# 实验 5.5.1: 基本生成树协议

# 拓扑图



# 地址表

| 设备<br>(主机名) | 接口     | IP 地址        | 子网掩码          | 默认网关          |
|-------------|--------|--------------|---------------|---------------|
| <b>S</b> 1  | VLAN 1 | 172.17.10.1  | 255.255.255.0 | 不适用           |
| <b>S2</b>   | VLAN 1 | 172.17.10.2  | 255.255.255.0 | 不适用           |
| <b>S</b> 3  | VLAN 1 | 172.17.10.3  | 255.255.255.0 | 不适用           |
| PC1         | 网卡     | 172.17.10.21 | 255.255.255.0 | 172.17.10.254 |
| PC2         | 网卡     | 172.17.10.22 | 255.255.255.0 | 172.17.10.254 |
| PC3         | 网卡     | 172.17.10.23 | 255.255.255.0 | 172.17.10.254 |
| PC4         | 网卡     | 172.17.10.27 | 255.255.255.0 | 172.17.10.254 |

## 学习目标

完成本实验后,您将能够:

- 根据拓扑图进行网络布线
- 删除启动配置并重新加载默认配置,将交换机设置为默认状态
- 执行交换机上的基本配置任务
- 观察并解释生成树协议(STP,802.1D)的默认行为
- 观察对生成树拓扑变化的响应

## 任务 1: 执行基本交换机配置

### 步骤 1: 根据拓扑图所示完成网络电缆连接。

您可使用实验室中现有的、具有拓扑图中所示接口的交换机。本实验中的输出来自 Cisco 2960 交换机。其它型号的交换机可能会产生不同的输出。

建立到所有三台交换机的控制台连接。

## 步骤 2: 清除交换机的所有配置。

清除 NVRAM、删除 vlan.dat 文件并重新加载交换机。请参阅实验 2.5.1 了解相关步骤。重新加载完成后,使用 show vlan 特权执行命令确认只存在默认 VLAN,并且所有端口都已分配给 VLAN 1。

#### S1#show vlan

| VLAN N           | Jame                                                                   | Status                     | Ports                                                                                                                                                                                                          |
|------------------|------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 d              | default                                                                | active                     | Fa0/1, Fa0/2, Fa0/3, Fa0/4<br>Fa0/5, Fa0/6, Fa0/7, Fa0/8<br>Fa0/9, Fa0/10, Fa0/11, Fa0/12<br>Fa0/13, Fa0/14, Fa0/15,Fa0/16<br>Fa0/17, Fa0/18, Fa0/19,Fa0/20<br>Fa0/21, Fa0/22, Fa0/23,Fa0/24<br>Gig0/1, Gig0/2 |
| 1003 t<br>1004 f | Eddi-default<br>coken-ring-default<br>Eddinet-default<br>crnet-default | active<br>active<br>active |                                                                                                                                                                                                                |

## 步骤 3: 配置基本交换机参数。

根据以下指导原则配置 S1、S2 和 S3 交换机:

- 配置交换机主机名。
- 禁用 DNS 查找。
- 将执行模式口令配置为 class。
- 为控制台连接配置口令 cisco。
- 为 vty 连接配置口令 cisco。

(S1 显示的输出)

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#hostname S1
S1(config)#enable secret class
S1(config)#no ip domain-lookup
S1(config)#line console 0
S1(config-line)#password cisco
S1(config-line)#login
S1(config-line)#line vty 0 15
S1(config-line)#password cisco
S1(config-line)#login
S1(config-line)#end
%SYS-5-CONFIG_I: Configured from console by console
S1#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
```

## 任务 2: 准备网络

## 步骤 1: 使用 shutdown 命令禁用所有端口。

使用 shutdown 命令确保交换机端口初始状态为非活动状态。使用 interface-range 命令可简化此任务。

