Math 531 Homework 2

Theo Koss

February 2021

1 Section 1.3

• Problem 4: Solve: $20x \equiv 12 \mod 72$.

$$20x = 12 + 72q; q = -1, x = [-3]$$

• Problem 5: Solve: $25x \equiv 45 \mod 60$.

$$25x = 45 + 60q; q = -2, x = [-3]$$

- Problem 7: Find additive orders of:
 - a. 8 mod 12: 3
 - b. 7 mod 12: 12
 - c. 21 mod 28: 3
 - d. 12 mod 18: 3
- Problem 27: Let p be prime and $a, b \in \mathbb{Z}$. Prove,

$$(a+b)^p \equiv a^p + b^p \mod p$$

Proof. By the Binomial Thm., it holds that:

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{p-k}$$

Where $\binom{p}{k} = \frac{p!}{k!(p-k)!}$. Then it is easy to see that

$$k = 0, p \Longrightarrow \binom{p}{k} = 1$$

Suppose $k \in \{1, 2, ..., p - 1\}$ Then

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = p \cdot l_k$$

for some $l_k \in \mathbb{Z}$. Then, by definition, $\binom{p}{k} \equiv 0 \mod p$. Thus, all $\binom{p}{k}$ such that $k \in \{1, 2, ..., p-1\}$ are equivalent to $0 \mod p$. Therefore, $(a+b)^p = a^p + b^p$ for prime p and $a, b \in \mathbb{Z}$. QED

2 Section 1.4

• Problem 2: Multiplication tables:

- Problem 9:
 - a. Find multiplicative orders of [5] and [7] in \mathbb{Z}_{16}^x . $5^4\equiv 1\mod 16$; $7^2\equiv 1\mod 16$. Mult. orders, 4 and 2 respectively.
 - b. Find multiplicative orders of [2] and [5] in \mathbb{Z}_{17}^x . $2^8 \equiv 1 \mod 17; 5^{16} \equiv 1 \mod 17.$
- Problem 12: In \mathbb{Z}_9^x each element is equal to a power of [2]. Can you find a congruence class in \mathbb{Z}_8^x such that each element of \mathbb{Z}_8^x is equal to

some power of that class? Answer the same question for \mathbb{Z}_7^x . $[3] \in \mathbb{Z}_8^x$ is a generator. As is $[3] \in \mathbb{Z}_7^x$.

• Problem 13: Show that \mathbb{Z}_{10}^x and \mathbb{Z}_{11}^x are cyclic, but \mathbb{Z}_{12}^x is not.

Proof. By some guy on wikipedia, The group \mathbb{Z}_n^x is cyclic iff $n \in \{1, 2, 4, p^k, 2p^k\}$. Where p is an odd prime and $k \in \mathbb{N}$. Since $10 = 2 \cdot \underbrace{5}_{\text{odd prime}}$ and $11 = \underbrace{11^1}_{\text{odd prime}}$, \mathbb{Z}_{10}^x and \mathbb{Z}_{11}^x are cyclic. However, 12 is not of that form, therefore it is not cyclic. (I call this one, "proof by wikipedia.")