PO91Q: Fundamentals in Quantitative Research Methods

Worksheet Week 3 - Solutions

Dr Florian Reiche

F.Reiche@warwick.ac.uk

Exercises - Calculations

1.

a. Billy is looking for the heaviest bag possible and finds one that is 1082 g. What is the probability of finding a heavier bag?

```
\mu = 1000
\sigma = 50
x = 1082
```

Normally distributed, so find a z-score for the observed value. Heavier means right tail.

$$Z = (x - \mu)/\sigma$$

 $Z = (1082 - 1000)/50$
 $Z = 1.64$

Consult tables area under right tail, close to 0.05. Therefore, probability is 5%.

b. What is the probability that Billy will find a bag lighter than 870g?

$$\mu = 1000$$
 $\sigma = 50$
 $x = 870$

Normally distributed so find a z-score for the observed value.

$$Z = (x - \mu)/\sigma$$

 $Z = (870 - 1000)/50$
 $Z = -2.6$

Consult table's area under right tail, probability is equal to 0.0047. For a positive z-score this would indicate the probability of a heavier bag, but because our z score is negative, it shows the probability of a lighter bag. This probability is less than 0.5%.

c. How would the results of a. and b. change if the standard deviation was only 40g?

For a.

 $\mu = 1000$

 $\sigma = 40$

x = 1082

 $Z = (x - \mu)/\sigma$

Z = (1082 - 1000)/40

Z = 2.05

Probability is 2% now.

For b.

 $\mu = 1000$

 σ = 40

x = 870

 $Z = (x - \mu)/\sigma$

Z = (870 - 1000)/40

Z = -3.25

Probability is now about 0.1%

Both of these probabilities are smaller and are a direct reflection of a more narrow distribution.

- 2. 1.96
- 3. 12.92%
- 4. $\frac{50-62.3}{8.5}$ = -1.447059 \rightarrow 7.35%

Exercises - The t-distribution

1. How df changes the shape and critical values

Using two-tailed, $\alpha = 0.05$ (so $t_{crit} = t_{0.025,df}$ with df = n - 1):

• n = 3 (df = 2): $t_{crit} \approx 4.303$

• n = 5 (df = 4): $t_{crit} \approx 2.776$

• n = 10 (df = 9): $t_{crit} \approx 2.262$

• n = 20 (df = 19): $t_{crit} \approx 2.093$

• n = 50 (df = 49): $t_{crit} \approx 2.009$

The normal reference is $z_{0.025} \approx 1.960$.

Within 0.05 of 1.96 occurs by $n \approx 50$ (df = 49, 2.009 is 0.049 above 1.96).

Explanation: as $df \to \infty$, the t distribution $\to N(0, 1)$, so tails thin and t_{crit} decreases toward 1.96.

2. One-tailed vs two-tailed critical regions

With df = 14 and $\alpha = 0.05$:

- Two-tailed: $t_{0.025,14} \approx 2.145$, cut points at ±2.145
- One-tailed (upper): $t_{0.05,14} \approx 1.761$, single cut point at +1.761

For $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$, the one-tailed threshold $t_{0.05,14}$ is relevant because only the upper tail provides evidence against H_0 .

In both cases, the shaded area equals α :

- two-tailed shades two symmetric regions each of area $\alpha/2$;
- one-tailed shades a single upper tail of area α .
- 3. Relating t statistics to sample size

Observed t = 2.10, two-tailed $\alpha = 0.05$.

- a. df = 9: $t_{0.025,9} \approx 2.262$. Since |2.10| < 2.262, do not reject H_0 .
- b. df = 29: $t_{0.025,29} \approx 2.045$. Since |2.10| > 2.045, reject H_0 .
- c. As n increases ($df \uparrow$), t_{crit} decreases toward 1.96; with the same observed t, rejection becomes more likely.

R Exercises

See RScript in the Online Companion