МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕ-НИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.И.ПИРОГОВА» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

(ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России)

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

по образовательной программе высшего образования – программе магистратуры по направлению подготовки: 06.04.01 Биология

Направленность (профиль) образовательной программы: «МЕДИЦИНСКАЯ БИОИНФОРМАТИКА»

1. Область применения и нормативные ссылки.

Программа вступительного испытания разработана для поступающих в ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России на обучение по программам высшего образования на основе:

- Требований Федерального государственного образовательного стандарта высшего образования по направлению подготовки 06.04.01 Биология (уровень магистратуры), утвержденным приказом Министерством образования и науки РФ от 11 августа 2020 № 934.
- Правил приема на обучение по образовательным программам высшего образования программам бакалавриата, магистратуры, программам специалитета в федеральное государственное автономное образовательное учреждение высшего образования «Российский национальный исследовательский медицинский университет имени И.И. Пирогова» Министерства здравоохранения Российской Федерации (ФГАОУ ВО РНИМУ им. И.И. Пирогова Минздрава России) на 2024/2025 учебный год.

2. Программа вступительного испытания (по разделам).

Шитология

Основные положения клеточной теории. Клетка - структурная и функциональная единица живого. Строение и функция ядра, цитоплазмы и ее основных органоидов. Особенности строения клеток прокариот, эукариот. Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки. Органические вещества: углеводы, липиды, биополимеры (полисахариды, белки, нуклеиновые кислоты), их роль в клетке. Ферменты, их роль в процессах жизнедеятельности. Самоудвоение ДНК. Обмен веществ и превращение энергии - основа жизнедеятельности клетки. Энергетический обмен в клетке, его сущность и этапы. АТФ и её значение в обмене веществ и энергии. Синтез АТФ в клетке. Пластический обмен. Биосинтез белков. Клеточные мембраны. Органеллы клеток. Ядро. Ген и его роль в биосинтезе. Взаимосвязь процессов пластического и энергетического обмена. Деление клеток. Митоз, мейоз и оплодотворение - основа размножения и индивидуального развития организмов. Подготовка клетки к делению. Удвоение молекул ДНК. Основные процессы, происходящие в митозе и мейозе. Хромосомы, их гаплоидный и диплоидный набор.

Вирусы, особенности их строения и жизнедеятельности. Медицинское значение вирусов. Бактерии, особенности их строения и жизнедеятельности. Медицинское значение бактерий.

Генетика

Основные закономерности наследственности и изменчивости организмов и их цитологические основы. Предмет, задачи и методы генетики. Моно- и дигибридное скрещивание. Законы наследственности, установленные Г. Менделем. Доминантные и рецессивные признаки. Аллельные гены. Фенотип и генотип. Гомозигота и гетерозигота. Единообразие гибридов первого поколения. Промежуточное наследование при неполном доминировании. Закон расщепления признаков. Статистический характер явлений расщепления. Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении. Закон независимого наследования и его цитологические основы. Хромосомная теория наследственности. Сцепленное наследование. Нарушение сцепления. Перекрест хромосом (кроссинговер). Взаимодействие и множественное действие генов. Генетика пола. Генотип как целостная исторически сложившаяся система. Генетика человека, её основные методы и значение для медицины. Вредное влияние никотина, алкоголя и других наркотических веществ на наследствен-

ность человека. Роль генотипа и условий внешней среды в формировании фенотипа. Мутации, их причины. Закон гомологических рядов в наследственной изменчивости Н.И. Вавилова. Экспериментальное получение мутаций. Мутации как материал для искусственного и естественного отбора. Загрязнение природной среды мутагенами и его последствия. Генетика и теория эволюции. Генетика популяций. Формы естественного отбора: движущий и стабилизирующий.

