Linear time algorithm for construction of suffix arrays (suffix sorting)

CS176 Lecture 5

Suffix arrays

T = bississippi\$

$T[A_{T}[i] T]$	$A_{T}[i]$
\$	12
bississippi\$	1
i\$	11
ippi\$	8
issippi\$	5
ississippi\$	2
pi\$	10
ppi\$	9
sippi\$	7
sissippi\$	4
ssippi\$	6
ssissippi\$	3

Suffix array of a string $T(A_T)$:

 $A_T[i]$ is the start position in T of the i-th lexicographically smallest suffix of T

P=is		T[A _T [i] T]				
P-15	L=1	\longrightarrow	\$	12		
			bississippi\$	1		
			i\$	11		
			ippi\$	8		
			issippi\$	5		
	M=ceil((L+R)/2)	\longrightarrow	ississippi\$ =T[A _T [M] S]	2		
	,		pi\$	10		
			ppi\$	9		
			sippi\$	7		
			sissippi\$	4		
			ssippi\$	6		
	R= S	\longrightarrow	ssissippi\$	3		

Binary search for the first position in A_T that includes P as a prefix: If P matches a prefix of $T[A_T[M]..|T|]$ or if it is smaller than $T[A_T[M]..|T|]$ Go to the **L** direction; otherwise, go to the **R** direction.

P=is

		T[A _T [i] T]	$A_{T}[i]$
L	\longrightarrow	\$	12
		bississippi\$	1
M	\longrightarrow	i\$	11
		ippi\$	8
		issippi\$	5
R	\longrightarrow	ississippi\$	2
		pi\$	10
		ppi\$	9
		sippi\$	7
		sissippi\$	4
		ssippi\$	6
		ssissippi\$	3

P=is

		T[A _T [i] T]	A _T [i
		\$	12
		bississippi\$	1
_	\longrightarrow	i\$	11
_		ippi\$	8
VI	\longrightarrow	issippi\$	5
?	\longrightarrow	ississippi\$	2
-		pi\$	10
		ppi\$	9
		sippi\$	7
		sissippi\$	4
		ssippi\$	6
		ssissippi\$	3

P=is

	T[A _T [i] T]	$A_{T}[i]$
	\$	12
	bississippi\$	1
\longrightarrow	i\$	11
→	ippi\$	8
\longrightarrow	issippi\$	5
	ississippi\$	2
	pi\$	10
	ppi\$	9
	sippi\$	7
	sissippi\$	4
	ssippi\$	6
	ssissippi\$	3

$T[A_T[i]..|T|]$ $A_T[i]$ P=is \$ 12 bississippi\$ 1 i\$ 11 ippi\$ R=M 8 issippi\$ 5 ississippi\$ 2 pi\$ 10 ppi\$ 9 sippi\$ 7 sissippi\$ 4

ssippi\$

ssissippi\$

6

3

P=is		T[A _T [i] T]			
P-15		\$	12		
		bississippi\$	1		
		i\$	11		
	R=L=M	ippi\$	8		
		issippi\$	5		
		ississippi\$	2		
		pi\$	10		
		ppi\$	9		
		sippi\$	7		
		sissippi\$	4		
		ssippi\$	6		
		ssissippi\$	3		

For k matches of P in T - search running time is O(log(|T|)|P| + k)

- -- In practice, the actual number of character comparisons in each iteration of the binary each may be small, leading to an effective O(log(|T|) + |P| + k) running time
- -- Theoretically a O(log(|T|) + |P| + k) can be obtained using the LCP-based speedup

- Constructing a suffix array:
 - Naïve merge sort : O(n^2 log(n))
 - Naïve Radix sort : O(n^2)
 - Suffix tree: O(n) but with large space requirement
- Direct suffix sorting with linear complexity was an open problem for a while. Resolved ~2005
- Today: KS algorithm (Kärkkäinen and Sanders 2006). A (no so naïve) combination of merge sort and radix sort, leading to linear time/space suffix sorting.

Intuition (#1):

It would save a lot of time if we could get away with considering **only** the first k characters of each suffix (why?) Radix sort: O(k|T|) = O(|T|)

Intuition (#1):

It would save a lot of time if we could get away with considering **only** the first k characters of each suffix (why?)

Radix sort: O(k|T|) = O(|T|)

• Intuition (#2):

The lexicographic ordering between two suffixes *i*, and *j* that have the same prefix depends on the rank of their subsequent suffixes (i.e., indices i+1, i+2... and j+1, j+2...)