```
S1(config)#interface range fa0/1-24
S1(config-if-range)#shutdown
S1(config-if-range)#interface range gi0/1-2
S1(config-if-range)#shutdown
S2(config)#interface range fa0/1-24
S2(config-if-range)#shutdown
S2(config-if-range)#interface range gi0/1-2
S2(config-if-range)#shutdown
S3(config)#interface range fa0/1-24
S3(config-if-range)#shutdown
S3(config-if-range)#shutdown
S3(config-if-range)#shutdown
S3(config-if-range)#shutdown
```

## 步骤 2: 以接入模式重新启用 S1 和 S2 上的用户端口。

参考拓扑图,确定 S2 上供最终用户设备接入的交换机端口有哪些。这三个端口将配置为接入模式,并通过 no shutdown 命令启用。

```
S1(config)#interface fa0/3
S1(config-if)#switchport mode access
S1(config-if)#no shutdown

S2(config)#interface range fa0/6, fa0/11, fa0/18
S2(config-if-range)#switchport mode access
S2(config-if-range)#no shutdown
```

### 步骤 3: 在 S1、S2 和 S3 上启用中继端口

本实验只使用一个 VLAN,但是交换机之间的所有链路上均已启用中继,以备将来加入额外的 VLAN。

```
S1(config-if-range)#interface range fa0/1, fa0/2
```

- S1(config-if-range)#switchport mode trunk
- S1(config-if-range)#no shutdown
- S2(config-if-range)#interface range fa0/1, fa0/2
- S2(config-if-range)#switchport mode trunk
- S2(config-if-range) #no shutdown
- S3(config-if-range)#interface range fa0/1, fa0/2
- S3(config-if-range)#switchport mode trunk
- S3(config-if-range)#no shutdown

## 步骤 4: 在所有三台交换机上配置管理接口地址。

