MÉTODO DE DESCOMPOSICIÓN DE DOMINIO APLICADO A FLUJO SUBTERRÁNEO

Grupo de Geofísica Matemática y Computacional,
Instituto de Geofísica,
Universidad Nacional Autónoma de México,
Guillermo de J. Hernández García
en el grupo con:
Graciela Herrera Z., Marian Lemus G.,
Iván Contreras T., Ismael Herrera R.

PROPÓSITO DE ESTA CHARLA

- Los algoritmos del Espacio de Vectores Derivados, DVS, son muy eficientes para la aplicación de software altamente paralelo a la solución de las ecuaciones diferenciales parciales (PDE), o sistemas de tales ecuaciones.
- Como ilustración de su aplicabilidad presentamos su aplicación a un software bien conocido y ampliamente usado: MODFLOW

MODFLOW INFORMACIÓN GENERAL

- Modelo Modular de flujo de agua subterránea,
- Código abierto y licencia libre del USGS
- Desarrollado en lenguaje de programación FORTRAN 90,
- Internacionalmente aplicado por los hidrogeólogos.

MODFLOW

El flujo tridimensional de agua subterránea de densidad constante a través de un medio poroso heterogéneo y anisotrópico es gobernado por la ecuación diferencial parcial siguiente:

$$\frac{\partial}{\partial x} \left(K_X \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_Y \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_Z \frac{\partial h}{\partial z} \right) = S_s \frac{\partial h}{\partial t} - R$$

MODFLOW DESCOMPOSICIÓN DEL DOMINIO EN CELDAS

Figura. Un acuífero hipotético discretizado. (tomado de McDonald and Harbaugh, 1988.)

EXPLANATION

- —— AQUIFER BOUNDARY
 - ACTIVE CELL
 - INACTIVE CELL
- Δr_j DIMENSION OF CELL ALONG THE ROW DIRECTION— Subscript (j) indicates the number of the column
- Δ c_j DIMENSION OF CELL ALONG THE COLUMN DIRECTION— Subscript (l) indicates the number of the row
- Δ v_k DIMENSION OF CELL ALONG THE VERTICAL DIRECTION— Subscript (k) indicates the number of the layer

MODFLOW ECUACIONES EN DIFFERENCIAS FINITAS

De acuerdo con la ecuación de continuidad, que expresa el equilibrio de flujo en una celda, la suma de todos los flujos desde y hacia cada celda debe ser igual a la tasa de cambio del almacenamiento en esa misma celda (Todd. 1980),

$$\sum Q_i = S_s \frac{\Delta h}{\Delta t} \Delta V \qquad (1.1)$$

 Q_i = es el flujo hacia o desde la celda [L-3 T-1]

 S_s = es el volume de agua que puede ser inyectado por unidad de volume del material acuífero por unidad de cambio en la carga [L⁻¹]

 ΔV = es el volume de la celda [L³]

 Δh = es el cambio de la carga en un interval de tiempo de longitud Δt [L]

MODFLOW CELDAS ADYACENTES A LA CELDA I,J,K

Figura. Índices de las seis celda adyacentes que rodean la celda *i, j, k* (oculta). (Modificado de McDonald y Harbaugh, 1988.)

Figura. Flujo en la celda *i, j, k* de la celda *i, j-1, k*. (modificado de McDonald y Harbaugh, 1988).

MODFLOW LEY DE DARCY Y CONDUCTANCIA

El flujo a la celda *i*, *j*, *k* en la dirección del renglón, desde la celda *i*, *j*-1, *k* (figura) se da, por ley de Darcy,

desde i, j-1, k
$$q_{i,j-\frac{1}{2},k} = KR_{i,j-\frac{1}{2},k} \Delta c_i \Delta v_k \frac{h_{i,j-1,k} - h_{i,j,k}}{\Delta r_{j-\frac{1}{2}}}$$
 (1.2)

donde: $KR_{i,j-1/2,k}$ es la conductividad hidráulica en la dirección del renglón entre los nodos i,j,k y i,j-1,k [L T-1].