Строение человека

Общее знакомство с организмом человека (органы и системы органов). Элементарные сведения о строении, функциях и размножении клеток. Рефлекс. Краткие сведения о строении и функциях тканей. Ткани (эпителиальные, соединительные, мышечные и нервная). Опорнодвигательная система. Значение опорно-двигательной системы. Строение скелета человека. Мышцы, их строение и функции. Нервная регуляция деятельности мышц. Рефлекторная дуга. Работа мыши. Кровь. Внутренняя среда организма: кровь, тканевая жилкость, лимфа. Относительное постоянство внутренней среды. Состав крови: плазма, форменные элементы. Группы крови. Свертывание крови как защитная реакция. Эритроциты и лейкоциты, их строение и функции. Борьба с эпидемиями. Иммунитет. Клетки иммунной системы (состав, образование и дифференцировка). Антиген презентирующие клетки. Комплекс гистосовметимости. Иммуноглобулины. Антитела. Антигены. Кровообращение. Органы кровообращения: сердце и сосуды (артерии, капилляры, вены). Большой и малый круги кровообращения. Сердце, его строение и работа. Понятие о нервной и гуморальной регуляции деятельности сердца. Движение крови по сосудам. Пульс. Кровяное давление. Дыхание. Значение дыхания. Органы дыхания, их строение и функция. Газообмен в легких и тканях. Понятие о гуморальной и нервной регуляции дыхания. Пищеварение. Питательные вещества и пищевые продукты. Пищеварение, ферменты и их роль в пищеварении. Строение органов пищеварения. Пищеварение в полости рта. Пищеварение в желудке. Понятие о нервногуморальной регуляции желудочного сокоотделения. Печень, поджелудочная железа и их роль в пищеварении. Изменение питательных веществ в кишечнике. Всасывание. Обмен веществ. Водно-солевой, белковый, жировой и углеводный обмен. Распад и окисление органических веществ в клетках. Ферменты. Пластический и энергетический обмен - две стороны единого процесса обмена веществ. Обмен веществ между организмом и окружающей средой. Витамины и их значение для организма. Выделение. Органы мочевыделительной системы. Функции почек. Значение выделения продуктов обмена веществ. Кожа. Строение и функции кожи. Роль кожи в регуляции теплоотдачи. Нервная система. Значение нервной системы. Строение и функции спинного мозга и отделов головного мозга: продолговатого, среднего, промежуточного, мозжечка. Понятие о вегетативной нервной системе. Большие полушария головного мозга. Значение коры больших полушарий. Органы чувств. Значение органов чувств. Строение и функции органов зрения. Строение и функции органа слуха. Высшая нервная деятельность. Безусловные и условные рефлексы. Образование и биологическое значение условных рефлексов. Торможение условных рефлексов. Сознание и мышление человека как функции высших отделов головного мозга. Железы внутренней секреции. Значение желез внутренней секреции. Понятие о гормонах. Роль гуморальной регуляции в организме. Развитие человеческого организма. Воспроизведение организмов. Половые железы и половые клетки. Оплодотворение. Развитие зародыша человека.

Информатика

Способы представления информации в ЭВМ. Проблемы кодирования. Этапы обработки данных в ЭВМ. Системы счисления, применяемые в ЭВМ. Вопросы точности, представления машинного нуля и бесконечности. Основные понятия логики. Законы логики. Понятие алгоритма. Основы алгоритмизации задач. Алгоритмические языки. Технология подготовки и решения задач. Операционные системы. Состав и назначение программ ЭВМ. Управляющие и обрабатывающие программы. Файловая система. Средства диалога пользователя. Объектноориентированные языки программирования. Общие свойства языков. Операторы объектноориентированного языка программирования. Назначение и классификация. Описание массивов. Способы задания начальных величин. Основные алгоритмические операторы. Структурные операторы языка. Компьютерные сети. Архитектура вычислительных сетей. Сетевые компоненты. Интернет. Базы данных, основные определения и понятия, требования к организации, модели и схемы данных. Построение информационно-логической модели данных. Системы управления базой данных. Определение структуры базы данных. Типы данных. Схема данных. Обеспечение целостности данных. Запросы. Режим SQL для запроса.

Математика

Алгебра матриц: действия над матрицами, определитель матрицы, способы вычисления определителя (правило треугольника, правило Саррюса), единичная матрица, обратная матрица, понятия миноров, алгебраических дополнений, решение систем линейных уравнений с помощью матриц (метод Крамера).

Понятие логарифма, свойства логарифмов, логарифмическая функция.

Понятие комплексного числа, действия с комплексными числами.

