Сети и потоки. Алгоритм Диница

Кононов Николай

Математико-Механический факультет СПбГУ

2019

- 🚺 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

- 1 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Сеть

• Определение: Пусть есть множество вершин V, в котором выделены две вершины: s (вход или исток) и t (выход или сток).

Пусть определена функция $c: V \times V \to \mathbb{R}$, удовлетворяющая соотношениям

$$\forall x, y \in V \quad c(x, y) \geq 0, \quad c(x, s) = 0, \quad c(t, y) = 0$$

функция c - пропускная способность.

Сеть

• Определение: Пусть есть множество вершин V, в котором выделены две вершины: s (вход или исток) и t (выход или сток).

Пусть определена функция $c: V \times V \to \mathbb{R}$, удовлетворяющая соотношениям

$$\forall x, y \in V \quad c(x, y) \geq 0, \quad c(x, s) = 0, \quad c(t, y) = 0$$

функция \boldsymbol{c} - пропускная способность.

ullet $A = \{(x,y): c(x,y) > 0\}$ - множество стрелок Тогда G = ((V,A),s,t,c) - сеть

Поток в сети

- Определение: Пусть G— сеть, а функция $f: V \times V \to \mathbb{R}$ удовлетворяет трем условиям:
 - 1) $\forall x, y \in V \quad f(x, y) \leq c(x, y)$
 - 2) $\forall x, y \in V \quad f(x, y) = -f(y, x)$
 - 3) $\forall v \in V \setminus \{s,t\}$ выполняется условие: $\sum_{x \in V} f(v,x) = 0$ закон сохранения потока

f - поток в сети G

Поток в сети

- Определение: Пусть G— сеть, а функция $f: V \times V \to \mathbb{R}$ удовлетворяет трем условиям:
 - 1) $\forall x, y \in V \quad f(x, y) \leq c(x, y)$
 - 2) $\forall x, y \in V \quad f(x, y) = -f(y, x)$
 - 3) $\forall v \in V \backslash \{s,t\}$ выполняется условие: $\sum_{x \in V} f(v,x) = 0$ закон сохранения потока

f - поток в сети G

• $|f| = \sum_{v \in V} f(s, v)$ - величина потока Поток с максимальной величиной - максимальный

• Определение: пусть G - сеть, а множество ее вершин V разбито на два дизъюнктых множества $S\ni s$ и $T\ni t$. Тогда (S,T) - разрез сети G

- Определение: пусть G сеть, а множество ее вершин V разбито на два дизъюнктых множества $S\ni s$ и $T\ni t$. Тогда (S,T) разрез сети G
- Величина $c(S,T) = \sum_{x \in S, y \in T} c(x,y)$ называется пропускной способностью разреза.

Любой разрез сети G с минимальной пропускной способностью называется минимальным.

- Определение: пусть G сеть, а множество ее вершин V разбито на два дизъюнктых множества $S \ni s$ и $T \ni t$. Тогда (S,T) разрез сети G
- Величина $c(S,T) = \sum_{x \in S, y \in T} c(x,y)$ называется пропускной способностью разреза. Любой разрез сети G с минимальной пропускной способностью называется минимальным.
- Для любого потока f величина $f(S,T) = \sum_{x \in S, y \in T} f(x,y)$ называется потоком через разрез.

- Определение: пусть G сеть, а множество ее вершин V разбито на два дизъюнктых множества $S \ni s$ и $T \ni t$. Тогда (S,T) разрез сети G
- Величина $c(S,T) = \sum_{x \in S, y \in T} c(x,y)$ называется пропускной способностью разреза. Любой разрез сети G с минимальной пропускной способностью называется минимальным.
- Для любого потока f величина $f(S,T) = \sum_{x \in S, y \in T} f(x,y)$ называется потоком через разрез.

