# Homework 5: Application of CLT

Total: 100 pts This is an individual assignment.

There is only one part. **You can use python to solve some numerical calculations.** but make sure to show your steps.

```
In [2]: import numpy as np
import numpy.random as npr
import random
import itertools

import pandas as pd

import matplotlib.pyplot as plt
%matplotlib inline
# plt.style.use('ggplot')
import scipy.stats as stats
```

### Description

Provide analytical solutions to the problems below and upload your answers as a PDF. (There is no need to type your answers -- just scan your handwritten solutions with an app like CamScanner or Scannable.)

• Central limit Theorem is abbreviated as CLT.

#### Problem 1

(10 pt) A population has a mean of  $\mu = 100$  and a standard deviation of  $\sin = 15$ . You take a random sample of size n = 60.

• Compute the expected mean and standard deviation of the sample mean distribution.

#### **Problem 1 Solution:**

(1) Expected Mean of Sample Mean Distribution:

```
\mu_{\infty} = \mu = 100
```

(2) Standard Deviation (Standard Error) of Sample Mean Distribution:

```
\sigma_{x} = \frac{15}{\sqrt{60}} \
```

#### Problem 2:

(10pt, 5 pt each) A university's exam scores are normally distributed with a mean of 75 and a standard deviation of 12.

- What is the probability that a randomly selected student scores above 80?
- If we take a random sample of 50 students, what is the probability that their average score is above 80?

#### **Problem 2 Solution:**

Given:

• Population mean: \$\mu = 75\$

Population standard deviation: \$\sigma = 12\$

### (1) Probability a randomly selected student scores above 80:

Let \$X\$ be the exam score of a randomly selected student. We want:

```
P(X > 80) = 1 - P(X \leq 80)
```

Then, using Python, the calculated probability is approximately \$0.3385\$.

```
In [3]: prob_above_80 = 1 - stats.norm.cdf(80, loc=75, scale=12)
    print(prob_above_80)
```

0.3384611195106897

#### (2) Probability the average score of 50 students is above 80:

By the Central Limit Theorem (CLT), the distribution of sample means will be normally distributed with:

- Mean: \$\mu\_{\bar{x}} = \mu = 75\$
- Standard deviation: \$\sigma\_{\bar{x}} = \frac{12}{\sqrt{50}} \approx 1.6971 \$

We want the probability:

```
P(\frac{x} > 80) = 1 - P(\frac{x} \le 80) $
```

Calculate using Python, and the probability is approximately \$0.0016\$.

```
In [4]: prob_sample_mean_above_80 = 1 - stats.norm.cdf(80, loc=75, scale=12/np.sqrt(50))
    print(prob_sample_mean_above_80)
```

0.0016081146550637193

#### Problem 3:

(10 pt.) Suppose the population distribution is highly skewed (e.g., exponential distribution with mean \$\mu = 10\$).

 According to the CLT, what happens to the shape of the distribution of the sample mean \$M\_n\$ as \$n\$ increases? Simulate this scenario by taking multiple samples and computing the sample means.

### **Problem 3 Solution:**

To illustrate this, let's simulate using an exponential distribution (highly skewed):

```
In [5]: # Parameters
        mu = 10  # mean of exponential distribution
        sample_sizes = [1, 5, 10, 30, 50, 100] # different sample sizes n
        num_samples = 10000
        # Plotting setup
        fig, axes = plt.subplots(2, 3, figsize=(15, 10))
        # Generate and plot sample means for each sample size
        for i, n in enumerate(sample sizes):
            sample_means = [np.mean(np.random.exponential(scale=mu, size=n)) for _ in range(num_
            axes = axes = plt.subplot(2, 3, sample_sizes.index(n) + 1)
            plt.hist(sample_means, bins=50, density=True, alpha=0.7)
            plt.title(f'Distribution of Sample Means (n={n})')
            plt.xlabel('Sample Mean')
            plt.ylabel('Density')
        plt.tight_layout()
        plt.show()
```



- For small \$n\$, the distribution of sample means closely resembles the skewed exponential distribution.
- As the sample size \$n\$ increases, the distribution becomes increasingly symmetric and bell-shaped, converging towards a normal distribution, as predicted by the CLT.
- As the sample size \$n\$ increase, the variance of \$M\_n\$ is reduced monotonically.

