Strojno učenje 1

1. Uvod u strojno učenje

prof. dr. sc. Jan Šnajder prof. dr. sc. Bojana Dalbelo Bašić

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Ak. god. 2022./2023.

Sadržaj

1 Što i zašto

2 Tri pristupa i pet škola

Organizacija predmeta

Motivacija

- "We are drowning in data, but we are starved for knowledge"
 John Naisbitt, Megatrends
- Podatci = sirove informacije
- Znanje = uzorci u podatcima ili modeli koji ih objašnjavaju

Strojno učenje

 Algoritmi za (polu)automatsku ekstrakciju novog i korisnog znanja – u obliku pravila, uzoraka ili modela – iz proizvoljnih skupova podataka

Strojno učenje

Strojno učenje (Alpaydin 2009)

Strojno učenje jest programiranje računala na način da optimiziraju neki kriterij uspješnosti temeljem podatkovnih primjera ili prethodnog iskustva.

- Raspolažemo modelom koji je definiran do na neke parametre
- Učenje: optimizacija parametara modela temeljem podataka
- Na temelju viđenih podataka, model mora moći predvidjeti svojstva novih, još neviđenih podataka
- Cilj strojnog učenja: izgraditi modele koji dobro generaliziraju

Interdisciplinarnost strojnog učenja

- Umjetna inteligencija
- Teorija vjerojatnosti
- Statistika
- Optimizacija
- Teorija informacije
- Teorijska računarska znanost
- Baze podataka
- Pretraživanje informacija (engl. information retrieval)
- Psihologija, neurobiologija, kognitivna znanost

Svi putevi vode k...strojnom učenju

Matematika: statistika

17. stoljeće: Vjerojatnost

18. stoljeće: Prvi Bayesovski pristupi

20. stoljeće: Frekventisti

▶ 1980.: Značajan razvoj Bayesovskih pristupa (MCMC)

• Elektrotehnika: Obrada signala

Početci u drugome svjetskom ratu

▶ 1960.–1970.: FFT, projektiranje filtara

▶ 1980.–1990.: Očitavanje signala, obrada slike

Svi putevi vode k...strojnom učenju

Računarstvo: UI

- ▶ 1940.: Perceptron
- ▶ 1960.–1970.: Logičko programiranje
- ▶ 1980.: Backpropagation, PAC, Bayesove mreže
- 2000.+: SVM, PGM, Transfer learning, Structured learning, Online learning, Deep learning, . . .

• Računarstvo: Razne komplementarne ideje

- Baze podataka: Dubinska analiza podataka, statističke baze podataka (OLAP), probabilističke baze podataka
- Pretraživanje informacija: PageRank
- Računalni sustavi: MapReduce, Hadoop

Strojno učenje danas

Broj radova na konferenciji NeurIPS

https://towardsdatascience.com/neurips-conference-historical-data-analysis-e45f7641d232

Krajolik alata strojnog učenja

https://mattturck.com/data2021/

Primjene strojnog učenja

- Složeni problemi ne postoji ljudsko znanje o procesu ili ljudi ne mogu dati objašnjenje procesa (npr. raspoznavanje govora)
 - problemi koje nije moguće riješiti na klasičan algoritamski način (UI-potpuni problemi)
- Sustavi koji se dinamički mijenjaju
- Ogromne količine podataka ima li znanja u njima?
 - otkrivanje znanja u skupovima podataka (engl. data mining)

Slučaj 1: Teški problemi

- Raspoznavanje uzoraka
- Računalni vid
- Obrada prirodnog jezika
- Raspoznavanje govora
- Robotika
- . . .

Slučaj 2: Dinamički prilagodivi sustavi

- Inteligentni računalni sustavi moraju se moći prilagoditi svojoj okolini
- Sustav koji je sposoban učiti može se bolje prilagoditi novim situacijama

- Robotika
- Višeagentni sustavi
- Inteligentna korisnička sučelja
- ...ali zapravo bilo kakav inteligentni agent (računalni program koji djeluje u pravoj ili stvarnoj okolini, npr., virtualni asistent, algoritam za igru Go, dron za spašavanje...)