Лемма

Лемма: Для любого потока f, и разреза (S,T) сети G выполняется |f|=f(S,T)

- 🚺 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Остаточная сеть

• Остаточной пропускной способностью c_f по отношению к сети $G = \{(V, E), s, t, c\}$ и потоку f в ней называется пропускная способность

$$c_f(x,y) = \begin{cases} 0 & \text{if } y = s \text{ or } x = t \\ c(x,y) - f(x,y) & \text{otherwise} \end{cases}$$

Остаточная сеть

• Остаточной пропускной способностью c_f по отношению к сети $G = \{(V, E), s, t, c\}$ и потоку f в ней называется пропускная способность

$$c_f(x, y) = \begin{cases} 0 & \text{if } y = s \text{ or } x = t \\ c(x, y) - f(x, y) & \text{otherwise} \end{cases}$$

- Остаточной сетью для сети G и потока f называется сеть $G_f = \{(V, E_f), s, t, c_f\}$, где $E_f = \{(u, v) \in V \times V | c_f(u, v) > 0\}$
- Остаточное ребро можно интуитивно понимать как меру того, насколько можно еще увеличить поток вдоль этого ребра

Остаточная сеть

• Остаточной пропускной способностью c_f по отношению к сети $G = \{(V, E), s, t, c\}$ и потоку f в ней называется пропускная способность

$$c_f(x,y) = \begin{cases} 0 & \text{if } y = s \text{ or } x = t \\ c(x,y) - f(x,y) & \text{otherwise} \end{cases}$$

- Остаточной сетью для сети G и потока f называется сеть $G_f = \{(V, E_f), s, t, c_f\}$, где $E_f = \{(u, v) \in V \times V | c_f(u, v) > 0\}$
- Остаточное ребро можно интуитивно понимать как меру того, насколько можно еще увеличить поток вдоль этого ребра

Определение

Простой st-путь в G_f называется дополняющим путем

Блокирующий поток

Определение

Блокирующим потоком f в сети G = ((V, E), s, t, c) называется такой поток, что $\forall st$ -путь содержит насыщенное этим потоком ребро. То есть в данной сети не найдется такого пути из истока в сток, вдоль которого можно безпрепятственно увеличить поток

Замечание: блокирующий поток не всегда максимальный, более того, он может быть сколь угодно малым, относительно максимального

Блокирующий поток

Определение

Блокирующим потоком f в сети G = ((V, E), s, t, c) называется такой поток, что $\forall st$ -путь содержит насыщенное этим потоком ребро. То есть в данной сети не найдется такого пути из истока в сток, вдоль которого можно безпрепятственно увеличить поток

Замечание: блокирующий поток не всегда максимальный, более того, он может быть сколь угодно малым, относительно максимального Пример: пропускная способность ребер 1, 'единичный' поток идет по красным ребрам

- 🕕 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Теорема Форда-Фалкерсона

Theorem

Ford-Fulkerson: В сети G с пропускной способностью c задан поток f, тогда следующие три утверждения равносильны:

- 1) Поток f максимален
- $2) \exists (S,T) : |f| = c(S,T)$
- 3) В остаточной сети G_f нет дополняющего пути

- 🚺 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Слоистая сеть

Слоистая сеть(layered network, вспомогательная сеть) строится след образом:

- Для каждой вершины V данной сети G определим длину кратчайшего SV-пути из истока и обозначим ее d[v] (можно сделать обходом в ширину)
- То есть исключим из G стрелки лежащие внутри одного уровня или идущие назад
- Получившаяся сеть ациклична и любой $s \leadsto t$ путь в слоистой сети является кратчайшим путем в исходной сети из свойств BFS
- $G = \{\{1,2\},\{3\},\{4\},\{2,5\},\{3,5\},\{1,6\}\};$ s = 0, t = 6 тогда слоистая сеть $G_s = \{\{1,2\},\{3\},\{4\},\{5\},\{5\},\{6\}\}$

Пример слоистой сети

- 🕕 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Постановка задачи

Пусть дана сеть G = ((V, E), s, t, c). Как найти поток f из s в t максимальной величины?

