Chapter 4

김선 서울대학교 컴퓨터 공학부 생물정보 연구소

퍼셉트론 & 인공신경망

(Perceptron & Artificial Neural Network)

김선 서울대학교 컴퓨터 공학부 생물정보 연구소

— Classification(분류)

- When data has discrete target classes.
- # of classes (n)?
 - (n=2) Binary classification.
 - (n>2, allow single class) Multiclass classification.
 - (n>2, allow multiple classes) Multi-label classification.

• Example)

- Given personal information, determine one is man or woman.
- Given midterm score, predict the final grade.
- Which objects can be found from given picture.

Binary Classification(분류)

- A neuron receives several inputs and combines these in the cell body.
- If the input reaches a threshold, then the neuron may fire (produce an output).
- Some inputs are excitatory, while others are inhibitory.

- Simplest form of artificial neuron.
- Linear classification algorithm.
- Formulation.
 - Data: $D = \{(X, t)^n\}_{n=1}^N$
 - Input features: $X = (x_1, ..., x_k)$
 - Output: $t \in \{-1, 1\}$
 - Model: $\hat{t} = g(f(X))$

$$f(X) = \sum_{i=0}^{k} w_i x_i$$

Schematic of Rosenblatt's perceptron.

Example)

- Data: $D = \{(X, t)^n\}_{n=1}^N$
- Input features: $X = (x_1, x_2) = (x, y)$
- Output: $t \in \{-1, 1\}$
- Model: $\hat{t} = g(f(X))$

$$f(X) = \sum_{i=0}^{k} w_i x_i = w_0 + w_1 x + w_2 y$$
where, $w_0 = -10, w_1 = 3, w_2 = 2$

- Example) Make 'AND' function with perceptron.
 - Data: $D = \{(X, t)^n\}_{n=1}^N$
 - Input features: $X = (x_1, x_2)$
 - Output: $t \in \{0, 1\}$
 - Model: $\hat{t} = g(f(X))$

$$f(X) = \sum_{i=0}^{k} w_i x_i = w_0 + w_1 x_1 + w_2 x_2$$
$$g(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

- Find (w_0, w_1, w_2) that makes model as logical 'AND' function.
- There are multiple answers!
 - One possible answer is $(w_0, w_1, w_2) = (-0.8, 0.5, 0.5)$.

x_1	x_2	x_2 AND x_2
0	0	0
0	1	0
1	0	0
1	1	1

- TODO) Make 'OR' function with perceptron.
 - Data: $D = \{(X, t)^n\}_{n=1}^N$
 - Input features: $X = (x_1, x_2)$
 - Output: $t \in \{0, 1\}$
 - Model: $\hat{t} = g(f(X))$

$$f(X) = \sum_{i=0}^{k} w_i x_i = w_0 + w_1 x_1 + w_2 x_2$$
$$g(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

- Find (w_0, w_1, w_2) that makes model as logical 'OR' function.
- There are also multiple answers!
 - One possible answer is $(w_0, w_1, w_2) = ???$.

x_1	x_2	x_2 OR x_2
0	0	0
0	1	1
1	0	1
1	1	1

- TODO) Make 'OR' function with perceptron.
 - Data: $D = \{(X, t)^n\}_{n=1}^N$
 - Input features: $X = (x_1, x_2)$
 - Output: $t \in \{0, 1\}$
 - Model: $\hat{t} = g(f(X))$

$$f(X) = \sum_{i=0}^{k} w_i x_i = w_0 + w_1 x_1 + w_2 x_2$$
$$g(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

- Find (w_0, w_1, w_2) that makes model as logical 'OR' function.
- There are also multiple answers!
 - One possible answer is $(w_0, w_1, w_2) = (-0.3, 0.5, 0.5)$.

x_1	x_2	x_2 OR x_2
Λ	Λ	0

- Then, can perceptron model 'XOR' function?
 - · No, it cannot.
 - To do so, we can separate two classes by drawing a single line on the plot. However, it is not possible.
- Perceptron cannot model non linearly separable data!
- Multilayer perceptron can represent more complex models.

x_1	x_2	x_2 XOR x_2
0	0	0
0	1	1
1	0	1
1	1	0

- MLP consists of one input and output layer with multiple hidden layers.
 - Each layer is a perceptron.
 - Most widely used architecture of artificial neural network (feedforward neural network).

$$a_i^{(j)} =$$
 "activation" of unit i in layer j

$$\Theta^{(j)} = ext{matrix of weights controlling} \ ext{function mapping from layer} j \ ext{to} \ ext{layer} j + 1$$

$$x_0, a_0 = bias$$

$$g(x)$$
 = activation function

$$egin{aligned} a_1^{(2)} &= g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \ a_2^{(2)} &= g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \ a_3^{(2)} &= g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \ h_{\Theta}(x) &= g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) \end{aligned}$$

- Modeling 'XOR' function with MLP?
 - $XOR = (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$
 - v: 'AND', ∧: 'QR', ∕¬: 'NOT'
 - With two layers

x_1	x_2	x_2 XOR x_2
0	0	0
0	1	1
1	0	1
1	1	0

Different Non-Linearly Separable Problems http://www.zsolutions.com/light.htm

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	A B A	B	1

Gradient Descent(기울기 하강법)

- Find parameters of perceptron via 3 steps of parametric model.
 - 1. Define model.
 - Data: D = $\{(X^n, t_n)\}_{n=1}^N, X^n = (x_1^n, ..., x_k^n), t_n = \{-1, 1\}$
 - Parameters: $\theta = \{w_i\}_{i=0}^k$
 - Model: $f(X^n; \theta) = \sum_{i=0}^k w_i x_k^n$, $\widehat{t_n} = \begin{cases} -1, & f(X^n) < 0 \\ 1, & f(X^n) \ge 0 \end{cases}$
 - 2. Define evaluation criterion.
 - $\begin{cases} f(X^n)t_n < 0 : wrong \ prediction \\ f(X^n)t_n > 0 : correct \ prediction \end{cases}$
 - $E_n = \max(0, -f(X^n)t_n)$: if prediction is correct, E=0. if not, E signify how much far from the correct prediction.
 - $E_D = \sum_{n=1}^N E_n$
 - Criterion: $\underset{\theta}{argmin} E_D$
 - 3. Find parameters.

Gradient Descent(기울기 하강법)

- However, we cannot find the answer directly by differentiation as we did in least squares and maximum likelihood estimation.
- Gradient Descent
 - Given the way of defining E_D , find local minimum point of E_D (can also find global minimum if there exists only one minimum).
 - Starting with an arbitrary initial weights, repeatedly modifying weights in small steps.
 - How small = learning rate (η)
 - Algorithm
 - Repeat until convergence
 - $\nabla E_D = \left[\frac{\partial E_D}{\partial w_0}, ..., \frac{\partial E_D}{\partial w_k}\right]$: gradient
 - $[w_0, ..., w_k] = [w_0, ..., w_k] \eta \nabla E_D$: update parameters

Gradient Descent(기울기 하강법)

Stochastic Gradient Descent (확률적 기울기 하강법)

- For gradient descent (batch gradient descent), we use all observed data to calculate E_D and ∇E_D .
- If data size is too big, it takes too much time to calculate gradient.
- Let's sampling train data -> stochastic!
 - Rather than calculate $E_D = \sum_{n=1}^N E_n$, use E_n while randomly sampling n from $\{1,\ldots,N\}$
- Stochastic Gradient Descent (SGD) algorithm.
 - Repeat until convergence
 - For n in random_sort({1,..,N})
 - $\nabla E_n = \left[\frac{\partial E_n}{\partial w_0}, \dots, \frac{\partial E_n}{\partial w_k}\right]$: gradient
 - $[w_0, ..., w_k] = [w_0, ..., w_k] \eta \nabla E_n$: update parameters

Stochastic Gradient Descent (확률적 기울기 하강법)

