1 Unique, Stable Target and Steady State Points

This appendix proves Theorems 2-3 and:

Lemma 1. If \check{m} and \hat{m} both exist, then $\check{m} \leq \hat{m}$.

1.1 Proof of Theorem 2

The elements of the proof of Theorem 2 are:

- Existence and continuity of $\mathbb{E}_t[m_{t+1}/m_t]$
- Existence of a point where $\mathbb{E}_t[m_{t+1}/m_t] = 1$
- $\mathbb{E}_t[m_{t+1}] m_t$ is monotonically decreasing

1.2 Existence and Continuity of $\mathbb{E}_t[m_{t+1}/m_t]$

The consumption function exists because we have imposed sufficient conditions (the WRIC and FVAC; Theorem 1).

Section 2.8 shows that for all t, $a_{t-1} = m_{t-1} - c_{t-1} > 0$. Since $m_t = a_{t-1}R_t + \xi_t$, even if ξ_t takes on its minimum value of 0, $a_{t-1}R_t > 0$, since both a_{t-1} and R_t are strictly positive. With m_t and m_{t+1} both strictly positive, the ratio $\mathbb{E}_t[m_{t+1}/m_t]$ inherits continuity (and, for that matter, continuous differentiability) from the consumption function.

1.3 Existence of a point where $\mathbb{E}_t[m_{t+1}/m_t] = 1$.

This follows from:

- 1. Existence and continuity of $\mathbb{E}_t[m_{t+1}/m_t]$ (just proven)
- 2. Existence a point where $\mathbb{E}_t[m_{t+1}/m_t] < 1$
- 3. Existence a point where $\mathbb{E}_t[m_{t+1}/m_t] > 1$
- 4. The Intermediate Value Theorem

1.3.1 Existence of m where $\mathbb{E}_t[m_{t+1}/m_t] < 1$

If RIC holds. Logic exactly parallel to that of Section 3.1 leading to equation (40), but dropping the Φ_{t+1} from the RHS, establishes that

$$\lim_{m_t \uparrow \infty} \mathbb{E}_t[m_{t+1}/m_t] = \lim_{m_t \uparrow \infty} \mathbb{E}_t \left[\frac{\mathcal{R}_{t+1}(m_t - c(m_t)) + \xi_{t+1}}{m_t} \right]$$

$$= \mathbb{E}_t[(R/\mathbf{\Phi}_{t+1})\mathbf{\hat{P}}_R]$$

$$= \mathbb{E}_t[\mathbf{\hat{P}}/\mathbf{\Phi}_{t+1}]$$

$$< 1$$
(1)

where the inequality reflects imposition of the GIC-Nrm (28).

If RIC fails. When the RIC fails, the fact that $\lim_{m^{\uparrow}_{\infty}} c'(m) = 0$ (see equation (32)) means that the limit of the RHS of (1) as $m \uparrow \infty$ is $\bar{R} = \mathbb{E}_t[R_{t+1}]$. In the next step of this proof, we will prove that the combination GIC-Nrm and RHC implies $\bar{R} < 1$.

So we have $\lim_{m\uparrow\infty} \mathbb{E}_t[m_{t+1}/m_t] < 1$ whether the RIC holds or fails.

1.3.2 Existence of m > 1 where $\mathbb{E}_t[m_{t+1}/m_t] > 1$

Paralleling the logic for c in Section 3.2: the ratio of $\mathbb{E}_t[m_{t+1}]$ to m_t is unbounded above as $m_t \downarrow 0$ because $\lim_{m_t \downarrow 0} \mathbb{E}_t[m_{t+1}] > 0$.

Intermediate Value Theorem. If $\mathbb{E}_t[m_{t+1}/m_t]$ is continuous, and takes on values above and below 1, there must be at least one point at which it is equal to one.

1.3.3 $\mathbb{E}_t[m_{t+1}] - m_t$ is monotonically decreasing.

Now define $\zeta(m_t) \equiv \mathbb{E}_t[m_{t+1}] - m_t$ and note that

$$\zeta(m_t) < 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] < 1$$

$$\zeta(m_t) = 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] = 1$$

$$\zeta(m_t) > 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] > 1,$$
(2)

so that $\zeta(\hat{m}) = 0$. Our goal is to prove that $\zeta(\bullet)$ is strictly decreasing on $(0, \infty)$ using the fact that

$$\boldsymbol{\zeta}'(m_t) \equiv \left(\frac{d}{dm_t}\right) \boldsymbol{\zeta}(m_t) = \mathbb{E}_t \left[\left(\frac{d}{dm_t}\right) \left(R_{t+1}(m_t - c(m_t)) + \xi_{t+1} - m_t\right) \right]$$

$$= \bar{R} \left(1 - c'(m_t)\right) - 1.$$
(3)

Now, we show that (given our other assumptions) $\zeta'(m)$ is decreasing (but for different reasons) whether the RIC holds or fails.

