Density Functional Theory

Dr Mohammad Abdur Rashid

Quantum Mechanics

Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \hat{H} \Psi(\vec{r}, t)$$

$$\hat{H} = \hat{T} + \hat{V} = -\frac{\hbar^2}{2m} \vec{\nabla}^2 + V(\vec{r}, t)$$

Hamiltonian

$$\hat{H} = \sum_{i=1}^{N} \frac{\hat{p_i}^2}{2m_i} + V(\vec{r_1}, \vec{r_2}, ..., \vec{r_N}, t)$$

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 - \frac{1}{2} \sum_{k=1}^{M} \nabla_k^2 - \sum_{i=1}^{N} \sum_{k=1}^{M} \frac{Z_k}{r_{ik}}$$

$$+\sum_{i=1}^{N}\sum_{j>i}^{N}\frac{1}{r_{ij}} + \sum_{k=1}^{M}\sum_{l>k}^{M}\frac{Z_{k}Z_{l}}{R_{kl}}$$

Born-Oppenheimer approximation

- The nuclei are much heavier than the electrons and move more slowly than the electrons
- In the Born-Oppenheimer approximation, we freeze the nuclear position and calculate the electronic wave function and energy

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{i=1}^{N} \sum_{k=1}^{M} \frac{Z_{k}}{r_{ik}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$

The Kohn-Sham Ansatz

$$n(\vec{r}) = N \int d\vec{r}_2 \dots \int d\vec{r}_N \psi^*(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N) \psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)$$

$$E[n] = T[n] + E_{Hartree}[n] + \int dr V_{ext}(r) n(r) + E_{xc}[n]$$

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{ext}(r) + V_{Hartree}(r) + V_{xc}(r)\right)\psi_i(r) = \varepsilon_i\psi_i(r)$$

Kohn-Sham equations

Brillouin zone

WIEN2k Tutorials

tiny.cc/w2k

Calculation steps

- Generate structure
- Initialize calculation (prepare input files)
- Make a test run [run(sp)_lapw -i 1]
- Volume optimization (use my script to save the results)
- Select the low energy structure (may need to change the
 - lattice parameter)

Calculation steps

- Initialize calculation (prepare input files)
- Perform SCF calculation
- Save the results (use my script)
- Calculate DOS and PDOS
- Calculate optical properties
- Calculate band structure

Volume optimization

Volume optimization

Volume optimization

Structure

Writing project report

Introduction

Abstract

- Theory
 - Basic Quantum Mechanics
 - Density Functional Theory (DFT)
- Results and Discussion
- Conclusion

Introduction

- Introduce your system
- Why the system is interesting/important
- Briefly write about the methodology (DFT)
- Write about WIEN2k
- Structure of your report

Theory: Basic Quantum Mechanics

- Schrödinger Equation
 - Single particle
 - Many-body system
- Wave function
- Born-Oppenheimer approximation
- Hartree-Fock approach
 - Limitations of HF approach

Theory: Density Functional Theory (DFT)

- Electron density
- Thomas-Fermi model
- Hohenberg-Kohn Theorem
- Kohn-Sham Equation
 - Flow chart
- Exchange-correlation functional

Results and Discussion

You may describe in several chapters (with appropriate name) depending on your calculations and results

- Crystal structure
- Calculation parameters
- Optimization
- SCF calculation
- Electronic, magnetic, optical, structural, mechanical properties

Last but not least

Bibliography

What you can NOT do!

- Do NOT copy without proper reference
- Do NOT copy world-by-world even with reference
- Do not repeat word for word the abstract, introduction or discussion
- Be factual and orderly, but try not to be too dry

https://www.ldeo.columbia.edu/~martins/sen_sem/thesis_org.html

