Performance Evaluation

David S. Rosenberg

Bloomberg ML EDU

October 26, 2017

Baseline Models

When is your prediction function good?

- Compare to previous models, if they exist.
- Is it good enough for business purposes?
- But also helpful to have some simple baseline models for comparison,
 - to make sure you're doing significantly better than trivial models
 - to make sure the problem you're working on even has a useful target function

Zero-Information Prediction Function (Classification)

- For classification, let y_{mode} be the most frequently occurring class in training.
- Prediction function that always predicts y_{mode} is called
 - zero-information prediction function, or
 - no-information prediction function
- "No-information" because we're not using any information in input x.

Zero-Information Prediction Function (Regression)

- What's the right zero-Information prediction function for square loss?
 - Mean of training data labels (See earlier homework.)
- What's the right zero-Information prediction function for absolute loss?
 - Median of training data labels (See earlier homework.)

Single Feature Prediction Functions

- Choose a basic ML algorithm (e.g. linear regression or decision stumps)
- Build a set of prediction functions using ML algorithm, each using only one feature

Regularized Linear Model

- Whatever fancy model you are using (gradient boosting, neural networks, etc.)
 - always spend some time building a linear baseline model
- Build a regularized linear model
 - lasso / ridge / elastic-net regression
 - ℓ_1 and/or ℓ_2 regularized logistic regression or SVM
- If your fancier model isn't beating linear,
 - perhaps something's wrong with your fancier model (e.g. hyperparameter settings), or
 - you don't have enough data to beat the simpler model
- Prefer simpler models if performance is the same
 - usually cheaper to train and easier to deploy

Oracle Models

- Often helpful to get an upper bound on achievable performance.
- What's the best performance function you can get, looking at your validation data?
 - Performance will estimate the Bayes risk (i.e. optimal error rate).
 - This won't always be 0 why?
- Using same model class as your ML model,
 - fit to the validation data without regularization.
 - Performance will tell us the limit of our model class, even with infinite training data.
 - Gives estimate of the approximation error of our hypothesis space.

Describing Classifier Performance

Confusion Matrix

• A confusion matrix summarizes results for a binary classification problem:

		Actual	
		Class 0	Class 1
Predicted	Class 0	а	Ь
redicted	Class 1	С	d

- a is the number of examples of Class 0 that the classifier predicted [correctly] as Class 0.
- b is the number of examples of Class 1 that the classifier predicted [incorrectly] as Class 0.
- ullet c is the number of examples of Class 0 that the classifier predicted [incorrectly] as Class 1.
- d is the number of examples of Class 1 that the classifier predicted [correctly] as Class 1.

Performance Statistics

• Many performance statistics are defined in terms of the confusion matrix.

• Accuracy is the fraction of correct predictions:

$$\frac{a+d}{a+b+c+d}$$

• Error rate is the fraction of incorrect predictions:

$$\frac{b+c}{a+b+c+c}$$

Performance Statistics

- We can talk about accuracy of different subgroups of examples:
 - Accuracy for examples of class 0: a/(a+c)
 - Accuracy for examples predicted to have class 0: a/(a+b).

Issue with Accuracy and Error Rate

• Consider a **no-information classifier** that achieves the following:

- Accuracy is 99.9% and error rate is .09%.
- Two lessons:
 - Accuracy numbers meaningless without knowing the no-information rate or base rate.
 - Accuracy alone doesn't capture what's going on (0% success on class 1).

Positive and Negative Classes

- So far, no class label has ever had any special status.
- In many contexts, it's very natural to identify a positive class and a negative class.
 - pregnancy test (positive = you're pregnant)
 - radar system (**positive** = **threat detected**)
 - searching for documents about bitcoin (positive = document is about bitcoin)
 - statistical hypothesis testing (**positive** = **reject the null hypothesis**)

FP, FN, TP, TN

• Let's denote the **positive** class by + and **negative** class by -:

- TP is the number of **true positives**: predicted **correctly** as Class +.
- \bullet FP is the number of **false positives**: predicted **incorrectly** as Class + (i.e true class -)
- TN is the number of **true negatives**: predicted **correctly** as Class —.
- \bullet FN is the number of **false negatives**: predicted **incorrectly** as Class (i.e. true class +)

