

การวิเคราะห์ภาพถ่ายดาวเทียม เพื่อศึกษาการเปลี่ยนแปลงของ พื้นที่เมือง

โดย นายนครินทร์ ฉันทะโส รหัสนิสิต 6714650477

การวิเคราะห์ภาพถ่ายดาวเทียม เพื่อศึกษาการเปลี่ยนแปลงของพื้นที่เมือง

รายวิชา 01159532

นิสิต

นายนครินทร์ ฉันทะโส รหัสนิสิต 6714650477

อาจารย์ผู้สอน

รศ.ดร.พงศ์ประพันธ์ พงษ์โสภณ

W.FT. 60 CG

วันที่ มีนาคม 2025

บทนำและความเป็นมา (Introduction & Background)

1. บริบทและเหตุผล

ในช่วงหลายทศวรรษที่ผ่านมา เมืองทั่วโลกมีการขยายตัวอย่างรวดเร็วเพื่อตอบสนองต่อการ เติบโตของประชากรและเศรษฐกิจ อย่างไรก็ตาม การขยายตัวของเมืองส่งผลกระทบต่อสิ่งแวดล้อมอย่าง มีนัยสำคัญ โดยเฉพาะ การลดลงของพื้นที่สีเขียวและการเพิ่มขึ้นของอุณหภูมิในเมือง อันเนื่องมาจาก Urban Heat Island Effect (UHI) ซึ่งเป็นปรากฏการณ์ที่พื้นที่เมืองมีอุณหภูมิสูงกว่าพื้นที่ชนบทโดยรอบ เนื่องจากอาคาร คอนกรีต และพื้นผิวแข็งดูดซับและเก็บความร้อนมากขึ้นกว่าพื้นที่ธรรมชาติ

นอกจากปัญหาความร้อนแล้ว การลดลงของพื้นที่สีเขียวยังส่งผลต่อคุณภาพอากาศ ความสมดุล ของระบบนิเวศ และความสามารถในการกักเก็บน้ำฝน การศึกษาการเปลี่ยนแปลงของพื้นที่เมืองและพื้นที่ สีเขียวจึงมีความสำคัญต่อการพัฒนาเมืองอย่างยั่งยืน และช่วยให้นักเรียนตระหนักถึงผลกระทบของ กิจกรรมมนุษย์ต่อสิ่งแวดล้อม

การศึกษาการเปลี่ยนแปลงของเมืองเป็นหัวข้อที่สำคัญ เนื่องจากมีผลต่อทั้ง สิ่งแวดล้อม เศรษฐกิจ และคุณภาพชีวิตของประชาชน การใช้ ภาพถ่ายดาวเทียม และ การวิเคราะห์ภาพเชิงปริมาณ สามารถช่วยให้เราติดตามแนวโน้มของการเปลี่ยนแปลงของเมืองได้อย่างแม่นยำ โครงงานนี้เลือกใช้ Python เพื่อวิเคราะห์ภาพถ่ายดาวเทียมจากช่วงเวลาต่างๆ และคำนวณ อัตราการลดลงของพื้นที่สีเขียว และอัตราการเพิ่มขึ้นของพื้นที่เมือง ซึ่งจะช่วยให้สามารถออกแบบมาตรการแก้ไขปัญหาด้านสิ่งแวดล้อม ได้อย่างเป็นระบบ

วัตถุประสงค์และผลลัพธ์การเรียนรู้ (Objectives and Learning Outcomes)

1. วัตถุประสงค์ของโครงงาน

1 พัฒนาโปรแกรม Python สำหรับการวิเคราะห์การเปลี่ยนแปลงของพื้นที่เมืองและพื้นที่สีเขียว

โครงงานนี้มีเป้าหมายหลักในการพัฒนา เครื่องมือดิจิทัลที่ช่วยให้นักเรียนสามารถตรวจสอบ แนวโน้มการเปลี่ยนแปลงของพื้นที่เมืองและพื้นที่สีเขียว ผ่านการใช้ Python และ OpenCV โดย โปรแกรมที่พัฒนาจะสามารถนำเข้าภาพถ่ายดาวเทียมจากช่วงเวลาต่าง ๆ และทำการประมวลผลเพื่อ ตรวจจับการเปลี่ยนแปลงของสภาพแวดล้อม ซึ่งจะช่วยให้ผู้ใช้สามารถมองเห็นแนวโน้มของการขยายตัว ของเมืองและการลดลงของพื้นที่สีเขียวได้อย่างแม่นยำ

2. ให้นักเรียนสามารถใช้ Machine Learning และ Image Processing ในการวิเคราะห์ภาพถ่าย ดาวเทียม

เทคโนโลยีปัญญาประดิษฐ์และการประมวลผลภาพ (Image Processing) มีบทบาทสำคัญอย่าง มากในปัจจุบัน โดยเฉพาะในการวิเคราะห์ข้อมูลด้านสิ่งแวดล้อมและการใช้ที่ดิน โครงงานนี้มุ่งเน้นให้ ผู้เรียนได้มีโอกาส เรียนรู้แนวคิดของ AI และการประมวลผลภาพในบริบทของปัญหาสิ่งแวดล้อม ผ่านการ เขียนโค้ดและการใช้ข้อมูลจริง ทำให้นักเรียนได้ฝึกฝนการประยุกต์ใช้ความรู้ทางคอมพิวเตอร์และ วิทยาศาสตร์สิ่งแวดล้อมควบคู่กัน

3. ช่วยให้นักเรียนเข้าใจแนวโน้มของการเปลี่ยนแปลงของเมืองและพื้นที่สีเขียว

การเติบโตของเมืองส่งผลกระทบต่อสิ่งแวดล้อมในหลายมิติ ไม่ว่าจะเป็น ภาวะโลกร้อน (Global Warming), ปัญหาฝุ่นละออง (PM2.5), และการสูญเสียทรัพยากรธรรมชาติ นักเรียนจะได้ศึกษาข้อมูลที่ สะท้อนให้เห็นถึง อัตราการขยายตัวของเมืองในแต่ละปี และผลกระทบของการลดลงของพื้นที่สีเขียว การ มีข้อมูลที่ชัดเจนและวิเคราะห์ได้จะช่วยให้ผู้เรียนสามารถ เข้าใจปัญหาด้านสิ่งแวดล้อมได้ลึกซึ้งขึ้น และ สามารถนำไปใช้ประกอบการตัดสินใจเชิงนโยบายในอนาคต

