Matrix

see math notation, eigen

definition formally in my <u>math notation</u> a <u>matrix</u> in $\mathbb{R}^{m,n}$ is a <u>set theory</u>etical <u>function</u> with <u>function > domain</u> at least $\langle x,y \rangle \to \mathbb{N} x \wedge \mathbb{N} y \wedge 0 \leq x < m \wedge 0 \leq y < n$ that takes an <u>ordered pair</u> as an index and returns the element at that index

notation

$$\left[egin{matrix} a & b \ c & d \end{matrix}
ight]$$

Multiplication by Scalar

see matrix vector space, vector space

definition

kA

properties

commutativity with <u>scalars</u> kA = Ak

Addition

see matrix vector space, vector space

definition

A:B

Multiplication

#todo mm

see dot product, vector in rn

definition

 $AB \neq \varnothing \equiv \mathbb{M}^{m,n}A \wedge \mathbb{M}^{n,p}B \wedge \mathbb{M}^{m,p}AB$ (AB is defined if the number of columns in A is equal to the number of rows in B. their product will be an m by p matrix)

$$(AB)^{i,j}=\ :A^{i,}B^{,j}$$
 , see $\operatorname{\underline{dot\ product}}$

intuitively, matrix multiplication is the $\underline{dot\ product}$ of every row of the first \underline{matrix} by every column of the second \underline{matrix}

notation

$$AA = A2 = [A]2 \dashv \mathbb{M}A$$

and therefore $AA\cdots A=[A]n\wedge \mathbb{N}n\dashv \mathbb{M}A$

properties

not commutative $AB=BA
eq \mathbb{M}A \wedge \mathbb{M}B$ or $AB \neq BA \wedge \mathbb{M}A \wedge \mathbb{M}B$

 $AB=0 \not\vdash A=0 \lor B=0$ (it can happen that AB=0, but $A\neq 0$ and $B\neq 0$) (AB being equal to 0 does not imply that A=0 or that B=0)

$$AC=BC \wedge C
eq 0
ot \vdash A=B$$
 ($AC=BC$ and $C
eq 0$ does not imply that $A=B$)

associative (AB)C = A(BC)

distributive
$$A(B:C) = AB:AC$$

distributive
$$(B:C)A = BA:CA$$

associative with scalars k(AB) = (kA)B = A(kB)

applications

matrix > multiplication can be used to represent a linear system of linear equations:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

matrix > multiplication can be used to represent any linear transformation

Identity Matrix

definition

$$(0\cdots) \stackrel{\cdot}{=} (0\cdots)$$

examples

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

properties

$$AI = A \wedge IA = A \dashv \mathbb{M}A$$

Zero Matrix

see matrix vector space, vector space

definition

$$O \doteq 0$$

examples

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

properties

$$A_{m,n}O_{n,p}=O_{m,p}\dashv \mathbb{M}^{n,p}O_{n,p}\wedge \mathbb{M}^{m,p}O_{m,p}\wedge \mathbb{M}^{m,n}A_{m,n}$$

$$O_{q,m}A_{m,n}=O_{q,n}\dashv \mathbb{M}^{q,m}O_{q,m}\wedge \mathbb{M}^{q,n}O_{q,n}\wedge \mathbb{M}^{m,n}A_{m,n}$$

Rank

the number of pivots in any REF of the matrix

notation

rank A, where

A is the <u>matrix</u> to find the <u>matrix > rank</u> of

Element Count

notation # M

definition the element count of a matrix is the total number of elements in the matrix

example let
$$M=egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}$$
 then, $\mathbb{M}^{2,3}M \wedge \#\ M=2 \mid 3=6$

Vector Spaces

Null Space (Nullspace, Kernel), Column Space, Row Space

notations

 $kernel\ Ker\ A \equiv Null\ A$

column space Col A

row space Row A

definitions

 $\mathsf{kernel}\;(Ker\;A)\;x\equiv (Null\;A)\;x\equiv Ax=O\wedge \mathbb{M}^{m,n}A\wedge \mathbb{M}^{n,1}x$

column space $Col\ A = \operatorname{span} A^{,n} \dashv \mathbb{N} n$

row space $Row\ A = \operatorname{span} A^{n,} \dashv \mathbb{N} n$

procedure computing the kernel of a matrix use row reduction

theorems

the Null Space, Row Space and Column Space of a matrix are always vector spaces

number of free variables in A: number of pivots in A = number of columns in A

 $\dim Null\ A = \text{number of free variables in } A$

rank A = number of pivots in A

the nonzero rows in any REF of a matrix A forms a basis for $Row\ A$. therefore, $\dim Row\ A = rank\ A$, see matrix > rank

if A and B are row-equivalent, then $Row\ A = Row\ B$, see <u>linear system</u>

the <u>span</u>ning <u>set</u> of $Null\ A$ obtained from applying <u>row reduction</u> on the system Ax = O is a <u>basis</u> for $Null\ A$

