Choice Homophily in Political Discussion Networks:

Evidence from Formal Dynamic Models of the Selectivity Function

Matthew D. Sweitzer

PhD Candidate, Ohio State University – School of Communication Graduate Technical Intern, Sandia National Laboratories

Choice Homophily
Isolating Causal Mechanisms
Constructing a Dynamic Theory
Agent-Based Modeling
Why ABM?
Agent and Network Characteristics
Selection Strategies (Models)
Results
Does Selectivity Produce Homophily?

Homophily:

A tendency for relationships to form between those who are alike in some respect.

"...[T]hey tend to *over-select* similars as friends and, at the extreme, to confine their friendships to individuals of like kinds."

- Lazarsfeld & Merton, 1954, pp. 23 & 27

Choice (Selection)

The individual preference to opt into relationships with similar others — or avoid relationships with dissimilar others

Influence

Over time, a person affects the attitudes of their social contacts (and vice versa) to lower the level of dissimilarity

Structural

Homogeneity on other characteristics (place of work, neighborhood, etc.) increase the likelihood of interaction

Choice (Selection)

The individual preference to opt into relationships with similar others — or avoid relationships with dissimilar others

Influence

Over time, a person affects the attitudes of their social contacts (and vice versa) to lower the level of dissimilarity

Structura

Homogeneity on other characteristics (place of work, neighborhood, etc.) increase the likelihood of interaction

Choice (Selection)

The individual preference to opt into relationships with similar others – or avoid relationships with dissimilar others

Influence

Over time, a person affects the attitudes of their social contacts (and vice versa) to lower the level of dissimilarity

Structural

Homogeneity on other characteristics (place of work, neighborhood, etc.) increase the likelihood of interaction

These mechanisms are confounded in observational and cross-sectional network studies (Shalizi & Thomas, 2011)

Selection & Influence:

Aral, Muchnik, & Sundararajan, 2009; Eckles, Kizilcec, & Bakshy, 2016; Lewis, Gonzalez, & Kaufman, 2012; Steglich, Snijders, & Pearson (2010)

Selection is an inherently communicative process. We convey information about ourselves; others use that information to inform their decisions about our relationship.

- Participation (Mutz, 2002; Nir, 2011)
- Knowledge (Eveland & Hively, 2009)
- Information flow (Bakshy, Messing, & Adamic, 2015; Feezell, 2016)

A person considering a political discussion tie with another:

- Present = Discussion
- Absence = Avoidance

Selectivity: the extent to which tie status is associated with the person's perception of similarity with their alter

Selective Exposure: People select sources of social information which they anticipate will reaffirm their beliefs in future interactions (Zillman & Bryant, 1985)

Issue Publics: People's political behaviors are guided by the issues which they deem most salient or important (Krosnick, 1990)

Kim, 2009: People are more selective when the information pertains to an issue that is of high importance to them

Agent-Based Modeling

Agent-Based Models: a computational simulation of individuals, programmed with simple interaction rules; assess the effects of changes in rules on the system as a whole

Very useful tool for assessing emergent processes, substituting for human-subjects designs when mechanisms are difficult to observe, or when exploring a theoretical space

Agent-Based Modeling

- N=50 agents in each model
- Random party id score, 1-7 scale
 - Used for homophily measure; not shared with other agents
- Ten opinion scores, Gaussian (M=partyID, SD=1), 1-7
 - ► *r*=.79, higher among strong partisans (Jacoby, 1988; Peterson, Slothuus, & Togeby, 2010)
 - ► Shared with other agents in discussion rounds
- Ten importance scores, 1-7

Agent-Based Modeling

- Erdős-Rényi random graph, 20% connected
 - networks not homophilous at the outset
- Ten discussion rounds (1 per topic):
 - ► Connected dyads share opinions
 - ▶ 40% of **ALL** dyads selected randomly to update
 - ▶ 1 agent makes a tie choice about the other
 - ► the same dyad can be selected twice
 - tie choices use selection strategies of the current model
- Tie choices: associative or dissociative
 - ► Affect the status of the relationship going forward

Results - Time 0

Results - Time 5

Model 3

Results - Time 10

Results - Transitivity

	Model 1	Model 3
$Time_0$	0.19	0.19
$Time_1$	0.21	0.26
$Time_2$	0.25	0.29
$Time_3$	0.25	0.31
$Time_4$	0.26	0.31
$Time_5$	0.27	0.35
$Time_6$	0.27	0.36
$Time_7$	0.28	0.37
Time ₈	0.33	0.38
$Time_9$	0.29	0.34
Time ₁₀	0.28	0.33

Results - Assortativity

	Model 1	Model 3
$Time_0$	-0.06	-0.03
$Time_1$	-0.15	0.10
$Time_2$	-0.11	0.27
$Time_3$	-0.09	0.38
$Time_4$	-0.09	0.45
$Time_5$	-0.12	0.54
$Time_6$	-0.10	0.59
$Time_7$	-0.04	0.63
$Time_8$	-0.05	0.63
$Time_9$	-0.06	0.65
Time ₁₀	-0.06	0.68

Results - BTERGM

	Model 1		N	Model 3	
	θ	CI	θ	CI	
Homophily	0.02	[-0.01, 0.04]	-0.35	[-0.44, -0.29]	
Edge Memory	1.62	[1.59, 1.65]	1.79	[1.73, 1.85]	
2-Stars	>-0.01	[-0.05, 0.06]	-0.02	[-0.06, 0.01]	
Triangles	0.04	[-0.03, 0.11]	0.10	[0.02, 0.16]	
4-Cycles	< 0.01	[-0.01, 0.01]	< 0.01	[-0.01, 0.01]	

Results

Individual selectivity alone can produce network-level homophily

(in the paper:) High selectivity is requires to:

- produce homophily at levels akin to real-world networks
- produce levels of homophily that are robust to model respecification

References and more methodological details are available in the full paper:

https://mattsweitzer.com/NCA2019

Thank You

