

CCP5 Summer School

July 2023

Simulations of biomolecules: design of small molecule complement C5 inhibitors

DR. AGNIESZKA K. BRONOWSKA

SCHOOL OF NATURAL ENVIRONMENTAL SCIENCES

NEWCASTLE UNIVERSITY

CADD pipeline

Molecular docking

The process of predicting the stable 3D geometry of an interacting pair of molecules - a *binding mode/pose* Energy-based docking relies on molecular mechanical force fields (energy minimisation, sampling, scoring function)

Molecular docking: two main tasks

 Sampling of ligand conformational space and pose generation (geometry)

Scoring protein-ligand complexes (energetics)

Molecular docking: to-do list

Problem: a pair of molecules represented by their 3D coordinates

- Decide whether the molecules will form a complex;
- Determine the binding affinity (free binding energy);
- Predict the 3D structure of the complex (binding mode);
- •Deduce function (agonist/antagonist);

SeeSAR

SeeSAR

- Platform-independent
- •Easy to use (for basic functionalities) developed for bench chemists
- Decent scoring function (interactions + solvation term used)
- Minimum prep and requirement for e.g. format parsing
- •Rapid core expansion, core replacement and analogue search enabled
- Handles multiple file formats
- Covalent docking enabled
- Integrated with other tools, e.g. InfiniSee (chemical space search), RDKit, KNIME

HYDE scoring function: the concept

$$\Delta G^{i}_{HYDE} = \sum_{atom \ i} \Delta G^{i}_{dehydration} + \Delta G^{i}_{H-bond}$$

HYDE – visual affinities

08

-∆G contribution

no ΔG contribution

total desolvation gain	<u>-7.2</u> kJ/mol
ligand aromatic carbon	-2.0 kJ/mol
receptor aromatic carbons	-5.2 kJ/mol

SeeSAR: a working example

Ligand moves (optimisation after every modification), protein fixed: single conformation

Exhaustive conformational search on ligands prior to docking

Scoring function (HYDE) gives contributions from intrinsic interactions and desolvation

MCC950 bound to NLRP3 inflammasome

Predicted affinity range: High pM to low nM

Ki (SPR and MST): Low nM (8 – 24 nM)

Limitations and some known issues

- •Protein is considered rigid: ideally, you should follow your calculations by running short MD simulations on the complexes and recalculating the binding affinities
- •Results are very sensitive to even small changes in the conformation of the protein
- •Binding affinities for certain groups are not reproduced well: hydrophobic effect tends to be overestimated, while highly polar groups are underestimated
- •Every now and then, weird protonation states suggested (you can always manually adjust) and med-chem nonsense molecules suggested in core expansion in Inspirator
- Workflows are limited to small molecules
- Med-chem properties and/or synthetic feasibility of suggested analogues may be problematic
- •Technical: 50,000 compounds/rows in SeeSAR GUI (you need to use KNIME to "downsize" very large data sets, or use non-GUI version)

Virtual Screening

Virtual screening using SeeSAR and InfiniSee

- •Docking of a large virtual libraries (1,000+) of compounds
- •Libraries: collections of small molecules for virtual screening
- •Sources: open-access (e.g. ZINC, ChEMBL) or commercial (e.g. Enamine) virtual libraries
- •Types of libraries commonly used: fragments, diversity sets, target-focused, custom

Fragment libraries: Enamine

Fragment Collection

MiniFrag Library

sp³ Rich Fragments

Single Pharmacophore

Carboxylic Acid Fragments

Fluorinated Fragments

Covalent Fragments

Warhead Subsets

Cysteine focused Covalent Fragments

Serine focused Covalent Fragments

Lysine focused Covalent Fragments

Acrylamides

Enamine Essential Fragment Library

- •320 fragments
- Universal tool for initial screen of novel targets
- Designed in collaboration with research group at University of Cambridge
- All fragments have been tested for water solubility and chemical stability in buffer solution
- Increased hit probability: the structures are based on frequently reported fragment hits and scaffolds derived from experimentally determined structures of protein-ligand complexes