Precision and Recall

• Let's denote the **positive** class by + and **negative** class by -:

- The **precision** is the accuracy of the positive predictions: TP / (TP + FP)
 - High precision means low "false alarm rate" (if you test positive, you're probably positive)
- The recall is the accuracy of the positive class: TP/(TP+FN)
 - High recall means you're not missing many positives

Information Retrieval

- Consider a database of 100.000 documents.
- Query for bitcoin returns 200 documents
- 100 of them are actually about bitcoin.
- 50 documents about bitcoin were not returned.

Precision and Recall

• Results from bitcoin query:

- The precision is the accuracy of the + predictions: TP / (TP + FP) = 100/200 = 50%.
 - 50% of the documents offered as relevant are actually relevant.
- The **recall** is the accuracy of the positive class: TP/(TP+FN) = 100/(100+50) = 67%.
 - 67% of the relevant documents were found (or "recalled").
- What's an easy way to get 100% recall?

F_1 score

- We really want high precision and high recall.
- But to choose a "best" model, we need a single number performance summary
- The F-measure or F_1 score is the harmonic mean of precision and recall:

$$F_1 = 2 \cdot \frac{1}{\frac{1}{\mathsf{recall}} + \frac{1}{\mathsf{precision}}} = 2 \cdot \frac{\mathsf{precision} \cdot \mathsf{recall}}{\mathsf{precision} + \mathsf{recall}}.$$

• Ranges from 0 to 1.

 F_1 (precision, recall)

	Precision	Recall	F_1
1	0.01	0.99	0.02
2	0.20	0.80	0.32
3	0.40	0.90	0.55
4	0.60	0.62	0.61
5	0.90	0.95	0.92

F_{β} score

- Sometimes you want to weigh precision or recall more highly.
- F_{β} score for $\beta \geqslant 0$:

$$F_{eta} = \left(1 + eta^2
ight) \cdot rac{\mathsf{precision} \cdot \mathsf{recall}}{\left(eta^2 \cdot \mathsf{precision}
ight) + \mathsf{recall}}.$$

	Precision	Recall	F_1	$F_{0.5}$	F_2
1	0.01	0.99	0.02	0.01	0.05
2	0.20	0.80	0.32	0.24	0.50
3	0.40	0.90	0.55	0.45	0.72
4	0.60	0.62	0.61	0.60	0.62
5	0.90	0.95	0.92	0.91	0.94

TPR, FNR, FPR, TNR

- True positive rate is the accuracy on the positive class: TP / (FN + TP)
 - same as recall, also called sensitivity
- False negative rate is the error rate on the positive class: FN / (FN + TP) ("miss rate")
- ullet False positive rate is error rate on the negative class: FP / (FP + TN)
 - also called fall-out or false alarm rate
- True negative rate is accuracy on the negative class: TN / (FP + TN) ("specificity")

Medical Diagnostic Test: Sensitivity and Specificity

- Sensitivity is another name for TPR and recall
 - What fraction of people with disease do we identify as having disease?
 - How "sensitive" is our test to indicators of disease?
- Specificity is another name for TNR
 - What fraction of people without disease do we identify as being without disease?
 - High specificity means few false alarms
- In medical diagnosis, we want both sensitivity and specificity to be high.

Statistical Hypothesis Testing

- In a statistical hypothesis test, there are two possible actions:
 - reject the null hypothesis (Predict +), or
 - don't reject the null hypothesis (Predict —).
- Two possible error types are called "Type 1" and "Type 2" error.