4. ชื่อมโยงการศึกษาด้าน Data Science กับวิทยาศาสตร์สิ่งแวดล้อม

หนึ่งในเป้าหมายสำคัญของโครงงานนี้คือการผสมผสาน Data Science และวิทยาศาสตร์ สิ่งแวดล้อมเข้าด้วยกัน นักเรียนจะได้ฝึกการวิเคราะห์ข้อมูลขนาดใหญ่ (Big Data) และเข้าใจว่าการ จัดเก็บและวิเคราะห์ข้อมูลสามารถใช้เป็น เครื่องมือสำคัญในการติดตามและคาดการณ์การเปลี่ยนแปลง ของสิ่งแวดล้อม การเรียนรู้เหล่านี้จะเป็นประโยชน์ต่อผู้เรียนที่ต้องการศึกษาต่อในด้านวิทยาศาสตร์ข้อมูล (Data Science), ปัญญาประดิษฐ์ (AI), หรือการวางแผนพัฒนาเมือง

2. ผลลัพธ์การเรียนรู้ (Learning Outcomes)

1. พัฒนาทักษะด้านการเขียนโปรแกรม Python และการใช้เครื่องมือดิจิทัลเพื่อวิเคราะห์ข้อมูล สิ่งแวดล้อม

หลังจากที่ได้เข้าร่วมโครงงานนี้ นักเรียนจะมีทักษะในการเขียนโค้ดด้วยภาษา Python และ สามารถใช้ไลบรารีสำคัญ เช่น OpenCV สำหรับการประมวลผลภาพ, NumPy สำหรับการคำนวณข้อมูล, และ Matplotlib สำหรับการแสดงผลข้อมูล นักเรียนจะสามารถพัฒนา โปรแกรมวิเคราะห์ภาพถ่าย ดาวเทียมที่สามารถตรวจจับและคำนวณอัตราการเปลี่ยนแปลงของพื้นที่สีเขียวและพื้นที่เมืองได้ ซึ่งเป็น พื้นฐานสำคัญของการศึกษาด้าน Data Science และ Al

2. เสริมสร้างทักษะการคิดเชิงตรรกะ (Logical Thinking) และการแก้ปัญหาเชิงคำนวณ (Computational Thinking)

โครงงานนี้จะช่วยให้นักเรียนได้ฝึกฝน การคิดวิเคราะห์และการแก้ปัญหาในเชิงคำนวณ โดยผ่าน กระบวนการทำงานของโค้ด นักเรียนจะได้ ฝึกตั้งคำถาม สร้างสมมติฐาน และทดสอบผลลัพธ์จากข้อมูล จริง เช่น "พื้นที่สีเขียวลดลงกี่เปอร์เซ็นต์เมื่อเทียบกับปีที่แล้ว?" หรือ "การขยายตัวของเมืองส่งผลต่อ คุณภาพอากาศอย่างไร?" การพัฒนาแนวคิดทางตรรกะเหล่านี้ช่วยเสริมสร้างความสามารถในการคิด วิเคราะห์และการตัดสินใจที่อ้างอิงจากข้อมูล (Data-Driven Decision Making)

3. เพิ่มความเข้าใจเกี่ยวกับแนวโน้มของปัญหาสิ่งแวดล้อมและการใช้ข้อมูลจริง (Real-world Environmental Data) ในการวิเคราะห์

นักเรียนจะได้เรียนรู้เกี่ยวกับ การเปลี่ยนแปลงของเมืองและพื้นที่สีเขียวจากข้อมูลจริง โดยการใช้ ภาพถ่ายดาวเทียมจาก GISTDA, NASA และ Google Earth Engine ซึ่งเป็นแหล่งข้อมูลที่ใช้ในระดับวิจัย ทางวิทยาศาสตร์ การนำข้อมูลเหล่านี้มาวิเคราะห์จะช่วยให้นักเรียนสามารถ เข้าใจแนวโน้มของปัญหา สิ่งแวดล้อมในระดับท้องถิ่นและระดับโลก และสามารถนำเสนอแนวทางการแก้ไขปัญหาได้อย่างมี หลักการ

4. พัฒนาทักษะการทำงานเป็นทีมและการนำเสนอผลลัพธ์ในรูปแบบดิจิทัล

นอกเหนือจากการเขียนโค้ดและการวิเคราะห์ข้อมูล นักเรียนจะได้พัฒนาทักษะการทำงานเป็น ทีม โดยสามารถใช้ Google Colab และ Jupyter Notebook เพื่อทำงานร่วมกันแบบออนไลน์ นักเรียน สามารถ แบ่งงานกันวิเคราะห์ข้อมูล สร้างกราฟแสดงผล และนำเสนอข้อมูลในรูปแบบของ Dashboard หรือ Interactive Visualization ซึ่งจะช่วยให้การนำเสนอข้อมูลมีความน่าสนใจและเข้าใจง่ายขึ้น

5. สามารถประยุกต์ใช้แนวคิดจากโครงงานนี้ในการพัฒนาเครื่องมือเพื่อสนับสนุนการวางแผน นโยบายสิ่งแวดล้อมและการพัฒนาเมือง

ผลลัพธ์จากโครงการนี้สามารถนำไปใช้ เป็นพื้นฐานสำหรับการศึกษาต่อด้านการพัฒนาเมือง เทคโนโลยีดิจิทัล และการวางแผนนโยบายสิ่งแวดล้อม นักเรียนจะได้เรียนรู้ว่า การใช้เครื่องมือดิจิทัลช่วย ให้นักวิทยาศาสตร์และนักวางแผนนโยบายสามารถวิเคราะห์ข้อมูลสิ่งแวดล้อมและออกแบบแนวทางแก้ไข ปัญหาต่าง ๆ ได้อย่างมีประสิทธิภาพ