Slučaj 3: Od podataka do znanja

- Podatci \rightarrow informacije \rightarrow znanje \rightarrow odluka
- Podataka ima u izobilju (web, tekst, eksperimentalni podatci, skladišta podataka deep web, logovi)
- S druge strane, znanja nema puno i ono je skupo
- Cilj: izgradnja modela koji objašnjavaju podatke i omogućavaju zaključivanje/predviđanje

Dubinska analiza podataka

Dubinska analiza podataka (engl. *data mining*) ili **otkrivanje znanja u skupovima podataka** (engl. *knowledge discovery in datasets*) – primjena strojnog učenja na (polu)strukturirane baze podataka

- Prodaja: analiza potrošačke košarice, CRM
- Financije: određivanje kreditne sposobnosti, detekcija zlouporaba kartica
- Proizvodnja: optimizacija, troubleshooting
- Medicina: postavljanje dijagnoza, prevencija
- Telekomunikacije: optimizacija usluga
- Bioinformatika: analiza izražajnosti gena, poravnavanje gena
- Text mining: klasifikacija teksta, ekstrakcija informacija
- ...

Znanost o podatcima (engl. Data Science)

Sadržaj

1 Što i zašto

2 Tri pristupa i pet škola

Organizacija predmeta

Tri pristupa strojnom učenju

(1) Nadzirano učenje (engl. supervised learning)

Podatci su parovi (ulaz, izlaz)=(x,y), treba pronaći $\hat{y}=f(x)$

- ullet Ako je y je diskretna/nebrojčana vrijednost: klasifikacija
- ullet Ako je y kontinuirana/brojčana vrijednost: regresija

(2) Nenadzirano učenje (engl. unsupervised learning)

Dani su podatci bez ciljne vrijednosti, treba naći pravilnost u podatcima

- grupiranje (engl. clustering)
- procjena gustoće (engl. density estimation)
- smanjenje dimenzionalnosti (engl. dimensionality reduction)

(3) Podržano/ojačano učenje (engl. reinforcement learning)

Učenje optimalne strategije na temelju pokušaja s odgođenom nagradom

Primjena klasifikacije: predviđanje ishoda izbora

2016 Presidential Election Prediction

A Predictive-Descriptive Artificial Intelligence-Based Expert Computer System

Election Analytics (https://www.experfv.com/uploads/ckeditor/pictures/132/content NikrayeshSlide3.JPG)

Primjena regresije: predviđanje razine emisije NO₂

Exposure models for traffic related NO2 (http://www.sciencedirect.com/science/article/pii/S1352231011009629)

Primjena grupiranja: analiza DNK-mikropolja

Cilj: grupiranje gena sa sličnom izražajnošću (slična izražajnost – slična funkcionalnost)

Pristupi, zadatci, primjene

Primjene, zadatci, modeli i algoritmi

Rokach, L. and Maimon, O. Z. (2008). Data Mining with Decision Trees: Theory and Applications.

Pet škola strojnog učenja

Pedro Domingos: The Master Algorithm

Škola	Temelji	Glavni algoritam
Symbolists	Logika, filozofija	Indukcija
Connectionists	Neuroznanost	Backpropagation
Evolutionaries	Evolucijska biologija	Genetičko programiranje
Bayesians	Statistika	Probabilističko zaključivanje
Analogizers	Psihologija	Jezgreni strojevi

Pet škola strojnog učenja

Pedro Domingos: The Master Algorithm

Škola	Cilj	
Symbolists	Popunjavanje rupa u znanju	
Connectionists	Emulacija mozga	
Evolutionaries	Simulacija evolucije	
Bayesians	Sustavno smanjivanje neizvjesnosti	
Analogizers	Uočavanje sličnosti između staroga i novoga	

Trendovi

Najčešće fraze u radovima na konferenciji NeurIPS

https://towardsdatascience.com/neurips-conference-historical-data-analysis-e45f7641d232

Karta strojnog učenja

https://scikit-learn.org/stable/tutorial/machine_learning_map/

Još primjera...