Thresholding Classification Score Functions

24 / 36

The Classification Problem

- Action space $\mathcal{A} = \mathbf{R}$ Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: \mathcal{X} \to \mathbb{R}$, called the score function.
- Convention was

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

Example: Scores, Predictions, and Labels

ID	Score	Predicted Class	True Class
1	-4.80	-	-
2	-4.43	-	-
3	-2.09	-	-
4	-1.30	-	-
5	-0.53	-	+
6	-0.30	-	+
7	0.49	+	-
8	0.98	+	-
9	2.25	+	+
10	3.37	+	+
11	4.03	+	+
12	4.90	+	+

- Performance measures:
 - Error Rate $= 4/12 \approx .33$
 - Precision = $4/6 \approx .67$
 - Recall = $4/6 \approx .67$
 - $F_1 = 4/6 \approx .67$
- Now predict + iff Score>2?
 - Error Rate $= 2/12 \approx .17$
 - Precision = 4/4 = 1.0
 - Recall = $4/6 \approx .67$
 - $F_1 = 0.8$
- Now predict + iff Score>-1?
 - Error Rate $= 2/12 \approx .17$
 - Precision = 6/8 = .75
 - Recall = 6/6 = 1.0
 - $F_1 = 0.86$

Thresholding the Score Function

- Generally, different thresholds on the score function lead to
 - different confusion matrices
 - different performance metrics
- One should choose the threshold that optimizes the business objective.
- Examples:
 - Maximize F_1 (or $F_{0.2}$ or $F_{2.0}$, etc.)
 - Maximize Precision, such that Recall > 0.8.
 - Maximize Sensitivity, such that Specificity > 0.7.

The Performance Curves

28 / 36

Precision-Recall as Function of Threshold

ID	Score	Predicted Class	True Class
1	-4.80	-	-
2	-4.43	-	-
3	-2.09	-	-
4	-1.30	-	-
5	-0.53	-	+
6	-0.30	-	+
7	0.49	+	-
8	0.98	+	-
9	2.25	+	+
10	3.37	+	+
11	4.03	+	+
12	4.90	+	+

- What happens to **recall** as we decrease threshold from $+\infty$ to $-\infty$?
 - Recall increases (or at least never decreases)
- What happens to **precision** as we decrease threshold from $+\infty$ to $-\infty$?
 - If score capture confidence,
 - we expect higher threshold to have higher precision.
 - But no guarantees in general.

Precision-Recall Curve

• What threshold to choose? Depends on your preference between precision and recall.

Example from ROCR Package.

Receiver Operating Characteristic (ROC) Curve

ID	Score	Predicted Class	True Class
1	-4.80	-	-
2	-4.43	-	-
3	-2.09	-	-
4	-1.30	-	-
5	-0.53	-	+
6	-0.30	-	+
7	0.49	+	-
8	0.98	+	-
9	2.25	+	+
10	3.37	+	+
11	4.03	+	+
12	4.90	+	+

- Recall FPR and TPR:
 - FPR = FP / (Number of Negatives Examples)
 - TPR = TP / (Number of Positives Examples)
- As we decrease threshold from $+\infty$ to $-\infty$,
 - Number of positives predicted increases - some correct, some incorrect.
 - So both FP and TP increase.
- ROC Curve charts TPR vs FPR as we vary the threshold...

Receiver Operating Characteristic (ROC) Curve

• Ideal ROC curve would go straight up on the left side of the chart.

Example from ROCR Package.

Comparing ROC Curves

- Here we have ROC curves for 3 score functions.
- For different FPRs, different score functions give better TPRs.
- No score function dominates another at every FPR.
- Can we come up with an overall performance measure for a score function?

Area Under the ROC Curve

- AUC ROC = area under the ROC curve
- Often just referred to as "AUC"
- A single number commonly used to summarize classifier performance.
- Much more can be said about AUC and ROC curves...
- People also consider AUC PR = area under the PR curve

Recall: The Cell Phone Churn Problem

- Cell phone customers often switch carriers. Called "churn".
- Often cheaper to retain a customer than to acquire a new one.
- You can try to retain a customer by giving a promotion, such as a discount.
- If you give a discount to somebody who was going to churn, you probably saved money.
- If you give a discount to somebody who was NOT going to churn, you wasted money.
- Now we've trained a classifier to predict churn.
- We need to choose a threshold on our score function
 - We will give a promotion to everybody with score above threshold.

Lift Curves for Predicting Churners

- x value: number of users targeted
- y value is number churners in target group.
- Baseline is for a random score function
- Each curve is a lift curve
 - shows increase in successes from model over baseline