Grafica A.A.2015/16

Curve nella Computer Graphics

Curve: che cosa sono?

- Definiamo uno spazio parametrico
 - 1D (per curve)
- Definiamo un mapping fra lo spazio dei parametri e lo spazio 2D o 3D
 - una funzione che prende valori parametrici (scalari) e restituisce punti 2D/3D
- Il risultato è una curva in forma parametrica (funzione vettoriale)

Curve in forma parametrica

 Abbiamo già visto una retta 2D in forma parametrica; e in 3D?

$$p(t) = (1-t) p_0 + t p_1 \qquad t \in [0, 1]$$

$$\begin{cases} x = x_0 t + (1-t)x_1 \\ y = y_0 t + (1-t)y_1 \\ z = z_0 t + (1-t)z_1 \end{cases}$$

$$p_0 = [x_0, y_0, z_0]$$

$$y = [x_0, y_0, z_0]$$

- Si noti che x, y e z sono determinati ciascuno da una espressione che coinvolge:
 - il parametro t
 - le coordinate dei due punti assegnati p_0 e p_1

Un segmento retto è un esempio di curva 3D in forma parametrica

Curve 3D in forma parametrica

Curva in forma parametrica:

$$c(t) = [c_x(t), c_y(t), c_z(t)]$$
 $t \in [0,1]$

Vettore Tangente alla curva:

$$c'(t) = [c'_{x}(t), c'_{y}(t), c'_{z}(t)]$$

Versore Tangente:

$$T(t) = \frac{c'(t)}{\left\|c'(t)\right\|}$$

Retta Tangente alla curva

Retta tangente r(s) alla curva c(t) in t_0 :

$$r(s) = c(t_0) + sT(t_0) \operatorname{con} s \in R$$

Esempio 2D e 3D

$$c(t) = [\cos t, \sin t]$$

$$c'(t) = [-\sin t, \cos t]$$

$$T(t) = [-\sin t, \cos t]$$

$$r(s) = c(t_0) + sT(t_0)$$

$$= [\cos t_0 - s \sin t_0, \sin t_0 + s \cos t_0]$$

$$c(t) = [\cos t, \sin t, 0]$$

$$c'(t) = [-\sin t, \cos t, 0]$$

$$T(t) = [-\sin t, \cos t, 0]$$

$$r(s) = c(t_0) + sT(t_0)$$

$$= [\cos t_0 - s \sin t_0, \sin t_0 + s \cos t_0, 0]$$

Normale alla curva

Vettore normale alla curva c(t) in t_0 :

Sia
$$c''(t) = [c''_x(t), c''_y(t), c''_z(t)]$$

$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

$$t$$

$$T(t_0)$$

$$T(t_0)$$

Frenet Frame

- Tangente unitaria
- · Normale unitaria
- Binormale

$$T(t) = \frac{c'(t)}{\|c'(t)\|}$$

$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

$$B(t) = T(t) \times N(t)$$

Fornisce un sistema di riferimento (frame) ortogonale in ogni punto della curva

Utilità del Frenet Frame

- Movimento camera
- Movimento di un oggetto lungo un percorso
- Movimento con una certa regola

Problemi: il Frenet frame diviene instabile nei punti di flesso o non definito quando

$$T'(t) = 0$$

Rappresentazione di forme: Curve 2D/3D

Problema: progettare una forma 2D o 3D matematicamente (modello matematico, modellazione geometrica)

Soluzione: si usa una funzione vettoriale a componenti polinomiali (spazio delle funzioni polinomiali); ma come?

- Si specifichi una sequenza di punti **p**_i , *i* = 1,..., N, (detti control-point);
- 2. Si definisca una parametrizzazione 1D;
- Si definisca un mapping polinomiale (curva in forma parametrica), smooth/fair che interpoli o approssimi i control-point.

