- For planar waveguide (1D), there are TE ($E_z = 0$) and TM ($H_z = 0$) modes exist; single parameter, integer m describe the number of modes
- How about Optical fiber (2D), TE, TM, or else modes? How many parameters (integers) to specify modes?

Exact solution from vector Maxwell' equations:

- 1. 2 integers v , m are necessary to specify modes
- 2. Type of modes: $TE_{vm} TM_{vm} HE_{vm} EH_{vm}$
- 3. $TE_{vm} TM_{vm}$: v = 0, $TE_{vm} (E_z = 0)$, $TM_{vm} (H_z = 0)$ correspond to meridional rays traveling within fiber
- 4. $HE_{vm} EH_{vm}$: hybrid modes, both E_z and H_z are nonzero
- 6. EH modes: H_z dominates

Approximate solution from scalar equations based on weakly guiding fiber approximation:

What is weakly guiding fiber approximation: index difference $\Delta << 1$

- 1. Using LP modes to describe instead of TE m TM m HE m EH m LP: linear polarized
- 2. Correspondence between LP and traditional exact modes → see table

Table 2.1 Correspondence between the lower order in linearly polarized modes and the traditional exact modes from which they are formed

Linearly polarized	Exact
LP ₀₁	HE ₁₁ may an elifer
LP ₁₁	HE ₂₁ , TE ₀₁ , TM ₀₁
LP ₂₁	HE ₃₁ , EH ₁₁
LP ₀₂	HE ₁₂
LP ₃₁	HE ₄₁ , EH ₂₁
LP ₁₂	HE_{22} , TE_{02} , TM_{02}
LP _{Im}	HE_{2m} , TE_{0m} , TM_{0m}
LP_{lm} ($l \neq 0$ or 1)	$HE_{I+1,m}$, $EH_{I-1,m}$

- 1. Each LP _{0m} mode is derived from an HE _{1m} mode
- 2. Each LP _{1m} mode comes from TE _{0m}, TM _{0m}, and HE _{2m} modes
- 3. Each LP $_{vm}$ mode (v >= 2) is from an HE $_{v+1, m}$ and an EH $_{v-1, m}$ mode

We'll talk about this in the following section

2.4.1 Over view of Modes

☐ The stable field distribution in the x direction with only periodic z dependence is known as a mode

Figure 2.8 The formation of a mode in a planar dielectric guide: (a) a plane wave propagating in the guide shown by its wave vector or equivalent ray – the wave vector is resolved into components in the z and x directions; (b) the interference of plane waves in the guide forming the lowest order mode (m = 0).

Figure 2.15 The electric field configurations for the three lowest LP modes illustrated in terms of their constituent exact modes: (a) LP mode designations; (b) exact mode designations; (c) electric field distribution of the exact modes; (d) intensity distribution of E_x for the exact modes indicating the electric field intensity profile for the corresponding LP modes.

2.4.1 Over view of Modes

- ☐ For low-order modes the fields are tightly concentrated near the center of slab (WG, optical fiber), with little penetration into cladding region
- ☐ For high-order modes, the fields are distributed more toward the edges of the guide and penetrate further into cladding region

2.4.1 Over view of Modes

 n_2

Cutoff condition: propagation angle for a given mode just equals the critical angle.

For guided modes, propagation constant in the range:

$$\frac{2\pi n_2}{\lambda} \le \beta \le \frac{2\pi n_1}{\lambda}$$

or
$$k_2 \leq \beta \leq k_1$$

Cutoff condition:

$$\beta = k_2 = n_2 k$$

Propagation constant

- Guided mode: bound mode guided inside of core
- Radiation modes : refracted mode by cladding
- Leaky mode: partially confined into core

$$\beta \ge k_2 = n_2 k$$

$$\beta < k_2$$

$$\beta < k_2$$

2.4.2 Summary of Key Modal Concept

Question: what parameter could determine if the fiber is Single-mode fiber (SMF), or multi-mode fiber (MMF)?

- □ Parameters: Fiber: a_1, n_1, n_2 Source: λ
- V number is an important parameter connected with cutoff condition, determined how many modes a fiber could support.

$$V = \frac{2\pi a}{\lambda} \sqrt{n_1^2 - n_2^2}$$

- □ Lowest-order mode : HE₁₁
- □ Single mode condition : V < = 2.405
- ☐ When V > 10, the total number of modes: $M \approx V^2 / 2$
- Fraction of average optical power residing in cladding :

$$\frac{P_{clad}}{P} \approx \frac{4}{3\sqrt{M}}$$

2.4.3 Maxwell' Equations

Maxwell Equations!

