Homework #8 due December 30, 2016, Friday

Question 1

Give a state-input tabular description of a TM that realizes the following computation: $(s, \#u) \mid ---*_M (h, \#v); u \in (0+1)*$ and v is obtained from u by interchanging θ s and Is

Ouestion 2

Describe a TMM in both graphical and compositional tabular forms that *decides* the language $L = \{u \in \Sigma_0^* \mid u = u^R \}$

(Hint: you may use an extra symbol $\$ \notin \Sigma_0$ and choose as initial ID: (s, #u))

Question 3

Describe a TM M in both graphical and compositional tabular forms that performs the following computation:

$$(s, \$w\#) \mid ---*_M (h, \$u\#)$$

where u is obtained from w by compressing all blank (#) symbols in w and s is a special symbol not used in w.

Question 4

Construct a *TM M* (*multitape and/or nondeterministic if necessary!*) that decides the language below (*specify the TM in tabular compositional form*).

```
L_n = \{\omega \in (a+b)^* \mid w = u^n, u \in (a+b)^*, n \text{ a fixed positive integer}\} (Hint: you may use induction on n)
```

Question 5

Construct *TMs* in compositional tabular forms (*multitape* and/or *nondeterministic* if necessary!) that perform the following computations :

- (i) (s, #w) |---*_M (h, #w#w)
- (ii) $(s, \#w) \mid ---*_M (h, \#w^R)$
- (iii) (s, #w) |---*_M (h, #ww)
- (iv) (s, $\frac{\pi}{4}$ w) |---*_M (h, $\frac{\pi}{4}$ w#w^R)
- (v) (s, #w) |--- $*_M$ (h, $\#a^nb^n$) where the number of as and bs in w are both equal to n.