Compito del 31 luglio 2000

 $R = (abc^*|b^*c|ab^*)^*$

1) Automa deterministico minimo

TABELLA DEGLI STATI RAGGIUNGIBILI

	Α	В	С	D	E	F
а	ABDF	\	ABDF	ABDF	\	ABDF
b	Е	ACD	Ε	Е	Е	ADEF
С	\	\	ACD	\	AD	\

Rinomino gli stati:

 $A \rightarrow 1$

 $\text{ABDF} \rightarrow 2$

 $\textit{ACDEF} \rightarrow 3$

 $\text{ADEF} \to 4$

 $E \rightarrow 5\,$

 $AD \rightarrow 6$

 $\textit{ACDE} \rightarrow 7$

Guardo la minimalità dell'automa:

2	X					
3	X	X		_		
4	X	X	(6,7)⇒X			
5	X	X	X	X		_
6	X	X	(4,5);(6,7	(4,5) ⇒X	X	
)⇒X			
7	X	X	(4,5) ⇒X	(4,5) ⇒X	X	X
	1	2	3	4	5	6

L'automa è già minimo

Rinomino gli stati:

$$1 \rightarrow \textbf{\textit{A}}$$

 $\mathbf{2} \to \mathbf{B}$

 $3 \to \textit{C}$

 $\mathbf{4} \to \mathbf{D}$

 $5 \to E\,$

 $\mathbf{6} \to F$

 $7 \rightarrow G$

Dunque l'automa deterministico minimo è il seguente:

$$\begin{split} \Sigma &= \{a,b,c\} \\ Q &= \{A,B,C,D,E,F,G\} \\ q_0 &= \{A\} \\ F &= \{B,C,D,F,G\} \\ \delta &= \{\delta(A,a) \rightarrow B; \ \delta(A,b) \rightarrow E; \ \delta(B,a) \rightarrow B; \ \delta(B,b) \rightarrow C; \ \delta(C,a) \rightarrow B; \ \delta(C,b) \rightarrow D; \\ \delta(C,c) \rightarrow G; \ \delta(D,a) \rightarrow B; \ \delta(D,b) \rightarrow D; \ \delta(D,c) \rightarrow F; \ \delta(E,b) \rightarrow E; \ \delta(E,c) \rightarrow F; \ \delta(F,a) \rightarrow B; \\ \delta(F,b) \rightarrow E; \ \delta(G,a) \rightarrow B; \ \delta(G,b) \rightarrow E; \ \delta(G,c) \rightarrow G \} \end{split}$$

2) Grammatica strettamente lineare sinistra

 $\Sigma = \{a,b,c\}$ $V = \{X,B,C,D,E,F,G\}$ $S = \{X\}$ $P = \{B \rightarrow a | Ba | Ca | Fa$ $C \rightarrow Bb$ $D \rightarrow Cb | Db$ $E \rightarrow b | Eb | Gb | Fb$ $F \rightarrow Ec | Dc$ $G \rightarrow Cc | Gc$ $X \rightarrow B | C | D | F | G\}$

3) Grammatica non contestuale non estesa

 $\Sigma = \{a,b,c\}$ $V = \{R,P,A,B,C,D,E\}$ $S = \{R\}$ $P = \{R \rightarrow P | RP \qquad P = (abc^* | b^*c | ab^*)$ $P \rightarrow A | B | C \qquad A = abc^* \quad B = b^*c \quad C = ab^*$ $A \rightarrow ab | abD \qquad D = c^*$ $B \rightarrow Ec \qquad E = b^*$ -3 -

 $C\rightarrow a|aD$

 $D\rightarrow c|Dc$

E→b|Eb}

4) Verifica della correttezza di "aabbbc"

a) Con l'espressione regolare:

 $\begin{array}{l} (abc^{\star}|b^{\dagger}c|ab^{\star})^{+} \rightarrow (abc^{\star}|b^{\dagger}c|ab^{\star})^{3} \rightarrow \\ ab^{\star}(abc^{\star}|b^{\dagger}c|ab^{\star})(abc^{\star}|b^{\dagger}c|ab^{\star}) \rightarrow a(abc^{\star}|b^{\dagger}c|ab^{\star}) \rightarrow \\ aabc^{\star}(abc^{\star}|b^{\dagger}c|ab^{\star}) \rightarrow aab(abc^{\star}|b^{\dagger}c|ab^{\star}) \rightarrow aabb^{\dagger}c \rightarrow aabbbc \end{array}$

b) Con l'automa a stati finiti:

	α	α	Ь	b	b	С
A	В	В	C	D	D	F

Lo stato F è finale, dunque la frase è corretta.

c) Con la grammatica strettamente lineare sinistra:

d) Con la grammatica non contestuale non estesa:

$$R \rightarrow RP \rightarrow RPP \rightarrow PPP \rightarrow CPP \rightarrow aPP \rightarrow aAP \rightarrow aabP \rightarrow aabB \rightarrow aabEc \rightarrow aabEbc \rightarrow aabbbc$$

5) Ambiguità

La frase "abc" è ambigua, infatti posso ottenerla come:

$$(abc^{\textstyle\star}|b^{\scriptscriptstyle +}c|ab^{\textstyle\star})^{\scriptscriptstyle +}{\rightarrow} (abc^{\textstyle\star}|b^{\scriptscriptstyle +}c|ab^{\textstyle\star}){\rightarrow}\ abc^{\textstyle\star}{\rightarrow} abc$$

Oppure:

$$(abc^*|b^+c|ab^*)^+ \rightarrow (abc^*|b^+c|ab^*)^2 \rightarrow ab^*(abc^*|b^+c|ab^*) \rightarrow a(abc^*|b^+c|ab^*) \rightarrow ab^+c \rightarrow abc$$