- 实验报告
 - 主要思路
 - 测试程序
 - 对偶问题
 - 原问题
 - 运行结果
 - 总结
 - 未来规划

实验报告

主要思路

参照原文献,考虑原问题及对偶问题在16个基和32个基下的L2误差和H1误差,对照所得出的误差,考虑对偶问题求解是否达到预期。

测试程序

对偶问题

```
uk = Duality_approx_simple_PDE(BASE_SIZE);
errorl2_dual(k) = sqrt( ...
    int((uk-u)^2,x,0,1) ...
    );
errorh1_dual(k) = sqrt( ...
    int((uk-u)^2,x,0,1) + int((diff(uk)-diff(u))^2,0,1) ...
);
```

原问题

```
uk = Approx_simple_PDE(BASE_SIZE);
errorl2_ori(k) = sqrt( ...
    int((uk-u)^2,x,0,1) ...
    );
errorh1_ori(k) = sqrt( ...
    int((uk-u)^2,x,0,1) + int((diff(uk)-diff(u))^2,0,1) ...
    );
```

运行结果

BASE_SIZE	errorl2_dual	errorh1_dual	errorl2_ori	errorh1_ori	GAPDE_I2	GAPDE_h1
16	0.0011116	0.0338331	0.0011116	0.0338331	7.86e-04	2.79e-02
32	0.0011116	0.0338331	0.0011116	0.0338331	7.70e-05	5.89e-03

Table 1 L^2 and H^1 numerical error of OGA v.s. the number of neurons n for **Example 1**.

n	$\ u-u_n\ _{L^2}$	$\operatorname{order}(n^{-3})$	$ u-u_n _{H^1}$	$\operatorname{order}(n^{-2})$
16	7.86e-04	-	2.79e-02	-
32	7.70e-05	3.35	5.89e-03	2.24
64	8.45e-06	3.19	1.36e-03	2.11
128	9.68e-07	3.13	3.22e-04	2.08
256	1.18e-07	3.04	7.81e-05	2.04
512	1.44e-08	3.03	1.94e-05	2.01
1024	1.83e-09	2.97	4.86e-06	1.99
2048	2.50e-10	2.88	1.28e-06	1.93

对比文献结果:

总结

通过实验我们总结出以下现象:

- 1. 我们原问题的I2、h1误差普遍比论文中大,这是因为我们在进行argmax运算时仅进行了w=+-1,b=-1:0.02:1的迭代;并没有像论文中在迭代到最优值后,还用梯度下降法或牛顿法进一步优化。
- 2. 原问题和对偶问题的误差没有任何区别,甚至在基的规模增加时,误差也仍未减小;误差很可能由新选的基不够精确造成,同1可能是没有用梯度下降法或牛顿法进一步优化的结果。

未来规划

- 1. 我们会先优化int和diff函数(在上一个星期未能完成),使运行基的规模很大的代码可行
- 2. 编写argmax中进一步用梯度下降法或牛顿法进一步优化的代码。