Planning in Factored Spaces

Tom Silver
Robot Planning Meets Machine Learning
Princeton University
Fall 2025

Recap and Preview

Previously:

- Planning in finite "tabular" state and action spaces
- Careful treatment of uncertainty in transitions and observations
- Offline planning and online planning

Now:

- Planning in finite "factored" state and action spaces
- No more uncertainty
- Online planning only

Our focus turns to leveraging structure in the problem space

Later:

Planning in continuous state and action spaces

Classical Planning Problem Setting

A classical planning problem is:

- 1. A finite state space S
- 2. A finite action space A
- 3. An initiable action function $I: S \times A \rightarrow \{T, F\}$
- 4. A transition function $F: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ Deterministic! Can be partial
- 5. A cost function $C: S \times A \times S \rightarrow \mathbb{R}$

Lower better. Could do rewards instead; just a convention.

- 6. An initial state $s_0 \in \mathcal{S}$
- 7. A goal function $G: \mathcal{S} \to \{T, F\}$ Equivalent to a set of states

Example: Blocks World

- **States:** each block is either on the table or on some other block
- Actions: picking or placing a block
- Initiation: can only pick and place on "clear" blocks
- Transition function: as you'd expect
- Cost function: always 1
- Initial state: e.g., see right
- Goal function: e.g., see right

Definition of a Solution (Plan)

A solution ψ to a classical planning problem is a sequence of states s_0, s_1, \dots, s_T and actions a_0, a_1, \dots, a_{T-1} such that

- 1. Each action is initiable: $I(s_t, a_t) = \text{True}$
- 2. Transitions are valid: $T(s_t, a_t) = s_{t+1}$
- 3. The goal is achieved: $G(s_T) = \text{True}$

The cost of a solution ψ is $C(\psi) \triangleq \sum_t C(s_t, a_t, s_{t+1})$

A solution ψ^* is optimal if it minimizes costs: $C(\psi^*) = \min_{\psi} C(\psi)$

Example: Blocks World

Goal e a Table

An optimal plan

Example: Blocks World

Goal e a Table

A suboptimal plan

A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.

A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.

Definitions:

What is this planner?

A planner is *sound* if its output is guaranteed to be a solution.

A planner is complete if it is guaranteed to return an output eventually.

A sound planner is *optimal* if its output is guaranteed to be optimal. Otherwise, the planner is *satisficing*.

A Better Approach: Graph Search

Graph Search

```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
   1 // priority queue of nodes
  2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
          s, c = node.state, node.pathCost
  10
          // skip if we already found a better path
 11
          if bestPathCost[s] < c: continue
 12
 13
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
 14
               s' = F(s, a)
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c' : continue
 17
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
 19
 20
               push child onto queue with PRIORITY(child)
```

Goal: b on a


```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
   1 // priority queue of nodes
  2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
           s, c = node.state, node.pathCost
 10
 11
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c' : continue
 17
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
 19
 20
               push child onto queue with PRIORITY(child)
```

```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
1 _// priority queue of nodes
```

```
2 initialize queue = []
   root = Node(s_0, 0, parent=null)
   // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
        s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
14
             s' = F(s, a)
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```


GraphSearch $(s_0, \mathcal{A}, I, F, C, G)$ // priority queue of nodes 2 <u>initialize queue</u> = [] $root = Node(s_0, 0, parent=null)$ // PRIORITY differs between algorithms push root onto queue with PRIORITY(root) $/\!\!/$ state \rightarrow best known path cost initialize bestPathCost = $\{s_0 \mapsto 0\}$ while queue is not empty pop node from queue s, c = node.state, node.pathCost10 // skip if we already found a better path if bestPathCost[s] < c: continue 13 if G(s): return node.extractPlan() for $a \in \mathcal{A}$ s.t. I(s, a)14 s' = F(s, a)15 c' = c + C(s, a, s')if bestPathCost[s'] < c' : continue bestPathCost[s'] = c'18 child = Node(s', c', parent=node)19

push child onto queue with PRIORITY(child)

20

For now, let's say priority = path cost

