Grundzüge der Theoretischen Informatik 29. Oktober 2021

Markus Bläser Universität des Saarlandes

Kapitel 3: Reguläre Ausdrücke

Formale Definition

Definition (3.1)

Sei Σ ein Alphabet. Die Zeichen "(", ")", " $\underline{\emptyset}$ ", " $\underline{\varepsilon}$ ", "+", und "*" seien nicht in Σ .

Reguläre Ausdrücke über Σ sind wie folgt definiert.

- 1. \emptyset und $\underline{\varepsilon}$ sind reguläre Ausdrücke.
- 2. σ is a regulärer Ausdruck, $\sigma \in \Sigma$.
- 3. Sind E und F reguläre Ausdrücke, so auch (E+F), (EF) und (E^*) .

Semantik

Definition (3.2)

Sei E ein regulärer Ausdruck. L(E) ist definiert wie folgt.

- 1. Falls $E = \emptyset$, dann ist $L(E) = \emptyset$. Falls $E = \varepsilon$, dann ist $L(E) = \{\varepsilon\}$.
- 2. Falls $E = \sigma$ für $\sigma \in \Sigma$, dann ist $L(E) = {\sigma}$.
- 3. Falls $E=(E_1+E_2)$, dann ist $L(E)=L(E_1)\cup L(E_2)$. Falls $E=(E_1E_2)$, dann ist $L(E)=L(E_1)L(E_2)$. Falls $E=(E_1^*)$, dann ist $L(E)=L(E_1)^*$.

Rechengesetze

Wir schreiben E = F, falls L(E) = L(F).

Theorem (3.3)

Für alle regulären Ausdrücke E, F und G gilt:

- 1. E + F = F + E (Kommutativität von +),
- 2. (E+F)+G=E+(F+G) (Assoziativität von +),
- 3. (EF)G = E(FG) (Assoziativität von Konkatenation),
- 4. $\emptyset + E = E + \emptyset = E$ (\emptyset ist neutrales Element bzgl. +),
- 5. $\varepsilon E = E \varepsilon = E$ (ε ist neutrales Element bzgl. Konkatenation),
- 6. $\emptyset E = E\emptyset = \emptyset$ (\emptyset Nullelement bzgl. Konkatenation)
- 7. E + E = E (Vereinigung ist idempotent),
- 8. (E+F)G = (EG) + (FG) (Rechts-Distributivgesetz),
- 9. E(F+G) = (EF) + (EG) (Links-Distributivgesetz),
- 10. $(E^*)^* = E^*$, 11. $\emptyset^* = \varepsilon$, 12. $\varepsilon^* = \varepsilon$.

Beven 3.3.

1)
$$L(E+F) = L(E) \cup L(F)$$

$$= L(F) \cup L(E)$$

$$= L(F+E)$$
5) $L(EE) = S_E S L(E)$

$$= \{ab \mid a \in \{cS \land b \in L(E)\}\}$$

$$= \{b \mid b \in L(E)\}$$

$$= L(E)$$

$$L(EC) \text{ analog}$$

10)
$$L := L(E)$$
 $L^* := (L^*)^*$
 $L^* := (L^*$

 $((ab)+c) \sim ab+c$

Vorfahrtsregeln

> more obstsalat.txt

> more obstsalat.txt
banane
apfel
birne
ananas

kiwi

```
> more obstsalat.txt
banane
apfel
birne
ananas
kiwi
```

> egrep '(an){2}' obstsalat.txt

```
> more obstsalat.txt
banane
apfel
birne
ananas
kiwi
> egrep '(an){2}' obstsalat.txt
banane
```

ananas

```
> more obstsalat.txt
banane
apfel
birne
ananas
                   anah
kiwi
> egrep '(an){2}' obstsalat.txt
banane
                   (k+b) i
ananas
> egrep '(k|b)i' obstsalat.txt
```

```
> more obstsalat.txt
banane
apfel
birne
ananas
kiwi
> egrep '(an){2}' obstsalat.txt
banane
ananas
> egrep '(k|b)i' obstsalat.txt
birne
kiwi
```

Reguläre Ausdrücke und endliche Automaten

Theorem (3.5)

Falls E ein regulärer Ausdruck ist, dann ist $L(E) \in REG$.

Theorem (3.6)

Für jeden deterministischen endlichen Automaten $M=(Q,\Sigma,\delta,q_0,Q_{\rm acc})$ gibt es einen regulären Ausdruck E mit L(M)=L(E).

Bevers 3.5

"
$$E$$
 regulare dusdrude \Rightarrow $L(E)$ regular"

Shurturelles Industrion

Industrionsanlong

1) $E = \emptyset$, $L(\emptyset) = \emptyset$ \Rightarrow 0

2)
$$E = \underline{\varepsilon}$$
 , $L(\underline{\varepsilon}) = \{\varepsilon\}$ \vdots 3) $E = \nabla$, $L(\dot{\nabla}) = \{\sigma\}$ \vdots

Induttions arting

1)
$$E = \emptyset$$
 , $L(\emptyset) = \emptyset$ \longrightarrow

2) $E = \underline{\varepsilon}$, $L(\underline{\varepsilon}) = \{\varepsilon\}$

Industions sorrit Sei 1) E = E, U E, oder 1) E = E, E, oder 3) E = E,* Indur: L(Ex) and L(Ez) regular 2.2: L(E) ist regular 1) $U(E) = L(E_a) \cup L(E_b)$ REC ist when iterevisioning aboutloner a) Produkt automat

Bever von Theorem 3.6

$$A = \{Q, Z, S, q_0, Q_{acc}\}$$
 $A = \{Q, Z, S, q_0, Q_{acc}\}$
 $A = \{Q, Z, S, Q$

Industrian or
$$k$$
 $k = 0$: M doubt sevier and an Eurhard Dressider,

where or not i nad j gelt.

 $k = 0$:

 $k = 0$

Industrionsschnitt: 2-> 2+1 Industrionservatre: Eis suid remahuet, 1 = i, j = n 2 4 6 2 6 2 6 2 5 E;; = E; 2+1 (E 2+1, 2+1) + E2+1 + E2; Foral bleilt in reign: Veror evi Vort w
" de Eigens deft hat, davor vist w & L (Eij) II

$$L(M) = L(E_{a_1j_1}^n + ... + E_{a_1j_2}^n)$$

$$I$$