Week 1

Hamming distance: The hamming distance between two n-Lit number determined by checking the same corresponding bits.

1010 - 0100 -> distance: 3

Decimal to binary: We divide the Jecimal number by 2 up to 0. After each operation the remainder is written to LSB to MSB.

Negative numbers: First we take 1's complement of the unsigned number that corresponds to the negative one, then add 1 to this number. The whole operation is 2's complement.

 $0100 \rightarrow 1011$ $(4) \qquad \frac{1}{1100:-4}$

Addition (Unsigned): 01110101: 117 +01100011: 99

Q 10011000: 216

y No carry

Addition (Signed): 1717 1717; -1 +00000001; 1

900000000 : 0

11111111 : 255 + 00000001 : 1 (1)000000000 ; 256

> carry

11111111 : -1 1111111111 : -1

711111111 : -1 0111111110

carry

in unsigned numbers.

we ignore the carry numbers, the 11st number determines the sign.

00000101:5 -11111111:-1 (1)00000100:4 (no borrow) There must be carry number when we carry out a subtractor operation with unsigned int. but we ignore the carry number.

the carry number is "0", so we cannot represent this operation.

Overflow:

Addition > pos. + pos. > neg. | neg. + neg. -> pos. Subtraction > pos. - neg. -> neg. | neg. - pos. -> pos.

WEEK 2

Axions

any a,b &B

closure: $a+b \in B$, $a\cdot b \in B$ commutative: a+b=b+a, $a\cdot b=b-a$ associative: a+(b+c)=(a+b)+c, $a.(b\cdot c)=(a\cdot b)\cdot c$

identity; a+0=a, a·1=a

distributive: at (b.c) = (a+b).(a+c), a. (b+c) = a.b+a.c

inverse: $\alpha + \overline{\alpha} = 1$, $\alpha \cdot \overline{\delta} = 0$

· Duals of all proven theorems are also theorems.

Theorems

annihilator (dominance): a+1=1, $a\cdot 0=0$ involution: $\bar{a}=a$

de morgan;

• a.6+a.c has 3 variables and 4 literals.

Disjunctive Normal Form (DNF): Sum of Products (SOP). OR of ANDs. \longrightarrow a.b+c.d+ \bar{e} .f Conjunctive Normal Form (CNF): Product of Sums (POS). AND of ORS. \longrightarrow (a+b). $(\bar{a}+c+d)$

Order Relation

 x_1 : 1011 If each component of x_4 is smaller than or equal to x_2 , $x_4 \leqslant x_2$. But there is no order relation between x_2 : 1101 x_4 and x_2 .

If E(x) & F(x) then E(x) implies P(x), E(x) => F(x), F(x) covers E(x).

The Consensus Theorem (SOP Form)

- . Ex. Ez is congensus term
- . The consensus term is redundant and can be eliminated.

proof: $X_1E_1+\overline{X}_1E_2+E_1E_2(X_1+\overline{Y}_1) \rightarrow X_1E_1+\overline{X}_1E_2+\overline{X}_1E_1E_2+\overline{X}_1E_1E_2$ the pair ones can obsorb the other orc

The Consensus Theorem (POS Form)

• Entfy is consensus term

(X1+E1)-(X1+E2)-(X1+E2) = (X1+E1)(X1+E2)

Boolean functions

1) Basic Functions: Multiple inputs, single output.

. There are 2⁽²ⁿ⁾ possible basic functions for n binary variables.

2) General Functions, Multiple inputs, multiple outputs.

3) Incompletely Specified Functions: Some of the outputs won't be generated. These outputs are don't care terms.

AB is don't care term.

X means it can be 0 or 1, we cannot demonstrate it.

Indexed Representations

Basic Function

$$y = f(x_1, x_2) = U_1(0, 2)$$

$$\text{Set of order is } 1\text{-generating important points}$$

$$\text{All three represents the same function.}$$

$$u = f(x_1, x_2) = U_1(0, 1)$$

$$y = f(x_1,x_2) = U_0(1,3)$$

Incompletely Specified Function

• We have to write at least 2 of the three different groups (1-generating, 0-gene, don't care)

$$y_1 = f(x_1, x_2) = U_1(0) + U_0(1,3)$$
 there are 2 more repr., but enough $y_2 = f(x_1, x_2) = U_{\frac{1}{3}}(1,3) + U_1(0)$

1st Canonical Form (SOP)

· a function with 2 variables has 4 minterns. ab, āb, ab, āb

$$F(A,B,C) = \overline{ABC} + \overline{ABC} +$$

2nd Canonical Form (POS)

a function with 2 variables has 4 maxterns. atb, atb, atb

A	В	C	F	P	
0	0	O	Ð -	1	NO
0	0	1	l	0 -	W
0	(0	0 -	1	MZ
0	(1	(0	MS
1	0	0	0	1	M4
l	0	1	1	0 -	M5
1	1	0	\ \	0.	мb
(,	1	(0	M ን
•					

$$F(A,B,C) = (A+B+C) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C) \cdot (\overline{A}+B+C) \cdot (B+C) \cdot (B+C) \cdot (\overline{A}+B+C) \cdot (\overline{A}+C) \cdot (\overline{A}+C$$

Conversions Between Canonical Forms

Complement

$$F(A,B,C) = \sum_{m} (1,3,5,6,7) \longrightarrow F(A,B,C) = \sum_{m} (0,2,4) \Rightarrow \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$\downarrow De Morgan$$

$$F(A,B,C) = TM(0,2,4) \Rightarrow (A+B+C) \cdot (A+B+C) \cdot (\overline{A}+B+C)$$

Half Adder > a > Half > s (sun)
b > Adder > c (corry)

Half S (sum) Doesn't confain carry input.

