	228.944
	163.363	59	185.354	66	207.346	73	229.337
į	163.756	1 1/8	185.747	1/8	207.738	1/8	229.729
	164.149	1 1/4	186.14	X	208.131	*	230.122
	164.541	7 8	186.532	78	208.524	%	230.515
. !	164.934	79	186.925	73	208.916	(4)	230.908
•	165.327 165.719	% % %	187.318	% % %	209.309	3.5	231.3 231.693
1	166.112	ı Z	188.103	7	210.004	1/8	232.086
,	166.505	60	188.496	67	210.487	74	232.478
•	166.897	\ \(\omega_{1\nu}\)	188.88g	1 1/2	210.487	141/	232.871
ļ	167.29	12	189.281	12	211.273	17	233.264
•	167.683	9 7	189.674	3/8	211.665	8/3	233.656
•	168.076	1%	190.067	1/3	212.058	13	234.049
:	168.468	%	190.459	%	212.451	%	234-442
:	168.861	3/4	190.852	% % %	212.843	% 84 7/8	234.835
	169.254		191.245		213.236	1 ∕8	235.227
	169.646	6r	191.638	68	213.629	75.	235.62
1	170.039	1 1/8	192.03	/8	214.021	18	236.013
	170.432	7	192.423	4	214.414	74	236.405
	170.824	12	192.816	78	214.807 215.2	78	236.798
	171.21 7 171.61	5%	193.601	5%	215.592	6%	237.191
	172.003	8%	193.994	8%	215.985	87	237.976
•	172.395	1 %	194.386	5/8 8/4 7/8	216.378	34 2/8	238.369
	172.788	62	194.779	69	216.77	76	238.762
•	173.181	1/8	195.172	1/8	217.163	1/8	239.154
	173.573	1 1	195.565	1/4	217.556	1/4	239.547
	173.966	¾	195.957	3/8	217.948	1 3/8	239.94
	174.359	1/2	196.35	1/2	218.341	13	240.332
	174.751	8	196.743	%	218.734	38	240.725
	175.144	73	197.135	74	219.127	74	241.118
	175.537	/8	197.528	/8	219.519	78	241.51
	175.93	63	197.921	7° ₁	219 912	77	പു
	176.322 176.715	78	198.313	78	220.305 220.697		
	177.108	86	199.099	8%	221.09		
	177.5	1%	199.492	1%	221.483		
	177.893	1. 9%	199.884	5%	221.875	//	
/	178.280	ا يُو	200.277	%	222.268	//	
/	178.678	%	200.67	¾ %	222.661	// >	

DIAM.	CIRCUM.		CIRCUM.	DIAM.	CIRCUM.	DIAM.	CIRCUM.
78	245.045	85	267.036	92	289.027	99	311.018
146	245.437	1/4	267.429	1/4	289.42	1/8	311.411
1/2	245.83	1/4	267.821	1/2	289.813	12	311.804
8/2	246.223	8%	268.214	36	290.205	8%	312.106
1%	246.616	1%	268.607	1%	290.598	1%	312.589
5%	247.008	5%	268.999	5%	290.991	5%	312.982
5% 3/4 7/8	247.401	% % %	269.392	% % % %	291.383	8%	313.375
7/2	247.794	1/2	269.785	1%	291.776	1/8	313.767
	248.186	96	270.178	1	292,169	100	314.16
791/		1/		931/		1.00	
78 12	248.579	78	270.57	78	292.562	12	314.945
74 8/	248.972	74 8/	270.963	74 8/	292.954	82	315.731
1/8 1/4 1/8 1/8 1/8 1/8 1/8	249.364	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	271.356	78	293.347	101	316.516
72 57	249.757	52	271.748	73	293.74	101	317.302
78	250.15	78	272.141	5% 8/4 7/8	294.132	1 75 1	318.087
74	250.543	74	272.534	74	294.525	23	318.872
	250.935		272.926	/8	294.918	74	319.658
80	251.328	87.	273.319	94.	295.3I	102	320,443
7 8	251.721	/8	273.712	/8	295.703	7	321.229
74	252.113	14	274.105	14	296,096	29	322.014
%	252.506	%	274.497	%	296.488	1 %	322.799
1/3	252.899	/2	274.89	1/2	296.881	103	323.585
1/8/1/3/8/3/4/1/8/1/3/8/3/4/1/8/1/3/8/3/4/1/8/1/3/8/3/4/1/8/1/3/8/3/4/1/8/1/3/8/3/4/3/4	253.291	%	275.283	% 8/4 7/8	297.274	1/4 1/2 8/4	324-37
24,	253.684	%	275.675	24	297.667	/ /3	325.156
	254.077	1/8	276.068	1/8	298.059		325.941
81	254.47	88	276.461	95	298.452	104	326 .726
⅓	254.862	1/8	276.853	1/8	298.845	1/4	327.512
1/4	255.255	1/4	277.246	1/4	299.237	1/2	328.297
. 8	255.648	8 %	277.629	%	299.63	84	329.083
1/2 5/8 8/4 7/8	256.04	1/2	278.032	1/2	300.023	105	329.868
%	256.433	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	278.424	%8 8/4 7/8	300.415	1/4 1/2 8/4	330.653
3/4	256.826	8/4	278.817	8/4	300.808	1/2	331.439
	257.218	1/8	279.21	1 /8	301.201	18/4	332.224
82	257.611	89	279.602	96	301.594	106	333.01
1/8	258.004	1/8	279-995	1/8	301.986	1/4 1/3 8/4	333.795
1/4	258.397	1/4	280.388	1/4	302.379	1/3	334.58
%	258.789	%	280.78	⅓	302.772	8/4	335.366
1/2 5/8/4/8	259.182	5/8 5/8 8/4 1/8	281.173	1/2	303.164	107	336.151
%	259.575	%	281.566	%	303.557	1/4	336.937
3/4	259.967	8/4	281.959	8/4 7/8	303.95	1/2	337-722
	260.36	1/8	282.351	1 ∕8	304.342	1/4	338.507
83.	260.753	90	282.744	97	304.735	108	339-293
1/8	261.145	1/8	283.137	1/8	305.128	1/4	340.078
1/4	261.538	1/4	283.529	1/4	305.521	1/2	340.864
8 ∕8	261.931	8 %	283.922	8 %	305.913	1 %	341.649
18 19 5/8 8/4	262,324	1/2	284.315	1/2	306.306	109	342.434
%	262.716	%	284.707	%	306.699	1/4	343.22
0/4	263.109	84	285.1	24	307.091	1/2	344.005
	263.502	1/8	285.493	1/8	307.484	1 1/4	344.791
	263.894	91	285.886	98	307.877	110	345.576
•	264.287	1/8	286.278	1/8	308.27	1/4 1/2 8/4	346.361
	264.68	1/4	286.671	1/4	308.662	/2	347.147
	65.072	1/8	287.064	3/8	309.055		347.932
	55.465	1/2	287.456	1/2	309.448	III	348.718
	5.858	%	287.849	\ %	309.84	14	349.503
	5.251	8/1 7/8	288.242	8% %	310.233	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	350.288
	.643	1/8	288.634	11 %	320.626	\\ %	/ 351.07 4

CIRCUM.	DIAM.	CIRCUM.	DIAM.	CIRCUM.	DIAM.	Стветы.
351.859	121	380.134	130	408.408	139	436.682
352.645	1/4	380.919	*	409.192	1 1	437.467
353-43	1/4	381.704	1/4 8/4	409.979	1/4	438.253
354.215	84	382.49	84	410.763	84	439.037
355.001	122	383.275	131	411.55	140	439.824
355.786	*	384.061	*	412.334	1/4	440.608
356.572	1 3/4	384.846	1/4 8/4	413.12	1/3 8/4	441.395
357-357	%	385.631	34	413.905	%	442.179
358.142	123	386.417	132	414.691	141	442.966
358.928	X	387.202	X	415.476	X	443.75
359.713	1/4	38 7.988	1/4 8/4	416.262	1/3 8/4	444.536
360.499	84	388.773	%	417.046	8/4	445.321
361.284	124	389.558	133	417.833	142	446.107
362.069	*	390.344	∥ 1∡	418.617	1/4	446.891
362.855	1/4 8/4	391.129	1/4	419.404	1/2 8/4	447.678
363.64		391.915	3/4	420.188	84	448.462
364.426	125	392.7	134	420.974	143	449.249
365.211	14	393.484	*	421.759	1/4	450.033
365.996	1/ ₃ 8/ ₄	394.271	1/2 8/4	422.545	1/2 8/4	450.82
366.782	84	395.055	%	423.33	84	451.604
367.567	126	395.842	135	424.116	144	452.39
368.353	14	396.626	X	424.9	1/4	453 ¹ 75
3 69.138	1/2 8/4	397.412	1/4 8/4	425.687	1/3 8/4	453.961
3 69.923	· 3⁄4	398.197	34	426.471	8/4	454.745
370.709	127	398.983	136	427.258	145	455.532
371.494	×	399.768	1/4	428.042	14	456.316
372.28	1/3 8/4	400.554	1 1/4 3/4	428.828	1/2	457.103
373.065		401.338	%	429.613	146	458.674
373.85	128	402.125	137	430.399	1/3	460.244
374.636	1/4 1/4 8/4	402.909	X	431.183	147	461.815
375-421	1/3	403.696	1/2 8/4	431.97	1/2	463.386
376.207	8/4	404.48		432.754	148	464.957
376.992	129	405.266	138	433-541	1/2	466.528
377-777	1/4	406.051	1/4	434-325	149	468.098
378.563	1/4 1/4	406.837	1/2 3/4	435.112	1/2	469.669
379.348	84	407.622	1 %	435.896	150	471.24

apute Circumference of a Diameter greater than any in preceding Table.

t = 150; tab. circum., 150 = 471.24, which $\times 7 = 3298.68$, circumf

npute Circumference of a Diameter in Fed Inches, etc., by preceding Table.

-Reduce dimension to inches or eighths, as the case may inference in that term from table for that number. this number by 8 if it is in eighths, and by 12 if in inch. If give circumference in feet.

⁻Divide dimension by two, three, four, etc., if practicable to do so, reduced to a diameter in table.

abular circumference for this dimension, multiply it by divisor, as it was divided, and product will give circumference required.

L.—What is circumference for a diameter of 1050?

Example. —Required circumference of a circle of 1 foot 6,375 ins.

1 foot 6.375 ins. = 18.375 ins. = 147 eighths. Circum. of 147 = 461.815, which \div 8 = 57.727 ins.; and by 12 = 4.8106 feet.

To Compute Circumference for a Diameter composed of an Integer and a Fraction.

RULE.—Double, treble, or quadruple dimension given, until fraction is increased to a whole number or to one of those in the table, as $\frac{1}{16}$, $\frac{1}{16}$, etc., provided it is practicable to do so.

Take circumference for this diameter; and if it is double of that for which circumference is required, take one half of it; if treble, take one third of it; and if quadruple, one fourth of it.

EXAMPLE. - Required circumference of 2.218 75 ins.

2.21875 \times 2 = 4.4375, which \times 2 = 8.875; circum. for which = 27.8817, which \div 4 = 6.9704 ins.

When Diameter consists of Integers and Fractions contained in Table.

RULE.—Point a decimal to a diameter in table, take circumference from table, and add as many figures to the right as there are figures cut off.

EXAMPLE.—What is circumference of a circle 9675 feet in diameter?

Circumference of 96.75 = 303.95; hence, circumference of 9675 = 30 395 feet.

To Ascertain Circumference for a Diameter, as 500, 5000, etc., not contained in Table.

Rule.—Take circumference of 5 or 50 from table, and add the excess of ciphers to the result.

EXAMPLE. - What is circumference of a circle 8000 feet in diameter?

Circumference of 80 = 251.38; hence, circumference of 8000 = 25 138 feet.

To Compute Circumference of a Circle by Logarithms.

RULE.—To log. of diameter add .49715 (log. of 3.1416), and sum is log. of circumference, from which take number.

EXAMPLE. —What is circumference of a circle 1200 feet in diameter?

Log. 1200 = 3.079 18 + .497 15 = 3 576 33, and number for which = 3769.92 feet.

Circumferences of Birmingham Wire Gauge.

Diam.	Circum.	Diam.	Circum.	Diam.	Circum.	Diam.	Circum.
No.	Ins.	No.	Ins.	No.	Ins.	No.	Ins.
1	.942 48	10	.420 97	19	.131 95	28	.043 98
2	.892 21	11	.376 99	20	.10995	29	.040 84
3	.8í36 7	12	342 43	21	.100 53	30	.037 7
4	•747 7	13	.298 45	22	.08796	31	.031 41
5	.691 15	14	.260 75	23	.078 54	32	.028 27
ž	.637 74	15	.226 19	24	.069 11	33	.025 13
	.565 40	16	,204 2	25	.06283	34	.021 99
	•565 49 °3 6	17	.182 21	26	.056 55	35	.015 71
	- J- 1	18	·I5394	∖ 27	\ .050.26	∥ 36	.01257

Areas and Circumferences. (Advancing by Tenths.)

CIRCUM. DIAM. AREA. CIRCUM.

OCT 854

21416

6 246201

1750

AREA.	Стисим.	DIAM.	AREA.	CIRCUM.
.007 854	-31416	.6	24.6301	17.593
.031 416	.628 32	.7	25.5176	17.9071
.070686	.94248	.8	26 4209	18.2213
.125664	1.2566	.9	27-3398	18.5354
.19635	1.5708	6	28.2744	18.8496
.282 744	1.885	ı,ı	29.2247	19.1638
.384846	2.1991	.2	30.1908	19 4779
.502656	2.5133	-3	31.1725	19.7921
.636 174	2.8274	-4	32.17	20.1062
.7854	3.1416	-5	33.1831	20.4204
.9503	3.4558	.6	34.212	20.7346
1.131	3.7099	-7	35.2566	21.0487
1.3273	4.0841	.8	36.3169	21.3629
1.5394	4.3982	.9	37-3929	21.677
1.767 1	4.7124	7	38.4846	21.9912
2.0106	5.0266	.1	39 592	22.3054
2.2698	5.3407	.2	40.7151	22.6195
2.5447	5.6549	-3	41.854	22.9337
2.8353	5.969 6.2832	-4	43.0085	23.2478
3.1416	6.2032	.5	44.1787	23.562
3.4636 3.801 3	6.5974	.6	45.3647	23.8762
		-7	46.5664	24.1903
4.1548 4.5239	7.2257	.8	47.7837	24.5045
4.9087	7.854	-9	49.0168	24.8186
5.3093	8.1682	8	50.2656	25.1328
5.7256	8.4823	.1	51.5301	25.447
6.157.5	8.7965	.2	52.8103	25.7611
6.6052	9.1106	-3	54.1062	26 0753
7.0686	9.4248	.4	55.4178	26.3894
7 547 7	9.739	.5	56.7451	26 703 6
8.0425	10.0531		58.0882	27.0178
8.553	10.3673	.7	59.4469	27.3319
9.0792	10.6814	.8	60.8214	27 6461
9.6211	10.9956	.9	62.2115	27.9602
10.1788	11.3098	9	63.6174	28.2744
10.7521	11.6239	·I	65.039	28.5886
11.3412	11.9381	.2	66 4763	28.9027
11.9459	12.2522	-3	67.9292	29.2169
12.5664	12.5664	-4	69 3979	29.531
13.2026	12.8806	.5 .6	70.8823	29.8452
13.8545	13.1947	.7	72 3825	30.1594
14.522	13.5089	.8	73.8983	30.4735
15.2053	13.823	.9	75.4298 76.9771	30.7877 31.1018
15.9043 16.6191	14.1372	10	78.54	
17.3495	14.4514	.1	80.1187	37
18.0956	15.0797	.2	81.713	•
18 857 5	15.3938	-3	83.3231	!
19.635	15.708	-4	84.9489	•
20.4283	16,0222		86.5903	'
21.2372	16.3363	.5	88.2475	
22.0619	16.650 5	.7	89.9204	\
22.9023	16.9646	·7 .8	91.6091	
23.7583	17.2788	.9	93-3134	3

246 AREAS AND CIRCUMFERENCES OF CIRCLES.

DIAM.	ARBA.	CIRCUM.	DIAM.	AREA.	CIRCUM.
33	855.3006	103.6728	-5	1164.1591	120.9516
 1.	860.4921	103.987	.5 .6	1170.2146	121.2658
.2	865.6993	104.3011	.7	1176.2857	121.5799
•3	870.9222	104.6153		1182.3726	121.8041
•4	876.1608	104.9294	.9	1188.4751	122.2082
	881.4151	105.2436	39	1194.5934	122.5224
•5 •6	886.6852	105.5578	J9.1	1200.7274	122.8366
	891.9709	105.8719	.2	1206.8771	123.1507
.7 .8	897.2724	106.1861	.3	1213.0424	123.4649
.9	902.5895	106.5002	-4	1219.2235	123.779
34	907.9224	106.8144		1225.4203	124.0932
.I	913.271	107.1286	.5 .6	1231.6329	124.4074
.2	918.6353	107.4427	.7	1237.8611	124.7215
•3	924.0152	107.7569	.8	1244.105	125.0357
•4	929.4109	108.071 .	.9	1250.3647	125.3498
	934.8223	108.3852	40	1256.64	125.664
·5 .6	940.2495	108.6994	.1	1262.9311	125.9782
	945.6923	109.0135	.2	1269.2378	126.2923
.7 .8	951.1508	109.3277	.3	1275.5603	126.6065
.9	956.6251	109.6418	.4	1281.8985	126.9206
35	962.115	109.956		1288.2523	127.2348
.I	967.6207	110.2702	.5 .6	1294.6219	127.549
.2	973.142	110.5843	.7	1301.0072	127.8631
•3	978.6791	110.8085	.8	1307.4083	128.1773
•4	984.2319	111.2126	.9	1313.825	128.4914
.5	989.8003	111.5268	41	1320.2574	128.8056
.5 .6	995.3845	111.841	T. 1	1326.7055	129.1198
•7	1000.9844	112.1551	.2	1333.1694	129.4339
.7 .8	1006.6001	112.4693	•3	1339.6489	129.7481
.9	1012.2314	112.7834	.4	1346.1442	130.0622
36	1017.8784	113.0976		1352.6551	130.3764
·.	1023.5411	113.4118	.5 .6	1359.1818	130.6906
.2	1029.2196	113.7259	.7 .8	1365.7242	131.0047
•3	1034.9137	114.0401	.8	1372.2823	131.3189
•4	1040.6236	114.3542	.9	1378.8561	131.633
•5 .6	1046.3491	114.6684	42	1385.4456	131.9472
	1052.0904	114.9826	.1	1392.0508	132.2614
.7 .8	1057.8474	115.2967	.2	1398.6717	132.5755
	1063.6201	115.6109	-3	1405.3084	132.8897
.9	1069.4085	115.925	-4	1411.9607	133.2038
37	1075.2126	116.2392	.5 .6	1418.6287	. 133.518
.1	1081.0324	116.5534		1425.3125	133.8322
.2	1086.8679	116.8675	.7 .8	1432.012	134.1463
•3	1092.7192	117.1817		1438.7271	134.4605
•4	1098.5861	117.4958	.9	1445.458	134.7746
.5 .6	1104.4687	117.81	43	1452.2046	135.0888
.6	1110.3671	118.1242	.1	1458.9669	135.403
•7 •8	1116.2812	118.4383	.2	1465.7449	135.7171
	1122.2109	118.7525	•3	1472.5386	136.0313
9	1128.1564	119.0666	•4	1479.348	136.3454
~8	1134.1176	119.3808	.5 .6	1486.1731	136.6596
- 1	1140.0045	119.695	.6	1493.014	136.9738
.1	1146.0871	120.0091	.7	1499.8705	137.2879
4	1152.0954	120.3233	8. ∥	1506.7428	137.6021
	-58.1194	120.6374	6.	/ 1213'0301	/ 131.0103

٠	AREA.	CIRCUM.	Diam.	AREA.	Circum.
	1520.5344	138.2304	-5	1924.4263	155.5092
E .	1527.4538	138.5446	.5 .6	1932.2097	155.8234
2	1534.3889	138.8587	.7	1940.0087	156.1375
3	1541.3396	139.1729	.8	1947.8234	156.4517
	1548.3061	139.487	.9	1955.6539	156.7658
5	1555.2883	139.8012	50	1963.5	157.08
	1562.2863	140.1154	1.	1971.3619	157.3942
7	1569.2999	140.4295	.2	1979.2394	157.7083
	1576.3292	140.7437	.3	1987.1327	158.0225
•	1583.3743	141.0578	-4	1995.0417	158.3366
	1590.435	141.372	.5	2002.9663	158.6509
I	1597.5115	141.6862	.6	2010 9067	158.9 65
3	1604.6036	142.0003	.7	2018.8628	159.2791
3	1611.7115	142.3145	.8	2026.8347	159.5933
	1618.8351	142.6286	9	2034.8222	159.9074
5	1625.9743	142.9428	51	2042.8254	160.2216
	1633.1293	143.257	.1	2050.8443	160.5358
7	1640.3	143.5711	.2	2058.879	160,8499
	1647.4865	143.8853	.3	2066.9293	161.1641
•	1654.6886	144.1994	-4	2074.9954	161.4782
	1661.9064	144.5136	·5	2083.0771	161.7924
t	1669.1399	144.8278	.6	2091.1746	162.1066
3	1676.3892	145.1419	.7	2099.2878	162.4207
3	1683.6541	145.4561	.8	2107.4167	162.7349
ŀ	1690.9348	145.7702	.9	2115.5613	163.049
į	1698.2311	146.0844	52	2123.7216	163.3632
,	1705.5432 1712.871	146.3986	.I	2131.8976	163.6774
3		146.7127	.2	2140.0893	163.9915
,	1720.2145 1727.5737	147.0269	٠3	2148.2968	164.3057
•		147.341	•4	2156.5199	164.6198
	1734.9486	147.6552	·5 .6	2164.7587	164.934
	1742.3392	147.9694		2173.0133	165.2482
1	1749.7455	148.2835 148.5977	.7 .8	2181.2836	165. 5623
	1757.1676 1764.6053	148.9118	11	2189.5695	165.8765
	1772.0587	149.226	.9	2197.8712	166.1906
	1779.5279	149.5402	53	2206.1886	166.5048
	1787.0128	149.8543	I.	2214.5217	166.819
	1794.5133	150.1685	.2	2222.8705	167.1331
	1802.0296	150.4826	·3 ·4	2231.23 5 2239.6152	167.4473
	1809.5616	150.7968		2248.0111	167.7614 168.0756
	1817.1093	151,111	.5 .6	2256.4228	168.3898
	1824.6727	151.4251	.7	2264 8501	168.7039
	1832.2518	151.7393	.8	2273.2932	160.0181
	1839.8466	152.0534	.9	2281.7519	169.3322
	1847.4571	152.3676	54	2290.2264	16
	1855.0834	152.6818	.I.	2298.7166	7
	1862.7253	152.9959	.2	2307.2225	:
	1870.383	153.3101	.3	2315.744	
	1878.0563	153.6242	.4	2324.2813	
	1885.7454	153.9384		2332.8343	:
	1893.4502	154.2526	.5 .6	2341.4031	\ <u>:</u>
	1901.1707	154.5667	.7	2349 9875	\ 1
	1908.9068	154.8809	.8	2358.5876	\ 1 .
/	1916.6587	155.195	.9	2307.2035	/ I.

ZAY.	Area.	CIRCUM.	DIAM.	AREA.	CIRCUM.
8	6082.1376	276.4608	-5	6866.1631	293.7396
ı.	6095.9685	276.775	.5 .6	6880.858	294.0538
.2	6109.8151	277.0891	·7 .8	6895.5685	294.3679
-3	6123.6774	277.4033		6910.2948	294.6821
-4	6137.5554	277.7174	9	6925.0367	294. 9962
.5 .6	6151.4491	278.0316	94	6939.7944	295.3104
	6165.3586	278.3458	ı.ı	6954.5678	205.6246
·7 .8	6179.2837	278.6599	.2	6969.3569	295.9387
	6193.2246	278.9741	⋅3	6984.1616	296.2529
.9	6207.1811	279.2882	-4	6998.9821	296.567
છ	6221.1534	279.6024	.5 .6	7013.8183	296.8812
.I	6235.1414	279.9166		7028.6703	297.1954
.2	6249.1451	280.2307	.7 .8	7043.5379	297.5095
•3	6263.1644	280.5449 280.859		7058.4212	297.8237
4	6277.1995	281.1732	.9	7073.3203	298.1378
.5 .6	6291.2503 6305.3169	281.4874	95	7088.235	298.452
	6319.3991	281.8015	I.	7103.1655	298.7662
·7 .8	6333.497	282.1157	.2	7118.1116	299.0803
.9	6347.6107	282.4298	.3 .4	7133.0735 7148.0511	299.3945 299.7086
0	6361.74	282.744		7163.0443	300.0228
.1	6375.8851	283.0582	.5 .6	7178.0533	300.337
.2	6390.0458	283.3723		7193.078	300.6511
-3	6404.2223	283.6865	.7 .8	7208.1185	300.9653
-4	6418.4144	284.0006	.9	7223.1746	301.2794
-5	6432.6223	284.3148	96	7238.2464	301.5936
·5 .6	6446.8459	284.620	,,	7253:3339	301.9078
•7 •8	6461.0852	284.9431	.2	7268.4372	302.2219
-8	6475.3403	285.2573	-3	7283.5561	302.5361
-9	6489.611	285.5714	.4	7298.6908	302.8502
t	6503.8974	285.8856	.5 .6	7313.8411	303.1644
.I	6518.1995	286.1998		7329 0072	303.4786
.2	6532.5174	286.5139	.7 .8	7344.189	303.7927
-3	6546.8509	286.8281		7359.3865	304.1069
4	6561.2002	287.1422	.9	7374-5997	304.421
·5 ·6	6575.5651	287.4564	97	7389.8286	304.7352
.0	6589.9458	287.7706 288.0847	.I	7405.0732	305.0494
·7 .8	6604.3422 6618.7543	288.3989	.2	7420.3335	305.3635
.9	6633.1821	288.713	•3	7435.6096	305.6777
1	6647.6256	289.0272	-4	7450.9013 7466.2087	305.9918
.1	6662.0848	289.0272	.5 .6	7481.5319	306.306
.2	6676.5598	289.6555		7496.8708	306.9343
3	6691.0504	289.9697	.7 .8	7512.2253	307.2485
4	6705.5567	290.2838	.9	7527.5956	307.5626
•5	6720.0787	290.598	98	7542.9816	78
·5 ·6	6734.6165	290.9121	,I	7558.3833	· ·
·7 -8	6749.17	291.2263	.2	7573.8007	
	6763.7391	291.5405	•3	7589.2338	
-9	6778 324	291.8546	-4	7604.6826	
	6792.9246	292.1688	-5	7620.1471	
·I	6807.5409	292.483	.5 .6	7635.6274	
.2	6822.1729	292.7971	·7 .8	7651.1233	
3	6836.8206	293.1113		7666.635	,
4 /	6851.484	293.4254	.9	7682.1623	\

DIAM.	ARRA.	CIRCUM.	DIAM.	AREA.	CIRCUM.
55	2375.835	172.788	∙5	2874.7603	190.0668
.I	2384.4823	173.1022	ð.	2884.2715	190.381
.2	2393.1452	173.4163	.7	2893.7984	190.6951
•3	2401.8239	173.7305	.8	2903.3411	191.0093
•4	2410.5183	174.0446	.9	2912.8994	191.3234
·5 ·6	2419.2283	174.3588	61	2922.4734	191.6376
	2427.9541	174.673	.1	2032.0631	191.9518
•7	2436.6957	174.9871	.2	2941.6686	192.2659
.8	2445.4529	175.3013	-3	2051.2807	192.5801
.9	2454.2258	175.6154	.4	2960.9266	192.8942
56	2463.0144	175.9296	•5	2970.5791	193.2084
ī.	2471.8187	176.2438	ŏ.	2980.2474	193.5226
.2	2480.6388	176.5579	.7	2989.9314	193.8367
•3	2489.4745	176.8721	.8	2999.6311	194.1509
•4	2498.326	177.1862	.9	3009.3465	194.465
	2507.1931	177.5004	62	3019.0776	194.7792
.5 .6	2516.0 76	177.8146	1.	3028.8244	195.0934
	2524.9736	178.1287	.2	3038.5869	195.4075
·7 .8	2533.8889	178 4429	-3	3048.3652	195.7217
٠9	2542.8189	178.757	.4	3058.1591	196.0358
57	2551.7646	179.0712	•5	3067.9687	196.35
J, .I	2560.726	179.3854	.6	3077.7941	196.6642
.2	2569.7031	179.6995	.7	3087.6341	196.9783
•3	2578.696	180.0137	.8	3097.4919	197.2925
•4	2587.7045	180.3278	.9		197.6066
	2596.7287	180.642		3107.3644	
·5 .6	2605.7687	180.9562	63	3117.2526	197.9208
	2614.8244	181.2703	ı.	3127.1565	198.235
·7 .8	2623.8957	181.5845	.2	3137.0761	198.5491
.9	2632.9828	181.8986	-3	3147.0114	198.8633
٠,9	2642.0856		•4	3156.9624	199.1774
58		182.2128	.5 .6	3166.9291	199.4916
.1	2651.2041	182.527		3176.9116	199.8058
.2	2660.3383	182.8411	.7 .8	3186.9097	200.1199
•3	2669.4882	183.1553		3196.9236	200.4341
•4	2678.6538 2687.8351	183.4694	.9	3206.9531	200.7482
·5 .6		183.7836	64	3216.9984	201.0624
	2697.0322	184.0978	.1	3227.0594	201.3766
·7 ·8	2706.2449	184.4119	.2	3237.1361	201.6907
	2715.4734	184.7261	•3	3247.2284	202.0049
٠9	2724.7175	185.0402	-4	3257.3365	202.319
59	2733.9774	185.3544	.5 .6	3267.4603	202.6332
.I	2743.253	185.6686		3277.5999	202.9474
.2	2752.5443	185.9827	.7 .8	3287.7551	203.2615
•3	2761.8512	186.2969		3297.9261	203.5757
•4	2771.1739	186.611	.9	3308.1127	203.8898
5	2780.5123	186.9252	65	3318.315	204.204
	2789.8665	187.2394	.I	3328.5331	204.5182
	2799.2363	187.5535	.2	3338.7668	204.8323
	2808.6218	187.8677	-3	3349.0163	205.1465
	2818.0231	188.1818	-4	3359.2815	205.4606
	2827.44	188.496	.5 .6	3369.5623	205,7748
	2836.87 27	188.8102	.6	3379.8589	206:080
	2846.321	189.1243	\\ ·7	3390.1712	206,4031
	2855.7851	189.4385	.7	3400.4993	206,4031 206,7173
	:865.2649	189.7526	9	/ 3410.843	/ 301/0314

¥.	AREA.	CIECUM.	DIAM.	ARRA.	CIRCUM.
	3421.2024	207.3456	•5	4015.1611	224.6244
.I	3431-5775	207.6598	.ŏ.	4026.4002	224.9386
.2	3441.9684	207.9739	.7	4037.655	225.2527
-3	3452-3749	208.2881	.8	4048.9255	225.5669
4	3462.7972	208.6022	.9	4060.2117	225.881
.5 .6	3473.2351	208.9164	72	4071.5136	226.1952
.6	3483.6888	209.2306	.1	4082.8312	226.5094
·7 8	3494.1582	209.5447	.2	4094.1645	226.8235
.8	3504.6433	209.8589	⋅3	4105.5136	227.1377
9	3515.1441	210.173	∙4	4116.8783	227.4518
	3525.6606	210.4872	·5 .6	4128.2587	227.766
.I	3536.1928	210.8014		4139.655	228.0802
.2	3546.7407	211.1155	·7 ·8	4151.0668	228.3943
3	3557-3044	211.4297		4162.4943	228.7085 229.0226
4	3567.8837	211.7438	-9	4173.9376	
5	3578.4787	212.058	73	4185.3966	229.3368
0	3589.0895	212.3722	1.	4196.8713	229 651
7	3599.716	213.0005	.2	4208.3617	229 9651
9	3610.3581 3621.016	213.3146	-3	4219.8678	230 2793 230 5934
9		213.6288	-4	4231.3896	230 9076
_	3631.6896		.5 .6	4242.9271 4254.4804	231.2218
I	3642.3789 3653.0839	213.943 214.2571	.7	4254.4804	231 5359
2	3663.805	214.5713	.8	4277.634	231.8501
3	3674.541	214.8954	.9	4289.2343	232.1642
	3685.2931	215.1996		4300.8504	232.4784
5	3696.061	215.5138	74 .1	4312.4822	232.7926
	3706.8445	215.8279	.2	4324.1297	233.1067
7	3717.6438	216.1421	.3	4335.7928	233.4209
,	3728.4587	216.4562	·4	4347.4717	233.735
•	3739.2894	216.7704		4359.1663	234 0492
:	3750.1358	217.0846	.5 .6	4370.8767	234.3634
i	3760.9979	217.3987	.7	4382.6027	234 6775
1	3771.8756	217.7129	.8	4394-3444	234.9917
	3782.7691	218.027	.9	4406.1019	235.3058
	3793.6783	218.3412	75	4417.875	235.62
	3804.6033	218.6554	·	4429.6639	235.9342
	3815.5439	218.9695	.2	4441.4684	236.2483
	3826.5002	219.2837	-3	4453.2887	236.562 5
	3837-4722	219.5978	-4	4465.1247	236.8766
	3848.46	219.912	-5	4476.9763	237.1908
	3859.4635	220.2262	.6	4488.8437	237.505
	3870.4826	220.5403	.7	4500.7268	237 8191
	3881.5175	220.8545	.8	4512.6257	238.1333
	3892.5681	221.1686	.9	4524.5402	238.4474
	3903.6343	221.4828	76	4536.4704	238.7616
	3914.7163	221.797	.I	4548.4163	220 0758
i	3925.814	222.1111	.2	4560.378	399
	3936.9275 3948.9566	222.4253	•3	4572-3553	B4 F
	02. 20		-4	4584.3484	-
	3959.2014	223.0536	.5 .6	4596.3571 4608.3810	
	3970.3619	223.3678		4620.4218	
	3981.5382	223.6819	.7 .8		
	3992.7301	223.9961		4632.477'	
-	4003.9378	224.3102	1 .9	4644.5493	

250 AREAS AND CIRCUMFERENCES OF CIRCLES.

DIAM.	Area.	CIRCUM.	DIAM.	AREA.	Circum.
77	4656.6366	241.9032	-5	5345.6287	259.182
	4668.7396	242.2174	.5 .6	5358.5957	259.4962
.2	4680.8583	242.5315	.7	5371.5784	259.8103
٠3	4692.9928	242.8457	.8	5384.5767	260.1245
-4	4705.1429	243.1598	.9	5397.5908	260.4386
.5 .6	4717.3087	243.474	83	5410.6206	260.7528
.6	4729.4903	243.7882		5423.6661	261,067
٠7	4741.6876	244.1023	.2	5436.7273	261.3811
.8	4753.9005	244.4165	.3	5449.8042	261.6953
.9	4766.1292	244.7306	.4	5462.8968	262.0094
78	4778.3736	245.0448	.5 .6	5476.0051	262.3236
.I	4790.6337	245-359	.6	5489.1292	262.6378
.2	4802.9095	245.6731	•7	5502.2689	262.9519
•3	4815.201	245.9873	.8	5515.4244	263.2661
•4	4827.5082	246.3014	.9	5528.5955	263.5802
.5 .6	4839.8311	246.6156	84	5541.7824	263.8944
	4852.1698	246.9298	.I	5554.985	264.2086
•7	4864.5241	247.2439	.2	5568.2033	264.5227
.8	4876.8942	247.5581	-3	5581.4372	264.8369
.9	4889.2799	247.8722	-4	5594.6869	265.151
79	4901.6814	248.1864	·5 .6	5607.9523	265.4652
.I	4914.0986	248.5006		5621.2335	265.7794
.2	4926.5315	248.8147	•7	5634.5303	266.0935
•3	4938.98	249.1289	.8	5647.8428	266.4077
•4	4951.4443	249.443	.9	5661.1711	266.7218
·5 .6	4963.9243 4976.4201	249.7572 250.0714	85	5674.515	267.036
.7	4988.9315	250.3855	I.	5687.8747	267.3502
.8	5001.4586	250.6997	.2	5701.25	267.6643
.9	5014.0015	251.0138	-3	5714.6411 5728.0479	267.9785 268.2926
80	5026.56	251.328	-4	5741.4703	268.6068
1.	5039-1343	251.6422	.5 .6	5754.9085	268.921
,2	5051.7242	251.9563	.7	5768.3624	269.2351
.3	5064.3299	252 2705	.8	5781.8321	269.5493
.4	5076.9513	252.5846	.9	5795.3174	269.8634
	5089.5883	252.8988	86	5808.8184	270.1776
.5 .6	5102.2411	253.213	.1	5822.3351	270.4918
•7	5114.9096	253.5271	.2	5835.8676	270.8059
.8	5127.5939	253.8413	-3	5849.4157	271.1201
.9	5140.2938	254.1554	.4	5862.9796	271.4342
81	5153.0094	254.4696		5876.5591	271.7484
.I	5165.7407	254.7838	.5 .6	5890.1544	272.0620
.2	5178.4878	255.0979	.7 .8	5903.7654	272.3767
•3	5191.2505	255.4121		5917.3921	272.6909
-4	5204.0289	255.7262	.9	5931.0345	273.005
•5 •6	5216.8231	256.0404	87	59 44.692 6	273.3192
	5229.633	256.3546	ı.	5958.3644	273.6334
.7 .8	5242.4586	256.6687	.2	5972.0559	273 9475
.9	5255.2999 5268.1569	256.9829	•3	5985.7612	274.2617
o ₂	5281.0296	257.297	•4	5999.4821	274.5758
		257.6112	.5 .6	6013.2187	274.89
	5293.918 5.8221	257.9254 258.2395	٠.٥	6026.9711	275.2042 275.5183
	42	258.5537	.8	6040.7392 6054.5229	
	775	258 8678	e.	0008.3334	275.03
	,,,	,	9	,	

AREA.	CIRCUM.	DIAM.	ARRA.	CIRCUM.
6082.1376	276.4608	.5	6866.1631	293.7396
6095.9685	276.775	.5 .6	6880.858	294.0538
6109.8151	277.0891	•7	6895.5685	294.3679
6123.6774	277.4033	.8	6910.2948	294.6821
6137.5554	277.7174	.9	6925.0367	294.9962
6151.4491	278.0316	94	6939.7944	295.3104
6165.3586	278.3458	.1	6954.5678	205.6246
6179.2837	278.6599	.2	6969.3569	295.9387
6193.2246	278.9741	-3	6984.1616	296.2529
6207.1811	279.2882	-4	6998.9821	296.567
6221.1534	279.6024	.5 .6	7013.8183	296.8812
6235.1414	279.9166		7028.6703	297.1954
6249.1451	280.2307	.7 .8	7043.5379	297.5095
6263.1644	280.5449		7058.4212	297.8237
6277.1995	280.859	•9	7073.3203	298.1378
6291.2503	281.1732	95	7088.235	298.452
6305.3169	281.4874 281.8015	.I	7103.1655	298.7662
6319.3991	282.1157	.2	7118.1116	299.0803
6333.497	282.4298	•3	7133.0735	299.3945
6347.6107		-4	7148.0511	299.7086
6361.74	282.744	.5 .6	7163.0443	300.0228
6375.8851	283.0582		7178.0533	300.337
6390.0458	283.3723 283.6865	·7 .8	7193.078 7208.1185	300.6511
6418.4144	284.0006	.9		
6432.6223	284.3148		7223.1746	301.2794
6446.8459	284.629	96	7238.2464	301.5936
6461.0852	284.9431	.I .2	7253.3339	301.9078
6475.3403	285.2573	,	7268.4372 7283.5561	302.2219
6489.611	285.5714	·3 ·4	7298.6908	302.8502
6503.8974	285.8856		7313.8411	303.1644
6518.1995	286.1998	.5 .6	7329.0072	303.4786
6532.5174	286.5139		7344.189	303.7927
6546.8500	286.8281	.7 .8	7359.3865	304.1069
6561.2002	287.1422	.9	7374-5997	304.421
6575 5651	287.4564	97	7389.8286	304.7352
6589.9458	287.7706	7,1	7405.0732	305.0494
6604.3422	288.0847	.2	7420.3335	305.3635
6618.7543	288.3989	-3	7435.6096	305.6777
6633.1821	288.713	-4	7450.9013	305.9918
6647.6256	289.0272	·5 .6	7466.2087	306.306
6662.0848	289.3414		7481.5319	306.6202
6676.5598	289.6555	.7 .8	7496.8708	306.9343
6691.0504	289.9697		7512.2253	307.2485
6705.5567	290.2838	.9	7527.5950	307.5626
6720.0787	290.598	98	7542.9816	307.8768
6734.6165	290.9121	.I	7558.3833	308.191
6749.17	291.2263	.2	7573.8007	308 5021
6763.7391	291.5405	-3	7589.2338	· .
6778 324	291.8546	-4	7604.6826	
6792.9246	292.1688	.5 .6	7620.1471	1
6807.5409 6822.1720	292.483		7635.6274	i
6836.8206	292.7971	·7 .8	7651.1233 7666.635	\
6851.484	293.1113			\
, 0031,404	293.4254	۰.9	1 7682.1623	`

BEAS AND CIRCUMFERENCES OF CIRCLES.

ARTA.	CIRCUM.	DIAM.	AREA.	C
7097-7054 7713-2042	311.0184 311.3326	·5 .6	777 5 .6563 7791.2937	31
7728.8337 7744-4288	311.6467 311.9609	·7	7806.9467 7822.6154	31
7700.0347	312.275	.9	7838.2999	31

pute Area or Circumference of a Diameter ; than any in preceding Table.

% rages 235-6 and 241-2.

vameter exceeds 100 and is less than 1001.

eximal point, and take out area or circumference as for removing decimal point, if for an area, two places to rig

-What is area and what circumference of a circle 967 feet

i is 7344.189; hence, for 967 it is 734 418.9; and circumferen and for 967 it is 3037.927.

pute Area and Circumference of a Circle b; arithms.

s. pages 236, 242.

reas and Circumferences of Circles.

FROM 1 TO 50 FEET (advancing by an Inch).

OR. FROM 1 TO 50 INCHES (advancing by a Twelfih).

CIRCUM. DIAM. AREA. AREA. Feet. Feet. Feet. 3 *ft*. 7.0686 .7854 3.1416 9 7.4668 3.4034 .9217 Ġ 1.069 3.6652 7.8758 Ġ 2 8.2958 1.2272 3.927 IC 3 4.1888 8.7267 IC 1.3963 4 9.1685 4.4506 5 6 ΙC 1.5763 1.7671 4.7124 9.6211 ıc 1.969 4.9742 **7** 8 10.0848 11 2.1817 5.236 10.5593 11 11.0447 2,4053 5.4978 9 11 10 11.541 12 2.6398 5.7596 11 12.0483 6.0214 12 2.8853 6.2832 ft. 12.5664 12 3.1416 ,3.4088 1 13.0055 12 6.545 6.8068 3.687 2 13.6354 13 14.1863 13 3.0761 7.0686 3 14.7481 7.3304 4 13 5 15.3208 7.5922 13 15.9043 7.854 14 7 8 16.4989 8.1158 14 17.1043 14 8.37**7**6 9 17.7206 8.6394 14 or 18.3478 ľ 8.9012

11

9.163

028p.81

AREA.	Ствести.	DIAM.	AREA.	CIRCUM.
Feet.	Feet.		Frat.	Feet.
19.635	15.708	6	70.8823	29.8452
20.2949	15.9698	7 8	72.1314	30.107
20.9658	16.2316		73.3913	30.3688
21.6476	16.4934	9	74.6621	30.6306
22.3403	16.7552	10	75.9439	30.8924
23.0439	17.017	11	77.2365	31.1542
23.7583	17.2788	10 ft.	78.54	31.416
. 24.4837	17.5406 17.8024	I	79.8545	31.6778
25.22	18.0642	2	81.1798	31.9396
25.9673 26.7254	18.326	3	82.5161	32.2014
27.4944	18.5878	4	83.8633	32.4632
1		5 6	85.2214	32.725
28.2744	18.8496		86.5903	32.9868
29.0653	19.1114	7 8	87.9703	33.2486
29.867	19.3732		89.3611	33.5104
30.6797	19.635	10	90.7628	33.7722
31.5033	19.8968	11	92.1754	34.034
32.3378	20.1586 20.4204	H	93.599	34.2958
33.1831	20.6822	11 ft.	95.0334	34.5576
34.9067	20.944	I	96.4787	34.8194
35.7848	21.2058	2	97.935	35.0812
36.6738	21.4676	3	99.4022	35.343
37.5738	21.7294	4	100.8803	35.6048 35.8666
		5 6	102.3693	36.1284
38.4846	21.9912		103.8691	36.3902
39.4064	22.253 22.5148	7 8	105.38 106.901 <i>7</i>	36.652
40.339 41.2826	22.7766	ا و	108.4343	36.9138
42.2371	23.0384	10	109.9778	37.1756
43.2025	23.3002	11	111.5323	37:4374
44.1787	23.562	11		i
45.1659	23.8238	12 ft.	113.0976	37.6992
46.1641	24.0856	1 2	114.6739 116.261	37.961 38.2228
47.1731	24.3474	11 - 1	110.201	38.4846
48.193	24.6092	3 4	117.8591	38.7464
49.2238	24.871		121.088	39.0082
50.2656	25.1328	5	122.7187	39.27
51.3183	25.3946		124.3605	39.5318
52.3818	25.6564	7 8	126.0131	39.7936
53.4563	25.9182	9	127.6766	40.0554
54.5417	26.18	10	129.351	40.3172
55.638	26.4418	11	131.0366	40.579
56.7451	26.7036	13 ft.	132.7326	40.8408
57.8632	26.9654	13,7%	134.4398	41.1026
58.9923	27.2272	2	136.1578	41.1020
60.1322	27.489	3	137.8868	1
61.283	27.7508	4	139 6267	
62.4448	28.0126	{	141.3774	
63.6174	28.2744	5 6	143.1391	
64.801	28.5362		144.9117	1
65.9954	28.798	7 8	146.6953	
67.2008	29.0598	9	148.4897	\
68.417	29.3216	10	150.295	\
69.6442	29.5834	11	152.1113	\

DIAM.	ARRA.	CIRCUM.	DIAM.	AREA.	CTRCUM.
	Feet.	Feet.		Feet.	Feet.
14 ft.	153.9384	43.9824	6	26 8.8031	58.1196
I	155.7764	44.2442	7	271.2302	58.3814
2	157.6254	44.506	8	273.6683	58.6432
3	159.4853	44.7678	9	276.1172	58.905
4	161.3561	45.0296	10	278.577	59.1668
5 6	163.2378 165.1303	45.2914	11	281.0477	59.4286
	167.0338	45.5532 45.815	19 fl.	283.5294	59.6904
7 8	168.9483	46.0768	1	286.0219	59.9522
9	170.8736	46.3386	2	288.5255	60.214
10	172.8098	46.6004	. 3	291.0398	60.4758
11	174.7569	46.8622	4	293.5651	60.7376
			5 6	296.1012	60.9994
15 ft.	176.715	47.124		298.6483	61.2612
I	178.684	47.3858	7 8	301.2064	61.523
2	180.6638 182.6546	47.6476	11	303.7753	61.7848
3	184.6563	47.9094	9	306.3551	62.0466
4	186.6680	48.1712	11	308.9458	62.3084
5 6	188 6924	48.433 48.6948		311.5475	62.5702
	190.7267	48.9566	20 ft.	314.16	62.832
7 8	192.7721	49.2184	I	316.7834	63.0938
9	194.8283	49.4802	2	319.4178	63.3556
10	196.8954	49.742	3	322.0631	6 3.6174
11	198.9734	50.0038	4	324.7193	63.8792
	201.0624		5 6	327.3864	64.141
16 ft. 1	203.1622	50.2656		330.0643	64.4028
2	205.273	50.5274 50.7892	7 8	332.7532	64.6646
3	207.3947	51.051	9	335.4531 338.1638	64.9264 65.1882
3 4	209.5273	51.3128	10	340.8854	65.45
+	211.6707	51.5746	11	343.618	65.7118
5 6	213.8252	51.8364			1
7	215.9904	52.0982	21 ft.	346.3614	65.9736
8	218.1667	52.36	I 2	349.1157	66.2354
9	220.3538	52.6218	11	351.881 354.6572	66.4972
10	222.5518	52.8836	3		66.759
11	224.7607	53.1454	4	357.4442 360.2422	67.0208
17 ft.	226.9806	53.4072	5 6	363.0511	67.2826 67.5444
-/ J.	220.2113	53.669		365.8709	67.8062
2	231.453	53.9308	7 8	368.7017	68.068
3	233.7056	54.1926	9	371.5433	68.3298
4	235.9691	54-4544	10	374.3958	68.5916
5	238.2434	54.7162	11	377.2592	68.8534
5 6	240.5287	54.978	22 ft.	380.1336	
7 8	242.8249	55.2398	22) ".	383.0188	69.1152
8	245.1321	55.5016	2	385.915	69.377
9	247.4501	55.7634	3	388.8221	69.6388 69.9006
10	249.779	56.0252	4	391.74	70.1624
7	252.1188	56.287	{	394.6689	70.1024
,	^ 76	56.5488	5 6	397.6087	70.686
	3	56.8106		400.5594	70.9478
	;	57.0724	7 8	403.5211	71.2096
	1	57-3342	9	406.4936	77.4714
	7	57.596	or	409.477	71.7332
	j l	57.8578	// ***	412.4713	/ 31.005

Feet. 72.2568 6 593.9587 72.5186 7 597.5639 72.5186 7 597.5639 72.5186 7 597.5639 72.5186 7 597.5639 72.7804 8 601.18 72.7804 8 601.18 72.7804 10 608.457	Feet. 86,394 86,6558 86,9176 87,1794 87,4412 87,703 87,9648 88,2266 88,4884 88,7502 89,012 89,2738 89,5356 89,7974 90,0592 90,321
1 418.4927 72.5186 7 597.5039 2 421.5198 72.7804 8 601.18 3 424.5578 73.0422 9 604.8071 4 427.6067 73.304 10 608.445 5 430.6664 73.5658 11 612.0938 6 433.7371 73.8276 28 ft. 615.7536 7 430.8187 74.0894 1 619.4242 8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 440.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 14ft. 452.3904 75.3984 6 637.9411	86.6558 86.9176 87.1794 87.4412 87.703 87.9648 88.266 88.4884 88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
1 418.4927 72.5186 7 597.5039 2 421.5198 72.7804 8 601.18 3 424.5578 73.0422 9 604.8071 4 427.6067 73.304 10 608.445 5 430.6664 73.5658 11 612.0938 6 433.7371 73.8276 28 ft. 615.7536 7 436.8187 74.0894 1 619.4242 8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 440.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 11 449.2542 75.1366 5 637.9411	86.9176 87.1794 87.4412 87.703 87.9648 88.2266 88.4884 88.7502 89.2738 89.5356 89.7974 90.0592 90.321
2 421.5198 72.7804 8 601.18 3 424.5578 73.0422 9 604.8071 4 427.6067 73.304 10 608.445 5 430.6664 73.5658 11 612.0938 6 433.7371 73.8276 28 ft. 615.7536 7 436.8187 74.0894 1 619.4242 8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 446.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 11 449.2542 75.1366 5 637.9411	87.1794 87.4412 87.703 87.9648 88.2266 88.4884 88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
4 427.6067 73.304 10 608.445 5 430.6664 73.5658 11 612.0938 6 433.7371 73.8276 28 f7. 615.7536 7 436.8187 74.0894 1 619.4242 8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 446.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 ft. 452.3904 75.3984 6 637.9411	87.4412 87.703 87.9648 88.2266 88.4884 88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
4 427,6067 73.304 10 608.445 5 430.6664 73.5658 11 612.0938 6 433.7371 73.8276 7 430.8187 74.0894 1 619.4242 8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 440.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 12.402.3904 75.3984 6 637.9411	87.703 87.9648 88.2266 88.4884 88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
7 436.8187 74.0894 1 619.4242 8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 446.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 52.3904 75.3984 6 6 637.9411	87.9648 88.2266 88.4884 88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
7 436.8187 74.0894 1 619.4242 8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 446.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 52.3904 75.3984 6 6 637.9411	88.2266 88.4884 88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
8 439.91 74.3512 2 623.1058 9 443.0147 74.613 3 626.7983 10 446.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 ft. 452.3904 75.3984 6 637.9411	88.2266 88.4884 88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
9 443.0147 74.613 3 626.7983 10 446.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 ft. 452.3904 75.3984 6 637.9411	88.7502 89.012 89.2738 89.5356 89.7974 90.0592 90.321
10 446.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 ft. 452.3904 75.3984 6 637.9411	89.012 89.2738 89.5356 89.7974 90.0592 90.321
10 440.129 74.8748 4 630.5016 11 449.2542 75.1366 5 634.2159 4 ft. 452.3904 75.3984 6 637.9411	89.012 89.2738 89.5356 89.7974 90.0592 90.321
11 449.2542 75.1300 5 634.2159 4 ft. 452.3904 75.3984 6 637.9411	89.5356 89.7974 90.0592 90.321
	89.7974 90.0592 90.321
I 455.5374 75 6602 7 611.6772	90.0592 90.321
	90.321
2 458.6954 75.922 8 645.4243	90.321
3 461.8643 76.1838 9 649.1822	
4 465.044 76.4456 10 652.951	90.5828
5 468.2347 76.7074 11 656.7307 6 471.4363 76.9692 2 6 669.734	90,8446
	91.1064
2 TTT-5400 T 001.3220	91.3682
	01.63
9 481.1000 77.7540 2 671.0588	91.8918
10 484.3518 78.0104 4 675.7021	92.1536
	92.4154
ft. 490.875 78.54 6 683.4943	92.6772
1 494.1529 78.8018 7 687.3613	92.939
	93.2008
3 500.7416 79.3254 9 695.1281	93.4626
4 504.0523 79.5872 10 699.0278	93.7244
5 507.3738 79.849 11 702.9384 6 510.7063 80.1108 20 4 206.96	93.9862
6 510.7063 80.1108 30 ft. 706 86	94.248
2 3-7-9-03 90-3/20 1 710 7024	94.5098
	94.7716
9 520.7693 80.8962 3 718.6901 10 524.1451 81.158 3 718.6901	95.0334
722.0553	95.2952
5 720 0313	95.557
	95.8188
1 534-3397 81.9434 7 734.6162 2 537-759 82.2052 8 738.6251	96.0806
	96.3424
3 541.1897 82.467 9 742.6448	96.6042
4 544.6313 82.7288 10 746.6754 5 548.0837 82.9906 11 750.7164	96.866
	97.1278
551.5471 83 2524 31 ft. 754.7694 7 555.0214 83.5142 31 ft. 754.7694	97.3896
8 58 566 83 556 1 750.0327	97.6514
6 702.907	97.9132
TO FOE 5008 84 2006 3 700.9922	1 68.175
4 771.0883	1×
3 //3.1932	
1 572.5500 84.8232 6 779.3131 7 783.4419	
1 576.0963 85.085 7 783.4419 2 579.6467 85.3468 8 787.5817	
3 583.2086 85.6086 9 791.7323	
4 586.781 85.8704 10 705.8038	
5 590.3644 86.1322 11 800.066	2

250	111111111111111111111111111111111111111	01111001111		01 0110
DIAM.	AREA.	CIRCUM.	DIAM.	AREA.
	Feet.	Feet.		Feet.
32 ft.	804.2496	100.5312	6	1046.3491
I	808.4439	100.793	7 8	1051.1324
2	812.649	101.0548		1055.9266
3	816.8651	101.3166	9	1060.7318
4	821.092	101.5784	10	1065.5478
5	825.3299	101.8402	11	1070.3747
	829.5787	102.102	37 Ji.	1075.2126
7 8	833.8384	102.3638	1	1080.0613
8	838.1091	102.6256	2	1084.921
9	842.3906	102.8874	3	1089.7916
10	846.683	103.1492	4	1094.6731
11	850.9863	103.411		1099.5654
33 ft.	855.3006	103.6728	5 6	1104.4687
33 J · ·	859.6257	103.9346		1109.3829
2	863.9618	104.1964	7 8	1114.308
3	868.3088	104.4582	9	1119.2441
	872.6667	104.72	10	1124.191
4	877.0354	104.9818	11	1129.1489
5 6	881.4151	105.2436	i i	
	885.8057	105.5054	38 ft.	1134.1176
7 8	890.2073	105.7672	I	1139.0972
	894.6197	105.029	2	1144.0878
9 10		106.2908	3	1149.0893
11	899.043	106.5526	4	1154.1017
	903.4772	i e	5 6	1159.1249
34 <i>ft</i> .	907.9224	106.8144	6	1164.1591
I	912.3784	107.0762	7 8	1169.2042
2	916.8454	107.338	8	1174.2603
3	921.3233	107.5998	9	1179.3272
4	925.812	107.8616	10	1184.405
5 6	930.3117	108.1234	11	1189.4937
6	934.8223	108.3852	39 ft.	1194.5934
7 8	939-3439	108.647	393	1199.7039
8	943.8763	108.9088	2	1204.8254
9	948.4196	109.1706	3	1209.9578
10	952.9738	109.4324	4	1215.101
11	957-5392	109.6942		1220.2552
35 ft.	962.115	109.956	5 6	1225.4203
33 / ··	966.7019	110.2178		1230.5963
2	971.2998	110.4796	7 8	1235.7833
3	975.9086	110.7414	9	1240.9811
	980.5287	111.0032	10	1246.1898
4	985.1588	111.265	11	1251.4094
5	989.8005	111.5268		1
			40 ft.	1256.64
7 8	994-4527	111.7886	I	1261.8814
	999.116	112.0504	2	1267.1338
9	1003.7903	112.3122	3	1272.3971
-0	1008.4754	112.574	4	1277.6712
	1013.1714	112.8358	5 6	1282.9563
	1017.8784	113.0976		1288.2523
	1022.5962	113.3594	7	1293.5592
	1027.325	113.6212	8	1298.877
	1032.0647	113.883	∥ 9	1304.2058
	1036.8153	114.1448	// 10	1309.5454
	1041.5767	114.4066	// II	/ 1314.8959

DIAM.	AREA.	Ствест.	DIAM.	AREA.	CIRCUM.
	Feet.	Feet.		Foet.	Feet.
1 ft.	1320.2574	128.8056	6	1625.9743	142.9428
1	1325.6297	129.0674	7 8	1631.9357	143.2046
2	1331.013	129.3292		1637.9081	143.4664
3	1336.4072	129.591	j 9	1643.8913	143.7282
4	1341.8123	129.8528	10	1649.8854	143.99
5	1347.2282		11	1655.8904	144.2518
	1352.6551	130.3764	46 ft.	1661.9004	144.5136
7 8	1358.0929	130.6382	I	1667.9332	141-7754
8	1363.5416	130.9	2	1673.971	145.0372
9	1369.0013	131.1618	3	1680.0197	145.299
10	1374.4718	131.4236	4	1686.0792	145.5608
11	1379.9532	131.6854		1602.1407	145.8226
ıft.	1385.4456	131.9472	5 6	1698.2311	146.0844
I	1390.9488	132.200] 7	1704.3195	146.3462
2	1396.463	132.4708	7 8	1710.4267	146.608
3	1401.9881	132.7326	9	1716.5408	146.8608
	1407.5241		10	1722.6658	147.1316
4	1413.0700	132.9944	11	1728.8017	147.3934
5	1418.6287	133.2562	47 ft.	1734.9486	147.6552
	1424.1974	133.518	4/J.	1741.1063	147.917
7 8	1429.777	133.7798	2	1747.275	148.1788
		134.0416	3	1753.4546	148.4406
9	1435.3070	134.3034	4	1759.6451	148.7024
11	1440.9 69 1446.581 3	134.5652		1765.8464	148.9642
		134.827	5	1772.0587	149.226
ft.	1452.2046	135.0888		1778.2819	149.4878
1	1457.8387	135.3506	7 8	1784.516	149.7496
2	1463.4838	135.6124	9	1790.7611	
3	1469.1398	135 8742	10	1797.017	150.0114
4	1474.8066	136.136	11	1803.2838	
5	1480.4844	136.3978	48 ft.		150.535
	1486.1731	136.6596	40 / 1	1809.5616	150.7968
7 8	1491.8717	136.9214	H	1815.8502	151.0586
8	1497.5833	137.1832	2	1822.1498	151.3204
9	1503.3047	137-445	3	1828.4603	151.5822
IO	1509.037	137.7068	4	1834.7817	151.844
II	1514.7802	137.9686	5	1841.1139	152.1058
ft.	1520.5344	138.2304		1847.4571	152.3676
'n	1526.2994	138.4922	7 8	1853.8112	152.6294
2	1532.0754	138.754		1860.1763	152.8912
3	1537.8623	139.0158	9	1866.5522	153.153
4	1543.66	139.2776	10	1872.939	153.4148
7	1549.4687	139.5394	11	1879.3367	153 6766
5	1555.2883	139.8012	49 ft.	1885.7454	153.9384
7	1561.1188	140.063	1	1892.1649	154.2002
8	1566.9603	140.3248	2	1898.5954	154.462
9	1572.8126	140.5866	3		154.7238
10	1578.6756	140.8484	4		754.9856
11		140.0404	5	1917.9.	5.2474
	1584.5499	1		-2-4-4	# Em3
R.	1590.435	141.372	7 8	1930 .9 :	-
I	1596.3309	141.6338			
2	1602.2378	141.8956	9	1943.9	
3	1608.1556	142.1574	10	1950.4	
4	1614.0843	142.4192	11	. 1956.9£	
5 /	1620.0238	142.681	50 ft.	1963.5	

Sides of Squares-equal in Area to a Cir.

Diameter from 1 to 100.

Diam.	Side of Sq.	Diam.	Side of Sq.	Diam.	Side of Sq.	Diam.	S
1	.8862	14	12.4072	27	23.9281	40	3
1/4	1.1078	1/4	12.6287	1/4	24.1497	1/4	3
1/2	1.3293	1/6	12.8503	1/6	24.3712	36	3
8/4	1.5509	3/4	13.0718	8/4	24.5928	3/4	3
2	1.7724	15	13.2934	28	24.8144	41	3
1/4	1.994	1/4	13.515	1/4	25.0359	1/4	3
1/6	2.2156	1/4	13.7365	1/2	25.2575	36	3
3/4	2.4371	3/4	13.9581	3/4	25.479	8%	3
3	2.6587	16	14.1796	29	25.7006	42	3
1/4	2.8802	1/4	14.4012	1/4	25.9221	1/4	3
1/2	3.1018	1/2	14.6227	1/3	26.1437	1/9	3
3/4	3.3233	3/4	14.8443	3/4	26.3653	8/4	3
4	3.5449	17	15.0659	30	26.5868	43	13
1/4	3.7665	1/4	15.2874	1/4	26.8084	1/4	3
1/2	3.988	1/2	15.509	1/2	27.0299	1/2	3
3/4	4.2096	3/4	15.7305	8/4	27.2515	8/4	3
5	4.4311	18	15.9521	31	27.473	44	3
1/4	4.6527	1/4	16.1736	1/4	27.6946	1/4	13
1/2	4.8742	1/3	16.3952	1/2	27.9161	1 3/2	3
%	5.0958	1/4	16.6168	%	28.1377	%	3
6	5-3174	19	16.8383	32	28.3593	45	**************************************
1/4	5.5389	1/4	17.0599	1/4	28.5808	1/4	4
1/2	5.7605	1/3	17.2814	1/3	28.8024	39	4
%	5.982	1/4	17.503	%	29.0239	%	4
7.	6.2036	20	17.7245	33	29.2455	46	4
1/4	6,4251	14	17.9461	14	29.467	14	4
23	6.6467	23	18.1677	23	29.6886	1/2	4
74	6.8683	74	18.3892	74	29.9102	74	4
8	7.0898	21	18.6108	34	30.1317	47	4
74	7.3114	14	18.8323	1	30.3533	74	4
82	7.5329	82	19.0539	73	30.5748	23	1
74	7.7545	74	19.2754	74	30.7964	48	1
91/	8.1976	22	19.497	35	31.0179	40	19
1/4	8.4192	1/	19.9401	1/4	31.4611	12	1
8/	8.6407	8/	20.1617	3/	31,6826	3%	7
10	8.8623	22	20.3832	36	31.9042	49	1
1/	9.0838	1/	20.6048	1/	32.1257	1/	8
1/6	9.3054	1/	20.8263	1%	32.3473	1/2	A
8%	9.5269	8/4	21.0479	8/4	32.5688	8%	4
II	9.7485	24	21.2604	37	32.7904	50	4
1/4	9.97	1/4	21.491	1/4	33.0112	1/4	4
1/6	10.1916	1/2	21.7126	1/6	33.2335	36	4
8/4	10.4132	3/4	21.9341	3/4	33.4551	3/4	4
12	10.6347	25	22.1557	38	33.6766	51	4
34	10.8563	1/4	22.3772	1/4	33.8982	1/4	4
1/2	11.0778	1/9	22.5988	1/2	34.1197	1/3	4
3/4	11.2994	3/4	22.8203	3/4	34-3413	3/4	4
13	11.5209	26	23.0419	39	34.5628	52	4
1/4	11.7425	1/4	23.2634	1/4	34.7884	1/4	4
33	11.9641	1/2	23.485	1/2	35.006	1/2	14
94 1	12.1856	3/4	23.7066	1 8/4	35.2275	11 %	1

.]	Diam.	Side of Sq.	Diam.	Side of Sq.	Diam.	Side of Sq.
ı	65	57.6047	77	68.2395	89	78.8742
- 1	1/4	57.8263	X	68.461	X	79.0957
	1/2	58.0479	1/2	68.6826	1/4	79.3173
1	1 3/4	58.2694	%	68.9041	%	79-5389
:	66	58.491	78	69.1257	90	79.7604
- 1	*	58.7125	1 4	69.3473	1/4	79.982
	1/9	58.9341	1 29	69.5688	1/4	80.2035
_	%	59.1556	%	69.7904	3/4	80.4251
- 1	67	59.3772	79,	70.0119	91	80.6467
.!	7	59.5988	7	70.2335	y-1/	80.8682
	72 3/	60.0419	23	70.455 70.6766	12	81.0898
. 1	68	60.2634	80		8/4	81.3113
_ <u>`</u> '	1	60.485	1/2	70.8981	00	
1	1/2	60.7065	1 2	71.1197	92	81.5329 81.7544
	84	60.9281	84	71.5628	12	81.976
-,1	69	61.1497	81	71.7844	8/	82.1975
- ()	1/4	61.3712	1 1/4	72.0059	00	
1	1/3	61.5028	17	72.2275	931/	82.4191 82.6407
5	8/4	61.8143	8/4	72.4491	12	82.8622
3	70	62.0359	82	72.6706	84	83.0838
7	1/4	62.2574	1/4	72.8921		
3 !	1/2	62.479	1/3	73.1137	941/	83.3053
3 ;	%	62.7006	3/4	73-3353	72	83.5269 83.7484
1	71	62.9221	83	73.5568	84	83.97
•	1/4	63.1437	1/4	73-7784		
5 :	1/2	63.3652	1/2	73-9999	951	84.1916
ī	%	63 5868	8/4	74.2215	7	84.4131
•	72,	63.8083	84.	74.4431	14 34	84.6347 84.8562
3	/ <u>*</u>	64.0299	14	74.6647		l,
7	82	64.2514	8/2	74.8862	96	85.0778
3	74	64.4730	2-74	75.1077	1	85.2993
•	731/	64.6946	85	75.3293	82	85.5209
* i	1/	64.9161 65.1377	12	75.5508 75.7724	/4	85.7425
5	8/4	65.3592	8/	75.9934	97,	85.9646
	74	65.5808	86	76.2155	1	86.185
5	141/	65.8023	1/	76.4371	79 8/	86.4071 86.6289
2	17	66.0230	1%	76.6586	/4	
7	8/4	66.2455	8/4	76.8802	98	86.8502
3	75	66.467	87	77.1017	7.	87.0718
3 1	1/4	66.6886	1/4	77-3233	8/	87.2933
1 :	1/2	66.9104	1/8	77.5449	74	87.5449
į	· ¾	67.1317	8/4	77.7664	99,	87.7364
5	76	67.3532	88	77.988	7	87.958
	1/4	67.5748	1/4	78.2095	8/2	88.1796
5	1/2	67.7964	1/2	78.4316	74	88.4011
2	%	68.0179	%	78.6526	100	88.6227

Application of Table.

n a Square that has same Area as a Given Circle.

of a square that has same area as a circle of 73.25 ins. is required as, page 233, opposite to 73.25 is 4214.11; and in this telde of a square having same area as a circle of that diamet

Lengths of Circular Arcs, up to a Semicircle.

Diameter of a Circle = 1, and divided into 1000 equal Parts.

.101 1.02698 .151 1.05973 .201 1.10447 .251 1.10633 .301 I .102 1.02752 .152 1.06051 .202 1.10548 .252 1.16157 .302 I .103 1.02806 .153 1.0613 .203 1.1065 .253 1.16279 .303 I .104 1.0286 .154 1.06209 .204 1.10752 .254 1.1649 .304 I .105 .02914 .155 1.06288 .205 1.10855 .255 1.16526 .305 I	.2249 .2263 .2277 .2291 .2396 .2336 .2334 .2334 .2351
.101 1.026 98 .151 1.059 73 .201 1.104 47 .251 1.106 33 .301 I .102 1.027 52 .152 1.060 51 .202 1.105 48 .252 1.161 57 .302 I .103 1.028 06 .153 1.061 3 .203 1.106 5 .253 1.162 79 .303 I .104 1.028 6 .154 1.062 09 .204 1.107 52 .254 1.164 02 .304 I .105 1.029 14 .155 1.062 88 .205 1.108 55 .255 1.165 26 .305 I	.2277 .2291 .2306 .2320 1.2334 1.234 1.236
.102 1.02752 .152 1.06051 .202 1.10548 .252 1.16157 .302 1 .103 1.02866 .153 1.0613 .203 1.1065 .253 1.16279 .303 1 .104 1.0286 .154 1.06209 .204 1.10752 .254 1.16402 .304 1 .105 1.02914 .155 1.06288 .205 1.10855 .255 1.16526 .305 1	1.2391 1.2396 1.2334 1.234 1.236
.103 1.028 06 .153 1.061 3 .203 1.106 5 .253 1.162 79 .303 1 .104 1.028 6 .154 1.062 09 .204 1.107 52 .254 1.164 02 .304 1 .105 1.029 14 .155 1.062 88 .205 1.108 55 .255 1.165 26 .305 1	1.2306 1.2330 1.2334 1.234(
.104 1.0286 .154 1.062 09 .204 1.107 52 .254 1.164 02 .304 1 .105 1.029 14 .155 1.062 88 .205 1.108 55 .255 1.165 26 .305 1	1.2320 1.2334 1.234 1.236
.105 1.029 14 1.155 1.062 88 .205 1.108 55 .255 1.165 26 .305 1	1.2334
206 2 200 2 206 2 262 60 206 2 200 20 2 266 20 206 2	1.2349
.106 1.029 7 .156 1.063 68 .206 1.109 58 .256 1.166 49 .306 1	1.236
	1.237
.11 1.031 96 .16 1.066 93 .21 1.11374 .26 1.171 5 .31 1	(239
	1.240
	1.242
	1.243
	1.245
	1.246
	1.248
	1.249
	1,250
	1.252
, , , , , , , , , , , , , , , , , , , ,	1.253
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1.255
	1,250
	1.258
	1,259
	1.261
The state of the s	1.204
	1.265
	1.267
0 1111	1.268
	1.270
	1.271
100	1.273
	1.275
	1.270
	1.278
	1.279
	1.281
	1.282
.14 1.05147 .19 1.09365 .24 1.14714 .29 1.21202 .34 1	1.28
	1.28
	1.28
	1.28
	1.29
.145 1.055 16 .195 1.098 5 .245 1.153 08 .295 1.217 94 .345	1.29
.146 1.055 91 .196 1.099 49 .246 1.154 29 .296 1.219 26 .346	1.29
.147 1.05667 .197 1.100 48 .247 1.15549 .297 1.22061 .347	1,39
	1.29
149 1.058 19 1.199 1.102 47 1.249 1.157 91 1.223 47 349	112

ht.	Length.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.
5	1.29997	.38	1.34899	.41	1.400 77	-44	1.455 12	-47	1.511 85
ŞI	1.301 56	.381	1.35068	.411	1.402 54	.441	1.45697	.471	1,513 78
52	1.30315	.382	1.35237	.412	1.40432	.442	1.45883	.472	1.515 71
53	1.30474	.383	1.354 06	.413	1.4061	-443	1.46069	.473	1.51764
54	1.306 34	.384	1.355 75	.414	1.40788	-444	1.46255	-474	1,51958
55	1.30794	.385	1.35744	.415	1,40966	-445	1.46441	-475	1.521 52
56	1.309 54	.386	1.359 14	.416	1.41145	.446	1.466 28	.476	1.523 46
57	1.311 15	.387	1.36084	417	1.41324	-447	1.46815	-477	1.525 41
58	1.31276	.388	1.362 54	.418	1.41503	.448	1.47002	+478	1.527 36
59	1.31437	.389	1.36425	.419	1.41682	•449	1.471 89	-479	1.529 31
5	1.31599	-39	1.36596	.42	1.41861	-45	1.47377	-48	1.531 26
ir	1.31761	.391	1.36767	.421	1.42041	·45I	1.47565	+481	1.533 22
2	1.31923	.392	1.36939	.422	1.422 22	.452	1.477 53	.482	1.535 18
13	1.32086	-393	1.37111	.423	1.42402	.453	1.47942	-483	1.537 14
4	1.322 49	-393	1.37283	.424	1.42583	.454	1.48131	-484	1.5391
	1.324 13	-395	1.374 55	.425	1.42764	-455	1.4832	.485	1.541 06
5	1.325 77	395	1.376 28	.426	1.42945	456	1.48509	-486	1.543 02
17	1.32741	-397	1.37801	.427	1.431 27	-457	1.48699	-487	1.544 99
8	1.32905	.398	1.37974	.428	1.43300	458	1.48889	-488	1.546 96
ig	1.33069	-399	1.38148	.429	1,43491	459	1,490 79	-489	1.548 93
3	100	100		100	11/2/25 25 1	100	10 10	•49	1.5509
1	1.33234	.4	1.38322	-43	1.436 73	.46	1.49269	·49I	1.55288
I	1.33399	.401	1.38496	·431	1.438 56	.461	1.4946	.492	1.55486
2	1.33564	.402	1.386 71	.432	1.44039	.462	1.49651	•493	1.55685
3	1.3373	403	1.38846	-433	1.44222	.463	1.49842	.494	1.558 54
4	1.33896	.404	1.39021	-434	1.44405	.464	1.500 33	.495	1.56083
5	1.34063	.405	1.39196	+435	1.44589	.465	1.502 24	-496	1.56282
	1.342 29	.400	1.39372	+430	1.44773	.466	1.504 16	-497	1.56481
78	1.34396	.407	1.39548	-437	1.44957	.467	1.506 08	-498	1.5668
	1.34563	.408	1.39724	+438	1.45142	.468	1.508	.499	1.568 79
9	1.34731	.409	1.399	-439	1.45327	.469	1.50992	.5	1.570 79

o Ascertain Length of an Arc of a Circle by preceding Table.

RULE.—Divide height by base, find quotient in column of heights, take agth for that height opposite to it in next column on the right hand. altiply length thus obtained by base of arc, and product will give length.

RXAMPLE.—What is length of an arc of a circle, base or span of it being 100 feet, ad height 25?

 $25 \div 100 = .25$; and .25, per table, = 1.15912, length of base, which, multiplied by 0 = 115.912 feet.

When, in division of a height by base, the quotient has a remainder after had place of decimals, and great accuracy is required.

Rule.—Take length for first three figures, subtract it from next following length; multiply remainder by this fractional remainder, add product to length, and sum will give length for whole quotient.

REAMPLE.—What is length of an arc of a circle, base of which is 35 feet, and beight or versed sine 8 feet?

 $8 \div _{35} = .228$ 5714; tabular length for .228 = 1.13331, and for .229 = 1.13444, difference between which is .00113. Then .5714 \times .00113 = .000645682.

Hence .228 =
$$1.13331$$
,
and .000 571 4 = .000 645 682

1.133955682, the sum by which be to be multiplied; and $1.133955682 \times 35 = 39.68845$ feet.

Side of Sq.	-	Side of Sq.	Diam.	Side of Sq.	Dlam.	Side of Sq.
46.97	65.	57.6047	77	68.2395	89	78.8742
17.1916	¥	57.8263	34	68.461	14	79.0957
17-4131	* * * * * * * * * * * * * * * * * * *	58.0479	36	68.6826	36	79.3173
47.6347	34	58.2694	34	68.9041	34	79.5389
47.8562	66	58,491	78	69.1257		
8.0778		58.7125	1/4	69.3473	90	79.7604
8.2994	12	58.9341	36	69.5688	13	79.982
48.5209	X X X	59.1556	3/4	69.7904	34	80.2035
18.7425	67	59-3772	79	70.0119	74	80.4251
18.964	1 X	59.5988	1/4	70.2335	91	80.6467
19.1856	1 3	59.8203	36	70.455	14	80.8682
9.4071	* * * * * * * * * * * * * * * * * * *	60.0419	8/4	70.6766	39	81.0898
19.6287	68	60.2634	80	70.8981	3/4	81.3113
19.8503	14	60.485	34	71.1197	92	81.5329
0.0718	38	60.7065	36	71.3413	1/4	81.7544
50.2934	34	60.9281	34	71.5628	36	81.976
50.5149	69	61.1497	81	71.7844	3/4	82.1975
50.7365	1/4	61.3712	14	72.0059	93	82.4191
50.958	33	61.5928	34	72.2275	931/	82.6407
51.1796	3/4	61.8143	34	72.4491	1%	82.8622
51.4012	70	62.0359	82	72.6706	36	83.0838
1.6227	1 1/4	62.2574	14	72.8921		
1.8443	1/3	62.479	34	73.1137	94,	83.3053
52.0658	34	62.7006	3/4	73-3353	12	83.5269 83.7484
2.2874	71	62.9221	83	73.5568	84	83.97
2.5089		63.1437	1/4	73-7784	100	
2.7305	X X X	63.3652	3/2	73-9999	95	84.1916
2.9521	¾	63 5868	8/4	74.2215	74	84.4131
3.1736	72	63.8083	84	74-4431	34	84.6347
3.3952	1	64.0299	1/4	74.6647	24	84.8562
53.6167	1 1/4	64.2514	1/9	74.8862	96	85.0778
53.8383	1 1/4	64.4730	24	75.1077	14	85.2993
54.0598	73	64.6946	85	75-3293	29	85.5209
4.2814	X	64.9161	14	75-5508	94	85.7425
54.503	X	65.1377	29	75-7724	97	85.9646
54-7245	73 73 74 74	65.3592	94	75-9934	14	86.185
54.9461	74		86	76.2155	3/2	86.4071
55.1676	X	65.8023	14	76.4371	8/4	86.6289
55.3892	1 25	66.0239	29	76.6586	98	86.8502
55.6107	%	66.2455	%	76.8802	1/	87.0718
55.8323	75.	66.467	87	77.1017	1/4	87.2933
6.0538	*	66 6886	14	77-3233	3/4	87.5449
56.2754	1 29	66.9104	79	77.5449	00	87.7364
56.497	_%	67.1317	%	77.7664	99	87.958
56.7185	76,	67.3532	88	77.988	1/2	88.1796
56.9401	1	67.5748	14	78.2095	1	3.4011
57.1616	8/2	67.7964	29	78.4316	ł .	
57.3832	%	68.0179	74	78.6526	1	6227

Application of Table.

Ascertain a Square that has same Am
Circle.

s.—If side of a square that has same area as a circle of 7: Table of Areas, page 233, opposite to 73.25 is 4214.11; t; which is side of a square having same area as a circle C

Lengths of Circular Arcs, up to a Semicircle.

Diameter of a Circle = 1, and divided into 1000 equal Parts.

H'ght.	Length.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.
.ı	1.02645	.15	1.05896	.2	1.10348	.25	1.15912	.3	1.22495
.101	1.02698	.151	1.05973	.201	1.10447	.251	1.160 33	301	1.22635
.102	1.027 52	.152	1.060 51	.202	1.10548	.252	1,16157	.302	1.22776
.103	1.02806	.153	1.0613	.203	1.1065	.253	1.16279	.303	1.22918
.104	1.0286	.154	1.06209	.204	1.10752	.254	1.16402	.304	1.23061
.105	1.02914	.155	1.06288	.205	1.108 55	.255	1.16526	.305	1.23205
.106	1.0297	.156	1.06368	.206	1.109 58	.256	1.16649	.306	1.23349
.107	1.030 26	.157	1.06449	.207	1.11062	.257	1.16774	.307	1.23494
.108	1.03082	.158	1.0653	.208	1.11165	.258	1.16899	.308	1.23636
.109	1.03139	.159	1.06611	.209	1.11269	.259	1.170 24	.309	1.2378
.11	1.03196	.16	1.06693	.21	1.11374	.26	1.1715	.31	1,23925
.111	1.032 54	.161	1.06775	.211	1.11479	.261	1.17275	.311	1.2407
.112	1.033 12	,162	1.068 58	.212	1.11584	.262	1.17401	.312	1.24216
.113	1.03371	.163	1.06941	.213	1.11692	.263	1.17527	.313	1.2436
.114	1.0343	164	1.07025	.214	1.11796	.264	1.17655	.314	1,24506
255	1.0349	.165	1.07109	.215	1.11904	.265	1.17784	.315	1.24654
.116	1.03551	.166	1.07194	.216	1.12011	.266	1.17912	.316	1.24801
.117	1.03611	.167	1.07279	.217	1.121 18	.267	1.1804	.317	1.24946
.118	1.03672	.168	1.07365	.218	1.12225	.268	1.18162	.318	1.25095
.119	1.03734	.169	1.07451	.219	1.12334	.269	1.18294	.319	1.25243
.12	1.03797	.17	1.07537	.22	1.12445	.27	1.18428	.32	1.25391
.121	1.0386	.171	1.07624	.221	1.125 56	.271	1.185 57	.321	1.25539
.122	1.03923	.172	1.07711	.222	1.12663	.272	1.18688	.322	1.25686
.123	1.03987	.173	1.07799	.223	1.12774	.273	1.18819	.323	1.25836
.124	1.04051	.174	1.07888	.224	1.12885	.274	1.18969	.324	1.25987
.125	1.04116	.175	1.07977	.225	1.12997	.275	1.19082	.325	1.261 37
.126	1.04181	.176	1.08066	.226	1.131 08	.276	1.19214	.326	1.26286
.127	1.04247	.177	1.081 56	.227	1.13219	.277	1.19345	.327	1.26437
.128	1.04313	.178	1.08246	.228	1.13331	.278	1.19477	.328	1.26588
.129	1.0438	.179	1.08337	.229	1.13444	.279	1.1961	.329	1.2674
.13	1.04447	.18	1.08428	.23	1.135 57	.28	1.19743	-33	1.268 92
.131	1.04515	.181	1.085 19	.231	1.13671	.281	1.19887	.331	1.27044
.132	1.04584	.182	1.08611	.232	1.13786	.282	1.20011	.332	1.27196
.133	1.046 52	.183	1.08704	.233	1.13903	.283	1.20146	-333	1.27349
.134	1.04722	.184	1.08797	.234	1.1402	.284	1,202 82	-334	1.27502
.135	1.04792	.185	1.0889	.235	1.141 36	.285	1.204 19	-335	1.276 50
.136	1.04862	.186	1.08984	.236	1.14247	.286	1.205 58	-336	1.2781
.137	1.04932	.187	1.090 79	.237	1.14363	.287	1.20696	-337	1.27964
.138	1.05003	.188	1.091 74	.238	1.1448	.288	1.208 28	-338	1.28118
.139	1.05075	.189	1.09269	.239	1.14597	.289	1.20967	•339	1.28273
.14	1.05147	.19	1.09365	.24	1.14714	.29	1.21202	-34	1.284 28
.141	1.0522	.191	1.09461	.241	1.14831	.291	1.21239	.341	1.28583
.142	1.05293	.192	1.095 57	.242	1.14949	.292	1.21381	-342	1.28739
.143	1.05367	.193	1.096 54	.243	1.15067	.293	1.2152	•343	1.28895
.144	1.05441	.194	1.097 52	.244	1.15186	.294	1.21658	.344	1.29052
145		.195	1.0985	.245	1.15308	.295	1.21794	-345	1.29209
	75591	.196	1.09949	.246	1.15429	.296	1.21926	.346	1.29366
	R	197	1.10048	.247	1.15549	.297	1,22061	•347	1.29523
		198	1.10147	.248	1.1567	.298	1.22203	.348	1.29681
		99	1.10247	.249	1.15791	11.299	1.22347	11-349	11.2023

ght.	Length.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.	Hight.	Length.
5	1.29997	.38	1.34899	.4I	1.400 77	-44	45512	-47	1.51185
51	1.301 56	.381	1.35068	-411	1.402 54	.441	45097	-47I	1.51378
52	1.303 15	.382	1.35237	.412	1.404 32	.442	45883	.472	1.515 71
53	1.304 74	.383	1.35406	.413	1.406 I	-443	.46069	.473	1.51764
54	1.30634	.384	1.355 75	.414	1.40788	.444	46255	.474	1.51958
55	1.30794	.385	I-35744	.415		-445	46441	-475	1.521 52
56	1.30954	.386	1.359 14	.416	1.41145	.446	46628	.476	1.52346
57	1.31115	.387	1.36084	.417	1,41324	+447	46815	-477	1.525 41
58	1.31276	.388	1.362 54	.418	1.41503	448	1.47002	.478	1.527 36
59	1.31437	.389	1.36425	.419	1.41682	-449	1.47189	479	1.529 31
5	1.31599	.39	1.36596	.42	1.41861	.45	1.47377	-48	1.531 26
5r	1.31761	.391	1.36767	.421	1.42041	·45I	1.47565	-48r	1,533 22
52	1.31923	.392	1.369.39	.422	1.422 22	452	1.477 53	-482	1.535 18
iz	1.32086	-393	1.371 11	.423		453	1.479 42	.483	1.537 14
3	1.32249	-394	1.37283	.424	1.42583	.454	1.48131	.484	1.5391
75	1.324 13	•395	1.374 55	.425	1.42764	455	1.4832	.485	1.541 06
.5 6	1.325 77		1.37628	.426		456	1.48500	.486	1.543 02
	1.32741	.397	1.37801	.427	1.431 27	+457	1.48699	-487	1.544 99
78	1.32905	.398	1.37974	.428	1.43309	.458	1.48889	-488	1.54696
9	1.33069	-399	1.38148	.429	1.43491	459	1.490 79	489	1.54893
- 1				1			201	•49	1.5509
•	1.33234	.4	1.383 22	-43	1.436 73	.46	1.49269	-491	1.55288
I	1.33399	.401	1.38496		1.438 56	.461	1.4945	.492	1.55486
2	1.33564	.402	1.38671	.432	1.440 39	462	1.49651	.493	1.55685
3	1.3373	.403	1.38846		1.442 22	.463	1.49842	.494	1.558 54
4	1.33896	-404	1.39021		1.44405	.464	1.50033	-495	1.56083
5	1.34063	.405	1.39196		1.44589	.465	1.502 24	-496	1.56282
	1.342 29	.406	1.39372	.436	1.44773	.466	1.504 16	-497	1.56481
7	1.34396		1.39548	•437	1.44957	.467	1.506 08	-498	1.5668
8	1.34563	.408	1.39724	•438		.468	1.508	.499	1.568 79
9	1.34731	.409	1.399	439	1.45327	.469	1.50992	-5	1.570 79

Ascertain Length of an Arc of a Circle by preceding Table.

ture.—Divide height by base, find quotient in column of heights, take th for that height opposite to it in next column on the right hand. Itiply length thus obtained by base of arc, and product will give length.

EAMPLE —What is length of an arc of a circle, base or span of it being 100 feet, height 25?

; ÷ 100 = .25; and .25, per table, = 1.15912, length of base, which, multiplied by = 115.912 feet.

Then, in division of a height by base, the quotient has a remainder after **d place of decimals, and** great accuracy is required.

WLE.—Take length for first three figures, subtract it from next following th; multiply remainder by this fractional remainder, add product to length, and sum will give length for whole quotient.

EAMPLE.—What is length of an arc of a circle, base of which is 35 feet, and ht or versed sine 8 feet?

```
+ 35 = .228 571 4; tabular length for .228 = 1.13331, a liference between which is .001 13. Then .5714 × .001.

Hence .228 = 1.133 31, a liference between which is .001 13. Then .5714 × .001.

Honce .228 = 1.133 31, a liference between which is .001 13. Then .5714 × .001.

Honce .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13331, a liference length for .228 = 1.13
```

Lengths of Circular Arcs from 1° to 180°.

	(Radius = 1.)												
egrees.	Length.	Degrees.	Length.	Degrees.	Length.	Degrees.	Longth.						
1	.0174	46	.8028	QI.	1.5882	136	2.3736						
2	.0349	47	.8203	92	1.6057	137	2.3911						
3	.0524	48	.8377	93	1.6231	138	2.4085						
4	.0698	49	.8552	94	1.6406	139	2.426						
5	.0873	50	.8727	95	1.6581	140	0 4425						
6	1147	51	.890I	96	1.6755	141	2.4435 2.4609						
7	.1222	52	.9076	97	1.693	142	2.4784						
8		53	.925	98	1.7104	143	2.4958						
	∙1396	54	·925 ·9424	99	1.7279	144	2.5133						
9	.1571	55	·9599	100	1.7453	145	2.5307						
10	.1745	56	·93 99 ·9774	101	1.7628	146	2.5482						
11	.192	57	.9948	102	1.7802	147	2.5656						
12	.2094	58	1.0123	103	1.7977	148	2.5831						
13	.2269	59	1.0297	104	1.8151	149	2.6005						
14	.2443	41 7		105	1.8326		•						
15	.2618	60	1.0472	106	1.85	1,50	2.618						
16	.2792	61	1.0646	107	1.8675	151	2.6354						
17 18	.2967	62	1.0821	108	1.8849	152	2.6529						
	·3141	63	1.0995	109	1.9024	153	2.6703						
19	-3316	64	1.117			154	2.6878						
20	·3491	65		110	1.9199	155	2.7053						
21	.3665	66	1.1519	111	1.9373	156	2.7227						
22	.384	68	1.1694	112	1.9548	157	2.7402						
23	4014		1.1868	113	1.9722	158	2.7576						
24	-4189	69	1.2043	114	1.9897	159	2.7751						
25	•4,363	70	1.2217	115	2.0071 2.0246	160	2.7925						
26	·4538	71	1.2392	117	2.0240	161	2.81						
27	.4712	72	1.2566	118	2.0595	162	2.8274						
28	.4887	73	1.2741	119	2.0769	163	2.8449						
29	·5061	74	1.2915	-1.9	2.0709	164	2.8623						
30	.5236	75	1.309	120	2.0944	165	2.8798						
31	·541	76	1.3264	121	2.1118	166	2.8972						
32	-5585	77	1.3439	122	2.1293	167	2.9147						
33	•5759	78	1.3613	123	2.1467	168	2.9321						
34	•5934	79	1.3788	124	2.1642	169	2.9496						
35	.6109	80	1.3963	125	2.1817	170	2.967						
36	.6283	8r	1.4137	126	2.1991	171	2.9845						
27	.6458	82	1.4312	127	2.2166	172	3.002						
38	.6632	83	1.4486	128	2.2304	173	3.0194						
39	.6807	84	1.4661	129	2.2515	174	3.0369						
40	.6981	85	1.4835	130	2.2689	175	3.0543						
41	.7156	86	1.501	131	2.2864	176	3.0718						
42	.733	87	1.5184	132	2.3038	177	3.0892						
43	.7505	88	1.5359	133	2.3213	178	3.1067						
44	.7679	89	1.5533	134	2.3387	179	3.1241						
45	.7854	90	1.5708	135	2.3562	180	3.1416						

Ascertain Length of a Circular Arc by Table.

Tom column opposite to degrees of arc, take length, and multiof circle.

⁻ darross in an arc are 45°, and diameter of circle 5 sec. = 1.9635 feet.

Lengths of Elliptic Arcs. Up to a Semi-ellipse.

Transverse Diameter = 1, and divided into 1000 equal Parts.

ht.	Length.	H'ght.	Longth.	H'ght.	Length.	H'gbt.	Length.	H'ght.	Longth.
	1.04162	.15	1.0933	.2	1.15014	.25	1.211 36	.3	1.27660
οı	1.04262	.151	1.09448	.201	1.15131	.251	1.21263	.301	1.27803
22	1.04362	.152	1.095 58	.202	1.15248		1.2139	.302	1.27937
23	1.04462	153	1.00660	.203		.253	1.21517		1.28071
3 4	1.04562	.154	1.0978	.204	1.15484	.254	1.21644	.304	
		.155	1.09891	.205	1.15602	.255	1.21772	.305	1.28339
)5)6	1.04762	.156	1.10002	.206	1.1572	.256	1.210	.306	1.284 74
	1.04862	.157	1.101 13	.207	1.15838		1.22028	.307	1.28600
)7)8	1.04962	.158	1.102 24	.208	1.15957		1.221 56	.308	1.28744
9	1.05063	.159	1.10335	.200	1.160 76	.259	1.22284	.309	1.288 79
- 1	1.05164	.16		.21	1.161 96	.26	1.224 12	.31	1.20014
ا ـ:			1.104 47	.211	1.16316		1.22541		
I.	1.05265	.162	1.1056	.211	1.164 36	.262	1.2267		1.291 49
2	1.05366	.163	1.106 72		1.165 57	.263	1.22799	.312	1.29421
3	1.05467	.164	1.10784	.213	1.166 78	.264	1.22928	.313	1.295 57
4	1.055669	.165	1.11008	.215	1.16799	.265	1.230 57	.315	1.29603
5	1.0577	.166	1.1112	.216	1.1692	.266	1.23186	.316	1.29829
	1.058 72	.167	1.11232	.217	1.17041	.267	1.23315	.317	1.29965
7 8	1.05974	.168	1.11344	.218	1.17163	.268	1.234 45	.318	1.30102
9	1.06076	.169	1.114 56	.219	1.17285	.269	1.235 75	.319	1.30239
7		1 -		1 - 1		- !	1		
_	1.061 78	.17	1.11569	.22	1.17407	.27	1.23705	.32	1.303 76
I	1.0628	.171	1.11682	.221	1.17529	.271		.321	1.30513
3	1.06382	.172	1.11795	.222	1.17651	.272	1.23966		1.3065
3	1.06484	.173	1.11908	.223	1.17774	.273	1.24097	.323	1.30787
4	1.06586 1.06689	·174	1.12021	.224	1.17897	.274	1.242 28		1.30924
5	1.06792	.175	1.121 34	.225	1.1802	.275	1.24359	.325 .326	1.31198
	1.06895	.176	1.12247	.226	1.18266	.277	1.24612	.327	1.31335
7	1.06998	.178	1.1236	.228	1.1839	.278	1.24744	.328	1.31472
,	1.07001	.179	1.125 86	.229	1.185 14	.279	1 248 76	.329	1.3161
,		i I		1 -	-				
_	1.07204	.18	1.12699	.23	1.186 38	.28	1.2501	.33	1.31748
ſ	1.07308	.181	1.12813	.231	1.18762	.281	1.251 42	.331	1.31886
	1.074 12	.182	1.12927	.232	1.18886	.282	1.252 74	.332	1.32024
3	1.075 16	.184	1.13041	.233	1.1901	.284	1.255 38	•333	1.32102
	1.07621	.185	1.131 55	.234	1.191 34	.285		·334 ·335	1.32438
1	1.07831	.186	1.13269	.235	1.19382	.286			1.325 76
;	1.07937	.187	1.13497	.237	1.19506		1.25936	.337	1.32715
	1.08043	.188	1.13611	.238	1.1963	.288	1.20000	.338	1.328 54
	1.081 49	.189	1.137 26	.239	1.19755	.289	1.26202	.339	1.32993
•						1 .	1.26335		
	1.082 55	.19	1.13841	.24	1.1988	.29		•34	1.331 32
	1.08362	.191	1.139 56	.241	1.20005	.291		-341	1.33272
	1.08469	.192		.242	1.2013	.292	I.'	342	1.334 12 1.335 52
	1.085 70	.193	1.141 86	.243	1.202 55	.293	I.	M 3	T.335 52
	1.08792	.195	1.14301	.244	1.20506	.295	I.	-	1833
	1.08001	.196	1.145 31	.245	1.205 32	.295	I.		74
	1.0001	.197	1.14646	.247	1.207 58	.297	1.		•
-	1.091 19	.198	1.14762	.248	1.20884	.298	\ 1 .		
			1.14888	.249		1299	1		
•			-40	-73		77	•		

H'ght,	Length.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.
.35	1.34539	.405	1.425 33	.46	1.50842	.515	1.59408	-57	1.680 36
.351	1.34681	.406	1.42681	.461	1.500 96	.516	1.595 64	-571	1.68195
.352	1.34823	.407	1.428 29	.462	1.5115	.517	1.5972	.572	1.683 54
.353	1.34965	.408	1.42977	.463	1.51304	.518	1.59876	-573	1.68513
-354	1.351 08	.409	1.431 25	.464	1,51458	.519	1.600 32	-574	1.686 72
-355	1.35251	.4I	1.432 73	.465	1.51612	.52	1.601 88	-575	1.688 31
.356	1.35394			.466	1.51766	.521	1.60344	.576	1.6899
-357	1.35537	.411	1.434 21	.467	1.5192		1.605	.577	1.69149
.358	1.3568	·412	1.437 18	.468	1.52074	.522	1.606 56	-578	1.60308
-359	1.35823	414	1.43867	.469	1.522 29	.524	1.60812	.579	1.69467
.36	1.35967	415	1.44016	.47	1.52384	-525	1.60968	.58	1.60626
.361	1.35111	.416	1.441 65	.471	1.52539	.526	1.611 24	.581	1,69785
.362	1.36255	417	1.443 14	.472	1.52691	.527	1.6128	.582	1.69945
.363	1.36399	.418	1.44463	473	1.52849	.528	1.614.36	.583	1.70105
.364	1.36543	.419	1.44613	474	1.53004	.529	1.61592	.584	1.70264
.365	1.36688	100	1000	-475	1.531 59		1.61748	.585	1.70424
.366	1.36833	.42	1.44763	476	1.53314	.53	1.61904	.586	1.70584
.367	1.36978	.421	1.44913	-477	1.534 69	.531	1.6206	.587	1.70745
.368	1.371 23	.422	1.45064	.478	1.53625	-532	1.62216	.588	1.70905
-369	1.37268	.423	1.45214	.479	1.53781	-533	1.62372	.589	1.71065
.37	and the second second	.424	1.45364	.48		·534 ·535	1.625 28	.59	1.71225
	1.374 14	·425 ·426	1.45515	.481	1.53937	.536	1.626 84		1.71286
.371	1.37708	.427	1.45815	.482	1.54249	.537	1.6284	.591	1.71546
373	1.37854	.428	1.45966	.483	1.54405	538	1.629 96		1.71707
374	1.38	.429	1.46167	.484	1.54561	-539	1.631 52	·593 ·594	1.71868
375	1.38146			.485	1.547 18		A 400 041	-595	1.72029
376	1.38292	-43	1,46268	.486	1.548 75	•54	1.63309	.596	1.7219
-377	1.38439	.431	1.464 19	.487	1.55032	.541	1.63465	-597	1.7235
378	1.38585	.432	1.4657	.488	1.55189	-542	1.63623	.598	1.72511
.379	1.38732	433	1.467 21	489	1.55346	.543	1.6378	.599	1.72672
.38	1.388 79	·434 ·435	1.47023	.49	1.55503	·544 ·545	1.64094	.6	1.72833
381	1.39024	436	1.471 74	.491	1.5566	.546	1.64251	.601	1.72033
382	1.391 69	-437	1.47326	.492	1.55817	.547	1.64408	.602	1.731 55
.383	1.393 14	.438	1.474 78	.493	1.55974	.548	1.64565	.603	1.73316
384	1.394 59	439	1.4763	.494	1.561 31	-549	1.64722	.604	1.73477
385	1.396 05	44	1.47782	.495	1.56289		1.64879	.605	1.73638
.386	1.39751	.441	1.47934	.496	1.564 47	.551	1.65036	.606	1.73799
.387	1.398 97	442	1.48086	.497	1.56605	.552	1.65193	.607	1.7396
388	1.400 43	443	1.48238	.498	1.56763	-553	1.6535	.608	1.74121
.389	1.401 89	444	1.48391	.499	1.569 21	.554	1.65507	.609	1.74283
.39	1.403 35	445	1.48544	•5	1.57089	-555	1.65665	.61	1.744 44
.391	1.40481	.446	1.48697	.501	1.572 34	.556	1.65823	.611	1.74605
.392	1.406 27	-447	1.4885	.502	1.57389	-557	1.65981	.612	1.74767
-393	1.407 73	.448	1.49003	.503	1.57544	.558	1.66139	.613	1.74929
-394	1.409 19	449	1.491 57	.504	1.57699	.559	1.66297	.614	1.75091
	1.41065	45	1.49311	.505	1.578 54	.56	1.664 55	.615	1.75252
•395 •06	1.41211	451	1.49465	.506	1.58009	.561	1.666 13	.616	1.754 14
, ,	1.41357	452	1.49618	.507	1.581 64	.562	1.66771	.617	1.755 76
	41504	453	1.49771	.508	1.58319	.563	1.66929	.618	1.75738
	651	454	1.400 24	.509	1.584 74	564	1.67087	.619	1.759
					1.586 29	.565	1.67245	.620	1.76062
					1.587 84	.566	1.67403	.62	1.762 24
					5894	.567	1.67561	.622	1.76386
					.59096	.568	1.67719	.623	1.76548
					.592 52	.569	1.67877	.624	1.767 1

;th.	H'ght.	Longth.	H'ght.	Length.	H'ght.	Length.	H'ght.	Length.
3 72	.68	1.858 74	.735	1.950 59	.79	2.04462	.845	2.141 55
334	.68r	1.860 39	.736	1.952 28	.791	2.04635	.846	2.14334
I 97	.682	1.86205	·737	1.95397	.792	2.04809	.847	2.14513
3 59	.683	1.8637	•738	1.95566	.793	2.04983	.848	2.14692
521	.684	1.865 35	.739	1.95735	•794	2.051 57	.849	2.14871
584	.685	1.867	.74	1.95994	.795	2.05331	.85	2.1505
847	.686	1.86866	·74I	1.960 74	.796	2.05505	.851	2.15229
209	.688	1.870 31 1.871 96	.742	1.962 44	•797	2.056 7 9 2.058 53	.852	2.15409
I 72	.689	1.87362	.743	1.964 14	.798	2.060 27	.853	2.15589
3 35	.69	1.87527	.744	1.96583	·799	2.06202	.854	2.1577
498 56	.691	1.87693	·745	1.969 23	.8or	2.063 77	.856	2.1595
823	.692	1.878 59	.747	1.970 03	.802	2.065 52	.857	2.16300
986	.693	1.880 24	.748	1.97262	.803	2.067 27	.858	2.16489
149	.694	1.8819	.749	1.974 32	.804	2.06901	.859	2.16668
312	.695	1.883 56	.75	1.97602	.805	2.070 76		2.16848
4 75	.696	1.885 22	.751	1.977 72	.806	2.07251		2.17028
o 38	.697	1.88688	.752	1.97943	.807	2.07427	.862	2.17209
801 '	.698	1.888 54	.753	1.98113	.808	2.07602	.863	2.17389
964	.699	1.8902	.754	1.98283	.809	2.07777	.864	2.1757
1 27	.7	1.89186	•755	1.984 53	.8ı	2.07953	.865	2.17751
29	.701	1.893 52	.756	1.98623	.811	2.081 28	.866	2.17932
4 54	.702	1.895 19	•757	1.98794	.812	2.08304	.867	2.18113
517	.703	1.89685	.758	1.98964	.813	2.0848	.868	2.18294
78	.704	1.898 51	.759		.814	2.086 56	.869	2.18475
943	.705	1.900 17	.76	1.99305	.815	2.088 32	.87	2.186 56
107	.706 .707	1.901 84	.761	1.994.76	.816	2.090 08	.871	2.188 37
271	.708	1.905 17	.762	1.99647	.818	2.0936	.872	
4 35	.709	1.90684	.763	1.99818	.819	2.09536	.873	2.192
599 763	.71	1.908 52	.765	2.0016	.82	2.00712	.875	2.19382
928	.711	1.91019	.766	2.00331	.821	2.00888	.876	2.19564
291	.712	1.91187	.767	2.00502	.822		.877	2.19928
2 55	.713	1.91355	.768	2.006 73	.823	2.10242	.878	2.20I I
419	.714	1.915 23	.769	2.00844	.824		.879	2.202 92
583	.715		.77	2.01016	.825	2.10596	.88	2.204 74
747	.716	1.918 59	-77I	2.01187	.826	2.10773	.881	2.206 56
911	.717	1.92027	.772	2.01359	.827	2.1095	.882	2.208 39
275	.718	1.921 95	.773	2.01531	88	2.111 27	.883	2.21022
24	.719	1.92363	.774	2.01702	.829		.884	2.21205
104	.72	1.925 31	·775	2.01874	.83	2.11481	.885	2.21388
568		1.927	.776	2.02045		2.116 59	.886	2.21571
733	.722	1.92868	.777	1	.832	2.11837	.887	2.21754
397	.723	1.930 36	.778	2.02389	.834	2.12015	.889	2.21937
2 26	.725	1.93373	.78	- 1	.835	2.12371	.89	1
391		1.93541	.781	2.027 33	.836	2.12549	.891	2.22303
5 56	.727	1.9371	.782	2.0308	.837	2.12727	,800	2.22430
72		1.938 78	.783	2.032 52	.838	2.12905	1	,
385	.729	1.94046	.784	2.034 25	.839	2.1308		
25	.73	1.942 15	.785	2.03598	.84	2.1326		
215	.731	1.94383	.786	2.037 71	.841	2.1343		
379	.732	1.945 52	.787	2.03944	.842	2.1361		
544)	.733	1.947 21	.788	2.041 17	.843	2.1379		
109:/	•734 /	1.9489	.789	2.0429	.844	2.1397	3.	
				Z				

Versed Sine.	Seg. Area.	Versed Sine.	Seg. Area.	Versed Sine,	Seg. Area.	Versed Sine.	Seg. Area.	Versed Sine.	Seg.
.256	.158 76	-305	.202 76	-354	.2488	.403	.296 31	.452	.3
.257	.15964	.306	,20368	-355	.249 76	.404	.29729	.453	3
.258	.16051	.307	.2046	-356	.25071	.405	.29827	-454	-3
.259	.16139	.308	.205 53	-357	.25167	.406	.29925	+455	13
.26	.162 26	-309	.20645	.358	.25263	-407	.300 24	.456	1
.261	.163 14	.31	.20738	-359	.253 59	.408	.301 22	-457	1
.262	.16402	.311	.2083	.36	-254 55	.409	.3022	-458	1
.263	.1649	.312	.20923	.361	.255 51	.41	.303 19	-459	13
.264	.165 78	-313	.21015	.362	.25647	.411	-30417	.46	13
.265	.166666	-314	.21108	.363	.25743	.412	-305 15	.461	13
.266	.16755	-315	.21201	.364	.25839	.413	.30614	.462	13
.267	.168 44	.316	.21294	.365	.25936	.414	-30712	.463	13
.268	.16931	-317	.21387	.366	.260 32	.415	.30811	.464	1
.269	.1702	.318	.2148	.367	.261 28	.416	.30909	.465	1
.27	.17109	.319	.21573	.368	.262 25	-417	-31008	.466	1
.271	.17197	.32	.21667	.369	,26321	.418	-31107	.467	1
.272	.17287	.321	.2176	.37	.26418	.419	.31205	-468	1
.273	.17376	.322	.21853	·371	.265 14	.42	.31304	.469	1
.274	.17465	.323	.21947	-372	.26611	.421	.31403	-47	
-275	.175 54	.324	,2204	-373	.26708	.422	.31502	-471	1
.276	.17643	.325	.221 34	.374	.268 04	.423	.316	-472	1
.277	.17733	.326	122228	-375	.26901	-424	.31699	-473	1
.278	.17822	+327	.22321	.376	.26998	-425	.31798	-474	10
.279	.17912	.328	.22415	•377	.27095	.426	.31897	•475	1
.28	.18002	.329	.22509	-378	.271 92	.427	.31990	.476	1
.281	.18092	+33	,22603	.379	.27289	.428	.32095	-477	1
.282	.18182	.331	.22697	.38	.273 86	.429	.321 94	-478	1
.283	.18272	.332	.22791	.381	.27483	-43	.32293	.479	1
.285	.18361	•333	.22886	.382	.275 80	-431	.32391	.48	
.286	.18542	•334	.2298	·383 ·384	.27677	.432	-3249	.481	1
.287	.186.33	·335 ·336	.230 74	-385	.277 75	433	-325 9 -326 89	.482	Е
.288	.18723	+337	.23263	.386	.27969	434	.32788	.484	T
.289	.18814	-338	.233 58	.387	.28067	436	.32887	.485	10
.20	.18905	-339	.234 53	.388	.28164	437	-32987	.486	T
.291	.18995	-34	-235 47	.389	.28262	.438	.33086	.487	Ш
.292	.19086	.341	,23642	-39	.283 59	•439	-331 85	.488	16
.293	.19177	.342	.23737	.391	.284 57	.44	.33284	.489	10
.294	.19268	-343	.23832	.392	.285 54	.441	-333 84	.49	1
+295	.1936	-344	.23927	-393	.286 52	.442	-33483	.491	Ш
.296	.19451	-345	.24022	-394	.2875	-443	-33582	.492	80
.297	19542	.346	.241 17	-395	.28848	.444	.33682	-493	10
1298	19634	-347	.24212	.396	.28945	445	-33781	.494	B
.299	19725	.348	.24307	-397	.29043	-446	.3388	-495	18
-3	.19817	-349	.24403	-398	.29141	-447	.3398	.496	1
.30r	.19908	-35	.24498	-399	.29239	.448	-34079	-497	1/2
.302	.2	-351	-245 93	.4	-29337	-449	-341 79	-498	1
-303	.200 92	-352	.24689	.401	.29435	-45	-342 78	-499	1
.304	201 84	-353	.24784	.402	.29533	-451	-343 78	.5	1.

To Compute Area of a Segment of a Circle by prece Table.

Rule.—Divide height or versed sine by diameter of circle; find quot an of versed sines. Take area for versed sine opposite to it in maright hand, multiply it by square of diameter, and it will gi

— Required area of a segment of a circle, its height being 10 feet and circle 50.

0 = .2, and .2, per table, = .11182; then .11182 $\times 50^2 = 279.55$ feet.

Division of a Height by Base, Quotient has a Remainder after 'hird Place of Decimals, and great Accuracy is required.

-Take area for first three figures, subtract it from next following iply remainder by said fraction, add product to first area, and ive area for whole quotient.

-What is area of a segment of a circle, diameter of which is 10 feet, and 1.575?

0 = .1375; tabular area for .157 = .07892, and for .158 = .07965, the difveen which is .00073.

(.000 73 = .000 365.

.157 = .07892.0005 = .000365

0.079285, sum by which square of diameter to be multiplied; and $0.079285 \times 10^2 = 7.9285$ feet.

Areas of Zones of a Circle.

Diameter of a Circle = 1, and divided into 1000 equal Parts.

18.	H'ght.	Area.	H'ght.	Area.	H'ght.	Area.	H'ght.	Area.
	.035	.034 97	.069	.068 78	.103	.102 27	127	72505
: 1	.036	.03597			.104	.10325	.137	.13527
: 1	.037	.03697	.07	.069 77	.105	.103 23	.139	.13719
	.038	.03796	.071	.070 76	.106	.1052		
;	.039	.03896	.072	.071 75	.107	.10618	.14	.13815
	.04		.073	.072 74	.108	.10715	.141	.13911
;	.041	.03996	.074	.073 73	.109	.10813	.142	.14007
3	.042	.040 95	.075	.074 7 2 .075 5	1 -	- :	•143	.141 03
. 1		.041 95	.077	.07669	.111	.10911	.144	.141 98
'	.043	.04295	.078	.07768	.112	.11008	.145	.14294
	.045	.04394	.079	.07867	.113	.11203	.146	.1439
: 1	.046	.045 93	.08		.114	.11203	.148	14405
: 1	.047	.04693	.081	.07966 .08064	.115	.11398	.149	.14581
,	.048	.04793	.082	.08163	.116	.11495	Н .	
;	.049	.04892	.083	.08262	.117	.11592	.15	.147 72
. 1			.084	.0836	.118	.1169	.151	
	.05	.04992	.085	.084 59	.119	.11787	.152	.14962
	.051	.05091	.086	.085 57		.11884	.153	.15058
. 1	.052	.0519	.087	.086 56	.12	.11981	.154	.151 53
٠ ١	.054	.0529	.088	.08754	.122	.120 78	.156	.15240
. 1	.055	.05489	.089	.088 53	.123	.121 75	.157	.1.
: 1	.056	.055 88		.08951	.124	.122 72	.158	.1
: 1	.057	.05688	.091	.0905	.125	.12369	.159	.I
: 1	.058	.05787	.092	.091 48	.126	.12469	.16	.1:
	.059	.05886	.093	.09246	.127	.12562	.161	.15
	.06	.05986	.093	.09344	.128	.126 59	.162	.150
99	.061	.06085	.095	.09443	.129	.12755	.102	••
	.062	.06184	.096	.0954	.13	.12852		
	.063	.06283	.097	.096 39	.131	.12949	1	
	.064	.06382	.098	.09737	.132	.13045	1	
	265	.064 82	.099	.09835	.133	.13141	ll.	
	166	.0658	.r	.099.33	.134	.13238	∖∖.	
	67	.0668	.101	.10031	.135	133 34	. // .	
	18 /	.0678 //	.102	.101 29		1343	٠. اا	
			2	·		. 5.0		

H'ght.	Area.	H'ght.	Ares,	H'ght.	Area.	H'gbt.	Area.	H'ght.	Area.
.171	.16761	.226	.21805	.281	.26541	.336	.30864	.391	.34632
.172	.168 55	.227	.21894	.282	.266 24	-337	.309 38	.392	.34694
.173	.16948	.228	.21983	.283	.26706	.338	.31012	-393	.34756
.174	.17042	.229	.220 72	.284	.26789	•339	.31085	-394	.34818
.175	.171 36	.23	.221 61	.285	.268 71	•34	.311 59	-395	.34879
.176	.1723	.231	.222 5	.286	.269 53	-341	.312 32	.396	·3494
.177	.173 23	.232	.223 35	.287	.270 35	.342	.31305	∙397	.35001
.178	.174 17	.233	.224 27	.288	.271 17	·343	.31378	.398	.35062
.179	.1751	.234	.225 15	.289	.271 99	•344	-3145	.399	.351 22
.18	.17603	.235	.22604	.29	.2728	.345	.31523	-4	.351 82
.181	.17697	.236	.22692	.291	.27362	.346	·312 95	.401	.35242
.182	.1779	.237	.2278	.292	.274 43	.347	.31667	.402	.35302
.183	.17883	238	.22868	-293	.275 24	.348	.31739	.403	.35361
.184	.179 <i>7</i> 6	.239	.229 56	.294	.27605	∙349	.31811	.404	.3542
.186	.18162	.24	.230 44	.295	.27686	∙35	.31882	.405	·354 79
.187	.182 54	.241	.231 31	.296	.27766	.351	.31954	.406	.35538
.188	.18347	.242	.232 19	.297		.352	.32025	.407	.35590
.189	.1844	.243	.23306	.299	.27927	-353	.320 96	.408	.35654
.19		.244	.233 94 .234 81	!	.28088	354	.321 67	.409	.35711
.191	.185 32 .186 25	.246	.235 68	1.3	.281 67	.355	.322 37	.41	35769
.192	.18717	.247	.236 55	.301	.282 47	.356	.32307	.411	.35826
.193	.188 00	248	.237 42	.302	.283 27	·357 ·358	·32377 ·32447	.412	.357 69 .358 26 .358 83
.194	.18009	.249	-238 29	.303	.284 06	-359	.32517	.413	00707
.195	.18994	.25	.239 15	.305	.284 86	.36	.32587	.414 .415	·359 95 ·36051
.196	.19086	.251	.24002	.306	.285 65	.361		.416	.361 07
.197	.191 78		.24089	.307	.286 44	.362	.326 56	.417	.361 68
.198	.1927	.253	.241 75	.308	.28723	.363	.32794	.418	.36217
.199	.19361	.254	.242 61	.309	.28801	.364	.32862	.419	.36278
.2	194 53	.255	.243 47	.31	.2888	.365	.32931	.42	.363 26
.201	.19545	.256	.244 33	.311	.289 58	.366	.32999	.421	.3638
.202	.19636	.257	.245 19	.312	.290 36	.367	.33067	.422	.36434
.203	.19728		.246 04	.313	.201 15	.368	·331 35	.423	.36488
-204	.19819	.259	.2469	.314	.291 92	.369	.33203	.424	.36548
-205	.1991	.26	-247 75	.315	.292 7	.37	·332 7	.425	.3659
.20Š	.20001	261	.24861	316	.29348	.371	•333 37	.426	366
-207	.20092	.262	.24946	.317	.294 25	.372	·334 04	.427	.366g
-908	.20183	.263	.25021	.318	.295 02	.373	•334 7 ¹	.428	.3675
7	.202 74	264	.251 16	.319		-374	•335 37	.429	.368
i	.20365		.25201	.32	.266 56	.375	.33604	.43	.368
	.204 56	.266	.25285	.321	.29733	.376	.3367	.431	.3690
	.20546	.267	.2537	.322	298 I	377	.337.35	.432	.3695
	20637	.268	·254 55	.323	29886	.378	.33801	·433	.3700
	20727	.269	·25539	.324	.29962	⋅379	.33866	•434	.370
	-Q +Q		.25623	.325	.300 39	.38	·33931	·435	.371
		14	.25707		.301 14	.381	.339 96	.436	.3715
			-25791	·327	.301 9	.382	.34061	-437	.3720
			·58 75	.328	.30266	.383	.341 25	.438	·3725
			9 59	.329	.30341	.384	-3419	·439	-3 729
			043	-33	.304 16	.385	·342 53	•44	-37 34
			1 26	.331	-304 91	.386	•343 17	-441	.3710
			209	.332	·305 66	.387	.3438	.442	·37
				. 3	.30641	.388	·344 44	•443	·37
					307 15	1.389	.34507	.444	·37.
_					·307 9	/′ ·3 9	1.342,00	·/·445	\ ·37.

d	Area.	H'ght,	Area.	H'ght.	Area.	H'ght.	Area.	H'ght.	Area.
1	.376 24	-457	.380 96	.468	.385 14	479	.38867	.49	.391 37
J	.37669	.458	.381 37	-469	.38549	.48	.388 95	.491	.391 56
-1	-377 14	.459	.381 77	-47	.38583	481	.38923	-492	.391 75
- 1	-377 58	.46	.382 16	.47I	.38617	482	.389.5	. 493	.391 92
١	.37802	-461	.382 55	472	.3865	483	.389 76	-494	-392 o8
١	-378 45	.462	.382 94	-473	.38683	.484	.39001	· · 495	.392 23
1	.37888	.463	383 32	474	.38715	.485	.390 26	.496	.392 36
1	·37931	.464	.383 69	-475	.38747	.486	.390 5	•497	.392 48
١	-37973	465	384 06	.476	.387.78	-487	.39073	.498	.392 58
- 1	.380 14	.466	384 43	-477	.388 08	-488	.390 95	·499	.392 66
1	.380 56	.467	38479	-478	.388 38	489	.391 17	. •5	.392 7

is Table is computed only for Zones, longest Chord of which is Diam-

o Compute Area of a Zone by preceding Table. When Zone is Less than a Semicircle.

tr.—Divide height by diameter, find quotient in column of heights. area for height opposite to it in next column on right hand, multiply square of diameter, and product will give area of zone.

EFILE.—Required area of a Zone, diameter of which is 50, and its height 15. \pm 50 \pm 3; and .3, as per table, \pm .280 88.

> .280 88 × 50² = 702.2 area.

When Zone is Greater than a Semicircle.

E.—Take height on each side of diameter of circle, and ascertain, by ing Rule, their respective areas; add areas of these two portions to-and sum will give area.

FLE. — Required area of a zone, diameter of circle being 50, and heights of each side of diameter of circle 20 and 15.

```
50 + 50 = .4; .4, as per table, = .351 82; and .351 82 \times 50<sup>2</sup> = 879.55. 15 + 50 = .3; .3, as per table, = .280 88; and .280 88 \times 50<sup>2</sup> = 702.2.
```

1870.55 + 702.2 = 1581.75 area.

is Division of a Height by Chord, Quotient has a Remainder after Third Place of Decimals, and great Accuracy is required.

—Take area for first three figures, subtract it from the next followmultiply remainder by said fraction, and add product to first area; lgive area for whole quotient.

u. — What is area of a zone of a circle, greater chord being 100 feet, r

3 14. = 14.25. and 14.25 ÷ 100 = .1425; tabular length for .142 = .14
13 = .14 103, difference between which is .000 96.

X.com g6 = .com 48. Hence .142 = .140 o7 .com 5 = .com 48

55, s of grea

18 multiplied; and .140 55 × 1002 = 1405.5 \$

Squares, Cubes, and Square and Cube Roo From 1 to 1600.

From 1 to 1600.				
NUMBER.	SQUARE.	CUBE.	SQUARE ROOT.	Cure Re
1	1	1	1	I
2	4	8	1.4142136	1.259
3	9	27	1.732 050 8	1.442
4	16	64	2	1.587
5	25	125	2.236 068	1.709
	36	216	2.449 489 7	1.817
7 8	- 49	343	2.645 751 3	1.912
	64	512	2.828 427 1	2
9	81	729	3	2,080
10	100	1 000	3.162 277 7	2.154
11	121	1 331	3.316 624 8	2.223
12	144	1 728	3.464 101 6	2,289
13	169	2197	3.605 551 3	2.351
14	196	2744	3.741 657 4	2.410
15	225	3 375	3.8729833	2.466
16	256	4096	4	2,519
17	289	4913	4.123 1056	2.571
18	324	5 832	4.242 640 7	2,620
19	361	6859	4.358 598 9	2.668
20	400	8000		2.714
21		9261	4.472 136	
22	441	10648	4.582 575 7	2.758
	484	12 167	4.690 4158	2.843
23	5 29 5 76	13 824	4.795 831 5	2.884
24		15 625	4.898 979 5	
25 26	625		5	2.924
-		17576	5.0990195	2.962
27 28	729	19683	5.196 152 4	3
	784	21 952	5.291 502 6	3.036
29	841	24 389	5.385 164 8	3.072
30	900	27 000	5.477 225 6	3.107
31		29 791	5.567 764 4	3.141
32	1024	32 768	5.6568542	3.174
33		35 937	5.744 562 6	3.207
34	11 56	39304	5.830 951 9	3.239
35	1225	42875	5.9160798	3.271
36	1296	46 656		3.301
37	1369	50653	6.082 762 5	3,332
38	1444	54872	6.164414	3.361
39	1521	59319	6.244 998	3.391
40	1600	64 000	6.324 555 3	3.419
41	1681	68 921	6.403 124 2	3.448
42	1764	74 088	6.480 740 7	3.476
. 43	1849	79 507	6.557 438 5	3.503
3 44	1936	85 184	6.633 249 6	3.530
2 42	20 25	91 125	6.708 203 9	3.556
.2 40	21 16	97 336	6.782 33	3.583
47	22 09	103 823	6.855 654 6	3,608
40	23 04	110 592	6.928 203 2	3.634
49	2401	117649	7	3.659
50	2500	125 000	7.071 0678	3.684
51	2601	132651	7.141 428 4	3.708
52	2704	140 608	7.211 1026	3.732
53	28 09	148877	7.280 1099	3.756
	2916	157464	7.348 469 2	/ 3.1

Square.	Cunn.	SQUARE ROOT.	Cusz Roor.
30 25	166 375	7.416.198.5	3.802 052 5
31 3 6	175 616	7.4833148	3.825 862 4
32 49	185 193	7.549 834 4	3.848 501 I
33 64	195 112	7.615 773 i	3.8708766
34 8 I	205 379	7.681 145 7	3.892 996 5
3600	216000	7.745 966 7	3.914 867 6
37 21	226 98 I	7.810 249 7	3.9364972
38 44	238 328	7.874 007 9	3.957 891 5
3969	250 047	7.937 253 9	3.9 79 057 1
40 96	262 144	8	4
42 25	274 625	8.062 257 7	4.020 725 6
43 56	287 496	8.124 038 4	4.041 240 I
44 89	300 763	8.185 352 8	4.061 548
4624	314 432	8.246 211 3	4.081 655 1
4761	328 509	8.306 623 9	4.101 566 1
4900	343 000	8.366 600 3 8.426 149 8	4.121 285 3
50 4 I 5 I 8 4	357 911 373 248	8.485 281 4	4.140 817 8 4.1 6 0 1 6 7 6
	389017	8.544 003 7	
53 29 54 76	405 224	8.602 325 3	4.179 339
56 25	421 875	8.660 254	4.198 336 4
57 76	438 976	8.717 797 9	4.217 163 3 4.235 823 6
59 29	456 533	8.774 964 4	4.254 321
6084	474 552	8.831 760 9	4.272 658 6
62 41	493 939	8.888 194 4	4.290 840 4
64 00	512 000	8.944 271 9	4.308 869 5
6561	531 441	9	4.326 748 7
67 24	551 368	9.055 385 I	4.344 481 5
68 89	571 787	9.1104336	4.362 070 7
70 5Ó	592 704	9.165 151 4	4.379 519 1
72 25	614 125	9.219 544 5	4.396 829 6
73 9Ğ	636 056	9.2736185	4.414 004 9
75 69	658 503	9.327 379 I	4.431 047 6
77 44	681 472	9.380 831 5	4.447 960 2
79 21	704 969	9.433 981 1	4.464 745 I
81 00	729 000	9.486 833	4.481 404 7
8281	753 57 ^I	9.539 392	4.497 941 4
84 64	778 688	9.591 663	4.514.357.4
86 49	804 357	9.6436508	4.530 654 9
88 36	830 584	9.695 359 7	4.546 835 9
90 25	857 375	9.7 4 6 7 94 3	4.562 902 6
92 16	884 736	9.797 959	4.578 857
94 09	912673	9.848 857 8	4.594 700 9
96 04 88 07	941 192	9.899 494 9	4.610 436 3
9801 10000	970 299 I 000 000	9.949 874 4 10	4.626 065 4.641 588 8
10201	1 030 301	10.0498756	4.657 009 5
10201	1 061 208	10.049 575 0	4.672 328 7
10404	1 002 727	10.148 891 6	4.687 548 2
10816	1 124 864	10.198 039	4.702 669 4
1 10 25	1 157 625	10.246 950 8	4.717694
1 12 36	1 191 016	10.295 630 1	4.732 623 5
1 14 49	1 225 043	10.344 080 4	4.747 459 4
1 16 64	1 259 712	10.392 304 8	4.762 203 2
1 1881	1 295 029	10.440 306 5	4.7768562
12100 /	1 331 000	10.488 088 5	4.791 419

Squares, Cubes, and Square and Cube Roc From 1 to 1600.

		rrom 1 t	J 1000.	
NUMBER.	Square.	Cube.	SQUARE ROOT.	CUBE F
		1	I	I
2	4	8	1.4142136	1.25
3		27	1.732 050 8	1.44
4	9 16	64	2	1.58
4 5 6 7 8	25	125	2.236 068	1.70
ĕ	36	216	2.449 489 7	1.81
7	. 49	343	2.645 751 3	1.91:
8	64	512	2.828 427 I	2
9	81	729	3	2.08
10	100	1 000	3.162 277 7	2.15.
11	I 2I	1 331	3.316 624 8	2.22
12	144 .	1 728	3.464 101 6	2.28
13	169	2 197	3.605 551 3	2.35
14	196	2 744	3.741 657 4	2.41
15	2 2 5	3 375	3.8729833	2.46
16	25/6	4 0 9 6	4 .	2.51
17	289	4913	4.123 1056	2.57
18	324	5 832	4.242 640 7	2.62
19	361	6859	4.358 598 9	2.66
20	400	8000	4.472 136	2.71.
21	441	9261	4.582 575 7	2.75
22	484	10648	4.690 415 8	2.80
23	5 29	12 167	4.7958315	2.84
24	5 76	13824	4.898 979 5	2.88.
25	625	15625	5	2.92.
26	676	17 576	5.099 019 5	2.96:
27 28	729 784	19683	5.196 152 4 5.291 502 6	3
	84I	21 952 24 389	5.385 164 8	3.031
29	900	27000	5.477 225 6	3.10
30 31	961	29 791	5.567 764 4	3.14
32	1024	32 768	5.6568542	3.17.
33	1080	35 93 7	5.744 562 6	3.20
34	1156	39 304	5.830 951 9	3.23
35	1225	42 875	5.916 079 8	3.27
36	120Ő	46656	6	3.30
37	1369	50653	6.082 762 5	3.33:
38	14 44	54 872	6.164414	3.36
39	1521	59319	6.244 998	3.39
40	1600	64 000	6.324 555 3	3.410
41	1 681	68 921	6.403 124 2	3.44
`'	1764	7 4 088	6. 480 740 7	3.47
	1849	79 507	6.557 438 5	3.50
	1936	85 184	6.633 249 6	3.530
	2 0 25	91 125	6.708 203 9	3.55(
	2 1 16	97 336	6.782 33	3.58
	109	103 82 3	6.855 654 6	3.60
	•	110 592	6.928 203 2	3.63
		TT7 649	7	3.659
		-	7.071 067 8	3.68.
			7.141 428 4	3.70
			7.211 102 6	3.73
			7.280 1099	3.75
•			7.348 469 2	/ 3.77

١	Square.	Cunn.	SQUARE ROOT.	CUBE ROOT.
١	30 25	166 375	7.416 198 5	3.802 952 5
	31 3 6	175 616	7.483 314 8	3.825 862 4
	32 49	185 193	7.549 834 4	3.848 501 I
	3364	195 112	7.615 773 1	3.870 876 6
	3481	205 379	7.681 145 7	3.892 996 5
	36 ∞	216 000	7.745 966 7	3.914 867 6
	37 21	226 981	7.810 249 7	3.936 497 2
1	3844	238 328	7.874 007 9	3.957 891 5
	3969	250 047	7.937 253 9	3.979 057 1
1	4096	262 144	8	4
	42 25	274 625	8.062 257 7	4.020 725 6
-	43 56	287 496	8.124 038 4	4.041 240 1
	44 89	300 763	8.185 352 8	4.061 548
1	46 24	314 432	8.246 211 3	4.081 655 1
	4761	328 509	8.306 623 9	4.101 566 I
	4900	343 000	8.366 600 3	4.121 285 3
	5041	357 911	8.426 149 8	4.1408178
- 1	51 84	373 248	8.485 281 4	4.160 167 6
	53 29	389017	8.544 003 7	4.179 339
1	54 76	405 224	8.602 325 3	4.198 336 4
-	56 25	421 875	8.660 254	4.217 163 3
1	57 76	438 976	8.717 797 9	4.235 823 6
	59 29	456 533	8.774 964 4	4.254 321
	6084	474 552	8.831 760 9	4.272 658 6
-	6241	493 039	8.888 194 4	4.290 840 4
-	6400	512 000	8.944 271 9	4.308 869 5
1	65 6 z	531 441	9	4.326 748 7
1	67 24	551 368	9.055 385 1	4.344 481 5
ı	6889	571 787	9.1104336	4.362 070 7
	70 56	592 704	9.165 151 4	4.379 519 1
-	72 25	614 125	9.219 544 5	4.396 829 6
-	73 96	636 056	9.2736185	4.414 004 9
1	75 69	658 503	9.327 379 1	4.431 047 6
1	77 44	681 472	9.380 831 5	4.4479602
ı	79 21	704 969	9.433 981 1	4.464 745 I
1	81 00 82 81	729 000	9.486 833	4.481 404 7
1	84 64	753 571	9.539 392	4.497 941 4
ł	86 49	778 688	9.591 663	4.514 357 4
ł	88 36	804 357	9.643 650 8	4.5306549
ı	90 25	830 584 857 375	9.695 359 7 9.746 794 3	4.546 835 9 4.562 902 6
1	92 16	884 736		4.578 857
ı	94 09	912673	9·797 959 9.848 857 8	4.594 700 g
١	9604	941 193	9.8994949	4.610 436 3
1	9801	970 299		. 4-4-2-
ł	10000	1 000 000	10	4.641 588 8
1	10201	1030301	10.0498756	4.657 009 5
1	1 04 04	1 061 208	10.099 504 9	4.672 328 7
1	10600	I 092 727	10.148 891 6	4.680
١	1 08 16	1 124 864	10.198 039	4
t	I 1025	1 157 625	10.246 950 8	
1	1 12 36	1 191 016	10.295 630 1	
1	1 14 49	1 225 043	10.344 080 4	
1	6 - 6 -	1 259 712	10.392 304 8	
1	1 1881	1 295 029	10-440 306 5	
1	I 2I 00 .	1 331 000	10-488 088 5	

NUMBER.	Square.	CUBE.	SQUARE ROOT.	Cm
111	1 23 21	1 367 631	10.535 653 8	4.
112	I 25 44	1 404 928	10.583 005 2	4.
113	1 27 69	1 442 897	10.630 145 8	4.
114	1 29 96	1 481 544	10.677 078 3	4.
115	1 32 25	1 520 875	10.723 805 3	4.
116	1 34 56	I 560 896	10.770 329 6	4.
117	1 36 89	1 601 613	10.8166538	4.
118	1 39 24	1 643 032	10.862 780 5	4.
119	1 41 61	1 685 159	10.908 712 1	4.
120	14400	1 728 000	10.954 451 2	4.
121	14641	1 771 561	11	4
122	1 48 84	1815848	11.045 361	4.
123	1 51 29	1 860 867	11.090 536 5	4.
124	1 53 76	1 906 624	11.135 528 7	4.
125 126	1 56 25 1 58 76	1 953 125	11.180 339 9	5
127	16129	2 000 376 2 048 383	11.224 972 2 11.269 427 7	5.
128	16384	2040 303	11.313 708 5	5.
129	16641	2 146 689	11.357 816 7	5.
130	16900	2 197 000	11.401 754 3	5.
131	17161	2 248 091	11.445 523 1	5.
132	1 74 24	2 299 968	11.489 125 3	5.
133	17689	2 352 637	11.532 562 6	5.
134	1 79 56	2 406 104	11.575 836 9	5.
135	1 82 25	2 460 375	11.61895	5.
136	т 84 9 б	2 515 456	11.661 903 8	5.
137	18769	2 571 353	11.704 699 9	5.
138	19044	2 628 072	11.747 340 1	5.
139	19321	2685619	11.789 826 1	5.
140	19600	2 744 000	11.832 1596	5.
141	19881	2803221	11.874 342 1	5.
142	20164	2 863 288	11.916 375 3	5.
143	2 04 49	2 924 207	11.958 260 7	5.
144	20736	2 985 984	12	5.
145	2 10 25	3 048 625	12.041 594 6	5.
146	21316	3 112 136	12.083 046	5.
147	2 16 09	3 176 523	12.124 355 7	5.
148	2 19 04	3 241 792	12.165 525 1	5.
149	2 22 01	3 307 949	12.206 555 6	5.
150	2 25 00	3 375 000	12.2474487	5.
151	2 28 01	3 442 951	12.288 205 7	5.
152	23104	3 511 008 3 581 577	12.328 828	5
153 154	2 34 09 2 37 16	3 652 264	12.369 316 9 12.409 673 6	5.
155	24025		12.449 899 6	5.
156	24336	3 723 875 3 796 416	12.489 996	5· 5·
	24649	3 869 893	12.529 964 1	5.
187 -188	24964	3944312	12.569 805 1	5.
	25281	4019679	12.609 520 2	5.
	^ ≤6 do	4096000	12.649 110 6	5.
	31	4 173 281	12.688 577 5	5.
	4	4 251 528	12.727 922 1	5.
		4 330 747	12.767 145 3	5.
		4410944	12.806 248 5	5.
		4 492 125	12.845 2326	5.
		4 574 296	12.8840987	\ 5

l Somen I	Ства.	SQUARE ROOT.	CUBE ROOT.
SQUARE.			
2 78 89 2 82 24	4 657 463 4 741 632	12.922 848 12.961 481 4	5.506 878 4 5.517 848 4
28561	4 826 809	13	5.528 774 8
28900	4913000	13.0384048	5.5396583
29241	5000 211	13.076 696 8	5.550 499 I
29584	5 088 448	13.114877	5.561 297 8
2 99 29	5 177 717	13.152 946 4	5.572 054 6
30276	5 268 024	13.190 906	5.582 770 2
30625	5 359 375	13.228 756 6	5.593 444 7
30976	5 451 7 7 6	13.266 499 2	5.604 078 7
31329	5 545 233	13.304 134 7	5.614 672 4
3 16 84	5 639 752	13.341 664 1	5.625 226 3
32041	5 735 339	13.379 088 2	5.635 740 8
32400 32761	5 832 000	13.4164079	5.646 216 2 5.656 652 8
33724	5 929 741 6 028 568	13.453 624 13.490 737 6	5.667 051 1
3 34 89	6 128 487	13.527 749 3	5.6774114
3 38 56	6 229 504	13 564 66	5.687 734
3 42 25	6 331 625	13.601 470 5	5.6980192
34596	6 434 856	13.638 181 7	5.708 267 5
34969	6 539 203	13.674 794 3	5.718479 I
3 53 44	6 644 672	13.711 309 2	5.7286543
3 57 21	6 751 269	13.747 727 1	5.738 793 6
361∞	6859000	13.784 048 8	5.748 897 1
36481	6967871	13.820 275	5.758 965 2
36864	7 077 888	13.856 406 5	5.768 998 2
3 72 49	7 189 057	13.892 44 13.928 388 3	5.778 996 6 5.788 960 4
3 76 36 3 80 25	7 301 384 7 414 875	13.964 24	5.798 89
38416	7 529 536	13.904 24 14	5.808 785 7
38809	7 645 373	14.035 668 8	5.818 647 9
39204	7 762 392	14.071 247 3	5.8284767
3960i	7 880 599	14.106 736	5.838 272 5
40000	8000000	14.142 1356	5.848 035 5
40401	8 120 601	14.177 4469	5.857 766
4 08 04	8 242 408	14.2126704	5.867 464 3
41209	8 365 427	14.247 806 8	5.877 130 7
4 16 16	8 489 664	14.282 856 9	5.886 765 3
4 20 25 4 24 36	8 615 125 8 741 816	14.317 821 1	5.896 368 5
4 28 49	8 869 743	14.387 494 6	5.915 481 7
4 32 64	8998912	14.422 205 1	5.924 992 1
4 3681	9 129 329	14.456 832 3	5.934 472 1
4 41 00	9 261 000	14.491 376 7	5.943 922
4 45 21	9 393 931	14.525 839	5.953 341 8
4 49 44	9 528 128	14.560 219 8	5.962 732
4 53 69	9663597	14.594 519 5	5.972 092 6
4 57 96	9800344	14.628 738 8	5.981 424
4 62 25 4 66 56	9 938 375	14.6628783	5.990 726 4
4 70 89	10 077 696 10 218 313	14.696 938 5 14.730 919 9	6.o ⁻
4 75 24	10 360 232	14.764 823 1	6.c
4 79 6I	10 503 459	14.7986486	6.c
48400	10 648 000	14.832 397	/ 6.r
48841	10 793 861	14.866 068 7	/ 6 .
49284 /	10 941 048	14.899 664 4	/ 6.~
	-		

223	NUMBER.	SQUARE.	CUBE.	SQUARE ROOT.	CUBE ROOT.
225					
226					
227					
228	Tild to the state of the state				
229		5 15 29			
230			11 852 352		
231				15.132 740	
232				15.105 750 9	6.120 9257
233					6.135 7924
234					
235					
236					
237		5 56 06			
238					6.188 4628
239					
240					
241 58564 13997521 15.5241747 6.2236843 242 58564 14172488 15.5563492 6.2316797 243 590 49 14348907 15.5884573 6.2402515 244 59536 14360784 15.6524994 6.248798 245 60025 14760125 15.6524758 6.2573248 246 60516 14886936 15.684387 1 6.2582636 247 61009 15069223 15.716233 6 6.2743054 248 61504 15252992 15.7480157 6.2827613 250 62500 15.625000 15.811388 3 6.2996053 251 63001 15.813251 15.842979.5 6.3079935 252 63504 1600308 15.8745079 6.3163590 253 64009 16194277 15.905973.7 6.3447035 254 64516 16387064 15.937377.5 6.3330256 255 65025 16581375 15.9687194 6.3413257 256 65536 16777216 16 257 66049 16974593 16.031219.5 6.3413257 258 66564 17173512 16.0623784 6.360968 259 67081 17373979 16.0934709 6.3743111 260 67600 17.576000 16.124515.5 6.360968 261 68121 17779881 16.1554944 6.3906765 262 68644 17.984728 16.1864141 6.3906765 263 69169 18191447 16.2172747 6.406958 264 69696 18399744 16.2480768 6.413.2276 7.1289 19.034.163 16.390.504 6.431.2276 7.1289 19.034.163 16.390.504 6.431.2276 7.1289 19.034.163 16.390.504 6.431.2276 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.505 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.163 16.390.705 6.447.3057 7.1289 19.034.1		5 76 00			
242 58564 14 172 488 15.556 349 2 6.23 1679 7 244 599 36 14 526 784 15.526 499 4 245 600 25 14 706 125 15.652 475 8 6.257 324 8 246 605 16 14 886 936 15.682 487 1 247 6 100 9 15 069 223 15.716 233 6 248 6 15 04 15 252 992 15.748 015 7 249 62001 15 438 249 15.779 733 8 6.29 1194 6 250 6250 15 62500 15.813 251 15.842 979 5 251 63001 15 813 251 15.842 979 5 252 635 04 16 003 008 15.874 507 9 253 640 09 16 194 277 15.905 973 7 254 645 16 16 387 064 15.937 377 5 255 65 25 16 581 375 15.968 719 4 257 660 49 16 974 593 16.031 219 5 258 65 564 17 173 512 16.062 378 4 258 65 564 17 173 512 16.062 378 4 261 681 21 17 779 881 16.155 494 4 262 686 44 17 984 728 16.186 414 1 260 67600 17 576000 16.124 515 5 261 681 21 17 779 881 16.155 494 4 262 686 44 17 984 728 16.186 414 1 263 69 69 18 191 447 16.217 274 7 264 696 96 18 399 744 16.248 076 8 265 70 72 56 18 821 096 16.390 506 4 27 72 25 18 609 625 16.370 506 7 27 30 1968 3000 16.431 676 7 28 19 034 647 16.522 711 6 28 19 034 647 17 73 984 16.390 506 5 27 72 50 19 683 000 16.431 676 7 28 19 034 647 16.522 711 6 28 19 034 647 17 6.522 711 6 28 19 034 647 17 6.522 711 6 28 10 19 68 3000 16.433 17 6 27 50 76 20 20 570 824 16.583 317 16.633 317 6 28 16 17 76 21 024 576 16.633 317 16.633 31		58081			
244 595 36	242				
245 600 25 14 706 125 15.652 475 8 6.257 3248 246 605 16 14 886 936 15.684 387 1 6.265 826 8247 6 100 9 15069 223 15.716 233 6 6.274 3054 248 6 15 04 15 252 992 15.748 015 7 6.282 761 3 6250 62500 15.438 249 15.779 733 8 6.291 194 250 625 00 15.812 388 3 6.299 605 3 251 6 3001 15 813 251 15.842 979 5 6.307 933 5 6.325 15.842 979 5 6.316 3596 253 640 09 16 194 277 15.905 973 7 6.324 7035 255 650 25 16 581 375 15.968 719 4 6.344 325 7 650 49 16 974 593 16.031 219 5 6.337 861 1 258 6 6 6 6 6 6 6 6 17 173 512 16.062 378 4 6.366 096 8 17 373 379 16.093 476 9 6.374 385 260 6 660 49 17 17 35 12 16.062 378 4 6.366 096 8 17 373 379 16.093 476 9 6.374 385 261 6 81 21 17 779 581 16.155 494 4 6.390 676 5 6 26 6 6 6 6 4 17 17 3 512 16.062 378 4 6.366 096 8 12 17 779 581 16.186 414 1 6.398 827 1 6.217 274 7 6.466 958 5 70 7 56 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.390 504 6.431 327 7 7 256 18 821 096 16.431 676 7 6.452 374 7 290 19 683 000 16.431 676 7 6.453 314 7 7 39 84 20 123 648 16.492 422 5 6.457 314 19 902 511 16.522 711 6.462 077 6 6.477 223 6 7 250 796 875 7 250 766 20 579 824 16.583 312 4 16.552 945	243	5 90 49	14 348 907	15.588 457 3	6.240 251 5
246 605 16	244	5 95 36	14 526 784	15.620 499 4	
247 6 10 09 15 069 223 15.716 233 6 6.274 305 4 248 6 15 04 15 252 992 15.748 015 7 249 6 2001 15 438 249 15.779 733 8 6.291 1946 250 6 25 00 15 625 000 15.811 388 3 6.299 655 3 251 6 30 01 15 813 251 15.842 979 5 6.307 935 5 252 6 35 04 16 003 008 15.874 507 9 6.316 359 5 253 6 40 09 16 194 277 15.905 973 7 6.324 7035 6 255 6 50 25 16 581 375 15.908 719 4 6.341 325 7 256 6 55 36 16 777 216 16 6.349 604 2 257 6 60 49 16 974 593 16.031 219 5 6.357 861 1 258 6 65 64 17 173 512 16.062 378 4 6.366 098 259 6 70 81 17 373 979 16.093 476 9 6.374 311 1 260 6 76 00 17 576 000 16.124 515 5 6.382 5043 16.155 494 4 6.390 676 5 261 6 81 21 17 779 881 16.155 494 4 6.390 676 5 262 6 86 44 17 984 728 16.186 414 1 6.398 827 9 263 6 91 69 18 191 447 16.217 2747 6.406 958 5 264 6 96 96 18 399 744 16.248 076 8 6.442 3158 7 070 756 18 821 096 16.309 506 4 6.431 2276 7 12 89 19 034 163 16.340 134 6 6.432 276 7 12 89 19 034 163 16.340 134 6 6.432 276 7 7 39 84 19 465 109 16.401 219 5 6.455 314 8 7 29 00 19 683 000 16.431 677 6 6.473 035 14 7 39 84 20 123 648 16.552 945 4 6.473 035 14 7 39 84 20 123 648 16.492 422 5 6.473 035 17 7 50 76 20 570 824 16.552 945 4 6.492 505 17 7 50 76 20 570 824 16.583 317 16.643 317 1	245	60025			6.257 324 8
248 6 15 04 15 25 2992 15.748 015 7 6.282 7613 249 6 20 01 15 438 249 15.779 733 8 6.291 196 250 6 2500 15.625000 15.811 388 3 6.299 605 3 251 6 30 01 15 813 251 15.842 979 5 6.307 9935 252 6 35 04 16 003 008 15.874 507 9 6.316 359 6 253 6 40 09 16 194 277 15.905 973 7 6.324 7035 254 645 16 16 387 064 15.937 377 5 6.333 025 6 255 6 50 25 16 581 375 15.968 719 4 6.341 325 7 256 6 55 36 16 777 216 16 6.349 604 2 257 6 60 49 16 974 593 16.031 219 5 6.349 604 2 258 6 65 64 17 17.3 512 16.062 378 4 6.366 096 8 17 373 979 16.093 476 9 6.374 311 1 260 6 76 00 17 576 000 16.124 515 5 6.382 504 3 261 6 81 21 17 779 581 16.155 494 4 6.390 676 5 262 6 86 44 17 984 728 16.186 414 1 6.398 827 9 264 6 96 96 18 399 744 16.217 274 7 6.406 958 5 70 72 55 18 609 625 16.390 506 4 6.431 1227 6 71 289 19 034 163 16.390 506 4 6.431 1227 6 71 289 19 034 163 16.390 506 4 6.431 1227 6 72 900 19 683 000 16.431 676 7 6.447 305 7 7 39 84 20 123 648 16.492 422 5 6.447 305 7 7 56 76 20 570 824 16.583 124 7 6.402 077 6 6.471 2736 7 7 50 76 20 570 824 16.583 124 7 6.402 077 6 6.471 2736 7 7 50 76 20 570 824 16.583 124 7 6.402 077 6 6.471 2736 7 7 50 76 20 570 824 16.583 124 7 6.402 077 6 6.471 2736 7 7 50 76 20 570 824 16.583 124 7 6.402 077 6 6.471 2736 6.471 2736 7 7 50 76 20 570 824 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 16.583 124 16.563 124 16.552 945 4 6.495 065 16.583 124 16.552 945 4 6.495 065 1	246				
249 6 20 01 15 438 249 15.779 733 8 6.291 1946 5250 6 25 00 15 813 251 15.84 2979 5 6.307 993 5 6.307					
250 6 2500 15 62500 15 81 388 3 6.299 605 3 251 6 3001 15 813 251 15.842 979 5 6.307 993 5 252 6 3504 16 003 008 15.874 507 9 6.316 3596 253 6 40 09 16 194 277 15.905 973 7 6.324 7035 254 6 45 16 16 387 064 15.937 377 5 6.333 025 5 255 6 50 25 16 581 375 15.908 719 4 6.341 325 7 256 6 55 36 16 777 216 16 6.349 604 2 257 6 60 49 16 974 593 16.031 219 5 6.357 861 1 258 6 65 64 17 173 512 16.062 378 4 6.360 691 8 259 6 70 81 17 373 979 16.093 476 9 6.374 311 1 260 6 76 00 17 576 000 16.124 515 5 6.382 504 3 261 6 81 21 17 779 881 16.155 494 4 6.390 670 6 262 6 86 44 17 984 728 16.186 414 1 6.398 827 9 263 6 91 69 18 191 447 16.217 274 7 6.406 958 5 264 6 96 96 18 399 744 16.248 076 8 6.442 315 8 264 6 96 96 18 399 744 16.248 076 8 6.442 315 8 27 07 22 5 18 609 62 5 16.278 820 6 6.423 122 7 27 361 19 465 109 16.401 219 5 6.455 314 8 27 29 00 19 683 000 16.431 670 7 6.471 273 7 27 30 19 465 109 16.492 422 5 6.479 223 6 27 350 29 20 346 417 16.522 711 6 6.457 1541 6.452 077 6 27 50 76 20 570 824 16.583 124 16.552 945 16.583 124 16.552 945 16.550 37 7 27 67 29 21 253 933 6 6.505 37 7 25 6 5 5 5 6 5 5 6 5 5 6 5 6 5 6 5 6 5 6					
251 6 30 01 15 813 251 15.842 979 5 6.307 993 5 252 6 35 04 16 003 008 15.874 507 9 6.316 359 5 253 6 40 09 16 194 277 15.905 973 7 6.324 703 5 254 6 45 16 16 387 064 15.937 377 5 6.333 025 6 255 6 50 25 16 581 375 15.908 719 4 6.341 325 7 256 6 55 36 16 777 216 16 6.349 604 2 257 6 60 49 16 974 593 16.031 219 5 6.357 861 1 258 6 65 64 17 173 512 16.062 378 4 6.306 096 8 259 6 70 81 17 373 979 16.093 476 9 6.374 311 1 260 6 76 00 17 576 000 16.124 515 5 6.382 504 3 261 6 81 21 17 779 581 16.155 494 4 6.300 676 5 262 6 86 44 17 984 728 16.186 414 1 6.308 879 3 263 6 91 69 18 191 447 16.217 274 7 6.406 958 5 264 6 96 96 18 399 744 16.248 076 8 6.415 068 7 265 70 72 25 18 609 625 16.278 820 6 6.423 158 1 27 29 00 19 683 000 16.431 670 7 6.433 270 7 27 30 4 19 465 109 16.401 219 5 6.453 314 8 27 45 29 20 346 417 16.522 711 6.462 077 6 6.471 273 6 27 50 76 20 570 824 16.583 312 6.583 312 4 28 10 51 76 21 024 576 16.633 317 6.643 317 6.550 31 6.550					
252 6 35 04 16 093 008 15.874 507 9 6.316 3596 253 645 06 16 194 277 15.905 973 7 6.324 7035 254 645 16 16 387 064 15.937 377 5 6.333 025 6 65 025 16 581 375 15.908 719 4 6.341 325 7 6.50 65 36 16 777 216 16 6.341 325 7 6.349 602 25 6 65 64 17 173 512 16.002 378 4 6.306 096 8 259 6 70 81 17 373 979 16.093 476 9 6.374 311 200 6 76 00 17 576 000 16.124 515 5 6.382 5043 261 681 21 17 779 581 16.155 494 4 6.390 676 262 686 44 17 984 728 16.186 414 1 6.398 827 9 203 691 69 18 191 447 16.217 274 7 6.406 958 5 6.40 696 96 18 399 744 16.248 0768 6.433 158 3 707 56 18 821 096 16.390 500 4 6.431 127 6 6.408 276 7 12 89 19 034 163 16.340 134 6 6.433 276 7 72 361 19 465 109 16.401 219 5 6.457 314 1 19 902 511 16.402 077 6 6.447 305 7 739 84 20 123 648 16.492 422 5 6.479 223 6 7 56 25 20 796 875 16.633 317 6.643 317 7 6.516 87 7 67 29 21 253 933 6 6.643 317 6.556 31 6					
253 64009 16 194 277 15.905 973 7 6.324 7035 254 645 16 16 387 064 15.937 377 5 6.333 0255 255 650 25 16 581 375 15.968 719 4 6.341 325 7 256 655 36 16 777 216 16 6.349 6042 255 66 65 64 17 173 512 16.062 378 4 6.360 6068 259 670 81 17 373 979 16.093 476 9 6.374 311 1 260 676 00 17 576 000 16.124 515 5 6.382 5043 261 681 21 17 779 581 16.185 494 4 6.390 676 263 686 44 17 984 728 16.186 414 1 6.398 827 263 691 69 18 191 447 16.217 274 7 6.406 958 264 696 96 18 399 744 16.248 0768 6.415 068 70 70 756 18 821 096 16.309 506 4 6.413 127 6 18 24 19 248 832 16.370 705 6 6.423 158 37 72 361 19 465 109 16.401 219 5 6.455 3148 7 29 00 19 683 000 16.43 160 7 6.447 305 7 39 84 20 123 648 16.492 422 5 6.470 236 7 750 76 20 570 824 16.552 945 4 6.495 065 16.583 324 7 750 76 20 570 825 16.583 324 7 16.643 327 7 6.495 065 17 6 21 224 576 16.643 327 7 16.643 327 7 6.495 065 17 6 21 224 576 16.643 327 7 16.663 327 7 16.643 327 7 16.					
254 645 16 16 387 064 15.937 377 5 6.333 025 6 255 650 25 16581 375 15.968 719 4 6.341 3257 256 655 36 16 777 216 16 6.349 604 2 257 660 49 16 974 593 16.062 378 4 6.366 028 2 259 670 81 17 373 979 16.093 476 9 6.374 311 1 260 676 00 17 576 000 16.124 515 5 6.382 5043 261 681 21 17 779 881 16.155 494 4 6.390 676 5 262 686 44 17 984 728 16.186 414 1 6.390 676 5 263 691 69 18 191 447 16.217 274 7 6.406 958 5 264 696 96 18 399 744 16.248 976 8 6.415 068 7 70 72 25 18 609 625 16.278 820 6 6.423 158 17 17 18 24 19 248 832 16.390 506 4 6.431 122 16 7 12 89 19 034 163 16.340 134 6 6.439 276 7 7 12 89 19 034 163 16.340 134 6 6.439 276 7 7 39 84 19 248 832 16.370 705 5 6.447 305 7 7 29 00 19 683 000 16.431 676 7 6.401 210 5 6.455 314 8 7 45 29 20 346 417 16.522 711 6 6.452 077 6 6.471 273 6 7 7 56 25 20 796 875 16.583 124 7 55 0 76 20 570 824 16.583 317 16.643 317 1					
255 6 50 25 16 581 375 15.968 719 4 6.341 325 7 257 6 60 49 16 974 593 16.031 219 5 6.357 861 1 258 6 65 64 17 173 512 16.062 378 4 6.366 0968 259 6 70 81 17 373 3979 16.093 476 9 6.374 381 1 260 6 76 00 17 576 000 16.124 515 5 6.382 5043 261 6 81 21 17 779 581 16.155 494 4 6.390 676 5 262 6 86 44 17 984 728 16.186 414 1 6.398 827 9 263 6 91 69 18 191 447 16.217 274 7 6.466 958 5 264 6 96 96 18 399 774 16.248 076 8 6.473 158 3 267 70 2 25 18 60 96 25 16.278 820 6 6.423 158 3 27 70 756 18 821 096 16.390 500 4 6.431 227 6 27 12 89 19 034 163 16.340 134 6 6.430 276 7 27 18 24 19 248 832 16.370 705 5 6.447 305 7 27 23 61 19 465 109 16.491 219 5 6.455 314 8 27 29 00 19 683 000 16.431 676 7 6.403 304 1 27 39 84 20 123 648 16.492 422 5 6.479 223 6 27 36 25 20 796 875 16.633 317 6.643 317 7 29 21 253 933 6 583 317 6.663 317 6.563 317 6.518 31					
256 655 36 16 777 216 16 6.349 604 2 257 660 49 16 974 593 16.031 219 5 258 665 64 17 173 312 16.062 378 4 6.366 0968 239 670 81 17 373 979 16.093 476 9 6.374 311 1 260 676 00 17 576 000 16.124 515 5 6.382 504 3 261 681 21 17 779 581 16.155 494 4 6.396 82 504 3 262 686 44 17 984 728 16.186 414 1 6.398 827 9 263 691 69 18 191 447 16.217 274 7 6.406 958 5 264 696 96 18 399 744 16.248 076 8 6.475 068 7 265 70 225 18 609 625 16.278 820 6 6.423 158 3 270 756 18 821 096 16.309 506 4 6.431 227 6 271 289 19 034 163 16.340 134 6 6.439 270 7 272 361 19 465 109 16.401 219 5 6.455 3148 6.455 3148 19 902 511 16.402 077 6 6.471 273 6 273 984 20 123 648 16.492 422 5 6.479 223 6 275 976 20 570 824 16.552 945 4 6.495 205 31 24 7 6 6 7 6 21 224 576 16.633 317 16.683				15.937.377.5	
257 66 49 16 974 593 16.031 219 5 6.357 861 1 258 665 64 17 173 512 16.062 378 4 259 670 81 17 373 979 16.093 476 9 260 676 00 17 576 000 16.124 515 5 261 681 21 17 779 581 16.155 494 4 262 686 44 17 984 728 16.186 414 1 263 691 69 18 191 447 16.217 274 7 264 696 96 18 399 744 16.248 076 8 264 696 96 18 399 744 16.248 076 8 264 696 96 18 821 096 16.370 820 6 27 02 25 18 609 625 16.278 820 6 27 12 89 19 034 163 16.340 134 6 27 12 89 19 034 163 16.340 134 6 27 12 89 19 248 832 16.370 705 5 27 33 61 19 465 109 16.401 219 5 27 29 00 19 683 000 16.431 676 7 29 00 19 683 000 16.431 676 7 29 00 19 683 000 16.431 676 7 29 00 19 683 000 16.431 676 7 29 00 19 683 000 16.431 676 7 29 00 19 683 000 16.431 676 7 29 00 19 683 000 16.431 676 7 29 00 19 683 000 16.522 711 6 20 570 824 16.522 711 6 20 570 824 16.522 711 6 20 570 824 16.522 711 6 20 570 824 16.522 711 6 20 570 824 16.522 711 6 20 570 824 16.522 711 6 20 570 825 16.633 317 6 20 570 825 16.633 317 16.633 317 6 20 570 829 21 253 933 16.633 317 6 20 570 825 16.58 3124 6 20 570 825 16.58 6 20 570 825 1					
258 665 64 17 173 512 16.062 378 4 6.366 0968 259 676 81 17 373 979 16.093 476 9 6.374 3111 260 676 00 17 576 000 16.124 515 5 6.382 5043 261 681 21 17 779 581 16.155 494 4 6.390 676 5 262 686 44 17 984 728 16.186 414 1 6.217 274 7 6.406 958 5 264 696 96 18 191 447 16.217 274 7 6.406 958 5 264 696 96 18 399 744 16.248 076 8 6.415 068 7 702 25 18 609 625 16.278 820 6 6.423 163 707 56 18 821 096 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.309 506 4 6.431 2270 712 89 19 034 163 16.401 219 5 6.455 3148 72 900 19 683 000 16.431 676 7 6.453 314 72 73 84 1 19 902 511 16.462 077 6 6.471 273 6 6.471 2		66040			
259 6 7081 17 373 979 16.093 476 9 6.374 311 1 260 6 76 00 17 576 000 16.124 515 5 6 382 5043 261 681 21 17 779 581 16.155 494 4 6.390 676 5 262 686 44 17 984 728 16.186 414 1 6.398 827 9 263 691 69 18 191 447 16.217 274 7 6.406 958 5 264 696 96 18 399 744 16.248 076 8 6.415 068 702 25 18 609 625 16.278 820 6 6.423 158 3 707 56 18 821 096 16.309 506 4 6.431 227 6 7 12 89 19 034 163 16.340 134 6 6.432 270 7 2361 19 465 109 16.401 219 5 6.455 314 7 29 00 19 683 000 16.431 676 7 6.453 314 7 45 29 20 346 417 16.522 711 6 6.471 273 6 7 50 76 20 570 824 16.532 47 7 56 25 20 796 875 16.633 324				16.062 378 4	
260 6 76 00 17 576 000 16.124 515 5 6.38 2 504 3 261 681 21 17 779,881 16.155 494 4 6.390 676 5 262 6 86 44 17 984 728 16.186 414 1 6.398 827 9 263 6 91 69 18 191 447 16.217 274 7 6.406 958 5 64 6 96 96 18 399 744 16.248 976 8 6.415 068 7 70 7 56 18 821 096 16.309 506 4 6.423 158 7 70 7 56 18 821 096 16.309 506 4 6.431 2276 7 12 89 19 034 163 16.340 134 6 6.433 2276 7 23 61 19 465 109 16.401 219 5 6.455 314 8 7 29 00 19 683 000 16.431 670 7 6.471 273 6 7 39 84 20 123 648 16.492 422 5 6.479 223 6 7 56 25 20 796 875 16.583 124 16.552 945 4 7 55 065 3 7 67 29 21 253 933 16.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.683 317 6.685 318 6.586 51 6.683 317 6.					
261 68121 17779 581 16.155 494 4 6.390 676 5 263 691 69 18 191 447 16.217 274 7 6.466 958 5 264 696 96 18 399 744 16.248 076 8 6.415 087 707 56 18 821 096 16.309 506 4 6.431 127 6 6.431 127 6 77 56 18 821 096 16.309 506 4 6.431 1227 6 7 12 89 19 034 163 16.340 134 6 6.439 276 7 7 18 24 19 248 832 16.370 705 5 6.447 305 7 7 29 00 19 683 000 16.431 676 7 6.453 314 8 7 45 29 20 346 447 16.522 711 6 6.451 273 6 6.479 223 6 7 56 25 20 796 875 7 6.533 124 7 55 05 25 20 796 875 7 6.533 124 7 6.533 124 7 7 67 29 21 253 933 6 6.633 17 16.6					
262 68644 17984728 16.1864141 6.3988279 263 69169 18 191447 16.2172747 6.4069585 264 69696 18 399744 16.2480768 6.415.0687 36c 70225 18 609625 16.2788206 6.423 1583 70756 18 821 096 16.309 5064 6.431 2276 71289 19034 163 16.340 1346 6.432 2767 71824 19248 832 16.370 705 5 72361 19465 109 16.401 219 5 6.455 3148 72900 19683 3000 16.431 676 7 6.453 3041 73441 19925 11 16.402 0776 6.471 2736 73984 20 123 648 16.492 422 5 73984 20 123 648 16.492 422 5 750 76 20 20 346 417 16.522 711 6 6.492 236 750 76 21 024 576 16.603 3317 767 29 21 253 933 16.603 3317	261				
263 691 69 18 191 447 16.217 274 7 6.406 958 5 264 696 96 18 399 744 16.248 0768 6.415 688 5 7 02 25 18 609 625 16.278 820 6 7 12 89 19 034 163 16.309 506 4 6.431 2276 6.430 134 6 6.432 276 7 7 18 24 19 248 832 16.370 705 5 6.447 305 7 7 23 61 19 465 109 16.401 219 5 6.453 314 8 7 7 29 00 19 683 000 16.431 676 7 6.453 314 8 16.492 422 5 7 7 33 84 20 123 648 16.492 422 5 6.470 223 6 6.471 273 6 7 7 50 76 20 20 370 824 16.522 711 6 6.453 317 6.518 83 7 7 67 29 21 253 933 16.643 317 6.518 83	262	68644			
7 02 25	263		18 191 447	16.217 274 7	
7 02 25		69696		16.248 076 8	
7 12 89 19 034 163 16.340 134 6 6.439 2767 718 24 19 248 832 16.370 705 5 6.447 305 7 723 61 19 465 109 16.401 219 5 6.455 314 8 6.403 304 1 739 84 20 123 648 16.492 422 5 745 29 20 346 477 16.522 711 6 6.471 223 6 6.470 223 6 756 25 20 796 875 16.583 224 76 76 29 21 253 933 16.633 317 6.586 83 65 86 85 8	36€				
7 18 24 19 248 832 16.370 705 5 6.447 305 7 7 23 61 19 465 109 16.401 219 5 6.455 314 8 7 29 00 19 683 000 16.431 676 7 6.403 304 1 16.462 07 7 6 6.403 304 1 16.402 422 5 6.470 223 6 6.4					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
7 29 00 19 683 000 16.431 676 7 6.463 304 1 7 33 44 1 19 902 511 16.462 077 6 6.471 273 6					
7 34 41 19902 511 16.462 077 6 6471 273 6 64					
7 39 84 20 123 648 16.492 422 5 6.479 2236 7 45 29 20 346 447 16.522 711 6 6.487 1541 7 55 25 20 796 875 16.583 124 7 67 29 21 253 933 16.633 317 6.586 33 124 16.585 3124 7 6.586 33 124 16.632 317 1					
7 45 29 20 346 417 16.522 7.11 6 6.487 154 1 7.50 76 20 570 8824 16.552 945 4 6.495 0653 7 66 76 21 024 576 16.613 247 7 6.518 63 7 67 29 21 253 933 16.643 3.17 6.518 63 3.27					
7 50 76 20 570 824 16.552 945 4 6.495 053 1 7 56 25 20 796 875 16.583 124 6.590 953 1 16.613 247 7 67 29 21 253 933 16.643 317 6.518 650 1 16.613 317					
7 56 25 20 796 875 16.583 124 6.502 9572 761 76 21 024 576 16.613 247 7 6.518 83 767 29 21 253 933 16.43 317 6.518 657 857 857 857 857 857 857 857 857 857 8					
761 76 21 024 576 16 613 2477 6-518 63 767 29 21 253 933 16 643 377 6-518 657			20 570 824		
76729 21 253 933 16.643 317 6.518 653		7 50 25			
21 233 933					6.5186320
7 72 84 21 484 952 10.0 0 352					6.526 518
		77284	21 484 952	1 10:010 332	- Francis

SQUARE.	Cuns.	SQUARE ROOT.	Cum Root.
7 78 41	21 717 639	16.703 293 1	6.534 335 I
78400	21 952 000	16.733 200 5	6.542 132 6
78961	22 188 041	16.763 054 6	6.549 91 1 6
7 95 24	22 425 768	16.792 855 6	6.557 672 2
80089	22 665 187	16.8226038	6.565 414 4
8 06 56	22 906 304	16.852 299 5	6.573 138 5
8 12 25	23 149 125	16.881 943	6.580 844 3
81796	23 393 656	16.911 534 5	6.588 532 3
8 23 69 8 29 44	23 639 903 23 887 872	16.941 074 3	6.596 202 3 6.603 854 5
83521	24 137 569	16.970 562 7	6.611 480
84100	24 389 000	17.029 386 4	6.610 106
84681	24 642 171	17.058 722 1	6.626 705 4
8 52 64	24 897 088	17.088 007 5	6.634 287 4
8 58 49	25 153 757	17.117 242 8	6.641 852 2
8 64 36	25 412 184	17.146 428 2	6.649 399 8
8 70 25	25 672 375	17.175 564	6.6569302
8 76 16	25 934 336	17.204 650 5	6.664 443 7
8 82 09	26 198 073	17.233 687 9	6.671 940 3
8 88 04	26 463 592	17.262 676 5	6.679 42
89401	26 730 899	17.291 616 5	6.686 883 r
90000	27 000 000 27 270 901	17.320 508 1	6.694 329 5
91204	27 543 608	17.349 351 6 17.378 147 2	6.701 759 3 6.709 172 9
91809	27 818 127	17.406 895 2	6.71657
92416	28 094 464	17.435 595 8	6.723 950 8
93025	28 372 625	17.464 249 2	6.731 315 5
93636	28 652 616	17.492 855 7	6.738 664 1
9 42 49	28 934 443	17.521 415 5	6.745 996 7
94864	29 218 112	17.549 928 8	6.753 3134
95481	29 503 629	17.578 395 8	6.760 614 3
96100	29 791 000	17.6068169	6.767 899 5
96721	30 080 231	17.635 192 1	6.775 169
97344	30 371 328	17.663 521 7 17.691 806	6.782 422 9
9 79 69 9 85 96	30 664 297 30 959 144	17.720 045 I	6.789 661 3 6.796 884 4
99225	31 255 875	17.748 239 3	6.804 092 1
998.56	31 554 496	17.776 388 8	6.811 284 7
10 04 89	31 855 013	17.804 493 8	6.818462
10 11 24	32 157 432	17.832 554 5	6.825 624 2
10 17 61	32 461 759	17.860 571 1	6.832 771 4
10 24 00	32 768 000	17.888 543 8	6.839 903 7
10 30 41	33 076 161	17.916 472 9	6.847 021 3
10 36 84	33 386 248	17.944 358 4	6.854 124
104329	33 698 267	17.972 200 8	6.861 212
10 49 76	34 012 224		6.868 285 5
10 62 76	34 328 125 34 645 976	18.027 756 4 18.055 470 1	6.875 344 3 6.882 388 8
106929	34 965 783	18.083 141 3	6.8894188
10 75 84	35 287 552	18.110 770 3	6.80
108241	35 611 289	18.138 357 1	6.9
108900	35 937 000	18.165 902 1).∂ /
109561	36 264 691	18.1934054	\ 6 .
11 02 24	36 594 368	18.2208672	\ 6 .
11 08 89 11 15 56	36926037	18.248 287 6	\ 6.
5 50	37 259 704	18.275 666 9	/ e ··

NUMBER.	Square.	Ссва.	Square Roof.	Come 1
335	11 22 25	37 595 375	18.303 005 2	6.94
336	112896	37 933 056	18.330 302 8	6.95
337	11 35 69	38 272 753	18.357 559 8	6.95
338	II 42 44	38614472	18.384 <i>77</i> 63	6.96
339	114921	<i>3</i> 8 958 219	18.411 952 6	6.97
340	11 2000	39 304 000	184390889	6.97
34I	116281	39651821	18.466 185 3	6.98
342	116964	40 001 688	18.493 242	6.99
343	11 76 49 11 83 36	40 353 607	18.520 259 2	7
344 345	11 90 25	40 707 584 41 063 625	18.547 237	7.00
346	11 97 16	41 421 736	18.574 175 6 18.601 075 2	7.01
347	120409	41 781 923	18.627 936	7.02
348	121104	42 144 192	18.654 758 1	7.03
349	12 1801	42 508 549	18.681 541 7	7-04
350	122500	42 875 000	18.708 286 9	7.04
351	12 32 01	43 243 551	18.734 994	7.05
352	12 39 04	43614208	18.761 663	7.06
353	124609	43986977	18.788 294 2	7.06
354	12 53 16	44 361 864	18.814 887 7	7.07
355	126025	44 738 875	18.841 443 7	7.08
356	126736	45118016	18.867 962 3	7.08
357	12 74 49 12 81 64	45 499 293	18.894 4436	7.09
358 359	128881	45 882 712 46 268 279	18.920 887 9	7.10
360	129600	46 656 000	18.947 295 3 18.973 666	7.10 7.11
361	130321	47045831	19,300	7.12
362	13 10 44	47437928	19.026 297 6	7.12
363	131769	47 832 147	19.052 558 9	7.13
364	132496	48 228 544	19.078 784	7.14
365	13 32 25	48 627 125	19-104 973 2	7.14
366	13 39 56	49 027 896	19.131 126 5	7.15
367	134689	49 430 863	19-157 244 1	7.15
368	13 54 24	49 836 032	19.183 326 1	7.16
369	136161	50 243 409	19.209 372 7	7.17
370	136900 13 <i>7</i> 641	50 653 000 51 064 811	19.235 384 1	7.17
371 372	138384	51 478 848	19.261 360 3 19.287 301 5	7.18
373	1391 29	51 895 117	19.313 2079	7.19 7.19
374	139876	52 313 624	19.3390796	7.20
375	140625	52 734 375	19.364 916 7	7.21
376	14 13 76		19.390 719 4	7.21
377	14 21 29	53 157 376 53 582 633	19.416 487 8	7.22
378	14 28 84	54 010 152	19.442 222 1	7.23
	14 36 41	5 4 439 939	19.467 922 3	7.23
	14 44 00	54 872 000	19.493 588 7	7.24
•	14 51 61	55 306 341	19.519 221 3	7.24
	14 59 24 14 66 89	55 742 968	19.544 820 3	7.25
	14 00 89 14 74 56	56 181 887 56 623 104	19.570 385 8	7.26
	82 25	57066625	19.595 917 9 19.621 416 9	7.26
	996	57 512 456	19.646.8827	7·27 \ 7·28
	769	57 960 603	19.010.002	7.3
	7 4 4 5 4 4	58 411 072	0717 TOO.OI	\ 1
	321	58 863 869	19.7230829	\ .
	.1 00	59 319 000	19.748 4177	١ ١

BER.	Square.	Cuss.	SQUARE ROOT.	CUBE ROOT.
<u>.</u>	152881	59 776 471	19.773 719 9	7.312 382 8
2	15 36 64	6ó 236 288	19.798 989 9	7.3186114
3	15 44 49	60 698 457	19.824 227 6	7.324 829 5
4	15 52 36	61 162 984	19.849 433 2	7.331 036 9
5	156025	61 629 875	19.874 606 9	7-337 233 9
	156816	62 099 136	19.899 748 7	7.343 420 5
7 8	157609	62 570 773	19.924 858 8	7.349 5966
	158404	63 044 792	19.949 937 3	7.355 762 4
9	159201	63 521 199	19.974 984 4	7.361 917 8
0	160000	64 000 000	20	7.368 063
I 2	160801 161604	64 481 201	20.024 984 4	7.374 197 9
	16 24 09	64 964 808 65 450 827	20.049 937 7 20.074 859 9	7.380 322 7 7.386 437 3
3	163216	65 939 264	20.099 751 2	7.302 541 8
4	164025	66 430 125	20.124 611 8	7.398 636 3
5	164836	66 923 416	20.149 441 7	7.404 720 6
	16 56 49	67 419 143	20.174 241	7.410 795
7 8	16 64 64	67917312	20.199 009 9	7.416 859 5
9	16 72 81	68417929	20.223 748 4	7.422 914 2
ó	168100	68 921 000	20.248 456 7	7.428 958 9
I	168921	69 426 531	20.273 134 9	7.434 993 8
2	16 97 44	69 934 528	20.297 783 I	7.441 018 9
3	170569	70 444 997	20,322 401 4	7.447 034 2
4	171396	70957944	20.346 989 9	7.453 039 9
5 6	17 22 25	7 ¹ 473 375	20.371 548 8	7.459 035 9
6	17 30 56	71 991 296	20.396 078 1	7.465 022 3
7 8	17 38 89	72 511 713	20.420 577 9	7.470 999 I
	17 47 24	73 034 632	20.445 048 3	7.476 966 4
9	17 55 61	73 560 059	20.469 489 5	7.482 924 2
Ø	176400	74 088 000	20.493 901 5	7.488 872 4
I	17 72 41	74618461	20.518 284 5	7.494 811 3
2	178084 178929	75 151 448 75 686 967	20.542 638 6	7.500 740 6
3	179776	76 225 024	20.591 260 3	7.512 571 5
4	180625	76 765 625	20.615 528 1	7.518 473
5	18 14 76	77 308 776	20.639 767 4	7.524 365 2
7	182329	77 854 483	20.663 978 3	7.530 248 2
7 8	18 31 84	78 402 752	20.688 160 9	7.536 122 1
9	184041	78 953 589	20.712 315 2	7.541 986 7
5	184900	79 507 000	20.7364414	7.547 842 3
I	18 57 61	80 062 991	20.760 539 5	7.553 688 8
2	186624	80 621 568	20.784 609 7	7.559 526 3
3	18 74 89	81 182 737	20.808 652	7.565 354 8
4	18 83 56	81 746 504	20.832 666 7	7.571 174 3
5	189225	82 312 875	20.8566536	7.576 984 9
	1900 96	82 881 856	20.880613	7.582 786 5
7 8	190969	83 453 453	20.904 545	7.588 579 3
	19 18 44	84 027 672	20.9284495	7.594 363 3
9	19 27 21	84 604 519	20.952 326 8	7.600 138 5
1	193600	85 184 000	20.976 177 21	7.60,5 00.1 0
2	19 44 81 19 53 64	85 766 121 86 350 888		7.5
	195304	86 938 307	21.023 796	
3/	1971 36	87 528 384	21.047 565 2	\ 7
1	198025	88 121 125	21.071 307 5	\
/	198916	88 716 536	21.0950231 21.1187121	\ :.
	•	7 33-	21.110 /12 1	١ •

NUMBER.	SQUARE.	Cune.	SQUARE ROOT.	CUBE RO
559	31 24 81	174 676 879	23.643 180 8	8.237
560	31 36 00	175 616 000	23,664 319 1	8.242
561	31 47 21	176 558 481	23.685 438 6	8.247
562	31 58 44	177 504 328	23.706 539 2	8.252
563	31 69 69	178 453 547	23.727 621	8.257
564	31 80 96	179 406 144	23.748 684 2	8,262
565	31 92 25	180 362 125	23.769 728 6	8.267
566	32 03 56	181 321 496	23.790 754 5	8.271
567	32 14 89	182 284 263	23.811 761 8	8.276
568	32 26 24	183 250 432	23.832 7506	8.281
569	32 37 61	184 220 009	23.853 720 9	8.286
570	32 49 00	185 193 000	23.874 672 8	8.201
571	32 60 41	186 169 411	23.895 606 3	8.296
572	32 71 84	187 149 248	23.916 521 5	8,301
573	32 83 29	188 132 517	23.937 418 4	8.305
574	32 94 76	189 119 224	23.958 297 1	8,310
575	33 06 25	190 109 375	23.979 157 6	8.315
576	33 17 76	191 102 976	24	8.320
	33 29 29	192 100 033	24.020 824 3	8.325
577	33 40 84		24.041 630 6	
578		193 100 552		8.329
579 580	33 52 41	194 104 539	24.062 418 8	8,334
	33 64 00	195 112 000	24.083 189 1	8.339
581	33 75 61	196 122 941	24.103 941 6	8,344
582	338724	197 137 368	24.124 676 2	8.349
583	33 98 89	198 155 287	24.145 392 9	8.353
584	34 10 56	199 176 704	24.166 091 9	8.358
585	34 22 25	200 201 625	24.186 773 2	8.363
586	34 33 96	201 230 056	24.207 4369	8.368
587	34 45 69	202 262 003	24.228 082 9	8.372
588	34 57 44	203 297 472	24.248 711 3	8.377
589	34 69 21	204 336 469	24.269 322 2	8.382
590	348100	205 379 000	24.2899156	8.387
591	349281	206 425 071	24.3104916	8,391
592	35 04 64	207 474 688	24-331 050 1	8.396
593	35 16 49	208 527 857	24-351 591 3	8.401
594	35 28 36	209 584 584	24.372 115 2	8.406
595	35 40 25	210 644 875	24-392 621 8	8.410
596	35 52 16	211 708 736	24.413 111 2	8.415
597	35 64 09	212 776 173	24.433 583 4	8.420
598	35 76 04	213 847 192	24.454 038 5	8.424
599	358801	214 921 799	24-474 476 5	8,429
600	36 00 00	216 000 000	24-494 897 4	8.434
601	361201	217 081 801	24-515 301 3	8.439
602	36 24 04	218 167 208	24.535 688 3	8.443
603	36 36 09	219 256 227	24.5560583	8.448
604	36 48 16	220 348 864	24.5764115	8.453
605	36 60 25	221 445 125	24.596 747 8	8.457
606	36 72 36	222 545 016	24.617.067.3	8.462
497	36 84 49	223 648 543	24.637.37	8.467
458	36 96 64	224 755 712	24.657.656	8.471
909	37 08 81	225 866 529	24.677 925 4	8.476
610	37 21 00	226 981 000	24.698 178 1	8.480
611	37 33 21	228 099 131	24.7184142	8.485
612	37 45 44	229 220 928	24.7386338	8490
613	37 57 69	230 346 397	24.7588368	8.40
514	37 69 96	231 475 544	24.7790234	8.4
	3/0990	-31 413 344	-411324	

SQUARE.	Ссва.	SQUARE ROOT.	Cruz Roor.
25 30 09	127 263 527	22.4276615	7.952 847 7
25 40 16	128024064	22.449 944 3	7.958 1144
25 50 2 5	128 787 625	22.472 205 1	7 003 374 3
25 60 36	129 554 216	33.404 443 8	7 908 027 1
25 70 49	130,323,843	22.516 660 5	7.973 873 1
25 80 64	131 096 512	22.538 855 3	7.070 112 2
25 90 81	131 872 229	22.501 028 3	7.084,344.4
26 01 00 26 11 21	132651000	22.583 1796	7.080 509 7
262144	133 432 831	22.005 309 I	7 994 788 3
26 31 69	134 217 728	22.627.417	1 8
264196	135 005 697	22.649 503 3	8.005 204 9
26 52 25	135 796 744	22.671 568 1	8.0104032
2662 56	136 590 875	22.6936114	8 015 594 6
26 72 89	137 388 096 138 188 413	22.7156334	8.020 779 4
268324	138991832	22.737634	8.025 957 4
260361	139 798 359	22.7596134 22.7815715	8.031 1287
270400	140 608 000	22.803 508 5	8.036 293 5
27 14 41	141 420 761	22.825 424 4	8.041 451 5 8.046 603
27 24 84	142 236 648	22.847 319 3	8 051 747 9
27 35 29	143 055 667	22.869 193 3	8.056 886 2
27 45 76	143 877 824	22.891 046 3	8 002 018
27 56 25	144 703 125	22.912 878 5	8 067 143 2
27 66 76	145 531 576	22.934 689 9	8.072 202
27 77 29	146 363 183	22.956 480 6	8.077 374 3
278784	147 197 952	22.978 250 6	8,08248
27 98 41	148 035 889	23	8 087 579 4
280900	148 877 000	23.021 728 9	8.0926723
28 1961	149 721 291	23.043 437 2	8 097 758 9
28 30 24	150 568 768	23.065 125 2	8.102.839
i 28 40 89	151 419 437	23.086 792 8	1 8,107,912.8
28 51 56	152 273 304	23.10844	8,1126803
286225	153 130 375	23.130.067	8.1180414
28 72 96	153 990 656	23.151 673 8	8 1230002
288369	154 854 153	23.173 260 5	8 128 144 7
28 94 44 20 05 21	155 720 872	23.194 827	8.133 187
29 1600	156 590 819	23.216 373 5	8.138 223
29 26 8 r	157 464 000	23.237 900 I	8 143 2529
293764	158 340 421 159 220 088	23.259 406 7	8.148 276 5
294849	160 103 007	23.280 893 5 23.302 360 4	8.153 293 9
29 59 36	160 989 184	: 23.323.807.6	8 158 305 1 8.163 310 2
297025	161 878 625	23.345 235 I	8 168 3692
2981 16	162 771 336	23.3666429	8.173.302
29 92 09	163 667 323	23.388 031 1	8 178 288 8
300304	164 566 592	23.400 300 8	8.17 3.2675
30 14 01	165 469 149	23.439.749	117 2111
30 25 00	166 375 0co	23 452 076 8	8 10, 2127
30360I	167 284 151	23 473 379 2	6 -56 175 3
30 47 04	168 196658	23.494 050 2	ونزيز كاداد
30 <u>5</u> 8 og	169 112 377	23.515 952	1 21 1 11.2 5
306916	170 031 454	23.537 204	5 8:5027 i
308025	170 953 875	23 558 43	-1657
309136	171 879616	23.579 65	•
310249	172 808 693	23.600 %	
31 1364	173 741 112	23.6220.	
_	A 1*		

Number.	SQUARE.	Сиви.	SQUARE ROOT.	CUBE
559	31 24 81	174 676 879	23.643 180 8	8.23
560	31 36 00	175616000	23,664,319 1	8.24
561	31 47 21	176 558 481	23.685 4386	8.24
562	31 58 44	177 504 328	23.706 539 2	8.25
563	31 69 69	178 453 547	23.727 621	8.25
564	318096	179 406 144	23.748 684 2	8.26
565	31 92 25	180 362 125	23.769 7286	8.26
566	32 03 56	181 321 496	23.790 754 5	8.27
567	32 14 89	182 284 263	23,811 761 8	8.27
568	32 26 24	183 250 432	23.832 750 6	8.28
569	32 37 61	184.220 009	23.853 720 9	8.28
570	32 49 00	185 193 000	23.874 672 8	8.29
57I	326041	186 169 411	23.895 606 3	8.29
572	32 71 84	187 149 248	23.916 521 5	8.30
573	32 83 29	188 132 517	23.937 418 4	8.30
574	32 94 76	189 119 224	23.958 297 1	8.310
575	33 06 25	190 109 375	23.979 157 6	8.31
576	33 17 76	191 102 976	24.020 824 3	8.32 8.32
577	33 29 29	192 100 033	24.041 630 6	8.32
578	33 40 84	193 100 552 194 104 539	24.062 4188	8.33
579 580	33 52 41 33 64 00	194 104 539	24.083 189 1	8.33
581	33 75 61	196 122 941	24.103 941 6	8.34.
582	33 87 24	197 137 368	24.124 676 2	8.34
583	33 98 89	198 155 287	24.145 392 9	8.35
584	34 10 56	199 176 704	24.166 091 9	8.35
585	34 22 25	200 201 625	24.186 773 2	8.36
586	34 33 96	201 230 056	24.207 436 9	8.36
587	34 45 69	202 262 003	24.228 082 9	8.37:
588	34 57 44	203 297 472	24.248 711 3	8.37
589	34 69 21	204 336 469	24.269 322 2	8.38:
590	348100	205 379 000	24.289 915 6	8.38
591	34 92 81	206 425 071	24.310 491 6	8.39
592	35 04 64	207 474 688	24.331 050 1	8.39
593	35 16 49	208 527 857	24.351 591 3	8.40
594	35 28 36	209 584 584	24.372 115 2	8.40
595	35 40 25	210 644 875	24.392 621 8	8.410
596	35 52 16	211 708 736	24.413 111 2	8.41
597	35 64 09	212 776 173	24.433 583 4	8.420
598	35 76 04	213847192	24.454.038.5	8.42.
599	35 88 or	214 921 799	24-474 476 5	8.429
600	36 00 0 0	216 000 000	24.494 897 4	8.43.
601	36 12 01	217 081 801	24.515 301 3	8.439
602	36 24 04	218 167 208	24.535 688 3	8.44
603	36 36 09	219 256 227	24.5560583	8.44
604	36 48 16	220 348 864	24.5764115	8.45
605	36 60 25	221 445 125	24.596 747 8	8.45
606 4 ¹ 7	36 72 36	222 545 016	24.617.067.3	8.46:
458	36 84 49	223 648 543	24.637.37	8.46;
400		224 755 712	24.657656	8.47.
909 610		225 866 529	24.677 925 4	8.476
OIU		226 981 000	24.698 178 1	8.48 8.48
		228 099 131 229 220 928	24.7184142 24.7386338	8.49
			24.7588368	8.49
		230 346 397 231 475 544	24.7790234	8.49

men.	SQUARE.	Сови.	SQUARE ROOT.	CUBE ROOT.
15	37 82 25	232 608 375	24.799 193 5	8.504 035
	37 94 56	233 744 896	24.819 347 3	8.5086417
7	38 o6 8 9	234 885 113	24.839 484 7	8.513 243 5
8	38 19 24	236 029 032	24.859 605 8	8.5178403
9	38 31 61	237 176 659	24.879 7106	8.522 432 1
3O	38 44 00	238 328 000	24.899 799 2	8.5270189
EI	38 56 41	239 483 061	24.9198716	8.531 600 9
12	38 68 84	240 641 848	24.939 927 8	8.536 178
:3	388129	241 804 367	24.959 967 9	8.540 75 0 I
14	38 93 7 6	242 970 624	24.979 992	8.545 317 3
5	39 06 25	244 140 625	25	8.549 879 7
6	39 18 76	245 134 376	25.019 992	8.554 437 2
17 18	39 31 29	246 491 883	25.039 968 I	8.558 989 9
8	39 43 84	247 673 152	25.059 928 2	8.563 537 7
19	39 56 41	248 858 189	25.079 872 4	8.568 080 7
ρĺ	39 69 00	250 047 000	25.099 800 8	8.5726189
,I	398161	251 239 591	25.119 7134	8.577 152 3
2	39 94 24	252 435 968	25.1396102	8.581 680 9
3	40 06 80	253 636 137	25.1594913	8.586 204 7
4	40 19 56	254 840 104	25.179 3566	8.590 723 8
5	40 32 25	256 047 875	25.199 206 3	8.595 238
5	40 44 96	257 259 456	25.219 040 4	8.599 747 6
7	40 57 69	258 474 853	25.238 858 9	8.604 252 5
7 8	40 70 44	259 694 072	25.2586619	8.608 752 6
9	40 83 21	260 917 119	25.278 449 3	8.613 248
6	40 96 00	262 144 000	25.298 221 3	8.617 7388
1	41 08 81	263 374 721	25.3179778	8.622 224 8
2	41 21 64	264 609 288	25.337 718 9	8.626 706 3
3	41 34 49	265 847 707	25.357 444 7	8.631 183
4	41 47 36	267 089 984	25.377 155 I	8.635 655 I
	41 60 25	268 336 125	25.396 850 2	8.640 1226
5	41 73 16	259 585 136	25.416 530 1	8.644 585 5
	41 86 09	270 840 023	25.436 194 7	8.649 043 7
7 8	41 99 04	272 097 792	25.455 844 I	8.653 497 4
9	42 12 01	273 359 549	25.475 478 4	8.657 946 5
5	42 25 00	274 625 000	25.495 097 6	8.662 391 1
1	42 38 01	275 894 451	25.514 701 6	8.666831
2	42 51 04	277 167 808	25.534 290 7	8.671 266 5
3	42 64 09	278 445 077	25 553 864 7	8.675 697 4
	42 77 16	279 726 264	25.573 423 7	8.680 123 7
1	42 90 25	281 011 375	25.592 967 8	8.684 545 6
5	43 03 36	282 300 416	25.6124969	8.688 963
	43 16 49	283 593 393	25.6320112	
7	43 29 64			8.693 375 9
	43 42 81	284 890 312 286 191 179	25.651 510 7	8.697 784 3
3	43 56 00	287 496 000	25.670 995 3	8.702 188 2
	43 69 21	288 804 781	25.690 465 2	8.706 587 7
;	43 82 44		25.709 920 3	8.7109827
		290 117 528	25.729 360 7	8.715 373 4
!	43 95 69	291 434 247	25.748 786 4	8.719 7596
: 1	44 08 96	292 754 944	25.768 197 5	8.724 141 4
	44 22 25	294 079 625	25.787 593 9	8.728 51
11	44 35 56	295 408 296	25.806 975 8	8.7328
: 1	44 48 89	296 740 963	25.826 343 1	8.737 2
1	44 62 24	298 077 632	25.845 696	8.7416
1	44 75 61	299 418 309	25.865 034 3	8.745
, j	448900	/ <i>300 7</i> 63 000 .	25.884 358 2	8.750:

NUMBER.	SQUARE.	Сиви.	SQUARE ROOT.	CUBE
783	61 30 89	480 048 687	27.982 137 2	9.21
784	61 46 56	481 890 304	28	9.22
785	61 62 25	483 736 625	28.0178515	9.22
786	61 77 96	485 587 656	28.035 691 5	9.22
787	61 93 69	487 443 403	28.053 520 3	9.23
788	62 09 44	489 303 872	28.071 337 7	9.23
789	62 25 21	491 169 069	28.089 143 8	9.24
790	62 41 00	493 039 000	28.106 9386	9.24
791	62 56 81	494 913 671	28.124 722 2	9.24
792	62 72 64	496 793 088	28.142 494 6	9.25
793	628849	498 677 257	28.160 255 7	9.25
794	63 04 36	500 566 184	28.178 005 6	9.25
795	63 20 25	502 459 875	28.195 744 4	9.26
796	63 36 16	504 358 336	28.213472	9.26
797	63 52 09	506 261 573	28.231 1884	9.27
798	63 68 04	508 169 592	28.248 893 8	9.27
799	638401	510 082 399	28.266 588 I	9.27
800	64 00 00	512 000 000	28.284 271 2	9.28
8or	64 16 01	513 922 401	28.301 943 4	9.28
802	64 32 04	515 849 608	28.319 604 5	9.29
803	644809	517 781 627	28.337 254 6	9.29
804	64 64 16	519 718 464	28.354 893 8	9.20
805	648025	521 660 125	28.372 521 9	9.30
806	649636	523 606 616	28.390 139 1	9.30
807	65 12 49	525 557 943	28.407 745 4	9.31
808	65 28 64	527 514 112	28.425 340 8	9.31
809	65 44 81	529 475 129	28.442 925 3	9.31
810	656100	531 441 000	28.460 498 9	9.32
118	65 77 21	533 411 731	28.478 061 7	9.32
812	65 93 44	535 387 328	28,495 613 7	9.32
813	66 09 69	537 367 797	28.513 154 9	9-33
814	66 25 96	539 353 144	28.530 685 2	9-33
815	66 42 25	541 343 375	28.548 204 8	9.34
816	66 58 56	543 338 496	28.565 713 7	9-34
817	66 74 89	545 338 513	28.583 211 9	9-34
818	66 91 24	547 343 432	28.600 699 3	9.35
819	670761	549 353 259	28.618 176	9-35
820	67 24 00	551 368 000	28.635 642 1	9.35
821	674041	553 387 661	28.653 097 6	9.36
822	67 56 84	555 412 248	28.670 542 4	9.36
823	67 73 29	557 441 767	28.687 976 6	9.37
824	67 89 76	559 476 224	28.705 400 2	9.37
825	68 06 25	561 515 625	28.7228132	9.37
826	68 22 76	563 559 976	28.740 215 7	9.38
827	68 39 29	565 609 283	28.757 607 7	9.38
828	68 55 84	567 663 552	28.774 989 I	9.39
829	68 72 41	569 722 789	28.792 360 1	9.39
830	68 89 00	571 787 000	28.809 720 6	9.39
831	690561	573 856 191	28.827 070 6	9.40
832	69 22 24	575 930 368	28.844 410 2	9.40
33	69 38 89	578 009 537	28.861 739 4	9.40
34	69 55 56	580 093 704	28.879 058 2	9.41
9	69 72 25	582 182 875	28.896 3666	9.0
100	69 88 96	584 277 056	28.9136646	1 0
-	70 05 69	586 376 253	28.930 952 3	1
	70 22 44	588 480 472	28.948 229	1 /

B.	SQUARE.	Curs.	SQUARE ROOT.	Cras Roor.
	70 39 21	590 589 719	28.965 496 7	9.431 642 3
ł	70 56 00	592 704 000	28.982 753 5	9.435 38
Ì	70 72 81	.594 823 321	29	9.439 130 7
- 1	708964	596 947 688	29.017 236 3	9.442 870 4
İ	71 06 49	599 077 107	29.034 462 3	9.4466072
ì	71 23 36	601 211 584	29 051 678 1	9.450 341
	71 40 25	603 351 125	29.068 883 7	9.454 071 9
	71 57 16	605 495 736	29.0 86 079 I	9.457 799 9
	71 74 09	607645423	29.103 264 4	9.461 524 9
	719104	609 800 192	29.120 439 6	9.465 247
	72 08 01	611 960 049	29.1376046	9.468 966 1
	72 25 00	614 125 000	29.154 759 5	9 472 682 4
	724201	616 295 051	29.171 904 3	9.476 395 7
1	72 59 04	618 470 208	29.189039	9.480 106 1
1	72 76 09	620 650 477	29.206 163 7	9.4838136
	72 93 16	622 835 864	29.223 278 4	9.487 518 2
	73 10 25	625 026 375	29.240 383	9.491 22
- 1	73 27 36	627 222 016	29.257 477 7	9 494 9188
	73 44 49	629 422 793	29.274 562 3	9 498 614 7
	73 61 64	631 628 712	29.291 637	9.502 307 8
- 1	73 78 81	633 839 779	29.308 701 8	9.505 998
1	73 96 00	636 056 000	29.325 7566	9.509 685 4
	74 13 21	638 277 381	29.342 801 5	9.5133699
	74 30 44	640 503 928	29.359 836 5	9.5170515
	74 47 69	642 735 647	29.376 861 6	9.520 730 3
	74 64 96	644 972 544	29.393 876 9	9.524 406 3
i	74 82 25	647 214 625	29.410 882 3	9.528 079 4
	74 99 56	649 461 896	29.427 877 9	9.531 749 7
	75 16 89	651 714 363	29 444 863 7	9.535 417 2
	75 34 24	653 972 032	29.461 839 7	9.539 081 8
	75 51 61	656 234 909	29.478 805 9	9.542 743 7
	75 69 00 75 86 41	658 503 000 660 776 311	2 9.495 762 4	9.546 402 7
		663054848	29.512 709 1	9.550 058 9
- 1	76 03 84	665 338 617	29.529 646 I 29.546 573 4	9.5537123
	76 38 76	667 627 624	29.540 5/3 4	9.557 363 9.561 010 8
	76 56 25	669 921 875	29.580 398 9	9.564 655 9
	76 73 76	672 221 376	29.597 297 2	9.568 298 2
	769129	674 526 133	20.614 185 8	9.571 937 7
	77 08 84	676 836 152	20.631 064 8	9.575 574 5
	77 26 41	679 151 439	29.647 934 2	9.579 208 5
	77 44 00	681 472 000	29.664 793 9	9.582 839 7
- 1	776161	683 797 841	29.681 644 2	9.586 468 2
	77 79 24	686 128 968	29.698 484 8	9.590 093 7
	77 96 89	688 465 387	29.715 315 9	9 593 716 9
	78 14 56	690 807 104	29.732 137 5	9.597 337 3
	78 32 25	693 154 125	29.748 949 6	9.600 954 8
	78 49 96	695 506 456	29.765 752 1	n.604 569 6
	78 67 69	697 864 103	29.782 545 2	1817
	78 85 44	700 227 072	29.799 328 9	τi
	790321	702 595 369	29.816 103	
	79 21 00	704 969 000	29.8328678	
	793881	707 347 971	20.8496231	
/	795664	709 732 288	29.866 369	
,	79 74 49			
	799236	712 121 957 714 516 984	29.883 105€	

NUMBER.	Square.	Cubr.	SQUARE ROOT.	CUBE F
895	80 10 25	716917375	29.916 550 6	9.636
896	80 28 16	719 323 136	29.933 259 I	9.640
897	804609	721 734 273	29.949 958 3	9.644
898	80 64 04	724 150 792	29.966 648 I	9.647
899	808201	726 572 699	29.983 328 7	9.651
900	810000	729 000 000	30	9.654
901	81 1801	731 432 701	30.016 662	9.658
902	81 36 04	733 870 808	30.033 314 8	9.662
903	81 54 09	736 314 327	30.049 958 4	9.66
904	81 72 16 81 90 25	738 763 264	30.066 592 8	9.66ç
905 906	82 08 36	741 217 625 743 677 416	30.083 217 9	9.672 9.676
907	82 26 49	746 142 643	30.099 833 9 30.116 440 7	9.67¢
908	82 44 64	748 613 312	30.133 038 3	9.68:
909	826281	751 089 429	30.149 626 9	9.68č
910	82 81 00	753 571 000	30.166 206 3	9.690
911	82 99 21	756058031	30.182 776 5	9.694
912	83 17 44	758 550 528	30.199 337 7	9.69;
913	83 35 69	761 048 497	30.215 889 9	9.701
914	83 53 96	763 551 944	30.232 432 9	9.704
915	83 72 25	766 060 875	30.248 966 9	9.708
916	83 90 56	768 575 296	30.265 491 9	9.711
917	84 08 89	771 095 213	30.282 007 9	9.715
918	84 27 24	773 620 632	30.298 514 8	9.718
919	84 45 61	776 151 559	30.3150128	9.722
920	84 64 00	778 688 000	30.331 501 8	9.725
921	848241	781 229 961	30.347 981 8	9.729
922	85 00 84	783 777 448	30.364 452 9	9.732
923	85 19 29	786 330 467	30.3809151	9.73€
924	85 37 76	788 889 024	30.397 368 3	9.739
925	85 56 25	791 453 125	30.4138127	9.74
926	85 74 7 6	794 022 776	30.430.248 1	9.746
927 928	85 93 29 86 11 84	796 597 983	30.446 674 7	9.750
929	86 30 41	799 178 752 801 765 089	30.463 092 4	9.753
930	864900	804 357 000	30.479 501 3 30.495 901 4	9·757 9.761
931	86 67 6 1	806 954 491	30.512 292 6	9.76
932	86 86 24	809 557 568	30.528675	9.76;
933	87 04 89	812 166 237	30.545 048 7	9.771
934	87 23 56	814 780 504	30.561 413 6	9.774
935	87 42 25	817 400 375	30.577 769 7	9.778
936	876096	820 025 856	30.594 117 1	9.781
937	87 79 69	822 656 953	30.610 455 7	9.78
938	879844	825 293 672	30.626 785 7	9.788
939	88 17 21	827 936 019	30.643 1069	9.792
940	88 36 00	830 584 000	30.6594194	9.795
941	88 54 81	833 237 621	30.675 723 3	9.799
942	88 73 64	835 896 888	30.692 018 5	9.802
043	88 92 49	838 561 807	30.708 305 I	9.80€
•	89 11 36	841 232 384	30.724 583	9.800
	⁹ 0 50 25	843 908 625	30.740 852 3	9.813
	19 16	846 590 536	30.757 113	318.¢ 88.¢
	109	849 278 123	30.7896086	/ 3.03
	04	851 971 392	30.8058436	/ 3"
	OI	854 670 349 847 375 000	30.822.01	\ ;

SQUARE.	Cubz.	Square Root.	CUBE ROOT.
90 44 01	860 085 351	30.838 287 9	9.833 923 8
90 63 04	862 801 408	30.854 497 2	9.837 369 5
90 82 09	865 523 177	30.870 698 I	9.8408127
91 01 16	868 250 664	30,886 890 4	9.844 253 6
91 20 25	870 983 875	30.903 074 3	9.847692
91 39 36	873 722 816	30.919 247 7	9.851 128
91 58 49	876 467 493	30,935 416 6	9.854 561 7
91 77 64	879 217 912	30.951 575 1	9.857 992 9
919681	881 974 079	30.967 725 1	9.861 421 8
92 16 00 92 35 21	884 736 000 887 503 681	30.983 866 8	9.864 84 8 3 9.868 272 4
92 54 44	890 277 128	31 31,016 124 8	9.871 694 1
92 73 69	893 056 347	31.032 241 3	9.875 113 5
92 92 96	895 841 344	31.048 349 4	9.878 530 5
93 12 25	808 632 125	31,064 449 1	9.881 945 1
93 31 56	901 428 696	31,080 540 5	9.885 357 4
93 50 89	904 231 063	31,096 623 6	9.888 767 3
93 70 24	907 039 232	31.1126984	9.892 174 9
93 89 6 i	909 853 209	31.128 764 8	9.895 580 í
940900	912 673 000	31.144 823	9.898 983
94 28 41	915498611	31.1608729	9.902 383 5
94 47 84	918 330 048	31.1769145	9.905 781 7
94 67 29	921 167 317	31.1929479	9.909 177 6
94'86 76	924 010 424	31.208 973 1	9.912 571 2
95 06 25	926 859 375	31.224 99	9.915 962 4
95 25 76	929 714 176	31.240 998 7	9.919 351 3
95 45 2 9	932 574 833	31.256 999 2	9.922 737 9
95 64 84	935 441 352	31.272 991 5	9.926 122 2
95 84 41 96 04 00	938 313 739	31.288 975 7	9.929 504 2
962361	944 076 141	31.3049517 31.3209195	9.932 883 9 9.936 26 1 3
964324	946 966 168	31.336 879 2	9.9396363
96 62 89	949 862 087	31.3528308	9.9430092
96 82 56	952 763 904	31.368 774 3	9.946 379 7
97 02 25	955 671 625	31.384 709 7	9.949 747 9
972196	958 585 256	31.400 636 9	9.953 1138
974169	961 504 803	31.416 556 1	9.956 477 5
976144	964 430 272	31.432 467 3	9.9598389
978121	967 361 669	31.448 370 4	9.963 198 1
980100	970 299 000	31.464 265 4	9.966 554 9
98 20 81	973 242 271	31.480 152 5	9.969 909 5
984064	976 191 488	31.496 031 5	9.973 261 9
986049	979 146 657	31.511 902 5	9.976612
98 80 36	982 107 784	31.527 765 5	9.979 959 9
99 00 25	985 074 875	31.5436206	9.983 305 5 9.986 648 8
99 20 16	988 047 936	31.559 467 7 31.575 306 8	9.989.99
994009	994011992	31.591 138	9.993 328 9
998001	997 002 999	31.606 961 3	9.9966656
100000	1 000 000 000	31.622 7766	10
1002001	1 003 003 001	31.638 584	10
1 00 40 04	1 006 012 008	31.654 3836	\ <u>x</u> !
1006009	1 009 027 027	31.670 1752	\ ;
/ 1008016 /	1012048064	31.685.959	/
1010025	1015075 125	31.701 7349	\
1012036	1018 108 216	31.717 503	/ 1
	Вв		

1007	Y	; S om.n=	I CUBE.	SQUARE ROOT.	CUBE ROOF.
1008	NUMBER.	·			
1018					
1010					
1011					
1012	1010			31.780 497 2	
1013					
1014	1012			31.811 947 4	
1015					
1016	•				
1017					
1018					
1019					
1020					
1021					
1022					
1023					
1024				31.908 734 7	
1025 105 05 25 1068 0625 32.015 021 21.082 0485 070 1026 105 26 76 1080 045 576 32.031 2148 10.085 926 21027 105 47 29 1083 206 083 32.046 840 7 10.089 2019 1028 105 67 84 1086 373 952 32.078 029 8 10.095 746 91030 1060 900 1092 727 000 32.093 0131 10.092 0163 1031 106 20 01 1092 727 000 32.093 0131 10.099 0163 1032 106 50 24 1091 04 768 32.124 756 8 10.105 5487 1033 106 70 89 1102 302 937 32.140 317 3 10.105 8817 1034 106 91 56 1105 507 304 32.155 870 4 10.112 0726 1035 107 12 25 1108 717 875 32.171 415 9 10.115 5314 1036 107 32 96 1111 934 656 32.186 953 9 10.118 588 2 1037 107 53 69 1115 157 653 32.202 484 4 10.121 8428 1038 107 74 44 1118 386 872 32.218 007 4 10.122 6345 10040 36 81 128 111 921 32.249 031 10.131 594 1109 08 57 64 131 360 088 32.280 024 8 10.131 594 109 1044 108 108 10 30 1128 111 921 32.245 451 10.131 594 109 41 16 1144 445 336 32.340 903 10.144 566 109 41 16 1144 445 336 32.341 923 3 10.157 602 1104 104 10 1105 10 115 157 652 000 1105 600					
1026			1 073 741 824	32	
1027 1054729 1083 20683 32.046840 7 10.089 2019 1028 10556784 1086 373 952 32.052 439 1 10.092 4755 1029 10588 11 1089 547 389 32.078 0298 10.095 7469 1030 1060900 1092 727 000 32.093 613 1 10.099 0163 1031 106 29 61 1095 912 791 32.109 188 7 10.102 283 5 1032 106 50 24 1099 104 768 32.124 756 8 10.105 548 7 1032 106 50 24 109 104 768 32.124 756 8 10.105 548 7 1033 106 70 89 1 102 302 937 32.140 317 3 10.108 811 7 1034 106 91 56 1 105 507 304 32.155 870 4 10.112 0726 1035 107 122 5 108 717 875 32.176 415 9 10.115 5314 1036 107 32 96 1 111 934 656 32.186 953 9 10.18 588 2 1037 107 53 69 1 115 157 653 32.202 484 4 10.121 8428 1038 107 74 44 1 118 386 872 32.218 007 4 10.126 0953 1039 107 95 21 1121 622 319 32.233 522 9 10.128 3457 1040 36 81 1028 111 921 32.264 5316 10.131 5941 109 08 57 64 1131 366 088 32.280 024 8 10.131 5941 109 08 57 64 1131 366 088 32.280 024 8 10.131 5941 109 08 57 64 1131 366 088 32.280 024 8 10.134 840 3 108 78 49 1134 626 507 32.295 510 5 10.141 3266 74 10.94 116 1144 445 336 32.341 923 3 10.151 040 1 154 320 649 32.326 459 8 10.147 308 32 32.372 888 1 10.147 308 23 32.372 888 1 10.151 040 1 154 320 649 32.385 209 5 10.163 930 1 10 040 1 154 320 649 32.385 209 5 10.163 930 1 10 040 1 156 935 651 32.419 130 1 10.151 576 20 115 76 25 000 1 10 400 1 154 320 649 32.385 209 5 10.163 930 1 10 040 1 160 935 651 32.419 130 1 10.167 1893 1 10.067 04 1164 252 608 32.436 505 10.167 1893 1 10 05 04 116 177 575 877 32.449 901 5 10.173 5344 113 025 1174 241 375 32.449 901 5 10.173 5344 113 036 1 113 04 114 242 1375 32.449 901 5 10.173 534 113 04 114 114 115 03 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 651 117 04 129 1160 932 657 641 2 10.168 97116 112 12 18 11 117 04 12					
1028					
1029					
1030					
1031					
1032					
1033					
1034					
1035					
1036					
1037					
1038					
1039			1118 286 872		
108 100 108 100 1128 1192 32.249031 10.131 5941 100 08 57 64 1131 366 88 32.2800248 10.134 840 3 108 78 49 1134 566 507 32.295 510 5 10.141 326 6			1 121 622 210		
1041 36 81 1128 111921 32.264 531 6 10.134 8493 10.7 08 57 64 1131 366 088 32.280024 8 10.138 0845 1044 108 99 36 1137 893 184 32 310 988 8 10.141 3266 1044 108 99 36 1137 893 184 32 310 988 8 10.144 5667 109 41 16 144 445 336 32.341 923 3 10.151 0406 17 109 52 09 1147 730 823 32.357 379 4 10.154 2704 100 401 1154 320 649 32.357 379 4 10.154 2704 100 1154 320 649 32.385 829 5 10.160 7359 110 25 00 1157 625 000 32.403 703 5 10.163 9336 110 67 04 1164 252 608 32.443 549 5 10.170 6139 31 10 10 10 1151 300 10 10 10 10 10 10 10 10 10 10 10 10 1					
08 57 64					
108 78 49		08 57 64			
10844 108 99 36 1137 893 184 32 310 988 8 10.144 566 7 145 109 20 25 1141 166 125 32.326 459 8 10.147 804 7 109 62 09 1147 730 823 32.337 379 4 10.151 0406 1 100 401 1154 320 649 32.388 269 5 10.163 7635 110 46 01 1160 935 651 32.403 703 5 10.163 9636 110 670 4 1164 25 608 32.434 549 5 10.163 9636 110 96 01 1159 32 68 32.434 549 5 10.163 9636 111 09 16 1160 935 651 32.419 130 1 10.167 1893 10.170 4129 110 910 1177 953 616 32.495 360 2 10.160 7359 10.163 9636 111 30 25 1174 241 375 32.449 901 5 10.173 5344 10.176 8539 111 51 36 177 583 616 32.496 153 6 10.180 0714 1151 36 177 583 616 32.496 153 6 10.180 0714 117 249 1180 932 193 32.511 536 4 10.183 2868 10.180 600 1193 600 1193 600 1190 16000 32.557 641 2 10.193 336 10.193 330 10.199 3336		1 08 78 10			10.141 3266
109 20 25					10.144 566 7
1094116					
7 1096209 1147730823 32.3573794 10.1542744 10.1542748 10.98304 1151022592 32.3728281 10.1575062 1100401 154320649 32.3882695 10.1607359 10.1639636 1104601 1160935651 32.4037035 10.1639636 1106704 1164252608 32.4345495 10.160704 1164252608 32.4345495 10.160704 1167575877 32.4499015 10.179432 10.179439 1113025 1174241375 32.4499015 10.1736344 1115136 177583616 32.4961536 10.1832808 117249 1180932193 32.5115364 10.185002 119364 1184287112 32.5269119 10.1897116 121481 1187648379 32.5422802 10.1292909 123600 119016000 32.5576412 10.1993336					
1 10 10 10 10 10 10 10					
1100401	ġ				10.157 5062
1 10 46 01			1 154 320 649		10.160 7359
1 10 46 01			r 157 625 000		
1 10 88 09 1 167 575 877 32.449 901 5 10.173 5344 1 11 09 16 1 170 905 464 32.465 366 2 10.176 8539 1 11 30 25 1 174 241 375 32.490 763 5 10.180 0714 1 11 51 36 1 177 583 616 32.496 153 6 10.183 2868 1 11 72 49 1 180 932 193 32.511 536 4 10.185 5002 1 193 64 1 184 287 112 32.526 911 9 10.189 7116 1 2 14 81 1 187 648 379 32.512 280 2 10.192 209 1 2 36 00 1 191 016 000 32.557 641 2 10.195 128 3 1 1 2 57 21 1 194 389 981 32.572 994 9 10.199 333 6			r 160 935 651		
1 10 88 09 1 167 575 877 32.449 901 5 10.173 5344 1 11 09 16 1 170 905 464 32.465 366 2 10.176 8539 1 11 30 25 1 174 241 375 32.496 763 5 10.180 0714 1 11 51 36 1 177 583 616 32.496 153 6 10.183 2868 1 11 72 49 1 180 932 193 32.511 536 4 10.186 5002 1 1 93 64 1 184 287 112 32.526 911 9 10.189 7116 1 2 14 81 1 187 648 379 32.512 280 2 10.192 9209 1 2 36 00 1 191 016 000 32.557 641 2 10.196 128 3 1 12 57 21 1 194 389 981 32.572 994 9 10.199 333 6		1 10 67 04	1 164 252 608	32.434 549 5	
111 30 25				32.449 901 5	
1 11 51 36		1110916	1 170 905 464		
1117249					
11 93 64					
12 14 81					
12 36 00 1 191 016 000 32.557 641 2 10.196 1283 12 57 21 1 194 389 981 32.572 994 9 10.199 333 6			1 184 287 112		
12 57 21 1 194 389 981 32.572 994 9 10.199 3336					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12 36 00			
1 12 78 44 1 197 770 328 32.588 341 5 10.202 5399					
		1 12 78 44	1 197 770 328	\ 32.588 341 5	/ 10.303.5399

<u>.</u>	Square.	Cuss.	SQUARE ROOT.	CUBE ROOT.
	1 12 99 69	1 201 157 047	32.603 680 7	10.205 738 2
	1 13 20 96	1 204 550 144	32.6190129	10.208 937 5
	1 13 42 25	1 207 949 625	32.634 337 7	10.212 134 7
	1 13 63 56	1 211 355 496	32.649 655 4	10.215 33
	1138489	1 214 767 763	32.664 965 9	10.218 523 3
j	1 14 06 24	1 218 186 432	32.680 269 3	10.221 7146
	1 142761	1 221 611 509	32.695 565 4	10.224 903 9
ı	1 14 49 00	1 225 043 000	32.7108544	10.228 091 2
- 1	1 14 70 41	1 228 480 91 1	32.726 136 3	10.231 2766
- 1	1 1491 84	1 231 925 248	32.741 411 1	10.234 459 9
	1 15 13 29	1 235 376 017	3 2.7 56678 <i>7</i>	10.237 641 3
- 1	1 15 34 7 6	1 238 833 224	32.771 939 2	10.240 820 7
- 1	1 15 56 25	1 242 296 875	32.787 1926	10.243 998 1
- 1	1 15 <i>77 7</i> 6	1 245 766 976	32.802 438 9	10.247 173 5
	1 15 99 29	1 249 243 533	32.8176782	10.250 347
- 1	1 16 20 84	1 252 726 552	32.832 910 3	10.253 5186
ı	1 164241	1 256 216 039	32.848 1354	10,256 688 I
- 1	1 1664 00	1 259 712 000	32. 863 353 5	10.2598557
- 1	1 168561	1 263 214 441	32.878 564 4	10,263 021 3
1	1 170724	1 266 723 368	32.893 768 4	10.266 185
- 1	1 17 28 89	1 270 238 787	32,908 965 3	10.269 346 7
1	1 17 50 56	1 273 760 704	32.924 155 3	10.272 506 5
	I 17 72 25	1 277 289 125	32.939 338 2	10.275 664 4
- 1	1 17 93 96	1 280 824 056	32.954 514 1	10.278 820 3
	1 18 15 69	1 284 365 503	32.969 683	10.281 974 3
	1 18 37 44	1 287 913 472	32.984 845	10.285 1264
- 1	1 18 59 21	1 291 467 969	33	10.288 276 5
l	1 1881 ∞	1 295 029 000	33.015 148	10.291 424 7
- 1	1 1902 81	1 298 596 571	33.030 289 1	10.294 570 9
- 1	1 1924 64	1 302 170 688	33.045 423 3	10.297 715 3
	1 194649	1 305 751 357	33.060 550 5	10.300 857 7
- 1	1 19 68 36	1 309 338 584	33.075 670 8	10.303 998 2
- 1	1 19 90 25	1 312 932 375	33.090 784 2	10.307 1368
- 1	1 20 12 16	1 316 532 736	33.105 890 7	10.310 273 5
- 1	1 20 34 09	1 320 139 673	33.120 990 3	10.3134083
	1 20 56 04	1 323 753 192	33.136 083	10.316 54143
1	1207801 1210000	I 327 373 299	33.151 168 9 33.166 247 9	10.319 6757 10.322 8690 2
ł		1 331 000 000	33.180 247 9	10.325 92221 7
- 1	I 2I 22 0I I 2I 44 04	1 334 633 301 1 338 273 208	33.196 385 3	
- 1	1216600	1 341 919 727	33.211 4438	10.329 0537
1	1 21 88 16	1 345 572 864	33.226 695 5	10.332 177 10.335 298 5
- 1	1 22 10 25	1 349 232 625	33.241 540 3	10.3384181
ı	1 22 32 36	1 352 899 016	33.256 578 3	10.341 52"
- 1	I 22 54 49	1 356 572 043	33.271 609 5	10.344 6
- 1	1 22 76 64	1 360 251 712	33.286 633 9	10.347
- 1	1 22 98 81	1 363 938 029	33.301 651 6	10.350
l	1 23 21 00	1 367 631 000	33.3166625	10.353
- 1	1 23 43 21	1 371 330 631	33.331 666 6	10.357
	1 23 65 44	1 375 036 928	33.346 664	10.360
1	1 23 87 69	1 378 749 897	33.361 654 6	10.363
	1 24 00 96	1 382 469 544	33.376 638 5	10.366.
- 1	1 24 32 25	1 386 195 875	33.391 615 7	10.369 5.
	1 24 54 56	1 380 028 806	33.406 586 2	10.3736.
1	1 24 76 89	1 393 668 613	33.421 5499	10.3757
/	1 24 99 24	1 397 415 032	33.436 507	£08878.01

•				
NUMBER.	SQUARE.	Сине.	SQUARE ROOT.	CUBE ROOF.
1119	1 25 21 61	1 401 168 159	33.451 457 3	10.381 8965
1120	1 25 44 00	1 404 928 000	33.466 401 1	10.384 988 2
1121	1 25 66 41	1 408 694 561	33.481 338 I	10.388 078 1
1122	1 25 88 84	1 412 467 848	33.496 268 4	10.391 1661
1123	1 26 11 29	1 416 247 867	33.511 192 1	10.394 252 3
1124	1 26 33 76	1 420 034 624	33.526 109 2	10.397 3366
1125	1 26 56 25	1 423 828 125	33.541 0196	10.400 4192
1126	1 26 78 76	1 427 628 376	33-555 923 4	10.403 4999
1127	1 27 01 29	1 431 435 383	33.5708206	10.406 5787
1128	1 27 23 84	1 435 249 152	33.585 711 2	10.409 655 7
1129	1274641	1 439 069 689	33.600 595 2	10.412 731
1130	1276900	1 442 897 000	33.615 472 6	10.415 8044
1131	1 27 91 61	1 446 731 091	33.630 343 4	10.418876
1132	1 28 14 24	1 450 571 968	33.645 207 7	10.421 9458
1133	1 28 36 89	1 454 419 637	33.660 065 3	10,425 0138
1134	1 28 59 56	1 458 274 104	33.674 916 5	10.428 08
1135	1 28 82 25	1 462 135 375	33.689 761	10.431 1443
1136	1 29 04 96	1 466 003 456	33.704 599 I	10.434 2069
1137	1 29 27 69	1 469 878 353	33.7194306	10.437 2677
1138	1 29 50 44	1 473 760 072	33.734 255 6	10.440 3267
1139	1 29 73 21	1 477 648 619	33.749 074 I	10.443 3839
1140	1 29 96 00	1 481 544 000	33.763 886 0	10.446 439 3
1141	1 30 18 81	1 485 446 221	33.778 691 5	10.449 4929
1142	1 30 41 64	1 489 355 288	33.793 490 5	10.452 5448
1143	1 30 64 49	1 493 271 207	33.808 283	10.455 5948
1144	1 30 87 36	1 497 193 984	33.823.0691	10.4586431
1145	1 31 10 25	1 501 123 625	33.837 8486	10.461 6896
1146	1 31 33 16	1 505 060 136	33.8526218	10.464 734 3
1147	1 31 56 09	1 509 603 523	33.867 388 4	10.467 7773
1148	1 31 79 04	1 512 953 792	33.882 148 7	10.470 8185
1149	1 32 02 01	1 516 910 949	33.896 902 5 33.911 649 9	10.473.8579
1150	1 32 25 00	1 520 875 000 1 524 845 951		10.476 895 5
1151 1152	1 32 48 01	1 528 823 808	33.926 390 9 33.941 125 5	10.479 931 4 10.482 96 5 6
1132	1 32 94 09	1 532 808 577	33.955 853 7	10.485 998
144	1 33 17 16	1 536 800 264	33.970 575 5	10.489 0286
∴ ™™™	¥ 1 33 40 25	1 540 798 875	33.985 291	10.492 057 5
1000	1 33 63 36	1 544 804 416	34	10.495 084 7
104 ³ 1957	1 33 86 49	1 548 816 893	34.014 702 7	10.498 110 1
.027	1 34 09 64	1 552 836 312	34.029 399	10.501 1337
_	1 34 32 81	1 556 862 679	34.044 089	10.504 1556
	1 34 56 00	1 560 896 000	34.058 772 7	10.507 1757
	1 34 79 21	1 564 936 281	34.073 450 I	10.510 1942
	1 35 02 44	1 568 983 528	34.088 121 1	10.513 2109
	35 25 69	1 573 037 747	34.102 785 8	10.516 225 9
	35 48 96	1 577 098 944	34.1174442	10.519 239 1
	35 72 25	1 581 167 125	34.1320963	10.522 2506
	35 95 56	r 585 242 296	34.146 742 2	10.525 260 4
	1 36 18 89	1 589 324 463	34.161 381 7	10.528 268 5
	1 36 42 24	1 593 413 632	34.176015	10.531 2749
	36 65 61	1 597 509 809	34.190642	10.534 279 5
	16 89 00	1601613000	34.302 303 J	10.537 282 5
	7 12 41	1 605 723 211	34.2198773	10.2403831
	35 84	1 609 840 448	34.234 4855	10.243 5833
	59 29	1613964717	34.2490875	10.546.281
	82 76	1618096024	34.263683	4 / 10.240 sll.
		-		

SQUARE.	Cubz.	SQUARE ROOT.	CUBE ROOT.
1 38 06 25	1 622 234 375	34.278 273	10.552 271 5
1 38 29 76	1 626 379 776	34.292 856 4	10.555 264 2
1 38 53 29	1 630 532 233	34.307 433 6	10.558 255 2
1 38 76 84	1 634 691 752	34.322 004 6	10.561 244 5
1 39 00 41	1 638 858 339	34.336 569 4	10.564 232 2
1 39 24 00	1 643 032-000	34.351 128 1	10.567 218 1
1 39 47 61	1 647 212 741	34.365 680 5	10.570 202 4
1 39 71 24	1 651 400 568	34.380 226 8	10.573 184 9
1 39 94 89	1 655 595 487	34.394 767	10.576 165 8
1 40 18 56	1 659 797 504	34.409 301 1	10.579 144 9
1 40 42 25 1 40 65 96	1 664 006-625 1 668 222 856	34.423 828 9	10.582 122 5
1408969	1 672 446 203	34.438 350 7	10.585 098 3
1411344	1 676 676 672	34.452 866 3	10.588 072 5
1413721	1 680 914 269	34.4 ⁶ 7 375 9 34.481 879 3	10.591 045
1416100	1 685 159 000	34.496 3766	10.594 015 8
1418481	1 689 410 871	34.510 867 8	10.596 985 10.599 952 5
1420864	1 693 669 888	34.525 353	10.602 918 4
1 42 32 49	1 697 936 057	34.539 832 1	10.605 882 6
1 42 56 36	1 702 209 384	34.554 305 I	10.608 845 1
1 42 80 25	1 706 489 875	34.568 772	10.611 806
1 43 04 16	1 710 777 536	34.583 232 9	10.614 765 2
1 43 28 09	1 715 072 373	34.5976879	10.617 722 8
1 43 52 04	1 719 374 392	34.612 1366	10.620 678 8
1 43 76 01	1 723 683 599	34.626 579 4	10.6236331
1 44 00 00	1 728 000 000	34.641 016 2	10.626 585 7
1 44 24 01	1 732 323 601	34.655 446 9	10.629 536 7
1 44 48 04	1 736 654 408	34.6698716	10.632 486
I 44 72 09	I 740 992 427	34.684 290 4	10.635 433 8
1 44 96 16	1 745 337 664	34.698 703 1	10.638 379 9
1 45 20 25	1 749 690 125	34.713 1099	10.641 324 4
1 45 44 36	1 754 049 816	34.727 510 7	10.644 267 2
1 45 68 49	1 758 416 743	34.741 905 5	10.647 208 5
1 45 92 64	1 762 790 912	34.756 294 4	10.650 148
1 46 1681	1 767 172 329	34.7706773	10.653 086
1464100	1 771 561 000	34.785 054 3	10.656 022 3
1 466521	1 775 956 931	34-799 425 3	10.658 957
1 46 89 44	1 780 360 128	34.813 790 4	10.661 890 2
1471369	1 784 770 597	34.828 149 5	10.664 821 7
1 47 37 96 1 47 62 25	1 789 188 344 1 793 613 375	34.842 502 8 34.856 850 1	10.667 751 6
1478656	1 798 045 696	34.871 191 5	10.670 679 9
1481089	1 802 485 313	34.885 527 1	10.673 606 6 10.67 6 531 ~
1 48 35 24	1 806 932 232	34.899 856 7	10.6%
1 48 59 61	1811 386 459	34.914 180 5	10.
1 48 84 00	1815848000	34.928 498 4	7
1490841	1 820 316 861	34.942 810 4	
1 49 32 84	1 824 793 048	34.957 1166	
1 49 57 29	1 829 276 567	34.971 4169	
1498176	1 833 767 424	34.985 711 4	1
1 50 06 25	1 838 265 625	35	1
1 50 30 76	1842 771 176	35.0142828	\ <u>I</u> .
1505529	1847284083	35.028 5598	\ IC.,
1507984	1851804352	35.042 830 9	vor.or
1510441	1 856 331 080	35.057 096 3	Z 117.01
1512900	1 860 867 000	35.071 3558	

	_		_	
NUMBER.	SQUARE.	CUBE.	SQUARE ROOT.	CUBE ROOF.
1231	1 51 53 61	1 865 409 391	35.085 609 6	10.717 315 5
1232	1 51 78 24	1 869 959 168	35.0998575	10.720 2168
1233	1 52 02 89	1 874 516 337	35.114 099 7	10.723 1165
1234	·1 52 27 56	1 879 080 904	35.128 336 1	10.726 014 6
1235	1 52 52 25	1 883 652 875	35.142 5568	10.728 911 2
1236	1 52 76 96	1 888 232 256	35.156 791 7	10.731 806 2
1237	1 53 01 69	1 892 819 053	35.171 010 8	10.734 699 7
1238	1 53 26 44	1 897 413 272	35.185 224 2	10.737 591 6
1239	1 53 51 21	1 902 014 919	35.199 431 8	10.740 481 9
1240	1 53 7600	1 906 624 000	35.213 633 7	10.743 370 7
1241	1 54 00 81	1911240521	35.227 829 9	10.746 2579
1242	1 54 25 64	1915864488	35.242 020 4	10.749 1436
1243	1 54 50 49	1 920 495 907	35.256 205 I	10.752 027 7
1244	1 54 75 36	1 925 134 784	35.270 384 2	10.754 910 3
1245	1 55 00 25	1 929 781 125	35.284 557 5	10.75 7 7 91 3
1246	1 55 25 16	1 934 434 936	35.298 725 2	10.7606708
1247	1 55 50 09	1 939 096 223	35.3128872	10.763 5488
1248	I 55 75 04	1 943 764 992	35-327 043 5	10.766 4252
1249	1 56 00 01	1 948 441 249	35.341 194 1	10.769 300 1
1250	1 56 25 00	1 953 125 000	35-355 339 I	10.772 1735
1251	1 56 50 01	1 957 816 251	35.369 478 4	10.775 045 3
1252	1 56 75 04	1962515008	35.383612	10.777 9156
1253	1 57 00 09	1 967 221 277	35-397 74	10.780 784 3
1254	1 5725 16	1 971 935 064	35.411 862 4	10.783 651 6
1255	I 57 50 25	1 976 656 375	35.425 979 2	10.786 5173
1256	1 57 75 36	1 981 385 216	35.440 090 3	10.789 381 5
1257	1 5800 49	1 986 121 593	35.454 195 8	10.792 244 I
1258	1 58 25 64	1 990 865 512	35.468 295 7	10.795 1053
1259	1 58 50 81	1 995 616 979	35.482 39	10.797 9649
1260	1 58 7 6 00	2000 376 000	35.496 478 7	10.800 823
1261	1 59 01 21	2 005 142 581	35.510 561 8	10.803 679 7
1262	1 59 26 44	2 009 916 728	35.524 639 3	10.806 5348
1263	1 59 51 69	2014698447	35.538 711 3	10.809 388 4
1264	1 59 76 96	2019487744	35.552 777 7	10.812 2404
1265	1 60 02 25	2 024 284 625	35.566 838 5	10.815 090 9
1266	1602756	2 029 089 096	35.580 893 7	10.81794
1267	1 60 52 89	2033 901 163	35.594 943 4	10.820 787 6
1268	1 60 78 24	2 0 3 8 7 2 0 8 3 2	35.608 987 6	10.823 633 6
1269	1610361	2043 548 109	35.623 026 2	10.826 478 2
1270 .	1612900	2 048 383 000	35.637 059 3	10.829 321 3
1271	1 61 54 41	2053 225 511	35.651 086 9	10.832 1629
1272	1617984	2058075648	35.665 109	10.835 003
1273	1 62 05 29	2062933417	35.679 125 5	10.837 841 6
1274	1 62 30 76	2 067 798 824	35.693 1366	10.840 6788
1275	1 62 56 25	2072671875	35.707 142 1	10.843 5144
1276	1628176	2077 552 576	35.721 142 2	10.846 348 5
1277	1630729	2 082 440 933	35.735 136 7	10.849 181 2
1278	1 63 32 84	2 087 336 952	35.749 125 8	10.8520125
'770	1635841	2 092 240 039	35.763 109 5	10.854 842 2
	1638400	2 097 152 000	35.777 087 6	10.857 670 4
	16 10961	2 102 071 041	35.791 060 3	10.860 497 2
	*24	2 106 997 768	35.805.0276	10.863 322 5
	₹ 9	2 111 932 187	35.818 989 4	4 der 308:01
	6	2116874394	35.832 945 7	7 2008 dos 7
	ť	2 121 824 125	35.846.8066	r / 10.871 1891
		' 2 126 781 650	35.860842	- / 200 14 009

R.	SQUARE.	Cubr.	SQUARE ROOF.	CUBE ROOT.
	1656369	2 131 746 903	35.874 782 2	10.877 427 1
	1658944	2 136 719 872	35.888 716 9	10.880 243 6
	166 15 21	2 141 700 569	35.902 646 1	10.883 058 7
	1664100	2 146 689 000	35.916 569 9	10.885 872 3
	1 66 66 81	2 151 685 171	35.930 488 4	10.888 684 5
	1669264	2 156 689 088	35.944 401 5	10.891 495 2
	1 67 18 49	2 161 700 757	35.958 309 2	10.894 304 4
	1 67 44 36	2 166 720 184	35.972 211 5	10.897 112 3
	1 67 70 25	2 171 747 375	35.986 108 4	10.899 918 6
	1 67 96 16	2 176 782 336	36	10.902 723 5
	1 68 22 09	2 181 825 073	36.013 886 2	10.905 526 9
	1684804	2 186 875 592	36.027 767 1	10.908 329
	1687401	2 191 933 899	36,041 642 6	10.911 1296
	1690000	2 197 000 000	36.055 512 8	10.9139287
	1692601	2 202 073 901	36.069 377 6	10.916 726 5
	169 52 04	2 207 155 608	36.083 237 1	10.919 522 8
	1697809	2 212 245 127	36.097.091.3	10.922 317 7
	1 70 04 16	2 217 342 464 2 222 447 625	36.110 940 2	10.925 111 1
	1 70 56 36	2 227 560 616	36.124 783 7 36.138 622	10.927 903 1 10.930 693 7
	1 70 82 49	2 232 681 443	36.152455	10.933 482 9
	1710864	2 237 810 112	36.166 282 6	10.936 270 6
	1713481	2 242 946 629	36.180 105	10.939 056 9
	1716100	2 248 001 000	36.193 922 1	10.941 841 8
	1718721	2 253 243 231	36.207 734	10.944 625 3
	1 72 13 44	2 258 403 328	36.221 540 6	10.947 507 4
	1 72 39 69	2 263 571 297	36.235 341 9	10.950 188
	1 72 65 96	2 268 747 144	36.249 137 9	10.952 967 3
	1 72 92 25	2 273 930 875	36.262 928 7	10.955 745 1
	1 73 18 56	2 279 122 496	36.276 714 3	10.958 521 5
	1 73 44 89	2 284 322 013	36.290 494 6	10.961 296 5
	1 73 71 24	2 289 529 432	36.304 269 7	10.964 070 1
	1739761	2 294 744 759	36.318 039 6	10.966 842 3
	1 74 24 00	2 299 968 000	36.331 804 2	10.969 613 1
	1 74 50 41	2 305 199 161	36.345 563 7	10.972 382 5
	1 74 76 84	2 310 438 248	36.359 317 9	10.975 150 5
	1 75 03 29	2 315 685 267	36.373.067	10.977 917 1
	1752976	2 320 940 224	36.386 \$10 \$	10.980 682 3
	1 75 56 25	2 326 203 125	36 400 549 4	10.983 446 2
	1 75 82 76	2 331 473 976	36.414.282.9	10.986 208 6
	1 76 09 29	2 336 752 783	36.4280112	10.988 969 6
	1 76 35 84	2 342 039 552	36.441 734 3	10.991 729 3
	1766241	2 347 334 289	36.455 452 3	10.994 487 6
	1768900	2 352 637 000	36.469 165	TO
	1771561	2 357 947 691	36.482 872 7	
	I 77 42 24	2 363 266 368	36.496 575 2	
	1 77 68 89	2 368 593 037	36.510 272 5	
	1779556	2 373 927 704	36.523 964 7	
	1 78 48 96	2 379 270 375 2 384 621 056	36.537 651 8 36.551 333 8	
	1787569		36.551 333 6 36 565 010 6	
	1790244	2 389 979 753 2 395 346 472	36 578 682 3	\ <u>x</u>
/	1792921	2 400 721 219		\ <u>11.</u>
/	1795600	2 406 104 000	36.592 348 9 36.606 010 4	\ II.O_
_/	1798281	2411494821	36.6196668	11.037 -
,	1800964 /	2416 893 688	36.633 3181	11.0303
			30,033,3101	, –

NUMBER.	SQUARE.	CUBR.	SQUARE ROOT.	CUBE ROOF.
1343	1803649	2 422 300 607	36.646 964 4	11.032 959
1344	1806336	2 427 715 584	36.660 605 6	11.035 606 7
1345	1809025	2 433 138 625	36.674 241 6	11.038433
1346	1811716	2 438 569 736	36.687 872 6	11.041 168
1347	1814409	2 444 008 923	36.701 498 6	11.043 901 7
1348	1817104	2 449 456 192	36.715 119 5	11.046 6339
1349	1819801	2 454 911 549	36.728 735 3	11.049 364 9
1350	1822500	2 460 375 000	36.742 346 1	11.0520045
1351	1825201	2 465 846 551	36.755 951 9	11.054 822 7
1352	1827904	2 471 326 208	36.769 552 6	11.057 5497
1353	1830609	2476813977	36.783 148 3	11.060 2752
1354	1833316	2 482 309 864	36.796 739	11.062 9994
1355	1836025	2 487 813 875	36.810 324 6	11.065 7222
1356	1838736	2 493 326 016	36,823 905 3	11.068 4437
1357	1841449	2 498 846 293	36.837 480 9	11.071 1639
1358	1844164	2 504 374 712	36.851 051 5	11.0738828
1359	1846881	2 509 911 279	36.864 6172	11.0766003
1360	1840600	2 515 456 000	36.878 177 8	11.0793165
1361	1852321	2 521 008 881	36.891 733 5	11.082 031 4
1362	185 50 44	2 526 569 928	36.905 284 2	11.084 7449
1363	1857769	2 532 139 147	36.918 8299	11.0874571
1364	1860496	2 537 716 544	36.932 370 6	11.090 1679
1365	1 86 32 25	2 543 302 125	36.945 906 4	11.092 877 5
1366	1 86 59 56	2 548 895 896	36.959 437 2	11.095 5857
1367	1 86 86 89	2 554 497 863	36.972 963 I	11.098 2926
1368	1871424	2 560 108 032	36.986 484	11.100 9982
1369	1874161	2 565 726 409	37	11.103 7025
1370	1876900	2 571 353 000	37.013 511	11.106 4054
1371	1879641	2 576 987 811	37.027 017 2	11.1004034
1372	1882384	2 582 630 848	37.040 5184	11.111 8073
1373	1885129	2 588 282 117	37.054 014 6	11.114 5064
1374	1 88 78 76	2 503 941 624	37.067 506	11.117 2041
	1890625	2 599 609 375	37.089 992 4	
1375	1893376	2 605 285 376	37.004 474	11.119 900 4
	1896129	2610 969 633	37.107 950 6	
1377	1898884	2616662152	37.121 422 4	11.125 2893
1379	1,901641	2 622 362 939	37.134 889 3	11.127 9817
1380	190 44 00	2 628 072 000	37.148 351 2	
1381	1907161	2 633 789 341	37.161 808 4	11.133 3628
1382	1909924	2639 514 968	37.175 260 6	
1383	1912689	2645 248 887	37.188 707 9	30 /30 ;
1384				
1385	1915456	2650-991 104	37.202 150 5	
		2 656 741 625	37.215 588 1	
1386	1 92 09-96	2 662 500 456	37.229 020 9	
388	1 92 37 69	2 668 267 603	37.242 448 9	
300	1 92 65 44	2674 043 072	37.255 872	- J 1 00 L
30	1929321	2 679 826 869	37.269 290 3	11.157 5133 11.160 1903
	1932100	2685619000	37.282 703 7	11.160 1903
14	1934881	2691419471	37.296 112 4	11.1628659 11.1655403 11.1682134
- 27	1937664	2 697 228 288	37.309 516 2	11.165 5403
	94 04 49	2 703 045 457	37.322 915 2	
	94 32 36	2 708 870 984	37.336 309 4 /	11.170 8853
	74 60 25	2714704875	37.349.6988	11.173558
	-	2 720 547 136	37.363.083.4	11.176 225
		126 397 773	37.376 4632	208871.11 22181.11 / 1
		2 256 792	37.3898383	" / Tr'FOT 2.

1 195 72 01	ER.	SQUARE.	Cuns.	SQUARE ROOT.	CUBE ROOT.
1 196 00 00	,	1 95 72 01	2 738 124 199	37.403 208 4	11.184 225 2
1 196 5604 2755 776 808 37.441 3290 4 11.192 3213 9 1 196 84 09 2 761 677 827 37.456 641 6 11.194 874 3 11.97 1216 2 767 587 264 37.469 988 11.197 1216 2 767 587 264 37.469 988 11.197 533 4 11.97 63 36 2 7779 411 416 37.406 666 5 11.202 847 9 2 785 366 143 37.509 998 7 11.202 847 9 37.491 416 37.406 666 5 11.202 847 9 37.491 416 37.406 666 5 11.202 847 9 37.491 416 37.406 666 5 11.202 847 9 37.491 416 37.406 666 5 11.202 847 9 37.536 648 7 11.208 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>			37.416 573 8	
196 84 09	:			37-429 934 5	
197 12 16					
19740 25					
1976836					
1970649	į				
1 1 1 1 2 2 2 3 3 3 3 3 3 3					
1 198 52 81	,				
1 193 81 00 2 803 221 000 37.549 966 7 11.213 461 7 1990 21 280 189 531 37.563 279 9 11.216 112 199 37 44 2815 166 528 37.576 588 5 11.218 761 1 199 37 44 2815 166 528 37.576 588 5 11.221 408 9 1 1993 96 2821 151 997 37.589 892 2 11.221 408 9 1 1993 96 2827 145 944 37.603 191 3 11.222 405 4 1 200 505 6 2839 159 296 37.629 775 4 11.223 108 76 7 200 505 6 2839 159 296 37.629 775 4 11.231 987 6 200 170 24 2851 206 632 37.656 340 7 11.231 629 2 2 10 35 61 2857 243 059 37.669 616 4 11.237 269 6 1 201 241 2869 341 461 37.696 153 6 11.245 183 1 201 24 1 2869 341 461 37.696 153 6 11.245 183 1 201 24 1 2869 341 461 37.696 153 6 11.245 183 1 201 24 1 2869 341 461 37.696 153 6 11.245 183 1 201 24 1 2869 341 461 37.709 415 3 11.245 183 1 201 24 1 2869 341 461 37.709 415 3 11.245 183 1 201 24 1 2869 341 461 37.709 415 3 11.245 183 1 201 24 1 2869 341 461 37.709 415 3 11.245 183 1 201 24 1 2869 376 76 37.762 415 2 11.250 452 7 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 12.25 452 7 1 1 1 1 1 1 1 1 1 1 1 1				37.523 320 1	
1 199 09 21 2 809 189 531 37.563 279 9 11.216 112 199 37 44 2815 166 528 37.576 588 5 11.218 761 1 199 37 44 2815 166 528 37.576 588 5 11.218 761 1 199 37 94 2821 151 997 37.589 80 2 11.212 405 4 37.503 101 3 11.224 005 4 37.503 101 3 11.224 005 4 37.503 101 3 11.224 005 4 37.503 101 3 11.224 005 4 37.503 101 3 11.224 005 4 37.503 101 3 37.543 000 4 37.502 37.5 4					
1993744					
1995569					
199396					
200 22 25					
2005056					
2 00 72 89 2 845 178 713 37.643 060 4 11.231 987 6 2 01 07 24 2 851 206 632 37.656 340 7 11.234 6592 2 2 01 35 61 2 857 243 059 37.669 616 4 11.237 269 6 2 01 04 00 2 863 288 000 37.682 887 4 11.239 908 7 2 01 04 00 2 863 288 000 37.682 887 4 11.239 908 7 2 01 02 41 2 869 341 461 37.696 1536 11.245 183 1 2 01 24 9 29 2 881 473 967 37.722 672 2 11.250 452 7 2 02 17 7 6 2 887 553 024 37.735 924 5 11.250 452 7 2 03 03 17 6 2 899 736 776 37.762 415 2 11.250 452 7 2 03 03 12 2 899 581 483 37.775 653 5 11.258 347 8 2 03 18 2 2911 954 752 37.788 887 3 11.260 977 2 03 03 12 2 905 841 483 37.775 653 5 11.258 347 8 3 2 03 18 2 2911 954 752 37.788 887 3 11.260 977 2 04 20 40 1 2918 076 589 37.802 116 3 11.266 231 8 1 2 04 77 61 2 930 345 991 37.828 500 6 11.268 857 3 2 05 05 14 89 2 942 649 737 37.828 500 6 11.268 857 3 2 05 50 22 49 881 4 504 37.868 192 4 11.274 104 7 4 20 5 05 5 05 2 948 814 504 37.868 192 4 11.277 206 5 5 20 5 92 25 2 954 987 875 37.881 393 8 11.279 347 2 5 20 6 20 20 96 2 967 360 453 37.907 782 8 11.288 566 7 2 00 6 7 2 07 3 60 2 985 984 000 37.947 331 9 11.291 347 2 2 07 07 21 2 979 767 519 37.934 153 5 11.288 567 7 2 07 07 21 2 979 767 519 37.934 153 5 11.288 587 7 3 20 6 3 60 2 967 360 453 37.907 782 8 11.287 2019 32 207 07 21 2 979 767 519 37.934 153 5 11.288 587 7 2 20 7 3 60 2 985 984 000 37.947 331 9 11.292 432 3 37.966 839 8 30.93 301 933 6 301 933 6 33 8.03 365 5 95 2 301 309 36 384 38 301 315 56 301 309 36 384 38 301 315 56 301 309 36 384 38 301 315 56 301 309 36 384 38 301 309 36 384 38 301 309 36 384 38 301 309 36 384 38 301 309 36 384 38 301 309 36 309 309 309 309 309 309 309 309 309 309	ś				
201 3561	7				
201 3561	3	2010724			
1)	201 3561		37.6696164	11.237 269 6
2022084 2875403448 37.7094153 11.2451831 2024029 2881473007 37.7024722 11.2451831 11.2478185 2027776 2887553024 37.7359245 11.2530856 2033176 2899736770 37.7624152 11.2530856 2033176 2899736770 37.7624152 11.255773 11.2451836 11.2451831 11.2478185 11.2530856 11.255773 37.7624152 11.255773 11.2530856 11.255773 37.7888873 11.260977 11.263605 20449041 2918076589 37.8021163 11.263605 2044904 2924207000 37.8153408 11.2688573 37.828566 37.82163 37.828566 37.821759 37.828566 37.821759 37.828566 37.8217759 37.828866 37.8217759 37.828766 37.8217759 37.828766 37.8217759 37.828766 37.82873 37.92876 37.92876 37.92876 37.928776 37.928776 37.928777 37.928777 37.928777 37.928777 37.928777 37.928777 37.928777 37.928777 37.928777 37.928777 37.928777 3)	2016400			11.239 908 7
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		2019241		37.696 1536	11.242 546 5
202776 2887553024 37.7359245 11.2504527 2030625 2893640625 37.7491722 11.2530856 2033476 2899736776 37.76524152 11.2530856 3 2039184 2911954752 37.7888873 11.260977 2044900 2924207000 37.80521163 11.260977 2044900 2924207000 37.8153408 11.260977 2044900 2924207000 37.8153408 11.260977 2045041 2938345991 37.8285606 11.2688573 20550624 2936493568 37.8417759 11.2714816 3 20551489 2942649737 37.8549864 11.2714047 4 2056156 2948814504 37.8681924 11.2767266 5 205925 2954987875 37.8813938 11.2707266 5 205925 2954987875 37.8813938 11.2793472 5 2064969 2967360453 37.907828 11.2815666 7 2064969 2967360453 37.9077828 11.2815666 7 2070721 2979767519 37.9341535 11.2828179 2070721 297976759 37.9341535 11.2828179 2070721 297976759 37.9341535 11.2828209 2070721 297976759 37.9341535 11.2828209 2070721 297976759 37.934535 11.285209 2070721 29797659 37.934535 11.2852019 2070721 29797659 37.934555 11.2852019 2070721 297976759 37.934555 11.2852019 2070721 297976759 37.934555 11.2852019 2070721 297976759 37.9365058 11.2852019 2070721 297976759 37.9365058 11.2852019 2070721 297976759 37.9365058 11.2852019 2070721 297976759 37.9365558 11.2852505 2090916 303448586 37.936555 38.0349385 2088025 3017196125 38.0394532 38.0525952 38.095399 3029741623 38.0553952 38.095399 3029741623 38.0553952 38.095399 3029741623 38.0553926 38.095399 3029741623 38.0553926 38.095399 3029741623 38.0553926 38.095399 3029741623 38.0553926 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 38.095399 3029741623 38.095399 3938 38.095399 3029741623 38.095399 3938 38.095399 3029741623 38.095399 3938 38.095399 3029741623 38.095399 3938 38.095399 3029741623 38.095399 3939 38.095399 3939 3029741623 38.095399 3939 3029741623 38.095399 3939 3029741623 38.0	3				
\$ 20,304,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,76 \$ 20,34,84 \$ 20,11,954,752 \$ 37,758,887,3 \$ 11,250,977 \$ 37,762,415,2 \$ 37,775,63,5 \$ 37,788,887,3 \$ 37,788,183,30 \$ 11,260,977 \$ 11,263,605 \$ 20,449,00 \$ 29,24,207,000 \$ 37,815,340,8 \$ 11,260,231,8 \$ 20,24,49,00 \$ 29,24,207,000 \$ 37,815,340,8 \$ 11,268,857,3 \$ 37,854,175,9 \$ 11,271,481,6 \$ 20,531,89 \$ 29,449,737 \$ 37,854,986,4 \$ 11,271,481,6 \$ 20,531,80 \$ 29,48,814,504 \$ 37,868,192,4 \$ 11,271,481,6 \$ 20,531,80 \$ 29,48,814,504 \$ 37,868,192,4 \$ 11,271,481,6 \$ 20,531,80 \$ 29,48,814,504 \$ 37,868,192,4 \$ 11,270,726,6 \$ 37,881,333,8 \$ 11,273,472,6 \$ 20,502,50 \$ 20,50					
203476 2899736776 37.7624152 11.2557173 7 2036329 2905841483 37.7756335 11.2583478 3 2039184 2911954752 37.7888873 11.263605 1 2044900 2924207000 37.8153408 11.2662318 1 2047761 2930345991 37.8285606 11.2688573 2 2050624 2936493568 37.8417759 11.2714816 3 2053356 2948814504 37.8681924 11.2741047 4 2056356 2948814504 37.8681924 11.2774047 5 2054969 2961169856 37.8945906 11.2819066 7 2064969 2967360453 37.997828 11.2829366 8 2067844 2973559672 37.9209704 11.282901 9 2070721 2979767519 37.9341535 11.282819 9 2070721 2979767519 37.9341535 11.282817 1 207481 29929121 37.9655058 11.2828317 2 207360 298598400 37.9473319 11.2924323 1 2074481 29929121 37.9655058 11.2898177 2 20329364 298842888 37.9736751 37.9868398 38.0525952 301596125 3023464536 38.0394532 39.04685307 37.9868398 38.0525952 301596125 3023464536 38.0394532 301936384 38 301936385 38 301936384 30					
7 2036129 2905 841 483 37.775 653 5 11.258 347 8 20391 84 2911 954 752 37.788 887 3 11.260 977 204 204 11 2918 076 589 37.802 116 3 11.266 231 8 204 49 00 2924 207 000 37.815 340 8 11.266 231 8 205 71 2930 345 991 37.828 560 6 11.268 857 3 205 71 2930 345 991 37.828 560 6 11.268 857 3 205 71 2936 345 991 37.828 560 6 11.268 857 3 205 71 2936 345 991 37.828 560 6 11.271 104 7 205 71 20 20 20 20 20 20 20 20 20 20 20 20 20	Ş				
3 2039184 2911954752 37.7888873 11.260977 3 2042041 2918076589 37.8021163 11.260977 2 2044900 2924207000 37.8153408 11.2652318 2 2047761 2930345991 37.8285606 11.2688573 3 2050624 29364949737 37.8549864 11.2714816 3 2053189 294249737 37.8549864 11.2714816 3 2053189 294249737 37.8549864 11.2714816 5 2059225 2954987875 37.8813938 11.2793472 5 2050225 2954987875 37.8813938 11.2793472 5 2050225 2954987875 37.8813938 11.2793472 5 2050225 2954987875 37.8813938 11.2793472 5 2050236 2961169856 37.9945906 11.2819667 7 2064969 2967360453 37.907828 11.2823019 3 2070721 2979767519 37.9341535 11.2823019 2 2070731 2979767519 37.9341535 11.2823019 2 2070360 2985984000 37.9473319 11.2872019 2 2070364 299209121 37.965558 11.2950457 2 2070364 2998442888 37.9736751 11.2076579 3 208249 304685307 37.9868398 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.0525952 38.052939 32.054936855 30.0348625000 38.0525952 38.051178 211209 3067586677 38.118237 1					
2 04 20 41 2918 076 589 37.802 116 3 11.263 605 1 204 4900 2924 207 000 37.815 3108 11.266 231 8 2 04 77 61 2 930 345 901 37.828 5606 11.266 231 8 3 205 31 89 2942 649 737 37.854 986 4 11.271 481 6 205 63 56 2948 814 504 37.868 192 4 11.277 206 5 205 20 25 2954 987 875 37.881 393 8 11.279 347 2 20 20 20 20 20 20 20 20 20 20 20 20 2	ļ				
2 0449 00 2924 207 000 37.815 340 8 11.266 231 8 2 04 77 61 2930 345 991 37.828 560 6 11.268 857 3 2 05 50 24 2 936 493 568 37.841 7759 11.271 481 6 12.05 63 56 2 948 814 504 37.868 192 4 11.274 104 7 5 205 63 56 2 948 814 504 37.868 192 4 11.276 726 6 12.05 92 52 2 954 987 875 37.881 393 8 11.279 347 2 2 206 49 69 2 967 360 453 37.907 782 8 11.281 966 6 11.281 966 6 12.207 36 00 2 967 360 453 37.907 782 8 11.282 966 9 2 967 360 453 37.907 782 8 11.282 966 9 2 207 07 21 2979 767 519 37.934 1535 11.282 814 9 207 07 21 2979 767 519 37.934 1535 11.282 817 7 2 207 36 00 2 985 984 000 37.947 331 9 11.292 432 3 12.207 36 81 2 992 209 121 37.960 505 8 11.282 432 3 207 36 3 203 4685 307 37.986 839 8 38 37.973 675 1 32.05 209 31 304 685 307 37.986 839 8 38 317 106 125 3 301 936 384 38 38.036 306 7 3 301 936 364 536 38.036 306 7 3 302 346 535 00 306 7 393 453 2 209 96 01 302 346 535 00 38.026 306 7 32.09 96 01 302 349 36 851 38.091 993 9 304 8625 000 210 830 4 306 1257 408 38.091 993 9 310 53 117 8 2 118 209 306 7 586 677 38.118 237 1					
1					
2 2050624 2936493568 37.8417759 11.2714816 3 2053189 29426497377 37.8549864 11.2741047 4 20505356 2948814504 37.8681924 11.2741047 5 205025 2952 2954987875 37.8813938 11.2793472 5 2062096 2961169856 37.8945906 11.2819666 7 2064969 2967360453 37.9077828 11.2819666 8 2067844 2973559672 37.9029704 11.2872019 9 2070721 2979767519 37.9341535 11.2828177 0 2073600 2985984000 37.9473319 11.2824323 1 2070481 2992209121 37.966558 11.2954323 2 2070364 2998442888 37.9736751 11.2954323 2 2070364 2998442888 37.9736751 3 2082249 3004685307 37.9868398 11.2075679 3 20882249 3004685307 37.9868398 301936384 38 20882249 301936384 38 30193565 5 2090916 3023464536 38.0394532 38.0555952 38.0967326 38.0967326 38.0967326 38.096855 32.096901 3048625000 38.096855 32.096901 3048625000 38.096855 32.096901 3048625000 38.095390 38.095390 3209431623 38.095390 38.095390 3209431623 38.095390 38.095390 32094368551 38.0919939 36.05551178 211209 3067586677 38.1182371					
3 205 34 89 2942 649 737 37.854 986 4 11.274 104 7 10.275 65 5 205 325 2954 987 875 37.868 1924 11.279 3472 11.275 6579 25 205 205 205 205 105 856 37.894 5906 11.281 9666 11.284 584 9 205 78 44 2973 559 672 37.920 9704 11.287 201 11.295 045 7 1					
1 2056356 2948814504 37.8681924 11.2767266 205925 2954987875 37.8813938 11.2793472 2064969 2967360453 37.9977828 11.2819666 2067364 2973559672 37.9209704 11.2819666 2070721 2979767519 37.9341535 11.2828173 2070360 298598400 37.9473319 11.2872019 2073600 298598400 37.9473319 11.2824323 2076481 2992209121 37.9605058 11.2850457 2079364 2998442888 37.9736751 11.2950457 2073650 300936384 38 208249 304685307 37.9868398 38.0325365 208285 3010936384 38 208285 3010936384 38 208286025 3017196125 38.0363965 2093809 3029741623 38.0325056 2093809 3029741623 38.0525952 38.0525952 3048625000 3054936851 38.0919939 3048625000 3054936851 38.0919939 3054936851 381051178 211236					
\$ 2059225 2954987875 37.8813938 11.2793472 2054959 2961169856 37.8945906 11.2819566 7 2064969 2967360453 37.9977828 11.2819566 9 2077921 2979767519 37.9209704 11.2872019 11.2872019 11.2872019 11.2872019 11.2872019 11.2872019 11.2872019 11.2872019 11.2872019 11.2872019 11.297364 29735964000 37.9473319 11.2924323 11.2974319 11.295457 2073364 2998442888 37.9736751 11.295457 2073364 299842888 37.9736751 11.2976579 2085136 3019936384 38 2085136 3019936384 38 2085136 3019936384 38 2085136 3019936384 38 2095704 3036027392 38.053556 38.0243067 1 2093601 3042421849 38.0557326 2 2095016 3048625000 38.0788655 2 2095016 3048625000 38.0788655 2 2095016 3048625000 38.0788655 2 2095016 3048625000 38.0788655 2 208510 3048625000 38.0788655 2 208510 3048625000 38.0788655 2 208510 3048625000 38.0788655 2 208520 3054936851 38.0919939 36.051178 2111209 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					
7		2059225	2 954 987 875	37.881 393 8	11.279 347 2
7	5	2062096	2961 169 856	37.894 590 6	11.281 966 6
9 2070721 2979767519 37.934 5335 11.289 8177 2073600 2985 984 000 37.947 3319 11.292 4323 1 2076481 2992 209 121 37.960 5058 11.292 4323 2 2079364 2998 442 888 37.973675 1 3 208 22 49 3004 685 307 37.986 8398 4 208 51 36 3010 936 384 38 5 208 80 25 3017 196 125 38.013 1556 2 209 09 16 3023 464 536 38.026 306 7 7 209 38 09 3029 741 623 38.039 453 2 3 209 67 04 3036 227 392 38.055 792 6 3 209 96 01 3042 321 849 38.05 792 6 3 209 301 3048 625 000 38.09 885 5 2 10 54 01 304 327 392 38.05 117 8 2 10 83 04 306 257 408 38.105 117 8 2 11 12 09 3 306 7 586 677 38.118 237 1	7		2 967 360 453	37.907 7 82 8	
2 207 36 00 2 298 598 4 000 37.947 331 9 11.292 432 3 2 207 61 81 2 992 209 121 37.965 555 8 11.295 045 7 2 207 93 64 2 2998 442 888 37.973 675 1 3 208 22 49 304 685 307 37.986 839 8 4 208 51 36 3010 936 384 38 5 208 80 25 3017 196 125 38.013 155 6 2 209 09 16 3023 464 536 38.026 306 7 2 209 38 09 3029 741 623 38.036 325 3 3 209 67 04 3036 227 392 38.052 595 2 3 209 96 01 3042 321 849 38.055 732 6 2 209 30 1 3048 625 000 38.078 865 5 2 10 34 01 306 257 408 38.091 993 9 2 10 35 04 306 257 408 38.105 117 8 2 11 12 09 3 3067 586 677 38.118 237 1				37.920 970 4	
1 207 04 81 2992 209 121 37.960 505 8 11.295 045 7 2 203 23 49 2998 442 888 37.973 675 1 3 203 22 49 300 04 685 307 37.986 839 8 4 208 51 36 3010 936 384 38 5 208 80 25 3017 196 125 38.026 306 7 7 209 38 09 3029 741 623 38.026 306 7 8 209 36 0 3029 741 623 38.039 453 2 3 209 67 04 3036 027 392 38.052 595 2 3 209 96 01 3042 321 849 38.055 7326 3 209 50 3048 625 000 38.078 865 5 2 10 54 01 3051 257 408 38.051 178 8 2 11 1209 3067 586 677 38.118 237 1					
2 2079364 2988442888 37.9736751 11.2076579 3 2082249 3004685307 37.9868398 38.0263636 38.026365 39.0936384 38.026365 39.0936384 38.026365 39.0936384 38.026365 39.093606 30.093404536 38.026366 7 2093809 30.09741623 38.026366 7 32.096701 30.027392 38.0525952 38.0525952 30.0259601 30.02524936 851 38.091939 30.02527408 38.1051178 2111209 3.067586677 38.1182371					
3 208 22 49 3004 685 307 37.986 839 8 38 3010 936 384 38 38 38 38 38 38 38 38 38 38 38 38 38				37.900 505 8	11.295 045 7
4 208 51 36 3010 936 384 38 38.013 155 6 5 209 09 16 3023 464 536 38.026 306 7 7 209 38 09 3029 741 623 38.026 306 7 8 209 67 04 3036 027 302 38.052 595 2 9 209 60 1 3042 321 849 38.055 7326 9 210 25 00 3048 625 000 38.078 865 5 2 10 83 04 306 257 408 38.051 193 9 2 11 12 09 3067 586 677 38.118 237 1				37.973 075 1	11.2070579
2088025 3017 196 125 38.013 1556 20909 16 3023 464 536 38.026 306 7 2093809 3029 741 623 38.026 306 7 2093809 3029 741 623 38.039 453 2 30906 10 3042 321 849 38.055 7326 2105401 3054 936 851 38.091 993 9 2108304 3061 257 408 38.105 117 8 211 1209 3067 586 677 38.118 237 1	3	2032249		37.900 039 0	
5 209 09 16 3023 464 536 38.026 306 7 7 209 38 09 3029 741 623 38.039 453 2 8 209 67 04 3 036 027 392 38.052 595 2 9 209 60 1 3042 321 849 38.065 732 6 9 210 25 00 3048 625 000 38.078 865 5 9 210 25 00 3054 936 851 38.091 993 9 9 211 12 09 3067 586 677 38.118 237 1		2005130			
7 209 38 09 3 029 741 623 38.039 453 2 3 209 67 04 3 036 027 392 38.052 595 2 3 209 96 01 3 042 321 849 38.065 732 6 3 202 500 3048 625 000 38.078 865 5 2 10 83 04 306 1257 408 38.091 993 9 2 10 83 04 306 1257 408 38.105 117 8 2 11 12 09 3 067 586 677 38.118 237 1	3				
3099601 3042321849 38.0657326 3048625000 38.0788655 2105401 3054936851 38.0919939 2108304 3061257408 38.1051178 2111209 3067586677 38.1182371					
3099601 3042321849 38.0657326 3048625000 38.0788655 2105401 3054936851 38.0919939 2108304 3061257408 38.1051178 2111209 3067586677 38.1182371	}				
3 10 35 00 3 048 625 000 38.078 865 5 2 10 34 01 3 054 936 851 38.091 993 9 2 10 83 04 3 061 257 408 38.105 117 8 2 11 12 09 3 067 586 677 38.118 237 1					\
210 54 01 3054 936 851 38.091 993 9 210 83 04 3061 257 408 38.105 117 8 211 12 09 3067 586 677 38.118 237 1				38.078 865 5	\
2 10 83 04 3 061 257 408 38.105 117 8 311 12 09 3 067 586 677 38.118 237 1	: /				\
211 12 00 3067 586 677 38.118 237 1 \ \mathred{11}	/	2 10 83 04			\ •
	_/				\ 1 1
	/	2 1 1 4 1 16) \ 11.5

EXAMPLE. - What is square root of 53.75, and cube root of 843.75?

When the Square or Cube Root is required for Numbers not exceeding Roots given in Table.

Numbers in table are squares and cubes of roots.

RULE.—Find, by table, in column of numbers that number representing figures of integer and decimals for which root is required, and point it off decimally by places of 2 or 3 figures as square or cube root is required; and opposite to it, in column of roots, take root and point off x or 2 additional places of decimals to those in root, as square or cube root is required, and result is root required.

EXAMPLE 1. - What are square roots of .15, 1.50, and 15.00?

In table, 15 has for its root 3.87 298; hence .387298 = square root for .15.
150 has for its root 12.24745; hence 1.224745 = square root for 1.50.
1500 has for its root 38.7298; hence 3.87298 = square root for 1.5.

2.-What are cube roots of .15, 1.50, and 15.00?

Add a cipher to each, to give the numbers three places of figures, as .150, 1.500, and 15.000.

In table 150 has for its root 5.3133; hence .531 33 = cube root of .15.

1500 has for its root 11.447; hence 1.1447 = cube root of 1.50.

15 has for its root 2.4662; and 15.000, by addition of 3 places of figures, has 24.662; hence 2.4662 = cube root of 15.00.

To Ascertain Square or Cube Roots of Decimals alone.

RULE.—Point off number from decimal point into periods of two or three figures each, as square or cube root is required. Ascertain from table or by calculation root of number corresponding to decimal given, the same being read off by removing the decimal point one place to left for every period of 2 figures if square roots required, and one place for every period of 3 figures if cube root is required.

Example. - What are square and cube roots of .810, .081, and .0081?

.810, when pointed off = .81, and
$$\sqrt{.81}$$
 = .9.
.081, " " = .081, " $\sqrt{.081}$ = .2846.
.0081, " " = .0081, " $\sqrt{.0081}$ = .09.
.810, when pointed off = .810, and $\sqrt[3]{.810}$ = .932 17.
.081, " " = .0081, " $\sqrt[3]{.081}$ = .432 67.
.0081, " " = .0081, " $\sqrt[3]{.0081}$ = .200 83.

To Compute 4th Root of a Number.

5 5 5

BULE. —Take square root of its square root.

TAMPLE. - What is the \$\square\$ of 1600?

$$\sqrt{1600} = 40$$
, and $\sqrt{40} = 6.3245553$.

To Compute 6th Root of a Number. Take cube root of its square root.

What is the
$$\sqrt[4]{0}$$
 of 441 ?
 $\sqrt{441} = 21$, and $\sqrt[4]{21} = 2.7589243$.

4th and 5th Powers of Numbers.

From 1 to 150.

Number.	4th Power.	5th Power.	Number.	4th Power.	5th Power.
I	1	I	64	16777 216	1 073 741 824
2	16	32	65 66	17 850 625	1 160 290 625
3	81 256	243	67	18 974 736	1 252 332 576
2	625	1 024 3 125	68	20 151 121 21 381 376	1 350 125 107
4 5 6	1 296	7776	69	22 667 121	1 453 933 568 1 564 031 349
7 8	2401	16807	7ó	24 010 000	1 680 700 000
	4 096	32 768	71	25 411 681 26 873 856	1 804 229 351
9	6 561	59 049	72	26 873 856	1 934 917 632
10	10 000 14 641	100 000 161 051	73	28 398 241 29 986 576	2073071 593
12	20736	248832	74 75	31 640 625	2 219 006 624 2 373 046 875
13	28 561	371 293	76	33 362 176	2 535 525 376
14	38416	537 824		35 153 041	2 706 784 157
15	50625	759375 1048576	77 78	37 015 056	2 887 174 368
16	65 536		79 80	38 950 081	3 077 056 399
17 18	83 521	1 419 857	80 81	40 960 000	3 276 800 000
10	104 976 130 321	1 889 568 2 476 099	82	43 04 6 72 1 45 212 17 6	3 486 784 401
20	160 000	3 200 000	83	47 458 321	3 707 398 432 3 939 040 643
21	194 481	4 084 101	84	49 787 136	4 182 110 424
22	234 256	5 153 632 6 436 343	85	52 200 625	4 437 053 125
23	279 841	6436343	86	54 708 016	4 704 270 176
24	331 776	7 962 624	8 ₇	57 289 761	4 984 209 207
25 26	390 625 456 976	9765625 11881376	89	59 969 536 62 742 241	5 277 319 168
27	531 441	14 348 907	90	65 610 000	5 584 059 449 5 904 900 000
27 28	614656	17 210 368	9I	68 574 96 I	6 240 321 451
29	707 281	20511149	92	71 639 296	6 590 815 232
30	810000	24 300 000	93	74 805 201	6 956 883 693
31	923 521	28 629 151	94	78 074 896	7 339 040 224
32 33	1 048 576 1 185 921	33 554 432 39 135 393	95 96	81 450 625 84 034 656	7 737 809 375
33 34	1 336 336	45 435 424	97	88 529 281	8 153 726 976 8 587 340 257
	1 500 625	52 521 875	8	92 236 816	9039207968
35 3 6	1 679 616	60 466 176	99	96 o5y 6oz	9 509 900 499
37 38	1 874 161	69 343 957	100	100 000 000	10 000 000 000
38	2085136	79 235 168	101	104 060 401	10 510 100 501
39 40	2 313 441 2 560 000	102 400 000	103	108 243 216 112 550 881	13-040 808 032
41	2825761	115 856 201	104	116 985 856	11 592 740 743
42	3111696	130 691 232	105	121 550 625	12 762 815 625
43	3418801	147 008 443	106	126 247 696	13 382 255 776
44	3748096	164 916 224	107	131 079 601	14 025 517 307
45 46	4 100 625 4 477 456	184 528 125 205 962 976	108	136 048 896 141 158 161	14 693 280 768
	4879681	229 345 007	110	146 410 000	15 386 239 549
47 48	5 308 416	254 803 968	111	151 807 041	16 850 582 EEF
49	5 764 801	282 475 249	112	157 351 936	17 622 4**
50	6250000	312 500 000	113	163 047 361	18,
51	6 765 201	345 025 251	114	168 896 016	īĊ
52 53	7 311 616 7 890 481	380 204 032 418 195 493	115	174 900 625 181 063 936	27
53 54	8 503 056	459 165 024	117	187 388 721	2
55	9 150 625	503 284 375	118	193 877 776	2
55 56	9 834 496	550 731 776	119	200 533 921	2:
. 57 58	10 556 001	601 692 057	120	207 360 000	24
58	11 316 496	656 356 768	121	214 358 881	25,
59 60	12 117 361 12 960 000	714 924 299 777 600 000	122	221 533 456 228 886 641	28 15.5
61	13 845 841	844 596 301	124	236 421 376	20316
62	I4776336	916 132 832	125	244 140 625	1 305175
63	15752961	992 436 543	126	252 047 376	31757969

To Subtract a Positive Index. Change its sign to negative, and then add as in addition. As 2-2=2+2=4.

To Multiply a Negative Index. Multiply the fractional parts by the ordinary rule, then multiply the negative index, which will give a negative product, and when an excess over ro is to be carried, subtract the less index from the greater, and the remainder gives the positive or negative index, according as the positive or negative index is the greater. As $\frac{1}{2} \times 5 = \frac{1}{10}$, and x to be carried $\frac{1}{2} = \frac{1}{10}$.

ILLUSTRATION.—Multiply 2.3681 by 2, and 3.7856 by 6.

Here $2 \times 2 = 4$, also $3 \times 6 = 18$, with a positive excess of 4 = 14.

To Divide a Negative Index. If index is divisible by divisor, without a remainder, put quotient with a negative sign. If negative exponent is not divisible by divisor, add such a negative number to it as will make it divisible, and prefix an equal positive integer to fractional part of logarithm; then divide increased negative exponent and the other part of logarithm separately by ordinary rules, and former quotient, taken negatively, will be index to fractional part of quotient. As $6 \div 3 = \overline{2}$. $10 \div 3$ requires $\overline{2}$ to be added or 2 to be subtracted, to make it divisible without a remainder, then $10 \div 12 = 12$, $12 \div 3 = \overline{4}$, and 2 (the sum subtracted) $\div 3 = .66$. the quotient therefore is 4.66.

ILLUSTRATION I. - Divide 6.324 282 by 3.

2.-Divide 14.326 745 by 9.

$$\overline{14.326745} \div 9 = \overline{18} + 4.326745 \div 9 = \overline{2.480749} + ...$$

Here $\frac{7}{4}$ is added to $\frac{7}{14}$, that the sum $\frac{7}{18}$ may be divided by 9, and as $\frac{7}{4}$ is added, 4 must be prefixed to the fractional part of the logarithm, and thus the value of the logarithm is unchanged, for there is added $\frac{7}{4}$, and $\frac{7}{4}$ = 0, or 4 is subtracted and 4 added.

To Ascertain Logarithm of a Number by Table.

When the Number is less than 101.

Look into first page of table, and opposite to number is its logarithm with its index prefixed.

ILLUSTRATION.—Opposite 7 is .845 o 98, its logarithm; hence 70 = 1.845 o 98, .7 = 1.845 o 98, and .07 = 1.845 o 98.

When the Number is between 100 and 1000.

3 given number in left-hand column of table headed No., and unmn is decimal part of its logarithm, to which is to be prefixed a an index, of x or 2, according as the number consists of 2 or 3

t is logarithm of 450, and what of .45?

Log.
$$450 = 2.653213$$
, and of $.45 = 1.653213$.

When the Number is between 1000 and 10 000.

hand figures of the number in the left hand column under the 4th figure at top of table is the four last of logarithm, to which is to be prefixed the proper

n of 4505, and what of .04505? 553695, and of .04505=2.653695.

When the Number consists of Five Figures.

RULE.—Find the logarithm of the number composed of the first four figures as receding, then take the tabular difference from the right-hand column under D and multiply it by the fifth figure; reject the right-hand figure of the product and dd the other figures, which are, and are termed, a proportional part to the logarithm und as above, observing that the right-hand figure of the proportional part is to e added to that of the logarithm, and the rest in order.

EXAMPLE.—Required logarithm of 83 407?

Note.—When the number consists of less than 4 figures conceive a cipher anexed to make it four.

Log. of 8340 (83 407) = 4.921 166
Tabular difference 52, which
$$\times$$
 7 (5th figure) = 364 = 364

4-921 2024 logarithm.

The difference of the numbers is nearly proportionate to the difference of their

The difference of the numbers is hearly proportionate to the difference of their garithms.

Thus, difference between the numbers 8_{340} and 8_{341} , the next in order, is 1, and 1e difference between their logarithms or tabular difference is 52. The the 1st in the 4th place is therefore 52. The correction then, for the 7 the 5th place, which is .7 of 1 in the 4th place, is ascertained by the proportion

The correction is obtained by multiplying the tabular difference by 7, rejecting le right hand figure of the product, if the log, is to be confined to six decimal

When the Number consists of any Number over Four Figures.

RULE.—Proceed as for four figures for the first four, multiplying the tabular difrence by the excess of figures over 4 and rejecting one right-hand figure of the oduct for a number of five figures, and two for one of six, and so on.

EXAMPLE L-Required logarithm of 834 079?

ACCE.

Log. of 8340 (834079) = 5.921 166

Tabular difference 52, which
$$\times$$
 79 = 4108

5.921 207 08 logarithm.

2.—Required logarithm of 8 340 794?

Log. of 8340 (8 340 794) = 6.921 166 b. diff. 52, which × 794 (5th, 6th, and 7th figures) = 41 288 6.921 207 288 logarithm.

To Ascertain Logarithm of a Mixed Number. Strike.—Take out logarithm of the number as if it were an integer or whole num; to which prefix the index of the integral part of the number.

CXAMPLE. - What is logarithm of 834.0794?

Mantissa of log. of 834.0794 = 9 212 073; hence log. of 834.0794 = 2.921 207 3.

XAMPLE. - Logarithm of . 1234 = 1.001 305.

To Ascertain Logarithm of a Vulg lux—Reduce the fraction to a decimal, and proceed as tract logarithm of denominator from that of numerator, a logarithm required.

EAMPLE, _Logarithm of %?

To Ascertain the Number Corresponding to a Given Logarithm.

When the given or exact Logarithm is in the Table.

OPERATION.—Opposite to first two figures of logarithm, neglecting the *index*, in column o, look for the remaining figures of the log. in that column or in any of the nine at the right thereof; the first three figures of the number will be found at the left in column under No., and the fourth at top directly over the log.

The number is to be made to correspond to index of logarithm, by pointing of decimals or prefixing ciphers.

ILLUSTRATION.—What is number corresponding to log. 3.963 977?

Opposite to $963\,977$, in page 329, is 920, and at top of column is 4; hence, number = 9204.

When the given or exact Logarithm is not in the Table.

OPERATION.—Take the number for the next less logarithm from table, which will give first four figures of required number.

To ascertain the other figures, subtract the logarithm in table from the given logarithm, add ciphers, and divide by the difference in column D opposite the logarithm. Annex quotient to the four figures already ascertained, and place decimal point.

