Ejercicios de Exámenes Topología II

Ejercicio 1 ${\it Calcular el grupo fundamental del siguiente subespacio topológico de R^3}.$

Calcula el grupo fundamental del siguiente subespacio $X \subset \mathbb{R}^3$.

Se tiene que $X = S_1 \cup S_2 \cup L \cup A_1 \cup A_2$. Se define

$$U = X/\{p\}$$
 $V = X/\{q\}$ $\Longrightarrow U \cap V = X/\{p,q\} \neq \emptyset$ $U \cup V = X$

Además, U, V y $U \cap V$ son abiertos arcoconexos, además U:

(*) $A_1 - \{p\} \cong [-1,1] - \{0\} = [-1,0[\ \cup\]0,1] \simeq \{N_1\} \cup \{N_2\}$ ya que cada intervalo es contráctil, donde N_i son los punto Norte de S_i .

Se define

$$U^{\prime\prime}=U^{\prime}/S_1 \quad V^{\prime\prime}=U^{\prime}/\{N_2\} \ \Longrightarrow U^{\prime\prime}\cap V^{\prime\prime}=U^{\prime}/(\{N_2\}\cup S_1)\neq\emptyset \quad U^{\prime\prime}\cup V^{\prime\prime}=U^{\prime}$$

Además, $U^{\prime\prime}$, $V^{\prime\prime}$ y $U^{\prime\prime}\cap V^{\prime\prime}$ son abiertos arcoconexos, además $U^{\prime\prime}$ simplemente conexo

Además $U^{\prime\prime}\cap V^{\prime\prime}$ es simplemente conexo ya que es contráctil

Por el **teorema de Seifert-Van Kampen**

$$\Pi_1(U',x_0) \cong \Pi_1(U'',x_0) *_{\Pi_1(U'' \cap V'',x_0)} \Pi_1(V'',x_0) \cong \Pi_1(Y,x_0)$$

Se define:

$$Y_1 = Y/\{p\} \ Y_2 = Y/\{q\} \implies Y_1 \cap Y_2 = Y/\{p,q\} \neq \emptyset \ Y_1 \cup Y_2 = Y$$

Además, Y_1 , Y_2 y $Y_1 \cap Y_2$ son abiertos arcoconexos

 Y_1 $\xrightarrow{r.d}$

$$\Pi_1(Y_1,x_0)\cong\Pi_1(S^1,x_0)\cong Z$$

 Y_2

 Y_2 es simplemente conexo, $\Pi_1(Y_2, x_0) \cong \Pi_1(S^2, x_0) \cong \{1\}$

 $Y_1 \cap Y_2$

 $\stackrel{r.d}{\longrightarrow}$

 $Y_1 \cap Y_2$ es simplemente conexo por ser contráctil, $\Pi_1(Y_1 \cap Y_2, x_0) \cong \{1\}$.

Por el teorema de Seifert-Van Kampen

$$\Pi_{1}(Y, x_{0}) \cong \Pi_{1}(Y_{1}, x_{0}) *_{\Pi_{1}(Y_{1} \cap Y_{2}, x_{0})} \Pi_{1}(Y_{2}, x_{0}) \cong \Pi_{1}(Y_{1}, x_{0}) * \Pi_{1}(Y_{2}, x_{0}) \cong Z$$

$$\Pi_{1}(U', x_{0}) \cong Z \Longrightarrow U \simeq U' \Longrightarrow \Pi_{1}(U, x_{0}) \cong Z$$

De manera análoga, $\Pi_1(V, x_0) \cong Z$.

Además $U \cap V$:

Se define

$$W_1 = W/\{p\} \ \ W_2 = W/\{q\} \ \ W_1 \cap W_2 = W/p, q \ \ W_1 \cup W_2 = W$$

Además, W_1 , W_2 y $W_1 \cap W_2$ son abiertos arcoconexos

 W_1 $\xrightarrow{r.d}$

$$\Pi_1(W_1,x_0)\cong \Pi_1(S^2,x_0)\cong \{1\}$$

De la misma forma $\Pi_1(W_2, x_0) \cong \Pi_1(S^2, x_0) \cong \{1\}.$

Y $W_1 \cap W_2$ es contráctil, luego es simplemente conexo y $\Pi_1(W_1 \cap W_2, x_0) \cong \{1\}$.