 $Row\ A$ does not change when applying $\underline{linear\ system\ }>\underline{elementary\ operation}s$ on the rows of A

properties

 $Col\ A = Row\ A^{\intercal} \wedge Row\ A = Col\ A^{\intercal} \dashv \mathbb{M}A$, see matrix > transpose

applications

row spaces can be used to find a <u>basis</u> for a <u>span</u>ning <u>set</u> of vectors through <u>row</u> reduction

the <u>basis</u> for the row space of a <u>matrix</u> can be found by applying <u>row reduction</u> and <u>span</u>ning the **row-reduced columns** in the <u>REF</u> form of the <u>matrix</u>

the <u>basis</u> for the column space of a <u>matrix</u> can be found by applying <u>row reduction</u> and <u>span</u>ning the **original columns** that became pivots in the <u>REF</u> form of the <u>matrix</u>

the same can be said for Col A

example transforming a <u>vector space</u> into the null space of a certain <u>matrix</u>

$$\mathsf{let}\ W = \mathrm{span}\, \langle \langle\ (1,0,0,1), (1,1,1,0), (2,1,\cdot 1,1)\ \rangle \rangle$$

after solving the <u>linear system</u>, we get $W\left(x,y,z,w\right)\equiv \cdot x:y:w=0$. therefore, W is the null space of $A=\begin{bmatrix} \cdot 1 & 1 & 0 & 1 \end{bmatrix}$

Diagonal

the diagonal of a matrix

definition the *diagonal* of a square <u>matrix</u> goes from its top left element to its bottom right element

Transpose

the transpose of a <u>matrix</u>

flips a matrix around its matrix > diagonal

definition

$$(A^{\intercal})^{i,j} = A^{j,i}$$

properties

$$(A^\intercal)^\intercal = A$$

$$(AB)^\intercal = B^\intercal A^\intercal$$
 #todo mm

representation

Α

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Matrix_transpose.gif/20 Opx-Matrix_transpose.gif

Conjugate Transpose

the <u>complex > conjugate</u> of every entry of the <u>matrix > transpose</u> of a <u>matrix</u>

aka Hermitian transpose, adjoint matrix, transjugate

definition

 $\operatorname{conj} A^{\intercal}$, where

- A is the matrix to find the matrix > conjugate transpose of
- conj is the <u>complex > conjugate function</u>
- is the <u>matrix > transpose operator</u>

properties

let a matrix of reals A. then, $\operatorname{conj} A^{\mathsf{T}} \equiv A^{\mathsf{T}}$

Inverse

#todo mm

the inverse of a matrix

definition

$$AA^- = A^-A = I \dashv \mathbb{M}A$$
, where

- A is a square matrix
- A⁻ is the inverse matrix of A

Invertability

definition an *invertible matrix* has a corresponding <u>matrix > inverse</u>

see theorems below for invertability criteria

properties

let A and C be invertible matrixes, let $\mathbb{Z}p$ and let $\mathbb{R}k \wedge k \neq 0$. then,

$$AA^- = A^-A = I$$

$$(A^-)^- = A$$

$$(A^p)^- = (A^-)^p$$

 $(kA)^- = -k \mid A^-$ (see improved expression evaluation)

$$(AC)^- = C^-A^-$$

note in the equation above, the order of the <u>matrix</u>es has changed. this is significant as <u>matrix > multiplication</u> is not commutative

if AC is invertible, then A is invertible and C is invertible

procedure computing the <u>matrix > inverse</u> of a <u>matrix</u>

let $\mathbb{M}^{n,n}A$

solve the system $AA^- = I$ by extending the <u>matrix</u> with the <u>matrix > identity matrix</u> and solve the <u>linear system</u> up to <u>RREF</u> using <u>row reduction</u>.

$$[A \quad | \quad I] \sim \cdots [I \quad | \quad A^-]$$

procedure computing the <u>matrix > inverse</u> of a 2 by 2 <u>matrix</u>

see determinant

$$\mathsf{let}\ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

A is invertible if and only if $\det A \neq 0$

$$A^- = -\det A \;\mid\; \left[egin{array}{cc} d & \cdot b \ \cdot c & a \end{array}
ight]$$

applications using a matrix > inverse to solve a linear system

$$\mathsf{let}\ A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

then, calculate B such that $B \equiv A^-$

this can be used to solve a linear system such as:

$$Ax = egin{bmatrix} \cdot 1 \ 1 \end{bmatrix}$$

$$BAx = B egin{bmatrix} \cdot 1 \\ 1 \end{bmatrix}$$

$$Ix = x = B egin{bmatrix} \cdot 1 \ 1 \end{bmatrix}$$

Triangular Matrix

definition a <u>matrix</u> is said to be *triangular* if every entry below its <u>matrix > diagonal</u> or above its <u>matrix > diagonal</u> is 0

