SEQUENCE LISTING

Vaļ

			_													
5	<130 <160 <170 <210 <211 <211	0> 0 ains 0> 1 0> 1 0> 1 1> 1 2> 1	Comp: and 2209 160 Pate: 1 163 PRT	BILI: risin the: ntIn	ng o: ir u: ver:	se as	s va	-	-	-		_		-	С	
15			_	Lys	Ala 5	Ile	Ile	Leu	Ala	Thr	Gly	Leu	Ile	Asn	Cys	
20	Val Asn	Phe	Ser	Ala 20	Gln	Ala	Val	Asp	Thr 25	Thr	Ile	Thr	Val	Thr	Gly.	
25	Val Leu	Leu	Gln 35	Arg	Thr	Cys	Asn	Val	Pro	Gly	Asn	Val	Asp	Val	Ser	
30 .	Gly Pro	Asn 50	Leu	Tyr	Val	Ser	Asp	Pḥe	Pro	Asn	Ala	Gly 60	Ser	Gly	Ser	
35	Trp Thr 65	Val	Asn	Phe	Asp	Leu 70	Ser	Leu	Thr	Gly	Cys 75	Gln	Asn	Met	Asn	80
40	Val Ala	Arg.	Ala	Thr	Phe 85	Ser	Gly	Thr	Ala	Asp 90	Gly	Gln	Thr	Tyr	Tyr 95	
45 .	Asn Asp	Thr	Gly	Asn	Ala	Gly	Gly	Ile	Lys 105	Ile	Glu	Ile	Gln	Asp	Arg	
50	Gly	Ser	Asn	Ala	Ser	Tyr	His	Asn	Gly	Met	Phe	Lys	Thr	Leu	Asn	

WO 2005/097823		PCT/EP2005/003972
	2/370	•
115	120	125

Gln Asn Asn Asn Ala Thr Phe Asn Leu Lys Ala Arg Ala Val Ser
Lys
130
Gly Gln Val Thr Pro Gly Asn Ile Ser Ser Val Ile Thr Val Thr
Tyr
145
160
Thr Tyr Ala

2

25 Met Lys Met Thr Arg Leu Tyr Pro Leu Ala Leu Gly Gly Leu Leu Leu 1 5 10

30 Pro Ala Ile Ala Asn Ala Gln Thr Ser Gln Gln Asp Glu Ser Thr Leu .
20 25 30

40 Val Ser Ser Thr Val Val Ser Ala Pro Glu Leu Ser Asp Ala Gly Val 50 55 60

45 Thr Ala Ser Asp Lys Leu Pro Arg Val Leu Pro Gly Leu Asn Ile
Glu
65 70 75 80

50 Asn Ser Gly Asn Met Leu Phe Ser Thr Ile Ser Leu Arg Gly Val Ser

85 90 95

Ser Ala Gln Asp Phe Tyr Asn Pro Ala Val Thr Leu Tyr Val Asp 5 Gly 100 105 110

Val Pro Gln Leu Ser Thr Asn Thr Ile Gln Ala Leu Thr Asp Val

10 Gln

115 120 125

Ser Val Glu Leu Leu Arg Gly Pro Gln Gly Thr Leu Tyr Gly Lys 15 Ser 130 135 140

Ala Gln Gly Gly Ile Ile Asn Ile Val Thr Gln Gln Pro Asp Ser
Thr
145 150 155

25 Pro Arg Gly Tyr Ile Glu Gly Gly Val Ser Ser Arg Asp Ser Tyr Arg
165 170 175

35 Ser Val Thr Leu Leu Arg Gln Val Asp Asp Gly Asp Met Ile Asn Pro 195 200 205

40 Ala Thr Gly Ser Asp Asp Leu Gly Gly Thr Arg Ala Ser Ile Gly Asn
210 215 220

Val Lys Leu Arg Leu Ala Pro Asp Asp Gln Pro Trp Glu Met Gly Phe
225 230 235
240

	4/370
	7/3/1

	Ala Gly	Ala	Ser	Arg	Glu	Cys	Thr	Arg	Ala	Thr	Gln	Asp	Ala	Tyr	Val
	7		*		245					250					255
5	_	Asn	Asp	Ile	Lys	Gly	Arg	Lys	Leu	Ser	Ile	Ser	Asp	Gly	Ser
	Pro			260			•		265			-		270	
10	Asp	Pro	Tyr	Met	Arg	Arg	Cys	Thr	Asp	Ser	Ġln	Thr	Leu	Ser	Gly
	Lys		275					280					285		
15	Tyr	Thr	Thr	Asp	Asp	Trp	Val	Phe	Asn	Leu	Ile	Ser	Ala	Trp	Gln
	Gln	290					295.					300			
20	Gln	His	Tyr	Ser	Arg	Thr	Phe	Pro	Ser	Gly	Ser	Leu	Ile	Val	Asn
	Met 305		-		-	310				-	315	ì			
25	320													•	
	Ser Leu	Gln	Arg	Trp	Asn	Gln	Asp	Val	Gln	Glu	Leu	Arg	Ala	Ala	Thr
30					325		•			330					335
	Gly Asn	Asp	Ala	Arg	Thr	Val	Asp	Met	Val	Phe	Gly	Leu	Tyr	Arg	Gln
35				340					345					350	
•	Thr Tyr	Arg	Glu	Lys	Leu	Asn	Ser	Ala	Tyr	Asp	Met	Pro	Thr	Met	Pro
40	1 y ±		355					360					365		
		Ser	Ser	Thr	Gly	Tyr	Thr	Thr	Ala	Glu	Thr	Leu	Ala	Ala	Tyr
45	Ser	370					375		,			380			
		Leu	Thr	Trp	His	Leu	Thr	Asp	Arg	Phe	Asp	Ile	Gly	Gly	Gly
50	Val 385 400					390					395				

	_	Phe	Ser	His	Asp	Lys	Ser	Ser	Thr	Gln	Tàr	His	Gly	Ser	Met
5	Leu				405					410					4.15
•	Gly Leu	Asn	Pro	Phe	Gly.	Asp	Gln	Gly	Lys	Ser	Asn	Asp	Asp	Gln	Val
10	шси			420			•		425	44				430	
	Gly	Gln	Leu	Ser	Ala	Gly	Tyr	Met	Leu	Thr	Asp	Asp	Trp	Arg	Val
	Tyr	•	435					440					445		
15			*												•
	Thr Pro	_	Val	Ala	Gln	Gly		Lys	Pro	Ser	Gly		Asn	Ile	Val,
20		450					455					460			
		Ala	Gly	Leu	Asp	Ala	Lys	Pro	Phe	Val	Ala	Glu	Lys	Ser	Ile
25	Asn 465					470					475				
25	480			,	•							•		•	
	Tyr Ala	Glu	Leu	Gly	Thr	Arg	Tyr	Glu	Thr	Ala	Asp	Val	Thr	Leu	Gĺn
30	Ата				485					490	•				495
	Ala	Thr	Phe	Tvr	Thr	His	Thr	Lvs	Asp	Met	Gln	Leu	Tyr	Ser	Gly
35	Pro			500				_	505				-	510	_
															•
	Val Gly	Gly	Met	Gln	Thr	Leu	Ser		Ala	Gly	Lys	Ala		Ala	Thr
40		-	515					520					525		•
	Val	Glu	Leu	Glu	Ala	Lys	Trp	Arg	Phe	Ala	Pro	Gly	Trp	Ser	Trp
45	Asp	530					535		-			540			
	T	77	~ 1	77.	77 - J	-		C	G1	Dla a	m1	71	7\ ~~~		
50	Leu 545 560	ASN	GΤÀ	ASN	val	550	Ard	ser	GIU	rne	555	ASII	ASD	Ser	

5	Tyr Ser	His	Gly	Asn	Arg 565	Val	Pro	Phe	Val	Pro 570	Arg	Tyr	Gly	Ala	Gly 575
10	Ser Arg	Val	Asn	Gly 580	Val	Ile	Asp	Thr	Arg 58 5	Tyr	Gly	Ala	Leu	Met 590	Pro
15	Leu Gln	Ala	Val 595	Asn	Leu	Val	Gly	Pro 600	His	Tyr	Phe	Asp	Gly 605	Asp	Ásn
20	Leu Gln	_	Gln	Gly	Thr	Tyr	Ala 615	Thr	Leu	Asp	Ser	Ser 620	Leu	Gly	Trp
25.	Ala Asp 625 640	Thr	Glu	Arg	Met	Asn 630	Ile	Ser	Val	Tyr	Val 635	Asp	Asn	Leu	Phe
30	Arg. Ala	Arg	Tyr	Arg	Thr 645	Tyr	Gly	Tyr	Met	Asn 650	Gly	Ser	Ser	Ala	Val 655
35	Gln Phe	Val	Asn	Met 660	Gly	Arg	Thr	Val	GLy 665	Ile	Asn	Thr	Arg	Ile 670	Asp
40	Phe														
45	<210 <211 <212 <213 <400	L> 2 2> I 3> I	246 PRT Esche	erich	nia (coli									
50	Met Phe 1	Asn	Lys	Val	Phe 5	Val	Val	Ser	Val	Val	Ala	Ala		Cys	Val 15

													•			
5	Ala Thr	Val	Asn	Ala 20	Gly	Ala	Lys	Glu	Gly 25	Lys	Ser	GЈу	Phe	Tyr	Leu	
		Lys	Ala		Ala	Ser	.Val	Met		Leu	Ser	Asp	Gln		Phe	
10	Leu		35					40			ı		45			
15	Ser His	Gly 50	Asp	Glu	Glu	Glu	Thr 55	Ser	Lys	Tyr	Lys	G⊐у 6 О	Gly	Asp.	Asp	
•	Asp Pro	Thr	Val	Phe	Ser	Gly	Gly	Ile	Ala	Val	Gly	Tyr	Asp	Phe	Tyr	
20	65					70		•			75					80
25	Gln Gly	Phe	Ser	Ile	Pro 85	Val	Arg	Thr	Glu	Leu 90	Glu	Phe	Tyr	Ala	Arg 95	
30	Lys Gly	Ala	Asp	Ser	Lys	Tyr	Asn	Val	Asp	Lys	Asp	S∈r	Trp	Ser 110	Gly	
35	Tyr Met	Trp	Arg	Asp	Asp	Leu	Lys	Asn	Glu	Val	Ser	Val	Asn	Thr	Leu	
	Leu	Asn		Tyr	Tyr	Asp	Phe		Asn	Asp	Ser	Ala		Thr	Pro	
40 .	Trp	130					135					140		_		
45	Val Gly 145 160	Ser	Ala	Gly	Ile	Gly 150	Tyr	Ala	Arg	Ile	His 155	Gln	Lys	Thr	Thr	
- -0	Ile	Ser	Thr	Trp	Asp	Tyr	Glu	Tyr	Gly	Ser	Ser	Glу	Arg	Glu	Ser	

165

170

175

50 Leu

		Arg	Ser	Gly	Ser	Ala	Asp	Asn	Phe	Ala	Trp	Ser	Leu	Glу	Ala
5	Gly			180					185					190	
•	Val Arg	Arg	Tyr	Asp	Val	Thr	Pro	Asp	Ile	Ala	Leu	Asp	Leu	Ser	Tyr
10	ALG		195					200	i		,		205		·
	Tyr Gly	Leu	Asp	Ala	Gly	Asp	Ser	Ser	Val	Ser	Tyr	Lys	Asp	GJ.u	Trp
15	С±У	210					215			•		220			
7	Asp Leu	Lys	Tyr	Lys	Ser	Glu	Val	Asp	Val	Lys	Ser	His	Asp	Ilе	Met
20	225 240					230			•		235				
25	Gly	Met	Thr	Tyr	Asn 245	Phe									
30	<210 <211 <212 <213 <400	L> 1 2> E 3> E	L66 PRT Esche	erich	nia d	coli									
35	Met Ile	Lys	Leu	Lys	Ala	Ile	Ile	Leu	Ala	Thr	Gly	Leu	Ile	Asn	Cys
	1				5					10				•	15
40		Phe		Ala	Gln	Ala	Val	Asp	Thr	Thr	Ile	Thr	Val	Thr	Gly
40	Arg			20					25			. `		30	
4.5		Leu	Pro	Arg	Thr	Cys	Thr	Ile	Gly	Asn	Gly	Gly	Asn	Pro	Asn
45	Ala		35					40					45	-	

Thr Val Val Leu Asp Asn Ala Tyr Thr Ser Asp Leu Ile Ala Ala 50 Asn 50 55 60

Ser Thr Ser Gln Trp Lys Asn Phe Ser Leu Thr Leu Thr Asn Cys 5 -Asn Val Asn Asn Val Thr Ser Phe Gly Gly Thr Ala Glu Asn Thr Asn Tyr Tyr Arg Asn Thr Gly Asp Ala Thr Asn Ile Met Val Glu Leu Glu Gln Gly Asn Gly Asn Thr Pro Leu Lys Val Gly Ser Thr Lys Val Val Thr Val Ser Asn Gly Gln Ala Thr Phe Asn Leu Lys Val Arg Ala Val Ser Lys Gly Asn Ala Gly Ala Gly Ser Ile Asn Ser Gln Ile Val Thr Tyr Thr Tyr Ala <210> <211> <212> PRT <213> Escherichia coli <400> Met Asn Lys Ile Tyr Ser Leu Lys Tyr Ser Ala Ala Thr Gly Gly Leu Ile Ala Val Ser Glu Leu Ala Lys Arg Val Ser Gly Lys Thr Asn Arg

														•		
	Lys Asn	Leu	Val	Ala	Thr	Met	Leu	Ser	Leu	Ala	Val	Ala	Gly	Thr	Val	
5	WOII		35			,		40					45	*		
	Ala Asp	Ala	Asn	Ile	Asp	Ile	Ser	Asn	Val	Trp	Ala	Arg	Asp	Tyr	Leu	
10	710p	50		,			55					60				
	Leu Thr	Ala	Gln	Asn	Lys	Gly	Ile	Phe	Gln	Pro	Gly	Ala	Thr	Asp	Val	
15	65					70.					75					80`
	Ile Ile	Thr	Leu	Lys	Asn	Gly	Asp	Lys	Phe	Ser	Phe	His	Asn	Leu	Ser	•
20	1 14 0			,	85		•			90					95	
	Pro Gly	Asp	Phe	Ser	Gly	Ala	Ala	Ala	Ser	Gly	Ala	Ala	Thr	Ala	Ile	
25	Оту			100			٠.		105	*				110		4
	Gly Ala	Ser	Tyr	Ser	Val	Thr	Val	Ala	His	Asn	Lys	Lys	Asn	Pro	Gln	
30	1114		115					120					125			
	Ala Arg	Glu	Thr	Gln	Val	Tyr	Ala	Gln	Ser	Ser	Tyr	Arg	Val	Val	Asp	-
35	, ,	130					135					140				
	Arg Val	Asn	Ser	Asn	Asp	Phe	Glu	Ile	Gln	Arg	Leu	Asn	Lys	Phe	Val	
40	145 160					150			,		155		•	4		
	Glu	Ψhr	V = 1	Glv	Δ 1 a	Thr	Pro	7\] =	Clu	Thr	7\ s.n	Pro	Th x	Th r	П	
45	Ser	±11±	val	υ τ λ	165	T 11T	TTO	лта	GIU.	170	Asn	ETO	∓ 11T	T11T.	175	
	•			•												

Asp Ala Leu Glu Arg Tyr Gly Ile Val Thr Ser Asp Gly Ser Lys 50 Lys 180 185 190

	Ile Gly	Ile	Gly	Phe	Arg	Ala	Gly	Ser	Gly	Gly	Thr	Ser	Phe	Ile	Asn
5	CLY		195					200	-				205		
		Ser	Lys	Ile	Ser	Thr	Asn	Ser	Ala	Tyr	Ser	His	Asp	Leu	Leu
10	Ser	210					215					220			
	Ala	Ser	Leu	Phe	Glu	Val	Thr	Gln	Trp	Asp	Ser	Tvr	Glv	Met	Met
15	Ile 225				,	23.0	-		L	-	235	4	1		
	240								٠						
20.	Tyr Ser	Lys	Asn	Asp	Lys	Thr	Phe	Arg	Asn	Leu	Glu	Ile	Phe	Gly	Asp
	, DCT			-	245					250					255
	_	Ser	Gly	Ala	Tyr	Leu	Tyr	Asp	Asn	Lys	Leu	Glu	Lys	Trp	Val
25	Leu			260					265					270	
	Val	Glv	Thr	Thr	His	Glv	Ile	Ala	Ser	Val	Asn	Glv	Asp	Gln	Leu
30	Thr	2	275				•	280				7	285		
	_		_,	_	_	_	_		_	7		~ 7		_	
35	Trp Thr	11e 290	Thr	Lys	Tyr	Asn	Asp 295	Lys	Leu	Val	Ser	G1u 300	Leu	Lys	Asp
		290					293					300			,
40	Tyr Asn	Ser	His	Lys	Ile	Asn	Leu	Asn	Gly	Asn	Asn	Val	Thr	Ile	Lys
	305 320					310					315				
45	Thr	7 5 5	Tle	Thγ	T. 🗀 11	Иie	Gln	7) en	7) e n	בות	Asp	Thr	Thr	Glaz	Thr
70	Gln	Asp	110	1111	325	11110	OTII	ASII	7311	330	7350	1111	1111	OTA	335
•															
50	Glu Asp	ГÀŝ	Ile	Thr	Lys	Asp	Lys	Asp	Ile	Val	Phe	Thr	Asn	Gly	Gly

340 . 345 . 350

Val Leu Phe Lys Asp Asn Leu Asp Phe Gly Ser Gly Gly Ile Ile
5 Phe
355 360 365

Asp Glu Gly His Glu Tyr Asn Ile Asn Gly Gln Gly Phe Thr Phe

10 Lys

370 375 380

Gly Ala Gly Ile Asp Ile Gly Lys Glu Ser Ile Val Asn Trp Asn
15 Ala
385 390 395
400

20 Leu Tyr Ser Ser Asp Asp Val Leu His Lys Ile Gly Pro Gly Thr Leu 405 410 415

25 Asn Val Gln Lys Lys Gln Gly Ala Asn Ile Lys Ile Gly Glu Gly
Asn
420 425 430

30 Val Ile Leu Asn Glu Glu Gly Thr Phe Asn Asn Ile Tyr Leu Ala Ser 435 440 445

35 Gly Asn Gly Lys Val Ile Leu Asn Lys Asp Asn Ser Leu Gly Asn Asp 450 455 460

40 Gln Tyr Ala Gly Ile Phe Phe Thr Lys Arg Gly Gly Thr Leu Asp Leu 465 470 475

Asn Gly His Asn Gln Thr Phe Thr Arg Ile Ala Ala Thr Asp Asp Gly
485
490
495

13/3	70

	Thr Ile	Thr	Ile	Thr	Asn	Ser	Asp	Thr	Thr	Lys	Glu	Ala	Val	Leu	Ala
	TIE			500					505					510	
5	Asn	Asn	Glu	Asp	Ser	Tyr	Ile	Tyr	His	Gly	Asn	Ile	Asn	Gly	Asn
*	Ile		515					520					525		
10		_	1		_			_			_		,	•	
	Lys Lys		Thr	His	Asn	Tle		Ser	GIn	Asp	Lys	_	Thr	Asn	Ala
15		530					535					540			
13	Leu Ser	Ile	Leu	Asp	Gly	Ser	Val	Asn	Thr	Lys	Asn	Asp	Val	Glu	Val
	545 560	-				550					555		•		
20							·			•		-			
	Asn Phe	Ala	Ser	Leu	Thr	Met	Gln	Gly	His	Ala	Thr	Glu	His	Ala	Ile
25					565					570					575
ī	-	Ser	Ser	Ala	Asn	His	Cys	Ser	Leu	Val	Phe	Leu	Cys	Gly	Thr
. 20	Asp			580					585					590	
30	Ψкъ	Vəl	· Thr	V = 1	T. 211	T.v.e	Glu	Thr	Glu	Sar	Ser	Тик	Asn	Ture	Tare
	Phe	val	595	val	пеа		Giu	600	G L.u	per	261	тут	605	пур	туъ
35			333		٠			000					005		
	Asn Pro	Ser	Asp	Tyr	Lys	Ser	Asn	Asn	Gln	Gln	Thr	Ser	Phe	Asp	Gln
40		610					615	•				620		-	
-	Asp	Trp	Lys	Thr	Gly	Val	Phe	Lys	Phe	Asp	Thr	Leu	His	Leu	Asn
	Asn 625	*				630					635				
45	640														
		Asp	Phe	Ser	Ile	Ser	Arg	Asn	Ala	Asn	Val	Glu	Gly	Asn	Ile
50	Ser				645					650		-			655

	Ala Asp	Asn	Lys	Ser	Ala	Ile	Thr	Ile	Gly	Asp	Lys	Asn	Val	Туж	Ile
5	-			660					665					670	
	Asn Gln	Leu		Gly	Lys	Asn	Ile		Asn	Asn	Gly	Phe	Asp	Phe	Lys
10			675					680					685		
	Thr Gly		Ser	Thr	Asn	Leu		Ile	Gly	Glu	Thr		Phe	Th≆	Gly
15		690					695					700		-	
,	Val	Thr	Ala	His	Asn		Gln	Ile	Ala	Ile	_	Asp	Gln	Ala	Val
20	705 720					710					715				•
	Thr Asp	Leu	Asn	Gly	Ala	Thr	Phe	Leu	Asp	Asn	Thr	Pro	Ile	Se r	`Ile
25	1100				725			-		730					735
	Lys Gly	Gly	Ala	Lys	Val	Ile	Ala	Gln	Asn	Ser	Met	Phe	Thr	Th z	Lys
30	_			740					745					750	
	Ile Asn	Asp	Ile	Ser	Gly	Glu	Leu	Thr	Met	Met	Gly	Ile	Pro	Glu	Gln
35			755					760					765		
	Ser Arg	Lys	Thr	Val	Thr	Pro		Leu	His	Tyr	Ala	Ala	Asp	Gly	Phe
40		770					775		,			780			
	Val	Ser	Gly	Ģly	Asn		Asn	Phe	Ile	Ala		Asn	Met	Ala	Ser
. 45	785 800					790		•			795				
50	Thr Gln	Gly	Asn	Ile		Ala	Asp	Asp	Ala	Ala	Thr	Ile	Thr	Leu	Gly
					0.0E					010					015

810

815

۶	Pro Ala	Glu	Thr		Thr	Pro	Thr	Ile		Ser	Ala	Tyr	Gln		Trp
. 5 . ·				820					825					830	
	Glu Thr	Thr	Leu	Leu	Tyr	Gly	Phe	Asp	Thr	Ala	Tyr	Arg	Gly	Ala	Ile
10			835					840					845		
	Ala Asn	Pro	Lys	Ala	Thr	Val	Ser	Met	Asn	Asn	Ala	Ile	Trp	His	Leu
15		850	•				855					860			
-	C	C1	0	0	T]_	7\	7)	T	01	m1	T	71	0		
•	Arg	Gln	ser	ser	тте		Arg	ьеи	GIU	THE		Asp	ser	Met	val
20	865 880					870				v	875				
			•							,					
25		Thr	Gly	Asp	Asn	Gly	Lys	Phe	Thr	Thr	Leu	Thr	Val	Asn	Asn
<i>23</i>	Leu				885					890					895
							*								i
30	Thr Ala	Ile	Asp	Asp	Ser	Ala	Phe	Val	Leu	Arg	Ala	Asn	Leu	Ala	Gln
				900			٠	,	905		,			910	
,	70	C 1	T	, 	T	70 .	-	G .	·		~ 3	_		_	_
35	Asp	Gln	Leu	val	val	Asn	ГÀЗ		Leu	Ser	GТĀ	Lys	Asn	Asn	Leu
			915					920					925		
	Leu	Val	Asp	Phe	Ile	Glu	Lvs	Asn	Glv	Asn	Ser	Asn	Glv	T _i e11	Asn
40	Ile	930					935		,		~ ~ ~	940	OLY		11011
		930					933					940			,
	Asp	Leu	Val	Ser	Ala	Pro	Lys	Gly	Thr	Ala	Val	Asp	Val	Phe	Lys
45	Ala 945					950					955				
	960														
<i>E</i> 0	m¹-	fm1-	70	0.	- 7 .	C 7	D'	G =	71 -	77 - 7	rn 1	D	** "	- -	a 7
50	Thr Gln	Thr	Arg	ser	TTE	дТΆ	rne	ser	Asp	val	Thr	Pro	Val	TTE	GLu