If RIC holds. Equation (18) indicates that if the RIC holds, then $\underline{\kappa} > 0$. We show at the bottom of Section 2.9.1 that if the RIC holds then $0 < \underline{\kappa} < c'(m_t) < 1$ so that

$$\bar{R}(1 - c'(m_t)) - 1 < \bar{R}(1 - \underbrace{(1 - \mathbf{p}_R)}_{\underline{\kappa}}) - 1$$

$$= \bar{R}\mathbf{p}_R - 1$$

$$= \mathbb{E}_t \left[\frac{\mathbf{R}}{\mathbf{p}_W} \frac{\mathbf{p}}{\mathbf{R}} \right] - 1$$

$$= \underbrace{\mathbb{E}_t \left[\frac{\mathbf{p}}{\mathbf{p}_W} \right]}_{-\mathbf{p}_R} - 1$$

which is negative because the GIC-Nrm says $\mathbf{p}_{\Gamma} < 1$.

If RIC fails. Under RIC, recall that $\lim_{m\uparrow\infty} c'(m) = 0$. Concavity of the consumption function means that c' is a decreasing function, so everywhere

$$\bar{R}\left(1 - c'(m_t)\right) < \bar{R}$$

which means that $\zeta'(m_t)$ from (3) is guaranteed to be negative if

$$\bar{R} \equiv \mathbb{E}_t \left[\frac{\mathsf{R}}{\mathbf{\Phi} \Psi} \right] < 1. \tag{4}$$

But the combination of the GIC-Nrm holding and the RIC failing can be written:

$$\underbrace{\mathbb{E}_t \left[\frac{\mathbf{p}}{\mathbf{\Phi} \Psi} \right]}_{\mathbf{E}_t \left[\mathbf{p} \right]} < 1 < \underbrace{\frac{\mathbf{p}}{\mathbf{R}}}_{\mathbf{R}},$$

and multiplying all three elements by R/\mathbf{P} gives

$$\mathbb{E}_t \left[rac{\mathsf{R}}{\mathbf{\Phi} \Psi}
ight] < \mathsf{R}/\mathbf{P} < 1$$

which satisfies our requirement in (4).

1.4 Proof of Theorem 3

The elements of the proof are:

- Existence and continuity of $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t]$
- Existence of a point where $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t] = 1$
- $\mathbb{E}_t[\Psi_{t+1}m_{t+1}-m_t]$ is monotonically decreasing

1.4.1 Existence and Continuity of the Ratio

Since by assumption $0 < \underline{\Psi} \le \Psi_{t+1} \le \overline{\Psi} < \infty$, our proof in 1.2 that demonstrated existence and continuity of $\mathbb{E}_t[m_{t+1}/m_t]$ implies existence and continuity of $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t]$.

1.4.2 Existence of a stable point

Since by assumption $0 < \underline{\Psi} \le \Psi_{t+1} \le \overline{\Psi} < \infty$, our proof in Subsection 1.2 that the ratio of $\mathbb{E}_t[m_{t+1}]$ to m_t is unbounded as $m_t \downarrow 0$ implies that the ratio $\mathbb{E}_t[\Psi_{t+1}m_{t+1}]$ to m_t is unbounded as $m_t \downarrow 0$.

The limit of the expected ratio as m_t goes to infinity is most easily calculated by modifying the steps for the prior theorem explicitly:

$$\begin{split} \lim_{m_t \uparrow \infty} \mathbb{E}_t [\Psi_{t+1} m_{t+1} / m_t] &= \lim_{m_t \uparrow \infty} \mathbb{E}_t \left[\frac{\Phi_{t+1} \left((\mathsf{R} / \Phi_{t+1}) \mathsf{a}(m_t) + \xi_{t+1} \right) / \Phi}{m_t} \right] \\ &= \lim_{m_t \uparrow \infty} \mathbb{E}_t \left[\frac{(\mathsf{R} / \Phi) \mathsf{a}(m_t) + \Psi_{t+1} \xi_{t+1}}{m_t} \right] \end{split}$$

$$= \lim_{m_t \uparrow \infty} \left[\frac{(\mathsf{R}/\mathbf{\Phi}) \mathbf{a}(m_t) + 1}{m_t} \right]$$

$$= (\mathsf{R}/\mathbf{\Phi}) \mathbf{b}_{\mathsf{R}}$$

$$= \mathbf{b}_{\Gamma}$$

$$< 1$$
(5)

where the last two lines are merely a restatement of the GIC (21).

