Identity-Based Cryptography

Ratna Dutta

ASSOCIATE PROFESSOR

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

November 9-13, 2020

Public Key Cryptosystem

- Public keys are used for encryption and digital signature verification.
- Private keys are used for decryption and digital signature generation.
- Public keys are accessible to all parties.
- Private keys are to be kept secret.

- How to associate entities with their respective public keys?
- An attacker may present a harmful key as the public key of a victim.
- Before using a public key, one should verify that the key belongs to the claimed party.

Public Key Certificates

- There is a trusted Certification Authority (CA).
- CA issues public-key certificates to parties.
- A certificate contains a public key, some identifying information of the party to whom the key belongs, a period of validity.
- The certificate is digitally signed by the CA.
- Key compromise and/or malicious activities may lead to revocation of certificates.
- The CA maintains a list of revoked certificates.

Use of Public Key Certificates

- Alice wants to send an encrypted message to Bob.
- Alice obtains Bob's public-key certificate.
- Alice verifies the signature of the CA on the certificate.
- Alice confirms that Bob's identity is stored in the certificate.
- Alice checks the validity of the certificate.
- Alice ensures that the certificate does not reside in the revocation list maintained by the CA.
- Alice then uses Bob's public key for encryption.

Problems of Public Key Certificates

- A trusted CA is needed.
- Every certificate validation requires contact with the CA for the verification key and for the revocation list.

Identity-Based Public Keys

- Alices identity (like e-mail ID) is used as her public key.
- No contact with the CA is necessary to validate public keys.
- A trusted authority is still needed: Private-Key Generator (PKG) or Key-Generation Center (KGC).
- Each party should meet the PKG privately once (registration phase).
- Limitation: Revocation of public keys may be difficult.

<u>Historical Remarks</u>

- Shamir (Crypto 1984) introduces the concept of identity-based encryption (IBE) and signature (IBS). He gives a concrete realization of an IBS scheme.
- In early 2000, bilinear pairing maps are used for concrete realizations of IBE schemes.
- Sakai, Ohgishi and Kasahara (SCIS 2000) propose an identity-based key-agreement scheme and an IBS scheme.

- Boneh and Franklin (Crypto 2001) propose an IBE scheme. Its security is proved in the random-oracle model.
- Boneh and Boyen (Eurocrypt 2004) propose an IBE scheme whose security can be proved without random oracles.

Cryptographic Bilinear Map

- G_1, G_2 two groups of a large prime order q.
- $G_1 = \langle P \rangle$ additive, G_2 multiplicative, DLP hard.
- Bilinear Map $e: G_1 \times G_1 \to G_2$
 - 1. Bilinearity : $e(aP, bQ) = e(P, Q)^{ab}$ for all $P, Q \in G_1$ and $a, b \in Z_q^*$.
 - 2. Non-degeneracy : $e(P, P) \neq 1$.
 - 3. Computable : e can be efficiently computed.
- Examples: Modified Weil, Tate Pairing.

Sakai-Ohgishi-Kasahara [2000] Key Agreement

- public key $ID \in \{0,1\}^*$ (like e-mail addresses)
 - 1. Setup: $params = \langle G_1, G_2, e, P, q, H \rangle$, $G_1 = \langle P \rangle$, s is the master key. (G_1 additive, G_2 multiplicative group of prime order q, DLP is hard in both)
 - 2. Extract: $Q_{ID_U} = H(ID_U) \in G_1$, $d_{ID_U} = sQ_{ID_U}$.
 - 3. Key Agreement:
 Alice computes $SK_{ID_{Alice}} = e(d_{ID_{Alice}}, Q_{ID_{Bob}})$ Bob computes $SK_{ID_{Bob}} = e(d_{ID_{Bob}}, Q_{ID_{Alice}})$
- security: hardness of BDH problem.

Identity-Based Encryption (IBE) Scheme

- Shamir [1984]
- public key $ID \in \{0, 1\}^*$
- An ID-based encryption scheme has four algorithms.
 - 1. Setup: Creates system parameters and master key.
 - 2. Extract: Uses master key to generate the private key corresponding to an arbitrary public key string ID.
 - 3. Encrypt: Encrypts messages using the public key ID.
 - 4. *Decrypt:* Decrypts the message using the corresponding private key of ID.

Motivation for ID-based encryption

- To simplify certificate management in e-mail system
- No need to keep a large database for public keys
- System derives the public keys by user names

Boneh-Franklin [2001] IBE Scheme

- Setup: params = $\langle G_1, G_2, e, P, q, n, P_{pub}, H_1, H_2 \rangle$, $P_{pub} = sP$, s is the master key, message space $\mathcal{M} = \{0, 1\}^n$.
- Extract: $Q_{ID} = H_1(ID) \in G_1, d_{ID} = sQ_{ID}.$
- Encrypt: $r \in Z_q^*, m \in \mathcal{M},$ $C = \langle rP, m \oplus H_2(e(Q_{ID}, P_{pub})^r) \rangle$
- Decrypt: $C = \langle U, V \rangle$, recover

$$m = V \oplus H_2(e(d_{ID}, U))$$

- Security of Boneh-Franklin's (BF) IBE scheme depends on hardness of BDH problem in $\langle G_1, G_2, e \rangle$.
- BDH (Bilinear Diffie-Hellman) Problem in $\langle G_1, G_2, e \rangle$:
 - given $\langle P, aP, bP, cP \rangle$ for some $a, b, c \in \mathbb{Z}_q^*$, compute $e(P, P)^{abc}$.
- This version of BF scheme is IND-ID-CPA secure in the random oracle model.

