Causal Effects Econometrics II

Douglas G. Steigerwald

UC Santa Barbara

Overview

Reference: B. Hansen Econometrics Chapter 2.30

- interest in determining casual effects
 - causal effects are individual specific
 - causal effects are unobserved
 - hence, individual causal effects cannot be measured
- aggregate causal effects can be measured
 - focus on average causal effect
 - under conditional independence assumption
 - ★ conditional mean derivative equals the average causal effect
 - ★ i.e. conditional mean has causal implications

What are Causal Effects?

- Casual effects are: $\nabla_x y$
 - ▶ individual specific (not $\nabla_x \mathbb{E}(y|x)$ nor $\nabla_x \mathcal{P}(y|x)$)
 - unobserved
- Examples
 - effect of class size on student test score
 - effect of years of schooling on wage
 - consequences of medical procedure for health
- consider schooling on wage
 - $\nabla_x y$ is the actual difference in wages a person would receive if we could change the number of years of schooling, holding all else constant
 - ★ specific to each individual
 - \star can't observe counterfactual (only observe actual wages and schooling $\nabla_{x}y$)

Example

- 2 individuals: Jennifer and George
 - both have possibility of college graduation (otherwise HS graduates)
 - both would receive wages that differ over their level of education

		Wage if HS	Wage if College	Causal Effect
•	Jennifer	\$10/hr	\$20 / hr	\$10 / hr
	George	\$8/hr	\$12/hr	\$4/hr

- causal effect is individual specific
- causal effect is unobserved
 - ★ either a HS graduate or a college graduate, but not both

General Model

- $y = h(x_1, x_2, u)$ (x_1, x_2) observed u unobserved $(\ell \times 1)$
 - special case: random coefficients model $h(x_1, x_2, u) = x^T \eta$
- causal effect of x_1 on y
 - \triangleright x_1 has a causal effect on response y if a change in x_1 , holding all other inputs constant, leads to a change in y
 - in other words: the change in y due to a change in x_1 , holding x_2 and y constant

$$C(x_1, x_2, u) = \nabla_1 h(x_1, x_2, u)$$

- this is a definition
 - doesn't necessarily describe causality in a fundamental or experimental sense
 - perhaps should be called a structural effect
 - ★ the effect within the structural model $h(x_1, x_2, u)$

Average Causal Effects

because casual effects vary over individuals and are not observable, they cannot be measured at the individual level

- only aggregate causal effects can be measured
 - we focus on the average causal effect
- the average causal effect of x_1 on y conditional on x_2 is

$$ACE(x_{1}, x_{2}) = \mathbb{E}(C(x_{1}, x_{2}, u) | x_{1}, x_{2})$$
$$= \int_{\mathbb{R}^{\ell}} \nabla_{1} h(x_{1}, x_{2}, u) f(u | x_{1}, x_{2}) du$$

- ► $ACE(x_1, x_2)$ is the average of the causal effects across all individuals in the general population
- \triangleright not an individual causal effect (not a function of u)
- the goal is to learn the average causal effect

ACE and the Conditonal Expectation Function

What is the derivative of the conditional mean?

• let $m(x_1, x_2)$ represent $\mathbb{E}(y|x_1, x_2)$

$$m(x_1, x_2) = \mathbb{E}(h(x_1, x_2, u) | x_1, x_2)$$

= $\int_{\mathbb{R}^{\ell}} h(x_1, x_2, u) f(u | x_1, x_2) du$

• $\nabla_1 \mathbb{E}\left(y|x_1,x_2\right)$ is

$$\nabla_{1} m(x_{1}, x_{2}) = \int_{\mathbb{R}^{\ell}} \nabla_{1} h(x_{1}, x_{2}, u) f(u|x_{1}, x_{2}) du$$

$$+ \int_{\mathbb{R}^{\ell}} h(x_{1}, x_{2}, u) \nabla_{1} f(u|x_{1}, x_{2}) du$$

$$= ACE(x_{1}, x_{2}) + \int_{\mathbb{R}^{\ell}} h(x_{1}, x_{2}, u) \nabla_{1} f(u|x_{1}, x_{2}) du$$

Conditional Independence Assumption

• $\nabla_1 \mathbb{E}(y|x_1, x_2) = ACE(x_1, x_2)$ only in the special case

$$\nabla_1 f(u|x_1,x_2) = 0$$

• Conditional Independence Assumption: $f(u|x_1, x_2) = f(u|x_2)$ does not depend on x_1 , implying

$$\nabla_1 f(u|x_1,x_2) = 0$$

- CIA is weaker than full independence of u from (x_1, x_2)
 - full independence would imply that each regression derivative equals an average causal effect
 - CIA is all that is needed to causally interpret only a subset of the covariates

CIA and Average Causal Effects

• Theorem: In the structural model $y = h(x_1, x_2, u)$, the Conditional Independence Assumption implies

$$\nabla_{1}\mathbb{E}\left(y|x_{1},x_{2}
ight)=ACE\left(x_{1},x_{2}
ight)$$

- ▶ x₁ can be binary or continuous
- powerful result
 - whenever the unobservable is independent of the treatment variable (after conditioning on appropriate covariates), the conditional mean derivative equals the average causal effect
 - hence the CEF has causal meaning

Potential Outcome Function

Binary Covariate

- if x_1 is binary (structural effect is called treatment effect)
 - $x_1 = 1$ treatment
 - $x_1 = 0$ non-treatment
- replace $h(x_1, x_2, u)$ with $y(x_1)$
 - $y(x_1)$ implies holding x_2 and u constant
 - latent outcomes
 - ★ $h(1, x_2, u) = y(1)$ (outcome if "treated")
 - ★ $h(0, x_2, u) = y(0)$ (outcome if not "treated")
- causal effect

$$C\left(x_{2},u\right)=y\left(1\right)-y\left(0\right)$$

random (it is a function of (x_2, u)), as both potential outcomes differ across individuals

