

Departamento de Engenharia de Computação e Automação DCA0212.1 – CIRCUITOS DIGITAIS
2016011573 – Gabriel de Oliveira Barreto
2016021177 – Layse Pereira de A. Batista
20170031179 – Mariana Camila C. de Queiroz

RELATÓRIO - CONTADOR UP/DOWN

NATAL - RN OUTUBRO/2018

1. INTRODUÇÃO

Esse projeto tem como finalidade construir e implementar um contador capaz de contar números binários de 3 bits de forma progressiva ou regressiva a cada transição de clock. A contagem, por sua vez, poderá ser visualizada por meio de um display BCD de 7 segmentos.

Para isso, usaremos, entre outros, os conceitos, de portas lógicas, flip-flop JK e máquina de estados finita.

2. **DESENVOLVIMENTO**

O primeiro passo para o desenvolvimento do projeto foi a construção da máquina de estados finita (FMS) de acordo com as regras do contador. Sendo assim, foi elaborado o diagrama de estados abaixo:

Figura 1 - Diagrama de estados

Fonte: Elaborado pelo autor

Esse diagrama descreve o comportamento do contador up/down de 3 bits, o qual é capaz de contar de 0 a 7 na ordem crescente (indicado pelas setas verdes) quando a entrada S=0, e ordem decrescente (indicado pelas setas laranjas), quando S=1. Além disso, o contador recebe as entradas *enable* e *reset*, as quais habilita a contagem de acordo com a ordem selecionada e retorna para zero, respectivamente. No entanto, o *reset* só funciona quando o *enable* estiver

desabilitado (setas amarelas). Por fim, quando ambos estiverem desabilitados, a contagem permanece estática (setas roxas).

Tendo, portanto, o diagrama de estados, foi possível construir a tabela-verdade apresentada abaixo (Figura 3), a qual é baseada no comportamento do flip-flop JK (Tabela 1):

Tabela 1: Comportamento do Flip-Flop JK

J	K	Q
0	0	Q0 (mantém)
0	1	1
1	0	0
1	1	Q0' (alterna)

Fonte: Elaborado pelo autor

Figura 2: Tabela-verdade

Estado Atual Estado Futuro (S=0)			(S=0)	Estado Futuro (S=1)			Crescente						Decrescente							
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	1	1	1	1	1	Χ	1	Χ	0	Χ	0	Χ	0	Х	0	Х
0	0	1	0	1	0	0	0	0	1	X	0	Х	Х	0	1	Х	1	Х	Х	0
0	1	0	0	1	1	0	0	1	1	Х	Х	1	0	Х	1	Х	Х	0	0	Х
0	1	1	1	0	0	0	1	0	0	Х	Х	0	Х	0	1	Х	Х	1	Х	0
1	0	0	1	0	1	0	1	1	Х	1	1	Х	0	Х	Х	0	0	Х	0	Х
1	0	1	1	1	0	1	0	0	Х	1	0	Χ	Х	0	Х	1	1	Χ	Х	0
1	1	0	1	1	1	1	0	1	Х	1	Х	1	0	Х	Х	1	Х	0	0	Х
1	1	1	0	0	0	1	1	0	Х	0	Х	0	Х	0	Х	1	Х	1	Х	0

Fonte: Elaborado pelo autor

A partir da lógica aplicada nas tabelas acima, extraímos as equações lógicas de J2, J1, J0 e K2, K1, K0, as quais estão apresentadas abaixo, considerando também as estradas *enable* e *reset*:

A partir dessas equações, foi possível implementar na linguagem VHDL um programa que descreve o comportamento desejado para o projeto. Abaixo, pode-se

observar uma visão geral através de um esquema RLT obtido no *software* Quartus II:

Figura 3: Esquema RTL

Fonte: Elaborado pelo autor

Por fim, elaboramos uma simulação em forma de onda para verificar o funcionamento do contador, assim, obtivemos os seguintes resultados apresentados na Figura 4:

Figura 4: Teste de ondas

Fonte: Elaborado pelo autor

A Figura 4 mostra inicialmente uma contagem na ordem crescente, quando S=0, reset=0 e enable=1. Quando há uma transição de clock, nesse caso sensível a descida, a contagem vai de 3 para 2 e continua na ordem decrescente pois o sinal de S muda para 1. Em seguida, S volta para 0 e a contagem é feita na ordem crescente novamente. Por fim, pode-se observar um sinal 0 no fim pois o reset foi ativado e o enable desativado.

3. CONCLUSÃO

A partir da análise do problema apresentado, foi possível realizar as etapas para a construção de um projeto, desde a projeção da máquina de estado, até a implementação do código em VHDL de acordo com os conhecimentos adquiridos

até então. Sendo assim, a escolha de utilizar o comportamento do flip-flop JK permitiu que obtivéssemos uma tabela bem mais fácil de se trabalhar, se comparada ao flip-flop D, por exemplo, o que facilitou desde a obtenção das equações até a implementação do código.