Понятие предела, раскрытие неопределенностей вида 0/0 и ∞/∞. Правило Лопиталя.

Понятие и свойства производной функции одной переменной, точки экстремума. Производная сложной функции. Частные производные.

Понятие интеграла. Неопределенный интеграл, определенный интеграл. Интегрирование по частям.

Графики элементарных функций. Общий вид уравнений прямой, параболы, гиперболы.

Рекомендуемая литература

- 1. Инге-Вечтомов С.Г. Генетика с основами селекции. Санкт-Петербург: Изд. Н-Л. 2010-720 с.
- 2. Быков В.Л. Цитология и общая гистология. СПб, 2013.
- 3. Привеса М.Г., Лысенков Н.К.: В.И.Бушкевич. Анатомия человека. СПб, 2010.
- 4. Макарова Н.В. Информатика. СПб.: Питер, 2013.
- 5. Лунгу К.Н., Макаров Е.В. Высшая математика (руководств о к решению задач) ч.1,2. Москва, ФИЗМАТЛИТ, 2010.
- 6. Данко Е.А., Попов А.Г. Высшая математика в упражнениях и задачах. ч.1, 2. Москва, ОНИКС, 2003.

3. Форма проведения вступительного испытания

Вступительное испытание проводится в форме компьютерного тестирования. Время, отведенное на выполнение заданий, составляет 180 минут. Время начала и окончания испытания фиксируется автоматически.

4. Структура вступительного испытания

Каждый вариант теста представлен 65 тестовыми заданиями разных уровней.

Задания 1-40 являются тестами с одиночным выбором (по 8 заданий из каждого раздела). Абитуриент должен выбрать только один вариант ответа, то есть среди множества вариантов ответа только один правильный.

Задания 41-55 являются тестами с множественным выбором (по 3 задания из каждого раздела). Абитуриент должен выбрать несколько вариантов ответа. Среди множества вариантов ответов — произвольное количество может быть верным. Не допускается включение в задание только верных или неверных ответов.

Задания 56-65 являются тестом, в котором необходимо написать ответ на поставленный вопрос или найти соответствие (по 2 задания из каждого раздела).

5. Показатели и критерии результата вступительного испытания, шкала и процедура оценивания

В соответствие с требованиями ФГОС ВО лица, желающие освоить программу специализированной подготовки магистра биологии, должны иметь высшее образование (бакалавриат или специалитет), подтвержденное документом государственного образца. Лица, имеющие диплом бакалавра по направлению 06.03.01 Биология, а также имеющие высшее образование по другим направлениям, участвуют в конкурсе на равных условиях.

Вступительный экзамен проводится с целью установления уровня подготовленности абитуриента к освоению программы магистратуры по направлению 06.04.01 Биология.

Результаты вступительного испытания, проводимого Университетом, оцениваются по 100-балльной шкале.

Результат вступительного испытания, считается положительным, если сумма набранных баллов соответствует минимальному количеству баллов, установленному правилами приема в Университет, по соответствующему направлению подготовки, или превышает ее.

Минимальное количество баллов не может быть изменено в ходе приема.

Шкала оценивания результатов тестирования.

Оценивается уровень сформированности знаний абитуриента и готовности его к обучению в магистратуре, уровень знаний и умений, позволяющий решать типовые задачи профессиональной деятельности, уровень информационной культуры.

Максимальное количество баллов, которые абитуриент может набрать за выполнение тестов -100 баллов.

За задания 1-40 (40 вопросов) абитуриент, выбрав правильный ответ, получает за каждое задание 1 баллов; выбрав неправильный ответ — 0 баллов.

В заданиях 41-55 (15 вопросов) абитуриент, выбрав правильную комбинацию ответов, получает за каждое задание 2 балла; выбрав неправильную комбинацию ответов — 0 баллов.

Задания 56-65 (10 вопросов) являются тестом по заполнению формы, где необходимо написать ответ на поставленный вопрос. Верный ответ засчитывается в случае полного совпадения ответа, написанного абитуриентом, с правильным ответом или диапазоном ответов. За верный ответ абитуриент получает 3 балла; за неправильный — 0 баллов.

Заведующий кафедрой биоинформатики МБФ	
л.б.н., профессор РАН	А.А. Лагунин