Por el teorema de Seifert-Van Kampen

$$\Pi_1(W,x_0)\cong \Pi_1(W_1,x_0)*_{\Pi_1(W_1\cap W_2,x_0)}\Pi_1(W_2,x_0)\cong \Pi_1(W_1,x_0)*\Pi_1(W_2,x_0)\cong \{1\}$$

$$\Pi_1(W, x_0) \cong \{1\} \Longrightarrow U \cap V \simeq W \text{ es simplemente conexo} \Longrightarrow \Pi_1(U \cap V, x_0) \cong \{1\}$$

Luego por el teorema de Seifert-Van Kampen

$$\begin{split} \Pi_1(X,x_0) &\cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) \cong \Pi_1(U,x_0) * \Pi_1(V,x_0) \cong \\ &\cong Z * Z \cong F_2 \end{split}$$

¿Es una superficie?

Veamos que X no es una superficie. Se considera el segmento abierto $L-(S_1\cup S_2)$. Este conjunto es abierto en X, al ser S_1,S_2 cerrados en X. Así, si X fuese superficie, $L-(S_1\cup S_2)$ también lo sería.

Tomamos $x \in L - (S_1 \cup S_2)$, debe existir V entorno abierto de x en $L - (S_1 \cup S_2)$ que es homeomorfo a U un disco abierto en R^2 .

Como $L-(S_1\cup S_2)\cong]a,b[$, se tendría un subconjunto $I\subseteq]a,b[$ con $I\cong U$, en particular I es conexo. Por la caracterización de los subconjuntos conexos de R se tendría que I es un intervalo abierto.

Como $I \cong U$ entonces $I - \{t_0\} \cong U - \{centro\}$, lo que es absurdo por conexión. Luego X no es una superficie.

Calcular el grupo fundamental de los siguientes subespacios topológicos de \mathbb{R}^3 .

$$(a) \ X_1 = S^2 \cup \left\{ (0,y,z) \in R^3 \colon y^2 + \left(z - \frac{1}{2}\right)^2 = \frac{1}{4} \right\} \cup \left\{ (0,y,z) \in R^3 \colon y^2 + \left(z + \frac{1}{2}\right)^2 = \frac{1}{4} \right\}$$

Se considera *U*:

Donde $U=\left(S^2\cap\left\{(x,y,z)\in R^3\colon |y|>1/2\right\}\right)\cup C_1\cup C_2$, es abierto y arcoconexo. Y además, como D_i es un disco abierto con i=1,2, es contráctil, $D_i\simeq\{p_i\}$ i=1,2

$$U \stackrel{r.d}{\Rightarrow} p_1$$
 p_2 p_2

Se define

$$W_1 = W/\{p_1\}$$
 $W_2 = W/\{p_2\}$ $W_1 \cap W_2 = W/\{p_1, p_2\}$ $W_1 \cup W_2 = W$

Además, W_1 , W_2 y $W_1 \cap W_2$ son abiertos arcoconexos

$$W_1 \stackrel{r.d}{\Rightarrow} \qquad W_2 \stackrel{r.d}{\Rightarrow} \qquad W_1 \cap W_2 \stackrel{r.d}{\Rightarrow} \qquad \bullet$$

 $W_1 \cap W_2$ es simplemente conexo. Por el **teorema de Seifert-Van Kampen**

$$\Pi_{1}(W, x_{0}) \cong \Pi_{1}(W_{1}, x_{0}) *_{\Pi_{1}(W_{1} \cap W_{2}, x_{0})} \Pi_{1}(W_{2}, x_{0}) \cong \Pi_{1}(W_{1}, x_{0}) * \Pi_{1}(W_{2}, x_{0}) \cong Z * Z$$

$$\Pi_{1}(W, x_{0}) \cong Z * Z \cong F[a] * F[b] = F[a, b]$$

$$\Pi_{1}(U, x_{0}) \cong \Pi_{1}(W, x_{0}) \cong Z * Z \cong F[a] * F[b] = F[a, b]$$

Se considera $V=S^2\cup (C_1-\{N_1\})\cup (C_2-\{N_2\})$, se tiene que V abierto y arcoconexo. Para cada $C_i-\{N_i\}$ i=1,2 admite u retracto de deformación a

Se tiene que $\Pi_1(V, x_0) \cong Z$.

