0.1 含参量积分

定义 0.1 (含参量积分)

设 f(x,y) 是定义在矩形区域 $R = [a,b] \times [c,d]$ 上的二元函数. 当 x 取 [a,b] 上某定值时, 函数 f(x,y) 则是定义在 [c,d] 上以 y 为自变量的一元函数. 倘若这时 f(x,y) 在 [c,d] 上可积, 则其积分值是 x 在 [a,b] 上取值的函数, 记它为 $\varphi(x)$, 就有

$$\varphi(x) = \int_{c}^{d} f(x, y) \, dy, \, x \in [a, b]. \tag{1}$$

一般地,设 f(x,y) 为定义在区域 $G = \{(x,y) \mid c(x) \leq y \leq d(x), a \leq x \leq b\}$ 上的二元函数,其中 c(x), d(x) 为定义在 [a,b] 上的连续函数,若对于 [a,b] 上每一固定的 x 值, f(x,y) 作为 y 的函数在闭区间 [c(x),d(x)] 上可积,则其积分值是 x 在 [a,b] 上取值的函数,记作 F(x) 时,就有

$$F(x) = \int_{c(x)}^{d(x)} f(x, y) \, dy, \, x \in [a, b].$$
 (2)

用积分形式所定义的这两个函数 (1) 与 (2), 通称为定义在 [a,b] 上**含参量** x **的** (**正常**) **积分**, 或简称**含参量 积分**.

定理 0.1 (连续性)

若二元函数 f(x,y) 在矩形区域 $R = [a,b] \times [c,d]$ 上连续,则函数

$$\varphi(x) = \int_{a}^{d} f(x, y) \, dy, \quad \psi(y) = \int_{a}^{b} f(x, y) \, dx.$$

都在 [a,b] 上连续.

 $\dot{\mathbf{L}}$ 对于这个定理的结论也可以写成如下的形式: 若 f(x,y) 在矩形区域 \mathbf{R} 上连续, 则对任何 $x_0 \in [a,b]$, 都有

$$\lim_{x \to x_0} \int_{c}^{d} f(x, y) \, dy = \int_{c}^{d} \lim_{x \to x_0} f(x, y) \, dy.$$

这个结论表明, 定义在矩形区域上的连续函数, 其极限运算与积分运算的顺序是可以交换的.

证明 设 $x \in [a,b]$, 对充分小的 Δx , 有 $x + \Delta x \in [a,b]$ (若x 为区间的端点, 则仅考虑 $\Delta x > 0$ 或 $\Delta x < 0$), 于是

$$\varphi(x + \Delta x) - \varphi(x) = \int_{c}^{d} [f(x + \Delta x, y) - f(x, y)] dy.$$
 (3)

由于 f(x,y) 在有界闭域 R 上连续, 从而一致连续, 即对任给的正数 ε , 总存在某个正数 δ , 对 R 内任意两点 (x_1,y_1) 与 (x_2,y_2) , 只要

$$|x_1 - x_2| < \delta$$
, $|y_1 - y_2| < \delta$,

就有

$$|f(x_1, y_1) - f(x_2, y_2)| < \varepsilon. \tag{4}$$

所以由 (3),(4) 可推得: 当 $|\Delta x| < \delta$ 时,

$$|\varphi(x+\Delta x)-\varphi(x)|\leqslant \int_c^d |f(x+\Delta x,y)-f(x,y)|\,dy<\int_c^d \varepsilon\,dx=\varepsilon(d-c).$$

这就证明了 $\varphi(x)$ 在 [a,b] 上连续.

同理可证: 若 f(x,y) 在矩形区域 R 上连续, 则含参量 y 的积分

$$\psi(y) = \int_a^b f(x, y) \, dx.$$

在 [c,d] 上连续.

定理 0.2 (连续性)

设二元函数 f(x, y) 在区域

$$G = \{(x, y) \mid c(x) \leqslant y \leqslant d(x), a \leqslant x \leqslant b\}$$

上连续, 其中 c(x), d(x) 为 [a,b] 上的连续函数, 则函数

$$F(x) = \int_{c(x)}^{d(x)} f(x, y) \, dy.$$
 (5)

在 [a, b] 上连续.

证明 对积分(5) 用换元积分法,令

$$y = c(x) + t(d(x) - c(x)).$$

当 y 在 c(x) 与 d(x) 之间取值时,t 在 [0,1] 上取值,且

$$dy = (d(x) - c(x)) dt.$$

所以从(5)式可得

$$F(x) \int_{c(x)}^{d(x)} f(x, y) \, dy = \int_0^1 f(x, c(x) + t(d(x) - c(x))) (d(x) - c(x)) \, dt.$$

由于被积函数

$$f(x, c(x) + t(d(x) - c(x)))(d(x) - c(x))$$

在矩形区域 $[a,b] \times [0,1]$ 上连续, 由定理 $[a,b] \times [a,b]$ 上连续.

定理 0.3 (可微性)

若函数 f(x,y) 与其偏导数 $\frac{\partial}{\partial x} f(x,y)$ 都在矩形区域 $R = [a,b] \times [c,d]$ 上连续,则

$$\varphi(x) = \int_{c}^{d} f(x, y) \, dy$$

在 [a,b] 上可微, 且

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{c}^{d} f(x, y) \, dy = \int_{c}^{d} \frac{\partial}{\partial x} f(x, y) \, dy.$$

证明 对于 [a,b] 内任一点 x, 设 $x + \Delta x \in [a,b]$ (若 x 为区间端点, 则讨论单侧导数), 则

$$\frac{\varphi(x + \Delta x) - \varphi(x)}{\Delta x} = \int_{c}^{d} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \, dy.$$

由微分学的拉格朗日中值定理及 $f_x(x,y)$ 在有界闭域 R 上连续 (从而一致连续), 对任给正数 ε , 存在正数 δ , 只要 当 $|\Delta x| < \delta$ 时, 就有

$$\left|\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}-f_x(x,y)\right|=|f_x(x+\theta\Delta x,y)-f_x(x,y)|<\varepsilon,$$

其中 $\theta \in (0,1)$. 因此

$$\left| \frac{\Delta \varphi}{\Delta x} - \int_{c}^{d} f_{x}(x, y) \, dy \right| \leq \int_{c}^{d} \left| \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} - f_{x}(x, y) \right| \, dy < \varepsilon (d - c).$$

这就证得对一切 $x \in [a,b]$,有

$$\frac{\mathrm{d}}{\mathrm{d}x}\varphi(x) = \int_{c}^{d} \frac{\partial}{\partial x} f(x, y) \, dy.$$

定理 0.4 (可微性)

设 f(x,y), $f_x(x,y)$ 在 $R = [a,b] \times [p,q]$ 上连续,c(x), d(x) 为定义在 [a,b] 上其值含于 [p,q] 内的可微函数,则函数

$$F(x) = \int_{c(x)}^{d(x)} f(x, y) \, dy$$

在 [a, b] 上可微, 且

$$F'(x) = \int_{c(x)}^{d(x)} f_x(x, y) \, dy + f(x, d(x)) d'(x) - f(x, c(x)) c'(x). \tag{6}$$

证明 把 F(x) 看作复合函数

$$F(x) = H(x, c, d) = \int_{c}^{d} f(x, y) \, dy, c = c(x), d = d(x).$$

由复合函数求导法则及变限积分的求导法则,有

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = \frac{\partial H}{\partial x} + \frac{\partial H}{\partial c}\frac{\mathrm{d}c}{\mathrm{d}x} + \frac{\partial H}{\partial d}\frac{\mathrm{d}d}{\mathrm{d}x} = \int_{c(x)}^{d(x)} f_x(x,y) \, dy + f(x,d(x))d'(x) - f(x,c(x))c'(x).$$

定理 0.5 (可积性)

若 f(x,y) 在矩形区域 $R = [a,b] \times [c,d]$ 上连续,则 $\varphi(x)$ 和 $\psi(y)$ 分别在 [a,b] 和 [c,d] 上可积. 这就是说: 在 f(x,y) 连续性假设下,同时存在两个求积顺序不同的积分:

$$\int_a^b \left[\int_c^d f(x,y) \, dy \right] \, dx \quad - \int_c^d \left[\int_a^b f(x,y) \, dx \right] \, dy.$$

为书写简便起见, 今后将上述两个积分写作

$$\int_a^b dx \int_c^d f(x, y) dy \quad = \int_c^d dy \int_a^b f(x, y) dx,$$

前者表示 f(x,y) 先对 y 求积然后对 x 求积, 后者则求积顺序相反. 它们统称为**累次积分**, 或更确切地称为**二次积分**.

证明

定理 0.6

若 f(x,y) 在矩形区域 $R = [a,b] \times [c,d]$ 上连续,则

$$\int_{a}^{b} dx \int_{c}^{d} f(x, y) dy = \int_{c}^{d} dy \int_{a}^{b} f(x, y) dx.$$
 (7)

 $\stackrel{ extstyle }{f extstyle }$ 笔记 这个定理指出, 在 f(x,y) 连续性假设下, 累次积分与求积顺序无关.

证明 记

$$\varphi_1(u) = \int_a^u dx \int_c^d f(x, y) \, dy, \varphi_2(u) = \int_c^d dy \int_a^u f(x, y) \, dx,$$

其中 $u \in [a,b]$, 现在分别求 $\varphi_1(u)$ 与 $\varphi_2(u)$ 的导数.

$$\varphi'_1(u) = \frac{\mathrm{d}}{\mathrm{d}u} \int_{-u}^{u} \varphi(x) \, dx = \varphi(u).$$

对于 $\varphi_2(u)$, 令 $H(u,y) = \int_a^u f(x,y) dx$, 则有

$$\varphi_2(u) = \int^d H(u, y) \, dy.$$

因为 H(u, y) 与 $H_u(u, y) = f(u, y)$ 都在 R 上连续, 由定理 0.3,

$$\varphi_2'(u) = \frac{\mathrm{d}}{\mathrm{d}u} \int_c^d H(u,y) \, dy = \int_c^d H_u(u,y) \, dy = \int_c^d f(u,y) \, dy = \varphi(u).$$

故得 $\varphi_1'(u) = \varphi_2'(u)$, 因此对一切 $u \in [a, b]$, 有

当 u=a 时, $\varphi_1(a)=\varphi_2(a)=0$, 于是 k=0, 即得

$$\varphi_1(u) = \varphi_2(u), u \in [a, b].$$

取 u = b, 就得到所要证明的 (7) 式.