

Jack Y. Araz

The name of the game is "optimisation"

$$\rightarrow \mathcal{L}(\hat{y})$$

Update

0.

Problem definition

Loss function: cross-entropy, mean squared error or a differential equation.

$$\min_{\theta} \mathscr{L}(\cdots)$$

JYA, et al; arXiv: 2103.14575

loss function with

gradient descent

The behaviour of the

Input

Input

or a dog?

Is it a cat

Image credit: Francisco Lima