Adder > C (carry) S = a & b a, b are 1-bit nuns.

C = a, b

Full Adder ->

9 -> Full -> S CM -> Adder -> Cout

S = a = b = c are 1-bit nums. Cout = abtbctac

Parallel Adder -

Parallel Adder (Subtraction) -> A-B (4-bit)

A-B = A+B+1

Cin=1 -9 Adder

Subtraction)

A-B (4-bit)

A-B = A+B+1

$$\begin{array}{ccc}
I_0 \rightarrow & & & \downarrow & \downarrow \\
I_1 \rightarrow & & & \downarrow & \downarrow \\
I_2 \rightarrow & & & & \uparrow & \uparrow \\
I_3 \rightarrow & & & & \uparrow & \uparrow
\end{array}$$

$$x = 0 \rightarrow Z = A$$

 $x = 1 \rightarrow Z = B$

Demultiplexer (1:m) ->

It drives the input to the output according to the selector.

$$S=0 \rightarrow T=0_0$$

$$S=1 \rightarrow T=0_1$$

$$I \rightarrow \begin{bmatrix} 1:2^n \\ \frac{1}{5}n \end{bmatrix}^{2^n} 2$$

Decoder ->

Decoder is a demultiplexer with constant 1 input.

ning 2° 2 number of selector of output

. We can use decoder as a minterm generator. -> Then implement a function using the minderns.

If EN: 1 -> ortputs are valid.
EN: 0 -> all outputs are zero.

It creates a new case "three-state outputs"


```
Wb
```

/ AND and DR gates are programmable. PLA - input (and) - output (or) PAL - Same structure. / Only AND gates are programmable.

- . Static O hazard -> POS form
- . Static 1 hazard -> SOP form
- · L=AB+B'C there can be static 1 hazard, to avoid that; the consensus term of Z should be added to the circuit, but it's not efficient due to the increasing Z=AB+BC+AC

- . Flip-flop controlled by clock signal. Latch don't.
- . Clock -> Edge Triggered -> (Positive logic) (0->1) -> rising edge -> register time = setup t. + hold t. minimum time the -- (-- > ",)

 duta signal should be

 Steady before the transition the transition (negative logic) (1-10) - falling edge

-> Input changes in the settling time.

· A memory unit must have 1) Two stable states 2) Control input

S sets 1 to output when its value 1. R sets 0 to output when its value 1. (S - set, R -> reset)

if both inputs are zero, latch preserves its state Case 2: S>0, R-1 -> Q=0, Q'=1 S-0, R-10 -> Q=0, Q'=1

CASC 8: 831, R31 -> Q=0, Q'=0 -> invalid

CHARLACTERISTIC EON: Q(+41) = S + Q(+).R (S-R=0)

S-R with Enable - It preserves its state when the latch is not enabled.

5-R Latch → Design ω with NAND gates. 5 → (Reset), R → (Set)

.D Latch

It is designed to avoid undesirable condition of S-R Latch.

$$F=1 \rightarrow D=0 \rightarrow S=0$$
, $R=1 \rightarrow Q(t+1)=0$
 $D=1 \rightarrow S=1$, $R=0 \rightarrow Q(t+1)=1$ CHARACTERISTIC EQN: $Q(t+1)=D$

$$F=0 \rightarrow D=\emptyset \rightarrow S=0$$
, R=0 $\rightarrow Q(t+1)=Q(t)$

- D-Latch can be designed like flip-flop. (17 has rising edge and falling edge versions.)

T Flip-Flop (Toggle)

$$T=0 \rightarrow Q(t+1)=Q(t)$$

$$T=1 \rightarrow Q(t+1)=Q'(t)$$

CHARACTERISTIC EON: Q(t+1) = T @ Q(t)

J-K Plip-Plop

. It is combine of both S-R and T flip-flops.

CHARACTERISTIC EQN, QLtd) = J. Q(t) + K.QLt)

w9

mealy: Output depends on both current state and input values.

Moore: Output depends only on current state.

Note: Change in input; immediately (propagation delay is considered) changes the output in mealy model because output depends on input values.

; doesn't change the output value if the clock signal is not in the setup

Analysis of FF

- Determine F functions that enters ff as an input.
- Fmd the next state exp. using ff char. eqn. and Fs. (H
- Create state table using next state exp.
- Determine the exp. of output.
- Construct state table for G.
- Draw state diagram (optional)

wlo

How to design clocked synchronous sequential circuits

- Determine the model (Mealy or Moore)
- Determine the states
- Determine state transitions based on inputs
- Construct the state transition and output table.
- There are Flogzm Tlip-flops in the circuit (m:number of states)
- Determine which for is used.
- Determine the f function enters in ff's.

Transition Tables

<u>s-R</u>		J-K	D	<u>+</u>
symbol	SR	symbol J K	symbol D	Symbol T
0 « B 1	0 Ø 1 0 0 1 Ø 0	00 0 0 Ø 01 α 1 Ø 10 β Ø 1 11 1 Ø 0	0 0	0 0 1 P 1 1 0

All Circuits