Y ahora $U \cap V$:

Como los discos son contráctil:

Al aplicar retracto de deformación sale un segmento, es simplemente conexo.

Como $U \cap V \neq \emptyset$ $U \cup V = X$. Además, U, V y $U \cap V$ son abiertos arcoconexos:

Luego por el teorema de Seifert-Van Kampen

$$\begin{split} \Pi_1(X,x_0) &\cong \Pi_1(U,x_0) *_{\Pi_1(U \cap V,x_0)} \Pi_1(V,x_0) \cong \Pi_1(U,x_0) * \Pi_1(V,x_0) \cong \\ &\cong Z * Z * Z \cong F[a,b] * F[c] = F[a,b,c] \end{split}$$

$$(b) \, X_1 = S^2 \cup \left\{ (x,y,z) \in R^3 \colon x^2 + y^2 = 4, -2 \le z \le 2 \right\} \cup \left\{ (0,y,0) \in R^3 \colon 1 \le |y| \le 2 \right\}$$

Usando el retracto de deformación del cilindro en la circunferencia ecuatorial se tiene que:

Se va aplicar el **teorema de Seifert-Van Kampen:**

Sea $U = X_2 - \{N\}$ abierto

$$\Pi_1(X_1) \cong \Pi_1(X_2) \cong F(a)$$

Se aplica nuevamente el teorema y se obtiene: $\Pi_1(U) \cong \Pi_1(Y) \cong F(a)$

Sea $V=X_2-\{S\}$ abierto, de la misma forma $\Pi_1(V)\cong F(b)$, $U\cup V=X_2\ U\cap V\neq\emptyset$

Sea $U \cap V = X_2 - \{N,S\}$ es simplemente conexo. Por lo tanto

$$\Pi_1(X_2) \cong \Pi_1(U) *_{\Pi_1(U \cap V)} \Pi_1(V) \cong \Pi_1(U) * \Pi_1(V) \cong F[a] * F[b] = F[a,b]$$

Razonar de forma razonada las siguientes cuestiones:

a.- Demuestra que no existe ningún levantamiento $\tilde{f}\colon S^1\to R$ de la aplicación identidad $f=Id_{S^1}\colon S^1\to S^1$.

Sea $\rho:R\to S^1$ la aplicación $\rho(t)=e^{i2\pi t}\ \forall t\in R.$ De existir \tilde{f} se tendría que \tilde{f} es continua y $\rho\circ \tilde{f}=f=Id_{S^1}.$

Se llama $x_0 = 1$, $t_0 = \tilde{f}(x_0)$ e $y_0 = \rho(t_0)$. Se considera los homeomorfismos de grupos:

$$\tilde{f}_* \colon \Pi_1(S^1, x_0) \to \Pi_1(R, t_0) \quad \rho_* \colon \Pi_1(R, t_0) \to \Pi_1(S^1, y_0)$$

Como R es simplemente conexo, entonces \tilde{f}_* y ρ_* son triviales. Por otro lado, como $\rho \circ \tilde{f}$:

$$\rho_* \circ \tilde{f}_* = (Id_{S^1})_* = Id_{\Pi_1(S^1,1)}$$

Pero esto es imposible al ser \tilde{f}_* y ρ_* son triviales y cumplirse que $\Pi_1(S^1,1)\cong Z$.

b.- Sea Q una unión finita de polígonos planos disjuntos con el mismo número de lados. Describe todas las posibles configuraciones de Q a partir de las que se puede obtener una presentación poligonal con un único vértice del 2-toro $T_2=T\ \#\ T$.

Sea $M = \frac{S^1 x[-1,1]}{R}$, donde R es la relación de equivalencia:

$$xRy \Leftrightarrow x = \pm y$$

a.- Probar que $p: S^1x[-1,1] \to M$, p(x,y,z) = [(x,y,z)] es una aplicación recubridora de dos hojas.

