Graph the line $y = -\frac{3}{4}x + 6$.

The slope is $\frac{-3}{4}$ and the y-intercept is 6. Solution

Start at the point (0, 6).

Use $\frac{\text{change in y}}{\text{change in x}} = \frac{-3}{4}$ to find other points of the line. (See Example 2, page 530.)

Classroom Exercises

1. Which points lie on the line 3x - 2y = 12?

b.
$$(2, -3)$$

b.
$$(2, -3)$$
 c. $\left(3, \frac{3}{2}\right)$

d.
$$(0, -6)$$

2. Which point is the intersection of x + 2y = 8 and 2x + 3y = 10?

$$a. (-2, 5)$$

b.
$$(-4, 6)$$

d.
$$(-1, 4)$$

Find the x- and y-intercepts of each line.

3.
$$2x + 3y = 6$$

4.
$$3x - 5y = 15$$

5.
$$-4x + 3y = 24$$

6.
$$x + 3y = 9$$

7.
$$y = 5x - 10$$

8.
$$y = 2x + 5$$

Find the slope and y-intercept of each line.

9.
$$y = \frac{2}{5}x - 9$$

10.
$$2x + y = 8$$

11.
$$3x - 4y = 6$$

- 12. What is the slope of the line y = 4? Name three points that lie on the line.
- 13. The graph of x = 5 is a vertical line through (5, 0). Name three other points on the line and check to see if their coordinates satisfy the equation.

Written Exercises

- 1. On the same axes, graph y = mx for $m = 2, -2, \frac{1}{2}$, and $-\frac{1}{2}$. A
 - **2.** On the same axes, graph y = mx + 2 for $m = 3, -3, \frac{1}{3}$, and $-\frac{1}{3}$.
 - 3. On the same axes, graph $y = \frac{1}{2}x + b$ for b = 0, 2, 4, -2, and -4.
 - **4.** On the same axes, graph $y = -\frac{2}{3}x + b$ for b = 0, 3, 6, -3, and -6.
 - 5. On the same axes, graph the lines y = 0, y = 3, and y = -3.
 - **6.** On the same axes, graph the lines x = 0, x = 2, and x = -2.