

<u>Alexander Panchenko</u>, Dmitry Ustalov, Stefano Faralli, Simone Paolo Ponzetto, and Chris Biemann

IMPROVING HYPERNYMY EXTRACTION
WITH DISTRIBUTIONAL SEMANTIC
CLASSES

Examples of hypernymy relations

- apple –isa → fruit
- mangosteen −isa→ fruit

Hypernyms

Examples of hypernymy relations

- apple#1 −isa→ fruit#2
- mangosteen#0 –isa → fruit#2

Hypernyms

Examples of hypernymy relations

- apple#1 −isa→ fruit#2
- mangosteen#0 −isa→ fruit#2

Examples of applications of hypernyms

- question answering [Zhou et al., 2013]
- query expansion [Gong et al., 2005]
- semantic role labelling [Shi & Mihalcea, 2005]

Introduction 00•00

Automatic extraction of hypernyms

Introduction 000•0

Induction of semantic classes

Introduction 0000

Main contributions

We show how distributionally-induced semantic classes can be helpful for extracting hypernyms:

Main contributions

- We show how distributionally-induced semantic classes can be helpful for extracting hypernyms:
 - 1 A method for inducing sense-aware semantic classes using distributional semantics;
 - 2 A method for using the induced semantic classes for filtering noisy hypernymy relations.

Labeled semantic classes

- Post-processing of hypernymy relations using distributionally induced semantic classes;
- A semantic class is a clusters of induced word senses labeled with hypernyms.

Outline of our approach

- Sense-aware distributional semantic classes are induced from a text corpus;
- 2 Semantic classes are used to **filter a noisy hypernyms** database.

Outline of our approach

- Sense-aware distributional semantic classes are induced from a text corpus;
- Semantic classes are used to filter a noisy hypernyms database.

Method

Chinese Whispers#1

*source of the image: http://ic.pics.livejournal.com/blagin_anton/33716210/2701748/2701748_800.jpg

Method

Chinese Whispers#2: graph clustering

Method ○○○○●○○○○○

Related work: Chinese Whispers#2

Method ○○○○○●○○○○

Related work: Chinese Whispers#2

Method

Graph-based word sense induction

Sample of induced sense inventory

Word Sense	Local Sense Cluster: Related Senses	Hypernyms	
mango#0	peach#1, grape#0, plum#0, apple#0, apricot#0, watermelon#1, banana#1, coconut#0, pear#0, fig#0, melon#0, mangosteen#0,	fruit#0, food#0,	
apple#0	mango#0, pineapple#0, banana#1, melon#0, grape#0, peach#1, watermelon#1, apricot#0, cranberry#0, pumpkin#0, mangosteen#0,	fruit#0, crop#0,	
Java#1	C#4, Python#3, Apache#3, Ruby#6, Flash#1, C++#0, SQL#0, ASP#2, Visual Basic#1, CSS#0, Delphi#2, MySQL#0, Excel#0, Pascal#0,	programming language#3, lan- guage#0,	
Python#3	PHP#0, Pascal#0, Java#1, SQL#0, Visual Basic#1, C++#0, JavaScript#0, Apache#3, Haskell#5, .NET#1, C#4, SQL Server#0,	language#0, tech- nology#0,	

Method 000000000

Sample of induced semantic classes

ID	Global Sense Cluster: Semantic Class	Hypernyms
1	peach#1, banana#1, pineapple#0, berry#0, blackberry#0, grapefruit#0, strawberry#0, blueberry#0, mango#0, grape#0, melon#0, orange#0, pear#0, plum#0, raspberry#0, watermelon#0, apple#0, apricot#0, watermelon#0, pumpkin#0, berry#0, mangosteen#0,	vegetable#0, fruit#0, crop#0, ingredi- ent#0, food#0, ·
2	C#4, Basic#2, Haskell#5, Flash#1, Java#1, Pascal#0, Ruby#6, PHP#0, Ada#1, Oracle#3, Python#3, Apache#3, Visual Basic#1, ASP#2, Delphi#2, SQL Server#0, CSS#0, AJAX#0, JavaScript#0, SQL Server#0, Apache#3, Delphi#2, Haskell#5, .NET#1, CSS#0,	programming lan- guage#3, technol- ogy#0, language#0, format#2, app#0

Method 000000000

Network of induced word senses

Optimization of meta-parameters

Comparison to WordNet and BabelNet

Meta-parameters

- f 1 Min. num. of sense co-occurrences in an ego-network: t>0
- Sense edge weight type: count or log(count)
- **3** Hypernym weight type: tf-idf or tf

Comparison to WordNet and BabelNet

Meta-parameters

- **11** Min. num. of sense co-occurrences in an ego-network: t > 0
- Sense edge weight type: count or log(count)
- Hypernym weight type: tf-idf or tf

$$hpc\text{-score}(\mathbf{c}) = \frac{h\text{-score}(\mathbf{c}) + 1}{p\text{-score}(\mathbf{c}) + 1} \cdot \text{coverage}(\mathbf{c}).$$

$$p\text{-score}(\mathbf{c}) = \frac{1}{|\mathbf{c}|} \sum_{i=1}^{|\mathbf{c}|} \sum_{i=1}^{i} \operatorname{dist}(\mathbf{w}_i, \mathbf{w}_j). h\text{-score}(\mathbf{c}) = \frac{|\mathcal{H}(\mathbf{c}) \cap \operatorname{gold}(\mathbf{c})|}{|\mathcal{H}(\mathbf{c})|}.$$

Impact of the min. edge weight t

Minimum edge weight (#sense co-occurrences), T

Best coarse- and fine-grained models

Min. num of sense co-occurr., t	Edge weight, <i>E</i>	Hypernym weight, <i>H</i>	Number of clusters	Number of senses	hpc-avg, WordNet	hpc-avg, BabelNet
0	count	tf-idf	1870	208 871	0.041	0.279
100	log	tf-idf	734	18 028	0.092	0.304

- Layout of the sense cluster evaluation crowdsourcing task;
- the entry "winchester" is the intruder.

