Functions

Definition 1. A function $f: A \to B$ is:

- 1. Injective if whenever f(x) = f(y), then x = y;
- 2. Surjective if for every y there is some x such that f(x) = y;
- 3. Bijective if it is both injective and surjective; and,
- 4. Invertable if there is some function $g: B \to A$ such that $g \circ f = I_A$ and $f \circ g = I_B$ (where I_X is the identity function from X to X).

Problem 1. Restate Definitions 1.1, 1.2, and 1.4 using the syntax of $FO(\mathbb{Z})$.

Problem 2. Suppose that f has two inverses g and h. (That is, each of g and h meet the conditions in Definition 1.4.) Show that g = h.

Problem 3 (\star) . Show that if f has an inverse, then f is bijective.

Relations

Definition 2. A relation R is:

- 1. Reflexive if for every x, x R x;
- 2. Symmetric if whenever x R y, then y R x;
- 3. Transitive if whenever x R y and y R z, then x R z.

A relation that is reflexive, symmetric, and transitive is called an *equivalence* relation.

Problem 4. Show (or give a counterexample) that if R and S are equivalence relations, then so is $R \cap S$.

Problem 5. Show (or give a counterexample) that if R and S are equivalence relations, then so is $R \cup S$.

 $FO(\mathbb{Z})$

Section 1.13.1 exercises 1–3.