1. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the mean absolute deviation using the following formula:

$$\mathsf{MAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
168	-16.5	16.5
180	-4.5	4.5
187	2.5	2.5
195	10.5	10.5
180	-4.5	4.5
197	12.5	12.5
======	======	======
$\sum x = 1107$		$\sum x - \bar{x} = 51$
$\bar{x} = 184.5$		

$$MAD = \frac{\sum |x - \bar{x}|}{n}$$
$$= \frac{51}{6}$$
$$= \boxed{8.5}$$

2. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the mean absolute deviation using the following formula:

$$\mathsf{MAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
164	6	6
153	-5	5
151	-7	7
162	4	4
160	2	2
======	======	=======
$\sum x = 790$ $\bar{x} = 158$		$\sum x - \bar{x} = 24$

$$MAD = \frac{\sum |x - \bar{x}|}{n}$$
$$= \frac{24}{5}$$
$$= \boxed{4.8}$$

3. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
40	-0.5	0.25
42	1.5	2.25
40	-0.5	0.25
40	-0.5	0.25
======	======	=======
$\sum_{\bar{X}} x = 162$ $\bar{x} = 40.5$		$\sum (x - \bar{x})^2 = 3$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

$$= \sqrt{\frac{3}{4 - 1}}$$

$$= \sqrt{1}$$

$$= \boxed{1}$$

4. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
150	8	64
137	-5	25
141	-1	1
139	-3	9
143	1	1
======	======	=======
$\sum x = 710$		$\sum (x - \bar{x})^2 = 100$
$\bar{x} = 142$		

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{100}{5 - 1}}$$
$$= \sqrt{25}$$
$$= \boxed{5}$$

5. Problem:

We can estimate the mean of a **symmetric** distribution.

$$\bar{x} pprox \frac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell uniform bimodal	range/6 range/4 range/2

Three random variables (F, G, and H) were measured 10000 times each. The resulting histograms show the three distributions.

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

Solution:

- (a) 20
- (b) 40
- (c) 50
- (d) 20
- (e) 10
- (f) 3.3333333

6. Problem:

We can estimate the mean of a symmetric distribution.

$$\bar{x} pprox rac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell uniform bimodal	range/6 range/4 range/2

Three random variables (F, G, and H) were measured 10000 times each. The resulting histograms show the three distributions.

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

Solution:

- (a) 20
- (b) 60
- (c) 30
- (d) 1.6666667
- (e) 7.5
- (f) 20

7. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the mean absolute deviation using the following formula:

$$\mathsf{MAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
134	3	3
114	-17	17
144	13	13
139	8	8
124	-7	7
======	======	=======
$\sum x = 655$		$\sum x - \bar{x} = 48$
$\bar{x} = 131$		

$$MAD = \frac{\sum |x - \bar{x}|}{n}$$
$$= \frac{48}{5}$$
$$= \boxed{9.6}$$

8. Problem:

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution: We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
146	-2.5	6.25
150	1.5	2.25
146	-2.5	6.25
152	3.5	12.25
======	======	======
$\sum x = 594$ $\bar{x} = 148.5$		$\sum (x - \bar{x})^2 = 27$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

$$= \sqrt{\frac{27}{4 - 1}}$$

$$= \sqrt{9}$$

$$= \boxed{3}$$

9. Problem:

We can estimate the mean of a symmetric distribution.

$$\bar{x} pprox \frac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell uniform bimodal	range/6 range/4 range/2

Three random variables (F, G, and H) were measured 10000 times each. The resulting histograms show the three distributions.

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

Solution:

- (a) 20
- (b) 30
- (c) 40
- (d) 1.6666667
- (e) 2.5
- (f) 20