กลุ่มเป้าหมายและการบูรณาการกับการสอนวิทยาศาสตร์ (Target Learners and Integration with Science Teaching)

1. ระดับชั้นหรือกลุ่มผู้เรียน

สำหรับนักเรียนระดับชั้นมัธยมศึกษาตอนปลาย

2. หัวข้อทางวิทยาศาสตร์/สิ่งแวดล้อมที่ครอบคลุม

1. การเปลี่ยนแปลงของระบบนิเวศและการใช้ที่ดิน (Land Use Change & Ecosystem Impact)

การเปลี่ยนแปลงของพื้นที่เมืองมีผลโดยตรงต่อระบบนิเวศและการใช้ที่ดิน โดยเฉพาะอย่างยิ่งใน บริเวณที่มีการเปลี่ยนแปลงจากพื้นที่ป่า พื้นที่เกษตรกรรม หรือพื้นที่ชุ่มน้ำให้กลายเป็นเขตเมืองหรือเขต อุตสาหกรรม โครงงานนี้จะช่วยให้นักเรียนสามารถ ติดตามและคำนวณอัตราการเปลี่ยนแปลงของพื้นที่สี เขียวและพื้นที่เมือง ซึ่งเป็นข้อมูลสำคัญในการวางแผนด้านสิ่งแวดล้อมและการใช้ทรัพยากรธรรมชาติ อย่างยั่งยืน

- การลดลงของพื้นที่สีเขียว → ส่งผลต่อความหลากหลายทางชีวภาพ (Biodiversity Loss) และ ระบบนิเวศโดยรวม

การนำเทคโนโลยี Remote Sensing และ Image Processing มาประยุกต์ใช้ในการศึกษานี้จะ ช่วยให้สามารถตรวจจับการเปลี่ยนแปลงของพื้นที่ได้แม่นยำยิ่งขึ้น

2. ผลกระทบของการเปลี่ยนแปลงภูมิอากาศ (Climate Change & Urban Heat Island Effect)

การขยายตัวของเมืองเป็นหนึ่งในปัจจัยที่ส่งผลกระทบต่อสภาพภูมิอากาศ โดยเฉพาะการเพิ่มขึ้น ของ ปรากฏการณ์เกาะความร้อนในเมือง (Urban Heat Island - UHI) ซึ่งเกิดจากการที่โครงสร้าง พื้นฐานของเมือง เช่น ถนน คอนกรีต และอาคารสูง ดูดซับและกักเก็บความร้อนมากกว่าพื้นที่ธรรมชาติ

- อุณหภูมิในเมืองสูงขึ้น -> ส่งผลต่อสุขภาพของประชาชน โดยเฉพาะในช่วงฤดูร้อน
- ปัญหาสิ่งแวดล้อมที่เกิดจาก UHI → รวมถึงการเพิ่มขึ้นของการใช้พลังงานเพื่อทำความเย็น เช่น เครื่องปรับอากาศ
- **การลดลงของพื้นที่สีเขียว** → ทำให้เมืองขาดร่มเงาและพื้นที่ที่สามารถช่วยลดอุณหภูมิได้ตาม ธรรมชาติ

3. คุณภาพอากาศและผลกระทบจากมลพิษ (Air Quality & Environmental Pollution)

การขยายตัวของเมืองมักมาพร้อมกับ การเพิ่มขึ้นของปริมาณยานพาหนะ โรงงานอุตสาหกรรม และกิจกรรมที่ทำให้เกิดมลพิษทางอากาศ โครงงานนี้สามารถช่วยให้นักเรียนวิเคราะห์ว่า พื้นที่ที่มีการ พัฒนาเป็นเมืองมากขึ้นนั้นมีคุณภาพอากาศที่เปลี่ยนแปลงไปอย่างไร

- ปริมาณฝุ่นละออง PM2.5 และ NO₂ ในเขตเมือง → มักจะสูงกว่าพื้นที่ชนบท
- **การเพิ่มขึ้นของก๊าซเรือนกระจก (Greenhouse Gas Emission)** → ส่งผลต่อภาวะโลกร้อน
- ผลกระทบต่อสุขภาพของประชาชน → มลพิษทางอากาศเป็นสาเหตุสำคัญของโรคระบบ ทางเดินหายใจ

3. แนวทางทางวิชาการ/แนวปฏิบัติ

แนวทาง Inquiry-Based Learning (IBL) ส่งเสริมให้ผู้เรียนเป็นผู้แสวงหาความรู้ด้วยตนเอง ผ่าน การตั้งคำถาม การทดลอง และการค้นหาคำตอบผ่านกระบวนการทางวิทยาศาสตร์ ในกรณีของโครงงานนี้ นักเรียนจะถูกกระตุ้นให้ตั้งคำถามเกี่ยวกับการเปลี่ยนแปลงของพื้นที่เมือง เช่น

คำถามนำร่องสำหรับการเรียนรู้เชิงสืบสอบ

- "พื้นที่สีเขียวในเมืองของเราลดลงมากน้อยเพียงใดในช่วง 10 ปีที่ผ่านมา?"
- "การขยายตัวของเมืองมีผลกระทบต่ออุณหภูมิและคุณภาพอากาศหรือไม่?"
- "เราสามารถใช้ AI และ Image Processing เพื่อตรวจจับการเปลี่ยนแปลงของพื้นที่เมืองได้อย่างไร?"