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{D} = 0 \qquad \nabla \times \vec{B} = 0$$

Wave Equations!

$$\nabla^{2} \vec{E} - \varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial t^{2}} = 0$$

$$\nabla^{2} \vec{H} - \varepsilon \mu \frac{\partial^{2} \vec{H}}{\partial t^{2}} = 0$$

Light is electromagnetic wave

2.4.4 Waveguide Equations

FIGURE 2-15

Cylindrical coordinate system used for analyzing electromagnetic wave propagation in an optical fiber.

Fig 2-15 Cylindrical coordinate (fiber is a cylinder shape!)

- Goal: Derive wave equation in cylindrical coordinate system:
 - Cylindrical coordinate system: r, \(\phi, z \)

$$\vec{E} = \vec{E}_{0}(r,\phi)e^{j(\omega t - \beta z)}$$

$$\overrightarrow{H} = \overrightarrow{H}_{0}(r,\phi)e^{j(\omega t - \beta z)}$$

2.4.4 Waveguide Equations

Step 1: Find E components in r, ϕ , z direction

$$\vec{E} = \vec{E}_{0}(r,\phi)e^{j(\omega t - \beta z)}$$

$$\vec{H} = \vec{H}_{0}(r,\phi)e^{j(\omega t - \beta z)}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

 $B = \mu H$, $D = \varepsilon E$ With help of $\frac{\partial}{\partial t} \to j\omega$, $\frac{\partial}{\partial z} \to -j\beta$, we can find following Eqs.

B.2.2 Cylindrical Coordinates

Gradient
$$\nabla f = \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \phi} \mathbf{e}_{\phi} + \frac{\partial f}{\partial z} \mathbf{e}_z$$

Divergence $\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$

$$\operatorname{Curl} \nabla \times \mathbf{A} = \begin{vmatrix} \frac{1}{r} \mathbf{e}_r & \mathbf{e}_{\phi} & \frac{1}{r} \mathbf{e}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_r & rA_{\phi} & A_z \end{vmatrix}$$

Laplacian $\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} + \left(r \frac{\partial f}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$

r direction
$$\frac{1}{r} \left(\frac{\partial H_z}{\partial \phi} + jr \beta H_{\phi} \right) = j\omega \varepsilon E_r, \quad (2.33a)$$

$$j\beta H_r + \frac{\partial H_z}{\partial r} = -j\omega\varepsilon E_{\phi} \quad (2.33b)$$

$$\frac{1}{r} \left(\frac{\partial}{\partial \phi} (rH_{\phi}) - \frac{\partial H_{r}}{\partial \phi} \right) = j\omega \varepsilon E_{z} \quad (2.33c)$$

$$\frac{1}{r} \left(\frac{\partial E_z}{\partial \phi} + jr \beta E_\phi \right) = -j\omega \mu H_r \quad (2.34a)$$

$$j\beta E_r + \frac{\partial E_z}{\partial r} = j\omega\mu H_{\phi} \quad (2.34b)$$

z direction
$$\frac{1}{r} \left(\frac{\partial}{\partial \phi} (rH_{\phi}) - \frac{\partial H_{r}}{\partial \phi} \right) = j\omega \varepsilon E_{z} \quad (2.33c)$$

$$\frac{1}{r} \left(\frac{\partial}{\partial \phi} (rE_{\phi}) - \frac{\partial E_{r}}{\partial \phi} \right) = -j\omega \mu H_{z} \quad (2.34c)$$

2.4.4 Waveguide Equations

Step 2: Write components E_r , E_{ϕ} , H_{r} , H_{ϕ} in terms of E_z , H_z :

 $\frac{1}{r} \left(\frac{\partial E_z}{\partial \phi} + jr \beta E_\phi \right) = -j\omega \mu H_r \quad (2.33a)$

$$j\beta E_r + \frac{\partial E_z}{\partial r} = j\omega\mu H_{\phi} \quad (2.33b)$$

$$\frac{1}{r} \left(\frac{\partial}{\partial \phi} (rE_{\phi}) - \frac{\partial E_r}{\partial \phi} \right) = -j\omega \mu H_z \quad (2.33c)$$

$$\frac{1}{r} \left(\frac{\partial H_z}{\partial \phi} + jr \beta H_{\phi} \right) = j\omega \varepsilon E_r, \quad (2.34a)$$

$$j\beta H_r + \frac{\partial H_z}{\partial r} = -j\omega\varepsilon E_{\phi} \quad (2.34b)$$

$$\frac{1}{r} \left(\frac{\partial}{\partial \phi} (rH_{\phi}) - \frac{\partial H_{r}}{\partial \phi} \right) = j\omega \varepsilon E_{z} \quad (2.34c)$$

