

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

$h_{\theta}(x) = 0$:	852	1534	1416	2104	$x \leftarrow$	Size (feet²)
$\theta_0 + \theta_1 x$:	178	315	232	460	$y \leftarrow$	Price (\$1000)

Multiple features (variables).

$\Rightarrow x^{(i)} = \inf$		n = n ←	Notation:	:	852	1534	1416	2104	<u>*</u>		Size (feet²)
$x^{(i)}=$ input (features) of i^{th} training example. $x_j^{(i)}=$ value of feature j in i^{th} training example.	training avar	mber of fea	>	:	2	ω	ω	5	×2	bedrooms	Number of
		4	•	ightharpoonup	2	2	1	×3	floors	Number of	
		4	:	36	30	40	45	**	(years)	Age of home	
ble. $\times_3 = 2$		17	\(\(\begin{align*}(2) = \)	:	178	315	232 \ m= 47	460	رد	-	Price (\$1000)
	100	√ , hi					七カ				

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 63x + 64x_{\phi}$$

$$k_{\theta}(x) = 80 + 61x, + 62x + 3x + 3x - 2x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 63x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 63x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 63x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 63x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 63x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 63x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 62x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 62x + 64x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 62x + 62x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x, + 61x_{\phi}$$

$$k_{\theta}(x) = 60 + 61x_{\phi}$$

$$\rightarrow h_{\theta}(x) = \underline{\theta_0} + \underline{\theta_1}x_1 + \underline{\theta_2}x_2 + \cdots + \underline{\theta_n}x_n$$
 For convenience of notation, define $x_0 = 1$. (\times = \cdot)

For convenience of notation, define
$$x_0=1$$
.

For convenience of notation, define
$$x_0 = 1$$
. $(x_0 = 1)$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1} \quad \Theta = \begin{bmatrix} \Theta_0 \\ \Theta_1 \\ \Theta_2 \end{bmatrix} \in \mathbb{R}^{m_1} \quad \begin{bmatrix} \Theta_0 & \Theta_1 & \Theta_1 \\ \Theta_1 \\ \Theta_2 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \end{bmatrix} \begin{bmatrix} X_0 \\ \Theta_1 \\ \Theta_2 \end{bmatrix} \begin{bmatrix} X_0 \\ \Theta_1 \\ \Theta_1 \end{bmatrix}$$

Multivariate linear regression.

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$ 人人のドー

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

1+1 - diversion Vector

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat {

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, ..., \theta_n)$$
 (6)

(simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

Repeat

$$\theta_0 := \theta_0 - o\left(\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})\right)$$

$$\left|rac{\partial}{\partial heta_0}J(heta)
ight|$$

$$a_1 - \alpha \frac{1}{m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update $heta_0, heta_1$)

7 New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $\, heta_{j} \,$ for

$$j=0,\ldots,n$$
)

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}} = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

$$heta_1 := heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Andrew Ng

Linear Regression with multiple variables

practice I: Feature Scaling Gradient descent in

Feature Scaling

ldea: Make sure features are on a similar scale.

$$\rightarrow x_1 = \frac{\text{size (feet}^2)}{2000} \angle$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Feature Scaling

Get every feature into approximately a $-1 \leq x_i$

$$\frac{1}{1000.000}$$
 $\frac{1}{1000.000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$

Mean normalization

(Do not apply to $x_0=1$ Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean

E.g.
$$3x_1 = \frac{size-1000}{2000}$$

$$x_2 = \frac{\#bedrooms-2}{(5) +}$$

$$-0.5 \le x_1 \le 0.5$$

$$-0.5 \le x_1 \le 0.5$$

$$-0.5 \le x_2 \le 0.5$$

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- descent is working correctly. "Debugging": How to make sure gradient
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

Summary:

- If α is too small: slow convergence.
- every iteration; may not converge. (احاسی کامینا If lpha is too large: J(heta) may not decrease on also possille

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

Housing prices prediction
$$h_{ heta}(x) = heta_0 + heta_1 imes frontage + heta_2 imes depth$$

Hiea

X " frontage * depth

Polynomial regression

Size (x)
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3}$$

$$= \theta_{0} + \theta_{1}(size) + \theta_{2}(size)^{2} + \theta_{3}(size)^{3} \leftarrow$$

$$\Rightarrow x_{1} = (size)$$

$$\Rightarrow x_{2} = (size)^{2}$$

$$\Rightarrow x_{3} = (size)^{3}$$

Choice of features

Linear Regression with multiple variables

Normal equation

Gradient Descent

analytically. Normal equation: Method to solve for θ

Intuition: If 1D $(heta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\theta \in \mathbb{R}^{n+1}$$

$$(\theta_0, \theta_1, \ldots, \theta_m) =$$

$$J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \cdots \stackrel{\mathbf{sd}}{=} 0 \quad \text{(for every j)}$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

$ X = \begin{bmatrix} 1 & 2104 & 5 \\ 1 & 1416 & 3 \\ 1 & 1534 & 3 \\ 1 & 852 & 2 \\ $	Size (feet²) x_1 2104 1416 1534 852
$2104 5 1$ $1416 3 2$ $1534 3 2$ $852 2 1$ $\cancel{m} \times (\cancel{n+1})$ $()^{-1}X^Ty$	Number of bedrooms x_2 5 3 3
45 30 36	Number of floors x_3 1 2 2
<i>y</i> =	Age of home (years) x_4 45 40 30 36
460 232 315 178	Price (\$1000) 460 232 315 178

 $x^{(i)}$. Ш \underline{m} examples $(x^{(1)}, y^{(1)})$ If $x^{(i)}$ $\begin{bmatrix} x_n^{(i)} \end{bmatrix}$ () · (×, ×) - (×, ×) $\in \mathbb{R}^{n+1}$ (design $\ldots, (x^{(m)}, y^{(m)})$ ۱_] nx (nti) - (x(1))1 (X(1))1-) ; n features. L EN

Andrew Ng

m training examples, \underline{n} features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when \underline{n} is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute

Slow if n is very large.

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

degenerate) What if X^TX is non-invertible? (singular/

- Octave: pinv(x' *x) *x' *y

What if \widehat{X}^TX is non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$
 $x_2 = \text{size in m}^2$ $x_3 = 3.78$ feet $x_4 = 3.78$ feet

• Too many features (e.g. $m \leq n$).

n). > n= 10 <

Delete some features, or use regularization.

y Joseph