• Intuition (#2):

The lexicographic ordering between two suffixes *i*, and *j* that have the same prefix depends on the rank of their subsequent suffixes (i.e., indices i+1, i+2... and j+1, j+2...)

mississippi\$	mis		c	(: a)			
ississippi\$	iss	ississippi\$	Suffix i	(i=2)			
ssissippi\$	ssi						
sissippi\$	sis	issippi\$	Suffix j	(j=5)			
issippi\$	iss	Ισοιρρίο	Same	() 3/			
ssippi\$	ssi						
sippi\$	sip	iss = iss					
ippi\$	ipp	issippi\$ > ipp	ni\$				
ppi\$	ppi		ب ار				
pi\$	pi\$	- F		1 - 1 -			
i\$	i\$	=> S[i S		S]			
\$	\$	•	_	- -			

• Intuition (#2):

The lexicographic ordering between two suffixes *i*, and *j* that have the same prefix depends on the rank of their subsequent suffixes (i.e., indices i+1, i+2... and j+1, j+2...)

→ Can be used for tie breaking between k-suffixes:

First attempt at linear complexity:

- K-suffixes can be sorted in linear time (but with possible ties)
- Tie breaking between K-suffixes can be done by looking at the lexicographic ranks of their subsequent K-1 K-suffixes
 (unless the subsequent suffixes are also tied, in which case we will have to continue our search for tie break recursively)

First attempt at linear complexity (ALG1):

- 1. Sort the suffixes by the first k(=3) characters using Radix sorting (this will only take linear time)
- 2. If there are no ambiguities, we are done!

Otherwise:

- 3. Replace each character by the rank of the respective suffix (as computed in step 1)
- 4. Repeat the process (i.e., go to step #1) with the new string

First attempt at linear complexity:

Full suffix		K-suf	fix	Lex-Rank
mississippi\$	•	mis		6
ississippi\$		iss		4
ssissippi\$		ssi		11
sissippi\$		sis		10
issippi\$		iss		4
ssippi\$		ssi		11
sippi\$		sip		9
ippi\$	V	ipp	,	3
ppi\$		ppi		8
pi\$		pi\$		7
i\$		i\$		2
\$		\$		1

• First attempt at linear complexity:

Full suffix	K-suffix	Lex-Rank	New string
mississippi\$ ississippi\$ ssissippi\$ sissippi\$ issippi\$ ssippi\$ sippi\$ ippi\$	mis iss ssi sis iss iss pipp ppi	6 4 11 10 4 11 9 6, 4, 3 8	New string 11, 10, 4, 11, 9, 3, 8, 7, 2, 1
pi\$	pi\$	7	
i\$	i\$	2	
\$	\$	1	

First attempt at linear complexity:

Full suffix	K-suffix	Lex	r-Rank
6, 4, 11, 10, 4, 11, 9, 3, 8, 7, 2, 1	6, 4, 11	6	mississippi\$
4, 11, 10, 4, 11, 9, 3, 8, 7, 2, 1	4, 11, 10	5	ississippi\$
11, 10, 4, 11, 9, 3, 8, 7, 2, 1	11, 10, 4	12	ssissippi\$
10, 4, 11, 9, 3, 8, 7, 2, 1	10, 4, 11	10	sissippi\$
4, 11, 9, 3, 8, 7, 2, 1	4, 11, 9	4	issippi\$
11, 9, 3, 8, 7, 2, 1	11, 9, 3	11	ssippi\$
9, 3, 8, 7, 2, 1	9, 3, 8	9	sippi\$
3, 8, 7, 2, 1	3, 8, 7	3	ippi\$\
8, 7, 2, 1	8, 7, 2	8	ppi\$
7, 2, 1	7, 2, 1	7	pi\$
2, 1	2, 1	2	i\$
1	1	1	\$

No ambiguities!

11

First attempt at linear complexity:

- Running time?
 - Each iteration takes O(n)
 - #Iterations: O(n)
 - O(n^2) time ...(how does the worst case look like?)(how would an "easy" case look like?)

Intuition (#3):

Divide and conquer: solve a smaller instance of the problem and extend it to a full solution in linear time. Apply it in a recursive manner. • Intuition (#3):

Divide and conquer: solve a smaller instance of the problem and extend it to a full solution in linear time. Apply it in a recursive manner.