- Fujisaki-Okamoto transformation has been used to extend IND-ID-CCA security.
- Let \mathcal{E} be a probabilistic public key encryption scheme. We denote by $\mathcal{E}_{pk}(M;r)$ the encryption of M using the random bits r under the public key pk.
- Fujisaki-Okamoto define the hybrid scheme \mathcal{E}^{hy} as:

$$\mathcal{E}_{pk}^{hy}(M) = \langle \mathcal{E}_{pk}(\sigma; H_3(\sigma, M)), H_4(\sigma) \oplus M \rangle$$

where σ is generated at random and H_3 , H_4 are cryptographic hash functions.

- Fujisaki-Okamoto (FO) show that if \mathcal{E} is an IND-CPA secure encryption scheme, then \mathcal{E}^{hy} is an IND-CCA secure encryption scheme in the random oracle model.
- So after applying FO transformation, the resulting ciphertext is

$$C = \langle rP, \sigma \oplus H_2(e(Q_{ID}, P_{pub})^r), m \oplus H_4(\sigma) \rangle$$

where $r = H_3(\sigma, m)$.

Selective Model

- Boneh and Boyen gave selective ID model, namely IND-sID-CCA, which is slightly weaker than the model described above.
- In selective model the adversary must commit ahead of the time to the identity that it intends to attack.
- In the standard model described earlier, the adversary is allowed to choose this identity adaptively.

Boneh-Boyen's IBE Without Random Oracle

- $Setup : params = \langle G_1, G_2, e, P, q \rangle$, $P_{pub} = (U = xP, V = yP), (x, y)$ is the master key.
- Extract: Given a public key $\mathsf{ID} \in Z_q^*$, the private key $d_{\mathsf{ID}} = (r, K)$, where $r \in Z_q^*$ and $K = \frac{1}{\mathsf{ID} + x + ru} P \in G_1$.
- Encrypt: Message $M \in G_1$, $s \in Z_q^*$, ciphertext is $C = \langle s(\mathsf{ID})P + sU, sV, e(P, P)^s M \rangle$
- Decrypt: $C = \langle X, Y, Z \rangle$, recover $M = \frac{Z}{e(X+rY,K)}$

Security: IND-sID-CCA secure without random oracles under k-DBDHI assumption.

<u>k-DBDHI Problem</u>

• The k-Decisional Bilinear Diffie-Hellman Inversion (k-DBDHI) problem in $\langle G_1, G_2, \hat{e} \rangle$:

Instance: $(P, yP, y^2P, \dots, y^kP, r)$ for some $y \in Z_q^*$, $r \in {}_RG_2$.

Output: yes if $r = e(P, P)^{\frac{1}{y}} \in G_2$ and output no otherwise.

Identity-Based Signature (IBS) Scheme

- Shamir's IBS
- Sakai-Ohgishi-Kasahara (SOK) IBS

Shamir's IBS

- Setup: Uses RSA setup.
 - PKG generates an RSA modulus n = pq and computes $\phi(n) = (p-1)(q-1)$.
 - PKG chooses $e \ge 3$ such that $\gcd(e, \phi(n)) = 1$ and computes $d \equiv e^{-1} \pmod{\phi(n)}$.
 - PKG fixes a hash function $H: \{0,1\} \to Z_n$.
 - PKG publishes n, e, H.
 - $-p, q, \phi(n), d$ are kept secret.

- Extract:
 - Bob's public key: $Q_{ID_{Bob}} = H(ID_{Bob})$.
 - Bob's private key: $S_{ID_{Bob}} \equiv Q_{ID_{Bob}}^d \pmod{n}$.
- Sign: Bobs signature on message M is the pair (s, t) with

$$s \equiv x^e \pmod{n}, x \in Z_n$$

$$t \equiv S_{ID_{Bob}}.x^{H(s,M)} \pmod{n}$$

• Verify:

$$t^e \equiv Q_{ID_{Bob}}.(x^e)^{H(s,M)} \equiv Q_{ID_{Bob}}.s^{H(s,M)} \pmod{n}.$$

Security:

- A forger can generate x, s, H(s, M).
- Generating the correct t is equivalent to knowing $S_{ID_{Bob}}$.
- Getting $S_{ID_{Bob}}$ from $Q_{ID_{Bob}}$ is the RSA problem.

Sakai-Ohgishi-Kasahara (SOK) IBS

- Setup: $params = \langle G_1, G_2, e, P, q, P_{pub}, H \rangle$, $G_1 = \langle P \rangle, P_{pub} = sP$, s is the master key. $(G_1$ additive, G_2 multiplicative group of prime order q)
- Extract: $Q_{ID_U} = H(ID_U) \in G_1, d_{ID_U} = sQ_{ID_U}.$
- Sign: Bob's signature on message M is (U, V) with

$$U = rP, r \in Z_q,$$

$$V = d_{ID_{Bob}} + rH(Q_{ID_{Bob}}, M, U) \in G_1$$

• Verify: Check if

$$e(P, V) = e(P_{pub}, Q_{ID_{Rob}})e(U, H(Q_{ID_{Rob}}, M, U).$$