$$E_r = -\frac{j}{q^2} \left(\beta \frac{\partial E_z}{\partial r} + \frac{\mu \omega}{r} \frac{\partial H_z}{\partial \phi} \right) \quad (2.35a)$$

$$E_{\phi} = -\frac{j}{q^2} \left(\frac{\beta}{r} \frac{\partial E_z}{\partial \phi} - \mu \omega \frac{\partial H_z}{\partial r} \right) \quad (2.35b)$$

$$H_{r} = -\frac{j}{q^{2}} \left(\frac{\beta}{r} \frac{\partial H_{z}}{\partial r} - \frac{\mu \omega}{r} \frac{\partial E_{z}}{\partial \phi} \right) \quad (2.35c)$$

$$H_{\phi} = -\frac{j}{q^2} \left(\frac{\beta}{r} \frac{\partial H_z}{\partial \phi} + \omega \varepsilon \frac{\partial E_z}{\partial r} \right) \quad (2.35d)$$

with $q^2 = \omega^2 \varepsilon \mu - \beta^2 = k^2 - \beta^2$

Using equation 2.33a, 2.34b to find H_r and E_ϕ Using equation 2.33b, 2.34a to find E_r and H_ϕ

H

2.4.4 Waveguide Equations

□ Step 3: Find wave equations for E and H:

$$H_{r} = -\frac{j}{q^{2}} \left(\frac{\beta}{r} \frac{\partial H_{z}}{\partial r} - \frac{\mu \omega}{r} \frac{\partial E_{z}}{\partial \phi} \right) \quad (2.35c)$$

$$H_{\phi} = -\frac{j}{q^2} \left(\frac{\beta}{r} \frac{\partial H_z}{\partial \phi} + \omega \varepsilon \frac{\partial E_z}{\partial r} \right) \quad (2.35d)$$

$$\frac{1}{r} \left(\frac{\partial}{\partial \phi} (rH_{\phi}) - \frac{\partial H_{r}}{\partial \phi} \right) = j\omega \varepsilon E_{z} \quad (2.34c)$$

$$E_r = -\frac{j}{q^2} \left(\beta \frac{\partial E_z}{\partial r} + \frac{\mu \omega}{r} \frac{\partial H_z}{\partial \phi} \right) \quad (2.35a)$$

$$E_{\phi} = -\frac{j}{q^2} \left(\frac{\beta}{r} \frac{\partial E_z}{\partial \phi} - \mu \omega \frac{\partial H_z}{\partial r} \right) \quad (2.35b)$$

$$\frac{1}{r} \left(\frac{\partial}{\partial \phi} (rE_{\phi}) - \frac{\partial E_{r}}{\partial \phi} \right) = -j\omega \mu H_{z} \quad (2.33c)$$

$$\frac{\partial^2 H_z}{\partial r^2} + \frac{1}{r} \frac{\partial H_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 H_z}{\partial \phi^2} + q^2 H_z = 0 \quad (2.37)$$

Electric and magnetic field vector solution (mode) could be achieved by solving the wave equation for the field components in z-direction!

2.4.5 Wave Equations for Step-index Fibers

Solve Wave equation using separation of variable method:

Wave equation
$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \phi^2} + q^2 E_z = 0$$

$$\frac{\partial^2 H_z}{\partial r^2} + \frac{1}{r} \frac{\partial H_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 H_z}{\partial \phi^2} + q^2 H_z = 0$$

Separation-ofvariables method

$$E_z = AF_1(r)F_2(\phi)F_3(z)F_4(t)$$

$$F_3(z)F_4(t) = e^{j(\omega t - \beta z)}$$

$$F_2(\phi) = e^{jv\phi}$$

v is an integer

$$\frac{\partial^2 F_1}{\partial r^2} + \frac{1}{r} \frac{\partial F_1}{\partial r} + (q^2 - \frac{v^2}{r^2}) F_1 = 0 \quad (2.41)$$

This is a well-known differential equation for Bessel functions

Cutoff conditions:

$$k_2 \le \beta \le k_1$$

toff conditions:

$$k_2 \le \beta \le k_1$$

> In fiber core: $q^2 = \omega^2 \varepsilon \mu - \beta^2 = k_1^2 - \beta^2 > 0$
> In cladding: $q^2 = \omega^2 \varepsilon \mu - \beta^2 = k_2^2 - \beta^2 < 0$

So, solutions for fiber and fiber cladding are different, using Bessel function $J_{\nu}(ur)$ for core and modified Bessel function of the second kind $K_{\nu}(wr)$, which is based on conditions: $F_1 \to finite \quad for \quad r \to 0, \qquad F_1 \to 0 \quad for \quad r \to \infty$

