FACE ENHANCEMENT

GROUP 01

Overview

Theme Social media

• โปรเจคนี้เกี่ยวข้องกับ theme ของเราอย่างไร? เนื่องจากว่าใน social media มักจะมีการลงรูปของตัวเองและหลายๆคนมักจะ ใช้ filter หรือการ enhance รูปใบหน้าของตัวเองก่อนลง social media จึงเป็น เหตุผลให้ face enhancement นั้นเกี่ยวข้องกับ theme ของ social media

Image Processing

- Color Transformation (Grayscale, RGB, HSV)
- Arithemetic/Logic Operations (bitwise and/or)
- Histrogram Equalization (on HSV)
- Spatial Filtering (Laplacian, Gaussian Blur, Median Blur)
- Thresholding (Otsu's Thresholding)
- Morphology (Opening Remove Noise, Convex Hull -Connect Point to make shape)
- HOG for face detection (Implement In dlib library)

Machine Learning

- Use Linear SVM combine with HOG for face detection (already implement in dlib library)
- Ensemble of Regression Trees for facial landmark detector (download model from dlib.net)

Deep Learning

- Convolutional Neural Network
- Data augmentation(flip horizontal, flip vertical)
- Unet (Segmentation model, Dice Loss, Cross-entropy loss)
- Transfer Learning (Encoder is resnext101_32x48d load weight from instragram)

Algorithm in Our Application

*การ combine เป็นการ combine ระหว่าง mouth segmentation กับ mouth facial landmark(ใช้ convex hull) และ combine ระหว่าง face segmentation กับ face จาก facial landmark(ใช้ convex hull) เท่านั้น

Algorithm in Our Application

Evaluate

IoU (Intersection over Union)

สาเหตุที่เลือก

- เป็นตัววัดที่เป็นมาตรฐาน
- แสดงให้เห็นถึงความแม่นยำ ของ model
- เนื่องจากเป็นการทำ segmentation matrice นี้จึง เหมาะเป็นอย่างมาก

Our Evaluate Code

Evaluate

Our Evaluate Code

Evaluate

จะเห็นว่า model face detection ที่ใช้เป็นแบบ hog + linear svm ทำงานไม่ค่อยดีกับภาพคนที่มีการ เอียงหัว และจะเห็น model segmentation ทำงานยังไม่ค่อยดีกรณีที่คนเอียงหัว

Our Evaluate Code

Evaluate

จะเห็นว่าในกรณีนี้เป็นภาพคนที่มีหนวดทำให้ segmentation model ยากต่อการ predict ทำให้ accuracy ต่ำอีกทั้ง model hog sensitive กับพวก case แปลกๆ ทำให้ไม่สามารถทำ face detection เพื่อช่วยทำ convex hull หา facial feature ได้

Face segmentation

Average IoU = 0.8958384704750394

จะเห็นว่ามีค่า loU score ที่สูงมากเนื่องจากส่วน face segmentation มีการใช้ model segmentation เป็นหลักและใช้ face detection เข้าช่วยกรณีมี noise ที่ระบายไม่ทั่วหน้าเกิดขึ้น

Facial segmentation

Average IoU = 0.5962935583427188

จะเห็นว่ามีค่า IoU score ที่ต่ำเมื่อเทียบกับการใช้ face segmentation เพราะมีการใช้ facial landmark detection(จาก face detection) เป็นหลักและใช้ face segmentation เข้าช่วยเนื่องจาก model face segmentation ยังเรียนรู้ feature ปาก หรือ ตายังไม่ดีพอ

Analysis Our Technique

Pros

- การทำ segmentation model ทำให้ enhance แต่ละส่วนได้ ง่ายมากขึ้น
- model มีความแม่นยำเป็น อย่างมากโดยเฉพาะการ segment ใบหน้า

Cons

- ใช้เวลาการ process image นาน ทำให้ไม่เหมาะกับการใช้กับ webcam
- เพราะว่าใช้ Unet จึงต้องการ จำนวน data มหาศาล
- เมื่อพิจารณาส่วนที่เป็น facial feature จะเห็นว่าความแม่นยำ ต่ำใช้ thresholding)เมื่อเทียบ กับ face segment ที่มีการใช้ทั้ง 2 model
- ใช้เวลาในการ training ค่อนข้าง นานโดยเฉพาะถ้าไม่ใช้ GPU ดีๆ

*ส่วน iris ไม่ได้ถูกใช้ใน segmentation model ทำให้ accuracy

Analysis Our Technique

Pros

Cons

- เนื่องจากว่ามีโอกาสเป็นไปได้ที่ iris จะเป็นสี อื่นๆนอกจากสีดำทำให้ไม่สามารถ enhance ตรงส่วนนั้นได้
- ตรง iris filter มีความ sensitive กับ noise เช่นขนตาดำหรือแสงมืดๆเป็นอย่างมาก
- model segmentation กิน ram เป็นอย่างมาก ทำให้ต้อง run บน cloud แทน(colab)

Compare to other Technique

จากการที่เรานำข้อเสียของ technique เรามาวิเคราะห์เราน่าจะ :

• เปลี่ยนจากการใช้ facial landmark detection + face segmentation มาเป็น pure face segmentation ที่มีการ segmentation ส่วนของ iris

Pros

- สามารถเพิ่ม accuracy ได้มากจากเดิมโดย เฉพาะส่วนที่เป็น facial accuracy
- สามารถลด error ได้อาจเกิดขึ้นจากแสงไม่ พอหรือขนตาทำซึ่งเป็น error ที่เกิดใน technique ของเรา

Cons

- จำเป็นที่จะต้องใช้ data ที่มีความ specific มากขึ้นไปอีกอาจใช้เวลาหานานหรืออาจ จำเป็นที่จะต้องสร้าง data ขึ้นมาเอง(Ground Truth)
- อาจจำเป็นที่จะต้องทำ model ให้ robust มากกว่าเดิม ทำให้อาจต้องเพิ่มความซับ ซ้อนมากกว่าเดิม ซึ่งจะทำให้ใช้เวลาการ train นานขึ้น

Compare to other Technique

Pros

• อาจแก้ปัญหา iris filter ไม่ได้เพราะไม่ได้มีสี ที่ไม่ใช่สีดำหรือสีเข้มได้

Cons

• อาจจำเป็นต้องเพิ่มจำนวน data มากกว่า เดิมเพื่อให้ model robust มากขึ้น

MEDIUM: LES

DEMO

Member:

Werapat Wangrungroj 6431343021 Nattapong Anansomsin 6431317721