ILLUSTRATION I. - What is number corresponding to log. 5.921 207?

Given log. =
$$5.921 \ 207$$

Next less in table $5.921 \ 166$ $834 \ 0$
 $D = 52) \ 4700 \ (78 + 78)$
 $\frac{364}{460}$
 $\frac{364}{460}$
 $\frac{364}{460}$

Hence, number $= 834 \circ 78$.

2. - What is number corresponding to log. 3.922 853?

Hence, number = 8372.46.

Multiplication.

RULE.—Add together the logarithms of the numbers and the sum will give the braithm of the product.

2.950 487 log. of product. Number = 892.251.

ultiply .039 02, 59.71, and .003 147.

739 02 =
$$\overline{2}$$
.591 287
= 1.776 047
147 = $\overline{3}$.497 897
 $\overline{3}$.865 231 log. of product. Number = .007 332 15.

Division.

hm of dividend subtract that of divisor, and remainder will

Rule of Three, or Proportion.

RULE.—Add together the logarithms of the second and third terms, from their sum subtract logarithm of the first, and the remainder will give logarithm of the fourth term.

Or, instead of subtracting logarithm of first term, add its Arithmetical Complement, and subtract 10 from its index.

EXAMPLE 1.—What is fourth proportional to 723.4, .025 19, and 3574?

.. By Arithmetical Complement.

Number = .124453.

2.—If an engine of 67 IP can raise 57 600 cube feet of water in a given time, what IP is required to raise 8 575 000 cube feet in like time?

Log.
$$8575000 = 6.933234$$

$$67 = 1.826075$$

$$8.759309$$

$$57600 = 4.760422$$

$$2.008877$$

3.998 877 log. of 4th term. Number = 9974.4 IP.

3.—If 14 men in 47 days excavate 5631 cube yards, what time will it require to excavate 47280 at same rate of excavation?

394.626 days.

Involution.

Rule.—Multiply logarithm of given number by exponent of the power to which it is to be raised, and the product will give the logarithm of the required power.

EXAMPLE. - What is cube of 30.71?

Log. 30.71 = 1.487 28

$$\frac{3}{4.46184}$$
 log. of power. Number = 28 962.73.

Evolution.

Rule.—Divide logarithm of given number by exponent of the root which is to be extracted, and quotient will give logarithm of required root.

EXAMPLE 1 .- What is cube root of 1234?

Log.
$$1234 = 3.091315$$

Divide by $3 = 1.030438$ log. of root. Number = 10.726 or.

2.-What is 4th root of .007 654?

Log. .007 654 =
$$\frac{3.883\,888}{1.470\,072}$$
 log. of root. Number = .205 78.

To Ascertain Reciprocal of a Number.

Rule.—Subtract decimal of logarithm of the number from .00000; add 1 to in dex of logarithm and change its sign. The result is logarithm of the reciprocal.

EXAMPLE -Required reciprocal of 230?

1

$$Log. 230 = 2.361728$$

 $-3.638272 = log. of .oo4348 reciprocal.$

Simple Interest.

Rule.—Add together logarithm of principal, rate per cent., and time in years, from the sum subtract 2, and the remainder will give logarithm of the interest.

EXAMPLE. - What is interest on \$ 500, @ 6 per cent., for 3 years?

Compound Interest.

Rule.—Compute amount of \$ 1 or £ 1, etc., at the given rate of interest for one year for the first term, which is termed the ratio.

Multiply logarithm of ratio by the time, add to product logarithm of the principal, and sum is logarithm of the amount.

Logarithms of Ratios at given Rates Per Cent.

Rate.	Log. of Ratio.	Rate.	Log. of Ratio.	Rate.	Log. of Ratio.	Rate.	Log. of Ratio.
1	.004 321 4	3.25	.013 890 I	5.5	.0232525	7.75	.0324:73
1.25	.005 395	3.5	.0149403	5.75	.024 280 4	8	.033 423 8
1.5	.006 466	3.75	.015 988 1	6	.025 305 9	8. 25	.034 427 9
1.75	.007 534 4	4	.017 033 3	6.25	.026 328 9	8.5	.035 4297
2	.008 600 2	4.25	.0180761	6.5	.027 349 6	8.75	.036 429 3
2.25	.009 663 3	4.5	.0191163	6.75	.028 7639	9	.037 426 5
2.5	.010 7239	4.75	.020 154	7	.029 383 8	9.25	.038 421 4
2.75	.011 781 8	5	.021 189 3	7.25	.030 397 3	9.5	.039 414 1
3	.0128372	5.25	.022 222 1	7.5	.031 408 5	9.75	.040 404 5

Example.—What will \$364, at 6 per cent. per annum, compounded yearly, amount to in 23 years?

Log. of ratio from above table .025 305 9

Miscellaneous Illustrations.

z. What is area and circumference of a circle of 21.72 feet in diameter?

Log. 0f 21.72 1.336 860

Log. of
$$21.72^2 = 2.673720$$

" " .7854 = $\overline{1}.895001$

" " $2.568811 = 370.54$ feet area.

Log. of $21.72 = 1.336.86$

" " $3.1416 = -497.15$

" " 1.834 o1 = 68.236 feet circum.

"gle are 564, 373, and 747 feet; what is its area?

$$\frac{564 + 373 + 747}{2} = 2.925.312$$

$$\frac{2}{6842 - 374} = 2.925.312$$

$$\frac{2}{6842 - 373} = 2.671.173$$

B = 3.6 × .903 09 = 3.251 124. Number = 1782.80.

Logarithms of Numbers.

From 1 to 10 000.

,	Logarithm.	No.	1 1	Logarith	m.	No.	Logarith	ım.	No.	Logarit	hm.
	.0	26	_ _,	.414 9	773	51	1.707	57	76	1.880	814
ı	.301 03	27		.431 3		52	1.716		77	1.886	
	.477 121	28		1.447 1		53	1.724		78	1.892	
	.602 06	29		.462 3		54	1.732		79	1.897	
i	.698 97	30	1	-477	21	55	1.740		8o ;	1.903	09
	.778 151	31		.491 3		56	1.748		81	1.908	
	.845 098	32		1.505 1		57	1.755 8		82	1.913	
1	.903 09	33		.518 5		58	1.763		83	1.919	
1	·954 243	34		1.531 4		59 1	1.770 8		84	1.924	
	I	35	- 1	·544 C	- 11	60	1.778	- 1	85	1.929	
- 1	1.041 393	36		1.556 3		61	1.785		86	1.934	
- 1	1.079 181	37		.568 2		62	1.792		87	1.939	
	1.113 943	38		.579 7		63	1.799		88	1.944	
	1.146 128	39		.591		64	1.806		89	1.949	
- 1	1.176 091	40		.602 0	. 4	65	1.812	- 1	90	1.954	
- 1	1.204 12	41		1.612 7		66	1.819		91	1.959	
- 1	1.230 449	42		1.6232		67	1.826		92	1.963	
- 1	1.255 273	43		1.633 4		68	1.832		93	1.968	
-	1.278 754	44		.6434		69	1.838 8		94 ;	1.973	
	1.301 03	45	- 1	1.653 2	** 11	70	1.845	- 11	95	1.977	
	1.322 219	46		1.662 7		71	1.851 2		96	1.982	
	1.342 423	47		1.672		72	1.857		97	1.986	
	1.361 728	48		1.681 2		73	1.863		98	1.991	
	1.380 211	49		1.690 1		74	1.869		99	1.995	035
ł	1.397 94	50	1	1.698	7	75	1.875	ю	100	2	
_	0	<u> </u>	2	3	4	5	6	7	8	9	D
c	o- oooo o	434 0	868	1301	1734	2166	2508	3029	3461	3801	432
			181	5600	6038	6466		7321	7748	8174	428
c			45 I	9876	_	-		' -	774-		425
	or- — ´	<u> </u>	_	<i>-</i>	03	0724	1147	157	1993	2415	١
		259 3	68	41	4521	494	536	5779	6197	661Č	
		451 7	868	8284	87	9116	9532	9947		_	
C	2- —	_		-	_	-	_	_	озбі	077 !	
C	2- 1189 1	603 2	016	2428	2841	3252	3664	4075	4486	489¢	
C		715 6				735	7757	8164	8571	8978	
C	02- 9384 9	789		=	_	1.50		_ `	_	_	
	03		195		1004	1408	1812	2216	2619	3021	
		826 4			5029	543	5 83	623	6629	7028	
		825 8	223	862	9017	9414	9811	_	_	_	
١,	×4- —	_	_	_		-	_	0207			
C	04- 1393 I	787 2	182	2576	2969	3362	375 5				
C	4- 5323 5	714 6			6885	7275					
0	4- 9218 9	6069	993	_		-	·-				
	os- —	_ `		038	0766	1153					
	o5- <u>3</u> 078 3	463 3	846	423	4613	4996					
		286 7	666	8046	8426	8805	9185				
	x6- 		_	_				_			
1.0						1		_			

No.	1	0		2	3	-4	5	6	7	8	9
115		0698	1075	1452	1829	2206	2582	2958	3333	3709	4083
116			4832			5953	6326	6699	7071	7443	7815
117		8186	8557	8928	9298	9668		-		-	-
117		1882	225	2617	2985	3352		0407	0776	1145	1514 5182
119		5547		6276		7004		7731	8094	8457	
120	1 2	9181	No. of the last	16.203		1004	13-0	113		-101	
120		9101	9543	9904	0266	0626	0987	1347	1707	2067	2426
121	I FIGURE	2785	3144	3503	3861	4210	10000	4934	5291	5647	
122	08-	636		7071	7426	7781	8136	849	8845	9198	9552
123		9905	-	-	-	-	-	-	-	-	-
123	09-	-	0258			1315		2018		2721	
124	-	3422		4122	4471	482		-	5866	1000	0502
125	1	691	7257	7604	7951	8298	8644	899	9335	9681	-
125		-		1050	****	7040	2007	2424	2777	2770	3462
127		3804			1403	1747	551	2434	6191	3119	
128		721	7549	7888		8565	8903			9916	-
128		-	-	-	-	-	-	-	-	-	0253
129	II-	059	0926	1263	1599	1934	227	2605	294	3275	3609
130	II-	3943	4277	4611	4944	5278	5611	5943	6276	6608	694
131			7603	7934	8265	8595	8926		9586		1
131			-		-		-	-	-	-	0245
132		0574		1231	156	1888			2871		3525
133			7429			5156			6131		6781
134		7105	1449	1755	-	0399	0/22	9045	9368	909	0012
135	1	0334	06==	0977	2008	1619	1939	226	258		100
136	-0	3539	3858		4496	4814	5133	5451	5769	29 6086	5403
137		6721	7037	7354	7671	7987	8303	8618	8934	9249	9564
138	13-	9879	_	-	-	-	-	-	-	-	75
138		100	0194		0822	1136	145	1763	2076	2389	2702
139	14-	3015	3327	3639	3951	4263	4574	4885	5196	5507	5818
140	10000	6128	6438	6748	7058	7367	7676	7985	8294	8603	8911
141		9219	9527	9835	-	-	-	-	TEL	-	-
141	15-	2288	-	-	0142	0449	0756	1063	137	1676	1982
142		5336	2594 564	29 5943	3205 6246	351 6549	3815	412 7154	4424	4728	5032 8061
144		8362		8965	9266	9567	9868	1-34	7457	7759	-
144		_	-	_	_	-	-	0168	0469	0760	1068
145		1368	1667	1967	2266	2564	2863	3161	346	3758	4055
146	16-	4353	465	4947	5244	5541	5838	6134	643	6726	7022
147		7317	7613	7908	8203	8497	8792	9086	938	9674	9968
148		0262		0848	1141	1434	1726	2019	2311	2603	2895
149		To the same	3478	3769		4351	4641	4932	5222	5512	5802
150		6091		667	6959	7248	7536	7825	8113	8401	8689
151	17-	8977	9264	9552	9839	0126	0410	0600	0086	-	
152		1844	2120	2415	27	2985	0413 327	3555	0986	1272	1550
153		4691	4975	5259		5825	6108	6391	6674	6956	7239
154		7521			8366			9209		9771	-
154	19-	_	-	-	-	-	1 -	-	-	-	0051
No.		0	1	2	3	4	5	6	7	8	9

	0		2	3	4_	5	6_	7	8	9	D
19-	0332	0612	0892	1171	1451	173	201	2289	2567	2846	279
19-	3125	3403	3681	3959	4237	4514	4792			5623	278
19-		6176	6453	6729	7005	7281	7556	7832	8107	8382	276
	8657	8932	9206	9481	9755	-		_	_	_	275
20-	_	_	_		_		0303		085	1124	274
	1397	167			2488	2761		3305	3577	3848	272
	412	4391		4934		5475	5746				271
		7096	7305	7034	7904	8173	8441	871	8979	9247	269
	9515	9783			~~06	-00		00	-6		268
21-	2188	2454		0319 2986		0853	1121 3783	1388	1654	1921	266
		5109				3518 6166	643	6694	4314 6957	4579 7221	264
	7484		_	8273		8798			9585	GS46	262
	0108	7747	0631			1414	1675	9323 1936			
	2716		3236	3496	3755	4015	4274	4533	4792	5051	259
	5309		5826		6342	66	6858	7115	7372	763	258
		8144	84	8657	8913	917	9426		9938	7-3	257
23-	<u>'</u> '	_	_				_	_		0193	256
_	0110	0704	006	1215	147	1724	1979	2234	2488	2712	
	2996	325	3504		4011		4517	477	5023	5276	253
	5528	5781	6033	6285		6789	7041	7292	75++	7795	252
	8046	8297	8548			9299	955	98			251
24-						-			005	оз	250
24-	0549	0799	1048	1297	1546	1795	2044	2293	2541	279	249
24-	3038	3286	3534	3782	403	4277	4525	4772	5019	5266	248
24-	5513		6006	6252	6499	6745	6991	7237	7482	7728	246
24-	7973	8219	8464	8709	8954	9198	9443	9687	9932		246
25-					_	-				0176	245
25-			0908	1151	1395	1638	1881	2125	2368	261	243
		3096		358	3822		4306			5031	242
25-	5273	5514		5996			6718		7198	7439	
	7679 0071	7918 031	0548	8398 0787	8637 1025	1263	9116	9355 1739	9594 1976	9833 2214	1 :2.00
	2451	2688		3162	3399	3636		4109	4346	4582	
	4818	5054	529	5525	5761		6232				
_	7172	7406	7641	7875			8578		•		
		9746		70/3	_	-344	23/0	_	9040	9-79	
27-	33-3			0213	0446	0670	0912	1144	IZTT	1600	
	1842	2074	2306		277	3001	3233	3464			
27-	4158	4389	462	485	5081	5311	5542	5772			
27~	6462	6692	6921	7151	738	7609	783 8	8067			
	8754	8982	9211	9439	9667	9895					
28-	_	_		_	_	_	0123				
	1033	1261	1488		1942	2169	2,396				
	3301	3527	3753	3979		4431	4656				
	5557	5782 8026	6007		6456	6681 802	6905	713			
	7802			8473	8696	_	9143	9366	•		
	0035 2256	0257	048 2699		0925	1147 3363		٠,	Ic		
			4907		3141 5347	5567		3804			
		6884		7323	7542	7761		8298			
20- 8	853	9071	9289	73-3 95 07	9725	9943	1919	2190	041		
10-		_			7/-3		0161	037	8 05	05	
	,	,	2								
		•	-	3	4	5	6	7		8	
					Dр						

201 30- 3196 3412 3628 3844 4059 4275 4491 4706 49 203 30- 5351 5566 5781 5996 6211 30- 303 07 496 771 7924 8137 8351 5642 6639 6854 70 204 30- 963 9843 — — — — 6056 0268 0481 0693 0906 1118 13 206 31- 3867 4078 4289 4499 471 492 513 534 557 209 32- 0146 0354 0562 0769 0077 1184 1391 1598 18 210 32- 2219 2426 2633 2839 3046 325- 23458 3665 38 221 32- 6336 6541 6745 695 7155 7359 7563 7767 79 213 32- 4388 8588 8588 8588 8588 8588 8588 8588	No.	1	0		2	3	4	5	6	7	8	9	10
202 30- 5351 5566 5781 5996 6211 6425 6639 6854 70 203 30- 7496 771 7924 8137 8351	200	30-	103	1247	1464			2114	2331	2547	2764	298	2
203 30- 7496 771 7924 8137 8351 8564 8778 8991 92 204 30- 953 9843 — — — — 056 0268 0481 0593 0906 1118 13 205 31- 1754 1966 2177 2389 26 206 31- 3867 4078 4289 4499 471 7018 7227 7436 76 207 31- 597 618 639 6599 6809 7018 7227 7436 76 208 31- 8663 8272 8481 8689 8898 910 209 32- 0146 0354 0562 0769 0977 1184 1391 1598 18 210 32- 2219 2426 2633 2839 3046 3252 3458 3665 38 211 32- 4282 4488 4694 4899 5105 531 5516 5721 59 212 32- 6336 6541 6745 695 7155 739 7563 7767 79 213 32- 838 8583 8787 8991 9194 9398 9601 9805 — 213 33- 0414 0617 0819 1022 1225 1427 163 1832 20 215 33- 4454 4655 4856 5057 5257 5458 5658 5859 60 218 33- 8456 8656 8855 9054 9253 1433 36- 0414 0642 0841 1039 1237 14351 1632 183 20 220 34- 2423 262 2817 3014 3212 3409 3606 3802 321 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 35- 248 0442 0636 0829 1023 1431 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 224 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 228 35- 7935 8125 8316 8506 8696 8886 9076 9266 98 229 35- 0025 0215 0404 0593 7983 0972 1161 13 233 36- 3612 38 3988 4176 4363 4551 4739 4926 51 233 37- 1068 1253 1437 1052 1806 1991 2775 236 236 37- 2012 3096 328 3464 3647 3643 344 1019 2175 2294 2482 243 262 3817 301- 301- 301- 301- 301- 301- 301- 301-	201	30-	3196		3628	3844	4059	4275			4921	5136	2
204 30- 963 9843	202	30-	5351	5566	5781	5996	6211	6425	6639	6854	7068	7282	2
204 31- — — 0056 0268 0481 0693 0906 1118 13 205 31- 1754 1966 2177 2389 26 206 31- 3867 4078 4289 4499 471 207 31- 597 618 639 6599 6809 208 31- 8063 8272 8481 8689 8898 209 32- 0146 0354 0562 0769 0977 210 32- 2219 2426 2633 2839 3046 211 32- 4282 4488 4694 4899 5105 212 32- 6336 6541 6745 695 7155 213 32- 838 8583 8787 8991 9194 213 33- — — — 9398 9501 9805 214 33- 0414 0617 0819 1022 1225 215 33- 2438 264 2842 3044 3426 216 33- 4454 4655 4856 5057 5257 217 33- 646 666 686 706 726 218 33- 4454 4655 4856 5057 5257 218 33- 4454 0642 0841 1039 1237 218 34- — — 1435 1632 183 220 34- 2423 262 2817 3014 3212 219 34- 0444 0642 0841 1039 1237 221 34- 6336 6549 6744 6939 7135 222 34- 6336 6549 6744 6939 7135 223 35- 0248 0442 0636 0829 1023 221 34- 3392 4589 4785 4981 5178 222 35- 0248 0442 0636 0829 1023 223 35- 0442 0636 0829 1023 224 35- 0248 0442 0636 0829 1023 225 35- 2183 2375 2568 2701 2954 226 35- 4108 4301 4493 4685 4876 227 35- 6026 6217 6408 6599 679 228 35- 7935 8125 8316 8506 8696 229 35- 9835 — — — — — — — — — — — — — — — — — — —	203	30-	7496	771	7924	8137	8351	8564	8778	8991	9204	9417	2
205	204	30-	963	9843	-	-	-	-	-	-	-	-	2
206	204	31-	-	-	0056	0268	0481	0693	0906	1118	133	1542	2
206 31- 3867 4078 4289 4499 471 7018 7227 7436 76 207 31- 597 618 639 6599 6809 208 31- 8663 8272 8481 8689 8898 9106 9314 9522 97 1184 1391 1598 18 210 32- 2219 2426 2633 2839 3046 3252 3458 3665 38 212 32- 6336 6541 6745 695 7155 531 5516 5721 59 213 32- 838 8583 8787 8991 9194 9398 9601 9805 213 33- 0414 0617 0819 1022 1225 1427 163 1832 20 215 33- 2438 264 2842 3044 3246 3447 3649 385 40 216 33- 4454 4655 4856 5057 5257 5458 5658 5859 60 218 33- 8456 8656 8855 9054 9253 218 34- 219 34- 0444 0642 0841 1039 1237 1435 1632 183 20 221 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 35- 224 35- 0248 0442 0636 0829 1023 1216 141 1603 17 228 35- 0248 0442 0636 0829 1023 1216 141 1603 17 228 35- 9835 - 0025 0215 0404 0593 979 9886 9076 9266 94 229 35- 9835 - 0025 0215 0404 0593 369 369 369 369 369 37- 8059 849 1929 36 0025 0215 0404 0593 369 369 369 369 369 37- 8059 849 1229 37- 4748 4932 5115 5298 5481 5004 5846 6029 62 33 37- 6056 123 3437 1622 1806 37- 2165 31- 1068 1253 1437 1622 1806 37- 2165 9401 9587 9772 9958 - 0045 37- 4748 4932 5115 5298 5481 5004 5487 6029 62 33 37- 6056 6576 596 942 7124 7306 37- 8398 858 8761 8943 9124 38- 2011 0392 0573 0754 0934 1115 1296 1476 16 233 38- 3602 6776 579 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3487 6957 6759 6942 7124 7306 3488 707 8277 337 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761 8943 9124 9306 9487 9668 98 329 37- 8398 858 8761	205	31-	1754	1966	2177	2389	26	2812	3023	3234	3445	3656	2
207 31- 507 618 639 6599 6809 7018 7227 7436 76 209 32- 0146 0354 0562 0769 0977 1184 1391 1598 18 210 32- 2219 2426 2633 2839 3046 3252 3458 3665 38 211 32- 4382 4488 4694 4899 5105 531 5516 5721 59 213 32- 838 8583 8787 8991 9194 9308 9601 9805 - 213 33- 2438 264 2842 3044 3246 216 33- 4454 4655 4856 5057 5257 5257 5458 5568 5859 60 216 33- 4454 4655 4856 5057 5257 5257 5458 5058 5859 60 218 33- 4454 4655 4856 5057 5257 5257 5458 5058 5859 60 218 33- 4454 4652 881 1039 1237 1435 1632 183 20 218 34- 2423 262 2817 3014 3212 221 34- 4332 4589 4785 4981 5178 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 35- 0226 0217 6408 6599 679 6981 7127 2363 55- 4108 4301 4493 4685 4876 5085 5068 526 5482 565 5852 5862 649 633 36- 1728 1917 2105 2294 2482 229 35- 0025 0215 0404 0593 0783 0972 1161 13 36- 3612 38 3988 4176 4363 4551 4739 4926 51 233 36- 7356 7542 7729 7915 8101 228 37- 1058 1293 4926 51 233 37- 1058 1253 1437 1622 1806 233 37- 2912 3096 328 3464 3647 3647 383 398 858 7618 943 9124 282 33 37- 6577 6759 6942 7124 7306 783 0972 1161 323 37- 4748 4932 5115 5298 5481 5078 5828 8761 8943 9124 241 38- 2017 2197 2377 2557 2737 2958 233 37- 6577 6759 6942 7124 7306 7488 797 8528 233 37- 8577 6759 6942 7124 7306 7488 797 8528 239 37- 8398 858 8761 8943 9124 241 38- 2017 2197 2377 2557 2737 2958 239 37- 8398 858 8761 8943 9124 241 38- 2017 2197 2377 2557 2737 2977 3979 3277 3277 3277 3277 327	206						471				5551	576	2
208												7854	2
209				8272				9106			973	9938	2
210											1805		2
211 32- 4282 4488 4694 4899 5105 531 5516 5721 59 212 32- 6336 6541 6745 695 7155 7359 7563 7767 79 213 32- 838 8583 8787 8991 9194 9398 9601 9805 - 214 33- 0414 0617 0819 1022 1225 1427 163 1832 20 215 33- 2438 264 2842 3044 3246 3447 3649 385 40 216 33- 4454 4655 4856 5057 5257 5458 5658 5859 60 217 33- 646 666 686 706 726 7459 7659 7858 80 218 34	750.70	22-	2210	2426	0.000	-300 5X	0505	2252	2458		3871	4077	2
212 32- 6336 6541 6745 695 7155 7359 7563 7767 79 213 32- 838 8583 8787 8991 9194 9398 9601 9805 - 213 213 33- 0414 0617 0819 1022 1225 1427 163 1832 20 215 33- 2438 264 2842 3044 3246 3447 3649 385 40 216 33- 4454 4655 4856 5057 5257 5458 5658 5859 6217 33- 646 666 686 706 726 7459 7059 7858 80 218 33- 0414 0642 0841 1039 1237 1435 1632 183 20 219 34- 0444 0642 0841 1039 1237 1435 1632 183 20 221 34- 34392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 223 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 226 35- 4108 4301 4493 4685 4876 5068 526 5452 56 227 35- 6026 6217 6408 6599 679 698 35- 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35- 9835 - 0025 0215 0404 0593 0783 0972 1161 13 230 36- 1728 1917 2105 2294 2482 2671 2859 3048 32 231 36- 3612 38 3988 4176 4363 4551 4739 4926 51 233 36- 7356 7542 7729 7915 8101 234 36- 9216 9401 9587 9772 9958											5926		9
213 32- 838 8583 8787 8991 9194 9398 9601 9805 213 33- 414 0617 0819 1022 1225 1427 163 1832 20 215 33- 4454 4655 4856 5057 5257 5458 5658 5859 60 218 33- 4454 4655 4856 5057 5257 7459 7659 7858 80 218 33- 8456 8656 8855 9054 9253 3451 965 9849 218 34- 219 34- 0444 0642 0841 1039 1237 1435 1632 183 20 213 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 223 35- 224 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 4108 4301 4493 4685 4876 5088 53- 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35- 9835 229 35- 9835 229 36- 0025 0215 0404 0593 7058 8886 9076 9266 94 229 35- 9835 7356 7542 7729 7915 8101 283 36- 7356 7459 7409 9772 9958 233 37- 1068 1253 1437 1622 1806 1643 362 37 2912 3096 328 3464 3647 3643 36- 9216 9401 9587 9772 9958 239 37- 878 398 858 8761 8943 9124 241 38- 2011 0392 0573 0754 0934 1115 1296 1476 16 243 38- 3815 3995 4174 4353 4533 4799 6677 6856 76 243 38- 3815 3995 4174 4353 4533 4712 4891 507 522 243 38- 3815 3995 4174 4353 4533 4699 6677 6856 77 852 243 38- 5606 5785 5966 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 77 852 243 38- 5606 5785 5964								-			7972		9
213 33- 0414 0617 0819 1022 1225 1427 163 1832 202 1215 33- 2438 264 2842 3044 3246 3447 3649 385 40 216 33- 4454 4655 4856 5957 5257 5458 558 5859 60 726 726 7459 7659 7858 80 9451 921 34- 0444 0642 0841 1039 1237 1435 1632 183 20 9451 945 945 945 945 945 945 945 945 945 945											1912	01/0	į
214 33- 0414 0617 0819 1022 1225 1427 163 1832 202 1215 33- 2438 264 2842 3044 3246 3447 3649 385 40 216 33- 4454 4655 4856 5057 5257 7459 7059 7858 80 217 33- 646 666 686 706 726 7459 7059 7858 80 218 33- 218 34- 221 34- 0444 0642 0841 1039 1237 1435 1632 183 20 221 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 223 35- 224 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2701 2954 226 35- 2183 2375 2568 2701 2954 229 35- 9035 8125 8316 8506 8696 886 9076 9266 94 229 35- 9835 8125 8316 8506 8696 886 9076 9266 94 229 35- 9835 8125 8316 8506 8696 886 9076 9266 94 231 36- 3612 38 3988 4176 4363 4551 4739 4926 51 233 36- 7356 7542 7729 7915 8101 2323 36- 5488 5675 5862 6049 6236 6423 661 6796 66 233 37- 2012 3096 328 3464 3647 3647 3679 828 37- 8798 588 8694 894 9934 241 38- 2017 2197 2377 2557 2737 2917 3097 3277 336 323 37- 8586 858 858 8761 8943 9124 38- 2017 2197 2377 2557 2737 2917 3097 3277 327 237 237 38- 3815 3095 4174 4353 4553 4799 677 8856 76 2243 38- 5606 5785 5964 6142 6331 6499 6677 6856 76 2243 38- 5606 5785 5964 6142 6331 6499 6677 6856 76		95	94	0303	0/0/	0991	9194	9390	9001	9005	8000	COTT	1
215 33- 2438 264 2842 3044 3246 3447 3649 385 40 216 33- 4454 4655 4856 5057 5257 7459 7659 7858 86 88 218 33- 8456 8656 8855 9054 9253 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9451 965 9849 9461 9461 9461 9471 965 9849 9462 9462 9462 9472 9666 988 383 369 3662 8869 9883 9871 957 972 9666 988 9889 9883 987 972				0617	0810	1022	1225	1427	162	1822			ŀ
216 33- 4454 4655 4856 5057 5257 7459 7659 7858 80 218 33- 8456 8656 8855 9054 9253 9451 965 9849 — 219 34- 0444 0642 0841 1039 1237 1435 1632 183 20 221 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 223 35- 240 842 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 5668 526 5452 56 227 35- 6026 6217 6408 6599 679 98 886 9076 9266 98 229 35- 0025 0215 0404 0593 978 8886 9076 9266 94 229 35- 0025 0215 0404 0593 0783 0972 1161 13 23 36- 3612 38 3988 4176 4363 4551 4739 4926 51 233 36- 7356 7542 7729 7915 8101 233 36- 7356 7542 7729 7915 8101 233 37- 2012 3096 328 3464 3647 363 37- 2012 3096 328 3464 3647 363 37- 2012 3096 328 3464 3647 363 37- 2012 3096 328 3464 3647 363 37- 2012 3096 328 3464 3647 363 38- 2012 3096 328 3464 3647 363 38- 2012 3096 328 3464 3647 363 38- 2012 3096 328 3464 3647 363 38- 2012 3099 2573 0754 0934 1115 1296 1476 16 243 38- 2011 0392 0573 0754 0934 1115 1296 1476 16 243 38- 2011 0392 0573 0754 0934 1115 1296 1476 16 243 38- 2011 0392 0573 0754 0934 1115 1296 1476 16 243 38- 3815 3995 4174 4353 4533 4699 6677 6856 76	A STATE OF	1.797.10		1000	7111111		DOMESTIC:	- 4.00	-900.0	-	-	-	
217 33- 646 666 686 706 726 7459 7659 7858 80 218 33- 8456 8656 8855 9054 9253 9451 905 9849 — 219 34- 0444 0642 0841 1039 1237 1435 1632 183 20 220 34- 2423 262 2817 3014 3212 3409 3606 3802 39 221 34- 43392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 223 35- 224 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 226 35- 4108 4301 4493 4685 4876 5068 526 5452 56 227 35- 6026 6217 6408 6599 679 6981 7172 7363 758 228 35- 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35- 9835 ————————————————————————————————————	-										4051		ľ
218 33- 8456 8656 8855 9054 9253 9451 905 9849 — 219 34- 0444 0642 0841 1039 1237 1435 1632 183 20 220 34- 2423 262 2817 3014 3212 3409 3606 3802 39 221 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 224 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 226 35- 4108 4301 4493 4685 4876 5068 526 5452 527 227 35- 6026 6217 6408 6599 679 6981 7172 7363 75 228 35- 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35- 9835 — — — 0025 0215 0404 0593 0783 0972 1161 13 230 36- 1728 1917 2105 2294 2482 2671 2859 3048 32 231 36- 3612 38 3988 4176 4363 4551 4739 4926 51 233 36- 7356 7542 7729 7915 8101 2873 375 2873 37- 1068 1253 1437 1622 1806 1642 361 6796 62 233 37- 8398 858 8761 8943 9124 9306 9487 9668 98 239 37- 8398 858 8761 8943 9124 9306 9487 9668 98 240 38- 0211 0392 0573 0754 0934 1115 1296 1476 16 241 38- 2017 2197 2377 2575 7273 2917 3997 3277 3272 242 38- 3815 3995 4174 4353 4533 4712 4891 507 525 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 76				4055	4850						6059		ľ
218 34-							1 to 1 to 1 to 1				8058	8257	R
219				8050	8855	9054	9253	9451	905	9849	-	-	B
220 34- 2423 262 2817 3014 3212 3409 3606 3802 392 221 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772- 79 79 792 792 9472 9666 98 223 35- 35- 5024 0442 0636 0829 1023 1216 141 1603 17 226 35- 4108 4301 4493 4685 4876 5068 526 5452 562- 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452 562 5452				-	-	-			-	-	0047	0246	U
221 34- 4392 4589 4785 4981 5178 5374 557 5766 59 222 34- 6353 6549 6744 6939 7135 733 7525 772 79 29 33- 858 8694 8889 9083 9278 9472 9666 98 223 35- 248 0442 0636 0829 1023 1216 141 1603 17 226 35- 4108 4301 4493 4685 4876 508 526 5452 562 5452 562 5452 562 5452 562 5452 562 5452 5682 5452 5682 5452 5682 5482 5696 6981 7172 7363 75 7363 75 228 35- 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35- 9835 - 0025 0215 0404 0593 0783 9972 1161	219	34-	0444	0042	0841	1039	1237	1435	1000		2028	2225	R
222 34- 6353 6549 6744 6939 7135 733 7525 772 792 223 34- 8305 85 8694 8889 9083 9278 9472 9666 98 224 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 226 35- 4108 4301 4493 4685 4876 5068 526 5452 56 526 5452 56 526 5452 56 526 5452 56 528 5452 56 526 5452 56 526 5452 56 526 5452 56 528 567 5865 526 5497 981 7172 733 75 228 35-7935 8125 8316 8506 8696 8886 9076 9266 94 229 35-7835 7525 736 758 3072 738 9072 1611 <td>220</td> <td>34-</td> <td>2423</td> <td>262</td> <td></td> <td>3014</td> <td>3212</td> <td>3409</td> <td>3606</td> <td>3802</td> <td>3999</td> <td>4196</td> <td>ı</td>	220	34-	2423	262		3014	3212	3409	3606	3802	3999	4196	ı
222 34- 6353 6549 6744 6939 7135 733 7525 772 79 79 223 34- 8305 85 8694 8889 9883 723 8472 9666 98 772 9666 98 224 35- 0248 0442 0636 0829 1023 724 35- 0248 0442 0636 0829 1023 724 35- 0266 0217 0408 0599 079 058 727 35- 0268 0217 0408 0599 079 058 727 353 75 3147 3339 3532 37 226 35- 4108 4301 4493 4685 4876 5068 526 5452 56 56217 0408 0599 079 058 7172 7363 75 8886 9076 9266 94 228 35- 7935 8125 8316 8506 8696 8886 9076 9266 94 8886 9076 9266 94 229 35- 9835	221	34-	4392	4589	4785	4981	5178	5374	557	5766	5962	6157	
223 35- 0248 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 226 35- 4108 4301 4493 4685 4876 508 526 5452 56 227 35- 6026 6217 6408 6599 679 6981 7172 7363 75 228 35- 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35- 9835	222	34-	6353	6549	6744	6939	7135	733	7525		7915	SII	
223 35- 224 0442 0636 0829 1023 1216 141 1603 17 225 35- 2183 2375 2568 2761 2954 3147 3339 35.32 237 226 35- 4108 4301 4493 4685 4876 5068 526 5452 56 227 35- 6026 6217 6408 6599 679 6981 7172 7363 75 229 35- 9035 - 0025 0215 0404 0593 0783 0972 1161 13 230 36- 1728 1917 2105 2294 2482 2671 2859 3048 32 231 36- 3612 38 3988 4176 4363 4551 439 4926 51 113 236 231 36- 5488 5675 5862 6049 6236 6423 661	223	34-	8305	85	8694	8889	9083	9278	9472	9666	986	-	
225 35- 2183 2375 2568 2761 2954 3147 3339 3532 37 226 35- 408 4301 4493 4685 4876 5068 526 5452 56 227 35- 6026 6217 6408 6599 679 6981 7172 7363 72 236 5452 56 229 35- 9835 - - 696 8886 9076 9266 94 230 36- 1728 1917 2105 2294 2482 2471 2859 3048 32 231 36- 3612 38 3988 4176 4363 4551 4739 4926 51 232 36- 5488 5675 5862 6049 636 6423 661 6423 661 6423 661 693 6423 661 6423 661 698 88 88 88 88 88 88 88 88 88<		35-	-	-	-	-	-	-	-	-	-	0054	
226 35 - 4108 4301 4493 4685 4876 5068 526 5452 56 227 35 - 6026 6217 6408 6599 679 228 35 - 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35 - 9835	224	35-	0248	0442	0636	0829	1023	1216	141	1603	1796	1989	
226 35 - 4108 4301 4493 4685 4876 5068 526 5452 56 227 35 - 6026 6217 6408 6599 679 228 35 - 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35 - 9835	225	35-	2183	2375	2568	2761	2054	3147	3330	3532	3724	3916	U
227 35- 6026 6217 6408 6599 679 6981 7172 7363 75 228 35- 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35- 9835 — — — — — — — — — — — — — — — — — — —	-							5068			5643	5834	
228 35 - 7935 8125 8316 8506 8696 8886 9076 9266 94 229 35 - 9835											7554	7744	
229 35 9835											9456	9646	
229 36- — 0025 0215 0404 0593 0783 0972 1161 13 230 36- 1728 1917 2105 2294 2482 2671 2859 3048 32 231 36- 3612 38 3988 4176 4363 4551 4739 4926 51 232 36- 5488 5675 5862 6049 6236 6236 6236 6236 6236 6236 6236 6236 6234 601-796 60 234 36- 9216 9401 9587 9772 9958 958 978 8287 8473 8659 88 235 37- 1068 1253 1437 1622 1806 1991 2175 236 23 237 37- 2912 3096 328 3464 3647 3831 4015 4198 43 238 37- 6577 6759 6942 7124 7306 7488 767 7852 86 239 38- 93 858 8761 8943 9124 9306 9487 9668 98 240 <					-3	-	_		2-1-	3-0	9430	2040	
230 36- 1728 1917 2105 2294 2482 2671 2859 3048 32 231 36- 3612 38 3988 4176 4363 4551 4739 4926 51 232 36- 5488 5675 5862 6049 623 6423 661 6796 58 234 36- 9216 9401 9587 9772 9958 988 287 8473 8659 88 235 37- 1068 1253 1437 1622 1806 1991 2175 236 25 236 37- 2912 3096 328 3464 3647 3831 4015 4198 43 237 37- 4748 4932 5115 5298 5481 5604 5846 6029 62 239 37- 8398 858 8761 8943 9124 9366 9487 9668 98 240 38- 0211 0392 0573 <td< td=""><td>1000000</td><td></td><td></td><td>0025</td><td>0215</td><td>0404</td><td>0503</td><td>0782</td><td>0072</td><td>1161</td><td>135</td><td>1539</td><td></td></td<>	1000000			0025	0215	0404	0503	0782	0072	1161	135	1539	
231 36- 3612 38 3988 4176 4363 4551 4739 4926 51 232 36- 5488 5675 5862 6049 6236 6423 661 6796 62 233 36- 7356 7542 7729 7915 8101 6287 8473 8659 88 234 36- 9216 9401 9587 9772 9958	179405	1000	4.00			1000	10000	100000	500	42/2	500	1000	
232 36- 5488 5675 5862 6049 6236 6423 661 6796 66 233 36- 7356 7542 7729 7915 8101 234 36- 9216 9401 9587 9772 9958											3236	3424	ii.
233 36- 7356 7542 7729 7915 8101 8287 8473 8659 88 234 36- 9216 9401 9587 9772 9958 235 37- — — — — — — — — — — — — — — — — — — —								100			5113	5301	
234 36- 9216 9401 9587 9772 9958					Mar. 19 (1)						6983	7169	
235 37- 1068 1253 1437 1522 1806 1991 2175 236 23 236 37- 2912 3096 328 3464 3647 3831 4015 4198 43 237 37- 4748 4932 5115 5298 5481 5604 5846 6029 62 329 37- 8577 6759 6942 7124 7306 7488 767 7852 86 239 38- 239 38- 240 38- 0211 0392 0573 0754 0934 1115 1296 1476 16 241 38- 2017 2197 2377 2557 2737 2917 3097 3277 38 242 38- 3815 3995 4174 4353 4533 4533 38- 5606 5785 5964 6142 6321 6499 6677 6856 76	-00							0207	0473	0059	8845	903	li
235 37- 1068 1253 1437 1622 1806 1991 2175 236 25 36 37- 2912 3096 328 3464 3647 3831 4015 4198 43 237 37- 4748 4932 5115 5298 5481 5604 5846 6029 6239 37- 8398 858 8761 8943 9124 9306 9487 9668 98 239 38- 240 38- 0211 0392 0573 0754 0934 1115 1296 1476 16 241 38- 2017 2197 2377 2557 2737 2917 3097 3277 3242 38- 3815 3995 4174 4353 4533 4712 4891 507 52 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 76		1000	-	9401	9507	9772	9950	- BOOK		-	-	133	и
236 37- 2912 3096 328 3464 3647 3831 4015 4198 43 237 37- 4748 4932 5115 5298 5481 5664 5846 6029 62 239 37- 8398 858 8761 8943 9124 9366 9487 9668 98 239 38- 2017 2197 2377 2577 2737 2572 2737 242 38- 3815 3995 4174 4353 4533 4712 4891 507 52 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 76				-	-	-	-					0883	
237 37 - 4748 4932 5115 5298 5481 5664 5846 6029 62 238 37 - 6577 6759 6942 7124 7366 7488 767 7852 86 239 37 - 8398 858 8761 8943 9124 9366 9487 9668 98 239 38 - 9507 2197 2377 2557 2737 2917 3097 3277 34 241 38 - 2017 2197 2377 2557 2737 2917 3097 3277 34 242 38 - 3815 3995 4174 4353 4533 472 4891 507 52 243 38 - 5606 5785 5964 6142 6321 6499 6677 6856 76					1437		230		6.00		2544	2728	
238 37- 6577 6759 6942 7124 7306 7488 767 7852 86 239 37- 8398 858 8761 8943 9124 9306 9487 9668 98 239 38											4382	4505	
239 37-8398 858 8761 8943 9124 9306 9487 9668 98 239 38-									-		6212	6394	B
239 38- 240 38- 0211 0392 0573 0754 0934 1115 1296 1476 16 241 38- 2017 2197 2377 2557 2737 2917 3097 3277 34 242 38- 3815 3995 4174 4353 4533 4712 4891 507 52 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 76											8034	8216	н
240 38- 0211 0392 0573 0754 0934 1115 1296 1476 16 241 38- 2017 2197 2377 2557 2737 2917 3097 3277 34 242 38- 3815 3995 4174 4353 4533 4712 4891 507 52 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 76			8398	858	8761	8943	9124	9306	9487	9668	9849	-	B
241 38- 2017 2197 2377 2557 2737 2917 3997 3277 34 242 38- 3815 3995 4174 4353 4533 4712 4891 507 52 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 70	239	38-	-	-	-	570	-	-	7	-	-	003	B
241 38- 2017 2197 2377 2557 2737 2917 3097 3277 34 242 38- 3815 3995 4174 4353 4533 4712 4891 507 52 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 70	240	38-	0211	0392	0573	9754	0934	1115	1296	1476	1656	1837	8
242 38- 3815 3995 4174 4353 4533 4712 4891 507 52 243 38- 5606 5785 5964 6142 6321 6499 6677 6856 70	241										3456	3636	93
243 38- 5606 5785 5964 6142 6321 6499 6677 6856 70											5249	5428	В
											7034	7212	H
												8989	
No. 0 1 2 3 4 5 6 7		-	109	10	11111	-	-	-	-		8		t

	0	1	2	3	4	5	6	7	8	9	D
38-	9166	9343	952	9698	9875	_	_	_	_	_	177
39-	_	_	_	-	_	0051	0228		0582	0759	177
39-	0935	1112		1464	1641	1817	1993	2169	2345	2521	176
	2697	2873		3224	34	3575	3751	3926	4101	4277	176
39-	4452	4627	4802	4977	5152	5326	5501	5676	585	6025	175
39-	6199	6374	6548	6722	6896	7071	7245	7419	7592	7766	174
39-	794	8114	8287	8461	8634	8808	8981	9154	9328		173
	9674			_	_	I —)-J+	-		173
40-	-		002	0192	0365	0538	0711	0883	1056	1228	173
	1401	1573	1745	1917	2089	2261	2433	2605	2777	2949	172
	3121	3292	3464	3635	3807	3978	4149	432	4492		171
	4834	5005	5176	5346	5517	5688	5858	6029	6199	637	171
-	654	671	6881	7051	7221	7391	7561	-		807	170
	824	841				9087		7731	7901	•	169
		041	8579	8749	8918	9007	9257	9426	9595	9764	
	9933	0102	0271	~	0609	0777	0946		1283		169 169
41-	-60	1788		044 2124		2461		1114		1451	168
41-			1956		,,,		2629	2796		3132	
41-		3467	3635	380 3	397	4137	4305	4472	4639	480 6	167
	4973	514	5307	5474	5641	5808	5974	6141	6308	6474	167
	6641	6807	6973	7139	7306	7472	7638	7804	797	8135	166
	830ī	8467	863 3	8798	8964	9129	9295	946	9625	97 9 I	165
41-	9956	_		_		_	_	-	-	_	165
42-		0121	0286	0451	0616	0781	0945	111	1275	1439	165
42-	1604	1768	1933	2097	2261	2426	259	2754	2918	3082	164
42-	3246	341	3574	3737	3901	4065	4228	4392	4555	4718	164
42-	4882	5045	5208	5371	5534	5697	586	6023	6186	6349	163
42-	6511	6674	6836	6999	7161	7324	7486	7648	7811	7973	162
42-	8135	8297	8459	8621	8783	8944	9106	9268	9429		162
	9752	9914		_		1	´-	_	<u>'-</u> '		162
43-		<u></u>	0075	0236	0398	0559	072	o881	1042	1203	161
	1364	1525	1685	1846	2007	2167	2328	2488		2800	161
	2969	313	329	345	361	377	393	400	4249		160
	4569	4729	4888	5048	5207	5367	5526	5685	5844	6004	150
	6163	6322	6481	664	6799	6957	7116	7275	7433	7592	159
	7751	7909	8067	8226	8384	8542	8701	8859	9017	9175	158
			9648	9806	9964	0342	0,01	0039	901/	9-73	-
	9333	9491	9040	9800	9904	0122					158
44-		1066	7004	7.007			0279	0437	0594		158
	0909	_	1224	1381	1538	1695	1852	2009	2166	2323	157
	248	2637	2793	295	3106	3263	3419	3576	3732	3889	157
	4045	4201	4357	4513	4669	4825	4981	5137	5293	5449	156
	5604	576	5915	6571	6226	6382	6537	6692	6848	7003	155
	7158	7313	7468	7623	7778	7933	8088	8242	8397	8552	155
	8706	8861	9015	917	9324	9478	9633	9787	9941	_	154
45-	_		_	_	_	—				0095	154
		0403	o557	0711	0865	1018	1172	1326	1479	1633	154
	1786	194	2093	2247	24	2553	2706	2859	3012	3165	153
45-	3318	347I	3624	3777	393	4082	4235	4387	454	4692	153 '
45-	4845	4997	515	5302	5454	5606	5758	591	6062	6214	152
		6518	667	6821	6973	7125	7276	7428	7579	7731	152
	7882	8033	8184		8487	8638	8789	894	9091	9242	151
	9392	9543	9694	9845	9995						151
1 6-						0146	0296	0447	0597	8450	722
16-	0808	1048	1198	1348	1400	1649	1799	1948			
					777		- 199	1940			\
	0	,	2	3	4 . 1	5	6	7	8	9	a/

No.		0	i	2	3.	4	5	6	7	8	2
290	46-	2398	2548	2697	2847	2997	3146	3296	3445	3594	37
291	46-	3893	4042	4191	434	449	4639	4788	4936	5085	52
292	46-	5383	5532	568	5829	5977	6126	6274	6423	6571	67
293	46-	6868	7016	7164	7312	746	7608	7756	7904	8052	82
294	46-	8347	8495	8643	879	8938	9085	9233	938	9527	96
205	1000	9822	9969	-	-	-	.55	-	_	-	-
295	47-	-	-	0116	0263	041	0557	0704		0998	II
296		1292	1438	1585	1732	1878	2025	2171	2318	2464	26
297		2756	2903	3049	3195	3341	3487	3033	3779	3925	40
298		4216	4362	4508	4653	4799	4944	509	5235	5381	55
299	47-	5671	5816	5962	6107	6252	6397	6542	6687	6832	69
300		7121	7266	7411	7555	77	7844	7989		8278	84
301		8566	8711	8855	8999	9143	9287	9431	9575	9719	92
302		0007	0151	0294	0438	0582	0725	0869	1012	1156	15
303		1443	1586	1729	1872	2016	2159	2302	2445	2588	27
304	48-	2874	3016	3159	3302	3445	3587	373	3872	4015	4
305	48-		4442	4585	4727	4869	5011	5153	5295	5437	5
306		5721	5863	6005	6147	6289	643		6714	6855	60
307		7138	728	7421	7563	7704	7845		8127		8
308		8551	8692	8833	8974	9114	9255	9396	9537	9677	9
309	48-	9958	0000	0239	028	052	0661	OSOT	0941	1081	I
-000	0.550	441		100	77601	13000					
810		1362	1502	1642	1782	1922	2062	2201	2341	2481	21
311		276	29	304	3179	3319	3458	3597	3737	3876	
312		4155		4433	4572	4711	485	4989	5128	5267	5
313		5544	5683	5822	596	6099	6238	6376	6515	6653	6
314	100	693	7068	7206	7344	7483	7621	7759	7897	8035	8:
815			8448		8724	8862	8999	9137	9275	9412	9.
316		9687	9824	9962	E.		-	700	-	-	3
316	50-			-	12.51	0236		0511	100000	0785	O.
317		1059	1196		147	1607	1744	188	2017	2154	2
318		2427			2837	2973	3109	3246	3382	3518	3
319	150	3791		17 19	4199	4335	4471	4607	10000	4878	50
320		515	5286	5421	5557	5693	5828		6099		6
321	-	6505	664	6776	6911	7046	7181	7316	7451	7586	7
322		7856	7991	8126	826	8395	853	8004	8799	8934	9
323		9203	9337	9471	9606	974	9874	1			1
323	51-	-	-6	-0	-	0-			0143		0.
324	1000	1900	0679	10000	500	1001	1215	193	1482	1616	I
825			2017		2284	2418	2551	2684	2818	2951	3
326		3218	3351		3617	375	3883		4149	4282	4
327		4548		4813	4946	5079	5211	5344	5470	5609	5
328		5874	6005	6139	6271	6403	6535	6668	68	6932	70
329	I TOWN	7196	7328	746	7592	7724	7855	7987	8119	8251	8
330			8646	8777	8909	904	9171	9303	9434	9566	96
331		9828	9959	000	0227	0252	0.0.	0611	-	-0-4	3
331	52-		1260	0009		0353				0876	
332			1269		153	1661				2183	-
333			2575			4266		3226	3356		35
No.	3-				-		-	4200	4020	8	45
210.		0	1	2	3	4	1 5	0	- 1	0	

	0		2	3	4	5	6	7	8	9	D
52-	5045	5174	5304	5434	5563	5693	5822	5951	6081	621	120
52-	6339	6460	6508	6727	6856	6985		7243	7372	750I	129
	- 763	7759	7888	8016	8145	8274	8402	8531	866	8788	129
	8917		9174	9302	943	9559	9687	9815	9943	_	128
53-		_	_	_	-	_	-	· — [_	0072	128
	- 02	0328	0456	0584	0712	084	0968	1096	1223	1351	128
	- 1479	1600	T724	1862	700	2117	2245	2372	25	2627	128
35	· 2754	2882				2201	3518	3645	3772		127
33	- 4026	4152	428		4534	466T	4787	4014	5041	5167	127
53-	5294	542T	5547	5674	58		6053		6306		12Ć
	· 6558				7063		7315	744I			126
		-									
53-	· 7819	7945	8071	8197	8322		8574		8825	8951	126 126
	- 9076	9202	9327	9452	9578	9703	9829	9954			
54~			_						0079	0204	125
54-	0329	0455	058	0705		0955	108	1205	133	1454	125
	1579						2327		2576		125
54-	2825	295	3074	3199	33 2 3	3447	357I	3696	302	3944	124
54-	4068	4192	4316	444	4564	4688	4812	4936	506	5183	124
	5307		5555		5802	5925	6049	6172	6296	6419	124
54-	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652	123
	7775		8021		8267	8389	8512	8635		888z	123
	9003	9126	9249	9371	9494	9616	9739	9861	9984		123
55~		-	_	_		-	_	-	_	0106	123
55-	0228	0351	0473	0595	0717	084	0962	1084	1206	1328	122
55-	145		1694	1816	1938	206	2181		2425		122
55-	2668	279	2911	3033	3155		3398			3762	121
	3883				4368	4489		473 ^I	4852		121
55-	5094	5215	5336	5457	5578	5699	582	594	6061	6182	121
E E -	6303	6423	6544	6664	6785	6905	7026	7146	7267	7387	120
55-	· 7507	7627	7748	7868	7088		8228				120
	8709	8820	8048	0068	9188		9428				120
	9907			_	_		<u></u>		<u>`</u> _'	·	120
56-		0026	0146	0265	0385	0504	0624	0743	0863	0982	119
56-	1101	1221	134		1578	1698	1817	1936	2055	2174	119
-						-00-	6			6-	119
	2293	2412	2531	205	2769		3006				119
	3481	36		3837			4192	5494	5612	573	118
	4666		4903 6084	5021	5139 632	5257	6555				118
	5848		7262		•	7614		7849			118
•	7026	7144	•	7379							
56-	8202	8319	8436	8554	8671	8788	8905	9023	914	9257	117
56-	9374	9491	9608	9725	9842	9959		_	_	- ,	117
E7-	_	_	_		_			0193			117
57-	0543	066		0893	101	1126		1359		1592	117
:7-	1700	1825	1942	2058	2174	2291				2755	116
i7-	2872	2988	3104	322	3336	3452	3568	3684	38	3915	116
7-		4147			4494	451	4726	4841		5072	116
	5188	5303		5534	565	5705	588		6111		115
	6341	6457	6572		6802	6917	7032	7147	7262		115
7-	7492	7607	7722 8868	7836		8066	8181		041	852 <u>5</u>	
7-	8639	8754	0000	8983	9097	9212	9320	9441		5 966	<u> </u>
	0	1	2	3	4 i	5	6	7	8	9	a /

-		0		2	3	4	5	6	7	8	9	D
200	30-	103	1247	1464	1681	1898	2114	2331	2547	2764	298	217
201		3196		3628	3844		4275	4491	4706	4921	5136	210
202		5351	5566	5781		6211	6425	6639		7068	7282	21
203		7496	771		8137				8991		9417	21
204		963	9843	-	-	_	-	-	-	-	-	21
204	31-	-	-	0056	0268	0481	0693	0906	1118	133	1542	21
205	31-	1754	1966	2177	2389	26	2812	3023	3234	3445	3656	21
206			4078				492	513	534	5551	576	21
207	31-	597	618	639	6599	6809	7018	7227	7436	7646	7854	20
208	31-	8063	8272	8481		8898	9106	9314		973	9938	20
209	32-	0146	0354	0562	0769	0977	1184	1391	1598	1805	2012	20
10	32-	2219	2426	2633	2839	3046	3252	3458	3665	3871	4077	20
211	32-	4282	4488	4694	4899	5105	531	5516	5721	5926	6131	20
212	32-	6336	6541	6745	695	7155	7359	7563	7767	7972	8176	20
213	32-	838	8583	8787	8991	9194	9398	9601	9805	-	-	20
213	33-	-	-	-	-	-	-	-	-	8000	0211	20
214		0414	0617	0819	1022	1225	1427	163	1832	2034	2236	20
15	33-	2438	264	2842	3044	3246	3447	3649	385	4051	4253	20
216		4454	4655	4856	5057	5257	5458	5658	5859	6059	626	20
217	33-	646	666	686	706	726	7459	7659	7858	8058	8257	20
218	33-	8456	8656	8855	9054	9253	9451	965	9849	-	-	20
218	34-	-	-	-	-	-	-	-	-	0047	0246	19
219	34-	0444	0642	0841	1039	1237	1435	1632	183	2028	2225	19
20	34-	2423	262	2817	3014	3212	3409	3606	3802	3999	4196	19
221	34-	4392	4589	4785	4981	5178	5374	557	5766	5962	6157	10
222	34-	6353	6549		6939	7135	733	7525	772	7915	SII	19
223		8305	85	8694	8889	9083	9278	9472	9666	986	220	19
223	35-	-	-	-		-		-	-	-	0054	19
224	35-	0248	0442	0636	0829	1023	1216	141	1603	1796	1989	19
25	35-	2183	2375	2568	2761	2954	3147	3339	3532	3724	3916	19
226		4108	4301	4493	4685	4876	5068	526	5452	5643	5834	19
227	35-	6026	6217	6408	6599	679	6981	7172	7363	7554	7744	19
228		7935	8125	8316	8506	8696	8886	9076	9266	9456	9646	19
229	35-	9835	-	-	-	0502	0783	-	1161	-		18
229			0025	0215	0404	0593	10000000	0972		135	1539	18
30	36-		1917	2105	2294	2482	2671	2859	3048	3236	3424	18
11.5	36-	3612	38	3988	4176	4363	4551	4739 661	4926	5113	5301	18
1	36-	5488	5075	5862	6049	6236	6423		6796	6983	7109	18
• 1	30-	7350	7542	7729 9587	7915	9958	8287	8473	8659	8845	903	18
		April	Ador	2001	211-	273"	DIA	0228	OFTO	0600	0883	18
		1068		1437	1622	1806	1991	2175	236	2544	2728	18
		2012	1253		3454	3547	3831		4198	4382		18
			3000	328	5208	548T	5664	5846	6029	6212	4505	18
		2748	11/32	5115	7524		7488	767	7852	8034	8216	18
			2150	5101	6043	S. Carro	7400	9487	9668		3210	18
				176	1944.1			2401	-	9049	003	18
								1296	1476	1656	1837	18
							15	3097		3456	3636	18
							712	4891	507	5249	5428	17
							6499	6677	6856	7034	7212	17
						1 3	8279	8456	8634	8811	8989	17

												• •
ło.		0		2	3	4	5	6	7	8	9	D
15	38-	9166	9343	952	9698	9875	_	_		_	_	177
45		_	_	-	-	_	0051	0228				177
46						1641			2169		2521	
47		2697			3224		3575		3926			176
48			4627		4977	5152 6896	5326 7071		5676	585	6025	175
49		6199			8461			7245 8981	7419	7592	7766	174
50		794 9674	8114 9847	0207	0401	8634	0000	6961	9154	9328	9501	173
51 51	40-	90/4	9047	002	0192	0365	0538	0711	0883	1056	1228	173
52		1401	1573	1745	-		2261		2605	2777	2049	
53		3121	3292	3464	3635	3807	3978		432	4492	4663	171
54			5005	5176	5346	5517	5688	5858	6029	6199	637	171
55	40-	654	671	688 r	7051	7221	7391	7561	7731	7901	807	170
56	40-	824	841	8579	8749	8918	9087		9426	9595	9764	169
57	40-	9933	_	-	_	_	<u> </u>			_		169
57	41-	_		0271		0609	0777		1114		1451	169
58	•	162	1788		2124		2461	-		2964	3132	168
59	41-			3635	3803	397	4137		4472	4639	4806	167
50	41-	4973	514 6807	5307	5474	5641	5808			6308	6474	167
51 52		8301	8467		7139	7306 8964	7472		7804	797 9625	8135	166 165
63		9956	0407		8798		9129	9295	940	9023	9791	165
63	42-	9930	0121	0286	0451	0616	0781	0945	111	1275	1439	165
64		1604			2007	2261	2426		2754	2918	3082	164
85	•	3246	•	3574	3737	3901	4065			4555	4718	164
66			5045	5203	5371	5534	5697		6023	6186	6349	163
67			6674	6836	6999	7161	7324		7648	7811	7973	162
68	42-	8135	8297	8459	8621	8783	8944	9106	9268	9429	9591	162
59		9752	9914	_			-	_	_		_	162
5 9	43-	_	_	0075	0236	0398	0559	•	0881	1042	•	161
70			1525	1685	1846		2167	_		2649		161
71		2969		329	345	361	377	393	409	4249		160
72			4729 6322		5048 664	5207 6799	5367 6957	5526 7116	5685	5844		159
73 74			7909		8226	9/99	8542		7275 8859	7433 9017	7592 9175	158
15				9648		9964	-	-			9-73	158
	44-	9333		_		9904	0122	0279	0437	0504	0752	3.
75 76		0909	1066	1224	1381	1538	1695		2000	2166	2323	1
77		248	2637	2793		3106	3263		3		5	1:
78	44-	4045	4201	4357	4513	4669	4825	4981	į			
19		5604	576	5915	6571	6226	6382	6537	•			
10		7158	7313		7623	7778	7933		ŧ.			
31		8706	8861	9015	917	9324	9478	9633	ý			
li ka	45-		_			o865		_	_			
13			0403 194	2003	0711 2247	24	1018	1172	13 28			
14			3471	3624	3777	393	2553 4082	2706	438			
5		4845	4997	515	5302	5454	· · .	4235				
16		6366		667	6821	6973	7125	5758 7276	591 742	R		
17:		7882		8184	8336	8487	8638		894	٠,		
8 ;		9392		9694	9845	9995		~/09	-	•		
8	46-	_	_	_	_	_	0146	0296	044	7 05,		
9	46-	0898	1048	1198	1348	1499	1649	1799	194	8 204	3	
A.		0	1	2	3	4	-	6	7		8	

		:		=	Ξ	-	Ŧ	:	-	:	3	כ
29.,		2-2	27.25	===			عـ::	7220		-		:5
20:				_: ::	:-		275			≖ . • ₹	=::	_
1::	-ئــ		====		50.22	 -	3.72	7.27.		:	J~::	
-:-	-ئئـ	7.7.3	::		:-		- _ ;		-::-	7. FI	· <u>-</u>	<u>-</u>
7.7		`; - "		زئنة	;	2170			• . •	151-	::	<u> </u>
2.5	.ċ-	تدنح	;==;	_	_	_	_	_	_		_	: 4
2-15		_	- .	:::	== ;	:_=:	:		75.5	::::5	:: 5	4
تہ:		:25.2	:*	-7.5	====	: • • • •	141	21.75	<u></u>	<u></u>	5 7:	24
			2727 T	- F- 3	71 15 -57	15-1 1-15		77 17 77 4	;: ;::	70.22 5 1 7 1	 E =	=
			3.3	5-15-2 5-15-2	===	=====			2017	32	::-:	4
2.5		-	-	_								
1.101		-:::		::	7755				31.77	:2	::	4
123		15.	: -=:	1155	3:1.3.2 14.78	11-1	222.7 2725	14.12	: ::2	::: ::-:::		4
775		:	7	: ===	1373	37.72	1 -1	2 702		25.3	<u></u>	ㅋ
٠.	-:-	-X	7015	12.55	3302		35-1	773	20.00		-:	4
						-					_	
705		÷;		-515		377	50::	72.73		5- 17		듸
:=6 :==	-ۆب -ۋلىد		F*= 3	1305 1115	1547		<u> </u>	11.5	312	125		띡
3	13- 13-	7173 355	سر شوشن	47,3		74 II.	455	: ;;;;;	15.17		22:3	Ц Ц
303		×.			_	<i></i>		_	_	_		<u>ч</u>
ومناز	15-		3077	1572	: :3	272	2000	:5::	::_:	::::::		H
214	#-	: £2	:502	تبث		: :::=	2000	== 000	27-2	<u>.</u> ':	2221	ч
37 I		37.	بَعد	نت:	*: "	73-7	- = c	7577		<u></u>	-215	Ţ.
312	#5	¥255	عيمت	117.7	1372	i-::	-25	1101	÷1.23		5-2C	Ţ
373	#5-	25.ee	;	=: -=	5.12	Tire.	::1:	: ::	1515 1517	775	====	IJ
374	# 5-	7 ,	7003	-200	-:	: نــ-	-:2:		:-	3.5	::-;	IJ
812	492	Burn	BESS	8586	272	2952	Saga	- 3		1272	133	IJ
												-4
316	44	9587	9824	9962	-	-	-	_	-	_	_	4
216	45	9587	9824	9962	coas	0216	9334		; ra;			ä
216	45	1059	9824 1196	9962 1333	0099 147	 0236 1601	9374 1744		::: -			-
20.5	45	9587 1059 2497	मुद्रम् मुद्रम् मुद्रम्	9962 1333 77	0099 147 1831	0236 1601 2473	9374 1744 3109		2017 3322		1000 1000 1000 1000 1000 1000	7777
	おかかから	1059 2497 2792	9824 1196 2954 3027	9962 1333 17 4063	0099 147 1831 4199	0236 1607 2473 4335	9374 1744 3109 4471		::: -			4
26	母母品品品 在	9587 1059 2497 3752 575	9824 1196 2964 3027 236	100 to 10	0099 147 1831 4799	6236 1607 2/13 4335 6603	9374 1744 3109 4401 5228	5104 5104	2017 3322 4743 5000	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1222 1222 1233 1235 1244 127	44-4
DG.	母母品品品 在	9587 1059 2497 3751 575 6805	9824 1196 2504 3027 5286 664	9962 133 1463 1463 1476	0099 147 1831 4799 5557 6911		9374 1744 3109 4471 5225 1125		2017 3322 4743 5000 7433	1 25 to 12 t	785	77 7¥
D.S.	华州山北江 人名日	9587 1059 1059 1059 1059 1059 1059 1059 1059	9824 1196 2304 3027 5266 664	996a 1333 1463 5416 6716 846	0099 147 1831 4199 5357 6911 806		9374 1744 3109 4401 5226 1131 853	2007 2107 2107 2107 2102 212 212 212 212 212 212 212 212 21	2017 3352 4743 5000 7453 5700		100 100 100 100 100 100 100 100 100 100	
20	华州山北江 人名日	9587 1059 1059 1059 1059 1059 1059 1059 1059	9824 1196 2304 3027 5266 664	996a 1333 1463 5416 6716 846	0099 147 1831 4199 5357 6911 806		9374 1744 3109 4471 5225 1125	2007 2007 2007 2007 2002 2003 2003 2003	2017 3352 4743 5660 7435 5700		70000 700000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 700000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 70000 70000 70000 70000 70000 70000 700000 70000 70	****
26	母亲病病 公安在公人	600 100 100 100 100 100 100 100 100 100	9824 1196 2954 3027 5266 554 7101 9037	1952 1953 1953 1953 1953 1953 1953 1953 1953	147 1831 4199 5511 6511 816	0236 1607 9473 4335 9933 7045 8395	9374 7744 3109 4471 524 7104 853 9874	2000 2004 2004 2004 2004 2005 2005 2005	2017 3352 4743 5000 7453 5700		100 100 100 100 100 100 100 100 100 100	
200	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一部本語 班斯語 第一個	1000 1000 1000 1000 1000 1000 1000 100	一	9374 1744 3109 4471 528 7124 853 957	1911 193 1914 1914 1914 1914 1914 1941	2017 3354 4743 5660 7436 5705 7436 7436 7436		1000 1000 1000 1000 1000 1000 1000 100	
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9824 1196 2954 3027 5266 554 7101 9037	第一日	00年 14年 4年 4年 65日 85年 65日 65日 65日 65日 65日 65日 65日 65日 65日 65日	- 100万 150万 150万 150万 1505 1505 1505 1505	9574 1744 3109 4471 528 7124 853 9674 1211	1941 1941 1951 1952 1953 1953 1953 1953 1953	2017 3252 4743 2000 7452 5703 		100 mm mm mm mm mm mm mm mm mm mm mm mm m	可可 由本地农村市 工
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	- 15 15 15 15 15 15 15 15 15 15 15 15 15	9554 1744 3109 4471 528 123 153 153 153 153 153 153 153 153 153 15	1911 193 1941 1941 1941 1941 1941 1941 1	2017 3352 4743 5685 7456 5700 7456 7453 4553 4563		1000 1000 1000 1000 1000 1000 1000 100	中国中国中国中国中国 人名
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	- 100万 150万 150万 150万 1505 1505 1505 1505	9554 1744 3109 4471 528 103 853 907 1011 253 308 531 653	2011 2012 2014 2015 2014 2015 2014 2016 2016 2016 2016 2016 2016 2016 2016	2017 3382 4743 5660 7450 5700 7450 5700 7440 5470 2503 4440 5470 5470	175 8 125 4 125 125 125 125 125 125 125 125 125 125	1000 1000 1005 1004 1005 1006 1006 1006 1006 1006 1006	可可 电中枢电池电池 人名日本
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	一	9374 1744 31109 4471 523 1121 253 328 531 653	2011 2012 2014 2015 2014 2015 2014 2016 2016 2016 2016 2016 2016 2016 2016	2017 3382 4743 5660 7450 5700 7450 5700 7440 5470 2503 4440 5470 5470	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1000 1000 1000 1000 1000 1000 100	可可 电中枢电池电池 人名日本
TO THE	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	225 1507 213 433 5503 704 835 87 143 153 157 157 157 157 157 157 157 157 157 157	9554 1744 3199 4471 525 9674 - 1211 555 5653 765	7511 1993 7442 7104 7104 7105 7104 7104 7104 7104 7104 7104 7104 7104	2017 3382 47-2 5682 7-37 5-30 5-30 251 251 3-10 5-10 5-10 5-10 5-10 5-10 5-10 5-10 5	175 8 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	7000 7755 5144 7751 4165 711 4165 714 715 714 7164 7164 7164	· · · · · · · · · · · · · · · · · · ·
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	一的方面的 经存货法一部 建红色写本 本一	9554 1744 3709 447 525 705 853 927 255 765 765 765 947		2017 3382 47-2 5688 7-57 5-58 1-58 2-51 2-51 3-72 3-72 3-72 3-72 3-72 3-72 3-72 3-72	1	100 100 100 100 100 100 100 100 100 100	· · · · · · · · · · · · · · · · · · ·
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	一的方面的 经存货法一部 建红色写本 本一	9554 1744 3709 447 525 705 853 927 255 765 765 765 947		2017 3382 47-2 5688 7-57 5-58 1-58 2-51 2-51 3-72 3-72 3-72 3-72 3-72 3-72 3-72 3-72	1	100 100 100 100 100 100 100 100 100 100	· · · · · · · · · · · · · · · · · · ·
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	日本の日本日本の日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日	9554 1744 3109 4477 552 1653 1653 1653 1653 1653 1653 1653	2 1003 2	#017 3282 #7-2 5000 7-30 3700 	178 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2002 2003 2003 2004 2005 2004 2005 2004 2004 2004 2004	· 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	9554 1744 3109 4471 528 1255 527 257 653 787 947 947 947		#017 3354 #7-07 #0400 10-3	175 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1000 1055 1014 1006 1010 1015 1015 1015 1016 1016 1017 1017 1017 1017 1017 1017	· · · · · · · · · · · · · · · · · · ·
	母於於於江 公安在公公子	(68) 109) 109) 109) 109) 109) 109) 109) 109	9 ² 4 19 ⁵ 4 19 ⁵ 54 19 ⁵ 554	第一日本 中 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	2009年2月2日 200日 200日 200日 200日 200日 200日 200日	日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	9554 1744 3109 4471 528 1255 527 257 653 787 947 947 947	2 1003 2	#017 3354 #7-07 #0400 10-3	175 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 1000 1055 1014 1006 1010 1015 1015 1015 1016 1016 1017 1017 1017 1017 1017 1017	· · · · · · · · · · · · · · · · · · ·

	0	1	2	_ 3	4	_ 5	6	7	8	9	D
	1807	1892	1976	206	2144	2229	2313	2397	2481	2566	84
	265	2734	2818	2902		307	3154	3238	3323	3407	84
	3491	3575	3659	3742	3826	391		4078	4162	4246	84
	433 5167	4414 5251	4497 5335	4581 5418	4665 5502	4749 5586	4833 5669	4916 5753	5 58 36	5084 592	84 84
/4-			3333	3410	3302	3300	3009			394	
		6087	617	6254	6337	6421	6504	6588	6671	6754	83
	6838		7004	7088	7171	7254	7338	7421	7504	7587	83
	7671	7754	7837 8668	792	8003	8086	8169	8253	8336	8419	83
	8502	8585 9414		8751 958	8834 9663	8917 9745	9 9828		9165	9248	83 83
12-	9331	9414	9497	930	943	9/43	9020	9911	9994	0077	83
_											-
	0159			0407		0573		0738			83
	0986	1068	1151	1233	1316	1398	1481	1563		1728	82
	1811	1893	1975	2058	214	2222	2305	2387	2469	2552	82
	2634	2716 3538	2798 362	2881 3702	2963 3784	3045 3866	3127 3948	3209	3291	3374	82 82
120	3430	3330	302	3/02	3/04	3000	3940	403	4112	4194	02
12-	4276	4358	444	4522	4604	4685	4767	4849		5013	82
	5095	5176	5258	534	5422	5503	5585	5667	5748	583	82
	5912	5993	6075	6156	6238	632	6401	6483	6564		82
	6727		689	6972	7053	7134	7216	7297	7379	746	81
2-	754 I	7623	7704	7785	7866	7940	8029	811	8191	8273	81
12-	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084	81
	9165				9489	957	9651	9732	9813	9893	81
12-	9974	_	· — .	-	—	l —_		-	_	-	81
'3-	_	0055		0217				O54	0621	0702	81
	0782		0944		1105	1	1266	1347	1428	1508	81
'3-	1589	1669	175	183	1911	1991	2072	2152	2233	2313	18
'3-	2394	2474	2555	2635	2715	2796	2876	2956	3037	3117	80
	3197	3278	3358	3438	3518	3598	3679		3839	3919	80
	3999	4079	416	424	432	44	448	456	464	472	80
	48	488	496	504	512	52	5279	5359	5439	5519	80
'3 -	5599	5679	5759	5838	5918	5998	6078	6157	6237	6317	80
12-	6397	6176	6556	6635	6715	6795	6874	6954	7034	7113	80
	7193	7272	7352	7431	7511	759	767	7749	7829	7908	79
	7987	8067	8146	8225	8305	8384	8463	8543	8622	8701	79
13-	8781	886	8939		9097	9177	9256	9335	9414	9493	79
	9572	9651	9731	981	9889	9968					79
14-	_			-	_	-	0047	0126	0205	0284	79
14-	c363	0442	0521	06	0678	0757	0836	0915	0994	1073	79
	1152	123	1309	1388	146 7		1624	1703	1782	186	79
		2018	2096	2175	2254	2332	2411	2489	2568	2647	79
	2725	2804		2961	3039	3118	3196		33 5 3	3431	78
i4-	351	3588	3007	3745	3823	3902	398	4058	4136	4215	78
14-	4293	4371	4449	4528	4606		4762	484	4919	4997	78
	5075	5153	5231	5300	5387	5465 6245		5621	5600	5777	78
14-	5855	5933	6011	6089	6167		5543 6323	6401	6479	6556	/ 18
	6634	6712	679	6868	6945	7023	7101	7179	7256	733A	/ 18
14-	7412	7489	7567	7645	7722	78	7878	7955	8033	811	/ 78
	0	1	2	3	4	5	6	7	8	9	\

No.	1	0	i	2	3	4	5	6	7	8	9
560	74-	8188	8266	8343	8421	8498	8576	8653	8731	8808	8885
561			904	9118	9195	9272	935		9504	9582	9659
562	74-	9736	9814	9891	9968	-	-	-	-		-
562	75-		-06		-	0045		02		0354	
563			0586					0971	1048	1125	1202
564	75-	1279	1356	1433	151	1587	1004	1741	1818	1895	1972
565		2048			2279	2356	2433	2509	2586	2663	274
566			2893		3047	3123	32	3277	3353	343	3506
567		3583		3736		3889		4042	4119	4195	4272
568			4425			4654	473	4807	4883	496	5036
569	75-	5112	5189	5205	5341	5417	5494	557	5646	5722	5799
570		5875		6027			6256	6332		6484	656
571			6712				7016	7092	7168	7244	732
572	75-	7396	7472	7548		77	7775 8533	7851	7927	8003	8079
573		8155	823		8382			8609	8685	8761	8836
574	15-	0912	8988	9003	9139	9214	929	9366	9441	9517	9592
575		9668	9743	9819	9894	997	-	-	-	-	150
575	76-	-	-	-	-	-	0045		0196		0347
576			0498		0649		0799		095	1025	IIOI
577		1176		1326	1402	1477	1552	1627	1702	1778	1853
578 579		2679	2003		2153 2904		2303 3053	2378	2453 3203	2529 3278	2604
	100	100	1000	1.3.			17.75	Fire Co.	1000	3-10	2223
580		3428			3653	3727	3802	3877	3952	4027	4101
581		4176		4,326		4475	455	4624	4699	4774	4848
582 583		4923		5072		5221	5296	537	5445	552	5594
584		5669	5743 6487	5818 6562	5892	5966 671	6785	6859	619 6933	7007	6338
	1000	1000	0407	13100		0/1	0.80		1000	1001	-
585		7156	723	7304	7379	7453	7527	7601	7675	7749	7823
586		7898	7972	8046	812	8194	8268	8342	8416	849	8564
587 588		8638		8786	886	8934	9746	9082	9156	923	9303
588	77-	9377	9451	95-5	9599	9673	9/40	902	9094	9968	0042
589		0115	0189	0263	0336	041	0484	0557	0631	0705	0778
30.50									100		
590			0926		1073	1146	122		1367	144	1514
591		1587	1661	1734 2468	1808	1881	1955	2028	2835	2175	2248
592 593		3055	2395 3128		3274	3348	3421	3494	3567	364	3713
594		3786	386	3933	4006	4079	4152	4225		4371	4444
	100	1317		E1050	1		11			7.00	-
595			459		4736		4882	4955		51	5173
596 597		5246	5319	5392		5530	561	5683	5756 6483	5829	5902
598		6701	6774				7064	7137	7209	7282	7354
599		7427			7644	7717	7789	7862		8006	
600		1	8224				10000	8-8-	8658		8800
600			8947					9308		9452	
602			9669				9957	9300	320	242-	934
602	78-	333	_	-	-	_	-	0020	OIOI	0173	0245
603		0317	0389	0461	0533	0605	10677		0821		
604						3 1324		1468	154	1613	1684
1		0	1	2	3	4	1 5	6	7	8	1 9

•	,	2	3	4	5	6	_ 7	8	9	D
2- 8389	8401	8503	8605	8707	80			0206	9308	102
12- 941	9512	9613	9715	9817	9919	^	´—'	^ _	~_	102
3- —	_	_	_	_	_	0021	0123	0224	0326	102
i3- 0428			0733	0835	0936	1038	1139	1241	1342	102
3- 1444				1849						101
13- 24 57	2559	200	2761	2802	2963	3004	3105	3200	3367	101
i3- 3468	3569	367	3771	3872	3973	4074	4175	4276	4376	101
3- 4477	4578		4779	488	4981	5081	5182	5283	5383	101
13- 5484	5584			5886		6087	6187	C287	6,388	100
13- 6488				6889			7189		739	100
13- 749	759	769	779		799	809	819	-	و8زه	100
i3- 8489	8589	8689	8789	0000	8988	9088	9188	9287	9387	100
3- 9486	9586	9686	9785	9885	9984	_	_	_		100
4	_		_	_	- <u>_</u>			0283		99
4- 0481				0879	0978	1077		1276		99
14- 1474 14- 2465	1573	1072	1771	1871				2267		99
			-		2959			3255		99
4- 3453	3551	365	3749	3847	3946			4242		99
4- 4439 4- 5422	4537	4636	4734	4832	4931		5127		5324	98
14- 5422	5521	5019	5717	5815	5913	6011			6306	98
54- 6404 64- 7383				6796 7774				7187	7285	98
	• •						•	_	8262	98
64- 836		855 5			8848	8945	9043	914	9237	
64- 9335	9432	953	9027	9724	9821	9919			-	97
65 65- 0308	0405	0503	0500	~~~				0113		97
65- 1278							0987	2053	1181	97
65- 2246			2536						3116	
										ı
65- 3213 65- 4177	4272	4260		3598 4562				3984		96
65- 5138	5235					4/54	485 581		5042 6002	96
65- 60g8	6104	620	6386	5523 6482	6577	6673		6864		96
45 - 7056							7725		7916	96
65- 8011								•		6-
§- 8965	006	0155	025	9346	0400	0504	0631	0774	0821	'
9 9916				-	744-	9330	-	9,55	y	
		0106	0201	0296	0391	0486	O.			
6- 0865	096	1055	115	1245	1339	1434	I.			
6- 1813						238	2			
66- 2758	2852	2947	3041	3135	323	3324	3-			
D- 3701	3795	3889	3983	4078	4172	4266	43			
D- 4042	4730	483	4924	5018	5112	5206	5 2 Ç			
6- 558z	5075	5709	5862	5956	605	6143				
% 6518	0012	0705	U799	0892	0986	7079	7¤73			
6- 7453 6- 8386 6- 9317	7546	764	7733	7826	792	8013	8106			
%- 8386	8479	8572	8665	8759	8852	8945	9038	4		
₹ 9317	94I	9503	9596	9689	9782	9875	9967	•		
<i>T</i> —		_	_	_	_	_	_	00		
7- 0246 7- 1173	130±	1258	1451	1542	1626	1722	1821	2022		
									<u>.</u>	
-	,	2	.3	4	5	6	7	8		

No.		,	1	2	3	4	5	6	7	8	9	D
655	81- 62	41	6308	6374	644	6506	6573	6639	6705	6771	6838	66
656	81- 69			7036	7102	7169	7235	7301	7367	7433	7499	65
657	81- 75	65	7631	7698	7764	783	7896	7962	8028	8094	816	66
658	81- 82	26	8292	8358	8424	849	8556	8622	8688	8754	882	66
659	81-88	85	8951	9017	9083	9149	9215	9281	9346	9412	9478	68
660	81- 95	44	961	9676	9741	9807	9873	9939	-	-	-	68
660	82	-	-	-		-	-	-	0004	007	0136	66
661	82- 02			0333	0399	0464	053	0595	0661	0727		65
662	82- 08			0989	1055	112	1186	1251	1317	1382	1448	60
653	82- 15		1579	1645	171	1775	1841	1906	1972	2037	2103	65
664	82- 21		2233	2299	2364	243	2495	256	2020	2691	2750	05
665	82- 28		2887	2952	3018	3083	3148	3213	3279	3344	3409	155
666	82- 34		3539	3605	367	3735	38	3865	393	3996	4061	65
667	82- 41		4191	4250	4321	4386	4451	4516	4581	4646	4711	65
668	82- 47		4841	4906	4971	5036	5101	5166	5231	5296	5361	05
669	82- 54		5491	5556	5021	5686	5751	5815	588	5945	001	09
670	82- 60		614	6204	6269		6399	6464	6528	6593	6658	105
671	82- 67		6787	6852	6617	6981	7046	7111	7175	724	7305	05
672	82- 73	169	7434	7499	7563	7628	7692	7757	7821	7886	7951	15
673	82- 80		808	8144	8209	8273	8338	8402	8467	8531	8595	04
674	82- 86		8724	8789	8853	8918	8982	9046	9111	9175	9239	04
675	82- 93		9368	9432	9497	9561	9625	969	9754	9818	9882	9
676	82- 99	947	77	-	-	-	70	177	-	-	-	19
676	83	-	1100	0075	0139		0268	0332	0396		0525	15
677	83- 05		0653	0717	0781	0845	0909		1037	1102	1166	9
678	83- 12		1294	1358	1422	1486	155	1614	1678	1742	1806	181
679	83- 18		1934	1998	2062	2120	2189	2253	2317	2381	2445	161
680	83- 25		2573	2637	27	2764	2828	2892	2956	302	3083	191
681		47	3211	3275	3338	3402	3466	353	3593	3657	3721	13
682		784	3848	3912	3975	4039	4103	4166	423	4294	4357	181
683	83- 44		4484	4548	4611	4675	4739	4802	4866		4993	123
684	83- 50	700	512	5183	5247	531	5373	5437	55	5504	5627	100
685		91	5754	5817	5881	5944	6007	6071	6134	6197	6261	133
686	83- 63		6387	6451	6514	6577	6641	6704	6767	683	6894	100
687	83- 60		703	7083	7146	721	7273	7336	7399	7462	7525	13
688		588	7652 8282	7715	7778 8408	7841	7904	7967	863	8093	8150	13
689	83- 82			8345		8471	8534	8597			-	100
690	83- 88			8975		9101	9164		9289		9415	100
691	83- 94	170	9541	9604	9667	9729	9792	9855	9918	9981	2017	13
691	84	106	0169	0222	0204	0257	042	0482	9545	0608	0043	16
693	84- 0		0796		0921	0984	1046	1109			1297	18
694	84- 1		1422	1485	1547	161	1672	1735			1022	18
695	84- 10		2047	211	2172	2235	2207	236	2422		2547	12
696	84- 20				2796		2921	2983			317	14
697	84- 3		3295	3357	342	3482	3544	3606			3793	100
698		855	3918	398	4042	~ .	4166	4229				100
699		477	4539	4601	4664		4788					(0
700	84- 50		516	5222	5284	100	5408		5532		7 57 2	62
701	84- 5		578	5842	5904		6028					t/a
702	84-6		6399	6461	6523			6703	677	6832		61
703	84- 60		7017				726	7326	7385	7449	7511	
704	84- 75		7634				788			208 40		
	12	3/3	1-24	1-9	- 100		-	-	-		8	- 19
No.	100	0	+	2	3	4	1	5	0	7	0 4	

No.		0		2	3	4	5	6	7	8	9 .	D
B05			1827		1971		2114	2186	2258	2329	2401	72
606		2473				2759		2902				72
607		3189				3475 :			3689	3761	3832	71
608 609		3904 4617				4189 4902	•	4332	5116		4546	71
- 1	• .			••			4974 5686		•	5187		71
310 611	78-	533 6041	5401	5472	5543	5615 6325	6396	5757	5828 6538	5899 6609	597 668	71 71
612		6751				7035	7106		7248	7319	739	71
613		746	7531			7744	7815		7956		8098	71
614		8168		831	8381				8663			71
315	78-	8875	8046	9016	9087	9157	9228	9299	9369	014	951	71
616		9581					9933			_	_	70
616	79-	_		·	- -	- 1	_		0074			70
617		0285			0496		0637			0848		70
618		0988		1129		1209	134	141	148	155	162	70
619		-		1831	-	1971	2041			2252	-	70
320		2392			2602			2812		2952		70
621 622		3092 379	386			3371		3511	3581 4279	3651		70 70
623		379 4488	4558	393 4627	4 4697	407 4767		4906	4976	5045		70
624		5185		5324	5393	5463		5602		5741	5811	70
125		588			6088					6436	-	69
526		6574				6852			706	7129	7198	69
527	79-	7268	7337				7614		7752	7821	780	ťģ
528		796	8029	8098	8167	8236	8305	8374	8443	8513	8582	69
529	79-	8651	872	8789	8858	8927	8996	9065	9134	9203	9272	
130	79-	9341	9409	9478	9547	9616	9685	9754	9823			69
531						0305		0443		058	0648	69
532		0717					1061			1266	1335	69
533		1404 2089		1541 2226		1678	1747		1884 2568			69
534	,	•	_			2363	2432	_	-	2637		69
135		2774		291	2979 3662	3047		3164	3252		3389 4071	6
536 537		3457		4276	4244	373 4412			3935 4616	4003 468E		64
538		· 4821	4880	4057	5025	5093	5161	5220	5207	5365	5433	
539	1 -	5501		5637				5908				64
140	1	618				6451					679	61
541	80-	6858		6994			7197				7467	6
542		7535			7738		7873	7941		8076		1 64
243		8211				8481			8684			
544	1	8886		· .	-	9156	1	929	9358	9425	9492	
145		956	9627	9694	9762	9829	9896	9964			_	61
45	8:-		_					-6-6		0098		
346		0233				0501	0569		0703		0837 1508	
147 148		0904			1100	1173 1843	124	1307		1441 2111		
149		2245			2445	2512	2579		2713		2847	67
-50	1	2013		3047		3181			238I		2514	
551		- 3581				3848			. "			~
552		· 4248		4381		4514	45		•			
553		4913		5046			52.					
554		- 5578				5843	59					
No.	; 						_					

No.	!	0	,	2	3	4	5	6	7	8	9	; D
655	81-	6241	6208	6374	644	6506	6573	6620	6705	6771	68.38	66
656	81-	6904	607	7036	7102	7169	7235	7301	7367	7433	7499	
657		7565	7631	7698	7764	783	7896	7062	8028	8094	816	' 66
658		8226		8358				8622				66
659		8885		9017			9215			9412	9478	: 66
660		9544		9676			9873	9939				: 66
66o	82-	-			7/4-			9939	0004	007	or 36	66
661	82-	0201	0267	0333	0399	0464	053	0595	0661			66
662	82-	0858	0924	0989	1055	112	1186	1251	1317	1382	1448	· 66
663	82-	1514	1579	1645	171	1775	1841	1906		2037	2103	05
664		2168		2299	2364	243	2495	256	2626	2691	2756	65
665	82-	2822	2887	2952	3218	3083	3148	3213	3279	3344	3409	65
666		3474	3539	3605	367	3735	38	3865	393	3996	406 ₮	65
667		4126	4191	4256	4321	4386	4451	4516	4581	4646	471 I	: 65
668		4776		4906		5036	5101	5166	5231	5296	536 X	65
669		5426		5556	5621	5686	575I	5815		5945	60 I	65
670			614		6269		6399	6464	6528	6593	6658	65
671				6852			7040	7111	7175	724	7305	65
		7,369	7434	7499	7563	7628	7692	7757	7821	7886	795 =	65
673		8015	808	8144	8209			8402	8467		859 .5	64
674			8724		8853		8982				9239	64
675		9304	9368	9432	9497	9561	9625	969	9754	9818	988 <i>2</i>	64
676		9947	-	_	-		i –	_	-,	_		64
676	83-	0-	1100	0075	0139		0268	0332			0525	64
677		0589	0,,	0717	0781	0845		0973	1037	1102	1166	4
678		123	1294	1358	1422	1486	155	1614	1678	1742	1806	ã l
679	•	187	1934	1998	2062		2189		2317		2445	6
680 681		2509		2637	27	2764	2828	2892	,,,	302	308.3	4
682		3147 3784	3211 3848	3 ² 75 3912		3402		353	3593	3657	372 I	4
683		4421	4484	4548	3975 4611	4039	4103		423 4866	4294	4357	6
684		5056	512	5183	5247	4675 531	4739 5373	5437		4929 5564	5627	63
685		5601	5754	5817	5881	5944	6007		55			63 F
686		6324		6451	6514	59 14 6577	6641		6134	6197 683	6894	63
687		6957	703	7033	7146	721	7273	7336	7399	7462	7525	63
688		7588	7652	7715	7778	7841	7904	7967	803	8093	75 2 5 815	63
68g		8210		8345	8408		8534	8597	866	8723	8786	63
690	83-	8849	8012	8975	9038			9227			941 5	63
6 91			9541		9667				9918	9981	:	63
6ýi :	84-	<u> </u>	-	<u></u>		<u></u>	7/3-				004.3	63
692	84	0106	0169	0232	0294	0357	042	0482	O545	0608	067	63
	84-	0733	0796	0859	0921	0984	1046	1109		1234	120	63
694	84-	1359	1422	1485	1547	161	1672	1735	1797	186	192	63
695	84-	1985	2047	211	2172	2235	2297	236	2422	2484	254	69
696	84-	2609	2672	2734	2796		2921	2983		3108	317	62
697		3233	3295	3357	342	3482	3544	3606	3669	3731	379	6
698		3855	3918	398	4042	4104	4166	4229	4291	4353		60
600		4477		4601	4664	4726	4788	485	4912	4974	503	60
•		5098	516	5222	5284	5346	5408	547	5532	5594	500	60
	94-	5718	578	5842	5904	5966	6028	609	6151	6213	6275	62
		6337	6399	6461	6523			6708			6804	
		•	7 017	7079	7141	7202		7326		7449	751	2
				~26	7758	7819	/ Jeer	7943	9001	8006	8127	-

	. 1	2	3	4_	_ 5	6	7	8	9	D
9	8251	8312	8374	8435	8497	8559	862	8682	8743	62
۶5	8866	8928	8989	9051	9112	9174	9235	9297	9358	61
9	9481	9542	9604	,	9726	9788	9849	9911	9972	61
33	0095	0156	0217	0279	034	0401	0.462	0524	0585	61
ļδ	0707	0769	083	0891	0952	1014	1075	1136	1197	61
;8	132	1381	1442	1503	1564	1625	1686	1747	1809	61
7	1931	1992	2053	2114	2175	2236	2297	2358	2419	61
3	2541	2602	2663	2724	2785	2846	2907	2968	3029	61
,	315	3211	3272	3333	3394	3455	3516	3577	3637	61
у8	3759	382	3881	3941	4002	4063	4124	4185	4245	61
ъ6	4367	4428	4488	4549	461	467	4731	4792	4852	
13	4974	5034 564	5095	5156 5761	5216 5822	5277 5882	5337	5398	5459 6064	. 61
19 24	558 6185	6245	5701 630 6	6366		6487	5943 6548	6608	6668	: 60
29	6789	685	691		7031	7091	7152	7212	7272	
32	7393	7453	7513	7574	7634	7694	7755	7815	7875	60
35	7995	8055	8116	8176	8236	8297	8357	8417		60
37	8597	8657	8718	8778	8838	8898	8958	9018	9078	60
38	9198	9258	9318	9379	9439	9499	9559	9619	9679	
39	9799	9859	9918	9978						60
. 0					0038	2.3	0158		0278	60
38		0458		0578	0637		0757		0877	60
37		1654		1773	1833	1893	1355	2012	1475	60
		2251		237	243		2549		2072	60
28		2847			3025	3085	3144	3204		60
23	3382	3442	3501	3561	362	368	1000	3799	100	59
17	3977		4096	4155	4214				4452	59
II	457	463	4689	4748	4808			4985	5045	59
24	5163	5222	5282	5341	54	5459		5578	5637	59
76		5814	5874	5933	5992			6169	6228	59
37	6346	6405	6465	6524	6583	6642	6701	676	6819	59
78	6937	6996	7055	7114	7173	7232	7291	735	7409	59
57	7526	7585	7644	7703	7762	7821	788	7939	7998	59
56	8115	8174	8233	8292	835	8409	8468	8527		59
14	8703		8821	8879	8938	8997		9114	9173	59
32				9466	9525	9584	9642	9701	976	59
18	9877	9935	9994	-	077	017	0300	-00-		59
34	0462	0521	0579	0053	0696	017	0813	0287		59
39			1164		1281		1398			
13	1631	169	1748	1806	1865		1981	204	2006	
;6	2215	2273	- Y 7 5 5 5	2389	-		2564		o681	
	-	2855		2972	303		3146		met-	
II	3379		3495	3553	3611	3669				
12	396	4018	4076	4134	4192		439			
12	454	4598	4656	4714	4772	483	488			
i	5119	5177	5235	5293	5351	5409				
	5698	5756	5813	5871		5987	COUS	U.		
8	6276	6333	6391	6449		6564	GGze			
5	6853	7487	6968	7026	7083	191				
_	7429		7544	7002	7650					
	,	2	3	4	1 (2					
				EE	-					

No.	1	0	1	2	3	4	5	6	7	8	9	B
855	93-	1966	2017	2068	2118	2169	222	2271	2322	2372	2423	50
856		2474					2727		2829			51
857	93-	2981	3031	3082	3133	3183	3234	3285	3335	3386	3437	51
858	93-	3487	3538	3589	3639	369	374	3791	3841	3893	3943	51
859	93-	3993	4044	4094	4145	4195	4246	4296	4347	4397	4448	51
860	03-	4498	4540	4500	465	47	4751	4801	4852	4002	4053	30
861		5003							5356			9
862	03-	5507	5558	5608	5658	5700		5809		591	596	32
863	03-	6011	6061	6111	6162	6212	6262	6313	6363			9
864		6514							6865			3
865	100	1	7066		7167		7267	-	7367		7468	50
866	93	7016		7117	7668	7217	7769	7317		7418	7969	5 19
867	93	8019	8069				8269	8319		842	847	50
868		852	857	862	867	872	877	882	887	892	897	9
869		902	907	912	917	922	927	932	9369			100
870	100	13.500000		-		35-COVER 1	100 Sept. 1	200	155000	10000		73
	93	9519	9509	9019	9009	9/19			9869			3, 6,
871 872		0516							0367			30
873		1014		1114			1263		1362	1412	1462	9
874		1511		1611		171	176		1859	1909		50
900	100	1000					10.00	11.00	100000		200	
875		2008							2355			March 1
876 877		2504							2851 3346			
878	94	3495		3099						389	3939	報報
879	94	3989							4335			1
							10000					
880		4483							4828			
881 882	94	5469	5025	5074	5124	5173	5222					4
883		5961							5813			1
884		6452				6649			6796			da
7000	-						100000					М
885 886		6943							7287		7385	48
887		7434					7079		7777			
888	94	7924	8162	Serr	8=6	8600			8266			4
889		8902							9244			100
1.000	100	Motore)		W 7555		10 10 mg				50000	-	1
890		939		9488	9530	9585	9034	9083	9731	978	9829	5
891 891		9878	9920	9975	0004	0073	OTOT	-		5-6-	-06	
892	95	0365	DATA	0162			0121		0219		0310	4
893		0305		0949			1095	1143			1289	3
894		1338			1483	1532	158	1629		1726		4
895	100	1823		A . 18/3+	00 HD 2-4		A	C-1006	1	1000	1775	10
896		2308			1969		2066	2114		2211	226	9
897		2792		2405			255 3034	2599		2696		7
898		3276				347	3518		3131	318	3228	7
899		376		3856	3905	3953	4001		4098	3663	3711	7
900	1 550	25. 10		CONTRACT.		177-221	D C 23					17
901		4243					4484			4628		7
902		5207							5062			4
903		5688	5-33	5784	2001	588	5028	5076	5543 6024	5592	504	3
904		6168					1 6400	6457	6505	6012	6607	R
-	95	2103	5210	0203	-3.3		-1-		-202	4222	- June	13
No.		0	1	2	3	4	1 5	6	- 7	8	3	1

0.	ı	0	1	. 2	3	4	5	6	7	8	9	D
5	90-	5796	585	5904	5958	6012	6066		6173	6227	6281	54
6	90-	6335			6497		6604					54
7 8			6927		7035	7089	7143		725	7304	7358	54
		7411	7465	7519	7573		768	7734	7787	7841	7895	54
9		7949				8163	8217		8324			54
Ð					8646 9181		8753	8807 9342		8914		54
1			9609					9877	93	9449 9984	9503	54 54
2	91-	9330			-	-	-	-	993	9904	0037	53
3		0091	0144	0197	0251	0304	0358	0411	0464	0518		53
4	91-	0624	0678	0731	0784	0838	0891	0944	0998	1051	1104	53
5		1158		1264				1477	153	1584		53
6		169	1743	1797	185	1903		2009		2116		53
7			2275		2381			2541			27	53
		2753			2913			3072 3602			3231	53
9	-	3284		339 392		3496 4026	3549 4079		3655	3708	3761	53
0		3814 4343		392 4449		4555	4608	466	4713	4237 4766	429 4819	53 53
3			4925		503	5083	5136		5241	5294	5347	53
3	91-		5453	5505	5558	5611		5716	5769	5822	5875	53
4		5927	598	6033	6085	6138	6191	6243	6296	6349	6401	53
8	91-	6454	6507	6559	6612	6664	6717	677	6822	6875	6927	53
6		698	7033	7085	7138	719	7243	7295	7348	74	7453	53
7 8			7558	7611	7663	7716	7768	782	7873	7925	7978	52
		803	8083		8188	824	8293	8345 8869	8397	845	8502	52
9			8607		8712	8764 9287		-	-	8973		52
•		9078			9235 9758		934	9392 9914		9496	9549	52 52
I	92-	-	9033	9,00	9/30	-	_	-	9907	0010	0071	52
3		0123	0176	0228	028	0332	0384	0436	0489			52
3	92-	0645	0697	0749	0801	0853	0906	0958	101	1062	1114	52
1	92-	1166	1218	127	1322	1374	1426	1478	153	1582	1634	52
5		1686		179	1842	1894	1946		205	2102		52
5			2258		2362			2518	257	2622		52
7		2725			2881 3399	2933		3037	3089 3607	314 3658	3192	52
3		3244	3814		3917		3503 4021	3555 4072	4124		4228	52 52
7					4434		4538			4693		52
•	02-	4706	4331 4848	4899		5003	5054	5106	5157	5209		52
·	92-	5312	5364	5415	5467	5518	557	5621	5673	5725	5776	52
ţ			5879			6034	6085		6188	624	629I	51
	92-	6342	6394	6445	6497	6548	66	6651	6702		6805	51
- 1			6908		7011	7062	7114		7216		7319	51
1	92-		7422	7473	7524	7576	7627		773	7781	7832	51
		7883 8306	7935 8447	7986 8498	8037 8549	8088 8601	814 8652	8191 8703	8242 8754	8293 8805	8345 8857	51
		8908		90I	9061	9112		9215		9317	9368	51 51
	1 -	9419		9521				9725		9827		51
		993	9981		-		-	-	<i>—</i>	_	-	51
	93-	~		0032	0083	0134	0185	0236	0287	0338	0389	51
	93-	044			0592			0745				51
		0949	I	1051	1102	1153	1203	1254	1305	1356		/ 21
	93-	1458	1509	156	161	1661	1712	1703	1814	180	2 1012	2/21
		0		•	•			-	-			

No.	ı	0	ı	2	3	4	5	6	7	8	9	D
955 956	98-	0003 0458	0503	0549	0594	0185 064	0685	0276 073	0776	0367 0821	0867	45 45
957 958	98-	0912 1366 1819	0957 1411 1864		1048	1093 1547 2	1139 1592 2045	1184 1637 200	1229 1683 2135	1275 1728 2181	132 1773 2226	45 45
959 96 0 9 61	98-	2271	2316	1909 2362	1954 2407 2859	2452	2497 2949	2543 2994	2588	2633 3085	2678 313	45 45
962 963	98-	3175 3626	322 3671	3265 3716	331 3762	3356 3807	3401 3852	3446 3897	304 3491 3942	3536 3987	3581 4032	45 45 45
964 965	98-	4077 4527	4572		4212 4662	4707	4302 4752	4347 4797	4392 4842	4887	4482 4932	45 45
966 967 968	98-	4977 5426 5875	5022 5471 502	5067 5516 5965	5112 5561	5157 5606 6055	5202 5651 61	5247 5696 6144	5741	5337 5786 6234	5382 583 6279	45 45 45
969 970	98-	6324 6772	6369	6413	6458 6906			6593		6682	6727	45 45
971 972	98- 98-	7219 7666	7264 7711	7309 7756	7353 78	7398 7845	7443 789	7488 7934	753 ² 7979	7577 8024	7622 8068	45 45
973 974	98-	8113 8559	8604			8291 8737		8381 8826	8425 8871	847 8916	8514 896	45 45
975 976 977	98-	9005 945 9895	9494	9094 9539 9983	9138 9583	9183 9628				9361 9806 —		45 44 44
977 978	99- 99-	0339	_	0428	0028 0472 0016			0161 0605 1049		025 0694 1137	0294 0738 1182	44 44 44
979 980 981			127	1315	1359	1403 1846	1448 180	1492 1935	1536 1979	158	1625	44
982 983	99- 99-	2111 2554	2156 2598	22 2642	2244 2686	2288 273	2333 2774	2377 2819	2421 2863	2465 2907	2509 2951	# #
984 985 986	99-	3436		3524	3127 3568	3172 3613	3657	326 3701	3304 3745	3348 3789	3392 3833	# 12
987 988	99-	3 ⁸ 77 43 ¹ 7 4757	4361	3905 4405 4845	4009 4449 4889	4053 4493 4933	4097 4537 4977	4141 4581 5021	4185 4625 5065	4229 4669 5108	4273 4713 5152	# 123
989 990		5196 5635	524 5679	5284 5723	5328 5767	5372 5811	5416 5854	546 5898	5504 5942	5547 5986	5591 603	# 125
991 992	99-	6512		6599	6205 6643 708		6293 6731 7168	6337 6774 7212	6818		6468 6906	# # # 8.5.8
993 994 995	99-	6949 7386 7823	6993 743 7867	7037 7474 701	706 7517 7954	7124 7561 7998	7605 8041	7648 8085	7255 7692 8129	7299 7736 8172	7343 7779 8216	125) L3
996 997	99-	8259 8695	8303 8739	8347 8782	7954 839 8826	8434 8869	8477 8913	8521 8956	8564 9	8608 9043	8652 9087	4 42
998 999		9131 9565	9174 9609	9218 9652	9261 96 9 6	9305 9739	9348 9783	9392 9826		9479 9913		33 34 35
		0	1	2	3	4	5	6	7	8	9	36 37

Hyperbolic Logarithms of Numbers.

From 1.01 to 30.

following table, the numbers range from 1.01 to 30, advancing by .01, the whole number 10; and thence by larger intervals up to 30. The rbolic logarithms of numbers, or Neperian logarithms, as they are somestermed, are computed by multiplying the common logarithms of numby the constant multiplier, 2.302 585.

ne hyperbolic logarithms of numbers intermediate between those which given in the table may be readily obtained by interpolating proportional rences.

_	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
- 1	.0099	1.41	.3436	1.81	-5933	2.21	· 7 93	2.61	-9594
- , {	.0198	1.42	.3507	1.82	.5988	2.22	•7975	2.62	.9632
- 1	.0296	1.43	-3577	1.83	.6043	2.23	.802	2.63	.967
	.0392	1.44	.3646	1.84	.6098	2.24	.8065	2.64	.9708
;	.0488	1.45	.3716	1.85	.6152	2.25	.8109	2.65	.9746
5	.0583	1.46	.3784	1.86	.6206	2.26	.8154	2.66	.9783
- 1	.0677	1.47	-3853	1.87	.6259	2.27	.8198	2.67	.9821
- 3	.077	1.48	.392	1.88	.6313	2.28	.8242	2.68	.9858
•	.0862	1.49	.3988	1.89	.6366	2.29	.8286	2.69	.9895
	.0953	1.5	·4º55	1.9	.6419	2.3	.8329	2.7	•9933
ı	.1044	1.51	4121	1.91	.6471	2.31	.8372	2.71	.9969
3	.1133	1.52	.4187	1.92	.6523	2.32	.8416	2.72	1.0006
3	.1222	1.53	·4253	1.93	.6575	2.33	.8458	2.73	1.0043
1	.131	1.54	.4318	1.94	.6627	2.34	.8502	2.74	1.008
5	.1398	1.55	-4383	1.95	.6678	2.35	.8544	2.75	1.0116
5	.1484	1.56	-4447	1.96	.6729	2.36	.8587	2.76	1.0152
7 8	.157	1.57	-4511	1.97	.678	2.37	.8629	2.77	1.0188
	.1655	1.58	-4574	1.98	.6831	2.38	.8671	2.78	1.0225
9	.174	1.59	.4637	1.99	.688ı	2.39	.8713	2.79	1.026
	.1823	1.6	-47	2	.6931	2.4	.8755	2.8	1.0296
r	.1906	1.61	.4762	2.01	.6981	2.41	.8796	2.81	1.0332
2	.1988	1.62	.4824	2.02	.7031	2.42	.8838	2.82	1.0367
3	.207	1.63	.4886	2.03	.708	2.43	.8879	2.83	1.0403
4	.2151	1.64	·4947	2.04	.7129	2.44	.892	2.84	1.0438
5	.2231	1.65	.5008	2.05	.7178	2.45	.8961	2.85	1.0473
6	.2311	1.66	.5068	2.06	.7227	2.46	.9002	2.86	1.0508
7	.239	1.67	.5128	2.07	·7275	2.47	.9042	2.87	1.0543
8	.2469	1.68	.5188	2.08	·7324	2.48	.9083	2.88	1.0578
9	.2546	1.69	·5247	2.09	·7372	2.49	.9123	2.89	1.0613
	.2624	1.7	.5306	2.1	·7419	2.5	.9163	2.9	1.0647
1	.27	1.71	.5365	2.11	.7467	2.51	.9203	2.91	1.06
2	.2776	1.72	·5423	2.12	·7514	2.52	.9243	2.92	1.0
3	.2852	1.73	.5481	2.13	.7561	2.53	.9282	2.93	1.0
4	.2927	1.74	•5539	2.14	.7608	2.54	.9322	2.94	1.0
5	.3001	1.75	.5596	2.15	.7655	2.55	.9361	2.95	1.0
6	-3075	1.76	.5653	2.16	.7701	2.56		5	1.C
7	.3148	1.77	•57 <u>1</u>	2.17	•7747	2.57			T.C.
	.3221	1.78	.5766	2.18	·7 <u>7</u> 93	2.58	1		
3	.3293	1.79	.5822	2 19	.7839	2.59	1		
/	.3365 //	1.8 /	·5878	2.2	-7885	2.6	ſ		

_!	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
: !	1.7066	6.01	1.7934	6.51	1.8733	7.01	1.9473	7.51	2.0162
3	1.7084	6.02	1.7951	6.52	1.8749	7.02	1.9488	7.52	2.0176
3		6.03	1.7907	6.53	1.8764		1.9502	7.53	2.0189
+		6.04		6.54	1.8779	7.04		7.54	2.0202
5	1.7138	6.05	1.8001	6.55	1.8795	7.05	1.953	7.55	2.0215
5	1.7156	6.06	1.8017	6.56	1.881	7.06	1.9544	7.56	2.0220
7	1.7174	16.07 j	1.8034	6.57	1.8825	7.07		: 7.57	2.0242
3	1.7192	6.08	1.805	6.58		7.08		7.58	2.0255
9	1.721	6.09		6.59		7.09	1.9587	7.59	2.0268
	1.7228	6.r	1.8083	6.6	1.8871	7.1	1.9601	, 7.6	2.0281
1	1.7246	6.11	1.8099	6.61	1.8886	7.11	1.0615	7.61	2.0295
2	1.7263	6.12		6.62	1.8901		1.9629	: 7.62	2.0308
3	1.7281	6.13	1.8132	6.63	1.8916	7.13			2.0321
4	1.7299	6.14	1.8148	6.64	1.8931	7.14	1.9657	7.64	2.0334
5	1.7317	6.15	1.8165	6.65	1.8946	7.15	1.9671	7.65	2.0347
6	1.7334	6.16	1.8181	6.66	1.8961	7.16	1.9685	7.66	2.036
7	1.7352	6.17		6.67	1.8976	7.17			2.0373
8	1.737	6.18		6.68	1.8991	7.18		7.68	2.0386
9	1.7387	6.19	1.8229	6.69	1.9006	7.19	1.9727	7.69	2.0399
	1.7405	6.2	1.8245	6.7	1.9021	7.2	1.9741	7.7	2.0412
1	1.7422	6.21	1.8262	6.71	1.9036	7.21	1.9755	7.71	2.0425
2	1.744	6.22	1.8278		1.9051	7.22		7.72	2.0438
3	1.7457	6.23	1.8204		1.0066	7.23	1.9782		2.0451
4	1.7475	6.24		6.74	1.9081	7.24	1.9796	7.74	2.0464
5	1.7492	6.25	1.8326	6.75	1.9095	7.25	1.981	7.75	2.0477
5	1.7509	6.26	1.8342	6.76	1.911	7.26	1.9824	7.76	2.049
		6.27	1.8358		1.9125	7.27	1.9838	7.77	2.0503
7	1.7544	6.28	1.8374	6.78	1.914	7.28	1.9851	7.78	2.0516
•		6.29	1.839	6.79	1.9155	7.29	1.9865	7.79	2.0528
		6.3	1.8405	6.8	1.9169	7.3	1.9879	7.8	2.0541
Ę	1.7596	6.31	1.8421	6.81	1.9184	7.31	1.6892	781	2.0554
3	1.7613	6.32	1.8437	6.82	1.9199	7.32	1.9906	7.82	2.0567
3	1.763	6.33	1.8453	6.83	1.9213	7.33	1.992	7.83	
4	1.7647	6.34	1.8460	6.84	1.9228	7.34	1.9933	7.84	2.0502
5	1.7664	6.35	1.8485	6.85	1.9242	7.35	1.9947	7.85	2.0605
5	1.7681	6.36	1.85	6.86	1.9257	7.36	1.9961	7.86	2.0618
	1.7699	6.37	1.8516	6.87	1.9272	7.37	1.9974	7.87	2.0631
3	1.7716	6.38	1.8532	6.88	1.9286	7.38	1.9988	7.88	2.0643
9	1.7733		1.8547	6.89	1.9301	7.39	2.0001	7.89	2.0656
Ī	1.775	. 6.4	1.8563	6.9	1.9315	7.4	2.0015	7.9	2.0669
R	1.7766	6.41	1.8579	6.91	1.933	7.41	2.0028	7.91	2.068-
P	1.7783	6.42	1.8594		1.9344	7.42	2.0042	7.92	2.0t
İs	1.78	6.43	1.861	6.93	1.9359	7.43		7.93	2.0
¥	1.7817	6.44	1.8625	6.94	1.9373	-	Ĭ,	7.94	2.0
15	1.7834	6.45	1.8641	6.95	1.9387	li		7.95	2.0
16	1.7851	6.46	1.8656	6.96	1.9402	11		5	2.0
5	1.7867		1.8672	6.97	1.9416	ll		•	2.0
k	1.7884		1.8687	6.98	1.943	И.			
20 20 20	1.7901		1.8703	6.99	1.9445	∥:			
75	1.7918		1.8718	7	1.9459	<i>II</i> ;			
					•	-			

No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	L
8.01	2.0807	8.41	2.1294	8.81	2.1759	9.21	2.2203	9.61	2.2
8.02	2.0819	8.42		8.82	2.177	9.22	2.2214	9.62	2.5
8.03	2.0832	8.43	2.1318	8.83	2.1782	9.23	2.2225	9.63	2.4
8.04	2.0844	8.44	2.133	8.84	2.1793	9.24	2.2235	9.64	2.5
8.05	2.0857	8.45	2.1342	8.85	2.1804	9.25	2.2246	9.65	2.5
9.4	0.060	0.6		8.86	2.1815	0.06		- 66	2
8.06	2.0869	8.46	2.1353	8.87	2.1815	9.26	2.2257	9.66	2.
8.07	2.0894	8.47	2.1365	8.88		9.27	100000000000000000000000000000000000000	9.67	2.5
8.09	2.0994	8.48	2.1377	8.89		9.20	2.2279	9.69	2.
8.1	2.0900	8.5	2.1401	8.9	2.1861	9.29	2.23	9.09	2.
0.1	2.0919	0.3	2.1401			3.3	2.23	9.1	6
8.11	2.0931	8.51	2.1412	8.91		9.31	2.2311	9.71	2.
8.12	2.0943	8.52	2.1424	8.92		9.32		9.72	2.
8.13	2.0956	8.53	2.1436	8.93		9.33	2.2332	9.73	2.
8.14	2.0968	8.54	2.1448	8.94		9.34	2.2343	9.74	2,:
8.15	2.098	8.55	2.1459	8.95	2.1917	9.35	2.2354	9.75	2.
8.16	2.0992	8.56	2.1471	8.96	2.1928	9.36	2.2364	9.76	2.
8.17	2.1005	8.57	2.1483	8.97	2.1939	9.37	2.2375	9.77	2
8.18	2,1017	8.58	2.1494	8.98		9.38	2.2386	9.78	2
8.19	2.1020	8.59	2.1506	8.99		9.39		9.79	2.
8.2	2.1041	8.6	2.1518	9	2.1972	9.4	2.2407	9.8	2.
8.21	0 7054	8.61	2 1520	9.01	2.1083	9.41	2.2418	9.81	
8.22	2.1054	8.62	2.1529	9.01	1	9.41		9.81	2.
8.23	2.1078	8.63		9.03	1	9.43		9.83	2.
8.24	2.100	8.64		9.03	100000000000000000000000000000000000000	9.43	2 245	9.84	2
8.25	2.1102	8.65	2.1576	9.05		9.45	2.246	9.85	2.
	10000	1000	-113/0	9.03	2.2020	9.43	2.240	3.03	-
8,26		8.66	2.1587	9.06	2.2039	9.46	2.2471		2.
8.27	2.1126	8.67	2.1599	9.07		9.47	2.2481	9.87	2.
8.28	2.1138	8,68	2.161	9.08		9.48	2 2492	9.88	2.
8,29		8.69		9.09		9.49		9.89	2.
8.3	2.1163	8.7	2.1633	9.1	2.2083	9.5	2.2513	9.9	2.
8.31	22175	8.71	2,1645	9.11	2.2004	9.51	2.2523	9.91	2.
8,32		8.72	2.1656	9.12		9.52		9.92	2.
8.11		8.73	2.1668	9.13	2.2116	9.53	2.2544	9.93	2.
8		8.74		9.14		9.54	2.2555	9.94	2.
		8.75	2,1691	9.15	2.2138	9.55	2.2565	9.95	2.
		8,76	2.1702	9.16	2.2148	9.56	2.2576	9.96	2.
		8.77		9.17				9.97	2.
		8.78		9.18		9.58		9.98	2.
		8.79		9.19				9.99	2.
		8.8	2.1748	9.2		1 200		10	2.
				1		1	- 06-3	100	ш
		12,25		14.25			2.8621	23	3.
	- 4	12.5	2.5262	14.5	2.674	18	2.8904	24	3.
	9	12.75	2,5451	14.75	2.6913	18.5	2.9173	25	3
	79	13	2		2.7081		2.9444	26	3.
	100	13:35		- 3	2.7408	19.5	2.9703	27	3-
	4.7	1,3-5			2.7726		2.9957	1/28	13
					2.803	4 21	3.044	2/3	1.
					2.82	32 22	13.00	30	
					12.03	3	1000		150

MENSURATION OF AREAS, LINES, AND SURFACES. Parallelograms.

DEFINITION. -Quadrilaterals, having their opposite sides parallel.

o Compute Area of a Square, Rectangle, Rhombus, or Rhomboid.-Figs. 1, 2, 3, and 4.

RULE.-Multiply length by breadth or height.

Or, $l \times b = area$, l representing length, and b breadth.

Fig. r.

Example.—Sides a b, b c, Fig. 1, are 5 feet 6 ins.; what is area?

 $5.5 \times 5.5 = 30.25$ square feet.

Note 1.—Opposite angles of a Rhombus and a Rhomboid are equal.

2.—In any parallelogram the four angles equal 360°.

3.—Side of a square multiplied by 1.52 is equal to side of an equilateral triangle equal area.

Gnomon.

DEFINITION.—Space included between the lines forming two similar parallelrams, of which smaller is inscribed within larger, so that one angle in each is amon to both, as shown by dotted lines, Fig. r.

To Compute Area of a Gnomon.-Fig. 1.

RULE.—Ascertain areas of the two parallelograms, and subtract less from reater.

Or, a-a'= area, a and a' representing areas.

EXAMPLE.—Sides of a gnomon are 10 by 10 and 6 by 6 ins.; what is its area? $10 \times 10 = 100$, and $6 \times 6 = 36$. Then 100 - 36 = 64 square ins.

Triangles.

DEFINITION.—Plain superficies having three sides and angles.

To Compute Area of a Triangle .- Figs. 5, 6, and 7.

RULE.—Multiply base by height, and divide product by 2.

Or,
$$\frac{ab \times cd}{2}$$
. Or, $\frac{bh}{2} = area$, b representing base, and h height.

NOTE 1. - Hypotenuse of a right angle is side opposite to right angle.

-Perpendicular height of a triangle - twice its area divided by its base.

2.—Perpendicular height of an equilateral triangle = a side \times .866.

4—Side of an equilateral triangle \times .658 25 = side of a square of equal area, $0r \div 1.3468 = \text{diameter of a circle of } \in \text{al area.}$

No.	Log.	No.	tog.	No.	Log.	No.	Log.	No.
8.01	2.0807	8.41	2.1294	8.81	2.1759	0.21	2.2203	9.6
8.02	2.0819	8.42	2.1306	8.82	2.177	9.22	2.2214	9.6
	2.0832		2.1318		2.1782	9.23		9.6
	2.0844		2.133		2.1793	9.24	-	9.6
8,05	2.0857	8.45	2.1342	8.85	2.1804	9-25	2.2246	9.671
	2.0869	8.46	2.1353	8.86	2.1815	9.26	2.2257	9.6 (4)
8.07	2.0882	8.47	2.1365		2.1827	9.27	2.2268	9.61
8.08	2.0894		2.1377		2.1838	9.28	-	9.6
	2.0906		2.1389		2.1849	9.29	2.2289	9.6
8.1	2.0919	8.5	2.1401	8.9	2.1861	9-3	2.23	9.1
8.11	2.0931	8.51	2.1412		2.1872	9.31	2.2311	94
	2.0943	8.52	2,1424		2.1883	9.32	2.2322	9-
	2.0956		2.1436		2.1894		2.2332	9.
	2.0968		2.1448		2.1905		2.2343	9
8.15	2.098	8.55	2.1459	8.95	2.1917	9-35	2.2354	9 3
8.16	2.0992	8.56	2.1471	8.96	2.1928	9.36	2.2364	9 imile
8.17	2,1005		2.1483		2.1939	9-37	2.2375	Q TEN
8.18			2.1494		2.195	9.38		Q PONT
	2.1029		2.1500		2.1961		2.2396	1 9 5-2
8.2	2.1041	8.0	2.1518	9	2.1972	94	2.2407	SALIBI
8.21	2.1054	8.61	2.1529	9.01	2.1983	9.41	2.2418	5 0
8.22			2.1541		2.1994		2.2428	Gnon
	2.1078		2.1552		2.2000		2 2439	C. PERSON !
	2,109		2.1564		2.2017		2 245	Bring Mill
8.25	2.1102	8.05	2.1576	9.05	2,2028	9-45	2.246	1
	2.1114		2.1587		2.2039	946	2.2471	dea or
8.27			2.1599		2,205		2.2481	two no
8.28			2.161		2.2001		2 2492	- Da
	2.115		2.1622		2.2072		2.2500	a and
8.3	2.1103	8.7	2.1033	9.1	2.2083	9.5	2.2513	
8.31	2.1175	8.71	2,1645		2,2094		2.2523	77=37 I
	2.1187		2.1656		2.2105	2.40	2.2534	
8,33	2.1199		2.1668		2.2116		2.2544	Triang
8.34			2.1679		2,2127		2.2555	THE PERSON NAMED IN
8.35		0-13	2-11091	59-43	2001,50	9.55	2,2305	a Tri
8.36		8.76	2,1702	2-10	2.2148		2.2576	Mist. L'Pi
8.37	2.1247	8-77	23713	3-13	2.2139		2.758	1000000
8,38		8.70	E-1122		2217		2000	100000
84	2,127						2-2018	10 10
	2000							
10.5								
12-75	16.							-Fi+0
IL								or of
								F

W ANEAS, LEVES, AND SURFACES. 335

OF ARRAS, LINES, AND SURFACES

Parallelograms.

mis, having their opposite sides parallel

sef a Square, Rectangle, Rhombus, or bold.—Figs. 1, 2, 3, and 4.

ph by breadth or height.

eres, I representing length, and bitrodis

.Fig. s. are 5 feet 6 ins., what is usual.

55 X 5 = 30 25 square for

61 a Rhombus and a Rhombs, i are equal.

the four angles equal (c.).

[plied by 1.52 is equal to side of an equilation of angle.

Gnomon.

and between the lines forming two sector parallels ameribed within larger, so that the angel of each is by dotted lines, Fig. 1.

• Area of a Ginomon.—Fig. 1.
• of the two parallelograms, and subtract less from

where, a and a representing or 18

The are to by x_1 and x_2 by x_3 by x_4

Triangles.

Triangle, Pige, S. G. and T. Triangle, Pige, S. G. and T. Triangle, Pige, S. G. and T. Triangle, Pige, S. G. and T. Triangle, Pige, S. G. and T. Triangle, and divide probably set the second of the second s

ø

Frigit - Rase a b. Fig. frigit - Rase a b. Fig. fright c b, 6; a first and height c b, 6; a first and a second

e third of it aultiplied by

alf arc, a b, is

Ard of it more. $po4\ 26 = 116.427$

ZULE.—Ascer-

of a Circle. meter of circle, a Circle, p. 267, d. ght, take square

X 2 = C.

13.)

ce from centre.
re.—Fig. 23.
sference, and prod-

= surface. sphere, Fig. 23, hav-

re ins.

phere.—Fig. 24. nere, and add product

a b c, Fig. 24, is 36 ins., is convex surface, and

. of segment multiplied by

er and versed sine being ng equal to chord of arc,

 $\frac{3-28^{2}=96}{1+11309.76=18548.0064}$ ired, area or areas of base

dreum stence of a circle to

To Compute Area of a Triangle by Length of its Sides.-Figs. 6 and 7.

RULE.—From half sum of the three sides subtract each side separately; then multiply half sum and the three remainders continually together, and take square root of product.

Or, $\sqrt{(s-a)\times(s-b)\times(s-c)}$ S = area, a, b, c representing sides, and S half sum of the three sides.

EXAMPLE.—Sides of a triangle, Figs. 6 and 7, are 30, 40, and 50 feet; what is area?

$$\frac{30+40+50}{2} = \frac{120}{2} = 60$$
, or half sum of sides. $60-30=30$ for $40=20$ for $60-50=10$)

Whence, $30 \times 20 \times 10 \times 60 = 360000$, and $\sqrt{360000} = 600$ square feet.

When all Sides are Equal. Rule.—Square length of a side, and multiply product by .4.33.

Or, $S^2 \times .433 = area$, S representing length of a side.

To Compute Length of One Side of a Right-Angled Triangle.

When Length of the other Two Sides are given.

To Ascertain Hypotenuse .- Fig. 5.

RULE. - Add together squares of the two legs, and take square root of sum.

Or,
$$\sqrt{a b^2 + b c^2} = hypotenuse$$
. Or, $\sqrt{b^2 + h^2}$.

EXAMPLE.—Base, a b, Fig. 5, is 30 ins., and height, b c, 40; what is length of hypotenuse?

$$30^2 + 40^2 = 2500$$
, and $\sqrt{2500} = 50$ ins.

To Ascertain other Leg.

When Hypotenuse and One of the Legs are given.—Fig. 5. Rule.—Subtract square of given leg from square of hypotenuse, and take square root of remainder.

Or,
$$\sqrt{hyp^2 - \begin{cases} b^2 = h \\ h^2 = b \end{cases}}$$
 Or, $\sqrt{ac^2 - \begin{cases} ab^2 = bc \\ bc^2 = ab \end{cases}}$

Example. — Base of a triangle, a b, Fig. 5, is 30 feet, and hypotenuse, a c, 50; what is height of it?

$$50^2 - 30^2 = 1600$$
, and $\sqrt{1600} = 40$ feet.

To Compute Length of a Side.

When Hypotenuse of a Right-angled Triangle of Equal Sides alone is given.—Fig. 8. Rule.—Divide hypotenuse by 1.414 213.

Or,
$$\frac{hyp.}{1.414213}$$
 = length of a side.

Fig. 8.

EXAMPLE. — Hypotenuse a c of a right-angled triangle, Fig. 8, is 300 feet; what is length of its sides?

To Compute Perpendicular or Height of a Triangle. When Base and Area alone are given.—Fig. 9. Rule.—Divide twice by its base. Or, 2a - b = h.

of a triangle, Fig. 9, is to feet, and length of its base, a b, 5; ular, c d?

o Compute Perpendicular or Height of a Triangle. When Base and Two Sides are given. RULE.—As base is to sum of the es, so is difference of sides to difference of divisions of base. Half this ference being added to or subtracted from half base will give the two disions thereof. Hence, as the sides and their opposite division of base con-

tute a right-angled triangle, the perpendicular thereof is readily ascertained preceding rules.

Or,
$$\frac{bc+ca \times bc \cdot ca}{ba} = bd \cdot da$$
.
Or, $\frac{ac^2+ab^2-bc^2}{2ab} = ad$; whence $\sqrt{ac^2-ad^2} = dc$.

Fig. o.

EXAMPLE.—Three sides of a triangle, a b c, Fig. o, are 0.028. 8, and 5 feet; what is length of perpendicular on longest side? As $9.928:8+5::8 \sim 5:3.928 = difference of divisions of$ the base.

Then $3.928 \div 2 = 1.964$, which, added to $\frac{9.928}{2} = 4.964 +$ 1.964 = 6 928 = length of longest division of base

Hence, there is a right-angled triangle with its base 6.928, and its hypotenuse 8: asequently, its remaining side or perpendicular is $\sqrt{(8^2-6.928^2)} = 4$ feet.

hen any Two of the Dimensions of a Triangle and One of the corresponding Dimensions of a similar Figure are given, and it is required to ascertain the other corresponding Dimensions of the last Figure.

Fig. 11.

Let a b c, a' b' c', be two similar triangles, Figs. 10

Then ab:bc::a'b':b'c', or a'b':b'c'::ab:bc.

Note. - Same proportion holds with respect to the similar lineal parts of any other similar figures, whether a plane or solid.

EXAMPLE.—Shadow of a vertical stake 4 feet in length was 5 feet; at same time. dow of a tree, both on level ground, was 83 feet; what was height of tree?

To Compute Acreage.

Divide area into convenient triangles, and multiply base of each triangle links by half perpendicular in links; cut off 5 figures at the right, remain; figures will give acres; multiply the 5 figures so cut off by 4, and again t off 5, and remainder will give roods; multiply the 5 by 40, and again t off 5 for perches.

Trapezium.

DEFINITION.—A Quadrilateral having unequal sides of which no two are parallel:

To Compute Area of a Trapezium .- Fig. 12.

RULE.—Multiply diagonal by sum of the two perpendiculars falling upon rom the opposite angles, and divide product by 2.

Or,
$$\frac{db \times \overline{a+c}}{2}$$
 = area.

EXAMPLE. - Diagonal db, Fig. 12, is 125 feet, and person diculars a and c 50 and 37; What is area?

$$125 \times 50 + 37 = 10875$$
, and $10875 \div 2 = 5437.5$

When the Two opposite Angles are Supplements to each other, that is, a Arapesium can be inscribed in a Circle, the Sum of its opposite As being equal to Two Right Angles, or 180°. RULE.—From half sum of four sides, subtract each side severally; then multiply the four remain continually together, and take square root of product.

EXAMPLE.—In a trapezium the sides are 15, 13, 14, and 12 feet; its opposite gles being supplements to each other, required its area.

15+13+14+12=54, and
$$\frac{54}{2}$$
=27.
15 13 14 12
12 X 14 X 13 X 15=32 760, and $\sqrt{32}$ 760=180.007 square feet.

Trapezoid.

DEFINITION.—A Quadrilateral with only one pair of opposite sides parallel.

To Compute Area of a Trapezoid.—Fig. 18.
RULE.—Multiply sum of the parallel sides by perpendicular distant

RULE.—Multiply sum of the parallel sides by perpendicular distance tween them, and divide product by 2.

Or,
$$\frac{ab+dc \times ah}{a}$$
 Or, $\frac{s+s' \times h}{2}$ = area, s and s' representing sides.

5 EXAMPLE —Parallel sides a b, c d, Fig. 13, are 100 am feet, and distance between them 62.5 feet; what is ar 100 + 132 \times 62.5 = 14 500, and 14 500 \div 2 = 7250 ag

Polygons.

DEFINITION.—Plane figures having three or more sides, and are either regule irregular, according as their sides or angies are equal or unequal, and they are na from the number of their sides and angies.

Regular Polygons.

To Compute Area of a Regular Polygon.—Fig. 14 RULE.—Multiply length of a side by perpendicular distance to cer multiply product by number of sides, and divide it by 2.

Or,
$$\frac{a \ b \times c \ e \times n}{2}$$
 = area, n representing number of sides.

Fig. 14 @

Example.—What is area of a pentagon, side ab, Fig. 14, bf 5 feet, and distance ce 4.25 feet? $5 \times 4.25 \times 5$ (n) = 106.25 = product of length of a side tance to centre, and number of sides.

Then, 106.25 + 2 = 52.125 square feet.

To Compute Radius of a Circle that contains a Given Polygon.

When Length of a Perpendicular from Centre alone is given. Rulliply distance from centre to a side of the polygon, by unit in column of following Table.

Example. — What is radius of a circle that contains a hexagon, distance to being 4.33 inches?

To Compute Length of a Side of a Polygon that is tained in a Given Circle.

"adies of Circle is given. BULE.—Multiply radius of circles and B of following Table.

-What is length of side of a pentagon contained in a circle &

& 5 -t- 2 == 4-25 Tables, 27th 4-25 X 1.275 == 5 fest.

To Compute Radius of a Circumscribing Circle. When Length of a Side is given. RULE.—Multiply length of a side of the vgon, by unit in column C of following Table.

EXAMPLE .- What is radius of a circle that will contain a hexagon, a side being s :hes?

5 X 1 = 5 ins.

o Compute Radius of a Circle that can be Inscribed in a Given Polygon.

When Length of a Side is given. RULE.—Multiply length of a side of lygon, by unit in column D of following Table. EXAMPLE - What is radius of the circle that is bounded by a hexagon, its sides ing 5 inches?

 $5 \times .866 = 4.33$ inc.

To Compute Area of a Regular Polygon.

When Length of a Side only is given. RULE.—Multiply square of side. multiplier opposite to term of polygon in following Table:

o. of ides.	POLYGON.	AREA.	A. Radius of Circumscribed Circle.	B. Length of a Side.	C. Radius of Circumscrib- ing Circle.	D. Radius of Inscribed Circle.
3	Trigon	-433 OI	2	1 732	·5773	.2887
4	Tetragon	1	1.414	1.4142	.7071	•5
5	Pentagon	1.72048	1.238	1.1756	.8506	.6882
ð	Hexagon	2.508 08	1.156	1	1	.866
7	Heptagon	3.633 91	1.11	.8677	1.1524	1.0383
8	Octagon	4.828 43	1.083	.7653	1.3066	1.2071
9	Nonagon	6.18182	1.064	.684	1.4619	1.3737
1ó	Decagon	7.694 21	1,051	.618	1.618	1.5388
II	Undecagon	9.365 64	1.042	.5634	1.7747	1.7028
12	Dodecagon	11.19615	1 037	.5176	1.9319	z. 866

EXAMPLE. — What is area of a square (tetragon) when length of its sides is 71 067 8 inches?

7.071 067 $8^2 = 50$, and $50 \times 1 = 50$ square ins.

o Compute Length of a Side and Radii of a Regular Polygon.

When Area alone is given. RULE.—Multiply square root of area of polyn by multiplier in column E of the following table for length of side; by altiplier in column G for radius of circumscribing circle, and by multiplier column H for radius of inscribed circle or perpendicular.

B. of	Polygon.	E. Length of Side.	G. Radius of Circumscrib- ing Circle.	H. Radius of Inscribed Circle.	Angle.	Angle of Polygon.	Tangent.
3	Trigon	1.5197	.8774	.4387	1200	60°	-5774
74	Tetragon	I	.7071	.5	90	90	1
4	Pentagon	.7624	.6485	.5247		108	1.3764
~6	Hexagon	.6204	-6204	·5373	72 60	120	1.7321
7	Heptagon	.5246	.6045	.5446	51 25.71'	128 34.29	2.0765
18	Octagon	-4551		•5493	45	135	2.4142
9	Nonagon	.4022	.5946 .588	.5525	40	140	2.7475
•	Decagon	3605	.5833	.5548	36	144	3.0777
	Undecagon	.3268	.5799	.5564	32 43.64	147 16.36	3.4057
≯1	Dodecagon	.2989	-5774	.5577	30	150	3.1321

JAMPLE I. - Area of a square (tetragon) is 16 inches; what he

Par $\sqrt{16} = 4$, and $4 \times 1 = 4$ ins.

Area of an octagon is 70.698 yards; what is diameter

 $\sqrt{70.698} \times .5946 = 5$, and $5 \times 2 = 10$ yard

To Compute an Area bounded by a Curve. - Fig. 18. (Simpson's Rule.)

OPERATION .- Divide line a b into any number of equal parts, by perpendiculars from base, as 1, 2, 3, etc., which will give an odd number of points of division. Measure lengths of these perpendiculars or ordinates, and proceed as follows:

To sum of lengths of first and last ordinates, add four times sum of lengths of all even numbered ordinates and twice sum of odd; multiply their sum by one third of distance between ordinates, and product will give area required.

ILLUSTRATION.—Water-line of a vessel has a length of 80 feet, and ordinates o. i. 1.2, 1.5, 2, 1.9, 1.5, 1.1, and o, each 10 feet apart: what is its area? Ordinates.

Even.	Odd.	Sums.
1	1.2	first o
1.5	2	last o
1.9	1.5	even 22
1.1		odd 9.4
5.5 X 4=	22. 4.7 X 2 =	= 9.4 31.4

31.4 × 10 = 314, Which + 3 = 104.66 square feet Circle.

Diameter is a right line drawn through its centre, bounded by its periphery. Radius is a right line drawn from its centre to its circumference.

Circumference is assumed to be divided into 360 equal parts, termed degrees; each degree is divided into 60 parts, termed minutes; each minute into 60 parts, termed seconds; and each second into 60 parts, termed thirds, and so on.

To Compute Circumference of a Circle.

Rule.-Multiply diameter by 3.1416.

Or. as 7 is to 22, so is diameter to circumference.

Or, as 113 is to 355, so is diameter to circumference.

EXAMPLE.—Diameter of a circle is 1.25 inches; what is its circumference? $1.25 \times 3.1416 = 3.927$ ins.

To Compute Diameter of a Circle.

Rule.—Divide circumference by 3.1416.

Or, as 22 is to 7, so is circumference to diameter.

Note. - Divide area by .7834, and square root of quotient will give diameter of circle

To Compute Area of a Circle.

Rule.-Multiply square of diameter by .7854.

Or, multiply square of circumference by .079 58.

Or, multiply half circumference by half diameter.

Or, multiply square of radius by 3.1416.

Or, $p r^2 = area$, r representing radius.

EXAMPLE.—The diameter of a circle is 8 inches; what is the area of it? $8^2 = 64$, and $64 \times .7854 = 50.2656$ ins.

Proportions of a Circle, its Equal, Inscribed, and Circumscribed Squares.

				CIRCLE.
ı.	Diameter	× ·	8862)	= Side of an Equal Square.
2.	Circumference	х .	2821 (- Side of all Equal Square.
3.	Diameter	× ·	7071	= Side of Inscribed Square.
4.	Circumference	χ.	2251	Side of Inscribed Square.
÷	Area V coca ÷	dia	m * 1	•

6. Diameter \times 1.3468 = Side of an Equilateral Triangle.

SQUARE.

A Side X 1.1442 = Diameter of its Circumscribing Circle. 442 = Circumference of its Circumscribing Circle.

= Diameter = Circumference; of an Equal Circle.

= Circle inches thin a circle is one half area of one described without

Co Compute Side of Greatest Square that can be Inscribed in a Circle.

Rule.—Multiply diameter by .7071, or take twice square of radius.

Useful Factors.

In which p or * represents Circumference of a Circle.

$Diameter = \tau$.

p = 3.141 592 653 589+	$\frac{4}{8}p = 4.18879 +$	$\sqrt{p} = 1.772453$
2 p = 6.283 185 307 179+	p = .523598+	$\sqrt{\frac{2}{p}} = .797884$
4 p = 12.566 370 614 359+	% p = .392 699+	
	$\begin{array}{c} \frac{1}{18}p = .261799 + \\ \frac{1}{860}p = .008726 + \end{array}$	$1/\sqrt{p} = .886226 +$
(p = .785 398 163 397+	860 2000 /20-	36 p = 113.097335 +

Diameter = 10.

I.	Chord of arc of semicircle	= 10
	Chord of half arc of semicircle	= 7.071 067
	Versed sine of arc of semicircle.	= 5
4.	Versed sine of half arc of semicircle	= 1.464 466
5-	Chord of half arc, of half of arc of semicircle	= 3.82683
6.	Half chord, of chord of half arc	= 3.535 533
7.	Length of arc of semicircle	= 15.707 963
	Length of half arc of semicircle	= 7.853 98z
	Square of chord, of half arc of semicircle (2)	= 50
	Square root of versed sine of half arc (4)	= 1.210151
II.	Square of versed sine of half arc (4)	= 2.144664
12.	Square of chord of half arc, of half arc of semicircle (5)	= 14.644.67
13.	Square of half chord, of chord of half arc (6)	= 12.5

Note.—In all computations p is taken at 3.1416, ½ p at .7854, ½ p at .5236; and henever the decimal figure next to the one last taken exceeds 5, one is added. hus, 3.1415 59 for four places of decimals is taken as 3.1416.

To Compute Length of an Arc of a Circle.-Fig. 19.

When Number of Degrees and Radius are given. Rule 1.—Multiply umber of degrees in the arc by 3.1416 times the radius, and divide by 180.

2.—Multiply radius of circle by .01745329, and product by degrees in 18 arc.

If length is required for minutes, multiply radius by .000 290 889; if for 2001ds, by .000 004 848.

EXAMPLE I.—Number of degrees in an arc, o a b, Fig. 19, are 90, and radius, o b, 5 inches; what is length of arc?

90
$$\times$$
 (3.1416 \times 5) = 1413.72, which \div 180 = 7.854 ins.
2.—Radius of an arc is 10, and measure of its angle 44° 30′ 30″; what is length of arc?
10 \times .017 453 29 = .174 532 9, which \times 44 = 7.679 447 6, length for 44°.

10
$$\times$$
 .000 290 889 = .002 908 89, which \times 30 = .087 266 7, length for 30'. 10 \times .000 004 848 = .000 048 48, which \times 30 = .001 454 4, length for 30".

Then
$$7.6794476$$
 0.0872667 = 7.7681687 ins.

Or, reduce minutes and seconds to decimal of a degree, and multip. See Rule, page 93. 30' 30" = .5083, and .1745329 from above

Sector of a Circle.

DEFINITION .-- A part of a circle bounded by an arc and two radii.

To Compute Area of a Sector of a Circle.

When Degrees in the Arc are given .- Fig. 21. Rule .- As 360 is to number of degrees in a sector, so is area of circle of which sector is a part to area of sector.

Or, $\frac{da}{360}$ = area, d representing degrees in arc, and a area

EXAMPLE. - Radius of a circle, o a, Fig. 21, is 5 ins., and number of degrees of sector, a b o, is 220 30'; what is area? Area of a circle of 5 ins. radius = 78.54 ins.

Then, as 3600: 220 30':: 78.54: 4.908 75 ins.

When Length of the Arc, etc., are given. Rule.-Multiply length of arc by half length of radius, and product is area.

Or, $b \times r + 2 = area$, b representing arc, and r radius.

Segment of a Circle.

DEFINITION. -A part of a circle bounded by an arc and a chord.

To Compute Area of a Segment of a Circle. When Chord and Versed Sine of Arc, and Radius or Diameter of Circle are given.

When Segment is less than a Semicircle, as a b c, Fig. 21. RULE.—Ascertain area of sector having same arc as segment; then ascertain area of triangle formed by chord of segment and radii of sector, and take difference of these areas.

Note. - Subtract versed sine from radius: multiply remainder by one half of chord of arc, and product will give area of triangle.

Or, a-a'= area, a and a' representing areas of sector and triangle.

When Segment is greater than a Semicircle. Rule.—Ascertain, by preceding rule, area of lesser portion of circle; subtract it from area of whole circle, and remainder will give area.

Or, a - a' = area, a and a' representing areas of circle and lesser portion. See Table of Areas of Segments, page 267.

Fig. 22.

Example. — Chord, a c, Fig. 22, is 14.142; diameter, b e. is 20 ins.; and versed sine, br, is 2.929; what is area of segment?

 $14.142 \div 2 = 7.071 = half chord of arc.$

 $\sqrt{7.071^2+2.929^2}=7.654=$ square root of sum of squares of half chord of arc and versed sine, which is chord a b of half are

By Rule, page 344. $7.654 \times 2 \times 2.929 \times 10 = 448.371 = twice chord of half arc by 10$ times versed sine.

160-2.929 × 27 = 1120.917 = 60 times diameter subtracted from 27 times

9.371 + 1120.917 = .4, and .4 added to $\overline{7.654 \times 2}$ (twice chord of half are)

= 10 = 78.54 = the arc multiplied by half length of radius,

e sinc anti-acted from a radius, which is height of th

When the Chords of Arc, and of half of Arc, and Versed Sine are given. RULE.—To chord of whole arc add chord of half arc and one third of it more; multiply this sum by versed sine, and this product, multiplied by 404 26, will give area nearly.

Or,
$$c + c' + \frac{c'}{2}v$$
. sin. \times .404 26 = area nearly.

EXAMPLE.—Chord of a segment, ac, Fig. 22, is 28 feet; chord of half arc, ab, is s_5 ; and versed sine, br, 6; what is area of segment?

 $28+15+\frac{15}{3}=$ chord of are added to chord of half are and one third of it more. $48\times6=288=$ product of above sum and versed sine. Hence $288\times.404$ 26=116.42; square feet.

When the Chord of Arc and Versed Sine only are given. RULE.—Ascertain chord of half arc, and proceed as before.

To Compute Chord and Height of a Segment of a Circle, When Area is given. RULE.—Divide area by square of diameter of circle take tab. height for area from table of Areas of Segments of a Circle, p. 267.

multiply it by diameter, and product will give required height.

From diameter subtract height, multiply remainder by height, take square root of product and multiply it by 2 for required chord.

Or,
$$\frac{a}{d^2}$$
 = (tab. area for height) $\times d = h$, and $\sqrt{d-h \times h} \times 2 = c$.

Circular Measure. (See Rule, page 113.)

Sphere.

DEFINITION.—A figure, surface of which is at a uniform distance from centre.

To Compute Convex Surface of a Sphere.—Fig. 23.

RULE.—Multiply diameter by circumference and prod

RULE.—Multiply diameter by circumference, and product will give surface.

Or, 4 $p r^2 = surface.$ Or, $p d^2 = surface.$

EXAMPLE.—What is convex surface of a sphere, Fig. 23, having a diameter, ab, of 10 ins?

 $10 \times 31.416 = 314.16$ square ins.

Segment of a Sphere.

DEFINITION. -A section of a sphere.

Compute Surface of a Segment of a Sphere.—Fig. 24.

RULE.—Multiply height by the circumference of sphere, and add product of the area of base.

Or,
$$2 p r h = comex surface alone.$$

Example. — Hoight, bo, of a segment, abc, Fig. 24, is 36 ins. and diameter, bc, of sphere 100; what is convex surface, and what whole surface

 $36 \times 100 \times 3.1416 = 11309.76 =$ height of segment multiplied by circumference of sphere.

To ascertain area of base; diameter and versed sine being given, diameter of base of segment, being equal to chord of arc, is, by Rule, page 344.

$$100 - 36 \times 2 = 1$$
, $\sqrt{100^2 - 28^2} = 96$.

962 \times .7854 = 7238.2464 = convex surface, and 238.2464 + 11 309.76 = 18 548.006 = convex surface added to area of base = square ins.

Norm.—When convex surface of a figure alone is required, area or rends must be omitted.

When the Diameter of Base of Segment and Height of it are alons given. Rule.—Add square of half diameter of base to the square of height; divide this sum by height, and result will give diameter of sphere.

Or,
$$\overline{d \div 2} + h^2 \div h = diameter$$
.

Spherical Zone (or Frustum of a Sphere).

Definition.—The part of a sphere included between two parallel chords.

To Compute Surface of a Spherical Zone.-Fig. 25.

Rule.—Multiply height by the circumference of sphere, and add product to area of the two ends.

Or,
$$h c + a + a' = surface$$
.
Or, $a p r h = convex surface alone$.

Example. — Diameter of a sphere, a b, Fig. 25, from which a zone, c g, is cut, is 25 inches, and height, c g, is 3; what is convex surface?

 $25 \times 3.1416 \times 8 = 628.32 = height \times circumference of sphere = square ins.$

When the Diameter of Sphere is not given. RULE.—Multiply mean length of the two chords by half their difference; divide this product by breadth of zone, and to quotient add breadth. To square of this sum add square of lesser chord, and square root of their sum will give diameter of sphere.

Or,
$$\sqrt{\left(\frac{l+l'}{2} \times \frac{l \circ l'}{2} \div b + b + l'^2\right)} = d$$
.

Spheroids or Ellipsoids.

DEFINITION.—Figures generated by the revolution of a semi-ellipse about one of its clameters.

When revolution is about Transverse diameter they are Prolate, and when it is about Conjugate they are Oblate.

To Compute Surface of a Spheroid.-Fig. 26.

When Spheroid is Prolate. Rule.—Square diameters, and multiply square root of half their sum by 3.1416, and this product by conjugate diameter.

Or, $\sqrt{\frac{d^2+d'^2}{2}} \times 3.1416 \times d = surface$, d and d' representing conjugate and transverse diameters.

EXAMPLE.—A prolate spheroid, Fig. 26, has diameters, cd and ab, of 10 and 14 inches; what is its surface?

 $10^2 + 14^2 = 296 = sum$ of squares of diameters. $296 \div 2 = 148$, and $\sqrt{148} = 12.1655 = square$ root of half sum of squares of diameters.

. 1655 × 3.1416 × 10 = 382.191 ins. = product of root above obtained × 3.1416, conjugate diameter.

Spheroid is Oblate. Rule.—Square diameters, and multiply square alf their sum by 3.1416, and this product by transverse diameter.

An oblate spheroid has diameters of 14 and 10 inches; what is its

296 = sum of squares of diameters.

16ge - arreage root of half sum of squares of di-

* above obtained × 3.1416.

To Compute Convex Surface of a Segment of a Spheroid.-Figs. 27 and 28.

RULE.—Square diameters, and take square root of half their sum; then, is diameter from which the segment is cut is to this root, so is the height of segment to proportionate height required. Multiply product of other dimeter and 3.1416 by proportionate height of segment, and this last product will give surface.

Or,
$$\frac{\sqrt{d^2+d'^2\div 2}}{d \text{ or } d'} \times h \times d' \text{ or } d \times 3.1416 = surface.$$

Fig. 27.

EXAMPLE. - Height, a o, of a segment, ef, of a prolate spheroid, Fig. 27, is 4 inches, diameters being 10 and 14; what is convex surface of it?

Square root of half sum of squares a of diameters, 12.1655.

Then 14: 12.1655::4: 3.4758 = height of segment, proportionate to mean of

diameters, and 10 \times 3.1416 \times 3.4758 = 100.1057 ins.

tum is ro.

2.—Height, co, of a segment of an oblate spheroid, Fig. 28, is 4 inches, the diameters being 14 and 10; what is convex surface of it? 214.0272 square ins.

To Compute Convex Surface of a Frustum or Zone of a Spheroid.-Figs. 29 and 30.

Rule.-Proceed as by previous rule for surface of a segment, and obtain proportionate height of frustum; then multiply product of diameter parallel to base of frustum and 3.1416 by proportionate height of frustum, and it will give surface.

EXAMPLE. - Middle frustum, o e, of a prolate spheroid, Fig. 29, is 6 inches, diameters of spheroid being 10 and 14; what is its convex surface?

Mean diameter, as per preceding example, is 12.1655.

Diameter parallel to base of frusFig. 30.

Then 14: 12.1655::6: 5.2138, and 10 \times 3.1416 \times 5.2138 == 163.7967 square ins.

2.-Middle frustum of an oblate spheroid, as o e, Fig. 30, is 2 inches in height, lameters of spheroid, as in preceding examples, being 10 and 14; what is its conex surface? 107.0136 square ins.

Circular Zone.

DEFINITION. -A part of a circle included between two parallel chords.

To Compute Area of a Circular Zone.

RULE.-From area of circle subtract areas of segments. Or, see Table of Areas of Zones, page 269.

When Diameter of Circle is not given .- Multiply mean length of the two bords by half their difference; divide this product by breadth of zone, and quotient add the breadth.

To square of this sum add square of lesser chord, and square root of their m will give diameter of circle.

Example. —Greater chord, h g, is 90 inches; lesser, a c, is 80; and bread 9, is 72.526; what is its diameter?

$$\frac{80+90}{2} \times \frac{90 \times 80}{2} = 85 \times 5 = 425$$
, and $\frac{425}{72.526} + 72.526 = 78.3$

The $\sqrt{98.385^3 + 80^3} = \sqrt{12544.2} = 112 = \text{diameter}.$

Cylinder.

DEFINITION. —A figure formed by revolution of a right-angled parallelogram around one of its sides.

To Compute Surface of a Cylinder .- Fig. 31.

RULE.-Multiply length by circumference, and add product to area of the two ends.

Note.-When internal or convex surface alone is wanted, areas of ends are omitted.

EXAMPLE. - Diameter of a cylinder, b c, Fig. 31, is 30 inches, and its length, a b, 50; what is its surface?

$$30 \times 3.1416 = 94.248$$
, and $94.248 \times 50 = 4712.4$.

Then $30^2 \times .7854 = 706.86 = area of one end; 706.86 \times 2 = 1413.72$ = area of both ends, and 4712.4 + 1413.72 = 6125.12 square ins.

Prisms.

DEFINITION. - Figures, sides of which are parallelograms, and ends equal and parallel.

NOTE. -- When ends are triangles, they are termed triangular prisms; when they are square, square or right prisms; and when they are a pentagon, pentagonal prisms, etc.

To Compute Surface of a Right Prism.-Figs. 32 and 33. RULE. - Ascertain areas of ends and sides, and Fig. 32.

Fig. 32.

Fig. 34.

add them together. Or, a + n a' = s, a representing area of ends, a' area

of sides, and n their number. EXAMPLE. — Side, a b, Fig. 32, of a square prism is 12 inches, and length, b c, 30; what is surface?

 $12 \times 12 = 144 = area of one end; 144 \times 2 = 288 = area$ of both ends; $12 \times 30 = 360 = area of one side$; $360 \times 4 =$

To Compute Surface of an Oblique or Irregular Prism .-

Fig. 34. RULE.-Multiply perimeter of one end, by perpendicular height, a o. Or, multiply perimeter as at c, at a right

angle to sides by actual length of figure, and add area of ends. EXAMPLE. -Sides, a c, of an oblique hexagonal prism, Fig. 24, are to inches, and perpendicular height, a o, is 5 feet; what is its surface?

 $10 \times 6 = 60$ ins. = length of sides.

 $60 \times 5 \times 12 = 3600$ square ins. = area of sides, and by table page 339, 100 \times 2.508 08 \times 2 = 519.616 square ins., which added to 3600 = 4119.616 square ins.

Wedge.

TEFINITION.—A wedge is a prolate triangular prism, and its surface is computed e for that of a right prism.

To Compute Surface of a Wedge.-Fig. 35.

EXAMPLE.—Back of a wedge, a b c d, Fig. 35, is 20 by 2 inches, and its end, ef, 20 by 2; what is its surface i

 $20^2 + \frac{1}{2-1} = 401 = sum of squares of half base, a f, and$ heinht, ef, of triangle, ef a.

= 20.025 = square root of above sum = length of ea Then 20.025 \times 20 \times 2=801 = area of sides.

 \times 2 = 40 = area of back; and $2c \times \sqrt{2+2} \times 2 = 40$ 1+40=881 equare ins.

Prismoids.

DEFINITION.—Figures alike to a prism, having only one pair of sides parallel.

To Compute Surface of a Prismoid.-Fig. 36.

RULE. — Ascertain area of sides and ends as by rules for squares, triangles, etc., and add them together.

Example.—Ends of a prismoid, efgh and abcd, Fig. 36, are 10 and 8 inches square, and its slant height, dh, 25; what is its surface?

 $10 \times 10 = 100 = area$ of base; $8 \times 8 = 64 = area$ of top.

$$\frac{10+8}{2}$$
 × 25 = 225, and 225 × 4 = 900 = area of sides.

Then 100 + 64 + 900 = 1064 = square ins.

To Compute Surface of an Oblique or Irregular Prismoid. Proceed as directed for an Oblique or Irregular Prism, page 350.

Ungulas.

DEFINITION.—Cylindrical ungulas are the parts (including all or part of the base) left by a plane cutting a cylinder through any portion and at any angle.

To Compute Curved Surface of an Ungula.-Figs. 37, 38, 39, and 40.

When Section is parallel to Axis of the Cylinder, Fig. 37. Rule 1.—Muliply length of arc of one end by height.

Example.—Diameter of a cylinder, ac, from which an ungula, Fig. 37, is cut, is 10 inches, its length, bd, 50, and versed sine or depth of ungula is 5 inches; what is curved surface?

 $10 \div 2 = 5 = radius of cylinder.$

Hence radius and versed sine are equal; the arc, therefore, of ungula is one, half circumference of the cylinder, which is $31.416 \div 2 = 15.708$, and $15.708 \times 50 = 785.4$ square ins.

PARC. P.

When Section passes obliquely through opposite Sides of Cyluder, Fig. 38. Rule 2.—Multiply circumference of base of cylinder by
alf sum of greatest and least heights of ungula.

EXAMPLE.—Diameter, c d, of a cylindrical ungula, Fig. 38, is so inches, and greatand less heights, b d and ac, are 25 and 15 inches; what is its curved surface?

10 diameter = 31.416 circumference; 25+15=40, and $40\div 2=20$. Hence 31.416 20=628.32 square ins.

When Section passes through Base of Cylinder and one of its Sides, and

When Section passes through Base of Cylinder and one of its Sides, and creed Sine does not exceed Sine, or Base is equal to or less than a Semi-role, Fig. 39. Rule 3.—Multiply sine, a d, of half arc, d g, of base, d g f, diameter, e g, of cylinder, and from this product subtract product * of arc d cosine, a o. Multiply difference thus found by quotient of height, g c, vided by versed sine, a g.

Norg.—The sine of base is half of the longest chord that can be drawn in base.

EXAMPLE.—Sine, a d, of half are of base of an ungula. Fig. 39, is 5, diameter of cylinder, e g, is 70, and height, e g, of ungula 70 inches; what is curved surface?

 $5 \times 10 = 50 = sine of half are by dia$

Longth of arc, versed sine and radius being e 346=15,708, and as versed sine and radius are thence, when cosine is o, product is o. Therefore of product before obtained and product

 $50 \times 10 \div 5 = 50 \times 2 = 100$ square ins.

[&]quot; When the cosine is o, this product is o.

When Section passes through Base of Cylinder, and Versed Sine, a ceeds Sine, or when Base exceeds a Semicircle, Fig. 40. RULE 4.—Mul

sine of half the arc of base by diameter of cylinder, and to product add product of arc and the excess of versed sine the sine of base. Multiply sum thus found by quotier height divided by versed sine.

EXAMPLE.—Sine, a. d. of half arc of an ungula, Fig. 40, is 12 in the control of the cont

EXAMPLE.—Sine, a d, of half are of an ungula, Fig. 40, is 12 in versed sine, a g, is 16; height, c g, 16; and diameter of cylinder 25 inches; what is curved surface?

f 12 × 25 = 300 = sine of half are by diameter of cylinder, and le of are of base, Bule, page 344 = are of d h f = circumference of b 46.392.

Then $46.392 \times 16 - 12.5 = 162.372$, and 300 + 162.272 = 462.372; $16 \div 16 = 1462.372 \times 1 = 462.372$ square ins.

Note.—When sine of an arc is o, the versed sine is equal to dian When Section passes obliquely through both Ends of Cyli. Fig. 41. Rulle 5.—Conceive section to be continued to m_i meets side of cylinder produced; then, as difference of v sines, ae and do, of arcs of two ends of ungula is to versed ae, of arc of the less end, so is height of cylinder, ad, to part of side produced.

Ascertain surface of each of ungulas thus found by Ru and 4, and their difference will give curved surface.

Lune.

DEFINITION.—Space between intersecting arcs of two eccentric circles.

To Compute Area of a Lune.-Fig. 42.

RULE.—Ascertain areas of the two segments from which lune is for and their difference will give area.

Fig. 42. d

Fig. 41.

e will give area. • Example.—Length of chord ac, Fig. 42, is 20 inches, h

ed is 3, and eb 2; what is area of lune?

By Rule 2, page 345, diameters of circles of which lufformed are thus ascertained:

For adc, $\frac{10^2 + (3+2)^2}{5} = 25$. For aec, $\frac{10^2 + 2^2}{3} = 1$

Then, by Rule for Areas of Segments of a Circle, page 267,

Area of a d c is 70.5577 sq. ins. " a e c " 27.1638 "

Their difference 43.3939 sq. ins.

Cycloid.

DEFINITION. -A curve generated by revolution of a circle on a plane.

To Compute Area of a Cycloid.—Fig. 43.

8 Rule.—Multiply area of generating circle by

RULE.—Multiply area of generating circle by EXAMPLE.—Generating circle of a cycloid, a bc, Fig has an area of 115.45 sq. inches; what is area of cyck 115.45 × 3 = 346.35 square ins.

o Compute Length of a Cycloidal Curve.

na = product of diameter and 4 = ins.

ioid is line of swiftest descent; that is, a body will im one point to another, in less time than through:

Circular Rings.

DEFINITION. -- Space between two concentric circles.

To Compute Sectional Area of a Circular Ring.-Fig. 44. RULE.—From area of greater circle subtract that of less.

Cylindrical Rings.

DEFINITION. -A ring formed by curvature of a cylinder.

To Compute Surface of a Cylindrical Ring .- Fig. 44. RULE.—To diameter of body of the ring add inner diameter of the ring:

rultiply this sum by diameter of the body, and product by 0.8606. ig. 44-Or, $c \times l = surface$.

EXAMPLE.—Diameter of body of a cylindrical ring, a b, Fig. 44, is 2 inches, and inner diameter, bc, is 18; what is surface of it 2+18=20=thickness of ring added to inner diameter.

20 × 2 × 0.8606 = sum above obtained × thickness of ring, and that product by 9.8696 = 394.784 ins.

Link.

DEFINITION. -An elongated ring.

To Compute Surface of a Link .- Figs. 45 and 46. RULE.—Multiply length of axis of link by circumference of a section of ody, a b.

Or, $l \times c = surface$.

To Compute Length of Axis and Circumference.

When Ring is Elongated. RULE.—To less diameter add the diameter of he body of the link, and multiply sum by 3.1416; subtract less diameter rom greater, multiply remainder by 2, and sum of these products is length of axis. 12.45. Fig. 46.

axis.

Example. - Link of a chain, Fig. 45, is r inch in diameter of body, a b, and its luner diameters, b c and e f, are 12.5 and 2.5 inches; what is its circumference?

 $2.5 + 1 \times 3.1416 = 10.9956 = length of axis of ends.$

 $12.5 - 2.5 \times 2 = 20 = length of sides of body.$

Then $10.9956 + 20 = 30.9956 = length of axis of link, and <math>30.9956 \times 3.1416$ (cir. of 1 inch) = 97.3758 square ins. When Ring is Elliptical, Fig. 46. Rule.—Square diameters of axes of ng, multiply square root of half their sum by 3.1416, and product is length

DEFINITION. - A figure described by revolution of a right-angled triangle about to of its legs.

For Sections of a Cone, see Conic Sections, page 379.

soware reet.

To Compute Surface of a Cone .- Fig. 47.

RULE.—Multiply perimeter or circumference of base by slant height, or le of cone; divide product by 2, and add the quotient to area of the base.

Or, $c \times h \div 2 + a' = surface$, c representing maximum etc.

EXAMPLE. - Diameter, a b, Fig. 47, of basand slant height, a c. 15; what is surface (

Circum. of 3 feet = 9.4248, and 9.4248 face of side; area of base 3=7.068, and 7

G a*

To Compute Surface of the Frustum of a Cone.-Fig. 48.

RULE.—Multiply sum of perimeters of two ends by slant height of frustum; divide product by 2, and add it to areas of two ends.

Or,
$$\frac{c+c'\times h}{a+a'} + a+a' = surface$$

EXAMPLE.—Frustum, a b c d, Fig. 48, has a slant height, c d, of 26 inches, and circumferences of its ends are 15.71 and 22 inches respectively; what is its surface?

$$\frac{15.71 + 22 \times 26}{2} = 490.23 = surface of sides; \left(\frac{15.71}{3.1416}\right)^2 \times .7854 + \left(\frac{22}{3.1416}\right)^2 \times .7854 = 58.119 = areas of ends. Then 490.23 + 58.119 = 548.449 square ins.$$

Pyramids.

DEFINITION.—A figure, base of which has three or more sides, and sides of which are plane triangles.

To Compute Surface of a Pyramid.-Figs. 49 and 50.

RULE.—Multiply perimeter of base by slant height; divide product by 2, and add it to area of base.

Or,
$$\frac{ch}{a} + a = surface$$
.

EXAMPLE.—Side of a quadrangular pyramid, a b, Fig. 49, is 12 inches, and its slant height, o c, 40; what is its surface?

To Compute Surface of Frustum of a Pyramid.-Fig. 51.

RULE.—Multiply sum of perimeters of two ends by slant height; divide product by 2, and add it to areas of ends.

Fig. 51.

Or,
$$\frac{c+c'\times h}{2}+a+a'=$$
 surface.

Example.—Sides ab, cd, Fig. 51, of frustum of a quadrangular pyramid are 10 and 9 inches, and its slant height is 20; what is its surface?

 $10 \times 4 = 40$, and $9 \times 4 = 36$; 40 + 36 = 76 = sum of perimeters

 $76 \times 20 = 1520$, and $\frac{1520}{2} = 760 = area of sides; 10 × 10 = 100$, and $9 \times 9 = 81$. Then 100 + 81 + 760 = 941 = square ins.

When Pyramid is Irregular sided or Oblique. Rule. — The surfaces of each of the sides and ends must be computed and added together.

Helix (Screw).

UNITION.—A line generated by progressive rotation of a point around an axis midistant from its centre.

te Length of a Helix.-Fig. 52.

circumference described by generating point, and revolution, extract square root of the plutions of generating point.

Fig. 52.

Or, $\sqrt{(p^2+l^2)}$ n = length, n representing number of revolutions.

EXAMPLE—What is length of a helical line, Fig. 52, running 3.5 times around a cylinder of 22 inches in circumference, and advancing 36 inches in each revolution?

 $22^2 + 16^2 = 740 =$ sum of squares of circumference and of distance advanced.* Then $\sqrt{740} \times 3.5 = 95.21$ ins.

To Compute Length of a Revolution of Thread of a Screw.

Rule.-Proceed as above for length and omit number of revolutions.

Spirals.

DEFINITION.—Lines generated by the progressive rotation of a point around a fixed axis.

A Plane Spiral is when the point rotates around a central point.

A Conical Spiral is when the point rotates around an axis at a progressing distance from its centre, as around a cone.

To Compute Length of a Plane Spiral Line.-Fig. 58.

RULE.—Add together greater and less diameters; divide their sum by 2; multiply quotient by 3.1416, and again by number of revolutions.

Or, when circumferences are given, take their mean length, and multiply it by number of revolutions.

Fig. 53.

Or, $d+d'\div 2 \times 3.1416$ n= length of line; $P\times n=$ radius, and $p\ r^2\div l=$ pitch. P representing the pitch.

EXAMPLE.—Less and greater diameters of a plane spiral spring, as a b, c d, Fig. 53, are 2 and 20 inches, and number of revolutions to; what is length of it?

 $\frac{1}{2+20 \div 2} = 11 = sum \text{ of diameters} \div 2$; $11 \times 3.1416 = 34.5576$.

Then $34.5576 \times 10 = 345.576$ inches.

Norm.—Above rule is applicable to winding engines, see page 862, where it is renired to ascertain length of a rope, its thickness, number of revolutions, diameter f drum, etc.

To Compute Length of a Conical Spiral Line.-Fig. 54.

Rule.—Add together greater and less diameters; divide their sum by and multiply quotient by 3.1416.

To square of product of this circumference and number of revolutions of that, add square of height of its axis, and take square root of the sum.

IR EL

Or,
$$\sqrt{(d+d'\div 2\times 3.1416 n^2+h^2)}$$
 = length of line.

EXAMPLE—Greater and less diameters of a conical spiral, Fig. 54, are 20 and 2 inches; its height, cd, 10; and number of revolutions 10; whe is length of it?

 $20 + 2 \div 2 = 11 \times 3.1416 = 34.5576 = sum of diameters \div 2$, and 3.1416; $34.5576 \times 10 = 345.576$.

Then $\sqrt{345.576^2 + 10^2} = 345.72$ inches.

Spindles.

Duringion. —Figures generated by revolution of a plane area, "
voved about a chord perpendicular to its axis, or about its do
y are designated by the name of the arc or curve from which the control of

s spiral is other than a line, measure diameters of it from middle of

Circular Spindle.

To Compute Convex Surface of a Circular Spindle, Zone or Segment of it.—Figs. 55, 56, and 57.

RULE.—Multiply length by radius of revolving arc; multiply this arc by central distance, or distance between centre of spindle and centre of revolving arc; subtract this product from former, double remain

der, and multiply it by 3.1416.

Or, $l r - (a\sqrt{r^2 - \left(\frac{c}{2}\right)^2}) 2 p = surface$, a representing length of arc, and c the spindle chord.

EXAMPLE.—What is surface of a circular spindle, Fig. 55, length of it, fc, being 14.142 inches, radius of its arc, oc, 10, and centra distance, oe, 7.071?

 $14.142 \times 10 = 141.42 = length \times radius$. Length of arc, f a c, by Rules, page 34 = 15.708.

15.708 \times 7.071 = 111.0713 = length of arc \times central distance; 141.42 - 111.0713 = 30.3487 = difference of products. Then 30.3487 \times 2 \times 3.1416 = 190.687 square int

Zone.

Example.—What is convex surface of zone of a circular spindle, Fig. 56, longth of it, ic, being 7.653 inches, radius of its arc, o g, 10, central distance, o e, 7.071, and length of its side or arc, d b, 7.854 inches?

7.653 × 10=76.53 = length × radius; 7.854 × 7.071=55.535 = length of arc × central distance; 76.53 - 55.5356 = 20.994 = difference of products.

Then 20.9944 × 2 × 3.1416 = 131.912 square ins.

Segment.

Example.—What is convex surface of a segment of a circular spindle, Fig. 57, length of it, ic, being 3.2495 inches, radius of its arc, og, 10, central distance, oe, 7.071, and length of its side, id, 3.927 inches?

 $3.2495 \times 10 = 32.495 = length \times radius$; $3.927 \times 7.071 = 27.7678 = length of art \times central distance$; 32.495 - 27.7678 = 4.7272 = difference of products.

Then $4.7272 \times 2 \times 3.1416 = 29.702$ square ins.

General Formula.—S=2 (lr-ac) p=surface, l representing length of spindle, segment, or zone, a length of its revolving arc, r radius of generating circle, and t central distance.

ILLUSTRATION.—Length of a circular spindle is 14.142 inches, length of its revolving arc is 15.708, radius of its generating circle is 10, and distance of its centre from enter the circle from which it is generated is 7.071; what is its surface?

 $2 \times (14.142 \times 10 - \overline{15.708 \times 7.071}) \times 3.1416 = 190.687$ square inches.

Note.—Surface of a frustum of a spindle may be obtained by division of the surface of a zone.

Cycloidal Spindle.

Jempute Convex Surface of a Cycloidal Spindle. Fig. 58.

-Multiply area of generating circle by 64, and divide it by 3.

APLE.—Area of generating circle, a b c, of a cycloids de, is 32 inches; what is surface of spindle?

 $--.9 = area of circle \times 64$, and $2048 \div 3 =$

. cycloidal spindle is twice ares

Ellipsoid, Paraboloid, or Hyperboloid of Revolution.

Depinition .- Figures alike to a cone generated by revolution of a conic section round its axis.

Note. - These figures are usually known as Cont is.

When they are generated by revoluting of an our resenthey are termed Eurest as nd when by a parabela large ... 28 ...

Revolution of an arc of a come sect on artiful the axis of the clave will give a egment of a conor-L

Ellipsoid.

To Compute Convex Surface of an Ellipse: 1.-Fiz. 52.

Rule. - Add together square of base and four times so are of height; nultiply square root of half their sum by 21216, and this resident by radius of the base.

Or.
$$\sqrt{\frac{32 + 437}{2}} 3$$
 ratif $r = 877$ 212.

Example —Base, a b, of an $eV \in A$ F $g \in p$ is so inches, and vertical height, c d, γ_1 what is its surface?

 $10^{2} + 7^{2} \text{ M}_{A} = 2 \text{ fr} = \text{Perm of Equation of the arm is that if explains of height is <math>2 \text{ fr} + 2 = 141.424 + 121 = 12.1155 = 12.424 = 12.1155$ above sum. Then 12.1555 X plast X = = 191 0157 square 194

to Compute Convex Surface of a Segment, Frustum, or Zone of an Ellipsoid .- Fig. 59.

See Rules for Convex Surface of a Semment, Frustum, or Zone of a pheroid or Ellipseid, pages 3:8-9.

d or d' x 3.14:6 x h = surface.

and
$$\frac{mean.\ diam.\ \times\ h}{d\ or\ d'}=h$$
; then $d\times_{3\cdot,14\cdot5}\times \cdot=r_{3\cdot}$ fine.

Paraboloid.

b Compute Convex Surface of a Paraboloid .- Fig. 60.

RULE.—From cale of square root of sum of four times a unit of hour tial square of radius of have, subtract cube of radius of has a main, it was studer by quotient of 2,1416 times radius of base divided by six times mere of height.

Lén A

Or,
$$(\sqrt{4h^2 + r^2})^3 = r^3 \times \frac{r^{-p/p}}{6 \times 10^2} = r^2 \cdot 10^{20}$$

Example -Axis, bd. of a parabolot, Fig. 18 19 12:28. 72dius, a d, of its base is in inches: What is its and it same

40° × 4=6400 = 4 times 1943 = 10° = 12° =

then 545 536 X .005 890 5 = 3213. 45 equite int.

Cylinder Sections.

To Compute Surface of a Cylinder Section -Fig. 61.

Rule. - From entire surface of cylinder surface of the two unrules, ro. o :. 35 182 W. and multiply result by 4.

MENSURATION OF VOLUMES. Cubes and Parallelopipedons.

Cube.

DEFINITION.—A volume contained by six equal square sides.

To Compute Volume of a Cube.—Fig RULE.—Multiply a side of cube by itself, and that p again by a side.

Or, $s^3 = V$, s representing length of a side, and V volum Example.—Side, a b, Fig. 1, is 12 inches; what is volum $12 \times 12 \times 12 = 1728$ cube ins.

Parallelopipedon.

DEFINITION.—A volume contained by six quadrilateral sides, every oppos of which are equal and parallel.

To Compute Volume of a Parallelopipedon.

—Fig. 2.

RULE.—Multiply length by breadth, and that product again by depth.

Or, l b d = V.

Prisms, Prismoids, and Wedges.

Prisms.

DEFINITION.—Volumes, ends of which are equal, similar, and parallel plan sides of which are parallelograms.

Note.—When ends of a prism or prismoid are triangles, it is termed a tria prism or prismoid; when rhombolds, a rhomboidal prism, and when squ square prism, etc.

Fig. 3.

Rule.-Multiply area of base by height.

Or, ah = V.

EXAMPLE.—A triangular prism, abc, Fig. 4, has sides of 2.5 feet, and a length, cb, of 10; what is its volume?

By Rule, page 339, $2.5^2 \times .433 = 2.70625 = area$ of end a b, and $2.70625 \times 10 = 27.0625$ cube feet.

When a Prism is Oblique or Irregular.

Rule. — Multiply area of an end by height, as a multiply area taken at a right angle to sides, as at actual length.

To Compute Volume of any Frustum Prism, whether Right or Oblique.-1 6 and 7.

RULE.—Multiply area of base by perpend distances between it and centre of gravity of or other end.

***TLE.—Area of base, a o, of frustum of a 1 or cylindrical prism, Fig. 6, is 15 inche to centre of gravity, c, is 12; what is i

2 == 120 cube ins.

Prismoids.*

To Compute Volume of a Prismoid.-Fig. 8.

RULE.—To sum of areas of the two ends add four times area of middle ection, parallel to them, and multiply this sum by one sixth of perpendicular height.

NOTE.—This is the general rule, and known as the Prismoidal Formula, and it applies equally to all figures of proportionate or dissimilar ends.

Or, $a + a' + 4 m \times \overline{h+6} = V$, a and a' representing areas of ends, and m area of middle section.

EXAMPLE. — What is volume of a rectangular prismoid, Fig. 8, 2 lengths and breadths, eg and gh, ab and bd, of two ends being $\gamma \times 6$ and 3×2 inches, and height 15 feet?

 $7 \times 6 + \overline{3 \times 2} = 42 + 6 = 48 =$ sum of areas of two ends; $7 + 3 \div 2 = 5 =$ length of middle section; $6 + 2 \div 2 = 4 =$ breadth of middle section; $5 \times 4 \times 4 = 80 =$ four times area of middle section.

Then
$$48 + 80 \times \frac{15 \times 12}{6} = 128 \times 30 = 3840$$
 cube ins.

Note 1.—Length and breadth of middle section are respectively equal to half sum of lengths and breadths of the two ends.

2.--Prismoids, alike to prisms, derive their designation from figure of their ends, as triangular, square, rectangular, pentagonal, etc.

When it is Irregular or Oblique and their ends are united by plane or curved surfaces, through which and every point of them, a right line may be drawn from one of the ends or parallel faces to the other.—Figs. Q. 10, and 11.

EXMPLE.—Areas of ends, a c and a r s, Fig. 10, a b c d, and i m n u, Fig. 11, and i b c a and v w s, Fig. 9, are each 10 and 30 inches, that of their middle section 9, and their perpendicular heights 18; what is their volume?

 $10+30+\frac{1}{20}\times 4=120=$ sum of areas of ends + 4 times middle section. And $10\times 10^{18}=360$ cube ins.

Wedge.

To Compute Volume of a Wedge.-Fig. 12.

RULE.—To length of edge add twice length of back; multiply this sur y perpendicular height, and then by breadth of back, and take one six forednet.

L 12.

Or,
$$(l + \overline{l' \times 2} \times h b) \div 6 = V$$
.

EXAMPLE.—Length of edge of a wedge, eg, is 20 inches, bacl a b c d, is 20 by 2, and its height, ef, 20; what is its volume? $20 + \overline{20 \times 2} = 60 = length$ of edge added to twice length back; $60 \times 20 \times 2 = 2400 = above$ sum multiplied hu haind that product by breadth of back.

Then $2400 \div 6 = 400$ cube in

Note. — When a wedge is a true prism, is a valgue of it is equal to area of an end multiplied by its

for er embankment of a road, when terminated by parallel cro

To Compute Frustum of a Wedge.-Fig. 13.

Fig. 13.

RULE.—To sum of areas of both ends, add 4 times area of section parallel to and equally distant from both ends, and multiply sum by one sixth of length.

Or,
$$A+a+4a' \times \frac{l}{6} = V$$
.

EXAMPLE.—Lengths of edge and back of a frustum of a wedge, ab and cd are 20×1 and 20×2 ins., and height or is 20 ins.; what is its volume?

$$\frac{20 \times 2 + 1}{2} \times 2 + 4 \times \left(20 \times \frac{2 + 1}{2}\right) \times \frac{20}{6} = 60 + 120 \times \frac{20}{6} = 6\infty$$
 cube ins.

Note.—When frustum is a true prism, as represented Fig. 13, volume of it is equal to mean area of ends multiplied by its length.

Regular Bodies (Polyhedrons).

Definition.—A regular body is a solid contained under a certain number of similar and equal plane faces, * all of which are equal regular polygons.

Note 1.—Whole number of regular bodies which can possibly be formed is five.

2.—A sphere may always be inscribed within, and may always be circumscribed about a regular body or polyhedron, which will have a common centre.

Fig. 14.

rig. 15.

- z. Tetrahedron, or Pyramid, Fig. 14, which has four triangular faces.
- 2. Hexahedron, or Cube, Fig. 1, which has six square faces.
- 3. Octahedron, Fig. 15, which has eight triangular faces.
- 4. Dodecahedron, Fig. 16, which has twelve pentagonal faces.
- 5. Icosahedron, Fig. 17, which has twenty triangular faces.

To Compute Elements of any Regular Body.-Figs. 14, 15, 16, and 17.

To Compute Radius of a Sphere that will Circumscribe a given Regular Body, or that may be Inscribed within it.

When Linear Edge is given. RULE.—Multiply it by multiplier opposite to body in columns A and B in following Table, under head of element required.

.966 $\infty 2 = 1.732$ 0.4 inches = radius of circumscribing sphere; $2 \times .5 = 1$ inch= f inscribed sphere.

• Surface is given. Rule.—Multiply square root of it by multiplier body in columns C and D in following Table, under head of

Rule. — Multiply cube root of it by multiplier

R. and W in following Table, under head of ele-

en one of the Radii of Circumscribing or Inscribed Sphere alone is rel, the other being given. Rule.—Multiply given radius by multiplier ite to body in columns G and H in Table, page 364, under head of radius.

To Compute Linear Edge.

en Radius of Circumscribing or Inscribed Sphere is given. Rule.—ply radius given by multiplier opposite to body in columns I and K in page 364.

en Surface is given. Rule.—Multiply square root of it by multiplier te to body in column L in Table, page 364.

en Volume is given. RULE. — Multiply cube root of it by multiplier ite to body in column M in Table, page 364.

To Compute Surface.

en Radius of Circumscribing Sphere is given. RULE.—Multiply square ius by multiplier opposite to body in column N in Table, page 364.

en Radius of Inscribed Sphere is given. Rule.—Multiply square of by multiplier opposite to body in column O in Table, page 364.

en Linear Edge is given. RULE.—Multiply square of edge by multipoposite to body in column P in Table, page 364.

m Volume is given. Rule.—Extract cube root of volume, and multiuare of root by multiplier opposite to body in column Q in Table, 64.

To Compute Volume.

en Linear Edge is given. Rule.—Cube linear edge, and multiply it ltiplier opposite to body in column R in Table, page 364.

n Radius of Circumscribing Sphere is given. Rule.—Multiply cube lius given by multiplier opposite to body in column S in Table, 164.

m Radius of Inscribed Sphere is given. Rule. — Multiply cube of given by multiplier opposite to body in column T in Table, page 364. In Surface is given. Rule.—Cube surface given, extract square root, ultiply the root by multiplier opposite to body in column U in Table, 564.

Cylinder.

To Compute Volume of a Solid Cylinder.-Fig. 18.

Rule.-Multiply area of base by height.

Example. — Diameter of a cylinder, bc, is 3 feet, and its length, ab, 7 feet; what is its volume?

Area of 3 feet = 7.068. Then 7.068 \times 7 = 49.476 cube feet.

To Compute Volume of a Hollow Cylinder. E.—Subtract volume of internal cylinder from that of cylinder.

Cone.

To Compute Volume of RULE.—Multiply area of ba and take one third of product Example.—Diameter, a b, of b heighly ce, 32.5 inches; what is.

e.—Fig. 16 •• height_a

			inedron ihedron ihedron Dodeenhedron Icosahedron	FIGURE.	Tetrahedron
	A.	Radius of Circum- scribing Sphere. By Linear Edge.	.61237 .86602 .70711 1.40126	Linear Edge, P. By Surface, P.	.75984
Units for Elements of the Regular Bodies.	B.	Radius of Inscribed Sphere. By Linear Edge.	.5 .5 .408 25 1.113 52 .755 76	Linear Edge.	2.039 55 I
	ť	Radius of Circum- scribing Sphere. By Surface.	.4653 .35355 .37992 .30839 .32318	Surface. By Radius of Cir. Scumscribing Sphere.	4.6188
	D.	Radius of Inscribed Sphere. By Surface.	.1551 .20412 .21935 .24507 .25681	Surface. By Radius of In- scribed Sphere.	41.56922
	ā	Fadius of Circum- scribing Sphere, By Volume.	1.248 96 .866 02 .908 06 .710 75	Surface. Hy Linear Edge,	1.73205
	F,	Radius of Inscribed Sphere, By Volume,	41634 .5 .52456 .5648 .5648	Surface.	7.205 62
odies.	6.	Radius of Inscribed Sphere. By Circumscribing Sphere.	.333 33 .577 35 .577 35 .794 65	Volume. Fdge.	.11785
	H.	Radius of Circum- scribing Sphere, By Inscribed Sphere,	3 1.732 05 1.732 05 1.258 41 1.258 41	Volume. By Radius of Cir. camscribing Sphere.	.5132
	1	Linear Edge. By Radius of Cir- cumscribing Sphere,	1.632 99 1.154 7 1.414 21 .713 64 1.051 46	Volume. Fy Radius of In- scribed Sphere.	13.85641
	K.	Linear Edge. By Radius of In- scribed Sphere.	4.898 98 2.449 49 .898 06 1.323 17	Volume, Sy Surface,	0517

lo Compute Volume of Frustum of a Cone.-Fig. 20.

RULE.—Add together squares of the diameters or circumferences of greater ad lesser ends and product of the two diameters or circumferences; mulply their sum respectively by .7854 or .07958, and this product by height; en divide this last product by 3.

Or,
$$d^2 + d'^2 + \overline{d \times d'} \times .7854 h \div 3 = V$$
.
Or, $c^2 + c'^2 + \overline{c \times c'} \times .07058 h \div 3 = V$.

Example. — What is volume of frustum of a cone, diameters of greater and lesser ends, b d, a c, being 5 and 3 feet, and height, e o, q?

 $5^2+3^2+\overline{5\times3}=49$; and $49\times.7854=38.4846=above$ sums by .7854; and $\frac{38.4846\times9}{2}=115.4538$ cube feet.

Pyramid.

Note.—Volume of a pyramid is equal to one third of that of a prism having equal ases and altitude.

To Compute Volume of a Pyramid.-Fig. 21.

RULE.—Multiply area of base by perpendicular height, and take one third of product.

Example.—What is the volume of a hexagonal pyramid, Fig. 21, a side, ab, being 40 feet, and its height, ec, 60?

 $40^2 \times 2.5981$ (tabular multiplier, page 339) = 4156.96 = area of base.

$$\frac{415696 \times 60}{3}$$
 = 83139.2 cube feet.

lo Compute Volume of Frustum of a Pyramid.-Fig. 22.

RULE.—Add together squares of sides of greater and lesser ends, and roduct of these two sides; multiply sum by tabular multiplier for areas in able, page 339 and this product by height; then divide last product by 3.

Or,
$$s^2 + s'^2 + \overline{s \times s'} \times tab$$
. mult. $\times h \div 3 = V$.

When Areas of Ends are known, or can be obtained without reference to tabular multiplier, use following.

Or,
$$a+a'+\sqrt{a\times a'}\times h\div_3=V$$
.

EXAMPLE.—What is the volume of the frustum of a hexagonal pyramid, Fig. 22, the lengths of the sides of the greater and lesser ends, ab, cd, being respectively 3.75 and 2.5 feet, and its perpendicular height, eo, 7.5?

 $3.75^2 + 2.5^2 = 20.3125 = sum of squares of sides of greater and lesser ends; 20.3125 + 3.75 \times 2.5 = 29.6875 = above sum added product of the two sides; 29.6875 \times 2.5981 \times 7.5 = 578.48 \times t mult., and again by the height, which, <math>\div 3 = 192.83$ cube feet.

When Ends of a Pyramid are not those of a Regular Polygon, or wireas of Ends are given

RULE.—Add together areas of the two ends and square root of their pre ti multiply sum by height, and take one third of pre

Or,
$$a + a' + \sqrt{a a'} \times h \div 3 = V$$
.

EXAMPLE.—What is the volume of an irregular-sided from of the two ends being 22 and 88 inches, and the leng in 188 = 110 = sum of areas of ends; 22 × 88 = 1936, 8

indicate of areas. Then
$$\frac{110+44\times20}{3}$$
 = 1026.66 cm.

Spherical Pyramid.

A Spherical Pyramid is that part of a sphere included within three or more adjoining plane surfaces meeting at centre of sphere. The spherical polygon defined by these plane surfaces of pyramid is termed the base, and the lateral faces are sectors of circles.

Note.—To compute the Elements of Spherical Pyramids, see Docharty and Hackley's Geometry.

Cylindrical Ungulas.

DEFINITION.—Cylindrical Ungulas are frusta of cylinders. Conical Ungulas are frusta of cones.

To Compute Volume of a Cylindrical Ungula.—Fig. 23.

1. When Section is parallel to Axis of Cylinder. Rule.—Multiply are

Fig. 23. of base by height of the cylinder.

Or,
$$ah = V$$
.

Example.—Area of base, def, Fig. 23, of a cylindrical ungula is 15,5 inches, and its height, ae, 20; what is its volume?

$$15.5 \times 20 = 310$$
 cube ins.

2. When Section passes Obliquely through opposite sides of Cylinder, Fig. 24. RULE.—Multiply area of base of cylinder by half sum of greatest and least lengths of ungula.

Fig. 24.

Or,
$$a \times \overline{l+l'} \div 2 = V$$
.

Example.—Area of base, c d, of a cylindrical ungula, Fig. 24, is 25 inches, and the greater and less heights of it, a c, b d, are 15 and 17; what is its volume?

$$25 \times \frac{15+17}{2} = 400$$
 cube ins.

3. When Section passes through Base of Cylinder and one of its Sides, and Versed Sine does not exceed Sine, or the Base is equal to or less than a Semicircle, Fig. 25. RULE.—From two thirds of cube of sine of half are of base subtract product of area of base and cosine of half arc. Multiply difference thus found by quotient arising from height divided by versed sine.

Or,
$$\frac{2 \sin 3}{3} - \overline{ac} \times \frac{h}{v. \sin n} = V$$
, v. sin. representing versed sine.

EXAMPLE.—Sine, a d, of half arc, d e f, of base of an ungula, Fig. 25, c is 5 inches, diameter of cylinder is 10, and height, e g, of ungula 10; what is its volume?

Two thirds of $5^3 = 83.333 = two thirds of cube of sine. As versely the and radius of base are equal, cosine is <math>0$. Hence, area of base \times cosine = 0, and $83.333 - 0 \times 10 \div 5 = 166.666 cube inse.$

4. When Section passes through Base of Cylinder, and Versed Sine exceeds Radius, or when the Base exceeds a Semicircle, Fig. 26. RULE.—To two thirds of cube of sine of half are of base add product of area of base and cosine. Multiply sum thus found by quotient arising from height, divided med sine.

Or,
$$\frac{2 \sin 3}{3} + \overline{a c} \times \frac{h}{v. \sin n} = V.$$

14 of 123=1152=two thirds of cube of sine of half are of 123-178; 1152+331.78 × 16-12.5=2313.33 = 19 of sine of half the are of base, and product of 125 of

5. When Section passes Obliquely through both Ends of Cylinder, Fig. 27. RULE.—Conceive section to be continued till it meets side of cylinder produced; then, as the difference of versed sines of the arcs of the two ends of ungula is to the versed sine of arc of less end, so is the height of cylinder to the part of side produced.

Ascertain volume of each of the ungulas by Rules 3 and 4, and take their lifference.

Fig. 27.

Or, v. sin.' h

or, v. sin. v. sin.' = h', v. sin. and v. sin.' representing versed sines of arcs of the two ends, h height of cylinder, and h' height of part produced

EXAMPLE.—Versed sines, ae, do, and sines, e and o, of arcs of two ends of an ungula, Fig. 27, are assumed to be respectively 8.5 and 25, and 11.5 and o inches, length of ungula, bo, within cylinder, cut from one having 25 inches diameter, do, is 20 inches; what is height of ungula produced beyond cylinder, and what is volume of it?

 $25 \sim 8.5$: 8.5 :: 20 : 10.303 = height of ungula produced beyond cylinder.

Greater ungula, sine o being 0, versed sine = the diameter. Base of ungula being a circle of 25 inches diameter, area = 490.875. Versed sine and diameter of base being equal (25), sine = 0. 490.875 \times 25 \sim $\frac{25}{2}$ = 6135.9375 = product of area of base and cosine, or excess of versed sine over sine of base. 30.303 \div 25 = 1.212 12 = quodient of height \div versed sine.

Then $6135.9375 \times 1.21212 = 7437.4926$ cube inches; and by Rules 3 and 4, volumes of less and greater ungulas = 515.444, and 6922.0486 = 7437.4926 cube inches.

Sphere.

DEFINITION.—A solid, surface of which is at a uniform distance from the centre.

Ng. 28.

To Compute Volume of a Sphere.-Fig. 28.

RULE.—Multiply cube of diameter by .5236.

Or, $d^3 \times .5_{236} = V$, d representing diameter. Example.—What is volume of a sphere, Fig. 28, its diameter, a b, being 10 inches?

 $10^3 = 1000$, and $1000 \times .5236 = 523.6$ cube ins.

To Compute Volume of a Hollow Sphere. **RULE.**—Subtract volume of internal space from that of sphere, Or, V - v = volume.

Segment of a Sphere.

DEFINITION. -A section of a sphere.

Ocompute Volume of a Segment of a Sphere.—Fig. 2:
RULE 1.—To three times square of radius of its base add square of ight; multiply this sum by height, and product by .5236.

Or,
$$3r^2 + h^2 h \times .5236 = V$$
.
2.—From three times diameter of sphere subtract tw^i height of segment; multiply this remain height, and product by .5236.

Or, $3d-2hh^2 \times .5236 =$ EXAMPLE.—Segment of a sphere. Fig. 20.

EXAMPLE.—Segment of a sphere, Fig. 29, inches for its base, and a height, b o, of 4;

 $7^2 \times 3 + 4^2 = 163 =$ the sum of three times light; $163 \times 4 \times .5236 = 331.3872$ cube ins.

Spherical Zone (or Frustum of a Sphere).

DEFINITION —Part of a sphere included between two parallel chords.

To Compute Volume of a Spherical Zone.-Fig. 30.

RULE.—To sum of squares of the radii of the two ends add one third square of height of zone; multiply this sum by height, and again by 1375

Or, $r^2 + r'^2 + h^2 \div 3 h \times 1.5708 = V$.

Example.—What is the volume of a spherical zone, Fig. greater and less diameters, fh and de, being 20 and 15 ladiand distance between them, or height of zone, eg, being 10 is $10^2 + 7.5^2 = 156.25 = sum$ of squares of radii of the two oil $156.25 + 10^2 = 3 = 189.58 = above$ sum added to one third square of the height.

Then 189.58 × 10 × 1.5708 = 2977.9226 cube ins.

Cylindrical Ring.

DEFINITION .- A ring formed by the curvature of a cylinder.

To Compute Volume of a Cylindrical Ring.—Fig. 31
RULE.—To diameter of body of ring add inner diameter of ring; multiply sum by square of diameter of body, and product by 2.4674.

Fig. 31.

Or, $d+d'd^2$ 2.4674 = V.

Or, a l = V, a representing area of section of body, and t last of body.

Example.—What is volume of an anchor ring, Fig. 3r, diamond of metal, a b, being 3 inches, and inner diameter of ring, b c, st 3+8 × 3 = 99 = product of sum of diameters and square of ameter of body of ring.

Then 99 × 2.4674 = 244.2726 cube ins.

Spheroids (Ellipsoids).

DEFINITION.—Solids generated by the revolution of a semi-ellipse about one of diameters. When the revolution is about the transverse diameter they are tem-Prolate, and when about the conjugate they are Oblate.

To Compute Volume of a Spheroid.—Fig. 32.

RULE.—Multiply square of revolving axis by fixed axis, and this prob
by .5236.

Or, $a^2 a' \times .5236 = V$, a and a' representing revolving a fixed axes.

Or, $4\div 3 \times 3.1416 \, r^2 \, r' = V$, r and r' representing semi = Example.—In a prolate spheroid, Fig. 32, fixed axis, at 14 inches, and revolving axis, c.d., 10; what is its volume $10^2 \times 14 = 1400 = product of square of revolving axis fixed axis. Then <math>1400 \times .5236 = 733.04$ cube ins.

Note. - Volume of a spheroid is equal to % of a cylinder that will circumscribe

Segments of Spheroids.

To Compute Volume of Segment of a Spheroid.-Fig. 33.

When Base, ef, is Circular, or parallel to revolving Axis, as cd, Fig. 3 or as ef to Axis ab, Fig. 34. Rule.—Multiply fixed axis by 3, height segment by 2, and subtract one product from the other; multiply remainds by square of height of segment, and product by \$236. Then, as square fixed axis is to square of revolving axis, so is last product to volume a segment.

Or,
$$\frac{3 a - 2 h h^2 \times .5236 \times a'^2}{5 a'} = V$$
.

EXAMPLE.—In a prolate spheroid, Fig. 23, fixed or transby verse aris, a b, its root inches, revolving or conjugate, c d, 60, and height of segment, a c, 10; what is its volume?

100 × 3 - 10 × 2 = 280 = twice the height of segment subtracted from three times fixed axis; 280 × 19² × .5256 == product of above remainder, square of height, and .5236. Then 56, 8: 527.888 cube tus.

ef, is Elliptical, or perpendicular to revolving Axis, a b, Fig. to Axis c d, Fig. 34. Rule.—Multiply fixed axis by 3, segment by 2, and subtract one from the other; multiply requare of height of segment, and product by .5236. Then, as o revolving axis, so is last product to volume of segment.

Or,
$$\frac{3 e' - 2 k k^2 \times .5236 \times e}{a'} = V$$
.

EXAMPLE.—Diameters of an oblate spheroid, Fig. 34, are zoo and 60 inches, and height of a segment thereof is zz; what is its volume?

100×3 — 18×3 = 276 = twice the height of the segment subtracted from three times the revolving ants; 276 × 128 × .5236 : product of above remainder, the square of height, and .5236. : 12080,954: 12485.975 cube the.

Frusta of Spheroids.

te Volume of Middle Frustum of a Spheroid.— Fig. 35.

e f and g h, are Circular, or parallel to revolving Axis, as c d, b, Fig. 36. RULE.—To twice square of revolving axis add neter of either end; multiply this sum by length of frustum, v.2618.

Or,
$$a'^2+d^2\times l.2618=V$$
.

EXAMPLE. — Middle frustum of a prolate spheroid, i o, Fig. 35, is 36 inches in length, diameter of it being, in middle, c d, 50, and at its ends, c f and g h, 40; what is its volume f

 $50^2 \times 2 + 40^2 = 6600 =$ sum of twice square of middle diameter added to square of diameter of ends. Then $6600 \times 36 \times 2618 = 62203.68$ cube ins.

ef and g h, are Elliptical, or perpendicular to revolving Axis, ef and g h to Axis, c d, Fig. 36. RULE.—To twice product and conjugate diameters of middle section, add product of 1 conjugate of either end; multiply this sum by length of product by .2618.

Or,
$$d d' \times 2 + \overline{d d'} l \times .2618 = V$$
.

Example.—In middle frustum of a prolate spheroid, Fig. 36, diameters of its middle section are 50 and 30 inches, its ends 40 and 24, and its length, 0 i, 18; what is its volume?

 $50 \times 30 \times 2 = 3000 = twice product of transverse and com-$

jugate diameters; 3000 + 40 × 24 = 3060 = swm of above product and product of transverse and conjugate diameters of ends.

 $^{1 \}times .2618 = 18661.104$ cube ins.

Links.

DEFINITION. - Elongated or Elliptical rings.

Elongated or Elliptical Links.

To Compute Volume of an Elongated or Elliptical L
-Figs. 37 and 38.

RULE.—Multiply area of a section of the body of link by its leng circumference of its axis.

Or, a l or c= V.

Note.—By Rule, page 353, Circumference or length of axis of an Elongate = the sum of 3.7416 times sum of less diameter added to thickness of rin product of twice remainder of less diameter subtracted from greater.

Also, Circumference or length of axis of an Elliptical ring = square root of sum of diameters added to thickness of ring or axes squared × 3.1416.

Fig. 37. EXAMPLE.—Elongated link of a chain, Fig. 37, is 1 inch in dis of body, a b, and its inner diameters, b e and e f, are 10 and 2.5 is what is its volume?

Area of 1 inch = .7854; 2.5 + 1 \times 3.1416 = 10.9956 = 3.1416 time of less diameter and thickness of ring = length of axis of ends; 10 \times 2 = 15 = twice remainder of the less diameter subtracted from g = length of sides of body.

Then 10.9956+15=25.9956 = length of axis of length.

Hence .7854 × 25.9956 = 20.417 cube ins.

2.—Elliptical link of a chain, Fig. 38, is of the same dimensions as preceding; what is its volume?

 $\frac{2}{2.5+1+10+1} = 133.25 = diameter of axes squared; \sqrt{\frac{133.25}{2}} 3.1416$ = 25.643 = square root of half sum of diameters squared × 3.1416 = cir.

Then 25.643 X .7854 = 20.14 cube ins.

cumference of axis of ring. Area of 1 inch = .7854.

Spherical Sector.

DEFINITION.—A figure generated by the revolution of a sector of a circle at straight line through the vertex of the sector as an axis.

Note.—Are of sector generates surface of a zone, termed base of sector sphere, and the radii generate surfaces of two cones, having a vertex in conwith the sector at the centre of the sphere.

To Compute Volume of a Spherical Sector.-Fig.

RULE.—Multiply external surface of zone, which is base of sector, by third of the radius of sphere.

Or, $ar \div 3 = V$, a representing area of base.

NOTE.—Surface of a spherical sector = sum of surface of zone and surfaces two cones.

Fig. 39.

Example.—What is volume of a spherical sector, ah, height of zone, ah c a ing ah, ah of sphere 15.

12 × 94.248 = 1130.976 = height of zone × circumfo of sphere = external surface of zone (see page 350).

1130 976 \times 15 \div 3 = surface \times one third of rolling 5654 88 cube ins.

Spindles.

DEFINITION.—Figures generated by revolution of a plane area bounded by a convenient the curve is revolved about a chord perpendicular to its axis or about double ordinate, and they are designated by the name of arc from which designerated, as Circular, Elliptic, Parabolic, etc.

Circular Spindle.

Compute Volume of a Circular Spindle.-Fig. 40.

E.—Multiply central distance by half area of revolving segment; t product from one third of cube of half length, and multiply reir by 12.5664.

$$\frac{\div 2)^3}{3} - \left(c \times \frac{a}{2}\right) \times 12.5664 = V$$
, a representing area of revolving segment.

Example.—What is volume of a circular spindle, Fig. 40, when central distance, o.e., is 7.071 of 7 inches, length, f.c., 14.14213, and radius, o.c., 10?

Note.—Area of revolving segment; fe, being = side of square that can be inscribed in a circle of 20, is $20^2 \times .7854 - 14.14213^2 \div 4 = 28.54$ area.

7.071 067 \times 28.54 \div 2=100.9041 = central distance \times half area of revolving segment; $\frac{7.07167^3}{-100.9041}$ = 16.947 = remainder of

roduct and one third of cube of half length.

Then $16.497 \times 12.5664 = 212.0628$ cube ins.

Frustum or Zone of a Circular Spindle.*
ompute Volume of a Frustum or Zone of a Circular
Spindle.-Fig. 41.

E.—From square of half length of whole spindle take one third of of half length of frustum, and multiply remainder by said half length turn; multiply central distance by revolving area which generates stum; subtract this product from former, and multiply remainder by

$$\frac{1}{2} - \frac{1}{2} - \frac{1}{3} \times \frac{1}{2} - (c \times a) \times 6.2832 = V, l \text{ and } l' \text{ representing lengths of and of frustum, and a area of revolving section of frustum.}$$

.—Revolving area of frustum can be obtained by dividing its plane into a t of a circle and a parallelogram.

Example.—Length of middle frustum of a circular spindle, ic, Fig. 41, is 6 inches; length of spindle, fg, is 8; central distance, oc, is 3; and area of revolving or generating segment is 10; what is volume of frustum?

 $(3 \div 2)^2 - \frac{(6 \div 2)^2}{3} = 13$, and $13 \times 3 = 39 = product$ of $\frac{1}{2}$ length of frustum, and remainder of one third square of half length of frustum subtracted from square of half length of

; 39 $-3 \times 10 = 9 =$ product of central distance and area of segment subtracted receding product.

Then $9 \times 6.2832 = 56.5488$ cube ins.

Segment of a Circular Spindle.

Compute Volume of a Segment of a Circular

Spindle.—Fig. 42.

E.—Subtract length of segment from half length of spindle; double

der, and ascertain volume of a middle frustum of this length. Subesult from volume of whole spindle, and halve remainder.†

 $1-c \div 2 = V$, C and c representing volume of spindle and middle frustum.

le frustum of a Circular Spindle is one of the various forms of casks, ule is applicable to segment of any Spindle or any Conoid, volume of the figure and frusta obtained.

Links.

DEFINITION.-Elongated or Elliptical rings.

Elongated or Elliptical Links.

To Compute Volume of an Elongated or Elliptical Link.
-Figs. 37 and 38.

RULE.—Multiply area of a section of the body of link by its length, or circumference of its axis.

Or, a l or c = V.

Note.—By Rule, page 353, Circumference or length of axis of an Elongated link = the sum of 3.1416 times sum of less diameter added to thickness of ring, and product of twice remainder of less diameter subtracted from greater.

Also, Circumference or length of axis of an Elliptical ring = square root of half sum of diameters added to thickness of ring or axes squared × 3.1416.

Fig. 37. Example.—Elongated link of a chain, Fig. 37, is r inch in diameter of body, a b, and its innor diameters, b c and e f, are 10 and 2.5 inches; what is its volume?

Area of x inch = .7854; $2.5 + 1 \times 3.1416 = 10.9956 = 3.1416$ times sum of less diameter and thickness of ring = length of axis of ends; $10 - 2.5 \times 2 = 15 = t$ whice remainder of the less diameter subtracted from greater = length of sides of body.

Then 10.9956 + 15 = 25.9956 = length of axis of length.

Hence $.7854 \times 25.9956 = 20.417$ cube ins.

2.—Elliptical link of a chain, Fig. 38, is of the same dimensions as preceding; what is its volume?

 $\frac{2}{2.5+1} + \frac{2}{10+1} = 133.25 = \text{diameter of axes squared }; \sqrt{\frac{133.25}{2}} \text{ 3.1416}$ = 25.643 = square root of half sum of diameters squared \times 3.1416 = cir.

Then $25.643 \times .7854 = 20.14$ cube ins.

cumference of axis of ring. Area of 1 inch = .7854.

Spherical Sector.

DEFINITION.—A figure generated by the revolution of a sector of a circle about a straight line through the vertex of the sector as an axis.

Note.—Arc of sector generates surface of a zone, termed base of sector of a sphere, and the radii generate surfaces of two cones, having a vertex in common with the sector at the centre of the subrer.

To Compute Volume of a Spherical Sector.—Fig. 39.

RULE.—Multiply external surface of zone, which is base of sector, by 600 third of the radius of sphere.

Or, $a \overrightarrow{r+3} = V$, a representing area of base.

-qurface of a spherical sector = sum of surface of zone and surfaces of the

EXAMPLE.—What is volume of a spherical sector, Fig. 39, generated by sector, c a b, height of zone, a b c d, being a o, 12 inches, and radius, g h, of sphere 15?

12 × 94.248 = 1130.976 = height of zone × circumferent of sphere = external surface of zone (see page 350).

1130 976 \times 15 \div 3 = surface \times one third of radius = 5654 88 cube ins.

Spindles.

"lane area bounded by a curva"
"lar to its axis or about #
" are from which they #

Circular Spindle.

npute Volume of a Circular Spindle .- Fig. 40.

Multiply central distance by half area of revolving segment; roduct from one third of cube of half length, and multiply re-y 12.5664.

$$\frac{1^3}{1} - \left(c \times \frac{a}{2}\right) \times 12.5664 = V$$
, a representing area of revolving segment.

EXAMPLE.—What is volume of a circular spindle, Fig. 40, when central distance, oc, is 7.071 of 7 inches, length, fc, 14.14213, and radius, oc, 10?

Note.—Area of revolving segment; fe, being = side of square that can be inscribed in a circle of 20, is $20^2 \times .7854 - 14.14213^2 \div 4 = 28.54$ area.

7.071 067 \times 28.54 \div 2 \equiv 100.9041 \equiv central distance \times half area of revolving segment; $\frac{7.07167^3}{}$ = 100.9041 \equiv 16.947 \equiv remainder of

ict and one third of cube of half length.

Then $16.497 \times 12.5664 = 212.9628$ cube ins.

1stum or Zone of a Circular Spindle.*

pute Volume of a Frustum or Zone of a Circular Spindle.-Fig. 41.

From square of half length of whole spindle take one third of all length of frustum, and multiply remainder by said half length; multiply central distance by revolving area which generates n; subtract this product from former, and multiply remainder by

$$\frac{l^2-2}{3} \times \frac{l^2}{2} - (c \times a) \times 6.2832 = V, l \text{ and } l^2 \text{ representing lengths of }$$
of frustum, and a area of revolving section of frustum.

Revolving area of frustum can be obtained by dividing its plane into a a circle and a parallelogram.

Example.—Length of middle frustum of a circular spindle, i.e. Fig. 41, is 6 inches; length of spindle, fg, is 8; central distance, o, is 3; and area of revolving or generating segment is 10; what is volume of frustum?

 $(8 \div 2)^2 - \frac{(6 \div 2)^2}{3} = 13$, and $13 \times 3 = 39 =$ product of $\frac{1}{2}$ length of frustum, and remainder of one third square of half length of frustum, subtracted from square of half length of

tength of fruitum subtracted from square of half tength of 3 x 10 = 9 = product of central distance and area of segment subtract ling product.

Then $9 \times 6.2832 = 56.5488$ cube ins.

Segment of a Circular Spindle.

ompute Volume of a Segment Spindle.-Fig. 42.

Subtract length of segment from half let and ascertain volume of a middle frustu t from volume of whole spindle, and halve 1+2=V, C and c representing volume of spindue

nten of a Circular Spindle is one of the various forms of a

વ્યા

To Compute Volume of a Segment of a Parabolic Spindle.—Fig. 49.

RULE.—Add together square of diameter of base of segment and squar of double diameter in middle between base and vertex; multiply sum by height of segment, and product by .1309.

Fig. 49.

Or, $d^2 + d^{r/2} l \times .1300 = V$.

EXAMPLE—Segment of a parabolic spindle, Fig. 49, ha diameters, ef and g k, of 15 and 8.75 inches, and height ed, is 2.5; what is its volume?

 $15^2 + 8.75 \times 2 = 531.25 =$ sum of square of base and of double diameter in middle of segment. Then $531.25 \times 2! \times .1309 = 173.852$ cube ins.

Hyperbolic Spindle.

To Compute Volume of a Hyperbolic Spindle.-Fig. 50.

RULE.—To square of diameter add square of double diameter at on fourth of its length; multiply sum by length, and product by .1309.*

Fig. 50. a

$$0r, d^2 + \overline{2} d^2 l \times .1300 = V.$$

Example.—Length, ab, Fig. 50, of a hyperbolic spinds is 100 inches, and its diameters, cd and ef, are 150 and 110; what is its volume?

 $150^2 + \overline{110 \times 2} \times 109 = 7000000 = product$ of sum of squares of greatest diameter and of twice diameter at on fourth of length of spindle and length. Then $7000000 \times 1300 = 928081$ cube inches.

To Compute Volume of Middle Frustum of a Hyperbolic Spindle.—Fig. 51.

RULE.—Add together squares of greatest and least diameters and square of double diameter in middle between the two; multiply this sum by length and product by .1309.†

Fig. 51.

Or,
$$d^2 + d'^2 + (2 d'')^2 l \times .1300 = V$$
.

Example.—Diameters, ab and cd, of middle frustum of hyperbolic spindle, Fig. 51, are 150 and 110 inches: diameter, gh, 140; and length, ef, 50; what is its volume?

 $150^2 + 110^2 + 140 \times 2 = 113000 = sum of squares of greet and least diameters and of double middle diameter. The 113000 <math>\times$ 50 \times .1300 = 730 585 cube ins.

To Compute Volume of a Segment of a Hyperbolic Spindle.-Fig. 52.

> Add together square of diameter of base of segment and square diameter in middle between base and vertex; multiply sum by gment, and product by .1309.

Or, d2+d"2 1 x .1309 = V.

EXAMPLE. — Segment of a hyperbolic spindle, Fig. 52, had diameters, ef and gh, of 110 and 65 inches, and its length, ab 25; what is its volume?

*+65 × 2 = 29 000 = sum of squares of diameter of but uble middle diameter.

en agooo X 25 X .1309 = 94 902.5 cube ins.

llipsoid, Paraboloid, and Hyperboloid of Revolution* (Conoids).

DEFINITION.—Figures like to a cone, described by revolution of a conic section mund and at a right angle to plane of their fixed axes.

Ellipsoid of Revolution (Spheroid).

DEFINITION.—An ellipsoid of revolution is a semi-spheroid. (See page 368.)

Paraboloid of Revolution.

'o Compute Volume of a Paraboloid of Revolution.— Fig. 53.

RULE.—Multiply area of base by half height.

Or, $ah \div 2 = V$.

Note. —This rule will hold for any segment of paraboloid, whether base be perpendicular or oblique to axis of solid.

EXAMPLE.—Diameter, a b, of base of a paraboloid of revolution, Fig. 33, is 20 inches, and its height, dc, 20; what is its volume? Area of 20 inches diameter of base = 314.16. Then 314.16 \times 20 \div 2 = 314.16 cube ins.

Frustum of a Paraboloid of Revolution.

© Compute Volume of a Frustum of a Paraboloid of Revolution.—Fig. 54.

•

RULE. — Multiply sum of squares of diameters by height of frustum, and this product by .3927.

Or,
$$(d^2 + d'^2) h \times .39^{27} = V$$
.

EXAMPLE.—Diameters, a b and d c, of the base and vertex of frustum of a paraboloid of revolution, Fig. 54, are 20 and 27.5 inches, and its height, e, f, 12.6; what is its volume? 20° + 11.5° = 532.25 = sum of squares of diameters. Then

 $20^{\circ} + 11.5^{\circ} = 532.25 = 80m$ of squares of diameters. To $532.25 \times 12.6 \times .3927 = .633.5837$ cube ins.

Segment of a Paraboloid of Revolution.

> Compute Volume of Segment of a Paraboloid of Revolution.—Fig. 55.

RULE.-Multiply area of base by half height.

Or, $a \times \overline{h \div a} = V$.

NOTE.—This rule will hold for any segment of paraboloid, whether base be perpendicular or oblique to axis of solid.

EXAMPLE.—Diameter, a b, of the base of a segment of a paraboloid of revolution, Fig. 55, is 11 5 inches, and its height, ef, 1-7.4; what is its volume?

Area of 11.5 inches diameter of base = 103.869. Then 103.4

Hyperboloid of Revol

> Compute Volume of a Hyperbol —Fig. 56.

yperbol tion 56.

FULL.—To square of radius of base add square 0. by this sum by height, and product by .5236.

have been known as Conoids. For the definition or

Fig. 56.

Or, $r^2+d^2h \times .5236=V$, d representing middle diameter Example.—Base, a b, of a hyperboloid of revolution, Fig. 56, is 80 inches; middle diameter, c d, 66; and height, e f, 60; what is its volume?

 $80 \div 2 + 66^2 = 5956 =$ sum of square of radius of base and middle diam. Then $5956 \times 60 \times .5236 = 87113.7$ cube in

Segment of a Hyperboloid of Revolution.

To Compute Volume of Segment of a Hyperboloid of Revolution, as Fig. 56.

RULE.—To square of radius of base add square of middle diameter; multiply this sum by height, and product by .5236.

Or, $r^2 + d''^2 h \times .5236 = V$, r representing radius of base.

Example.—Radius, a e, of base of a segment of a hyperboloid of revolution, as Fig 56, is zz inches; its middle diameter, e d, is 30; and its height, e f, zs; what is volume?

 $_{21}^2 + _{30}^2 \times _{15} = _{20115} = product$ of sum of squares of radius of base and middle diameter multiplied by height. Then $_{20115} \times _{.5236} = _{10532.214}$ cube ins.

Frustum of a Hyperboloid of Revolution.

To Compute Volume of Frustum of a Hyperboloid of Revolution.—Fig. 57.

RULE.—Add together squares of greatest and least semi-diameters and square of diameter in middle of the two; multiply this sum by height, and product by .5236.

Or, $\left(\frac{d}{2}\right)^2 + \left(\frac{d'}{2}\right)^2 + d''^2 h \times .5236 = V$, d, d', and d'' representing several diameters

Fig. 57.

Example.—Frustum of a hyperboloid of revolution, Fig. 57, is in height, e i, 50 inches; diameters of greater and lesser ends, a b and c d, are 110 and 42; and that of middle diameter, g h, is 80; what is volume?

110 \div 2 = 55. and 42 \div 9 = 21. Hence $55^2 + 21^2 + 80^3$ = 9866 = sum of squares of semi-diameters of ends and of middle diam. Then $9866 \times 50 \times .5236 = 258 291.88$ cube ins.

Any Figure of Revolution.

To Compute Volume of any Figure of Revolution.-Fig. 58.

Rule.—Multiply area of generating surface by circumference described by its centre of gravity.

Or, a 2r p = V, r representing radius of centre of gravity.

ILLUSTRATION L.—If generating surface, ab c d, of cylinder, bc df, Fig. 58, is 5 inches in width and 10 in height, then will ab = 5 and bd = 10, and centre of gravity will be in 0, the radius of which is $ro = 5 \div 2 = 2.5$. Hence $10 \times 5 = 50 = arcs$ of generating surface.

Then $50 \times 2.5 \times 2 \times 3.1416 = 785.4 = area$ of generating surface \times circumference of its

tre of gravity = volume of cylinder.

sylinder to inches in diameter and to .7854 = 78.54, and 78.54 × 10 = 785.

• of a cone, Fig. 59, is ae = 10, de = 4 area of triangle $= 10 \times 5 \div 2 = 25$, = 6, and $e \cdot r$, by Rule, page 607, $d \cdot r$

3.—If generating surface of a sphere, Fig. 60, is abc, and acc = 10, abc will be $\left(\frac{10^2 \times .7854}{2}\right)$ = 39.27, centre of gravity of which is in 0, and by Rule, page 607, acc = 2.122.

Hence, 39.27 \times 2.122 \times 2 \times 3.1416 = 523.6 = area of generating surface \times circumference of its centre of gravity = volume of sphere.

Irregular Bodies.

To Compute Volume of an Irregular Body.

RULE.—Weigh it both in and out of fresh water, and note difference in s.; then, as 62.5* is to this difference, so is 1728† to number of cube inches a body.

Or, divide difference in lbs. by 62.5, and quotient will give volume in lbs feet.

Note.—If salt water is to be used, ascertained weight of a cube foot of it, or 64, is be used for 62.5.

Example.—An irregular-shaped body weighs z_5 lbs. in water, and g_0 out; what its volume in cube inches?

30-15=15=difference of weights in and out of water. 625: 15::1728: 414.72=volume in cube ins.

 $07, 15 \div 62.5 = .24$, and $.24 \times 1728 = 414.72 = volume in cube ins.$

CASK GAUGING.

Varieties of Casks.

To Compute Volume of a Cask.

1st Variety. Ordinary form of middle frustum of a Prolate Spheroid.
This class comprises all casks having a spherical outline of staves, as Rumpuschoons, Whiskop barrels, etc.

EVILE.—To twice square of bung diameter add square of head diameter; which this sum by length of the cask, and product by .2618, and it will ine volume in cube inches, which, being divided by 231, will give result in alone.

ad Variety. Middle frustum of a Parabolic Spindle.

This class comprises all casks in which curve of staves quickens at the chime, as Brandy casks and Provision barrels.

RULE.—To square of a head diameter add double square of bung diameters and from sum subtract 4 of square of difference of diameters; multiply insider by length, and product by .2618, which, being divided by 231, after volume in gallons.

Variety. Middle frustum of a Paraboloid.

-Bis class comprises all casks in which curve of staves quickens slightly s' bigs, as Wine casks.

To square of bung diameter add square of head diameter; my man by length, and product by .3927, which, being divided by 2; if the volume in gallons.

Wericky. Two equal frustums of Cones.

This class comprises all casks in which curve of staves quickens sharply a bigs, as Gin pipes.

Brie.

equare of difference of diameters to three tiply sum by length, and product by .06566.

inches, which, being divided by 231, will

EXAMPLE.—Bung and head diameters of a cask are 24 and 16 inches, and leng 36; what is its volume in gallons?

 $\overline{24-16} + (24+16)^2 \times 3 = 4864$, which $\times 36 = 175104$, and $175104 \times .06566$ 11 497.329, which $\div 231 = 49.77$ gallons.

Generally.

 $\overline{Dd + M^2}$.001 602 L = U. S. gallons, and .001 416 2 = Imperial gallons.

D, d, and M representing interior, head and bung diameters, and L length of a in inches.

To Ascertain Mean Diameter of a Cask.

RULE.—Subtract head diameter from bung diameter in inches, and m tiply difference by following units for the four varieties; add product head diameter, and sum will give mean diameter of varieties required.

st Variety	.7	3d Variety	. 56
2d Variety	.68	4th Variety	.52

Example.—Bung and head diameters of a cask of 1st variety are 24 and 20 in es; what is its mean diameter?

24 - 20 = 4, and $4 \times .7 = 2.8$, which, added to 20, = 22.8 ins.

ULLAGE CASKS.

To Compute Volume of Ullage Casks.

When a cask is only partly filled, it is termed an ullage cask, and is c sidered in two positions, viz., as lying on its side, when it is termed a δ ment Lying, or as standing on its end, when it is termed a Segment Standi

To Ullage a Lying Cask.

RULE.—Divide wet inches (depth of liquid) by bung diameter; find q tient in column of versed sines in table of circular segments, page 267,1 take its corresponding segment; multiply this segment by capacity of c in gallons, and product by 1.25 for ullage required.

EXAMPLE.—Capacity of a cask is 90 gallons, bung diameter being 32 inches; w is its volume at 8 inches depth?

 $8 \div 32 = .25$, tab. seg. of which is .153 55, which \times 90 = 13.8195, and again \times 1.2 17.2744 gallons.

To Ullage a Standing Cask.

RULE.—Add together square of diameter at surface of liquor, square head diameter, and square of double diameter taken in middle between two; multiply sum by wet inches, and product by .1309, and divide by: for result in gallous.

To Compute Volume of a Cask by Four Dimension

RULE.—Add together squares of bung and head diameters, and square double diameter taken in middle between bung and head; multiply the s by length of cask, and product by .1309, and divide this product by 231 result in gallons.

pute Volume of any Cask from Three Dime

d into one sum 30 times square of bung diameter, 25 tin diameter, and 26 times product of the two diameters; n language and 26 times product of the two diameters; n

and for description and us

CONIC SECTIONS.

A Cone is a figure described by revolution of a right-angled triangle bout one of its legs, or it is a solid having a circle for its base, and erminated in a vertex.

Conic Sections are figures made by a plane cutting a cone.

If a cone is cut by a plane through vertex and base, section will be a triangle, and if cut by a plane parallel to its base, section will be a circle.

 ${\it Axis}$ is line about which triangle revolves. ${\it Base}$ is circle which is described by evolving base of triangle.

a c b

· An Ellipse is a figure generated by an oblique plane cutting a cone above its base.

Transverse axis or diameter is longest right line that can be drawn in it, as a b, Fig. 1. Fig. 2.

Conjugate axis or diameter is a line drawn through centre of ellipse perpendicular to transverse axis, as c d.

A Parabola is a figure generated by a plane cutting a cone parallel to its side, as a b c, Fig. 2.

Axis is a right line drawn from vertex to middle of base, as b o.

Note.—A parabola has not a conjugate diameter.

Fig. 3.

A Hyperbola is a figure generated by a plane

cutting a cone at any angle with base greater than that of side of cone, as a b c, Fig. 3.

Transverse axis or diameter, ob, is that part of axis, eb, which, if continued, as at o, would join an opposite cone, ofr.

Conjugate axis or diameter is a right line drawn through centre, g, of transverse axis, and perpendicular to it.

Straight line through foci is indefinite transverse axis; that part of it between vertices of curves, as ob, is definite transverse axis. Its middle point, g, is centre of curve.

Eccentricity of a hyperbola is ratio obtained by dividing distance from centre to lither focus by semi-transverse axis.

Parameter is cord of curve drawn through focus at right angles to axis.

Asymptotes of a hyperbola are two right lines to which the curve continually apmaches, touches at an infinite distance but does not pass; they are prolongations if diagonals of rectangle constructed on extremes of the axes.

Two hyperbolas are conjugate when transverse axis of one is conjugate of the ther, and contrariwise.

General Definitions.

An Ordinate is a right line from any point of a curve to either of diametere and do, Fig. 4, and ab and df, are double ordinates; cb, Fig. 5, is an ord bd ab an abscissa.

An Abscissa is that part of diameter which is contained be vertex and an ordinate, as ce, go, Fig. 4, and a b,

Parameter of any diameter is equal to four times distance from focus to vertex of curve; parameter of axis is least possible, and is termed parameter of curve.

Parameter of curve of a conic section is ento chord of curve drawn through focus perper ular to axis.

Parameter of transverse axis is least, and is termed parameter of a conic section and foci are sufficient eleminary.

A Focus is a point on principal axis where double ordinate to axis, through p is equal to parameter, as e_i , $\hat{F}|_{i}$, $\hat{F}|_{i}$. It may be determined arithmetically thus: Divide square of ordinate by

It may be determined arithmetically thus: Divide square of ordinate by times abscissa, and quotient will give focal distances, as and s, in preceding fig. Fig. 6.

Directrix of a conic section is a right line at right angle.

it it

major axis, and it is in such a position that f:g::u:o.

Here a d, Fig. 6, is directrix, and o is offset to directrix.

Latus Rectum, or principal parameter, passes through a foit is a double ordinate, which is a third proportion to the a

Or. A: a: a: L

A and a representing major and minor axes. (See Hass Mensuration, page 232.)

A Conoid is a warped surface generated by a r line being moved in such a manner that it will to a straight line and curve, and continue parallel given plane. Straight line and curve are called rectrices, plane a plane directrix, and moving line generatrix.

Thus, let aba', Fig. 7, be a circle in a horizontal p and d projection of right lines perpendicular to a tital plane, r'be; if right lines, d, a, r, s, r'b, r'', and be moved so as to touch circle and right line d d ar constantly parallel to plane r'be, it will generate cc daba'd.

Radii vectores are lines drawn from the foci to any point in the curve; her radius vector is one of these lines.

Traced angle is angle formed by the radii vectores and the transverse diame

Ellipsoid, Paraboloid, and Hyperboloid of Revolution—Figures gener by the revolution of an ellipse, parabola, etc., around their axes. (See I suration of Surfaces and Solids, pages 357-75.)

Note 1.—All figures which can possibly be formed by cutting of a cone are t tioned in these definitions, and are five following—viz., a Triangle, a Circle, at lipse, a Parabola, and a Hyperbola; but last three only are termed Conic Section.

2.—In Parabola parameter of any diameter is a third proportional to abse and ordinate of any point of curve, abscissa and ordinate being referred to diameter and tangent at its vortex.

3.—In Ellipse and Hyperbola parameter of any diameter is a third proporti to diameter and its conjugate.

To Determine Parameter of an Ellipse or Hyperbol

RULE. — Divide product of conjugate diameter, multiplied by itself, by transverse, and quotient is equal to parameter.

In annexed Figs. 8 and 9, of an Ellipse and Hyperbola, transverse and conjugate c diameters, a b, c d, are each 30 and 20.

Then 30: 20: 20: 13.333 = parameter.

Parameter of curve $= \epsilon f$, a double ordinate passing through focus, ϵ .

scribe Ellipses. (See Geometry, page 226.)

Compute Terms of an Ellipse.

of an Ellipse are given, viz., Tran

To Compute Ordinate.

Transverse and Conjugate Diameters and Abscissa being given. RULE.—As tr verse diameter is to conjugate, so is square root of product of abscissa to ordi which divides them.

Fig. 10.

Example. — Transverse diameter, ab, of an ellipse, ro, is 25; conjugate, cd, ró; and abscissa, ai, 7; who length of ordinate, ie?

$$25-7=18$$
 less abscissa; $\sqrt{7} \times 18 = 11.225$.
Hence $25:16:11.225:7.184$ ordinate.

$$\sqrt{\frac{c^2 - \left(\frac{c x}{c}\right)^2}{}} = any \text{ ordinate, } c \text{ and } t \text{ represen}$$

semi-conjugate and transverse diameters, and s distance of ordinate from centr

To Compute Abscissæ.

Transverse and Conjugate Diameters and Ordinate being given. Rule.—As or gate diameter is to transverse, so is square root of difference of squares of ordinate and semi-conjugate to distance between ordinate and centre; and this distance ing added to, or subtracted from, semi-transverse, will give abscisse required.

EXAMPLE —Transverse diameter, a b, of an ellipse, Fig. 10, is 25; conjugate, 16; and ordinate, i.e. 7.184; what is abscissa, ib?

$$\sqrt{8^2-7.184^2}=3.519\,943$$
. Hence, as $16:25:3.52:5.5$.
Then $25\div 2=12.5$, and $12.5+5.5=18=0$ i, 3

To Compute Transverse Diameter.

Conjugate, Ordinate, and Abscissa being given. Rule.—To or from semi-or tate, according as great or less abscissa is used, add or subtract square root of ference of squares of ordinate and semi-conjugate. Then, as this sum or differ is to abscissa, so is conjugate to transverse.

EXAMPLE. — Conjugate diameter, c d, of an ellipse, Fig. 10, is 16; ordinate 2.184; and abscisse, b i, i g, 18 and 7; what is length of transverse diameter?

$$\sqrt{(16 \div 2)^2 - 7.184^2} = 3.52$$

16 + 2 + 3.52 : 18 : 16 : 25; 16 + 2 - 3.52 : 7 : 16 : 25 transverse diameter

To Compute Conjugate Diameter.

Transverse, Ordinate, and Abscissa being given. Rule.—As square root of I not of abscisse is to ordinate, so is transverse diameter to conjugate.

EXAMPLE.—Transverse diameter, a b, of an ellipse, Fig. 10, is 25; ordinate 7.184; and abscisse, b i and i a, 18 and 7; what is length of conjugate diameter

$$\sqrt{18 \times 7} = 11 \ 225$$
. Hence 11.225: 7.184: 25: 16 conjugate diameter.

To Compute Circumference of an Ellipse.

Rule. -- Multiply square root of half sum of the squares of two diameter 3.1416.

Example.—Transverse and conjugate diameters, $a \ b$ and $c \ d$, of an ellipse, Figure 24 and 20; what is its circumference?

$$\frac{84^8+20^2}{2}$$
 = 488, and $\sqrt{488}$ = 22.09. Hence 22.09 × 3.1416 = 69.398 circumfe

To Compute Area of an Ellipse.

RULE .—Multiply the diameters together, and the product by "REA. O can diameter by .7854, and the product by the other.

Example.—The transverse diameter of an ellipse, a b, Fig. ingate, c d, o; what is its area?

$$12 \times 9 \times .7854 = 84.8232$$
 area.

Nor. - Area of an ellipse is a mean proportional between

Area of circle of 40 = 1256.64; area of circle of 40 = 1256.64; area of circle of 20 = 314.16, mean of the two circles 12 factors the conjugate diameter of an ellipse of an area of 1 ming 40, is 25 feet, as 40 × 25 × .7854 = 785.4 ag. ins.

To Compute Transverse Diameter.

Conjugate, Ordinate, and an Abscissa being given. Rule. - Add square of o to square of semi-conjugate, and extract square root of their sum.

Take sum or difference of semi-conjugate and this root, according as gre

lesser abscissa is used. Then, as square of ordinate is to product of absciconjugate, so is sum or difference above ascertained to transverse diameter re

Nork. - When the greater abscissa is used, the difference is taken, as

Example.—Conjugate diameter, df, of a hyperbola, Fig. 15, is 72; ordin 48; and lesser abscissa, ae, 40; what is length of transverse diameter, at?

$$\sqrt{48^2 + (72 \div 2)^2} = 60$$
, and $60 + 72 \div 2 = 96$ lesser abscissa, and $40 \times 72 =$ Hence, $48^2 : 2880 : 96 : 120$ transverse diameter.

To Compute Length of any Arc of a Hyperbola, mencing at Vertex.

RULE.-To 19 times transverse diameter add 21 times parameter of axis. To 9 times transverse diameter add 21 times parameter, and multiply these sums respectively by quotient of lesser abscissa divided by transverse. ameter.

To each of products thus ascertained add 15 times parameter, and divide by latter: then this quotient, multiplied by ordinate will give length of arc.

Note. - To Compute Parameter, divide square of conjugate by transverse eter.

Fig. 16. EXAMPLE.—In hyperbola, a b c, Fig. 16, transverse diameter conjugate. 72, ordinate, e c, 48, and lesser abscissa, a e, 40; v length of arc, a b? $\frac{72^2}{120}$ = 43.2 parameter. 120 × 19 + $\frac{43.2 \times 21}{43.2 \times 21}$ × $\frac{40}{120}$ = 1062. $120 \times 9 + \overline{43.2 \times 21} \times \frac{40}{120} = 662.4$. Then $1062.4 + \overline{43.2 \times 15}$ $+43.2 \times 15 = 1.305$, which $\times 48 = 62.64$ length.

Note. - As transverse diameter is to conjugate, so is conjugate to par-(See Rule, page 38o.)

To Compute Area of a Hyperbola,

Transverse, Conjugate, and Lesser Abscissa being given. RULE.—To protransverse diameter and lesser abscissa add five sevenths of square of this al and multiply square root of sum by 21.

Add 4 times square root of product of transverse diameter and lesser abs

product last ascertained, and divide sum by 75.

Divide 4 times product of conjugate diameter and lesser abscissa by tra diameter, and this last quotient, multiplied by former, will give area, nearly,

Example. - Transverse diameter of a hyperbola, Fig. 16, is 60, conjugate lesser abscissa or height, a e, 20; what is area of figure?

$$60 \times 20 + \frac{5}{7}$$
 of $20^2 = 1485.7143$, and $\sqrt{1485.7143} \times 21 = 809.43$, and $\sqrt{60}$

$$_6 + 800_{43} = 901.02$$
, which $\div 75 = 12.0136$ and $\frac{36 \times 20 \times 4}{60} \times 12.0136 = 576.65$

For ordinates of a parabola in divisions of eighths and tenths, see page 220.

Delta Metal.

etal is an improved composition of Aluminium and its alloys sive, capable of being cast, forged, and hot rolled.

Tensile Strength per Sq. Inch.

PLANE TRIGONOMETRY.

By *Plane Trigonometry* is ascertained how to compute or determine ur of the seven elements of a plane or rectilinear triangle from the her three, for when any three of them are given, one of which being side or the area, the remaining elements may be determined; and is operation is termed *Solving the Triangle*.

The determination of the mutual relation of the Sines, Tangents, Secants, c., of the sums, differences, multiples, etc., of arcs or angles is also classed ader this head.

For Diagram and Explanation of Terms, see Geometry, pp. 219-21.

Right-angled Triangles.

For Solution by Lines and Areas, see Mensuration of Areas, Lines, and Surfaces, pp. 335-39.

To Compute a Side.

When a Side and its Opposite Angle is given. Rule.—As sine of angle posite given side is to sine of angle opposite required side, so is given side required side.

To Compute an Angle.

Rule.—As side opposite to given angle is to side opposite to required agle, so is sine of given angle to sine of required angle.

'o Compute Base or Perpendicular in a Right-angled Triangle.

When Angles and One Side next Right Angle are given. RULE.—As raus is to tangent of angle adjacent to given side, so is this side to other side.

To Compute the other Side.

When Two Sides and Included Angle are given. RULE.—As sum of two iven sides is to their difference, so is tangent of half sum of their opposite igles to tangent of half their difference; add this half difference to half im, to ascertain greater angle; and subtract half difference from half sum, ascertain less angle. The other side may then be ascertained by Rule Dove.

To Compute Angles.

When Sides are given. Rule.—As one side is to other side, so is radius tangent of angle adjacent to first side.

To Compute an Angle.

When Three Sides are given. RULE 1.—Subtract sum of logarithm ides which contain required angle, from 20; to remainder add loga: I half sum of three sides, and that of difference between this half sunide opposite to required angle. Half the sum of these three logarithm parithmic cosine of half required angle. The other angles may be as almed by Rule above.

2.—Subtract sum of logarithms of two sides right, from 20, and to remainder add logarithment wo sides and half sum of the three sides. Inse of half required angle.

Tin all ordinary cases either of these rules white. Rule z should be used when required angle elements are then go.

.: •

ain require

EXAMPLE.—The sides of a triangle are 2, 4, and 5; what are the angles of th hypothenuse?

20 - (log. 4 = .60206 + log. 5 = .69897) = 18.69897; Log. $3 + 4 + 5 \div 2 - 4 =$.301 03; and Log. $3+4+5+2-5=\alpha$

Then 18.698 97 \div 301 03 = 19, which \div 2 = 9.5 = log. sin. of half angle = 18° 26′, which \times 2 = 36° 52′ angle.

Hence $90^{\circ} - 36^{\circ}$ $52' = 53^{\circ}$ 8' remaining angle.

In following figures, 1 and 2:

A=00°, B=45°, C=45°, Radius=1, Secant=1.4142, Cosine=.7071, Sin.45° = .707 i, Tangent = 1, Area = .25.

By Sin., Tan., Sec., etc., A B, etc., is expressed Sine, Tangent, Secant, etc., of angles, A, B, etc.

To Compute Sides AC and BC .- Figs. 1 and 2. When Hyp., Side B A, and Angles B and C are given.

To Compute Side AC and Angles. When Hyp. and Side B A are given .- Fig. 1 and 2.

$$\frac{A C}{H v D} = Sin. B.$$

$$\frac{B A}{Hyp.}$$
 = Sin. C. $\frac{B A \times Sin. B}{Sin. C}$ = A C.

 $BC \times Sin. B = AC$

To Compute Side BC and Hyp. or Angles.

When both Sides are given .- Fig. 2.

$$\frac{A C}{B A} = Tan. B.$$

$$\frac{BA}{\sin C} = BC.$$

$$\frac{BA}{Sin.C} = BC.$$
 $\sqrt{AC^2 + BA^2} = BC.$ $\frac{BA}{AC} = Tan.C.$

$$\frac{B}{A}\frac{A}{C}$$
 = Tan. C.

$$\frac{B}{B}\frac{A}{C}$$
 = Sin. C. $\frac{A}{B}\frac{C}{C}$ = Sin. B.

$$\frac{AC}{BC}$$
 = Sin. B

To Compute Sides .- Figs. 3 and 4.

a right-angled triangle, C A, is assumed to be rather to that radius; Or, dividing each of the at and secant of C respectively to rail

	40		50		60		70		1	Prop.
·	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.		4
0	.06976	.99756	.08716	.99619	.10453	-99452	. 12187	-99255	60	4
I	.07005	·99754	.08745	.99617	.10482	.99449	.12216	.99251	59 58	4
2	.07034	.99752	.08774	.99614	.10511	-99446	.12245	-99248		4
3	.07063	·9975 ·99748	.08831	.99612	.1054	·99443 ·9944	.12274	·99244 ·9924	57 56	4
5	.07121	.99746	.0886	.99607	.10597	-99437	.12331	.99237	55	4
	.0715	-99744	.08889	.99604	.10626	.99434	.1236	.99233	54	4
7 8	.07179	.99742	.08918	.99602	.10655	·9943I	.12389	·9923	53	4
وا	.07208	·9974 ·99738	.08947	·99599	.10684	.99428	.12418	.99226	52 51	3
10	.07266	.99736	.00005	·99596	.10742	·99424 ·99421	.12476	.99219	50	3
II	.07295	.99734	.09034	.00501	.10771	.99418	.12504	.99215	49 48	3 3 3
12	.07324	·99731	.09063	.99588	.108	199415	.12533	.99211	48	3
13	.07353	.99729	.09092	.99500	.10829	-99412	.12562	.99208	47 46	3
	.07411	·99727 ·99725	.09121	.99583	.10887	.99406	.1262	.99204	45	3
15	.0744	.99723	.09179	.99578	.10016	.99402	.12649	.99197	44	3
17	.07469	.99721	.09208	-99575	. 10945	99399	.12678	.00103	43	3 3 3 3
18	.07498	.99719	.09237	.99572	.10973	.99396	.12706	.99189	42	3
19	.07527	.99716	.09266	·9957	.11002	.99393	.12735	.99186	41 40	3
21	.07585	.99712	.09324	.99567 .99564	.11051	.9939 .99386	.12793	.99178	30	3
22	.07614	·9971	.09353	.99562	.11089	.99383	.12822	.99175	39 38	3
23	.07643	.99708	.09382	.99559	81111.	.9938	.12851	.99171	37	2
24	.07672	.99705	09411	.99556	.11147	·99377	.1288	.99167	36	2
25 26	.07701	.99703 .99701	.0944	·99553 ·99551	11176	·99374 ·9937	.12908	.99163	35 34	2 2
27	.07750	.99699	.09498	.99548	.11234	.99367	.12966	.99156	33	2
28	.07759	.99696	.09527	-99545	.11263	.99364	.12995	.99152	32	2
29	.07817	.99694	.09556	-99542	.11291	.9936	.13024	.99148	31	2
30	.07846	.99692	.09585	∙9954	.1132	.99357	13053	.99144	30	2
31	.07875	.99689 .99687	.09614	·99537 ·99534	.11349	·99354 ·99351	13081	.99141	29 28	2 2
33	.07933	.99585	.09671	.99531	.11407	.99347	.13139	.99133	27	2
34	.07962	.99683	.097	.99528	.11436	.99344	.13168	.99129	26	2
35	.07991	.9968	.09729	.99526	.11465	-99341	.13197	.99125	25	2
36 37	.0802	.99678	.09758	.99523	-11494	.99337	.13226	.99122	24 23	2
3/ 38	.08073	.99673	.09767	.9952 .99517	.11523	·99334 ·99331	.13254	.99118	23	1
39	.08107	.99671	.09845	.99514	.1158	.99327	.13312	.0911	21	I
140	.08136	.99668	.09874	.99511	.11609	.99324	.13341	.99106	20	I
41	.08165	.99666	.09903	.99508	.11638	.9932	·1337	.99102	19	I
42	.08194	.99664 .99661	.09932	.99506	.11667 .11696	.99317	13427	.99098	17	1
44	.08252	.99659	.0999	.995	.11725	.9931	.13456	.99091	16	ī
45	.08281	199657	.10019	.99497	.11754	.99307	.13485	.99087	15	I
46	.0831	.99654	.10048	-99494	11783	.99303	.13514	.99083	14	I
47	.08339	.99652	10077	.99491	.11812	.993	.13543	.99079	13	I
: 49	.08397	.99647	.10106	.99488	.1184	.99297	.13572 .136	.99075 .99071	11	· ·
50	.08426	.99644	.10164	.99482	.11898	.0020	.13629	.99067	10	1
51	.08455	.99642	.10192	.99479	.11927	99286	.13658	.99063	8	I
52	.08484	-99639	.10221	.99476	.11956	.99283	.13687	.99059		I
53	.08513	.99637	.1025	.99473	.11985	.99279	.13716	.99051	7	0
54	.08542	.99632	.10279	·9947 ·99467	.12014	.99276	.13773	.99051	5	0
55 56	.086	.9963	.10337	.99464	.12071	.99269	.13802	.99043	4	0
57 58	.08629	.99627	. 10366	.99461	.121	.99265	1.13831	.99039	3	0
	.08658	.99625	.10395	.99458	.12129	.99262	.1386	.99035	2	0
59 60	.08687 .08716	.99622	.10424	.99455	.12158	.99258	.13889	00031	/ "	
						- \-	-\-			
N. cos. N. sine. .			N. cos. 84º		N. cos. 83	N. sine.		8 20 . N. sin	e. \ \	. /

Prop.	2 1	80		9	0	10	00	1	Lo.	11
28		N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	
0	0	-13917	.99027	.15643	.98769	.17365	.9848r	180011	.98163	60
0	I	.13946	.99023	.15672	+98764	-17393	.98476	.19100	-98157	59
1	2	.13975	.99019	.15701	.9876	.17422	.98471	.19138	.98152	58
1	3	.14004	-99015	.1573	.98755	.17451	.98466	.19167	.98146	57 56
2	4	.14033	.99011	.15758	.98751	.17479	.98461	.19195	-9814	
2	5	14061	.99006	.15787	+98746		.98455	.19224	.98135	55
3	6	.14110	.99002	.15816	.98741	.17537	.9845	.19252	.98129	54
3	7 8	.14148	.98994	.15873	.98732	17594	.9844	.19201	.98118	53
4	9	.14177	.9899	.15002	.98728	.17023	.98435	.19338	.98112	51
5	10	.14205	.98986	.15931	.98723	.17651	.9843	.19366	.08107	50
5	11	.14234	.98982	.15050	-98718	.1768	.08425	19395	.98101	49
6	12	.14263	.98978	.15988	.98714	.17708	.9842	.19423	- g8og6	48
6	13	.14292	.98973	-10017	.98709	-17737	.98414	.19452	.9809	47
7	14	.1432	.98969	.16046	.98704	.17766	.98409	.19481	.98084	46
7	15	+14349	.98965	.16074	.987	.17794	-98404	.19509	.98079	45
7 8	16	-14378	.98961	.16103	.98695	.17823	.98399	.19538	-98073	44
8	17	.14407	-98957 -98953	.16132	.9869 .98686	.17852	.98394	.19566	.98061 .98061	43
9	19	.14464	.98948	.16180	.98681	.17909	.98383	.19595	198056	41
9	20	.14493	.98944	.16218	.98676	-17937	.98378	.19652	.9805	40
10	21	.14522	.9894	.16246	.98671	.17966	.98373	.1968	·98044	
10	22	-14551	.98936	.16275	.98667	.17995	.98368	.19709	+98039	39
11	23	.1458	.98931	16304	.98662	.18023	.98362	1.19737	.98033	37 36
11	24	.14608	.98927	.16333	+98657	.18052	-98357	.19766	.98027	
12	25	.14637	.98923	.16361	-98652	.1808r	.98352	.19794	-98021	35
12	26	.14666	.98919	.1639	.98648	.18109	.98347	.19823	.98016	34
13	27		.98914	.16447	.98643 .98638	.18166	.98336	.1988	.98004	33
14	20	.14723	.98906	.16476	.98633	.18195	.98331	.19908	.97988	32
14	30	.14781	.98902	16505	.98629	.18224	.98325	-19937	.97992	30
14	31	.1481	.08807	.16533	.98624	.18252	.9832	.19965	07087	20
15	32	.14838	.98893	.16562	.98619	.18281	.98315	.19994	.97981	28
15	33	.14867	.98889	.16591	.986r4	.18309	.9831	.20022	-97975	27 26
16	34	.14896	.98884	+1662	.986og	.18338	.98304	.20051	-97969	
16	35	-14925	.9888	.16648	+98604	.18367	.98299	.20079	-97963	25
17	36	14954	.98876	.16677	.986	.18395	.98294	-20108	-97958	24
17	37 38	.14982	.98871	.16706	.98595 .9859	.18424	.98283	.20136	-97952	23
18	39	.1504	.98863	.16763	.98585	.18481	.98277	.20103	-97946	21
10	40	.15069	.98858	.16792	.9858	.18500	.98272	.20222	-97934	20
19	41	.15097	.98854	.1682	-98575	.18538	.98267	.2025	.97928	19
20	42	.15126	.98849	.16849	.9857	.18567	.98261	.20279	.97922	18
20	43	.15155	.98845	.16878	.98565	.18595	.98256	+20307	-97916	17
21	44	.15184	.98841	16906	.98561	.18624	.9825	.20336	-979I	16
21	45	.15212	-98836	.16935	.98556	.18652	.98245	.20364	-97905	15
22	46	.15241	.98832	.16964	.98551	.1871	.98234	.20393	.97899	14
22	48	.15200	.98823	.17021	.98541	.18738	.98229	.20421	.97887	12
23	49	+15327	.98818	.1705	.98536	.18767	.08223	.20478	.97881	II
23	50	+15356	.98814	17078	.98531	.18795	.98218	+20507	.07875	10
24	51	.15385	.98809	.17107	.98526	.18824	.98212	20535	.97869	0000
24	52	.15414	-98805	.17136	.98521	.18852	.98207	.20563	.97863	
25	53	,15442	.988	.17164	-98516	18881	.98201	-20592	-97857	F-10
25	54	.15471	.98796	.17193	.98511	.1891	.98196	+2062	.97851	
26 26	55 56	.155	.98791	.17222	.98506 .98501	.18938	.9819	·20649	.97845	5
27	57	-15529 -15557	.98787	.1725	.98496	.18995	.90105	+20706	.97039	4 03
27	58	.15586	.98778	.17279	.98491	.10024	.08174	.20734	.97827	2
28	59	.15615	.98773	.17336	.98486	.19052	.98174	.20763	.97821	1
28	60	.15643	.98769	17365	18480.	18001.	£3180.	10000.	.97815	0
	-	- 1-		-	1		-	-//	-	10
-		N. cos.	N. sine.	N. cos.	N. sine	14.60	790	1 44. 000	185	X
	-	8.	10	11	000	41		750	100	

z.—Measure a level line, A.c, Fig. 12, and ascertain angles, B.A.c, B.c.A. ng side, A.c, and two angles, proceed as per formula, page $_386$, to det.

mpute Height of an Elevated Point .- Fig. 13.

it—Lay off any suitable and level distance, d d, set up s "bytaion from base line d d, and note distance" of object range with tops of the staffs; deduct id ascertain heights h.

+ z = height. s representing height of line of Ed.

390

NATURAL SINES AND COSINES.