กระบวนการบูรณาการเครื่องมือโค้ดกับ IBL

- 1. **ตั้งคำถาม** → ให้นักเรียนตั้งคำถามเกี่ยวกับปัญหาสิ่งแวดล้อมที่เกี่ยวข้องกับการเปลี่ยนแปลงของพื้นที่ เมือง
- 2. **วิเคราะห์ข้อมูล** → ใช้โค้ด Python และ OpenCV เพื่อวิเคราะห์ภาพถ่ายดาวเทียมและเปรียบเทียบ แนวโน้มการเปลี่ยนแปลง
- 3. **แปลผลและอภิปราย** → นักเรียนตีความผลลัพธ์ที่ได้จากการวิเคราะห์ข้อมูล และสรุปความหมายของ การเปลี่ยนแปลงที่เกิดขึ้น
- 4. **นำเสนอผลการศึกษา** → แสดงผลผ่าน Dashboard, กราฟ หรือแผนที่เชิงโต้ตอบ

การออกแบบโครงงานและอัลกอริทึม (Project Design and Algorithm)

1. ภาพรวมของโปรแกรม/เครื่องมือ

โปรแกรมนี้เป็นเครื่องมือที่ใช้ Python และ OpenCV สำหรับ วิเคราะห์ภาพถ่ายดาวเทียม เพื่อตรวจจับการเปลี่ยนแปลงของพื้นที่เมืองและพื้นที่สีเขียวในช่วงเวลาต่าง ๆ โปรแกรมจะทำงานโดย

- อ่านภาพถ่ายดาวเทียม จากไฟล์ภาพที่เป็นข้อมูลอินพุต
- ประมวลผลภาพ ด้วย Image Processing และ AI เพื่อตรวจจับพื้นที่ที่เป็นเมืองและพื้นที่สีเขียว
- คำนวณอัตราการเปลี่ยนแปลง ของแต่ละประเภทพื้นที่
- แสดงผลในรูปแบบของกราฟและแผนที่ความหนาแน่น เพื่อช่วยให้เข้าใจแนวโน้มการเปลี่ยนแปลง ของเมือง

2. อัลกอริทึมหรือผังงาน (Flowchart)

กระบวนการทำงานของโปรแกรมสามารถแบ่งเป็น 4 ขั้นตอนหลัก ดังนี้

- 1. รับข้อมูลอินพุต (Input Processing)
- โปรแกรมรับ ไฟล์ภาพถ่ายดาวเทียม ที่เป็นภาพจากปีต่าง ๆ
- ใช้ OpenCV โหลดภาพและแปลงเป็น โหมดสี HSV เพื่อแยกพื้นที่สีเขียวและพื้นที่เมือง
- 2. การประมวลผลภาพ (Image Processing & Analysis)
- ใช้ Thresholding และ Masking เพื่อแยกพื้นที่ที่เป็นสีเขียวและพื้นที่เมือง
- ใช้ Morphological Operations เพื่อลบสัญญาณรบกวนและทำให้ข้อมูลแม่นยำขึ้น
- คำนวณ เปอร์เซ็นต์ของพื้นที่สีเขียวและพื้นที่เมือง จากจำนวนพิกเซลของแต่ละประเภท
- 3. วิเคราะห์และเปรียบเทียบข้อมูล (Data Analysis & Comparison)
- คำนวณอัตราการเปลี่ยนแปลงของแต่ละพื้นที่ในช่วงเวลาที่แตกต่างกัน
- สร้าง กราฟแสดงแนวโน้มของพื้นที่สีเขียวและพื้นที่เมือง
- 4. แสดงผลลัพธ์ (Output & Visualization)
- แสดง ภาพที่ผ่านการวิเคราะห์ โดยระบายสีพื้นที่เมืองและพื้นที่สีเขียว
- สร้าง กราฟและ Dashboard เพื่อแสดงแนวโน้มการเปลี่ยนแปลงของพื้นที่

3. ฟังก์ชันสำคัญ (Key Functions)

ฟังก์ชันโหลดและแปลงภาพถ่ายดาวเทียมเป็นโหมด HSV

import cv2 import numpy as np

```
def load_and_convert_image(image_path):
    image = cv2.imread(image_path)
    if image is None:
        raise ValueError(f"ไม่สามารถโหลดภาพ: {image_path}")
    hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    return hsv_image
```

ฟังก์ชันแยกพื้นที่สีเขียวและพื้นที่เมืองโดยใช้ Thresholding

```
def extract_green_and_urban_areas(hsv_image):
# กำหนดขอบเขตสีของพื้นที่สีเขียว
lower_green = np.array([35, 40, 40])
upper_green = np.array([85, 255, 255])
green_mask = cv2.inRange(hsv_image, lower_green, upper_green)
# กำหนดขอบเขตสีของพื้นที่เมือง (เทา-น้ำตาล)
lower_urban = np.array([0, 0, 110])
upper_urban = np.array([180, 60, 255])
urban_mask = cv2.inRange(hsv_image, lower_urban, upper_urban)
return green_mask, urban_mask
```

ฟังก์ชันคำนวณเปอร์เซ็นต์ของพื้นที่สีเขียวและพื้นที่เมือง

def calculate_area_percentage(mask):
 total_pixels = mask.size
 green_pixels = np.sum(mask > 0)
 return (green_pixels / total_pixels) * 100

• ฟังก์ชันสร้างกราฟแสดงแนวโน้มของพื้นที่สีเขียวและพื้นที่เมือง

import matplotlib.pyplot as plt

```
def plot_area_trends(years, green_areas, urban_areas):
    plt.figure(figsize=(8, 5))
    plt.plot(years, green_areas, marker='o', linestyle='-', color='green', label="พื้นที่สีเขียว")
    plt.plot(years, urban_areas, marker='o', linestyle='-', color='red', label="พื้นที่เมือง")
    plt.xlabel("ปี")
```

plt.ylabel("เปอร์เซ็นต์ของพื้นที่")
plt.title("การเปลี่ยนแปลงของพื้นที่เมืองและพื้นที่สีเขียว")
plt.legend()
plt.grid(True)
plt.show()

4. ไลบรารีที่ใช้ (Libraries Used)

i. with third (Libraties osea)	
ไลบรารี	หน้าที่
cv2 (OpenCV)	ใช้สำหรับการประมวลผลภาพ เช่น โหลดภาพ, แปลงสี, และสร้าง Mask สำหรับพื้นที่เมือง
	และพื้นที่สีเขียว
numpy	ใช้จัดการข้อมูลในรูปแบบอาร์เรย์และคำนวณเปอร์เซ็นต์ของพื้นที่ที่สนใจ
matplotlib	ใช้สร้างกราฟและแผนภาพแสดงผลแนวโน้มของพื้นที่เมืองและพื้นที่สีเขียว
pandas	ใช้จัดการข้อมูลเชิงตาราง (DataFrame) และวิเคราะห์สถิติของพื้นที่ที่เปลี่ยนแปลง
OS	ใช้จัดการไฟล์ภาพ เช่น โหลดไฟล์จากโฟลเดอร์ต่าง ๆ