```
GRAPHSEARCH(s_0, \mathcal{A}, I, F, C, G)
```

```
// priority queue of nodes
 2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
 6 // state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
        s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
14
            s' = F(s, a)
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
17
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
```

```
// priority queue of nodes
2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
         s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
14
             s' = F(s, a)
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
```

```
// priority queue of nodes
2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
         s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
13
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
14
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0,\mathcal{A},I,F,C,G)
```

```
// priority queue of nodes
2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
         pop node from queue
        s, c = \mathsf{node.state}, \mathsf{node.pathCost}
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
13
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
14
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0,\mathcal{A},I,F,C,G)
```

```
// priority queue of nodes
 2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
    /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
         pop node from queue
         s, c = node.state, node.pathCost
10
         // skip if we already found a better path
12
        if bestPathCost[s] < c: continue
        \mathsf{if}\ G(s): \mathsf{return}\ \mathsf{node.extractPlan}()
13
         for a \in \mathcal{A} s.t. I(s, a)
14
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0,\mathcal{A},I,F,C,G)
```

```
// priority queue of nodes
 2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
    /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
         pop node from queue
         s, c = node.state, node.pathCost
         // skip if we already found a better path
        if bestPathCost[s] < c: continue
13
        \mathsf{if}\ G(s): \mathsf{return}\ \mathsf{node.extractPlan}()
        for a \in \mathcal{A} s.t. I(s, a)
14
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```

bestPathCost

GraphSearch $(s_0, \mathcal{A}, I, F, C, G)$

```
// priority queue of nodes
2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
        s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
13
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s,a)
14
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0,\mathcal{A},I,F,C,G)
```

```
// priority queue of nodes
2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
         s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
1 // priority queue of nodes
```

```
2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
         s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0,\mathcal{A},I,F,C,G)
```

```
// priority queue of nodes
 2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
         s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
             s' = F(s, a)
15
             c' = c + C(s, a, s')
             if bestPathCost[s'] < c': continue
17
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
      /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
           pop node from queue
           s, c = node.state, node.pathCost
  10
           // skip if we already found a better path
           if bestPathCost[s] < c: continue
           if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
               s' = F(s, a)
  15
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c': continue
               <code>bestPathCost[s'] = c^\prime</code>
  18
               child = Node(s', c', parent=node)
  19
  20
               push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
           s, c = node.state, node.pathCost
  10
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c' : continue
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
 19
 20
               push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
           s, c = node.state, node.pathCost
  10
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c' : continue
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
 19
               push child onto queue with PRIORITY(child)
 20
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
           s, c = node.state, node.pathCost
 10
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s,a)
 14
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c' : continue
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
 19
 20
               push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
  10
           s, c = node.state, node.pathCost
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
 14
              s' = F(s, a)
  15
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c': continue
               bestPathCost[s'] =c'
 18
               child = Node(s', c', parent=node)
 19
               push child onto queue with PRIORITY(child)
 20
```


bestPathCost


```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
           s, c = node.state, node.pathCost
 10
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
 13
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
 14
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
               if bestPathCost[s'] < c' : continue
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
```

push child onto queue with PRIORITY(child)

19 20


```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
           s, c = node.state, node.pathCost
  10
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
  13
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
 14
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
 16
               if bestPathCost[s'] < c' : continue
 17
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
 19
 20
               push child onto queue with PRIORITY(child)
```


