```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
```

In [5]: df=pd.read_csv("Student_Performance (2).csv")

Out[5]:

	hours	scores	Extracurricular Activities	Sleep Hours	Sample Question Papers Practiced	Performance Index
0	7	99	Yes	9	1	91
1	4	82	No	4	2	65
2	8	51	Yes	7	2	45
3	5	52	Yes	5	2	36
4	7	75	No	8	5	66
•••				•••		•••
9995	1	49	Yes	4	2	23
9996	7	64	Yes	8	5	58
9997	6	83	Yes	8	5	74
9998	9	97	Yes	7	0	95
9999	7	74	No	8	1	64

10000 rows × 6 columns

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 6 columns):

Column Non-Null Count Dtype -----_____ ---0 hours 10000 non-null int64 scores 10000 non-null int64 Extracurricular Activities 10000 non-null object 3 Sleep Hours 10000 non-null int64 Sample Question Papers Practiced 10000 non-null int64 5 Performance Index 10000 non-null int64

dtypes: int64(5), object(1) memory usage: 468.9+ KB

In [7]: | df=df.drop("Extracurricular Activities",axis=1) df

Out[7]:		hours	scores	Sleep Hours	Sample Question Papers Practiced	Performance Index
	0	7	99	9	1	91
	1	4	82	4	2	65
	2	8	51	7	2	45
	3	5	52	5	2	36
	4	7	75	8	5	66
	•••					
	9995	1	49	4	2	23
	9996	7	64	8	5	58
	9997	6	83	8	5	74
	9998	9	97	7	0	95
	9999	7	74	8	1	64

10000 rows × 5 columns

In [8]: x=df.iloc[:,0:-1]
x

Λ.	.4	[O]	Ι.
Uι	1	ŏ	

	hours	scores	Sleep Hours	Sample Question Papers Practiced
0	7	99	9	1
1	4	82	4	2
2	8	51	7	2
3	5	52	5	2
4	7	75	8	5
•••				
9995	1	49	4	2
9996	7	64	8	5
9997	6	83	8	5
9998	9	97	7	0
9999	7	74	8	1

10000 rows × 4 columns

```
In [9]: y=df["Performance Index"]
y
```

```
91
 Out[9]:
                  65
         1
         2
                  45
         3
                  36
                  66
                  . .
         9995
                  23
         9996
                  58
         9997
                  74
         9998
                  95
         9999
                  64
         Name: Performance Index, Length: 10000, dtype: int64
In [10]:
          # train_test_split
In [11]:
          from sklearn.model_selection import train_test_split
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_sta
In [12]:
          print("x_train shape=",x_train.shape)
In [13]:
          print("y_train shape=",y_train.shape)
          print("x_test shape=",x_test.shape)
          print("y_test shape=",y_test.shape)
         x_train shape= (7000, 4)
         y_train shape= (7000,)
         x_test shape= (3000, 4)
         y_test shape= (3000,)
In [14]: # ml training
          # linear regression for multi variate
          from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: ▼ LinearRegression
         LinearRegression()
          lr.score(x_test,y_test)
In [15]:
         0.9890524179572492
Out[15]:
          y_predicted=lr.predict(x_test)
In [16]:
          y_predicted
         array([69.2605599, 63.08380235, 68.2720853, ..., 72.14148532,
Out[16]:
                 47.67166147, 86.79903125])
          x_test
In [17]:
```

Out[17]:		hours	scores	Sleep Hours	Sample Question Papers Practiced
	3465	6	80	8	3
3 2 2 4 9 8	2574	7	70	8	9
	2223	6	80	4	8
	4520	3	53	6	7
	9998	9	97	7	0
	•••	•••		•••	
	8106	7	87	8	2
	4725	6	93	5	9
	3000	8	78	6	4
	3486	2	70	6	8
	5202	6	96	9	7

3000 rows × 4 columns

```
In [18]:
         y_test
                  68
         3465
Out[18]:
         2574
                  62
         2223
                  70
         4520
                  35
         9998
                  95
         8106
                  79
         4725
                  82
         3000
                  72
                  50
         3486
         5202
                  87
         Name: Performance Index, Length: 3000, dtype: int64
In [19]: x_test["actual"]=y_test
          x_test
```

_		
Out	1101	4
UUL	1791	ı

	hours	scores	Sleep Hours	Sample Question Papers Practiced	actual
3465	6	80	8	3	68
2574	7	70	8	9	62
2223	6	80	4	8	70
4520	3	53	6	7	35
9998	9	97	7	0	95
•••					•••
8106	7	87	8	2	79
4725	6	93	5	9	82
3000	8	78	6	4	72
3486	2	70	6	8	50
5202	6	96	9	7	87

3000 rows × 5 columns

In [20]: x_test["predicted"]=y_predicted x_test

Out[20]:

	hours	scores	Sleep Hours	Sample Question Papers Practiced	actual	predicted
3465	6	80	8	3	68	69.260560
2574	7	70	8	9	62	63.083802
2223	6	80	4	8	70	68.272085
4520	3	53	6	7	35	33.027399
9998	9	97	7	0	95	94.047217
•••			•••			
8106	7	87	8	2	79	79.042100
4725	6	93	5	9	82	82.181626
3000	8	78	6	4	72	72.141485
3486	2	70	6	8	50	47.671661
5202	6	96	9	7	87	86.799031

3000 rows × 6 columns

In [21]: x_test.head()

24, 5.01 PW					MILZ (LINEAR REGRESSION MULTI VARIA	AIE)		
Out[21]:		hours	scores	Sleep Hours	Sample Question Papers Practiced	actual	predicted	
	3465	6	80	8	3	68	69.260560	
	2574	7	70	8	9	62	63.083802	
	2223	6	80	4	8	70	68.272085	
	4520	3	53	6	7	35	33.027399	
	9998	9	97	7	0	95	94.047217	
In [22]:	lr.pr	redict	([[7,90	,7,6]])				
Out[22]:	s not war	have nings.	valid H	feature name	site-packages\sklearn\base.p			
In [23]:	lr.co	oef_						
Out[23]:	array	([2.84	1924947	, 1.01774177	, 0.48699588, 0.19190178])			
In [24]:	lr.ir	ntercep	ot_					
Out[24]:	-33.7	259509	956904					
In [25]:	ŀ		24947*	,sh,sqp): n+1.01774177	7*s+0.48699588*sh+0.19190178*	sqp-33	.725950995	69034
In [26]:	predi	icted(7	7,90,7,	5)				
Out[26]:	82.37	'593643	3430966					
In []:								