Solution for fiber core

$$E_{z1}(r < a) = AJ_{v}(ur)e^{jv\phi}e^{j(\omega t - \beta z)}$$

$$H_{z1}(r < a) = BJ_{v}(ur)e^{jv\phi}e^{j(\omega t - \beta z)}$$

$$with \qquad u^{2} = k_{1}^{2} - \beta^{2} \qquad k_{1} = 2\pi n_{1} / \lambda$$

Solution for fiber cladding

$$E_{z2}(r > a) = CK_{v}(wr)e^{jv\phi}e^{j(\omega t - \beta z)}$$

$$H_{z2}(r > a) = DK_{v}(wr)e^{jv\phi}e^{j(\omega t - \beta z)}$$

$$with \qquad w^{2} = \beta^{2} - k_{2}^{2} \qquad k_{2} = 2\pi n_{2} / \lambda$$

2.4.6 Modal Equations

$$E_{z1}(r < a) = AJ_{\nu}(ur)e^{j\nu\phi}e^{j(\omega t - \beta z)}$$
 (2.42)

$$H_{z1}(r < a) = BJ_{\nu}(ur)e^{j\nu\phi}e^{j(\omega t - \beta z)}$$
 (2.43)

with
$$u^2 = k_1^2 - \beta^2$$
 $k_1 = 2\pi n_1 / \lambda$

$$E_{z2}(r > a) = CK_{\nu}(wr)e^{j\nu\phi}e^{j(\omega t - \beta z)} \quad (2.44)$$

$$H_{z2}(r > a) = DK_{\nu}(wr)e^{j\nu\phi}e^{j(\omega t - \beta z)}$$
 (2.45)

with
$$w^2 = \beta^2 - k_2^2$$
 $k_2 = 2\pi n_2 / \lambda$

Solution β can be determined by Boundary conditions: Tangential components E_{ϕ} , E_{z} , and H_{ϕ} , H_{z} at r=a must be continue

At
$$r = a$$
, $H_{z1} = H_{z2}$ $H_{z2} = H_{z2}$ $H_{z1} = H_{z2}$ $H_{z2} = H_{z2}$ $H_{z1} = H_{z2}$ $H_{z2} = H_{z2}$

$$AJ_{\nu}(ua) = CK_{\nu}(wa) \quad (2.47)$$

$$BJ_{\nu}(ua) = DK_{\nu}(wa) \quad (2.51)$$

$$E_{\phi 1} = E_{\phi 2}$$

$$H_{\phi 1} = H_{\phi 2}$$

$$E_{\phi 1} = E_{\phi 2} \\ H_{\phi 1} = H_{\phi 2}$$

$$E_{\phi} = -\frac{j}{q^{2}} \left(\frac{\beta}{r} \frac{\partial E_{z}}{\partial \phi} - \mu \omega \frac{\partial H_{z}}{\partial r} \right) \quad (2.35b), \quad H_{\phi} = -\frac{j}{q^{2}} \left(\frac{\beta}{r} \frac{\partial H_{z}}{\partial \phi} + \omega \varepsilon \frac{\partial E_{z}}{\partial r} \right) \quad (2.35d)$$

$$-\frac{j}{u^2} \left[A \frac{j \nu \beta}{a} J_{\nu}(ua) - B \omega \mu u J_{\nu}'(ua) \right] = \frac{j}{w^2} \left[C \frac{j \nu \beta}{a} K_{\nu}(wa) - D \omega \mu w K_{\nu}'(wa) \right]$$
(2.50)

$$-\frac{j}{u^{2}}\left[B\frac{j\nu\beta}{a}J_{\nu}(ua) + A\omega\varepsilon_{1}uJ_{\nu}'(ua)\right] = \frac{j}{w^{2}}\left[D\frac{j\nu\beta}{a}K_{\nu}(wa) + C\omega\varepsilon_{2}wK_{\nu}'(wa)\right]$$
(2.52)

2.4.6 Modal Equations

A set of four Eqs, right side = 0, therefore, only if the determinant of the coefficients is zero, there is a solution exists.