The Intermediate Value Theorem says that if $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t]$ is continuous, and takes on values above and below 1, there must be at least one point at which it is equal to one.

1.4.3 $\mathbb{E}_t[\Psi_{t+1}m_{t+1}] - m_t$ is monotonically decreasing.

Define $\zeta(m_t) \equiv \mathbb{E}_t[\Psi_{t+1}m_{t+1}] - m_t$ and note that

$$\zeta(m_t) < 0 \leftrightarrow \mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t] < 1$$

$$\zeta(m_t) = 0 \leftrightarrow \mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t] = 1$$

$$\zeta(m_t) > 0 \leftrightarrow \mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t] > 1,$$
(6)

so that $\zeta(\hat{m}) = 0$. Our goal is to prove that $\zeta(\bullet)$ is strictly decreasing on $(0, \infty)$ using the fact that

$$\boldsymbol{\zeta}'(m_t) \equiv \left(\frac{d}{dm_t}\right) \boldsymbol{\zeta}(m_t) = \mathbb{E}_t \left[\left(\frac{d}{dm_t}\right) \left(R(m_t - c(m_t)) + \Psi_{t+1} \xi_{t+1} - m_t \right) \right]$$
(7)
$$= \left(R/\boldsymbol{\Phi} \right) \left(1 - c'(m_t) \right) - 1.$$

Now, we show that (given our other assumptions) $\zeta'(m)$ is decreasing (but for different reasons) whether the RIC holds or fails (RIC).

If RIC holds. Equation (18) indicates that if the RIC holds, then $\underline{\kappa} > 0$. We show at the bottom of Section 2.9.1 that if the RIC holds then $0 < \kappa < c'(m_t) < 1$ so that

$$R(1 - c'(m_t)) - 1 < R(1 - \underbrace{(1 - \mathbf{p}_R)}_{\underline{\kappa}}) - 1$$
$$= (R/\mathbf{p})\mathbf{p}_R - 1$$

which is negative because the GIC says $\mathbf{p}_{\Gamma} < 1$.

If RIC fails. Under RIC, recall that $\lim_{m\uparrow\infty} c'(m) = 0$. Concavity of the consumption function means that c' is a decreasing function, so everywhere

$$R\left(1 - c'(m_t)\right) < R$$

which means that $\zeta'(m_t)$ from (7) is guaranteed to be negative if

$$R \equiv (\mathsf{R}/\mathbf{\Phi}) < 1. \tag{8}$$

But we showed in Section 2.6 that the only circumstances under which the problem has a nondegenerate solution while the RIC fails were ones where the FHWC also fails (that is, (8) holds).

1.5 A Third Measure

A footnote in Section 3 mentions the possibility of calculating growth in the expectation of the log of m rather than the expectation of the ratio. Here we show that one way of doing that is to calculate a nonlinear adjustment factor for the expectation of the ratio.

$$\log (\mathbf{m}_{t+1}/\mathbf{m}_t) = \log(\mathbf{\Phi}\Psi_{t+1}m_{t+1}) - \log m_t$$
$$= \log \mathbf{\Phi}(a_t R + \psi_{t+1}\boldsymbol{\xi}_{t+1}) - \log m_t$$
$$= \log \mathbf{\Phi}(a_t R + 1 + (\psi_{t+1}\boldsymbol{\xi}_{t+1} - 1)) - \log m_t$$

Now define $\tilde{m}_{t+1} = a_t R + 1$, and compute the expectation:

$$\mathbb{E}_{t}[\log (\mathbf{m}_{t+1}/\mathbf{m}_{t})] = \mathbb{E}_{t} \left[\log \mathbf{\Phi}(\tilde{m}_{t+1} + (\psi_{t+1}\boldsymbol{\xi}_{t+1} - 1))\right] - \log m_{t} \\
= \log \mathbf{\Phi} + \mathbb{E}_{t} \left[\log (\tilde{m}_{t+1}(1 + \tilde{m}_{t+1}^{-1}(\psi_{t+1}\boldsymbol{\xi}_{t+1} - 1))\right] - \log m_{t} \\
= \underbrace{\log \mathbf{\Phi} + \log \tilde{m}_{t+1} - \log m_{t}}_{\equiv \log \mathbb{E}_{t}[\mathbf{m}_{t+1}/\mathbf{m}_{t}]} + \mathbb{E}_{t} \left[\log (1 + \tilde{m}_{t+1}^{-1}(\psi_{t+1}\boldsymbol{\xi}_{t+1} - 1))\right]$$

and exponentiating tells us that

$$\exp(\mathbb{E}_t[\log \mathbf{m}_{t+1}/\mathbf{m}_t]) = \mathbb{E}_t[\mathbf{m}_{t+1}/\mathbf{m}_t] \exp(\mathbb{E}_t\left[\log(1+\tilde{m}_{t+1}^{-1}(\psi_{t+1}\boldsymbol{\xi}_{t+1}-1))\right])$$
(9)

and this latter factor is a number that approaches 1 from below as m_t rises. Thus the expected growth rate of the log is smaller than the log of the growth rate of the expected ratio.