Curve di Bézier

- Per lavorare nello spazio polinomiale dobbiamo scegliere una base di rappresentazione
- Differenti scelte di funzioni base permettono di rappresentare una stessa curva in modi differenti
 - La scelta di una base di funzioni è importante sia per questioni numeriche e computazionali, ma soprattutto perché i punti di controllo (i coefficienti) siano informativi sulla forma della curva
- Per questi motivi la scelta cade sulla base polinomiale nota come base di Bernstein;

Dati n+1 punti di controllo (CP) \mathbf{p}_i (o poligonale di controllo), la curva è definita come:

$$C(t) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i,n}(t) \quad t \in [0,1]$$
 dove $B_{i,n}(t) = \binom{n}{i} t^{i} (1-t)^{n-i}$

Curve di Bézier

• Le funzioni $B_{i,n}$ sono i *polinomi base di Bernstein* di grado n e sono dette *blending functions*; sono non negative e la loro somma vale 1.

Curve di Bézier

$$C(t) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i,n}(t) \qquad t \in [0,1]$$

G. Casciola

Grafica 15/16

Proprietà delle Curve di Bézier

- La curva inizia dal primo punto di controllo e finisce nell'ultimo;
- La tangente alla curva nel primo punto ha la stessa direzione del primo segmento della poligonale di controllo;
- La tangente nell'ultimo punto ha la stessa direzione dell'ultimo segmento della poligonale di controllo;

$$C(0) = \mathbf{p}_0 \qquad C(1) = \mathbf{p}_n$$

$$C'(0) = n(\mathbf{p}_1 - \mathbf{p}_0) \qquad C'(1) = n(\mathbf{p}_n - \mathbf{p}_{n-1})$$

G. Casciola

Grafica 15/16

Proprietà delle Curve di Bézier

 La curva giace internamente al guscio convesso definito dai punti di controllo;

Proprietà delle Curve di Bézier

- C(t) è approssimante in forma della poligonale di controllo;
- C(t) è invariante per trasformazioni affini; in particolare per traslazione, scala, rotazione e deformazione lineare (shear);

Il matematico francese de Casteljau, negli anni '60, diede una definizione di curva di Bézier basata su "corner cutting" successivi:

$$p_i^{[k]}(t) = (1-t)p_i^{[k-1]}(t) + tp_{i+1}^{[k-1]}(t) \qquad t \in [0,1]$$

dove
$$k=1,...,n$$
 $i=0,...,n-k$

con $p_i^{\lceil 0 \rceil}(t)=p_i$
 $i=0,...,n$

Questa definizione è un algoritmo numericamente stabile per il calcolo delle curve di Bézier.

Es. n=3, k=3

$$p_i^{[k]}(t) = (1-t)p_i^{[k-1]}(t) + tp_{i+1}^{[k-1]}(t) \qquad t \in [0,1]$$

$$p_i^{[k]}(t) = (1-t)p_i^{[k-1]}(t) + tp_{i+1}^{[k-1]}(t) \quad t \in [0,1]$$

$$p_i^{[k]}(t) = (1-t)p_i^{[k-1]}(t) + tp_{i+1}^{[k-1]}(t) \quad t \in [0,1]$$

$$p_i^{[k]}(t) = (1-t)p_i^{[k-1]}(t) + tp_{i+1}^{[k-1]}(t) \quad t \in [0,1]$$

Rendering Curve di Bézier

- Si valuti la curva in un numero fissato di valori parametrici e si disegni la polyline definita da questi punti della curva
- Vantaggi:
 - molto semplice
- Svantaggi:
 - Costoso per valutare la curva in molti punti
 - Non è facile determinare in quanti valori valutare e dove valutare lungo la curva
 - Non è facile renderlo adattivo; in particolare è difficile misurare la distanza della polyline dalla curva.

