

概览

- 微服务的演变过程
- 容器与微服务
- Azure容器服务生态
- 持续集成和持续交付

软件架构的演变

From Monolithic to Microservice

集群部署: 单体应用 VS 微服务应用

- •分开编译和部署
- •小的独立执行的任务
- •集成时调用published API
- •细粒度松耦合的应用程序

微服务是什么?

"小而专业"

Service A Service B

Service A <-> Function A

Service B <-> Function B

Service C <-> Function C

.....

"独立自治"

微服务带来什么好处

技术异构

容错

扩展

简化部署

高可控性

没有银弹

but remember the skill of the team will outweigh any monolith/microservice choice

容器和微服务-完美的结合

Microservices and containers?

微服务:一种软件技术架构

容器:可以在微服务实现过程中的实现方式

通常,每一个服务使用一个容器

容器	/]\	隔离性	快且密集	绿色部署
微服务	/]\	独立	分布式特性	快速方便的部署

容器特性

• 应用程序打包和部署的机制

容器特性

• 隔离性环境,清晰的边界

云端微服务应用部署架构解析

集群和编排引擎

Cluster

- 由一组计算机节点组成,可以被看作一个单独的系统
- 由网络互联
- 用于高性能分布式计算

Orchestrators (Schedulers)

- 在一个集群中分配任务或者分配容器
- 在服务或容器失效时重启
- 基于资源的消耗重新分配服务或者容器
- laaS: 网络 存储 负载均衡
- PaaS: 发现 缩放 容错 监控 安全

Azure容器生态

Hyper-V Container

Azure Container Service(AKS)

Azure Marketplace

Windows Server Container

Azure Container Service

Azure Resource Manager

Docker

Windows Container

Nano Server

Docker Swarm

kubernetes

DC/OS

Deis

Service Fabric

PaaS工具

- Demo
- · 部署windows container 到k8s集群

持续集成持续交付 CICD

http://aka.ms/Jenkins-on-azure

Thanks