HW4

Haorui Zhang

9-24-2021

CS 453

1.

	1	2	3	4	5	6	7
1	0	1	0	1	0	1	0
2	1	0	1	0	1	0	1
3	0	1	0	1	0	1	0
4	1	0	1	0	1	0	1
5	0	1	0	1	0	1	0
6	1	0	1	0	1	0	1
7	0	1	0	1	0	1	0

a.

	1	2	3	4	5	6	7
1	0	0	0	1	1	1	1
2	0	0	0	1	1	1	1
3	0	0	0	1	1	1	1
4	1	1	1	0	0	0	0
5	1	1	1	0	0	0	0
6	1	1	1	0	0	0	0
7	1	1	1	0	0	0	0

b.

2.

$$c(C(A) = 5)$$
 $e(C(C) = 4)$
 $e(C(C) = 3)$ $e(C(C) = 3)$
 $e(C(C) = 4)$ $e(C(C) = 6)$

a.

b. Diameter = 5, radius = 3

c. Central vertices are E, D, G.

d. Peripheral vertices are A, B, H.

- e. With eccentricity, diameter, and radius, we can determine if this graph has only one component.
- f. Since the radius is the shortest one of eccentricity in any connected graph G and the diameter is the longest one of eccentricity in G. Therefore, radius(G) \leq diameter(G). To prove diameter(G) \leq 2radius(G), let vertices u, v in G such that D(u,v) = diameter(G). Set w be the central vertex of G such that ecc(w) = radius(G). Since ecc(w) = radius(G), it means $d(u,w) \leq rad(G)$ and $d(v,w) \leq rad(G)$. Therefore, $d(u,w)+d(v,w) \leq 2rad(G)$ and if we view vertices u, v, w forms a triangle, then $d(u,v) = diameter(G) \leq d(u+w)+d(v,w) \leq 2rad(G)$. Therefore, radius(G) \leq diameter(G) \leq 2radius(G).

3.

a.

b. 3 components remain

c. 2

4.

- a. For all vertices u, u~u. Therefore, it's reflexive
- b. For all vertices u and v, if u \sim v, then v \sim u. Therefore, it's symmetric
- c. For all vertices u, v, w, if u \sim v and v \sim w, then u \sim w. Therefore, it's transitive.
- d. [u] is the set of all vertices connected to u. [u] can not be empty. For two equivalence classes [u] and [w], either $[u] \cap [w] = \emptyset$ or [u] = [w] as sets. And if $w \in [u]$, then [u] = [w]. In this case, [u] = x.