Diversity libraries

DIVERSITY LIBRARIES

10 240 compounds

50 240 compounds

Hit Locator Library

Phenotypic Screening Library

Covalent Screening Library

Discovery Diversity Set

High-quality diverse library of latest compounds

10 240 compounds

Target-focused virtual libraries

Kinase libraries:

- Hinge binders (18,000 molecules)
- Aurora A targeted set (2,600 molecules)
- Synthetically feasible
- Comply with drug-like rules
- Evaluated in vitro

Building your own set: InfiniSee

- Developed from REAL Space Navigator;
- REAL: 21 bln make-on-demand compounds;
- The current version (Artemis) has a choice of several massive libraries (REAL, CHEMriya, GalaXi, eXplore, KnowledgeSpace)

Size matters: screening ultra-large libraries

Ultra-large library docking for discovering new chemotypes

Jiankun Lyu^{1,2,10}, Sheng Wang^{1,2,10}, Trent E. Balius^{2,10}, Isha Singh^{1,20}, Anat Levit², Yurii S. Moroz^{2,4}, Matthew J. O'Meara¹, Tao Che⁴, Enkhiangal Algaa¹, Kateryna Tolmachova², Andrey A. Tolmachova², Brian K. Shoicheti*, Bryan L. Roth^{4,8,8} & John J. Irwin^{1,4}

Nature. 2019; 566(7743): 224-229.

RESEARCH HIGHLIGHT | 05 January 2022

Synthesis-on-demand compounds were chosen from 12 different docking score bins (cyan)

A group of new (no precedent) AmpC inhibitors has been identified

Screening ultra-large virtual libraries

Message: we should aim to explore as much of the chemical space as possible

Screening of large chemical spaces: "crystals first"

Start: 4 PKA-fragment complexes (X-ray)

- Template-based docking using Enamine REAL space (20 bn)
- •93 molecules out of 106 selected compounds synthesized
- •40 compounds were active in at least one validation assay
- Most active follow-up having a 13,500-fold gain in affinity

Crystal structures for 6 of the most promising binders were obtained, verifying the predicted binding modes

The "combinatorial challenge"

- •Enumerating the GSK space would take 400 Yottabytes (400,00000000000 GB)
- •Estimated to take ~11 trillion years to download using high-power broadband
- Storage of all products of a library of such size is unfeasible
- Way out: storing building blocks and reaction rules allowing on-fly generation of products

Virtual library	Size
GalaXi	10 ⁹
Enamine REAL	10 ¹⁰
eXplore	10 ¹²
BiosolveIT KnowledgeSpace	10 ¹⁴
GSK XXL	10 ²⁶

Three-stage workflow for ulvHTS

Case Study

COMPLEMENT C5

Complement pathway and C5

Complement C5 inhibitors: MoA

PDB: 3CU7

Ensemble (apo)

PDB: 8AYH

Complement C5 inhibitors

CryoEM structure (3.35 Å resolution) of human complement C5 in complex with small molecule inhibitor (H1H) and CVF IC_{50} : 0.1 - 5 nM, from 3 assays

H1H

PDB: 8AYH

Complement C5 inhibitors

a) b)
$$IC_{50} = 0.44 \,\mu\text{M}$$
 $IC_{50} = 0.21 \,\mu\text{M}$ $IC_{50} = 0.21 \,\mu\text{M}$ $IC_{50} = 0.62 \,\mu\text{M}$ $IC_{50} = 0.11 \,\mu\text{M}$ $IC_{50} > 100 \,\mu\text{M}$

Contents of practical sessions

- Introduction to SeeSAR
- Application 1: lead optimisation
- Application 2: core expansion
- Application 3: core replacement/scaffold-hopping
- Application 4: fast generation and evaluation of analogues
- Application 5: Virtual screening of massive virtual libraries with InfiniSee (Scaffold Hopper) and SeeSAR

Credits

Shangze Xu Kate Madden

Amelia Stennett Adam Wollman

Junya Zhang Wyatt Yue

Ayaz Ahmad Ehmke Pohl (Durham)

Dominic Alderson João de Souza (RxCelerate)

Jon Heal (RxCelerate)

Christian Lemmen (BiosolvelT)