desde
$$i, j+1, k$$

$$q_{i,j+\frac{1}{2},k} = KR_{i,j+\frac{1}{2},k} \Delta c_i \Delta v_k \frac{h_{i,j+1,k} - h_{i,j,k}}{\Delta r_{i+\frac{1}{2}}}$$
(1.3)

desde
$$i+1, j, k$$

$$q_{i+\frac{1}{2},j,k} = KC_{i+\frac{1}{2},j,k} \Delta r_j \Delta v_k \frac{h_{i+1,j,k} - h_{i,j,k}}{\Delta c_{i+\frac{1}{2}}}$$
(1.4)

desde
$$i$$
-1, j , k
$$q_{i-\frac{1}{2},j,k} = KC_{i-\frac{1}{2},j,k} \Delta r_j \Delta v_k \frac{h_{i-1,j,k} - h_{i,j,k}}{\Delta c_{i-\frac{1}{2}}}$$
(1.5)

desde
$$i, j, k+1$$

$$q_{i,j,k+\frac{1}{2}} = KV_{i,j,k+\frac{1}{2}} \Delta r_j \Delta c_i \frac{h_{i,j,k+1} - h_{i,j,k}}{\Delta v_{k+\frac{1}{2}}}$$
(1.6)

desde
$$i, j, k-1$$

$$q_{i,j,k-\frac{1}{2}} = KV_{i,j,k-\frac{1}{2}} \Delta r_j \Delta c_i \frac{h_{i,j,k-1} - h_{i,j,k}}{\Delta v_{k-\frac{1}{2}}}$$
(1.7)

MODFLOW LEY DE DARCY Y CONDUCTANCIA

La notación se puede simplificar mediante la combinación de las dimensiones de la rejilla y conductividad hidráulica en una única constante, la "conductancia hidráulica" o, más simplemente, la "conductancia". Por ejemplo

$$CR_{i,j-\frac{1}{2},k} = \frac{KR_{i,j-\frac{1}{2},k}\Delta c_i \Delta v_k}{\Delta r_{j-\frac{1}{2}}} [L^2 T^{-1}]$$
 (1.8)

Al sustituir la conductancia de ecuación 1.8 en ecuación 1.2

$$q_{i,j-1/2,k} = CR_{i,j-1/2,k} \left(h_{i,j-1,k} - h_{i,j,k} \right)$$
 (1.9)

Similarmente

$$q_{i,j+1/2,k} = CR_{i,j+1/2,k} \left(h_{i,j+1,k} - h_{i,j,k} \right)$$
 (1.10)

$$q_{i-1/2,j,k} = CC_{i-1/2,j,k} \left(h_{i-1,j,k} - h_{i,j,k} \right)$$
 (1.11)

$$q_{i+1/2,j,k} = CC_{i+1/2,j,k} \left(h_{i+1,j,k} - h_{i,j,k} \right)$$
 (1.12)

$$q_{i,j,k-\frac{1}{2}} = CV_{i,j,k-\frac{1}{2}} \left(h_{i,j,k-1} - h_{i,j,k} \right)$$
 (1.13)

$$q_{i,j,k+\frac{1}{2}} = CV_{i,j,k+\frac{1}{2}} \left(h_{i,j,k+1} - h_{i,j,k} \right)$$
 (1.14)

MODFLOW ECUACIONES EN DIFERENCIASFINITAS

En cada celda:

$$\begin{split} CV_{i,j,k-\frac{1}{2}}\pmb{h}_{i,j,k-1}^{m} + CC_{i-\frac{1}{2},j,k}\pmb{h}_{i-1,j,k}^{m} + CR_{i,j-\frac{1}{2},k}\pmb{h}_{i,j-1,k}^{m} + \\ \left(-CV_{i,j,k-\frac{1}{2}} - CC_{i-\frac{1}{2},j,k} - CR_{i,j-\frac{1}{2},k} - CR_{i,j+\frac{1}{2},k} - CC_{i+\frac{1}{2},j,k} - CV_{i,j,k+\frac{1}{2}} + HCOF_{i,j,k}\right) \pmb{h}_{i,j,k}^{m} \\ + CR_{i,j+\frac{1}{2},k}\pmb{h}_{i,j+1,k}^{m} + CC_{i+\frac{1}{2},j,k}\pmb{h}_{i+1,j,k}^{m} + CV_{i,j,k+\frac{1}{2}}\pmb{h}_{i,j,k+1}^{m} \\ = RHS \end{split}$$

$$HCOF_{i,j,k} = P_{i,j,k} - \frac{SC1_{i,j,k}}{t_m - t_{m-1}}$$

$$RHS_{i,j,k} = Q_{i,j,k} - \frac{SC1_{i,j,k} h_{i,j,k}^{m-1}}{t_m - t_{m-1}}$$

$$SC1_{i,j,k} = SS_{i,j,k} \Delta r_i \Delta c_i \Delta v_k$$

MODFLOW [A][h]=[q]

Correspondencia entre ecuaciones en diferencias finitas y la ecuación matricial para una rejilla de tres renglones, cuatro columnas y dos capas