965 970 975

Lys Asn Asp Thr Asp Lys Ala Thr Trp Thr Leu Ile Gly Tyr Lys Ser Val Ala Asn Ala Asp Ala Ala Lys Lys Ala Thr Leu Leu Met Ser Gly Gly Tyr Lys Ala Phe Leu Ala Glu Val Asn Asn Leu Asn Lys Arg Met Gly Asp Leu Arg Asp Ile Asn Gly Glu Ser Gly Ala Trp Ala Arg Ile Ile Ser Gly Thr Gly Ser Ala Gly Gly Phe Ser Asp Asn Tyr Thr His Val Gln Val Gly Ala Asp Asn Lys His Glu Leu Asp Gly Leu Asp Leu Phe Thr Gly Val Thr Met Thr Tyr Thr Asp Ser His Ala Gly Ser Asp Ala Phe Ser Gly Glu Thr Lys Ser Val 1085 1090 Gly Ala Gly Leu Tyr Ala Ser Ala Met Phe Glu Ser Gly Ala Tyr Ile Asp Leu Ile Gly Lys Tyr Val His His Asp Asn Glu Tyr Thr 1120 1125 Ala Thr Phe Ala Gly Leu Gly Thr Arg Asp Tyr Ser Ser His Ser Trp Tyr Ala Gly Ala Glu Val Gly Tyr Arg Tyr His Val Thr Asp

1

5	Ser	Ala 1160	Trp	Ile	Glu	Pro	Gln 1165	Ala	Glu	Leu	Val	Tyr 1170	Gly	Ala	Val
	Ser	Gly 1175	Lys	Gln	Phe	Ser	Trp 1180	Lys	Asp	Gln	Gly	Met 1185	Asn	Leu	Thr
10	Met	Lys 1190	Asp	Lys	Asp	Phe	Asn 1195	Pro _.	Leu	Ile	Gly	Arg 1200	Thr	Gly	Val
15	Asp	Val 1205		Lys	Ser	Phe	Ser 1210	_	Lys	Asp	Trp	Lys 1215	Val	Thr	Ala
20	Arg	Ala 1220	Gly	Leu	Gly	Tyr	Gln 1225	Phe	Asp	Leu	Phe	Ala 1230	Asn	Gly	Glu
25	Thŕ	Val 1235	Leu	Arg	Asp	Ala	Ser 1240	Gly	Glu	Lys	Arg	Ile 1245	Lys	Gly	Glu
•	Lys	Asp 1250	Gly	Arg	Met	Leu	Met 1255	Asn	Val	Gly	Leu	Asn 1260	Ala	Glu	Ile
30	Arg	Asp 1265	Asn	Leu	Arg	Phe	Gly 1270	Leu	Glu	Phe	Glu	Lys 1275	Ser	Ala	Phe
35	Gly	Lys 1280	Tyr	Asn	Val	Asp	Asn 1285	Ala	Ile	Asn	Ala	Asn 1290	Phe	Arg	Tyr
40	Ser	Phe 1295												•	
45	<210 <211 <212 <213 <400	L> 14 2> PF 3> Es	RТ	cichi	a co	oli									
50	Met Ala	Ile A	Asn]	le E	Pro S	Ser E	Pro Th	nr Al	a Va	al Va	al Me	et Ala	a Leu	ı Val	-

10

		,														
	Ile Pro	Ser	Thr	Leu	Pro	Ser	Pro	Ser	Arg	Val	Lys	Leu	Met	Pro	Tyr	
5	ETO			20					25					30	-	
	Dro	7\ ~~	7\ 7 ~	Пiс	7\ a.s.	ሞኬኑ	Thr	C1,,	Tou	T 017	Drio	₹7~ 1	7\ ~~	C1,,	Tla	,
	Cys	Arg	Ала	UTS	ASII	TIIT	7117	GTÀ	тец	Leu	PIO	Val	Arg	GIU	тте	
10			35					40					45			
	Phe	Pro	His	His	Gly	Asp	Asp	Gly	Arg	Asn	Ser	Ile	Glu	Pro	Ser	
15	Ile	50			_	_	55	_				60				
15		50					55	•				60				
	Ser	Arg	Ala	Ala	His	Thr	Asp	Arg	Leu	Arg	Phe	Val	Cys	Met	Thr	
20	Arg 65					70					75					80
											, •				•	
		Gly	Ser	Thr	Thr	Ser	Arg	Pro	Phe	Cys	Pro	Ile	Pro	Arg	Ser	
25	Pro				85					90					95	
																•
	Ala Ser	Leu	Asn	Ala	Ser	Gly	Gln	Gln	Asp	Ser	Gly	Phe	Trp	Gly	Val	
30	DCI			100		•			105		*			110		
-		•		•								•				
	Ser Val	Ile	Pro	Gly	Asp	Ile	Leu	Met	Phe	Gln	Leu	His	Val	Leu	Ile	
35			115					120					125			
	,	T	~	_		_				-		7	_			
	Phe	11e	Cys	ГÀЗ	TTE	Asn	Leu 135	Ser	Asp	Asn	Asn	11e 140	Ser	Tyr		
40																
	<210 <211		7 318													
	<212	2> I	PRT				٠									
45	<213 <400		Esche 7	erich	nia d	coli										
	Met	Tyr	Ala	Arg	Glu	Tyr	Arg	Ser	Thr	Arg	Pro	His	Lys	Ala	Ile	
50	Phe 1		*		5					10					15	

	Phe Ala	His	Leu		Cys	Leu	Thr	Leu		∵Cys	Ser	Ala	Gln	Val	Tyr	
5				20					25					30		_
	Lys Ser	Pro	Asp	Met	Arg	Pro	Leu	Gly	Pro	Asn	lle	Ala	Asp	Lys	Gly	
10			35	•				40					45			
		Phe	Tyr	His	Phe	Ser	Ala	Thr	Ser	Phe	Asp	Ser	Val	Asp	Gly	
15	Thr	50					55					60				
		His	Tyr	Arg	Val	Trp	Thr	Ala	Val	Pro	Asn	Thr	Thr	Ala	Pro	
20	Ala 65					70					75					80
	Ser Asp	Gly	Tyr	Pro	.Ile	Leu	Tyr	Met	Leu	Asp	Gly	Asn	Äla	Val	Met	
25	1100				85					90					95	
	Arg Pro	Leu	Asp	Asp	Glu	Leu	Leu	Lys	Gln	Leu	Ser	Glu	Lys	Thr	Pro	
30				100					105					110		
	Val Asn		Val	Ala	Val	Gly	Tyr	Gln	Thr	Asn	Leu	Pro	Phe	Asp	Leu	
35	WOII	•	115	ř				120					125			,
	•	Arg	Ala	Tyr	Asp	Tyr	Thr	Pro	Ala	Ala	Glu	Ser	Arg	Lys	Thr	
40	Asp	130					135					140				
	Leu Phe	His	Ser	Gly	Arg	Phe	Ser	Arg	Lys	Ser	Gly	Gly	Ser	Asn	Asn	
45	145					150					155					
		Gln	Leu	Leu	Glu	Thr	Arg	Ile	Ala	Pro	Lys		Glu		Gly	
50	Leu				165			٠		170	•				175	

<400>

Asn Ile Asp Arg Gln Arg Arg Gly Leu Trp Gly His Ser Tyr Gly Gly Leu Phe Val Leu Asp Ser Trp Leu Ser Ser Ser Tyr Phe Arg Ser Tyr Ser Ala Ser Pro Ser Leu Gly Arg Gly Tyr Asp Ala Leu Leu Ser Arg Val Thr Ala Val Glu Pro Leu Gln Phe Cys Thr Lys His Leu Ala Ile Met Glu Gly Ser Ala Thr Gln Gly Asp Asn Arg Glu Thr His Ala Val Gly Val Leu Ser Lys Ile His Thr Thr Leu Thr Ile Leu Lys Asp Lys Gly Val Asn Ala Val Phe Trp Asp Phe Pro Asn Leu Gly His Gly Pro Met Phe Asn Ala Ser Phe Arg Gln Ala Leu Leu Asp Ile Ser Gly Glu Asn Ala Asn Tyr Thr Ala Gly Cys His Glu Leu Ser His <210> <211> <212> PRT <213> Escherichia coli

	21/37

			,						~	T	mb	77~ 7	T 011	T 011	7 = 17	
	Met Gly	Arg	Ile	Asn	Lys	Ile	Leu	Trp	Ser	ьеи	Tur	Val	цец	Leu		
	1				5				-	10					15	
5	•											-			_	
		Asn	Ser	Gln	Val	Ser	Val	Ala	Lys	Tyr	Ser	Asp	Asp	Asp	Asn	
	Asp			20					25					30 -		
10														•		
,		Thr	Leu	Val	Val	Glu	Ala	Thr	Ala	Glu	Gln	Val	Leu	Lys	Gl'n	
	Gln		35					40			•		45			
15															•	
	Pro	Gly	Val	Ser	Val	Ile	Thr	Ser	Glu	Asp	Ile	Lys	Lys	Thr	Pro	
	Pro	50					55					60			•	
20			•	-		is the second second										
	· Val	Asn	Asp	Leu	Ser	Asp	Ile	Ile	Arg	Lys	Met	Pro	Gly	Val	Asn	
	Leu 65					70			1	•	75					80
25	05															
	Thr	Gly	Asn	n Ser	Ala	Ser	Gly	Thr	Arg	Gly	Asn	Asn	Arg	Gln	Ile	
	Asp				85					90					95	
30			•		0.0									•		
	Il∈	e Arc	ı Gly	y Met	: Gly	Pro	Glu	ı Asn	Thr	Leu	ı Ile	e Let	ı Ile	a Asp	Gly	
	Val			100					105					110		
35				100	,											
	Pro	o Vai	l Thi	r Sei	r Arg	, Asn	Sea	. Val	Arc	у Туг	s Se	r Tæg	Arç	g Gly	Glu	
	Arg							120					125		•	
40			11	J				J								
	74 51	o Th	r Ar	a Gl	y Asr	o Thi	: Ası	n Tr	y Val	L Pro	o Pro	o Gli	u Glı	n Val	. Glu	
	Ar	g		9	1 -		13					1. 4				
45		13	U				T)	J				- *				
		a C1	11 (7 5	ן דו	e Aro	a Gla	, v Pr	o Al	a Ala	a Al	a Ar	gТy	r Gl	y Se:	r Gly	,
	Al	a	u va	ــــــــــــــــــــــــــــــــــــــ	J 132						15					
50	14 16					150	J				Τ.)	,				
50	0	-							-							

									*						
		Gly	Gly	Val	Val	Asn	Ile	Ile	Thr	Lys	Arg	Pro	Thr	Asn	Asp
5	Trp				165					170					175
3	His	Glv	Ser	Len	Ser	Leu	Tvr	Thr	Asn	Gln	Pro	G] 11'	Ser	Ser	Glu
	Glu	O ± y			DOL	Lou	- y	2.11.		,	110	Gira	001		CIU
10				180					185					190	
		Ala.	Thr	Arg	Arg	Ala	Asn	Phe	Ser	Leu	Ser	Gly	Pro	Leu	Ala [']
	Gly		195					200				~	205		
.15		,													
	Asp Ala	Ala	Leu	Thr	Thr	Arg	Leu	Tyr	Gly	Asn	Leu	Asn	Lys	Thr	Asp
20		210					215					220	,		
	Zen	Ser	Тъъ	Asn	Tla	Asn	Ser	Pro	Val	Gly	Thr	T.176	λen	Δİα	Δ] =
	Gly	DCI	TTP	1105	220		DCI	110	٧٨٦	O ± y		шуо	71011	11±0	1114
25	225 240					230					235				
			•						-			•			
	His Lys	Glu	Gly	Val	Arg	Asn	Lys	Asp	Ile	Asn	Gly	Val	Val	Ser	Trp
30	шус				245					250					255
	Leu Gln	Asn	Pro	Gln	Gln	Ile	Leu	Asp	Phe	Glu	Val	Gly	Tyr	Ser	Arg
35				260					265					270	
	Glv	Asn	Tle	Tvr	Ala	Glv	Asp	Thr	Gln	Asn	Ser	Ser	Ser	Ser	Ala
40	Val	,		- y -	111.0	O L y	1100		,0211	11011	201	501		001	TILG
40			275			•		280					285		
	Thr	Glu	Ser	Leu	Ala	Lys	Ser	Gly	Lys	Glų	Thr	Asn	Arg	Leu	Tyr
45	Arg	290					295					300			
		Asn	Tyr	Gly	Ile	Thr	His	Asn	Gly	Ile	Trp	Asp	Trp	Gly	Gln
50	Ser 305 320					310					315				

		Arg Glu	Phe	Gly	Val	Tyr 325	Tyr	Glu	Lys	Thr	Asn 330	Asn	Thr	Arg	Met	Asn
10		Gly Phe	Leu	Ser	Gly	Gly	Gly	Gļu	Gly	Arg	Ile	Leu	Ala	Gly	Glu 350	Lys
1,		Thr	Thr	Asn		Leu	Ser	Ser	Trp		Thr	Ser	Glv	G] 11		Asn
1:		Ile		355		200		-	3,60	112,9				365	100	21011
20	-	Pro Trp	Leu 370	Asn	Val	Met	Val	Asp 375	Gln	Thr	Leu _.	Thr	Val	Gly	Ala	Glu
		Asn		Asp	Lys	Leu	Asp	-	Pro	Ser	Ser	Thr		Leu	Thr	Val
2:	5	Asn 385 400					390			•		395				
3(Asp Ser	Arg	Asp	Ile		Gly	Ile	Ser	Gly		Ala	Ala	Asp	Arg	
						405	 -1	0	 1	-	410	1		_		415
3:		Lys Glu	Asn	His	420	GIn	TTE	Ser		Leu 425	Tyr	Tie	GLU	Asp	430	lle
4(Pro Leu	Val	Pro	Gly	Thr	Asn	Ile	Iļe	Pro	Glý	Leu	Arg	Phe	Asp	Tyr
				435					440					445		
4:		Ser Glu	Asp 450	Ser	Gly	Gly	Asn	Phe 455	Ser	Pro	Ser	Leu	Asn 460	Leu	Ser	Gln
	_		Gly	Asp	Tyr	Phe		Val	Lys	Ala	Gly	Val	Ala	Arg	Thr	Phe
5(U	Lys														

465 470 475

480

Ala Pro Asn Tou Tur Cla Sar Sar Clu Cly Tyr Tau Tou Tyr Sor

- 5 Ala Pro Asn Leu Tyr Gln Ser Ser Glu Gly Tyr Leu Leu Tyr Ser Lys
 485 490 495
- 10 Gly Asn Gly Cys Pro Lys Asp Ile Thr Ser Gly Gly Cys Tyr Leu Ile 500 505 510
- 15 Gly Asn Lys Asp Leu Asp Pro Glu Ile Ser Val Asn Lys Glu Ile Gly 515 520 525
- 20 Leu Glu Phe Thr Trp Glu Asp Tyr His Ala Ser Val Thr Tyr Phe Arg 530 535 540
- 25 Asn Asp Tyr Gln Asn Lys Ile Val Ala Gly Asp Asn Val Ile Gly Gln 545 550 555
- 30
 Thr Ala Ser Gly Ala Tyr Ile Leu Lys Trp Gln Asn Gly Gly Lys Ala
 565
 570
 575
- Leu Val Asp Gly Ile Glu Ala Ser Met Ser Phe Pro Leu Val Lys Glu
 580 585 590
- 40
 Arg Leu Asn Trp Asn Thr Asn Ala Thr Trp Met Ile Thr Ser Glu Gln
 595
 600
 605
- Lys Asp Thr Gly Asn Pro Leu Ser Val Ile Pro Lys Tyr Thr Ile
 Asn
 610 615 620

25/370 Asn Ser Leu Asn Trp Thr Ile Thr Gln Ala Phe Ser Ala Ser P Asn 625 640	ne ,
640	
5	
Trp Thr Leu Tyr Gly Arg Gln Lys Pro Arg Thr His Ala Glu T Arg	nr
645 650 6 10	55
Ser Glu Asp Thr Gly Gly Leu Ser Gly Lys Glu Leu Gly Ala T Ser	yr
660 665 670 15	
Leu Val Gly Thr Asn Phe Asn Tyr Asp Ile Asn Lys Asn Leu A Leu	rg
675 680 685 20	
Asn Val Gly Val Ser Asn Ile Leu Asn Lys Gln Ile Phe Arg S Ser	er .
690 695 700 25 ·	
Glu Gly Ala Asn Thr Tyr Asn Glu Pro Gly Arg Ala Tyr Tyr A Gly	la [.]
705 710 715 30 720	
Val Thr Ala Ser Phe	
725 35	
<pre></pre>	
Met Gly Asn Gln Trp Gln Gln Lys Tyr Leu Leu Glu Tyr Asn G Leu	lu
45 1 5 10 1	5

Val Ser Asn Phe Pro Ser Pro Glu Arg Val Val Ser Asp Tyr Ile

Lys

Asn Cys Phe Lys Thr Asp Leu Pro Trp Phe Ser Arg Ile Asp Pro Asn Ala Tyr Phe Ile Cys Phe Ser Gln Asn Arg Ser Asn Ser Arg Ser Tyr Thr Gly Trp Asp His Leu Gly Lys Tyr Lys Thr Glu Val Leu Thr Leu Thr Gln Ala Ala Leu Ile Asn Ile Gly Tyr Arg Phe Asp Val Phe Asp Asp Ala Asn Ser Ser Thr Gly Ile Tyr Lys Thr Lys Ser Ala Asp Val Phe Asn Glu Glu Asn Glu Glu Lys Met Leu Pro Ser Glu Tyr Leu His Phe Leu Gln Lys Cys Asp Phe Ala Gly Val Tyr Gly Lys Thr Leu Ser Asp Tyr Trp Ser Lys Tyr Tyr Asp Lys Phe Lys Leu Leu Lys Asn Tyr Tyr Ile Ser Ser Ala Leu Tyr Leu Tyr Lys Asn Gly Glu Leu Asp Glu Arg Glu Tyr Asn Phe Ser Met Asn Ala Leu Asn Arg Ser Asp

								27/3	70						
	Asn Asp	Ile	Ser	Leu	Leu	Phe	Phe	Asp	Ile	Tyr	Gly	Tyr	Tyr	Ala	Ser
5			195					200					205		
	Ile Gly		Val	Ala	Lys	Asn		Asp	Lys	Val	Met		Phe	Ile	Pro
10		210					215					220			:
	Ala Leu	Lys	Lys	Pro	Phe	Leu	Phe	Lys	Lys	Asn	Ile	Ala	Asp	Leu	Arg
15	225 240					230	<u>-</u>	•			235				
	Thr	Leu	Lys	Glu	Leu	Ile	Lys	Asp	Ser	Asp	Asn	Lvs	Gln	· Leu	Leu
20	Ser	-	-		245		-	-		250		4			255
					•										
	Gln Gly	His	Phe		Leu	Tyr	Ser	Arg		Asp	Gly	Val	Ser	Tyr	Ala
25				260					265			•		270	
	Val. Glu	Asn	Ser	Val	Leu	His	Ala	Ile	Glu	Asn	Asp	Gly	Asn	Phe	Asn
30			275					280					285		
	Ser Phe	Tyr	Phe	Leu	Tyr	Ser	Asn	Lys	Thr	Leu	Ser	Asn	Lys	Asp	Val
35		290					295					300			
	Asp Asp	Ala	Ile	Ala	Ile	Ser	Val	Lys	Lys	Arg	Ser	Phe	Ser	Asp	Gly
40	305 320					310					315				
4.5		Val	Ile	Lys	Ser	Asn	Ser	Glu	Ala	Gln	Arg	Asp	Tyr	Ala	Leu
45	Thr				3,25					330		,		•	335

Ile Leu Gln Thr Ile Leu Ser Met Thr Pro Ile Phe Asp Ile Val

345

350

50

Val

	Pro Met	Glu	Val	Ser	Val	Pro	Leu	Gly	Leu	Gly	Ile	Ile	Thr	Ser	Ser
5	nec		355					360					365		
	C1	Tlo	cor	Dho	7\ cm	Cln	T 011	Tlo	Asn	Clu	7 5 5	Thr	Тιιν	Clu	Clu
1.0	Arg	-	ser	rne	Asp	GTII		116	ASII	GTÀ	Asp		т Ат	Giu	GIU
10		370				•	375					380			
	_	Ser	Ala	Ile	Pro	Gly	Leu	Ala	Thr	Asn	Ala	Val	Leu	Leu	Gly
15	Leu 385					390				~	395				
	400		ć								•				
		Phe	Ala	Ile	Pro	Leu	Leu	Ile	Ser	Lys	Ala	Gly	Ile	Asn	Gln
20	Glu				405					410				`	415
25	Val Thr	Leu	Ser	Ser	Val	Ile	Asn	Asn	Glu	Gly	Arg	Thr	Leu	Asn	Glu
				420					425					430	
	Asn	Ile	Asp	Ile	Phe	Leu	Lvs	Glu	Tyr	Gly	Ile	Ala	Glu	Asp	Ser
30	Ile		435				<u></u>	440	-	-			445	-	
,			100										,	•	
35	Ser His	Ser	Thṛ	Asn	Leu	Leu	Asp	Val	Lys	·Leu·	Lys	Ser	Ser	Gly	Gln
55	·UTD	450					455					460			
	TT 7		1 -	77 7	T	T	C	71	C]	7\	7	C]	· ~ 7 -	T7_ 7	70 7
40	Val	Asn	TTE	vaı	туѕ		ser	Asp	Glu	Asp		GIN	тте	vaı	Ата
	465 480			-		470					475				
															:
45	Lys Thr	Gly	Ser	Ser	Leu	Ser	Gly	I,le	Tyr	Tyr	Glu	Val	Asp	Ile	Glu
					4.85					490					495
50	Gly	Tyr	Glu	Ile	Leu	Ser	Arg	Arg	Ile	Tyr	Arg	Thr	Glu	Tyr	Asn
	Asn	, 					5	_		- .	_			_	