Topics:
• vegetable
• fruit
• crop
For these topics we have the list of the following words:
• peach
• pineapple
• winchester
watermelon
• cherry
blackberry
Select the words that are non-relevant for the topics above:
□ peach
□ pineapple
□ winchester
□ watermelon
□ cherry
□ blackberry

- **Accuracy** is the fraction of tasks where annotators correctly identified the intruder;
- **Badness**: is the fraction of tasks for which non-intruder words were selected.

- **Accuracy** is the fraction of tasks where annotators correctly identified the intruder;
- **Badness**: is the fraction of tasks for which non-intruder words were selected.

	Accuracy	Badness	Randolph κ
Sense clusters, <i>c</i>	0.859	0.248	0.739
Hyper. labels, $\mathcal{H}(c)$	0.919	0.208	0.705

- Accuracy is the fraction of tasks where annotators correctly identified the intruder;
- Badness: is the fraction of tasks for which non-intruder words were selected.

	Accuracy	Badness	Randolph κ
Sense clusters, c	0.859	0.248	0.739
Hyper. labels, $\mathcal{H}(c)$	0.919	0.208	0.705

- Clusters: 68 annotators, 2,035 judgments;
- **Hypernyms**: 98 annotators, 2,245 judgments.

Improving Binary Hypernymy Relation

Layout of the hypernymy annotation task:

Is it correct that **peach** is a kind of **fruit**?

Your opinion:

- Yes
- \bigcirc No

Improving Binary Hypernymy Relation

Evaluating results of post-processing of a noisy hypernymy database using human judgements:

- A random sample of 4,870 relations using lexical split;
- each labeled 6.9 times on average;
- a total of 33,719 judgments.

Improving Binary Hypernymy Relation

Evaluating results of post-processing of a noisy hypernymy database using human judgements:

- A random sample of 4,870 relations using lexical split;
- each labeled 6.9 times on average;
- a total of 33,719 judgments.

	Precision	Recall	F-score
Original hypernymy relations extracted from Common Crawl corpus [Seitner et al., 2016]	0.475	0.546	0.508
Enhanced hypernyms with the <i>coarse-grained</i> semantic classes	0.541	0.679	0.602

Improving Taxonomy Induction

- SemEval 2016 Task 13 "Taxonomy Extraction from Text";
- Fowlkes&Mallows Measure (F&M) a cumulative measure of the similarity of taxonomies;
- English part of the dataset.

Improving Taxonomy Induction

- SemEval 2016 Task 13 "Taxonomy Extraction from Text";
- Fowlkes&Mallows Measure (F&M) a cumulative measure of the similarity of taxonomies;
- English part of the dataset.

Domain	#Seeds words	#Expanded words	#Clusters, fine-gr.	#Clusters, coarse-gr.
Food	2 834	3 047	29	21
Science	806	1137	73	35
Environ.	261	909	111	39

Results

Improving Taxonomy Induction

System / Dataset	Food, Word- Net	Science, Word- Net	Food, Com- bined	Science, Com- bined	Science, Eurovoc	Environ., Eurovoc
WordNet	1.0000	1.0000	0.5870	0.5760	0.6243	n.a.
Baseline	0.0022	0.0016	0.0019	0.0163	0.0056	0.0000
JUNLP	0.1925	0.0494	0.2608	0.1774	0.1373	0.0814
NUIG-UNLP	n.a.	0.0027	n.a.	0.0090	0.1517	0.0007
QASSIT	n.a.	0.2255	n.a.	0.5757	0.3893	0.4349
TAXI	0.3260	0.2255	0.2021	0.3634	0.3893	0.2384
USAAR	0.0021	0.0008	0.0000	0.0020	0.0023	0.0007
Sem. Class, fine-gr.	0.4540	0.4181	0.5147	0.6359	0.5831 0.5515	0.5600
Sem. Class, coarse-gr.	0.4774	0.5927	0.5799	0.6539		0.6326

- An unsupervised method for the induction of sense-aware distributional semantic classes;
- Showed how these can be used for post-processing of noisy hypernymy databases extracted from text.

Thank you! Questions?

Gong, Z., Cheang, C. W., & Leong Hou, U. (2005). Web Query Expansion by WordNet.

In Proceedings of the 16th International Conference on Database and Expert Systems Applications - DEXA '05 (pp. 166–175). Copenhagen, Denmark: Springer Berlin Heidelberg.

Seitner, J., Bizer, C., Eckert, K., Faralli, S., Meusel, R., Paulheim, H., & Ponzetto, S. P. (2016).

A Large DataBase of Hypernymy Relations Extracted from the Web.

In Proceedings of the Tenth International Conference on Language Resources and Evaluation, LREC 2016 (pp. 360–367). Portorož, Slovenia: European Language Resources Association (ELRA).

Shi, L. & Mihalcea, R. (2005).

Putting Pieces Together: Combining FrameNet, VerbNet and WordNet for Robust Semantic Parsing.

In Proceedings of the 6th International Conference on Computational Linauistics and Intelligent Text Processing CICLing 2005 (pp. 100–111). Mexico City, Mexico: Springer Berlin Heidelberg.

Zhou, G., Liu, Y., Liu, F., Zeng, D., & Zhao, J. (2013). Improving question retrieval in community question answering using world knowledge.

In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI '13 (pp. 2239—2245). Beijing, China: AAAI Press.