Math 3430-02 Spring 2019 Exam II—Supplementary Problems

Due Monday Apr. 22, 2019

I have neither given nor received any unauthorized help on this exam and I have conducted myself within the quidelines of the CU Community Standard.

Name:	Signature:
	51811dtdf e

(Each question below is worth 20 points. Staple this sheet at the top when turning in.)

1. Consider the following initial value problem:

$$e^t y'' - ty' + 3y = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

- (1) Use the method of **successive differentiation** to find y''(0) and y'''(0).
- (2) Write down the first four terms (i.e., up to the x^3 -term) in the series solution to the initial value problem above.
- **2.** Use the method of **undetermined coefficients** to solve (i.e., finding a recurrence relation for the power series solution of the form $\sum_{k=0}^{\infty} a_k t^k$)

$$\begin{cases} y'' - 2ty' + y = 0, \\ y(0) = 1, \quad y'(0) = 2. \end{cases}$$

- 3. Find examples for the following if they exist, or explain if they do not.
 - (1) An **initial value problem** whose solution is $y(x) = e^t * \sin(t)$, assuming part of the initial values being y'(0) = 0, where '*' stands for 'convolution'.
 - (2) A **second order ODE** whose general solutions are $C_1t^{-3} + C_2t^{-3} \ln t$ (t > 0), where C_1 and C_2 are arbitrary constants.
- **4.** Solve the following initial value problem for t > 0 using the Laplace transform.

$$y'' + 2y' + 4y = f(t),$$
 $f(t) = \begin{cases} 1, & t < 1, \\ t, & t \ge 1. \end{cases}$

with initial conditions

$$y(0) = 1,$$
 $y'(0) = 2.$

5. Find an initial value problem of the form

$$y'' + Ay' + By = f(t),$$
 $y(0) = a,$ $y'(0) = b$ $(t > 0)$

which has the solution

$$y(t) = 3e^{-t}\cos(t) + u_3(t)e^{-(t-3)}\sin(t-3) - 2\int_0^t e^{\tau}\sin(t-\tau)d\tau.$$

(In other words, the goal is to find constants A, B, a, b and a function f(t).)