```
S1(config)#interface vlan1
```

- S1(config-if)#ip address 172.17.10.1 255.255.255.0
- S1(config-if)#no shutdown
- S2(config)#interface vlan1
- S2(config-if)#ip address 172.17.10.2 255.255.255.0
- S2(config-if)#no shutdown
- S3(config)#interface vlan1
- S3(config-if)#ip address 172.17.10.3 255.255.255.0
- S3(config-if)#no shutdown

在交换机之间执行 ping 操作,检查这些交换机是否都已正确配置。从 S1 ping S2 和 S3 的管理接口。从 S2 ping S3 的管理接口。

ping 是否成功? \_\_\_\_\_\_

若不成功,则排除交换机配置故障,然后重试。

## 任务 3: 配置主机 PC

使用本实验开头部分地址表中的 IP 地址、子网掩码和网关配置 PC1、PC2、PC3 和 PC4 的以太网接口。

## 任务 4: 配置生成树

## 步骤 1: 检查 802.1D STP 的默认配置。

在每台交换机上,使用 **show spanning-tree** 命令列出其上的生成树表。根选举取决于实验中每台交换机的 BID,因而会产生不同的输出结果。

### S1#show spanning-tree

#### VI.ANOO01

Spanning tree enabled protocol ieee Root ID Priority 32769

Address 0019.068d.6980 这是根交换机的 MAC 地址

This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 0019.068d.6980

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 300

| Interface | Role | Sts              | Cost | Prio.Nbr | Type |
|-----------|------|------------------|------|----------|------|
|           |      |                  |      |          |      |
| Fa0/1     | Desg | <mark>FWD</mark> | 19   | 128.3    | P2p  |
| Fa0/2     | Desg | <mark>FWD</mark> | 19   | 128.4    | P2p  |
| Fa0/3     | Desg | <mark>FWD</mark> | 19   | 128.5    | P2p  |

#### S2#show spanning-tree

#### VLAN0001

Spanning tree enabled protocol ieee

Root ID Priority 32769

Address 0019.068d.6980

19 Cost

1 (FastEthernet0/1)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)

Address 001b.0c68.2080

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 300

| Interface | Role St              | s Cost | Prio.Nbr | Type |
|-----------|----------------------|--------|----------|------|
|           |                      |        |          |      |
| Fa0/1     | <mark>Root</mark> FV | VD 19  | 128.1    | P2p  |
| Fa0/2     | Desg FV              | VD 19  | 128.2    | P2p  |
| Fa0/6     | Desg FV              | ND 19  | 128.6    | P2p  |
| Fa0/11    | Desg FV              | VD 19  | 128.11   | P2p  |
| Fa0/18    | Desg FV              | ND 19  | 128.18   | P2p  |

### S3#show spanning-tree

### VLAN0001

Spanning tree enabled protocol ieee

Root ID Priority 32769

> 0019.068d.6980 Address

19 Cost

1 (FastEthernet0/1)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)

001b.5303.1700 Address

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 300

| Interface | Role | Sts              | Cost | Prio.Nbr | Туре |
|-----------|------|------------------|------|----------|------|
|           |      |                  |      |          |      |
| Fa0/1     | Root | FWD              | 19   | 128.1    | P2p  |
| Fa0/2     | Altn | <mark>BLK</mark> | 19   | 128.2    | P2p  |

## 步骤 2: 检查输出。

存储在生成树 BPDU 中的网桥标识符(网桥 ID)包含网桥优先级、系统 ID 扩展和 MAC 地址。网桥优先级与系统 ID 扩展的组合或两者相加之和称为 **网桥 ID 优先级**。系统 ID 扩展始终等于 VLAN 号。例如,VLAN 100 的系统 ID 扩展为 100。如果使用默认网桥优先级值 32768,则 VLAN 100 的 **网桥 ID 优先级**为 32868 (32768 + 100)。

show spanning-tree 命令可显示 *网桥 ID 优先级*的值。注意:括号中的"优先级"值的第一部分代表网桥优先级值,第二部分代表系统 ID 扩展的值。

根据输出回答下列问题。

| 1. ' | VLAN 1 | 上交换机 S1、 | S2 和 S3 | 的网桥 ID | 优先级分别是多少? |
|------|--------|----------|---------|--------|-----------|
|------|--------|----------|---------|--------|-----------|

- a. S1 \_\_\_\_\_
- b. S2 \_\_\_\_\_
- c. S3 \_\_\_\_\_
- 2. 哪台交换机是 VLAN 1 生成树的根?
- 3. S1 上哪些生成树端口处于阻塞状态? \_\_\_\_\_\_无
- 4. S3 上哪些生成树端口处于阻塞状态? \_\_\_\_\_\_
- 5. STP 根据什么选择根交换机?
- 6. 由于这些网桥的优先级全部相同,交换机会另外根据哪项信息来确定根网桥?

## 任务 5: 观察 802.1D STP 对拓扑变化的响应

现在让我们来观察当我们特意模拟断开链路时会发生什么情况

## 步骤 1: 使用 debug spanning-tree events 命令将交换机置于生成树调试模式下

S1#debug spanning-tree events

Spanning Tree event debugging is on

S2#debug spanning-tree events

Spanning Tree event debugging is on

S3#debug spanning-tree events

Spanning Tree event debugging is on

## 步骤 2: 特意关闭 S1 上的端口 Fa0/1

S1(config)#interface fa0/1

S1(config-if)#shutdown

### 步骤 3: 记录 S2 和 S3 的调试输出