Natural Sines and Cosines.

parts.			0	10		20		30		ı
9	٠	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	
0	0	,00000	r	.01745	.99985	0349	-99939	.05234	.99863	1
0	I	.00029	1	.01774	.99984	.03519	.99938	.05263	.99861	ŀ
1	2	.00058	I	01803	.99984	.03548	-99937	.05292	,9986	
1	3	.00087	I	.01832	.99983	.03577	.99936	,05321	+99858	١.
2	4	.00116	I	.01862	-99983	.03606	-99935	.0535	.99857	ŀ
2	5	.00145	1	.01891	.99982	.03635	-99934	.05379	.99855	١
3		.00175	I	.0192	.99982	.03664	-99933	.05408	.99854	ŀ
3	7 8	.00204	I	.01949	-99981	.03693	-99932	.05437	.99852	l
4		.00233	1	.01978	-9998	.03723	.99931	.05400	.99851	r
4	9	.00262	I	.02007	.9998	.03752	-9993	.05495	-99849	
	11	.00291	1 00000	.02036	-99979	.03781	-99929	.05524	-99847	
	12	.0032	-99999	.02005	·99979	.03839	-99927	.05553	.99846	
	13	.00349	•99999	.02123	.99978	03868	-99926	.05582	.99844	
	14	.00407	·99999	.02152	·99977	.03897	·99925 ·99924	.0564	.99841	١
4	15	.00436	-99999	.02181	.99976	.03097	-99923	.05660	.99839	l
7 B	16	.00465	-99999	.02211	.99976	.03955	.99922	.05698	.99838	1
	17	.00495	-99999	.0224	-99975	.03984	.99921	.05727	.99836	
9	18	.00524	-99999	.02260	-99974	.04013	.99919	.05756	.99834	Г
	19	.00553	.99998	.02298	-99974	.04042	.99918	.05785	.99833	I.
	20	.00582	.99998	.02327	-99973	.04071	.99917	.05814	.99831	١
0	21	11000.	.99998	.02356	-99972	.041	.99916	.05844	.99829	
1	22	.0064	.99998	.02385	-99972	.04120	99915	.05873	.99827	
1	23	.00669	-99998	.02414	-99971	.04159	.99913	.05902	.09826	ŀ
2	24	.00698	-99998	.02443	-9997	.04188	.99912	.05931	.90024	L
2	25	.00727	-99997	.02472	,90060	.04217	.99911	.0596	.99822	Ł
3	26	.00756	.99997	.02501	.99969	.04246	.9991	.05989	.99821	ŀ
	27	.00785	-99997	.0253	.99908	.04275	.99909	.06018	-99819	ŀ
	28	,00814	-99997	.0256	-99907	.04304	.99907	-06047	.99817	ŀ
	29	.00844	.99996	.02589	.99966	.04333	.99906	.06076	.94815	Ł
	30	.00873	.99996	.02618	.99966	.04362	-99905	.06105	.90813	Ü
	31	.00902	.99996	.02647	.99965	.04391	-99904	.06134	.4.412	ŗ
	32	,00931	,99996	.02676	.99964	.0442	.99902	.06163	-9951	ļ
	33	.0096	-99995	.02705	,99963	.04449	.99901	.06192	+99808	1
	34	01018	-99995	.02734	.99953	.04478	.999	.06221	.99906	
	35	.01047	-99995	.02763	.99962	.04507	.99898	.06270	.00803	
	37	.01076	·99995	.02792	.99961	.04536	.99896	.06308	90801	
8	38	.01105	199994	.0285	-99959	.04594	.99894	.06337	.99740	r.
	39	.01134	-99994	.02879	-99959	.04623	.99893	.06366	-99797	ĸ,
	40	.01164	-99993	.02908	.99958	.04653	.99892	.06305	99795	ľ
	41	.01193	199993	.02938	-99957	.04682	.9989	106421	.99793	ľ
	42	.01222	-99993	.02957	.99956	.04711	.99889	.06453	.99792	l
	43	.01251	-99992	02006	-99955	.0474	.99888	.06482	-9979	Į.
1	44	.0128	+99992	.03025	-99954	.04769	.99886	.06511	.99788	
2	45	01300	-99991	.03054	-99953	.04798	.99885	.0654	.00786	ı
ali:	45 46	.01338	-99991	,03083	-99952	.04827	.00883	.06569	.99784	ŀ
10	47	.01367	-99991	.03112	-99952	.04856	.99882	06593	.99782	r
3	48	,01396	+9999	.03141	-99951	.04885	.99881	.06627	.9978	١
ŧI.	49	LO1425	19999	.0317	-9995	.04914	.99879	.06656	-99778	ŀ
		-DI454	-99989	,03199	-99949	04943	.99878	06685	.99776	
	51	,ca463	-99989	.03228	.99948	.04972	.99876	106714	-99774	ı
	52	101513	.99980	.03257	-99947	.05001	.99875.	.06743	-99772	l
6	53	COLUMN	88000	.03286	-99946	.0503	-99873	.06773	.9977	
6	-		9900	.03316	-99945	.05059	-99872	.06802	.99768	
187	25		387	-03345	-99944		-9987	.06831	.99766	
1			7	103374	-99943	102111	.99869	.0686	99764	ľ
d				.03403	03345	105146		08800.	9000	١
7				P3439	1-99941	.0517	- 3300	all of	1.997	3
1			Š	10342	30	0520	5 / 9980	1000 / A	0.10	

ı	4	p	1 6	jo	6	po	7	70	1	Prop
•	N. sine.	N. coa.	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	1	4
-	.06976	.99756	.08716	.gg61g	.10453	-99452	.12187	-99255	60	4
1	.07005	.99754	.08745	.99617	1.10482	.99449	.12216	.99251		4
	.07034	-99752	.08774	.99614	.10511	•99446	.12245	-99248	59 58	4
3	.07063	·9975 ·99748	.08803	.99612	.1054	•99443	.12274	.99244	57 56	4
4	.07092	.99746	.0886	.99607	.10569	·9944 ·99437	.12331	·9924 ·99237	55	4
5	.0715	-99744	.08889	-99604	.10626	·99434	1.1236	.99233	54	1
3	.07170	·99742	81080.	-99602	. 20655	.99431	. 12389	-9923	53	4
	.07208	·9974	.08947	·99599	. 10684	.99428	.12418	.99226	52	3
9	.07237	.99738 .99736	.08976	.99596 .99594	.10713	·99424 ·99421	12447	.99222	51 50	3
EX	.07295	-99734	.09034	-9959x	.10771	.99418	.12504	.99215		3
12	.07324	-9973z	.09063	.99588	. ro8	-99415	.12533	.99211	49 48	3
13	.07353	-99729	.09092	.99586	.10829	.99412	.12562	.99208	47	3
14	.07382	·99727 ·99725	.09121	.99583 .9958	. 10858	.99406	. 12591	.99204	46 45	3
15 16		.99723	.00170	.99578	.10016	.99402	.12649	.99197	44	3
17 18	.0744	.99721	.09208	-99575	. 10945	.99399	.12578	.09193	43	3
	.07498	·99719	.09237	-99572	10973	.99396	.12706	.99189	42	3
19 19	.07527	.99716 .99714	.09266	·9957 ·99567	.11002	.99393	.12735	.99186	41 40	3
20	.07585	.99712	.09324	.99564	.1106	.9939 .99386	12793	.99178	30	3
20	.07614	-997x	.09353	.99562	.11089	.99383	.12822	.99175	39 38	3
23	.07643	.99708	.03382	-99559	81111.	.9938	1.12851	.99171	37	2
24	.07672	.99705	-09411	-99556	.11147	·99377	.1288	.99163	36	2
3	.07701 .0773	.99703 .99701	.0944 .09469	·99553	.11205	·99374 ·9937	.12908	.9916	35 34	2
7	.07759	l coobaa i	.09498	.99548	.11234	.99367	1.12966	.99156	33	2
	.07759 .07788	.99696	.09527	-99545	.11263	.99364	.12995	.99152	32	2
29	.07817	-99694	.09556	-99542	.11291	.9936	1.13024		31	2
30 31	.07846 .07875	.99692 .99689	.09585	·9954 ·99537	.1132	·99357 ·99354	13053	.99144	30 29	2 2
32	.07904	.99687	.09642	-99534	.11378	.99351	.1311	.99137	28	2
33	.07933	.00684	.09671	.99531	.11407	.99347	.13139	.99133	27	2
34	.07962	.99683	.097	.99528	.11436	·99344	.13168	.99129	26	2
35 36	.07991 .0802	.9968 .99678	.09729	.99526 .99523	.11465	.99341	.13197 .13226	.99125	25 24	2
37	.08049	.99676	.09787	.9952	.11523	·99337 ·99334	.13254	.99118	23	2
37 38	.08078	.99673	.098x6	.99517	.11552	99331	.13283	.99114	22	1
39	.08107	.99671 .99668	.09845	-99514	.1158	-99327	.13312	.0911	21	I
40	.08236 .08265	.00000	.09874	.99511	.11609	.99324	·13341 ·1337	.99106	20 10	I
47 48 49	LOTBO.		.09932	.99506	.11667	.9932	.13399	.99098	18	i
43	.06223	.9900z	.0996z	.99503	.11696	.99314	13427	.99094	17	I
- 44	.08252	·000530	-0999	∙995	.11725	.9931	.13456	.99091	16	I
44	.0828z .083z	.99657 .99654	.10019	-99497	11754	.99307	.13485	.99087	15	1
- 6	-05330	.00058	10077	·99494	.11812	.99303 .993	.13514	.99079	14	i
74 69 44	.06330 .06308	-00640	.10106	.99488	.1184	.99297	.13572	.99075	13	1
2	.08397	-99647	.10135	.99485	.11869	.99293	.136	.99071	11	I.
- 15	Octoo.	99644	.10164	.99482	.11898	.9929	.13629 .13658	.99067	10	
15	.08455 .08484	-00630	.10221	·99479 ·99476	.11927	.99286	.13687	.99063	8	
33	.00513	-99637	.1025	-99473	.11985	.99279	.13716	.99055	•	
1 984	-0513 -0513	.00025	.10279	-9947	.12014	.99276	.13744	-900"	•	
	7	.99632 .9963	.10308	-99467	.12043	.99272	13773	.8,		
			.10337 . <i>10366</i>	.99464 .99461	.12071	.99265	.13831	/ ·¿		
		· 000m5	. 20395	.99458	12120	.99262	1386	/.		
		//	10424	99455	.12158	.99258	1388) e		
				99452	.12187	-99255		7 \ -		
		**// N		. sine.	N. cos.	N. sine	. N. c	08. T		
		"	840	II		30	1, 2,,,	820		
							••			

Prop.		24	10	24	50	20	50	27	70	1	
26	,	N. sine.	N. cos.	N. sine.	N. cos.	N. sine,	N. cos.	N. sine.	N. cos.		11
0	0	.40674	.91355	.42262	.90631	.43837	.89879	.45399	.89101		14
0	1	.407	.91343	.42288	.90618	.43863	.89867	-45425	.89087		14
I	2	.40727	.91331	-42315	.90606	.43889	.89854	·45451	.89074		14
I	3	-40753	.91319	+42341	-90594	.43916	.89841	-45477	1900pt	57	13
2	4	.4078	.91307	.42307	.90582	-43942	.89828	45503	.89048		13
3	5	.40806	.91295	-42394 -4242	.90569 .90557	.43968	.89816	·45529 ·45554	.89035 .89021		13
3		.4086	.91272	.42446	+90545	·43994 ·4402	.8979	4558	.80008	53	12
3	7 8	.40886	.9126	.42473	.90532	.44046	.89777	-45606	.88995		12
4	9	.40013	.91248	-42499	.9052	.44072	.89764	.45632	.88981	51	II.
4	10	.40939	.91236	+42525	+90507	.44098	.89752	45658	.88968		12
5	II	.40956	.91224	.42552	+90495	-44124	.89739	+45684	.88955		II.
5	12	.40992	.91212	.42578	.90483	-44151	.89726	-457I	.88942		18
6	13	.41019	.912	-42604	.9047	-44177	.89713	-45736	.88928	12001	11
	14	-41045	.91188	+42631	-90458	+44203	.897	+45762	.88915		11
7 7	15	.41072 .41098	.91176	.42657	.90446	·44229 ·44255	.89674	·45787 ·45813	.88888		19
7	17	-41125	-91152	+42709	.90433	.44281	.89662	.45839	.88875		10-
7 8	18	-41151	-9114	.42736	.90408	+44307	.89649	-45865	.88862		10
8	19	.41178	.91128	.42762	.90396	-44333	.89636	-458gr	.88848	41	14
9	20	.41204	.91116	.42788	.90383	.44359	.89623	-45917	.88835	40	ğ
9	21	.41231	+91104	.42815	.90371	+44385	.8961	-45942	.88822	39	8
10	22	-41257	.91092	.42841	.90358	-44411	-89597	45968	.88808	38	я
10	23	.41284	.9108	.42867	.90346	-44437	.89584	45994	.88795	37 36	п
11	24	.4131 .41337	.91068	.42894	.90334	·444 ⁰ 4 ·4449	.89571	-46046	.88768	35	н
II	26	.41363	.91044	.42946	.90309	.44516	.89545	46072	.88755	34	п
12	27	.4139	.91032	.42972	.90296	.44542	.89532	46097	.88741	33	10
12	28	-41416	.0102	.42999	.90284	-44568	.80519	.46123	.88728	32	17
13	29	.41443	.91008	.43025	90271	-44594	.89506	-46149	.88715	31	Ю
13	30	.41469	.90996	-43051	.90259	.4462	.89493	.46175	.88701	30	7
13	31	-41496	.90984	+43077	.90246	.44646	.8948	40201	.88588	200	ă.
14	32	41522	.90972	+43104	-90233	.44672	.89467	-46226 -46252	.88674 .88661		м
14	33	·41549 ·41575	9096	4313	.90221	.44724	.89454	.46278	.88647	27	R
15	35	41602	.90936	43182	.90196	.4475	.89428	.46304	.88634	25	8
16	36	-41628	.90924	+43209	.90183	-44776	.89415	.4633	.8862	24	4
16	37	.41655	.90911	+43235	.90171	.44802	.89402	+46355	.88607	93	5
16	38	.41681	.90899	.43261	90158	.44828	.89389	.46381	.88593	22	3
17	39	.41707	.90887	+43287	.90140	.44854	.89376	-46407	.8858	21	3
17	40	-41734	.90875	-43313	.90133	.4488	.89363	-46433	.88566	20	3
18	41	-4176	.90863	·4334	.9012	-44906	.8935	.46458	.88553	18	м
10	42	-41787	.90839	·43366 ·43392	.90095	·44932 ·44958	.89337	.4651	.88539	17	1
10	44	.4184	.90826	.43418	90082	.44984	.89311	.46536	.88512	16	1
20	45	.41866	.90814	-43445	.9007	.4501	.89298	.46561	,88499	35	1
20	46	.41892	.90802	·43471	.90057	.45036	.89285	.46587	.88485	14	1
20	47	41919	.9079	+43497	.90045	+45062	.89272	.46613	.88472	13	1
21	48	-41945	.90778	-43523	.90032	+45088	.89259	.46639	.88458	12	1
21	49	41972	.90700	-43549	.90019	45114	89245	.46664 .4660	.88445	II	1
22	50	+41998	.90753	·43575 ·43602	89994	4514	.89232	46716	.88417		19
23	52	4205I	.90729	.43628	.89981	-45192	.80206	.46742	.88404	0.00	1
23	53	.42077	.90717	43054	.89968	45218	.89193	46767	.8839	76	100
23	54	-42104	.90704	4368	.89956	-45243	.8918	-46793	.88377		2
24	55	.4213	.90692	43706	.89943	+45269	89167	+46819	.88363	5	B
74	56	.42156	.9068	-43733	.8993	+45295	.89153	-46844	.88349	183	3
25	57	.42183	.90668	-43759	.89918	45321	.8914	-4687	.88336	3	R
25	50	+42209	.90655	·43785 ·43811	.89892	·45347	.89127	-46896 46921	.88322 88308	10.00	11/2
26	59	·42235	.90043	43837		·45373		45921	88295		100
-	100			11-			1	-11-	-		8
1	1	N. cos.	N. sine.	N. cos	640	s. N. co	63° N. aln	o. N. co	650	1.	N

	2	80	2	00) з	0 0	3:	10		Prop
*	N. sine.	N. cos,	N, sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.		14
0	.46947	.88295	.48481	.87462	1.5	.86603	.51504	.85717	60	14
I	-46973	.88281	.48506	.87448	. 50025	.86588	.51529	.85702	59	14
2	.46999	.88267	.48532	.67434	.5005	.86573	·51554	.85687	58	14
3	-47024	.88254	.48557	.8742	. 50076	.86559	·51579	.85672	57	13
4	-4705	.8824	.48583 .48608	.87406	.50101	.86544	.51604	.85657	56	13
5	-47076 -47101	.88213	.48634	.87391 .87377	.50126	.8653 .86515	.51653	.85627	55 54	13
	-47127	88100	.48659	.87363	.50176	.8650I	.51678	.85012	53	12
7 8	-47153	.88185	.48684	.87349	50201	86486	.51703	.85597	52	12
9	-47178	.88172	.4871	.87335	.50227	.86471	.51728	.85582	51	12
10	-47204	.88153	.48735	.07321	. 50252	.86457	.51753	.85567	50	12
11	-47229	.88144	48701	.87306	.50277	.86442	.51778	.85551	49	11
12	-47255	.8813	48786	.87292	. 50302	.80427	.51803	.85536	48	11
13	-47281	.88117	.48811	.87278	.50327	.86413	.51828	.85521	47	11
14	47306	.88103	-4B837	87264	.50352	.80398	.51852	.85506	46	11
15	·47332	.88089	.48862 .48888	8725	-50377	80384	.51877	.85491	45	10
10	-47358	.88o75	.48913	87235	. 50403	.36369	.51902	.85476	44	10
17	·47383 ·47409	.88048	,48938	.87221	. 50428	86354 .8634	.51952	.85461 .85446	43	10
19	-47434	.88034	.48964	.87193	· 50453 · 50478	.86325	.51977	.85431	41	10
20	-4746	.8802	.48939	.87178	.50503	.8631	.52002	.85416	40	9
21	.47486	.88006	49014	.87164	.50528	.8ú295	. 52026	.85401	39	9
22	-47511	.87993	-4904	.8715	.50553	.86281	. 52051	.85385	38	9
23	-47537	.87979 .87965	-49005	.87136	. 50578	.86266	.52076	.8537	37	9
24	47562	.87965	-4909	.87121	.50603	.86251	.52101	.85355	36	8
25 26	.47500	×87951	-49116	.87107	.50628		.52126	.8534	35	8
20	4/014	-87937 I	49141	87093	.50654	.80222	.52151	.85325	34	8
27 28	·47639 ·47665	.87923	.49166	.87079	.50679	.86207	.52175	.8531	33	8
	47005	.87909 .87896	-49192	87064	.50704	86192	. 522	.85294	32	7
29	-4769	.87882	-49217	.8705 .87036	-50729	86178	.52225	.85279	31	7
30	-47716 -47741	.87363	-49242 -49268	.87021	· 50754 · 50779	.86163 .86148	· 5225 · 52275	.85264	30	7
32	-47767	.87854	-49293	.87007	.50304	.86133	.52299	.85234	28	1
33	-47793 -47818	8784	-49318	86993	.50829	.86119	.52324	.85218	27	6
34	.47818	.87826	-49344	.86978	.50854	86104	.52349	.85203	26	6
	.47844 .47869	.87812	-49369	86964	.50879	.86089	.52374	.85188	25	6
35 36	-47869	.87798	-49394	.86040	.50904	.86074	-52399	85173	24	6
37 38	-47895	.87784	-49419	86935	.50929	.86059	.52423	.85157	23	5
38	-4792	.8777	+49445	.86921	-50954	86045	.52448	.85142	22	5
39	-47946	-87750	-4947	.86906	.50979	.8603	.52473	.85127	21	5
40	-4797±	.87743	-49495	.86892 .86878	-51004	.86015	1.3-43-	.85112	20	5
41	-47997 -48022	.87729 .87715	-49521 -49546	.86863	.51029	.86 .85985	.52522	85081	18	4
43	-48048	.87701	·4957I	.86849	.51054	.8597	· 52547 · 52572	85066	17	4
44	-48073	.87687	-49596	.86834	.51104	.85956	.52597	85051	16	4
45	48000	87673	-49622	.8682	.51129	.85941	.52621	85035	15	4
45	·48124	,87059	-49647	.86805	.51154	.85926	.52646	8502	14	3
47	-4815	.87645	-49672	.86 7 91	.51179	1.85911	.52671	85005	13	3
48	-48175	.87631	-49697	.86777	.51204	.85896 j	52096	.84989	12	3
49	48201	.87617	-49723	.36762	.51229	.85881	.5272	.84974	11	3
50	-48226	87603	·4974B	.80748	.51254	.85866	·52745	84959	10	
52	-48252 -48277	.87589	·49773	.86733	1.51279	.85851	.5277	84943	980	
53	-48303	.87575 .87561	-49798 -49824	.86719 .86704	-51304	.85836 .85821	.52794	-0.4096	0	
54	48328	.87546	.49849		.51329 .51354	.85806	.52814			
55	-48354	.87532	-49874	.86675	-51354 -51379	.85792	.52			
50	-48379	.87518	-49840		51404	.85777	.526			
ER	48405	87504	-49914	.86646	.51429	.85762	.52			
	(allan	8740	-4995	.86632	-51454	.85747	.52.			
		-07470		.86617	.51479	.85732	.52			
		-//-	.5	86603	51504	.85717	.525			
		100 A	V. cos.	. sine.	N. cos.	N. sine.	N. co			
		11	600	· · · · //	69		1; M. C	`,		
				LL		•	**	•		
				44	•					

57381 81809 57405 81882 57405 81882 57405 81882 57407 81832 57501 81815 575701 81815 575701 81815 575701 81708 575701 81708 575701 81708 575701 81708 575701 81708 575701 81708 576701 81708 576701 81708 576701 81708 576701 81608 57601 81708 57601 81608 57601 81608 57601 81608 57708 81601 57708	- 1	32	go	33	30	34	10	38	50	
57381 81809 57405 81882 57405 81882 57405 81882 57407 81832 57501 81815 575701 81815 575701 81815 575701 81708 575701 81708 575701 81708 575701 81708 575701 81708 575701 81708 576701 81708 576701 81708 576701 81708 576701 81608 57601 81708 57601 81608 57601 81608 57601 81608 57708 81601 57708	,	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	
57981 81869 57492 81865 57429 81865 57453 81848 57473 81848 575751 81815 57527 81768 57528 81762 57528 81762 57528 81762 57528 81762 57529 81748 57647 81664 57667 81664 57671 81664 57671 81664 57715 81664 57715 81664 57715 81664 57715 81664 57715 81664 57715 81664 57715 81664 57718 81677 57786 81614 57786 81614 57787 81597 57788 8159 57857 81593 57857 81593 57988 8159 57988 8159 57988 8159 57998 81513 57998 81513 57998 81513 57998 81513 57998 81513 58047 81412 58165 81376 58165 81377 58141 81367 58165 81377 58141 81367 58165 81327 58165 81327 58165 81327 58165 81327 58165 81327 58165 81327 58165 81327 58166 81376 5859 81080 5859 81080 5859 81080 5869 81080 5869 81080 5869 81080 5869 81080 5869 81080 5869 81080 5869 81080 5869 81080 5869 81080 5869 81080 58661 80987 58687 80097 58687 80097 58688 8007 58688 8007 58688 8007 58688 8007 58688 8007 8007 8008 800	0	.52992	.84805	-54464	.83867	-55919	.82904	-57358	.81g15	6
57495	1	.53017	.84789	-54488	.83851	-55943	82887	.57381	.81899	59
57429	2	-53041	.84774	-54513	.83835	.55968	.82871		.81882	5
57477 81832 57524 81798 57524 81798 57524 81798 57524 81798 57526 81748 57526 81748 57627 8168 57627 8168 57627 8168 57762 8168 57762 8168 57762 8168 57763 8164 57763 8164 57763 8164 57781 8169 57833 81597 57883 81597 57883 81597 57883 81597 57883 81597 57988 81597 57988 81597 57988 81597 57988 81597 57988 81597 57988 81597 57988 81446 57999 81497 57999 81497 58994 81395 58188 81378 58188 81378 58189 81381 58189 81398 58189 81398 58189 81293 58212 8131 58236 81293 58286 81296 58283 81292 58283 81295 58387 81291 58496 81194 58496 81194 58496 81193 58543 81197 58497 81193 58543 81197 58498 81193 58543 81097 58661 80987 58661 80987 586661 80987 586661 80987 586661 80987 586661 80987 586661 80987 586661 80987 586681 80997 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 8097 58688 58688 68698 58688 68698 58688 68698 58688 68698 58688 68698 68688 68	3	.53066	.84759	+54537	.83819	-55992	.82855			5
57501 84815 57504 81768 81768 57548 81768 57572 81765 57592 81765 81767 8176	4	.53091	.84743	-54561	,83804	.56016	.82839			5
-57524 -81798 -57594 -81765 -57572 -81765 -57595 -81748 -57595 -81748 -57657 -81681 -57657 -81681 -57762 -81681 -57762 -81681 -57788 -81647 -57762 -81681 -57788 -81647 -57762 -81681 -57783 -81681 -57783 -81681 -57831 -81597 -57831 -81597 -81597 -81597 -81597 -81597 -81597 -81597 -81597 -81597 -81597 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -81462 -57995 -	5	.53115	.84728	-54586	.83788	.56064	.82822			5.
57548 8.1782 575748 8.1748 5.57576 8.1748 8.1748 5.57619 8.1748 8.57619 8.1748 8.57619 8.6814 8.57615 8.1644 8.57715 8.1644 8.5781 8.158 8.5781 8.158 8.5783 8.158 8.5783 8.158 8.5785 8.158 8.5785 8.158 8.158 8.5785 8.158 8.158 8.15928 8.1513 8.15928 8.1513 8.15928 8.1513 8.15928 8.1513 8.15928 8.1513 8.15928 8.1513 8.15928 8.1513 8.15928 8.1513 8.158 8		.5314	.84712	.546r .54635	.83772	.56088	.8279			5
575792	7	.53189	.84681	-54659	.8374	.56112	.82773	-57524		5
-57596	9	.53214	.84666	.54683	.83724	.56136	.82757			5
.57619	10	.53238	.8465	-54708	.83708	.5616	.82741			5
57043 -61714 -657043 -61714 -657043 -61714 -65705 -61681 -65705 -61647 -65705 -61647 -65705 -61647 -65705 -61647 -65705 -61647 -65705 -61647 -	11	+53263	.84635	+54732	.83692	.56184	.82724	-57610	.81731	4
57667	12	-53288	.84619	-54756	.83676	.56208	.82708		.81714	4
57715 81664 57762 81614 57768 81614 57768 81614 57867 815614 57818 81597 57833 8158 57857 81563 57857 81563 57952 81456 57952 81466 57952 81466 57952 81466 57952 81467 58023 81462 58023 81462 58023 81462 58023 81462 58047 81472 5818 81378 5837 81174 5847 81174 5847 81174 5847 81174 5847 81174 5847 81174 5847 81174 5847 81174 5847 81174 5847 81174 5847 81174 58567 81054 58567 81054 58567 81054 58687 81004 58687 81004 58687 81004 58687 81004 58687 8007 58687 8007 58687 8007 58687 8007 586861 80087 58684 8007 58684 8007 58684 8007	13	.53312	.84604	.54781	.8366	.56232	82692	-57667	.81698	4
57738	14	+53337	.84588	.54805	.83645	.56256	.82675			4
57762 81631 4 57786 81614 8 5786 81614 8 57887 81563 3 57887 81563 3 57887 81563 3 57988 8158 8158 3 57992 81466 3 57992 81466 3 57992 81466 3 57992 81462 3 58047 81462 3 58047 81412 8 58047 81412 8 58118 81378 2 58118 81378 2 58118 81378 2 5812 8131 2 5818 81378 2 58212 8131 2 58213 81242 2 58213 81259 2 58213 81251 2 58213 81259 2 58214 8120 8124 2 58257 81255 8 58257 8125 8 58257 81255 8 58257 81255 8 58257 81255 8 58257 81255 8 58257 81255 8 58257 8	15	+53361	84573	-54829	.83629	.5628	.82659	-57715		4
-5786 - 81614 - 81597 - 81597 - 81597 - 81595 - 81595 - 81595 - 81595 - 81595 - 81595 - 81592 - 81592 - 81462 - 81592 - 81462 - 81462 - 81592 - 81462 - 81592 - 81462 - 81592 - 81462 - 81592 - 81462 - 81592 - 81462 - 81592 - 81462 - 81592 - 81462 - 81592	16	-53386	-84557	-54854	.83613	.56305	.82643	-57738	.81647	4
57831 81597 4 57832 81593 3 57881 81596 3 57881 81596 3 57984 8153 3 57982 8153 3 57992 81492 3 57992 81492 3 58023 81492 3 58023 81492 3 58024 81395 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 58185 81327 2 5828 38125 81327 3 5828 81327 2 5838 81225 8131 2 5838 81225 8131 2 5838 81225 8131 2 5838 81225 8131 2 5838 81225 8131 2 5838 81225 8132 3 5839 81235 81255 8132 3 5849 81123 8138 81225 8138 8138 81225 8138 81225 8138 81225 8138 81225 8138 81225	17	-53411	.84542	.54878	.83597	.56329	.82626	-57702		4
57833	10	+53435	.84526	.54902	.83581 .83565	·56353	.82593	-57700	.81014	4
.57857 .81563 2 .57881 .81546 3 .57984 .8153 3 .57952 .81496 3 .57952 .81496 3 .57952 .81496 3 .58023 .81462 3 .58047 .81412 3 .58047 .81412 3 .58047 .81412 3 .58141 .81361 2 .58141 .81361 2 .58141 .81361 2 .58142 .8137 2 .58142 .8132 2 .58143 .8137 2 .58145 .8137 2 .58145 .8137 2 .58145 .8137 2 .58165 .81344 2 .58165 .81344 3 .58162 .8137 2 .5826 .81293 3 .5826 .81293 3 .5826 .81293 3 .5826 .81293 3 .5826 .81293 3 .5826 .81293 3 .5837 .81252 3 .5837 .81253 3 .58431 .8174 3 .58496 .8116 1 .58492 .8112 3 .58496 .8116 1 .58519 .8108 3 .58567 .8108 3 .58567 .8108 3 .58567 .8108 3 .58567 .8108 3 .58614 .81021 1 .58639 .8108 3 .58614 .81021 1 .58639 .8108 3 .58614 .81021 1 .58639 .8108 3 .58661 .80987 5 .58681 .8007 1 .58687 .81051 6 .58687 .81051 6 .58687 .81051 6 .58687 .81051 6 .58687 .81051 6 .58687 .81051 6 .58687 .81051 6 .58687 .81051 6 .58687 .81051 6 .58687 .8007 5 .58687 .8007 5 .58687 .8007 5 .58688 .8007 5	20	·5346 ·53484	.84495	·54927 ·54951	.83549	.56401	.82577	57822	81597	4
-57904 -8153 2 -57952 -81496 3 -57952 -81496 3 -57976 -81462 3 -57959 -81462 3 -58047 -81428 3 -58047 -81428 3 -5804 -81395 2 -58141 -81361 2 -58141 -81361 2 -58141 -81361 2 -58145 -81347 2 -58145 -81347 2 -58145 -81347 2 -58145 -81347 2 -58156 -81344 2 -58156 -81344 2 -5825 -8131 2 -5825 -8131 2 -5826 -81293 2 -5826 -81293 2 -5826 -81293 2 -5826 -81295 2 -81295 2 -8129	21	-53509	.8448	-54975	.83533	-56425	.8256z	.57857		3
-57904 -8153 2 -57952 -81496 3 -57952 -81496 3 -57976 -81462 3 -57959 -81462 3 -58047 -81428 3 -58047 -81428 3 -5804 -81395 2 -58141 -81361 2 -58141 -81361 2 -58141 -81361 2 -58145 -81347 2 -58145 -81347 2 -58145 -81347 2 -58145 -81347 2 -58156 -81344 2 -58156 -81344 2 -5825 -8131 2 -5825 -8131 2 -5826 -81293 2 -5826 -81293 2 -5826 -81293 2 -5826 -81295 2 -81295 2 -8129	22	.53534	.84464	-54999	.83517	.56449	.82544	.57881		3
-57928 -81513 2 -57952 -81497 3 -57952 -81447 3 -58047 -81412 3 -58047 -81412 8 -58047 -81412 8 -58054 -81305 2 -58118 -81305 2 -58118 -81305 2 -58141 -81305 2 -5815 -81344 2 -5815 -81344 2 -5812 -8131 2 -58212 -8131 2 -58212 -8131 2 -58213 -81293 2 -5828 -81293 2 -5828 -81293 2 -5828 -81293 2 -5828 -81242 2 -5828 -81255 2 -5837 -81242 2 -5837 -81242 2 -5837 -8125 3 -5843 -8125 3 -5843 -8125 3 -5843 -8125 3 -5843 -8125 3 -5843 -8125 3 -5856 -8125 3 -5856 -8125 3 -5856 -8125 3 -5856 -8125 3 -5857 -8125 3 -8127	23	-53558	.84448	-55024	8350r	.56473	.82528	-57904	.8153	3
57952	24	.53583	.84433	55048	.83485	.56497	.82511		.81513	36
-57999 .81462 3 -58047 .81428 3 -58047 .81428 3 -58047 .81428 3 -58047 .81428 3 -58047 .81428 3 -58048 .81395 2 -58118 .81378 2 -5818 .81374 2 -5818 .81374 2 -5818 .81374 2 -58236 .81293 2 -58236 .81293 2 -58236 .81295 2 -58236 .81295 2 -58236 .81295 2 -58236 .81295 2 -58236 .81295 2 -58236 .81295 2 -58236 .81295 2 -5833 .81225 3 -58354 .81295 3 -5843 .81174 3 -5849 .81174 3 -5849 .81174 3 -5849 .81174 3 -5849 .81174 3 -5849 .8116 3 -5859 .81080 3 -58519 .81080 3	25	-53607	84417	.55072	.83469	-56521	.82495	-57952	.81496	3
\$8023	25	.53632	.84402	-55097	.83453	-56545	.82478		.81479	34
.58047 .84428 3 .5807 .8412 3 .5807 .81412 3 .5807 .81395 .81395 .81395 .81312 3 .58141 .81361 2 .58145 .81344 2 .58189 .81327 2 .58236 .81293 2 .58236 .81293 2 .58236 .81295 2 .58236 .81295 2 .58236 .81259 2 .58236 .81259 2 .58236 .81259 2 .58236 .81259 2 .58237 .81251 1 .58491 .81174 1 .58492 .81123 1 .58493 .81061 1 .58595 .81080 11 .58519 .81080 11 .58519 .81080 11 .58519 .81080 11 .58519 .81080 11 .58519 .81080 11 .58519 .81080 11 .58543 .81072 10 .58567 .81055 6 .5859 .81038 8 .58614 .8021 6 .58637 .8104 6	27	-53656	.84386	.55121	.83437	.56569	.82462	-57999	.81462	33
.5807 .81412 3 .5804 .81398 2 .58141 .81361 2 .58165 .81344 .81361 2 .58165 .81344 2 .58165 .81347 2 .5826 .81293 2 .5826 .81293 2 .5826 .81296 2 .5826 .81296 2 .5826 .81296 2 .5827 .8125 2 .5837 .8125 2 .5837 .81174 1 .58425 .81157 1 .58425 .81157 1 .58425 .81157 1 .58426 .81167 1 .58426 .81167 1 .58436 .8106 1 .58567 .81050 1 .58543 .81062 1 .58543 .81062 1 .58543 .81062 1 .58543 .81062 1 .58543 .81064 1 .5859 .81089 1 .58543 .81064 1 .5859 .81089 1 .58543 .81064 1 .5859 .81089 1 .58567 .81055 6 .5859 .81068 6 .58667 .81056 6 .58687 .81064 6 .58687 .81064 6	28	·53681	.8437	-55145	.83421	-56593	.82446		-81445	3
.50:94 .83:95 2 .58:141 .81:361 2 .58:141 .81:361 2 .58:165 .81:344 2 .58:165 .81:344 2 .58:18 .81:261 2 .58:21 .81:31 2 .58:21 .81:31 2 .58:26 .81:276 2 .58:28 .81:276 2 .58:28 .81:276 2 .58:28 .81:28 2 .58:28 .81:28 2 .58:38 .81:28 2 .58:38 .81:28 2 .58:37 .81:24 2 .58:37 .81:28 11 .58:49 .81:19 1 .58:49 .81:19 1 .58:49 .81:19 1 .58:49 .81:19 1 .58:49 .81:19 1 .58:49 .81:28 1 .58:48 .80:28 1 .58:48 .80:28 1	29	-53705	.84355	.55169	83405	.56617	.82429			31
.58118 .81378 2 .58165 .81344 2 .58165 .81344 2 .58165 .81344 2 .58165 .81377 2 .58216 .81327 2 .58236 .81293 2 .58236 .81293 2 .58236 .81295 2 .5833 .81259 2 .5833 .81259 2 .58354 .81296 1 .58491 .81174 11 .58492 .81174 11 .58492 .81174 11 .58492 .81174 11 .58493 .81061 1 .58599 .81089 11 .58599 .81089 11 .58599 .81089 11 .58599 .81089 11 .58599 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11 .5859 .81089 11	30	.5373	.84339	-55194	83389	.56661	.82413 .82396	-5007	81205	30
.58141 881361 2 .58165 881347 2 .58180 881327 2 .58212 88131 2 .58218 881297 2 .58218 881297 2 .5828 881297 2 .5828 881297 2 .5838 881285 8 .58378 881285 8 .58378 881191 1 .58425 881157 1 .58425 881157 1 .58426 88116 1 .58427 881123 1 .58436 88116 1 .58567 88168 8 .58567 88168 8 .58567 88168 8 .58567 88168 8 .58567 88168 8 .58567 88168 8 .58567 88168 8 .58661 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5 .58687 88027 5	32	·53754	.84324	-55218 55242	.83356	.56689	.8238	58778		2
58165 81344 2 58180 8137 2 5828 8137 2 5828 81259 2 5828 81259 2 5828 81259 2 5838 81259 2 5838 81259 8 58354 81258 81174 1 5849 81174 1 5849 81174 1 5849 8116 81 5859 8108 1 5859 8108 1 5859 8108 1 5859 8108 1 5869 8104 802 1 5861 802 1	33	·53779 ·53804	.84292	.55266	.8334	.56713	.82363	. 58141	81261	27
.58189 .81327 2 .58216 .81293 2 .58286 .81293 2 .58286 .81295 2 .58283 .81226 2 .58283 .81225 2 .58383 .81225 1 .58354 .81288 1 .58378 .81194 1 .58425 .81157 1 .58425 .81157 1 .58426 .81167 1 .58426 .81167 1 .5843 .8102 1 .58543 .8102 1 .58543 .8102 1 .58543 .8102 1 .58543 .8106 1 .58543 .8106 1 .58543 .8106 1 .58543 .8106 1 .58543 .8106 1 .58567 .8105 2 .5869 .8108 8 .58614 .802 1 .58637 .8104 6 .58661 .80987 5 .58687 .8004 6	34	.53828	.84277	.5529I	.83324	.56736	.82347			26
.58212 .8131 2.5826 .81293 2.5826 .81296 2.58283 .81259 2.58387 .81242 2.58397 .81242 2.58397 .81242 2.58397 .81124 1.58492 .81124 1.58492 .81124 1.58492 .81124 1.58492 .81129 1.58519 .81088 1.58519 .81088 8.58519 .81088 8.58519 .81088 8.58519 .81088 8.58514 .81021 7.58519 .81088 8.58514 .81021 7.58519 .81088 8.58514 .81021 7.58519 .81088 8.58514 .81021 7.58519 .81088 8.58514 .81021 7.58519 .81088 8.58514 .81021 7.58519 .81088 8.58514 .81021 7.58514 .8	35	-53853	.84251	+55315	.83308	.5676	.8233			25
. \$826	36	-53877	.84245	+55339	.83292	.56784	.82314		.8131	24
.58283 .81259 2 .58307 .81242 2 .5833 .81225 1 .58354 .81205 1 .58401 .81174 1 .58425 .81157 1 .58449 .81157 1 .58449 .81167 1 .58490 .81060 1 .58547 .81060 1 .58543 .81060 1 .58543 .81060 1 .58543 .81064 .8056 1 .58664 .8067 4 .58667 .81064 6 .58667 .80087 5 .58687 .81064 6	37 38	-53902	.8423	.55363	.83276	.56808	.82297	.58236	.81293	23
.8307 .81242 2 .8338 .81225 1 .8338 .81208 1 .85378 .81174 1 .86425 .81157 1 .84425 .81157 1 .8442 .81123 1 .8442 .81123 1 .8543 .81072 1 .85519 .81080 1 .85543 .81072 1 .85543 .81072 1 .8559 .81089 1 .8569 .81038 8 .8567 .81055 .8089 5 .8637 .81055 .8089 5 .8637 .8004 6 .8687 .8007 5		-53926	.84214	55388	8326	.56832	.82281		.81276	22
5833 81225 11 58354 81298 11 58376 81191 11 58401 81174 11 58425 81157 11 58449 8114 14 58472 81123 11 58496 8116 11 58519 81089 11 58519 81089 11 5859 81038 8 5859 81038 8 5859 81038 8 58637 81004 6 58637 81004 6 58637 81004 6	39	.53951	.84198	+55412	.83244	.56856	.82264		.81259	21
58354 81208 11 58378 81191 11 58421 81174 11 58425 81157 11 58429 8114 11 58472 81123 11 58496 8106 11 58567 81050 11 58567 81050 11 58567 81050 11 58567 81050 11 58567 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11 58637 81050 11	40	-53975	.84182	-55436	.83228	.5688	.82248			
58378 .81191 1; 58425 8.1174 1; 58425 8.1157 1; 58449 8114 1; 58472 .81123 1; 58496 .81106 1; 58519 .81089 1; 58519 .81085 1; 5859 .81038 8; 5859 .81038 8; 58614 .81021 7; 58637 .81064 6; 58661 .8097 5;	41	.54	.84151	.5546	83212	.56904	.82231	.5033		.0
58401 81174 16 58425 81177 15 58449 81157 15 5849 8116 15 58519 81080 11 58543 81072 10 58543 81072 10 5859 81038 8 58614 81021 7 58637 81004 6 58661 80987 5 58684 8097 4	42	-54024	.84135	-55484	.83195	.56928	.82108	-5°354		
.58425 .81157 1.58449 .8114 14.58472 .8123 15.58496 .81166 15.58549 .81055 8.58567 .81055 8.58567 .81055 8.58567 .81055 8.58567 .81055 8.58567 .81055 8.58567 .8004 6.58661 .80087 5.58664 .80087 5.58664 .80087 5.58664 .80087 5.58684 .80087	43 44	·54049	.8412	+55533	.83163	.56976	.82181			16
.58449 .8114 14 .58472 .81123 11 .58496 .81060 11 .58519 .81089 11 .58543 .81072 11 .58547 .81055 19 .5859 .81038 8 .58614 .81021 7 .58637 .81004 0 .58661 .8097 5 .58684 .8097 5	45	-54097	.84104	.55557	.83147	-57	.82165			15
-58472 81123 1; -58496 81066 11; -58519 81089 11 -58543 81072 10; -58597 81035 9 -58637 81004 0; -58637 8004 0; -58684 8097 5;	45 46	-54122	.84088	.5558r	.83131	-57024	.82148		.8114	14
.58496 .81766 11 .58519 .81089 11 .58543 .81059 12 .58567 .81055 .5859 .81038 8 .58644 .81021 7 .58661 .80987 5 .58664 .80987 5	47	-54146	.84072	+55605	.83115	-57047	.82132		.81123	13
.58519 .81089 11 .58543 .81072 10 .58567 .81055 .8559 .81038 8 .58614 .81021 7 .58637 .81004 .58661 .80987 5 .58664 .8097 4	47 48	-54171	.84057	+5563	.83098	-57071	.82115	.58496	.81106	12
58567 .81055 9 .5859 .81038 8 .58614 .81021 7 .58661 .80987 5 .58684 .80987 4	49	-54195	.84041	-55654	.83082	-57095	.82098	.58519		11
.58614 .81021 7 .58637 .81004 6 .58661 .80987 5 .58684 .8097 4	50	-5422	.84025	.55678	.83066	57119	.82082			10
.58614 .81021 7 .58637 .81004 6 .58661 .80987 5 .58684 .8097 4	~1	·54244 ·54269	.84009	-55702	.8305	-57143	.82065			96
.58637 .81004 6 .58661 .80987 5 .58684 .8097 4		.54209	83994	-55726	.83034	-57167	.82048	-5859		
.58661 .80987 5 .58684 .8097 4			83978 83062	·5575	.83017	-57191	.82032			6
.58684 .8097 4			K	-55775	.82085	-57215	.81999	-50037		
				·55799 ·55823	.82060	·57238 ·57262	.81982			
.58708 .80953 3				. cc847	.82953	57286	.81965			3
				1		·5731	.81949	. 58731		2
. 58755 .80010 I						57334	.81932	58755	.80010	1
.58779 .80902 °						57358	.81915	-58779	.80902	0

30	50	3:	7 0	3:	Bo	3:	9 0	l	Pare.
M. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.	N. sine.	N. cos.		18
58779	.80902	.60182	.79864	.61566	.788oz	•.62932	.77715	60	18
58779 58802	.8088≤	.60205	.79846	.61589	.78783	.62955	.77696	59 58	18
58826	.80867	.60228	.79829	.61612	.78765	.62977	.77678		17
58849 58873	.8085 .80833	.60251 .60274	.79811	.61635 .61658	.78747 .78720	.63 .63022	.7766 .77641	57 56	17
58896	.80816	.60298	·79793 ·797 7 6	.6168r	.78711	.63045	.77623	55	17
5802		.60321	.79758	.61704	.78694	.63045 .63068	.77605	54	16
58943	.80799 .80782	.60344	·79741	.61726	.78676	.6309	.77586	53	16
58907	.80765	.60367	·79723	.61749	.78658	.63113	.77568	52	16
5899	.80748 .8073	.6039 .60414	.79706 .79688	.61772 .61795	.7864 .78622	.63135 .63158	·7755 ·77531	51 50	15
59014	.80713	.60437	.79671	.61818	.78604	.6318	·77513		15
5006x	.80696	.6046	.79653	.61841	78586	.63203	·77494	49 48	14
50084	.80679	.60483	.79635	.61864	.78568	.63225	.77476	47	14
59108	.80662	.60506	79618	.61887	.7855	.63248	·77458	46	14
59131 59154	.80644 .80627	.60529 .60553	.796 79583	61932	.78532 .78514	.63271 .63293	·77439	45 44	14
59178	.806z	.60576	.79565	.61955	.78496	.63316	.77402	43	13
59201	.80593	.60500	·79547	.61978	. 78478	.63338	.77384	42	13
59225	.80576	.60622	·7953	62001	.7846	.63361	.77366	41	12
59248	.80558	.60645 .60668	.79512	.62024	.78442	.63383	·77347	40	12
59272 59295	.80541 .80524	.60691	·79494 ·79477	.62046 .62060	.78424	.63406 .63428	·77329 ·7731	39 38	12 11
59318	.80507	.60714	· 7 9459	.62002	.78387	.63451	.77292	37	11
59342	.80489	.60738	.79441	.62115	.78360	.63473	·77273	36	11
59365	.80472	.60761	.79424	.62138	.78351	63496	·77255	35	11
.59389	.80455	.60784	.79406	.6216 .62183	.78333	.63518	.77236	34	10
.59412 .59436	.80438 .8042	.6083	.79388 -79371	.62206	.78315 .78297	.6354 .63563	.77218 .77199	33	10
59459	.80403	.60853	· 7 9353	.62229	.78279	.63585	.77181	31	9
59482	.80386	.60876	.79335	.62251	.78261	.63608	.77162	30	9
59506	.80368	.60899	.79318	.62274	.78243	.6363	-77144	29	8
· 59529 · 59552	.80351 .80334	.60922 .60945	·793 ·79282	.62297 .6232	.78225 .78206	.63653 .63675	.77125 .77107	28 27	8
.59552	.80316	.60968	.79264	62342	.78188	.63698	.77088	26	8
-59599	.80299	.6099x	.79247	.62365	.7817	.6372	.7707	25	8
.59622	.80282	.61015	.79229	.62388	78152	.63742	.77051	24	7
. 59646	.80264	.61038	.79211	.62411	.78134	.63765	·77°33	23	7
. 59669 . 59693	.80247 8023	.61061	.79193 .79176	.62433 .62456	78116 .78098	63787 6381	.77014 .76996	22 21	7 6
.59716	.80212	.61107	.79158	.62479	.78079	.63832	.76977	20	6
59739	.80195	.6113	.7914	.62502	.78061	.63854	.76959	19 18	6
59763	80178	.61153	.79122	.62524	.78043	.63877	.7694		5
59786 59809	.8016 .80143	61176	.79105 .79087	.62547 .6257	.78025 .78007	.63899 .63922	.76921 .76903	17 16	5
.59832	.80125	.61222	.79069	.62592	.77988	.63944	.76884	15	5 5
.59856	.80108 l	.61245	.79051	.62615	7797	.63966	76866	14	4
. 59879	.80091	.61268	· 7 9033	.62638	·77952	.63989	.76847	13	4
. 59902	.80073 .80056	.61291	.79016 .78008	62663	·77934	.64011	.76828 .7681	12	
. 59926 · 59949	.80038	.61314	.7898	.62706	.77916 .77897	.64033	.76791	11	3 3 3
.59972	.80021	.6136	.78962	.62728	77870	.64078	.76772	٩	3
59995	.80003	.61383	.78944	.62751	.77861	.641	-76754	8	
.60019	.79986	61406	.78926	.62774	.77843	.64123	.76735	7 6	2
.60042 .60065	.79968 .79951	.61429 .61451	.78908 .78891	.62796	.77824 .77806	.64145	.76717	5	2 2
.60089	·79931	.61474	.78873	62842	.77788	.6419	.76679	4	î
.60112	.70016	.61497	78855	.62864	.77769	64212	.76661	3	1
.6o135	.79899	.6152	78837	.62887	·77751	.64234	.76642	2	1
.60158 .60182	.7988í .79864	.61543 .61566	78819 . 78801	.62909 .62932	.77733	.64256	.76623 .76604	\ <u>r</u>	0
/	·//				·77715	1	-\	\ 	<u>-\-</u>
N. cos. /	N. sine.	N. cos. 520	N. sine.		N. sine.	N. cos.		e. /	. /
	"	52	11	51	Į.	11	50 0	١,	-

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	44	je	41	13		3:	42*		
£ <u>}</u>	•	N sina	N. ma.	S. dza.	V. 200.	N. 1174.	N. 104.	Z #34.	S. 🗪	
	-3	4.27%	#fire	1.4nd.	7547Z	iógas	-43:11	532		=
	E	1.5	يمو ۽ مب	4 4.2.	75452	inc:			7:3	
	2	24:2:		6±6	75433	ing:		:4242	-3000	¥.3
	3			6-6	75414	tog-:	- LZ 57		-3:	5-
z	4		77.77		-75375	SOO .	-123-	7.52.54		5
2	Š	14.5		772	75373	5702:	-12:-	7.5 700	-30	55
2	•	14.12	وزه يمو	25733	75357	f=543	742	1432-	-3011	54
3	7	44		65731 65731 65731	75337		-+:-:	78344 7877	-200	53
3	;	44.77			75279		74553 74553	. 1833:	7377	51 51
4	15	125.2	7.27	43.23	.7525	1-566 1-12-1 1-12-1	-4:2	14112	7737	52 52
- 4	11	4524		4===	75251		742	.:4::	-222-	4
4	12	6.1.14		. 6 5 3 f.c.	75241	77172	4.56	C455	72337	47
	13	6 . 257	75.76.8	68361	75222	7215	~4.56 ~4.56	6455 634-6		47
5	14	4.7	7 142 7 323	. 55527	7520	-721	1-41	104.	7:357 7:37	46
3	15	14:12	7 327	54574	.75124	****	74322	18118 18533	7=37	45
		(45) (45)	T. 70.1		.751.5	721	1,002	10431	.72517	44
	13	14.77	Tair.	46,75	7:14	-3721	73703	itēsti. Itēsta	72797	43
7	17	1771	7.24.7 7.24.3	55022	7512	573CI 573Z3	73773	.tete;	77777 77757	42 41
- 4	2.	62-	#200	Coss	-75137 -75333	7344	73,744	.cac.	7-737	40
7 7 %	21	54745	721	Sint.	75-50		73304	.68645	72717	30
ş	22		75132	.ttoes	.75=5		73204	. 68666	72207	39 38
ē	23	,	7173	66120	·7503	67434	.73303	fécéé	72677	37
9	24	6	7.154	.66131	.75011	.67439 .67439 .6743		.68709	.72057	37 36
9	25	5.25 L 5.155 5.157	75135	6.153	·74392	. *****	73226	.6273	71637	35
10	24		.75115	.56175	-74973		.71300	C0751	.72617	34
15	27 23	1,17	757	.66137 .66218	-74953	.67475 .67516	.737 ^S 7	.ce772	72597	33
11	24	.61911 .51525	75039	.66.24	-74934	67510	.73777	.66733 .68814	·72577 ·72557	32 31
11	30	4945	75041	66.26.2	-74915 -74-9	.67533 .67539 .6753 .67502 .67602 .67623	-73747 -73725	.68835	·7-537	30
11	31		7 522	66.234	74375	6-53	738	€88=7	.72517	20
12	32	(1,2)	75003	.66336	74357		73778	F 66.73	72437	29 28
12	33	.65011	.75	.66327	.74535	£75.23	73553	.68843	72477	27
12	34	65903	753.5	ff 240	.74513	.67545	. 73043	. (8 32	-72457	26
13	35	-55055	75945	.56.271	·74739 ·7473	. 5777.5	73523	14052	-72437	25
1,	3%	-5::77	75,27	.66333	.7475	.67533	7351	.68¢/:2	-72417	24
14 1;	37 35	.651 .65122	7377	.66414 .66436	·7475	.67729	-7359	.68383 .69004	.72397	23 22
14	30	.65144	75,27 757,3 7565) 7527	.66453	74741 -74722	.6773 .67752	·7357 ·73551	.69025	-72377 -72357	21
15	40	65155	.75251	.66.48	-7-793	-57773	.73531	.69046	.72337	20
85	41	.65183	.75832	66 soz	-7+7°3 -74533	.67795	.73511	.fqc6;	.72317	19
15	42	.0521	-75013	.00522	7400a	.67516	-73491	880000.	-72297	
16	43	.65232	-75794	.66545	74044	67837	-73472	.69109	-72277	17
16	44	.65254	-75775	-66500	-74525	.67859	-73452	.6913	-72257	16
17	45	165276	-75756	.66583 .6661	.74606 .74586	46788	-73432	.69151	.72236	15
27		.65298	-75738 -75719	.66632	-74567	.6790t	-73413	.69172	-72216 -72196	13
17 18	47	.65342	-757	.66653	-74548	.67923	·73393 ·73373	.69214	.72176	12
28	49	.65364	.7568	-50007E	-74528	.67905	-73353	.69235	72156	11
12	50		-75001	.66697	74500	.67987 .68008	-73333	.60256	-72136	10
19	51	-65408	75642	.00713	-74489	.68008	.73314	.69277	.72116	968
19	59	16543	25022	.6674	7447	.68029	-73294	.69298	.72095	8
89	23	195452	75604	.00702	-74451	.68051	-73274	.69319	72075	7 6
-			75585	.66805	·74431	.68072	-73254	-6934	-72055	
				66827	-74412	.68093 .68115	-73234	.69361	-72035 -72015	5
			1547	.66848	·74392 ·74373	.68136	-73215 -73195	69403	.71995	3
				668	-74353	68257	13195	.69424	71974	2
			100	166841	- T433A	6817	1 7315	1.59445	1.71954	101
			TV.	100	7431		17313	5 6940	Ebil. 9	1/0
					3		1 816	10. X.	COS. N. V	me /

101	N. sine. N. cos.			Prop.	Prop.		44	10	14.3	Prop.
	N. sine.	N. cos.		19	22	ve.	N. sine.	N. cos.		9
0	.69466	-71934	60	19	11	31	.70112	.71305	29	9
1	.69487	+71914	59	19	12	32	.70132	-71284	28	9
2	.69508	.71894	59 58	18	12	33	.70153	-71264	27	8
3	.69529	.71873	57	18	12	34	.70174	-71243	26	8
	.69549	.71853	56	18	13	35	.70195	-71223	25	8
5	.6957	.71833	55	17	13	36	.70215	.71203	24	8
6	.69591	.71813	54	17	14	37	.70236	-71182	23	7
7 8	.69612	-71792	53	17	14	38	.70257	-71162	22	7
8	.69633	.71772	52	16	14	39	.70277	-71141	21	7
9	.69654	.71752	51	16	15	40	.70298	.71121	20	6
10	.69675	.71732	50	16	15	41	.70319	.711	19	6
II	.69696	.71711	49	16	15	42	.70339	+7108	18	6
12	.69717	-71691	49 48	15	16	43	.7030	-71059	17	5
13	.69737	-71671	47	15	16	44	.70381	.71039	16	5
14	.69758	.7165	46	15	17	45	.7040I	+71019	15	5
15	.69779	.7163	45	14	17	46	.70422	.70998	14	4
16	.698	.7161	44	14	17	47	-70443	.70978	13	4
17	.69821	.7159	43	14	18	48	.70463	.70957	12	4
18	.69842	-71509	42	13	18	49	.70484	+70937	11	3
19	.69862	-71549	41	13	18	50	.70505	•70016	10	3
20	.69883	-71529	40	13	10	51	.70525	.70896	9	3
21	.69904	.71508	39	12	10	52	.70546	+70875	8	3
22	.60925	.71488	38	12	19	53	.70507	.70855	7 6	2
23	.69946	.71468	37	12	20	54	.70587	.70834	6	2
24	.69966	-71447	36	II	20	55	.70008	.70813	5	2
25	.69987	-71427	35	II	21	56	.70628	-70793	4	1
26	-70008	-71407	34	II	21	57	.70649	.70772	3	1
27	.70029	.71386	33	TO	21	58	.7067	.70752	2	1
28	-70049	.71366	32	10	22	59	.7069	.70731	1	0
29	.7007	-71345	31	10	22	60	70711	.70711	0	0
30	.70091	.71325	30	10		7				
	N. cos.	N. sine.					N. con.	N. sine.		

Preceding Table contains Natural Sine and Cosine for every minute the Quadrant to Radius 1.

If Degrees are taken at head of columns, Minutes, Sine, and Cosine must taken from head also; and if they are taken at foot of column, Minutes, must be taken from foot also.

LEUSTRATION .- 3173 is sine of 180 30', and cosine of 710 30'.

To Compute Sine or Cosine for Seconds.

When Angle is less than 45°. RULE.—Ascertain sine or cosine of angle charges and minutes from Table; take difference between it and sire cosine of angle next below it. Look for this difference or remainder. Since is required, at head of column of Proportional Parts, on left side if Cosine is required, at head of column on right side; and in the spective columns, opposite to number of seconds of angle in column, is about or correction in seconds to be added to Sine, or subtracted from the of angle.

```
THUSTRATION L.—What is sine of 80 9' 10"?
```

Sine of 8° 9', per Table = .141 77; Sine of 8° 10', "= .142 05; .000 28 different

h set side column of proportional parts, under 28, and opposit b so, which, being added to .14177 = .14182 Sinc.

2.—What is cosine of 80 9' ro"?

In right-side column of proportional parts, under 4, and opposite to 10', is 1, the correction for 10', which, being subtracted from .989 90 = .989 80 cosine.

When Angle exceeds 45°. RULE.—Ascertain sine or cosine for angle in degrees and minutes from Table, taking degrees at the foot of it; then take difference between it and sine or cosine of angle next above it. Look for remainder, if Sine is required, at head of column of Proportional Parts, on right side; and if Cosine is required, at head of column on left side; and in these respective columns, opposite to seconds of angle, is number or correction in seconds to be added to Sine, or subtracted from Cosine of angle.

ILLUSTRATION.—What is the Sine and Cosine of 810 50' 50"?

In right-side column of proportional parts, and opposite to 50', is 3, which, added to .989 86 = .989 89 Sinc.

Cosine of 81° 50', per Table = .142°5; Cosine of 81° 51', " = .14177; .000 25 difference.

In left-side column of proportional parts, and opposite to 50', is 24, which, subtracted from .14205 = .14181 Cosine.

To Ascertain or Compute Number of Degrees, Minutes, and Seconds of a given Sine or Cosine.

When Sine is given. RULE.—If given sine is in Table, the degrees of will be at top or bottom of page, and minutes in marginal column, at left or right side, according as sine corresponds to an angle less or greater than 45°.

right side, according as sine corresponds to an angle less or greater than at.

If given sine is not in Table, take sine in Table which is next less than one for which degrees, etc., are required, and note degrees, etc., for it. Subtract this sine from next greater tabular sine, and also from given sine.

Then, as tabular difference is to difference between given sine and tabular sine, so is 60 seconds to seconds for sine given.

EXAMPLE.—What are the degrees, minutes, and seconds for sine of .75?

Next less sine is .749 92, arc for which is 48° 35'. Next greater sine is .75011.

Aifference between which and next less is .75011.

749 92 = .000 19.

Difference between less tabular sine and one given is .75.

75.

749 92 = 8.

Then 19:8::60:25+, which, added to 48° 35' = 48° 35' 25".

When Cosine is given. RULE.—If given cosine is found in Table, degrees of it will be found as in manner specified when sine is given.

If given cosine is not in Table, take cosine in Table which is next greater than one for which degrees, etc., are required, and note degrees, etc., for k Subtract this cosine from next less tabular cosine, and also from given cosine.

Then, as tabular difference is to difference between given cosine and tabular cosine, so is 60 seconds to seconds for cosine given.

Example.—What are the degrees, minutes, and seconds for cosine of .75?

Next greater cosine is .75011, are for which is 41° 24'. Next less cosine is .74994 difference between which and next greater is .75011 - .74992 = .00019. Different between greater tabular cosine and one given is .75011 - .75000 = 11.

Then 19: 11:: 60: 35-, which, added to 410 24' = 410 24' 35".

empute Versed Sine of an Angle. angle from 1.

is the versed sine of 21° 30'?

30' is .030 42, Which, — 1 = .060 58 rersed sine.

nte Or-versud Sine of an Angle.

soried sine.

Natural Secants and Co-secants.

0	0 1	1	0 1	2	0	1 3	۰ ۱	
	CO-SECANT.	SECANT.	Co-sec'T.	SECANT.	Co-sec't.	SECANT.	Co-suc'T.	
-	Infinite.	1.0001	57-299	1.0006	28.654	1.0014	19.107	7
1	3437-7	10001	6.359	.0006	8.417	.0014	0.002	
ı	1718.9	,0002	5-45	.0006	8.184	.0014	8.897	
۱	145.9	.0002	4.57	,0006	7-955	.0014	8.794	
	859-44	.0002	3.718	.0006	7.73	.0014	8.692	
	687-55	1.0002	52.8g1	1.0007	27.508	1.0014	18. 591	
	572.96	.0002	2.09	.0007	7.29	.0015	8.491	ľ
	491.11	.0002	1.313	.0007	7.075	.0015	8.393	
	29.72	.0002	0.558	.0007	6.864	.0015	8.295	
	381.97	.0002	49.826	.0007	6.655	.0015	8. 198	ĺ.
	343-77	1.0002	49.114	1.0007	26.45	1.0015	18.103	
	12.52	.0002	8.422	.0007	6.249	.0015	8.008	
	286.48	+0002	7-75	.0007	6.05	.0016	7.914	١.
	64-44	,0002	7.096	.0007	5.854	.0016	7.821	
	45-55	0002	6.46	8000.	5.661	.0016	7.73	
	229:18	1.0002	45.84	1.0008	25.471	1.0016	17.639	١
	14.86	.0002	5-237	.0008	5.284	.0016	7.549	ı
	02.22	.0002	4.65	8000.	5. I	.0016	7.46	l
	190.99	.0002	4.077	8000	4.918	.0017	7.372	l
	80.73	,0003	3.52	.0008	4.739	.0017	7.285	١
	171.89	1.0003	42.976	1.0008	24.562	1.0017	17.198	ı
	63.7	.0003	2.445	.0008	4.358	.0017	7.113	١
	56.26	.0003	1.928	8000.	4.216	.0017	7.028	ŀ
	49-47	.0003	1.423	.0009	4.047	.0017	6.944	١
	43.24	.0003	40.93	.0000	3.88	.0018	6.86z	ı
	137.51	1.0003	40.448	1.0000	23.716	1.0018	16.779	l
	32.22	.0003	39.978	.0000	3.553	.0018	6.698	ı
	27.32	,0003	9.518	.0009	3.393	8100.	6.617	ı
	22.78	.0003	9.069	.0000	3.235	8100.	6.538	1
	18.54	.0003	8.631	.0000	3.079	.0018	6.459	ì
	114-59	1.0003	38,201	1.0000	22.925	1.0019	16.38	ļ
	10.9	,0003	7.782	100.	2.774	.0019	6.303	1
	07.43	.0003	7.371	100.	2.024	.0019	6.226	١
	04.17	.0004	6.969	1001	2.476	.0019	6.15	Ĺ
	01.11	,0004	6.576	100t	2.33	.0019	6.075	1
	98.223	1.0004	36.191	1.001	22/186	1.0019	16	١
ı	5-495	.0004	5.814	100.	2.044	.002	5.926	ı
	2.914	.0004	5-445	100.	1.904	.002	5.853	١
	2.469	10004	5.084	100.	1.765	.002	5.78	1
	88.149	.0004	4.729	1100,	1.629	.002	5.708	1
	85.946	1.0004	34.382	1.0011	21.494	1.002	15.637	ļ
	3.849	.0004	4.042	.0011	1.36	.0021	5.566	Ĺ
	1.853	-0004	3.708	1100.	1.228	.0021	5.496	
	79 95	.0004	-3.38r	1100.	1.098	.0021	5.427	١
	8.133	.0004	3.06	1100.	20.97	.0021	5.358	1
	76.396	1.0005	32.745	1.0011	20.843	1.0021	15.29	١
	4.736	.0005	2.437	.0012	0.717	.0022	5.222	١
	3.146	.0005		.0012		.0022	5. ¥ § §	
	1.622	.0005	1.836	,0012	0.471	.0022	5.089	
	1.16	.0005	1.544	.0012	0.35	.0022	5.023	
	68.757	1.0005	31.257	1.0012	20.23	1.0022	14.958 4.893	
	7.409	,0005	30.976	.0012	0.113	.0023	4.893	١
	6.113	10005	0,699	.0012	19.995 9.88	.0023	4.829	}
	4.866	10005	0.428	.0013	9.88	1	4.765	1
	3.664	0005	0.161	.0013	9.766	11		•
	62.507	1.0005	29.899	1.0013	19.653			
	1-391	.0006	9.641	.0013				
	1.314	.0006	9.388	.0013				
	59.274	,0006	9.139	.0013				
ı	8.27	.0006	8,894	0013		4		
	57.299	1.0006	28.654	1.0014				
	SECANT.	Co-sec'r.	SECANT.	Co-sec's	-	-		
	2 / //	88		CO-MEC.	F. SECAT	**· ,		

	1 4	10	100	50		50	1 7	0
	SECANT.	Co-sec'T.	SECANT.	Co-sec'T.	SECANT.	Co-suc'T.	SECANT.	Co-mc'r.
0	1.0024	14.335	1.0038	11.474	1.0055	9.5668	1.0075	8,2055
1	+0025	4.276	.0038	1.436	.0055	.5404	.0075	.1861
2	.0025	4.217	.0039	1.398	.0056	·5141	.0076	,1668
3	.0025	4.159	.0039	1.36	.0056	-488 -462	.0076	-1476 -1285
4	1.0025	14.043	1.0039	11.286	1.0057	9.4362	1.0077	8.1094
56	.0026	3.986	.004	1.249	-0057	.4105	.0077	.0905
7 8	.0026	3.93 3.874	.004	1.213	+0057	.385	.0078	.0717
	.0026	3.874	.004	1.176	.0057	-3596	.0078	.0529
9	.0026	3.818	.004	1.14	.0058	+3343	.0078	.0342
10	1.0026	13.763	1.0041	1.104	1.0058	9.3092	1.0079	8.0156
11	.0027	3,708	.0041	1.009	.0050	.2593	.0079	7-9971
13	-0027	3.6	.0041	0.988	,0059	.2346	.0079	.9504
14	.0027	3-547	.0042	0.963	.0059	.21	.008	-9421
15	1.0027	13.494	1.0042	10.929	1.006	9.1855	1.008	7.924
16	.0028	3.441	,0042	0.894	,006	.1612	-0081	.9059
17	.0028	3.389	.0043	0.86	+006	-137	.0081	.8879
18	.0028	3-337	.0043	0.826	10001	-1129	.0082	.87
19	.0028	3-286	1.0043	0.792	1.0001	.089 9.0651	1.0082	7.8544
20	1.0029	3.184	.0044		.0062	.0414	.0083	8168
21	.0029	3-104	.0044	0.725	.0002	.0170	.0083	
23	.0029	3.084	,0044	0.659	.0062	8.9944	.0084	-7992
24	,0020	3.034	.0044	0.626	.0063	.9711	.0084	-7642
25	1.003	12.985	1.0045	10.593	1.0063	8.9479	1.0084	7.7469
26	.003	2.937	.0045	0.561	,0063	-9248	.0085	-7296
27	.003	2.888	10045	0.529	.0064	.9018	.0085	-7124
28	.003	2.84	.0046	0.497	.0064	.879	.0085	-6953
29	.0031	2.793	.0046	0.465	1.0065	.8563	.0086	.6783
30	1.0031	12.745	1.0046	10.433	-	8.8337	1.0086	7.6613
31	.0031	2.698	.0046	0.402	.0065	.8112	.0087	-6444
32	.0031	2.606	.0047	0.3/1	.0066	.7665	.0087	.6276
34	.0032	2.56	.0047	0.309	.0066	-7444	.0088	-5941
35	1.0032	12.514	1.0048	10.278	1.0066	8.7223	1.0088	7-5776
36	.0032	2.469	.0048	0.248	.0067	.7004	.0080	-5011
37	,0032	2.424	.0048	0.217	.0067	.6786	.0089	-5446
38	.0033	2.379	.0048	0.187	.0067	.6569	.0089	.5382
39	.0033	2.335	1.0049	0.157	1.0068	.6353 8.6138	.009	-5119
40	1.0033	12.291			.0068	1 1000	1.009	7-4957
41	.0033	2.248	.0049	0.098	.0000	-5924	.000	-4793
42	.0034	2.161	.005	0.039	.0069	·5711 ·5499	10001	-4034 -4474
44	.0034	2.118	.005	0.01	.0069	-5289	.0002	·4345
45	1.0034	12.076	1.005	9.9812	1.007	8.5079	1.0002	7.4156
46	.0035	2.034	.0051	.9525	.007	.4871	.0092	. 3995
47	.0035	1.992	.0051	-9239	.007	+4663	.0003	-354
48	.0035	1.95	.0051	.8955	.0071	+4457	.0093	.3683
49	1.0035	11.868	1.0052	.8672 9.8391	1.0071	8.4046	-0094	-3527
50	.0036	1.828	.0052	.8112	.0072	.3843	1.0094	7-3377
51 52	,0030	1.787	.0052	.7834	.0072	.3640	.0094	-3117
53	.0036	1.747	.0053	.7558	-0073	*3439	.0005	-2000
54	.0037	1.707	,0053	.7283	.0073	-3238	.0006	-2352
	1.0037	11.668	1.0053	9.701	1.0073	8.3039	1.0096	7.2004
55 56	+0037	1.628	.0054	.6739	.0074	.2840	.0007	.2453
57 58	.0037	1,589	+0054	.6469	+0074	.2642	10097	.2300
	.0038	1.55	.0054	.62	.0074	.2446	.0097	-215
59	.0038	1.512	.0055	-5933	1,0075	225	.0098	.2000
60	1.0038	11.474	1.0055		1.0075	-	8000	7.1853
-	Co-sec'T.	SECANT.	Co-BEC"		. CO-BEC	T. SECAST	CO-BE	T. SACK
	8	50	11	840	11	830	11	650
-								

8	o 1	90		1 14)o (1 11	lo i	ı
Ĭ	Co-emc'r.	SECANT.	Co-smc'r.	SECANT.	Co-exc'r.	SECANT.	Co-cme'r.	•
-	7. 1853	1.0125	6.3924	1.0154	5.7588	1.0187	5.2408	60
	.1704	.0125	.3807	.0155	·7493 ·7398	.0188	-233	59 58
	·1557	.0125	.369 -3574	.0155 .0150	·7398 ·7394	.0188 .0810.	.2052 .2174	
	.1409 .1263	.0126	3458	.0156	.73I	.0189	.9097	57 56
	7.1117	1.0127	0.3343	2.0157	5.7117	1.019	5.9019	55
	.0972	.0127	.3928	.0157 .0158	.7023 .693	1010.	.1942 .1865	54
	.0827	.0128	.3113	.0158	.6838	.0191	.1788	53 52
	.0539	.0129	.2999 .2885	.0259	.6745	.0192	.1712	51
	7.0396	1.0129	6.2778	1.0159	5.6653	1.0193	5.1636	50
	.0254	.013	.2659	ozó.	.656z	.0193	.156 .1484	49 48
	.0112 6.9971	.013	.2546 .2434	.ozoz	.647	.0194	.1400	47
	.983	.0131	.2322	.0162	.6379 .6288	.0195	.1333	46
	6.969	1.0132	6.2211	1.0162	5.6197	1.0196	5.1258	45
	·955	.0132	.21	.0163 .0163	.6107 .6017	.0196	.1183	44
	.9411 .9273	.0133	.199 .188	.oz64	.5028	.0198	.2034	43
	.9135 6.8998	.0134	.177 6.1662	.0164	.5838	.org8	.000	41
		1.0134		z.016g	5-5749	1.0199	5.0886	40
	.8861	.0135	.1552	.or65 .or66	.566	.0199	.0812	39 38
	.8725 .8580	.0135	•1443 •1335	.0166	.5572 .5484	.0901	.0739 .0666	
	.8454	.0136	.1227	.0167	.5396	.0201	.0593	37 36
	6.832	z.0x36	6.112	1.0167	5.5308	1.0902	5.052	35
٠,	.8185 .8052	.0137	.0006	.0168	.5221 .5134	.0203	.0447	34 33
	.7919	.0138	l .o8	.oróg	.5047	.0204	.0302	33
	.7787	.0138	.0694 6.0588	.017	.496	.0204	.003	31
	6.7655	F0130		1.017	5.4874	1.0905	5.0158	30
,	·7523	.0139	.0483	.0171	.4788 .4702	.0205 .0206	.0087	29 28
:	.7392 .7262	.014	.0274	.0172	.4617	.0207	49944	
í	.7132	.0141	.017	.0172	-4532	.0207	.0873	27 20
	6.7003	1.0141	6.0066	1.0173	5-4447 -4362	1.0208	4.9802	25
	.6874	.0142	5.9963 .986	.0174	.4302	.0208	.9732 .9661	24
ï	.6617	.0143	.9758	.0175	4194	.021	.9591	22
	.649	.0143	.9655	.0175	.411	.021	.9521	21
i	6.6363	1.0144	5-9554	1.0176	5.4026	1.0211	4-9452	20
	.6237	.0144	.9452 .9351	.0176	·3943 ·386	.0211	.9382	18
	.5985	.0145	.925	.0177	-3777	.0213	.9243	17
1	. 586	.0146	.915	.0178	.3695	.0213	.9175 4.9106	16
1	6.5736	1.0146	5.9049 .895	.0179	5.3612 •353	.0214	4.9100 .9037	25 24
÷	.5488	.0147	.885	.018	·353 ·3449	.0215	.8060	13
,	.5305	.0148	.8751	.018	.3367	.0216	.8gor	12
1	.5243	.0148	.8652	1810.	.3286	1.0216	.8833	11
	6.5121	1.0149	5.8554 .8456	1.0181	5.3205 .3124	.0217	4.8765 .8697	
	.4999 .4878	.015	.8358	.0182	-3044	.0218	.863	8
	·4757	.0151	.8261	.0183	.2063	.0219	.8563	7
:	.4637	.0151	.8163	.0184	.2883	.022	.8496	
	6.4517	.0152	5.8067 •797	1.0184	5.2803	1.022	4.8429 .8362	5
	4279	.0153	.7874	.0185	.2645	.0221	.8296	3
	.416	.0153	.7778	.0186	.2566	.0222	.8229	2
	6.3924	1.0154	.7683	.0186 1.0187	.2487 5.2408	1.0223	8263, 4.8097	/ °
-/	SECANT.	/	5.7588			II——	_\	-\-
10	DECLET.	80°	SECANT.	CO-SEC'T.	Secant.	Co-sec,	r.\ 800aw 78 0	/ .

	1 1	20	1 1:	30	1	40	1	50		ı
,	SECANT.	Co-sec'T.	SECANT.	Co-sec'T.	SECANT.	Co-sec'r.	SECANT.	Co-suc'r.		
0	1.0223	4.8097	1.0263	4-4454	1.0306	4.1336	1.0353	3.8637	60	lu.
I	+0224	.8032	.0264	-4398	.0307	.1287	.0353	.8595	39	12
2	.0225	-7966	.0264	.4342	.0308	.1239	.0354	-8553	58	g.
3	.0225	.790I	.0265	.4287	:0308	.1191	-0355	,8512	SPASS	16
4	1.0226	-7835	.0266 1.0266	4231	.0309	4.1006	.0356	.847		15
5	.0227	4-777	.0267	4.4176	1.031	.1048	1.0357	3.8428	いる	
	.0228	.7641	.0268	.4065	:0311	.1001	.0358	.8346	27	2
7 8	.0228	+7576	.0268	4011	.0312	10953	.0359	.8304	22.0	1
9	.0229	-7512	.0269	.3956	.0313	.0906	.036	.8263	51	-
10	1.023	4-7448	1.027	4-390I	1,0314	4.0859	1.0361	3.8222	20	100
11	.023	-7384	.0271	.3847	.0314	.0812	.0362	.8181	18	2.
12	.0231	.732	.0271	.3792	.0315	.0765	.0362	.814	8	ю
13	.0232	·7257	.0272	-3738	.0316	.0718	.0363	.81	1	В
14	.0232	-7193	.0273	.3684	.0317	.0672	,0364	.8059	1	к
15	.0233	4.713	1.0273	4.363	1.0317	4.0625	.0365	3.8018	20	В
17	.0234	.7004	.0274	·3576 ·3522	.0318	.0579	.0367	-7978 -7937	47	R
18	.0235	.6942	.0276	.3469	.032	.0486	.0367	.7807	W	E
19	.0235	.6879	.0276	-3415	.032	.044	.0368	.7857	4	В
20	1.0236	4.6817	1.0277	4.3362	1.0321	4.0394	1.0369	3.7816	1	
21	.0237	.6754	.0278	.3309	-0322	.0348	.037	-7776	MAR	В
22	.0237	.6692	.0278	.3256	-0323	.0302	.0371	-7736		R
23	.0238	.6631	.0279	-3203	.0323	.0256	.0371	:7697	100	R
24	.0239	.6569	.028	.315	.0324	.0211	+0372	-7657	100	N.
25	1.0239	4.6507	1.028	4.3098	1.0325	4.0165	1.0373	3.7617	25	100
26	.024	.6385	.0281	-3045	.0326	.012	.0374	-7577	1 No	139
27 28	.0241	.6324	.0202	-2993 -2941	.0327	.0074	.0375	17538	si lei	4
20	.0241	.6263	.0283	.2888	.0328	3.9984	.0376	-7498 -7459	N.	3
30	1.0243	4.6202	1.0284	4.2836	1,0320	3.9939	1.0377	3.742	9	400
31	.0243	6142	0285	.2785	.033	-9894	.0378	.738		
32	.0244	6081	.0285	.2733	.033	.985	.0370	-7341		超
33	.0245	.6021	.0286	.2733 .2681	.0331	-9805	.0379	.7302	7	4
34	.0245	.5961	.0287	.263	.0332	.976	.0381	.7263	ш	4
35	1.0246	4.590I	1.0288	4-2579	1.0333	3.9716	1.0382	3.7224	25	Į,
36	.0247	.5841	.0288	.2527	.0334	.9672	.0382	-7186	а	B
37	.0247	.5782	.0289	.2476	•0334	+9627	.0383	-7147	M CL	Pe.
38	.0248	.5722	.029	.2425	.0335	-9583 -9539	.0384	.7108	A	R
40	1.0249	4.5604	1.0291	4.2324	1.0337	3-9495	1.0386	3.7031		R
41	.025	.5545	.0202	.2273	.0338	.9451	.0387	.6003	М	4
42	.0251	.5486	.0293	.2223	.0338	.9408	.0387	.6955	И	4
43	.0251	.5428	.0293	.2173	:0339	-9364	.0388	16Q17	25	154
44	.0252	.5369	.0294	.2122	.034	+932	.0389	.6878	20	24
45	1.0253	4.5311	1.0295	4.2072	1.0341	3.9277	1.039	3.684	17	E.
46	.0253	·5253	.0296	.2022	.0341	-9234	.0391	,6802	H	II.
47	.0254	-5195	.0296	.1972	.0342	-919	.0392	.6765	25.02	R
48	+0255	-5137	.0297	.1923	.0343	.9147	.0393	,6689	II	K
49	1.0256	-5079 4-5021	1.0298	4.1824	1.0345	.9104 3.9061	1.0393	3,6651	100	N.
: 51	.0257	.4964	.0299	.1774	.0345	.9018	.0394	.6614		P
52	.0257	-4904	.0299	.1774	.0345	.8976	.0395	.6576		B
53	.0258	.485	10301	.1676	.0347	.8033	10397	.6539	п	134
54	.0259	-4793	0302	.1627	.0348	.899	.0398	.6500	ы	R
55	1.026	4-4736	1.0302	4.1578	1.0349	3.8848	1.0399	3.6464	9	B
56	.026	-4679	.0303	.1529	.0349	.8805	-0399	-6427	Ю	200
57	.0261	.4623	.0304	.1481	.035	.8763	.04	.639	100	95
58	-0262	-4566	.0305	.1432	+0351	.8721	.0401	.6353	ñ	N
59	.0262	.451	.0305	.1384	1.0352	3.8637	.0402	3.6270	и	ю
00	1.0263	4-4454	1.0306	4.1336	1.0353	1	1.0403	-	-	
	Co-sec'T.	SECANT.		. SECANT	Co-sec		CO-SEC'T		V	1
1	77	10	11	760	//	750	11	740	1	A

16	50	, 1 [,]	7 0 (1 14	3 0	1 16	30	,
:	Co-sec'T.	SECANT.	Co-esc'r.	SECANT.	Co-suc'v.	SECANT.	Co-suc'r.	
	3.6279	1.0457	3.4203	1.0515	3.2361	1.0576	3.0715	60
	.6243 .6206	.0458	.427 -4138	,0516 .0517	.2332	.0577	.060	59 58
	.616g	.0459	.4106	.0518	.2274	.0579	.0638	57
	.6133	.0461	.4073	.0519	.2245	.058	.0612	56
	3.6096	1.0461	3.4041	2.052	3.2216	1.0581	3.0586	55
	.606	.0462	-4009	.0521	.2188	.0582	.0561	54
	.6024	.0463	·3977	.0522	.2159	.0584	.0535	53
	.5987 .5951	.0464	·3945 ·3913	.0523	.2131	.0586	.0509	52 51
	3.5915	1.0466	3.3881	1.0525	3.2074	1.0587	3.0458	50
	.5879	.0467	.3840	.0526	.2045	.0588	.0433	
	.5843	.0468	.3817	.0527	.2017	.0589	.0407	49 48
	. 5807	.0469	.3785	.0528	.1989	.059	.0382	47
	·5772	.047	·3754	.0529	.196	.0591	.0357	46
	3-5736	1.0471	3.3722 .369	1.053	3.1932	1.0592	3.0331 .0306	45
	·57	.0472	.3659	.0531	.1904 .1876	.0593	.0281	44
٠,	.5629	.0474	.3627	.0533	.1848	.0595	.0256	42
	·5594	.0475	.3596	.0534	.182	.0596	.0231	4x
	3-5559	1.0476	3.3565	1.0535	3.1792	1.0598	3.0206	40
	·5523	.0477	·3534	.0536	.1764	.0599	.0181	39 38
	-5488	.0478	.3502	.0537	.1736	.0601	.0156	
	·5453 ·5418	.0478	·3471 ·344	.0538	.1708	.0001	.0131	37 36
	3.5383	1.048	3.3409	1.054	3.1653	1.0603	3.0081	35
	.5348	.0481	.3378	.0541	1625	.0604	.0056	34
	.5313	.0482	·3347	.0542	.1598	.0605	0031	33
- 1	·5279	.0483	.3316	.0543	-157	.0606	.0007	32
- 1	· 5244	.0484	.3286	.0544	·1543	.c607	2.9982	31
'	3.5209	1.0485	3-3255	1.0545	3.1515	1.0608	2.9957	30
	.5175 .514	.0486	.3224 .3194	.0546	.1488 .1461	.0609	·9933 ·9908	29 28
	.5106	.0488	.3163	.0548	-1433	.6612	.9884	27
	.5072	.0489	•3133	.0549	.1406	.0613	.9859	26
.	3-5037	1.049	3.3102	1.055	3.1379	1.0614	2.9835	25
	.5003	.0491	.3072	.0551	.1352	.0615	.981 .9786	24
.	.4969	.0492	.3042	.0552	.1325	.0616	.9762	23
	·4935 ·4901	.0493	.3011	.0553	.1271	.0618	.9738	21
	3.4867	1.0495	3.2951	1.0555	3.1244	1.0619	2.9713	20
,	.4833	.0496	.2021	.0556	.1217	.062	.9689	19
		.0497	.2891	.0557	.119	.0622	.9665	18
1.1	·4799 ·4766	.0498	.2861	.0558	.1163	.0623	.9641	17
:	·4732	.0499	.2831 3.2801	.0559	.1137	.0624 1.0625	.9617 2.9593	16 15
1	3.4698 .4665	.0501	.2772	1.056 .0561	3.111	.0626	.9569	15
;	.4632	.0502	.2742	.0562	.1057	.0627	·9545	13
;	.4598	.0503	.2712	.0563	.103	.0628	.9521	12
'	.4565	.0504	.2683	.0565	.1004	.0629	-9497	11
3	3.4532	1.0505	3.2653	1.0566	3.0977	1.063	2.9474	10
3	.4498	.0506	.2624	.0567	.0951	.0632	·945	8
•	.4465	.0507	·2594	.0568	.0925	.0633	.9426	
t	·4432 ·4399	.0500	.2565	.0509	.0872	.0635	.9379	7 6
,	3.4366	1.051	3.2506	1.0571	3.0846	1.0636	2.9355	5
3	•4334	.0511	-2477	.0572	.082	.0637	.0332	4
1	.4301	.0512	.2448	.0573	.0793	.0638	.9308	3
1	.4268	.0513	.2419	.0574	-0767	.0639	.9285	2
',	4236 3.4203	1.0514	.239 3.2361	1.0575	3.0715	1.0642	3.9238	0 /
-/		/				II	_\	_\
·./	SECANT.	Co-sec't. /	SECANT.	Co-sec'T.		Co-erc.	1.\ Becan 7 00	. /
٠,٠	"	12	- 11	7:	Lo	11	100	`

	1 2	100	2	10	2	20	1 2	30 1	ш
,	SECANT.	Co-sec'T	SECANT.	Co-sac'T.	SECANT.	Co-sec'T.	SECANT.	Co-sec'r.	1
0	1.0542	2.9238	1.0711	2.7904	1.0785	2.6695	1.0864	2-5593	50
1	.0643	.9215	.0713	.7883	.0787	.6675	.0865	-5575	59 58
2	.0644	.9191	.0714	.7862	.0788	.6656	.0866	-5558	58
3	,0645	.9168	.0715	.7841	.0789	.6637	.0868	-554	57 50
4	1.0647	-9145	.0716	.782	.079	.6618	1.087	-5523	
5	.0648	.9098	1.0717	2.7799 .7778	1.0792	2.6599	.0872	2.5500	55 54
	.065	.9075	.0719	-7757	.0793	.6561	.0873	·547I	53
7 8	.0651	.9052	.0721	.7736	.0795	.6542	.0874	5453	52
9	.0652	.9029	.0722	-7715	.0797	.6523	.0876	-5430	51
10	1.0653	2.9006	1.0723	2.7694	1.0798	2.6504	1.0877	2.5419	50
II	.0654	.8983	.0725	.7674	.0799	.6485	.0878	15402	49
12	.0655	.896	.0726	.7653		.6466	.088	-5384	48
13	.0656	.8937	.0727	.7632	.0802	.6447	.0881	+5367	47
14	.0658	.8915	.0728	.7611	.0803	.6428	.0882	+535	45
. 15	1.0659	2.88g2 .886g	1,0729	2.7591	1.0804	2.641	1.0884	2.5333	43
16	.066r	.8846	.0731	.757	.0807	.6391 .6372	.0886	-5310	44
18	.0662	.8824	.0732	+755 +7529	.0808	6353	.0888	-5299 -5281	43
19	.0663	.88oz	.0734	.7500	.081	6335	.0880	- 5264	4E
20	1.0664	2.8778	1.0736	2.7488	1.0811	2.6316	1.0891	2.5247	
21	.0666	.8756	10737	-7468	.0812	.6297	.0802	+523	
22	.0667	.8733	.0738	-7447	.0813	.6279	.0803	.5213	39
23	.0668	.8688	.0739	-7427	.0815	.626	.0895	-5196	37
24	.0669		.074	-7406	.0816	.6242	.0896	-5179	20
25	1.067	2.8666	1.0742	2.7386	1.0817	2.6223	1.0897	2.5163	
26	.0671	.8644	.0743	.7366	.0819	.6205	.0899	-5140	34
27 28	.0673	8621	.0744	-7346	.0821	.6186	.00	-5129	33
20	.0074	.8599 .8577	.0745	7325	.0823	.615	.0902	-5112	五
30	1.0676	2.8554	1.0748	2.7285	1.0824	2.6131	1.0904	2.5078	32
31	.0677	.8532	.0749	.7265	.0825	.6113	,0906	.5062	
32	.0678	.851	.075	.7245	.0826	:6095	.0907	5045	77
33	.0679	.8488	C751	.7225	.0828	.6076	.0008	.5028	22
34	.0681	.8466	.0753	.7205	+0829	.6058	.00I	-5011	19.91
35	1.0682	2.8444	1.0754	2.7185	1.083	2.504	1.0011	2.4995	3
36	.0683	,8422	.0755	-7165	.0832	,6022	+0913	-4978	24
37	.0684	.84	.0756	-7145	.0833	.6003	.0914	,490I	-3
38	.0685	.8378	.0758	.7125	.0834	.5985	.0915	+4945	=
39	1.0688	.8356 2.8334	1.0759	-7105 2-7085	1.0837	+5967 2-5949	1.0917	-4928	28
	.0680	.8312	.0761	.7065	.0838			2.4912	
41	.0009	.829	.0763	.7045	.084	-5931	.0921	-4895 -4879	19
42 43	.obgr	.8260	.0764	.7026	.0841	·5913 ·5895	.0922	4862	17.
44	.0602	.8247	.0765	.7006	.0842	.5877	10924	-4846	15
45	1.0604	2.8225	1.0766	2.6986	1.0844	2.5859	1.0025	2.4829	15
46	.0695	.8204	.0768	-6967	.0845	-5841	.0927	.4813	14
47	,0696	.8182	.0769	.6947	.0846	-5823	.0928	-4797	15
48	,0697	.816	.077	.6927	.0847	.5805	.0929	-478	13
49	.0698	.8139	.0771	.6908 2.6888	1.085	-5787	.0931	-4764	33.
50	1.0699	2.8117	1.0773			2.577	1.0932	2.4745	10
51	40701	.8096	.0774	.6869	.0851 .0853	-5752	.0934	-473F	9 5
52	.0703	.8074	.0775	.683	.0854	·5734 ·5716	.0935	+4715	
53 54	.0704	.8032	.0778	.681	.0855	.5099	.0936	.4683	100
55	1.0705	2.801	1.0779	2.6791	1.0857	2.5681	1.0930	2.4666	3
56	.0707	.7989	.078	.6772	.0858	.5663	.0941	.465	4
	.0708	-7968	.078r	.6752	.0859	.5646	10942	-4034	3
57 58	.0709	-7947	.0783	.6733	.0861	.5628	.0943	.4613	
59	.071	-7925	.0784	.6714	.0862	.56r	.0945	.4602	
60	1.0711	2.7904	1.0785	2.6695	1.0864	2.5593	-0946	2.4586	0
1 1	Co-sec'T.	SECANT.	Co-sec'T	SECANT.	CO-REC'T		CO-SEC	e. Section	10
	69	0	1	580	11	670	11	660	1

	8	jo j	۱ 9	, o j	1 10)o	110		
	SECANT.	Co-sec'T.	SECANT.	Co-sec'r.	SECANT.	Co-sec'T.	SECANT.	Co-suc'T.	<u>·</u>
	1.0098	7. 1853	1.0125	6.3924	1.0154	5.7500	1.0187	5.2408	60
- 1	.0099	.1704	.0125	.3607	.0155	·7493 ·7398	.0188	.233	59 58
- 1	.0099	.1400	.0126	-3574	.0156	.7304	.0189	.2174	57
- 1	.or	.1263	.0126	.3458	.0156	.721	.0189	.2097 5.2019	56
- 1	1.01 .0101	7.1117	.0127	6.3343	.0157	5.7117 .7023	.0191	.1942	55 54
- 1	1010.	.0827	.0128	.3113	.0158	.693	.0191	.1865	53
- 1	.0102	.0683	.0128	.2999	.0158	.6838	.0192	.1788	52
- 1	.0102 1.0102	.0539	1.0129	6.2772	1.0159	.6745 5.6653	1.0193	.1712 5.1636	51 50
- 1	.0103	7.0396 .0254	.013	.2659	.016	.6561	.0193	.156	
ı	.0103	.0112	.013	.2546	.016	.647	.0194	. 1484	49 48
- 1	.0104	6.9971	.0131	-2434	.0161	.6379 .6288	.0195	.1409	47
Ì	.0104 1.0104	.983 6.969	1.0132	.2322 6.2211	1.0162	5.6197	.0195 1.0196	.1333 5.1258	46 45
- 1	.0105	.955	.0132	.21	.0163	.6107	.0196	.1183	44
١	.0105	.9411	.0133	.199 .188	.0163	.6017	.0197	.1109	43
- 1	.0106	·9273	.0133		.0164	.5928 .5838	.0198	.1034	42
- 1	.0106 1.0107	6.8998	1.0134	.177 6.1661	1.0165	5-5749	1.0199	5.0886	41 40
- 1	.0107	.8861	.0135	.1552	.0165	.566	.0199	.0812	
	.0107	.8725	.0135	·1443	.0166	.5572	.02	.0739	39 38
	8010.	.8589	.0136	·1335	.0166	.5484	.0201	.0066	37 36
- }	8010.	6.832	1.0136	6.112	1.0167	.5396 5.5308	1.0202	.0593 5.052	35
	.0109	.8185	.0137	.1013	.0168	.5221	.0202	.0447	34
	.011	.8052	.0137	.0906	.0169	·5134	.0203	.0375	33
	.011	.7919 .7787	.0138	.08 .0694	.0169	.5047 .496	.0204	.0302	32 31
٠.	1.0111	6.7655	1.0130	6.0588	1.017	5.4874	1.0205	5.0158	30
ĺ	.0111	.7523	.0139	.0483	.0171	.4788	.0205	.0087	20
	.0112	.7392	.014	.0379	.0171	.4702	.0206	.0015	28
	.0112	.7262 .7132	.014	.0274	.0172	.4617 -4532	.0207	4·9944 -9873	27 26
	1.0113	6.7003	1.0141	6.0066	1.0173	5-4447	1.0208	4.9802	25
-1	.0114	.6874	.0142	5.9963	.0174	.4362	.0208	-9732	24
	.0114	.6745 .6617	.0142	.986	.0174	.4278	.0209	.966z	23
	.0115	.649	.0143	.9758	.0175	.4194 .411	.021	.9591	21
•	1.0115	6.6363	1.0144	5.9554	1.0176	5.4026	1.0211	4.9452	20
	.0116	.6237	.0144	-9452	.0176	-3943	.0211	.9382	19
:	.0116	.5985	.0145	.9351 .925	.0177	.386	.0212	.9313	18
:	.0117	.586	.0146	.915	.0178	·3777 ·3695	.0213	.9175	16
į	1.0118	6.5736	1.0146	5.9049	1.0179	5.3612	1.0214	4.9106	15
•	8110.	.5612	.0147	.895 .885	.0179	•353	.0215	.9037 .8969	14
i	.0110	.5488	.0147	.8751	.018	·3449 ·3367	.0215	.8903	13
j.	.0119	5243	.0148	.8652	.0181	.3286	.0216	.882-	
•	1.012	6.5121	1.0149	5.8554	1.0181	5.3205	1.0217	4.87	
:	.0121	-4999	.015	.8456	.0182	.3124	.0218	.86 .8€	
i	.0121	.4878 -4757	.015	.8358 .8261	.0183	.3044	.0210	. A	
į	.O122	4637	.0151	.8163	.0184	.2883	٠.		
- [I-OI33	6.4517	1.0152	5.8067	1.0184	5.2803			
;	.0123	-4398 -4279	.0152	·797 ·7874	.0185	.2724	\		
Į.	0184	.416 /	.0153	.7778	.0186	.2566	\\		
13	10004 / 1005 /	.4042	.0154	.7683	.0186	.2487	\\		
		6.3924	1.0154	5.7588	1.0187	5.2408	-/\-		
	#./ £	BEANT. // C	'0-suc't. 80°	SECANT.	Co-sec'T		: // •		
		"	500	u	7	9 0	11		

	1 2	90	. 2	lo i	220		230)	۱
•	SECANT.	Co-sec'T	SECANT.	Co-sac'r.	SECAPT.	Co-sec'r.	SECANT.	Co-sac'r.	<u>'</u>	
0	1.0642	2.9238	1.0711	2.7904	2.0785	2.6695	1.0864	2-5593	60 50	
1 2	.0643	' .9215 .9191	.0713	.7883 .7862	.0787	.6675 .6656	.0866	•5575 •5558	59 58	ı
3	.0645	.9168	.0715	.7841	.0789	.6637	.0868	·554	57	ı
4	.0646	.9145	.0716	.782	.079	.6618 2.6599	.0869 1.087	·5523 2·5500	50 55	ı
5	1.0647	2.9122	.0717	2.7799 .7778	1.0792	.658	.0872	.5488	54	ı
7 8	.065	.9075	.072	·7757	.0794	.6561	.0873	-547I	53	1
	.0651	.9052	.0721	.7736	.0795	.6542	.0874	·5453	52 52	ł
9	.0652 1.0653	.9029 2.9006	1.0723	.7715 2.7694	.0797 1.0798	.6523 2.6504	1.0877	.5436 2.5419	9	ŀ
11	.0654	.8983	.0725	.7674	.0799	6485	.0878	-5402		
12	.0655	, .8ģ6 ⊂	.0726	.7653	.0801	.6466	.088	.5384	3	ł
13	.0656	.8937	.0727	.7632	.0802	.6447 .6428	.0881	-5367	47	l
14 15	.0658 1.0659	. 8915 2.8892	1.0728	.7611 2.7591	1.0804	2.641	1.0884	·535 2·5333	45	ı
16	.066	.8869	.0731	.757	.0806	.6391	.0885	.5316	#	I
17	.0061	.8846	.0732	·755	.0807	6372	.0886	.5299	43	ì
18	.0662 .0663	.8824	.0733	·7529 ·7509	.0808 .081	.6353 6335	.0889	.5281 .5264	#2 #1	l
19 20	1.0664	2.8778	1.0736	2.7488	1.0811	2.6316	1.0891	2.5247	6	ı
21	.0666	.8756	.0737	.7468	.0812	.6297	.0802	.523	3	ı
22	.0667	.8733	.0738	·7447	.0813	.6279	.0893	.5213	3	ł
23	.0668	.8711 .8688	.0739	.7427	.0815	.626 .6242	.0895	.5196 .5179	7	ı
24 25	.0669 1.067	2.8666	1.0742	.7406 2.7386	1.0817	2.6223	1.0897	2.5163	35	ı.
26	.0671	.8644	.0743	.7366	.0819	.6205	.0899	.5146	34	ľ
27	.0673	.8621	.0744	-7346	.082	.6186 .6168	.09	-5129	33	ı
28	.0674	.8599 .8577	.0745	.7325 .7305	.0823	.615	.0902	.5095	32	Ė
29 30	1.0676	2.8554	1.0748	2.7285	1.0924	2.6131	1.0904	2.5078	30	Ė
31	.0677	.8532	.0749	.7265	.0825	.6113	.0906	. 5062	3	Г
32	.0678	.851	.075	·7245	.0826	.6095	.0907	. 5045		ł
33	.0679	.8489 .8466	0751 0753	.7225 .7205	.0828	.6076 .6058	.0908	.5028	3	ŀ
34 35	1.0682	2.8444	1.0754	2.7185	1.083	2.604	1.0011	2.4995	25	ı
36	.0683	.8422	.0755	.7165	.0832	.6022	.0913	.4978	24	Ĺ
37 38	.0684	.84	.0756	.7145	.0833	.6003 .5985	.0914	.4961	23	ı
38 39	.o685 .o686	.8378 .8356	.0758	.7125	.0836	.5967	.0915	·4945 ·4928	21	ŀ
40	z.o688	2.8334	1.076	2.7085	1.0837	2.5949	1.0918	2.4912	20	Ŀ
41	.0689	.8312	.0761	.7065	.0838	.5931	.092	.4895	3	Ę
42	.069	.829	.0763	.7045	.084	.5913	.0022	.4879 .4862	7	ŀ
43	.0691	.8269 .8247	.0764	.7026 .7006	.0841	.5895 .5877	.0922	.4846	16	t
#	2.0694	2.8225	1.0766	2.6986	1.0844	2.5859	1.0925	2.4829	15	ı
	-45	1 .8204	.0768	-6967	.0845	•5841	.0927	.4813	4	
		8-83	.0769	.6947	.0846	.5823	.0928	·4797 ·478	23	
			.0771	.6908	.0849	.5787	.0931	4764	11	ł
			1.0773	2.6888	1.085	2.577	1.0932	2.4748	20	I
		_	.0774	.6869	.0851	·5752	.0934	·4731	1	
			.0775	.6849 .683	.0853	·5734 ·5716	.0935	.4715 .4699		ź
			.0778	.681	.0855	.5699	.0938	.∡681	8	Ė
			1.0779	2.6791	1.0857	2.568x	1.0939	2.4666	5	Į
			.078 -31	.6772	.0858 .0859	.5663 .5646	.0941	.465 .4634	;	É
			JI	.67 <u>52</u>	1080.	8505.	.0943	.4618		ē
					. 0862	/ .56z	.0945	1 .4002	100	
					1.086.	<u>-\</u>	 //			•
					30-42	**.\ 8*0A7	12. //CO-62	esse /.5°3. C 30		•
						610				

240 250				11 2	50	1 2	70	l
IT.	Co-sec't.	SECANT.	Co-sec'T.	SECANT.	Co-sec'T.	SECANT.	Co-sec'r.	·
16	2.4586	1.1034	2.3662	1.1126	2.2812	1.1223	2.2027 •2014	60
į8 19	·457 ·4554	.1035	.3647 .3632	.1127	.2784	.1225	.2014	59 58
51	.4538	.1038	.3618	.1131	.2771	.1228	.1989	57
52	.4522	.104	.3603	.1132	·275 7	.123	1977	56
53	2.4506	1.1041	2.3588	1.1134	2.2744 .273	1.1231	2.1964 .1952	55
55 56	·449 ·4474	·1043	·3574 ·3559	.1135	.2717	.1235	.1939	54 53
;8	.4458	.1046	·3544	.1139	.2703	.1237	.1927	52
59 71	+4442	-1047	•353	.114	.269	.1238	.1914	51
)I j2	2.4426	1.1049	2.3515	1.1142	2.2676	1.124	.1880	50
3	.4411 •4395	.1052	.3501 .3486	.1143	•265	1243	.1877	49 48
55	·4379	.1053	-3472	.1147	.2636	.1245	. 1865	47
55 56	.4363	.1055	•3457	.1148	.2623	.1247	.1852	46
i8	2.4347	1.1056	2.3443	1.115	2.261 .2596	1.1248	2.184 .1828	45
79	.4332 .4316	.1058	.3428 .3414	.1151	.2583	.1252	.1815	44 43
12	•43	.1061	•3399	.1155	.257	.1253	. 1803	42
'3	.4285	.1062	.3385	.1156	.2556	.1255	1791	41
'5	2.4269 .	1.1064	2.3371	1.1158	2.2543	1.1257	2.1778	40
۰6 8	.4254	.1065	.3356	.1159	.253 .2517	1 .1258	. 1766	39 38
9	.4238 .4222	.1068	·3342 ·3328	.1163	.2503	.1262	.1742	37
lī.	4207	.107	.3313	.1164	.249	. 1264	.173	36
la	2.4191	1.1072	2.3299	1.1166	2.2477	1.1265	2.1717	35
14	.4176	.1073	.3285	.1167	.2404	.1267	.1705 .1693	34
5	.416 .4145	.1075	.3271 .3256	.1171	.2438	.127	.1681	33 32
18	.413	.1078	.3242	.1172	.2425	.1272	. 1669	31
9	2.4114	1.1079	2.3228	1.1174	2.2411	1.1274	2.1657	30
ΙZ	.4099	1801.	.3214		.2398		.1645	29
12	.4083 .4068	.1082	.32 .3186	.1177	.2385	1277	.1633	28 27
4	.4053	.1085	.3172	.118	.2359	.1281	.1608	26
7	2.4037	1.1087	2.3158	1.1182	2.2340	1.1282	2.1596	25
8	.4022	.1088	·3143	.1184	.2333	.1284	.1584	24
a l	.4007 -3992	.109	.3129	.1185	.232	.1287	.1572	23 22
3	.3976	.1093	.3101	.1189	2204	.1289	.1548	21
4	2.396r	1.1095	2.3087	1.119	2.2282	1.1291	2.1536	20
5	.3946	.1096	.3073	1192	.2269	.1293	.1525	19
7	·3931	.1098	•3059	.1193	.2256	.1294	.1513	18
•	.3916 .3901	1011	•3046 •3032	.1195	.2243	.1298	.1480	16
	2.3886	1.1102	2.3018	1.1198	2.2217	1.1299	2.1477	15
3	.3871	.1104	+3004	.12	.2204	.1301	.1465	14
8	.3856	.1106	.299	.1202	-2192	1.1303	·1453 ·1441	13
7	.3841 .38æ6	.1100	.2976	.1205			.143	111
9	2.3811	1.111	2.2949	1.1207	1		£1418	EC.
Ĭ.	.3706	.1112	.2935	.1208	Ì		-240 6	
100	.3781	.1113	.2921	.121	ŀ		1994	
3	3766 3751	.1115	.2907	.1212			-	
15	2.3736	1.1118	2.288	1.1215	2.			l
- 6	.3721 i	.112	.2866	.1217	-			\
2	13700	.1121	.2853	.1218	.8 .8.		•	•
		.1123	.2839 .2825	.122	+3. +30			•
- 1	- 100 		2.2812	1.1223	2.50			
	√/a	9-650'T. S.	ECANT.	Co-anc'z.	Seguer			
	4	640		63				
			M M					

Mи

	_	٠.			li 30 0 11					١
_	_	80	_	90		٠ ,		15	1	1
<u>'</u>	SECANT.	Co-sec'T.	SECANT.	Co-sac'r.	SECANT.	Co-sec'T.	SECANT.	Co-sec's.	Ľ	1
0	1.1326	2.13	1.1433	2.0627	1.1547	2	1.1666	1.9416	60	ı
I	.1327	.1289	-1435	.0616 .0605	-1549	1.999	.1668	9407	59 58	1
3	.1329	.1277	-1437 -1439	.0504	.1551 .1553	.998 .997	.167	-9397 -9388	58	1
4	.1333	.1254	.1441	.0583	.1555	.996	.1674	.9378	57 56	I
5	1.1334	2.1242	1.1443	2.0573	1.1557	1.995	1. 1676	I 9369	55	ı
	.1336	.1231	.1445	.0562	-1559	-994	. 1678	.936	54	ı
7	.1338	.1208	.1446	.0551	.1561	·993	.1681	-935	53	ı
9	.134 .1341	.1196	.1448	.054 .053	.1562	.992 .991	.1683 -1685	.9341	52	ı
10	1.1343	2.1185	1.1452	2.0519	1.1566	1.99	1.1687	.9332 1.9322	51 50	I.
11	•1345	.1173	.1454	+0508	.1568	و8ُو.	. 1689	.9313	49	Ľ
12	-1347	.1162	.1456	.0498	.157	.988	1691	-9304	48	ľ
13	.1349	.115	.1458	.0487	.1572	.987	.1693	.9295	47	i
14	.135	.1139	-1459	.0476	·1574	.686	.1695	-9285	40	1
15 16	1.1352	2.1127 .1116	1.1461	2.0466 .0455	.1576	1.985	1.1697	1.9276 .9267	45	1
17	.1356	.1104	.1465	.0455	.158	.983	.1701	.9258	44 43	t
x8	.1357	1093	.1467	.0434	.1582	.082	.1703	.0248	#	1
19	.1359	.1082	.1469	.0423	.1584	.9811	.1705	.9239	4	١,
20	1.1361	2.107	1.1471	2.0413	1.1586	1.9801	1.1707	1.923	P	,
21	.1363	.1059	·1473	.0402	.1588	.9791	.1709	.9221	3	1
22 23	.1365 .1366	.1048 .1036	.1474 .1476	.0392	.159	.9781	.1712	.9212		2
23 24	.1368	1025	.1478	.037	.1592 .1594	.9761	.1714	.9203	3	3
25	1.137	2.1014	1.148	2.036	1.1596	1.9752	1.1718	1.9184	35	:
2Ğ	.1372	.1002	.1482	.0349	.1598	•9742	.172	-9175	34	,
27	.1373	1990.	.1484	.0339	.16	•9732	.1722	.9166	33	3
28	.1375	.098	.1486	.0329	.1602	-9722	.1724	·9157	32	3
29 30	.1377 1.1379	.0969 2.0957	1.1489	.0318	1.1604 1.1606	1.9703	1.1726	1.9139	32 30	2
31	.1381	.0946	.1491	+0297	.1608	.9693	.173	.913		3
32	.1382	.0935	•1493	.0287	.161	.9683	.1732	.913	3	3
33	.1384	.0924	-1495	.0276	.1612	.9674	.1734	.9112	77 20	3
34	.1386	.0912	-1497	.0266	.1614	.9664	.1737	.9102		:
35	1.1388	2.0901 .080	1.1499	2.0256	1.1516	1.9654	1.1739	1.9093	25	3
36 37	.139	.0879	.1501	.0245	.1618	.9645 .9635	.1741	.9084	24 23	3
38	.1393	.0868	.1505	.0224	.1622	.9625	.1745	.9075 .9066	2	3
39	.1395	.0857	.1507	.0214	.1624	.9616	.1747	.9057	21	Ė
40	1.1397	2.0846	1.1508	2.0204	1.1626	1.9606	1.1749	z.9048	20	4
41	.1399	.0835	.151	•0194	.1628	.9596	.1751	-9039	19	
42	.1401	.0824	.1512	•0183	.163	.9587	·1753	.903	18	4
43 44	.1402	.0812	.1514	.0173 .0163	.1632	·9577 ·9568	.1756	.9021	17 16	٠
	1.1406	2.070	1.1518	2.0152	1.1636	1.9558	1.176	1.0004	15	٠
45 46	.1408	.0779	.152	.0142	.1638	.9549	.1762	.8005	4	•
47	.141	.0768	.1522	.0132	.164	-9539	.1764	.8980	13	
47	•1411	.0757	.1524	.0122	.1642	•953	.1766	.8977	12	
~~	.1413 E.1415	.0746 2.0735	1.1526 1.1528	2.0101	.1644 1.1646	.952	1.1768	.8968 z.8959	11	
	499	.0725	.153	2.0101 •0001	.1648	1.951 .9501	.177	.895	•	
		.0714	.1531	.0091	.165	.9491	.1775	.8941	8	
		7703	.1533	.0071	.1652	.9482	1777	.8932	7	
			· 1535	.0061	.1654	9473	.1779	.8924	-	
		-	1.1537	2.005	1.1656	1.9463	1.1781	1.8915	5	
			1 .2499	.004	. 1658 . 166	-9454	.1783	.8906	;	
				.003	1662	9444	.1785	.8897 .8888	3	i
				75	. 1664	1 .9425	err. //	Pr88.	(1)	
					//	i 1 2.9426	2.11g		70	•
							- // Com	HOL BROW	1	٠.

Mar. | Co-450,5" | BROTHE

		20		30 1		4 0	. 2	50	1
•	SECANT.	до Со-аво ^ч т.	SECANT.	Co-erc'y.		Co-exc't.		Co-exc'r.	,
-	1.1792	1.8871	1.1024	1.8361	1,2062	1.7883	1.2208	1.7434	60
ī	.1794	.8862	.1926	.8352	.2064	.7875	.221	·7427	
2	.1796	.8853	.1928	.8344 8336	.2067	.7867	.2213	.742	59 58
3	. 1798	.8844	.193	8336	.2069	.786	.2215	.7413	57
4	. 18 1. 1802	.8836 1.8827	1.1935	.8328 1.832	1.2074	.7852 1.7844	1.222	.7405 1.7398	56 55
5	. 1805	.8818	.1937	.8311	2076	.7837	.2223	·7391	54
7 8	. 1807	.8809	.1939	.8303	.2079	.7829	.2225	.7384	53
8	.1809	.8801 .8702	.1942	.8295 .8287	.2081	.7821 .7814	.2228	·7377 ·7360	52 51
10	1.1813	1.8783	.1944 1.1946	1.8279	1.2086	1.7806	1.2233	1.7362	50
11	.1815	.8785	. 1948	.8271	.2088	.7798	.2235	·7355	
12	. 1818	.8766	.1951	.8263	.2091	.7791	.2238	.7348	49 48
13	.182	.8757	.1953	.8255	.2093	·7783	.224	·734I	47 46
14	.1822 1.1824	.8749 1.874	.1955 1.1958	.8246 1.8238	1.2095	.7776 1.7768	1.2245	·7334 1.7327	45
16	.1826	.8731	.195	.823	•21	.776	.2248	.7319	44
17	. 1828	.8723	.1962	.8222	.2103	-7753	.225	.7312	43
18	. 1831	.8714	.1964	·8214	.2105	·7745	.2253	.7305	43
19	.1833 1.1835	.8706 1.8697	1.1969	·8206 1.8198	.2107 1.211	.7738	.2255 1.2258	.7298	4I
21	.1837	.8688	.1909	.819	.2112	1.773 -7723	.226	1.7291	40
22	.1839	.868	.1974	.8182	.2115	·//43	.2263	.7277	38 38
23	.1841	.8671	.1976	.8174	.2117	.7708	.2265	.727	37
24	. 1844	.8663	.1978	.8166	.2119	.77	.2268	.7263	37 36
25 26	1.1846 1848	1.8654 .8646	1.198	1.8158 .815	.2122	1.7693 .7685	1.227	1.7256	35
	.185	.8637	.1985	.8142	.2127	.7678	.2276	.7249 .7242	34 33
27 28	. 1852	.8629	.1987	.8x34	.2129	.767	.2278	.7234	32
29	.1855	.862	.199	18126	.2132	.7663	.2281	•7227	31
30	1.1857	1.8611	1.1992	1.8118	1.2134	1.7655	1.2283	1.722	30
31 32	. 1859 . 1861	.8603 .8595	.1994 .1997	.811 .8102	.2136	.7648 .764	.2286	.7213 .7206	29 28
33	. 1863	.8586	.1999	.8094 .8086	.2141	.7633	.2201	.7199	27
34	. 1866	.8578	.2001		.2144	.7625	. 2293	.7192	26
35 36	1.1868 .187	1.8569 .8561	1.2004 .2006	1.8078 .807	1.2146	1.7618	1.2296	1.7185	25
37	.1872	8552	.2008	.8062	.2149	.761 .7603	.2298	.7178	24 23
37 38	. 1874	.8544	.201	.8054	.2153	7596	.2304	.7164	22
39	.1877	8535	.2013	.8047	.2156	.7588	.2306	-7157	21
40	1.1879	1.8527	1.2015	1.8039	1.2158	1.7581	1.2309	1.7151	20
41 42	.1881 .2881	.8519 .851	.2017	.8031 .8023	.2161	·7573	.2311	·7144	18
43	.1886	.8502	.2022	.8015	.2166	.7566 .7559	.2314	.7137 .713	
44	.1888	.8493	.2024	.8007	.2168	·7551	.2319	.7123	17 16
45 46	1.189	1.8485	1.2027	1.7999	1.2171	1.7544	1.2322	1.7116	15
40	.1892 .1894	.8477 .8468	.2029	.7992 .7984	.2173	·7537	.2324	.7109 .7102	14
47 48	.1897	.846	.2034	.7976	.2178	.7522	.2329	.7095	12
49	.1899	.8452	.2036	.7968	.218	-7514	.2332	.7088	11
50	1.1901	1.8443	1.2039	1.796	1.2183	1.7507	1.2335	1.7081	10
51 52	.1903	.8435 .8427	.2041	·7953	.2185	·75	.2337	.7075	
53	.1908	.8418	.2043	·7945 ·7937	.2100	7		.7068 .7061	
54	.191	.841	.2048	.7929	.2193	l '		.7054	
55 56	1.1912	1.8402	1.205	1.7921	1.2195	1		7047	
50	.1915	.8394 .8385	.2053	.7914 .7906	.2198			74	
57 58	.1917	.8377	.2055	.7898	.2203	١		•	Λ
80/	. 1921	· 8369	.206	.7891	.2205	1			\
	1.1922	I.836I	1.2062	1.7883	1.2208	1.			
10	D-480'T. 8	MOANT.	O-620'T.	SECANT.	Co-smo'z	:T:			
•	<i>5</i> 7°	11	560	· i		564			
				•	•				

12 NATURAL SECANTS AND CO-SECANTS.

•		Co-sec't.	SECANT.	Co-suc'y.	SECANT.	CO-SEC'T.	SECANT.	Co-szc'r.	
0	1.2361	1.7013	1.2521	1.6616	1.269	1.6243	1.2867	1.589	60
1	.2363	.7006	.2524	.66r	.2693	.6237	.2871	.5884	59 58
2	.2366	.6999	.2527	.6603	.2696	.6231	.2874	-5879	58
3	.2368	.6993	.253	.6597	.2699	.6224	.2877	.5873	57 56
4	1.2374	1.6979	1.2532	1.6584	1.2705	1.6212	1.2883	.5867 1.5862	50
5	.2376	.6972	.2538	.6578	.2707	.6206	.2886	.5856	55 54
	.2379	.6965	.2541	.6572	.271	.62	,2880	.585	53
7 8	.2382	.6959	,2543	.6565	.2713	.6194	.2892	-5845	52
9	.2384	.6952	.2546	.6559	.2716	.6183	.2805	-5839	51
o	1.2387	1.6945	1.2549	1.6552	1.2719	1.6182	1.2898	1.5833	50
II	.2389	.6938	.2552	.6546	.2722	-6176	.2001	. 5828	49
2	.2392	.6932	.2554	.654	.2725	.617	.2904	.5822	48
13	.2395	.6925	+2557	.6533	.2728	.6164	.2907	.5816	47 46
4	.2397	.6918	.256	.6527	.2731	.6159	-291	.5811	
5	1.24	1.6912	1.2563	1.6521	1.2734	1.6153	1.2913	1.5805	45
6	.2403	.6905	.2565	.6514	-2737	.6147	-2916	-5799	44
7 8	.2405	.6391	.2568	.6508	-2739	.6141	.2919	·5794 ·5768	43
9	.2408	.6885	-2571 -2574	.6496	-2742	.6135	.2025	-5783	42 4%
20	1.2413	1.6373	1.2577	1.6489	1.2748	1.6123		1.5777	40
21	.2416	.6871		.6483		.6117	1.2929		
22	.2410	.6865	.2579	.6477	.2751	.6111	-2932	· 5771 · 5766	39
23	.2421	.6858	.2585	.647	-2757	.6105	-2935 -2938	-576	3
24	.2424	.6851	.2588	.6464	.276	.6000	.2041	-5755	13.33
25	1.2427	1.6845	1.2501	1.6458	1.2763	1.6003	1.2044	1.5749	١.
6	.2429	.6838	.2593	.6452	.2766	.6087	-2947	.5743	
27	,2432	.6831	+2596	.6445	.2769	.6081	.205	-5738	ĸ.
8	.2435	.6825	-2599	.6439	.2772	.6077	.2953	-5732	-
19	.2437	.6818	.2602	.6433	.2775	.607	+2956	-5727	
30	1.244	1.6312	1.2605	1.6427	1.2778	1.6064	1.206	1.5721	
I	.2443	.6805	.2607	.642	.2781	.6058	+2963	-5716	
32	.2445	.6798	.261	-6414	.2784	.6052	.2966	-571	
33	+2448	-6792	.2513	.6408	.2787	.6046	.2969	-5705	
34	+2451	.6785	.2616	.6402	.279	.604	.2972	-5699	
35	1.2453	1.6779	1.2619	1.6396	1.2793	1.6034	1.2975	1.5694 .5688	
36	.2450	.6772	.2622	.6389	.2795	.6029	-2978	.5683	
37	.2459 .2461	.6750	.2627	.6383	.2798	.6017	.2981	.5677	
19	.2464	.6752	.263	.6371	.2804	.6011	.2988	.5672	
10	1.2467	1.6746	1.2633	1.6365	1.2807	1.6005	1.2001	1.5666	
r	.247	.6739	.2636	.6359	.281	.6	-2004	.5661	
2	2472	.6733	.2639	.6352	.2813	-5994	-2994	.5655	
13	-2475	.6726	.2641	.6346	.2816	.5988	-3	.565	1
14	.2478	.672	.2644	.634	.2819	.5982	.3003	.5644	
	1.248	1.6713	1.2647	1.6334	1.2822	1.5976	1,3006	1.5639	- 1:
5	.2483	.6707	.265	.6328	.2825	-5971	.301	-5633	13
7.8	.2486	.67	.2653	.6322	.2828	-5965	.3013	.5628	11
	.2488	.6694	-2656	.6316	.2831	-5959	.3016	-5622	111
19	.249	.6687	.2659	.6309	.2834	-5953	.3019	.5617	10
50	E-2494	1.6681	1.2661	L6303	1.2837	1.5947	1.3022	1.5611	
,	12497	6674	.2664	.6297	.284	.5942	.3025	.5606	18
10	12499	1	.2667	.6201	.2843	-5936	.3029	.56	1:
53	12502		*207	.6285	.2846	•593	.3032	+5595	1 6
54	The same of	1	2673	.6279	-2849	-5924	.3035	-559	5
13		0	2676	1.6273	1.2852 -2855	1.5919	1.3038	1.5584	4
1		0	.2679	626T	-2055	-5913	.3041	+5579	3
			13001	A STATE OF	-286z	-5907 -590x	.3044	·5573 ·5568	1
			77.5	100	2862	1,5755	1.305z	1.5500	11
	4600				2.286	STATE OF THE PARTY OF	1.305		0 /

Natural Tangents and Co-tangents.

}0	•	1 1	, o	1 2	10	i 8	0	ı
1_	Co-tabe.	TANG.	CO-ZAMS,	TANG.	Co-TARG.		CO-TABS.	•
	Infinite.	.017 46	57-29	.034 92	28.6363	.052 41	19.0811	60
3	3437·75 1718.87	.017 75	6.3406	.035 21	8.3004 8.1664	.052 7	8.9755 8.8711	50 58
1		.01804	5-4415	.035 5		.052 99	8.8711	58
	145.92 859.436	.018 33 .018 62	5-4415 4-5013 3-7086 52-8821	.03579	7.9372	.053 28	8.7678 8.6656	57 56
-	687.549	.018gz	52.8821	.036 38	7.7117 27.4899	.053 57 .053 87	18.5645	55
	572-957	.0102	2.0507	.036 38 .036 67	7.2715	.054 16	8.4645	55 54
	491.106	.01949	1.3032	.03696	7.0566 6.845	.054 45	8.3644	53
-	29.718	.019 78	1.3032 0.5485 49.8157	.037 25	6.845	.054 74	8.2677	52
-	381.971 343-774	.020 07	49.8157	.037 54	6.6367 26.4316	.055 03	8.1708	51
Ţ	12.521	.020 66	49.1039 8.4121	-038 12	6.2296	.055 33	7.9802	50
ł	286.478	.020 95	7.7395	.038 42	6.0307	.05591	7.8863	48
1	64.44I	.02I 24	7·7395 7·0853	.0387z	5.8348	.0562	7-7934	47
1	45-552	.021 53	6.4489 45.8ag4	-039	5.6418	.056 49	7.7015	46
1	229.182 14.858	.021 02	45.0294 5.2261	.039 29	25.4517	.056 78	17.6106	45
	02.219		4.6386	.039 87	5.2644 5.0798	.057 o8 .057 37	7.5205	44
1	190.984	.022 4	4.6386 4.0661	.040 16	4.8978	.057 66	7-4314 7-3432	43 42
1	80.932	.022 98	3.508z	.040 46	4.7105	.057 95	7.2558	41
1	171.885	.023 28	42.964I	-040 75	24.5418	.057 95 .058 24	17.1693	40
1	63.7 56.259	.023 57	2.4335 1.9158	.041 04	4-3675	.058 54	7.0837	39 38
-	49.465	.023 00	1.4106	.041 33 .041 62	4-1957 4-0263	.058 83	6.999 6.915	38
	43-237	.024 44	0.9174	041 91	3.8593	.059 41	6.8319	37 36
	137.507	-024 73	40.4358	.0422	23.6945	.0597	16.7496	35
1	32.219	-025 02	39-9655	-049 5	3.5321	.059 99	16.7496 6.6681	34
	27.321	.025 31	9. 5059 9. 0568	.042 79	3.3718	.060 20	6.5874	33
1	22.774 18.54	.025 6 .025 8g	8 6122	.043 08	3.2137 3.0577	.060 58	6.5075 6.4 58 3	32
	114.589	.026 10	8.6177 38.1885	.04366	22.9038	.061 16	16.3499	30 30
	10.892	.02648	7.7686	-043 95	2.7519	.061 45	6.2722	29
1	07.426	.026 77	7·3579 6.956	-044 24	2.602	.o61 75	6.1952	28
	04.171	.027 06	6.956	-044 54	2.4541	-062 04	6.110	27
	01.107 98.2179	.027 35	6.5627 36.1776	.044 83	2.3081 22.164	.062 33	6.0435 15.9687	26
	5.4895	.02793	5.8006	.04541	2.0217	.062 91	5.8945	25 24
1	2.9085	.028 22	5.4313	.0457	1.8813	.063 21	5.8211	23
-	0.4633	.028 51	5.0695	.04599	1.7426	.0635	5.7483 5.6762	22
- 1	88.1436	.02881	4.7151	.046 28	1.6056	.06379 .06408	5.6762	81
	85.9398 3.8435	.029 I	34.3678 4.0273	.046 58	21.4704 1.3369	.004.08	15.6048	30
	1.847	.029 39	2.6035	.047 16	1.2049	.064 37	5-534 5-4638	19
1	79-9434	.029 97	3.6935 3.3662	.047 45	1.0747	.06496	5-3943	17
-	8.1263	.030 26	3.0452	.047 74 .048 03	0.946	.065 25	5.3254	16
	76.39	.030 55	32.7303	-04803	20.8188	.065 54	15.2571	15
1	4.7292 3.139	.030 84	2.4213 2.1181	.048 32 -048 62	0.6932 0.5691	.06584	5.1893 5.1222	34
1	1.6151	.031 43	1.8205	.04891	0.4465	.066 42	5.0557	13
	0.1533	.031 72	1.5284 31.2416	0492	0.3253	.066 71	5.0557 4.9898	111
-	68. 75 01	.03201	31.2416	.049 49	20.2056	.067	14.9244	10
	7.4019	.032 3	0.9599	.049 78	0.0872	.0673	4.8596	8
- 1	6. 1055 4. 858	.032 59	0.0033	.050 07	9.8546	.067 59	4-7954	
	3.6567	.033 17		.050 66	9.7403	.068 17	4.7317 4.6685	7 6
1	62.4992	.033 46	0.1446 29.8823	.050 95	19.6273	.068 47	14.6050	5
:	1.3829	.033 76	9.6245	.051 24	9.5156	.068 76	14.6059 4.5438 4.4823	4
: [0.3058	.034 05	9.3711	.051 53	9.405z	.069 05	4.4823	3
	59.2659 8.2612	.034 34 .034 63	9.122 8.8771	.051 82	9.2959	.069 34	4.4212	/ 3
;]	57.29	034 92	28.6363	.05241	19.0811	£∂ 6∂0. £0 6∂0.	14.300	
-/-	/	CO-TANG.				11		 \
ģo	//	68°	TANG.	CO-TARG.		CO-TAR		• /
	11	30	11	8	70	II	860	'

	440			, ,	4	₽ :		Ι.	4	P	
•	time and	Carrett.	•	,	SHEART.	CO-TROLE.	•		SECLET.	Co-coo't.	<u>.</u>
3	: ,ეივ	1.4595	-ćo	21	1. 3984	1.4305		41	1.4005	r. 4com	31
1	,005	4',91	59	22	3988	.430t	38	122	.4030	.4217	::
2	- 5909	4.87	58	23	3692	. 4207	37	+3	.4073	.4212	
3	(913	1,82	57	24	. 3696	.4292	30	+4	.4077	ندمد .	r
4	3017	45-3	-6	25	f. 4	r. 4288	35	4.5	r. 403r	£ 4304	=5
- 5	1 (921	1.4374	55	26	4004	4284	34	, †a	ولاصد.	. بع	14
Ž	. ;925	4 47	-4	27	. 400B	Hara	33	4-	. poda	-200	:3
7	3020	4,65	5.3	28	.4512	42.75	32	ա	. 4cc3	ATUZ.	п
3	3933	4 (6.1	52	29	. poró	.4271	31	44;	.4C47	.4208	11
2	:97:7	4357	7,1	30	1.402	r. 4267	30	50	LAKI	وقبدء	=
10	1 3941	1.4552	70	3.2	.4024	. 4263	20	5x	.4105	.4179	3
81	3045	4343	49	12	. pr. 215	.4259	28	52	.apr:ii	4275	1
12	1949	4 (44	4.3	33	4-32	4254	27	13	.arr;	.4174	:
13	395	4339	47	34	4030	.425	26	54	.4217	.4267	6
16	3957	4315	46	35	T. 404	كبحباء	25	55	L4122	E4IĆ3	5
13	L OF	1.4:31	45	36	4.44	4242	24	51	.4126	.4159	4
16	3664	4327	44	37	. 81413	. 42 36	23	57	. 423	.4754	3
17	3963	4 323	43	33	4-52	+333	22	58	.4134	45	2
18	3972	4313	43	39	. 4กรถ์	.4229	21	9	اەۋىد.	. 4545	I
19	3975	4374	41	45	2.476	1. 4225	20	50	LAIAZ	e. peps	0
20,	1.308	F 437	.40								_
7	CATEC'T.	RECAST.	•	•	Co-sec'T	. SECANT.	-,-	-,		SHEATE	'
	. 4	5,			4	15 3	i		. 4	5 3	

Preceding Table contains Natural Secants and Co-secants for ever minute of the Quadrant to Radius r.

If Degrees are taken at head of column, Minutes, Secant, and Co-secution must be taken from head also; and if they are taken at foot of column Minutes, etc., must be taken from foot also.

ILLUSTRATION. -1.05 is secant of 17° 45' and co-secant of 72° 15'.

To Compute Secant or Co-secant of any Angle.
RULE.—Divide 1 by Cosine of angle for Secant, and by Sine for Co-secute Example 1.—What is secant of 25° 25'?

Cosine of angle = .99321. Then $1 \div .99321 = 1.1072$, Secant 2.—What is co-secant of 64° 35'?

Sine of angle = .903 21. Then $1 \div .903 21 = 1.1072$, Co-secant.

To Compute Degrees, Minutes, and Seconds of a Secant or Co-secant.

When Secant is given,

Proceed as by Rule, page 402, for Sines, substituting Secants for Sines.

EXAMPLE —What is secant for 1.160?

st in 1. 1606, are for which = 300 30'.

18 1.1608, difference between which and next less is 1.1608-

soon. $= 2c\partial_1 x - pol_1 x$ is nowing soon. $2c\partial_1 x - pol_2 x - pol_3 x$ in $2c\partial_1 x - pol_3 x - pol_3 x$.

secunts for Cosines.

	NATURA	L TAN	GENTS	AND	• 4	15		
:	Natura	l Tan	gents			gents	١.	
	DO Co-tang.	TANG.	LO Co-tang.		Co-tang.		30 Со-тане.	١,
20.00	Infinite.	.017 46	57-29	.034 92	28.6363	.052 41	19.0811	60
20 29	3437-75	.017 75	6.3506	.035 21	8.3994		8.9755	59
00 58 00 87	1718.87	.01804	5.4415	.035 5	8. 1664	.052 99	8.8711	58
oz 16	145.92 859.436	.018 33	4.5613 3.7086	.035 79	7.9372	.053 28	8.7678 8.6656	57
OI 45	687.549	.01891	52.8821	.036 38	27.4899	.053 87	18.5645	55
01 75	572.957	.019 2	2.0807	.036 67	7.2715	.054 16	8.4645	54
02 04 02 33	491.106	.019 49	1.3032 0.5485	.036 96	7.0566 6.845	054 45	8.3655 8.2677	53 52
02 62	381.971	.020 07	49.8157	.037 54	6.6367	.055 03	8.1708	51
102 91	343-774	.020 36	49.1039 8.4121	.037 83	26.4316	.055 33	18.075	50
юз 2 юз 49	12.521 286.478	.020 95	7.7395	.038 12	6.2296 6.0307	.05562	7.9802 7.8863	48 48
юз 78	64.44x	.021 24	7.0853	.038 71	5.8348	.0562	7.7934	47
104 07 104 36	45.552	.021 53	6.4489	.039	5.6418	.056 49	7.7015	46
X4 65	229.182 14.858	.021 02	45.8294 5.2261	.039 29	25.4517 5.2644	.056 78	17.6106	45
204.95	02.219	.0224	4.6386	.039 58	5.0798	.057 37	7.5205	44
305 24	190.984	.02269	4.0661	.040 10	4.8978	057 66	7.3432	42
205 53 205 82	80.932 171.885	.022 98	3.5081 42.9641	.040 46 •040 75	4.7185	.057 95	7.2558	41
30Ğ 1 1	63.7	.023 57	2.4335	.041 04	4.3675	058 54	17.1693 7.0837	40
2064	56.259	1023 86	1.9158	.041 33	4.1957	.05883	6.999	39 38
006 6g 006 g8	49.465 43.237	.024 15 .024 44	0.9174	.041 62 041 91	4.0263 3.8593	.059 12	6.915	37
007 27	137.507	.024 73	40.4358	.0422		05941	6.8319	36 35
907 56	32.219	.02502	39.9655	0425	3.5321	05999	6.6681	34
007 85 008 14	27.321 22.774	.025 31	9.5059 9.0568	.04279	3.3718	.060 20	6.5874	33
008 44	18.54	.025 80	8.6177	.043 37	3.213 7 3.0577	.060 58	6.5075	32 31
008 73	114.589	.026 19	38.1885	.04366	22.9038	061 16	16.3499	30
009 31 009 03	10.892 07.426	.026 48	7.7686	+043 95 +044 24	2.7519 2.602	.061 45	6.2722	29 28
00 96	04.171	.027 06	7·3579 6.956	-044 54	2.4541	.062 04	6.1952 6.119	27
98000	01.107	.027 35	6.5627	.044 83	2.308r	.062 33	6.0435	26
01010	98.2179 5.4895	.027 64	36.1776 5.8006	.045 12	22.164	.06262	15.9687	25
01076	2.9085	.027 93	5.4313	.0457	1.8813	.06321	5.8945 5.8211	24
011 05	0.4633	.02851	5.0695	.045 99 .046 28	1.7426	.0635	5.7483	22
011 35 011 64	88.1436 85.9398	.020 01	4.7151 34.3678	.046 58	1.6056 21.4704	.063 79	5.6762 15.6048	21
01193	3.8435	.029 39	4.0273	.046 87	1.3369	.064 37	5.534	19
012 22	1.847	.029 68	3.6935	.047 16	1.2049	.064 67	5.4638	18
012 51 012 8	79-9434 8.1263	.029 97	3.3662 3.0452	.047 45 .047 74	0.946	.064 96	5-3943	17
01309	76.39	.030 55	32.7303	04803	20.8188	.065 54	5.3254 15.2571	16
013 38	4.7292	.030 84	2.4213	.048 32	0.6932	.06584	5.1893	14
01367 01396	3.139 1.6151	.031 14	2.1181	.04862 .04891	0.5691 0.4465	.066 13	5. 1222	13
014 25	0.1533	.031 72	1.5284	-0492	0.3253	.066 71	5.0557 4.9898	12
O14 55	68.7501	.03201	31.2416	.049 49	20.2056	.067	14.9244	-
015 13	7.4019 6.1055	.032 3	0.9599	.049 78	19.9702	,	4.8596	
015 42	4.858	.032 59	0.4116	.050 37	9.8541		7354	
·01571	3.6567	.033 17	0.1446	.050 66	9.740			
.016 .016 20	62.4992 1.3829	.033 46 .033 76	29.8823 9.6245	.050 95	19.627: 9.515			
oz6 58	0.3058	.034 05	9.3711	.051 53	9.405			
016 87 NJ 16	59.2659 8.2612	.034 34 .034 63	9.122 8.8771	.051 53 .051 82	9.295			
1746	57.29	.034 03	28.6363	.052 12	19.081			
430.		O-TANG.			_\	-		
800		88	TANG.	CO-TANG	3.\ TANG 87 0	h• .		
	••			11	31-	•		

416 NATURAL TANGENTS AND CO-TANGENTS.

40		1 5	0		50	70		
•	TANG.	CO-TANG.	TANG.	CO-TANG.	TANG.	CO-TANG.	TANG.	CO-TANG.
0	.069 93	14.3007	.087 49	11.4301	,105 I	9.51436	.12278	8. 144 35
1	.070 22	4-2411	.087 78	1.3919	.1054	.48781	.12308	.12481
2	.070 51	4.1821	+000 07	1.354	.105 69	.461 41	.123 38	.105 36
3	.0708	4-1235	.088 37	1.3163	.105 99	-435 15	.12367	+086
4	.0711	4.0655	.088 66	1.2789	.106 28	.409 04	.12397	.066 74
5	.071 39	14.0079	.088 95	11.2417	.106 57	9.383 07	.124 26	8.047 56
6	.071 68	3-9507	.089 25	1.2048	.106 87	-357 24	.124 56	.02848
7 8	.071 97	3.894	.089 54	1.1681	.107 16	.331 54	.12485	8.009 48
	.072 27	3.8378	.089 83	1.1316	.107 46	-305 99	.12515	7-990 58
9	.072 56	3.7821	.09013	1.0954	.10775	.280 58	.125 44	-971 76
10	.07285	13.7267	.090 42	11.0594	.108 05	9-2553	.12574	7-953 02
II	.073 14	3.6719	.000 71	1.0237	.108 34	.23016	.126 03	-934 38
12	.073 44	3.6174	10 100.	0.988 2	.10863	.205 16	.126 33	.91582
13	.073 73	3.5634	.0913	0.9529	,10893	.180 28	.12662	.897 34
14	.074 02	3,5098	.091 59	0.9178	.10922	.155 54	.12692	.878 95
15	.074 31	13.4566	.091 89	10.8829	.109 52	9.13093	.127 22	7.86064
16	.07461	3-4039	.092 18	0.8483	.10981	.106 46	.127 51	.842 42
17	.0749	3-3515	-092 47	0.8139	.11011	.08211	.12781	.824 28
	.07519	3.2996	-092 77	0.7797	.1104	.057 89	.1281	.806 22
19	.07548	3.248	.093 06	0.7457	.1107	.033 79	.1284	.788 25
20	.075 78	13.1969	.09335	10.7119	.11099	9.00983	.12869	7-77035
21	.07607	3.1461	.09365	0.6783	.111 28	8.98598	.128 99	-752 54
22	.076 36	3.0958	.093 94	0.645	.111 58	.962 27	.129 29	-7348
23	.07665	3.0458	-094 23	0.6118	.11187	.93867	.129 58	-71715
24	.07695	2.9962	-094 53	0.5789	.11217	.9152	.12088	.699 57
25	.077 24	12.9469	.09482	10.5462	.11246	8.89185	.13017	7.682 08
26	.077 53	2.8981	.095 II	0.5136	.11276	.868 62	.13047	. 664 66
27 28	.077 82	2.8496	.09541	0.4813	.11305	.845 51	.13076	.647 32
	.07812	2,8014	+0957	0.4491	.11335	.822 52	+131 06	.63005
29	.07841	2.7536	·096	0.4172	.11364	.799 64	.131 36	.61287
30	.0787	12.7062	.096 29	10.3854	.11394	8.776 89	.131 65	7-59575
31	.078 99	2.6591	.006 58	0.3538	.11423	-754 25	-131 95	-57872
32	.079 29	2.6124	.096 88	0.3224	.114 52	.731 72	.132 24	.561 76
33	.079 58	2.566	.097 17	0.2913	.11482	.70931	.132 54	-544 87
34	.07987	2.5199	.09746	0.2002	.11511	,687 or	.13284	.52806
35	.08017	12.4742	.097 76	10.2204	.11541	8.66482	.13313	7.511 32
36	.080 46	2.4288	.09805	0.1988	.1157	.642 75	.13343	-494 65
37	.080 75	2.3838	.098 34	0.1683	.116	.620 78	.13372	.478 06
38	.081 04	2.339	.098 64	0.1381	.11629	-598 93	.134 02	-461 54
39	.081 34	2.2946	.098 93	0.108	.116 59	-577 18	.13432	+445 09
40	.081 63	12.2505	.099 23	10.078	.11688	8.555 55	.13461	7.428 71
41	.081 92	2.2067	.099 52	0,0483	.11718	-534 02	.13491	.4124
42	.08221	2.1632	.099 8r	0.0187	.117 47	.512 59	.135 21	.396 16
43	.083 51	2.1201	11 001.	9.9893	.11777	+491 28		·379 99
44	.0828	2.0772	.1004	.96007	+11806	-470 07	.1355	.36389
45	.08309	12.0346	.100 69	9.931 01	.118 36	8.448 96	.136 09	7-347 86
46	1083 39	1.9923	.100'99	.90211	.11865	-427 95	.136 39	.3319
43	09 68	1.9504	.101 28	.873 38	.11895	+407.05	.136 69	.316
48	.083.07	1.0087	.101 58	.844 82	+11924	.386 25	.136 98	.300 18
49	1084 87	£ 8673	.101 87	.81641	.119 54	.365 55	.137 28	.28442
50	100	8262	.10216	9.788 17	.11983	8,344 96	.137 58	7.26873
		353	.102 46	.760 09	.12013	-324 46	.13787	.2531
	A.	18	.10275	.732 17	.120 42	.304 06	.13817	.237 54
-	"V'0	2	.10305	-704 41	.12072	.28376	.13846	,222 04
c .	1.0	1	-103 34	.6768	.121 OI	-263 55	.13876	.206 61
	1	-48	.10363	9.64935	.121 31	8.243 45	.139 06	7.19125
	4	23.50	.10393	.622.05	.121 6	223 44	.13935	.175 94
100		1000	104 22	-5949	1310	.20352	.13965	.16075
- 16			1012	55791	-12210	1837	13995	.24553
				SATO	.123 40	1639	1403	1 .130 42
-0			100	3		5 5 5 8 8 A S	5 A Z40	
				-			The state of the s	
				_ ~			Com	YAT LONA

		30 (1 9	90	il 1 (5 0	1 1:	10	ı
_	TANG.	CO-TANG.		CO-TANG.		Со-танс.	TANG.	CO-TANG.	•
0	.140 54	7.11537	.158 38	6.31375	.176 33 .176 63	5.671 28 .661 65	.194 38	5.144 55 .136 58	60
2	.14113	.085 46	.158 98	.29007	.17693	.65205	.194 68	.12862	59 58
3	.141 43	.070 59	.15928	.278 20	.177 23	.642 48	.195 29	.12069	57
4	.141 73	.055 79	.159 58	.266 55	.177 53 .177 83	.632 95	195 59	.11279	57 56
5	.142 02	7.041 05 .026 37	.159 88	6.25486	.177 63	5.623 44 .613 97	.195 89	5.1049	55
7	.14262		.160 47	.2316	.17843	.604 52	196 49	.080 21	54
7 8	.14291	6.997 18	160 77	.220 03	.178 73	.595 11	.1968	.081 39	52
9	.143 21	.982 68	.161 07	.208 51	.179 03	.585 73	·197 I	.0736	51
10	143 51	6.96823	.161 37 .161 67	6. 197 03	.179 33	5. 576 38 . 567 06	1974	.05800	5C
E1	.143 81 .144 I	953 85	.161 96	.174 19	.17963	-557 77	. 197 7 . 198 01	.050 37	49 48
x 3	• ¥44 4	.925 25	.162 26	. 162 83	.180 23	.548 51	1.19831	.04267	47
¥4	1447	.91104	·162 56	.151 51	.180 53	·539 27	.19861	.034 99	47 46
15 16	-144 99	6.89688	.162 86	6.14023	.18083	5.53007	.19891	5.027 34	45
27	.145 29 .145 50	.868 74	.16346	.117 79	.181 43	.511 76	.199 52	.0121	44
z8	•145 59 •145 88	.854 75	.16376	106 64	. 181 73	502 64	.19982	.004 51	42
19	.146 18	.840 82	.164 05	.005 52	.182 03	.493 56	.200 12	4.99695	41
50	.14648	6.82694	.164 35	6.084 44	.18233	5.484 51	.200 42	4.9894	40
22	-147 07	.799 36	.164 95	.0734	.18293	. 46648	.200 73	.974 38	39 38
23	· 147 37	785 64	. 165 25	.051 43	.18323	·457 51	.201 33	.966 9	37
24	- 147 67	771 99	. 165 55	.040 51	.183 53	.448 57	. 201 64	·95945	37 36
25 26	.147 96	6.758 38	.16585	6.02962	.18383	5.439 66	.201 94	4.95201 .9446	35
	.148 56	·744 03	.166 45	.007 97	.184 44	.430 77	202 54	.937 21	34 33
27 28	.148 86	.71789	.166 74	5.9972	.18474	41309	.202 85	.929 84	32
29	.149 15	.704 5	.167 04	.986 46	.18504	.404 29	.203 15	.92249	31
30	149 45	6.691 16	.167 34	5.975 76 .965 1	. 185 34 . 185 64	5·395 52 .386 77	.203 45	.907 85	30
32 31	.149 75	.664 63	.167 94	.954 48	.18594	.37805	.203 76	.900 56	2¢
333	.150 34	.651 44	.168 24	-9439	. 186 24	.369 36	.204 36	.8933	27
34	.15064	.638 31	.168 54	-933 35	.186 54	.3607	.204 66	.886 05	26
35 36	.150 94	6.62523	.168 84	5.92283	.186 84	5.352 of •343 45	.204 97	4.878 82 .871 62	25 24
37 38	.151 53	-599 21	.169 44	.90191	.18745	.334 87	.205 57	.864 44	23
38		.586 27	.169 74	.891 51	.18775	.326 31	.205 88	.857 27	22
39		.573 39	.17004	.881 14 5.870 8	.188 05	.317 78 5.309 28	.206 18	.85c 13 4.843	21
41		6.56055	.17063	.86051	.18865	.3008	.206 79	.8359	
42	.15302	·547 77 ·535 03	.17093	.850 24	. 188 95	.292 35	.20709	.82882	18
43	.153 22	-522 34	.171 23	.84001	.18925	.28393	.207 39	.821 75	119
- 41	·15362	-5097	.171 53	.82982	.189 55	·275 53	.2077	.81471	ıć
44 45 40	·15391	6.497 1	.171 83	5.81966 .80953	.18986	5.267 15 2588	.208 3	4.807 69 .800 68	15
47 48 49 50	-154 51	.472 06	.172 43	.799 44	.19046	.25048	.20861		l
48	·15481	459 61	.17273	.799 44 .789 38	19076	.242 18	.20891	·793 7 ·786 73	
T)	·155 11	.4472	17303	5.76937	.191 06	.23391 5.22566	.209 21	-779 78 4-772 86	
51	.755.7	6.434 84	.173 33	.75941	.191 66	.217 44	.209 82	.765 95	
52	1 756	.41026	.17393	.749 49	.191 97	.209 25	.21013	.759 06	
23	·1563	.398 04	.174 23	.7396	.192 27	.201 07	.21043	.752 19	
35	.1566 .15680	.385 87	·174 53	·729 74	.192 57	5.1848	1	.745 34	1
53 54 55 55 55 55 55 55 55 55 55 55 55 55	· 150 ag	6.373 74 .361 65	.174 83	5.71992	.19287	.17671		P-728 51	
37	-157 49	.349 6I	.175 43	.700 37	-193 47	.16862		-	•
34 26	·157 79	.3376x/	175 73	.690 64	.19378	.1605	•		
- 6	15838	.325 66 6.313 75	. 176 03 . 176 33	.680 94 5.671 28	.19408 .19438	5.144 5			
77	Co-EARS.	//-	O-TANG.						
[/	810		80°	TANG.	CO-TAMO	.∖ Tang. 790			
			-	ı		130			

	20 °		. 2	120	. 2	20	230		
•	TANG.	Co-7486.	Tabs.	Co-tays.	TANG.	CO-TANG.	TANG.	(o-ma	
c .	753.97	= 747 48	.=8= 86	2.505 29	.454 93	2.475 0€	.424 47	2 355 % 3	
1	.7613	744 99	-42	.602 53	404 35	.473 02	424 52		
2	31413	742 51	434 53	.500.57	4047	470 95	425 15	35395 9	
3	354 96	.745 54	. 524 L7	ير شيءِ .	405 04	.468 68	425 51	2 2103:	
4	21 5 2 7.	727 50	. 1,5 = 2	egf of	45: iž	4:1 52	425 25		
Š	-1-6-	2.735 09	. 5: 5 5 5	2.5 3.51	.415.72	2.45475	.425 :4	2345 2 3	
5	3, 2, 5	.73263	.315.53 .325.27 .336.2	. Fål ft	400	4:27	425 54	.3444, %	
,		.73017	2	. 583, 32	.216.4	45.75	421 11	3424 5	
7	30/1	.72771	525 54	.527 :3	401.74	4521	-427 22	. 14030 3	
ζ.	.31661 .36654 11727	.725 25	. 25: 27	364.4	407.7	4:65	42-5-	gabir 9	
ć	7 27	2.722 21	367 22	2.50211	40741	2.454 51	427 .1	2.3355 7	
ı	- / - /	.725 35	.367 54	.500.35	.407.75	.45245	425 25	. :3505 A	
2	3775 3772 3772		35757	.576 15	.468.0G	450 43	.42	.537 17	
	1.4.3	.717 02	.366 21		400 43	.445.39	4== 54		
3	3, 15	-71548	.355 54	-575 93	406 43	.445 39	4-1 24		
4	3,175	.72515	.352.55	.573 71	-40£ 77	-445 35	424 23		
5	3 2 52	2.710 -2	.336.35	2.5715	.400 11	2 4+4 33	.42513		
5	3 9 25	.70: 19	-365 21	509.28	405 45	-442 3	گڌِ ڊِعه.	. 3257 #	
?	. 2	·705 77	-369 55	5:707	46 6 79	-44- 27	4 32	223.63 (
	·3*•9 \$2	·753 3 5	-389 55	·5: 4 \$7	.41013	43, 25	43267	. 323 37 # . 320 13 #	
9	.376 24	700.44	.390 22	56265	415 47	.43623	43101		
5	372 57	2.552 53	390 55	2.500 46	410 21	2.434 22	-452 35	2.312.20	
	.3759	figf. 12	چة دوو.	. 558 27	.411 15	-4522	4317	.31541 A	
2	-371 24	.59371	.391 22	.556 os	.41149	4-010	4,7205	.31456 \$	
3	-372 57	.fgrgr	: .392 55	. 553 89	.411 53	.426 19	-43239	.37271 ¥	
4	-3719	. (65 02	-3919	-55× 7	.41217	.425 18	43274		
5	.372 23	2.68653	.392 23	2-549 52	.41251	2.424 18	433.6	2.70902 3	
	. 372 56	-684114	·392 57	·547 34	-412 b5	-422 18	43343	. ac 18 36	
7	.37289	-Dec 35	•392 g	-54515	-41710	.420 19	433 75	. 22534 3	
ķ	·373 =	-D96 37	-393 24	-542 93	-413.53	.416 19	-434 12	. 272 52 3	
	-373 55	-077	-393 57	540 82	-41327	.41Ć 2	-43447	. 301 (7 F	
٠I	.y,#	2.674.62	.393 91	2.53665	414 21	2.41421	454 51	2.20384 3	
ì	-374.00	-672.05	-394 25	.536 45	- 414 55	.41223	.435 15	.23 ⁸ CI 4	
- 1	- 274 55	-66g 8g	-394 58	-534 32	4140	410.25	435.5	.200 CZ 7	
ā١	-374 55	.667.52	394 92	-532 17	415 24	.4: 8 27	40 = 5.0	2437	
		-665 15	.395 26	53001	.415.58	.40ć 2 9		.22254	
•		a. 66a 8x	.395 59	2.52786	41 62	2.404 32		2.20073 5	
		.66 0 46	-395 93	·52571	41 2	.402 35	42.85	.::E32 #	
		.6<6 II	.396 26	.523.57	-41"	.400 36	.437 ==	.2271 18	
		.055.76	.3966	-521 42	410.54	.398 41	.427 55	2:526 2	
		-5.42	39694	-519 25	417 22	307.45	42735	.21345 2	
		051 00	397 27	2.517 15	41713	2.354 49	.43: 25	2.251t7 #	
	-	648.75	. 397 61				.435 62	- P - P - P	
	-	. 646 42		.515.02 .512.65	-417.07	. 302 53 . 300 58		-27987 -27800	
•	*	.040 42	397 95		415 31		.435 Q7	27626	
	(_	.644 i	398 29	.51075 .50€64	-418 65	. 256 t 2 . 281 68	.436 32	27626 17	
	3	.641 77	. 356 62 398 96		.415 99		•439 LE		
	∻7	a.¢3945	39390		410 33	2.354 73	-44- OI		
	2	.637 14	-3993	-504 4	419 t-8	- 35.2 79	.445.21	.2,500	
	53	.63483	.39963		420 02	. 280 54	-447 71	.2673 13	
		.632 52	-399 97	.500 15	, -420 35	.3-861	-441 05	20552 18	
	.5	.630 21	.400 31	.49E 07	-420 7	376 97	-44: 4		
	. 33	a.687 92	.400 65	2-495 07	.421 05	2.375 04	-441 75	2.203/4	
	,	fac fix	.40098	-493 8 6	421 33	-37311	-442 I	.26195	
	•	-	.401 32	·491 77	-421 73	-37118	·442 44	.2.010	
			402 66		422.07	. 31 9 25	-44270		
			106	-457 55	. 422 42	·357 33	-44314	.25045	
			* 34	2.48549		2.36541	-445 49	2. 2. 4	
			* 34		: .423 1	313 40	بع 334.		
			i	.451 32	42345	361.58	13 مبد.	.23	
			5	-47924	11.42379	.3±0. 6 J	. ۱۹۸۹ <i>ېږ</i> ۱۹۸۸ وو	.249 #	
			2	.477 16	1 .424 1	357 7 [€]	.444.68		
			1	2.4750	4444 ن	3.35202	- 4 423		
				B. TARG	- 11	MG. TAXO	. 007	SEAT OKA	
								662	

2	40	. 2	50	11 2	60 I	1 2	70	
g	CO-TANG.	TANG.	CO-TANG.	TANG.	Co-tang.		CO-TANG.	•
23 58	2.24604 .24428	.466 31 .466 66	2.144 51	.487 73	2.050 3	.509 53	1.96261	60
93	.242 52	.467 02	.142 88	.488 09	.04879	.509 89	.9612	59 58
27	.240 77	.467 37	.13963	.48881	.045 77	.51063	·959 79 ·958 38	57
62	.239 02	.46772	.13801	.489 17	.044 26	.51000	.956 98	56
97	2.237 27	.468 08	2.13639	.489 53	2.04276	.51136	1.955 57	55
32	.235 53	.468 43	·13477	.48989	.041 25	.511 73	-954 17	54
67 02	.233 78	.46879	.133 16	.490 26	-039 75	.51209	·95277	53
37	.232 04 .230 3	.469 14 .469 5	.131 54	.49062	.038 25	.51246	·951 37	52
72	2.228 57	.46985	.129 93 2.128 32	.490 98	.036 75 2.035 26	.51283	·949 97 1.948 58	51
07	.226 83	.47021	.12671	.4017	.033 76	.51356	.947 18	50 49
42	.225 I	.470 56	.125 11	.492 06	.032 27	.51393	·945 79	48
77	.223 37	.47092	.1235	.492 42	.030 78	.5143	.944 4	47
12	.221 64	.471 28	.1219	.49278	.029 29	.51467	.94301	46
47 182	2.21992	-471 63	2.1203	·493 15	2.0278	.51503	1.94162	43
	.21819	·471 99	.11871	·493 51	.026 31	·5154	.940 23	44
17	.216 47	·472 34 ·472 7	.11711	.493 87	.024 83	·51577	.93885	43
52 87	.21304	47305	.11392	·494 23 ·494 59	.023 35	.51614 .51651	.937 46 .936 08	42
:22	2.211 32	·47341	2.11233	.494 95	2.020 30	.51688	1.9347	41 40
157	.209 61	.47377	.11075	.495 32	.01801	-517 24	.933 32	
192	.2079	-474 12	.109 16	.495 68	.017 43	.51761	.933 3-	39 38
127	.206 19	.474 48	.107 58	496 04	.01596	.517 98	-930 57	37
162	.204 49	.47483	.106	.4964	.014 49	.51835	.929 2	36
197	2.20278 .20108	·475 19	2.104 42 .102 84	.496 77	2.01302	.51872	1.927 82	35
132 167	.199 38	·475 55 ·475 9	.102 04	497 13	.011 55	.519.09	.926 45	34
502	.19769	.476 25	.099 69	·497 49 ·497 86	.010 08	.51946	.925 08 .923 71	33 32
537	. 19599	.476 62	.09811	.498 22	.007 15	.5202	.923 71	31
573	2.1943	.47698	2.096 54	.498 58	2.00560	.520 57	1.920 98	30
508	.19261	-477 33	.094 98	.498 94	.004 23	.52094	.61962	
543	.190 92	·477 69	.09341	499 31	.002 77	.521 31	.91826	29 28
5 78	.189 23	.47805	.cg184	.499 67	.0)1 31	.521 68	.9169	27
713 748	.187 55 2.185 87	.4784 .47876	.090 28	.500 04	1.999 86	.52205	-91554	26
784	.184 19	.479 I2	.087 16	.500 4	1.998 ₄₁	.52242	1.91418	25
7 84 8 19	.18251	.479 48	.0856	.501 13	995 5	.522 79 .523 16	.91282	24 23
8 54	.180 84	-47984	.084.05	.501 49	·994 o6	·52353	.91012	22
889	.179 16	.480 19	.082 5	501 85	·99261	.5239	.908 76	21
924	2.177 49	.480 55	2.080 94	.502 22	1.991 16	-524 27	1.907 41	20
96	.175 82	.480 9 z	.079 39	.502 58	.989 72	.52464	.90607	18
995	.174 16	.481 27	.077 85	.50295	.988 28	. 525 01	-90472	
03 065	.172 49	.481 63 .481 98	.0763	.503 31	.986 84	.525 38	.903 37	17
101	2.169 17	.482 34	.07476 2.07321	.503 68	.9854 1.98396	·52575	1.900 69	16 15
1 36	.167 51	.4827	.07167	.504 41	.982 53	.526 5	.899 35	14
177	.16585	.483 06	.070 14	. 504 77	.981 33	.52687	.898 or	13
2 06	.1642	.483 42	.0686	.505 14	·97966	.527 24	.89667	12
3 42	. 162 55	.48378	.067 06	.505 5	.978 23	.527 61	.895 33	11
* 77	2.1609	.484 14	2.065 53	.505 87	1.9768	.527 98	1.894	
3 12	.159 25	.484 5 .484 86	.064 .062 47	.506 23	.975 38	.528 36	.892	
3 48 3 83	.1576	.485 21	.060 94	.5066	·973 95		.891 .89	
i4 x8	.154 32	.485 57	.059 42	.507 33	·972 53	·529 1	.888	
14 54 14 89	2.152 68	.485 93	2.0579	.507 69	1.969 69	.529 84	1.887	
1489	.151 04	.486 29	.056 37	.50806	.968 27	.530 22	<i>₹88.</i> ∤	
5 25	·1494	.486 65	.054 85	.50843	966 85	.530 59	.88.	
595	.147 77 .146 14	.487 01 .487 37	.053 33	.508 79	.965 44	1.53096	:88. / 6	
			.051 82 2.050 3	.509 16	.964 02	// ∙231 3	4 \ .882	2 73 \
-/-				.509 53	1.96261			
650		O-TANG.	TANG.	CO-TANG.		/, Co-T		.40.
	"	640	' 1	l (5 3 0	//	650	

•								
		80		90	-	00		10
	TANS.	Co-tang.	TANG.	CO-TANG.	TANG.	CO-TANG.	TANG.	CO-TANG.
0	·531 71	1.88073	·554 31	1.804.05	·577 35	1.73205	.600 86	1.664 28 (
I	.532 08	.87941 .87809	-554 69	.80281	·57774	.73089	.601 26	.663 18 1
2	.53246 .53283	.876 77	.555.07	.801 58 .800 34	.578 13 .578 51	.729 73 .728 57	.601 65 .602 05	.66209 5
3 4	.533 2	.87546	·555 45 ·555 83	.799 11	.5789	.727 41	.602 45	.6599 5
ξ.	.533 58	1.874 15	.55621	1.797 88	.57929	1.726 25	.602 84	1.65881 5
5	.533 95	.87283	.556 59	.79665	.57968	.72509	.603 24	.657 72 5
7	·534 32	.871 52	.556 97	·795 42	.58007	.72393	.603 64	.65663 5
	·534 7	.87021 .86891	.557 36	.794 19	-58046	.722 78	.604 03	.655 54 5
9 10	·535 07 ·535 45	1.8676	·557 74 ·558 12	.79296 1.79174	.58085	1.720 47	.604 43	2.65337 F
11	.535 82	.866 3	.5585	.790 51	.581 62	.719 32	.605 22	
12	.536 2	.864 99	558 88	789 29	.58201	.718 17	.605 62	.65228 4
13	.536 57	.86369	.559 26	.78807	.5824	.717 02	.606 02	.65011 4
14	.536 94	.862 39	.559 64	.78685	.582 79	.71588	.606 42	.64903
15	·537 32 ·537 69	1.861 09	.560 03	1.78563	.583 18	1.71473	.6068z	1.64795 6
16	.537 09	.859 79 .853 5	.56041	.784 41 .783 10	.583 57	.713 58	.607 21 .607 61	.64687 # .64570 #
17	.538 o7 .538 44	.8572	.560 79 561 17	.78198	.583 96	.712 44 .711 20	.608 oz	.64579 4 -64471 #
10	.53882	.855 91	.561 56	.780 77	.584 74	.71015	.60841	.64363 #
20	.539 2	1.854 62	56z 94	1.779 55	.585 13	1.709 01	.6088r	1.64250
21	· 539 57	.853 33	.562 32	.778 34	.585 52	.70787	.609 21	.64148
22	·539 95	.85204	5627	·777 13	.5859z	.706 73	.6096	.64041
23	-540 32	.85075	.563 09	·775 92	.586 31	.7056	.61	.63934 3 .63826 3
24 25	·540 7 ·541 07	.84946 1.84818	.563 47 .563 85	·77471	.5867	·704 46	.6104 .6108	1.63719 \$
26	.541 45	.84580	.564 24	1.773 51 .772 3	.587 48	1.703 32 .702 10	.6112	.63612 3
27	.541 83	.84561	.564 62	7711	. 58787	.701 06	.6116	.63505 39
28	.5422	.844 33	565	.7699	.58826	.699 92	.612	.63398 3
29	.542 58	.843 05	.565 39	76869	.58865	.69879	.6124	.63292 3
30	.54296	1.841 77	-505 77	1.767 49	.58904	1.697 66	.6128	1.63185 7
31	·543 33	.84049	. 566 16	.7663	.589 44	.696 53	•6132	.63079
32 33	·54371 ·544 00	.839 22 .837 94	566 54 566 93	.765 I	.58983 .59022	.695 41 .694 28	.6136 .614	.62972 # .62866 #
34	·544 46	.83667	.567 31	.76271	.590 61	.693 16	.6144	.62866 4 .6276 2
35	.544 84	1.8354	.567 69	1.761 51	.591 01	1.69203	.6148	1.62654 5
36	.545 22	.834 13	.568 08	.760 32	.5914	.690 gr '	6152	.62548
37	.5456	.832.86	.568 46	·759 13	-591 79	.689 79	.61561	.624 42 \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
38 39	·54597 ·54635	.831 59 .830 33	.568 85	·757 94	.592 18	.688 66 .687 54	.61601 .61641	.62336 # .6223 #
40	.54673	1.829 06	.569 62	1.755 56	.592 58	1.686 43	.616 81	1.62125
41	·547 II	.8278	.57	·754 37	.593 36	.685 31	.617 21	.62019
42	547 48	.826 54	.570 39	.753 19	59376	.68419	.61761	.61914
43	.547 86 .548 24	.825 28	-570 78	752	594 15	.68308	.618or	.61808;3
44	.548 24	.824 02	-571 16	.75082	-594 54	.681 96	.618 42	.61703
45 46	.54862	1.822 76 .821 5	·571 55	1.749 64 .748 46	.594 94	1.68085	.61882	
47	·549 ·549 38	.820 25	·571 93 ·572 32	.747 28	595 33 595 73	.67974	61962	61388 13
7.Eq.	-54975	.81899	.57271	.7461	.596 12	.677 52	.620 03	.61283 P
	·550 13	.817 74	-57309	-744 92	.59651	.67541	.620 43	.61179
	·5505z	1.81649	.57348	1.74375	.596 9z	1.6753	.62083	1.010/4
	. godg	.815 24	.57386	742 57	⋅597 3	.67419	.621 24	.6097
	7	.81399	·574 25	.741 4 .740 22	.597.7	.67300	62164	.60865 .60761
		.81274 Rzz 5	·574 64 ·575 03	.730 OE	.598 og .598 49	.671 98 .670 88	.62245	
		125	·575 4I	.739 05	.598 88	1.66978	622 85	1.60553
			·575 41	•	700 28	.66867	.62325	.60149
		ļ	l -		67	.667 57	.62366	.00343
					স্	8, 200.	. 624 06	.6024I
					46	5 \ 1.664.28	0248	
					_	PKAT 1. DO	_ \	_\
					4	600 9017 / 500	· //corr	c83
						39 -		

•	20		30	2	4 º 1		50	
TANG.	CO-TANG.	TANG.	CO-TANG.	TANG.	Co-TANG.	TANG.	CO-TANG.	,
	!	'!		!!				<u> </u>
624 87 625 27	1.600 33	.649 41	1.539 86 .538 88	.674 51 .674 93	1.482 56 .481 63	.700 21	1.42815	60
625 68	·599 3 ·598 26	.650 23	537 91	.675 36	.4807	.70107	.426 38	59 58
626 o8	·597 23	.65065	.53693	.675 78	·479 <i>7</i> 7	.701 51	.425 5	57
626 49	.5962	.651 06	∙535 95	.6762	·47977 ·47885	.701 94	.42462	56
626 89	1.595 17	.651 48	1.534 97	.67663	1.47792	.702 38	1.42374	55
627 3	.594 14 .593 11	651 89	·534 ·533 02	.677 05	.476 99 .476 07	.70281 70325	.421 98	54 53
.628 11	.592 08	.652 72	.53205	.677 9	.47514	.70368	.4211	52
.628 52	.591 05	.653 14	.531 07	678 32	474 22	.704 12	.420 22	51
.628 92	1.59002	.653 55	1.5301	.678 75	1.4733	-704 55	1.41934	50
.629 33	.589	.653 97	.529 13 .528 16	.679 17	.472 38	.704 99	.41847	49 48
.629 73 .630 14	.587 97 .586 95	.654 38 .654 8	.525 10	.6796	.471 46 ·	.705 42 .705 86	.417 59 .416 72	47
.630 55	.585 93	.655 21	.526 22	.680 45 .680 88	46962	.706 29	.415 84	46
.63095	1.584 9 .583 88	.65563	1.525 25	.68o 88	1.4687	.706 73	1.41497	45
.631 36	.58388	.656 04	. 524 29	.6813	467 78	.707 17	.41409	44
.631 77 .632 17	.58286 .58184	.656 46	.523 32	.681 73	.46595	.7076	.413 22 .412 35	43
.632 58	.580 83	.657 29	.522 35	.682 58	- 46503	.70848	.41148	41
.63299	1.57981	.65771	1.52043	.68301	1.464 11	.70891	1.41061	40
.6334	.57879	.65813	.51946	.683 43	.4632	709 35	40974	
-0338	-577 78	.658 54	.5185	ii .683 86	.462 29	·70979	.409 74 .408 87	39 38
.634 21	·570 7 0	.058 90	·517 54	.684 29	.461 37	.71023	.408	37
.634.62 .635.03	·575 75	.659 38 .659 8	.516 58 1.515 62	.684 71	46046	.71066	.407 14 1.406 27	36 35
.635 44	.573 72	.660 21	.514 66	.685 57	1.459 55 .458 64	71154	.4C54	34
.03584	.57271	.66063	.5137	.686	457 73 -456 82	71198	.404 54	33
.636 25	·571 7	.661 o5	.51275	.686 42		.712 42	.40367	32
.636 66 .637 07	•570 69 • 560 60	.661 47 .661 89	.511 79	.686 85	·45592	.71285	.402 81 1.401 95	32
• 637 48	1.56969 .56868	.6623	1.510 84 .509 88	.687 71	-454 I	·71329 ·71373	.401 09	
fine Q	.567 67	.662 72	.508 93	.688 14	+541	71417	.400 22	29 28
•638 a	.56667	.66314	.507 97	.688 57	·452 29	.71461	. 399 36	27
.038 7x	.565 66	.663 56	.507 02	.689	·451 39	.71505	.3985	26
639 12 639 53	1.56466 .56366	.663 98 .664 4	1.506 07	.689 42	1.45049	.715 49	1.397 64 .396 79	25 24
.639 94	.56265	.664 82	.505 12 .504 17	.600 28	.449 58 .448 68	.715 93 .716 37	-395 93	23
•040 2E	.56r 65	.665 24	.503 22	.690 71	.447 78	71681	.39507	22
· 04 0 76	.560 65	.66566	. 502 28	.691 14	-44688	.71725	.394 21	21
·041 17	1.55966	.666 08	1.501 33	.691 57	1.44598	.71769	1.393 36	20
.64z 58	.55866	.666 5	. 500 38	.692	·445 08	.71813	·392 5	19 18
641 99	.55766 .55666	.666 92 .667 34	.499 44 .498 49	.692 43 .692 86	·444 18 ·443 29	.718 57	.391 6 5	
.642 4 .642 81	555 67	.667 76	·497 55	.693 29	·442 39	.71946	.38994	17 16
.643 22	1.55467	.667 76 .668 18	1.49661	.69372	1.441 49	.7199	z. 389 og	15
64363	.55368	.6686	.495 66	.694 16	.4406	.720 34	.388 24	14
644.04	.552 69	.663.2	·494 72	694 59	·439.7 ·438.81	.720 78	.387 38 .386 53	13
-644 46 -644 87	.55071	.669 44 .669 86	.493 78	.695 45	·437 92	.721 66	.385 68	112
-045 28	1.540 72	.670 28	1.4919	.695 88	1.43703	.722 11	1.384 84	
-64569	.548 73	.670 71	.49097	.696 31	.436 14	.722 55		
-646 z	-547 74	.67113	.490 03	.696 75	·435 25	.72299	l	
.646 52 .646 93	-546 75	.671 55	.489 09 .488 16	.697 18	.434 36	·723 44 ·723 88		
-647 34	-545 76 1-544 78	.671 97	1.487 22	.697 61 .698 04	·433 47 1.432 58	.723 00		
-047 75	543 79	67282	.486 29	.698 47	.43169	724 77		
1.04517	·543 79 ·542 81	673 24	.485 36	1 .698 gr	.4308	.7252		
.648 58 .648 99	.541 83 .540 85	.673 66	.484 42	699 34	.42992	1256	,	
-64941	z.539 86	.674 09 .674 51	.483 49 1.482 56	.699 77 .700 21	1.42903	726 1	۱ ۵۸	
beams.						_//	\-	
670		Co-tang. 56	TANG.	Co-TANG		/,Co-T	540 540	
	••	30	- 1	ı	55°	11		

		162	3	70	3	80	3	90
*	Tans.	Co-taxe.	Taxa.	Co-rang.	TANG.	Cotuse.	TANG.	Co-tang.
0	-726 54	1.37638	-753 55	1.327 04	.781 29	1-279 94	.809 78	1.2349
	1725 99	-375.54	-754 OE	+326.24	.78E75	.279 17	-81027	-23416
2	-727 43	-3747	-754.47	-325 44	-78222	-278.41	.81075	+23343 +2327
3	-728 32	-373.85 -373.02	-754-92 -755.38	1324 64	.78269 .78316	1277 64 1276 88	.81171	.23196
56	.728 77	1.372 18	-755 84	1.32304	.78363	1.27611	.8122	1.231 23
	-72921	-37134	.750:29	-32124	.784 E	.275 35	.81268	,2305
7 8	-72966	-370.5	-756 75	-321 44	-784.57	-274 58	81316	122977
9	-7301 -73055	.369.67 .368.83	-757 01 -757 67	-320·64 -319·84	.78504	.273 82 .273 06	.81364	.229 04
10	-731	1.368	.75812	1.319.04	.78598	1.2723	.81461	1.227 58
11	-731 44	.367 16	-758 58	-318 25	-186 et	1271 53	.8151	. 22685
12	-731 89	-366 33	-75904	-317.45	.786 gz	-27077	.81558	.22612
13	-732 34	-365.49 1-364.66	-759 5	-31666	-787 39 -787 86	.200.01	.816.65	.22539 .22407
14	-732 78	.36383	-759.96 -760.42	-315 86 1-315 07	.788 34	1.268.49	.81703	1.223.94
16	-733 68	-363	.760 88	-314 27	.7888r	.267 74	.81752	.22321
17	-73413	.36217	.76134	-313.48	.789 28	.206 g8	.818	.22249
58	-734 57	-361 33	.7618	-31269	-78975	.266.22	.81849	.02176
19	-735 02 -735 47	-360 51 1-359 68	-76226 -76272	1.3111	.79022	.265 46 1.264 71	.81898	1.220 31
21	-735 92	-35885	.76318	-31031	.792 27	.263.95	.81995	.210.50
22	-736 37	-358 02	-763 64	-309 52	.791 64	.26319	.82044	.21886
23	-73681	-357 19	-7641	-308 73	.79212	.262 44	.82092	.21814
24	-737 25	·356 37	-764 56	-307 95	-792 59	.261 6g	.82141	.21742
25	-73771 -73816	1.355 54 ·354 72	-765 02 -765 48	1.307 16 -305 37	-793 of -793 54	1.26093 .26018	.82238	.2159
	.73861	.353.89	.76594	-305 58	-794 OI	.259 43	.82287	.21520
27 28	-739 06	-353 97	.7004	.3048	-79449	.25867	.823 36	.21454
29	-739 5I	-352 24	-766 86	-304 OI	-79496	-257 92	.82385	.21362
30	-739 96	1.351 42	-767 33	1.303 23	-79544	1.257 17	.82434	1.2131
31 32	740 41	-350 6 -349 78	-767 79 -768 25	-302 44 -301 66	-795 91 -796 39	.255 42 .255 67	.82483	.21238
33	-74131	.348 96	.76871	.300 87	.796 86	.254 92	.8258	.21004
34	-741 76	.34814	-76918	.300 og	-797.34	.254 17	.826.29	.21003
35	-742 21	1.34732	-76964	1.299 31	.797 81	1.253 43	.82678	1.20951
36 37	-742 67 -743 12	-346 5 -345 68	-770 I -770 57	.298 53	.798 29 .798 77	.252 68	827 27	.208 70
38	-743 57	-344 87	.771 03	-297 75 -296 96	-799 24	-251 18	.827 76	.20736
39	-744 02	-344 05	-771 49	-296 18	-799 72 -800 2	.25044	.82874	.20005
40	-744 47	1.343 23	-771 96	1.29541		1.24969	.82923	1.20593
41	-744 92	-342 42	-772 42	-294 63	.800 67	.24895	.82972	.20522
42	-745 38 -745 83	.3416	-77289	.29385	.801 15 .801 63	-2482	.830 22	.204 51
43	-745 03	-340 79 -339 98	·773 35 ·773 82	-293 07	.80211	.247 46	.83071	.20372
45	-74674	1.339 16	-774 28	1.291 52	.802 58	1.245 97	.831 69	1.2023
46	-747 19	-33835	-77475	.290 74	.803 06	.245 23	-83218	.201.00
47	·747 64.	-337 54	-775 21 -775 68	.289 97	.803 54	-244 49	.832 68	.20095
49	-748 55	·336 73 ·335 92	.775 08	.288 42	.804 5	-24375 -24301	.833 17 .833 66	.100 53
50	-749	1.335 11	.776 61	1.287 64	.804 98	1.242 27	.834 15	1.19881
51	-749 45	-3343	-777 08	.286 87	.805 46	-241 53	.834 65	.19811
52	-749 91	-333.49	-777 54	.2861	.805 94	.24079	.835 14	-1974
53 54	·75037	.332 68 .331 87	.778 or .778 48	.285 33 •284 56	.806 42 .806 9	.24005	.835 64	,19669
55	-751 28	1.331 07	-778 95	1.28379	.807 38	1.238 58	.836 13	1.19528
56	-751 73	.330 26	·77941	.28302	.807 38 .807 86 .808 34	.237 84	.837 12	.10457
57	-75219	.329 46	-779 88	.28225	.808 34	-237 I	.83761	-19387
58	-752 64	.32865	-780 35	-281 48	.808 82	+236 37	.838 11	19316
59	7531	1.327 04	.780 82	1.279 94	8,008.	1.2349	.8386 1088.	.1924h 1.19175
-	-753 55	-	-	-	-11-	-		1
10	CO-TANG.	TANG.	CO-TANG	520	CO-TAN	510	COSTA	505
1	5	30	11	٠۵٥	33	-		

	00		10		20	! 4	3°	ī
NG.	CO-TANG.	TANG.	CO-TANG.	TANG.	CO-TANG.	TANG.	CO-TANG.	1
1	1.19175	.869 29	1.15037	.0004	1.11061	.932 52	1.072 37	
6	.191 05	.8698	.149 69	.900 93	.10990	· .93306	-071 74	:
09	.19035	.87031	.149 02	.901 40	.109 31	, .9336	.071 12	l
59	.18964	.87082	.148 34	.901 99	.1cg 67	934 15	.070 49	
80	.18894	.871 33	.147 67	-902 51	. 108 02	93469	.6987	
58	1.18824	.871 84	1.146 99	.903 04	1.107 37	935 24	1.00 925	ŀ
80	.18754	.87236	.146 32	.903 57	.106 72	93578	.ot 8 62	•
58		.87287	.14565	.904 1	.10607	936 33	.068	·
07	.18544	.873 38	.144 98	.904 63	.105 43	936 88	.007 38	:
57	1.18474	.873 89	.144 3 1.143 63	.905 10	1.104 14	937 42	1.01676	٠
97	.18404	.87441				. 937 97	, ,	ï
57	.18334	.874 92	.142 96	.906 21	.103 49	.038 52	.06551	
56	.18264	.87543 .87595	.142 29	.906 74	.102 85	93900	.06427	
06	.18194	.876 46	.141 62	.907 81		1) 050.		
56	1.18125	.876 98	1.140 28	.908 34	1.100.91	94015	1.06303	
06	.18055	87740	.139 61	.908 87	.10027	.941 25	£241	
56	.17986	.877 49 .878 01	.138 94	.909 4	009 03	.9418	.c61.79	
56 06	.17916	.878 52	.138 28	,909 93	.00 .00	942 35	CaS6117	
56	.17846	.879 04	.13761	.91046	cu8 34	9429	. Ho 50	
06	1.17777	.879 55	1.136 94	.91099	1.0077	943 45	1.150.94	
56	.177 08	.880.07	.136 27	-911 53	.007.06	.944	.05932	
06	.176 38	.880 59	.135€1	91200	.000 42	1 -944 55	.0387	
57	.175 69	1 188.	.134 94	-912 59	.00)5 78	.945 I	.UES 00	
07	.175	.881 62	.134 28	.91313	095 14	.94565	-457 47	•
57	1.1743	.882 14	1.133 61	.91360	1.0045	941.2	1.050 85	
07	.17361	.88265	.13295	.914 19		.94676	-050 24	
57	.17292	.88317	.132 28	-91473	.093 22	917 31	.055 62	į
07	.17223	.88369	.131 62	.915 26	.092 58 i		-055 OI	
58	.171 54	.884 21	.130 96	.9158	.091 95	.94841	-4.54.39	
80	1.17085	.88473	1.130 29	-910 33	1.091 31	.94896	1-053 78	
58	.17016	.885 24	12963	.91687	.09067	.949 52	-053 17	
09	.169 47	.885 76	.128 97	.9174	.09003	.95007	-052 55	Ī
59	.16878	.886 28	.128 31	-917 94	.0894	.95062	-051 94	L
09	.168 09	.8868	12765	-918 47	.088 76	.951 18	051 33	i
6	1.16741	.887 32	1.120 99	.91901	1.088 13	·951 73	1.15072	l
1	.166 72	.887 84	.126 33	-919 55	.087 49	.952 29	41350 I	ŀ
61	. 166 03	.888 36 .888 88	-125 67	-920 08	.086.66	.95284	140 49	1
	.16535		.125 OI	-920 62	.c8ń 22	.9534	.0.888	l
62	1.16398	.8894	.124 35	.921 16	.085 59 1.084 96	.953 95	-048 27	l
12		.889 92	1.123 09	-9217		.954 51	1-047 66	١
63	.163 29	.890 45	.12303	-922 23	.684 32	.955 (6	-647 05	l
	.16261	.890 97	.122 36	.922 77	.083(9 .08306	.955 62	-046 44	l
15	.161 92 .161 24	.891 49	.121 72	-923 31	.08243	.956 18	.045 83	l
66	1.160 56	.892 53	1.12041	-923.85	1.081.79	-956 73	.045 22	l
16	.159 87	.893 06	.11975	.924 39	01 160.	957 29	1.044 61 -044 01	ı
67	.15919	.893 58	.119.00	·924 93 ·925 47	.080 53	958 41	,0434	ı
18	.158 51	.894 1	2.28	1 600000	.0799	958 97	.042 79	l
68	.157 83	.894 63	.117 78	.926 55	1079 27	959 52	.042 18	ı
19	1.157 15	.895 15	1.117 13	92709	1.07864	960 08	1.041 58	1
7	.156 47	.805 67	.116 48	.92763	.078 or 1	.96064	-040 97	i
21	-155 79	.8062	.11582	. 92817	.077 38	.06	.040 of	1
72	.155 II	.896 72	The state of the s		.070 76	.96176	.0	
72	-154 43	.897 25	11120	020.06	.076 13	:06232	18	
574	1.153 75	.897 77	1.11387	.929 8	1.0755	96288	I.	
725	.153 08	.8983		.930 34	.074 87	.96344	1	
776	.1524	.89883		.930 88	.074 25	964	1	
827	-151 72	.899 35		.931 43	+07362	96457	\	
878	.151 04	.8gg 88	+111 26	.931 97	.07299	9651	3 \	
	L 150 37		I. IIobi	.932 52	1.072 37	9656		
- 4								

,	4	40	!!	ī	1 4	40	1		4	40	1
<u>'</u>	TANG.	Co-tang.	·	<u>'</u>	TANG.	Co-tang.			TANG.	CO-TANG.	<u>'</u>
<u> </u>		1.035 53	60		.977 56	1.02295	39	41	.989 01	1.01112	, 19
1	.966 25	1.03493	59	22	.978 13	1.022 36	33 .	42	.989 58	1.01053	, 13
2	.6668r	1.03433	58 ∤	23	.978 7	1.021 76	37	43	.990 16	1.00994	27
3	.967 33	1.03372	57	24	-979 27	1.021 17	36	44	.990 73	1.00935	10
4 '	-95794	1.033 12	56	25	.979 84 .	1.020 57	35	45	.991 31	1.00870	15
5 '	.9685	1.032 52	55	26	.68041	1.01998	34	46	.991 89	1.00518	14
6,	.969 07	1 031 92	54	27	.980 98	1.019 39	33	47	.992 47	1.007 59	13
7	.66963	1.031 32	53	28	.981 55	1.01879	32	48	-993 04	1.00701	32
8	.9702	1.030 72	. 52	29	.982 13	1.0182	31	49	-993 62	1.000 42	11
9	.97075	1.03012	5 T	30	.9827	1.01761	30	50	-9942	1.005 83	10
10	.971 33	1.029 52	50	31	.983 27	1.01702	20	51	.99478	1.00525	9
11	.97183	1.02892	i 49	32	.983 84	1.01642	28	52	.995 36	1.004 67	1.8
12	.972 45	1.028 32	. 48	33	.984 41	1.01583	27	53	-995 94	1.00468	1 2
13	.97302	1.02772	: 47 I	34	984 99	1.015 24	26	54	.996 52	1.0035	. 0
14	.973 59	1.02713	46	35	.985 56	1.01465	25	55	-997 I	1.00291	3
15	.974 15	1.026 53	45	36	.986 13	1.01406	24	56	.997 68	1.002 33	4.
16	.974 72	1.02593	44 .	37	.986 7x	1.01347	23	57	.998 26	1.001 75	1 3
17 18	-975 29	1.025 33	43	38	.987 28	1.01288	22	58	.998 84	1.00116	1.3
18	. 975 86	1.024 74	42	39	.987 86	1.0:229	21	59	-999 42	1.000 58	1
19	.97643	1.024 14	41	40	.988 43	1.6117	20	60	1	I	0
20	.977	1.023 55	40								L
,	CO-TANG.	TANG.	7	,	CO-TANG.	TAXG.			CO-TANG.	TANG.	1
	i 4	. 5 °	i :	!	4	5°			4	50	Ш

Preceding Table contains Natural Tangents and Co-tangents for ever minute of the quadrant, to the radius of I.

If Degrees are taken at head of columns, Minutes, Tangents, and Cogents must be taken from head also; and if they are taken at foot of col umns, Minutes, etc., must be taken from foot also.

ILLUSTRATION. -. 1974 is tangent for 110 10', and co-tangent for 780 50'.

To Compute Tangents and Co-tangents for Seconds Ascertain tangent or co-tangent of angle for degrees and minutes from Table; take difference between it and tangent or co-tangent next below it

Then as 60 seconds is to difference, so are seconds given to result require. which is to be added to tangent and subtracted from co-tangent.

ILLUSTRATION. - What is the tangent and co-tangent of 540 40"?

Tangent of 50° 40′, per Table = 1.410 61 $\frac{1}{2}$.000 $\frac{1}{2}$ difference.

Tangent of 54° 41′, = 1.211 48 $\frac{1}{2}$

Tangent of 540 41', ... = 1.211 48 3 .00027 algerence.

Then 60: .000 87:: 40: 000 58, which, added to 1.41061 = 1.41119 tangent.

Co-tangent of 54° 40′, per Table = .70891 . .00043 difference. = .70848 . .00043 difference. Then 600: .000 43:: 40: 29, Which, subtracted from .708 91 = .708 62 co-lange

To Compute Tangent or Co-tangent of any Angle is Degrees, Minutes, and Seconds.

ide Sine by Cosine for Tangent, and Cosine by Sine for Co-tangent "LE.—What is tangent of 250 18'?

Then -427 36 line = .427 36; cosine = .904 08. = .4727 tangent. .904 08

apute Number of Degrees, Minutes, and Seconds of a given Tangent or Co-tangent. wie given.—Proceed as by Rule, page 402, for Sines,

> "mmment for 1.411 to? K. App &-

- for Bines.

Next greatest tanger

= 240 40, 40, hade too' gas can -

:1

La Ιg I Ž E e 7/-

÷e

34

T:

Ġ

Ξ.

4

è

4

رينا

2:

: -1

w.

1:1

ي پڙ

t:

٠.

AEROSTATICS.

Atmospheric Air consists, by volume, of Oxygen 21, and Nitrogen 70 arts; and in 10 000 parts there are 4.9 parts of Carbonic acid gas. y weight, it consists of 77 parts of Oxygen, and 23 of Nitrogen.

One cube foot of Atmospheric Air at surface of Earth, when baromer is at 30 ins., and at a temperature of 32°, weighs 565.0964 grains = 80 728 lbs. avoirdupois, being 773.10 times lighter than water.

Specific gravity compared with water, at 62.418 = .001 293 345.

Mean weight of a column of air a foot square, and of an altitude qual to height of atmosphere (barometer 30 ins.), is 2124.6875 lbs. = 1.7548 lbs. per sq. inch = support of 34.0303 feet of water.

Standard pound is computed with a mercurial barometer at 30 ins.; hence, 3 a cube inch of mercury at 60° weighs .400 776 o lbs., pressure of atmoshere at $60^{\circ} = 14.723307$ lbs. per square inch.

12.3873 cube feet of air weigh a pound, and its weight varies about gr. for each degree of heat.

Extreme height of barometer in latitude 30° to 35° N = 30.21 ins.

Rate of expansion of Air, and all other Elustic Fluids for all temperatures. s essentially uniform. From 32° to 212' they expand from 1000 to 1376 olumes = .002 088 or 170th part of their bulk for every degree of heat. from 212° to 680° they expand from 1376 to 2322 = .002 021 for each detree of heat.

Thus, if volume of air at 132° is required. $132^{\circ} - 32^{\circ} = 100$, and 1000° + 100 × .002 088 == 1209 volumes.

Height, at Equator is estimated at 300 feet greater than at Poles, its nean height at 45° latitude.

In like latitudes, air loses 1° for every 340 feet in height above level of meat

Below surface of Earth, temperature increases.

Elasticity of air is inversely as space it occupies, and directly as its density. When altitude of air is taken in arithmetical proportion, its Rarity will be in geometric proportion. Thus, at 7 miles above surface of Earth, air is 4 times rarer or lighter than at Earth's surface; at 14 miles, 16 times; at 21 miles, 64 times, and so on.

Density of an aeriform fluid mass at 32° and at to will be to each other $1 + .002088 (t^{\circ} - 32^{\circ})$ is to 1.

For Volume, Pressure, and Density of Air, see Heat, page 521.

Altitude of Atmosphere at ordinary density is = a column of merer in height, divided by specific gravity of air compared with mercr Hence 30 ins. = 2.5 feet, which, divided by .000 094 987, specific 1

d sir compared with mercury, = 26 319 feet = 4.985 miles. Gay Lussac, Humboldt, and Boussingault estimated it at a minin

30 miles, Sir John Herschell 83, Bravais 66 to 100, Dalto 180 or 204 miles.

The aqueous vapor always existing in air, in a grea ighter than air, diminishes its weight in mixing p equal, its quantity is greater the higher the temp is to be considered by increasing the multiplier

ther and Coxwell, in 1862, ascended in a balloon to

At temperature of 32°, mean velocity of sound is 1089 feet per second. It is increased or diminished about one foot for each degree of temperature below or above 32°.

Velocity of sound in water is estimated at 4750 feet per second.

Velocity of Sound at Various Temperatures.

•	Per Second.	0	Per Second.	0	Per Second.		Per Second.
	Feet. 1056	32	Feet.	68	Feet.	95	Feet.
14 23	1070	50 59	1102 1112	77 86	1132 1142	104	1161 1171

Motions of air and all gases, by force of gravity, are precisely alike to those of fluids.

Sensation of hearing, or sound, cannot exist in an absolute vacuum. The human voice can be heard a distance of 3300 feet.

Echo.—At a less distance than 100 feet there is not a sufficient interval between the delivery of a sound and its reflection to render one perceptible.

To Compute Distances by Velocity of Sound in Air. $1089 \times 13\sqrt{1 + [.002 \cos (t - 32)]} = v$, distance in feet per second, t representing temperature of air.

ILLUSTRATION.—Flash of a cannon from a vessel was observed 13 seconds before report was heard; temperature of air 60°; what was distance to vessel?

 $1089 \times 13\sqrt{1 + [.002088(60^0 - 32)]} = 1089 \times 13 \times 1.029 = 14567.55$ feet = 2.76 miles

Theoretical velocity with which air will flow into a vacuum, if wholly unobstructed, is $\sqrt{2gh} = 1347.4$ feet per second. In operation, however, it is $1347.4 \times .707 = 952.61$ feet.

To Compute Velocity of Air Flowing into a Vacuum.

 $\sqrt{2 g h} \times c = v$ in feet per second, c representing coefficient of efflux.

Coefficients for openings are as follows:

Velocity of Sound in Several Solids. Velocity in Air = 1.

Lead..... 3.9 | Zinc...... 9.8 | Pinc..... 12.5 | Glass.... 11.9 | Steel.... 143
Cold..... 5.6 | Oak..... 9.9 | Copper... 11.2 | Pinc.... 12.5 | Iron.... 151

To Compute Elevations by a Barometer.

Approximately * 60000 (log. B $-\log b$) C = height in feet; B and b representing heights of barometer at lower and upper stations, and C correction due to <math>T+t or temperatures of lower and upper stations.

Values of C or T+t.

-0	C	0	C	0	C	0	C	0	C	0	C	0	C
		60	.006	80	1.018	100	1.04	120	1.062	140	1.084	160	1.106
		62	800.	82	1.02	102	1.042	122	1.064			162	1.108
			1	84	1.022	104	1.044	124	1.067	144	1.089	164	1.111
			1.002	86	1.024		1.047	126	1.069	146	1.001		
			1004	88	1.027	108	1.049	128	1.071	148	1.003	168	1.115
			1.007	90	A.COO	110	1,051	130	1.073	150	1.006	170	1.117
			1.000	92	ARCHIO .	1112	1.053				1.098		
•			2/13		-	100	1.000	1334			1.1	174	1.122
	4					di	100	1 23			8 1.10	1/276	1.134
80.										04 T. P	T.8.T.	n. En	x28x.

Their values vary approximately .com per degree.

$$C = 77.6 + 70.4 = 1.093$$
, log. $B = 1.4778$, log. $b = 1.374$

Then $60,000 \times (1.4778 - 1.374) \times 1.003 = 6807.2$ feet.

To Compute Elevations by a Thermometer. 520 B + B² \times C = height in feet. B representing temperature of water boiling (

elevated station deducted from 2120. Correction for temperatures of air at lower and upper stations, or T + t, to be take from table, page 428, as before.

ILLUSTRATION.—Temperature of water boiling at upper station 1920; temperatur of air 50° and 32°. C= 1.02.

To Compute Capacity of a Balloon, etc., see page 218.

Barometer.

Elevations by Barometer Readings. (Astronomer Royal.) Mean Temperature of Air 50°.

For correction for temperature, see note at foot.

Height.	Barom.	Height.	Barom.	Height.	Barom.	Height.	Barom.	Height.	Barom.
Feet.	Ins.	Feet.	Ins.	Feet.	Ins.	Feet.	lns.	Feet.	Ins.
0	31	600	30.325	1500	29.34	4000	26.769	7 000	23.979
50	32.943	650	30,260	1600	29.233	4250	26.524	7 500	23.543
100	30.886	700	30.214	1750	29.072	4500	26.282	8000	23.115
150	30.83	750	30.159	1800	29.019	4750	26 042	8 500	22.695
900	30.773	800	30.103	2000	28.807	5000	25.804	9,000	22.282
250	30.717	850	30.048	2250	28.544	5250	25.569	9 500	21.877
300	30.661	900	29.993	2500	28. 283	5500	25.335	10 000	21.479
350	30.604	1000	29.883	2750	28.025	5750	25.104	10500	21.089
400	30.548	1100	29 774	3000	27.769	6000	24.875	11 000	20.706
450	30.492	1200	20.665	3250	27-515	6250	24.648	11 500	20.329
500	30.436	1300	29.556	3500	27.264	6500	24.423	12000	19.959
550	30.381	1400	29.448	3750	27.015	6750	24.2	12 500	19.952

Barometer.

Correction for Capillary Attraction to be added in Inches.

Diameter of tube	1.55	1.5	1 - 45	1 -4	1 . 5 5	1.3	.25	.2	. T
Correction, unboiled	4 005	.007	10.	.014	.02	.025	04	.059	.08
Correction, boiled	2 .003	004	005	.007	OI	.014	.02	029	.04

To Compute Height.

Rele. -Subtract reading at lower station from reading at upper station, difference is height in feet.

Table assumes mean temperature of atmosphere to be 50° F. or 10° C. For otl temperatures following correction must be applied.

Add together temperatures at upper and lower station. If this sum, in dec in F., is greater than 100°, increase height by $\frac{1}{1000}$ part for every degree of a above 100°; if sum is less than 100°, diminish height by $\frac{1}{1000}$ part for every de of defect from 100°. Or if sum in Co is greater than 20°, increase height by part for every degree of excess above 200; if sum is less than 200, diminish he by _1 part for every degree of defect from 200.

Barometer Indications.

Increasing storm. - If mercury falls during a high wind from S. or 8.

Violent but short.—If fall be rapid.

Less violent but of longer continuance.—If fall be slow.

Snow .- If mercury falls when thermometer is low.

improved weather. - When a gradual continuous rise of mercu Hing thermometer.

Heavy gales from N.—Soon after first rise of mercury from a very low point. Unsettled weather.—With a rapid rise of mercury.

Settled weather. -With a slow rise of mercury.

Very fine weather. - With a continued steadiness of mercury with dry air. Stormy weather with rain (or snow). - With a rapid and considerable fall of mercury.

Threatening, unsettled weather.—With an alternate rising and falling of mercury. Lightning orty.—When mercury is low, storm being beyond horizon. Fine weather.—With a rosy sky at sunset.

Wind and rain. - When sky has a sickly greenish hue.

Rain.—When clouds are of a dark Indian red. Foul weather or much wind.—When sky is red in morning.

Weather Glasses.

Explanatory Card. Vice-Admiral Fitzrov. F. R. S.

Barometer Rises for Northerly wind (including from N. W. by N. to E.), for dry, or less wet weather, for less wind, or for more than one of these changes-Except on a few occasions when rain, hail, or snow comes from N. with strong wind

Barometer Falls for Southerly wind (including from S. E. by S. to W.), for we weather, for stronger wind, or for more than one of these changes—

Except on a few occasions when moderate wind with rain (or snow) comes from N. For change of wind toward Northerly directions, a Thermometer falls.

For change of wind toward Southerly directions, a Thermometer rises.

Moisture or dampness in air (shown by a Hygrometer) increases before rain for or dew.

Add one tenth of an inch to observed height for each hundred feet Barometer above half-tide level.

Average height of Barometer, in England, at sea-level, is about 29.94 inches; and average temperature of air is nearly 50 degrees (latitude of London).

Thermometer falls about one degree for each 300 feet of elevation from ground. but varies with wind.

> "When the wind shifts against the sun. Trust it not, for back it will run."

First rise after very low Indicates a stronger blow. Long foretold-long last, Short notice-soon past.

Rarefaction of Air.

In consequence of rarefaction of air, gas loses of its illuminating power 1 cube inch for each 2.60 feet of elevation above the sea. (M. Bremond.)

Clouds.

Classification.—I. Cirrus—Like to a feather, commonly termed Maris 2. Cirro-cumulus - Small round clouds, termed mackerel at 2-stratus—Concave or undulated stratus. 4. Cumulus—Conical, lusters, termed wool-packs and cotton balls. 5. Cumulo-stratus—r mixed. 6. Nimbus—A cumulus spreading out in arms, and ing rain beneath it. 7. Stratus—A level sheet.

Mrrus is most elevated.

-Clouds have been seen at a greater height than 37 000 feet. -A --- arent moderate speed, they attain a velocity of 80

Lightning.

- - Developed with great rapidity. Globular-When the electric ed at a comparatively love ab appears to rest upon the

WEATHER INDICATIONS.

er. nd	Clouds. Soft or delicate-looking and indefinite outlines.	Sky. Gray in morning and light, delicate tints and low dawn.
•	Hard edged, oily looking, and tawny or copper-colored, and the more hard, "greasy," and ragged, the more wind.	High dawn, and sunset of a bright yellow.
ıly.	Light scud alone.	
	Small and inky.	Sunset of a pale yellow.
nd	Light scud driving across heavy masses.	Orange or copper color.
nd	Hard defined outlines.	Gaudy unusual hues.
		·
of	High upper, cross lower in a di-	
•	rection different to their course or that of wind.	

General.

-When sea-birds fly early and far out, when dew is deposited, and when a pnfined in a bottle of water, will curl up at the bottom.

—Clear atmosphere near to horizon and light atmospheric pressure, or a learing day," as it is termed.

..-When sea-birds remain near to shore or fly inland.

Snow, or Wind.—When a leech, confined in a bottle of water, will rise exto the surface.

ier.-When a leech, confined as above, will be much excited and leave the

of Indications of Fair Weather, in Days, Compared to one of Rain.

From an extended series of observations. (Lowe.)

		• • •	
Dew	4.5	Mock Sun or Moon	3.3
tratus in a valley	7.2	Stars falling abundant	3.2
Clouds at sunset	2.0	Stars bright	3.4
alo		Stars dim	1.5
and rayless			6
e and sparkling	1	Aurora borealis	1.8
rost	4.2	Toads in evening	2.4
Ialo		Landrails noisy	13
surr, or rough-edged	2.8	Ducks and Geese noisy	2.3
im		Fish rising	1.5
sing red		Smoke rising vertically	5

weather-foretelling plants, see page 185.

ATMOSPHERIC AIR.

pure air contains Oxygen 20.96, Nitrogen 79, and Carbonic Acirespired by a human being in one hour is about 15 cube 3 grains of carbonic acid, corresponding to 137 grainthis time about 200 grains of water will be exhaled by ng this period there would be consumed about 415 grains hour, then, there would be vitiated 73 cube feet pur an weighing 150 lbs., requires 930 cube feet of air period in the breathes may not contain more than 1 per 1 matter the proportion its impurity becomes sensible to the proportion is impurity becomes sensible to the proportion is impurity becomes the proportion is impurity becomes sensible to the propor

An adult human being consumes in food from 145 to 165 grains of carbon per hour, and gives off from 12 to 16 cube feet of carbonic acid gas.

An assemblage of 1000 persons will give off in two hours, in vapor, 85 gallons water, and nearly as much carbon as there is in 56 lbs. of bituminous coal.

Proportion of Oxygen and Carbonic Acid at following Locations.

Pure Air represented by Oxygen 20.06. Street in Glasgow...... 20.895 Regent Street, London 20.865 Metropolitan Railway (underground) .. 20.6 Pit of a Theatre......20.74 Carbonic Acid .04 Per cent. Open field, Manchester 0383 Market, Smithfield......0446 Factory mills......283 School-rooms......097 Pitt of theatre, 11 P. M.....32 Boxes " 12 "218 Gallery " 10 "101 Horse stable..... * Roscos. † Peltenhoffer.

Consumption of Atmospheric Air. (Coathupe.)

One wax candle (three in a lb.) destroys, during its combustion, as much oxygen per hour as respiration of one adult.

A lighted taper, when confined within a given volume of atmospheric air, will become extinguished as soon as it has converted 3 per cent. of given volume of air into carbonic acid.

Carbonic Acid Exhaled per Minute by a Man. (Dr. Smith.)

During sleep 4.99 per cent., lying down 5.91, walking at rate of 2 miles per hour 18.1, at 3 miles 25.83, hard labor 44.97.

ANIMAL POWER.

Work.

Vork is measured by product of the resistance and distance through h its point of application is moved. In performance of work by as of mechanism, work done upon weight is equal to work done by r.

nit of Work is the moment or effect of I pound through a distance toot, and it is termed a foot-pound.

France a kilogrammetre is the expression, or the pressure of a nme through a distance of 1 meter = 7.233 foot-pounds.

* chaervation upon animal power furnishes the following as maximum

to .33 of that which could be produced

æ a man, and from .08 to .066 for a for a brief interval, and not involv-

from .33 to .5 for a brief interval, duesd on soliding prejudice to besid and reverse the state of the state of the state of the state of ber

Men.

Mean effect of power of men working to best practicable advantage, is using of 70 lbs. 1 foot high in a second, for 10 hours per day = 4200 footounds per minute.

Windlass.—Two men, working at a windlass at right angles to each other, an raise 70 lbs. more easily than one man can 30 lbs.

Labor.—A man of ordinary strength can exert a force of 30 lbs. for 10 ours in a day, with a velocity of 2.5 feet in a second = 4500 lbs. raised one out in a minute = .2 of work of a horse.

A man can travel, without a load, on level ground, during 8.5 hours a day, t rate of 3.7 miles an hour, or 31.45 miles a day. He can carry 111 lbs. r miles in a day. Daily allowance of water, 1 gallon for all purposes; and e requires from 220 to 240 cube feet of fresh air per hour.

A porter going short distances, and returning unloaded, can carry 135 lbs. miles a day, or he can transport, in a wheelbarrow, 150 lbs. 10 miles in a av.

Crane.—The maximum power of a man at a crane, as determined by Mr. ield, for constant operation, is 15 lbs., exclusive of frictional resistance, hich, at a velocity of 220 feet per minute = 3300 foot-pounds, and when xerted for a period of 2.5 minutes was 17.329 foot-pounds per minute.

Pile-driving.—G. B. Bruce states that, in average work at a pile-driver, a aborer, for 10 hours, exerts a force of 16 lbs., plus resistance of gearing, and t a velocity of 270 feet per minute, making one blow every four minutes.

Rowing.—A man rowing a boat 1 mile in 7 minutes, performs the labor f 6 fully-worked laborers at ordinary occupations of 10 hours per day.

Drawing or Pushing.—A man drawing a boat in a canal can transport 10000 lbs. for a distance of 7 miles, and produce 156 times the effect of a nan weighing 154 lbs., and walking 31.25 miles in a day; and he can push n a horizontal plane 20 lbs. with a velocity of 2 feet per second for 10 hours er day.

Tread-mill.—A man either inside or outside of a tread-mill can raise 30 bs. at a velocity of 1.3 feet per second for 10 hours, = 1404000 foot-pounds.

Pulley.—A man can raise by a single pulley 36 lbs., with a velocity of .8 f a foot per second, for 10 hours.

Walking.—A man can pass over 12.5 times the space horizontally that he an vertically, and, according to J. Robison, by walking in alternate directions pon a platform supported on a fulcrum in its centre, he can, weighing 16-bs., produce an effect of 3,084,000 foot-pounds, for 10 hours per day.

Pump, Crank, Bell, and Rowing.—Mr. Buchanan ascertained that, in wong a pump, turning a crank, ringing a bell, and rowing a boat, the effection ower of a man is as the numbers 100, 167, 227, and 248.

Pumping.—A practised laborer can raise, during 10 hor vater 1 foot in height, with a properly designed and constr

Crank.—A man can exert on the handle of a screw-jac lius for a short period a force of 25 lbs., and continuou ower of 20 lbs. Mr. J. Field's tests gave 11.5 lbs. as easily lifficult, and 27.6 with great difficulty.

Moving.—A man can mow an acre of grass in 1 day.

Reaping.—A man can reap an acre of wheat in 2 days.

Roughing.—A man and horse .8 of an acre per day.

1b

Day's Work. (D. K. Clark.)

Laborer.—Carrying bricks or tiles, net load 106 lbs. = 600 lbs. 1 mile.

Carrying coal in a mine, net load 95 to 115 lbs. = 342 lbs. 1 mile. Loading coke into a wagon, net load 100 lbs. = 270 lbs. 1 mile.

Loading a boat with coal, net load 190 lbs. = 1230 lbs. 1 mile, or 20 cube yards of earth in a wagon.

Digging stubble land .055 of an acre per day, or 2000 cube feet of superficial earth. Breaking 1.5 cube yards hard stone into 2 inch cubes.

Quarrying. - A man can quarry from 5 to 8 tons of rock per day.

A foot-soldier travels in r minute, in common time, 90 steps = 70 yards.

He occupies in ranks a front of 20 inches, and a depth of 13, without a knapsack; interval between the ranks is 13 inches.

Average weight of men, 150 lbs. each, and five men can stand in a space of square yard.

Effective Power of Men for a Short Period.

Manner of Application.	Force.	Manner of Application.	Force.
Bench-vice or Chisel	100 50	Screw-driver, one-hand	14 14

The muscles of the human jaw exert a force of 534 lbs.

Mr. Smeaton estimated power of an ordinary laborer at ordinary work was equivalent to 3762 foot-pounds per minute. But, according to a particular case made by him in the pumping of water 4 feet high, by good English laborers, their power was equivalent to 3904 foot-pounds per minute; and this he assigned as twice that of ordinary persons promiscuously operated with.

Mr. J. Walker deduced from experiments that the power of an ordinary laborer, is turning a crank, was 13 lbs., at a velocity of 320 feet per minute for 8 hours per day.

Amount of Labor produced by a Man. (Morin.) For 10 hours per day.

MANNER OF APPLICATION.	Power.	Velocity per Second.	Weight raised. Feet per Minute.	FP for Period gives.
Throwing earth with a shovel, a height of 5 feet Wheeling a loaded barrow up an inclined plane,	Lbs. Ó	Feet. 1.33	Lbs. 480	No. 8.7
I to 12	132	.625	4 950	90
horizontally	6	2.25	810	147
direction	13	2.5	1 950	35-5
ing unloaded	132	1	7 920	144
For 8 Hours per Day.				
"ling a slight elevation, unloaded "g, and pushing or drawing in a horizontal	143	-5	4 290	62
iion	26	2	3 120	45.8
= rank	18	2.5	2 790	39
·	140	.5	4 200	113
	26	5	7800	***
"""RS PER DAY.		·		
¹a back	88	2.5	13 200	160.5
urn-				- 1
7.00	140	1.75	14 700	1605
ght	our /.	\ ,2 '	1080 l	,, B
•••	.\	١.,	1 330	\ i
•	i, in an i	bes secong agjajgasj	care' at sib	16e.,

Compute Number of Men to Perform Work upon a Tread-mill or Pile-driver.

.E.—To product of weight to be raised and radius of crank, add fricwheel, and divide sum by product of power and radius of wheel.

IPLE.—How many men are required upon a tread-mill, 20 feet in diameter, 3 a weight of 9233.33 lbs., crank 9 inches in length, weight of wheel and its timated at 5000 lbs., and friction at .015.

ht of a man assumed at 25 lbs. Radius of crank .75 feet.

t of a man on a tread-mill, page 433, 30 lbs. at a velocity of 1.3 feet per second, 60 = 78 feet per minute.

 $33 \times .75 + \overline{5000 \times .015} = 7000$ lbs. resistance of load and wheel, and $7000 \div \overline{1416} \times 10 \times 30 = 7000 =$ load and weight \div product of power increased by its 1 over load, radius of wheel and power = $7000 \div \overline{1.241 \times 10 \times 30} = 18.8$ men.

Horse.

ount of Labor produced by a Horse under different Circumstances. (Morin.)

For 10 hours per day.

MANNER OF APPLICATION.	Power.	Velocity per Second.	Weight drawn. Feet per Minute.	for Period given.
	Lbs.	Feet.	Lbs.	No.
ng a 4-wheeled carriage at a walk	154	3	27 720	504
oad upon his back at a walk	264	3.75	59 400	1080
ed at a walk	1540	2	184 800	3360
ng a loaded wagon at a walk	1540	3.75	346 500	6300
For 8 Hours per Day. a revolving platform at a walk	100	3	18 000	260.8
FOR 4.5 HOURS PER DAY.	Ì			İ
a revolving platform at a trot	66	6.75	26 730	218.7
ng an unloaded 4-wheeled carriage at a trot.	97	7.25	43 195	353-5
ng a loaded 4-wheeled carriage at a trot	770	7.25	334 950	2741

raction power of a horse, when continuously at a walk, is equal to 120 lbs., rade of road r in 30, resistance on a level being one thirtieth of load, he can a load of 120 \times 30 \div 2 = 1500 lbs.

Street Rails or Tramways. (Henry Hughes.) 18, 26 lbs. per ton, or 1 to 86 as a mean.

erformance of Horses in France. (M. Charié-Marsaines.)

SEASON.	Road.	Weight per Horse.	Speed per Hour.	Work per Hour, drawn One Mile.	Ratio of Pavement ' Macadan
r	∫ Pavement	Tons. 1.306	Miles. 2.05	Ton-miles. 2.677	1.644 to
ner	Macadam Pavement Macadam	.851 1.395	1.91 2.17 2.16	3.027 2.464	7

rage daily work of a Flemish horse in North of France, where lads heavy, is, on same authority, as follows:

Winter, 21.82 ton-miles per day.
Summer, 27.82 " " Mean for the year,

reminiple = 23.8 lbs., from which a deduction is to be made for excess of at remained in 8 hours over 10. Or, as 10:8:: 53.8: 43.04 lbs., which does n dief go lbs. for that of an average performance.

Greatest mechanical effect of an ordinary horse is produced in operating gin or drawing a load on a railroad, when travelling at rate of 2.5 miles p hour, where he can exert a tractive force of 150 lbs, for 8 hours per day.

Horse upon Turnpike Road.

At a speed of 10 miles per hour, a horse will perform 13 miles per day at 3 years. In ordinary staging, a horse will perform 15 miles per day.

To Compute Tractive Power of a Horse Team, see Traction, page 848.

Assuming maximum load that a horse can draw on a gravel road as standard, he can draw,

	2 10	3 times
	3 to	
On a stone trackway	7 to	8 "
On plank road	4 to	12 "
On a railway 1	8 to	20 4

Note.—Track of an iron railway compared with a plank-road is as 27 to 10.

To Compute Power of Draught of a Horse at Different Elevations.

of a horse which, being resolved into two coponent forces, one of which, n, is perpendicular plane of inclination, and other, r, is parallel to Hence, r represents force which horse must on

come to move his own weight.

Then, by similar triangles, A B or l: B C or h: o: r. Or, $\frac{h o}{l} = r$.

If t represents tractive power of horse, upon a level, of 100 lbs., t tradit power upon a plane of inclination, and r that part of force exerted by he which is expended upon his own body, then t = t - r, or $t - \frac{h}{t} o = t$ in it

ILLUSTRATION.—If inclination is 1 in 50. Assume t = 100, weight of herse 900 lbs., and l = 50.01.

Then,
$$100 - \frac{1 \times 900}{50.01} = 100 - 17.99 = 82.01$$
 lbs.

Assuming load that a horse can draw on a level at 100, he can draw inclinations as follows:

On his back a horse can carry from 220 to 390 lbs., or about 27.5 per of his weight.

Labor.—The work of a horse as assigned by Boulton & Watt, Trede Rennie, Beardmore, and others, ranges from 20000 to 39 320 foot-pounds minute for 8 hours, a mean of 27 750 lbs.

A horse can travel, at a walk, 400 yards in 4.5 minutes; at a trot minutes; and at a gallop, in 1 minute. He occupies in ranks, a front of ins., and a depth of 10 feet; in a stall, from 3.5 to 4.5 feet front; and picket, 3 feet by 9; and his average weight = 1000 lbs.

Carrying a soldier and his equipments (225 lbs.) he can travel 25 min a day of 8 hours.

A draught-horse can draw 1600 lbs. 23 miles a day, weight of carries cluded.

ry work of a horse may be stated at 22 500 lbs., raised 1 foot in a or 8 hours per day.

il, he moves at rate of $_3$ feet in a second. Diameter of track should not in $_{25}$ feet.

ascertained that a horse weighing 1232 lbs. could draw a canal-boat d of 2.5 miles per hour, with a power of 108 lbs., 20 miles per day. quivalent to a work of 23 760 foot-lbs. per minute, He estimated average work of horses, strong and weak, is at the rate of 22 000 per minute.

sults of trials upon strength and endurance of horses at Bedford, Eng., it nined that average work of a horse == 20000 foot-libs per minute. A good draw x foon at rate of 2.5 miles per hour, from 10 to 12 hours per day.

of conveying goods at 3 miles per hour, per horse teams being 1, expense es will be 1.33, and so on, expense being doubled when speed is 5.125 miles

1 of a horse is equivalent to that of 5 men, and his daily allowance of uld be 4 gallons.

nt of Labor a Horse of average Strength is capaof performing, at different Velocities, on Canal, road, and Turnpike.

Traction estimated at 83,3 lbs.

ıra-	Usefu	l Effect, dra	wn z Mile.	Veloci-	Dura.	Useful Effect, drawn z Mile.			
n of	On a Canal.	On a Rail- road.	On a Turn- pike.	ty per Hour.	tion of Work,	On a Canal.	On a Rail- road.	On a Turn- pike.	
urs.	Tons.	Tons.	Tons.	Miles.	Hours.	Tons.	Tons.	Tons.	
r. 5	520	115	14	6	2	30	48	0	
3	243	92	12	7	1.5	19	41 I	5. I	
1.5	102	72	9	8	1.125	12.8	36	4.5	
2.9	52	57	7.2	10	-75	6.6	28.8	3.6	

abor performed by horses is greater, but they are injured by it.

? Power of a horse decreases as his speed is increased, and within limits ed, or up to 4 miles per hour, it decreases nearly in an inverse ratio.

For 10 Hours per Day.

Traction.	Miles.	Traction.	Miles.	Traction.	Miles.	Traction.
Lbs.	Per Hour.		Per Hour.	Lbs.	Per Hour.	Lbs.
330	1.5	165	2.25	110	3	82
250	1.75	140	2.5	100	3.5	70
200	2	125	2.75	90	4	62

For Ordinary or Short Periods. (Molesworth.)

per hour 2	3	3·5	8 ₃	4·5	5
r in lbs 166	125	104		62	41
1 111 100 100	**3	104	٠,	02	7-

Mule. (D. K. Clark.)

m back, 170 to 220 lbs. day's work = 6400 lbs. 1 mile; 400 lbs. at 2.9; hour = 5300 lbs. 1 mile, and 330 lbs. at 2 miles per hour = 5000 lbs.

revolving platform, at a velocity of 3 feet per second, = 11 880 lbs. raised per minute, or 172.2 IP for 8 hours per day

Ass.

n back, 176 lbs. carried 19 miles day's work = 3300 lbs. 1 mile. a an ass carries 450 to 550 lbs. grain.

revolving platform, at a velocity of 2.75 feet per second, = 5280 lbs. raise r minute, or 76.5 PP for 8 hours per day.

An Ox, walking at a velocity of 2 feet in a second (1.36 miles per hour) exerts a power of 154 lbs., = 18480 lbs. raised one foot per minute, or 268.8 IP for 8 hours per day.

A pair of well-conditioned bullocks in India have performed work = 8000 foot-list per minute.

Camel.

Load on back, 550 lbs. carried 30 miles per day for 4 days, 4 days' work 16 500 lbs. 1 mile, for 5 days 13 000 lbs. 1 mile = 44 IP for 10 hours per day. Load of a Dromedary, 770 lbs.

Llama.

Load on back, 110 lbs., day's work 2000 to 3000 lbs. 1 mile = .5 to .75 P for 10 hours per day. Birds and Insects.

Area of their wing surface is in an inverse ratio to their weight.

Assuming weight of each of the following Birds to be one pound, and each inset one ounce, the relative area of their wing surface proportionate to that of their acual weight would be as follows (M. De Lucy):

8q. ft.	Sq. ft.	Sq. ft.	Se.ft.
Swallow 4.85	Pigeon 1.27	Sq. ft. Gnnt 3.05	Cockchafer 2
Sparrow 2.7	Vulture82	Dragon-fly, sm'll, 1.83	Bee 3
Turtle-dove 2.13	Crane, Australia, .41	Lady-bird 1.66	Meat-fly35

Crocodile and Dog.

The direct power of their jaws is estimated at 120 lbs. for the former and 44 for the latter, which, with the leverage, will give respectively 6000 and 1500 lbs.

PERFORMANCES OF MEN, HORSES, ETC.

Following are designed to furnish an authentic summary of the fastest or most successful recorded performances in each of the feats, etc., given.

MAN. Walking.

1874, Wm. Perkins, London, Eng., .5 mile, in 2 min. 56 sec.; 1, in 6 min. 23 sec.; 1877, 20, in 2 hours 39 min. 57 sec.
1881, C. A. Harriman, Chicago, Ill., 530 miles, in 5 days 20 hours 47 min.
1878, W. Howes, London, Eng., 50 miles, in 7 hours 57 min. 44 sec.; 1880, 57 miles,

1801, Capt. R. Barclay, Eng., country road, oo miles, in 20 hours 22 min. 4 sec., in cluding rests; 1803, .25 mile, in 56 sec., and Charing Cross to Newmarket, 64, in 10 hours, including rests; 1866, 100, in 19 hours, including 1 hour 3 min. in rests, 180, 100, in 19 hours, including 1 hour 3 min. in rests, 180, 100, in 1000 consecutive hours, walking a mile only at commencement of each hour 1877, D. O'Leary, London, Eng., 200 miles, in 45 hours 21 min. 33 sec. 1818, Jos. Eaton, Stowmarket, Eng., 4032 quarter miles, in 4032 consecutive quarter miles, in 4032 consec

ter hours.

r Adur; and 4000 quarter miles, in 1000 consecutive hours, 1.5 miles
1 hour; and 4000 quarter miles, in 4000 consecutive periods of 10 minutes.

- Chas. Rowell, New York, N. Y., and running, 80 miles 1640 yards, in 12 hours
Geo. Hazael, New York, N. Y., and running, 600 miles 220 yards, in 6 days
J. W. Raby, London, Eng., 2 miles in 13 min. 14 sec.; 3, in 20 min. 21.5 sec;
miss. 38 sec. 15, in 35 min. no sec.; and 10, in 1 hour 14 min. 45 sec.

New York, N. Y., 8 miles in 88 min. 37 sec.

2., 25 miles in 3 hours 35 min. 14 sec. ondon, Eng., 10 miles in 51 min. 6.6 sec. tingham, Eng., 40 miles in 4 hours 46 min. 54 sec. oklyn, N. Y., 50 miles in 7 hours 29 min. 47 sec.

Running.

7. S., Manchester, Eng., flying start, 100 yards, in 5.25 sector, Eng., 600 yards, in 2 min. 13 sec. 118, N. Y., 1000 yards, in 2 min. 23 sec. 128 sec. 128 sec. 128 yes. 1

- 1852, Wm. Howitt, "American Deer," London, Eng., 15 miles in 1 hour 22 min.
- 1863, L. Bennett, "Deerfoot," Hackney Wick, Eng., 12 m., in 1 hour 2 min. 2.5 sec.
- 1879, Patrick Byrnes, Halifax, N. S., 20 miles, in 1 hour 54 min.
- 1880, D. Donovan, Providence, R. I., 40 miles, in 4 hours 48 min. 22 sec.

- 17—, A Courier, East Indies, 102 miles, in 24 hours. 12 86c. 1889, H. M. Johnson, Denver, Col., 50 yards, in 5 sec. 1884, M. K. Killeman, Oakland, Cal., 150 yards (twice), in 14 min. 6 sec.
- 1800, James Grant, Cambridge, Mass., 5 miles in 25 min. 22.25 sec.

Jumping, Leaping, etc.

- 1854, J. Howard, Chester, Eng., 1 jump, board raised 4 ins. in front, running start, ith dumb-bells, 5 lbs., 29 feet 7 ins.
 1868, Geo. M. Kelley, Corinth, Mass., running, and from a spring board, leaped
- er 17 horses standing side by side.
- 1879, G. W. Hamilton, Romeo, Mich., dumb-bells, 22 lbs., standing jump, 14 feet
- 1886. J. Purcell, Dublin, running long jump, 23 feet 11.5 ins.
- 1889, J. Darby, Ashton-under-Lyne, Eng., two standing jumps, with weights, 26
 - H. M. Johnson, St. Louis, Mo., without weights, 22 feet 6.75 ins. 10 standing long
- imps, without weights, 114 feet 8.5 ins.

 J. F. Kearny, Walpole, Mass., 3 standing long jumps, with weights, 42 feet 3 ins.; ithout weights, at Boston, Mass., 35 feet 6 ins. Boston, Mass., running high jump, ith weights, 6 feet 5.25 ins.; backward jump, with weights, heel to too, 12 feet 1.25 15. Oak Island, Mass., standing high leap, with weights, 5 feet 9.5 ins.

Lifting.

- 1825. Thomas Gardner, of New Brunswick, N. S., a barrel of pork, 320 lbs., under ach arm; also transported across a pier an anchor, 1200 lbs. 1868, Wm. B. Curtis, New York, N. Y., 3239 lbs., in harness.
- 1882, D. L. Dowd, Springfield, Mass., by hands, 1442.25 lbs.

Throwing Weights.

1870. D. Dinnie, New York, N. Y., light stone, 18 lbs., 43 feet; heavy stone, 24 lbs. 4 feet 6 ins.; heavy hammer, 24 lbs., 83 feet 8 ins.; 1872, Aberdeen, Scotland, light ammer, 138 feet; run, 16 lbs., 162 feet. 1887. Peter Foley, Milwaukee, Wis., 56 lbs., without follow, 31 feet 5 ins.

Swimming.

- 1835, S. Bruck, 15 miles, in rough sea, in 7 hours 30 min.
- 1846, A Native, off Sandwich Islands, 7 miles at sea, with a live pig under one arm.
- 1870, Pauline Rohn, Milwaukee, Wis., 650 feet, still water, in 2 min. 43 sec.
- 1870, Pattine down, Mindukee, wis, oso leve, shift water, in 2 min. 43 sec. 1872, J. B. Johnson, London, Eng., remained under water 3 min. 35 sec. 1875. Capt. M. Webb, Dover, Eng., to Calais, France, 23 miles, crossing two full nd two half tides = 35 miles, in 21 hours 45 min. 1880, Affoat 60 hours. 1886, J. Haggerty, Blackburn Baths, Eng., 100 yards, 4 turns, in 1 min. 5.5 sec. 1800, J. Nuttall, London, Eng., 1000 yards, 23 turns, in 13 min. 54.5 sec.

- 1885. J. J. Collier, London, Eng., 1 mile in 26 min. 52 sec.

Skating.

- 1877. John Ennis, Chicago, Ill., 9 laps to a mile, 100 miles, in 11 hours 37 min. 48 cc.; and 145 inside of 10 hours.
- 1887, T. Donoghue, Jun., Newburgh, N. Y., 1 mile, with wind, in 2 min. 12.375 sec. 1882, S. J. Montgomery, New York, N. Y., 50 miles, in 4 hours 14 min. 36 sec.
- NOTE.—The Sporting Magazine, London, vol. ix., page 135, reports a man in 1767 to have akated a nile upon the Serpentine, Hyde Park, London, in 57 seconds.

Trotting. HORSE.

- 1878. "Controller," San Francisco, Cal., 10 miles, harness, in 27 min, 27.25 sec., and 20 miles, wagon, in 58 min. 57 sec.
- 1875, "Steel Grey," Yorkshire, Eng., 10 miles, saddle, in 27 min. 56.5 sec. 1867, "John Stewart," Boston, Mass., half mile track, 20 miles, harne
- Nin. 5-75 sec., and 20.5 miles in 50 min. 31 sec.
 1830, "Top Gallant," Philadelphia, Penn., 12 miles, harness, in 38 min.
 1829, "Tom Thumb," Sunbury Common, Eng., 16.5 miles, harness, 248
 1845 sec.; and 100 miles, in 10 hours 7 min. including 37 min. in rest.
- 1860, "Morning Star," Doncaster, Eng., 18 miles, harness (sulky 100) 1835, "Black Joke," Providence, R. I., 50 miles, saddle, 175 lbs., in 3 how

1855, "Spangle," Long Island, N. Y., 50 miles, wagon and driver 400 l hours 50 min. 4 sec.

1837, "Mischief," Jersey City, N. J., to Philadelphia, Penn., 84.25 miles, very hot day and sandy road, in 8 hours 30 min.

1853, "Conqueror," Long Island, N. Y., 100 miles, harness, in 8 hours 5: sec., including 15 short rests.

1873, M. Delaney's mare, St. Paul's, Minn., 200 miles, race track, harne hours 20 min. including 15 hours 40 min. in rests.

hours 20 min., including 15 hours 40 min. in rests.
1834, "Master Burke" and "Robin," Long island, N. Y., 100 miles, wag
hours, 17 min. 22 sec., including 28 min. 34 sec. in rests.

Stage-coaching.

1750, By the Duke of Queensberry, Newmarket, Eng., 19 miles, in 53 min. 1830, London to Birmingham, Eng., "Tally-ho," 109 miles, in 7 hours including stop for breakfast of passengers.

Leaping.*

1821, A horse of Mr. Mane, at Loughborough, Leicestershire, Eng., 173 lb. hedge 6 feet in height, 35 feet.

1821, A horse of Lieut Green, Third Dragoon Guards, at Inchinnan, Eng be heavy dragoon, over a wall 6 feet in height and 1 foot in width at top, 1839, "Lottery," Liverpool, Eng., over a wall, 33 feet.

1847, "Chandler," Warwick, Eng., over water, 37 feet.

Norz.—The maximum stride of a horse is estimated to be 28 feet 9 ins.; "Eclipse" has feet. The maximum stride of an elk is 34 feet, and of an elephant 14 feet.

Running.

1701, Mr. Sinclair, on the Swift at Carlisle, a gelding, 1000 miles, in 1000 tive hours.

1731, Geo. Osbaldeston, Newmarket, 156 lbs., 100 miles, by 16 horses, in 4 min. 40 sec., and 200, by 28 horses, in 8 hours 39 min., including 1 hour 2 mi in rests; 1 horse, "Tranby," 16 miles, in 33 min. 15 sec.

1752, Spedding's mare, 100 miles, in 12 hours 30 min., for 2 consecutive (

1752, Spedding's mare, 100 miles, in 12 hours 30 min., for 2 consecutive c 1754, A Galloway mare of Daniel Corker's, Newmarket, 300 miles, by 0 67 lbs., in 64 hours 20 min.

1761, John Woodcock, Newmarket, 100 miles per day, by 14 horses, one 6 for 20 consecutive days.

1814, An Officer of 14th Dragoons, Blackwater, 12 miles. 1 horse, in 25 mi 1868, N. H. Mowny, San Francisco, Cal., race track, 160 lbs., 300 miles, by (Mexican), in 14 hours 9 min., including 40 minutes for rests; the first hours 2 min. 48 sec. and the fastest mile in 2 min. 8 sec.

1869, Nell Coher, San Pedro, Texas, 61 miles, in 2 hours 55 min. 15 sec., rests.

1890, John Faylor, Carson City, Nevada, 50 miles, by 18 horses, in 1 how. 33 sec.; and Omaha, Neb., 56 miles, in 2 hours 26 min., including rests. 1876, John Murphy, New York, N. Y., 155 miles, by 20 horses, in 6 hour.

7 sec. 1878, Capt. Salvi, Bergamo to Naples, Italy, 580 miles, in 10 days.

1880, "Mr. Brown," Rancocas, N. J., aged, 160 lbs., 10 miles, in 26 min. 1 1828, "Chapeau de Paille" (Arabian), India, 1.5 miles, 115 lbs., in 2 min.

183-, Capt. Horne (Arabians), Madras to Bungalore, India, 200 miles, in 20 hours.

DOGS. Coursing and Chasing.

""> whound and Hare ran 12 miles in 30 min.

Fox, at Brende, Eng., ran 50 miles in 6.5 hours.

"und, at Bushy Park, Eng., leaped over a brook 30 feet 6 ing.

BIRDS. Flying.

hoose and Swallow, 90 miles; Crow, 25 miles 1 to Cologne, Germany, 600 miles, in 8 hours.

So Lake to Paterson, N. J., 3 miles, in 3 min.

' di-

HORSE - POWER.

Horse-power.—IP is the principal measure of rate at which work is perormed. One horse-power is computed to be equivalent to raising of 33000 bs. one foot high per minute, or 550 lbs. per second. Or, 33000 foot-lbs. of rork, and it is designated as being Nominal, Indicated, or Actual.

A $\dot{\mathbf{H}}$ in work is estimated at 33 ∞ 0 lbs, raised 1 foot in a minute; but as a horse an exert that force for only 6 hours per day, one work $\dot{\mathbf{H}}$ is equivalent to that of ...5 horses, at a rate of 3 miles per hour.

Cheval-vapeur of France is computed to be equivalent to 75 kilogramneters of work per second, or 7.233 foot-lbs., or $75 \times 7.233 = 542.5$ foot-lbs., which is 1.37 per cent, less than American or English value.

BELTS AND BELTING.

Capacity of belts to transmit power is determined by extent of their idhesion to surface of pulley, and it is very limited in comparison with ensile strength of belt.

Resistance of a belt to slipping depends essentially upon character of surface of pulley, its degree of tension, and width, and as adhesion s in proportion to pressure on surface of pulley, long belts, by having greater weight, give greater adhesion.

Tensile strength of Belting per square inch of section ranges as follows:

Tanned Leather, .186 inch thick, from 2846 to 5000 lbs., or from 530 to 330 lbs. per inch of width; when spliced 385 lbs., and when laced 210 lbs.

Taking .3 as a factor of safety, 70 and 128 lbs. represent resistance per q. inch that belts in operation may be subjected to, and they have been run successfully at these tensions.

Raw hide has a tensile strength of 1.5 times that of tanned.

By Experiments of H. R. Towne and Mr. Kirkaldy. (England.)

Tensile strength of Single leather belling per square inch of section.

Laced, 960 lbs. Riveted, 1740 lbs. Solid, 3080 lbs.

Norris & Co.—Double, 2 ins., 2042 lbs.; 6 ins., 5603 lbs.; 12 ins., 14 861 lbs. Single, 3.5 ins., 3007 lbs.; 5 ins., 4060 lbs.; 10 ins., 8846 lbs.

Spill's belting, from flax, saturated with an endurable substance, gave tensile strength per inch of width as follows:

No. 1, 5 ins. wide, 1254 lbs. No. 2, 5 ins. wide, 1489 lbs. No. 3, 10 ins. wide, 1663 lbs.

At a velocity of 1000 feet per minute, a width of leather belt of r inch will transmit power of r horse, and at a velocity of 1800 feet, .56 of an inch will transmit a sike power, pulley being fully three feet in diameter, equal to a stress of 33 lbs. per inch of width of belt of ordinary thickness.

To Compute Width of a Leather Belt.

Assuming a well-defined case (where limit of adhesion was ascertained), a belt of ordinary construction (laced), and 9 inches in width, transmitted the power of 15 horses over a pulley 4 feet in diameter, at a velocity of 1800 feet per minute, with an arc of adhesion of 210°, or of .6 or 7.54 feet of circumference, and with an area of 95 square feet of belt per PP.

Hence, $\frac{4400 \text{ to } 5000 \text{ PP}}{d v} = w$; w representing width of b

ameter of pulley in feet, and v velocity of belt in feet per mi Norz.—Thickness of belt should be added to diameter of pullwements to the formulas of 13 different authors, the result var 12, mean of which is 10.675. For double belting width = .6 v.

ILLUSTRATION.—If IP 25, diameter of pulley 4 feet, and velocity 2250 feet; 1 should be width of belt?

$$\frac{4500 \times 25}{4 \times 2250}$$
 = 12.5 ins. for ordinary thickness of .1875 in.

To Compute Elements of Belting.

$$\frac{v w}{1000} = P; \quad \frac{P \cdot 33 \cdot 000}{v w} = P; \quad \frac{33 \cdot 000 P}{v} = W; \quad \frac{W}{t} = S; \quad \frac{A - a}{t t}$$

P representing power or stress transmitted, W weight or stress on thickness of belt, S stress on belt per inch of width, A and a areas of and eye, and I length in feet.

Note. -70 square feet of good belting are capable of transmitting an indicate

India Rubber Belting. (Vulcanized.)

Results of Experiments upon Adhesion of India Rubber and Leather Beltina (J. H. Cheever).

Rubber.					Leather.			
Rubber belt si	lipped on	iron pull leather rubber	ey a1	Lbs. 90 128 183	Leather bel	t slipped	on iron pulley leather " rubber "	

Hence it appears that a Rubber Belt for equal resistances with a Leather may be reduced respectively 46, 50, and 30 per cent.

Iron Wire.—A wire rope .375 inch in diameter, over a pulley 4 ft diameter, and running at a velocity of 1250 feet per minute, will trai 4.5 IP.

Diameter of pulley should not be less than 140 times diameter of rope, in to avoid undue bending of wires.

A sheet-iron belt 7 inches in width proved more effective than one of leat! like width.

General Notes.

Leather Belts-Are best when oak tanned, should be frequently oiled. * and run with hair side over pulley will give greatest adhesion.

Ordinary thickness .1875 inch, and weight 60 lbs. per cube foot.

Relative effect of different pulleys and belts:

Pulleys.—Leather surface..... 1. Turned iron..... Turned wood.....

Tensile strength of calf and sheep skins is about one half that of beeve and Morin assigns 50 lbs. as a proper stress per inch of width of good belting.

Presence of small holes in a belt will prevent its slipping or squealing.

Rubber Belts.—Best vulcanized rubber is stronger than leather, and its resignation

is from 50 to 85 per cent. greater. To increase adhesion, coat driving surface with boiled oil or cold tallow, and

apply powdered chalk. When new, cut them .1875 inch short for each foot in length required to

of the stretch that occurs in their early operation.

They should be kept free from contact with an animal oil.

Three ply, . 1875 inch thick, has a tensile resistance of 600 lbs. per inch of v Relative slipping of a vulcanized belt, over smooth or turned leather or re faced iron pulleys is as .5, .7, and 1.

Rubber, Gutta percha, and Canvas belts will stretch continuously.

Memoranda.

-'d be set as near horizontal as practicable, in order that the sag on pulley, and hence power should be communicated the

> meed by belts is about 2 per cent., hence, to main "ver must be increased in diameter pro rate with

A belt, 11 ins. in width, over a driver 4 feet in diameter, running from 1200 to 2250 to the per minute, will transmit the power from two steam cylinders, 6 ins. in diam beter and 11 ins. stroke, averaging 125 revolutions per minute, with a pressure of 50 lbs. per sq. inch.

A double belt, 75 ins. in width and 153.5 feet in length, transmitted 650 IHP.

Pulleys should have a slight convexity of surface. Authorities differ, from .5 incl Der foot of breadth to . τ of breadth. Belts run at a high speed are less liable to slip than at low speed.

The best speeds for economy are from 1200 to 1500 feet per minute, and the bes for result not to exceed 1800.

Coefficient of Friction of a Belt in operation is assumed to be .423.

Smooth surface belts are most endurable and soft most adherent.

Round belts .25 and .5 inch in diameter are fully equal in operation to flat of : and 3 ins., and grooves in their pulleys should be angular or V shaped.

The neutral point of a rope belt is at .33 of diameter from inside surface.

Friction of driving and pulley bearings is about .025.

A fan-blower No. 6*, driven by a belt 3.875 ins. in width and .18 in thickness, a s velocity of 2820 revolutions per minute, requires power of 9.7 horses.

Area of belts per IP varies essentially, ranging from 25 to 100 square feet; the mean is 75.

BLASTING.

In Blasting, rock requires from .25 to 1.5 lbs. gunpowder per cube yard, according to its degree of hardness and position. In small blasts 2 cube yards have been rent and loosened, and in very large blasts 2 to 4 cube yards have been rent and loosened, by 1 lb. of powder.

Tunnels and shafts require 1.5 to 2 lbs. per cube yard of rock.

Gunpowder has an explosive force varying from 40000 to 90000 lbs. per sq. inch. That used for blasting is much inferior to that used for projectiles, the proportion being fully one third less.

Nitro-glycerine is an unctuous liquid, which explodes by concussion an extreme pressure (2000 lbs. per sq. inch), or a temperature exceeding 600' if quickly applied to it; it will inflame, however, and burn gradually.

At a temperature below 40° it solidifies in crystals.

Its explosion is so instantaneous that in rock-blasting tamping is not necessary; its explosive power by weight is from 4 to 5 times that of gunpowder.

Dynamite is nitro-glycerine 75 parts, absorbed in 25 parts of a silicous earth termed kieselguhr; it also explodes so instantaneously as to render tamping in blasting quite unnecessary.

It is insoluble in water, and may be used in wet holes; it congeals at 40° is rendered ineffective at 212°, and has an explosive force by weight of times that of gunpowder, and by bulk 4.25 times.

Gun-cotton is insoluble in water, and has an explosive force by weight of from 2.75 to 3 times that of gunpowder, and by bulk 2.5 times. It may be detonated in a wet state with a small quantity of dry material.

Tonite is nitrated gun-cotton, and is known also as cotton powder. It is produced in a granulated form.

Litho-fracteur is a nitro-glycerine compound in the base or absorbent material is made explosive by th of nitrate of baryta and charcoal. ~ ad

^{*}For a table of Belts for Fan-blowers, e 'c., see J. H. Cooper, in " Jour. Fr.

Cellulose Dynamite is when gun-cotton is used as the absorbat for nitro-glycerine; it will explode frozen dynamite, and is more sensitive to percussion than it.

To Compute Charge of Gunpowder for Rock Blasting.

RULE.—Divide cube of line of least resistance by 25, as for limestone, to 32 for granite, and quotient will give charge of powder in lbs.

Or,
$$L^3 \div 32 = lbs$$
.

Example.—When line of least resistance is 6 fect, what is charge required? $6^3 \div 3^2 = 6.75$ lbs.

Line of least resistance should not exceed .5 depth of hole.

Tamping.—Dried clay is the most effective of all materials for tamping; Broks Brick the next, and Loose Sand the least.

Relative Costs of a Tunnel and Shaf	in England. (Sir John Burgoyne.)
Iron and steel	Powder
Fuses	100

Weight of Explosive Materials in Holes of Different Diameters. Per Inch of Length.

Diam.	Powder or Gun- cotton.	Dynamite.	Diam.	Powder or Gun- cotton.	Dynamite.	Diam.	Powder or Gun- cotton.	Dynamita.
Ins.	Oz.	Oz.	Ins.	Oz.	Oz.	Ins.	Oz.	Oz.
1	.419	.67	1.75	1.283	2.053	2.5	2.618	4.189
1.25	.654	1.046	2	1.675	2.68	2.75	3. 166	5.066
1.5	.942	1.507	2.25	2.12	3.392	3	3.769	6.03

Roring Holes in Granite.

Diam. of Jumper.	Depth of Hole,	Men.	Depth bored per Day.	Ham- mer.	Diam. of Jumper.	Depth of Hole.	Men.	Depth bored per Day.	Ham- mer.			
Ins.	Ins.	No.	Feet.	Lbs.	Ins.	Ins.	No.	Feet.	Lbs.			
I	1 to 2	1	8	6	2.25	5 to 10	3	6	15			
1.75	2.5 to 6	3	12	14	2.5	9 to 12	3	5	16			
2	4 to 7	13	8	14	3	9 to 15	3	4	18			

Drill. - Width of bit compared to stock .625.

Charges of Powder.

Usual practice of charging to one third depth of hole is erroneous, inasmuch so volume of charge increases as square of diameter of hole. Hence holes of 1.5 and 2 inches, although of equal depths, would require charges in proportion of 2.25 and 4.

Line of least re- sistance.	Powder.	Line of least re- sistance.	Powder.	Line of least re- sistance.	Powder.	Line of least re- sistance.	Powder.
Yest.	Oz. ∙75	Feet.	Lbs. Oz. 13.5	Feet.	Lbs. Oz. 3 14.5 6 12	Feet.	Lbs. Os. 10 11.5

Effects.

weder. - From its gradual combustion, rends and projects rather than

Memeter and 10 feet 7 ins. in depth, filled to 8 feet 10 ins. with 7sd and rent 1200 cube yards, equal to 2400 tons. The men for 14 days. 'oslou 4000°.

of its combustion, shatters.

of its combustion over gun-cotton. Is the

1

b

**

Drilling.

Churn-drilling.—A churn-driller will drill, in ordinary hard rock, from 8 to 12 floot, 2 inch holes of 2.5 feet depth, per day, and at a cost of from 12 to 18 cents per floot, on a basis of ordinary labor at \$1 per day. Drillers receiving \$2.5c.

One man can bore, with a bit r inch in diameter, from 50 to 100 inches per day of 10 hours in granite, or 300 to 400 inches per day in limestone.

Tamping.—Two strikers and a holder can bore, with a bit 2 inches in diameter, zo feet in a day in rock of medium hardness.

Composition for waterproof charger or fuse consists by weight of Pitch, 8 parts; Beeswax and Tallow each 1 part.

Mining. (Lefroy's Handbook.)

In demolition of walls line of least resistance L = half thickness, and C is a coefficient depending on structure.

Charge in lbs. = C \times L3.

In a wall without counterforts, where interval between the charge is 2 I., $C = .z_5$. In a wall with counterforts the charge to be placed in centre of each counterfort in time in the placed in centre of each counterfort at junction with wall, $C = .z_5$.

Where the charge is placed under a foundation, having equal support on both

saides, C = .4.

A leather bag, containing 50 to 60 lbs. powder, hung or supported against a gate
of like barrier, will demolish it.

For ordinary mines in average rock charge in ounces = $L^3 \div 160$.

BLOWING ENGINES.

For Smelting.

Volume of oxygen in air is different at different temperatures. Thus, dry air at 85° contains 10 per cent. less oxygen than when it is at temperature of 32°; and when it is saturated with vapor, it contains 12 per cent. less. If an average supply of 1500 cube feet per minute is required in winter, 1650 feet will be required in summer.

Smelting of Iron Ore.

Coke or Anthracite Coal.—18 to 20 tons of air are required for each ton. Of Pig Iron, and with Charcoal 17 to 18 tons are required.

(1 ton of air at
$$34^{\circ} = 29751$$
, and at $60^{\circ} = 31366$ cube feet.)

Pressure.—Pressure ordinarily required for smelting purposes is equal to column of mercury from 3 to 10 inches, or a pressure of 1.5 to 5 lbs. per quare inch.

Reservoir.—Capacity of it, if dry, should be 15 to 20 times that of cylinder if single acting, and 10 times if double acting.

Pipes.—Their area, leading to reservoir, should be .2 that of blast cylind velocity of the air should not exceed 35 feet per second.

A smith's forge requires 150 cube feet of air per minut last .25 to 2 lbs. per square inch. A ton of iron melted la requires 3500 cube feet of air per minute. A fine cooo cube feet of air for each ton of iron refined. I luires 20 cube feet per minute for each cube yard capacit;

A Ton of Pig Iron requires for its reduction from the cet of air, or 5.3 cube feet of air for each pound of ressure, .7 lb. per square inch.

PP

To Compute Power Required to Drive a Blowing Engine.

$$\frac{.000 \, 050 \, 9}{c} \, V^3 \left(\frac{L}{d^5} + \frac{4^2}{d^4} \right) \, 60 \div 33 \, 000 = 1P.$$

$$d = \sqrt{\frac{V}{.93 \times .7854 \times v}}$$
. v representing velocity of air in feet per sw-

ond, d and d' diameters of pipe and of nozzle in feet,
$$=\sqrt{\frac{35}{.93 \times .7854 \times 500}}$$

= .309.

ILLUSTRATION.—What should be power of a steam-engine to drive 35 cube feet of air at a velocity of 500 feet per second, through a pipe r foot in diameter and 30 feet in length?

c= ratio between power employed and effect produced by it = in a well-constructed engine .5, and C=.93. d=.2974, assumed at .3.

$$\frac{.0000509}{.5} \times 35^{3} \left(\frac{300}{1^{5}} + \frac{42}{.3^{4}}\right) 60 \div 33000 = 22631.625 \times 60 \div 33000 = 41.15 \text{ IF.}$$

To Compute Required Power of a Blowing Engine.

 $\frac{P+f \times a \, v}{33000}$ = IP. P representing pressure of blast in lbs. per sq. inck; a area of cylinder in sq. ins.; v velocity of piston in feet per minute; f friction of piston and from curvatures, etc., estimated at 1.25 per sq. inch of piston.

Note. - If cylinder is single acting, divide result by 2.

ILLUSTRATION.—Assume area of blast cylinder 5600 sq. ina., pressure of blast 225 lbs. per sq. inch, and velocity of piston 96 feet per second.

$$\frac{2.25 + 1.25 \times 5600 \times 96}{33000} = \frac{1881600}{33000} = 57 \text{ horses, the exact power developed in this case.}$$

To Compute Dimensions of a Driving Engine.

RULE 1.—Divide power in lbs. by product of mean effective pressure upon piston of steam cylinder in lbs. per sq. inch, and velocity of piston in fest per minute, and quotient will give area of cylinder in sq. ins.

2.—Divide velocity of piston by twice number of revolutions, and quotient will give stroke of piston in feet.

Volume of air at atmospheric density delivered into reservoir, in consequence of escape through valves, and partial vacuum necessary to produce a current, will be about .2 less than capacity of cylinder.

EXAMPLE.—Assume elements of preceding case, with a pressure of 50 lbs. steam.
out off at 375, and with 12 revolutions of engine per minute, what should be are
of co.

"I a non-condensing engine?

e pressure of steam with 5 per cent. clearance = 50 lbs., and 50-2.5 + 3.33 + 14.7 = 29.47 lbs., and velocity of piston = 192 feet.

$$\frac{1.25 \times 96}{192} = \frac{1.881600}{5658} = 332.5 \text{ sq. tns., and } \frac{192}{12 \times 2} = 8 \text{ feet stroks}$$

TAS 321 39. ins.

calle a hit, see Heat, page 521.

To Compute Elements of a Blowing Engine.

$$\frac{V \stackrel{P+f}{P+f}}{230} \text{ or } \frac{A \stackrel{s}{s} \stackrel{P+f}{P+f}}{3300} = P; \qquad \frac{\sqrt{V + 10} \stackrel{L}{L}}{3} = d; \qquad \frac{D^2 \stackrel{s}{s} \stackrel{n}{n}}{40 \stackrel{u}{u}} = v; \\ \frac{D^2 \stackrel{s}{s} \stackrel{n}{n}}{40 \stackrel{v}{v}} = a; \qquad \frac{230 \stackrel{P}{P}}{P+f} = V; \qquad \frac{D^2 \stackrel{s}{s} \stackrel{n}{n}}{9^2} = V; \text{ and } 34 \stackrel{P}{P} + 32 = t.$$

V representing volume of air in cube feet per minute, P pressure of air and frictional resistance in lbs. per sq. inch, A area of cylinder and a area f its valves in sq. ins., s stroke of piston in feet, a number of single strokes f piston per minute, L length of air-pipe from reservoir to discharge in feet, diameter of air or blast pipe and D diameter of cylinder in ins., v velocity f blast in feet per second, and t temperature of blast consequent upon comression in degrees.

ILLUSTRATIONS. — Assume blowing cylinder 50 ins. in diam., stroke of histon 10 et, number of single strokes 10 per minute, pressure by mercurial manometer 12 ins., frictional resistance .4 lb., length of pipe 25.25 feet, and area of valves

$$V = 1363.54$$
 cube feet, $P = 3$ lbs., $A = 1963.5$ sq. ins.

Then
$$\frac{1363.54 \times 3 + .4}{230} = 20.16 \text{ IP}$$
, and $\frac{1963.5 \times 10 \times 10 \times 3 + .4}{33000} = 20.23 \text{ IP}$

Then
$$\frac{1363.54 \times 3 + .4}{230} = 20.16 \text{ PP}$$
, and $\frac{1963.5 \times 10 \times 10 \times 3 + .4}{33000} = 20.23 \text{ PP}$.

 $\frac{7}{1363.54 + 10 \times 25.25} = 13.4 \text{ ins.}$ $\frac{50^2 \times 10 \times 10}{40 \times 95} = 65.8 \text{ feet.}$ $\frac{50^2 \times 10 \times 10}{40 \times 65.8} = 95 \text{ sq. ins.}$

To Compute Volume of Air transmitted by an Engine. When Pressure, Temperature, etc., are given.

$$4.5\sqrt{h\left(\frac{1+.004}{h+11}\right)}$$
 C=v. Then $av \times 60 = V$ in cube feet per minute.

H and h representing height of barometer and pressure of blast in ins. of vercury: t temperature of blast: and v velocity in feet per second.

ILLUSTRATION. -A furnace having 2 tuyeres of 5 ins. diameter, pressure and temerature of blast 3 ins. and 350°, and barometer 30 ins.; what is volume of air trans-nitted per minute?

C for a conical opening = .04.

$$34.5\sqrt{3\left(\frac{1+.004\times350^{\circ}}{3+30}\right)\times.94} = 34.5\sqrt{3\left(\frac{2.4}{33}\right)} = 34.5\times.467\times.94 = 15.14$$
 the velocity per second.

Then, area 5 ins. = 19.635, which \times 2 = 39.27 ins., and 39.27 \times 15.14 \times 60 \div 144 = 47.73 cube feet.

Compute Pressure of Blast from Water or Mercurial Gauge.

RULE .- Divide Water and Mercurial Gauge in ins. by 27.67 and 2.04 repectively, and quotient will give pressure in lbs. per sq. in

Fan-blowers.

Proportions of Parts. Blades .- Their width and lengt Jual to .4 or .5 radius of fan.

Openings .- Inlet should be equal to radius of fan; erge, should be in depth not less than .125 diameter, it vidth of fan.

mentricity .- . r of diameter of fan. Journals, 4 diame.

By the experiments of Mr. Buckle, he deduced

1. That velocity of periphery of blades should be .9 that of their theoretical velocity; that is, velocity a body would acquire in falling height of a homogeneous column of air equivalent to required density.

51

E

Z

T

t

ψı

€1

C हिंही **डि**ट

C

ht

hu

C

ď1

2. That a diminution of inlet from proportions here given involved a greater expenditure of power to produce same density.

3. That greater the depth of blade, greater the density of air product with same number of revolutions.

To Compute Elements of a Fan-blower.

$$\left(\frac{v}{8.02}\right)^2 \div 939.45 = d$$
; 244 $\sqrt{d} = v$; $\frac{a\ v}{160} = V$; and $\frac{d\ a\ v}{400} = \mathbb{R}$. v representing velocity of periphery of fan in feet per second, d inches of mercury, V volume of air in cube feet, and a area of discharge in sq. iss.

ILLUSTRATION.—Assume velocity of periphery of fan 123 feet per second, densiy of blast .25 inch, volume of air 1845 cube feet, and area of discharge 40 sq. ins.

$$\frac{242 \times 40 \times 123 \times 60}{160} = 1845 \text{ call } f$$

$$\frac{244 \sqrt{.25} = 122 \text{ feet.}}{160} = 1845 \text{ call } f$$

$$\frac{.242 \times 40 \times 123}{400} = 2.97 \text{ IIP, independent of friction of blast in pipes and twyeres.}$$

To Compute Power of a Centrifugal Fan. $V^2 \div 97300 = P$. V representing velocity of tips of fan in feet per second.

Memoranda.

Operation of a blower requires about 2.5 per cent. of power of attached boiler.

An increase in number of blades renders operation of fan smoother, but "res not increase its capacity.

ressure or density of a blast is usually measured in ins. of mercury, a sure of r lb. per sq. inch at $60^{\circ} = 2.0376$ ins.

Vhen water is used, a pressure of 1 lb. = 27.671 ins.

spola blast .8 lbs., and Smith's forge .25 to .3 lbs. per sq. inch.

ordinary Eccentric Fan, 4 fect in diameter, with 5 blades 10 ins. wide in length, set 1.5 ins. eccentric, with an inlet opening of 17.5 ins. in er, and an outlet of 12 ins. square, making 870 revolutions per min-ll supply air to 40 tuyeres, each of 1.625 ins. in diameter, and at a are per sq. inch of .5 inch of mercury.

ordinary eccentric fan-blower, 50 ins. in diameter, running at 1000 revolutions...inute, will give a pressure of 15 ins. of water, and require for its operations a strof 12 horses. Area of tuyer discharge 500 80, ins.

andensing engine, diameter of cylinder 8 ins., stroke of piston 1 foot, pres-18 lbs. (mercurial gauge), and making 100 revolutions per minute, will a opening 2 feet by 2, 500 revolutions per minute.

ind as an exhausting draught to smoke-pipe of steamer
 o ins. by 8 feet, and evaporation was doubled over that

volume of air discharged 75 per cent. that of ~ke equal diameter of cylinder, and r minute.

as of that of cylinder for spects to .rrr for higher speeds. Area. (M. Claudel.)

By some experiments lately concluded in England with boilers of two steamers, to determine relative effects of natural and forced draught furnaces the results were as follows (R. J. Butler):

Per Sq. Foot of Grate Surface.—Natural Draught, 10 to 10.87 IIP; Stean Blust, 12.5 to 13; Forced or Blust Draught, 15 to 16.

Heating Surface per IIP.—Natural Draught, 2.44 to 2.61; Sleam Blast 1.71 to 2.86; Forced or Blast Draught, 1.56 to 2.5.

Tube Surface per IIP in Sq. Feet.—Natural Draught, 2.03 to 2.18; Stean Blast, 2.02 to 2.08; Forced or Blast Draught, 1.3 to 2.8.

IIP per Sq. Foot of Grate in these Trials. — Natural Draught, 10.15 to 10.87; Steam Blust, 12.76 to 13.1; Forced or Blust Draught, 10.6 to 16.9.

Root's Rotary Blower—Is constructed from .125 to 14 nominal IP, supplying from 150 to 10 800 cube feet of air per minute. Delivery pipe 2.5 to 19 ins in diameter. Efficiency 65 to 80 per cent. of power.

For Ventilation of Mines—From 40 to 280 revolutions per minute, equal to discharge of 12 500 to 200 000 cube feet of air per minute. 15.5 to 189 IP.

Steam cylinder from 14×18 ins. to 28×48 ins.

For other details of Blowing Engines see page 808.

CENTRAL FORCES.

All bodies moving around a centre or fixed point have a tendency to fly off in a straight line: this is termed Centrifugal Force; it is opposed to a Centripetal Force, or that power which maintains a body in its curvilineal path.

Centrifugal Force of a body, moving with different velocities in same circle, is proportional to square of velocity. Thus, centrifugal force of a body making 10 revolutions in a minute is 4 times as great as centrifugal force of same body making 5 revolutions in a minute. Hence, in equal circles, the forces are inversely as squares of times of revolution.

If times are equal, velocities and forces are as radii of circle of revolution.

The squares of times are as cubes of distances of centrifugal force from axis of revolution.

Centrifugal forces of two unequal bodies, having same velocity, and at same distance from central body, are to one another as the respective quantities of matter in the two bodies.

Centrifugal forces of two bodies, which perform their revolutions in same time, the quantities of matter of which are inversely as their distances from centre, are equal to one another.

Centrifugal forces of two equal bodies, moving with equal velocities at different distances from centre, are inversely as their distances from centre.

Centrifugal forces of two unequal bodies, moving with equal volce that noes from centre, are to one another as their quantities of mather respective distances from centre. ferent ed by

Centrifugal forces of two unequal bodies, having unequal velo ant distances from their axes are in compound ratio of their q aquares of their velocities, and their distances from centre.

Centrifugal force is to weight of body, as double height due to a rotation.

A Radius Vector is a line drawn from centre of force to movil.

To Compute Centrifugal Force of any Body.

RULE 1.—Divide its velocity in feet per second by 4.01, also source d quotient by diameter of circle; this quotient is centrifugal force, assumed the weight of body as 1. Then this quotient, multiplied by weight of bots. will give centrifugal force required.

EXAMPLE .- What is the centrifugal force of the rim of a fly-wheel having a diseter of 10 feet, and running with a velocity of 30 feet per second?

$$30+4.01=7.48$$
, and $7.48^2+10=5.59$, or times weight of rim.

Or,
$$\frac{\sqrt{m^2 \sqrt{R^2 + r^2}}}{4100} = 0$$
. r representing radius of inner diameter of ring

Note.—Diameter of a fly-wheel should be measured from centres of gravity of i When great accuracy is required, ascertain centre of gyration of body. take twice distance of it from axis for diameter.

RULE 2.—Multiply square of number of revolutions in a minute by diseter of circle of centre of gyration in feet, and divide product by const number 5217; quotient is centrifugal force when weight of body is 1. The as in previous Rule, this quotient, multiplied by weight of body, is contained by the body and ugal force required.

Or, $\frac{n^2 d}{5217} \times \nabla$. n representing number of revolutions per minute, d diam circle of gyration in feet, and W weight of revolving body in lbs.

EXAMPLE -What is centrifugal force of a grindstone weighing 1200 lbs., 42 in diameter, and turning with a velocity of 400 revolutions in a minute?

Centre of gyration = rad. $(49+9) \times .70^{-1} = 14.85$ (ns., which $\div 12$ and $\times 8$ 475 feet = diameter of circle of gyration. Then $\frac{400^{\circ} \times 2.475}{2.475} \times 1200 = 9100$ M 2.475 feet = diameter of circle of gyration.

Formulas to Determine Various Elements.

$$C^{*} = \frac{W r^{2}}{32.166 R}; = \frac{W R n^{2}}{3930}; = W R r' 1.225; W = \frac{C 32.166 R}{n^{2}};$$

$$R = \frac{2930 C}{W n^{2}}; = \frac{W r^{2}}{32.166 C}; n = \sqrt{\frac{2930 C}{W R}}; r = \sqrt{\frac{C R 32.166}{W}}; = 64$$

$$R = \frac{2930 \text{ C}}{W \text{ m}^2}; \quad = \frac{W \text{ r}^2}{32.166 \text{ C}}; \quad \pi = \sqrt{\frac{2930 \text{ C}}{W \text{ R}}}; \quad \tau = \sqrt{\frac{\text{C R } 32.166}{W}}; \quad = 6.86^{1/2}$$

C representing centrifugal force, W mass or weight of revolving body, both is R rudius of circle of receiving body in feet, a number of revolutions per minute. vami v' linear or circumferential and a igular relocities of body in feet per seems

ILLUSTRATION.—What is centrifugal orce of a sphere weighing 30 lbs., rerold around a centre at a distance of 5 feet, at 30 revolutions per second?

$$e = \frac{5 \times 2 \times 3.1416 \times 30}{60} = 15.71 \text{ feel.}$$
 Then $C = \frac{30 \times 15.71^2}{32.160 \times 5} = 46.04 \text{ feel.}$

Centrifugal forces of two bodies are as radii of circles of revolution direct as someres of times inversely.

ILLESTRATION —If a dy-wheel, 12 feet in diameter and 3 tons in weight, with in 8 seconds, and another of 1:ke weight revolves in 6, what should be the diameter. of the second when their centrifugal forces are equal?

Then
$$3:3::\frac{12}{8^2}:\frac{\pi}{6^2}$$
; or $\pi=\frac{12\times 6^2}{8^2}=6.75$ feet, $\pi=$ unknown element.

rifuged forces of two bodies, when weights are unequal, are directly as #

rearrox - What should be the ratio of the weights of the wheels in the nese, their forces being equal?

3:
$$B : 1 e^{2} : 3^{2}$$
, or $B = \frac{3 \times 3^{2}}{9^{4}} = \frac{3 \times 64}{39} = 3.333$ some.

mirtil gives one as W R m2 = C.

FLY-WHEEL

LY-WHEEL by its inertia becomes a reservoir as well as a regulator be, and to be effective should have high velocity, and its diameter be from 3 to 4 times that of stroke of driving engine.

efficient of fluctuation of energy in a machine ranges from .015

ight of a fly-wheel in engines that are subjected to irregular most in a cotton-press, rolling-mill, etc., must be greater than in others so sudden a check is not experienced, and its diameter should from 3.5 to 5 times length of the crank.

ngle acting engine requires a weight of wheel about-2.5 times greater hat for a double acting, and 5 times for double engines of double action.

To Compute Weight of Rim of a Fly-wheel.

E.—Multiply mean effective pressure upon piston in lbs. by its stroke; and divide product by product of square of number of revolutions, ter of wheel, and .000 23.

:.-If a light wheel is required, multiply by .0003; and if a heavy one, by

FILE I.—A non-condensing engine (double acting), having a diameter of cylf 14 ins., and a stroke of piston of 4 feet, working full stroke, at a pressure 38 increurial gauge, and making 40 revolutions per minute, develops about what should be the weight of its fly-wheel, when adapted to ordinary work? of cylinder 154 sq. ins. Mean pressure assumed 50 lbs. per sq. inch. Diamwheel 4 feet stroke × 3.5 = 14 feet.

$$50 \times 154 \times 4 = 30800$$
, which $\div 40^2 \times 14 \times .00023 = 5078 lbs.$

f a fly-wheel, 16 feet in diameter and 4 tons in weight, is sufficient to regulate ine (double acting) when it revolves in 4 seconds, what should be the weight eel, 12 feet in diameter, revolving in 2 seconds, so that it may have like cenforce?

:—The centrifugal forces of two bodies are as the radii of the circles of revolirectly, and as squares of times inversely.

$$\frac{4 \times 16}{4^2} = \frac{x \times 12}{2^2}. \quad \text{Or, } x = \frac{4 \times 16 \times 2^2}{12 \times 4^2} = \frac{4 \times 16 \times 4}{12 \times 16} = 1.333 \text{ tons.}$$

me elements of example r.

$$5978 \times .1 \div 13.25 = 45.12$$
 square ins.

To Compute Dimensions of Rim.

E.—Multiply weight of wheel in lbs. by .1, and divide product by liameter of rim in feet; quotient will give sectional area of rim in inches of cast iron.

 $\frac{|S|}{|D|} = W, \text{ and } \frac{|W|}{|D|} = A. \quad \text{Prepresenting pressure on piston and } W \text{ weight of } i \text{ lbs., } S \text{ stroke of piston and } D \text{ mean diameter of wheel, both in feet, and } A \text{ section of rim in ag. ins.}$

 $\frac{16\ n\ P\ S\ C}{60\ D}$ = W. C representing coefficient varying from 3 to 4 or linearly, reasing to 6 when great regularity of speed is required, and n number of revolver minute.

—Maximum safe velocity for cast iron is assumed ngines at high expansion of steam, or with irregulatiply W by 1.5, or put W 100 lbs. for each IPP.

The results of the wills, the velocity of periphery of fly-will assume the state of the sta

GOVERNORS

A LIGHTERSON OF CONTEAL PRODUCTS IN Its organism depends ment principles of Central Forces

When in a Ball Governor the balls diverge the ring on verticals taises, and in proportion to the increase of rescent of the balls some or the source roots of distances of mar from itsel point of arms, temponding to two velocities. Will be as these velocities.

Thus, if a governor makes it revolutions in a second when ring's ing from fixed point or too, the distance of rail will be and its will spend is increased to to revolutions in same time.

For 10:6:1: v 16:24 which spared = 276 inc. Surger of ti from top. Ur. 62: 102: 15 70: 12 was

A governor performs in one minute half as many revolutions a penditium vibrates, the length of which is percenticular distance tween plane in which the balls move and the fixed coins or center Sistemation.

To Compute Number of Revolutions of a Ball Govern per Minute to maintain Balls at any given Height ist — , I = -reasone. I representes normal length between place of b The primit of here majoration in that

are the bander of revolutions per minute."

$$138 - \frac{1}{2} 22 = 40.06$$
 provided when

To Compute Vertical Height between Plane of Ba and their Points of Suspension.

Larger arrow - 11 months of remains one of a controlleral governor is too. T . X " 28 11 14.15"

To Compute Angle of Arms or Plane of Balls w. Centre Shart.

minimizers — in regressioning discounce of this from plane of entire shifts gained to the discount of suppression measured in plane of shifts the service of the state of the state of centre shall is to inches. "N i common from the mi of erelieue in is all mint is the rulle.

$$40 \div 25 = 4.421 \text{ fig. } 4 = 25^{2} 35^{2}$$

When Newber of Revolutions are given.
$$\frac{(s_0 \cdot t + n)^2}{t} = \cos \angle.$$

Ministrate will Revolutions of a governor per minute are 50, and length (pure), feet, what is their angle with plane of shaft?

$$\frac{(54.15 \div 55.2)}{2} = \frac{1.173}{2} = .5255 = \infty 4.54^{\circ}6'.$$

PENDULUMS.

regulations are Simple or Compound, the former being a mat about weight suspended from a fixed point, about which the by a connection roid of weight; and the la er of bodies suspended by a rod or connec have as many centres of oscillation as the nsion to it, and when any one of these cen a are readily ascertained.

CENTRAL FORCES. -- PENECLESSIA

7

soxsg=a constant product, and sr= **** ting points of suspension, gravity, oscillation and good ny body, as a cone, a cylinder, or of any form. ended as to be capable of vibrating, is a composed of its centre of oscillation from any assumed year. ed as the length of an equivalent simple percentage. Amplitude of a simple pendulum is the distance to rom its lowest position to its farthest on either and lete Period of a pendulum in motion is the time it works rations. ibrations of same pendulum, whether great or small and arly in same time. ber of Oscillations of two different pendulums is anno ace are in inverse ratio of square roots of their th of a Pendulum vibrating seconds is in a constant of Vibration is half of a complete period, and it is see root of length of pendulum. Consequently, lengthe t vibrations are-Latitude of Washington. oos8 ins. for one second. 4.344 for third of a man 774 ins. for half a second. 2.4435 for quarter of & man the Sea in several Places. Ins. Inc. ompute Length of a Simple Pendulum 🗽 Latitude. 39.127 - .099 82 COS. 2 L = l. L representing latitude. TRATION.—Required the length of a simple pendulum vibrating tude of 50° 31'. 0° 31′ COS. 2 L=2 × 50° 31′ = COS. 180° - 50° 31′ × 2 = COS. 78° % = $7 + .19138 \times .09982$ (two – or negative = an affirmative or +) = 3, 142 ompute Length of a Simple Pendulum for a special Number of Vibrations. = l. L representing length for latitude, t time in seconds, and t length of seconds. TRATION.—Required vibrations of a pendulum in a minute at New Year. at should be its length? $17 \times 1^2 = 39.1017$. Or, $\frac{L}{n^2} = l$. n representing number of vibrations per tensor. ompute Number of Vibrations of a Simple Person lum in a given Time. $\frac{\sqrt{L't}}{\sqrt{t}} = n, \ \frac{t}{n}$ representing time of one vibration in seconds. ompute Centre of Gravity of a Compound Person n of Two Weights connected in a Right Line. When Weights are both on one Side of Point of $\stackrel{'w}{=} \circ = distance$ of centre of gravity from point of

When Weights are on Opposite Sides of Point of Suspension.

 $\frac{l \ W - l' \ w}{W + w} = o = distance$ of centre of gravity of greater weight from point of i version.

Note.—To obtain strictly isochronous vibrations, the circular arc must be stituted for the cycloid curve, which possesses the property of having an indiction, the sine of which is simply proportional to distance measured on the control is lowest point.

For construction of a Cycloidal pendulum, see Deschaniel's *Physics*, Part L_1 , 71-2.

To Compute Length of a Simple Pendulum, Vibratic of which will be same in Number as Inches in Length.

 $\sqrt[3]{(\sqrt{1} \times 60)^2} = l$ in inches.

ILLUSTRATION.—What will be length of a pendulum in New York, vibration which will be same number as the ins. in its length?

$$\sqrt[3]{(\sqrt{39.1017 \times 60})^2} = 7.211^2 = 52 ins.$$

To Compute Time of Vibration of a Simple Penduly Length being given.

 $\sqrt{l+L} = t$ in seconds.

ILLUSTRATION.—Length of a pendulum is 156.4 ins.: what is the time of its v tion in New York?

$$\sqrt{\frac{156.4}{39.1017}} = 2$$
 seconds.

Or, $\sqrt{\frac{L}{g}} \times 3.1416 = t$. I representing length of a pendulum vibrating secon ins. g measure of force of gravity, and t time of one oscillation.

ILLUSTRATION.—Length of a simple pendulum vibrating seconds, and measu force of gravity at Washington, are 39.0958 ins., and 32.155 feet.

$$3.1416\sqrt{\frac{39.0958}{32.155\times 12}} = 3.1416\times \sqrt{1.013} = 3.1416\times .3183 = 1$$
 second.

To Compute Number of Vibrations of a Simple P dulum in a given Time.

$$\sqrt{\frac{1}{l}} \times t = n$$
. n representing number of vibrations.

ILLUSTRATION.—The length of a pendulum in New York is 156.4 ins., and tir its vibration is 2 seconds; what are number of its vibrations?

$$\sqrt{\frac{39.1017}{156.4}} \times 2 = \sqrt{\frac{6.253}{12.500}} \times 2 = .5 \times 2 = 1 \text{ vibration.} \quad \text{Hence, } 1 \times \frac{60}{2} = 3 \text{ brations per minute.}$$

To Compute Measure of Gravity, Length of Pendul and Number of its Vibrations being given.

$$\frac{.822.46 \ l}{l^2} \frac{l}{n^2} = g$$
. g representing measure of gravity in feet.

To Compute Number of Revolutions of a Conical P dulum per Minute.

presenting distance between point of suspension and pl

volutions per minute are constant for any given ?

1 is directly as square root of height.

CRANES.

Usual form of a Crane is that of a right-angled triangle, the sides ing post or jib, and stay or strut, which is hypothenuse of triangle.

When jib and post are equal in length, and stay is diagonal of a square, is form is theoretically strongest, as the whole stress or weight is borne by y, tending to compress it in direction of its length; stress upon it, comed to weight supported, being as diagonal to side of square, or as 1.4142 I. Consequently, if weight borne by crane is 1000 lbs, thrust or commission upon stay will be 1414.2 lbs., or as a e to e W, Fig. 1.

then Post is Supported at both Head and Foot, as Fig. 1.

Weight W is sustained by a rope or chain, and tension is equal upon both parts of it; that is, on two sides of square, ia and e W. Consequently jib, ia, has no stress upon it, and serves merely to retain stay, ae.

If foot of stay is set at n, thrust upon it, as compared with weight, will be as an to aw; and if chain or rope from i to a is removed, and weight is suspended from a, tension on jib will be as ia to aW.

If foot of stay is raised to o, thrust, as compared with weight, will be as e a o is to a W, and tension on jib will be as line a r.

By dividing line representing weight, as a W or a w, into equal parts, to result tons or pounds, and using it as a scale, stress upon any other part by be measured upon described parallelogram.

Thus, as length of a W, compared to a e, is as I to 1.4142: if a W is distant into 10 parts representing tons, a e would measure 14.142 parts or tons.

When Post is Supported at Foot only.

If post is wholly unsupported at head, and its foot is secured up to line W, then W, acting with leverage, e W, will tend to rupture post at e, with me effect as if twice that weight was laid upon middle of a beam equal to be length of e W, e being at middle of beam, which is assumed to be supted at both ends, and of like dimensions to those of post.

Or, force exerted to rupture post will be represented by stress, W, multied by 4 times length of lever, e W. divided by depth of post in line of
ess, squared, and multiplied by breadth of it and Value* of its material.

Post of such a crane is in condition of half a beam supported at one end, ight suspended from other; consequently, it must be estimated as a beam twice the length supported at both ends, stress applied in middle.

o Compute Stress on Jib, and on Stay or Strut.-Fig. 2.

On diagram of crane, Fig. 2, mark off on line of chain, a W, a distance, a b, representing weight on chain; from point b draw a line, b c, parallel to jib, a e, and where this intersects stay or strut, draw a vertical line, c o, extending to jib, and distances from a to points b c and o c, measured upon a scale of equal parts, will represent proportional

ILLUSTRATION.—In figure, weight being we on stay or strut compressing, a c, will be on jib or tension-rods, a o, 26 tons.

To Compute Dimensions of Post of a Crane.

When Post is Supported at Feet only. Rule.-Multiply weight or stress to be borne in lbs. by length of jib in feet measured upon a horizontal plane; divide product by Value of material to be used, and product, divided by breadth in ins., will give square of depth, also in ins.

EXAMPLE. -Stress upon a crane is to be 22 400 lbs., and distance of it from centre of post 20 feet; what should be dimension of post if of American white oak?

Value of American white oak 50. Assumed breadth 12 ins.

$$\frac{22400 \times 20}{50}$$
 = 8960, and $\frac{8960}{12}$ = 746.67. Then $\sqrt[3]{746.67}$ = 27.32 ins.

When Post is Supported at both Ends. Rule.-Multiply weight or stress to be borne in lbs. by twice length of jib in feet measured upon a horizontal plane; divide product by Value of material to be used, and product, divided by four times breadth in ins., will give square of depth, also in ins.

EXAMPLE.—Take same elements as in preceding case. Assumed breadth to ins.

Then
$$\frac{22400 \times 20 \times 2}{50} = 17920$$
, $\frac{17920}{4 \times 10} = 448$, and $\sqrt[2]{448} = 21.166$ ins.

In Fig. 3, angle a b e and e b c being equal, chain or rope is represented by a b c, and weight by W; stress upon stay b d, ss compared with weight, is as b d to a b or b c.

In practice, however, it is not prudent to consider chain as supporting stay; but it is proper to disregard chain or rope as forming part of system, and crans should be designed to support load independent of it It is also proper that angles on each side of diagonal stay, in this case, should not be equal. If side ab is formed of tension-rods of wrought iron, point a should be depressed, so as to lengthen that side, and decrease

angle a be; but if it is of timber, point a should be raised, and angle a b e increased.

Fig. 4 shows a form of crane very generally used; angles are same as in Fig. 3, and weight suspended from it, being attached to point d, is represented by line bdThe tension, which is equal to weight, is shown by length of line bc, and thrust by length of line ba, measured by a scale of equal parts, into which line b d, representing weight, is supposed to be divided.

But if be be direction of jib, then bg will show to sion, and bf the thrust (df) being taken parallel to be both of them being now greater than before; line be representing weight, and being same in both cases.

To Ascertain Stress on Jib, on Strat of a Crane.-Fig. 5.

Through a draw a s, parallel to jib or tension-rel or, and also su parallel to strut ar; then reis

If then r s represents a stress of 20 lb, the two forces into which it is decorposed are shown by ru and ra; or's equal to ru, as each of them is equal ! as, and re is equal to oa. Hence, " represented by a o, stress on jib wilk represented by or, and that on that

Assuming then or 3 feet, ar 35

on jib will be 60 lbs., and on strut 70.

Thus, in all cases, stress on jib or tension-rod and on strut can be deternined by relative proportions of sides of triangle formed.

To Compute Stress upon Strut of a Crane.

Rule.—Multiply length of strut in feet by weight to be borne in lbs.; diride product by height of jib from point of bearing of strut in fee, and juotient will give stress or thrust in lbs.

EXAMPLE.—Length of strut of a crane is 28.284 feet, height of post is 26.457 feet, and weight to be borne is 22 400 lbs.; what is stress?

$$\frac{28.284 \times 22400}{26.457} = \frac{633561.6}{26.457} = 23947 \text{ lbs.}$$

Chains and Ropes.

Chains for Cranes should be made of short oval links, and should not exceed 1 inch in diameter.

Short-linked Crane Chains and Ropes showing Dimensions and Weight of each, and Proof of Chain in Tons.

Diam. of Chains.	Weight per Fathom.	Proof Strain.	Circumf. of Rope.	Weight of Rope per Fath.	Diam. of Chains.	Weight per Fathom.	Proof Strain.	Circumf. of Rope.	Weight of Rope per Fath.
Ins.	Lbs.	Tons.	Ins.	Lbs.	Ins.	Lbs.	Tons.	lns.	Lbs.
.3125	6	· 7 5	2.5	1.5	.6875	28	6.5	7	10.5
·375	8.5	1.5	3.25	2.5	·75	32	7.75	7.5	12
·4375	11	2.5	4	3.75	.8125	36	9.25	8.25	15
•5	14	3.5	4.75	5	.875	44	10.75	9	17.5
-5625	18	4.5	5.5	7	.9375	50	12.5	9.5	19.5
.625	24	5.25	6.25	8.7	I	56	14	10	22

Ropes of circumferences given are considered to be of equal strength with he chains, which, being short-linked, are made without studs.

A crane chain will stretch, under a proof of 15 tons, half an inch per fathom.

Machinery of Cranes.

To attain greater effect of application of power to a crane, the wheel-work ust be properly designed and executed.

If manual labor is employed, it should be exerted at a speed of 220 feet or minute.

Proportions .- Capacity of Crane, 5 tons.

Radius of winch or handle 15 to 18 ins. Height of axle from floor 36 to 39.

1st pinion, 11 teeth, 1.25 ins. pitch.
1st wheel, 89 " 1.25 " " 2d pinion, 12 teeth, 1.5 ins. pitch.
2d wheel, 96 " " " " "

Barrel 8 ins. \times 11 teeth \times 12 teeth \times 12 teeth \times 12 too lbs. = 30 800 Winch 17 ins. \times 89 teeth \times 96 teeth \times 4 men = $\frac{30800}{1513}$ = 20.35 lbs. = statical restance to each of the 4 men at winches.

An experiment upon capacity of a crane, geared 1 to 105, developed that strong man for a period of 2.5 minutes exerted a power of 27 562 footbunds per minute, which, when friction of crane is considered, is fr

· the power of a horse for one minute.

In practice an ordinary man can develop a power of 15 lbs. up undle moved at a velocity of 220 feet per minute, which is & to foot-pounds.

r Treatise on Cranes, see Weales' Series, No. 33.

, where we say the substitution is $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$. In Special way with a limit of partial $\frac{1}{2}$

Las Maria of Malabala and Greek and Greek and Greek

ENGLISHED AND EDITORIES

Labor and World speed Spectroscope and Sign Control Control of American Con-Control of Control

The wind is a first that it is a secured at the plane of the secure of t

Pertin — I provide the provide the second and the least the second of th

Consideration of the property of the second

Description — Louis Catholic mode, and mode of the control of the

Political (See all fraction of the experience after a total and

These particulars are embodied in following summary of condition of nents of 100 lbs. of average coal, after having been decomposed, and prior entering into combustion—

100 Lbs. of Average Coal in a Furnace.

Composition Son {Fixed Volatilized drogen phur. ygen rogen 1, etc.	5 8 8 forming	85.25 Q	Decomposition. fixed carbon. hydrocarbons and free hydrogen sulphur. water or steam. nitrogen. sash, etc.
---	---------------------	------------	---

wing a total useful combustible of 85.25 per cent., of which 25.25 per at. is volatilized. While the decomposition proceeds, combustion proceeds, 1 the 25.25 per cent. of volatilized portions, and the 60 per cent. of fixed bon, successively, are burned.

It may be added that the sulphur and a portion of the nitregen are disgaged in combination with hydrogen, as sulphuretted hydrogen and ambria. But these compounds are small in quantity, and, for the sake of policity, they have not been indicated in the synopsis.

Volume of Air chemically consumed in complete Combustion of Coal.

Assume 100 lbs. of average coal. Then, by following

$$80+3\left(5-\frac{8}{8}\right)+\frac{1}{4\times1.25}\times152=14060$$
 cube feet of air at 62° for 100 lbs. coal.

• Compute Volume of Air at 62°, under One Atmosphere, chemically consumed in Complete Combustion of 1 Lb. of a given Fuel.

Rule.—Express constituent carbon, hydrogen, oxygen, and sulphur, as centages of whole weight of fuel; divide oxygen by 8, deduct quotient om hydrogen, and multiply remainder by 3; multiply sulphur by 4; add oducts to the carbon, and multiply sum by 1.52. Final product is volume air in cube feet.

To compute weight of air chemically consumed.—Divide volume thus found
13.14; quotient is weight of air in lbs.

Or, 1.52 (C+3 (H
$$-\frac{O}{8}$$
) +.4 S) = Air. O Oxygen.

Note.—In ordinary or approximate computations, sulphur may be 1 Example.—Assume 1 lb. Newcastle coal. C = 82.24, H = 5.42,

≈ z.35.

$$\frac{6.44}{8} = .805, 5.42 - .805 = 4.615 \times 3 = 13.845, 1.35 \times .4 = .54, 13.845 - 19.625, and 96.625 \times 1.52 = 146.87 cube feel.$$

Labor.

For labor of a man, see Animal Power, pp. 433-34-

By Wheel-barrow.—A barrow-load may be assumed at 175 lbs. = 2 cube fet & space.

Blasting. — When labor is \$1 per day, hard rock in ordinary position may blasted and loaded for 45 cents per cube yard.

The cost, however, in consequence of condition, position, etc., may vary from a cents to \$ 1

er.

1

See Blasting page 443.

17 cube yards of hard rock may be carted per day over a lead of 200 feet, at a set of 7.29 cents per yard.

The preceding elements are essentially deduced from notes furnished by Elimi Morris, C.E.. and the valuable treatise of John C. Trautwine, C.E., Phila, 1872.

Stone.

Hauling Stone.—A cart drawn by horses over an ordinary road will travel 14 miles per hour of trip = 2.3 miles per hour.

A four-horse team will haul from 25 to 36 cube feet of stone at each load.

Time expended in loading, unloading, etc., including delays, averages 35 mixed per trip. Cost of loading and unloading a cart, using a horse-crane at the quast, and unloading by hand, when labor is $\$_1$ 25 per day, and a horse 75 cents, is $\$_1$ cents per perch = 24.75 cube feet = 1 cent per cube foot.

Work done by an animal is greatest when velocity with which he moves is us of gratest with which he can move when not impeded, and force then exerted if of utmost force the animal can exert at a dead pull.

Earthwork. (Molesworth.)

Proportion of Getters, Fillers, and Wheelers in different soils, Wheelers being & culated at 50 yards run.

	Gett's.	Fill's.	Wheel's.	ł	Gett's.	Fill's.	Wheel
In loose earth, sand, etc. " Compact " Marl	1	I 2 2	2	In Hard clay " Compact gravel " Rock, from	! r !	1.25 1	2.25 1

Average Weight of Earths, Rocks, etc.

Per cube yard.

I	Lbs. 1		Lbs.		Lbs.	1	Lh
Sand 3:	360	Marl	2012	Sandstone	4368	Granite	4700
Gravel 3	360	Clay	3472	Shale	4480	Trap	4700
Mud 2	800	Chalk	4032	Quartz	4492	Slate	4710

Bulk of Rock, Earthwork, etc., Original Excavation assumed at 1.

When in Embankment.

Rock, large	1.6 to	1.7	Sand and gravel	7 08
Metal	to	1.8	" " before " I.	2

In small stones, per cent. of interstices to total volume is 44 to 48, which is a increase in volume of solid rock to fragments of 79 and 92 per cent.

The relative proportions of Earth in Bank and Embankments, as given by different authorities, are so varied and so opposite that it is evident the difference is actionable, the difference is actionable, the difference is actionable and then upon the height of the embankment, the manner and durated the difference is actionable and then upon the height of the embankment, the manner and durated the difference is actionable and d

ring it.

Tis, anto p. 466, makes the embankment less, and Molesworth.

STRATION ... What is temperature of combustion of coal of average composi-

eous products as per preceding table 11.94, which \times .246 specific heat = 2.935 if heat at 1°.

ce, 14 133 units of combustion (from table, page 461) ÷ 2.935 = 48120 temperof combustion of average coal.

rplus air is mixed with products of combustion equal to volume of air chemcombined, total weight of gases for one lb. of this coal is increased to 22.64. Howing table, having a mean specific heat of .242.

n 22.64 \times .242 = 5.478 units for 1°.

ce, 14 133 total heat of combustion \div 5.478 = 2580° temperature of combusir a little more than half that of undiluted products.

sing averages, it is seen that the evaporative efficiency of coal varies by with volume of constituent carbon, and inversely with volume of ituent oxygen; and that it varies, not so much because there is more or arbon, as, chiefly, because there is less or more oxygen. The per-cent-of constituent hydrogen, nitrogen, sulphur, and ash, taking averages, early constant, though there are individual exceptions, and their united as a whole, appears to be nearly constant also.

Heat of Combustion.

number of times in combustion of a substance, its equivalent l be raised 1° , by heat evolved in combustion of substance.	weight of	water
l be raised 10, by heat evolved in combustion of substance.		

10l 12 930	Ether 16 246	Olefiant gas 21 340
20al 14 545	Ether 16 246 Olive oil 17 750	Hydrogen 62030

Combustion of Fuel.

onstituents of coal are Carbon, Hydrogen, Azote, and Oxygen.

olatile products of combustion of coal are hydrogen and carbon, the ms of which (relating to combustion in a furnace) are Carburetted ogen and Bi-carburetted hydrogen or Olefiant gas, which, upon commy with atmospheric air, becomes Carbonic acid or Carbonic oxide, m, and uncombined Nitrogen.

arbonic oxide is result of imperfect combustion, and Carbonic acid of perfect combustion.

erfect combustion of carbon evolves heat as 15 to 4.55 compared imperfect combustion of it, as when carbonic oxide is produced.

lb. carbon combines with 2.66 lbs. of oxygen, and produces 3.66 lbs. arbonic acid.

old is the combustible and incombustible products evolved in combustion of which pass off by flues of a furnace, and it is composed of such portions of ogen and carbon of the fuel gas as have not been supplied or combined with an, and consequently have not been converted either into steam or carbonic the hydrogen so passing away is invisible, but the carbon, upon being sepafrom the hydrogen, loses its gascous character, and returns to its elementary of a black pulverulent body, and as such it becomes visible.

uminous portion of coal is converted into gaseous state alone, carbonaceous on only into solid state. It is partly combustible and partly incombustible.

effect combustion of x cube foot of coal gas, 2 cube feet of oxygen are required; as no cube feet of atmospheric air are necessary to supply this volume of embe foot of gas requires oxygen of 10 cube feet of air.

furnaces with a natural draught, volume of air required ext the draught is produced artificially. insufficient supply of air causes imperfect combustion; an a waste of heat. 14. When fibres of materials cross each other, friction is less than win they run in the same direction.

15. Friction is greater between surfaces of the same character than between those of different characters.

16. With hard substances, and within limits of abrasion, friction is pressure, without regard to surfaces, time, or velocity.

17. The influence of duration of contact (friction of rest) varies with the nature of substances; thus, with hard bodies resting upon each other, the effect reaches a maximum very quickly; with soft bodies, very slowly; with wood upon wood, the limit is attained in a few minutes; and with metals wood, the greatest effect is not attained for some days.

Coefficient of Friction of Journals. Diameters from 2 to 4 ins. Speeds varied as 1 to 4. Pressure up to 2 tous (From data of M. Morin.)

Surpaces of	OF CONTACT.	LUBRICATION.	Coefficient* pressure=== Ordinary Lubrication
Journals.	Bearings.	total and a second	10000
Cast iron on cast	iron	Olive oil, or tallow	.07 10.00
Cast iron on gun	metal	Olive oil, or tallow	.07 to.00
Cast iron on lignt	am-vitæ	Slightly unctuous	-18
Wrought iron on	cast iron	Olive oil, or tallow	.07 to.08
Wrought iron on	gun metal	Olive oil, or tallow	.07 to 66
Wrought iron on	lignum-vitæ	Unetnous	.11.
Gun metal on gu		Unctuous Oil Unctuous	.19 .1
	Continuous lubrication	n reduces the coefficients fully one half.	100

SURFACER OF CONTACT.	DISPOSITION LURI	Coefficial pressure=1		
ok on on oak	Parallel	and soaped "wet "soaped "wet "soaped "wet "wet "dry	.15 .26 .21 .72 -19 .29	
on oak pull	Perpendicu	lar " "	.47	

er 1 47 of pressure, and over turned cast-fron pully

0:	Fri	ction	of	Mo	tion.
		1 1200			

	Dry.	Water.	Olive-of	Lard.	Tallow.	Dry Son	Oreman Division of the Control
On wood On iron Mean Mean	-1-28		21.00	6 .00	109	10-1	115
Menn	/	.42	.24	100	1.00	180.	135

mal

Relative Value of Unguents to Reduce Friction.

Unguents.	Wood upon Wood.	Wood upon Metals.	Metals upon Metals.	UNGUENTS.	upon	Wood upon Metals.	Metals upon Metals.
ard and plumbago.	.82	.32 .85 .67	.7	Olive oil Tallow Water	1	·93	.8 .13

To Determine Coefficient of Friction of Bodies.

Place them upon a horizontal plane, attach a cord to them, and lead it in direction parallel to the plane over a pulley, and suspend from it a scale in hich weights are to be placed until body moves.

Then weight that moves the body is numerator, and weight of body moved denominator of a fraction, which represents coefficient required.

ILLUSTRATION.—If, by a pressure of 320 lbs. friction amounts to 80 lbs., its coefficient of friction in this case would be $80 \div 320 = .25$.

Hence, if coefficient of friction of a wagon over a gravel road was .25, and the load 400 lbs., the power required to draw it would be $8400 \times .25 = 2100 \, lbs$.

Coefficients of Axle Friction. (M. Morin.)

	Co Dry and	ondition of Surfaces and Unguents. Greasy Oil, Tallow, or Lard. Very so				
Substances.	a little Greasy.	and wet with Water.	In usual way.	Continu- ously.	and puri- fied Car- riage Grease.	
Bell metal upon bell metal			.097			
→ Fast iron upon bell metal	.194	.161	.075	.054	.065	
est iron upon cast iron.		.079	.075	.054		
→ ₹38t iron ubon ngnum-vitæ	. 185		.r	.092	.109	
Trought iron upon bell metal	.251	.189	.075	.054	.09	
rought iron upon cast iron			.075	.054		
rought iron upon lignum-vite	.188		.125			

Friction of a journal of an axle which presses on one side only, as in a worn bearing, is less than when it presses at all points, the difference being bout .005.

Friction of Axles.—With axles, friction of motion has alone been experimented upon. When weight upon axle and radius of its journal is given, packanical effect of friction may be readily determined.

The mechanical effect absorbed by, or of friction, increases with pressure region weight upon journal of axle and number of revolutions.

Friction of an axle is greater the deeper it lies in its bearing.

If journal of an axle lies in a prismatic bearing, as in a triangle, etc., riction is greater, as there is more pressure on, and consequently greater riction in contact: in a triangular bearing it is about double that of a cylindrical bearing.

To Compute Mechanical Effect of Friction of an Axle.

 $\frac{p \, n \, f \, \mathbf{W} \, r}{3^{\circ}} = \mathbf{F}. \quad n \text{ representing number of revolutions, and } \mathbf{r} :$

ILLUSTRATION.—Weight of a wheel, with its axle or shaft resti 3 3 360 lbs.; diameter of journals 2 ins.; and number of revolution chanical effect of the friction, the coefficient of it being . 16?

$$\frac{3.1416 \times 30 \times .16 \times 360 \times 1 \div 12}{30} = \frac{452.4}{30} = 15.08$$

60.

By application of friction-wheels (rollers) friction is much reduced, and mechanical effect then becomes, when weights of friction-wheels are discgarded.

= F. r' representing radii of axles of friction-wheels, a' radii of friction-wheels, and a angle of lines of direction between axis of roller and axis of friction-wheels.

When a single friction-wheel is used, $\frac{2prn}{4} \times fW = F$, and $\frac{F}{2r^2 + 2r^2} = F^2$. representing mechanical effect.

ILLUSTRATION.—A wheel and its shaft, making 5 revolutions per minute, weight 30 000 lbs.; its diameter and that of its journals are 32 feet and 10 ins. The journals rest upon a friction-wheel, the radius of which is 5 times greater than its axle.

I. What is the power at circumference of wheel necessary to overcome friction? 2. What is mechanical effect of the friction? 3. What is reduction of friction by use of the friction-wheel?

1.
$$\frac{\overline{32 \div 2 \times 12}}{10 \div 2} = 38.4$$
, circum. of wheel = 38.4 times that of axle.

Coefficient of friction assumed at .075. Hence $\frac{30.000 \times .075}{38.4} = 58.59$ lbs. = power at circum. to overcome friction at axle. 2. $\frac{10 \times 3.1416}{12} = 2.618$ feet = distance panels

by friction.

Consequently, 2.618 × 5 = .2181 feet = distance passed by friction in one second

Hence, $.2181 \times 2250$ (30 000 \times .075) = 490.725. 3. $1 \div 5 = .2 = radius$ of friction axle \div by radius of friction-wheel, and 38.4 \times .2 = 7.68 = friction referred to circum of wheel, and $\frac{490.725}{6} = 98.145 = mechanical effect by application of friction-wh$ = a reduction of four fifths.

Friction of Pivots.

Friction on Pivots is independent of their velocity, increases in a greater degree than their pressures, and approximates very near to that of sliding and axle friction.

Friction on Conical Bearings is greater than with like elements on plant surfaces.

Figure of point of a pivot, as to its acuteness, affects friction: with great pressure the most advantageous angle for the figure ranges from 30° to 45°; with less pressure it may be reduced to 10° and 12°.

Relative	\mathbf{v} alue	of Angles	of Pivots.
······································	15°	66	45° 39

lelative Values of different Materials for use as Pivots. Tempered steel44

on and Rigidity of Cordage.

'monton and Coulomb, with an apparatus of Amonton's deductions:

aused by stiffness of cords about the same or like por the suspended weight.

aused by stiffness of cords increases not only in direct ed weights, but also in direct proportion of diames Consequently, that resistance to motion over the same or like pulleys, arising from stiffness of cords, is in direct compound proportion of suspended weight and diameter of cords.

- 3. That resistance to bending varied inversely as diameter of sheave or drum.
- 4. That complete resistance is represented by expression $\frac{S+CT}{d}$. S representing constant for each rope and sheave, expressing stiffness of rope; T tension of rope which is being bent, expressed by CT; C constant for each rope and sheave; and d diameter of sheave, including diameter of rope.
 - 5. That stiffness of tarred ropes is sensibly greater than that of white ropes.

Extending results obtained by Coulomb, Morin furnishes following for-

For White Ropes: 12 $n \div d$ (.002 15 + .001 77 n + .0012 W)=R. For Tarred Ropes: 12 $n \div d$ (.010 54 + .0025 n + .0014 W)=R. R representing rigidity in lbs., a number of yarns, d diameter of sheave in ins. and rope combined, and W weight in lbs.

ILLUSTRATION.—What is value of stiffness or resistance of a dry white rope having a diameter of 60 yarras, which runs over a sheave 6 ins. in diameter in the groove, with an attached weight of rooo lbs ?

Assume diameter for 60 yarns to be 7.2 ins. Then $\frac{12 \times 60}{7.2}$ (.002 15 + .001 77 × io + .0012 × 1000) = 100 × 1.308 35 = 130.835 lbs.

Value of natural stiffness of ropes increases as the square of number of hreads nearly, and value of stiffness proportional to tension is directly as tumber of threads, being a constant number. Hence, having the rigidity for my number of threads, the rigidity for a greater or lesser number is readily secretained.

Wire Ropes.

Weisbach deduced from his experiments on wire ropes that their rigidity or diameters capable of supporting equal strains with hemp ropes is coniderably less.

Wire ropes, newly tarred or greased, have about 40 per cent. less rigidity han untarred ropes.

Rolling Friction.

Rolling Friction increases with pressure, and is inversely as diameter of colling body.

For rolling upon compressed wood, f = .019 to .031.

When a Body is moved upon Rollers and Power applied at the Base of the Body, f+f' $\frac{W}{r} = F$. f and f' representing coefficients of friction of two surfaces upon which rollers act.

When Power is applied at Circumference of Roller, $f \mathbb{W} \div r = F$.

When Power is applied at Axis of Roller, $f \mathbb{W} \div \overline{r \div 2} = \mathbb{F}$.

Bearings for Propeller Shaft. (Mr. John Pe

Bearings.	Pressure per Sq. Inch.	Time of Op- eration.	Bearings.	;
Babbit's metal on iron* Box on brass	Lbs. 1600 4480 448 448 448	Min. 8 5 30 30 30	Brass on iront	\
		RE	raded.	1 per ime

Result of Experiments upon Friction of Several Instruments. (R. S. Ball.)

Instrument.	Friction.	Velocity ratio.	Mechanical efficiency.	Circles.
Pullar single	F L		1.8	Per Cent
Pulley, single	2.21 + 5453	6	37.5	64
" differential	3.87 +.151	16	6.1	35
Screw	.0 +.014	193	70	35
Inclined plane, angle 170 2'		3-4	1.72	51
Screw Jack	.66 + .007	414	110	
Wheel and Axle	.204 + .043	31	22	70
" Barrel	-5 +.169	5.95	5.55	93
" Pinion	2.46 +.21	8	18	51 78
Crane	.0 +.056	23		72
"	.185+.008	137	87	1 63

F representing friction, and L load.

ILLUSTRATION I.—If it is required to ascertain power necessary to raise 200 lb 2 feet, by a single movable pulley, 200 × .5453 + 2.21 = 111.27 lbs., which mist applied as power to raise 200 lbs. 2 feet. 111.27 × 2 = 222.54 lbs. Hence, for application of 222.54 lbs., 200 or 89.87 per cent. are usefully or effectively employed.

2.—If it is required to raise 100 lbs. by a three-sheave pulley, then $100 \times .78^{-2}$. 36 = 26.16 lbs, which must be applied as power to raise 100 lbs. 6 feet $(3 \times 2^{-1})^{-2}$ $(3 \times 6 = 156.96$ lbs. Hence, for application of 156.96 lbs., 100 or 63.71 per an are effectively employed.

3.—The velocity ratio of a crane being 137, and its mechanical efficiency $\frac{1}{2}$, man applying 26 lbs. to it can raise $\frac{1}{2}$ $\frac{$

Application of preceding Results.

ILLUSTRATION.—If a vessel, including cradle, weighing root tons, is to be due upon an inclined plane having a rise of 10 feet in 100 of its length, what will be a resistance to be overcome, the cradle being supported on wrought-iron axies in as iron rollers, running on cast-iron rails?

$$\frac{1000 \times 10}{100}$$
 = 100 tons = power required to draw vessel independent of friction

Ratio of friction to pressure of wrought iron on cast, in an axle and its bear,

Hence .075 + .005 = .08 of 1000 tons = 80 tons, which, added to 100 tons before ducted, gives 180 tons, or resistance to be overcome.

Power or effect lost by friction in axles and their bearing may be pressed by formula

Wfdr = P. f representing coefficient of friction, d diameter of axle in ins.

r number of revolutions per minute.

ILLUSTRATION.—Pressure on piston of a steam-engine is 20000 lbs, numbers revolutions 20, and diameter of driving shaft of wrought iron in a brass journal 8 ins.; what is the effect of friction?

$$\frac{20\,000\,\times\,.07\,\times\,8\,\times\,20}{230} = 973.91 \text{ lbs.}$$

Hence $Pv \div 33000 = P$. v representing circumference of shaft in feet $\times b_1 = lutions$ per minute.

The power or effect lost by friction in guides or slides may be expressly following formula:

Wfsr $\frac{Wfsr}{60 \times \sqrt{(5 l^2 - s^2)}} = P$. s representing stroke of cross-head, and l lead q' = 0 necting rad in feet.

Frictional Resistances.

Friction of Steam-engines.

ction of Condensing Engines in Lbs. per Sq. Inch of Piston.

eter ier.	Oscillating and Trunk.	Beam and Geared.	Direct- acting and Vertical.	Diameter of Cylinder.	Oscillating and Trunk.	Beam and Geared.	Direct- acting and Vertical.
,—	5	6	7 6	50 60	2.5 2.4	2.7 2.6	3.3
	3.5	4 3.6	5 4-5	7° 80	2.3	2.5 2.3	2.7
,	3 2.6	3.5	4 3·5	110	1.6 1.5	2.2	2.5

experiments upon different steam-engines have determined that friction, pressure on piston is about 12 lbs. per sq. inch, does not exceed 1.5 lbs., out one tenth of power exerted.

iction of double cylinder (50-inch diam.) direct-acting condensing proregine is 1.25 lbs. per sq. inch of piston = 10.3 per cent. of total power loped; friction of load is .9 lbs. per sq. inch of piston = 7.5 per cent. of pressure; and friction of propeller is 1.3 lbs. per sq. inch of piston = per cent. of total power = 28.6 per cent.

iction of double cylinder (70-inch diam.) inclined condensing wateral engine with its load is 15 per cent. of total power developed.

general, when engines are in good order, their efficiency ranges from 80 cent. for small engines to 93 per cent. for large.

ower required to work air-pumps is 5 per cent., and to work feed-pumps r cent.

sults of Experiments upon Friction of Machinery. (Davison.)

eam-engine, vertical beam, one tenth its power; 190 feet horizontal, and feet vertical shafting, with 34 bearings, having an area of 3300 sq. ins., 111 pair of spur and bevel wheels; 7.65 H.

zt of three-throw Pumps, 6 ins. in diam., delivering 5000 gallons per hour a elevation of 165 feet; 4.7 PP, or about 13 per cent.

wo pair iron Rollers and an elevator, grinding and raising 320 bushels t per hour; 8.5 PP.

le-mashing Machine, 800 bushels malt at a time; 5.68 IP.

rchimedes Screw (ninety-five feet), 15 ins. in diameter, and an elevator reying 320 bushels malt per hour to a height of 65 feet; 3.13 FP.

riction Clutch.—Driven by a leather belt 14 ins. in width; face of clutch s. deep; broke a cast-iron shaft 6.5 ins. in diameter.

lax Mill (M. Cornut, 1872).—Two condensing engines. cvlinders, 12.9 X 44.3 ins. stroke, and 22 ins. X 59.8 ins. stroke. F steam, bs. per sq. inch; revolutions, 25 per minute. Friction

ith vegetable oil and hand oiling a steam pressur was required, and with mineral oil and continuous conly was required.

continuous oiling, a saving of 44 per cent. was

Flax Mill.

Power required to Drive Engine, Shafting, and entime Machinery. (M. Cornut.)

Parts.	Total.	orse-power. achine	Effect d	
	TOTAL.	at work.	empty.	Machine
Engines, shafting, and belts	30.41	_		_
4 cards	8.42	2.105	1.423	32
14 drawing frames (29 heads or 156)	7.19	.0934	.0794	15
4 combing machines	2.22	-555	.151	78
6 roving frames (330 spindles) 20 spinning frames.	7 .78	.026 27*	2-434	7.3
Dry (1480 spindles)	47.5	.0321*	2.515	21.6
Wet (2080 ")	46.59	.0224*	1.613	19

Total 150.11 IP.

* Per 100 spindles.

The IP per 100 spindles varies inversely as sq. root of their number.