Path cost is 2, which is worse than 0

```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
   2 initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
     /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
          pop node from queue
           s, c = node.state, node.pathCost
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
  13
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
 14
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
 16
               if bestPathCost[s'] < c': continue
 17
               bestPathCost[s'] = c'
 18
               child = Node(s', c', parent=node)
 19
 20
               push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
```

```
// priority queue of nodes
 2 initialize queue = []
    root = Node(s_0, 0, parent=null)
    // PRIORITY differs between algorithms
    push root onto queue with PRIORITY(root)
   /\!\!/ state \rightarrow best known path cost
    initialize bestPathCost = \{s_0 \mapsto 0\}
    while queue is not empty
        pop node from queue
         s, c = node.state, node.pathCost
10
        // skip if we already found a better path
        if bestPathCost[s] < c: continue
13
        if G(s): return node.extractPlan()
        for a \in \mathcal{A} s.t. I(s, a)
14
             s' = F(s, a)
15
             c' = c + C(s, a, s')
16
             if bestPathCost[s'] < c' : continue
             bestPathCost[s'] = c'
18
             child = Node(s', c', parent=node)
19
20
             push child onto queue with PRIORITY(child)
```



```
GraphSearch(s_0, \mathcal{A}, I, F, C, G)
      // priority queue of nodes
     initialize queue = []
      root = Node(s_0, 0, parent=null)
      // PRIORITY differs between algorithms
      push root onto queue with PRIORITY(root)
      /\!\!/ state \rightarrow best known path cost
      initialize bestPathCost = \{s_0 \mapsto 0\}
      while queue is not empty
           pop node from queue
           s, c = node.state, node.pathCost
  10
          // skip if we already found a better path
          if bestPathCost[s] < c: continue
  13
          if G(s): return node.extractPlan()
          for a \in \mathcal{A} s.t. I(s, a)
 14
               s' = F(s, a)
 15
               c' = c + C(s, a, s')
  16
               if bestPathCost[s'] < c' : continue
  17
               bestPathCost[s'] = c'
 18
```

child = Node(s', c', parent=node)

push child onto queue with PRIORITY(child)

19 20

Heuristics and Value Functions

As in MDP land, we can define value functions:

$$V^*(s) = \begin{cases} 0 & \text{if } G(s) \\ \min_{a:I(s,a)} C(s,a,s') + V^*(s') & \text{o. w.} \\ s'=F(s,a) & \end{cases}$$

"Cost-to-go"

Heuristics and Value Functions

As in MDP land, we can define value functions:

$$V^*(s) = \begin{cases} 0 & \text{if } G(s) \\ \min_{a:I(s,a)} C(s,a,s') + V^*(s') & \text{o. w.} \\ s'=F(s,a) & \end{cases}$$

A heuristic $\hat{V}(s)$ is an approximate value function.

Same as MDP land

Heuristics and Value Functions

As in MDP land, we can define value functions:

$$V^*(s) = \begin{cases} 0 & \text{if } G(s) \\ \min_{a:I(s,a)} C(s,a,s') + V^*(s') & \text{o. w.} \\ s'=F(s,a) & \end{cases}$$

A heuristic $\hat{V}(s)$ is an approximate value function.

A heuristic is admissible if it never overestimates the cost-to-go:

For all
$$s \in \mathcal{S}, \hat{V}(s) \leq V^*(s)$$
.

Graph Search Variations

Algorithm	Priority Function	Optimal?	Notes
Uniform cost search	path cost	Yes	If costs are 1, this is breadth-first search. Like Dijkstra's, but returns shortest path to goal, not shortest paths to all states
Greedy best-first search (GBFS)	heuristic (state)	No	Good choice for fast satisficing planning
A* search	path cost + heuristic (state)	Depends	Optimal if heuristic is <i>admissible</i> (never overestimates cost-to-go)
Depth first search	negative path cost	No	Can be more memory-efficient if implemented as a special case

Where do Heuristics Come From?

- 1. Hand-designed based on understanding of the problem
- 2. Learned from data (later in the course)
- 3. Automatically derived from the problem representation

Factored Classical Planning Problems

Consider a classical planning problem where:

States are *factored* into *n* Boolean features:

$$S = \{ T, F \}^n$$

The goal is to "activate" features $\{i_1, ..., i_m\}$ (for $1 \le i_j \le n$):

$$G(s) = s[i_1] \land \dots \land s[i_m]$$

Blocks World Example

Feature	Value
On-A-B	True
On-A-C	False
On-B-A	False
On-B-C	False
On-C-A	False
On-C-B	False
OnTable-A	False
OnTable-B	True
OnTable-C	True
Holding-A	False
Holding-B	False
Holding-C	False
HandEmpty	True