## Problem 4:

(total 20 points, 5 point each)

Consider the following samples \$x\$ shown in the code block.

determine the unbiased estimates of

- a) the true mean \$\mu\_X\$;
- b) the true variance \$\sigma\_X^2\$;
- c) Find the 90% and 95% confidence intervals of the true mean \$\mu\_X\$.
- d) Assume the variance is 4. Find the 90% and 95% confidence intervals of the true mean \$\mu\_X\$.

```
11.2425588 , 9.22283116, 8.81756564, 7.4542541 , 13.5276926 , 8.9838017 , 6.17270784, 6.11628502, 12.73676266, 12.10245976, 6.61158708, 11.63275555, 7.37901878, 10.89610414, 11.22716216, 10.53632239, 6.28180412, 0.85423536, 7.25049042, 6.49677655, 13.16411068, 19.76880339, 9.97978585, 8.54956202, 3.02158038, 16.49559522, 5.35853099, 8.25208242, 11.12447038, 14.06371398])
```

#### **Problem 4 Solution:**

```
In [7]: # (a) Unbiased estimate of the true mean
          mean_x = np.mean(x)
          print(mean_x)
         9.7001159498
 In [8]: # (b) Unbiased estimate of the true variance
          var_x = np.var(x, ddof=1)
          print(var_x)
         15.307503304153016
 In [9]: # alternatively
         var x2 = x.var(ddof=1)
          print(var x2)
         15.307503304153016
In [10]: # (c) Confidence intervals with unknown variance using t-distribution
          # We will skip this problem because it is not covered yet.
         n = len(x)
         # Sample Standard Error of the Mean (SSEM)
          ssem_x = stats.sem(x) \# calculate estimated_sigma / sqrt(n) using ddof=1
         # Significance levels
          alpha_90 = 1 - 0.9
          alpha_95 = 1 - 0.95
         # Critical t-values
          t_val_90 = stats.t.ppf(1 - alpha_90/2, df=n-1)
          t val 95 = stats.t.ppf(1 - alpha 95/2, df=n-1)
          # Margin of errors
         moe_90 = t_val_90 * ssem_x
         moe 95 = t \text{ val } 95 * \text{ssem } x
         # Confidence Intervals (CI)
          CI_t_90 = (mean_x - moe_90, mean_x + moe_90)
          CI t 95 = (\text{mean } x - \text{moe } 95, \text{mean } x + \text{moe } 95)
          print("Confidence Intervals with unknown variance:")
          print("90% CI:", CI_t_90)
          print("95% CI:", CI_t_95)
         Confidence Intervals with unknown variance:
         90% CI: (8.77246643921188, 10.62776546038812)
         95% CI: (8.588201309001102, 10.8120305905989)
In [13]: \# (d) Confidence intervals with known variance (sigma^2 = 4, so sigma = 2) using z-distr
         sigma = 2
          # Standard Error of the Mean (SEM) or the variance of the mean estimator.
          sem = sigma / np.sgrt(n)
```

```
# Critical z-values
z_critical_90 = stats.norm.isf( alpha_90/2)
z_critical_95 = stats.norm.isf(alpha_95/2)

# Margin/distance d
d_z_90 = z_critical_90 * sem
d_z_95 = z_critical_95 * sem

# Confidence Intervals (CI)
CI_z_90 = (mean_x - d_z_90, mean_x + d_z_90)
CI_z_95 = (mean_x - d_z_95, mean_x + d_z_95)

print("\nConfidence Intervals with known variance:")
print("90% CI:", CI_z_90)
print("95% CI:", CI_z_95)
```

```
Confidence Intervals with known variance: 90% CI: (9.234881088329331, 10.16535081127067) 95% CI: (9.145754420060129, 10.254477479539872)
```

#### Problem 5 - Biased Estimator

(Total 10 points. 5 points each)

Consider a set of i.i.d. data  $X=\{X_i\}_{i=1}^N$ , with mean  $\infty$  and varaince  $\sin^2 2$ . Define the following estimator for the mean:

 $\begin{align*} \hat c &= \frac{1}{N} \sum_{i=1}^N (X_i + c), \quad c \in \mathbb{R} \end{align*} 1 (5 pt). Compute the bias of this estimator, $b_{\mu}(\hat c)$.$ 

2 (5 pt). Compute \$\operatorname{Var}[\hat{\mu}\_c]\$.