Winding Engine (G. H. Daglish).

Shafts 738 to 1740 feet in depth; cylinder 65×84 ins. stroke; pressure of t 19 lbs. per 34. inch; revolutions 12.5 per minute; mean diameter of drum, 25 t 12 313.4; effect 235 = 75 per cent.

Tools. (Dr. Hartig).

Single shearing, $1 + \frac{n}{26.7} = \mathbf{P}$ to drive tool. n representing number of cuts per minute, t thickness of plate, and $\frac{a \, F}{1980000} = \mathbf{P}$ to shear. a representing area of surface cut or punched per hour in sq. ins., and F(1166 + 1691) a factor of pressing work required to cut or shear a surface of 1 inch square.

ILLUSTRATION.—A shearing machine cutting 4648 sq. ins. of surface per hour is plates .4 inch thick, required .68 IP to run and 4.3 to operate it, equal to 5 hours

Iron Plate-bending. $\frac{85 \cos b \, t^2 \, l}{r} = P$ for cold plates, and $\frac{11 \, 300 \, h^{(l)}}{r}$ = P for red-hot plates. b, t, and l representing breadth, thickness, and length of plates radius of curvature, all in ins., and P net power of bending.

Power for large rolls when running only . 5 to .6 IP.

Ordinary Cutting Tools, in Metal.

Materials of a brittle nature, as east iron, are reduced most economically in port consumed, by heavy cuts; while materials which yield tough curling sharing at more economically reduced by thinner cuttings. Following formulas apply to is cutting work:

Power required to plane cast iron is-

Planing Cast iron, W $\left(.or_{55} + \frac{1}{11 \cos s} \right) = HP$. W representing weight of $\frac{1}{11 \cos s}$ wed per hour, in lbs., and s average sectional area of shavings, in sq. integrated iron, and Gun-metal, with cuts of an average character—

2 W= \mathbb{H} | Wrought iron, .052 W= \mathbb{H} | Gun-metal, .012 W= \mathbb{H} and Molding.—Run without cutting. $\frac{N}{2000}$ = \mathbb{H} . It revolutions of all the shafts per minute.

Molding. — Pine, .0566 $+\frac{.02268}{h}$, and Red Beech, .088 95 $+\frac{.00731}{h}$ = IP. h repsenting depth of wood cut down to form molding.

Turning. — Steel, .047 W = H; Wrought iron, .0327 W = H; Cast iron, 314 W = H.

For turning off metals, power required is less than for planing, and it is ascerined that greater power is required for small diameters than large.

Light Lathes, .05 + .0005 n = H; 1 or 2 shafts, .05 + .0012 n = H; 3 or 4 shafts, 5 + .05 n = H. Heavy Lathes, .025 + .0031 n; .025 + .053 n; .025 + .18 n. The representing number of revolutions of spinule per minute.

Drilling.—Power required to remove a given weight of metal is greater than planing. Volume being taken in place of weight.

Holes from .4 to 2 ins. in diameter.

Let iron, dry. $V\left(.\cos 68 + \frac{.\cos 67}{d}\right) = \mathbb{P}$. Wrought iron, oil. $V\left(.\cos 68 + \frac{.\cos 69}{d}\right) = \mathbb{P}$.

▼ representing volume removed in cube ins. per hour, and d diameter of hole.

Without gearing, .0006 n + .0005 n'; with gearing, .0006 n + .001 n'; radial rills without gearing, .006 n + .004 n'; radial drills with gearing, .04 + .0006 n + .004 n'. n representing number of revolutions per minute of gearing shaft, and n' farill.

Slotting.—Stroke 8 ins. $.045 + \frac{n s}{4000} = H$. n representing number of strokes er minute, and s stroke in ins.

Wood-sawing, Circular.—A cube foot of soft wood and half a cube rot of hard, reduced to sawdust, requires r IP.

Hard wood, $\frac{A}{6}c = \mathbf{H}'$. Soft wood, $\frac{A}{12}c = \mathbf{H}'$. A representing area in sq. feet \mathbf{P}' horse-power per sq foot, both cut per hour, and c width of cut in ins.

From .4 to 4 ins. in diameter.—Pine. $V\left(\infty_{125} + \frac{.00656}{d}\right) = Percentage = 125 + \frac{.00656}{d}$

Dry pine timber. .004 28 + .0065 $\frac{Sc}{f} = \mathbf{P}'$. S representing stroke of saw in feet, and f feed per cut in ins.

 $\frac{n d}{32000} = \text{H for horse power to run only without cutting.} \quad d \text{ representing diameter}$ saw in ins., and n number of revolutions per minute.

Net power required to cut with a circular saw is proportional to volume of marial removed. For a saw cutting hot iron, at a circumferential speed of 7875 feet in minute, and making a cut.14 inch wide, power is expressed by formulas—

·702 A = HP, for red-hot iron. 1.013 A = HP, for red-hot steel.

A representing sectional area of surface cut through, in sq. feet.

Vertical Saw. .00428+.005 $\frac{Sc}{f}$ =**P** in dry pine timber per sq. footer hour. S representing stroke of saw in feet, c width of cut in ins., and f feed of it in ins.

Band Saw. $0034 + \frac{758 c v}{10000 f} = \text{Pr}' in Pine. .00483 + \frac{957 c v}{10000 f} = \text{Pr}' in Oak.$

 $^{\circ}$ 5 76 + $\frac{1.127 \circ v}{10000}$ = \mathbf{R}' in Beech. v representing velocity of f rate of feed. Feet per minute.

Sorew Cutting. Screws, $\frac{5 l d^3}{64} = P$. Taps, $\frac{1}{2}$. Taps, $\frac{1}{2}$. Taps, $\frac{1}{2}$. Taps, $\frac{1}{2}$. Taps, $\frac{1}{2}$. Taps, $\frac{1}{2}$.

Coal.

Anthracite.

Anthracite or Glamce Coal, or Culm—Is hard, compact, lustrous, and some times iridescent, most perfect being entirely free from bitumen; it ignize with difficulty, and breaks into fragments when heated.

Evaporative power, in furnace of a steam-boiler and under pressure, i from 7.5 to 9.5 lbs. of fresh water per lb. of coal.

Coal from one pit will sometimes vary 6 per cent in evaporative value.

Elements of Various American Coals.

	Specific Gravity.	Fixed Carbon.	Volatile Matter.	Water.	Moist- ure.	Ash.	Earthy Matter
		Per Cent.	Per Cent.	Per Cent.	Per Cent.	Per Cent.	Per Cest.
Illinois, Warren Co	1.23	51.7		-	-	_	5.2
Bureau "	1.32	57.6	43.1 28.8	-	11.2	2.4	-
Mercer "	1.26	54.8	31.2	-	8.4	5.6	1 - 1
Indiana, Clay "	1.28	56.5	32.5	8.5	-	2.5	-
Coopriders	1.28	50.5	42.5	3	-	4	-
Pennsyl- Connellsville	1.28	65	24	4.5	-	6.5	-
vania Youghiogheny	1.3	58.4	35	-	1	5.6	-
Fayette Co	1.29	58	34	3	-	5	-
Kentucky, Sardric	1.32	5 1	42.5	2	-	4.5	150
Mud River		57 58.4	37	3.5 6.65	Ξ	2.5	100
Ohio, Nelsonville	1.27	58.4	33.05	6,65	-	1.9	-
Colorado, Carbon City	1.21	56.8	34.2	4-5	-	4-5	
Washington Territory	1.32	58.25	31.75	7	-	3	-

Coke.

Coke.—Coking in a close oven will give an increase of yield of 40 per cut over coking in heaps, gain in bulk being 22 per cent. Coals when coked in heaps will lose in bulk.

Cannel and Welsh (Cardiff) coals when coked in retorts will gain from 12 to 30 per cent. in bulk and lose 36.5 per cent. in weight.

Relative costs of coal and coke for like results, as developed by an experiment in a locomotive boiler, are as 1 to 2.4.

Evaporative power in furnace of a steam-boiler and under pressur, from 7.5 to 8.5 lbs. of fresh water per lb.

Bituminous coal will yield from 60 to 80 per cent. of coke. Average 66 per cent. It is capable of absorbing 15 to 20 per cent. of moisture.

Heat of combustion lost in coking of bituminous coal 40 per cent.

Charcoal.

Charcoal, properly termed, is not made below a temperature of 536°. Debest quality is made from Oak, Maple, Beech, and Chestnut.

Wood will furnish, when properly burned, about 23 per cent. of coal.

Charcoal absorbs, upon an average of the various kinds, from .8 per of water for Beech, to 16.3 for Black Poplar, Oak absorbing about 4.28 at Pine 8.9.

Evaporative power, in furnace of a boiler and under pressure, is 55 lbs of fresh water per lb. of coal.

Volume of air chemically required for combustion of 1 lb. of durable when it consists of 79 carbon, 129 cube feet at 62°.

138 bushels charconl and 432 lbs. limestone, with 2612 lbs. of on, will on of pig iron.

luce of Charcoal from Various Woods dried at 300° and Carbonized
at 572°. (M. Violette.)

Wood.	Weight.	WOOD.	Weight.	Wood.	Weight.
har roots	46.09 44.25 41.48	LarchChestnutAppleElmBirch	36.06 34.69 34.59	Maple	33·74 33·61 33·28

Poplar..... 31.12 per cent.

In a Green or Ordinary State. (Weight per cent.)

le 23.8	Birch 24.1	Oak 22.85	Red Pine 23
26.7	Elm 25.1	" young 33.3	White Pine 23.5 Willow 18.6
:h 21.1	Maple 22.0	Poplar 20. 5	Willow 18.6

appears from this that cork, the lightest of woods, yields largest per-centage harcoal, about 63 per cent.; and that poplar yields lowest, about 31 per cent. re does not appear to be any definite relation between density of wood and ime of yield.

roduce by a slow process of charring is very nearly 50 per cent. greater than by tick process.

Lignite.

ignite is an imperfect mineral coal. It is distinguished from coal by large proportion of oxygen, being from 13 to 29 per cent. Its specific vity ranges from 1.12 to 1.35.

Elements of Various American Lignites. (W. M. Barr.)

LOCATION.	Spec. Grav.	Fixed Carbon.	Volatile Matter.	Water.	Asb.	Total Volatile.	Coke.
		Per Cent.	Per Cest.	Per Cent.	Per Cent.	Per Cest.	Per Cest.
stocky		40	23	30	7	- 53	47
Blandville	1.17	31	48	11.5	9.5	52-5	40.5
shington Terr'y	_	58.25	31.75	7	3	38.75	61.25
ncouver's Island	_	62	31	4	3	35	65
lorado, Carbon City		41.25	46	3-5	9-25	445	50.5
Canon City	1.28	56.8	34-2	4.5	4.5	32.7	61.3
kameas	_	34-5	28.5	32	5	623	34.5
ras, Robertson Co	L-23	45	39-5	11	45	50.5	445

Asphalt.

Asphalt, alike to Lignite, contains a large proportion of oxygen.

Wood.

Wood, as a combustible, is divided into two classes, the hard, as Oak, Ash, in, Beech, Maple, and Hickory, and soft, as Pine, Cotton, Birch, Sycamore, of Chestnut.

Green wood subjected to a temperature ranging from 3200 to 4400 will be 30 to 45 per cent. of its weight.

At a temperature of 300%. Oak, Ash, Elm, and Walnut in a comparature, y

Woods contain an average of \$6 per cent. of som sustains married

From an analysis of M. Follette it appears that the control of the tree, and that of the park their than your extensions of carbon up per cent, here not not that the control of the contr

Evaporative power of I cube foot of pine wood is equal to that of I cube foot of fresh water; or, in the furnace of a steam-boiler and under pressur, it is 4.75 lbs. fresh water for I lb. of wood.

Northern Wood.—One cord of hard wood and one cord of soft wood, such as is used upon Lakes Ontario and Eric, is equal in evaporative effects to 2000 lbs. of authracite coal.

Western Wood.—One cord of the description used by the river steamboats is equal in evaporative qualities to 12 bushels (960 lbs.) of Pittsburgh coal Q cords cotton, ash, and cypress wood are equal to 7 cords of yellow pine.

Solid portion (*lignin*) of all woods, wherever and under whatever circumstances of growth, are nearly similar, specific gravity being as 1.46 to 1.53.

Densest woods give greatest heat, as charcoal produces greater heat than

flame.

For every 14 parts of an ordinary pile of wood there are 11 parts of space; or a cord of wood in pile has 71.68 feet of solid wood and 56.32 feet of voids.

Trees in the early part of April contain 20 per cent. more water than they do in the end of January.

Ash.

Proportion of Ash in 100 Lbs. of several Woods.

Woods.	Wood.	Leaves.	Woods.	Wood.	Lesra
AshBeechBirch	1 -35	5.4	Elm Oak Pitch Pine.	.21	Per Cest. 11.8 4 3.15

Peat.

Peat is the organic matter, or soil, of bogs, swamps, and marshes—decayed moss, sedge, coarse grass, etc.—in beds varying from 1 to 40 feet in depth. That near the surface, and less advanced in transformation, is light, spong, and fibrous, of reddish-brown color; lower down, it is more compact, of a darker brown color; and, in lowest strata, it is of a blackish brown, or almost black, of a pitchy or unctuous surface, the fibrous texture nearly or almost properties of the stransformed.

Peat, in its natural condition, contains from 75 to 80 per cent. of water. Occasionally its constituent water amounts to 85 or 90 per cent., in which case peat is of the consistency of mire. It shrinks very much in drying; and its specific gravity varies from .22 to 1.06, surface peat being lighter.

and deepest peat densest.

When peat is milled, so that its fibre is broken up, its contraction in drying is much increased, and in this condition it is termed condensed.

When ordinarily air dried, it will contain 20 to 30 per cent. of moistant and when effectively dried at least 15 per cent.

Products of Distillation of Peat.

Water 31.4. Tar 2.8. Gas 36.6. Charcoal 29.2.

The distillation of the tar will yield paraffine, oil, gas, water, and checoal, and the water acetic acid, wood spirit, and chloride of ammonia.

Evaporative power, in furnace of a steam-boiler and under pressure, is from 3.5 tc 5 lbs. of fresh water per lb. of fuel.

Tan.

amlock bark, after having been used in the process of the 3 as a fuel. It consists of the fibre of the bark, and when perfectly dry, or containing but 15 per cent. while that of tan in an ordinary state of dryness, as of water, is 4284. Weight of water evaporated at an these units, is 6.31 lbs. for dry, and 4.44 for moist.

Relative Values of different Fuels.

SCRIPTION.	Lbs. of Steam from Water at 212° by 1 lb. of Fuel.	Relative Evapora- tive Power for equal Weights.	Relative Evapora- tive Power for equal Volumes.	Relative Rapidi- ties of Ignition.	Relative Freedom from Waste.	Relative Com- pleteness of Combustion.	Relative Weights.
thracites. untain, Pa eadow 'uminous.	10.7 9.88	1 .923	.982	.505	.633 .748	·725 .6	·945
, Ind	8.66 8.48 7.84 7.34 6.95	.809 .792 .733 .686	.776 .738 .663 .616	.505 .588 .581 1	.887 .418 .984 .499	.346 .333 .578 .649	.904 .876 .852 .848 .909
i, ury	4.69	.436	1 .175	ı —	16.417	_	. —

ts, Evaporative Powers per Weight and Bulk, stc., of different Fuels. (W. R. Johnson and others.)

Fuzl.	Specific Gravity.	Weight per Cube Foot.	Steam from Water at 212° by 1 lb. of Fuel.	Clinker from 100 lbs.	Cube Feet in a Ton.
ITUMINOUS.		Lbs.	Lbs.	Lbs.	No.
nd, maximum	1.313	52.92	10.7	2.13	42.3
minimum	1.337	54-29	9.44	4-53	41.2
	1.326	53.22	10.14	-	42.00
igan	1.23	48.3	7-7	-	46.37
h	1.324	53.05	9.72	3.4	42.2
n, screened	1.283	45.72	8.94	3.33 8.82	49
average	1.294	54.04	8.39	8.82	41.4
, Hartley	1.257	50.82	8.76	3.14	44
	1.318	49.25	8.41	6.13	45
1	1.252	46.8z	8.2	-94	47.8
	1.338	47-44	7-99	2.25	47.2
rtley	1.262	47.88	7.84	1.86	46.7
ll, Va	1.285	45.49	7.67	3.86	49.2
ı, İndalkeith	1.273	47.65	7.34	1.64	47
aikenii	1.519	51.09	7.08	5.63	43.8
			5.72	-	
	1.231	48.3	_	-	100
NTHRACITE.				- CT 1	
ountain	1.464	53.79	10.11	3.03	41.6
provement	1.477	53.66	10.06	.81	41.7
eadow	1.554	56.19	9.83	.6	39.8
1D8	1.421	48.89	9.79	1.24	45.8
eadow, No. 3	1.61	54-93	9.21	1.01	40.7
	1.59	55.32	8.93	1.08	40.5
COKE.		1			
7irginia	1.323	46.64	8.47	5.31	
n		32.7	8.63	10.51	
nd	_	31.6	8.99	3.55	
CELLANEOUS.]	1	Ash.	,
Oak	1.5	24	5.5	3.06	
· · · · · · · · · · · · · · · · · · ·	.53	30	5	1 -	1
nel	1.15	6g. z	10.4	2.91	1
" ·····		65	8.9	1 -	- \
'ry				1	31 / 10

Weights and Comparative Values of different Woods.

Woods.	Cord.	Value.	Woods.	Cord.	Value.
Shell-bark Hickory Red-heart Hickory White Oak Red Oak Virginia Pine Southern Pine Hard Maole	3705 3821 3254 2689	.81 .81 .69 .61 .73	New Jersey Pine Yellow Pine White Pine Beech Spruce Hemlock Cottonwood	Lba. 2137 1904 1868	.54 .43 .42 .7 .52 .44

Liquid Fuels.

Petroleum.

Petroleum is a hydro-carbon liquid which is found in America and Europe According to analysis of M. Sainte-Claire Deville, composition of 15 petro leums from different sources was found to be practically constant. Avenue specific gravity was .87. Extreme and average elementary composition was as follows:

Carbon		cent.	Average,	84.7 13.1	per cent
Oxygen		"	" -	2.2	"
				100	

Its heat of combustion is 20 240, and its evaporative power at 2120 20.34

Petroleum Oils-Are obtained by distillation from petroleum, and are coupounds of carbon and hydrogen, in average proportion of 72.6 and 27.4.

Boiling-point ranges from 86° to 405°.

Schist Oil-Consists of carbon 80.3 parts, hydrogen 11.5, and oxygen 82 Pine Wood Oil - Consists of carbon 87.1 per cent., hydrogen 10.4, and oxygen 2.5.

Coal-gas.

Coal Gas—As furnished by Chartered Gas Co. of London is composed # follows:

	Carbon.	Hydrogen!		Oxygen.	Hydrogen.	Nitrogus.
Olefiant Gas, Bi-carb. hyd.	3.096	•434	Hydrogen	.08	51.8	=
Marsh gas, }	26.445	8.815	Nitrogen			. 38
Carbonic oxide	2.84	5.11	Total.	T	oo narta	

Heat of combustion at 212° 52 of units, and evaporative power 47.51 bs

Coal-gas. (V. Harcourt.)

_	Carb.	Hyd.	Oxy.	Nit.	1	Carb.	Hyd.	Oxy. Nit.
	Per ct.	Per ct.	Per ct.	Per ct.		Per ct.	Per ct.	Per ct. Per ct.
gas	10.5	1.7	l —		Hydrogen		8.1	_ -
· · · · · ·		13.2	l —	(1	Nitrogen		_	5.8
xide	5.9	\ 	17.9	\ —	∥ Oxygen	·\ —	\ 	.3 -
oxide	1.9	I —	\ 5	\ -	\\ Total	58	23	12/868

this gas had a volume of 30 cube feet at 62°; heat of combon units: and of one cube foot 756 units, which is equivalent units: and of water from 62°, or of .78 lb. from 212° per cube?

FUEL.

Average Composition of Fuels.

zzvorago C	, O1111	,0510		· -	u	•	
	Specific Grav- ity.	Carbon.	Hydro- gen.	Nitro- gen.	Oxygen.	Sul- phur.	Asb.
BITUMINOUS COALS.		Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	Per ct.
tralian	1.31		_		_	.5	8.38
neo	1.28	64.52	4-74	8.	20.75	1.45	7.74
ish, lowest		68.72	4.76 8.86	—	18.63	1.35	-
head, dry, average	1.18	63.94		.96	4.7	.32	21.22
i, Conception Bay	1.29	70.55	5.76	-95	13.24	1.98	7.52
Chiriqui	1.23	38.98	4.01 6.08	.58	13.38	6.14	36.91 4.84
nel, Wigan 1berland, Md	1.31	79.23 93.81	1.82	1.18	7·24 2·77	1.43	1.6
e, Garesfield	1.31	97.6		_	2.77	.85	1.55
Durham		89.5	_	l	_	1.25	9.25
Average	l —		_	l —	_	1.22	5.34
fryn	1.33	93.44 88.26	4.66	1.45	.6	1.77	3.26
mosa Island	1.24	78.26	5-7 4-88		10.95	-49	3.96
nch, hard	1.32	88.56	4.88		. 38)	_	2.19
caking	1.29	87.73	5.08	\ 5	.65)	-	1.54
TOUR HAIDO	1.3	82.94	5-35	(8	.63 (_	3.08
average*ian, average	1.31	85	4-5	(7)		3·5 22·0
Kotbec	_	47·3				_	4
agonia.	_	62.25	5.05	.62	17:54	1.13	13.4
sian, Miouchi†	l —	91.45	4.5	ړ" ا	.05)		-3-4
ney, S. W		82.39	5.32	1.27		.07	2.04
int, Wylam	-	74.82	6.18		.09)		13.91
Glasgow	l —	82.92	5.49	(10	.46)	-	1.13
Cannel, Lancashire	_	83.75	5.66		.04)	-	2.55
" Edinburgh		67.6	5-4	(12	.43)	_	14.57
Cherry, New Castle		84.85	5.05	(8	.43)	-	1.67
Caking, Garesfield Ebbro Vale, Welsh	_	87.95	5.24	2.16	42)	1.02	1.39
Llangenneck "		89.78 84.97	5.15 4.26	1.45	·39 3·5	.42	5.4
icouver's Island	_	66.93	5.32	1.02	8.7	2.2	15.83
ANTHRACITES.		20.93	3.3-		,		-55
:hracite				l			8.67
nch	1.5	88.54 86.17	2.67	7.	.85)	.52	8.56
ssian	1.3	96.66	1.35	(2	.99)	_	0.50
Woods.	_	90.00	*.33	' -	, 66		
ch.	_	50.17 48.12	6.12	1.05	40.38		1.7 7 .48
[_	48.13	6.37 5.25	.82	43.95 44.5		1.3
ite Pine	=	49-95	6.41		43.65	=	
ods, average		49.7	6.06	1.05	41.3	_	.3r 1.8
CHARCOAL		,,,			, ,		
[87.68	2.83	Í	6.43		3.06
e		71.36	5.95	=	22.10	_	-4
ple	_	70.07	4.61	_	24.80		.43
MISCELLANEOUS.	l	,,	4.01		-491		1,13
	6	0		, ,	١ ١		2.8
halt nite, perfect	1.06	79.18 69.02	9.3		.72) .12)	_	5.82
" imperfect	1.25	60.18	5.05		.03)		5·57
" bituminous	1.18	74.82	5.29 7.36		.38)	_ _ _ _	4.45
" Colorado	1.28	56.8	/.30	l``	i –	_	4.5
" Kentucky	1.2	40		l —	l —	<u> </u>	7
" Arkansas		34.5	l —		l —	\ -	('š
t, dense	 	61.02	5.77	18. /	32.4	\ -	\ —
Irish, average	.528	58.18	1		^1.21	' \ -	3.43
nt, Warlich	1.15	90.02	1			, z.e	25 / 5.0
Wylam's	I. I	79.91	1				٠ ~
Test of Combustion - 4 - 7 -							

leat of Combustion of I Lb. 14723. soluding Nitrogen.

Average Composition of Coals and Fuels, Heat of Combustion, and Evaporative Power.

Deduced from analysis and experiments of Messrs. De La Bèche, Playfair, and Pedel.

COALS AND FUELS.	Specific Gravity.	COMPOSITION.							Evaporation from water
	S. P.	Carbon.	Hydro- gen.	Nitro- gen.	Sul- phur.	Oxy- gen.	Ash.	Heat of Constion of Date of Constinution of Constitution of Co	Fra
		Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	Units.	Lba.
Derbyshire and Yorkshire	1.29	79.68	4-94	1.41	1.01	10.28	2.65	13 86o	14-34
Lancashire	1.27	77.9	5.32	1.3	1.44	9.53	4.88	13918	14.56
Newcastle	1.26	82.12	5.3I	1.35	1.24	5.69	3.77	14820	
Scotch	1.26	78.53	5.61	1	1.11	9.69	4.03	14 164	
Welsh	1.32	83.78	4.79	.98	1.43	4.15	4.91	14858	15.52
Average of British.	1.28	80.4	5.19	1.21	1.25	7.87	4.05	14 320	
Patent fuels	1.17	83.4	4 97	1.08	1.26	2.79	5.93	15000	15.66
Van Diemen's Land	_	65.8	3.5	1.3	I.I	5.58	22.71	11 320	11.83
Chili	_	63.56	5-43	.82	2.5	14.84	13.31	11 030	11.68
Lignite, Trinidad	-	65.2	4.25	1.33	.69	21.69	6.84	10438	
FIGHUR AIPS	1.28	70.02	5.2	_	_	_	3.01	11790	
min, outa	1.2	75.85	7.25	-	_	-	3.94	14 562	
11 4011, 101,	,	67	4.55	-	I	-	3.1	12 538	12.91
Asphalt	1.06	79.18	9.3	_	_	_	2.8	16655	17.24
Petroleum	.87	84.7	13.1	-		2.2	-	20 240	20.33
" oils	•75	-		_	_		-	27 530	28.5
Oak bark Tan, dry.	_				_	_	15	6100	6.31
" " moist	_		_				15	4 284	4-24
Charcoal at 3020	1.5	47.5I	6.12	(O a	nd N 46	5.29)	.8	8 130	8.4
" " 572 ⁰	1.4	73.24	4.25	(Oa:	nd N 2:	1.96)	•57	11861	12.27
" " 810°	1.71	81.64	4.96	(O a	nd N 19	5.24)	1.61	14916	I 5-43
Peat, dry, average.	•53	58.18	5.96	1.23		31.21	3-43	9951	10.3
" moist,† "		43. I	4.3	(Oa	nd N 2	1.4)	3.3	8917	9.22
Coal-gas	42	33.38	66.16	.38	_	•08	_	52 961	47.51
* Water 7. Oxy	gen and		17.36.		+	Moistu	re 27.8.	Sulphur .	.2.

Flomonts of Fuels not included in Preceding Tables

Elements of Fuels	not inc	luded ir	ı Prece	ding T	ables.
Fuel.	Heat of Combustion of 1 lb.	Evaporative Power of 1 lb. at 212°.	Coke pro- duced.	Weight of 1 Cub. Foot.	Volume of x Ton.
Bituminous Coal.	Units.	Lbs.	Per cent.	Lbs.	Cube Feet.
Welsh	14858	9.05	73	82	42.7
Newcastle	14 820	8.oi	73 61	78.3	45-3
Lancashire	13918	7.94	58	79.4 78.6	45.2
Scotch	14 164	7.7	54	78.6	42
Boghead	14 478	7.87	30.94	-	_
British, average	14 133	8.13	6 1	79.8	44-52
Irish, lowest	_	9.85	90 83. 7	99.6	35.7
Cumberland, Md	-	_	83.7	84.93	42.4
American, average		_	82.5	87.54	43-49
French, average	14 723	_	64.2 68.27	! -	40
Australiau	_	_	06.27	-	_
Anthracile.	ļ				
American	14 500	-	94.82	93.78	42-35
French	14038	_	88.83	_	-
Miscellaneous.				ł	
Warlich's fuel	16495			73.5	34-5
CokeMickley	15600		_	_	80
ginia, average		14.02	\ -	45	69.8
oal	.\ 12325	\ —	\ —		12.75
perfect		12.1	47 37.5	\ -	\ -
imperfect		81.01 /	/ 37.5	\ -	\ -
Russian		, \ —	\ _	\ -	_ \ _
***************************************	\ x655	e \ 17.2		_ \ `	- / 11
7, average			07 /	•	
, ,		-			

Miscellaneous.

Experiments undertaken by Baltimore and Ohio R. R. Co. determined apprating effect of r ton of Cumberland coal equal to 1.25 tons of anthracte, and r ton of anthracite to be equal to 1.75 cords of pine wood; also at 2000 lbs, of Lackawanna coal were equal to 4500 lbs, best pine wood.

One lb. of anthracite coal in a cupola furnace will melt from 5 to 10 lbs. of cast 11, 8 bushels bituminous coal in an air furnace will melt 1 ton of cast iron.

Small coal produces about .75 effect of large coal of same description.

Experiments by Messrs. Stevens, at Bordentown, N. J., gave following results:

Under a pressure of 30 lbs., r lb. pine wood evaporated 3.5 to 4.75 lbs. of water. lb. Lehigh coal, 7.25 to 8.75 lbs.

Bituminous coal is 13 per cent. more effective than coke for equal weights; and England effects are alike for equal costs.

 $\it Radiation\ from\ Fuel.$ —Proportion which heat radiated from incandescent fuel ars to total heat of combustion is,

Volume of pine wood is about 5.5 times as great as its equivalent of bituminous al.

GRAVITATION.

GRAVITY is an attraction common to all material substances, and ey are affected by it directly, in exact proportion to their mass, and versely, as square of their distance apart.

This attraction is termed terrestrial gravity, and force with which a dy is drawn toward centre of Earth is termed the weight of that body.

Force of gravity differs a little at different latitudes: the law of variation, wever, is not accurately ascertained; but following theorems represent it rry nearly:

Or, 32.171 (lat. 45°) ($1 + \frac{1005 \text{ 133 sin. L}}{1005 \text{ 133 sin. L}}$ ($1 - \frac{2 \text{ H}}{1005 \text{ R}}$) = g. L representing latitude, height of elevation above level of sea, and R radius of Earth, both in feet.

Note.—If 2 L exceeds 90°, put cos. 180—2 L, and R at Equator=20926062, at sles 20853429, and mean 20889746.

ILLUSTRATION.—What is force of gravity at latitude 45°, at an elevation of 209 et, and radius = 20 900 000 feet?

et, and radius =
$$20\,900\,000$$
 feel?
171 $(1 + .005\,133\,\sin.\,45^{\circ}) \left(1 - \frac{2\,H}{20\,900\,000}\right) = 32.171 \times 1.003\,63 \times .999\,98 = 32.287.$

Gravity at Various Locations at Level of Sea.

In bodies descending freely by their own weight, their velocities are as nes of their descent, and spaces passed through as square of the times.

Times, then, being 1, 2, 3, 4, etc., Velocities will be 1, 2, 3

vaces passed through will be as square of the velocities times, as 1, 4, 9, 16, etc.; and spaces for each time

A body falling freely will descend through 16.0833 feet in first sensitime, and will then have acquired a velocity which will carry it through 32.166 feet in next second.

If a body descends in a curved line, it suffers no loss of velocity, military of a cycloid is that of quickest descent.

Motion of a falling body being uniformly accelerated by gravity, and of a body projected vertically upwards is uniformly retarded in same men

A body projected perpendicularly upwards with a velocity equal to the which it would have acquired by falling from any height, will assent the same height before it loses its velocity. Hence, a body projects wards is ascending for one half of time it is in motion, and descending to other half.

Various Formulas here given are for Bodies Projected Upwerk!
Falling Freely, in Vacuo.

When, however, weight of a body is great compared with its volume, and with of it is low, deductions given are sufficiently accurate for ordinary purposes.

In considering action of gravitation on bodies not far distant from surface of Earth, it is assumed, without sensible error, that the directions in which is sensible parallel, or perpendicular to the horizontal plane.

A distance of one mile only produces a deviation from parallelism less that minute, or the 6oth part of a degree.

Relation of Time, Space, and Velocities.

Time from Beginning of Descent.	Velocity acquired at End of that Time.	Squares of Time.	Space fallen through in that Time.	Spaces for this Time.	Speed to be through to be Second of the
Seconds.	Feet.	Seconds.	Foot.	No.	Flat. 26.08
I	32.166	I	16.083	1	20.00
2	64.333	4	64.333	1 3	48.85
3	96.5	9	144-75	5	804 <u>1</u>
4	128.665	9 16	257-33	7	112.5
5	160.832	25	402.08	اوا	34475
ð	193	25 36	579	ıí i	270.90
7	225.166		579 788.08	13	209.08
8	257-333	49 64	1029.33	15	241.25
9	280.5	8i	1302.75	17	273-42
10	321.666	100	r608.33	19	305.58

and in same manner this Table may be continued to any extent.

Velocity acquired to given Height of Fall and to given Velocity.

$$8.04\sqrt{h} = v;$$
 $2t = v;$ $\frac{v^2}{64.4} = h;$ and $16.083 t^2 = h$

h representing height of fall in feet, v velocity acquired in feet per second, and time of fall in seconds.

To Compute Action of Gravity. Time.

When Space is given. Rule.—Divide space by 16.083, and square of quotient will give time.

EXAMPLE.—How long will a body be in falling through 402.08 feet? $\sqrt{402.08 \div 16.083} = 5$ seconds.

must a body be in falling to acquire a relocate of a

Velocity.

Then Space is given. Rule. - Multiply space in feet by 64.333, and are root of product will give velocity.

NAMPLE.—Required velocity a body acquires in descending through 579 feet.

$$\sqrt{579 \times 64.333} = 193$$
 feet.

relocity acquired at any period is equal to twice the mean velocity during ! neriod.

LUSTRATION.—If a ball fall through 2316 feet in 12 seconds, with what velocity it strike?

$$2316 \div 12 = 193$$
, mean velocity, which $\times 2 = 386$ feet = velocity.

When Time is given. Rule.-Multiply time in seconds by 32.166, and duct will give velocity.

NAMPLE. - What is velocity acquired by a falling body in 6 seconds?

Space.

When Velocity is given. RULE.—Divide velocity by 8.04, and square of tient will give distance fallen through to acquire that velocity.

)r. Divide square of velocity by 64.33.

NAMPLE. — If the velocity of a cannon-ball is 579 feet per second, from what tht must a body fall to acquire the same velocity?

$$570 \div 8.04 = 72.014$$
, and $72.014^2 = 5186.02$ feet.

Vhen Time is given. Rule. - Multiply square of time in seconds by 83, and it will give space in feet.

NAMPLE. - Required space fallen through in 5 seconds.

$$5^2 = 25$$
, and $25 \times 16.083 = 402.08$ feet.

istance fallen through in feet is very nearly equal to square of time in fourths second.

JUSTRATION L-A bullet dropped from the spire of a church was 4 seconds in hing the ground; what was height of the spire?

$$4 \times 4 = 16$$
, and $16^2 = 256$ feet.

y Rule, $4 \times 4 \times 16.0833 = 257.33$ feet.

_A bullet dropped into a well was 2 seconds in reaching bottom; what is the th of the well?

Then
$$2 \times 4 = 8$$
, and $8^2 = 64$ feet.

y Rule, $2 \times 2 \times 16.0833 = 64.33$ feet.

y Inversion. - In what time will a bullet fall through 256 feet?

$$\sqrt{256} = 16$$
, and $16 \div 4 = 4$ seconds.

Space fallen through in last Second of Fall.

When Time is given. RULE.—Subtract half of a second from time, and Itiply remainder by 32.166.

NAMPLE. - What is space fallen through in last second of time, of a body falling no seconds?

$$10 - .5 \times 32.166 = 305.58$$
 feet.

Promiscuous Examples.

. If a ball is r minute in falling, how far will it fall in last second? Pace fallen through = square of time, and I minute = 60 seconds.

$$60^2 \times 16.083 = 57898$$
 feet for 60 seconds.
 $59^2 \times 16.083 = 55984$ " " 59 "

ompute time of generating a velocity of 193 feet per second, and whole sr ded.

$$193 \div 32.166 = 6$$
 seconds; $6^2 \times 16.083 = 579$ feet.

3. If a body was to fall 579 feet, what time would it be in falling, and would it fall in the last second?

$$\sqrt{\frac{579 \times 2}{32.166}} = \sqrt{36} = 6$$
 seconds, and $6 - .5 \times 32.166 = 5.5 \times 32.166 = 176.9$

Formulas to determine the various Element

1.
$$T = \sqrt{\frac{8}{.5g}}$$
; $= \frac{V}{g}$; $= \frac{2}{V}$; $= \sqrt{\frac{2}{g}}$; $= \frac{h}{g} + .5$.
2. $8 = \left(\frac{V}{.25g}\right)^2$; $= \frac{V^2}{2g}$; $= \frac{VT}{2}$; $= \frac{gT^2}{2}$; $= T^2 .5g$.
3. $h = 0$
4. $V = \sqrt{8 \times 2g}$; $= Tg$; $= 2\sqrt{.5gS}$; $= \frac{2}{V}$.

T representing time of falling in seconds, V velocity acquired in feet per Space or vertical height in feet, h space fallen through in last second, g 32 s g and 8.94 grapesenting 16.03 and 8.04.

Retarded Motion.

A body projected vertically upward is affected inversely to its when falling freely and directly downward, inasmuch as a like cause it in one case and accelerates it in the other.

In air a ball will not return with same velocity with which it star vacuo it would. Effect of the air is to lessen its velocity both ascend descending. Difference of velocities will depend upon relative specifity of ball and density of medium through which it passes. Thus weight of ball, greater its velocity.

To Compute Action of Gravity by a Body proj Upward or Downward with a given Veloc

When projected Upward. RULE.—From the product of the given and the time in seconds subtract the product of 32.166, and half the of the time, and the remainder will give the space in feet.

Or, Square velocity, divide result by 64.33, and quotient will girin feet.

EXAMPLE.—If a body is projected upward with a velocity of 96.5 feet pe through what space will it ascend before it stops?

$$96.5 \div 32.166 = 3$$
 seconds = time to acquire this velocity.

Then, 96.5
$$\times$$
 3 $\left(32.166 \times \frac{3^2}{2}\right) = 289.5 - 144.75 = 144.75 feet.$

Rule.—Divide velocity in feet by 32.166, and quotient will give seconds.

EXAMPLE. - Velocity as in preceding example.

$$96.5 \div 32.166 = 3$$
 seconds.

Velocity.

-Multiply time in seconds by 32.166, and product will give r second.

-Time as in preceding example.

$$3 \times 32.166 = 96.5$$
 feet velocity.

"en through in last Second.
time, multiply remainder by 32.166, as

X 32.166 = 80.416 feet

When projected Downward.

Space

RULE.—Proceed as for projection upwards and take sum of products.

EXAMPLE I.—If a body is projected downward with a velocity of 96.5 feet per sec ond, through what space will it fall in 3 seconds?

$$96.5 \times 3 + \left(32.166 \times \frac{3^2}{2}\right) = 289.5 + 144.75 = 434.25$$
 feet.
 $0r, t^2 \times 16.083 + \overline{v \times t} = s.$

2.—If a body is projected downward with a velocity of 96.5 feet per second through what space must it descend to acquire a velocity of 193 feet per second?

96.5
$$\div$$
 32.166 $=$ 3 seconds, time to acquire this velocity. 193 \div 32.166 $=$ 6 seconds, time to acquire this velocity.

Hence 6 - 3 = 3 seconds, time of body falling.

Then $96.5 \times 3 = 289.5 = product$ of velocity of projection and time.

 $16.083 \times 3^2 = 144.75 = product of 32.166, and half square of time.$

Therefore 289.5 + 144.75 = 434.25 feet.

Time.

RULE.—Subtract space for velocity of projection from space given, an remainder, divided by velocity of projection, will give time.

EXAMPLE.—In what time will a body fall through 434.25 feet of space, when projected with a velocity of 96.5 feet?

Space for velocity of 96.5 = 144.75 feet.

Then,
$$434.25 - 144.75 \div 96.5 = 289.5 \div 96.5 = 3$$
 seconds.

RULE.—Divide twice space fallen through in feet by time in seconds.

EXAMPLE.—Elements as in preceding example.

Space fallen through when projected at velocity of 96.5 feet = 144.75 feet, and 434.2 feet = space fallen through in 3 seconds.

Then, 144.75 + 434.25 = 579 feet space fallen through, and $\sqrt{579 \div 16.083} = 360$

Hence, $579 \times 2 \div 6 = 1158 \div 6 = 193$ feet.

Space Fallen through in last Second.

RULE.—Subtract .5 from time, multiply remainder by 32.166, and productive space in feet per second.

EXAMPLE -Elements as in preceding example.

$$6 - .5 \times 32.166 = 5.5 \times 32.166 = 176.91$$
 feet.

Ascending bodies, as before stated, are retarded in same ratio that descendin bodies are accelerated. Hence, a body projected upward is ascending for one halof the time it is in motion, and descending the other half.

ILLUSTRATION I.—If a body projected vertically upwards return to earth in a seconds, how high did it ascend?

The body is half time in ascending. $12 \div 2 = 6$.

Hence, by Rule, p. 489, $6^2 \times 16.083 = 579$ feet = product of square of time an 16.083.

2.—If a body is projected upward with a velocity of 95.5 feet per second, it required to ascertain point of body at end of ro seconds.

96.5 \div 32.166 = 3 seconds, time to acquire this velocity, and $3^2 \times 16.083 = 144$. feet, height body reached with its initial velocity.

Then 10-3=7 seconds left for body to fall in.

Hence, by Rule, as in preceding example, $7^2 \times 16.083 = 788.07$, and 78^2 24.75 = 643.32 feet = distance below point of 7-rojection.

Or, 10° × 16.083 = 1608.3 feet, space fallen through under the effect of gra 5 × 10 = 965 feet, space if gravity did not act. Hence 1608.3 - 965 = 61

3.—A body is projected vertically with a velocity of 135 feet; what velocity will have at 60 feet?

135 2 ÷64.33 = 283.3 feet space projected at that velocity, 135÷32.16 = 4.197 wo onds = time of projection, and 283.3 - 60 = 223.3 = space to be passed through after attainment of 60 feet. Hence, $\sqrt{223.3 \times 64.33}$ = 119.85 feet velocity, and 223.3 +6 = 283.3 feet.

By Inversion.—Velocity 119.85. Hence, $\frac{119.85^2}{64.33}$ = 223.3 feet space, and 2833-223.3 = 60 feet.

Formulas to Determine Elements of Retarded Motion.

In the restriction of Retarded Motion is
$$v = \nabla - \overline{g}t$$
. 2. $\nabla = \frac{8}{t} - \frac{gt}{2}$. 3. $\nabla = v + \overline{g}t$. 4. $t' = \frac{\nabla \div 2}{g}$. 5. $8 = \nabla t - \frac{gt^2}{2}$. 6. $h = T - \overline{t - t'} - .5f$. 7. $8 = tv + \frac{gt^2}{2}$. 8. $t = \frac{\nabla - v}{g}$. 9. $t = \frac{\nabla}{g} - \sqrt{\frac{\nabla^2 - 2\delta}{g^2 - g}}$.

v representing velocity at expiration of time, t any less time than T, t' less time than t, s space through which a body ascends in time t, V, T, S, and h as in previous formulas, page 490.

ILLUSTRATION.—A body projected upwards with a velocity of 193 feet per second, was arrested in 5 seconds. T=6, t'=1.

- 1. What was its velocity when arrested? (1.)
- 2. What was the time of its passing through 562.02 feet of space? (8.)
- 3. What space had it passed through? (5.)
- 4. What was the time of its projection, when it had a velocity of o6.5 feet? (4)
- 5. What was the height it was projected in the last second of time? (6.)

1.
$$193 - 32.166 \times 5 = 32.17$$
 feet.
2. $\frac{562.92}{5} + \frac{32.166 \times 5}{2} = 193$ velocity.
3. $32.17 + 32.166 \times 5 = 193$ velocity.
4. $\frac{193 \div 2}{32.166} = \frac{96.5}{32.166} = 3$ seconds.
5. $193 \times 5 - \frac{32.166 + 5^2}{2} = 562.92$ feet.
6. $6 - \frac{5}{5} = 1.5 \times 32.166 = 48.5$
7. $8 = t v + y t^2 \div z = 562.92$ feet.
8. $\frac{193 - 32.17}{32.166} = 5$ seconds.
9. $\frac{193}{32.166} - \sqrt{\frac{193^2}{32.166^2}} = \frac{2 \times 562.92}{32.166} = 6 - \sqrt{36 - 35} = 5$ seconds.

Gravity and Motion at an Inclination.

If a body freely descend at an inclination, as upon an inclined plane, by force of gravity alone, the velocity acquired by it when it arrives at the matter of inclination is that which it would acquire by falling freely vertical height thereof. Or, velocity is that due to height of in afthe plane.

cupied in making descent is greater than that due to height, is get of its inclination, or distance passed, to its height.

ently, times of descending different inclinations or planes of be to one another as lengths of the inclinations or planes.

ich a body descends upon an inclination, when descending has a freely fall in same time as height of inclination cing same, times will be inversely in this pro-

it suffers no loss of velocity.

from rest, from same point, one upon us

LUSTRATION.—What distance will a body roll down an inclined plane 300 feet and 25 feet high in one second, by force of gravity alone?

ence, if proportion of height to length of above plane is reduced from 25 to 300 to 600, the time required for body to fall 1.34025 feet would be determined as

3 25: 600:: 1.34025: 32.166, and 32.166 = 16.083 \times 2 = twice time or space in the twould fall freely required for one half proportion of height to length.

Or, as
$$\frac{300}{25}$$
: $\frac{600}{25}$:: 1.340 25: 32.166, as above.

mpelling or accelerating force by gravitation acting in a direction paralto an inclination, is less than weight of body, in ratio of height of in-ation to its length. It is, therefore, inversely in proportion to length of ination, when height is the same.

'ime of descent, under this condition, is inversely in proportion to acceling force.

f. for instance, length of inclination is five times height, time of making ly descent at inclination by gravitation is five times that in which a y would freely fall vertically through height; and impelling force down ination is .2 of weight of body.

Vhen bodies move down inclined planes, the accelerating force is exssed by h
ightharpoonup l, quotient of height
ightharpoonup length of plane; or, what is equivalentreto, sine of inclination of plane, i. e., sin. a.

LUSTRATION. -An inclined plane having a height of one half its length, the space en through in any time would be one half of that which it would fall freely. elocity which a body rolling down such a plane would acquire in 5 seconds is

hus, $32.166 \times 5 = 160.833$ feet, and an inclined plane, having a height one half is length, has an angle or sine of 30° . Hence, sin. $30^{\circ} = .5$, and $160.833 \times .5 =$

rmulas to Determine various Elements of Gravitation on an Inclined Plane.

1.
$$S = .5 g T^2 \sin a$$
; $= \frac{V^2}{2 g \sin a}$; $= .5 T V$. 4. $V = v \mp \overline{g T \sin a}$.

2.
$$V = g T \sin a$$
; $= \sqrt{(2 g S \sin a)}$; $= \frac{2 S}{T}$. 6. $H = \frac{l^2}{.5 g T^2}$.

3.
$$T = \sqrt{\left(\frac{2 \text{ S}}{g \sin a}\right)}; = \frac{2 \text{ S}}{V}; = .25 \sqrt{\frac{l^2}{H}}; = \frac{l}{4\sqrt{H}}$$
 7. $l = 4 \text{ T} \sqrt{H}$.

5.
$$S = V T \mp \frac{V^2}{.5 g T^2 sin. a.}$$
 Or, $\frac{V^2}{2 g sin. a}$.

representing velocity of projection in feet per second, S space or vertical height Locity and projection, a angle of inclination of plane, I length, and H height of

LUSTRATION. - Assume elements of preceding illustration. V = 80.416, T = 5, H=201.04.

$$.5 \times 32.166 \times 5^{2} \times .5 = 201.04 \text{ feet.}$$

$$2. 32.166 \times 5 \times .5 = 80.416 \text{ feet.}$$

$$3. \sqrt{\frac{2 \times 201.04}{32.166 \times .5}} = \sqrt{\frac{402.08}{16.083}} \sqrt{25} = 5 \text{ seconds.}$$

$$\frac{283.42^2}{.5 \times 16.083 \times 5^2} = 201.04 \text{ feet.} \qquad 7. \quad 4 \times 5 \times \sqrt{201.04} = 28$$

projected downward with an initial velocity of 16.083 feet per sect

$$16.083 + \overline{32.166 \times 5 \times .5} = 96.5$$
 feet.

80.416 + 16.083
$$\times 5$$
 - .5 \times 32.166 \times 5² \times .5 = 281.46 feet.
T T

ILLUSTRATION.—What time will it take for a ball to roll 38 feet down an incliniplane, the angle $a=12^{\circ}$ 20', and what velocity will it attain at 38 feet from its slaing-point?

$$T = \sqrt{\frac{2 \text{ S}}{g \sin a}} = \sqrt{\frac{2 \times 38}{32.166 \times .2136}} = 3.33 \text{ seconds.} \quad V = g \text{ T sin. } a = 32.166 \times 38 \times .2136 = 32.88 \text{ feet per second.}$$

When a body is projected upward it is retarded in the same ratio that descending body is accelerated.

ILLUSTRATION.—If a body is projected up an inclined plane having a length of twice its height, at a velocity of 96.5 feet per second,

Then, $T=96.5 \div 32.166 = 3$ seconds. S=.5 $32.166 \times 3^2 \times .5 = 72.375$ feel. $1=32.166 \times 3 \times .5 = 48.25$ feel.

Inclined Plane.

Problems on descent of bodies on inclined planes are soluble by formula 1 to 9, page 495, for relations of accelerating forces. As a preliminary subsequence of the control of the problems of

ILLUSTRATION. — If a body of 15 lbs. weight gravitate freely down an incline plane, length of which is five times height, accelerating force is $15 \div 5 = 3$ lbs. I length of plane is 100 feet and height 20, velocity acquired in falling freely from by to bottom of plane would be

$$v = 8\sqrt{\frac{3 \times 100}{15}} = 8\sqrt{20} = 35.776$$
 feet.

Time occupied in making descent,

$$t = .25\sqrt{\frac{15 \times 100}{2}} = .25\sqrt{500} = 5.59$$
 seconds.

Whereas, for a free vertical fall through height of 20 feet, time would be,

$$t = \frac{35.776}{32.166} = 1.118$$
 seconds,

which is .2 of time of making descent on inclined plane.

Velocities acquired by bodies in falling down planes of like height will all be equal when arriving at base of plane,

When Length of an Inclined Plane and Time of Free Descent are given

Rule.—Divide square of length by square of time in seconds and by 16; the quotient is height of inclined plane.

EXAMPLE.—Length of plane is 100 feet, and time of descent is 5.59 seconds; the vertical height of descent is

$$\frac{100^2}{5.59^2 \times 16.08} = 20 \text{ feet.}$$

Accelerated and Retarded Motion.

If an Accelerating or Retarding force is greater than gravity, that is weight of the true the constant, g, or 32.166, is to be varied in proportion thereto, but is it is to be multiplied by the accelerating force, and eight of body.

The coeleratin of w weight of body.

or
$$\frac{583 f}{}$$
 become the constants.

Lverage Velocity of a Moving Body uniformly Accelerated or Retarded.

Average velocity of a moving body uniformly accelerated or retarded, usring a given time or in a given space, is equal to half sum of initial and rnal velocities; and if body begin from a state of rest or arrive at a state of est, its average speed is half the final or initial velocity, as the case may be,

Thus, in example of a ball rolling, initial speed or velocity is, in either see, 60 feet per second, and terminal speed is nothing; average speed is serefore $\frac{60+9}{2}$, namely, one half of that, or 30 feet per second.

When a cannon-ball is projected at an angle to horizon, there are two forces acting on it at same time—viz., force of charge, which propels it uniformly in a right late, and force of gravity, which causes it to fall from a right line with an accelirated motion; these two motions (uniform and accelerated) cause the ball to move the curved line of a Parabola.

Formulas for Flight of a Cannon-ball.

$$\nabla = 2800 \sqrt{\frac{P}{w}}; P = \frac{w V^2}{7840000};$$

$$b = \frac{\nabla^2 \sin. a, \cos. a}{g}; t = \frac{\nabla \sin. a}{g}; h = \frac{\nabla^2 \sin.^2 a}{2g}.$$

w representing weight of ball and P of powder in lbs.; t time of flight in seconds; horizontal range, and h vertical height of range of projection of ball in feet.

ILLUSTRATION.—A cannon loaded to give a ball a velocity of 900 feet per second, be angle $a=45^{\circ}$; what is horizontal range, the time t and height of range h?

$$b = \frac{900^{2} \times \sin 45^{\circ} \times \cos 45^{\circ}}{32.166} = \frac{900^{2} \times 5}{32.166} = 12.590 \text{ feet.}$$

$$t = \frac{900 \times .7071}{32.166} = 19.78 \text{ seconds}; \quad h = \frac{900^{2} \times .7071}{2 \times 32.166} = 6295 \text{ feet.}$$

Note.—As distance b will be greatest when angle $a=45^{\circ}$, product of sine and sine is greatest for that angle. Sin. $45^{\circ} \times \cos .45^{\circ} = .5$.

24 lb. ball with a velocity of 2000 feet per second at 450 range 7300 feet.

General Formulas for Accelerating and Retarding Forces.

2.
$$\nabla = \frac{gft}{w}$$
. 2. $S = \frac{.5 gft^2}{w}$. 3. $t = \frac{w}{gf}$. 4. $S = \frac{w}{2gf}$
5. $t = .25\sqrt{\frac{w}{S}}$. 6. $\nabla = 8\sqrt{\frac{fS}{w}}$.
7. $f = \frac{w}{2gS}$. 8. $f = \frac{w}{t} \frac{\nabla}{32.2}$. 9. $w = \frac{gft}{V}$.

Note 1.—When accelerating or retarding force bears a simple ratio to weight of body, the ratio may, for facility of calculation, be substituted in the quantities representing modified constants, for force and weight. Thus, if accelerating force is a tenth part of weight, then ratio is 1 to 10, and $\frac{3^{21.166}}{10} = 3.2166$; or, $\frac{16.083}{10} = 1.6083$,

and $\frac{64.333}{10}$ = 6.4333; and these quotients may be substituted for 16.082 22 166, and 64.333 respectively, in formulas for action of gravity 1 to 9, to fit their thoin in an accelerating or retarding force one-tenth of gravity.

2.—Table, page 488, giving relations of velocity and height of falli be employed in solving questions of accelerating force general.

EXAMPLE—A ball weighing so lbs, is projected with an initial varecond on a level plane, and frictional resistance to its motion is used will it traverse before it comes to a state of rest? By formul.

$$\frac{\text{10 lbs.} \times 60^2}{64.333 \times 1 \text{ lb.}} = 559.59 \text{ feet.}$$

Again, same result may be arrived at, according to Note 1, by multiply stant 64.333, in Rule, page 494, for gravity, by ratio of force and weight, withis case is $\frac{1}{10}$, and $64.333 \times \frac{1}{10} = 6.4333$. Substituting 6.4333 for 64.333 rule, formula becomes

$$S = \frac{V^2}{6.4333} = \frac{60^2}{6.4333} = 559.59$$
 feet.

The question may be answered more directly by aid of table for falling page 483. Height due to a velocity of 60 feet per second, is 55.9 feet; who be multiplied by inverse ratio of accelerating force and weight of body, or $\frac{1}{4}$ that is, $55.9 \times 10 = 559$ feet.

If the question is put otherwise—What space will a weight move over a comes to a state of rest, with an initial velocity of 60 feet per second, allow then to be one tenth weight? The answer is that friction, which is retardle being one tenth of weight, or of gravity, space described will be no times as is necessary for gravity, supposing the weight to be projected vertically upbring it to a state of rest. The height due to velocity being 55.9 feet; then

Average velocity of a moving body, uniformly accelerated or retarded given period or space, is equal to half sum of initial and final velocities.

To Compute Velocity of a Falling Stream of Water Second at End of any given Time.

When Perpendicular Distance is given.

EXAMPLE.—What is the distance a stream of water will descend on an plane 10 feet high, and 100 feet long at base, in 5 seconds?

5² × 16.083 = 402.08 feet = space a body will freely fall in this time. Then, as 100: 10:: 402.08: 40.21 feet = proportionate velocity on a plandimensions to velocity when falling freely.

Miscellaneous Illustrations.

x.—What is the space descended vertically by a falling body in 7 seconds $S = .5 g \times t^2. \text{ Then } 16.083 \times 7^2 = 788.067 \text{ feet.}$

2.—What is the time of a falling body descending 400 feet, and velocity at end of that time?

$$t = \frac{v}{g}$$
. Then $\frac{160.4}{32.166} = 4.98$ sec. $v = \sqrt{2g \times 8}$. Then $\sqrt{64.333 \times 400} = 0$

3.—If a drop of rain fall through 176 feet in last second of its fall, how! the cloud from which it fell?

$$S = \frac{h^2}{2 g}$$
. Then $\frac{176^2}{64.166} = 482.75$ feet.

4.—If two weights, one of 5 lbs. and one of 3, hanging freely over a she set free, how far will heavier one descend or lighter one rise in 4 seconds.

$$\frac{5-3}{5+3}$$
 × 16.083 × $4^2 = \frac{2}{8}$ × 257.328 = 64.33 feet.

5.—If length of an inclined plane is 100 feet, and time of descent of a be seconds, what is vertical height of plane or space fallen through?

$$\frac{100^2}{6^2 \times .5 g} = \frac{10000}{579} = 14.27 \text{ feet.}$$

6.—If a bullet is projected vertically with a velocity of 135 feet per sexulvelocity will it have at 60 feet?

GUNNERY.

heavy body impelled by a force of projection describes in its flight ack a parabola, parameter of which is four times height due to ity of projection.

locity of a shot projected from a gun varies as square root of e directly, and as square root of weight of shot reciprocally.

To Compute Velocity of a Shot or Shell.

LE.—Multiply square root of triple weight of powder in lbs. by 1600; a product by square root of weight of shot; and quotient will give vein feet per second.

MPLE.—What is velocity of a shot of 196 lbs., projected with a charge of 9 lbs. /der?

$$\sqrt{9 \times 3} \times 1600 \div \sqrt{196} = 8320 \div 14 = 594.3$$
 feel.

Compute Range for a Charge, or Charge for a Range. ien Range for a Charge is given.—Ranges have same proportion as es of powder; that is, as one range is to its charge, so is any other to its charge, elevation of gun being same in both cases. Consequently,

To Compute Range.

LE.—Multiply range determined by charge in lbs. for range required, product by given charge, and quotient will give range required.

MPLE.—If, with a charge of 9 lbs. of powder, a shot ranges 4000 feet, how far charge of 6.75 lbs. project same shot at same elevation?

 $4000 \times 6.75 \div 9 = 3000$ feet.

To Compute Charge.

LE.—Multiply given range by charge in lbs. for range determined, product by range determined, and quotient will give charge required.

MPLE.—If required range of a shot is 3000 feet, and charge for a range of 4000 is been determined to be 9 lbs. of powder, what is charge required to project shot at same elevation?

 $3000 \times 9 \div 4000 = 6.75 lbs.$

Compute Range at one Elevation, when Range for another is given.

LE.—As sine of double first elevation in degrees is to its range, so is f double another elevation to its range.

MPLE.—If a shot range 1000 yards when projected at an elevation of 45°, how it range when elevation is 30° 16', charge of powder being same?

Sine of $45^{\circ} \times 2 = 100 000$; sine of $30^{\circ} 16' \times 2 = 87 064$.

n, as 100 000 : 1000 :: 87 064 : 870.64 feet.

Compute Elevation at one Range, when Elevation for another is given.

I.E.—As range for first elevation is to sine of double its elevation, so uge for elevation required to sine for double its elevation.

MPLE.—If range of a shell at 45° elevation is 3750 feet, at what elevation a gun be set for a shell to range 2810 feet with a like charge of powder?

Sine of $45^{\circ} \times 2 = 100 000$. n, as 3750: 100 000: 2810: 74933 = sine for double

sine for double $= 24^{\circ}$ 16'.

Approximate Rule for Time of

der 4000 yards, velocity of projectile 900 ft Pards, velocity 800 feet; and over 6000 yards and Howitzers take their denomination fro round numbers, up to the 42-pounder; larges from diameter of their bore. · mger

Patted Valency and Ranges of Shot and Shells.

the fines of a she is she is the distinct in the first first about a painted

and the market	Law of the of	i (m.	_	Intra	Time of	Ee-s-	_
William	***********	T agen.	Analt Wile	wiest?	Flync.	248.	has
·- -	-	action 59.	HTM:The	.÷oL	Sema	· · ·	Ist
and the second	Cinting and	41.15	1.:	r.		_	-
Market and the second	inum.	-::	**	: 322	_	_	_
a read (a) a (d) a	**: ***********************************					_	
- Sympton		7 :	7.74	_	_	5	157
		4.1	2.2	rcz.	2 ==	i	- 64
•			•	3.72	_ :	3	53 114
•		-	à	Jim	_	ī	-71
			v s	_	_	į	医原有用骨肉蛋白
and Talendam				_		:	-
		127		_			7
	Sec. 1.		 ut	_	÷ ;=		-
4	50.0			_	-	-4	-31
_		377	*	_	_	.5	-31
January Comment		***	-	_			=
2-	•	2.55	**	_		16	۳,
\$17E 17							
- Millionia. Salamit.		1.7		_	=	22	50
			:	_	- 25	-	.a
		7.		_	-	25	-
	Windstan.	14	V:	_	_		-
	×	173	¥.	-	.;i	25 25	
••		2-3	**		— '	-3	-
Act Bather		2		_		٠.	-
26.42 46.6364.2		_	r.		÷ ÷	_	_
	·· ··	v	-	-	_	₹	
The same of the sa			1 2	Sec. 15	•		
effects activities of the a	A mention			North Co	٠.	Jun Per	
The second secon	3 m 3 m	. 19 ⁷ 6 26			-		
Section of the second	3 m 3 m	. 19 ⁷ 9 29	nani		-		
	1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	, 19 ⁷ 6 29				hen ber	
Total Street	3 as 3 cc	, in the second			fit here.		Î
	San Second			NT.	**************************************		
	A service of the serv		ans.	NTA			
	San Section Control of the Control o		ans.	NT.	**************************************	ATTE ALL	- a
	A man and a man		ans.	NTA	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATTENDED TO A TO A TO A TO A TO A TO A TO A TO	
	A second		ans.	NTA		ATTE ALL	. W
		. 10 ⁷ 0 /0	ans.	NTA	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATTENDED TO A TO A TO A TO A TO A TO A TO A TO	- a
			ans.	with the second of the second	A Section of the Sect	All I de	1 24 1 " W
			ans.	NT.	A Section of the Sect	ATTENDED TO A TO A TO A TO A TO A TO A TO A TO	
			ans.	with the second of the second		After A Land	1 24 1 " W
			ans.	with the second of the second	4 m 2 m 4 m 5 m 6 m 6 m 6 m 6 m 6 m 6 m 6 m 6 m 6	After A Land	
			ans.	STATE OF THE STATE	T E ALL COMMANDER OF THE COMMANDER OF TH	The state of the s	
			ans.	STATE OF THE STATE	T E ALL COMMANDER OF THE COMMANDER OF TH	The state of the s	1 24 1 " W
			ans.	STATE OF THE STATE	T E ALL COMMANDER OF THE COMMANDER OF TH	The state of the s	
			ans.	NTA NT (2) 1 TO (NTA) 1 LOS (1) 1	The state of the s	The state of the s	T. 1. 2.1 W.
			ans.	NT A TOWNS AND A T		A CONTRACT OF THE PARTY OF THE	T. 1. 2.1 W.
			ans.	NT A TOWNS AND A T	To the state of th	A DESTRUCTION OF THE PARTY OF T	
			ans.	NT A TOWNS AND A T		The state of the s	A 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
			ans.	NT A TOWNS AND A T	To the state of th	The Mark of the Ma	
			arser Server	NT A TOWNS AND A T		The state of the s	
			arser Server	NT A TOWNS AND A T		The Mark of the Ma	
			arser Server	NT A TOWNS AND A T	The state of the s	The state of the s	

nts of Report of Board of Engineers for Fortifications, U. S. A. Professional Papers No. 25. (Brev. Maj.-Gen. Z. B. Tower.)

perimental firings for penetration during the past twenty years have nined that wrought iron and cast iron, unless chilled, are unsuitable for tiles to be used against iron armor; that the best material for that so is hammered steel or Whitworth's compressed steel.

'hat cast-iron and cast-steel armor-plates will break up under the imf the heaviest projectiles now in service, unless made so thick as to le their use in ship-protection.

hat wrought-iron plates have been so perfected that they do not break t are penetrated by displacement or crowding aside of the material in th of the shot, the rate of penetration bearing an approximately deteratio to the striking energy of the projectile, measured per inch of circumference, as expressed by the following formula:

$$\sqrt[5]{\frac{\text{V}^2 \text{P}}{2 g \times 2 r \pi \times 2240 \times .86}} = \text{penetration in ins.} \quad \text{V representing velocity in } r \text{ second, P weight of shot in lbs., and } r \text{ radius of shot in ins.}$$

it such plates can therefore be safely used in ship construction, their less being determined by the limit of flotation and the protection 1.

hat, though experiments with wrought-iron plates, faced with steel, not been sufficiently extended to determine the best combination of two materials, we may nevertheless assume that they give a resistance ut one fourth greater than those of homogenous irod.

hat hammered steel in the late Spezzia trials proved superior to any material hitherto tested for armor-plates. The 19-inch plate resisted ation, and was only partially broken up by 4 shots, three of which had ting energy of between 33 000 and 34 000 foot-tons each. Not one shot ated the plate. Those of chilled iron were broken up, and the steel tile, though of excellent quality, was set up to about two thirds of its

clocity and Ranges of Shot. (Krupp's Ballistic Tables.) Penetration in Wrought Iron.

$\sqrt{\frac{V^2 P}{2 g \times 2 r \pi \times 2240 \times C}}$ = penetration in ins. C = 2.53.

477	- 7	1		Velocity Penetration						
GUN.	Cali- ber.	Powder.	Shot.	Muzzle	Rat	nge.	at		Range	
	Dear		1	per Sec.	3000	6000	Muzzle	600	3000	6000
Tons.	Ins.	Lbs.	Lbs.	Feet.	Yds.	Yds.	Ins.	Ins.	Ins.	Ins
rong, 100	17.75	550	2022	1715	1424	1191	34.76	33.2	27.55	22.04
	17.75	776	2000	1832	1518	1259	37-52	35.81	29.66	23.47
ich, 81	16	445	1760	1657	1393	1181	32.6	31.23	26.24	21.35
, 71	15.75	485	1715	1703	1434	1211	33-52	32.12	27.04	21.83
18	9.45	165	474	1688	1351	1113	20.42	19.31	15.40	12.14
B-inch	8	35	180	1450	1036	840	10.23	9.22	6.73	2 5.17
			* U	nchamber	ed.					

2. —For 100-ton gun, steel plate 22 ins. thick, backed with 28.8 ins. of wood ht-iron plates 1.5 ins. thick, and the frame of a vessel.

-Total destruction of steel plate, and backing entered to a depth of 22 it

Summary of Record of Practice in Europe with Heavy Armstrong, Woolwich, and Krupp Guns.

Board of Engineers for Fortifications, U. S. A., Professional Papers No. 25

	1	1		L 9	2	Energy	
Gen.	Powder.	Projectile.	Charge of Fewder.	Weight of Projectife.	per Second.	Futtial p V 2 g p .es40.	per inch of electualistance of shat,
ARMSTRONG, 100 Tons, caliber 17 ins., bore 30.5 feet.	7.5-inch cubes Waltham Abbey Fossano	: :::	Lbs. 330 375 400 776	2000 2000 2000	Feet. 1446 1543 1502 1832	Fttons. 28 990 33 000 31 282 46 580	Feet-ten. 544-95 623 585-74 835-32
Woolwich, 81 Tons, caliber 14.5 ins., bore 24 feet. caliber 16 ins 38 Tons, caliber 12.5 ins., bore 16.5 feet.	.75-inch cubes. 1.5 " " 1.5 " " 1.5 " " 1.5 " " 1.5 " "	Pall shell	250 310	1450 1260 1466 800 800	1393 1440 1523 1553 1451 1421 1504	16 922 20 842 20 259 24 508 11 668 11 210 12 545	371.5 457.57 444.70 500.4 207.64 205.4 319.4
KECFF, 71 Tons, caliber 15-75 ins., bore 28-58 feet. 18 Tons, caliber 0.45 ins., bore 17-5 feet.	Prism A	Plain	132 145	1707 1725 1419 300 474 300	1184 1703 1761 1873 1688 1991	16 602 34 503 30 484 7 298 9 307 8 244	335-42 697-91 616.14 246.03 315-66 277-69

Penetration in Ball Cartridge Paper, No. 1.

Musket, with 134 grains, at 13-3 yards	653 sheets.
Common rifle, 92 grains, at 13.3 yards	500 sheets.

Penetration of Lead Balls in Small Arms. Experiments at Washington Arsenal in 1839, and at West Point in 1837.

ARM.	Diameter of Ball.	Charge Powder.	Distance.	Weight of Ball.	Penetr White Oak.	
	Inch.	Grains.	Yards.	Grains.	Ins.	Ins.
(naket	1.64	134	9	397-5	1.6	-
Superior	1.64	144	5	397-5	3	-
Common Rifle	1 - 1	100	5 1	219	2.05	-
Common Time	1 -	92	9		1.8	-
Hall's rifle	· [-]	100	9 5	219	2	-
atom b time.	1 - 1	70	9	219	.6	-
	1	70 80	9 5 5 5		1.7	-
l's carbine, musket	1.5775		5	219	.8	-
ıliber	1.3//3	90*	5		1.1	-
	' (100*	5	-	1.2	-
,01	' - 1	51	5	219	-725	-
.o musket	·5775	<u> </u>	200	500	1 - 1	11
wered musket	.685	60	200	7 30	-	10.5
Rifle, Harper's Ferry	·5775	70	200	500	1 - 1	9-33
Pistol carbine	\ ·5775	/ 40	/ 500 ,	450	\ - i	5.75
Sharpe's carbine	·\ ·55	/ 60	/ 30	/ 463	\ -	1.13
Burr	·\ ·55	/ 55	/ 30	/ 320	` -	, ~

Charges too great for service.

Loss of Force by Windage.

nparison of results shows that 4 lbs. of powder give to a ball without windurly as great a velocity as is given by 6 lbs. having .14 inch windage, which windage of a 2-lb. ball; or, in other words, this windage causes a loss of one third of force of charge.

s.—Experiments show that loss of force by escape of gas from vent un is altogether inconsiderable when compared with whole force of

neter of Vent in U. S. Ordnance is in all cases .2 inch.

ect of different Waddings with a Charge of 77 Grains of Powder.

Wad.	Velocity of Ball per Second.
wrapped in cartridge paper and crumpled	
wad upon powder and r upon ball	1346
stic wad upon powder and rupon ballteboard wads upon powder	1132
stic wads upon powder	

wads cut from body of a hat, weight 2 grains.

shoard wads . 1 of an inch thick, weight 8 grains.

ridge paper 3 × 4.5 ins., weight 12.82 grains.

tic wads, "Baldwin's indented," a little more than .1 of an inch thick, 5.127 grains.

it advantageous wads are those made of thick pasteboard, or of orr cartridge paper.

ervice of cannon, heavy wads over ball are in all respects injurious.

Durpose of retaining the ball in its place, light grommets should be used.

he other hand, it is of great importance, and especially so in use of small that there should be a good wad over powder for developing full force of , unless, as in the rifle, the ball has but very little windage. (Capt. Mordecai.)

Weight and Dimensions of Lead Balls.

Number of Balls in a Lb., from 1.67 to .237 of an Inch Diameter.

No.	Diam.	No.	Diam.	No.	Diam.	No.	Diam.	No.	Diam.	No.
	Inch.		Inch.		Inch.		Inch.	100	Inch.	
1	-75	II	-57	25	.388	80	-30I	170	-259	270
2	-73	12	-537	30	-375	88	.295	180	.256	280
3	.71	13	.51	35	.372	go	.29	190	.252	200
4	.693	14	.505	36	-359	100	.285	200	-249	300
5	.677	15	.488	40	-348	110	.281	210	.247	310
6	.662	16	.469	45	-338	120	.276	220	:244	320
7	.65	17	+453	50	.329	130	.272	230	.242	330
8	.637	18	426	60	.321	140	.268	240	.239	340
Q	.625	19	.405	70	.314	150	.265	250	.237	350
10	615	20	-305	75	.307	160	.262	260	1	

ted shot do not return to their original dimensions upon cooling, but retain sagent enlargement of about .02 per cent. in volume.

Vumber of Pellets in an Ounce of Lead Shot of the different Sizes.

Proportion of Powder to Shot for following Number of Shot.

No.	Shot.	Powder.	No.	Shot.	Powder.	No.	Shot.	Powds.
	Os.	Drams.		Os.	Drame. 1.875	6	Oz.	Drama.
8	8 1.75	1.5	4	1.5	2.125	9	1.25 1.125	2-375

Note. -2 oz. of No. 2 shot, with r.5 drams of powder, produced greatest effect.

Increase of powder for greater number of pellets is in consequence of increase friction of their projection.

Numbers of Percussion Caps corresponding with Birmingham Numbers.

Eley's	5	6	7	8	9	24	10	11	18	12	13	4
Birmingham	43	44	46	48	49	50	51 and 52	53 and 54	55 and 56	57	ø	•

Where there are two numbers of Birmingham sizes corresponding with only of Eley's, it is in consequence of two numbers being of same size, varying only length of caps.

Comparison of Force of a Charge in various Arm

443

Ł

P

1

ARM.	Lock.	Powder,	Windage.	Weight of Ball.	V-
Ordinary rifle	Flint. Percussion.	Graina, 100 70 70 70 70 70 70	Inch. .015 .015 .0 .0 .0 .0	Grains. 219 219 219 219 219 219 219 219	建學學院養護職職

Ranges for Small Arms.

Musket.—With a ball of 17 to pound, and a charge of 120 grains of powder, the an elevation of 36' is required for a range of 200 yards; and for a range of 27 yards, an elevation of 30' 30' is necessary, and at this distance a ball will pass three a pine board 1 inch in thickness.

Rife.—With a charge of 70 grains, an effective range of from 300 to 350 June 10 chained; but as 75 grains can be used without stripping the ball, it is deemed best to use it, to allow for accidental loss, deterioration of powder, etc.

Pistol.—With a charge of 30 grains, the ball is projected through a pine but a inch in thickness at a distance of 80 yards.

Gunpowder.

Gunpowder is distinguished as Musket, Mortor, Common, Manuach, Specime powder: it is all made in same manner, of same proportions a materials, and differs only in size of its grain.

Physician or Explicite Energy.—By the experiments of Captain Rodma, L⁴ Chamarov Corps, a pressure of 45 000 lbs. per square inch was obtained with n of powder, and a bad of 43 lbs.

Also, a pressure of 185 coo lbs. per sq. inch was obtained when the probabilities of a control in its core column, in a cast-tron shell having diameters of 3.85 and 12 in

Proof of Powder. (U.S. Ordnance Menual)

Provider in magazines that does not range over 150 yards in held to be unit able

the dispersion aronages from 186 to 100 yards; small grain, from 200 to 300 feet

Entering Transmission Product.—When person has been demand by an order in them; places it have its exceptly and requires to be writed one of exceed; per cent, it is entered to be not exceed; it is entered to be not exceed; it is entered to be made on the control of the entered. The is done by exposure it to the suit.

the par aborded more than 7 per cost of water it should be!

perties and Results of Gunpowder, determined > > Experiments. (Captain A. Mordecai, U. S. A.)

GRAIN.	Salt- petre.	Char- coal.		Manufacture. Where from.	Number of Grains in ro Troy Grains.	Relative Quickness of Bureing.	Water ab- serbed by ex- posure to Air.	Rolative FORM
on, large small et	76	14	12	* Dupont's Mills, Del.	77 569 1134 6174 5344 1642	275 314 214 142 282	Per c't. 2-77 3-35 — 3-55	.677 .72 .808 .907 .728 .834
on, uneven. large ing ing, uneven	77 79	12.5 13 15 15	12.5	† Dupont's Mills, Del. * Dupont's Mills, Del. Loomis, Hazard, & Co., Conn.* Waltham Abbey, England.*	13 152 166 103 72 808 295 2 378	183 182 100 212 204	2.09 1.91 4.42	.943 .788 .756 I .82 .888 .865

nufacture of Powder.—Powder of greatest force, whether for cannon or small is produced by incorporation in the "cylinder milla."

t Rough.

ect of Size of Grain.—Within limits of difference in size of grain, which occurs linary cannon powder, the granulation appears to exercise but little influence force of it, unless grain be exceedingly dense and hard.

set of Glazing.—Glazing is favorable to production of greatest force, and to combustion of grains, by affording a rapid transmission of flame through of the powder.

ect of using Percussion Primers. — Increase of force by use of primers, which y closes vent, is constant and appreciable in amount, yet not of sufficient value thorize a reduction of charge.

o of Relative Strength of different Powders for use under water differ t little from the reciprocal of the ratio between the sizes of the grains, owing that the strength is nearly inversely proportional thereto.*

ammoth, .08; Oliver, .09; Cannon, .18; Mortar, 1; Musket, 1.57; ting 2.61, and Safety Compound 30.62.

· ualin is nitro-glycerine absorbed by Schultze's powder.

r other powders and explosive materials see Blasting, p. 443.

Glazad.

Heat and Explosive Power. (Capt. Noble and F. A. Abel.)

ne gram of fired powder evolves a mean temperature of 730°. Tempere of explosion 3970°. Volume of permanent gas (which is in an ineratio to units of heat evolved) at 32° = 250.

he explosive power of powder, as tested in Ordnance, ranges, for volumes spansion of 1.5 to 50 times, from 36 to 170 foot-tons per lb. barned.

charge of 70 lbs. gave to an 180 lbs. shot a velocity of 1604 for the 180 d, equal to a total energy of 3637 foot-tons, and a charge of 100 lb a velocity of 2182 feet, and an energy of 5040 foot-tons.

rt of Experiments and Investigations to develop a system of submarine mines. Proزاعت S. E., No. 23.

HEAT.

Heat, alike to gravity, is a universal force, and is referred to both a cause and effect.

Caloric is usually treated of as a material substance, though its claims to this distinction are not decided; the strongest argument in favor of this position is that of its power of radiation. Upon touching a body having a higher temperature than our own, caloric passes from it, and excites the feeling of warmth; and when we touch a body having a lower temperature than our own, caloric passes from our body to it, and thus arises the sensation of cold.

To avoid any ambiguity that may arise from use of the same expression, it is usual and proper to employ the word *Caloric* to signify the principle or cause of sensation of heat.

Heat Unit.—For purpose of expressing and comparing quantities of heat, it is convenient and customary to adopt a Unit of heat or Therms unit, being that quantity of heat which is raised or lost in a defined period of temperature in a defined weight of a particular substance.

Thus, a Thermal unit. Is quantity of heat which corresponds to an interval of 1 temperature of 1 lb. of pure liquid water, at and near its temperature of great density.

Thermal unit in France, termed Caloric, Is quantity of heat which correspond to an interval of 1°C. in temperature of 1 kilogramme of pure liquid water, at an near its temperature of greatest density.

Thermal unit to Caloric, 3.968 32; Caloric to Thermal unit, .251 996.

One Thermal unit or $\mathbf{1}^{\circ}$ in $\mathbf{1}$ lb. of water, 772 foot-lbs. One Caloric or $\mathbf{1}^{\circ}$ C. in $\mathbf{1}$ kilogramme of water, 423.55 kilogrammetres. $\mathbf{1}^{\circ}$ C. in $\mathbf{1}$ b. water, 136.6 foot-lbs.

Ratio of Fahrenheit to Centigrade, 1.8; of Centigrade to Fahrenheit, .555.

Absolute Temperature, Is a temperature assigned by deduction, as an opportunity of observing it cannot occur, it being the temperature compounding to entire absence of gaseous elasticity, or when pressure and volume = 0. By Fahrenheit it is—461.2°, by Reaumur—229.2°, and by Cartigrade—274°.

Heat is termed Sensible when it diffuses itself to all surrounding bodies; hence it is free and uncombined, passing from one substance to another, affecting the senses in its passage, determining the height of the thermometer, etc.

Temperature of a body, is the quantity of sensible heat in it, present at any moment.

Heat is developed by water when it is violently agitated.

Heat is developed by percussion of a metal, and it is greatest at the first blow.

Quantities of heat evolved are nearly the same for same substance, without reference to temperature of its combustion.

Mechanical power metion or compression, tion to quantity of necessary to raise 1 he mechanical equi

ied in production of heat either by the heat produced bears the same proper or expended, being a unit for pore ""-is number of 712 is ten

Ė

Ţ

HEAT. 505

Specific Heat.

pecific Heat of a body signifies its capacity for heat, or quantity red to raise temperature of a body 1°, or it is that which is about by different bodies of equal weights or volumes when their perature is equal, based upon the law, That similar quantities of event bodies require unequal quantities of heat at any given temperator is also the quantity of heat requisite to change the temperator of a body any stated number of degrees compared with that which ald produce same effect upon water at 32°.

uantity of heat, therefore, is the quantity necessary to change the temture of a body by any given amount (as 1°), divided by quantity of t necessary to change an equal weight or volume of water 32° by same punt.

OTE. - Water has greater specific heat than any known body.

'very substance has a specific heat peculiar to itself, whence a change of a position will be attended by a change of its capacity for heat.

pecific heat of a body varies with its form. A solid has a less capacity heat than same substance when in state of a liquid; specific heat of er, for instance, being .5 in solid state (ice), .622 in gaseous (steam), r in liquid.

pecific heat of equal weights of same gas increases as density decreases; ct rate of increase is not known, but ratio is less rapid than diminution lensity.

hange of capacity for heat always occasions a change of temperature. rease in former is attended by diminution of latter, and contrariwise.

Specific heat multiplied by atomic weight of a substance will give constant 37.5 as an average, which shows that the atoms of all stances have equal capacity for heat. This is a result for which as no reason has been assigned.

hus: atomic weights of lead and copper are respectively 1294.5 and 395.7, and ir specific heats are .031 and .095. Hence 1294.5 \times .031 = 40.129, and 395.7 \times ;= 37.591.

t is important to know the relative Specific Heat of bodies. The most convent method of discovering it is by mixing different substances together at different temperatures, and noting temperature of mixture; and by experiments it ears that the same quantity of heat imparts twice as high a temperature to roury as to an equal quantity of water; thus, when water at 100° and mercury 40° are mixed together, the mixture will be at 80°, the 20° lost by the water sing a rise of 40° in the mercury; and when weights are substituted for meass, the fact is strikingly illustrated; for instance, on mixing a pound of mercury $_{10}$ ° with a pound of water at 160°, a thermometer placed in it will fall to $_{15}$ ° is it appears that same quantity of heat imparts twice as high a temperature to recury as to an equal volume of water, and that the heat which gives 5° to water I raise an equal weight of mercury $_{15}$ °, being the ratio of $_{1}$ to $_{23}$. Hence, if all quantities of heat be added to equal weights of water and mercury, their inperatures will be expressed in relation to each other by numbers $_{10}$ and $_{23}$; or, order to increase the temperature of equal weights of the extent, the water will require $_{23}$ times as much heat as

Capacity for Heat is relative power of a body in ning heat in being raised to any given temperatolies to actual quantity of heat so received and re.

Specific Heat of Air and other ecific heat, or capacity for heat, of permanent gases is I temperatures, and for all densities. Capacity for he

70-

506 HEAT.

same for each degree of temperature. M. Regnault proved the for heat for air was uniform for temperatures varying fron +437°; consequently, specific heat for equal weights of air, a pressure, averaged .2377.

Specific Heat. Water at 320 = 1.

Metals from 32° to		Woods.	Sulphui
212°. Antimony0508	Steel	Oak57 Pear5	<i>L</i> ₁
Bismuth 0308	Wrought iron .1138	Pine	Alcohol Ether
Brass	Zinc0955	Min'l Substances.	Linseed Olive oi
Cast iron1298	Stones.	Charcoal 2415	Steam.
Gold0324 Lead0314	Chalk 2149 Limestone 2174	Coal2411 Coke203	Turpent
Mercury0333	Masonry2	Glass 1977	Vinegar
Nickel1086	Marble, gray 2694	Gvpsum 1066	
Platinum0324	" white. 2158	Phosphorus. 2503	1 ce

Gases.

For Equal Weights.

Air Oxygen	. 1688	1	Hydrogen
Oxygen	.1559	1	Carbonic Acid

Metals have least, ranging from Bismuth .0308 to Cast Iron .1208. Mineral Substances have .2 that of water, and Woods about .5. Liqui ception of Bromine, are less than water, Olive oil being lowest and Vine

ILLUSTRATION.—If z lb. of coal will heat z lb. of water to 100° , $\frac{1}{.033}$ heat z lb. of mercury to 100° .

To Compute Temperature of a Mixture of lil stances.

$$\frac{\mathbf{W} \mathbf{T} + \mathbf{w} t}{\mathbf{W} + \mathbf{w}} = t'; \quad \frac{\mathbf{w} (t' - t)}{\mathbf{T} - t'} = \mathbf{W}; \quad \frac{\mathbf{w} (t' - t)}{\mathbf{W}} + t' = \mathbf{T}. \quad \mathbf{W} \text{ representation}$$

or volume of a substance of temperature T, w weight or volume of a like stemperature t, and t' temperature of mixture W+w.

ILLUSTRATION I. — When 5 cube feet of water (W) at a temperature o mixed with 7.5 cube feet (w) at 50° (t), what is the resultant temperamixture?

$$\frac{5 \times 150^{\circ} + 7.5 \times 50^{\circ}}{5 + 7.5} = \frac{1125}{12.5} = 90^{\circ}.$$

2.—How much water at (T) 100° should be mixed with 30 gallons (w a required temperature of 80°?

$$\frac{30 (80^{\circ} - 60^{\circ})}{100^{\circ} - 80^{\circ}} = \frac{600}{20} = 30 \text{ gallons.}$$

To Compute Temperature of a Mixture of U Substances.

$$\frac{\mathbf{W} \mathbf{S} \mathbf{T} + w \mathbf{s} \mathbf{t}}{\mathbf{W} \mathbf{S} + w \mathbf{s}} = \mathbf{t}'; \quad \frac{w \mathbf{s} (t - \mathbf{t}')}{\mathbf{S} (\mathbf{T} - \mathbf{t})} = \mathbf{W}; \quad \frac{\mathbf{t}' (\mathbf{W} \mathbf{S} + w \mathbf{s}) \circ w \mathbf{s} \mathbf{t}}{\mathbf{W} \mathbf{S}} = \mathbf{T}.$$

enting weights, and S and a specific heat of substances

to a temperature (t) of 50° to 60°?

To Compute Specific Heat at Constant Volume.

When Specific Heat at Constant Pressure is known. $\frac{5p}{H} = s$. S represent ag specific heat at constant pressure, p proportion of heat absorbed at constant vol

ng specific heat at constant pressure, p proportion of heat absorbed at constant volme, H total heat absorbed at constant pressure, and s specific heat at constant volume.

Or, $\frac{S(t'-t)-2.742(V-v)}{t'-t}=s$. t and t' representing initial and final temperaure of the gas and that to which it is raised, and V and v initial and final volumes f the gas under 14.7 lbs. per sq. inch, and of it heated under constant pressure in the fect.

ILLUSTRATION.—Assume 1 lb. air at atmospheric pressure and at 32°, doubled in olume by heat $S=.2377^{*}$, $t-t'=32^{\circ} \approx 525^{\circ}=493^{\circ}$ and $V-v=12.387^{*}$ cube feet.

$$\frac{.2377 \times 493 - (2.742 \times 12.387)}{493} = .1688 \text{ specific heat.}$$

For comparative volumes of other gases, see Table, page 506.

Fo Compute Specific Heat for Equal Volume of Gas and Air.

Rule.—Multiply specific heat of the gas for equal weights of gas and air by specific gravity of gas, and product is specific heat for equal volume.

EXAMPLE.—What is specific heat of air at equal volume with hydrogen?

Specific heat of hydrogen for equal weights at constant volume, 2.4096, and specific gravity of the gas, .0692. (See Table, page 506.)

Then, $2.4096 \times .0692 = .1667$ specific heat for equal volumes at constant volume. Specific heat of steam, air at unity = 1.281.

Capacity for Heat.

When a body has its density increased, its capacity for heat is dininished. The rapid reduction of air to .2 of its volume evolves heat unficient to inflame tinder, which requires 550°.

Relative Capacity for Heat of Various Bodies. (Water at $32^{\circ} = 1$.)

Bodies.	Equal Weights.	Equal Volumes.	Bodies.	Equal Weights.	Equal Volumes.	BODIES.	Equal Weights.	Equal Volumes.
Vater	I	I	Gold	.05	.966	Mercury	.036	
3rass	.116	.97z	Ice	.9	_	Silver	.082	.833
lopper	.114		Iron	.126	-993 -487	Tin	.06	
lass	.187	.448	Lead	.043	.487	Zinc	.102	l —

Fo Ascertain Relative Capacities of Different Bodies, combined with experiment.

RULE.—Multiply weight of each body by number of degrees of heat lost or gained by mixture, and capacities of bodies will be inversely as products.

Or, if bodies be mingled in unequal quantities, capacities of the bodies vill be reciprocally as quantities of matter, multiplied into their respective hanges of temperature.

ILLUSTRATION.—If 1 lb. of water at 156° is mixed with 1 lb. of mercury at 40°, esultant temperature is 152°.

Thus, $1 \times 156^{\circ} - 152^{\circ} = 4^{\circ}$, and $1 \times 40^{\circ} \sim 152^{\circ} = 112^{\circ}$. Hence capacity of water or heat is to capacity of mercury as 112° to 4° , or 10°

Sensible He

Sensible heat or temperature to raise water

P.081=00.00

Latent Heat.

Latent Heat is that which is insensible to the touch of our be and is incapable of being detected by a thermometer.

When a solid body is exposed to heat, and ultimately passes int liquid state under its influence, its temperature rises until it attain point of fusion, or melting point. The temperature of the body at point remains stationary until the whole of it is melted; and the heat a time absorbed, without affecting the temperature or being sensible t touch or to the indications of a thermometer, is said to become latent. in fact, the latent heat of fusion, or the latent heat of liquidity, and its tion is to separate the particles of the body, hitherto solid, and change condition into that of a liquid. When, on the contrary, a liquid is solid the latent heat is disengaged.

If to a pound of newly-fallen snow were added a pound of water at the snow would be melted, and 32° would be resulting temperature.

When a body is *fusing*, no rise in its temperature occurs, however the additional quantity of heat may be imparted to it, as the increased is absorbed in the operation of fusion. The quantity of heat thus latent varies in different bodies.

A pound of water, in passing from a liquid at 212° to steam at 212 ceives as much heat as would be sufficient to raise it through 966.6 mometric degrees, if that heat, instead of becoming latent, had been see

If 5.5 lbs. of water, at temperature of 32°, be placed in a vessel, communiwith another one (in which water is kept constantly boiling at temperature of until former reaches temperature of latter quantity, then let it be weighed it will be found to weigh 6.5 lbs., showing that one lb. of water has been red in form of steam through communication, and reconverted into water by temperature in vessel. Now this pound of water, received in the form of had, when in that form, a temperature of 212°. It is now converted into form, and still retains same temperature of 212°, and this without losing any ten ture of itself. Now this heat was combined with the steam, but as it is not set to a thermometer, it is termed Latent.

Quantity of heat necessary to enable ice to resume the fluid state is to that which would raise temperature of same weight of water 140°; a equal quantity of heat is set free from water when it assumes the solid:

Sum of Sensible and Latent Heats.

				F.	rom wa	ter at	32°.				
Press- ure.	Latent.	Sum.	Press- ure,	Latent.	Sum.	Press- ure.	Latent.	Sum.	Presa-	Latent.	-
Lbs.	0	0	Lbs.	0	0	Lbs.	0	0	Lbs.	0	r
14.7	964.3	1146.1	26	943-7	1155.3	55	913	1169	120	873-7	Ŀ
15	962-1	1147.4	27	942.2	1155.8	60	908	1170.7	130	860.4	l:
17	959.8	1148.3	28	940.8	1156.4	65	904-2	1172.3	140	865.4	8
	957-7	1149.2	29	939-4	1157.1	70	900.8	1173.8	150	861.5	18
19	955-7	1150.1	30	937-9	1157.8	75	897.5	1175.2	160	857.9	Œ.
25	952.8	1150.9	32	935-3	1158.9	80	894-3	1176.5	170	854-5	1
21	951.3	1151.7	35	931.6	1160.5	85	891.4	1177.9	180	851.3	18
22	949-9	1152.5	37	929.3	1161.5	90	888.5	1179.1	190	848	li.
23	948.5	1153.2	40	920	1162.9	95	885.8	1180.3	200	845	h
24	946.9	1153.9	45	920.9	1164.6	100	883.1	1181.4	220	820.2	ī.
25	945-3	1154.6	50	916.3	1167.1	110	878.3	1183.5	250	831.2	3

Latent Heat of Vaporization, or Number of Degrees of Heat required to ances from their Liquidities to Vapor at Pri

Latent Heat of Fusion of Solids. (Person.)

Substances.	Melt- ing Point.	Specine	Heat.	In Heat- units of 1 lb.	Substances.	Melt- ing Point.	Specific Liquid.		In Heat units of 1 lb.
	0	0	0			· C	0	0	
Tin	442	.0637	.0562	25.6	Ice	32	I	-504	142.8
Bismuth	507	.0363	.0308	22.7	Phosphorus	112	.2045	.1788	9
Lead	617	.0402	.0314	9.86	Spermaceti	120	-		148
Zinc		-	.0956	50.6	Wax	142	-		175
Silver	1873	-	.057	37-9	Sulphur	239	.234	.2026	17
Mercury	39	.0333	.0319	5	Nitrate of soda	591	.413	.2782	113
Cast iron	3400	-	.129	233	Nit. of potassin .	642	-3319	.2388	85

To Compute Latent Heat of Fusion of a Non-metallic Substance.

 $C \circ c$ (t + 256°) = L. C and c representing specific heats of substance in solid an liquid state, t temperature of fusion, and L latent heat.

ILLUSTRATION. -- What is latent heat of fusion of ice?

$$C = .504$$
; $c = 1$; and $t = 32^{\circ}$.

$$.504 \sim 1 \times 32 + 256 = 142.85^{\circ}$$
 units.

Note.—For Latent Heat of Fusion of some substances, see Deschanel's, New York 1872, Heat, part 2.

Radiation of Heat.

Radiation of Heat is diffusion of heat by projection of it in diverging righ lines into space, from a body having a higher temperature than space sur rounding it, or body or bodies enveloping it.

Radiation is affected by nature of surface of body; thus, black and rough surfaces radiate and absorb more heat than light and polished surfaces Bodies which radiate heat best absorb it best.

Radiant heat passes through moderate thicknesses of air and gas withou suffering any appreciable loss or heating them. When a polished surfac receives a ray of heat, it absorbs a portion of it and reflects the rest. The quantity of heat absorbed by the body from its surface is the measure o its absorbing power, and the heat reflected, that of its reflecting power.

When temperature of a body remains constant it is in consequence of quantity of heat emitted being equal to quantity of heat absorbed by body. Reflecting power of a body is complement of its absorbing power; or, sun of absorbing and reflecting powers of all bodies is the same.

Thus, if quantity of heat which strikes a body = 100, and radiating and reflecting powers each 90, the absorbent would be 10.

Radiating or Absorbent and Reflecting Powers of Substances.

SUBSTANCES.	Radiating or Ab- sorbing.	Reflect-	SUBSTANCES.	Radiating or Ab- sorbing.	Reflect ing.
Lamp Black. Water. Carbonate of Lead. Lead, white. Writing Paper. Ivory, Jet, Marble. Resin. Glass. India Ink.	100 100 100 100 98	7 to 2 7 to 2 10 15 15 28	Wrought Iron, polished. Lead, polished. Zinc, polished. Steel, polished. Platinum, in sheet. Tin Copper, varnished Brass, dead polished. " bright polished. Copper, ham'ered or	23 19 19 17 17 15 14	77 81 81 83 83 85 86 89
Shelisc Lead Lead Asset Iron, bright polished Latinum, a little polish'd	72 45 25 24 23	28 55 75 76 77	Gold, plated polished Silver, polished cast, polish		

Radiating and Absorbing Power of various Bodie Units of Heat per Sq. Foot per Hour for a Differ of 10. (Pedet)

	Iron, ordinary	Oil paint
--	----------------	-----------

To Compute Loss of Heat by Radiation per Sq.

 $\frac{1.7 l (T-l)}{d v}$ = R. T representing temperature of pipe, which is assumed to

less than that of steam; t temperature of air; l length of pipe, and v velocity in feet per second; d diameter in ins., and R radiation in degrees per second.

ILLUSTRATION.—Assume temperatures of a steam-pipe, steam, 212°, 200°, 60°, length of pipe 20 feet, velocity of heat (steam) 15 feet per second, and d of pipe 16 ins.; what will be loss of heat by radiation?

$$\frac{1.7 \times 20 (200 - 60)}{16 \times 15} = 15.66^{\circ}.$$

Reflection.

Reflection of Heat is passage of heat from surface of one sub to another or into space, and it is the converse of radiation.

Heat is reflected from surface upon which its rays fall in same ma light, angle of reflection being opposite and equal to that of incidence als are the strongest reflectors.

Reflecting Power of various Substances.

Silver	Specular metal86	Zinc
Gold95	Tin	Iron
Brass	Steel	Lead

Communication and Transmission of Heat.

Communication of Heat is passage of heat through different with different degrees of velocity. This has led to division of into Conductors and Non-conductors; former includes such as a which allow caloric to pass freely through their substance, and comprise those that do not give an easy passage to it, such as a glass, wood, charcoal, etc.

Velocity of cooling, other things being equal, increases with extent face compared with volume of substance; and of two bodies of same rial, temperature, and form, but differing in volume.

Transmission of Heat is passage of heat through different hodies we ferent degrees of intensity. Gaseous bodies and a vacuum are hig order of transmittents.

Relative Power of various Substances to Transmit Heat.

All bodies capable of transmitting heat are more or less trans though their powers of transmitting heat and light are not in sam tive proportions.

 Air
 I
 Flint-glass
 .67
 Nitric acid
 .15
 Sulphurie at Rock-crystal
 .62
 Turpentine

 Crown-glass
 .49
 Ice
 .06
 Rape-seed oil
 .3
 Water

Heat which passes through one plate of glass is less subject to also in passing through a second and a third plate. Of 1000 tays, 455 we tercepted by 4 plates as follows:

1st. 381. 2d. 43. 3d. 18. 4th. 9.

erage Results of Heating and Evaporating Water by Steam in Copper Pipes and Boilers. (D. K. Clark.)

	Steam condensed Per sq. foot for r° d		Heat transmitted difference per hour.	
	Heating.	Evaporating.	Heating.	Evaporating
	Lbs.	Lbs.	Units.	Units.
iron plate surface		.105	82	100
er-plate surface		.483	276	534
er-pipe surface	.291	1.07	312	1034

hence.—Efficiency of copper-plate surface for evaporation of water is le its efficiency for heating; for copper-pipe surface efficiency is more three times as much; and for cast-iron-plate surface, a fourth more. ficiency of pipe surface is a fifth more than that of plate surface for ing, and more than twice as much for evaporation.

merally, copper-plate surface condenses .5 lb. of steam, copper-pipe, and cast-iron-plate surface .1 lb. per sq. foot per 1° of temperature per, for evaporation.

lantity of heat transmitted is at rate of about 1000 units per lb. of steam ensed.

Transmission of Heat through Glass of different Colors.

of flow, and is in inverse of thickness of element.

	Direct = 100.	
65.5		Yellow 40
t, deep 53	Green 26	Orange 44 Red 53
	f transmission of heat as	
erses an element of a	a body in a unit of time i	s proportional to its sur-
and to difference of	temperature of the two fac	es perpendicular to direc-

 $(t-t')\frac{C}{T}=H.$ t and t' representing temperatures of surfaces, C constant for $ial\ z$ inch thick, or quantity of heat transmitted per hour for z^{o} difference of rature through z unit of thickness, T thickness, and H quantity of heat in units z through plate per z_{0} . Fool per hour.

antities of Heat transmitted from Water to Water brough Plates or Beds of Metals and other Solid Bodies, I Inch thick, per Sq. Foot.

For 1° Difference of Temperature between the two Faces per Hour, Selected from M. Peclet's tables. (D. K. Clark.)

UBSTANCE.	C or Quantity of Heat.	Substance.	C or Quantity of Heat.	SUBSTANCE.	C or Quantity of Heat.
numr		IronZinc	225 177	Marble Plaster Glass	2.6 6.56
PT	555	Lead		Sand	

ne conditions are, that the surfaces of conducting material must be pery clean, that they be in contact with water at both faces of different beratures, and that the water in contact with surfaces be thoroughly and tantly changed. M. Peclet found that when metallic surfaces became rate of transmission of heat through all metals became very nearly same.

To Compute Units of Heat Transm UBSTRATION I.—If 2000 lbs beet root juice at 40° are conwith a double bottom, and heated to 212° , with a heating a lbjected to steam at a temperature of 275° , for a period che total heat, and heat per degree of difference transmit

 $212^{\circ} - 40^{\circ} \times 60 \div 15 = 688^{\circ}$ per hour, and $2000 \times 688 \div 25 = 55040$ un foot per hour.

 $(212^{\circ} + 40^{\circ}) \div 2 = 126^{\circ}$ mean temperature of juice, and $275^{\circ} - 126^{\circ} =$ difference of temperature.

Hence, 55040 ÷ 149 = 369.4 units per sq. foot per degree of difference pe 2.—If 48.2 sq. feet of iron pipe 1.36 ins. in diameter, is supplied with stea and it raises temperature of 880 lbs. water from 460 to 2120 in 4 minutes, be total heat per sq. foot per hour, total heat per sq. foot per degree, and condensed per sq. foot per degree per hour?

 $212^{\circ} - 46^{\circ} \times 60 \div 4 = 2490^{\circ}$ in an hour; $46^{\circ} + 212^{\circ} \div 2 = 129^{\circ}$ mea ature, and $275^{\circ} - 129^{\circ} = 146^{\circ}$ difference of temperature.

 $\frac{2490^{\circ} \times 582}{48.2} = 45563$ units per on foot per hour, $45563 \div 146 = 312.1$ W foot per degree, and total heat of steam above $120^{\circ} = 1068^{\circ}$.

Hence $\frac{312.1}{1068} = .292$ lbs. steam condensed per sq. foot per degree per hour.

Evaporation.

Evaporation or Vaporization is conversion of a fluid into vit produces cold in consequence of heat being absorbed to for

It proceeds only from surface of fluids, and therefore, other this must depend upon extent of surface exposed.

When a liquid is covered by a stratum of dry air, evaporation even when temperature is low.

As a large quantity of heat passes from a sensible to a latent sta formation of vapor, it follows that cold is generated by evaporation Fluids evaporate in vacuo at from 120° to 125° below their boil

Heat required to Evaporate 1 lb. Water at Tempe below 212° from a Vessel in open air at 33

				- 1	Inomedi	E DOT!				
TEMPERA.	Water evapor'd per sq. foot of surface p'r hour.	lost by radia- tion from surface.	lost in air.	to evaporate a	Total lost per hour.	TEMPERA-	Water evapor'd per sq. foot of surface p'r hour.	lost by radia- tion from surface.	lost in air.	A seasonate of
0	Lbs.	Units.	Units.	Units.	Units.	0	Lbs.	Units.	Units.	T
32	.027	-	-	1001	20	132	.706	182	202	1
42	.04	270	424	1788	71	142	.916	158	162	12
52	.058	375	581	2052	119	152	1.178	137	127	II.
62	.083	405	605	2110	174	102	1.505	118	97	10
72 82	.117	386	566	2055	239	172	1.895	106	72	12
82	.162	358	504	1968	319	182	2.373	92	50	10
92	.223	319	434	1852	415	192	2.947	92 81	32	12
102	.303	280	366	1758	533	202	3.633	71	14	ю
112	-400	245	304	1664	671	212	4-471	63		1
122	.528	211	250	1580	849	-	-	-	-	и

To Compute Surface of a Refrigerator.

Illustration of Table. — If it is required to cool 20 barrels, of 42 gallon beer, from 2020 to 820 in an hour.

Result to be attained is to dissipate 42×8.33 (lbs. U. S. gallons) $\times 20$) = 840000 units of heat per hour.

At 2020, 4465 units are lost, and at 820, 319, hence, average loss for est ature between extremes = 1850 units per sq. foot per hour.

Then
$$\frac{840000}{1850}$$
 = 454 \$q. feet in a still air.

The volume of air required per hour in this case would be about us

npute Area of Grate and Consumption of Fool for Evaporation.

tion of Table.—If it is required to evaporate 6 Beer gallons $(1/2) \cdot ... = 1$ er hour, at a temperature not exceeding 152° .

8 = 50 lbs. At 1520, water evaporated as per table : 1.17% lin pr way.

42 sq. feet. Heat required to effect this = 1392 × 50 6,600 voice

ng 6000 units as average economic value of coals, theti', ...

is practicable to evaporate at a high temperature, as at on words of conomical.

ater requires only 1209 units per lb. if surface is to provide the conduced (1209 — 63) to 1146 units.

tive Powers of Different Tubes per Degree of Heat yet by I've of Surface.—In Units.

ا لعله (عنون المالية

mpute Volume of Water Evaporation

n a double-bottomed vessel having an area of page 19 ceted to steam at a pressure of 25 lbs.?

Then 330 × 57 × 17 × 15
927 × 60

8. 2 be with

When Water is at a Inver Tomper at one line and

nce between temperature of steams and some .. If

 $\frac{170000}{330 \times 140 \times 17} = .216 \text{ hour} = \text{lime to raw was.}$ r left for evaporation, and quantity respectively. r for 32.44 gallons.

.\

Donaldanding

iccation, or the drying of a museum or, and it is imperative that is examined be admitted at highest page 1 at its lowest.

i, submitted to an average vision of 2.5 days, will dee to 10.5 lbs. of word or of water per lb. of words.

f temperature for to the

Evaporation of Water per Sq. Foot of Surface per Ho (Dr. Dallon.)

The second of the	Evaporation.			Temperature	Evaporation.		
Temperature of Water.	Calm.	Light Air.	Brisk Wind.	of Water.	Calm.	Light Air.	N
0	Lbs.	Lbs.	Lbs.	0	Lbs.	Lhu,	1
32	.0349	.0448	.055	100	.3248	-4169	13
40	.0459	.0589	.0723	125	.6619	.8494	I.
50	.0655	.0841	.1032	150	1.296	1.663	2
60	.0917	-1175	-1441	175	2.378	3.053	3
70	.1257	.1616	.1983	200	4.128	5.298	6
80	.1746	.2241	.2751	212	5-239	6.724	2

The rates of evaporation for these conditions of the air when perfectly dry 1, 1, 28, and 1,5%

To Compute Quantity of Water exposed to Air that would be evaporal above.—Subtract tabulated weight of water corresponding to dew-point weight of water corresponding to temperature of dry air, and remain weight of water that would be evaporated per sq. foot of surface per la

Distillation.

Distillation is depriving vapor of its latent heat, and, though it be effected in a vacuum with very little heat, no advantage in rega a saving of fael is gained, as latent heat of vapor is increased pritionately to diminution of sensible heat.

A temperature of 70° is sufficient for distillation of water in a vess hausted of air.

Conduction or Convection of Heat.

Air and gases are very imperfect conductors. Heat appears transmitted through them almost entirely by conveyance, the h portions of air becoming lighter, and diffusing the heat through mass in their ascent. Hence, in heating a room with air, the he should be introduced at lowest part. The advantage of double dows for retention of heat depends, in a great measure, upon sheet confined between them, through which heat is very slowly transmit

Convection of heat refers to transfer and diffusion of heat in a fluid by means of the motion of the particles of the mass.

Relative Internal Conducting Powers of Various Substances. Metals.

Brass	Gold 1 Lead 18 Platinum 98	Porcelain	Wrought Iron Zinc
	Mine	erals.	
Chalk 6	" bitumin. r.68	Fire brick6r Fire clay76 Glass96	Lime Marble
Slate	I	Wood ash	80
	Woods with Birch	=.41 with Silver.	20000
Apple68 Ash73	Chestnut7	Ebony 5 Elm 73	Oak Pine
200			
Cotton 55 Eider down 44	Hemp Canvas28	Hair 2 Hare's fur 43	Wool
Contract of the last of the	Liquida	with Water.	200
Alcohol	t Thurst males	acid 25 Tur	pentine

Practical Deductions from preceding Results.

Asphalt is best composition for resisting moisture, and, being a slow conluctor of heat, it is best adapted for economy of heat and dryness.

Slate is a very dry material, but, from its quick conducting power, it is not adapted for retention of heat.

Cements. — Plaster of Paris and Woods are well adapted for lining of cooms, having low conductive powers, while Hair and Lime, being a quick conductor, is one of the coldest compositions.

Fire-brick absorbs much heat, and is well adapted for lining of fire-places, tc.; while Iron, being a high conductor of heat, is one of the worst of subtances for this purpose. Common brick is not a very slow conductor of heat.

Steam Pipe.—A wrought-iron pipe, 4 ins. in internal diameter, conveying team at a pressure of 35 lbs. per sq. inch (280°) and 100 feet in length, vill lose .84 PP.

Casing to Pipes.—A like pipe with the above, cased with following mateials and covered with canvas, to give like radiating power to the outer urface, gave loss of heat in units per hour, and for the thickness given, as ollows:

Casing.	.5 Inch.	r Inch.	2 Inches.	4 Inches.	6 Inches.
Voollen Feltawdust		36 55	16 26	7	4.3
oal-ashes	172	110	60	27	z6.6

Condensation.

Tredgold ascertained by experiment that steam at pressure (absolute) f 17.5 lbs. per sq. inch, 221°, produced I cube foot of water per hour y condensation in 182 sq. feet of cast-iron pipe, at a uniform and quiscent temperature of 60°. Hence, condensation .352 lb. water per 10ur, or .0022 lbs. per degree of difference of temperature (221–60).

From experiments of Mr. B. G. Nichol in England, 1875, it was deduced: That rates of transmission of heat, between temperature of steam and hat of water of condensation at its exit, at the rate of 150 feet per minute, nay be taken as 380 units for vertical tubes and 520 for horizontal.

Condensation of Steam in Cast-iron Pipes. (M. Burnat.)

Average Press. per				Condensation per sq. foot of external surface of pipe per hour.				
Sq. Inch.	Steam.	Air.	Difference.	Bare.	Straw.	Pipe.	Waste.	Plaster.
Lbs. 22	0 233	o 36.5	0 196.5	Lb. .581	Lb.	Lb.	Lb. .286	Lb.

From these data, following constants are deduced for an absolute pressure of 12 lbs, per 8q, inch of steam condensed, and heat passed off per 9q, foot of external surface of pipe per hour of 1° difference of temperature.

SURFACE OF PIPE.	Steam condensed per Sq. Foot.	Heat passed off.	SURFACE OF PIPE.	Steam Heat condensed Passe per Sq. Foot. off
re pipeaw coatd with clay pipe	007.00	68و.	Cotton waste 1 inch. Earth and hair White paint	1 30100.

Pipes were 4.72 ins. diameter, 25 inch thick, and had area of 58.5 52 52.55.

Bare—rough surface as cast. Straw coat—laid lengthwise 6 inch thick and book

Pipe—laid in clay pipe with an air space between them, the whole covered with
loam and straw. Waste cotton—r inch thick and bound with twine. Plasse—laid in clay and hair 2.36 ins. thick.

A wrought-iron pipe 3.75 ins. in external diameter, .25 inch thick, and least with felt and spun yarn .5 inch thick, condensed steam at 245° at rate of .see per sq. foot per hour, in an external temperature of 60°.

Steam Condensed per Sq. Foot and per Degree per Hour.

Mean Results of several Experiments with bare Cast-iron Pipes, with Stem

at Absolute Pressure of 20 lbs. per Sq. Inch.

.4 lb. per sq. foot, and .002 39 lb. per degree.

Hence, to ascertain quantity of heat lost by condensation of .002 39 lb. $=\frac{1}{420}$ of a lb.

In

Difference of total and sensible heats of 1 lb. steam at 20 lbs. absolute pressure $z_151^{\circ} + 32^{\circ} - 228^{\circ} = 955$ units, and $955 \div 420 = 2.274$ units = heat condensed

The loss of heat from a naked boiler in air at 62°, under an absolute pressure of plbs. per sq. inch, was 5.8 units.

Congelation and Liquefaction.

Freezing water gives out 140° of heat. All solids absorb heat when becoming fluid.

Particular quantity of heat which renders a substance fluid is terms its caloric of fluidity, or latent heat.

Temperature of Solidification of Several Gases. (Faraday.)

Frigorific Mixtures.

MIXTURES.	Parta.	Fall of Temperature.	MIXTURES.	Parta.	Fall of Temperature
Sea salt	5) 5) 12)	o o —18 to —25	Nitrate of ammonia. Water	1)	+50 to +4
Muriate of ammonia } Nitrate of potash Snow, or pounded ice	5 } 1 }	—5 to —18	Dilute sulphuric acid Sulphate of soda Diluted nitric acid		-10 to -60 +50 to -3
Phosphate of soda Nitrate of ammonia Dilute mixed acids	3 } 2 } 4 }	—34 to —50	Water	1)	+50 to -1
Snow	3)	-40 to -73	Sulphate of soda Muriate of ammonia. Nitrate of potash Dilute nitric acid	6 4 2	+50 to -=
Snow Dilute sulphuric acid Phosphate of soda	5)	68 to91	Phosphate of soda Dilute nitric acid	9}	+50 to -13
Nitrate of ammonia	3	o to -34	Muriate of lime	1 7,	+20 to -4
acid	3 }	/ oto-4	woa8 8,	د ا	1/+30-3

"-houic Acid and Sulphuric Ether, under receiver of an ibs. to 14 lbs., exhibited supersture ranges to most intense cold as your. (Foreday)

Melting-points.

METALS.	•	ALLOYS.	۰
ıminum	1400	Lead 1, Tin 4, Bismuth 5	240
timony	810	" 2, " 3	334
senic	365	" 3, " 2, Bismuth 5	199
3muth	476	" 3, " I	552
onze	1692	" 2, " 1 (solder)	475
lcium at red heat		1, 2 (Soit Soider)	360
pper	1996	' I, ' I	368
ld, pure	2282	1, 1, Dism. 4, Caum. 1	155
standard	2590	Tin 1, Bismuth 1	286
Bianuaru	2156 (2000	" 2, " I	336
n, cast	2250	Zinc i, Tin i	392
л, счасти	3479*	2	399
	(2200	Fusible Plugs.	
· 2d melting	2450		
33	(3700*	Lead 2, Tin 2	372
	(2700	" 6, " 2	383
Wrought	2912	" 7, " 2	388
	(3509*	0, 2	410
' malleable forge	 -	37	
nd	608	Various Substances.	
thium	356	Ambergris	145
ercury	39	Beeswax	151
atinum	_	Glass	
ickel, highest forge heat		Ice	2377
	136	Lard	32
lver	{1250 1873	Nitro-Glycerine.	95 45
xdium	194	Phosphorus	112
eel	2500	Pitch	QI
n	446	Saltpetre	666
nc	680	Spermaceti	112
		Stearine	114
ALLOYS.		Sulphur	239
ead 2, Tin 3, Bismuth 5		Tallow	92
" 1, " 3, " 5	210	Wax, white	142
	* Rai	nkine.	

Volume of Water, Antimony, and Cast iron, in the solid state, exceeds lat of the liquid as evidenced by the floating of ice on water, and of cold on on iron in a liquid state.

Boiling-points. (Under One Atmosphere.)

Liquids.	•	Liquids.	0
Cohol, s. g. 813	173	Turpentine	315
monia	140	Water	212
Ozine	173	" in vacuo	98
loroform	146	Whale oil	630
her	100 597	SATURATED SOLUTIONS.	•
rcury	648	Acetate of Soda	255.8
k	213	" " Potash	336
ric acid, 8. g. 1.42	248	Brine	226
" " 1.5	210	Carbonate of Soda	220.3
of Turpentine	315	" Potash	275
troleum, rectified	316	Nitrate of Soda	250
Osphorus	554	" " Potash	
water, average	213.2	Salt, common	
ohur	570	11 '	\
hnric acid R or + 8.49	590	VARIOUS SUBSTANCES.	\
* " " 1.2	240	Coal Tar	\
ether	•	Naphtha	\
	100	Maputha	-

Pressure of Saturated Vapors under Various Te atures. (Regnault)

Temper- ature.	Water.	Alcohol.	Ether.	Chloro- form.	Temper- ature.	Water.	Alcohol.	Ether.
-	Lbs.	Lbs.	Lbs.	Lbs.	0	Lbs.	Lbs.	Lbs.
32	.089	.246	3.53		212	14.7	32.6	95.17
50 68	.178	.466	5-54	2.52	230	20.8	45.5	120.9
68	•337	.85z	8.6	3.68	240.8	25.37 29.88		137
86	.609	1.52	12.32	5.34	248	29.88	62.05	_
104	1.06	2.59	17.67	7.04	266	39-27	83.8	_
122	1.78	4.26	24.53	10.14	276.8	46.87	- 1	_
140	2.88	6.77	33-47	14.27	284	52.56	109.1	
158	4.51 6.86	10.43	44.67	18.88	302	69.27	140.4	_
176	6.86	15.72	57.01	26.46	305.6	73.07	147.3	_
194	10.16	23.02	75.4I	35.03	320	89.97		

Boiling-points of Water corresponding to Altitudes of Barometer \(\) 62 and 31 Ins.

Barom.	Boiling-point.	Barom.	Boiling-point.	Barom.	Boiling-point.	Barom.	Во
	0		0		0		-
26	204.91	27.5	207.55	29	210.19	30.5	
26.5 27	205.79	28 28.5	208.43 209.31	29.5 30	211.07	32	

Boiling-point of Salt water, 213.2°. Water may be heated in a to 400° without boiling.

Fluids boil in a vacuum with less heat than under pressure of atm On Mont Blanc water boils at 187°; and in a vacuum water boils a 100°, according as it is more or less perfect.

Water may be reduced to 5° if confined in tubes of from .003 to .005 incheter: this is in consequence of adhesion of water to surface of tube, interfeachange in its state. It may also be reduced in its temperature below 3 kept perfectly quiescent.

Effect upon Various Bodies by Heat.

Wedgewood's zero is 1077° (Fahrenheit), and each degree $= 130^{\circ}$. In designation of degrees of temperature, symbol + is omitted when tem is above o; but when below it, symbol - must be prefixed.

Degrees.	D	egrees.	
Acetification ends 88	Highest natural tem-		Sea-water freezes
Acetous fermen-)	perature, Egypt	117	Snow and Salt, equ
tation begins 78	India - rubber and)	parts
Air Furnace3300	Gutta-percha vul-	293	Spirits Turpen, free
Ammonia (liq.) freezes —46	canize	,	Steel, faint yellow.
Blood (hum.), heat of. 98	Iron, bright red in		" full "
" freezes. 25	the dark	752	" purple
Brandy freezes7	Iron, red hot in twi-	00.	" blue
Charcoal burns 800	light	884	" full blue
Cold, greatest artific166	Iron, wrought, welds.	.2700	" dark "
" ' " natural —56	Ignition of bodies	. 750	" polished, blue
Common fire 790	Combustion of do	. 800	" strawc
Fire brick4000 to 5000	Mercury volatilizes	. 680	Strong Wines freez
Gutta-percha softens. 145	Milk freezes	. 30	Sulph. Acid (sp. grav
Heat, cherry red 1500	Nitric Acid (sp. grav.)	ا ـ آ	1.641) freezes
" (Daniell) 1141	Nitric Acid (sp. grav.) 1.424) freezes	—45	Sulph. Ether freeze
" hright red 1860	Nitrous Oxide freezes	-250	Vinegar freezes
	Olive-oil freezes	36	Vinous ferment&
151010 09 { 1077	Petroleum boils	zob	Viac boils
2000	1 The and Contains Concerns	s —	7 / Wood, dried
	1		-

Liquids at their Boiling.

Steam.

1. Ether 298/1Tu

th corresponding to Boiling-point of Pure Water.

Boiling-point at Level of Sea = 212°.

٠١	Feet.	Degree.	Feet.	Degree.	Feet.	Degree.	Feet.	Degree.	Feet.
	521 1044 1569 2006	207 206 205 204	2625 3156 3689	203 202 201 200	4761 5300 5841 6384	199 198 197 196	6929 7476 8025 8576	195 194 193	9129 9684 10241 10800

rection for temperature of air same as given at page 428 for Elevation Barometer by multiplying by C.

ISTRATION.—If water boils at a temperature of 200° and C = 136°, Then $6384 \times 1.08 = 6894.72$ feet.

Underground Temperature.

an increase of underground temperature per foot, from observations in nes in various and extended localities, is $.01565^{\circ} = 1^{\circ}$ in 64 feet.

ear Expansion or Dilatation of a Bar or Prism by Heat.

For 1° in a Length of 100 Feet.

,	
Inch.	Iron, from 32° to 572°
ony	Iron wire
	Lead
yellow	Marble
ron	Platinum
r from 0° to 212°	from 32° to 572°00204 Sandstone
from 32° to 572°04 18	"
rick	Silver
lint	Steel, rod
ube	" cast
" " unannealed .o.o3	" tempered
æ	Tin
fetal—16 copper + 1 tin0127 " 8 copper + 1 tin0121	Water
	Zinc, forged
from 0° to 212°	" sheet
	- 1

perficial expansion is twice linear, and cubical, three times linear.

Co Compute Linear Expansion of a Substance. vide I by decimal given in above Table, and quotient will give prom.

PRIMATION I.—A rod of copper 100 feet in length will expand between temless of 32° and 212° . $212-32=180 \times .0115=2.07$ ins.

A cube of cast iron of x foot will expand in volume between temperatures of 1d 212°. 212-62=150, and $150 \times .0074=1.11$, which \div 100 for x foot = inch, and $12+.011 \times 3=12.0333$ ins.

e solids, as ice, cast iron, etc., have more volume when near to their meltingthan when melted. This is illustrated in floating of solid metal in the liquid

Expansion of Water.

ter expands from temperature of maximum density (see page to 46°, at which degree it regains its initial volume of 32°, and it expands under one atmosphere to 212°; and its cubical exp. that is, its volume is dilated from 1 at 32° to 1.0466 at 212°, pansion increases in a greater ratio than that of temperature.

To Compute Density of Water at a given Temperatus

To Compute Density of Water at a given Temperature
$$\frac{62.5 \times 2}{\frac{l+46i}{500} + \frac{500}{l+46i}} = approximate density, t representing temperature of water.$$

. ILLUSTRATION -What is density of pure water at 2080?

02.5	X 2	= 57.42 lbs. or	والمنسس
298+461 _	500	1 cube foot.	accigni (
500	298 + 461	-	

Expansion of Water. (Dallon.)

Temp	Expansion.	Temp	Expension.	Temp.	Expension.	Temp.	Repende
		•		•		0	
8.3	2.0009	52	1.0018	112	1.0088 1.01367	172	1.02575
38	1	72	1.0018	132	1.01367	192	1.03265
***	1 2	11 93	1.00477		L01934	212	2.0466
			· Greetest des	mity 20.1	•		

Hence, at 72° , water expands $\frac{1}{10018} = 555.55$ th part of its original bulk.

hixpansion of Liquids from 320 to 2120. Volume at 20=1 Volume at 222°. | Ligeme. Volume at m 1.11 . Olive oil..... z. 08 Sulphuric acid..... Lased oil..... 2.03 1.06 Mercury Lors 4

" 212 to 302" Lors 433 r Turpentine
" 222 to 302" Lord 507 9 Water

Nitra acid Lrr Water sat with sain 1.07 L.07 1.0466 1.05

Expansion of Gases from 32° to 212°. Februs et 20=1

€ Lines.			ay ma.	. Gares	Yelen et 227	
A:r 1:k	Aumospi	MLG.	1.30-30	Narous exide r Atm	osphere	. 1.3179
Kydrogen i	+3	••	1 300 13	Salpharous and, 1	<u>.</u>	1.3903 1.398
(Service ocused)	35	••	1 300 10	Carbonio oxide :	-	1.3669
			1 324 53	CAMERICAN		, 2.3 ⁶ 71

Expansion of Gases is uniform for all temperatures.

Vilame of the Pound of Various Cases at all under one Atmosphere.

Ar the first Systematic transit Original Cale in Carbon or soul Store Names transit Original Law Editor Value transit Original Law Store Names transit Store Names transit Store 1995

Expansion of Air. Jahn.

gent	- Miner Systems	ملتعوع	37.4	Camb.	ave.	Car.	*1 D.	Z vanis-	SA. B.	-	-
<u> </u>		·- •				- ,-		-		-	_
-			2.320	30.2	200	50		2.70	r 15	322	1.73
-	3354	48	2.752	34	2	i:	2 7.75	B32	2. 254	عقم	LJII
	S -5/2	-	5 34.3	- Pu	2.00		3.722	25.5	2.20	200	200
	2.07	-	2.5	*6	5.332	28	2 2.43	322	E 223		2311

Company Volume of a Comman Weight of Air Permanent Gas the any Pressure.

es at a joint promie à durer respective remains de supply them some in them towns my griph

> were we will see that the last of the property and animals of the last of the -

Relative Densities of some Vapors.

ater 1. Alcohol 2.59. Ether 4.16. Spirits of Turpentine 8.06. Sulphur 3.59.

lume, Pressure, and Density of Air at Various Temperatures.

Volume and Atmospheric Pressure at 620 = 1.

per- re.	Volume of z lb. of air at atmospheric pressure of z4.7 lbs.	Pressure of a given weight of air.	Density, or weight of one cube foot of air at 14.7 lbs.	Temper- ature.	Volume of z lb. of air at atmospheric pressure of z4.7 lbs.	Pressure of a given weight of air.	Density, or weight of one cube foot of air at 14.7 lbs.
,	Cube feet.	Lbs. per Sq. Inch.	Lba.	•	Cube feet.	Lbs. per Sq. Inch.	Lbs.
0	11.583	12.96	.086 331	360	20.63	23.08	.048 476
;2	12.387	13.86	.080 728	380	21.131	23.64	-047 323
.0	12.586	14.08	.079 439	400	21.634	24.2	.046 223
Ö	12.84	14.36	.077 884	425	22.262	24.9	.04492
12	13.141	14.7	.076 097	450	22.89	25.61	.043 686
o	13.342	14.92	.07495	475	23.518	26.31	.042 52
0	13.593	15.21	.073 565	500	24.146	27.01	.041 414
ю	13.845	15.49	.072 23	525	24·775	27.71	.040 364
ю	14.096	15.77	.070 942	550	25.403	28.42	.039 365
0	14.592	16.33	.0685	575	26.031	29.12	.038415
.0	15.1	z6.89	.066 221	600	26.659	29.82	.037 <u>5</u> 1
0	15.603	17.5	.064 088	650	27.915	31.23	.035 822
o	16.106	18.02	.06209	700	29.171	32.635	.034 28
0	16.606	18.58	.060 21	750	30.428	34.04	.032 865
0	16.86	18.86	.059 313	800	31.684	35.445	.031 56 <u>1</u>
2	16.91	18.92	.059 135	850	32.941	36.85	.030 358
.0	17.111	19.14	.058 442	900	34-197	38.255	.029 242
.0	17.612	19.7	.056 774	950	35.454	39.66	.028 206
ю	18.116	20.27	.0552	1000	36.811	41.065	.027 241
ю	18.621	20.83	.053 71	1500	49-375	55.115	.020 295
ю	19.121	21.39	.052 297	2000	61.94	69.165	.016 172
:0	19.624	21.95	.050 959	2500	74.565	83.215	.013441
O	20.126	22.51	.049 686	3000	87.13	97.265	.011499

Compute Volume of a Constant Weight of Air or other Permanent Gas for any other Pressure and Pemperature.

Vhen volume is known at a given pressure and temperature. Rule.—Muly given volume by given pressure, and by new absolute temperature, divide by new pressure, and by given absolute temperature.

MAMPLE.—Given volume 16.9x cube feet, pressure 13.86 lbs., and temperature; what is volume at this temperature?

emperature for volume 16.01 = 2120.

$$16.91 \times 13.86 \times 32 + 461 \div 13.86 \times 212 + 461 = 12.39$$
 cube feet.

Compute Pressure of a Constant Weight of Air or or ther Permanent Gas for any other Volume and Pemperature.

Then pressure is known for a given volume and temperature. Rui tiply given pressure by new absolute temperature, and divide by lute temperature.

FZ.—Absolute temperature is found by adding 461° to temperature.

WPLE.—Given pressure 13.86 lbs., and temperature at this volume 32° ; where at temperature of 212° ?

$$13.86 \times 212 + 461 \div 32 + 461 = 18.92$$
 lbs.

522 HEAT.

To Compute Volume of a Constant Weight of other Permanent Gas at any Temperature

When volume at a given temperature is known, pressure being RULE.—Multiply given volume by new absolute temperature, ar by given absolute temperature.

Absolute zero-point by different thermometrical scales is: Fahrenheit Reaumur —219.2°; Centigrade —274°.

EXAMPLE.—Volume of r lb. air at $32^{\circ} = 12.387$ cube feet; what is its 312° ?

$$12.387 \times 212 + 461 \div 32 + 461 = 16.91$$
 cube feet.

To Compute Increased Volume of a Constant V

When initial volume at 62°=1 under 1 atmosphere. RULE.—... temperature add 461, and divide sum by 523 (62+461).

Example. - Assume elements of preceding case.

$$212^{\circ} + 461 + 523 = 1.287$$
 comparative volume to 1.

To Compute Pressure of a Constant Weight of .
other Gas at 62°, and at 14.7 lbs. Pressure per S
with Constant Volume, for a given Temperatu
Rule.—Add 461 to given temperature, and divide sum by 35.5%
EXAMPLE.—Temperature is 212°; what is pressure?

To Compute Volume, Pressure, Temperature, Density of Air.

$$\frac{t+461}{p^{2}-71} = V; \qquad \frac{t+461}{39\cdot8} = V; \qquad \frac{t+461}{V^{2}-71} = p; \qquad V^{2}-7074 p - 461 = 0$$

2.71 $\frac{p}{t+461}$ = D. t representing temperature, p pressure in lbs. per sq. inc ume in cube feet, and D weight of 1 cube foot at 14.7 lbs. per sq. inch.

Product of volume and pressure of a constant weight of air, or an permanent gas, is equal to product of absolute temperature and a condetermined for each gas by its density.

Or,
$$\nabla p = C \overline{t + 46z}$$
.

Coefficients, as determined by volumes and consequent densities.*

Air 2.71	Hydrogen	. 1875	Oxygen
Air 2.71 Carbonic acid 4.14 Ether, vapor 7.02	Nitrogen	2.63	Mercury
Ether, vapor 7.02	Olefiant	2.67	Steam

* See D. K. Clark, London, 1877, page 349.

Decrease of Temperature by Altitudes.

	In clear aky.	With cloud
From r to roco feet	10 in 130 feet	10 in 22
I " 10 000 "	10 " 288 "	10 " 33
- 11 an ann 11	-0 4 -4- 4	-0 11 16

Tompute Temperature to which a Substance an Length or Dimension must be Submitted and, to give it a Greater or Less Length of Expansion or Contraction.

n Length is to be increased. $\frac{L-l}{C} + t = T$. Land

ion.—A copper rod at 32° is 100 feet in length; to what temperature bjected to increase its length 1.1633 ins.?

for a length of 100 feet of copper for 10 = .0115.

$$\frac{100 \times 12 + 1.1633 - 100 \times 12}{.0115} + 32 = \frac{1.1633}{.0115} + 32 = 133.169$$

ngth is to be reduced. $\frac{L-l}{C}-T=t$

10N.—Take elements of preceding case.

$$\frac{1201.1633 - 1200}{.0115} - 133.16^{\circ} = 101.16 - 133.16 = 32^{\circ}.$$

ice Degrees of Fahrenheit to Reaumur and Centigrade, and Contrariwise.

Their to Reaumur. If above zero. — Multiply difference mber of degrees and 32 by 4, and divide product by 9.

1. $-32^{\circ} = 180^{\circ}$, and $180^{\circ} \times 4 \div 9 = 80^{\circ}$.

zero.—Add 32 to number of degrees; multiply sum by 4, and uct by 9.

10 + 320 = 720, and $720 \times 4 \div 9 = -320$.

nur to Fahrenheit. If above freezing-point. — Multiply degrees by 9, divide by 4, and add 32 to quotient.

 $\times 9 \div 4 = 180^{\circ}$, and $180^{\circ} + 32 = 212^{\circ}$.

freezing-point.—Multiply number of degrees by 9, divide by 4, 1t 32 from product.

10 × 9 ÷ 4 = 720, and 720 - 32 = -400.

nheit to Centigrade. If above zero.—Multiply difference mber of degrees and 32 by 5, and divide product by 9.

 $^{3}-^{32}$ \times 5 \div 9 = 180 \times 5 \div 9 = 100 .

zero.—Add 32 to number of degrees, multiply sum by 5, and luct by 9.

 $3^{\circ} + 32^{\circ} \times 5 \div 9 = 72^{\circ} \times 5 \div 9 = -40^{\circ}$

rade to Fahrenheit. If above freezing-point.—Multiply degrees by 9, divide product by 5, and add 32 to quotient.

 $9 \times 9 \div 5 = 180^{\circ}$, and $180^{\circ} + 32 = 212^{\circ}$.

freezing-point.—Multiply number of degrees by 9, divide product ake difference between 32 and quotient.

 $5^{\circ} \times 9 \div 5 = 18^{\circ}$, and $18^{\circ} \sim 32 = 14^{\circ}$.

aur to Centigrade,—Divide by 4, and add product. $\div 4 = 20^{\circ}$, and $20^{\circ} + 80^{\circ} = 100^{\circ}$.

rade to Reaumur.—Divide by 5, and subtract product. $3 \div 5 = 20^{\circ}$, and $100^{\circ} - 20 = 80^{\circ}$.

Corresponding Degrees upon the Three Scales.

compute Expansion of Fluids in Volume. occed by preceding formulas for computing length of a su titute V and v for volume, instead of L and l, the lengths.

ing length of pipe for any given space it is proper to include tation the character and occupancy of the space. Thus, a ; hours of service, or a dwelling-room, will require less service gth of pipe than a hallway or a public building.

f Heat by Surfaces of Glass or Metal.—In addition to the to be heated per minute for each occupant, 1.25 cube feet for of glass or metal the space is enclosed with must be added, cating power of the glass and metal being directly proportionce of external and internal temperature of the air. Thus, 80 ill reduce 100 feet of air per minute.

are laid in Trenches in the Earth.—The loss of heat is esr. Hood at from 5 to 7 per cent.

of Water in Pipes.—In consequence of the complex forms of and the roughness of their internal surface, it is impracticable e to determine the velocity of circulation, as consequent upon reights of ascending and descending columns of the water.

rence of temperature in the two columns of 30° (190° – 160°) of 20 feet, the velocity due to the height would be 3.74 feet. at .3, and in some cases but .1, would be attained.

and Large Public Rooms, with ordinary area of doors and windows ventilation, a large amount of heat is generated by the respiration assembled therein.

sit is not necessary to heat the air above 55°, and a rule that will arry ranges of temperature from x0° is to divide volume in cube I quotient will give area of plate in sq. feet or length of 4-inch pipe

r required per Hour for each Occupant in an Enclosed Space. (General Morin.)

Cube Feet.	Cube Feet.	1	Cube Feet.
:100 to 3700	Cube Feet. Lecture-rooms 1000 to 2100 Theatres 1400 " 1800	Prisons	1800
:100 " 3500	Theatres 1400 " 1800	Schools	424 to 1060

ite Length of Iron Pipe required to Heat Air in an Enclosed Space.

By Hot Water.

Iltiply volume of air to be heated per minute in cube feet by imperatures in space and external air, divide product by differatures of surface of pipe and space, multiply result by follows, and product will give length of pipe in feet.

er of 4 ins. multiply by .5 to .55, for 3 ins. by .7 to .75, and for I.I.

is. in diameter, .375 inch thick, and I foot in length has an al surface of I.05 sq. feet.

'olume of a room of a protected dwelling is 4000 cube feet; what pipe, at 200°, is necessary to maintain a temperature of 70°, when at 0°?

$$\frac{4000 \times 70 - 0}{200 - 70} \times .4 = 862 \text{ feet.}$$

ng length of pipe or surface intents here given and compution or change of air or m 5 to 10 cube feet in t is restricted the coeffic

baim ni enrod ed ot e essa era eldat e t eset edir t ese edir. th temperature, 1 sq. meter (10.76 sq. feet) of temperature (2472 cube feet) == 4.35 sq. feet or 5.11 lineal

it is customary in France to assign 1.33 sq. feet f shop = 5.2 sq. feet per 1000 cube feet.

Aicuting by Steam. (R. Briggs, M. I. C. E.)

By Steam.

.

of Iron Pipe required to Heat Air space, with Steam at 5 lbs. per Sq. sure of Atmosphere.

me of air in cube feet to be heated per minute, by in space and external air, divide product by coeffi-, and quotient will give length of 4-inch pipe in ite-surface in sq. feet.

.t 5 lbs. + pressure = 228°. Hence, if temperature of space or 120°, the differences will be 168°, 158°, 148°, and 108°, f.5, as given in rule for hot water, would be 336, 316, 296, in diameter, and for

me of combined spaces of a factory is 50000 cube feet; what plato at 200° is necessary to maintain a temperature of 50° o°?

 $\frac{0.000 \times 50 - 0}{200 - 50} \times .4 = 6666$ square feet.

d per Hour to Heat 100 Feet of Pipe. (Chas. Hood.)

ference of Temperature of Pipe and Air in Space, in Degrees.

	135	130	125	120	115	110	105	100	95	90	85	80
•	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbe.	Lbs.	Lbs.	Lbs.	Lbs.
	1	1	.9	.9 8.1	ا و.	.8	.8	.7	-7	.7	.6	.6
	2.1	2	1.9	1.8	1.8	1.7	1.6	1.5	1.4	1.4	1.3	1.2
	3. I	3	2.9	2.8	2.7	2.5	2.4	2.3	2.2	2. I	2	1.8
	1.2	4. I	3.9	3.7	3.6	3-4	3.2	3.1	2.9	2.8	2.6	2.5

reling to M. Claudel, 44 feet in width by 10.5 high, a single ins. in diameter per foot of longth of room, appears to be idea being from 170° to 180°.

Therence of 120°, it is course to acquive and the idea of

ted surface as equivalent to

sq. feet of cast-iron pipe-t 194°, will warm 1000 cult. Steam is condensed at T.

. ,tt. i., circum.) Length of fronts of building fount outne of rooms italianting surfaces, direct indirect Souters	. 10 804 . 23 290	2	574 084 0 34 100 8	3: 4	steel: Is me of the Bl Piati
Votume of Air Heated by Rac Coak; Areas of Grate and He Roo't Brig Strace Sq. Fret of Warming	esting= gs.)	surface	of Bo		Du Du sah a af iiii 2083
Tressure of Steam per sq 'nich	. 3	10 537	30 642	, 6 . 74	form: and 6 stone
A commence of the matter of th	20 772 1.006	29 570 1. 178 3. 53	35 352 2.408 4-28	埔場	Mi Mi Mi Mi Mi
treat a pore onsuming \$ 98. 38 or over both trop, 261	.405 — 9.072	.448 .298 10.02	 -357 11.98	13-81 421	oent. heat

De:

41

Etrind

Tol

ncerri

İr fa

Edile

TH-

kin.

w, i

433

b

الاختا

Ē.,

8

117

12/2

De,

2

By Hot-Air Furnaces or Stoves.

I square next of heating surface in a hot-air furnace or stove is bell be equivalent to say feet of hot water nine.

M "refer teduced that when the thre-ripe of a stove radiated its income to are of a space, the heat radiated per sq. foot per hour, for difference of temperature, were, for: Cast Jron, Los units; Wrought iron 16 norms, and "orms outh a neh thick, r.42 units.

In primary practice, r sq. foot of cast iron is assigned to 228 cubt я фасе.

Open Fires.

According to M. Claudel, the quantity of heat radiated into an approximation of the control of t meet from an ordinary fireplace is .25 of total heat radiated by combustion

For wood the heat utilized is but from 6 to 7 per cent., and for coal 13 F R. fr cent.

In combustion of wood, chimney of an ordinary open fireplace data from 1999 to 16 to cube feet of air per pound of fuel, and a sectional sectional of from 50 to 60 sq. ins. is sufficient for an ordinary apartment.

Proportions of fuel required to heat an apartment are: For ordinary places, 100; metal stoves, 63; and open fires, 13 to 16.

Purnaces.

By D. K. Clark, from investigations of Mr. J. Lothian Bell.

Cupola.—M. Peelet estimates that in melting pig-iron by combine of no per cent, of its weight of coke, 14 per cent, only of the heat of come utilized.

> ral. - According to Dr. Siemens, a ton of cost is of of wrought from to welding-point of 2700°, s atting up 30 tons of iron; from which it ar is some distribution of the income at the state of the st

1 ordinary furnaces, whilst, in his regenerative furnace, 1 ton of steel ed by combustion of 1344 lbs. of small coal, showing that 6 per cent. heat is utilized.

ust-furnace.—Mr. Bell has formed detailed estimates of appron of the heat of Durham coke in a blast-furnace; from which is defollowing abstract:

ham coke consists of 92.5 per cent. of carbon, 2.5 of water, and 5 of d sulphur. To produce 1 ton of pig-iron, there are required 1232 lbs. stone, and 5388 lbs. of calcined iron-stone; the iron-stone consists of bs. of iron, 1008 lbs. of oxygen, and 2509 lbs. of earths. There is l 813 lbs. of slag, of which 123 lbs. is formed with ash of the coke, olbs. with the limestone. There are 2307 lbs. of earths from the iron-less 03 lbs. of bases taken up by the pig-iron and dissipated in fume, 14 lbs. Total of slag and earths, 3127 lbs.

Bell assumes that 30.4 per cent, of the carbon of the fuel, which esin a gaseous form, is carbonic acid; and that, therefore, only 51.27 nt. of heating power of fuel is developed, and remaining 48.73 per eaves tunnel-head undeveloped. He adopts, as a unit of heat, the squired to raise the temperature of 112 lbs. of water 33.8°.

HYDRAULICS.

cending Fluids are actuated by same laws as Falling Bodies.

'luid will fall through I foot in .25 of a second, 4 feet in .5 of a l, and through Q feet in .75 of a second, and so on.

ocity of a fluid, flowing through an aperture in side of a vessel, oir, or bulkhead, is same that a heavy body would acquire by falleely from a height equal to that between surface of fluid and of aperture.

soity of a fluid flowing out of an aperture is as square root of of head of fluid. Theoretical velocity, therefore, in feet per secs as square root of product of space fallen through in feet and $i = \sqrt{2gh}$; consequently, for one foot it is $\sqrt{64.333} = 8.02$ feet, velocity, however, of a number of experiments gives 5.4 feet, of theoretical velocity.

hort ajutages accurately rounded, and of form of contracted vein, contracta), coefficient of discharge = .974 of theoretical.

s subside to a natural level, or curve similar to Earth's convexity; apparent r level taken by any instrument for that purpose, is only a tangent to Earth's erence; hence, in leveling for canals, etc., difference caused by Earth's curmust be deducted from apparent level, to obtain true level.

ictions from Experiments on Discharge of Fluids from Reservoirs.

hat volumes of a fluid discharged in equal times by same apertures ame head are nearly as areas of apertures.

hat volumes of a fluid discharged in equal times by similar apertudifferent heads, are nearly as square roots of corresponding by above surface of apertures.

nt, on account of friction, small-lipped or thin orifices discharly more fluid than those which are larger and of similar to height of fluid.

4. That in consequence of a slight augmentation which contraction of the luid vein undergoes, in proportion as the height of a fluid increases, the form a little diminished.

5. That if a cylindrical horizontal tube is of greater length than its meter, discharge of a fluid is much increased, and may be increased all dyantage, up to a length of tube of four times diameter of aperture.

6. That discharge of a fluid by a vertical pipe is augmented, on the posible of gravitation of falling bodies; consequently, greater the length of sipe, greater the discharge of the fluid.

7. That discharge of a fluid is inversely as square root of its density.

8. That velocity of a fluid line passing from a reservoir at any point qual to ordinate of a parabola, of which twice the action of gravity (s) s parameter, the distance of this point below surface of reservoir being basesias.* Or, velocity of a jet being ascertained, its curve is a parabola arameter of which = 4 h, due to velocity of projection.†

cssel which empties itself, is only half of what it would have been described in the office of the constantly under same is and corresponding velocity as at commencement of discharge; consequent the in which such a vessel empties itself is double the time in what it is fluid would have run out if the head had remained uniform.

ro. Mean velocity of a fluid flowing from a rectangular slit in side as eservoir is two thirds of that due to velocity at sill or lowest point of that due to a point four ninths of whole height from surface of reservoir.

11. When a fluid issues through a short tube, the vein is less contain an in preceding case, in proportion of 16 to 13; and if it issues that a perture which is alike to frustum of a cone, base of which is the ure, the height of frustum half diameter of aperture, and area of small or area of large end as 10 to 16, there will be no contraction of the Hence this form of aperture will give greatest attainable discharge of

12. Velocity of efflux increases as square root of pressure on surface duid.

13. In efflux under water, difference of levels between the surface be taken as head of the flowing water.

14. To attain greatest mechanical effect, or vis viva, of water through an opening, it should flow through a circular aperture in a blate, as it has less frictional surface.

From Conduits or Pipes. (Bossut.)

1. Less diameter of pipe, the less is proportional discharge of fluid.

2. Discharges made in equal times by horizontal pipes of different out of same diameter, and under same altitude of fluid, are to see a inverse ratio of sq. roots of their lengths.

3. In order to have a perceptible and continuous discharge of altitude of it in a reservoir, above plane of conduit pipe, must not han .082 ins. for every 100 feet of length of pipe.

4. In construction of hydraulic machines, it is not enough that contractions be avoided, but also any intermediate enlargement in produces of the state of the st

No. f Parts.	Velocity.	No. of Parts.	Velocity.	No. of Parts.	70	Aocits.	of the	1	
-0	1		.741		1	.569	1	2	L

Eriction.

ving of liquids through pipes or in natural channels is materially afby friction.

qual volumes of water were to be discharged through pipes of equal ers and lengths, but of following figures:

charges from Compound or Divided Reservoirs.

city in each may be considered as generated by difference of heights tiguous reservoirs; consequently, square root of difference will repvelocities, which, if there are several apertures, must be inversely as espective areas.

e.—When water flows into a vacuum, 32.166 feet must be added to height of i when into a rarefled space only, height due to difference of external and il pressure must be added.

VELOCITY OF WATER OR OF FLUIDS. Coefficients of Discharge.

ficient of Discharge or Efftux is product of coefficients of Contraction slocity.

ascertained in practice that water issuing from a Circular Aperture in plate contracts its section at a distance of 5 its diameter from re to very nearly .8 diameter of aperture, so as to reduce its area to about .61.* Velocity at this point is also ascertained to be about mes theoretical velocity due to a body falling from a height equal d of water. Mean velocity in aperture is therefore .974, which, × .594, theoretical discharge; and in this case .504 becomes coefficient of rge, which, if expressed generally by C, will give for discharge itself

 $\overline{gh} \times C = V$. a representing area of aperture, and V volume discharged per Or, 4.97 a $\sqrt{h} = V$. Or, 3.91 $d^2 \sqrt{h} = V$. d representing diameter in feet. e, for cube feet per second, 4.97 a \sqrt{h} , or 3.91 $d^2 \sqrt{h}$.

STRATION.—Assume head of water 10 feet, diameter of opening 1.127 feet, sq. foot, and C=.62.

 $1\sqrt{2}g$ 10 \times .62 = 15.72 cube feet. 4.97 \times 1 \times $\sqrt{10}$ = 15.72 cube feet, and 1.127² \times $\sqrt{10}$ = 15.7 cube feet.

quare aperture it is .615, and for rectangular .621.

nme of water or a fluid discharged in a given time from an aperture iven area depends on head, form of aperture, and nature of approaches.

$$\overline{h} = v^2$$
, and $\frac{v^2}{64.333} = h$. h representing height to centre of opening in feet.

: — Head, or height, h, may be measured from surface of water to centre of re without practical error, for it has been proved by Mr. Neville that for cirpertures, having their centre at the depth of their radius below the surface, erefore circumference touching the surface, the error cannot exceed a per excess of the true theoretical discharge, and that for depths exceeding three.

^{61.} Observed discharges of water coincide nearer to unit of Bayer than that of all other

times the diameter, the error is practically immaterial. For rectangular aperiors it is also shown that, when their upper side is at surface of the water, as in notches the extreme error cannot exceed 4.17 per cent. in excess; and when the upper three times depth of aperture below the surface, the excess is inappreciable.

For notches, weirs, slits, etc., however, it is usual to take full depth for head, who .666 only of above equation must be taken to ascertain the discharge.

Experiments show that coefficient for similar apertures in thin plates for small apertures and low velocities, is greater than for large apertures and high velocities, and that for elongated and small apertures it is greater the for apertures which have a regular form, and which approximate to the circle.

When Discharge of a Fluid is under the Surface of another body of like Fluid .- The difference of levels between the two surfaces must be taken as the head of the fluid.

Or,
$$\sqrt{2g(h-h')}=v$$
.

When Outer Side of opening of a discharging Vessel is pressed by a Form -The difference of height of head of fluid and quotient of pressures on the sides of vessel, divided by density of fluid, must be taken as heads of fluid.

Or,
$$\sqrt{2g\left(h-\frac{(p-p')\times \tau_{44}}{S}\right)}=v$$
. S representing density of fluid

ILLUSTRATION. - Assume head of water in open reservoir is 12 feet above with line in boiler, and pressures of atmosphere and steam are 14.7 and 19.7 lbs.

Then
$$\sqrt{2g\left(12 - \frac{(49.7 - 14.7) \times 144}{62.5}\right)} = \sqrt{64.333 \times \left(12 - \frac{5 \times 144}{62.5}\right)} = 5.55 \text{ field}$$

When Water flows into a rarefied Space, as into Condenser of a State engine, and is either pressed upon or open to Atmosphere. - The height date mean pressure of atmosphere within condenser, added to height of wat above internal surface of it, must be taken as head of the water.

Or,
$$\sqrt{2g(h+h')}=v$$
.

ILLUSTRATION.—Assume head of water external to condenser of a steam-engine be 3 feet, vacuum gauge to indicate a column of mercury of 26.467 ins. (=13 |241 and a column of water of 13 lbs. = 29.9 feet.

Then
$$\sqrt{2}g(3+29.9) = \sqrt{64.333 \times 32.9} = \sqrt{2116.57} = 46$$
 feet.

Relative Velocity of Discharge of Water through differ ent Apertures and under like Heads.

Velocity that would result from direct, unretarded action of the column of A tube from 2 to 3 diameters in length, projecting outward..... A tube of the same length, projecting inward......

A conical tube of form of contracted vein.

Wide opening, bottom of which is on a level with that of reservoir; sluice with walls in a line with crifice; or bridge with pointed piers.

Narrow opening, bottom of which is on a level with that of reservoir; abrupt projections and square piers of bridges.

Sluice without side walls.

Discharge or Efflux of Water for various Openings Apertures.

Rectangular Weir.

Weirs are designated Perfect when their sill is above surface stream, and Imperfect, Submerged, or Drowned when it is below the

Height measured from Surface of Water to Sill. (Jas. B. Francis.)

Mean Head.	Longth of Opening.	Mean Discharge per Second.	Mean Coefficient.
.62 to z.55 feet.	10 feet.	32.9 cube feet.	.623

Principal causes for variation in coefficients derived from most experi-

z. Depth being taken from only one part of surface, for it has been proved at heads on, at, and above a weir should be taken in order to determine ze discharge.

2. Nature of the approaches, including ratio of the water-way in channel ove, to water-way on weir.

When a weir extends from side to side of a channel, the contraction is as than when it forms a notch, or Poncelet weir, and coefficient sometimes as high as .667.

When weir or notch extends only one fourth, or a less portion of width, afficient has been found to vary from .584 to .6.

When wing-boards are added at an angle of about 64°, coefficient is greater an even when head is less.

Computation of Volume of Discharge.

Mean velocity of a fluid issuing through a rectangular opening in Le of a vessel is two thirds of that due to velocity at sill or lower ge of opening, or it is that due to a point four ninths of whole height am surface of fluid.

Teight measured from Surface of Head of Water to Sill of Opening.

RULE.—Multiply square root of product of 64.333 and height or whole pth of the fluid in feet, by area in feet, and by coefficient for opening, and thirds of product will give volume in cube feet per second.

Or,
$$\frac{a}{b}b h\sqrt{2gh} C = V$$
; $\frac{V}{\frac{a}{b}b h\sqrt{2gh} C} = t$; and $\left(\frac{V}{\frac{a}{b}Cbh}\right)^2 \div 2g = h$.

: representing time in seconds and V volume in cube feet.

EXAMPLE.—Sill of a weir is r foot below surface of water, and its breadth is ro : what volume of water will it discharge in one second?

$$C = .623$$
, $\sqrt{64.33 \times 1} \times 10 \times 1 = 80.2$, and $\frac{9}{8} 80.2 \times .623 = 33.32$ cube feet.

Some — Mean coefficient of discharge of weirs, breadth of which is no more than and part of breadth of stream, is two thirds of .6 = .41, and for weirs which extend sole width of stream it is two thirds of .666 = .444.

Or, $214\sqrt{h^3} = V$ in cube feet per minute. When h is in ins., put 5.15 for 214.

 \mathbf{r} , $\mathbf{C} b h \sqrt{2gh} = \mathbf{V}$. C for a depth .1 of length = .417, and for .33 of length = .4.

Or, by formula of Jas. B. Francis: 2.33 (L — .1 n H) $H^{\frac{3}{2}} = V$.

representing length of weir and H depth of water in canal, sufficiently far from To to be unaffected by depression caused by the current, both in feet, and n number and contractions.

Nor.—When contraction exists at each end of weir. n=2; and when weir is of the of canal or conduit, end contraction does not exist, and n=0.

This formula is applicable only to rectangular and horizontal weirs in side of a square vertical on water side, with sharp edges to current; for if beveiled or rounded have perceptible degree, a material effect will be produced in the discharge seential also that the stream, after passing the edges, should in nowise instead in its flow and descent.

In cases in which depth exceeds one third of length of weir, this forn applicable. In the observations from which it was deduced, the depth v 7 to nearly 10 ins.

With end contraction, a distance from side of canal to weir equal to weir is least admissible, in order that formula may apply correctly.

Depth of water in canal should not be less than three times that on vocurate computation of flow.

ILLUSTRATION.—If an overfull weir has a length of 7.94 feet and a de (as determined by a hook gauge), what volume will it discharge in 24 ho

3.33
$$(7.94 - .2 \times .986)$$
 $.986^{\frac{13}{2}} = 3.33 \times 7.94 - .1972 \times .979 07 = 3.33$ $.979 07 = 25.243 875$, which $\times 60 \times 60 \times 24 = 2181 061$ cube feet.

Log. 24 hours = 86 400 seconds.

6.338 67 = 2 181 073 cube feet. C in this case = .615.

Or, $214\sqrt{H^3}$ and $5.15\sqrt{h^3} = V$, if stream above the sill is not in representing height of surface of water above sill in feet, h in in $214\sqrt{H^3} + .035$ v^2 $H^3 = V$, if in motion. v representing velocity of a water in feet per second, and V volume in cube feet discharged over each of sill per minute.

1.402 157

4.936 514

In gauging, waste-board must have a thin edge. Height measured to face not affected by the current of overfall. (Molesworth.)

To Compute Depth of Flow over a Sill that we charge a given Volume of Water.

$$\left(\frac{3}{2}\frac{V}{C} + k^{\frac{3}{2}}\right)^{\frac{9}{3}} - k = d$$
. $k = \frac{v^2}{2}$ representing height due to velo stous to the veir.

Note.—When back-water is raised considerably, say 2 feet, velocity oproaching weir (k) may be neglected.

Rectangular Notches, or Vertical Apertures or

A Notch is an opening, either vertical or oblique, in side of a ve voir, etc., alike to a narrow and deep weir.

Vertical Apertures or Slits are narrow notches or weirs, runnear to bottom of vessel of reservoir.

Coefficient for opening, 8 ins. by 5, mean .6c6 (Poncelet and Les Coefficient increases as depth decreases, or as ratio of length a its depth increases.

When sides and under edge of a notch increase in thickness, so as to be into a short open channel, coefficients reduce considerably, and to an exist what increased resistance from triction, particularly for small depths, im-

Poncelet and Lesbros found, for apertures 8 × 8 ins., that addition of a shoot 2x ins. long reduced coefficient from .604 to .60x, with a head of the but for a head of 4.5 ins. coefficient fell from .572 to .483.

For Rule and Formulas, see preceding page.

gular Openings or Sluices, or Horizontal Slits. sured from Surface of Head of Water to Upper Side and to Sill

nd Lesbros deduced that coefficient of discharge increases with small long apertures as they approach the surface, and decreases with large pertures under like circumstances.

is ranged, in square apertures of 8 by 8 ins., under a head of 6 ins. to apertures, 8 by 4 ins.; under a head of 10 feet, from .572 to .745.

Plate, C = .616 (Bossut); C = .61 (Michelotti).

To Compute Discharge.

Multiply square root of 64.333 and breadth of opening in feet, by for opening, and by difference of products of heights of water and e roots, and two thirds of whole product will give discharge in er second.

$$\sqrt{2g} (h\sqrt{h-h'}\sqrt{h'}) C = V;$$
 $\frac{V}{\frac{2}{3} b\sqrt{2g} (h\sqrt{h-h'}\sqrt{h'}) C} = t;$ and

v. h and h' representing depth to sill and opening in feet, and v velocity cond.

—Sill of a rectangular sluice, 6 feet in width by 5 feet in depth, is 9 feet e of water; what is discharge in cube feet per second?

$$9-5=4$$
, and $\frac{2}{3}\sqrt{2g}\times6\times.625\times(9\sqrt{9-4}\times\sqrt{4})=380.95$ cube feet.
 $2g\ d\ a\ C=V$. d representing depth to centre of opening in feet.
 $=6.5$, $a=6\times5=30$, and $\sqrt{64.33\times6.5}\times30\times.625=383.44$ cube ft.

Sluice Weirs or Sluices.

e of water by Sluices occurs under three forms-viz., Unimpeded, Partly Unimpeded.

Compute Discharge when Unimpeded.

 $\overline{h} = V$. d representing depth of opening and h taken from centre of irface of water.

y, k, with which water flows to sluice is considered,

y, k, with which water flows to sluice is considered,
$$\binom{V}{C \ b \sqrt{2 \ g \ h}} = d; \quad \text{and} \quad \frac{V}{C \ b \sqrt{2 \ g \left(h' - \frac{d}{2}\right)}} = d.$$

ting height to which water is raised by dam above sill

ion. - How high must the gate of a sluice weir be raised, to discharge t of water per second, its breadth being 24 feet and height, h', 5 feet? ciment = .6. d approximately = r

$$\frac{250}{.6 \times 24 \sqrt{64.33(5-\frac{1}{2})}} = \frac{250}{14.4 \times 17.014} = 1.0204 \text{ feet.}$$

Co Compute Discharge when Impeded.

$$C d b \sqrt{2gh} = V$$
, and $\frac{V}{C b \sqrt{2gh}} = d$.

ng difference of level between supply and back-water.

To Compute Discharge when partly Impeded.

 $C b \sqrt{2g} \left(d \sqrt{h - \frac{d}{2}} + d' \sqrt{h} \right) = V$. d' representing depth of back-water the upper edge of sill.

ILLUSTRATION.—Dimensions of a sluice are 18 feet in breadth by .5 in 6th height of opening above surface of water .7 feet, and difference between leading supply and surface water is 2 feet; what is discharge per second?

$$.6 \times 18 \times 8.02 \left(.7 \sqrt{2 - \frac{.7}{2}} + .5 \sqrt{2}\right) = 86.62 \times .896 + .707 = 138.85$$
 cube field

Coefficients of Circular Openings or Sluices.

Height measured from Surface of Head of Water to Centre of Open

Contraction of section from 1 to .633, and reduction of velocity to .974; $1 = .633 \times .974 = .617$ (Neville).

In a Thin Plate, C = .666 (Bossut); .631 (Venturi); .64 (Eytelwein).

Cylindrical Ajutages, or Additional Tubes, give a greater discharge to apertures in a thin side, head and area of opening being the same; is necessary that the flowing water should entirely fill mouth of ajutage.

Mean coefficient, as deduced by Castel, Bossut, and Eytelwein, is .82.

Short Tubes, Mouth-pieces, and Cylindrical Prolonstions or Ajutages.

If an aperture be placed in side of a vessel of from 1.5 to 2.5 diameters in thickness, it is converted thereby into a short tube, and coefficient, instead of being reduced by increased friction, is increased from mean value up to about .815, when opening is cylindrical, as in Fig. 4; and

when junction is rounded, as in Fig. 5, to form of contracted vein coefficienceses to .058, .050, and .975 for heads of 1, 10, and 15 feet,

Conically Convergent and Divergent Tubes.

In conically divergent tube, Fig. 6, concept of discharge is greater than for tube placed convergent, fluid filling in cases, and the smaller diameters, or than same distance from centres, O O, being in the computations.

Fig. 7.

A tube, angle of convergence, 0, of this 5° nearly, with a head of from 1 to feet, axial length of which is 3.5 iss, addianter 1 inch, and large diameter 1.3 gives, when placed as at Fig. 6, 621 for efficient; but when placed as at Fig.

efficient increases up to .948. Coefficient of velocity is, however, I Fig. 6 than for Fig. 7, and discharging jet has greater amplitude i If a prismatic tube project beyond sides into a vessel, coefficient waduced to .715 nearly.

Form of tube which gives greatest discharge is that of a translesser base being fitted to reservoir, Fig. 7. Venturi concluded to

nents that tube of greatest discharge has a length of times diameter of ropening base, and a diverging angle of 5° 6'—discharge being 2.5 ter than that through a thin plate, 2.9 times greater than through a t cylindrical tube, and 1.46 greater than theoretic discharge.

Compound Mouth-pieces and Ajutages.

officients for Mouth-pieces, Short Tubes, and Cylindrical Prolongations.

Computed and reduced by Mr. Neville, from Venturi's Experiments.

Description of Aperture, Mouth-piece, or Tube.	C. for Diam. a b.	C. for Diam. o r.
n aperture 1.5 ins. diameter, in a thin plate	.622	-974
ube 1.5 ins. diameter, and 4.5 ins. long, Fig. 4ube, Fig. 5, having junction rounded to form of contracted	.823	.823
vein	.611	.956
hert conical convergent mouth-piece, Fig. 6	.607	.934
reservoir; length 3.5 ins., $or = 1$ in., and $ab = 1.3$ ins louble conical tube, ao , ST , rb , Fig. 9, when $ab = ST = 1.5$.561	.948
ins. $or = 1.21$ ins. $ao = .02$ in., and $ao = 4.1$ ins	.928	1.428
z.84 ins	.823	1.266
Jke tube when $ST = 1.46$ ins., and $oS = 2.17$ ins	.823	1.266
like tube when $ST = 3$ ins., and $oS = 9.5$ ins	.911	1.4
ike tube when $oS = 6.5$ ins., and $ST = 1.92$ ins	1.02	1.569
ike tube when $ST = 2.25$ ins., and $oS = 12.125$ ins tube, Fig. 10, when $os = rt = 3$ ins., $or = st = 1.21$ ins.,	1.215	1.855
and tube $o STr$, as in No. 6, $ST = 1.5$ ins., and $sS = 4.1$ ins.	.895	1.377

ean of various experiments with tubes of .5 to 3 ins. in diameter, and 1 a head of fluid of from 3 to 20 feet, gave a coefficient of .813; and as a for circular apertures in a thin plate is .63, it follows that under her circumstances, .813 \div .63 \equiv 1.20 times as much fluid flows through be as through a like aperture in a thin plate.

receding Table gives coefficients of discharge for figures given, and it be found of great value, as coefficients are calculated for large as well mall diameters, and the necessity for taking into consideration form of tion of a pipe with a reservoir will be understood from the results.

Circular Sluices, etc.

To Compute Discharge.

ght measured from Surface of Head of Water to Centre of Opening.

JLE.—Multiply square root of product of 64.333 and depth of centre of ing from surface of water, by area of opening in square feet, and this but by coefficient for the opening, and whole product will give discharge the feet per second.

 V_{2gd} , aC=V. a representing area in eq. feet, and d depth of surface Q from centre of opening in feet.

EXAMPLE.—Diameter of a circular sluice is 1 foot, and its centre is 1.5 feet be surface of the water; what is discharge in cube feet per second?

Area of 1 foot = .7854; C = .64, and
$$\sqrt{64.333 \times 1.5} \times .7854 \times .64 = 4.938$$
 cube

When Circumference reaches Surface of Water. $\sqrt{2gr}$, .9604 a C=r representing radius of circle in feet.

ILLUSTRATION.—In what time will 800 cube feet of water be discharged three circular opening of .025 sq. foot, centre of which is 8 feet below surface of water

$$C = .63. \quad \frac{800}{\sqrt{2 g d} \times .025 \times .63} = \frac{800}{22.68 \times .025 \times .63} = 2239.58 = 37 \text{ min. 19.6}$$

Note.—For circular orifices, the formula $\sqrt{2\,g\,d}\,a\,C=V$ is sufficiently exactly depths exceeding 3 times diameter; the finish of openings being of more ϵ than extreme accuracy in coefficient.

Semicircular Sluices.

When Diameter is either Upward or Downward. $\sqrt{2gd} \ a \ C = V$. $d \ n$ senting depth of centre of gravity of figure from surface.

When Diameter as above is at Depth d, below Surface. $\sqrt{2gd}$ 1.188 aC:

Circular, Semicircular, Triangular, Trapezoidal, Pr matic Wedges, Sluices, Slits, etc.

For greater number of apertures at any depth below surface of war product of area, and velocity of depth of centre, or centre of gravifi practicable to obtain it, will give discharge with sufficient accurage.

Discharge from Vessels not Receiving any Supply

For prismatic vessels the general law applies, that twice as much we be discharged from like apertures if the vessels were kept full during time which is required for emptying them.

To Compute Time.
$$\frac{2 \text{ A} \sqrt{h}}{\text{Ca} \sqrt{2g}} = \frac{2 \text{ A} h}{\text{V}} = t.$$

ILLUSTRATION.—A rectangular cistern has a transverse horizontal section of feet, a depth of 4 feet, and a circular opening in its bottom of 2 ins. in diameter; what time will it discharge its volume of water, when supply to it is cut of i cistern allowed to be emptied of its contents?

h=4 feet, $a=2^2\times .7854 \div 144 = .0218$, C=.613, and $\sqrt{2gh} \times a \times C=.x$ cube foot per second. Then $\frac{.2 \times 14 \times 4}{.2134} = 522.6$ seconds.

To Compute Time and Fall.

when or subsidence of surface of water in a vessel, corresponding to of efflux, is h - h'. h' representing lesser depth.

$$\frac{A}{\sqrt{2g}}(\sqrt{h}-h') = t. \qquad \text{Inversely, } \left(\sqrt{h} - \frac{Ca\sqrt{2g}}{2A}t\right)^2 = h'.$$

To what time will the water in cistern, as given in preceding the rauch will it subside in that time?

$$\sqrt{2g} = 8.02, \quad h = 4, \quad h' = 4 - 1.6 = 2.4$$

$$\sqrt{2.4} = \frac{28}{1.049} \times (2 - 1.55) = 120.1 \text{ seconds.}$$

$$\sqrt{2} = 2 - 1.45 = 2.4 \text{ feet}; \quad \text{bence}, 4 - 2.4 = 2.4$$

Divide result obtained as precedi

charge, when Form and Dimensions of Vessel of Efflux are not known.

lume discharged may be estimated by observing heads of the water at intervals of time; and at end of half time of discharge, head of water so act of whole height from surface to delivery.

en t =such interval. For openings in bottom or side, C a $t\sqrt{2g}\left(\frac{\sqrt{h+\sqrt{h_1}}}{2}\right)$

for 1 depth; C a
$$t\sqrt{2g}\left(\frac{\sqrt{h+4\sqrt{h_1}+\sqrt{h_2}}}{3}\right) = V$$
 for 2 depths; and $\sqrt{2g}\left(\frac{\sqrt{h+4\sqrt{h_1}+2\sqrt{h_2}+4\sqrt{h_3}+\sqrt{h_4}}}{3}\right) = V$ for 4 depths.

E.—At end of half time of discharge, head of water will be .25 of whole height surface to delivery.

Weirs or Notches.

$$b t \sqrt{2g} (\sqrt{h^3 + 4\sqrt{h^3}} + \sqrt{h^3}) = V$$
. b representing breadth in feet.

ISTRATION.—A prismatic reservoir o feet in depth is discharged through a 2.222 feet wide, surface subsiding 6.75 feet in 935 seconds; what is volume rged?

.6,
$$h_1 = 9 - 6.75 = 2.25$$
 feet, and $\frac{2}{9}$ 6 × 2.222 × 935 × 8.02 ($\sqrt{9^3} + 4$ $\sqrt{3} + \sqrt{3}$) = 2221.6 × 40.5 = 89 974.8 cube feet.

When there is an Influx and Efflux.

reservoir during an efflux from it has an influx into it, determination in in which surface of water rises or falls a certain height becomes so licated that an approximate determination is here alone essayed.

ate of permanency or constant height occurs whenever head of water is ind or decreased by $\frac{x}{2a}\left(\frac{1}{Ca}\right) = k$. I representing influx in cube feet per second.

e (t) in which variable head (x) increases by volume (v) =
$$\frac{A_1 v}{1 - C a \sqrt{2gx}}$$
;

me in which it sinks height, k, by $\frac{A_1 v}{C a \sqrt{2gx} - 1}$. Time of efflux, in which

ing surface falls from A to A_z, etc., and head of water from h to h_z, when epresented by $\frac{1}{C \, a \, \sqrt{2} \, g} = \sqrt{k}$, is

$$\frac{A}{\sqrt{2}g}\left(\frac{A}{\sqrt{h-\sqrt{k}}} + \frac{4A_1}{\sqrt{h_1-\sqrt{k}}} + \frac{2A_2}{\sqrt{h_2-\sqrt{k}}} + \frac{4A_3}{\sqrt{h_3-\sqrt{k}}} + \frac{A_4}{\sqrt{h_4-\sqrt{k}}}\right) = L$$

STRATION.—In what time will surface of water in a pond, as in a previous sle, fall 6 feet, if there is an influx into it of 3.0444 cube feet per second?

$$\sqrt{k} = \frac{3.044}{.537 \times .8836 \times 8.02} = .8. \quad C = .537 \text{ and } a = .8836.$$

$$\frac{20 - 14}{1.537 \times .8836 \times 8.02} \times \left(\frac{60000}{4.472 - .8} + \frac{4 \times 49500}{4.301 - .8} + \frac{2 \times 41000}{4.123 - .8} + \frac{4 \times 325000}{3.937 - .8}\right)$$

$$\frac{6}{45.665} \times 1480201 = 194486 \text{ seconds} = 54 \text{ h. 1 min., 26 sec.}$$

Prismatic Vessels.

essel has a uniform transverse section, A.

$$\frac{2A}{7a\sqrt{2g}}\left[\sqrt{h}-\sqrt{h_x}+\sqrt{k}\times \text{hyp. log. }\left(\frac{\sqrt{h}-\sqrt{k}}{\sqrt{h_x}-\sqrt{k}}\right)\right]=t=\text{time}$$
water flows from h to h..

ILLUSTRATION.—A reservoir has a surface of 500 000 sq. feet, a depth of 20 feet, is fed by a stream affording a supply of 3.0444 cube feet per second, and outet as an area of .8836 sq. foot; in what time will it subside 6 feet?

$$\sqrt{k}$$
, as before, = .8, C = .537, and $\frac{2 \times 500000}{C a \sqrt{2} g} \times \left[\sqrt{20 - \sqrt{14 + .8} \times \text{hyplog}} \right]$
 $\left(\frac{\sqrt{20 - .8}}{\sqrt{14 - .8}} \right) \times 2.303 = 238414$ seconds = 66 h. 13 min. 34 sec.

To Compute Fall in a given Time.

This is determining head h_t at end of that time, and it should be stracted from head h at commencement of discharge. Put into precede equation several values of h_t , until one is found to meet the condition.

ILLUSTRATION.—Take a prismatic pond having a surface of 38 750 sq. feet, a deato centre of opening of sluice of 10.5 feet, a supply of 33.6 cube feet, and a discharge of 40 cube feet per second.

$$\sqrt{k} = .84$$

Putting these numerical values into the equation, and assuming different value for h., a value which nearly satisfies the equation is 4. Consequently, ro.5-== 6.5 feet, fall.

$$\frac{\frac{A k}{3 I} \left[\text{hyp. log. } \frac{h_1 + \sqrt{h_1 k} + k}{(\sqrt{h_1 - \sqrt{k}})^2} + \sqrt{12} \text{ arc } \left(\text{tang.} = \frac{-\sqrt{3 h_1}}{2\sqrt{k} + \sqrt{h_1}}\right)\right] = t;}$$

$$\left(\frac{1}{\frac{3}{4} C h \sqrt{2 g}}\right)^{\frac{3}{2}} = k; \text{ arc } \left(\text{tang.} = y, \text{ arc tangent of which} = y, \text{ and I as provides}\right)$$

According as k is $\leq h$, and influx of water, $1 \geq \frac{3}{5}$ C $l\sqrt{2gh^3}$, there is a rise of fluid surface, the condition of permanency occurring when $h_1 = k$, and time or responding becomes ∞ .

ILLUSTRATION.—In what time will water in a rectangular tank, 12 feet in breadth, rise from sill of a weir or notch, 6 inches broad, to 2 shove it, when 5 cube feet of water flow into the tank per second?

$$h_1=2, h=0, A=12\times6=72, I=5, b=.5, C=.6.$$

$$k = \left(\frac{5}{\frac{2}{3}.6\times.5\times8.02}\right)^{\frac{2}{3}} = \sqrt[3]{3.117^2} = 2.1338.$$

Then
$$\frac{72 \times 2.1338}{3 \times 5}$$
 [hyp. logarithm $\frac{2 + \sqrt{2 \times 2.1338} + 2.1338}{(\sqrt{2} - \sqrt{2.1338})^2} + \sqrt{12}$ are (lange

 $\frac{-\sqrt{3 \times 2}}{2\sqrt{2.1338} + \sqrt{2}} \right] = 10.2423 \times \text{hyp. log.} \quad \frac{6.1996}{.002162} - 3.4641 \times \text{arc.} \left(\tan \frac{\sqrt{6}}{4.335} \right) = 10.2423 \times [7.961 - (3.461 \times \text{arc.}, \text{tangent of which} = .564.97, \text{ or } 29^{\circ} 28^{\circ} = 29^{\circ} 10.2423 \times [7.961 - 1.781] =$

Discharge of Water under Variable Pressures

To Compute Time, Rise and Fall, and Volume.

 $\frac{a}{\Lambda}\sqrt{2\,g\,x} = v$. x representing variable head, Λ and a areas of transversible tal section of vessel and discharge, and v theoretical velocity of efflux.

To Compute Volume.

h = V. y representing extent of fall, and V volume of water distinct h = h'.

ILLUSTRATION. —Assume elements of preceding case.

$$\Lambda = 14$$
. $y = 4$ feet. Then $56 \times 4 = 224$ cube feet.

Discharge from Vessels of Communication.

When Reservoir of Supply is maintained at a uniform Height.—Fig. 11.

To Compute Time.
$$\frac{2 \text{ A} \sqrt{h}}{\text{C} a \sqrt{2} g} = t$$
.

ILLUSTRATION 1.—In what time will level of water in a receiving vessel having a section of 14 sq. feet attain height of that in supply, through a pipe 2 ins. in diameter, placed 4 feet below level of supply?

$$C = .613$$
. $\frac{2 \times 14 \times \sqrt{4}}{.613 \times .0218 \times 8.02} = \frac{.56}{.1072} = 522.3$ seconds.

2.—Assume C, vessel, Fig. 11, to be a cylinder 18 ins. in diameter, head of water in A = 4 feet, at A' 1 foot, and 2 feet below outlet o; in what time will water in vessel run out and over at o through a pipe, a, 1.5 ins. diameter?

$$h - h' = 4 - 1 - 2 = 1$$
 foot $C = .8$.
 $\frac{A}{a} = \left(\frac{18}{1.5}\right)^2 = 144$.

Then
$$\frac{2 \times 144}{.8 \times 8.03} (\sqrt{3} - \sqrt{1}) = \frac{288}{6.424} \times 1.73 - 1 = 32.73$$
 seconds.

When Vessel of Supply has no Influx, and is not indefinitely great compared with Receiving Vessel.

with Receiving Vessel.

$$\frac{2 \text{ A A'} \sqrt{h}}{\text{C a } (\text{A} + \text{A'}) \sqrt{2g}} = t. \quad \text{A' representing section of receiving vessel, } t \text{ time in which}$$

the two surfaces of water attain same level; and $\frac{2 \text{ A A'}(\sqrt{h} - \sqrt{h'})}{\text{C a }(A + A')\sqrt{2 a}} = t$, time within

which level falls from h to h'.

ILLUSTRATION.—Section of a cistern from which water is to be drawn is 10 sq. feet, and section of receiving cistern is 4 sq. feet; initial difference of level is 3 feet, and diameter of communicating pipe is 1 inch; in what time will surfaces of water in both vessels attain like levels?

C=.82.
$$I''=.7854$$
. $\frac{2 \times 10 \times 4 \sqrt{3}}{.82 \times .7854 \times \frac{14}{.44} \times 8.02} = \frac{138.56}{.502} = 276$ seconds.

Discharge from a Notch* in Side of a Vessel.

When it has no Influx.
$$\frac{3 \text{ A}}{\text{C b} \times \sqrt{2 g}} \left(\frac{1}{\sqrt{h'}} - \frac{1}{\sqrt{h}} \right) = t$$
. b breadth of notch in feet.

ILLUSTRATION.—If a reservoir of water, 110 feet in length by 40 in breadth, has a **Potch** in end of 9 ins. in width; in what time will head of water of 15 ins. fall to 6? C = .6. g'' = .75 foot. h' = .5. h = 1.25.

$$\frac{3 \times 110 \times 40}{.6 \times .75 \times 8.02} \times \left(\frac{1}{\sqrt{.5}} - \frac{1}{\sqrt{1.25}}\right) = \frac{13200}{3.61} \times \frac{1.414 - .894}{1.414 - .894} = 1901 \text{ seconds.}$$

Note. - For discharge of vessels in motion, see Weisbach, vol. 1, pp. 394-396.

Reservoirs or Cisterns.

To Compute Time of Filling and of Emptying a Reservoir under Operation of both Supply and Discharge.

 $\frac{V}{S-D}$ = T, and $\frac{V}{D-S}$ = t. V representing volume of vessel, S supply of early D discharge of vater, both per minute, and in cube feet. T time of fills and t time of discharging it, both in minutes.

When the notch extends to the bottom of the reservoir, etc., the time for the wate.

Irregular-Shaped Vessels, as a Pond, Lake, etc.

To Compute Time and Volume Discharged.

Operation.—Divide whole mass of water into four or six strata of epi

Uperation.—Divide whole mass of water into four or six strata of each depths.

Then for a Strate $h = h^4$ (a, 4 a², 2 a², 4 a³, a 4 \ ... 11)

Then, for 4 Strata, $\frac{h-h^4}{12C\,a\sqrt{2g}} \times \left(\frac{a}{\sqrt{h}} + \frac{4}{\sqrt{h^2}} + \frac{2}{\sqrt{h^2}} + \frac{4}{\sqrt{h^2}} + \frac{3}{\sqrt{h^4}} + \frac{3}{\sqrt{h^4}}\right) = t; h.f.$ etc., representing depths of strata at a, a1, etc., commencing at surface; 6.6, etc., being areas of first, second, etc., transverse sections of pond, etc.; and $\frac{h-h^4}{H^2}$ $\times a + 4a^2 + 2a^2 + 4a^3 + a^4 = V$.

ILLEFRATION. — In what the will depth of water in a like A b C, Fig. 12. subside 6 feet in faces of its strata having the fing areas, outline of aluebed as semicircle, 13 ins wide, 9 and 60 feet in length?

Then
$$\frac{20-14}{12 \times .537 \times .8836 \times 6.02} \times \left(\frac{60000}{4.472} + \frac{4 \times 475000}{4.331} + \frac{2 \times 410000}{4.123} + \frac{4 \times 358}{3.93} + \frac{26500}{2.730}\right) = \frac{6}{12} \times 1.00 \times 1.0$$

And discharge = $\frac{0}{12}$ × (600 coo + 4 × 495 coo + 2 × 410 coo + 4 × 325 coo + 255 coi = 2482 500 cube feet.

For 6 Strata, put 224, instead of 24, and 425 and 26 additional, and divide if 28 instead of 12.

Flow of Water in Beds.

Flow of water in bels is either Uniform or Variable. It is uniform was mean velocity at all transverse sections is the same, and consequently was areas of sections are equal; it is variable when mean velocities, and the fore areas of sections, vary.

To Compute Fall of Flow.

 $\frac{1}{2}\frac{p}{a} \times \frac{v^2}{a} = h$. C representing coefficient of friction, l length of flow, p perimeters l index and bottom of bed, and h fall in feet.

ILLUSTRATION. —A canal 2000 feet in length has breadths of 3 and 7 feet, a dept of 3 feet, with a flow of 40 cube feet per second; what is its fall?

C=85 per table below .007 565; $p = \sqrt{3^2 + 2^2} \times 2 + 3 = 10.2$; a = 15;

To Compute Velocity of Flow. $\sqrt{\frac{a}{C \times l p} 2gk} = 0$

" mnal 5800 feet in length has breadths of 4 and 12 feet, 2 depth hat is velocity and volume of thow?

$$=-\sqrt{5^2+4^2}\times 5^2+4=16.8$$
, and $a=40$

lents of Friction of Flow of Water in Beds, as in Rivers, Canals, Streams, etc.

In Feet per Second.

c.	Velocity.	C.	Velocity.	C.	Velocity.	C.
.008 15	.7	.007 73	1.5	.007 59	5	.007 45
.007 97	.8	.007 69	2	.007 52	8	.007 44
.007 85	.9	.007 66	2.5	.007 51	10	.007 43
.007 78	x I	.007 63	3	.00749	12	.007 42

orms of Transverse Sections of Canals, etc.

nce or friction which bed of a stream, etc., opposes to flow of water, uence of its adhesion or viscosity, increases with surface of contact bed and water, and therefore with the perimeter of water profile, or ration of transverse section which comprises the bed.

n of flow of water in a bed is inversely as area of it.

regular figures, that which has greatest number of sides has for a least perimeter; hence, for enclosed conduits, nearer its transfile approaches to a regular figure, less the coefficient of its friction; ttly, a circle has the profile which presents minimum of friction.

a canal is cut in earth or sand and not walled up, the slope of its ald not exceed 45°.

Variable Motion.

le motion of water in beds of rivers or streams may be reduced to niform motion when resistance of friction for an observed length an be taken as constant.

ompute Volume of Water flowing in a River.

$$\frac{\sqrt{2 g h}}{-\frac{1}{A^2} + C \frac{l p}{A_1 + A} \left(\frac{1}{A^2_1} + \frac{1}{A^2}\right)} = V. \quad \text{A and } A_1 \text{ representing areas of upper and lower transverse sections of flow.}$$

ATION —A stream having a mean perimeter of water profile of 40 feet for f 300 feet has a fall of 9.6 ins.; area of its upper section is 70 sq. feet, and 30 feet, what is volume of its discharge?

in C for velocity due to this case, 92.35 $\sqrt{\frac{70+60 \times \frac{9.6}{12}}{40 \times 300}} = 8.59$ feet; for which, see Table above, = .007 44.

$$\frac{\sqrt{64.33 \times (9.6 \div 12)}}{-\frac{1}{60^2} + .00744 \frac{300 \times 40}{70 + 60} \left(\frac{1}{70^2} + \frac{1}{60^2}\right)} = \frac{7.174}{\sqrt{.00033089}} = 394.6 \text{ cube feet},$$

$$|\text{velocity} = \frac{394.6 \times 2}{70 + 60} = 6.07 \text{ feet}, \text{C for which is .007 45.}$$

FRICTION IN PIPES AND SEWERS.

m in flow of water through pipes, etc., of a uniform diameter is in it of pressure, and increases directly as length, very nearly as some ty of flow, and inversely as diameter of pipe.

vooden pipes friction is 1.75 times greater than in metallic. ccupied in flowing of an equal quantity of water through Pines equal lengths, and with equal heads, is proportionally as follows:

it Line as 90, in a True Curve as 100, and in a Right Angle ?

To Compute Head necessary to overcome Friction of Pipe. (Weistack.)

 $\left(.0144 + \frac{.01745}{\sqrt{v}}\right) \times \frac{1}{d} \times \frac{v^2}{5.4} = h'$. h' representing head to overcome friding flow in pipe length of pipe, and v velocity of water per second, all in feet, will internal diameter of pipe in ins.

ILLUSTRATION.—Length of a conduit-pipe is roop feet, its diameter 3 ins, and is required relocity of its discharge 4 feet per second; what is required head of was to overcome friction of flow in pipe?

$$\left(.0144 + \frac{.01746}{\sqrt{4}}\right) \times \frac{1000}{3} \times \frac{16}{5 \cdot 4} = .02313 \times 333.333 \times 2.963 = 22.845 \text{ fet}$$

Head here deduced is height necessary to overcome friction of water pipe alone,

Whole or entire head or fall includes, in addition to above, height betwee surface of supply and centre of opening of pipe at its upper end. Occquently, it is whole height or vertical distance between supply and comof outlet.

To Compute whole Head, or Height from Surface of Supply to Centre of Discharge.

$$(C \times \frac{l}{d} + 1.5) \times \frac{v^2}{2 g} = h.$$

1.5 is taken as a mean, and is coefficient of friction for interior orifice, or that upper portion of pipe.

To obtain C or coefficient.
$$\left(.0144 + \frac{.01746}{\sqrt{v}}\right) = C$$
.

For facilitating computation, following Table of coefficients of resistant is introduced, being a reduction of preceding formula:

Coefficients of Friction of Water. In Pipes at Different Velocities.

V.	C.	T.	C.	V.	C.	V. 1	C.	V. 5
Ft. Ins. 4 8 1 1 4 1 8 2	.0443 .0350 .0317 .0294 .0278 .0266	Ft. Ins. 2 8 3 4 3 8 4 4 4 8	.025 .0244 .0239 .0234 .0231 .0227	Ft, Ins. 5 4 5 8 6 4 6 8	.0221 .0219 .0217 .0215 .0213 .0211	Ft. Ins. 7 4 7 8 8 8 8 6 9	.0208 .0206 .0205 .0204 .0202 .0199	Ft. les. 11 6 22 12 6 22 13 6 23 14 24 15 16

ILLUSTRATION 1.—Coefficient due to a velocity of 4 feet per second is

z. - Take elements of preceding case.

$$(.0231 \times \frac{1000 \times 12}{3} + 1.5) \times \frac{4^2}{64.33} = 93.9 \times \frac{16}{64.33} = 23.35$$
 feel.

Note.—In preceding formula l was taken in feet, as the multiplier of 12 was cancelled by taking 5.4 for 2 g, but in above formula it is necessary to this multiplier.

Radii of Curvatures.

When Pipes branch off from Mains, or when they are deflected angles, radius of curvature should be proportionate to their diameter.

1	Ins. \	Ins.	Ins	1 45
Diameter	2 to 3	3 10 4	90	10

Curves and Bends.

Resistance or loss of head due to curves and bends, alike to that of friction increases as square of velocity; when, however, curves have a long radiu and bends are obtuse, the loss is small.

Curved Circular Pipe. (Weisbach).
$$\frac{a}{180} \times \left[.131 + 1.847 \left(\frac{d}{2} r \right)^{\frac{7}{2}} \right] \times \frac{v^2}{2g} = h$$
.

a representing angle of curve, d diameter of pipe, r radius of due to friction or resistance of curve, all in feet.

For facility of computations, following values of $.x_{31} + x.8_{47} \left(\frac{d}{2}\right)^{\frac{7}{2}}$ are intro duced.

Coefficients of Resistance.

In Curved Pipes with Section of a Circle.

ILLUSTRATION. — If in a pipe 18 ins. in diameter and 1 mile in length there is right-angled curve of 5 feet radius, what additional head of flow should be given tattain velocity due to a head of 20 feet?

 $a = 90^{\circ}$, v for such a pipe and head = 4 feet per second; 18 = 1.5 and $\frac{1.5}{2}$ = .15, and .15 by table = .133.

Hence,
$$\frac{90}{180} \times .133 \times \frac{4^2}{64.33} = .5 \times .133 \times \frac{16}{64.33} = .01653$$
 foot.

Note.-If angle is greater than 000, head should be proportionately increased.

Bent or Angular Circular Pipes.

Coefficient for angle of bend = .9457 sin.2 x + 2.047 sin.4 x. Hence

ILLUSTRATION. — Assume
$$v = 4$$
 feet, and angle = 90° ; $x = \frac{90^{\circ}}{2} = 45^{\circ}$.

Then $\frac{4^2}{64.22} \times .984 = .2447$ foot additional head required.

In Valve Gates or Slide Valves.

In Rectangular Pipes.

r = ratio of cross section

In Culindrical Pipes.

h	0	.125	.25	-375	-5	.625	· 7 5	.87!
<i>r</i> C	.0	.948	.856	·74 .81	.609 2.06	.466 5.52	.315	97.8

h = relative height of opening.

In a Clack or Trap Valve.

In a Cook. In Cylindrical Pipes.

In a Conical Valve. $\left(1.645 \frac{a}{a^2} - 1\right)^2 = C$. a and a' = area d/p and opening.

In Imperfect Contractions. $\left(\frac{a}{c \, a'} - 1\right)^2 = C$. c = a factor, n ing from .624 for $\frac{a}{a'} = 1$ to 1 for $\frac{a}{a'} = 1$, being greater the greater the ratio.

ILLUSTRATION.—If a slide valve is set in a cylindrical pipe 3 ina in diameter 500 feet in length, is opened to .375 of diameter of pipe (hence, .625 diameter claw what volume of water will it discharge under a head of 100 feet, coefficient of trance of pipe assumed at .5?

C, by table, p. 545, pipe being .625 closed = 5.52.
$$\frac{\sqrt{2 g} \sqrt{h}}{\sqrt{\left(1.5 + C + C \frac{h \times n}{a}\right)}} = 1$$

C = from table, p. 544, for an assumed velocity of 11 feet 6 ins. = .0195

Then
$$\frac{\sqrt{64.33} \times \sqrt{100}}{\sqrt{\left(1.5 + 5.52 + .0195 \frac{500 \times 112}{3}\right)}} = \frac{8.03 \times 10.}{\sqrt{(7.02 + 39)}} = \frac{80.3}{6.78} = 11.85 \text{ feet}$$

Hence, area of 3 ins. = 7.07, and 7.07 × 12 × 11.85 = 1005.4 cube feet per second

Valves. (Conical, Spherical, or Flap.)

Conical or Spherical Valve Puppet.

Height due to resistance or loss of head of water = $11 \frac{v^2}{2g}$. v repressively of water in full diameter of pipe or vessel.

 $\left(\frac{A}{A'U'}-1\right)^2 = C$. A and A' representing transverse areas of vessel and of \mathbf{q} opening, and $\left(1.645 \frac{A}{A'}-1\right)^2 = C$ of contraction in general.

ILLUSTRATION.—If A' = .5 of vessel,
$$C = \left(1.645 \times \frac{1}{.5} - 1\right)^2 = 2.29^2 = 5.44$$

Clack or Trap Valve.-C decreases with diameter of vessel.

ILLUSTRATION.—If a single-acting force-pump, 6 ins. in diameter, delivers stroke 5 cube feet of water in 4 seconds, diameter of valve seat 3.5 ins., and 4.5; what resistance has water in its passage, and what is loss of mechanical

a = .196. $\left(\frac{3.5}{6}\right)^2 = .34$ ratio of transverse area of opening. $z = \left(\frac{4.5}{6}\right)^2 = .44$ of annular contraction to transverse area of vessel.

Hence, $\frac{.34 + .44}{.2} = .39$ mean ratio, and coefficient of resistance wave

Whereto =
$$\left(\frac{1.645}{.39} - 1\right)^2 = 3.22^2 = 10.37$$
. $\frac{5}{4 \times .106} = 6.37$ which yet

= .63 height due to velocity. Consequently, 10.37 \times .63 = 6.53 height due to nce of valve, and $\frac{5}{4} \times 62.5 \times 6.53 = 510.15$ lbs. mechanical effect lost.

Discharge of Water in Pipes.

any Length and Head, and for Diameters from 1 Inch to 10 Feet. In Cube Feet per Minute. (Beardmore.)

Tab. No.		Diam.		Tab. No.	Diam.		Tab. No.	Diam.		Tab. No.	Diam.		Tab. No.
-		Ft. I	ns.		Ft.	Ins.		Ft.	Ins.		Ft.	Ins.	
-	4.7I	ll .	9	1 147.6	1	II	11983	3	1	39 329	4	9	115854
	4.71 8.48	1	io	1 493.5	2		13328	3	2	42 040	5		131 703
- 1	13.02	1 1	II.	1 894.9	2	1	14758	3	3	44 863	5	3	148 791
- 1	19.15	ı ı		2 3 56	2	2	16278	3	4	47 794	5	6	167 137
H	26.60	l x	1	2876.7	2	3	17889	3	5	50835	5	9	186 786
- 1	46.67	I	2	3 463.3	2	4	19 592	3	6	53995	6		207 754
	73.5	l r	3	4115.9	2 .	5	21 390	3	7	57 265	6	6	253781
- 1	108.14	l r	4	4 836.9	2	6	23 282	3		60 648	7		305 437
- 1	151.02	I	5	5628.5	2	8	25 270	13	9	64 156	7	6	362 935
- 1	194.84	1	5 6	6493.1	2	8	27 358	13	10	67 782	8		425 431
- 1	263.87	l z	7	7 433	2	9	29 547	13	II	71 526	8	6.	496 275
- 1	416.54	l x	7 8	8449	2	10	31 834	4		75 392	9		572 508
- 1	612.32	z	9	9 544	2	11	34 228	4	3.	87 730	9	6	655 369
-	854.99	ı :	ιó		3		36725	Πě	6)	101 207	IO		745 033

s Table is applicable to Sewers and Drains by taking same proportion unlar numbers that area of cross-section of water in sewer or drain to whole area of sewer or drain.

mula upon which the table is constructed is, $2356\sqrt{\frac{h}{l}\times d^5} = V$ in et per minute, and $39.27\sqrt{\frac{h}{l}\times d^5} = V$ is call feet per second. A representation of fall of water and d disancter of pies and l length, all in feet.

To Compute Discharge.

elwein.) $\sqrt{\frac{d^3h}{l}}$ 4.71 = ∇ , and $\sqrt[4]{\frac{d^3h}{h}}$.538 = d. d = diameter of ripe in length of pipe and h head of water, but in fint.

where
$$\sqrt{\frac{G^2 l}{h}} \frac{1}{15} = d$$
, and $\sqrt{\frac{\log d^2 h}{l}} = d$. $G = runder \sqrt{l representations}$ so per hour, and l length of plan is punish.

ville.) 140 $\sqrt{rs} - 11$ $\sqrt[3]{rs} = 0$ in fact yet accord. $r = h_1 + \dots + h_r + \dots +$

To Compute Volume discharge la

ion Length of Pipe, Height or Pall, and D. ::-vide tabular number, opposite to diameter:

of inclination, and quotient will give volume:

where.—A pipe has a dimeter of g inc., ar 1 s lines wharge per minute under a hand of 17.5 free ?

To Compute Diameter.

When Length, Head, and Volume are given. Rule.—Multiply discharger minute by square root of ratio of inclination; take nearest corresponds number in Table, and opposite to it is diameter required.

EXAMPLE. - Take elements of preceding case.

$$69.67 \times \sqrt{\frac{4759}{17.5}} = 1147.61$$
, and opposite to this is 9 ins.

Or, $\sqrt[5]{\frac{v\ l}{1542\ h}} = d$ in feet. v representing velocity in feet per second and l last in feet.

To Compute Head.

When Length, Discharge, and Diameter are given. Rule. — Divide tabular number for diameter by discharge per minute, square quotient, and divide length of pipe by it; quotient will give head necessary to force give volume of water through pipe in one minute.

EXAMPLE. - Take elements of preceding cases.

$$\frac{1147.61}{69.67} = 16.47$$
; $16.47^2 = 271.3$; $4750 \div 271.2 = 17.5$ feek

To Compute whole Head necessary to furnish requisis Discharge.

See Formula and Illustration, page 544.

To Compute Velocity.

When Volume and Diameter alone are given. RULE. — Divide volume in feet per minute by area in feet, and quotient, divided by 60, 11 give velocity in feet per second.

EXAMPLE. - Take elements of preceding case.

$$\frac{69.67}{\cdot 75^2 \times \cdot 7854} \div 60 = 2.63 \text{ feet.}$$

When Volume is not given. Rule. — Multiply square root of product height of pipe by diameter in feet, divided by length in feet, by 50, product will give velocity in feet per second. (Beardmore.)

To Compute Inclination of a Pipe.

When Volume, Diameter, and Length are given.
$$\left(\frac{V}{2356}\right)^2 \frac{t}{d^3} = \frac{\hbar}{l}$$
.

ILLUSTRATION. -Take elements of preceding case.

$$\binom{69.67}{2356}^2 \times \frac{1}{75^5} = .000874 \times 4.214 = .00368$$
, and $\frac{17.5}{4750} = .00368$, or $4750 \times .0098$

To Compute Elements of Long Pipes.

$$\frac{r}{\times d^2} = 1.2732 \frac{V}{d^2} = v; \quad \left(1 + c + C \frac{l}{d}\right) \frac{v^2}{2g} = h; \quad \frac{\sqrt{2gh}}{\sqrt{1 + c + C \frac{l}{d}}} = r.$$

$$\frac{1}{(1.505 \times d + c l)^{\frac{V^2}{h}}} = d \text{ in ins.}$$

.orm 'nly give an approximate dimension in consequent

$$C' \text{ 88 a} = \frac{3.1410 \times q_3}{4 \Lambda}$$

$$RIAGRIU REDICALIUS QUIT$$

eous Illustration, page 556.

To Compute Vertical Height of a Stream projected from Pipe of a Fire-engine or Pump.

RULE.—Ascertain velocity of stream by computing volume of water running or forced through opening in a second; then, by Rule in Gravitation, page 488, ascertain height to which stream would be elevated if wholly unobstructed, which multiply by a coefficient for particular case.

In great heights and with small apertures, coefficients should be reduced. In consequence of the varying elements and conditions of operation of fire-engines, it is difficult to assign a coefficient for them. Difference between actual discharge and that as computed by capacity and stroke of cylinder, as ascertained by Mr. Larned, 1850, was 18 per cent. = a coefficient of .82.

A steam fire-engine of the Portland Company, discharging a stream 1.125 ins. in diameter, through 100 feet 2.5 inch hose, gave a theoretical head, computed from actual discharge, of 225 feet, and stream vertically projected was 200 feet; hence coefficient in this case was .88.

EXAMPLE.—If a fire-engine discharges 14 cube feet of water vertically through a pipe .75 inch in diameter in one minute, how high will the water be projected?

14 \times 1728 \div .4417 area of pipe, \div 12 ins. in a foot, \div 60 seconds = 76.07 feet velocity; and as coefficient of such a stream = at .85, then 114.1 \times .85 = 96.98 feet.

Or, $H = \frac{0.002 \text{ H}^2}{d} = h$. H representing head at nozzle, and d height of jet, both in feet, and d diameter of nozzle in ins. (R. F. Hartford.)

ILLUSTRATION. -- Assume head of 110 feet and diameter of nozzle .75 inch.

$$110 - \frac{.0022 \times 110^2}{.75} = 110 - 35.5 = 74.5 \text{ feet.}$$

Note. — The loss of head is greater with ring than with smooth nozzles. E. B. 7 eston, Am. Soc. C. E., puts the difference at .000 171 v^2 .

The loss of head increases with the absolute height of the jet, and is less with an acrease of its diameter. This loss increases nearly in ratio of square of height of st, and varies nearly in inverse ratio to its diameter.

Cylindrical Ajutage.

Mean coefficient as determined by Mariotte and Bossut = .003066 square effective head for cylindrical ajutages; hence, for conical, alike to that of engine pipe, coefficient ranges from .72 to .9, or a mean of .81.

By formula of D'Aubuisson, .003 047 $h^2 = h'$.

Effective head, or h, in preceding example = 114.1. Then 114.1 - .003047 \times 1.2 = 114.1 - 39.67 = 74.43 feet height of jet.

Hence, for a conical or engine pipe, $74.43 \times .81 = 60.29$ feet, or a coefficient of .535.

?o Compute Distance a Jet of Water will be projected from a Vessel through an Opening in its Side.

B C, Fig. 13, is equal to twice square root of $A \circ \times \circ B$. If s is 4 times as deep below A as a is, s will discharge twice volume of water that will flow from a in same time, as a is $\sqrt{ \circ f} A s$ and r is $\sqrt{ \circ f} A a$.

NOTE.—Water will spout farthest whon o is equidistant from A and B; and if vessel is raised above a plane, B must be taken upon plane.

Wolumes of water passing through equal apertures in the time are as square roots of their depths from surface.

RULE.—Multiply square root of product of distance of opening from surace of water, and its height from plane upon which wat feet by, and product will give distance in feet.

EXAMPLE.—A vessel 20 feet deep is raised 5 feet above a plu wh that is 5 feet from bottom of vessel?

$$20-5\times\overline{5+5}=150$$
, and $\sqrt{150}\times2=24.4$

Velocity of a jet of water flowing from a cylindrical tube is determined to be .974 to .98 of actual to theoretic velocity, or = .82 of that due to height of reservoir. Hence volume of discharge through a cylindrical opening = .82 $a\sqrt{2\eta h}$.

Fig. 14.

Jets d'Eau. (Fig. 14.)

That a jet may ascend to greatest practicable height, communication with supply should be perfectly free.

Short tubes shaped alike to contracted fluid vein, and conically convergent pipes, are those which give greatest velocities of efflux. Hence, to attain greatest effect, as a fire-engines, long and slightly conically convergent tube or pipes should be applied.

In order to diminish resistance of descending water, i iet must be directed with a slight inclination from vertical.

Effect of combined causes which diminish height of a jet from that do to elevation of its supply can only be determined by experiments. Got jets rise higher than small ones.

With cylindrical tubes, velocity being reduced in ratio of r to .82, and sheights of jets are as squares of these coefficients or ratios, or as r to 5, height of a jet through a cylindrical tube is two thirds that of head dwater from which it flows.

H C = h. H representing head of water, C coefficient, and h height of jet. (Now worth.)

```
When d = H \div 300, C = .96.

""" "" 450, "" = .93.
""" "" + 600, "" = .9.
""" "" + 800, "" = .8.
""" "" + 3500, "" = .5.
""" "" + 4500, "" = .5.
""" "" + 4500, "" = .5.
```

FLOW OF WATER IN RIVERS, CANALS, AND STREAMS.

Running Water.—Water flows either in a natural or artificial befor course. In first case it forms Streams, Brooks, and Rivers; is second, Drains, Cuts, and Canals.

Bed of a water-course is formed of a Bottom and two Banks or Shores.

Transverse Section is a vertical plane at right angles to course of the flowing water; Perimeter is length of this section in its bed.

Longitudinal Section or Profile is a vertical plane in the course or threat of current of flowing water.

Slope or Declivity is the mean angle of inclination of surface of the water to the horizon.

Fall is vertical distance of the two extreme points of a defined length of flowing course, measured upon a horizontal plane, and this fall assign is for defined length of the course.

ine or Thread of Current is the point where flowing water attains is imum velocity.

-channel is deepest point of the bed in thread of current. Velocity is at surface and in middle of current; and surface of flowing water in current, and lowest at banks or shore.

ver, Car. '

is in a state of permanency when an equal quantity
in of its transverse sections in an equal time,
section, and mean velocity through whole estaunaber.

ln.

To Compute Mean Depth of Flowing Water.

RULE.—Set off breadth of the stream, etc., into any convenient number of ivisions; ascertain mean depths of these divisions; then divide their sum y number of divisions, and quotient is the mean depth.

To Compute Mean Area of Flowing Water.

Rule 1.—Multiply breadth or breadths of the stream, etc., by the mean epth or depths, and product is the area.

2.—Divide the volume flowing in cube feet per second by mean velocity 1 feet per second, and quotient is area in sq. feet.

To Compute Volume of Flowing Water.

RULE.—Multiply area of the stream, etc., in sq. feet, by the mean velocity f its flow in feet, and product is volume in cube feet.

To Compute Mean Velocity of Flowing Water.

Rule.—Divide surface velocity of flow in feet per second by area of the tream, etc., and quotient, multiplied by coefficient of velocity, will give nean velocity in feet.

Mean velocity at half depth of a stream has been ascertained to be as .915 to z, ad at bottom of it as .83 to z, compared with velocity at surface. Again, the velocity diminishes from line of current toward banks, and, to obtain mean superficial elocity, $v_1 + v_2 + v_3$

 $\frac{v_1 + v_2 + v_3}{n} = .915 v$; hence,

o Compute Mean Velocity in whole Profile of a Navi-

 $\overline{V+1}-2\sqrt{V}$ = velocity at bottom, and $\overline{V+.5}-\sqrt{V}$ = mean velocity.

In rivers of low velocities multiply mean velocity by .8.

Obstruction in Rivers. (Molesworth.)

 $\frac{\mathfrak{G}_2}{8.6} + .05 \times \left(\frac{\dot{\Lambda}}{a}\right)^2 - i = R$. v representing velocity in ins. per second previous destruction, Λ and a areas of river unobstructed and at obstruction in sq. feet, and the in feet.

LLUSTRATION.—Velocity of obstructed flow of a river is 6 feet per second, and as of section before and after obstruction are 100 and 90 sq. feet; what would be be in feet?

$$\frac{6^2}{58.6} + .05 \times \left(\frac{100}{90}\right)^2 - 1 = .664 \times .234 = .155$$
 feet.

Flow of Water in Lined Channels. (Bazin.)

$$\sqrt{\frac{\text{C D}}{\text{F}}} = \text{V}; \quad \frac{1}{x\left(y + \frac{1}{\text{D}}\right)} = \text{C.} \quad \text{D representing mean hydraulic depth in feet, F} \\ \text{fall, or length of channel to fall of 1, x and} \\ \text{y as per table, and C as per table p. 543.}$$

For Sections of Uniform Area, as Canals, Sewers, etc. $\sqrt{\frac{A}{P}} 2 D = v$. $A = \infty$ of flow in sq. feet, P wet perimeter of section, and D fall of stream per mile

ELUSTRATION.—Area of transverse section of a sewer is 50 sq. feet, its wet perimber 20 feet, and its fall 5 feet per mile.

$$\sqrt{\left(\frac{50}{20} \times 2 \times 5\right)} = \sqrt{25} = 5 \text{ feet.} \quad \text{For Sections of Rivers.} \quad 12 \sqrt{D} \stackrel{\hat{\Lambda}}{p} = v.$$

USTRATION. -Assume area 500 sq. feet, wet perimeter 200, and full 5 feet 7

$$12\sqrt{5\times\frac{500}{200}} = 12\sqrt{12.5} = 42.4$$
 feet.

Hydraulic Rudius or Mean Depth is obtained by dividing area of two verse section by wet perimeter, both in feet.

To Compute Fall per Mile for a required Mean Velocity

$$\left(\frac{v \times 12}{12}\right)^2 \div 2$$
 $r = D$. r representing hydraulic radius in feet.

Upper surface of flowing water is not exactly horizontal, as water at its after flow with different velocities with respect to each other, and consequently and on each other different pressures.

If v and v_1 are velocities at line of current and bank of a stream, the different of the two levels is $\frac{v^2-v_1^2}{2g}=\hbar$.

ILLUSTRATION.—If
$$v = 5$$
 feet, and $v_{z \to 9} v_{i}$, then $\frac{5^{2} - .9 \times .5}{2 g} = \frac{4.75}{64.33} = .0735$

A velocity of 7 to 8 ins. per second is necessary to prevent deposit of slines growth of grass, and 15 ins. is necessary to prevent deposit of sand.

Maximum velocity of water in a canal should depend on character of bed dechannel.

Thus, Mean Velocity should not exceed per second over

To Compute Velocity of Flow or Discharge of Water Streams, Pipes, Canals, etc.

- 1. When Volume discharged per Minute is given in Cube Feet, and Area Canal, etc., in Sq. Feet. RULE.—Divide volume by area, and quotient vided by 60, will give velocity in feet per second.
- 2. When Volume is given in Cube Feet, and Area in Sq. Ins. Rull-vide volume by area; multiply quotient by 144, and divide product by a
- 3. When Volume is given in Cube Ins., and Area in Sq. Ins. Rule-vide volume by area, and again by 12 and by 60.

To Compute Flow or Volume of Discharge.

- r. When Area is given in Sq. Feet. Rule.—Multiply area of flow by velocity in feet per second, and product, multiplied by 60, will give the in cube feet per minute.
- When Area is given in Sq. Ins. Rule.—Multiply area by its related and again by 60, and divide product by 144.

Note 1.—Velocities and discharges here deduced are theoretical, actual respending upon coefficient of efflux used. Mean velocity, however, as before page 529, may be taken at $\sqrt{2}$ \overline{g} .673 = 5.4 feet, instead of 8.02 feet.

2.—As a rule, with large bodies, as vessels, etc., their floating velocity what greater than that of flow of water, not only because in floating they an inclined plane, formed by surface of the water, but because they are but affected by the irregular intimate motion of water: the variation for small but is so slight that it may be neglected.

To Compute Height of Head of Flowing Water,

When Volume and Area of Flow are given in Feet. Rule.—Dividume in feet per second by product of area, and \(\frac{1}{2}\) coefficient for opening-square of quotient, divided by 64.33, will give height in feet.

Example. - Assume volume 266.48 cube feet, area 40 sq. feet, and C = 523

Then
$$\left(\frac{266.48}{40 \times \frac{9}{3}.623}\right)^2 \div 64.33 = \frac{257.28}{64.33} = 4$$
 feet.

Submerged or Drowned Orifices and Weirs.

When wholly submerged (Fig. 15).—Available pressure at any point in depth of orifice is equal to difference of pressure on

Whence, $C\sqrt{2gh} = v$, and $Ca\sqrt{2gh} = V$.

a representing area of sluice in sq. feet.

ILLUSTRATION. — Assume opening 3 feet by 5.

ILLUSTRATION.—Assume opening 3 feet by h = 4 feet, and C = .5.

Then, $.5 \times 3 \times 5 \sqrt{64.33 \times 4} = 7.5 \times 16.04 = 120.3$ cube feet per second.

Fig. 16.

When partly submerged (Fig. 16). h' - h = d = submerged depth, and h - h'' = d' = remaining portion of depth; whence d' + d = entire depth, and

 $Cl\sqrt{2g}\left(d\sqrt{h}+\frac{2}{8}\overline{h\sqrt{h-h''}\sqrt{h''}}\right)=V.$

ILLUSTRATION. — Assume opening as above, h=4 feet, h'=6, h''=3, and C=.5. Then d=6-4=2 feet.

Then $.5 \times 5 \times 8.02$ (2 $\sqrt{4 + \frac{2}{8}} \times \sqrt{4 - 3\sqrt{3}}$) = 20.05 \times 5.869 = 117.67 cube feet per second.

Fig. 17.

When drowned (Fig. 17).

 $C l \sqrt{2gh} (d + \frac{2}{8}h) = V.$

ILLUSTRATION. — Assume opening as above, h=4 feet, d=2, and C=.52.

Then, $.52 \times 5 \times \sqrt{64.33 \times 4} \times (2 + \frac{2}{8} 4) = 2.6$ × 16.04 × 4.66 = 194.34 cube feet per second.

CANAL LOCKS.

Single Locks.

When a fluid passes from one level or reservoir to another, through an perture covered by the fluid in the latter, effective head on each point of perture, and consequently head due to velocity of efflux at each instant, is be difference of levels of the two reservoirs at that instant.

Hence C a $\sqrt{2gh'} = V$ per second. h' representing difference of levels.

Co Compute Time of Filling and Discharging a Single Lock.—Fig. 18.

When Sluice in Upper Gate is entirely under Water, and above Lower Level.

 $\frac{A h'}{C a \sqrt{2g h}} = time of filling up to centre of sluice.$

Ca V2gh
h representing height of centre of sluice in upper
ale from surface of canal or reservoir, and h' height
f centre of sluice in upper gate from lover surfuce, or water in the lock or river, all in feet; and
2Ah = time of filling the remaining space,

 $2a\sqrt{2gh}$ There a gradual diminution of head of water occurs.

Consequently, $\frac{(n+2h)A}{Ca\sqrt{2gh}} = t$ time of filling a single lock.

When Aperture or Sluice in Lower Gate is entirely under Wat ver Level. $\frac{2 A \sqrt{h + h'}}{C a' \sqrt{2g}} = time$ of emptying or discharging it. ILLUSTRATION.—Mean dimensions of a lock, Fig. 78, are 200 feet in length by a in breadth; height of centre of aperture of sluice from upper and lower swinces is 2.5 feet; breadth of both upper and lower sluices is 2.5 feet; height of upper is let, and of lower—entirely under water—5 feet; required the times of filling and 6-charging.

$$h = 5$$
, $h' = 5$, $A = 200 \times 24 = 4800$, $C = .545$, $a = 4 \times 2.5 = 10$, $a' = 5 \times 2.5 = 12$

$$\frac{4800 \times 5}{.545 \times 10 \times \sqrt{2 g \, h}} = \frac{24000}{97.72} = 245.59 \text{ seconds} = time \text{ of filling lock up to central}$$

stuice; and
$$\frac{2 \times 4800 \times 5}{.545 \times 10 \times \sqrt{2} g h} = \frac{48000}{97.72} = 491.18 \text{ seconds} = time of filling remains}$$

ing space, or lock above centre of sluice, and 245.59 + 491.18 = 736.77 seconds time.

Or,
$$\frac{(5+2\times5)\times4800}{.545\times10\times\sqrt{2gh}} = \frac{72000}{97.72} = 736.77$$
 sec. = time of filling. $\frac{2\times4800\sqrt{5+3}}{.545\times12.5\times\sqrt{2gh}} = \frac{30358.08}{.545\times12.5\times\sqrt{2gh}} = \frac{534.9}{.545\times12.5\times\sqrt{2gh}} = \frac{1}{3}$

When Aperture or Sluice in Upper Gate is entirely under Water and helm Lower Level. $\frac{2 \text{ A} \sqrt{h - h'}}{\text{C a} \sqrt{2 g}} = \text{time of filling lock.}$

When Sluice in the Lower Gale is in part above Surface of Lower Low and in part below it. $\frac{2 A (h+h')}{C b \sqrt{2g} \left(d \sqrt{h+h'} - \frac{d}{2} + d' \sqrt{h+h'} \right)} = \lim_{n \to \infty} d^n d^n$

charging. d and d'representing distances of part of operture above and of loss surface of lower water, b breadth of aperture, and h and h' as before.

ILLUSTRATION.—Assume sluice in preceding example to be r foot above level of water, or that of lower canal; what is time of discharge of lock, discuss of part of aperture r foot and of that below surface of water 4 feet?

$$\frac{2 \times 4800 (5+5)}{.545 \times 2.5 \times 8.02 [r \times \sqrt{5+5} - (r \div 2) + 4 \times \sqrt{5+5}]} = \frac{96000}{10.93 \times (3.082 + 12.8)}$$

$$\frac{96000}{171.05} = 558.3 \text{ seconds.}$$

Double Lock. (J. D. Van Buren, Jr.)

A double lock is not a duplication of a single lock in its operation, for a

lower chamber supply of water is from upper one, having no influx, instead of a uniform supply flowing directly from surface level of canal or feeder.

Operation, therefore, of a double lock is complex, addition to formula for a single lock being that of discharging of water in upper lock to fill lower, the head of water gradually decreasing in the chamber, which is

Sluice Uniform level when gate This que

closed from upper reach during discharge into lower.

To Compute Time required for Water to Fall from Upper to Uniform Water Level.

1.
$$\frac{A}{C a \sqrt{g}} (\sqrt{f} + \sqrt{2h} - \sqrt{2h} - 2d) = t$$
. A representing horizontal area

and a area of sluice opening, both in sq. feet, C coefficient of discharge openings with square arrises, g acceleration of gravity, f depth of costr

below uniform level, h depth of centre sluice opening below upper water level, and height of centre of sluice above lower water level, all in feet, and t lime for water to fall from upper to uniform water level, in seconds.

ILLUSTRATION.—A = 2000 sq. feet; C=.545; a=5; f=6; h=14; and d=2 feet. (Fig. 19.)

Then,
$$\frac{2000}{.545 \times 5 \times 5.67} = \frac{2000}{15.45} \times 7.74 - 4.9 = 367.6$$
 seconds.

2. If
$$d=0$$
; $\frac{A\sqrt{f}}{Ca\sqrt{g}}=t$; $=\frac{2000 \times \sqrt{8}}{.545 \times 5 \times 5.67} = \frac{5660}{15.45} = 366.34$ seconds.

Note.—f is never greater than l (lift in feet); it is equal to l when d = 0; f_2 equal to l when $f_1 = 0$, never greater. In each case it is the unbalanced head above sluice, however far below the lowest water level the sluice is.

To Fill Upper Lock or Empty Lower.

To fill upper lock or empty lower, when the sluice is below the lowest water-lin in either case, takes the same time; for the head diminishes at the same rate, or from the upper surface, the other from the bottom.

3.
$$\frac{A\sqrt{2f}}{Ga\sqrt{g}} = t$$
. Here, f being below lowest water level of lock = 8 feet, as d=

and
$$f = \text{whole lift} = \frac{2000 \sqrt{2 \times 8}}{.545 \times 5 \times 5.67} = \frac{8000}{15.45} = 517.8 \text{ seconds.}$$

To Discharge a like Volume under a Constant Head.

4
$$\frac{A\sqrt{f}}{Ca\sqrt{2g}} = \frac{A}{Ca}\sqrt{\frac{f}{2g}} = t$$
. $=\frac{2000}{.545 \times 5}\sqrt{\frac{8}{64.33}} = 258.9$ seconds,

Or, one half the time given by preceding case.

The times deduced by preceding formulas are in the following proportions: Order, as $1:\sqrt{2}:\frac{\sqrt{2}}{2}$, or $1:\sqrt{2}:\frac{1}{\sqrt{2}}$.

If sluice of upper lock, through which it is filled, is above lowest water leve then, by combining formulas 3 and 4, the time is thus deduced.

To fill from Lowest Water Level of said Lock to Level of Centre of Sluice

5.
$$\frac{A\sqrt{f'}}{Ca\sqrt{2g}} = t'$$
. f' representing height of centre of sluice above said lowest wat level.

To fill remaining Portion of Lock above Sluice.

6. $\frac{2 \text{ A} \sqrt{f''}}{\text{Ca} \sqrt{2g}} = t''$. f'' representing depth below upper water level of centre of

Euice or remaining portion of lift. Hence, $t' + t'' = \frac{A}{C \, a \, \sqrt{2} \, g} (\sqrt{f'} + 2 \, \sqrt{f''}) =$

To fill Lower Lock under Constant Head from Upper Canal Level.

7.
$$\frac{A\sqrt{h}}{Ca\sqrt{2g}}\left(2+\frac{d}{h}-\frac{2\sqrt{h-f}}{\sqrt{h}}\right)=t.$$

8. If both lifts are the same, h-f=l, and $\frac{A\sqrt{h}}{Ca\sqrt{2}g}\left(2+\frac{d}{h}-2\sqrt{\frac{l}{v^2}}\right)$

If lower lock is filled from upper one under a constant head, when law own to lowest level, formula 7 will apply by making h = f, and

$$\frac{A}{\sigma a\sqrt{ag}} \left(2\sqrt{f} + \frac{d}{\sqrt{f}} \right)$$
, which is identical with 7, for $f = f_2$ and $d = f_2$

What volume will a pipe 48 feet in length and 2 ins. in diameter, under a head eet, deliver per second? (Formula page 547.)

butar number for diameter 2 ins., page 547, = 26.69.
$$\sqrt{\frac{48}{5}}$$
 = 3.1. Then $\frac{26.69}{3.1}$ = 8.61, which ÷ 60 = .143 cube feet.

this pipe had 5 curves of 90°, with radii $\frac{d}{2r} = \frac{2}{4} = .5$; what would be its disre per second?

$$= .143; \ a = 2 \div 144 = .0139; \ C \ per \ table = \frac{d}{2r} = .294; \ v = \frac{.143}{.0139} = 10.29 \ feet.$$

en .294
$$\times \frac{90^{\circ}}{180^{\circ}} \times \frac{10.29^{2}}{64.33} = .147 \times 1.64 = .241$$
, which $\times 5$ for 5 curves = 1.2 = t due to resistance of curves. $h = 5 - 1.2 = 3.8$.

nce, if
$$\sqrt{29.5} = .143$$
; $\sqrt{29.3.8} = .125$ cube feet

If a slide stop valve, set in a cylindrical conduit 500 feet in length and 3 ins. in eter, is raised so as to close .625 of conduit; what volume will it discharge ra head of 4 feet? (Formula page 546.)

for conduit = .5, for friction .025, and for slide valve .375 open, table, page 545, d = .25, and a = 7.07 sq. ins.

a = .25, and a = 7.07 sq. ins.
en
$$\frac{2 g h}{\sqrt{\left(x + .5 + 5.52 + .025 \frac{500}{.25}\right)}} = \frac{16.06}{\sqrt{(7.02 + 50)}} = 2.13 \text{ feet velocity, and}$$

$$\times 12 \times 7.07 = 180.71 \text{ cube ins.}$$

If a single lock chamber is 200 feet in length by 24 in breadth, with a depth feet, centre of upper gate, which is 4 feet in depth by 2.5 in breadth, is at lle of depth of chamber, lower gate. 5 feet in depth by 2.5 in breadth and wholly ersed; what is time required for filling and discharging it? (Formula p. 553.) =.615, h=5, h'=5, $A=200 \times 24=4800$, $a=4 \times 2.5=10$, and a'=55=12.5

$$\frac{(2 \times 5 + 5) \cdot 4800}{.615 \times 10 \sqrt{64.33 \times 5}} = \frac{72 \cdot 000}{110.27} = 652.8 \text{ seconds time of filling.}$$

$$\frac{2 \times 4800 \times \sqrt{5 + 5}}{.615 \times 12.5 \sqrt{2} \cdot g} = \frac{30 \cdot 336}{61.73} = 491.4 \text{ seconds time of emptying.}$$

In a moderately direct and uniform course of a river, the depths and velocities a follows; what is the volume of its flow and what its mean velocity? (p. 551.)

hces. Feet. Feet. Feet. Feet. Feet.
$$5$$
 12 20 15 7 Area of profiles = $5 \times 3 + 1$ velocity. 1.9 2.3 2.8 2.4 2.1 $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 84. $7 \times 4 = 455$ 85. $7 \times 4 = 455$ 85. $7 \times 4 = 455$ 85. $7 \times 4 = 455$ 85. $7 \times 4 = 455$ 86. $7 \times 4 = 455$ 87. $7 \times 4 = 455$ 87. $7 \times 4 = 455$ 87. $7 \times 4 = 455$ 89. 7×4

Miner's Inch.

"Miner's inch" is a measure for flow of water, and is an opening one square through a plank two inches in thickness, under a head of six s of water to upper edge of opening.

will discharge 11.625 U. S. gallons water in one minute

Theoretical P under different Heads.

ter Inch (Pouce d'eau).-Circular opening of 1 inch in o a discharge of 19.1953 cube meters per 24 hours.

HYDRODYNAMICS.

Hydrodynamics treats of the force of action of Liquids of Fluids, and it embraces Hydraulics and Hydrostatics: the which treats of liquids in motion, as flow of water in pipes latter of pressure, weight, and equilibrium of liquids in a sta

Fluids are of two kinds, aeriform and liquid, or elastic and and they press equally in all directions, and any pressure come to a fluid at rest is equally transmitted throughout the whole

Pressure of a fluid at any depth is as depth or vertical heressure upon bottom of a containing vessel is as base and pelar height, whatever may be the figure of vessel. Pressure, of a fluid, upon any surface, whether Vertical, Oblique, or Horequal to weight of a column of the fluid, base of which is equal to distance of centre of graviface pressed, and height equal to distance of centre of graviface pressed, below surface of the fluid.

Side of any vessel sustains a pressure equal to its area, mul half depth of fluid, and whole pressure upon bottom and aga of a cubical vessel is equal to three times weight of fluid.

Pressure upon a number of surfaces is ascertained by m sum of surfaces into depth of their common centre of gravi surface of fluid.

When a body is partly or wholly immersed in a fluid, verticure of the fluid tends to raise the body with a force equal to fluid displaced; hence weight of any quantity of a fluid displaced buoyant body equals weight of that body.

Centre of Pressure is that point of a surface against which presses, to which, if a force equal to whole pressure were a work of surface at rest. Hence distance of centre of pressure face from surface of fluid is same as Centre of Pa

Centres of Pressure.

, Side, Base, Tangent, or Vertex of Figure at Surface of Furing downward) that joins centres of two horizontal side

te uppermost, is at centre of a line raised from lower apex ire of base; and Vertex uppermost, it is at .75 of a line let ning it with centre of base.

Triangle, Base uppermost, is at intersection of a line exter to extremity of triangle by a line running horizontally frengle. Vertex or Extremity uppermost, is at intersection of the centre of the base to the vertex, by a line running horizon for triangle, measured from base.

either of parallel Sides at Surface, $\frac{b+3}{2}\frac{b'}{b+4}\times a=d$. b and with of figure, il distance from surface of fluid, and a length of

6.25 of 149 rodius, we shared from upper edge.

 $\frac{\sqrt{3P^2}}{\sqrt{6}} = d. \text{ representing residence}$ r = 32 r

11415. Din-

 $\frac{p-i\varrho}{k-35k}=q$

), Base, or Tangent of Figure below Surface of Fluid.

ingle or Parallelog'm.
$$\frac{2}{3} \times \frac{h'^3 - h^3}{h'^2 - h^2} = d$$
; or, $\frac{3mo + m^2}{3o} = d$; and $\frac{m^2}{3o} = d''$.

I h' representing depths of upper and lower surfaces of figure and d depth, om surface of fluid, m half depth of figure, o depth of centre of gravity of from surface of fluid, d' distance from upper side of figure, and d' distance entre of gravity.

ngle. — Vertex Uppermost.
$$\frac{l^2 + 18 o^2}{18 o} = d; \quad \frac{l^2}{18 o} = d'. \quad Base \ Uppermost.$$

 $\frac{o^2}{-}$ = d. l representing depth of figure, d distance from surface of fluid upon rom vertex to centre of base, and d'distance from centre of gravity of figure.

2.
$$\frac{4 o^2 + r^2}{4 o} = d$$
, or $\frac{r^2}{4 o} = distance$ from centre of circle.

circle.—Diam. Horizontal and Upward or Downward. $\frac{l^2}{4^0} - \frac{16}{9} \frac{l^2}{p} + o = d;$

 $\frac{4}{1} = d'; \quad \frac{4}{3} \frac{l}{p} = d'', \text{ and } \frac{l^2}{40} - \frac{16}{9} \frac{l^2}{p} = c. \quad d \text{ representing distance from of fluid, } d' \text{ distance of centre of gravity from centre of arc, } d'' \text{ distance of the gravity from diameter when it is uppermost, and c centre of pressure.}$

Pressure.

compute Pressure of a Fluid upon Bottom of its Containing Vessel.

E.—Multiply area of base by height of fluid in feet, and product by of a cube foot of fluid.

clined, Curved, or any Surface.

E.—Multiply area of surface by height of centre of gravity of fluid, and product by weight of a cube foot of fluid.

PLE 1.—What is pressure upon a sloping side of a pond of fresh water 10 feet and 8 feet in depth?

to of gravity, $8 \div 2 = 4$ feet from surface. Then $10^2 \times 4 \times 62.5 = 25$ 000 lbs. That is pressure upon staves of a cylindrical reservoir when filled with fresh lepth being 6 feet, and diameter of base 5 feet?

.1416 = 15.708 feet curved surface of reservoir, which is considered as a plane.

$$15.708 \times 6 \times 6 \div 2 = 282.744$$
, which $\times 62.5 = 17.671.5$ lbs.

rectangular flood-gate in fresh water is 25 feet in length by 12 feet deep; pressure upon it?

$$25 \times 12 \times 12 \div 2 = 1800$$
, which $\times 62.5 = 112500$ lbs.

m water presses against both sides of a plane surface, there arises from nt forces, corresponding to the two sides, a new resultant, which is ad by subtraction of former, as they are opposed to each other.

TRATION -Depth of water in a canal is 7 feet; in its adjoining lock it is 4 d breadth of gates is 15 feet; what mean pressure have they to sustain, and depth of point of its application below surface?

5=105, and
$$4 \times 15 = 60$$
 sq. feet. $(105 \times \frac{7}{2} - \overline{60 \times 2}) \times 62.5 = 1$

 $\underline{15468.75} \div 62.5 = 247.5 =$ cube feet pressing upon gates upon h $\underline{15 \times 7} = 2.35$ feet = depth of centre of gravity of mean pressure

To Compute Pressure on a Sluice. =P, and CP=P. A representing area of sluice in sq. feet, reads foot, d mean depth of sluice below surface, in feet, P pressurer required to operate it, both in lbs.

C=.68 when sluice is of wood, and .31 when of iron.

EXAMPLE.—What is pressure on a sluice-gate 3 feet square, its centre of grabeing 30 feet below surface of a pond of fresh water?

$$3 \times 3 \times 30 = 270$$
, which $\times 62.5 = 16875$ Us.

To Compute Pressure of a Column of a Fluid pe Sq. Inch.

RULE.—Multiply height of column in feet by weight of a cube for fluid, and divide product by 144; quotient will give weight or pressure sq. inch in lbs.

NOTE. - When height is given in ins., omit division by 144.

PIPES.

To Compute required Thickness of a Pipe.

RULE.—Multiply pressure in lbs. per sq. inch by diameter of pipe in is and divide product by twice assumed tensile resistance or *value* of a inch of material of which pipe is constructed.

By experiment, it has been found that a cast-fron pipe 15 ins. in diameter, 1-75 of an inch thick, will support a head of water of 600 feet; and that one of a of same diameter, and 2 ins. thick, will support a head of 180 feet?

EXAMPLE I.—Pressure upon a cast-iron pipe 15 ins. in diameter is 300 lbs. per inch; what is required thickness of metal?

$$300 \times 15 = 4500$$
, which $\div 3000 \times 2 = .75$ inch.

Norm.—Here 3000 is taken as value of tonsile strength of cast iron in ordine small water-pipes. This is in consequence of liability of such castings to be in perfect from honey-combs, springing of core, etc.

2.—Pressure upon a lead pipe 1 inch in diameter is 150 lbs. per sq. inch; whall required thickness of metal?

Here soo is taken as value of tensile strength.

150
$$\times$$
 1 = 150, which \div 500 \times 2 = .15 inch.

Cast-iron Pipes.

To Compute Thickness, etc., of Flanged Pipes.

For 10 lbs. Pressure.

For 100 lbs. Pressure.

resenting diam. of pipe, T thickness of metal, t thickness and I length of the ness of flange, o diam of flange, o' diam. of centres at bolt holes, and dies, all in ins.; A area of pipe and a area of bolt at base of its thread, in sq. is sure in lbs. per sq. inch, and C a coefficient due to diam. of bolt.

s, diam. .125 + .032, .25 + .064, .5 + .107, 1 + .16, 1.5 + .214, and 2 + .26.

UNITATION. — What should be dimensions of a flanged pipe, 10 ins. in diameter pressure of 100 lbs. per sq. inch?

X 10+2.2=0.2 = 10 number of bolts, and diam. 10 ins. = 78.54 ins. area=1

254. X -- 20, 256.35, and
$$\sqrt{\frac{.x06.35}{.7854}}$$
 + C = $\sqrt{.25}$ = .5; hence, .5+.1072

1. 3X 10.

+ 2.4 = 27 where = diameter of bolt holes.

To Compute Elements of Water-pipes.

14 5 P d + C = t; Or, .000 054 H d + C = t; 4336 H = P; and \times 2.45 = W. P representing pressure of water in lbs. per sg, inch, D and d and internal diameters of pipe, and t thickness of metal, all in ins., C coefficiently of pipe, and H head of water in feet.

7 for pipes less than 12 ins. in diameter. . 5 from 12 to 30, and .6 from 30 to 50.

To Compute Weight of Pipes.

liameter add thickness of metal, multiply sum by 10 times thickness, duct will give weight in lbs. per foot of length.

tht of Faucet end is equal to 8 ins. of length of pipe.

Hydrostatic Press.

o Compute Elements of a Hydrostatic Press.

=W;
$$\frac{W \ l' \ a}{P \ l}$$
 = A; $\frac{W \ l' \ a}{l \ A}$ = P; $\frac{P \ A \ l}{W \ l'}$ = a. P representing power or press-

lied, W weight or resistance in lbs., l and l' lengths of lever and fulcrum in eet, and A and a areas of ram and piston in sq. ins.

TRATION.--Areas of a ram and piston are 86.6 and 1 sq. ins., lengths of lever rum 4 feet and 9 ins., and power applied 20 lbs.; what is weight that may ined?

$$\frac{20 \times 4 \times 12 \times 86.6}{9 \times 1} = \frac{83136}{9} = 9237.3 \text{ lbs.}$$

Compute Thickness of Metal to Resist a given Pressure.

E.-Multiply pressure per sq. inch in lbs. by diameter of cylinder in d divide product by twice estimated tensile resistance or value of n lbs. per sq. inch, and quotient will give thickness of metal required. PLE. - Pressure required is 9000 lbs. per sq. inch, and diameter of cylinder is ; what is required thickness of metal of cast iron?

of metal is taken at 6000.
$$\frac{9000 \times 5.3}{6000 \times 2} = \frac{47700}{12000} = 3.975$$
 ins.

Values of Different Metals in Tons. (Molesworth.)

Hydraulic Ram.

ul effect of an Hydraulic Ram, as determined by Eytelwein, varied to .18 of power expended. When height to which water is raised red to fall is low, effect is greater than with any other machine; but nishes as height increases.

th of supply pipe should not be less than .75 of height to which is to be raised, or 5 times height of supply; it may be much longer.

To Compute Elements.

$$3 \nabla h = \mathbf{P}; \quad \frac{881 \mathbf{P}}{h} = V; \quad 1.45 \sqrt{V} = D; \quad .75 \sqrt{V} = d; \quad a$$

y. V and v representing volumes expended and raised, in h and h' heights from which water is drawn and elevated it ers of supply and discharging pipes in ins., and H effective ho 37 and of elevation are 10 and 26 expended and raised per minute are 1.71 and .543 cube fect.

$$X_{1.71} \times 10 = .0193$$
 P; $\frac{881 \times .0193}{10} = 1.71$ cube feet; 1...

 $V_{1.71} = .975$ ins.; and $\frac{5}{6} \times \frac{.543 \times 26.3}{1.71 \times 10} = .696$ efficiency.

$$\sqrt{1.71} = .975$$
 ins.; and $\frac{5}{6} \times \frac{.543 \times 26.3}{1.71 \times 10} = .696$ efficiency

WATER-WHEELS.

WHEELS are divided into two classes, Vertical and Horizontal, comprises Overshot, Breast, and Undershot; and Horizontal, impact, or Reaction wheels.

wheels are limited by construction to falls of less than 60 feet. are applicable to falls of any height from I foot upward.

wheels applied to a fall of from 20 to 40 feet give a greater a Turbine, and for very low falls Turbines give a greater effect.

s.—Methods of admitting water to an Overshot or Breast various, consisting of Overfall, Guide-bucket, and Penstock.

ill Stuice is a saddle-beam with a curved surface, so as to direct the water tangentially to buckets; a Guide-bucket is an apron by which ded in a course tangential to buckets; and a Pentick is sluice-board or as close to wheel as practicable, and of such thickness at its lower edge a contraction of current. Bottom surface of penstock is formed with a

ding of a wheel consists of plates at its periphery, which ides of the bucket.

fall of a water-wheel is measured between surfaces of water in *pensiock* $^{\prime}ace$, and, ordinarily, two thirds of height between level of reservoir and ich water strikes a wheel is lost for all effective operation.

of a wheel at centre of percussion of fluid should be from .5 to .6 that ie water.

fect in a fall of water is expressed by product of its weight tof its fall.

tio of Effective Power of Water Motors.

1d high	Undershot, Poncelet's, from Undershot"	1.6 to.4 to 1
	Impact and Reac-	.3 to.5 to 1
Ram " .6 to 1	Water-pressure engine "	.8 to r

Overshot-wheel.

OT-WHEEL.—The flow of water acts in some degree by impact, y by its weight.

he speed of wheel at its circumference, the greater will be mechanof the water, in some cases rising to 80 per cent.; with velocities to 6.5 feet, efficiency ranges from 70 to 75 per cent. Proper velout 5 feet per second.

of buckets should be as great, and should retain water as long, as Maximum effect is attained when the buckets are so numerous hat water surface in the bucket commencing to be empt ontact with the under side of the bucket next above 1 is 12 ins. apart.

buckets give greatest effect, and Radial give but .78 ikets. Wheel 40 feet in diameter should have 152 buck heels give a less effect than large, in consequence of the action, and discharging water from the buckets at a with larger wheels, or when their velocity is lower.

ad of water bears to fall or height of wheel a proportion \cdot 5, ratio of effect to power is reduced. The general law ratio of effect to power decreases as proportion of $h \in ad$ to v increases.

Wheel with shallow Shrouding acts more efficiently than on deep, and depth is usually made 10 or 12 ins., but in some case increased to 15.

Breadth of a wheel depends upon capacity necessary to give to receive required volume of water.

Form of Buckets.—Radial buckets—that is, when the bottom is a revolve so great a loss of mechanical effect as to render their use Incoveronomy; and when a bucket is formed of two pieces, lower or i termed bottom or floor, and outer piece arm or wrist. Former is usual line with radius of wheel.

Line of a circle passing through elbow, made by junction of floo termed division circle, or bucket pitch, and it is usual to put this at o of shrouding.

When arm of a bucket is included in division angle of buckets, the representing number of buckets, the cells are not sufficiently covered, ex-

representing number of buckets, the cells are not sufficiently covered, esshallow shrouding; lience it is best to extend arm of a bucket over a angle, so as to cover or overlap elbow of bucket next in advance of it.

Construction of Buckets (Fig. 1).—Capacity of bucket should be 3 to of water.

Fig. z.

Fairbairn gives area of opening of a wheel of great diameter, compared to the as 5 to 24.

Buckets having a bottom of two planes, two bottoms, and two division circles or by and an arm, give a greater effect than with

When an opening is made in base of b to afford an escape of air contained with loss of water admitted, the buckets are tilated, and effective power of wheel is n than with closed buckets.

D = distance apart at periphery = d, shrouding, s length of radial start = -3s θ bucket curve = 1.25 d in large wheels, and under 25 feet, a angle of radius of curve with radial line of wheel at points of be (Molesworth.)

pute Radius and Revolutions of an O wheel, and Height of Fall of Water.

whole Fall and Velocity of Flow, etc., are given. -

=n,
$$\frac{v^2}{2g}$$
 1.1=h', and $\frac{3.1416 \, n \, r}{h}$ = c. h representing hei

height between the centre of gravity of discharge and half desich water flows, v velocity of flow in feet per second, a angle wi z of vater into a bucket makes with summit of wheel, in number a unite, v velocity of wheel at its circumference per second, and r its

rk.—Height of whole full is distance between surface of water is at which lower buckets are emptied of water, and as a proportio we is lost, it is proper to assume height k' as above given.

Experience A fellow sign feet, velocity of its flow is 16 fee 120, and required velocity of wheel 120, and required velocity of wheel 120 imber of revolutions, and height

 $= -3 \times 1.1 = -3.04 \cdot \frac{x + 3.0}{30 - 4.30} = \frac{x \cdot 3.0}{32.04} =$

....

LILLE V

HYDRODYNAMICS.

n Number of Revolutions and Ratio between Velocities of Flow Circumference of Wheel are given.

$$\frac{\cos 772 (x n)^2 h + (1 + \cos a)^2 - 1 + \cos a}{\cos 386 (x n)^2} = r, x = \frac{v}{c}, \text{ and } \frac{3.1416 n r}{30} =$$

USTRATION.—If number of revolutions are 5, z=2, and fall, etc., as in pre what is radius of wheel, velocity of flow, and height of fall?

$$\frac{\sqrt{.000772} (2 \times 5)^2 \times 30 + (1.978)^2 - 1.978}{.000386 (2 \times 5)^2} = \frac{.518}{.0386} = 13.41 \text{ feet.}$$

$$\frac{116 \times 5 \times 13.41}{30} = 7.03$$
 feet. Hence $7.03 \times 2 = 14.06$ velocity of flow, and $\frac{14}{64} = 3.38$ feet.

To Compute Width of an Overshot-wheel.

; = w. C representing a coefficient = 3, when buckets are filled to an excess, a

n they are deficiently filled, V volume of water in cube feet per second, s dep rouding, w width of buckets, both in feet, and c' velocity of wheel at centre of ding, in feet per second.

USTRATION -A wheel is to be 31 feet in diameter, with a depth of shrouding o , and is required to make 5 revolutions per minute under a discharge of 10 feet of water per second, what should be width of buckets?

mme C = 4, and
$$c' = \frac{31 - 1 \times 3.1416 \times 5}{60} = 7.854$$
. Then $\frac{4 \times 10}{1 \times 7.854}$ 5.09 feet.

To Compute Number of Buckets.

 $1 + \frac{s}{83}$ - 12 = d, and $\frac{D p s}{d} = n$. D representing diameter of wheel, d disbetween centres of buckets, in feet, and n number of buckets.

TETRATION .- Take elements of preceding case.

17
$$\left(1 + \frac{1}{.83}\right) = 7 \times 2.2 \div 12 = 1.283$$
, and $\frac{31 - 1 \times 3.1416 \times 1}{1.283} = 73.4$, say 72; hence $\frac{36.9}{1.283} = 5^{\circ}$, angle of subdivision of buckets.

To Compute Effect of an Overshot-wheel.

$$\frac{1-\left(\frac{v^2}{2g}\nabla w+f\right)}{\nabla h w} = P. \quad \text{w representing weight of cube foot of water in lbs.,}$$

$$y \text{ of it discharged at tail of wheel, in feet per second, } \nabla \text{ volume of flow in and f friction of wheel in lbs.}$$

ATION. - A volume of 12 cube feet per second has a fall of 10 feet, wheel 8.5 feet of it, and velocity of water discharged is o feet per second; what

of wheel is assumed to be 750 lbs.

of wheel is assumed to be 750 lbs.

$$\frac{\times 62.5 - \left(\frac{9^2}{64.33} \times 12 \times 62.5 + 750\right)}{12 \times 10 \times 62.5} = \frac{6375 - (1.26 \times 750 + 750)}{7500}$$
= 6375 - (1.26 \times 750 + 750)

of effect to power; and 4680 × 60 seconds ÷ 33 000 = 8.51 IP

Compute Power of an Overshot-whe Multiply weight of water in lbs. discharged upon w eight or distance in feet from centre of opening in race; divide product by 33000, and multiply quitermined ratio of effect to power. Or, for general by 50000, and quotient is IP.

$$k=P$$
, and $\frac{21.7}{h}=V$ per second; or, $\frac{771}{h}=V$ per min.

Poncelet's Wheel.

ONCELET'S WHEEL.—Buckets are curved, so that flow of water is in se of their concave side, pressing upon them without impact; and effect eater than when water impinges at nearly right angles to a plane suror blade.

nis wheel is advantageous for application to falls under 6 feet, as its t is greater than that of other undershot wheels with a curb, and for from 3 to 6 feet its effect is equal to that of a Turbine.

r falls of 4 feet and less, efficiency is 65 per cent., for 4.25 to 5 feet, 60 tent., and from 6 to 6.5 feet, 55 to 50 per cent.

its arrangement, aperture of sluice should be brought close to face of al. First part of course should be inclined from 4° to 6°; remainder of se, which should cover or embrace at least three buckets, should be carconcentric to wheel, and at end of it a quick fall of 6 ins. made, to guard nst effect of back-water. Sluice should not be opened over 1 foot in any and 6 ins, is a suitable height for falls of 5 and 6 feet.

istance between two buckets should not exceed 8 or 10 ins., and radius heel should not be less than 40 ins., or more than 8 feet.

ane of stream or head of water should meet periphery of wheel at an e of from 24° to 30°. Space between wheel and its curb should not ex. 4 of an inch.

epth of shrouding should be at least .25 depth of head of water, or such prevent water from flowing through it and over the buckets, and width heel should be equal to that of stream of impinging water.

fect of this wheel increases with depth of water flow, and, therefore, r elements being equal, as filling of buckets, to obtain maximum effect, r should flow to buckets without impact, and velocity of wheel should llv a little less than half that of velocity of water flowing upon wheel.

To Compute Proportions of a Poncelet Wheel.

rr. — As it is impracticable to arrive at the results by a direct formula, they be obtained by gradual approximation.

LMPLE.—Height of fall is 4.5 feet; volume of water 40 cube feet per second; 3 of wheel = 2 h, or 9 feet; depth of the stream = .75 feet; and C assumed at .9.

epresenting volume of water in cube feet per second, h height of fall, d depth of

ding = $\frac{1}{4} \cdot \frac{v^2}{2g} + d'$; d'opening of and e width of sluice, r radius of curva-

If buckets $=\frac{d}{\cos z}$, and a of wheel, all in feet; n number of revolutions $=\frac{30 \text{ c}}{p \text{ a}}$ sinute; c velocity of circumference of wheel and v velocity of water, $b^{-n} = 4$ econd; C coefficient of resistance of flow of water; x angle between

ng water and that of circumference of wheel at point of contact

. z; z angle made by circumference of wheel with end of bucket

angle of direction of water from circumference of wheel $=\frac{p}{2}\frac{c}{a}$

$$7 = -9\sqrt{2g(h-\frac{d}{2})} = -9 \times 16.29 = 14.66$$
 feet : velocity of

h Breast-wheel is used when level of water in tail-race and penstock ebay are subject to variation of heights, as wheel revolves in direction ich water flows from blades, and back-water is therefore less disadgeous, added to which, penstocks can be so constructed as to admit of ustable point of opening for the water to flow upon the wheel.

ct of this wheel is equal to that of the overshot, and in some instances, he advantageous manner in which water is admitted to it, it is greater both wheels have same general proportions.

ler circumstances of a variable supply of water, Breast-wheel is better ed for effective duty than Overshot, as it can be made of a greater ter; whereby it affords an increased facility for reception of water s buckets, also for its discharge at bottom; and further, its buckets easily overcome retardation of back-water, enabling it to be worked onger period in back-water consequent upon a flood.

well-constructed wheel an efficiency of 93 per cent. was observed by M. and Sir Wm. Fairbairn gives, at a velocity of circumference of wheel of an efficiency of 75 per cent. Velocity usually adopted by him was from 4: t per second, both for high and low falls; a minimum of 3.5 feet for a fall of a maximum of 7 feet for a fall of 5 to 6 feet.

n water flows at from 10° to 12° above horizontal centre of wheel, Fairbairn rea of opening of buckets, compared with their volume, as 8 to 24.

capacity between two buckets or blades should be very nearly double that of of water expended.

ompute Proportions and Effect of a Breast-wheel.

STRATION.-Flow of water is 15 cube feet per second; height of fall, measured entre of pressure of opening to tail-race, is 8.5 feet; velocity of circumference el 5 feet per second; and depth of buckets or blades 1 foot, filled to .5 of their

h of wheel $=\frac{V}{s\,d}$, d representing depth, and v velocity of buckets; $\frac{15}{1\times5}=3$; buckets are but. 5 filled, $3 \div .5 = 6$ feet. Assume water is to flow with double y of circumference of wheel; $v = 5 \times 2 = 10$ feet; and fall required to genhis velocity $= \frac{v^2}{2} \times 1.1 = h' = \frac{100}{64.33} \times 1.1 = 1.71$ feet.

icting this height from total fall, there remains for height of curb or shroudfall during which weight of water alone acts, h-h'=8.5-1.71=6.79 feet. ing radius of wheel 12 feet, and radius of bucket circle 11 feet, whole mechanect of flow of water = $15 \times 62.5 \times 8.5 = 7968.75$ lbs., from which is to be defrom 10 to 15 per cent. for loss of water by escape.

retical effect, as determined by M. Morin, velocity of circumference about lat of water, and within velocities of 1.66 to 6 feet.

 $\frac{\cos(a-v)v}{v} + h''$ V 62.5. a representing angle of direction of velocity with water flows to wheel at centre of thread of flow and direction of velocity of ut this line, and h" h - h' in feet.

here assumed at 20°. See Weisbach, London, 1848, vol. ii. page 197, and for researily small value of a, its cosine may be taken at r. Cos. 200

$$\frac{1}{32.16} \left(\frac{(10 \times .94 - 5)}{32.16} + 6.79 \right) \times 15 \times 62.5 = 7.474 \times 15 \times 62.5 = 700$$
b reduced by a coefficient of .77 for a penstock cluice, and .8

oretical effect, as determined by Weisbach, 7273 lbs.. leducted losses, which he computes as follows:

* by escape of water between wheel and curb..... by escape at sides of wheel and curb..... ion and resistance of water = 2.5 per cent.....

Flutter-wheel.

r or Saw-mill Wheel—Is a small, low breast-wheel operating under head of water; the design of its construction, water being plenty, is imment of a simple application to high-speed connections, as a gang lar saw. In effect it is from .6 to .7 that of an overshot-wheel of d of fall.

$$\frac{Vs}{150}(v-s) = \mathbf{P}$$
. v and s as preceding.

Friction of Journals or Gudgeons.

ry considerable portion of mechanical effect of a wheel is lost in eforbed by friction of its gudgeons.

Compute Friction of Journals or Gudgeons of a Water-wheel.

C.0086 = f. W representing weight of wheel in lbs., r radius of gudgeon in number of revolutions of wheel per minute.

ell-turned surfaces and good bearings, C = .075 with oil or tallow; when il is well supplied = .054; and, as in ordinary circumstances, when a blackuent is alone applied = .11.

RATION.—A wheel weighing 25 000 lbs. has gudgeons 6 ins. in diameter, and revolutions per minute; what is loss of effect?

Assume C = .08. Then $25000 \times \frac{6}{2} \times 6 \times .08 \times .0086 = 309.6$ lbs.

ghts.—Iron wheels of 18 to 20 feet in diameter will weigh from 800 to per H. wheels of 30 feet in diameter, 2000 to 2500 lbs. per H.

ompute Diameter and Journals of a Shaft, Stress laid uniformly along its Length.

ron, $\frac{\sqrt[4]{W}l}{9.6} = d$. Wood, 6.12 $\sqrt[3]{\frac{P}{4}} = d$. W representing weight or load in 19th of shaft between journals in feet, and d diameter of shaft in its body

als or Gudgeons.—Cast Iron, .048 $\sqrt{\frac{W}{2}} = d$.

s Shaft has to resist both Lateral and Torsional Stress.—Ascertain neter for each stress, and cube root of sum of their cubes will give r.

To Compute Dimensions of Arms.

ron, $\frac{1.7 \text{ d}}{\sqrt[3]{n}}$ = w. d representing diameter of shaft, and w width of arm, both

i number of arms, $\frac{w}{s} = t$, and t thickness of arm.

Arm is of Oak, w should be 1.4 times that of iron, and thickness .7 that

Memoranda.

ime of water of 17.5 cube feet per second, with a fall of 25 feet, applies to an ot-wheel, will drive a hammer of 1500 lba in weight from 10^{-1} and blows ute, with a lift of from 1 to 1.5 feet.*

ime of water of 21.5 cube feet per second, with a fall of 12 having a great height of water above its summit, being raive a hammer of 500 lbs. in weight 100 blows per min 2 Estimate of power 31.5 horses.

f water required for a hammer increases in a much greater ratio than searly as cube of velocity.

A Stream and Overshot Wheel of following dimensions—viz., height of head becentre of opening, 24.875 ins.; opening. 1.75 by 80 ins.; wheel, 22 feet in diameter by 8 feet face; 32 buckets, each 1 foot in depth, making 3.5 revolutions per mines—drove 3 run of 4.5 feet stones 120 revolutions per minute, with all attendant mechinery, and ground and dressed 25 bushels of wheat per hour.

4.5 bushels Southern and 5 bushels Northern wheat are required to make 1 berel of flour.

A Breast-wheel and Stream of following dimensions—viz., head, 20 fbet; height of water upon wheel, 16 feet; opening, 18 feet by 2 inz.; diameter of wheel, 26 fet 4 inz.; face of wheel, 20 feet 9 inz.; depth of buckets, 15.75 inz.; number of backets, 70; revolutions, 4.5 per minute — drove 6244 self-acting mule spindles; 16 looms, weaving printing-cloths 27 inz. wide of No. 33 yarn (33 hanks to a lb.), self-acting 24 coo banks in a day of 12 hours.

Horizontal Wheels.

In horizontal water - wheels, water produces its effect either by Impet, Pressure, or Reaction, but never directly by its weight.

These wheels are therefore classed as Impact, Pressure, and Reaction, bs are now designated by the generic term of Turbine.

Turbines.

TURBINES, being operated at a higher number of revolutions than Vertical Wheels, are more generally applicable to mechanical purposes; but in operations requiring low velocities, Vertical Wheel is preferred.

For variable resistances, as rolling-mills, etc., Vertical Wheel is far preferable, as its mass serves to regulate motion better than a small wheel.

In economy of construction there is no essential difference between a Vertical Wheel and a Turbine. When, however, fall of water and volume of it are great, the Turbine is least expensive. Variations in supply of water affect vertical wheels less than Turbines.

Durability of a Turbine is less than that of a Vertical Wheel; and it is indispensable to its operation that the water should be free from sand, sik, branches, leaves, etc.

With Overshot and Breast Wheels, when only a small quantity of water is available, or when it is required or becomes necessary to produce only a potion of the power of the fall, their efficiency is relatively increased, from the blades being but proportionately filled; but with Turbines the effect is contrary, as when the sluice is lowered or supply decreased water enters the wheel under circumstances involving greater loss of effect. To produce maximum effect of a stream of water upon a wheel, it must flow without impact upon it, and leave it without velocity; and distance between point at which the water flows upon a wheel and level of water in reservoir should be as short as practicable.

Small wheels give less effect than large, in consequence of their making a greater number of revolutions and having a smaller water arc.

In High-pressure Turbines reservoir (of wheel) is enclosed at top, and water is admitted through a pipe at its side. In Low-pressure, water flows into respir, which is open.

Turbines working under water, height is measured from surface of in supply to surface of discharged water or race; and when they wak height is measured from surface in supply to centre of wheel.

'n obtain maximum effect from water, velocity of it, when have should be the least practicable.

Efficiency is greater when sluice or supply is wide open, and it is less at fected by head than by variations in supply of water. It varies but litt with velocity, as it was ascertained by experiment that when 35 revolution gave an effect of .64, 55 gave but .66.

When Turbines operate under water, the flow is always full through them hence they become *Reaction-wheels*, which are the most efficient.

Experiments of Morin gave efficiency of Turbines as high as .75 of powe

Angle of plane of water entering a Turbine, with inner periphery of i should be greater than 90°, and angle which plane of water leaving reservo makes with inner circumference of Turbine should be less than 90°.

When Turbines are constructed without a guide curve*, angle of plane of flowing water and inner circumference of wheel = 90°.

Great curvature involves greater resistance to efflux of water; and hence it is advisable to make angle of plane of entering water rather obtuse the acute, say 100°; angle of plane of water leaving, then, should be 50°, if it ternal pressure is to balance the external; and if wheel operates free awater, it may be reduced to 25° and 30°.

If blades are given increased length, and formed to such a hollow curve that the water leaves wheel in nearly a horizontal direction, water then bot impinges on blades and exerts a pressure upon them; therefore effect: greater than with an impact-wheel alone.

Turbines are of three descriptions: Outward, Downward, and Inward flov

Outward-flow Turbines.

FOURNEYRON TURBINE, as recently constructed, may be considered as or of the most perfect of horizontal wheels; it operates both in and out a back-water, is applicable to high or low falls, and is either a high or low pressure turbine.

In high-pressure, the reservoir is closed at top and the water is led to through a pipe. In low-pressure, the water flows directly into an open receivoir. Pressure upon the step is confined to weight of wheel alone.

Fourneyron makes angle of plane of water entering $=90^{\circ}$, and angle of plane of water leaving $=30^{\circ}$.

Efficiency is reduced in proportion as sluice is lowered, for action of wat on wheel is less favorably exerted. M. Morin tested a Fourneyron turbir 6.56 feet in diameter, and he found that efficiency varied from a minimum of 24, to 79 per cent., when supply of water was reduced to .25 of full supply In practice, radial length of blades of wheel is .25 of radius, for falls not exceeding 6.5 feet, .3 for falls of from 6.5 to 19 feet, and .66 for higher falls.

To Compute Elements and Results.

High Pressure, 6.6
$$\sqrt{h} = v$$
; $\frac{V}{v} = A$; $\frac{\sqrt{1.77 \, V}}{\sqrt{h}} = D \uparrow$; 12.6 $\frac{H}{h} = V$; as

.070 V $h = \mathbf{P}$. A representing head of water, v velocity of turbine at periphery p minute, and D internal diameter of turbine, all in feet. V volume of water in cube \hat{p} per second, A sum of area of orifices in sq. feet, and \mathbf{P} effective horse-power.

1.2 D = external diameter of turbine in feet, when it is more than 6 feet, and r when it is less than 6 feet. Number of guides = number of blades; when less the 24, and number ÷ 3 when greater than 24. Area of section of supply pipe = ...

For construction of blades and guides, see Molesworth, London, 1882, page 5

^{*} Guide curves are plates upon centre body of a Turbine, which give direction to flow! or to blades of wheel which surround them.

[†] In extreme cases of very high falls diameter given by this formula may be increased. \$ Fourneyron's rule for the number of blades is constant number 36, irrespective of size

Operation of High-Pressure Turbines.

h = head of water in feet, V volume of water in cube feet required for each n and v velocity of periphery of turbine in feet per second.

BOYDEN TURBINE. - Mr. - Boyden, of Massachusetts, designe outward-flow turbine of 75 IP, which realized an efficiency of 88 per Peculiar features, as compared with a Fourneyron turbine, are, 1st, and important, the conduction of the water to turbine through a vertical t cated cone, concentric with the shaft. The water, as it descends, acqui gradually increasing velocity, together with a spiral movement in dissoft motion of wheel. The spiral movement is, in fact, a continuation motion of the water as it enters cone .- 2d. Guide-plates at base are ind so as to meet tangentially the approaching water.—3d. A "diffuser," or a lar chamber surrounding wheel, into which water from wheel is discharged. This chamber expands outwardly, and, thus escaping velocity of wat eased off and reduced to a fourth when outside of diffuser is reached. of diffuser is to accelerate velocity of water through machine; and go efficiency is 3 per cent. Diffuser must be entirely submerged. (D. K. C

PONCELET TURBINE. - This wheel is alike to one of his undershot-w set horizontally, and it is the most simple of all horizontal wheels.

To Compute Elements of General Proportion & Results. (Lt. F. A. Mahan, U. S. A.)

.0425 D²
$$h\sqrt{h}$$
= H; 4.85 $\sqrt{\frac{P}{h\sqrt{h}}}$ = D; .5 D² \sqrt{h} = V; .1 D = H; 4.49 \sqrt{h} 3 (D + 10) = N; $\frac{D}{N}$ = w; $\frac{4}{N}$ = W; D - $\frac{S}{N}$ = d; .5 N to .75 N = n; $\frac{d}{n}$

and C coefficient for V' in terms of $V = \frac{V'}{V}$. D and d representing exterior of

terior diameters of wheel, H and h heights of orifices of discharge at outer of ference and of fall acting on wheel, w and w shortest distances between two w blades and two adjacent guides, all in feet, V, V, and w velocities due to fully passing through narrowest section of wheel, and of interior circumference of all in feet per second, N and n numbers of blades and guides, and IP actual

For falls of from 5 feet to 40, and diameters not less than 2 feet, $n \le n$ equal to diameter of wheel. He qual to $n \ge n$ w' = d, and $n \ge n$ with of $n \ge n$ For falls exceeding this, H should be smaller, in proportion to diameter of all

Downward-flow Turbines.

In turbines with downward flow, wheel is placed below an annular of guide-blades, by which water is conducted to wheel. The water s curved blades, and falls vertically, or nearly so, into tail-race; consequent centrifugal action is avoided, and downward flow is more compact.

FONTAINE TURBINE yields an efficiency of 70 per cent., when charait. When supply of water is shut off to .75, by sluice, efficiently went. Best velocity at mean circumference of wheel is equal to the control of that due to height of fall. It may vary .25 of this either

In Turnaterially affecting efficiency. water in s in air, heightion the water in race is in immediate contact with whele in air, heightion greatest when sluice is fully opened. Its efficiency is a line order to ariations of head of flow than in volume of water

ing a Turbine, adapted for Tide-mills.

JONYAL TURBINE.—This wheel is essentially alike in its principal propor tions to Fontaine's, and in principle of operation it is the same. Water is race must be at a certain depth below wheel.

For convenience, it is placed at some height above level of tail-race, within an air-tight cylinder, or "draft-tube," so that a partial vacuum or reduction of pressure is induced under wheel, and effect of wheel is by so much in creased. Resulting efficiency is same as if wheel was placed at level of tail race; and thus, while it may be placed at any level, advantage is taken o whole height of fall, and its efficiency decreases as volume of water is diminished or as sluice is contracted.

To Compute Elements and Results.

Low Pressure. - For falls of 30 feet and less.

6
$$\sqrt{h} = v$$
; $= \frac{V}{v} = A$; $\frac{\sqrt{1.77 \ V}}{\sqrt{h}} = D^*$; $12.7 \frac{P}{h} = V$; and .079 $V h = P$.

A representing head of water, v velocity of turbine at periphery per minute, and 1 *mternal diameter of turbine, all in feet, V volume of water in cube feet per second A sum of area of orifices in sq. feet, and B effective horse-power.

 r_{i} D = external diameter of turbine in feet, when it is more than 6 feet, and r_{i} . When it is less than 6 feet. Number of guides = number of blades † when less than 4, and number + 3 when greater than r_{i} 4. Area of section of supply-pipe = .4 V.

For construction of blades and guides, see Molesworth, London, 1882, page 540.

Low-Pressure Turbines. (Molesworth.)

2		5		10 HP		15 HP		20 HP		30 HP		40 IP		50 HP	
Hesd	v	v	R	V	R	v	R	V	R	v	R	V	R	V	R
2. 5	9.48	25	34 81	50	24	75	20	100	17	-	-	-		-	_
5	13.38	12.5			57	38	47	50		75	33	100	28	126	
7-5	16.38	8.5	136		97	25	79	33	68	51	56		48	85	4
0	18.96	6.3	180	12.6	128	19	105	25	90	38	75	50	64	63	5
5	23.22	4.2	319	8.4	226	12.6	185	17	100	25	131	33	113	42	10
0	26.82	-	-	6.3	329	9.3	273	12.6	232	18.9	194	25	164	31	14
5	30	-	-	-	-	7.5	273 358	10	310	15	253	20	220	25	19
0	32.88	-	-	-	-	-	-	8.4	380	12.6	310	17	268	21	24

representing velocity of centre of blades in feet and V volume of water, in cub et, both per second, R revolutions per minute, and H effective horse-power.

Vertical Shaft.
$$\sqrt[3]{\frac{230 \text{ P}}{R}} = \text{diameter of shaft in ins.}$$

Inward-flow Turbine.

INWARD-FLOW TURBINE. — Inward-flow or vortex wheel is made witl adiating blades, and is surrounded by an annular case, closed externally tool open internally to wheel, having its inner circumference fitted with four unit of guide-passages. The water is admitted by one or more pipes to the see, and it issues centripetally through the guide-passages upon circumference of wheel. The water acting against the curved blades, wheel is riven at a velocity dependent on height of fall, and water having expendents force, passes out at centre. This wheel has realized an efficiency as high the force, passes out at centre. The water is designed by Prof. James Thomson.

SWAIN TURBINE.—Combines an inward and a downward discharge. Re eving edges of buckets of wheel are vertical opposite guide-blades, as ower portions of the edges are bent into form of a quadrant. Each buckins forms, with the surface of adjoining bucket, an outlet which combine in inward and a downward discharge. Onc. 72 ins. in diameter, was

In extreme cases of very high falls diameter given by this formula may be increased.

Fourneyron's rule for the number of blades is constant number 36, irrespective of size of

by Mr. J. B. Francis, for several heights of gate or sluice, from 2 to 13d ins., and circumferential velocities of wheel ranging from 60 to 80 per center of respective velocities due to heads acting on wheel.

For a velocity of 60 per cent., and for heights of gate varying within limits ready stated, efficiency ranged from 47.5 to 76.5 per cent., and for a velocity of a per cent. it ranged from 37.5 to 83 per cent. Maximum efficiency attained walk per cent., with a 12-inch gate and a velocity-ratio of 76 per cent.; but from 9-ind to 13-inch gate, or from .66 gate to full gate, maximum efficiency varied with very narrow limits—from 83 to 84, per cent.—velocity-ratios being 72 per cent for 9-inch gate, and 76.5 per cent. for full gate. At half gate, maximum efficiency was 78 per cent, when velocity-ratios de sent. At quarter-gate, maximum efficiency so for per cent, and velocity-ratio 66 per cent.

TREMONT TURBINE, as observed by Mr. Francis, in his experiments Lowell, Mass., gave a ratio of effect to power as .793 to 1.

VICTOR TURBINE is alleged to have given an effect of .88 per cent, under a head of 18.34 feet, with a discharge of 977 cube feet of water per minus, and with 343.5 revolutions.

Tangential Wheel.

Wheels to which water is applied at a portion only of the circumferent are termed tangential. They are suited for very high falls, where diameter and high tangential velocity may be combined with moderate revolutions. The Girard turbine belongs to this class. It is employed at Goeschest station for St. Gothard tunnel, it operates under a head of 279 feet. In wheels are 7 feet ro. 5 ins. in diam., having 80 blades, and their speed is not revolutions per minute, with a maximum charge of water of 67 gallous per second. An efficiency of 87 per cent. is claimed for them at the Puri water-works; ordinarily it is from 75 to 80 per cent. (D. K. Clark.)

Impact and Reaction Wheel.

IMPACT-WHEEL.—Impact Turbine is most simple but least efficient form of impact-wheel. It consists of a series of rectangular buckets or black, set upon a wheel at an angle of 50° to 70° to horizon; the water flows blades through a pyramidal trough set at an angle of 20° to 40°, so the water impinges nearly at right angles to blades. Effect is .5 entire be chanical effect, which is increased by enclosing blades in a border or frame

If buckets are given increased length, and formed to such a hollow cure that the water leaves wheel in nearly a horizontal direction, the water the impinges on buckets and exerts a pressure upon them; effect therefore is greater than with the force of impact alone.

By deductions of Weisbach it appears that effect of impact is only but available effect under most favorable circumstances.

REACTION-WHEEL.—Reaction of water issuing from an orifice of the capacity than section of vessel of supply, is equal to weight of a column of water, basis of which is area of orifice or of stream, and height of which is twice height due to velocity of water discharged.

Hence, the expression is 2. $\frac{v^2}{2g}$ a w = R. w representing weight of a cube few θ water in lbs., and a area of opening in sq. feet.

WHITELAW'S is a modification of Barker's; the arms taper from composite towards circumference and are curved in such a manner as to enable water to pass from central openings to orifices in a line nearly right radial, when instrument is operating at a proper velocity; in order that makes the contribution of the water by the revolution of the contribution of the water by the revolution of the contribution of the water by the revolution of the water by the water

·ht.

Turbine 9.55 feet in diameter, with orifices 4.944 ins. in diameter, operby a fall of 25 feet, gave an efficiency of 75 per cent., including friction aring of an inclined plane.

en a reaction wheel is loaded, so that height due to velocity, corresponding to ty of rotation v, is equal to fall, or $\frac{v^2}{2g} = h$, or $v = \sqrt{2gh}$, there is a loss of 17

ent. of available effect; and when $\frac{v^2}{2g} = 2h$, there is a loss of but 10 per cent.;

hen $\frac{v^2}{2g} = 4h$, there is a loss of but 6 per cent. Consequently, for moderate and when a velocity of rotation exceeding velocity due to height of fall may opted, this wheel works very effectively.

ciency of wheel is but one half that of an undershot-wheel.

nen sluice is lowered, so that only a portion of wheel is opened, efficiency Reaction-wheel is less than that of a Pressure Turbine.

Ratio of Effect to Power of several Turbines is as follows:

RKER'S MILL.—Effect of this mill is considerably greater than that h same quantity of water would produce if applied to an undershot-l, but less than that which it would produce if properly applied to an ihot-wheel.

· a description of it, see Grier's Mechanics' Calculator, page 234; and for its las, see London Artisan, 1845, page 229.

IMPULSE AND RESISTANCE OF FLUIDS.

npulse and Resistance of Water.—Water or any other fluid, I flowing against a body, imparts a force to it by which its condition of on is altered. Resistance which a fluid opposes to motion of a body not essentially differ from Impulse.

ipulse of one and same mass of fluid under otherwise similar circumses is proportional to relative velocities $c \mp v$ of fluid.

r an equal transverse section of a stream, the impulse against a surface st increases as square of velocity of water.

ipulse against Plane Surfaces.—The impulse of a stream of water desprincipally upon angle under which, after impulse, it leaves the water; nothing if the angle is 0, and a maximum if it is deflected back in a parallel to that of its flow, or 180°, $2\frac{c \mp v}{q} V w = P^*$.

Then Surface of Resistance is a Plane, and $=90^{\circ}$, then $\frac{c \mp v}{g} V w = P$, and a surface at rest, 2ahw = P. a representing area of opening in sq. feet. =2hw; c and v representing velocities of water and of surface upon which it ngs in feet per second, w weight of fluid per cube foot in lbs., A transverse section ream in sq. ins., and $c \mp v$ relative motions of water and surf

ormal impulse of water against a plane surface is et column which has for its base transverse section

ude twice height due to its velocity, $2h = 2\frac{c^2}{2g}$.

sistance of a fluid to a body in motion is same as a g with same velocity against a body at rest.

^{*} Weisbach, New York, 1870, vol. i. page 1008-

To Compute Velocities of Elastic Bodies after Imp When Impelled in One Direction. $\frac{\overline{B-b} \, V + 2 \, b \, v}{B+b} = R$, and $\frac{2 \, B \, V - \overline{B-b}}{B+b}$

ILLUSTRATION. -- Assume elements as preceding.

$$\frac{50-30\times7+2\times30\times3}{50+30} = \frac{320}{80} = 4 \text{ feet, and } \frac{2\times50\times7-50-30\times3}{50+30} = \frac{640}{80} = \frac{2\times50\times7-50-30\times3}{50+30} = \frac{2\times50\times7-50-30\times$$

When Impelled in Opposite Directions.

$$\frac{\overline{B-b} \ V \circ 2b \ v}{B+b} = R, \text{ and } \frac{2 \ B \ V + \overline{B-b} \ v}{B+b} = r.$$

ILLUSTRATION. - Assume elements as preceding.

$$\frac{50-30\times7^{\circ}2\times30\times3}{50+30} = \frac{140^{\circ}180}{80} = -.5 \text{ feet, and } \frac{2\times50\times7+50-90}{50+30}$$

$$\frac{700+60}{80} = 9.5 \text{ fest.} \quad \text{Or, } \frac{2 b (V+v)}{B+b} = \text{velocity lost by B.} \quad \text{As } \frac{2 \times 30 \times 7+3}{50+30}$$

$$= 7.5 \text{ feel.}$$

When One Body is at Rest.
$$\frac{\nabla \overline{B-b}}{B+b} = R$$
, and $\frac{2B\nabla}{B+b} = r$.

ILLUSTRATION.—Assume elements as preceding.

$$\frac{7 \times \overline{50-30}}{50+30} = \frac{140}{80} = 1.75$$
 feet, and $\frac{2 \times 50 \times 7}{50+30} = \frac{700}{80} = 8.75$ feet.

To Compute Velocities of Imperfect Elastic Bodies & Impact.

Effect of Collision is increased over that of perfectly inelastic bodies not doubled, as in case of perfectly elastic bodies; it must be multiplie $1 + \frac{n}{m}$ or $\frac{m+n}{m}$, when $\frac{n}{m}$ represents degree of elasticity relative to both fect inelasticity and elasticity.

Moving in same Direction. $V = \frac{m+n}{m} \times \frac{b}{B+b} (V-v) = B$; and $v + \frac{B}{B+b} (V-v) = r$. m and n representing ratio of perfect to imperfect elastic

ILLUSTRATION.—Assume elements as preceding. m and n = 2 and z.

$$7 - \frac{2+1}{2} \times \frac{30}{50+30} \times 7 - 3 = 7 - 1.5 \times \frac{30}{80} \times 4 = 7 - 2.25 = 4.75$$
 feel, and $\frac{2+1}{2} \times \frac{50}{50+20} \times 7 - 3 = 3 + 3.75 = 6.75$ feel.

When Moving in Opposite Directions.

$$\nabla - \frac{m+n}{m} \times \frac{b \ (\nabla + v)}{B+b} = R$$
, and $\frac{m+n}{m} \times \frac{B}{B+b} \times (\nabla + v) - v = r$.

Then One Body is at Rest.
$$\frac{V(B-\frac{n}{m}b)}{B+b} = R$$
, and $\frac{BV(x+\frac{n}{m})}{B+b} = r$.

*ATTOX.—Assume elements of preceding case.

$$\frac{1}{2} \times 30$$
 $\frac{20-15}{20-15} = 3.0685$ feet, and $\frac{20+3}{20+3}$

100 C 1 C 1

LIGHT.

T is similar to Heat in many of its qualities, being emitted in frays, and subject to same laws of reflection.

of two kinds, Natural and Artificial; one proceeding from Sunurs, the other from heated bodies.

s shine in dark only at a temperature from 600° to 700°, and in t at 1000°.

usity of Light is inversely as square of distance from luminous

city of Light of Sun is 185 000 miles per second.

lard of Intensity or of comparison of light between different methods lination is a Sperm Candle "short 6," burning 120 grains per hour.

Candles.

ermaceti candle .85 of a inch in diameter consumes an inch in length ar.

Decomposition of Light.

	Maximum		Contrasts.		Combinations.				
•	Ray.	Primary.	Second'y.	Tertiary.	Primary.	Secondary.	Tertiary.		
•	Chemical. Electrical.	Blue.	=	Brown.	Blue} Yellow.} Blue}	Green}	Dark. Green.		
	,	Yellow.	Green.	Green.	Red}	Orange. } Green }	Gray.		
	Heat.	Red.	Orange. Purple.	Broken. Green.		Purple. } Orange. }	Brown.		

lors of spectrum, when combined, are white.

sumption and Comparative Intensity of Light of Candles.

CANDLE.	No. in a	Diameter.	Length.	Consumption per Hour.	Light comp'd with Carcel.
		Inch.	Ins.	Grains.	
	3	.875	12 15	} 135	.09
ceti	3 4	.9 .8	15 13.5 8.5	} 156	.09
	3	.84 I	12.5	}	l
	3	.8	15 13.75	} ≈4 :	

Compared with 1000 Cube Feet of Gas.

:•	Gas=1.	Con- sump- tion.	Light.	Con- sumption for equal Light.	CANDLE.	Gas=1.	Con- sump- tion.	
	.098	Lbs. 3.5 3.9	Lbs. 35.5 41.1	103	Adamantine		١ -	

ustion of oil in an ordinary lamp, a straight or horizontaeconomy over one irregularly cut.

Relative Intensity, Consumption, Illumination, and Cost of various Modes of Illumination.

Oil at 11 cents, Tallow at 14 cents, Wax at 52 cents, and Stearine at 32 cents.

1b. 100 cube feet coal gas at 14 cents, and 100 cube feet of oil gas at 52 cents.

ILLUMINATOR.	Illumination. Carcel Lamp = 100.	Actual Cost per Hour.	Cost for equal Inten- sity.	ILLUMINATOR.	Illumination. Carcel Lamp = 100.	Actual Cost per Hour,	の事品を
Carcel Lamp Lamp with in- verted reserv'r, Astral Lamp Wax Candle 6 to lb.	100 57.8 48.7 61.6	.87 .89	Per H'r. .87 .99 1.78 6.31	Stearine Candle 5 to lb. Tallow 6 6 Sperm 6 6 Coal Gas	66.6 54 67.5	Cents. .59 .25 .89 1.22 1.25	胡晓玩子

1000 cube feet of 13-candle coal gas is equal to 7.5 gallons sperm oil, 52.9 lbs 2and 44.6 lbs. sperm candles.

Candles, Lamps, Fluids, and Gas.

Comparison of several Varieties of Candles, Lamps, and Fluids, with Coal* 6at duced from Reports of Com. of Franklin Institute, and of A. Frye, M.D.

CANDLE.	Intensity of Light.†	Light at Equal Costs,	Cost com- pared with Gas for Equal Light,	CANDLE.	Intensity of Light 4	Light at Equal Costs.	Cost conti-
Diaphane Spermaceti, short 6's. Tallow, short 6's. single wick	.7 .8 .58	·5 ·54 .85	15.1 16.2 7.5	Tallow, short 6's, double wick} Wax, short 6's Palm oil	.8	1 .61 .77	7 14 10

*City of Philadelphia. † Compared with a fish-tail jet of Edinburgh gas, containing 12 per of condensable matter and consuming x cube foot per hour.

