ATTENTION: THERE IS ONE ERROR IN EACH ANWSER. NEVERTHELESS, FINAL RESULT IS STILL RIGHT. STUDENT NEED TO FIND THESE ERRORS. DON'T COPY COMPLETE ANSWERS BELOW WITHOUT CORRECTING

1/ Given 
$$z(x, y) = \sqrt{3x^2 - 5xy + 2y^2}$$
, find  $z_x(1; 2)$ ,  $z_y(1; 2)$ ,  $dz(1; 2)$ .  
Ans: (With error)  $\frac{\partial z}{\partial x} = \frac{u_x}{2\sqrt{u}} = \frac{6x - 5y + 4y}{2\sqrt{3x^2 - 5xy + 2y^2}}$ ,  $\frac{\partial z}{\partial y} = \frac{u_y}{2\sqrt{u}} = \frac{6x - 5x + 4y}{2\sqrt{3x^2 - 5xy + 2y^2}}$   
 $\Rightarrow \frac{\partial z}{\partial x}(1; 2) = -2$ ,  $\frac{\partial z}{\partial y}(1; 2) = \frac{3}{2}$ ,  $dz(1; 2) = -2dx + \frac{3}{2}dy$ 

2/ Consider 
$$z(x, y) = \ln(2x + 3y)$$
,  $\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$ . At  $\begin{cases} u = u_0 = 4 \\ v = v_0 = 5 \end{cases}$  we have:  $x = 1$ ,  $y = 2$ ,  $x_u = 4$ ,  $y_u = 3$ ,  $x_v = 5$ ,  $y_v = 6$  find  $A = 4\frac{\partial z}{\partial u} + 7\frac{\partial z}{\partial v}$  at  $(u_0; v_0)$ .

Ans: Chain rule: 
$$\frac{\partial z}{\partial u} = z_x \cdot x_u + z_y \cdot y_u$$
,  $\frac{\partial z}{\partial v} = z_x \cdot x_v + z_y \cdot y_v$ .  
(With error)  $z_x = z_y = \frac{1}{2x + 3y}$ . Substitution  $\Rightarrow \frac{\partial z}{\partial u} = \frac{17}{8}$ ,  $\frac{\partial z}{\partial v} = \frac{7}{2} \Rightarrow A = 33$ 

- Using x hours of skilled labor and y hours of unskilled labor, a manufacturer can produce  $Q(x, y) = 81x \cdot \sqrt[3]{y}$  units. Currently 32 hours of skilled labor and 27 hours of unskilled labor are being used. Suppose the manufacturer reduces the skilled labor level by 2 hours and increases the unskilled labor level by 4 hours. Use calculus to determine the approximate effect of these changes on production.
- Ans: Evaluating partial derivatives  $\Rightarrow Q_x(32; 27) = 243$ ,  $Q_y(32; 27) = 96$ . (With error)  $\Delta Q \approx Q_x \Delta x + Q_y \Delta y$ , where  $\Delta x = 2$ ,  $\Delta y = 4 \Rightarrow \Delta Q \approx -102$ : output will decrease about 102 unit.
- 4/ Study extrema of  $z = x^3 + y^2 xy$ .

Ans: (With error) 
$$\begin{cases} z_x = 0 \\ z_y = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \end{cases}$$
: A(0; 0),  $\begin{cases} x = 6 \\ y = 12 \end{cases}$ : B(6; 12).

Result: At A: No extrema. At B: local minimum.

Find max, min of  $f(x, y) = x^2 + 2y^2 - x + 2$  subject to constraint  $x^2 + y^2 = 4$ .

Ans: (With error)  $L(x, y, \lambda) = x^2 + 2y^2 - x + 2 + \lambda(x^2 + y^2)$ .

$$\begin{cases} L_x = 0 \\ L_y = 0 \\ x^2 + y^2 = 4 \end{cases} \Rightarrow A(2; 0), B(-2; 0), C(-\frac{1}{2}; \frac{\sqrt{15}}{2}), D(-\frac{1}{2}; -\frac{\sqrt{15}}{2}).$$

Evaluate f(x, y) at A, B, C, D  $\Rightarrow$  max =  $\frac{41}{4}$ , min = 4.

6/ Find max, min of f(x, y) = 2x + 3y - 1 in the domain  $x^2 + y^2 \le 9$ 

Ans: Find critical points:

Inside  $\Rightarrow x^2 + y^2 < 9 \Rightarrow \begin{cases} f_x = 2 = 0 \\ f_y = 3 = 0 \end{cases}$ : No solution  $\Rightarrow$  No critical points inside.  $x^2 + y^2 < 9$ 

On boundary:  $x^2 + y^2 = 9 \implies L(x, y, \lambda) = 2x + 3y - 1 + \lambda (x^2 + y^2 - 9)$ .