Sea $A: S^1x[-1,1] \to S^1x[-1,1]$, dada por A(q) = -q, es la aplicación antípoda, veamos que:

$$S^{1}x[-1,1]/_{R}\cong S^{1}x[-1,1]/_{\langle A\rangle}\quad donde\ \langle A\rangle = \left\{Id_{S^{1}x[-1,1]},A\right\}$$

Sea $G = \langle A \rangle$, se tiene $G \leq Aut(S^1x[-1,1])$ y veamos que actúa de forma propia y discontinua sobre $S^1x[-1,1]$, para ello, para cada $q \in S^1x[-1,1]$ se puede encontrar un entorno distinguido para la acción de G, sea G entorno de G:

Luego U' es entorno de A(q) = -q, y se verifica que $U \cap U' = \emptyset$. Es decir, G que actúa de forma propia y discontinua sobre $S^1x[-1,1]$, por lo que:

$$p: S^1x[-1,1] \to \frac{S^1x[-1,1]}{\langle A \rangle}, \ p(x,y,z) = [(x,y,z)]$$
 es una aplicación recubridora, y como

las órbitas están todas formadas por dos elementos $[q] = \{q, -q\}$ se trata de un recubridor de dos hojas.

$$S^{1}x[-1,1]/_{R} \cong S^{1}x[-1,1]/_{\langle A \rangle}$$

Luego $p: S^1x[-1,1] \to M$ es una aplicación recubridora de dos hojas.

b.- Probar que Rx[-1, 1] es simplemente conexo.

Sea $(x,y,z)\in M$, y sea $r<\sqrt{2}/2$, entonces se considera $U=\left[B\big((x,y,z),r\big)\right]$, entonces $p^{-1}(U)\subset Rx[-1,1]$, de tal manera que $p_{\backslash U'}\colon U'\to U$ es un homeomorfismo para cada componente conexa U' de $p^{-1}(U)$.

Es decir, Rx[-1,1] es simplemente conexo.

c.- Probar que $Aut(Rx[-1,1],\sigma)$ es un grupo cíclico generado por

$$\phi: Rx[-1,1] \to Rx[-1,1] \ \phi(x,y) = \left(x + \frac{1}{2}, -y\right)$$

Se tiene que ϕ es un homeomorfismo por ser una simetría compuesta con una traslación. Por lo tanto, $\phi \in Homeo(Rx[-1,1]) \Rightarrow \phi \in Aut(Rx[-1,1],\sigma)$

$$\langle \phi \rangle \leq Aut(Rx[-1,1], \sigma)$$

Sea $\varphi \in Aut(Rx[-1,1], \sigma) \ y \ [(1,0,0)] \in M, \ (0,1) \subset \sigma^{-1}([(1,0,0)]) \ \ luego$

$$\varphi(0,1) \in \sigma^{-1}([(1,0,0)]) = \left\{ \left(\frac{n}{2}, (-1)^n\right) : m \in Z \right\} = \left\{ \phi^n(0,1) : n \in Z \right\}$$

Por lo que existe $k \in \mathbb{Z}$ para el cual $\varphi(0,1) = \varphi^k(0,1)$, luego $\varphi \in \langle \varphi \rangle$.

Entonces $Aut(Rx[-1,1], \sigma) \le \langle \phi \rangle$, y $Aut(Rx[-1,1], \sigma)$ es un grupo cíclico generado por ϕ .

Discutir de forma razonada si cada par de los siguientes espacios topológicos son o no del mismo tipo de homotopía:

a.- $X_1 = \frac{[-1,1]x[-1,1]}{\sim} - \{\overline{(0,0)}\}$, donde la relación de equivalencia \sim identifica los lados

de [-1,1]x[-1,1] según el esquema $E = aba^{-1}c$.

b.- $X_2 = D \cup T$, donde $D = \{(x, y, z) \in R^3 : x^2 + y^2 \le 1, z = 0\}$ y T es el toro obtenido al rotar alrededor del eje z la circunferencia en $\{x = 0\}$ de centro (0,2,0) y radio 1,

c.-
$$X_3 = \{(x, y, z) \in \mathbb{R}^3 : z = arctg(x + y) - cosh(x^2 + e^y) + 2015\}$$

Ejercicio 7

Sea X un espacio topológico con $X = U \cup V$, donde U y V son abiertos no vacíos contráctiles de X y $U \cap V \neq \emptyset$. ¿Es contráctil?