Let T be the running time and q>1 a constant If T(n) = T(n/q) + O(n) and T(1)=1

(divide)

Smaller instance Extension to full solution (merge)

Then:
$$T(n) = n \sum_{i=0}^{n} \frac{1}{q^{i}} = O(n)$$

Intuition (#3): Divide and conquer

For the purpose of tie breaking, the k-suffix representation is somewhat **redundant**. To resolve the lexicographic ordering between two suffixes i, and j that have the same k-prefix it is enough (for k=3) to know the "true" rank of **only one** representative from {i+1, i+2} and **one** from {j+1, j+2}

Intuition (#3): Divide and conquer

For the purpose of tie breaking, the k-suffix representation is somewhat **redundant**. To resolve the lexicographic ordering between two suffixes i, and j that have the same k-prefix it is enough (for k=3) to know the "true" rank of **only one** representative from {i+1, i+2} and **one** from {j+1, j+2}

Divide and conquer strategy:
 Knowing the "true" ranks of two thirds of the suffixes (evenly distributed) is sufficient to annotate the remaining third!

Split: For every triplet of suffixes (at indices [i, i+1, i+2]) take only two of them (total of 2/3 of suffixes) and sort as in ALG1.

Merge: Use the sorting results to add the remaining third of the suffixes and output the joint sorted list

 Second (and last) attempt at linear complexity:

KS-algorithm(string S)

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using ALG2
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using ALG2
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

ALG2 (string S, group of suffix indices A)

- 1. Sort the suffixes in the group by the first k(=3) characters using Radix sorting
- 2. If there are no ambiguities: return the sorted order

3. Otherwise:

- 1. Generate a modified string S' by substituting each suffix in A with its rank (based on the first 3 characters)
- 2. Recursively apply the \mathbf{KS} algorithm on the modified string S' and return the results

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using ALG2
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

ALG3 (string S, rank-sorted group A, un-sorted group B)

- 1. Represent each index i in B by the pair $\langle S[i], rank[i+1] \rangle //$ the rank information is taken from A
- 2. Radix sort the array of pairs // Now the suffixes in B are sorted as well
- 3. Merge A and B // Simply traverse A and B in parallel
 To determine the relative order between two suffixes
 i in A and j in B:
 - If S[i]≠S[j], order them accordingly//Easy case: First character is different
 - 2. Otherwise: // Consider the immediately subsequent suffixes
 - 1. If i+1 is in A then compare rank[i+1] with rank[j+1] // Note that by definition j+1 must be in A; so we are using two "comparable" ranks

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using ALG2
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

• Time:

- Step 2:
$$T(n) = T(2n/3) + O(n)$$

$$=> T(n) = O(n)$$

- Step 3: O(n) [for radix sort of group B and merge of groups A and B]
- Overall: O(n)

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using **ALG2**
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

S= mississippi\$

Index	Suffix	Group
1	mississippi\$	Α
2	ississippi\$	Α
3	ssissippi\$	В
4	sissippi\$	Α
5	issippi\$	Α
6	ssippi\$	В
7	sippi\$	Α
8	ippi\$	Α
9	ppi\$	В
10	pi\$	Α
11	i\$	Α
12	\$	В

ALG2 (string S, group of suffix indices A)

- 1. Sort the suffixes in the group by the first k(=3) characters using Radix sorting
- 2. If there are no ambiguities: return the sorted order
- 3. Otherwise:
 - 1. Generate a modified string S by substituting each suffix in A with its rank (based on the first 3 characters)
 - 2. Return **KS**(S)

S= mississippi\$ A= {1,2,4,5,7,8,10,11}

Group A suffixes	K-suffix	Lex-Rank	New string							
mississippi\$	mis	5								
ississippi\$	iss	3								
sissippi\$	sis	8								
issippi\$	iss	3	5	3	8	3	7	2	6	1
sippi\$	sip	7								
ippi\$	ipp	2								
pi\$	pi\$	6								
i\$	i\$	1								

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using **ALG2**
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

Index	Suffix	Group
1	53837261	Α
2	3837261	Α
3	837261	В
4	37261	Α
5	7261	Α
6	261	В
7	6 1	Α
8	1	Α

S=53847261

ALG2 (string S, group of suffix indices A)

- 1. Sort the suffixes in the group by the first k(=3) characters using Radix sorting
- 2. If there are no ambiguities: return the sorted order

3. Otherwise:

- 1. Generate a modified string S by substituting each suffix in A with its rank (based on the first 3 characters)
- 2. Return **KS**(S)

S= 5 3 8 4 7 2 6 1
A= {1,2,4,5,7,8}

Group A suffixes	K-suffix	Lex-Rank
53837261	538	4
3837261	383	3
37261	372	2
7 2 6 1	726	6
6 1	6 1	5
1	1	1

No ambiguities!