 Алгоритм является улучшенной версией Алгоритма Эдмонса-Карпа

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма Эдмонса-Карпа
- Изначально пусть $f(e) = 0 \quad \forall e \in E$

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма Эдмонса-Карпа
- Изначально пусть $f(e) = 0 \quad \forall e \in E$
- Алгоритм состоит из нескольких фаз.

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма Эдмонса-Карпа
- ullet Изначально пусть $f(e)=0 \quad \forall e \in E$
- Алгоритм состоит из нескольких фаз.
- На каждой фазе строится остаточная сеть G_f , затем по отношению к G_f строится слоистая сеть $G_L(BFS)$. Если $d[t] = \infty$ останавливаемся и выводим f

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма Эдмонса-Карпа
- ullet Изначально пусть $f(e)=0 \quad \forall e \in E$
- Алгоритм состоит из нескольких фаз.
- На каждой фазе строится остаточная сеть G_f , затем по отношению к G_f строится слоистая сеть $G_L(BFS)$. Если $d[t] = \infty$ останавливаемся и выводим f
- В построенной слоистой сети находим блокирующий поток f' (любой)

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма Эдмонса-Карпа
- ullet Изначально пусть $f(e)=0 \quad \forall e \in E$
- Алгоритм состоит из нескольких фаз.
- На каждой фазе строится остаточная сеть G_f , затем по отношению к G_f строится слоистая сеть $G_L(BFS)$. Если $d[t] = \infty$ останавливаемся и выводим f
- В построенной слоистой сети находим блокирующий поток f (любой)
- \bullet Дополняем поток f потоком f° и переходим к следующей фазе

- 🕕 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Пример

- f = 0
- $(G, f) \rightarrow G_f \rightarrow G_L \rightarrow f' \rightarrow f = f + f'$

- 🕕 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

<u>Theorem</u>

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $\mathrm{d}[\mathrm{t}]=\infty,$ то есть сток t не достижим из истока \boldsymbol{s} в слоистой сети .

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $\mathrm{d}[\mathrm{t}]=\infty,$ то есть сток \emph{t} не достижим из истока \emph{s} в слоистой сети .

Но слоистая сеть содержит в себе все кратчайшие пути в сети G_f из истока s.

Корректность алгоритма

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $\mathbf{d}[\mathbf{t}] = \infty,$ то есть сток \boldsymbol{t} не достижим из истока \boldsymbol{s} в слоистой сети .

Но слоистая сеть содержит в себе все кратчайшие пути в сети G_f из истока s.

Таким образом в остаточной сети нет $\boldsymbol{s} \leadsto \boldsymbol{t}$ пути

Корректность алгоритма

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $\mathrm{d}[\mathrm{t}]=\infty,$ то есть сток \emph{t} не достижим из истока \emph{s} в слоистой сети .

Но слоистая сеть содержит в себе все кратчайшие пути в сети G_f из истока s.

Таким образом в остаточной сети нет $s \leadsto t$ пути Применяя теорему Форда-Фалкерсона получаем, что текущий поток в самом деле максимален.

План

- 🕕 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Оценка числа фаз Lemma 1

Lemma

Кратчайшее расстояние между истоком и стоком устрого увеличивается с выполнением каждой итерации: $d_i[t] > d_{i-1}[t] \quad \forall i$

<u>Док</u>азательство.

От противного. Пусть длина кратчайшего $s \leadsto t$ пути не изменилась после i-ой итерации. Слоистая сеть G_L строится по остаточной G_f . Рассмотрим кратчайший $s \leadsto t$ путь. По предположению его длина должна остаться неизменной. Однако G_f^i содержит только ребра остаточной сети перед i-й фазой, либо обратные к ним.

Lemma

Кратчайшее расстояние между истоком и стоком устрого увеличивается с выполнением каждой итерации: $d_i[t] > d_{i-1}[t]$

Доказательство.

