Simplification logique par l'algorithme de Quine-MacCluskey

B. Miramond

Polytech Nice Sophia Antipolis

Exemple de fonction booléenne

٤١	ь	C	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Ecriture de la fonction booléenne

al	Ъ	C	2
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Forme somme de produits : s = abc + abc + abc + abc

$$s = abc + abc + abc + abc$$

Implantation d'une fonction booléenne

- Ecrire l'équation de la fonction à partir de sa table de vérité
- Réaliser l'inversion de toutes les variables d'entrées pour disposer de leur complément
- Construire une porte ET pour chacun des termes égal à 1 dans la colonne de sortie
- 4. Etablir le câblage des portes ET avec les entrées
- Réunir l'ensemble des portes ET vers une porte OU dont la sortie est le résultat de la fonction

Simplification d'expressions logiques

- L'algorithme de Quine-Mac Cluskey est une méthode
 - systématique fonctionnant quelque soit le nombre de variables logiques
 - et pouvant être programmée

Vocabulaire

- Mintermes, termes ou impliquant : ce sont les produits logiques d'une expression F
- $F = X\bar{Y}\bar{Z} + X\bar{Y}Z + XY\bar{Z} + XYZ + \bar{X}Y\bar{Z}$
- Un terme que l'on ne peut simplifier en supprimant une de ses variables et qui implique la fonction logique considérée est dit impliquant premier

$$F = X + Y\overline{Z}$$

Principe de la méthode de QMC

- Démarrer par l'expansion en mintermes de la fonction F à minimiser (écrire la fonction en forme normale disjonctive
- Trouver la liste des impliquants premiers
- Sélectionner un ensemble minimal d'impliquants premiers

Algorithme

- 1. Lister tous les minterms de f dans une table
 - Les grouper par poids (le nombre de 1 dans chaque minterm)
- 2. Comparer les termes d'un groupe avec le groupe adjacent pour essayer de les combiner
 - Créer une nouvelle table avec les combinaisons trouvées : 0100 + 0101 = 010-
 - Rayer chaque terme utilisé pour la combinaison et passer à la table suivante
- Répéter la procédure dans la nouvelle colonne jusqu'à ce qu'il n'y ai plus de simplification possible
- 4. Les impliquants premiers correspondent aux termes non rayés
- 5. Sélectionner les impliquants premiers essentiels
- 6. Choisir les impliquants restant formant l'ensemble minimal

Exemple d'exécution

$$F(A,B,C)=A\overline{B}+\overline{A}B+\overline{A}C+BC$$

Mise sous forme canonique disjonctive

$$F(A,B,C)=A\bar{B}C+A\bar{B}\bar{C}+\bar{A}BC+\bar{A}B\bar{C}+\bar$$

Mise sous forme binaire

Grouper les termes selon leur poids

Poids 1	Poids2	Poids 3
001	011	111
010	101	
100		

Unir les termes deux à deux

Recommencer

001	0x1
010	x01
100	01x
	10x
011	
101	×11
	1x1 /
111	

Identifier les impliquants premiers

- On ne peut plus unir d'impliquants
- Les impliquants premiers sont les impliquants non rayés : 01x, 10x et xx1

Identifier les impliquants essentiels

	001	010	100	011	101	111
01x		(x)		X		
10x			(x)		Х	
xx1	(x)			X	X	(x)

Les trois impliquants premiers sont des impliquants essentiels. La fonction est donc entierement exprimée par ses impliquants essentiels

On a donc simplifié F en $\bar{A}B+A\bar{B}+C$

Un exemple plus complet:

Α	В	С	D		Α	В	С	D	
0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	1	0	0	1	1
0	0	1	0	1	1	0	1	0	0
0	0	1	1	0	1	0	1	1	0
0	1	0	0	1	1	1	0	0	0
0	1	0	1	1	1	1	0	1	1
0	1	1	0	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	0

0010+0100+0101+0110+0111+1001+1101

Classement par poids

- 0010+0100+0101+0110+0111+1001+1101
- Poids 1:
 - -0010
 - -0100

- Poids 2
 - -0101
 - -0110
 - -1001

- Poids 3
 - 0111
 - 1101

0010	
0100	
0101	
0110	
1001	
0111	
1101	

0010	0x10
0100	010x
	01x0
0101	
0110	
1001	
0111	
1101	

0010	0x10
0100	010x
	01x0
0101	
0110	01x1
1001	x101
	011x
0111	
1101	

0010		0x10
0100		010x
		01x0
0101		
0110		01x1
1001		x101
		011x
0111	}	1x01
1101		

Recommencer à Unir les termes 2 à 2

0010	0x10	01xx
0100	010x	
	01x0	
0101		
0110	01x1	
1001	x101	
	011x	
0111	1x01	
1101		

Recommencer à Unir les termes 2 à 2

0010	0x10	01xx
0100	010x	
	01x0	
0101		
0110	01x1	
1001	x101	
	011x	
0111	1x01	
1101		

Trouver les impliquants premiers

0010	0x10	01xx
0100	010x	
	01x0	
0101		
0110	01x1	
1001	x101	
	011x	
0111	1x01	
1101		

Trouver les impliquants essentiels

	0010	0100	0101	0110	0111	1001	1101
0x10	(x)			X			
x101			X				X
1x01						(x)	X
01xx		(x)	X	X	(x)		

3 des 4 impliquants sont des impliquants essentiels

Vérifier si les impliquants essentiels suffisent

	0010	0100	0101	0110	0111	1001	1101
0x10	(x)			X			
1x01						(x)	X
01xx		(x)	x	x	(x)		

Ici les impliquants essentiels suffisent!

Rappel de l'algorithme

- 1. Lister tous les minterms de f dans une table
 - Les grouper par le nombre de 1 dans chaque minterm
- 2. Comparer les termes d'un groupe avec le groupe adjacent pour essayer de les combiner
 - Créer une nouvelle table avec les combinaisons trouvées : 0100 + 0101 = 010-
 - Rayer chaque terme utilisé pour la combinaison et passer à la table suivante
- Répéter la procédure dans la nouvelle colonne jusqu'à ce qu'il n'y ai plus de simplification possible
- 4. Les impliquants premiers correspondent aux termes non rayés
- 5. Sélectionner les impliquants premiers essentiels
- Si necessaire choisir dans les impliquants restant un ensemble minimal