Blurs Behave Like Ensembles

We introduce a novel ensemble method, "spatial ensemble". Spatial ensemble improve accuracy, uncertainty, and robustness without increasing inference time. But what is a spatial ensemble? Spatial ensemble, or spatial smoothing, is a method that aggregate nearby feature maps (See \searrow).

I. How Can We Apply Spatial Smoothing to NNs?

Figure 1. Simply add

AvgPool2d(kernel_size=2,
 stride=1, padding=1)

at the end of stages. For example, use four spatial smoothing layers for ResNet.

II. Spatial Smoothing Significantly Improves MC Dropout

Figure 2. "MC dropout + spatial smoothing" is **25**× **faster** than canonical MC dropout with similar predictive performance. Spatial smoothing also improves deterministic NNs.

III. How Does Spatial Smoothing Improve NNs?

Figure 3. MC dropout adds high-frequency noises. Spatial smoothing **filters high-frequency signals** and stabilizes (denoises) feature maps.

Figure 4. Spatial smoothing helps NN optimization by **flattening loss landscapes**. In addition, GAP is an extreme case of spatial smoothing.

In summary, spatial smoothing significantly improves NNs, and has the following properties:

- ① Spatial smoothing flattens loss landscapes.
- ② Spatial smoothing is a low-pass filter.
- ③ Spatial smoothing at the end of a stage plays a key role.

Exploiting SPATIAL CONSISTENCY is important, and BLURS BEHAVE LIKE ENSEMBLES

NAMUK PARK, SONGKUK KIM NAVER AI Lab, Yonsei University

How Do Vision Transformers Work?

We provide an explanation of how *self-attentions* work by addressing them as *a trainable spatial smoothing* of feature maps, because the formulation suggests that self-attentions average feature map values with the positive importance-weights.

I. Self-Attentions Flatten Loss Landscapes

Figure 5. Loss landscape visualization (*Left*) and Hessian max eigenvalue spectrum (*Right*) consistently show that **ViT has a flatter loss than ResNet**.

II. Self-Attentions Are Low-Pass Filters

Figure 6. Relative log amplitudes of Fourier transformed feature map show that **ViT tend to reduces high-frequency signals, while ResNet amplify them**. *Right*: In ViT, MSAs (gray area) reduce the high-frequency (1.0π) component, and Conv/MLPs (white area) amplify it.

III. Self-Attentions at the End of a Stage Play a Key Role in Prediction

Figure 7. **Self-attentions at the end of a stage (not a model) and Convs at the beginning of a stage significantly improve the performance**. AlterNet, a model in which Conv blocks at the end of a stage are replaced with MSA blocks, outperforms CNNs even on CIFAR.

	Self-Attention	Convolution
Loss Landscape	Flat but non-convex	Convex but sharp
Fourier Analysis	Low-pass filter (shape-biased)	High-pass filter (texture-biased)
Best Practice	The end of a stage	The beginning of a stage