LAMP AND FLUID.	Intensity of Light.	Light at Equal Cost.	Time of Burning 1 Pint of Oil.	LAMP AND FLUID.	Inten- sity of Light.	Light Tis at Be Equal 11 Cost. of
Carcel.			Hours.			H
Sperm oil, max'm	2.15	1.8		Gas	1	1 1
" mean.	1.22	1.35		Semi-solar, Sperm oil		.93 6
_ '' min'm	.69	1.2		Solar, Sperm oil		1.55 8
Lard oil	.77	.97	11.3	Camphene	1.75	3.08,9

Loss of Light by Use of Glass Globes.

Clear Glass, 12 per cent. | Half ground, 35 per cent. | Full ground, 40 per c

Refraction.

Relative Index of Refraction—Is. Ratio of sine of angle of incidence to sin angle of refraction, when a ray of light passes from one medium into another.

Absolute Index or Index of Refraction—Is, When a ray passes from a vacuum any medium, the ratio is greater than unity.

Relative index of refraction from any medium, as A, into another, as B, is all equal to absolute index of B, divided by absolute index of A.

Absolute index of air is so small, that it may be neglected when compared liquids or solids; strictly, however, relative index for a ray passing from air it given substance must be multiplied by absolute index for air, in order to oblike index of refraction for the substance.

Mean	Indices of Refraction.
? , r	Glass, fluid 1.58 Humors of eye
1.54 1.34	Glass, fluid

Gas.

rt.—A retort produces about 600 cube feet of gas in 5 hours with a of about 1.5 cwt. of coal, or 2800 cube feet in 24 hours.

stimating number of retorts required, one fourth should be added for inder repairs, etc.

sure with which gas is forced through pipes should seldom exceed 2.5 water at the Works, or leakage will exceed advantages to be obtained icreased pressure.

average mean pressure in street mains is equal to that of I inch of

n pipes are laid at an inclination either above or below horizon, a corwill have to be made in estimating supply, by adding or deducting from initial pressure for every foot of rise or fall in the length of pipe. customary to locate a governor at each change of level of 30 feet.

ninating power of coal-gas varies from 1.6 to 4.4 times that of a tallow 6 to a lb.; consumption being from 1.5 to 2.3 cube feet per hour, and gravity from .42 to .58.

her the flame from a burner greater the intensity of the light, the ffective height being 5 ins.

dard of gas burning is a 15-hole Argand lamp, internal diameter .44 himney 7 ins. in height, and consumption 5 cube feet per hour, giving from ordinary coal-gas of from 10 to 12 candles, with Cannel coal 0 to 24 candles, and with rich coals of Virginia and Pennsylvania of 4 to 16 candles.

hiladelphia, with a fish-tail burner, consuming 4.26 cube feet per hour, lating power was equal to 17.9 candles, and with an Argand burner, ling 5.28 cube feet per hour, illuminating power was 20.4 candles.

which at level of sea would have a Value of 100, would have but 60 of Mexico.

mal lights require 4 cube feet, and external lights about 5 per hour. large or Argand burners are used, from 6 to 10 are required.

rdinary single-jet house burner consumes 5 to 6 cube feet per hour. 11-lamps in city of New York consume 3 cube feet per hour. In some 1 and 5 cube feet are consumed. Fish-tail burners for ordinary coal summe from 4 to 5 cube feet of gas per hour.

the foot of good gas, from a jet .033 inch in diameter and height of of 4 ins., will burn for 65 minutes.

n Gas.-Jet .033, flame 5 ins., 1.25 cube feet per hour.

fiers.—Wet purifiers require 1 bushel of lime mixed with 48 bushels er for 10000 cube feet of gas. purifiers require 1 bushel of lime to 10000 cube feet of gas, and 1 cial foot for every 400 cube feet of gas.

isity of Light with Equal Volumes of Gas from different Burners.

Equal to Spermaceti Candle burning 120 Grains per Hour.

URNERS.			ure in er Hot	Cube	BURNERS. Expendien.
	<u> </u>	_2	3	4	\ <u>ı</u>
t, r foot	2.6		-	-	Argand, 16 holes\.35
No. 3	3.5	4	4.2	_	Argand as holes\.3
,,	, ,	4. I	4.3	4.5	Argand, 28 holes\.3

Volume of Gas obtained from a Ton of Coal, Resi

Material.	Cube Feet.	Material.	Cube Feet.	Material.
Boghead Cannel Wigan Cannel	15 426	Cumberland English, mean	11 000	Pittsburgh Resin
Cannel	8 960 15 000	Newcastle		Scotch
Cape Breton, "Cow Bay,"	_	Oil and Grease Pictou and Sidney Pine wood	22000	Virginia

1 Chaldron Newcastle coal, 3136 lbs., will furnish 8600 cube feet c a specific gravity of .4, 1454 lbs. coke, 14.1 gallons tar, and 15 galk moniacal liquor.

Australian coal is superior to Welsh in producing of gas.

Wigan Cannel, 1 ton, has produced coke, 1326 lbs.; gas, 338 lb 250 lbs.; loss, 326,lbs.

Peat, 1 lb. will produce gas for a light of one hour.

Fuel, required for a retort 18 lbs. per 100 lbs. of coal.

In distilling 56 lbs. of coal, volume of gas produced in cube feel distillation was effected in 3 hours was 41.3, in 7, 37.5, in 20, 33.5, 25, 31.7.

Flow of Gas in Pipes.

Flow of Gas is determined by same rules as govern that of flow of Pressure applied is indicated and estimated in inches of water, usually .5 to 1 inch.

Volumes of gases of like specific gravities discharged in equal time horizontal pipe, under same pressure and for different lengths, are in as square roots of lengths.

Velocity of gases of different specific gravities, under like pressure, versely as square roots of their gravities.

By experiment, 30 000 cube feet of gas, specific gravity of .42, we charged in an hour through a main 6 ins, in diameter and 22.5 feet in 1

Loss of volume of discharge by friction, in a pipe 6 ins. in diameter mile in length, is estimated at 95 per cent.

Diameter and Length of Gas-pipes to transmit g Volumes of Gas to Branch-pipes. (Dr. Urc.)

Volume per Hour.	Diameter.	Length.	Volume per Hour.	Diameter.	Length.	Volume per Hour.	Diameter.	L
Cube Feet.	Ins.	Feet.	Cube Feet.	Ins.	Feet.	Cube Feet.	Ins.	
50	1 -4	100	1000	3.16	1000	2000	7	1
250	r	200	1500	3.87	1000	6000	7.75	:
500	1.97	600	2000	5.32	2000	6000	9.21	١:
700	1 2.65	1000	2000	6.33	4000 1	8000	8.95	1

Regulation of Diameter and Extreme Length of I ing, and Number of Burners permitted.

Diameter	Length.	Capacity of Meters.	Burners.	Diameter of Tubing.	Length.	Capacity of Bu Meters.
		Light. 3 5	No. 9 15 30	Ins75 1 2.25		

iperature of Gases.—Combustion of a cube foot of common gas will 50 lbs. of water 1°.

Services for Lamps.

Length from Main.	Diameter of Pipe.	Lamps.	Length from Main.	Diameter of Pipe.	Lamps.	Length from Main.	Diameter of Pipe.
Feet.	Ins.	No.	Feet.	Ins.	No.	Feet.	Ins.
40	·375	10	100	.75	25	180	1.5
40	-5	15	130	I	30	200	1.75
50	.625	20	150	1.25	!!		

tmes of Gas Discharged per Hour under a Pressure of Half an Inch of Water.

Specific Gravity .42.

of	Volume.	Diam. of Opening.	Volume.	Diam. of Opening.	Volume.	Diam. of Opening.	Volume.
	Cube Feet.	Ins.	Cube Feet.	lns.	Cube Feet.	Ins.	Cube Feet.
	80	-75	723	1.125	1625	1.5	2 885
	321	1	1287	1.25	2010	5	46 150

Compute Volume of Gas Discharged through a Pipe.

 $\sqrt{\frac{d^3 h}{l}} = V$, and .063 $5\sqrt{\frac{V^2 G l}{h}} = d$. d representing diameter of pipe, and it of water in ins., denoting pressure upon gas, l length of pipe in yards, G: gravity of gas, and V volume in cube feet per hour.

ay be assumed for ordinary computation at .42, and h .5 to r inch. STRATION.—Assume diameter of pipe r inch, pressure r .68 ins., and length p 1 yard.

$$1000 \times \sqrt{\frac{1 \times 1.68}{.42 \times 1}} = 1000 \times \sqrt{\frac{1.68}{.42}} = 2000 \text{ cube feet,}$$
and $.063 \times 5 \sqrt{\frac{4000000 \times .42 \times 1}{1.68}} = 5 \sqrt{\frac{1.680000}{1.68}} = 1.05 \text{ ins.}$

z. -- For tables deduced by above formulas see Molesworth, 1878, page 226.

nensions of Mains, with Weight of One Length.

ter in ins		6	8	1 9	10	14	18	20
ı in feet		9	9	9	9	9 _	9	9
t in lbs		.375	5	5	480°5	868	6.75	75
t III IUS	200	224	400	1454	409	; 000	1310	1404

GAS ENGINES.

he Lenoir engine, the best proportions of air and gas are, for common volumes of air to 1 of gas, and for cannel gas, 11 of air to 1 of gas. : time of explosion is about the 27th part of a second.

engine, having a cylinder 4.625 ins. in diameter and 8.75 ins. stroke of , making 185 revolutions per minute, develops a half horse-power.

Distribution of Heat Generated in the Cylinder. (M. Tresca.)

Per cent.	Per cent.
	Losses27
of combustion 69	

ce efficiency as determined by the brake = 4 per cent.

Atmospheric Gas Engine.

le-acting cylinder 6 ins. in diameter, making 81 strokes per m' i H, and the gas consumed per minute for cylinder 20 cube fecube feet. (M. Tresca.)

LIMES, CEMENTS, MORTARS, AND CONCRETES.

Essentially from a Treatise by Brig.-Gen'l Q. A. Gillmore, U.S.A.

Lime.

Calcination of marble or any pure limestone produces lime (quid

Finest calcarcous minerals are rhombohedral prisms of calcares, the transparent double-reflecting Iceland spar, and white or state

w marble.

Property of hardening under water, or when excluded from air, or read upon a paste of lime, is effected by presence of foreign and an arrest as silicum, alumina, iron, etc.—when their aggregate presents to it of whole.

Limes are classed; r. Common or Fat limes, which do not set in very poor or Mengre, mixed with sand, which does not alter its configurable Lime, containing 8 to 12 per cent. of silica, alumina, it is set showly in water. 4. Hydraulic, containing 12 to 20 per cent. of silica, alumina in ingredients, sets in water in 6 or 8 days. 5. Eminently Hydraulic containing 20 to 30 per cent. of similar ingredients, sets in water in 16 or 8 days. 5. Eminently Hydraulic Cement, containing 30 to 50 per cent. of arch. sets in minutes, and attains the hardness of stone in a few months. 7. Not a minutes, and attains the hardness of stone in a few months. 7. Not a minutes, and attains the hardness of stone in a few months. 7. Not a minutes, and attains the hardness of stone in a few months. 7. Not a minutes, and attains the hardness of stone in a few months. 7. Not a minutes, and attains the hardness of stone in a few months. 7. Not a minutes, and attains the hardness of stone in a few months. 7. Not a minutes, and attains the hardness of stone in a few months. 7. Not a minutes and attains the hardness of stone in a few months. 7. Not a minutes and attains the hardness of stone in a few months. 7. Not a minutes and attains the hardness of stone in a few months. 7. Not a minutes and a minu

Indications of Linestones. They dissolve wholly or partly in walls

with laisk effervescence, and are nearly insoluble in water.

Rich Lines are fully dissolved in water frequently renewed, and a remain a long time without hardening; they also increase greatly a sume, from a to 3.5 times their original bulks, and will not harden with action of air. They are rendered Hydrondic by admixture of particular trans.

Rich, fut, or courses Lines usually contain less than to per cent disparities.

Hydraulic Lineatones are those which contain iron and clay, so as a about them to produce coments which become solid when under water

Pure Linux have all the defects of rich lines, and increase but a reliable, the power lines are invariably basis of the most rapidly-and most dutable concents and mortars, and they are also the which have the property, when in combination with silica, etc., of make water, and are therefore applicable for admixture of hydranic rice or workers. Allke to rich lines, they will not harden if in a smooth under water or in wet soil, or if excluded from contact with the maker water or in wet soil, or if excluded from contact with the maker water or in the soil gos. They should be employed for mortar only in mpossitionable to precore common or hydranic lines or coment, in which it is recommended to reduce them to possible by grindings.

Hydronile files are those which realify harden under water. The valuable or embourly dysfronile set from the all to the 4th day after the sion; at 4nd of a month they become hard and insoluble, and at onto months they are ougable of being worked like the larrel, natural from the absorb loss water than pure limes, and only increase in building to a 5 times their original volume.

A they class his Thursday are bloom. By broadly Country, and Street, in Deposit, many the Distance Deposit, and the A

iferior grades, or *moderately hydraulic*, require a period of from 15 D days' immersion, and continue to harden for a period of 6 months. esistance of hydraulic limes increase if sand is mixed in proportion D to 180 per cent. of the part in volume; from thence it decreases.

Vicat declares that lime is rendered hydraulic by admixture with it of from 40 per cent. of clay and silica, and that a lime is obtained which does not, and which quickly sets under water.

rtificial Hydraulic Limes do not attain, even under favorable circumes, the same degree of hardness and power of resistance to compression utural limes of same class.

ose-grained and densest limestones furnish best limes.

ydraulic limes lose or depreciate in value by exposure to the air.

istes of fat limes shrink, in hardening, to such a degree that they canbe used as mortar without a large proportion of sand.

enes is a species of ochreous sand. It is found in France. On account e large proportion of clay it contains, sometimes as great as .7, it can be e into a paste with water without any addition of lime; hence it is somes used in that state for walls constructed en pisé, as well as for mortar. ed with rich lime it gives excellent mortar, which attains great hardness r water, and possesses great hydraulic energy.

nzzuolana is of volcanic origin. It comprises Trass or Terras, the Arènes, so fi the ochreous earths, and the sand of certain graywackes, granites, sts, and basalts; their principal elements are silica and alumina, the ter preponderating. None contain more than 10 per cent. of lime.

hen finely pulverized, without previous calcination, and combined with paste t lime in proportions suitable to supply its deficiency in that element, it pessive the period of the pession

ick or Tile Dust combined with rich lime possesses hydraulic energy.

cass or Terras is a blue-black trap, and is also of volcanic origin. It ires to be pulverized and combined with rich lime to render it fit for and to develop any of its hydraulic properties.

teral Gillmore designates the varieties of hydraulic limes as follows: If, after slaked, they harden under water in periods varying from 15 to 20 days after rsion, slightly hydraulic; if from 6 to 8 days, hydraulic; and if from 1 to 4 eminently hydraulic.

lyerized silica burned with rich lime produces hydraulic lime of exit quality. Hydraulic limes are injured by air-slaking in a ratio varylirectly with their hydraulicity, and they deteriorate by age.

r foundations in a damp soil or exposure, hydraulic limes must be exrely employed.

draulic Lime of Teil is a silicious hydraulic lime; it is slow in setting, ring a period of from 18 to 24 hours.

Cements.

draulic Cements contain a larger proportion of silica, aluming han any of preceding varieties of lime; they do not slake they are superior to the very best of hydraulic limes, as the der water at a moderate temperature (65°) in from 3 require as many hours. They do not shrink in hardenial lent mortar without any admixture of sand.

When exposed to air, they absorb moisture and carbonic acid gas and as rapidly deteriorated thereby.

Roman Cement is made from a lime of a peculiar character, found in Bas land and France, derived from argillo-calcareous kidney-shaped stones tone Septaria.

It is about .33 strength of Portland, and is not adapted for use with smile Rosendale Cement is from Rosendale, New York.

Portland Cement is made in England and France. It requires less wall (cement 1, water .29) than Roman cement, sets slowly, and can be res with additional water after an interval of 12 or even 24 hours from its mixture.

Property of setting slow may be an obstacle to use of some designations of the cement, as the Boulogne, when required for localities having to content as immediate causes of destruction, as in sea constructions, having to be executed der water and between tides. On the other hand, a quick-setting cement is difficult of use; it requires special workmen and an active supervision. Assetting cement, however, like natural Portland, possesses the advantage managed by ordinary workmen, and it can also be remixed with additional after an interval of 12 or even 24 hours from its first mixing.

Conclusions derived from Mr. Grant's Experiments.

- r. Portland cement improves by age, if kept from moisture.
- 2. Longer it is in setting, stronger it will be,
- 3. At end of a year, I of cement to I sand is about .75 strength of neat es
- 1 to 2, .5 strength; 1 to 3, .33; 1 to 4, .25; 1 to 5, .16.
 4. Cleaner and sharper the sand, greater the strength.
- 5. Strong cement is heavy; blue gray, slow-setting. Quick-setting has gen-too much clay in its composition—is brownish and weak.
 - 6. Less water used in mixing cement the better.
- 7. Bricks, stones, etc., used with cement should be well wetted before use 8. Cement setting under still water will be stronger than if kept dry.

 9. Bricks of neat Portland cement in a few months are equal to Blue 15.
- Bramley-Fall stone, or Yorkshire landings. 10. Bricks of 1 cement to 4 or 5 of sand are equal to picked stock bricks.
 11. When concrete is being used, a current of water will wash away the

Artificial Cement is made by a combination of slaked lime with unbe clay in suitable proportions.

Artificial Pozzuolana is made by subjecting clay to a slight calcinate Salt water has a tendency to decompose cements of all kinds, and strength is considerably impaired by their mixture with it.

Mortar.

Lime or Cement paste is the cementing substance in mortar, and its portion should be determined by the rule that Volume of cementing should be somewhat in excess of volume of voids or spaces in sand or or material to be united, the excess being added to meet imperfect manipular of the mass.

Hydraulic Mortar, if re-pulverized and formed into a paste after once set, immediately loses a great portion of its hydraulicity, and desse to the level of moderate hydraulic limes.

The retarding influence of sea-water upon initial hydraulic induranot very great, if the cement is mixed with fresh water. The street mortars, however, is considerably impaired by being mixed with seet

Pointing Mortar is composed of a paste of finely-ground cement and sharp siliceous sand, in such proportions that the volume of comes slightly in excess of the volume of voids or spaces in the sand. To nd varies from 2.5 to 2.75 that of the cement paste, or by weight, I of nt powder to 3 to 3.33 of sand. The mixture should be made under er, and in small quantities.

mortars are much improved by being worked or manipulated; and as rich gain somewhat by exposure to the air, it is advisable to work mortar in quantities, and then render it fit for use by a second manipulation. its lime will take a larger proportion of sand than brown lime.

of salt-water in the composition of mortar injures adhesion of it.

hen a small quantity of water is mixed with slaked lime, a stiff paste ide, which, upon becoming dry or hard, has but very little tenacity, but, eing mixed with sand or like substance, it acquires the properties of a nt or mortar.

oportion of sand that can be incorporated with mortar depends partly the degree of fineness of the sand itself, and partly upon character of ime. For rich limes, the resistance is increased if the sand is in proons varying from 50 to 240 per cent. of the paste in volume; beyond proportion the resistance decreases.

me, r, clean sharp sand, 2.5. An excess of water in slaking the lime s the mortar, which remains light and porous, or shrinks in drying; an is of sand destroys the cohesive properties of the mass.

s indispensable that the sand should be sharp and clean.

me Mortar.—8 parts cement, 3 parts lime, and 31 parts of sand; or 1 cement, 325 lbs., .5 cask of lime, 120 lbs., and 14.7 cube feet of sand=cube feet of mortar.

ick Mortar.—8 parts cement, 3 parts lime, and 27 parts of sand; or 1 cement, 325 lbs., .5 cask of lime, 120 lbs., and 12 cube feet of sand—1be feet of mortar.

com Mortar.—Lime 1 part, sand 2 parts, and a small quantity of hair. ne and sand, and cement and sand, lessen about .33 in volume when mixed her.

lcareous Mortar, being composed of one or more of the varieties of lime ment, natural or artificial, mixed with sand, will vary in its properties quality of the lime or cement used, the nature and quality of sand, and od of manipulation.

Turkish Plaster, or Hydraulic Cement.

o lbs. fresh lime reduced to powder, 10 quarts linseed-oil, and 1 to 2 se cotton. Manipulate the lime, gradually mixing the oil and cotton, in oden vessel, until mixture becomes of the consistency of bread-dough.

, and when required for use, mix with linseed-oil to the consistency of paste, hen lay on in coats. Water-pipes of clay or metal, joined or coated with it, the effect of humidity for very long periods.

Stucco.

ucco or Exterior Plaster is term given to a certain morior plastering; it is sometimes manipulated to respect, and consists of 1 volume of cement powder to 2 vol India, to water for mixing the plaster is added 1 lb. (3 Imperial gallons of water, for the first coat; and fo

ed for grated

Ib. sugar to 2 gallons of water.

dered slaked lime and Smith's forge scales, mixed w

oportions, make a moderate hydraulic mortar, which reviously coated with boiled oil.

Plaster should be applied in two coats laid on in one operation, first cost betthinner than second. Second coat is applied upon first while latter is yet sof. The two coats should form one of about 1.5 inches in thickness, and when it

ished it should be kept moist for several days.

When the cement is of too dark a color for desired shade, it may be mixed with the sand in whole or in part, or lime paste may be added until its volume equitat of the cement paste.

Khorassar, or Turkish Mortar.

Used for the construction of buildings requiring great solidity, .33 pm dered brick and tiles, .66 fine sifted lime. Mix with water to required casistency, and lay between the courses of brick or stones.

Mortars.

Mortars used for inside plastering are termed Coarse, Fine, Gauge or had finish, and Stucco.

Plastering.—I bushel, or 1.25 cube feet of cement, mortar, etc., will covery square yards .75 inch thick. 75 volumes are required upon brick work for 70 miles.

When full time for hardening cannot be allowed, substitute from 15 to xp cent. of the lime by an equal proportion of hydraulic cement.

For the second or brown coat the proportion of hair may be slightly diminished

Coarse Stuff. — Common lime mortar, as made for brick mass, with a small quantity of hair; or by volumes, lime paste (30 lbs. lime) part, sand 2 to 2.25 parts, hair .16 part.

Fine Stuff (lime putty).—Lump lime slaked to a paste with a meterate volume of water, and afterwards diluted to consistency of cream, so then to harden by evaporation to required consistency for working.

In this state it is used for a slipped coat, and when mixed with sand or plasts!

Paris, it is used for finishing coat.

Gauge, or Hard Finish, is composed of from 3 to 4 volume stuff and 1 volume plaster of Paris, in proportions regulated by rapidly quired in hardening; for cornices, etc., proportions are equal volumes each, fine stuff and plaster.

Scratch Coat.—First of three coats when laid upon laths, and is from 35

One-coat Work.—Plastering in one coat without finish, either on masser or laths—that is, rendered or laid.

Two-coat Work.—Plastering in two coats is done either in a laid of red set, or in a screed coat and set.

"sed coat is also termed a Floated coat. Laid first coat in two ss is resorted to in common work instead of screeding, when finished so not required to be exact to a straight-edge. It is laid in a coat of .5 inch in thickness.

-d coat, except for very common work, should be hand-floated. ess and tenacity of piastering is very much increased by hand-floating.

ds are strips of mortar 6 to 8 inches in width, and of required this first coat, applied to the angles of a room, or edge of a wall and purata intervals of 3 to 5 feet over surface to be covered. When these is an entire that to withstand pressure of a straight-edge, the intervals of the screeds are filled out thush with them.

moothing off of a brown coat with a small quada per cent. of white sand, so as to make a small

Concrete or Beton

nixture of mortar (generally hydraulic) with coarse materials, as pebbles, stones, shells, broken bricks, etc. Two or more of these als, or all of them, may be used together. As lime or cement paste is nenting substance in mortar, so is mortar the cementing substance in e or beton. The original distinction between cement and beton was, ter possessed hydraulic energy, while former did not.

autic. — 1.5 parts unslaked hydraulic lime, 1.5 parts sand, 1 part and 2 parts of a hard broken limestone.

nass contracts one fifth in volume. Fat lime may be mixed with concrete, serious prejudice to its hydraulic energy.

Various Compositions of Concrete.

aulic.—308 lbs. cement = 3.65 to 3.7 cube feet of stiff paste. 12 cube loose sand = 9.75 cube feet of dense.

Superstructure.—11.75 cube feet of mortar as above, and 16 cube feet e fragments.

Wall.—Boston Harbor.—Hydraulic.—308 lbs. cement, 8 cube feet of nd 30 cube feet of gravel. Whole producing 32.3 cube feet.

rstructure.— 308 lbs. cement, 30 lbs. lime, and 14.6 cube feet dense Whole producing 12.825 cube feet.

a is made of clay or earth rammed in layers of from 3 to 4 ins. in depth. In limates, it is necessary to protect the external surface of a wall constructed manner with a coat of mortar.

Asphalt Composition.

neral pitch 1 part, bitumen 11, powdered stone, or wood ashes, 7 parts, hes 2 parts, clay 3 parts, and sand 1 part, mixed with a little oil, makes a e and durable cement, suitable for external use.

ing.—8 lbs. of composition will cover z sup. foot, .75 inch thick.

ultum 55 lbs. and gravel 28.7 lbs. will cover an area of 10.75 sq. feet.

stic. — Pulverized burnt clay 93 parts, litharge, ground very fine, 7 parts, with a sufficient quantity of pure linseed oil.

ceous sand 14, pulverized calcareous stone 14, litharge 2, and linseed oil 4 $^{\prime}$ weight.

owders to be well dried in an oven, and the surface upon which it is to be must be saturated with oil.

r Roads.—Bitumen 16.875 parts, asphaltum 225 parts, oil of resin 6.25 parts, d 135 parts. Thickness, from 1.25 to 1.375 ins.

cial Mastic. - Composition of 1 square yard .q inch thick;

ral Efflorescence.—White alkaline efflorescence upon the surface walls laid in mortar, of which natural hydraulic lime or cement in the backs of mixed with animal fat in the proportion of .025 of its weight

allization of these salts within the pores of bricks, into whisorbed from the mortar, causes disintegration.

mper is term for all coloring mixed with water and size.

into the upper beds and internal joints of masonry.

wee is the pulpy and gelatinous fluid, of a milky hue, tha

nent upon its being deposited in water. It is produced to

sea water than in fresh; it sets very imperfectly, and a essen the strength of the concrete.

Slaking.

Slaked Lime is a hydrate of lime, and it absorbs a mean of a.g time be volume, and 2.25 times its weight of water.

Lime (quicklime) must be slaked before it can be used as a matrix is

mortar.

Ordinary method of slaking is by submitting the lime to its full purion of water (previously known or attained by trial) in order to reduce the consistency of a thick pulp. The volume of water required for this prose will vary with different limes, and will range from 2.5 to 3 when that of the lime, and it is imperative that it should all be poured upon the nearly at one time as to be in advance of the elevation of the temperature consequent upon its reduction.

This process, when the water used is in an excessive quantity, is the drowning," and when the volume of lime has increased by the absorbed

of water it is termed its "growth."

If too much water is used, the binding qualities of the lime is injurial its semi-fluidity; and if too little, it is injurious to add after the reduction the lime has commenced, as it reduces its temperature and renders it grant lar and lumpy.

While lime is in progress of slaking it should be covered with a target or canvas (a layer of sand will suffice), in order to concentrate its

heat.

The essential point in slaking is to attain the complete reduction of slime, and the greater the hydraulic energy of a lime, the more difficult is comes to effect it.

Whitewash or Grouting.—When lime is required for a whitewash of grouting, it should be thoroughly "drowned," and then run off into tight sels and closed.

sel in water for a very brief period, and withdrawing it before reductions to the interest of the sel in water for a very brief period, and withdrawing it before reduction commences. The lime is then transferred to casks or like suitable receptain and tightly enclosed, until it is reduced to a fine powder, in which conditions to the selection of air, it may be preserved for several most without essential deterioration.

Spontaneous or Air Slaking.—When lime is not wholly secured from posure to the air, it absorbs moisture therefrom, slakes, and falls into a posterior.

Limes and Cements.—A Cask of Lime = 240 lbs., will make from 138.15 cube feet of stiff paste.

A Cask of Cement = 300 * lbs., will make from 3.7 to 3.75 cube find stiff paste.

A Cask of Portland Cement = 4 bushels or 5 cube feet = 420 lbs.

A Cask of Roman Cement = 3 bushels or 3.75 cube feet = 364 lbs.

.5 inch. .75 inch.

A Bushel of cement will cover..... 2.25 yards 1.5 yards
From experiments of General Totten, it appeared that

r volume of lime slaked with .33 its volume of water gave 2.27 volumes of reference

One cube foot of dry cement, mixed with .33 cube foot of water, will make .61 .635 cube foot of stiff paste.

"ime should be slaked at least one day before it is incorporated with when they are thoroughly mixed, the mortar should be been or mass, for use as required.

Mortar, Cement, &co. (Molesworth.)

fortar.-1 of lime to 2 to 3 of sharp river sand.

r, r of lime to 2 sand and I blacksmith's ashes, or coarsely ground coke.

oncrete.- 1 of lime to 4 of gravel and 2 of sand.

Iydraulic Mortar.—1 of blue lias lime to 2.5 of burnt clay, ground toner.

 h_1 , r of blue lias lime to 6 of sharp sand, r of pozzuolana and r of calcined istone.

leton.—1 of hydraulic mortar to 1.5 of angular stones.

*lement.—I of sand to I of cement.—If great tenacity is required, the cent should be used without sand.

Portland Cement

composed of clayey mud and chalk ground together, and afterwards caled at a high temperature—after calcining it is ground to a fine powder.

Strength of Mortars, Cements, and Concretes. Deduced from Experiments of Vicat, Paisley, Treussart, and Voisin.

Tensile

Weight or Power required to Tear asunder One Sq. Inch.

Cement Mortar. (42 days old.)

1	1	Proportion of Sand to r of Cement.										
	0	1	2	3	4	5	6	7	8	9	10	
an	284 142	284	199	166 92	142 79	128	116 57	106	99 35	92 25	95 lbs.	

Brick, Stone, and Granite Masonry. (320 days old.) Experiments of General Gillmore, U. S. A.

ement on Bricks.	Cement or	ı Granite.
Lba.	Lbs.	Lbs.
, average 30.8	Pure 27.5	Sand :)
· ·		Cement 4 7.9
· I)	Sand I	Water 1
ent 1 15.7	Сещене т ј	Cement 2 20.5
I 1 2.3	Sand 1 } 12.6	Water .42
ent 2 \ 12.3	Cement 2)	Cement 1 37.25
LI. } 6.8	Sand 1	Water .33
ent 3	Cement 3 9.2	Cement 1 29.15
•		
Reld and Baxter. Lbs.		Lbs.
tre cement 68	Pure cement 87	Newark and Rosendale.
ment 4 } 68	Cement 4)	Cement 1)
nd r	Sauci)	Sand 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ment 8) 80	Newark Lime and Cement	Pure, without)
ftings 1	Co.	mortar, mean (· · · · 45
ment 1) 82	Pure rement 93	\
[tings 1]	Coment 1	\ Mort
ment 1	Sand 2 40	Putte bases r
ings 2 · · · · · 74	Newark and Rosendale.	/ " " " 1
nce Cement Co.	Pure cement 7	5 / 11 11 11
· cement 87	Cement 1)	~ \
" … 54	Sand r	(6 cement pa

596 LIMES, CEMENTS, MORTARS, AND CONCRETES.

Pure Cement.

	675 462 1152	Portland, in sea-water, 45 days "English, 6 months Roman "Septaria," 1 year "masonry, 5 months Rosendale, 9 months
Newark and Rosendale	339	Lawrence Cement Co

Transverse.

Reduced to a uniform Measure of One Inch Square and One Foot in La Supported at Both Ends.

Experiments of General Gillmore.

Formed in molds under a pressure of 32 lbs. per sq. inch, applied until a had set. Exposed to moisture for 24 hours, and then immersed in sea-water.

Prisms 2 by 2 by 8 ins. between supports.

Reduced by Formula $\frac{2}{3} \frac{l W}{4 b d^2} - \frac{a}{2} = C$. C coefficient of rupture, and a portion of prism l.

Cement.			Mortar.		
MATERIAL.	Age.	Pure.	MATERIAL.	Age	Coment 4.
Tomas Plans	Days.	Lbs.	Dentland Con atternate	Days.	Lhe
James River. Thick cream			Portland, Eng., stiff paste		13
Thin paste	320	3.9 5.8	11 16 16 16	100	65
Stiff paste		6.9	Cumberland, Md	100000	11.8
Rosendale "Hoffman."	59	0.9	Akron, N. Y	320	8.8
Thin paste	320	0	James River, Va	320	8.6
Stiff paste	320	8.9	Pulverized and re-)	les o	100
"Delafield and Baxter."	3.7	100	mixed after set	3	3.0
Thin paste	320	8.5	Fresh	320	0
Stiff paste	320	12	Kingston and Rosendale.	320	7.6
English.	The same	110	High Falls, Ul-)	1	100
Portland, pure	320	16	ster Co., N.Y.	95	100
Stiff paste	320	13	Fresh water to a stiff \	OF.	
Cumberland, Md., pure	320	13.2	paste	95	
High Falls, Ul-	95	8.4	Sea-water to a stiff paste	95	-
ster Co., N. Y.	1	100	Lawrence Cement Co.	200	hard.
Complete calcination	05	4.2	Fresb	320	10.2

Crushing.

Cements, Stones, etc. (Crystal Palace, London.) Reduced to a uniform Measure of One Sq. Inch.

MATERIAL.	Destructive Pressure.	MATERIAL.	Desire Press
Portl'd cem't, area r, height r. " cement } " sand} " stone	Lbs. 1680 1244 1144	Portland cement r sand 4 cement r sand 7 Roman cement, pure	1 年 年 日

General Deductions.

r. Particles of unground cement exceeding .oraș of an inch în diametră allowed in cement paste without sand, to extent of 50 per cent of extent to its proporties, while a corresponding proportion of sant strongth of mortar about 40 per cent.

een these unground particles exist in cement paste to extent of 66 per cent. e, adhesive strength is diminished about 28 per cent. For a corresponding ion of sand the diminution is 68 per cent.

dition of siftings exercises a less injurious effect upon the cohesive than upon esive property of cement. The converse is true when sand, instead of sift-used.

all mixtures with siftings, even when the latter amounted to 66 per cent. of cohesive strength of mortars exceeded their adhesion to bricks. Same repear to exist when siftings are replaced by sand, until volume of the latter 20 per cent. of whole, after which adhesion exceeds cohesion.

age of 320 days (and perhaps considerably within that period) cohesive h of pure cement mortar exceeds that of Croton front bricks. The converse when the mortar contains 50 per cent. or more of sand.

nen cement is to be used without sand, as may be the case when grouting is 1 to, or when old walls are to be repaired by injections of thin paste, there is natage in having it ground to an impalpable powder.

r economy it is customary to add lime to cement mortars, and this may be a considerable extent when in positions where hydraulic activity and hare not required in an eminent degree.

mming of concrete under water is held to be injurious.

rtars of common lime, when suitably made, set in a very few days, and with pidity that there is no need of awaiting its hardening in the prosecution of

- e Clay.—The fusibility of clay arises from the presence of impurities, ilime, iron, and manganese. These may be removed by steeping the clay in riatic acid, then washing it with water. Crucibles from common clay may e in this manner.
- s by General Gillmore, U. S. A.—Recent experiments have developed that merican cements will sustain, without any great loss of strength, a dose of stee equal to that of the cement paste, while a dose equal to 5 to 75 the volcement paste may be safely added to any Rosendale cement without proany essential deterioration of the quality of the mortar. Neither is the lic activity of the mortars so far impaired by this limited addition of lime is to render them unsuited for concrete under water, or other submarine y. By the use of lime is secured the double advantages of slow setting and 1y.

s by General Totten, U. S. A.—240 lbs. lime = r cask, will make from 7.8 to be feet of stiff paste.

pe foot of dry cement powder, measured when loose, will measure .78 to .8 pot when packed, as at a manufactory.

composition of Concretes, at Toulon, Marseilles, Cherbourg, Dover, Alderney, to Treatise of General Gillmore, pp. 253-256.

MASONRY.

Brickwork.

id is an arrangement of bricks or stones, laid aside of and above other, so that the vertical joint between any two bricks or stones out coincide with that between any other two.

is termed "breaking joints."

der is a brick or stone laid with an end to face of wall.

tcher is a brick or stone laid parallel to face of wall.

der Course or Bond is a course or courses of headers alone.

tcher Course or Bond is a course or courses of stretche

rs are pieces of bricks inserted in alternate courses, in

by preventing two headers from being exactly over ish Bond is laying of headers and stretchers in alter

Flemish Bond is laying of headers and stretchers alternately in each com-Gauged Work.—Bricks cut and rubbed to exact shape required.

String Course is a horizontal and projecting course around a building

Corbelling is projection of some courses of a wall beyond its face in car to support wall-plates or floor-beams, etc. Wood Bricks, Pallets, Pluos, or Slips are pieces of wood laid in a walk

order the better to secure any woodwork that it may be necessary to fall to it.

Reveals are portions of sides of an opening in a wall in front of the recom for a door or window frame.

Brick Ashlar.—Walls with ashlar-facing backed with brick.

Grouting is pouring liquid mortar over last course for the purpose of

Larrying is filling in of interior of thick walls or piers, after exterior in are laid, with a bed of soft mortar and floating bricks or spawls in it.

Rendering (Eng.) is application of first coat on masonry, Laying # or two coats on laths, and "Pricking up" if three-coat work on laths.

Bricks should be well wetted before use. Sea sand should not be used with composition of mortar, as it contains salt and its grains are round, being week

attrition, and consequently having less tenacity than sharp-edged grains.

A common burned brick will absorb 1 pint or about one sixth of its we water to saturate it. The volume of water a brick will absorb is inversely a its quality.

A good brick should not absorb to exceed .o67 of its weight of water.

The courses of brick walls should be of same height in front and rear, wi front is laid with stretchers and thin joints or not.

In ashlar-facing the stones should have a width or depth of bed at least of height of stone.

Min

he

Laz

h lecc

€bric

₹°C

RC I

N OF

•ide

dia pa Me3 6

Diri

the fo

EXIVE

16. i bri

ion and

Hard bricks set in cement and 3 months set will sustain a pressure of p

per sq. foot. The compression to which a stone should be subjected should not exceed.

crushing resistance. The extreme stress upon any part of the masonry of St. Peter's at Rome is puted at 15.5 tons per sq. foot; of St. Paul's, London, 14 tons; and of piers d

York and Brooklyn Bridge, 5.5 tons. The absorption of water in 24 hours by granites, sandstones, and limestones durable description is 1, 8, and 12 per cent. of volume of the stone.

Color of Bricks depends upon composition of the clay, the molding and

perature of burning, and volume of air admitted to kiln.

Pure clay free of iron will burn white, and mixing of chalk with the cay produce a like effect.

Presence of iron produces a tint ranging from red and orange to light according to proportion of iron.

A large proportion of oxide of iron, mixed with a pure clay, will produce a large red, and when there is from 8 to 10 per cent., and the brick is exposed to an inheat, the oxide fuses and produces a dark blue or purple, and with a small with a of manganese and an increased proportion of the oxide the color is darkened to a black.

Small volume of lime and iron produces a cream color, an increase of image duces red, and an increase of lime brown.

Magnesia in presence of iron produces yellow.

Clay containing alkalies and burned at a high temperature produces a bluid of

For other notes on materials of masonry, their manipulation, etc., see "I Cements, Mortars, and Concretes," pp. 588-597.

Pointing.—Before pointing, the joints should be reamed, and in deal they must be open to 2 of an inch, then thoroughly saturated with intained in a condition that they will neither absorb water from the Masonry should not be allowed to dry rapidly also anv to it. ii driven in by the aid of a calking iron and hamme

masonry the same general directions are to be de

irgiliaccous, Siliccous, or Calcarcous, according to its composition revent excessive shrinking, and to save cost of lime or cement. Or ot acted upon by lime, its presence in mortar being mechanical, and limes and cements it weakens the mortar. Rich lime adheres better of sand than to its own particles; hence the sand strengthens the

tive that sand should be perfectly clean, freed from all impurities, p or angular structure. Within moderate limits size of grain does trength of mortar; preference, however, should be given to coarse, and is preferable to siliceous.

er sand are suitable for plastering, but are deficient in the sharpness ortar, from the attrition they are exposed to.

will not soil the hands when rubbed upon them, and the presence of ected by its taste.

, Clinker, and Cinder, when properly crushed and used, make good sand.

n the mixing of concrete, slake lime first, mix with cement, and then; etc., deposit in layers of 6 ins., and hammer down.

Bricks.

in dimensions by various manufacturers, and different degrees of their burning, render a table of exact dimensions of different and classes of bricks altogether impracticable.

onent, however, of the ranges of their dimensions, following given:

.	Ins.	DESCRIPTION.	Ins.
ont	8.25 × 4.125 × 2.375	Maine Milwaukee North River	7.5 × 3.375 × 2.375 8.5 × 4.125 × 2.375 8 × 3.5 × 2.25
"	8.5 X 4 X 2.25 8.25 X 3.625 X 2.375	Ordinary	{7.75 × 3.625 × 2.25 {8 × 4.125 × 2.5
ock	9 X 4.5 X 2.5 8.75 X 4.25 X 2.5	Stourbridge }	9.125 × 4.625 × 2.375
٠	6.25 × 3 × 1.5	Amer. do., N. Y.	8.875×4.5 × 2.625

ence of the variations in dimensions of bricks, and thickness of mortar or cement in which they may be laid, it is also impractiany rule of general application for volume of laid brick-work. eccessary, therefore, when it is required to ascertain the volume masonry, to proceed as follows:

ute Volume of Bricks, and Number in a Cube Foot of Masonry.

o face dimensions of particular bricks used, add one half thicknortar or cement in which they are laid, and compute the area; of wall by number of bricks of which it is composed; multiply quotient thus obtained, and product will give volume of the ick and its mortar in ins.

28 by this volume, and quotient will give number of bricks in a

Width of a wall is to be 12.75 ins., and front of it later that the nature of an inch in depth; how many brick in ing in a cube foot?

a front brick, 8.25×2.375 ins. face.

$$\frac{1}{25 \times 2 \div 2} = 8.25 + .25 = 8.5$$
 = length of bric.
 $\frac{1}{25 \times 2} = 2.375 + .25 = 2.625 =$ width of brich.
 $\frac{1}{25 \times 2} = 2.3125$ ins. = area of face; 12.75 ÷ 3 (res. = 4.25 ins.)

 $[\]times 4.25 = 94.83$ cube ins.; and $1728 \div 94.83 = 18.22$

Sign

THE SHAREST

on related the description of the second of

Scalings of all court of bottom - one fet and

Time Bridge

Fire-day commiss When, Standay Philes of Bren, and a small proof Lines Magnesia, Planes, and Swin. Its fire-resisting properties in growth a proof the relative properties of these constituents and characteristic.

A good day deadl be of a uniform structure, a marse open grain to the hand, and the from any alkaline earths.

The Houricides day is likely and is composed as follows:

Newcastle day is very similar.

Thickness of Brick Walls for Warehouses in

Height in Flest	320	-	80	70	60	50	40	3
Length Farmilled	-	-	-	1	-		-	12
Thickness in Inc	34	38	30	36	26	35 .	21.5	27
Length in Feet	700	700	So	45	59	70	60	9
Thickness in Ins	30	30	25	22.5	25.5	31.5	17-5	16
Length in Feet	53	fa	45	300	35	40	30	40
Thickness in Ins	25	25	22.5	27-5	17-5	17-5	13	33

Stone Masonry.

Masonry is classed as Ashhar or Rubble,

Ashlar is composed of blocks of stone dressed square and la

Coursed Ashlar consists of blocks of same height throughout each

Rubble Ashlar

Fig. 2.

Is ashlar faced stone with rubble backing.

Fig. 1.—Coursed, with chamfered and rusticated quoins and plinth.

PERSONAL PROPERTY OF THE PROPE

Fig. 2.—Coursed, with rock I draft edges.

Fig. 3.

Fig. 3. - Coursed, with rock face.

Rubble Masonry

aposed of small stones irregular in form, and rough.

Fig. 5.—Irregular Coursed.

7. - Ranged Random, level, and n courses.

Block Coursed .- Large blocks urses (regular or irregular), Beds oints roughly dressed.

Ranged Random .- Squared a laid in level and broken

Fig. 6.—Random Coursed.

Fig. 8.—Random, level, and broken.

Fig. 10.

Fig. 10.-Coursed and Ranged Random.

Fig. 12.

Fig. 12. Coursed Random.—Stones laid in courses at intervals of from 12 to 18 ins. in height.

Dry Rubble

vall laid without cement or mortar.

Dry Rubble .- Without mor-. 13. cement.

Fig. 14 Rustic or Rag. — Stones of irregular form, and dressed to make close joints.

Fig. 16.

Fig. 16. Lacea bands of stone or give stability.

Uncoursed or Random. 15. Uncoursed or Kanaom. — and Joints undressed, projections off, and laid at random. In-

-Rustic or Rag work is frequently laid in mortar.

Terra Cotta.

Terra Cotta in blocks should not exceed 4 cube feet in volume. properly burned, it is unaffected by the atmosphere or by fumes of an

Arches and Walls.

Springing .- Points, Fig. 15, on each side, from which arch springs.

Crown.-Highest point of arch.

Haunches .- Sides of arch, from springing

half-way up to crown.

Spandrel.—Space between extrados, a horizontal line drawn through crown and a vertical line through upper end of skewback.

Skewback is upper surface of an abutment or pier from which an arch springs,

and its face is on a line radiating from centre of arch.

Abulment is outer body that supports arch and from which it sprin Pier is the intermediate support for two or more arches.

Jambs are sides of abutments or piers. Voussoirs are the blocks forming an arch.

Key-stone is centre voussoir at crown.

Spon is horizontal distance from springing to springing of arch. Rise .- Height from springing line to under side of arch at key-stor Length is that of springing line or span.

Ring-course of a wall or arch is parallel to face of it, and in direct

String and Collar courses are projecting ashlar dressed broad st right angles to face of a wall or arch, and in direction of its length.

Comber is a slight rise of an arch as .125 to .25 of an inch per

Quoin is the external angle or course of a wall.

Plinth is a projecting base to a wall.

Footing is projecting course at bottom of a wall, in order to distri weight over an increased area. Its width should be double that of wall, diminishing in regular offsets .5 width of their height.

Blocking Course. - A course placed on top of a cornice.

Purapet is a low wall, over edge of a roof or terrace. Extrados. - Back or upper and outer surface of an arch.

Intrados or Soffit is underside of lower surface of arch or an openia Groined is when arches intersect one another.

Invert .- An inverted arch, an arch with its intrados below axis or ing line.

Ashlar masonry requires .125 of its volume of mortar. Rubble, tvards stone and .25 cube yard mortar for each cube yard.

Rubble mosoury in cement, 160 feet in height, will stand and bear lbs. per sq. inch.

Stones should be laid with their strata horizontal.

When "through" or "thorough bonds" are not introduced, headers everlap one another from opposite sides, known as dogs' tooth bond. Aggregate surface of ends of bond stones should be from .125 W

area of each face of wall.

Weak stones, as sandstone and granular limestone, should not length over 3 times their depth. Strong or hard stones may have from 4 to 5 times their depth.

Gallets are small and sharp pieces of stone stuck into mortar joints, i which case the work is termed galleted.

Snapped work is when stones are split and roughly squared.

Quarry or Rock-faced.—Quarried stones with their faces undressed.

Pitch-faced.—Stones on which the arris or angles of their face, with the sides and ends, is defined by a chisel, in order to show a right-lined edge.

Drafted or Drafted Margin is a narrow border chiselled around edges c Exaces of a block of rough stone.

Diamond-faced is when planes are either sunk or raised from each edge and meet in the centre.

Squared Stones.—Stones roughly squared and dressed.

Rubble.—Unsquared stones, as taken from a quarry or elsewhere, in their atural form, or their extreme projections removed.

Cut Stones.—Stones squared and with dressed sides and ends.

Dressed Stones.

The following are the modes of dressing the faces of ashlar in engineering Rough Pointed.—Rough dressing with a pick or heavy point.

Fine Pointed.—Rough dressing, followed by dressing with a fine point.

Crandalled.—Fine pointing in right lines with a hammer, the face o hich is close serried with sharp edges.

Cross Crandalled.—When the operation of crandalling is right angled.

Hammered.—The surface of stone may be finished or smooth dressed by lening Azed or Bushed; the former is a finish by a heavy hammer alike to randall, the latter is a final finish by a heavy hammer with a face serries with sharp points at right angles.

Thickness of Brick Walls for Warehouses. (Molesworth.)

Length.	Height.	Thickness.	Length.	Height.	Thickness.	Length.	Height.	Thickness
Feet.	Feet.	Ins.	Feet. Unlimit'd.	Feet.	Ins. 34	Feet.	Feet.	Ins.
do.	30	17.5	60	40	17.5	30	40	13
do.	40	21.5	70	50	21.5	40	50	17.5
do.	50	26	50	60	21.5	35	60	17.5
do.	60	26	45	70	21.5	30	70	17.5
do.	70	26	60	8o	26	45	80	21.5
do.	80	30	70	90	30	60	90	26
do.	00	24	70	700	20	55	100	26

For drawings and a description of stone-dressing tools, see a paner by J. R. Cross. W. E. Merrill, and E. B. Van Winkle, "A. S. Civil Engineer Transm" "1877

Walls not exceeding 30 feet in height, upper story walls may b

From 16 feet below top of wall to base of it, it should not be ledened by two right lines drawn from each side of wall at its be

Thickness not to be less in any case than one fourteenth of hen

Laths.

Laths are 1.25 to 1.5 ins. by 4 feet in length, are usually se.

Plastering.

Volumes required for Various Thickness.

••	8q	uare Yar	ds.	MATERIAL.	Square Yark.		
MATERIAL.	-5	-75	1	MATERIAL.	-5	-75 1	
Cube Feet.	Ins.	Ins.	Ins.	Cube Feet.	Ins.	Ins. in	
Cement 1		1.5	1.15	Lime 1, sand 2,		rds, sup'l m	
Cement 1, sand 1	, ,	3	2.25	hair 3.75		and set @	
Cement 1, sand 2	0.75	4.5	1 3⋅33	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DLICK	or 70 👊 🕮	

Estimate of Materials and Labor for 100 Sq. Yards d

Materials and Labor.	Three Coats Hard Finish.	Two Coats Slipped.	Materials and Labor.	Three Coats Hard Finish.	Two Cub Slippel
Lime	.5 " 2000. 4 bushels.	2000. 3 bushels.	White sand Nails Masons Laborer Cartage	13 lbs. 4 days. 3 "	13 lbs. 3-5 days. 2 "

Rough Cast is washed gravel mixed with hot hydraulic lime of water and applied in a semi-fluid condition.

Arches and Abutments.

beth

The

d Gr

Peter:

Cc

krje

quili

Al

n] r

41

뼆

To Compute Depth of Keystone of Circular or Elliptic
Arch.

$$\frac{\sqrt{R+s+2}}{4}+.25=d$$
. R representing radius, s span, and d depth, all is fell

This is for a rise of about .25 of span; when it is reduced, as to .125, add .5 indeed of .25.

ILLUSTRATION.—Arch of Washington aqueduct at "Cabin John" has a span of set, a rise of 57.25, and a radius of 134.25; what should be depth of its keystons!

$$\frac{\sqrt{134\cdot25+220\div2}}{4}+.25=\frac{15.63}{4}+.25=4.16$$
 feet. Depth is 4.16 feet.

Viaducts of several arches increase results as determined above by sing .125 to .15 to depth.

For arches of 2d class materials and work, and for spans exceeding feet, add .125 to depth of keystone, and for good rubble or brick-wal add .25.

Note.—It is customary to make the keystones of elliptic arches of greater depth than that obtained by above formula. Trautwine, however, who is high authors in this case, declares it is unnecessary.

To Compute Radius of an Arch, Circular or Ellips

$$\left(\frac{s}{2}\right)^2 + r^2 \div 2 r = R$$
. r representing rise.

Railway Arches.

For Spans between 25 and 70 feet. Rise .2 of span. Depth of arch .055 of spanses of abutments .2 to .25 of span, and of pier .14 to .16 of span.

Abutments.

eight does not exceed 1.5 times base. $R \div 5 + .1r + 2 =$ thickness a grade (Transtovine.)

To Compute Depth of Arch. (Hurst.)

 $c \sqrt{R} = D$. c = Stone (block) .3. Brick = .4. Rubble = .45. in there are a series of arches, put .3 = .35, .4 = .45, and .45 = .5.

nimum Thickness of Abutments for Bridge and similar Arches of 120°. (Hurst.)

en depth of crown does not exceed 3 feet. Computed from formula, $\frac{1}{1+\left(\frac{3}{2}\frac{R}{H}\right)^2}-\frac{3}{2}\frac{R}{H}=T$. H representing height of abutment to springing in feet.

Hei	ght of Al	butment	to Spring	ing.	Radius	Heig	ht of At	utment	to Spring	ging.
5	7.5	10	20	30	of Arch.	5	7-5	10	20	30
Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
3.7	4.2	4.3	4.6	4.7	12	5.6	6.4	6.9	7.6	7.9
3.9	4.4	4.6	4.9	5	15	6	7	7.5	8.4	8.8
4.2	4.6	4.8	5. T	5.2	20	6.5	7.7	8.4	9.6	10
4.5	4.7	5.2	5.6	5-7	25	6.9	8,2	9.1	10.5	11.1
4.7	5.2	5.5	6	6.1	30	7.2	8.7	9-7	11.4	12
4.9	5-5	5.8	6.4	6.5	35	7-4	9.1	10.2	11.8	12.9
5.1	5.8	6.1	6.7	6.9	40	7.6	9.4	10.6	12.8	13.6
5-3	6	6.4	7.1	7.3	45	7.8	9.7	11	13.4	14.3
5.5	6.2.	6.6	7-3	7.6	50	7.9	10	11.4	14	15

a.—Abutments in Table are assumed to be without counterforts or wing-A sufficient margin of safety must be allowed beyond dimensions here

verte for a road having double tracks are not necessarily twice the for a single track.

other and full notes, tables, etc., see Trautwine's Pocket Book, pp. 693-710.

MECHANICAL CENTRES.

re are four Mechanical centres of force in bodies, namely, Centre avity, Centre of Gyration, Centre of Oscillation, and Centre of ssion.

Centre of Gravity.

THE OF GRAVITY of a body, or any system of bodies rigidly conlitogether, is point about which, if suspended, all parts will be in prium.

ody or system of bodies, suspended at a point out of centre of gravity, st with its centre of gravity vertical under point of suspension.

ody or system of bodies, suspended at a point out of centre of gravity, accessively suspended at two or more such points, the vertical lines h these points of suspension will intersect each other at centre of y of body or bodies.

tre of gravity of a body is not always within the **bod**entres of gravity of two bodies, as B C, be connect of B and C from their common centre of gravity, σ_i bodies. Thus, B: C:: C c: c B.

o Ascertain Centre of Gravity of any Plane Figure M

end the figure by any point near its edge, and marl umb-line hung from that point; then suspend it f. d again mark direction of plumb-line. Then cents ill be at point of intersection of the two marks of plu.

Centre of gravity of parallel-sided objects may readily be found in the way. For instance, to ascertain centre of gravity of an arch of a hilly draw elevation upon paper to a scale, cut out figure, and proceed with it above directed, in order to find position of centre of gravity in devailed the model. In actual arch, centre of gravity will have same relative positions in paper model.

In regular figures or solids, centre of gravity is same as their geometric centres.

Line

Circular Arc. $\frac{r c}{l} =$ distance from centre, r representing radius, c chort, all length of arc.

Surfaces.

Square, Rectangle, Rhombus, Rhomboid, Gnomon, Cube, Regular Phys. Circle, Sphere, Spheroid or Ellipsoid, Spheroidal Zone, Cylinder, Gran Ring, Cylindrical Ring, Link, Helix, Plain Spiral, Spindle, all Regular Fy ures, and Middle Frusta of all Spheroids, Spindles, etc.

The centre of gravity of the surfaces of these figures is in their gentle cal centre.

Triangle.—On a line drawn from any angle to the middle of opposits at two thirds of the distance from angle.

Trapezium.—Draw two diagonals, and ascertain centres of gravity of dio of four triangles thus formed; join each opposite pair of these centres, and is at intersection of the lines.

Trapezoid. $\left(\frac{B+2}{B+b}\right) \times \frac{m}{3} = \text{distance from B on a line joining middle of parallel sides B b, m representing middle line.}$

Circular Arc. $\frac{c r}{r} = distance$ from centre of circle.

Sector of a Circle. .4244 r = distance from centre of circle, c representing distance from centre.

Semi-semicircle. .4244 r= distance from both base and height and at their i

Segment of a Circle. $\frac{c^3}{12a}$ = distance from centre, a representing area of square

Sector of a Circular Ring. $\frac{4}{3} \times \frac{\sin ... 5}{\text{arc}} \angle \times \frac{r^3 - r'^3}{r^2 - r'^2} = \text{distance from control}$ arcs, r and r' representing the radii.

ILLUSTRATION.—Radii of surfaces of a dome are 5 and 3.5 feet, and angle (3) centre = 130°.

$$\frac{4}{3} \times \frac{\sin .65^{\circ}}{\arcsin 0} \times \frac{125 - 42.875}{25 - 12.25} = \frac{4}{3} \times \frac{.9063}{2.2689} \times \frac{82.125}{6.8067 \times 12.75} = 3.43$$

here, Spherical Segment, and Spherical Zone, At centre of this

Zone.—Ascertain centres of gravity of trapezoid and segment zone; draw a line (equally dividing zone) perpendicular in nect centres of segments by a line cutting perpendicular in

e of gravity of figure will be on perpendicular toward we's proportionate distance of difference between centres of sea and line connecting centres of segments, as area of we to frapezoid.

m and Wedge.—When end is a Parallelogram, in their geometrical; when the end is a Triangle, Trapezium, etc., it is in middle of its at same distance from base, as that of triangle or trapezoid of which section.

abola in its axis = .6 distance from vertex.

moid.—At same distance from its base as that of the trapezoid or ium, which is a section of it.

e.—On a line connecting centres of gravity of arcs at a proportionale point to respective areas of arcs.

Co-ordinates.
$$\left(r+r'-\frac{r}{r+r'}\right)\frac{1}{3}=s$$
, and $\left(\frac{2r'+r}{r+r'}\right)\frac{h}{3}=a$.

Solids.

e. Parallelopipedon, Hexahedron, Octahedron, Dodecahedron, Icosahe-Cylinder, Sphere, Right Spherical Zone, Spheroid or Ellipsoid, Cylin-Ring, Link, Spindle, all Regular Bodies, and Middle Frusta of all ids and Spindles, etc. Centre of gravity of these figures is in their rical centre.

thedron.—In common centre of centres of gravity of the triangles made by a through centre of each side of the figures.

and Pyramid. .25 of line joining vertex and centre of gravity of base = disrom base.

tum of a Cone or Pyramid. $\frac{(r+r')^2+2\ r^2}{(r+r')^2-r\ r'}\times \frac{1}{4}h = \text{distance from centre}$ r. end, r and r', in a cone representing radii, and in a pyramid sides, and h

 Frustum of a Cone, Pyramid. Frustum of a Pyramid, and Ungula. we distance from base as in that of triangle, purallelogram, or semicirich is a right section of them.

isphere. .375 r = distance from centre.

rical Segment. 3.1416 $vs^2\left(r-\frac{vs}{2}\right)^2\div v$ = distance from centre, vs repreversed sine, and v volume of segment. $\left(\frac{8\ r-3\ h}{12\ r-4\ h}\right)\times h$ = distance from

rical Sector. .75 (r-.5h) = distance from centre. $\frac{2r+3h}{8}$ = distance ertex.

als.—Plane, in its geometrical centre. Conical, at a distance from the 25 of line joining vertex and centre of gravity of base.

tum of a Circular Spindle. $\frac{r^2-r'^2}{2(h-D.z)}=$ distance from centre of spindle, senting distance between two bases, D distance of centre of spindle from centre e, and z generating arc, expressed in units of radius.

ent of a Circular Spindle. $\frac{r^2}{2(h-D.z)}$ = distance from centre of spindle.

-spheroids.—Prolate. .375 a.—Oblate. .375 a = distance fr -spheroid or Ellipsoid and its Segment.—See Haswell's M 1 282.

z of Spheroids or Ellipsoids. Prolate. .75 $\frac{h(2\alpha^2-h^2)}{3\alpha^2-h^2}$

spheroid, a representing semi-transverse diameter in a prigate in an oblate frustum

Centre of gravity of way. For instance, to draw elevation upon par above directed, in order the model. In actual all as in paper model.

In regular figures or

centres.

Circular Arc. $\frac{rc}{l} = dl$ length of arc.

Square, Rectangle, Rh Circle, Sphere, Spheroid Ring, Cylindrical Ring, I ures, and Middle Frusta

The centre of gravity o cal centre.

Triangle.-On a line dr at two thirds of the distan

Trapezium .- Draw two of four triangles thus form is at intersection of the line

Trapezoid. $\left(\frac{B+z}{B+b}\right) \times$ parallel sides B b, m represen-

Circular Arc. $\frac{c r}{l} = distant$

Sector of a Circle. .4244 r =

Semicircle .4244 r = distan Semi-semicircle. .4244 r = a section.

Segment of a Circle.

Sector of a Circular Ring.

arcs, r and r' representing the re-ILLUSTRATION .- Radii of sur

centre = 130°.

 $\frac{4}{3} \times \frac{\sin.65^{\circ}}{\text{arc } 130^{\circ}} \times \frac{125 - 42^{\circ}}{25 - 12^{\circ}}$

Hemisphere, Spherical Segre heights.

Circular Zone .- Ascertain comprising zone; draw a line chords; connect centres of so chords.

Then centre of gravity of fi-of trapezoid and line connection bears to area of trapezoid.

Centre of Gyration.

CENTRE OF GYRATION is that point in any revolving body or system bodies in which, if the whole quantity of matter were collected, the papular velocity would be the same; that is, the Momentum of the body system of bodies is centred at this point, and the position of it is a pan proportional between the centres of Oscillation and Gravity.

If a straight bar of uniform dimensions was struck at this point, the oke would communicate the same angular velocity to the bar as if the ole bar was collected at that point.

The Angular velocity of a body or system of bodies is the motion of a line unecting any point and the centre or axis of motion: it is the same in all rts of the same revolving body.

In different unconnected bodies, each oscillating about a common centre, ir angular velocity is as the velocity directly, and as the distance from energy inversely. Hence, if their velocities are as their radii, or distance in the axis of motion, their angular velocities will be equal.

When a body revolves on an axis, and a force is impressed upon it suffint to cause it to revolve on another, it will revolve on neither, but on a e in the plane of the axes, dividing the angle which they contain; so that is sine of each part will be in the inverse ratio of the angular velocities the which the bodies would have revolved about these axes separately.

Weight of revolving body, multiplied into height due to the velocity with ich centre of gyration moves in its circle, is energy of body, or mechanipower, which must be communicated to it to give it that motion.

Distance of centre of gyration from axis or motion is termed the Radius Syration; and the moment of inertia is equal to product of square of this of gyration and mass or weight of body.

I'le moment of inertia of a revolving body is ascertained exactly by astaining the moments of inertia of every particle separately, and adding I'l together; or, approximately, by adding together the moments of the lall parts arrived at by a subdivision of the body.

Compute Moment of Inertia of a Revolving Body.

Rule.—Divide body into small parts of regular figure. Multiply mass weight of each part by square of distance of its centre of gravity from is of revolution. The sum of products is moment of inertia of body.

Note.—The value of moment of inertia obtained by this process will be more act, the smaller and more numerous the parts into which body is divided.

O Compute Radius of Gyration of a Revolving Body about its Axis of Revolution.

Rule.—Divide moment or inertia of body by its mass, or its weight, and ware root of quotient is length of radius of gyration.

Note.—When the parts into which body is divided are equal, radius of gyration and be determined by taking mean of all squares of distances of parts from axis revolution, and taking square root of their sum.

Or, $\sqrt{R^2 + r^2} \div z = G$. R and r representing radii. Example.—A straight rod of uniform diameter and 4 feet in length, weighs 4 lbs; at is its inertia, and where is its radius or centre of gyration?

Each foot of length weighs 1 lb., and if divided into 4 parts, centre of arrathment is respectively .5, 1.5, 2.5, and 3.5 feet. Hence,

$$1 \times .5^2 = .25$$

 $1 \times 1.5^2 = .25$
 $1 \times 1.5^2 = 2.25$
 $1 \times 2.5^2 = 6.25$
 $1 \times 2.5^2 = 6.25$
 $1 \times 2.5^2 = 6.25$
 $1 \times 3.5^2 = 12.25$
 $1 \times 3.5^2 = 12.25$

Following are distances of centres of gyration from centre of my various revolving bodies:

Straight, uniform Rod or Cylinder or thin Rectangular Plate revolving a end; length × .5773, and revolving about their centre; length × .2886.

The general expression is, when revolving at any point of its length.

$$\sqrt{\left(\frac{l^3+l'^2}{3(l+l')}\right)}$$
. l and l' representing length of the two arms.

Circular Plane, revolving on its centre; radius of circle × .7071; Circle a Wheel or Disc of uniform Thickness, revolving about one of its diamete axis; radius × .5.

Solid Cylinder, revolving about its axis; radius × .7071.

Solid Sphere, revolving about its diameter as an axis; radius × .6325.

Thin, hollow Sphere, revolving about one of its diameters as an axis × .8164. Surface of sphere .8615 r.

Sphere and Solid Cylinder (vertical), at a distance from axis of revo $\sqrt{l^2+.4\,r^2}$ for sphere, and $\sqrt{l^2+.5\,r^2}$ for cylinder, l representing length q tion to centre of sphere and cylinder.

Cone, revolving about its axis; radius of base \times .5447; revolving about tex = $\sqrt{12 h^2 + 3 r^2 \div 20}$, h representing height, and r radius of base; I about its base = $\sqrt{2 h^2 + 3 r^2 \div 20}$.

Circular Ring, as Rim of a Fly-wheel or Hollow Cylinder, revolving a diameter $= \sqrt{R^2 + r^2} \div 2$, R representing radius of periphery, and r of ins of ring.

Fly-wheel = $\sqrt{\frac{6 \, \mathbb{W} \, (\mathbb{R}^2 + r^2) + w \, (4 \, r^2 + l^2)}{12 \, (\mathbb{W} + w)}}$, \mathbb{W} and w representing w rim and of arms and hub, and l length of arms from axis of wheel.

Section of Rim. $\sqrt{\frac{4 d^2 + c^2}{12} + r^2 + r} d$. d representing depth and c p of rim.

Parallelopiped, revolving about one end, distance from end = $\sqrt{\frac{4^{l^2+b}}{12}}$

ILLUSTRATION.—In a solid sphere revolving about its diameter, diamet a feet, distance of centre of gyration is $12 \times .6325 = 7.59$ ins.

To Compute Elements of Gyration.

$$\frac{\mathbf{G} \stackrel{\mathbf{W}}{\mathbf{v}}}{\mathbf{r} t g} = \mathbf{P}; \qquad \frac{\mathbf{P} r t g}{\mathbf{W} v} = \mathbf{G}; \qquad \frac{\mathbf{G} \stackrel{\mathbf{W}}{\mathbf{v}}}{\mathbf{P} t g} = r; \qquad \frac{\mathbf{P} r t g}{\mathbf{G} v} = \mathbf{W}; \qquad \frac{\mathbf{G}}{\mathbf{P}}$$

 $\frac{\mathbf{Prtg}}{\mathbf{GW}} = \mathbf{v}$. G representing distance of centre of gyration from axis of

W weight of body, t time power acts in seconds, v velocity in feet per second by revolving body in that time, and r distance of point of application of por axis of body, as length of crank, etc.

ILLUSTRATION I. —What is distance of centre of gyration in a fly-whee 224 lbs., length of crank 7 feet, time of rotation 10 seconds, weight of wh lbs., and velocity of it 8 feet per second?

$$\frac{7 \times 10 \times 32.166}{5000 \times 8} = \frac{504373}{42800} = 11.78$$
 feet.

ght of a fly-wheel making 12 revolutions per minified at 2 feet from its axis 84 lbs., time of row re of gyration of wheel 3.5 feet?

$$est = velocity. Then \frac{84 \times 3 \times 6 \times 32.766}{3.5 \times 5.0265}$$

s Body is a Compound one. Rule.—Multiply weight of several bodies by squares of their distances in feet from centre of motion, and divide sum of their products by weight of entire mass; root of quotient will give distance of centre of gyration from otion or rotation.

-If two weights, of 3 and 4 lbs. respectively, be laid upon a lever (which med to be without weight) at the respective distances of 1 and 2 feet, ance of centre of gyration from centre of motion (the fulcrum)?

$$=3$$
; $4 \times 2^2 = 16$; $\frac{3+16}{3+4} = \frac{19}{7} = 2.71$, and $\sqrt{2.71} = 1.64$ feet.

igle weight of 7 lbs., placed at 1.64 feet from centre of motion, and resame time, would have same momentum as the two weights in their

ntre of Gravity is given. Rule.—Multiply distance of centre of from centre or point of suspension, by distance of centre of gravme point, and square root of product will give distance of centre

—Centre of oscillation of a body is 9 feet, and that of its gravity 4 feet of rotation or point of suspension; at what distance from this point is ration 9

$$0 \times 4 = 36$$
, and $\sqrt{36} = 6$ feet.

mpute Centre of Gyration of a Water-wheel. Multiply severally twice weight of rim, as composed of buckets, etc., and twice that of arms and that of water in the buckets el is in operation) by square of radius of wheel in feet; divide ice sum of these several weights, and square root of quotient will ce in feet.

-In a wheel 20 feet in diameter, weight of rim is 3 tons, weight of , and weight of water in buckets i ton; what is distance of centre of

$$= 3 \cos \times 10^{2} \times 2 = 600 \qquad 3 + 2 + 1 \times 2 = 12 \text{ sum of weights.}$$

im centre of wheel?

= 3 tons × 10² × 2 = 600
= 2 tons × 10² × 2 = 400
= 1 ton × 10² × 100
Hence
$$\sqrt{\frac{1100}{12}} = \sqrt{91.67} = 9.57$$
 feet.

FORMULAS.—P representing power, H horses' power, F force applied

FORMULAS.—P representing power, H horses' power, F force applied to in lbs., M mass of revolving body in lbs., r radius upon which F acts in ence from axis of motion to centre of gyration in feel, t time force is aponds, n number of revolutions in time t, x angular velocity, or number of per minute at end of time t, and $G = \frac{32.166 \text{ F } r^2}{\text{M d}^2}$.

rion.—Rim of a fly-wheel weighing 7000 lbs. is its centre of gyration, and what force mu f motion to give it an angular velocity of 130 F? how many revolutions will it make in 40 &.

$$\frac{130^2 \times 7000 \times 6.14^2}{134100 \times 40} = \frac{4459862680}{5364000} = 829.7 \text{ i}$$

gyration =
$$\sqrt{\frac{6.5^2 + 5.75^2}{2}}$$
 = 6.14 feet. Then F =

793.7 lbs., and
$$\frac{2.56 \times 40^2 \times 2793.7 \times 2}{7000 \times 6.14^2} = 86.67$$
 reso.

 $\frac{7}{3}$ ÷ W × g = distance from axis. Or, square radius of gyration of body ide by distance of centre of gravity from axis of suspension.

[PLE.—Where is centre of oscillation in a rod g feet in length from its point ension, and weighing g lbs. ?

$$\frac{9}{2} = 40.5 = \text{product of weight and its centre of gravity}; \quad \frac{9 \times 9^2}{3} = 243 = \text{quo-}$$
product of weight of body and square of its length $\div 3$; $\frac{243}{3} = 6$ feet.

n Point of Suspension is not at End of Rod. Rule.—To cube of se of point of suspension from top of rod or bar, add cube of its distrom lower end, and multiply sum by 2.

de product by three times difference of squares of these distances, and it is distance of point of oscillation from point of suspension.

IPLE.—A homogeneous rod of uniform dimensions, 6 feet in length, is sus-1.5 feet from its upper end; what is distance of point of oscillation from suspension?

$$6-1.5=45$$
. $\frac{2(4.5^3+1.5^3)}{3(4.5^2-1.5^2)}=\frac{189}{54}=3.5$ feet.

tres of Oscillation and Percussion in Bodies of Various Figures.

Axis of Motion is in Vertex of Figure, and when Oscillation or Motion is Facewise.

t Line, or any figure of uniform shape and density = .66 l. eles Triangle = .75 h. Circle = 1.25 r.

bola = .714 h. Cone = .8 h.

Axis of Motion is in Centre of Body. Wheel = .75 radius.

n Oscillation or Motion is Sidewise. Right Line, or any figure of unihape and density = .66 l. Rectangle, suspended at one angle = .66 of di-

bola, if suspended by its vertex = .714 of axis + .33 parameter; if suspended

dle of its base = .57 of axis + .5 parameter. r of a Circle = $\frac{3 \text{ arc } r}{4 \text{ c}}$, c representing chord of arc, and r radius of base.

$$e = .75 d.$$
 Cone = $\frac{4}{5}$ axis + $\frac{r^2}{5 \text{ axis}}$.

 $re = \frac{2 r^2}{5 (c+r)} + r + c$, c representing length of cord by which it is suspended.

Ascertain Centres of Oscillation and Percussion experimentally.

end body very freely from a fixed point, and make it vibrate in small arcs, number of vibrations it makes in a minute, and let number made in a minrepresented by n; then will distance of centre of oscillation from point of sion be $=\frac{140850}{n^2}=ins$.

length of a pendulum vibrating seconds, or 60 times in a min ins., and lengths of pendulums being reciprocally as the squarestions made in same time, therefore $n^2:60^2:39.125:\frac{60^2\times39.12}{39.125}$

Ah of pendulum which vibrates n times in a minute, or distaion below axis of motion. To Compute Centres of Oscillation or Percussion of System of Particles or Bodies.

Rule.—Multiply weight of each particle or body by square of its distant from point of suspension, and divide sum of their products by sum of weight multiplied by distance of centre of gravity from point of suspension, and quotient will give centre required, measured from point of suspension.

Or,
$$\frac{W d^2 + W' d'^2}{W a + W' a'} = distance$$
 of centre.

EXAMPLE I.—Length of a suspended rod being 20 feet, and weight of a foot had of it equal 100 02. has a ball attached at under end weighing 100 02.; at which for for from point of suspension is centre of percussion?

 $100 \times 20 = 2000 = weight of rod; 2000 \times \frac{20}{2} = 20000 = momentum of rod, or weight, and distance of its centre of gravity; <math>\frac{2000 \times 20^2}{3} = 266666$ force of rod; $1000 \times 20^2 = 400000 = force of ball.$

Then $\frac{266\,666.66 + 400\,000}{20\,000 + 20\,000} = 16.66$ feet.

2.—Assume a rod 12 feet in length, and weighing 2 lbs. for each foot of its length in 2 balls of 3 lbs. each—one fixed 6 feet from the point of suspension, and other at the end of the rod; what is the distance between the points of suspension ?

MECHANICS.

MECHANICS is the science which treats of and investigates effects forces, motion and resistance of material bodies, and of equilibrist it is divided into two parts—Statics and Dynamics.

STATICS treats of equilibrium of forces or bodies at rest. Dramo of forces that produce motion, or bodies in motion,

These bodies are further divided into Mechanics of Solid, Fluid, and Inform bodies; hence the following combinations:

- 1. Statics of Solid Bodies, or Geostatics.
- 2. Dynamics of Solid Bodies, or Geodynamics.
- Statics of Fluids, or Hydrostatics.
- 4. Dynamics of Fluids, or Hydrodynamics.
- 5. Statics of Aeriform Bodies, or Aerostatics.

6. Dynamics of Aeriform Bodies, Pneumatics or Aerodynamics.

Forces are various, and are divided into moving forces or resistance:

Gravity, Heat or Caloric, Inertia,
Muscular, Magnetism, Cohesion,
raticity and Contractility, Percussion, Adhesion,
ral, Expansion, and Explosion

wo forces of equal magnitude applied to or operating parallel and opposite directions, but not in same line of supple, and its force is sum or magnitude of the two equal supple, and its force in a moving bodies, which is about quantity of motion in a moving bodies, which is about ties of two moving bodies are inversely as their quantities of two moving bodies are inversely as their quantities of two moving bodies are inversely as their quantities of two moving bodies are inversely as their quantities of two moving bodies are inversely as their quantities of two moving bodies are inversely as their quantities of two moving bodies are inversely as their quantities of two moving bodies are inversely as their quantities of the two equals.

STATICS.

Composition and Resolution of Forces.

When two forces act upon a body in same or in an opposite direct, effect is same as if only one force acted upon it, being sum or erence of the forces. Hence, when a body is drawn or projected in actions immediately opposite, by two or more unequal forces, it is affected it were drawn or projected by a single force equal to difference between two or more forces, and acting in direction of greater force.

his single force, derived from the combined action of two or more forces, heir Resultant.

'he process by which the resultant of two or more forces, or a single equivalent in its effect to two or more forces, is determined, is termed Composition of Forces, and the inverse operation; or, when combined

cts of two or more forces are equivalent to that of a single given force, process by which they are determined is termed the *Decomposition or Dution of Forces*. Two or more forces which are equivalent to a single a termed *Components*.

Then two forces act on same point their intensities are represented by sides parallelogram, and their combined effect will be equivalent to that of a left force acting on point in direction of diagonal of parallelogram, the saidy of which is proportional to diagonal.

LUSTRATION.—Attach three cords to a fixed point, c. Fig. 1; let ca and cb pass over fixed rollers, and suspend weights A and B therefrom.

Point c will be drawn by the forces A and B in directions ac and bc. Now, in order to ascertain which single force, P, would produce the same effect upon it, set off the distances cm and cn on the cords in the same proportion of length as weights of A and B; that is, so that cm: cn: A: B; then draw parallelogram cmo and and diagonal oc, and it will represent a single force, P, acting in its direction, and having same ratio to weights A or B as it has to sides cm or cn of parallelogram. Consequently, it will produce same effect on point c as combined actions of A and B.

a parallelogram, constructed from lateral forces, and diagonal of which is mean force, is termed a Parallelogram of Forces.

ILLUSTRATION. — Assume a weight, W, Fig. 2, to be suspended from a; then, if any distance, a o, is set off in numerical value upon the vertical line, a W, and the parallelogram, o r as, is completed, as and a r, measured upon the scale, a o, will represent strain upon ac and ae in same proportion that a o bears to weight W.

If several forces act upon same point, and their intensities taken in order propertioned propertioned acting in direction of that one side will be their resultant.

To Resolve a Single Force into a Pair of Forces.—Figs. 3 and 4.

The ends of a cord, Fig. 3, are led over two points, a and b, and in centre of d at c a weight of 4 lbs. is suspended. If distances a c, b c, are each 1 foot, dis-

ply ends of cord to ef, Fig. 4, distance being 22 ins., then the ch 5 lbs; hence one force of 4 lbs. is equal to two of 5 lbs.

Equilibrium of Forces.

Two bodies which act directly against each other in same line are in epilibrium when their quantities of motion are equal; that is, when product mass of one, into velocity with which it moves or tends to move, is equal product of mass of other, into its actual or virtual * velocity.

When the velocities with which bodies are moved are same, their feet are proportional to their masses or quantities of matter. Hence, when am masses are in motion, their forces are proportional to their velocities.

Relative magnitudes and directions of any two forces may be represent by two right lines, which shall bear to each other the relations of the long

and which shall be inclined to each other in an angequal to that made by direction of the forces.

ILLUSTRATION.— Assume a body, W, to weigh 150 lbs. Fresting upon a smooth surface, to be drawn by two forest and b, Fig. 5, = 24 and 30 lbs., which make with each distant angle, $a \le b \le 105^\circ$, in which direction and with the acceleration will motion occur?

 $\angle a \le b = 105^{\circ}$, and $\cos 180^{\circ} - 105^{\circ} = \cos 75^{\circ}$, and $\cos 180^{\circ} - 105^{\circ} = \cos 75^{\circ}$, and

$$P = \sqrt{30^2 + 24^2 - 2 \times 30 \times 24 \cos .75^{\circ}} = \sqrt{900 + 576 - 1440 \cos .75^{\circ}} = \sqrt{1476 - (1440 \times 25882)} = \sqrt{1103.3} = 33.21 \text{ lbs.}$$

The acceleration is $\frac{Pg}{W} = \frac{33.21 \times 32.166}{150} = 7.1215$ feet.

Angle of Repose is greatest inclination of a plane to horizon at which

body will remain in equilibrium upon it.

Hence greatest angle of obliquity of pressure between two planes, over ent with stability, is the angle tangent of which is equal to coefficient friction of the two planes.

Inertia is resistance which a body at rest offers to an external powr!
be put in motion or to change its velocity or direction when in motion.

To Compute Inertia of a Revolving Body.

Divide it into small parts of a regular figure, multiply weight of each by square of its distance of its centre of gravity from axis of revolute and sum of products will give moment of inertia of body.

DYNAMICS.

DYNAMICS is the investigation of the laws of Motion of Solid Boson of Matter, Force, Velocity, Space, and Time.

Mass of a body is the quantity of matter of which it is composed

Force is divided into Motive, Accelerative, or Retardative.

Motive Force, or Momentum, of a body, is the product of its mass its velocity, and is its quantity of motion. This force can, therefore ascertained and compared in any number of bodies when these productives are known.

Accelerative or Retardative Force is that which respects velocity motion only, accelerating or retarding it; and it is denoted by quote of motive force, divided by mass or weight of body. Thus, if a be

^{*} Virtual velocity is the velocity which a body in equilibrium would acquire were the state to be disturbed.

It is compared, because it is not referable to any standard, as a ton, pound, at the a cannon-ball weighing 15 lbs., projected with a velocity of 1500 feet per second, which its momentum, according to the above raths, would be 15 X 1502 = 22 500; toly years is a pressure with which it cannot be compared.

lbs. is impelled by a force of 40 lbs., accelerating force is 8 lbs.; if a force of 40 lbs. act upon a body of 10 lbs., accelerating force lly 4 lbs., or half former, and will produce only half velocity.

ith equal masses, velocities are proportional to their forces.

ith equal forces, velocities are inversely as the masses.

'ith equal velocities, forces are proportional to the masses.

Fork is product of force, velocity, and time.

'otion.—The succession of positions which a body in its motion prosively occupies forms a line which is termed the trajectory, or path ne moving body.

motion is *Uniform* when equal spaces are described by it in equal s, and *Variable* when this equality does not occur. When spaces ribed in equal times increase continuously with the time, a variable on is termed accelerated, when spaces decrease, retarded, and when it spaces are described within certain intervals only, the motion is ied periodic, and intervals periods. Uniform motion is illustrated rogressive motion of hands of a watch; variable in progressive vey of falling and upwardly projected bodies; and periodic by osciln of a pendulum or strokes of a piston of a steam-engine.

Uniform Motion.

EMULAS.
$$fv, \frac{fs}{t}$$
, H 550, and $\frac{W}{t} = P$; $\frac{P}{v}$, $\frac{W}{s}$, and $\frac{H 550}{v} = f$; $\frac{s}{t}$, $\frac{H 550}{f}$, and $\frac{W}{ft} = v$; vt , $\frac{Pt}{f}$, $\frac{W}{f}$, and $\frac{H 550}{f} = s$; $\frac{sf}{P}$, $\frac{s}{v}$, $\frac{W}{fv}$, $\frac{fs}{H 550} = t$; fs , H 550 t , Pt , and $fvt = W$; $\frac{P}{550}$, $\frac{fs}{550}$, $\frac{fs}{550}$, and

H. P representing power in effect, body, or momentum, f force in lbs., v and city and space in feet per second, t time in seconds, H horse-power, and W work of-lbs.

two or more bodies, etc., are compared, two or more corresponding letters, p, p', V, v, v', etc., are employed.

USTRATION I.—Two bodies, one of 20, the other of 10 lbs., are impelled by same entum, say 60. They move uniformly, first for 8 seconds, second for 6; what as spaces described by both?

$$60 \div 20 = 3 = V$$
, and $60 \div 10 = 6 = v$.

an TV= $3 \times 8 = 24 = S$, and $tv=6 \times 6 = 36 = s$, spaces respectively.

If a power of 12 800 effects has a velocity of 10 feet per second, what is its $r = 1280 \div 10 = 1280 \text{ lbs.}$

Uniform Variable Motion.

ace described by a body having uniform variable motion is represented um or difference of velocity, and product of acceleration and time, acing as the motion is accelerated or retarded.

USTRATION I.—A sphere rolling down an inclined plane with an initial velocity feet, acquires in its course an additional velocity at each second of time of 5 what will be its velocity after 3 seconds?

$$25 + 5 \times 3 = 40$$
 feet.

-A locomotive having an initial velocity of 30 feet per second is so retarded a each second it loses 4 feet; what is its velocity after 6 seconds?

$$30 - 4 \times 6 = 6$$
 feet.

Uniform Motion Accelerated.

In this motion, velocity acquired at end of any time whatever is equal to product of accelerating force into time, and space described is equal to product of accelerating force into square of time, or half product of velocity and time of a quiring the velocity.

Spaces described in successive seconds of time are as the odd numbers, 1, 35% q, etc.

Gravity is a constant force, and its effect upon a body falling freely in a retiriline is represented by g, and the motion of such body is uniformly accelerated

The following theorems are applicable to all cases of motion uniformly accepted by any constant force, F:

$$.5 t v = .5 g F t^2 = \frac{v^2}{2 g F} = s.$$

$$\frac{2 s}{t} = g F t = \sqrt{2 g F s} = v.$$

$$\frac{v}{g t} = \frac{2 s}{g t^2} = \frac{v^2}{2 g s} = F.$$

When gravity acts alone, as when a body falls in a vertical line, F is mitted. Thus.

.5
$$g \ t^2 = \frac{v^2}{2g} = s$$
. $g \ t = \sqrt{2} \ g \ s = v$. $\frac{v}{g} = \sqrt{\frac{2}{g}} = t$. $\frac{v}{t} = \frac{2s}{t^2} = \frac{v^2}{2s} = t$.

If, instead of a heavy body falling freely, it be projected vertically upon or downward with a given velocity, v, then $s = t v + .5 g t^2$; an expression which — must be taken when the projection is upward, and + when is downward.

ILLUSTRATION I. — If a body in 10 seconds has acquired a velocity by unionaccelerated motion of 26 feet, what is accelerating force, and what space describes in that time?

$$26 \div 10 = 2.6 = accelerating force;$$
 $\frac{2.6}{2} \times 10^2 = 130$ feet = space described

2.—A body moving with an acceleration of 15.625 feet describes in 1.5 seconds space = $\frac{15.625 \times (1.5)^2}{2}$ = 17.578 feet.

3.—A body propelled with an initial velocity of 3 feet, and with an accelerate of 5 feet, describes in 7 seconds a space $= 3 \times 7 + 5 \times \frac{2^2}{} = 143.5$ feet.

4.—A body which in 180 seconds changes its velocity from 2.5 to 7.5 feet, we erses in that time a distance of $\frac{2.5 + 7.5}{2} \times 180 = 900$ feet.

5.—A body which rolls up an inclined plane with an initial velocity of $_{40}$ feet, second, by which it suffers a retardation of 8 feet, ascends only $\frac{40}{5} = 5$ accords.

 $40^2 \div 2 \times 8 = 100$ feet in height, then rolls back, and returns, after 10 seconds a velocity of 40 feet, to its initial point; and after 12 seconds arrives at a description of $40 \times 12 - 4 \times 12^2 = 96$ feet below point, assuming plane to be extended backs

Cinonlan Motion

Circular Motion.
$$\frac{2 p r n}{60} = \frac{2 p r n'}{t} = v; \quad \frac{5500 \text{ P}}{r n} = \frac{\text{W}}{2 p r n'} = f; \quad \frac{f r n}{5500} = \frac{f 2 p r^2}{550 \times 60} = F$$

f 2 p r n' = \frac{ft2prn}{60} = W. r representing radius in feet, n number of resolutions, f force in lbs., t time in examinations of the property force.

Motion on an Inclined Plane.

To Ascertain Conditions of Motion by Gravity.

Assume A B, Fig. 6, an inclined plane, B C its base, A C its height, and b a body descending the plane; from At its neight, and b a body descending the plane; from dot, centre of gravity of body, draw b a perpendicular to BC, representing pressure of b by gravity; draw b a parallel and b r perpendicular to AB, and complete parallelogram; then force b a is equal to both b a, b r, of which b r is sustained by reaction of plane, and in eacelerating motion of bedre

o is wholly effective in accelerating motion of body.

his force be represented by f, and b a, by g or force of gravity, then by similar e, f: g:: b o:: b a: A C:: A B. Hence, $\frac{A}{A} \frac{C}{B} \times g = f$.

A B = l, A C = h and \angle A B C = a, then force which produces motion on the on f becomes $g = \frac{h}{l}$, and $g \sin a$.

efore, accelerating force on an inclined plane is constant, and equations of ι will be obtained by substituting its value of f for g in equations ι , ι , and

$$\frac{g h t^2}{2 l}, \quad \frac{l v^2}{2 g h}, \quad .5 t v, \quad .5 g t^2 \sin a, \text{ and } \frac{v^2}{2 g \sin a} = s.$$

$$\frac{2 s}{t}, \quad \frac{g h t}{l}, \quad \sqrt{\frac{2 g h s}{l}}, \quad g t \sin a, \quad \text{and } \sqrt{2 g s \sin a} = v.$$

$$\frac{l v}{2 h}, \quad \sqrt{\frac{2 l s}{g h}}, \quad \frac{s}{g \sin a}, \quad \text{and } \sqrt{\frac{2 s}{g \sin a}} = t. \quad a \text{ representing } \angle ABC.$$

en a Body is projected down or up an Inclined Plane, with a given Ve-- The distance which it will be from point of projection in a given rill be $tv\pm\frac{ght^2}{2L}$, and $\frac{t}{2L}(2lv\pm ght)=s$.

STRATION I.—Length of an inclined plane is 100 feet, and its angle of inclina0; what is time of a body rolling down it, and velocity acquired?

$$\sin 60^{\circ} = .866$$
.

sin. 60° = .866.
'
$$2 \times 100$$

 $32.16 \times .866 = \sqrt{7.18} = 2.68$ seconds, and $32.16 \times 2.68 \times .866 = 74.64$ feet.

f a body is projected up an inclined plane, which rises 1 in 6, with a velocity et per second, what will be its place and velocity at end of 6 seconds?

$$50 - \frac{32.16 \times 1 \times 6^2}{2 \times 6} = 203.52$$
 feet from bottom, and $50 - \left(32.16 \times 6 \times \frac{1}{6}\right) = 1.16 = 17.84$ feet.

ffect an ascent up an inclined plane in least time, its length, to its height, e as twice weight to power.

Work Accumulated in Moving Bodies.

ntity of work stored in a body in motion is same as that which would umulated in it by gravity if it fell from the height due to the velocity. nulated work expressed in foot-lbs. is equal to product of height so in feet, and weight of body in lbs. Height due to velocity is equal are of velocity divided by 64.4, and work and velocity may be dedirectly from each other by following rules:

To Compute Accumulated Work.

E.-Multiply weight in lbs. by square of velocity in feet per second, vide by 64.4, and quotient is accumulated work in foot-lbs.

 $V = \frac{\sigma^2 \times w}{64.4}$, or, $= w \times h$. W representing work, w weight in Uss., and due to velocity in feet per second.

Work by Percussive Force.

If a wedge is driven by strokes of a hammer or other heavy mass of percussive force is measured by quantity of work accumulated in a body. This work is computed by preceding rules, from weight of and velocity with which a stroke is delivered, or directly from he fall, if gravity be percussive power.

Useful work done through a wedge is equal to work expended assuming that there is no elastic or vibrating reaction from the strok the work had been exerted by a constant pressure equal to weight of ing body, exerted through a space equal to height of fall, or height its final velocity.

If elastic action intervenes, a portion of work exerted is absorbe elastic stress to resisting body; and the elastic action may be, in some so great as to absorb the work expended.

The principle of action of a blow on a wedge is alike applicable to

of the stroke of a monkey of a pile-driver upon a pile.

If there be no elastic action, the work expended being product of of monkey by height of its fall, is equal to work performed in driv pile: that is, to product of resistance to its descent by depth through it is driven by each blow of monkey.

ILLUSTRATION.—If a horse draws 200 lbs. out of a mine, at a speed of 2 m hour, how many units of work does he perform in a minute, coefficient of fried

 $\frac{2 \times 5280}{60}$ = 176 feet per minute. Hence, 176 × 200 + $\frac{1}{100}$ × 200 = 35 210 11

Decomposition of Force.

By parallelogram of force lustrated how a vessel is enbe sailed with a free wind and one.

Assume wind to be free or into of arrows, Fig. 7, and perpend line A B, the course of vessel.

Let line mo represent direct force of wind, and rs plane of so o draw o u perpendicular to from m perpendicular, m v on m u on o u.

By principle of parallelogram torce m a may be decomposed

force m o may be decomposed and o u, since they are the sides of parallelogram of which m o, represent of wind, is diagonal. Force of wind, therefore, is measured by o u, both it tude and direction, and represents actual pressure on sail.

Draw un and ux parallel to oA and om, thus forming parallelogram

Hence force o u is equal to the and ox. Force o n acts in a d perpendicular to vessel's course of ox is to drive vessel onward.

It can thus be shown that we rection of sail bisects angle we effect of o x is greater than who in any other position.

Assume wind to be ahead as tion of arrows, Fig. 8. Let a sent direction and force of wind direction of sail; from a draw proceed as before, and a represented force that acts upon to a that which drives her to less o a that which drives her to be

For full treatises on this subject, see John C. Trautwine's Engineer's Pocket-book, 32: perimental Mechanics, London, 1871; and Dynamics, Construction of Machinery, 66, Warr, London, 1851.

MOMENTS OF STRESS.

Describe and Compute Moments of Stress on Girders or Beams.

Supported at Both Ends.

Loaded in Centre, Fig. z. — Assume A B, a beam. At centre erect W $c = \frac{Wt}{4}$. Connect A c and c B, and any vertical distance between them and A B will give moment required at that point.

 $\frac{\mathbf{W} \mathbf{x}}{2} = \mathbf{M} \mathbf{\tilde{a}} \mathbf{\tilde{t}}$ any point. W represent-

right or load, I length of span, x horizontal distance from nearest support at M, the moment of stress, is required.

ISTRATION.—Assume l = 10 feet, W = 10 lbs., and x = 3 feet.

n, W c =
$$\frac{10 \times 10}{4}$$
 = 25 lbs. at centre of span; and $\frac{10 \times 3}{2}$ = 15 lbs. at z.

Loaded at Any Point, Fig. 2.—
Proceed as for previous figure.

 $\frac{\mathbf{W} \ a \ b}{l} \text{ or } \mathbf{W} \ c = \text{maximum load.}$ $\frac{\mathbf{W} \ x \ b}{l} = \mathbf{M} \text{ between A and W.}$

presenting least distance of W to support, $\frac{W \times a}{t} = M$ between W and B. greatest distance.

18TBATION.—Take elements as before with a = 3 feet, x = 1.5, and x' = 3.5 feet.

n, $\nabla c = \frac{10 \times 3 \times 7}{2} = 21$ lbs. at point of stress; $\frac{10 \times 1.5 \times 7}{2} = 10.5$ lbs. at x

n A and W, and $\frac{10 \times 3.5 \times 3}{10} = 10.5$ lbs. at x between W and B.

 \mathbb{R} .—x and x' must be taken from the pier, which is on the same side of W as f the stress desired.

d with Two Equal Weights at Equal Distances from Supports, alike to a Transverse Girder in a Single Line of Railway.—Fig. 3.

At point of stress of weights erect W c and W d, each = W a. Connect A c d and B, and vertical distances between them and A B will give moments required.

 $\frac{W(l-o)}{2} = W a = W b = M \text{ at}$ any point between weights.

d with Four Equal Weights, symmetrically bearing from Centre, alike to a Transverse Girder in a Double Line of Railway.—Fig. 4.

At W and w'' erect W c, and w''i = 2 W a, and at w and w' erect wd, w'e, each = W (2a+a').

erect wa, we, each = w(2a+a). Connect acdei and B, and ordinates from them to AB will give moments required.

W(a + a') = M at w and w'; 2 W a = M at W and w''.

ILLUSTRATION.—Assume W each 10 lbs. 2 feet apart, and l 10 feet.

1, 10 $(2 \times 2 + 2) = 60$ at w or w', and $2 \times 10 \times 2 = 40$ at W or w'.

Equilibrium of Forces.

Two bodies which act directly against each other in same line are in or librium when their quantities of motion are equal; that is, when product mass of one, into velocity with which it moves or tends to move is cons product of mass of other, into its actual or virtual * velocity.

When the velocities with which bodies are moved are same their for are proportional to their masses or quantities of matter. Hence, when on masses are in motion, their forces are proportional to their velocities.

Relative magnitudes and directions of any two forces may be represent by two right lines, which shall bear to each other the relations of the fore and which shall be inclined to each other in an an Fig. 4.

equal to that made by direction of the forces. ILLUSTRATION. — Assume a body, W. to weigh 150 lbt. s resting upon a smooth surface, to be drawn by two fores

and b. Fig. 5. = 24 and 30 lbs., which make with each an angle, $a \le b = 105^{\circ}$, in which direction and with the acceleration will motion occur? $\angle a \le b = 105^\circ$, and cos. $180^\circ - 105^\circ = 008.75^\circ$, and

furce.

$$P = \sqrt{30^2 + 24^2 - 2 \times 30 \times 24}$$
 cos. 75° = $\sqrt{900 + 576 - 1440}$ cos. 75°

$$-\sqrt{1470} - (1440 \times 24882) = \sqrt{1103.3} = 33.21 \text{ lbs.}$$
The acceleration is $\frac{P.7}{W} = \frac{33.21 \times 32.166}{150} = 7.1215 \text{ feet.}$

Angle of Repose is greatest inclination of a plane to horizon at with body will remain in equilibrium upon it.

Hence greatest angle of obliquity of pressure between two planes, cost ent with stability, is the angle tangent of which is equal to coefficient friction of the two planes.

Inertia is resistance which a body at rest offers to an external power be put in motion or to change its velocity or direction when in metical

To Compute Inertia of a Revolving Body.

Divide it into small parts of a regular figure, multiply weight of each by square of its distance of its centre of gravity from axis of revolution and sum of products will give moment of inertia of body.

DYNAMICS.

DYNAMICS is the investigation of the laws of Motion of Solid India - of Matter, Force, Velocity, Space, and Time.

Mass of a body is the quantity of matter of which it is composed

Force is divided into Motive, Accelerative, or Retardative.

Motire Porce, or Momentum, of a body, is the product of its mass velocity, and is its quantity of motion. This force can, therefore certained and compared in any number of bodies when these cantities are known.

Accelerative or Retardative Force is that which respects relative -- ear only, accelerating or retarding it; and it is denoted by quote of motive force, divided by mass or weight of body. Thus, if a is impelled by a force of 40 lbs., accelerating force is 8 lbs.; force of 40 lbs. act upon a body of 10 lbs., accelerating force lbs., or half former, and will produce only half velocity. qual masses, velocities are proportional to their forces. qual forces, velocities are inversely as the masses. qual velocities, forces are proportional to the masses. is product of force, velocity, and time.

.—The succession of positions which a body in its motion pror occupies forms a line which is termed the trajectory, or path loving body.

on is *Uniform* when equal spaces are described by it in equal d *Variable* when this equality does not occur. When spaces in equal times increase continuously with the time, a variable termed accelerated, when spaces decrease, retarded, and when it is eriodic, and intervals periods. Uniform motion is illustrated ssive motion of hands of a watch; variable in progressive vefalling and upwardly projected bodies; and periodic by oscila pendulum or strokes of a piston of a steam-engine.

Uniform Motion.

18.
$$fv$$
, $\frac{fs}{t}$, H 550, and $\frac{W}{t} = P$; $\frac{P}{v}$, $\frac{W}{s}$, and $\frac{H 550}{v} = f$; $\frac{s}{t}$, and $\frac{W}{ft} = v$; vt , $\frac{Pt}{f}$, $\frac{W}{f}$, and $\frac{H 550}{f} = s$; $\frac{sf}{P}$, $\frac{s}{v}$, $\frac{W}{fv}$, $\frac{et}{f}$; fs , H 550 t , P t , and $fvt = W$; $\frac{P}{550}$, $\frac{fv}{550}$, $\frac{fs}{550}$, and

P representing power in effect, body, or momentum, f force in lbs., v and nd space in feet per second, t time in seconds, H horse-power, and W work

r more bodies, etc., are compared, two or more corresponding letters, V,v,v', etc., are employed.

TION I.—Two bodies, one of 20, the other of 10 lbs., are impelled by same a, say 60. They move uniformly, first for 8 seconds, second for 6; what uces described by both?

 $60 \div 20 = 3 = V$, and $60 \div 10 = 6 = v$.

 $t=3\times8=24=8$, and $tv=6\times6=36=s$, spaces respectively.

power of 12 800 effects has a velocity of 10 feet per second, what is its 12 800 \div 10 = 1280 bs.

Uniform Variable Motion.

lescribed by a body having uniform variable motion is represented r difference of velocity, and product of acceleration and time, acs the motion is accelerated or retarded.

ATION I.—A sphere rolling down an inclined plane with an initial velocity acquires in its course an additional velocity at each second of time of s, will be its velocity after 3 seconds?

$$25 + \overline{5 \times 3} = 40$$
 feet.

motive having an initial velocity of 30 feet per secon second it loses 4 feet; what is its velocity after 6 sec

$$30 - \overline{4 \times 6} = 6$$
 feet.

622 MECHANICS. -- MOMENTS OF STRESS ON GIRDERS, 15

Locate three weights, W, w, s w', as at ab, a, b, a, ab, a, b, and b, and b, and he three separate cases, by formula, $\frac{Wab}{\cdot}$, Fig. 2.

Produce Wc until Wo = Wr, wand Wc; Wd until wu = wa, and wd, and w'e to w'm in manner.

Connect Aou'm and B, and and dinate therefrom, to AB will g moment of stress at the point tab

ILLUSTRATION. — Take a=2 feet, $a_1=4$, $a_2=6$, b=8, $b_1=6$, $b_2=4$, W, w, w' each 10 lbs., and l=10 feet, carefully observing Note to Fig. 2.

Then
$$\frac{1}{l}$$
 (W $bx + wb_1x + w'b_2x$) = M at x.

Take
$$x = 2$$
. Then $\frac{1}{10}$ (10 × 8 × 2 + $\frac{1}{10}$ × 6 × 2 + $\frac{360}{10}$ = 36 kg.
 $x' = 4$. $\frac{1}{10}$ (10 × 2 × 6 + $\frac{1}{10}$ × 6 × 4 + $\frac{520}{10}$ = 52 lbs.
 $x'' = 6$. $\frac{1}{10}$ (10 × 2 × 4 + $\frac{1}{10}$ × 4 × 4 + $\frac{5}{10}$ × 4 × 6) = $\frac{480}{10}$ = 48 lbs.

Fig. 6.

Loaded with a Rolling Weight-Fig. 6.

Define parabola A c B as day
W l

mined by $\frac{Wl}{4}$ = the ordinates $\frac{Wl}{4}$ and vertical distances between $\frac{Wl}{4}$ will give moments.

$$\frac{W \times (l-x)}{l} = M \text{ at any point}$$

Loaded Uniformly its Entire Length.—Define parabola as at Fig. 6, ordinate which at $c = \frac{w l^2}{8}$. L representing stationary or dead load per unit of length.

$$\frac{\mathbf{L} x}{2}$$
 $(l-x) = \mathbf{M}$ at any point, and $\frac{w l^2}{8} = \mathbf{M}$ at centre.

Loaded with Two Connected Weights, moving in either Direction, alike to a Loos tive or Car on a Railway.—Fig. 7.

Define parabola A c B as determined by $\frac{(W+w) l}{c} = c$.

At A and B erect A e, B $i=\psi$ connect A i and B e, and vertification distances between A o B and A i will give moments.

$$\frac{x}{l} \left[(W + w) (l - x) - \overline{w d} \right] = 1$$

ratest moment, when $x = \frac{l}{2} \pm \frac{w d}{2(W + w)}$. Or if W and w

m = 3, d = 4, and W we each so like., and I so less. m = 3, d = 4, and W we each so like., and I so less. m = 3, d = 4, and W we each so like., and I so less.

CHANICS.—MOMENTS OF STRESS ON GIRDERS, ETC. 623

Shearing Stress.

Determine Shearing Stress at any Part of a Girder or Beam and under any Distribution of Load.

Required to determine stress of a beam at any point as c, Fig. 8.

Assume W = load between A and

Assume W = load between A and c, and w that between B and c.

Then Sx at c = P - W, or P' - w.

he greater of the two values to be taken.

x representing shearing stress at any point x, P and P' the reaction on supports to total load on beam between supports, W and w loads or stress concentrated at point.

Fo Describe and Ascertain Shearing Stress in a Girder or Beam.

Supported or Fixed at Both Ends.

Loaded Uniformly. Fig. 9. At A and B, erect Ac, Be, each equal to $\frac{Wt}{2}$. Connect c and e at middle of span as at n, and vertical distances between AB and cne will give shearing stresses as determined by the ordinates to cne.

$$L\left(\frac{l}{2}-x\right)=S$$
. Sign of result to

isregarded. L representing distributed load per unit of length.

LUBTRATION.—Assume L = 10 lbs. per foot, l = 10, and x = 2.5 feet.

Then 10
$$\left(\frac{10}{2} - 2.5\right) = 25 \, lbs.$$

>TE.—The moment of rupture at any point, produced by several loads acting that clean a beam, is equal to the sum of the moments produced by the ral loads acting separately.

or other Formulas and Diagrams see Strains in Girders, by William Humber, J.E., London, 1872.

ration deduced by Graphic Delineation of Greatest Stress, with a Uniformly Distributed Load of 14 000 Lbs.—Fig. 10.

Determine moment of weights by formulas $\frac{Wmn}{l}$, $\frac{wrs}{l}$, and $\frac{w'ov}{l}$.

Assume W=7000 lbs., w=4000, and w'=3000, m=7 feet, n=13, r=13, s=7, 0=3, v=17, and l=20. Then W= $\frac{7000 \times 13 \times 7}{20}$ =31850,

$$=\frac{4000 \times 13 \times 7}{20} = 18200$$
, and $w' = \frac{3000 \times 3 \times 17}{20} = 7650$, and let fall perpendic-

s thereto, as 3 d, 2 c, and 1 b.

ennect d, c, and b with AB, and sum of distances of intersections of the perpendiculars, from 3, 2, and r respectively, will give stress upon to points.

To determine Greatest Stress at-Greatest Load.

iness at 3 d = 31 850 Stress at 1 b = 17:
$$7650:3$$
 " 2 $650:3$ = 9 800

 $00 + \frac{7 \times 13 \times 4000 \times .5}{20} = 52 \times 100$ lbs., concentrated load at W, and P brilly distributed load of 4000 lbs.

MECHANICAL POWERS.

MECHANICAL Power is a compound of Weight, or Force and Valit cannot be increased by mechanical means.

The Powers are three in number—viz., LEVER, ISCLIED PLIE, PULLEY.

Note.—A Wheel and Axle is a continuous or revolving lever, a Wedge a dmi clined plane, and a Screw a revolving inclined plane.

LEVER.

Levers are straight, bent, curved, single, or compound.

To Compute Length of a Lever.

When Weight and Power are given. Rule.—Divide weight by p and quotient is leverage, or distance from fulcrum at which power sup weight.

Or, $\frac{W}{P} = p$. W representing weight, P power, and p distance of power from f

EXAMPLE.—A weight of 1600 lbs. is to be raised by a power or force of a quired length of longest arm of lever, shortest being 1 foot.

To Compute Weight that can be raised by a Levi

When its Length, Power, and Position of its Fulcrum are given. Bu Multiply power by its distance from fulcrum, and divide product by tance of weight from fulcrum.

EXAMPLE.—What weight can be raised by 375 lbs. suspended from end of a feet from fulcrum, distance of weight from fulcrum being 2 feet?

$$375 \times 8 \div 2 = 1500 lbs.$$

To Compute Position of Fulcrum.

When Weight and Power and Length of Lever are given, and when crum is between Weight and Power. Rule.—Divide weight by power to quotient, and divide length by sum thus obtained.

Or,
$$L \div \left(\frac{W}{P} + 1\right) = w$$
. L representing entire length of lever.

EXAMPLE.—A weight of 2460 lbs is to be raised with a lever 7 feet long nower of 300; at what part of lever must fulcrum be placed?

$$2460 \div 300 = 8.2$$
, and $8.2 + 1 = 9.2$. Then $7 \times 12 \div 9.2 = 9.13$ ins.

When Weight is between Fulcrum and Power. Rule.—Divide by quotient of weight, divided by power.

Or,
$$L \div \frac{W}{P} = w$$
.

rute Length of Arm of Lever to white Weight is attached.

and Length of Arm of Lever to which Power
 Multiply power by length of arm to which weight.

$$Or, \frac{W}{W} = w.$$

CPLE. -- A weight of 1600 lbs., suspended from a lever, is supported by a power pplied at other end of arm, 20 feet in length; what is length of arm?

$$80 \times 20 \div 1600 = 1 \text{ foot.}$$

:.—These rules apply equally When fulcrum (or support) of lever is between and power;* when fulcrum is at one extremity of lever, and power, or weight, ther: + and when arms of lever are equally or unequally bent or curved.

compute Power Required to Raise a given Weight.

en Length of Lever and Position of Fulcrum are given. Rule .- Mulweight to be raised by its distance from fulcrum, and divide product tance of power from fulcrum.

Or,
$$\frac{\overline{W} w}{p} = P$$
.

MPLE.—Length of a lever is 10 feet, weight to be raised is 3000 lbs., and its ce from fulcrum is 2 feet; what is power required?

$$\frac{3000 \times 2}{10-2} = \frac{6000}{8} = 750 \text{ lbs.}$$

Jompute Length of Arm of Lever to which Power is applied.

en Weight, Power, and Distance of Fulcrum are given. Rule.-Mulweight by its distance from fulcrum, and divide product by power.

Or,
$$\frac{\mathbf{W} \ w}{\mathbf{P}} = \mathbf{p}$$
.

MPLE.—A weight of 400 lbs., suspended 15 ins. from fulcrum, is supported by 37 of 50, applied at other; what is length of the arm?

$$400 \times 15 \div 50 = 120 ins.$$

When Arms of a Lever are bent or curved, Distances taken from perpendiculars, drawn from lines of direction of weight and power, must be measured on a line running horizontally through fulcrum, as a b c, Figs. 1 and 2.

When Arms of a Lever are at Right Angles, and Power and Weight are applied at a Right Fig. 2.

Angle to each other, Fig. 3, The moments

are computed directly as ab to bc.

Thrust, or pressure on fulcrum. is in this case less than sum of power and weight; and it may be determined by drawing a parallelogram upon the two arms of lever, arms repre-

senting inversely their respec-

orces. That is, a b represents magnitude and directly c of power P. Diagonal ob of parallelogram repreection of third force, or thrust upon fulcrum.

^{*} Pressure upon falcram is equal to sum of weight and power.
† Pressure upon falcram is equal to difference of weight and po

Wheel and Pinion Combinations, or Complex Wheel-work.

Power, multiplied by product of radii or circumferences, or number of teeth of wheels, is equal to weight, multiplied by product of radii or circumferences, or number of teeth or leaves of pinions.

Note.—Cogs on face of wheel are termed teeth, and those on surface of are settermed leaves; the axie itself in this case is termed a pinion.

Rack and Pinion.

To Compute Power of a Rack and Pinion.

byle

Ez.

n.

RULE.—Multiply weight to be sustained by quotient of radius of pinks divided by radius of crank, and product is power required.

Or,
$$\mathbb{W} \frac{r}{\mathbb{R}} = P$$
.

When Pinion on Crunk Axle communicates with a Wheel and Pinia Rule.—Multiply weight to be sustained by quotient of product of radial pinions, divided by radii of crank and wheel and product is power requisions.

Or,
$$\mathbb{W} \stackrel{r r'}{\longrightarrow} = P$$
.

EXAMPLE.—If radii of pinions of a jack-screw are each one inch; of crask wheel 10 and 5 ins.; what power will sustain a weight of 750 lbs.?

$$750 \times \frac{1 \times 1}{10 \times 5} = \frac{750}{50} = 15 lbs.$$

INCLINED PLANE.

To Compute Length of Base, Height, or Length. When any Two of them are given, and when Line of Direction of Part or Traction is Parallel to Face of Plane.—Proceed as in Mensuration Trigonometry to determine side of a right-angled triangle, any two of the being given.

To Compute Power necessary to Support a Weight of an Inclined Plane.

When Height and Length are given. Rule.—Multiply weight by beet of plane, and divide product by length.

Or,
$$\frac{Wh}{l} = P$$
. h and l representing height and length of plane.

EXAMPLE.—What is power necessary to support 1000 lbs. on an inclined pass 4 feet in height and 6 feet in length?

$$1000 \times 4 \div 6 = 666.67 lbs.$$

To Compute Weight that may be Sustained by a give Power on an Inclined Plane.

When Height and Length of Plane are given. Rule.—Multiply post length of plane, and divide product by height.

Or,
$$\frac{Pl}{h} = W$$
.

EXAMPLE.—What is weight that can be sustained on an inclined plane 5 feet in length by a power of 700 lbs.?

$$700 \times 7 \div 5 = 980 \ lbs.$$

primating power required to overcome resistance of a body is orted upon an inclined plane, and contrarwise, if body is of body, in proportion of power of plane it. . . as the send is ded to resistance, if being drawn up or supported, or is the send in the se

Compute Height or Length of an Inclined Plane.

7hen Weight and Power and one of required Elements are given, and n Height is required. RULE.—Multiply power by length, and divide luct by weight.

Then Length is required. RULE.—Multiply weight by height, and divide luct by power.

Or,
$$\frac{Pl}{W} = h$$
, and $\frac{Wh}{P} = l$.

To Compute Pressure on an Inclined Plane. ULE.—Multiply weight by length of base of plane, and divide product ength of face.

Or,
$$\frac{W b}{l}$$
 = pressure. b representing length of base of plane.

EAMPLE.—Weight on an inclined plane is 100 lbs., base of plane is 4 feet, and th of it 5; required pressure on plane.

In Two Bodies on Two Inclined Planes sustain each other, as by Connection a Cord over a Pulley, their Weights are directly as Lengths of Planes.

EUSTRATION.—If a weight of 50 lbs. upon an inclined plane, of 10 feet rise in 100 n inclination, is sustained by a weight on another plane of 10 feet rise in 90, t is the weight of the latter?

>>> : 90 :: 50 : 45 = weight that on shortest plane would sustain that on largest.

Then a Body is Supported by Two Planes, as Fig. 7, pressure upon them will be reciprocally as sines of inclinations of planes.

Thus, weight is as sin. A B D.

Pressure on A B as sin. D B i.

Pressure on B D as sin. A B h.

Assume angle A B D to be 90° , and D B i, 60° ; then angle A B h will be 30° ; and as sines of 90° , 60° , and 30° are respectively .1, .866, and .5, if weight = 100 lbs., then pressures on

and B D will be 86.6 and 50 lbs., centre of gravity of weight assumed to be in its

When Line of Direction of Power is parallel to Base of Plane, power is weight as height of plane to length of its base.

Hence,
$$P = \frac{Wh}{b}$$
; $W = \frac{Pb}{h}$; $h = \frac{Pb}{W}$; $b = \frac{Wh}{P}$.

When Line of Direction of Power is neither parallel to Face of Plans:

is Base, but in some other Direction, as P', Fig. 8, power is to weight.

of angle of plane's elevation to cosine of angle which line of power of the cost of the c

ILLUSTRATION.—A weight of 500 lbs. is required to be sustained on a plane, angle of elevation of which, c A B, is roe; line of direction of power or traction, P'e c, is 50; what is sustaining nower required?

Cos. P' e c (5°) = .996 19: sin. A (10°) = .17365 T, draw a line, B s, perpendicular to direction of

se line (at back of plane), and intersection. Cetermine length and height (n r) of the plane.

Differential Screw.

When a hollow screw revolves upon one of less diameter and pite of designed by Mr. Hunter), effect is same as that of a single screw, in the distance between threads is equal to difference of distances between threads of the two screws.

Therefore power, to effect or weight sustained, is as difference bere distances of threads of the two screws to circumference described by positive to the control of the two screws to circumference described by positive to the control of the cont

ILLUSTRATION.—If external screw has 20 threads, and internal one 21 threshpitch of 1 inch, and power applied describes a circumference of 35 ins., the resh

power is as $\frac{1}{21} \otimes \frac{1}{20} = \frac{1}{420}$, or 00238. Hence $\frac{35}{.00238} = 14706$.

PULLEY.

Pulleys are designated as Fixed and Movable, according as cord is prover a fixed or a movable pulley. A movable pulley is when cord through a second pulley or block in suspension; a single movable pulleyer termed a runner; and a combination of pulleys is termed a system of proventions.

A Whip is a single cord over a fixed pulley.

To Compute Power Required to Raise a given Weigh

When Number of Parts of Cord supporting Lower Block are given when only one Cord or Rope is used. RULE.—Divide weight to be missing number of parts of cord supporting lower or movable block.

Or, $W \div n = P$. Or, n P = W. n representing number of parts of cord in glower block.

EXAMPLE.—What power is required to raise 600 lbs. when lower block colors sheaves?

When Cord is attached to Upper or Fixed Block.

 $\frac{600}{6 \times 2}$ = 50 lbs. = weight ÷ number of parts of rope sustaining lower block

When Cord is attached to Lower or Movable Block.

 $\frac{600}{6 \times 2 + 1} = 46.15 \text{ lbs.} = \text{weight} \div \text{number of parts of rope sustaining lower}$

To Compute Weight a given Power will Raise
When Number of Parts of Cord supporting Lower Block are given. In
—Multiply power by number of parts of cord supporting lower block.

Or, P n = W.

To Compute Number of Cords necessary to Susta Lower Block.

When Weight and Power are given. Rule.—Divide weight by possible Or, $W \div P = n$.

Rui and dic

ins. circV

When more than one Cord is used.

In a Spanish Burton, Fig. 10, where ends of one cord, a P, are fastened to support and power, and ends of the other, c o, to lower and upper blocks, weight is to power as 4 to 1.

In another, Fig. 11, where there are two cords, a and o, two movable pulleys, and one fixed pulley, with ends of one rope fastened to support and upper movable pulley, and ends of other fastened to lower block and power, weight is to power as 5 to 1.

Fig. 14.

Compound or Fast and Loose Pulleys.

When Cord is attached to Fixed Block, Fig. 12. RULE .-Multiply power by the power of 2, of which the index is number of movable pulleys.

Or,
$$P_2^n = W$$
.

Or, Multiply power successively by 2 for each pulley.

EXAMPLE 1.-What weight will one pound support in a system of three movable pulleys, the cords being connected to a fixed block on Fig. 12. 1 X 23 = 8 lbs.

EXAMPLE 2. - What would a like power support, fixed block being made movable and cord attached thereto?

$$1 \times 2^4 - 1 = 15 lbs.$$

If fixed pulleys were substituted for hooks a b c, Fig. 12, power would be increased threefold; hence $1 \times 3^3 = 27$.

System of Pulleys, Figs. 13 and 14, with any Number of Cords, 00, ee, Ends being fustened to Support.

$$\mathbb{W} \div_2 \mathbb{I} = \mathbb{P}; \ 2^n \times \mathbb{P} = \mathbb{W}; \ \frac{\mathbb{W}}{\mathbb{P}} = 2^n. \ \text{*rep}$$

resenting number of distinct cords.

ILLUSTRATION. - What weight will a power of 1 lb. sustain in a system of two movable pullevs and two cords?

 $W \div 3^n = P$; $3^n \times P = W$; $W \div P = 3^n$. ISTRATION. - What weight will a power of 5 lbs. sustain with two movable and

. Ends of Cord or Fixed Pulleys are fastened to Weight, as by an Inverof the last Figures, putting Supports for Weights, and contrariwise .s. 13 and 14.

Fig. 13.
$$\frac{W}{(2^n-1)} = P$$
;

fixed pulleys, and two cords?

$$(2^n-1)P=W;$$
 $\frac{7}{3}$

 $5 \times 3 \times 3 = 45 lbs$.

$$\overline{V}; \qquad \frac{\overline{V}}{P} = (2^{n} - 1).$$

Fig. 13.
$$\frac{W}{(2^n-1)} = P;$$
 $(2^n-1)P = W;$ $\frac{W}{P} = (2^n-1).$
Fig. 14. $\frac{W}{(3^n-1)} = P;$ $(3^n-1)P = W;$ $\frac{W}{P} = (3^n-1).$

$$\frac{W}{D} = (3^* - 1)$$

ESTRATION .- What weight will a power of 1 lb. sustain in a system of two movulleys and two cords, and one of two movable and two fixed pulleys and two $1 \times 2 \times 2 - 1 = 3 lbs$. $1 \times 3 \times 3 - 1 = 8 lbs.$

ven Cords sustaining Pulleys are not in a Vertical Direction.—Fig. 15.

and as tension of every part of cord is same, and equal to power P, sides os and or of parallelogram must be equal, and therefore diagonal eo divides the angle ros into two equal portions. Hence the weight will always fall into the position in which the two parts of cord A e and e D will be equainclined to vertical line, and it will bear to power same as eo to es.

Therefore W: P:: 2 cos. .5e: 1. e representing angle At 'X cos. 5e= W. That is, twice power, multiplied by cosine of half i it point of suspension of weight, is equal to weight.

ILLUSTRATION.—What weight will be sustained by a power of 5 lbs., wi lique movable pulley, Fig. 15, having an angle, A c D, of 30°?

5 × 2 × .06503 = 0.6503 lbs. = twice power × cos. 15°.

When Direction of Cord is Irregular, Weight not resting in Centre

When Direction of Cora is Irregular, Weight not resting in Centre

 $\frac{P}{W} = \frac{\sin a}{\sin (a+b)}; \quad \frac{P \sin (a+b)}{\sin a} = W; \quad \frac{W \sin a}{\sin (a+b)} = P. \quad a \text{ and } b \text{ rq}$ greater and lesser angles of cord at e.

METALS.

ALLOYS AND COMPOSITIONS.

Alloy is the proportion of a baser metal mixed with a finer of as copper is mixed with gold, etc.

Amalgam is a compound of Mercury and a metal—a soft Compositions of copper contract in admixture, and all Amalg pand.

In manufacture of Alloys and Compositions, the less fusible should be melted first.

In Compositions of Brass, as proportion of Zinc is increased malleability decreased.

Tenacity of Brass is impaired by addition of Lead or Tin.

Steel alloyed with one five-hundredth part of Platinum, or Si rendered harder, more malleable, and better adapted for cutting ments.

Specific gravity of alloys* does not follow the ratios of those o components; it is sometimes greater and sometimes less than the

Composition for Welding Cast Steel.

Borax, g_1 parts; Sal-ammoniac, g parts. Grind or pound them roughly w_1 fuse them in a metal-pot over a clear fire, continuing heat until all spume happeared from surface. When liquid is clear, pour composition out to $\cos w_1$ crete, and grind to a fine powder; then it is ready for use.

To use this composition, the steel to be welded should be raised to a bright; heat; then dip it in the welding powder, and again raise it to a like heat as b it is then ready to be submitted to the hammer.

Fusible Compounds.

Compounds.	Zinc.	Tin.	Lead.	Bismuth.	Cude
Rose's, fusing at 2000	_	25	25	50	-
Fusing at less than 2000			33.3	33.4	-
Newton's, fusing at less than 2120.		19	31	50	-
Fusing at 150° to 160°	_	12	25	50	13

Solders.

Solder is an alloy used to make joints between metals, and it me more fusible than the metals it is designed to unite, and it is distinguian as hard and soft, according to the temperature of its fusing.

The addition of a small portion of Bismuth increases its fusibility.

Alloys and Compositions.

	Copper.	Zinc.	Tin.	Nickel.	Lead.	Anti-	Bis- muth.	Alu- minuu
tan	55	24	-	21	-	-	-	-
num, brown	95	-	-	_	-	-	-	5
t's metal *	3.7	-	80		-	7.3	-	-
common	84-3	5.2	10.5	=	-	7.3	0-	-
"	75	25 6.4	-		-	-	-	-
hard	79-3	6.4	14-3	0-0	-	_	-	
instruments	92.2		7.8	Ξ		_	-	_
locomot bearings.	00	1	9	-	_	-	-	-
Pinchbeck	80	20	-	-	_	_	_	
red Tombac	88.8	11.2	_	-	46	- - - - - - - - - - - - - - - - - - -	-	5
rolled	74-3	22.3	3-4	19	_		-	
Tutenag	50	31		10		_	_	
very tenacious	88.9	2.8	8.3	1 2		15	-	
wheels, valves	90	_	10	1.25		1121	-	=
white	10	80	10	1 500				
**	3	90			10.5	1 72	Ξ	100
44	3	90				7		
wire	67	33	11.5	100	40	47	3.5	_
yellow, fine	7 67 66	33	17.1			1 3		
nia metal	00	34		-	100	-	_	-
hen fused add		_	25	1111111	-	25	-	-
, red	0-		1.5	-		25	25	-
,	87 86	13			-	_	-	-
wallow	60	11.1	2.9	-	_	-	~	-
yellow Gun metal, large	67.2	31.2	1.6	1111	-	-	-	I Iron. T Cobalt of Iron.
	90	-	10	-	-	-	-	12
Cilitari	93	-	7	-	-	-	-	50
	95 80	-	5	-	-	-	-	2
Cymbals		-	20	-	Ξ	-	4	Į,
Medals	93	-	7	-	-	-	AG	ő
Statuary	91.4	5-5	1.4	-	1.7	/	S	-
e silver	58.1	17.2	-	11.6	-	-	2	II.I
white copper	40.4	25.4	2.6	31.6	-	-	-	-
bells	80	5.6	10.1	-	4-3	-	-	è
** *********	69	_	31	-	4-3	-	-	2
Musical bells	87.5	-	12.5	- 1	-	-	-	_
oells.,,,,,,,	72	-	26.5	- 1	-	-	-	1.5
n silver	33-3	33-4	_	33-3	-	-	-	_
**	40.4	25.4	-	31.6	-	-	- 1	2.6
46 fine		24	_	24	-	-	-	2.5
	49.5 81.6	-	18.4		-	_	_	
bells	77	-	23	- 1	-	-	. /	-
bushes	77 80	-	20	1111	-	25 25	Blamuth.	-
ery bearings	87.5	-	12.5	_	-	-	8	2.6
" hard.	77-4	7	15.6	_	_	_	#	_
that expands in)	11.4	'	-3.0		100	1.7	-	
ng	-	-	-		75	16.7	8.3	-
metal, 10 oz. lead.	60	40	_	_	12.11	224	201	3
, best	_	40	86		120	*4 = =	\equiv	E
	-	-	80		20	**	120	Ē
ing metal	56	40	-	5237	20		0.00	<
ım "	66	45	22	0.5	177	-		
	50	0.	20			_	-	15
pic mirrors	66.6	45 21			-		200	
**			33-4 66.6	11111111	7.7	12	HILLITIE	⁵ Arrenic.
otal and stores V	33-4		00.0	-		-	-	-
netal and stereo-	-	_	-	-	75 87.5	25	-	-
plates	77	-	-	-	87.5	12.5	-	1 -
metal	69.8	7.4	28.4	-	-	1 50.8	1 -	1
" hard	09.8	25.8	4-4	1 -	1 -	1 -	1 -	
	72		Mag	nesia	A.	4 Cre	to an	Cast
·······	73	12.3	Sal	mmon	iac . 2	5 Qu	icklin	91

e 636 for directions.

Solders.

	Copper.	Tin.	Lond.	Zinc.	Silver.	Bis- muth.	Gold.	Cad- minm.	Anti-	
Tin	-	25	75	_	-	-	-	-	-	1
**	-	58	16	Ξ	Ξ	16	-	-	10	١
at 5000	-	33	67	-	-	-	-	-	-	1
" ordi'y, melts)	-	67	33	-	-	-	-	-	-	1
Spelter, soft	50	=	-	50	-	-	-	-	-	1
" hard	65	-	-	35	-	-	_	-	-	1
Lead	-	33	67	-	-	-	-	-	-	ı
Steel	13			5	82	HEIL		_	-	,
Brass or Copper	50	\equiv	=	50	-	-0	=	-	-	ı
Fine brass	47	-	-	47	6	_	_	-	-	ı
'ewterers' or Soft.		33	45	-17	-	22	\equiv	- 1	ΨI	ľ
14 14	-	50	25	-	Ξ	25	_	_	-	ı
Plumbers' pot-1	-	33	67	_	-	-	-	-	-	ŀ
" coarse	-	25	75	-	-	-	-	-	~1	b
" fine	-	67	33	_	-	\equiv	Ξ	-	- 1	
" fusible	-	50	50	_	-	-	-	-	~ I	ľ
" very "	-	25	25	-	7	50	_	-	- 1	ı
dold	4	-	-	-	7	_	89	-	- 1	1
" hard	66		-	34	4	=		- 1	- 1	d
" BOIL	-	66	34		-	-	3	- 1	- 1	3
Silver, hard	20	-	-	-	80	-	- 1	-	- 1	П
" soft	12	-	-	-	67	-		21	- 1	
Pewter	-	40	20	-		40	_	-	- 1	
ron	66	200		33	=	7	Ξ	-	14	\$
Copper		47	=	-	-	\equiv		-	-1	Maria Ti

Minte

Cat

Lord,

E.S.

Boing

10.021

High

There Oct of wil.

B) doe

ting n

la la constante

hilev the hear

bets 16

are shar

DESIGN

Darity :

White

dird.

Bills & Y

A Plastic Metallic Alloy.—See Journal of Franklin Institute, vol. xxxix., pag 5 for its composition and manufacture.

Soldering Fluid for use with Soft Solder.

To 2 fluid oz. of Muriatic acid add small pieces of Zinc until bubbles cease to its Add .5 a teaspoonful of Sal-ammoniac and two fluid oz. of Water.

By the application of this to Iron or Steel, they may be soldered without their faces being previously tinned.

Fluxes for Soldering or Welding.

Iron	Borax.	Zinc	Chloride of zinc.
Tinned iron	Resin.	Lead	Tallow or resin.
Copper and Brass	Sal-ammoniac.	Lead and tin	Resin and sweet 64

Babbitt's Anti-attrition Metal.

Melt 4 lbs. Copper; add by degrees 12 lbs. best Banca tin, 8 lbs. Regulus mony, and 12 lbs. more of Tin. After 4 or 5 lbs. Tin have been added, reduce to a dull red, then add remainder of metal as above.

This composition is termed hardening; for lining, take 1 lb. of this harden melt with it 2 lbs. Banca tin, which produces the lining metal for use. proportions for lining metal are 4 lbs. of copper, 8 of regulus of antimony, of tin.

Brass.

Brass is an alloy of copper and zinc, in proportions varying with of metal required, its color depending upon the proportions.

It is rendered brittle by continued impacts, more malleable than when cold, but is impracticable of being forged, as its zine melts as

perature. fusibility is governed by its proportion of sine; a small qu us gives it fluidity.

Bronze.

nze is an alloy of copper and tin; it is harder, more fusible, and er than copper. It is usually known as Gun-metal.

ninum Bronze contains 90 to 95 per cent of copper, and 5 to 10 per

phor Bronze contains copper and tin and a small proportion of phos-

IRON.

eign substances which iron contains modify its essential proper-Carbon adds to its hardness, but destroys some of its qualities, roduces Cast Iron or Steel, according to proportion it contains. .25 per cent. renders it malleable, .5 steel, I.75 is limit of weldeel, and 2 is lowest limit of cast iron. Sulphur renders it fusible, It to weld, and brittle when heated, or "hot short." Phosphorus is it "cold short," but may be present in proportion of .002 to without affecting injuriously its tenacity. Antimony, Arsenic, and r have same effect as sulphur, the last in a greater degree. Silinders it hard and brittle. Manganese, in proportion of .02, rent "cold short," and Vanadium adds to its ductility.

Cast Iron.

cess of making Cast Iron depends much upon description of fuel used; er charcoal, coke, bituminous, or anthracite coals. A larger yield from furnace, and a great economy in fuel, are effected by use of a hot blast. reater heat thus produced causes the iron to combine with a larger tage of foreign substances.

t Iron for purposes requiring great strength should be smelted with blast. Pig-tron, according to proportion of carbon which it contains, ided into Foundry Iron and Forge Iron, latter adapted only to convertion malleable iron; while former, containing largest proportion of cartin be used either for castings or bars.

h temperature in melting injurcs gun-metal.

re are many varieties of Cast Iron, differing by almost insensible; the two principal divisions are gray and white, so termed from of their fracture. Their properties are very different.

y Iron is softer and less brittle than white; it is in a slight degree ble and flexible, and is insonorous; it can easily be drilled or turned, bes not resist the file. It has a brilliant fracture, of a gray, or some a bluish-gray, color; color is lighter as grain becomes closer, and its ess increases. It melts at a lower heat than white, and preserves its y longer. Color of the fluid metal is red, and deeper in proportion as rat is lower; it does not adhere to the ladle; it fills molds well, conless, and contains fewer cavities than white; edges of its castings arp, and surfaces smooth and convex. It is used for machinery and once where the pieces are to be bored or fitted. Its tenacity and specific y are diminished by annealing.

ite Iron is very brittle and sonorous; it resists file and chisel, and is tible of high polish; surface of its castings is concave; fracture we a silvery appearance, generally fine grained and compact, so ng or lamellar. When melted it is white, throws off a great, and its qualities are the reverse of those of gray iron; unitable for machinery purposes. Its tenacity is increased ravity diminished, by annealing.

. 77

Best quality of iron has greatest elasticity.

Tests.—It will not blacken if exposed to nitric acid. Long si a fracture denote a soft and strong metal; short black fibres de refined metal, and a fine grain denotes hardness and conditio "cold short." Coarse grain with bright and crystallized fractu colored spots, also denotes "cold short" and brittle metal, workin welding well. Cracks upon edges of a bar, etc., indicate "hot sl fron heats readily, is worked easily, and throws off but few sparl

A high breaking strain may not be conclusive as to quality, a due to a hard, elastic metal, or a low one may be due to great so

When iron is fractured suddenly, a crystalline surface is powhen gradually, a fibrous one. Breaking strain of iron is increating it and suddenly cooling it in water. Iron exposed to a weld heat and not reduced by hammering or rolling is weakened.

Specific gravity of iron is a good indication of its quality, as very correctly its relative degree of strength.

LEAD.

Sheet Lead is either Cast or Milled, the former in sheets x6 length and 6 feet in width; the latter is rolled, is thinner than is more uniform in its thickness, and is made into sheets 25 t length, and from 6 to 7.5 feet in width.

Soft or Rain Water, when aerated, Silt of rivers, Vegetable m Mortar, and Vitiated Air will oxidize lead. The waters whi greatest effect on it are the purest and most highly oxygenated, intrates, and chlorides, and those which act with least effect are tain carbonate and phosphate of lime.

Coating of Pipes, except with substances insoluble in water, and Sulphide of lead, is objectionable.

Lead-encased Pipes .- An inner pipe of tin is encased in one of

ed Steel, or Steel of Comentation, is prepared by direct combination of carbon. For this purpose, iron in bars is put in layers, alternating dered charcoal, in a close furnace, and exposed for 7 or 3 sinys to emperature, and then put to cool for a like period. The bars on ten out, are covered with blisters, have acquired a brittle quality, bit in fracture a uniform crystalline appearance. The degree of tion is varied according to purposes for which the steel is intended, very best qualities of iron are used for the finest kinds of steel.

Steel is made from blistered steel moderately heated and subjected of a tilt hammer, by which means its tenacity and ionsity are in-

Steel is made from blistered or natural steel, refined by pilling thin fagots, which are brought to a welding heat in a reverberatory and hammered or rolled again into bars; this operation is repeated mes to produce finest kinds of shear steel, which are distinguished tens of Half shear, Single shear, and Double shear, or steel of 1, 2 or etc., according to number of times it has been piled.

Steel is blister steel heated to an orange red color and rolled or d.

Crucible Steel is made by breaking blistered steel into small pieces ing it in close crucibles, from which it is poured into iron moids; hen reduced to a bar by hammering or rolling. Cast steel is best seel, and best adapted for most purposes; it is known by a very , and close grain, and a silvery, homogeneous fracture; it is very id acquires extreme hardness, but is difficult to weld without use to Other kinds of steel have a similar appearance to cast seel, but coarser and less homogeneous; they are softer and less brittle, and is readily. A fibrous or lamellar appearance in fracture indicates feet steel. A material of great toughness and elasticity, as well as is made by forging together steel and iron, forming the ceiebrated of Steel, which is used for sword-blades, springs, etc.; damask apof which is produced by a diluted acid, which gives a black tint to while the iron remains white.

ast steel, breaking strength is greater across fibres of rolling than

Process is an improvement on this method, and consists in adding to stal a small quantity of carburet of manganese.

s Process consists in adding nitrate of soda to molten pig-iron, in order to abon and silica.

 Process.—Malleable iron is melted in crucibles with exide of manganese cal.

d Steel is produced by arresting the puddling in the manufacture rought iron before all the carbon has been r-m ved, the small of carbon remaining, 3 to x per cent, being sufficient to make an teel.

Teel contains from .2 to .5 per cent. of carbon: when more is presermed Hard Steel.

er Steel is made direct from pig-iron. The carbon is first to moved, to obtain pure wrought iron, and to this is added the exact quantity a required for the steel. The pig should be free from subject

us. It is melted in a blast or cupola, and run into a come sed from vessel suspended on hollow trunnions and lined we clay), where it is subjected to an air blast for a period of the dispel the carbon, after which from 5 to 10 per cecuaded.

#! ! slag, and the carbon, combining with oxygen, escapes as carboni induces a powerful ebullition.

Modification of this process.—The ore is treated in a separate rotat with carbonaceous material, and converted into balls of malleable iro transferred from the rotatory to the bath of the steel-melting furnace.

This process is adapted to the production of steel of a very high qual the sulphur and phosphorus of the ore are separated from the metal in furnace

Siemen's - Martin Process.—Scrap-iron or steel is gradually a highly heated condition to a bath of about .25 its weight, of hig pig, and melted. Samples are occasionally taken from the bath, is ascertain the percentage of carbon remaining in the metal, and in small quantities, in order to reduce the carbon to about .1 per c

At this stage of the process, siliceous iron, spiegeleisen, or ferro-tiadded in such proportions as are necessary to produce steel of the degree of hardness. The metal is then tapped into a ladle.

Landore-Siemen's Steel is a variety of steel made by the Modification Siemen's Process. Its great value is due to its extreme ductilishaving nearly like strength in both directions of its plates.

Whitworth's Compressed Steel is molten steel subjected to a p about 6 tons per square inch, by which all its cavities are dispelle compressed to about .875 of its original volume, its density and sting proportionately increased.

Chrome and Tungsten Steel are made by adding a small per Chromium or Tungsten to crucible steel, the result producing great hardness and tenacity, suitable for tools, such as drills, etc.

Homogeneous Steel is a variety of cast steel containing .25 pe carbon.

the crystalline structure takes place entirely in cooling, between nd b; when temperature sinks below b there is no change of strucsful forging, therefore, heated ingot, after it is taken out of furnace, s quickly as practicable, so as not to leave any spot untouched by the steel might crystallize quietly, as formation of crystals should I the steel should be kept in an amorphous condition until temelow point b.

peraiure, if piece is cooled in quiet, mass will no longer be disposed t will possess great tenacity and homogeneousness of structure. forged at temperatures lower than b, its crystals or grains, being chother, change their shapes, becoming elongated in one direction, a another; while density and tensile strength are considerably inailable hammer-power is only sufficient for treatment of small steel eject of preventing coarse crystalline structure in large forgings and more certainly effected, if, after having given forging desired are be altered to an homogeneous amorphous condition by heating are somewhat higher than b, and the condition be fixed by rapid perature lower than b, the piece should then be allowed to finish it, so as to prevent, as far as practicable, internal strains due to unal contraction.

el with Silver, Platinum, Rhodium, and Aluminum have been iew to imitating Damascus steel, Wootz, etc., and improving ome finer kinds of surgical and other instruments.

'Steel.—After being tempered it is not easily broken; it welds ot crack or split; bears a very high heat, and preserves the ordening after repeated working.

nd Tempering.—Upon these operations the quality of manu-1 a great measure depends.

effected by heating steel to a cherry-red, or until scales of red on surface, and plunging it into a cooling liquid; degree pends upon heat and rapidity of cooling. Steel is thus renas to resist files, and it becomes at same time extremely e of heat, and temperature and nature of cooling medium, with reference to quality of steel and purpose for which it old water gives a greater hardness than oils or like subvet-iron scales, or cinders, but an inferior degree of hardness y acids. Oil, tallow, etc., prevent cracks caused by too rapid r the heat at which steel becomes hard, the better.

-Steel in its hardest state being too brittle for most purposes, rength and elasticity are obtained by tempering—or "letting ·"—which is performed by heating hardened steel to a certain ing it quickly. Requisite heat is usually ascertained by color of the steel assumes from film of oxide thus formed. Degrees h these several colors correspond are as follows:

nt yellow. (Suitable for hard instruments; as hammer-faces, where color...)

drills, lancets, razors, etc.

for instruments requiring hard edges without elasticitolor...

ty; as shears, scissors, turning tools, penknives, etc.

with purple

for tools for cutting wood and soft metals; such as plane-irons, saws, knives, etc.

ue...

for tools requiring strong edhardness; as cold-chisels, a blue, verg

for spring-temper, which will as saws, sword-blades, etc.

ted to a higher temperature than this, & ved.

ig strain may not be conclusive as to c stic metal, or a low one may be due to s Tim is more readily fused than any other metal, and oxidizes ve Its purity is tested by its extreme brittleness at high temperatur Tim plate is iron plate coated with tim.

Block Tin is tin plate with an additional coating of tin.

ZINC.

Zinc, if pure, is malleable at 220°; at higher temperatures, such it becomes brittle. It is readily acted upon by moist air, and whof oxide is formed, it protects the surface from further action. We ever, the air is acid, as from the sea or large towns, it is readily or destruction.

Iron, Copper, Lead, and Soot are very destructive of it, in conset the voltaic action generated, and it should not be in contact with ϵ water or acid woods.

The best quality, as that known as "Vielle Montagne," is compos. 995, iron .004, and lead .007. Its expansion and contraction by d of temperature is in excess of that of any other metal.

STRENGTH OF MODELS.

The forces to which Models are subjected are,

1. To-draw them asunder by tensile stress. 2. To break them verse stress. 3. To crush them by compression.

sistance in a model to crushing increases directly as its dimensions; is stress increases as cubes of dimensions, a model is stronger than the ture, inversely as the squares of their comparative magnitudes.

ence, greatest magnitude of a structure is ascertained by taking square of quotient, as obtained by preceding rule, instead of quotient itself.

AMPLE.—If greatest weight which a column in a model can sustain is 26 lbs., t is required to bear only 4 lbs.; height of column being 18 ins., what should light of it in structure?

$$\binom{26}{4}$$
 = $\sqrt{6.5}$ = 2.55, and 2.55 \times 18 = 45.9 ins., height of column in structure.

when length or height and breadth are retained, and it is required to to the beam, etc., such a thickness or depth that it will not break in conence of its increased dimensions,

$$\ln\sqrt{\left(\frac{26}{4}\right)} = \sqrt{6.5} = 2.55$$
, which, \times square of relative size of model = thick-required.

Compute Resistance of a Bridge from a Model.

$$n^2\,\mathbb{V}-\left[rac{n^2}{2}\left(n-\mathrm{i}
ight)w
ight] \equiv load\ bridge\ will\ bear\ in\ its\ centre.$$

AMPLE.—If length of the platform of a model between centres of its repose the piers is 12 feet, its weight 30 lbs., and the weight it will just sustain at its 9 350 lbs., the comparative magnitudes of model and bridge as 20, and actual 1 of bridge 240 feet; what weight will bridge sustain?

$$20^2 \times 350 - \left[\frac{400}{2} \times (20 - 1) \times 30\right] = 140000 - 3800 \times 30 = 26000 lbs.$$

MOTION OF BODIES IN FLUIDS.

a body move through a fluid at rest, or fluid move against body at resistance of fluid against body is as square of velocity and density iid; that is, $\mathbf{R} = d \, v^2$. For resistance is as quantity of matter or cles struck, and velocity with which they are struck. But quanrumber of particles struck in any time are as velocity and density aid; therefore, resistance of a fluid is as density and square of ity.

= h, and $\frac{a d v^2}{2g}$ = R. h representing height due to velocity, d density of fluid, b resistance or motive force.

sistance to a plane is as plane is greater or less, and therefore resistance plane is as its area, density of medium, and square of velocity; that is, $a d v^2$.

otion is not perpendicular, but oblique, to plane or to face of body in any, sine of which is s to radius r; then resistance to plane, or force of against plane, in direction of motion, will be diminished in triplicate of radius to sine of angle of inclination, or in ratio of 1 to s³.

ce,
$$\frac{a d v^2 s^3}{2 g}$$
 = R, and $\frac{a d v^2 s^3}{2 g w}$ = F. w representing weight of in force.

gression of a solid floating body, as a boat in a channel is to a displacement of water surface, which advances in direction of body, and this undulation is termed, at.

Resistance of a fluid to progression of a floating body increases as reloot of body attains velocity of wave of displacement, and it is greatest when two velocities are equal.

In the motion of elastic fluids, it appears from experiments that oblinaction produces nearly same effect as in motion of water, in the passaged curvatures, apertures, etc.

Resistance to an Area of One Sq. Foot moving through Water, or Contrariwise.

245

with

X

lu

C = R

Angle of Surface with Plane of	Pressu	re per 8q.) cities per F	hat for follo oot per Mis	owing Ve-	Angle of Surface with Plane of	Pressur	per Sq. F	out for fall out per Mi	lowing Fo	I
Current.	120	240	480	900	Current.	120	240	480	1 53	Ł
0	Lbs	Lbs.	Lbs.	Lbs.	0	Lbs.	Lbs.	Lbs.	Lbi	ľ
6	.09	-359	1.435	5.046	45	2.66	10.639	42.557	240.54	ı
8	.133	∙53	2.122	7-459	50	2.995	11.981	47-923	1024	ı
9	.156	.624	2.496	8.775	55	3-249	12.995	51.979	182.79	ı
10	.179	.718	2.87	10.091	60	3-455	13.822	55.286	194.52	ŧ.
15	·355	1 42	5.678	19.963	65	3.607	14-43	57-72	202/部	г
20	.608	2.434	9.734	34.222	70	3.728	14.914	59.654	20974	ı
25	94	3 76	15.038	52.869	75 80	3.81	15.241	60.965	214円	ı
30	1.353	5 413	21.653	76.123		3.857	15.428	61.714	210年	H
35	1.798	7.192	28.766	101.132	85	3.892	15.569	62.275	218.0	ı
40	2.258	0 032	36.13	127.018	90	3-0	15.6	62.4	219.5	н

Resistance to a plane, from a fluid acting in a direction perpendicular its face, is equal to weight of a column of fluid, base of which is plane at altitude equal to that which is due to velocity of the motion, or thread which a heavy body must fall to acquire that velocity.

Resistance to a plane running through a fluid is same as force of fluid in motion with same velocity on plane at rest. But force of fluid in motion equal to weight or pressure which generates that motion, and this is equal weight or pressure of a column of fluid, base of which is area of the plane and its altitude that which is due to velocity.

ILLUSTRATION.—If a plane 1 foot square be moved through water at rate of pullete per second, then $\frac{32.166^2}{64.333} = 16.083$, space a body would require to fall to acquire a velocity of 32.166 feet per second; therefore 1 × 62.5 (weight of a cube fast d water) × $\frac{32.166^2}{64.333} = 1005$ lbs. = resistance of plane.

Resistance of different Figures at different Velocities Air.

Veloci- ty per Second.	Vertex.		Sphere.	Cylin- der.	Hemi- sphere. Round.	Veloci- ty per Second.	Co Vertex.	ne. Base.	Sphere.	Cylin- der.	是是
Feet.	Oz.	Oz,	Oz.	Oz.	Oz.	Feet.	Oz.	Oz.	Oz.	Oz.	Die
3	.028	.064	+027	.05	.02	12	-376	.85	-37	.826	10
4	.048	100	.047	.00	.039	14	.512	1.166	-505	T.145	-47
5	.071	162	.068	.143	,063	15	.589	1.346	.581	1.327	-52
5	.168	382	.162	+36	.16	16	.673	1.546	.663	1.526	學
9	.211	.478	.205	-456	.199	18	.858	2.002	.848	1.086	,818
10	.26	. 587	.255	.565	1242	20	1.069	2.54	1.057	2,528	LOU

Diame

all the figures was 6.375 ins., and altitude of the cone 6.625 ins. cone and its axis is, consequently, 25° 42° nearly.

s, several practical inferences may be drawn.

3 is nearly as surface, increasing but a very little or reater surfaces.

2. Resistance to same surface is nearly as square of velocity, but graduly increasing more and more above that proportion as velocity increases.

3. When after parts of bodies are of different forms, resistances are differ-It though fore parts be alike.

4. The resistance on base* of a cone is to that on vertex nearly as 2.3 to And in same ratio is radius to sine of angle of inclination of side of cone its path or axis. So that, in this instance, resistance is directly as sine angle of incidence, transverse section being same, instead of square of sine. Resistance on base of a hemisphere is to that on convex side nearly as to I, instead of 2 to I, as theory assigns the proportion.

Sphere.—Resistance to a sphere moving through a fluid is but half reance to its great circle, or to end of a cylinder of same diameter, moving h an equal velocity, being half of that of a cylinder of same diameter.

$$\sqrt{2g \times \frac{4}{3} d \times \frac{N-n}{n}} = V$$
. d representing diameter of sphere, and N and n spe-
gravities of sphere and resisting fluid.

 $\times \stackrel{4}{-} d = S$. S representing space through which a sphere passes while acquir-Its maximum velocity, in falling through a resisting fluid.

LUSTRATION.—If a ball of lead r inch in diameter, specific gravity 11.33, be set in water, specific gravity r, what is greatest velocity it will attain in descendand what space will it describe in attaining this velocity?

$$g = 32.166$$
, $d = \frac{1}{12}$ foot, $N = 11.33$, and $n = 1$.

Then
$$\sqrt{2 \times 32.166 \times \frac{4}{3}}$$
 of $\frac{1}{12} \times \frac{11.33 - 1}{1} = \sqrt{7.148 \times 10.33} =$

Then
$$\sqrt{2 \times 32.166 \times \frac{4}{3}}$$
 of $\frac{1}{12} \times \frac{11.33 - 1}{1} = \sqrt{7.148 \times 10.33} =$

Eence, $\frac{11.33}{1} \times \frac{4}{3}$ of $\frac{1}{12} = 1.259$ feet. $\frac{3 \pi v^2}{8 g N d} = f = retardive$ force $= \frac{v^2}{2 g s}$.

Tylinder. $\frac{n a v^2}{2 a} = R$, and $\frac{n a v^2}{2 a u} = f$. a representing area or $p r^2$, and peight or body.

LLUSTRATION.—Assume a = 32 sq. feet, v = 10 feet per second, and n = .0012.

Then
$$\frac{.0012 \times 32 \times 10^2}{64.33} = .06$$
 of a cube foot of water = .06 of 62.5 = 3.75 lbs.

Onical Surface.
$$\frac{n a v^2 s^3}{2 g} = R, \text{ also } \frac{n p d^2 v^2 s^2}{8 g} = R, \text{ and } \frac{n p d^2 v^2 s^2}{8 g w}$$

F. s representing sine of inclination, and a convex surface of cone.

Surved End as a Sphere or Hemispherical End. pnv2d2

R, and Circle .5 of spherical end.

n general, when n is to water as a standard, result is in cube feet of water, if \blacksquare in sq. feet; and in cube ins. of water, if a is in sq. ins., v in ins., and g in ins.

In is given in lbs. in a cube foot, a is in sq. feet, v and g are in feet, result is in lbs.

O Compute Altitude of a Column of Air, Pressure of Which shall be equal to Resistance of a Bothrough it, with any Velocity.

 $\times \frac{r}{a} = x =$ altitude in feet. a x =volume of column in feet, a x =

Nences. a representing area of section of body, similar to an Car to direction of motion, r resistance to velocity in table, an column of air, dase of which is a, and pressure r.

its is a refutation of the popular assertion that a taper spar can be towed in e is foremost.

When $a = \frac{2}{r}$ of a foot, as in all figures in table, x becomes $\frac{15}{r}$ when r = 0sistance in table to similar body.

ILLUSTRATION .- Assume convex face of hemisphere resistance = .64 of alan locity of 16 feet per second.

Then r = .634, and $x = \frac{15}{r} = 2.3775$ feet = altitude of column of air, press which = resistance to a spherical surface at a velocity of 16 feet

To Compute when Pressure of Air in rear of a Projection is Inferior to Pressure due to its Velocity.

Assume height of barometer = 2.5 feet, and weight of atmosphere = 11; 12 Weight of cube inch of mercury = $\frac{14.7}{30}$ = .49 lbs., and weight of cube inch did

= .000 043 57 lbs.; hence, .49 ÷ .000 043 57 = 11 246, which × 2.5 feet = 28115 Then $\sqrt{16.08}$: $\sqrt{28115}$:: 32.16: x, and $x = \frac{32.16 \times \sqrt{28115}}{\sqrt{16}} = 1341.6$ feel.

To Compute Velocity with which a Plane Surface mu be projected to generate a Resistance just equal Pressure of Atmosphere upon it.

By table, resistance on a circle with an area of .222 sq. foot (2 + 9) = .051 01. velocity of 3 feet per second. Hence 32: 12::.051:.0056 oz. at a velocity of 1 and $1 \times 144 \times 14.7 \times 16 \times 2 \div 9 = 7526.4$ oz. Hence, $\sqrt{.0056} : \sqrt{.7526.4} : 1 : 11668$

To Compute Velocity lost by a Projectile. If a body is projected with any velocity in a medium of same density with and it describes a space = 3 of its diameters,

Then
$$x = 3 d$$
, and $b = \frac{3 n}{8 N d} = \frac{3}{8 d}$.

Hence, $b = \frac{9}{8}$, and $\frac{e^{bx-1}}{e^{bx}} = \frac{2.08}{3.08} = \text{velocity lost nearly .66 of projectile mix}$

c= base of Nap. system of log.; hence $c^bx=$ number corresponding to Nap bx. Hence, if $bx \times .4343$, result = com. log. of c^bx .

 $b = \frac{9}{6} = 1.125$, which $\times .4343 = .4885875$, and number to this com. $\log = 3$

Hence, velocity lost = $\frac{3.0803 - 1}{3.0803} = \frac{2.08}{3.08}$

ILLUSTRATION .- If an iron ball 2 ins. diam. were projected with a velocity of feet per second, what would be velocity lost after moving through 500 feet of a

$$d = \frac{2}{10} = \frac{1}{6}$$
, $x = 5\infty$, $N = 7\frac{1}{9}$, and $n = .0012$.

$$d = \frac{2}{12} = \frac{1}{6}, \quad x = 500, \quad N = 7\frac{1}{8}, \text{ and } n = .0012.$$
Hence, $b = \frac{3}{8} \frac{n}{N} \frac{x}{d} = \frac{3 \times 12 \times 500 \times 3 \times 6}{8 \times 21 \times 10000} = \frac{81}{440}, \text{ and } v = \frac{1200}{6 \cdot \frac{81}{10}} = 99^{\frac{5}{2}} \int_{0}^{10} \int_{0}^{10} \frac{1}{1000} \frac{1$

second, having lost 202 feet, or nearly if of its initial velocity.

 $\frac{12}{10000}$ = .0012, $\frac{3}{22}$ and $\frac{6}{1000}$ = $\frac{22}{3}$ and $\frac{1}{6}$ inverted, because N and n are in denominator.

To Compute Time and Velocity.
$$\frac{1}{b} \left(\frac{1}{v} - \frac{i}{a} \right) = time$$
, $\frac{3}{8} \frac{n}{N} = b$, and $\frac{a}{cb \, x} = v$.

ILLUSTRATION. - If an iron ball 2 ins. in diameter were projected in air will 1 locity of 1200 feet per second, in what time would it pass over 1500 feet, and the its velocity at end of that time?

$$b = \frac{3 \times 12 \times 3 \times 6}{8 \times 22 \times 10000} = \frac{1}{2716}, \text{ and } b = \frac{1500}{2716}; \text{ hence } \frac{1}{b} = \frac{2716}{1}; \frac{1}{a} = \frac{1}{1200}$$

$$th = \frac{cb\pi}{a} = \frac{1.7372}{1200} = \frac{1}{690} \text{ nearly.} \quad \therefore v = 690 \text{ and } t = 2716 \times \left(\frac{1}{690} - \frac{1}{1200}\right) = 100$$

NAVAL ARCHITECTURE.

sults of Experiments upon Form of Vessels.
(Wm. Bland.)

ibical Models. Head Resistance.—Increases directly with area surface. Weight Resistance.—Increases directly as weight.

essels' Models. Lateral Resistance.—About one twelfth of h of body immersed, varying with speed.

der of Superiority of Amidship Section.—Rectangle, Semicircular, 3e, and Triangle.

ntre of lateral resistance moves forward as model progresses. ntre of gravity has no influence upon centre of lateral resistance.

Relative Speeds.

**igth.—Increased length gives increased speed or less resistance.
**oth of Flotation.—Less depth of immersion of a vessel, less the resistance.
**idship Section.—Curved sections give higher speed than angled.

les.—Slight horizontal curves present less resistance than right lines, ad sides with one fourth more beam give equal speeds with straight of less beam. Keel.—Length of keel has greater effect than depth.

—Parallel-sided after bodies give greater speed than taper-sided.

FORM OF BOW.	Order of Speed.
les triangle, sides slightly convex	1
" right lines	2
" slightly concave at entrance and running convex	3

herical equilateral triangle compared to Equilateral triangle, speed is to 12. Equilateral triangle, with its isosceles sides bevelled off at an of 45°, compared to bow with vertical sides, is as 5 to 4.

1en bow has an angle of 14° with plane of keel, compared with one of 3 speed is greater.

Bodies Inclined Upwards from Amidship Section.

Model with bow inclined from \boxtimes , has less resistance than model withny inclination.

Model with stern inclined from \boxtimes , has less resistance than model withny inclination.

del 1 had less resistance than model 2. Model with both bow and inclined from \bigotimes , has less resistance than either 1 or 2.

Stability.

ults of Experiments upon Stability of Rectangular locks of Wood of Uniform Length and Depth, but f Different Breadths. (Wm. Bland.)

Length 15, Depth 2, and Depression 1 inch.

	I	1			
idth.	Weight.	As Observed.	With like Weights.	By Squares of Breadth.	By Cubes of Breadth.
g. /	0z. 24 35 45 55	1 2.5 7 11	2.4 3.7 4.8	1 2.25 4 6.25	3.375 8 15.625

Hence it appears that rectangular and homogeneous bodies of a mile length, depth, weight, and immersion in a fluid, but of different breadths. stability for uniform depressions at their sides (heeling) nearly as of their breadth; and that, when weights are directly as their bread their stability under like circumstances is nearly as cubes of their break

With equal lengths, ratio of stability is at its limit of rapid increase width is one third of length, being nearly in cube ratio; afterwards proaches to arithmetic ratio.

Results of Experiments upon Stability and Speci Models having Amidship Sections of different For but Uniform Length, Breadth, and Weights. (W.I

Immersion different, depending upon Form of Section.

FORM OF IMMERSED SECTION.	Stability.	9
Half-depth triangle, other half rectangle	12	
Rectangle	14	
Right-angled triangle *	1 7 1	
Semicircle	1 0 1	

* Draught of water or immersion double that of rectangle.

Statical Stability is moment of force which a body in flotation ex attain its normal position or that of equilibrium, it having been de from it, and it is equal to product of weight of fluid displaced and hori distances between the two centres of gravity of body and of displacement it is product of weight of displacement, height of Meta-centre. and 8 angle of inclination.

Dynamical Stability is amount of mechanical work necessary to de body in flotation from its normal position or that of equilibrium, and equal to product of sum of vertical distances through which centre of ity of body ascends and centre of buovancy descends, in moving from tical to inclined position by weight of body or displacement.

To Determine Measure of Stability of Hull of a Ve or Floating Body .- Fig. 1.

Measure of stability of a floating body depends essentially upon horizont tance, Gs, of meta-centre of body from of gravity of body; and it is product of of the water, or resistance to displaceme it, acting upward, and distance of G s. o G s. If distance, c M, represented by angle of rolling, c M r, by Mo, measure bility, or S is determined by Pr, sin. M and this is therefore greater, the great weight of body, the greater distance of centre from centre of gravity of body. an greater the angle of inclination of this c Mr.

Assume figure to represent transverse section of hull of a vessel, G cent rravity of hull, w l water-line, and c centre of buoyancy or of displacement orsed hull in position of equilibrium. Conceive vessel to be heeled or in so that ef becomes water-line, and s centre of buoyancy; produce ; y is meta-centre of hull of vessel.

meta-centre depends upon position of centre of buoyancy, for it is that point i irawn from centre intersects a line passing through centre of gravity of bull of to plane of keel.

"tre may be the same, or it may differ slightly for different angles of heling to ascertain position of meta-centre should be greatest which, under order hable occurrence; in different vessels thit angle ranges from 20° to 60°.

re centre of gravity, equilibriam is Stable; if it coincides with it, equil s below it, equilibriam is Unstable.

radice Stability of different hulls of vessels is proportionate to the distance or same angles of heeling, or of distance & s. Oscillations of hull of a vesbe resolved into a rolling about its longitudinal axis, pitching about its se axis, and vertical pitching, consisting in rising and sinking below and sittion of equilibrium.

isverse section of hull of a vessel is such that, when vessel heels, level of f gravity is not altered, then its rolling will be about a permanent longitistic traversing its centre of gravity, and it will not be accompanied by any oscillations or pitchings, and moment of its inertia will be constant while But if, when hull heels, level of its centre of gravity is altered, then axis hich it rolls becomes an instantaneous one, and moment of its inertia will it rolls; and rolling must then necessarily be accompanied by vertical os-

scillations tend to strain a vessel and her spars, and it is desirable, therefore, severse section of hull should be such that centre of its gravity should not it rolls, a condition which is always secured if all water-lines, as wt and ef, ents to a common sphere described about G; or, in other words, if point of ersections, o, with vertical plane of keel, is always equidistant from centre v of hull.

To Compute Statical Stability.

sin. M = S. D representing displacement, M angle of inclination, and S

TRATION I.—Assume a ship weighing 6000 tons is heeled to an angle of 9° , c = 3 feet,

c = 3 leet, $\sin . 9^\circ = .1564$. Then $6000 \times 3 \times .1564 = 2815.2$ foot-tons. eight of a floating body is 5515 lbs., distance between its centre of gravity

2-centre is 11.32 feet, and angle $M = 20^{\circ}$. = .342 o2. Hence 5515 × 11.32 × 342 o2 = 21 352.24 foot-lbs.

Statical Surface Stability.

ent of Statical surface stability at any angle is cz D. Assuming of gravity of vessel coincided with c; coefficient of a vessel's stability angle of heel is expressed when the displacement is multiplied by height of the meta-centre for given angle of heel above centre of , or D c M.

oximately. Rule.—Divide moment of inertia of plane of flotation ight position, relatively to middle line by volume of displacement; itient multiplied by sine of angle of heel will give result.

root of Length of Vessel, 2 (B3 sin. M). B representing half breadth.

Dynamical Surface Stability.

ent of Dynamical surface stability is expressed by product of weight 1 or displacement and depression of centre of buoyancy during the ion, that is, for angle M.

o Compute Dynamical Stability of a Vessel. oximately. RULE.—Multiply displacement by height of meta-centre entre of gravity, and product by versed sine of angle of heel.

ultiply statical stability for given angle by tangent of .5 angle of heel.

mpute Elements of Stability of a Floating Body.

Note.—When centre of gravity, G, is below that of displacement, c, then cb-when it is above c it is —; and when it coincides with c it is c; or c is —the $\langle s \rangle$; and a body will roll over when $e \sin M = \text{or } > s$.

Assumed elements of figure illustrated are A = 86, A' = 21.5, b = 21.5, and t=5

The deduced arc s = 3.7, c = 3.87, g = 10.82, a = 14.9, and r = 11.32 by senting breadth at water-line or beam in feet, and P weight or displacement in

Then
$$s = \frac{21.5}{80} \times 14.9 = 3.7$$
 feet, $r = \frac{3.87}{.34202} = 11.32$ feet, $e = r - g$, $g = \frac{13}{342} = 10.82$ feet, $c = .34202 \times 11.32 = 3.87$ feet.

Of Hull of a Vessel.
$$\left(\frac{b^3}{10.7 \text{ to } 13^*\text{A}} \pm e\right) P$$
, sin. $M = S$; $d \cos .5 M = b^3 \frac{1}{10.7 \text{ to } 13 (11.93) A} = g$, $\frac{1}{\sin . M} \left(\frac{S}{P} - s\right) = \pm e$; $P\left(\frac{ba}{A} + \overline{e \sin . M}\right) = S$; $a \cos .5 M = b^3$

P (s \pm e \sin, M) = S. d representing depth of centre of gravity of displacement der water in equilibrium, and d' depth when out of equilibrium, both in fed.

ILLUSTRATION I.—Displacement of a vessel is 10 000 000 lbs.; breadth of besteet, area of immersed section, 800 8q. feet; vertical distance from centre of buoyancy or displacement, 1.9 feet, and horizontatance a between centres of gravity of areas immersed and emerged, when can to an angle of 9° 10' = 33.4 feet, immersed area being 50 sq. feet.

Sin. 9° 10′=.1593. Then
$$s = \frac{50}{800} \times 33.4 = 2.0875$$
 feet, $800 \times 2.0875 = 50 \times 10^{-1}$

Sin. 9° 10′ = .1593. Then
$$s = \frac{50}{800} \times 33.4 = 2.0875$$
 feet, $800 \times 2.0875 = 50 \times 10^{-2}$ $t = \frac{2.39}{.1593} = 15$ feet. $g = \frac{50^3}{11.93 \times 800} = 13.1$ feet, $S = \left(\frac{50^3}{11.93 \times 800}\right) + 10000000 \times .1593 = 23905396$ lbs., and $e = \frac{1}{.1593} \left(\frac{23905396}{10000000} - 2.0875\right) = 18$

$$10000000 \times .1593 = 23905396$$
 lbs., and $e = \frac{1}{.1593} \left(\frac{23905396}{10000000} - 2.0875 \right) = 18$

2.—Assume a ship having a displacement of 5000 tons, and a height of metal of 3.25 feet, to be careened to 6° 12′. What is her statical stability?

3.-Assume a weight, W, of 50 tons to be placed upon her spar deck, have common centre of gravity of 15 feet above her load-line,

Then
$$5000 \times 3.25 - 50 + 15 \times .1079 = 1747.36$$
 foot-tons.

4. - Assume 100 tons of water ballast to be admitted to her tanks at a com centre of gravity of 15 feet below her load-line,

5.- Assume her masts, weighing 6 tons, to be cut down 20 feet.

Then
$$\frac{10 \times 20}{5000} = \frac{2}{50}$$
 foot = fall of centre of gravity, and $5000 \times \left(3.25 + \frac{2}{50}\right) \times 3$
= 1774-05 tons.

To Compute Elements of Power, etc., required Careen a Body or Vessel.

Sin. M
$$(h - \overline{n} \sin M) + \overline{n} \sec M - s = l$$
. $\frac{b^3}{10.7 \cdot 10^{13}} \frac{3}{64.125 \cdot L} \frac{P}{A} = 10$

Wlr = Pc, and Wl = S. W representing weight or power exerted as at which weight or power acts to careen body, taken from centre of gravity ment perpendicular to careening force, h vertical height from centre of gravity placement to centre of weight or power to careen body when it is in on horizontal distance from centre of vessel to centre of weight or power. vessel, m meta-centre, and S as in preceding case, all in feet.

TRATION.—A weight is placed upon deck of a vessel at a mean height of 3.87 m centre line of hull; height at which it is placed is 11.32, and other elesi in first case given.

 $20^{\circ} = .342$. Then h = 11.32, m = 3.87, and $l = .342 (11.3 - 3.87 \times .342) + ...$

 $\overline{1.0642} - 3.7 = .342 \times 10 + 4.12 - 3.7 = 3.84$ feet.

me W = 5515. Then 5515 \times 3.84 = 21 187.6 foot-lbs.

(w cos. $M + h \sin M$) = S. w representing distance of weight from centre of and h height of w above water-line, both in feet.

STRATION.—If a weight of 30 tons placed at 20 feet from centre of hull or 0 feet above water-line, careens it to an angle of $2^{\circ}9'$, what is its stability?

cos. $2^{\circ}9' = .9993$; sin. $2^{\circ}9' = .0375$.

 $30(20 \times .9993 + 10 \times .0375) = 30 \times 20.361 = 610.83$ foot-tons.

om and Immersed Surface of Hull of Vessels. o Compute Bottom and Side Surface of Hull.

om and Side. Rule.—Multiply length of curve of amidship section, from top of tonnage or main deck beams upon one side to same point ther (omitting width of keel), by mean of lengths of keel and beperpendiculars in feet, multiply product by .85 or .9 (according to the ty of vessel), and product will give surface required in sq. feet.

PLE.—Lengths of a steamer are as follows: keel 201 feet, and between perlars 210 feet, curved surface of amidship section 76 feet; what is surface?

cient .87. $210+201 \div 2 = 205.5$, and $76 \times 205.5 \times .87 = 13587$ sq. feet. .—Exact surface as measured was 13650 sq. feet.

om Surface. Rule.—Multiply length of hull at load-line by its 1, and this product by depth of immersion (omitting the depth of n feet; and this product multiplied by from .o7 to .08 (according to y of vessel) will give surface required in sq. feet.

PLE.—Length upon load-line of a vessel is 310 feet, beam 40 feet, depth of oot, and draught of water 20 feet; what is bottom or wet surface?

Coefficient assumed .073. 310 \times 40 \times 20 - 1 \times .073 = 17 199 89. feet.

Compute Resistance to Wet Surface of Hull. ²=R. C representing a coefficient of resistance, a area of wet surface in sq. d v velocity of hull in feet per second.

lues of C, {.007, clean copper.

.014, iron plate.

.019, iron plate, moderately foul.

r required to propel one sq. foot of immersed a midship section at \boxtimes is .073 smooth wet surface.

To Compute Elements of a Vessel.

Displacement and its Centre of Gravity.

clacement of a vessel is volume of her body below water-line.

're of Gravity, or Centre of Buoyancy of Displacement, is centre of y of water displaced by hull of vessel.

Displacement. Rule.—Divide vessel, on half breadth plan, into a r of equidistant sections, as one, two, or more frames, commencing and running each side of it. Add together lengths of these lines in ore and aft bodies, except first and last, by Simpson's rule for areas age 344); multiply sum of products by one third distance between is, and product will give area of water-line between fore and aft-sections.

compute areas contained in sections forward and aft of sections taken. instern and rudder-post, rudder and stem, and add sum to area of body-seclready ascertained.*

^{*} To Compute Area of a Water-line, see Mensuration of Surfaces, page-344-

Compute area of remaining water-lines in like manner. Tabulate re multiply them by Simpson's rule in like manner as for a water-line, and consecutive number of water-lines, and sum of products between water product will give volume between load and lower water-line.

Add area of lower water-line to area of upper surface of keel; multiply by distance between them, and product will give volume; then compute tained in sections forward and aft of sections taken as before directed.

If keel is not parallel to lower water-line, take average of distance between

Compute volume of keel, rudder-post and rudder below water-line; add already ascertained; multiply product by two, for full breadth, and p give volume required in cube feet, all dimensions being taken in feet.

Figs. 2 al Distant sections. of simpl

example, at to fee frames a

ins. apart, and two or more included in a section. Water-lines 2 feet ap

	1st Wat	er-lin	e.	100	2d Wa	ter-l	ine.			3d W	ater	ł
4 3 2 1 0 A B C D	5 7.7 × 9.5 × 9.9 × 9.6 × 7.8 × 6.8 × 4	4 2 4 4 2 4 4 2 4	= 5 = 30.8 = 19 = 39.6 = 20 = 38.4 = 15.6 = 27.2 = 4	4 3 2 1 0 A B C D	2.7 6.9 × 8.7 × 9.5 × 9.6 × 7 × 5 ×	4 2 4 2 4	THE PROPERTY	2.7 27.6 17.4 38 19.2 36 14 20 2	4 3 2 1 0 A B C D	1.5 5.6 8.7 8.9 7.6 7	××××××	A 34 W 30 W 30 W
	10-	-3	= 35		10	÷3	=	176.9 31	10	- 1	o÷	
For	ft section or and pos ward sec ad stem .	tion	D 25	For	ft section for and poward second for second second for second second for second for second for second for section for section for section for and poward second for section for and poward second for section for second poward second for second poward second poward second for second poward second poward second for second poward second poward second for second poward second poward second poward second for second poward second poward second poward second for second poward second poward second poward second for second poward second poward second poward second for second poward second poward second poward second for second poward second poward second poward second poward second for second poward second poward second poward second poward second poward second for second poward secon	ction	D	589.7 13.2 9.1 612	For	ft secti er and p ward s and ster	post	
	4th Wa	ter-li1	ne.	ı								

	4th Wat	er-l	ine.			
4 3 2 1	-7 2 X 4-3 X 6.5 X 6.8 X	4 2 4 2		8.6 26 13.6		
A B C D	5 X 3.6 X .9 X	4 2 4		7.2 3.6		
	10-	Ī	=	88 33 293.3		
ection 4, rud-						

d post section D

Keel.

Half breadth = .25 × length of o8 feet: Rudder-post and rudder.....

Repults.

Results.

 1st water-line 711
 711

 2d
 612

$$\times$$
 4 = 2448
 \times 1 = 2

 3d
 495.4
 \times 2 = 990.8
 \times 2 = 1

 4th
 297.3
 \times 4 = 1189.2
 \times 3 = 3

 Keel
 24.8
 24.8
 \times 4 = 5363.8

3/10727.6

Displacement, 3575-9 $\times 2 = 7$

To Compute Centre of Gravity of Displacement.

TILE.—Divide sum of products obtained as above, by consecutive water-> by sum of products obtained in column of products by Simpson's mulers, and quotient, multiplied by distance between water-lines, will give In of centre below load water-line.

ELUSTRATION I. 8006.4, from above, $\div 5363.8 = 1.5$, which $\times 2 = 3$ feet.

EUSTRATION I. 8090.4, From above,
$$+5303.8 = 1.5$$
, which $\times 2 = 3$ lees.

$$\frac{n}{2\left(2 - \frac{D}{an}\right)} = d.$$

n representing draught of water exclusive of any drag of

, a area of immersed surface of hull in sq. feet, and D displacement in cube feet.

-Assume draught of water 8 feet, displacement 7152 cube feet, and area of imsed surface of hull 1100 sq. feet.

Then
$$\frac{8}{2\left(2-\frac{7152}{1100\times8}\right)} = \frac{8}{2\times1.187} = 3.37$$
 feet.

To Compute Displacement Approximately.

Sofficient of Displacement of a vessel is ratio that volume of displacement rs to parallelopipedon circumscribing immersed body.

RD = C. V representing volume of displacement in cube feet, L length at imsed water-line, B extreme breadth, and D draught in depth of immersion, both

Soefficient of Area of Amidship Section in Plane of a Water-line is ratio ach their areas bear to that of circumscribing rectangle.

representing length of water-line, and D distance between water-lines, both in feet.

Coefficients, (By S. M. Pook, Constructor U. S. Navy.)

SULE,—Multiply length of vessel at load-line by breadth, and product by The (from load-line to under side of garboard-strake) in feet, and this I duct by coefficient for vessel as follows: divide by 35 for salt water, 36 fresh water, and quotient will give displacement in tons.

midship sections range from .7 to .9 of their circumscribing square, and mean crizontal lines from .55 to .75 of their respective parallelograms. Hence, ranges Vessels of least capacity to greatest are $.7 \times .55 = .385$, and $.9 \times .75 = .675$.

Chant ship, very full6 to .7	Merchant steamer, medium 52 to . 54						
" medium 58 to .62	Clipper 5 to .54						
er steamer, stern-wheel 6 to .65	Schooner, medium						
P of the line 5 to 6	River steamer, tug-boat, sharp .45 to .5						
al steamer, first class 5 to .6	" " medium45 to .5						
"	" " sharp42 to .45						
Chant steamer, sharp54 to .58	Schooner, sharp 46 to .5						
f clipper52 to .56	Yachts, sharp 4 to .45						
58, harks, etc	" very sharp 3 to 4						
er steamer, tug-boat, med'm .52 to .56	River steamers, very sharp36 to .42						
steam launch Miranda, when making 16.2 knots per hour, with a displace-							
at of 58 tons, her coefficient was 3.							

To Compute Char

 $\frac{7}{D} \times \frac{L}{m} = d'$. D representing displacement ame line in feet, and m longitudinal meta-

LI_USTRATION .- "Warrior," at draught of a $\mathbf{D} = 8625$ tons. If, then, a weight of 20 t

$$\frac{20 \times 100}{8625} \times \frac{380}{475} = .1856$$

aught in tons, L length

cet, m = 475 feet, test oor the bas

Illustration.—Vertical Plane at \approx and Horizontal at Load-line.

		_	HoH	HORIZONTAL.			V	VERTICAL.	
ELEMENTS OF A STRAM FRIGATE.	Weight.	Distances.	DC66.	Mon	Moments.	Dista	Distances.	Moments.	ente.
		Forward. Abaft.	Abaft.	Forward. Abaft.	Abaft.	Above.	Below.	Above. Below	Below.
	Tons.	Feet.	Feet.			Feat.	Fest.		
Hall, bunkers, and cement in bottom	1075	9.1	I	1720	ı	ı	H	ı	1075
Engines, boilers, water, and stores	470	1	8	. 1	13630	I	ę,	i	3011
less.	252	91	1	4032	1	ı	+	ı	1008
Pottery and ammunition	131.5	8	1	8153	ı	a	ı	2 63	1
greats, spars, sails, and rigging	7	27	i	849	1	31	1	ž	ı
hors and cables	25	4	I	900	1	ı	•	1	ŝ
Today	3.25	. 1	~	ı	156	91	ı	8	1
Bone and ship's stores	53	ţ	1	8	1	ı	m	ı	8
Warigions and galley	õ	1.2	ı	36	1	'n	ı	150	1
Prov. and effects	ಜ	17	١	210	1	7	I,	910	ı
Crears, and mess stores	7.25	ı	ş	ı	<u>&</u>	ı	~	ı	85
- Total	2070			17 303	14076			1410	8368

por ments above load line, 5588—moments below, 1419 = 3949 + 1000 (weight) = 1.91 feet = distance of centre below load-time. North -Rule, in Strength of Materials, to compute common centre of Fifty, page 819, would apply in this case.

Compute Centre of Gravity of Bottom Plat-LongitudinaL

the each of these products in their order, by number repour.-Messure half girths of plating at equidistant sections, Multiply these in accordance with program's rale for areas and add products together. at two or more frames.

ı,

ħ Bu Fa

| 1930 | 1930 | 1930 | 1930 | 1930 | 1930 | 1930 | 1940 | Multiply product by common distance between sections and result will give distance of centre of gravity from \$\tilde{\text{M}}\$ in a bori-

To Compute Depth of Centre of Gravity or zontal plane.

Dain M = d. 8 representing stations stability, D displa Buoyanoy Below Meta-Centre.

deglerences so, 35 tem. me, and alp. M stee of emple of heel.

2 tc

ipute Centre of Gravity or Buoyancy Approximately.

of mean draught of hull, using larger coefficient for full-bodied vessels.

To Delineate Curve of Displacement.

rve is for purpose of ascertaining volume of water or tons weight, by immersed hull of a vessel at any given or required draught; or luired to depress a hull to any given or required draught. From computation for displacement of vessel, proceed as follows, Fig. 4:

On a vertical scale of feet and ins., as A B, set off depths of keel and waterlines, draw ordinates thereto representing displacement of keel, and at each water-line, in tons.

Through points 1, 2, 3, 4, and 5 d' lineate curve A 5, which will represent displacement at any given or required draught.

Draw a horizontal scale corresponding to weight due to displacement at is AC, and subdivide it into tons and decimals thereof, and a verlet fall from any point, as x, at a given draught, will indicate displacement at depth, on scale AC, and, contrariwise, a line raised point, as x, on AC will give draught at that weight.

riox.—Displacement of hull (page 654) at load-line = 7151.8 cube feet, ; for salt water = 204.3 tons, hence AC represents tons, and is to be subordingly.

aunching draught to have been 4 feet, then a vertical let fall from 4 will light of hull in tons on A C.

-	1	ı	1	1	Coefficient.	
TON OF VESSEL.	Length.	Breadth.	Mean Draught.	Displace- ment.	Amidship Section.	Water- lines.
	225	45	15	·715	.932 .81	•755
	325	59	24.75	.64	.8r	.71
(350	35	21	.687	.85	.84
ers {	385	42	22	.659	.88	.8
(368.27	42.5	18.71	.516	.812	.635
small	220	27	8	.702	.912	.742
, , , , , , , , , , , , , , , , , , ,	90	15	4	.637	.914	.704
ſ	125	23	8	.536	.87	.616
}	160	31.3	12	.466	•745	.603
s {	350 .	49-12	23.5	-47	.674	•7
	340.5	46.13	15.75	1 -4	.68	.582
I Steamers {	337 • 3	50.28	22.75	.483	.787	.614

Coefficients. (By C. Mackrow, M. I. N. A.)

Curve of Weight.

apute Number of Tons required to Dept el One Inch at any Draught of Water Pi Water-line.

-Divide area of plane by 12, and again by 35 or 36, as or salt or fresh water.

.—Area of load water-line of a vessel is 1422 sq. feet; what is inch in salt water?

 $1422 \div 12 = 118.5$, which $\div 35 = 3.38$ tons.

To Compute Common Centre of Gravity of Hull, an mament, Engine, Boilers, etc., of a Vessel.

RULE.—Compute moments of the several weights, relatively to see horizontal and vertical planes, by multiplying weight of each part by horizontal and vertical distance from these planes.

Add together these moments, according to their position forward or above or below these planes, and difference between these sums will gwe sition forward or aft, above or below, according to which are greates.

Divide results thus ascertained by total weight of vessel, and product give horizontal and vertical distances of centre of gravity from these plants.

It is customary to assume vertical plane at Ø, and horizontal plane load-line.

Note.—In following illustration, in order to simplify computation in table mon centre of gravity of hull, machinery, etc., is taken, instead of centres of vidual parts, as engine, boiler, propeller, etc.,

ILLUSTRATION.—Assume half-girths as in following table, and distance be sections 10 feet.

		FORW	ARD.					AB	FT.	
Sec-	Half- Girths.		Prod- uct.	Multi- pliers.	Mo- ments.	Sec-	Half- Girths.		Prod- uct.	Maus-
No.	Feet.			-	-	No.	Feet.			
፟	25	- 2	25	-	-	I	23	4	92	1
A		4	92	1	92	2	20	2	40	2
В	21	2	42	2	84	3	18	4	72	3
C	19	4	76	3	228	4	16	2	32	4
D	17	2	34	4	136	5	14	1	14	5
E	15	1	15	5	75	1	1		534	
	1	4000			615					

Moments forward, 615 — moments abaft, $586 = 29 \div \text{sum}$ of product $534 = 29 \times 10^{-3}$ which \times 10 feet = .54 feet forward of \boxtimes .

Centre of Lateral Resistance.

Centre of Lateral Resistance is centre of resistance of water, and as bitton is changed with velocity of vessel, it is variable. It is generally at centre of immersed vertical and longitudinal plane of vessel who an even keel.

If vessel is constructed with a drag to her keel, the centre will be proportionately abaft of longitudinal centre.

Yacht America had a drag to her keel of 2 feet, and centre of latesistance of her hull was 8.08 feet abaft of centre of her length on long

Centre of Effort.

Centre of Effort is centre of pressure of wind upon sails of a vest vertical and longitudinal plane. Its position varies with area and so of sails that may be spread, and it is usually taken and determined to ordinary standing sails, such as can be carried with propriety in a most fresh breeze.

In computing this position, the yards are assumed to be braced din and aft and the sails flat.

Note.—Centre of effort of sails, to produce greatest propelling effect, m with capacity of vessel at her load-line, compared with fullness of her body at its extremities. Thus, a vessel with a full load-line and share below, will sustain a higher centre of effort than one of dissimilar expension.

To Compute Location of Centre of Effort. lule.—Multiply area of each sail in square feet by height of its centre of vity above centre of lateral resistance in feet, divide sum of these prod-(moments) by total area of sails in square feet, and quotient will give

rht of centre in feet.

Multiply area of each sail in square feet, centre of which is forward of ertical plane passing through centre of lateral resistance, by direct discentre from that plane in feet, and add products together.

Proceed in like manner for sails that are abaft of this plane, add their Lucts together, and centre of effort will be on that side which has greatest ment of sail.

EAMPLE. - Assume elements of yacht America as rigged when in U. S. Service.

SAIL.	Area.	Height of Cent. of Grav- ity of Sails.	Vertical Moments.	Distance o of Gravity Foreward.	of Sails.	Mome Foreward.	
ng Jib	1087	Feet. 28 26 34 35	18 368 28 262 49 470 76 475	52 32 —	3 40	34 112 34 784 — — 68 896	4 365 87 400 91 765

ertical moments $\frac{172575}{5383}$ = 32.05 = height of centre above centre of lateral respectively.

Foments $\left\{ \frac{91765 \sim 68896}{5383} = 4.25 = \text{distance of centre abast centre of lateral research} \right\}$ ince.

lative Positions of Centre of Effort and of Lateral

Resistance.

Quare Rig.
$$\frac{L(.75 d' + d'')}{10(d' + d'')} = E$$
. Fore and Aft Rig. $\frac{L}{10(d' + d'')} = E$,

 $\frac{4 \text{ A}}{5 \text{ d}} = \text{E'}$. L representing length of load-line, d distance of centre of buoyancy essel below it, d' distance of centre of lateral resistance aboft centre of it, d' dis-e of centre of buoyancy before centre of it, E distance of centre of effort before re of lateral resistance, and E' distance of centre of effort above centre of lateral

Meta-Centre.

Aeta-centre of a vessel's hull is determined by location of centre of gravor buoyancy of immersed bottom of hull, for it is that point in transverse zion of hull, where a vertical line raised from its centre of gravity or yancy intersects a line passing through centre of gravity of hull, as . r. page 650.

To Compute Height of Meta-Centre.

By Moment of Inertia. $\frac{I}{D} = M$. I representing moment of inertia of area cater-line or plane of flotation, and D volume of displacement ir FOTE. - Moment of Inertia of an area is sum of products of eac B, by square of its distance from axis, about which moment Duted.

To Ascertain Moment of Inertia approx Rectangle = CLB_3 ; $C = \frac{1}{r_0}$ when L = 4B; $C = \frac{3}{50}$ when $L = \frac{3}{50}$

when L=6B. With very fine lines and great proportionate and B measured at load-line

ILLUSTRATION.—Assume length of vessel 233 feet, breadth 43, draught it is displacement 2700 tons. Length = 5.65 beams; hence C is taken at $\frac{21}{400}$. Visit of displacement = 2700 \times 35 = 92 500 cube feet.

Then
$$\frac{21 \times 233 \times 43^3}{400 \times 92500}$$
 = 10.51. Exact height of moment was 10.44 feet.

By Ordinates. Rule.—Divide a half longitudinal section of load we line by ordinates perpendicular to its length, of such a number that set between any two may be taken as a parallelogram. Multiply sum of of ordinates by respective distances between them, and divide two the of product by volume of immersion, in cube feet.

ILLUSTRATION.—Take dimensions from Figs. 2 and 3, page 654.

	Length.	Cube.		Cube.	Cube.
4 :	5	125	A9.6	885	51 460
3	7.7	450	B	475	2
2	9.5	857	C6.8	314	3)102 920
ĭ	9.9	970	D4		7151.8) 34 306.6=47
∞	10	1000		5140 X 10	1 /132.0 34 300.0 - 411

If there are more ordinates, their coefficients must be taken in like manufit 1-4-2-4-2-4-1.

For operation of this method, see Simpson's rule for areas, page 342.

Or, $\frac{2}{3} \int \frac{y^3}{D} \frac{dx}{D} = M$. y representing ordinates of half-breadth sections of line, dx increment of length of load-line section or differential of x, and D differential of x and D differential of x.

By Areas.
$$\frac{\frac{2}{3}(a^3+4b^3+2c^3+4d^3+e^3)\frac{l}{3}+F+A}{D}$$
 = M. 4,64

and e representing ordinates of 1st or load water-line, F area of irregular between 1st frame and stem, and A area of like section between last frame stern-post, both in sq. feet, D displacement, in cube feet, and I distance between from sections of water-line, as may be taken, in feet.

To Ascertain Areas of Fandi
-Fig. 5.

Best Bac Pero bins

las kno

cyli

Bitl

feet

ĪĒ

Pa

 $\frac{2}{3}ab \times bc^3 \div 4 = F$, and $\frac{2}{3}de \times eg^3 \div 4^{-1}$

Elements of Capacity and Speed of Several Types Steamers of R. N. (W. II. White.)

						•		
CLASSES.	Length.	Length to Breadth.	Displace	ment.		Speed.	Displace- ment.	
IRON-CLADS.	Feet.		Ton	18.	,	Knots.		i
Recent types.	300 to 330	5.25t05.75	7500 to	9000	14	to 15	.gtor	16 103
do. twin sc.		4.5 to 5	6000 to	9000	14	to 15	.7 to .9	15 301
Unarmored.	1 1	1			ļ	1	1	ì
Swift cruisers	270 to 340	6.5 to 6.75	3000 to	5 500	15	to 16	1.3 to 1.5	201
Corvettes	200 to 220	6 6	1800 to	2 000		5 to 13.25	1 to 1.2	13300
"-ips	160	5	850 to		1	11	z to 1.2	100
Avesty'.	125 to 170	5.5 to 6.25	420 to				.8 to 1.4	12
	80 to 90	3 to 3.25	200 to	250	8	to 9	.8 to 1.1	1.50
7		1	1		ļ		i	11
	0 500	g torr	7000 to			to 15	.5 to .6	100
•	9400		\5000 to	1,000	/13	to 14	.4 to .5	
	740	17.5t010		ood o		\$0.25	2.30 .5	4.5
-		e Ct	/ x5001	∞ 4 ∞	ρ / α	reol	ale.	.72

ompute Power Required in a Steam Vessel, capacity of another Vessel being given.

essels of similar models.
$$\frac{v A}{a} = V$$
; $\frac{S^3 V}{s^3} = V'$; $\frac{r V'}{r'} = C$; and $\frac{C}{2 r'} = R$;

I' representing product of volumes of given and required cylinders and revoin cube feet, a and A areas of immersed section of given and required n sq. feet at like revolutions and speed of given vessel, s and S speeds of given juired vessel at revolutions of given vessel, both in feet per minute, r and r' ions of given and required vessel per minute, and C product of volume of comylinder and revolutions for required vessel.

STRATION.—A steam vessel having an area of amidship section of 675 sq. feet, a cylinders of a combined capacity of 533-33 cube feet, and a speed of 10.5 per hour, with 15 revolutions of her engines. Required volume of steam its, with a stroke of 10 fcct, for a section of 700 feet and a speed of 13 knots; 5 revolutions.

$$\frac{8000 \times 700}{675} = 8296.3$$
 cube feet, $\frac{13^3 \times 8296.3}{10.5^3} = 10.5^3$ cube feet, $\frac{15 \times 15745.2}{14.5} = 16288.1$ cube feet, and $\frac{16288.1}{2 \times 14.5} = 561.66$ cube hich $\div 10$ stroke of piston, 12 for ins., and $\times 1728$ ins. in a cube foot $\times 1728$ = 8087.9 sq. ins. area of each cylinder $=$ diameter of 101.5 ins.

roximate Rules to Compute Speed and IP of Steam Vessels.

= C;
$$\sqrt[3]{\frac{\text{C IIP}}{D^{\frac{9}{4}}}}$$
 = V; and $\frac{\text{V3 D}_{3}^{9}}{\text{C}}$ = IIP. Or, $\sqrt[3]{\frac{\text{C IIP}}{A}}$ = V; and $\frac{\text{V3 A}}{\text{C}}$ = IIP.

resenting coefficient of vessel, A area of immersed amidship section in sq. feet, ity of vessel in knots per hour, and D displacement of vessel in tons.

:.—When there exists rig, an unusual surface in free board, deck-houses, etc., element that effects coefficient for class of vessel given, a corresponding adto, or decrease of, following units is to be made:

ge of Coefficients as deduced from observation is as follows:

J J -	SIDE-	WHEE	I.		ř. H	PPOPELLER.					
SEL.	A	D	v	V ³ A	V ³ D ¹ IHP	VESSEL.	Α	D	v	V ³ A	V ³ D ¹ / ₂
mboat. lines	Sq.F. 43 150 136	T's, 73 455 300	K'ts. 10 13 19	470 570 540	212 219 200	Steamboat. Medium lines Fine lines Steamer.	45 150	111	12	Ξ	500
full lines*	675 880	3600 5233	10 15	650 650	214	Medium full, #, Torpedo boat	550 390	2532 1475 3600 27	9 10 13 20	194 180 210 170	570 470 500
	* Ful	rigge	d.			1	Barl	rigge	d.		

efficients as Determined by Several Steamers of H. R. M. Service.
(C. Mackrow, M. I. N. A.)

 6	Sq. Feet.	Tons.		
6.53 5.89 7.33 6.43 6.52 6.73 7.33 6.73	236 377 814 632 1308 1198 778	775 1554 5898 3057 9487 9152 5600 9071 2 K	782 1070 2084 2046 3205 5971 3945 6867	K: IC IC II I2 I2. I3.

Approximate Rule for Speed of Screw Propell (Molesworth.)

$$\frac{\text{ror V}}{P} = N; \quad \frac{PN}{\text{ror}} = V; \quad \frac{\text{ror V}}{N} = P; \quad \frac{88 \text{ v}}{P} = N; \quad \frac{PN}{88} = v; \quad \text{and} \quad \frac{88}{100} = V;$$

 ${\bf V}$ and ${\bf v}$ representing velocities in knots and miles per hour, ${\bf P}$ pitch of prop feet, and N number of revolutions per minute.

This does not include slip, which ranges from 10 to 30 per cent.

Pitch of Screw Propeller.

Pitch ranges with area of circle described by diameter of screw to tamidship section.

Pitch to diameter of screw = 1 to | .8 | 1.02 | 1.11 | 1.2 | 1.27 | 1.31 | 1.4

Four Blades. | 1.08 | 1.38 | 1.5 | 1.62 | 1.71 | 1.77 | 1.89

Length = . 166 diameter.

Slip of Side-wheels.

Radial Blades. $\frac{2(\lambda-c)}{\lambda} = S$. Feathering. $\frac{1.5(\lambda-c)}{\lambda} = S$. A representation of arc of immersed circumference of blades, c length of chord of immerse and S slip, all in feet.

Area of Blades.

River Service. $\frac{.75 \text{ IP}}{D} = A$. Sea Service. $\frac{\text{IP}}{D} = A$. D representing disoff wheel in feet, and A area of each blade in square feet.

Length of Blades. .7 in River service and .6 in Sea service.

Distances between Radial Blades. 2.25 in River service and 3 feet in Sea se between Feathering blades, 4 to 6 feet.

Proportion of Power Utilized in a Steam Vess

Side Wheel. $\frac{P-z}{\cos \cos 259 d^3 r^2} = C$. P representing gross IIP, z

effect by slip and oblique action of wheels, d diameter of wheels at centre of revolutions per minute, and C coefficient for vessel.

ILLUSTRATION.—IIP of engines of a side-wheel steamer is 1120; slip of and loss by oblique action, 33.37 per cent.; diameter of centre of effect of wl 29.5 feet, and number of revolutions 13.5 per minute; what is coefficient, an power applied to propel vessel?

Note.—Slip of wheels from their centre of effect in this case is 15.37 per and loss by oblique action 18 per cent. Hence, representing total power! 100 - (18 + 15.37) = 66.63 per cent. of power applied to wheels.

As assumed power that operates upon wheels in this case is taken at 86 cent. of power exerted by engines, $86.12 \times 33.37 = 28.74$ per cent. for sum by wheels.

$$\frac{1120 - (1120 \times 28.74 \div 100)}{.00000259 \times 29.5^3 \times 13.5^2} = \frac{798.11}{12.16} = 65.63 \text{ coefficient.}$$

*need of vessel being 10 knots per hour = 17.05 feet per second, power: "opel vessel at this speed = 65.63 × 17.052 = 19.076.13, and IP exe

	æ.	Per cent. of Power.
Screw Propeller. Friction of engines	96.06	18.83
" of screw surface and resistance of edges of blades	53-44	6.83
lip of propellerbsorbed by propulsion of vessel	205.55	26.27 48.04
	782.45	100

Note.—From experiments of Mr. Froude, he deduced that, as a rule, only 37 to per cent. of whole power exerted was usefully employed.

With an auxiliary propeller, essential differences are in friction of surfaces and ges of blades of propeller and slip of propeller, being as 12 to 6.83 in excess in first see, and as 13,7 to 2.627 in second case, or 50 per cent less.

Resistance of Bottoms of Hulls at a Speed of one Knot per Hour.

a ooth wood or painted or I	b.	Copper	.007	lb.
a ooth plank	"	Moderately foul	.010	•
≥ n bottom, paintedor4	"	Grass and small barnacles	.06	46

Sailing.

Latio of Effective Area of Sails and of Vessel's Speed under Sail to Velocity of Wind.

Course.	Effective Area	Ratio of Speed of Vessel to Wind.	Course.	Ratio of Effective Area of Sails.	
points of wind		-33	Wind abeam		.6
" abast beam		-5	" astern	.o6	·5 ·66

Propulsion and Area of Sails.

Plain sails of a vessel are standing sails, excluding royals and gaff topsails. Resistance of vessels of similar models but of different dimensions for equalweeds $= D^{\frac{3}{2}}$.

Hence $\frac{a}{a'} = \left(\frac{D}{D'}\right)^{\frac{q}{3}}$. a and a' representing areas of sails of known and given vests, and D and D' their displacements in tons.

ILLUSTRATION.—Assume D and D' = 2400 and 1600.

Then
$$\left(\frac{2400}{1000}\right)^{\frac{2}{3}} = \sqrt[3]{1.5^2} = 1.31$$
, hence area of sails $a' = \frac{1}{1.31} = .763$ per cent.

In Vessels of Dissimilar Models.—Plain sail area should be a multiple \mathbb{P} \mathbb{D}_{2}^{2} .

Multiples for Different Classes of Vessels, R.

Sailing.		Steamer.
hips of Line	100 to 120	Ships, iron-clad
'rigates)		Frigates
loops	120 to 160	Sloops
irigs)		Brigs

English Yachts, designed for high speed, have multiples fro. and when designed for ordinary speed from 130 to 180.

When Area of Sail to Wet Surface of Hull is taken.—American yacht bile of 2.7 to 1, and several English yachts nearly the same, while !_ i was but 2 to 1.

Location of Masts, etc. Load-line = 100.

Vessel.		Pistance from Ster	Foot of Sail.	Height of Costs of Effect show Water-line	
1	Fore.	Main.	Missen.	1	Breadth.*
8hip	10 to 20	53 to 58	80 to 90	125 to 160	I.5 10 2
Bark	12 to 20	54 to 60	81 to 91	130 to 160	1.5 10 195
Brig		64 to 65	_	160 to 165	I.5 10 1.75
Schooner	16 to 22	55 to 61	-	160 to 170	1.5 10 1.75
Sloop		36 to 42	ı —	170 to 190	1.25 to 1.75

^{*} Measured from Tack of Jib to Clew of Spanker or Mainsail.

Rake of Masts.

Schooners.—Foremast o to .28 of length from heel, Main and Mizzen o to .5 Schooners.—Foremast .1 to .25, Mainmast .63 to .77. Sloops.—.08 to .11.

Area of Sails.

SAILS.	3 Yards upon each Mast.	4 Yards upon each Mast.	SAILS.	3 Yards upon each Mast.	4 Yards upt
Jib Foremast	.08	.08	Mizzenmast Spanker or)	.127	-14
Mainmast		.295 .417	Driver	.081	.068

Proportional Area of Sails upon each Mast under above Divisions.

7 . obo. 000.000 71		, www.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
SAIL.	i F o	re.	Main.			men.	Proportion to:	
Course	.115	.097	.162	.138		.063	. 389	-33
Topgallant sail		.063	.149 .106	.089	.075	.045	.358 .253	.303
Royal	_	.045	_	.063	.08r	.032	_	.19
Jib	.08	.08						
	·375	·375	.417	.417	.208	.208	1	1

Balance of Sails.—Effect of jib is equal to that of all sails upon main mast, and sails upon mizzenmast balance those of foremast.

When, therefore, main yard has a breadth of sail of 100 feet, fore yes should have 70.71 feet, and mizzen 50 feet; topgallant and royal yards sails being in same proportion.

Angles of Heel for Different Vessels.

Approximately. $\frac{D\ M\ a}{H} = S$. D representing displacement of vessel is M. Meight of meta-centre above centre of gravity in fect, a angle of heal of vessel is M-valuer measure,* and M height of centre of effect above centre of lateral resistant.

Voment of sail should be equal to moment of stability at a defined and beel.

tes, etc	• 4°	Circular Measure. .07 .087	Angle. Schooners, etc 6° Yachts 6° to 9°	Circular Measure. . 105 . 105 to .10
	-	•		,

"A displacement 170 tons, height of meta-centre 6.75 me

 $^{\circ}$ 2240 = 380 800 lbs. 9° = .207.

$$\frac{3 \times 6.75 \times .107}{26} = 7639.8 \text{ sq. feet.}$$

^{*} See rule, pege 113-

Trimming of Sails.

hat a vessel's sail may have greatest effect to propel her forward, it should so set between plane of wind and that of her course, that tangent of angle takes with wind may be twice tangent of angle it makes with her course, t, t and t and t angle of sail with wind, and t angle of sail course of vessel.

Angles of Course and Sails with Wind.

nd.	Angle of Course.	Tan- gent.	Half Tan- gent.	with Wind.	with Course.	Wind Abait.	Angle of Course.	Tan- gent.	Half Tan- gent.	with	of Sail with Course.
its.	45°	.562	.281	290 18'	150 42	Points.	1120 30'	2.166	1.082	650 13'	470 17'
	560 15' 670 30'	·732	.365	360 12' 420 43'	20° 3' 24° 45	3 4	1230 45	2.737	1.368	690 56	53° 49′
am	900	1.415	.707	54° 45	350 16	0	1570 30	7-511	3.754	820 25	75 5

Effective Impulse of Wind.

Let Po, Fig. 6, represent direction by compass and force of wind on sail, AB; from P draw PC parallel to AB, from o draw oC perpendicular to AB; oC is effective pressure of wind on sail AB, and rC, perpendicular to plane of vessel, is component of oC, which produces lateral motion, as heel and leeway, and ro is component of oC, which propels vessel.

I sin. a = P; P cos. x = L; and P sin. x = E. I representing direct impact and P effective pressure of wind on sail, L effective impact producing leeway, and E effective impact which propels vessel.

ote.—The law as usually given is \sin^2 . This is manifestly incorrect, as it gives its less than normal pressure for angles of small incidence. At an angle of incore of wind of 25° , the law of \sin is exact. Hence, although it may not be it at all angles, it is sufficiently so for practical purposes.

LUSTRATION I.—Assume wind 5 points ahead, and I = 100 lbs.

y preceding table angle of course with wind 56° 15'; hence angle of sail a, with d 36° 12', as \tan 36° 12' = $2 \tan$ 20° 3', and angle a 56° 15' -36° 12' = 20° 3'. 1en, $100 \times \sin$ 36° 12' = $100 \times .5906 = 59.06$; $59.06 \times 008.20^{\circ}$ $3' = 59.06 \times 4 = 55.48$, and $59.06 \times \sin$ 20° $3' = 59.06 \times 3426 = 20.23$ lbs.

-Assume wind 4 points abaft, and I = 100 lbs.

ien, $100 \times \sin^2 74^\circ$ 17' = $100 \times .9626^2$ = 92.66; 92.66×008 . $180^\circ - \overline{74^\circ}$ 17' + 45° 0° 43' = $92.66 \times .49$ = 45.41, and $92.66 \times 8in$. 60° 43' = $92.66 \times .8722$ = 80.82 lbs.

To Compute Sailing Power of a Vessel. $F f \sin w \cdot \sin s = P$.

To Compute Careening Power of a Sailing Vessel. fsin. w. cos. z=P. F representing area of sails in sq. feet. f three of unied in per sq. foot, w angle of wind to sails, and a angle of sails to co

To Compute Angle of Steady H Within a Range of 8°.

 $\frac{PE}{DM} = \sin H$. a representing area of plain sail in sq. feet, P;

bs. per sq. foot, E height of centre of effect above mid-draught, in t of hull, in lbs., and M height of meta-centre in feet.

assumed at 1 lb. per sq. foot, or that due to a brisk wind.

LUSTRATION.—Assume a = 15600, draught = 20, and E = 62; he

D = 6800000, and M = 3.

here $\frac{15600 \times 1 \times 72}{6800000 \times 3} = \frac{1123200}{20400000} = .05505 = 30 10'$

Course and Apparent Course of Wind.

Apparent course of a wind against sails of a vessel is resultant of arms course of wind and a course equal and directly opposite to that of vessel.

ILLUSTRATION. — If P. Fig. 7, sepsent direction by compass and fored wind, and a b direction and velocityd vessel, from P draw P c parallel sequal to a b, join c a and it will sepsent direction and force of appear wind.

Or, $\frac{a}{c} = ratio$ of velocity of expenses

Ť

31

N

To Ro

ŀ

Xa

Gat

80

Pd

Dr. 91.

Cit 4

incia. In cas

ng.c.

 \mathbf{R}_{i}

h7-

:75 A st

128 SE

12344 Africa 1150 to 1

K.

 \mathbf{I}_{2}

ianai ak

wind to that of vessel, $\frac{aP}{cP}$ = ratio of velocity of wind to that of vessel.

Resistance of Air. (Mr. Froude.)

Resistance of wind to a vessel is estimated as equivalent to square disvelocity.

In a calm, resistance of air to a steamer = one thirty-fourth part of resistance of water, and when a steamer's course is head-to, and combined we ity of vessel and wind = 15 knots, resistance is one ninth of that of the west

Resistance of air to a sq. foot of surface at right angles to course of a set sel is about .33 lb., and when surface is inclined to direction of wind, pure varies as sine of angle of incidence.

Mean of angles of surface of a steamer exposed to wind may be takes 45°, hence their resistance is about .25 lb. per sq. foot when wind has are locity of 10 knots per hour.

If sectional area of a steamer's hull above water is 750 sq. feet, resister to air at a speed of 10 knots in a calm would be 750 × .25 = 187.5 |be. = resistance to smoke-pipe, spars, and rigging (brig rigged) would be 201

Leeway.

Angle of Leeway in good sailing vessels, close hauled, varies from 8° 12°, and in inferior vessels it is much greater.

Ardency is tendency of vessel to fly to the wind, a consequence of energy of the centre of effort being abatt centre of lateral resistance.

Slackness is tendency of vessel to fall off from the wind, a consequence the centre of effort being forward centre of lateral resistance.

Results of Experiments upon Resistance of Screw-propellers, at High Velocities and Immersed at Varying Depths of Water.

Immersion of Screw.	Resistance.	Immersion of Screw.	Resistance.	Immersion of Screw.	Resident
Surface.	1 5	2 feet.	7	4 feet.	· 7.8

Slip of Propeller, 15 per cent.; of Side-wheel (feathering blades), and significant control of pressure, 23 per cent.

Freeboard.

leck stringer to surface of water. Depth of Hold from side of spar deck to top of ceiling.

¥t. F	Iold.	Per Ft.	Hold.	Per Ft.	Hold.	Per Ft.	Hold.	쁴
•	Feet.	Ins.	Feet.	Ins.	Feet.	Ine. 3-375 3-5	T#4	i.
i)	8x	/313	1 33	3.25	ge //	13.2	12	100

1.1

Plating Iron Hulls.

:T. D representing displacement in tons, L length of hull, b breadth, and r, .05 $f\sqrt{d} = T$. f representing distance between centres of frames, and tate below load-line, all in feet, and T thickness of plate in ins.

_. . _ _.

Masts	and Spars	. Drameter for Drmensions.
·s	at spar deck.	Jib-boom at bowsprit cap.
	" stem.	Yards in middle.
	" lower cap.	Gass at inner end.
masts	" topmast cap.	Gaffs

main masts, when of pieces, r inch for each 3 to 3.25 feet of whole zzenmast. 66 diameter of mainmast. Masts of one piece r inch for each eet of whole length.

, depth, equal diameter of mainmast; width, diameter equal to foremast.

н	e topmastsr				each			3.25	
r	ıast 1		**	"	4.6	3.25	"	3.33	ſ
1	nasts		"	"	"	3.25	"	3.33	feet of whole length.
			"	"	66	3.66			i
	olesr		"	"	"	2.87			1
	I		"	"	"	2 ft. (ofl	engtl	h beyond bowsprit cap.
	in yards ı		"	"	4.6	4		1	
	8		"	"	"	I		ı	
	Topgallant, and } 1	-,,	"	"	"	5		Į	feet of whole length.
	anker booms I		"	"	**	3.5		- 1	
	I		"	"		3.5 t	0 4	- 1	
	yards and booms. 1		"	"		4.5 t			•

Rudder Head. (Mackrow.)

.196 C D³ = M;
$$\sqrt[3]{\frac{T}{196 \text{ C}}}$$
 = D; and $\frac{A v^2}{2400}$ = P. P representing presser when hard over, in tons, d distance of geometrical centre of rudder from

er when hard over, in tons, a distance of geometrical centre of rudder from on, in ins., T stress on head, and M moment of resistance of head, both in immersed area of rudder in sq. feet, v velocity of water passing rudder hour, and C coefficient == 3.5 per sq. inch for Iron, and .125 for Oak.

TON.—Assume area of wooden rudder 24 sq. feet, distance of its geometfrom centre of pintles 2 feet, and velocity of water 10 knots.

$$\frac{2^2}{1} = 1 \text{ ton.} \quad 1 \times 2 \times 12 = 24 \text{ inch-lons.} \quad \sqrt[3]{\frac{24}{.196 \times .125}} = 9.93 \text{ ins.}$$
Memoranda.

—A, man requires in a vessel a displacement of 488 lbs. per month, for res, water, fuel, etc., in addition to his own weight, which is estimated A man and his baggage alone averages 225 lbs.

o feet in length, 32 beam, and 22.83 in depth, or 664 tons, C. H. (O. M.), 2540 square and 484 round bales of cotton. Total weight of cargo, equal to 4.57 bales, weighing 1889 lbs., per ton of vessel. It ship of 1625 tons, N. M., can carry 1800 tons' weight of cargo, or stow

on steamboat John Slevens—length 245 feet, beam 3

ght of iron 230 440 lbs. And of one other—length rect deep; weight of iron 150 190 lbs.
hull of a vessel with an iron frame and oak planking (the hull entirely of wood, is as 8 to 15.

ull weighs about 45 per cent. less than a wooden hull.
254 feet in length, 42 beam, and 23.5 hold, 1800 tons regis
ons cargo at a draught of 22 feet. Weight of hull in set

ight per Sq. Foot per Month of Metalling of a Vessel's Botts
of the; Muntz metal .0045 lb.; Zinc .007 lb.; and Iron .00
m between Iron and Steel plated Steamers.—In a vessel.
t, hull of steel-plated will weigh 320 tons less = 6.66 per -

The second secon

State of the second seco

Smells and the second of the

The configuration frame is not high a minimum and instanced the appropriate of the control of th

and The same

Activities (1) The second of t

the discountry thank

Potest. Rays which meet in a figure and are taken mile.

Unother As regards componently dimensions in manner

are directly.

United tempores, that their linear dimensions are directly.

United the of constitute.

...

a ray is diverted from vacuum into any medium, the ratio is greater ity, and is termed absolute index or index of refraction.

Mean Indices of Refraction.

Stalline lens, under 1.339	Glass, lead, 3 flint
1 2.6	Ice 1.31
Dt	Quartz

dices of other substances, see page 584.

ncreases refractive power of fluids and glass.

cal Angle.—Its sine is reciprocal of index of refraction, the incident ng in the less refractive medium.

Thus,
$$\frac{\mathbf{I}}{\text{Index}} = \sin$$
 of angle.

al Angle is measure of length of image of a straight line on the retina.

il Reflection is when rays are incident in the more refractive medium, ungle greater than the critical angle.

age.—An appearance as of water, over a sandy soil when highly heated sun.

stic Curves or Lines are the luminous intersections from curve lines, as on any reflective surface in a circular vessel.

To Compute Index of Refraction.

 $\frac{1}{R}$ = Index. I representing angle of incidence, and R that of refraction.

To Compute Refraction.

wave-Convex and Meniscus.—Effect of a concave-convex in refracting is same as that of a convex lens of same focal distance, and that of a cus is same as a concave lens of same focal distance.

niscus, with parallel rays
$$\frac{2 R r}{R-r} = F$$
.

gnifying Power.—In Telescopes the comparison is the ratio in which it ently increases length. In Microscopes the comparison is between the as seen in the instrument and by the eye, at the least distance of a, which is assumed at 10 ins., and the magnifying power of a microis equal to the distance at which an object can be most distinctly exed, divided by the focal length of the lens or sphere.

ear power is number of times it is magnified in length, and Super-, number of times it is magnified in surface.

gnifying power of microscopes varies, according to o from 40 to 350 times the linear dimensions of object, o times its superficial dimensions.

parent Area.—As areas of like figures are as the squares isions, the apparent area of an object varies as square onded by its diameter.

e number expressing Magnification of Apparent Area e of magnifying power as above described.

ISTRATION.—If diameter of a sphere subtends 10 as seen by the n through a telescope, the telescope is said to have a power of 1.

To Compute Elements of Mirrors and Lenses.

Mirrors. Spherical Concave.*
$$\frac{0 r}{r-2 l} = D; \frac{l r}{r-2 l} = L$$

Spherical Convex. †
$$\frac{0 r}{2 l + r} = D$$
; $\frac{l r}{2 l + r} = l$. Parabolic Concave. $\frac{d^2}{16 h} = l$

Unequally Convex.
$$\ddagger \frac{2 B r}{R+r} = F$$
. Plano-Convex. $\ddagger 2 B - .66 t = F$.

O representing object = 1, r radius of convexity, t and L length or distance of from vertex of curve, and from external vertex, D dimension of object, d disade base, F focal distance, and h depth of mirror in like dimensions, I index of refreshable thickness of tens.

ILLUSTRATION I. - Before a concave mirror of 5 feet radius is set an object at a feet from vertex of curve; what is ratio of apparent dimension of image, and the is length of and distance of object from external vertex?

Object=1

$$\frac{1 \times 5}{5 - 2 \times 1.5} = 2.5$$
 feet, and $\frac{1.5 \times 5}{5 - 2 \times 1.5} = 3.75$ feet.

2.—If object is set at 4.5 feet from vertex of a like mirror, what is length distance of inverted object from internal vertex?

$$\frac{1 \times 5}{2 \times 4.5 - 5} = 1.25$$
 feet, and $\frac{4.5 \times 5}{2 \times 4.5 - 5} = 5.625$ feet.

3.—Before a convex mirror of 3.5 feet radius is set an object at 3 feet from tex of curve; what is length of and distance of object from external curve?

$$\frac{1 \times 3.5}{2 \times 3 + 3.5} = .368$$
 foot, and $\frac{3 \times 3.5}{2 \times 3 + 3.5} = 1.105$ feet.

4.—A parabolic reflector has a depth of 1.25 feet and a diameter of 2 feet; is its focal distance from vertex of internal curve?

$$\frac{2^2}{16 \times 1.25}$$
 = .2 feet or 2.4 ins.

Lenses. Double Convex. $\frac{R r}{m-i \times R+r} = F. \quad When R = r \frac{r}{2m-i}$ $\frac{o F}{F-l} = D; \quad \frac{l F}{F-l} = L; \quad \frac{S+F}{F} = P; \quad \frac{O F}{F-O} = V; \text{ and } \frac{S F}{S+F} = 0$

Optical centres are in centres of lens. Plano-Convex and Plano-O m-r=F. Optical centres are respectively centres of convex and concer-

faces. Convex Concave (Meniscus) and Concavo-Convex.
$$\frac{R r}{m-1 \times R-r} = \mathbb{R}$$

Optical Centres. Convex Concave. Delineate lens in half section, draw its centre to circumference of lens (intersection of radii), draw r parallal and extending to its circumference, connect R and r at these external per contact with circumference and external curve, extend line to axis of lens of contact is centre required. Concavo-Convex. Proceed in like manner. this case r extends to, or delineates, the inner surface of the lens, and post at tact with axis is centre required.

^{*} D or image disappears when l = .5 r. + When O is beyond F, it will be inverted, =

and $\frac{Lr}{2D+r} = l$. ‡ When equally convex F = R. § When convex side is exposed to and when parallel rays fall upon plane side, F = 2 R. Rays of light, best, or seed focus of a hyperbola, will diverge from its concave surface, ¶ and when from the law will be refracted by surface of the other.

When object is beyond focal distance (F), its image (D) will be inverted, as $\frac{OF}{l-F} = D$, and $\frac{LF}{L-F} = l$.

representing magnifying power of lens, S limit of normal sight, 10 to 12 ins. for zer-sighted eyes and 6 to 8 for near-sighted, ordinarily 10 ins., V limit of distinct zion, O extreme distance of object from optical centre at distinct vision, and m index refraction.

ILLUSTRATION I.—If a double convex lens of flint glass has radii of 6 and 6.25 ins., Enat is its focal distance? Index of refraction = 1.57, see page 584.

$$\frac{6 \times 6.25}{1.57 - 1 \times 6 + 6.25} = 5.37 \text{ ins.}$$

2.—If a double concave lens has a focal distance of 2 ins., and object is 6 ins. from ∋rtex of curve, what is its dimension and what is its distance from vertex of inner ≥rve?

$$\frac{6 \times 2}{2+4} = 2$$
 ins., and $\frac{4 \times 2}{4+2} = 1.33$ ins.

3.—If focal distance of a single microscope is 4 ins., what is its limit of distinct Lsion, and what its magnifying power?

O = 2.857 ins.

$$\frac{2.857 \times 4}{4 - 2.857} = 10$$
 ins., and $\frac{10 + 4}{4} = 3.5$ times.

Telescopes, Opera-glasses, etc.

D:
$$o = F: f$$
; $of \div F = D$, and $\frac{L F}{f} = l$; $\frac{L f^*}{L - f} \pm \frac{s F}{s + F} = F + f$. frepresenting length of focal distance from object lens.

ILLUSTRATION.—Principal focal distance of ocular lens of a telescope is .9 in., of pjective lens 90 ins.; what is its magnifying power?

 $90 \div .9 = 100$ times the object.

PILE-DRIVING.

Effect of the impact of the ram of a pile-driver is as the square root of velocity or height of its fall. Thus the theoretical velocity of fall is as 2gh or $8\sqrt{h}$.

The impact or dynamic effect of the blow of a ram on a pile cannot be termined with exactness, so long as it yields under the blow, as the yields cushions it and reduces its effect.

By my experiments in 1852 to determine the dynamic effect of a falling body, I and it to be far greater than that given by the formula $\sqrt{2gh}$, and upon a late Detition of them, under improved conditions of the instrument of registry, I find to be for one pound falling two feet, 52 pounds. One pound falling 2 feet has a cloty of 11.31 feet per second, but its dynamical effect or vis viva was 52 pounds, 46 times the velocity.

Observation and tests of the sustaining power of piles, at different locations and der different conditions, gave it as 2, 3, and 3.7 to 1 times that deduced by the Funda 8 √h, which was but the net effect, or capacity, of ram, letton of operation.

Win. J. McAlpine in his operation on the foundations of the dry and, Brooklyn, estimated the effect of a ram weighing 2240 lbs., fusal, at 224 000 lbs., or 2.28 times that given by the formula w

Essayists present a variety of formula, which differ in form.

Tatively simple, while others embrace diameter, length, weig

a, depth driven by last blow in feet or in inches, and Modulus o

terial of the pile, together with various factors for results.

When the losses of effect in the operation of a pile-driver are dues in friction of ram in the guides of the leader, and of the hoisting sheave and over drum (ascertained by experiment with a ver

be equal to .2 foot of penetration: with a light ram it would be materially a the cushioning of it on head of a pile, however square it may be dressed of want of verticality both of ram in falling and of plane of the pile to the blue consequent lateral vibration of it, the buckling of it in driving, the frequent ting of it on a boulder, and the condition of soil, whether dry, moist, or wis imbedded or partially exposed to the air, or wholly immersed in wet so water, and the integrity of the driving—they furnish the elements in detertion of a coefficient of softey.

Opposed to these effects is that of the subsidence of the soil around a ple has been disturbed in driving, the effect of which, under favorable conditisoil, has approached to that of the resistance of the pile at its final blow.

The following formula is constructed on the basis of a pile being at to a depression of one inch or less, as all estimates based upon a great pression are not only comparatively valueless, in consequence of the ioning of the ram, but if piles are not driven to such depression their is decreased, and a greater number are rendered necessary to support weight to be imposed upon them, and in it I have omitted an element is universally given in others, that of the last depression of a pile as a sor, as I not only fail to recognize its connection, but hold its introductions.

To Compute Safe Load of a Pile Driven to a Dep sion of 1 Inch or Less.

4 W 8 Vh = L. W representing weight of ram, and L load, both in lla, height of fall in feet.

From which result is to be deducted a factor of safety representing the fi and losses of effect.

Hence, the formula: $\frac{4 \approx 8 \sqrt{h}}{C} = L$, or safe load in pounds.

For C, or coefficient of safety, in consideration of the several losses of efficited, and especially that of brooming of the heads of a pile, it is assumed at 3 to 6, according to the soil and the integrity of the driving.

Eliminating the numerator 4 and correspondingly reducing the 3 and 6,4 mula is, $\frac{w \, 8 \, \sqrt{h}}{L} = L$

ILLESTRATION.—Assume an ordinary pile driven in firm soil by a ram of so weight, falling as feet, with a final depression of .5 inch, and coefficient of what would be its safe load?

$$\frac{2000 \times 8 \sqrt{25}}{1.25} = \frac{2000 \times 8 \times 5}{1.25} = 64000 \text{ lbs.}$$

In practice, in the determining the capacity of a range of piles, it is to reduce the result obtained by the formula, to meet incidental energligence in driving, in the superintendence of it, and the frequent is observed splitting or crushing of a pile on a stone or boulder.

A beavy ram and a low fall is most effective condition of operation pile-driver, provided height is such that force of blow will not be experimented in merely overcoming friction of leader and inertia of pile, and at sum not from such a height as to generate a velocity which will be essentiated in crushing fibres of head of pile.

When the soil is very soft or wet, concrete should be laid below beads of the piles to a depth of from 1.5 to 3 feet.

When the soil is of fine sand or light gravel, piles may be stim from their centres, but if it is saturated with moisture, a greater distrinecessary, otherwise small piles are liable to be disturbed by large.

Pile-sinking.

itchell's Screw Piles are constructed of a wrought-iron shaft of suitable eter, usually from 3 to 8 ins., with 1.5 turns of a cast-iron thread of 1.5 to 3 feet diameter.

idraulic Process is effected by the direction of a stream of water under ure, within a tube or around the base of a pile, by which the sand or is removed.

neumatic and Plenum Process.—For illustration and details, see Traut's Engineer's Pocket-book, 647-8. New Edition.

. Whewell deduced the following results:

A slight increase in hardness of a pile or in weight of a ram will conably increase distance a pile may be driven.

Resistance being great, the lighter a pile the faster it may be driven.

Distance driven varies as cube of the weight of ram.

Relative Resistance of Formations to Driving a Pile.

	100	Hard clay	60	Light clay and sand 35
and gravel	83	Clay and sand	45	River silt 25

PNEUMATICS - AEROMETRY.

otion of gases by operation of gravity is same as that for liquids, e or effect of wind increases as square of its velocity.

a volume of air represented by \mathbf{r} , and of 32° , is heated t degrees without ming a different tension, the volume becomes $(\mathbf{r} + .002 088 t) = \mathbf{V}$; and requires a temperature in excess of t' 32° , it will then assume volume $.002 088 \ t' - 32^{\circ}$). All aeriform fluids follow this law of dilatation as as that of compression proportional to weight.

hen air passes into a medium of less density, its velocity is determined ifference of its densities. Under like conditions, a conduit will discharge 5 times more air than water.

Compute the Degree of Rarefaction that may be effected in a Vessel.

t quantity of air in vessel, tube, and pump be represented by 1, and ortion of capacity of pump to vessel and tube by .33; consequently, it ains .25 of the air in united apparatus.

pon the first stroke of piston this .25 will be expelled, and .75 of original tity will remain; .25 of this will be expelled upon second stroke upon the light to .1875 of original quantity; and consequently there

qual to .1875 of original quantity; and consequently ther ratus .5625 of original quantity. Proceeding in this mans le is deduced:

o. of Strokes.	Air Expelled at each Stroke.	Air Remaining
I	.25 = .25	·75=·75
2	$\frac{3}{16} = \frac{3}{4 \times 4}$	$\frac{9}{16} = \frac{3 \times 3}{4 \times 4}$
3	$\frac{9}{64} = \frac{3 \times 3}{4 \times 4 \times 4}$	$\frac{27}{64} = \frac{3 \times 3}{4 \times 4} \times \frac{3}{4}$

so on, multiplying air expelled at preceding stroke by 3, and r 4; and air remaining after each stroke is ascertained by memaining after preceding stroke by 3, and dividing it by 4.

Distances at which Different Sounds are	Aud	iible.
A full human voice speaking in open air, calm	Feet. 460	,dj
In an observable breeze, a powerful human voice with the wind can be heard.	15 840	3
	16000	3.00
Drum	10 560	8
Music, strong brass band		3
Cannonading, very heavy	575 000	90
In Arctic Ocean, conversation has been maintained over w	rater a	distant

In Arctic Ocean, conversation has been maintained over water a distant of 6696 feet.

In a conduit in Paris, the human voice has been heard 3300 feet.

For an echo to be distinctly produced, there must be a distance of 55 to 150.

To Compute Volume of Air Discharged through an Opening into a Vacuum, per Second.

a C $\sqrt{2gh} = V$ in cube feet. a representing area of opening in square fed P efficient of effive, and $\sqrt{2gh} = 1347.4$, as shown at page 428.

ILLUSTRATION.—Area of opening 1 foot square, and C = .707.

Then $1 \times .707 \times 1347.4 = 952.61$ cube feet.

Inversely, $V \div a = velocity$ in feet per second.

Velocity and Pressure of Wind.

Pressure varies as square of velocity, or $P \propto V^2$.

 $V^2 \times .005 = P;$ $\sqrt{200 P} = V;$ $v^2 \times .0023 = P;$ and $.0023 v^2 \sin s' = P$. V representing velocity in miles per hour, v in feet per second, P pressure is per sq. foot, and x angle of incidence of wind with plane of surface.

Table deduced from above Formulas.

2 176 0.2 3 264 0.45 4 352 0.8 Light breeze. 40 352 0.8 Light breeze. 40 352 0.8 Light breeze. 40 352 8 Wery high 6 528 1.18 wind wind wind 125 6 Gale.	per	ocity per Minute.	Pressure on a s. Sq. Foot.	Character of the Wind.	per	per Minute.	Press on Sq. F		Character of the Wind.
8 704 .32) 10 880 .5 Fresh breeze. 80 7040 32 Hurrica	1 2 3 4 5 6 8 10	88 176 264 352 440 528 704 880 1320	.005 .02 .045 .08 .125 .18 .32	Just perceptible. Light breeze. Gentle, pleasant wind. Fresh breeze. Brisk blow.	25 30 35 40 45 50 60 80 90	2200 2640 3080 3520 3960 4400 5280 7040 7920	3.12 4.5 6.12 8 10.12 12.5 18 32 40.5	25 25 25	

TV LUSTRATION.—What is pressure per sq. foot, when wind has a velocity of property of prop

Compute Force of Wind upon a Surface.

=P. v representing velocity of wind in feet per second, a and

agle of incidence of wind.

1 has been observed to have had a velocity of 150 miles

: Greenwich Observatory for a period of so years

Force of wind upon a surface, perpendicular to its direction, has been of Served as high as 57.75 lbs. per sq. foot; velocity = 159 feet per second.

Dr. Hutton deduced that resistance of air varied as square of velocit nearly, and to an inclined surface as 1.84 power of sine × cosine.

Figure of a plane makes no appreciable difference in resistance, but cor vex surface of a hemisphere, with a surface double the base, has only hat the resistance.

At high velocities, experiments upon railways show that the resistance becomes nearly a constant quantity.

Cyclones.

Direction in Vorthern Hemisphers.

Wind has its direction nearly at right angles to line between points of highest and lowest pressure of air, or barometer readings, and its course is with the point of lowest pressure at its left, and its velocity is directly as Southern Hemispher

Direction in

In Northern Temperate zone, winds course around an area of low pressur reverse direction to course of hands of a watch, and they flow away from location of high pressure, and cause an apparent course of the winds in direction of course of the hands.

difference of the pressures.

To Compute Resistance of a Plane Surface to Air.

.0023 a v² = P in lbs. a representing area of plane in sq. feet, v velocity in directon of wind in feet per second, + when it moves opposite, and — when with the wind

When Barometer Pressure = 30 Lbs.

(C. F. Martin, U. S. S. S.)

.004 a V 2 = P. $\,$ V representing velocity of wind in miles per hour, and a area of pressure in sq. feet.

Compute Height of a Column of Mercury to induce an Efflux of Air through a given Nozzle.

Barometer assumed at 2.46 feet = 29.52 ins., and Temperature 520.

 $\frac{P^2}{48.073^2 d^4}$ = H, and 48.073 $d^2 \sqrt{H}$ = P. d representing diameter of nozzle and H Leight of column of mercury, both in feet, and P volume of air in lbs. per one second. ILLUSTRATION.—Assume d = .10, and P = .7 lbs.

$$\frac{.7^2}{48.073^2 \times .10^4} = .1626 \text{ foot.} \quad 48.073 \times .19^2 \sqrt{.1626} = -$$

To Compute Pressure or Weight of Air u Height of Barometer and Temperature, I One Second.

30.787
$$d^2 \sqrt{B} \frac{b+B}{t} = pressure in lbs.$$
 Or, $48.073 d^2 \sqrt{B} = lb$

eight of barometer in external air, B manometer or pressure of a. mercury, both in feet, and t temperature of air or gas in degrees.

LLUSTRATION.—Assume b = 2.5 feet; d = .25 foot; B = .1 foot; and

Then 30.787
$$\times$$
 .0625 $\sqrt{.1 \times \frac{2.5 + .1}{1.055}} = 1.924 \times \sqrt{.2465} = .9543$ Use.

To Compute Temperature for a given Latitude and Ele

82.8 cos. l - .001 981 E - .4 = t. E representing elevation in feet. ILLUSTRATION.—Assume $l = 45^{\circ}$; cos. = .707; and E = 656 feet.

Then $82.8 \times .707 - .001981 \times 656 - .4 = 58.54 - 1.299 - .4 = 58.54 - .89=$ 57.641.

To Compute Volume of Air or Gas Discharged through an Opening and under a Pressure above that of Eternal Air.

Air.
$$1347.4 \, C \frac{d^2}{h} \sqrt{B(b'+B)T} = V$$
 in cube feet per second.

T = 1 + .00222 (t - 320), and b' = 2.5 - .00000 elevation. Or, $621.28 d^2 \sqrt{B} = V$.

ILLUSTRATION.-What would be volume of air that would flow through a med .246 foot in diam. from a reservoir under a pressure of .038 foot of mercur, in air under a barometric pressure of 2.477 feet, temperature of air 55.4°, location of of latitude, and at an elevation of 650 feet above level of sea?

C=.75;
$$b' = 2.5 - .000 09 \times 650 = 2.4415 (2.44)$$
; and T=1.0502.
Then $1347.4 \times .75 = \frac{.246^2}{2.477} \sqrt{.098 (2.44 + .098) \times 1.0502} = 24.689 \times \sqrt{.2617} = 114$ cube feet.

ten

4 la in

l 220 Ta

17

900;

Ÿ,

de:

Ct ď

4:

ľą.

 T_l

r. R÷ Vii.

When Densities of External Air and that in Reservoir are Equal. $_{1347.4}$ C $_{-}^{d^2}$ \sqrt{B} $\overline{(b+B)}$ T \equiv V. b' representing height of mercury in reservoir.

Gas. $\frac{4231}{\sqrt{p}}\sqrt{\frac{B\,d5}{L+42\times d}}=V$. p representing specific gravity of gas compared with air, and I, length of pipe or conduit in feet.

ILLUSTRATION. -If a pipe .05 feet in diameter and 420 feet in length, comme cates with a gasometer charged with carburetted hydrogen (illuminating gas), under a water pressure as indicated by a manometer of . 1088 foot, what would be the charge per second?

d=.05 foot; L=420 feet; and B= $\frac{.1088}{12.6*}$ =.008 foot. Specific gravity of # .5625.

$$\frac{\frac{4231}{\sqrt{.5625}}}{\sqrt{\frac{20+42\times.05^5}{420+42\times.05}}} = \frac{4231}{.75} \sqrt{\frac{.0000000025000}{420+2.1}} = .01371 \text{ cube fool}$$

Resistance of Curves and Angles.—Curves and angles increase resistant to discharge of air or gas very materially. By experiment of D'Aubuine 7 angles of 45° reduced discharge of gas one fourth.

To Compute Diameter of Discharge-pipe or Nozzla When Length and Diameter of Pipe, Volume, and Pressure are given. $\sqrt[4]{\frac{4^2 \text{ V}^2 \text{ d}^5}{4^2 \text{ 30}^2 \text{ B} \text{ d}^5 - \text{I. V}^2}} = d' \text{ in feet.}$

$$\sqrt[4]{\frac{4^2 \text{ V}^2}{4^2 3^{6^2} \text{ B} d^5} \frac{d^5}{-\text{I. V}^2}} = d' \text{ in feet.}$$

ILLUSTRATION.-If a pipe 1000 feet in length, and .4 foot in diameter, leads 101 "ervoir of air, under a mercurial manometric pressure of .18 foot, what diameter st be given to a nozzle to discharge 4 cube feet per second?

vo gases flowing through equal orifices, and under equal present tio of square roots of their respective densities.

RAILWAYS.

To Define a Curve.-Fig. 1. (Molesworth.)

rresenting any chord, t length of tangent, d distance of centre of curve from inction of langents, s half chord of curve, and t length of curve, tall in like dimensions, ngential angle of c in minutes, n number of chords in curve, and s half angle of section, but in formulas for number of chords and length of curve to be expressed inutes.

LUSTRATION.—Assume radius 900 and chord 400 feet; angle of intersection = 44' = 764 minutes, and $x = 56^{\circ}$ 15' 5".

ngent of
$$56^{\circ}$$
 15' 5" = 1.49673. Cotangent = .66814.

$$\frac{19 \times 400}{764} = R = 900 \text{ feet}; \qquad \frac{1719 \times 400}{900} = 764 \text{ minutes}; \qquad 900 \times .668 \text{ 14} = t = 182.42 \text{ feet}; \qquad 900 \times .555 55 = t = 500 \text{ feet}; \\ \times .168 33 = V = 151.5 \text{ feet}; \qquad \frac{5400 - 3379}{764} = 2.645 \text{ times, and } .000 582 \times 900 \times \frac{1000}{1000} = 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 100$$

Tangential Angles for Chords of One Chain.

us of ve.	Tangential Angle.	Radius of Curve.	Tangential Angle.	Radius of Curve.	Tangential Angle.	Radius of Curve.	Tangential Angle.
ins.	r0 42 8'	Chains.	10 54.6"	Chains.		ı mile	21.48
5	1 3 43.0	15		40	42.97		21.40
8	30 34.87	20	10 25.95	45	38.2	1.25 mil's	17.19
9	30 11	25	10 8.76'	50	34.38	1.5 miles	14-33
ò	20 51.9	30	57.3	60	28.65	1.75 "	12.28
2	20 23.25	35	49.11	70	24.55	2 "	10.74

yrs.—Angle for 2 chain chords is double angle for 1 chain chords. Angle for .5 n chords is .5 the angle for 1 chain chords.

irves of less than 20 chains radius should be set out in .5 chain chords. Curves ore than 1 mile radius may be set out in 2 chain chords.

igles in above Table are in degrees, minutes, and decimals of minutes.

Sidings.

 $2\sqrt{d R - (.5 d)^2} = l$. R representing radius of curve, l length of curve over points, and d distance between tracks, all in feet.

urn-out of Unequal Radii.

$$\frac{z}{+r} = y; \ x - y = z; \ a + b = l; \ r - y = A;$$
$$\overline{(r+A)} = a; \ R - z = B; \ \sqrt{z(R+B)} = b.$$

and r representing radii of the curves reively as to length, x distance between outer of tracks and other symbols as shown, all

Points and Crossings.

$$\sqrt{(R+x)} \cdot G = l;$$
 $\frac{l}{R} = \sin a;$ $\frac{G}{\text{ver. } \sin a} = R$ R resulting radius of curves, G gauge of road, a angle of and $x = R - G$, all in feet.

senting radius of curves, G gauge of road, a angle of crain and x = R - G, all in feet.

In horizontal curves, width required for clearance flange of wheel, and for width of rail at heel of swit render it necessary to make an allowance in length as ascertained by formula.

For other diagrams and formulas, see Molesworth's Post book, pp. 208-18, 21st edition.

To Compute Tangential Angle for Curves. representing chord in feet, and a angle in minutes.

ILLUSTRATION.—What is angle for a curve with a radius of ooc feet, and ad of 400 feet?

$$\frac{1719 \times 400}{909} = 764$$
 minutes.

Curving of Rails.

I representing length of rail in feet, v versed sine at centre, curved, in ins.

ILLUSTRATION. - What is curve for a rail 20 1eet in length, with a radius of good

$$\frac{1.5 \times 20^2}{900}$$
 = .666 ins.

Curves by Offsets in Equal Chords.

$$\frac{\text{Chord }^2}{2 \text{ R}} = 0 \text{ offset.} \qquad \frac{\text{Chord }^2}{\text{R}} = 2,000$$

$$\text{ILLUSTRATION.} - \text{Assume chords 150, and 1}$$

dius 900 feet.

$$\frac{22500}{2\times900} = 12.5 \text{ feet}; \quad \frac{22500}{900} = 25 \text{ fet}$$

To Compute Versed Sines and Ordinates of Curt

$$R - \sqrt{R^2 - (.5 C)^2} = v$$
; $\frac{(.5 C)^2}{v} + v = 0$; $\sqrt{R^2 - x^2 - (R - v)} = 0$. D representing diameter circle, and v versed sine of curve.

ILLUSTRATION. -- Assume radius 900, and chord #0 $900 - \sqrt{810000 - 40000} = 900 - 877.5 = 225$

Relation of Base of Driving or Rigid Wheels to Cur R representing minimum radius of curve, G gauge of road, and Bit n feet.

> To Compute Elevation of Outer Rail. For any Radius or Combination of Curve with Straight Line

1-c. V representing velocity of train in feet per second. G gauge of the -d. both in feet, the versed sine of which = elevation in in.

On Curves.

ani ni livr ratur fo noitorala pritra-

Radii of	Curves	set	out	in	Tangential	Angles.
----------	--------	-----	-----	----	------------	---------

rd of Feet.	Radius of Curve.	Angle for Chord of 100 Feet.	Radius of Curve.	Angle for Chord of 100 Feet.	Radius of Curve.	Angle for Chord of 100 Feet.	Radius of Curve.
,	Feet.	0,	Feet.	0 '	Feet.	0 /	Feet.
30	5729.6	2 30	1145.9	4 30	636.6	6 30	440.7
	2864.8	3	954.9	5	5 7 3	7	409.3
30	1909.9	3 30	818.5	5 30	520.9	7 30	382
	1432.4	4	716.2	[] O]	447.5	11 8 1	358. z

OTE .- If chords of less length are used, radius will be proportional thereto.

To Ascertain Radius of Curve in Inches for Scale, in Feet per Inch.

Pivide radius of curve in feet by scale of feet per inch.

To Compute Required Weight of Rail.

EULE.—Multiply extreme load upon one driving-wheel in lbs. by .005, product will give weight of rail in lbs. per yard.

To Compute Radius of Curve and Wheel Base.

B G = R. $\frac{R}{9 \text{ G}}$ = B. B representing maximum rigid wheel base of cars, and G pe of way, both in feet.

To Determine Elevation of Outer Rail.

For any Radius or Construction of Curve with Straight .- Fig. 7.

Fig. 7. V.5 $\sqrt{G} = c$. V repreond, G gauge of rails in v of which will give at its Side of rentre of outred.

V.5 $\sqrt{G} = c$. V representing speed of train in feet per second, G gauge of rails in feet, and c length of chord, versed sine v of which will give at its centre the elevation required.

Thus, determine chord c, align it on inner side of rail, and distance of rail from it at centre of its length will give elevation required, whatever the radius of rail.

or Curves. $\frac{[.782 \text{ V}^2 \text{ (N D W)}] - 4 \text{ P R}}{\text{N D R}} = \text{E}; \text{ Or, W} \frac{\text{V}^2}{\text{1.25 R}} = \text{E}. \text{ D representing}$

Noter of wheels, W width of gauge, P lateral play between flange and rail, and Adius of curve, all in feet, $x \mapsto N$ ratio of inclination of tire. V velocity of train in $x \mapsto N$ per hour, and E elevation of outer rail in ins. (Molesworth.)

 $\frac{\mathbb{C}(d+l)}{2P}$ = resistance due to curve, and W representing weight of body, both in

Coefficient of friction of wheels upon rails = .1 to .27, according to condition of the r. d distance of rails apart, I length of rigid wheel base, and R radius of curve, Fet. (Morrison.)

LUSTRATION.—Assume weight of locomotive 30 tons, radius of curve 1000 feet, and ce of rails apart 4 feet 8.75 ins., length of base 10 feet, and rails, dry, C=1.

$$\frac{30 \times 2240 \times 1 \times (4.73 + 10)}{2 \times 1000} = 494.93 \text{ lbs.}$$

Compute Resistance due to Gravity upor clination.

$$\frac{2240}{\text{gradient}} = lbs. \ per \ ton \ of \ train.$$

se per Mile, and Resistance to Gravity, in Ton.

ent of r inch	20	25	30	35	40	45	50	60 (70	 8c
in feet	264 112	211 89.6	176 74.7	151 64	132 56	117	106	8 8 37.	3 75	66

To Compute Load which a Locomotive will Dravan Inclination.

 $T \div \overline{r+r'} - W = L$. T representing tractive power of locomotive in ls sistance due to gravity, and r' resistance due to assumed velocity of train is ton, W weight of locomotive and tender, and L load locomotive can draw, is t clusive of its own weight and tender.

Coefficients of Traction of Locomotives.—Railroads in good order, etc., 4 to in ordinary condition, 8 lbs.

In coupled engines adhesion is due to load upon wheels coupled to de

To Compute Traction, Retraction, and Adhesive Poor of a Locomotive or Train.

When upon a Level. as $P \div D = T$. a representing area of one cylin sq. ins., s stroke of piston and D diameter of driving-volvels, both in fed, P pressure of steam in lbs. per sq. inch, and T traction, in lbs.

When upon an Inclination. as $P \div D - r$ w h = T. r representing relation, w weight of locomotive upon driving wheels, in tons, h height of risi per 100 of road, and R = r w h = r retraction, in lbs.

C w b + 100 = A. b representing base of inclination in feet per 100 of rook C w = A. C = coefficient in lbs. per ton, and A adhesion, in lbs.

When Velocity of a Train is considered.

When upon a Level, W (C + \sqrt{V}) = R. When upon an India W (r h + C + \sqrt{V}) = R. V representing velocity of train in miles per M

ILLUSTRATION.—A train weighing 200 tons is to be driven up a grade of 2 per mile, with a velocity of 16 miles per hour; required the retractive power.

52.8 per mile = 1 in 100 feet =
$$r = 22.4$$
 lbs. C

 $200 (22.4 \times 1 + 5 + \sqrt{16}) = 200 \times 22.4 + 9 = 6280 lbs.$

Velocity of Trains.

Miles per hour	10	15	20	30	40	50	60	Į
Desistance un en etucisha)	Lbs.	Lbs.	Lbs.	Lbs.	Lba.	Lbs.	Lbs.	ſ
Resistance upon straight line per ton	8.5	9.25	10.25	13.25	17.25	22.5	29	l
Do., with sharp curves and strong wind*	13	14	15.5	20	26	34	43-5	

* Equal to so per cent, added to resistance upon a straight line.

Friction of locomotive engines is about 9 per cent., or 2 lbs. per ton of we's Case-hardening of wheel-tires reduces their friction from 14 to .08 part of 1

To Compute Maximum Load that can be drawn by Engine, up the Maximum Grade that it can Att Weight and Grade being given. (Maj. McClellan, U.S.)

 $\frac{.2 \text{ A}}{.4942 \text{ G} + 8} = \text{L}$, and $\frac{.2 \text{ A} - 8 \text{ L}}{.4242 \text{ L}} = \text{G}$. A representing adhesive weight of 8 **Be.**, G grade in feet per mile, and L load, in tons.

L.—When rails are out of order, and slippery, etc., for .2 A, put .143 L

h an engine of 4 drivers, put .6 as weight resting upon drivers; sontire weight rests upon them.

— An engine weighing 30 tons has 6 drivers; what are the serion a level, and upon a grade of 250 feet, and what is its add?

11. $a \times a_1 e e \times xe$. Josef a magu sant 4.5051 = .0.

11. $a \times a_2 e \times xe$.

12. $a \times a_1 = xe \times xe$.

12. $a \times a_1 = xe$.

13. $a \times a_2 = xe$.

odw o lo ego dilw beren

OPERATION OF LOCOMOTIVES. (O. Chanute, Am. Soc. C. E.)

Adhesion.

esion of a locomotive is friction of its driving-wheels upon the rails, g with condition of the surface, and must exceed traction of the engine hem, otherwise the wheels will slip.

rovements heretofore made in the construction of locomotives and have gradually increased the proportion which the adhesion bears to istent weight upon the driving-wheels.

irst accurate experiments were those of Mr. Wood upon the early English lways. He deduced the adhesion to be as follows:

- 38, B. H. Latrobe indicated .13 as a safe working adhesion, while modern an practice assumes about .2 of weight as maximum, and .11 as a minimum, perhaps in some mountainous regions, subject to mists. Thus, on the Somline, adhesion is generally .16, and between Pontedecimo and Busalla. in

isive experiments made upon French railways, 1862-67, by Messrs. Vuille-iebhard, and Dieudonné gave following coefficients in actual working: dry, extreme, 105 to .2; damp, 132 to .139; wet, .078 to .164; light rain, .09; rain, 109 to .2, mean, .13; rain and fog, .115 to .14; heavy rain, 16.

rially better results are obtained in United States, partly, perhaps, in conso of greater dryness of the weather, and certainly because of the American of construction and equalizing the weight between the drivers, and of maklocomotive so flexible as to adapt itself to inequalities in the track.

rn engines in America can safely be relied upon to operate up to an adhesion D.222 in summer and .2 in winter, of weight upon the driving wheels.

these data the following tables have been computed:

never exceeds . 12 in open cuttings, or . 1 in tunnels.

icients of Adhesion upon Driving Wheels per Ton.

ion of Rails.		pean tice.	Amer	rican tice.	Condition of Rails.	Euro Prac		American Practice.	
ery dry ery wet y working	·3 ·27	600	.33	500	In misty weather. In frost and snow.	.015	Lba. 350 200	.2	Lbs. 400 333

hesion of Locomotives, in Lbs. (.222 in Summer and .2 in Winter).

Locomotive.	No. of Drivers.	Weig Locomotive.		Adhe Summer.	sion. Winter.
lationvitching	6 " " 6 " "	78 000 88 000 100 000 68 000	Lbs. 42 000 58 000 72 000 88 000 68 000 48 000	Lbs. 9250 If If If	Lbs. 8 400

Tractive Power.

tion of a locomotive is the horizontal resultant on the t e of the steam, as applied in the cylinders.

 $L \div W = T$. D representing diameter of cylinder, L length of strong wheels, all in ins. P mean pressure in cylinder, it. d T tractive force on rails, in ibs.

EATION.—Assume a locomotive, cylinders 18 ins. in diam., 22 in. ins. in diam., and average steam pressure in cylinders 50 lbs. per

Then $18 \times 18 \times 50 \times 22 \div 68 = 5241$ lbs.

 $20^2 \div 171 + 8 = 10.3$ lbs. per ton of train.

This formula, however, is empirical. It gives results which are too freight trains at moderate speeds, and too small for passenger trains at his Engineers are not agreed as to exact measure and value of each of the of train resistances, but following approximations are sufficient for pract

Analysis of Train Resistances.

Resistance of trains to traction may be divided into four primments: 1st. Grades; 2d. Curves; 3d. Wheel friction; 4th. Atmosp

1st. Grades. — Gradients generally oppose largest element of r to trains. Their influence is entirely independent of speed. To ure of this resistance is equal to weight of train multiplied by ra clination or per cent. of grade. Thus, a gradient of .5 per 100 f feet per mile) offers a resistance of $\frac{5 \times 2200}{10 \times 100} = 11.2$ lbs. per ton, 0 per 2000 lbs., which is to be multiplied by weight in tons of entire

Following table shows resistance, due to gravity alone, for the most usu in lbs. per ton of train:

1st. Resistance due to Grades.

Rate per 100 feet Lbs. per ton of 2240 lbs Rate per mile Lbs. per ton of 2000 lbs	.1 2.24 5 2	.2 4.48 11 4	6.72 16 6	8.96 21 8	.5 11.2 26 10	.6 13.44 3 ² 12	.1 15.6 37 14
Rate per 100 feet Lbs. per ton of 2240 lbs Rate per mile Lbs. per ton of 2000 lbs	47	53	1.1 24.64 58 22	1.2 26.88 63	1.3 29.12 68 26	1.4 31.36 74 28	

ad. Curves.—Recent European formula is that given by Baron von

newhat reduced when curve coincides with that for which wheels all lly about 3°), and when train runs over it, at precise speed for which levated, an allowance of .5 lb. per ton per degree is found to give good time.

2d. Resistance on Curves.

om above estimate of curve resistance that, in order to have the same a curve as on a straight line, the gradient should be diminished by to feach degree of curve. Thus a 3° curve requires an easing of the er 100 feet, a 10° curve an easing of .3 per 100, etc.

er, need only be done upon the *limiting* gradients, and when sum of ve resistances exceeds resistance which has been assumed as limiting

3d. Resistance due to Wheel Friction.

ers are not agreed whether friction of wheels increases simply with they carry, but also in some ratio with the speed. Originally assonstant at 8 lbs. per ton, improvements in condition of track (steel 1 in construction and lubrication of rolling-stock have reduced it to per ton for well-oiled trains. Under ordinary circumstances, in sume safe to estimate it at 5 lbs. per ton on first-class tracks, and 6 lbs. ir tracks. It may run up to 7 or 8 lbs. per ton on bad tracks (iron 1 ner, and all these amounts should be increased from 25 to 50 per cent. es in winter, to allow for inferior lubrication.

4th. Resistance due to Atmosphere.

c resistance to trains, complicated as it is by the wind which may be s not been accurately ascertained by experiment. It consists of stance of first car of train, which is presumably equal to its exposed the multiplied by air pressure due to speed.

sistance of each subsequent car. This varies with distance they are, and so shield each other from end air pressure due to speed.

of air against sides of each car depending upon the speed. This is mall that it may be neglected altogether.

ue to prevailing wind, which modifies above three items of resistance, retards the train, a rear wind aids it, while a side wind increases ressing flanges of wheels against one rail, and, in consequence of curves, suume all of these positions to same wind.

eriments on Erie Railway seem to indicate that in a dead calm rest car of a freight train may be assumed at an exposed surface of 63 tiplied by air pressure due to speed, and that each subsequent car may 5 offer a resistance of 20 per cent. of that of first car, while in a pasirst car may be assumed at an area of 90 sq. feet, 1 multiplied by air to speed, and that each subsequent car adds an increment equal to 40 of first car, in consequence of greater distance they are coupled apart.

nce is, of course, entirely independent of cars being loaded or empty. has been found that an allowance of 1.5 to 2 lbs. per ton of weight of a covers atmospheric resistance, except in very high winds.

nce of complexity of elements above enumerated, exact formulas canbe now given for train resistances, but following, if applied with judgified to fit circumstances), will be found to give fairly accurate results They are for standard gauge, and in making them, curve resistance has lat. 5 lb. per degree, wheel friction at 5 lbs., exposed end area of first cet for passenger cars and 63 feet for freight cars, and increment for rat. 4 for passenger trains and .2 for freight trains.

ger Train.
$$W\left(G+\frac{C^{\circ}}{2}+5\right)+\left(i+\frac{n-i}{2\cdot 5}\right)$$
 90 $P=R$. Train. $W\left(G+\frac{C^{\circ}}{2}+5\right)+\left(i+\frac{n-i}{5}\right)$ 63 $P=R$.

nan area of car, which generally measures about 71 sq. feet; but part is a veing convex, as wheels, boits, etc., offer less resistance than a fist plane. I area of passenger cars greater than that of freight cars, but in consequent and forms a bood in nature of a concave surface, and so opposes greater resu

weight of train, without engine, in tons (2000 lbs.), G
a (2000 lbs.; see table, page 683), C° curve in degrees, n n
pressure per st. Jord due to speed, to which an allowance mu
af existing, R resistance of train, and 5, wheel friction, both in lbs.

ILLUSTRATION 1.—Assume a passenger train of 5 cars, weighing 136 to ascending a grade .5 per 100 (26.4 feet per mile), with curves of 40, at miles per hour (for which the pressure is 18 lbs. per sq. foot), resistanc

136
$$(10+2+5)+\left(1+\frac{4}{2.5}\right)$$
 (90 × 18) = 6524 lbs., of which 2312 lb grade, curve, and wheels, and 4212 lbs. to atmospheric resistance.

2.—Assume a freight train of g_1 cars, weighing g_2 tons (2000 lbs.), ture of g_2 up a grade of g_2 8 feet per mile (1 foot per 100), at a speed of g_1 1 freesure 2 lbs. per so. foot), resistance will be:

620 (20 + x.5 + 5) +
$$\left(x + \frac{30}{5}\right)$$
 (63 × 2) = x7 312 lbx, requiring a "Co engine to haul it, allowance being made for possible winds, etc.

Assume conversely, it is desired to know how many tons an Amer with an adhesion of 10650 lbs., will draw up a grade of 1000 per 1000 (47 ft with curves of 1000, assuming atmospheric resistance between 1000 to 1000

Hence, 10 650 \div 27 = 395 tons, or about 20 cars, and in winter same haul 9600 \div 27 = 355 tons (2000 lbs.), or about 18 cars.

Following table approximates to best modern practice. For freight tr aggregate resistance, in lbs. per ton (2000 lbs.), for various grades and using it, it is sufficient to divide the adhesion in lbs. of locomotive used found in table, in order to obtain number of tons of train that it will dinary speeds on gradient and curve selected. Of course, if grade has t for curves, only number found in first column (for straight lines) is t computing tons of train on limiting gradient.

Approximate Freight-train Resistances Gauge 4 feet 8.5 ins.

In Lbs. per 2000 lbs. at Ordinary Speeds.

Curve Resistance assumed at .5 lbs. per °, Wheel Friction at 5 lbs., Atm sistance at 2 lbs. per Ton.

GRA	DE.	gbt.							C	URV	E.				
	Per Mile.	Straight	10	20	3°	4°	5°	60	7"	80	9*	100	110	12*	1
		lbs.	1bs.	lbs.	lbs.	Ibs.	lbs.	lbs.	Ibs.	lbs.	Iba.	Ibs.	Ibs.	lbs.	1
Level.	Feet.	7	7-5	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13	1
. x	5	9	9.5	IO	10.5	II	11.5	12	12.5	13	13.5	14	14.5	15	t,
.2	11	II	11.5	12	12.5	13	13.5	14	14.5	15	15.5	16	16.5	17	1;
.3	16	13	13.5	14	14.5	15	15-5		16.5	17	17.5	18	18.5	19	10
.4	21	15	15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	20.5	21	2.
-5	26	17	17.5	18	18.5	19	19.5	20	20.5	21	21.5	22	22.5	23	2
.6	32	19	19.5	20	20-5	21	21.5	22	22.5	23	23.5	24	24.5	25	5,
	1 37	21	21.5	22	22.5	23	23.5	24	24.5	25	25.5	26	26.5	27	2;
	100	23 25	23.5	24	24.5	25	25.5	26	26.5	27	27.5	28	28.5	29	20
		25	25.5	26	26.5	27	27.5	28	28.5	29	29.5	30	30-5	31	31
		'7	27-5	28	28.5	29	29.5	30	30.5	31	31.5	32	32.5	33	33
		•	29-5	30	30.5	31	31.5	32	32.5	33	33-5	34	34.5	35	35
		:	31.5	32.	32.5	33	33.5	34	34.5	35	35.5	36	36.5	37	37
			33.5	134	34-3	35			30.5		37-5	38	38.5	39	39
				-6	136.					5/30				41	
					- 2	E/3	19/39		0/40				5 45.		
						- N	ATIAT	1.5	42 4	2	45 4	2.2/	44/44	1.210	€5

"Mogni" engine to have an adhesion

+ 39.5 = 405 tons (2000 lbs.).

ace, To Compute Adhesion on a Given Grade and Curve, having Weight

LE.—Multiply tabular number by weight of train in tons (2000 lbs.), roduct will give adhesion, in lbs.

MPLE.—Assume preceding elements. Then 39.5 \times 405 = 16 000 lbs.

E.—A "Consolidation" engine, by its superior adhesion (19550 lbs.) would p a like grade and curve 495 tons.

Memoranda on English Railways.

Regulations (Board of Trade).

-iron girders to have a breaking weight = 3 times permanent load, added to s moving load.

ught-iron bridges not to be strained to more than 5 tons per sq. inch.
imum distance of standing work from outer edge of rail at level of carriage

3.5 feet in England and 4 feet in Ireland. imum distance between lines of railway, 6 feet.

ions.—Minimum width of platform, 6 feet, and 12 at important stations, um distance of columns from edge of platform, 6 feet. Steepest gradient for 18, r in 260. Ends of platforms to be ramped (not stepped). Signals and disignals in both directions.

riages.—Minimum space per passenger 20 cube feet. Minimum area of glass issenger, 60 sq. ins. Minimum width of seats, 15 ins. Minimum breadth of or passenger, 18 ins. Minimum number of lamps per carriage, 2.

uirements.—Joints of rails to be fished. Chairs to be secured by iron spikes, bolts to be used at the joints of flat-bottomed rails.

	Construction.	Nari Feet.		Bros Feet.	
idth,	single line	18		24	6
"	double line	30		38 15	
	top of ballast, single line	13	6	15	6
"	" " double line	24	6	20	

e of cuttings from centre, r in 30. Width of land beyond bottom of alope, r feet. Ditch with slopes, r foot at bottom, r to r. Quick mound, 18 ins. in Post and rail-fence posts, 7 feet 6 ins. × 6 ins. × 3.5 ins., 9 feet apart, 3 feet und. Intermediate posts, 5 feet 6 ins. × 4 ins. × 1.5 ins., 3 feet apart. Rails × 1.5 ins.

Parliamentary Regulations for Crossing Roads.

•	Turnpike Road.	Public Road.	Occupation Road.
width of under bridge, or approach	Feet. Ins.	Feet. Ins.	Feet. Inc.
height of under bridge for a width of 12 ft.	35 — 16 —	25 —	== =
" " " " " " " " " " " " " " " " " " "		15 —	- -
" " at springing	12 —	_	
bridge, height of parapets	4 — 1 in 30		
" height of fencing	3 -	١.	

nits of Deviation.—In towns, 10 yards each side of rv. 100 yards, or 5 chains nearly.

el.—In towns, 2 feet. In country, 5 feet.

dient. — Gradients flatter than I in 100, deviation 10: Do., steeper, 3 feet per mile.

.—Curves upwards of .5 a mile radius, may be sharpen. Curves of less than .5 mile radius may not be sharpened.

ROADS, STREETS, AND PAVEMENTS.

Classification of Roads.

I. Earth. 2. Corduroy. 3. Plank. 4. Gravel. 5. Broken stone (Mar-6. Stone sub-pavement with surface of broken stone (Telfon) 7. Stone sub-pavement with surface of broken stone and gravel or grave alone. 8. Rubble stone bottom with surface of broken stone or grave. both. o. Concrete bottom with surface of broken stone or gravel, or both

Grade of Roads.

Limit of practicable grade varies with character of road and friction of w hicle. For best carriages on best roads, limit is 1 in 35, or 15 feet in a

Maximum grade of a turnpike road is I in 30 feet. An ascent is come for draught if taken in alternate ascents and levels, than in one continu rise, although the ascents may be steeper than in a uniform grade.

Ordinary angle of repose is I in 40 if roads are bad, and I in 30 to I

When roads have a greater grade than I in 35, time is lost in description in order to avoid unsafe speed. Grade of a road should be less than its of repose. Minimum grade of a road to secure effective drainage should 1 in 80. In France it is 1 in 125.

In construction of roads the advantage of a level road over that of clined one, in reduction of labor, is superior to cost of an increased in of road in the avoiding of a hill.

Alpine roads over the Simplon Pass average I in 17 on Swiss side, I is on Italian side, and in one instance I in 13.

In deciding upon a grade, the motive power available of ascent and man able of waste of power in descending are to be first considered.

When traffic is heavier in one direction than the other, the grade in cent of lighter traffic may be greatest.

When axis of a road is upon side of a hill, and road is made in parts excavation and by embankment, the side surface should be cut into in order to afford a secure footing to embankment, and in extreme sustaining walls should be erected.

Construction.

Đ,

a)

T,

10

Grige

te 6

Mari. N_OE

€ 0[d]

Estimate of Labor in Construction of Roads. (# A day's work of 10 hours of an average laborer is estimated as follows: In Cube Yards.

WORK.	Ordinary Earth.	Loose Earth.	Mud.	Clay and Earth.	Gravel.		D)
Picking and digging	18 to 23	16		9	7 to 11	14	hta
Excavation and pitching 6 to 12 feet	8 to 12	8	7 to 16	4	 	ม	St
Loading in barrows	22	-	8	_	19	-	ηςį
Wheeling in barrows per	20 to 33	_	-	`	24 to 28	-	182 (
ling in carts	16 to 48	-	-	-	17 to 27	-	4
ding and levelling			25	l —	30 to 80	-	Co
of pitching from a	shovel is o	one third	of that of	digging.			b ia

of pitching from a shovel is one third of that of digging.

All ditches should lead to a natural water-course, and the should be 1 in 125.

Newstions in surface of a roadway involve a material tion is a inch, under a wheel a feet in diameter, -e surmounted, and, as a consequence, one serent de An unyielding foundation and surface are indispensable for a perfect roadway. Earth in embankment occupies an average of one tenth less space than in natural ak, and rock about one third more.

Ruts. — Surface of a roadway should be maintained as intact as pracable, as the rutting of it not only tends to a rapid destruction of it, but volves increased traction.

The general practice of rutting a road displays a degree of ignorance of ysical laws and mechanical effects that is as inexplicable as it is injurious d expensive.

In compressible roadways, as earth, sand, etc., resistance of a wheel decreases as andth of tire increases.

Depressing of axies at their ends increases friction. Long and pliant springs depase effect of shock in passing over obstacles in a very great degree.

Zransverse Section.—Best profile of section of roadway is held to be one rmed by two inclined planes meeting in centre of road and slightly anded off at point of junction.

Roads having a rough surface or of broken stone should have a rise of in 24, equal to a rise on crown of 6 ins., and on a smooth surface, as a >ck-stone or wood pavement, the rise may be reduced to 1 in 48.

On roads, when longitudinal inclination is great, the rise of transverse zion should be increased, in order that surface water may more readily rn off to sides of roadway, instead of down its length, and consequently lying it.

Stone Breaking. A steam stone-breaking machine will break a cube yard stone into cubes of 1.5 ins. side, at rate of 1 to 1.5 IP per hour.

Macadamized Roads.

In construction of a Macadamized road, the stones (road metal) used ould be hard and rough, and cubical in form, the longest diameter of which ceed 2.5 ins., but when they are very hard this may be reduced to 1.25 cl 1.5 ins.

The best stones are such as are difficult of fracture, as basaltic and trap, a especially when they are combined with hornblende. Flint and silibus stone are rendered unfit for use by being too brittle. Light granites be objectionable, in consequence of their being brittle and liable to disintetion; dark granites, possessing hornblende, are less objectionable. Limenes, sandstones, and slate are too weak and friable.

Dirnensions of a hammer for breaking the stone should be, head 6 ins. in 5th, weighing 1 lb., handle 18 ins. in length; and an average laborer can ak from 1.5 to 2 cube yards per day.

tones broken up in this manner have a volume twice as greatenal form. 100 cube feet of rock will make 190 of 1.5 ins. Of 2 ins., and 170 of 2.5 ins.

ton of hard metal has a volume of 1.185 cube yards.

Practruction of a Roadway.—Excavate and level to a depth lay a "bottom" 12 ins. deep of brick or stone spalls or ch concrete, etc., roll down to 3 ins., then add a layer of coars.

It ballast 5 ins. deep, roll down to 3 ins., and then metal in 2 ballast 5 ins. deep, roll down to 3 ins., and then metal in 2 ins., laid at an interval, enabling first layer to be fully consistent is laid on and rolled to a depth of 4 ins.; a surface of inch of a sharp sand should be laid over last layer of metal surface supply of water.

depth at sides of road to 4, 5, and 7 inches to centre, and set i broadest edge, free from irregularities in their upper surface, an terstices filled with stone spalls or chips, firmly wedged in.

Centre portion of road to be metalled first to a depth of 4 ins. after being used for a brief period, 2 ins. more are to be added, surface to be covered, "blinded," with clean gravel 1.5 ins. in dept

Telford assigned a load not to exceed 1 ton upon each wheel of with a tire 4 ins. in breadth.

Gravel or Earth Roads.

In construction of a gravel or earth road, selection should be maclean round gravel that will not pack, and sharp gravel internearth or clay, that will bind or compact when submitted to the I traffic or a roll.

Surface of an ordinary gravel roadway should be excavated to from 8 to 12 ins. for full width of road, the surface of excavation c

to that of road to be constructed.

The gravel should then be spread in layers, and each layer con the gradual pressure due to travel over it, or by a roller, the weig creasing with each layer. One of 6 tons will suffice for limit of v

If gravel is dry and will not readily pack, it should be wet, s with a binding material, or covered with a thin layer of it, as clay In rolling, the sides of road should be first rolled, in order to

gravel, when the centre is being rolled, from spreading at the side. To re-form a mile of gravel or earth road, 30 feet in width betwe material cast up from sides, there will be required 1640 hours' lab and 20 of a double team.

Corduroy Roads.

A Corduroy road is one in which timber logs are laid transversely t

Asphalt.

sphalt is a bituminous limestone, and is synonymous with bitumen; it sists of from 90 to 94 per cent. of carbonate of lime and 6 to 10 per cent. itumen.

. forming a pavement the powder is heated to from 212° to 250°, and its parscaused to adhere by pressure, or it is applied as a liquid asphalt or asphaltic tic, which is thus manufactured. The powder is heated with from 5 to 8 pr. of free bitumen for a flux, and the mixture when melted is run into molds, so remelted, additional bitumen must be mixed with it, without which it would become soft.

or paving 60 per cent. of sand or gravel must be mixed with it. No chemical in takes place between the mastic and the sand or gravel, but cohesion is so plete that gravel will fracture with the mastic, and the admixture increases the stance of the mass to heat of the sun. The roadway should have a convexity are of its breadth.

Irtificial Asphalt.—Heated limestone and gas tar, when mixed, possess se of the proportions of alphalt mastic, but it is very inferior for the poses of a pavement.

To repair surface of roadway, dissolve bitumen 1 part in 3 of pitch oil or in oil, apply 10 oz. of mixture over each sq. yard of roadway, sprinkle on 1 lbs. of asphalt powder, and then cover surface with sand.

Wood Pavement.

Rose-grained and hard woods only are suitable, such as oak, elm, ash, ch, and yellow pine, and they should be laid on a foundation of concrete.

Block Stone Pavement.

Paving-blocks, as the Belgian, etc., where crest of street or area of pavent does not exceed r inch in 7.5 feet, should taper slightly toward the and the joints be well filled, "blinded," with gravel. The common ctice of tapering them downward is erroneous,

The foundation or bottoming of a stone pavement for street travel should sist either of hydraulic concrete or rubble masonry in hydraulic mortar. Practice in this country of setting the stones in sand alone is at variance h endurance and ultimate economy, but when resorted to, there should be ed of 12 ins. of gravel, rammed in three layers, covered with an inch of 1. Granite or Trap blocks should be $4 \times 9 \times 12$ ins.

Rubble Stone Pavement.

owlders or Beach stone of irregular volumes and forms, set in a bed of l, involves great resistance to vehicles and frequent repairs; it is wholly riance with requirements of heavy traffic or city use.

Concrete Roads.

Increte roads are constructed of broken stones (road metal) 4 volumes, sharp sand 1.25 to .33 volumes, and hydraulic cement 1 volume. The is laid down in a layer of 3 or 4 ins. in depth, and left to harden during riod of 3 days, when a second and like layer is laid on and richen left to harden for a period of from 10 to 20 days, so

Perature and moisture of the weather.

Roads. (Molesworth.)

*dinary turnpike roads.—30 feet wide, centre 6 ins. higher from centre, 5 inch below centre; 9 feet from centre, 2

: 15 feet from centre, 6 ins. below centre.

t-paths-6 feet wide, inclined I inch towards road, of fine

quarry chippings, 3 ins. thick.

roads-20 feet wide. Foot-paths-5 feet.

Ze drains—3 feet below surface of road.

ayer, broken granite not larger than 1.5 cube ins., 6 ins. deep.

Metalled Roads should be swept wet.

Rolling.—Steam rolls are most effective and economical. 1000 sq. yards ling will require 24 hours' rolling at 1.5 miles per hour. A roller of 15 to will roll 1000 sq. yards of Telford or Macadam pavement in from 30 to 40 a speed of 1.5 miles per hour, equal .675 and .9 ton mile per sq. yard.

Sprinkling.—60 cube feet of water with one cart will cover 850 sq. yr cube feet per day will cover 1000 sq. yards; ordinarily two sprinklings are:

Granite Pavement.—The wear of granite pavement of London Bridge wa per year, and from an average of several streets in London, the wear per me per foot of width per day is equal to one sixteenth of an inch per year.

Sweeping and Watering of granite pavement and Macadam road, for e and under alike conditions in every respect, costs as 1 for former to 2 of 1

By men, with cart, horse, and driver, costs 3.25 times more than by a one of which will sweep 16000 sq. yards of street per period of 6 hours.

Asphalt Pavement. — Average cost per sq. yard in London: foundation. surface, \$3.25; cost of maintenance per sq. yard per year, 40 cents. We from .2 to .42 near curb, and .17 to .34 inch on general surface per year.

170m. 2 to .42 near curb, and .17 to .34 fact on general surface per year.
Washing.—Surface cleaning of stone or asphalt pavement by a jet can b at from 1 to 2 gallous per sq. yard.

Wood Pavement.—Wear of wood pavement in London, per 100 vehicle per foot of width, .083 inch per year.

Macadamized Roads. — Annual cost of maintenance of several such London was 62 cents per so, yard.

Block Stone Pavement.—Stones should be set with their tapered or least wards, with surface joints of z inch.

Fascines, when used, should be in two layers, laid crosswise to each of picketed down.

Bituminous road may be made by breaking up asphalt, laying it 2 it covering with coal tar, and ramming it with a heavy beetle. To repair a nous surface, dissolve one part of bitumen (mineral tar) in three of pith of oil, spread .625 of a lb. of solution over each so, vard of road sprinkle 2

-ada

SEWERS.

rs are the courses from a series of locations, and are classed as . Sewers. and Culverts.

ins are small courses, from one or more points leading to a sewer. erts are courses that receive the discharge of sewers. test fall of rain is 2 ins. per hour = 54 308.6 galls. per acre.

nation of sewers should not be less than I foot in 240, and for or short lateral service it should be I inch in 5 feet.

Circular.
$$55\sqrt{x} = v$$
, and $v = V$.

 $\frac{D}{3} = w, \frac{2D}{3} = w', \text{ and } D = r.$ x representing area of sever - wetted perimeter, f inclination of sewer per mile, and v velocity of flow of contents in feet per minute; a area of flow, in sq. feet, \(^{\text{V}}\) volume of discharge, in cube feet per minute; \(^{\text{D}}\) height of sever, w and \(^{\text{W}}\) width at bottom and top, and \(^{\text{T}}\) radius of sides, in feet.

For diameter of sewer exceeding 6 feet. (T. Hawksley.)

$$D - \frac{x}{9} = w'$$
. D diameter of a circular sewer of area required.

Elliptic.—Top and bottom internal should be of equal diameters. Diameter .66 depth of culvert; intersections of top and bottom circles form centres for striking courses connecting top and bottom circles.

Pipes or Small Sewers. — Height of section = 1; diameter = .66; of invert = .33, and radius of sides = 1.

lverts less than 6 feet internal depth, brickwork should be q ins. thick; ev are above 6 feet and less than 9 feet, it should be 14 ins. thick. imeter of top arch = 1, diameter of inverted arch = .5, and total sum of the two diameters, or 1.5; then radius of the arcs which are ial to the top, and inverted, will be 1.5.

this any two of the elements can be deduced, one being known.

Drainage of Lands by Pipes.

Soils.	Depth of Pipes.	Distance apart.	Soils.	Depth of Pipes.	Distance apart.
ravel sand nd with gravel im ith clay	3 6	50 33	Loam with gravel Sandy loam Soft clay Stiff clay	3 9	Feet. 27 40 21 15

num Velocity and Grade of Sewers and Drains in Cities. (Wicksteed.)

Vel. per [inute.	Grade, z in	Grade per Mile.	Diam.	Vel. per Minute,	Grade,	Grade per Mile.	Diam.	Vel Min
Feet. 240 220	36 65	Feet. 146.7 81.2	Ins. 15 18	Feet. 180 180	244	Feet. 21.6 18	Ins. 42 48	Fe 18
220	87	60.7	24	180	392	13.5	54 60	180
210 100	119	30.2	36	180	588	10.8	00	100

of Sewers or Pipes.—An area of 20 acres, miles, etc. times capacity of pipes for one acre, mile, etc., as the dires, etc., will not flow into the main simultaneously win etc. Ordinarily in this country an area of sewer or ph a rainfall of 1 inch per hour (3630 cube feet per acre) is Sewage.—The excreta per annum of 100 individuals of both sexes all ages is estimated at 7250 lbs. solid matter and 94 700 fluid, equal to 120 lbs. per capita, and in volume 16 cube feet, to which is to be added to volume of water used for domestic purposes. A velocity of flow of from 15 to 3 feet per second will discharge a sewer of its sewage matter and present deposits. The minimum velocity should not be less than 1.3 feet per second.

Surface from which Circular Sewers with proper Cure will discharge Water equal in Volume to One India Depth per Hour, including City Drainage. [Joka] 1

拉動雄四雄鄉 一四世

T

て 町

1	DIAMETER OF SEWERS IN FEET,											
INCLINATION IN FRET.	2	2.5	3	4	5	6	7	X.				
	Acres.	Acres.	Acres.	Acres.	Acres.	Acres.	Acres.	Acre.				
None	38.75	67.25	120	277	570	1020	1725	259				
r in 480	48	75	135	308	630	1117	1925	34				
r in 240	50	87	155	355	735	1318	2225	3300				
1 in 160	63	113	203	400	950	1692	2875	極				
I in 120	78	143	257	590	1200	2180	3700	585				
r in 80	90	165	295	570	1388	2486	4225	台				
r in 60	125	182	318	730	1500	2675	4550	1711				

Surface of a Town from which small Circular Drain will discharge Water equal in Volume to Two Inch in Depth per Hour. (John Roc.)

INCLINATION.	Di	AMETE	R OF	DRAIS	IN I	NS.	INCLINATION.	DIAMETER OF DRAIS IS IS				
Fall of z Inch.	3	4	1	6	7	8	Fall of r Inch.	9	12	15	13	
Acres.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Acres.	Feet.	Feet.	Feel.	B4	
.125	120	-	١.	-	-	-	2.1	120	-	-	-	
.25	20	120		-	-	-	2.5	80	-	-	-	
4375	_	40	1	-	-	-	2.75	60	-	-	-	
	-	30	80	-	-	-	4-5	-	120	-	-	
.6	-	20	60	_	-	-	5-3	-	80	-	~	
1	-		20	60	-	-	5-3 5-8	-	60	240	-	
1.2	_			40	20	-	7.8	-	-	120	-	
1.5	_	-	1	20	60	120	9	-	-	80	-	
1.8	-		1	_	-	80	10	-	-	60	240	
2, 1	-	-		-	-	60	17	-	-	-	120	

Dimensions, Areas, and Volume of Material per Lind Foot of Egg-shaped Sewers of different Dimensions

	INTERNAL D	IMENSIONS.		VOLUME OF BRICK-WORK.					
Depth.	Diam. of Top Arch.	Diam, of Invert.	Area.	4.5 Ins. thick.	9 Ins. thick.	13.5 Int			
Feet.	Feet.	Feet.	Sq. Feet.	Cube Feet	Cube Feet.	Cube Fee			
2.25	1.5	-75	2.53	2.81	-	-			
3	2	1	4-5	3.56	-	-			
3.75	2.5	1.25	7.03	4.31	9.56	-			
4.5	3	1.5	10.12	5.06	10.87	-			
	3.5	1.75	13.78	5.8r	12.75	-			
5·5 6	1 1	2	18	6.56	14.25	-			
6.75	4-5	2.25	22.78	7.31	15-75	24-73			
7.5	5	2.5	28.12	-	17.06	27			
5		2.75	34.03	_	18	28.41			
•	5.5	3	40.5	-	19.69	30.94			

product of mean diameter x height.

have a uniform thickness and be uniformly wormally.

the thicker than those of stone-clay.