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using **ALG2**
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

S=	5	3	8	4	7	2	6	1	

Index	Suffix	Group	Rank (A)	
		_		
1	53837261	Α	4	
2	3837261	Α	3	
3	837261	В		
4	37261	Α	2	
5	7 2 6 1	Α	6	
6	2 6 1	В		
7	6 1	Α	5	
8	1	Α	1	

- 2. Radix sort the array of pairs // Now the suffixes in B are sorted as well
- 3. Merge A and B // Simply traverse A and B in parallel
 To determine the relative order between two suffixes i in A and j in B:
 - If S[i] #S[j], order them accordingly / Easy case: First character is different
 - 2. Otherwise: // Consider the immediately subsequent suffixes
 - 1. If i+1 is in A then compare rank[i+1] with rank[j+1] // Note that by definition j+1 must be in A; so we are using two "comparable" ranks

S= 5 3 8 4 7 2 6 1 A= {1,2,4,5,7,8} B= {3,6}

Index	Suffix	Group	Rank (A)	of B	Order (B)
1	53837261	Α	4		
2	3837261	Α	3		
3	837261	В		< <mark>8, 2></mark>	2
4	37261	Α	2		
5	7261	Α	6		
6	2 6 1	В		< <mark>2, 5</mark> >	1
7	6 1	Α	5		
8	1	Α	1		

Pair representation

- 1. Represent each index i in B by the pair
 <S[i],rank[i+1]> // the rank information is taken from A
- 2. Radix sort the array of pairs // Now the suffixes in B are sorted as well
- 3. Merge A and B // Simply traverse A and B in parallel
 To determine the relative order between two suffixes
 i in A and j in B:
 - If S[i] #S[j], order them accordingly / Easy case: First character is different
 - 2. Otherwise: // Consider the immediately subsequent suffixes
 - 1. If i+1 is in A then compare rank[i+1] with rank[j+1] // Note that by definition j+1 must be in A; so we are using two "comparable" ranks

S= 5 3 8 4 7 2 6 1 A= {1,2,4,5,7,8}

B= {3,6}

Sorted A: {1, 37261, 3837261, 53837261, 61, 7261}

Sorted B: {261, 837261}

All cases are easy (can be determined by first character, as in line 3.1 in code)

Sorted: {1, 261, 37261, 3837261, 53837261, 61, 7261, 837261}

- 1. Represent each index i in B by the pair $\langle S[i], rank[i+1] \rangle$ // the rank information is taken from A
- 2. Radix sort the array of pairs // Now the suffixes in B are sorted as well
- 3. Merge A and B // Simply traverse A and B in parallel
 To determine the relative order between two suffixes
 i in A and j in B:
 - If S[i] #S[j], order them accordingly / Easy case: First character is different
 - 2. Otherwise: // Consider the immediately subsequent suffixes
 - 1. If i+1 is in A then compare rank[i+1] with rank[j+1] // Note that by definition j+1 must be in A; so we are using two "comparable" ranks
 - 2. Otherwise, lexicographically compare <S[i+1], rank[i+2]> and <S[j+1], rank[j+2]>

S= 5 3 8 4 7 2 6 1
A= {1,2,4,5,7,8}
B= {3,6}

Index	Suffix	Group	Rank (both sets)
1	53837261	Α	5
2	3837261	Α	4
3	837261	В	8
4	37261	Α	3
5	7261	Α	7
6	261	В	2
7	6 1	Α	6
8	1	Α	1

- 1. Divide the suffixes into two groups:
 Index group "A": {i} such that i mod 3 ≠ 0
 Index group "B": {i} such that i mod 3 = 0
- 2. Sort the suffixes in group A using ALG2
- 3. Merge the suffixes in group B into the sorted list of group A using **ALG3**

S= mississippi\$

Index	Suffix	Group	Rank (A)
1	mississippi\$	Α	5
2	ississippi\$	Α	4
3	ssissippi\$	В	-
4	sissippi\$	Α	8
5	issippi\$	Α	3
6	ssippi\$	В	
7	sippi\$	Α	7
8	ippi\$	Α	2
9	ppi\$	В	
10	pi\$	Α	6
11	i\$	Α	1
12	\$	В	

- 2. Radix sort the array of pairs // Now the suffixes in B are sorted as well
- 3. Merge A and B // Simply traverse A and B in parallel

 To determine the relative order between two suffixes i in A and j in B:
 - If S[i]≠S[j], order them accordingly//Easy case: First character is different
 - 2. Otherwise: // Consider the immediately subsequent suffixes
 - If i+1 is in A then compare rank[i+1] with rank[j+1] // Note that by definition j+1 must be in A; so we are using two "comparable" ranks
 - 2. Otherwise, lexicographically compare <S[i+1],rank[i+2]> and <S[j+1],rank[j+2]>