500	505	510.
500	303	J T U

									000					010.	
5	Glu Phe	Ile	Leu	Trp	Thr	Arg	Gly	Gly	Gly	Leu	Lys	Gly	Gly ·	Gln	Pro
			515					520					525	-	
10	Asp Tyr	Phe	Glu	Ser	Leu	Asn	Ile	Pro	Val	Phe	Phe	Lys	Asp	Glu	Pro
	-	530					535					540			
15	Ser Ser	Ala	Val	Thr	Gly	Ser	Pro	Leu	Ser	Phe	Ile	Asn	Asp	Asp	Ser
	545 560				•	550					555				
20	Leu Glu	Leu	Tyr	Pro	Asp	Thr	Asn	Pro	Lys	Leu	Pro	Gln	Pro	Thr	Ser
	o i a				565				-	570				•	575
25	Met Arg	Asp	Ile	Val	Asn	Tyr	Val	Lys	Gly	Ser	Gly	Ser	Phe	Gly	Asp
				580					585					590	
30	Phe Ile	Val	Thr	Leu	Met	Arg	Gly	Ala	Thr	Glu	Glu	Glu	Ala	Trp	Asn
	٠		595					600		*			605		
35	Ala Ile	Ser	Tyr	His	Thr	Ala	Gly	Gly	Ser	Thr	Glu	Glu	Leu	His	Glu
		610					615					620			
40	Leu Thr	Leu	Gly	Gln	Gly	Pro	Gln	Ser	Ser	Leu	Gly	Phe	Thr	Glu	Tyr
	625 640					630					635	*			
45		Asn	Val	Asn	Ser	Ala	Asp	Ala	Ala	Ser	Arg	Arg	His	Phe	Leu'.
	Val				645					650					655

Val Ile Lys Val His Val Lys Tyr Ile Thr Asn Asn Asn Val Ser Tyr 660 665 670

Val Asn His Trp Ala Ile Pro Asp Glu Ala Pro Val Glu Val Leu Ala
675 680 685

10
Val Val Asp Arg Arg Phe Asn Phe Pro Glu Pro Ser Thr Pro Pro
Asp
690
695
700

Ile Ser Thr Ile Arg Lys Leu Leu Ser Leu Arg Tyr Phe Lys Glu Ser 705 710 715

20

25

30

35

40

45

50

Ile Glu Ser Thr Ser Lys Ser Asn Phe Gln Lys Leu Ser Arg Gly Asn
725 730 735

Ile Asp Val Leu Lys Gly Arg Gly Ser Ile Ser Ser Thr Arg Gln
Arg
740 745 750

Ala Ile Tyr Pro Tyr Phe Glu Ala Ala Asn Ala Asp Glu Gln Gln Pro 755 760 765

Leu Phe Phe Tyr Ile Lys Lys Asp Arg Phe Asp Asn His Gly Tyr Asp 770 775 780

Gln Tyr Phe Tyr Asp Asn Thr Val Gly Leu Asn Gly Ile Pro Thr Leu 785 790 795

Asn Thr Tyr Thr Gly Glu Ile Pro Ser Asp Ser Ser Ser Leu Gly Ser 805 810 815

		31/3
		31/3

	Thr Arg	Tyr	Trp	Lys	Lys	Tyr	Asn	Leu		Asn ·	Glu	Thr	Ser	Ile	Ile
5				820					825					830	
	Val Glu	Ser	Asn	Ser	Ala	Arg	Gly	Ala	Asn	Gly	Ile	Lys	Ile	Ala	Leu
10			835					840					845		
	Glu Ser	Val	Gln	Glu	Gly	Lys	Pro	Val	Ile	Ile	Thr	Ser	Gly	Asn	Leu
15		850				٠	855					860			
	Gly Val	Cys	Thr	Thr	Ile	Val	Ala	Arg	Lys	Glu	Gly	Tyr	Ile	Tyr	Lys
20	865 880					870					875				
		Thr	Gly	Thr	Thr	Lys	Ser	Leu	Ala	Gly	Phe	Thr	Ser	Thr	Thr
25	Gly				885	·				890					895
		Lys	Lys	Ala	Val	Glu	Val	Leu	Glu	Leu	Leu	Thr	Lys	Glu	Pro
30	Ile			900					905					910	
		Arg	Val	Glu	Gly	Ile	Met	Ser	Asn	Asp	Phe	Leu	Val	Asp	Tyr
35	Leu		915					920					925		
		Glu	Asn	Phe	Glu	Asp	Ser	Leu	Ile	Thr	Tyr	Ser	Ser	Ser	Glu
40	Lys	930					935				,	940			
	Lys	Pro	Asp	Ser	Gln	Ile	Thr	Ile	Ile	Arg	Asp	Asn	Val	Ser	Val
45	Phe 945 960					950			•		955				
	Pro	ጥኒንድ	Phe	T,e11	Aso	Asn	Tle	Pro	Glu	His	G] v	Phe	G] v	Thr	Ser
50	Ala	- <i>x</i> -			965			~		970	ı		ı	_	975

Thr Val Leu Val Arg Val Asp Gly Asn Val Val Arg Ser Leu Ser

Glu Ser Tyr Ser Leu Asn Ala Asp Ala Ser Glu Ile Ser Val Leu Lys

Val Phe Ser Lys Lys Phe

<210> <211> <212> PRT

<213> Escherichia coli <400>

Met Val Asp Met Ile Asn Glu Ser Ala Arg Gln Thr Pro Val Ile Ala

Gln Thr Asp Val Leu Val Ile Gly Gly Gly Pro Ala Gly Leu Ser Ala

Ala Ile Ala Ala Gly Arg Leu Gly Ala Arg Thr Met Ile Val Glu Arg

Tyr Gly Ser Leu Gly Gly Val Leu Thr Gln Val Gly Val Glu Ser Phe

Ala Trp Tyr Arg His Pro Gly Thr Glu Asp Cys Glu Gly Ile Cys Arq

Glu Tyr Glu Gly Arg Ala Arg Ala Leu Gly Phe Thr Arg Pro Glu Pro

								55/57	v						
	Gln Ala	Ser	Ile	Ser	Glu	Val	Ile	Asp	Thr	Glu	Gly	Phe	Lys	Val	Val
5	н±α			100					105					110	
	Asp Trp	Gln	Met	Ile	Thr	Glu	Ser	Gly	Val	Glu	Pro	Leu	Tyr	His	Ser
10	L		115					120					125		
		Val	Asp	Val	Ile	Lys	Asp	Gly	Asp	Thr	Leu	Cys	Gly	Val	Ile
15	Val	130					135				•	140			
		Àsn	Lys	Ser	Gly	Arg	Gly	Ala	Ile	Leu	Ala	Lys	Arg	Ile	Val
20	Asp 145 160					150			ž		155	÷			
	Cys	Thr	Gly	Asp	Ala	Asp	Ile	Ala	Ala	Arg	Ala	Gly	Ala	Pro	Trp
25	Thr			-	165					170					175
	-	70	a	, T	70		-	n or i		T.T. 3	5 73	** 1	3.6		
	Lys _.	Arg	ser		Asp	Gln	Leu	Met		vaı	Thr	val	Met		Ser
30				180					185					190	
	Ala Leu	Gly	Val	Asp	Val	Ala	Arg	Phe	Asn	Arg	Phe	Val	Ala	Glu	Glu
35	пец		195					200					205,		
	_	Pro	Thr	Tyr	Ala	Asp	Trp	Gly	Lys	Asn	Trp	Thr	Ile	Gln	Thr
40	Thr	210					215				•	220			
	Gly Thr	Lys	Glu	Asp	Pro	Met	Phe	Ser	Pro	Tyr	Met	Glu	Asp	Ile	Phe
45	225 240	-				230					235				
													*		

Arg Ala Gln Gln Asp Gly Val Ile Pro Gly Asp Ala Gln Ala Ile 50 Ala 245 250 255

	_	Thr	Trp	Ser	Thr	Phe	ser	Glu	Ser	Gly	Glu	Ala	Phe	Gln	Met
5	Asn			260					265					270	
	Met	Val	Tyr	Ala	Phe	Gly	Phe	Asp	Cys	Thr	Asp	Val	Phe	Asp	Leu
10	Thr		275					280					285		
	Lys Ala	Ala	Glu	Ile	Ala	Gly	Arg	Gln	Gl'n	Ala	Leu		Ala	Ile	Asp
15		290		,			295					300		ı	
,	Leu	Arg	His	Tyr	Val	Pro	Gly	Phe	Glu	Asn	Val	Arg	Leu	Arg	Asn
20.	Phe 305		•			310					315				-
	320														
0.5	_	Ala	Thr	Leu	Gly	Thr	Arg	Glu	Ser	Arg	Leu	Ile	Glu	Gly	Glu
25	Ile				325					330					335
	7\ 7\ 7\	Tle	Δla	Asn	Asn	Тνγ	Val	Leu	Asn	Gln	Gly	Ara	Cvs	Ser	Asp
30	Ser	116	ДДС	340	1105	- y -	V 4 1	•	345		1	. ,	4	350	-
	•			310											
35	Val Leu	Gly	Ile	Phe	Pro	Glu	Phe	Ile	Asp	Gly	Ser	Gly	Tyr	Leu	·Ile
55	БСС		355					360					3,65		•
	Pro	Thr	Thr	Gly	Arg	Phe	Phe	Gln	Ile	Pro	Tyr	Gly	Cys	Leu	Val
40	Pro	370		_			375					380			٠
					-										•
45	Gln Gly	-	Val	Glu	Asn			Val	Ala	Gly	Arg		Ile	Ser	Ala
15	385 400					390					395	,			
												~	<i>C</i>	73 7	۲ <i>۳</i> - ٦
50	Val	Val	Ala	His	Thr	Ser	Met	Arg	Asn	. Met	Met	. Cys	Cys	ата	val

Thr

WO 2005/097823	PCT/EP2005/003972
	35/370

				405				,	410	•				415	
5	Gly Glu Cys	Ala	Ala 420	Gly	Thr	Ala	Ala	Val	Val	Ser	Leu	Gln	Gln 430	Asn	
10	Thr Val Gln	Arg	·Gln	Val	Ala	Ile	Pro 440	Asp	Leu	Gln	Asn	Thr 445	Leu	Gln	
15	Gln Gly 450	Val	Arg	Leu	Ala			,							
20	<211> 2 <212> 3 <213> 1	11 253 PRT Esche	erich	nia (coli									,	
25	Met Ser Ala 1	Ala	Lys	Arg 5	Arg	Leu	Leu	Ile	Ala 10	Cys	Thr	Leu	Ile	Thr	
30	Ile Tyr	His	Phe		Ala	Tyr	Ser	Ser 25		Glu	Tyr	Lys	Gly 30		
35	Gly Ser Asn	Ile 35	Asn	Ala	Gly	Tyr	Ala	Asp	Trp	Asn	Ser	Gly 45	Phe	Val	
40	Thr His Asn 50	Arg	Gly	Glu	Val	Trp	Lys	Val	Thr	Ala	Asp	Phe	Gly	Val	٠.
45	Phe Lys Asn 65	Glu	Ala	Glu	Phe	Tyr	Ser	Phe	Tyr	Glu 75	Ser	Asn	Val	Leu	80

His Ala Val Ala Gly Arg Asn His Thr Val Ser Ala Met Thr His

Val

	7\ 20.00	T 011	Dho	7\ a.s.	202	7	Mot	Thr	Dho	Dho	Clu	T.370	Tlo	Tyr	Clu
_	Gln	пеп	rne		ser	ASP	Met	7117		rne	GTÄ	пур	тте		дту
5				100					105		4	•		110	
		Asp	Asn	Ser	Trp	Gly	Asp	Asp	Leu	Asp	Met	Phe	Tyr	Gly	Phe
10	Gly		115					120				is.	125	,	
							_	_			_,	-		_	
	Tyr Gly		Gly	Trp	Asn	Gly		Trp	Gly	Phe	Phe	Lys	Pro	Tyr	Ile
15		130					135					140			
	Leu	His	Asn	Gln	Ser	Gly	Asp	Tyr	Val	Ser	Ala	Lys	Tyr	Gly	Gln
20	Thr 145					150					155				
	160								,						
	Asn	Gly	Trp	Asn	Gly	Tyr	Val	Val	Gly	Trp	Thr	Ala	Val	Leu	Pro
25	Phe	•			165					170				•	175
	,														
30	Thr Glu	Leu	Phe	Asp	Glu	Lys	Phe	Vąl	Leu	Ser	Asn	Trp	Asn	Glu ·	Ile
				180				,	185					190	
	Leu	Asp	Arg	Asn	Asp	Ala	Tyr	Thr	Glu	Gln	Gln	Phe	Gly	Arg	Asn
35	Gly	_	195					200					205		
								,		•					
40	Leu Lys	Asn	Gly	Gly	Leu	Thr	Ile	Ala	Trp	Lys	Phe	Tyr	Pro	Arg	Trp
, ,	-1-	210					215					220			
	Ala	Ser	Val	Thr	Trp	Ara	Tvr	Phe	asp	Asn	Lvs	Leu	Glv	Tyr	Asp
45	Gly 225	2011				230	- 1 -		1		235			7	±
	240					250									
50	Dho	C1.	λεν	Gl n	Me+	Tle	Τιν	Me+	Т,ел	Glv	Τιν	Asp	Phe		
50	FIIG	ату	Mah	GTII	245	TTG	т Хт	Met	цеu	250	- ↑ ⊤	1100	1116		

5	<210 <211 <212 <213 <400	L> 4 2> 1 3> 1	12 492 PRT Esche 12	erich	nia d	coli										
10	Met Ser 1	Ala	Ser	Leu	Ile 5	Gly	Leu	Ala	Val	Cys	Thr	Gly	Asn	Ala	Phe	
15	Pro Met	Ala	Leu	Ala 20	Ala	Glu	Ala	Lys	Gln 25	Pro	Asn	Leu	Val	Ile	Ile	·
20	Ala Ile	Asp	Asp	Leu	Gly	Tyr	Gly	Asp	Leu	Ala	Thr	Tyr	Gly 45	His	Gln	
25	Val Phe	Lys 50	Thr	Pro	Asn	Ile	Asp 55	Arg	Leu	Ala	Gln	Glu 60	Gly	Val	ŗλa	
30	Thr Gly 65	Asp	Tyr	Tyr		Pro	Ala	Pro	Leu	Ser	Ser 75	Pro	Ser	Arg	Ala	. 80
35	Leu Ile	Leu	Thr	Gly	Arg 85	Met	Pro	Phe	Arg	Thr 90	Gly	Ile	Arg	Ser	Trp	
40	Pro Ala		Gly	Lys 100	Asp	Val	Ala	Leu	Gly 105	Arg	Asn	Glu	Leu	Thr	Ile	
45	Asn Leu	Leu	Leu 115	Lys		Gln	Gly	Tyr 120	Asp	Thr	Ala	Met	Met 125	Gly	Lys	
50	His Asp	Leu 130	Asn	Ala	Gly	Gly	Asp	Arg	Thr	Asp	Gln	Pro 140	Gln	Ala	Gln	

5	Met Asp 145 160	Gly	Phe	Asp	Tyr	Ser 150	Leu	Ala	Asn	Thr	Ala 155	Gly	Phe	Val	Thr
10	Ala Tyr	Thr	Leu	Asp	Asn 165	Ala	Lys	Glu	Arg	Pro 170	Arg	Tyr	Gly	Met	Val 175
15	Pro Lys	Thr	Gly	Trp 180	Leu	Arg	Asn	Gly	Gln 185	Pro	Thr	Pro	Arg	Ala 190	Asp
20	Met Asn	Ser	Gly 195	Glu	Tyr	Val	Ser	Ser 200	Glu	Val ·	∀al	Asn	Trp 205	Leu	Asp
25	Lys Val	Lys 210	Asp	Ser	Lys	Pro	Phe 215	Phe	Leu	Tyr	Val	Ala 220	Phe	Thr.	Glu
30	His Gln 225 240	Ser	Pro	Leu	Ala	Ser 230	Pro	Lys	Lys	Tyr	Leu 235	Asp	Met	Tyr	Ser
35	Tyr Asp	Met	Ser	Ala	Tyr 245	Gln	Lys	Gln	His	Pro 250	Asp	Leu	Phe	Tyr	Gly 255
40	Trp Ile	Ala	Asp	Lys 260	Pro	Trp	Arg	Gly	Val 265	Gly	Glu	Tyr	Tyr	Ala 270	Asn
45	Ser Ala	Tyr	Leu 275	Asp	Ala	Gln	Val	Gly 280	Lys	Val	Leu	Asp	Lys 285	Ile	Lys
50	Met Gly	Gly	Glu	Glu	Asp	Asn	Thr	Ile	Val	Ile	Phe	Thr	Ser	Asp	Asn

290	295	300	
- • •			•

. 5	Pro Gly 305 320	Val	Thr	Arg	Glu	Ala 310	A,rg	Lys	Val	Tyr	Glu 315	Leu	Asn	Leu	Ala
10	Glu Gly	Thr	Asp	Gly	Leu 325	Arg	Gly	Arg	Lys	Asp 330	Asn	Leu	Trp	Glu	Gly 335
15	Ile Gly	Arg	Val	Pro 340	Ala	Ile	Ile	Lys ·	Tyr 345	Gly	Lys	His	Leu	Pro 350	Gln
20	Met Leu	Val	Ser	Asp	Thr	Pro	Val	Tyr 360	Gly	Leu	Asp	Trp	Met 365	Pro	Thr
25	Ala Gly	Lys	Met	Met	Asn	Phe	Lys 375	Leu	Pro	Thr	Asp	Arg 380	Thr	Phe	Asp
30	Glu Lys 385 400	Ser	Leu	Val	Pro	Val 390	Leu	Glu	Gln	Lys	Ala 395	Leu	Lys	Arg	Glu
35	Pro Asp	Leu	Ile	Phe	Gly 405	Ile	Asp	Met	Pro	Phe	Gln	Asp	Asp	Pro	Thr 415
40	Glu Asn	Tŕp	Ala	Ile 420	Arg	Asp	Gly	Asp	Trp 425	Lys	Met	Ile	Ile	Asp 430	Arg
45	Asn Thr	Lys	Pro 435	Lys	Tyr	Leu	Tyr	Asn	Leu	Lys	Ser	Asp	Arg	Tyr	Glu

WO 2005/097823	PCT/EP2005/003972

	WO 2005/0	97823				40/37	0				PCT/E	P2005/	003972	:
	Leu Asn 3 Gly 450	Leu Il	e Gly	Lys	Lys 455			Ile	Glu	Lys 460	Gln	Met	Tyr	
5	Lys Phe I	Leu Ly	s Tyr	Lys 470	Thr	Asp	Ile	Asp	Asn 475	Asp	Ser	Leu	Met	
10	480 Ala Arg (Gly As	o Lys	Pro	Glu	Ala	Val	Thr	Trp	Gly				
15 20	<212> P	45 RT scheri	485	coli				490						
	Leu Ile :		u Ser 5	Phe	Ile	Pro	Val	Met 10	Ser	Ala	Leu	Pro	Gly 15	
25	Ile Ala I	Lys Gl 20	y Phe	Arg	Asn	Glu	Arg 25	Gly	Phe	Val	Thr	Thr	Thr	
30	Cys Ala I		y Glu	Leu	Leu	Ala		Phe	Leu	Ser	Arg		Pro	
35	His	35		,		40					45			
40	Gln Lys Gly 50	Phe Th	r Gln	Pro	Gly 55	Glu	Phe	Ile	Gly	Pro 60	Phe	Pro	Ser	
	Ala Pro . Ala 65	Ala Il	e Phe	Ala 70	Ala	Gln	Val	Ala	Lys 75	Leu	Ser	His	Arg	80
45	Ile Phe	Phe Gl		Val	Gly	Asn	Asp		Phe	Ala	Arg	Leu		
50			85					90					95	

W	O 2005	5/09782	3				41/3	70				PCT/I	E P2 005	/003972
	Arg	Leu	Arg	His	Glu	Gly	Val	Ile	Thr	Asp	Gly	Ile	His	Val
Met			100					105					110	
	Asn	Ala	Val	Thr	Gly	Thr	Ala	Phe	Val	Ser	Tyr	Gln	Asn	Pro
Gln		115					120					125	ı	
	Arg	Asp	Phe	Val	Phe	Asn	Ile	Pro	Asn	Ser	Ala	Cys	Gly	Leu
Phe	130					135					140			
Thr Leu 145 160	Ala	Glu	His	Ile	Asp 150	Lys	Asp	Leu	Leu	Lys 155	Gln	Cys	Asn	His
His Met	Ile	Val	Gly	Ser	Ser	Leu	Phe	Ser	Phe 1:70	Arg	Met	Iļle	Asp	Val
Arg Phe	Lys	Ala	Ile 180	Thr	Thr	Ile	Lys	Ser 185	Ala	Gly	Gly	Thr	Val 190	Ser
Asp Gln	Pro	Asn 195	Ile	Arg	Lys	Glu	Met 200	Leu	Ser	Ile	Pro	Glu 205	Met	Ala
Ala Glu	Leu 210	Asp	Tyr	Leu	Ile	Glu 215	Tyr	Thr	Asp	Ile	Phe 220	Ile	Pro	Ser

Ser Glu Leu Pro Phe Phe Ala Arg His Lys Asn Leu Ser Glu Glu Gln

Ile Val Ser Asp Leu Leu His Gly Gly Val Lys His Val Ala Ile Lys ·

Arg Ala Gln Arg Gly Ala Ser Tyr Tyr Lys Leu Lys Asn Gly Thr Leu His Ala Gln His Val Ala Gly His Asp Ile Glu Ile Ile Asp Pro Thr Gly Ala Gly Asp Cys Phe Gly Ala Thr Phe Ile Thr Leu Phe Leu Ser Gly Phe Pro Ala His Lys Ala Leu Gln Tyr Ala Asn Ala Ser Gly Ala Leu Ala Val Met Arg Gln Gly Pro Met Glu Gly Ile Ser Ser Leu Ala Asp Ile Glu Asp Phe Leu Gln Gln His <210> <211> <212> PRT <213> Escherichia coli <400> Met Tyr Met Pro Gly Lys Gln Met Leu Cys Cys Ile Leu Ile Ser Ile Ser Glu Gly Asp Met Lys Ile Phe Ile Ser Leu Phe Leu Phe Ile Ile Ser Thr Asn Ser Phe Ala Asp Asp Ile Thr His Ala Gly Val Val

Arg	Ile	Glu	Gly	Leu	Ile	Thr	Glu	Lys	Thr	Cys	Ile	Ile	Ser	Asp
G] 11														-

50 55 60

Ser Lys Asn Phe Thr Val Asn Met Pro Asp Val Pro Ser Ser Val

65 70 75 80 10

Arg Ser Ala Gly Asp Val Thr Glu Lys Val Tyr Phe Ser Ile Thr Leu

85 90 95 15

Thr Arg Cys Gly Ser Asp Val Gly Asn Ala Tyr Ile Lys Phe Thr Gly

100 105 110

20 ...

Asn Thr Val Ser Glu Asp Ala Ser Leu Tyr Lys Leu Glu Asp Gly Ser

115 12O 125 25

Val Glu Gly Leu Ala Leu Thr Ile Phe Asp Lys Asn Lys Gly Ser Ile

130 135 140

Ser Asn Asp Val Lys Ser Met Val Phe Ser Leu Thr Ser Ser Val Asp

145 150 155 35 160

Asn Ile Leu His Phe Phe Ala Ala Tyr Lys Ala Leu Lys Asn Asn Val
40 165 170 175

Gln Pro Gly Asp Ala Asn Ala Ser Val Ser Phe Ile Val Thr Tyr Asp 45 180 185 190

<210> 15

5

30

50

<211> 201

<212> PRT <213> Escherichia coli

	<400)> :	15					-								
		Ile	Lys	Phe	Arg	Leu	Tyr	Ile	Pro	Pro	Val	Ilе	Leu	Gly	Phe	
5	Val 1				5					10				•	15	
	Ile Leu	Val	Pro	Leu	Leu	Val	Trp	Pro	Thr	Val	Ile	АЛа	Leu	Ala	Val	
10	леα			20					25					30		
		Phe	Thr	Leu	Thr	Phe	Leu	Ala	Glu	Ile	Ile	Phe	Ser	Phe	Pro	
15	Leu		35					40					45			
		Val	.Val	Arg	Ile	Ser	Leu	Gln	Glu	Leu	Gln	Leu	Glu	Leu	Leu	•
20	Val	50					55					60				
	Val Phe	Tyr	Ala	Leu	Phe	Phe	Ser	Val	Met	Gly	Gly	Ile	Gly	Trp	Gln	
25	65				·	70					75	٠				80
	Ser Leu	Arg	Arg	Thr	Pro	Pro	Glu	Leu	·Lys	Asn	Arg	Leụ	His	Cys	Trp	
30					85					90					95	•
	Val Leu	Phe	Ser	Pro	Val	Tyr	Phe	Trp	Leu	Ile	Leu	Ser	Asn	Phe	Ile	
35	100			100					105					110		
	Tyr Phe	Ile	Ser	Pro	Glu	Lys	Ser	Ala	Leu	Leu	Glu	Asn	Ile	Arg	Asn	
40	rne		115	,				120				,	125	-		
	Phe Pro	Leu	Thr	Phe	Val	Trp	Leu	Pro	Leu	Asn	Phe	Ser	Pro	Phe	Trp	
45	110	130					135	•				140		•		
50	Gln Phe	Pro	Trp	Thr	Asp	Phe	Val	Gly	Pro		Ser	Аla	Gln	Leu	Gly	

Ala Leu Gly Tyr Tyr Cys Gln Trp Arg Ser Lys Asn Arg Ser His Arq 5 165 170 175 Lys Lys Trp Gly Asp Trp Val Thr Cys Leu Ser Leu Ala Ile Leu Ala 10 180 185 190 Leu Gly Pro Leu Phe Asn Tyr Leu Gln 195 200 15 <210> 16 <211> 234 <212> PRT 20 <213> Escherichia coli <400> 16 Met Lys Phe Asn Leu Ser Asn Leu Ser Ala Val Leu Leu Ala Ser Gly 25 1 5 10 15 Met Leu Met Ser Thr Ala Val Thr Ala Ala Pro Gly Asp Ala Thr Gln 30 20 25 30 Phe Gly Gly Ala Asp Thr Asp Trp Ser Thr Val Asp Tyr Pro Arg Leu 35 35 40 45 Thr Asp Met Asp Asp Asn Val Asp Ser Met Gly Gly Lys Ile Arg Phe 40 50 55 60 Thr Gly Arg Val Val Lys Ala Thr Cys Lys Val Ala Thr Asp Ser Lys 45 65 70 75 8 O Gln Ile Glu Val Val Leu Pro Val Val Pro Ser Asn Leu Phe Thr Gly 50 85 90 95

·	Ile	Asp	Val	Glu	Ala	Gln	Gly	Ala	Ser	Asn	Gln	Thr	Asp	Phe	Asn
	Ile			100				*	105		•			110	٠
5															
	Asn Arg	Leu	Thr	Glu	Cys	Ser	Asn	Thr	Asp	Asp	Gln	Lys	Ile	Glu	Phe
10	9		115					120					125		
10	Dho		·Cl.,	Th w	ת ד ת	7) 0.10	C 0 20	71 7 ~	71 ~ ~ ~	T ***	mb a	Т о. т	7N "	7	C.3
	Val		Gly	TIIT	Ala	Asp		Ата	ASII	туз	TIIT.		Ala	ASN	GLU
15		130					135					140			
	Glu	Gly	Ser	Thr	Asp	Ala	Asp	Asn	Ser	Gly	Asn	Ala	Gly	Ala	Thr
	Gly 145					150					155				
20	160														
	Val	Gly	Ile	Arg	Ile	Tyr	Ser	Lys	Gly	Thr	Thr	Asn	Asn	Gly	Leu
25	Ile	_			165				_	170				-	175
														*	
	Asn Tyr	Leu	Asn	Thr	Thr	Ala	Ala	Glu	Gly	Ser	Ala	Ser	Thr	Ala	Ala
30	тут			180					185					190	-
	m1	~~ T _	D	C1	7)	77.7	m1	ml	774 _	70	D1	Q	70 71 -	, 70 T =	D1
0.5	Thr	TTE	Pro	GTÄ	Asn	Ата	Thr		HIS	Asp	Pne	ser		Ala	Pne
35			195					200					205		
	Ala	Gly	Tyr	Ala	Gln	Asn	Gly	Ser	Thr	Val	Ala	Pro	Gly	Val	Val
40	Lys	210					215					220			
	Ser 225	Thr	Ala	Ser	Phe	Val 230	Val	Leu	Tyr	Glu					•
45															
	<210 <211		.7 336												
50	<212	?> E	PRT	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\i	,					-	•			
30	<213 <400		Ische 7	TTCI	ııd C	.∪⊥,±							-		

	Met Ile	Arg	Ile	His	Thr	Tyr	Trp	Tyr	Arg	Arg	Tyr	Phe	Ile	Leu	Leu.	
5	1				5					10					15	
	Ile Met	Ile	Phe	Ser	Asn	Val	Leu	Ser	Ser	Ile	Ala	Asn	Ala	Glu	Asp	
10	1100			20					25					30		
10	C1	71 25 65	C_{1}	7. ~ ~	7\ 7 ~	Πττ~	Cva	Т	Dro	C1	Sor	Dro	Con	7. ~ ~	71 0 2 2	
	Thr	Arg	Glu	Arg	Ala	тАт	Cys	_	·	дтλ	per	PLO		ASII	ASII	
15			35					40					45			
	Thr	Pro	Ala	Ser	Phe	Ser	Tyr	Asn	Phe	Gly	Thr	Ile	Val	Val	Ser	
	Asp	50					55					60		,		
20																
	Val Lys	Asn	Lys	Asn	Ala	Pro	Gly	Thr	Val	Leu	Pro	Ser	Gln	Ile	Trp	
25	65					70					75					80
	77~ 7	C1 **	Thr	Пттъ	Two	7\] ¬	Тиг	C 5.7.5	7 an	Sor	T 011	7\	7\ an	Ψτ	Clu	
	Ile	Grā	T 11T	тут	_	ALA	тут	Cys	ASII		шеа	vob	дър	т <u>у</u> т		
30					85					90					95	
	_	Phe	Ser	Äla	Val	Ser	Gly	Ile	Asp	Pro	Ser	Gly	Ala	Ser	Gly	
	Asp			100					105					110		
35																
	His Val	Gln	Gly	Ser	Asp	Val	Phe	Ile	Pro	Leu	Thr	His	Glu	Ile	Ser	
40			115			•		120					125			
	Ser	Thr	His	Tle	Tivs	T _i en	Tvr	Asn	Gln	Asn	Glv	Thr	Met	Thr	Asp	
	Lys		1110	110		200	135	11011	0	11011		140	1100		*****	
45		130					±00					T # O				
		Val	Pro	Phe	Glu	Asn	Tyr	Asn	Thr	Asn	Tyr	Pro	Gly	Asp	Arg	
50	Ser 145 160					150					155	,				

	Lys Arg	Pro	Ser	Asn	Trp	Ala	Ser	Gly	Thr	Glu	Gly	Tyr		Lys	Ile
5	3				165					170			ů.		175
		Asp	Lys	Lys	Ile	Ile	Ser	Asp	Val	Ser	Leu	Ser	Asn	Val	Leu
10	Leu			180					185					190	
10	77 - 1	Sar	T. 211	Tyr	<i>\</i> 7⊃1	Sar	Gln	Tle	Pro	Thr	Glu	ніе	Clu	Dro	Tlo
	Pro	Der		тут	vai	Der	GIII			7117	GIU	117.0	_	FIO	116
15			195					200					205		
	Val Gly	Phe	Asn	Ala	Tyr	Ile	Gly	Asn	Leu	Asn	Ile	Gln	Val	Pro	Gln
20	Сту	210					215					220	Ÿ.		
20	~	m1	1	20			m1		D.I.	m)	T 7	70.			_
	Val	Thr	TTE	Asn	GIU		Thr	ser	Pne	Thr		Asn	Met	Pro	Asp
25	225 240					230					235				
	Trp Gly	Ala	Ser	Glu	Leu	Ser	Arg	Ala	Gly	Ala	Gly	Ala	Lys	Pro	Ala
30	_		*		245		-			250					255
	Val	Thr	Pro	Val	Ala	Thr	Thr	Ile	Pro	Ile	Asn	Cys	Thr	Asn	Lys
35	Asp			260					265					270	
	Thr Thr	Asp	Ala	Val	Met	Thr	Leu	Val	Phe	Asp	Gly	Asn	Ile	Ser	Ala
40			275					280				,	285		
	Arg	Asp	Thr	Asn	Gly	Lys	Gln	Ser	Ile	Ile	Gln	Ala	Gln	Asp	Asn
45	Pro	29Ó					295	,				300			
		-													
	Asp Leu	Val	Gly	Ile	Met	Ile	Met	Asp	Ser	Gln	Gln	Asn	Ser	Val	Asp
	11 C U														

																•
		Ala	Leu	Ala	Thŗ	Ser	Val	Gly	Val	Pro	Phe	Arg	Leu	Val	Glu	
5	Asn				325					330					335	
10	<210 <211 <212 <213 <400	L> 8 2> 1 3> 1	18 364 PRT Esche	- erich	nia d	coli							•			
15	Met Lys	Asn	Leu	Lys	Leu	Lys	Arg	Cys	Glu	Tyr	Trp	Met	Ala	Ala	Gln	
10	1				5					10				*	15	
	Gln	Met	Lys	Arg	Val	Val	Pro	Leu	Leu	Leu	Val	Ile	Met	Pro	Ala	
20	Cys			20					25					30		
25	Ser Thr	Ile	Ala 35	Gly	Met	Arg	Phe ,	Asn	Pro	Ala	Phe	Leu	Ser 45	Gly	Asp	
30	Glu Leu	Ala 50	Val	Ala	Asp	Leu	Ser 55	Arg	Phe	Glu	Lys	Gly	Met	Thr	Tyr	
35	Pro Leu 65	Gly	Ser	Tyr	Glu	Val	Glu	: Val	Trp	Val	Asn 75	Asp	Ser	Pro	Leu	80
40	Ser Pro	Arg	Thr	Val	Thr	Phe	Lys	Ala	Asp	Asp 90	Glu	Asn	Gln	Leu	Ile 95	
45	Cys Ala	Leu	Ser	Leu 100	Ala	Asp	Leu	Leu	Ser	Leu	Gly	Ile	Asn	Lys	Asn	

Leu Pro Glu Gln Ala Leu Ala Ser Ser Glu Asn Ser Cys Leu Asp 50 Leu 115 120 120 125

	_	Ile	Trp	Phe	Pro	Asp	Val	His	Tyr	Met	Pro	Glu	Leu	Asp	Ala
5	Gln	130				•	135					140			
	Arg	Leu	Lys	Leu	Thr		Pro	Gln	Ala	Ile		Lys	Arg	Asp	Ala
10	145 160	,				150					155				
15	Gly Leu	Tyr	Ile	Pro	Pro	Glu	Gln	Trp	Asp	Asn	Gly	Ile	Thr	Ala	Phe
				i	165					170					175
20	Leu Ser	Asn	Tyr	Asp	Phe	Ser	Gly	Asn	Asn	Asp	Arg	Gly	Asp	Tyr	Ser
20				180					185					190	
25	Asn Trp	Asn	Tyr	Tyr	Leu	Asn	Leu	Arg	Ala	Gly	Ile	Asn	Ile	Gly	Ala
			195	*				200					205		•
30	Arg Gly	Phe	Arg	Asp	Tyr	Ser	Thr	Trp	Ser	Arg	Gly	Ser	Asn	Ser	Ala
	1	210					215					220			,
35	Lys Phe	Leu	Glu	His	Ile	Ser	Ser	Thr	Leu	Gln	Arg	Val	Ile	Ile	Pro
	225 240					230					235				
40	_	Ser	Glu	Leu	Thr	Leu	Gly	Asp	Thr	Trp	Ser	Ser	Ser	Asp	Val
	Phe				245					250					255
45	Asp Met	Ser	Val	Ser	Ile	Arg	Gly	Ile	Lys	Leu	Glu	Ser	Asp	Glu	Asn
	HEC			260	š		•		265					270	
50	Leu Ala	Pro	Asp	Ser	Gln	Ser	Gly	Phe	Ala	Pro	Thr	Val	Arg	Gly	Ile

275	280	285

5	Lys Tyr	Ser	Arg	Ala	Gln	Val	Thr	Ile	Lys	Gln	Asn	Gly	Tyr	Val	Ile
٠	1	290					295				•	300			
10	Gln Pro	Thr	Tyr	Met	Pro	Pro	Gly	Pro	Phe	Glu	Ile	Ser	Asp	Leu	Asn
	305 320					310					315				
15	Thr Asn	Ser	Ser	Ala	Gly	Asp	Leu	Glu	Val	Thr	Ile	Lys	Glu	Ser	Asp
					325		,			330					335
20	Ser Gln	Glu	Thr	Val	Tyr	Thr	Val	Pro	Tyr	Aļa	Ala	Val	Pro	Ile	Leu
				340					345					350	
25	Arg Ser	Glu	Gly	His	Leu	Lys	Tyr	Ser	Thr	Thr	Val	Gly	Gln	Tyr	Arg
		٠	355					360					365		
30	Asn Ile	Ser	Tyr	Asn	Gln	Lys	Ser	Pro	Tyr	Val	Phe	Gln	Gly	Glu	Leu
		370					375					380			
35	Trp Ser	Gly	Leu	Pro	Trp	Asp	Ile	Thr	Ala	Tyr	Gly	Gly	Ala	Gln	Phe
	385 400					390					395			•	
40	Glu Val	Asp	Tyr	Arg	Ala	Leu	Ala	Leu	Gly	Leu	Gly	Leu	Asn	Leu	Gly
	val				405					410					415
45												-			

Phe Gly Ala Thr Ser Phe Asp Val Thr Gln Ala Asn Ser Ser Leu Val 420 425 430

WO 2005/097823	PCT/EP2005/003972

	V	VO 200	5/0978	23				52/3	270				PCT	/EP200	5/0039
								52/.	5 / U						
	Asp Lys	Gly	Ser	Lys	His	Gln	Gly	Gln	Ser	Tyr	Arg	Phe	Leu	Tyr	Ser
	-		435					440					445		
5															
	Ser Tyr	Leu	Val	Gln	Thr	Gly	Thr	Ala	Phe	His	Ile	Ile	Gly	Tyr	Arg
	- 1	450					455					460	٠		
10	Ser	Thr	Gln	Glv	Phe	Tvr	Thr	T _i en	Ser	Asp	Thr	Thr	Tyr	Gln	Gln
	Met		0	<i>Q</i> -1		_				1101			- 1 -	0111	0411
	465 480					470					475				
15															
		Gly	Thr	Val	Val	Asp	Pro	Lys	Thr	Leu	Asp	Asp	Lys	Asp	Tyr
	Val		٠		485					490					495
20											•				
		Asn	Trp	Asn	Asp	Phe	Tyr	Asn	Leu	Arg	Tyr	Ser	Lys	Arg	Gly
	Lys	-		500					505					510	
25															
		Gln	Ala	Ser	Val	Ser	Gln	Pro	Phe	Gly	Asn	Tyr	Gly	Ser	Met
	Tyr		515					520					525		
30									,						
	_	Ser	Ala	Ser	Gln	Gln	Thr	Tyr	Trp	Asn	Thr	Asp	Lys	Lys	Asp
	Ser	530					535					540			
35															
		Tyr	Gln	Val	Gly	Tyr	Asn	Thr	Ser	Ile	Lys	Gly	Ile	Tyr	Leu
	Asn 545					550					555				
40	560										- -				
	Val Ile	Ala	Trp	Asn	Tyr	Ser	Lys	Ser	Pro	Gly	Thr	Asn	Ala	Asp	Lys
45					565					570					575
															,

Val Ser Leu Asn Val Ser Leu Pro Ile Ser Asn Trp Leu Ser Ser

Thr

Asn Asp Gly Arg Ser Ser Ser Asn Ala Met Thr Ala Thr Tyr Gly
Tyr
595 600 605

Ser Gln Asp Asn His Gly Gln Val Asn Gln Tyr Thr Gly Val Ser Gly
610 615 620

10

5

15

Ser Leu Leu Glu Gln His Asn Leu Ser Tyr Asn Ile Gln His Gly
Phe
625 630 635
640

Ala Asn Gln Asp Asn Ser Ser Ser Gly Ser Val Gly Val Asn Tyr Arg

20 645 650 655

Gly Ala Tyr Gly Ser Leu Asn Ser Ala Tyr Ser Tyr Asp Asn Glu Gly 660 665 670

Asn Gln Gln Ile Asn Tyr Gly Ile Ser Gly Ala Leu Val Val His Glu

30 675 680 685

Asn Gly Leu Thr Leu Ser Gln Pro Leu Gly Glu Thr Asn Val Leu Ile 35 690 695 700

Lys Ala Pro Gly Ala Asn Asn Val Asp Val Gln Arg Gly Thr Gly Ile
40 705 710 715
720

Ser Thr Asp Trp Arg Gly Tyr Ala Val Val Pro Tyr Ala Thr Glu 45 Tyr 725 730 735

Arg Arg Asn Asn Ile Ser Leu Asp Pro Met Ser Met Asn Met His
50 Thr
740 745 750

	Glu Leu	Leu	Asp	Ile	Thr	Ser	Thr	Glu	Val	Ile	Pro	Gly	Lys	Gly	Ala
5			755			,		760					765		
	Val Thr	Arg	Ala	Glu	Phe	Ala	Ala	His	Ile	Gly	Ile	Arg	Gly	Leu	Phe
10		770					775					780			
	Val Ala	Arg	Tyr	Arg	Asn	Lys	Ser	Val	Pro	Phe	Gly	Ala	Thr	Ala	Ser _.
15	785 800					790					795				
20	Gln Gly	Ile	Lys	Asn	Ser	Ser	Gln	Ile	Thr	Gly	Ile	Val	Gly	Asp	Asn
220	029				805					810					815
25	Gln Gln	Leu	Tyr	Leu	Ser	Gly	Leu	Pro	Leu	Glu	Gly	Val	Ile	Asn	Ile
23	0111			820				•	825					830	
30	Trp Pro	Gly	Asp	Gly	Val	Gln	Gln	Lys	Cys	Gln	Ala	Asn	Tyr	Lys	Leu
,	110		835			,		840					845		
35		Thr	Glu	Leu	Asp	Asn	Pro	Val	Ser	Tyr	Ala	Thr	Leu	Glu.	Cys
33	Arg	850					855					860	•		
40	<210 19)> 1	L9 <2	211>	169	ə <21	.2>	PRT	<213	3> E	Esche	erich	nia d	coli	<400>
	Met Ile	Gly	Ala	Ile	Tyr	Val	Lys	Arg	Leu	Ile	Leu	Ser	Val	Ala	Leu
45	1				5					10					15
	Ile Ser	Pro	Ile	Ala	Ser	Asn	Ala	Ser	Asp	Ala	Leu	Asn	Gln	Pro	Ser
50				20				•	25					30	

	W	O 2005	5/09782	23				55/3	70				PCT	EP200	5/0039′	72
	Ser Met	Leu	Asn	Asp	Gly	Val	Glu	Thr	Phe	Phe	Ile	Ser	Cys	Phe	Asp	
			35					40					45.			
5	Pro Leu	Gln	Glu	Thr	Thr	Thr	Asp	Met	Asp	Ala	Cys	Gln	Arg	Val	Gln	
		50					55					60				
10	Ala Asn	Gln	Val	Ser	Trp	Val	Lys	Asn	Lys	Tyr	Ser	Val	Ala	Ala	Leu	
	65					70					75					80
15	Arg Leu	Leu	ГÀè	Gln	Asp	Asn	Lys	Asp	Asp	Pro	Gln	Arg	Leu	Gln	Glu	
					85					90			•		95	
20	Thr Glu	Ala	Ser	Phe	Asn	Ala	Glu	Ser	Glu	Ala	Trp	Thr	Glu	Leu	Ile	
				100					105					110		
25	Lys Ala	Ala	Ser	Lys	Ser	Val	Gln	Val	Asp	Tyr	Val	Gly	Gly.	Thr	Ile	
			115					120					125			

30 Gly Thr Ala Val Ala Ser Arg Gln Ile Gly Leu Leu Glu Leu Gln

Ser 130 135 140

35 His Asp Ile Trp Glu His Trp Leu Arg Ser Arg Gly Leu Asn Ser Ser 145 150 155 160 40

Ser Phe Ala Arg Thr Lys Val Gln Ile 165

45 <210> 20 <211> 713 <212> PRT <213> Escherichia coli 50 <400> 20

	\	WO 200	05/0978	23				56/3	70				PCT	/EP200	5/0039	72
	Leu	Ala	Met	Phe		Pro	Ser	Phe	Ser	_	Leu	Lys	Gly	Arg	Ala	
5	1				5			•		10			,		15	
J	Phe Val	Ser	Leu		Phe	Ala	Ala	Pro	Met	Ile	His	Ala	Thr	Asp	Ser	
10			-	20					25					30		
10	Thr Thr	Thr	Lys	Asp	Gly	Glu	Thr	Ile	Thr	Val	Thr	Ala	Asp	Ala	Asn	
			35					40					45			
15		Thr	Glu	Ala	Thr	Asp	Gly	Tyr	Gln	Pro	Leu	Ser	Thr	Ser	Thr	
	Ala	50					55					60			•	
20		Leu	Thr	Asp	Met	Pro	Met	Leu	Asp	Ile	Pro	Gln	Val	Val	Asn	
	Thr 65					70					75					80
25	Val	Ser	Asp	Gln	Val	Leu	Glu	Asn	Gln	Asn	Ala	Thr	Thr	Leu	Asp	
	Glu				85					90					95	
30_	73.7.5	T. (21)	Tyr	Δsh	T = T	Sar	Δen	V = 1	<i>\1</i> ⊃ 1	Gln	Thr	7) en	Thr	Tou	Clu	ı
	Gly	шси	1 y 1	100	v u i	DCI	73511	vai	105	GIII	1111	ASII	1111	110	GTÄ	
35			_					_								
	Thr Gly	Gln	Asp 115	Ala	Phe	Val	Arg	Arg 120	GLY	Phe	GLy	Ala	Asn 125	Arg	Asp	
40			110					120					120			
	Ser Asn		Met	Thr	Asn	Gly		Arg	Thr	Val	Leu		Arg	Ser	Phe ·	
		130					135					140				

