

Python Lesson 5 OpenMDAO

Pierre-Elouan Réthoré¹ Frederik Zahle¹ Katherine Dykes²

 $^{
m 1}$ Aero-elastic Section, Wind Energy Department, DTU, Risø $^{
m 2}$ NREL

DTU Wind Energy

Aero-Elastic Design Section - Risø

Outline

- OpenMDAO concepts
- Work on OpenMDAO at DTU
- Work on OpenMDAO at NREL
- FUSED-Wind
- OpenMDAO guided tutorial
- OpenMDAO exercise

- OpenMDAO concepts
- 2 Work on OpenMDAO at DTU
- Work on OpenMDAO at NREL
- 4 FUSED-Wind
- OpenMDAO guided tutorial
- OpenMDAO exercise

OpenMDAO concepts

In practice

Example: The Rozenbrock optimization

The Rozenbrock function: $f = 100(x^2 - x^2)^2 + (1 - x^2)^2$

Component definition

```
class Rosenbrock(Component):
    """ Standard two-dimensional Rosenbrock function. """

x1 = Float(iotype='in')
    x2 = Float(iotype='in')
    f = Float(iotype='out')

def execute(self):
    """ Just evaluate the function. """
    x1 = self.x1
    x2 = self.x2
    self.f = 100 * (x2 - x1**2)**2 + (1 - x1)**2
```


Assembly definition

```
class Optimization(Assembly):
    def configure(self):
        """ Configure driver and its workflow. """
        super(Assembly, self).configure()
        self.add('rosenbrock', Rosenbrock())
        self.add('driver', CONMINdriver())
        self.driver.workflow.add('rosenbrock')
        self.driver.add_parameter('rosenbrock.x1',
                            low=-2, high=2, start=-1.0)
        self.driver.add_parameter('rosenbrock.x2',
                            low=-2, high=2, start=-2.0)
        self.driver.add_objective('rosenbrock.f')
        # Some additional optimizer options
        #...
opti = Optimization()
opti.run()
```


Rosenbrock optimization

After a few iterations...

Different types of Drivers:

- Optimizers (support for gradients)
 - Natives (COBYLA, CONMIN, Genetic, NEWSUMT, SLSQP)
 - DAKOTA plugin (20+)
 - pyOpt plugin (10+)
 - more..
- CaseIteratorDriver: loop through a list of cases, possibly in parallel
- Design of Experiment: do parameter studies
- Sampling...

Different types of variables

- Array
- Bool
- Complex
- Enum
- File
- Float
- Int
- Slot
- Str

Different types of Assembly usage (1/2)

Several nested drivers within one assembly

Different types of Assembly usage (1/2)

Nested assemblies

GUI

There is web-based GUI, that you can use to explore your assemblies:

youtube

- OpenMDAO concepts
- Work on OpenMDAO at DTU
- Work on OpenMDAO at NREL
- 4 FUSED-Wind
- OpenMDAO guided tutorial
- OpenMDAO exercise

Projects (1/3)

Topfarm (Pierre-Elouan)

Wind Farm Layout optimization

- Wake models (FUSED-Wake)
- Foundation cost
- Electrical grid cabling cost model
- Wind Farm Financial Balance
- ◆ DWM HAWC2 Fatigue database
- WAsP-CFD

Projects (1/3)

Topfarm (Pierre-Elouan)

Wind Farm Layout optimization

- Wake models (FUSED-Wake)
- Foundation cost
- Electrical grid cabling cost model
- Wind Farm Financial Balance
- DWM HAWC2 Fatigue database
- WAsP-CFD

FUSED-Wake (Pierre-Elouan)

Framework for analysis of wind farm wake models: NOJensen, GCL, Ainslie, FUGA, DWM, EllipSys3D AD/AL

- Uncertainty Quantification
- Model Averaging
- Multi-fidelity modelling

Projects (2/3)

Light Rotor

- Wind turbine optimization
 - aerodynamic (HAWC2 & HAWCStab2) (Frederik, Carlo)
 - structural (Becas, CSProps) (David, Witold)
- Airfoil optimization
 - Aerodynamic (XFoil, EllipSys2D) (Frederik, Franck)
 - Noise model (TNO, XFoil) (Franck)

Projects (2/3)

Light Rotor

- Wind turbine optimization
 - aerodynamic (HAWC2 & HAWCStab2) (Frederik, Carlo)
 - structural (Becas, CSProps) (David, Witold)
- Airfoil optimization
 - Aerodynamic (XFoil, EllipSys2D) (Frederik, Franck)
 - Noise model (TNO, XFoil) (Franck)

Aero-servo-elastic optimization (Carlo's PhD)

HAWCStab2 & HAWC2

Projects (3/3)

Ellipsys-HAWC2 coupling

- Coupling between EllipSys3D fully resolved and HAWC2 (Joachim)
- Coupling between EllipSys3D Actuator Disc/Line and HAWC2(aero) (Niels T)

Topology optimization (Alexander)

Wrapped Codes

- Operational
 - EllipSys3D
 - Becas
 - HAWC2
 - HAWCStab2
 - XFoil
 - CSProps
- Under development / Planned
 - FUGA
 - DWM-HAWC2
 - WAsP
 - WAsP-CFD
 - WRF
 - CORWIND

- OpenMDAO concepts
- Work on OpenMDAO at DTU
- Work on OpenMDAO at NREL
- 4 FUSED-Wind
- OpenMDAO guided tutorial
- OpenMDAO exercise

- OpenMDAO concepts
- Work on OpenMDAO at DTU
- Work on OpenMDAO at NREL
- FUSED-Wind
- OpenMDAO guided tutorial
- OpenMDAO exercise

- OpenMDAO concepts
- Work on OpenMDAO at DTU
- Work on OpenMDAO at NREL
- 4 FUSED-Wind
- OpenMDAO guided tutorial
- OpenMDAO exercise

- OpenMDAO concepts
- Work on OpenMDAO at DTU
- Work on OpenMDAO at NREL
- 4 FUSED-Wind
- OpenMDAO guided tutorial
- OpenMDAO exercise