Codice di Esempio

DEMO:

SDL2_prg1516/SDL2prg2_gl/bezie3d

Esempio

Vogliamo progettare un moto rettilineo di un corpo da una posizione Q_0 ad una Q_1 , con velocità iniziale V_0 e finale V_1 , in un tempo di 5 secondi, nella forma di Bezier. Sarà:

$$C(t) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i,3}(t)$$
 $t \in [0,5]$

dove

$$Q_0 = C(0) = \mathbf{p}_0$$
 $Q_1 = C(5) = \mathbf{p}_3$
 $V_0 = C'(0) = 3/5(\mathbf{p}_1 - \mathbf{p}_0)$ $V_1 = C'(5) = 3/5(\mathbf{p}_3 - \mathbf{p}_2)$

Sia $Q_0 = (0,0,0)$, $Q_1 = (3,0,0)$, $V_0 = (1,0,0)$, $V_1 = (0,0,0)$, allora

$$p_0 = (0,0,0), p_1 = p_0 + 5/3V_0 = (5/3,0,0)$$

 $p_3 = (3,0,0), p_2 = p_3 - 5/3V_1 = (3,0,0)$

Le Curve di Bézier e la Suddivisione

La definizione o algoritmo di valutazione di de Casteljau di una curva di Bézier in corrispondenza di un punto tc, fornisce oltre al valore della curva anche i punti di controllo delle curve di Bézier corrispondenti agli intervalli $[0,t_c]$ e $[t_c,1]$ $n_c^{[0]}$

Vediamo nel caso n=3:

$$p_{1}^{[1]} p_{1}^{[2]} p_{2}^{[1]}$$

$$p_{0}^{[3]} p_{0}^{[3]}$$

$$\bar{t} = \frac{1}{3}$$

$$C(t) = \sum_{i=0}^{3} p_i^{[0]} B_{i,3}(t) = \begin{cases} \sum_{i=0}^{3} p_0^{[i]} B_{i,3}(t) & t \in [0, t_c] \\ \sum_{i=0}^{3} p_i^{[3-i]} B_{i,3}(t) & t \in [t_c, 1] \end{cases}$$

$$t \in [0, 1]$$

G. Casciola

Grafica 15/16

Le Curve di Bézier e la Suddivisione

La definizione o algoritmo di valutazione di de Casteljau di una curva di Bézier in corrispondenza di un punto tc, fornisce oltre al valore della curva anche i punti di controllo delle curve di Bézier

corrispondenti agli intervalli $[0,t_c]$ e $[t_c,1]$

Vediamo nel caso n=3:

G. Casciola

Grafica 15/16

Le Curve di Bézier e la Suddivisione

La definizione o algoritmo di valutazione di de Casteljau di una curva di Bézier in corrispondenza di un punto tc, fornisce oltre al valore della curva anche i punti di controllo delle curve di Bézier

corrispondenti agli intervalli $[0,t_c]$ e $[t_c,1]$

$$C(t) = \sum_{i=0}^{3} p_i^{[0]} B_{i,3}(t) = \begin{cases} \sum_{i=0}^{3} p_0^{[i]} B_{i,3}(t) & t \in [0, t_c] \\ \sum_{i=0}^{3} p_i^{[3-i]} B_{i,3}(t) & t \in [t_c, 1] \end{cases}$$

La suddivisione permette di calcolare in modo semplice la tangente alla curva in ogni punto

$$C'(t_c) = n(p_0^{[n]} - p_0^{[n-1]}) = n(p_1^{[n-1]} - p_0^{[n]})$$

Rendering Curve di Bézier

- Ricordiamo che una curva di Bézier giace interamente nel guscio convesso dei suoi punti di controllo
- Se i punti di controllo sono quasi allineati, allora il guscio convesso è quasi un segmento che approssima bene la curva
- Ancora, una curva di Bézier può essere divisa in due curve di Bézier più piccole che rappresentano esattamente la curva originale
- Questo suggerisce il seguente algoritmo di disegno:
 - dividi ricorsivamente la curva in due sotto-curve (algoritmo di suddivisione)
 - ferma il processo quando i punti di controllo di ogni sotto-curva sono quasi allineati
 - disegna il segmento di estremi il primo ed ultimo punto di controllo

Curve Complesse

- Una singola curva di Bézier può rappresentare solo una limitata gamma di forme
- Una soluzione potrebbe essere aumentare il grado
 - questo aumenta le possibilità, ma al costo di più punti di controllo e polinomi di grado maggiore
 - il controllo è globale; un punto di controllo influenza l'intera curva
- In alternativa, la soluzione più comune è unire insieme più curve di Bézier di grado basso in una piecewise curve (curva a tratti)
 - una curva complessa in forma, può essere pensata in più tratti, ciascuno dei quali rappresentabile con una curva di Bézier di grado basso (per es. cubica)
 - Controllo Locale: ogni punto di controllo influenza solo una parte limitata della curva
 - L'interazione e la modellazione sono più semplici