Jupyter-bilježnica 1: Uvodni primjer https://goo.gl/0Vd26Z

Svi primjeri dostupni su na:

https://github.com/jsnajder/StrojnoUcenje

Sadržaj

1) Što i zašto

2 Tri pristupa i pet škola

Organizacija predmeta

Izvođači

Predavač:

• Prof. dr. sc. Jan Šnajder

Asistenti:

- Zoran Medić, mag. ing. (glavni asistent)
- Ana Barić, Ivana Bašljan Puceković, Ivan Bilić, Filip Karlo Došilović, David Dukić, Antea Hadviger, Fran Jelenić, Josip Jukić, Miha Keber, Josipa Lipovac, Domagoj Pluščec

Demosi:

 Dario Deković, Mladen Džida, Ivan Furač, Josip Hrvatić, Helena Ladić, Ivan Martinović, Mirta Moslavac, Magdalena Mucić, Leon Novački, Luka Pavlović, Lovre Petešić, Ivan Rep, Matej Škrabić, Matea Vasilj, Janko Vidaković

O predavaču

- Jan Šnajder, PhD
- http://www.zemris.fer.hr/~jan/
- Diplomirao (2002) i doktorirao (2010) računarsku znanost na FER-u
- Poslijedoktorand na Sveučilištu u Heidelbergu, znanstveno usavršavanje na Sveučilištu u Stuttgartu, NICT Kyoto, Sveučilištu u Melbourneu
- Član Laboratorija za analizu teksta i inženjerstvo znanja (TakeLab)
- Istraživački interesi: obrada prirodnog jezika (NLP) i strojno učenje (ekstrakcija informacija, tekstna analitika, leksička seminantika, analiza subjektivnog teksta i primjene u društvenim znanostima)

O nama

Text Analysis and Knowledge Engineering Lab http://takelab.fer.hr

Plan nastave

23 teme organizirane u 6 cjelina:

- (1) Uvod u strojno učenje, Osnovni koncepti, Linearna regresija
- (2) Linearni diskriminativni modeli, Logistička regresija
- (3) Stroj potpornih vektora, Jezgrene metode, Neparametarske metode
- (*) Opcionalno: Ansambli Međuispit
- (4) Procjena parametara, Bayesov klasifikator
- (5) Probabilistički grafički modeli
- (6) Grupiranje, Vrednovanje modela
- (*) Opcionalno: Odabir značajki
 - Završni ispit

Ishodi učenja

- Definirati osnovne pojmove strojnog učenja
- Objasniti teorijske pretpostavke, matematičke osnove te prednosti i nedostatke temeljnih algoritama (ne)nadziranog strojnog učenja
- Primijeniti temeljne algoritme klasifikacije, regresije i grupiranja na jednostavnije probleme
- Primijeniti postupak odabira i evaluacije točnosti modela
- Analizirati i usporediti temeljne algoritme strojnog učenja s obzirom na njihove komponente i računalnu složenost
- Razlikovati temeljne pristupe strojnom učenju (generativni/diskriminativni, parametarski/neparametarski, bayesovski/frekventistički) te objasniti poveznice
- Procijeniti prikladnost temeljnih algoritama strojnog učenja za zadani zadatak
- Oblikovati i implementirati jednostavnije algoritme za klasifikaciju, regresiju i grupiranje

U konačnici, želimo da...

- Razumijete osnovne ideje i razine apstrakcije
- Razumijete tipičnu matematiku ispod toga
- Shvatite algoritme i metode tako da ih implementirate ili ispitate na jednostavnim primjerima
- 4 Izgradite svoju kartu područja i dobijete putokaze za samostalno učenje

Dajemo strukturu, detalje popunjavate sami...