45 Ala Ala Thr Glu Arg Val Glu Val Leu Lys Gly Pro Ala Ser Thr Leu 150 145 155 160

WO 2005/097823		PCT/EP2005/003972
	EE 10E0	

	V	V U 200	12/03/6	23				57/3	70				PC1/	EP200	5/0039
	Tyr Arg	Gly	Ile	Leu	Asp	Pro	Gly	Gly	Leu	Ile	Asn	Val	Val	Thr	Lys
	9				165					170					175
5	Pro Phe	Glu	Lys	Thr	Phe	His	Gly	Ser	Val	Ser	Ala	Thr	Ser	Ser	Ser
4.0				180					185					190	
10	Gly Thr	Gly	Gly	Thr	Gly	Gln	Leu	Asp	Ile	Thr	Gly	Pro	Ile	Glu	Gly
1.7			195					200					205		
15	Gln Trp	Leu	Ala	Tyr	Arg	Leu	Thr	Gly	Glu	Val	Gln	Asp	Glu	Asp	Tyr
20	_	210					215					220			
20	Arg Thr	Asn	Phe	Gly	Lys	Glu	Arg	Ser	Thr	Phe	Ile	Ala	Pro	Ser	Leu
25	225 240			,		230	•				235				
	Trp Asp	Phe	Gly	Asp	Asn	Ala	Thr	Val	Thr	Met	Leu	Tyr	Ser	His	Arg
30	_				245					250					255
	Tyr Lys	Lys	Thr	Pro	Phe	Asp	Arg	Gly	Thr	Ile	Phe	Asp	Leu	Thr	Thr
35				260					265					270	
	Gln Asn	Pro	Val	Asn	Val	Asp	Arg	Lys	Ile	Arg	Phe	Asp	Glu	Pro	Phe
40			275					280					285		
	Ile His	Thr	Asp	Gly	Gln	Ser	Asp	Leu	Ala	Gln	Leu	Asn	Ala	Glu	Tyr
45		290					295					300			
	Leu Asp 305	Asn	Ser	Gln	Trp	Thr 310	Ala	Arg	Phe	Asp		Ser	Tyr	Ser	Gln
50	320					J T ()					315				

	W	O 2005	/09782	3				58/37	0				PCT/E	2 P2 005/	/003972
		Tyr	Ser	Asp	Asn	Gln	Ala	Arg	Val	Thr	Ala	Tyr	Asp	Ala	Thr
5	Thr				325					330					335
	Gly Arg	Thr	Leu	Thr	Arg	Arg	Val	Asp	Ala	Thr	Gln	Gly	Ser	Thr	Gln
10	Arg			340					345					350	٠
	Met Gly	His	Ala	Thr	Arg	Ala	Asp	Leu	Gln	Ġly	Asn	Val	Asp	Ile	Ala
15	ату		355					360					365		
	Phe Leu	Tyr	Asn	Glu	Ile	Leu	Gly	Gly	Val	Ser	Tyr	Glu	Tyr	Tyr	Asp
20		370					375	•				380			
	Leu Ile	Arg	Thr	Asp	Met	Ile	Arg	Cys	Lys	Lys	Ala	Lys	Asp	Phe	Asn
25	385					390		•			395				

Tyr Asn Pro Val Tyr Gly Asn Thr Ser Lys Cys Thr Thr Val Ser Ala

Ser Asp Ser Asp Gln Thr Ile Lys Gln Glu Asn Tyr Ser Ala Tyr Ala

Gln Asp Ala Leu Tyr Leu Thr Asp Asn Trp Ile Ala Val Ala Gly Ile 44 O

Arg Tyr Gln Tyr Tyr Thr Gln Tyr Ala Gly Lys Gly Arg Pro Phe Asn

Val Asn Thr Asp Ser Arg Asp Glu Gln Trp Thr Pro Lys Leu Gly Leu

	Val Gln	Туг	Lys	Leu	Thr	Pro	Ser	Val	Ser	Leu	Phe	Ala	Asn	Tyr	Ser
5	GIII				485					490					495
	Thr Pro	Phe	Met	Pro	Gln	Ser	Ser	Ile	Ala	Ser	Tyr	Ile	Gly	Asp	Leu
10	110			500					505	-				510	
	Pro Phe	Glu	Ser	Ser	Asn	Ala	Tyr	Glu	Val	Gly	Ala	Lys	Phe	Glu	Leu
15			515					520					525	•	
	Asp Asn	Gly	Ile	Thr	Ala	Asp	Ile	Ala	Leu	Phe	Asp	Ile	His	Lys	Arg
20	ASII	530					535					540			:
	Val Ala	Leu	Tyr	Thr	Glu	Ser	Ile	Gly	Asp	Glu	Thr	Ile	Ala	Lys	Thr
25	545 560					550					555				
30	Gly Leu	Arg	Val	Arg		Arg	Gly	Val	Glu		Asp	Leu	Ala	Gly	
					565					570					575
35	Thr Lys	Glu	Asn	Ile	Asn	Ile	Ile	Ala	Ser	Tyr	Gly	Tyr	Thr	Asp	Ala
	- <i>L</i> -			580					585					590	
40	Val Pro	Leu	Glu	Asp	Pro	Asp	Tyr	Ala	Gly	Lys	Pro	Leu	Pro	Asn	Val
,	110		595					600					605		
4.5		His	Thr	Gly	Ser	Leu	Phe	Leu	Thr	Tyr	Asp	Ile	His	Asn	Met
45	Pro	610			٠		615					620			

Gly Asn Asn Thr Leu Thr Phe Gly Gly Gly His Gly Val Ser 50 Arg

WO 2005/097823 PC	CT/EP2005/003972
-------------------	------------------

60/370 Arg Ser Ala Thr Asn Gly Ala Asp Tyr Tyr Leu Pro Gly Tyr Phe Val Ala Asp Ala Phe Ala Ala Tyr Lys Met Lys Leu Gln Tyr Pro Val Thr Leu Gln Leu Asn Val Lys Asn Leu Phe Asp Lys Thr Tyr Tyr Thr Ser Ser Ile Ala Thr Asn Asn Leu Gly Asn Gln Ile Gly Asp Pro Arg Glu Val Gln Phe Thr Val Lys Met Glu Phe 21 <211> 606 <212> PRT <213> Escherichia coli <40O> <210> Met Lys Ile Ser Trp Asn Tyr Ile Phe Lys Asn Lys Trp Arg Phe His Ile Thr Ser Ile Ser Leu Phe Leu Ile Met Leu Ala Val Ser Ile Ala Phe Leu His Leu Arg Phe Asn Thr Leu Ser Ser Thr Asp Lys Met Arg

Leu Glu Met Tyr Lys Ser Thr Leu Tyr Ser Thr Ile Glu Gln Phe Tyr 50 55 60

W O 2005/09/825		PC 1/EP2005/0039/
	61/370	

Val Leu Pro Tyr Met Leu Ser Thr Asp His Ile Ile Arg Gln Ala Val

Ile Thr Pro Asp Asp Met Thr Ser Ser Glu Leu Asn Gln Arg Ile Ala

His Phe Asn Thr Gln Leu Lys Thr Ala Ala Ile Phe Ile Leu Asp Thr

Gln Gly Lys Ala Ile Ala Ser Ser Asn Trp Gln Asp Pro Gly Ser Tyr

Val Gly Gln Asn Tyr Ser Tyr Arg Pro Tyr Tyr Lys His Ala Met Ser

Gly Leu Asn Gly Arg Phe Tyr Gly Ile Gly Ser Thr Thr Asn Thr Pro

Gly Phe Phe Leu Ser Thr Ser Ile Lys Asp Lys Gly Lys Ile Val Gly

Val Val Val Lys Ile Ser Leu Asn Glu Ile Glu Lys Ala Trp Ala

Glu Gly Pro Glu Asn Ile Ile Val Asn Asp Glu His Gly Ile Ile Phe

Leu Ser Ser Lys Ser Pro Trp Arg Met Arg Thr Leu Gln Pro Leu Pro

	V	V O 2 00	5/0978	23				62/3	370	PCT/EP2005/0039					
5	Val Asp 225 240	Gln	Ala	Lys	Gln	Lys 230	Leu	Gln	Ser	Thr	Arg 235	Gln	T yr	Ser	Leu
10	Asn Phe	Leu	Leu	Pro	Ala 245	Asp	Tyr	Tyr	Pro	Cys 250	Tyr	Thr	V.al	Ser	Asn 255
15	Thr Tyr	Phe	Leu	Lys 260	Asp	Lys	Lys	Glu	Gln 265	Leu	Cys	Leu	Phe	Pro 270	Gln
20	Tyr Ile	Thr	Gln 275	Gln	Ile	Ala	Ile	Pro 280	Glu	Phe	Asn	Trp	Lys 285	Met	Thr
25	Met Val	Val 290	Pro	Leu	Asp	Asn	Leu 295	Tyr	Trp	Ser	Trp	Ala 300	Ile	Ser	Leu
30	Ile Trp 305 320	Thr	Leu	Ile	Ile	Tyr 310	Leu	Leu	Phe	· Leu	Leu 315	Phe	Ile	Lys	Tyr
35	Arg Thr	Met	Arg	Ser	His 325	Ala	Gln	Gln	Leu	Leu 330	Thr	Leu	Ala	Asn	Glu 335
40	Leu Asn	Glu	Lys	Gln 340	Val	Lys	Glu	Arg	Thr 345	Ser	Ala	Leu	Glu	Leu 350	
	Gln	Lys	Leu	Ile	Gln	Glu	Ile	Lys	Glu	Arg	Ser	Gln	Ala	Glu	Gln

Val 3 65

Leu Gln Ile Thr Arg Ser Glu Leu Ala Glu Ser Ser Lys Leu Ala Aļa

. 5	Leu Leu 385 400	Gly	Gln	Met	Ala	Thr 390	Glu	Ile	Ala	His	Glu 395	Gln	Asn	Gln	Pro
10	Ala Lys	Ala	Ile	His	Ala 405	Leu	Thr	Asp	Asn	Ala 410	Arg	Thr	Met	Leu	Lys 415
15	Glu Val	Met	Tyr	Pro 420	Gln	Val	Glu	Gln	Asn 425	Leu	Lys	His	Ile	Ile 430	Ser
20	Ile Ser	Glu	Arg 435	Met	Thr	Gln	Leu	Ile	Ser	Glu	Leu	Lys	Ala 445	Phe	Ala
25	Arg Tyr	His	Arg	Val	Pro	Lys	Gly 455	Ser	Ala	Asp	Val	Ile	Lys	Val	Met .
30	Ser Glu 465 480	Ala	Val	Ala	Leu	Leu 470	Asn	His	Ser	Met	Glu 475	Lys	Asn	Asn	Ile
35	Arg Glu	Arg	Ile	Lys	Ala 485	Pro	Ser	Met	Pro	Leu 490	Phe	Val	Asn	Cys	Asp 495
40	Leu Asp	Gly	Leu	Glu 500	Gln	Ile	Phe	Ser	Asn 505	Leu	Ile	Ser	Asn	Ala 510	Leu
45	Ser Gln	Met	Glu 515	Gly	Ser	Ser	Tyr	Lys 520	Arg	Leu	Asp	Ile	Ala 525	Ile	Arg
50	Ala Phe	Asn 530	Asn	Lys	Val	Ile	Ile 535	Thr	Ile	Lys	Asp	Ser 540	Gly	Gly	Gly

5	Ala Lys 545	Pro	Glu	Val	Val	Asp 550	Arg	Ile	Phe	Glu	Pro 555	Phe	Phe	Thr	Thr	
	560															
10	Arg Arg	Arg	Gly	Met	Gly	Leu	Gly	Leu	Ala	Ile	Val	Ser	Glu	Ile	Val	
					565					570					575	
15	Asn Ala	Ser	Asn	Gly	Ala	Leu	His	Ala	Ser	Asn	His	Pro	Glu	Gly	Gly	
				580				`	585			•		590		
20	Val	Met	Thr 595	Leu	Thr	Trp	Pro	Glu 600	Trp	Gly	Glu	Glu	His 605	Glu		
25	<210 22)> 2	22 <2	211>	101	<21	.2>	PRT	<213	3> I	Esche	erich	nia d	coli	<40	0>
23	Val Leu	Leu	Thr	Pro	Gln	His	Leu	Arg	Cys	Val	Leu	Thr	Cys	Ser	Asp	
	1				5					10				•	15	
30	Lou	Th x	Leu	T. 011	Sor	C1 v	Th ~	77 - 1	Mot	502	Cln	M ~ +	Date	Т о	M	
	Phe	1111	пеји	20	Set	GTY	T11T	val	25	ser	GTII	Met	PLO		TÀT	
35				2.0					23					30		
55	Leu Ile	Asn	Thr	Gln	Lys	Lys	Leu	Thr	Ala	His	Tyr	Glu-	Trp	Leu	Gln	
	110		35					40	,				45			
40	Asn	Leu	Thr	Asp	Thr	Tvr	Glu	Leu	Val	Tivs	Ara	Leu	Met	Pro	Tle	
	Pro	50		-		-1 -	55			-1-	9	60	1100	110	,	
45				*												
	Ser Lys	Leu	Asp	Val	Val	Val	Lys	Val	Gly	Lys	Leu	Val	Leu	Pro	Glu	
	65					70					75				;	80

65/3
05/3

Gly His His Gly Phe Tyr Pro Glu Ala Gly Val Val Tyr Arg Thr Val

Ala Pro Glu Asn Pro

<210> 23 <211> 263 <212> PRT <213> Escherichia coli <400>

Met Met Lys Asn Thr Gly Tyr Ile Leu Ala Leu Cys Leu Thr Ala

Gly His Val Leu Ala His Asp Val Trp Ile Thr Gly Lys Gln Ala

Asn Asn Val Thr Ala Glu Ile Gly Tyr Gly His Asn Phe Pro Ser Lys

Gly Thr Ile Pro Asp Arg Arg Asp Phe Phe Glu Asn Pro Arg Leu Tyr

Asn Gly Lys Glu Thr Ile Thr Leu Lys Pro Ala Ser Thr Asp Tyr Val

Tyr Lys Thr Glu Ser Ala Ser Lys Asp Asn Gly Tyr Val Leu Ser Thr

Tyr Met Lys Pro Gly Tyr Trp Ser Arg Thr Ser Ser Gly Trp Lys Pro

Val Ser Arg Glu Gly Arg Asn Asp Val Ala Tyr Cys Glu Phe Val Thr

66/37	
00/3/	

Lys Tyr Ala Lys Ser Phe Ile Pro Gly Glu Gln Gln Met Pro Ala Gln Leu Tyr Gln Ser Pro Thr Gly His Glu Leu Glu Ile Ile Pro Leu Ser Asp Ile Ser Arg Phe Ser Glu Asn Val Lys Leu Lys Val Leu Tyr Lys Thr Ser Pro Leu Ala Gly Ala Ile Met Glu Leu Asp Ser Val Ser Tyr Leu Thr Ser Ser Arg His Thr His Ala Val Glu His Lys His Pro Val His Lys Ala Glu Leu Thr Phe Val Thr Asn Glu Asp Gly Ile Val Val Pro Ser Leu His Ile Gly Gln Trp Leu Ala Lys Val Gln Asn Lys 230 .

Lys Ser Phe Gln Asp Lys Ser Leu Cys Asp Glu Thr Val Asp Val Ala

Thr Leu Ser Phe Ser Arg Asn

<210> 24 <211> 378 <212> PRT <213> Escherichia coli <400>

10 2000/02/02/020		
	67/370	

	Met Phe	Gly	Lys	Ile	Lys	Tyr	Trp	Leu	Ile	Val	Gly	Phe	Ile	Ile	Leu	
	1				5					10					15	
5	Al·a	Ile	Phe	Tyr	Ile	Ala	Ile	Ser	Asp	Arg	Asp	Ser	Thr	Leu	Ser	
	Arg			20					25		•			30		
10				_ ~												
	Leu Leu	Lys	Ser	Ala	Gly	Glu	Asn	Gly	Asp	Val	Glu	Ala	Gln	Tyr	Ala	
			35					40					45			
15	Glv	Leu	Met	Tvr	Leu	Tvr	Glv	Glu	Ile	Leu	Asp	Val	Asp	ፐህዮ	Gln	
	Gln					2					2.001		.10p	. <u>.</u>	CIII	
20	T.	50					55					60				
20		Ŀys	Ile	Tṛp	Tyr	Glu	Lys	Ala	Ala	Asp	Gln	Asn	Asp	Pro	Arg	
	Ala 65					70					75					80
25																
	Gln Gln	Ala	Lys	Leu	Gly	Val	Met	Tyr	Ala	Asn	Gly	Leu	Gly	Val	Asn	
	0111				85					90					95	
30	71	m	C 7	C]	0	T	Τ	,	m.	0 3	7**	7 2 7	-n -7	~ 7	~ 3	
	Asp Asn	Tyr	ĠΤIJ	GIN	Ser	гаг	ьeu	Trp	Tyr	GLU	Lys	Ala	Ата	Ala	GIn	
				100					105					110	,	
35	Asp	Val	Asp	Ala	Gln	Phe	Leu	Leu	Gly	Glu	Met	Tyr	Asp	Asp	Gly	
	Leu		115					120					125			
40																
	Gly Ala	Val	Ser	Gln	Asp	Tyr	Gln	His	Ala	Lys	Met	Trp	Tyr	Glu	Lys	
	лта	130					135					140				
45		_	_											,		
	Ala Tyr	Ala	Gln	Asn	Asp	Glu	Arg	Ala	Gln	Val	Asn	Leu	Ala	Val	Leu	
	145 160					150					155					

	Ala Trp	Lys	Gly	Asn	Gly	Val	Glu	Gln	Asp	Tyr	Arg	Gln	Ala	Lys	Ser
-	-				165					170					175
. 5	Tyr Leu	Glu	Lys		Ala	Ala	Gln	Asn		Pro	Asp	Ala	Gln	Phe	Ala
				180					185					190	
10	Gly Gln	Ile	Leu	Tyr	Ala	Asn	Ala	Asn	Gly	Val	Glu	Gln	Asp	Tyr	Gln
	0		195					200					205		
15	Ala Ala	Lys	Asp	Trp	Tyr	Glu	Lys	Ala	Ala	Glu	Gln	Asn	Phe ·	Ala	Asn
		210					215			٠	*	220		*	
20		Phe	Asn	Leu	Gly	Met	Leu	Tyr	Tyr	Lys	Gly	Glu	Gly	Val	Lys
	Gln 225 240	at				230					235				
25															
	Asn Asn	Phe	Arg	Gln	Ala	Arg	Glu	Trp	Phe	Glu	Lys	Ala	Ala	Ser	Gln
30					245			. ,		250					255
	Gln Gln	Pro	Asn	Ala	Gln	Tyr	Asn	Leu	Gly	Gln	Ile	Tyr	Tyr	Tỳr	Gly
35				260					265					270	,
	Gly Ala	Val	Thr	Gln	Ser	Tyr	Arg	Gln	Ala	Lys	Asp	Trp	Phe	Glu	Lys
40	АТА	٠	275					280					285	•	
		Glu.	Lys	Gly	His	Val	Asp	Ala	Gln	Tyr	Asn	Leu	Gly	Val	Ile
45	Tyr	290					295					300			
50	Glu Trp 305 320	Asn	Gly	Glu	Gly	Val 310	Ser	Gln	Asn	Tyr	Gln 315	Gln	Ala	Lys	Ala

Tyr Glu Lys Ala Ala Ser Gln Asn Asp Ala Gln Ala Gln Phe Glu Leu

Gly Val Met Asn Glu Leu Gly Gln Gly Glu Ser Ile Asp Leu Lys

Gln

Ala Arg His Tyr Tyr Glu Arg Ser Cys Asn Asn Gly Leu Lys Lys

Cys Glu Arg Leu Lys Glu Leu Leu Tyr Lys

25 <211> 654 <212> PRT <213> Esche richia coli <400> <210>

Met Asn Val Ile Arg Thr Val Ile Cys Thr Leu Ile Ile Leu Pro Val

Gly Leu Gln Ala Ala Thr Ser His Ser Ser Met Val Lys Asp Thr Ile

Thr Ile Val Ala Thr Gly Asn Gln Asn Thr Val Phe Glu Thr Pro Ser

Met Val Ser Val Val Thr Asn Asp Thr Pro Trp Ser Gln Asn Ala Val

Thr Ser Ala Gly Met Leu Lys Gly Val Ala Gly Leu Ser Gln Thr Gly

Ala Gly Arg Thr Asn Gly Gln Thr Phe Asn Leu Arg Gly Tyr Asp Lys

5	Ser Met	Gly	Val	Leu	Val	Leu	Val	Asp	Gly	Val	Arg	Gln	Leu	Ser	Asp	
	riec		,	100				•	105					110		
	Ala	Lvs	Ser	Ser	Glv	Thr	Tvr	Len	Asp	Pro	Δla	T.en	Val	T.ve	A <u>rg</u>	
10	Ile		115	DCI	OTY	1111	т ў т	120	1150	110	FILA	шец		пур	ALG	
10			TT0					120					125			
		Val	Val	Arg	Gly	Pro	Asn	Ser	Ser	Leu	Tyr	Gly	Ser	Gly	GŁу	
15	Leu	130					135					140				
	<i>C</i> .]	C 7	77_ J	ר ד	70	70.1	70.	m.ì	-n -3		- 7		_			
20	Pro	GTÀ	Val	vaı	Asp		Arg	Tur	ALA	Asp		Ala	Asp	Phe	Leu	
	145 160					150					155					
	_	~ 7														
25	Pro Gly	GLY	Glu	Thr		Gly	Leu	Ser	Leu		Gly	Asn	Ile	Ala	Ser	
					165					170					175	
2.0		His	Ser	Thr	Gly	Ser	Gly	Leu	Thr	Trp	Phe	Gly	Lys	Thr	GLy	-
30	Lys			180					185			,		190		
35	Thr Tyr	Asp	Ala	Leu	Leu	Ser	Val	Ile	Met	Arg	Lys	Arg	Gly	Asn	Ile	•
			195	•				200					205			
	Gln	Ser	Asp	Gly	Glu	His	Ala	Pro	Asn	Lýs	Glu	Lys	Pro	Ala	Ala	
40	Leu	210					215					220				
45	Phe Ala	Ala	Lys	Gly	Ser	Val	Gly	Ile	Thr	Asp	Ser	Asn	Lys	Ala	Gl y	
	225 240					230					235					
50	Ser	Leu	Arg	Leu	Tyr	Arg	Asn	Asn	Thr	Thr	Glu	Pro	Gly	Asn	Se r	

Thr

245	250	255

- Gln Thr His Gly Asp Ser Gly Leu Arg Asp Arg Lys Thr Val Gln 5 Asn 260 265 270
- Asp Val Gln Phe Trp Tyr Gln Tyr Ala Pro Val Asp Asn Ser Leu
 10 Ile 275 280 285
- Asn Val Lys Ser Thr Leu Tyr Leu Ser Asp Ile Thr Ile Lys Thr
 15 Asn
 290 295 300
- Gly His Asn Lys Thr Ala Glu Trp Arg Asn Asn Arg Thr Ser Gly
 Val
 305 310 315
 320
- 25 Asn Val Val Asn Arg Ser His Thr Leu Ile Phe Pro Gly Ala His Gln
 325 330 335
- 30 Leu Ser Tyr Gly Ala Glu Tyr Tyr Arg Gln Gln Gln Lys Pro Glu Gly 340 345 350
- 35 Ser Ala Thr Leu Tyr Pro Glu Gly Asn Ile Asp Phe Thr Ser Leu Tyr
 355 360 365
- 40 Phe Gln Asp Glu Met Thr Met Lys Ser Tyr Pro Val Asn Ile Ile Val 370 375 380
- Gly Ser Arg Tyr Asp Arg Tyr Lys Ser Phe Asn Pro Arg Ala Gly Glu
 385 390 395
 400

WO 2005/097823														PCT/EP2005/003972				
72/370																		
eu	Lys	Ala	Glu	Arg	Leu	Ser	Pro	Arg	Ala	Ala	Ile	Ser	Val	Ser				