Aggregate Causal Effects

Potential Outcome Function

- ullet causal effect depends on both $y\left(1\right)$ and $y\left(0\right)$
 - we observe only the realized value $y = \begin{cases} y(1) & \text{if } x_1 = 1 \\ y(0) & \text{if } x_1 = 0 \end{cases}$
 - cannot measure individual causal effect
- we focus on the average causal effect

•

$$ACE\left(x_{1},x_{2}\right)=\mathbb{E}\left(y\left(1\right)-y\left(0\right)\left|x_{1},x_{2}\right.\right)$$

• the average causal effect is the best we can hope to learn

Wage, Schooling Example

- y = wage and x_1 is binary
 - $x_1 = 1$ treatment (college graduate)
 - $x_1 = 0$ non-treatment (HS graduate)
- population
 - ▶ 50% are Jennifers: (\$10 if HS \$20 if college)
 - ▶ 50% are Georges: (\$8 if HS \$12 if college)

$$ACE(x_1) = \frac{1}{2}(10) + \frac{1}{2}(4) = 7$$

given data only on education and wages, the most we could hope to learn is the average causal effect of \$7

Analysis

collect wage and education data for 32 randomly sampled individuals

	\$8	\$10	\$12	\$20	Mean
HS	10	6	0	0	8.75
College	0	0	6	10	17.00

- because the only covariate is an indicator
 - $\mathbb{E}\left(y|x_1\right) = \beta_1 x_1 + \beta_2$
- with the data at hand
 - $\mathbb{E}(wage|col) = 8.25 col + 8.75$
- the regression derivative, \$8.25, is larger than the ACE, \$7
 - the CIA must not be satisfied

Failure of the CIA

- $wage = h(x_1, x_2, u)$
 - ▶ *u* is individual type (i.e. Jennifer or George)
- because type Jennifer is more likely to go to college than type George, u is not independent of x_1

$$\int_{\mathbb{R}^{\ell}} h(x_1, u) \nabla_1 f(u|x_1) du \neq 0$$

- lacktriangledown recall $abla_1 m\left(x_1
 ight) = ACE\left(x_1
 ight) + \int_{\mathbb{R}^\ell} h\left(x_1,u
 ight)
 abla_1 f\left(u|x_1
 ight) du$
- \$8.25 is not the average benefit of college attendance, rather it is the observed difference in realized wages in a population whose decision to attend college is correlated with their individual causal effect

Selection into College

- in high school, all students take an aptitude test
 - score is recorded as high (H) or low (L)
 - **★** $\mathbb{P}(\text{college}|H) = 3/4$ $\mathbb{P}(\text{college}|L) = 1/4$
- the two types of students do not perform the same on the test
 - ▶ Jennifers get a high score 3/4 of the time
 - ► Georges get a high score 1/4 of the time
- probability of enrollment in college
 - for Jennifers: 62.5% $\left(\frac{3}{4}\right)^2 + \left(\frac{1}{4}\right)^2$
 - for Georges: 37.5% $2 \cdot \left(\frac{3}{4}\right) \left(\frac{1}{4}\right)$

Restoration of the CIA

- we need to find a variable, x_2 , such that u and x_1 are independent conditional on x_2
- ullet decision to attend college is based on aptitude test score $(x_2=1\,\{H\})$
 - education and type are independent, conditional on test score
 - i.e. given test score, Jennifers and Georges are equally likely to attend college
 - ★ $f(u|x_1, x_2) = f(u|x_2)$ does not depend on x_1
- ullet including test score, alters the ACE, which is now a function of x_2
 - $ACE(x_1, x_2 = H) = \frac{3}{4}(10) + \frac{1}{4}(4) = 8.50$
 - $ACE(x_1, x_2 = L) = \frac{1}{4}(10) + \frac{3}{4}(4) = 5.50$

Analysis

collect wage and education data for 32 randomly sampled individuals

	\$8	\$10	\$12	\$20	Mean
HS + H	1	3	0	0	9.50
College + H	0	0	3	9	18.00
HS + L	9	3	0	0	8.50
College + L	0	0	3	1	14.00

- because the only 2 covariates are indicators
 - $\mathbb{E}(y|x_1, x_2) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4$
- with the data at hand
 - \mathbb{E} (wage | col, hscore) = 5.50 col +1.00hscore + 3.00 col *hscore + 8.50
 - ▶ $\nabla_1 m$ (col, score = H) = 8.50 = ACE ($x_1, x_2 = H$)
 - $\nabla_1 m \text{ (col, score} = L) = 5.50 = ACE (x_1, x_2 = L)$

Review

- What are individual causal effects?
- $\nabla_x y$

Can individual causal effects be measured?

• No, because they require a counterfactual

What aggregate causal effect do we focus on?

average causal effects

What is the first requirement for β_1 to equal the average causal effect?

•
$$\mathbb{E}\left(y|x_1,x_2\right)=x_1^{\mathrm{T}}\beta_1+x_2^{\mathrm{T}}\beta_2$$
 so that $\beta_1=\nabla_1\mathbb{E}\left(y|x_1,x_2\right)$

What is the second requirement for eta_1 to equal the average causal effect?

• Conditional Independence Assumption

$$f(u|x_1,x_2)=f(u|x_2)$$