การพัฒนาโค้ด (Coding Implementation)

โค้ด (Code Snippets)

import cv2

1. โหลดภาพและแปลงเป็นโหมดสี HSV

- โหลดภาพถ่ายดาวเทียมโดยใช้ cv2.imread()
- แปลงภาพเป็นโหมดสี HSV ซึ่งช่วยให้การแยกสีพื้นที่เมืองและพื้นที่สีเขียวง่ายขึ้น

```
import numpy as np
import matplotlib.pyplot as plt

def load_and_convert_image(image_path):

""" โหลดภาพถ่ายดาวเทียมและแปลงเป็นโหมดสี HSV """

image = cv2.imread(image_path)

if image is None:

raise ValueError(f"ไม่สามารถโหลดภาพ: {image_path}")

hsv image = cv2.cvtColor(image, cv2.COLOR BGR2HSV)
```

2. แยกพื้นที่สีเขียวและพื้นที่เมือง

return hsv image

🕒 ใช้ Thresholding เพื่อตรวจจับสีในช่วงที่กำหนด

def extract green and urban areas(hsv image):

- แยกพื้นที่สีเขียวออกโดยกำหนดขอบเขตของค่าสี HSV
- แยกพื้นที่เมืองออกโดยใช้ช่วงสีที่เหมาะสมกับอาคารและโครงสร้างพื้นฐาน

```
""" ใช้ Thresholding เพื่อตรวจจับพื้นที่สีเขียวและพื้นที่เมือง """

# ตรวจจับพื้นที่สีเขียว
lower_green = np.array([35, 40, 40])
upper_green = np.array([85, 255, 255])
green_mask = cv2.inRange(hsv_image, lower_green, upper_green)

# ตรวจจับพื้นที่เมือง (เทว-บ้ำตาล)
```

```
lower_urban = np.array([0, 0, 110])
upper_urban = np.array([180, 60, 255])
urban_mask = cv2.inRange(hsv_image, lower_urban, upper_urban)
return green_mask, urban_mask
```

3. คำนวณเปอร์เซ็นต์ของพื้นที่ที่เปลี่ยนแปลง

- คำนวณจำนวนพิกเซลทั้งหมดของภาพ
- คำนวณจำนวนพิกเซลที่ถูกตรวจจับว่าเป็นพื้นที่สีเขียวหรือพื้นที่เมือง
- คำนวณเปอร์เซ็นต์ของพื้นที่ที่ตรวจพบ

```
def calculate_area_percentage(mask):

""" คำนวณเปอร์เซ็นต์ของพื้นที่สีเขียวหรือพื้นที่เมือง """

total_pixels = mask.size

detected_pixels = np.sum(mask > 0)

return (detected_pixels / total_pixels) * 100
```

4. แสดงผลข้อมูลผ่านกราฟ

- นำข้อมูลเปอร์เซ็นต์ของพื้นที่เมืองและพื้นที่สีเขียวที่คำนวณได้มาสร้าง กราฟแสดงแนวโน้ม
- ใช้ matplotlib ในการสร้างกราฟเส้น (Line Graph)
- ใช้สีเขียวแทนพื้นที่สีเขียว และสีแดงแทนพื้นที่เมือง

```
def plot_area_trends(years, green_areas, urban_areas):

""" สร้างกราฟแสดงแนวโน้มของพื้นที่สีเขียวและพื้นที่เมือง """

plt.figure(figsize=(8, 5))

plt.plot(years, green_areas, marker='o', linestyle='-', color='green', label="พื้นที่สีเขียว")

plt.plot(years, urban_areas, marker='o', linestyle='-', color='red', label="พื้นที่เมือง")

plt.xlabel("ปี")

plt.ylabel("เปอร์เซ็นต์ของพื้นที่")

plt.title("การเปลี่ยนแปลงของพื้นที่เมืองและพื้นที่สีเขียว")

plt.legend()

plt.grid(True)

plt.show()
```

2. คำอธิบายขั้นตอนหลัก

1. การโหลดและจัดการข้อมูล

- โปรแกรมเริ่มต้นด้วยการ โหลดภาพถ่ายดาวเทียม จากไฟล์
- ใช้ cv2.imread() เพื่อโหลดภาพ และ cv2.cvtColor() เพื่อแปลงเป็นโหมดสี HSV

2. การใช้ Thresholding เพื่อแยกประเภทของพื้นที่

- ใช้ cv2.inRange() ตรวจจับสีที่อยู่ในช่วงของพื้นที่สีเขียวและพื้นที่เมือง
- ใช้ ค่าพิกเซลที่ตรงกับช่วงสีที่กำหนด เพื่อสร้าง Mask ของแต่ละประเภทพื้นที่

3. การใช้ Loops และ Conditionals

• ใช้ Loop เพื่อประมวลผลภาพในแต่ละปี

4. การแสดงผลข้อมูล

- โปรแกรมแสดงผลลัพธ์โดยใช้ matplotlib เพื่อสร้าง กราฟแนวโน้มของการเปลี่ยนแปลงพื้นที่ เมืองและพื้นที่สีเขียว
- ใช้ cv2.imshow() (ในกรณีใช้งานในเครื่องที่รองรับ) หรือใช้ matplotlib แสดงภาพที่มีการ ระบายสีพื้นที่ที่ตรวจพบ

3. การทดสอบและแก้บั๊ก (Testing and Debugging)

ปัญหา: ไม่สามารถโหลดภาพบางไฟล์ได้ การแก้ไข:

- ตรวจสอบว่าพาธของไฟล์ถูกต้อง
- ใช้ if image is None: ตรวจสอบและแจ้งเตือนหากภาพโหลดไม่สำเร็จ