G.Casciola Grafica 15/16

Curva di Bézier a tratti

G. Casciola

Grafica 15/16

Continuità

- Quando due curve vengono unite, solitamente si vuole un ordine di continuità negli estremi:
 - C⁰, "C-zero", continuità point-wise, le curve condividono lo stesso punto dove si uniscono
 - C¹, "C-one", continuità della derivata, le curve hanno la stessa derivata parametrica dove si uniscono
 - C², "C-two", continuità della derivata seconda, le curve hanno la stessa derivata seconda dove si uniscono
 - C^k possibile continuità più alta
- Come facciamo ad assicurare che due curve di Bézier siano C^0 , C^1 , C^2 dove si uniscono?

Imporre la Continuità: esempio

- Curve di Bézier cubiche:
 - Per definizione interpolano i loro punt di controllo estremi, quindi si ha C^0 semplicemente uguagliando i punti di controllo estremi: $\mathbf{q} = \mathbf{p}_{0.3} = \mathbf{p}_{1.0}$
 - La continuità C^1 si ottiene ponendo $q=p_{0,3}=p_{1,0}$, e facendo sì che $p_{0,2}$, q e $p_{1,1}$ siano allineati, e precisamente q $p_{0,2}=p_{1,1}$ q
 - La continuità C^2 viene da ulteriori condizioni su $\boldsymbol{p}_{0,1}$ e $\boldsymbol{p}_{1,2}$

G. Casciola

Grafica 15/16

Problemi con Curve di Bézier

- Una curva complessa richiede molti segmenti di curve di Bézier
- Mantenere la continuità richiede vincoli sulla posizione dei punti di controllo
 - L'utente non può muovere arbitrariamente i punti di controllo e automaticamente mantenere la continuità
 - I vincoli devono essere mantenuti esplicitamente
 - Non risulta intuitivo gestire punti di controllo che risultano vincolati

Curva di Bézier a tratti

Si noti che nel caso C⁰, la curva di Bézier a tratti dell' esempio resta definita da 7 CP (1 in meno); nel caso C¹, la curva resta definita da 6 CP (2 in meno), e così via.

Allora se si vuole costruire una curva a tratti con una assegnata continuità è semplice determinare la dimensione dello spazio relativo o in altre parole quante infinità di curve si avranno.

Esempio: se si vuole progettare una curva a 3 tratti cubici, con continuità C¹ in ogni punto di raccordo, avremo 3x4-4, cioè 8 gradi di libertà od anche uno spazio di dimensione 8.

n=grado polinomi k=ordine di continuità con k<n

Dai Polinomi alle Spline

Definito il numero di tratti (N+1), il grado n dei polinomi e l'ordine di continuità k_i i=1,...,N (con $k_i < n$) in ogni punto di raccordo, allora resta definito uno spazio funzionale S, che chiameremo spazio spline, e la sua dimensione è:

$$\dim(S) = (n+1)(N+1) - \sum_{i=1}^{N} (k_i + 1)$$

E' possibile determinare una base, tipo Bernstein, per questo spazio polinomiale a tratti?

Sì e si chiama base delle funzioni B-spline.

Le curve spline sono funzioni vettoriali le cui componenti sono funzioni scalari di uno spazio spline

Curve Spline

 Le curve spline sono, più semplicemente, una rappresentazione matematica compatta di curve polinomiali di grado n a tratti definite su una sequenza di intervalli parametrici, detta partizione nodale

Definiamo una partizione nodale di [a,b] con una sequenza di punti x_i detti nodi, tali che:

- Ci sono molti tipi di curve spline: possono essere differenti per grado (lineare, quadratica, cubica, ...) e partizione nodale (uniforme o non-uniforme)
- In genere l'ordine di continuità k_i è definibile arbitrariamente da nodo a nodo (k_i <n); spesso ci si limita a spline con massimo ordine di continuità ossia k_i =n-1 per ogni i=1,...,N, allora
 - spline lineari C^0 , quadratiche C^1 , cubiche C^2 , ecc.
 - tale spazio avrà dimensione N+n+1