Nastavne aktivnosti

Predavanja/vježbe:

- HR: ponedjeljkom 10-12 sati i srijedom 8-10 sati u B4
- eN: utorkom 9–11 sati u A302 i četvrtkom 12–14 sati u D152

Domaće zadaće:

• 6 zadaća koje predajete online

Laboratorijske vježbe:

4 vježbe koje predajete pa demonstrirate asistentima

Demonstracije:

dodatni termini u kojima demosi rješavaju zadatke s ispita

Konzultacije:

• Petkom 11–12 sati; prijava on-line najkasnije dva dana ranije

Ispiti:

- Međuispit + završni ispit
- Ispitni rokovi: pismeni ispit + usmeni ispit

Predavanja

- 20 predavanja i 6 rekapitulacija
- Klasična predavanja (ja objašnjavam na ploči, vi pratite, radite bilješke i pitate ako je nešto nejasno)
- Podijeljena u 6 cjelina, nakon svake cjeline radimo rekapitulaciju i rješavamo nekoliko zadatka s prošlogodišnjih ispita (aka auditorne vježbe)
- Kratka kviz-pitanja na satu (za motivaciju i formativnu povratnu informaciju), preko Moodlea, za ukupno 6 bonus bodova
 - Preporučamo da dolazite na predavanja, ali dolazak nije obavezan (svi materijali su vam dostupni za samostalno učenje)

Materijali za učenje

- Videopredavanja
- 2 Skripte s predavanja (tekst predavanja s primjerima, dodatnim bilješkama i literaturom za one koji žele znati više (13)
- 3 Natuknice s predavanja (vrlo sažeta predavanja)
- 4 Zadatci za učenje i vježbu (uključivo zadatci s ispita)
- 5 Laboratorijske vježbe

Sve je javno dostupno na https://www.fer.unizg.hr/predmet/struce1/materijali

Dodatna literatura

 Ethem Alpaydin: *Introduction to Machine Learning*, 3rd edition, MIT Press, 2015.

Christopher Bishop:
 Pattern Recognition and Machine Learning,
 Springer, 2006.

Kevin P. Murphy: Probabilistic Machine Learning: An Introduction, MIT Press, 2022.

Dodatna dodatna literatura

Osnovno:

- Hastie, Tibshirani, Friedman: Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2003.
- Deisenroth, Faisal, Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
- Marsland: Machine Learning: An Algorithmic Perspective, Chapman and Hall/CRC, 2009.
- Duda, Hart, Stork: Pattern Classification, Wiley-Interscience, 2000.

Napredno:

- Murphy: Probabilistic Machine Learning: Advanced Topics, MIT Press, 2022.
 - Mohri, Rostamizadeh, Talwalkar: Foundations of Machine Learning, MIT Press, 2012.
 - Shalev-Shwartz, Ben-David: Understanding machine learning: From theory to algorithms, Cambridge University Press, 2014.

Specifično:

- Koller, Friedman: Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
- Goodfellow, Bengio, Courville: Deep Learning, MIT Press, 2016.

Korisne web-stranice

- Data Science StackExchange
 Podatkovna znanost, analiza podataka, strojno učenje
 https://datascience.stackexchange.com/
- CrossValidated QA
 Statistika, dubinska analiza i vizualizacija podataka
 http://stats.stackexchange.com/

Domaće zadaće

- 6 domaćih zadaća, radite ih nakon rekapitulacije, za bonus bodove
- Zadatci za vježbu koje rješavate na papiru i uploadate sken na Moodle kao jedan PDF file
- Bodovanje: maks. 1 bonus bod po zadaći, ukupno 6 bonus bodova
- Domaće zadaće rješavajte samostalno. Možete se, naravno, konzultirati s drugima, ali drugi ne smiju rješavati zadaće umjesto vas
- Domaće zadaće usklađene su s ishodima učenja predmeta, dok ispiti provjeravaju te iste ishode učenja. Ergo, ako rješavate domaće zadaće, izgledno je da ćete dobro riješiti ispit