```
1w2d: STP: VLAN0001 we are the spanning tree root
1w2d: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1,
changed state to down
1w2d: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to down
S2#
1w2d: STP: VLAN0001 heard root 32769-0019.068d.6980 on Fa0/2
1w2d: supersedes 32769-001b.0c68.2080
1w2d: STP: VLAN0001 new root is 32769, 0019.068d.6980 on port Fa0/2, cost 38
1w2d: STP: VLAN0001 sent Topology Change Notice on Fa0/2
S3#
1w2d: STP: VLAN0001 heard root 32769-001b.0c68.2080 on Fa0/2
1w2d: STP: VLAN0001 Fa0/2 -> listening
1w2d: STP: VLAN0001 Topology Change rcvd on Fa0/2
1w2d: STP: VLAN0001 sent Topology Change Notice on Fa0/1
1w2d: STP: VLAN0001 Fa0/2 -> learning
S3#
1w2d: STP: VLAN0001 sent Topology Change Notice on Fa0/1
1w2d: STP: VLAN0001 Fa0/2 -> forwarding
如果从 S2 连接到根交换机的链路出现中断, S2 关于生成树根桥的最初判断是怎样的?
一旦 S2 在 Fa0/2 上收到新信息,S2 会得出什么结论? _____
在 S2 和 S1 之间链路出现中断之前, S3 上的端口 Fa0/2 一直处于阻塞状态。拓扑发生变化后,此端口将
依次经过哪些状态?
```

### 步骤 4: 使用 show spanning-tree 命令检查生成树拓扑中发生了什么变化

#### S2#show spanning-tree

#### VLAN0001

| Spanning to | ree enabled | protocol ieee                           |    |
|-------------|-------------|-----------------------------------------|----|
| Root ID     | Priority    | 32769                                   |    |
|             | Address     | 0019.068d.6980                          |    |
|             | Cost        | 38                                      |    |
|             | Port        | 2 (FastEthernet0/2)                     |    |
|             | Hello Time  | 2 sec Max Age 20 sec Forward Delay 15 s | ec |
|             |             |                                         |    |
| Bridge ID   | Priority    | 32769 (priority 32768 sys-id-ext 1)     |    |
|             | Address     | 001b.0c68.2080                          |    |
|             | Hello Time  | 2 sec Max Age 20 sec Forward Delay 15 s | ec |
|             | Aging Time  | 300                                     |    |
|             |             |                                         |    |

| Fa0/2 Root FWD 19 128.2 P2p   |  |
|-------------------------------|--|
| Fa0/6 Desg FWD 19 128.6 P2p   |  |
| Fa0/11 Desg FWD 19 128.11 P2p |  |
| Fa0/18 Desg FWD 19 128.18 P2p |  |

### S3#show spanning-tree

```
VLAN0001
 Spanning tree enabled protocol ieee
 Root ID
        Priority 32769
         Address 0019.068d.6980
         Cost
                 19
                 1 (FastEthernet0/1)
         Port
         Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
         Address 001b.5303.1700
         Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
         Aging Time 300
Interface Role Sts Cost Prio.Nbr Type
______
Fa0/1 Root FWD 19 128.1 P2p
           Desg <mark>FWD</mark> 19
                         128.2 P2p
Fa0/2
根据输出回答下列问题。
1. S2 转发流量的路径发生了什么变化?
2. S3 转发流量的路径发生了什么变化? _______
```

## 任务 6: 发出 show run 命令,记录下每台交换机的配置。

```
S1#show run
!〈省略输出〉
!
hostname S1
!
!
interface FastEthernet0/1
switchport mode trunk
!
interface FastEthernet0/2
switchport mode trunk
!
interface FastEthernet0/3
switchport mode access
!
!〈省略输出〉
!
interface Vlan1
ip address 172.17.10.1 255.255.255.0
!
end
```

### S2#show run

!〈省略输出〉

```
hostname S2
interface FastEthernet0/1
switchport mode trunk
!
interface FastEthernet0/2
 switchport mode trunk
!〈省略输出〉
interface FastEthernet0/6
switchport mode access
interface FastEthernet0/11
switchport mode access
interface FastEthernet0/18
switchport mode access
interface Vlan1
ip address 172.17.10.2 255.255.255.0
end
S3#show run
!〈省略输出〉
hostname S3
interface FastEthernet0/1
switchport mode trunk
interface FastEthernet0/2
 switchport mode trunk
!
!
!〈省略输出〉
interface Vlan1
ip address 172.17.10.3 255.255.255.0
!
end
```

## 任务7:课后清理

删除配置,然后重新启动交换机。拆下电缆并放回保存处。对于通常连接到其它网络(例如学校 LAN 或 Internet)的 PC 主机,请重新连接相应的电缆并恢复原有的 TCP/IP 设置。