5118014 Programming Language Theory

Ch 6. Syntax and Semantics

Shin Hong

Concrete Syntax and Abstract Syntax

- concrete syntax defines which strings are accepted as programs
 - a language is a set of strings
 - a programming language is a set of strings acceptable as valid programs
- abstract syntax defines the structures of programs
 - a program consists of multiple components which form a tree structure
 - a certain logic may be represented differently in concrete syntaxes of multiple language while having the identical structure in their abstract syntaxes

Example

► Python

```
def add(n, m):
    return n + m
```

▶ JavaScript

```
function add(n, m) {
    return n + m;
}
```

Racket

```
(define (add n m) (+ n m))
```

▶ OCaml

```
let add n m = n + m
```


Grammar

- a grammar is a set of rules to define syntax
 - recursive, constructive definitions to define an infinite set
- Backus-Naur Form (BNF)
 - components
 - terminal: a string
 - nonterminal: a name denoting a set of strings
 - expression: a list of one or more terminals or nonterminals denoting a set of strings
 - rule structures

```
[nonterminal] ::= [expression] | [expression] | [expression] | ...
```

Example. Arithmetic Expression

Arithmetic expression is the set of strings derived from <expr>

Abstract Syntax Tree

- Define the set of all trees that represent programs
- Ex. Arithmetic Expression

 e_1

Arithmetic Expression AST: Scala

sealed trait AE

case class Num(value: Int) extends AE

case class Add(left: AE, right: AE) extends AE

case class Sub(left: AE, right: AE) extends AE

Add(Sub(Num(5), Num(1)), Num(3))

Parsing

- concrete syntax considers programs as string while abstract syntax as trees
- parsing is a process of transforming a valid string in a language into an AST of the corresponding abstract syntax
 - a parser is a partial function from S (the set of all strings) to E (the set of all ASTs)

 $parse: S \rightarrow E$

Ch 6. Syntax and Semantics

Semantics

- semantics defines the results of the executions of programs
 - semantics is represented as a function that maps ASTs to a certain domain

- in generally, semantics are defined based on abstract syntax for there are infinitely many different programs
 - mapping rules associated with AST construction rules

Ex. Semantics of Arithmetic Expression

• We can define the semantics of AE as \Rightarrow , a binary relation over E and \mathbb{Z}

$$\Rightarrow \subseteq E \times \mathbb{Z}$$

Rule Num $n \Rightarrow n$.

Rule App

If
$$e_1 \Rightarrow n_1$$
 and $e_2 \Rightarrow n_2$,
then $e_1 + e_2 \Rightarrow n_1 +_{\mathbb{Z}} n_2$.

Rule Sub

If
$$e_1 \Rightarrow n_1$$
 and $e_2 \Rightarrow n_2$,
then $e_1 - e_2 \Rightarrow n_1 -_{\mathbb{Z}} n_2$.

Inference Rule

- a rule to prove a new proposition from given propositions
 - structure

$$\frac{premise_1}{conclusion}$$
 $\frac{premise_2}{conclusion}$

- a proof tree is a tree whose root is the proposition to be proven
 - each node is a proposition, and its children are supporting evidences
 - the roots are of axioms (i.e., conclusions without any premises)

Arithmetic Expression: Inference Rules

$$n \Rightarrow n$$
 [Num]

$$\frac{e_1 \Rightarrow n_1 \qquad e_2 \Rightarrow n_2}{e_1 + e_2 \Rightarrow n_1 +_{_{\mathbb{Z}}} n_2} \quad [Add]$$

$$\frac{e_1 \Rightarrow n_1 \qquad e_2 \Rightarrow n_2}{e_1 - e_2 \Rightarrow n_1 -_{\mathbb{Z}} n_2} \quad [Sub]$$

$$\frac{3 \Rightarrow 3 \qquad 1 \Rightarrow 1}{3 - 1 \Rightarrow 2} \qquad 2 \Rightarrow 2$$
$$(3 - 1) + 2 \Rightarrow 4$$

Interpreter

 An interpreter is a program that takes a program as input and evaluates the program

Example

```
def interp(e: AE): Int = e match {
  case Num(n) => n
  case Add(l, r) => interp(l) + interp(r)
  case Sub(l, r) => interp(l) - interp(r)
}
```

Syntactic Sugar

 Syntactic sugar adds a new feature to a language by defining syntactic transformation rules instead of changing the semantics

Example. adding integer negation to AE

```
- syntax: <expr> ::= <number> | <expr> "+" <expr> | (" <expr> ")"
```

- extending semantics: $\frac{e \Rightarrow n}{-e \Rightarrow -\sqrt{n}}$ Neg
- syntactic transformation (desugaring): "-" "(" <expr> ")" to "0" "(" <expr> ")"