INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Department of Chemical Engineering

CH3050 Process Dynamics & Control

Assignment #2

Due: Monday, February 17, 2020

- 1. An exothermic reaction $A \longrightarrow 2B$, takes place adiabatically in a stirred-tank reactor. This liquid reaction occurs at constant volume in a 1200-gallon reactor. The reaction is first order, irreversible with the rate constant given by $k = 2.4 \times 10^{15} e^{-20000/T} (\text{min}^{-1})$ where T is in ${}^{\circ}R$.
 - (a) Using the information below, develop a first-principles model. State all assumptions that you make.
 - (b) Determine the steady-state exit temperature using trim in MATLAB.
 - (c) Derive a transfer function relating the exit temperature T to the inlet concentration c_{Ai} using MATLAB (linmod, ss, ss2tf). Verify your result with hand calculation.
 - (d) Compare the step response (to a 10% step in c_A) of the non-linear and linearized systems. What is the extent of error in steady-state values?

Steady-state conditions

 $c_{Ai,ss} = 0.8 \text{ mol/ft}^3 \text{ and } F_{ss} = 20 \text{ gallons/min}$

Physical property data for the mixture

$$T_i=90^{\circ}$$
F, $C=0.8$ Btu/(lb °F), $\rho=52$ lb / ft 3 and $\triangle H_R=-500$ kJ/mol

- 2. (a) For a system described by the TF $G(s)=(s+1)/(s^3+10s+31s+30)$, write an equivalent SS description using two different methods (i) partial fraction expansion method (call this SS1) and (ii) state-transition diagram method (call this SS2). Compare SS1 and SS2 descriptions. Can you find a transformation matrix that takes SS2 to SS1? Explain.
 - (b) Suppose, for a single-input two-output (SITO) system, $y_1(t)=G_{11}u_1(t)$ and $y_2(t)=G_{21}u_1(t)$, where $G_{11}(s)=\frac{4s+1}{(s+1)(s+3)}$ and $G_{21}(s)=\frac{10s}{(s+2)(s+3)}$. Arrive at a *minimal* order SS realization for the SITO system.
- 3. For the signal flow graph in Figure 1, (i) draw the block diagram relating R(s) to Y(s) and (ii) find the transfer function Y(s)/R(s).

Figure 1: Signal flow graph for Q.3