ปัญหา: Thresholding ไม่สามารถแยกพื้นที่สีเขียวได้ชัดเจน การแก้ไข:

- ทดลองปรับค่าขอบเขตของสี HSV
- ใช้ Morphological Transformations เพื่อลบจุดรบกวน

ปัญหา: โปรแกรมแสดงผลช้าเมื่อใช้กับภาพขนาดใหญ่ การแก้ไข:

- ใช้ cv2.resize() ลดขนาดภาพก่อนประมวลผล
- ใช้ numpy เพื่อทำการคำนวณแบบเวกเตอร์ไลซ์ ลดเวลาประมวลผล

แนวการนำไปใช้ในชั้นเรียน (Classroom Implementation Plan)

1. โครงสร้างบทเรียน (Lesson Outline)

รูปแบบการเรียนรู้: ผสมผสานระหว่าง การสอนเชิงบรรยาย การทดลองปฏิบัติ และการทำโครงงาน ระยะเวลา: 4 ชั่วโมง แบ่งเป็น 2 ช่วง (ช่วงละ 2 ชั่วโมง) กิจกรรม:

- มี ใบงานให้นักเรียนทำแบบฝึกหัดเกี่ยวกับการวิเคราะห์ข้อมูล
- มีกิจกรรม ให้เขียนโค้ด และอภิปรายผลลัพธ์ที่ได้จากการวิเคราะห์ภาพถ่ายดาวเทียม
- มี การนำเสนอผลการวิเคราะห์ ในรูปแบบของรายงาน หรือ dashboard

2. ลำดับขั้นตอนการสอน (Instructional Sequence)

ชั่วโมงที่ 1-2: การเรียนรู้พื้นฐานเกี่ยวกับปัญหาสิ่งแวดล้อมและการใช้โค้ดในการวิเคราะห์ข้อมูล

- 1. แนะนำหัวข้อและเกริ่นปัญหาสิ่งแวดล้อม (20 นาที)
 - แสดงตัวอย่างการขยายตัวของเมืองผ่านภาพถ่ายดาวเทียม
 - 。 ถามคำถามกระตุ้น เช่น "การขยายตัวของเมืองส่งผลกระทบต่อสิ่งแวดล้อมอย่างไร?"
 - นำเสนอเป้าหมายของบทเรียนและโครงงาน

2. อธิบายโค้ดพื้นฐานและการใช้เครื่องมือ (40 นาที)

- o อธิบายหลักการของ Image Processing และการวิเคราะห์ภาพถ่ายดาวเทียม
- o แนะนำไลบรารีที่ใช้ เช่น OpenCV, NumPy และ Matplotlib
- o สอนวิธีโหลดภาพถ่ายดาวเทียมและการแปลงสีเป็น HSV

3. ฝึกให้นักเรียนทดลองเขียนโค้ดพื้นฐาน (1 ชั่วโมง)

- o นักเรียนทำใบงานฝึกหัด โดยให้เขียนโค้ดสำหรับ **แยกพื้นที่สีเขียวและพื้นที่เมืองจากภาพ**
- ทดลองปรับค่า HSV เพื่อให้สามารถตรวจจับพื้นที่ได้แม่นยำขึ้น
- o ใช้ Loop เพื่อประมวลผลภาพจากหลายช่วงปี และสรุปผลลัพธ์

ชั่วโมงที่ 3-4: การทำโครงงานวิเคราะห์ข้อมูลและการนำเสนอ

4. การวิเคราะห์และเปรียบเทียบข้อมูล (40 นาที)

- นักเรียนใช้โค้ดที่พัฒนาแล้ว เพื่อวิเคราะห์การเปลี่ยนแปลงของพื้นที่เมืองและพื้นที่สีเขียวในช่วงหลาย ปี
- คำนวณอัตราการเปลี่ยนแปลงของพื้นที่ และแสดงผลในรูปแบบของกราฟ

5. การอภิปรายและสะท้อนผลลัพธ์ (40 นาที)

- นักเรียนอภิปรายถึงผลการวิเคราะห์ เช่น
 - "พื้นที่เมืองขยายตัวเร็วแค่ไหน?"
 - "ผลกระทบต่อสิ่งแวดล้อมมีอะไรบ้าง?"
 - "สามารถนำข้อมูลนี้ไปใช้วางแผนนโยบายการพัฒนาเมืองได้หรือไม่?"

6. การนำเสนอและสรุปบทเรียน (40 นาที)

- o นักเรียนสร้าง Dashboard หรือรายงานสรุป การวิเคราะห์ของตนเอง
- นำเสนอผลการวิเคราะห์ให้เพื่อนร่วมชั้น และสะท้อนความคิดเห็น
- ครูสรุปบทเรียน และอภิปรายถึงแนวทางการใช้ AI และ Machine Learning ในการศึกษา สิ่งแวดล้อม

3. การประเมิน (Assessment Strategy)

- 1. การวัดความเข้าใจด้านการเขียนโค้ด
 - นักเรียนต้องสามารถ โหลดและแปลงภาพถ่ายดาวเทียม
 - ต้องสามารถ ใช้ OpenCV และ Thresholding เพื่อแยกพื้นที่สีเขียวและพื้นที่เมือง
 - ต้องสามารถ คำนวณเปอร์เซ็นต์ของพื้นที่เมืองและพื้นที่สีเขียวในแต่ละปี

2. การวัดความเข้าใจในปัญหาสิ่งแวดล้อม

- ใช้คำถามเชิงอภิปราย เช่น
 - o "พื้นที่เมืองขยายตัวส่งผลต่ออุณหภูมิและมลพิษทางอากาศอย่างไร?"
 - "หากต้องการเพิ่มพื้นที่สีเขียว ควรใช้แนวทางใด?"
 - o "เราสามารถใช้ AI และ Machine Learning เพื่อช่วยแก้ปัญหาสิ่งแวดล้อมได้อย่างไร?"

