Università degli studi di Catania Corso di laurea triennale in Fisica Esame di Meccanica Analitica Appello del 17.07.2020

Un sistema materiale, appartenente ad un piano verticale π , sia costituito da una disco Γ omogeneo di massa m e raggio r=R/4 e centro C, vincolato a muoversi rotolando senza strisciare internamente ad una guida circolare fissata γ di centro O e raggio R (essendo Q il punto di contatto tra il disco Γ e l'anello γ), e da una barra AB omogenea di massa M ($M \neq m$) e lunghezza L=2R avente il suo estremo A fissato, coincidente con il centro O di γ , e potendo quindi ruotare attorno ad esso. Sul sistema, agiscono soltanto le forze

$$\{F,C\}$$
 $\{-F,B\}$ essendo $F=-k(C-B)$ con $k>0$.

Posto O come origine del riferimento $\{O, \vec{x}, \vec{y}\}$ (vedi figura), ed il piano π in rotazione uniforme, con velocitá angolare ω , attorno all'asse \vec{y} , si suppone che tutti i vincoli associati all'asta siano senza attrito, ed si individuano come possibili coordinate lagrangiane i due angoli, ϑ che l'asta AB forma con l'asse \vec{x} e φ che il raggio OQ forma con l'asse \vec{x} (vedi figura). Si chiede di determinare nel riferimento relativo:

- 1. Tutte le possibili (ed evidenti) configurazioni di equilibrio del sistema, assumendo che $\sin(\varphi-\theta)=0.$
- 2. studiare la stabilitá ed instabilitá delle sole configurazioni ottenute per $\varphi=\theta$, assumendo per semplicitá che $m=64/27\,M$ e $k\neq 4/9\,M\,\omega^2$.
- 3. Le equazioni di moto e gli eventuali integrali primi.
- 4. Studiare i moti linearizzati (con la condizione m = 64/27 M), del sistema descritto, attorno alle evidenti configurazioni di equilibrio $\{0,0\}$ ed $\{\pi,\pi\}$.