Diagonal Matrix

definition a <u>matrix</u> is said to be *diagonal* if every entry below its <u>matrix > diagonal</u> and above its <u>matrix > diagonal</u> is 0

applications

[D]x can be calculated by raising every entry of D to the power x #todo mm

Diagonalizable Matrix

see eigen > vector

definition an n by n matrix A is said to be diagonalizable over the reals if there exists a basis of \mathbb{R}^n consisting entirely of eigen > vectors of A

a <u>matrix</u> is <u>diagonalizable</u> if and only if the geometic <u>eigen > multiplicity</u> of an <u>eigen > value</u> is equal to the algebraic <u>eigen > multiplicity</u> of said <u>eigen > value</u>, for every <u>eigen > value</u> of the <u>matrix</u>

note a <u>matrix</u> may also be diagonalizable over other <u>number field</u>s such as the <u>set</u> of <u>complex</u> numbers $\mathbb C$

note some <u>matrix</u>es do not have "enough" real <u>eigen > value</u>s or "enough" <u>eigen > vector</u>s to be diagonalizable

example the <u>matrix</u> $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ is diagonalizable over the reals as $\langle\langle\ (1,1), (1,\cdot 1)\ \rangle\rangle$ is a <u>basis</u> of \mathbb{R}^2 consisting entirely of <u>eigen > vectors</u> of A

example the matrix $A = \begin{bmatrix} 1 & 1 \\ \cdot 1 & 1 \end{bmatrix}$ is not diagonalizable over the reals as it does not have any real eigen > values

example the $\underline{\text{matrix}}\ A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ is not diagonalizable over the reals as it only has one $\underline{\text{eigen}} > \underline{\text{value}}$, and therefore only one set of $\underline{\text{linearly dependent eigen}} > \underline{\text{vectors}}$

example the <u>matrix</u> $A=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ is diagonalizable over the reals as, even though A has a single <u>eigen > value</u> $\lambda=1$, its <u>eigen > space span</u>s \mathbb{R}^2 . this is the case for both $A=I \wedge \lambda=1$ and $A=O \wedge \lambda=0$

proof let $A=I \wedge \lambda=1 \wedge E_1=x.$ we then have $O=A \cdot \lambda I \mid x=I \cdot 1I \mid E_1=O \mid E_1$. therefore, $E_1 \equiv \mathbb{R}^2.$ see <u>eigen</u>

example let $\mathbb{M}^{n,n}A \wedge \mathbb{N}n$ and suppose A has n distinct <u>eigen > values</u>. deduce that A is diagonalizable over the reals

proof A has at most n $\underline{eigen} > values \to the algebraic <math>\underline{eigen} > multiplicity$ of every $\underline{eigen} > value$ of A is 1 as they are all distinct and must be greater than 1 \to the geometric $\underline{eigen} > multiplicity$ of every $\underline{eigen} > value$ of A is 1 as it must be greater than 1 and less than its algebraic $\underline{eigen} > multiplicity \to all$ algebraic $\underline{eigen} > multiplicity$ es and geometric $\underline{eigen} > multiplicity$ es are equal $\to A$ is diagonalizable. see \underline{eigen}

theorems

see linear system

theorem

let $\mathbb{M}^{m,n}A$ (see matrix). the following logic statements are equivalent:

- every <u>variable</u> is a leading <u>variable</u>
- there is a leading <u>variable</u> in every column of the <u>RREF</u> of A
- the system Ax = O has a unique solution
- the columns of A are linearly independent
- $Ker\ A = \langle\langle 0 \rangle\rangle$
- $\dim Ker A = 0$
- rank A = n

see linear system theorem proof

theorem

let $\mathbb{M}^{n,n}A$ (see matrix). the following logic statements are equivalent:

note all <u>logic statements</u> below are valid for both A and A^{T} , see <u>matrix > transpose</u>

- rank A = n
- every <u>linear system</u> of the form Ax = b has a unique solution
- the RREF of A is the matrix > identity matrix
- $Ker\ A = \langle\langle 0\rangle\rangle$
- $Col\ A = \mathbb{R}^n$
- $Row A = \mathbb{R}^n$
- the columns of A are <u>linearly independent</u>
- the rows of *A* are <u>linearly independent</u>
- the columns of A form a <u>basis</u> for \mathbb{R}^n
- the rows of A form a basis for \mathbb{R}^n
- A is an invertible matrix