Ejercicio 8

Sea $f: R \to]0, +\infty[$ una función continua y consideramos el subespacio topológico de R^3 dado por $X = \{(f(z)x, f(z)y, z): x^2 + y^2 = 1, z \in Z\}.$

a.- Demuestra que $A = \{(f(0)x, f(0)y, 0): x^2 + y^2 = 1\}$ es un retracto de deformación de X.

b.- Calcula el grupo fundamental de *X*.

Ejercicio 9

Calcula el grupo fundamental de los espacios topológicos siguientes, siempre de la topología euclidiana heredada del ambiente:

a.- Doble toro estrangulado.

b.-
$$(S^1xR) \cup (\bigcup_{j=1}^4 S_j)$$
 donde $S_j = \{ p \in R^3 : ||p - (0,0,j)|| < \frac{1}{3} \}$ $j = 1,2,3,4$.

Ejercicio 10

Probar que el conjunto $A=\{(x,y,0)\in R^3\colon 0< x^2+y^2<1\}$ es un retracto fuerte de deformación de $X=\{(x,y,0)\in R^3\colon x^2+y^2+z^2<1,\ x^2+y^2\neq 0\}$. Como consecuencia calcular el grupo fundamental de X.

En el intervalo $]0,+\infty[$ dotado de la topología euclidiana definamos, para cada $m\in Z$, la transformación $\phi_m:]0,+\infty[\to]0,+\infty[,\phi_m(t)=2^mt.$

a.- Demostrar que $G = \{\phi_m : m \in Z\}$ es un grupo de homeomorfismos de $]0, +\infty[$ que actúa de forma propia y discontinua sobre $]0, +\infty[$.

b.- Probar que el espacio de órbitas $^{]0,+\infty[}/_G$ es homeomorfo a S^1 .

c.- Sea $H=\{\psi_m\colon m\in Z\}$ el grupo de transformaciones de $R^{n+1}-\{0\}, n\in N$, dado por

$$\psi_m: R^{n+1} - \{0\} \to R^{n+1} - \{0\} \quad \psi_m(p) = 2^m p$$

Demostrar que H actúa de forma propia y discontinua sobre $R^{n+1}-\{0\}$, y que el espacio de órbitas $R^{n+1}-\{0\}$ /H es homeomorfo a S^1xS^n .

d.- Determinar todos los recubridores de S^2xS^n $n \ge 2$.

Sea $f: R \to]0, +\infty[$ una función continua, y consideremos el subespacio topológico de R^3 dado por

$$X = \{(f(z)x, f(z)y, z): x^2 + y^2 = 1, z \in R\}$$

a.- Demuestra que $A=\left\{(f(0)x,f(0)y,0):x^2+y^2=1\right\}$ es un retracto de deformación de X.

Sea la aplicación $r: X \to A$ definida para cada $(u, v, z) \in X$

$$(u, v, z) \in X \implies \exists x, y \in R: x^2 + y^2 = 1 \quad u = f(z)x \quad v = f(z)y$$

$$r(u, v, z) = \left(\frac{f(0)}{f(z)}u, \frac{f(0)}{f(z)}v, 0\right)$$

$$\implies r(f(z)x, f(z)y, z) = \left(\frac{f(0)}{f(z)}f(z)x, \frac{f(0)}{f(z)}f(z)y, 0\right) = (f(0)x, f(0)y, 0) \in A$$

Se tiene que r está bien definida ya que $f(z) > 0 \ \forall z \in R$, es continua por el álgebra elemental de aplicaciones continuas, y además $r_{/A} = Id_A$:

$$r(f(0)x, f(0)y, 0) = \left(\frac{f(0)}{f(0)}f(0)x, \frac{f(0)}{f(0)}f(0)y, 0\right) = (f(0)x, f(0)y, 0)$$

Por tanto, es una retracción de X sobre A.