	Leu Pro	Lys	Ala	Glu	Arg	Leu	Ser	Pro	Arg	Ala	Ala	Ile	Ser	Val	Ser
					405					410					415
5	Thr Ala	Asp	Trp	Leu	Met	Met	Tyr	Gly	Ser	Ile	Ser	Ser	Ala	Phe	Arg
	111.0			420					425					430	
10	T)	m1	Tall - J-	70 7	61	North-Ale	m	70	71 -	77)	** 7	1			_
	Lys	TUT	Met 435	Ala	GLU	мет	туr	440	Asp	Asp	val	Hls	445	Tyr	Arg
15		_													
	G1y Asn		Pro	Asn	Tyr	Trp		Pro	Asn	Leu	Asn		Lys	Pro	Glu
		450				,	455					460			
20	Asn Leu	Ile	Thr	Arg	Glu	Ile	Gly	Ala	Gly	Ile	Gln	Leu	Asp	Gly	Leu
	465 480					470					475				
25															
	Thr Asp	Asp	Asn	Asp	Arg	Leu	Gln	Leu	Lys	Gly	Gly	Tyr	Phe	Gly	Thr
30					485			-		490					495
	Ala Ser	Arg	Asn	Tyr	Ile	Ala	Thr	Arg	Val	Asp	Met	Lys	Arg	Met	Arg
35				500				,	505					510	
55	TT 7.70	C 0 X	Птт»	7 an	۲ <i>7</i> – ۲		7\ 20.00	7\ 7\ ~	7) 20 00	Tlo	П 222	C1	Пас	7	24 - J-
	Gln	ser	Tyr	ASII	vaı	ser	Arg		Arg	TTE	ттЪ	GTÀ	-	Asp	мет
40			515					520			*		525		
		Asn	Tyr	Gln	Ser	Asp	Tyr	Val	Asp	Trp	Met	Leu	Ser	Tyr	Asn
45	Arg	530					535					540		•	
	Asn 545	Glu	Ser	Met	Asp	Ala 550	Ser	Ser	Arg	Glu	Trp 555	Leu	Gly	Ser	Gly
50	560	•													

73/370

Tyr

Pro Asp Thr Leu Ile Ser Asp Ile Ser Ile Pro Val Gly His Arg Gly Val Tyr Ala Gly Trp Arg Ala Glu Leu Ser Ala Ser Ala Thr His Val Lys Lys Gly Asp Pro His Gln Ala Gly Tyr Thr Ile His Ser Phe Ser Leu Ser Tyr Lys Pro Val Ser Val Lys Gly Phe Glu Ala Ser Val Thr Leu Asp Asn Ala Phe Asn Lys Leu Ala Met Asn Gly Lys Gly Val Leu Ser Gly Arg Thr Val Ser Leu Tyr Thr Arg Tyr Gln Trp 26 <211> 1376 <212> PRT <213> Escherichia coli <210> <400> Met Asn Lys Ile Tyr Ala Leu Lys Tyr Cys Tyr Ile Thr Asn Thr Val Lys Val Val Ser Glu Leu Ala Arg Arg Val Cys Lys Gly Ser Thr Arg Arg Gly Lys Arg Leu Ser Val Leu Thr Ser Leu Ala Leu Ser Ala Leu Leu Pro Thr Val Ala Gly Ala Ser Thr Val Gly Gly Asn Asn Pro

													,			
5	Gln Gly	Thr	Tyr	Arg	Asp	Phe	Ala	Glu	Asn	Lys	Gly	Gln	Phe	Gln	Ala	
ر	65					70					75		,			80
							-									
1.0		Thr	Asn	Ile	Pro	Ile	Phe	Asn	Asn	Lys	Ġly	Glu	Leu	Val	Gly	
10	His				85					90					95	•
																•
		Asp	Lys	Ala	Pro	Met	Val	Asp	Phe	Ser	Ser	Val	Asn	Val	Ser	
15	Ser			100				-	105					110		
20		Pro	Gly	Val	Ala	Thr	Leu	Ile	Asn	Pro	Gln	Tyr	Ile	Ala	Ser	
20	Val		115					120					125			
												-				
2.5		His	Asn	Lys	Gly	Tyr	Gln	Ser	Val	Ser	Phe	Gly	Asp	Gly	Gln	
25	Asn	130					135					140				
	-				•											
30		Tyr	His	Ile	Val	Asp	Arg	Asn	Glu	Hìs	Ser	Ser	Ser	Asp	Leu	
30	His 145					150					155					•
	160															
35	Thr	Pro	Λνα	T.OU	7 en	Tare	T 011	77-3	Thr	Clu	\	7\ ⁻ 7\-~	Dro.	7\ 7 -	mb w	
55	Val	FIO	Arg	пец		пўз	пеи	val	T11T		val	ALA	FIO	ALA		
					165					170					175	
40	Thr	Ser	Sor	Sor	Th x	7\] ¬	7 6 70	Tlo	T 011	λαn	Dro	S0 x	T 170	M****	C o 70	
70	Ala	ser	per		7117	Ala	Asp	TTE		ASII	LTO	SeT	пЛг	_	ser	
				180					185					190.		
45	Phe	Tyr	Ara	Ala	Glv	Ser	Glv	Ser	Gln	Ψуγ	Tla	Gln	Aen	Ser	Gla	
1.5	Gly	1 <u>y</u> 1	_	1114	O.L.y	001	O T y		02.11	т <u>У</u> т	110	CIII	_	Der	GIII	
			195					200					205			
50	T.770	Arg	Hie	Ттр	Tall	ሞb r	Glv	Glv	ጥኒንዮ	G] w	ጥኒንድ	T.e.11	ТЪν	Cl v	G] v	
50	Ile.	171 Y	1112	112	v a.r.	4114	ЭΤΆ	этү	т Л Т	Этλ	т Хт	⊥e u	T-11T	атÃ	ату	

210 215 220

Leu Pro Thr Ser Phe Phe Tyr His Gly Ser Asp Gly Ile Gln Leu
5 Tyr
225 230 235
240

10 Met Gly Gly Asn Ile His Asp His Ser Ile Leu Pro Ser Phe Gly Glu
245 250 255

15 Ala Gly Asp Ser Gly Ser Pro Leu Phe Gly Trp Asn Thr Ala Lys Gly
260 265 270

20 Gln Trp Glu Leu Val Gly Val Tyr Ser Gly Val Gly Gly Thr Asn 275 280 285

25 Leu Ile Tyr Ser Leu Ile Pro Gln Ser Phe Leu Ser Gln Ile Tyr Ser 290 295 300

30 Glu Asp Asn Asp Ala Pro Val Phe Phe Asn Ala Ser Ser Gly Ala Pro 305 310 315

Leu Gln Trp Lys Phe Asp Ser Ser Thr Gly Thr Gly Ser Leu Lys Gln

325
330
335

40
Gly Ser Asp Glu Tyr Ala Met His Gly Gln Lys Gly Ser Asp Leu Asn
340
345
350

Ala Gly Lys Asn Leu Thr Phe Leu Gly His Asn Gly Gln Ile Asp Leu
355 360 365

	V	VO 200	5/0978	23				76/3	3 70			PCT/EP2005/003972					
		Asn	Ser	Val	Thr	Gln	Gly	Ala		Ser	Leu	Thr	Phe	Thr	Asp		
	Asp	370					375					380					
5	Tyr Ile	Thr	Val	Thr	Thr	Ser	Asn	Gly	Ser	Thr	Trp	Thr	Gly	Ala	Gly		
	385					390					395						

10

Ile Val Asp Lys Asp Ala Ser Val Asn Trp Gln Val Asn Gly Val Lys

405

410

415

400

15

20

25

40

45

Gly Asp Asn Leu His Lys Ile Gly Glu Gly Thr Leu Val Val Gln Gly
420 425 430

Thr Gly Val Asn Glu Gly Gly Leu Lys Val Gly Asp Gly Thr Val Val 435 440 445

Leu Asn Gln Gln Ala Asp Ser Ser Gly His Val Gln Ala Phe Ser Ser 450 455 460

Val Asn Ile Ala Ser Gly Arg Pro Thr Val Val Leu Ala Asp Asn Gln 465 470 475

Asp Val Asn Gly Asn Asp Leu Thr Phe His Lys Leu Asn Ala Ala Asp 500 505 510

Tyr Gly Ala Thr Leu Gly Asn Ser Ser Asp Lys Thr Ala Asn Ile Thr 50 515 520 525

WO 2005/097823			PCT/EP2005/0039
	•	77/370	

Leu Asp Tyr Gln Thr Arg Pro Ala Asp Val Lys Val Asn Glu Trp Ser Ser Ser Asn Arg Gly Thr Val Gly Ser Leu Tyr Ile Tyr Asn Asn Pro Tyr Thr His Thr Val Asp Tyr Phe Ile Leu Lys Thr Ser Ser Tyr Gly Trp Phe Pro Thr Gly Gln Val Ser Asn Glu His Trp Glu Tyr Val Gly His Asp Gln Asn Ser Ala Gln Ala Leu Leu Ala Asn Arg Ile Asn Asn Lys Gly Tyr Leu Tyr His Gly Lys Leu Leu Gly Asn Ile Asn Phe €20 Asn Lys Ala Thr Pro Gly Thr Thr Gly Ala Leu Val Met Asp Gly Ala Asn Met Ser Gly Thr Phe Thr Gln Glu Asn Gly Arg Leu Thr Ile Gln Gly His Pro Val Ile His Ala Ser Thr Ser Gln Ser Ile Ala Asn Thr Val Ser Ser Leu Gly Asp Asn Ser Val Leu Thr Gln Pro Thr Ser

	Phe Leu	Thr	Gln	Asp	Asp	Trp	Glu	Asn	Arg	Thr	Phe	Ser	Phe	Gly	Ser
5		690					695					700			
	Asn	Leu	Lys	Asp	Thr	Asp	Phe	Gly	Leu	Gly	Arg	Asn	Ala	Thr	Leu
10	705 720					710					715				
15	Thr Arg	Thr	Ile	Gln	Ala	Asp	Asn	Ser	Ser	Val	Thr	Leu	Gly	Asp	Ser
					725					730					735
20	Val Glu	Phe	Ile	Asp	Lys	Lys	Asp	Gly	Gln	Gly	Thr	Ala	Phe	Thr	Leu
				740					745					750	
25	Glu Asn	Gly	Thr	Ser	Val	Ala	Thr	Lys	Asp	Ala	Asp	Lys	Ser	Val	Phe
			755			•		760					765		
30	Gly Ile	Thr	Val	Asn	Leu	Asp	Asn	Gln	Ser	Val	Leu	Asn	Ile	Asn	Glu
		770					775					780			
35	Phe Ser	Asn	Gly	Gly	Ile	Gln	Ala	Asn	Asn	Ser	Thr	Val	Asn	Ile	Ser
	785 800					790					795				
40	Asp Asn	Ser	Ala	Val	Leu	Glu	Asn	Ser	Thr	Leu	Thr	Ser	Thr	Ala	Leu
		•			805					810					815
45	Leu Asp		Lys	Gly	Ala	Asn	Val	Leu	Ala	Ser	Gln	Ser	Phe	Val	Ser
	E			820					825			,		830	
50	Gly Pro	Pro	Val	Asn	Ile	Ser	Asp	Ala	Thr	Leu	Ser	Leu	Asn	Ser	Arg

835	8 <i>4</i> * 0	845

5	Asp Ser	Glu	Val	Ser	His	Thr	Leu	Leu	Pro	Val	Tyr	Asp	Tyr	Ala	Gly
		850					855					860			
10	Trp Ser	Asn	Leu	Lys	Gly	Asp	Asp	Ala	Arg	Leu	Asn	Val	Gly	Pro	Tyr
ļŪ	865					870					875				
15	Mot	Т ол	C 0.30	C]	7. ~ ~	Tla	7)	57-7	C1	7)		G 3	- T	** 7	
13	Leu	пеп	ser	GTÀ	ASII	тте	ASI	val	GIN	Asp	Lys	GTÀ	Thr	Val	Thr
				•	885			877	•	890					895
20		Gly	Glu	Gly	Glu	Leu	Ser	Pro	Asp	Leu	Thr	Leu	Gln	Asn	Gln
2	Met			900					905					910	
								•							
25	Leu Leu	Tyr	Ser	Leu	Phe	Asn	Gly	Tyr	Arg	Asn	Thr	Trp	Ser	Gly	Ser
	Leu .		915					920					925		
	,														
30	Asn Met	Ala	Pro	Asp	Ala	Thr	Val	Ser	Met	Thr	Asp	Thr	Gln	Trp	Ser
		930					935					940			
								r ^s	•						
35	Asn Val	Gly	Asn	Ser	Thr	Ala	Gly	Asn	Met	Lys	Leu	Asn	Arg	Thr	Ile
	945 960	•				950					955				
40															
	Gly Asn	Phe	Asn	Gly	Gly	Thr	Ser	Ser	Phe	Thr	Thr	Leu	Thr	Thr	Asp

Asn

Leu Asp Ala ,Val Gln Ser Ala Phe Val Met Arg Thr Asp Leu Asn

80/370

20

40

.

	00/070															
		Asp	Lys I	Leu V	al I	lle P	Asn Ly	7s S	Ser A	Ala T	hr G	Gly Hi	s P	sp A	sn	
	Ser		995			1000					1005					
5	Ile	Trp 1010		Asn	Phe	Leu.	Lys 1015	Lys	Pro	Ser	Asp	Lys 1020	Asp	Thr	Leu	
10	Asp	Ile 1025		Leu	Val	Ser	Ala 1030	Pro	Glu	Ala	Thr	Ala 1035	Asp	Asn	Leu	

- Phe Arg Ala Ser Thr Arg Val Val Gly Phe Ser Asp Val Thr Pro 15 1040 1045 1050
- Thr Leu Ser Val Arg Lys Glu Asp Gly Lys Lys Glu Trp Val Leu 1055 1060 1065
 - Asp Gly Tyr Gln Val Ala Arg Asn Asp Gly Gln Gly Lys Ala Ala 1070 1075 1080
- 25
 Ala Thr Phe Met His Ile Ser Tyr Asn Asn Phe Ile Thr Glu Val
 1085
 1090
 1095
- 30 Asn Asn Leu Asn Lys Arg Met Gly Asp Leu Arg Asp Ile Asn Gly 1100 1105 1110
- Glu Ala Gly Thr Trp Val Arg Leu Leu Asn Gly Ser Gly Ser Ala 35 1115 1120 1125
 - Asp Gly Gly Phe Thr Asp His Tyr Thr Leu Leu Gln Met Gly Ala 1130 1135 1140
 - Asp Arg Lys His Glu Leu Gly Ser Met Asp Leu Phe Thr Gly Val 1145 1150 1155
- Met Ala Thr Tyr Thr Asp Thr Asp Ala Ser Ala Gly Leu Tyr Ser 1160 1165 1170
- 50 Gly Lys Thr Lys Ser Trp Gly Gly Gly Phe Tyr Ala Ser Gly Leu 1175 1180 1185

							•								
5	Phe	Arg 1190		Gly	Ala	Tyr	Ph e 1195	Asp	Leu	Ile	Ala	Lys 1200	Tyr	Ile	His
	Asn	Glu 1205		Lys	Tyr	Asp	Leu 1210	Asn	Phe	Ala	Gly	Ala 1215	Gly	Lys	Gln
10	Asn	Phe 1220	Arg	Ser	His	Ser	Leu 1225		Ala	Gly	Ala	Glu 1230	Val	Gly	Tyr
15	Arg	Tyr 1235	His	Leu	Thr	Asp	Thr 1240		Phe	Val	Glu	Pro 1245	Gln	Ala	Glu
20	`Leu	Val 1250	Trp	Gly	Arg	Leu	Gln 1255		Gln	Thr	Phe	Asn 1260	Trp	Asn	Asp
. 25	Ser	Gly 1265	Met	Asp	Val	Ser	Met 1270	Arg	Arg	Asn	Ser	Val 1275	Asn	Pro	Leu
	Val	Gly 1280	_	Thr	Gly	Val	Val 1285		Gly	Lys	Thr	Phe 1290	Ser	Gly	Lys
30	Asp	Trp 1295	Ser	Leu	Thr	Ala	Arg 1300	Ala	Gly	Leu	His	Tyr 1305	Glu	Phe	Asp
35	Leu	Thr 1310	Asp	Ser	Ala	Asp	Vaļ 1315	His	Leu	Lys	Asp	Ala 1320	Ala	Gly	Glu
40	His	Gln 1325	Ile	Asn	Gly	Arg	Lys 1330	Asp	Gly	Arg	Met	Leu 1335	Tyr	Gly	Val
45	Gly	Leu 1340	Asn	Ala	Arg	Phe	Gly 1345	Asp	Asn	Thr	Arg	Leu 1350	Gly	Leu	Glu
	Val	Glu 1355	Arg	Ser	Ala	Phe	Gly 1360	Lys	Tyr	Asn	Thr	Asp 1365	Asp	Ala	Ile
50	71	7N ไ	7\ ~~	Tla	7\ 20.00	Ф	C ~ **	Dh.a							

Asn Ala Asn Ile Arg Tyr Ser Phe

1370	1375

<210> 27 <211> 349 <212> PRT <213> Escherichia coli <400> Met Ile Thr Leu Phe Arg Leu Leu Ala Ile Leu Cys Leu Phe Phe Val Ser Ala Phe Ala Val Asp Cys Tyr Gln Asp Gly Tyr Arg Gly Thr Leu Ile Asn Gly Asp Leu Pro Thr Phe Lys Ile Pro Glu Asn Ala Gln Pro Gly Gln Lys Ile Trp Glu Ser Gly Asp Ile Asn Ile Thr Val Tyr Cys Asp Asn Ala Pro Gly Trp Ser Ser Asn Asn Pro Ser Glu Asn Val Tyr Ala Trp Ile Lys Leu Pro Gln Ile Asn Ser Ala Asp Met Leu Asn Asn Pro Tyr Leu Thr Phe Gly Val Thr Tyr Asn Gly Val Asp Tyr Glu Gly Thr Asn Glu Lys Ile Asp Thr His Ala Cys Leu Asp Lys Tyr 115 . Glu Gln Tyr Tyr Asn Gly Tyr Tyr His Asp Pro Val Cys Asn Gly Ser

WO 2005/097823		PCT/EP2005/003972
	92/270	

								83/3'	70						
	Val 145		Gln	Lys	Asn	Val	Thr	Phe	Asn	Ala	His		Arg	Val	Tyr
5	160					is.									
	Lys Thr		Lys	Ser		Pro	Ala	Gly	Asp		Thr	Val	Asn	Phe	Gly
10					165			v		170					175
-	Val Pro	Asn	Val		Gln	Phe	Asp	Gly		Gly	Gly	Ala	Asn	Met	Ala
15				180					185					190	
	Asn Ser	Ala		Asn	Leu	Arg	Tyr		Ile	Thr	Gly	Leu	Asp	Asn	Ile
20			195					200					205		
	Phe Ile	Leu	Asp	Cys	Ser	Val	Asp	Val	Arg	Ile	Ser	Pro	Glu	Ser	Gln
25		210					215					220			
	Val Pro	Asn	Phe	Gly	Gln	Ile	Ala	Ala	Asn	Ser	Ile	Ala	Thr	Phe	Pro
30	225 240			** *		230					235				
	Lys Cys	Ala	Ala	Phe	Ser	Val	Ser	Thr	Ile	Lys	Asp	Ile	Ala	Ser	Asp
35					245					250					255
	Thr Leu	Glu	Gln	Phe	Asp	Val	Ala	Thr	Ser	Phe	Phe	Thr	Ser	Asp	Thr
40				260					265					270	
	Tyr Ile	Asp	Asn	Thr	His	Leu	Glu	Ile	Gly	Asn	Gly	Leu	Leu	Met	Arg
45			275					280					285		
	Thr Leu	Asp	Gln	Lys	Thr	Gln	Glu	Asp	Ile	Lys	Phe	Asn	Gln	Phe	Lys
50		290					295					300			

5	Phe Asp 305 320	Ser	Thr	Tyr	Ile	Pro 310	Gly	Gln	Ser	Ala	Ala 315	Met	Ala	Thr	Arg	
10	Tyr Gly	Gln	Ala	Glu	Leu 325	Thr	Gln	Lys	Pro	330 Gly	Glu	Pro	Leu	Val	Tyr 335	
15	Pro	Phe	Gln	Lys 340	Asp	Leu	Ile	Val	Lys 345	Ile	Asn	Tyr	Hịs			
	<210 28)> 2	28 <2	211>	840) <23	L2>	PRT	<213	3> E	Esche	erich	nia d	coli	< 40	00>
20	Met Ile 1	Asn	Asn	Lys	Asn 5	Thr	Phe	Ser	Arg	Asp	Lys	Leu	Ser	His	Ala 15	
25	Lys Pro	Asn	Ala	Leu 20	Ser	Gly	Val	Val	Cys 25	Ser	Leu	Leu	Phe	Val	Leu	
30	Val Arg	His	Ala 35	Val	Glu	Phe	Asn	Val	Asp	Met	Ile	Asp	Ala 45	Glu	Asp	
35	Glu Pro	Asn 50	Ile	Asp	Ile	Ser	Arg	Phe	Glu	Lys	Lys	Gly 60	Tyr	Ile	Pro	
40	Gly Gln 65	Arg	Tyr	Leu	Val	Arg 70	Val	Gln	Ile	Asn	Lys 75	Asn	Met	Leu	Pro	8.0
45	Thr Leu	Leu	Ile	Leu	Glu 85	Trp	Val	Lys	Ala	Asp	Asn	Glu	Ser	Gly	Ser 95	
50	Leu Glu	Cys	Leu	Thr	Lys	Glu	Asn	Leu	Thr	Asn	Phe	Gly	Leu	Asn	Thr	

100	105	110

Phe Ile Glu Ser Leu Gln Asn Ile Ala Gly Ser Glu Cys Leu Asp Leu Ser Gln Arg Gln Glu Leu Thr Thr Arg Leu Asp Lys Ala Thr Met . Ile Leu Ser Leu Ser Val Pro Gln Ala Trp Leu Lys Tyr Gln Ala Thr Asn Trp Thr Pro Pro Glu Phe Trp Asp Thr Gly Ile Thr Gly Phe Ile Leu Asp Tyr Asn Val Tyr Ala Ser Gln Tyr Ala Pro His His Gly Asp Ser Thr Gln Asn Val Ser Ser Tyr Gly Thr Leu Gly Phe Asn Leu Gly Ala Trp Arg Leu Arg Ser Asp Tyr Gln Tyr Asn Gln Asn Phe Ala Asp Gly Arg Ser Val Asn Arg Asp Ser Glu Phe Ala Arg Thr Tyr Leu Phe Arq