1.6 Proof of Lemma

1.6.1 Pseudo-Steady-State m Is Smaller than Target m

Designate

so that we can implicitly define the target and pseudo-steady-state points as

$$\hat{m} = \hat{\mathbf{m}}_{t+1}(\hat{m} - \mathbf{c}(\hat{m}))
\check{m} = \check{\mathbf{m}}_{t+1}(\check{m} - \mathbf{c}(\check{m}))$$
(11)

Then subtract:

$$\hat{m} - \check{m} = (\hat{a}\underline{\psi}^{-1} - \check{a}) R$$

$$= (a(\hat{m})\underline{\psi}^{-1} - a(\check{m})) R$$

$$= (a(\hat{m})\underline{\psi}^{-1} - (a(\hat{m} + \check{m} - \hat{m}))) R$$

$$\approx (a(\hat{m})\underline{\psi}^{-1} - (a(\hat{m}) + (\check{m} - \hat{m})a'(\hat{m}))) R$$

$$(\hat{m} - \check{m})(1 - \underline{a'(\hat{m})}R) = (\underline{\psi}^{-1} - 1)\hat{a}R$$

$$(12)$$

The RHS of this equation is strictly positive because $\underline{\psi}^{-1} > 1$ and both \hat{a} and R are positive; while on the LHS, (1 - Ra') > 0. So the equation can only hold if $\hat{m} - \check{m} > 0$. That is, the target ratio exceeds the pseudo-steady-state ratio.

1.6.2 The m Achieving Individual Expected-Log-Balanced-Growth Is Smaller than the Individual Pseudo-Steady-State m

Expected log balanced growth occurs when

$$\mathbb{E}_{t}[\log \mathbf{m}_{t+1}] = \log \mathbf{\Phi} \mathbf{m}_{t}$$

$$\mathbb{E}_{t}[\log \mathbf{p}_{t+1} m_{t+1}] = \log \mathbf{\Phi} \mathbf{p}_{t} m_{t}$$

$$\mathbb{E}_{t}[\log \Psi_{t+1} m_{t+1}] = \log \mathbf{\Phi} m_{t}$$

$$\mathbb{E}_{t}[\log (a(m_{t})\mathsf{R} + \Psi_{t+1} \boldsymbol{\xi}_{t+1} \boldsymbol{\Phi})] = \log \mathbf{\Phi} m_{t}$$

$$\mathbb{E}_{t}[\log (a(m_{t})R + \Psi_{t+1} \boldsymbol{\xi}_{t+1})] = \log m_{t}$$

$$(13)$$

and we call the m that satisfies this equation \tilde{m} .

Subtract the definition of \check{m} from that of \tilde{m} :

$$\exp(\mathbb{E}_t[\log(a(\tilde{m})R + \Psi_{t+1}\boldsymbol{\xi}_{t+1})]) - (a(\tilde{m})R + 1) = \tilde{m} - \tilde{m}$$
(14)

Now we use the fact that the expectation of the log is less than the log of the expectation,

$$\exp(\mathbb{E}_t[\log(a(\tilde{m})R + \Psi_{t+1}\boldsymbol{\xi}_{t+1})]) < (a(\tilde{m})R + 1) \tag{15}$$

SO

$$\exp(\mathbb{E}_{t}[\log(a(\tilde{m})R+1)]) - (a(\tilde{m})R+1) < \tilde{m} - \check{m}$$

$$(a(\tilde{m})R+1) - (a(\tilde{m})R+1) < \tilde{m} - \check{m}$$

$$(a(\tilde{m}) - a(\tilde{m} + \check{m} - \tilde{m}))R < \tilde{m} - \check{m}$$

$$(a(\tilde{m}) - (a(\tilde{m}) + (\check{m} - \tilde{m})\bar{a}')R < \tilde{m} - \check{m}$$

$$(\tilde{m} - \check{m})\bar{a}'R < \tilde{m} - \check{m}$$

$$\frac{\bar{a}'R}{\langle \mathbf{P}_{\Gamma}} < 1$$
(16)

where we are interpreting \bar{a}' as the mean of the value of a' over the interval between \tilde{m} and \check{m} .

¹The use of the first order Taylor approximation could be substituted, cumbersomely, with the average of a' over the interval to remove the approximation in the derivations above.