Laboratorijske vježbe

- 4 laboratorijske vježbe, radite ih u Pythonu u okruženju SciPy korištenjem biblioteke scikit-learn i Jupyter-bilježnice
- Svrha vježbi je stecanje dubljeg razumijevanje rada algoritama. Svrha vježbi nije stjecanje iskustva rada na stvarnom projektu strojnog učenja (za to postoje drugi predmeti)
- Rješenja demonstrirate asistentima u svom terminu demonstracije
- Bodovanje: maks. 7.5 bodova po vježbi, ukupno 30 bodova
- Promjena termina moguća je jedino u parovima studenata; molimo, ne dolazite u druge termine (iznimka: slučaj više sile)
- Trebate biti sposobni na zahtjev mijenjati programski kôd te razumijeti svu teoriju na kojima se temelje modeli/algoritmi
- Programske zadatke trebate raditi samostalno. Prepisivanje rješenja predstavlja kršenje kodeksa FER-a i podliježe sankcijama

Ekosustav SciPy

Laboratorijske vježbe i domaće zadaće – savjeti

- 1 Krenite raditi na vrijeme.
- Ne precjenjujte svoje sposobnosti. Nemojte krenuti raditi vježbu i zadaću tek na vikend uoči predaje.
- 3 Ako ipak niste stigli napraviti vježbu ili zadaću, nemojte je prepisati i takvu predati. Umjesto toga, naučite nešto iz toga i drugi puta krenite ranije.
- Uračunajte nepredvidive okolnosti. Možda nešto neće raditi isprve, ili će vam trebati više vremena da nešto shvatite. Ako si ostavite dovoljno vremena za takve situacije, izbjeći ćete stres.
- Ponovite teorijske osnove iza svake lab. vježbe. Svrha laboratorijskih zadataka je upravo da povežu teoriju s praksom. Asistenti će vas zato pitati i teoriju iza svakog zadatka.
- O Proučite nultu laboratorijsku vježbu, premda se ne predaje, pa čak i ako (mislite da) ste jako dobri u Pythonu.

Ispiti

- Ispiti provjeravaju ishode učenja
- Kontinuirano: međuispit (35 bodova) + završni ispit (35 bodova)
 - gradivo obuhvaćeno međuispitom ne ulazi u završni ispit
- Ispitni rokovi: pismeni dio + usmeni dio (70 bodova)
 - usmeni ispit služi provjeri pismenog ispita i eventualnoj korekciji ocjene za granične slučajeve
 - za pristupanje usmenom ispitu potrebno je ostvariti prag od 50% bodova na pismenom ispitu
- Ispiti su obliku pitanja s ponuđenim odgovorima te sadržavaju teorijska, problemska i numerička pitanja
- Ukupno 22 pitanja, za 100% bodova dovoljno je točno riješiti njih 20
- ullet Točan odgovor nosi +1 bod, a netočan -1/3 boda
- Čuvari na ispitima ne smiju odgovarati na pitanja o ispitnim pitanjima
- Primjerci prošlogodišnjih ispita dostupni su na stranici predmeta

Ocjenjivanje

	Kontinuirano		Ispitni rok	
	Prag	Udio	Prag	Udio
Domaće zadaće		+6%		
Laboratorijske vježbe	30%	30%	30%	30%
Kvizovi		+6%		
Međuispit		35%		
Završni ispit		35%		
Pismeni ispit			50%	35%
Usmeni ispit			50%	35%

- Prag na lab. vježbama je 9 bodova (tj. 30% od 30 bodova)
- Bonus bodovi se zbrajaju i ograničeni su na ukupno maks. 10 bodova
- Pismeni ispit nosi 35 bodova. Samo studenti koji polože pismeni ispit pristupaju usmenom ispitu

Ocjenjivanje

Izvrstan (5)	89
Vrlo dobar (4)	76
Dobar (3)	63
Dovoljan (2)	50

Za ocjenu dovoljan potrebno je ostvariti **prag** na laboratorijskim vježbama i ukupno barem **50** bodova bez bonus bodova! Bonus bodovi pribrajaju se isključivo prolaznim ocjenama.

Ostvareni bodovi se ne zaokružuju (ukupni bodovi moraju zadovoljiti prag)

Komunikacija

- Zbog velikog broja studenata, nažalost nismo u mogućnosti odgovarati na e-mailove
- Kontaktirajte nas putem obrasca
- Odgovor ćemo javno objaviti u dokumentu s pitanjima i odgovorima, ili ćemo vam odgovoriti mejlom (ako je pitanje specifično ili osjetljivo)
- Prije nego što putem obrasca postavite pitanje, molimo provjerite da ono već nije odgovoreno

Vezni studenti (aka "veznjaci")

(eng. liaison students)

- Svaka tri tjedna, a po potrebi češće, iz skupa studenata koji pohađaju predavanja slučajnim ćemo mehanizmom odabrati pet studenata za ulogu "studenata veznjaka" i s njima organizirati sastanak
- Veznjaci djeluju u dvije uloge:
 - ▶ Osobna uloga: daju svoje mišljenje (o svojem napretku na predmetu, nejasnoćama, poz/neg aspektima predmeta)
 - Reprezentativna uloga: izvještavaju o problemima/idejama prikupljenima od drugih studenata. Veznjaci su nužni čuvati anonimnost studenata koje predstavljaju
- Raspravit ćemo sve probleme i promisliti eventualne intervencije u izvođenje nastave kad god je to moguće
- Ako ste odabrani kao veznjak, sudjelovanje je obavezno (osim u slučaju više sile, što trebate dojaviti) i uvjet je za polaganje predmeta. Molimo pratite obavijesti!

U slučaju poteškoća ili nedoumica

Ako imate poteškoća sa studiranjem (probleme koje ne možete riješiti sami ili za koje trebate savjet), možete se javiti **Savjetničkoj službi FER-a**: www.fer.unizg.hr/zivot_na_fer-u/zdravlje_i_dobrobit/savjetnicka_sluzba

Ako su problemi povezani s ovim predmetom, svakako se javite na jan.snajder@fer.hr da razmotrimo kako Vam možemo pomoći. Također, slobodno se javite ako trebate savjet ili imate stručno/karijerno pitanje u vezi strojnog učenja ili studija općenito.

Web-stranica predmeta i materijali

- https://www.fer.unizg.hr/predmet/struce1
- https://www.fer.unizg.hr/predmet/struce1/obavijesti
- https://www.fer.unizg.hr/predmet/struce1/materijali
 - Silabus (plan predavanja)
 - Ishodi učenja (detaljno za svaku od 23 teme)
 - ▶ Pitanja i odgovori (+ poveznica na kontakt-obrazac)
 - Videopredavanja (za 18 tema)
 - Predavanja (skripte, za 18 tema)
 - Natuknice za predavanja
 - Zadatci za vježbu
 - Laboratorijske vježbe
 - Prošlogodišnji ispiti

Sažetak

- Strojno učenje bavi se rješavanjem problema koje je teško riješiti klasičnim UI pristupima
- Podataka ima u izobilju izazov je transformirati podatke u znanje tako da možemo zaključivati i predviđati
- Strojno učenje povezano je sa statistikom, računarskom znanošću, umjetnom inteligencijom, . . .
- Učenje se svodi na optimizaciju parametara modela na temelju podataka
- Dva osnovna pristupa: nadzirano učenje (zadatci klasifikacije i regresije) i nenadzirano učenje (zadatci grupiranja, procjene gustoće, smanjenje dimenzionalnosti)

Sljedeća tema: Osnovni koncepti