ALGORITMOS DVS

- Matrices locales fueron construidos localmente y en paralelo
- En el límite interior, para nodos contiguos, se aplican algoritmos para los parámetros y valores de intercambio

METODO DVS APLICADO A MODFLOW

- Implementación de ruta óptima,
- El código implementado soluciona problemas de elasticidad,
- escrito en C++, programación orientada a objetos
- MPI, topología virtual cartesiana

MODFLOW PARALELIZACIÓN

- Utilizando MPI
 - Inicializado en MAIN
 - Paralelización en PCG
- modificado:
 - Subrutinas "Read and Prepare", RP
 - Subrutinas "formulate", FM
 - Paquete "Solver", PCG

Topología virtual cartesiana MPI

0	1	2	3
(0,0)	(0,1)	(0,2)	(0,3)
4	5	6	7
(1,0)	(1,1)	(1,2)	(1,3)
8	9	10	11
(2,0)	(2,1)	(2,2)	(2,3)
12	13	14	15
(3,0)	(3,1)	(3,2)	(3,3)

MODFLOW: DIAGRAMA DE FLUJO DEL PROGRAMA PARA SIMULAR FLUJO DE AGUA SUBTERRÁNEA EN PARALELO

DVS: Modos de ejecución

- Relación funcional entre dos programas
 - Como una ejecución independiente: un nuevo código de modelo para cada problema a resolver
 - Como una biblioteca para ser utilizado para un código externa: llama a un código existente para resolver la ecuación de matriz
- Compilación de MODFLOW-subrutinas DVS
 - El programa principal en Modflow llamada a DVS como una biblioteca
 - Procesamiento previo del dominio para tener subdominios independientes para ejecutar en paralelo.

EXPERIMENTOS NUMÉRICOS Solución de estado estacionario

RESULTADOS

La aceleración relativa es dada por

$$S_p^{p'} = \frac{T_{p'}}{T_p}$$

La eficiencia relativa se define como

$$E_p^{p'} = \frac{p'}{p} S_p^{p'} = \frac{p'}{p} \frac{T_{p'}}{T_p}$$

TIEMPO VERSUS PROCESADORES

EFICIENCIA VERSUS PROCESADORES

MIZTLI PCG 1e-7

				4705x	4705	= 22	2,137,	025
Particiones Particiones					$S' = \frac{T_p}{T_p}$	$E' = \frac{p'}{p}$	$T_{p'}$	
en dominio	por subd	om.	DoF/Sub	Р	T	T_p	$\frac{E}{p}$	T_p
					(seg)		%	
2x2	2353	F 156	5,536,609	4	33653.30	1.00	100.0	
4x4	1177		1,385,329	16	4513.21	7.46	186.4	
8x8	589		346,921	64	709.37	47.44	296.5	
12x12	393		154,449	144	362.50	92.84	257.9	
14x14	337		113,569	196	319.72	105.26	214.8	
16x16	295		87,025	256	325.11	103.51	161.7	to it.
中国国际各种	Talk in		A COLUMN		22	- T-1-10	BRAK!	All my

CONCLUSIONES

- El método DVS trabaja en matrices simétricas, no simétricas e indefinidas y la formulación de tales métodos se ha desarrollado
- Este enfoque produce matriz unificadas simple, con expresiones, en términos de una matriz generalizada de Schur complemento.
- Aplicando este método al flujo y transporte en medios porosos permite para obtener eficaz paralelización de las ecuaciones que gobiernan en embalses con advección dominante.
- Formulaciones de DVS permiten para desarrollar códigos que cumplen el paradigma de la DDM, es decir:
 - "La solución de los problemas globales se obtiene sólo por la resolución de los problemas locales".

Referencias

- Ismael Herrera, Luis M. de la Cruz, Alberto Rosas-Medina, Nonoverlapping Discretization Methods for Partial Diferential Equations, Numerical Methods for Partial Diferential Equations, published by Wiley Periodicals, Inc, pp 1427-1454, 2014. 26
- Harbaugh, A.W., 2005, <u>MODFLOW-2005</u>, the U.S. <u>Geological</u>
 <u>Survey modular ground-water model -- the Ground-Water Flow</u>

 <u>Process</u>: U.S. Geological Survey Techniques and Methods 6-A16.
- Hill, Mary C., Preconditioned conjugate-gradient 2 (PCG2), a computer program for solving ground-water flow equations: U.S. Geological Survey Water-Resources Investigations Report 90-4048, 43 p.