Curve Spline

 L'espressione matematica rassomiglia à quella di una curva di Bézier, ma con funzioni B-spline definite sulla partizione estesa di nodi

$$\begin{cases} t_i \\ i=1,\dots,N+2(n+1) \end{cases}$$
 tale che:
$$t_1=\dots=t_{n+1}=x_0, \qquad t_{n+1+i}=x_i, \ i=1,\dots,N, \qquad t_{N+n+2}=\dots=t_{N+2(n+1)}=x_{N+1}$$

$$\xrightarrow{a} \qquad \qquad \downarrow \qquad$$

le funzioni B-spline $B_{i,n}(t)$ sono a supporto compatto, cioè sono nulle fuori dell'intervallo $[t_i, t_{i+n+1}]$ con n il grado polinomiale

G. Casciola

Grafica 15/16

Curve Spline

Sono ancora chiamate *blending functions*, e descrivono come miscelare (blend) i punti di controllo per dar luogo alla curva

$$C(t) = \sum_{i=1}^{N+n+1} p_i B_{i,n}(t)$$

Se ci restringiamo ad un intervallo nodale, per esempio [2,3], per il fatto che sono a supporto compatto, le uniche B-spline non nulle saranno in numero di n+1 (4 nell'esempio) e per l'esattezza le $B_{i,3}(t)$ per i=3,4,5,6;

n=3

 $t_1 = ... = t_4 = 0$ $t_5 = 1$ $t_6 = 2$ $t_7 = 3$ $t_8 = 4$ $t_9 = ... = t_{12} = 5$ **G. Casciola**

Valutazione di Curve Spline

L'osservazione precedente permette di valutare in modo efficiente una curva spline.

Assegnato il parametro t, si determina l'intervallo nodale in cui è contenuto, sia $[t_k, t_{k+1}]$, quindi:

$$C(t) = \sum_{i=k-n}^{k} p_i B_{i,n}(t)$$
$$= \sum_{i=3}^{6} p_i B_{i,n}(t)$$

Cioè la valutazione di un punto della curva spline costa come la valutazione di una curva di Bézier a partire da n+1 punti di controllo.

Si dice che le curve spline sono a controllo locale

Curve Spline

- La curva spline giace all'interno del guscio convesso? interpola gli estremi?
- Le funzioni B-spline hanno somma 1 e sono non negative;
 - La curva è quindi sempre interna al guscio convesso dei suoi punti di controllo
 - La curva ha la proprietà del guscio convesso locale, cioè ogni tratto è interno al guscio convesso dato dagli n+1 punti di controllo che lo definiscono.
- La curva interpola i suoi estremi
- La curva è approssimante in forma della poligonale
- La curva è invariante per trasformazioni affini

Curva Spline Non Uniforme: riassumiamo

· Curva spline:

$$C(t) = \sum_{i=1}^{N+n+1} p_i B_{i,n}(t)$$

- *N*+*n*+*1* è il numero totale di punti di controllo
- n è il grado della curva
- $B_{i,n}$ sono le B-spline non uniformi (blending functions) di grado n
- p_i sono i punti di controllo
- Ciascuna $B_{i,n}$ è non nulla solo in un certo intervallo $[t_i, t_{i+n+1}]$, detto supporto, così che la curva ha controllo locale

Curva Chiusa

 Per creare una curva spline chiusa, si replichino i primi punti di controllo alla fine della sequenza:

$$p_1, \ldots, p_{N+n+1}, p_1, p_2, p_3$$
 (esempio $n=3$) se ne devono replicare tanti quanto il grado della curva;

 Inoltre si deve definire una partizione nodale estesa periodica.

