Exercices: Diels Alder

Exercice 1 : On étudie la réaction de Diels Alder suivante :

- 1. Identifier le diène et le diènophile.
- 2. Sans préciser la stéréochimie des produits donner les différents régioisomères que l'on peut $a\ priori$ obtenir.
- 3. A l'aide de l'écriture des formes mésomères des réactifs justifier de la formation préférentielle de l'un des deux régioisomères.
- 4. A l'aide de l'écriture des formes mésomères des réactifs déterminer si :
 - (a) le diène est électroniquement enrichi ou appauvri par rapport au butadiène?
 - (b) le diènophile est électroniquement enrichi ou appauvri par rapport à l'éthylène (éthène)?
- 5. Au vu de la question 4 préciser si cette réaction est censée être plus rapide que celle du butadiène sur l'éthène.
- 6. On propose de vérifier les résultats sur la régiosélectivité grâce à l'étude des orbitales frontalières des deux réactifs on précise que β est une constante énergétique négative :
 - Orbitales frontalières du diène :

atome	HO $(E = \alpha + 0, 46\beta)$	BV $(E = \alpha - 0,71\beta)$
1	-0,60	0,58
2	-0,28	-0,41
3	0,47	-0,29
4	0,50	0,61
5	-0,30	-0,19
6	0,11	0,04

— Orbitales frontalières du diènophile :

atome	$HO (E = \alpha + \beta)$	$BV (E = \alpha - 0, 44\beta)$
1	0,58	0,38
2	0,00	-0,54
3	-0,58	-0,29
4	-0,58	0,67
5	0,00	0,19
6	0,00	0,04

(a) Identifier les orbitales frontalières à considérer pour identifier la régiosélectivité de la réaction.

- (b) Représenter ces deux orbitales et donner le régioisomère majoritairement obtenu en contrôle orbitalaire.
- (c) Comparer ces résultats à ceux obtenus grâce à l'étude des formes mésomères.
- 7. Combien de stéréoisomères peut-on obtenir pour le régioisomère majoritaire? Donner leur relations de stéréochimie, lesquels sont obtenus dans les mêmes proportions?
- 8. On effectue la réaction à froid puis à reflux du solvant et le mélange de stéréoisomères obtenus n'est pas le même. Proposer une explication et détailler quelles conditions mènent à quel(s) stéréoisomère(s). On pourra notamment s'aider de la représentation de la structure de l'état de transition.