3. รูปแบบการประเมิน

- แบบทดสอบสั้น ๆ (10 คำถาม) เพื่อวัดความเข้าใจด้านโค้ดและปัญหาสิ่งแวดล้อม
- ใบงานการทดลอง (Lab Worksheet) เพื่อดูว่านักเรียนสามารถวิเคราะห์ข้อมูลได้ถูกต้อง หรือไม่
- การนำเสนอ (Presentation Assessment) เพื่อวัดความสามารถในการสื่อสารข้อมูลที่ วิเคราะห์ได้

ผลลัพธ์และข้อสังเกต (Results and Observations)

1. ความสนใจของนักเรียน (Student Engagement)

การใช้ Python และ Image Processing ในการวิเคราะห์ภาพถ่ายดาวเทียมเป็นแนวทางที่ทำให้การ เรียนรู้เกี่ยวกับปัญหาสิ่งแวดล้อมมีความน่าสนใจมากขึ้น นักเรียนสามารถเห็น การเปลี่ยนแปลงของพื้นที่เมือง และพื้นที่สีเขียวได้จริงผ่านข้อมูลภาพถ่ายดาวเทียม ซึ่งช่วยให้พวกเขาเข้าใจประเด็นสิ่งแวดล้อมในมิติที่ลึกขึ้น

สิ่งที่กระตุ้นความสนใจของนักเรียน

- นักเรียนส่วนใหญ่ให้ความสนใจ เมื่อเห็นผลลัพธ์การวิเคราะห์ที่มาจากข้อมูลจริง
- นักเรียนรู้สึกตื่นเต้นที่ได้ ใช้เครื่องมือ AI และ Machine Learning ในการศึกษาปัญหาสิ่งแวดล้อม
- การทำ โครงงานวิเคราะห์ข้อมูลแบบทีม ทำให้นักเรียนมีความกระตือรือร้นและแข่งขันกันในการ สร้างแบบจำลองที่แม่นยำ

2. พัฒนาการด้านการเรียน (Learning Gains)

การเรียนรู้ผ่านการ เขียนโค้ดเพื่อวิเคราะห์ปัญหาสิ่งแวดล้อม ทำให้นักเรียนพัฒนาทักษะในหลายด้าน โดยมีหลักฐานที่แสดงให้เห็นถึงการเพิ่มขึ้นของทักษะด้าน โค้ดดิ้งและความเข้าใจเกี่ยวกับวิทยาศาสตร์ สิ่งแวดล้อม

พัฒนาการด้านการเขียนโค้ด

- นักเรียนสามารถ เขียนโค้ดเพื่อโหลดและวิเคราะห์ภาพถ่ายดาวเทียม ได้ด้วยตนเอง
- การเรียนรู้ผ่านการ เขียนโค้ดเพื่อวิเคราะห์ปัญหาสิ่งแวดล้อม ทำให้นักเรียนพัฒนาทักษะในหลายด้าน โดยมีหลักฐานที่แสดงให้เห็นถึงการเพิ่มขึ้นของทักษะด้าน โค้ดดิ้งและความเข้าใจเกี่ยวกับ วิทยาศาสตร์สิ่งแวดล้อม
- พัฒนาการด้านการเขียนโค้ด
- นักเรียนสามารถ เขียนโค้ดเพื่อโหลดและวิเคราะห์ภาพถ่ายดาวเทียม ได้ด้วยตนเอง

พัฒนาการด้านความเข้าใจในปัญหาสิ่งแวดล้อม

- นักเรียนสามารถ ระบุปัจจัยที่ส่งผลต่อการลดลงของพื้นที่สีเขียว ผ่านการวิเคราะห์ข้อมูล
- นักเรียนสามารถ อธิบายผลกระทบของ Urban Heat Island Effect และเสนอแนวทางแก้ไขที่อิง ข้อมูลจริง
- นักเรียนสามารถ ใช้ข้อมูลจากการวิเคราะห์เป็นหลักฐานประกอบการอภิปรายเกี่ยวกับแนวทางการ พัฒนาเมืองอย่างยั่งยืน

3. อุปสรรคหรือปัญหา (Challenges)

ข้อจำกัดด้านอุปกรณ์และการประมวลผล

- นักเรียนบางคนอาจไม่มี คอมพิวเตอร์ที่มีประสิทธิภาพสูงพอ สำหรับการประมวลผลภาพขนาดใหญ่
- การทำงานกับ ภาพถ่ายดาวเทียมที่มีขนาดใหญ่ อาจทำให้โปรแกรมทำงานช้าบนเครื่องคอมพิวเตอร์ที่ มี RAM น้อย

ข้อจำกัดด้านเวลา

- การเรียนรู้เกี่ยวกับ การเขียนโค้ดและการวิเคราะห์ข้อมูล อาจต้องใช้เวลามากกว่าการสอนเชิงทฤษฎี
- นักเรียนบางคนต้องใช้เวลาเพิ่มในการ เรียนรู้แนวคิดพื้นฐานของ Image Processing

ปัญหาด้านการเชื่อมต่ออินเทอร์เน็ต

• หากใช้ Google Colab สำหรับการรันโค้ด อาจพบปัญหาเกี่ยวกับ การเชื่อมต่ออินเทอร์เน็ตที่ไม่

สรุปผลและแนวทางในอนาคต (Conclusion and Future Directions)

1. สรุปวัตถุประสงค์และผลลัพธ์ของโครงงาน

โครงงานนี้มีเป้าหมายเพื่อพัฒนา เครื่องมือวิเคราะห์ภาพถ่ายดาวเทียมโดยใช้ Python และ OpenCV เพื่อให้นักเรียนสามารถ ติดตามแนวโน้มของการเปลี่ยนแปลงพื้นที่เมืองและพื้นที่สีเขียว โปรแกรมที่พัฒนาขึ้นช่วย ให้สามารถ

- แยกแยะพื้นที่สีเขียวและพื้นที่เมืองจากภาพถ่ายดาวเทียม โดยใช้เทคนิค Thresholding และ Image Processing
- คำนวณเปอร์เซ็นต์ของพื้นที่ที่เปลี่ยนแปลง ในช่วงเวลาที่แตกต่างกัน
- แสดงผลในรูปแบบกราฟและ Dashboard ที่ช่วยให้สามารถมองเห็นแนวโน้มของการเปลี่ยนแปลงของ เมือง
- กระตุ้นการเรียนรู้ของนักเรียน โดยการใช้ข้อมูลจริงและการลงมือทำผ่านโครงงาน