Blocks World Example

Feature	Value
On-A-B	False
On-A-C	False
On-B-A	False
On-B-C	False
On-C-A	False
On-C-B	False
OnTable-A	True
OnTable-B	True
OnTable-C	True
Holding-A	False
Holding-B	False
Holding-C	False
HandEmpty	True

Goal-Count: Our First Problem-Derived Heuristic

The goal-count heuristic counts the number of goal features that are not yet activated:

$$V_{GC}(s) \triangleq |\{i : \neg s[i] \land i \in G\}|$$

Assuming all transition costs are 1, is V_{GC} admissible?

Goal-Count Can Help!

Limitations of Goal-Count

- 1. Very sparse
- 2. Can be "misleading" Examples?

Factoring Further: Actions + Transitions

Each is a set

of features

A (STRIPS / PDDL) operator has:

- 1. Preconditions
- 2. Add effects
- 3. Delete effects

Notation: ω is an operator, Ω is the set of all operators

```
Pick-A-from-C:
```

```
Preconditions: {HandEmpty, On-A-C,
```

Clear-A}

Add effects: {Holding-A, Clear-C}

Delete effects: {HandEmpty,

On-A-C, Clear-A

Factored Classical Planning Problems

A factored classical planning problem is:

- 1. A finite state space $S = 2^{\{1,...,n\}}$
- 2. A finite action space $\mathcal{A} = \Omega$
- 3. An initiable action function $I(s, \omega) = \text{pre}(\omega) \subseteq s$ Preconditions hold

Actions = operators

- 4. A transition function $F(s, \omega) = (s \text{del}(\omega)) \cup \text{add}(\omega)$ Effects
- 5. A cost function $C(s, \omega, s') = 1$ For simplicity
- 6. An initial state $s_0 \in \mathcal{S}$
- 7. A goal function $G(s) = g \subseteq s$

Lifted Operators

It is often convenient to define operators with **parameters**: placeholders for objects

Objects can also be typed

Preprocessing: ground all lifted operators with all combinations of objects (obeying types)

```
Pick(?x, ?y):
Preconditions: {HandEmpty(),
                      On(?x, ?y),
                 Clear(?x)}
Add effects: {Holding(?x), Clear(?y)}
Delete effects: {HandEmpty(),
                 On(?x, ?y)
                 Clear(?x)}
```

A Recipe for Heuristic Generation

Delete Relaxation

```
Pick(?x, ?y):
Preconditions: {HandEmpty(),
                      On(?x, ?y),
                 Clear(?x)}
Add effects: {Holding(?x),
               Clear(?y)}
Delete effects: {HandEmpty(),
                 On(?x, ?y)
                 Clear(?x)}
```



```
Pick(?x, ?y):
Preconditions: {HandEmpty(),
                      On(?x, ?y),
                 Clear(?x)}
Add effects: {Holding(?x),
                Clear(?y)}
Delete effects: {}
```

Delete-Relax: Our Second Problem-Derived Heuristic

The delete-relax heuristic $V_{DR}(s)$ is the optimal cost of the **relaxed** planning problem with initial state s.

Goal: holding(a) & holding(b)

What is $V_{DR}(s)$? What is $V^*(s)$?

Is V_{DR} admissible?

Delete Relaxation Can Help!

But these plots are extremely misleading. Why?

More Revealing Plots

Solving delete-relaxed problems exactly is formally hard (NP-complete)

hFF: A Better Delete Relaxation Heuristic

Construct a non-optimal relaxed plan in a particular way:

Forward pass:

- 1. Imagine we could execute all initiable actions simultaneously
- 2. Aggregate the next states into superset of all active features
- 3. Repeat (1) and (2) until convergence (or goal is active)

Backward pass:

1. Build a relaxed plan by selecting "necessary" actions

Operators

Operators

Convergence

Forward Pass Complete

Relaxed

Plan

$$V_{hFF} = 4$$

Terminology:

Relaxed Planning Graph

Also useful for pruning actions

hFF Can Really Help!