 \triangleright Eigenvalue equation for β :

$$(\mathcal{J}_{\nu} + \mathcal{K}_{\nu})(k_1^2 \mathcal{J}_{\nu} + k_2^2 \mathcal{K}_{\nu}) = \left(\frac{\beta \nu}{a}\right)^2 \left(\frac{1}{u^2} + \frac{1}{w^2}\right)^2$$
(2-54)

where

$$\mathcal{J}_{\nu} = \frac{J_{\nu}'(ua)}{uJ_{\nu}(ua)}$$
 and $\mathcal{K}_{\nu} = \frac{K_{\nu}'(wa)}{wK_{\nu}(wa)}$

2.4.7 Modes in Step-Index Fibers Equations

- 2 integers v , m are necessary to specify modes
- We have v, but Where does m come from ? from oscillatory behavior of $J_v \rightarrow m$ roots of Eq.2.54 for a given v
- \succ These roots are designed as $\beta_{\rm vm}$, and corresponding modes: $TE_{\rm vm}$ $TM_{\rm vm}$ $HE_{\rm vm}$ $EH_{\rm vm}$

```
format long
clear
clc
z = (0:0.001:15)';
i0=besseli(0,z);
j1=besselj(1,z);
i2=besseli(2,z);
j3=besselj(3,z);
figure(1)
plot(z,j0,'r',z,j1,'b',z,j2,'g',z,j3,'y');
ylabel('Jv(x)');xlabel('x');
axis([0 15 -0.5 1]);grid
title('Bessel functions of the 1st
kind'):
legend('v=0','v=1','v=2','v=3');
zero j0=z(find(abs(j0)<1.2e-4))'
z=z(100:end);
j1=j1(100:end);
j2=j2(200:end);
j3=j3(300:end);
zero j1=z(find(abs(j1)<1.3e-4))'
zero j2=z(find(abs(j2)<1.5e-4))'
zero j3=z(find(abs(j3)<1e-4))'
```


2.4.7 Modes in Step-Index Fibers Equations

- \succ Modes: TE $_{
 m vm}$ TM $_{
 m vm}$ HE $_{
 m vm}$ EH $_{
 m vm}$
- Special cases: When v = 0, modes are: $TE_{0m} TM_{0m}$

$$-(\mathcal{J}_{\nu} + \mathcal{K}_{\nu})(k_1^2 \mathcal{J}_{\nu} + k_2^2 \mathcal{K}_{\nu}) = \left(\frac{\beta \nu}{a}\right)^2 \left(\frac{1}{u^2} + \frac{1}{w^2}\right)^2$$
(2-54)

where

$$\mathcal{J}_{\nu} = \frac{J_{\nu}'(ua)}{uJ_{\nu}(ua)}$$
 and $\mathcal{K}_{\nu} = \frac{K_{\nu}'(wa)}{wK_{\nu}(wa)}$

$$\mathcal{J}_0 + \mathcal{K}_0 = 0 \tag{2-55a}$$

or, using the relations for J'_{ν} and K'_{ν} in App. C,

$$\frac{J_1(ua)}{uJ_0(ua)} + \frac{K_1(wa)}{wK_0(wa)} = 0 (2-55b)$$

which corresponds to TE_{0m} modes ($E_z = 0$), and

$$k_1^2 \mathcal{J}_0 + k_2^2 \mathcal{K}_0 = 0$$
 (2-56a)

or

$$\frac{k_1^2 J_1(ua)}{u J_0(ua)} + \frac{k_2^2 K_1(wa)}{w K_0(wa)} = 0 (2-56b)$$

Corresponds to TM_{om} modes (Hz=0)

2.4.7 Modes in Step-Index Fibers Equations

Cutoff conditions: It means a mode is not longer bound to the fiber core

$$\beta = k_2 = n_2 k \qquad w = 0$$

- Normalized frequency V: $V^2 = (u^2 + w^2)a^2 = \left(\frac{2\pi a}{\lambda}\right)^2 (n_1^2 n_2^2) = \left(\frac{2\pi a}{\lambda}\right)^2 NA$
- \triangleright HE11 has no cut off, but we have single-mode condition which is: $V \le 2.405$
- \triangleright Question: how do we get this number ? \rightarrow From 1st zero of J_0
- When number of mode M is large (>10), we have:

$$M = \frac{V^2}{2}$$

FIGURE 2-18 Plots of the propagation constant (in terms of β/k) as a function of V for a few of the lowest-order modes.

2.4.7 Modes in Step-Index Fibers Equations

Example 2-3 (p56)

A step-index fiber has a normalized frequency V=26.6 at a 1300-nm wavelength. If the core radius is 25 μ m, let us find the numerical aperture.

Problem 2-19 (p84)

Determine the normalized frequency at 820 nm for a step-index fiber having a 25- μ m core radius, n1=1.48, and n2=1.46.

- (a) How many modes propagate in this fiber at 820 nm?
- (b) How many modes propagate in this fiber at 1320 nm?
- (c) How many modes propagate in this fiber at 1550 nm?
- (d) What percent of the optical power flows in the cladding in each case?