Algoritmo di Valutazione di de Boor (curve spline)

Siano dati i punti di controllo p_i i=1,...,N+n+1 della curva C(t) (n il grado polinomiale) e la partizione estesa di nodi

$$\{t_i\}_{i=1,\dots,N+2(n+1)}$$
 $[a,b]=[t_{n+1},t_{N+1}]$

Si vuole valutare la curva C(t) per $t \in [t_l, t_{l+1}]$ $l \in \{n+1, ..., N\}$

$$\mathbf{p}_{i}^{[r]}(t) = (1 - \alpha_{i}^{[r]})\mathbf{p}_{i-1}^{[r-1]}(t) + \alpha_{i}^{[r]}\mathbf{p}_{i}^{[r-1]}(t)$$

$$r = 1,...,n$$

$$i = l - n + r, ..., l$$

$$\alpha_i^{[r]} = \frac{t - t_i}{t_{i+n+1-r} - t_i}$$

$$\mathbf{p}_{i}^{[0]}(t) = \mathbf{p}_{i}$$

G. Casciola
$$i = 1,..., N + n + 1$$

Grafica 15/16

Knot-insertion

Data una curva spline C(t) in uno spazio spline S è possibile rappresentarla esattamente in uno spazio spline \hat{S} ottenuto da S per inserzione di un nodo $\hat{t} \in [t_l, t_{l+1})$

Se
$$\{t_i\}_{i=1,\dots,N+2(n+1)}$$
 è la partizione estesa in S , sia $\{\hat{t}_i\}_{i=1,\dots,N+2(n+1)}$ la partizione estesa in \hat{S} dove
$$\begin{cases} t_i & i \leq l \end{cases}$$

Knot-insertion: Algoritmo di Bohm

$$C(t) = \sum_{i=1}^{N+n+1} p_i B_{i,n}(t)$$

la curva spline in S, allora per knot-insertion sarà

$$C(t) = \sum_{i=1}^{N+n+2} \hat{p}_i B_{i,n}(t)$$

$$\hat{p}_i = \begin{cases} p_i & i \leq l-n \\ (1-\lambda_i)p_{i-1} + \lambda_i p_i & l-n+1 \leq i \leq l+1 \\ p_{i-1} & i > l+1 \end{cases}$$

$$\operatorname{con} \lambda_{i} = \frac{\hat{t} - t_{i}}{t_{i+n+1} - t_{i}} \qquad \qquad \hat{t} \in [t_{l}, t_{l+1})$$

Knot-insertion: Algoritmo di Bohm

Knot-insertion

L'algoritmo di knot-inserion non modifica la curva e può essere utile per:

- Editare la curva: si aumentano i punti di controllo con i quali si può cambiare la forma della curva;
- Convertire la curva spline in una sequenza di curve di Bézier (knot-insertion multiplo);
- Controllare la continuità della curva;
- Disegnare la curva per raffinamento.

Knot-insertion: raffinamento

Con raffinamento si intende il processo di inserire un nodo in ogni intervallo nodale e più precisamente in corrispondenza del suo punto medio.

Così facendo la poligonale di controllo della curva viene modificata in una poligonale con più punti di controllo e più prossima alla curva (il knot-insertion è un corner-cutting algorithm);

Ripetendo il procedimento di raffinamento più volte si ottiene una successione di poligonali di controllo che converge alla curva stessa (convergenza alla curva);

Dopo un certo numero finito di passi, la poligonale è così prossima alla curva che può essere disegnata in sua vece.

Knot-insertion: raffinamento

G. Casciola

Grafica 15/16

Curve NURBS (Razionali)

- Una curva NURBS 3D può essere vista come la proiezione di una curva spline 4D nello spazio 3D
 - Esattamente come la proiezione in uno spazio affine:

$$[x(t), y(t), z(t), w(t)] \rightarrow \left[\frac{x(t)}{w(t)}, \frac{y(t)}{w(t)}, \frac{z(t)}{w(t)}\right]$$

- x(t), y(t), z(t) e w(t) sono funzioni spline non-uniformi
- · Vantaggi:
 - Invarianti per proiezione prospettica, così che possono essere valutate nello spazio del piano di proiezione
 - Possono rappresentare esattamente sezioni coniche: parabola, ellisse (circonferenza), iperbole
 - Le curve spline (polinomiali) possono solo approssimare le coniche