(With error) 
$$\begin{cases} L_x = 2 + 2\lambda x = 0 \\ L_y = 3 + 2\lambda y = 0 \implies x = -\frac{1}{\lambda}, \ y = -\frac{3}{2\lambda} \implies x^2 + y^2 = 9 \end{cases}$$

$$x^2 + y^2 = \frac{1}{\lambda^2} + \frac{9}{4\lambda^2} = 9 \implies \lambda = \frac{\sqrt{13}}{6} \implies \text{Critical point: } \left( -\frac{6}{\sqrt{13}}; -\frac{9}{\sqrt{13}} \right).$$

Evaluate f at critical points  $\Rightarrow$  min =  $-3\sqrt{13}-1$ , max =  $3\sqrt{13}-1$ .

Find the mass of the plate D with  $\rho(x, y) = 2x + 3y$ , when D is region bounded by  $x = 2y^2$  and  $x = y^2 + 4$ .

Ans: Intercept equation:  $2y^2 = y^2 + 4 \Leftrightarrow y = \pm 2 \Rightarrow D$ :  $\begin{cases} -2 \le y \le 2 \\ 2y^2 \le x \le y^2 + 4 \end{cases}$ 

(With error) 
$$\Rightarrow$$
 I =  $\int_{2y^2-2}^{y^2+4} \int_{-2}^{2} (2x-3y) dx dy = \frac{1024}{15}$ .

8/ Find the total charge of the region D given in the next picture, when the charge density is distributed by  $\sigma(x, y) = 2x^2 + 3y$ .



Ans: The total charge =  $\iint_D \sigma(xy) dA = \iint_D (2x^2 + 3y) dA$ .

(With error) D: 
$$\begin{cases} 1 \le x \le 3 \\ x_{AB} \le y \le x_{BC} \end{cases}$$
 AB:  $x = \frac{y+1}{2}$ , BC:  $x = 5 - y \Rightarrow$  Charge = 50.

Evaluate  $\iint_D e^{2\sqrt{x^2+y^2}} dA$  when D is in the upper half plane and bounded by the circle  $x^2 + y^2 = 1$ .

Ans: Polar coordinates  $\Rightarrow$  D:  $\begin{cases} 0 \le r \le 1 \\ 0 \le \varphi \le \pi \end{cases}$ 

(With error) 
$$\Rightarrow$$
 I =  $\int_{0.0}^{1} \int_{0}^{\pi} e^{2r} d\varphi dr = \frac{\pi(e^2 + 1)}{4}$ .

Find the volume of the solid under the plane 
$$x + 2y - z = 0$$
 and above the region bounded by  $y = x$  and  $y = x^4$ .

Ans: Solid (E): under the plane 
$$z = x + 2y$$
 & above  $z = 0 \implies 0 \le z \le x + 2y$ .

Domain D: bounded by 
$$\begin{vmatrix} y = x \\ y = x^4 \end{vmatrix}$$
. Intercept equation:  $x^4 = x \implies \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$ . Test with

$$x = \frac{1}{2} \in (0; 1): \frac{1}{2^4} < \frac{1}{2} \implies x^4 \le x \ \forall \ x \in [0; 1]$$

(With error) 
$$\Rightarrow$$
 D = 
$$\begin{cases} 0 \le x \le 1 \\ x \le y \le x^4 \end{cases} \Rightarrow \text{Volume V} = \int_0^1 \int_x^{x^4} [(x+2y)-0] dy dx = \frac{7}{18}$$

Find the volume of the solid under the surface z = xy and above the triangle with vertices (1; 1), (4; 1) and (1; 2).

Ans: (E): 
$$0 \le z \le xy$$
. Sketch the triangle D  $\Rightarrow \begin{cases} 1 \le x \le 4 \\ y_{AB} \le y \le y_{BC} \end{cases}$ .

(With error) AB: 
$$y = 1$$
, BC:  $y = \frac{7+x}{3} \Rightarrow V = \int_{1}^{4} \int_{1}^{\frac{7+x}{3}} [(xy) - 0] dy dx = \frac{31}{8}$ 

Evaluate volume of the solid bounded by planes z = y, z = 3y and inside the cylinder  $x^2 + y^2 = 4y$ .

Ans: D: 
$$x^2 + y^2 \le 4y \Rightarrow V = \iint_D (3y - y) dA$$
. Polar coordinates

(With error) 
$$\Rightarrow$$
 D: 
$$\begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 4\sin\varphi \end{cases} \Rightarrow V = \int_{0}^{2\pi} \int_{0}^{4\sin\varphi} 2r\sin\varphi \cdot rdrd\varphi = 2\pi.$$