От противного. Пусть длина кратчайшего $s \leadsto t$ пути не изменилась после i-ой итерации. Слоистая сеть G_L строится по остаточной G_f . Рассмотрим кратчайший $s \leadsto t$ путь. По предположению его длина должна остаться неизменной. Однако G_f^i содержит только ребра остаточной сети перед i-й фазой, либо обратные к ним. Таким образом пришли к противоречию: нашелся $s \leadsto t$ путь, который не содержит насыщенных ребер, и имеет ту же длину, что и кратчайший путь. Этот путь должен был быть "заблокирован"блокирующим потоком.

Оценка числа фаз _{Lemma 2}

Lemma

Кратчайшее расстояние от истока до каждой вершины не уменьшается с выполнением каждой итерации:

$$\forall v \in V \quad d_i[v] \geq d_{i-1}[v]$$

Доказательство.

Расмотрим произвольные v и i и кратчайший $s \leadsto v$ -путь P в сети G_f^i . $|P| = d_i[v]$ Заметим, что в остаточную сеть G_f^i могут входить стрелки G_f , а также стрелки обратные к ним.

Оценка числа фаз _{Lemma 2}

Lemma

Кратчайшее расстояние от истока до каждой вершины не уменьшается с выполнением каждой итерации:

$$\forall v \in V \quad d_i[v] \geq d_{i-1}[v]$$

Доказательство.

Расмотрим произвольные V и i и кратчайший $s \leadsto V$ -путь P в сети G_f^i . $|P| = d_i[V]$ Заметим, что в остаточную сеть G_f^i могут входить стрелки G_f , а также стрелки обратные к ним. Рассмотрим 2 случая:

Lemma

Кратчайшее расстояние от истока до каждой вершины не уменьшается с выполнением каждой итерации:

$$\forall v \in V \quad d_i[v] \geq d_{i-1}[v]$$

Доказательство.

Расмотрим произвольные V и i и кратчайший $s \leadsto V$ -путь P в сети G_f^i . $|P| = d_i[V]$ Заметим, что в остаточную сеть G_f^i могут входить стрелки G_f , а также стрелки обратные к ним. Рассмотрим 2 случая:

ullet Путь P содержит только ребра из G_f . Тогда $|P| \geq d_i[v]$ ($d_i[v]$ - длина кратчайшего пути) $\iff d_i[v] \geq d_{i-1}[v]$

Окончание доказательства

Доказательство.

• Путь Р содержит хотя бы одно ребро, не содержащееся в сети G_f , но обратное какому-то из ее ребер. Рассмотрим первое такое ребро (u, w) в пути Р: $s \Longrightarrow u \to v \Longrightarrow t$ Применим лемму к вершине u, т.к. она удовлетворяет условию первого случая: $d_i[u] \ge d_{i-1}[u](1)$

Окончание доказательства

Доказательство.

• Путь Р содержит хотя бы одно ребро, не содержащееся в сети G_f , но обратное какому-то из ее ребер. Рассмотрим первое такое ребро (u, w) в пути $P: s \Longrightarrow u \to v \Longrightarrow t$ Применим лемму к вершине и, т.к. она удовлетворяет условию первого случая: $d_i[u] \ge d_{i-1}[u](1)$ Теперь заметим, что т.к. (u, w)появилось в остаточной сети только после выполнения (i-1)-ой фазы ⇒ вдоль ребра (w, u) был дополнительно пропущен какой-то поток. Следовательно, ребро (w, u) пренадлежало слоистой сети перед (i-1)-й фазой $\Rightarrow d_{i-1}[u] = d_{i-1}[v] + 1(2)$ По свойству кратчайших путей: $d_i[w] = d_i[u] + 1(3)$ Объединяя (1), (2), (3) получим: $d_i[w] \ge d_{i-1}[w] + 2$. Теперь мы можем применять те же рассуждения ко всему оставшемуся пути до у и получить требуемое неравенство

• Так как длина кратчайшего $s \leadsto t$ пути не может превосходить $n-1 \Rightarrow$ алгоритм Диница совершает не больше n-1 фазы (итераций цикла).

