Electrophilic Aromatic Substitution: Nitration and Sulfonation

How can we replace a hydrogen (H⁺) with a sulfonic acid group (SO₃H⁺)?

Electrophilic Aromatic Substitution: Alkylation

What are the significant problems with Friedel-Crafts alkylation?

Reading: Section 16.4

Electrophilic Aromatic Substitution: Acylation

How can use acylation to avoid some of the problems of alkylation?

Electron Donating & Withdrawing Groups

Match the chemical shifts with the highlighted protons in the compounds shown. Why are these trends observed?

$$RO-CH_3$$

$$R_2N-CH_3$$

$$R-CH_3$$

$$NR_2$$

$$\bigcap_{R}^{H}$$

Inductive vs. Resonance Effects

Complete the following table, indicating the relative magnitude of the various effects.

Functional Group	Inductive Effect	Resonance Effect	
-NMe ₂			
-ОН			
-CH ₃			
-CI			
-C(=O)OEt			
-CN			
−N ⁺ Me ₃			
-NO ₂			

Reading: Section 16.5

Electrophilic Aromatic Substitution: Directing Effects ("Regioselectivity")

When anisole is nitrated, the ortho and para products predominate. Why?

When acetophenone is nitrated, the meta product predominates. Why?

$$\begin{array}{c|c}
 & O & CH_3 \\
 & & HNO_3 \\
\hline
 & H_2SO_4
\end{array}$$

Electrophilic Aromatic Substitution: Activating Effects

Explain the observed trend in the *rate* of nitration of the following compounds:

In general, *ortho/para*-directing groups are *activating*, while *meta*-directing groups are *deactivating*. Why?

However, halogen substituents are deactivating, but are o/p-directors. Why?

Application of Substituent Effects: The Acidity of Phenols

Explain the observed trends in the pK_a values of the following compounds:

$$\begin{array}{c|ccccc} OH & OH & OH & OH \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline & \\$$

Application of Substituent Effects:

The Acidity of Phenols, cont.

Explain the observed trends in the pK_a values of the following compounds:

$$OH$$
 OH NO_2

Reactivity of Vinylic Halides

Draw an example of a vinylic halide.
Why does that halide <i>not</i> usually exhibit S _N 2 reactivity?
Why does that halide $\it not$ usually exhibit $\rm S_N 1$ or E1 reactivity?
What product would be formed from an E2 reaction of that halide?

Reactivity of Aryl Halides

Draw an example of an <i>aryl</i> halide; how is it different from a <i>benzylic</i> halide?
Why are S _N 2 reactions of aryl halides <i>impossible</i> ?
Why are $S_N 1$ reactions of aryl halides (very nearly) impossible?
Are there \emph{any} leaving groups that can provide $S_{N}1$ reactivity by forming an aryl cation?

Nucleophilic Aromatic Substitution: Addition-Elimination

When an *aryl halide* has *nitro groups* in o/p positions, then nucleophilic substitution can take place **IF** you have a good nucleophile. This reaction is referred to as "Nucleophilic aromatic substitution (S_NAr) by the addition-elimination mechanism."

Consider the following reaction:

Provide a complete curved-arrow mechanism for this transformation.

Why does substitution replace the fluoride, but not the bromide?

20

Nucleophilic Aromatic Substitution: Elimination-Addition ("The Benzyne Mechanism")

When an *aryl halide* does **not** have EWGs in *o/p* positions, and it is treated with a *very* strong base, then nucleophilic substitution can take place via an intermediate known as a *benzyne*. Substitution by this mechanism is referred to as

"Nucleophilic aromatic substitution (S_NAr) by the elimination-addition mechanism."

Provide a curved-arrow mechanism for the following reaction; this mechanism *must* account for why a *mixture* of products is formed!

Structure and Reactivity of Benzyne

Benzyne is a very unstable species. How can we think about bonding in benzynes?

Provide a complete curved-arrow mechanism for the following transformation:

Electrophilic π **-Bonds**: Carbonyl Chemistry

What functional	grouns	contain a	carbony	group?
vviiat iulictionai	groups	contain a	Carbony	gioups

What distinguishes some carbonyl-containing compounds from others?

Oxidation Levels in Organic Chemistry

# of bonds to e-neg atoms	Oxidation "level"	Examples
4	carbon dioxide	
3	carboxylic acid	
2	ketone	
1	alcohol	
0	alkane	

Molecular Orbitals of Aldehydes & Ketones

Draw molecular orbital diagrams for the following molecules and identify the HOMO and LUMO of each. In what ways are they similar; in what ways are they different?

Irreversible Addition to Aldehydes & Ketones: Organometallic Reagents

Provide a curved-arrow mechanism and predict the product of the following reactions:

Irreversible Addition to Aldehydes & Ketones: Hydride Reducing Reagents

Provide a curved-arrow mechanism and predict the product of the following reactions:

$$\frac{\text{LiAlH}_4}{\text{Et}_2\text{O}} \xrightarrow{\text{H}^+ \text{w/up}}$$

$$\begin{array}{ccc}
0 & & \text{NaBH}_4 \\
\hline
\text{CH}_3\text{OH} & & \end{array}$$

Why is acid work-up required for reduction with LiAlH₄, but not for reduction with NaBH₄?

27

Putting it Together: Synthesis

Starting from benzene, provide a synthesis of the following compound:

