

Picking Intro

School of Information Studies
Syracuse University

Patterns in Games and Prices

- Obtain
- Scrub
- Explore
- Model
- iNterpret

Our Challenge This Week?

Using Distributions to Pick a Winner

But How?

Data Review

School of Information Studies
Syracuse University

Runs Scored

Runs Allowed

Scoring Distributions

Picking Winners

Poisson Distribution

School of Information Studies
Syracuse University

Simulating Runs Scored

Sports Simulation

Source: Adapted from Miller (2005).

Poisson Distribution

 Good approximation for count responses

$$P(Y = y) = \frac{e^{-\mu}\mu^y}{y!}$$

- Occurrence of events during certain time interval
- Arrival rate problems

Poisson Distribution (cont.)

MetAwayScore = np.random.poisson(4.97, 10000)

MetAwayDefend = np.random.poisson(3.45, 10000)

YankHomeScore = np.random.poisson(5.97, 10000)

YankHomeDefend = np.random.poisson(4.84, 10000)

plt.hist(MetAwayScore, bins='auto', rwidth = .5, normed=True)

plt.title("Runs Scored – Mets")
plt.show()

Negative Binomial Distribution

School of Information Studies
Syracuse University

Simulating Runs Allowed

Sports Simulation

Simulation Results

Negative Binomial

 Alternative approximation for count responses

$$P(Z = z)$$

$$= {z-1 \choose k-1} p^k (1-p)^{z-k}$$

- Generalization of Poisson distribution
- Rare event problems

Negative Binomial

 Alternative approximation for count responses

$$P(Z = z) = {\binom{z-1}{k-1}} p^k (1-p)^{z-k}$$

- Generalization of Poisson distribution
- Rare event problems

Negative Binomial (cont.)

```
MetAwayScore =
np.random.negative_binomial(4, mas, 10000)
MetAwayDefend =
np.random.negative_binomial(4, mad, 10000)
YankHomeScore =
np.random.negative_binomial(4, yhs, 10000)
YankHomeDefend =
np.random.negative_binomial(4, yhd, 10000)
```

plt.hist(MetAwayScore, bins='auto', rwidth = .5,
normed=True)
plt.title("Runs Scored - Mets")
plt.show()

Applications

School of Information Studies Syracuse University

Additional Applications

Baseball Prospectus

- Predicting performance before the season
 - Nate Silver
 - PECOTA
- Variations
 - Military war games
 - Film releases
 - Associate performance

Moneyball Problem

- Calculating the value of a player
 - Billy Beane
 - Individual summary stats applied to team performance
- Variations
 - Associate performance
 - Client conversion
 - Customer lifetime value

Coaching Problems

- Utilizing player performance
 - Microanalysis of game
 - Sabermetrics
- Variations
 - Football
 - Basketball

Bowl Championship Series

- Predicting team performance against unknown opponent
 - Strength of schedule
 - Ensemble approaches
- Variations
 - March Madness
 - Product deployment
 - Recommendation engine

Billy Waters Problem

- Predicting the winning team in the next game?
 - Human expertise
 - Simulation
- Variations
 - March Madness
 - Film release
 - Product deployment

Picking II Intro

School of Information Studies
Syracuse University

Patterns in Games and Prices

- Obtain
- Scrub
- Explore
- Model
- iNterpret

Our Challenge Now?

Modeling Housing Prices

SCHOOL OF INFORMATION STUDIES | SYRACUSE UNIVERSITY

But How?

Data Review II

School of Information Studies
Syracuse University

Housing Data

Feature Correlation

Feature Correlation (cont.)

Picking Values

Trees Forests

School of Information Studies
Syracuse University

Picking a Tree in the Forest

Decision Trees

- Key advantage is interpretability
- Partition the space into simple regions to achieve best fit
- Pruning methods control the size of the tree

Random Forests

- Ensemble method using multiple decision trees
- Recursive partitioning on the training set
- Effective with large number of explanatory variables

Random Forests (cont.)

- Provides interpretability through use of one tree from set
- Significant difference in performance between train and test indicates overfitting
- Individual explanatory variables can still be inferred