- Так как длина кратчайшего $s \leadsto t$ пути не может превосходить $n-1 \Rightarrow$ алгоритм Диница совершает не больше n-1 фазы (итераций цикла).
- Таким образом, в зависимости от того, каким алгоритмом нахождения блокирующего потока мы пользовались алгоритм Диница может выполнятся за $O(|V| \cdot |E|^2)$ или за $O(|V|^2 \cdot |E|)$

- Так как длина кратчайшего $s \leadsto t$ пути не может превосходить $n-1 \Rightarrow$ алгоритм Диница совершает не больше n-1 фазы (итераций цикла).
- Таким образом, в зависимости от того, каким алгоритмом нахождения блокирующего потока мы пользовались алгоритм Диница может выполнятся за $O(|V| \cdot |E|^2)$ или за $O(|V|^2 \cdot |E|)$
- Возможно достичь асимптотики $O(|V| \cdot |E| \cdot log(|V|))$, используя динамические деревья Слетора и Тарьяна

План

- 🕕 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Поиск блокирующего потока

Жадный алгоритм

- Так как слоистая сеть G_L , в которой ищется блокирующий поток ациклическая будем искать блокирующий поток в ациклической сети.
- Искать $s \leadsto t$ пути по одному, пока такие пути находятся
- DFS найдет все $s \leadsto t$ пути, если t достижима из s, а $c(u,v) > 0 \quad \forall (u,v) \in E$
- Насыщая ребра, мы хотя бы единожды достигнем стока t, следовательно блокирующий поток всегда найдется.
- DFS находит каждый путь за O(E), каждый путь насыщает как минимум одно ребро $\Rightarrow O(E)$ Итоговая асимптотика: $O(E^2)$

• Будем использовать предыдущий алгоритм, удаляя при этом ребра, из которых невозможно дойти до стока t

- Будем использовать предыдущий алгоритм, удаляя при этом ребра, из которых невозможно дойти до стока t
- Достаточно удалять ребро после того, как мы просмотрели его в DFS, если не нашелся путь до стока

- Будем использовать предыдущий алгоритм, удаляя при этом ребра, из которых невозможно дойти до стока t
- Достаточно удалять ребро после того, как мы просмотрели его в DFS, если не нашелся путь до стока
- Будем поддерживать в списке смежности каждой вершины указатель на первое удаленное ребро и увеличивать его внутри цикла DFS

- Будем использовать предыдущий алгоритм, удаляя при этом ребра, из которых невозможно дойти до стока t
- Достаточно удалять ребро после того, как мы просмотрели его в DFS, если не нашелся путь до стока
- Будем поддерживать в списке смежности каждой вершины указатель на первое удаленное ребро и увеличивать его внутри цикла DFS
- Если DFS достигает стока: насыщается как минимум одно ребро. Иначе как минимум один указатель продвигается вперед. Значит один запуск обхода в глубину работает за O(V + K), K число продвижения указателей. Всего запусков DFS для поиска блокирующего потока: O(P), где P количество ребер, насыщенных блокирующим потоком. Таким образом весь алгоритм отработает за $O(P \cdot V + \sum_i K_i = O(P \cdot V + E)$. В худшем случае, когда P = E, $O(V \cdot E)$

План

- 🕕 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток
 - Теорема Форда-Фалкерсона
 - Слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Пример
 - Корректность
 - Асимптотика и оценка числа фаз
 - Поиск блокирующего потока
 - Реализация

Реализация

Удаляющий обход

```
int dfs (int v, int flow)
if (flow == 0)
  return 0
if (v == t)
  return flow
for (u = ptr[v] to n)
  if (vu \in E)
    pushed = dfs(u, min(flow, c(vu) - f(vu)))
    f(vu) += pushed
    f(uv) -= pushed
    return pushed
  ptr[V]++
return 0
```

Реализация

```
main()
flow = 0
for (int i = 1 to n)
  ptr[i] = 0
do
  pushed = dfs(S, \infty)
  flow += pushed
while (pushed > 0)
```

Литература I

Т. Кормен.

Алгоритмы. Построение и анализ. Глава 27, "Максимальный поток".

neerc.ifmo.ru

"Схема алгоритма Диница"