### **Problem 5 Solution:**

## (1) Bias of the Estimator

The bias is defined as: \$b\_{\mu}(\hat{\mu}\_c) = \mathbb{E}[\hat{\mu}\_c] - \mu\$

1. Compute the expectation of \$\hat{\mu}\_c\$:

```
\mbox{ } \mathcal{E}[\hat{x}_c] = \mathcal{E}[\frac{1}{N}\sum_{i=1}^{N} (X_i + c)\right]
```

2. By linearity of expectation:

```
\times_{E}[\hat{E}[\hat{E}[X_i + c] = \frac{1}{N} \sum_{i=1}^N \hat{E}[X_i + c] = \frac{1}{N} \sum_{i=1}^N \hat{E}[X_i + c] = \frac{1}{N}
```

3. Since  $\mathbf{E}[X_i] = \mathbf{u}\$  for all i:

```
\mbox{mathbb{E}[\hat{\mu}_c] = \frac{1}{N} \cdot N \cdot N \cdot mu + c} = mu + c
```

4. Therefore, the bias is:

```
b_{\mu}(\mu_c) = (\mu_c + c) - \mu_c
```

#### (2) Variance of the Estimator

To compute the variance: \$ \operatorname{\Var}[\hat{\mu}\_c] \$

1. Since the \$X\_i\$'s are i.i.d., the variance of their sum is:

```
\label{lem:continuous} $\operatorname{Var}[\hat X_i = \operatorname{Var}\left[\frac{1}{N}\sum_{i=1}^N (X_i + c)\right] = \sum_{i=1}^N \operatorname{Var}\left[\frac{1}{N}(X_i + c)\right] $
```

2. Notice that adding a constant \$c\$ does not affect the variance, scaling a random variable by \$\frac{1}{N}\$ reduces the variance by a factor of \$\frac{1}{N^2}\$:

3. Finally, we get:

### Problem 6 - CI with known variance

(total 10 pt) A random sample  $X_1,\los X_{100}$  is given from a distribution with known variance  $X_i = 16$ . For the observed sample, the sample mean is x = 23.5, Find an approximate 98% confidence interval for the mean of the underlying distribution  $X_i$ .

### **Problem 6 Solution:**

```
In [14]: n = 100
    sigma = np.sqrt(16)
    mean_x = 23.5

# Standard Error of the Mean (SEM)
    sem = sigma / np.sqrt(n)

# Significance levels
    alpha_98 = 1 - 0.98

# Critical z-values
    z_critical_98 = stats.norm.isf(alpha_98/2)

# Margin of errors
    moe_z_98 = z_critical_98 * sem

# Confidence Intervals (CI)
    CI_z_98 = (mean_x - moe_z_98, mean_x + moe_z_98)

print("\nConfidence Intervals with known variance:")
    print("98% CI:", CI_z_98)
```

Confidence Intervals with known variance: 98% CI: (22.569460850383663, 24.430539149616337)

### Problem 7

(30pt, )

In this problem you will be working with the Breast Cancer Data Set).

This data set contains 569 samples of digitized images of a fine needle aspirate (FNA) of a breast mass. Each sample describes the mass using 30 features, which include the average radius of the cell present in the FNA image. Each sample is labeled as benign (class = 1) or malignant (class = 0).

We will use the scikit-learn library to load it and write it as a pandas dataframe:

Out[11]:

|     | Class | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean<br>compactness | mean<br>concavity | mean<br>concave<br>points | mean<br>symmetry |
|-----|-------|----------------|-----------------|-------------------|--------------|--------------------|---------------------|-------------------|---------------------------|------------------|
| 0   | 0.0   | 17.99          | 10.38           | 122.80            | 1001.0       | 0.11840            | 0.27760             | 0.30010           | 0.14710                   | 0.2419           |
| 1   | 0.0   | 20.57          | 17.77           | 132.90            | 1326.0       | 0.08474            | 0.07864             | 0.08690           | 0.07017                   | 0.1812           |
| 2   | 0.0   | 19.69          | 21.25           | 130.00            | 1203.0       | 0.10960            | 0.15990             | 0.19740           | 0.12790                   | 0.2069           |
| 3   | 0.0   | 11.42          | 20.38           | 77.58             | 386.1        | 0.14250            | 0.28390             | 0.24140           | 0.10520                   | 0.2597           |
| 4   | 0.0   | 20.29          | 14.34           | 135.10            | 1297.0       | 0.10030            | 0.13280             | 0.19800           | 0.10430                   | 0.1809           |
| ••• |       |                | •••             |                   |              |                    | •••                 |                   | •••                       |                  |
| 564 | 0.0   | 21.56          | 22.39           | 142.00            | 1479.0       | 0.11100            | 0.11590             | 0.24390           | 0.13890                   | 0.1726           |
| 565 | 0.0   | 20.13          | 28.25           | 131.20            | 1261.0       | 0.09780            | 0.10340             | 0.14400           | 0.09791                   | 0.1752           |
| 566 | 0.0   | 16.60          | 28.08           | 108.30            | 858.1        | 0.08455            | 0.10230             | 0.09251           | 0.05302                   | 0.1590           |
| 567 | 0.0   | 20.60          | 29.33           | 140.10            | 1265.0       | 0.11780            | 0.27700             | 0.35140           | 0.15200                   | 0.2397           |
| 568 | 1.0   | 7.76           | 24.54           | 47.92             | 181.0        | 0.05263            | 0.04362             | 0.00000           | 0.00000                   | 0.1587           |

569 rows × 31 columns

For each class (benign and malignant), consider the mean radius column. Answer the following questions:

Consider the mean radius feature (second column in dataframe) for both benign (class=1) and malignant (class=0) samples. Answer the following questions:

1.(5pt) Plot overlapping histograms of the two types of samples (malignant and benign).

```
In [12]: # Extract the mean radius column for benign and malignant samples.
benign = df[df['Class'] == 1]['mean radius']
malignant = df[df['Class'] == 0]['mean radius']

# Plot overlapping histograms
plt.figure(figsize=(10, 6))
plt.hist(benign, bins=20, alpha=0.7, label='Benign (Class 1)', density=True)
plt.hist(malignant, bins=20, alpha=0.7, label='Malignant (Class 0)', density=True)
plt.xlabel('Mean Radius')
plt.ylabel('Density')
plt.title('Overlapping Histograms of Mean Radius: Benign vs. Malignant')
plt.legend()
plt.show()
```

#### Overlapping Histograms of Mean Radius: Benign vs. Malignant



2.(20pt) Assume that the two groups follow a Gaussian distribution. Estimate the parameters of each distribution using unbiased estimators from the sample data.

```
print("Estimated Variance:", benign_variance)
print("\nMalignant Samples (Class = 0):")
print("Estimated Mean:", malignant_mean)
print("Estimated Variance:", malignant_variance)

Benign Samples (Class = 1):
Estimated Mean: 12.146523809523808
Estimated Variance: 3.170221722043872

Malignant Samples (Class = 0):
Estimated Mean: 17.462830188679245
Estimated Variance: 10.265430814629346
```

3.(5pt) Plot the resulting Gaussian distributions overlapping with the previous histogram plot and comment the results.

```
benign_std = np.sqrt(benign_variance)
In [14]:
         malignant_std = np.sqrt(malignant_variance)
         # Create a range of x values covering the data
         x_values = np.linspace(min(df['mean radius']) - 1, max(df['mean radius']) + 1, 300)
         # Calculate the PDFs for the benign and malignant groups
         pdf_benign = stats.norm.pdf(x_values, loc=benign_mean, scale=benign_std)
         pdf_malignant = stats.norm.pdf(x_values, loc=malignant_mean, scale=malignant_std)
         # Plot overlapping histograms of the two groups
         plt.figure(figsize=(10, 6))
         plt.hist(benign, bins=20, alpha=0.7, density=True, label='Benign (Class 1)')
         plt.hist(malignant, bins=20, alpha=0.7, density=True, label='Malignant (Class 0)')
         # Overlav the Gaussian PDFs
         plt.plot(x_values, pdf_benign, color='blue', lw=2, label='Gaussian Fit (Benign)')
         plt.plot(x_values, pdf_malignant, color='red', lw=2, label='Gaussian Fit (Malignant)')
         plt.xlabel('Mean Radius')
         plt.ylabel('Density')
         plt.title('Overlapping Histograms with Gaussian Fits')
         plt.legend()
         plt.show()
```

### Overlapping Histograms with Gaussian Fits