Por otra parte, la aplicación $H: Xx[0,1] \to X$

$$H(u, v, z) = \left(\frac{f((1-s)z)}{f(z)}u, \frac{f((1-s)z)}{f(z)}v, (1-s)z\right)$$

$$(u, v, z) \in X \implies \exists x, y \in R: x^2 + y^2 = 1 \quad u = f(z)x \quad v = f(z)y$$

$$H((f(z)x, f(z)y, z), s) = \left(\frac{f((1-s)z)}{f(z)}f(z)x, \frac{f((1-s)z)}{f(z)}f(z)y, (1-s)z\right)$$

$$H((f(z)x, f(z)y, z), s) = (f((1-s)z)x, f((1-s)z)y, (1-s)z) \in X$$

Se tiene que está bien definida porque $f(z) > 0 \ \forall z \in R, \ Im(H) \subset X$, es continua por el álgebra elemental de aplicaciones continuas, y además:

$$H((f(z)x, f(z)y, z), 0) = (f((1-0)z)x, f((1-0)z)y, (1-0)z) = (f(z)x, f(z)y, z)$$

$$H(.,0) = Id_X$$

$$H((f(z)x, f(z)y, z), 0) = (f((1-1)z)x, f((1-1)z)y, (1-1)z) = (f(0)x, f(0)y, 0) =$$

$$= r(f(z)x, f(z)y, z) \Rightarrow H(.,1) = r$$

Por lo tanto, que A es un retracto de deformación de X.

b.- Calcula el grupo fundamental de X.

Como A es un retracto de deformación de X con retracción asociada r, dado $a \in A$ la aplicación $r_* \colon \Pi_1(X,a) \to \Pi_1(A,a)$ es un isomorfismo de grupos con inverso

$$i_*: \Pi_1(A, a) \to \Pi_1(X, a)$$

la aplicación inclusión.

Como la aplicación $F:A\longrightarrow S^1$

$$F(u, v, w) = \left(\frac{u}{f(0)}, \frac{v}{f(0)}\right)$$

$$(u, v, w) \in A \Longrightarrow \exists x, y \in R : x^2 + y^2 = 1 \quad u = f(0)x \quad v = f(0)y \quad w = 0$$

$$F\left((f(0)x, f(0)y, 0)\right) = \left(\frac{f(0)x}{f(0)}, \frac{f(0)y}{f(0)}\right) = (x, y) \in S^1$$

Se tiene que F está bien definida porque f(0)>0, $Im(F)\subset S^1$, es continua por el álgebra elemental de aplicaciones continuas, y además es un homeomorfismo, entonces por F_* :

$$\Pi_1(A, a) \cong \Pi_1(S^1, a) \cong Z \Longrightarrow \Pi_1(X, a) \cong Z$$

$$X = R^3 / \left(\{ (0,0) \} x R \} \cup \left\{ (x, y, 0) : \sqrt{x^2 + y^2} = 2 \right\} \right)$$
$$A = \left\{ (x, y, z) \in R^3 : \left(\sqrt{x^2 + y^2} - 2 \right)^2 + z^2 = 1 \right\}$$

Sea la aplicación $r: X \to A$ definida para cada $(u, v, z) \in X$

$$(u, v, z) \in X \implies \exists x, y \in R: x^2 + y^2 = 1 \quad u = f(z)x \quad v = f(z)y$$

$$r(x, y, z) = \left(\frac{x}{\sqrt{x^2 + y^2} - 2}, \frac{y}{\sqrt{x^2 + y^2} - 2}, 0\right)$$

$$\implies r(f(z)x, f(z)y, z) = \left(\frac{f(0)}{f(z)}f(z)x, \frac{f(0)}{f(z)}f(z)y, 0\right) = (f(0)x, f(0)y, 0) \in A$$

Se tiene que r está bien definida ya que $f(z) > 0 \ \forall z \in R$, es continua por el álgebra elemental de aplicaciones continuas, y además $r_{/A} = Id_A$:

$$r(f(0)x, f(0)y, 0) = \left(\frac{f(0)}{f(0)}f(0)x, \frac{f(0)}{f(0)}f(0)y, 0\right) = (f(0)x, f(0)y, 0)$$