ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

•	1	
	Факультет ИКО	CC
		Кафедра электроники и схемотехники
	Задача №2.	2
Расчет биполярного усилите	ельного каска	нда на биполярном транзисторе
r i		r r r r
	Выполнил: Гр	омов А.А. гр. ИКТ-801

Проверила: Бочаров Е.И.

Санкт-Петербург

Дано: Схема усилительного каскада на биполярном транзисторе, включенном по схеме ОЭ. Значения элементов схемы, параметры входного сигнала и нагрузки, а также масштабные коэффициенты N и M приведены в таблице исходных данных. Внутреннее сопротивление генератора и масштабный коэффициент L для всех вариантов равны R_{Γ} = 10 кОм и L=4.

Требуется: провести аналитический расчет усилительного каскада на основе малосигнальной схемы замещения транзистора и определить его основные параметры.

Исходные данные (вариант 6):

№ вар	Элементы схемы				Масштабные коэффициен ты		Номера решаемых	
	<i>Ек</i> В	<i>Rк</i> кОм	<i>R</i> ₅ кОм	<i>R_H</i> кОм	<i>Егм</i> В	N	М	задач
6	20	1,0	111,1	0,4	0,90	4	45	2.2

Схема устройства:

Схема усилительного каскада на биполярном транзисторе, включенном по схеме ОЭ.

Характеристики биполярного транзистора:

Ι_Κ **ΜΑ** 8 M 7 M 5 N 6 M 5 M 4 N 3 N 4 M 3 M 2 N 2 M 1 N $I_{E}=1 M MKA$ *I*₅=0 2 L 3 L 1 *L* 4 L **Икэ**, В

Рис. 2. Входные характеристики биполярного транзистора.

Рис. 3. Выходные характеристики биполярного транзистора.

Ход выполнения работы

Пункт 1

 $R_{\rm b}-$ резистор задающий постоянные составляющие токов транзистора;

R_H – сопротивление нагрузки;

 R_{Γ} – Внутреннее сопротивление генератора;

 R_K — резистор задающий постоянные напряжения на электродах транзистора;

 C_{P1}, C_{P2} – разделительные конденсаторы;

VT – биполярный транзистор;

 e_{Γ} – Генератор напряжения.

Схема усилительного каскада на биполярном транзисторе, включенном по схеме ОЭ.

Пункт 2

Пункт 3

 $U_{K\ni}(0) = 10B$

 $I_{K}(0) = 10_{M}A$

 $P_0 = I_K(0)E_K = 10*10^{-3}*20 = 0.2B_T$

 $U_{E3}(0) = 0.8B$

А – Рабочая точка транзистора

Пункт 4

$$I'_{\rm K}=11{
m MA}$$
 $I''_{\rm K}=14{
m MA}$
 $U'_{
m K9}=15{
m B}$
 $I'_{
m E1}=225{
m MKA}$
 $I'_{
m E2}=450{
m MKA}$
 $I'_{
m E2}=450{
m MKA}$
 $I'_{
m E2}=480{
m MKA}$
 $U'_{
m E3}=0,88{
m B}$

$$h_{119}=\frac{\Delta u_{
m E3}}{\Delta i_{
m E}}=\frac{0,08}{270*10^{-6}}=296,3$$

$$\Delta i_{
m E}=I'_{
m E2}-I_{
m E}(0)=450-180=270{
m MKA}$$

$$\Delta u_{
m E3}=U'_{
m E3}-U_{
m E3}(0)=0,88-0,8=0,08{
m B}$$
 $h_{129}=0$ (по условию)

$$\begin{split} h_{22} &= \frac{\Delta i_{\text{K1}}}{\Delta u_{\text{K9}}} = \frac{10^{-3}}{5} = 0,0002 \\ \Delta i_{\text{K1}} &= I'_{\text{K}} - I_{\text{K}}(0) = 11 - 10 = 1 \text{MA} \\ \Delta U_{\text{K9}} &= U'_{\text{K9}} - U_{\text{K9}}(0) = 15 - 10 = 5 \text{B} \\ h_{21} &= \frac{\Delta i_{\text{K2}}}{\Delta i_{\text{B}}} = \frac{4 * 10^{-3}}{45 * 10^{-6}} = 88.8 \\ \Delta i_{\text{K2}} &= I''_{\text{K}} - I_{\text{K}}(0) = 14 - 10 = 4 \text{MA} \\ \Delta i_{\text{B}} &= I'_{\text{B1}} - I_{\text{B}}(0) = 225 - 180 = 45 \text{MKA} \end{split}$$

Пункт 5

 h_{11} – входное сопротивление транзистора при коротком замыкании на выходе для переменной составляющей тока; h₁₂ – коэффициент обратной связи по напряжению при разомкнутом входе для переменной составляющей тока; h₂₁ – дифференциальный коэффициент передачи тока при коротком замыкании на выходе для переменной составляющей; h₂₂ – выходная проводимость транзистора при разомкнутом входе для переменной составляющей тока.

 $K_I = \frac{I_{\text{BbIX}m}}{I_{\text{RY}m}} = \frac{8.4 * 10^{-3}}{180 * 10^{-6}} = 46.6$

Малосигнальная схема замещения биполярного транзистора на основе h-параметров.

Эквивалентная схема усилительного каскада по переменному току.

Пункт 6

$$I_{\text{BbIX}m} = I_{Km} = 8,4 \text{ MA}$$
 $I_{\text{BX}m} = I_{\text{B}m} = 180 \text{ MKA}$
 $U_{\text{BbIX}m} = U_{Km} = 7 \text{ B}$
 $U_{\text{BX}m} = U_{\text{B}m} = 0,1 \text{ B}$
 $P_0 = I_{\text{K}}(0) \text{EK} = 10*10^{-3}*20 = 0,2 \text{BT}$

$$U_{\text{BbIX}m} = U_{Km} = 7 \text{ B}$$

$$U_{\text{BX}m} = U_{\text{Bm}} = 0.1 \text{ B}$$

$$P_0 = I_{\text{K}}(0)E_{\text{K}} = 10*10^{-3}*20 = 0.2\text{BT}$$

$$K_U = \frac{U_{\text{BbIX}m}}{U_{\text{BX}m}} = \frac{7}{011} = 70$$

$$K_P = \frac{P_{\text{BbIX}}}{P_{\text{BX}}} = K_U K_I = 70*46.6 = 3262$$

$$\eta = \frac{P_{\text{BbIX}}}{P_0} = \frac{U_{\text{BbIX}m}*I_{\text{BbIX}m}}{P_0} = \frac{7*8.4*10^{-3}}{0.2} = 0.294 = 29.4\%$$

$$R_{\text{BX}} = \frac{U_{\text{BX}m}}{I_{\text{BX}m}} = \frac{0.1}{180*10^{-6}} = 555.5$$