45
Pro Ile Pro Ser Trp Ser Ser Lys Phe Thr Met Gly Gln Tyr Asp Leu
245
250
255

WO 2005/097823	PCT/EP2005/0039	72

	V	VO 200	5/0978	23			86/370						PCT/EP2005/00397			
	Ser	Ser	Asn	Leu	Tyr	Asp	Thr			Phe	Thr	Gly	Ala	Ser	Leu	
	Glu			260		_			265	,				270		
				200					200					270		
5	Ser	Asp	Glu	Ser	Met	Leu	Pro	Pro	Asp	Leu	Gln	Gly	Tyr	Ala	Pro	
	Gln	•	275					280				-	285			
			213					200					200			
10	Ile	Thr	Gly	Ile	Ala	Gln	Thr	Asn	Ala	Lys	Val	Thr	Val	Ala	Gln	
	Asn	290					295					300				
1.5		250					230									
15	Gly	Arg	Val	Leu	Tyr	Gln	Thr	Thr	Val	Ala	Pro	Gly	Pro	Phe	Thr	
	Ile 305					310		•			315					
20	320					,										
20																
	Ser Glu	Asp	Leu	Gly	Gln	Ser	Phe	Gln	Gly	Gln	Leu	Asp	Val	Thr	Val	
25					325					330	f				335	
23	~ 7	~ 7	_	~ 7	_	1	~		D.1	~ 3		~ J	_	- 7	-	
	Glu Ile	Glu	Asp	GTA	Arg	Thr	Ser	Thr	Phe	GIn	Val	GTĀ	Ser	Ala	Ser	
30				340					345					350		
	Desa		T	шь	7) 10 01	T	C1	C1 ~	77-7	7\ 20.00	TT	T	mla sa	C =	Т	
	Gly			TIIT	Arg	туз	GTÀ		Val	Arg	тът	тÀз	Thr	ser	ьеu	
35			355					360					365			
	T.ve	Dro	Thr	Sar	Val	Glv	Hie	Δen	Asn	Tle	Asn	Zen	Pro	Phe	Phe	
	Trp		T. 11 T.	Der	vai	OTY		23011	1100	110	11011		110	1116	1116	
40		370					375					380				
•	Thr	Ala	Glu	Ala	Ser	Tro	Glv	Trp	Leu	Asn	Asn	Val	Ser	Leu	Tvr	
	Gly	1114	<u> </u>		-	_	<i></i>						~~~		- 1 -	
45	385 400					390					395					
	_	Gly	Met	Phe	Thr	Ala	Asp	Asp	Tyr	Gln	Ala	Ile	Thr	Thr	Gly	
50	Ile				105					<i>4</i> 10					115	

WO 2005/097823		PCT/EP2005/003972
	87/370	

								87/3	370				*		
	Gly Gly	Phe	Asn	Leu	Asn	Gln	Phe	Gly	Ser	Leu	Ser	Phe	Asp	Val	Thr
5	<u> </u>			420					425		•			430	
	Ala Tyr	Asp	Ala	Ser	Leu	Gln	Gln	Gln	Asn	Ser	Gly	Asn	Leu	Arg	Gly
10			435					440	,				445		
	Ser Gln	Tyr	Arg	Phe	Asn	Tyr	Ala	Lys	His	Phe	Glu	Ser	Thr	Gly	Ser
15		450		,			455					460			
	Ile Met	Thr	Phe	Ala	Gly	Tyr	Arg	Phe	Ser	Asp	Lys	Asp	Tyr	Val	Ser
20	465 480					470	•				475				
	Ser Glu	Glu	Tyr	Leu	Ser	Ser	Arg	Asn	Gly	Asp	Glu	Ser	Ile	Asp	Asn
25			,		485					490	*				495
-	Lys Glu	Glu	Ser	Tyr	Val	Ile	Ser	Leu	Asn	Gln	Tyr	Phe	Glu	Thr	Leu
30				500					505					510	
	Leu Ala	Asn	Ser	Tyr	Leu	Asn	Val	Thr	Arg	Asn	Thr	Tyr	Trp	Asp	Ser
35			515					520					525		
	Ser Gly	Asn	Thr	Asn	Tyr	Ser	Val	Ser	Val	Ser	Lys	Asn	Phe	Asp	Ile
40		530	·				535				٠	540			
	Asp Trp	Phe	Lys	Gly	Ile	Ser	Ala	Ser	Leu	Ala	Val	Ser	Arg	Ile	Arg
45	545 560					550					555				
50	Asp Leu	Asp	Asp	Glu	Glu	Asn	Gln	Tyr	Tyr	Phe	Ser	Phe	·Ser	Leu	Pro

88	/370

5	Gln Ser	Gln	Asn	Arg	Asn	Ile	Ser	Tyr	Ser 585	Met	Gln	Arg	Thr	Gly 590	Ser
10	Asn Asn	Thr	Ser 595	Gln	Met	Ile	Ser	Trp 600	Tyr	Asp	Ser	Ser	Asp 605	Arg	Asn
15	Ile Gly	Trp 610	Asn	Ile	Ser	Ala	Ser 615	Ala	Thr	Asp	Asp	Asn 620	Ile	Arg	Asp
20	Glu Arg 625 640	Pro	Thr	Leu	Arg	Gly 630	Ser	Tyr	Gln	His	Tyr 635	Ser	Pro	Trp	Gly
25	Leu Thr	Asn	Ile	Asn	Gly 645	Ser	Val	Gln	Pro	Asn 650	Gln	Tyr	Asn	Ser	Val 655
30	Ala Leu	Gly	Trp	Tyr 660	Gly	Ser	Leu	Thr	Ala 665	Thr	Arg	His	Gly	Val 670	Ala
35	His Asp	Asp	Tyr 675	Ser	Tyr	Gly	Asp	Asn 680	Ala	Arg	Met	Met	Val 685	Asp	Thr
40	Gly Gly	Ile 690	Ser	Gly	Ile	Glu	Ile 695	Asn	Ser	Asn	Arg	Thr 700	Val	Thr	Asn
45	Leu Met 705 720	Gly	Ile	Ala	Val	Ile 710	Pro	Ser	Leu	Ser	Asn 715	Tyr	Thr	Thr	Ser
50	Leu Asn	Arg	Val	Asn	Asn	Asn	Asp	Leu	Pro	Glu	Gly	Val	Asp	Val	Glu

	07/3/

Ser Val Ile Arg Thr Thr Leu Thr Gln Gly Ala Ile Gly Tyr Ala Lys Leu Asn Ala Thr Thr Gly Tyr Gln Ile Val Gly Val Ile Arg Gln Glu Asn Gly Arg Phe Pro Pro Leu Gly Val Asn Val Thr Asp Lys Ala Thr 77 O Gly Lys Asp Val Gly Leu Val Ala Glu Asp Gly Phe Val Tyr Leu Gly Ile Gln Glu Asn Ser Ile Leu His Leu Thr Trp Gly Asp Asn Thr Cys Glu Val Thr Pro Pro Asn Gln Ser Asn Ile Ser Glu Ser Ala Ile Ile Leu Pro Cys Lys Thr Val Lys <210> 29 <211> 169 <212> PRT <213> Escherichia coli <400> Leu Met Asn Thr Lys Gln Ser Val Ala Gln Leu Ala Val Pro His Arg Lys Arg Leu Ser Ser Thr Met Val Val Ala Leu Leu Cys Val Val

	v	VO 200	05/0978	323										PCT/EP2005/003972				
		•						90/3	370									
	Ala Ile	Gly		Val	Met	Ile	Asn	Ala	Ala	Asp	Phe	Pro	Ala	Thr	Ala			
			35					40					45					
5		Thr	Asp	Pro	Gly	Ala	Ser	Ala	Phe	Pro	Thr	Phe	Tyr	Ala	Cys			
	Ala	50	•				55			-		60						
10																		
10	Leu Ala	Ile	Val	Leu	Ala	Val	Leu	Leu	Val	Ile	Arg	Asp	Leu	Leu	Gln			
	65					70					75					80		
15	Lys	Pro	Ala	Ser	Cys	Ala	Asn	Ala	Gln	Glu	Lys	Pro	Ala	Phe	Arg			
	Lys				85					90					95			
20																		
20	Thr Ser	Ala	Thr	Gly	Ile	Ala	Ala	Thr	Ala	Phe	Tyr	Ile	Val	Ala	Met			
	DCT			100					105			•		110				
0.7															•			
25		Cys	Gly	Tyr	Leu	Ile	Thr	Thr	Pro	Val	Phe	Leu	Ile	Val	Ile			
	Met		115					120				•	125					
											- T							
30		Leu	Met	Gly	Tyr	Arg	Arg	Trp	Val	Leu	Thr	Pro	Gly	Ile	Ala			
	Leu	130					135					140						
35																		
	Leu Val	Leu	Thr	Ala	Ile	Leu	Trp	Leu	Leu	Phe	Val	Glu	Ala	Leu	Gln			
	145					150					155							
40	160																	
	Pro	Leu	Pro	Val	Gly 165	Thr	Phe	Phe	Glu				,					
45																		
15	<210 30)> 3	30 <2	211>	311	<21	L2>	PRT	<213	3> E	Esche	erich	nia d	coli	<40	0>		

Met Val Leu Leu Ala Gly Ala Ala Leu Ser Ile·Ala Pro Val Gln

Ala

*** • = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 0 1/21 2000,000
	91/370	

Ala Ser Tyr Pro Thr Lys Gln Ile Glu Leu Val Val Pro Tyr Ala Ala Gly Gly Gly Thr Asp Leu Val Ala Arg Ala Phe Ala Asp Ala Ala Lys Asn His Leu Pro Val Ser Ile Gly Val Ile Asn Lys Pro Gly Gly Gly Gly Ala Ile Gly Leu Ser Glu Ile Ala Ala Ala Arg Pro Asn Gly Tyr . 80 Lys Ile Gly Leu Gly Thr Val Glu Leu Thr Thr Leu Pro Ser Leu Gly Met Val Arg Phe Lys Thr Ser Asp Phe Lys Pro Ile Ala Arg Leu Asn -100 Ala Asp Pro Ala Ala Ile Thr Val Arq Ala Asp Ala Pro Trp Asn Ser Tyr Glu Glu Phe Met Ala Tyr Ser Lys Ala Asn Pro Gly Lys Val Arg Ile Gly Asn Ser Gly Thr Gly Ala Ile Trp His Leu Ala Ala Ala Ala

Leu Glu Asp Lys Thr Gly Thr Lys Phe Ser His Val Pro Tyr Asp Gly

5	Ala Val	Ala	Pro	Ala 180	Ile	Thr	Gly	Leu	Leu 185	Gly	Gly	His	Ile	Glu 190	Ala
3		,		100											
		Val	Ser	Pro	Gly	Glu	Val	Ile	Asn	His	Val	Asn	Gly	Gly	Lys
10	Leu		195					200					205		
					_		- J	_		71	, M - -	T	mh w	Mot	Dro
	Lys Asp	Thr	Leu	Val	Val	Met	Ala	Asp	GIU	Arg	Met		7117	Met	
15	_	210					215					220			
	Val	Pro	Thr	Leu	Lys	Glu	Lys	Gly	Val	Asp	Leu	Ser	Ile	Gly	Thr
20	Trp 225				_	230				k.	235				
20	240						,								
	Ara	Glv	Leu	Ile	·Val	Ser	Gln	Lys	Thr	Pro	Gln	Asp	Val	Val	Asp
25	Val	1			245					250					255
						ě		•							
20		Ala	Lys	Ala	Ala	· Lys	Glu	Thr	Ala	Glu	Glu	Pro	Ala	Phe	Gln
30	Asp			260					265					270	
			~ 7	_		7)	Т ол	7 an	П, 1, 2, 2	7\] ¬	Ψкп	T.011	Zen	Δla	Ala
35	Ala Ser	Leu	GIn	гуѕ	Leu	ASN	ьeu			ALa	115	шса			112.0
		*	275				,	280					285		
	Phe	Gln	Thr	Gln	Ile	Ser	Glu	Gln	Glu	. Lys	Туг	Phe	Asp	Glu	Leu
40	Leu						295					300			
45	Thr 305		Leu	ı Gly	. Leu	Lys 310		;							

<210> 31 <211> 722 <212> PRT <213> Escherichia coli <400> 31

93/370	
93/3/(

	Met Ala	Leu	Arg	Trp	Lys	Arg	Cys	Ile	Ile	Leu	Thr	Phe	Ile	Ser	Gly	
_	1				5					10		,			15	
5	Ala Pro	Phe	Ala	Ala	Pro	Glu	Ile	Asn	Val	Lys	Gln	Asn	Glu	Ser	Leu	
				20					25					30		
10	Asp Gly	Leu	Gly	Ser	Gln	Ala	Ala	Gln	Gln	Asp	Glu	Gln	Thr	Asn	Lys	
	· · · .		35		٠			40					45			
15	Lys Thr	Ser	Leu	Lys	Glu	Arg	Gly	Ala	Asp	Tyr	Val	Ile	Asn	Ser	Ala	
	1111	50					55					60				
20	Gln Arg	Gly	Phe	Glu	Asn	Leu	Thr	Pro	Glu	Ala	Leu	Glu	Ser	Gln	Ala	
	65					70					75~					. 80 ·
25	Ser Glu	Tyr	Leu	Gln	Ser	Gln	Ile	Thr	Ser	Thr	Ala	Gln	Ser	Tyr	Ile	
	014			*	85					90					95	
30	Asp Gly	Thr	Leu	Ser	Pro	Tyr	Gly	Lys	Val	Arg	Leu	As n	Leu	Ser	Ile	
	GIJ			100					105				•	110		
35	Gln Trp	Gly	Gly	Asp	Leu	Asp	Gly	Ser	Ser	Ile	Asp	Tyr.	Phe	Val	Pro	
	115		115					120					125			
40	Tyr Arg	Asp	Asn	Gln	Thr	Thr	Val	Tyr	Phe	Ser	Gln	Phe	Ser	Ala	Gln	
	Arg	130					135					140	*			
45		Glu	Asp	Arg	Thr	Ile	Gly	Asn	Ile	Gly	Leu	Glу	Val	Arg	Tyr	
50	Asn 145 160					150					155	,		,		

WO 2005/09/823		PC1/EP2005/0039/2
	94/370	

							7	7370							
	Phe Phe	Asp	Lys	Tyr	Leu	Leu	Gly	Gly	Asn	Ile	Phe	Tyr	Asp	Tyr	Asp
	r 116				165					170					175
5	Thr	Arg	Gly	His	Arg	Arg	Leu	Gly	Leu	Gly	Ala	Glu	Ala	Trp	Thr
• •	Asp			180					185					190	,
10	Tur	T.eu	Tivs	Phe	Ser	Glv	Asn	Tyr	Tyr	His	Pro	Leu	Ser	Asp	Trp
	Lys	100	195			- 1		200	-				205		
15			1.55						٠						
13		Ser	Glu	Asp	Phe	Asp	Phe	Tyr	Glu	Glu	Arg	Pro	Ala	Arg	Gly
	Trp	210					215					220			
20	_	Ile	Arg	Ala	Glu	Val	Trp	Leu	Pro	Ser	Tyr	Pro	Gln	Leu	Gly
	Gly 225 240					230					235				
25					7	~ 3			C]	7)	<i>C</i> 1	77-7	70 71 70	T 011	Pho
	Lys Gly		Val	Phe			Tyr	Tyr	СТА		GIU	Val	Ala	пеп	255
30					245					250					233
	Thr	Asp	Asn	Leu	. Glu	Lys	Asp	Pro	Tyr	Ala	Val	Thr	Leu	Gly	Leu
	Asn			260					265					270	
35				_	_		_	m1	r <i>7</i> – 7		∏le se	7) a n	П	Tara	7\ 1 ¬
	Tyr Gly				. Pro	Leu	Leu			. СТУ	TUL	Asp		пÃ2	Ala
40			275					280					285		
	Thr Gln		/ Asp	Asn	n Ser	Asp	Val	Ser	Ile	a Asn	Ala	Thr	Leu	Asn	Tyr
45	J 1.1.1	290)				295					300			
	Phe Ala		y Val	Pro) Lei	ı Lys		Gln	. Leu	ı Asp	Ser 315		Lys	Val	. Lys

		95/3
		7010

-	Ala Asn	His	Ser	Leu	Met	Gly	Ser	Arg	Leu	Asp	Phe.	Val	Glu	Arg	Asn
5					325					330					335
	Phe Leu	Ile	Val	Leu	Glu	Tyr	Lys	Glu	Ĺys	Asp	Pro	Leu	Asp	Val	Thr
.10				340					345					350	
-	Trp Lys	Leu	Lys	Ala	Asp	Ala	Thr	Asn	Glu	His	Pro	Glu	Cys	Val	Ile
15	-1-		355					360				,	365		
	Asp Ile	Thr	Pro	Glu	Ala	Ala	Val	Gly	Leu	Glu	Lys	Cys	Lys	Trp	Thr
20		370					375					380			
	Asn Gln	Ala	Leu	Ile	Asn	His	His	Tyr	Lys	Ile	Val	Ala	Ala	Ser	Trp
25	385 400					390					395				
		Ĺys	Asn	Asn	Ala	Ala	Arg	Thr	Leu	Val	Met	Pro	Val	Ile	Lys
30	Glu ·				405					410					415
	Asn Pro	Thr	Leu	Thr	Glu	Gly	Asn	Asn	Asn	His	Trp	Asn	Leu	Val	Leu
35			•	420		·	·		425					430	
	Ala Thr	Trp	Gln	Tyr	Ser	Ser	Asp	Gln	Ala	Glu	Gln	Glu	Lys	Leu	Asn
40			435					440					445		
	Trp Asn	Arg	Val	Arg	Leu	Ala	Leu	Glu	Asp	Glu	Lys	Gly	Asn	Arg	Gln
45		450					455		v		*	460			,
	Ser Leu	Gly	Val	Val	Glu	Ile	Thr	Val	Gln	Gln	Asp	Arg	Lys	Ile	Glu
50	465 480					470					475				

5	Ile Glu	Val	. Asn	Asn	Ile 485		Asn	Pro	Glu	Glu 490		Asņ	His	Ser	His
10	Ala Asp	Ser	Ala	Gln 500	Ala	Asp	Gly	Val	Asp	Gly	Val	Val	Met	Asp 510	Leu
15	Val Leu	Thr	Asp 515	Ser	Phe	Gly	Asp	Asn 520	Thr	Asp	Arg	Asn	Gly 525	Asp	Ala
20	Pro Arg	Glu 530	Asp	Asn	Leu	Thr	Pro 535	Gln	Leu	Tyr		Ala 540	Gln	Asp	Lys
25	Val Phe 545 560	Thr	Leu	Thr	Asn	Lys 550	Pro	Cys	Ser	Thr	Asp 555	Asn	Pro	Cys	Val
30	Ile Thr	Ala	Lys	Gln	Asp 565	Lys	Glu	Lys	Gly	Thr 570	Val	Thr	Leu	Ser	Ser 575
35	Leu Asp	Pro	Gly	Thr 580	Tyr	Arg	Trp	Lys	Ala 585	Lys	Ala	Ala	Pro	Tyr 590	Asp
40	Ser Leu	Asn	Tyr 595	Val	Asp	Val	Thr	Phe	Leu	Gly	Ala	Glu	Ile 605	Gly	Gly
45	Asn Ile	Ala 610	Phe	Ile	Tyr	Arg	Val 615	Gly	Ala	Ala	Lys	Pro 620	Ser	Asn	Leu
50	Gly Phe	Lys	Asp	Lys	Glu	Pro	Leu	Pro	Ser	Thr	Thr	Phe	Ile	Asp	Leu

WO 2005/097823	PCT/EP2	005/003972

	W 0 2005/05/1025						97/370										
	625 640					630					635			•			
5	Tyr Asn	Gly	Ala	Thr	Thr	Ile	Lys	Thr	Val	Ser	Ser	Ser	Arg	Ser	Lys		
	ASII				645		_			650					655		
10	Leu Ala	Thr	Lys	Arg	Trp	Cys	Ser	Thr	Thr	Thr	Ser	Gly	Asn	Leu	Pro		
	AIA			660				,	665					670			
15	Arg Asp.		Ser	Met	Val	Ser	Gly	Cys	Thr	Gly	Glu	His	Ser	Asn	Glu		
	1100.		675		-			680					685				
20	Ile Ala	Val	Ile	Pro	Ala	Thr	Asn	Arg	Glu	Ala	Ala	Gln	Thr	Tyr	Gly		
		690					695					700					
25	Gln Thr	Ala	Gly	Asp	Gly	Leu _.	Gln	Gly	Tyr	Gly	Leu	Arg	Val	Leu	Tyr		
	705 720					710				,	715	•					
30	Lys	Lys									,						
35	<210 32	> 3	32 <2	211>	319) <21	L2>	PRT	<213	3> E	Esche	erich	nia c	coli	<400>		
	Met Leu	Lys	Gln	Asp	Lys	Arg	Arg	Gly	Leu	Thr	Arg	Ile	Ala	Leu	Ala		
40	1			*	5					10					15		
٠	Ala Ser	Leu	Ala	Gly	Tyr	Cys	Val	Ala	Pro	Val	Ala	Leu	Ala	Glu	Asp		
45			÷	20					25					30			

Ala Trp Val Asp Ser Gly Glu Thr Asn Ile Phe Gln Gly Thr Ile

98/370

Trp Leu Tyr Ser Glu Gly Gly Ser Ala Thr Thr Asp Ala Asp Arg Val Thr Leu Thr Ser Asp Leu Lys Gly Ala Arg Pro Gln Gly Met Lys Arg Thr Ser Val Phe Thr Arg Val Ile Asn Ile Gly Asp Thr Glu Gly Asp Val Asp Leu Gly Gly Leu Gly Asp Asn Ala Lys Thr Ile Asp Thr Ile Arg Trp Met Ser Tyr Lys Asp Ala Gln Gly Gly Asp Pro Lys Glu Leu Ala Thr Lys Val Thr Ser Tyr Thr Leu Thr Asp Ala Asp Arg Gly Arg Tyr Ile Gly Ile Glu Ile Thr Pro Thr Thr Gln Thr Gly Thr Pro Asn Val Gly Thr Ala Leu His Leu Tyr Asp Val Ser Thr Ala Ser Gly Ġly Gly Ser Asp Ser Asp Asn Val Ala Pro Gly Pro Val Val Asn Gln Asn Leu Lys Val Ala Ile Phe Val Asp Gly Thr Ser Ile Asn Leu Ile Asn

		Ser	Thr	Pro	Ile	Glu	Leu	Gly	Lys	Thr	Tyx	Val	Ala	Lys	Leu
	Tyr	210					215				*	220			
5												~ 3		-	73 7
	Ser Asp	Asp	Glu	Asn	Lys	Asn	Gly	Lys	Phe	Asp	Ala	GLY	'l'nr	Asp	Ala
10	225 240					230					235				
	Val Gln	Thr	Ala	Asn	Tyr	Asp	Phe	Arg	Trp	Val	Leu	Ser	Gly	Ser	Ser .
15	OZ.II				245					250					255
	Cln	T 011	Clu	ሞኮኮ	Sar	Glv	Gl'v	Tle	Val	Asn	Ser	Ser	Phe	Asp	Asn
20	Asn	теп	GTÀ		Det		Oxy	110	265	11011		~		270	
20				260					200					2,0	
	Asn	Leu	Val	Ile	Pro	Ala	Thr	Asn	Asp	Glu	Ala	Arg	Thr	Asn	Leu
25	Asn		275					280					285		
												7	_	m1	77
	Gly Gly	Pro	Ala	Arg	Asp	Gly		Glu	Ala	Leu	Ser		Pro	Thr	Asn
30		290	,				295					300			
	Asp	Glv	Val	Gln	Gly	Tyr	Lys	Leu	His	Ile	Ile	Tyr	Lys	His	Lys
35	305	7			•	310	_				315				
50	<i>-</i> 21	0 >	33 <	211>	62	9 <2	12>	PRT	<21	3>	Esche	∍ric	hia	coli	<400>
	33	0>	,		0 -					*					
40			Lys	Val	Leu	Thr	Leu	Ser	Leu	Leu	Ala	Leu	Cys	Val	Ser
	His 1				5					10		•			15
			7		-n -7	77		. m	Dha	7) 0 20	7.62	7\ an	. Acn	Tla	7\
45	Ser Leu		Val		Ala	. Asn	ı .r.Àr	r Thr		ASI.	a Asn	Syst	non		ALA
				20					25					30	
50	Ser	Phe	Asp	Asp	Thr	Asr	n Ser	Thr	: Ile	· Val	Leu	Lys	: Asp	Arg	Arg
4	Th r	,													

