Homework 9: Metric Spaces (Due April 10, 2023)

Assignments should be **stapled** and written clearly and legibly. Problems 4 and 5 are optional.

- 1. Let X be a nonempty set and let d be the discrete metric on X. Prove that every subset of X is both open and closed.
- 2. Consider \mathbb{R} with the discrete metric. Prove that E = [0,1] is closed and bounded in \mathbb{R} , but not compact. (Note that closed, bounded, and compact are in reference to the discrete metric.)
- 3. In Homework 7, you proved that if A is a set of real numbers, then $(\overline{A})' = A'$ (using the Euclidean metric on \mathbb{R}). Use this fact and a theorem from class to prove that \overline{A} is closed.
- 4. (GRE Mathematics Subject Test. This question was answered correctly by 19% of examinees.) Let d be a metric on a set X. Which of the following is also a metric on X?
 - (a) 4 + d
 - (b) $e^d 1$
 - (c) d |d|
 - (d) d^2
 - (e) \sqrt{d}
- 5. Consider \mathbb{Q} , viewed as a metric subspace of \mathbb{R} with Euclidean metric. Let $E = \{p \in \mathbb{Q} : 2 < p^2 < 3\}$. Prove that in this metric subspace, E is closed and bounded, but not compact.