STABILITY.

TY, Strength, and Stiffness are necessary to permanence of a under all variations or distributions of load or stress to which subjected.

of a Fixed Body—Is power of remaining in equilibrio without eviation of position, notwithstanding load or stress to which it bmitted may have certain directions.

of a Floating Body.—A body in a fluid floats, or is balanced, isplaces a volume of the fluid, weight of which is equal to weight nd when centre of gravity of body and that of volume of fluid disin same vertical plane.

body in equilibrio is free to move, and is caused to deviate in a ree from its position of equilibrium, if it tends to return to its sition, its equilibrium is termed Stable; if it does not tend to deher, or to recover its original position, its equilibrium is termed; and when it tends to deviate further from its original position, rium is Unstable.

in equilibrio may be stable for one direction of stress, and unstable r.

of Stability of a body or structure resting upon a plane is mouple of forces, which must be applied in a plane vertically inclined y in addition to its weight, in order to remove centre of resistance pon plane, or of the joint, to its extreme position consistent with

The couple generally consists of the thrust of an adjoining structarch and pressure of water, or of a mass of earth against the together with the equal and parallel, but not directly opposed, replane of foundation or joint of structure to that lateral thrust. Fer according to position of axis of applied couple.

-Two forces of equal magnitude applied to same body or structallel and opposite directions, but not in same line of action, constiple.

for Statical and Dynamical Stability, see Naval Architecture, page 649.

ertain Stability of a Body on a Horizontal Plane.
- Fig. 1.

ILLUSTRATION. — Stability of a body, A, Fig. 1, when a thrust is applied as at a, to turn it on a, is ascertained by multiplying its weight by distance as, from fulcrum a to line of centre of gravity, cs.

Hence, if cubical block weighed so tons and its base is 6 feet, its moment would be so $\times \frac{6}{3}$

If upper part, abdc, was remov

h but 5 tons, but its centre of gravity • would be $\frac{2}{3}$ would be $5 \times 4 = 20$ tons, although it is but half the

mpute Weight of a Given Body to Given Thrust.

F representing thrust in lbs., h height of centre of grave.

e of fulcrum from centre of gravity = a s.

on.—Assume figure to be extended to a height of 20 feets of resisting the extreme pressure of wind.

Pressure estimated at 50 lbs. $F = 6 \times 20 \times 50 = 6000$ lbs. at centre of grade surface of body.

Then
$$\frac{6000 \times 10}{2} = 20000 lbs.$$

Note I.—This result is to be increased proportionately with the factor of its due to character of its material and structure.

2.—If form of body has a cylindrical section, as a round tower, the thrus d'would be but one half of that of a plane surface.

When the Body is Tapered, as Frustum of Pyramid or Cone.—Asset centres of gravity of surface for pressure or thrust, and of body for in bility, and proceed as before.

To Ascertain Stability of a Body's an Inclination.—Fig. 2.

ILLUSTRATION.—Stability of body, Fig. 2, who is applied at a, is ascertained by multiplying it by distance a b from fulcrum, b, to line of congravity, a g.

If thrust was applied at o, stability would be tained by distance sr from fulcrum r.

Angles of Equilibrium at which various Substances Repose, as determined by a Clinometer.

Angle measured from a Horizontal Plane, and falling from a mot

Degrees.	Degrees,	i Defi
Lime-dust 45	Sand, less dry 39.6	Common mold
Dry sand 40		Common gravel. 3
Moist sand 41	Corn 37	Stones or Coal 43

Weight of a Cube Foot of Materials of Embankmen
Walls, and Dams.

Concrete in cement	127	Gravel Loam	125	Clav
04	-31	1	3	3,000
Stone masonry	130	Loam	120	Mari
Brick "		Sand	700	

Revetment Walls.

When a wall sustains a pressure of earth, sand, or any loose matrix is termed a Revetment wall, and when erected to arrest the fall or subside of a natural bank of earth, it is termed a Face wall.

When earth or banking is level with top of wall, it is termed a servetment, and when it is above it, or surcharged, a Counterscarp revenue.

When face of wall is battered, it is termed Sloping, and when back tered. Countersloping.

Thrust of earth, etc., upon a wall is caused by a certain portion, in of a wedge, tending to break away from the general mass. The put thus caused is similar to that of water, but weight of the material reduced by a particular ratio dependent upon angle of natural slope waries from 45° to 60° (measured from vertical) in earth of mean design.

Or, natural slope of earth or like material lessens the thrust, as the

which line of rupture makes with vertical is .5 of angle with alone, or angle of repose, makes with same vertical line

' * top, its pressure may be ascertained by consideration of the cube foot of which is equal to weight of a cube so that a square of tangent of .5 angle included between

į

refore squares of the tangents of .5 of 45° and .5 of 60° = .1716 and which are the multipliers to be used in ordinary cases to reduce a loot of material to a cube foot of equivalent fluid, which will have effect as earth by its pressure upon a wall.

Pressure of Earth against Revetment Walls.

Let A B C D, Fig. 3, be vertical section of a revetment wall, behind which is a bank of earth, A D fe; let D o represent angle of repose, line of rupture, or natural slope which earth would assume but for resistance of wall.

In sandy or loose earth angle o D A is generally 30° ; in firmer earth it is 36° ; and in some instances it is 45° .

If upper surface of earth and wall which supports it are both in one horizontal plane, then the resultant, l n, of pressure of the bank, behind a vertical wall, is at a distance, D n, of one third A D.

of Rupture behind a wall supporting a bank of vegetable earth is at nee A o from interior face, A D = .618 height of it.

en bank is of sand, Ao = .677 h; when of earth and small gravel = : and when of earth and large gravel = .618 h.

prism, vertical section of which is A D o, has a tendency to descend inclined plane, o D, by its gravity; but it is retained in its place by nee of wall, and by its cohesion to and friction upon face o D. Each se forces may be resolved into one which will be perpendicular to o D, to another which will be parallel to o D. The lines c i, i l represent nents of the force of gravity, which is represented by vertical line c l, from centre of gravity, c, of prism. Lines n r, l r represent composit forces of cohesion and friction, which is represented by horizontal l. Force that gives the prism a tendency to descend is i l, and that l to this is r l, together with effects of cohesion and friction.

s, i = rl + cohesion + friction. Consequently, exact solution of probfithis nature must be in a great measure experimental.

as been found, however, and confirmed experimentally, that angle i with vertical, by prism of earth that exerts greatest horizontal stress t a wall, is half the angle which angle of repose or natural slope of makes with vertical.

Memoranda.

iral slope of dry sand $= 39^{\circ}$, moist soil $= 43^{\circ}$, very fine sand $= 21^{\circ}$, wet clay and gravel $= 35^{\circ}$.

etting or founding of retaining walls, if earth upon which wall is to rest is or wet, coefficient of friction between wall and earth falls to .3; hence it is ary, in order to meet this, that the wall should be set to such a depth in the hat the passive resistance of it on outer face of wall, combined with its fricits bottom, may withstand the pressure or thrust on its inner face.

ent of a Retaining Wall is its weight multiplied by distance of its centre of to vertical plane passing through outer edge of its base.

ent of Pressure of Earth against a retaining wall is pressure multiplied by e of its centre of pressure to horizontal plane passing through base of wall. *Librium of Relaining Wall is when respective moments of wall and earth are

Lity of a Retaining Wall should be in excess of its equilibrier of thrust upon it, and the line of its resistance should be hance from vertical passing through centre of gravity of ws of exterior axis of wall from this line.

cient of Stability varies with character of earth, location, c bods, etc.; hence thickness of base of wall will vary from of retaining walls should be laid rough; in order to arrest he ing. When filling is composed of bowlders and gravel, the thickness of wall made increased, and contrariwise; when of earth in layers and well rammed, it made decreased.

Courses of dry wall should be inclined inwards, in order to arrest the infi water of subsidence in filling from running out upon face of wall.

Less the natural slope, greater the pressure on wall.

Sea walls should have an increased proportion of breadth, as the earth hair is not only subjected to being flooded, but the walls have at times to susual weight of heavy merchandise.

Buttress.—An increased and projecting width of wall on its front, at internal its length.

Counterfort.—An increased and projecting width of wall at its back and stervals.

Coefficient of Friction of masonry on masonry .67, of masonry on dry call and on wet clay .3.

Face of wall should not be battered to exceed r to 1.25 ins. in a foot of height consequence of the facility afforded by a greater inclination to the permeaner rain between the joints of the courses.

Footing of a wall, projecting beyond its faces, is not included in its width.

Pressure.—Limit of pressure on masonry 12 500 to 16 500 lbs. per so, foot will

Thickness of Walls, in Mortar, Faces vertical. For Railways or Like Stra

Friction in vegetable earths is .5; pressure in sand .4.

When vegetable earths are well laid in courses, the thrust is reduced .5

When bank is liable to be saturated with water, thickness of wall should doubled.

Centre of Pressure of earthwork, etc., coincides with centre of pressure of stand hence, when surface is a rectangle, it is at .33 of height from base.

The theory of required thickness of a retaining wall, as before stated, is the lateral thrust of a bank of earth with a horizontal surface is that due to the pure or wedge-shaped volume, included between the vertical inner face of the walk a line bisecting the angle between the wall and the angle of repose of the make

soull in feet. V volume of section of prism of material A D n one foot in length's feet, W and w weights of a cube foot of wall and of material, P, p, and p' moments of pressure of prisms of earth A D o and A D n upon wall, Ms most of pressure and weight on and of wall, E and S equilibrium and dabble is lbs., and a and a (C D for weights of wall for equilibrium as we will be a compared to the foot of the compared to the foot of the compared to the control wall. The A of 125 lbs. Det could be compared to the foot of the control wall.

TOX.—A revetment wall, Fig. 4, of 125 lbs. per cube foot and ins a bank of earth huving a natural slope of 520 24, and recube foot; what is pressure or thrust against it, etc.?

Tan. AD n = .242. Then .492 × 40 ×
$$\frac{40}{2}$$
 = 393.6 cube feet.

$$\frac{89.25 \times 40^{2}}{2} \times .492 = 35 \text{ ra8.8 lbs.} \qquad \frac{89.25 \times 40^{2}}{2} \times .492^{2} = 17278.8 \text{ lbs.}$$

$$\frac{89.25 \times 40^{2}}{2} \times .492^{2} \times \frac{40}{3} = 230384 \text{ lbs.} \qquad 125 \times 40 \times \frac{9.6^{2}}{2} = 230400 \text{ lbs.}$$

$$40 \times .492 \sqrt{\frac{89.25}{2}} = 9.6 \text{ feet, and } 40 \times .492 \sqrt{\frac{2 \times 89.25}{2}} = 13.58 \text{ feet.}$$

For Rubble Walls in Mortar or Dry Rubble, add respectively to base as above tained, 14 and .42 part.

Note 1.—When coefficient of friction is known, use it for tan. 2 A D n.

 $A \times C =$ base of wall for stability. (Molesworth.)

 \Longrightarrow .—When either relative weights of equal volumes of wall and bank of earth or \blacktriangleleft ir specific gravities are given, S and s may be taken for W and w.

These equations involve simply the operation of a lever, the fulcrum being at outer edge of wall C. The moment of pressure of bank is product of lateral essure and perpendicular distance from fulcrum to line of direction of pressure.

The moment of weight of wall is product of weight of wall and perpendicular stance from fulcrum to vertical line drawn through centre of gravity of wall.

When Weights of Embankment and Wall are equal per Cube Foot.

C for clay = .336, and for sand .267.

When Weights are as 4 to 5. C for clay = . 3, and for sand .239.

When Wall has an Exterior Slope or Batter .- Fig. 5.

$$\frac{W h}{2} \left(\overline{C D + E C}^2 - \frac{E C^2}{3} \right) = M. \quad M \quad representing$$
moment of weight of wall in lbs.

ILLUSTRATION. — Assume weight of wall 120 lbs. per cube foot, and C D and E C respectively 10 and 2.5 feet, and all other elements as in preceding case.

Hence,
$$\frac{120 \times 40}{2} \times \left(\frac{10 + 2.5 - \frac{2.5^2}{3}}{3}\right) = 370000$$
 lbs.
 $\frac{Wh}{2} \left(\frac{x + nh}{3} - \frac{n^2h^2}{3}\right) = \frac{30h^3}{3} \tan^2 A D n = S.$

In, $h\sqrt{\frac{n^2}{3} + \frac{2W}{3W}} \tan^2 A D n - nh = x$. x representing A B or C D. n ratio of revence of widths of base and top to height. In absence of $\tan^2 A D n$ put C, covered of material.

= .0424 for vegetable or clayey earth, mixed with large gravel; .0464 if mixed small gravel; .1528 for sand, and .166 for semi-fluid earths.

LUSTRATION.—Assume elements of preceding case. n = one fortieth, and tan n = .492.

$$40\sqrt{\frac{1}{3\times40^2} + \frac{2\times89.25}{3\times125}\times.492^2} - 1 = 12.6$$
 feet.

Rence, thickness of wall at base = 12.6 + 1 (one fortieth of he

Force well at here
$$-x = 6$$
, $4 = \sqrt{\frac{1}{3 \times 20^2} + \frac{2 \times 89.25}{3 \times 125} \times \frac{1}{3 \times 125}}$

Tence, wall at base = 11.63 + 2 (one twentieth of height) = 1, 11.32 feet.

When Wall has an Interior Slope or Batter, Bl Fig. 6.

$$\frac{w h^2}{2} \times \tan^2 \frac{o E r}{2} = P. \quad \frac{w h^3}{6} \times \tan^2 \frac{o E r}{2} = 0$$
earth for equilibrium;
$$\frac{w h}{2} \left(D C \times \overline{D C + CE} - \frac{CE}{1}\right)$$

M of wall; and $\frac{w h^3}{3} \times \tan^2 o E n = M$ of earth for bility.

Coefficients for Batter of following Proportions. Base = Height × Tab. number.

	Weight of Earth to Will						
BATTER OF WALL.	to 5. Sand.	Clay.	to r. Sand.	BATTER OF WALL.		to 5. Sand.	Clay
1 in 4 1 " 5 1 " 6	.029 .065 .092	.115	.092	1 in 8 1 '' 12 Vertical	.221	,125 .16 .239	,218 ,256 ,336

To Compute Pressure Perpendicular to Back of W —Fig. 7.

 $P* = \frac{AD}{3} \text{ or } \frac{h}{3}, \text{ and } f* \text{ at right angle to back of}$ whether vertical or inclined.

$$\frac{\mathbf{L} \times \mathbf{A} \, \mathbf{n}}{h}$$
, or $\mathbf{L} \times \tan \mathbf{A} \, \mathbf{D} \, \mathbf{n}$, or $\frac{w \times h^2 \times \tan^2 \mathbf{A} \, \mathbf{D}}{2}$
 $\frac{w \times \mathbf{A} \, n^2}{2} = f$ *. L representing weight of triangles

bankment, as A D n.

This is pressure independent of friction between surfaces of wall and early
To Ascertain and Compute Amount and Effect of F

tion of Wall and Earth.—Fig. 8.

Draw f * by scale to computed pressure at right to back of wall, draw angle f * r = m D o of natural of earth with horizon, draw f r at right angle to f * rc = f *, then c r will represent by scale effect of f * against back of wall.

Assume friction to act at point *, then r * will scale resultant of the two forces of pressure and frequal to pressure in force and direction, which against wall.

This resultant is also equal to $f * \times$ sec. m Da

$$\frac{L \times A \, n \times \sec \, m \, D \, o}{h} = r *, \text{ or } \frac{w \times h^2 \times \tan^2 m \, D \, o}{2} \times \sec \, m \, D \, o, \text{ or } L \times \tan^2 m \, D \, o$$

x sec. m Do.

To Ascertain Point of Moment of Pressure of a W
-Fig. 9.

By its resisting lever I a, added to its weight.

Weight of wall as computed assumed as concentrated centre of gravity .

Draw a vertical line • o through its centre of gravity, and time line of pressure P * to l, take any distance r o by said resenting weight of wall, and r n, by same scale, for any pressure or thrust against wall, complete parallelegament then diagonal r u will give resultant of pressure in any direction to overturn wall.

For stability this diagonal should fall taside of best not less than one third of its breadth.

Surcharged Revetments.

When the earth stands above a wall, as A B e, Fig. 10, with its natural slope, A f, A B C is termed a Surcharged Revetment.

If Cr is line of rupture, AfrC is the part of earth that presses upon wall, which part must be taken into the computation, with exception of portion ABc, which rests upon wall; that is, the computation must be for part Ccfr, which must be reduced by multiplying weight of a cube foot of it by square of tangent of angle cCr = angle of line of rupture, or half angle cCr, which natural slope makes with vertical, and then proceed as in previous cases for revenents.

 $\frac{i'\ w\ tan.^2\ e\ C\ r}{3\ h\ W}$ = breadth or C D. W and w representing weights of wall and ment in lbs. per cube foot, and h' height of embankment, as C e.

TRATION.—Height of a surcharged revetment, BC, Fig. 10, is 12 feet, weight per cube foot; what is its width or base to resist pressure of earth of a weight ba per cube foot, and a height, C, of 17 feet, angle of repose 45°

$$^{2}(45^{\circ} \div 2) = .1716$$
 Then $15\sqrt{\frac{15 \times 100 \times .1716}{3 \times 12 \times 130}} = 15\sqrt{.055} = 3.52$ feet.

Legertain Point of Moment of Pressure of a Surcharged Wall.-Fig. 11.

point * will be at .33 height of wall.

When natural slope is r.5 in length to r in height, as

with gravel or sand, $w \times .6_4 = \text{pressure P} *$. In a surcharged revetment, as fBo, at its natural slope, the maximum pressure is attained when the backing reaches to r. When slope of maximum pressure, $C \cdot n \cdot r$, intersects face of natural slope, $B \cdot f$ so that if backing is raised to f, or above it, there is theoretically no additional stress exerted at back of or against wall, but practically there is, from effect of impact of vibration of a

train, proximity to percussive action, alike to that of a trip-hammer, etc.

backing rests on top of wall, as A B e, Fig. 10, small triangle of it is omitted putations. Direction of pressure against wall is same as when wall is not ged.

When Wall is set below Surface of Earth .- Fig. 12.

1.4 tan.
$$\frac{1}{45^{\circ} - \frac{a}{6}} \sqrt{\frac{h^2 w \left(\tan 45^{\circ} - \frac{a}{2}\right)^2 \sim 2 f \nabla}{W}} = ds$$

a representing angle of repose of earth, w and W weights of earth and wall per cube foot, f friction of wall on base A B, and V weight of wall.

/ ILLUSTRATION.—If a wall of masonry, Fig. 12, 8 feet in thickness and 13 in height, is to sustain earth level with its upper surface, earth weighing 100 lbs. per cube foot, weight of wall 150 lbs. per cube foot = 15 600 lbs., and angle of repose of earth 30°; what should be the depth of wall below surface of earth?

Tan.
$$45 - 30 \div 2 = .5774$$
, and $f = .3$.

$$\frac{11.4 \times .5774 \sqrt{\frac{13^2 \times 100 \times .5774^2 \times 2 \times .3 \times 15600}{150}} = .8084 \times \sqrt{\frac{9360 \times 5634.3}{150}}$$
7 feet.

—Coefficient of stability is assumed by French engineers for walls of for 1.4 h, and if ground is clayey or wet f = .3.

STABILITY .- EMBANKMENT WALLS AND DAMS.

Fig. 13.

In Computing Stability of a Surcharged Wall, Fig. 13, 16 stitute d for h, as in following illustration. (Molesworth)

d, representing depth at distance l, = h. In slopes of i to i, $d = i \cdot 7i \hbar$; of $i \cdot 5$ to i, = $i \cdot 55$; of i to i, = $i \cdot 55$; of i to i, = $i \cdot 3i$, and i to i, = $i \cdot 24$.

To Determine Form of a Pier to Sustain equal Pressure per Unit of Surface at all its Horizontal Sections, or any Height

And = a, or AN = a. A and a representing areas of sections at summit of and at any depth, d, measured from summit, n a number the hyp. log. of which = i= height, H, of a column of the material of which pier is constructed, due to require pressure, and N the number, com. log. of which = 4343 d

ILLUSTRATION.—Height of a pier is 20 feet, and area of section of its summits I foot; what should be its areas at 10 feet and base?

 $1 \div 20 = .05$, and number = 1.0513; 1 × 1.0513¹⁰ = 1.649 feet; and 1 × 1.0513¹⁰ 2.710 feet.

Counterforts are increased thicknesses of a wall at its back, at intervals of its length.

Embankment Walls and Dams.

Thrust of water upon inner face of an Embankment wall or Dam's horizontal.

When Both Faces are Vertical, Fig. 14.

Assume perpendicular embankment or wall, A B C D, Fig. 14, to some pressure of water, B Ce f.

Let k i be a vertical line passing through o, or of gravity of wall, c centre of pressure of water, tance C c being = .33 B C. Draw c l perpendi to BC; then, since section AC of wall is rectanged centre of gravity, o, is in its geometrical centre therefore Di=.5 DC. Now l Di is to be com ered as a bent lever, fulcrum of which is D, weight wall acting in direction of centre of gravity, 0, 00 Di, and pressure of water on arm Di, or a force to that pressure thrusting in direction cl.

 $\frac{BC}{a} = W \times \frac{DC}{a}$, or $P = \frac{3DC.W}{aBC}$. P representing Then PXDl=PX of water.

Note. - When this equation holds, a wall or embankment will just be a point of overturning; but in order that they may have complete stability. a equation should give a much larger value to P than its actual amount.

The following formulas are for walls or embankments one foot in least for if they have stability for that length they will be stable for any length.

 $P = \frac{h^2}{w}$, also W = h b W, each value being for 1 foot in length, which being stituted in the equations, there will result

 $\frac{h^2}{2}w = \frac{3b \times hb W'}{2h}$, or $h^2w = 3b^2 W$; $b\sqrt{\frac{3W}{w}} = h$, and $h\sqrt{\frac{3W}{w}} = h$ resenting depth of water and wall or embankment, which are here assemble

equal, h breadth of wall or embankment, and W and w weights of wall and w per cube foot in lbs.

Which gives breadth of a wall or embankment that will just pressure of the water.

To Compute Equilibrium.
$$h\sqrt{\frac{w}{3W}} = b$$
.

LUSTRATION I.—Height of a wall, B C, equal to depth of water, is 12 feet, and retive weights of water and wall are 62.5 lbs. and 120 lbs. per cube foot; required dth of wall, so that it may have complete stability to sustain the pressure of ar

$$\sqrt{\frac{62.5}{3 \times 120}} = 12 \times .4166 = 5$$
 feet, breadth that will just sustain pressure of the

herefore an addition should be made to this to give the wall complete stability, 2 feet; hence 5+2=7, required width of wall.

—Width of a wall is 3 feet, and weight of a cube foot of it is 150 lbs.; required tht of wall to resist pressure of fresh water to the top.

$$3\sqrt{\frac{3\times150}{62.5}}$$
 = 8.049 feet.

To Compute Stability.
$$\hbar \sqrt{\frac{2 w}{3 W}} = b$$
.

LUSTRATION.—Take elements of preceding case.

$$12\sqrt{\frac{2\times62.5}{3\times120}} = 12\times.589 = 7.07$$
 feet.

r, Divide 1, 2, or 3, etc., according as the nature of the ground, the mate, and the character of the thrust of the water requires, by .05 weight of terial of wall, per cube foot, extract the square root of quotient, and mulg result by extreme height of water.

RAMPLE. — What should be the thickness of a vertical faced wall of masonry, as weight of 125 lbs. per cube foot, to sustain a head of water of 40 feet, and was stability?

$$\sqrt{(2 \div .05 \times 125)}$$
 40 = $\sqrt{.32} \times$ 40 = 22.63 feet.
Or, $\hbar \sqrt{\frac{2 w}{2 W}}$ = 40 $\sqrt{.3472}$ = 23.56 feet.

When Dam has an Exterior Slope or Batter, as A D .- Fig. 15.

Assume prismoidal wall, A B C D, to sustain pressure of water, B C ef.

Draw A E perpendicular to D C; h = B C, the top breadth A B = E C = h, and bottom breadth, D E, of sloping part, A E D = S.

Then weights of portions A C and A E D respectively for one foot in length are hb W and .5 W S h, these weights acting at points n and i respectively.

To Compute Moment.

b b
$$\mathbb{W} \times \left(S + \frac{b}{2}\right) = moment for A C, and $\frac{h S W}{2} \times \frac{2 S}{3} = moment for A E D.$$$

ace, $\frac{Wh}{2}\left(\overline{S+b}-\frac{S^2}{3}\right)$ = moment of dam. S representing batter or base E D.

OSTRATION.—Height of a dam, B C, Fig. 15, is 9 feet, base C E 3, and E D 4 feet; is its moment?

A C = 9 × 3 × 120 ×
$$\left(4 + \frac{3}{2}\right)$$
 = 3240 × 5.5 = 17 820 lbs.

A D E =
$$\frac{9 \times 4 \times 120}{2} \times \frac{2 \times 4}{3} = 2160 \times 2\frac{2}{5} = 5760$$
 lbs.

Dec. 17820 + 5760 = 23580 lbs. moment. Or, $\frac{120 \times 9}{2} \left(\frac{4+3}{4+3} - \frac{4^2}{3} \right) = 540 \times 43\%$ 580 lbs. moment.

To Compute Elements of Walls or Dams with a Exterior Batter .- Fig. 15.

To Compute Width of Top.

When Width of Batter is Given.
$$\sqrt{\frac{2 h^2 w}{3 W} + \frac{8^2}{3}} - 8 = b$$
.

ILLUSTRATION.—Assume height of wall o and batter 3 feet, and W and w mail 62.5 lbs. per cube foot.

$$\sqrt{\frac{2 \times 9^2 \times 62.5}{3 \times 120} + \frac{3^2}{3}} - 3 = \sqrt{28.125 + 3} - 3 = 2.58 \text{ feet.}$$

To Compute Width of Base.

When Width of Batter is Given.
$$\sqrt{\frac{2 h^2 w}{3 W} + \frac{8^2}{3}} = B$$
.

$$\sqrt{\frac{2 \times 9^2 \times 62.5}{3 \times 120} + \frac{3^2}{3}} = 5.58 \text{ feet} = 8 + b.$$

To Compute Width of Batter.

,When Width of Top is Given.
$$\sqrt{\frac{h^2 w}{W} + \frac{3b^2}{4}} - \frac{3b}{2} = 8$$
.

$$\sqrt{\frac{9^2 \times 62.5}{120} + \frac{3 \times 2.58^2}{4} - \frac{3 \times 2.58}{2}} = \sqrt{42.18 + 4.99} - 3.87 = 3 \text{ field}$$

When Width of Bottom is Given.
$$\sqrt{3 B^2 - \frac{2 h^2 w}{W}} = 8.$$

To Determine Stability of a Retaining Wall or Dam's Protraction .- Fig. 16. Fig. 16.

Assume ABCD, section of a wall. On horizont line of centre of thrust or pressure, with a suitable scale, lay off, from vertical line of centre of gravity of wall, line or = thrust against wall, and on vertice line at centre of gravity of wall, at its intersection, with centre of thrust, let fall os = weight of wall

Complete parallelogram, and if diagonal ou or i prolongation falls within C, the wall is stable, s W × distance from line os = moment of wall. W representing whole weight of wall in lbs.

To Determine Centre of Gravity of a Wall or Dam-

By Ordinates.
$$\frac{1}{3} \left(A B + C D - \frac{A B \times C D}{A B + C D} \right) = x$$
, and $\frac{B D}{3} \left(\frac{2 A B + C D}{A B + C D} \right) = x$

To Compute Base of Dam,

When Height, Rate of Batter, and Weight of Materials are given. Rti—Multiply square of width of batter by .0166 weight of material per co foot, add 1, 2, or 3 times square of depth of water, according as resistant due to equilibrium is required, divide result by .05 weight of material cube foot, and extract square root of quotient.

Or,
$$\sqrt{\frac{x h^2 + b^2 \times .0166 \text{ W}}{.05 \text{ W}}} = b$$
. $x = number of times of resistance required$

Assume a dam 40 feet in height, constructed of masonry weight o foot, to batter 3 ins. per foot, and to bave twice the resistant of a; what should be its breadth at its base, D C?

When Section of Dam is a Triangle, Fig. 17. — Assume dam, A B C, to sustain a head of water, ef.

RULE.—Proceed as by Rule for Fig. 14; multiply by .033 instead of .05.

EXAMPLE. -As before.

$$\sqrt{(2 \div .033 \times 125)}$$
 40 = $\sqrt{.485} \times 40 = 27.84$ feet.
Or, Formula for S (C B), Fig. 15. $\sqrt{\frac{h^2 \times w}{W}} = 28.28$ feet.

o Determine Section of a Vertical Wall which shall have Equal Resister of one having Section of a Triangle. (See J. C. Trautwine, Phila., 1872.)

Compute Thickness of Base of a Wall or Dam.-Fig. 18.

RULE.—Divide 1, 2, or 3 times square of depth of water by .05 weight of material, add quotient to .5 batter on one face, and square root of this sum, added to half batter on other side, will give thickness.

Or, $\sqrt{\frac{h^2 x}{.o_5 W} + \left(\frac{b}{2}\right)^2 + \frac{b'}{2}} = Base$. b and b' representing exterior and interior batters, and x, as before, number of times of resistance or square of depth.

EXAMBLE.—Assume a dam 40 feet in height, to batter 5 feet on each side, constructed of masonry weighing 120 lbs. per cube

, and to have twice the resistance due to its equilibrium; what should be udth of base, D C?

$$\sqrt{\frac{40^2 \times 2}{.05 \times 120} + \left(\frac{5}{2}\right)^2 + \frac{5}{2}} = \sqrt{539.58 + 2.5} = 25.73 \text{ feet.}$$

High Masonry Dams.

tubble Masonry, well laid in strong cement, will bear with safety a load ivalent to weight of a column of it 160 feet in height. Assuming such masonry as twice weight of water, it is equivalent

10.6 2.1 10.80 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 to a pressure of 20000 lbs. per sq. foot.

Log. B + .434 294 $\times \frac{d}{80} = b$. B representing width of wall at top, and d depth at any desired point below top, both in feet.

Ordinarily, B may be taken at 18 feet, and in cases of extreme and exposed heights of dam at 20 and more, and when b is determined, 9 of it is to be on outer face of wall, as A B, and .1 on inner face.

ILLUSTRATION.—Determine section of a dam, Fig. 19, 80 feet in height, at depths of 10, 20, 40, 60, and 80 feet.

Log. B = 1.2553.

0g. 1.2553 + .4343
$$\times \frac{10}{80}$$
 = log. 1.2553 + .0543 = 20.4, which \times .9 = 18.36.
" 1.2553 + .4343 $\times \frac{20}{80}$ = log. 1.2553 + .1086 = 23.11, which \times .9 = 20.8.
" 1.2553 + .4343 $\times \frac{40}{80}$ = log. 1.2553 + .2172 = 29.68, which ;
" 1.2553 + .4343 $\times \frac{60}{80}$ = log. 1.2553 + .3257 = 38.11, which
2.2553 + .4343 $\times \frac{60}{80}$ = log. 1.2553 + .4343 = 50.07, which

STEAM.

STEAM is generated by heating of water until it attains tem of ebullition or vaporization, and elevation of its temperature is to indications of a thermometer up to point of ebullition; it converted into steam by additional temperature, which cannot dicated by a thermometer, and is termed latent. (See Heat, pa

Pressure and density of steam, which is generated in free contact wrises with the temperature, and reciprocally its temperature rises with ure and density, and higher the temperature more rapid the pressure, but one and a corresponding pressure and density for each temperature, generated in free contact with water is both at its maximum density and for its temperature, and in this condition it is termed saturated, from its capable of vaporising more water unless its temperature is raised.

Saturated Steam is the normal condition of steam generated in free convater, and same density and same pressure always exist in conjunction temperature. It therefore is both at its condensing and generating poin, it is condensed if its temperature is reduced, and more water is evaits temperature is raised.

If, however, the whole of the water is evaporated, or a volume of saturis isolated from water, in a confined space, and an additional quantity supplied to the steam, its condition of saturation is changed, the steam superheated, and both temperature and pressure are increased, while its not increased. Steam, when thus surcharged, approaches to condition of

With saturated steam, pressure does not rise directly with the tempera Steam, at its boiling-point, is equal to pressure of atmosphere, which is ibs. (page 427), at 60° upon a sq. inch.

In all computations concerning steam, it is necessary to have some or lowing elements, viz.:

Its Pressure, which is termed its tension or elastic force, and is expres per sq. inch. Its Temperature, which is number of its degrees of heat in a thermometer. Its Density, which is weight of a unit of its volume with that of water. Its Relative volume, which is space occupied by a giver volume of it, compared with weight or volume of water that produced

Under pressure of the atmosphere alone, temperature of water cannot above its boiling-point.

Expansive force of steam of all fluids is same at their boiling-point.

A cube inch of water, evaporated under ordinary atmospheric pressure, ed into 1642 cube ins. of stoam, or, in a unit of measure, very nearly 1 and it exerts a mechanical force equal to raising of $14.723307 \times 144 = 2$ lba. 1 foot high.

A pressure of r lb. upon a sq. inch will support a column of mercury perature of 60° , $x \div .490$,7769 (page 427)=2.037,586 ins. in height; her raise a mercurial slphon gauge one half of this, or r.018793 ins.

Velocity of steam, when flowing into a vacuum, is about 1550 feet per se at a pressure equal to the atmosphere; when at 10 atmospheres velocity is to but 1780 feet; and when flowing into the air under a similar pressure 650 feet per second, increasing to 1600 feet for a pressure of 20 atmosphe

Boiling points of Water, corresponding to different heights of bare Heat, page 517.

Volume of a cube foot of water evaporated into steam at 212° is 1642 hence 1 ÷ 1042° = .coo 609 013, which represents density or specific gravit pressure of atmosphere.

Elasticity of vapor of alcohol, at all temperatures, is about 2.125 times the

 STEAM. 705

Total Heat of Saturated Steam. (Regnault.) From Water at 320.

1081.4 + .305 T = total heat. T representing initial temperature of water. ILLUSTRATION. - What is total heat of steam at 2120?

1081.4 + .305 × 212 = 1146.06.

As Specific heat of water is .9 greater at 212° than at 32°, hence the 212° would be 212.9, and 1146.33 the result.

Total Heat of Gaseous Steam from Water at 320 = 1074.6 + .475 T.

Absorption of Heat.

In Generation of 1 Lb. of Steam at 212° from Water at 32°.	
Bensible heat, or heat to raise temperature of water Thermal Units. Foot-lb	
from 32° tó 212°	5
Latent heat to produce steam 892.9	-
" to resist atmospheric pressure 14.7 lbs.	
per sq. inch	4
Total or constituent heat 1146.1 884.78	9

In Generation of 1 Lb. of Steam at 175 lbs. from Water at 320.

T	hermal Units.	Foot-lbs.
Sensible heat as in preceding case from 32° to 370.8°	342.4	275 333
Latent heat to produce steam	. 768.2	593 050
" to resist external pressure = 175 lbs	. 83.8	64 694
Total heat from 32°	. 1194.4	933 077

Mechanical Equivalent of Heat Contained in Steam.

■ lb. water heated from 32° to 212° requires as much heat as would raise	
180 lbs. 10. Hence	181.80
■ lb. water at 212°, converted into steam at 212° (=14.7 lbs. pressure),	
absorbs as much heat as would raise 966.6 lbs. water 10. Hence	964.30

Mechanical Equivalent, or maximum theoretical duty of quantity of heat in one Rhermal unit or one degree in 1 lb. of water, is 772 foot-lbs., which × 1146.1 units of heat = 884789.2 lbs. raised 1 foot high.

To Compute Pressure of Steam Above Perfect Vacuum.

When Height of Column of Mercury it will Support is given. RULE .- Diwide height of column of mercury in ins. by 2.037 586, and quotient will give pressure per sq. inch in lbs.

EXAMPLE. - Height of a column of mercury is 203.7586 ins.; what pressure per on. inch will it contain?

203.7586 ÷ 2.037 586 = 100 lbs.

To Compute Weight of a Cube Foot of Steam.

RULE.-Multiply its density by 62.425.

EXAMPLE.—Density of a volume of steam is .000 600 013; what is its weight? .000 609 013 × 62.425 = .038 016 825 lbs.

NOTE.-See table, page 708.

- 1 atmosphere or 14.723 307 lbs. per sq. inch = 30 ins. of mercury.

To Compute Temperature of Steam.

RULE.—Multiply 6th root of its force in ins. of mercury by 177.2, subtract 100 from product, and remainder will give temperature in degrees.

EXAMPLE. —When elastic force of steam is equal to a pressure of 64 ins. of mercury, what is its temperature?

Note. -To extract 6th root of a number, ascertain cube root of its square rook.

$$\sqrt{64} = 8$$
, and $\sqrt[4]{8} = 2$. Hence, $2 \times 177.2 - 100 = 254.4^{\circ}$ t.

Or,
$$\frac{2938.16}{6.1993544 - \log p} - 371.85 = t$$
. p representing pressure in the

Saturated Steam.

Pressure, Temperature, Volume, and Density.

PRESSURE		ature.	Heat Water	ne of b.	Density, Weight of Cube Foot.	PRI	ISSURE	perature.	Heat Water	
per Sq. Inch.	in Mer- cury.	Temperature.	Total from V	Volume r Lb.	or Wei	per Sq. Inch.	in Mer- cury.	Temper	Total from V	
Lhs.	Ins.	0	0	Cub. ft.	Lb.	Lbs.	Ins.	0	0	C
1	2.04	102.1	1112.5	330.36	.003	58	118.08	290.4	1170	H
3	6.11	126.3	1119.7	172.08	.005 8	59	120.12	291.6	1170.4	1
4	8.14	153.1	1128.1	89.62	.0112	6r	124-19	293.8	1171.1	1
5	10.18	162.3	1130.9	72.66	.0138	62	126.23	294.8	1171.4	1
	12.22	170.2	1133.3	61.21	.0163	63	128.26	295.9	1171.7	III.
7 8	14.25	176.9	1135-3	52.94	.0189	64	130.3	296.9	1172	1
9	18.32	188.3	1138.8		.023 9	66	134.37	299	1172.6	1
10	20.36	193.3	1140.3	41.79 37.84	.0254	67 68	136.4	300	1172.9	1
11	22.39	197.8	1141.7	34.63	.0289	68	138.44	300.9	1173.2	1
12	24.43	202	1143	31.88	.031 4	69	140.48	301.9	1173.5	1
13	26.46	205.9	1144.2	29.57	.033 8	70	144.55	302.9	1173.8	10
14.7	29.92	212	1146.1	26.36	.03802	72	146.59	304.8	11743	1
15	30.54	213.1	1146.4	25.85	.0387	73	148.62	305.7	1174.0	1
16	32.57	216.3	1147-4	24.32	.0411	74	150.66	306.6	1174-9	
17	34.61	219.6	1148.3	22.96	.0435	75	154.73	307-5	1175.4	4
19	36.65	225.3	1149.2	20.7	.0459	76	156.77	309.3	1175.7	1
20	40.72	228	1150.9	19.72	.0507	78	158.8	310.2	1176	9
21	42.75	230.6	1151.7	18.84	.0531	79 80	160.84	311.1	1176.3	1
22	44.79	233.1	1152.5	18.03	.0555		162.87	312	1176.5	1
23	46.83	235-5	1153.2	17.26	.058	8r 82	164.91	312.8	1176.8	3
24 25	48.86 50.0	237.8	1153.9	15.99	.0625	83	166.95	313.6	1177.1	18
26	52.93	242.3	1155.3	15.38	.065	84	171.02	315.3	1177.6	1
27	54.97	244.4	1155.8	14.86	.0673	85	173.05	316.1	1177-9	10
28	57.01	246.4	1156.4	14.37	.0696	86	175.09	316.9	1178.1	3
29	59.04 61.08	248.4	1157.1	13.9	.0719	87	177.13	317.8	1178.4	1
30	63.11	252.2	1157.8	13.46	.0766	89	181.2	319.4	1178.9	1
32	65.15	254.I	1158.9	12.67	.0789	90	183.23	320.2	1170-1	1
33	67.19	255.9	1159.5	12.31	.0812	91	185.27	321	1179-3	4
34	69.22	257.6	1160	11.97	.0835	92	187-31	321.7	1179.5	19
35	71.26	259.3 260.9	1160.5 1161	11.65	.0881	93	189.34	322.5	1179.8	
36	75.33	262.6	1161.5	11.04	.0905	95	193.41	324.I	1180.3	1
37 38	77.37	264.2	1162	10.76	.0929	96	195.45	324.8	1180.5	4
39	79-4 81.43	265.8	1162.5	10.51	.0952	97	197.49	325.6	1180.8	3
40		267.3	1162.9	10.27	.097 4	98	199-52	326.3	1181	1
41 42	83.47 85.5	268.7	1163.4	9.81	.0996	99	201.56	327.1	1181.2	0
43	87.54	271.6	1164.2	9.59	.1042	101	205.63	328.5	1181.6	1
44	89.58	273	1164.6	9.39	.1065	102	207.66	329.1	1181.8	4
45	91.61	274-4	1165.1	9.18	.1089	103	209.7	329.9	1182	4
40	93.65	275.8	1165.5	9 8.8 ₂	.IIII	104	211.74	330.6	1182-2	3
47	95.69	277.1	1165.9	8.65	.1133	105	213.77 215.81	331.3	1182.4	1
49	99.75	279.7	1166.7	8.48	.1179	107	217.84	332.6	1182.8	4
50	8,101	281	1167.1	8.31	.1202	108	219.88	333.3	1183	4
51	103.83	282.3	1167.5	8.17	.1224	109	221.92	334	1183.3	1
52	105.87	283.5	1167.9	8.04	1246	III	223.95	334.6	1183.5	2 50
53	107.9	284.7	1168.3	5 7.7	4 .1301	113	338.0	2 335.3	1183.7	20
54 55	111.98			7.6	121. 131	4 11	3 / 2300	05/335	1828 6	
56	114.01		2 1169	-3 7	4 .129 1 131 148 .133 .136 .13	0 /1	228.0 3 230.0 14 232 115 23	1 /33	5.4/338	4
57	116.0		3 116	9.7 7	.30 .13	04 11	112 / 53	+13/3	38 /11	-
	A									

CAMPLE. —What volume of steam at 212° will raise 100 cube feet of water at 80° 2°?

$$\frac{20 \times 212 - 80}{2 + 95 \cdot 2 - 212} = 13.68$$
 cube feet water; or, $(13.68 \times 1642 - 212) = 22250$ of steam.

Compute Volume of Water, at any Given Temperature, that must be Mixed with Steam to Raise or Relace the Mixture to any Required Temperature.

ULE.—From required temperature subtract temperature of water; then retain how often remainder is contained in required temperature subcled from sum of sensible and latent heat of the steam, and quotient will volume required.

m of Sensible and Latent Heats for a range of temperatures will be found under , pages 508 and 509.

EAMPLE.—Temperature of condensing water of an engine is 80°, and required perature 100°; what is proportion of condensing water to that evaporated at a sure of 34 lbs. per sq. inch?

m of sensible and latent heats 1190.40.

$$100 - 80 = 20$$
. Then, 1190.4 - 100 ÷ 20 = 54.52 to 1.

hen Temperature of Steam is given. $\frac{l+\overline{1-t}}{t-w}=V$. l representing latent heat,

ct t temperatures of steam and required temperature, w temperature of condensing x, and V volume of condensing water in cube feet.

LUSTRATION.—Temperature of steam in a cylinder is 257.6°, and other elements \ni as in preceding example; required volume of injection water? Latent heat eam at $_{230} = _{03.2} =$

$$\frac{932.8 + 257.6 - 100}{100 - 80} = \frac{1090.4}{20} = 54.52 \text{ volumes.}$$

Compute Temperature of Water in Condenser or Reservoir of a Steam-engine.

$$\frac{V + V \times w}{V + x} = t.$$
 ILLUSTRATION.—Assume elements as preceding.

$$\frac{932.8 + 257.6 + \overline{54.52 \times 80}}{54.52 + 1} = \frac{5552}{55.52} = 100^{\circ}.$$

To Compute Latent Heat of Saturated Steam. 15.2—.708 t=1 ILLUSTRATION.—Assume temperature 257.6° as preceding. 1115.2—.708 \times 257.6 = 932.8°.

To Compute Total Heat of Saturated Steam. 15 t+1081.4=H. ILLUSTRATION.—Assume temperature as preceding.

$$.305 \times 257.6 + 1081.4 = 1160.$$

astic Force and Temperature of Vapors of Alcohol, Ether, Sulphuret of Carbon, Petroleum, and Turpentine.

Force in Ins. of Mercury.

1 01 00 old 1 labi by Little Carry											
Ins.	0	Ins.	0	Ins.	ا ٥ ا	Ins.	0	Ins.			
ALCOHOL. ALCOHOL.		E	ETHER. SULPHURET OF		PETR	-,					
-4	140	13.9	34	6.2	CAI	RBON.	316	30	- 4		
	160	22.6	54	15.3	53.5	7.4	345	44.X			
1.23	173	30	74		72.5	12.55	√ 375	(6 4	■ ▼		
	11		94	24.7	11	/ 30	\\	011.02			
	,, , ,			30	"	1			wa.		
	•			-			//				
8.1 .					347	1000	//				
zo.6	264		, -		//	\	'				
	.4 .86 1.23 1.76 2.45 3.4 4.5 8.r	OHOL4 I40 .86 160 170 170 180 2.45 200 3.4 212 4.5 240	Ins. O Ins. OHOL. ALCOHOL. -4	Ins. O Ins. O	Ins. O Ins. O Ins.	Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O Ins. O O Ins. O O Ins. O O Ins. O O Ins. O O O O O O O O O	Ins. O Ins. O Ins. O Ins.	Ins. O Ins. O	Ins. O Ins. O		

Saturated Steam.

Pressure, Temperature, Volume, and Density.

Pressure		ature,	Heat Water	ne of	Density, Weight of a Cube Foot,	Pa	PRESSURE		Heat Water	pe of	ANS SEC.	p S Inc
per Sq. Inch.	in Mer- cury.	Temperature.	Total Heat from Water at 32°.	Volume r Lb.	or Wei	per Sq. Inch.	Mer- cury.	Temperature.	Total Heat from Water at 32	Volume a Lib.	の経験を行っ	Là TI
Lbs.	Ins.	0	0	Cub, ft.	Lb.	Lbs.	Ins.	0	0	Cul.ft.		11
1	2.04	102.1	1112.5	330,36	.003	58	118.08		1170		4) 11	11
2	4.07 6.11	126.3	1119.7	172.08	.005 8	59 60	120.12	291.6	1170.4	7.12 7.01		13
3 4	8.14	153.1	1128.1	89.62	.0112	61	124-10	292.7	1170.7	6.0	III	12
5	10.18	162.3	1130.0	72.66	.0138	62	126.23	294.8	1171.4	6.8r	B) (12
5	12.22	170.2	1133.3	61.21	.0163	63	128.26	295.9	1171.7	6.7	Ø 1	12
7 8	14.25	176.9	1135.3	52.94	.0189	64	130.3	296.9	1172	6.6	No.	12
	16.29	182.9	1137.2	46.69	.021 4	65	132.34	298	1172.3	6.49	20.50	120
9	18.32 20.36	188.3	1138.8	37.84	.0239	67	134.37	300	1172.6	6.41		12
11	22.39	197.8	1141.7	34.63	.028 9	67	138.44	300.0	1173-2	6.23	型品	12:
12	24.43	202	1143	31.88	.031 4	60	140.48	301.0	1173-5	6.15	卢	13
13	26.46	205.9	1144.2	29-57	.0338	70	142.52	302.9	1173.8	6.07	8	13
14	28.51	209.6	1145.3	27.61	.036 2	71	144.55	303.9	1174-1	5-99	5	13:
14.7	29.92	212	1146.4	25.85	.038 02	72	146.59	304.8	1174-3	5.01	,59 ,19	13.
15	30.54	213.1	1147.4	24.32	.0411	73	150.66	305.7	1174.6	5.70		13.
	34.61	216.3 210.6	1148.3	22.96	.0435	75	152.60	307.5	1175-2	5.68	15	13: 13t
17	36.65		1149.2	21.78	.0459	76	154-73	308.4	1175-4	5.6t.	屯	13:
19	38.68	225.3	1150.1	20.7	.0483	77 78	156.77	309.3	1175-7	5-54	45	13
20	40.72	228	1150.9	19.72	.0507	78	158.8	310.2	1176	5.48	出	13
21	42.75	230.6	1151.7	18.03	.0531	79 80	160.84	311.2	1176.3	5.41	画	141
23	44.79 46.83	233. I 235. 5	1153.2	17.26	.058	81	164.91	312.8	1176.5	5-35 5-20	186	14:
24	48.86	237.8	1153.0	16.64	.060 I	82	166.95	313.6	1177.1	5.23	30	14
25	50.9	240. 1	1154.6	15.99	.0625	83	168.98	314.5	1177-4	5.17	用	15
26	52.93	242.3	1155.3	15.38	.065	84	171.02	315.3	1177.6	5.11	130	14
27	54.97	244.4		14.86	.0673	85	173.05	316.1	1177.9	5.05	理	14
23	57.01	246.4	1150.4	14-37	.0096	86 87	175.09	316.9	1178.1	5	1700	14
30	59.04 61.08	250.	1157.8	13.46	.0743	88	179.16	317.8	1178.4	4.89		4
31	63.11		1158.4	13.05	.0766	89	181.2	319-4	1178.0	4.84	1,000	
32	65.15		1158.9	12.67	.0789	90	183.23	320.2	1179.1	4.79	.100	
33	67.19	255.9	1159.5	12.31	.0812	91	185.27	321	1179-3	4-74	.200	
34	69.22	257.6	c011	11.97	.0835	92	187.31	321.7	1179-5	4.69		
35 36	71.26 73.29	259.3	1160.5	11.65	.0881	93	189.34	322.5	1179.8	4.64	.17	
37	75.33	262.6	1161.5	11.04	.090 5	94	193.41	323.3 324.1	1180.3			
37 38	77·33	264.2	1162	10.76	.0929	96	195.45	324.8	1180.5	4-51		1
39	79·4 81·43	265.8		10.51	.0952	97	197.49	325.6	1180.8	4.46	,224	
40	81.43	267-3	1162.9	10.27	.0974	98	199.52	326.3	1181	4-42	130	
41	83.47	268.7	1163.4	10.03	.0996	99	201.56	327.1	1181.2	4-37		
42 43	85. 87.54	270.2	1163.8	9.81	.102	101	203.59	327.9	1181.4	4-33		
44	89.58	273	1164.6	9.39	.106 5	102	207.66	320.5	1181.6	4-25		
15	91.51	274-4	1165.1	9.18	.1089	103	209.7	329.9	1182	4.21	100	
2	93.65		1165.5	9	1111.	104	211.74	330.6	1182.2	4.18	1,23	
	95.69	277.1	1165.9	8.82	.1133	105	213.77	331.3	1182.4	4.14	I AH	
	-	278.4	1166.3		.1156	100	215.81	331.9	1182.6	4.11		
			7.1		.1179	107	217.84	332.6	1182.8	4.07		
				8.17	11234	100	231.00	333.3	1183	4.04	26	
				8.01	1.1240	110	1333.00	3.4FF / B	1.585516	E 1 16 12	1 29	
				7.8	8 1.1200		1 /3320	19/335	Ser 1 6.	2 / 23	180	
				7.	14 .129		113 33	0.05 33	35.7/2	33.9	13	130
					.13			20.1	551-93	1100	110	188
					.1	364	1115/	23413	338	1518	4.5	30

ESSURE	rature.	l Heat Water	Volume of	Density, Weight of Cube Foot,	PE	ESSURE	rature.	Total Heat from Water at 3%.	ume of Lb.	Density, Weight of Cube Foot.
Mer- cury.	Temperature.	Total Heat from Water at 32°.	Volur	or We	per Sq. Inch.	Mer- cury.	Temperature	Total from	Volume r Lb.	or We
Ins.	0	0	Cub. ft.	1.0.	Lbs.	Ins.	0	0	Cub. ft.	Lbs.
236.17	338.6	1184.7	3.77	.2649	149	303.35	357.8	1190.5	2.98	·3357
238.2	339-3	1184.9	3.74	.2652	150	305-39	358.3	1190.7	2.96	-3377
240.24		1185.1	3.71	.2674	155		361	1191.5	2.87	-3484
242.28	340.5	1185.3	3.68	.2696	160	325.75	363.4	1192.2	2.79	359
244.31		1185.4	3.65	.2738	165	335-93	366	1192.9	2.71	.3695
246.35	341.8	1185.6	3.62	.2759	170		368.2	1193.7	2.63	.3798
248.38	342.4	1185.8	3-59	.278	175	356.29	370.8	1194-4	2.56	. 3899
250.42	343	1186	3-56	.2801	180	366.47	372.9	1195.1	2.49	.4009
252.45	343.6	1186.2	3.54	.2822	185	376.65	375-3	1195.8	2.43	-4117
254-49	344.2	1186.4	3.51	.2845	190	386,83	377-5	1196.5	2.37	.4222
256.53	344.8	1186.6	3.49	.2867	195	397.01	379-7	1197.2	2.31	·4327
258.56	345.4	1186.8	3.46	.2889	200	407.19	381.7	1197.8	2.26	·443I
260.6	346	1186.9	3.44	.2911	210	427-54	386	1199.1	2.16	.4634
262.64	346.6	1187.1	3.41	.2933	220	447-9	389.9	1200.3	2.06	.4842
264.67	347.2	1187.3	3.38	.2955	230	468.26	393.8	1201.5	1.98	.5052
266.71	347.8	1187.5	3.35	.2977	240	488.62	397-5	1202.6	1.9	.5248
268.74	348.3	1187.6	3.33	.2999	250	508.98	401.1	1203.7	1.83	.5464
270.78	348.9	1187.8	3.31	.302	260	529-34	404-5	1204.8	1.76	.5669
272.81	349-5	1188	3.29	.304	270	549-7	407.9	1205.8	1.7	.5868
274.85	350.1	1188.2	3.27	.306	280	570.06	411.2	1206.8	1.04	.608z
276.89	350.6	1188.3	3.25	.308	290	590.42	414-4	1207.8	1.59	.6273
278.92	351.2	1188.5	3.22	.3101	300	610.78	417.5	1208.7	1.54	.6486
280.96	351.8	1188.7	3.2	.3121	350	712.57	430. I	1212.6	1.33	·7498
282.99	352.4	1188.9	3.18	.3142	400	814-37	444-9	1217.1	1.18	.8502
285.03	352.9	1189		.3162	450	916.17	456.7	1220.7	1.05	·9499
287.07	353-5	1189.2	3.14	.3184	500	1018	467.5	1224	-95	1.049
289.1	354	1189.4	3.12	.3206	550	1119.8	477-5	1227	.87	1.148
291-14	354-5	1189.6	3. I	.3228	600	1221.6	487	1229.9	.8	1.245
293.17	355	1189.7	3.08	.325	650	1323.4	495.6	1232.5	.74	1.342
295.21	355.6	1189.9	3.00	.3273	700	1425.8	504.1	1235.1	.69	1.4395
297.25	356.1	1190	3.04	-3294	800	1628.7	519.5	1239.8	.6r	1.6322
269.28	356.7	1190.2		.3315	900	1832.3	533.6	1244.2	+55	1.8235
301.32	357.2	1190.3	3-	-3336	1000	2035.9	540.5	1248.1	.5	2.014

Saturated Steam from 32° to 212°. (Claudel)

PRE	SSURE.	Weight	Volume	Tem-		SSURE.	Weight	Volume
Mercu- ry.	Per Sq. Inch.	of 100 Cub, Feet.	of 1 Lb.	pera- ture.	Mercu- ry.		of 100 Cub.Feet.	of z Lb.
Ins.	Lbs.	Lb.	Cub. Feet.	0	Ins.	Lbs.	Lbs.	Cub. Feet.
.181	.089	.031	3226	125	3-933	1.932	.554	180.5
.204	.1	.034	2941	130	4.500	2.215	.63	158.7
.248	.122	.041	2439	135	5.174	2.542	.714	140.1
.299	.147	.049	2041	140	5.86	2.879	.806	124.1
.362	.178	.059	1695	145	6.662	3.273	.909	110
+426	.214	.07	1429	150	7-548	3.708	1.022	97.8
.517	-254	.082	1220	155	8.535	4.193	1.145	87.3
.619	.304	.097	1031	160	9.63	4.731	1.333	75
.733	.36	.114	877.2	165	10.843	5-327	1.432	69.8
.869	-427	.134	746.3	170	12.183	5.985	1.602	62.4
1.024	.503	.156	641	175	13.654	6.708	1.774	56.4
1.205	.592	.182	549-5	180	15.291	7.511	7.07	50.8
1.41	.693	.212	471.7	185	17.041	8.375	(~
1.647	.809	-245	408.2	190	19.001	9.335		
1.917	.942	.283	353-4	195	21.139	10.385		
2.229	1.095	-325	307.7	200	23.46	11.52	6	
2.579	1.267	-373	268. I	205	25.99	4 12.77	1	
.976	1.462	.426	234-7	210	28.75	3 14.1	27	
43 / 2	.685	.488	204.9	212	29.9		7	
			3	0		-		

STEAM. Points of Expansion.

Relative points of expansion, including clearance 5 per cent. series stroke of piston to be divided as follows, and initial pressure = 1.

Hyp. Log. of above Ratios.

Receiver of Compound Engines.

Volume-Into which the IP cylinder exhausts, should be from 1 by times the volume of it, plus that of the clearance in it, when the crants set at angles of 120° and 90°. When the cranks are opposite (180°) or 100 nearly so, the volume may be proportionately decreased.

Pressure-In a Receiver should not exceed one half that of the boiler sure, and usually it is operated lower.

Receiver-Of a Triple compound engine need not have as great and ume, as the cranks are set at angles of 120° to each other.

If a receiver is insufficient in volume, the result is back pressure in IP cylinder. If otherwise, it has too great a volume, the result is that do material reduction of the pressure, when the exhaust port of the cylindri opened, a consequent loss of external work and of efficiency.

> To Compute Volume of a Receiver. Single Compound.

Cranks at 90°. $\frac{A^2 \frac{\pi}{4} S}{1.5} = \text{volume in cube feet.} \quad A \text{ representing area if }$ cylinder, and S stroke of piston, both in sq. ins.

ILLUSTRATION.—Assume a compound engine having a IP cylinder of 28 3 cranks at 900, and stroke of piston 36 ins.; what should be volume of receiver!

$$\frac{28^2 \times \frac{3.1416}{4} \times 36 \times 1.5}{1728} = \frac{784 \times .7854 \times 54}{1728} = 19.25 \text{ cube feel.}$$

Triple Compound.

Cranks at 120°
$$\frac{A^2 - S}{3} = volume in cube feet.$$

ILLUSTRATION.—Assume a triple compound engine having a IP cylinder of state. cranks at 1200, and stroke of piston 36 ins.; what should be volume of receival

$$\frac{28^{2} \times \frac{3.1416}{3} \times 36 \times 1}{1728} = \frac{784 \times 1.0472 \times 36}{1728} = 17.1 \text{ cube feet.}$$
(The Practical Engines)

The practice with some is to give the receiver an equal volume with that cylinder from which it receives the steam.

Compute Mean Pressure of Steam upon a Pist by Hyperbolic Logarithms.

'de length of stroke of a piston, added to clearance in grief with of stroke at which steam is cut off, added to clean dent will express ratio or relative expansion of the

> * number nearest to that of quotient with wing or

d by pressure of steam (including the

STEAM. 713

re) as it enters the cylinder, divide product by relative expansion, and tient will give mean pressure.

OTE.—Hyp. log. of any number not in table may be found by multiplying a mon log. by 2.302585, usually by 2.3.

roceed by referring to table pp. 331-334.

KAMPLE.—Assume steam to enter a cylinder at a pressure of 50 lbs. per sq. inch, to be cut off at 25 length of stroke, stroke of piston being 10 feet; what will be n pressure?

earance assumed at 2 per cent. = .2 feet.

+.2 = 10.2 feet, stroke $10 \div 4 + .2 = 2.38$ feet. Then $10.2 \div 2.38 = 4.29$ relaexpansion.

p. log. 4.29 (p. 332) = 1.4563, which +
$$1 = 2.4563$$
, and $\frac{2.4563 \times 50}{4.29} = 28.62$ lbs.

elative Effect of steam during expansion is obtained from preceding rule.

**Rechanical Effect of steam in a cylinder is product of mean pressure in and distance through which it has passed in feet.

Effects of Expansion. (Essentially from D. K. Clark.)

ack Pressure is force of the uncondensed steam in a cylinder, consequent 1 impracticability of obtaining a perfect vacuum, and is opposed to the se of a piston. It varies from 2 to 5 lbs, per sq. inch.

must be deducted from average pressure. Thus: assume pressure 60 lbs., ;e of piston as in preceding case, and back pressure 2 lbs.

otal work done by expansion at termination of each foot or assumed sion of stroke of piston is represented by hyp. log. of ratio of expansion, all work = 1.

hus, for a stroke of 10 feet and a pressure of 10 lbs.:

nd of	ıst	, 2d,	зd,	4th,	5th,	6th,	7th,	8th,	9th,	and 10th foot.
o vols., hyp.		.69	1.1	1.39	1.61	1.79	1.95	2.08	2.2	2.3
.l duty	1	I	I	I	r	I	I	1	I	T
1 duty	1	1.69	2. I	2.39	2.61	2.79	2.95	3.08	3.2	3.3
.l duty is rep- }	10	16.9	21	23.9	26.1	27.9	29.5	30.8	32	33
tance for each } =	2	4	6	8	10	12	14	16	18	20
ty}=	8	12.9	15	15.9	16.1	15.9	15.5	14.8	14	13

by expansion 0 61.25 87.5 98.75 101.25 98.75 93.75 85 75 62.5 9 same results would be produced if expansion was applied to a non-condens-Ogine, exhausting into the atmosphere.

Lin, assume total initial pressure in a non-condensing cylinder 7 (Sypanded 5 times, or down to 15 lbs, and then exhausted against atmosphere and friction of 15 lbs.

Onination of	ıst,	2d,	3 d ,	4th, and	5tl
Cluty	I	1.69	2. I	2.39	2.
_ " performed		126.75	157.5	179.25	195
back pressure	15	30	45	60	75
Offective duty	60	96.75	112.5	119.25	120
>y expansion	0	61.25	87.5	08.75	10

which it appears that the total duty performed by expanding ial volume is full 2.5 times, or as 75 to 195.75.

3 0*

Relative Effect of Equal Volumes of Steam.

Relative total effect or work of steam is directly as its mean or average product.

If former is divided by latter, quotient will give relative total effect or wat of a given volume of steam as admitted and cut off at different points of subspiston, with a clearance of 3.125 per cent.

In following computations resistance of back pressure is omitted. If this rure is uniform with all the ratios of expansion, it is a uniform pressure, to be ducted from the total mean pressure in column (A).

	Pres	sure.	(C)	1	Pres	1.0	
Cut off at	(A) Mean.	(B) Final.	Relative Effect.	Cut off at	(A) Mean.	(B) Final.	Reids
1	1	1	1	-375	.761	-394	1.45
·75 .6875	.969	.787	1.28	-33	-702	-335	2.00
	.946	.697	1.35	.25	.628	.273	27
.625	-924	,636	1.45	.2	.559	+224	20
.5625	.889	-576	1.54	.125	-435	.15	19
- 5	.857	.501	1.71	I. I	-418	-13	3.11

To Compute Total Effective Work in One Stroke of Pston, or as Given by an Indicator Diagram.

a P(l' + hyp. log. R - c) = w, and a b L = w'. w representing total works w' back pressure.

Note.—Pressure of atmosphere is to be included in computations of equities therefore to be deducted from result obtained in non-condensing engines, the deduction due to imperfect vacuum must also be usually 2.5 lbs. per sq. inch.

LLUSTRATION.—Assume cylinder of a condensing engine 26.1 ins. in dualstroke of 2 feet, pressure of steam 95 lbs. (80.3 + 14.7) per sq. inch, cut off at 35 with an average back pressure of 2 lbs. per sq. inch, and a clearance of 5 per 60.

Area of piston, deducting half area of rod = 530 sq. ins. $2 \times 5 \div 100 = 1$ ance, and $2 + .1 \div 1 + .1 = 1.9 = ratio of expansion, and <math>x + \text{hyp. log 1.9} = 1$

Then $530 \times 95 \times 1.1 \times 1.642 - .1 - 530 \times 2 \times 2 = 50350 \times 1.706 - 2120 = 2170 = 111 \times 1.642 - .1 - 530 \times 2 \times 2 = 50350 \times 1.706 - 2120 = 2170 = 2000 = 2170 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 1111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 1111111 \times 1.642 - .1 = 1111111 \times 1.642 - .1 = 111111 \times 1.642 - .1 = 1111111 \times 1.642$

Ratio of expansion 3.66, back pressure 17 lbs., and 1 + hyp. log. 3.66 = 1 5

 $2000 \times 50 \ (2.25 \times 1 + \text{hyp. log. } 3.66 - .25) = 100 000 \times 2.25 \times 1 + 1.297 - 3540 \times 100 \times$

 $2000 \times 17 \times 8 = 272000$ foot-lbs. or negative effect, and 460575 - 272000 = 100 foot-lbs.

Total Effect of One Lb. of Expanded Steam.

If 1 lb. of water is converted into steam of atmospheric pressure = 11.7 lb. sq. inch, or 2116.8 lbs. per sq. foot, it occupies a volume equal to 25.36 obtained the effect of this volume under one atmosphere = 2116.8 lbs. years 55799 foot-lbs. Equivalent quantity of heat expended is 1 unit per 772 lb. = 55799 ÷ 772 = 72.3 units. This is effect of 1 lb. of steam of a pressure of companion.

Gross effect thus attained on a piston by r lb. of steam, generated at proving from rs to roo lbs per sq. inch, varies from 56 000 to 62 000 foot-Bat. sq. alent to from 72 to 80 units of heat.

Effect of r lb. of steam, without expansion, as thus exemplified is reclearance according to proportion it bears to volume of cylinder. If clear per cent. of stroke, then 102 parts of steam are consumed in the work of which is represented by 100 parts, and effect of a given weight of steam will pansion, admitted for full stroke, is reduced in ratio of 103 to 100. Here mined, by this ratio, effect of work by r lb. of steam without expansion by clearance, effect for various ratios of expansion may be desinted by the steam of relative operation of equal weights of steam.

ime of 1 lb. of saturated steam of 100 lbs. per sq. inch is 4.33 cube feet, and re per sq. foot is $144 \times 100 = 14400$ lbs., then total initial work = 14400×4.33 52 foot-lbs. This amount is to be reduced for clearance assumed at 7 per cent.

1 62 352 \times $100 \div 107 = 58 273$ fool-lbs., which, divided by 772 (Joule's equiva=75.5 units of heat.

l or constituent heat of steam of 100 lbs. pressure per sq. inch, computed from perature of 210 is 1001.4 units; and from 100 (temperature of condenser a pressure of 1 lb.) the constituent heat is 111.4 units.

ivalent, then, of net simple effect 75.5 units is 7.5 per cent. of total heat from r 6.7 per cent. from r 0.20.

en steam is cut off at

d effects as given in table, page 718.

ct of 1 lb. of steam, without deduction for back pressure or other effects, varies about 6000 foot-lbs., without expansion, to about double that, or 120000 foot-hen expanded 3 times, cutting off at about 27 per cent. of stroke; and 150000 foot-lbs. when expanded about 6 times, and cut off at about 10 per 15 stroke.

Effect of Clearance.

arance varies with length of stroke compared with diameter of cylinder, form of valve, as poppet, slide, etc.

th a diameter of cylinder of 48 ins., and a stroke of 10 feet, and poppet s, clearance is but 3 per cent., and with a diameter of 34 ins. and a 3 of 4.5 feet and slide valves, it is 7 per cent.

n pressure for x lb. = .637, and loss by clearance = $7 \div 100 = .07$, which, added 7, = .707, which is effect of a given volume of steam, if there was not any loss arance, or a gain of 1x per cent.

en steam is cut off at...... 1 .75 .5 .33 .25 .125 and .1 stroke. 3 at 7 per cent. clearance..=7 .72 8.1 9.6 11 15.3 17 per cent.

Compute Net Volume of Cylinder for Given Weight of Steam, Ratio of Expansion and One Stroke.

LE.—Multiply volume of r lb. of steam, by given weight in lbs., by of expansion and by 100, and divide product by 100, added to per cent. arance.

MPLE.—Pressure of steam 95 lbs., cut off at .5, weight .54 lbs., volume of r lb. 4.55, and weight = .2198 lbs., stroke of piston 2 feet, and clearance 7 per cent io of expansion $2 + .14 \div \overline{1 + .14} = 1.88$.

$$\frac{\cancel{4.55 \times .54} \times \cancel{1.88 \times 100}}{\cancel{100 + 7}} = \frac{\cancel{461.92}}{\cancel{107}} = \cancel{4.31} \text{ cube feet.}$$

Compute Volume of Cylinder for Given Effect with Given Initial Pressure and Ratio of Expansion.

LE. — Divide given effect or work by total effect of I lb. of steam of ressure and ratio of expansion, and quotient will give weight of steam, which compute volume of cylinder by preceding rule.

IMPLE.—Assume given work at 50 766 foot-lbs., and pressure and expansion as ding.

al work by 1 lb., 100 lbs steam, cut off at .5, = by table 94 200 foot-lbs., and by of multipliers for 95 lbs. = .998, which \times 94 200 = 94 912 foot-lbs.

Then
$$\frac{50766}{94012} = .54$$
 lbs. weight of steam.

Consumption of Expanded Steam per IP of Effe

H=33000, which × 60 = 1 980 000 foot-lbs. per hour, which steam, the quotient = weight of steam or water required per IP per

ILLUSTRATION. - Effect of 1 lb., 100 lbs. steam, without expansion, with 7 of clearance = $58\,273$ foot-lbs., and $\frac{1\,980\,000}{58\,273}$ = 34 lbs. steam = weight of the

sumed for the effect per IP per hour.

When steam is expanded, the weight of it per IP is less, as effect of 1 hb. is greater, and it may be ascertained by dividing 1 980 eco by the respecti or by dividing 34 lbs. by quotient of total mean pressure by final pressure, in table, page 718.

When steam is cut off at 1 .75 .5 .375 .33 .25 and .20 Volumes consumed per } = 34 26.9 21 18.5 17.6 16 14.9 ld

Hence, assuming 10 lbs. steam are generated by combustion of 1 lb. com of total effect per hour,

The coal consumed per = 3.4 2.69 2.1 1.85 1.76 1.6 1.49

SATURATED STEAM.

To Compute Energy and Efficiency of Saturated S

$$\frac{v}{V} = R; \quad \frac{S}{s} = \frac{t}{r}; \quad p - p' \times \alpha, \text{ or } \frac{X}{s} \text{ or } \frac{X}{R} = P; \quad \frac{33 \cos}{P} = C; \quad \frac{1}{S}$$

$$\frac{H}{R} = H'; \quad \frac{D}{R} \text{ or } \frac{t}{RS} = F; \quad JD(t - t') + L = HD; \quad \frac{H}{D} = H;$$

$$\frac{H}{R} = \frac{D}{R} = \frac{T$$

$$p-p' \times a R S = X;$$
 $\frac{H \cdot D}{D} - X D = H'';$ $\frac{H''}{R} = H''';$ 15.5 LaS
 $h-X = h';$ $\frac{h}{R \cdot S} = P'';$ $\frac{a \cdot p - a \cdot p'}{P''}$ or $\frac{X}{h} = E;$ $\frac{1 \cdot 980 \cdot \cos}{E}$ or $1 \cdot 980 \cdot \cos$

$$\frac{X}{2s} = e;$$
 $n \ln \frac{x}{p - p'} = x,$ and $\frac{x}{33000} = \text{IIP};$ $R \overline{p - p'} = x;$ FCX

 $\frac{33000}{p \, a - p' \, a}$ = cube feet. $\frac{1980000}{62.5 \, \text{X}}$ = cube feet water evaporated per hour p

pa-p'a cube feet.

62.5 X = cube feet water evaporated per noury
V and v representing volumes of mass of steam entering cylinder and
termination of stroke of pistom; S and s volumes of 1 lb. steam when admit
when at termination of expansion; C volume of cylinder per minute for an
R and r ratios of expansion and effective cut-off; F feed water per cube for
ume of cylinder per stroke of pistom, and f per IH per hour, all in cube felsity or weight of 1 cube foot of steam at temperature of operation, in lb.;
pressure; p' mean back pressure; I initial pressure; P mean effective proenergy per cube foot of volume of cylinder; P' pressure per sq. inch or that en
to heat expended, and P'' pressure equivalent to expenditure of available heat
ergy, all in lbs. J Joule's equivalent=-772 foot-lbs; L as per following lab!
t' absolute temperatures of steam at initial pressure and of feed water in
H D heat expended per cube foot of steam admitted; H' heat expended per
of volume of cylinder, or pressure equivalent to heat expended per sq. foot; l'
rejected per cube foot of steam admitted; H'' heat expended per cube foot of
of cylinder; A available heat per IHP per hour; e energy per cube foot of
cylinder to point of cutting off, or of steam admitted; h and h' heat appearence
ergy exerted per minute and per cube foot of steam admitted; a ara of per
sq. ins.; I length of stroke of piston in fect, and f feed water per IHP per
cube feet. cube feet.

ILLUSTRATIONS. - Assume volume of cylinder and clearance (5 per cent = 1 cube foot, steam (86.3+14.7) 100 lbs. per sq. inch, cut off at .5, mean pres rule (page 711) 86 lbs., and back pressure 3 lbs.

V=1. v=2. S=4.33. s=8.31. p=86. p'=1. s=0. t and $t'=327.9^{\circ}+461.2^{\circ}$ and $t=327.9^{\circ}+461.2^{\circ}$. t=2 feet. t=1.

STEAM. 717

$$\begin{array}{c} = 2\ ratio. & 4.33 \div 8.31 = .521\ effective\ cut-off. & 86-3 \times 144 = 11\ 952\ lbs. \\ \frac{1000}{3 \times 144} = 2.76\ cube\ feet. & \frac{1}{4.33} = .231\ lbs. & \frac{.231}{2}\ or & \frac{1}{2 \times 4.33}\ .1154\ cube\ feet. \\ & 772 \times .231\ (789.1^{\circ} - 561.2^{\circ}) + 157\ 748 = 198\ 389\ foot-lbs. \\ \frac{98\ 389}{2} = 99\ 195\ foot-lbs. & \frac{198\ 389}{.231} = 858\ 827\ foot-lbs. & \frac{99\ 195}{144} = 689\ lbs. \\ 86-3 \times 144 \times 2 \times 4.33 = 103\ 504\ foot-lbs. & \frac{99\ 195}{144} = 689\ lbs. \\ 89 \div .231 - 103\ 504 \times .231 = 174\ 479\ foot-lbs. & 174\ 479 \div 2 = 87\ 239\ foot-lbs. \\ 5 \times 100 \times 144 \times 4.33 = 966\ 456\ foot-lbs. & 966\ 456-103\ 504 = 86\ 952\ foot-lbs. \\ \frac{156}{.33} = 111\ 600\ lbs. & \frac{144 \times 86 - 144 \times 3}{111\ 600} = .107\ E. & \frac{1980\ 000}{.107} = 18\ 504\ 673\ foot-lbs. \\ 1 \times 2 \times 144 \times 86 - 3 = 23\ 904\ foot-lbs. & \frac{23\ 904}{33\ 000} = .725\ H. \\ 1 \times 2 \times 144 \times 86 - 3 = 23\ 904\ foot-lbs. & \frac{1980\ 000}{62.5 \times 103\ 504} = .306\ cube\ feet. \\ 2 \times 86 - 3 \times 144 = 23\ 904\ foot-lbs. & .1154 \times 2.76 \times 60 = 19.11\ cube\ feet. \\ \frac{103\ 504}{2 \times 4.33} = 119\ 52\ foot-lbs. & \frac{33\ 000}{86 \times 144 - 3 \times 144} = 2.761\ cube\ feet. \\ \end{array}$$

illustration of connection of expenditure of available heat (A) and consumption el, assume coal to have a total heat of combustion of 1000000^{+} foot-lbs., cornding to an equivalent evaporative power under 1 atmosphere at 2120 of 13.4 vater and efficiency of furnace .5; then available heat of combustion of 1 lb. = 5000000 foot-lbs.

nce, consumption of coal per IIP in an engine of like dimensions and operawith that here given would be $19223000 \div 500000 = 3.8444$ lbs.

roperties of Steam of Maximum Density. (Rankine.) Per Cube Foot.

• ;	7.	Temp.	L	Temp.	L	Temp.	L	Temp.	L	Temp,	L
1		0		0		0		0		0	
	248	95	1999	158	9687	221	33 180	284	88 740	347	197 700
-11	348	104	2571	167	11760	230	38 700	293	100 500		219 000
ш	481	113	3277	176	14 200	239	44 930	302	113 400	365	242 000
- 1	655	122	4136	185	17010		51 920	311	127 500	374	266 600
A	881	131	5178	194	20 280		59 720	320	143 000		293 100
- 11	1171	140	6430	203	24 020	266	68420		159 800	392	321 400
	1538	149	7021	212	28 310	275	78050	338	178 000	401	351 600

representing latent heat of evaporation per cube foot of vapor in foot-lbs. of en.
To reduce this to units of heat divide by 772, or Joule's equivalent.

SUPERHEATED STEAM.

he results attained by imparting to steam a temperature moderately in ss of that due to the volume or density of saturated steam are:

An increase of elasticity without a corresponding increase of water evaporated.

Arresting or reducing passage of water, in suspension, to cylinder (foaming), as leat contained in that water is wholly lost without affording any elastic effect. th of these results, by increasing effect of the steam, economize fuel.

Perheated steam should be treated as a gas.

 $\stackrel{\circ}{=}$ Product of its pressure, p in lbs. per sq. foot, and volume v of r lb. of it in cube in the perfectly gaseous condition, is obtained by following formula:

40 T \div t = p v = 85.44 T. T temperature of steam + 461.2°, and t 32° + 461.2°. CSTRATION.—Assume temperature of steam, 327.9°, superheated to 341.1°.

Then $42 \text{ i}40 \times 461.2^{\circ} + 341.1^{\circ} \div 32 + 461.2^{\circ} = 68549 \text{ foot-lbs.}$ **Ree, as pressure of steam at $327.9^{\circ} = 100 \text{ lbs. per sq. inch, and at } 341.1^{\circ} 120.120 \text{ is } 120 \div 100 = 1.2 \text{ to } 1 = a \text{ gain of one fifth.}$

^{*} Coal of average composition, 14 133 × 772 = 10 910676.

Relative Effect of Equal Volumes of Steam

Relative total effect or work of steam is directly as its mean or average [6].

(A), and inversely as its final pressure (B), or volume of steam condensal.

If former is divided by latter, quotient will give relative total effect of will of a given volume of steam as admitted and cut off as different points of simplicing, with a clearance of a ray per cent.

In following computations resistance of back pressure is omitted. If this ure is uniform with hi, the ratios of expansion, it is a uniform pressure is ducted from the total mean pressure in column (A).

	Pres	M.74.	(C)		Pres	CAPETO.		
Cut off at	'A) Mass.	(B) Final.	Relative Effect.	Cut off at	(A) Meag.			
-,	. —	1	. 1	-375	.76z	-394	4	
75	19	.787	1.28	-33	.702	-335	24	
.6875	باكبر	.697	1.35	.25	.628	-273	, 2}	
.625	-924	.635	1.45	.2	-559	.224	; 24	
.51,25	. 5:59	-576	z. 54	.125	-435	.15	. 11	
. 5	. 557	.501	1.71		.418	.13	3#	

To Compute Total Effective Work in One Stroke of B ton, or as Given by an Indicator Diagram.

a P (l' 1 + hyp. $\log R - c$) = w, and a b L = w'. w representing total with tack pressure.

Note.—Pressure of atmosphere is to be included in computations of equal it is therefore to be deducted from result obtained in non-condensing engine, ondensing engines, the deduction due to imperfect vacuum must also be usually 2.5 lbs. per sq. inch.

ILLUSTRATION.—Assume cylinder of a condensing engine 26.1 ins. in dissertion of 2 feet, pressure of steam 95 lbs. (80.3 + 14.7) per sq. inch, out off at set with an average back pressure of 2 lbs. per sq. inch, and a clearnoc of 3 pre

Area of piston, deducting half area of rod = 530 sq. ins. $2 \times 5 \div 100 = 16$ ance, and $2 + 1 \div 1 + 1 = 1.9 = ratio of expansion, and <math>1 + hyp. log. 1.9 = 16$

Then $53^{\circ} \times 95 \times 1.1 \times 1.642 - .1 - 530 \times 2 \times 2 = 50350 \times 1.706 - 2120 = 8377^{\circ}$ ILLUSTRATION. — Assume cylinder of a non-condensing engine having as a score sq. ins.. a stroke of 8 feet, steam at a pressure of 50 lbs. (35.3 + 14.7), and

.25 of stroke, and clearance .25 foot.
Ratio of expansion 3.66, back pressure 17 lbs., and 1+hyp. log. 3.66=2零

 $2000 \times 50 (2.25 \times 1 + \text{hyp. log. } 3.66 - .25) = 100 000 \times 2.25 \times 1 + 1.29 - 45 460 575 foot-lbs.$

 $2000 \times 17 \times 8 = 272 000$ foot-lbs. Or negative effect, and 460 575 - 272000 = 185 foot-lbs.

Total Effect of One Lb. of Expanded Steam.

If 1 lb. of water is converted into steam of atmospheric pressure = 147 is a st. nch. or 2116.8 lbs. per sq. foot, it occupies a volume equal to 26.36 alc is must be effect of this volume under one atmosphere = 2116.8 lbs. x 6.5 is a sq. foot-lbs. Equivalent quantity of heat expended is 1 unit per 772 inch. = 20.3 + 772 = 72.3 units. This is effect of 1 lb. of steam of a pressure of a person without expansion.

٠

mes effect thus are---

varies from 56 000 to 62 000 foot-lbs,

"Mion, as thus exemplified, is release?"
"" rolume of cylinder. If cleaner?"
"To consumed in the word of any of a given weight of steam with the title of role to no. Build,"
of steam without expansion, a "
"Expansion may be deduced to:
"Its of steam."

Volur pressure =62 352

Then
lent), ==
Total
lent tempe
under a
Equiv.

When wmpara

Total e Effect from about whe about 15 cent, of s

With forr.
With a valves, clutroke of
LUCSTR.
Mode, with

Cleara

Illustra.
Mroke, will
Mean pro
to 637. --by clearan
When st
Loss at 7

To COR OI': RULE.-

Min of ex of clearant Example

Ratio of

To Con

RULE. like pressi from whice

ETANPLE Metaling.

and his

_

of r lb. of saturated steam of roo lbs. per sq. inch is 4.33 cube feet, and r sq. foot is $1.44 \times 100 = 14.400$ lbs.; then total initial work = 1.4400×1.93 cube. This amount is to be reduced for clearance assumed at γ per cent.

 $152 \times 100 \div 107 = 58273$ foot-lbs., which, divided by 772 (Joule's equivaturits of heat.

constituent heat of steam of 100 lbs. pressure per sq. inch, computed from ure of 212°, is 1001.4 units; and from 102° (temperature of condenser sesure of 1 lb.) the constituent heat is 1111.4 units.

nt, then, of net simple effect 75.5 units is 7.5 per cent. of total heat from per cent. from 102°.

am is cut off at

..26 1.616 1.92 2.14 2.27 cts as given in table, page 718.

z lb. of steam, without deduction for back pressure or other effects, varies of cooo foot-lbs, without expansion, to about double that, or zno coo foot-expanded 3 times, cutting off at about 27 per cent. of stroke; and to co foot-lbs. when expanded about 6 times, and cut off at about zo per ike.

2.51 and 2.6.

Effect of Clearance.

e varies with length of stroke compared with diameter of cylinder, of valve, as poppet, slide, etc.

diameter of cylinder of 48 ins., and a stroke of 10 feet, and poppet arance is but 3 per cent., and with a diameter of 34 ins. and a .5 feet and slide valves, it is 7 per cent.

TION OF EFFECT. — Assume steam admitted to a cylinder for .25 of its 1 a clearance of 7 per cent.

ssure for x lb. = .63 γ , and loss by clearance = γ + x00 = .07, which, added .70 γ , which is effect of a given volume of steam, if there was not any loss e, or a gain of x1 per cent.

am is cut off at...... r .75 .5 .33 .25 .125 and .1 stroke. per cent. clearance.. = 7 7.2 8.1 9.6 11 15.3 17 per cent.

pute Net Volume of Cylinder for Given Weight steam, Ratio of Expansion and One Stroke.

Multiply volume of x lb. of steam, by given weight in lbs., by pansion and by xoo, and divide product by xoo, added to per consider.

—Pressure of steam 95 lbs., cut off at .5, weight .54 lbs., volume of z lb. and weight = .2198 lbs., stroke of piston 2 feet, and clearance 7 per cent. Expansion $2 + .14 \div \overline{z} + .74 = z.88$.

$$\frac{4.55 \times .54 \times 1.88 \times 100}{100 + 7} = \frac{461.92}{207} = 4.32 \text{ cabs feet.}$$

pute Volume of Cylinder for Given Effect with ven Initial Pressure and Ratio of Expansion.

- Divide given effect or work by total effect of x lb. of steam of re and ratio of expansion, and quetient will give weight of steam, h compute volume of cylinder by preceding rule.

-Assume given work at 50 766 foot-lbs., and pressure and expansion as

k by x lb., 100 lbs. steam, ont off at .5, \Rightarrow by table 94 200 foot lbs., and by tipliers for 95 lbs. \Rightarrow .998, which \times 94 200 \Rightarrow 94 012 foot lbs.

Relative Effect of F

Relative total effect or work of ster (A), and inversely as its final pressur

If former is divided by latter, quo of a given volume of steam as admit piston, with a clearance of 3.125 per

In following computations resista ure is uniform with all the ratios o ducted from the total mean pressure

ucted from	rm with total the total Press	nre.	Rei
	(A) \	(B) Final.	E
Cat off at	Moan.	Final	- ,
\ 	1	1 .787	\ i
1 1	.969	.697	1 1
·75	940.	1 .636	
.625	.924	.576	100
.5625	847	.50	
.5	mpute	rotal	Effe
To Co	mpute ton, or	as G	iven
	ton, or		a) - w.
- 0 (l' 1+ hyp	log. Re-	.01
an' hac	pressure.	e ato	nospher
			cted from
conde	herefore to nsing eng ly 2.5 lbs.	per sq. in	CD.
usuai	J. T. TON	-Assun	Petralia
ILI	USTRATION te of 2 feet	pressure	ressure "
with	e of 2 feet	e back P	ting hal
4	an average	on, acute	1=1.9
ance	, and 2+	.1	1.642-
PE'	han \$20 %	930	-a cvl
.2	OI Die	mansion	3,00,00
1	Ratio of e	xpara.	+ hyp-
	2000 X 50	(2.25	20000
4	2000 X 50 50 575 foot	108.	12 000 full
		×	-
	foot-lbs.	4 40	ment to
	To	tal E	to surely
	And Intellige	OF WELL	Child Wood

722 STEAM. ILLUSTRATION.—Assume areas of cylinders x and 3 sq/ins., length of the pressure of steam 60 lbs. per sq. inch, cut off at x feet, clearance 7 per area of intermediate space, as receiver, one third volume of zst cylinder. R" = ratio of expansion in 2d cylinder $\frac{4-x}{x} \times 3 \times 2.653 = 549$ $2.653 \times 2.25 + 1 \times 2.42 - 3 - 1 + 2.653 + 1 \times .42 \times 1 \times 60 = 2.7865 + 1 \times 8$ $3 \div 2.653 + 1 \times .42 \times 60 = 6.743 - .737 \times 60 = 360.36$ fool-lbe. 1st Culinder. Total initial effect $= 60 \times 2 \times .42 \dots = 1452$ Less effect of clearance...... Net effect on piston above vacuum line..... Less effect of back pressure 60 + 2.653 = 22.62, which, × 3 sq. } ins. and 2 feet stroke Net effect on piston..... 2d Cylinder. 145.2 X 1 + hyp. log. 2.25 or 1.81...... Effect of clearance 22.61 × 3 × .42..... = 28.49 Intermediate reduction of pressure, as given at page $721, =2.85 \times 22.61 = 54$ per sq. inch, which, $\times 3$ sq. ins. and by 2 per flot of stroke, = 33.9 flot ill. Hence 260.36 + 33.9 = 304.26 foot-lbe. Or, by sum of the three results. viz.: Intermediate expansion..... 2d cylinder..... WOOLF EXGINE. D. K. Clark. Ratio of Expansion. - In 1st cylinder as per formula, page 710. In 28 $r + x + \overline{x} + \overline{x} = ratio$. r representing ratio of area of 1st cylinder to little l and l' lenaths of stroke and of stroke added to clearance, in ins. or feet and t value of intermediate volume. ILLUSTRATION -Assume ! = 6 feet, l' = 7 per cent. = .42, r = 3, and s = .25 Then $\frac{3 \times \frac{6}{6.4^2} + 333}{1 + 323} = 2.353$, ratio of expansion in ad cylinds. Total Actual Ratio of Expansion. R' $\left(r \frac{l}{r} + x\right) = ratio$. TION.—Assume preceding elements, R = 2.653. $(3 \times \frac{6}{640} + .333) = 2.653 \times 3.137 = 8.322$, total actual 1 . Ratio of Expansion. $E\left(\frac{1}{F}+z\right) \div \overline{1+s} = \overline{1+s}$ Assume preceding elements $(-333+1+333)=\frac{6.322}{1.320}$

Attain Combined Ratio of Expansion and Final Pressure in 2d Cylinder.

uming four cases as taken for Receiver Engine with a clearance of cent. The relations would be as follows:

diate spaces are	0	·33 3	•5	I	{ part of volume of 1st cylin- der plus its clearance, or,
of 1st cylinder	0	.357	•535	1.07	
these 1.07, the volume of 1st } Ler plus its clearance, and }	1.07	1.427	1.605	2.14	{ total initial volumes for ex- pansion in 2d cylinder or times volume of 1st cyl'r.
> values of intermediate space the volume of 2d cylinder, as sums are the final volumes pansion in 2d cylinder	3	3-357	3-535		times volume of rst cylinder.
fexpansion in 2d cyl'r arequo-) of final by initial volumes	2.804	2.352	2.202		ratios of expansion.
diate falls of pressure are, in tof final pressure in 1st cylinder	•	.25	•333	•5	of final pressure; or, assuming initial pressure at 63 lbs., and final pressure at 23.75 lbs., they are
	0	5.94	7.92		lbe. per eq. inch.
tial pressures for expansion in } linder are	1	-75	.66	•5	of final pressure in zat cylinder, or
	23.75	17.81	15.83	11.87	lle. per eq. inch.
final pressures in 2d cyl'r are	8.47	7·57	7.19	6.24	lbs. per sq. inch.
Combined	Rati	os in ti	hese Fo	ur Cas	nes.

ıst.	ıstr	atio of	expansio					
	2d	do.	do.		1	to	2.80	4 = 2.653 × 2.804 = 7.44.
2d.	ıst	do.	do.		1	to	2.65	3
	2d	do.	do.		1	to	2.35	2 = 2.653 × 2.352 = 6.24.
3 d.	ıst	do.	do.		1	to	2.65	3
•	2d	do.	do.	• • • •	x	to	2.20	$2 = 2.653 \times 2.202 = 5.84$
₄th.	ıst	do.	do		I	to	2.65	-
•	2d	do.	do.		I	to	1.00	5 = 2.653 × 1.005 = 5.05.

fal effect of steam at 63 lbs. pressure, admitted to 1st cylinder, for 2 feet, or one of stroke of piston, and with a clearance of 7 per cent. or .42 feet, is as follows:

on piston..... 63×2 feet = 126 foot-lbs. { Total initial in clearance.. $63 \times .42$ foot = 26.46 = 63 \times 2.42 = 152.46 foot-lbs. } Total initial 3 sum is initial effect, on which effect by expansion is computed, while it is foot-lbs. in excess of the initial effect on the piston.

total effect, then, is computed as follows:

st case.	$152.46 \times (1 + \text{hyp. log. 7.44}) \text{ or } 3.0069 = 458.27$ Less effect of clearance	Net Effect. 431.81 foot-lbs.
1 case.	$152.46 \times (1 + \text{hyp. log. 6.24}) \text{ or } 2.831 = 431.47$ Less effect of clearance 26.46	405.01 "
case.	$152.46 \times (1 + \text{hyp. log. 5.84}) \text{ or } 2.7647 = 421.35$ Less effect of clearance	394.89 "
b case.	$152.46 \times (1 + \text{hyp. log. 5.05}) \text{ or } 2.6294 = 399.29$ Less effect of clearance	372.83 ."

reductions of not effect in 2d, 3d, and 4th cases are 6.2, 8.6, and 13.7 per cent. t in 1st case.

compute Effect for One Stroke and a Given Cobined Actual Ratio of Expansion.

E.-To hyp. log. of combined actual ratio of expansion (bel add 1; multiply sum by period of admission of steam to ded to clearance, and from product subtract clearance.

iply area of 1st cylinder in sq. ins. by initial pressure of st inch and by above remainder. Product is net effect in . ke.

EXAMPLE. - Assume elements of 1st illustration page 723.

Hyp. log. 6.24 + 1 = 2.831, which, $\times 2.42 = 6.85$, and 6.85 - .42 and $\times 60 = 385.8$ fool-lbs.

Or,
$$l'(1 + hyp. log. R') - C \times a P = E$$
.

Comparative Effect of Steam in Receiver and Engines.

The effect of steam in a compound engine, without clearance and w intermediate reduction of pressure, is the same whether operated in a l woolf engine.

When, however, there is an intermediate space between the two cylin receiver, there is an intermediate reduction of the pressure of the ste quent upon the increase of its volume in the receiver; the reduction of therefore, being less rapid than with the Woolf engine, the effect is great

In illustration, the following comparative elements of the effect of be is furnished.

RECEIVER. (7	per cent. cies	irance.) woolf	•
Ratio of Expansion. Net Effects tast case7.96422.3	t.	Ratio of Expansion.	
2d "5.97421.55	" 2d	6.24	405-1
3d "5.31417.96 4th "3.98402.78	" 3d	"5.84 "5.05	

From which it appears, that although the effect of a receiver engine is est, its ratio of expansion is less than with the Woolf engine.

Also, that by the addition of clearance to the pistons of each engine, ratios of expansion are sensibly reduced, as compared with the ratic clearance.

INDICATOR.

To Compute Mean Pressure by an Indicat

RULE.—Divide atmosphere line, ure, into any convenient number of feet of stroke of piston, and erect pulars at each point. Measure by parts (alike to that of diagram) the mean pressure, as defined between lines at top and bottom of diagram results, divide sum by number of puquotient will give mean pressure is

sq. inch upon piston.

EXAMPLE. - Pressures, as above given, are:

35+35+35+34+32+25+16+10+8+6=236, which, \div 10, =2. Norg.—If it were practicable to run an engine without any load, and times is, the mean pressure, as exhibited by an indicator, would be an exure of the friction of the engine.

Conclusions on Actual Efficiency of Steam For development of highest efficiencies of steam, as used in an engine. I protecting it from cooling and condensing in the cylinder must be employed menting of it prior to its introduction into a cylinder is probably mesting of that may be employed for this purpose. Application to cylinder

r than it is next best means; and next is the steam jacket.

s of locomotive and portable engines, consumption of steam per set than for that of single-cylinder condensing engines for like all high is due to effect of temperature of non-condensing cylinder

results that the compound engine is none eff.
 of the two kinds of compound engines, is about the Woolf.

Amous coal per TEP per hour, for con Bramwell, ranged from 1.7 to 2.8 h Compute Volume of Water Evaporated per Lb. of Coal.

 $\frac{v \text{ W}}{d}$ = volume of water, in lbs. V and v representing volume of steam and

e volume of water, in cube feet, W weight of cube foot of water, and F weight of rasumed, both in lbs., and d density of water, in degrees of saturation.

STRATION.—Take case at foot of page. V = 449887 cube feet, v = 838 cube r = 64.3, E = 1, and F = 4061 lbs.

$$\frac{449887 \div 838 \times 64.3}{4061 \times 1} = 3.5$$
 lbs. per hour.

in Fuel, and Initial Pressure of Steam required, when Acting Expansively, compared with Non-Expansion or Full Stroke.

off.	Gain in Fuel.	Cutting off.	Point of Cutting off.	Gain in Fuel.	Cutting off.	Point of Cutting off.	Gain in Fuel.	Cutting off.
3.	Per Cent.	Lbs. 1.03	Stroke.	Per Cent.	Lbs. 1.18	Stroke.	Per Cent.	Lbs. 1.67
5	32	1.09	-375	49.6	1.32	.125	67.6	2.6

STRATION.—What must be initial pressure of steam cut off at .5, to be equivo 100 lbs. per sq. inch at full stroke?

100 at full stroke = 100, and 100 \times 1.18 = 118 lbs.

To Compute Gain in Fuel.

LE.—Divide relative effect of steam by number of times the steam is ded, and divide r by quotient; result is the initial pressure of steam ed to be expanded to produce a like effect to steam at full stroke.

ide this pressure by number of times the steam is expanded, and subquotient from 1, rentainder will give gain per cent, in fuel.

MPLE. - When steam is cut off at .5, what is gain in fuel, and what mechanical

tive effect, including clearance of 5 per cent., = z.64; number of times of exn = 2.

$$1.64 \div 2 = .82$$
, and $1 \div .82 = 1.22$ initial pressure. $1.22 \div 2 = .61$, and $1 - .61 = .39$ per cent.

nanical effects of steam at full and half strokes are $2-1.6 \pm 0.36$ difference. No. 1.64: .36: 150 (half volume of steam used): 1.037 per cent. more fuel to be same effect at half stroke, compared with steam at full stroke.

Compute Consumption of Fuel in a Furnace. In Dimensions of Cylinder, Pressure of Steam, Point of Cut-off, Revound Evaporation per Lb. of Fuel per Minute are given.

E.—Compute volume of cylinder to point of cutting off steam, inclearance. Multiply result by number of cylinders, by twice number kes of piston, and by 60 (minutes); divide product by density of steam pressure in cylinder, and quotient will give number of cube feet of expended in steam.

iply number of cube feet by 64.3 for salt water (62.425 for fresh), product by evaporation per lb. of fuel consumed, and quotient will assumption in lbs. per hour.

PLE.—Cylinder of a marine engine is 95 ins. in diameter by 10 feet stroke ; pressure of steam in steam-chest is 15.3 lbs. per sq. inch, cut off at .5 number of revolutions 14.5, and evaporation estimated at 8.5 lbs. of salt er lb. of coal; what is consumption of coal per hour, when density of water Lained at 2-32? (See Saturation, page 726.)

ne of steam at above pressure, compared with water (15.3 + 15) ins. +2.5 per cent. for clearance $\div 144 = 50.45$ cube feet.

feet + 2.5 per cent. = 5 feet 1.5 ins., and 50.45 \times 5 feet 1.5 9887 cube feet steam per hour.

Steam and Exhaust Valves.—(Poppel), $\frac{a \cdot s \cdot n}{24000}$ = area for steam, $\frac{sis}{2000}$ exhaust; (Slide), $\frac{a \cdot s \cdot n}{30000}$ for steam, and $\frac{a \cdot s \cdot n}{22750}$ for exhaust, a reputations per minute.

Injection Pipes.—One each Bottom and Side to each condenser; seach equal to supply 70 times volume of water evaporated when se working at a maximum; and in Marine and River engines the addit a Bilge, which is properly a branch of bottom pipe.

Norm I.—Proportions given will admit of a sufficient volume of water wigine is in operation in the Gulf Stream, where the water at times is at tempt of 84°, and volume required to give water of condensation a temperature of 70 times that of volume avaporated.

2. Velocity of flow of water through cock or valve 20 feet per second in riv shallow draught, and 30 feet in sea or deep draught service.

Feed Pump.*—(Single acting, Marine), Volume, .co6 to .co steam of (River and Land), or when fresh water alone or a surface condenser i .co4 to .co7.

NON-CONDENSING.

For a Range of Pressures of from 50 to 150 lbs. (Marial Gauge) per Sq. Inch, Cut Off at Half Strokenson

Piston-rod.—(Wrought Iron), Diam., .125 to .2 steam cylinder. .8 diam.

Steam and Exhaust Valves.—Area is determined by rules given is in a condensing engine, using for divisors 30 000 and 22 750.

A decrease in volume of cylinder is not attended with a proportionate ℓ of their area, it being greater with less volume.

Feed-pump.*—(Single acting, Marine), Volume, .008 to .016 steam der. (River and Land), or where fresh water alone is used, .005 to 4

General Rules.

Engines.

Cylinder. Thickness.—(Vertical), $\frac{D}{2400} = t$; (Horizontal), $\frac{D}{2000} = t$ clined), divide by 2000 in a ratio inversely as sine of angle of inclinat D representing diameter of cylinder, p extreme pressure in lbs. per sq. ind may be subjected to, and t thickness in ins.

Shafts, Gudgeons, Journals, etc. To resist Torsion. See rules, pp. 75

Coupling Bolts. $\frac{D}{2}\sqrt{\frac{D}{nd'}}=d$. n representing number of bolt, D & & distance of centre of bolts from centre of shaft, and d diameter.

the.

we-head, Wrought-iron. (Cylinder), $\frac{apl}{700} = S$, and $\sqrt{\frac{S}{b}} = d$, or

remting area of cylinder in sq ins., I length of cross-head between color in feet, and S product of square of depth d, and breadth, b, of sch

(Air-pump), $\frac{al}{18}$ = S, and as above for d and b.

m is cylindrical, for 8 pat $\sqrt[3]{S \times 1.7}$.

*end journals same as that of pistor-

re.—Its area should exceed that of steam-valve, proportionate to and exposure to the air.

g-rod.—Length, 2.25 times stroke of piston when it is at all to afford the space; when, however, it is imperative to reduce ion, it may be twice the stroke.

ve friction of long and short connecting-rods is, for length of stroke of r cent. additional; twice, 3 per cent.; and for thrice, 1.33.

Diam. 1 to 1.1 that of piston-rod. Centre of body (Horizontal), Vertical), .o6 inch per foot of length of rod.

connecting-rods or links, area of necks .65 to .75 area of attached rod. cond set of rods is used, as in some air-pump connections, area of tito, inversely as their lengths to that of first set.

*Connecting-rods, Links, etc. — (Strap), area at its least section attached rod; (Gib and Key), .3 diam. of neck, width, 1.25 times, times (Draft) of keys .6 to .8 inch per foot. Distance of Slot rod .5 diam. of pin.

inks, Beams, etc.). $\sqrt[3]{\frac{P}{C}}$.355 = d. P representing pressure or thrust m, l length of journal in ins., and C, for Wrought iron = 640, Cast, 560, 600, and Cast, 1200.

.3 to 1.5 times their diam., and pressure should not exceed 750 inch for propeller engine, and 1000 for side-wheel.

Wrought-iron).—Hub, compared with neck of shaft, 1.75 diam., 1. Eye, compared with pin, 2 diam., and 1.5 depth. Web, at peaub, width, .7 width, and in depth .5 depth of hub; and at periphwidth, .8 width, and in depth, .6 depth of eye.

i.) Diameters of Hub and Eye respectively, twice diam. of neck d 2.25 times that of crank pin. Illets of sides of web .5 width of web at end for which fillet is designed; ack of web .5 that at sides of their respective ends.

pen or Trussed.—Length from centres 1.8 to 2 stroke of piston, 5 length. If strapped, Strap at its least dimensions .9 area of ts depth equal to .5 its breadth. End centre journals each 1, and journals 2.5 times area of piston or driving-rod.

rition for strap is when depth of beam is .5 length, as above; consen its depth is less, area of strap must be increased; and when depth of ter or less than .5 width, its area is determined by product of its $b\,d^2$, s if its depth was .5 its width.

n). Area of Section of Centre. $\frac{p \times \overline{l+2}}{500 \text{ d}} = A$. p representing nure upon piston in lbs., d depth in ins., and l length in feet.

centre .5 to .75 diam. of cylinder, and, when of uniform thickexness of not less than .1 of depth.

of End Centres.— $l \div 2 - \sqrt{(l \div 2)^2 - (s \div 2)^2} = vibration$ at each senting stroke of piston, in feet.

Blocks (Shaft).—Binder $d\sqrt{\frac{1}{b}C}$ = depth. d representing diam. two to binder, l distance between bolls, b breadth of binder, all in ins., ought from 1, steel .85, and cast from .2.

lown Bolls. $P\div 3$ C= area at base of thread of each bolt. C for mild t and large bolts 6000 and 7000, for wrought iron 4500 and 6000, if by

ass).
$$\frac{d}{3}\sqrt{\frac{l}{b}} = depth.$$

Cocks.—Angles of sides of plug from 7° to 8° from plane of it.

Pumps.—Velocity of water in pump openings should not exceed 50 is per minute.

Fly-wheels and Governors.—See Rules, pages 451 and 452.

Water-wheels.

Water-wheels (Arms).—Number from .75 to .8 diam. of wheel is (Blades) Wood.—For a distance of from 5 to 5.5 feet between arms, is ness from .09 to .1 inch for each foot of diam. of wheel.

Area of blades, compared with area of immersed amidship section of vessel, depends upon dip of wheels, their distance apart, model and its vessel.

In River service, area of a single line of blade surface varies from .jw that of immersed section; in Bay or Sound service, it varies from .sy war and in Sea service, it varies from .og to .1.

Note.—A wrought-iron blade .625 inch thick bent at a stress withstood oak blade 3.5 ins. thick.

Radial and Feathering.

Radial.—Loss of effect is sum of loss by oblique action of wheel in upon the water, their slip, and thrust and drag of arms and blades at enter and leave the water.

Loss by oblique action is computed by taking mean of square of angles of blades when fully immersed in the water.

Loss by oblique action of blades of wheel of steamer Arctic, when her were immersed 7 feet 9 ins. and 5 feet 9 ins., was 25.5 and 18.5 per cent. was the loss of useful effect of the portion of total power developed by which was applied to wheels.

Feathering.—Loss of effect is confined to thrust and drag of and blades as they enter and leave the water.

Comparative Effects.—In two wheels of a like diameter (26 feet, and 6 feet ision), like number and depth of blades, etc., the losses are as follows:

Relative loss of effect of the two wheels is, approximately, for ordinary sions, 20 and 15 per cent. from circumference of wheel.

In the cases here given, centres of pressure are as follows:

Propellers.

ropellers (Screw). — Pitch should vary with area of circle description area of midship section of vessel.

AREA, TWO-BLADED.
" to mid-} 6 / 5 / 45 / 4 / 3-5 (3 (25)
W of \ 8 1.02 1.11 2.2 1.2 2.3 4
multiply ratio of pitch to diam as gra

₹ii

Lo:

270

Ŀ

Tr,

m

utai

L t

To (

3,

2.—Slip of a screw propeller is directly as its pitch, and economical of a screw is inversely as its pitch, greater the pitch less the effect, expanding pitch has less slip than a uniform pitch, and, consequently, re effective.

To Compute Thrust of a Propeller.

217

To To Thrust of a Propeller.

217

To Top Property of the Propeller.

SLIDE VALVES.

All Dimensions in Inches.

Compute Lap required on Steam End, to Cut-off at any given Part of Stroke of Piston.

LE.—From length of stroke subtract length of stroke that is to be made a steam is cut off; divide remainder by stroke, and extract square of quotient.

ltiply this root by half throw of valve, from product subtract half lead, emainder will give lap required.

MPLE.—Having stroke of piston 60 ins., stroke of valve 16 ins., lap upon exside .5 in. = one thirty-second of valve stroke, lap upon steam side 3.25 ins., ins., steam to be cut off at five sixths stroke; what is the lap?

$$-\frac{5}{6}$$
 of 60 = 10. $\sqrt{\frac{10}{60}}$ = .408. .408 $\times \frac{16}{2}$ = 3.264, and 3.264 $-\frac{2}{2}$ = 2.264 ins.

Ascertain Lap required on Steam End, to Cut-off at various Portions of Stroke.

JETRATION.—Take elements of preceding case.

Ler $\frac{1}{4}$ is .204, and .204 × 16 = 3.264 ins. lap.

zen Valve is to have Lead.—Subtract half proposed lead from lap asned by table, and remainder will give proper lap to give to valve.

hen, as last case, valve was to have 2 ins. lead, then $3.264 - 2 \div 2 = 2.264$ ins.

Compute at what Part of Stroke any given Lap on Steam Side will Cut off.

LE.—To lap on steam side, as determined above, add lead; divide sum if length of throw of valve. From a table of natural sines (pages 300-find the arc, sine of which is equal to quotient; to this arc add 90°, from their sum subtract arc, cosine of which is equal to lap on steam livided by half throw of valve. Find cosine of remaining arc, add r and multiply sum by half stroke, and product will give length of that f stroke that will be made by piston before steam is cut off.

MPLR .- Take elements of preceding case.

(sin.
$$\frac{2.264 + 2}{16 \div 2} + 90^{\circ} - \cos \frac{2.264}{16 \div 2} + 1 \times \frac{60}{2} = \cos (32^{\circ} 13' + 90^{\circ} - 73^{\circ} 34')$$

35', and cos. $48^{\circ} 39' + 1 \times \frac{60}{2} = 1.66 \times 30 = 49.8$ ins.

To Ascertain Breadth of Ports.

Throw of vaive should be at least equal to lap on steam side,

If this breadth does not give required area of port, throw
d until required area is attained.

Portion of Stroke at which Exhausting Port is Clarand Opened.

Lap on Exhaust Side of Valve in	Po	rtion		cke at		h Ste	4m	Exhaust Side of Valve in	P	etion		alo si cat e		<u>-</u>
Parts of its Throw.	1	74	1	\$4	ŧ.	1	12	Parts of its Throw.	1	<u>**</u>	1	ň	1	1 1
A .125 .062 5	.178	.161	.143	.126 .085	. 109	.093 .058	.074	.125 .0625	.033	.026	.019 .04	.012	.00å .	on a
.031 25	1.113	. 101	085	.069	.053	.043	.033 .022	.031 25	.073	. 066	.051	.042	. 033 .	= ,4

Units in columns of table A express distance of piston, in parts of its strait is end of stroke when exhaust port in advance of it is closed; and those in contable B express distance of piston, in parts of its stroke, from end of its stroke, from end of its stroke, from end of its stroke, from end of its stroke, from end of its stroke, from end of its stroke.

ILLUSTRATION.—A slide valve is to be cut off at one sixth from end of stake on exhaust side is one thirty-second of stroke of valve (16 ina.), and stroked is 60 ins. At what point of stroke of piston will exhaust port in advance of a closed and the one behind it onen.

Under one sixth in table A, opposite to one thirty second, is .053, which is length of stroke = 3.18 time,; and under one sixth in table B, opposite to easies second, is .033, which × 60 = 1.98 ins.

If lap on exhaust side of this valve was increased, effect would be to cause advance of valve to be closed sooner and port behind it opened later. And the exhaust side was removed entirely, the port in advance of piston would be and the one behind it open, at same time.

Lap on steam side should always be greater than that on exhaust side, and ence greater the higher the velocity of piston.

In fast-running engines, alike to locomotives, it is necessary to open exhaust before end of stroke of piston, in order to give more time for escape of the

To Compute Stroke of a Slide Valve.

RULE.—To twice lap add twice width of a steam port in ins., and will give stroke required.

Expansion by lap, with a slide valve operated by an eccentric alone, case extended beyond one third of stroke of a piston without interfering with elimoperation of valve; with a link motion, however, this distortion of the rale somewhat compensated. When lap is increased, throw of eccentric should also increased.

When low expansion is required, a cut-off valve should be resorted to in to main valve.

To Compute Distance of a Piston from End of Stroke, when Lead produces its Effect.

Rule. — Divide lead by width of steam port, both in ins., and tent quotient sine; multiply its corresponding versed sine by half stroke product will give distance of piston from end of its stroke, when steam is mitted for return stroke and exhaustion ceases.

EXAMPLE.—Stroke of piston is 48 ins., width of port 2.5 ins., and lead. what will be distance of piston from end of stroke when exhaustion comments

$$.5 \div 2.5 = .2 = sine$$
, ver. sin. of $.2 = .0202$, and $.0202 \times \frac{48}{2} = .4848$ is

compute Lead, when Distance of a Piston is the End of Stroke is given.

T.E.—Divide distance in ins. by half stroke in ins., and term or religibly corresponding sine by width of steam port, and

s elements of preceding case.

Compute Distance of a Piston from End of its Stroke, when Steam is admitted for its Return Stroke.

T.E.—Divide width of steam port, and also that width, less the lead, by coke of slide, and term quotients versed sines first and second. Ascertheir corresponding arcs, and multiply versed sine of difference between and second by .5 stroke, and product will give distance.

AMPLE.—Assume elements of preceding case. lap = .5 inch, and stroke of 6 ins.

$$\frac{5}{-2}$$
 and $\frac{2.5-.5}{6\div 2} = .8_{333}$, and .667 and ver. sin. 80° 24′ ∞ 70° 33′ $\times \frac{48}{2} = .3_{528}$ inch.

o Compute Lap and Lead of Locomotive Valves.

cut off at .33, .25, and .125 of stroke of piston, lap = 289, .25, and .177 t, outside = .07 t, and inside lead = .3 t. t representing stroke of valve, all in ins.

HORSE-POWER.

orse-power is designated as Nominal, Indicated, and Actual.

cominal, is adopted and referred to by Manufacturers of steam-engines, reder to express capacity of an engine, elements thereof being confined immensions of steam cylinder, and a conventional pressure of steam and of of piston.

**dicated, designates full capacity in the cylinder, as developed in operaand without any deductions for friction.

ctual, refers to its actual power as developed by its operation, involving ments of mean pressure upon piston, its velocity, and a just deduction for the operation of the engine.

To Compute Horse-power of an Engine.

Tominal.—Non-condensing, $\frac{D^2 v}{1000}$, and Condensing, $\frac{D^2 v}{1400} = \mathbf{H}$. D represing diameter of cylinder in ins., and v velocity of piston in feet per minute.

✓on-condensing is based upon uniform steam-pressure of 60 lbs. per sq.
 (steam-gauge), cut off at .5 stroke, deducting one sixth for friction and .es, with a mean velocity of piston, ranging from 250 to 450 feet per Lute.

ondensing is based upon uniform steam-pressure of 30 lbs. per sq. inch am-gauge), cut off at .5 stroke, deducting one fifth for friction and es, with a mean velocity of piston of 300 feet per minute for an engine hort stroke, and of 400 feet for one of long stroke.

Actual.—Non-condensing.
$$\frac{A^{\frac{1}{P^*}-(f^{\dagger}+14,7)287}}{33\infty} = IP$$
. A representing

Of cylinder in sq. ins., P mean effective pressure upon cylinder piston, inclusive mosphere, f friction of engine in all its parts, added to friction of load, both in Per sq. inch, s stroke of piston in feet, and r number of revolutions per minute.

on of these resistances is from 12.5 to 20 per cent., according to pressure of being least with highest pressure.

h is value is best obtained by an *Indicator*; when one is not used, refer to rule ble, pp. 710-12. In estimating value of P, add 14.7 lbs., for atmospheric presson that indicated by steam gauge or safety-valve. Clearance of piston at each cylinder is included in this estimate.

is value may be safely estimated in engines of magnituch, for friction of engine in all its parts, and friction of two per cent. of remaining pressure. Sum of these resistances is from no to 20 per cent, according to pressure of steed to deliver water of condensation at level of discharger pressure representing friction for different designs as estimated by English authority, see pp. 473-5 and 66.

The next

ILLUSTRATION.—Diameter of cylinder of a non-condensing engine is no im, and of piston 4 feet, revolutions 45 per minute, and mean pressure of same imaguage) 60 lbs. per sq. inch.

$$A=78.54$$
 eq. ins. $P=60+14.7=74.7$ lbs. $f=2.5+\overline{(60+14.7-2.5)\times.075=74}$

Then
$$\frac{78.54 \times (60 + 14.7 - 7.92 + 14.7) \times 2 \times 4 \times 45}{33000} = 446 \text{ P}.$$

皺

QU. CO!

Eit

62

T

el.

æ

Ex Peroj eton

Tale To

1154

al fit

Note I.—Power of a non-condensing engine is sensibly affected by chancing exhaust, as to whether it is into a heater, or through a contracted pipe, to that blast to combustion.

2.—If an indicator is not used to determine pressure of steam in a cylicky safe estimate of it, when acting expansively, is .9 of full pressure, and when all stroke from .75 to .8

Condensing.
$$\frac{A P^* - f \dagger 287}{33000} = \mathbf{P}.$$

Power required to work the air-pump of an engine varies from .7 to .9 lb per inch upon cylinder piston.

ILLUSTRATION.—Diameter of cylinder of a marine steam-engine is 60 ins. selection to feet, revolutions 15 per minute, pressure of steam 50 lbs. per selection for 1.25 stroke, and clearance 2 per cent.

A = 2827.4 sq. ins. P (per Ex., page 713) = 28.62 lbs. $f = 1.5 + \frac{1}{28.62 - 15}$ = 2.467 lbs.

Then
$$\frac{2827.4 \times 28.66 - 2.856 \times 2 \times 10 \times 15}{33.000} = 662.23 \text{ IP}.$$

From which is to be deducted in marine engines power necessary to distance of condensation at level of load-line, which is determined by pressure elevation of water, area of air-pump piston, and velocity of its discharge in the second.

Indicated.
$$\frac{AP28r}{33000} = HP$$
, and $\frac{33000 HP}{P28r} = A$

British Admiralty Rule.—Nominal.
$$\frac{7 \text{ Å } v}{33 \cos}$$
 or $\frac{D^2 v}{6000} = \mathbb{R}$

Fire nota.—(Force de Cheval.) 1.695 D² L r = HP. D and L in mdon ILLUSTRATION.—Assume a diameter of cylinder of .254 meters, with a sim^{bl} piston of .3 meters and 250 revolutions per minute.

$$1.695 \times .254^2 \times .3 \times 250 = 8.18 \text{ HP}.$$

A Force de Cheval = 4500 kilometers per minute = 32549 foot lbs. = .9875 P. One PP = 1.0139 Force de Chevaux.

Compound Indicated. A Lr
$$\left(\frac{P}{R''}, \frac{P}{1}, \frac{P}{1}, \frac{P}{1}, \frac{P}{1}, \frac{P}{1}, \frac{P}{1}\right)$$
. So Compound Indicated. A Lr $\left(\frac{P}{R''}, \frac{P}{1},$

back pressure.

ILLUSTRATION.—Assume area of cylinder 3 sq. ins., stroke 6 feet, one stroke

piston, and steam 60 lbs. per sq. inch, cut off at .25.

A = 2 sq. ins. L = 6 feet. n = 1 stroke. P = 60 lbs. R" = 5.060 b=18

A = 3 sq. ins., L = 6 feet, n = 1 stroke, P = 60 lbs., R" = 5.969, b=1 per sq. inch, and r=.5, and r+ hyp. log. R''=r+1.7865.

Then
$$3 \times 6 \times .5 \times \left(\frac{60}{5.969} \times \overline{1 + 1.7865} - 3\right) \times .000053 = 9 \times \overline{10.052 \times 278}$$

\(\times .000053 = .0132 \) P, which, \(\times 2\) for 1 revolution, \(= .0264 \) P per revolution

ompute Volume of Water required to be E

Multiply volume of steam expended in cylinder and steam to mober of revolutions, and multiply product by density to

PLE.—What volume of water will an engine require to be evaporated per on, diam. of cylinder being 70 ins., stroke of piston 10 feet, and pressure of 4 lbs. per sq. inch, including atmosphere, cut off at. 5 of stroke?

of cylinder = 3848.5 ins. $10 \times 12 \div 2 = 60$ ins., $60 \times 3848.5 = 230910$ cube ins. for clearance at one end, volume of nozzle, steam-chest, etc., 17 317 cube ins. $230910 + 17317 + 1728 \times 2 = 287.3$ cube feet, which, $\times .001336$, density of t. 34 lbs. pressure (see Note 2), = .3838 cube feet.

I.—This refers to expenditure of steam alone; in practice, however, a large y of water "foaming," differing in different cases, is carried into cylinder in ation with the steam; to which is to be added loss by leaks, gauges, etc.

olume of steam is readily computed by aid of table, pp. 708-9. Thus, denweight of one cube foot of steam at above pressure = .0835 lbs. Hence, as .: 1 cube foot :: .0835 lbs. :.001 336 cube foot.

ompute Volume of Circulating Water required by an Engine.

 $\frac{+ \cdot 3}{-t'} \frac{T - t}{t'} = V$. T representing temperature of steam upon entering the cont, t', and t'' temperatures of feed water, of water of condensation discharged, circulating water, all in degrees.

STRATION.—Assume exhaust steam at 8 lbs. per sq. inch, temperatures of dis-100°, feed water 120°, and sea-water 75°.

perature at 8 lbs. pressure =
$$183^{\circ}$$
.
$$\frac{1114 + .3 \times 183 - 120}{100 - 75} = 41.95 \text{ times.}$$

ompute Volume of Flow through an Injection Pipe.

.E.—Multiply square root of product, of 64.33 and depth of centre of g into condenser, from surface of external water, added to height of a of water due to vacuum in condenser, all in feet, by area of opening ins.; and .6 product, divided by 2.4 (144 \div 60) will give volume in eet per minute.

4PLE.—Diameter of an injection pipe is 5.375 ins., height of external water condenser 6.13 feet, and vacuum 24.45 ins.; what is volume of flow per min.?

of 5.375 ins. = 22.69 ins., c = .6. Vacuum $\frac{24.45 \text{ ins.}}{2.04} = 12 \text{ lbs.}$; 12×2.24 a water) = 26.88 feet, and 26.88 + 6.13 = 33.1 feet.

Then
$$\frac{\sqrt{64.33 \times 33.1} \times 22.69 \times .6}{2.4} = \frac{628.15}{2.4} = 261.73$$
 cube feet.

To Compute Area of an Injection Pipe.

LE.—Ascertain volume of water required by rule, page 706, in cube ins. seond, multiply it by number of volumes of water required for continn, by rule, page 707, divide it by velocity due to flow in feet per 1, and again by 12, and quotient will give area in sq. ins.

MPLE.—An engine having a cylinder 70 ins. diam., stroke of piston 10 feet, tions per minute 15, and steam 19.3 lbs., mercurial gauge cut off at .5; what | be area of its injection pipe at its maximum operation?

Ime of cylinder 267.25 cube feet, cut off at .5 = 133.625 ins. sity of steam at 34 lbs. (10.3 + 14.7) = .001 336. Velocity of flow of injected [computed from vacuum and elevation of condensing water) 33 feet per second.

1 $133.625 \times 15 \times 2 \times 1728 \div 60 = 115452$ cube ins. $\times .001336 = 154.24$ cube ins. water per second.

second, and

imum volume of water required to condense steam in evaporated, which only occurs in the Gulf of Mexical to times.

t+11.59 (=7.5 per cent. for leakage of valves, etc.), =11608.1 cube ins., and 11608.1 \div 33 \times 12 = 29.31

Coefficient of velocity for flow under like conditions = .6; hence, 2,3; +48.85 aq. ins.

NOTE.—This is required capacity for one pipe. It is proper and customing there should be two pipes, to meet contingency of operation of one being are

To Compute Area of a Feed Pump. (Sarate)

Rule.—Divide volume of water required in cube ins. by number of strokes of piston, both per minute, and divide quotient by stroke of pure ins.; multiply this quotient by 6 (for waste, leaks, "running up," acl product will give area of pump in sq. ins.

Example.—Assume volume to be 5 cube feet and revolutions of engine: minute, with a stroke of pump of 3.5 feet.

$$\frac{5 \times 1728}{15}$$
 = 576, which $\div \overline{3.5 \times 12}$ = 13.72, and 13.72 × 6 = 82.32 sq. ist

NOTE. - In fresh water, this proportion may be reduced one half.

STEAM-INJECTOR. William Sellers & Co. Self-adjusting.

Volume of Water Discharged per Hour.

	F	ressure of S	steam in Lb	6. !	1	1	Pressure of S	Steem in Lie	
No.	60	80	100	120	No.	60	80	130	: -
3 4 5 6	Cub. feet. 28.12 52.16 82.18 119.09	Cub. feet. 31.66 58 44 92.02	Cub. feet. 35.2 64.72 301.86	Cub. feet. 38.75 71 111.7 161.82	7 8 9	Cub. feet. 162.65 213.2 269.97 333.64	Cub. feet. 182. 1 238.8 302. 28 373-57	Cub. feet. 201-55 264-4 334-59 413-40	1

Highest temperature admissible of feed water 1250.

To Compute Size of Injector required.

One II' per hour will require from 15 to 40 lbs. of water per hour, sing to character of engine.

When the lbs. of coal burned per hour can be ascertained, divide the 7.5, and quotient will give the volume of water in cube feet per hour.

When the area of grate-surface is known, multiply it by 1.6 for P.

In case of plain cylindrical boilers, divide the number of sq. feet of ing-surface by 10 for the IP. In case of flue boilers, divide by 12, and multi-tubular boilers, by 15, for the nominal IP.

Minimum capacity of Injectors, about 50 per cent. of Tabular capaci

To Compute Volume of Injection Water required IIP per Hour.

OPERATION —Assume temperature of water 80°, and of condensation 100°, ume of cylinder per 11P as per formula, page 716, and illustration, page 71%; feet per minute.

Then, as per rule page 707, $\frac{1146.1 - 100}{100 - 80} = 52.3$ cube ins. per cube foot of 4m

$$\frac{2.76 \times 52.3 \times 62.5}{1728} = 5.22$$
 lbs., which, \times 60, = 313.2 lbs.

To Compute Net Volume of Feed Water required IHP per Hour.

elements of formula, page 716, and illustration, page 7 Finen $x_154 \times 2.76 \times 60 = 19.11$ lbs.

: dispacter for small, and $\frac{d}{32}\sqrt{v}$, for large pm v ins., and v its velocity in feet per v

tesults of Operations of Steam-engines. (D. K. Clark.)

Condensing Engine.	Actual Ratio of Expan- sion.	Steam per IHP as cut-off.	Coal per IHP.	Initial Pressure at cut-off.	Steam per I IP per hour.
SINGLE.		Lbs.	Lbs.	Lbs.	Lbs.
iss, Saltaire	6.07 3.62	14.51 14.27 12.92	2.5 2.2	34·5 46 23·25	17.4 18.7 20.72
er, Corliss valvesrheated, Hirn		=	3.3	50 60	19.6 18.62
COMPOUND.	İ				
lder & Co	1.852	14.45 14.85	1.61	56	-
E. Wood Receiver	1.857		2.14	85.5	-
kin	2.486 3.221	13.18	=	50.5	22.51
erican, Woolf ist cylinder	2.31	actual 23.21	_	90	15.37
" jacketed {sst cylinder	3·77 9·19	20.71	_	90	14.1
NON-CONDENSING.		1			
shall, Sons, & Coey, Paxman, & Co	5	16.87 14.93	=	76 73	25.9 29.6
motive "Great Britain"		31.36	=	102 87	31.36 21.24

ractical Efficiency of Steam-engines. Initial Volume = 1.

Cylinders.	Most Efficient Ratio of Ex- pansion.	Steam * per IFP per hour.	Cylinders.	Most Efficient Ratio of Ex- pansion,	Steam * per IFP per hour.
condensing. le cylinder, jacketed le cylinder	6	Lbs. 19.5 24 18.5	Compound, jacketed, Woolf Compound, Woolf	10 7	I.bs. 20.5 23
pound, jacketed, Re-	6	19	Single cylinder, † jacketed Single cylinder, ‡	4 3	24 21

Standard Operation of a Portable Engine.

ing surface	5.5	sq. feet.	Water	evapora	ated_from		450	lbe.
ing surface	220		and a	lt 2120	per hour.	,	430	
per IP per hour	6.25	lbs.	٠٠	4.6	nor ID no	r honr	60 =	66
" sq. foot of grate.	Q	46	"	"	" sq. fo	ot of)	0- 8	66
" hour	5ó	"	grate			§	61.0	

Ratio of heating surface of grate..... 40 to 1.

MIXTURE OF AIR AND STEAM.

ater contains a portion of air or other uncondensable gaseo are contains a portion of air of other uncondensable gased converted into steam, this air is mixed with it, and when left in a gaseous state. If means were not taken to remover from condenser of a steam-engine, it would fill it and cy operation; but, notwithstanding the ordinary means of r p), a certain quantity of it always remains in condenser.

volumes of water absorb r volume of air.

Lecting Steam-pumps have an especial advantage in the supplying of bollors or in the discharge of fluids, as their apped in continuously, and to maintain the water at a uniform height, level, or depth. ELEMENTS AND CAPACITIES OF DIRECT-ACTING STEAM-PUMPS.

The Worthington Steam-pump.

Stroke, Plumper. Stroke,		Diameter	Length	Displacement in Gallons	Proper Strokes per	Volume delivered per Minute by	Plunger required	Die.	Diameter of Nipes for Mort Longths. To be increased as longth increases.	for More Len	4 í
10a, Callonn, Ca		Water. plungers.	Stroke.	of one Plunger.	with kind of Work	stated Number of	Inder fump for like	Steam-	Exhaugh-		Discharges pipe.
3 4 100 10 250 8 10 20 8 8.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.8 9.9 9.9	4	Int	In.	Gallons.	No.	_	4	for.	Ine.	1	! !
4 . 1 100 to 200 40 40 40 50 5 3 100 to 200 to 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	_	~	6	*o.	100 to 250	8 to 20	2.875	.375	8.	2 · u S	-
5 .3 100 to 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	2.75	+		100 to 200			8.	.75	•	. S.2
10		ή	Ŋ	Ġ	100 to 200		-	.75	1.05	٠, •	
10	-	+	۰	.33	100 to 150	70 tv 100	5.625		1.5	•	-
10 1.93 75 10 135 135 10 330 7.5 5 10 10 10 10 10 10 10 10 10 10 10 10 10		2.4	ខ្ន	69:	75 to 125		6.375	2.5		•	-
10 1.62 75 10 135 180 10 300 88 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	_	5.25	o c	.93	75 to 125		7.5		9, 9	•	•
10 1.66 75 to 135 a.45 to 410 q.875 a.45 to 410 a.45 to 410 a.45 75 to 135 a.45 to 410 a.45 75 to 135 a.45 to 410 a.45 75 to 135 a.45 75 to 1		9	o.	1.22	75 to 125				9.0	•	•
10 1.66 75 to 125 345 to 410 19 495 10 2.45 75 to 125 365 to 610 12 12 12 12 12 12 12 12 12 12 12 12 12	_	7	2	99.1	75 to 125		0.875	10.5	3	~=	•
10 2.45 75 to 135 355 to 610 112 10 2.45 75 to 135 355 to 610 112 10 2.45 75 to 135 365 to 610 112 10 3.57 75 to 135 365 to 610 112 10 3.57 75 to 135 530 to 890 14.95 10 3.57 75 to 135 530 to 890 14.95 10 3.57 75 to 135 530 to 890 14.95 10 4.89 75 to 135 730 to 1320 17 10 4.89 75 to 135 730 to 1320 17 10 4.89 75 to 135 730 to 1320 17 10 4.89 75 to 135 730 to 1320 17 10 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.			្ន	99.1	75 to 125		9.875	95		c	•
10 2.45 75 U 125 365 U 6 610 12 10 2.45 75 U 125 365 U 6 610 12 10 2.45 75 U 125 365 U 6 610 12 10 3.57 75 U 125 369 U 890 14.85 10 3.57 75 U 125 530 U 890 14.85 10 3.57 75 U 125 530 U 890 14.85 10 4.89 75 U 125 730 U 1220 17 10 4.89 75 U 125 730 U 1220 17 10 6.66 75 U 125 730 U 1220 17 10 6.66 75 U 125 730 U 1220 17 10 12 12 12 12 12 12 12 12 12 12 12 12 12	_	89 20	o	2.45	75 to 125		2	8.8		•	=
10 2.45 75 10 125 355 10 610 12		2	or	2.45	75 to 125		13	8.9	7		-
10 2.45 75 10 125 365 10 610 113 113 113 113 113 113 113 113 113 1	_	8.	ខ្ន	2.45	75 to 125		-	5.0	-	•	
10 3.57 75 to 125 530 to 890 14.85 10 10 3.57 75 to 125 530 to 890 14.85 10 10 3.57 75 to 125 530 to 890 14.85 10 3.57 75 to 125 530 to 890 14.85 10 3.57 75 to 125 530 to 890 14.85 10 4.89 75 to 125 730 to 1220 17 10 4.89 75 to 125 730 to 1220 17 10 125		8. S.	2	2.45	75 to 125			3	3.5	•	. 🕶
10 3.57 75 10 125 550 10 890 14, 25 10 10 3, 27 75 10 125 530 10 890 14, 25 10 10 3, 27 75 10 125 530 10 890 14, 25 10 10 10 10 10 10 10 10 10 10 10 10 10		10.25	ខ្ន	3.57	75 to 125		14.25	8.8		46	
10 3.57 75 to 125 530 to 890 14.05 10 4.89 75 to 125 730 to 120 17 10 4.89 75 to 125 730 to 120 17 10 6.66 75 to 125 730 to 120 17 10 6.66 75 to 125 730 to 120 17 10 6.66 75 to 125 730 to 120 17 11 12 5.1	_	10.25	2	3.57	75 to 125		14.95	9		-	
10 3.57 75 to 125 530 to 890 14.89 10.00 1	_	10.25	ខ	3.57	75 to 125	530 to 890	14.85	8.8		-	
10 4-89 75 to 125 770 to 1250 17 8-8 17 17 17 17 17 17 17 17 17 17 17 17 17	_	10.25	20	3.57	75 to 125	530 to 800	14.85		3.6	=	•
10 4.89 75 to 125 730 to 1220 17 15 to 125 170 to 1220 17 15 to 125 170 to 1220 17 15 15 to 125 170 to 1260 19,79 15 15 15 15 to 1220 17 15 15 15 15 15 15 15 15 15 15 15 15 15	_	12	0	4 .80	75 to 125	730 to 1220	17	9.0		2	-
10 64.89 75 10 125 730 10 1230 17 12 12 12 12 12 12 12 12 12 12 12 12 12		22	01	.89	75 to 125	730 to 1920				2	-
10 6.66 75 to 125 990 to 1660 19.75	_	12	្ន	68.4	75 to 125	7 to to 1220	17		2	=	-
15 5.1 So to 100 Sio to 100 84	_	*	01	99.9	75 to 125	990 to 1660	19.75			2	Ξ
	_	0 5	2 2	ı, i	50 to 100	510 to 1020	7		3.3	2	=

BOILER.

efficiency is determined by proportional quantity of heat of comn of fuel used, which it applies to the conversion of water into, , or it may be determined by weight of water evaporated per lb.

llowing results and computations, water is held to be evaporated from standnperature of 212°.

ortion of surplus air, in operation of a furnace, in excess of that which is ally required for combustion of the fuel, is diminished as rate of combustion eased; and this diminution is one of the causes why the temperature in a 3 is increased with rapidity of combustion.

en combustion is rapid, some air should be introduced in a furnace the grates, in order the better to consume the gases evolved.

Natural Draught.

te (Coal) should have a surface area of r sq. foot for a combustion of . of coal per hour, length not to exceed r.5 times width of furnace, and an inclination toward bridge-wall of r to r.5 ins. in every foot of length. en, however, rate of combustion is not high, in consequence of low veof draught of furnace, or fuel being insufficient, this proportion of area be increased to one sq. foot for every 12 lbs. of fuel.

Ith of bars the least practicable, spaces between them being from .5 to an inch, according to fuel used. Anthracite requiring less space than inous. Short grates are most economical in combustion, but generate less rapidly than long.

el of grate under a plain cylindrical boiler gives best effect with a fire deep, when grate is but 7.5 ins. from lowest point.

th, Cast-iron, .6 square root of length in ins.

pod), their area should be 1.25 to 1.4 that for coal.

matic (Vicar's). — Its operation effects increased rapidity in firing ore effective evaporation.

pit.—Transverse area of it, for a combustion of 15 lbs. of coal per to .25 area of grate surface for bituminous coal, and .25 to .3 for cite. Or 15 to 20 ins. in depth for a width of furnace of 42 ins.

acce or Combustion Chamber.—(Coal) Volume of it from 2.75 to 3 cube
r sq. foot of grate surface. (Wood) 4.6 to 5 cube feet.

higher the rate of combustion the greater the volume, bituminous quiring more than anthracite. Velocity of current of air entering -pit may be estimated at 12 feet per second.

me of air and smoke for each cube foot of water converted into steam is, 1780 to 1950 cube feet, and for wood, 3900.

of Combustion. — In los. of coal per sq. foot of grate per hour. h Boilers, slowest, 4; ordinary, 10. Stationary, 12 to 16. Marine, 4. Quickest: complete combustion of dry coal, 20 to 23; of caking 4 to 27; Blast or Fan and Locomotive, 40 to 120.

lge-wall (Calorimeter).—Cross-section of an area of 1.74 ag. ins. h lb. of bituminous coal consumed per hour, or from h sq. foot of grate, for a combustion of 15 lbs. of co

perature of a furnace is assumed to range from 1 9 of air required for combustion of 1 lb. of bitum roducts of combustion, is 154.81 cube feet, which unperatures, makes volume of heated air at bridge feet for each lb. of coal consumed upon grate.

Hence, at a velocity of draught of about 12 feet per second are 1 129 wall, required to admit of this volume being passed off in an horr, 3 223 cq. ins., and proportionately for increased velocity, but in practice ingle 1.2 to 1.6 ins.

When 20 lbs of coal per hour are consumed upon a sq. foot of grate, $2.7.15 \pm 24$ or 32 sq. i.s. are required, and in a like proportion for other causes

Or, When area of flues is determined upon, and area over bridged required, it should be taken at from 17 to 8 area of lower flues for a manufactual that from 2 to 6 for a blast.

When one half of tribes were closed in a fire-tubular marine boiler, the explition per lb, of coal was reduced but r. e per cent.

Firing.—Coal of a depth up to 12 ins. is more effective than a lidepth. Admission of air above the grate increases evaporative effect diminishes the rapidity of it.

Air admitted at bridge-wall effects a better result than when admitted door, and when in small volumes, and in streams or currents, it arrests wents smoke. It may be admitted by an area of 4 sq. ins. per sq. foot of the condition is the most complete with firings or charges at interval.

from 15 to 20 minutes.

With a fuel economizer (Green's) an increased evaporative effect of # cent. has been obtained.

When external flues of a Lancashire boiler were closed, evaporative powers slightly increased, but evaporative editeiency was decreased; and when 251ers of like surface in setting of a plain cylindrical boiler was cut off, evaporities reduced but 1.5 per cent. When temperature at base of chimney was 6500 to life 12 ins. in depth, it was decreased to 5560 with one 9 ins. in depth, and as with one 6 ins.

High wind increases evaporative effect of a furnace.

Stationary or Land.—Set at an inclination downward of .5 inch in 10 Smoke Preventing.—A test of C. Wye Williams's design of preventing swild Newcastle, 1857, as reported by Messrs. Longridge, Armstrong, and Richass gave an increased evaporative effect with the "practical prevention of small enduring the set of the set of the set of small enduring the small enduring the set of small enduring the set of small enduring the set of small enduring the set of small enduring the small enduring

Heating Surfaces.

Murine (Sea-water). — Grate and heating surfaces should be income about .07 over that for fresh water.

Relative Value of Heating Surfaces.

Horizontal surface above the flame = 1 | Horizontal beneath the flame.....²¹
Vertical.....= .5 | Tubes and flues......²⁵

Minimum Volumes of Fuel Consumed per Sq. Foots Grate per Hour, for given Surface-ratios. (D. K. Clast)

CRIPTION OF	1		St	ırface-r	atios of	Heating	Surface 1	to Grate		
BOILER.	10	15	20	30	40	50	60	75	90	شا
чу	Lbs.	Lbs.	Lbs.	Lbs. 6.8	Lbs.	I.bs. 18.0	I.bs. 26	Lbe.	Lbs.	1
		.6	2.8	6.3	11.2	17.5	24	_	=	1:
		•	1.3	2.0	3.2 5.2	5 8. z	11.7	18.3	26.3	1
			8.1	١ 4	٦ /	\ II	16	25	1 30	15

of fuel (120 lbs.) coke will withstand disturbed

tle of sediment one sixteenth of an inch thick will effect a loss of 14.7 per fuel.

sq. foot of fire surface is held to be as effective as three of heating.

Relation of Grate, Heating Surface, and Fuel.

n Grate and Heating Surface are constant, greater the weight of fuel ned per hour, greater the volume of water evaporated; but the volume decreased proportion to fuel consumed.

eating of relations of grate, surface, and fuel, D. K. Clark, in his valuable, submits, that in 1852 he investigated the question of evaporative perform-locomotive-boilers, using coke; and he deduced from them, that, assuming ant efficiency of fuel, or proportion of water evaporated to fuel, evaporative or volume of water which a boiler evaporates per hour, decreases directly as rea is increased; that is to say, larger the grate, less the evaporation of water, e rate of efficiency of fuel, even with same heating surface.

hat evaporative effect increases directly as square of heating surface, with rea of grate and efficiency of fuel.

lecessary heating surface increases directly as square root of effect—viz., for nes effect, with same efficiency, twice heating surface only is required.

Necessary heating surface increases directly as square root of grate, with same cy; that is, for instance, if grate is enlarged to four times its first area, twice y surface would be required, and would be sufficient, to evaporate same volvator per hour with same efficiency of fuel.

ult of 40 experiments with a stationary boiler (fresh water), with an ration of 9 lbs. water per lb. of fuel consumed, the coefficient .00222 educed.

ce, $\left(\frac{h}{g}\right)^2$.002 22 = W. W representing volume of water in cube feet, and g areas of grate and heating surfaces in sq. feet.

STRATION.—Assume a heating surface of 90 feet, and a grate of 3; what will evaporation?

Then
$$90 \div 3 \times .00222 = 1.998$$
 cube feet.

E.—A Galloway stationary boiler, with a ratio of grate area of 34.3 and a conion of 21.8 lbs. coal per hour, evaporated 2.9 cube feet of water per sq. foot of Hence the coefficient in this case would be .002 466.

Compute Areas of Grate and Heating Surfaces, Volume of Water, and Weight of Fuel.

For a Temperature of 2810, or Pressure of 50 lbs. per Sq. Inch.

To Compute Weight of Fuel.

Water per Sq. Foot of Grate per Hour and Surface Ratio are Given.

$$\frac{W-x R^2}{C} = F, \text{ and } x R^2 = (E-C) F.$$

STRATION .- Assume elements as preceding.

$$\frac{200 - .02 \times 50^{2}}{10} = 15, \text{ and } .02 \times 50^{2} = \left(\frac{200}{15} - 10\right) \times 15 = 50.$$

ompute Ratio of Heating Surface to Area of Grate, and to Effect a Given Evaporation.

In Water and Fuel per Sq. Foot of Grate are Given. $\sqrt{\frac{W-CF}{E}} = R.$ Security a valer emproved are so, first of grate and F. Sul consists.

resenting water evaporated per sq. foot of grate, and F fuel consumed, both per hour. C and x specific constants for each type of boiler, and R (h+g) heating surface to grate.

STRATION. -Assume W = 200, C = 10, F = 15, and

$$\frac{\cos - \cos \times 15}{\cos 2} = 50;$$
 $\frac{2\cos - \cos \times 50^2}{\cos 2} = 15;$ and.

When Efficiency of Fuel and Fuel consumed per Sq. Foot of Gratif Hour are given. $\frac{W}{F} = E$ or efficiency of fuel or weight of water evaporated put of fuel. $\frac{V(E-C) F}{F} = R$.

To Compute Fuel that may be consumed per Sq. For of Grate per Hour, corresponding to a Given Electric ciency.

When Efficiency of Fuel, that is, Weight of Water evaporated per la Fuel, and the Surface Ratio, are given.

$$\frac{x R^2 + C F}{F}$$
, $C + \frac{x R^2}{F} = E$, and $\frac{x R^2}{E - C} = F$.

ILLUSTRATION .- Assume elements as preceding.

$$\frac{.02 \times 50^2 + 10 \times 15}{15} = 13.33; \quad 10 + \frac{.02 \times 50^2}{15} = 13.33, \text{ and } \frac{.02 \times 50^2}{13.33 - 10} = 13.33$$

Combustion of Coal per sq. foot of grate.—Natural Draught, from 20 to 15 h be consumed per hour.—Steam-jet, 30 lbs., and Exhaust-blast 65 to 80 lbs.

From Results of Experiments upon Marine Boilers, see Manual of D. E. Bage 8.83; he deduced the following formula, as applicable to all surface multipliers.

Newcastle 021 56 R2+9.71 F, and for Wigan .or R2+10.75 F = Winh

And the general formulas he deduced from all the various experiments at follows.

As the maximum evaporative power of fuel is a fixed quantity, the proformulas are not fully applicable in minimum rates of its consumption and rative quality.

With coal and coke the limits of evaporative efficiency may be taken result 12.5 and 12 lbs, water from and at 212°.

ILLUSTRATION I.—Assume a marine fire-tubular boiler with a surface ratio a ing surface to grate, of 30 and a consumption of coal of 15 lbs. per sq. foot of part bour, what will be its evaporation per sq. foot of grate?

$$.016 \times 30^2 + 10.25 \times 15 = 168.15$$
 lbs.

2.—Assume a like boiler, using fresh water, to have a ratio of heating singrate of 30 and an evaporation of 165 lbs. water per sq. foot of grate per hour? would be consumption of coal per sq. foot of grate per hour?

$$\frac{165 - .016 \times 30^2}{10.25} = 14.69 lbs.$$

Tube Surface (Iron) per lb. of coal 1.58, per sq. foot of grate 32, and per E+ sq. feet.

Locomotive Boiler has from 60 to 90 sq. feet per foot of grate, and combine coal per sq. foot per hour.

Evaporative Capacity of Tubes of Varying Length of Tubes 12 Feet 3 ins. (M. Paul Hevrer, 1874)

The second secon	Furnace and		TUB	EL	Ю
SURFACE AND WATER.	3 ins. in Length of Tubes.	Feet.	3.02 Feet.	For In	R
Water evaporated per sq. \ foot per hour in lbs	76.43	130	15 130	1 02/2	1

ults of Operation of Boilers under Varying Proportions of Grate, Area, and Length of Heating Surface, Praught of Furnace, and Rate of Combustion.

DESCRIPTION.	Area of Grate.	Heating Surface.	Grate to Heating Surface.	Coal per Sq. Foot of Grate per Hour.		ation of rom 212° per lb. of Coal.	FURL.
Fire-tubular.	Sq. Feet.	Sq. Feet.	Ratio.	Lbs.	Lbs.	Lbs.	
:ultural and Hoisting	4.7	158		13	119	9.33	Welsh.
	3.2	220	34 69	12.8	151	11.83	"
motive	∫26.25	963.5	36.7	30.86	327	10.6	48
:sh∫	16	818	5z	38	375	10.47	"
	10.5	788	75	45	419	11.04	"
	10.6	1056	100	157	1401	10.41	"
де ^т	22	748	34	24.3	265	10.7	"
I	18	749	41.6	23.6	264	11.2	"
2	10.3	915	50	41.25	468	11.36	- "
2*	10.3	508	49.3	27.63	309.8	11.54	Lanc'r
3	10.8	151.2	14	27.76	205	7.39	Anth'e
onary 4	31.5	945	30	28.87	293.7	10.17	Welsh.
²	31.5	767	24.4	14	141.4	10.1	"

r New Castle. 2 and 4 Wigan.

3 Experimented at New York.

Bect of reducing the tube-surfaces was tried by stopping one half the number of tubes in alter-Eagonal rows, so that the tube surface was reduced 205.5 eq. feet. The results with fires 12 ins. rece as follows:

	Tubes open.	Tubes half closed.
Coal per sq. foot of grate per hour	. 25 lbs.	24 lbs.
Water from 212° per lb. of coal	. 12.41 "	12.23 "
Smoke per hour, very light	2.8 minutes.	8 minutes.

aporative Effects of Boilers for Different Rates of Combustion, and Surface Ratios. (D. K. Clark.)

Water from and at 212° per Hour.

Surface Ratio 30.

	STATIONARY. Water		MAB	INE.	PORT.	ABLE.	LOCOMOTIVE.			
Det			Water		Water		Coal. Water		Coke. Water	
ate Sur.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.
_	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
٠	116	11.6	117	11.7	93	9.3	105	10.5	95	9.5
-	163	10.9	168	11.2	136	9	154	10.3	135	
•	211	10.6	219	10.9	179	9	202	10.1	175	8. ₇
•	307	10.2	322	10.7	265	8.8	299	10	254	8.5

Surface Ratio 50.

;	187	12.5	187.5	12.5	149	9.9	168	11.2	164 203	10.0
•	247	12.3	248 348 450	12.5	192	9.6	217	10.0	203	10.2
•	342	11.4	348	11.6	278	9.3	314	10.4	283	9.4
•	438	10.9	450	11.3	364	9.1	411	10.3	362	ó ·
•	534	10.7	552	11	450	9	508	10.1	442	8.8

Surface Ratio 75.

	Water.	Fuel per Sq. Foot of Grate per Hour in Lbs.								
	Water.	30	40	50	60	75	90	100		
Coke .	Per sq. foot. " lb. coal. " sq. foot. " lb. coal.	338	Lbs. 439 11 418 10.4	Lba. 536 10.7 497 9.9	576	Lbs. 778 10.4 695 9.3	Lbs. 927 10.3 815	Lbs. 1029 10.2 894 8.9		

en a heater is used, and temperature of feed-water is raised above that of d in a condensing engine, the proportions of surfaces may be corresponding and

Results of Operation of various Designs of Boiler, der varying Proportions of Grate, Calorimeter, A and Length of Heating Surface, Draught, Firing,

STATIONARY.	Area of Grate.	Heat- ing Surface.	Grate to Heating Surface,	Circuit of Heating Surface.	Temperature of Chimney.	Coal per Sq. Foot of Grate per Hour.	from 212 per lb, of Coal.	757/2
	Sq. Ft.	Sq. Ft.	Ratio.	Feet.	0	Lbs.	Lbs.	23
internal and ex- ternal flued 1	20.5	612	29.8	79	511	15-35	8,32	115
11 11 2	21	767	36.5	80	505	21.5	10.88	204
Galloway vertical water-tubular2.	21	719	22.8	79	505	22.7	10.77	211
Fairbairn ¹	31.5	719	34-3	80	630 387	18.3	10,17	153
French ¹ Cylindrical flued ³	20,1	607 377-5	30.3 26.8	56	510	7.43	9.08	133
MARINE.	-	At Pre	ssure of	f Atm	osphe	re.		
Horizontal fire-tub.2	10.3	508	1 49-3	-	-	27.5	11.92	32
11 11 2	10.3	508	49-3	-	-	41.25	11.30	40
	10.3	302	30			24	12.23	10
44 44	19.3	749	39 26.3	(2)		21.15	8.94	300
44 44	28.5	749	26.3	-	-	10	11.13	13

8.5 150 13.9 8.5 10.99 4-32 147 27.58 7.24 Trial in France. 2 At Wigan, 1866-68, height of chimneys 100 feet. 3 yard, Washington, U. S., chimney 61 feet. 4 At pressure of atmosphere, first deep, at 40 lbs. pressure, evaporation was reduced 12 per cent. 5 Bituminous 6 Anthracite, at pressure of 6.5 lbs. above atmosphere. 7 Fires 14 ins deep. 8 mitted through furnace doors. 8 Ditto do., jet blast. 9 Half tubes class 10 Air through grate only. 11 Air through grate and door, no smoke. 12 Out ing in door, temp. 625°, with two 633°, with four 638°, and with six 600°. Bigrates, air spaces fully open, no smoke. 40ne furnace, anthracite coal, 5 lbs

17.6

Draught.

600

600

37-4

17.27

16

10.63

11.7

9.65

8.95

Draught of Furnace.-Volume of gas varies directly as its absolute perature, and draught is best when absolute temperature of gas in chi is to that of external air as 25 to 12.

32° + 461.2° = V' = V''. V, V', and V'' representing absolute temperalum or temperature given, and at 32°, in degrees and volume of furnace gas at to ture T in cube feet.

ILLUSTRATION .- Assume temperature of furnace or T = 15000, and 12 lbs. lb. of fuel.

15000 + 461.20 32° + 461.2° = 3.98, and as 150 cube feet is volume of gas per lb. of feet lbs. supply of air, 150 × 3.98 = 597 cube feet.

a V' = C. W representing weight of fuel consumed in furnace per second v volume of air at 320 supplied per lb. of fuel in cube feet, t absolute terror gas discharged by chimney in degrees, a area of chimney in eq. feet, and to

current in chimney in feet per second.

15.5

22

42

10.8

40 44

66 3

(C. Wye Williams)

12

..

749

749

749

LUSTRATION.—Assume W = .16,
$$v = 150$$
, $t = 1000^{\circ}$, and $a = 5$.

$$\frac{.16 \times 150 \times 1000}{5 \times 493.2^{\circ}} = \frac{24000}{2466} = 9.73 \text{ feet.}$$

.084 to .087 = D. D representing weight of a cube foot of gas discharged by

sney, in lbs. ILLUSTRATION.
$$\frac{493.2^{\circ}}{1000} \times .086 = .0424 \ lb.$$

$$\frac{r}{r}\left(1+G+\frac{f\,l}{m}\right)=H.$$
 G representing a coefficient of resistance and friction of

Arough grate and fuel,* f coefficient of friction of gas through flues and over surfaces, t length of flues and chimney, m hydraulic mean depth,‡ and H height Amney, all in feet.

L-USTRATION I.—Assume C = 9.73, l = 60, and m = .72, all in feet.

$$\frac{9.73^{2}}{64.33}\left(1+12+\frac{.012\times60}{.72}\right)=\frac{94.67}{64.33}\times14=20.6 \text{ feet.} \qquad \frac{\text{C } a \text{ V}'}{\text{v } t}=\text{W}.$$

-Assume preceding elements.
$$\frac{9.73 \times 5 \times 493.2^{\circ}}{150 \times 1000} = .16 \text{ } \text{b}.$$

Then II is given.
$$\sqrt{\left(H \circ g \div \overline{I} + G + \frac{f!}{m}\right)} = C$$

L-USTRATION.—Assume preceding elements. $\sqrt{20.6 \times 64.33 \div 14} = 9.73$ feet.

merature at base of smoke-pipe or chimney, or termination of flues or in, is estimated at 500°; and base of chimney, or its calorimeter, should an area of 1.3 to 1.6 sq. ins. for every lb. of coal consumed per hour. In tubes of small diameter, compared to their length, this proportion may due to 1 and 1.2 ins.

Amission of air behind a bridge-wall increases temperature of the gases, at must be at a point where their temperature is not below 800°.

Loss of Pressure by Flow of Air in Pipes. Length 3280 Feet, or 1000 Meters.

	Entrance of			Diameter q	f Pipe in In	a.	
	pe. Meter	4	6	8	10	12	1 14
Cost	per Second.		Loss	of Pressure	in Lbs. per	sq. Inch.	
28 56	1	.114	.076	.057	.057	.038	.038
⋝ -56	2	.5_	·343 .8	.25	.21	.172	.153
> -84	3	1.183	.8	.592	·477 .84	·394 ·687	·343
₹-12 ₹-4	4	2.06	1.374	1.03	.84	.687	.6
5.4	5	3.2	2.16	1.61	1.29	I. I	.923
≥ .68	6	4.446	2.964	2.223	1.778	1.482	1.28

Mount Cenis Tunnel, the loss of pressure from 84 lbs. per sq. inch, in a pipe ins. in diameter and 1 mile 15 yards in length, was but 3.5 per cent.

Artificial Draught.

production of draught in an ordinary marine boiler, from 20 to 33 per of total heat of combustion of fuel is expended.

Last.—By experiments of D. K. Clark and others it was deduced that the vacuum connection is about .7 of blast pressure, and in the furnace from .33 to .5 bat in back connection; that rate of evaporation varies nearly as square root of mm in back connection; that best proportions of chimney and passages thereto those which enable a given draught to be produced with greatest diameter of pipe; for the manifest reason, that the greater that diameter, the less the back-connection of chimney and passages the back-connection are specific to the manifest reason, that the greater that diameter, the less the back-connection and speeds.

Which, in furnaces consuming from 20 to 24 lbs. coal per sq. foot of grate per hour, is sasigned to said at 2.

Estimated by same anthority at .012
or a square or circular flue is .25 its diameter.

From Efficiency of First and First communications of Fig. For of First Education with a second of the attention of the second o

To Company Two that may be consumed per Syll of Course per Hours corresponding to a Greek State of the Course of t

Were differency of Free, that is, we give if where congruence or is Free, must be deepfore dark are proved

$$\frac{z \cdot \lambda^2 + ... \hat{I}}{I} = \hat{I} \cdot \text{and} \quad \frac{z \cdot \hat{I}^2}{\hat{I} - c} = \hat{I}$$

литеталия.—**личин ейниены за устонин**а

$$\frac{m \times (n^2 + n \times n)}{n!} = n \cdot n, \quad n + \frac{m + n^2}{n!} = n \cdot n, \quad \text{and} \quad \frac{m \times n^2}{n \cdot n \cdot n - n} = n^2$$

Combination of Coal yet up foot of made —Numeral Foreight, from at to glasse the totals that per foot —house yet to take the Emission of the fire

First Rework of Experiments upon Marine Ecolers, see Manual of P KM gags bod in a carbonic the Source ing forman, as applicance to all surface measure to re-

Noteinale eine gin Rimper D. and fie Witten und Rim eines Find Find bei

. All the general formulas he decided from all the various experiment follows:

As the maximum evaporative power of field is a fixed quantity, the proform are seen not faily applicable in minimum rates of its consumption safety rative quantity.

With roal and coke the limits of evaporative efficiency may be taken repair to 5 and 12 to the water from and at 212?

ILLUSTRATION I — Assume a marine fire-tubular boiler with a surface mind 1/2 s 1/1/10 to grate of j and a consumption of coal of j, ba, per sq. for of per hour, what will be its evaporation per sq. foot of grate?

$$.016 \times 30^2 + 10.25 \times 15 = 163.15 lbs.$$

2.—Assume a like boiler, using fresh water, to have a ratio of heating grate of 30 and an evaporation of £65 list water per sq. foot of grate per hour? would be consamption of coal per sq. foot of grate per hour?

$$\frac{165 - .016 \times 30^{2}}{10.25} = 14.69 \text{ lbs.}$$

*weface (Iron) per lb. of coal 1.58, per sq. foot of grate 32, and per IP

Uer has from 60 to 90 sq. feet per foot of grate, and constitute per hour.

e Capacity of Tubes of Varying Length angth of Tubes 12 Feet 3 ins. (M. Paul Herrer, 1874)

Furnace and	TUBER						
ns. in Length of Tubes.	Feet.	3.02 Feet.	You.	5			
76.43	179	279	179	4			
*45	/ 8.J.	s / 4.40	/ 29	1.			

13

15

21

30

15

3)

ď.

roco;

lts of Operation of Boilers under Varying Proporns of Grate, Area, and Length of Heating Surface, aught of Furnace, and Rate of Combustion.

DESCRIPTION.	Area of Grate.	Heating Surface.	Grate to Heating Surface.	Coal per Sq. Foot of Grate per Hour.	Water fi per eq. ft.		FUEL.
Fire-tubular.	Sq. Feet.	Sq. Feet.	Ratio.	Lbs.	Lbs.	Lbs.	
tural and Hoisting	4.7	158	34	13	119	9.33	Welsh.
" "	3.2	220	34 69	12.8	151	11.83	
tive)	€26.25	963.5	36.7	30.86	327	10.6	48
	16	818	51	38	375	10.47	"
	10.5	788	75	45	419	11.04	"
	10.6	1056	100	157	1401	10.41	44
·	22	748	34	24.3	265	10.7	"
r	18	749	41.6	23.6	264	11.2	"
2	10.3	915	50	41.25	468	11.36	. "
2*	10.3	508	49.3	27.63	309.8	11.54	Lanc'r
3	10.8	151.2	14	27.76	205	7.39	Anth'e
ary 4	31.5	945	30	28.87	293.7	10.17	Welsh.
2	31.5	767	24.4	14	141.4	10.1	
t New Castle.	2 and	4 Wigan.		3 Experi	mented at	New York	•

r New Castle. 2 and 4 Wigan. 3 Experimented at New York.

t of reducing the tube-surfaces was tried by stopping one half the number of tubes in alteronal rows, so that the tube surface was reduced 200.5 sq. feet. The results with fires 12 ins.
eas follows:

porative Effects of Boilers for Different Rates of Combustion, and Surface Ratios. (D. K. Clark.)

Water from and at 212° per Hour.

Surface Ratio 30.

				ILIAC	TUBE	10 3	o.			
	STATIO	NARY.	MAE	LINE.	PORT.	ABLE.	ı	Locos	OTIVE.	
	Water		Water		Water		Coal. Water		Coke. Water	
٠.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.	per Sq. foot.	per lb. of Coal.
_	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
	116	11.6	117	11.7	93	9.3	105	10.5	95	9.5
	163	10.9	168	11.2	136	9	154	10.3	135	9
	211	10.6	219	10.9	179	9	202	10.1	175	8.7
	307	10.2	322	10.7	265	8.8	299	10	254	8.5

Surface Ratio 50.

1	187	12.5	187.5	12.5	149	9.9	x68	11.2	264 203 283	10.0
i	247	12.3	248	12.5	192	9.6	217	10.0	903	÷
- [342	11.4	348	11.6	278	9.3	314	10.4	203 283 362	i
1	438	10.9	450	11.3	364	9.1	411	10.3	362	1
- 1	524	10.7	552	111	450	۵.	E08	TO. T	449	

Surface Ratio 75.

	Water.	i	Fuel per	Sq. Foot	t of Grate	e per Ho	ur in Lb
	water.	30	40	50	60	75	90
coke .		338	418	Lbs. 536 10.7 497 9.9	Lbs. 633 10.7 576 9.6	Lbs. 778 10.4 695 9.3	Lbs. 927 10.3 815

n a heater is used, and temperature of feed water is raised above that in a condensing engine, the proportions of surfaces may be correspondingly of

Results of Operation of various Designs of Boiler, der varying Proportions of Grate, Calorimeter, and Length of Heating Surface, Draught, Firing, Rate of Combustion.

	1	l .	۱.,	4	8 6	۱	Water F	rapo
Stationary.	Area of Grate.	Heat- ing Surface.	Grate to Heating Surface.	Circuit o Heating Surface.	Temperature of Chimney.	Coal per Sq. Foot of Grate per Hour.	from 212° per lb. of Coal.	per S of per
Lancashire double)	Sq. Ft.	Sq. Ft.	Ratio.	Feet.	0	Lbs.	Lbs.	1
internal and ex-	20.5	612	29.8	79	511	15.35	8. 32	1
" " 2	21	767	36.5	80	505	21.5	10.88	2
Galloway vertical water-tubular ² .	21	719	22.8	79	505	22.7	10.77	2
" " 2	31.5	719	34.3	80	630	18.3	10.17	1
Fairbairn ¹	20.5	1017	49.5	-	387	15.27	8.67	1
French I	20. 1	607	30.3	-	510	16.42	8.12	1
Cylindrical flued3	14.2	377-5	26.8	56	292	7.43	J 9.08	l

MAR	INE.	1	1t Pre	ssure of	Atm	ospher	re.		
Horizontal	" 2 " 2 " 4 " 4	10.3 10.3 19.3 28.5 28.5	508 508 302 749 749 749	49·3 49·3 30 39 26·3 26·3		600	27.5 41.25 24 21 21.15	11.92 11.36 12.23 10 8.94 11.13	
(C. Wye Wi	lliams) }	15.5	749 749	48.3		600	37·4 17·27	11.7	
66 66	" 3 " 3	10.8 4.32	749 150 147	17.6 13.9 34	8.		16 10.99 27.58	9.65 8.95 7.24	

² Trial in France. ² At Wig:n, 1866-68, height of chimneys 100 feet. ³ yard, Washington, U. S., chimney 6: feet. ⁴ At pressure of atmosphere, fired deep, at 40 lbs. pressure, evaporation was reduced 12 per cent. ⁵ Bituminou 6 Anthracite, at pressure of 6.5 lbs. above atmosphere. ⁷ Fires 14 ins. deep, mitted through furnace-doors. ⁸ Ditto do., jet blast. ⁹ Half tubes des ¹⁰ Air through grate only. ¹¹ Air through grate and door, no smoke. ¹² 0m ing in door, temp. 625°, with two 633°, with four 638°, and with six 600°. ¹² grates, air spaces fully open, no smoke. ¹⁴ 40ne furnace, anthracite coal, 5¹⁰

Draught.

Draught of Furnace.—Volume of gas varies directly as its absolut perature, and draught is best when absolute temperature of gas in ch is to that of external air as 25 to 12.

 $\frac{T+461.2^{\circ}}{+461.2^{\circ}} = \frac{V}{V'} = V''. \quad V, V', and V'' representing absolute temperature turns given, and at 32°, in degrees and volume of furnace gas at the best of the feet.$

on.—Assume temperature of furnace or T == 1500°, and 12 lbs

= 2.08, and as 150 cube feet is volume of gas per lb. of fut
= 507 cube feet.

right of fuel consumed in furnace per second!

"To, of fuel in cube feet, t absolute temperal me, a area of chimney in eq. feet, and Cash

FIRATION.—Assume
$$W = .16$$
, $v = 150$, $t = 1000^{\circ}$, and $a = 5$.

16 × 150 × 1000 24 000 25 0.56

$$\frac{.16 \times 150 \times 1000}{5 \times 493.2^{\circ}} = \frac{24000}{2466} = 9.73 \text{ feet.}$$

84 to .087 = D. D representing weight of a cube foot of gas discharged by

y, in lbs. Illustration.
$$\frac{493.2^{\circ}}{1000} \times .086 = .0424 \text{ lb.}$$

$$x + G + \frac{f l}{m}$$
 = H. G representing a coefficient of resistance and friction of

ough grate and fuel,* f coefficient of friction of gas through flues and over vrfaces,† i length of flues and chimney, m hydraulic mean depth,‡ and H height ney, all in feet.

FRATION I.—Assume
$$C = 9.73$$
, $l = 60$, and $m = .72$, all in feet.

$$\frac{9.73^{2}}{64.33}\left(1+12+\frac{.012\times60}{.72}\right)=\frac{94.67}{64.33}\times14=20.6 \text{ feet.} \qquad \frac{\text{C a V'}}{\text{v t}}=\text{W}.$$

Assume preceding elements. $\frac{9.73 \times 5 \times 493.2^{\circ}}{150 \times 1000} = .16 \text{ b.}$

2n H is given.
$$\sqrt{\left(\text{H 2 } g \div \overline{1 + \text{G} + \frac{f l}{m}}\right)} = \text{C}$$

STRATION.—Assume preceding elements. $\sqrt{20.6 \times 64.33 \div 14} = 9.73$ feet. \times pressure in lbs. per sq. foot = head in ins. of water.

perature at base of smoke-pipe or chimney, or termination of flues or is estimated at 500°; and base of chimney, or its calorimeter, should in area of 1.3 to 1.6 sq. ins. for every lb. of coal consumed per hour, tubes of small diameter, compared to their length, this proportion may uced to 1 and 1.2 ins.

nission of air behind a bridge-wall increases temperature of the gases, must be at a point where their temperature is not below 800°.

Loss of Pressure by Flow of Air in Pipes. Length 3280 Feet, or 1000 Meters.

	Entrance of		1 6	Diameter of	Pipe in Inc		
t ond.	Meter per Second.	4		-	n Lbs. per S	q. Inch.	! *4
8	r	.114	.076	.057	.057	.038	.038
6	2	-5	·343 .8	.25	.21	.172	.153
4	3	1.183	.8	-592	-477	·394 .687	.343
2	4	2.06	x.374	1.03	·477 .84	.687	.6
	5	3.2	2.16	1.61	1.29	1.1	.923
8	6	4.446	2.964	2.223	1.778	1.482	1.28

fount Cenis Tunnel, the loss of pressure from 84 lbs. per sq. inch, in a pipe ns. in diameter and 1 mile 15 yards in length, was but 3.5 per cent.

Artificial Draught.

production of draught in an ordinary marine boiler, from 20 to 33 per of total heat of combustion of fuel is expended.

& —By experiments of D. K. Clark and others it was deduced that the vacuum k connection is about .7 of blast pressure, and in the furnace from .33 to .5 in back connection; that rate of evaporation varies nearly as square root of n in back connection; that best proportions of chimney and passages thereto see which enable a given draught to be produced with a standard diameter of the manifest reason, that the greater that d re due to resistance of orlice, and that these propo

ansion and speeds.

ich, in furnaces consuming from 20 to 24 lbs. coal per sq. foot c

s aquare of circular flue is .25 its diameter.

Propertions of Ever of

E norte of rod

Stage botte. - Iron are not to be shipeted to a great Weakert part of rod, and when of seet they are not to be weakert

To Compare Diameter and Pitch of Stav laits, Resistance they will Sustain.

Screed,
$$\frac{p}{p}$$
, $\frac{p}{p} = d$, $\frac{d-p}{\sqrt{p^2}} = p$, and $\left(\frac{p \cdot d \sqrt{p}}{p}\right)^2 = P$. Society, $\frac{p \cdot d}{p}$, and $\binom{p \cdot d}{p}^2 = V$. d representing diameter in in $\frac{p \cdot d}{p}$.

PLY CETT STICK - Assume pitch of stay bolts 6 ins. and tools in pressal a

Cristons (Lloyd's)

that they he tack girder, 6 = tooc. If two or three = 1000 If four = 1000 transported Assume triple stayed girder, 24 ins in length, 2 ins in length. their thick, and stayed at intervals of 6 lies ; what working pressure will an

$$6 = 6 \cos x$$
 Then $\frac{6 \cos x}{(64 = 6) \times 6 \times 24} = \frac{324 \cos x}{2002} = 125 \text{ lbs.}$

Whish Arched or Circular Furnaces. U.S.M. 4194 fligh for each 16 lns, of diameter. English iron, being hards tilbelout, is better constructed to resist compression, and consecution ton this hand of motal is required for like stress.

Lloyd's.

White the best of ones.

MX8X10 of desire and the 188 1881

ties of Current of Heated Air in a Chimney 100 Feet in Height.

In Feet per Second.

	Air	at Base	of Chimr	ney.	External Air.		at Base	of Chimi	юy.
ir.	150°	250°	350°	450°	External Air.	150°	250°	350°	450°
	Feet.	Feet.	Feet.	Feet.		Feet.	Feet.	Feet,	Feet.
	24	30	33	35	60°	19	26	29	33
	22	28	31	34	700	18	25	29	32
	20	27	30	33	800	17	24	28	32

Height of Chinney is less than 100 feet .- Multiply velocity as obtemperature by .1 square root of height of chimney in feet.

it consequent upon a steam-jet in a smoke-pipe or chimney is ual to that of a moderate blast.

ost effective draught is when absolute temperature of heated air or that of external air as 25 to 12, or nearly equal to temperature of

nneys of gas retorts, ovens, and like furnaces, the draught is more or a like height of chimney than in ordinary furnaces, in conof the great mass of brick masonry, which, becoming heated, adds ity of draught.

Chimneys. Lawrence Manufacturing Co., Mass. Octagonal. above ground 211 feet. Diameters 15, and 10 feet 1.5 ins. Wall at base at top 11.5 ins. Shell at base 15 ins., at top 3.75 ins. tion 22 feet deep.

dSquare	-Height	190 feet.	Diameter	r at bo	se20	feet.
***	٠	300 "	**	46	29	"
Round.		312 "		44	30	
**		300 "	"	66	20	

er at base usually 1 of height above ground.

m at base of chimney ranges from .375 to .43 ins. of water.

Circulating Pumps.

-acting. - .6 volume of single-acting air-pump and .32 of double-

-acting. — .53 volume of double-acting air-pump.

Volume of Pump compared to Steam Cylinder or Cylinders. Ingine. Pump. Volume. pansive, 1.5 to 5 times...... Single-acting08 to .045.

mpound..... do. pansive, 1.5 to 5 times...... Double-acting.......... .045 to .025. do mpound.....025 to .02.

.-Area such as to restrict the mean velocity of the flow to 450 feet ite.

PLATES AND BOLTS.

ught-iron.—Tensile strength ranges from 45 500 to 70 000 lbs. nch for plates, and 60 000 to 65 000 lbs. for bolts, being increased bjected to a moderate temperature. 55 000 to

sh plates range from 45,000 to 56,000 lbs., and

lark gives best quality of Yorkshire 56 000 lbs., of

of Plates. (U.S.) - All plates to be stampe ir ins. from edge, and also in or near to their cent. his location, and tensile stress they will bear. ubjected to a tensile stress under 45 000 lbs. per sq section 12 per cent, 45 000 and under 50 000, 15, al rupture.

ILLUSTRATION.—Assume T = 50 coo like tensile strength of plate, B = 75 press
D = 120 ins., C = 5, and t = 4.5. What pressure will shell sustain, and what he be thickness of plates for such pressure and diameter?

$$\frac{50000 \times .75 \times .5 \times 2}{120 \times 5} = 62.5 \text{ lbs., and } \frac{120 \times 62.5 \times 5}{50000 \times .75 \times 2} = .5 \text{ incl.}$$

For all practicable deficiencies in drilling, punching, and riveting in tweese courses, if existing, this coefficient is increased up to 6.75, and in gitudinal courses to 8.75, and when courses are not properly broken addition is made to above of .4.

Diameter of rivets should not be less than thickness of plates.

Molesworth.

 $\frac{P}{2}\frac{d}{t} = C$, $\frac{2}{d} = P$, and $\frac{P}{2}\frac{d}{C} = t$. d representing diameter and t this metal, both in ins., P working pressure in lbs. per sq. inch, and C as follows:

Best Yorkshire plates.... one ninth of tensile
$$C = 6200$$
 and 710 $C = 6200$ are strength. $C = 6200$ are strength. $C = 6200$ are $C = 62$

Working stress not to exceed .2 tensile strength of joint or riveted.

Then for a pressure of 110 lbs., and a diameter of 42 ins., as given for a structure. S. boiler.

Taking C as above for best single-riveted plate at 6200, $\frac{110 \times 42}{2 \times 5200} = .pr$ in thickness, or .122 inch in excess of U. S. Law for a plain cylindrical bollons riveted.

Lloyd's.

Thickness of shells to be computed from strength of longitudinal joint

$$\begin{array}{l} \frac{\ell \operatorname{JC}}{\operatorname{D}} = \operatorname{P}, \quad \frac{\operatorname{P} \operatorname{D}}{\operatorname{C} \operatorname{J}} = t, \quad \frac{t \operatorname{JC}}{\operatorname{P}} = \operatorname{D}, \quad \frac{p-d}{p} = z, \text{ and } \frac{n}{p} t = z, \quad t \text{ representing ness of plate, D diameter of shell, p pitch and d diameter of rivers, all in faction of strength of joint or rivels, the least to be taken; C a constant as plus of strength of pressure in the per sq. inch; n number and a area of rivet; 2% of strength of plate at joint compared with solid plate, and z per cent of same rivets compared with solid plate. \end{array}$$

When plates are drilled, take .9 of z, and when rivets are in doubt put 1.75 a for a.

Constants.

JOINT.	Inon Plates. 5 inch and under. Above and under. 75 inch Above 75 inch.			375 inch and under.	STREE 1 .5525 inch and under.	
Tan (punched holes	155	165	170	200	215	230
Lap { punched holes drilled do	170	180	190	-	-	100
Double abut [punched holes	170	180	190	215	230	250
strap (drifted do.	180	190	200	-	-	

When plates, as in steam-chimneys, superheaters, etc., are exposed to tion of the flame, these constants are to be reduced .33.

Plate 1 inch, both single and double riveted. Area 1.375 ins., and this plate 1 inch, both single and double riveted. Area 1.375 = 1.48 sq. ins.

$$\frac{4-1.375}{4}$$
 = .656 per cent. strength of joint compared to solid plate. $\frac{1\times10^{-1}}{4\times10^{-1}}$

per cent, strength of rivet to solid plate when single riveled, and $\frac{1.75 \times 10^{-3}}{4 \times 1}$

per cent. when double riveted. Rivets at Joint. $\frac{n}{p} \frac{a}{t} \times 100$ with purpose by 90 with drilled.

Plates.

apute Thickness of Plates for a Given Pressure itch, and Pressure and Pitch for Given Thick-

, $\sqrt{\frac{t^2 C}{P}} = p$, and $\sqrt{\frac{P p^2}{C}} = t$. t representing thickness of metal in t an inch, p pitch of says or distance apart at centres in ins., p working t lbs. per sq. inch, and C a constant, as follows:

or a Tensile Strength of Metal of 50 000 Lbs. per Sq. Inch.

lay-bolts with Riveted Heads.—Plates up to .4375 inch in thickness C = 90, that 100.

lay-bolts with Nuts. — Plates up to .4375 inch in thickness C = 110, and 120.

tay-bolts with Double Nuts and Washers. — Up to 4.375 ins. in thickness and above that 160.

ay-bolts are not exposed to corrosion, these constants may be reduced .2.

nce of a flat surface decreases in a higher ratio than space between lence, C must be decreased in proportion to increase of pitch above dinary boiler-plates.

ATION I.—Assume pressure 110 lbs. per sq. inch, and pitch of stays 5 ins.; ld be thickness of plate for screw-bolts and riveted heads?

C=95. Then
$$\sqrt{\frac{110 \times 5^2}{95}} = \sqrt{\frac{2750}{95}} = 5.38$$
— sixteenth.

nume thickness of metal 5 sixteenths inch thick, stay-bolts screwed and er its threads, and working pressure of steam 80 lbs. per sq. inch.

$$C = 95$$
. Then $\sqrt{\frac{5^2 \times 95}{80}} = 5.45$ ins. pitch.

Abut Straps.

Abuts should be at least .625 thickness of plate covered. Single, ker than plate covered, and Double, .625.

Stays.

— Tensile stress should not exceed 5000 lbs. per sq. inch for Iron, for Steel.

ial or Ollique. — Ascertain area of direct stay required to sustain ce; multiply it by length of diagonal stay, and divide product by a line drawn at a right angle to surface stayed, to end of diagonal quotient will give area of stay increased to that which is required.

upon an oblique stay is also equal to strees -- '-' - rerpendicular porting a like surface would sustain, di forms with perpendicular to surface to be

ATION. — Assume pressure 110 lbs. per sq. inc., and angle of stay 45°; what would be pressu

Cosine 450 = .707 11. Then 110 × 36 ÷ .707

Efficiency of boiler. 1.833
$$\left(\frac{1600}{1600 \times 2 + 800}\right) = .733$$

The evaporative power of different fuels, from and at 212°, in. for cold for to 16.8 lbs., the average of Newcastle being 15.3, for patient fuels 15.65. L=2 Coke 13.3, Peat 10.3, and Woods, when dry, 8.1. See 4. E. Seeton. London.

Notes on Horse-power.

A Lancashire boiler with a heating surface of G_{10} sq. feet and a graze-sq will evaporate in ordinary operation so cube feet of water per bour; 3.21 sq. horizontal section per cube foot of water, and .5 sq. foot of grate-area per cd

Nominal. Flue Boilers.—Usually computed at 5.5 to 6 sq. feet of her section, 15 sq. feet of heating surface, and 1 sq. foot of grate-area.

The IHP of such boilers will range from 3 to 4 times that of the nominal Multitubular Boilers. —.75 sq. foot of grate-area and 2.5 of heating surface

Weights of Steam-engines.
Side-wheels.—American Marine (Condensing).

Engine.	Frame.	Water- wheels.	No.	ylinders. Volume.	Weight per Cube Foot.	Sex
Vertical beam	Wood.* Wood.* Wood.* Wood.* Wood.* Iron Iron.	Wood. Wood. Wood. Iron. Iron. Iron. Iron.	I 2 I 2 I 2 2 2 2	Cube Feet. 63 216 430 253 725 540 1502 535	Lbs. 1100 1040† 1225 1480‡ 1089† 850 550€	RAT CHE CHE SHE SHE SHE
. Without frame.	† With frame	1109.	‡ Iu	cluding boiler	s. § Sin	ja 🌬

Sorew Propellers .- American Marine (Condensing)

COLOW + LOPOL		22			-
1	Cy:	linders.	ı	WEIGHTS.	. 1.
Engine.	No.	Volume.	Engine.	Boilers.	Per C. Ft Cylinder.
		Cube Feet.	Lbs.	Lbs.	Lbs.
Vertical direct, Jet Condens'g	1	4	22 040	12 100	8 535
" Surface Cond'g .	1	12.5	50,000	32 000	7 280
" " Jet " .	I	12.5	48130		6650
66 66 66	Ī	33	120 450	98000	6620
66 66 66 66	Ā	506	1 523 060	985600	4958
Horizontal back-action	2	68	280 680	200 800	7 212
" direct	2	67	201 000		6000
Vertical compound	2	4.8	24 705	353	
" " " " 8 g	2	24.3	94 196	88 050	
" " … [4 5	2	425	1 022 400		4 380
" direct	1	3.6	30 534	27 301	10 066
" direct Surface	ī	35	172 028	100 065	
" Non-Condensing.	i	1.86	14410	22 481	19834
44 44 44 44	1	2.77			13421
••	, .	2.77	1 14759	22 417	*34**

ī	English Marine (Condensing).							
· '	[Cylinders. [WEIGHTS.			
DESCRIPTION.	No.	Volume.	Engines.	Propeller and Shafting.	Boilers and Water.	Total.	Per (
Irun K.	2 2 2 2 2 6		. \	Tons. 47 85 48 43 -75 167 15	Tons. 257 303 144 135 7.25 656 110	Tons. 425 611 357 295 1225 1320 180	165 338 781 560 358 358	

Land-engines.-(Non-condensing.)

Engine.	Volume of Cyl'r.	Engine.	Spur-wheel and Connections.	Complete	Boilers, Grates, etc.	Engine per Cube Foot of Cylinder.
I) 18 ins. ×4 feet		Lbs. 67 200 105 000	Lbs. 37 800 137 179	Lbs. 89 600 265 879	Lbs. 26 880 75 000	Lbs. 9600 4290
a'l, 14 ins. ×2 feet 22 ins. ×4 feet	2.2	10 914	-3/1/9	2030/9	8 200 30 140	5100 5600

ompute Weight of a Vertical Beam and Side-wheel Jet Condensing Engine. (T. F. Rowland, A.S.C.E.)

ing all Metals, Boiler and Attachments, Smoke-pipe, Grates, Iron Floors, and Iron in Wooden Water-wheels, omitting Coal-bunkers.

For a Pressure per Mercurial Gauge of 40 lbs. per Sq. Inch.
For surface condenser add 10 to 15 per cent.

E.—Multiply volume of cylinder in cube feet by Coefficient in followble corresponding to length of stroke, and product will give rough in lbs. For finished weight deduct 6 per cent.

Coefficient.	Stroke.	Coefficient.	Stroke.	Coefficient.	Stroke.	Coefficient.
246 7 2340	Feet.	2213 2000	Feet. 9	1865	Feet.	1619

PLE I.—What are the rough and finished weights of a vertical beam engine, r 80 ins. in diameter and 12 feet stroke of piston?

of 80 ins. = 5026.56, which \times 12 feet = 419 cube feet, and \times 1546 for 12 feet = 647774 lbs. rough weight.

 $647774 \times .06 = 38866$, and 647774 - 38866 = 608908 lbs. finished weight.

WEIGHTS OF BOILERS.

*s of Iron Boilers (including Doors and Plates, and exclusive of Smokepipes and Grates) per Sq. Foot of Heating Surface.

ace Measured from Grates to Base of Smoke-pipe or Top of Steam Chimney.

Boiler. For a Working Pressure of 40 Lbs.	Weight.
return, Flue * water bottom	Lbs. 25.6 to 32.9 24 to 30 27 to 45 25 to 43 22.5 to 35 21 to 33 17.7 to 20.7 18.5 to 26.5 19.8 to 23.8
atal direct, Tubular * " "	19.8 to 2 17 to 2 23.5 to 2 18.1 to 1 16.3 to 1

ht of Cylindrical Furnace and Shell Boilers, all complete for Sea Service and ressure of 60 lbs. steam, 200 lbs. per IIP.

Ron of furnace aquare. Shell cylindrical. † Section of furnace and shell square, ught-iron heads, .375 inch thick, flues, .25 inch, and surface computed to half diameter of shell.

28.—I. The range in the units of weight arises from necoliarities of constructions of the proportion of the second

shell compared with heating surface, (

Boiler-power.

The power of a boiler is the volume or weight of steam alone (impodent of any water that it may hold in suspension) that it will general a operating pressure in a unit of time.

Marine boilers of the ordinary type and proportions, with natural draughteing authracite coal, produce 3.5 to 5.5 IIP per sq. foot of grate per hour as free burning or a semi-bituminous coal, 5 to 7.5 IIP; and with a forced draw with 25 to 30 lbs best coal per sq. foot of grate per hour, 8 to 10 IIP.

Marine engines, operating with a steam-pressure of 35 lbs. (m.g.), and with a crate expansion, consume 30 lbs. steam per IPP per hour, and with a high microparsion, under a pressure of 70 lbs., 20 lbs. steam.

With a blast draught and consuming 30 to 40 lbs. of a fair quality of coalput foot of grate per hour, 7 to 10 IP per hour can be attained.

In locomotive boilers, having from 50 to 90 sq. feet of heating surface per sof grate, and at a rate of combustion of from 45 to 125 lbs. of coke, an average coration of 9 lbs. of water per lb. of coke has been attained at ordinary temperand pressure.

To Compute Volume of Air and Gas in a Furnan

When Volume at a Given Temperature is known. Rule.—Multiply volume by its absolute temperature, and divide product by the given lute temperature.

Norg.—Absolute temperature is obtained by adding 4620 to given of ap-

EXAMPLE.—Assume volume of air entering a furnace at 1 cube foot, its terture-60°, and temperature of furnace 1623°; what would be the increase of war.

$$\frac{1 \times 1623^{\circ} + 461^{\circ}}{60^{\circ} + 461^{\circ}} = \frac{2084}{521} = 4 \text{ times.}$$

Volume of Furnace Gas per Lb. of Coal. (Ranks

Tempera-		Air Supplied.			Air Sopplist		
ture.	12 Lbs.	18 Lbs.	24 Lbs.	Tempera-	12 Lbs.	re Lin	1474
320	150	225	300	7520	369	553	1
68	161	241	322	1112		718	10
104	172	258	344	1472	479 588	882	115
212	205	307	400	1832	697	1046	155
572	314	47I	628	2500	906	1357	she.

Temperature of ordinary boiler furnaces ranges from 15000 to 25000.

The opening of a furnace door to clean the fire involves a loss of from 4 bil cent. of fuel.

For other illustrations, see ante, page 744-6.

Rate of Combustion.

The rate of combustion in a furnace is computed by the lbs. of fuel coss, foot of grate per hour.

In general practice the rate for a natural draught is, for anthracite color is lobs, for bituminous, from 10 to 25 lbs., and with artificial or forced draws a blower, exhaust-blast, or steam-jet, the rate may be increased from 30 km.

The dimensions or size of coal must be reduced and the depth of the fire directly, as the intensity of the draught is increased.

Temperature of gases at base of chimney or pipe should be 600°, and resistance of surface of chimney is as square of velocity of current of

Ordinarily from 20 to 32 per cent, of total heat of combustion is experienced or the chimney draught in a marine boiler, to which is to losses by incomplete combustion of the gaseous portion of the facel we of the gases by an excess of air, making a total of fully 60 per cent.

Wm. H. Shock, U. S. N., 1881.)

STRENGTH OF MATERIALS.

ngth of a material is measured by its resistance to alteration of when subjected to stress and to rupture, which is designated as ng, Detrusive, Tensile, Torsion, and Transverse, although transa combination of tensile and crushing, and detrusive is a form ion at short lengths of application.

ELASTICITY AND STRENGTH.

agth of a material is resistance which a body opposes to a pert separation of its parts, and is measured by its resistance to ion of form, or to stress.

nion is force with which component parts of a rigid body adhere to her.

icity is resistance which a body opposes to a change of form.

icity and Strength, according to manner in which a force is exerted body, are distinguished as Crushing Strength, or Resistance to Complete Strength, or Resistance to Shearing; Tensile Strength, blute Resistance; Torsional Strength, or Resistance to Torsion; and erse Strength, or Resistance to Flexure.

t of Stiffness is flexure, and limit of Resistance is fracture.

ral Axis, or Line of Equilibrium, is the line at which extension terand compression begins.

ience, or toughness of bodies, is strength and flexibility combined; any material or body which bears greatest load, and bends most at fracture, is toughest.

st bar or beam that can be cut out of a cylinder is that of which s to breadth as square root of 3 to 1; strongest, as square root of 2 to most resilient, that which has breadth and depth equal.

s expresses condition of a material when it is loaded, or extended in of its elastic limit.

ral law regarding deflection is, that it increases, cæteris paribus, discube of length of beam, bar, etc., and inversely as breadth and cube h.

tance of Flexure of a body at its cross-section is very nearly .9 of its resistance.

Coefficient of Elasticity.

icity of any material subjected to a tensile or compressive force, its limits, is measured by a fraction of the length, per unit of force t of sectional area, termed a constant, and coefficient of elasticity is defined as the weight which would stretch a perfectly elastic bar of section to double its length.

of force and area is usually taken at one lb. per sq. inch. E representominator of fraction.

PLE.—If a bar of iron is extended one 12 000 000th part of its length per lb. per sq. inch of section,

12 000 000 = E

ar would, therefore, be stretched to be per sq. inch, if the material 1058

.0002

.000015

The same method of expressing coefficient of elasticity is applied by sistance to compression. That is, coefficient, in weight, is expressed by nominator of fraction of its length by which a bar is compressed per unit weight per sq. inch of section.

Ultimate extension of cast iron is 500th part of its length.

4234

Extension of Cast-iron Bars, when suspended Vertical

1 Inch Square and 10 Feet in Length. Weight applied at one End. Weight. [Extension. Weight. Extension. Weight. | Extension. | & Lbs. 1... Lbs. Ina Ins. Ina .o.i5 520 .0044 2117 .orgo .000 050 8 468 .0871

Woods.—MM. Chevaudier and Wertheim deduced that there was limit of elasticity in woods, there being a permanent set for every extension they, however, adopted a set of .00005 of length as limit of elastic This is empirical.

MODULUS OF ELASTICITY.

.0397 | .00265 | 14820

. 1829

Modulus or Coefficient of Elasticity of any material is measure disclassic reaction or force, and is height of a column of the much pressing on its base, which is to the weight causing a certain degree compression as length of material is to the diminution of its length.

It is computed by this analogy: As extension or diminution of any given material is to its length in inches, so is the force that duced that extension or diminution to the modulus of its elasticity.

Or, $x : P :: l : w = \frac{P \cdot l}{x}$. x representing length a substance x inch square and l in length would be extended or diminished by force P, and w weight of modula d

To Compute Weight of Modulus of Elasticity.

RUE.—As extension or compression of length of any material resource, is to its length, so is the weight that produced that extension or pression, to modulus of elasticity in lbs.

EXAMPLE.—If a bar of cast iron, I inch square and Io feet in length, is stated to solve in length, is stated to solve in length of I is modulus of electric to the square of the square

.008: 120 (10 × 12):: 1000: 15000 000 lbs.

To Compute Modulus of Elasticity.

When a Bar or Beam is Supported at Both Ends and Loaded is CRULE.—Multiply weight or stress per sq. inch in lbs. by length of missin ins., and divide product by modulus of weight.

Or,
$$\frac{l W}{M} = E$$
; $\frac{l W}{E} = M$; $\frac{E M}{l} = W$. l representing length in ins. M

W weight in lbs. per sq. inch, and E compression or extension.

EXAMPLE I.—If a wrought iron rod, 60 feet in length and .2 inch in dismess subjected to a stress of 150 lbs., what will it be extended?

Anasticity of iron wire is 28 230 500 lbs. (see following table), and = .314 16.

=477.46 lbs. per sq. inch, and $60 \times 12 = 720$ ins.

$$=\frac{34377^{1.2}}{0.0930500}=.01218$$
 inch.

e under rule for weight of modulus

Andread The	Lua retiaita	マンス・マント マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マ	ariour Materials.

SUBSTANCES.	Height.	Weight.	SUBSTANCES.	Height.	Weight.
	Feet.	Lbs.		Feet.	Lbs.
	4 970 000	1 656 570	Larch	4415000	1074000
ch	4 600 000	1 345 000	Lead, cast	146 000	720 000
38, yellow	2 460 000	8 464 200	Lignum vitæ	1850000	1 080 400
wire	4 112 000	14 632 720	Limestone	2 400 000	3 300 000
per, cast	4 800 000	18240 300	Mahogany	6 570 000	2071000
	5 680 000	1 499 500	Marble, white	2 150 000	2 508 000
red	8 330 000	2 010 000	Oak	4 750 000	1710000
iS		5 550 300	Pine, pitch		2 430 000
metal		9844 300	" white	8 070 000	1830000
apen fibres	5 000 000	170 000	Steel, cast	8 530 000	26 650 000
	6 000 00 0	2 379 300	" wire		28 680 000
i, cast	5 750 000	17 968 500	Stone, Portland	1672000	1718800
wrought		25 820 200	Tin, cast		3 510 000
wire		28 230 500	Zinc		13440000

Veight a Material will bear per Sq. Inch, without Permanent Alteration of its Length.

MATERIAL.	Lbs.	MATERIAL.	Lbs.	MATERIAL.	Lbs. ,
Metals. ss	6 700 10 000 15 000 17 800 1 500 45 000	Stones, etc. Marble Limestone* Portland Woods. Ash	4900 2000 1500	Woods. Beech	2360 3240 4290 2060 3000 3960

^{*} Tensile strength 2800.

Comparative Resilience of Woods.

·,· · · · · · · I	Chestnut	Larch84	Spruce64
: h	Elm 54	Oak63	Teak
'r	Fir	Oak63 Pitch Pine57	Yellow Pine64

MODULUS OF COHESION.

Compute Length of a Prism of a Material which would be Severed by its own Weight when Suspended.

JLE.—Divide tensile resistance of material per sq. inch by weight of a of it in length, and quotient will give length in fect.

•Ustration.—Assume tensile resistance of a wrought-iron rod to be 60 000 lbs. Q. inch. Weight of 1 foot = 3.4 lbs.

Then $60000 \div 3.4 = 17647.06$ feet.

Length in Feet required to Tear Asunder the following Substances:

lide..... 15 375 feet. | Hemp twine... 75 000 feet. | Catgut....... 25 000 feet.

Leticity of Ivory as compared with Glass is as .95 to 1.

Then Height is given. Rulk.—Multiply weight of 1 foot in length and in square of material by height of its modulus in feet, and product will weight.

To Compute Height of Modulus of Elasticity.

ULE.—Divide weight of modulus of elasticity of materal of it, and quotient will give height in feet.

AMPLE. — Take elements of preceding case (page 762), w - ; what is height of its modulus of elasticity?

15000000+3=5000000 feet.

CRUSHING STRENGTH.

Crushing Strength of any body is in proportion to and inversely as its height.

In tapered columns, it is determined by the least d When height of a column is not 5 times its side or strength is at its maximum.

Cast Iron.—Experiments upon bars give a mean cri 100 000 lbs. per sq. inch of section, and 5000 lbs. per sq. in to overcome elasticity of metal; and when height exceed the iron yields by flexure. When it is 10 times, it is re when it is 15 times, as 1 to 2; when it is 20 times, as 1 to 6.

Experiments of Mr. Hodgkinson have determined the strength of about one eighth of destructive weight is obtained and a column in its middle.

In columns of same thickness, strength is inversely i 1.63 power of length nearly.

A hollow column, having a greater diameter at one e has not any additional strength over that of an uniform of

Wrought Iron.—Experiments give a mean crushing st per sq. inch, and it will yield to any extent with 2700 while cast iron will bear 80000 lbs. to produce same effect

Effects.—A wrought bar will bear a compression of $\frac{1}{868}$ out its utility being destroyed.

With cast iron, a pressure beyond 27000 lbs. per sq.

hing Strength of various Materials, deduced from periments of Maj. Wade, Hodgkinson, Capt. Meigs, S. A., Stevens Institute, and by G. L. Vose.

Reduced to a Uniform Measure of One Sq. Inch.

CAST IRON.

CASI IRON.						
URES AND MATERIAL.	Crushing Weight.	FIGURES AND MATERIAL.	Crushing Weight.			
>tal, American	Lbs. 174 803 85 000 125 000 100 000 62 450 92 330 106 039	Clyde, average, English	Lba. 82 000 122 395 134 400 53 760 153 200 84 240 109 700			
WROUGHT IRON. a.n., extreme 127 720 English						
mean		METALS.	37 850			
_	164 800 117 000 105 000 250 000 154 500 Wrought	" soft " tempered " Siemens Tin, cast Lead tron and Crucible Steel is equal t	, , ,			

Woods.

red seasoned ut	6663 6963 3300 7900 10513 5968 6500 5350 6831 10000 10300	Maple	8 100 10000 7 500 5 982 6 850 9 500 6 484 7 700 8 947 5 775 8 200 5 850
y, white:	3 200 5 500 9 113	Spruce, white. Teak Walnut.	5 850 5 950 12 100 6 645
ıny, Spanish	8 198	Willow, seasoned	6000

Crosswise of Fibre.

	0.00000000			
2300	Larch	1300]	Pines 5	50

se in Strength of Cubes of Sandstone, per Sq. Inch (under Blocks Wood), as Arca of Surface is increased. (Gen't Gillmore, U. S. A.)

•	Inches.									
STONE.	•5	I	1.5	2	2.25	2.75	3	4		
Berea sandstone		Lbs. 6990. 9500	Lbs. 8 226 10 730	Lbs. 8955 12000	9130	I.bs. 9838	1.015	711 720		

Stones, Cements, etc. (Per Sq. Inch.)

FIGURES AND MATERIAL.	Crushing Weight.	FIGURES AND MATERIAL.
Basalt, Scotch	Lbs. 8 300	Granite, Patapsco, Md
" Welsh	16 800	" Portland, Eng
Beton, N. Y. S. Concreting Co.	800	" Quincy, Mass
	1 400 6 222	Greenstone, Irish
Brick, pressed	10 219	Limestone
Gloucester, Mass	14 2164	
	3 630 800	" compact, Eng " Magnesian,"
" common	4000	" Anglesea."
" yellow-faced burned, Eng.	1440	" Irish "
" Stourbridge fire-clay, "	z 650	Marble, Baltimore, Md
"Staffordshire blue, " stock English	7 200	, ,
" stock, English " Fareham, English	2 250 5 000	"East Chester, N. Y.† "Hostings, N. Y
" red, English	808	" Irish
" Sydney, N. S	2 228	" Italian
Cagn, France	I 543	" White
Cement, Hydraulic, pure, Eng. {	17000	LACO, MASS
" Portland, sand z	32 000 1 280	" Montgomery Co., Pa " Statuary
" sand 3	600	" Stockbridge, Mass.1.
" " 3 mos	3800	" Symington, large
" rsand, 3 mos	2464	" fine crystal
" " o mos	5980	". " strata horizo
I BALLU, Q JLIUB	2 330	Masonry, brick, common
" " 12 inch cubes,)	2650	" " in cement
r sand and gravel	2030	Mortar, good
" " 3 " "	z 800	" lime and sand
" Roman	342	tt tt beater
" " pure, Eng	750	" common
" Rosendale	3 270	Oolite, Portland
oneppey, Eng	1 280 460	Sandstone, Aquia Creek §
Concrete, lime 1, gravel 3 }	775	" Arbroath, Eng
Freestone, Belleville, N. J	3 522	" Connecticut
" Connecticut	3 319	" Craigleth, Eng
" Dorchester, Mass	3 0 6 9	" Derby grit " " Holyh'd quartz, Et
" Little Falls, N. Y Glass, crown	2 991	" Seneca
Gneiss	31 000	" Yorkshire, Eng
Granite, Aberdeen, Eng	10760	·
" Cornish, "	6 339	Slate, Irish
" Dublin, "	10 450	Terra Cotta
" Newry, "	12850	Whinstone, Scotch

^{*} Tested by author at Stevens' Institute, N. J. † Post-office, Wash. \$ Capitol, Treasury Department, and Patent Office, Washington, D. C. Smithsonis

Safe Load of Hollow, Cylindrical, and Solid Co Arches, Chords, etc., of Cast Iron.

Hollow Columns. Per Sq. Inch. (F. W. Shields, M. I. C. E)

	_			-	•		•	
Length. Thick-								
Inch.	Lbs.		Inch.	Lbs.		Inch.	Lbe.	25 to 30 diam's
375	2800	20 to 24	.625	3920	25 to 30	·375	2240	25 10 30
4	3300	// answ.s	1.75	/ 4480	((cuam 's.	-5	2800	Giam +1.

Jolumns, etc.—3360 lbs. per eq. inch. (Brunck)
-4500 lbs. per eq. inch.

nd Posts.—r inch diameter and not more than 15 diameters in aking weight of metal.

neter and not more than 25 diameters in length .5 of breaking weight when more than 25 diameters in length from .1 to .025 of breaking L (Baltimore Bridge Co.)

it-iron Cylinders and Rectangular Tubes.

İ	External Diameter.	Internal Diameter.	Thickness.	Area.	Crushing Weight per Sq. Inch.	
s.	Ins.	Ins. Ins.		Sq. lns.	Lbs.	
	1.495	1.292	.z	-444	14 661	
	2.49	2.275	.107	804	29 779	
	6.366	6.106	.13	2.547	35 886	
TUBES.						
	4.1	X 4.1	.03	.504	10980	
	4.1	X 4.1 X 4.1 X 4.1 X 4.25	.03	.504	11 514	
	4.1	X 4.1	.06	1.02	19 261	
- 1	4.25	X 4.25	.134	2.395	21 585	
	4.25	X 4.25	.134	2.395	23 202	
	8.4	× 4.25	{.26 }.126	6.89	29 981	
	8. r	× 8. r	.06	2.07	13 276	
	8. r	× 8. z	.06	2.07	13 300	
iternal		× 8. z	.0637	3.551	19732	
phrag's	8. z	× 8. r	.0637	3.551	23 208	

per Sq. Inch of 2-Inch Cubes under Blocks of Wood. (Gen'l Gillmore, U. S. A.)

Surfaces Worked to a Clear Bed.

Lbs.	LIMESTONE.	Lbs.
blue 22 250 	Bardstown, Ky., dark Cooper Co., Mo., dark drab Erie Co., N. Y., blue Caen, France.	6650
Co., N. Y. 18 250 ut, Conn. 16 187 Conn. 12 500 a. 21 250 ' gray 14 100 uss. 12 423	MARBLE. East Chester, N. Y. Italian, common. Dorset, Vt. Mill Creek, Ill., drab. North Bay, Wis., drab.	13 504 13 062 7 612 9 687 20 025
10500 I., gray. 14937 Iass., gray. 15937 Idson River, gray. 13370 dson River, gray. 13370 bluish gray. 12875 al Park, N. Y., red 17500 N. J., soap. 20750 "gray. 24040	SANDSTONE. Little Falls, N. Y., brown. Belleville, N. J., gray. Middletown, Conn., brown. Haverstraw, N. Y., red. Medina, N. Y., pink. Berea, O., drab.	9850 11700 6950 4350 17725 7250
N. Y	Vermillion, O., drab	10 250 8 850 6 250 150

tou

ute Crushing Weight of Columns.

B. Gordon from Results of Experiments of various Authors.

Cast Iron. (Hodgkinson.)

Round Solid or Hollow.
$$\frac{36 \text{ a}}{1 + \frac{r^2}{400}} = \text{W}$$
. For rectangular put 500.

Reclangular Solid or Hollow.
$$\frac{36 a}{1+\frac{r^2}{500}}$$
 = W. For L, T, U, etc., put $\frac{19 a}{1+\frac{r^2}{900}}$

Round Solid.
$$\frac{16 \text{ a}}{1 + \frac{r^2}{2400}} = W$$
. Rectangular Solid. $\frac{16 \text{ a}}{1 + \frac{r^2}{3000}} = W$

Round Solid,—Strong steel,
$$\frac{51}{1+\frac{r^2}{900}}$$
 = mild steel, $\frac{30}{1+\frac{r^2}{1400}}$ = W.

Rectangular Solid.—Strong steel,
$$\frac{51 \text{ a}}{1 + \frac{r^2}{1600}} = \text{W}$$
; mild steel, $\frac{30 \text{ a}}{1 + \frac{r^2}{2480}} = \text{W}$.

a representing area of metal in sq. ins., r ratio of length to least external diames or side, and W crushing weight in tons.

ILLUSTRATION.-What is the crushing weight of a hollow cylindrical column of cast iron to ins. in diameter, 20 feet in length, and 1 inch in thickness?

a = area of 10 ins. — area of
$$10 - 1 \times 2 = 28.28$$
 ins. $r = \frac{20 \times 12}{10} = 24$, and 4° = 576. Then, $\frac{36 \times 28.28}{1 + \frac{576}{1 + 1.44}} = \frac{1018.08}{1 + 1.44} = 417.25$ tons = 934 640 lbs.

Note.-This is for hard English iron.

R

Sa

Weight borne with Safety by Solid Cast-iron Columns, In 1000 Lbs .- (New Jersey Steel and Iron Co.)

DIAMETER. Length. Ins. Feet. Ins. Ins. Ins. Ins. Ins. Ina. Ins. Ins. Ins. Ins. Ing. Ing 12.4 9.4 1798 208 7.2 1486 1754 2040 560 1440 1700 q 1392 1656 190 846 1550 185 1192 1440 1711 686 878 1094 1332 150 1000 1228 14 720 912 1130 137 196 292

For Tubes or Hollow Columns.

Subtract weight that may be borne by a column, of diameter of internal diameter of tube from external diameter, and remainder will give weight that may be borne. Thickness of metal should not be less than one twelfth diameter of column.

and 20 feet in length.

TLLUSTRATION. - Required the safe load of a solid cast-iron column 6 er 6 and in a line with 20 is 72, which \times 1000 = 72 000 lbs.

.- This is about one sixth of destructive weight.

Safe Loads as determined by Preceding Formulas.

st Iron, one fifth to one sixth. Wrought Iron, one fourth to one fifth. is, one seventh to one tenth.

WOODS.

To Compute Destructive Weight of Column.

inder. $\frac{d^4 \cdot 6}{l^2} C = W$. Rectangle. $\frac{s^4}{l^2} C = W$. Short Columns, or less

30 diameters in length. $\frac{W' \ \overline{a} \ S}{W' + .75 \ \overline{a} \ \overline{S}} = W. \quad d \text{ representing diameter and } s$

n ins., a area of section in sq. ins., l length in feet, S crushing strength of ma-C coefficient of material, and W' destructive weight, as ascertained by compufor a long column of like dimensions in lbs.

Coefficients.

22 000 Elm, rock 26 000 Red Pine 17 500 anadian 17 000 Fir, Dantzic 22 000 Yellow pine 12 000								
alladian 17000 Fir. Dantzic 22000 Yellow Dine 12000								
1, 17 500 Oak, white 20 000 White " 9000								
17 500 Oak, Wille 20000 White 9000								
The same of the sa								
14000 " Eng 23000 Spruce 14000								
17 500 Pitch Pine 20 000 Walnut 12 500								
17 500 FIGH FINE 20 000 Wallut 12 500								
USTRATION What is destructive weight of a column of yellow pine 10 ins.								
e and 12 feet in length or height?								

 $\frac{10^4}{12^2} \times 12000 = \frac{10000}{144} \times 12000 = 8333333 \text{ lbs.}$

long square columns of the following: Hodgkinson put C = Dantzic oak, dry, ; red deal, dry, 17 472; and French oak, dry, 15 456.

To Compute Safe Weight in Tons.*

ctangular Oak Columns. Secured at Both Ends. RULE.—Divide length lumn by thickness or least dimension, multiply unit in column C, of wing table, corresponding to this quotiept, by width of column, all disions in inches; and product will give weight.

1	C	T	c	T	C	T	c	T	c	T	C
	.43	7	.36 -35	13	.26	19	.18	25	.12	31	.003
П	.43	8	-35	14	.24	20	-17	26	.12	31 32 33	.093
-1	·43	9	.33	15	.23	21	.17	27	.II	33	.084
- 1	+4	10	-31	16	.21	22	.15	28	·I	34 35	.08
- 1	-39	11	.29	17	.2	23	.14	29	.098	35	.077
- 1	·4 ·39 ·38	12	.27	18	.19	24	.13	29 30	.097	36	.073

USTRATION.—Assume a white-oak column, secured at both ends, 12 by 8 ins., o feet in length.

 $\langle 12 \div 8 = 30.$ C for which = .097. Hence, $12 \times 8 \times .097 = 9.312$ tons.

other woods take the values in following table. Thus, if an oak column, as, will sustain 9,312 tons, the strength of one of yellow pine is thus obtained: 3: 9,312:13:4816 tons.

stative Value of various Woods, their Crushing Strength and Stiffness being Combined.

	9.4	Elm	5	Mahogany	3.7	Yellow pine 3
sh oak	5.8	Beech	4.4	Spruce	3.6	Sycamore 2.6 Cedar 1
	5. I	Quebec oak	4.1	Walnut	3.4	Cedar 1

aparative Value of Long Solid Columns of various Materials. (Hodgkinson.)

Materials. (Hoagkinson.)

[ron.....1000 | Cast Steel....2518 | Oak.......108.8 | Pine.......78.5

nce, To compute destructive weight of an Oak or Pine column, take weight for Cast iron of like dimensions, and if for Oak divide by 9, and for Pine b

^{*} All tons, except when otherwise designated, are 2240 lbs.

DEFLECTION.

Deflection of Bars, Beams, Girders, etc.

Experiments of Barlow upon deflection of wood battens determined, that deflection of a beam from a transverse strain, varied directly as cube of length and inversely as breadth and cube of depth, and that with like beams and within limits of elasticity it was directly as the weight.

In bars, beams, etc., of an elastic material, and having great length compared to their depth, deductions of Barlow will apply with sufficient accracy for all practical purposes; but in consequence of varied proportions of depth to length, of varied character of materials, of irregular resistance of beams constructed with scarphs, trusses, or riveted plates, and of unequal deflection at initial and ultimate strains, it is impracticable to deduce any exact laws regarding degrees of deflection of different and dissimilar figure and proportions.

From an experiment of Mr. Tredgeld it was shown that deflection of as iron is exactly proportionate to load until stress reaches a certain magnitud, when it becomes irregular.

In experiments of Hodgkinson, it was further shown that sets from & flections were very nearly as squares of deflections.

In a rectangular bar, beam, etc., position of neutral axis is in its centr, and it is not sensibly altered by variations in amount of strain applied. It bars, beams, etc., of cast and wrought iron, position of neutral axis varies same beam, and is only fixed while elasticity of beam is perfect. When bar, beam, etc., is bent so as to injure its elasticity, neutral line changes, and continues to change during loading of beam, until its elasticity is destroyed.

When bars, beams, etc., are of same length, deflection of one, weight being suspended from one end, compared with that of a beam Uniformly Loaded is as 8 to 3; and when bars, etc., are supported at both ends, deflection in like caso is as 5 to 8. Whence, if a bar, etc., is in first case supported in middle and ends permitted to deflect, and in second, ends supported, and middle permitted to descend, deflection in the two cases is as 3 to 5.

Of three equal and similar bars or beams, one inclined upward, one downward, at same angle, and the other horizontal, that which has its angle upward is weakest, the one which declines is strongest, and the one horizontal is a mean between the-two.

When a bar, beam, etc., is *Uniformly Londed*, deflection is as weight, and approximately as cube of length or as square of length; and element of deflection and strain upon beam, weight being the same, will be but half of the when weight is suspended from one end.

Deflection of a bar, beam, etc., Fixed at one End, and Loaded at other compared to that of a beam of twice length, Supported at both Ends, and Loaded in Middle, strain being same, is as 2 to 1; and when length and loads are same, deflection will be as 16 to 1, for strain will be four time greater on beam fixed at one end than on one supported at both ends; therefore, all other things being same, element of deflection will be four time greater; also, as deflection is as element of deflection into square of length, then, as lengths at which weights are borne in their cases are as 1 to 2.4 flection is as $1:2^2 \times 4 = 1$ to 16.

dection of a bar, beam, etc., having section of a triangle, and supported ds, is .33 greater when edge of angle is up than when it is down to counteract deflection of a beam, etc., under stress of its lock orizontal surface is required, it should be cambered on its upper unit to computed deflection.

Safe Deflection.—One fortieth of an inch for each foot of span, with a factor of safety for load of .33 of destructive weight $= \frac{1}{1440}$, but for ordinary loads and purposes,

Cast Iron, $\frac{1}{1200}$ to $\frac{1}{2000}$; and Wrought Iron, $\frac{1}{1200}$ to $\frac{1}{2400}$ or $\frac{1}{1200}$, after beam, etc., has become set.

When Length is uniform, with same weight, deflection is inversely as breadth and square of depth into element of deflection, which is inversely as depth. Hence, other things being equal, deflection will vary inversely as breadth and cube of depth.

ILLUSTRATION.—Deflections of two pine battens, of uniform breadth and depth, and equally loaded, but of lengths of 3 and 6 feet, were as 1 to 7.8.

Deflection of different bars, beams, etc., arising from their own weight, having their several dimensions proportional, will be as square of either of their like dimensions.

NOTE.—In construction of models on a scale intended to be executed in full dimensions, this result should be kept in view.

When a continuous girder, uniformly loaded, is supported at three points by two equal spans, middle portion is deflected downwards over middle bearing, and it sustains by suspension the extreme portions, which also have a bearing on outer bearings. Middle portion is, by deflection, convex upwards, and outer portions are concave upwards; and there is a point of "contrary flexure," where curvature is reversed, being at junction of convex and concave curves, at each side of middle bearing. This point is distant from middle bearing, on each side, one fourth of span. Of remaining three fourths of each span, a half is borne by suspension by middle portion, and a half is supported by abutment. Hence, distribution of lead on bearings is easily computed, as given above. Deflection of each span is to that of an independent beam of same length of span as 2 to 5.

In a beam of three equal spans, deflection at middle of either of side spans is to that of an independent beam as 13 to 25.

In a long continuous beam, supported at regular intervals, deflection of each span is to that of an independent beam of one span as 1 to 5.

Cylinder.—If a bar or beam is cylindrical, deflection is 1.7 times that of a square beam, other things being equal.

Formulas for Deflection of Beams of Rectangular Section, etc.

Supported in Middle.

Ends Uniformly loaded.
$$\frac{3 l^3 W}{5 \times 16 b d^3 C} = D$$
; and $\frac{5 \times 16 b d^3 C}{3 l^3} = W$.

1 representing length in feet, b breadth, and d depth, both in ins., W

I representing length in feet, b breadth, and d depth, both in ins., W setres in ibs., m and n distances of weight between supports, C a constant, in ins.

effection of Beams of Rectangular Section. Supported at Both Ends.

CAST IRON.

Rectangular Beams. Loaded in the Middle, $\frac{l^3 \text{ W}}{36 \cos b \ d^3} = D$.

Round Beams. For 36 000 put 24 000.

fration.—Assume a rectangular bar of cast iron, ${\bf r}$ inch square and low 4 lbs., 4.5 feet between its supports.

Then
$$\frac{224 \times 4.5^8}{36000 \times 1 \times 1^8} = \frac{20412}{36000} = .567$$
 ins.

:tual experiment of Mr. Hodgkinson the deflection was .56z ins.

WROUGHT IRON.

Rectangular Beams. Loaded in the Middle, $\frac{l^3 \nabla}{60 \cos b \ d^3} = D$. Round Beams. For 60 000 put 42 000.

WOODS.

Mean of Laslett's, Barlow, etc. (D. K. Clark.) Supported at Both Ends. Loaded in Middle.

 $\frac{l^3 W}{5 d^3 C} = D. \quad l \text{ representing length in ins. and } W \text{ weight in lbs.}$

	C (ı C	1 (
		Iron-wood 4228	
" Eng 2	722	Larch 2100	" white 2
		Mahogany, Honduras 2118	
Blue Gum 2	559	" Mexican, 3608	
3lm 1:	227	" Spanish., 3360	Rock elm
Fir, Dantzic 2.	490	Norway spar 2465	Spruce
" Memel 30	630	Oak, Baltimore 2761	" Amer
" Riga 20	920	" Canadian 3445	" Scotch
Greenheart	888	" Dantzic 2080	
Iron Bark 43	378	" Eng 1848	Yellow pine

Application of Table: To Compute Deflection of a Rectangular Beam of W ILLUSTRATION.—What is the deflection of a floor beam of yellow pine, 3 by 12 feet between its supports, under a uniformly distributed load of 3000 lbs.

C=2084.
$$\frac{5 \times 12^{3} \times 3000}{8 \times 3 \times 12^{3} \times 2084} = \frac{15000}{50016} = .299 \text{ inch.}$$

Hence, To compute weight that may be borne by a given deflection of such c

$$\frac{8 \times 3 \times 12^{3} \times 208_{4} \times .299}{5 \times 12^{3}} = \frac{14955}{5} = 2991 \ lbs.$$

Deflection of Continuous Girders or Beams Beams of Uniform Dimensions, Supported at Three or More Beams (D. K. Clark.)

z. Two Equal Spans or 3 Bearings.

Weight on 1st and 3d bearing = .375 W l

" 2d bearing..... = 1.25 W l

" 2d " 3d "

3. Four Equal Spans or 5 Bearings.

nd 5th bearing = .39 W l | Weight on 2d and 4th bearin Weight on 3d bearing = .93 W l.

adrical Beam.
$$\frac{l^3 W}{d^4 C} = D$$
; and $\frac{d^4 C D}{l^3} = W$.

compute Maximum Load that may be borne by a Rectangular Beam.

tion not to exceed Assigned Limit of one hundred and twentieth of an Inch for each Foot of Span.

Supported at Both Ends. Loaded in Middle.

= W. b and d representing breadth and depth in ins., l length in feet, C conund W weight or load in lbs.

Constants.

ron	Oak, white	Oak, red
ht Iron0021	Ash, white	Hemlock
V	Pine, pitch	Pine, white
024	" yellow	Chestnut, horse

STRATION.—What is maximum load that may be borne by a beam of white by 12 ins., 20 feet between its supports, and loaded in its middle?

C = .039. Then
$$\frac{3 \times 12^3}{20^2 \times .039} = \frac{5184}{15.6} = 332.3$$
 lbs.

WROUGHT IRON.

Deflection of Wrought-iron Bars.
Supported at Both Ends, Weight applied in Middle.

				_							
	Bear-	ė			We	ight and	Deflec	tion		Veight ction, D = C.	
FORM.	Length of B. ing. Breadth,		Depth.	by Actual Observation.		at one sixth of Destruc- tive Weight.		at 125th of an Inch for each Foot of Span.		Constan Reduced V and Defle W /3	
1 02	Feet.	Ins.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.	C	
erican.	1.83	ı	1	600	.06	266	.027	148	.015	1	
lish "	2.75	2	2	4480	.08	1310	.022	1310	,022	1.29	
· [2.75	1.5	2.5	8960	.104	2128	.025	1873	.022	1.25	
"	2.75	1.5	3	8960	.088	3800	.037	2259	.022	.88	

ompute Deflection of, and Weight that may be borne, a Rectangular Bar or Beam of Wrought Iron.

$$\frac{W l^{3}}{60 \cos b d^{3} D} = C. \qquad \frac{W l^{3}}{60 \cos b d^{3} C} = D. \qquad \frac{60 \cos b d^{3} C D}{l^{3}} = W.$$

STRATION.—What weight will a beam 2 ins. in breadth, 5 ins. in depth, and between its supports, bear with safe deflection of $\frac{1}{125}$ of an inch for each space, or $\frac{1}{1200}$ of its length?

om table = .88. $D = \frac{1}{125}$ of 15 = .12 inch.

$$\frac{60000 \times 2 \times 5^{3} \times .88 \times .12}{15^{3}} = \frac{1584000}{3375} = 469.33 lbs.$$

. Clark gives for Elastic deflection, 47 000 for Rectangular bars, and 32 000 for rical.

x.—Deflection of $\frac{1}{400}$ to $\frac{1}{600}$ of the length may be allowed under special ciruces; but under ordinary loads the deflection should not exceed one fourth e, as $\frac{1}{1600}$ to $\frac{1}{2400}$.

tice in U. S. is to allow $\frac{1}{1000}$ after girder has taken its permanent set, nall bridges there is a slight increase in deflection from high speeds, about .144 of the normal deflection, with the same load moving at slow speeing girders there is no perceptible difference between the deflection i repeads.

Deflection of Wrought-iron Rolled Beams. Supported at Both Ends. Weight applied in Middle.

 $\frac{W l^3}{70 \cos d^2 (4 a + \overline{1.155 a'}) D} = C \text{ at Reduced Weight and Deflection.}$

	70000 u (4 u 1.1.33 u / D											
		اء ا	Fla	nges.	1		Weight and Deflection					
No.	Говм.	Length.	Width.	Mean Thick- ness.	Web.	Depth.	by Ac Observ		at one sixth of Destructive Weight.		0	
		Feet.	lns.	Inch.	Inch.	Ins.	Lbs.	Ins.	Lbs.	Inch.	\Box	
I.	I	10	3	.485	-5	7	12000	-4	3800	.127	1.05	
2.	**	20	4.6	.8	-5	9.85	16000	1.15	6300	-453	.92	
3⋅	**	20	5.7	.643	1.6	11.75	20 000	.85	8000	.34	.98	

To Compute Deflection of, and Weight that may be bome by, a Wrought-iron Rolled Beam of Uniform and Symmetrical Section.

Supported at Both Ends. Weight applied in Middle. (D. K. Clark.)

$$\frac{W l^3}{70000 d^2 (4 a + \overline{1.155 a'})} = D. \qquad \frac{70000 d^2 (4 a + \overline{1.155 a'})}{l^3} = W.$$
presenting span in feet, d reputed depth, or depth less thickness of lower

I representing span in feet, d reputed depth, or depth less thickness of lower fast in ins., a area of section of lower flange, a area of section of web for reputed depth of beam, both in sq. ins., and W weight or stress in lbs.

ILLUSTRATION.—What is deflection of a wrought-iron rolled beam of New Jerry Steel and Iron Co., 10.5 ins. in depth, flanges 5 by .5 ins., and width of web 4 inch, when loaded in its middle with 8000 lbs, and supported over a span of 20 left

$$d = 10.5 - .5 = 10$$
 ins., $a = 5 \times .5 = 2.5$ sq. ins., and $a' = 10 \times .47 = 4.7$ sq. in

Then
$$\frac{8000 \times 20^3}{70000 \times 10^2 \times (4 \times 2.5 + 1.155 \times 4.7)} = \frac{64000000}{107999500} = .59$$
 inch.

If weight is uniformly distributed, divide by 112 500 instead of 70 000.

A like beam 6 ins. in depth, loaded with 2608 lbs., and supported over a span of 12 feet, gave by actual test a deflection of .3 inch, and by above formula it is also .3 inch.

Note. — Deflection for such a beam, for a statical weight or stress of 17 100 lls, uniformly distributed, by rules of N. J. Steel and Iron Co., would be .54 inch, which with difference in weights, will make deflections alike.

Deflection of Wrought-iron Riveted Beams. Supported at Both Ends. Weight applied in Middle.

 $\frac{W/13}{168\cos\left(\frac{a+a'}{a}+\frac{a''}{a'}\right) d^2 D} = C \text{ at Reduced Weight and Deflection.}$

to

No. FORM.	Length.	Flanges.	Angles.	Web.	Depth.	by Ac Observa	tunl	at one of Destr Weig	sixth uctive	c
	Feet.	Ins.	Ins.	Inch.	Ins.	Lbs.	Inch.	Lbs.	Inch.	
1. T	7	_	2.125×2 ×.28 2.125×2 ×.20	}.25		4216	.1	4 062	.096	63
· T	11.66	4·5× ·5 4·5× ·375	2 X 2 X.3125 2 X 2 X.3125	.25	12.5	77 280	.46	12880	.075	1.96
	{	4·5× ·5 7 ×	2 X 2 X 375 3 X 3	-375	16.5	115 584	.875	19265	. 148	3.86

To Compute Deflection of, and Weight that may be borne by, a Riveted Beam of Wrought Iron.

$$\frac{W l^{3}}{168 \cos \left(\frac{a+a'}{2} + \frac{a''}{4}\right) d^{2} C} = D. \qquad \frac{168 \cos \left(\frac{a+a'}{2} + \frac{a''}{4}\right) d^{2} C D}{l^{3}} W$$

a, a', and a'' representing areas of upper and lower flanges with their angle pieces, ad of web for its entire depth, all in sq. ins.

Norg.—If there are not any flanges, as in No. 1, angle pieces alone are to be computed for flange etc.

ILLUSTRATION.—What weight will a riveted and flanged beam of following dimensus sustain, at a distance between its supports of $_{25}$ feet, and at a safe deflection - 2 inch or $_{1800}$ of its length?

a and a' each = $6 \times .5 = 3 + 2.25 + 2.25 - .5 \times .5 \times 2 = 7$ sq. ins. a' = $.5 \times .7 = 8.5$ sq. ins. C, as per No. 2, = .43, but inasmuch as flanges in this as are much heavier, assume .5

Then
$$\frac{168 \cos \left(\frac{7+7}{2} + \frac{8.5}{4}\right) 17^2 \times .2 \times .5}{25^3} = \frac{44303700}{15625} = 2835.4 \text{ lbs.}$$

Strength of a Riveted beam compared to a Solid beam is as r to 1.5, while for lual weights its deflection is 1.5 to 1.

Tubular Girders. Wrought Iron.

Supported at Both Ends. Weight applied in Middle. Daffection. oos inch f Depth. × SECTION. Ex. nal. ternal. Feet. Ins. Ins. Ins. Lbs. Ins. Inch. C Thickness .og inch 3.75 1.0 2.94 3 448 . 1 .03 288 44 .525 44 33 685 .56 15.5 22.95 24 .24 473 .372 ** top ** bottom .244 " 30 16 23.28 32 538 I. II .24 224 .125 " sides Thickness .75 24 128 850 1.85 .36 45 34.25 35.75 362 Thickness .0375" 17 12 11.925 12 2 755 .65 .136 62.8 .0416 .62* .136 0.25 13.535 13.62 2 262 47.0 .143 " 9-25 14-714 15 16 800 1.39* 17 .136

* Destructive weight.

To Compute Deflection of, and Weight that may be borne by, a Wrought-iron Tubular Girder.

$$\frac{{}_{16} b d^{3} C D}{l^{3}} = W. \qquad \frac{W l^{3}}{{}_{16} b d^{3} C} = D.$$

TLLUSTRATION.—What weight may be safely borne by a wrought-iron tube, alike No 3 in preceding table, for a length of 30 feet, and a deflection of .32 inch?

$$\frac{16 \times 16 \times 24^3 \times 224 \times 24}{30^3} = \frac{190253629}{27000} = 7046 \ lbs.$$

Flanged Rails.

Beflection of Iron and Steel Flanged Rails within their elastic That their transverse strength, is as 17 to 20, and with double headed

of Unsymmetrical Section.—Elastic strength is m ultimate strength, according to ordinary ratio ined experimentally. Elastic strength and debeam of any section is same, whether in its nortic P imi to n of a

Strangth and Deflection of Cast-iron osition or Flanged Beams.

osition of	e Si	rength Flar				ion of Be	HIII.	Strength.
Description of eq.	of Beam	St	.58 .72 .03	Beam	with 1	langes a	1 to 4-5- 1 to 5-5- 1 to 6 -73	. 82
with	17	4	-73	AFTS.		te	a Weig	ht for

To Compute Deflection and Distributed Weight for

	Deflection	of Deflect	10.		
To Compute	Limit	of Deflect	n.	Weight.	Sela
10	Wr	Orie	v words		ed at Enfa
	Deflection.	. S	apported at Ends	13	30 d4 = W.
	Pijes	ed at Ends. S	664 0	and	12
Supported at	Ends. V	V 13 _ = D.	12		950 44 = 11
M 13	and 133	V 13 1000 d4 = D.	975 54	and -	12
Round. 66 400 0	1 133	W 13 D.	14		
16. 13	bno	- 000 84			
Square. 97 500	20 119	Cast Iron			790 d4
24 days	20		394 d4	and	12
		W 13 _ D.	12	-2/07	1160 #4
W	and T	$\frac{W l^3}{9000 d^4} = D.$	580 84	and	- 13
Round. 39 400	d4	W 13 D.	12	100	
39 W	13 and	W 18 = D.	177411		0.00
	00 84	110000			1576 d*
Square. 580		Steel.	788 d4	and	1576 d4
		err 13 m			

12 $\overline{158 \cos d^4} = D.$ W L3 2320 b W 13 1160 b4 and 13 and 78 800 64 Round. $\frac{1}{2320008^4} = D.$

d representing diameter and s side of shaft, in ins., I length between centres Square.

Deflection of a Cylindrical Shaft from its Weight ings, in feet, and W weight in lbs.

.007 318 $\frac{14}{d^2 C}$ = D. 1 representing length in feet, d diameter in ins., a

The greatest admissible deflection for any diameter is .00167 $\frac{l}{d}=D$. stant, ranging from 475 to 550.

Admissible Distances between Bearings. 1 W tou Irci Distance. Fee of Shaft. Iron. Ins. Wrought | Steel. Diam. Feet. 25. 26 Feet. 9 of Shaft. Iron. 21.57 Ins. 10 20.99 Feet. 22.92 27 Feet. 5 12.61 11 22.3 ins. 24.13 23.48 12.27 15.84 12 15.46 25.23 2

17.7

7 8 a Ends of Shaft are rigidly connected at Ends

Deflection of Mill and Factory Shafts.

 $\frac{l^3 \text{ W}}{\pi \ d^4 \text{ C}} = \text{D}$. l representing length between supports in ins., W weight at middle bs., d diameter of shaft in ins., and C as follows:

Bessemer steel 3800 000 | Wrought iron..... 3500 000

To Compute Deflection of a Cylindrical Shaft.

$$\frac{30 \times 3}{1500 \times 15^2} = \frac{8100}{337500} = .024 \text{ ins.}$$

SPRINGS.

Flexure of a spring is proportional to its load and to cube of its length.

Deflection of a Carriage Spring.

A railway-carriage spring, consisting of 10 plates .3125 inch thick, and 2 .375 inch, length 2 feet 8 ins., width 3 ins., and camber or spring 6 ins., lected as follows, without any permanent set:

Compression of an India-rubber Bu fer of a Ins. Stroke.

General Deductions.

Deflection depends essentially upon form of Girder, Beam, etc.

A continuous weight, equal to that a beam, etc., is suited to sustain, will cause deflection of it to increase unless it is subjected to considerable unges of temperature.

Teaviest load on a railway girder should not exceed .16 of that of deactive weight of girder when laid on at rest.

'emi-girders or Beams.—Deflection of a beam, etc., fixed at one end and led at other, is 32 times that of same beam supported at both ends and led in middle.

Deflection consequent upon Velocity of Load.—Deflection is very much inused by instantaneous loading; by some authorities it is estimated to be ibled.

Immentum of a railway train in deflecting girders, etc., is greater than ct from dead weight of it, and deflection increases with velocity.

When motion is given to load on a beam, etc., point of greatest deflection s not remain in centre of beam, etc., as beams broken by a travelling load always fractured at points beyond their centres, and often into several ces.

Heaviest running weight that a bridge is subjected to is tive and tender, which is equal to 2 tons per lineal foot.

rinders should not, under any circumstances, be deflected to a foot in length.

Deflection of Solid rolled beams compared to Riveted beams is as 1 to 1.5. Wrought-iron Girders of ordinary construction are not safe when subcted to violent impacts or disturbances, with a load equal to .33 of their structive weight.

Wood.—In consequence of wood not being subjected to weakening by the fect of impact, a factor of safety of 5 for single pieces is held to be sufficient, but for structures, in consequence of loss of strength in its connections, factor of from 8 to 10 becomes necessary.

Working Strength or Factors of Safety.*

Elastic strength of materials is, in general terms, half of its ultimate detructive or breaking strength. If a working load of .5 elastic strength, or as of ultimate strength, be accepted, equal range for fluctuation within lastic limit is provided. But, as bodies of same material are not all uniform in strength, it is necessary to observe a lower limit than .25 where naterial is exposed to great or to sudden variations of load or stress.

Cast Iron.—Mr. Stoney recommends .25 of ultimate tensile strength, for lead weights; .16 for bridge girders; and .125 for crane posts and machinary. In compression, free from flexure, cast iron will bear 8 tons (17920 bs.) per sq. inch; for arches, 3 tons (6720 lbs.) per sq. inch; for pillars, apporting dead loads, .16 of ultimate strength; for pillars subject to ibration from machinery, .125; and for pillars subject to shocks from eavy-loaded wagons and like, .1, or even less, where strength is exerted in Esistance to flexure.

Wrought Iron.—For bars and plates, 5 tons (11 200 lbs.) per sq. inch of et section is taken as safe working tensile stress; for bar iron of extra uality, 6 tons (13440 lbs.). In compression, where flexure is prevented, tons (8960 lbs.) is safe limit; in small sizes, 3 tons (6720 lbs.). For columns subject to shocks, Mr. Stoney allows .16 of calculated breaking weight; rith quiescent loads, .25. For machinery, .125 to .1 is usually practised; and for steam-boilers, .25 to .125.

Mr. Roebling claims that long experience has proved, beyond shadow of doubt, that good iron, exposed to a tensile strain not above .2 of its ultimate strength, and not subject to strong vibration or torsion, may be demeded upon for a thousand years.

Steel.—A committee of British Association recommended a maximum working tensile stress of 9 tons (20 160 lbs.) per sq. inch. Mr. Stoney recommends, for mild steel, 25 of ultimate strength, or 8 tons (17 920 lbs.) per q. inch. Limit for compression must be regulated very much by nature of teel, and whether it be annealed or unannealed. Probably a limit of 9 tons or 160 lbs.) per sq. inch, same as limit for tension, would be safe maximum for general purposes. In absence of experience, Mr. Stoney further ecommends that, for steel pillars, an addition not exceeding 50 per cent. hould be made to safe load for wrought-iron pillars of same dimensions.

Wood.—One tenth of ultimate stress is an accepted limit. Piles have, in one situations, borne permanently .2 of their ultimate compressive strength.

Foundations.—According to Professor Rankine, maximum pressure on Oundations in firm earth is from 17 to 23 lbs. per sq. inch; and, on rock, it hould not exceed .125 of its crushing load.

Masonry. — Mr. Stoney asserts that working load on rub rick-work, or concrete rarely exceeds .16 of crushing weight rass; and that this seems to be a safe limit. In an arch, calcu-Lhould not exceed .05 of crushing pressure of stone. Ropes.—For round, working load should not exceed .14 and for flat .11.

Dr. Rankine gives Good ordinary material Metal. Wood. Masoury.

A Dead Load is one that is laid on very gradually an A Live Load is one that is laid on suddenly, as a los passing swiftly over a bridge.

DETRUSIVE OR SHEARING STREI

Detrusive or Shearing Strength of any body is direct or thickness, or area of shearing surface.

Results of Experiments upon Detrusiv Metals with a Punch.

METALA.	Diameter of Punch.	Thickness of Metal.	Power exerted.
BrassCast iron	Ins.	Ins. .045	Lbs. 5 448
Copper	·5	.o8 ·3	3 983
Steel	∙5	.25	34 720
" Bessemer	.875	.75	184 800
Wrought iron	·5 1	.17 .615 1.06	11 950 82 870 297 400

To Compute Power to Punch Iron, Bre

RULE.—Multiply product of diameter of punch and the 150 000 if for wrought iron, by 128 000 if for brass, as east iron or copper, and product will give power requires

EXAMPLE.—What power is required to punch a hole .5 inch of brass .25 inch thick? $5 \times .25 \times 128 \infty = 16 \infty 0 lbs$.

Comparison between Detrusive and Strengths.

Assuming compression and abrasion of metal in applione inch in diameter to extend to 125 of an inch beyond comparative resistance of wrought iron to detrusive an latter estimated at 600 lbs. per sq. inch, for a bar 1 foot in

WOODS.

Detrusive Strength of Woods. Pe

Lbs.		Lbı
Spruce 470 Pine, white 490	Pine, pitch 510	Ash 65
Pine, white 490	Hemlock 540	Chestnut 69

To Compute Length of Surface of Resisto Horizontal Thrust.

RULE.—Divide 4 times horizontal thrust in lbs. by pr wood in ins., and detrusive resistance per sq. inch in lbs. and quotient will give length required.

Example —Thrust of a ratter is 5600 lbs., breadth of tie bearing, is 6 ins.; what should be length of beyond score for rate

Shearing.

Wrought Iron.

esistance to shearing of American is about 75 per cent., and of English er cent., of its tensile strength.

esistance to shearing of plates and bolts is not in a direct ratio. It apkimates to that of square of depth of former, and to square of diameter atter.

tesults of Experiments upon Shearing Strength of Various Metals by Parallel Cutters.

Wrought Iron.—Thickness from .5 to 1 inch, 50 000 lbs. per sq. inch.

Made by Inclined Cutters, angle = 7°.

PLATES.	Thickness.	Power.	Bolts.	Diam.	Power.
ss	·297 ·24	Lbs. 540 11 196 14 930 39 150 44 800	BrassCopperSteel	•775	Lbs. 29 700 11 310 28 720 3 093 35 410

sult of Experiments in Shearing, made at U.S. Navy Yard, Washington, on Wrought-iron Bolts.

am.	Minimum.	Stress. Maximum.	Per Sq.Inch.	Diam.	Minimum.	Stress. Maximum.	Per Sq. Inch.
ch. 5 75	Lbs. 8 900 18 400	Lbs. 9 400 19 650	Lbs. 44 149 39 553 Moan 41	Inch. .875	Lbs. 25 500 32 900	Lbs. 27 600 35 800	Lbs. 41 503 40 708

tesult of Experiments on .875 Inch Wrought-iron Bolts. (E. Clark.)

gle shear 54 006 24.19	Double shear of two .625-inch plates	Lbs.	Tons.					
uble " 46 904 22.1	Double shear of two .625-inch plates riveted together (one section)	45 696	20.4					
Tensile strength 50 176 lbs.								

Riveted Joints.

Experiments on strength of riveted joints showed that while the plates re destroyed with a stress of 43 546 lbs., the rivets were strained by a ess of 39 088 lbs.

Cast Iron.

Resistance to shearing is very nearly equal to its tensile strength. An rage of English being 24000 lbs. per sq. inch.

Steel.

Shearing strength of steel of all kinds (including Fagersta) is about 72 per it, of its tensile strength.

Treenails.

Oak treenails, 1 to 1.75 ins. in diameter, have an average shearing strength 1.8 tons per sq. incl., and in order to fully develop their strength, the planks which they are driven should be 3 times their diameter.

Woods.

When a beam or any piece of wood is let in (not mortised) at s n to another piece, so that thrust will bear in direction of fibr at is cut, depth of cut at right angles to fibres should not be m length of piece, fibres of which, by their cohesion, resist thrust.

TENSILE STRENGTH.

Tensile Strength is resistance of the fibres or particles of a body to separation. It is therefore proportional to their number, or to area of its transverse section, and in metals it varies with their temperature, generally decreasing as temperature is increased. In silver, tensity decreases more rapidly than temperature; and in copper, gold, and platinum less rapidly.

Cast Iron.

Experiments on Cast-iron bars give a tensile strength of from 4000 b 5000 lbs. per sq. inch of its section, as just sufficient to balance elasticity of the metal; and as a bar of it is extended the 12 300th part of its length we every 1000 lbs. of direct strain, or one sixteenth of an inch in 64.05 feet pr sq. inch of its section, it is deduced that its elasticity is fully excited when it is extended less than the 2400th part of its length, and extension of its its limit of elasticity, which is about .5 of its destructive weight, is estimated at 1500th part of its length.

Average ultimate extension is 500th part of its length.

A bar will contract or expand .000006173 inch, or the 162 cooth of is length, for each degree of heat; and assuming extreme of moderate may of temperature in this country 140° (-20° + 120°), it will contract or expand with this change .0008642 inch, or the 1157th part of its length.

It follows, then, that as 1000 lbs. will extend a bar the 12 300th part of its length, contraction or extension for 1157th part will be equivalent to force of 10 648 lbs. (4.75 tons) per sq. inch of section. It shrinks in cooling from one eighty-fifth to one ninety-eighth of its length.

Mean tensile strength of American, as determined by Maj. Wade for U.S. Ordnance Corps, is 31 829 lbs. (14.21 tons) per sq. inch of section; mean d English, as determined by Mr. E. Hodgkinson for Commission on Application of Iron to Railway Structures, 1849, is 19484 lbs. (8.7 tons); and by Odwillmot, at Woolwich, in 1858, for gun-metal, is 23 257 lbs. (10.35 tons) varying from 12 320 lbs. (5.5 tons) to 25 520 lbs. (10.5 tons).

Mean ultimate extension of four descriptions of English, as determined for Commission above referred to, was, for lengths of 10 feet, 1997 inch, being 600th part of its length; and this weight would compress a bar the 775th part of its length.

Tensile strength of strongest piece ever tested—45 970 lbs. (20.52 tom). This was a mixture of grades 1, 2, and 3 from furnace of Robert P. Parott at Greenwood, N. Y., and at 3d fusion.

At 2.5 tons per sq. inch it will extend same as wrought iron at 5.6 tons

From experiments of Maj. Wade he deduced the following mean results:

Density. | Tensile. | Transverse. | Torsion. | Crushing. | Hardmar. |
7.225 | 3182 | 8182 | 8514 | 144916 | 2234

make per sq. inch of section; Transverse per sq. inch, one end fixed unlied at other end at a distance of r foot; and Torsion per sq. inch, nlied at end of a lever r foot in length.

ors are 6 per cent. stronger than dry, and 30 per cent. but when castings are chilled and annealed, a gain of dover those made in green sand.

-sile stress is for American as 4.55 to 4.00 mgth increasing with density.

elling.—Strength, as well as density, are increased by repeated regs. The increase is the result of the gradual abstraction of the contemporary of the iron, and the consequent approximation of the metal agent iron.

Ilt of the 4th melting of pig iron, as determined by Major Wade, was ease its strength from 12880 lbs. (5.75 tons) to 27888 lbs. (12.45 by discounting the provided require from 6.05 7.50 tons).

and its specific gravity from 6.9 to 7.4.

e successive meltings of Greenwood iron, N. Y., gave tensile strength 00, 30 100, and 35 700 lbs.

ilt of 5th melting by Mr. Bramwell was to increase strength of Acadian om 16 800 lbs. (7.5 tons) to 41 440 lbs. (18.5 tons).

elting increases its resistance to a crushing stress from 70 to 80 tons r cent.) per sq. inch of section.

Hot and Cold Blast.

Hodgkinson deduced from experiments that relative strength of 1.2 ins. square was as 100, 80, and 77, and that hot blast had less tensile th than cold blast, but greater resistance to a crushing stress.

tain James ascertained that tensile strength of .75 inch bars, cut out id 3 inch bars, had only half strength of a bar cast 1 inch square.

Robert Stephenson concluded, from experiments of recent date, that go strength of hot blast was not much less than that of cold blast; but bld blast, or mixtures of cold blast, were more regular, and that mixtfold blast and hot blast were better than either separate.

Stirling's Mixed or Toughened Iron.

mixture of a portion of mallcable iron with cast iron, carefully fused rucible, a tensile strain of 25,764 lbs. has been attained. This mixthen judiciously managed and duly proportioned, increases resistance t iron about one third; greatest effect being obtained with a proporf about 30 per cent. of mallcable iron.

Malleable Cast Iron.

sile strength of annealed malleable is guaranteed by some Manufactof it at 50000 lbs.; it is capable of sustaining 22400 lbs. without perts et.

Wrought Iron.

periments on English bars gave a tensile strength of from 22 000 lbs. 400 lbs. per sq. inch of its section, as just sufficient to balance elasticity metal; and as a bar of it is extended the 28 000th part of its length ery 1000 lbs. of direct strain, or one sixteenth of an inch in 116.66 feet 1 inch of its section, it is deduced that its elasticity is fully excited it is extended the 1000th part of its length, and extension of it at its of elasticity, which is from 45 to .5 of its destructive weight, is estilated to 1500th part of its length.

var will expand or contract .000006614 inch, or 151 200 part of its length wh degree of heat; and assuming, as before stated for cast iron, that me range of temperature in air in this country is 140°, it will contract pand with this change .000926, or 1080th of its length, which is equal to a force of 20740 lbs. (9.25 tons) per sq. inch of section.

an tensile strength of American bars and plates (45000 to 76 olbs. (27 tons) per sq. inch of section; as determined by Prof. Jo 36, is 55 900 lbs.; and mean of English, as determined by Capt. F. W. Brunel, and Fairbairn, is 53 900 lbs.; and by Mr. Kirkaldy, bar (47040 to 55 910) 51 475 lbs. (22.97 tons).

3 U*

Greatest strength observed 73 449 lbs. (32.79 tons).

Ultimate strength, as given by Mr. D. K. Clark, 59 732 lbs. (26.66 tons). Average ultimate extension is 600th part of its length.

Strength of plates, as determined by Sir William Fairbairn, is fully 9 pr cent, greater with fibre than across it.

Resistance of wrought iron to crushing and tensile strains is, as a men, as 1.5 to 1 for American; and for English 1.2 to 1.

Reheating.—Experiments to determine results from repeated heating milaminating, furnished following:

From 1 to 6 reheatings and rollings, tensile stress increased from 4394 lbs., to 61 824 lbs., and from 6 to 12 it was reduced to 43 904 again.

Effect of Temperature.—Tensile strength at different temperatures is s follows: 60°, 1; 114°, 1.14; 212°, 1.2; 250°, 1.32; 270°, 1.35; 325°, 141; 435°, 1.4.

Experiments of Franklin Institute gave at

Annealing.—Tensile strength is reduced fully 1 ton per sq. inch by a nealing.

Cold Rolling.—Bars are materially stronger than when hot rolled strength being increased from one fifth to one half, and elongation reduced from a to 8 per cent.

Hammering increases strength in some cases to one fifth.

Welding.—Strength is reduced from a range of 3 to 44 per cent. 20 per cent., or one fifth, is held to be a fair mean.

Temperature.—From 0° to 400° strength is not essentially affected, but high temperature it is reduced. When heated to redness its strength is reduced fully 25 per cent.

Tensile strength at 23° was found to be .024 per cent. less than at 64°.

Cutting Screw Threads reduces strength from 11 to 33 per cent.

Hardening in water, oil, etc., reduces elongation, but does not essentially increase the strength.

Case Hardening reduces strength fully 10 per cent.

Galvanizing does not affect strength of plates.

Angled Bars, etc.—Their strength is fully 10 per cent. less than for both and plates.

Elements connected with Tensile Resistance of various Substances.

Substances.	Stress per Sq. Inch for limit of Elasticity.	Ratio of Stress to that causing Rupture.	Substances.	Stress per Sq. Inch for limits of Elasticity. Ratio of Stress to that cannot
Beech Cast iron, English	Lbs. 3 355 4 000 5 000 2 8 5 6 5 2 000 7 5 7 00 3 3 3 3 2	.3 .22 .2 .23 .62	Wrought iron, ordinary " Swedish " English " American "wire, No., 9, unannealed " " annealed	Lbs. 17 600 3 24 400 34 (18 850 35 (22 400 35 15 000 45 47 532 46 36 300 45

wing outer surface does not reduce the strength of bold

TIE-RODS.

esults of Experiments on Tensile Strength of Wroughtiron Tie-rods.

Common English Iron, 1.1875 Ins. in Diameter.

DESCRIPTION OF CONNECTION.	Breaking Weight.
	Lbs.
micircular hook fitted to a circular and welded eye	
o semicircular hooks hooked together	16 220
ght-angled hook or goose-neck fitted into a cylindrical eye	
70 links or welded eyes connected together	
raight rod without any connective articulation	56 000

Ratio of Ductility and Malleability of Metals.

In order of	In order of	In order of	In order of	In order of	In order of
lire-drawing	Laminable	Wire-drawing	Laminable	Wire-drawing	Laminable
Ductility.	Ductility.	Ductility.	Ductility.	Ductility.	Ductility.
lold.	Iron.	Tin.	Gold.	Tin.	Zinc.
Bilver.	Copper.	Lead.	Silver.	Platinum.	Iron.
Platinum.	Zinc.	Nickel.	Copper.	Lead.	Nickel.

Relative resistance of Wrought Iron and Copper to tension and compreson is as 100 to 54.5.

Steel.

Experiments of Mr. Kirkaldy, 1858-61, give an average tensile strength in bars of 134,400 lbs. (60 tons) per sq. inch for tool-steel, and 62,720 lbs. 18 tons) for puddled. Greatest observed strength being 148,288 lbs. (66.2 ms). Plates, mean, 86 800 lbs. (32 to 45.5 tons) with fibre, and 81,760 lbs. 36.5 tons) across it.

Its resistance to crushing compared to tension is as 2.1 to 1.

Hardening.—Its strength is very materially increased by being cooled in il, ranging from 12 to 55 per cent.

Cruoible.—Experiments by the Steel Committee of Society of Civil ngineers, England, 1868-70, give a tensile strength of 91 571 lbs. per sq. ich (40.38 tons), with an elongation of .163 per cent., or 1 part in 613, and 1 elastic extension of .000 034 7th part for every 1000 lbs. per sq. inch, or part in 28 818.

Bessemer.—Experiments by same Committee give a tensile strength 7663 lbs. per sq. inch (34.22 tons) with an elongation of .144 per cent., r 1 part in 695, and an elastic extension of .000 034 82d part for every 1000 be. per sq. inch, or 1 part in 28 719.

Result of Experiments by Committe of Society of Civil Engineers of England, 1868-70, and Mr. Daniel Kirkaldy, 1875.

Per Sa. Inch.

Per Sq. Inch.									
Elastic S	trength.	Elastic E in Parts of Length.	per 1000 Lbs.	Ratio of Elastic to Ultimate Strength	Destructive Weight.				
Lbs. 49 840 44 800 48 608 39 200 32 080 28 784		Per Cent. .225 .204 —	In Length000 5 .000 45	58. 59 59. 51. 46.	Tons.				
	Lbs. 49 840 44 800 48 608 39 200	Lbs. Tona. 49 840 22.25 44 800 20 48 608 21.7 39 200 17.5 32 880 14.56	Elastic Strength.	Elastic Extension In Parts of Length. Per Cent. In Length. 100 Lbs. Lbs. Per Cent. In Length. 100 Lbs. Per Cent. In Length. 100 Lbs. Per Cent. In Length. 100 Lbs. 100	Elastic Strength. Elastic Extension Ratio of Elastic In Parts of Length 1000 Lbs. Climate Strength 1000 Lbs. Climate				

141.44

Average Tensile Elasticity of Steel Bars and Plates.
(Com. of Civil Engineers, 1870.)

Description.	Elasticity per Sq. luch.	Elastic Exten- sion in Parts of Length.	Ratio of Ele- tic to Destru- tive Strength.
Bars.	Lbs.	Parts.	Per Cent.
Crucible, hammered and rolled	50 557	r in 485	58.2
Bessemer, " "	43814	r in 675	55
Fagersta, rolled	56 560	— "	55 64.8
" unannealed	34 048	-	55.6
" hammered and rolled	55 574	_	64.7
" " annealed	40 858		54
" plates, unannealed	30710	r in 980	59.2
" annealed	26 940	1 in 1020	59.2 56.5 46.4
Siemens, "unannealed	32 500	l —	46.4
" annealed	28 780	l —	44-4
" tires	40 174		44-4 58.8
Krupp's shaft	42 112	1 in 185	I –

Tensile strength of steel increases by reheating and rolling up to second operation, but decreases after that.

Tensile Strength of Various Materials, deduced from Experiments of U. S. Ordnance Department, Fairbairn, Hodgkinson, Kirkaldy, and by the Author.

Antimony, cast.....

Power or Weight required to tear asunder One Sq. Inch, in Lbs.

1 053 Steel, Pittsburgh, mean...... 9449

2111011110113, 01101111111111111111111111	Escoti 1 11000 areni, month, 11111111 Ail.
Bismuth, cast 3248	" Bessemer, rolled { 76690
Cast Iron, Greenwood 45 970	1 (12)
" mean, Major Wade 31 829	" hammered 152900
" gun-metal, mean 37 232	" Eng., cast
" malleable, annealed 56 coo	" " plates, mean 93500
" Eng., strong 29 000	" " plates 86800
" weak 13400	" " puddled plates 62720
(** 600	" " crucible 91 570
" averages 21280	" " homogeneous 96280
" gun-metal 23257	" blistered, bars 104000
" mean* 19484	" Fagersta bars 89600
" Low Moor, No. 2 14 076	" " plates 98560
" Clyde, No. 1 16125	(\$06cc
" No. 3 23468	" " Whitworth's 152000
" Stirling, mean 25 764	1 64000
Copper, wrought 34 000	" Siemens's plates 6986
rolled 36 000	" " Krupp's shaft 9243
	Tin, cast
	" Banca 2100
	Wire rope, per lb. w't per fathom 4480
Wife	" galvanized steel, " 6720
Gold 20 384	garvanized steel, 45500
Lead, cast 1800	Wrought Iron, boiler plates 62000
Inpe	
encaseu 3759	111/08
Tolled Sheet	boits, mean
Platinum wire 53000	1210110111111
Qilver, cast 40 000	
1, cast, maximum 142 000	
" mean 88 560	wire
"ddled, maximum 173 817	" No. 9 100000
vr. Tool Co 179 980	" No. 20 120000
210 000 300 000	" diam0069 inch 301 168
····· { 300 000	galv'ized.oso wy
96 300	" Eng., heavy forging. 33600
•• 93700	" plates, lengthwe 5380
000 00s	

- supplication of I

STRENGTH OF MATERIALS.—TENSILE.

Metals.	Lbs.	Woeds.	Lbs
Frought Iron, Eng., mean	51 000		4 200
" Eng., Low Moor	. 57 faa i	Larch	0.500
" Lancashire " Thames	65 020	Lignum vitæ	
		Locust	20 500
armor-plates	31 300	Mahogany, Honduras	21 000
" " charcoal	62 000	" Spanish	8 000 12 000
" _" rivet, scrap	51 760	Oak, Pa., seasoned	20 333
" Russian, bar, best		" Va., "	25 222
" Swedish, " best	72 000	" white	10 500
_ " " "	48 900	" red	10250
inc	3 500	" African	,,,
* sheet	7 000	" English	4 500 7 57≖
ALLOYS OR COMPOSITIONS.		" Dantzic	4 200
	0	Pear	
Tin 10, Antimony 1	11000	Pine, Va	*4 000
Juminium, Cop. 90	71600	" yellow	13000
" maximum	96 320	" white	118co
Frees, cast	18000	Poon	13 000
" wire	40 000	Popiar	7 000
ronze, Phosphor., extreme	50915	Redwood, Cal	
ordinary	23 500	Spruce, white	10 290
Cop. 10, Tin 1	33 000	Sycamore	9600
" 0, " 1	38 080	Teak, India	13000
		" African	21 000
metal, ordinary	18000	Walnut, Eng.	# R~~
meanbars	33 000	" black	16633
Peculum metal	7 000	Willow	17 500
ellow metal.	48 700	Yew	8000
Woods.		Across Fibre.	
sh, white.	14 000	Oak Piue	2 300 550
		Miscellaneous.	330
English	6	Basalt, Scotch	1 469
		Beton, N. Y. Stone Con'g Co	300
eech, English			500
Amer., black	7000	Blue stone	77
African		" inferior	100
edar, Lebanon	19000	!	290
West Indian	7 500	Cement, Portland, 7 days	400 860
. American	2	" pure, r mo	393
hestnut.	12 500	" sand 2, 320 days	713
Press	4	" pure, "	1152
Christiana	12400	" sand 1, in water	201
• • • • • • • • • • • • • • • • • • • •	6 000	u u u x u y ··	'0
100 · · · · · · · · · · · · · · · · · ·		" " " 3, 1 ye	
Dina	- 9	" " 5, 1	
Tavatra	15 000	" Hydraulic	
olly oly	11 000	" Rosedale, Ulst. Co.	
		" sand r,	
*****************	17 350 23 000	" " 9 mos	
1 7.		•	

	Mis	CELLANDO	US.	Lbs.	MISCELLANEOUS.
Cement,	Roman	, in wate	r 7 days .	90	Mortar, 1 year
"	"		1 mo	115	201001, 2 3 00011111111111111111111111111111111
"	66	**	ı year.	286	" hydraulic
44	46	sand r.	42 days	284	By at a different control
44	46	" 2,	. "	199	" ordinary
"	"	" 3	"	IÓO	Oxhide
Flax				25 000	Rope, Manila
Glass, cr	awo			2 546	" tarred hemp
				4 000	Sandstone
Granite.				578	" fine green
Gutta Pe	rcha!			3 500	" Arbroath
Homn r	ma		{	12 000	Albibath
				16 000	" Caithness
				1 000	Cartiness
Leather	belting.			330	" Portland
Limesto	na			670	
Zimosvo	шо	• • • • • • • •	····· 1	2 800	" Craigleth
Marble,	statuar	7. 		3 200	Silk fibre
44	Italian .			5 200	Slate
Marble.	white			9000	Siave
16	Irish			17 600	Whalebone

TORSIONAL STRENGTH.

SHAFTS AND GUDGEONS,

Shafts are divided into Shafts and Spindles, according to nitude, and are subjected to Torsion and Lateral Stress com Lateral Stress alone.

A Gudgeon is the metal journal or Arbor upon which a w revolves.

Lateral Stissness and Strength.—Shafts of equal length have ness as their breadth and cube of their depth, and have latera their breadth and square of their depths.

Shafts of different lengths have lateral stiffness directly as t and cube of their depth, and inversely as cube of their lengtl lateral strength directly as their breadth and as square of thei inversely as their length.

Hollow Shafts having equal lengths and equal quantities of n lateral stiffness as square of their diameter, and have lateral stre diameters. Hence, in hollow shafts, one having twice the dia other will have four times the stiffness, and but double the st when having equal lengths, by an increase in diameter they inconess in a greater proportion than in strength.

When a solid shaft is subjected to torsional stress, its centre axis, about which both intensity and leverage of resistance incres or side; and the two in combination, or moment of resistance "crease as square of radius or side."

wind Shaft.—Radius of ring of resistance is radius of gyr sing alike to that of a circular plate revolving on its axi. The ultimate moment of resistance then is expressed onal area of shaft, by ultimate shearing resistance per by radius, and by .7071.

> **R54 d² r S × .7071 = .278 d³ S = R W. (D. K. Clarl **eer of shaft and r radius, S ultimate shearings 'R radius through which stress is applied, in **uctive stress, in lbs.

$$^2=8$$
; and $^3\sqrt{\frac{8}{8}}\times ^2$

d Shaft.—Strength, compared to a square of equal sectional area, t as 1 to .85. Diameter of a round section, compared to side of section of equal resistance, is as 1 to .96.

re Shaft.—Moment of torsional resistance of a square shaft exceeds a round of same sectional area, in consequence of projection of corsquare; but inasmuch as material is less disposed to resist torsional he resistance of a square shaft, compared to a round one of like area on, is as 1 to 1.18, and of like side and diameter, as 1.08 to 1.

$$, \frac{.278 \times 1.08 s^2 \text{ S}}{\text{R}} = \text{W}. \quad \text{Hollow Round Shafts.} \quad \frac{.278 (d^4 - d'^4) \text{ S}}{\text{R } d} = \text{W}.$$

i Section is comparatively Thin. $\frac{1.57 \, d^3 \, t \, S}{R} = W$. s representing side,

'external and internal diameters, and t thickness of metal in ins.

onal Angle of a bar, etc., under equal stress, will vary as its length. torsional strength of bars of like diameters is inversely as their

upon a shaft from a weight upon it is proportional to product of the parts multiplied into each other. Thus, if a shaft is 10 feet in length, and a weight ntre of gravity of the stress is at a point 2 feet from one end, the parts 2 nultiplied together, are equal to 16; but if weight or stress were applied in 1 fthe shaft, parts 5 and 5, multiplied together, would produce 25.

load upon a shaft is uniformly distributed over any part of it, it is considunited in middle of that part; and if load is not uniformly distributed, it is red as united at its centre of gravity.

tion of a shaft produced by a load which is uniformly distributed over its 3 same as when .625 of load is applied at middle of its length.

tance of body of a shaft to lateral stress is as its breadth and square lepth; hence diameter will be as product of length of it, and length one side of a given point, less square of that length.

rration.—Length of a shaft between centres of its journals is 10 feet; what be relative cubes of its diameters when load is applied at 1, 2, and 5 feet e end? and what when load is uniformly distributed over length of it?

$$l \times l^1 - l^2 = d^3$$
; and when uniformly distributed, $d^3 \div 2 = d^1$.

 $t=10-1^2=9$ =cube of diameter at 1 foot; $10\times2=20-2^2=16$ =cube eter at 2 feet; $10\times5=50-5^2=25$ =cube of diameter at 5 feet.

1 a load is uniformly distributed, stress is greatest at middle of length, and . to half of it; $25 \div 2 = 12.5 = cube$ of diameter at 5 feet.

ional Strength of any square bar or beam is as cube of its side, and linder as cube of its diameter. Hollow cylinders or shafts have greational strength than solid ones containing same volume of material.

Compute Diameter of a Solid Shaft of Cast or Wrought Iron to Resist Lateral Stress alone.

n Stress is in or near Middle. RULE.—Multiply weight by length of n feet; divide product by 500 for east iron and 560 for wroup be root of quotient will give diameter in ins.

IFIR.—Weight of a water-wheel upon a cast-iron shaft is 50 000 lbs., and centre of stress of wheel 7 feet from one end; what should be ody?

$$\sqrt[3]{\left(\frac{5000 \times 30}{500}\right)} = 14.42$$
 ins., if weight was in middle of its length

** diameter at 7 feet from one end will be, as by preceding Rule, 3 1 = relative cube of diameter at 7 feet; $30 \times 15 - 15^2 = 225 = relative$ veter at 15 feet, or at middle of its length.

. 36 \$225 : 14.42 :: \$161 : 12.89 ins., diameter of shaft at 7 feet from one

For Bronze, 420; Cast steel, 1000 to 1500; and Puddled steel, 500 When Stress is uniformly laid along Length of Shaft. Rule.-cube root of product of weight and length by 9.3 for Cast iron for Wrought iron, and quotient will give diameter in ins.

Example —Apply rule to preceding case.
$$\frac{\sqrt[4]{5000 \times 30}}{9.3} = 12.31$$
 ins.

For Bronze, 8.5; Cast steel, 18.6 to 27.9; and Puddled steel, 9.3.

When Diameter for Stress applied in Middle is given. Rulk.—T.

root of .625 of cube of diameter, and this root will give diameter re

EXAMPLE. — Diameter of a shaft when stress is uniformly applied along is 14.42 ina; what should be its diameter, stress being applied in middle?

$$\sqrt[4]{.625} \times 14.42^3 = \sqrt[4]{.625} \times 3000 = 12.33$$
 ins.

To Compute Diameter of a Solid Shaft of Cast I Resist its Weight alone.

RULE.—Multiply cube of its length by .007, and square root of will give diameter in ins.

EXAMPLE.—Length of a shaft is 30 feet; what should be its diameter in $\sqrt{(30^3 \times .007)} = \sqrt{189} = 13.75$ ins

HOLLOW SHAFTS.

To Compute Diameter of a Hollow Shaft of Cas to Sustain its Load in Addition to its Weig

When Stress is in or near Middle. Rule.—Divide continued proper times cube of length, and number of times weight of shaft in square of internal diameter added to 1, and twice square root of added to internal diameter will give whole diameter in ins.

EXAMPLE.—Weight of a water-wheel upon a hollow shaft 30 feet in len times its own weight, and internal diameter is 9 ins.; what should be wheter of shaft?

$$2\sqrt{\left(\frac{.012\times30^3\times2.5}{1+9^2}\right)+9}=2\sqrt{\frac{810}{82}}=6.28$$
 ins., and $6.28+9=15.2$

To Compute Diameter of a Round or Square Si Resist Combined Stress of Torsion and Weis

RULE.—Multiply extreme of pressure upon crank-pin, or at pite pinion, or at centre of effect upon the blades of a water-wheel, et shaft may at any time be subjected to; by length of crank or wheel, etc., in feet; divide the product by Coefficient in following T cube root of quotient will give diameter of shaft or its journal in in

Or,
$$\sqrt[3]{\frac{P}{C}} = d$$
.

EXAMPLE.—What should be diameter for journal of a wrought-iron we shaft, extreme pressure upon crank-pin being 59 400 lbs., and crank 5 feet

$$C = 120.$$
 $\sqrt[3]{\frac{5940 \times 5}{120}} = \sqrt[8]{2475} = 13.53 ins.$

When Two Shafts are used, as in Steam-vessels, etc., with On RULE.—Divide three times cube of diameter for one shaft by cube root of quotient will give diameter of shaft in ins.

Or,
$$\sqrt[3]{\frac{3}{4}} = d$$
.

$$1113 = 12$$
. Then $\frac{3 \times 12^3}{4} = 1296$, and $\sqrt[3]{1296} = 1$

Torsional Strength of Various Metals.

Vm. Wade, U. S. Ordnance Corps, 1851, Steel Committee [England, 1868], and
Streets Institute, N. J., 1878.)

Reduced to a Uniform Measure of One Inch in Diameter or Side. Stress applied at One Foot from Axis of Body and at Face of Axis.

		Destructive Stress		Marian make	C	Conficient $\frac{C d^2}{R} = W$.				
S AND METALS.	Tensile Strength.	at 25 lns.	Computed at 12 Ins.	$\frac{WIL}{d\theta} = T.$	200	15 11m.	Inc.	15	20 Ins.	
LAST IRON.	Lba.	Lbs.	Lbs.							
)iam. { 1.3 ins. } .65 in. } Area 1 sq. inch }	45 000	520	1082	499	100	95	90	85	8e	
ım. {3.25 ins} 2.61 "} rea 2.97 sq. ins.}	"	3800	7904	230	45	40	35	30	25	
Diam. Least = 1.9 Mean Greatost.	9 000 31 829 45 000	1550 2145 2840	3664 4462 5907	530 650 850	130	125	120	115	110	
ide i inch} Area i sq. inch}	"	350	728	728	125	130	115	10	105	
ought Irox. Diam. (Least = 1.9 Mean ins. (Greatest. Area 2.83 sq. ins.	38 027 56 300 74 592	1250 1375 1500	2600 2860 3120	376 416 452	120		110	105	100	
BRONZE. um. == { Least j ins. { Greatest. Area 2.83 sq. ins.	17 698 56 7 86	500 650	1040 1352	152	30 38	28 36	26 34	=	=	
AST STEEL. im. = { Least j ins. { Greatest. Area 2.83 sq. ins.	42 000 128 000	2600 7760	540 6 16140	788 2353	160 475	155	550 465	=	=	
semen Steel. im.=1.382 ins. } trea 1.5 sq. ins. }	36 960	1568	3261	1236	245	240	235	230	225	

Compute Diameter of Shafts of Oak and Pine. tiply diameter ascertained for Cast Iron as follows: Oak by 1.83, Pine by 1.716.

Metals and Woods.

mate Torsional Strength.—Of Cast Iron may be taken as equal to its erse strength for American and .9 for English, or as .26 of its tensile th for American and .23 for English. Of Wrought Iron, as .7 to .8 of neverse strength for American and .7 to 1 for English, and of Steel. as its tensile strength.

stic Torsional Strength.—Of Cast Iron may be taken as equal to it a verse strength, of Wrought Iron 40 per cent. of its ultimate torsic th, of Steel 44 per cent. of its tensile strength, and 45 per cent. of ite torsional strength.

semer Steel.—Has a torsional strength of 6670 lbs. per sq. inch at s f one foot, being somewhat less than that of Cast Iron, Fagersta hamt. of its ultimate transverse strength, and Siemens 44.5 per cent. imate tensile.

Note. - Examples here given are deduced from instances of successful practice; where diameter has been less, fracture has almost universally taken place, and being increased beyond ordinary limit.

2.—When shafts of less diameter than 12 ins, are required, Coefficients here give may be slightly reduced or increased, according to quality of the metal and disserter of shaft; but when they exceed this diameter, Coefficients may not be increased. as strength of a shaft decreases very materially as its diameter increases.

'n

I th

T

Į

To

Cε

ha 1 re

Hans.

ш

ins i is or

her

ititu

tres: ich v

inate. Wron.

Edde

r:ra

A.C.

Me-1

ingri

idow.

ds

Hijar

Order of shafts, with reference to degree of torsional stress to which the may be subjected, is as follows:

2. Water-wheel. | 3. Secondary shaft. | 4. Tertiary, etc. Hence, diameters of their journals may be reduced in this order.

To Compute Diameter of a Wrought-iron Centre Shat for connecting Two Engines at a Right Angle. Conditions of such a shaft are as follows:

Greatest stress that it is subjected to is when leading engine is at .75d its stroke, and following engine .25 of its stroke; hence, position of as crank is as sin, 22° 30' × 2= ,7071 of length of crank or radius of power.

Consequently,
$$\sqrt[3]{\frac{2 \, P \cdot 707 \, R}{125}} = d$$
. P representing extreme pressure on pism.

Note. -In computing P it is necessary to take very extreme pressure that place may be subjected to, however short the period of time. Average pressure dett meet requirement of case.

ILLUSTRATION.—Extreme pressure upon each piston of two engines connected a right angle was 111 502 lbs., and stroke of pistons 10 feet; what should have be diameter of centre shaft? and what of each wheel or driving shaft?

$$\sqrt[3]{\left(\frac{111592 \times 2 \times .707\frac{10}{8}}{125}\right)} = \sqrt[3]{\frac{788955}{125}} = 18.42 \text{ ins. centre shaft.}$$

For ordinary mill purposes, driving shafts should be as cube root of .75 cabes centre shaft.

Thus
$$\sqrt[3]{\frac{18.48^3 \times 3}{4}} = 16.79$$
 ins.

To Compute Torsional Strength of Hollow Shafts and Cylinders.

RULE.—From fourth power of exterior diameter subtract fourth power interior diameter, and multiply remainder by Coefficient of material; and this product by product of exterior diameter and length or distance from and at which stress is applied in feet, and quotient will give resistance in ht.

or,
$$\frac{(d^4 - d'^4) C}{dt} = R$$
.

EXAMPLE. - What torsional stress may be borne by a hollow cast-iron shaft, ing d:ameters of 3 and 2 ins., power being applied at one foot from its axis?

C = 130.
$$3^4 - 2^4 \times 130 = 8450$$
, which $\div 3 \times 1 = \frac{8450}{3} = 2816.6$ De.

To Compute Torsional Strength of Round and Square Shafts.

RULE.—Multiply Coefficient in preceding Table by cube of side of diameter of shaft, etc., and divide product by distance from axis at which stress is applied in feet; quotient will give resistance in lbs. d of

ILLUSTRATION. - What torsional stress may be borne by a cast-iron shaft of bell rial, 2 ins. in diameter, power applied at 2 feet from its axis.

vable = 130.
$$\frac{130 \times 2^3}{2} = \frac{1040}{2} = 520 \ lbs.$$

seeling of vessel or roughness of sea the a, diameter of journal of its shaft should

GUDGEONS.

Compute Diameter of a Single Gudgeon of Cast Iron, to Support a given Weight or Stress.

LE.—Divide square root of weight in lbs. by 25 for Cast iron, and 26 rought iron, and quotient will give diameter in ins.

MPLE. — Weight upon a gudgeon of a cast-iron water-wheel shaft is 62 500 lbs.; should be its diameter?

$$\frac{\sqrt{62\,500}}{25} = \frac{250}{25} = 10 \text{ ins.}$$

Compute Diameter of Two Gudgeons of Cast Iron, to Support a given Stress or Weight.

LE.—Proceed as for two shafts, page 702.

Compute Ultimate Torsional Strength of Round and Square Shafts. (D. K. Clark.)

1st Iron. Round.
$$\frac{.278 \text{ d}^3 \text{ S}}{\text{R}} = \text{W}$$
; 1.534 $\sqrt[3]{\frac{\text{W R}}{8}} = d$; and $\frac{\text{W R}}{278 \text{ d}^3} = \text{S}$.
re. $\frac{.4 \text{ s}^3 \text{ S}}{\text{R}} = \text{W}$, and 1.36 $\sqrt[3]{\frac{\text{W R}}{8}} = s$. Hollow. $\frac{.278 \text{ (d}^4 - d^4) \text{ S}}{\text{R} d} = \text{W}$.

epresenting ultimate shearing strength, and W moment of load, both in Ibs., s side vare shaft, and R radius of stress, both in ins.

USTRATION .- What is ultimate torsional strength of a round cast-iron shaft in diameter, stress applied at 5 feet from its axis?

sume S =
$$20 \infty$$
 lbs. Then $\frac{.278 \times 4^3 \times 20 \infty}{5 \times 12} = 5930$ lbs.

experiments of Major Wade, ordinary foundry iron has a torsional strength 15 lbs., or 644 lbs. per sq. inch at radius of one foot.

is, take preceding illustration. Then
$$\frac{7725 \times 4^3}{5 \times 12} = 8240$$
 lbs.

Frought Iron. Round. $\frac{22224}{R} = W$. Square. $\frac{:32 \cdot 5^3}{R} = W$.

hen Torsional Strength per sq. inch for radius of I inch is ascertained,

itute C for .278, .4, .2224, or .32. ess which will give a bar a permanent set of .5° is about .7 of that h will break it, and this proportion is quite uniform, even when strength aterial may vary essentially.

rought Iron, compared with Cast Iron, has equal strength under a stress h does not produce a permanent set, but this set commences under a less in wrought iron than cast, and progresses more rapidly thereafter. ngest bar of wrought iron acquired a permanent set under a less strain a cast-iron bar of lowest grade.

rongest bars give longest fractures.

teel. Round.
$$\frac{\cdot 2 d^3 S}{R} = W$$
. S When S is not known, substitute for $8 72 s = 72$ per cent. of tensile strength.

"sional Strength of Cast Steel is from 2 to 3 times that of Cast Iron llowing rules are purposed to apply in all instances to dian als of shafts, or to diameter or side of bearings of beams, et h of journal or distance upon which strain bears does not gre liameter of journal or side of beam, etc.; hence, when length or atly increased, diameter or side must be correspondingly incre

Ificients for torsional breaking stress of Iron, Bronze, and Stee. Ted by Major Wade, are: Wrought Iron, 640; Cast Iron, 560; Cast Steel, 1120 to 1680. Puddled Steel does not differ essentially Of cast iron

Formulas for Minimum and Maximum Diam. of Wrought-iron Shift.

(A. E. Scalon, London, 1883, and Board of Trade, Eng.)

Compound Engines, $\sqrt[3]{\frac{D^2 p d^2 z_5}{C}} = \text{diameter.}$ D and d representing time eter of low and high pressure cylinders, and 8 half stroke, all in ins., p pressure steam in boiler, in the ner so, inch, and 0 a coefficient, as follows:

Angle	Sha	fts.	Angle	Sha Crank.	fts.	Angle	Sha	Re.	Angle	She	
Crank.											
90°	\$2468 \$4000	2880	1000	\$2279 4000	2659	1100	\$2131 4000	2487	1200	{ 2016	2353 Cum

$$\sqrt[3]{\frac{\text{IIP}}{r}}$$
 C = diameter. A. E. Seaton, London, 1883.

Side-wheel Engines, Sea Service.—One cylinder crank journal, C=80; online 100; Two cylinder crank journal 50; outboard 65; and centre shaft 58.

۲,

Propeller Engines.—One cylinder crank journal 150; Tunnel 130; Two cylinder compound crank 130; Tunnel 110; Two cranks, crank 100; Tunnel 85; Three cranks, crank 100; and Tunnel 78.

River Service.—C may be reduced one fifth.

ILLUSTRATION.—With a compound propeller engine, steam cylinders so and # in. in diameter, by 40 ins. stroke, operating under a pressure of 80 in sea (mercurial gauge), what should be the diameter of the shafts of wrought iron

$$\sqrt[3]{\frac{20^2 \times 80 + 40^2 \times 15}{4000} \times 40} \times 40 = \sqrt[3]{\frac{56000}{4000} \times 40} = 8.24 \text{ ins. crank shaft;}$$
and $\sqrt[3]{\frac{56000}{5400} \times 40} = 7.46 \text{ ins. propeller shaft.}$

Journals of Shafts, etc.

Journals or bearings of shafts should be proportioned with reference pressure or load to be sustained by the journal. Simplest measure of being capacity of a journal is product of its length by its diameter, in sq. ins; and axial area or section thus obtained, multiplied by a coefficient of preserved inch, will give bearing capacity.

Sir William Fairbairn and Mr. Box give instances of weights on bearing shafts, etc., from which following deductions are made, showing pressure pa 4 inch of axial section of journal:

Crank pins, 687 to 1150 lbs. per sq. inch.

Link bearings, 456 to 690 lbs. per sq. inch.

Pressure on bearings, as a general rule, should not exceed 750 lbs. per sq. inch daxial area.

Length of Journals should be 1.12 to 1.5 times diameter.