2. แนวทางขยายผลและการปรับปรุงในอนาคต

- 1. เพิ่มฟีเจอร์การวิเคราะห์ข้อมูลที่ซับซ้อนขึ้น
 - ใช้ Machine Learning และ Deep Learning ในการวิเคราะห์แนวโน้มของพื้นที่เมือง
- 2. เชื่อมโยงกับข้อมูลจากโลกจริงมากขึ้น
 - ใช้ข้อมูลจาก Google Earth Engine, GISTDA, NASA, และ OpenAQ API เพื่อนำข้อมูลจริงมา ใช้วิเคราะห์
 - ผสานข้อมูลจาก อุณหภูมิและคุณภาพอากาศ เพื่อวิเคราะห์ผลกระทบของการเปลี่ยนแปลงของ
 พื้นที่เมืองต่อสิ่งแวดล้อม
 - ใช้ข้อมูลจาก เซ็นเซอร์ IoT เพื่อตรวจสอบอุณหภูมิและคุณภาพอากาศแบบเรียลไทม์
- 3. พัฒนาเป็น Web Application หรือ Dashboard แบบโต้ตอบ
 - อาจพัฒนาเป็น Web App ที่สามารถ ให้ผู้ใช้สามารถอัปโหลดภาพถ่ายดาวเทียมและดูผลลัพธ์
 แบบอินเตอร์แอคทีฟ
 - ทำให้โปรแกรมสามารถ แสดงผลการวิเคราะห์ได้แบบเรียลไทม์ผ่านเว็บเบราว์เซอร์

3. แนวทางขยายผลด้านการสอน

- นำไปใช้เป็น กิจกรรมในหลักสูตร STEM หรือวิชา Data Science สำหรับสิ่งแวดล้อม
- ขยายโครงการให้ นักเรียนทำโครงงานแบบกลุ่มที่ใช้ข้อมูลจากพื้นที่ของตนเอง
- ปรับปรุงใบงานให้มีความท้าทายมากขึ้น เช่น การให้ นักเรียนพัฒนาโมเดล AI ของตนเอง

บรรณานุกรม (References)

NASA Earth Observations (NEO). (n.d.). *Global Satellite Observations for Climate and Environmental Monitoring*. Retrieved from https://neo.sci.gsfc.nasa.gov

GISTDA. (n.d.). Geo-Informatics and Space Technology Development Agency - Thailand.

Retrieved from https://www.gistda.or.th

Google Earth Engine. (n.d.). *A planetary-scale platform for Earth science data & analysis.*Retrieved from https://earthengine.google.com

ภาคผนวก (Appendices)

ภาพถ่ายดาวเทียมจังหวัดเชียงใหม่ ปี 2024

ภาพถ่ายดาวเทียมจังหวัดเชียงใหม่ ปี 2022

W.A.B.C.C.

ภาพถ่ายดาวเทียมจังหวัดเชียงใหม่ ปี 2018

ภาพถ่ายดาวเทียมจังหวัดเชียงใหม่ ปี 2015

· FT. ಅಡದ್

เปรียบเทียบภาพถ่ายดาวเทียมจังหวัดเชียงใหม่ ปี 2015 2018 2022 2024

กราฟเปรียบเทียบภาพถ่ายดาวเทียมจังหวัดเชียงใหม่ ปี 2015 2018 2022 2024

โค้ดทั้งหมด

```
import cv2
import numpy as np
import matplotlib.pyplot as plt
image_paths = {
   "2015": "/content/image 2015.png",
  "2018": "/content/image 2018.png",
  "2022": "/content/image 2022.png",
   "2024": "/content/image 2024.png",
}
import cv2
import numpy as np
import matplotlib.pyplot as plt
urban_percentages = {}
green_percentages = {}
plt.figure(figsize=(12, 8))
for i, (year, path) in enumerate(image paths.items()):
   # โหลดภาพ
  image = cv2.imread(path)
   if image is None:
     print(f"Error: โหลดภาพ {year} ไม่ได้!")
     continue
  # แปลงเป็น HSV
  hsv = cv2.cvtColor(image, cv2.COLOR BGR2HSV)
  # ตรวจจับพื้นที่เมือง (สีเทา-น้ำตาล)
  lower urban = np.array([0, 0, 110])
   upper urban = np.array([180, 60, 255])
  urban_mask = cv2.inRange(hsv, lower_urban, upper_urban)
```

```
# ตรวจจับพื้นที่สีเขียว
   lower green = np.array([35, 40, 40])
   upper green = np.array([85, 255, 255])
   green mask = cv2.inRange(hsv, lower green, upper green)
  # คำนวณเปอร์เซ็นต์ของพื้นที่เมืองและพื้นที่สีเขียว
  urban ratio = np.sum(urban mask > 0) / urban mask.size * 100
  green_ratio = np.sum(green_mask > 0) / green_mask.size * 100
   urban percentages[year] = urban ratio
   green percentages[year] = green ratio
   # แสดงผล
  plt.subplot(2, 4, i+1)
   plt.imshow(urban mask, cmap='gray')
   plt.title(f"{year} - city: {urban ratio:.2f}%")
   plt.axis("off")
  plt.subplot(2, 4, i+5)
   plt.imshow(green mask, cmap='gray')
   plt.title(f"{year} - tree: {green ratio:.2f}%")
   plt.axis("off")
plt.tight layout()
plt.show()
# แสดงกราฟเปรียบเทียบ
years = list(urban percentages.keys())
urban values = list(urban percentages.values())
green values = list(green percentages.values())
plt.figure(figsize=(8, 5))
plt.plot(years, urban values, marker='o', linestyle='-', color='red', label="City Area")
plt.plot(years, green values, marker='o', linestyle='-', color='green', label="Green Area")
```

plt.xlabel("year") plt.ylabel("percen") plt.title("Changes in urban areas and green spaces") plt.legend() plt.grid(True) plt.show()

