

Computing with neurons Session 2: Dynamics and Making Models

Terrence C. Stewart, Centre for Theoretical Neuroscience, University of Waterloo

Biological Algorithms

- What do neural algorithms look like?
 - Each node (group of neurons) stores a vector
 - Each connection computes a function
 - and applies a filter
 - (set of functions and filter depends on neuron model)
- Different from standard connectionism
 - There, connections can only do linear weights
 - Some functions are easier than others
 - max(a,b) takes a very large number of neurons
 - sin(a+b)*cos(b a) is pretty easy

Recurrent connections

- What happens if a group of neurons connects back to itself?
 - Depends on what function is being computed on the connection

$$f(x) = x + 1$$

$$f(x) = -x$$

$$f(x) = x^2$$

Recurrent connections

$$\frac{dy}{dt} = a(y) + b(x)$$

$$g(y) = \tau a(y) + y$$
$$f(x) = \tau b(x)$$

Longer Time Constants

Desired filter: 50milliseconds

$$\frac{dy}{dt} = \frac{x - y}{0.05}$$

$$g(y)=(1-\tau/0.05)y$$

 $f(x)=(\tau/0.05)x$

Memory

Oscillators

$$\frac{dy_0}{dt} = -y_1$$

$$\frac{dy_1}{dt} = -y_0$$

Chaotic Attractors

$$\frac{dy_0}{dt} = 10 y_1 - 10 y_0$$

$$\frac{dy_1}{dt} = -y_0 y_2 - y_1$$

$$\frac{dy_2}{dt} = y_0 y_1 - \frac{8}{3} (y_2 + 28) - 28$$

Biological Algorithms

With recurrence

$$y = f(x)$$

$$\frac{dx}{dt} = f(x) + g(u)$$

– And, with a change of variables, $\frac{dx}{dt} = f(x, u)$

 Same restriction on the complexity of the function (low-degree polynomials)

• [nengo example - memory]

Model creation: An example

- Let's make a critter
 - Two inputs:
 - A desired velocity
 - A "fear" indicator
 - Behaviour:
 - If "fear" is low, move with the desired velocity
 - Otherwise, move back to the starting location

Is that enough?

- What about cognition?
 - How can we represent symbols?
 - How can we manipulate symbol structures?
 - Need to use vectors to represent symbols
 - Manipulate symbols by computing on vectors
- What about cognitive control?
 - How can we change tasks?
 - How can we route information between brain areas?

Increasing Complexity

- What about learning?
 - Learning new behaviours?
 - Learning when to do old behaviours?
 - Adjusting the functions being decoded

Cognitive Control