Journals of Locomotives or Like Axles are usually made twice diameter, and by sustain a pressure of 300 lbs. per sq. inch of axial area, or 10 sq. ins. per ton of the

Solid Cylindrical Couplings or Sleeves.

of $+\sqrt{5.5}$ d=D; 3 d=L; .8 d=l; .25 d+.12=k. d representing diameter, and L length of sleeve, t length of the or scarf of shaft, k breadth of key, its depth in the first prediction and D diameter of coupling or sleeve, all in ins.

Flanged Couplings.

- \(\sqrt{3.5} \) d=D; \(3 \) d+1=F; \(3 \) d+4=l; \(d+1=L; \) l+4=2. Dropt diameter of body of coupling, F diameter of flanges, l thickness of both flanges of each coupling, s projection of end of one shaft and retrocession of old tree of coupling, and d diameter of shaft, all in ins.

Supports for Shafts. (Molesworth.)

presenting distance of supports apart, in feet.

Resist Lateral Stress. $\sqrt[3]{\frac{L}{C}} = D$. W representing weight or pressure re of length in lbs., and D diameter or side, if square, in ins.

w of C.—Wrought Iron, 560; Cast Iron, 500; Cast Steel, 1000 to 1500; Bronze, nd Wood, 40. When Weight is distributed put 2 C.

s of C for Shafting of Various Metals, as observed by different uthorities, and deduced from Formulas of Navier. $\frac{16 \text{ W } r}{r} = 0$.

Ultimate Resistance.

METAL	C	METAL.	C	METAL.	C
OUGHT IRON.		CAST IRON.		STERL.	
an, Pembe, Me.				American, Conn	82 926
		American, mean }	38 300 42 821	" Spindle " Nash. I.Co.	102 131
mean h, refined	40 148	" 18 trials		English, Shear	95 213
-,	54 585	English mean	22 132	Rossomer	73 060 70 662
ih	61 909	English, mean }	38 217	pessemer }	79 662

Mill and Factory Shafts, (J. B. Francis.)

Cylindrical. $\frac{\nabla R}{d^3} = T. \quad \frac{\pi d^3 T}{16 R} = W. \qquad \frac{3\sqrt{2} W R}{s^3} = T. \quad \left(\frac{s^3 T}{R} \div 3\right) \div \sqrt{2} = W.$

Mean value of T.

STRATION .- What is the ultimate or destructive weights that may be borne ound Cast-iron shaft 2 ins. in diameter, and by a Square shaft 1.75 ins. side, applied at 25 ins. from axis?

Assume T = 36 000.

Round. Square.
$$\frac{16 \times 2^3 \times 36000}{16 \times 25} = 2261.95$$
 lbs. $\left(\frac{1.75^3 \times 36000}{25} \div 3\right) \div \sqrt{2} = 1819.1$ lbs.

ir lengths should be reduced, and diameter increased, in following cases: At high velocities, to admit of increased diameter of journals, thereby ring them less liable to heating. 2d. As they approach extremity of a f shafting. 3d. Attachment of intermediate pulleys or gearing.

Prime Movers of Power.

Transmitters of Power.

ght
$$\sqrt[3]{\frac{100 \text{ IHP}}{n}} = d$$
, and .or $n d^3 = \text{IHP}$. $\sqrt[3]{\frac{50 \text{ IHP}}{n}} = d$, and .or $n d^3 = \text{IHP}$. $\sqrt[3]{\frac{62.5 \text{ IHP}}{n}} = d$, and .or $n d^3 = \text{IHP}$. $\sqrt[3]{\frac{107 \text{ IHP}}{n}} = d$, and .or $n d^3 = \text{IHP}$. $\sqrt[3]{\frac{107 \text{ IHP}}{n}} = d$, and .or $n d^3 = \text{IHP}$. $\sqrt[3]{\frac{107 \text{ IHP}}{n}} = d$, and .or $n d^3 = \text{IHP}$.

representing horse-power transmitted, n number of revolutions, and d diameter ft in ins.

ISTRATION I. - What should be diameter of a wrought-iron & nit 128 IP at 100 revolutions per minute?

$$\sqrt[3]{\frac{50 \times 128}{100}} = \sqrt[3]{\frac{6400}{100}} = 4$$
 ins.

What IP will a steel shaft of 4 ins. diameter transmit at 100 0?

.032
$$\times$$
 100 \times 4⁸ = 204.8 horses.

TRANSVERSE STRENGTH.

Transverse or Lateral Strength of any Bar, Beam, Rod, etc., is in purpotion to product of its breadth and square of its depth; in like-sided ban, beams, etc., it is as cube of side, and in cylinders as cube of diameter of section.

When One End is Fixed and the Other Projecting, strength is inversely a distance of weight from section acted upon; and stress upon any section is directly as distance of weight from that section.

When Both Ends are Supported only, strength is 4 times greater for a equal length, when weight is applied in middle between supports, then if a end only is fixed.

When Both Ends are Fixed, strength is 6 times greater for an equal length, when weight is applied in middle, than if one end only is fixed.

When Ends Rest merely upon Two Supports, compared to one When Ends on Fixed, strength of any bar, beam, etc., to support a weight in centre of it, is as 2 to 3.

When Weight or Stress is Uniformly Distributed, weight or stress that as be supported, compared with that when weight or stress is applied at one of or in middle between supports, is as 2 to 1.

Metals.

In Metals, less dimension of side of a beam, etc., or diameter of a cylinds, greater its proportionate transverse strength, in consequence of their hard a greater proportion of chilled or hammered surface, compared to their dements of strength, resulting from dimensions alone.

Strength of a Cylinder, compared to a Square of like diameter or side, is as 5.5 to 8. Strength of a Hollow Cylinder to that of a Solid Cylinder, is same area of section, is about as 1.65 to 1, depending essentially upon in proportionate thickness of metal compared to diameter.

Strength of an Equilateral Triangular Beam, Fixed at One End of Loaded at the Other, having an edge up, compared to a Square of the see area, is as 22 to 27; and strength of one, having an edge down, compared to one with an edge up, is as 10 to 7.

Note.—In Barlow and other authors the comparison in this case is made what the beam, etc., rested upon supports. Hence the stress is contrariwise.

Strongest rectangular bar or beam that can be cut out of a cylinder is on of which the squares of breadth and depth of it, and diameter of the cylinder are as 1, 2, and 3 respectively.

Cast Iron.

Mean transverse strength of American, as determined by Major Wash, 681 lbs. per sq. inch, suspended from a bar fixed at one end and loaded the other; and mean of English, as determined by Fairbairn, Barlow, so others, is 500 lbs.

Experiments upon bars of cast iron, 1, 2, and 3 ins. square, give a rest of transverse strength of 447, 348, and 338 lbs. respectively; being in the ratio of 1, .78, and .756.

Beams of wood, when laid with their annular layers vertical, are struct than when they are laid horizontal, in the proportion of 8 to 7.

Relative Stiffness of Materials to Resist a Transvers.

ngth of a Rectangular Beam in an *Inclined position*, to resist a vertical is to its strength in a horizontal position, as square of radius to square ine of elevation; that is, as square of length of beam to square of disbetween its points of support, measured upon a horizontal plane.

Transverse Strength of Various Materials.

Irdnance Department, Hodgkinson, Fairbairn, Kirkaldy, and by the Author.)

reduced to uniform Measure of One Inch Square, and One Foot in Length;

Weight suspended from one End.

METALS.	Woods.
260	Hickory
on, mean of 4 grades 660	(250
" (Maj. Wade) 681	Iron wood, Burmah240
ordinary 575 extreme, West P't F'dry 980	Larch, Russian
gun-metal,* " " 740	Lignumvitse
Eng., Low Moor, cold blast 472	Mahogany112
" Ponkey, " 581	Mangrove 162
" Ystalyfera " 770	Maple
" mean, 65 kinds 500	Oak, white
15 Killub, cold blubb 041	" live 160 " red, black 135
" planed bar 518 " rough bar 534	" African 207
' 244	
hammered, mean 1500	" English 105
cast, soft 1540	" French 100
" hard 4200	" Dantzic 88
hematite, hammered 1620	" Canada146
Krupp's shaft 2096 Fagersta, hammered 1200	" Sardinia 142 " Spanish 105
ht Iron, mean 600	Pine, white
" English 475	" pitch
" Swedish † 665	" vellow 130
Woods.	_ " Georgia 200
	Poon184
	Poplar
nada120	" black 87
n, Canada 87	Sycamore
	Tamarack 100
vhite 112	Teak165
160 115	Walnut
white 160	Willow 87 Whitewood 116
1 60	,
Cuba	STONES, BRICKS, ETC.
1ut 160	Brick, common, mean 20
125	" pressed, " 40
anada, red	"English, stock
altic, mean	Brick arch
anada, yellow	Cement, mean
" red 120	" " Portland 10.2
orway 123	1
antzic	1 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13
lemel	" " " " " " " " " " " " " " " " " " "
" red 75	" Puz 4.5
heart, Guiana 160	" Port 8
blue 136	" Ron. 2.5
natack102	Concrete, Eng
)ck100	Cí

^{*} This was with a tensile strength of 27 000 lbs.
† With 840 lbs. the deflection was r inch, and the elasticity of

STORES, BRICKS, ETC. STORES, BRICKS, ETC.										
Concrete, Eng., fire-brick, sand 3, 1	.,	Marble, Adelaide								
lime z		" ltalian, white	mi							
" Eng., clay and chalk Flagging, blue, New York	5-4	Mortar, lime, 60 days	25							
Freestone, Conn	. 13	" I " 2 "	175							
" Dorchester	. 20.8	" I " 4 "	LS							
" New York	. 19	Oolite, English, Portland Paving, Scotch, Caithness	21.3							
" Eng Craigleth	. 10 #	"Ireland, Valentia								
" Darby, Victoria	. 1.3	" Welsh	157							
" Park Spring	· 4.3	Welsh English, Yorkshire, blue	8,. 104							
Glass, flooring	· 42.5	Slate	17							
· " Quincy		" Bangor	00							
" mean	. 25	"English, Liangollen	42							
Eng., Corning		Stones, English, Bath	52							
Limestone		" Kentish, Rag " Yorkshire, land	ing 225							
Marble, Vermont, mean	. 92	" Caen	125							
Elastic Transverse Strength of			Weigh,							
	is as f		- 1							
Ash Per Cent. Norw	ay Spru	Per Cent. Red Pine	Per Cast							
	Dantzic									
Elm 32 "	English	33 Teak	39							
Larch 38 Pitch	Pine	24 Yellow Pine	30							
Increase in Strength	of set	veral Woods by Seaso	ning.							
	Per (Tent.	•							
Ash61.9	Elm	12.3 Oak 26.1 White p	ine)							
Concre										
Concretes, Cements, etc.										
	Breaking (,	Breaking							
	Breaking Weight.	Materials.	Weight							
MATERIALS. CONCRETES (English).	Breaking Weight.	MATERIALS. BRICKS (English).	Lia.							
MATERIALS. CONCRETES (English). Fire-brick beam, Portl'd cement	Breaking Weight. Lbs. 3. I	MATERIALS. BRICKS (English). Best stock	Weight Lha.							
MATERIALS. CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime x part	Breaking Weight.	MATERIALS. BRICKS (English). Best stock. Fire-brick.	Ueight Lha. 11.8 14							
MATERIALS. CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime x part CEMENTS (English).	Breaking Weight. Lbs. 3. I .7	MATERIALS. BRICKS (English). Best stock. Fire-brick. New brick. Old brick.	Weight							
CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime x part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3. I	MATERIALS. BRICKS (English). Best stock. Fire-brick. New brick. Old brick.	Weight Lha. 11.8 14 10.7 9-1 5-8							
CONCRETES (English). Fire-brick beam, Portl'd cement '' sand 3 parts, lime x part CEMENTS (English). Blue clay and chalk Portland	Breaking Weight. Lbs. 3.1 .7 5.4 37.5 10.2	MATERIALS. BRICKS (English). Best stock. Fire-brick. New brick.	Weight Lba. 11.8 14 10.7 9.1							
CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime x part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 -7 5.4 37.5	MATERIALS. BRICKS (English). Best stock. Fire-brick. New brick. Old brick.	Ida. 11.8 14 10.7 9.1 5.8 2.5							
CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 -7 5.4 37.5 10.2 5	MATERIALS. BRICKS (English). Best stock. Fire-brick. New brick. Old brick. Stock-brick, well burned "inferior, burned rious Figures of Cast	Weight Lba. 11.8 14 10.7 9.1 5.8 2.5 Iron.							
CONCRETES (English). Fire-brick beam, Portl'd cement sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 -7 5.4 37.5 10.2 5 of Va. ectional	BRICKS (English). Best stock	Weight Lba. 11.8 14 10.7 9.1 5.8 2.5 Iron.							
CONCRETES (English). Fire-brick beam, Portl'd cement sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Libe. 3.1 -7 5.4 37.5 10.2 5 f Va. ectional End; W	BRICKS (English). Best stock. Fire-brick. New brick. Old brick. Stock-brick, well burned. "inferior, burned rious Figures of Cast Area of One Inch Square and One	Weight Lha 11.8 14 10.7 9.1 5.8 2.5 Iron. e Poot is							
CONCRETES (English). Fire-brick beam, Portl'd cement sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 -7 5.4 37.5 10.2 5 of Va. ectional	BRICKS (English). Best stock. Fire-brick. New brick. Old brick. Stock-brick, well burned "inferior, burned rious Figures of Cast Area of One Inch Square and Ome Ceight suspended from the other.	Weight Lha 11.8 14 10.7 9.1 5.8 2.5 Iron. Foot is Breaking							
CONCRETES (English). Fire-brick beam, Portl'd cement sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbe. 3.1 .7 5.4 37.5 10.2 5 of Va. ectional End; W	BRICKS (English). Best stock	Weight Lha 11.8 14 10.7 9.1 5.8 2.5							
CONCRETES (English). Fire-brick beam, Portl'd cement sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 .7 5.4 37.5 10.2 5 of Va. ectional End; Weight Lbs.	BRICKS (English). Best stock. Fire-brick New brick Old brick. Stock-brick, well burned "inferior, burned rious Figures of Cast Area of One Inch Square and One- teight suspended from the other. Form of Bar or Beam. Rectangular prism.	Weight Lha 11.8 14 10.7 9.1 5.8 2.5 Lyon. Foot is Breaking Weight							
CONCRETES (English). Fire-brick beam, Portl'd cement sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 .7 5.4 37.5 10.2 5 of Va. ectional End; Weight Lbs.	BRICKS (English). Best stock. Fire-brick New brick Old brick. Stock-brick, well burned "inferior, burned rious Figures of Cast Area of One Inch Square and One- teight suspended from the other. Form of Bar or Beam. Rectangular prism.	Weight Lha 11.8 14 10.7 9.1 5.8 2.5 Lyon. Foot is Breaking Weight							
CONCRETES (English). Fire-brick beam, Portl'd cement "sand 3 parts, lime 1 part cements (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 -7 5.4 37.5 10.2 5 Of Va. ectional Breaking Weight Lbs. 673	BRICKS (English). Best stock. Fire-brick New brick Old brick. Stock-brick, well burned "inferior, burned rious Figures of Cast Area of One Inch Square and One- teight suspended from the other. Form of Bar or Beam. Rectangular prism.	Weight Lin. 11.8 14 10.7 9.1 5.8 2.5 Iron. Poot in Weight Lin. 1455 2532 2632							
CONCRETES (English). Fire-brick beam, Portl'd cement sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 -7 5.4 37.5 10.2 5 Of Vacectional Breaking Weight Lbs. 673	BRICKS (English). Best stock	Weight Lha. 11.8 14 10.7 9.1 5.8 2.5 Iron. Prot is Breaking Weight Lha. 1456 253							
CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime 1 part cements (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 .7 5.4 37.5 10.2 5 of Va. ectional End; Weight Lbs. 673	BRICKS (English). Best stock. Fire-brick. New brick. Old brick. Stock-brick, well burned inferior, burned rious Figures of Cast Area of One Inch Square and One- tight suspended from the other. Form of Bar or Beam. Rectangular prism. 2 × 5 ins. in depth 4 × .25 "in depth Equilateral triangle, an edge up	Weight Lin. 11.8 14 10.7 9.1 5.8 2.5 Iron.							
CONCRETES (English). Fire-brick beam, Portl'd cement "sand 3 parts, lime 1 part cements (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 -7 5.4 37.5 10.2 5 Of Va. ectional Breaking Weight Lbs. 673	BRICKS (English). Best stock	Weight Lha. 11.8 14 10.7 9.1 5.8 2.5 Iron. Prot is Breaking Weight Lha. 1456 253							
CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime 1 part cements (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 .7 5.4 37.5 10.2 5 of Va. ectional End; Weight Lbs. 673	BRICKS (English). Best stock. Fire-brick. New brick. Old brick. Stock-brick, well burned inferior, burned rious Figures of Cast Area of One Inch Square and One- tight suspended from the other. Form of Bar or Beam. Rectangular prism. 2 × 5 ins. in depth 3 × .33 " in depth 4 × .25 " in depth Equilateral triangle, an edge down Pagins. in depth × 2 × 1	Weight Lha. 11.8 14. 10.7 9.1 5.8 2.5 Iron. Protein Breaking Weight Lia. 1456 257 258 259 259 259 259							
CONCRETES (English). Fire-brick beam, Portl'd cement "sand 3 parts, lime 1 part cements (English). Blue clay and chalk Portland Sheppey Transverse Strength C Reduced to Uniform Measure of S Length. Fixed at one Form of Bar or Beam. Square Square 'ylinder	Breaking Weight. Lbs. 3.1 .7 5.4 37.5 10.2 5 of Va. ectional End; Weight Lbs. 673	BRICKS (English). Best stock. Fire-brick. New brick. Old brick. Stock-brick, well burned "inferior, burned rious Figures of Cast Area of One Inch Square and One reight suspended from the other. Form of Bar or Beam. Rectangular prism. 2 × 5 ins. in depth 3 × 33 "in depth 4 × .25 "in depth Equilateral triangle, an edge down Equilateral triangle, an edge down 2 ins. in depth. × 2 × 2 ins. in depth. × 2 × Self inch in width	Weeks Lha. 11.8 14. 10.7 9.1 5.8 2.5 Iron. Prote in Breaking Weight Lia. 1456 2532 550 958							
CONCRETES (English). Fire-brick beam, Portl'd cement " sand 3 parts, lime 1 part cements (English). Blue clay and chalk	Breaking Weight. Lbs. 3.1 .7 5.4 37.5 10.2 5 of Va. ectional End; Weight Lbs. 673	BRICKS (English). Best stock	Weeks Lin. 11.8 14 10.7 9.1 5.8 2.5 Iron. 6 Foot is Breshing Weeks Lin. 1456 2332 2653 2653 2656							
CONCRETES (English). Fire-brick beam, Portl'd cement "sand 3 parts, lime 1 part CEMENTS (English). Blue clay and chalk	Breaking Weight. Lbe. 3.1 -7 5.4 37.5 10.2 5 of Va. ectional Breaking Weight Lbe. 673 . 568	BRICKS (English). Best stock. Fire-brick. New brick. Old brick. Stock-brick, well burned "inferior, burned rious Figures of Cast Area of One Inch Square and One reight suspended from the other. Form of Bar or Beam. Rectangular prism. 2 × 5 ins. in depth 3 × 33 "in depth 4 × .25 "in depth Equilateral triangle, an edge down Equilateral triangle, an edge down 2 ins. in depth. × 2 × 2 ins. in depth. × 2 × Self inch in width	Weepix Lha. 11.8 14 10.7 9.1 5.8 2.5 17 on. Proof in Breaking Weepix Lha. 14.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2							

- inch

...

lid and Hollow Cylinders of various Materials. E Foot in Length. Fixed at one End; Weight suspended from the other.

RIALS.	External Diam.	Internal Diam.	Breaking Weight.	MATERIALS.	External Diam.	Internal Diam.	Breaking Weight.
DS.	lns.	Inch.	Lbs.	METAL.	Ins.	Ins.	Lbs.
	2 2		685 604	Cast iron, cold	3	-	12 000
• : • • • •	2	_	772	STONE-WARE.	1		
pine	1 2	=	75 610	Rolled pipe of }	2.87	1.928	190

* An inch-square batten, from same plank as this specimen, broke at 139 lbs.

nulas for Transverse Stress of Rectangular Bars, Beams, Cylinders, etc.

Fixed at One End. Loaded at the Other.

, Beams, etc.
$$\frac{l \mathbf{W}}{b d^2} = \mathbf{S}$$
; $\frac{\mathbf{S} b d^2}{l} = \mathbf{W}$; $\frac{\mathbf{S} b d^2}{\mathbf{W}} = l$; $\frac{l \mathbf{W}}{\mathbf{S} d^2} = b$; $\sqrt{\frac{l \mathbf{W}}{\mathbf{S} b}} = d$; and Cylinder $\sqrt[3]{\frac{l \mathbf{W}}{\mathbf{S}}} = b$ and d .

Fixed at Both Ends. Loaded in Middle.

I, Beams, etc.
$$\frac{l W}{6 b d^2} = S$$
; $\frac{6 S b}{l} \frac{d^2}{d} = W$; $\frac{6 S b}{W} = l$; $\frac{l W}{6 S d^2} = b$; $\sqrt{\frac{l W}{6 S b}} = d$; and Cylinder $\sqrt[3]{\frac{l W}{6 S}} = b$ and d .

Fixed at Both Ends. Loaded at any Other Point than in Middle.

i, Beams, etc.
$$\frac{2 m n W}{3 l b d^2} = S$$
; $\frac{3 l b d^2 S}{2 m n} = W$; $\frac{2 m n W}{3 S b d^2} = l$; $\frac{2 m n W}{3 S l d^2} = b$; $\sqrt{\frac{2 m n W}{3 S l b}} = d$; and Cylinder $\sqrt[3]{\frac{2 m n W}{3 S l}} = b$ and d.

Supported at Both Ends. Loaded in Middle.

i, Beams, etc.
$$\frac{l W}{4 b d^2} = S$$
; $\frac{4 S b d^2}{l} = W$; $\frac{4 S b d^2}{W} = l$; $\frac{l W}{4 S d^2} = b$; $\sqrt{\frac{l W}{4 S b}} = d$; and Cylinder $\sqrt[3]{\frac{l W}{4 S}} = b$ and d.

apported at Both Ends. Loaded at any Other Point than in Middle.

s, Beams, etc.
$$\frac{m \, n \, W}{l \, b \, d^2} = S; \qquad \frac{S \, l \, b \, d^2}{m \, n} = W; \qquad \frac{m \, n \, W}{S \, b \, d^2} = l; \qquad \frac{m \, n \, W}{S \, l \, d^2} = b;$$

$$\sqrt{\frac{m \, n \, W}{S \, l \, b}} = d; \quad \text{and Cylinder } \sqrt[3]{\frac{m \, n \, W}{S \, l}} = b \, and \, d.$$

Square Beams, etc., for b and d put $\sqrt[3]{\frac{l \text{ W}}{8}} = \sqrt{\frac{l \text{ W}}{8b}} = d$. In Cylinders, for out d^2 as above.

ben weight is uniformly distributed, same formulas wing ..., W repreg only half required or given weight.

Presenting stress in a Bar, Beam, or Cylinder, one foot t e, side, or in diameter; and W weight, in lbs.; b breadt h, m distance of weight from one end, and n from the of

Brick-work.

brick arch, having a rise of 2 feet, and a span of 1 a width, with a depth at its crown of 4 ins., bore 358.

١,

Coefficient or Factor of Safety.

Coefficient or factor of safety of different materials must be taken in view of importance of structure, or instrument, probable or required period of a ration of it, and if it is to bear a quiescent, vibratory, gradual, or percusive stress, and to meet these varied conditions, it will range from .125 to 3d the maximum or ultimate strength here given or ascertained.

To Compute Transverse Strength of a Rectangular Bar or Beam.

When a Bar or Beam is Fixed at One End, and Loaded at the Other. RULE.—Multiply Coefficient of material in preceding Tables, or, as may be ascertained, by breadth and square of depth in ins., and divide productly length in feet.

NOTE. —When a beam, etc., is loaded uniformly throughout its length, result must be doubled.

EXAMPLE.—What weight will a cast-iron bar, 2 ins. square and projecting 30 in length, bear without permanent injury?

Assume strength of material at 660, and its elasticity at one fifth or .2 of its strength.

Then
$$\frac{660 \times .2 \times 2 \times 2^2}{2.5} = \frac{1056}{2.5} = 422.4 lbs.$$

If Dimensions of a Beam or Bar are Required to Support a Given Weight at its End. RULE.—Divide product of weight and length in feet by Oricient of material, and quotient will give product of breadth and squared denth.

Example.—What is the depth of a wrought-iron beam, 2 ins. broad, necessary support 576 lbs. suspended at 30 ins. from fixed end?

Assume strength of iron at 150.

Then
$$\frac{2.5 \times 576}{150} = 9.6$$
, and $\sqrt{\frac{9.6}{2}} = 2.19$ ins. depth.

When a Beam or Bar is Fixed at Both Ends, and Loaded in the Middle Rule.—Multiply Coefficient of material by 6 times breadth and squared depth in ins., and divide product by length in feet,

Note.—When beam is loaded uniformly throughout its length, result must be doubled.

Example.—What weight will a bar of cast iron, 2 ins. square and 5 feet in length support in middle, without permanent injury?

Assume strength of material as in a previous case at .2 of 660.

Then
$$\frac{660 \times .2 \times 2 \times 6 \times 2^2}{5} = \frac{6336}{5} = 1267.2$$
 lbs.

If Dimensions of a Beam or Bar are Required to Support a Given Weight in Middle, between Fixed Ends. RULE.—Divide product of weight and length in feet by 6 times Coefficient of material, and quotient will give product of breadth and square of depth.

Example.—What dimensions will a square cast-iron bar, 5 feet in length, require to support without permanent injury a stress of 2160 lbs. ?

Assume strength of material at .2 of 660 or 132, as preceding.

$$\frac{2160 \times 5}{2 \times 6} = \frac{10800}{792} = 13.64$$
, which, divided by 2 for assumed breadth=6th, 3.26 in str. depth.

adth or Depth is Required. RULE.—Divide product obtained wiles by square of depth, and quotient is breadth; or by root of quotient is depth.

• product, and depth is 8; then $128 \div 8^2 = 2$, broad 1 = 8, depth.

Weight is not in Middle between Ends. Rule.—Multiply Coefficient rial by 3 times length in feet, and breadth and square of depth in d divide product by twice product of distances of weight, or stress ther end.

PLE.—What weight will a cast-iron bar, fixed at both ends, 2 ins. square and length, bear without permanent injury, 2 feet from one end?

1e strength of material at .2 of 660 or 132, as preceding.

Then
$$\frac{132 \times 3 \times 5 \times 2 \times 2^2}{2 \times (2 \times 3)} = \frac{15840}{12} = 1320$$
 lbs.

n a Beam or Bar is Supported at Both Ends, and Loaded in Middle.

-Multiply Coefficient of material by 4 times breadth and square of 1 ins., and divide product by length in feet.

-When beam is loaded uniformly throughout its length, result must be

PLE. — What weight will a cast-iron bar, 5 feet between the supports, and 2 ire, bear in middle, without permanent injury?
ie strength of iron at 122, as preceding.

Then
$$132 \times 2 \times 4 \times 2^2 = 4224 \div 5 = 844.8$$
 lbs.

imensions are Required to Support a Given Weight. RULE.—Divide of weight and length in feet by 4 times Coefficient of material, and t will give product of breadth, and square of depth.

i Weight is not in Middle between Supports. RULE.—Multiply Coefof material by length in feet, and breadth and square of depth in ins., ide product by product of distances of weight, or stress from either

?LE.—What weight will a cast-iron bar, 2 ins. square and 5 feet in length, without permanent injury, at a distance of 2 feet from one end, or support? is strength of iron at x_32 , as preceding.

Then
$$\frac{132 \times 5 \times 2 \times 2^2}{2 \times (5-2)} = \frac{5280}{6} = 880$$
 lbs.

ompute Pressure upon Ends or upon Supports.

: 1.—Divide product of weight and its distance from nearest end or , by whole length, and quotient will give pressure upon end or supthest from weight.

Divide product of weight and its distance from farthest end, or supwhole length, and quotient will give pressure upon end or support weight.

*LE. —What is pressure upon supports in case of preceding example?

 $\frac{2}{3} = 352$ lbs. upon support farthest from the weight; $\frac{880 \times 3}{5} = 528$ lbs. upon nearest to weight.

a Bar or Beam, Fixed or Supported at Both 1 "wo at Unequal Distances from Ends."

$$\frac{\mathbf{W}}{\mathbf{L}} + \frac{l \ w}{\mathbf{L}} = pressure \ at \ w \ end, \ and \ \frac{n \ w}{\mathbf{L}} + \frac{l' \ \mathbf{W}}{\mathbf{L}} = pressure$$

!n representing distances of greatest and least weights fr nd w greatest and least weights, I. whole length, I distance f st end, and I' distance of greatest weight from farthest end.

RATION.—A beam 10 feet in length, having both ends fixed hts—viz., one of 1000 lbs., at 4 feet from one of its ends, an , at 4 feet from the other end; what is pressure upon each enc

$$\frac{\infty}{10} + \frac{6 \times 1000}{10} = 1400 \text{ lbs. at w}; \quad \frac{4 \times 1000}{10} + \frac{6 \times 2000}{10} = 1600 \text{ lb.}$$

When Plane of Bar or Beam Projects Obliquely Upward or Downer

When Fixed at One End and Loaded at the Other. Rule.—Multiple efficient of material by breadth and square of depth in ins., and divide put by product of length in feet and cosine of angle of elevation or depresent.

Note.—When beam is loaded uniformly along its length, result must be desired.—What is weight an ash beam, 5 feet in length, 3 ins. square all jecting upward at an angle of 7° 15', will bear without permanent injury?

Assume breaking weight of ash at 160, and its elasticity at .25 of its strength cosine of 7° 15' = .002.

Then
$$\frac{160 \times .25 \times 3 \times 3^2}{5 \times .992} = \frac{1080}{4.96} = 217.74 lbs.$$

To Compute Transverse Strength of an Equilateral Is angle or T Beam.

RULE.—Proceed as for a rectangular beam, taking following proper of Coefficient of material:

Fixed at One or Equilateral triangle, edge up.
$$b \times d^2 \times z^2$$
Both Ends. The beam, flange up. $b \times d^2 \times z^2$
Supported at Equilateral triangle, edge up. $b \times d^2 \times z^2$
Both Ends. The beam, flange up. $b \times d^2 \times z^2$
Equilateral triangle, edge up. $b \times d^2 \times z^2$
Equilateral triangle, edge down $b \times d^2 \times z^2$
Equilateral triangle, edge down $b \times d^2 \times z^2$

To Compute Transverse Strength of a Solid Cylinder RULE.—Proceed as for a rectangular beam, and take .6 of Confidence of product.

A mean of 18 results with cold blast gun-metal, gave a coefficient for 740 lls

When Fixed at One End, and Loaded at the Other. Rule.—Mix weight to be supported in lbs. by length of cylinder in feet, divide by .6 of Coefficient of material, and cube root of quotient will give disc

Note.—When cylinder is loaded uniformly throughout its length, cube as half quotient will give diameter

Example.—What should be diameter of a cast-iron cylindrical beam of guing ins. in length, to break at 15000 lbs.?

$$\sqrt[3]{\frac{15000 \times \overline{8 \div 12}}{.6 \times 740}} = \sqrt[3]{\frac{10000}{444}} = 2.82 ins.$$

When Fixed at Both Ends, and Loaded in Middle, Rule.—Moveight to be supported in lbs. by length of cylinder between supported divide product by .6 of Coefficient of material, and cube root a sixth of quotient will give diameter.

Note.—When cylinder is loaded uniformly along its length, cube root of guotient will give diameter.

Example.—What is the diameter of a cast-iron cylinder of gun-metal, a tween supports, that will break at 35 964 lbs. ?

$$\frac{35964 \times 2}{.6 \times 740} = 162$$
, and $\sqrt[3]{\frac{162}{6}} = 3$ ins.

Mean results of cylinder and square bars gave 444 and 740 lbs. Hence, so of a cylinder compared to a square is as 444 to 740 or .6 to 1.

Then
$$\frac{4 \times 3^3 \times 444}{1} = 47952$$
 lbs.

To Compute Diameter of a Solid Cylinder to Supple a given Weight.

When Supported at Both Ends, and Loaded in Middle. Rule.—Midweight to be supported in Ibs. by length of cylinder between supported; divide product by .6 of Coefficient of material, and cube was fourth of quotient will give diameter.

OTE.—When cylinder is loaded uniformly along its length, cube root of half the tient will give diameter.

EXAMPLE. —What is diameter of a cast-iron gun-metal cylinder, 1 foot between its ports, that will break at 48 000 lbs.?

$$\frac{48000 \times 1}{.6 \times 740} = 108$$
, and $3 / \frac{108}{4} = 3$ ins.

Rectangular. (D. K. Clark.)

(1) Loaded at Middle. $\frac{8 \ b \ d^2}{t} = \mathbb{W}$. (2) Loaded at One End. $\frac{2 \ b \ d^2}{t} = \mathbb{W}$.

Cylindrical.

i) Loaded at Middle. $\frac{5.5 \ b \ d^2}{l} = W$. (4) Loaded at One End. $\frac{1.375 \ b \ d^2}{l} = W$.

▼ representing ultimate stress in tons.

Above Coefficients are for iron of a tensile strength of 7 tons per sq. inch.

Compute Destructive Weight, or Loads that may be borne by Wrought-iron Rolled Beams and Girders, Or Riveted Tubes of various Figures and Sections.

Supported at Both Ends. Load applied in Middle.

Then Section of Beam or Girder is that of any of the Figures in follow-Table. RULE.—Divide product of area of section, depth, and Coefficient girder, etc., from following Table, by length between supports in feet, quotient will give destructive weight in lbs.

OTE. -The Coefficients given are based upon experiments with English iron.

Solid Beams.

LIUSTRATION.—What load will destroy a wrought-iron grooved beam of following lensions, 10 feet in length between supports, and loaded in its middle?

Flanges, 5.7 × .6 inch; Web, .6 inch; Depth, xx.75 ins.; Area, x3.34 sq. ins.

Lesume Coefficient 4638 as for like case (xx) in following table, page 806.

$$\frac{13.34 \times 11.75 \times 4638}{19} = \frac{726983}{19} = 72698.3 \text{ lbs.}$$

Oltimate stress for such a beam by experiment was estimated at 97 997 lbs.

Formulas of Various Authors give following Results:

3. R. CLARK. $\frac{d(4a+1.1555a')}{.6l}$ = W. a representing area of section of lower

nge, a' area of section of web, less one flange, d depth of beam, less average depth ne flange, all in ins., l length in feet, and W ultimate destructive weight in tons.

$$\frac{\cancel{5.75 - 6}}{\cancel{5.50}} (\cancel{4} \times \cancel{5.7 \times .6} + \cancel{1.155} \times \cancel{11.75 - .6} \times .6)}{\cancel{6.50}} = \frac{238.69}{6} =$$

OLESWORTH. $\frac{4 \text{ C b } d^2}{l} = \text{W}$. C = 7616 lbs., and for $b d^2$ po

Ad a representing exterior and b' and d' interior dimensions, an

٠٨٠

5.7 × 11.75² – [5.7 – .6 ×
$$\overline{11.75}$$
 – (.64 × 2²)] = 786.6 + 558.
Then $\frac{4 \times 7616 \times 227.7}{10 \times 12} = \frac{6936652}{120} = 57805.4$ *lbs.*

Pairbairn's formula would give a result less than half of the first, a less than half of the first, a less than the first is a like to that of Molesworth.

WROUGHT IRON.

Transverse Strength of Wrought-iron Rolled Beams and Girders. (Barlow, Fairbairn, Hughes, Kirkaldy, etc.) Reduced to Uniform Measure of One Foot in Length.

Supported at Both Ends; Stress or Weight applied in Middle.

Section.	Flanges.	Web.	Depth (d).	Distance.		Distance.		Distance. Area (A).		Area (A).	For	ive Weight. Length of One Foot (1).	26.
	Ins.	Ins.	Ins.	Feet.	Ins.	Sq. Ins.	Lbs.	Lbs. (W)	_				
1	_	1	I	1		I	2 500	2 500	2 900				
- \	-	2	2	2	9	4	6 600	18 150	2 256				
	_	1.5	3	2	9	4.5	zo o8o	27 720	205				
= =		1	3	3		3	7 050	21 150	2 359				
	_	1	I	5		.78	474	2 370	2 3/0				
I	3.5 × .6	.8	3-5	2	7	5.65	20 160	52 480	2654				
I	2.5 X1 4 X .38	} .325	7 -	2	9	5.9	44 000	121 000	2939				
I	2.6 ×1.25	.85	5	4	6	7-44	19000	85 500	2298				
·	3 X ·49 4.6 X ·8	.5	7.07 9.85	10		5.87 11.5	24 200 38 080	242 000 761 600	5830 6724				
{	5.7 × .64	.5 .6	11.75	10		13.34	72 688	726 880	469				
T	2.85× .38	.31	2.5	4		1.75	3 150	12600	280				
I	7 X·5 4 X·5	} .38	16.5	22	6	18.9	49 280	1 108 800	3596				
A	4.5×.375 2×2×.3125	} .38	14.25	16	5	10.5	47 000	775 5∞	5 183				
I	4.5×28 4.5×3	} .25	7	7		6.35	24 380	170 660	3840				
	3·9 3·9	} .13	6	7	6	2.62	9 976	74820	4766				
	15.5 15.5	} .53	24	30		41.4	128 885	3 86 6 550	3 S y 6				
" {	24 24	·75	35-75	45		87.38	257 080	zz 568 600	3703				
O	_	.131	{12.4 12.138	}10		5.05	17 885	17 8 850	289				
0	_	.143	{15 9.75	}10		5.56	26 250	262 500	347				
STREL.	_	-75	5.2	5		7.72	102 480	512 400	12 <i>7</i> 60				

"ults are very conclusive of the correctness of above formula be n cases given, and they are deduced from beams and ginder to 45 feet in length; hence, when length of a beam or girds sections given is less, relative breaking weight may be in ence of increased stability of beam or girder.

ts on Tubes and Tubular Girders, etc., see Rep. of Count's ondon, 1849.

î iron assumed at 45,000 lbs. per sq. inch.

ed Wrought-iron Beams and Channel Bars.

With Safe Load Uniformly Distributed for Length of One Foot.

New Jersey Steel and Iron Co., Trenton, N. J.

(Beams Supported Sidewise.)

t.	Designation.	Wi Web.	dth. Flange.	Web.	Area.	Total.	Weight per Foot.	Load.
_	I BEAMS.	Inch.	Ins.	Sq. Ins.	Sq. Ins.	Sq. Ins.	Lbs.	Lbs.
ins.	Extra Light	.1875	2	-75	1.02	1.77	6	18 000
**	Light	.25	2.75	1	1.01	2.01	10	30 100
44	Heavy	.3125	3	1.25	2.41	3.06	12.3	36 800
44	Light	.25	2.75	1.2	1.79	2.99	10	38 700
66	Heavy	.3125	3	1.56	2.34	3.9	13.3	49 100
44	Light	.25	3	1.5	2.51	4.01	13-3	62 500
64	Heavy	-3	3-5	1.8	3.11	4-QI	16.7	76 800
46	go lbs.	.5	5	3	5.7	8.7	30	132 000
66	120 "	.625	5.25	3.75	8.09	11.84	40	172 000
"	55 "	-3	3.75	2. I	3-4	5.5	18.3	101 000
64	Light	.3	4	2.4	3-97	6.37	21.7	135 000
44	Heavy	-375	4-5	2.96	5.07	8.03	26.7	168 000
44	Light	.3	4	2.7	4.3	8.5	23.3	167 000
"	Heavy	-375	4.5	3.38	5.12	8.5	28.3	100 000
"	Extra Heavy	.57	4-5	5-13	7-2	12.33	41.7	268 000
"	Extra Light	.3125	4.5	3.28	5.62	8.9	30	250 000
**	Light	-375	4.5	3-94	6.5	10.44	35	286 000
**	Heavy Extra Light	-47	5	4-93	8.43	13.36	45	350 000
66	Light	-32	5.25	3.84	5.62	9.40	32	306 000
44	Light	-39	5.5		6.58	12.33	41.7	375 000
44	Heavy	.6	5.5	5-75	9.38	16.77	56.66	511 000
44	Extra Light	.42	5	7-39 6.35	6.01	12.36	41.7	460 000
44	Light		5	7.59	7.45	15.04	50	551 000
"	Heavy	.6	5.75	9.07	10.95	20.02	66.66	748 000
44	Light		6	10.5	9.97	19.97	66.66	990 000
"	Heavy	.5 .6875	6.75	13.75	13.45	27.2	90.66	1 320 000
	DECK BEAMS.	-		1	1 7 5	76	G.C.	Ta and
66	i —	.3125	4-5	2.17	3.18	5.35	18.3	63 500
"	-	.375	4-5	3.04	3.25	6.29	21.7	91 800
	CHANNELS.	1		1.79				
ш	Extra Light	.2	1.5	.6	.85	1.45	5	10 500
"	" "	.2	1.5	.8	.85	1.65	5.5	15700
61	" "	.2	1.625	1	-92	1.92	6.3	22 800
"		+18	1.875	1.03	1.17	2.25	7-5	33 680
"	Light	.28	2.25	1.68	1.52	3.2	11	45 700
"	Heavy	-4	2.5	2.4	1.92	4 32	15	58 300
"	Extra Light	.2	2	1.4	1.14	2.54	8 5	39 500
"	Light Extra Light	-25	2.5	1.75	1.85	3.0	12	65 800
"	Light.	.26	2.2	2.08	1.7	3.3	11	88 950
44	Ingut.	100	2.5	2.00	2.4	5.08	16.7	104 000
44	Heavy	-33 -43	3.125	3.87	3.15	7 02	23.3	146 000
66	Extra Light	.3125	2.5	3.07	3.13	4.8	16	102 000
tc	Light	-375	2.75	3.94	2.06	6	20	134 750
66	2.5		3	4.04	2.06	7	23.3	200 100
"	Heavy	·33 .68	4	8.33	5-77	14.1	46.7	381 000
66	Light	-5	4	7.5	4.5	12	1	
"	Heavy	-75	4 75	11.25	7.6	18.		

s given in table are such as will effect a maximum str to lbs. per sq. inch. For permanent stress, absolutely fregrain would be allowable, and, contrariwise, if the stelload, the loads here given should be reduced.

A difference of an per cent, in either direction should be made, according to the eter of load to be supported or stress to be borne.

Mastic Transverse Strength of Wrought-iron Bars is about 45 per cent of the transverse strength, of Solid rolled beams, 50 per cent.; and of double hald raths, 46 per cent of their transverse strength; of Fagersta Steel, 50 per cent. its transverse strength; of double-headed Steel rails, 47 per cent.; of Fagersta 37.5 to 48 per cent.; and of Steel flanged, 68 per cent.

Transverse strength of Solid Cast-iron Beams or Girders is about 50 per call whimate strength.

NOTE.—Actual breaking weight of a 10.5 ins. beam of New Jersey Steel and Im to, weight 35 lbs. per foot, for a length of span of 20 feet, is 60 000 lbs.

Rolled Steel Beams.

With Safe Load Uniformly Distributed for Length of One Foot The New Jersey Steel and Iron Co., Trenton, N.J. (Beams Supported Sidewise.)

1	200	Width.		Aren,		Total Area.		Weight per F		100
Depth.	Designation.	Web.	Flange.	Web.	Flange.	Min.	Max.	Miu.	Max	Log
Ina.	I BEAMS.	Ins.	Ins.	Sq. ins.	Sq. ins.	Sq. ina.	Sq. ins.	Lbs.	Lia.	Di
1.25	-	.125	1.5	-	-	.515	-515	1.75	1.75	23
4	Light	.2	2.62	-	-	2.21	3.15	7-5	10.7	31
4	Heavy	-24	2.75	-	-	2.94	3.91	10	13-3	41
5	Light	.22	3	-	-	2.94	4.12	10	14	52
5	Heavy	.26	3.13	-	-	3.81	5.09	13	17-3	67
5	Light	.25	3	-	-	3.91	5.39	13.3	18.3	83
6	Heavy	+3	3.5	-	-	4.89	6.35	16.6	21.6	104
7	Light	.23	4	-	-	4.56	6.35	15.5	21.6	228
7	Heavy	.27	4.25	-	=	5.88	7.82	20	20.6	151
7 B	Light	.25	4.25	-	-	5.29	7-35	18	25	154
8	Heavy	.27	4.5	-	-	6.47	8.33	22	28.3	195
9	Light	.27	4.5	-	See.	6,17	8.33	21	28.3	200
9	Heavy	+31	4.75	-	-	7.94	10.29	27	35	200
10	Light	.32	4.75	-	-	7.15	9.89	25.3	33-3	26
10	Heavy	-37	5	-	-	9.71	12.26	33	41.7	34
10	Extra Heavy	.45	5.25	-	1111	13.24	15.69	45	53-33	401
12	Light	.32	5.25	-	-	9.41	12.26	32	41.7	40
12	Heavy	-39	5.5	-	-	11.74	14.7	40	50	50
15	Light	.4	5.5	-	-	12.59	15.69	41	53-33	60
25	ds given in to	.45	5.75	-	-	14.71	18.63	50	63.33	75

16 000 lbs. per sq. inch, and are for the Minimum area. Steel beams have greater estimated strength than iron, but their stiffness is 15

materially greater.

Operation of Tables.

To Compute Depth of a Beam to Support a Uniformly Distributed Load.

Rule.-Multiply load in lbs. by length of span in feet, and take from table the beam, load of which is nearest and in excess of product obtained

EXAMPLE. - What should be depth of an iron beam to sustain with safety a unformly distributed load of 30 000 lbs., over a span of 15 feet?

 $30000 \times 15 = 450000$, which is load for a heavy beam 12.25 ins. in depth. Weight of beam should be added to load.

Innersely. — If the load is required, divide load in table by span of beam in [44] "tract weight of beam.

Compute Deflection of Like Beams.

ide square of span in feet by 70 times depth of beam in ins. sume beam as preceding.

$$\frac{15^2}{70 \times 12.25} = \frac{225}{857.5} = .262 \text{ ins.}$$

mparative Strength and Deflection of Cast-iron Flanged Beams.

DESCRIPTION OF BRAM.	Comp. Strength.	DESCRIPTION OF BRAM.	Comp. Strength.
of equal flanges	.58	Beam with flanges as r to 4.5	.78
with only bottom flange with flanges as 1 to 2	.72 .63	" with flanges as 1 to 5.5 " with flanges as 1 to 6	.82
with flanges as 1 to 4	.73	" with flanges as 1 to 6.73	.02

nensions and Proportions of Wrought-iron Flanged Beams. (D. K. Clark.)

th.	Breadth of Flanges.	Thic	kness.	Weight per Lineal Foot,	Ultimate Strength. Loaded	Safe Stress Uniformly	
	of Flanges.	Web.	Flanges.	Linear Poos	in Middle.	Distributed.	
5.	Ins.	Inch.	Inch.	Lbs.	Lbs.	Lbs.	
	2	.1875	.2187	5.5	2 800	910	
	3	+25	-3125	10	5 600	1 86o	
25	1.625	.1875	.2187	5-5	2 490	830	
	2	.25	.3125		5 490	1 1830	
	3 2	.25	-375	12	8 510	2830	
'5		.25	.3125	8	6940	2310	
	. 3	.3125	-4375	13	13440	4480	
	4.5	-375	-5	23	19270	0420	
i	2	+375	-4375	10	11 88o	3 960	
	1 5 1	+4375	.5625	30	23 830	7940	
:5	2	.3125	.4375	11	13440	4 440	
!5 :5	2.25	.3125	.375	18	13000	4 3 3 0	
:5	3.25	+3125	.4062	12.5	17 470	5 820	
	2.25	.281	-375	14	14 790	4 930	
	2.25	.3125	-4375	14	17 020	5 070	
	3.625	.3125	-4375	19	23 300	7 760	
	3.625	.3125	.5	19	25 980	8 660	
	2.375	.3125	-4375	15	20830	6940	
	2.5	+375	-375	15	21 280	7 090	
	4	+375	-5	21	4 500	11 500	
	1 5	.375	.5625	29	44 800	14930	
	5.125	+4375	.5625	29	47 040	15680	
5	3.75	+4375	.5	24	41 56o	13850	
-	4.5	-375	.6875	-30	59 360	19750	
	4.5	.4375	.5625	32	56 000	1866o	
	4.75	+4375	.5625	32	58 240	19410	
	4.75	.75	.625	36	76 160	25 390	
	5	.5625	.8175	42	100 800	33 600	
	5 6	. 5625	-9375	56	136 640	45 530	
	5·5	+5625	.875	60	150 020	50 000	
		.5625	.8175	60	152 260	50750	
	5.625	.75	.8175	62	188 160	62 720	

ought-iron Rectangular Girders or Tubes. (Riv'd.)
Supported at Both Ends. Loaded in Middle.

 $\frac{C}{=}$ W. A representing area of section in sq. ins., d depth in ins., l length be-supports in feet, and W destructive weight in lbs.

istration.—What is the destructive weight of a rectangular girder, 35.75 ins. the by 24 in breadth, metal .75 inch thick, and length between supports 27 ime C or coefficient = 3700, as per case (18) in preceding table, pt ea = 87.375 ins.

Then
$$\frac{87 \cdot 375 \times 35 \cdot 75 \times 3700}{45} = \frac{11557528}{45} = 256833.9 lbs.$$

experiment it was 257 080 lbs. By Inversion $\frac{W}{C}\frac{l}{d} = A$, and $\frac{l}{A}\frac{W}{C} = d$. Indexinson's formula would give a result of 259 373 lbs., and Moleswo. 7 lbs.

qued pafe mil

weight ami Area of Botton

a maring area of philling right and length to and to distances of hand at other point let De office feet and T mouth in the

efferent menti simili le promisi la solos la resis monde ed a more times to reisk considera-

Time are a woman one is moreous in better plate of the equity amount great a les la digital separated as both mis and basis in

DESCRIPTION OF THE PARTY OF THE repose A. s. and the same

Wrongittiran Cylindrical Bearns or Tubes

harsename. - What is destructive weight of a cylinkal militarion and both in thickness, and no fleet between its support mental more on inc., and Committee as in the noth case of table part

3.14 FTS _W. if supercenting diameter, t thicken if all, is all in time. Should strongth of motal per up, itself, and W weight left the

2 th A carty A " tile A filmen - werft art 3 - ad 112 t pp

Minusoners's formula gives a result of acadé, a like

Wrought-iron Elliptical Beams or Tubes. - Assume diameter of tube one and it is, is

art inch in thickness, and distance between supports to feet.

A = 5 cft op inn. C = 3147, as per case (m) in preceding table, page lid Then 5 55 X 15 X 3147 - 100 456 3 - 25 245 9 We

LST (12+49 18 = W. 6 and 6 representing outputs all

eerse distractor, I length between supports, I thickness of metal, all in in Sin dreagh of metal per se tinck and W destructive weight, dolls in the

\$ = 44000 Be. 2-57 (9-752+157) X.283 X 44000 3162840 = 16 146 B

NOTE - B. Baker, in his work on Strength of Beams, etc., Lepter, sin N abows that ordinary method of computing transverse strength of a boles of difference of diameter alone is erroneous, in consequence of less of result flexure in a hollow bears.

Girders and Beams of Unsymmetrical Satis

d = W. I representing tensile resistance of metal, and W districts both in lbs., d distance between contret of compression and estimating or one tencile resistances, in ins., and I length between supports, in for

Note.—To ascertain d, see Rule, page 819.

ELUSTRATION.—Dimensions of a rolled wrought-iron girder, in feet in length been its supports, is as follows: What is its destructive weight? $\frac{3}{2} = 5.22$ ins. S assumed at 45000 lbs. Then $\frac{4 \times 45000 \times 5.22}{11 \times 12} = 7118.18$ lbs. Strength of Riveted Beams or Girders, compared with Solid, is less, and deflecn is greater

Wrought-iron Inclined Beams, etc.

 $\frac{L \ W}{l} \equiv w$. L and l representing lengths or inclination, and horizontal line in like nominations, and W and w destructive and safe weights on horizontal line and in-Ination, also in like denominations.

Plate Girders.

 $\frac{A \ d \ C}{t} = W$. A representing section in sq. ins., d depth in ins., and l length between supports in feet.

LLUSTRATION ... What load will destroy a wrought-iron plate girder or beam of lowing dimensions, to feet in length between its supports?

 Image
 4.5 × .375 inch.
 Width of web.
 .375 inch.

 Itom flange
 4.5 × .375 "
 Depth of web.
 13.5 ina.

 Be pieces
 2 × .3125 "
 Depth of beam.
 14.25 "

Area of Section = 13 sq. ins.

Assume coefficient of 5180 as per case (14) in preceding Table, page 806.

Then
$$\frac{13 \times 14.25 \times 5180}{10} = \frac{959595}{10} = 95.959.5$$
 lbs.

Then $\frac{13 \times 14 \cdot 25 \times 5180}{10} = \frac{959 \cdot 595}{10} = 95.959.5$ lbs. L representing load equally distributed, and S stress on MOLESWORTH. Lire, both in tons, and d effective depth of girder in feet.

By actual experiment L = 48 tons for 16.5 feet between supports; hence, = 16.5 : 148.79, 2 tons = 39.6 when supported in middle, and 14.25 ins. = 1.1875 feet.

Then
$$\frac{39.6 \times 10}{8 \times 1.1875} = \frac{396}{9.5} = 41.68$$
, which $\times 2240 = 93363.2$ lbs.

D. K. CLARK. $\frac{d'(4a+1.155a')}{6l} = W$. d representing depth of girder or beam

depth of lower flange in ins., a and a' areas of sections of bottom flange and of at its reputed depth, both in sq. ins., and I length between supports in feet.

$$d = 14.25 - .375 = 13.875$$
 ins. $a = 3$, and $a' = 5$ sq. ins.

Then
$$\frac{13.875 (4 \times 3 + 1.155 \times 5)}{.6 \times 10} = \frac{246.63}{6} = 41.105$$
, which $\times 2240 = 92.075.2$ lbs.

Tr Clark assumes, however, that for girders of like construction the destructive ess should be taken at two thirds of that deduced by the formula.

Girders or Beams without Upper and Lower Flanges.

ILLUSTRATION. - Assume angles 2.125 X .28 above, 2.125 X .3 below, web .25, depth 7 ins., and length between supports 7 feet.

Area of section = 6.35 sq. ins., and C = 3840, as per case (15) in preceding Table, **300** 806.

Then
$$\frac{6.35 \times 7 \times 3840}{7} = \frac{170688}{7} = 24384$$
 lbs.

 $\frac{a}{2} + .25 a' \times 5 d$ = W. a representing area of sections of

nd lower angles, a' area of section of web for total depth, both in sq. ins., d d rder in ins., and W load or stress in lbs.

a = 4.6 sq. ins., and $a' = 7 \times .25 = 1.75 \text{ sq. ins.}$

Then
$$\frac{\frac{4.6}{2} + \frac{1.75}{4} \times 5 \times 7}{7} = \frac{95.8x}{7} = x_3.687$$
, which $\times 2240 = 306688$ lb.

IRON AND STEEL RAILS.

Symmetrical Section.

To Compute Transverse Strength. (D. K. Clark)

$$\frac{S\left(4a\frac{d'^2}{d} + \overline{1.155td^2}\right)}{t} = W, \text{ and } \frac{Wt}{\left(4a\frac{d'^2}{d} + 1.155td^2\right)} = S. \text{ S representing in}$$

sile strength in lbs. or tons per sq. inch, a area of one head or flange exclusive of tral portion composing web, in sq. ins., d'depth or distance between centre of a depth of rail, t thickness of web, l distance between supports, all in ins., at weight in lbs. or tons, alike to S.

ILLUSTRATION I.—What is destructive weight of a wrought-iron double rail, 5.4 ins. deep, having a web of .8 ins., an area of head of 1.0 sp. ins., deep between centres of its heads 4.2 ins., and between its supports 5 feet?

Then
$$\frac{50000 \left(4 \times 1.9 \times \frac{4.2^2}{5.4} + \overline{1.155 \times .8 \times 5.4^2}\right)}{5 \times 12} = \frac{50000 \times \left(24.82 + 36.8\right)}{60}$$

43 125 lbs.

2.—What is destructive weight of a Bessemer steel double-headed rall 54 deep, having a web of .75 inch, an area of head of 2 sq. ins., and distance been heads 4.2 ins.?

S assumed at 80 000 lbs.

Then
$$\frac{80000 \left(4 \times 2 \times \frac{4 \cdot 2^{2}}{5 \cdot 4} + \frac{1 \cdot 155 \times \cdot 75 \times 5 \cdot 4^{2}}{5 \times 12}\right)}{5 \times 12} = \frac{80000 \times 51 \cdot 39}{60} = 6850$$

Note.—Transverse strength of Bessemer Rails increases very generally, in direct proported all the proportion of Carbon in it.

Unsymmetrical Section.

 $\frac{6.92 \text{ S } d'' \text{ A}}{4 \text{ h}} = \text{W}$. d'' representing vertical distance between centres of

and compression, h height of neutral axis above base of section, and I length to supports, all in ins., and A sum of products, obtained by multiplying arouse of reduced section under tensile stress, by their mean distances, respectively, to the distances of their centres of gravity, from the neutral axis, in ins.

Bowstring Girder.

To Compute Diameter of a Wrought-iron Tie-rod of Arched or Bowstring Girder of Cast Iron.

 $\sqrt{\frac{W \, l}{4500 \times h}} = d$. W representing weight distributed over beam in lls, between piers or supports in feet, and h height between centre of area of girder and centre of rod in ins.

ILLUSTRATION.—Required diameter of tie-rod for an arched girder, 25 tween its piers, and 30 ins. between centres of its area and of rod, to safely a uniformly distributed load of 25 000 lbs. ?

$$\sqrt{\frac{25000 \times 25}{4500 \times 30}} = \sqrt{\frac{625000}{135000}} = \sqrt{4.62 = 2.15} \text{ ins.}$$

If two rods are used Then $\sqrt{\frac{4.62}{2}} = 1.52$ ins. = diameter of each role

CAST IRON.

Transverse Strength of Girders and Beams.

uced from Experiments of Barlow, Hodgkinson, Hughes, Bramah, Cubitt,

Tredgold, and others.)

Reduced to a Uniform Measure of One Foot in Length.

Supported at Both Ends. Stress or Weight applied in Middle.

٠.	Flanges.	Web.	Depth.	Dista	nce.	Area.	For Dis-	Length	$\frac{\partial \mathbf{W}}{\partial \mathbf{A}} = \mathbf{C}.$
-				P	-	6. 7		of One Foot.	A 6
(Ins.	Ins.	Ins.	Foet.	ins.	Sq. Ins.	Lbs. 2 240	2 240	2240
- (1	Ī	4	6	1	500	2 250	2250
(_	3	3	13	6	9	5 080	63 <u>5</u> 80	2540
ſ	_	=	3	4	6	3	5 100	22 950	2550
ł	_	1	4	4	6	4	10 300	46 350	2896
	4 X2	2	4	5		12	6 720	33 600	700
	1.52 × .78	1.56	4-07	4	6	2.35	6 666	30 000	3136
	1.5 × .5	-5	3	3	1	.2	5 208	16 145	2676
	1.5 X .5	-5	3	3	1	2	4 536	14 062	2331
	1.5 × .5	-5	4	3	1	1	7 104	22 420	547 5
	1.5 × .5	-5	4	3	1	1	3 312	10 267	2553
	1.53 × 1	-5	2.04	4		2.6	4 004	16016	3019
	2 X .51	I	2.02	4		2.59	2 569	10 276	1963
	-	-	2.52	5		4.98	4 143	20715	1650
	-	-	2.83	5		4	2 988	14 940	1320
{	2.28 × .53	{ ⋅3 ⋅425	5.13	4	6	2.28	9 503	42 763	3656
(23.9 × 3.12	3.29	36. r	20		183.5	403 312	8 066 240	1220
	1.76× .4	.29	5.13	4	6	2.82	6678	30 512	2077
1	1.74 X .26 1.78 X .55	} .3	5.13	4	6	2.87	7 368	33 200	2250
1	1.07 X .3 2.1 X .57	32	5.13	4	6	3.02	8 270	37 215	2402
l	1.54 X .32 6.5 X .51	} -34	5.13	4	6	5.4I	21 009	94 540	3406
	2.5 X 1.5 3.75 X 1.4	} 1.25	8. 18	11		15	35 620*	391 853	3193
	# Stilling inch								

^{*} Stirling iron.

^{36,} $\frac{A}{l} \stackrel{C}{=} W$. A representing area of section, d depth in ins., llength in feet, destructive weight in lbs.

[—]When lengths are less than those instanced, breaking weight will be in consequence of increased stability of girder.

To Compute Transverse Strength or Destructive Stress of Cast-iron Beams or Girders, of various Figures. Supported at Both Ends. Weight applied in Middle.

When Section of Beam or Girder is alike to any of Examples gives is preceding Table. Rule 1.*—Divide product of area of section and depth in ins., and Coefficient for girder, etc., from preceding Table, by length between supports in feet, and quotient will give breaking weight in libs.

EXAMPLE.—Dimensions of a beam, having top and bottom flanges in proported to 6, give an area of section of 25.6 sq. ins., a depth of 15.5 ins., and a length between its supports of 18 feet; what is its destructive weight?

Note. —In consequence of increased area of metal over case No. 21 in Table, Cofficient of 3402 is reduced to 3300.

Dimensions.—Top flange, $3 \times .75$ ins.; bottom, $18 \times .75$ a = 13.5 sq. ins.; well $15.5 \times .7$ a' = 10.8 sq. ins., and a' = 15.5 - .75 = 14.75 ins.

Then
$$\frac{25.6 \times 15.5 \times 3300}{18} = \frac{1309440}{18} = 72746.6$$
 lbs.

D. K. CLARK. $\frac{d' (6.5 \dagger a + 2 a')}{3l} = W. \text{ a representing area of bottom flarge, 6'}$ of web at depth d' of beam, less depth of bottom flange in eq. ins., l length between supports in feet, and W destructive weight in tons.

Then
$$\frac{14.75 (7 \times 13.5 + 2 \times 10.8)}{3 \times 18} = \frac{1712.4}{54} = 31.71$$
, which $\times 2240 = 71030.4$ M/s

Hodgkinson's formula would give a result of 53491.2 lbs., and Molesworm' 54248.3 lbs.

RULE 2. — From product of breadth and square of depth in ins, of metangular solid, the dimensions of which are the depth and greatest breadth deam in its centre, subtract product of breadths and square of depths of that part of the beam which is required to make it a rectangular solid, solid, solid then determine its resistance by rule for the particular case as to its being supported or fixed, etc.

This rule is applicable only in case referred to, viz., when area of section is great compared with area of extreme dimensions.

Mr. Baker, in case of a hollow cylindrical shaft, where thickness of metal is but one eighth of extreme diameter, computes result at but .4 of that of a solid bear. This is in consequence of resistance to flexure in hollow beam being more than proportionally greater than in solid.

EXAMPLE.—Take 7th case from preceding Table, page 813, for length of one fool Coefficient for cold-blast iron = 500.

Then $1.52 \times 4.07^2 - \overline{1.52 \times 2.51^2} \times 4 \times 500 = (25.17 - 9.58) \times 2000 = 31.180$ Result as by experiment, 30 000 lbs.

NOTE I.—These rules are applicable to all cases where flange of beam is as about in Table, and beam rests upon two supports, or contrariwise, as to position of fuse, when beam is fixed at one end only.

2.—When case under consideration is alike in its general character to one in Table, but differs in some one or more points, an increase or decrease of metal is obtained by an increase or reduction of the Coefficient, according as the differences my affect resistance of beam.

3.—The Coefficients here given are based altogether upon experiments with is lish iron.

^{*}Utility of these rules in preference to those of Hodgkinson, Fairbairn, Tredgold, Hagha, at Barlow is manifest, as in one case the Coefficient of the metal is considered, and in the other case to metal is secured to be of a uniform value or strength of the description of the strength of the description of the strength of the description of the strength of the description of the description of the strength of the description of the strength of the description of the strength of the description of the strength of the description of the strength of the description of the strength of the description of the description of the strength of the description of the strength of the description of the strength of the description of the strength of the description of the strength of

Than above, when beam is fixed at one or both ends.

to some extent by the three cases in table, where proportion of flanges are 1

Flanged Hollow or Annular Beams of Symmetrical Sections. (D. K. Clark.)

hen Depth is Great Compared with Thickness of Flanges .- Figs. 1, 2, and 3.

1. 2. 3.
$$\frac{d \times S (4 \text{ a} + \overline{1.155 \text{ a}'})}{l} = W$$
. a representing area of one flange, a' area of web or ribs, both in sq. ins., d depth of beam, less depth of one flange, and l distance between supports, both in ins., S tensile strength of metal, and W weight between supports, both in lbs.

Then Depth of Flanges is Great Compared with Depth of Beam, - Figs. 4 and 5.

$$\begin{array}{c} \begin{array}{c} 5 \\ \end{array} \\ \begin{array}{c} 8 \left(4 \, a \, \frac{d'^2}{d} + \overline{1.155 \, t \, d^2} \right) \\ \hline \\ l \\ thickness \ of \ web, \ in \ sq. \ ins., \ t \ lhickness \ of \ web, \ d' \ reputed \ depth \ or \\ distance \ between \ centres \ of \ flanges, \ and \ d \ depth \ of \ beam, \ all \ in \ ins. \end{array}$$

hen Section of Circular or Elliptic Beam is Small Compared with Diameter.—Figs. 6, 7, and 8.

and d representing mean breadth and depth.

ILLUSTRATION I.—Assume Figs. 1, 2, and 3, 20 ins. in depth, width of flanges on **p** and bottom ribs 5 ins., thickness of flanges and webs x inch, and of sides of x 3, 5 inch; length between supports 10 feet, and S 20000 lbs.; what would be taking weight of each?

Then
$$\frac{20-1\times20000(4\times5+1.155\times18)}{10\times12} = \frac{380000(20+20.79)}{120} = 129168.4 lbs.$$

2.—Assume Figs. 4 and 5, 6 ins. in depth, area of flanges 3 ins., widths of webs 1 th, and length and S as in preceding case.

Then
$$\frac{20000\left(4\times3\times\frac{\overline{6-1}^2}{6} + \frac{1.155\times1\times6^2}{1.155\times1}\right)}{10\times12} = \frac{20000\times91.58}{120} = 15263.3 \text{ lbs.}$$

5.—Assume Fig. 6 10 ins. in diameter, Fig. 7, 7.5 ins. in depth and 12 ins. in width, $\tilde{\mathbf{q}}$ Fig. 8, 12 ins. in depth and 7.5 ins. in width, and thickness of all metal 1 inch.

Then, Fig. 6
$$\frac{3.14 \times 10^2 \times 1 \times 20000}{10 \times 12} = \frac{6.280000}{120} = 52.333.3* Us., which is .4 of at of solid cylinder.$$

Figs. 7 and 8
$$\frac{1.57 \times (12^2 + 7.5^2) \times 1 \times 20000}{10 \times 12} = \frac{6287850}{120} = 52398.75 lbs.$$

NOTE.—For all ordinary purposes, operation of computing their strength, by first "Appuing that of their circumscribing figure, and then deducting from it strength let difference between it and section of beam under computation, will be suf-lently accurate. See Illustration, page 814.

If greater accuracy is required, see page 810, or D. K. Clark's Manual, pp. 513

Norm.—To compute location of neutral axis of beams of unsymmetrical sect also D. K. Clark, pp. 514-15.

This result agrees with deduction of Mr. Baker, as given by him in his work on Strength of B

pp. 26-7, for hollow or annular beams of small area of section compared with that of diars

begin as the section of metal of one eighth of diameter. He assigns their strength so low as a shadow of the section of

General Formulas for Destruction Beams of Symmetric

Supported at Both Ends. Weight

Line of Neutral Axis runs through centre

 $\frac{a d r S}{l} = W$, and $\frac{l W}{a d r} = S$. In square bes

resenting area and depth of section, r radius of l length of beam between its supports in ins. W and S tensile strength of material in like tons or the

ILLUSTRATION. -- Assume dimensions of cast-iron follows, viz.: 1 and 2, 5 × 5 ins.; 3, 2.5 × 10; 4, or equal areas; distance between supports 60 in 20 000 lbs.

Areas of each 25 sq. ins. Radius of gyration, .5; and 5, 1.43.

4. For formula for square beams

Then 4.
$$\frac{25 \times 5.64 \times 26000}{60} = 61100 lbs.;$$
$$\frac{.7854 \times 4.39 \times 7.25^{2} \times 2600}{60}$$

These formulas give a result equal to a transver a tensile strength of 26 000 lbs., and of Wrought of 50 000 lbs. (as per table, page 788).

 $\frac{C b d^2}{C} = W$. C representing coefficient of and depth in ins., I length in feet, and W

$$= \frac{4-r4}{R} + 7 = b d^2. \quad R \text{ and } r \text{ representing}$$

$$\frac{13-b'}{2}$$
 $\frac{d'^2}{d}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

and d representiidth and depth of h

e strength of Cast Wrought Iron of se To Con

MILESTR.

LUCSTRA

Comp Distance M.-M

by dist ICS, 23 and resul extren MIR_T

E to /

at of Inertia of a Solid Beam .- Fig. 2.

$$\frac{b d^3}{12} = M.$$

ents of preceding case.

$$\frac{\text{K 20}^3}{\text{12}} = \frac{64\,000}{\text{12}} = 5333.33$$
 moment.

menting breadth of vertical divisions, n number of hortneutral axis, b breadth, and d depth of beam.

nts of preceding case.

$$t=2, n=5, and b=8.$$

$$po \times 2$$
 for lower half $= 4800 = moment$.

Beams of Various Figures.—Figs. 3, 4, 5.

3.
$$\frac{b d^3 - b' d'^3}{12}$$
, 4 and 5. $\frac{b d^3 - 2 b' d'^3}{12} = M$.

b' and d' representing respectively breadth less thickness of web, and depth less thickness of flanges.

$$.7854 c t^3 = M.$$

verse and c conjugate diameters, and s side.

on Centre of Gravity and Vertical Centres of Crushing and Tensile or Beam.

of section of each part or figure composing tre from centre of one of the two extreme parts of their products by sum of surfaces of secance of common centre of gravity from centres re.

eure.

$$1 \times 0$$
 = 2.5 $\times 0$ = .0
 $\left(\frac{5.62}{2} + \frac{1}{2}\right) = .325 \times 3.31 = 1.076$

$$4 \times \left(\frac{.38}{2} + 5.62 + \frac{1}{2}\right) = 1.52 \times 6.31 = 9.591$$

$$4 \times \left(\frac{.38}{2} + 5.62 + \frac{1}{2}\right) = 1.52 \times 6.31 = 9.591$$

$$10.667$$

55 = distance of common centre from centre of upper

$$= 1.52 \times 0 = .0$$

$$(\frac{5.62}{2} + \frac{.38}{2}) = 1.826 \times 3 = 5.478$$

$$\left(\frac{1}{2} + 5.62 + \frac{.38}{2}\right) = 2.5 \times 6.31 = 15.775$$

131 = distance of common centre from centre of low

'stance of common centre from bottom, and 3.63x +

General Formulas for Destructive Weight of Soli Beams of Symmetrical Section.

Supported at Both Ends. Weight applied in Middle.

Line of Neutral Axis runs through centre of gravity of section.

 $\frac{2 a d r S}{l} = W$, and $\frac{l W}{2 a d r} = S$. In square beams for a d put d^2 . a and d = S

resenting area and depth of section, r radius of gyration (half depth of beam it l length of beam between its supports in ins., W destructive weight is tons or it, and B tensile strength of material in like tons or lbs. per sq. inch.

ILLUSTRATION.—Assume dimensions of cast-iron beams, Figs. 1, 2, 3, 4, 22 follows, viz.: 1 and 2, 5×5 ins.; 3, 2.5 × 10; 4, 5.64 diameter; and 5, 7.25 × 5 or equal areas; distance between supports 60 ins., and tensile strength of ima-20 000 lbs.

Areas of each 25 sq. ins. Radius of gyration, No. 1, .5775; 2, .4083; 3, .5775; e .5; and 5, 1.43.

1.
$$\frac{2 \times 25 \times 10 \times .5775 \times 26000}{60} = 125125 lbs.$$

$$2 \times 25 \times 7.07^{*} \times .4083 \times 26000 = 62545 \text{ 7.66}$$

3.
$$\frac{2 \times 5^2 \dagger \times .5775 \times 26000}{60} = 62562 \text{ lbs.}$$

4. For formula for square beams substitute $\frac{a d S}{c} = W$

Then 4.
$$\frac{25 \times 5.64 \times 26000}{60} = 61 \times 100 \ lbs.$$
; and for 5. $\frac{.7854 \ b \ d^2 \ 8}{l} = W.$

These formulas give a result equal to a transverse strength for Cast iron of 59th a tensile strength of 26 000 lbs., and of Wrought iron of 600 lbs. for a like strength of 50 000 lbs. (as per table, page 788).

 $\frac{4 \text{ C b } d^2}{2}$ = W. C representing coefficient of strength of metal in lbs., b and breadth and depth in ins., I length in feet, and W destructive weight in tons.

6.
$$\frac{R^4-r^4}{R}$$
 4.7 = b d^2 . R and r representing external and internal radius

$$\frac{b \ d^3 - b' \ d'^3}{d} = b \ d^2$$
. b' and d' representing interior breadth and defi-

$$_{38}$$
 R² = $_{9}$ d². $_{9}$ $\frac{b d^2}{4}$ = W. d representing depth or height.

'd'2 = W. b and d representing breadth and depth of emin and depth of breadth and depth of horizontal rib, external to control to

r a tensile strength of Cast Iron of 26 000 lbs. per sq. inch, # agth of Wrought Iron of 50 000 lbs., and pro rata.

Beams of Unsymmetrical Section. (D. K. Clark.)

S representing total tensile strength of section in lbs. per sq. inch, d ace between centres of tension and compression in ins., I length in ins., in lbs.

ON.—If the sectional area of a beam of cast iron is 5.9 sq. ins., the ince between centres of tension and compression 5.6 ins., distance bets 5.5 feet, and tensile strength of metal 30000 lbs. per sq. inch.

Then
$$\frac{4 \times 5.9 \times 30.000 \times 5.6}{5.5 \times 12} = \frac{3.964.800}{66} = 60.072.7 lbs.$$

STEEL.

mpute Transverse Strength of Steel Bars. Supported at Both Ends. Weight applied in Middle.

= W. S representing tensile strength in lbs., I length between supports I weight in lbs.

ON.-What is ultimate destructive stress of a bar of Crucible steel. and 2 feet between supports?

Then
$$\frac{1.155 \times 90000 \times 2^3}{2 \times 12} = \frac{831600}{24} = 34650 lbs.$$

oute Section of Lower Flange of a Girder or rical Shaft of Cast Iron to Sustain a Safe Load Middle. (Baker.)

l representing distance between supports in feet, d depth of girder, etc. ght in tons, C coefficient, and M moment of weight around support. N.-What should be section of a girder, 12 ins. deep, to sustain a safe s in its middle, between supports 16 feet apart?

ned 2 tons per sq. inch, and Factor of safety 4. $\frac{16 \times 12 \times 10}{4} = 480 = M$.

= a. S representing stress assumed in tons, and a area of section of ins. Then $\frac{480}{12 \times 2} = 20 \text{ sq. ins.}$

angular, Diagonal, or Circular Beam or Shaft.

$$\frac{d^2 b}{d^2 b} = M$$

$$\frac{d^3}{} = M$$

$$\frac{d^3}{10.3} = M.$$
 $\frac{d^3}{8.4} = M.$

Formulas for Computation of Destructive t of a Beam or Girder of any form of Cross and of any Material. (B. Baker.)

Load applied at Middle.

) = W. S representing tensile strength of material per sq. inch in tons, resistance of section = product of effective depth of aircler or beam, and of flange portion of section, in sq. ins., Q resist supports in feet, and $Q' = Q \times thickness$ of we ins.

Average Values of S for Various Ma

Tons.		Tons.	_
7	Steel	40 to 50	P
	3 Z	33	-

Substituting Values of S and Q in a General Equation.

Sacrion.	Cast Iron.	Wrought Iron.	Steel. '	Ouk.	Pine.
	$W=.875\frac{d^2b}{l}$	$=1.75\frac{d^2b}{l}$	$=3 \text{ to } 5 \frac{d^2 b}{l}$	=.14 to .25 d* b	=. xx to.a (2)
♦	$W=.75\frac{d^3}{l}$	$=1.5\frac{d^3}{i}$	$=2.625$ to 4.25 $\frac{d^3}{l}$	=. z to . z6 d3	=.08 to.4 #
•	$W=.5625\frac{d^3}{l}$	=1. 125 d3	==2 to 3.25 d3	$=.08 \text{ to. } \text{ z.4} \frac{d^3}{l}$	= 06 to .u #

d representing depth of a rectangular bar, side of a square, or diameter of a rul b breadth of a vertical bar, all in inc., and l distance between supports in fed

Moment of Resistance.

Moment of Resistance of a cross section is the static force resisting as a ternal force of tension or compression, and it is equal to moment of hosts, divided by distance of centre of effect of the area of fibres which are respectively the most extended or compressed from the neutral axis of the sets.

To Compute Moment of Resistance.

 $\frac{1}{d} = M$. I representing moment of inertia, and d distance of centre q effectives of extension or compression.

Work of Resistance.

Under a Quiescent Load.—Intensity of Elastic resistance increases of formly with total space through which action of stress operates; heat, may be defined by a triangular section.

Consequently, .5 s L = R. s representing space passed through, L load, and l^* sistance.

To Compute Moment of Resistance.

٤

Rr

ы

 $\frac{-\frac{O-1}{h}}{h}$ and $\frac{h}{h} = R$. C a coefficient = one sixth of destructive weight, I must of inertia, h height of neutral axis from base of section, R moment of resistant, if M modulus of rupture.

Note.—Neutral axis, for all practical purposes, is at centre of gravity of a section.

For Radius of Gyration, see Centre of Gyration, page 609.

For other rule for computation of Moment of Resistance, see Strength of Bess. Baker, London, 1870.

Moment of Inertia.

Moment of Inertia is resistance of a beam to bending, and moment of intransverse section is equal to sum of products of each particle of its are square of their distance from neutral axis of section.

٠. ١	H 15	ILLUSTRATION.—If transverse section of a beam, A B C D, FE
••	\cdots	8 × 20 ins., its neutral axis will be at middle of its depth, or; di
		A B, or, into any number of equal spaces, as shown, then each s
	 	will be $2 \times 2 = 4$ sq. ins., and the distances of the centre of
	 	square from neutral axis will be as follows .
0		
	l 1	1, 1. $2 \times 2 \times 4 \times 1^2 = 16 \mid 4, 4 \cdot 2 \times 2 \times 4 \times 7^2 = 784$
	1 1	2, 2. $2 \times 2 \times 4 \times 3^2 = 144 \mid 5$, 5. $2 \times 2 \times 4 \times 9^2 = 1296$
- 1	1	$3, 3, 2 \times 2 \times 4 \times 5^2 = 400$

3. $2 \times 2 \times 4 \times 5^2 = 400$ or half = 5260 = moment

he area of the figure in illustration had been more minuted with lid have approximated more pearly to the above result.

of Inertia of a Berolving: — see Ceptre of Gyration, pages.

ompute Moment of Inertia of a Solid Beam.-Fig. 2.

$$\frac{b d^3}{12} = M.$$

TRATION. -Take elements of preceding case.

Then
$$\frac{8 \times 20^3}{12} = \frac{64000}{12} = 5333.33$$
 moment.

it³ n³ b = M. trepresenting breadth of vertical divisions, n number of hort-livisions from plane of neutral axis, b breadth, and d depth of beam.

TRATION.—Take elements of preceding case.

$$t=2, n=5, and b=8.$$

 $.3 \times 2^{3} \times 5^{3} \times 8 = 2400 \times 2$ for lower half = 4800 = moment.

$$.7854 c t^3 = M.$$

$$\frac{b}{36} = M$$

$$.7854 (r^4 - r'^4) = M$$

$$\frac{34}{12} = M.$$

$$.11 r^2 = M$$

resenting radius, t transverse and c conjugate diameters, and s side.

ompute Common Centre of Gravity and Vertical stance between Centres of Crushing and Tensile ress of a Girder or Beam.

E. - Multiply surface of section of each part or figure composing by distance of its centre from centre of one of the two extreme parts res, as .; divide sum of their products by sum of surfaces of secid result will give distance of common centre of gravity from centres extreme part or figure.

PLE. -Take annexed figure.

PLE.—Take annexed figure.

$$\begin{cases}
2.5 \times 1 \times 0 & = 2.5 \times 0 = .0 \\
.325 \times \left(\frac{5.62}{2} + \frac{1}{2}\right) = .325 \times 3.31 = 1.076 \\
.38 \times 4 \times \left(\frac{.38}{2} + 5.62 + \frac{1}{2}\right) = 1.52 \times 6.31 = 9.591 \\
\hline
4.345 & 10.667
\end{cases}$$

ing 10.667 by 4.345 = 2.455 = distance of common centre from centre of upper

Below
$$\begin{cases} 1.52 \times 0 & = 1.52 \times 0 = .0 \\ 325 \times 5.62 \times \left(\frac{5.62}{2} + \frac{.38}{2}\right) = 1.826 \times 3 = 5.478 \\ 2.5 \times \left(\frac{1}{2} + 5.62 + \frac{.38}{2}\right) = 2.5 \times 6.31 = 15.775 \\ \hline 5.846 = 21.225 \text{ by } 5.846 = 3.631 = distance of common centre from centre} \end{cases}$$

3, 3.631 + $\frac{.38}{.}$ = 3.821 = distance of common centre from bottom, and i.283 = distance between centres of gravity.

Girders, Beams, Lintels, etc.

Transverse or Lateral Strength of any Girder, Beam, Breast-summe, Lintel, etc., is in proportion to product of its breadth and square of its depth, and area of its cross-section.

Best form of section for Cast-iron girders or beams, etc., is deduced from experiments of Mr. E. Hodgkinson, and such as have this form of section ____ are known as Hodgkinson's.

Rule deduced from his experiments directs, that area of bottom flange should be 6 times that of top flange—flanges connected by a thin vertical web, sufficiently rigid, however, to give the requisite lateral stiffness, tapering both upward and downward from the neutral axis; and in order to set aside risk of an imperfect casting, by any great dispreportion between web and flanges, it should be tapered so as to connect with them, with a thickness corresponding to that of flange.

As both Cast and Wrought iron resist compression or crushing with a greater force than extension, it follows that the flange of a girder or beam of either of these metals, which is subjected to a crushing atrain, according as the girder or beam is supported at both ends, or fixed at one end, should be of less area than the other flange, which is subjected to extension or a tensile stress.

When girders are subjected to impulses, and sustain vibrating loads, as in bridges, etc., best proportion between top and bottom flange is as r to 4; s a general rule, they should be as narrow and deep as practicable, and should never be deflected to more than .002 of their length.

In Public Halls, Churches, and Buildings where weight of people alone are to be provided for, an estimate of 175 lbs. per sq. foot of floor surface is sufficient to provide for weight of flooring and load upon it. In computing other weight to be provided for it should be that which may at any time bear upon any portion of their floors; usual allowance, however, is for a weight of 280 lbs. per sq. foot of floor surface for stores and factories.

In all uses, such as in buildings and bridges, where the structure is exposed to sudden impulses, the load or stress to be sustained should not exceed from .2 to .16 of breaking weight of material employed; but when load is uniform or stress quiescent, it may be increased to .3 and .25 of breaking weight.

An open-web girder or beam, etc., is to be estimated in its resistance of the same principle as if it had a solid web. In cast metals, allowance is to be made for loss of strength due to unequal contraction in cooling of web and flanges.

In Cast Iron, the mean resistances to Crushing and Extension are of American as 4.55 to 1, and for English as 5.6 to 7 to 1; and in Wrought Imare, for American as 1.5 to 1, and for English as 1.2 to 1; hence the mass of metal below neutral axis will be greatest in these proportions when stress is intermediate between ends or supports of girders, etc.

Wooden Girders or Beams, when sawed in two or more pieces, and slips are set between them, and whole bolted together, are made stiffer by the tion, and are rendered less liable to decay.

ers cast with a face up are stronger than when cast on a side, in the ion of 1 to .96, and they are strongest also when cast with bottom

mical construction of a Girder or Beam, with reference to attrength with least material, is as follows: The outline of

ţ;.

tom, and sides should be a curve of various forms, according as or depth throughout is equal, and as girder or beam is loaded only end, or in middle, or uniformly throughout.

king Weights of Similar Beams are to each other as Squares of their lear Dimensions.

oard of Trade regulations in England, iron may be strained to 5 tons inch in tension and compression, and by regulation of the Ponts et ées, France, 3.81 tons.

ts .75 and r inch in diameter, and set 3 ins. from centre in top of and 4 ins. at bottom.

acter of fracture, as to whether it is crystalline or fibrous, depends haracter of blows; thus, sharp blows will render it crystalline, and ill not disturb its fibrous structure.

spans exceeding 40 feet, wrought iron is held to be preferable to n.

ting, when well executed, is not liable to be affected by impact or r of load.

upled Girder or Beam is one composed of two, fastened together, and over the other.

Trussed Beams or Girders.

ght and Cast Iron possess different powers of resistance to tension and com1; and when a beam is so constructed that these two materials act in uniheach other at stress due to load required to be borne, their combination will
n essential economy of material. In consequence of the difficulty of adjustnsion-rod to the stress required to be borne, it is held to be impracticable to
ct a perfect truss beam.

airn declares that it is better for tension of truss-rod to be low than high, position is fully supported by following elements of the two metals ·

ight Iron has great tensile strength, and, having great ductility, it undergoes longation when acted upon by a tensile force. On the contrary, Cast Iron at crushing strength, and, having but little ductility, it undergoes but little ion when acted upon by a tensile stress; and, when these metals are refrom the action of a high tensile stress, the set of one differs widely from the other, that of wrought iron being the greatest.

r same increase of temperature, expansion of wrought is considerably greatthat of cast iron; 1.81* tons per sq. inch is required to produce in wrought me extension as in cast iron by 1 ton.

airn, in his experiments upon English metals, deduced that within limits 38 of 13440 lbs. per sq. inch for cast iron, and 30240 lbs. per sq. inch for t iron, tensile force applied to wrought iron must be 2.25 times tensile force to cast iron, to produce equal elongations.

ive tensile strengths of cast and wrought iron being as r to r.35, and their ice to extension as r to 2.5, therefore, where no initial tension is applied to rod, cast iron must be ruptured before wrought iron is sensibly extended.

tance of cast iron in a trussed beam or girder is not wholly that of tensile h, but it is a combination of both tensile and crushing strengths, or a transtrength; hence, in estimating resistance of a trussed beam or girder, transtrength of it is to be used in connection with tensile strength of truss.

transverse strength of a cast-iron bar, one inch square and or supported at both ends, stress applied in the middle, without se; and as mean tensile strength of wrought iron, also without se bs. per sq. inch, ratio between sections of beams and of truss sh transverse strength per sq. inch of beam and of tensile strength c are under consideration are those alone in which truss is attache wer flange, in which case it presents following conditions:

1. When truss runs parallel to lower flange. 2. When truss runs at an inclination to lower flange, being depressed below its centre.
3. When beam is arched spound and truss runs as a chord to curve.

Consequently, in all these cases section of beam is that of an open one with cast-iron upper flange and web, and a wrought-iron lower flange, increased in its resistance over a wholly cast-iron beam in proportion to the increased tensile strength of wrought iron over cast iron for equal sections of metals.

From various experiments made upon trussed beams, it is shown:

r. That their rigidity far exceeds that of simple beams; in some cases it was from 7 to 8 times greater. 2. That when truss resists rupture, upper flange of beams ing broken by compression, there is a great gain in strength. 3. That their strength is greatly increased by upper flange being made larger than lower one. 4 That their strength is greater than that of a wrought-iron tubular beam containing managed from the strength is greater than that of a wrought-iron tubular beam containing managed from the strength is greater than that of a wrought-iron tubular beam containing managed from the strength is greater than that of a wrought-iron tubular beam containing managed from the strength is greater than that of a wrought-iron tubular beam containing managed from the strength is greater than the strength is greater than that of a wrought-iron tubular beam containing managed from the strength is greater than the strength is greater

Comparative Value of Wrought-iron Bars, Hollow Girders, or Tubes of Various Figures (English).

Circular tubes, riveted 1 Flanged beams 1.2	Plate beams
Elliptic tubes, riveted	Elliptic, uniform thickness

General Deductions from Experiments of Stephenson, Fairbairn, Oubil, Hughes, etc.

Fairbairn shows in his experiments that with a stress of about $12\,320$ lbs persinch on cast iron, and $28\,000$ lbs. on wrought iron, the sets and elongations as nearly equal to each other.

A cast-iron beam may be bent to .3 of its breaking weight if load is laid on graually; and .6 of it, if laid on at once, will produce same effect, if weight of best is small compared with weight laid on. Hence, beams of cast iron should be maid capable of bearing more than 6 times greatest weight which will be laid upon the

In beams of cast or wrought iron, if fixed or supported at both ends, flagge should be in proportion to relative resistances of material to crushing or extension

Breaking weights in similar beams are to each other as squares of their like liner dimensions; that is, breaking weights of beams are computed by multiplying beather area of their section, depth, and a Constant, determined from experiments beams of the particular form under investigation, and dividing product by distance between supports.

Cast and wrought-iron beams, having similar resistances, have weights nearly s 2.44 to 1.

A box beam or girder, constructed of plates of wrought-iron, compared to a sixth rib and flanged beam \mathbf{x} , of equal weights, has a resistance as roo to 93.

Resistance of beams or girders, where depth is greater than their breadth, when supported at top, is much increased. In some cases the difference is fully one think

When a beam is of equal thickness throughout its length, its curve of equilibrian to enable it to support a uniform stress with equal resistance in every particular and this particular and is beam is an open one, its curve of equilibrium, for a to form load, should be that of a Parabola. Hence, when middle portion is not what removed, its curve should be a compound of an ellipse and a parabola, approaching nearer to the latter as the middle part is decreased.

Girders of cast iron, up to a span of 40 feet, involve a less cost than of wrough 'ron.

"set-iron beams and girders should not be loaded to exceed .2, or subjected 10 a stress than 1.66 of their destructive weight; and when the stress is attended neussion and vibration, this proportion must be increased.

races exceeding limit of those of simple cast iron are raited are those of straight or arched cast-iron girden in d together — Trussed, Bowstring, and wrought-iron limit iron l

Straight or Arched Girder, formed of separate castings, is entirely dependent on bolts of connection for its strength.

Trussed or Bowstring Girder is made of one or more castings to a single piece, d its strength depends, other than upon the depth or area of it, upon the proper justment of the tension, or the initial strain, upon the wrought-iron truss.

Box or Tubular Girder is made of wrought iron, and is best constructed with st-iron tops, in order to resist compression: this form of girder is best adapted to ord lateral stiffness.

When a girder has four or more supports, its condition as regards a stress on its middle is essentially that of a beam fixed at both ends.

The following results of the resistances of materials will show how they ould be distributed in order to obtain maximum of strength with minimum dimensions:

	To Tension.	To Crushing.	 	To Tension.	To Crush'g.
" English ranite	{13000 {13000 {23000 578	140 500 58 000 116 000 15 000 4 000	Oak, white, mean. "English". Wrought iron "English Yellow pine	{31 000 {53 000	7 500 3 100 47 000 83 000 40 000 65 000 4 000

The best iron has greatest tensile strength, and least compressive or crushing.

onditions of Forms and Dimensions of a Symmetrical Beam or Girder.

When Fixed at One End, and Loaded at the Other.

- 1. When Depth is uniform throughout entire Length, section at every point ust be in proportion to product of length, breadth, and square of depth, and square of depth is in every point the same, breadth must vary directly as night; consequently, each side of beam must be a vertical plane, tapering radually to end.
- 2. When Breadth is uniform throughout entire Length, depth must vary square root of length; hence upper or lower sides, or both, must be determined by a parabolic curve.
- 3. When Section at every point is similar, that is, a Circle, an Ellipse, a Juare, or a Rectangle, Sides of which bear a fixed Proportion to each other, le section at every point being a regular figure, for a circle, the diameter every point must be as cube root of length; and for an ellipse or a recagle, breadth and depth must vary as cube root of length.

ILLUSTRATION.—A rectangular beam as above, 6 ins. wide and 1 foot in depth at extreme end, and 4 feet in length, is capable of bearing 6480 lbs.; what should its dimension at 3 feet? $\sqrt[4]{4} = 1.587$, and $\sqrt[3]{3} = 1.442$.

Then 1.587: 1.442:: 1:.9086, and 6 and $12 \times .9086 = 5.452$ and 10.9.

Hence
$$\frac{5.452 \times 10.9^2}{3}$$
 = 216, and $\frac{6 \times 12^2}{4}$ = 216.

Vhen Fixed at One End, and Loaded uniformly throughout its Length.

- 1. When Depth is uniform throughout its entire Length, breadth rease as the square of length.
- 2. When Breadth is uniform throughout its entire Length, depth virectly as length.
- 3. When Section at every point is similar, as a Circle, Ellipse, Sqn. Escangle, section at every point being a regular figure, cube of dep. in ratio of square of length.

ILLUSTRATION. -Take preceding case.

Then $4^2: 3^2:: 12^3: 972$, and $\sqrt[3]{972} = 9.9$ in depth.

When Supported at Both Ends.

- 1. When Loaded in the Middle, Coefficient or Factor of Safety of the beam, or product of breadth and square of depth, must be in proportion to distance from nearest support; consequently, whether the lines forming the beam are straight or curved, they meet in the centre, and of course the two halves are alike.
- 2. When Depth is Uniform throughout, breadth must be in ratio of length 3. When Breadth is Uniform throughout, depth will vary as square rot of length.
- 4. When Section at every point is similar, as a Circle, Ellipse, Square, as Rectangle, section at every point being a regular figure, cube of depth will be as square of distance from supported end.

When Supported at Both Ends, and Loaded uniformly throughout in Length.

- When Depth is Uniform, breadth will be as product of length of bean and length of it on one side of given point, less square of length on one side of given point.
- 2. When Breadth is Uniform, depth will be as square root of product d length of beam and length of it on one side of given point, less square d length on one side of given point.
- 3. When Section at every point is similar, as a Circle, Ellipse, Square, and Rectangle, section at every point being a regular figure, cube of depth will be as product of length of beam and length of it on one side of given point, less square of length on one side of given point.

Elliptical-sided Beams.

To Determine Side or Curve of an Elliptical-sided Beam

$$\sqrt{\frac{L}{C}} \frac{L}{C} \frac{L}{b} = d$$
. L representing load in lbs., l length in feet, C coefficient, and l breadth in ins.

Illustration.—What should be depth in centre of a beam of white pine, to in length between its supports, and 5 ins. in breadth, to support a load of 10000 lkf.

Assume
$$C = 100$$
. Then $\sqrt{\frac{10000 \times 10}{2 \times 100 \times 5}} = \sqrt{\frac{100000}{1000}} = 10$ ins.

Hence, outline of beam is that of a semi-ellipse, having so feet for its transverse diameter, and 9 ins. for its semi-conjugate.

Note. - Weight of Girder, Beam, etc., should in all cases be added to stress or lost

Miscellaneous Illustrations.

-What should be side of a rectangular white oak beam, 2 ins. in width, and stween its supports, to sustain a load of 360 lbs.?

$$\sqrt{\frac{6 \times 360}{4 \times 2 \times 30}} = \sqrt{\frac{2160}{240}} = 3 \text{ ins.}$$

4 be breadth and depth of such a beam if square?

$$3 / \frac{6 \times 360}{4 \times 30} = \frac{3}{4} / \frac{2160}{120} = 2.62$$
 ins.
er of a cylinder?

$$-2d^{\frac{2}{3}}\sqrt{\frac{120}{120}} = 3.1$$
 ins.

STEEL.

To Compute Transverse Strength of Steel Bars.
Supported at Both Ends. Weight applied in Middle.

 $\frac{\text{1.155 S b } d^2}{l} = \text{W. S representing tensile strength in lbs., } l \text{ length between supportin ins., } and W weight in lbs.}$

ILLUSTRATION.—What is ultimate destructive stress of a bar of Crucible stee 2 ins. square, and 2 feet between supports? S=90000 lbs.

Then
$$\frac{1.155 \times 90000 \times 2^3}{2 \times 12} = \frac{831600}{24} = 34650 lbs.$$

Elastic Transverse Strength is 50 per cent. of its ultimate strength.

Hardening in oil increases its strength from 12 to 56 per cent. Thus,

Soft steel, 121 520 lbs.; soft steel, cooled in water, 90 160 lbs.; soft stee cooled in oil, 215 120 lbs.

Krupp's is about .45 of its tensile breaking weight, .24 of its compressiv or crushing strength, .38 of its transverse, and .30 of its torsional.

Friction of a steel shaft compared to one of wrought iron is as .625 to 1.

Capacity of steel to resist a transverse stress is much less than to resistorsion.

Relative diameters of steel and wrought-iron shafts, to resist equal transverse stress, are as .98 to 1, and weight of such a proportion of steel shaft compared with one of wrought iron will be about 4 per cent. less, and frictio of bearing will be 6 per cent. less.

CYLINDERS, FLUES, AND TUBES.

Hollow Cylinders. Cast Iron.

To Compute Elements of Hollow Cylinders within Limits of Elastic Strength. (D. K. Clark.)

 $8 \times hyp.\ log.\ R = P.$ $\frac{P}{hyp.\ log.\ R} = S.$ $\frac{P}{S} = hyp.\ log.\ R.$ S represent the static tensite strength of metal in lbs. per sq. inch, R ratio of external diameter to in ternal, $= \frac{d'}{d} = \frac{r'}{r}$, and P internal pressure in lbs. per sq. inch. d and d'represent in thernal and external diameter, and r and r' internal and external radii, all in ins Norm.—Hyperbolic Logarithm of a number is equal to product of its common logarithm and 2.3026 Illustration I. — Diameters of a hydrostatic cylinder 5.3 by 13.125 ins.; who Pressure within its elastic strength will it sustain per sq. inch?

Assume S = 10 000 lbs. Hyp. log. R =
$$\frac{13.125}{5.3}$$
 × 2.3026 = log. 2.5 × 2.3026 = .92

Then $10\,000 \times .92 = 9200 \,lbs. \,per \,sq. \,inch.$

NOTE.-For Bursting Strength take maximum strength of metal.

2.—A water-pipe .75 inch thick has an internal diameter of 10 ins., what is it bursting pressure?

$$S = 30 000 \text{ lbs.}$$
 Hyp. $log. \frac{10 + .75 \times 2}{10} = .1398.$

Then $30000 \times .1398 = 4194 lbs$.

3.—If it were required of a hydrostatic press to sustain a pressure of rappon a ram of 5 ins. in diameter, what would be pressure on ram, and v be thickness of metal, assuming it equal to an elastic tensile stress of per sq. inch?

Area of 5 ins. = 19.635.
$$\frac{589 \circ 50}{19.635}$$
 = 30 000 = pressure per sq. inch of

Then
$$\frac{30000}{15000} = 2$$
, which = hyp. log. R = 7.39, and 7.39 × 5 = 36.95 = ex.

Wrought Iron and Steel.

$$\frac{R + hyp. \log \frac{d'}{d} - 1}{2} S = P. \quad \frac{2P}{R + hyp. \log \frac{d'}{d} - 1} = S. \quad \frac{2P}{S} + 1 = (P + hyp. \log \frac{d}{d})$$

ILLUSTRATION 1.—If diameters of a wrought-iron cylinder are 5 and 15 ins, will imate or destructive strength of metal is 40 000 lbs. per sq. inch, what is is testing pressure? $\frac{15}{c} = 3. \quad Hyp. \ log. \ 3 = .477 \ 12 \times 2.3026 = 1.00\%.$

Then $\frac{3+1.0986-1}{2} \times 40000 = 61972$ lbs. per sq. inch = $61972 \times 5 \div 15 - 15$

2.—A steam-boiler 6 feet in internal diameter, of wrought-iron plates .375 has thick and double riveted longitudinally, burst at a joint by a pressure of 300 liams sq. inch of its section?

$$\frac{72 + .375 \times 2}{72}$$
 = 1.0104. Hyp. log. 1.0104 = .010 345.

Then $\frac{2 \times 300}{1.0104 + .010345 - 1} = \frac{600}{.020745} = 29405$ lbs. per sq. inch of section of joint

SHIP AND BOILER PLATES.

(See pages 751-757 for Boiler Riveting.)

Ultimate Tensile Strength of Riveted and Weldel Joints of Wrought-iron Plates. (D. K. Clark)

Entire Plate = 100.

Joints.	+5	Plate.	-4375	Aver-	Joints.	.5	Plate		15
Scarf-welded	50	102	106 69	104	Double riv'd, snap-1	59	72	70	6
Single hand riveted.	50	56	50 52	50	sunk and snap-	53	69	72	13
" by machine counter-) sunk head }	40 44	52 52	54 50	49 49	welt, counters'k and snap-headed	52	65	60	

Strength of Riveted Joints per Sq. Inch of Single Plate. (Wm. Fairbard Single Lapped.—Machine riveted. Pitch 3 times, 25 000 lbs.

Hand riveted. Pitch 3 times, 24 000 lbs.

Rivets "staggered," and equidistant from centres, 30 500 lbs.

Abut Joints.—Hand riveted. Rivets not "staggered," and equilist from centres, single cover or strap, 30 000 lbs.

Rivets "square," single cover or strap, 42 000 lbs.; double cover straps, 55 000 lbs.

Comparative Strength of Riveted Joints.

Entire Plate . 375 ins. thick = 100.

Double riveted, double strap, or fish-plated joint. | Some plated joint | Single riveted lap joint. | Single rivet

For all joints of plates over .5 inch, other than double welded, these properties too high.

A closer pitch of rivets should be adopted in single than in double rives etc.

Dimensions	of	Riveta	Pitch	Lan	eto.

e. 1689.	Diam. of Rivet.	Length from Head.	Pitch.	Single.	L a p. Double.	Staggered.
1.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.
- 1	٠5	1.125	1.5	1.5625	2.75	2.4375
25	.625	1.375	1.625	2	3 · 4375	3
5	·75 .8125	1.625	1.75	2 · 4375	4.125	3.625
	.8125	2.25	2.125	2.625	4 - 4375	3.9375
25	. •9375	2.75	2.375	3	5.1875	4.5625
5	1	3	2.625	3.25	5.5	4.8125
	1.125	3.25	3	3.625	6.1875	5 • 4375
5	1.25	4	3.375	4 .	6.875	6.0625
ı	1.5	4.5	4.375	4.875	8.25	7.25

ps. - Single, .125 thicker than the plate; Double, each .625 of thickness of

To Compute Diameter of Rivet.
linarily, T 1.25+.1875=d. Trepresenting thickness of plate, and d diameter t.

Pitch of Rivets. (Nelson Foley.)

10.	Metal between the Holes.	Diam. of Rivets.	Plates.	Metal between the Holes.	Diam. of Rivets.
red.	52 to 62 per cent. 68 to 75 " "	1.4 to 2.3 1.4 to 2.1	Square	70 to 78 per cent. 76 to 80 ""	.99 to 1.7

portions of Single Rivet Wrought-iron Joints. (French.)

88		neter ivets.		b of eta.		th of		kness late.		meter ivets.		h of ets.	Wid	th of
h.	Mil's	Inch.	Mil's	Ins.	Mil's	Ins.	Mil's	Inch.	Mil's	Ins.	Mil's	Ins.	Mil's	Ins.
18	8	.315	27	1.06	30	1.18	10	-394	20	-787	56	2.2	58	2.28
58	10	-394	32	1.26	34	1.34	II	4433	21	.827	57	2.24	60	2.36
37	12	.472	37	1.46	40	1.58	12	+472	22	.866	58	2.28	60	2.36
36	14	.55I	43	1,69	44	1.73	13	.512	23	.906	60	2.36	62	2.44
16	16	.63	48	1.89	50	1.97	14	-551	24	-945	62	2.44	64	2.52
15	17	.669	51	2.01	54	2.13	15	-591	25	.984	63	2.48	66	2.6
54	19	-748	54	2.13	56	2.2	16	.63	26	1.024	65	2.56	68	2.68

It of Experiments on Double Riveted and Double Strapped Plate Joints. (Mr. Brunel.)

20 ins. in width, 5 inch thick, Abut jointed, with a Strap or Fish-plate on each side, 10 ins. in width. Holes Punched.

.6875 inch rivets, 4 ins. pitch, set "square," tensile strength 77 per cent.
75 " " " " 186 " 78.6 "
75 " " square," " " 84 "

Boiler Riveting see pp. 755-57.

Hulls of Vessels.

Diameter of Rivets.

Plate.	U. S. and British Lloyds.	Liverpool Reg'y.	Admiralty, Eng.	Millwall, Eng.	Pitch of Rivets.	Length of Counter-	f Rink
Inch.	Inch.	Ins.	Ins.	Inch.	Ins.	Ins.	1 1
.3125	.625	.5	-5	.625	1.75	1.125	1.5
.375	.625	.625	.625	.625	2	1.25	1.03
-4375	.625	.625	-75	.625	2,125	1.375	1.75
.5	-75	-75	·75 .875	-75	2.25	1.5	20
.5625	.75	·75 .8125	.875	-75	2.437	1.6875	21673
.625	.75 .875	.8125	-875	.875	2.50	1,9375	2.375
.6875	.875	.875	.875	.875	2.812	2.1875	2.03
·75 .8125	.875	.875	I	.875	3.125	2.375	275
.8125	.875	-9375	1	.875	3.375	2.5	=.875
.875	I	1	1.125	I	3.625	2,625	3
+9375	I	1.0625	1.125	1	3.875	2.75	3.135
I	I	1.125	1.125	4	4.125	2.875	3-25

Lap of Joint or Course should be . 5 pitch of rivets added to . 3 diam. of rivet

Note.—Lloyd's requires a spacing of 4.5 diameter. Liverpool Registry, 4.5 to 5 in edges and abuts of bottom and bulkhead plates, and 5 woll other water-tight work. Bureau Veritas, 4 diameters for single riveling, with for double.

STEEL PLATES.

Steel Plates, according to M. Barba, .354 inch thick are equal to we iron .472 inch thick, or as 3 to 4; consequently, when iron rivets are their diameter should be in proportion to an iron plate.

It is ascertained also that they are best united by iron rivets.

A steel plate .3125 inch thick requires an iron rivet .5625 inch in eter, and 1.375 ins. apart.

Bridge Plates and Rivets.

Plates .25 to .5 inch thick. Rivets .75 to 1 inch diameter, and 3 ins. from centres in upper flange or girder, and 4 ins. in lower

Rivet Heads.

Ellipsoidal, Fig. 1. — D diameter, R radius of head = D, r raise flange = .4 D, c depth at centre = .5 D.

Segmental, Fig. 2.—D diameter, c depth at centre = .625 / D, R radius of head = .75 D, o depth below head = .125 D.

Countersunk.—Head 1.52 D, angle 60°. Countersink .45 diam. of plant Cheesehead or heads, section of which is a parallelogram. Head 45 diameter 1.5 D.

Rivets.

Shearing strength of a Lowmoor rivet = $40\,320\,d^2$ or $18\,d^2$ in tons d representing diameter of rivet in ins.

Memoranda.

Punching holes for riveting weakens plates, varying from 10 to 20 per conding to their temper, hardest losing most.

Countersunk riveting does not impair strength of joint, as compared size ternal head.

Diagonal abut joints are stronger than square.

Shearing strength of rivets should not exceed that of plates.

Maximum strength of joint is attained at 90 to 100 per cent. of not section of Shearing strength of English wrought iron is taken at 80 per cent. of the strength.

LEAD PIPE.

esistance of Lead Pipe to Internal Pressure. (Kirkaldy, Jardine, and Fairbairn.)

hick- tess.	Weight per Foot.	Bursting Pressure.	Diam.	Thick- ness.	Weight per Foot.	Bursting Pressure.	Diam.	Thick- ness.	Weight per Foot,	Bursting Pressure.
nch.	Lbs.	Lhs.	Ins.	Inch.	Lbs.	Lbs.	Ins.	Inch.	Lbs.	Lbs.
.2	2.3	1579	1.25	.21	5-3	683	2	.21	9.2	498
.2	2.6	1349	1.5	.24	7.1	734	2	.2	-	448
.22	3.8	1191	1.5	.2	-	528	3	.25	-	364
.2	4.1	gir	1.5	.2	-	626	3	.25	-	374

le strength of metal = 2240 lbs. per sq. inch.

ompute Thickness of a Lead Pipe when Diameter and Pressure in Lbs. per Sq. Inch is given.

E.—Multiply pressure in lbs. per sq. inch by internal diameter of pipe and divide product by twice tensile resistance of metal in lbs. per sq.

TRATION.—Diameter of a lead pipe is 3 ins., and pressure to which it is to litted is 370 lbs. per sq. inch; what should be thickness of metal?

$$\frac{370 \times 3}{2240 \times 2} = \frac{1110}{4480} = .248$$
 ins.

ence in Weight between Pipes of "Common," "Middling," and "Strong" r cent.

To Compute Weight of Lead Pipe.

 $\overline{d^2}_{3.86} = W$. D and d representing external and internal diameters in ins., weight of a lineal foot in lbs.

ompute Maximum or Bursting Pressure that may be borne by a Lead Pipe.

E.—Multiply tensile resistance of metal in lbs. per sq. inch by twice as of pipe, and divide product by internal diameter, both in ins. TRATION.—What is bursting pressure of a lead pipe 3 ins. in diameter and thick?

$$\frac{2240 \times .5 \times 2}{3} = \frac{2240}{3} = 746.6 \text{ lbs.}$$

ne a column of water 34 feet in height to weigh 15 lbs. per sq. inch; what water would such a pipe sustain at point of rupture?

stance of Glass Globes and Cylinders to Internal Pressure and Collapse. (Flint Glass.)

Bursting Pressure.

	GLOBES.	1	Ī	CYLI	IDER.	
ter.	Thickness.	Per Sq. Inch.	Diameter.	Length.	Thickness.	Per Sq. Inch.
	Inch.	Lbs.	Ins.	Ins.	Inch.	Lbs.
	.024	84	4	7	.079	282
	.022	90]]	Elliptical (C	rown Glass)	•
	.059	152	4.1	7	.029	109
		Colla	psing Press	ure.		

.014 .025 .059	292 1000* 900*	3 4 4	7 14	.014 .034 .064	202 202
	. 1	* Unbroken.			

Manganese Bronze.

Manganese Bronze, No. 2, has a Tensile strength of 72000 to 78600 has per sq. inch, its elastic limit is from 35000 to 50000 lbs., its ultimate exagation 12 to 22 per cent., and its hardness alike to that of mild steel.

Transverse Strength.—Destructive stress of a bar 1 inch square, supported at both ends at a distance of 1 foot = 4200 lbs., bending to a right angle before breaking, and requiring 1700 lbs. to give it a permanent set.

MEMORANDA.

Cast Iron.

Beams cast horizontally are stronger than when cast vertically.

Relative strength of columns of like material and of equal weights is: Cylindrical, 100; Square, 93; Cruciform, 98; Triangular, 110. (Hodgkinsa)

If strength of a cylindrical column is 100, one of a square, a side of wish is equal to diameter of the cylinder, is as 150.

Repetition of Stress.—A piece submitted to transverse stress broks 1956th strain, with a stress .75 of that of its original ultimate resistance

Resistance to Bursting of Thick Cylinders.—Mean resistance to bursting of chambers of cast-iron guns is as follows (Major Rodman, U.S.A.):

Thickness of metal = 1 calibre, length = 3 calibres, 52 217 lbs. per sq. inch. Thickness of metal = .5 calibre, length = 3 calibres, 49 100 lbs. per sq. inch. The tensile strength of the iron being 18 820 lbs.

Diam. of cylinder 2 ins., length 12 ins., metal 2 ins., 80 229 lbs. per sq. inch. Diam. of cylinder 3 ins., length 12 ins., metal 3 ins., 93 702 lbs. per sq. inch. Tensile strength of iron being 26 866 lbs.

Sudden Applications of Stress.—Loss of strength by sudden application of load was, by experiment, 18.6 per cent. in excess of load applied graduals, and its elongation 20 per cent. greater.

Low Temperature.—Tensile strength at 23° under sudden application of load, was reduced 3.6 per cent., and elongation 18 per cent.

Wrought Iron.

Increased Hammering gives 20 per cent, greater strength with decreased elongation.

Hardening.—Water increases strength more than oil or tar. A bar h inch in diameter, forged and hardened in water, attained a tensile strength of 73 448 lbs. (Mr. Kirkaldy.)

Case Hardening.—Loss of tensile strength 4950 lbs. per sq. inch.

Cold Rolling added 13.5 per cent. to tensile strength, and when plus were reduced .33 in thickness, strength was nearly doubled, with but 1 pt cent. elongation. Specific gravity was reduced.

Fibre.—Plates are about 12 per cent. stronger with fibre than across it Angles, Tees, etc., have from 2200 to 4500 lbs. less tensile strength that rectangular bars.

"anizing does not perceptibly affect strength.

ing.—Strength as affected by welding varies by experiment from 25 cent. less, average being 19.4.

's about .45 of its tensile breaking weight, .15 of its comtrength, and .5 of its transverse strength.

ads.—I inch bolts lose by dies 6.11 per cent, and by

Steel. ter at a "sture of 310°,

١.

WOODS

pute Transverse Strength of Large Timber. Destructive Stress.

ne End, and Loaded at the Other.
$$\frac{.3 \text{ S b } d^2}{l} = \text{W}.$$

oth Ends, and Loaded in Middle.
$$\frac{1.8 \text{ B b d}^2}{l} = W.$$

l at Both Ends, and Loaded in Middle.
$$\frac{1.2 \text{ S b } d^2}{l} = W$$
.

both Ends, and Louded at any other point than
$$\left\{\frac{.45 \text{ S b } d^2}{l} = \text{W}.\right\}$$

at Both Ends, and Loaded at any other point
$$\begin{cases} \frac{3 \text{ S b } d^2 l}{m \text{ n}} = \text{W.} \end{cases}$$
Hence, $\frac{\text{W } l}{\text{ = b } d^2} = \text{S, and } \frac{\text{W } l}{\text{h } d^2} = \text{r.2 S.}$

representing breadth, depth, and length to or between supports, all in flensile and crushing strengths of material at two thirds of its Value, by experiments, W ultimate weight or stress in lbs., and m and n disfrom nearest supports in ins.

n is uniformly loaded, the stress is twice that if applied in its middle

Values of 1.2 S.

ther coefficients, as . 2, 1.8, etc., the values will be proportional.

Woods.	1.28	Woods.	1.28
	2.38	Locust	3.7
l		Mahogany, Honduras	2.3
	2.46	Oak, Pa	2
		" 'Va	2.3
		" white	2.5
		" English	1.7
	I.6	" Dantzic	1.35
	I.53	" French	2.44
		Pine, Va	3
	, , ,	" pitch	2.2
nada		" white	2.71
		" yellow	3.87
		" " Canada	1.8
		Redwood, Cal	1.1
		Spruce	1.2
		Teak	3.17
		Walnut, black.	
		ii wainus, olack	1.25

IN I.-What is destructive stress of a beam of English oak, 2 ins. feet between its supports?

ble = 1.7, and S = .66 of 5700 (mean of tensile and crushing strength)

$$\frac{1.7 \times 2 \times 2^2 \times 3762}{6 \times 12} = \frac{51163}{72} = 710.6 \text{ lbs.}$$

ent of Mr. Laslett it was 688 lbs

destructive stress of a beam of yellow pine, 3 ins. by 12, and 14 apports?

sle = 3.87, and S = .66 of 10 200 (mean of tensile and crushing street

$$\frac{3.87 \times 3 \times 12^2 \times 673^2}{14 \times 12} = \frac{11254827}{168} = 66993 lbs.$$

was fixed at both ends then 3.87 would be 5.8.

Loeds for Rectangular Beams of Various Materials, One Inch in Breadth and One Foot in Length.

W While, B Baltic, B'k Black, C Canadian, D Dantric, E English, G Georgia, M Memel, P Pitch, R Riga, Y Yellow. - Figures at Head of Columns denote Destructive Weight of Malerial in Lbs. Supported at Both Ends and Loaded in Middle. African,

Bit Ath Bit Spruce, Birch Walnet Spruces			1				-			-			
101, 104,	Depth.	-	C Fir. B'k Spruce. Larch. 320	Birch. Hack- matack. Hemlock.	Walnut, C Ash. R Fir. 450	Syramore. Syramore. Elm. W Pine. 500	Beech. Y Pine. E Oak.	P Pine. C Oak. Spruce. 550	W Oak. B Fir. 600	Chestnut, E Ash 640	Ash. D Fir. Rock Elm. 680	Maple. Af Oak. G Pine. 800	Locust.
66 64 88 90 90 90 90 90 90 90 90 90 90 90 90 90	7		Lbs.	Lbs.	Lbs	Lbs:	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
240 256 320 350 360 360 360 360 360 360 360 360 360 36	-		64	&	8	100	105	110	120	128	136	reo	236
\$40 \$576 720 880 810 810 810 810 810 810 810 810 81	•		256	320	36	400	420	440	480	512	544	9	944
1024 1280 1440 1394 3240 3240 3340 3440 3460 5 120 5 460 6 400 6 4	"	_	576	720	810	000	945	000	1 080	1152	1 224	1 440	2124
2 1000 2 2000 2 259 2 304 2 308 3 240 3 136 3 392 4 441 4 006 6 5 120 5 700 6 100 7 7 7 4 9 600 10 216 11 520 12 900 12 54 15 600 10 600 12 54 15 600 17 640 14 15 18 000 20 250 15 34 20 480 23 23 240	*	- %	1024	1 280	1 440	1 600	1 680	1760	1 920	2048	2176	2560	3776
2 304 2 886 3 240 3 40 6 90 6 90 6 90 6 90 6 90 6 90 6 90 6	15	1 500	0091	2 000	2250	2 500	2625	2750	3000	3 200	3400	4000	2 000
3.35	9	2 160	2 304	2 880	3240	3 600	3780	3 960	4 320	4 608	4 896	2760	8406
4 096 5 120 5 760 6 480 0 400 6 400 6 400 9 216 11 520 12 9 216 11 520 12 9 20 13 544 15 680 17 640 15 480 23 9 20 9	-	2940	3136	3 920	4410	4 900	5 145	2300	5 880	6272	6664	7 840	11 564
5 184 6 480 7 200 6 200 9 200 9 200 11 5 20 12 9 20 15 11 5 20 12 9 20 15 20 15 20 15 20 15 20 15 20 15 30 20 20 20 20 20 20 20 20 20 20 20 20 20	œ	3840	4006	5 120	2 760	6400	6720	2 040	2680	8192	8704	10240	15 104
6400 8000 9000 7744 9680 10890 10816 11520 15200 1254 1560 17540 14400 18000 20250 1534 20480 22020	0	4 860	5 184	6480	7 290	8 100	8 505	8010	0 250	10 368	11016	12960	10116
7744 9 680 10890 9216 11520 12960 10816 13520 15910 12544 15680 17640 1440 20480 22020	õ	9	9	8000	0006	10000	10 500	11 000	12000	12800	13 600	16000	23 600
9216 11520 12960 10816 13520 15210 14400 18000 20250 16364 20480 23040	ĭ	7 260	7744	9996	10890	12100	12 605	13310	14 520	15488	16456	19 360	28 556
10816 13520 15210 12544 15680 17640 14400 20250 16384 20480 23240	ũ	8640	9226	11 520	12960	14400	15 120	15840	17 280	18432	10 584	23040	33 984
12 544 15 680 17 640 14 400 18 000 20 250 16 384 20 480 23 040	ũ	10140	91801	13520	15210	16900	17745	18 500	20 280	21 632	22 084	27040	30 884
14 400 18 000 20 250 16 384 20 480 23 040	<u>:</u>	11 760	12 544	15 680	17640	19 600	20 580	21 560	23 520	25 088	26656	31 360	46256
16 384 20 480 23 040	ž,	13 500	14 400	8000	20250	22 500	23 625	24750	27 000	28 800	31 600	30000	53 100
	2	15300	16384	20480	23040	25 600	26 880	28 160	30 720	32768	34816	40 000	91709

Illustrations of Table.

2.—What should be depth of a like beam, 3 ins. in width, and 10 feet between its supports, to bear a statical weight of 1920 lbs.? Coefficient or Safe load for the material $= 500 \div 5 = 100$ T.-What is safe statical load for a white-pine beam, 4 ins. by 12, A like beam, r inch in width, ra ins. in depth, and r foot between its supports, will bear as per table 14 400 lbs. and 15 feet between its supports, loaded in middle.

 $\sqrt{\frac{10 \times 1920}{4 \times 1000 \times 1}} = \sqrt{\frac{19300}{400}} = \sqrt{48} = 6.93 \text{ fms.}$

To Compute Depth of a Header Beam.

LE.—See rule for depth of a floor beam, page 835, with the exception theader is assumed to be always uniformly loaded.

Or,
$$\sqrt{\frac{l \cdot 5 \text{ W}}{h \cdot C}} = d$$
.

To Compute Breadth of a Trimmer Beam.

th One Header and One Set of Tail Beams. RULE.—Proceed as for utation of dimension of a beam loaded at any other point than middle.

 $\frac{n \, n \, W}{l \, d^2 \, C} = b$. m and n representing distances of the weight or load from each 1 feet.

USTRATION.—What should be breadth of a trimmer or carriage beam of Georgia 23 feet in length, 15 ins. in depth, sustaining a header 10 feet in length, with sams 10 feet, and designed for a load of 540 lbs. per 80, foot of floor?

ume
$$C = 100$$
; $d = 15 - 1 = 14$; m and $n = 10$ and 4 feet.

$$.5 \times \frac{19 \times 4 \times 19 \times 10 \div 2 \times 540}{23 \times 100 \times 14^2} = .5 \times \frac{3898800}{450800} = 4.32 \text{ ins.}$$

FE I.—Depth of trimmer beams is usually determined by depth of floor beams; not, proceed to determine it as for a header.

-When a trimmer beam is mortised to receive benders, it is proper to deduct a from its depth, as in preceding illustrations. When bridle or stirrup irons sed to suspend headers, a deduction of the thickness of the iron only is necesusually .5 inch.

With Two Headers and One Set of Tail Beams .- Fig. 1.

PERATION.—Proceed for each weight or load as for a beam, when weights ustained or stress borne at other point than the middle.

 $rac{1}{4} = W$ and w. a representing area of floor in sq. feet, L load per sq. fool, W and w weights or loads at points of rest on trimmers.

NOTE. — Hatfield and some other authors give complex and extended formulas, to deduce the dimensions of a Girder or Beam, under a like stress,

Upon consideration, however, it will readily be recognized that a beam loaded at more than one point is simply two or more beams, as the case may be, loaded at different points, and connected together.

ILLUSTRATION. — What should be breadth of a trimmer beam of Yellow or Georgia pine, 25 feet in length, 12 ins. in depth, sustaining two headers

et in length, set at x_5 feet from one wall and 5 feet from the other, to support safety 300 lbs. per sq. foot of floor?

= 25, m = 15, n = 10, s = 5, r = 20, C = 100, and d = 12 - 1 = 11 fr by mortising.

$$\frac{\times 5 \times 300}{4} = \frac{18000}{4} = 4500$$
 lbs. at W, and $\frac{12 \times 5 \times 300}{4} = \frac{13000}{4} = 4500$ lbs. at

1en
$$\frac{15 \times 10 \times 4500}{25 \times 11^2 \times 100} = \frac{675000}{302500} = 2.23$$
 ins. breadth for load on header at 15 ft

 $\frac{5 \times 20 \times 4500}{25 \times 11^2 \times 100} = \frac{450000}{302500} = 1.48$ ins. breadth for load on header at 5 feet, and +1.48 = 3.71 ins. combined breadth.

With Two Headers and Two Sets of Tail Beams .- Fig. 2.

Fig. 2.

OPERATION .- Proceed as directed for Fa

ILLUSTRATION. — What should be breadh trimmer beam of yellow pine 25 feet in length ins. in depth, sustaining two headers 12 feel length, set at 15 feet from one wall and 5 feel in the other, to support with safety 300 fee per foot of floor?

l = 25, m = 15, n = 10, s = 5, r = 20, l = 10 and d = 15 - 1 = 14 for loss by mortising. $12 \times 15 \times 300 = 54000 = 13500$ ibs. at W. at

$$\frac{12 \times 5 \times 300}{4} = \frac{18000}{4} = 4500 lbs. at w.$$

Then
$$\frac{15 \times 10 \times 13500}{25 \times 14^2 \times 100} = \frac{2025000}{490000} = 4.14$$
 ins., and $\frac{5 \times 20 \times 4500}{25 \times 14^2 \times 100} = \frac{450000}{490000}$; ins., and $4.14 + .92 = 5.06$ ins. combined or eadth.

With Three Headers and Two Sets of Tail Beams .- Fig. 3.

Fig. 3.

OPERATION,-Proceed as directed for fe

ILLUSTRATION. — What should be bresided trimmer beam of yellow pine, 20 feet in legatins, in depth, sustaining 3 headers 17 feet in legatins, in depth, sustaining 3 headers 17 feet in legatins, and 13 feet from one wall, to see load of 200 lbs. per sq. foot of floor?

l=20, m=7, n=13, s=7, o=3, d=17=12 ins., and C=100.

$$\frac{15 \times 7 \times 200}{4} = \frac{21000}{4} = 5250 \text{ lbs. at W};$$

$$\frac{15 \times 7 - 3 \times 200}{4} = \frac{12000}{4} = 3000 \text{ lbs. at } w; \text{ and } \frac{15 \times 7 - 3 \times 200}{4} = 3000 \text{ lbs. at } w;$$

Then
$$\frac{7 \times 13 \times 5250}{20 \times 12^2 \times 100} = \frac{477750}{288000} = 1.66 \text{ ins.}; \quad \frac{7 \times 13 \times 3000}{20 \times 12^2 \times 100} = \frac{273000}{288000} = 1.66 \text{ ins.};$$

and $\frac{3 \times 17 \times 3000}{20 \times 12^2 \times 100} = \frac{153000}{258000} = .53$ ins. Hence, 1.66 + .95 + .53 = 3.14 in shired breadth.

Stirrups or Bridles.

Stirrups are resorted to in flooring designed for heavy loads, in add avoid the weakening of the trimmers by mortising.

Average wrought iron will sustain from 40000 to 50000 lbs. per started Hence 45000 lbs. as a mean, which ÷ 5 for a factor of safety,=000

A stirrup supports one half weight of header, and being doubled (logs the stress on it is but $.5 \div 2 = .25$ of load on header.

To Compute Dimensions of Stirrups or Bridles

$$\frac{W \div 2}{2 \times 9000} = area$$
. Hence $\frac{area}{thickness} = width$.

ILLUSTRATION.—What should be area and width of .75 inch wroughtims from for a weight on a header beam of 240000 lbs.?

$$\frac{240000 \div 2}{2 \times 9000} = \frac{120000}{18000} = 6.66 \text{ sq. ins., and } \frac{6.66}{.75} = 8.8 \text{ ins.} = \text{with.}$$

Girder.

Condition of stress borne by a Girder is that of a beam fixed or supported both ends, as the case may be, supporting weight borne by all beams ting thereon, at the points at which they rest.

To Compute Dimensions of a Girder.

RULE.—Multiply length in feet by weight to be borne in lbs., divide oduct by twice* the *Coefficient*, and quotient will give product of breadth d square of depth in ins.

Or,
$$\frac{l W}{2C} = b$$
 and d^2 , and $\sqrt{\frac{l W}{2bC}} = d$.

Example.—It is required to determine dimensions of a yellow-pine girder, z_5 feet ween its supports, to sustain ends of two lengths of beams, each resting upon it 1 adjoining walls, z_5 feet in length, having a superincumbent weight, including t of beams, of 200 lbs. per sq. foot.

condition of stress upon such a girder is that of a number of beams, 30 feet in gth $(r_5 \times 2)$, supported at their ends, and sustaining a uniform stress along their gth, of 200 lbs. upon every superficial foot of their area.

Toefficient .2 Of 500 = 100.

$$30 \times 15 \times 200 \div 2$$
, for half support on their walls = 45 000 lbs.

Then
$$\frac{15 \times 45000}{2 \times 100} = 3375 = b$$
 and d^2 . Assuming $b = 12$ ins., then $\sqrt{\frac{3375}{12}} = 16.77$

8. Or, if 15 ins., then
$$\sqrt{\frac{3375}{15}} = 15$$
 ins.

o Compute Greatest Load upon a Girder, and Dimensions thereof.—Fig. 1.

When a Beam is Loaded at Two Points.

$$\frac{m \ n}{n}$$
 = effect of weight at 1,

$$\frac{r \, s}{l} = effect \, of \, weight \, at \, 2,$$

$$\frac{m}{l}$$
 ($\mathbb{V} \times n + w$ s) = the two effects

1, and
$$\frac{s}{t}$$
 (w $r + W m$) = two effects at 2.

Then, for weight and dimensions, same formulas will apply.

LLUSTRATION.—Assume weight of 8000 lbs. at 3 feet from one end of a white-pine am 12 feet in length between its bearings, and another weight of 3000 lbs. at 5 from other end.

C. 20 f 500 = 100

 $3000 \times 3 \times 12 - 3 = 216000$ effect of weight at location 1, and $3000 \times 5 \times 12 - 5$ 105 000 effect of weight at location 2. Hence 1, being greatest, = W, and 2 = w.

Then,
$$\frac{3 \times 9}{12} \times 8000 = 18000$$
 at W, and $\frac{5 \times 7}{12} \times 3000 = 8750$ at w; and

$$\overline{(8000 \times 9 + 3000 \times 5)} = 21750 = total \text{ effect at W, and } \frac{5}{12} \overline{(3000 \times 7 + 8000 \times 3)}$$

18 750 = total effect at w.

Ience, to ascertain dimensions at greatest stress,

$$\frac{12.750 \times 3 \times 9}{12 \times 300} = 163.12$$
, and assume $d = 10$, then $\frac{163.12}{10^2} = 1.63$ ins. breadth;

$$\frac{163.12}{1.63}$$
 = 10 ins. depth.

Verification.—Assume a beam as above loaded with 21 750 lbs. at 3 feet from end $\frac{3 \times 9 \times 21750}{12 \times 10^{2} \times 100} = \frac{587250}{120000} = 4.89 \text{ ins.}$ Then, by formula for 801.

Equivalent Weight at Middle .- Fig. 2.

$$\frac{w'o}{l \div 2} = A; \qquad \frac{Wn}{l \div 2} = B;$$

$$\frac{ws}{l \div s} = E; \text{ and } \frac{Ll}{l} \div 2^* = D =$$
equivalent load at middle.

ILLUSTRATION. -What should be breadth of a beam of Georgia pine, 20 feet in length, 15 ins. in depth.

uniformly loaded with 4000 lbs., and sustaining 3 headers or concentrated loads of 6000 lbs., at respective distances of 4 and 9 feet from one end and 7000 lbs. at 6 feet from other end?

$$0 = 4$$
, $r = 16$, $m = 9$, $n = 11$, $s = 6$, $d = 15 - 1 = 14$, $L = 4000$, and $C = 850 \times .2 = 170$. $\frac{6000 \times 4}{20 + 2} = 2400$; $\frac{6000 \times 9}{20 + 2} = 5400$; $\frac{7000 \times 6}{20 + 2} = 4800$;

$$\frac{600 \times 20}{20} \div 2 = 2000. \quad 2400 + 5400 + 4200 + 2000 = 14000 \text{ lbs.}$$

Then
$$\frac{14000 \times 10 \times 10}{20} = 70000$$
 lbs., effect at middle.

Hence,
$$\frac{20 \times 70000}{4 \times 14^2 \times 170} = \frac{1400000}{133280} = 10.5 + ins.$$

Operation deduced by Graphic Delineation of Greatest Stress without with form Loud.

Moments of weights =

19 200, 29 700, and 29 400, and let fall perpendiculars 1, 2, and 3 proportionate thereto.

Connect w', W, and w with A B, and sum of distances of in-

tersections of these lines upon perpendiculars, from 1, 2, and 3, respectively, will give stress upon A B at these points.

Whence, greatest stress at greatest load will be ascertained to be 6:800 lbs.

When Loaded at Three Points. $\frac{m}{l}$ (W n + w s) + $w' \frac{n o}{l}$ = Greatest Stress as in Fig. 2.

ILLUSTRATION.—Take elements of above case, omitting uniformly distributed look $\frac{9}{20}$ (6000 × 11 × 7000 × 6) + 6000 $\frac{11 \times 4}{20} = \frac{9}{20}$ × 108 000 + 13 200 = 61 800 lbs.

Deflection of Girders and Beams.

mald be deflection of a floor beam of white pine, 10 feet ad 8 in depth, with 4000 lbs. loaded in its middle!

$$\frac{10^{3}}{3^{6}} = \frac{4000000}{6939200} = .674 inch.$$

When Weight is Uniformly Distributed.

$$\frac{625 \text{ W } l^3}{\text{C } b d^3} = \text{D}; \qquad \frac{\text{C } b d^3}{.625 l^3} = \text{W}; \qquad \sqrt[3]{\frac{\text{C } b d^3 \text{ D}}{.625 \text{ W}}} = l; \text{ and } \sqrt[3]{\frac{\text{W } .625 l^3}{\text{C } b}} = d.$$

Ience, Deflection in preceding illustration would be $.674 \times .625 = .421$ ins.

LLUSTRATION.—What should be length of a white-pine beam 3 by 10 ins., to sup-

LLUSTRATION.—What should be length of a white-pine beam 3 by 10 ins., to supth 6000 lbs. uniformly distributed, with a deflection of 2 ins.? C=2900.

$$\sqrt[3]{\frac{2900 \times 3 \times 10^3 \times 2}{.625 \times 6000}} = \sqrt[3]{\frac{17400000}{3750}} = 16.68 \text{ feet.}$$

A fair allowance for deflection of floor beams, etc., is .03 inch per foot of length; inch may be safely resorted to.

Weights of Floors and of Loads.

Dwellings.—Weight of ordinary floor plank of white pine or spruce, 3 lbs. r sq. foot, and of Georgia pine, 4.5 lbs.

Plastering, Lathing, and Furring will average o lbs. per sq. foot.

Clay Blocks (Flat Arch) 5.25 × 7.25 ins. in depth and 1 foot in length, lbs. = 80 lbs. per cube foot of volume.

Floors of dwellings will average 5 lbs. per sq. foot for white pine or spruce, 1 on iron girders will average from 17 to 20 lbs. per sq. foot.

Weight of men, women, and children over 5 years of age, 105.5 lbs., and third of each will occupy an average area of 12×16 ins. = 192 sq. ins. 78.5 lbs. per sq. foot.

If men alone 15×20 ins. = 300 sq. ins. = 48 in 100 sq. feet.

Bridges, etc.—Weight of a body of men, as of infantry closely packed, = } lbs. each, and they will occupy an area of 20 × 15 ins. = 300 sq. ins. = 24 lbs. per sq. foot of floor of bridge, and as a live or walking load, 80 lbs. r sq. foot.

Weight of a dense and stationary crowd of men, 120 lbs. per sq. foot.

Bridging of Floor Beams increases their resistance to deflection in a very rential degree, depending upon the rigidity and frequency of the bridges.

Feight on Floors, etc., in addition to Weight of Structure, per Sq. Foot.

ll rooms	85 lbs.		30 to 35	lbs.
ck or stone walls 115 to 1	50 "	Slate roofs	45	46
Irches and Theatres	₿o ''	Snow, per inch		lb.
	40 "	Street bridges		lbs.
**Cories 200 to 40	oo "	Warehouses 250	o to 500	"
	∞ "	Wind	50	. "

Scarfs.

Relative resistance of scarfs in Oak and Pine, 2 ins. square, and 4 feet in 19th, by experiments of Col. Beaufoy.

Scarf 12 ins. in Length and 13 ins. from End, or 1 inch from Fulcrum.

Vertical.—110 lbs. gave away in scarf.

Hiorizontal, large end uppermost and towards fulcrum.—101 lbs. fastenings by through small end of scarf; small end uppermost, etc., 87 lbs. gave by in thick part of scarf.

Factors of Safety.

Statical or Dead Load at .2 of destructive stress, but for ordinary purbes it may be increased to .25, and in some cases with good materials to .3. Live Load at .1 to .125 of destructive stress.

See also page 802.

. . . 44 . . .

SUSPENSION BRIDGE.

.To Compute Elements.

 $\frac{c}{8 \cdot o} \text{ or } \frac{c}{8 \cdot o} = 8; \qquad \frac{c}{(5 \cdot Q)^2} = k;$ $8 \sqrt{\left(\frac{x}{a}\right)^3 + x} = x = 8 \text{ ss. c};$ $\frac{4}{2} \frac{h}{n} = \tan \text{ angle } o; \qquad \frac{L}{n-r} = F;$

$$2\sqrt{(.5 \text{ C})^2 + \frac{4}{3} v^2} = l;$$
 $\frac{4 v}{\text{C}} = \cot r;$

$$\frac{CL}{8B} = 0; \qquad \frac{8 \circ \ell}{C} \sqrt{\left(\frac{4}{C}\right)^2 + 1 = k_1^2}$$

$$2 \circ L \div 2 \circ M = \frac{1}{2} \cdot \frac{1}{2}$$

$$8 + \sqrt{\left(\frac{4}{C}\right)^2 + z} = t$$
; or $\frac{L + 2}{s} = t$; $\frac{2}{\sqrt{(2\pi)^2 + (C + z)^2}} = s$, and $\frac{L + 2}{\sin z}$.

= stress at . C representing chord or span, a half cherd, and v wored interference of deflection, in fact, L distributed load inclusive of supersist interference

Assume C = 300 feet, L = 1000 tons, v = 25 feet, s = 100 feet, n = 30, r = 70 and $o = 12^0$ 32'.

Then,
$$\frac{300 \times 1000}{8 \times 25} = 1500 \text{ tons} = 8;$$
 $\frac{25 \times 100^8}{(.5 \times 300)^8} =$

$$\frac{25 \times 100^3}{(.5 \times 300)^6} = 11.11 \text{ feet } \pm \text{h};$$

$$1500 \sqrt{\left(\frac{2 \times 11.11}{100}\right)^2 + 1} = 1536.56 \text{ tons} = 8;$$

$$lan. \angle o;$$
 $2\sqrt{(.5 \times 300)^2 + \frac{4}{3} \cdot 25^2} = 305.5 \text{ feel} = l;$

$$\frac{4 \times 25}{300} = .3333 = 71^{\circ} 34' - = cot. angle r;$$

$$\frac{30-1}{30-1} = 34.48 \text{ tons} = 1$$
;

$$\sqrt{\frac{4\times25}{300}^2 + 1} = 1423.1$$
 tons = t; and $\frac{2\times25}{\sqrt{(2\times25)^2 + (300+2)^2}} = .3162$
For a deflection of .125 of span, horizontal stress is equal to total lead.

For a deflection of .125 of span, horizontal stress is equal to total load. To Construct curve, see Geometry, page 230.

To Compute Ratio which Stress on Chains or Cables a either Point of Suspension Bears to whole Suspension Weight of Structure and Load.

$$\frac{1}{2 \times \sin_{12}} = R$$
. R representing ratio.

ILLUSTRATION.—Assume elements of preceding case.

$$\frac{1}{2 \times .3162}$$
 = 1.58 ratio. By a preceding formula it would be 1.536.

Stress on Back Stays.—The cables being led over rollers, having free tion, tension upon them is same, whether angle i is same as that of rorth Stress on Piers—When angles a and i are alike at the stress on piers—When angles a and i are alike at the stress on piers—When angles are alike at the stress on piers—When angles are alike at the stress on piers—When angles are alike at the stress on piers—When angles are alike at the stress of the stress

Stress on Piers.—When angles r and i are alike, stress on piers will be vertical, but when angle of i is greater or less than r, stress will be oblique

Compute Horizontal Stress and Vertical Pressure on Piers.

S cos. n = S o, S sin. s = P i, and S sin. n = P o. Similar is, and P i and P o pressure, inward and outward.

'I New York and Brooklyn Bridge 1595.5 feet, deflection 18 16 n at piers from horizontal 150 10 .

TRACTION.

tesults of Experiments on Traction of Roads and Pavements. (M. Morin.)

- 1st. Traction is directly proportional to load, and inversely proportional diameter of wheel.
- 2d. Upon a paved or Macadamized road resistance is independent of dth of tire, when it exceeds from 3 to 4 ins.
- 3d. At a walking pace traction is same, under same circumstances, for riages with or without springs.
- th. Upon hard Macadamized, and upon paved roads, traction increases the velocity: increments of traction being directly proportional to increasts of velocity above velocity of 3.28 feet per second, or about 2.25 miles hour. The equal increment of traction thus due to each equal increment velocity is less as road is more smooth, and carriage less rigid or better Dg.
- 5th. Upon soft roads of earth, sand, or turf, or roads thickly gravelled, Lction is independent of velocity.
- 5th. Upon a well-made and compact pavement of dressed stones, traction a walking pace is not more than .75 of that upon best Macadamized Eds under similar circumstances; at a trotting pace it is equal to it.
- 7th. Destruction of a road is in all cases greater as diameters of wheels eless, and it is greater in carriages without springs than with them.

Experiments made with the carriage of a siege train on a solid gravel and on a good sand road gave following deductions:

- 1. That at a walk traction on a good sand road is less than that on a good rm gravel road.
- 2. That at high speeds traction on a good sand road increases very rapidly ith velocity.

Thus, a vehicle without springs, on a good sand road, gave a traction 2.64† nes greater than with a similar vehicle on same road with springs,

Results with a Dynamometer. Wason and Load 2240 lbs.*

Roadway.	Relat'e num- ber of horses for like effect.	ROADWAY.	Relat'e num- ber of horses for like effect.
a railway, 8 lbs	1.56 4 to 6.25 4.06	Telford road, 46 lbs	5·75 17.5 18.37

NOTE.—By recent experiments of M. Dupuit, he deduced that traction is inversely coportional to square root of diameter of wheel.

Relation of force or draught to weight of vehicle and load over 6 different conructions of road, gave for different speeds as follows:

Walk. Trot. Walk. Trot. Walk. Trot. Carriage, seats only, on springs. 1.29 1

Resistance to Traction on Common Roads. On Macadamized or Uniform Surfaces. (M.

- 1. Resistance is directly proportional to pressure.
- 2. It is independent of width of tire.
- 3. It is inversely as square root of diameter of wheel.
- 4. It is independent of speed.

See Treatise on Roads, Streets, and Pavements, by Brev. Maj.-Gen'l (
 † Telford estimated it at 3.5.

On Paved and Rough Roads.

Resistance increases with speed, and is diminished by an enlargement of tire up to a moderate limit.

Traction on Various Roads.—Traction of a wheeled vehicle is to its weight upon various roads as follows:

P	er Ton.	Per roo lbs.	Per Ton.	Per 200 lbs.
" " … 28	to 30	1.25 to 1.3	Telford road 46 to 78 Macadamized 46 to 90	2 10 4
			" loose 67 to 112 Gravel 134 to 180 Sandy 140 to 313	
Block stone pavement	to 35	1.4 to 1.6	Earth 200 to 290	9 to 13

Hence, a horse that can draw 140 lbs, at a walk, can draw upon a gravel road $140 \div \frac{6+8}{2} \times 100 = 2000 lbs.$

Resistance on Common Roads or Fields. (Bedford Experiments, 1874.*)

GRAVELLED ROAD. (Hard and dry, rising 1 in 430.)	Maxi- mum Draft.	Average Draft.	per	H? de- veloped per Minute.	Draft per Ton on Level.	Work per IP per Horn.
2 horse wagon without springs. 4 " " " with " 1 " cart without "	Lbs. 320 400 300 180	Lbs. 159 251 133 49-4	Miles. 2.5 2.6 2.47 2.65	HP. 1.06 1.74 .88	Lba. 43.5 OF .0192 44.5 ".02 34.7 ".015 28 ".0125	P53 .87 .44 .35
ARABLE FIELD. (Hard and dry, rising 1 in 1000.) 2 horse wagon without springs. 4 "" "" 2 "" with "" 1 " cart without "	1000 1200 1000 400	700 997 710 212	2.35 2.52 2.35 2.61	4.36 6.7 4.45 1.48	210 OF.099 194 ".083 210 ".099 140 ".0625	2.18 3.35 1.22 1.48

Fore wheels of wagons were 30 ins., and hind 57 ins. in diam.; tires varying from 2.25 to 4 ins.; and wheels of cart were 54 ins. in diam., and tires 3.5 and 4 ins.

Springs reduced resistance on road 20 per cent., but did not lessen it in the field

From these data it appears, that on a hard road, resistance is only from .25 to .15 of resistance in field. Lowest resistance is that of cart on road = 28 lbs per to; due, no doubt, to absence of small wheels alike to those of the wagons.

Assuming average power without springs to be .6 IP on road, as average for a day's work, it represents $.6 \times 33000 = 19800$ foot-lbs. per minute for power of horse on such a road.

Resistance of a smooth and well-laid granite track (tramway), alike to those in London and on Commercial Road, is from 12.5 to 13 lbs. per ton.

Omnibus. † (Weight 5758 lbs.)

	Average Speed per Hour.	Per Ton.	Total.
Granite pavement (courses 3 to 4 ins.).		17.41 lbs.	44-75 lbs
Asphalt roadway		27.14 "	69.75 " 106.88 "
Wood pavement	3.34 "	41.6 "	106.88 "
"facadam road gravelly		44.48 "	114.32 "
" nite, new	3.51 "	101.00 "	250.8 "

ce noted for an asphalt roadway is apparently inconsistent 3 pavement, for when it is properly constructed it is less

Wagon. (Sir John Macneil.) Weight 2142 lbs. Speed 2.5 Miles per Hour.

		Hesiste	IDCS.	
ade stone pavement		Ton. lbs.		tal. lb8,
ande with 6 ins. of broken hard stone, on a foundation) ones in pavement, or upon a bottom of concrete	44	"	46	"
it road, or a road made with a thick coating of broken	62	"	65	
nade with a thick coating of gravel, on earth	140	"	147	"

Stage Coach. (Sir John Macneil.)

Weight 3192 lbs. Gradients 1 to 20 to 600.

	Speed						M	etall	ed Road.
6 n	níles	per ho	ur	 	 	 	62	lbs.	per ton.
8	"	- "						"	- 44
10	"	66						"	44

—It was found that, from some unexplained cause, the net frictional resistance at equal speeds onsiderably, according to gradient, resistances being a maximum for steepest gradient, and a n for gradients of x in 30 to x in 40; for these they are less than x in 600. Mode of action of as on the carriage may have been an influential element. (D. K. Clark.)

compute Resistance to Traction on Various Roads.
(Sir John Macneil.)

ON A LEVEL

E.—Divide weight of vehicle and load in lbs. by its unit in following and to quotient add .o25 of load; add sum to product of velocity of e in feet per second, and Coefficient in following table for the particular and result will give power required in lbs.

 $\frac{\nabla + w}{\text{unit}} + \frac{1}{w \cdot 025} + \overline{Cv} = T$. W and w representing weights of vehicle and load.

Coefficients for Traction of Various Vehicles.

:oach	100	2	horse			springs	• 54
wagon					with	"	. 42
wagon without springs	55	1	**	cart	without	"	. 36

Coefficients for Roads of Various Construction.

" covered with dust 8	Macadamized road	13 32							
Sand and Gravel 12.1									

FTRATION.—What is the traction or resistance of a stage coach weighing 2200 th a load of 1600 ibs., when driven at a velocity of 9 feet per second over a 1 clean broken stone road?

$$\frac{2200 + 1600}{100} + \frac{1600 \times .025 + 5 \times 9}{100} = 123 lbs.$$

ompute Power necessary to Sustain a Vehicle upon inclined Road, and also its Pressure thereon, omiting Effect of Friction.

r foot; then, $= \frac{W}{\sqrt{A R^2 + r}} = W \sin A = 0, \text{ and } \frac{W A B}{A C} = \frac{W A}{\sqrt{A R^2 + r}}$

To Compute Frictional Resistance to Traction of Stage Coach on a Metalled Road in Good Condition

30+4 v + $\sqrt{10}$ v = R. v representing speed in miles per hour, and R fridaresistance to traction per ton.

Note. - Formula is applicable to wagons at low speeds.

Canal, Slackwater, and River.

On a canal and water, resistance to traction varies as square of velocifrom that of 2 feet per second to that of 11.5 feet.

When velocity is less than .33 miles per hour, resistance varies in al degree.

In towing, velocity is ordinarily 1 to 2.5 miles per hour.

Resistance of a boat in a canal depends very much upon the compant areas of transverse sections of it and boat, it being reduced as different increases.

In a mixed navigation of canal and slack-water, 3 horses or strong m will tow a full-built, rough-bottomed canal boat, with an immersed section area of 94.5 sq. feet, and a displacement of 240 tons, 1.75 to 2 miles per to for periods of 12 hours.

With a section of but 24.5 sq. feet, or a displacement of 65 tons, an are age speed of 2.5 miles is attained for a like period.

By the observations of Mr. J. F. Smith, Engineer of the Schuylkill Navignia Co., a canal boat, with an immersed section alike to that above given, can be low for 10 hours per day as follows:

Per Hour.

By z horse or	By 2 horses or	By 3 horses or	By 4 horses or	By 8 horses or
mule.	mules.	mules.	mules.	mules.
ı mile.	1.5 miles.	1.75 miles.	1.875 miles.	2.5 miles

Assuming then, the tractive power of a horse as given in table, page 437, the above elements determine results as follows:

•••••••••••••••••••••••••••••••••••••••				
Horses.	Miles.	Tractive Power divided by Load.	in Lbs. per Ton.	Fraction in Lbs. per Sq. Foot d immersed Section.
I	I	250 ÷ 240	1.04	2.65
2	1.5	165 X 2 ÷ 240	1.38	3.49
3	1.75	140 X 3 ÷ 240	1.75	4-44
3	1.875	132 X 3 ÷ 240	1.65	4.19
3	2	125 X 3 ÷ 240	1.56	3.98
3 (light)	2.5	100 X 3 ÷ 65	4.61	12.24

Upon a canal of less section and depth, a displacement of 105 tons, with an in mersed section of 43 sq. feet, a speed of 2 miles with 2 horses was readily obtain which would give a traction of 2.38 lbs. per ton, and of 5.7z lbs. per sq. foot of in mersed section.

Maximum Power of a Horse on a Canal. (Moleswork)

s per hour	2.5	3	3.5	4	5	6	7	8	9	10
tion of work in	11.5	8	5.9	4.5	2.9	2	1.5	1.125	.9	-1
rawn in tons	520	243	153	102		30		13	9	65

---et Railroads or Tramways. (Gen'l Gillmore.*)

and at a speed of 5 miles per hour, the power required to $\frac{dn^3}{n}$ from $\frac{1}{n+n}$ of total weight, varying with condition 0 noisture of their surface.

To Compute Resistance of a Car.

f; $\frac{\mathbf{T} \times \mathbf{v}}{3} = c$; $\frac{\mathbf{v}^2 \times \mathbf{a}}{400} = r$; and f + c + r = R. Trepresenting weight riction in lbs., \mathbf{v} speed in miles per hour, a area of front or section of car c concussion, r resistance of atmosphere, and R total resistance, all in lbs. ITION.—Assume a car and load of 8960 lbs., with an area of section of 56 d a speed of 5 miles per hour.

 $\frac{60}{40} = 4$ tons; $4 \times 6 = 24$ lbs. friction; $\frac{4 \times 5}{3} = 6.66$ lbs. concussion;

3.5 lbs. resistance of air; and 24 + 6.66 + 3.5 = 34.16 lbs.

ge condition of a road, the resistance of a car may be taken at $\frac{1}{120}$, which, ng case, would be 74.66 lbs. On a descending grade, therefore, of \mathbf{r} in upplication of a brake would not be required.

WATER.

WATER. Constitution of it by weight and measure is

By Weight. By Measure. By Weight. By Measure. Hydrogen . . 11.1 2

nch of distilled water at its maximum density of 39.1°, baromo ins., weighs 252.879 grains, and it is 772.708 times heavier ospheric air.

oot (at 39.1°) weighs 998.8 ounces, or 62.425 lbs.

-For facility of computation, weight of a cube foot of water is ken at 1000 ounces and 62.5 lbs.

emperature of 32° it weighs 62.418 lbs., at 62° (standard tem-62.355 lbs., and at 212° 59.64 lbs. Below 39.1° its density , at first very slow, but progressing rapidly to point of congeight of a cube foot of ice being but 57.5 lbs.

ght as compared with sea-water is nearly as 39 to 40.

ands .085 53 its volume in freezing. From 40° to 12° it ex-02 36 its volume, and from 40° to 212° it expands .0467— 000 271 5 for each degree, giving an increase in volume of 1 in 21.41 feet.

Volumes of Pure Water.

7.684	cube	ins.	= 1	cube	foot.	At	620	I	Ton Lb.	=	35-923	cube	feet.
7.68	"	"	=1	"	44	1 "	44	1	Lb.	=	27.71	"	ins.
7.712	"	"	= 1	"	"	46	30.10	1	Tonneau	=	35.3156	66	feet.
8.978	"	"	= 1	"	"	"	"	1	Tonneau Kilogr.	=	.0353	"	44

Height of a Column of Water at 62° or 62.355 lbs.

sq. inch = 2.3093 feet, and at pressure of atmosphere = 33.947 feet = ers.

Ice and Snow

oot of Ice at 32° weighs 57.5 lbe ins.

a volume of

of water at 32°, compared with ic eing 8.553 per cent.

35 53, ex-

ot of new fallen snow weighs 5.2 lb

; ext

Rainfall.

Annal Ful at different Places.

Locations.	<u> </u>	Constitute.		Lacara.	-	ı
AADATA	٠: -:	Ft. Imation. Ta.	25.54	¥.ea.gra	=:	3,:
A.7A27	42.55	F. 7 200 L A.T.		M. ABSECCI	٦٠١	27
A.c.		Francisco of	¥ ::	M idie		
And There's	AC 35	Firs Monroe, Ta.	52 SS	Nazies		
المتالية المتالية	45	Fores:	3- 33 35-1	NAME OF THE OWNER OWNER OF THE OWNER		Į
Ar saute	* ; : 4: 52	Frankligh ster	22.1	New T.CL		'n,
A 1555		Man		Ot a		1"
Zacaria.	: <u>:</u> :.	French	32.1	Purm		1
Zanitto T		a.SE_tar	,- x	Para		Ø.
Earne ea			== ;	24 maria		1 2
Esta Ma	33 34 53	Lagra	75	P. VIDOR L. EM.		2
Ericail.		German Castle Sc 1	34 35-3	P. C. F.		١.
2 4473	2		25 g	P: 12 4-05e		
Buttoat	:::	-imaaa	:25	Prince		
Bortina.:	3-	Great Britain	12	Reconstruction		1
		*****SWX	£., 3	Zorae		1
Basin Brussia) - 27 24	Ea. at		SARIA Fa		ılk
B.: Tadi		Harayer	33	SATISTAL		ı
Burtingson, Time		Z.17123.	== 4	Science 1.7		-1
Caratta	1.	Emg Ling	1	s tera	٠	٠l
Cape of Francis	:4:	Z March		Sterra Lecte	. i	
Cate Tiva			3Ç-32 3G	S. Z.		ı.
Charleston	20.30	inta	120	St. Berrai		ï
Cherhourg	-	Jamaira		St. Dog. 25		
Congress		July Control of the	34.31	St Petersuita		٠.
Copencages		Kar Wais	- 5	State of N.Y		
Crarow	=3	A 11850 7 L . 14.0	31.39	STOLET		
Demerara	13-33	Levis	5:0	Tastiani		
D-10-1-1-1		ATTENNATION	23.85	Treste		
Petrir Ecq.	17 52	L.E.E.	34 I2	Ukra Mullay, Inc	3 -	. I
District Section 1995	- I-	المنافعة المالية	25.2	Utica		
Dumir			51. 35 22	Ver.ce		
East Harris	تر : دو دو	Made:m	43	Vera Cruz		." I
			35. IA	Verna Crazi		٠.
Edinoriga	# e 5	Manchester		Wast	• •	. 2
F1	2) 12:31	Marse Lea	43	West Poli		:- 1
						- 1
Average ta chil	s Eszi	and for a number of	7-215 W	rae, South and East	Lu.	3:1
West and har and	: :: :: ::	as and permanent	w	14 estimated at ∞	per d	5
		a cube flut of air in			•	- 1
to the mount of	#51a				-25	
	1	G45	•••••	m 3 E) irs. t.	2 "	
At Alasta 14 .	. : 73.5	7 m:stb	550:	na ; in ruly, 25	5 "	
Properties — W	45. fr.:	y evacoration, in In-	1:3 .22	inch: greatest =	: :=	3
d by this is	X 55. 5	near tepth of much	was :	ri : ina :n - veam		
A Wat for A . 4:	20:2 . 12	ed a mail and in Las	ocashin	Eng. when full	W15	: ŧ
. evaporat .i wo	a 25.55.			.,	. –	
•						

Volume of Rainfall.

Rainfall, lepth in the \times agag coo = cube feet per sq. mile. / 10.515/4 = millions of gallons per sq. mile. / 10.515/4 = cube feet per acre. / 17.154/3 = gallons per acre.

Mineral Waters are divided into 5 groups, viz. :

r. Carponated, containing pure Carlson's acid—as, Seltzer, Germany; Spa & grum. Pyrmunt Westphalia. Se. II iz. Behemia; and Sweet Springs, Virgina

2 Suph From containing Sulph rested hydrogen—as, Harrowgue and Child ham, England, Aixila-Chapelle, Prassia; Blue Lick, Ky.; Sulphur Spring, Va. 6

3. Alkal, no. containing Carbonate of soda-these are rare, as, Vichy, Ema

te, containing Carbonate of iron—as, Hampstead, Tunbridge, Cheltenghton, England; Spa, Belgium; Ballston and Saratoga, N. Y.; and

ntaining salts—as, Epsom, Cheltenham, and Bath, England; Badenltzer, Germany: Kissingen, Bavaria; Plombières, France; Seidlits, icca, Italy; Yellow Springs, Ohio; Warm Springs, N. C.; Congress; and Grenville, Ky.

ief Rules for Qualitative Analysis of Mineral Waters.

to be determined, in examination of a mineral water, is to which of does water in question belong.

eddens blue litmus paper before boiling, but not afterwards, and blue ned paper is restored upon warming, it is Carbonated.

esses a nauseous odor, and gives a black precipitate, with acetate of thurous.

ddition of a few drops of hydrochloric acid, it gives a blue precipitate, r red prussiate of potash, water is a Chalybeate.

res blue color to litmus paper after boiling, it is Alkaline.

esses neither of above properties in a marked degree, and leaves a upon evaporation, it is a Saline water.

canal water contains .05 of its volume of gaseous matter.

Re-agents.

er is pure it will not become turbid, or produce a precipitate following Re-agents:

ler, if a precipitate or opaqueness appear, Carbonic Acid is present.

Barium indicates Sulphates, Nitrate of Silver, Chlorides, and Oscilate
Lime saits. Sulphide of Hydrogen, slightly acid, Antimony, Arsenic,
iold, Platinum, Mercury, Silver, Lead, Bismuth, and Cadmium; Sulmonium, solution alkaloid by ammonia, Nickel, Cobalt, Manganese,
imina, and Chromium. Chloride of Mercury or Gold and Sulphate of
metter.

Filter Beds.

: feet 6 ins.; Coarse sand, 6 ins.; Clean shells, 6 ins., and Clean gravel er 700 gallons water in 24 hours by gravitation.

ER. Composition of it per volume:

Viagnesium		.02
"	Sulphate of Lime	.oı
	Water 96	.6

contains .030 309 parts of salt $=\frac{1}{18}$ part of its weight. me of solid matter in solution is 3.4 per cent., .75 of which is

Points at Different Degrees of Commation.

t,	Boiling Point.	Salt, by Weight, in 100 Parts.	Boiling Point.	1	}oiling lat.
	213.2 ⁰ 214.4 ⁰	$15.15 = \frac{5}{88}$ $18.18 = \frac{5}{9}$	217.9°		_
	215.5°	$21.22 = \frac{7}{88}$	220.2 ⁰		
i	216.70	24.25 = 8 * Saturat) · 4	

To Compute Number of Teeth.

RULE. - Divide circumference by pitch.

To Compute Number of Teeth in a Pinion or F.
to have a given Velocity.

RULE.—Multiply velocity of driver by its number of teeth, a product by velocity of driven.

EXAMPLE 1.—Velocity of a driver is 16 revolutions, number of its tee velocity of pinion is 48; what is number of its teeth?

$$16 \times 54 \div 48 = 18$$
 teeth.

2.—A wheel having 75 teeth is making 16 revolutions per minute; wh ber of teeth required in pinion to make 24 revolutions in same time?

$$16 \times 75 \div 24 = 50$$
 teeth.

To Compute Proportional Radius of a Wheel or 1

RULE.—Multiply length of line of centres by number of teeth for wheel, and in pinion, for pinion, and divide by number of teet wheel and pinion.

EXAMPLE.—Line of centres of a wheel and pinion is 36 ins., and numbin wheel is 60, and in pinion 18; what are their radii?

$$\frac{36 \times 60}{60 + 18} = 27.69$$
 ins. wheel. $\frac{36 \times 18}{60 + 18} = 8.3$ ins. pinion.

To Compute Diameter of a Pinion.

When Diameter of Wheel and Number of Teeth in Wheel and P given. Rule.—Multiply diameter of wheel by number of teeth i and divide product by number of teeth in wheel.

EXAMPLE.—Diameter of a wheel is 25 ins., number of its teeth 210, an of teeth in pinion 30; what is diameter of pinion?

$$25 \times 30 \div 210 = 3.57$$
 ins.

To Compute Number of Teeth required in a Ti Wheels to produce a given Velocity.

RULE.—Multiply number of teeth in driver by its number of revand divide product by number of revolutions of each pinion, for each pinion.

EXAMPLE.—If a driver in a train of three wheels has 90 teeth, and mak lutions, and welcoities required are 2, 10, and 18, what are number of teet of other two?

To Compute Velocity of a Pinion.

RULE.—Divide diameter, circumference, or number of teeth in demay be, by diameter, etc., of pinion.

there are a Series or Train of Wheels and Pinions. RULE.

1 product of diameter, circumference, or number of teeth i

1 product of diameter, etc., of pinions.

If a wheel of 32 teeth drives a pinion of 10, upon axis of whiriving a pinion of 8, what are revolutions of last?

$$\frac{32}{10} \times \frac{30}{8} = \frac{960}{80} = 12$$
 revolutions.

of wheels are 6, 9, 9, 10, and 12 ins.; of pinions, revolutions of driving shaft or prime mover is

$$\frac{7 \times 10}{6} = \frac{583200}{1776} = 75 \text{ revolutions.}$$

Compute Proportion that Velocities of Wheels in a Train should bear to one another.

LE.—Subtract less velocity from greater, and divide remainder by one nan number of wheels in train quotient is number, rising in arithmetrogression from less to greater velocity.

MPLE.—What should be velocities of 3 wheels to produce 18 revolutions, the making 3?

Pitch of Wheels. Compute Diameter of a Wheel for a given Pitch. or Pitch for a given Diameter. From 8 to 192 Teeth.

į	Diame- ter.	No. of Teeth.	Diame- ter.	No. of Teetb.	Diame- ter.	No. of Teeth.	Diame- ter.	No. of Teeth.	Diame- ter.
1	2.61	45	14.33	82	26.11	119	37.88	156	49.66
	2.93	46	14.65	83	26.43	120	38.2	157	49.98
	3.24	47	14.97	84	26.74	121	38.52	158	50.3
	3.55	48	15.20	85	27.06	122	38.84	159	50.61
	3.86	49	15.61	86	27.38	123	39.16	160	50.93
	4.18	50	15.93	87	27.7	124	39.47	161	51.25
	4.49	51	16.24	88	28.02	125	39.79	162	51.57
- 1	4.81	52	16.56	89	28.33	126	40.11	163	51.89
	5.12	53	16.88	9ó	28.65	127	40.43	164	52.21
1	5.44	54	17.2	91	28.97	128	40.75	165	52.52
	5.76	55	17.52	92	29.29	129	41.07	166	52.84
	6.07	56	17.8	93	29.6í	130	41.38	167	53.16
	6.39	57	18.15	94	29.93	131	41.7	168	53.48
	6.71	58	18.47	95	30.24	132	42.02	169	53.8
	7.03	59	18.79	96	30.56	133	42.34	170	54.12
	7.34	60	19.11	97	30.88	134	42.66	171	54.43
	7.66	61	19.42	98	31.2	135	42.68	172	54.75
	7.98	62	19.74	99	31.52	136	43.29	173	55.07
	8.3	63	20.06	100	31.84	137	43.61	174	55.39
	8.61	64	20.38	101	32.15	138	43.93	175	55.71
	8.93	65	20.7	102	32.47	139	44.25	176	56.02
	9.25	66	21.02	103	32.79	140	44.57	177	56.34
	9.57	67	21.33	104	33.11	141	44.88	178	56.66
١	9.88	68	21.65	105	33.43	142	45.2	179	56.98
	10.2	69	21.97	106	33.74	143	45.52	180	57.23
	10.52	70	22.29	107	34.06	144	45.84	181	57.62
	10.84	71	22.61	108	34.38	145	46.16	182	57.93
- 1	11.16	72	22.92	109	34.7	146	46.48	183	58.25
ļ	11.47	73	23.24	110	35.02	147	46.79	184	58.57
	11.79	74	23.56	III	35.34	148	47.11	185	58.89
	12.11	75	23.88	112	35.65	149	47.43	186	
	12.43	76	24.2	113	35.97	150	47.75	187	
	12.74	77	24.52	114	36.29	151	48.07	188	l
į	13.06	78	24.83	115	36.61	152	48.39	. 189	
	13.38	79	25.15	116	36.93	153	48.7	190	
	13.7	8o	25.47	117	37.25	154	49.02	191	
-	14.02	81 B	25.79		37.56		49.34	192	
ct	in this	table is	true pitch	, as befo	re descri	bed.			

To Compute Circumference of a Wheel. JLE.-Multiply number of teeth by their pitch.

 $^{-3 = \}frac{15}{2} = 7.5 =$ number to be added to velocity of driver = 7.5 + 3 = 10.5, and

^{-7.5 = 18} revolutions. Hence 3, 10.5, and 18 are velocities of three wheels.

To Compute Revolutions of a Wheel or Pinion.
Rule.—Multiply diameter or circumference of wheel or number dia

teeth in ins., as case may be, by number of its revolutions, and divide to uct by diameter, circumference, or number of teeth in pinion.

EXAMPLE.—A pinion 10 ins. in diameter is driven by a wheel 2 feet in making 46 revolutions per minute; what is number of revolutions of pinion

2 × 12 × 46 ÷ 10 = 110.4 revolutions.

To Compute Number of Teeth of a Wheel for a given Diameter and Pitch.

RULE.—Divide diameter by pitch, and opposite to quotient in prostable is given number of teeth.

EXAMPLE.—Diam. of wheel is 40 ins., and pitch 1.675; what is number of its ind 40 ÷ 1.675 = 23.88, and opposite thereto in table is 75 = number of tech

To Compute Diameter of a Wheel for a given Pitch and Number of Teeth,

RULE.—Multiply diameter in preceding table for number of test pitch, and product will give diameter at pitch circle.

EXAMPLE.—What is diameter of a wheel to contain 48 teeth of 2.5 ins pitch!

15.29 × 2.5 = 38.225 ins.

To Compute Pitch of a Wheel for a given Diameter at Number of Teeth.

RULE.—Divide diameter of wheel by diameter in table for number teeth, and quotient will give pitch.

EXAMPLE.—What is pitch of a wheel when diameter of it is 50.94 ins., and the ber of its teeth 80? $50.94 \div 25.47 = 2$ ins.

General Illustrations.

1.—A wheel of ins. in diameter, making 42 revolutions per minute, is to dissipate the shaft 75 revolutions per minute; what should be diameter of pinion?

96 × 42 ÷ 75 = 53.76 ins.

2.—If a pinion is to make 20 revolutions per minute, required diameter of other to make 58 revolutions in same time.

 $58 \div 20 = 2.9 = ratio$ of their diameters. Hence, if one to make 20 revoluted given a diameter of 30 ins., other will be $30 \div 2.9 = 10.345$ ins.

3.—Required diameter of a pinion to make 12.5 revolutions in same time as of 32 ins. diameter making 26.

 $32 \times 26 \div 12.5 = 66.56$ ins.

4.—A shaft, having 22 revolutions per minute, is to drive another shaft = 5 of 15, distance between two shafts upon line of centres is 45 ins.; what shafts diameter of wheels?

Then, 18t. 22 + 15 : 22 : :45 : 26.75 = ins. in radius of pinion. 2d. 22 + 15 : :15 : :45 : :18.24 = ins. in radius of spur.

5.—A driving shaft, having 16 revolutions per minute, is to drive a shaft in lutions per minute, motion to be communicated by two geared wheels and two leys, with an intermediate shaft; driving wheel is to contain 54 teeth, and draw pulley upon driven shaft is to be 25 ins. in diameter; required number of teed driven wheel, and diameter of driven pulley.

Let driven wheel have a velocity of $\sqrt{16 \times 81} = 36$, a mean proportional best extreme velocities 16 and 81.

Then, 1st. 36: 16: 54: 24 = leeth in driven wheel.
2d. 81: 36: 25: 11.11 = ins. diameter of driven pulley.

6.—If, as in preceding case, whole number of revolutions of driving shaper of teeth in its wheel, and diameters of pulleys are given, what are remote shafts?

Then, 1st. 18:16::54:48 = revolutions of intermediate shop.
2d. 15:48::25:80 = revolutions of driven shop.

Teeth of Wheels.

picycloidal.—In order that teeth of wheels and pinions should work y and without unnecessary rubbing friction, the face (from pitch line) of the outline should be determined by an epicycloidal curve (see 228), and that of the flank (from pitch line to base) by an hypocycloidal also page 228).

hen generating circle is equal to half diameter of pitch circle, hypocyal described by it is a straight diametrical line, and consequently outof a flank is a right line, and radial to centre of wheel.

a like generating circle is used to describe face of a tooth of other wheel nion respectively, the wheel and pinion will operate evenly.

ILLUSTRATION.—Determine all elements of wheel—viz., Pitch circle, Number of teeth, Pitch, Length, Face, and Flank.

Cut a template A to pitch circle cc of wheel, and secure it temporarily to a board.

Having determined depth of tooth, set it off on pitch line, as a o, Fig. 1, and above it apply a second template, a; radius of wheel is equal to half

s of pinion; insert into, or attach exactly at its edge, a tracer, roll template ng A, and tracer will describe an epicycloidal curve, ar, and by inverting a ibe or, and faces of a tooth are delineated.

To describe fianks, define pitch line c.c., Fig. 2, and arc π π , drawn at base of teeth or board A (as in Fig. 1), secure a strip of wood, w, equal in length to radius of wheel, and locate centre of it. x, draw radii x a and x a, and they will define fianks, which should be filleted, as shown at s.s. Define arc x, and length of tooth is determined.

Proceed in like manner conversely for teeth of pinion, and wheel and pinion thus constructed will operate truly.

In construction of the teeth of a wheel or pinion in the pattern-shop, it is customary to construct the wheel or pinion complete, out to face of wheel at base of teeth, and then to insert the teeth in rough, approximately

ed blocks, by a dovetail at their base, fitting into face of wheel, and then putline of a tooth is described thereon; the block is then removed, finlas a tooth, replaced, fastened, and filleted.

Involute.

eth of two wheels will work truly together when their face is that of an ute (see page 229), and that two such wheels should work truly, the es from which the involute lines for each wheel are generated must be entric with the wheels, with diameters in same ratio as those of the wheels.

Assume Ac, Bc, Fig. 3, pitch radii of two wheels designed to work together, through c, draw a right line, e, and with perpendiculars ec, ic, describe arcs nc, rs, and involutes ncc and rcs define a face of each of the teeth.

To describe teeth of a pair of wheels of which Ac, Bc, Fig are pitch radii, draw ci, ce' pendicular to radials Bi and and they are to be taken as radials of the involute arcs i which the faces of the teeth to be defined; then fillet flanks base, as before described, Fig. 2.

volute teeth will work with truth, even at varyin moses apart of the centres of the wheels, and any when alon, however varied their diameters.

To Compute Depth of a Tooth.

When Stress is given. Rule.—Extract square root of stress, and mulit by .02 for cast iron, and .027 for hard wood.

When P is given. Rule.—Extract square root of quotient of P di-1 by velocity in feet per second, and multiply it by .466 for cast iron, .637 for hard wood.

AMPLE.—IP to be transmitted by a tooth of cast iron is 60, and velocity of it pitch-line is 6.66 feet per second; what should be depth of tooth?

$$\sqrt{\frac{60}{6.66}} \times .466 = 1.398$$
 ins.

To Compute IP of a Tooth.

ILE.—Multiply pressure at pitch-line by its velocity in feet per minute, livide product by 33 000.

AMPLE.—What is ${\bf P}$ of a tooth of dimensions and at velocity given in precedxample.

$$4886 \times 6.66 \times 60'' \div 33000 = 59.16$$
 horses.

o Compute Stress that may be borne by a Tooth.

CLE.—Multiply Coefficient of material of tooth to resist a transverse n, as estimated for this character of stress, by breadth and square of its h, and divide product by extreme length of it in decimal of a foot.

AMPLE. --Dimensions of a cast-iron tooth in a wheel are 1.38 ins. in depth, 2.2 n length, and 7.5 ins. in breadth; what is the stress it will bear?

Coefficient assumed at 60.
$$\frac{60 \times 7.5 \times 1.38^2}{2.1 \div 12} = 4897 \text{ lbs.}$$

llowing deductions by the rules of different authors for like elements are subd or a cast-iron tooth:

1...... 3 ins. | Depth.... 1.38 ins. | Breadth... 7.5 ins. | Length.... 2.1 ins.

locity of 400 feet per min., 4886 lbs.	Tooth.	at a velocity of 400 feet per min., 4886 lbe.	Tooth.
bove Rule $\sqrt{\frac{H}{v}} \times .446$	Ins. 1.398*	By Rankine $\sqrt{\frac{W}{1500}}$	Ins. 1.8
		" Tredgold $\frac{3}{4}\sqrt{\frac{H}{v}}$	
mperial Journal $\sqrt{\frac{W}{1576}}$	1.76	"Buchanan $\sqrt{\frac{.556 \text{ H}}{v}}$	2.24

representing horse-power (60), W stress in lbs., and v velocity in feet per second.

Depth, Pitch, and Breadth. (M. Morin.)

USTRATION.—Assume pressure at pitch-line of 6000 lbs., and velocity 5 feet per second.

n. .028 \(\sqrt{6000} = 2.17 \) ins. Depth, and .057 \(\sqrt{s} \). For further Illustrations of Fermation of Teachinery of Construction, etc.

is depth, with a breadth of 7.5 ins., is .r of ultimate a

Maria .

PROPORTIONS OF WHEELS.

With six flat Arms and Ribs upon one side of them, as ; or of in centre, as .

Rim.—Depth, measured from base of teeth. 45 to .5 of pitch of teeth ing a web upon its inner surface .4 of pitch in depth and .25 to .3 of width.

Note.—When face of wheel is mortised, depth of rim should be 1.5 times and breadth of it 1.5 times breadth of tooth or cog.

Hub.—When eye is proportionate to stress upon wheel, hub show twice diameter of eye. In other cases depth around eye should be .75 of pitch.

Arm.—Depth .4 to .45 of pitch. Breadth at rim 1.5 times pitch, in ing .5 inch per foot of length toward hub.

Rib upon one edge of arm, or Web in its centre, should be from .25 pitch in width, and .4 to .45 of it in depth.

When section of an arm differs from those above given, as with one a plane section, as , or with a double rib, as , its dimer should be proportioned to form of section.

In a wheel of greater relative diameter, length of hub and breadth of or of the rib or web, according as plane of arm is in that of wheel, or trariwise, should be made to exceed breadth of face of wheel (at the in order to give it resistance to lateral strain.

Number of arms in wheels should be as follows:

With light wheels, number of arms should be increased, in order bet sustain rigidity of rim.

Mortise Wheels.—Their rim or face should be .9 pitch of tooth, and depth of rim of a solid wheel.

WINDING ENGINES.

With Winding Engines, for drawing coals, etc., out of a Pit, whis required to give a certain number of revolutions, it is necessa have given diameter of *Drum* and thickness of rope, which is flat r and contrariwise.

To Compute Diameter of a Drum.

Where Flat Ropes are used, and are wound one part over the other. I—Divide depth of pit in ins. by product of number of revolutions and 3 and from quotient subtract product of thickness of rope and number of olutions; remainder is diameter in ins.

EXAMPLE.—If an engine makes 20 revolutions, depth of pit being 600 fee rope 1 inch, what should be diameter of drum?

$$\frac{600 \times 12}{20 \times 3.1416} - \overline{1 \times 20} = \frac{7200}{62.832} - 20 = 94.59$$
 ins.

To Compute Diameter of Roll.

E.—To area of drum add area or edge surface of rope; then asc table of areas, or by calculation, diameter that gives tameter of Roll. EXAMPLE.—What is diameter of roll in preceding example?

Area of 94.59 = $7027.2 + (area of 7200 \times 1) = 7200 = 14.227.2$, and $\sqrt{14.227.2} + 354 = 151.85$ ins.

Or, Radius of drum is increased number of revolutions multiplied by thickness rope; as $\frac{94.59}{20 \times 1} = 67.295$ ins.

To Compute Number of Revolutions.

RULE.—To area of drum add area of edge surface of rope; from diameter the circle having that area subtract diameter of drum, and divide reainder by twice thickness of rope; quotient will give number of revolutions. Example.—Length of a rope is 2600 ins., its thickness r inch, and diameter of um 20 ins.; what is number of revolutions?

Area of 20+ area of rope=314.16+2600=2914.16, diameter of which is 60.91, d $\frac{60.91-20}{1-2}$ =20.45 revolutions.

Or, subtract diameter of drum from diameter of roll, and divide remainder by ice thickness of rope; as 60.91 - 20 = 40.91, and $40.91 \div 1 \times 2 = 20.45$ revolutions.

o Compute Point of Meeting of Ascending and Descending Buckets when two or more are used.

To Compute Point of Meeting of Buckets. RULE.—Divide sum of length turns of rope by 2, and to quotient add length of last turn; divide sum 2, multiply quotient by half number of revolutions, and product will ve distance from centre of drum at which buckets will meet.

NOTE I. - Meetings will always be below half depth of pit.

2.—At half number of revolutions buckets will meet.

Example. — Diameter of a drum is 9 feet, thickness of rope r inch, and revoluns 20; what is depth of pit, and at what distance from top will buckets meet?

$$\frac{28.54 + 38.48}{2} + \frac{38.48 \div 2}{38.48 \div 2} \times \frac{20}{2} = \frac{71.99 \times 10}{2} = 35.995 \times 10 = 359.95 \text{ feet.}$$

To Compute this Depth. RULE.—To diameter of drum add thickness of pe in feet, and ascertain its circumference; to diameter of drum add quont of product of twice thickness of rope and number of revolutions less 1, rided by 12 for a diameter, and circumference of this diameter is length last turn, also in feet; add these two lengths together, multiply their sum half number of revolutions, and product will give depth of pit.

, + thickness of rope = 9 + $\frac{1}{12}$ of 1 = 9.083, which \times 3.1416 = 28.54 feet = length

first turn. $9.0833 + \frac{1 \times 2 \times 20 - 1}{12} \times 3.1416 = 38.48$ feet = length of last turn.

Then $28.54 + 38.48 \times \frac{20}{2} = 67.02 \times 10 = 670.2$ feet, depth of pil.

WINDMILLS.

Driving Shaft of a vertical windmill should be set at an elevating angle the horizon when set upon low ground, and at a depressing angle when set on elevated ground. Range of these angles is from 3° to 15°. A velocity wind of 10 feet per second is not generally sufficient to drive a loaded II, and if velocity exceeds 35 feet per second the force is generally too at for ordinary structures.

Angle of Sails should be from 18° to 30° at their least radius, and from to 17° at their greatest radius, mean angle being from 15° to 17° to plane motion of sails. Length of a whip (arm) is divided into 7 parts. ding over 6 parts.

Whip in parts of its length: Breadth .033, at top .016; Depth .025, .0125; Width of sail .33, at axis .2. Distance of sail from axis .c length of whip, and cross-bars 16 to 18 ins. from centres.

To Compute Angles of Sails.

 $a_3^{\circ} = \frac{18 d^2}{r^2} =$ angle of sail with plane of its motion at any part of it. d senting distance of part of sail from its axis, and r extreme radius of sail, both

ILLUSTRATION.—Assume r=14, and length of sail 12 feet, d=.5 of 12 or sixths of sail $=.5 \times 12 + (14 - 12) = 2 = 8$ feet.

Then
$$23^{\circ} - \frac{18 \times 8^{2}}{14^{\circ}} = 23 - 5.88^{\circ} = 17.12^{\circ}$$
.

Hence, angle of sail with axis = 90° - 17.12° = 72.88°.

If radius of sails is divided into 6 equal parts, angles at each of these part be as follows:

To Compute Elements of Windmills.

$$\frac{3.16 \text{ v}}{r' \sin x} = \pi; \qquad \frac{11.5 \text{ v}}{r'} = \pi; \qquad .1047 \text{ } \pi = 6 \text{ v}; \qquad \frac{\text{A v}^3}{108000}$$

 $\frac{\mathbb{P} \times 1080000}{n^3} = \mathbb{A}; \qquad \sqrt{\frac{\mathbb{R}^2 + r^2}{2}} = r'. \quad v \text{ representing velocity of wind particles}$

ond, r'radius of centre of percussion of sails, and R and r outer and inner rad sails, all in feel, x mean angle of sail to plane of motion, n number of revolution arms per minute, a v angular velocity, A area of sails in sq. feet, and P horse-pe

ILLUSTRATION.—If a windmill has 4 arms of 28 feet, with a mean angle (z) of with an area of sail of 150 sq. feet each, having an inner radius of 4 feet, and is erated by wind at a velocity of 40 feet per second; what are its elements?

Then
$$\frac{11.5 \times 40}{20} = n = 23$$
; $\sqrt{\frac{28^2 + 4^2}{2}} = r' = 20$ feet; $\frac{3.16 \times 40}{20 \times .27564} = n = 21$ $\frac{4 \times 150 \times 64000}{1080000} = \text{IP} = 35.55$; $\frac{35.55 \times 1080000}{64000} = \text{A} = 599.9$ aq. feet.

Deductions from Velocities varying from 4 to 9 Feet 1 Second. (Mr. Smeaton.)

- 1. Velocity of windmill sails, so as to produce a maximum effect, is no ly as velocity of wind, their shape and position being same.
- 2. Load at maximum is nearly, but somewhat less than, as square of locity of wind, shape and position of sails being same.
- 3. Effects of same sails, at a maximum, are nearly, but somewhat than, as cubes of velocity of wind.
- 4. Load of same sails, at maximum, is nearly as squares, and their ef as cubes of their number of turns in a given time.
- 5. In sails where figure and position are similar, and velocity of wind me number of revolutions in a given time will be reciprocally as radiu of sail.
 - . at a maximum, which sails of a similar figure and position t a given distance from centre of motion, will be as cube of rad of sails of similar figure and position are as square of radius remities of Dutch sails, as well as of enlarged sails when unloaded, or even loaded to a maximum that of wind.

ults of Experiments on Effect of Windmill Sails. en a vertical windmill is employed to grind corn, the millstone usuakes 5 revolutions to 1 of the sail.

When velocity of wind is 19 feet per second, sails make from 11 to 12 itions in a minute, and a mill will grind from 880 to 990 lbs. in an or about 22440 lbs. in 24 hours.

When velocity of wind is 30 feet per second, a mill will carry all sail, 1ake 22 revolutions in a minute, grinding 1984 lbs. of flour in an hour, 616 lbs. in 24 hours.

eaults of Operation of Windmills. (A. R. Woolf, M. E.) Velocity of Wind 15 to 20 Miles per Hour.

Revolutions of Wheel and Gallons of Water raised per Minute.

	Revolutions	Wat		an Elevation		Power developed.		
٠	Wheel.	25 Feet.	50 Peet.	100 Feet.	200 Feet.	uo i ciopoui	Actual.*	Per HP.
_	No.	Gallons.	Gallons.	Gallons.	Gallons.	HP	Cents.	Cents.
	70 to 75	6.16	3.02	_	l —	.04	.60	15
	60 to 65	19.18	9.56	4.75	-	.12	.70	5.8
	50 to 55	45.14	22.57	11.25	5	.28	1.63	5.8
	40 to 45	97.68	52.16	24.42	12.21	.61	2.83	4.6
	35 to 40	124.95	63.75	31.25	15.94	.78	3.56	4.5
	30 to 35	212.38	106.96	49.73	26.74	1.34	4.26	3.2

^{*} Including interest at 5 per cent. per annum.

WOOD AND TIMBER.

lection of Standing Trees.—Wood grown in a moist soil is lighter, lecays sooner, than that grown in dry, sandy soil.

st Timber is that grown in a dark soil, intermixed with gravel. ar, Cypress, Willow, and all others which grow best in a wet soil, xceptions.

rdest and densest woods, and least subject to decay, grow in warm ites; but they are more liable to split and warp in seasoning.

ees grown upon plains or in centre of forests are less dense than from edge of a forest, from side of a hill, or from open ground.

ees (in U.S.) should be selected in latter part of July or first part ugust; for at this season leaves of sound, healthy trees are fresh green, while those of unsound are beginning to turn yellow. Ad, healthy tree is recognized by its top branches being well leaved, even and of a uniform color. A rounded top, few leaves, some of turned yellow, a rougher bark than common, covered with parasitic is, and with streaks or spots upon it, indicate a tree upon the de-

. Decay of branches, and separation of bark from the wood, are lible indications that the wood is impaired.

een timber contains 37 to 48 per cent. of liquids. 1 seasoning one year, it loses from 17 to 25 pe med it retains from 10 to 15 per cent.

cording to M. Leplay, green wood contains about it of moisture. In Central Europe, wood cut in wir ving summer, fully 40 per cent. of water, and when rears retains from 15 to 20 per cent. of water.

Uing Timber.—Most suitable time for felling timber is dsummer. Recent experiments indicate latter season a

~e to n A tree should be allowed to attain full maturity before being felled. Oak matures at 75 to 100 years and upwards, according to circumstances; Ash, Larch, and Elm at 75; and Spruce and Fir at 80. Age and rate of growth of a tree are indicated by number and width of the rings of annual incress which are exhibited in a cross-section of its body.

A tree should be cut as near to the ground as practicable, as the lower part furnishes best timber.

Dressing Timber.—As soon as a tree is felled, it should be stripped of it bark, raised from the ground, reduced to its required dimensions, and it san-wood removed.

Inspection of Timber.—Quality of wood is in some degree indicated by it color, which should be nearly uniform, and a little deeper towards its entre, and free from sudden transitions of color. White spots indicate deex. Sap-wood is known by its white color; it is next to the bark, and soon ret.

Defects of Timber.

Wind-shakes are serious defects, being circular cracks separating the cocentric layers of wood from each other.

Splits, Checks, and Cracks, extending toward centre, if deep and strongly marked, render timber untit for use, unless purpose for which it is intended will admit of its being split through them.

Brash is when wood is porous, of a reddish color, and breaks short, without splinters. It is generally consequent upon decline of tree from age.

Belted is that which has been killed before being felled, or which has ded from other causes. It is objectionable.

Knotty is that containing many knots, though sound; usually of stinted growth.

Twisted is when grain of it winds spirally; it is unfit for long pieces.

Dry-rot is indicated by yellow stains. Elm and Beech are soon affected.

if left with the bark on.

Lurge or decayed knots injuriously affect strength of timber.

Heart-shake .- Split or cleft in centre of tree, dividing it into segments

Star-shake.—Several splits radiating from centre of timber.

Cup-shake.—Curved splits separating the rings wholly or in part.

Rind-gall.—Curved swelling, usually caused by growth of layers over spa where a branch has been removed.

Upset.—Fibres injured by crushing.

Foxiness.-Yellow or red tinge, indicating incipient decay.

Doutiness .- A speckled stain.

Seasoning and Preserving Timber.

Seasoning is extraction or dissipation of the vegetable juices and moisture solidification of the albumen. When wood is exposed to currents of air the temperature, the moisture evaporates too rapidly, and it erases a temperature is high and sap remains, it ferments, and dry-tot

quires time in which to season, very much in proportion to density

is total immersion of timber in water, for purpose of when thus seasoned it is less liable to warp and crass, at le.

T

it:

1.1

7

Ī

£1

F.

117

.

ريوا مونونا

T

r purpose of seasoning, it should be piled under shelter and kept dry; id have a free circulation of air, without being exposed to strong cur-Bottom pieces should be placed upon skids, which should be free decay, raised not less than 2 feet from ground; a space of an inch id intervene between pieces of same horizontal layers, and slats or pilings placed between each layer, one near each end of pile, and others at distances, in order to keep the timber from winding. These strips id be one over the other, and in large piles should not be less than 1 inch. Light timber may be piled in upper portion of shelter, heavy timber ground floor. Each pile should contain but one description of timber, they should be at least 2.5 feet apart.

should be repiled at intervals, and all pieces indicating decay should be ved, to prevent their affecting those which are still sound.

requires from 2 to 8 years to be seasoned thoroughly, according to its nsions, and it should be worked as soon as it is thoroughly dry, for it iorates after that time.

adual seasoning is most favorable to strength and durability of timber. Dus methods have been proposed for hastening the process, as Steaming, has been applied with success; and results of experiments of various uses of saturating it with a solution of Corrosive sublimate and Antificial are very satisfactory. Such process hardens and seasons wood, e same time that it secures it from dry-rot and from attacks of worms. Oods are densest and strongest at the roots and at their centres. Their gth decreasing with the decrease of their density.

k timber loses one fifth of its weight in seasoning, and about one third coming perfectly dry.

ch pine, from the presence of pitch, requires time in excess of that due e density of its fibre.

thogany should be seasoned slowly, Pine quickly. Whitewood should e dried artificially, as the effect of heat is to twist it.

lt water renders wood harder, heavier, and more durable than fresh.

ndition of fumber, as to its soundness or decay, is readily recognized struck with a quick blow.

mber that has been for a long time immersed in water, when brought the air and dried, becomes brashy and useless.

hen trees are barked in the spring, they should not be felled until the ge is dead.

mber cannot be seasoned by either smoking or charring; but when it posed to worms or to the production of *fungi*, it is proper to smoke or it, and it may be partially seasoned by being boiled or steamed.

mber houses are best provided with blinds which is, but which can be turned to admit air in fine weathed do be kept entirely free from any pieces of decayed wto ln-drying is suited only for boards and pieces of small to cause cracks and to impair the strength, unless v.

arring, Painting, or covering the surface is highly injuned wood, as it effectually prevents drying of the in., in consequence of which fermentation and decay soon.

mber is subject to Common or Dry-rot, former occasione sure to moisture and dryness, and as progress of it is from ring of the surface, if seasoned, with paint, tar, etc., is a pro-

phr

Common out in the consequence of its being pilled in builty-ventiated its force and indications are pollow spats upon emits of pieces, and a yeleastime in the checks and cracks, particularly where the pieces ret upoping of the

Doy or Sep-out is influent in timber, and it is the putrefaction of there enable alliumen. Say wood contains a large proportion of fementally

innects attack wood for the sugar or gum contrained in it, and fungishis upon the allumen of wood; hence, to arrest dry-rut, the allumen unit other extracted or solidities.

Most effective method of preserving timber is that of expelling or handing its fluids, solidifying its albumen, and introducing an anispilicent.

Scength of impregnated timber is not reduced, and its resilience simporting desicrating timber by expelling its fluids by heat and air, its stop is increased fully 15 per cent.

The saturation of wood with crossote, tar, antisepties, etc., present from the attack of worms. Jarrow wood, from Australia, is not subject to their attack.

In a perfectly dry atmosphere durability of woods is almost minist. Rafters of roofs are known to have existed 1000 years, and piles submy in fresh water have been found perfectly sound Soo years from priof their being driven.

Resistance of woods to extension is greater than that of compression

Impregnation of Wood.

Sprog

Dak.

Cotton

Phil

質性行

Abso

Elick O

Cleston

Alder (E

Ma (Fr

Birch (A Elm (U) Rorse-cl

Land ()

De

Codar, (

Oak, El

Several of the successful processes are as follows:

Kyan, 1832.—Saturated with corrosive sublimate. Solution 1 lb. de ride of mercury to 4 gallons of water.

Burnett (Sir Wm.), 1838. — Impregnation with chloride of zincht mitting the wood endwise to a pressure of 150 lbs. per sq. inch. Shall be of the chloride to 4 gallons of water.

Boucheri.—Impregnation by submitting the wood endwise to a per of about 15 lbs. per sq. inch. Solution, 1 lb. of sulphate of copper by gallons of water.

Bethel.—Impregnation by submitting the wood endwise to a pro-150 to 200 lbs. per sq. inch, with oil of creosote mixed with biammatter.

Robbins, 1865.—Aqueous vapor dissipated by the wood being heated is chamber, the albumen solidified, then submitted to vapor of coal tan or bituminous oils, which, being at a temperature not less than 32°, real tales the place of the vapor expelled by a temperature of 212°.

Hayford, 187-.—Aqueous vapor dissipated by the wood being bestel chamber to a temperature of from 250° to 270°, the albumen solidified air introduced to assist the splitting of the outer surfaces. When well dissipated, dead oils are introduced under a pressure of 75 lbs. pr 34

Planks, Deals, and Battens.—When cut from Northern pine (Pients stris) are termed yellow or red deal, and when cut from sprace (Abia etc.) they are termed white deal.

Desicated wood, when exposed to air under ordinary circumstant norbs 5 per cent. of water in the first three days; and will continue to until it reaches from 14 to 16 per cent., the amount varing to condition of the atmosphere.

WOOD AND TIMBER.

Durability of Various Woods. Pieces 2 feet in Length, 1.5 ins. Square, driven 28.5 ins. into the Earth.

		,	Ć	ondition		
Wood.		After 2.5 Year		After 5 Yea	rs.	
Acacia. Ash, Amer. Cedar, Va. "Lebanon. Elm, Eng. "Can. Fir. Larch Oak, Can. "Memel "Dantzic "Chestnut Pine, pitch. "yellow "white	Much Very Good Much "" Surfac Very "" Very Surfac Attac Very	decayedgood	ked	Externally decayed, rest fectly sound. Decayed. Sound as when driven. Tolerable. Entirely decayed. Decayed. Much decayed. Attacked in part only, recondition. Very rotten. """ "" "" "" "" "" "" "" "" "" "" "" "		
		ffect of				
Results of	Experi		arious V	Voods (E. R. Andrews		
Wood.	- 1	Water absorbed.	l	Wood.	Wat absort	
Fluids will pass v	ed Gigant with th	e grain of mited exte	Hard pine { Gum, black { Gum, black { Gum, black { Greosoted. dried { crosoted. } dried { crosoted. } crosoted. } dried { crosoted. } n of wood with great facility, extent when applied externall			
Black Oak Shestnut	3.6	Hemlock Red Oak	• • • • • • • • •	. 3.9 White Oak	•••••	
Alder (Betula almus). Ash (Frazinus excelsit Beech (Frgus sylvatic Birch (Betula alba). Elm (Ulmus campestr Horse-chestnut (Æscu Larch (Pinus laris). Mountain Ash (Sorbus Oak (Quercus robur).	is)lus hipp	41.6 28.7 33 30.8 44.5 pocasl.) 38.2 48.6 aria). 28.3	Pine (P Red Ber Red Pir Spruce excels Sycamo White (White I White I			
Decrease in Woods. Cedar, Canada Elm Oak, English Pitch Pine, North Weight of a bear	Ins. 14 to 11 to 12 to	Ins. 0 13.25 0 10.75 0 11.625 0 9.75×9.75	Pitch P Spruce White I Yellow	Woons. line, South Pine, America. Pine, North		
Prom con or to 620		manan oak	MIGH A	ver, was rectace		

4 D*

From 072.25 to 630.5 lbs.

Weight of a Cube Foot of Oak and Yellow Pine.

Age.		Oak, Va.	Yellow 1	Pine, Va.	Live Oak
AGE.	Round.	Square.	Round.	Square.	Live Use
Green	53.6	67.7 53.5 49.9	47.8 39.8 34-3	39-2 34-2 33-5	78.7 66.7

In England, Timber sawed into boards is classed as follows:

6.5 to 7 ins. in width, Battens; 8.5 to 10 ins., Deals; and 11 to 12 ins, Planks. (See also page 62.)

Distillation.—From a single cord of pitch pine distilled by chemical spearatus, following substances and in quantities stated have been obtained:

Charcoal 50 bushels.	Pyroligneous Acid	100 gallons
Illuminating Gasabout 1000 cu. feet.	Spirits of Turpentine	20"
Illuminating Oil and Tar 50 gallons.	Tar	z barrel
Pitch or Resin 1.5 barrels.	Wood Spirit	5 gallon
Thom of Resident 1.5 partols.	1 wood Spirite	5 game

Strength of Timber.

Results of experiments have satisfactorily proved: That deflection we sensibly proportional to load; That extension and compression were newly the same, though former being the greater; That, to produce equal deflection, load, when placed in the centre, was to a load uniformly distributed, as by to 1; That deflection under equal loads is inversely as breadths and cubs of the depths, and directly as cubes of the spans. (M. Morin.)

It has also been shown, that density of wood varies very little with its are That coefficient of elasticity diminishes after a certain age, and that it be pends also on the dryness and the exposure of the ground where the wood is grown. Woods from a northerly exposure, on dry ground, have a high coefficient, while those from swamps or low moist ground have a low one. That tensile strength is influenced by age and exposure. The coefficient of elasticity of a tree cut down in full vigor, or before it arrives at his condition, does not present any sensible difference. That there is no limit of elasticity in wood, there being a permanent set for every extension.

Average Result of Experiments on Tensile Strength of Wood in Various Positions per Sq. Inch. (MM. Chevandier and Wertheim.)

With the fibre, 6900 lbs. Radially, 683 lbs., and Tangentially, 723 lbs.

To Compute Volume of an Irregular Body.

By "Simpson's Rule."

OPERATION.—Take a right line in the figure for a base line, as A B, divide the figure into any number of equal parts, and compute the areas of their plane section is 1, 2, 3, etc., at the points of division, by rules applicable to area of a plane. That erate these areas as if they were the ordinates of a plane curve or figure of sum with as the figure, and result will give volume required.

STRATION.—Assume a figure having areas as follows, and A B = 24 feet.

MISCELLANEOUS MIXTURES.

Cements.

ends upon manner in which a cement is applied as upon the f, as best cement will prove worthless if improperly applied, iles must be ricorously adhered to to attain success:

ment into intimate contact with surfaces to be united. This is best ing pieces to be joined in cases where cement is melted by heat, as iellac, marine glue, etc. Where solutions are used, cement must be nto surfaces, either with a brush (as in case of porcelain or glass), the two surfaces together (as in making a glue joint between pieces

cement as practicable should be allowed to remain between the united secure this, cement should be as liquid as practicable (thoroughly d with heat), and surfaces should be pressed closely into contact until ariened.

ould be allowed for cement to dry or harden, and this is particularly it coments, such as copal varnish, boiled oil, white lead, etc. When each $\cdot \cdot \cdot \cdot$ inch across, are joined by means of a layer of white lead en them, 6 months may elapse before cement in middle of joint beat the end of a month the joint will be weak and easily separated; at years it may be so firm that the material will part anywhere else than nce, when article is to be used immediately, the only safe cements ich are liquefied by heat and which become hard when cold. A joint arine glue is firm an hour after it has been made. Next to cements afield by heat are those which consist of substances dissolved in water 1 glue joint sets firmly in 24 hours; a joint made with shellac varnish in 2 or 3 days. Oil cements, which do not dry by evaporation, but idation (boiled oil, white lead, red lead, etc.) are slowest of all.

sin, Yellow Wax, and Venetian Red, each r oz.: melt and mix.

Aquarium.

ne white dry Sand, and Plaster of Paris, each r gill; finely pulverized

ly and make into a paste with boiled linseed oil to which drier has been added. Beat nd 4 or 5 hours before using it. After it has stood for 15 hours, however, it loses its recemented into a frame with this cement will resist percolation for either sait or fresh

Adhesive for Fractures of all Kinds.

l ground with Linseed-oil Varnish, and kept from contact with the air.

Stone or Iron.

equal parts of Sulphur and Pitch.

Brass to Glass.

-Resin. 5 ozs. : Becswax, r oz.; Red Ochre or Venetian Red, in powry earth thoroughly on a stove at above 212°. Melt Wax and Resin stir in powder by degrees. Stir until cold, lest earthy matter settle

ning brass-work to glass tubes, flasks, etc.

Chinese Waterproof.

—To 3 parts of Fresh Beaten Blood add 4 parts of a thin, pasty mass is produced, which can be used ich are to be made specially waterproof are painted twice, i buildings of China are painted with schio-like, which gives it; but adds to their durability. Pasteboard treated with it?

China.

lk, dried and powdered, 10 ozs.; Quicklime, 1 oz.; Cai p air-tight. When used, a portion is to be mixed with a little w

Cisterns and Water-casks.

1e, 8 parts; Linseed oil, boiled into a varnish with Liths.

hardens in about 48 hours, and renders the joints of wooden cisteras

Cloth or Leather.

Shellac, 1 part; Pitch, 2 parts; India Rubber, 4 parts; and Gutta Perta; parts; cut small; Linseed oil, 2 parts; melted together and mixed.

Earthen and Glass Ware.

Heat article to be mended a little above 212°, then apply a thin coating of shellac upon both surfaces of broken vessel.

Or, dissolve gum Shellac in alcohol, apply solution, and bind the parts firm; sether until cement is dry.

Or, dilute white of egg with its bulk of water and beat up thoroughly. Misconsistence of thin paste with powdered Quicklime.

Use immediately.

Entomologists'.

Thick Mastic Varnish and Isinglass size, equal parts.

Gutta Percha.

W

Wz

Add

tf cre

(Qui

1860

Pibe

Most

BE

Wat

241

BN

Or.

Melt together, in an iron pan, 2 parts Common Pitch and 1 part Gutta Percha

Stir well together until thoroughly incorporated, and then pour liquid into cold water. When it is black, solid, and elastic; but it softens with heat, and at too is a thin thuid. It may be not paste, or in liquid state, and answers an excellent purpose in cementing metal, glass, possitivery, etc. It may be used instead of putty for glazing.

Glass.

Sore vs.—Mix commercial Zinc White with half its bulk of fine Sand, add a sition of Chloride of Zinc of vs.26 spec, grav., and mix thoroughly in a mortar. Apply immediately, as it hardens very quickly.

Holes in Castings.

Sulphur in powder, x part; Sal-ammoniac, 2 parts; powdered Iron tuming parts. Make into a thick paste.

Make only as required for immediate use.

Hydraulic Paint.

Hydraulic cement mixed with oil forms an incombustible and waterproof particle for roofs of buildings, outhouses, walls, etc.

Iron Ware.

Sulphur, 2 parts; fine Black-lead, 1 part. Heat sulphur in an iron partit melts, then add the lead; stir well, and remove. When cool, break into per as required. Place upon opening of the ware to be mended, and solder with iron.

Kerosene Lamps, etc.

Resin, 3 parts; Caustic Soda, 1; Water, 5, mixed with half its weight of Paris.

of Paris.

It sets firmly in about three quarters of an hour. Is of great adhesive power, not permanks also sene, a low conductor of heat, and but superficially attacked by hot water.

Leather to Iron, Steel, or Glass.

r.—Glue, r quart, dissolved in Cider Vinegar; Venice Turpentine, r oz.; bold gently or simmer for 12 hours.

Or, Glue and Isinglass equal parts, soak in water 10 hours, boil and add until mixture becomes "ropy;" apply warm.

Remove surface of leather where it is to be applied.

2.—Steep leather in an infusion of Nutgall, spread a layer of hot Give of face of metal, and apply flesh side of leather under pressure.

Leather Belting.

Common Glue and Isinglass, equal parts, soaked for 10 hours in enough was cover them. Bring gradually to a boiling heat and add pure Tannin until where comes ropy or appears alike to white of eggs.

Clean and rub surfaces to be joined, apply warm, and clamp firmly.

Molding and Temporary Adhesion.

Soft.—Melt Yellow Beeswax with its weight of Turpentine, and color with the powdered Venetian red.

When cold it has the hardness of soap, but is easily softened and molded with the tages.

Maltha, or Greek Mastic.

ne and Sand mixed in manner of mortar, and made into a proper consistency milk or size without water.

Marble.

ster of Paris, in a saturated solution of Alum, baked in an oven, and reduced wder. Mixed with water, and color if required.

Metal to Glass.

pal Varnish, 15 parts; Drying Oil, 5; Turpentine, 3. Melt in a water bath and o of Slaked Lime.

Mending Shells, etc.

m Arabic, 5 parts; Rock Candy, 2; and White Lead, enough to color.

Large Objects.

ollaston's White. - Beeswax, 1 oz.; Resin, 4 ozs.; powdered Plaster of Paris, 5 Melt together.

rm the edges of the object and apply warm,
means of this cement u piece of wood may be fastened to a chuck, which will hold when cool; and
work is finished it may be removed by a smart stroke with tool. Any traces of cement may be red by Benzine.

Marble Workers and Coppersmiths.

hite of egg, mixed with finely-sifted Quicklime, will unite objects which are submitted to moisture.

Porcelain.

ld Plaster of Paris to a strong solution of Alum till mixture is of consistency

ets readily, and is suited for cases in which large rather than small surfaces are to be united.

Rust Joint.

wick Setting.) - Sal-ammoniac in powder, 1 lb.; Flour of Sulphur, 2 lbs.; Iron ags. 80 lbs. Made to a paste with water.

Low Setting.)—Sal-ammoniac, 2 lbs.; Sulphur, 1 lb.; Iron borings, 200 lbs. a latter cement is best if joint is not required for immediate use.

Steam Boilers, Steam-pipes, etc.

nely powdered Litharge, 2 parts; very fine Sand, 1; and Quicklime slaked by sure to air. I.

a mixture may be kept for any length of time without injuring. In using it, a portion is mixed taste with linseed oil, boiled or crude. Apply quickly, as it soon becomes hard.

ft .- Red or White Lead in oil, 4 parts; Iron borings, 2 to 3 parts.

ard.—Iron borings and salt water, and a small quantity of Sal-ammoniac with

Transparent-Glass.

dia-rubber, 1 part in 64 of chloroform; gum Mastic in powder, 16 to 24 parts.

st for two days, with frequent shaking.
pulverized Glass, 10 parts; powdered Fluor-spar, 20; soluble Silicate of Soda,
Both glass and fluor-spar must be in finest practicable condition, which is best by shaking each in fine powder, with water, allowing coarser particles to deand then by pouring off remainder, which holds finest particles in suspension. mixture must be made very rapidly, by quick stirring, and applied immediately.

Uniting Leather and Metal.

ash metal with hot Gelatine: steep leather in an infusion of Nutgalls, hot. bring the two together.

Waterproof Mastic.

ed Lead, 1 part; ground Lime, 4 parts; sharp Sand and boiled Oil, 5 parts. , Red Lead, 1 part; Whiting, 5; and sharp Sand and boiled Oil, 10.

Wood to Iron.

tharge and Glucerine. - Finely powdered Oxide of Lead (litharge) and Concen-≥d Glycerine.

exposition is insoluble in most acids, is unaffected by action of moderate heat, sets rapidly, equires an extraordinary hardness.

erner's.-Molt 1 lb. of Resin, and add .25 lb. of Pitch.

bile boiling add Brick dust to give required consistency. In winter it may sary to add a little Tallow.

GLITES.

Marine.

Dissolve India Rubber, 4 parts, in 34 parts of Coal-tar Kaphtha; add ;

Shellac, 64 parts.

While mixture is hot pour it upon metal plates in sheets.

use, heat it, and apply with a brush.

Or, India Rubber, 1 part; Coal Tar, 12 parts; heat gently, mix, and ad beliec, 20 parts. Cool. When used, heat to about 250°.

Or, Glue, 12 parts; Water, sufficient to dissolve; add Yellow Resia, 3] when melted, add Turpentine, 4 parts.

Strong Glue.-Add Powdered Chalk to common Glue.

Mix thoroughly.

Mucilage.

Curd of Skim Milk (carefully freed from Cream or Oil), washed thereakly, at dissolved to enturation in a cold concentrated solution of Borax.

This machings keeps well, and, as regards adhesive power, for surpasses gum Arable.

Or, Oxide of Lead, 4 Ma.; Lamp-black, 2 Ma.; Sulphur, 5 cma.; and India Bit dissolved in Turpentine, 10 lbs.

Boil together until they are thoroughly combined.

Preservation of Mucilage. - A small quantity of Oil of Cloves poured into a le containing Gum Mucilage prevents it from becoming sour.

To Resist Moisture...

٢

ş ja

ā

ú

T:I

.

Ŀ.

1-

35

'n,

ì

۲.

ì.

Glue, 5 parts; Resin, 4 parts; Red Ochre, 2 parts; mixed with least practicals quantity of water.

Or, Glue, 4 parts; Boiled Oil, z part, by weight; Oxide of Iron, z part.

Or, Glue, r lb., melted in 2 quarts of skimmed Milk.

Parchment.

Parchment Shavings, 1 lb.: Water, 6 quarts.

Boil until dissolved, then strain and evaporate slowly to proper consistence

Rice, or Japanese.

Rice Flour; Water, sufficient quantity.

Mix together cold, then boil, stirring it during the time.

Liquid.

Glue, Water, and Vinegar, each a parts. Dissolve in a water-bath, then add & cohol, i part.

Or, Cologne or strong Glue, 2.2 lbs.; Water, r quart; dissolve over a gentle hos; add Nitric Acid 360, 7 ozs., in small quantities.

Remove from over fire, and cool.

Or, White Glue, 16 ozs.; White Lead, dry, 4 ozs.; Rain Water, 2 pints. Add & cohol, 4 ozs., and continue heat for a few minutes.

Elastic and Sweet .- Stamps or Rolls.

Elastic.—Dissolve good Giue in water by a water-bath. Evaporate to a thick en sistence, and add equal weight of Glycerine to Glue; submit to heat until all water is evaporated, and pour into molds or on plates.

Sweet.-Substitute Sugar for the Glycerine.

are Engravings or Lithographs upon Wood parts; Mastic in tears, 64 parts; Resin, 125 parts; Venice for and Alcohol, 1000 parts by measure.

'WNING, OR BRONZING, LIQUID.

weet Spirit of Nitre, r oz.; Water, r pint.

MISCELLANROUS MIXTURES.

Gun Barrels.

Incture of Muriate of Iron, r oz.; Nitric Ether, r oz.; Sulphate of Laples; rain water, r pint. If the process is to be hurried, add 2 or muriate of Mercury.

Then barrel is finished, let it remain a short time in lime-water, to neutralize any aci

4 fter Browning. - Shellac. 1 oz.; Dragon's-blood, .25 oz.; rectified § solve and filter.

>r, Nitric Acid, spec. grav. 1.2; Nitric Ether, Alcohol, and Muriate of I

LACQUERS.

Small Arms, or Waterproof Paper.

Beeswax, 13 lbs.; Spirits Turpentine, 13 gallons; Boiled Linseed Oil, 1 ▶ Il ingredients should be pure and of best quality. Heat them together in a copper of over a gentle fire, in a water-bath, until they are well mixed.

Bright Iron Work.

Linseed Oil, boiled, 80.5 parts; Litharge, 5.5 parts; White Lead, in oil, 1 >sin, pulverized, 2.75 parts.

Add litharge to oil; simmer over a slow fire 3 hours; strain, and add resin and white ratly warmed, and stir until resin is dissolved.

Or, Amber, 6 parts; Turpentine, 6 parts; Resin, 1 part; Asphaltum, 1 Tying Oil, 3 parts; heat and mix well.

Or, Shellac, 1 lb.; Asphaltum, 6 lbs.; and Turpentine, 1 gallon.

Iron and Steel.

Clear Mastic, 10 parts; Camphor, 5 parts; Sandarac, 15 parts; and E Parts. Dissolve in Alcohol, filter, and apply cold.

Brass.

Shellac, 8 ozs.; Sandarac, 2 ozs.; Annatto, 2 ozs.; and Dragon's-blood 3 and Alcohol, r gallon.

3r, Shellac, 8 ozs.; and Alcohol, r gallon. Heat article slightly, and ap

th a soft brush.

Food, Iron, or Walls, and rendering Cloth, Pape Waterproof.

Heat 120 lbs. Oil Varnish in one vessel, 33 lbs. Quicklime in 22 lbs. winer. Soon as lime effervesces, add 55 lbs. melted India Rubber. Sti pour into vessel of hot Varnish. Stir, strain, and cool. When used, thin with Varnish and apply, preferably hot.

To Clean Soiled Engravings.

Ozone Bleach, 1 part; Water, 10; well mixed.

INKS.

Indelible, for Marking Linen, etc.

Juice of Sloes, 1 pint; Gum, .5 oz.

This requires no "preparation" or mordant, and is very durable.

2. Nitrate of Silver, 1 part; Water, 6 parts, Gum, 1 part; Dissolve. 3. Lunar Caustic, 2 parts: San Green and Gum Arabic, each 1 part: di stilled water.

Preparation."—Soda, 1 oz.; Water, 1 pint; Sap Green, 5 drs wet article to be marked, then dry and apply the ink.

Perpetual, for Tomb-stones, Marble, etc.—Pitch, 11 parts; Las Poentine sufficient. Warm and mix.

Copying Ink.—Add 1 oz. Sugar to a pint of ordinary Ink.

SOLDERING.

Base for Soldering.

Strips of Zinc in diluted Muriatic, Nitric, or Sulphuric Acid, unti-inposed as acid will effect. Add Mercury, let it stand for a day ater, and bottle the Mercury. When required, rub surface to be soldered with a cloth dipped in th

VARNISHES.

Waterproof.

Flour of Sulphur, r lb.; Linseed Oil, r gall.; boil them until they are thorough combined.

Good for waterproof textile fabrics.

Harness.

India Rubber, . 5 lb.; Spirits of Turpentine, r gall.; dissolve into a jelly; then at hot Linseed Oil, equal parts with the mass, and incorporate them well over a slow in

Fastening Leather on Top Rollers.

Gum Arabic, 2.75 ozs., and a like volume of Isinglass, dissolved in Water.

To Preserve Glass from the Sun.

Reduce a quantity of Gum Tragacanth to fine powder, and dissolve it for $_{24}\,\rm hc ^{13}$ in white of egg well beat up.

Water-color Drawings.

Canada Balsam, 1 part; Oil of Turpentine, 2 parts.

Mix and size drawing before applying.

Objects of Natural History, Shells, Fish, etc.

Mucilage of Gum Tragacanth and of Gum Arabic, each 1 oz.

Mix, and add spirit with Corrosive Sublimate, to precipitate the more string pation of the Gum.

Iron and Steel.

Mercury, 120 parts; Tin, 10 parts; Green Vitriol, 20 parts; Hydrochloric Acid d 1.2 sp. gr., 15 parts, and pure Water, 120 parts.

Blackboards.

Shellac Varnish, 5 gallons; Lamp-black, 5 ozs.; fine Emery, 3 ozs.; thin will Alcohol, and lay in 3 coats.

Black.

Heat, to boiling, Linseed Oil Varnish, 10 parts, with Burnt Umber, 2 parts, 2 powdered Asphaltum, 1 part.

When cooled, dilute with Spirits of Turpentine as may be required.

Balloon.

Melt India Rubber in small pieces with its weight of boiled Linseed Oil. Thin with Oil of Turpentine.

Transfer.

Alcohol, 5 ozs.; pure Venice Turpentine, 4 ozs.; Mastic, r oz.

To render Canvas Waterproof and Pliable.

Yellow Soap, 1 lb, boiled in 6 pints of Water, add, while hot, to 112 lbs. of oil Paint

Waterproof Bags.

Pitch, 8 parts, Wax and Tallow, each r part.

To Clean Varnish.

Mix a lye of Potash or Soda, with a little powdered Chalk.

STAINING.

Wood and Ivory.

Acid will produce it on wood.

"azil Wood in Stale Urine, in the proportion of 1 lb. 408 on when boiling hot, also Alum water before it dries lood in Spirits of Wine.

Philippia Anta

rerdigris in Nitric Acid, which will ten to boiling hot.

amoniac into four times its weight of

lesolved in wester and put on bot

Yellor

I am

MISCELLANEOUS.

Blacking for Harness.

, .5 lb.; Ivory Black, 2 ozs.; Spirits of Turpentine, r oz.; Prussian Blue oil, r oz.; Copal Varnish, .25 oz.

c and stir it into other ingredients before mixture is quite cold; make it Rub a little upon a brush, and apply it upon harness, then polish lightly

To Clean Brass Ornaments.

naments that have not been gilt or lackered may be cleaned, and a very olor given to them, by washing them in Alum boiled in strong Lye, in the of an ounce to a pint, and afterwards rubbing them with strong Tripoli.

To Harden Drills, Chisels, etc.

them in Mercury.

To Clean Coral.

ith equal parts Spirits of Salts and cold water. n a hot solution of Potash or Chloride of Lime. If much discolored, let n solution for a few hours.

Blacking, without Polishing.

t, 4 ozs.; Lamp-black, .5 oz.; Yeast, a table-spoonful; Eggs, 2; Olive Oil, ful; Turpentine, a teaspoonful. Mix well.

ied with a sponge, without brushing.

Dubbing.

lbs.; Tallow, r lb.; Train-oil, r gallon.

Anti-friction Grease.

oo lbs.; Palm-oil, 70 lbs. Boiled together, and when cooled to 80°, strain sieve, and mix with 28 lbs. of Soda, and r.5 gallons of Water. tcr, take 25 lbs. more oil in place of the Tallow. c Lead, r part; Lard, 4 parts.

To Attach Hair Felt to Boilers.

d, r lb.; White Lead, 3 lbs.; and Whiting, 8 lbs. Mixed with boiled Linconsistency of paint.

Pastils for Fumigating.

abic, 2 ozs.; Charcoal Powder, 5 ozs.; Cascarilla Bark, powdered, .75 oz.; 25 drachm. Mix together with water, and make into shape.

Writing upon Zine Labels.—Horticultural.
100 grains of Chloride of Platinum in a pint of water; add a little Mu-Lamp-black.
107. Verdigris. 107.; Lamp-black. 107.; Water, 10 drs. Mix.

To Remove old Ironmold.

en part stained with ink, remove this by use of Muriatic Acid diluted by its weight of water, when old and new stain will be removed.

To Cut India Rubber.

ide of knife wet with water or a strong solution of Po

Adhesive for Rubber Belts.

ving surface with Boiled Oil or Cold Tallow, and the

Liard.

of finest Rape-oil, and r part of Caoutchouc, cut small.

To Preserve Leather Belting or Hoarm Castor Oil. For hose, force it through it.

. To Oil Leather Belting. solution of India Rubber and Linseed Oil.

Dressing for Leather Belts.

z. Reef Tallow, z pert, and Castor Oil, 2 perts. Apply warm.

2-Beef Tailow, 3 the ; Beeswax, 1 lb. Hested and applied warm to both six

Files.

Lay dull files in diluted Sulphuric Acid until they are bitten deep enough.

To Remove Oil from Leather.

Aprily Aque ammonia.

To Clean Paint.

Wash with a solution of Pearlash in water. If greasy, use Quicklime (17, Extract of Litherium diluted with from 200 to 300 parts of water.

To Remove Paint.

Mix Soft Sonp. 2 ozn., and Potash. 4 ozn., in boiling Water, with Quicklins.;h Apply hot, and let remain for r day. Or, Extract of Litherium, thinly brushed over the surface 2 or 3 times.

To Clean Marble.

Chalk, powdered, and Pumice-stone, each 1 part; Soda, 2 parts. Wix with the Wash the spota, then clean and wash off with Soap and Waser.

Paste for Cleaning Metals.

Oxalie Acid, r part; Rottenstone, 6 parts. Mix with equal parts of Train Cisi

Watchmaker's Oil, which never Corrodes or Thickes: Place coils of thin Sheet Lead in a bottle with Olive Oil. Expose it to the suff a few weeks, and pour off the clear oil.

Durable Paste.

Make common Flour paste rather thick (by mixing some Flour with a little water until it is of uniform consistency, and then stir it well while boiling ward being added to it; add a little Brown Sugar and Corrosive Sublimate, which if prevent fermentation, and a few drops of Oil of Lavender, which will preventable coming moldy. When dried, dissolve in water.

It will keep for two or three years in a covered vessel.

To Extract Grease from Stone or Marble. Soft Sozo, 1 part; Fuller's Earth, 2 parts; Potash, 1 part. Mix with boiling was Lay it upon the spots, and let it stand for a few hours.

Stains.

To Remove.—Stains of Iodine are removed by rectified Spirit; Ink stains of alic or Superoxalate of Potash; Ironmolds by same; but if obstinate, moisten with Ink, then remove them in the usual way.

Red spots upon black cloth, from acids, are removed by Spirits of Harishon, other solutions of Ammonia.

wining of Marking-ink, or Nitrate of Silver.—Wet stain with fresh solution of Lime, and, after 10 or 15 minutes, if marks have become white diple solution of Ammonia or of Hyposulphite of Soda. In a few minutes we

he stained linen over a basin of hot water, and wet mark with Too

re Paste for Objects of Natural History.
b.: Powdered Hellebore, 2 lbs.

Red, 17 parts; Whiting, 6.5 parts; and Lithers.

reserve Sails.

he lime-water, and mix it with 120 pulm

Whitewash.

itside exposure, slack Lime, .5 bushel, in a barrel; add common Salt, 1 lb.; of Zinc, .5 lb.; and Sweet Milk, 1 gallon.

To Preserve Woodwork.

Oil and finely powdered Charcoal, each ${\bf r}$ part; mix to the consistence of Apply 2 or 3 coats.

nposition is well adapted for casks, water-spouts, etc.

To Polish Wood.

ırface with Pumice Stone and water until the rising of the grain is removed. th powdered Tripoli and boiled Linseed Oil, polish to a bright surface.

Paint for Window Glass.

ie Green, .25 oz.; Sugar of Lead, r lb.; ground fine, in sufficient Linseed Oil en it. Mix to the consistency of cream, and apply with a soft brush. is should be well cleansed before the paint is applied. The above quantity is sufficient for feet of glass.

To Make Drain Tiles Porous. wdust with the clay before burning.

SCELLANEOUS OPERATIONS AND ILLUSTRATIONS.

t is required to lay out a tract of land in form of a square, to be envith a post and rail fence, 5 rails high, and each rod of fence to conrails. What must be side of this square to contain just as many there are rails in fence?

.TION. 1 mile = 320 rods. Then 320 \times 320 \div 160, sq. rods in an acre = 640 and 320 \times 4 sides and \times 10 rails = 12 800 rails per mile.

as 640 acres: 12800 rails: 12800 acres: 256000 rails, which will enclose acres, and $\sqrt{25000} \times 69.5701 =$ number of yards in side of a sq. acre, and yards in a mile = 20 miles.

Iow many fifteens can be counted with four fives?

OPERATION.
$$\frac{4 \times 3 \times 2 \times 1}{1 \times 2 \times 3} = \frac{24}{6} = 4.$$

Vhat are the chances in favor of throwing one point with three dice? TION.—Assume a bet to be upon the ace. Then there will be $6\times6\times6=216$ ways which the dice may present themselves, that is, with and without an ace. if the ace side of the die is excluded, there will be 5 sides left, and $5\times5\times5$ aus without the ace.

fore, there will remain only 216-125=01 ways in which there could be an echance, then, in favor of the ace is as 91 to 125; that is, out of 216 throws, sability is that it will come up 91 times, and lose 125 times.

The hour and minute hand of a clock are exactly together at 12; re they next together?

ITION.—As the minute hand runs 11 times faster that $0:: 1:5 \text{ min. } 27\frac{8}{17} \text{ sec.} = time past 1 o'clock.}$

then,

Issume a cube inch of glass to weigh 1.49 ounce er .59, and of brandy .53. A gallon of this liquiveighs 3.84 lbs., is thrown into sea-water. It is it will sink, and, if so, how much force will just be the ins in a gallon \times .53 = 122.43 ounces of brandy. bottle and brandy weigh $3.84 \times 12 + 122.43 = 168.51$ or whe ins., which \times .59 = 154.53 ounces, weight of an equal 168.51 — 154.53 = 13.98 ounces, weight necessary to support 18.51 of 18.52 outper 18.53 = 13.98 ounces, weight necessary to support 18.52 outper 18.53 = 13.98 ounces, weight necessary to support 18.50 outper 18.52 outper 18.53 = 13.98 ounces, weight necessary to support 18.52 outper 18.53 = 13.98 ounces, weight necessary to support 18.52 outper 18.53 = 13.98 outper 18.53 = 13.98 outper 18.54 outper 18.54 outper 18.55 = 18.54 outper 18.55 = 18.55 outper 18.55 = 18.55 outper 18.55 = 18

6.—A fountain has 4 supply cocks, A, B, C, and D, and under it is a citorn, which can be filled by the cock A in 6 hours, by B in 8 hours, by C is to hours, and by D in 12 hours; now, the cistern has 4 holes, designated F, G, and H, and it can be emptied through E in 6 hours, F in 5 hours, G is 4 hours, and H in 3 hours. Suppose the cistern to be full of water, and the all the cocks and holes were opened together, in what time would the cister be emptied?

OPERATION.—Assume the cistern to hold 120 gallons.

```
hrs. gall. hrs. gall.

16 6: 120: 1: 1: 30 at A.

18 120: 1: 1: 32 at B.

10: 120: 1: 1: 22 at C.

12: 120: 1: 1: 0 at D.

Run in in 1 hour, 57 gallons.
```

Run out in 1 hour more than run in, 57 gallons.

Then, as 57 gallons: 1 hour:: 120 gallons: 2.105+ hours.

7.—A cistern, containing 60 gallons of water, has 3 cocks for discharging it; one will empty it in 1 hour, a second in 2 hours, and a third in 3 hour; in what time will it be emptied if they are all opened together?

OPERATION.—1st, .5 would run out in r hour by the 2d cock, and .333 by the 5 consequently, by the 3 would the reservoir be emptied in r hour. .5+.33+== \$\frac{4}{5}+\frac{2}{5}+\frac{2}{5},\text{ being reduced to a common denominator, the sum of these 3 == \frac{1}{5};\text{ when the proportion, rr: 60::6:32-\frac{2}{5} \text{ minutes.}

8.—A reservoir has 2 cocks, through which it is supplied; by one of the it will fill in 40 minutes, and by the other in 50 minutes; it has also a charging cock, by which, when full, it may be emptied in 25 minutes. It the 3 cocks are left open, in what time would the cistern be filled, assume the velocity of the water to be uniform?

OPERATION.—The least common multiple of 40, 50, and 25, is 200.

Then, the 1st cock will fill it 5 times in 200 minutes, and the 2d, 4 times in 200 minutes, or both, 5 times in 200 minutes; and, as the discharge cock will empt is 8 times in 200 minutes, hence 9.8 = 1,07 once in 200 minutes - 2.2 hours.

9.—The time of the day is between 4 and 5, and the hour and minds hands are exactly together; what is the time?

OPERATION. - Difference of speed of the hands is as 1 to 12 = 11.

4 hours \times 60 = 240, which \div 11 = 21 min. 49.09 sec., which is to be added to 4 hours

10.—Out of a pipe of wine containing 84 gallons, 10 were drawn off, and the vessel refilled with water, after which 10 gallons of the mixture were drawn off, and then 10 more of water were poured in, and so on for a third and fourth time. It is required to compute how much pure wine remained in the vessel, supposing the two fluids to have been thoroughly mixed.

OPERATION. 84 - 10 = 74, quantity after the 1st draught.

Then, 84: 10::74: 8.8095, and 74—8.8095=65.1905, quantity ofter 2d drawlest 10::65-1905; 7.7608, and 65:1905—7.7608=57.4297, quantity after 3d drawlest: 64: 10::57.4297: 6.8367, and 57.4297—6.8367=50.593, quantity after 4th drawlest=result required.

11.—A reservoir having a capacity of 10000 cube feet, has an influx of 20 and a discharge of 1000 cube feet per day. In what time will it by ied?

OPERATION. $\frac{10000}{1000-750} = 40 \text{ days.}$

. The discharge being 1000 and the influx 1250 cube feet per box

—A son asked his father how old he was. His father answered him: If you take away 5 from my years, and divide the remainder by 8, uotient will be one third of your age; but if you add 2 to your age, and ply the whole by 3, and then subtract 7 from the product, you will have umber of years of my age. What were the ages of father and son?

in 37-5=32, and $32\div 8=4$, and $4\times 3=12$, son's age. Again: 12+2=14, $4\times 3=42$, and 42-7=35. Therefore 37-35=2, error too little.

in: Assume father's age 45; then 45-5=40, and 40+8=5. Therefore = 15, $80n^2s$ age. Again: 15+2=17, and $17\times 3=51$, and 51-7=44. Therefore 15-44=1, error too little.

nce (45 sup. \times 2 error) — (37 sup. \times 1 error) = 90 — 37 = 53, and 2 — 1 = 1. sequently, 53 is father's age. Then 53 — 5 = 48, and 48 ÷ 8 = 6 = .333 of son's and 6 \times 3 = 18 years, son's age.

.—Two companions have a parcel of guineas. Said A to B, if you will me one of your guineas I shall have as many as you have left. B re-, if you will give me one of your guineas I shall have twice as many as will have left. How many guineas had each of them?

gration.—Assume B had 6.

en A would have had 4, for 6-z=4+z=5. Again: 4 (A's parcel) -z=3, i+z=7, and $3\times 2=6$. Therefore 7-6=z, error too little.

ain: Assume B had 8.

en A would have 6, for 8-x=6+x=7. Again: 6 (A's parcel) -x=5, and =9, and $5\times 2=10$. Therefore 10-9=x, error too great.

nce $8 \times 1 = 8$, and $6 \times 1 = 6$. Then 8 + 6 = 14, and 1 + 1 = 2. Whence, dig products by sum of errors, $14 \div 2 = 7 = B$'s parcel, and 7 - 1 = 5 + 1 = 6. when he had received 1 of B; also $5 - 1 \times 2 = 7 + 1 = 8 = B$'s parcel when he received 1 of A.

.—If a traveller leaves New York at 8 o'clock in the morning, and walks ards New London at the rate of 3 miles per hour, without intermission; another traveller starts from New London at 4 o'clock in the evening, walks towards New York at the rate of 4 miles per hour continuously; ming distance between the two cities to be 130 miles, whereabouts upon road will they meet?

ERATION. — From 8 to 4 o'clock is 8 hours; therefore, $8 \times 3 = 24$ miles, peried by A before B set out from New London; and, consequently, 130 - 24 = 106 he miles to be travelled between them after that.

nce, as (3+4) 7: 3:: $106: \frac{3\cdot78}{2} = 45\frac{8}{7}$ more miles travelled by A at the meeting; equently, $24+45\frac{8}{7} = 60\frac{8}{7}$ miles from New York is place of their meeting.

;—If from a cask of wine a tenth part is drawn out and then it is filled water; after which a tenth part of the mixture is drawn out; again led, and again a tenth part of the mixture is drawn out: now, assume luids to mix uniformly at each time the cask is replenished, what fracult part of wine will remain after the process of drawing out and replening has been repeated four times?

REATION.—Since .1 of the wine is drawn out at first drawing. there must remain After cask is filled with water. .1 of whole being drawn out, there will remain mixture; but .9 of this mixture is wine; therefore, after second drawing, there

remain .9 of .9 of wine, or $\frac{9^2}{10^2}$; and after third drawing. Were will remain

nce, the part of wine remaining is expressed by the ratio is railed and send of which is number of times cash has been drawn from.

exclore, fractional part of wine is $\frac{9^4}{10^4} = .6561$.

16.—There is a fish, the head of which is o ins, long, the tail as long the head and half the body, and the body as long as both the head and Required the length of the fish.

OPERATION. - Assume body to be 24 ins. in length. Then 24 +2+9=21 of tail.

Hence 21 + 9 = 30, length of body, which is 6 ins. too great.

Again: assume the body to be 26 ins. in length. Then 26 + 2+0=22, length tail. Hence 22+9=31, length of body, which is 5 ins. too great.

Therefore, by Double Position, divide difference of products (see role, par by difference of errors (the errors being alike), 26 × 6-24 × 5=36=different products, and 6-5=1=difference of errors.

Consequently, 36 + 1 = 36, length of body, and 36 + 2 + 9 = 27, length of tall a 36+27+9=72 ins., length required.

17.- A hare, 50 leaps before a greyhound, takes 4 leaps to the greyhour 3, but 2 leaps of the hound are equal to 3 of the hare's. How many must the greyhound take before he can catch the hare?

OPERATION .- As 2 leaps of the greyhound equal 3 of the hare, it follows that is the greyhound equal o of the hare.

While the greyhound takes 6 leaps, the hare takes 8: therefore, while the takes 8, the greyhound gains upon her 1.

Hence, to gain 50 leaps, she must take 50 × 8 = 400 leaps; but, while have to 400 leaps, greyhound takes 300, since number of leaps taken by them are as 4 103

18.—If a basket and 1000 eggs were laid in a right line 6 feet apart a Io men (designated from A to J) were to start from basket and to rul nately, collect the eggs singly, and place them in basket as collected, each man to collect but 10 eggs in his turn, how many yards would man run over, and what would be entire distance run over?

OPERATION. - A's course would be 6 x 2 feet (first term) + 10 x 6 x 2 feet term) = 132 = sum of first and last terms of progression.

Then 132 ÷ 2 × 10 = 660 feet = number of times × half sum of extremes== all the terms, or the distance run by A in his first turn.

B's course would be 11 × 6 × 2=132 feet (first term) + 20 × 6 × 2=240 fet term) = 372 = sum of first and last terms.

Then 372 ÷ 2 × 10 == 1860 = sum of all the times, or B's first turn.

A's last course would be got X 6 X 2 = 10 812 feet for the first term, and groxil = 10 920 feet for the last term of his last turn.

Then 10812+10920+2 × 10 = 108660 = sum of the terms, or distance run.

B's last course would be 911 × 6 × 2 = 10932 feet for the first term, and 920XII = 11 040 feet for the last term of his last turn.

Then 10 932 + 11 040 + 2 × 10 = 109 860 = sum of the terms or distance rule

Therefore, if A's first and last runs = 660 and 108 660 feet, and the number terms 10, then, by Progression, the sum of all the terms = 546 600 feel.

And if B's first and last runs = 1860 and 100 860 feet, and the number of ter then the sum of all the terms = 558600 feet.

Consequently, 558 600 - 546 600 = 12000 = common difference of runs, which ing added to each man's run = sum of all runs, or entire distance run over

A's run, $546\ 600 = 182\ 200\ yds$. F's run, $606\ 600 = 202\ 200\ yds$. B's " $558\ 600 = 186\ 200$ " G's " $618\ 600 = 206\ 200$ " G's " $618\ 600 = 206\ 200$ " " H's " $630\ 600 = 210\ 200$ "

D's " 582 600 = 194 200 " | I's " 642 600 = 214 200 " | E's " 594 600 = 198 200 " | J's " 654 600 = 218 200 "

6006 000 feet, which - 5280 = 11155

19 .- If, in a pair of scales, a body weighs 90 lbs. in one scale, and last lbs. in the other, what is the true weight?

—If a steamboat, running uniformly at the rate of 15 miles per hour gh the water, were to run for 1 hour with a current of 5 miles per hour, to return against that current, what length of time would she require the the place from whence she started?

tration. 15+5=20 miles, the distance run during the hour.

n 15 – 5 = 10 miles is her effective velocity per hour when returning, and 10 = 2 hours, the time of returning, and 2 + 1 = 3 hours, or the whole time oc-

Let d represent distance in one direction, t and t' greater and less times of runin hours, and c current or tide.

$$\frac{d}{t} \frac{t+t'}{t} = \text{velocity of boat through the water, and } \frac{\overline{v \times t'} - d}{t'} = c.$$

—Flood-tide wave in a given river runs 20 miles per hour, current of 3 miles per hour. Assume the air to be quiescent, and a floating body ee at commencement of flow of the tide; how long will it drift in one tion, the tide flowing for 6 hours from each point of river?

RATION.—Let x be the time required; 20x = distance the tide has run up, torith the distance which the floating body has moved; 3x = whole distance the body has floated.

n 20 $x - 3x = 6 \times 20$, or the length in miles of a tide.

$$x = \frac{20}{20 - 3} \times 6 = 7$$
 hours, 3 minutes, 31.765 seconds.

—A steamboat, running at the rate of 10 miles per hour through the descends a river, the velocity of which is 4 miles per hour, and rein 10 hours; how far did she proceed?

RATION.—Let
$$x = \text{distance required}$$
, $\frac{x}{10+4} = \text{time of going}$, $\frac{x}{10-4} = \text{time of ung}$. Then, $\frac{x}{10+4} = \frac{x}{10+4}

—From Caldwell's to Newburgh (Hudson River) is 18 miles; the curoff the river is such as to accelerate a boat descending, or retard one ding, 1.5 miles per hour. Suppose two boats, running uniformly at the of 15 miles per hour through the water, were to start one from each at the same time, where will they meet?

RATION.—Let x = the distance from N. to the place of meeting; its distance C., then, will be 18—x.

ed of descending boat, 15+1.5=16.5 miles per hour; of ascending boat, 15-13.5 miles per hour. $\frac{x}{16.5}=$ time of boat descending to point of meeting. $\frac{18-x}{13.5}$ e of boat ascending to point of meeting.

se times are of course equal; therefore, $\frac{x}{16.5} = \frac{18 - x}{13.5}$. Then, 13.5x = 297 and 13.5x + 16.5x = 297, or 30x = 297.

ice
$$x = \frac{297}{30} = 9.9$$
 miles, the distance from Newburgh.

—There is an island 73 miles in circumference; 3 men start together. Ik around it and in the same direction: A walks 5 miles per hour R & D to; when will they all come aside of each other again?

RATION.—It is evident that A and C will be together every roul it remains to ascertain when λ and B will be in conjunction at a niles are gained every day by B. Therefore, as $_3: x: 73: 24$ njunction is a fractional number, it is necessary to ascertain wittiplier will make the division a whole number.

-24.33+=3, the number of days required in which A will go 1 nd C to times.

a5.—Assume a cow, at age of 2 years, to bring forth a cow-calf, to continue yearly to do the same, and every one of her produce forth a cow-calf at age of 2 years, and yearly afterward in like 1 how many would spring from the cow and her produce in 40 years?

OPERATION.—The increase in 1st year would be 0, in 2d year 1, in 3d 1, in 5th 3, in 6th 5, and so on to 40 years or terms, each term being = sum 0 preceding enes. The last term, then, will be 165 580 141, from which is to tracted 1 for the parent cow, and the remainder, 165 580 140, will represent required.

26.—The interior dimensions of a box are required to be in the tions of 2, 3, and 5, and to contain a volume of 1000 cube ins.; what be the dimensions?

OPERATION.
$$-3\sqrt{\frac{1000\times 3^3}{3\times 3\times 5}} = 6.43$$
; $3\sqrt{\frac{1000\times 3^3}{3\times 3\times 5}} = 9.65$; and $3\sqrt{\frac{1000\times 5^3}{2\times 3\times 5}} = 9.65$

And what for a box of one half the volume, or 500 cube ins., and resame proportionate dimensions?

OPERATION.—2
$$\times$$
 3 \times 5 = 30, and $\frac{30}{2}$ = 15.

Then,
$$\sqrt[3]{\frac{15 \times 6.43^8}{30}} = 5.1$$
; $\sqrt[3]{\frac{15 \times 9.65^8}{30}} = 7.66$; and $\sqrt[3]{\frac{25 \times 16^3}{30}} = 12$

27.—The chances of events or games being equal, what are the of or against the following results?

F	lve Even	ts.
Odds.	Against.	In favor.
31 to 1 4.33 to 1	All the 5	1 out of 5 2 out of 5
5 to 3 in fa	vor of the 5	vents result-

Odds.	Against.	In fa
15 to 1 2.2 to 1	All the 4	ı out
5 to 3 ag the 4 events	ainst 2 events do not result	only, o 2 and 2

Three Events.

Odds.	Against.	In favor.
7 to 1 Even	All the 3 {2 or all out of 3	1 out of 3 {2 or all out { of 3

3 to 1 in favor of the 3 events resulting 2 and 1.

Two Events.

Four Events.

Odds.	Against.	In fat
3 to 1 Even	Both events { 1 only out { of 2	I out { I only of 2

Even that the events result 1 an

28.—Required the chances or probabilities in events or games, which chances or probabilities of the results, or the players, are equal.

	P		,		F,		
Events or Games.	That a named event occurs a majority or more of times.	Against a named event occurring an exact majority of times.	Against each event occur- ring an equal number of times.		That a samed event occurs a majority or more of times.	Against a named event occurring an exact majority of times.	Agais event rings nun tis
21	Even	5 to r		11	Even	3.4 to 1	
20	1.33 to 1		4.66 to 1	10	1.7 to 1	_	3.0
19	Even	4.5 to 1	· —	9	Éven	3 to 1	
19 18	1.55 to 1		4.4 to 1	8	1.75 to 1		2.6
17	Even	4.4 to 1	_	7	Even	2.7 to 1	
16	1.5 to 1	_	4. 1 to 1	7 6	2 to 1	<u> </u>	2.2
15	Even	4 to r	· —	5	Even	2.2 to 1	
14	1.5 to 1	·	3.8 to r	4	2.2 to 1	_	1.6
13	Even	3.7 to 1	_	3	Even	1.66 to 1	
13	1.6 to 1	"	3.44 to z	2	3 to 1	_	Εı

The chances of consecutive events or results are as follows:

**O r. | 10.—1023 to r. | 9.—511 to r. | 8.—255 to r. | 7.—127 to r. | 6.—4

"I be observed that the chances increase with the number of

"quilicate ratio."

of 11 consecutive events compared with 10,

30.—Required the chances or probabilities of events or results in a given unber of times.

The numerator of a fraction expresses the chance or probability either for the reult or event to occur or fail, and the *denominator* all the chances or probabilities the for it to occur or fail.

Thus, in a given number of events or games, if the chances are even, the probability of any particular result is as $\frac{1}{1+1} = \frac{1}{2}$; $\frac{2}{2+2}$; $\frac{3}{3+3}$, etc., being 1 out of 2 out of 4, etc., or even.

If the number of events or games are 3, then the probability of any parcular result, as 2 and 1, or 1 and 2, is determined as follows:

Number of permutations of 3 events are $1 \times 2 \times 3 = 6$, which represents number itimes that number of events can occur, 2 and 1, or 1 and 2, to which is to be ided the 2 times or chances they can occur all in one way or the reverse thereto.

Hence, $\frac{6}{2+6} = \frac{3}{4} = \frac{3}{4-3} = \frac{3}{1}$, or 3 to 1 in favor of result; and probability of 2 party naming or winning two precise events or results, as winning 2 out of 3, determined as follows: Number of permutations and chances, as before shown,

The 8. Hence, number of his chances being 3, $\frac{3}{3+5} = \frac{3}{8} = \frac{3}{8-3} = \frac{3}{5}$, or 3 to 5 in two of result; and probability of one party naming or winning all, or 3 events results, is determined as follows: Number of permutations and chances being so, as before shown, 8. Hence, as there is but one chance of such a result, $\frac{1}{1+7} = \frac{1}{8} = \frac{1}{8-1} = \frac{1}{7}$, or 1 to 7 in favor of result.

If number of events, etc., are 4, then probability of any particular result, and 2, or of winning 2 or more of them, is determined as follows:

Number of permutations and chances of 4 events are 16. Hence, as number of ances of such a result are 11, $\frac{11}{5+11} = \frac{11}{16} = \frac{11}{16-11} = \frac{11}{5}$, or as 11 to 5 in favor the result, and that the results do not occur precisely 2 and 2. The number of ances of such a result being 10, $\frac{10}{6+10} = \frac{5}{8} = \frac{5}{8-5} = \frac{5}{3}$, or 5 to 3 against it.

If number of events, etc., are 5, then probability of any particular result, 3 and 2, is determined as follows:

Number of permutations and chances being 32, and number of chances of such result being 20, $\frac{20}{12+20} = \frac{10}{16} = \frac{10}{16-10} = \frac{10}{6} = \frac{5}{3}$, or as 5 to 3 in favor of the sult; and that it may occur precisely 3 out of 5, the number of chances are $\frac{10}{5+22} = \frac{10}{32} = \frac{5}{16} = \frac{5}{16-5} = \frac{5}{11}$, or 11 to 5 against it.

31.—What is the dilatation of the iron in a railway track per mile, beween the temperatures of -20° and $+130^{\circ}$?

Operation. — $-20^\circ+130^\circ=150^\circ$. The dilatation of wrought iron (as per table, 180 519) is, from 32° to $212^\circ=180^\circ=.0012575$ times its length.

32.—A steamer having an immersed amidship section of 125 sq. feet, has speed of 15 miles per hour with 300 IP. What power would be r one of like model, having a section of 150 sq. feet for a speed of

As power required for like models is as cube of speeds.

Then $\frac{150}{125} = 1.2$ relative sections, and $\frac{20^3 = 8000}{15^3 = 3375} = 2.37$ relative p

Hence, 1: 1.2: 2.37: 2.844 times IP.

ELEMENTS AND CAPACITIES OF NAVAL MARINE STEAMERS.

Cruisers. Iron-clad and Protected. Compound, Triple, and Quadruple Expansion.

rpendiculars and Hull, in fed and ins.; Engines and Propeller, in feet and ins.; Revolutions, per minute; Surfaces, in so. feet: Pressure in pounds, and Weights and Displacements, in tons of 2240 lbs.

8	
>	
•	
and the form of the control of the c	per Hour.
1	per
	ots
	Ixnots
3	in
T. Carrette	Speed in
:	٠.
•	
(.a. f .I.	

				1	Ą	American	am.						Ä	nglis	<u>م</u>	
LENGIONS AND	Cushing.*	Maine.	Charles. ken.	York- town	Chi-	Balti- more.	Vesu.	Phila-	New-	*	San Francisco.	Medea and Class.	Benbow and Class.	bow algar d and Arr	Archer.	Rattle- anake and Class.
Construction	Unarm'd Steel.	Iron-	Prot'd Crulser.	Gun-	Prot'd Cruiser.	Prot'd	Charm.	Prot'd Steel.	Prot'd Steel.	Prot'd Cruiser.	Prot'd Cruiser.	Prot'd Crulser.	Iron-	Iron-	Unarm. Steel,	Unarm. Steel.
pngth	137.5	310	300	228	315	315	246.25	315	310	400	310	265	325	345	225	8
Besim	14.1	22	40.2	36	48.3	48.6	20.0	48.7	× 6	28	46.5	+	89	73		33
10ld	I	1	1	18.9	34.9	1	14.1	1	31.0	1	28.08	ĺ	I	ı		ı
orsught, medium	5.5	21.6	17.10	14	1.61	19.10	9.3	19.2	18.9	63	18.9	16.6	26.4	27.6		8.33
jisplacement at do. do.		8499	3557	1703	4536	4500	805	4325	4083	2400	4088	2800	9500	11940	1630	475
mersed Sec'n at do		တ္တ •	712	435	1	833	1	815	807	ı	270	1	1	1		
Cylinders, IP	11.25	35.5	44-125		45	42	21.5	38	34	43	42	33.5	25	43	27	18.5 5
Int		22	1		1	9	31	33	25	59	9	47	1	62	ı	27
" I.P	3	88	85.25	_	78	46	2 of 34	98	26	92	6	7.4	2 of 74	ጷ		4
stroke of Piston		92	36	_	57	42	20	40	40	43	36	36	45	SI		œ.
steam, Pressure of		135	91.5		150	133	157	153	160	160	135	149	89.2	134		136
Revolutions	370	133	114.65	-	70	116.25	260	110.6	127	129	124.8	143.3	101.5	95	157	306 306
grate Surface	76.5	553	436.2		672	949	195	624	\$61.4	1288	568	456	756	ğ		122
Heating "	4750	18800	15 577		306 12	17175	898r	20.458	17 295	43 372	20134	14070	20294	19390		2000
Condensing "	1052	14 020	13 796		+216-	12 369	4518	13 510	12 510	18 948	14518	11.850	17000	15000		900
Depending diam	30 c	2 of	2 of		2 of	2 of	2 of	2 of	3 of	3 of	2 of	2 of	2 0	3 of		30°
riopener, unam	4.3	14	14		x5.6	14.5	2.0	14.6	14.6	1	x3.6	13.5	18.6	16.6		9.9
" pitch	8.5	17.5	17.0		24.54	0.15	+6	20.5	61	1	x8.9	17.3	17.5	21.3	١	2.6
Coal, wolght	25	8	E E		26.33	10. B4	21.43	10.68	202	750	400	400	1200	, 8		8
Bpood.	22.5	00	9999		4600	Pyods.	3795	RBIS	8868	23 000	19:50	19.6	17.5	17.3		18.78
Compustion	Bilmet	i i	Hines	- 5	Shitter?	Blast	Blant.	Good-tone	Minns.	of between	Minne	9975 Binet	Wines	12818	3983	2718
						١	I		ı				1		_	

PULLINIENTE AND CAPACITIES OF NAVAL MAIRING STICASONS

Length, between perpendiculars and Hull in feet and ins.; Engines and Propeller, in feet and ins.; Revolutions, per minute; Surfaces, in seq. feet; Pressure, in pounds, and Weights and Displacements, in tons of 2240 lbs. Compound and Triple Expansion.

				S	Speed in Knots	in K	nots	per	per Hour.	ä						
	English. French.	sh.	Frei	ch.		Italian,	an.		S	Spanish.	=	Aus-	Aus- Bra-	Chillian.		Ja-
DINENSIONS AND CAPACITIES.	Sunder- land.*	Gala- Len.	Cécille.	Forbin.	Ple- monte.	Le-	Nib.	Tripoli.	De- struct- or.	Reins Re- gente.	Ariete.	falke.	zilian. Riachuelo.	Esme-	Almi- ranta Condal.	Dan. Nani-
Construction	Unarm'd Steel.	Belted Cruiser.	Prot'd Cruiser.	Prot'd Cruiser,	Prot'd Cruiser.	Iron-	Unarm.	Unarm. Steel.	Unarm. Steel.	Prot'd Cruiser.	Tor-	Torpedo.	Iron-clnd.	Pret'd Cruiser.	Tor-	Prot'd
Length	137	300	378.9	311.7	300	400.5	151.8	229.6	192.5	320	147.5	135	305	270	240	300
Beam	13.9	20	49.3	30.6	300	72.9	17	25.7	25	50.0	14.5	13.75	52	45	27.0	46.16
Hold	١	1	ı	1	ı	ļ	I	18.31	1	31.6	1	ı	1	1	1	ı
Draught, medium		21	19.8	13-11	15	30.4	t	ļ	9.9	30	3.33	4.25	9.61	18.6	6	18.6
Displacement at do do.		2040	2200	1848	2500	14 860	145	1	385	4800	26	87	2700	3000	710	3730
Immersed Sec'n at do.		ľ	8375	1	3400	666I	1	I	1	1	1		1	Í	Ī	1
Cylinder, IF		36	39	36.8	36	1	17	19.5	18.5	40	14.5	133	53	43	22	4
Int		51	1	ŀ	55	ı	56	ı	27	90	1	ı	1	1	33	1
", I.P.		11	72	73.6	2 of 60	54	37	35	43	26	24.5	2 06 26	2 of 74	82	49	82
Stroke of Piston	81	44	30	36	27	39	17	91	21	45	15	80	36	36	21	36
Steam, Pressure of	8	138	1	100	ı	64	195	130	145	140	139	143	06	96	143	88.5
Revolutions.	352	113.5	22.00	140	1	93.5	325	297	292	911	375	355	81.5	116.5	270	121.4
Grate Surface	1	200	852	201	1	1153.5	1	168	144	658	75-4	44	585	450	190	392
Heating "	2174	15 900	23919	14 100	1	42080	3400	9699	5920	22 500	4240	2000	19 400	15256	00009	15114
Condensing Surface	1745	12 000	15494	1	I	31 360	ı	1	2000	15000	1	1	12000	ı	1	13 500
Propellers diam	v	2 0	3 of	2 of	2 of	2 of	3 of	3 of	2 of	Jo z	3 of	I	2 of	2 of	2 of	1
) immir (aromodor v	>	1	1	13.2	1	30.6	5.11	5.0	7.3	1	1	ı	1	14.6	00	1
pitch	8.3	23.3	L	17.1	1	20.6	1	7.1	6	ı	I	1	1	18	6	1
Coal, weight	io	440	650	200	200	1858	14	100	45	200	1	ı	ı	400	1	l
•	21	61	16.49	20.6	55	18.38	26.8	19.8	22.68	20.6	54.0	22.3	15.3	18.28	20.3	18.9
	1204	9203	6348	2000	12700	16150	2200	3016	3829	12 000	1500	1400	4537	6750	4350	2650
	Blast	Blust	Blast	Blust	Blust	Blust	Blust	Blast.	Blust	Blast	Blast	Blast	Blast	Blast	Blast	Blast
		L				Ī	T.	orpedo-bo	uts.							

1 1-1 1

Passenger and

Compound and Triple

opeller, and Side What in feet a

Lengths and Hull, in feet and tenths; Draught, Propeller, and Side Mul.
Surfaces, in sq. feet; Weights and Displacements, in Tons of 2240 lb.

Speed in Knots per Hour.

| City of |

Dimensions AND CAPACITIES.	Paris and New York.	Columbia.	Nairn- shire.	Bremer- haven.	Tyne- sider.	Simon Dumois and Ma- nagua.	Electric and Frolic.	DSL	Section.
	1. Steel.	2. Steel.	Steel.	4. Steel,	5. Iron.	6. Steel	7. Iron.	S. Iren.	1.
Service	P and F		Refrig'tor	Petroleum	F and P	Fruit	Fishing		Eni?
Length on deck		474	350.5	350	260.5	184	111.0		342 5
" bet. perp'rs		463	350	340	260	174.8	106.0		320
" tonnage	527.6	463.5	350.6	339.6	250	175.2	107.4		31.0
Beam, do	63.2	55.6	47.7	42.6	33.7	27.8	20.5		46
Hold, do	22	35.8	24.2	27.3	15.2	19	11.5		n
Decks	4	33.0	2	2	2	2	1	3	1
(5 581	3737	2428	2179	692	514	79		ligg
Tons	10 499		3720	3393	1200	717	181		40
Draught, load	25	24	24.3	21.3	17.4	16.2	11.5	n i	137
Displacement do	1 = 3	10 000	7880	6600	2560	1462	230		325
Imm'd Sec'n at do.		_	1058	870	530	404	135	934	12
Freeboard		14.7	4	5	1.0	4.5	-	13	15
	2 of 45	2 01 41	27	25	28.5	16	12.75	32	45
" Int	2 " 71	2 " 66	44	40	46	26	20	52	5
" L. P	2"113	2 " 101	71	66	75	40	32	84	6
Stroke of piston	60	66	48	42	42	33	22	54	54
Steam pressure	150	150	160	160	160	160	150	100	4
Revolutions	86.5	74	70	62	74	90	134	15	ů.
Boilers	9	9	3	2	3	1	1	3	1
Grate surface	1203	1220	200	154	216	63	20	447	42
Heating do	50 625	35 000	6963	4800	6618	2010	800		box.
Condensing do	33 000		3032	2383	3450	_	390	6400	-
Propeller, diam	_	2 Of 18	16.5	17.6	16	10	7.9	18	Ti.
Pitch		32	18.5	17.6	21	14.5	8.6	23	3
Side wheels, diam	l —	_		-	-	-	-	-	-
Breadth	l —		-	- 1	-	-	-	-	-
Coal, weight	-	-	1266	821	130	143	-		Z
Consumption	3300	l —	3000	-	2400	1005	-	5000	10
Combustion	Blast	Natural	Natural	Natural	Natural	Natural	Natural	Number	4
Cargo	-	_	5360	4000	1080	936	-	good .	3
Passengers	1372	1096	5º	-	1389	16	-		行
Crew	395	<u>-</u> -	48	25	25	20	12	50	5
IIP	19 175	13000	2000	1550	2400	670	388		300
Speed	20	20	11.5	10	15.1	12.5	10,25	145	2
Rig	Bark'ne	3-m Sch'r	Brig	3-m Sch'r	3-m Sch	Sch'r	Dandy	1-m 245	142

", Delaware River I. S. B. and E. Co., Com.

Freight.

: Expansion.

ed ins.; Engines, in ins.; Pressure, in lbs.; Revolutions, per minute; lbs. per Hour; P Passengers and F Freight.

Speed in Miles per Hour.

10. Steel. I1. I2. I3. I7. I70. I70. Wood.	Mary- land.	Robert E. Lee.	Susque- hanna.	Ata- lanta.	New York,	John F. Smith.	City of Racine.	Tuscaro- ra.	Puritan.
306.7 220 130 315 240 166.5 315 315 326 326.7 328.5 150 306 315 322.9 164. 315.8 318.1 23 1 1 1 1 1 1 1 1 1	18. Steel.								
403	F and P	P and F	Yacht	Yacht	P	P and F	F and P	F	Pand F
403.5 289.3 203.5 122 301 222.9 164 315.8 52 40 35 42 40.2 26.33 22 48.5 18.1 23 1 1 15.2 13 9.2 1 1 15.2 13 9.2 1 1 1 5.2 13 9.2 1 1 1 5.2 13 9.2 1 1 1 15.2 13 9.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	332	315	166.5		315	130	220	306. 7	_
18.1 23	-			228.5	-				402
18.1 23 — 9 11 15.2 13 9.2 1 1 2 3075 1937 802 142.39 1092 284 117 — 14 1 1 2 3 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1	316.4		164		301	122	203.5	289.3	403.5
1	42	48.5	22	26.33	40.2	42	35	40	
3075 1937 802 142.39 1092 284 117 479 153 568 233 1479 1475 3570 — 1553 1000 1042 310 — 643 624 218 83 235 246 128 — 3 6 4.75 4.5 — 28 110 61 50 26 75 60 42 — 28 110 160 110 125 50 115 160 148 110 160 110 125 50 115 160 148 8 3 2 1 3 2 1 10 160 110 125 50 115 160 148 8 3 2 1 3 2 1 10 160 110 125 50 115 160 148 8 3 2 1 3 2 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1	20.4	9.2	13	15.2	11	9	_	23	18.1
4 593 2669 1041 135.60 1553 568 233 1479 4775 3570 - 1555 1000 1042 310 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	2	I							
13 16 — 5.3 6.33 12 9.3 — 4775 3570 643 624 218 83 235 246 128 — 7 9.7 — 3 6 4.75 4.5 — 28 — 28 — 28 — 28 — 28 — 28 — 28 — 2	1892	-							
4775 3570 155 1000 1042 310 7 9-7 3 6 4-75 4-5 7 524 28 14 30 17 20f40.5 38 28 110 61 50 26 75 60 42 28 110 150 110 125 50 115 160 148 24 90 100 30 128 164 21 24 90 100 30 128 164 21 24 90 100 30 128 164 21 24 90 100 30 128 164 21 25 50 115 160 148 8 3 2 1 3 2 1 8 3 2 1 3 2 1 8 3 2 1 3 2 1 8 50 102 90 230 146 65 118 8 3600 5574 4000 1238 5360 4534 2180 3360 15000 Jet 624 5760 2226 1470 14 10.5 6.4 8 17.5 16.5 9 30.16 39 174 12.5 39 174 12.5 39 175 170 50 170 170 150 150 170 50 180 1425 170 1425 180 1420 180 1425 180 1420 180 1425 180 1420 180 1425 180 1420 180 1425 180 1420 180 1425 180 1420 180 1425 180 1420 150 2100 18 180 1425 150 180 1420 150 150 180 1420 150 150 180 1420 150 150 180 140 1420 1425 180 140 1420 1420 180 140 1420 1420 180 140 140 140 180 140 140 180 140 140 180 140 140 180 140 140 180 140 140 180 140	2419	1479					1041		
643	16	-					_		
7 9-7 — 3 6 4-75 4-5 — 2640.5 110 61 50 26 75 60 42 — 28 — 110 160 110 125 50 115 160 148 110 160 110 125 50 115 160 148 8 3 2 1 3 2 16 6 21 8 8 3 2 1 3 2 1 9 128 164 21 1500 5574 4000 1258 5360 4534 2180 3360 1500 Jet — 624 5700 2226 1470 — 8 — 39 14 10.5 6.4 — 8 — 39 14 10.5 6.4 — 8 — 39 17 10.5 16.5 9 30.16 — 39 14 10.5 6.4 — 8 — 39 14 10.5 6.4 — 11.5 50 — 39 1500 2140 Natural Natural 900 2140 Natural 900 2140 310 — 150 2100 18 Blast Blast Blast Blast Rutural 1200 — 8 8 50 45 — 150	4690	-				155			
75	650	5	1000		235		218		
110	8	-					_		
110	22	2 01 40,5		30	-		28		7 5
and 14	35	-		- 7	-		_	38	_
110	56	77							
24 90 100 — 30 128 164 21 8 8 3 2 1 3 2 1 9 9 128 250 2500 5574 4000 1258 5360 4534 2180 3360 1500 — 14 10.5 6.4 5700 2226 1470 — 15 17.5 16.5 9 — 30.16 — 39 12.5 14 200 230 110 15 50 170 50 170 9 P. B 2340 1400 4 200 2140 Natural 900 2140 310 1200 — 18 1425 200 20 29 — 8 5 50 45 — 150	44								
8 8 5 2 1 3 2 1 3 2 6 65 118 2500 5574 4000 1258 5360 4534 2280 3360 1500 Jet — 624 5700 2226 1470 — 8 — 17.5 16.5 9 30.16 — 39 14 — 17.5 16.5 9 30.16 — 335 14 — 12.5 — 12.5 — 17 200 230 IIO 15 50 170 50 — 17 200 2340 Natural Natural 900 2140 310 — 150 2100 18 Blast Bla	160					125			-
850 162 90 — 230 146 65 118 3360 1500 Jet — 624 5700 2226 1470 — 8 — 30 .16 — 39 .17.5 — 35 — — 30.16 — 39 .17.5 — 39 .17.5 — 30.16 — 39 .17.5 — 39 .17.5 — 39 .17.5 — 39 .17.5 — 39 .17.5 — 39 .17.5 — 39 .17.5 — 39 .17.5 — 39 .17.5 — 17.5 —	85					-			24
26 000 5574 4000 1258 5360 4534 2180 3360 1500 Jet	2					1		3	
15000	152				230				850
14 10.5 6.4 -	4656	3300			5300		4000		
17.5 16.5 9 30.16 - 39 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 - 39 30.16 30.16 - 39 30.16	15.3		1470	2220	5700				15000
35	13.2	100	0		_				_
14	10		-		20.16	9	10.5	17.5	
200 2340 1400 4 2.5 p. H2 170 50	-			10E 4		-		_	
9 p. H 2340 1400 4 2.5 p. H 2.	200			***		7.			
Natural Natural Natural Natural Blast Blast Blast Stural 1425 1200	200		50	170					
900 2140 310 — — — — — 1425 1200 — — 150 2100 18 — 300 200 29 — 8 50 45 — 150	Natural.	Natural	Dlast	Plant					
1200 — 150 2100 18 — 300 200 29 — 8 50 45 — 150	3100		Dinst	Diggs	Dinet	Natural			
200 29 - 8 50 45 - 150	8		100	+8	2700	***		2140	
100	19		32.5			2			
	1200	130	925	1950	3700	300	750	1800	
	12.5	21							
21 16 14.5 13 23 17.45 18 21 - Sch'r Sch'r - 3-m Sch'r Sch'r -	,	-			-3	-3			21

nd W. and A. Fletcher Co., Hoboken, N. J. ——No. 11.

Pleveland, Ohio; Hull 1240 tons, Engines 200, and Bollers 70 tons. F. Elmes, Chicago, Ill., and Burger & Burger, Wis.; and deck; Hull 350 tons, Engines 40, Bollers 36, and Water 23.—by & Jones Co., Wilmington, Del. ——No. 14. W. & A. Fle and Antervalue Blades, 13 of 45 ins. ——No. 15. Sam ——No. 16. The Harlan & Hollingworth Co., Wilmington, 1 and Engines 20, and Boilers 25. ——No. 17. Jas. Howard & lle and American Foundry, New Albany, Ind.; Water wheel to ——No. 18. Detroit Dry Dock Co., Detroit, Mich.; Hull 12. 140, and Boilers 70.

Sneed in Miles per Hour.

ROOM

Ferry Passenger and Tearn, and Tor-but single, Compound, and Triple Expusion

Courts and Hall, in first and tentle; Dreimpit, Properties, and the World and our : Enginer in our Pressure, in the : Remaintance per mind lets in or feet : Weights and Directements, in Time of your da ; Pol als How : P Paintagers and T Digme:

Montack Date (8.) Servences ind) MirCol-200 Berger Th-States AMPAIL Windshill. District. market Water Septime 1 Caraciman. Serte. Farm Petry--L T. E. 6. Steel. Stool Cress. 30 9 line. Distance. Dies. Supplied Post T T-mil P Fand T Towing Total 16 Emil Towns: Length on deck..... 203 200 235 184.3 240 108.5 200 bes pers/mi. 195 229.6 EDG 275 2.8pt 2201-4 4 formage..... ngń 02.5 ETA 174 130 Beam do 37-4 45 37 25.5 25.5 30 62 " over guards ... 65 52 62.5 16.5 Hold, tonnage..... 14-5 14.1 22.5 13-3 16.3 Decks --* 2 -20 Tons..... 839 8001 734 0.801 \$5.6 545-7 400 SSOI 1310 SSET 227.8 850-3 95.6 200 Draught, load TT 9-5 9.5 7.2 22 Displacement do.... 880 550 678,5 1340 203 530 150 450 164 ImmersedSec'n at do. 215 225 206 -250 6.9 Freeboard 546.5 7.5 7-75 4 18.5 Cylinders, IP 22 B 22 46 16 40. Int. 50 27 -24 10 I.P.

Steam Pressure 50 22 100 160 Revolutions..... 32 162 120 90 24 TOO -Bollers 2 2 T 1 2 81 Grate surface +68 140 80 71.5 76 45.5 1380 3462 2503 Heating do..... 2259 2400 1105 Condensing do..... Jet 555 8 Jet 1100 2 01 2 01 9.5 Propeller, diam 9.5 8 Pitch..... 8.91 14 & 16 -TÁ Blades 4 4 4 4 Side-wheel diam.... 20.5 20.5 width 8.66 8.6 Coal, weight 60 16 15 5 40 270 1580 430 Consumption

Natural

4530

5200

36

100

42

24

160

Natural

1007

3448

4330

321

177

40

26

ICO

450

13

120

Natural Natural Natural

650 Boo 230

3420

2896

12

50

TO

Natural

TOTO

3500

4130

479

104

Stroke of Piston....

Combustion

IIP.

Team space

Passenger do.

Weight, Hull

Engine

48.5 Boilers 51 20.5 39-75 51 - 1 25 17.6 29.6 Water 20.5 11 14 12 14.6 Speed 12 13.5 12 25 Remarks. — No. 1. Side wheel, T. S. Marvel & Co., Newburgh arito-from Works, N. V.; Double ends. — No. 2. Neafie and Levy, real Phila, Pa.; Propeller at each end. — No. 3. Hull same as 1, as in from Works, N. V.; Propeller at each end; Weights: of Hull as hunched; Input Including steering and ventilating; dooker pumps, piping and chimney; surface, 1504 Circle No. A, and a, The Burban and Estimater Hingston, No. A, Propeller and Side-wheel. So. C. Sinds and to one Wrecking pump, 15 and asy 18 ma, three 5 mil mechanics and

and pours motor, but your, one gue beauth eithy of any manner; pe To tone water per near, one are pump egal a reach streams. In lights, come cannot power, several of more cannot sure are ingles. Prince & Jones On. Withington. No. 5. 5. 5. 500 some as to congresse W. & A. Sheether On. Robinson. N. I.; Tropolar in such a congresse W. & A. Sheether On. Robinson. S. A. blood * designed by Col. E. A. Servers, Baleker, S. J.

HIRREST ful; over Dinhee Manf we

Owinder Ondens Propelle Bower,

Beiler (S

Pristore

Ewil, 10- 1 13 W HIRES! 11 Ju Chinder

Burtane Premere Revoluti Propelle

EXERSI to feet ; De map lbs.). ColingLes Premer Revolutta

13,78 41

_

10

9

30

"Nur MIN 24- 5 Inners harried Ostincie IP, net Propell Break attied st

Fuel_

·WX. -Length Inner Projet . Cylind Contense Water

Schof Boiler mol-v

Wood Propellers.

RESHOFF, R. N., VERTICAL DIRECT ENGINE (Compound).—Length on deck, 46 over all, 48 feet; beam, 9 feet; hold, 5 feet.

placement at load-line, 7.44 tons. Area of section at load-line, 217.8 sq. feet. of wetted surface, 365.5 sq. feet. Coefficient of fineness, 396.

nder. -8 and 14 ins. in diam. by 9 ins. stroke of piston.

denser, External.-Surface.

peller.-4 blades, 3 feet in diam. by 4 feet 1 inch pitch.

ver, 42 ins. in diam.

er (vertical coil). Heating surface, 174 sq. feet. Grates, 12.5 sq. feet.

sure of Steam, 53 lbs. per sq. inch. Revolutions, 333 per minute. IIP, 68.4. 10.18 knots per hour. With 120 lbs. and 466 revolutions, 14.26 knots. IIP, Weight of Engines, Botler, and Water, 5300 lbs.

RESHOFF, VERTICAL DIRECT ENGINE (Compound). — Length over all, 86 feet; 11 feet. Displacement, 27 tons.

inder. - 13 and 22 ins. in diam. by 12 ins. stroke of piston.

face Condensing.

sure, 130 lbs. per sq. inch.

nutions, 460 per minute. Speed, 20 knots per hour. IIP, 425.

RESHOFF, R. I. N.—VERTICAL DIRECT ENGINE (Compound).—Length over all, j beam, 7 feet; hold, 5.5 feet. Displacement at load-draught of 32 ins., 7 tons bs.).

inders.—8 and 14 ins. in diam. by 9 ins. stroke of piston. Surface condenser.

plutions, 600 per minute. Speed, 19.875 knots per hour.

Cable or Rope Towing.

FITRA. "—HORIZONTAL DIRECT ENGINES (Condensing).—Length of boat, 138 feet; 24.5 feet; hold, 7.5 feet.

versed section, 74.4 sq. feet. Displacement, 200 tons at load-line of 3.75 feet. sed section, 263.7 sq. feet. Displacement, 949 tons. Tow.—3 barges.

nders. -2 of 14.18 ins. in diam. by 23.625 ins. stroke of piston.

net effective, 100. Speed, 7.73 miles per hour.

pellers. -- Twin, 4 feet 2 ins. in diam.

ss.—Cable, 7485 lbs. Per ton of displacement, 6.5 lbs.; per sq. foot of imad section, 22 lbs.

L-Per mile and ton of displacement (1149), .078 lbs.

Towing. Wood Side Wheels.

M. H. WEBB."—HARBOR AND COAST.—VERTICAL BEAM ENGINES (Condensing), 1th upon deck, 185.5 feet; beam, 30.25 feet; hold, 10.8 feet.

versed Section at load-line, 194 sq. feet. Displacement 498.25 tons, at load-lit of 7.25 feet.

nders.—2, of 44 ins. in diam. by 10 feet stroke of piston; volume, 211 cube feet nsers.—Jet, 2, volume 105 cube feet. Air.pumps.—2, volume 45 cube feeter-wheels.—Diam., 30 feet. Blades (divided), 21; breadth of do., 4.6 of do., 2.33 feet. Dip at load-line, 3.75 feet.

ers.—2 (return flue). Heating surface, 3280 sq. feet. Grates, 147.5 sq. is ke-pipe.—Area, 11.6 sq. feet, and 35 feet in height above the grate level. sure of Steam.—35 lbs. per sq. inch, cut off at .5 stroke. Revolutions, 2 b. IIP, 1500.

!-Anthracite or Bituminous. Consumption, 1680 lbs. per hour.

2-20 miles per hour.

its.—Engines, Wheels, Frame, and Boilers, 310 579 lbs.

Wood Side Wheels.

Passenger.

"MARY POWELL," HUDSON RIVER.—VERTICAL BRAM ENGINE (Condensing).—Lega on water-line, 286 feet; over all, 294 feet; beam, 34 feet 3 ins.; over all, 64 feet; bal, 9 feet. Deck to promenade deck, 10 feet.

Immersed section at load-line of 6 feet, 200 sq. feet. Displacement, 800 tons & mean load-araught of 6 feet.

Area of transverse head surface of hull above water, 2000 sq. feet.

Cylinder.—72 ins. in diam. by 12 feet stroke of piston; volume, 338 cube feet. Clearance at each end, 12.5 cube feet.

Steam and Exhaust Valves, 14.75 ins. in diam. Air-pump, 40 ins. in diam. by 5 feet 2 ins. stroke of piston. Condenser.—Jet, 128 cube feet. Crank-pin, 8.75 ins. in diam. X 0.75 ins.

Beam, 22.5 feet in length; centre, 9.75 in diam.

Water-wheels.—Diam. 31 foet; blades (divided), 26; breadth of do., 10 feet 6 ins; width, 1 foot 6 ins; immersion, 3 feet 6 ins. Shafts.—Journal, 15.625 ins by 17 ins

Boilers.— 2 (flue and return tubular), of steel, 11 feet front by 26 feet in length; shell, 10 feet in diam. and 16 feet 1 inch in length. Furnaces, 2 in each, of 4 feet in ins. by 8 feet in length. Healing Surface, 260 sq. feet; and Superhealing, 30 sq. feet in each. Grates, 152 sq. feet. Flues, 10 in each, transverse area, 11 feet 7 ins. Tubes, 80 in each, 4.5 ins. in diam., 6 feet 6 ins. in length, and 8 feet 7 in in transverse area.

Steam Chimneys, 8 feet in diam. × 12 feet in height. Smoke-pipe, 4 feet 6 im in diam. and 68 feet in height from grates.

Combustion, Blast. Blowers, 4 feet in diam. and 3 feet in width. Revolutions, 8 per minute. Fuel (anthractic), 6280 lbs. per hour, or 40 lbs. per sq. foot of grain per hour. Per sq foot of heating surface, 2.25 lbs.

Speed, 23.65 miles per hour.

Pressure of Steam, 28 lbs. per sq. inch, cut off at .47 stroke; terminal pressure, 16.4 lbs.; throttle, .625 open. Vacuum, 25 ins. Revolutions, 22.75 per minute.

Temperatures.—Reservoir, 120°. Feed water, 120°. Chimney, 740°. H.—Told, 1900. IIP, 1560. Net, 1450.

Evaporation.—Water per lb. of coal, from 120°, 7 lbs.; per lb. of combustible, from 120°, 8.2 lbs. Steam per total HP per hour, 21.1 lbs. Coal per do. do., 3.14 lbs.

Wrights. Engine. — Frame, keelson, out-board wheel-frames donkey engine, and boiler, blower engines and blowers all complete, 360 coo lbs. Boilers.—Importun flue, 120 coo lbs. Steel return tubular, 116 coo lbs. Water, 128 coo lbs.

Capacity. - 2000 passengers and their baggage.

Memoranda.—This vessel was originally but 266 feet in length, and when lengthened the cylinder of 6z ins. in diam. was removed and replaced with one of 7z instance designed throughout for original cylinder and a pressure of from 50 to 51 lbs., cutting off at .62z of stroke, with throttle wide open.

Engines and Boilers built by Fletcher, Harrison, & Co., New York, 1861 and 1875

Iron Stern Wheels.

Passenger and Freight.

HORIZONTAL ENGINES (Non-condensing).—Length upon deck, 110 feet; beam, 4 feet (deck projecting over, 4 feet); hold, 3.5 feet.

Immersed section at load-line, 10.25 sq. feet. Displacement at load-draught of 1.1

· ...Two, of 10 ins. in diam. by 3 feet stroke of piston; volume of piston be feet.

biam. 13 feet. Blades, 13; breadth of do., 8.5 feet; depth of do., 8 int., 33 per minute. Boiler.—One (horizontal tubular). Tubes, 100 of 1

Consumption, 4480 lbs. \n 24 hours.

;; bilges, No. 4; bottom, No. 5; sides, Nos 6 and 4 , ins. apart from centres.

TER STEAMBOATS, STERN WHEELS,—OIL LAUNCH, 803

Wood Stern Wheels.

Passenger and Deck Freight.

ONTANA,"-HORIZONTAL ENGINES (Non-condensing), -Length upon deck (over 48 feet; at water-line, 245 feet; beam, 48 feet 8 ins. (over all, 50 feet 4 ins.); i feet; draught of water at load-line, 5.5 feet.

versed section at load-line, 244 sq. feet. Displacement at mean light draught ns., 594 tons (2000 lbs.)

inders. - Two, 18 ins. in diam, by 7 feet stroke of piston.

ves, 4.5 and 5 ins. in diam. Piston-rod, 4 ins. Steam-pipe, 4.5 ins. Connectd, 30 feet in length.

ter-wheel, 10 feet in diam. by 35 feet face; blades, 3 feet in depth. Shaft. ins, in diam.

!ers.-Four (horizontal tubular), 42 ins. in diam. by 26 feet in length. Two in each, 15 ins. in diam. Heating surface, effective, 1023, total 1431 sq. feet. uce, 6.5 × 17 feet. Grates, 4.16 × 17 feet; surface, 70.8 sq. feet. Smoke pipes. 1, 3 feet in diam. by 55 feet 3 ins. in height. Exhaust or Blower draught.

primeter. -Of Bridge, 15.27; of Flues, 9.82; and of Chimneys, 14.14 sq. feet. of grate, compared to calorimeter of flues, 7.2; to ditto. of chimneys, 5; and dge, 4.6 sq. feet.

im-room, 562; and water space, 294 cube feet.