S= mississippi\$
A= {1,2,4,5,7,8,10,11}
B= {3,6,9,12}

Index	Suffix	Group	Rank (A)	Pair representation of B	Order (B)
1	mississippi\$	Α	5		
2	ississippi\$	Α	4		
3	ssissippi\$	В		<s, 8=""></s,>	4
4	sissippi\$	Α	8		
5	issippi\$	Α	3		
6	ssippi\$	В		<s, 7=""></s,>	3
7	sippi\$	Α	7		
8	ippi\$	Α	2		
9	ppi\$	В		<p, 6=""></p,>	2
10	pi\$	Α	6		
11	i\$	Α	1		
12	\$	В		<\$, Ø>	1

```
ALG3 (string S, rank-sorted group A, un-sorted group B)
```

- 2. Radix sort the array of pairs // Now the suffixes in B are sorted as well
- 3. Merge A and B // Simply traverse A and B in parallel
 - To determine the relative order between two suffixes i in A and j in B:
 - 1. If $S[i] \neq S[j]$, order them accordingly / Easy case: First character is different
 - 2. Otherwise: // Consider the immediately subsequent suffixes
 - If i+1 is in A then compare rank[i+1] with rank[j+1] // Note that by definition j+1 must be in A; so we are using two "comparable" ranks

Index	Suffix	Group	Rank (A)	Order (B)
1	mississippi\$	Α	→ 5	
2	ississippi\$	Α	→ 4	
3	ssissippi\$	В		4 ←
4	sissippi\$	Α	→8	
5	issippi\$	Α	→ 3	
6	ssippi\$	В		3 ←
7	sippi\$	Α	→ 7	
8	ippi\$	Α	→ 2	
9	ppi\$	В		2 ←
10	pi\$	Α	→ 6	
11	i\$	Α	→ 1	

12

S= mississippi\$ A= {1,2,4,5,7,8,10,11} B= {3,6,9,12}

Order (Merged)

- 6 (rationale: m<p)
- 5 (rationale: i<p)
- 12 (rationale: A is exhausted)
- 10 (rank[i+1]=3 < rank[j+1]=7)
- 4 (rationale: i<p)
- 11 (rationale: A is exhausted)
- 9 (rank[i+1]=2 < rank[j+1]=7)
- 3 (rationale: i<p)
- 8 (rationale: p<s)
- 7 (rank[i+1]=1 < rank[i+1]=6)
- 2 (rationale: i<p)
- 1 (rationale: \$<i)

- 2. Radix sort the array of pairs // Now the suffixes in B are sorted as well
- 3. Merge A and B // Simply traverse A and B in parallel

 To determine the relative order between two suffixes i in A and j in B:
 - If S[i]≠S[j], order them accordingly//Easy case: First character is different
 - 2. Otherwise: // Consider the immediately subsequent suffixes
 - If i+1 is in A then compare rank[i+1] with rank[j+1] // Note that by definition j+1 must be in A; so we are using two "comparable" ranks
 - 2. Otherwise, lexicographically compare $\langle S[i+1], rank[i+2] \rangle$ and $\langle S[j+1], rank[j+2] \rangle$

Index	Suffix	Group	Rank (A)	Order (B)	Order (Merged)
1	mississippi\$	Α	5		6
2	ississippi\$	Α	4		5
3	ssissippi\$	В		4	12
4	sissippi\$	Α	8		10
5	issippi\$	Α	3		4
6	ssippi\$	В		3	11
7	sippi\$	Α	7		9
8	ippi\$	Α	2		3
9	ppi\$	В		2	8
10	pi\$	Α	6		7
11	i\$	Α	1		2
12	Ś	В	-	1	1

S= mississippi\$ A= {1,2,4,5,7,8,10,11} B= {3,6,9,12}

A _T	
12	
11	
8	
5	
2	
1	
10	
9	
7	
4	
6	
3	

- Intuition (#1): It would save a lot of time if we could get away with considering only the first k characters of each suffix
- Intuition (#2): The lexicographic ordering between two suffixes i, and j that have the same prefix depends on the rank of their subsequent suffixes (e.g., i+1, i+2 and j+1, j+2)
- Intuition (#3): The k-suffix representation is **redundant**. To resolve the lexicographic ordering between two suffixes i, and j that have the same prefix it is enough (for k=3) to know the rank of one representative from {i+1, i+2} and one from {j+1, j+2}
- Algorithm (divide and conquer):

Split: For every triplet {i, i+1, i+2} take only two of them and sort 3-suffixes (total of 2/3 of suffixes); Repeat recursively to resolve ambiguities

Merge: Use the sorting results to add the remaining third of the suffixes to the sorted list