U.-Frames, 4 × 6 ins. and 15 ins. apart at centres. Intermediate do., 4 × 6 M.—Frames, 4 × 6 ins. and 15 ins. apart at centres. Intermediate do., 4 × 6 ind running for 7.5 feet each side of keelson. Planking.—Bottom, oak, 4 ins. 5. 0., 2.5 to 4 ins. Deck beams, pine, 3 × 6 ins. Deck plank, 2.5 ins. Keelson, side do., eight each side, one each 7, 8.75, and 9 ins., and five 6.75 ins. Wales, ich side, 9 and 7 ins. by 3, and one 10 × 2.5 ins. Deck posts, 3.5 × 3 ins. and 4 part. Deck beams, 5.5 × 3 ins. Knuckles, oak, 6 × 12 ins. Bulkheads, one udinal and one athwartship at shear of stern. Sheathing of wrought iron, to .125 inch from just below light to load-line.

1 Posts.—White pine, 8.5 and 11 ins. square. Chains, 1.5 ins. in diam.

ights.—Boilers, 29 264; water, 18 351; and boilers, chimneys, grates, and water. lbs. Hull, oak, 520 560; Pine, 91 437; Bolts, spikes, etc., 8000, and Deck and s, 76 000 lbs.; Hull alone, 310 tons.

ight of hull compared to one of iron as 8 to 5, effecting a difference of about

ITTSBURGH." - HORIZONTAL ENGINES (Non-condensing). - Length on deck. 252 beam, 39 feet; hold, 6 feet; draught of water at load-line, 2 feet.

nersed section at load-line, 75 sq. feet. Displacement at load-draught of 2 feet. ns (2000 lbs.).

inders.—Two, 21 ins. in diam. by 7 feet stroke of piston.

ster-wheel .- 21 feet in diam. by 28 feet face.

lers. - 2 (horizontal tubular), 47 ins. in diam. by 28 feet in length. Two fires

Oil Engine Launch.

llements of Engine and Dimensions of Launch.

Consumption .9 pint ordinary Mineral Oil per IIP per

٠	I-P*	Lau Length.		Weight.+	Type.	HP*	Length.
-	No.	Feet. 16	Feet.	Lbs. 896	No.	No. 5	Feet.
	2	2 I 2 7	5	1332	2	10	40 45

[·] Developed by Brake.

† Of engine without of

Passenger and Deell: Freight.

No

Cent

Jim

Es, 20

Lond o

Artis.

"TARA

Immer:

Kinz.

in to

Bellas

- MISC

FX.

119.

"Prince wer — Housewater English (Non-conferring) — Look a fit to feet; been, 35 feet; deal, 5 feet; drought of matter at liant-line, 2 feet

James and artists at least-line, 75 op first. Displacement at least trapt (in

Cylinders.—Two or ins in diam by y feet stroke of piston.

Water-mind .- my feet in diam by all feet flow.

Biology - a formattable tubulary, or itse, in claim, by an first in length field its each.

Irun Stern Wheels.

Homorrae Emerses (Non-condensing).—Length again deck, 120 fet; list fed (deck projecting over , 4 feet); hold, 3-5 fiets.

Immerced section at look-line, 12.25 to feet. Displacement at look-length feet, 33 lone.

Oplinders.—Two, of so ins. in diam, by 3 feet stroke of piston; volumed in space, 1.6 cube feet.

Wheel—Diam. 13 feet. Blader, 13; breadth of da., 2.5 feet; depth of d., 17 Resolutions, 33 per minute. Boiler.—One (horizontal tabular). Tale, 10 last to diam.

Fuel.-Bituminous coal. Communition, 4480 lbs. in 22 hours.

Hall.—Plates, keel, No. 3; bilges, No. 4; bottom, No. 5; sides, No. 6 all Prance, 2.5 K.5 ins., and 20 ins. apart from centres.

Steel.

"CHATTABOOCHER."—ISCLIVED ESGLIVES (Non-commicaring).—Length on bit feet; beam, 3s. 5 feet; hold, 5 feet.

Immerced section at load-line, 153 \$4 feet. Proight expensity, 400 tons (2008) Cylinders.—Two, 15 ins. in diam. by 5 feet stroke; volume of piston \$40.00 cabe feet.

Wheel -One, 18 feet in diam.; blades, 2 feet in death.

Bollers.—Three (cylindrical flued). Diam. 42 ins.; length, 22 feet; 2 feet, ins. in each. Healing surface, 690 sq. feet. Grates, 43 sq. feet.

Pressure of Steam, 160 lbs. per sq. inch, cut off at .375. Revolutions, 22 pt Consumption of Fuel, 12 tons (2000 lbs.) in 24 hours. Plating of Hull. 10 ag 10ch. Light draught, 21 ms.

Iron Propellers.

VERTICAL DIRECT ENGINES (Non-condensing).—Length on deck, 70 feet; best feet; draught, 12 ins.

Propellers, 2,-2 blades, 16. ins. in diam., set 11 ins. below water-line.

Boller (tubular coil). Revolutions, 480 per minute.

Speed, 10.49 miles per hour.

Water led to propellers through tunnels in bottom at sides.

"LOUISE," VERTICAL TANDEM ENGINES (Compound). - Length, 60 fed; bel. feet; hold, 4.25 feet.

Displacement at load-draught of 2.5 feet, 8 tons.

Cylinders, 5 and 10 ins. in diam. by 8 ins. stroke of piston.

Burface Condenser .- Boiler (vertical tubular), 4 feet in diam. by 8.5 in light

Iron Sailing Vessels. Passenger and Freight.

ENGLISH.—Ship.—Length upon deck, 178 feet; do. at mean load-line of 10 feet; keel, 171 feet; beam, 32.88 feet; depth of hold, 21.75 feet; keel (mean)

Immersed section at load-line, 387 sq. feet. Displacement at load-draught of 20 feet, 1495 tons; and, in proposition or current parallelopipedon, 524.

Load-line.—Area at load-draught, 4557 sq. feet. Angle of entrace 57 nice, 64°. Area in proportion to its circumscribing parallelogram, 54

e of Gravity, 6.416 feet below mean load-line. Centre of Displacement (grav-6.25 feet below load-line; and 4.33 feet before middle of length of load-line. rsed Surface.—Bottom, 7370 sq. feet. Keel, 1130 sq. feet. Sails, 13282 sq. feet. centre, 6.66 feet above centre of gravity of displacement. Centre of Effort entre of displacement, 3.5 feet; height of do. above mean load-line, 55.5 feet.

Launch, Wood.

a LAUNCH "HERRESHOFF."—VERTICAL ENGINE (Compound).—Length, 33 feet beam, 8.75 feet.

accment at mean load-draught of (to rabbet of keel) 19 ins., 8929 lbs. hts.—Hull and Machinery, 6555 lbs. Coal, 1120 lbs.

Yachts. Wood.

IRICA," SCHOONER.—Length over all, 98 feet; upon deck, 94 feet; at load-line, t; beam, 22.5 feet; at load-line, 22 feet; depth of hold, 9.25 feet. Height at m under side of garboard strake, 11 feet. Sheer, forward, 3 feet; aft, 1.5 feet, resed section at load-line, 121.8 sq. feet. Displacement at load-draught of 8.2 m under side of garboard strake and of 11 feet aft, 191 tons; and, in proto Volume of circumscribing parallelopipedon, 375.

acement at 4 feet (from garboard strake), 43 tons; at 5 feet, 66 tons; at 6 tons; at 7 feet, 127 tons; and at 8 feet, 167 tons.

e of Gravity.—Longitudinally, 1.75 feet aft of centre of length upon loadicctional, 2.58 feet below load-line. Of Fore body, 14.25 feet forward; and body, 19 feet aft. Meta-centre, 6.72 feet above centre of gravity.

e of Effort, 3x 17 feet from load-line. Centre of Lateral Resistance, 6.33 feet feeting of gravity. Area of Load-line, 1280 sq. feet. Mean girths of imsection to load-line, 25 feet.

-draught. -- Forward, 4.91 feet; aft, 11.5 feet. Rake of Stem, 17 feet

t.—Mainmast, 81 feet in length by 22 ins. in diam. Foremast, 70.5 feet in 19 24 ins. in diam. Main boom, 38 feet in length. Main gaff, 28 feet. Fore feet. Rake, 2.7 ins. per foot. Drag of Keel, 3 feet. Tons, 170.56.

1A." SLOOP.—Length for tonnage, 72.25 feet; on water-line, 70 feet 7 ins.; 3 feet 8 ins.; hold, 6 feet 8 ins. Tons, O. M. 83.4; N. M. 43.98.
draught. 6.25 feet.

—Mainsail, hoist, 49.75 feet, foot 54.25, and gaff 27.66; Jib, hoist, 49.75 feet, 5, and stay 63.5. Gaff topsail, hoist, 24.5 feet.

. - Mainsail, 2322 sq. feet. Jib, 986, and Topsail, 454.

Cutters.

A" (English) SLOOP.—Length on load-line, 66 feet; beam, 11.5 feet. rsed section at load-line, 11.5 sq. feet. Displacement, 75 tons.

s.—Mast, deck to hounds, 42 feet. Boom, 58 feet. Gaff, 39 feet. Bowsprit of stem, 30 feet. Mast to stem, 26 feet. Topmast, foot to hounds, 25 feet. topsail yard, 46 feet. Canvas, area, 3450 sq. feet. Tons, C. H., 90. st.—At Keel, 38.5 tons. Hull, 1.5 tons.

CHIEF. (English), SLOOP.—Length on load-line, 61 feet; beam. 19.9 feet. **rred section at load-line, 60 sq. feet. Displacement, 55 tons.

Pilot Boat.

L. H. ASPINWALL," SCHOONER.—Length of keel. 74 feel; upon dech 9 feel; hold 7.6 feel. Draught of water. 6 feel forward; oft, 9.5 j 22 ins. in depth. False keel, 12 ins. in depth at centre. 2.—Mainmast. 77 feet in length. Foremast, 76 feel. Main loc 15, 21 feel. Fore gaff, 20 feel.

-N. M., 46.32.

Norm.—In 1817-18 the average duration of a passage from New Orleans to Lor 12 hours; the shortest, 25 days.

1855, New Princess, of New Orleans (non-condensing). New Orleans Miss, 310 miles, in 17 hours 30 min.; 3.5 to 4 miles per hour : Speed = 2.08 miles per hour.

1864, Daniel Drew, of N. Y., Jay Street. N. Y., to Albany, 148 mi min., 9 landings. Flood tide. Speed of boat = 22.6 miles per hour 1867, Mary Powell, of N. Y., Desbrosses Street, N. Y., to Newbur, 2 hours 50 min., 3 landings; from Poughkeepsie to Rondout Light, 39 min., flood tide. 1873, Milton to Poughkeepsie, light draught: miles, in 9 min.; and 1874, Desbrosses Street to Piermont, 24 milk Caldwell'8, 43.25 miles, in 1 hour 50 min. Speed = 22.77 to 23 mile

Runs from New York to Albany, 146 miles, by different

1826, Sun	. 12	hour	8 16 '	min.	1852, Fr. Skiddy §
1826, North America *	. 10	46	20	"	1860, Armenia
1841, Troy †		"	10		1864, Daniel Drew 1
1841, South America \$. 7	44	28		1864, Ch'ncey Vibbard 1.
* 7 landings. † 4	landi	ngs.		1 o lar	ndings. § 6 landings.

Timing Distance.—From 14th St., Hudson River, N. Y., to College at Mount St.

Nove.—Where landings have been made, and the river crossed, the distance
given is correspondingly increased.

1870, R. E. Lee, of St. Louis (non-condensing), New Orleans to St.

PASSAGES OF STEAMERS AND SAILING VESSELS.

Distances in Geographical Miles or Knots.

Steamers. Side-wheels.

807, *Phænix*, of Hoboken, N. J. (John Stevens), New York, N.Y., to Philadelphia, in. First passage of a steam vessel at sea.

814, Morning Star, of Eng., River Clyde to London, Eng. First passage of an clish steamer at sea.

817. Caledonia, of Eng., Margate, Eng., to Cassel, Germ., 180 miles, in 24 hours.

1819, Savannah, of N.Y., about 340 tons O. M., Tybee Light, Savannah River, Ga., Rock Light, Liverpool, Eng., 3640 miles, in 25 days 14 hours; 6 days 21 hours of ich were under steam.

825, Enterprise, of Eng., 500 tons, Falmouth, Eng., to Table Bay, Africa, in 57 n; and to Calcutta, India, in 113 days. First passage of a steamer to India.

 8_{30} , Hugh Lindsay, 4_{11} tons, 8_0 IP, Bombay, India, to Suez, Egypt, 3_{10} miles, 3_1 days running time.

837, Atlanta, of Eng., 650 tons, Falmouth, Eng., to Calcutta, in or days.

839, Great Western, of Eng., Liverpool to New York, N. Y., 3017 miles, in 12 s 18 hours.

370, Scotia, of Eng., Queenstown, Ireland, to Sandy Hook, N. J., 2780 miles, in xys 7 hours 31 min. 1866, New York to Queenstown, 2708 miles, in 8 days 2 rs 48 min.; thence to Liverpool, Eng., 270 miles, in 14 hours 59 min.; total, 8 s 17 hours 47 min.

Screw.

B74, India Government Boat, Steel, length 87 feet, beam 12 feet, draught of water 5 feet, mean speed for one mile 20.77 miles per hour, and maintained a speed of 52 miles in 1 hour.

877, Lusitania, of Eng., London to Melbourne, Australia, via Cape, 11 445 miles, 38 days 23 hours 40 min.

Sailing Vessels.

:851, Chrysolite (clipper ship), of Eng., Liverpool, Eng., to Anjer, Java, 13000 les, in 88 days. The Oriental, of N. Y., ran the same course in 89 days.

853, Trade Wind (clipper ship), of N. Y., San Francisco, Cal., to New York, N. Y., 510 miles, in 75 days.

 8_{54} , Lightning (clipper ship), of Boston, Mass., Melbourne, Australia, to Liver-1, Eng., 12 190 miles, in 64 days.

 8_{54} , Comet (clipper ship), of N. Y., Liverpool, Eng , to Hong Kong, China, 13 040 es, in $84\ days$.

854, Sierra Nevada (schooner), of N. H., Hong Kong, China, to San Francisco, 6000 miles, in 34 days.

354, Red Jacket (clipper ship), of N. Y., Sandy Hook, N. J., to Melbourne, Ausia, 12720 miles, in 69 days 11 hours 1 min.

 $855,\,Euterpe$ (half-clipper ship) of Rockland, Me., New York to Calcutta, India, ioo miles, in 78 days.

860, Andrew Jackson (clipper ship), of Boston, New York, N. Y., to San Franco, Cal., 13610 miles, in 80 days 4 hours.

865, Dreadmought (clipper ship), of Boston, Honolulu, Sandwich Islands, to New Iford, Mass., 13,470 miles, in 82 days; and 1859, Sandy Hook, N. J., to Rock; ht, Liverpool, Eng., 3000 miles, in 13 days 8 hours.

865. Sovereign of the Scas (medium ship), of Boston, Mass., in 22 days sailed 11 miles = 245 miles per day. For 4 days sailed 341.78 miles per day, and for 1 y 375 miles.

:866, Henrietta (schooner yacht), of N. Y., Sandy Hook, N. J., to g., 3053 miles, in 13 days 21 hours 55 min. 16 sec.

:866, Ariel and Serica (clipper ships), of England, Foo-chou-foo : Downs, Eng., 13 500 miles, in 98 days.

869, Sappho (schooner yacht), of N. Y., Light-ship off Sandy in enstown, Ireland, 2857 miles, in 12 days 9 hours 34 min.

2.17 lbs. per sq. inch. Revolutions, 22 per minute.

Pipes, 3 feet in diam. = 168 area of cylinder.

Tuyeres.—Each Furnace, 2 of 3 ins. in diam.; 1 of 3.25 ins.; and Each Finery, 6 of 1.33 ins.; and 1, 4 of 1.125 ins.

Temperature of Blast, 600°. Ore, 40 to 45 per cent. of iron.

Furnaces.—Eight, diam. 16 to 18 feet. Dowlais Iron Works
1300 Tons Forge Iron per Week; discharging 44 000 Cube Fe

Engine (non-condensing).—Cylinder, 55 ins. in diam. by 13 feet st Pressure of Steam.—60 lbs. per sq. inch, cut off at .33 the stroke of p 120 ins. in area.

Boilers.—Eight (cylindrical flued, internal furnace), 7 feet in diam. length; one flue 4 feet in diam. Grates, 288 sq. feet.

Fly Wheel.—Diam., 22 feet; weight, 25 tons.

Blowing Cylinder, 144 ins. in diam. by 12 feet stroke of piston.

Revolutions, 20 per minute. Blast, 3.25 lbs. per sq. inch. Dischar 5 feet, and 420 feet in length. Valves.—Exhaust, 56 sq. feet; Delivery

Furnaces.— Lackenby (England). 800 Tons Iron per Week.

Engine (horizontal, compound condensing).—32 and 60 ins. in feet stroke of piston.

Blowing Cylinders.—Two, 80 ins. in diam. by 4.5 feet stroke of piste

4.5 lbs. per sq. inch. Revolutions, 24 per minute.

Pipe, 30 ins. in diam.; volume, 12.25 times that of blowing cylinder

P.—Engine, 200 lbs.; Blowing cylinders, 258; efficiency, 80 per ce

Values.—Area of admission, .16 of area of piston; of exit, .125.
Volume.—190 000 cube feet of air are supplied per ton of air.

Blower and Exhausting Fan.

COTTON FACTORIES. (English.)

riving 22 060 Hand-mule Spindles, with Preparation, and 260 Looms, with common Sizing.

igine (condensing).—Cylinder, 37 ins. in diam. by 7 feet stroke of piston; c of piston space, 53.6 cube feet.

ssure of Steam.—(Indicated average) 16.73 lbs. per sq. inch. Revolutions, 17 inute.

tion of Engine and Shafting .- (Indicated) 4.75 lbs. per sq. inch of piston.

125. Total power = 1. Available, deducting friction = .717.

Es.—Each IIP will drive $\begin{cases}
305 \text{ hand-mule spindles, with preparation,} \\
\text{or 230 solf-acting} \\
\text{or 10.4 throstle} \\
\text{or 10.5 looms, with common sizing.}
\end{cases}$

uding preparation:

1 throstle spindle = 3 hand-mule, or 2.25 self-acting spindles.

1 self-acting spindle = 1.2 hand-mule spindles.

DREDGING MACHINES.

ing 20 Feet from Water-line, or 180 Tons of Mud or Silt per Hour
11 Feet from Water-line.

gth upon deck, 123 feet; beam, 26 feet. Breadth over all, 41 feet.

versed section at load-line, 60 sq. feet. Displacement, 141 tons, at load-draught

igine (non-condensing).—Cylinders, two, 12.125 ins. in diam. by 4 feet stroke

ers.—Two (cylindrical flue), diam. 40.5 ins., and length, 20 feet 3 ins.; two 14.625 ins. in diam. Heating surface, 617 sq. feet. Grates, 37 sq. feet.

ssure of Steam, 25 lbs. per sq. inch; throttle .25 open, cut off at .5 the stroke on. Revolutions, 42 per minute.

kets.—Two sets of 12, 2.5 feet in length by 15 ins. at top and 2 feet deep; vol. 1.25 cube feet. Chain Links, 8 ins. in length by 1.5 inch diam.

1.5 or Camels.—Four. of 40 tons capacity each.

STEAM HOPPER DREDGER. (Wm. Simons & Co.)

Iron.

EPTUNE" (English). - Length, 150 feet; breadth, 32 feet.

redge from 6 Ins. to 25 Feet. Capacity of Hopper, 500 to 600 Tons.

1gines.—Two (compound), 375 PP, for dredging and propulsion, and one for 3 bucket-frame and anchor-posts.

ke designed dredger of 1000 tons' capacity has dredged 25000 tons silt per and transported it 4 miles.

redging 1000 Tons of Mud or Silt per Hour, 5 to 35 Feet in Depth.
Capacity of Hopper, 1000 Tons.

rines.-Two (compound), IP 1000. Speed.-9 knots per hour.

Steam Dredging Crane. (English.) Lift, 30 Feet per Hour.

	Lifting Power.	Volume of Bucket.	Mud or Silt.	Coal and Sand.	Excava- tion Ground.	Weight of Crane.	Lifting Power.	Volume of Bucket.	Mud or Silt.	Coal and Sand.	
-	Tons.	Lbs.	Tons.	Tons.	C. Yds.	Lbs.	Tons.	Lbs.	Tons.	Tons	./
1	2.5	1120	25	20	20	18000	\ 5	/ 5540	/ 50	/ 40	, /
1	3 /	1680	37.5	32	25	133 480	\ 7	/ 336	o / c	ء / د	۱ به

Electric Launch. Steel.

"HILDA," "MARY," "FLO," and "THEO."—Longth, 40 feet; Been, 6.5; Bit 3.1.—Load-draught, 40 passengers, 1.66 feet. Motor, IP 3.5. Resolution, 70 minute. Speed, 6 miles per hour.

Accumulators, under the seats, and when fully charged, capacity for 8 hours full speed. Charging is effected at landings at termination of routs.

Builders. -J. B. Seath & Co., Glasgow, Scotland.

Hoppen Deedoer "Belfast No. 3." Iron and Street.—Length over all, 190 is on deck, 180; between perpendiculars and for tomage, 185; Beam, 38,5 feet; Ba. 14,1 feet; Tonnage, Gross, 760 tons; Not, 372; Mean dramght, 9,5 feet, londed, 11, Displacement, 1860 tons. Immersed Section, 490 □ feet. Freeboard, 275 fet.

Dredging Capacity, 2000 tons per hour.

Optimiers. Two of so ins. in diam. and two of 38.5 ins. Stroke of piston of Pressure of Steam, 90 lbs. per [inch. Revolutions per minute, 80. IP 89. Boilers, two. Grate surface, 82 [feet. Heating surface 2120, and Condensing of Propoller, 9 feet in diameter. Puel, capacity 50 tons. Oress, 13.

Wright, Hull, 500 tons. Speed, 8.5 knots per hour. Builders.—Wm. Simons & Co., Renfrew, Scotland.

"HERCULES," Panama Canal.—Length on deck, 200 feet; beams, 40, 60, and 4 feet; depth of hold, 12 feet. Slot, 36 feet in length by 6 feet 7 ins. in width

Ways.—Two, one 40 feet and one 60 feet, by 5 feet in width.

Buckets.—38; volume, r.33 cube yards. Spuds, 2 feet in diam. and 60 is length.

Engines.—Two of roo IP each, and two of 40 IP each.

Boilers. - Three (horizontal tubular), 16 feet in length.

Elevator and Discharge. - Maximum, 24 cube yards per minute.

Crane. (Wood.)

Hull.—Length on deck, 100 feet; beam, 44 feet; load-draught, 4.5 feet.
Radius of crane, 46 feet; height, 70 feet; counter-balance, 70 tons.
Boiler.—Heating surface, 500 89. feet. Pressure of Steam, 80 lbs. per sq. int.
IIP. 150.

Propellers.—Two, 4:25 feet in diam. Speed, 5 miles per hour.
Engine to operate crane. Cylinder.— 10 ins. in diam. by 12 ins. stroke of pists.

FLOUR MILLS.

30 Barrels of Flour per Hour.

Water-wheels, Overshot.—5, diam. 18 feet by 14.5 feet face. Buckd; 13 ins. in depth. Water.—Head, 2.5 feet. Opening, 2.5 ins. by 14 feet in length over each wheel.

5 Barrels of Flour per Hour, and Elevating 400 Bushels of Grain 36 Feet.

Water-wheel, Overshot. — Diam. 22 feet by 8 feet face. Buckets, 52 of 1 with in depth. Water.—Head, from contro of opening, 25 ins. Opening, 1.75 in by 85 ins. in length.

Merolutions, 3.5 per minute. Stones, three of 4.5 feet; revolutions, 130.

Three Run of Stones, Diameter 4 Feet.

Water-wheel, Overshot .- Diam. 19 feet by 8 feet face. Buckets, 14 ins in

07.

in e (non-condenning). —Cylinder, 13 inn in diam. by a test with flued). —Diam. 5 feet by 30 in length; two fluen so inn in test.

HP No.

6 10

20 25

4azin e

₩ 10*

20

En:

Wate

×

1

100

HOISTING ENGINES.

For Pile Driving, Hoisting, Mining, etc.

Lidgerwood Manuf'g Co., New York.

	SINGLE	CYLINDERS	. 1	Double Cylinders.						
,	Cylinder.	Capacity.	Cost, with Boiler.*	HР	Cylinder.	Capacity.	Cost, with Boiler.*			
·-	Ins.	Lbs.	\$	No.	Ins.	Lbs.	\$			
ŀ	5 X 5	1000	600	8	5 × 8	2000	950			
5	6 × 8	1250	675	12	6 🗙 8	2500	1050			
)	7 X 10	1800	825	20	7 X 10	3500	1350			
5	8 X 10	2800	1050	30	8 X 10	6000	1550			
5	0 X 12	4000	1275	40	9 X 12	8000	2000			
5	10 X 12	5000	1375	50	10 X 12	9000	2350			
			* Coi	nplete.						

Details and Operation.

ne.	Drum.	Dimen- sions.	Tubes.	Ram.	Leaders. Hoist.	Lift. Ram.	Blows per Minute.	Piles per 10 Hours.	Fuel per Hour.
)*)*	Ins. 12 × 24 14 × 26	Ins. 32 × 75 40 × 84	No. 48 of 2 in. 80 of 2 in.	Lbs. 1953 2700		Feet. 8 to 12 8 to 12		No. 50 100	Lbs. 70 80

* Weight complete, 8500 lbs.

Mining Engines and Boilers. (Various Capacities.)

ingine, Boiler, etc., as given for Pile Driving, page 902.

peration. — 250 to 300 tons of coal in 10 hours. Fuel, 40 lbs. coal per hour. ler, 20 gallons per hour.

Veight of Engine and Boiler, 4500 lbs.

Hancock Inspirator. For a Lift of Water of 25 Feet.

۰.	Diam	eter.	Discharge at Pressure	No.	Diame	Discharge at Pressure	
0.	Steam-pipe.	Suction.	of 60 Lbs.	140.	Steam-pipe.	Suction.	of 60 Lbs.
	Ins.	Ins.	G'lls. per h'r.		Ins.	Ins.	G'lls. per h'r.
,	•375	•5	120	30	1.25	1.5	1260
- 5	-5	•75	220	35	1.25	1.5	1740
i	•5	•75	300	40	1.5	2	2230
,	∙75	I	540	45	1.5	2	2820
i	I	1.25	900	50	2	2.5	3480

emperature of water not over 1450 for a low lift, and 1000 for a high lift.

HYDROSTATIC PRESS. (Cotton.)

30 Bales of Cotton per Hour.

Engine (non-condensing).—Cylinder, 10 ins. in diam. by 3 feet stroke of piston. Pressure of Sleam, 50 lbs. per sq. inch, full stroke. Revolutions, 45 to 60 per 11to.

resses.-Two, with 12-inch rams; stroke, 4.5 feet.

"umps.-Two, diam. 2 ins.; stroke, 6 ins.

For 83 Bales per Hour.

Engine (non-condensing).—Cylinder, 14 ins. in diam. by 4 feet soilers.—Three (plain cylindrical), 30 ins. in diam. and 26 feet i sq. feet. Pressure of Steam, 40 lbs. per sq. inch. Revolutions Presses.—Four, geared 6 to 1, with two screws, each of 7.5 ins pitch.

Naft (wrought iron). - Journal, 8.5 ins. Fly Wheel, 16 feet

Cost. - Average per mile in England, 2.52 pence sterling = 4.48 cents

PILE-DRIVING.

Driving One Pile.

Engine (non-condensing).—Cylinder, 6 ins. in diam. by 1 foot stre Boiler (vertical tubular).—32 ins. in diam., and 6.166 feet in height. A. feet. Furnace, 20 ins. in height. Tubes, 35, 2 ins. in diam., 4.5 feet. Revolutions, 150 per minute. Drum, 12 ins. in diam., geared 4 to 1 feet in height. Ram.—2000 lbs., 2 blows per minute. Fuel, 30 lbs. co

Driving Two Piles.

Engine (non-condensing).—Cylinders, two, 6 ins. in diam. by 18 i piston.

Boiler (horizontal tubular).—Shell, diam. 3 feet, and 6 feet in lengtend 3.75 feet in width, 3.5 feet in length, and 6 feet in height.

Pressure of Steam, 60 lbs. per sq. inch. Revolutions, 60 to 80 per mir. Frame, 8.5, feet in width by 26 feet in length. Leaders, 3 feet in wid in height. Rams.—Two, 1000 lbs. each, 5 blows per minute.

PHMPING ENGINES.

CORLISS STEAM - ENGINE Co., Providence, R. I.—VERTICAL - BEAM E pound).—Cylinders.—18 and 36 ins. in diam. by 6 feet stroke of piston Pumps.—Four plunger, 19 ins. in diam. by 3 feet stroke of piston. Per revolution of engine, 84.06 cube feet.

Boilers.—Three, vertical fire tubular. Grate.—93 sq. feet. Heating sq. feet. Pressure of Steam, 125 lbs. per sq. inch, cut off at .22 feet. 36 per minute. IHP 313. Fly-wheel.—25 feet in diam., weight 62 cool

Fuel.—Cumberland coal, 486 lbs. per hour, inclusive of kindling and r. Ash and Clinkers, 9.4 per cent. Duty for one week, 113 271 000 foot-lbs. Water delivered, 17 621 gallons per minute, against head of 180 feet. Duty, average for 1883, per 100 lbs. anthracite coal, 106 048 000 foot-lbs.

For Elevating 200 000 Gallons of Water per Hour.

" Gaskill," at Saratoga, N. Y.

lgine (Horizontal Compound). Cylinders.—High pressure, 2 of 21 ins. diam. pressure, 2 of 42 ins. diam., all 3 feet stroke of piston. Pumps.—Two of 20 ins. by 3 feet stroke of piston.

Wheel, 12.33 feet in diam.; weight, 12 000 lbs.

lers (horizontal tubular).—Two of 5.5 feet in diam by 18 feet in length. Heatwface, 2057 86, feet. Grates, 51 86, feet of grate; to heating surface, 1 to 58, o transverse section of tubes, 1 to 7. Chimneys, 75 feet.

ssure of Steam.—Mean of 20 hours, 74.25 lbs. per sq. inch. Revolutions, 17.87 inute. IIP.—High pressure cylinders, 109.2; low-pressure, 76 65. Total, 185.8. et.—Anthracite, 6.9 lbs. per sq. foot of grate per hour. Evaporation, per sq. of heating surface per hour, 1.175 lbs.; per lb. of coal, 9.25 lbs.; per cent. of ombustible, 3.2.

ty, 112899993 foot-lbs. per 100 lbs. coal. Heating surface per 11P, 14.9. am per sq. foot of surface per hour, 1.19 lbs.; per sq. foot of surface per lb of per hour from 2120, 11.28 lbs.

Eriesson's Caloric. For an Elevation of 50 Feet.

	,		١	1 1		1			COST	۲.	
-		ace pied.	Volume per Hour.	Pipes, Suction and Dis-	Fuel per Hour. Nut		Furnace.		Deep Well Pump. Extra. Pipes per Fo		-
	Floor.	Height.		charge.		Gas.	Gas.	Coal.	Pump.		Galvan.
-	Ins.	Ins.	Gall.	Ins.	Lbs.	Cub. ft.	-	8	8		8
	34×18	48	150	.75		15	150	-	-		<u> </u>
	39×20	51	200	.75	2.5	18	200	210	-	-	
	48×21	63	350	r	3.3	25	235	250	10	.64	.86
	54×27		800	1.5	6	-	_	320	15	.80	1.15
•	42×52		1600	2	12	l — !	_	450	251	.92	1.25
		* 01	er 90 fee	t, 92 cent	8.			† Dt	plex.		

cluding engine and pump, oil-can and wrench, complete in all but suction and large-pipe.

SUGAR MILLS.

ressing 40 000 lbs. Cane-juice per day, or for a Crop of 5000 Boxes of 450 lbs. each in four Months' Grinding.

ngine (non-condensing).—Cylinder, 18 ins. in diam. by 4 feet stroke of piston. der (cylindrical flued).—64 ins. in diam. and 36 feet in length; two return flues, 8. in diam. Heating surface, 660 sq. feet. Grates, 30 sq. feet.

essure of Steam, 60 lbs. per sq. inch, cut off at .5 the stroke of piston. Revolu-

Us.—One set of 3, 28 ins. in diam. by 6 feet in length; geared 1 to 14. Shafts, ld 12 ins. in diam. Spur Wheel, 20 feet in diam. by 1 foot in width. Fly 4, 18 feet in diam.; weight, 17,400 lbs.

*ghts.—Engine, 61 460 lbs.; Sugar Mill, 65 730 lbs.; Spur Wheel and Connect Tachinery to Mill, 28 680 lbs.; Boiler, 18 520 lbs.; Appendages, 6730 lbs. Total, 20 lbs.

STONE AND ORE BREAKERS. (See p. 957.)

Re- ceiver.	Pul D'm.	ley. Face.	V'locity per Minute.	Power re- quired.	Weight.	No.	Re- ceiver.	l .	ley. Face.	V'locity Per Minute.	Power re- quired.	Weight.
Ins.	Feet.	Ins.	Feet.	IP.	Lbs.		Ins.	Feet.	Ins.	Feet.	H2.	Lhe.
4X10	1.66	6	250	4	4 000	5	9X15	2.5	9	250	9	13360
5X10	2.75	6	180	5	6700	6	11×15	2.33	6	180	9	11 600
7X10	2	7.5	250	5	8 000	7	13×15		8	180	10	
5X15	2.33	8	180	9	9 100	8	15X20	3.5	10	150		
7X15		0	180	9	10 490	9	18X24	6	12	125		

OTE.—Amount of product depends on distance jaws are set apart, luct given in Table is due when jaws are set 1.5 ins. open at both 10 is run at its proper speed and diligently fed. It will also vary so exter of stone. Hard stone or ore will crush faster than sandston upbe yard of stone is about one and one third tons.

STEAM FIRE-ENGINE.

Amoskeag, N. H. 1st Class.

Steam Cylinder,—Two of 7.625 ins. in diam. by 8 ins. stroke of piston.

Water Cylinder.—Two of 4.5 ins. in diam.

Boller (vertical tubular).—Heating surface, 175 sq. feet. Grates, 475 sq. Pressure of Steam.—100 lbs. per sq. inch. Revolutions, 200 per minute. Discharges.—Two gates of 2.5 ins., through hose, one of 1.25 ins. and twois Projection.—Horizontal, 1.25 ins. stream, 311 feet; two 1 inch strams, 3 Vertical, 1.25 ins. stream, 200 feet. Water Pressure.—With 1.125 ins. nonlike.

Time of Raising Steam.—From cold water, 25 lbs., 4 min. 45 sec. Weights.—Engine complete, 6000 lbs.; water, 300 lbs.

SAW-MILL.

Two Vertical Saws, 34 Ins. Stroke, Lathes, etc.

Engine (non-condensing). Cylinder.—10 ins. in diam. by 4 feetstreed;

Boilers.—Three (plain cylindrical), 30 ins. in diam. by 20 feet in length

Pressure of Steam.—90 lbs. per sq. inch. Revolutions, 35 per minute.

NOTE.—This engine has cut, of yellow-pine timber, 30 feet by 18 ins late-

STONE SAWING.

Emerson Stone Saw Co. (Diamond Stone Saw, Pittsburgh, No. 1750 sq. feet of Berea sandstone, inclusive of both sides of cut, in 1 how

CHIMNEYS.

LAWRENCE, Mass. Octagonal, 222 Feet above Ground, and 19 Fel Foundation, 35 Feet square and of Concrete 7 Feet deep. (Hiram F. No. Shaft.—234 feet in height, 20 feet at base, and 11.5 at top; 28 lnz thids and 8 at top. Core.—2 feet thick for 27 feet, and 1 foot for 154.

Horizontal Flues.—7.5 feet square, and Vertical flue or cylinder of \$5\text{thish}, with walls 20 ins. thick for 20 feet, 16 for 17 feet, 12 for 52 feet, and \$5\text{thish} Purpose.—For 700 sq. feet grate surface. Weight.—2250 tons. Brick \$5\text{thish}

NEW YORK STEAM HEATING CO. Quadrilateral, 220 Feet above and I Foot below. (Chas. E. Emery, Ph.D.)

Shaft.—220 feet in height, and 27 feet 10 ins. by 8 feet 4 ins. in the dan Foundation.—1 foot below high water. Capacity.—Boilers of 1600 R.

Cost of Steam-Engines and Boilers complete, and Operation per Day of 10 Hours, inclusive of La Fuel, and Repairs. (Chas. E. Emery, Ph. D.)

IFP.	Engine.	Water orated IHP per Hour.	Lb. of	Coa	I per Day.	Labor.	Supplies and Re-	Cont.
6.25 12.5 29 112 276 552		. 22.2	3 / 8.8	8 25.	2 / 2566		140	- 13 THE PARTY OF
	* 61	13g c4.4	top (23	sto (per)	albefort,	of expa	25	

GRAPHIC OPERATION.

ns of Questions by a Graphic ()peration. nan walks 5 miles in 1 hour, how far will he walk in 4 hours?

Operation. - Draw horizontal line, divide it into equal parts, as 1, 2, 3, and 4, representing hours. From each of these points let fall vertical lines A C, x x, etc., and divide A C into miles, as 5, 10, 15, and 20, and from these points draw equidistant lines parallel to the horizontal.

Hence, the horizontal lines represent time or hours, and

the vertical, distance or miles.

Therefore, as any inclined line in diagram represents both time and distance, course of man walking 5 miles in an hour is represented by diagonal Ae; and if he walks for 4 hours, time to 4, and read off from vertical line A C the distance = 20 miles.

far will a man walk in 2 hours at rate of 10 miles in 1 hour? a is shown by the line A o, representing 20 miles.

o men start from a point at the same time, one walking at the illes in an hour and the other at 10 miles, how far apart will they nd of 2 hours?

rses being shown by the lines A r and A o, the distance r o represents ce of their distances, 10 0 20 = 10 miles.

long have they been walking?

rses are now shown by the lines A o and A 4, the distance 2 4 represents ce of their times, or 2 ~ 4 = 2 hours.

they are 10 miles apart, how long have they been walking? rses are again shown by the lines A r and A o, the distance r o reprefference of their distances of 10 miles, and A 2, 2 hours.

nan walks a given distance at rate of 3.5 miles per hour, and then of distance back at rate of 7 miles, and walks remainder of disminutes, occupying 25 minutes of time in all, how far did he run?

u

Operation .- Draw horizontal line, as A C. representing whole time of 25 minutes; set off point e representing a convenient fraction of an hour (as 10 minutes), and a i equal to corresponding fraction of 3.5 miles (or .5833); draw diagonal A n, produced indefinitely to O, and it will represent the rate of 3.5 miles per

Set off Cr equal to 5 minutes, upon same scale as that of AC; let fall vertical rs, and draw diagonal Cu at same angle of inclination

in; then from point u draw diagonal u O, inclined at such a rate as to miles per hour; thus, if in represents rate of 3.5 miles, s O, being one distance, will represent 7 miles.

e distance between the two points is thus determined by C x, and disy u s, measured by scale of miles employed.

ion.—The distances A e and A i are respectively 10 minutes = . 166 of an 58_{33} mile = 166 of 3.5 miles. Hence, C x = .875 mile, and u s = .5833 sequently, the man walked A O = .875 mile = 15 minutes, ran O u = = 5 minutes, and walked u C = .2016 mile.

second man were to set out from C at same time the man referred eding question started from A, and to walk to A and m rate of speed and occupying same time of 25 min times will be meet the first man?

i. - As A C represents whole time, and C x distance be and z x will represent course of second man walking at meet the first man, on his outward course, at a distance A, represented by A o, and at the time A a; and on L.

1 v, x m, and at the time A c.

MISCELLANEOUS.

No., Dismeter, and Number of Shot. (American Standard) Compressed Buck Shot.

No.	Diam.				Shot per Lb.			
3 2	Inch. -25 -27	No. 284 232	1 0	Inch. :3 :32	No. 173 140	00	Inch. •34 •36	No. 115

Balls, .38 Inch, 85 No. per lb.; .44 Inch, 50 No. per lb.

Chilled Shot.

No.	Diam.	Shot per Oz.	No.	Diam.	Shot per Oz.	No.	Diam.	Shot per Oz.	No.	Diam.	Shirt per (it
12 11 10 10	Inch, .05 .06 Trap .07 Trap	No. 2385 1380 1130 868 716	9 8 7 7	Inch. .08 Trap .09 Trap .1	No. 585 495 499 345 299	6 5 4 3 2	Inch. .11 .12 .13 .14 .15	No. 223 172 136 109 88	B BB BB	Inch. .16 .17 .18 .19	2000

Drop Shot.

No.	Diam.	Pellets per Oz.	No.	Diam.	Pellets per Oz.	No.	Diam.	Pellets per Oz.	No.	Diam.	Pelas peria
Extra Fine Dust Fine Dust Dust 12 11 10	Inch. .015 .03 .04 .05 .06 Trap	No. 84 021 10 784 4 565 2 326 1 346 1 056 848	9 98 8 7 7 6	Inch. Trap .08 Trap .09 Trap .1	No. 688 568 472 399 338 291 218	5 4 3 2 1 BB	Inch. .12 .13 .14 .15 .16 .17 .18	No. 168 132 106 86 71 59	BBB T TT F FF	Inch. ,-19 ,-2 ,-21 ,-22 ,-23	京 本 京 京 中 京

The scale of the Le Roy standard (adopted by the Sportsman's Convention) as mences with .2x inch for TT shot, and reduces .01 inch for each size to .05 labs No. 12. The number of pollets per 0z. being the actual number in perfect shot.

The number of pellets by this standard is nearly identical with that of the hand ican Standard.

Tatham's scale is same as Le Roy's, but number of pellets is deduced mathemically, by computing them from the specific gravity of the lead.

Drains, Diameter and Grade of, to Discharge Rainfall

Diam.	Grade	Acres.	Diam.	Grade	Acres.	Dlam.	Grade r Inch.	Acres.	Diam.	Grade	Acres
Ins.		1	Ins.			Ins.	1	-	Ins.		
4	30	-5		40	1.2		60	2.1	1.00	80	58
	20	.6		20	1.5	9	120	2.1	15	240	7.0
5	80	-5	7	20	1.2	1 2	80	2.5	100	120	7.0
	60	.6	1	60	1.5		60	2.75		80	9
	:0	1	8	120	1.5	12	120	4.5		60	10
6	60	1	1	80	1.8	1	80	5.3	18	240	10

British and Metric Measures, Commercial Equivalents of. (G. Johnstone Stones, F. R. S.)

Millimeters.	Weight.	Gramman.	Volume.	Colle Costinen
304.8	Pound	. 28.35	Quart.	u
25.A	Grain	004	o / comos	

MEMORANDA.

and Results.

Double. — 600 $\mathbf P$ (to be transmitted) \div velocity of belt in feet per $\mathbf P \div$ number of revolutions per minute $\mathbf X$ diameter of pulley in feet Machine Belts.—1500 to 2000 $\mathbf P \div$ velocity of belt in feet per in ins. (Edward Sawyer.)

be of a Locomotive. Best height is from 6 to 8 diameters effect when expanded to full diam. of pipe at 2 diameters from base.

iveting. A riveting gang (2 riveters and 1 boy) will drive in shell, nean of 12.5 rivets per hour.

Compressed Fuel is composed of coal dust agglomerated r, compressed in molds, and subjected to a high temperature in an o expel the moisture or volatile portion of the pitch and any fire-exist in the cells of the coal.

ighest. At Garabil, France, 413 feet from floor to surface of water, length.

Malleable. P. Dronier, in Paris, makes alloys of copper and adding from .5 per cent. to 2 per cent. quicksilver.

; Department, Requirements of. (New York.)

s of Dwelling Houses hereafter constructed at least 8-inch walls on inner 4 ins. of which, from bottom of flue to a point two feet above nilt of fire-brick laid with fire-clay mortar; and least dimensions of 1s. square, or 4 ins. wide and 16 ins. long, inside measure; and when 1 located in the usual stacks, side of flue inside of house to which it 4 ins. thick. If preferred, furnace flues may be made of fire-clay size, built in the walls, with an air space of 1 inch between them, 2k wall on outside.

o be lined with fire-brick at least 25 feet in height from bottom, ralls of said flues to be less than 8 ins. thick.

uilt for furnaces or boilers must be altered to conform to the above fore they are used as such.

3, Protection of, from Lightning. A wire rope of 3 held to be the most efficient.

stors, weighing 8 lbs. per yard and 4 lbs. for duplicated and all others,
 feet apart, thus bringing every portion of the building to which
 within 2s, feet of their protection.

st material for a conductor; it should be continuous, and all joints ral points are preferable to one, and greater surface should be given with the earth than usually practised. (Str W. Thompson.)

rmation, see Van Nostrand's Magazine, N. Y., Aug. 1882, page 154.

Iron to Stone. — Fine iron filings, 20 parts, Pi; mixed fluid with vinegar, and applied for

's, 60, and

Draught. W-w h=D. W and w r at external and internal temperatures, h heig e of draught. See Weight of Air, page 521.

or India Ink improves with age, show t down, the movement should be in a right.

Coal, Effective Value of. Theoretical quantity of heat pr Ps $_{256}$ units per hour, and average quantity of heat in a ib. of coal that is utilized in the generation of steam in a boiler is $_{500}$ units; hence, theoretical quantity of coal required per P per hour = $_{8504}^{256}$ = .3 lbs., after the water has been had into atmospheric steam, being theoretically nearly 7.5 per cent. of total hat a quired to change 20 lbs. water at 60° into steam of 60 lbs. effective pressure.

end of

a larg

. Ime

ra.

C

 \mathbf{F} ln

BeeL

Por.

lathe

is co

mind don: dean Then so 4. mbs::

biten

Frie

M.25

Fric

G3.

The total heat developed by the combustion of coal, when utilized evaperated ranges from .55 to .8, but in practice it does not exceed 65 per cent.

Coast and Bay Service. A velocity of current of 2.5 feet per sensitive will scour and transport silt, and 5 to 6.5 feet sand. For river scour the velocities are very much less.

Cold, Greatest. —220°, produced by a bath of Carbon, Bisulphik, milliquid Nitrous Acid.

Corrosion of Iron and Steel. The corrosion of steel over image as a mean, fully one third greater.

Cost of Family of Mechanics in France ranges from the to \$600 per annum, of which clothing costs 16 parts, food 6x, rent 15, and secolaneous 8.

Crushing Resistance of Briok. A pressed brick of Philadelphic clay with stood a pressure of 500 000 lbs. for a period of 5 minutes.

Earthwork. Shovelling.—Horizontal, 12 feet. Vertical, 6 feet. Was there were horizontal, 12 to 20 feet, 1 stage is required, and from 20 to 30,2 stage. When vertical, 6 to 10 feet, 1 stage is required.

Wheelbarrow. -- Proper distance up to 200 feet.

Number of Loads and Volume of Earth per Day.

One Laborer. (C. Herschell, C. E.)

Distance.	Trips.	Volume.	Distance.	Trips.	Volume.	Distance.	Trips.	Volum.
Feet.	No.	Cub. Yds.	Feet.	No.	Cub. Yds.	Feet.	No.	Cab. VA
20	120	23.5	150	96	13.3	350	88	11.6
50	110	16.9	200	94	12.8	400	86	ILS
70	100	14.4	250	92	12.4	450	84	20.9
100	98	13.8	300	90	12	500	82	30.5

Volume of a barrow load, 2.5 cube feet.

Portable Railroad and Hand Cars.—For a distance of 550 feet, 60 cube yards on be transported per day.

Horse Cart.—Volume of Earth transported per Day.
One Laborer.

Distance.	Trips.	Volume.	Distance.	Trips.	Volume.	Distance.	Trips.	Volume
Feet.	No.	Cub. Yds.	Feet.	No.	Cub. Yds.	Feet.	No.	Cub. Yes.
300	86	17.1	1000	43	8:6	2000	25	5
500	67	13.6	1500	31	6.4	2500	21	4-3

Volume of each load, 8 cube feet.

Ox Cart is less in cost at expense of time.

Electric Light, Candle Power of. Maxim Incandescent Lamp-Current with 30 Faure cells, 74 volts, 1.81 Ampères, 16 standard candles. With 9 like cells, 124 volts, and 3.2 Ampères, 333 candles. (Paget Hills, LLD.)

The clavated electric lights at Los Angeles, Cal., are distinctly visible at sea for distance of 80 miles.

rgine and Sugar Mill, Weights of. Engine (non-condense).

der.—30 ins. in diam. by 5 feet stroke of piston. Boilers (cylindrical fins).

diam. by 40 feet in length. Weights.—Engine, 105 000 lbs.; Boilers (no. 40 feet in length. 40 ins. by 8 feet, 220 050 lbs.; Connecting Machine).

ing Stone. Artificial.—Clay, 15 parts; Levigated Chalk, 1.5; and , coarse, 83.5. Mixed in water, molded, and hard burned.

engine, Steam. Relative effect for equal cost compared with a 1c, as 1 to 113. Each IIP requires about 112 weight of engine.

.ng Bodies, Velocities of. At low speeds resistance increases less than square of velocity. In a Canal, at a speed of 5 miles per hour, we is raised, which at a speed of 9 miles disappears, and when speed is that of the wave, resistance of boat is less in proportion to velocity, and is reduced.

f Vessel.—The proper length for a vessel in feet (upon the wave-line ifteen sixteenths of square of her speed in knots per hour.

of Air. 67 $\sqrt{h} = Velocity$ per second \times C. h representing column ins., and C a coefficient ranging from 56 to 100.

, Corrugated. (Wm. Parker.) $\frac{1000 (T-2)}{D} =$ Working stress in inch. Trepresenting thickness in 16ths of an inch, and D diameter in ins. rrugations 1.5 ins. deep. Experiments upon a furnace 31.875 ins. in

feet in length, and with 13 corrugations.

dation Piles. When piles are driven to a solid foundation, they act

so of support, and are designated Columns, and when they derive their power from the friction of the soil alone, they are termed Piles.

ies differ greatly as to the factor of safety for Piles, varying .x to .ox of ram. (Weisbach.)

nns, their safe load may be taken at from 750 to 900 lbs. per sq. inch. s give a higher value (Rankine and Mahon, 1000); but it is to be borne at when piles are driven to a solid resistance, they are frequently split, quently their resistance is much decreased.

e, the following coefficients for ordinary structures are submitted:

e piles are wholly free from vibration consequent upon external impulse, nd when the structures are heavy and exposed to irregular loading, as s. etc., 15 to .2.

ly, the bearing of a properly driven pile not less than 10 ins. in diam. may t 10 tons.

ion of Bottoms of Vessels. At a velocity of 7 knots per il bottom requires 2.42 H over that for a clean bottom.

ion of Planed Brass Surfaces in muddy water is .4 pressure.

Steam, and Hot-air Engines. Relative costs of gas, steam, agines per H: Otto Gas engine, 8.75; Steam engine, 3.5; and Hot-air

Available heat per IIP per hour = Total heat of combustion × Coef on of coal per IIP.

 $\infty \times 772$ units = 10 808 ∞ . Theoretical evaporative

fliciency of furnace = .5; then 10 808 $\infty \times .5 = 5404$ α

. per IHP per hour.

toats, Speed of. Maj. Gen. Z. B. Tower, U. S. A., assignt twice that of the wind, and the angle of sail, to attain than 90°.

a Coal. Analysis of Bituminous.—Specific Gravity, 1 /drogen, 5.28. Oxygen, 3.26. Nitrogen, 2.75. Sulphur, 2

orative effect = 4.16 lbs. water per lb. of coal.

Lee-way. A full modelled vessel, with an immersed section of r to longitudinal section, and with an area of 36 sq. feet of sails to x of immention, will drift to leeward x mile in 6. A medium modelled vessel, with mersed section of x to 8, and with like areas of sail and section, will drift.

Light, Standard of. Photometric, English.—Spermaceti candid lb.; 120 grains per hour. Carcel burner = 9.5 candles.

Locomotive Axles, Friction of. .o.6 of weight. Hence, if r wheel = .r, axle friction at periphery $\frac{5240}{60} \div 10 = 3.73$ at periphery.

Mercurial Gauge. To prevent freezing, apply or introduce Glyctop of column.

Metal Products of U.S., 1882. Value, \$222000000.

Mississippi River, Silt in. Near St. Charles the volum borne per day in 1879 was 475.457 cube yards, and on one day, July : 4113600. At times the volume equals 3 ozs. per cube foot of water.

Motive Power. A sailing vessel having a length 6 times the breathth, requires, for a speed of 10 knots per hour, an impelling force of ϕ so, foot of immersed section.

Mowing Machine. Kirby's (Auburn, N. Y.)—670 lbs., 2 horse heavy clover in 46 min.

Ordinance, Energy of. In a competitive test of a 9-inch I gun, and a 5-75-inch Krupp, the energy per inch of circumference of bor spectively 118 and 123 foot-tons; their penetration therefore by the wro standard being about the same, but their total energies were respective and 4800 foot-tons.

At Mepper a shot of zio lbs., with a velocity of zi49 feet per second, and ing energy of 2300 foot-tons, passed through a target composed of two plats wrought iron 7 ins. thick, with zo ins. of wood between them, and passed a beyond

Petroleum. One lb. crude oil heated x lb. water 3x5.75° = 28.21 I at 60° converted to steam at 2x2°. Relative evaporative effects of Oil and cite coal as x to 3.45.

Population, Comparative Density of, and Numbersons living in a House in different Citie

Chicago, 4; Baltimore and Naples, 4.5; Philadelphia, 6; London, Bo Cairo, 8; Marseilles, 9; Pekin, 10; Amsterdam, 11; New York, 13.5; l 17.07; Rome and Munich, 27; Paris, 29; Buda Pesth, 34.2; Madrid, 40; S burg, 43.9; Vienna, 60.5; and in Berlin, 63.

Power of a Volcano. An eruption of that of Cotopaxi has a mass of rock of a volume of 100 cube yards a distance of 9 miles.

Power Required to Draw a Vessel or Load up: clined Hydrostatic Rail or Slip Way. (Wm. Boyd,

W I = R; C d W \div D = F; and P d' c = f. W representing weight of load and cradle. I inclination of ways, as length \div rise, R resistance of sets F friction of cradle and rollers, and f friction of plunger in stuffing-box, a C and c coefficients of friction of cradle and stuffing-box, a diameter of axle d' product of circumference of plunger and depth of collar or stuffing, all in P pressure per sq. inch on plunger, in lbs.

Hence,
$$W \frac{rise}{length} = I$$
, and $R + F + f = power in tons$.

ILLUSTRATION. — Assume weight of a vessel and cradle 2000 tons, pn plunger 2500 lbs. per sq. inch, inclination of ways 1 in 20, diameters of ax ers and of rollers 3 and 10 ins., depth of collar 2 ins., and circumference 0 50; what would be the power required? C = .2, and c = .6.

what would be the power required:
$$0 = .2$$
, and $0 = .0$.
en $\frac{2000}{20} = 100$ tons; $\frac{.2 \times 3 \times 2000}{10} = 120$ tons; $\frac{.2500 \times 2 \times 50 \times 5}{2240}$.

 $- - - - - 67 = 287$ tons.

Propeller Steamer, Ordinary Distribution of Pov a. Power developed by engine, 88 IHP; Power expended in its operation, Per cent. |

Power expended by slip of propeller.... of propeller 7.5 in propulsion

Pump, Centrifugal, has lifted water 28 to 29 feet, drawn it horizontally Toot, and then lifted it 15 feet. Also drawn it 24 feet, and projected it 50 feet.

Railway Trains. Power and Resistance.—A railway train runnin rate of 60 miles per hour = 88 feet per second, and velocity a body would acq

falling from 88 feet = $88 \div 8.02 = 120.3$ feet. Consequently, in addition to po Expended in frictional and atmospheric resistance to train, as much power mus Expended to put it in motion at this speed, as would lift it in mass to a heigh E si feet in a second.

If the train weighed 100 tons = 224 000 lbs., then 224 000 \times 120.3 = 26.74; Cot-lbs., and if this result was obtained in a period of 5 minutes, it would req 20.3 \div 5 \times 224 000 \div 33 000 = 163.3 IP in addition to that required for fricti esistances.

To raise the speed of a train from 40 (58.66 feet per second) to 45 (66 feet per and) miles per hour, the power required in addition to that of friction would t

 $=8.66 \div 8.02 = 53.44$ feet is to $66 \div 8.02 = 67.57$ feet = 67.57 - 53.44 = 14.13 fe Assume a train of 100 tons, running at rate of 60 miles per hour, and total ret Tang power at 1. its weight 100 \div 100 = 10. Then 224 \div 00 \times 103 \times 120.3 = 25 647 \times 224 \times 100 = 1203 feet, which train would run before stopping. If, however, train ending a grade of 1 in 100, the retarding force = .11 (11 \div 100) of weigh 24 640, distance in which train would come to rest would be 26 947 200 \div 24 64, 1093.6 feet.

Relative Non-conductibility of Materials.

MATERIAL.	Per cent.	MATERIAL.	Per cent.	MATERIAL.	Per
Hair felt. Mineral wool, No. 2 " and tar Sawdust	83.2	Charcoal	63.2	Asbestos	3¢

Resistance to a Steam-vessel in Air and Water. It per cent. of IHP, and in water, at a speed of 20 miles per hour, 90 per cent., HP per sq. foot of immersed amidship section.

Saws, Circular. 30 ins. in diameter, are run at 2000 revolutions per mi = 3.57 miles.

Spur Gear has been driven at a velocity of r mile per minute.

Sugar Mill Rollers. 5 feet by 28 ins., at 2.5 revolutions per min requires 20 IP, and 18 feet per minute is proper speed of such rolls.

Surface Condensation, Experiments on. (B. G. Nichol. Tube of Brass, .75 Inch External Diameter. No. 18 B W G. Surface = 1.1 sq. feet. Duration of Experiment, 20 Minutes.

STEAM.	Ver	tical.	Horizontal.		
Temperature. Pressure per sq. inch per gauge Condensation by tube surface " per sq. ft. of " per hour Condensed during experiment	17.75 lbs. 18.5835 " 52.32 "	2560 18.25 lbs. 29.9585 " 84.34 " 30.4375 "	24.0835 " 67.8 "	254 ^c 17.25 43.083 121.29 43.562	

Steamers' Engines, Weights of. Engine, Boiler, Water, and Fittings ready for Service per IIP.

Ordinary Marine Boiler with Water 196 lbs.

Wind, Pressure of. Estimate of upon Structures .- 30'

Per lineal foot of a locomotive train = 10 feet in height, 300 lbs. pe A Tornado has developed a pressure of Q3 lbs. per lineal foot.

The Store Const. Property Secure - 55 " Secure 14" the suffernment is a design to least and to make the printers are plant other to confine and determine

" Glesser," long to less here. I. E., in as diese and m here pixty close at those. From Coloration in its down

Zine Fall in Sheam-builders. Zine in an ing sankle offer a politic description becompared by water, Diemaing offer in gen. The original continues with larry modes and makes sam with our can then be readly removed.

Files. To Compute Extreme Lord a Binmilities File will later 182 1

W+10 x = L 2 representing model of rear, 2 unight of pit, called tood all in the s is beight of full of ram, and a distance of decreasin of piral Mount, Soth in feet.

for the first and a first special state of the state of the special state of the st what positiones will the earth hear, or what weight will the ple sense droven by fire fast blow, from a height of 20 liest, is inch !

Then
$$\frac{99002 \times 20}{(400+3000) \times .0410} = \frac{200000000}{55.24} = 343.406 lbt.$$

Perimeter. The limits or tounds of a figure, or sum of all its its. Of a canal it is the length of the bottom and wet sides of its transverses.

Flood Wave, The flood wave of the Ohio River in March (1881) 11 feet a luch at Cincinnati, being higher than that of any previous record

Los, Crushing Strength of, as determined by U. S. testing machine from 327 to 1000 lbs. per sq. inch

Atmosphere. If pure air is exhausted of 2.5 per cent, of its expans not support the combustion of a candle.

Blasting Paper. Unsized paper coated with a hot mixture prusslate of potash and charcoal, each 17 parts; refined saltpetre, 35; chlorate, 70; wheat starch, 10, and water, 1500.

Dry, out into strips, and roll into cartridges.

Circular Saws. Speed, 9000 feet per minute. Thus, for mass revolutions, and progressively up to a 72 ins., 500 revolutions. (Emerant)

Roods, Relative Value of, compared with 100 Lbs Good Hay.

Additional to mage

Manufaction to July 203.						
Li	Lbs.	1				
Apprns (8 Linseed 50	Rye				
Harloy and Rye, mix'd r:	Mangel-wurzel 330	Turnips				
Darlay straw 13	Pease and Beans 45	Wheat				
Buckwheat	4 Pea-straw 15	Wheat Pea and its				
Buckwheat straw re	o Potatoes 173	chaff				

Donth of the Ocean. Mean depth is estimated by Dr. Entit the thihoms - t. St geographical miles.

Consecutation, A gas engine 1.5 actual IP will cost, with past in hour, to exact per hour for to hours. (Am. Engineer.)

Lonomotive. Army daily rea so miles at a cost of \$125 Me Broman, Red and repairs (5. J. Central R. R. Ca.)

Communities of Part per Mile Principle, as high like and possible The, or one cord wood per 40 miles.

Masor marsa bene

Steel Jan. 32.66 milled iron Moment

> Saw-Engine ()

Bailers _ tglora flue Pressure

Resoluti Eum.

Nove ... combustio

Stear by surfa in its cold Or One

mg tem Velo

LTeloci Bla

arge bl Del Reapa

Jar Kapalz

Na ES por Fr.

base for 24 07, 5

Brass Coppe Coppe Granii Iron, wi Lend

Me

A

ry. In laying stones in mortar or cement, they should rest upon the ath them, more than upon the material of joint.

Hun (Krupp's). Bore, 15.75 ins.; length of bore, 28.5 feet; of eet. Weight, 72 tons. Charge, 385 lbs. prismatic powder; projectile, 1660 lbs., with an explosive charge of 22 lbs. of powder.

of shot at muzzle, estimated at 31 000 foot-tons, and range 15 miles.

Aill. 7722 feet of 1 inch Poplar boards in One Hour.

ion-condensing). Cylinder.-12 by 24 ins. stroke of piston.

Two (cylindrical flued), 38 ins. in diam. by 26 feet in length, two 14 ins. in each. Heating Surface.—780 sq. feet. Grates.—42.5 sq. feet.

of Steam.-125 lbs. per sq. inch, cut off at 16.5 ins.

ns. - 250 to 350 per minute. Saws. - Two circular, 60 and 66 ins. in

rates set 28 ins. from under side of boilers, without bridge-wall, and a chamber under boilers, 4 feet in depth. Fuel, sawdust.

Heating. 62500 cube feet of space requires 6000 sq. feet of heatto attain a temperature of 70° in the vicinity of the city of New York it weather

q. foot of iron pipe will heat 10.5 cube feet of space in an ordinary buildature of exterior air 70°. (Felix Campbell.)

ty of Steam. Steam at a pressure of 60 lbs. + atmosphere has f efflux of 890 feet per second, and as expanded, a velocity of 1445 feet.

ng. In small blasts 1 lb. powder will detach 4.5 tons material, and in 2.75 tons. (See page 443.)

Metal (Iron and Bronze). Specific gravity 8.4. Melting point 1800°.

1 Wood of Australia. Impervious to insects and the Teredo

al Gas and Bituminous Coal. Relative water evaporat-Gas, 20 to 21 lbs. Coal, 9 lbs.

Board of Vessels. For each foot of depth of hold (from ceiling ie of main deck), .r inch added to 1.5 ins for a depth of 8 feet. Thus, lepth $1.5 + .1 \times 8 \times 24 = 3.1$ ins. (American.)

for 8 feet depth and . 1 for each foot in addition thereto. (Lloyd's.)

Colors for Working Drawings.

..Gamboge. Steel Neutral tint, light. Water Cobalt. ... Carmine. Wood..... Burnt Sienna. ..Burnt Umber. .. Sepia with dark markings. Burnt Umber. ... Lake and Burnt Sienna. Yellow Ochre. Stones .. India Ink, light. and Neutral tint. Earths ... Red and 1 t. Prussian Blue. .. Ind. Ink tinged with P. Blue. Burnt Sk

ige of Chain Cable. Square of diameter of 35 will give volume of space required to stow 1 fathor.

alt Mortar. Bitumen 1 part, powdered asphalt 7. 18in oil 28 part.

men, add asphalt broken small, than resin oil and sand.

alt Concrete. Asphalt mortar 11 parts and broken

tos is a fibrous variety of Actinolite or Tremolite, compagnesia, oxide of iron, and water. It resists heat, moista

Daily Food of an Esquimau. Flesh of a sea-horse 2; ml Bread 1.75 lba, Soup 1.25, Spirits 1, and Water .9 pint. (Sir W. E. Parry.)

Coignet's Concrete. For walls that resist moisture.—Sand, Gravel, wi Pebbles, 7 parts; Argillaceous Earth 3 parts, and Quicklime 1 part.

Hard and quick setting.—Sand, Gravel, and Pebbles, 8 parts; Earth, burned as powdered Cinders, each r part, and Unslacked hydraulic Lime 1.5 parts. For a ver hard mixture, add cement r part.

Transmission or Conductivity of Temperature in the Earth. At Edinburgh thermometers set at a depth of 16 feet in the earthstained their maximum and minimum at about six months after the corresponding maximum and minimum of the surface, being lowest or coldest in July.

The average rate of transmission of heat, as observed at Schenectady, N. Y., wa, downwards, 2.9 feet per month, and upwards 3.4 feet. (Olin H. Landreth.)

Shafts. When loaded transversely, the diameters of the journal should find be determined, its dimensions then at any other point can be deduced from them diameters. It being observed that the diameters at any two points should be proportional to the cube roots of the stress at those points.

Journals.—For operation at high speed a greater length is required than for low speed. The less their length, the less may be its diameter for a given stress, and consequently the friction will be less.

When in constant operation, a large surface is required to reduce heating and as friction increases with diameter, not with length, for like stress, it is best ω lengthen.

Wrought Iron. — For 50 revolutions length to diameter as 1.2 to 1, and for ever 50 revolutions additional 1.2 should be added. Thus, for 1000 revolutions the length to diameter should be 5 times. Cast Iron. — Length to diameter as 1.9, and Size as 1.25 of above value. (W. C. Unwin.)

Non-conducting Materials. By the investigations of Prof. J. M. Ordway of New Orleans, he determined the relative non-conducting values of the following materials, compared with a naked pipe, to be:

Hair-felt, burlap	1	Cork in strips	2
Asbestos paper, hair-felt, duck	1.18	Rice chaff	2.2
Pine charcoal	1.26	Clay and vegetable fibre	2.8
		Naked pipe	

(Engineering, vol. 39, page 206.)

Marine Transportation of Troops. Height between deck deak to under side of beam), men 6 feet, horses 7 feet. Hatchways.—Horses at least 10 by 10 feet. Vessels.—Horses, beam not less than 30 feet. Men, all ranks, 2 to 2.5 tons capacity; horses, 10 tons. Rations.—If biscult in bags, 10 000 require 950 cube feet of volume; if it is in barrels, 1350 cube feet.

Cabins.—Officers, 30 sq. feet and 195 cube feet of volume, two men 42 sq. feet, and 270 cube feet of volume, and for each additional man 10 sq. feet, exclusive of bed space of 6 by 2 feet.

Hammocks. - To compute number that can be swung under a deck.

 $\frac{1}{\sqrt{b}} = n$. l representing length under deck in feet, and b breadth in integral ley.)

of Boilers.—30 lbs. water evaporated into dry
rder a pressure of 10 lbs. per sq. lack mercurial page
34.5 lbs. water as above from feed at 212° law sam
Engineers.)

Penetration of Light in Water. Mediterranean, clear sunlig In March, at a depth of 1200 feet; in winter, 600 feet. (M. M. Fol and Sararine,

Railroad. Horse. First in operation in 1826-7.

Pins. First in use in England about 1450.

Iron Steamers. First build in 1820.

Lucifer Match. First made in 1829.

Watches. First constructed in 1476.

٠

Load on Stone per sq. foot. Church of All-Saints at Angers, 86 000 l

Flexible Paint for Canvas. Yellow soap 1.66 parts. Boil water 1. Grind while hot with .83 parts oil paint,

Fuel. Evaporation of a lbs. water from 2120:

r lb. good coal.	.75 lb. petroleum.
2 lbs. dry peat.	2.5 lbs. dry wood.
3.25 " cotton stalks.	3.5 " brush wood.
3.75 " wheat straw.	4 " megass, or cane refus

Tramways or Street Railroads.

Resistance on straight and level tracks 15 to 40 lbs. per ton, or an average 30 lbs.

Power required on a good track to start a car, as determined by A. W. Wrig M. W. E., 116.5 lbs., and to maintain it in motion 17.2 lbs. C. E. Emery, Ph. made it 13 lbs. On a bad track, the power is 134.6 lbs. to start, and 35 to maint it in motion.

Power required, as determined by Mr. Wright, to start a car is 33.53 IP, with average load and day's work, and 133.22 to maintain it in motion.

Average work of a car-horse 5.75 hours per day for a term of service of 6 yes Strong draught horses will exert a power of 143 lbs. @ 2.75 miles per hour for miles, and an ordinary one 121 lbs. for 25 miles. (Gayffer.)

Cable Railway. Mr. Wright gives the power required per ton * at 1.92 IP.

* All tons here and elsewhere are given at 2240 lbs.

Result of Experiments on Motors for Street Railroad (1885.)

At Antwerp, by Capt. D. Galton, F.R.S., etc.

1. L	ocomotive.	Engine and Car.	Ordinary type of steam-engine, surface conden
			(Krauss).
2.	44	"	Surface condenser, vertical boiler, escape sur
			heated (Black and Hawthorn).
2.	44	46	Compound engine, compressed air, water - to
•			boiler (Beaumont).
4.	"	" and car	combined. Ordinary type of steam engine, was
•			tube boiler (Rowan).
€.	46	66 66	combined. Electric Fausse Batteries.

	Fuel con	Oil, Tallow,	Water	
Weight of Train per Passenger.	Per Mile of Course.	Per Seat per Mile of Course.		per Mile of Course.
Lbe.	Lbs.	Lbs.	Lbs.	Gallons.
s. Electric78	4. Rowan5.22	.1	.038	Rowan
4. Steam 2. 3	5. Electric 6. 16		.038	Comp'd air.1
3. Comp'd air, 2.55	2. Black and Hawthorn 8.82		.073	Black and } 5
	1. Krauss	.25	.101	Krauss6
	3. Comp'd air 30.48	.66	.255	

Norz. — The economy of the Rowan motor occurred mainly from the extent of its cond power, by which warm water was supplied to the boiler.

Corrosive Effects of Salt-water on Steel or Iron. (J. Farguharson.)

Loss of Plates S	abmerged for Six Mon	ths. Area 12 Sq. Feet.	
Steel	b. Steel	combined	.07 lb.

Frictional Resistance of a Railway Train. (C. H. Hudon)

Resistance per ton, due to atmosphere at maximum speed, .132 lb.; to start, 17.27 lbs.; and to maintain in motion, 5.1 lbs.

Blasting Gelatine. (G McRoberts, F.C.S.)

Is composed { Nitro-glycerine..... 93 Parts } Effective power.... 1400 foot-like by weight.... { Nitro-cotton....... 7

It freezes hard at a low temperature (35 to 40°). At ordinary temperature above freezing, it does not explode by shock, but when frezen it readily explodes. It is insoluble in water Specific gravity 1 55 to 1 59.

Effective Power of some other Explosives.

Nitro-glycerine, 1270 foot-lbs.; Dynamite, No 1, 900; Gun-powder, extra strong as Curtis and Harvey's, 272; Dynamite, No 2, of 18 nitro-glycerine, 71 nitrate of potash, 10 of charcoal, and 1 of paratila, 531, and Fulminate of Mercury, 367.

Bolts of Wrought Iron as Affected by the Thread. (D. K. Clark.)

Strength per Square Inch of Metal.

Diam. of Bolt.	Tool.	Strength when cut.	Loss.	Diam. of Bolt.	Tool.	Strength when cut.	Less.
Ins. 1.25 1.25	Dies.* Chaser.	Lbe. 40 812 38 528	Pér cent. 25 29	Ins. 1 .625	Chaser. Old Dies.	Lbs. 44 845 51 005	Per cent. 28
1	Old Dies. New Dies.	55 149 42 650	30	.625	New Dies. Chaser.	43 613 41 833	26 33

[.] Die not given, evidently new

Approximate Bottom Velocities of Flow of Water in Channels, at which following Materials begin to Move. (Haupt.)

Feet.	Miles.		Feet.	Miles.	
Sec.	Hour.	Charles Town Color	Sec.	Hour.	
.25	-17	Microscopic sand and clay. Fine sand.	3	2.04	Small stones, 1.75 inch
1.75	.34 .68	Coarse sand and fine gravel. Pea gravel.	3-33	2.3	Flint stones, size of hen's eggs.
2	1.39	Rounded pebbles, 1 inch in diam.	5	3.41	2-inch square brick- bats.

Scouring force of the current is proportioned to the square of its velocity.

Transporting capacity varies as sixth power of the velocity. Hence the importance of increasing bottom velocities, both to effect a scour and to prevent deposits.

Chimney. (Metternick Lead Mining Co.)

Foundation 35 feet square by 11.5 in height; base circular 24.6 feet by 39.37 in height; shaft, 397.5 feet in height, 24.6 feet at base, and 12.48 at top; flue 12.48 and 2. to flue t

Reproporation of Water. Mean, as observed at Boston, Mass.

Inc.	Ins.	Ins.
April 3-1	July 6.28 October	2.95
	August Law F vol Sovember	. 2.63
0,0	September 4.09 December.	£. T

Total ... 29,12 10

Central Width of a Roadway in a Cut.

	Feet.		Feet.
7, single line	18 to 20	Public road	28 to 30
double line	30 " 33	Turnpike road	38 " 40

Hydraulic Ram.

cy under Heads of Supply from 2 to 24 Feet, and Delivery of Discharge at Elevations from 15 to 100 feet.

Measurements from Valves of Ram.

ompute Per Cent. of Total Volume of Water Expended.

= Per cent. H representing head of supply, and E elevation of discharge, feet, and C=8.

TRATION. — What is volume of water delivered with a head of 21 feet to an in of 60 feet?

.8 = .28 per cent. Hence, if the volume of discharge is 100 cube feet, volevated is $100 \times .28 = 28$ cube feet.

sely. By formula of E. B. Weston, M. Am. Soc. C. E.

= V. S representing number of cube feet expended in ram per minute, h difin elevations of ram and delivery in feet, and V volume raised in cube feet to 70.

me as preceding, H = 21 feet, E = 60 feet, and S = 100 cube feet.

Then,
$$\frac{100 \times 65 \times 21}{100 \times 60 - 21} = \frac{136500}{3900} = 35$$
 cube feet

.-To conform to the preceding formula C should be 52.

To Compute Elements of a Screw Propeller.

$$\frac{l a}{r} = T;$$
 $\frac{P \cdot 2 l a R}{p \cdot R} = T;$ $\frac{P \cdot 2 l a R}{33000} = IPP;$ and $\frac{IIP}{p \cdot R} = T.$

presenting mean pressure on piston per sq. inch in lbs., a area of piston in sq. pitch of propeller and l length of stroke, both in feet, R number of revolutions nute, and T thrust of propeller in lbs.

STRATION.—The elements of operation of a steam-engine are: Mean pressure on, having an area of 1000 8q. ins., is 30 lbs.; length of stroke 2 feet; revolutiengine 130 per minute; and pitch of propeller 12 feet. What is the thrust propeller, and what the power of the engine?

$$\frac{\times 2 \times 1000}{12} = 10000$$
 lbs., and $\frac{30 \times 2 \times 2 \times 1000 \times 130}{33000} = \frac{15600000}{33000} = 472.7$ HP.

Centrifugal Pump.

(Southwark Foundry and Machine Co. Non-condensing.)

ups.—Two of 42 ins., with runners 68 ins. in diameter; disincs.—Two of 28 ins. in diameter of cylinder, and 24 ins. st

ers. — 12 Horizontal tubular. Heating surface, 8568 sq f Combustion natural.

wure of Steam 70 lbs. per sq. inch, cut off at .625.

dutions, 130 to 160 per minute.

At of Delivery, o to 36 feet.

Pumping plant exclusive of boilers 300 000 lbs.

harge.—From Dry-dock from a depth of water of a to 36 feet

4 H*

Friction of a Non-condensing Engine. (Prof. R. H. Thurs.)

Friction of a non condensing engine is given at from 2 to 4.75 lbs. per sa isac piston, being least at low pressure. The conclusions drawn from a series of eximents are as follows:

- I. It is sensibly constant at any given speed of engine at all loads.
- 2. It is variable with variation of speed of engine, increasing with the speed
- 3. It increases with increase of pressure of steam.

Norz.—This per cent. of friction is somewhat less than that given auto at p. 733.

Visibility of Vessel's Sidelights. The minimum distant visibility assigned by the international regulations for green and red lights to nautical miles.

Weight of Anvils. The weight of an anvil for forging iron shells 8 times that of the hammer, and for steel 12 times. (Prof. Friedrick Eich.)

Temperature of Mines. Temperature of copper-mines of Lab is perior increases 1° for every 100.8 feet of depth. The usual gradient is from 90 55 feet. (H. A. Wheeler.)

Horse. In transportation by sea occupies the space of 10 tons measured and requires that of 300 cube feet of air.

loid

Clibe

0r

y 5

3

r

F4

75 75

57:

åm

Vot.

Aren rugi

er on

To C

₩6 E

w.

40

اشطا

LE:

E1

Stalls 6 feet in length in the clear of padding and haunch piece, 2 feet 2 man clear width between padding, 10 per cent. of this width 2 ins. narrower, and 5 ment of it 6 ins. longer.

Mule. A pair will draw, including cart, 1500 to 2000 lbs.

Ass. Will carry 100 to 200 lbs. 15 miles per day.

Camel. The Arabian, or Dromedary, has one hump on back, the Bactian of the Camel. Large animals will carry 1500 lbs. for 3 or 4 days, or 2000 lbs. for sore days, and 450 to 600 lbs. for a long march.

One has travelled 115 miles in 11 hours.

Elephant. Weight, 3 to 5 tons; weight one can carry about 1450 lb; as lbs. have been carried. Occupies 55 sq. feet; will travel on a good road at a mist 2.5 miles per hour for 6 hours.

Whales. Greenland Right, length 50 to 60 feet. Finner. 80 feet. Speed, sto 12 miles per hour. Extreme weight, 74 tons. IP estimated at 145.

Chimneys. Late experiments as to the draught of chimneys have designed the result that an increase of its area near to the top increases the draught

Cost of Maintenance of Street Railroads, 1876.

Average of 16 roads, 102 miles in length, with 1297 cars and 10300 km.

(H. Haunt.)

Cost per horse, and average number to a car eight.

Repairs of harness. \$ 4.06 Feed. 124.39 Replacing horses. 22.1	Shoeing
---	---------

Cost per month of each horse, \$18. On one of the longest railroads in the two York, on the least populous route, the daily cost per passenger, exclusive reral expenses, was 2.88 cents, and inclusive of general expenses 4.1 costs.

agnesia Covering for Steam-pipes and Boiler.

nents made by Burcau of Steam Engineering, U.S.X., developed in the control of t

100 | Sectional magnesia.... 103.07 | Sawdnah.....

APPENDIX.

River Steamboat. Wood Side Wheels.

Freight and Passenger.

CONA."—HORIZONTAL LEVER ENGINES (Non-condensing).—Length on deck, 10 ins.; beam, 43 feet 4 ins.; hold, 6 feet. Tons, 993.52.

results, beam, 43 feet 4 ties, how, 6 feet. I tone, 993-52.

sed section of light draught of 26 ins., 83 sq. feet. Capacity for freight, 1200 to lbs.).

lers.—Two of 25 ins. in diam. by 8 feet stroke of piston.

z.—Four of steel, 47 ins. in diam. by 30 feet in length, 6 flues in each. surface, 903 sq. feet. Grate surface, 98 sq. feet.

tre of Steam, 154 lbs. per sq. inch, cut off at .625.

 $_{tions, \frac{1}{2}}$ per minute. Speed, 10 miles per hour against current of upper 0.5 miles.

'o Compute Meta-centre of Hull of a Vessel.

Operation of Formula in Naval Architecture, page 660.

ne a sharp-modelled yacht, 45 feet in length, 13.5 feet beam, and 9.5 feet th an immersed annidship section of 42 sq. feet, and a displacement of 900 tat a mean draught of water of 6 feet.

$$\frac{2}{3} \int \frac{y^3 dx}{D} = Meta-centre.$$
 See pages 650, 659.

ates (dx) taken at intervals of 2.5 feet are as follows:

nation of function of cubes of ordinates for value of $\int y^3 dx = 5682.035$.

And
$$\frac{2}{3}$$
 of $\frac{5682.035}{900} = \frac{2}{3}$ of $6.31 = 4.21$ feet.

-The other elements of this vessel are:

of load-line, 401.12 sq. feet; Displacement in weight, 27.974 tons; do. at load-, 955 tons per inch; Depth of centre of gravity of displacement below load-19 feet; Volume of displacement, to volume of immersed dimensions, 26.8

ompute Height of Jet in a Conduit Pipe from a Constant Head. (Weisback.)

Constant Head. (Weisbach.)
$$\frac{h}{C+C'\frac{l}{d}\left(\frac{d'}{d}\right)^4} = \frac{v^2}{2g} = h', \text{ and } \frac{h'}{g} = h''. \quad h, h', \text{ and } h'' \text{ representing heights}$$

elocity of efflux, loss of head and of ascent, I length of pipe or conduit, and d diameters of pipe and jet, all in feet, v velocity of efflux in feet per second, C coefficients of friction of inlet of pipe and outlet, and z a divisor determined riment with diameters of .5 to 1.25 ins., ranging from 1.06 to 1.08.

TRATION.—If conduit pipe for a fountain is 350 feet in length, and 2^{-4} in, to what height will a jet of .5 inch ascend under a head of 40 fe ne C and C'. 8 and .5, h=25 feet, d=2 ins. = .166, and .5 = .5 \div 1

Then
$$\frac{25}{x + (.8 + .5 \frac{350}{.166})(\frac{.0416}{.166})^4} = 4.9 \text{ feet.}$$

To Compute Head and Discharge of Water in Pipes Great Length.

It becomes necessary first to determine the velocity of the flow, which i $\frac{4}{3}$. 1416 $\hat{d}^2=v=1.273$ $\frac{V}{4r},$ independent of friction. V representing volume of m cube feet, and d diameter of pipe in ins.

When head, length, and diameter of pipe are given,
$$\frac{\sqrt{2gk}}{\sqrt{z+C+c^{\frac{l}{d}}}} = z$$

Coefficients of friction C, for velocity of flow, range from .0234 to .0191 for velocity of flow, range from 3 to 13 feet per second, and c that for the pipe as a mean at .5. See We bach's Mechanics, Vol. i., page 431.

ILLUSTRATION. - What head must be given to a pipe 150 feet in length and 5 in diameter, to discharge 25 cube feet of water per minute, and what velocity it attain at that head? C=.024 and c=.5.

Then 1.273 $\frac{25 \times 12^2}{60 \times 5^2}$ = 1.273 \times 2.4 = 3.055 feet velocity per second, and

$$\left(\overline{1+.5}+.024\ \frac{150\times 12}{5}\right)\frac{3.055^2}{64.33}=2.5+8.64\times.14=1.21$$
 feet head.

Or, 4.72
$$\frac{\sqrt{d^3}}{\sqrt{l+h}} = V$$
 in cube feet per minute, and $.538 \frac{5}{4} \sqrt{\frac{l V^2}{h}} = d$ in int.

ILLUSTRATION. -- Assume elements of preceding case.

Then 4.72
$$\frac{\sqrt{3125}}{\sqrt{150 \div 1.42}} = 4.72 \times \frac{55.9}{10.28} = 25.67$$
 cube feet, and $.538 \times \sqrt[5]{\frac{150 \times 154}{1.42}} = .538 \times \sqrt[6]{9.67} = .538 \times 9.301 = 5$ ins.

To Compute Fall of a Canal or Open Conduit to Conduct and Discharge a Given Volume of Water pe Second.

Coefficient of friction in such case is assumed by Du Buat and others .007 565.

C $\frac{l}{A} \times \frac{v^2}{2g} = h$. h representing neight of fall, l length of canal, and p nd pairst ter, all in feet; A area of section of canal in sq. feet, and v velocity of flow in faper second.

ILLUSTRATION I. - What fall should be given to a canal with a section of 3 feets bottom, 7 at top, and 3 in depth, and a length of 2600 feet, to conduct 40 cube let of water per second?

$$C = .0076$$
, $p = 3 + (\sqrt{3^2 + 2^2} \times 2) = 10.21$ feet, $A = \frac{7 + 3 \times 3}{2} = 15$ sq. feet, $v = \frac{40}{15} = 2.66$ feet.

Then .0076
$$\frac{2600 \times 10.21}{15} \times \frac{2.66^2}{64.33} = 13.45 \times .11 = 1.48$$
 feet.

- - What is volume of water conducted by a canal, with a section of 4 feel 5 om, 12 at top, and 5 in depth, with a fall of 3 feet, and a length of 58co feet?

$$\frac{1}{2} \times 2g \ h = v$$
. $A = \frac{12 + 4 \times 5}{2} = 40 \ sq. \ feet, \ and \ p = 4 + (\sqrt{5^2 + 4^2} \times 2)^2$

$$\frac{40}{-800 \times 16.8} \times 64.33 \times 3 = \sqrt{\frac{40}{740.544} \times 193} = 3.23 \text{ fol.}$$

120.2 cube feet.

werse profile of a canal, see Welsbach, page 492,

AGNESIA COVERING FOR STEAM BOILERS, HEATED PIPES, ETC.

Robert A. Keasbey & Co., New York.

s covering is devoid of organic matter, hence it possesses great capacity ist a high temperature, combined with high rank in the order of non-ctors.

s furnished for pipes in the form of hollow cylinders divided longituy, and covered with canvas; for boilers, in blocks; and for covering ttings, filling floors, etc., in dry mass in barrels.

ADJUSTABLE-POP SAFETY-VALVES. (Crosby's.)

					INCHES.				
ter of Valve.	1	1.25	1.5	2	2.5	3	3.5	4	5
ty in IP	10	20	30	50	80	100	150	200	300

STEAM SIPHON. An Independent Lifting Pump.

Canacity for a Discharge Pine 2 Ins. in Diameter per Minute

er ra	ised.	Pressure.	Discharge.	Water	raised.	Pressure.	Discharge.
•	Ins. 6 2 2	Lbs. 30 40 50	Gallons. 63.54 85.71	Feet. 13 13	Ins. 2 2 2	Lbs. 60 70 80	Gallons. 119.68 138.44 157.57

DISTANCES, VELOCITIES, AND ACCELERATION.

'o Compute Velocities of an Accelerated Body.

 $\overline{+}$ (2 v'S), Or, $v+\overline{t}$ v' = V. v and v' representing original and accelerated es, and V final velocity, all in feet per second; S distance or space passed over, and t time in seconds. $\overline{v+V}=V'$. V' representing average velocity in r second. V' t=S, and 2V'-V=v.

STRATION I.—A body moving with a velocity of 10 feet per second, is accelertrate of 4 feet per second, per second, for a period of 6 seconds; what are its nt velocities?

10,
$$v'=4$$
, $t=6$.

1, 10 +
$$\overline{6 \times 4}$$
 = 34 feet final velocity. $\frac{10 + 34}{2}$ = 22 feet average velocity.

= 132 feet distance passed over. $\sqrt{10^2 + (2 \times 4 \times 132)} = \sqrt{1156} = 34$ feet, $\times 22 - 34 = 10$ feet original velocity.

$$\frac{\nabla - v}{t} = v', \quad \frac{\nabla + v}{2} \times t = S, \quad \frac{\nabla^2 - v^2}{2t} \times t = v'S, \quad v^2 + 2v'S = \nabla^2,$$

= t, and
$$\sqrt{V^2 - 2v} = v$$
.

A body is projected vertically with a velocity of 200 feet per second, and is ed at the rate of 30 feet per second, per second; what height will it have through when its velocity is reduced to 80 feet per second, and in what time?

Then
$$\frac{200 - 80}{30} = 4$$
 seconds. $\frac{80 + 200}{2} \times 4 = 560$ feet.

A vehicle being drawn with a velocity of 25 feet per second, is per second, per second; what is its velocity and time of operatio feet?

25, v' = 5, and V = 100.

Then
$$\frac{100-25}{5} = 15$$
 seconds. $\frac{100+25}{2} \times 15 = 937.5$ feet.

a supermitted of water, after nowing a distance of their feet, is assertance of a management of the control of a managementing research; it is set in the perfect of the or desired of the control of

Then to the second and the second are second

Fire the included r. Themes need according to the

Compared the second is recognized in the terminance. I present the fireman a regime of second in the control of

= 1 in these was and to be entired

t = la composta loggie una la lettrer

District the design sound of those loss on feet resource is remaind by name of the terms of the terms of the sound of the feet of the sound of the s

$$\frac{-i\pi}{2} = -z/2$$

ರ್ಷ. ಗರ್ಚಿತ ಕ್ಷಮಿಸಿ ಎಂದು ರಾಜಕಾಗಿ ಸಂಪರ್ಕಾಗಿ ಹೆಚ್ಚುಗಳು ಕ್ಷಮಿಸಿಕೆ

Fire territoria, i sua sua trapa que

Bangara of Walley

The second of th

📤 Intra

THE METERS IN THE THE WITHOUT IN MITTHEW THE METERS IN THE

Metric Factors. In addition to pp. 27-37.

By Act of Congress, July, 1866.

By French Metric Computation.

Measures.

Liter per cube meter = .007 48 gallons per cube foot ... | .007 48 gallons.

Weights and Pressures.

Zentimeter of mercury per sq. inch = .192 91 lb. per	
itmosphere (14.7 lbs.) = 6.6679 kilograms	6.6678 kilogra ms.
nch of mercury per sq. inch = 2.54 centimeters	
Ound per sq. inch = 453.6029 grams	453.5926 grammes.
ube foot per ton = .0279 cube meter	.0279 cubic metre.

Heat.

Velocity.

Power and Work.

$\texttt{Xilogrammeter}$ $(k \times m) = 2.2046 \times 3.28083$	7.233 foot-lbs.
Foot-pound = .138 26 kilogrammeters	.138 25 kilogrametre.
Kilogram per cheval = 2.2352 lbs. per H	2.2353 pounds.
3q. foot per IP = .091 63 sq. meter per cheval	.091 63 sq. metre.

Miscellaneous.

```
I Avoirs Lb. = .4536 kilogram.
I Ton = I.016 057 tonne.
I Sq. Foot = .092 903 sq. meter.
I Cube Foot = .028 317 cube meter.
I Cube Foot = .028 317 cube meter.
I Cube Foot = .028 317 cube meter.
I Cube Foot = .028 317 cube meter.
I Cube Foot = .028 317 cube meter.

= 26.8225 meters per minute.
I Cube Meter per minute = 7.848 cube yards per hour.
I "Yard " " 48.8718 " meters " "
```

Locomotive Brakes. $\frac{v^2}{64.4 J}$ and $\frac{V^2}{30 f} = distance in which a train is$

Pped. v and V representing velocity in feet per second, and miles per hour, and Proportion of resistance of brakes to weight of train.

Brakes, self-acting, on all wheels, f=.14. Ordinary hand, f=.023 to .031. As adding x in .5 resistance is f+2; descending x in .5 f-2.

Hydraulic Rams. Efficiency decreases rapidly as height to which water to be raised increases above the fall or head.

Number of times the height to which the water is raised exceeds that of the head the supply and efficiency per cent. (Walter S. Hutton, C. and M. E.)

Cimber ... 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 Eliciency .. 75 72 68 62 57 53 48 43 38 35 32 28 23 17 15 12 d Speed of water in pumps, 200 feet per minute.

To Compute Weight of Water at any Temperature

$$\frac{2 w}{\frac{T+461.2^{\circ}}{500} + \frac{500}{T+461.2^{\circ}}} = W. W \text{ and } w \text{ representin}$$
 ter per c

bot at temperature T, and at maximum density of 39

ILLUSTRATION.—Required weight of a cube foot of wa

$$\frac{\frac{62.425 \times 2}{60 + 461.2} + \frac{500}{60 + 461.2}}{500} = 62.37$$

Results of Experiments or Performances of Steam-engines and Boilers.

Cylinders, Cut-off, Vacuum, and Diameters in Inches, Revolutions per Mint, Pressure, Water, and Coal in Lbs., and Surfaces and Areas in Sq. In.

	HARRIS.	Cor	L188.	
ELEMENTS OF ENGINE.	Non-con- densing.	Con- densing.	Con- densing.	Botlers.
Cylinder	18×42	18×42	24×60*	
Revolutions	74.29	73.6	59.62	Diameter
Pressure in Pipe	58.5	76.37	92.88	Length 12
Cut off	4.74	7.94	18.02	Tubes 50 4
Mean effective Pressure	26.03	29.47	89.38	Heating Surface 1536.3
IP	105.47	115.43	270.58	Grate " 51-7
Friction IP	12.64	13.07	12.55	Calorimeter 1290.4
Net IP	92.83	102.36		Heating to Grate 29.7
Water per net HP per hour	18.59	25.39	_	Grate to Calorimeter. 54
Coal per do	2.34	3.18	_	Temperature of Feed. 14.7
Coal per IH per	2.07	2.82	1.98	Steam per Lb. of 8.3
Vacuum	21.83	-	26.4	Steam per Lb. of
Combustible per IHP per hour.	_	1.83	1.83	Coal per Sq. Foot of Grate per hour
Relative efficiency	_	•753	_	Steam per Temp. 2120 94
" Weight of engine, 40	000 Be.	† Steam p	er lb. of co	al 8.21 lbe., and evaporation 9 to 1

^{*} Weight of engine, 40 000 lbs.

74 ٧

7 15 'n

WINDMILLS. (Andrew J. Corcoran, New York) (Improved. Patented June and August, 1888; March and June, 1884) Volume of Water Pumped per Minute. From 10 to 200 Feet.

Diameter	VERTICAL DISTANCE FROM WATER TO POINT OF DELIVERY IN FEST.										
of Wheel.	10	15	25	50	75	100	150	200			
Feet.	Gallons.	Gallons.	Galions.	Gallons.	Gallons.	Gallons.	Gallons.	Gallon			
8.5	15.242	10.162	6.162	3.016		ł					
10	48.262	32.175	19.179	9.563	6.638	4.25					
12	86.708	57.805	33.941	17.952	11.851	8.485	5.68				
14	111.665	74-443	45.139	22.569	15.304	11.246	7.807	4.99			
14 16	155.982	103.988	64.6	31.654	19.542	16.15	9.771	8.075			
18	249.93	159.954	97.682	52.165	32.513	24.421					
20	309.604	206.403	124.95	63.75	40.8	31.248	19.284	15.93			
25	532.517	355.012	212.381	106.964	71.604	49.725	37 - 349	26.741			
~0	1080.112	728.828	430.848	216.172	146.608	107.712	74.8	54-043			

Velocity of Wind.

re over the United States, as determined by the Signal Service of the range miles per mouth, or about 8 miles per hour.

**determined that, to operate a windmill, there is required a

wind of six miles per hour.

: pressure of wind per sq. foot of surface in lbs.

senting velocity of air in feet per second, and

Compute Head in Lbs. per Sq. Inch to Resist Friction of Air in Long and Rectilineal Pipes, etc.

$$\frac{1728}{160''} = v; \quad \frac{V^2 L}{(3.7 d)^5 8_3.1} = H; \quad \frac{H (3.7 d)^6 8_3.1}{V^2} = L; \quad \sqrt{\frac{H (3.7 d)^6 8_3.1}{L}} = V;$$

 $\frac{\text{V}^2 \text{ L}}{\text{i}_3 \cdot \text{I} \cdot \text{H}} \div 3.7 = d$, and $\frac{a \cdot 60'' \text{ v} \cdot \overline{\text{P} + \text{H}}}{12'' \times 33000} = \text{IP}$. V representing volume discharged

ube feet per minute, L length of pipe in feet, d diameter of pipe in ins., H head

Pressure, both in lbs. and per sq inch, v velocity of discharge in feet per sec,
a area of discharge in sq. ins., and H horse-power of friction of air alone.

LUSTRATION.—Assume volume of air discharged 44 000 cube feet per minute, neter of discharge pipe 40.5+ ins. (say 1280 sq. ins. net), length of pipe 1000, and pressure at discharge 3.5 lbs. per sq. inch.

hen
$$\frac{44000 \times 1728}{1280 \times 60}$$
 = 990 feet, and $(3.7 \times 40.5)^5 \times 83.3$ =6 310406250000.

$$\frac{4 \cos^{2} \times 1000}{310 \cdot 406 \cdot 250 \cdot 000} = .3068 - lbs.; \sqrt{\frac{.3068 \times 6 \cdot 310 \cdot 406 \cdot 250 \cdot 000}{1000}} = 44 \cdot 000 \cdot cube feet;$$

$$/\frac{1936\,\infty\infty\,\infty\,\times\,1000}{83.1\,\times\,3068}$$
 $\div 3.7 = 40.5$ ins., and $\frac{1280\,\times\,60\,\times\,990\,\times\,3.5 + .3068}{12\,\times\,33\,000} = 5$ P.

lume of Enclosed Air at 0° that may be Heated by One Square Foot of Iron Heating Surface.

	He	ater	I	He	ater
Enclosure.	in Cellar	Room.	Enclosure.	in Cellar	in Room.
	Cub. ft.	Cub. ft.		Cub. ft.	Cub ft.
wellings	40	50	Large stores, average		110
tices	60	70	Hotels		125
ose stores	70	80	Churches	150	200

mmercial H of Chimney for a Given Diam. of Flue.

Healt of Chimney in Feet

1. 01	50	60	70	80	90	100	110	125	135	150	175	200	225	250	300
is.	H	FP	HP	IP	IP	H2	IP	IP	HP	H	IP	H	H	IP	HP
5	16	18	19		-	-	-	-	1	-	-	-	1000	-	-
10	84	92	100	107	113	110	124	-	_	-	-	-	-	_	-
5	-	-	250	270	288	305	321	345	353	385	-	-	-	-	-
5	-	-	-	330	370	405	438	465			560	-	-	-	
5	-	-	-	1	860	900					1185	1270	1345	1415	1480
0	-	-	-	0	-	1350									2190
ю	-	-	1-	P 3	-	1665	1725	1820							2645

r intermediate Diameters and Powers, take proportionate Diameters and Powers, Square Chimney deduct one-ninth to one twelfth of Diameter of Round, for Side

Friction of Water in Pipes. (Weisbach.)

$$\frac{865 \ l \ v^2}{d} \ C = h$$
. l representing length of pipes in feet, $v = \frac{183 \cdot 34}{d^2}$, or velocity

set per second, V volume of water in cube feet elevated per second, d diameters in ins. and C a coefficient, ranging from .069 when velocity — .1 foot, .03° vot, .0375 for 1 foot, .0265 for 2 feet, .023 for 4 feet, .0214 for 6 feet, .0205 ,.0193 for 12 feet, and .0182 for 20 feet.

LUBERATION.—Assume volume 225 cube feet, raised 25 feet per hour '12 ins. in diameter and 500 feet in length; how many feet of ver friction in the pipe be equal to?

Then
$$\frac{183.34 \times 125}{3600 \times 2}$$
 = 3.18 velocity, and C = .028.

since,
$$\frac{.1865 \times 500 \times 3.18^2}{2} \times .028 = 14.6$$
 feet, and $25 + 14.6 = 3$

Water Tube Boiler.

Proportions of Grate and Heating Surfaces of Water Tube Boilers, as Determined by an Extended Series of Experiments and Observations, with Different Fuels and at Different Localities. (1876 to 1884.)

(Committee of U. S. Centennial Exhibition and Individuals.)

Babcock and Wilcox Co. Water evaporated from and at 2120.

Duration	8	urface	s.		tible con- ned.	Coal per	Evapor	ration	
of Test.	Grate.	Heating.	Ratio.	Per Grate.	Per Heating Surface.	Grate per Hour.	by Com- bustible.	by Coal.	Ash per cent.
Hours.	Sq. Ft.	Sq Feet.	I	Sq. Feet.	Aq. Feet.	Sq. Feet.	Lba.	Lba	
8	44.5	1676	37.7	8.88	.256	1 '- I	12.131	l —	- *
120	50.7	1980	39.1	11.21	.26	12.99	11.62	9.71	13.7*
216	54.7	2148	39.1	12.22	.292	-	11.982	<u> </u>	- •
24	61.9	2760	44.6	8.22	.198	I - I	11.626	10.00	13.2*
22	59.5	2757	46.3	14.25	.307	9.93	11.43	9.98	12.9*
13.5	39.7	1680	42.3	5.8	.137	6.26	12.495	11.53	7.51
4	25	1403	56.I	12.41	.276	13.44	12.38	11.52	7 5
10.25	70	3126	44.7	18.15	.406	20	12.42	11.32	8.8*

Coals: * Anthracite, American. † Bituminous, Welsh. † Bituminous, Scotch. § Bituminous, Powelton.

A Galloway boiler of standard efficiency, at this exposition, having a ratio of helicons surface to grate of 25 to 1, and feed water at a temperature of 56°, gave the following results:

Consumption of coal, 8.87 lbs. per hour per sq. foot of grate. Pressure of stem, 70 lbs. per sq. inch. Water evaporated per hour per sq. foot of heating surface 3 lbs.; water evaporated per hour per sq. foot of heating surface in lbs. per lb of coal, 8.63 lbs.

Average Results of Thirty Tests at Different Locations and with Different Experts.

Coal consumed per hour per grate surface, 15. 028 lbs. Water evaporated from and at 2120 per hour per sq. foot of heating surface, 3.71 lbs.; water evaporated per hour per sq. foot of heating surface per lb. of combustible from and at a like temperature, 11 442 lbs.

Elements of a Comparative Test with a Return Fire Tubular Boiler. (W. Barnet Le Van and J. C. Hoadley.)

Water evaporated from and at 212° per lb. of combustible.—Water tubular, 11.25 lbs. Fire tubular, 10.571 lbs. Comparative economy by evaporation test, 6.47 per cent

Combustible consumed per IP per hour.—Water tubular, 4.321 lbs. Fire tubular, 4.648 lbs. Comparative economy by engine operation, 7.57 per cent.

*-ast heat in chimney. — Water tubular, 20.54 per cent. Fire tubular, 25.47 per Comparative economy, 7 per cent.

ring Arc Lights.—Combustible consumed: Water tubular, 4.6567 lbs. Fire 738. Comparative economy, 6.81 per cent.

I result was 7 per cent. in favor of the Water Tubular.

- Average evaporation from and at 212°: Combustible, 11.292 lks, From 100° and at 212°: Combustible, 10.96 lbs.; Coal, 10.67 lbs. of grate, 15.396 lbs. per hour.

ned by 20 tests and different coals, in excess of nominal rage moisture in steam 1.045 per cent.

coal with 12 per cent. of ash, 11.121 lbs. water emp

Amilysego gairatosluasm emos ni bebasmet ku sigiri to aciterego karimonoos teer kulua ens erelicol eeedt to besaltup

APPENDIX.

To Compute Area of Cylinder of a Steam-engine. Grate and Heating Surfaces of a Boiler.

When Required Power is Given.—It is assumed that IP of a steam-engine the ined by evaporation of 33.6 lbs water per hour, at a temperature of 212° from water at 100°.

Nors. — This is a deduction from the elements of the estimate as given by the Am. Soc. of : Engineers, in order to put temperature of the feed at 100° instead of 212°.

Non-condensing (Single Cylinder). $\frac{V \times 33.6 \times P}{60 \times 2 R \times 2 S \times 12} \times 1728 = area \text{ of cyl}$

in sq. ins. V representing volume of t lb. water at terminal pressure of steam in feet, P pressure of steam at termination of stroke of piston in lbs., R number of olutions per minute, and S stroke of piston in feet.

ILLUSTRATION.—Required H of an engine is 300, initial pressure of steam r exceed 70 lbs. mercurial gauge, cut off at 5 stroke of piston of 4 feet, and nu of revolutions 60 per minute. What should be areas of cylinder of engine and and heating surfaces of boiler?

Steam at 70 lbs. pressure, clearance in cylinder and steam passages = 1.8 i 25 foot, point of cutting of = $4 \div .5 = 2$ fiel.

Then (formula p. 711), $70 \times \{2+15 \div 4+15\} = 36.26$ lbs. terminal pressure steam at this pressure has a density or volume, which is its reciprocal (for P. 706) of 11.26 cube feet for each lb. of water contained.

Hence, $\frac{11.26 \times 33.6 \times 300}{60 \times 2 \times 60 \times 2 \times 4 \times 12} \times 1728 = 283.75 \text{ sq. ins., to which is to be } i$

for friction of engine and of load 10 per cent. = 312 sq. ins.

Inversely.—By ordinary formula area = 336 sq. ins.

Grate Surface — Evaporation of fresh water in an efficient marine boiler, flennerature of feed of 1000, is assumed, with a proportion of heating surfagrate of 30 to 1, to be, with a combustion of 20 lbs. coal per sq. foot of grate, and 10.3 lbs. per lb. of coal.

Hence, $\frac{\mathbf{E} \cdot \mathbf{P}}{\mathbf{L}} = area$. L representing evaporation per sq. foot of grate per ho

ILLUSTRATION. -- Assume elements of preceding, with evaporation as above.

$$\frac{33.6 \times 300}{213}$$
 = 47.32 sq. feet.

Heating Surface.—Then 47.32 × 30 = 1419 sq. feet area.

For the several types of boilers the following units should be used:

Tyrz.	Coal	30 to 1		11	to Grate 50 to 1 Grate per	. 1
	15	20	30	15	20	
Marine	164	214	314	183	242	Γ
Stationary	159	207	299	182	241	
Portable	132	174	257	145	187	
Locomotive	150	197	290	164	211	
" Coke	131	170	247	150	107	l

Units of Heat in Fuels.

Anthracite 14 500	Petroleum, refined
Bituminous 14 200	" crude
Petroleum, light 22 600	Coal Gas
" heavy 10 440	Water Gas

To Resist Oxidation in Cast-iron?

A costing of hot lime, which is much preferable to tar.

To Compute Relative Velocities of Steam Yachts, from Elements of their Construction, Capacity, and Operation.

Rule. — Multiply area of their grate surfaces by *Constant* due to the character of the combustion of their furnaces, divide product by cube rot of square of their gross tonnage (U.S.), and cube root of quotient will give their relative velocities.

Or, $\sqrt[3]{\frac{G}{T^{\frac{2}{3}}}}$ = V. G representing area of grate surface in eq. feet, T gross tonnage,

and C a constant, viz. natural draught 1. Jet or exhaust 1.25, and blast 1.6.

In the application of this rule, as alike to all others when there is material difference in the elements, as with large and small vessels, those that approach each other in general dimensions or capacities, as determined by certain ranges or limit of tonnage, should be classed together.

ILLUSTRATION. — The grate surface of a yacht is 27.5 sq. feet, her tonnage 71.24 and the combustion in her furnaces, jet.

Hence,
$$\sqrt[3]{\frac{27.5 \times 1.25}{71.24\frac{9}{8}}} = \sqrt[3]{\frac{34.75}{17.185}} = 1.26.$$

This result is an index of the capacity of the vessel, when compared with another in like manner.

Thus, assume one to be a fair exponent of her class, as from 40 to 60, 60 to &, or 80 to 100, etc., tons, and her speed to be 12 knots per hour, or 60 minutes.

If then a competitor possessed the elements that by the above formula would give a result of r.3, their relative capacities over a like course would be as r.26:r.3." 60: 61.9, and 61.9 — 60 = 1.9 minute = 1 minute 54 seconds, which is the time the yacht of greatest capacity would have to allow the other.

If the course was for a greater distance, as for 80 knots, than $\frac{80}{12} \times 1.9 = 12$ mm. A sc. the allowance.

For Large Steamers.

 $3.95\sqrt[3]{\frac{19}{8}} = V$. 8 representing area of immersed amidship section in sq. meter.

NOTE.-A sq. meter is 10.764 sq. feet.

This formula is used in Europe, and is applicable only for vessels of great capacity and with a blast combustion.

Simple Water Tests.

For Hard or Soft Water.—Dissolve a small quantity of soap in alcohol. Puta 'rops of it in a vessel of water. If it becomes milky, it is hard, if not, it is soft.

Farthy Matters or Alkali.—Dip litmus paper in vinegar, and if on immersion the paper returns to its true shade, the water is free from earthy matter Syrup added to a water containing earthy matter will turn it green.

**** Acid.—Take equal parts of water and clear lime-water. If com-"monic acid is present, a precipitate is produced, to which, if a few "cid be added, an effervescence occurs.

All the water to a twentieth part of its weight, drop a few grains of ammonia and a few drops of phosphate of soda into it, and t will precipitate to the bottom.

"ttle nutgall and mix it with the water; if it turns gray or ".—(2.) Dissolve a little prussiate of potash, and mix it seent, it will turn blue.

f water put two drops of oxalic acid and blow upon it went.

rus paper in it. If it turns red, it is acid. If is acid. If a blue paper is turned

TOBIN BRONZE. (Hot rolled.)

sonia Brass and Copper Co., New York, N. Y., Sole Manufacturer.

ific gravity 8.379. Weight of a cube inch .3021 of a lb. Tensile th 1-inch round rod 79600 lbs. per sq. inch. Elastic limit 54257 lbs. inch.

ngation in a rod 1 inch in diameter and 8 ins. in length 15.4 per Reduction 37.26 per cent.—Fairbanks.

addily forged into bolts and nuts at a dark-red heat, Torsional strength astic limit equal to machinery steel.

Torsional Strength.

.5 inch in diameter and 1 inch in length, load at end of lever 1 foot. sion 2.67°. Elastic limit 328 lbs. Rupture 633 lbs. Torsion point ture 92.2°.—J. E. Denton.

shing Strength, maximum, 181 000 lbs. per sq. inch.

Plates.
Weight per Square Foot.

355.	Weight.	Thickness.	Weight.	Thickness.	Weight.	Thickness.	Weight.
	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lbs.
5	2.72	·4375	19.03	.8125	35-35	1.1875	51.66
	5.44	-5	21.75	.875	38.06	1.25	54.38
5	8.16	.5625	24.47	•9375	40.78	1.3125	57.1
_	10.88	.625	27.19	1	43.5	1.375	59.82
5	13.59	.6875	29.91	1.0625	46.22	1.4375	62.53
-	16.31	.75	32.63	1.125	48.94	1.5	65.25

Bolts and Rods. Weight per Lineal Foot.

Γ.	Weight.	Diameter.	Weight.	Diameter.	Weight.	Diameter.	Weight.	Diam.	Weight.
_	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lbs.	Ins.	Lbs.
	.177	-75	1.6	1.5	6.42	2.5	17.8	4	45.57
	.279	.8125	1.88	1.625	7.5	2.625	19.6	4.25	51.44
	-399	.875	2.18	1.75	8.7	2.75	21.53	4.5	57.64
	-544	-9375	2.5	1.875	10	2.875	23.52	4.75	64.24
	.711	I	2.84	2	11.38	3	25.53	5	71.16
	.899	1.125	3.6	2.125	12.87	3.25	30.05	5.25	78.46
	1.11	1.25	4.46	2.25	14.43	3.5	34.86	5.5	86.11
	1.34	1.375	5.36	2.375	16.06	3.75	40.01	6	102.4

supplied in the form of Round, Square, and Hexagon bars; Plat. Wire, and Finished Piston Rods.

ng to its great strength and non-corrosive properties it is extensive bolts, etc., for Marine and Naval machinery, Sugar-houses, ries, Pump rods and Pump linings, Condenser tube sheets, Yacht h shafting, etc.

p Forgings of every description.

ights of Steam-engines and Boilers with Per Indicated Pr in Lbs.

int Steamer	480 L	Torpedo Boats
Vavy "	360	Marine Boilers
oats	280	Locomotive "

Weight and Strength of Ordinary Stud-Link (20)

Dime	nsions of I	ink.	Weight	Admiralty Proof-	Dime	nsions of I	lnk.	Weight	200
Diam.	Length.	Width.	Fathom.	stress.*	Diam.	Length.	Width.	Fathers.	100
Ins.	Ins.	Ins.	Lbs.	Lbs.	Ins.	Ins.	Ins.	Lite	Ih
-375	2.25	1.35	7.55	-	1.375	8.25	4.95	TOL.0	58
-4375	2.625	1.575	11.3	7 840	1.5	9	5-4	121	9078
.5	3	1.8	13.4	10080	1.625	9-75	5.85	142	70
.5625	3.375	2.025	17.2	12 320	1.75	10.5	63	264.6.	145
.625	3.75	2.25	21	15 680	1.875	11.25	6.75	109	14(8
.6875	4.125	2.475	25-4	19040	2	12	7.2	215	rice
	4.5	2.7	30.2	22 680	2,125	12.75	7.65	2428	123
·75 .875	5.25	3.15	41.2	30 800	2.25	13.5	8.1	270.2	517
1	6	3.6	53.8	40 320	2.375	14.25	8.55	303.2	100
1.125	6.75	4.05	69	50 960	2.5	15	9	330	1
25	7.5	4.5	84	63 000	2.75	16.5	9.9	405.6	347
				* Adopted l	by Lloyds		1000		

Note 1 .- Safe Working-stress is taken at half the Proof-stress.

Proof-stress and Safe Working-stress for close-link chains are respective-thirds of those of stud-link chains.

3.—Average Proof-stress is 72 per cent. of altimate strength, or 1700 lik pt into 6 section of both sides. Safe working stress is half the proof-stress dilbs. per sq. inch of section.

Weight of close-link chain is about three times the weight of the bar from all it is made, for equal lengths.

4. - Ultimate Strength per sq. inch of section of metal is 35 000 lbs.

Comparing the weight, cost, and strength of the three materials, hemp mans and chain iron, the proportion between the cost of hemp rope, wire rope and is as 2: 1: 3; and, therefore, for equal resistances, wire rope is only half the of hemp rope, and a third of the cost of chains. (Karl von Ott.)

Height and Retrocession of Niagara Falls, (J. A.

1875. Acceded.—American 160 " Lake Survey. 1886.—Average retrocession 2.5 feet per annum (Woodsograf).

200 feet in 11 years, and 9 feet per year in 42 years. Descent of the river below 15 feet per mile.

Bridge.-Over Oxus on Caspian sea, 6230 feet in length

LENGTHS OF ENGLISH RACE-COURSES.

Course.	Mile.	Course.	Miles.	Course 1
NEWMARKET Across the Flat Beacon Cambridgeshire Cossrewitch Round Rowley Mile Summer Course Two year old, new Yearsing	4.206 2.136 2.266 3.579 1.009 2	Fitzwilliam. Red House. St. Leger Cup Course. SPSOM. Craven. Deelve and Onke	1 1.825 2.634 2.45	Cop Course

Railway Speed in England.

1883. — North Western Reilway. To Crewe, 152.5 miles in 178 mineus of a 8100.

Californiam. Carrisle to Elimburgh, 200 75 miles, including to make a feleration of x in So, in 104 minutes.

Loads per Sq. Foot from 100 Lbs. to 300 Lbs.

						•	•								
		100			1001	98		2002	1.08.		250 L	Lbs		300	ğ
SPAN.	Depth Weigh	Depth and Weight Der Yard.	stance.	Depth and Weight Dist	ard, and	Distance.	Denth and Weight per Yard.	ard.	Distance.	Depth and Weight per Yard,	erd.	Distance.	Depth and Weight Dista	P P P	Distance.
F. 86.	ā	Į.	Feet.	Į.	Ľļe.	Feet.	Ins.	43		Ins	Lbs	1	In	į	Feet.
~	+	စ္တ	9.	+	8	3.1	ın	ይ	e	9	ę	3.9	9	\$	3.8
, ,	'n	ይ	5.9		8	+	9	Ç	* *	۰	ይ	4.7	'n	ይ	3.0
10	10	ဇ္တ	3.8	۰	\$	1.4	9	đ	ю	۰	જ	8	2	55	3.3
- -	'n	Q	8	•	ያ	50	۰	လ	3.7	7	55	+	∞	ş	4:4
12	۰	\$	4.2	۰	20	3.4	7	55	3.4	∞	65	3.6	∞	65	8
~ 	9	જ	5.3	,	55	9.4	∞	65	4.5	٥	ደ	4.5	6	2	8.
74		55	15		55	3.3	∞	65	3.3	٥	٤	3.3	6	%	3.3
 !	∞	65	6.7	∞	5	4.5	6	2	.	10.5	8	ın	10.5	8	4.2
<u>,</u>		65	10		65	3.3	6	83	3.7	10.5	8	3.8	10.5	TOS	3.6
~ ₽	6	٤	6.3	٥	2	*	10.5	8	4.7	10.5	105	4.3	12.25	125	8:
<u> </u>	6	2	6.4	6		3.9	10.5	ros	4.4	10.5	ros	3.4	10.5	135	3.6
~ ٩	6	8,	6.5	10.5		6.4	12	8	9.	12.25	125	4.5	12.25	125	3.7
5	10.5	8	9	10.5		4.5	10.5	105	3.4	12.25	125	3.6	12.25	125	m
~ 8	1	. 1	!	12.25		•	12.25	125	**	12.25	170	6.4	15	35	+:+
<u> </u>	10.5	8	4.9	12		+	12.25	125	3.7	12.25	125	m	12.25	170	3.3
~ 8	10.5	205	2.6	12.25		4.9	13	125	4.5	15	125	3.6	13	150	3.6
``	2	%	w	12.25		1.4	12.25	125	ю	12.25	170	3.3	13	150	٣
₹	12.25	125	6.1	12		'n	13	150	4.5	13	150	3.6	15	8	4. x
_	12.25	125	5.1	T.	125	4.3	I.S	150	3.8	r S	35	m	15	8	3.5
~ %	1	I	1	15	150	5.I	15	8	5.2	15	8	4.2	8	8	4.7
~	2	125	5.5	I.	150	4.3	15	8	4.4	15	8	3.5	8	80	3.9
90	1	l	1	15	8	5.9	8	8	9	8	8	↔	8	272	5.3
`	13	150	2.6	15	150	3.7	15	8	3.8	8	8	¥.¥	8	8	3.4
~ @	1	I	1	15	80	5.1	8	8	5.3	8	273	5.5	8	272	4.6

Niagara River Power.

al through which the water is to be drawn commences at a distant above the Falls. The water-storage of the river is computed at ies, viz., 37 620 of lake and 241235 of shed. The annual rainfall b

ng the rainfall to be but 30 inches, the flow over the Falls would be per second. The Lake survey computes it at 265000 cube feet. designed to be used by the company constructing the canal is 1200 and corrected determination of levels gives Lake Ontario 246 and Lai above mean tide at oity of New York.

Height of Towers, Spires, etc. (Additional to page 180.)

Tower, Paris 984.3 feet. dral, Rouen 492 "	Cathedral, Strasburg 46 City Hall, Philadelphia 53
--	---

ith and Meridian Distance and Altitude of at New York. C. H. (Lat. 40° 42' 44".)

8 21st, Zenith distance... 17° 15′ 44″ Dec. 21st, Zenith distance... 64° Meridian altitude. 72° 44′ 16″ Meridian altitude. 25° 5

Water-pump.—First in use 283 years B.C. Rotating introduced in atury. Plunger pistons invented by Morland (England), 1674. Double active (France).

Symbolic Hatching and Designations.

As adopted by Engineer Department, U. S. Navy.

sults of Experiments on Operation of Steam-Engine. (C. E. Emery, M. E.)

Condensing.	Non-Condensing.		Non-Condensing.
ler 16 × 42 ins.	18 × 42 ins.	Cut off 189	.189
ıre 81.69 lbs.	73.37 lbs.	IP 78.79	115.43
mean effective. 31.06 "		Friction IP 10.09	13.07
utions per min 60.3	73.6	Net HP 68.7	102.36
ter per net IP per hour in lb	8	29.231	25.39
		3.25	2.82
per IP per hour in lbs			3-44
ative efficiency per steam			i
" coal		805	I

Safety Valves of Steam-Boilers.

lers operated at a low pressure of steam require proportionately larger safety is than when operated at a high pressure. Thus: If steam at 20 lbs. pressure I inch is raised to 30 lbs., a valve nearly one half more capacity is required; raised from 100 lbs. to 110 lbs., a valve of nearly one tenth more capacity is ed.

alting. Double belts will transmit one and one half times the power of

le belts are less effective per unit of area than narrow. Long belts are more ve than short. Driving belts may be driven at a velocity of 3500 feet per min-Lathe belts from 1500 to 2000 feet. Economy of wear requires less velocities.

Non-Conductors of Temperature.

Their Comparative Efficiency.

ials in Italics are wholly free from Carbonization or Ignition from slow contact with Boilers or Steam-pipes.

following Materials were used as Covering to a Steam-pipe 2 Ins. in Diameter.

ls of Water Healed 10° per Hour through One Square Foot of the Material.
(J. M. Ordway.)

ial z Inch in Thickness.	Lbs.	Relative Solidity.		Lba.	Relative Solidity.
sol, loose athers of live geese. mp black, loose it of hair. iton wool, carded mp black, compressed aerooal of cork ugnesia, calcined)	8.1 9.6 9.8 10.3 10.4 10.6 11.9	.56	13. Anthracite coal pow-} der	35·7 42.6 48 49 62.1	5.06 2.85
and loose	13.7 13.9 15.4 30.9	.6 1.19 1.5 3.68	threads of t 19. Paper		

ow of Several Rivers. Minimum In Cube Feet per Minute.

wrence, at Brockville, Ont., ; stippi, at St. Pauls, Minn stiout, at Holyoke, Mass	z 8 000 000.	Seine, at Park
mippi, at St. Pauls, Minn	2000 000.	Mohawk, at Co
otlout, at Holyoke, Mass	300 000.	Thames, at L
at Pittsburgh, Penn	100 000.	Chicago, at C.

Illinois. at La Salle, Ill. 36000

Standard U. S. Weights and Measures. (U. S. Coast Survey.)

Inch to Millimetres,	Foot to Metre.	Yard t Metre	Mile (Kilomet	res.	detre to Inches.	Metre to Feet.	Metre to Yarda.	Kilomet to Mile
25.4	.304 801	.9144	1.609	35	39 · 37	3.28083	1.09361	.6213
Chain =	20.1169 1	metres.	Fathom Knot =				mile = 259	hectares
Inches to	Feet to		to Acre	quar to Ce	entimetre	Metre t	Metre to	Hectan to Acre.
6.452	9.29	.83		-	.155	10.764	7.0.50	2.471
		72	Volum	me	(Fluid			,
Dram to Milli-	Ounce to Milli-	Quart to Litre.		Milli- litre† to Dram.	L	tre Litre	litre to	Hecta- litre to Books
3.7	29.57	.946 36	3.785 44	.27	.33	1.05	67 2.6417	2,8375
				Cube				
Inch to Centimetres.	Foot to Metre.	Yard t Metre			ntimetre Inch.	Decimetre to Inches		Metro to Yarls.
16.387	.028 32	.765	-3524	2	.061	61.023	35-314	1.30
			W	Veigh	t.			. 1
Grain to Milligrams.	Av. Ounce to Grains.	Av. Pound Kilogran	to Tr. Out	ns. Mi	Iligram Grain.	Kilogram to Grains.	Hectogram ;	Kiloguan to Poznik
64.7989	28.3495	-453 5	31.103	48 .0	15 43	15 432.36	3.5274	2,2046
Quintal i	to Av. Por	nds, 220 Pound =	.46. Tor	nnes §	to Av. I	Pounds, 2 Kilogram	204.6. Gm = 15 432.356	ms to It
	The U. S.	yard is	equal to				itish gallon:	- 4
Value	of the Metre (C	e Me	tre in ter he U. S. C Authority.	rms of oast an	the Br	itish Imp etic Surv		and of the Tittment
Hassler.	milio.		.,,,,,,,			39.380		369.94
Hater	and the last					370 369 370	678 39. 432 39.	3699 36973 3697 36984
		Single Park	6			3	Iean 39-	3698
		level Y	alley o	f the	e Jor Peary.)	dan.	Portions of	these are
1			1501				old and silv	- 1
			- dr	Wood Table (column dw aad	steog vo e. En set wit	set in earth	n opposit

‡ roo Grams.

Miscellaneous Operations.

move Paint. Apply chloroform.

store Color of a Fabric. When destroyed by an acid, apa to neutralize it, and then chloroform.

ware. Warm, and cover with a mild solution of collodion in alcohol. vith a soft brush.

rames. To restore, rub with a sponge moistened with spirits of

:ain. On silver, rub with salt.

tust. To remove from white fabrics, saturate the spots with lemonlt, and expose to the sun.

ains. Wash with pure fresh water, and apply oxalic acid. If this stain to a red color, apply ammonia.

rs on Brick. Apply oyster-shells on the top of a clear fire.

Antidotes for Poisons.

Additional to page 185.

d Wine or Tartar Emetic. - Warm water to induce vomiting.

r Fowler's Solution. - Emetic of mustard and salt, a tablespoonful. , sweet-oil, or milk.

-Oil of vitriol, corrosive sublimate, sugar of lead.

ada or Potash, and Volatile Alkali. - Drink freely of lemon - juice or ater.

lcid.-Flour and water, and glutinous drinks.

of Soda, Copperas, or Cobalt. - Administer emetic; soap or mucilagi-

a. - Apply cold water to head and face, artificial respiration, and galv.

1. Morphine, or Opium. - Administer strong coffee, mustard flour, butter rm water, and exercise.

or Oxalic Acid. - Give magnesia mixed, and soap dissolved with fresh

Silver. - Salt in water.

f Zinc or Red Precipitate. - Give milk or white of eggs copionsly. Acid. -- Aqua fortis.

.-Emetic of mustard or sulphate of zinc, aided by warm water.

Motive Power of the World. Steam-engines. In Horse-Power.

8.... 7 500 000 | Germany...... 4 500 000 | Austria 1 500 000 | 7 000 000 | France...... 3 000 000 | Other countries. 19 000 000

Steam-boilers in Foreign Countries.

uding Locomotive.. 51 390 | Germany 60 700 | Austria 120

Locomotives in Foreign Countries. 7000 | Germany... 10 000 | Austria.... 2800 | Other

engines of the world represent the power or work (Bureau of State

estructive Stress of Belting. (Ho

In Lbs. per Sq. Inch.

	Maxi- mum.	Minimum.	Exten-	Material.	Max mus.
_	Lbs.	Lbs.	Inch.		Lbe.
r.		2850	.018	Rubber	3886
./	6750	3000	. 18	Cotton belt's	

* At 400 lbs. per sq. inch.

Largest Constructions and Natural Formations

New Opera-House, Paris.—Covers 3 acres, and has a volume of 4 257 coc feet.

Popocal apett, Highest active Folcano, Mexico.—Has a crater one mile in dismand roce foot in depth. (See p. 182.)

Polegraph Wire over river Kistnah, India. — 6000 feet in length and 1000 lett elevation. (See p. 170.)

Chinese Wall, Built 220 B.C. (See p. 170.)

Lambert Coal Mine, Belgium .- 3400 feet in depth.

Mammoth Care, Kentucky .- Some of its chambers are traversed by missibranches of the subterranean river Echo.

St. Golbard Pannel.—Its summit is 900 feet below the surface at Andersol, 6000 feet below the peak of Kastlehora. (See p. 279.)

Bibliothique Nationale, Paris.—Founded by Louis XIV., contains reconstitutes, person pumphilets, 175 con MSS., 300 con maps and chartis, and 130000 made and oredata. Engravings 1 200 cone, contained in 200 orderings, and 700 con pumb

Don't of Sahara, Africa. - Length 3000 miles, average breadth 900 miles, a average breadth 900 miles.

Pyramid of Cheque, Egypt. - Volume of musoury SqueS coo cube fast, weight stone committed at 6 are constituted in the contract of the contract

Roll, Mosrow. - Circumference at base 68 feet, height ag feet. (See n. sh.)

Brickgross.* Rinda Venice.—A single arch of marble, 98.5 feet in bughl Orline Supermine, Bristol, Eng.—Spin 705 feet, elevation may first

0

Dyn

Elen

by pa

Electr

Electr Engre

Gas -

Glass.

Horses

Hydro

Hydre

19871 88

Kaleis

Life-b

Match

Mirro

Ouni

Organ

Paper

Pent.

Piene

Photo

Past

Prin

Rei

Beu

84

7

Ningina Sugnession, U.S.—Cathlerers, of seed, length fire-feet. Elements the regula see feet.

Politonia, England,-usus feet in length, and elevation nes feet.

First, Prith of Forth, Scotland.—Longth Sogle, 5 feet, exclusive of a country, 5 feet. Two Care inver spors of type feet earth. Fires 356 feet and at Rendway 135 feet in the dear above water. Iron and steel 50 cc tous. Lot account tous.

From Scothard. - Longth e miles, Es piers, and elevation - feet

Columns or Pillars.

When a colours or pillar is without its vertical line, one with sight and costs becomes capable of greater resistance than one with square and

Experiments at the G.S. Arsena at Waterroven, Sixts., developed a few resistance of Uniter, to transverse compression or crusting we describe resistance to longitudinal compression, and hence, that the existing of the boat of a finiter column, should proportionately excess the description.

Spann-empine Noves.

These power it Seminal — is usually computed from the volume of problems of from the collector. Its measure for an ordinary non-computed above is on its actual power. In robers more to the dimensions of a secondary

Policioni.—It the ressore of the force current by an engine, and ten to be declared by tracks, fraction of its parts, and of its remnesting pure and at the current of the parts.

Note that - inducing a transplace or or to so he of ware or many

This of the writing consumption of their map be taken at 3 has per 2 to be considered upon and 5 has fore residences.

district on to 15 sq. bot of housing scritters, or on the 15 of grain scritters in normal diseases, write pro-seco IIP.

From (1. Steen. The related per fit in the part would may be determined in Steen in the property of the period of the square real of the same of the property of it is degrees, and the The Steen to the same in the period property of the period of the peri antic and Pacific Oceans. There is not any difference in the vels of these Oceans at Aspinwall and Panama, as determined by Geo. M. who constructed the Panama Railroad.

Origin and Period of Great Inventions.

See also Chronology, pp. 71, 72, 915.

ngine.—Amonton, 1699. Stirling, 1827. Ericsson, 1855. ump. - Otto Gueriche, 1650. Anemometer. - Walflus, 1709. on. - First, Lyons, France, 1782. Barometer. *- Torricella, 1642. ry.—Electric, 1745; claimed by Kleist, Cunæus, and Muschenbroch. tes (Suspension). -Of chains, China, 100 B. C. nets.—At Bayonne, 1670. Socket bayonet, 1600. -In Christian church, 400; in France, 550. Bellows.-Egypt, 1400 B.C. mer Steel.—Sir Henry Bessemer, 1856. Blankets. *- England, 1340. ing. —Germany, 1620. Bullets .- Of stone, 1418; of iron, 1550. Printing.-Egypt; introduced in England 1606. ra Obscura.-Roger Bacon, 1214; Newton, 1700; Daguerre, 1839. Cannon. -1118; England, 1521. les.—Of tallow, 1200. iages.—Vienna, 1515; England, 1580. s.*-To strike, by Arabians, 800; by Italians, 1200. *-1184 B.C.; China, 1200 B.C.; Rome, 576; England, 1101. xass.*—China, 2634 B.C. Cotton Gin.—Whitney, 1793. ng.-1400 B.C. Prussian Blue, Berlin, 1710. mite. - Sobrero, 1846; Nobel, 1867. ric Discoveries. *- Leyden Jar, Cunæus, 1746; Electric Light, Davy, 1800; tent of it, Greene & Staite, 1846. ro-Magnetism. — Oersted, Copenhagen, 1819. rotyping. - Jacobi of Russia and Spencer of England, 1837. aving.—China, 1000 B.C.; on metal, 1423; line or steel, 1450; etching, 1512. -Murdock Cornwall, 1792; Meter, Clegg, 1807; Dry meter, Malam, 1820. .*-Egypt. 1740 B.C. Windows, France, 12th century. Leaf.—Egypt, 1700 B.C. Gunpowder.—Unknown; rediscovered 1324. *shoes. - 300; of iron, 480. culic Press.—Bramah, 1796. Hydraulic Ram.—Whitehurst, 1772.

ogen.—Isolated by Cavendish, 1766. Iron Vessels.—J. Wilkinson, England, hip, 1821; Steam-boat, 1830; Ship building, 1833. idoscope. - Sir Daniel Brewster, 1814-17. Knives. - Table, England, 1550. beat. -1817. Lithography. - Senefelder, about 1796. motive. - Watt, 1769 and 1784. Cugnot, 1769. her. - Friction, 1829. Medicine. - From Greece, in Rome 200 B. C. wrz. - Glass, Venice, 13th century. Newspaper. - First authentic, 1494. Mus Paris, 1827. -755. England, 951. Oxygen.—Priestley, 1774. From silk, China, 120 B.C.; from rags, Egypt, 1085. 4-Of steel, 1803; gold, 1825. Pencils.-Of lead, 50. Eng. Fra -Italy, 1710. Phonograph. - Edison, 1877. prest. England, 1802; perfected, 1841. Pottery. -Old les.—Vienna and Brussels, 1516. Stamps.—England Types, L. Coster, 1423. ed. *_Passenger, England, Sept. 27, 1825. machine.—Patented, England, 1755. ■.—1858; Pullman, 1864. Soap.—England, 16th c -Italy, 15th century. Bell and C. J. Blake, Boston, 1874.

* to D. Bushnell, 1777.

Values of some Precious Metals.

Per Pound Trou

Gold	250 Platinum	\$ 590 Rhodium \$45 102 Ruthenium 975 25 Silver * 11
	* Variable.	

Expenditure in England for Various Purposes and of Articles Compared with that of Spirituous Liquors.

In Millions of Pound Sterling.

Missions	Tea, Coffee, etc 20	Woollen Goods 🌶
Education 11	Sugar 25	Bread #
Fuel for Households 15	Milk	Rents
Linen and Cotton 20	Butter and Cheese 35	Liquors
		•

Aluminum.

Elastic limit of bars in tension 14000 lbs. per sq. inch. Specific heat .2185. Mat 1400°. Malleable at from 200° to 300°.

Tegsile strength, ultimate, 26 000 lbs. Modulus of elasticity, 12 000 000.

Shrinkage. 0.22 per linear foot. It is comparatively unaffected by exposure to or water. Specific Gravity. 0.926. A cube foot weighs 160.013 lbs.

Linear expansion 32° to 212° 0.000 020 6.

(Continued on page 976.)

Bushels of Seed Required Per Acre. In Bushels per Acre.

Beans	Grass, blue	Pease2.5 "Potatoes.5 "IRice2 "Rye1" Turnips06 "
" Indian25 " r	Mustard25 " .625	Wheat "

Tee also page 103.

Domestic Remedials.

- -Discharged by an acid, can be restored by Ammonia.
 - -Carbolic Acid (20 drops), evaporated on a hot surface, as a shovel,
 - remove stains from a white fabric, wet with Milk and cover with Salk.—May be discharged by Buttermilk.
 - *amphor Gum, vaporized over the chimney of a gas-burner or last
 - re them off, apply Chloride of Lime to their locality.
 - he noxious effects removed by Chloride of Lime.

Remove patient to a cool place, administer water freely, a soda.

ve Values of Food for Sheep

Wool and Tallow Produced.

Wool. Ta	llow.	FOOD.	Wool.	T-More
78. 778. 778. 778. 778. 778. 778. 778.	.7 Buckwhe	l. wet	36 .3	19 55 TE 0

Croton Aqueduct. New York, 1890. Dimensions, Length, and Capacity.

Pipes to Central Park reservoir, 2.37 miles in length.

Tunnel under Harlem river, 307 feet below tide-water level.

Course.—From Croton Lake, 550 feet above the Dam, and runs generally Southerly, ough Westchester Co. and the 24th Ward of New York, to a point 7000 feet N. of ome Park, with a uniform inclination of ... 7 feet per mile; its general form, that a horse-shoe with curved invert; being 13.33 feet in height and 13.6 feet in dth; having a computed capacity of 318 millions of gallons per day. From ence, where it is contemplated to construct a large reservoir, for the supply of annexed districts of the city, to its termination at 135th Street and 15th Avenue, capacity is reduced to 250 millions of gallons per day, and the Aqueduct which in there is to be operated under pressure, is circular in its section, 12.3 feet in ameter, with varying inclinations, the portion under the Harlem river being 5 feet.

From r35th Street it is connected to r2 cast-iron pipes, 48 ins. in diameter, 4 of lich connect with the old Aqueduct, 4 with the present City distribution, and 4 ding through Couvent, (5th) and 8th Avenues to the Reservoir in Central Park. e operating capacity of all being equal to that of the Aqueduct, 250 millions of large.

he Aqueduct is for the greater portion of its length a tunnel, it raising to the face but at four points, from which it can be emptied through gates into the acent rivers.

apacity.—The water-shed of the Croton, in extreme dry weather, with storage, 50 million gallons per day.

he present storage system includes Croton Lake, Reservoir at Boyd's Corners, middle branch Reservoir of the Croton valley, and several lakes, with a total acity of rocoo million gallons: three dams being in progress of construction and ers contemplated, viz., one at Carmel and one at Quaker Bridge.

The Capacity of the Reservoir in Central Park is computed at 1000 million gallons.

Ice.

Additional to p. 195.

1.5 ins. thick will support a man; 5 ins., an 84-lbs. cannon; 10 ins., a body of en; 18 ins., a railroad train.

Yield of Oil in Seeds. Per Cent.

 Lape
 55
 Mustard, white
 37
 Oats
 6.5

 Limond, sweet
 47
 Hemp
 19
 Clover-hay
 5

 Linseed
 17
 Flour-wheat
 3

 Linseed
 17
 Flour-wheat
 3

 Linseed
 7
 Barley
 25

Historical Events and N

Australia.- Discovered 1622.

Ranana.—Produce per acre 44 times greater

Camels.—Some can travel 800 miles in 8 days.

Calmombs.—Of Rome, remains of 6 000 000 bot 1,—Authentic history of it, 3000 B.C. C

my of Alexandria—47 B. C. contained 400

-Steel, consumption 4 000 000 per day.

*de reached by Explorers
The distance from this to the

Facts.

"imes gr

Influence of the Rotation of the Earth on Moving Bodies.

The Rotation of the Earth on its axis effects an appreciable displacement of the rails in a line of railroad.

In the case of an express train weighing 400 tons, running N. at the rate of p miles per hour, the pressure on the right hand or Eastern rail is computed at at lbs., and with a steamer, alike to the Inman Line "City of New York," the presure is computed at 936 lbs. This lateral force increases to the Poles. (T. For Eastern)

Bacteria in Earth-soil.

In Virgin soil; soil from beneath Roadways; from Gardens; adjacent to Factoria; from Courtvards and Cemeteries.

Depth below Surface.	Germs per Cubs Centi- meter.*	Depth below Surface.	Germa per Cuba Centi- meter.	Depth below Surface.	Germs per Cube Centi- meter.	Depth below Surface.	Germs per Cube Centi- meter.
Meters.	No. 124 800	Meters.	No. 750	Meters.	No. 64 200	Metres.	No. 590

.061 022 cube inches.

The number very rapidly decreases in the deeper layers of the earth, both wirgin soil and in that which has been polluted. (John Reimers.)

Water-meters.

Worthington's. New York.

Diam. of Re- ceiving Pipe.	Volu deliver Min	ed per	per ceiving delivered per Minute.		ed per	Diam. of Re- ceiving Pipe.	Volu deliver Min	ed per	Dism. of Re- celving Pipe.	Volt deliver Min	ed pr
Ins. .625	Cube ft.	Galla, 11.25 22.5		Cube ft.	Galls. 37·5	Ins. 2 3	Cube ft. 8 18	Galls, 60	Ina. 4 6	Cube ft. 60 120	Gal 45 90

NOTE 1. -The volume of delivery here given, for each meter, can be exceeded.

2.—Extreme velocity of a meter produces incessant and improper resistant hence, in order that the instrument may operate only within a perceptible reduct of the head of the supply, it should be of a capacity to effect its duty at a moder velocity of operation.

Telescopes.

Galileo's first telescope magnified but three times; but by the addition of a care eye and convex object glass he attained a magnifying power of 30 times.

The construction of large lenses is at present limited by the chromatic aberration or separation of light in a telescope.

Enler was the first to discover the principle governing this aberration and the method of abolishing it.

liameters of the Principal Objective Glasses.

United States.

- Non-	Diameter.	Focal Length.	Location.	Diameter.	Focal Length.	
A	Ins. 2 2.5 2.56	Foet.	Rochester	26 26	Feet. 22 32.472 25 56.2	

tornia contemplates the construction of one of 40 in

the U.S. are, Cates Head, England, 24 ins.; Viens ins.; Pulkowa, Russia, 30 ins.

a four lenses of 24 Inches.

Manufacture of Ice.

Machinery and Apparatus.

		100		Water	Op	Weight			
Steam-En	gine.	Com- pressors.	Blocks of Ice.	per Minute.	Coal.	Engi- neers.			of Engine and Plant.
Ins.	Rev.	Ins.	Ins.	Gallons.	T'8.5		1	1	Lbs.
7× 9	90	5×101		5	+5	2	2	-	20 000
	80	5×15		15	I	2	2	2	58 000
10×20	75	6×18		20	1.5	2	2	2	69 000
12×30	70	8×20	11×22×28	30	2	2	2	3	101 000
14×30	65	8×25	11×22×281	35	2-5	2	2	3	129 000
14×30	65	10×20	11X22X28) 11X11X28	40	3	2	2	4	167 000
16×30	55	10×30	{11×22×28}	50	4	2	2	5	190 000
-	-	-	11X22X28	60	5	2	2	6	225 000
18×36	50	12×30	11X11X28	90	6.5	2	2	7	250 000
	50	15X30	11X11X28		-	2	2	8	-
24×36	45	12×30‡	11X11X28	-	-	2	2	9	-
26×48	45	20×36	11×22×28	100	13	2	2	IO	360 000
	Ins. 7 × 9 8 × 16 10 × 20 12 × 30 14 × 30 16 × 30 18 × 36 20 × 36 24 × 36	7× 9 99 8×16 80 10×20 75 12×30 70 14×30 65 16×30 55 — — 18×36 50 20×36 50 24×36 45	108. Rev. Ins. 7× 9 90 5×10† 8×16 80 5×15 10×20 75 6×18 12×30 76 8×20 14×30 65 10×20 16×30 55 10×30	Ins. Rev. Ins. Steam-Engine. Pressors. Blocks of ice.	Steam-Engine Compressors Blocks of Ice Preguired per Minute Tx Tx Tx Tx Tx Tx Tx T	Steam-Engine. Compressors. Blocks of Ice. Prequired Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Minute. Coal. Coal. Coal. Minute. Coal. Co	Steam-Engine. Compressors. Blocks of Ice. Preguired Minute. Total per Minute	Steam-Engine	Steam-Engine

others two compressors, and all single acting.

ssure of Steam .- For all 75 lbs. per square inch.

t-off. — For the three first, which are slide valves, three eighths. For the s, as Corliss engines, one fifth.

a volumes of ice above given cover that lost in thawing the molds to release it, coal given as that required is inclusive of that required to distil water from h to make the ice.

TE.—In order that the proper dimensions of engine and plant may be arrived to required volume of ice, it is necessary that the quantity and temperature ewater supply should be furnished.

-The ice is produced from water of distillation; hence, it is clear and trans-

When a Machine is operated by Water-power. As the of from which the ice is made is not distilled from steam, as in the case where is its the motive power, the ice produced is less clear or transparent, and is the material water with the ice."

Refrigerating.

Taines for Refrigerating are in all respects alike to thirds more capacity. As distilled water is not read of the in consequence is fully thirty per cent. Felves a much less expenditure of water than when the second of the sec

ements of a Test of Operation & Refrigerating Machin

lee Liquefied in 24 Consecutive Hours, 78.41.

team-engine.—Non-condensing, 18×36 ins. Compress.

Fremer of Steam, 86 lbs. Revolutions per minute, 56.5.

P—Steam-cylinder, 84.3. Of compressors, 67.78.

Temperature of condensing water, 76.2°. Of condenser rovolume of condensing water per minute, 21.19 gallons. Of the 12.496 goo lbs.

Leaporating pressure, 25.22 lbs. Condensing pressure, 157.1. Authorite coal, consumed, 6108 lbs. Combustible, 83.63 per - tool per IIP per hour, 3.02 lbs. Consumption equivalent to 16, 7,85 lbs.

naking, with

Asphalt and Asphalt Pavement.

Barber Asphalt Paving Co., New York.

Asphalt rock is an amorphous limestone, impregnated with about 10 per c bitmen. Trinidad Asphalt is a mixture of sand, pulverized limestone, and biforming an artificial impregnated sandstone.

In the cities of Europe, where asphalt pavement has been laid, the practi spread from 1.5 to 2.5 inches of it on a bed of concrete 6 ins. in depth.

The process of preparing the material for use is to crush the rock to powd it to about 280°, spread it on the concrete, and then compress it by ramme

The use of natural bitumen, found in the United States, as the Albert Grahamite, was resorted to, but without success, when the pitch or asphalt Trinidad, W. I., was discovered; by combining this material with highly ref troleum, a satisfactory cement was produced, which being mixed with a she clous sand and powdered limeatone, a desired sandstone was formed; a copossessing the necessary firmness and resistance to the changes of temperat durability, under the wear of loaded vehicles, combined with smoothness, ness, and comparative freedom from noise; without the facility for the sliphorses' feet, usual with pavements with smooth surface. So evident was ful application of this construction, that in 1870 an essay of its merits was Newark and New York, and in 1876 it was further essayed on an extended Washington, its merits being evidenced by a Board of U. S. Engineers. Sinc time it has been laid in over 60 other cities in the U. S. to an extent 12000000 Square varies.

The advantages of such a pavement are the reduction of the resistance to economy of transportation, and freedom from joiting in travel, added to cle and public health, as it is without scams or joints wherein filth may be co

Its durability in wear is less than granite trap, and greater than sandston or macadam.

As regards the cost of its maintenance, it is less than that of any other; maintained in like condition of repair

Origin and Development.

The utility of asphalt for covering of a road was not discovered until 18, phalt rock, broken up, was laid in the manner of a macadamized road, and sult was such, that in 1854 a street in Paris was laid with compressed asph foundation bed of concrete.

In 1869 it was first laid in London, and is now extensively laid in the (Europe to an extent in excess of 1 500 000 square yards.

Substitutes. — Tar. As a substitute for it it was essayed to use the pensive tar, obtained from gas-works; but as it is deficient in the requireding qualities, susceptible of being rendered viscid by the heat of summer, and the cold of winter, the use of it was abandoned.

Wood. - Wood payement is laid in London and Paris on a foundation of c and it lasts from 4 to 6 years.

Stone-blocks filled in with bitumen water-proof filling has been practised work. In some of the principal cities of Europe, the uniformity in the dimesspape of the blocks contribute to their durability. The cost of such a parcess of all others.

Brick, hard but

ms face, and I litinois. If the re-

lam.— Macadam payement is unsuited for cities from the wear 0, and the great cost of maintenance.

in two courses on 6 inches of sand, t its longitudinal edge, has been used in E such a pavement depends wholly on t raing. In general practice it was four

in his report (1879) submits the following:

A good pavement must be smooth, and to part to the safe toothold for ratinals, and not policit or as nearly as possible, noiseless and tree from the perial, laid upon a firm foundation, and be all seasons of the year.

Suitable Foundations for Pavements.

1 and unyielding foundation is quite as necessary for stability and endurance ement as for any other structure.

ring are suitable foundations for street-pavements, in order of value, proeir thickness is adapted to character of subsoil and nature of traffic, viz.:
alic concrete 5 to 8 ms. in thickness; 2. rubble-stone set on edge side by side,
in close contact, with interstices filled in with hydraulic concrete; 3. an old
pavement properly brought to slope and grade; 4. rubble-stone set on edge
ged closely in contact like sub-pavement of a Telford road; 5. an old pavestone-blocks, cobble, or rubble stone; and 6. an old Macadamized or gravel
a compost Layer of broken stone or gravel, 8 or ro inches thick.

est pavements now prominently before the public, classified with respect to criais of which they are made, are Asphalt, Stone block, Wooden block, and "pavements. The wooden-block pavement is not entitled to a place in the

Paraments.—The best is formed with rectangular blocks from 3.5 to 4.5 ins. to 13 in length on wearing surface, and 8 to 9 inches deep, set upon their is to some sthe street, upon a foundation of hydraulic concrete.

Parements.—Best asphalt is one having for a foundation a bed of hylement, or something equivalent thereto in firmness and durability, and for
mig surface either the natural bituminous limestone known as asphalt rock,
them the Jurassic region on the confines of Switzerland, or, preferable thereto,
fishly compounded mixture of refined asphaltum and silico-calcareous sand,
the calcareous ingredient is finely pulverized limestone. As the material
tamed pavement comes principally from vicinity of Neufchatel, the pavelimown as the Neufchatel. Asphaltum for the other pavements referred to
them Island of Trinidad, and the pavement is sometimes called the Trinidad

Matel parement.—Has been extensively laid in London, Paris, and other Eu-

parative Merits of the Several Pavements.

First Cost.—In cost of construction, wood is the cheapest; Coal-tar comtowned; Sheet amphalt like the Trinidad third; Stone-blocks fourth, and Woods fifth.

Durability.—Assuming each of the four pavements named to be the beat tone and asphalt will possess the longest life, and wood and coal-tar had the shortest. Between the first two and the last two there have been applied by the stone been good quality, asphalt will take first place an

of Maintenance.—Order of merit under this head wou'
the and wood and coal-tar last. If the asphalt is goo
tense must be both tough and hard in order to maintain

Relative Resistance of Roadways to T

alony,	Resistance in Term of the Lead.	Authority.	Roadway.	Resist. in Ter of the Le
	.005 .0074	Gordon. do. Morin.	Plank	
**************************************		Kopack. MacNiel.	Cob. stone, good Earth	

Sub-Marine Torpedoes.

Formula for Determination of Pressure per Square Inch of Various Explosives at Different Distances.

 $\sqrt[3]{\left(\frac{6636}{(D+or)^{2.1}}\right)^2} = P$. Δ representing angle with the vertical passing arms

the centre of the charge, made by a line drawn from it to the surface exposed whe shock, determined from the nadir,* in degrees; E. a constant for the explosive, whether the explosive to the surface exposed, in feet; and P the mean pressure, correspond to that which would be transmitted to a disc of copper, by a Rodman indening the per square inch of surface exposed to the shock, in the. (Brev. Brig. General III. Abbott, U. S. A., 1881.)

Value of E, or Relative Strength of Explosives Fired under Water.

Explosive.	Nitro- glycerine.	B	Downward A=o".	Horizontally A = 90°;	Upward a = 180°.	Explosive.	Nitro- glycerine.	M	Downward A = 0.	Horlzontally	Citiment.
Dualin. Dynamite No. 1† No. 2. Explosive Gelat. Gun-cotton Electric No. 1. No. 2. Hercules No. 1. No. 2.	75 36 89 33 28 77 42	232 186 120 259 135 67 43 211	116 100 75 125 81 51 38 109 74	111 100 83 117 87 69 62 106 83	108 100 88 113 91 77 72 105 87	Foreite No. 1. Tonite Rackarock Nitro glyc'ne Rendrock " Vulcan No. 1. " No. 2.	100 20 40 60 30 35	333 118 220 111 101 160 166 99 114	71 67 91 93 66 72		111 日本日本日本日

ILLUSTRATION.—Assume the distance between the line of the centre of a dast of dynamite No. r and the bottom of a vessel to be 5 feet, the angle between their of centre of the distance and the bottom, measured from the nadir, to be 180 https://doi.org/10.1009/ph.

$$\Delta = 180^{\circ}$$
, E = 186, C = 100, and D = 5.

$$\sqrt[3]{\left(\frac{6636 (180 + 186) 100}{(5 + .01)^{2.1} +}\right)^2} = \sqrt[3]{\left(\frac{2428736 \times 100}{29.489}\right)} = \sqrt[3]{8236210^2} = 49784 \frac{14}{12}$$

* A point of the globe directly under our feet, or that opposite the zenith.

+ Standard of comparison.

‡ For
$$(5+.01)^{2.7}$$
, see p. 310. Thus, $\frac{5.01 \times 21}{10} = \frac{21}{10} \times \log_2 5.01 = 2.1 \times .699837 = Number 34$

When the Object is not in a Vertical line with the Explosion.

ILLUSTRATION.—Assume a charge of gun-cotton weighing 882 lbs., set in walls a horizontal distance of 24, and a vertical of 86 feet from the object; what was be the effect?

To obtain 4, or angle of divergence, 1800 - Tan. -124 = 150 25', and 180'

$$5' = 164.58^{\circ}$$
. $D = \sqrt{24^2 + 86^2} = 89$, and $E = 135$. Hence,
 $1\sqrt{6636} (164.58 + 135) 882)^2 = P$

12

5

Coal Wate per

Erico IP Elice Votes

Um

程度

By te

43 888

3822

0000

Efficiency of Water-Tube Steam-Boilers.

a late test by J. J. Thorneycroft of his patented boiler, the following elements results are reported to the Institute of Civil Engineers. See Vol. XCIX., 1889. *igine.—Triple expansion*, Cylinders 14, 20, and 31.5, by 16 ins. stroke of piston, jacketed. Independent engines for Circulating pump, Blower, Donkey, and ring. All exhausting into engine condenser.

Results of Trials.

	Furnace.									
Elements and Dimensions.	Natural	Draught.	Blast Draught.							
surface in sq. feet	30	26.2	30	30	26.2					
ing " "		1837	1837	1837	1837					
surface to grate		70.I	61.2	61.2	70.1					
sure of steam in boiler, p'r sq. in.	200.8	196.3	186	164.2	194.9					
blast in fire-room in ins.	l —		27	49	2					
·lutions of engine per minute	192.8	165.2	234.2	268.7	318.4					
per sq. foot of grate per hour	11.1	7.74	18.6	29.8	66.8					
r evaporated from and at 2120 } r lb, of coal, ash utilized	_	11.22	10.48	10.2	8.89					
to. do. per lb. of carbon	-	13.08	12.18	11.7	10.04					
o. do. per sq. foot of ating surface per hour	-	1.24	3.2	4-7	8.05					
perature of gases in chimney	474°	4210	540 ⁰	6100	7770					
" of air in fire-room		69.30	71.40	60.30	62.10					
per IIP per hour	2.22	2.28	1.981	1.99	2.26					
Dn. " "	2.28	2.334	2.03	2.04	2.32					
" "	150.3	89.1	282.1	449.2	774.7					
ency of boiler per cent	_	86.8	81.4	78.2	66.6					
r used for jacket per lIP per	1	1.43	.84	.42	.38					

21. Calorific value of 14,900 thermal units per lb., equal to 1.025 of a lb. of car-Each lb. of coal, if completely consumed, is capable of evaporating 15,41 lbs. of from and at 2120.

Barbed Steel-wire Fencing. (Galvanized or painted.)

J. A. Roebling's Sons Co., New York.

ur points, barbs 6 inches apart, 15 feet = 1 lb.

" " 3 " " 12 " = 1 "

: Spools.—15 feet in length of the regular measures and 12 feet of the thickset, h each one lb.

eol, about $18 \times 18 \times 17$ ins., measuring 3.5 cube feet, weighing from 60 to 100 and length of wire ordinarily 1500 feet. Thickset or Hog weighs .2 more.

Compute Volume of Boards that can be Sawed out of a Round Log. (M. J. Butter, C.E.)

T.E. — From diameter of log in inches subtract 4, multiply remainder by one of it, multiply proceed by length of log in feet, and divide product by 8; result rive number in feet.

 $-\frac{d}{2} \times \frac{d}{2} \times l + 8 = \nabla$. d representing least diameter in inches, l length of log t, and ∇ volume in feet of board measure.

ESTRATION.—Assume a log 30 ins. in diameter and 15 feet in length.

$$30-4 \times 26 \div 2 \times 15 \div 8 = 633.75$$
 feet B. M.

pot-Pound-When for Unit of Work—Is 1 lb. lifted, thrust, or projected 1gh 1 foot, against gravity or inertia, and is expressed in pounds or tons, withegrard to the period of its action.

ten for Unit of Rate of Work—Is 1 lb. lifted, etc., as above, 1 foot in a given h as in 1 second or minute.

ency of Water-Tube Steam-Boilers.

by J. J. Thorneycroft of his patented boiler, the following elements reported to the Institute of Civil Engineers. See Vol. XUIX., 1889. lle expansion, Cylinders 14, 20, and 31.5, by 16 ins. stroke of piston, Independent engines for Circulating pump, Blower, Donkey, and Exhausting into engine condenser.

Results of Trials.

!	Furnace.									
.nd Dimensions.	Natural	Draught.	Blast Draught.							
sq. feet	30 1837	26.2 1837	30 1837	30 1837	26.2 1837					
to grate	61.2	70.1	61.2	61.2	70.1					
n in boiler, p'r sq. in.	200.8	196.3	186	164.2	194.9					
in fire-room in ins.	-	-	27	49	2					
ngine per minute	192.8	165.2	234-2	268.7	318.4					
of grate per hour	II.I	7.74	18.6	29.8	66.8					
d from and at 2120 }	-51	11.22	10.48	10.2	8.89					
per lb. of carbon	-	13.08	12.18	11.7	10.04					
per sq. foot of }	-6	1.24	3.2	4-7	8.05					
gases in chimney	474°	4210	540°	6100	777°					
air in fire-room		69.30	71.40	60.30	62.10					
r hour	2.22	2.28	1.981	1.99	2.26					
"	2.28	2.334	2.03	2.04	2.32					
"	150.3	89.1	282.1	449.2	774-7					
ler per cent	-60	86.8	81.4	78.2	66.6					
acket per IHP per	1	1.43	.84	.42	.38					

2 value of 14 900 thermal units per lb., equal to 1.025 of a lb. of carif coal, if completely consumed, is capable of evaporating 15.41 lbs. at 2120.

1 Steel-wire Fencing. (Galvanized or painted.)

J. A. Roebling's Sons Co., New York.

arbs 6 inches apart, 15 feet = 1 lb.

5 feet in length of the regular measures and 12 feet of the thickset, b.

 $8 \times 18 \times 17$ ins., measuring 3.5 cube feet, weighing from 60 to 100 of wire ordinarily 1500 feet. Thickset or Hog weighs .2 more.

te Volume of Boards that can be Sawed out of a Round Log. (M. J. Buller, C.E.)

diameter of log in inches subtract 4, multiply remainder by one ily proceed by length of log in feet, and divide product by 8; result r in feet.

l ÷ 8 = V. d representing least diameter in inches, l length of log lume in feet of board measure.

-Assume a log 30 ins. in diameter and 15 feet in length

.nd — When for Unit of Work — Is 1 lb. lifted through a gainst gravity or inertia, and is expressed in pounds up a period of its action.

of Rate of Work—Is 1 lb. lifted, etc.

Wire Rope.

Galeanising decreases strength of unannealed wire 5 per cent., and its duffit per cent.

Breaking Weight of No. 20, B W G (.035 in.) crucible steel rope of 6 strants in in circumference: Wires, 78 to 202 tons per square inch, and Ropes 578 20,47 tons.

Annealed Wire is not affected by galvanizing, but its ductility is reduced in z_{70} twists to z_{8} , z_{10} 68 per cent.

Annealing Wire reduces its strength 45 per cent., but increases its chairs of per cent.

77 per cent.

Tenrile Strength of crucible steel wire averages 85 tons (80 to 00) per sq. ind.

Permanent set, Bessemer iron wire 12 tons per sq. in., or .25 of ultimate teach; Variation of tensile strength of like pieces of steel wire, galvanized or pain, is but 3 per cent, for the former and 8 for the latter.

Modulus of Elasticity (ME). Iron wire 22 400 000, Steel 35 000 000, and studie Steel 33 000 000.

Bending. Stress due to it, in a wire of the material and dimensions gives. $ME \Rightarrow 32000000$.

Number of times rope passed over the pulleys without Breaking. Load 1968 lk Ins. Ins. Ins. Ins. Ins. In. Diam. of pulley ... 5.25 7.875 10.5 13.125 16.875 18.75 Number of times. . 6075 16 000 46 800 10 300 23 400 72 700 74 1 3306 53 root 85 soot 392 5001

Over Pulleys 24 Inches in Diameter. Load 1568 Lbs.

Out I wasys		~~ ~~ ~~~			•
1		1 1	Numbe	r of Beads bei	ore Breaking.
Manufacture of T. & W. Smith.	B W.	Diameter.		trands laid direction.	Wire and street laid in same direction.
_			1-24 Inch.	3-24 Inch.	3-24 lash.
	No.	Ins.	No.	No.	No.
Ordinary crucible steel	20	.035	74 100	51 000	126000
Patent improved steel	20	.035	96 000	57 000	142800
Plough steel	20	.035	109 000	54 000	134 400
Iron wire	19	.042	66 ooo	32 000	79 000
Crucible steel	18	.049	87 000	47 400	117100
Crucible steel	22	.028	111 000	48700	120300

Note. -By author: diameter of pulleys should be = 10 circumferences of root

Tenacity of Dovetails.

White Pine, 6 inches square. Notch in Length equal to Depth of Timber. S and D each representing proportion or depth of cuts to width of

trength in a double dovetail is attained when D = .167, and in a single, (Gen'l O. M. Poe, U. S. E.)

Shafting for Lathes and Mills.

lould be given in inches or quarters only. Length.—Not to exceed ty.—Machinery, 125 to 150 revolutions per minute; Woods, 200 in police at middle of length of shaft whenever practicable. Homeon ble boxes, in order the easier to maintain a shaft in line.

10

Cost of Sawing and Dressing Stone.

Sawing.

Per Cube Foot.

Iford Stone.—20 cents. At Chicago, Soft, medium, 8 to 10 cents; estone, Magnesian, and Oolites.—Medium, 13 to 17 cents; and Granite, Hard, 25 to 30 cents.

Rate in 10 Hours.

Ins.		Ins.		Ine.
) 12	Marble, Tenn	9	Limestone magnesia.	10 to 15
Depth of cut w	ithout reference	to its leng	th or number of saw	s. (R. J.

Dressing.

Per Square Foot. Labor \$ 3 per Day.

rd Limestone.—Bush hammered, rough, 25 cents; Medium work, s; Fine work, 35 cents.

Cost of Raising Water.

) 000 Imperial or 1200 000 U. S. Gallons 1 Foot.

Average of 15 Years.

Low Service. er, 1.23 cents. By steam, 13.2 cents. High Service. By steam.... 25 cents.

Adhesion of Drifted Bolts.

Steel, One Inch in Diameter. - Hole Six Inches in Depth.

	Mean Holding Resistance per Lineal Inch.												
	1		1	1	1	Ra	tios.						
Wood.	Hole 15-16#hs.	Hole 14-16ths.	Hole 13–16ths.	Hole Hole 13-16ths. 12-16ths.		Hole 14-16ths.	Hole 13–16ths.	Hole 12–16ths.					
	Lbs.	Lbs.	Lbs.	Lbs.	I.bs.	Lbs.	Lbs.	Lbs.					
pine	361	616	7 61	400	•47	.8	1	-53					
oak	1300	1778	2499	1133	.52	.71	1	-45					

lock in 15-16ths hole 415 lbs. per lineal foot to withdraw it, and White or y Pine 12-16ths hole 830 lbs.

btain maximum holding resistance of timber, diam of hole to bolt as x_3 to x_6 . tive holding resistance between driving parallel or perpendicular to the fibre to 2. (J. B. Tschamer.)

Resistance of the Air to Falling Bodies.

Falling Body Lead Ball, 2 ins. in Diameter, Weight 1 lb.					Body Falling Horizontally. Weight 1 lb.					
In V	acuo.	In Air.			One	One Foot Square. Two Feet Square,				
Veloc-	Fail.	Final Veloc- ity.	Fall.	Retar- dation per Sec.	Final Veloc-	Fall.	Retar- dation per Sec.	Final Veloc- ity.	Fall.	Retar- dation per Sec.
Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
16	32	30	15.5	.5	28	14.33	1.66	13.33	13.33	2.66
48	32 64	55	43.5	4.5	35		15	24	37.3	24
ġo.	96	77	67.5	12.5	38	33 38.5	41.5	-	61	66. 66

(P. H. Van Der Weyde.)

irdation is Inversily as Density of Body. Velocity after fall of one seco es measureably uniform; the increased velocity being balanced by the i dresistance.

stance of the air at moderate velocities, to the velocity of a fauare of its velocity.

s, when the velocity is doubled, the resistance is quadrupled the times greater. Applicable alike to a cannon ball in air o

Cost of a Horse-Power by Steam.*

Joule's equivalent (p. 504) = 772 units = heat required to raise x lb. water x^0 ,= elevation of x lb., x foot high.

Unit of evaporation, to evaporate x lb. water to steam at the pressure of these mosphere = 066.x British thermal units.

Horse-power 33 000 lbs.

$$\frac{33\,000}{772} = 42.75 \text{ heat units} = 1 \text{ Pr 1°, and } 42.75 \times 60 \text{ min.} = 2565 \text{ per PP per how.}$$

$$\frac{2565}{966.1} = 2.655 \text{ lbs. water required to generate 1 Pr.}$$

Anthracite coal has.... 14 500 heat units. Bituminous "British. 14 320 " " For other fuels see p. 486.

Then $\frac{14500}{066.1}$ = 15.01 lbs. water evaporated per lb. of coal.

Hence, $\frac{2.655}{15.01} = .1769$ lbs. coal per IP per hour, or $\frac{1}{.1769} = 5.65$ IP per hour per lb. of coal.

Assuming in all of the above, the normal condition, that there is neither expediture of water or temperature in the operation.

Operatively.—From elements furnished, in part by Thos. Pray, C.E., the cost of IIP at the pressures and expansions given is as follows:

Coal at \$3 per 2000 lbs.

Engine.	Condensing.	Non-condensing. 18"×42"
Initial pressure of steam	. — ins.	58.5 lbs. 4.74 ins. 8.12 lbs.
Evaporation per lb. of coal	. 10.31 **	
Coal per IIP per hour	. 2.28 "	9.99 " 18.59 " 2.07 " 6.21 cents.

A Condensing Pumping Engine has been operated at a cost of 2.28 cents.

* For Horse-power see pp. 441, 733, 758, and 914.

Cost of Water Power on Driving Shaft. Per IP.

Power is variable, depending upon variation in head of water, as when it is delivered in a river subject to rise by freshets, cost of water, and of plant. In order to attain an average daily power, the power must be increased to meet the loss of head by back water in freshets.

LOCATION.	FР	Distance from Sup-	Average Head.	Cost per HP	LOCATION.	Ю	Distance from Sup- ply to Wheel.	Average Head.	Cost Per H
Manchester, N. Y.	No. 890	Feet.	Feet.		Lowell, Mass	No.	Feet.	Feet.	100
Lawrence, Mass	1000		28	44		1000	575 290	18	57

Cost of a 1000 IP Plant independent of cost of water about \$45 per IP.

Cost of a like Plant under different Heads.

									From Supply to Discharge in Feet.					
Head.	100	200	300	400	500	600	Head	100	200	300	400	500	600	
Feet.	*		- 8 -	8		*	Feet.	-		8	-	8	1	
10	95	110	125	140	155	170	30	26	32	39	45	51	58	
20	38	46	K4	62	70	77	40	20	25	31	37	42	48	

At Lawrence and Lowell, a Mill Power = 30 rube feet of water per second, with a head of 25 feet. At Manchester it is 38 cube feet, with a head of 20 feet.

(Chas. T. Main, M.E.)

Steam Plant.

Daily and Yearly Cost of Coal and Labor in Operating a Plant of 1000 HP.

Year of 308 days of 10.25 hours, coal at \$3 per ton of 2000 lbs.

Deduced from Reports of Chas. T. Main. M.E.

ENGINE.	*Exhaust steam used.	Coal per H' per hour.				per HP	†Daily per HP	†Daily for 1000 HP	Yearly.
-	used.		Doner.	Engine.	Stores.	per unv.			
	Per cent.	Lbs.	C	C	c	- 8	. 8		
200	(0	1.75	.53	.60	.25	2.14	3.52	3 520	10841.60
Compound	325	1.5	-45	.60	.25	1.84	3.16	3160	9 732.8c
	(50	1.25	.38	.60	.25	1.53	2.76	2 760	8 500.8c
	(0	2.5	·75	.40	.22	3.06	4.43	4 4 30	13 644.4c
Condensing.	125	2.06	.62	.40	.22	2.52	3.76	3760	11 580. Sc
and the same of th	(50	1.63	-49	.40	.22	2	3.11	3110	9 578.8c
Non-Con-	(0	3	.90	-35	.20	3.67	5.12	5 120	15 769.6c
densing	125	2.44 1.88	-73	-35	.20	2.99	4.27	4 270	13 151.6c
	(50	1.88	.56	+35	.20	2.3	3.47	3 470	10 687.6c
* F	or heating.						+ Includ	ing coal.	

Yearly Cost of 1000 HP and of a HP. Year of 308 days of 10.25 hours. Coal at \$3 per ton of 2000 Lbs.

Deduced from Reports of Chas. T. Main. M.E.

		J		,		•	
Engine.	*Exhaust Steam used.	Engine and House.	†Operat- ing Ex- penses.	Boiler- house and Shed.	†()pera- tor's Expense.	Coal and Labor and Stores.	§Total per
	Per cent.	8	8	8		8	8
	(0	40	5.02	18.36	2.50	10841.60	18 361.60
Compound	₹25	40	5.02	16.16	2.20	9732.80	16 952.8c
-	(50	40	5.02	13.90	1.89	8 500.80	15 410.80
	(0	33	4.14	24.80	3.38	13644.40	21 164.40
Condensing	{25	33	4.14	21.12	2.88	11 588.80	18 608.8c
-	(50	31	3.95	17.33	2.36	9 578.80	r6 888.8c
Non-Condens-	(0	29.50	3.70	24	3-95	15769.60	23 419.60
	25	29.50	3.70	24.28	3.31	13 151.60	20 161.60
ing	(50	20.50	3.70	19.46	2.65	10687.60	17 037.60

[·] For Heating.

Sugar in Mortar.

It has been demonstrated that the addition of saccharine matter to lime-mortar is very beneficial, as it enables it to be laid in frosty weather.

It is claimed also that it causes the mortar to set very soon and strengthens it, and that it can be laid with dry bricks.

As sugared water dissolves lime, it is necessary to dissolve the sugar first, and then add the water to the lime slowly and cautiously. The mortar should be very stiff.

Proportions. — For mortar, coarse brown sugar, 2 lbs.; line, 1 bushel; sand, 2 bushels.

If sugar is added to mixed mortar, it renders it too thin. (Manufacturer and Builder.)

Belting. Speed of belts, single and double, r inch in width, she ceed for the first, 800 feet per minute, and for the second 500 feet, eac

Railroad Speed.

London, North Western, and Caledonian.

London to Edinburg, 400 miles. Speed, 55.4 miles per hour; W. miles. Engine, Tender, and Cars, 348 000 lbs.

[†] Injector, Depreciation, Taxes, Interest, and Insurance.

As per previous Table.

[§] Not including Cost of Plant in column 3 and 5.

Cost of Irrigation per Acre.

c

1

Gr

Ra

Þ

California.—From \$7.18 to \$53.33. Colorado.—\$3.75 to \$10.80. Ulah, \$4 France.—Average of several, \$58. India.—Average of several, \$1.75 to \$10.

Alloy

That expands in cooling: Lead 9 parts, Antimony 2, Bismuth z.

Extremes of Temperature.

Artificial, 135° (Faraday). Atmosphere, 77° (Back).

Extension of Woods by Water. (de Volson Wood.)

Elongation.			Pine 2.6	
	Oak		Oak 3.5	
	Chestnut.	. 165	Chestnut. 3.6	5

Smokeless Powder. Gun 6 ins. in diam. Charge 17.64 ibs. Energy at muzzle, 4609 foot-tons. Per lb. of powder 139.7, and per weight of gun 720.

Volume of Water Flowing over Niagara Falls.

270 coo cube feet per second. Since 1842, Horseshoe Fall has receded 140.5 feet, and American 36.5 feet. (J. Bogart, S. E.)

ROOFS.

To Compute Stress on Roofs. Velocity and Pressure of Wind.

RULE.—Multiply square of velocity of wind in feet per second by .0023, or square of its velocity in miles per hour by .005, and product will give pressure in pombs per sq. foot.

Or,
$$v^2 \times .0023 = P$$
, and $V^2 \times .005$.

Also, .0023 $v^2 \sin x = P$. Prepresenting pressure per sq. foot in Us., x and of incidence of wind with plane of surface in degrees, V velocity of wind in miles per hour, and v velocity in feet per second.

Direction of wind usually makes an angle of 10° with the horizon, hence 10° is to be added to horizontal plane of direction of the wind.

ILLUSTRATION 1.—Assume wind with a velocity of 100 feet per second to imping upon a plane roof set at an angle of 45°; what would be the pressure per sq. foot?

Sin.
$$45^{\circ} + 10^{\circ} = .819$$
. $.0023 \times 100^{2} \times .819 = 18.837$ lbs.

2.—Assume the wind to have a velocity of 150 feet per second, and angle of rof 60°; what would be the pressure per sq. foot?

Sin.
$$60^{\circ} + 10^{\circ} = .94$$
. $.0023 \times 150^{\circ} \times .94 = 48.75$ lbs.

Pressure of Snow.

This pressure decreases per square foot in Ratio of half space, to length of rafler, or height divided by space.

Pressures for Various Angles or Ratios. At 15 Pounds Weight per Square Foot.

						h+s		
·5	45°	10.6	.2	21° 48′	13.9	.125	14 ⁰ 2'	14.5
·33	33° 40′	12.6	.16	17° 45′	14.3	.11	12 ⁰ 31'	14.6
•25	26° 34′	13.4	.14	15° 39′	14.4	.10	11 ⁰ 19'	14.7

Weights on Roofs.

Per Square Foot in Lbs.

o I Iron, sheet 8 Iron, corrughed, at a vinc, sheet 8 Iron, corrughed, at a vince, sheet	ron	13 14
lates on iron 10 Snow	•••••	

rative Operations of a Simple and a Compound Locomotive.

klyn and Union Elevated Railway of Brooklyn, N. Y. Forney Type.

ENTS.	Simple.	Compound.	ELEMENTS.	Simple.	Compound.
, ins	11×16	11.5 18×16 42 ins.	Coal per car mile. Water	11.05 lbs.	6.88 lbs.
revolu-)	480	480	Gain in fuel	26 070 lbs.	19 862 lbs 37·7%
r mile∫ ım	400 42 ins.	400 42 ins.	Evaporation }	8.09 lbs.	9.97 lbs.
) D	1.5 ins.	1.5	Gain in water	_	23.8%
ip, diam.	3.25 ins.	124 3 ins.	Water per car }	73.85 lbs.	56.27 lbs.
iter i. feet	15.6	15.6	Pressure of steam, ave	136 lbs.	136 lbs.
urface, }	289.46	289.46	Revolu's per min. Miles per hour		222 27·73
do. to	18.5	18.5	Weight, loaded	 45 350	223.6 45 850
	3899 lbs.	2430 lbs.	Miles run	122	122

High Explosives.

Firing Point and Relative Strength.

GNATION.	Firing Point.	Order of Strength.	DESIGNATION.	Firing Point.	Order of Strength.
	Degree.	4.5-10		Degrees.	
it. (Vouge's).	365	106.17	Tonite	_	68.24
e	-	106.17	Bellite	_	65.7
ærine (old)	365	100	Rack-a-rock	-	61.71
fresh	-	92.37	Atlas powder		60.43
French.	-	81.85	Ammonia, dynamite	-	60.25
owder (Nobel)	-	92.38	Volney's powder No. 1	=	58.44
n, 1889	346	83.12	" No. 2		53.18
laboratory	_	81.31	Melinite	Ξ	50.82
No. 1	-	81.31	Fulminate, silver	-	50.27
te No. 1	301	77.86	mercury	315	49.9I
. Pieric acid.	_	69.51	Mortar powd., Dupont	500	23.13
wder	-	69.87	Forcite No. 1	330	-

(Lieut. W. Walke, U. S. Army.)

Electrical. (Additional to p. 34.)

Units in Electrical Engineering.

itance.—The 0hm, symbol ω , equal to the resistance of a column of very 106.3 cms. long, and $1 \square mm$. in uniform cross-section at 0° C. symbol Ω , $1 \infty 0 \infty 0$ hms. Microhm, one millionth of an ohm.

Ent.—The Ampere, that strength of current that will transfer 1.1181 mes of silver per second between electrodes of pure silver immersed in 2 20 to 305 solution of pure silver nitrate.

ives: Kiloampere, Hecto-ampere, Deca-ampere, Deci-ampere, Centi-ampere, Micro-ampere.

ro-motive Force.—The Volt, the EMF, which will force igh a circuit of one ohm resistance. Derivative, Microvolt.

city (Electrostatic).—The Farad, o, the capacity of a condenser Joulomb, under a difference of potential of one volt. Deriv., Microscience.—The Joule, the work done by transferring one Coulomb

ives: Kilojoule, Millijoule, Microjoule.

of Working. -The Watt, the rate of

second. Derivative, Kilowatt.

stance.—The Henry, H, 1 000 000 000 centing ves: Millihenry, Microhenry.

ΔL'

STEAM-ENGINES.

Compound.

Duration of Operation 2 Hours.

Cylinders. - 5. 5, 9, and 15. 5 ins. in diameter. Stroke of piston 14 ins.

Revolutions. - 150 per minute. 1HP 40.

Boilers. - Fire tubular. Tubes, 38 of 2 ins.; 6.25 feet in length.

Heating Surface .- 158 sq. feet. Grates .- 5.7 sq. feet.

Pressure of Steam .- 175 lbs. per sq. inch.

Water. - Weight consumed, 1140 lbs. Evaporation per lb. of coal, a. 8 lbs. Dran from jackets, 84 lbs. Consumption per IP per hour, 1.425 lbs. Temperature of feed, 55°.

Consumed 116 lbs. -per IHP per hour 1.45 lbs.; per sq. foot of grate 10.2 lbs. Indicator Diagrams — Mean IP 54 = 12.31 IIP: Intermediate 18 = 12.1 IP: Condensing 7.5 = 14.7 lHP = 40.

Fly-wheel. -5.5 feet in diameter and 10.5 ins. in width. Weight of Engine and Boilers, without water, 14 560 lbs.

Builders. - Marshall & Co., Kreigly, Eng.

PUMPING ENGINE. Vertical Compound.

Cylinders. -34 and 66 ins. in diameter by 60 ins. stroke of piston.

Pressure of Steam .- 74.81 lbs. per sq. inch. Vacuum, 26.25 ins.

Revolutions .- 25. 51 per minute. Grate Surface. - 70 sq. feet. Pressure of Water by Gauge. - 62.02 lbs. Head, including lift, 155.17 fed =

67.62 lbs. Fuel .- 675 lbs. per hour. Duty. - 104 820 431. Stack, in height, 125 feet.

Constructors. - The Edward P. Allis Co., Milwaukee, Wis.

ELECTRIC DYNAMO ENGINE.

Triple Expansion.

Arc Lights .- 500. Water entrained in steam 7.30%.

Cylinders. -14, 25, and 33 ins. in diam. by 48 ins. stroke of piston.

Condenser. - Separate. Circulating Pump, 16 × 16 ins.; Air-pump, single acting 24 × 16 ins. Cylinders, 12 × 16 ins., operating both pumps. Revolutions, 61.20 IP 16.4.

Pressure of Steam. — 125 lbs. per sq. inch; Revolutions, engine, 99.12; Steam per IIP per hour, 12.94 lbs. IIP 516. Injection Water. — 72°. Reservoir, 90°. Constructors. - The Edward P. Allis Co., Milwaukee, Wis.

Railroad Signals and Significations.

pp," one pull of bell-cord.

"Off breaks," two whistles.
"Back up," three whistles.
"Danger," continued whistles. ahead." Two pulls.

"A cattle alarm," rapid short whistle. own breaks," one whistle. ahead," a sweeping parting of the hands, on level with the eves.

't slowly," a slowly sweeping meeting of the hands, over the head.

downward motion of the hands with extended arms.

" beckoning motion of a hand. ger," a red flag or light waved up the track.

" red fing raised at a station.

-- -:-ht raised and lowered vertically. right angels across the track. rung in a circle.

Opera House, New York.

anding, 400. If the saloons stached to the winter anacity would be soon

Distillation of Fresh Water.

Process of G. W. Baird, U. S. Navy, New York.

Marine Steamers for long voyages, operated under a high pressure of steam, are accessarily provided with Evaporators, to replace the water expended in leaks and rents, and to provide for the ordinary requirements for fresh water.

This process is an improvement upon existing methods, inasmuch as it furnishes the water potable, and it is as follows:

The Evaporator contains a series of tinned metallic coils and a volume of seawater; which is designed to be evaporated by the passage of steam from the engine boilers through the coils. The water condensed in them is returned to the boilers; the water vaporized from the sea-water, external to the coils, is either led to the Engine condenser, to replenish that lost by leaks and vents, as from gauge cocks, itc.; or if required for potable purposes, is led to a Distiller, where it is aerated, condensed, and filtered, from which it is drawn for use.

As the sea-water is evaporated in vacuo, vaporization occurs at a temperature Clow that at which much scale is precipitated. Hence the shell and coils are both Acasurably free from it.

Results of an Experiment.

Pressure in coils, 20 lbs. above atmosphere; temperature of steam in coils, 259.3°; emperature of feed water, 131.66°; temperature of the water vaporized, 212°; vader vaporized per hour, 103.33 lbs.; vader condensed in the coils per hour, 112.12 lbs.; ctal heat in the steam, 1193.7°, and in the water vaporized, 1178.6°.

Capacities of Evaporators and Distillers. Gallons per day of 24 hours.

No.	Evapo- rator.	Dis- tiller.	No.	Evapo rator.	Dis- tiller,	No.	Evapo- rator.	Dis- tiller.	No.	Evapo- rator.	Dis- tiller.
	Gallons.			Gallons.	Gallons.		Gallons.	Gallons.		Gallons.	Gallons.
I	600	600	3	2000	1600	4	3000	2000	5	4000	2500
2	1200	1200	3.5	2000	1600	4.5	3000	2500	6	6000	3000

Coal Production and Consumption

Of the World Per Diem.

Production. - Estimated at 3 360 000 000 to 3 696 000 000 lbs.

Consumption.—Generation of steam, Land and Marine, 624,000 000 lbs.; Smelting ron Ore, 28800 000 lbs.; other metals, 23000 000 lbs.; Forges, 2000 000 lbs.; Dobestic use, 57600 000 lbs.

Corrosion of Wrought Iron.

The purer the water, the more active it is in corroding and pitting Wrought-iron plates. This arises from the greater presence of air in pure water, and hence a greater proportion of Oxygen. (Locomotive.)

Earth Boring and Heat of Mines.

Speren berg, near Berlin. Bore, $_{4172}$ feet in depth, about $_{1000}$ feet in excess of Artesian well at St. Louis.

In lower levels of some of the shafts in the Comstock mines, prior to the draining into the Sutro Tunuel, the water was at a temperature of 120°.

Preservatives of Iron.

Pitch, Black Varnish, Asphalt and Mineral waxes are among the best, provided the acid and ammonia saits, which frequently occur in tar and tar products, are removed.

If in addition these substances are applied hot to warm asphaltic substances form on the surface of the iron an other coatings, is not microscopically porous, and consequences.

minous and milke to

Spirits and Naptha varnishes are injurious. (Prof. Lev.

Felting, Covering, Lagging, etc.

Steam Pipe and Boiler Coverings, etc.

In the protection of heated surfaces, or from freezing, Hair-Felt, in consequent its destructibility at high temperatures and the loss in removing it for man the arrest of leaks in boilers or pipes which it covers, has very generally boos seded by the adoption of Asbestos fibre with its composition with other and conformations, whereby it is rendered available for all requirement well as conformable to, the several and various conditions in which it is no

Asbesto - Sponge. - Composed of the fibres of Asbestos and of sponge, by which combination porosity is attained and the non-conducting

Adapted for the lining of Cars, Chests, Floors, Walls, etc., and furnished in barrels and in the taining 25 lbs.

Asbestos, Cement Felting.-Composed of Asbestos fibre in the earth, and a cementing compound, applied to pipes, boilers, etc., while here

Furnished in barrels and bags. One bag will supply material to cover a surface de De inch in thickness, and weighs about 150 lbs.

Asbestos Roll and Sheet Fire-Felt. - Composed that Asbestos, similar in texture to hair-felt, can be readily cut and applied.

In Rolls of 300 feet, 3 feet in width, and from .093 78 to .25 ins. in thickness.

The Sheet felt is furnished in sections, in order that they may be remarks replaced, and are especially adapted for Marine Boilers.

In Sheets, 2 by 3 feet, and from .5 to 1.5 ins. in thickness.

Asbesto-Sponge, Molded, Fire-Felt, and Standar Sectional Coverings.—The Sponge and Molded are adapted both is and high pressure of steam, felted and formed in cylinders, cut lengthws and that they may be laid over pipes, and are finished with a canvas jacket, see metal bands.

The Fire-Felt is adapted for high pressures and Superheated steam. The San is composed of alternate layers of Asbestos sheathing and soft-wool fell together, and is adapted for medium pressures of steam.

In Sections, 3 feet in length, with bands, staples, and straps for securing Elbows, Ton, do, 10

"National," Removable, Air-Chamber, and From Protective Sectional Coverings.—"National" is composed wool felt, lined on the inside and alternated for three layers with Assess a felt, and it is an economical covering for low pressures of steam and steam pipes. Removable is composed of hair-felt and Asbestos of equal thickness oped in a case of wool sheathing and a lining of Asbestos.

In Sections of 3 feet in length, with straps and staples to secure.

Asbesto-Sponge Lined and Asbestos Lining For Suitable for Furnaces, Furnace Pipes, and Fire-heated surfaces.

In Rolls, from 12 to 36 inches in width, and 50 feet in length.

Asbesto-Sponge Hair-Felt.—Is very elastic, and, in consecutive large proportion of Asbestos in it, it is not liable to injury from stem in In Rolls of 250 feet, and .25 ins. in thickness.

Superator. - An Asbestos fire and water proof sheet has a foundation of water through which Asbestos is pressed and the sheet rendered waterproof by cial process. It is suited for ceilings, walls, partitions, and all surfaces exfire and water.

In Rolls of 300 | feet, 30 ins. in width.

.Corded Sheathing .- For fire-heated surfaces, of pure Asbesia trace of which are attached loosely twisted rolls of it, forming a materal inch in thickness, suitable for Furnaces, Furnace Pipes, etc.

"SRolls of 100 and 150 [feet, and 3 feet in width.

"Bocomotive Lagging.—Of pure Asbestos, worsen with a like with a pure Asbestos sheathing. It is fire and acid proof.

seemble of 35 inches in which and .5 inch in thickness. Capair-Felt. -Of various thicknesses, in bales of 300 Th. and 6

Stone Breaker and Ore Crusher.

Farrel Foundry and Machine Co., Ansonia, Conn.

Stone Breakers and Ore Crushers are used in making Macadam for construction of roads: material for concrete; ballasting railroads, crushing ores, quartz, corundum, and all brittle substances; they can be adjusted to pass a mass from the size of a pea to larger diameters, depending upon the capacity of the machine.

Crushed to Cubes of 2 Inches. Per Hour.

Vo.	Receiver.	Volume.	Extreme Weight of Stone.	Weight Produced.	Dimensions, Length. Breadth. Height.		Pulley,	Speed.	Р	
	Ins.	Cub, yds,	Lbs.	Lbs.	Ft. ins.	Ft. ins.	Ft. ins.	Ins.		No.
1	3X 1.5	_	40	100	1. 1	. 6	.10	5X 1	250	.5
2	6X 2	1	560	1 200	2.10	2. I	2, 3	11X 5	250	4
3	10X 4	3	1800	4 900	4	3. 3	3. 9	20X 6	250	6
4	10X 7	5 8	3800	7 800	5. I	3. 9	4. 5	24X 7.5	250	8
5	15X 9	8	7400	15 500	6. 6	5	5.11	30X 9	250	15
6	15×10	9	7800	16 000	6. 6	5. 5	5.11	30×10	250	15
7	20X 6	10	5300	11 200	5. 3	2.11	4. 6	30X10	250	15
8	20X10	10	8100	18 300	6.10	5. 9	5.11	36×12	250	20
9	12×30	16	14200	33 000	7.10	8. 4	6. 4	36×12	250	30
10	15×30	20	14200	35 000	7.10	8. 4	6. 4	36×12	250	30

Note. -The 30×15 and the 36×24 are preparatory Crushers, the former breaking cube yards in 10 hours to 4 ins., and the latter 800 cube yards to 8 ins.

Crusher with Revolving Screen.

Dimen- sions.	Volume.	Extreme Weight of Stone.	Weight Produced.	-	Dimensions Breadth.		Pulley.	Speed per Min.	IP
Ins.	Cub. yds.	Lbe.	Lbs.	Ft. ins.	Ft. ins.	Ft. ins.	Ins.	Rev.	No.
10× 7	5	3800	10 200	5. I	3.9	4.5	2 X 7.5	250	8
15X 9	8	6800	17 700	6. 6	5	5.11	2.6× 9	250	15
15×10	9	7300	18100	6.6	5.5	5.11	2.6×10	250	12
20X10	10	7700	21 500	6.10	5.9	5.11	3 X I	250	14

Steam Heating and Boilers.

Gorton & Lidgerwood Co., New York.

Steam Heating.-Is effected Directly or Indirectly. In the first case, the steam is conveyed through a pipe, or to a cluster of them, at whatever point they are required, termed a Radiator; air being heated by contact with the exterior surface of the pipes, and the water of the condensed steam flows back (by gravity) through the return pipes discharging into

In the second case, steam is conveyed in like manner to a cluster of pipes enclosed in a chamber, in the lowest part of the

uilding, usually the cellar, the air within the chamber, upon being heated, scends by its rarefaction, and is led to the space or apartment required to

Hot-water Heating.—This system consists of circulating hot water n the radiators instead of steam. The boiler, pipes, and radiators are fully illed with water—the flow or circulation pipes attached to the top of the oiler and the return pipes to the bottom. The water in the boiler, when eated, rises and circulates through the pipes and radiators, and parting with portion of its heat it becomes denser, and gravitates through the return ipe to the boiler, where it is again heated.

This system requires a much greater proportion of andiating great at of steam.

Steam-boilers.

		Wros	ght-iron	Water	Lega.	1	Cast-Iron Logs.		
ELEMENTS. No.	2	3	4	5	6	7	0	2	2
Shell, diamIns.	32	35	41	43	51	54	24	28	32
" over jacket "	35	38	45	43	55	57	30	31	35
" height	33	37	37.	45	45	45	30	33	33
" extreme "	69	72	80	87	90	92	64	67	69
Furnace, diam "	21	24	30 84	32	38	40	18	19	-21
Tubes, No., do. 2 "	44	56	84	91	124	160	30	30	44
" length "	30	34	34	42	42	42	27	30	30
Steam-outl'ts 2, diam."	2	2	2.5	2.5	3	3	1.5	1.5	. 2
Chimney flue, dlam. "	8	8	10	10	12	12	7	7	0
Water-line from base "	55	59	63	70	73	74	51	54	55
Heating surface feet	75	105	140	185	260	320	45	60	75
Direct radiating	450	630	830	1050	1500	1900	260	350	450

For Direct radiation, each [foot of radiating surface will heat from 50 to 1005 feet of air space, and for Indirect, from 25 to 50 cube feet; the range depending the conditions of construction of building and its exposure to external air.

HYDRAULIC CEMENT.

In addition to pp. 589, 590,

New York and Rosendale Cement Co. (Hiram Snyder, Sec'y), New Yor

Cements.—Are classed as natural and artificial; first being used in struction of Fortifications, Breakwaters, Aqueducts, Sewers, Bridges, Concrete work of all description, as in Canals, Cellars, Cisterns, and Wa

The stone from which hydraulic cement is made in the U. S. is four stratified beds of aqueous deposits, which in extent cover about one thir the area of the State of New York, the western part of Vermont, and in New Jersey, Pennsylvania, Maryland, Virginia, and East Tennessee.

The largest deposits of aqueous limestone, producing hydraulic qual

are located in the Town of Rosendale, Ulster Co., New York.

The color and quality of most of the hydraulic cements depend princiupon the relative volumes of Oxide of Iron, Lime, Alumina, and Magn which may be present; and as these elements are very perceptible in highest grades of Rosendale cement, it resembles the celebrated Port Cement of England and France.

		Ter	sile S	treng	th.	Per Squ	uare Inc		
Testin	Ame	to Ate-	In Water.	Period.	Tests.	Area.	In Air.	In Water,	Te
No.	eq. 1	The lot pr	A.V.	Hours.	No. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sq. Ins. 3 3 3 3	Lbs. 82 86 87 88 94 94	Lin. 65 78 69 63 74 77 92	11 11 11 11 11 11
	4		ď	1			10	7.0 lbs. per bry, then t	
		1						-	
		١							

The Crocker-Wheeler, New York.

This Motor has been designed to remove difficulties which experience has developed to be attendant upon other instruments of like purpose.

Care has been taken in its design and construction. The bearings are oiled automatically, and magnetic circuit is made as perfect as practicable. Its centre of gravity is low, machine strongly built, weight of it comparatively low, and its efficiency high.

ned to run at low speed, in order to reduce wear, heating journals, etc.

	Veloc-	Pulle	y .	T.	imension	16.		n Bolt-	Shafta,	
ight.	ity.	Diam	Face.	Length.	Breadth	Height.	_	Breadth	Diam.	Base of Motor.
ba.		Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	lns.	Ins.
t8	2100	G 1.5	·375	7-375	5-5	7.875	4.625	2.75	.25	3.375
26	2000	G .5	-375	9.75	7.5	8.5	6.375	3.375	-375	3.6875
26	1800	2.5	1.25	9.75	7.5	8.5	6.375	3.375	•375	3.6875
55	1500	3	2	14-75	9.5	10.75		4.3125		
20	1350	3.5	3	18.25	11	13	11.5	5 5	.6875	5.75
57	1050	4	3.5	19	13.25	15.5	12.25	7	.875	7.0625
go	1050	6	3	25	12.625	18.375	18.25	9.25	1	i 8.25
00	1000	8	4	26.25	15.025	18.375	18.25	9.25	1	8.25
85	1000	7-5	4.5	:8	.8.75		18.75	9.75	1.125	9.25
				12 (2 may e	-1 F F	let				-

ation of the Motor —For Printing-rooms and mechanical Shops of medium and Elevators, one of 5 IP is sufficient.

Fo Compute Power required for Elevators.

-Multiply twice * product of weight to be raised in lbs., and height of asset per minute; divide by 33 000, and the quotient will give the number of red.

ill Motors, of .166, .125, and .0833 IP are adapted for operating Fans, Sewing machines, Small Lathes, Presses, Tools, Models in operation, Rodvertisements, Organ blowing, Baffing wheels, Knife sharpeners, Cloth and itting, Experimental models, etc., etc.

Electric Fans.

entilation of Offices, Restaurants, Kitchens, Sick-rooms, etc., etc. ructed in various styles, Plain and Nickel-plated.

Fans 12 Inches in Diameter

ier, .0833 IP motor. — Fast, .125 IP motor — Double (a Fan at each side), P motor, or one 16 inch Fan.

Construction. - Variable speed, Fan 24 ins. in diam. - 20 Inch, 125 IP motor.

Electric Pumps.

2P. will elevate 500 gall. water per day of 10 hours 100 feet in height. **Earth arranged** to operate automatically, so that when a receiving tank **The base of the second s**

Capacity of Pump per Hour.

Hone.	н,	Gallons.	I-P	Gallons.
iji)o	·5	370 750	3 5	1670 2600
				

Are Circuit Motors.

all others. The manner of connecting the sircuit as a that of other motors.

.125 to 5 HP.

nnected to the arc circe

Dynamo Leather Belts.

Belting.—For Dynamos and Electric Light Machinery should double and endless, and not over .33 inch thick, when run at a velocity of the perforation of the perforation may be .09375 inch in width, .28125 inch in less and placed 1.5 inches apart; furnishing about 50 openings pers, belt, without material injury to the tensile or operating strength of it.

In order to protect the surface of a Dynamo Belt it should be relimpervious to the mineral oil used on it, which is destructive to the file the leather.

LEATHER LINK BELTS.

Where Belts are run at right angles and at short distances apart, Landau Belts are recommended, as they are very pliable and have under socillation.

Link Belts made .6875 inch thick, forming when combined two fall cles, assure the required uniformity of oscillation.

WIRES AND CABLES.

Telegraph, Telephone, and Electric Light Wird and Cables.

For Aerial, Sub-marine, and Underground.

The International Okonite Co., Ltd., New York.

Insulation.—In consequence of the decomposing influence of the decomposing influence of the decomposing influence of the decomposing in sulation in sulation that their insulation are decomposed to attain. In order to effect an enduring insulation this Company a compound, termed Okonite, a material possessing both tenacity and manner to abrasion, while it is equally unaffected by extremes of temporal with insulation of a high order.

Telegraph and Telephone Wire.

Size of Insulation and Diameter per B W G; External Diameter of Insulation Resistance per Mile in Lbs., and Insulation Resistance per Mile in No.

	Insulation. Insulation.							1	Insul	ation.		nsul	ation	
No.	Diameter.	Gange	External Diameter	Weight.	Resist-	Welght g	Resist.	No.	Diameter	Gange.	External	Weight	Resist-	Weight
40	24	14	-	29	1000	43	1000	55	16	-	6	164	1600	14 14
41	24	13	3	33	1200	48	1200	56	16	6	6.5	178	2000	學二
42	22	13	3	45	1000	60	1000	57	16	5	7 8	200	2400	可量
43	20	12	3.5	56	1000	71	1000	58	16	3	-	240	2000	岩层
44	20	11	4	05.	1200	80	1200	59	16	2	9	288	2800	350
45	18	11	4	81	1000	96	1000	00	14	8	5	176	1000	194 2
46	18	10	-	91	1200	107	1200	би	14	7	5.5	192	1200	E11 12
47	18	8	56	110	1000	137	1000	62	14	530	6	201	1400	211
48	18	-	0	155	3000	1222		1 63		15	13	230	1000	13 P
49	18	5	7	197		M	1				2/0	1223		1200
50	18	3	8	24					66	12	6/8	1-2/3		200 200
SI	18	2	9	120			1-6 6-6	000	67	122	30	3	1300/	g and
52	16	9	4					1400	1 68		13	M	1350	
53	16	000	5			400	158	1500				1	2130	3/120
54	16	1 3	1 -	- 1:	121 / 1	500	1001	-3-					1	-

Voltmeters and Ammeters.

eston Electrical Instrument Co., Newark, N. J. uments are Direct Reading.—A multiplying constant being unnecessary, with voltmeters of high range, as a simple inspection of position of pointer a indicates value in amperes or volts, and as pointer immediately becomes r "dead beat," it reduces period for reading, added to which there does not e "magnetic lag" which induces different deflection with like current or al, as in instruments in which vibrating parts are of iron.

eadings of the scale commence at o, and the uniformity of the divisions tes the visual subdivision of them.

ections for Temperature are unnecessary, as it is for the long coil of the voltbeing not in excess of .25 per cent. for a range of 35° above or below 70°, the ammeter less than x per cent. for a like range of temperature

sit.—These instruments can be retained in circuit without injury, as the seffect, except in the high ranges, is inappreciable.
mating Coil.—In Volumeters provided with one, changes in the scale valve

coidental injury are readily checked.

he respective parts are made to a uniform gauge, and are interchangeable.

ale in olts, up to	Rend- able to	Standard Voltmeters. Description.	Telegraphic Code.
150	.ı	By single volt divisions	Reprint.
150	·I	" " " "	Reprisal.
150) (Scale of double values, with ratio of 30	_
15	1.1	Each division on upper scale-values = r volt; and on lower scale-values.o33 volt, readable to .0033	Reproach.
150	1 (Scale of double values with ratio of 10	
15	1.1	Each division on upper scale-values == 1 volt; and on lower scale-values .1 volt, readable to .01	Reprune.
300	.2	By 2-volt divisions	Reptile.
450	+33	By 3- " "	Republic. Repulse.
600	.5	By 5- " "	Requital.
600	-5	Scale of double values, with ratio of 4, reading by 4-	
150	.1	volt divisions, to .5 on upper scale-values; and by single-volt divisions to .1 on lower scale-values	Resemble.
750	.5	Scale of double values with ratio of 5, reading by 5 volt	
150	.1	divisions, to .5 volt on upper scale-values, and by single-volt divisions to .1 volt on lower scale-values.	Reservoir.
600	-5	Scale of double values, with ratio of 2, readings by 4-	
300	.2	volt divisions, to .5 volt or upper scale-values; and by 2-volt divisions to .2 on lower scale-values	Reside.
750	-5	By 5-volt divisions	Residue.
1500	I	By 10- " "	Resin.

31.—Calibrating coils and contact keys are attached to instruments only so stated.—2. Instruments provided with a contact key can be retained in perat circuit by depressing it and giving it a quarter turn.—3. All instruments the state of

High Range Voltmeters No. 1.

these instruments part of the resistance is contained in a separate box, deto obtain high insulation, and without calibrating coil or contact key.

from o to 150 volts and a resistance box, multiplying valve of scale divisions.

						TALTE OF BOARD	WITT IBIOL
Velta to 150.	Scale.	No.	Volta to 150.	Scale.	No.	Volta to 150.	Scale.
2250	By 15	15	3750	By 25	17		

3000 | "20 | 16 | 4500 | "30 | 18 |

"M. Color—73. Resolute; 14. Resolve; 15. Resolvent; 16. Resonat

"Above are graduated to read in lamps in addition

y simple inspection number of arc lamps open of
giving intermediate ranges, applicable to these

"Becersing Key. When many and rapid to

"Heats by turning the milled head through the milled

VOLTMETERS AND AMMETERS.—RAILROAD CRANE

No.	Scale in Volta. o, up to	Milli-Voltmeters. DESCRIPTION.	Telegrapia Code.
1 2	.or	By 100 divisions, each readable to .1	Restran
3	.01	Right and left by 100 divisions, supplied with contact key,	Remme

Volt-Ammeters.

No. 1. Scales o to 150 volts and o to 1500 mil-amperes. Reading to 150 volts single-volt divisions, or to 1.5 amperes by .or-ampere divisions. - Retiary.

Mil-Ammeters and Ammeters.

No.	Scale in mil- amperes.	Single-ecale divisions, readable	No.	Scale in mil- amperes.	Single-scale divisions, restable						
0	150 300 600	1 mil-ampere, to .5 do. 2 do. to .2 do. 5 do. to .5 do,	3 4	1000 1500	10 mil-supere, to 1 do						

Telegraphie Codes .- o. Reticule; 1. Retinue; 2. Retouch; 3. Reuben; 4. Reunite.

No.	In vol	ts up to	For Physicians.	
5	{ 500 } 50 }	upper se scale va	double values, with ratio of 10, each division on cule-values is 5 mil-amperes, and each on lower lues 5 mil-ampere readable to .05	Code. Revel
6	{ 500 }		do, with ratio of 50, each division on upper lues is 5 mil-amperes; each division on lower scale- s.r mil-ampere readable to .or	Revely
7	5 ∞ 10	reads to	do. No. 6, with a resistance box having 2 which, when used in connection with lower scale, 10 volts by 1-volt divisions, and to 100 volts by 1-tisions.	

Ammeters.

No.	Scale in amperes.	Single-scale divisions of an am- pere, readable	No.	Scale in amperes.	Single-scale divisions of as pere, readable					
1 2 3	5 15 25	.05 ampere, to .005 do1 do. to .01 do25 do. to .025 do.	5	50 100 150	.5 ampere, to .05 da r do. to .1 da 2 do. to .1 da					
Tele	Telegraphie Codes I. Revere; 2. Revered; 3. Reversal; 4. Review; 5. Revile; 6. Revival.									

Railroad Crane.

The Farrell Foundry and Machine Co., Ansonia, Conn.

Post. - Of cast iron, in one piece, fitted to deck-plate, with faced joints and secured by bolts running through a stone four dation, set up on anchor plates on its under side.

Jib .- Of two wrought-iron beams, bolted at head and forth a bonnet and shoe, with tie bolts between them, and secured b the post by bolts which lead from its head to a voke which turns on a pin in the hub.

7ith a pin is fitted into head of post, on which the jib turns.

s secured by two bolts, which lead down through and are secured ate on the foundation.

Double and set for both fast and slow motions, and detachable -oring load by a brake.

me," and all sheaves have roller bushes.

C	a	n	a	٠i	t	v	_

Adlus.	Cubeciti.	Weight.	Radius.	Canacity.	Weight
Feet.	Tons.	Lbs. \ 10 400	Fuel.	Tons.	17 800
15	or /	1460	0 110	1 30	1,140
	W TO HOLD	ocking snd	Countracti:	AT 22.00	

or operation on

Vacuum Pumps.

Guild & Garrison, Brooklyn, N. Y.

Vacuum Pumps.—Air pumps are so termed when they are used in connection with vacuum pans, multiple effects, or filters.

It is impracticable to define a general rule for their capacity, as the circumstances of their operation vary in different cases.

Vacuum Evaporators.—Their dimensions depend upon the temperature to which they are submitted, the evaporation, character of the liquid concentrated, vacuum desired, and type and efficiency of the condenser.

Dry Exhaustion. - When air alone is withdrawn.

 $\left(\frac{V'}{V'+V}\right)^n M = Q$. V and V' representing volumes of cylinder and receiver, M volume of air in receiver at commencement of operation, both in cube feet, n number of strokes of piston, and Q volume of air remaining after n strokes of piston.

Condensation.—There are two systems in operation for vacuum pans and multiple

Dry System.— Where the condenser is fitted with a leg pipe or barometric tube, hrough which the injected water passes off by gravitation.

Wet System.—When the pump receives and discharges the condensing water, in addition to its maintaining a vacuum.

In either system the pump is required to discharge: 1st. The air contained in the njection water, in the liquid, and in the pan, pipes, and condenser.—2d. The incontensable gases evolved from the liquid in operation.

Notes.—The Pan and its immediate connections are made of iron, copper, bronze, or alloys.

In designating the design and construction of pump required, the liquor, the volume, the degree of concentration required, and the time in which the operation must be completed, should be furnished.

To facilitate transportation, the bed plates of the large sizes are cast in two parts and bolted together.

An order for a pump should state: 1st. What liquor, and volume of it, is to be evaporated in a given period, as an hour? 2d. What the diameter of pan or evaporating vessol, and what that of vapor pipe when it enters condenser? 3d. What the heating surface of pan, and has it a steam-jacket and coils, and if coils, what is their liameter and length? 4th. If heating surface is of iron, brass, or copper? 5th. What the average temperature of condensing water, and what the volume of it?

Duplex Vacuum Pumps. Fly-wheel Type for "Dry" or "Wet" System.

	DIMENSIONS.			Displace	ment, at 75	Diameter of Pipes.				
Diameter of Vacuum Cylinders.	of Steam	Stroke.	Volume per Rev- olution.	Per Min.	m Speed per nute. Per Hour.	Suction and Discharge.	Steam,	Exhaust.		
Ins.	Ins.	Ins.	Cub. feet.	Cub. feet.	Cub. feet.	Ins.	Ins.	Ins.		
6	5 6	6	. 589	29.45	1 767		1	1.25		
8	6	6	1.047	52.35	3 141	3	1.25	1.5		
10	7	6	1.635	81.82	4 909	8	1.25	2		
10	7 8 8	6	1.635	81.82	4 909	be l	1.5	2		
12	8	9	2.356	117.81	7 068	5	1.5	2		
12	9	9	2.356	117.81	7 068	"s efreumstances of the case.	1.5	2		
14	9	9	3.207	160.35	9621	9	1.5	2		
14	10	9	3.207	160.35	9621	1	1.5			
14 16	10	9	4.188	209.4	12 564	E	1.5	1		
r 6	12		4.188	209.4	12 564	2	2	1		
18	12	9	5.301	265	15898	.0		1		
18	14	9	5.301	265	15898	4				
20	12	9 9 9	6.545	327.25	19635					
20	14	9	6.545	327.25	19635	1				
22	14 16	9	7.919	395-95	23 757					
22	 16	9	7.919	395-95	23757	1				
24	16	9	9.424	471.25	28 275	1				
24	18	9	9.424	471.25	28 275	1				

Drawing, Tracing, Profile, Cross-Section, Pho-Printing Papers and Drawing Cloths.

For Designations and Dimensions see p. 20.

In Sheets, Whatman's Hand-made.—Three styles of the HP, signifies "Hot Pressed," has a smooth surface, suited for pencil and land drawings.—N. signifies "Not Hot Pressed," has a finely grained surface, used for very bold drawing and sketching (Torchon Paper).—"Selected and "Retree" are of like quality. "Selected Best." is free from imprifica-

In eight sizes, from 13×17 ins. to 31×53 ins. Royal, Imperial, and Double phant, also with rough surface and with all surfaces extra thick and ettra

Universal, for general drawing and water-colors, six sizes, 14×17 lb bins. Normal, Not hand-made, but very similar to the Not Hot Pressel, in Imperial, and Double Elephant.— Duplez, Cream color, for fine detail and drawings, in Royal, Imperial, and Double Elephant.— Duplez, Drab Odor, Double Elephant only.—Bristol-Board (Reynolds's), Five sizes, 12×15×18-15×

is v

E

heir

in th

from Was

is no

the president

100

abd

Sr :

Jan coll it is coll with the c

Tracing Papers.—Vegetable (French), Five sizes, 13×17 to 30×42 Acanthus, Very thin, 30×40 ins.—Hermes (common), 20×30 and 30×40 ms.—Tough, 20×27 and 27×40 ins.—Corona, Thick, 27×40 ins. Of these the Veget Ceres, and Corona are natural Tracing paper (not oiled, etc.).

In Rolls.—Duplex, Medium, cream color, 36, 42, and 56 ins. in with...
Thick, drab color, 36 and 56 ins. in width.—Universal. For general draws, etc., 36, 42, 56, and 62 ins. in width.—Anni, Medium and thick, surface pearance similar to Whatman's Not Hot Pressed, medium, 36, 42, and 52 width; thick, 62 ins. in width.—Paragon, Pebbled surface (similar to 38 thin, medium, thick, and extra thick. All 58 ins. in width, except medium is also 36 and 42 ins. in width.—With smooth surface (similar to Whatman's on one side, smooth on the other), medium and thick, both 58 ins. in wide can be had by the yard, in ro-yard lengths or in rolls of about 35 lbs.

Detail. — Economy, Nearly white, thin, 50-yard rolls, 60 ins. in withplex, Medium and heavy (Manilla), 36, 42, and 54 ins. in width, in 100 yards pound rolls.

Mounted.—Universal, Duplex, Anvil. and all the Paragon Paper Extra thick, are mounted on muslin, in all the widths, by the yard of 20 yard rolls. All the sheet papers are also to be obtained mounted.

Photo-printing Papers.—Helios Blue Print, medium and this pared (sensitized), 24 to 42 ins. in width; unprepared, 24 to 54 ins. in width; in sheets, five sizes. E.T. Paper, very thin, for mailing, prepared and ungay, 30, and 36 ins. in width. The prepared paper is in 10-yard rolls; upper 50-yard rolls. Blue Process Cloth, prepared and unprepared, in 10 yard and 42 ins. in width. Nigrosine (Positive Black Process), 10-yard olds, 24 21 ins. in width, prepared only; Cloth, 36 and 42 ins. in width, prepared only; Cloth, 36 and 48 a

Profile Paper.—In orange or green, rulings 4 × 20, 4 × 30, 804 ym sheets about 15×42 ins.; also continuous in 50-yard rolls or by the yard

Cross Section Papers.—10×10, 16×16, per inch, 5×5 to the hand 8×8, millimeter, all in sheets about 16×20 ins. 10×10, 16×16 and males continuous in rolls and in the usual variety of colors.

Ruled Cross Section, common, 5×5, 10×10, 8×8, and 4×4 per inch.

Parchment.—Medium and thick, for Blue Prints direct from drawned out tracing.

Tracing Papers.—Parehment, 20 yards, 37 ins. in width—Abesthin, 40 yards, 42 ins. in width.—Patera and Gothic, very tough, 20 yards, 42 ins. in width.—Lore, in width.—Lotus, thin, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins. in width.—Lotus, 20 yards, 42 ins.

Tracing Cloths. — Excelsior, Extra fine, very thin, 30, 36, and width. — Imperial, Both sides glazed or one side dull, 30, 36, and 42 ins its Union, Thick, for coarse tracings, 30, 37, 40, and 43 ins. in width.

Mechanical Refrigeration.

The De La Vergne Refrigerating Machine Co., New York.

Mechanical Refrigeration is effected by Compression, Conder tion, and Expansion of a liquefiable gas.

The Refrigerating or Heat-absorbing agents are Ammonia, Ether, ! phurous Oxide, Carbonic Acid, etc., which undergo the operations at given. The De La Vergne Machine is operated with Ammonia.

Compression.—The gaseous agent is compressed if Ammonia is r to from 125 to 175 lbs. per sq. inch; during which operation heat is de oped in proportion to the pressure exerted upon the gas, or the relative ume to which it has been reduced.

Condensation.—The heat developed in the operation of compress is withdrawn from the compressed gas, which is forced through coils metal pipe, surrounded with cold water. As soon as the condition of satu tion is reached, the gas assumes a liquid state.

Expansion.—The liquefied gas is also passed through coils of m pipe, suspended or seated in a space where the substance to be cooled, as water, brine, beer, etc., is introduced; the pressure in the interior of the c being at a lower point than that required for the maintenance of the in the liquid state.

The liquefied gas, upon entering these coils, again expands, and extra from them and the substance around them the same quantity of heat t was previously given up by the gas to the water of condensation.

The gas, having passed through this routine of operation of refrigerati is now in a condition to be used in a repetition of it.

The gas is forced through these coils by the pressure in the condenser, which the use of Ammonia, is generally from 125 to 175 bs. per sq. inch. Under pressure and the cooling action of the water, liquefaction occurs, and the result liquefled gas flows to a stop-cock, having a minute opening, by which the press in the condenser is reduced to a pressure of 10 to 30 lbs. per sq. inch in the exp sion coils, and where the liquid through reduction in pressure is again transforr into agas. By the exhausting operation of a gas-pump, this pressure is maintain and then the gas is forced by compression into the condenser again.

Thus the expansion coils, although similar to those for condensation, are opera For the reverse, which is the absorption of heat by the liquefied gas, instead of extraction of heat from it.

In Operation, heat is transmitted from the outside through the walls of the pansion or cooling coils, and is absorbed by the expanding liquefied gas within si coils. This heat is borne by the gas through the pump into the condenser, wh it is in turn transferrred to the cooling water through the walls of the conden coils, and ultimately carried away by this water.

Note. — Liquefied ammonia in a gaseous condition at atmospheric pressure and temperature of expands about 1000 times, and upon its expandion re-absorbs a quantity of heat equal in amount to originally shell and evolved from it during liquefaction.

The liquefied gas, entering the coils through the minute opening in stop-cock immediately relieved of a pressure of 125 to 175 lbs. that requisite to maintain in a liquid state, when it boils and expands into gas. To obtain this, heat if quired, and which alone can be supplied from the substance surrounding the ? such as air, brine, water, etc.

As a result, the surrounding substance is reduced in temperature, the q of heat withdrawn by the gas being the same as that which was withdraw? during its liquefaction in the condenser.

Consequently, if the expansion coils are set in an insulated frigerated; and if brine or any liquid surrounds the coils, it will perature, and brine, in this condition led into a space throug duit, will refrigerate it.

Results of Operation of Refrigerating Machines of 200* Tons.

At Lion Brewery, New York. Duration of Test 11 h 20 min.

ÞĽ.

tar

co

T

im

in s

befa.

L:

tet:

in in i

ble o

Thi

tibe j.

The

Will I

0,54

Ritia Objekt

48 a1

or ∙ tilios

:a -

٠.,

2, 5, 5

c

Steam Cylinders.—Diameter, 36 ins.; Stroke of Piston, 36 ins.——Presser of steam (mean), 48.4 lbs.

Gas Compressors.—Two double acting; diam. 18 ins.; Stroke of Piston, 36 ins.; back-pressure, 28.22 lbs.; condenser, 180.78 lbs. per sq. inch; Revolutions, 39.55 From the condenser.

Test for cooling made by running water of a mean temperature of 100.95° ora wort, Baudelot Cooler, and cooling same to a mean temperature of 50.77°.

Refrigeration, equal to melting of 210 tons Ice per day of 24 hours.

Horse Power. — 11P = 313, and assuming consumption of coal at 3 lbs. per her per 11P, ratio of refrigeration = 20.84 lbs. ice per lb. of coal.

If operated under ordinary condensing pressure of 156 lbs., the IIP would be π 4, and ratio 23.47 lbs. ice per lb. of coal; IIP per ton of ice per day = 1.182.

Of a 26-Ton Machine. At Bohlen-Huse Machine and Lake Ia (4, Memphis, Tenn. Duration of Operation 20 Days.

Steam Cylinder: Diameter, 22 ins.; Stroke of Piston, 28 ins.; Steam, 93.49 lbs. w. st. inch.—Gas Compressors, Two single-acting: diam., 14 lbs.; Stroke of Piston, 3 ins.—Revolutions, 40.13 per min.—Temperatures: Cooling water 65.9, brine 1&6.7; coal consumed, 180.597 lbs.; Ice produced, 1221122 lbs.—Ice-making, 26.83 tomps day of 22 hours.—Steam-boiler evaporated s.; bls., water per lb. coal

* All tons are given at 2240 lbs. See foot-note, p. xxvi.

FORCITE POWDER.

American Forcite Powder M'f'g Co., New York.

Forcite. — Is an improvement in Nitro-glycerine compounds, and presents the following elements:

It is less sensitive to shock than other explosives.

Assuming Dynamite No. 1 as the Standard = 100.

Forcite No. X, 95 per cent. Nitro-glycerine, 133 per cent. intensity.

1* 75 """ 125 ""

3† 40 "" 95 """

* 25 per cent. stronger than Dynamite No. 1. + Within 5 per cent. the strength of No. 1, 75 per cent.

It is more powerful than any other known explosive in our market. See Report of Henry L. Abbott, Lieut. Col. E. U. S. A.

It is safe in handling and transportation, quintuple force-caps being applied to explode it, and free from noxious fumes. Water-proof, free from the absorption of moisture, and is not injured by submersion in water.

Directions in Use.

In Blasting, fill the hole, and thoroughly tamp the charge.

Thaw it, if frozen, as frozen powder will not explode with its proper effect.

or caps should be maintained dry, and are not to be stored in and

the powder.
mited by weak caps, instead of being exploded, emits noxious vapors.

der, one and a half times stronger. Find

SURFACE CONDENSATION.

Wheeler Condenser & Engineering Works, New York.

>nstruction.—The Wheeler Condenser, alike to others for the same se, is an elongated vessel, cylindrical or cubical, with the necessary attents for Steam and water connections.

distinguishing features are: The exhausted steam, upon entering the enser, impinges upon a perforated scattering plate, which distributes it ally over the tubes and thus diverts the deteriorating effect of the direct agement of it upon one portion of the tubes; the steam, expanding void above the tubes, is reduced in pressure, and consequent temperature, e it flows into contact with the surfaces of the tubes.

ch pair of tubes is composed of an external and internal tube, set horilly, the inner tube having an open end, the other end being screwed a removable head or vertical diaphragm, which is set at a space of a nehes from a like head, into which one end of this large tube is screwed, ther end being closed by a screw cap.

is design permits the tubes to expand or contract, without the use of packings or ferrules of any kind, as only one end of each tube is fixed. e tubes are tinned both externally and internally, and can be readily trawn for cleaning, etc.

peration.—The tubes are divided into two distinct tiers; the condensater flowing through the small tubes in the lower division passes out ir open ends and through the annular space between their external surand the internal surfaces of the larger tubes, and from thence into the division, and through its tubes in like manner to the space between the eads referred to, and finally out through the discharge pipe.

e circulation of the condensing water is by this manner of flowing renvery active, and consequently a less volume of it is required, and there tube surface needed for a required volume of condensation.

ults of an Operation to Determine the Efficiency f this Condenser, with and without a Vacuum.

Steam Condensed per Hour per Sq. Foot of Condensing Surface.

		Temperatures.			Steam			res.	Steam	
iset,	Vac- uum.	In- jection Water.	Dis- charge Water.	Reservoir.		Condenser.	Jection .	Dis- charge Water.	Reser- voir.	Con- densed.
_	Ins.	Deg's.	Deg's.	Deg's.	Lbs.		Deg's.	Deg's.	Deg's.	Lbs.
p I	24.5	56.5	98	138	8, 101	Without Vacuum*	78.5	139	201	204.2

* As a simple surface condenser without air pump attached.

REFRIGERATING AND ICE-MAKING.

Refrigerating Machine is one that produces as low a temperature as a volume of ice, at the temperature attained, would in melting from the rature of the air, or void to be refrigerated = 142° (142.6°) of temperare required to transfer one lb. ice at 32° to one lb. water at 32° , whience represents the Latent heat.

order to operate such a machine for the formation of icared, instead of 142°, about 236°.

s, Assume the water from which the ice is to be formed rature of 72°; then to reduce it to 32°, before ice can be units are to be abstracted from each lb. of water; the d from the lb. of water of 32° to reduce it to one lb. ice

If the ice is produced at the general temperature of 180, and the Specifich it is taken at .5°; then, $32-18\times.5=7^{\circ}$. To reduce this water from 73° there is a reduction of 40° or thermal units from each lb. of water.

If ice is produced at 180, Then 70 additional, as deduced above, are required

In practice it is observed that the average loss of temperature by radius from the freezing tank, melting the external surface of the ice, to withdraw ! the molds, etc., is fully 20 per cent. of the total capacity of the machine. We the 2360 which are to be abstracted from the water per lb. of ice, in order was it to ice, 47.2° are lost by radiation. And $40 + 142 + 7 + 47 = 236^{\circ}$ are no structed from each lb. of water of 72° , in order to produce 1 lb. ice at 18°.

Consequently, If 142° are required in Refrigerating machine and 250 1 making, the relative requirements are as 1 to 1.66 or as 6 to 10.

Refrigerating Capacity. - Of a machine is designated by number of lbs., or tons of Ice, which it is capable of producing.

One lb. of ice at 32° absorbs 142° or thermal units in melting. Hence, a of ice absorbs $142^{\circ} \times 2240 = 31800^{\circ}$, and a machine of 50 tons' capacity as $318000^{\circ} \times 50 = 15900000^{\circ}$ every 24 hours of its operation.

Ice-making Capacity.—Of a machine is also designated in number of lbs., or tons of Ice, which it is capable of producing.

To freeze one lb. of water at 72° to ice at 18° , it requires the absorption t viz., To reduce one lb. of water at 72° to 32° , it requires the absorption of freeze it requires 142° ; to reduce ice from 32° to 18° requires 142° ; to reduce ice from 32° to 18° requires 142° ; heat of ice = .5). Reduction of temperature from surface of freezes withdrawing the ice from its molds by the application of heat, about 256 capacity of machine = 20% of 236 = 47°. Hence, Total heat to be absorbed. of ice = $40 + 142 + 7 + 47 = 236^{\circ}$.

Ratio of Capacity of Refrigerating to Ice-making. - AS 142: 236:: 6: 13. ceding, or a Refrigerating machine of 9.97 tons capacity will produce about of ice in the same period.

Highest Elevation of a Lake.

Colorado. - "Green Lake" is 10 252 feet above level of the sea and ma depth.

Magnifying.

Bavaria, Munich, possesses a microscope that magnifies 16 000 diameters

Power of Screw Bolts.

Results of an Experiment.

Wrought-iron.-Diameter, 2 ins. Thread, V. Pitch, .22 ins. Mean Power applied at a circumference of 78.85 ins., 213 lbs. Loss by friction, 10.19 per cent.

(Jas. McBride, M. Am. Soc. 11

Arc

2

NOTE

T a h

To I

LH-

from la Usual

nt for

Amir

Note

blund

pere

Duration of Railroad Cross-ties. Duration of Following Woods

Wood.	Years.	Wood.	Years.	Wood.
White Cedar	8	Chestnut	6	Yellow Pine Hemlock Tamarack

The elements of durability are Resistance to decay and to wear. While bines both qualities to the highest degree. Yellow Pine resists wear, but Red Cedar and Black Cypress resist decay, but not wear.

Ties should not be cut when the tree is in leaf, and should be wall 121 eserved by some antiseptic process before being laid.

Proper draining of a road-bed will add to the duration of ties, and all their surface by tools, etc., should be avoided, and all spike-bols tool the absorption of water. (H. W. Real.)

GAS AND ELECTRIC LIGHTING.

(In Addition to pp. 583-587). Gas.

Power and Consumption of Different Burners.

[·	Come	Power.	Consump	Ī	Candl	e Power.	Consump-
	Mo.	Per Foot per Hous,	per Hour per Lamp.	Berner.	No.	Per Foot per Hour.	per Hour per Lamp.
	70	Ne. 2.33	Feet. 4-3	Flat) In (60	No.	Feet.
from	11.5	2.5	4.6	Flame ters.	90 150	5.5 5	30

Electric. Arc Lamns.

	Horis'tal.	(Angle 7°.	andle Powe		Angle 40°.	Watts Required.		Relative Costs* of Gas. Elec- tric=I.
	Me. 92 256	No. 175 300	No. 207 350	No. 322 546	No. 460 780	No. 300 400	Hour. •3 •4	2.67 3.77 4.83
- 1	220	420	495	770	1100	500	• 5	4.03

· Per Candle Power for Batawing Burner,

this should be set high and for the following causes:

sir high candle power and distance apart being in excess of gaslights. ht radiating at a depressed angle is greater than when cast horizontally. zontel rays are not as steady as angular.

ne greatest intensity with continuous currents is at an angle of 40° bental line.

the Coefficient of Minimum Lighting Power in Streets.

ECO. Leight of lamp, both in feet, and Co, coefficient. L. representing candle power of lamps. D maximum distance

for Gaslighting is assumed for a unit of pavement to feet disp of 12 candle power 9 feet in height. Hence, $12 \times 9 \div 50^{3} = .000864$

coefficient, the following capacities of arc lights will give the same ht at the following beight and distance.

standard would increase the coefficient to .coi 728. are light can replace from 3 to 6 gas-lamps, according to locality and

at adopted.

hased on the substitution of one light for 3.5 to 4 gas lamps, ting, minimum standard of light; while the average standard would III 10 to 12 times.

(Eliminated, etc., from Papers of Henry Robinson, M.I.C.E.)

Railroad Speed.

Buffalo, Weight of Train 230 tons. hour.

, Fairport, 36 x miles in 360 minutes, there de Fair and Reading R. R.—One Do 11e in 39.7:

11 London to Edinburgh, 400 miles Edinbu Ed zeluding locomotive, 80 kms

Tenacity of Round and Square Wrought-Iron Bolt Holes of Different Diameters.

Round .-. . 75-inch, driven into a hole of . 625 inch, in White Pine, for m required 6875 lbs. to withdraw it.

1-inch, driven into a hole of .75 inch, in White Pine, for 12 ins., required lbs. to withdraw it; and in Norway Yellow Pine. 10830 lbs.

z-inch, screwed, 8-threads per inch into a hole . 8125 inch, in White Pine, for required 15 125 lbs. to withdraw it, and one of 12 threads required 15 250 lbs.

z. 125-ins., driven into a hole of .875 inch, in Hemlock, for 12 ins., required lbs. to withdraw it.

Square.-The difference between that and Round, under like condition essentially different, and when a hole was bored 10 ins. in depth, the different not essential.

Railway Spikes.

Length	1	T	o Withdra	•	-	
Tie.	Chestnut.	Y. Pine.	W. Cedar.	Remarks.		
Ins. 4.6	Lbs. 3264	Lbs. 3198	Lbs. 2305	Lbs. 4330	Lbs. 3485	In solid wood, sharp poi

Ship Spikes 375 inch square and 7 ins. in depth, driven 3 ins. in Pine and drawn back, required 1617 lbs., their edge with the grain of the wood 1317 lbs. with it across.

Note. — The above are deduced from Experiments of Gen. Weitzel, U. 8 1874-77.

Resistance of Bolts, after being 7 months driven = 10 per cent. greater that mediately after, and when driven through in direction of fibre it is but 6 cent, of that of being withdrawn.

Smooth bolts have greater retention than ragged, either driven or withdraws Moderate "ragging" reduces their power 25 per cent., and extreme 50 per cent. Relation between diameters of bolt and hole showed that the resistance of al of z inch in a .6875-inch hole was greater than in one of .75 or .8125 inch.

With a .75-inch bolt the resistance was greater in a hole of .625 inch, and one quarter greater than in one of a sixteenth greater or less.

One-inch square bolt in a .875-inch hole was the same as a round bolt in a .6

Screw-bolts are about 50 per cent. more effective than plain round,

Long pointed blunt bolts are more effective than short pointed.

Experiments of Mr. F. Collingwood and Wm. H. Paine, made in connection construction of the New York and Brooklyn Bridge, gave for a 1-inch round driven in a .9375-inch hole, in best Georgia Pine, a resistance of 15 000 lbs. per li bot, and in a .875-inch hole 12 000 lbs. In lighter woods the tenacity was less,

J. B. Tscharner, in the laboratory of the University of Illinois, determined like bolt (1-inch round), under like conditions in White Pine, was 6000 at a bolt driven parallel to the grain of the wood has but half of the rel what driven perpendicular to it. Further, that assuming a bolt of a ind * as x, that if driven in a .75-inch hole it would be 1.69, and in a.8

Driving Resistance of Round and Squar Steel Bolts.

Diameter. Drive into Pine Wood. Six Inches in Depth. Sauare.

> ang 212 \$\square\$522 675 orr'/ I. A. Lone Usaro T. H. L.

of metal in the Round boils is the least expensive.

Round.

Mortar.

els...Clern int St. r. Sin. or months of the control of cle Clement State

er the mass so

decondation at sheal and and for any or and any area. preterable.

margaretfrassitianit run years at a

air Mortar.—I.y the harman are seen as seen as seen as a Moremove al. 2. 21 to 18 18 18 18

Medition a layer from 1 has the control of the

Large Trees in Austr La. Fidoria, Eucalvilla - Long College and College and College

Speed of Vessels.

letermine the True Special New office of the control of and Alternate Runs over a Measure I lust a

		-i · · · ·	1.			
M.les or Kt. :	R	r.*. :	1 1	1 . 1.	•	
15.5	12.3					
1 10.2		12."	١			
14-4	12.3	12.7	,	(:- ,		
1 11	12.7		12.17			`
• • • •	12.1	12.3	12.	•		
13.2	12.5	12.3				
. 11.3	€2.5÷	g == : : : ·	Odlar.			

ME-The mean of several result is authority.

Velocity of the Current.

Determine the Velocity of the Current on 1 the Vessel's Course.

Im the observe I speed of the vessel d in this rea velocity of the current.

ESTRATION. - Assume preceding rates

	8,000	· 1.		
E4.	Obrerv. 1.	True	36.5	` . `
1	15.6		1 24.	W
3	14.4	12.45	1.45	l'amme des
5	13.2		1 45	Mar.

dative Corrosion of Wrought Iron

In Air..... h

Expo

Oth

PILE-DRIVING.

(Continued from page 672.)

To Compute Weight of Ram. (Molesworth.)

 $P\left(\frac{hP}{5AL}-1\right) = R$. P representing weight of pile in lbs., h height of fall of m and L length of pile, both in feet, and A area of section of pile in sq. im.

Piles are distinguished according to their position and purpose: the Gauge Piles are driven to define limit of area to be enclosed, or as guidest the permanent piling.

Sheet or Close Piles are driven between gauge piles to form a compact at continuous enclosure of the work, and are driven as close and uniform a each other as practicable of attainment, and the intervening space or join however close, is made water-tight by the introduction of a "feather" drive in a groove on the sides of the piles.

Crushing.—Crushing resistance of a pile, unless of very hard wood, shell not be estimated to exceed a range of from 500 to 1000 lbs. per sq. inch.

Refusal of a pile intended to support a weight of 13.5 tons can be set taken with a ram of 1350 lbs., falling 12 feet, and depressing the pile & an inch at final stroke.

Pneumatic Piles.—A hollow pile of cast iron, 2.5 feet in diameter, was depressint the Goodwin Sands 33 feet 7 ins. in 5.5 hours.

Water Jets.—A stream of water is ejected under pressure at the point of apilland, rising around it, removes the end and surface resistance, so that it will be made asily drive. Suited for sand or fine soil.

Nasmyth's Steam Pile-hammer has driven a pile 14 ins. square, and 18 feet b length, 15 feet into a coarse ground, imbedded in a strong clay, in 17 seconds, with 20 blows of fram, making 70 strokes per minute.

Shaw's Gunpowder Pile-driver is operated by cartridges of powder on head of pile, which are ignited by fall of the ram. 30 to 40 blows per minute have been made under a fall of 5 and 10 feet.

Sheet Piling.

To Compute Coefficient of Resistance of the Earth. Rh _ C. Reconscepting resistance of the earth h beint of full of some and the

 $\frac{d}{d} = C$. R representing resistance of the earth, h height of fall of ram, and d he depression, both in feet.

Ringing Engine

Requires 1 man to each 40 lbs. of ram, which varies from 450 to 900 lbs.

To Color Brass (Copper and Zinc) Blue,

Mix in a close vessel reo grains = 6.5 oz. Troy, of Carbonate of Copper and 70 grains = 4.06 lbs. Troy, of Ammonia; shake until solution is effected and then addustilled water; shake, and the solution is ready for use.

Keep it cool and effectively stopped. If deteriorated, add a little Ammonia.

peration as little to the air as practicable.

er and tin and argentine, as an available. (Chemical Jose

7.

STEEL SPRINGS (Additional to page 779.)

To Compute Safe Elements of Springs.*

$$\frac{1}{n} = D; \quad \sqrt[3]{\frac{\text{D } b \, t^3 \, n}{.8}} = l; \quad \frac{.8 \, l^3}{\text{D } t^3 \, n} = b; \quad \sqrt[3]{\frac{.8 \, l^3}{\text{D } b \, n}} = t; \quad \frac{.8 \, l^3}{\text{D } b \, t^3} = n; \quad \frac{b \, t^2 \, n}{5 \, t} = \text{L}.$$

representing deflection and t thickness of plates, both in 16the of an inch; I length on or bearings when weighted, and b breadth of plates of springs, both in ins.; mber of plates, and L load or stress in 1000 lbs.

rg.-The plates are assumed to be similar and regularly formed.

JUSTRATION.—Assume a spring of the following elements:

l = 20 and b = 3 ins., t = 4 16ths, n = 5, and L 2400 lbs.

$$\frac{.8 \times 20^{3}}{\times 4^{3} \times 5} = \frac{6400}{960} = 6.66 \text{ 16ths}; \qquad \sqrt[3]{\frac{6.66 \times 3 \times 4^{3} \times 5}{8}} = \sqrt[3]{\frac{6400}{8}} = 20 \text{ ins.};$$

$$\sqrt[3]{\frac{.8 \times 20^{3}}{6.66 \times 3 \times 5}} = \sqrt[3]{\frac{6400}{100}} = 4 \text{ 16ths}; \qquad \frac{.8 \times 20^{3}}{6.66 \times 3 \times 4^{3}} = \frac{6400}{1280} = 5;$$

$$8 \times 20^{3} = \frac{6400}{1280} = 5;$$

$$\frac{.8 \times 20^3}{6.66 \times 4^3 \times 5} = \frac{6400}{2133} = 3 + ins.; \qquad \frac{3 \times 4^2 \times 5}{5 \times 20} = \frac{240}{100} = 2.4 \ 1000 \ lbs.$$

TE. -When back or short plates are added, they are to be added to the number ates if of the ruling breadth and thickness.

hen extra thick back or short plates are added, they are to be represented by es of ruling thickness having an equivalent resistance, prior to computation by ulas for D and L, and are thus ascertained: multiply number of additional s by cube of their thickness, and divide product by cube of ruling thickness. LUSTRATION.—Assume as preceding, thickness of plates = 4 16ths, number of 1 5, and 3 extra plates of 5 16ths to be added.

en,
$$\frac{3 \times 5^3}{4^3} = \frac{375}{64} = 5.86 = no$$
. of plates, and $5 + 5.86 = 10.86$, the no. of plates $160 \times 4^3 = 320$, $160 \times$

ence, 3 plates of 5 16ths added to the 5 of 4 16ths = 10.86 plates of 4 16ths. nversely, $695 \div 5^3 = 5.56$ plates of 5 16ths are equal to the 10.86 of 4 16ths.

$$\begin{array}{ccc} & \textbf{Helical Steel Springs.} \\ \frac{d^3 \, L}{C \, t^4} = D; & \sqrt[4]{\frac{d^3 \, L \, D}{C}} = t; & \sqrt[3]{\frac{C \, t^4 \, D}{L}} = d; & \frac{C \, t^4 \, D}{d^3} = L. \end{array}$$

Safe Load.
$$\sqrt[3]{\frac{L}{3}} = t$$
 for round, and $\sqrt[3]{\frac{L}{3}} = t$ for square.

representing diameter or distance between the centres of the rod or bar of the 19, and D compression of the spring, both in ins.; L load or stress applied in lbs.; meter of rod or side of square of bar in 16th of an inch, and C a coefficient = 50. ound rods and 30 for square bars.

USTRATION.—Assume as follows: d=7 ins. square; L=3363 lbs.; t=16 sixhs, and C = 22.

$$\frac{\times 3363}{1 \times 164} = \frac{1153434}{141792} = .8 \text{ inch}; \quad \sqrt[4]{\frac{73 \times 3363 \times .8}{22}}$$

$$\frac{122 \times 164 \times .8}{3363} = \sqrt[3]{\frac{1153434}{3363}} = 7 \text{ ins.}; \quad \frac{22 \times 16}{7!}$$

$$= 3363 \text{ lbs.}$$

$$\sqrt[3]{\frac{3363 \times 7}{3}} = \sqrt[3]{\frac{23541}{3.8}} = 18.$$

load and deflection obtained for one coll : er of coils for the respective total load and de. nare spring is approximately equal to a roun

Blast Draught in Ashpit of a Marine Boil

			D: N: 20			
	· IH	P	ı C	loal	ll Water i	_
	Of Blower Engine.	Of Engine.	Per IIP per hour.	Consumed per hour.	Evaporated per lb. of Coal.	Re ES
• •	No. Natural)	No.	Lbe.	Lba,	Lbs.	Per
	Draught } · ·	57-5	3.72	214	10.77	1
	.96	88.8	3.26	290	8.82	1
	2	100.5	3.12	314	8	:
	a	106. I	2.04	323	7.82	. :
	4.2	x x 8. 8	2.93	323 348	7.82	
	5 1	119.8	3.12	374	7-53	
	6	127.9	3.12	399	7	
	7.4	125.7	li 3.1	421	7.03	ł

When the Power was Doubled.—The fuel consumed was as x.5 to x, ti evaporated as .73 to x, and the saving of coal was 19 per cent.

An average of the above results gave a saving of 15.8 per cent.

By trials in the R. N., it was ascertained that a blest draught increased the engines 52.5 per cent., and the bollers 65 per cent. per ton of their w

First Steam-Launch.

"Sweetheart."-Was built at the Navy Yard, New York, in 1837.

Length, 35 feet; beam, 4.25; depth, 1.83.

Engine, vertical cylinder beam, 4 ins. in diam. by 12 ins. stroke of piston Water-wheels, 4 feet by 10 ins. Boiler, horizontal fire tubular.

On her trial trip she was saluted by steamboats and assemblages of preeryboats and on the piers. Designed by and constructed under the dire the Author.

Bearings without Lubricants.

Graphite or Plumbago-Is the essential element in dry bearings.

"Fibre graphite"—Consisting of finely-powdered plumbago mixed wit wood fibre, is pressed in a mold of the required form, then saturated with: oil and oxidized in a bot dry air.

Nors.—This bearing * has been favorably reported on by a committee of the Franklin Instit

"Carboid"—Is carbon mixed with finely-powdered steatite; its specific = 1.66, that of carbon being 1.48. It can be molded, turned, bored, and sharp form.

NOTE.—The coefficient of friction with dry bearings is lower than that of r bearings in good condition.

Tests for Water.

(Additional to page 852.)

To Ascertain

If Hard or Soft.—Into a clean glass tube put a solution of soap, add a st ume of the water, when, if hard, the mixture will become milky.

If Alkaline. - It will turn red litmus-paper blue.

If Acid. - It will turn blue litmus paper red.

If Carbonic Acid is present.—Equal volumes of it and lime-water will milky. Add a little hydrochloric acid to the mixture and it will become c

"Sulphate of Lime (Gypsum) is present.—Add to it a little chloride of thie precipitate is formed, which will not dissolve when a small vescil is added, it contains the sulphate.

Anchoring Bolts in Stone.

st of the relative value of Lead, Sulphur, and Portland Cement, & 1 of iron bolts in limestone rock, give similar results.

Gate Valves.

Eddy Valve Co., Waterford, N. Y.

Gate Valves, Double Seated, have faces set at a slight angle to line of stem, and as the gates, in consequence of their angular faces, cannot fill the space between the valve-seats until they are fully down to their position, the adhesion of them to the valves in their progress down, from the interposition of sediment or other obstructions, is not only not arrested, but they are impracticable of arrest before being fully scated, and left partially open, under the impression on the part of the operator that they are in position and the flow of the fluid arrested.

The valves are attached to the stem by an articulated ball joint, hence they are rendered free to revolve, and their faces varying with that of their valve - seats, cutting or grooving is measurably avoided.

The valves are two independent pieces, whereby a single defect involves the repair or removal of but one of them.

The stem rotates in a screw-collar connected to the ball joint, and hence it is not elongated outside its glands upon the raising of the valves.

asses	1 and	6.	l.	Cli	18 2.	5 to 1	1	Class:	2.	Class	8. 3 de 4.
M	easureme	nt.	l	M	ek ureme	nt.		Measu	ement.		234
End to ind of crew peket.	Face to Face of Flange.	Diame- ter of Stand- ard Flange,	Size.	End to End of Screw Socket.	Face to Face of Flange.	Diame- ter of Stand- ard Flange.	Size.	to Face of	Diame- ter of Stand- ard Flange.	Size.	Measureme from End End of Hu
Ina.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.
-375	2.5	3	2	5·5	5.75	6	14	15	21	4	12
- 75	3	4.5	2.5	6	6.5	7	15	15	22	5	12.5
.875	3.25	4.75	3	7.25	7-75	8	16	16.25	23	6	13.5
-375	3-5	5	3-5	7.5	7.75	8.5	18	16.25	25	8	14.5
+5	4	5-25	4	8	7.75	9	20	17.75	27	10	15.5
-375	4.625	5.75	4-5	8.5	8.5	9-5	24	20	31	12	16
.125	5-5	6	5	9	9-25	10	30	22.5	38	14	17.25
-375	5.875	6.5	6	10.25	9.75	11	36	25.75	45	16	17.5
1	6.25	7.25	7	11	11	12	co.	18868 3 (18	18
.625	7	8	8	11	11	13	Ca	18868 3 0	inc. 4.	20	18
.25	7.5	9.5	0	13.25	12	16	Ins.	Ins.		24	23
.75	7.75	11	2	14.75	13.5	18	2	7.75	-	30	25
-	-	-	-	l 	-	-	3	10.5	1	36	30

Class.

Il Brass, Screw and Flange Ends. | 2. Iron Body, Brass Mounted. [Mains. ub Valves, all Iron, for Gas Mains. | 4. Hub Valves, Brass Mounted, for Water uick Opening Valves, with Rack and Pinion Stem, Iron Body, Brass Mounted. nick Opening Valves, Rack and Pinion Stem, all Brass, Screw Ends.

Eddy Hydrants.

Eddy Valve Co., Waterford, N. Y.

D	inmeters of		ll .		Noz	zles.			Steam	er and
n- •	Stand Pipe.	Seat Ring.	2.5 Ins.	2.5 Ins.	2.5 Ins.	2.5 Ins.	2.5 Ins.	Steam-	Ins.	2.5 Ins.
7	Ins.	Ins.	No.	No.	No.	No.	No.	No.	No.	No.
	4.5	3	1	-	-	-	-	-	-	—
0	5-5	4	1	2	3	-	-	1	1	2
	5.5	4	1	2	3	100	-	1	1	
. 1	6	4.5	-	2	3	-	-	1		
1	6.625	5	-	2	3	4	-			
- 1	7.625	6	-	2	3	4	-	1		
1	7.625	6	-	2	3	4	-			
>/	9.75	8	-	-	-	1 -	1 6	1		

ard Length from Pavement to bottom of Main or branch

Aluminum.

(Continued from page 938.)

The available properties of Aluminum are its relative lightness, freed tarnish, not being affected by sulphurous fumes and being slowly oxid moist atmosphere, its extreme malleability, its facility of being cast, its h fic heat and electrical and heat conductivity, and its extreme ductility.

Its transverse and torsional resistances are very low, its maximum sh sistance for castings 12 000 lbs., and forgings 16 000 lbs. per square inch.

It is adapted for structures under water, can be welded by electricit nealed if heated and gradually cooled just below a red heat. The tensile of its wire is greater than that of its rolled metal.

Its properties are materially changed and impaired by alloying it with centages of other metals, and its tensile resistance, relative to its wei plates as strong as steel at 80 ∞ lbs. per square inch, and in cold draw strong as it is at 80×0 lbs. (Alfred E. Hust.)

Magnesium.

Specific gravity $_{1.74}$, is $_{.33}$ lighter than Aluminium; is harder, tendenser; less affected by alkalies, and takes a higher polish.

Staff.

Staff is composed of Plaster of Paris, water, and hemp fibre, the latte

For ornamental pieces, matrices of hardened gelatine are used.

It resists the weather and even frost after being saturated.

Boiler Setting.

The fire-brick should be laid with very thin joints, and set in Kaolin pared fire-clay, so thin that it is necessary to lay it with a spoon ins trowol.

Every fifth course should be a header course. ("The Locomotive.")

Glue.—Its tenacity varies from 500 to 700 lbs. per square inch.

Friction of Engines and Gearing.

(In addition to pages 469-478, etc.)

Deduced from Experiments of Alfred	Saxton, Manchester Assn. of Eng.
Spur Gearing25.9 per cent.	Belt Driving
Rope Driving29.6 "	Direct Acting23.8
Fngineg	6 and so a ner cent

Spur gearing gave the best result when not complicated with rope driving gave best results at high speeds.

Belt driving for developing large power is only equal to an average rol engine.

A variety of clay, one of the two ingredients in Oriental porcelain; the other is term petunes.

Spirally Riveted Iron or Steel Pipe.

Abendroth & Root Mfg. Co., New York.

Spirally Riveted Metal Pipe,

Compared with Wrought or Cast iron Pipe, has the advantage of low riginal cost and expense of transportation, maintaining a nearly equal pursting pressure with that made of heavier material. It is made of Sheet ron or Sheet Steel, varying in thickness from No. 20 to No. 12 B.W.G., ac-

cording to diameter and pressure. The rivets in the seam are set by compression, while the laps are thoroughly coated with hydraulic cement to make it water tight.

Connections.—When a moderate pressure is maintained, these pipes, their ends being crimped, are usually connected by a cement joint, as shown in the annexed cut.

When the pressure is excessive, a bolted joint is resorted to, as also shown, and which is in effect a stuffing box or sleeve joint, dispensing with lead calking, and admitting of a slight flexure of the pipe.

> For service connections the collar may be tapped. When lead calking is required, the inner ends of the pipe are reinforced by an iron collar.

Bursting Pressure.

Diameter Internal.	Per Sq. Inch.	Diameter Internal.	Per Sq. Inch.	Diameter Internal.	Per Sq. Inch.	Diameter Internal.	Per Sq. Inch.	Diameter Internal.	Per Sq. Inch.
Ins. 3 4	Lbs. 900 to 1300 700 " 1000	8	Lbs. 350 to 800 350 " 825	Ins. 10 12	Lbs. 275 to 650 225 " 550 200 " 470	Ins. 16 18	Lbs. 190 to 400 150 " 375	Ins. 22 24	Lbs. 125 to 300 110 " 275

In order to enable an estimate of the relative cost of these pipes, compared with cast and ordinary wrought-iron pipes, the weights of each are submitted.

Weights.

He Sp	avy iral.	th.	+	He Spi	ral.	#.	-+	He Spi	ral.	#.	.+	He Sp	avy iral.	the.	+
Diam.	Weight.	Wrough Iron.*	Cast Iron.	Diam.	Weight	Wrong Iron	Cast Iron.	Diam.	Weight	Wrought Iron.*	Cast Iron	Dism.	Weight	Wron	Cas
Ins. 3 4 6	Lbs. 2 2.5 5	Lbs. 7-5 10.75 18.75	Lbs. 13 20 30	Ins, 8 10 12	Lbs. 8 10 13	Lbs, 28 40 49	Lbs. 40 55 70	Ins. 14 16 18	Lbs.	Lba.	Lbs.	Ins. 20	Lbs. 28 31 33	Lbs.	Lhs. 180 200 250

In Mechanical and Engineering Operations.

SYMBOLS

Elements and Formulæ, proposed by the Author. For the purpose of inducing a uniformity in their expression (1891).

	Henry, -s H	Sum, -s
idence z	Joule, -8 J	Tangent Tan.
A.a.a'	Kilojoule, -s Kj	Cotangent Cotan.
meter Cal.	Watt, -s wt	Thrust Tt
Gt	Kilowatt, -s kwt	Time, -s T . t . t'
ig surface Hs	Millihenry, -s mh	Second, -s.Sec. sec. or "
1. Scn, H, L or T	Milliampere, -s ma	Minute, -s Min. min. or
icialSup.	Megohm (Greek c. omega) Ω	Degree, -s Deg. or o
1	Microvolt, -s Mv	Hour, -a Ho . ho
foot, feet	Ohm, -8(Greek omega) w	Day, -s Ds
-	Volt, s Vo	Month, -s Mo
iere, s At.		Year, -s Ys
ric Bc	Evaporation, ive Evp	•
-8 b . b'	Foot-pound, -s, tons Fp.Ft	Triangle, -s
gal force Cf	Force F	Triple Tpl
f gravity Cg	Friction Fn	Unit, -s. Heat Hu
erence, -s C.c.c'	Gravity g	Calorific or French Cc
nt or Factor Co.	Height, -s H . h . h'	Vacuum Vm
1d Cpd	Horse-power HP	Velocity V . v . v'
Cub. or 🖂	Effective EHP	Versed sine v-sin
alCyl.	Indicated 1HP	Vertical Vt
·- · · · · · · · · · · · · · · · · · ·	Nominal NHP	Volume, -s Vol. vol.
; dp . dp'	Inclination In	Chaldron, -s Ch
e Dpt	Joule's Equivalent jE	Chord, -s Co
', -s D.d.d,'	Latitude Lat.	Bushel, -s Bl
•	Length, -s L.l.l'	Cube foot, feet Cf
3. Inch, -es. ins.		Barrel, -s bbl
n.	Logarithm Log.	Gallon, -s gl
sYds	Hyperbolic Hyp. log.	Microliter (Greek lambda) A
-s	LongitudeLon.	Milliliter, -s ml
s Rd	Mercurial gauge Mg	Centiliter, -s
s K	Meridian M	Deciliter, -s dl
Ms	Modulus of Elasticity . ME	Liter, -slr
ter, s mm	Moment, -s Mt	Dekaliter, -s dr
⊖ter, -scm	Number, -s No	Hektoliter, -s hr
ter, s dm	Ordinate, -s O . o . o'	Kiloliter or Stere, -s. Kr
-\$ m	Perpendicular I'r	<i>'</i>
∍ter, .s dk	Pitch, -s Ph . Ph'	Water-line
eter, s hk	Pressure, -s P . p . p'	Weight, -s W.w.w'
ter, -s kl	Quadruple Q -l	Ounce, -soz
'eter, s mr	Radius, -ii R . r . r'	Pound, -s lb lbs.
Orsq.meter,-sCe	Revolution, -s Rev. rev.	Ton, -8 (2240) Tons
Ae	SecantSec.	" (2000)—Tons
ъ -в Не	Cosecant Cosec.	Milligram, s mg
F water Dw	SineSin.	Centigram, -scg
• -s El	Cosine Cosin.	Decigra-
· E	SlipSp	Grar
1, U. S. or)	SolidSd	Dek
Eq.	Specific gravity Sg	Hek Kilc
	Span Sn Stability St	
Ampere, -s. Am -s. (Greek cap. phi) Φ	SteamStm	
	Stroke 8	
rad, -s (Greek phi) ø	DHUR9	D /

 $\pi = 3$ 1416

ORTHOGRAPHY OF TECHNICAL WORDS AND TERMS

Orthography in ordinary use of following words and terms is so varied that they are here given for the purpose of aiding in the establishment of a uniformity of expression.

Abut. To meet, to adjoin to at the end, to border upon. Abut end of a log etc. is that having the greatest diameter or side.

But and Butt end, when applied in this manner, are corruptions.

Alit. In Mining, the opening into a mine.

Amidships. The middle or centre of a vessel, either fore and aft or athwartship. The amidship frame of a vessel is at \bigotimes , and is termed dead flat.

Arabesque. Applied to painted and carved or sculptured ornaments of imagisary foliage and animals, in which there are no perfect figures of either. Synonymous with Moresque.

Arbor. The principal axis or spindle of a machine of revolution.

Arris. A term in Mechanics, the line in which the two straight or curved so faces of a body, forming an exterior angle, meet each other. The edges of a body, as a brick, are arrises.

Ashlar. In Masonry, stones roughly squared, or when faced.

Athwart. Across, from side to side, transverse, across the line of a vessely course.

Athwartships, reaching across a vessel, from side to side.

Bagasse. Sugar-cane in its crushed state, as delivered from the rollers of a mil

Baik. In Carpentry, a piece of timber from 4 to 10 ins. square.

Baluster. A small column or pilaster; a collection of them, joined by a rail, forms a balustrade.

Banister is a corruption of balustrade.

Bark. A ship without a mizzen-topsail, and formerly a small ship.

Bateau. A light boat, with great length proportionate to its beam, and wider its centre than at its ends.

Batten. In Carpentry, a piece of wood from 1 to 2.5 ins. thick, and from 1 w7 ins. in breadth. When less than 6 feet in length, it is termed a deal-end.

Berme. In Fortifications and Engineering, a space of ground between a rampat a most or fosse, to arrest the ruins of a rampart. The level top of the embandment of a canal, opposite to and allike to the towpath.

Bevel. A term for a plane having any other angle than 450 or 000.

Binnacle. The case in which the compass, or compasses (when two are used, is set on board of a vessel.

Bit. The part of a bridle which is put into an animal's mouth. In Carpenty, a boring instrument.

Bitter End. The inboard end of a vessel's cable abaft the bitts.

Bitts. A vertical frame upon a deck of a vessel, around or upon which is secured cables, hawsers, sheets, etc.

Bogie. Pivoted truck, to ease the running of an engine or car around a curve

Boomkin. A short spar projecting from the bow or quarter of a vessel, to extend the tack of a sail to windward.

Bowlder. A stone rounded by natural attrition; a rounded mass of rock trasported from its original bed.

Breast-summer. A lintel beam in the exterior wall of a building.

Buhr-stone. A stone which is nearly pure silex, full of pores and cavities, and red for Mills.

ng. Woolen texture of which colors and flags are made.

A load. The quantity that a ship will carry. Hence burdenme.

nall cask, differing from a barrel only in size. Commonly writes is

ber. An instrument with semi-circular legs, to measure diameters of spheres, erior and interior diameters of cylinders, bores, etc.

of Calibers is superfluous and improper.

: To stop seams and pay them with pitch, etc. To point an iron shoe so as rent its slipping.

. An irregular curved instrument, having its axis eccentric to the shaft which it is lixed.

ber. To camber is to cut a beam or mold a structure archwise, as deckof a vessel.

boose. The stove or range in which the cooking in a vessel is effected. The ig-room of a vessel; this term is usually confined to merchant vessels; in a of war it is termed Galley.

icl. In Engineering, a decked vessel, having great stability, designed for use lifting of sunken vessels or structures. Also to transport loads of great to roulk.

me is open decked.

tle. A fragment; a piece; the raised portion of the hind part of a saddle.

tline. The space between the sides of two casks stowed aside of each other. a cask is laid in the cantline of two others, it is said to be stowed bilge and as.

stan. A vertical windlass.

avel. A small vessel (of 25 or 30 tons' burden) used upon the coast of France ring fisheries.

lings. Pieces of timber set fore and aft from the deck beams of a vessel, to e the ends of the ledges in framing a deck.

vel built.—A term applied to the manner of construction of small boats, to v that the edges of their bottom planks are laid to each other like to the maniplanking vessels. Opposed to the term Clincher.

ter. A small phial or bottle for the table. Casters. Small wheels placed the legs of tables, etc., to allow them to be moved with facility.

zmaran. A small raft of logs, usually consisting of three, the centre one benger and wider than the others, and designed for use in an open roadstead pon a sea-coast.

mfer. A slope, groove, or small gutter cut in wood, metal, or stone.

pelling. Wearing a ship around without bracing her fore yards.

mney. The flue of a fireplace or furnace, constructed of masonry in houses irnaces, and of metal, as in a steam boiler. See Pipe.

nse. To chinse is to calk slightly with a knife or chisel.

ck. In Naval Architecture, small pieces of wood used to make good any decy in a piece of timber, frame, etc. See Furrings.

ke. To stop, to obstruct, to block up, to hinder, etc.

zts. Pieces of wood or metal of various shapes, according to their uses, either ay ropes upon, to resist or support weights or strains, as sheet, shoar, beam, etc.

ncher built. A term applied to the construction of vessels' bottoms, when over edges of the planks overlay the next under them.

k. A cylinder, cube, or triangle of hard wood let into the ends or faces of two soft timber to be secured together. The metallic eyes in a sheave through the pin runs. In Naval Architecture, the oblong ridges banded on the masts of the companion of the pin runs.

mings. Raised borders around the edges of hatches.

le. A small fishing-boat.

on. The ease which certain insects make for a covering r metamorphosis to the pupe state.

Cog. In Mechanics, a short piece of wood or other material let into the lar a body to impart motion to another. A term applied to a tooth in a whelf is made of a different material than that of the wheel. In Mining, an introduced into a rent in the stratified rocks.

Cogging. In Carpentry, the cutting of a piece of timber so as to leave alike to a cog, and the notching of the upper piece so as to conform to an implie to indenting or tabling.

Colter. The fore iron of a plough that cuts earth or sod.

Compass. In Geometry, an instrument for describing circles, measuring from A pair of Compasses is superfluous and improper.

Connecting Rod. In Mechanics, the connection between a prime and someover, as between the piston-rod of a steam-engine and the crank of a wise more five wheel shaft.

The term Pitman is local, and altogether inapplicable.

Contrariwise. Conversely, opposite. Grossways is a corruption.

Corridor. A gallery or passage in or around a building, connected with we departments, sometimes running within a quadrangle; it may be opened within In Fortifications, a covert way.

Cyma. A molding in a cornice.

Damasquinerie. Inlaying in metal.

Davit. A short boom fitted to hoist an anchor or boat.

Deals. In Carpentry, the pieces of timber into which a log is cut or smill Their usual thickness is 3 by 9 ins. and exceeding 6 feet in length.

Improperly restricted to the wood of fir-trees.

Dike. In Engineering, an embankment of greater length than breadh to vious to water, and designed as a wall to a reservoir, a drain, or to resist the stofa river or sea.

Dingay (Nautical). A ship or vessel's small boat.

Dock. In Marine Architecture, an enclosure in a harbor or shore of a mall the reception, repair, or security of vessels or timber. It may be wholly departially enclosed. See Pier.

When applied to a single pier or jetty, it is a misapplication.

Dissect. A pin of wood or metal inserted in the edge or face of two built pieces, so as to secure them together.

This is very similar to coaking, but is used in a diminutive sense. An illustration of it is belimander a cooper secures two or more pieces in the head of a cask.

Draught. A representation by delineation. The depth which a vessel of floating body sinks into water. The act of drawing. A detachment of me the main body, etc.

Ordinarily written draft.

Dutchman. In Mechanics, a piece of like material with the structure, # slack place, to cover slack or bad work. See Shim.

Edgewise. An edge put into a particular direction. Hence endwise and have similar significations with reference to an end and a side.

Engrusage is a corruption.

Engage A piece of wood by which the crowfoot of an awning is extended.

Finalt. In Mining, a break of strata, with displacement, which interrupe of these. Also, fissures traversing the strata.

Fellor, Fellors. The pieces of wood which form the rim of a wheel.

Fetch. Length of a reservoir, pond, etc., along which the wind may blow the embankment or dam.

Flange. A projection from an end or from the body of an instrument of part composing it, for the purpose of receiving, confining, or of securing it is part or to a second piece.

Fiser. In Carpentry, a straight line of steps in a stairway.

Fram. To bind together with a rope, as to frap a fall, etc.

RTHO

Print I

Parter.

Perings.

Galde Galde Galde

GOL I

Gering.

mobile 1s

Girt I

imust his Guarles

Grave.

Grown Grown

> Padle to Herpi tol are

Hoppi tentra

> Hori Jan Jan

Jib. Penda Jib

Jig Ko

An and a

E

1

2. In Architecture, the part of the entablature of a column which is between sitraye and the cornice.

um. The part of a solid next the base, left by the removal of the top or l.

gm, although used by some lexicographers, is erroneous.

ings. Strips of timber or boards fastened to frames, joists, etc., in order to seir faces to the required shape or level.

ing. Putting galets into pointing-mortar or cement.

3. Pieces of stone chipped off by the stroke of a chisel. See Spall.

t. A small galley built for speed, having one mast, and from 16 to 20 thwarts 2rs. A Dutch-constructed brigantine.

In Mechanics, the hole through which molten metal is poured into a mold ing. Gest and Gest are corruptions.

ing. A series of teeth or cogged wheels for transmitting motion. To gear a e is to prepare to connect its parts as by an articulation.

c. To shake so as to produce a sharp, clattering noise, commonly Jingle.

The circumference of a tree or piece of timber. Girth. The band or strap h a saddle or burden is secured upon the back of an animal, by passing his belly. In Printing, the bands of a press.

led. Knottv.

e. To clean a vessel's bottom by burning.

ing. Burning off grass, shells, etc., from a ship's bottom. Synonymous caming.

met. A wreath or ring of rope.

oal Ring. A circular rynd for the connection of the upper mill-stone to the by which the stone is suspended, so that it may vibrate upon all sides.

vings. The fore part of the wales of a vessel which encompass her bows, lastened to the stem. Cat harpings, ropes which brace in the shrouds of er masts of a vessel.

ing. A term applied to the hull of a vessel when her ends drop below her See Sagging.

ing. In Naval Architecture, calking with a large maul or beetle.

To press, to crowd, to wedge in. In *Nautical language*, to squeeze tight.

A pier: the sides of an opening in a wall.

The projecting beam of a crane from which the pulleys and weight are sus-A sail in a vessel.

To shift a boom-sail from one tack to another; hence Jibing, the shifting om.

ng. Washing minerals in a sieve.

on. The timber within a vessel laid upon the middle of the floor timbers, city over the keel. When located on the floors or at the sides, it is termed a ra side keelson.

Slit made by cut of a saw.

Large wooden cleats to belay hawsers and ropes to, commonly Cavil.

uer. A spirituous solution of lac. To varnish with lacquer.

n. Articles sunk in the water with a buoy attached.

nce. A pulpy, gelatinous fluid washed from the cement of concrete deposwater.

sided. A term expressive of the condition of a vessel or any body when it in float or sit upright.

 To arrest headway of a vessel, without anchoring or securing her to a tc., as by counterbracing her yards, or stopping her engine.

A trench to conduct water to or from a mill-wheel.

In Nautical language, the perpendicular or red to a spar or stay.

Q84 ORTHOGRAPHY OF TECHNICAL WORDS AND TERMS

Luf. The fullest part of the bow of a vessel.

Mall. A large double-headed wooden hammer.

Mantle. To expand, to spread. Mantelpiece. The shelf over a fireplace in fact of a chimney.

Marquetry. Checkered or inlaid work in wood.

Matrass. A chemical vessel with a body alike to an egg, and a tapering neck

Mattress. A quilted bed; a bed stuffed with hair, moss, etc., and quilted.

Mitred. In Mechanics, cut to an angle of 45°, or two pieces joined so as to make a right angle.

Mizzen-mast. The aftermost mast in a three-masted vessel.

Mold. In Mechanics, a matrix in which a casting is formed. A number of piece of veilium or like substance, between which gold and silver are laid for the purper of being beaten. Thin pieces of materials cut to curves or any required figure. In Naval Architecture, pieces of thin board cut to the lines of a vessel's timbers, ex.

Fine earth, such as constitutes soil. A substance which forms upon bodies warm and confined damp air.

This orthography is by analogy, as gold, sold, old, bold, cold, fuld, etc.

Molding. In Architecture, a projection beyond a wall, from a column, wainscot, & Moresque. See Arabesque.

Mortise. A hole cut in any material to receive the end or tenon of another piez.

Muck. A mass of dung in a moist state, or of dung and putrefied vegetable miss.

Mullion. A vertical bar dividing the lights in a window: the horizontal 2:

Net. Clear of deductions, as net weight.

termed transoms.

Newel. An upright post, around which winding stairs turn.

Nigged. Stone hewed with a pick or pointed hammer instead of a chisel.

Oges. A molding with a concave and convex outline, like to an S. See Cym and Talon.

Paillasse. Masonry raised upon a floor. A bed.

Pargeting. In Architecture, rough plastering, alike to that upon chimneys

Parquetry. Inlaying of wood in figures. See Marquetry.

Parral. The rope by which a yard is secured to a mast at its centre.

Pawl. The catch which stops, or holds, or falls on to a ratchet wheel.

Peek. The upper or pointed corner of a sail extended by a gaff, or a yard sab liquely to a mast. To peek a yard is to point it perpendicularly to a mast.

Pendant. A short rope over the head of a mast for the attachment of utilize thereto; a tackle, etc.

Pennant. A small pointed flag.

Pier. In Marine Architecture, a mole or jetty, projecting into a river of sea to protect vessels from the sea, or for convenience of their lading. See Dock.

Erroneously termed a Dock.

Pilc. In Engineering, spars pointed at one end and driven into soil to support superstructure or holdfast. Spile is a corruption.

Pipe. In Mechanics, a metallic tube. The flue of a fireplace or furnace whe constructed of metal; usually of a cylindrical form.

The term or application of Stack (which refers solely to masonry) to a metallic pipe is a missep cation.

Piragua. A small vessel with two masts and two boom-sails. Commonly termed Perry-augur.

Pirogue. A canoe formed from a single log, propelled by paddles or by a sai h the aid of an outrigger.

ing. In Architecture, covering with plaster cement or mortar upon wal uniquend, termed laying, it in one or two cost work; and pricking upon the cost work.

ce. Wilhout tope.

Poppets. In Naval Architecture, pieces of timber set perpendicular to a veen bilge-ways, and extending to her bottom, to support her in launching.

Porch. An arched vestibule at the entrance of a building. A vestibule support columns. A portico.

Portico. A gallery near to the ground, the sides being open. A piazza enc passed with arches supported by columns, where persons may walk; the roof r be flat or vauled.

Pozzuolana. A loose, porous, volcanic substance, composed of silicious, argiceous, and calcareous earths and iron.

Prize. In Mechanics, to raise with a lever. To pry and a pry are corruptions.

Proa, Flying. A narrow cance, the outer or lee side being nearly flat. A frai work, projecting several feet to the windward side, supports a solid bearing, in form of a cance. Used in the Ladrone Islands.

Purlin. In Carpentry, a piece of timber laid horizontal upon the rafters (roof, to support the covering.

Ramp. In Architecture, a flight of steps on a line tangential to the steps concave sweep connecting a higher and lower portion of a railing, wall, etc. sloping line of a surface, as an inclined platform.

Rarefaction. The act or process of distending bodies, by separating their pand rendering them more rare or porous. It is opposed to Condensation.

Rebate. In Mechanics, to pare down an edge of a board or a plate for the purp of receiving another board or plate by lapping. To lap and unite edges of bos and plates. In Naval Architecture, the grooves in the side of the keel for receiv the garboard strake of plank.

Commonly written Rabbet.

Remon. Eddy water without progressive action, in bed of a river; a return water against direction of flow of a river.

Rendering. In Architecture, laying plaster or mortar upon mortar or wa Rendered and Set refers to two coats or layers, and Rendered, Floated, and Set three coats or layers.

Reniform. Kidney-shaped.

Resin. The residuum of the distillation of turpentine. Rosin is a corruption.

Riband. In Naval Architecture, a long, narrow, flexible piece of timber.

Rimer. A bit or boring tool for making a tapering hole. In Mechanics, to R is to bevel out a hole. Riming. The opening of the seams between the planks vessel for the purpose of calking them.

Rotary. Turning upon an axis, as a wheel.

Rynd. The metallic collar in the upper mill-stone by which it is connected the spindle.

 $Sagging. \ \ \,$ A term applied to the hull of a vessel when her centre drops below ends. The converse of Hogging.

Scallop. To mark or cut an edge into segments of circles.

Scarcement. A set back in the face of a wall or in a bank of earth. A footing, Scarf. To join; to piece; to unite two pieces of timber at their ends by runr, the end of one over and upon the other, and bolting or securing them together.

Scend. The settling of a vessel below the level of her keel.

Sclvagee. A strap made of rope-yarns, without being twisted or laid up, and tained in form by knotting it at intervals.

Sennit. Braided cordage.

Sewage. The matter borne off by a sewer.

Second. In nautical language, the condition of a vessel aground; she is said t second by ss much as the difference in depth of water around her and her floa depth.

Sewerage. The system of sewers.

Shaley. Cracked or split, or as timber loosely but together.

Shammy. Leather prepared from the skin of a chamois &

086 ORTHOGRAPHY OF TECHNICAL WORDS AND THE

Sheer. In Naval Architecture, the curve or bend of a ship's deck or size sheer, to slip or move aside.

Sheers. Elevated spars connected at the upper ends, and used to elevate bodies, as masts, etc.

Shim. In Naval Architecture, a piece of wood or iron let into a slack place frame, plank, or plate to fill out to a fair surface or line.

Shoal. A great multitude; a crowd; a multitude of fish.

School is a corruption.

Shoar. An oblique brace, the upper end resting against the substance to be ported.

Sholes. Pieces of plank under the heels of shoars, etc.

Shoot. A passage-way on the side of a steep hill, down which wood, coal et thrown or slid. The artificial or natural contraction of a river. A young passage way. Sidewise. See Edgewise.

Signalled. Communicated by signals.

Signalized, when applied to signals, is a misapplication of words.

Sill. A piece of timber upon which a building rests; the horizontal piece of ber or stone at the bottom of a framed case.

Siphon. A curved tube or pipe designed to draw fluids out of vessels.

Skeg. The extreme after-part of the keel of a vessel; the portion that sup the rudder-post.

Slantwise. Oblique; not perpendicular.

Sleek. To make smooth. Refuse; small coal.

Sleeker. A spherical-shaped, curved, or plane-surfaced instrument with white smooth surfaces.

Slue. The turning of a substance upon an axis within its figure.

Snying. A term applied to planks when their edges at their ends are curve rounded upward, as a strake at the ends of a full-modelled vessel.

Spall. A piece of stone, etc., chipped off by the stroke of a hammer or the of a blow. Spalling, breaking up of ore into small pieces.

Spandrel. In Architecture, the irregular triangular space between the outer or extrados of an arch, a horizontal line drawn from its apex, and a vertical from its springing.

Sponson. An addition to the outer side of the hull of a steam vessel, common near the light water-line and running up to the wheel guards; applied for the pose of shielding the deck-beams from the shock of a sea.

Sponson-sided. The hull of a vessel is so termed when her frames have the line of a sponson, and the space afforded by the curvature is included in the bi Sponding, Sponsing, etc., are corruptions.

Squilgee. A wooden instrument, alike to a hoe, its edge faced with leather vulcanized rubber, used to facilitate the drying of wet floors, or decks of a vess

Stack. In Masonry, a number of chimneys or pipes standing together. chimney of a blast furnace.

The application of this word to the smoke-pipe of a steam-boiler is wholly erroneous.

Stage. In Engineering, the interval or distance between two elevations, in shi ling, throwing, or lifting.

Steeving. The elevation of a vessel's bowsprit, cathead, etc.

Strake. A breadth of plank.

Strut. An oblique brace to support a rafter.

Style. The gnomon of a sun-dial.

Sump. In Mining, a pit or well into which water may be led from a mine of Surcingle. A belt, band, or girth, which passes over a saddle or blanks. horse's back.

side for the purpose of giving shape to any piece subjected to it when blow from a hammer.

. Syphered. Overlapping the chamfered edge of one plank upon the chamfered edge of another in such a manner that the joint shall be a plane surface.

Talus. In Architecture, the slope or batter of a wall, parapet, etc. In Geology, sloping heap of rubble at foot of a cliff.

Template. In Architecture, a wooden bearing to receive the end of a girder to listribute its weight.

Templet. A mold cut to an exact section of any piece or structure.

Tenon. The end of a piece of wood, cut into the form of a rectangular prism, deigned to be set into a cavity of a like form in another piece, which is termed the acritice.

Terring. The earth overlying a quarry.

Tester. The top covering of a bedstead.

Tholes. The pins in the gunwale of a boat which are used as rowlocks.

Thwarts. The athwartship seats in a boat.

Tide-rode. The situation of a vessel at anchor, when she rides in direction of the current instead of the wind.

Tire. The metal hoop that binds the felloes of a wheel.

Tompion. The stopper of a piece of ordnance. The iron bottom to which grapeshot are secured.

Treenails. Wooden pins employed to secure the planking of a vessel to the frames.

Trepan. In Mining, the instrument used in the comminution of rock in earth-boring at great depths.

Trestle. The frame of a table; a movable form of support. In Mast-making, two places of timber set horizontally upon opposite sides of a mast-head.

Trice. In Seamanship, to haul or tie up by means of a rope or tricing-line.

Tue-iron or Tuyere. The nozzle of a bellows or blast-pipe in a forge or smelting-urnace.

Vice. In Mechanics, a press to hold fast anything to be worked upon.

Voyal. In Scamanship, a purchase applied to the weighing of an anchor, leading to a capstan.

Wagon. An open or partially enclosed four-wheeled vehicle, adapted for the transportation of persons, goods, etc.

Wear. In nautical language, to put a vessel upon a contrary tack by turning her around stem to the wind.

Weir. A dam across a river or stream to arrest the water; a fence of twigs or stakes in a stream to divert the run of fish.

Whipple-tree. The bar to which the traces of harness are fastened.

Wind-rode. The situation of a vessel at anchor, when she rides in direction of the wind instead of the current.

Windrow. A row or line of hay, etc., raked together.

Withe. An instrument fitted to the end of a boom or mast, with a ring, through which a boom is rigged out or mast set up.

Woold. To wind; particularly to bind a rope around a spar, etc.

Addenda.

Astragal. In Architecture, a round molding, surrounding the head or base of a column. In Gunnery, a like molding on cannon near the mouth.

Creosote. An oily colorless liquid, procured from coal-tar.

Flume, a channel for conducting water, as that by which the surplus water of a canal is led to a lower level.

Forebay. The part of a Mill-race or Penstock, from which water flows upon a water-wheel.

Grillage. A frame, constructed of beams laid in parallel rowight angles, with others notched over them.

Designed to uniformly distribute or extend the area of a for

Q88 ORTHOGRAPHY OF TECHNICAL WORDS AND TERM

Hypotenuse. Commonly, but incorrectly, hypothenuse.

Jetty. In Naval Architecture, a pier that juts out or projects into a river or sea, a landing-place.

Kibble. In Mining, a metallic bucket in which ore is drawn up to the surface

Lewis. One or two frustums of a right-angled metallic wedge, set inverted a dove-tailed and keyed in a wedge-formed slot, in stone or like solid substanc, whereby it may be lifted and laid without the use of slings.

Newel. In Engineering, a cylindrical pillar terminating a wing wall of a bride or viaduct.

Parcelled. Nautical. Wrapped with canvas or tarred rope, to resist wear from friction.

Paved. Nautical. Painted, tarred, or greased, to resist moisture and wear.

Penstock. An artificial conduit for water to a water-wheel, and furnished with flood-gate.

Ravel. To disentangle, untwist, or unweave.

The usual prefix of Un is wholly superfluous.

Roil. To render turbid, to stir or mix.

Scabble. The dressing of the faces of rough stones, as with a broad chisel.

Served, Service. Nautical. The layer of wrapping, as spun yarn, lines, etc., around a stay or rope, to resist friction and wear.

Shackle, or Clevis. An open link set in a chain, secured by a pin running through eyes in its ends, which, when withdrawn, admits the chain to be parted at the point.

Soffit. In Architecture, the under side of an opening; the lower surface of a vault or arch; also the under surface of an arch between columns.

Splay. In Architecture, a sloped surface, or one making an oblique angle with another. A large chamber.

Strike, in Geology, is the compass direction of the intersection of the plane of stratified rock with the plane of the horizon.

Allars. In Naval Architecture, the steps on the sides and end of a marine doct Gin. An instrument operated by men or animals for the raising or drawing of

Gin. An instrument operated by men or animals for the raising or drawing a heavy bodies; usually a vertical revolving windlass and lever.

Sump. In Salt-works, a pond in which the sea or saline water is retained for $^{\bowtie}$ in the future.

Skeet. Nautical. A scoop with a long handle, for use in wetting the sails or the sides of a vessel.

Wyes. The vertical standards on which the telescope of a Theodolite or Level's supported, and which admits of their being reversed by a reversal of its ends. When the telescope is reversed by rotation on its trunnions, the instrument is termed a Transit.

THE END.

· , (R