Thr

35 40 45

- Asn His Pro Ile Thr Pro Gln Glu Leu Phe Phe Leu Thr Leu Pro 5 Asp 50 55 60
- Glu Thr Lys Ile His Thr Ala Asp Phe Lys Ile Lys His Ile Lys
 10 Lys
 65 70 75 80
- Gln Asp Asn Ala Ile Val Ile Asp Phe Thr Arg Pro Asp Phe Asn Val 85 90 95
- Thr Val Gln Leu Asn Leu Val Lys Gly Lys Tyr Ala Ser Ile Asp 20 Tyr 100 105 110
- Thr Ile Ala Ala Val Gly Gln Pro Arg Asp Val Ala Lys Ile Thr 25 Phe 115 120 125
- Phe Pro Thr Lys Lys Gln Phe Gln Ala Pro Tyr Val Asp Gly Ala 30 Ile 130 135 140
- Thr Ser Ser Pro Ile Ile Ala Asp Ser Phe Phe Ile Leu Pro Asn

 Lys
 145
 160
- 40 Pro Ile Val Asn Thr Tyr Ala Tyr Glu Ala Thr Thr Asn Leu Asn Val
 . 165 170 175
- 45 Glu Leu Lys Thr Pro Ile Gln Pro Glu Thr Pro Val Ser Phe Thr
 Thr
 180 185 190
- 50 Trp Phe Gly Thr Phe Pro Glu Thr Ser Gln Leu Arg Arg Ser Val Asn

WO 2005/097823															05/00397
								101/3	370						
			195					200					205		
5	Gln His	Phe	Ile	Asn	Ala	Val	Arg	Pro	Arg	Pro	Tyr	Lys	Pro	Tyr	Leu
3	1120	210					215					220			
10	Tyr Gln	Asn	Ser	Trp	Met	Asp	Ile	Gly	Phe	Phe	Thr	Pro	Tyr	Thr	Glu
	225 240					230					235				
15	Asp Gly	Val	Leu	Gly	Arg	Met	Asp	Glu	Trp	Asn	Lys	Glu	Phe	Ile	Ser
					245					250					255
20	Arg Asp	Gly	Val	Ala	Leu	Asp	Ala	Phe	Leu	Leu	Asp	Asp	Gly	Trp	Asp
				260					265					270	
25	Leu Ser	Thr	Gly	Arg	Trp	Leu	Phe	Gly	Pro	Ala	Phe	Ser	Asn	Gly	Phe
	DCI		275					280					285		
30	_	Val	Arg	Glu	Lys	Ala	Asp	Ser	Leu	His	Ser	Ser	Val	Gly	Leu
Trp		290.					295	•				300			

- Leu Ser Pro Trp Gly Gly Tyr Asn Lys Pro Gln Arg Arg Ser Arg Phe
- Ala Cys Lys Arg Val Trp Val Arg Asn Arg Gly Arg Gln Ala Gly Ala
- Phe Gly Ser Glu Leu Leu Lys Asn Phe Asn Glu Gln Ile Ile Asn Leu

WO 2005/097823	PCT/EP2005/003972

	W	V O 2 00	5/09782	23				102/3	PCT/EP2005/0039						
	Ile Asn	Lys		Glu	His	Ile	Thr		Phe	Lys	Leu	Asp		Met	Gly
			355					360		,			365		
5	Ala	Ser	Ser	His	Ile	Lys	Gly	Ser	Pro	Phe	Ala	Ser	Asp	Phe	Asp
	Ala	370					375					380			
10	Q	~]_	73.7	Т	Т о	113 0	7. ~ ~	M ~ +	7 ~ ~	7 ~ ~	7\] ¬	7\ an	Dro	7) G 20	Т о и
	Ser Phe	тте	Ата	ьеи	ьеи	390	ASII	Mec	Arg	Arg	Ala 395	ASII	FIO	ASII	пец
15	385 400					390			•		333		t		
13															
	Ile Tyr	Asn	Leu	Thr	Thr	Gly	Thr	Asn	Ala	Ser	Pro	Ser	Trp	Leu	Phe
20	- <i>1</i>				405					410					415
20															
•	Ala Pro	Asp	Ser	Ile	Trp	Arg	Gln	Gly	Asp	Asp	Ile	Asn	Leu	Tyr	Gly
	11.0			420	•				425					430	
25															
	Gly Tyr	Thr	Pro	Val	Gln	Gln	Trp	Ile	Thr	Tyr	Arg	Asp	Ala	Glu	Thr
•	- 7		435					440					445		
30															
	Arg Met	Ser	Ile	Val	Arg	Lys	Gly	Pro	Leu	Phe	Pro	Leu	Asn	Ser	Leu
35		450					455					460			
33															
	Tyr Lys	His	Gly	Ile	Val	Ser	Ala	Glu	Asn	Ala	Tyr	Tyr	Gly	Leu	Glu
40	465 480					470					475				
	Val	Gln	Thr	Asp	Ser	Asp	Phe	Ala	Asp	Gln	Val	Trp	Ser	Tyr	Phe
45	Ala				485					490					495
1.5					100					- •					

Thr Gly Thr Gln Leu Gln Glu Leu Tyr Ile Thr Pro Ser Met Leu

Asn

•		-						103/3	70					*	
	Lys Glu	Val		Trp	Asp	Thr	Leu		Lys	Ala	Ala	Lys	-	Ser	Lys
5			515					520					525		•
	Asn Thr	Ala 530	Ser	Val	Leu	Val	Asp 535	Thr	His	Trp	Ile	Gly 540	Gly	Asp	Pro
10		330					5,55					340			
	Ala Ile	Leu	Ala	Val	Tyr	Gly	Trp	Ala	Ser	Trp	Ser	Lys	Asp	Lys	Ala
15	545 560		-			550					555				
		Gly	Leu	Arg	Asn	Pro	Ser	Asp	Lys	Pro	Gln	Thr	Tyr	Tyr	Leu
20	Asp				565					570					575
	-	Ala	Lys	Asp	Phe	Glu	Ile	Pro	Ala	Gly	Asn	Ala	Ala	Gln	Phe
25	Ser			580					585					590	
	Leu Lys	Lys	Ala	Val	Tyr	Gly	Ser	Asn	Lys	Thr	Val	Pro	Val	Glu	Tyr
30	275		595					600					605		
	Asn Glu	Ala	Thr	Val	Ile	Thr	Leu	Gln	Pro	'Leu	Glu	Thr	Leu	Val	Phe
35		610					615					620			
40	Ala 625	Val	Thr	Ile	Asn										
	<210 <400			211>	177	78 <2	212>	PRI	r <21	13>	Esch	nerio	chia	col	Ĺ
45	Met Tyr	Asn	Lys	Ile	Phe	Lys	Val	Ile	Trp	Asn	Pro	Ala	Thr	Gly	Ser
	1				5					10		,	-		15

50 Thr Val Ala Ser Glu Thr Ala Lys Ser Arg Gly Lys Lys Ser Gly Arg

WO 2005/097823 PCT/EP2005/003972 104/370

20 25

30

Ser Lys Leu Leu Ile Ser Ala Leu Val Ala Gly Gly Leu Leu Ser 5 Ser 40 45

Phe Gly Ala Ser Ala Asp Asn Tyr Thr Gly Gln Pro Thr Asp Tyr 10 Gly 50 55 60

Asp Gly Ser Ala Gly Asp Gly Trp Val Ala Ile Gly Lys Gly Ala

15 Lys
65 70 75 80

Ala Asn Thr Phe Met Asn Thr Ser Gly Ala Ser Thr Ala Leu Gly 20 Tyr 85 90 95

Asp Ala Ile Ala Glu Gly Glu Tyr Ser Ser Ala Ile Gly Ser Lys

Thr

100 105 110

Leu Ala Thr Gly Gly Ala Ser Met Ala Phe Gly Val Ser Ala Lys 30 Ala 115 120 125

Met Gly Asp Arg Ser Val Ala Leu Gly Ala Ser Ser Val Ala Asn 35 Gly 130 135 140

Asp Arg Ser Met Ala Phe Gly Arg Tyr Ala Lys Thr Asn Gly Phe
40 Thr
145 150 155

50 Ala Leu Gly Asn Thr Ala Lys Ala Tyr Glu Ile Met Ser Ile Ala Leu

190

Gly Asp Asn Ala Asn Ala Ser Lys Glu Tyr Ala Met Ala Leu Gly
Ala
195 200 205

Ser Ser Lys Ala Gly Gly Ala Asp Ser Leu Ala Phe Gly Arg Lys

Ser
210
220

Thr Ala Asn Ser Thr Gly Ser Leu Ala Ile Gly Ala Asp Ser Ser

Ser
225
240
230
235

20 Ser Asn Asp Asn Ala Ile Ala Ile Gly Asn Lys Thr Gln Ala Leu Gly
245 250 255

Val Asn Ser Met Ala Leu Gly Asn Ala Ser Gln Ala Ser Gly Glu Ser
260
265
270

30 Ser Ile Ala Leu Gly Asn Thr Ser Glu Ala Ser Glu Gln Asn Ala Ile 275 280 285

35 Ala Leu Gly Gln Gly Ser Ile Ala Ser Lys Val Asn Ser Ile Ala Leu 290 295 300

Gly Ser Asn Ser Leu Ser Ser Gly Glu Asn Ala Ile Ala Leu Gly Glu 305 310 315

Gly Ser Ala Ala Gly Gly Ser Asn Ser Leu Ala Phe Gly Ser Gln Ser
325
330
335

11 0 2005/05 /025		1 0 1/121 2005/0
	106/370	

	Arg Ala	Ala	Asn	Gly	Asn	Asp	Ser	Val	Ala	Ile	Gly	Val	Gly	Ala	Ala
	nia			340					345					350	
5	-n -1	 1	70.	77	<u> </u>	TT 7		-	~ ⁷	~ 7	~ 1	~		_,	
	Ala Ala	Thr		Asn	Ser	Va⊥	Ala		GLY	Ala	Gly	Ser	Thr	Thr	Asp
-			355			٠		360					365		
10	Ser	Asn	Thr	Val	Ser	Val	Gly	Asn	Şer	Ala	Thr	Lys	Arq	Lys	Ile
	Val	370					375					380	,	<u>.</u>	
15							•								
13		Met	Ala	Ala	Gly	Ala	Ile	Ser	Asn	Thr	Ser	Thr	Asp	Ala	Ile
	Asn 385					390					395				
20	400														
	Gly	Ser	Gln	Leu	Tyr	Thr	Ile	Ser	Asp	Ser	Val	Ala	Lys	Arg	Leu
	Gly	•			405		•			410					415
25															
	Gly Tyr	Gly	Ala	Thr	Val	Gly	Ser	Asp	Gly	Thr	Val	Thr	Ala	Val	Ser
30	- y			420			•		425		•			430	
50	7.7	Т	7)	0	C1	ШЪ	m	7)	7)		C]	70	. ד. מי	-	a
	Gly	ьеи		ser	GTÀ	THE	тàr		Asn	vaı	СΤΆ	Asp		ьеи	ser
35			435					440					445		
	Ile	Asp	Asn	Asn	Thr	Leu	Gln	Trp	Asn	Lys	Thr	Ala	Gly	Ala	Phe
	Ser	450					455					460			
40									÷						
	Ala Lys	Asn	His	Gly	Ala	Asn	Ala	Thr	Asn	Lys	Ile	Thr	Asn	Val	Ala
45	465 480					470					475				•
	Gly	Thr	Val	Ser	Ala	Thr	Ser	Thr	Asp	Val	Val.	Asn	Gly	Ser	Gln

495 .

Leu

485

107/370

Tyr Asp Leu Gln Gln Asp Ala Leu Leu Trp Asn Gly Thr Ala Phe

Ser 500 505 510

Ala Ala His Gly Thr Glu Ala Thr Ser Lys Ile Thr Asn Val Thr Ala
515 520 525

Gly Asn Leu Thr Ala Gly Ser Thr Asp Ala Val Asn Gly Ser Gln Leu
530 535 540

15

Lys Thr Thr Asn Asp Asn Val Thr Thr Asn Thr Thr Asn Ile Ala
Thr
545 550 555
20 560

Asn Thr Thr Asn Ile Thr Asn Leu Thr Asp Ala Val Asn Gly Leu Gly
25 565 570 575

Asp Asp Ser Leu Leu Trp Asn Lys Ala Ala Gly Ala Phe Ser Ala Ala 30 580 585 590

His Gly Thr Glu Ala Thr Ser Lys Ile Thr Asn Val Thr Ala Gly Asn 595 600 605

Leu Thr Ala Gly Ser Thr Asp Ala Val Asn Gly Ser Gln Leu Lys
Thr
40 610 620

Thr Asn Asp Asn Val Thr Thr Asn Thr Thr Asn Ile Ala Thr Asn Thr 45 625 630 635

Thr Asn Ile Thr Asn Leu Thr Asp Ala Val Asn Gly Leu Gly Asp 50 Asp 645 650 655

		,													
	Ser Gly	Leu	Leu	Trp	Asn	Lys	Thr	Ala	Gly	Ala	Phe	Ser	Ala	Ala	His
5		•		660					665					670	
	Thr	Asp	Ala	Thr	Ser	Lys	Ile	Thr	Asn	Val	Thr	Ala	Glv	Asn	Leu
10	Thr	-	675			_	*	680					685		
	Ala Asn	Gly	Ser	Thr	Asp	Ala	Val	Asn	Gly	Ser	Gln	Leu	Lys	Thr	Thr
15		690					695					700			
	Asp	Asn	Val	Thr	Thr	Asn	Thr	.Thr	Asn	Ile	Ala	Thr	Asn	Thr	Thr
20	Asn 705					710		•			715				
	720														
	Ile	Thr	Asn	Leu	Thr	Asp	Ala	Val	Asn	Gly	Leu	Gly	Asp	Asp	Ser
25	Leu				725					730	*		_	-	735
30	Leu Asp	Trp	Asn	Lys	Thr	Ala	Gly	Ala	Phe	Ser	Ala	Ala	His	Gly	Thr
				740					745					750	
	Ala	Thr	Ser	Lys	Ile	Thr	Asn	Val	Ĺys	Ala	Gly	Asp	Leu	Thr	Ala
35	Gly		755					760					765		
40	Ser Asn	Thr	Asp	Ala	Val	Asn	_	Ser	Gln	Leu	Lys	Thr	Thr	Asn	Asp
		770		•			775					780			
	Val	Ser	Thr	Asn	Thr	Thr	Asn	Ile	Thr	Asn	Leu	Thr	Asp	Ala	Val
45	Asn 785					790					795				
	800														
50	_	Leu	Gly	Asp	Asp	Ser	Leu	Leu	Trp	Asn	Lys	Thr	Ala	Gly	Ala
	Phe														

805 810 815

Ser Ala Ala His Gly Thr Asp Ala Thr Ser Lys Ile Thr Asn Val 5 Lys 820 825 830

Ala Gly Asp Leu Thr Ala Gly Ser Thr Asp Ala Val Asn Gly Ser 10 Gln 835 840 845

Leu Lys Thr Thr Asn Asp Asn Val Ser Thr Asn Thr Thr Asn Ile

15 Thr 850 855 860

Asn Leu Thr Asp Ser Val Gly Asp Leu Lys Asp Asp Ser Leu Leu 20 Trp 865 870 875

25 Asn Lys Ala Ala Gly Ala Phe Ser Ala Ala His Gly Thr Glu Ala Thr 885 890 895

30 Ser Lys Ile Thr Asn Leu Leu Ala Gly Lys Ile Ser Ser Asn Ser Thr 900 905 910

35 Asp Ala Ile Asn Gly Ser Gln Leu Tyr Gly Val Ala Asp Ser Phe Thr
915 920 925

40 Ser Tyr Leu Gly Gly Gly Ala Asp Ile Ser Asp Thr Gly Val Leu Ser 930 935 940

45 Gly Pro Thr Tyr Thr Ile Gly Gly Thr Asp Tyr Thr Asn Val Gly Asp 945 950 955

	,	WO 2 00:	5/09782	23				110/37	0			P	CT/EP2	005/00	3972
	Ala Ala		Ala 2		Ile :	Asn '	Thr Se	er Pl		er Th	nr Se	er Lei	ı Gly	y As _l 97!	
5	Leu Ile	Leu '		Asp <i>1</i> 980	Ala	Thr 2	Ala G		ys Ph 35	ne Se	er A	la Ly:	s His		Y
10	Asn Ser		Ala :	Pro S	Ser	Val :	Ile Th	nr <i>1</i>	Asp V	/al /	Ala 2		1 y 1 0 0 5	Ala V	/al
15	Ser	Thr 1010	Ser	Ser	Asp	Ala	Ile 1015	Asn	Gly	Ser	Gln	Leu 1020	Туr	Gly	Val
20	Ser	Asp 1025	Tyr	Ile	Ala	Asp	Ala 1030	Leu	Gly	Gly	Asn	Ala 1035	Val	Val	Asn
25	Thr	Asp 1040	Gly	Ser	Ile	Thr	Thr 1045	Pro	Thr	Tyr	Ala	Ile 1050	Ala	Gly	Gly
30	Ser	Tyr 1055	Àsn	Asn	Val	Gly	Asp 1060	Ala	Leu	Glu	Ala	Ile 1065	Asp	Thr	Thr
	Leu	Asp 1070	Asp	Ala	Leu	Leu	Trp 1075	Asp	Thr	Thr	Ala	Asn 1080	Gly	Gly	Asn
35	Gly	Ala 1085	Phe	Ser	Ala	Ala	His 1090	Gly	Lys	Asp	Lys	Thr 1095	Æla	Ser	Val
40	Ile	Thr 1100	Asn	Val	Ala	Asn	Gly 1105	Ala	Val	Ser	Ala	Thr 1110	Ser	Asn	Asp
15	Ala	Ile	Asn	Gly	Ser	Gln	Leu	Tyr	Ser	Thr	Asn	Lys	Туr	Ile	Ala

Asp Ala Leu Gly Gly Asp Ala Glu Val Asn Ala Asp Gly Thr Ile

	111/370

	Thr	Ala 1145	Pro	Thr	Tyr	Thr	Ile 1150	Ala	Asn	Thr	Asp	Tyr 1155	Asn	Asn	Val
5	Gly	Glu 1160		Leu	Asp	Ala	Leu 1165	Asp	Asn	Asn	Ala	Leu 1170	Leu	Trp	Asp
10	Glu	Asp 1175	Ala	Gly	Ala	Tyr	Asn 1180	Ala	Ser	His	Asp	Gly 1185	Asn	Ala	Ser
15	Lys	Ile 1190	Thr	Asn	Val	Ala	Ala 1195	Gly	Asp	Leu	Ser	Thr 1200	Thr	Ser	Thr
	Asp	Ala 1205	Val	Asn	Gly	Ser	Gln 1210	Leu	Asn	Ala	Thr	Asn 1215	Ile	Leu	Val
20	Thr	Gln 1220	Asn	Ser	Gln	Met	Ile 1225	Asn	Gln	Leu	Ala	Gly 1230	Asn	Thr	Ser
25	Glu	Thr 1235	Tyr	Ile	Glu	Glu	Asn 1240	Gly	Ala	Gly	Ile	Asn 1245	Tyr	Val	Arg
30	Thr	Asn 1250	Asp	Ser	Gly	Leu	Ala 1255	Phe	Asn	Asp	Ala	Ser 1260	Ala	Ser	Gly
35	Iİe	Gly 1265	Ala	Thr	Ala	Val	Gly 1270	Tyr	Asn	Ala	Val	Ala 1275	Ser	His	Ala
	Ser	Ser 1280	Val	Ala	Ile	Gly	Gln 1285	Asp	Ser	Ile	Ser	Glu 1290		Asp	Thr
40	Gly	Ile 1295	Ala	Leu	Gly	Ser	Ser 1300	Ser	Val	Ser	Ser	Arg 1305	Val	Ile	Val
45	Lys	Gly 1310		Arg	Asn		Ser 1315	Val	Ser	Glu	Glu	Gly 1320	Val	Val	Ile
50	Gly	Tyr 1325	_	Thr	Thr	Asp	Gly 1330	Glu	Leu	Leu	Gly	Ala 1335		Ser	Ile

	112/370														
	Gly	Asp 1340		Gly	Lys	Tyr	Arg 1345		Ile	Ile	Asn	Val 1350	Ala	Asp	Gly
5	Ser	Glu 1355	Ala	His	Asp	Ala	Val 1360	Thr	Val	Arg	Gln	Leu 1365	Gln	Asn	Ala
10	Ile	Gly 1370	Ala	Val	Ala	Thr	Thr 1375	Pro	Thr	Lys	Tyr	Tyr 1380		Ala	Asn
15	Ser	Thr 1385	Ala	Glu	Asp	Ser	Leu 1390	Ala	Val	Gly	Glu	Asp 1395	Ser	Leu	Ala
20	Met	Gly 1400	Ala	Lys	Thr	Ile	Val 1405	Asn	Gly	Asn	Ala	Gly 1410	Ile	Gly	Ile
25	Gly	Leu 1415	Asn	Thr	Leu	Val	Leu 1420	Ala	Asp	Ala	Ile	Asn 1425	Gly	Ile	Ala
25	Ile	Gly 1430	Ser	Asn	Ala	Arg	Ala 14 \$ 5	Asn	His	Ala	Asp	Ser 1440	Ile	Ala	Met
30	Gly	Asn 1445	Gly	Ser	Gln	Thr	Thr 1450	Arg	Gly	Ala	Gln	Thr 1455	Asn	Tyr	Thr
35	Ala	Tyr 1460	Asn	Met	Asp	Ala	Pro 1465	Gln	Asn	Ser	Val	Gly 1470	Glu	Phe	Ser
40	Val	Gly 1475	Ser	Glu	Asp	Gly	Gln 1480	Arg	Gln	Ile	Thr	Asn 1485	Val	Ala	Ala
45	Gly	Ser 1490	Ala	Asp	Thr	Asp	Ala 1495	Val	Asn	Val	Gly	Gln 1500	Leu	Lys	Val
73	Thr	Asp 1505	Ala	Gln	Val	Ser	Gln 1510	Asn	Thr	Gln	Ser	Ile 1515	Thr	Asn	Leu

Asn Thr Gln Val Thr Asn Leu Asp Thr Arg Val Thr Asn Ile Glu

1530

1525

- 50

5	Asn	Gly 1535	Ile	Gly	Asp	Ile	Va) 1540	Thr	Thr	Gly	Ser	Thr 1545	Lys	Tyr	Phe
	Lys	Thr 1550	Asn	Thr	Asp	Gl'n	Ala 1555		Ala	Asn	Ala	Gln 1560	Gly	Lys	Asp
10	Ser	Val 1565	Ala	Ile	Gly	Ser	Gly 1570	Ser	Ile	Ala	Ala	Ala 1575	Asp	Asn	Ser
15	Val	Ala 1580	Leu	Gly	Thr	Gly	Ser 1585	Val	Ala	Asp	Glu	Glu 1590	Asn	Thr	Ile
20	Ser	Val 1595	Gĺy	Ser	Ser	Thr	Asn 1600	Gln	Arg	Arg	Ile	Thr 1605	Asn	Val	Ala
25	Ala	Gly 1610	Val	Asn	Ala	Thr	Asp 1615	Ala	Val	Asn	Val	Ser 1620	Gln	Leu	Lys
	Ser	Ser 1625	Glü	Дlа	Gly	Gly	Val 1630	Arg	Tyr	Asp	Thr	Lys 1635	Ala	Asp	Gly
30 ′	Ser	Ile 1640	Asp	Tyr	Ser	Asn	Ile 1645	Thr	Leu	Gly	Gly	Gly 1650	Asn	Ser	Gly
35	Thr	Thr 1655	Arg	Ile	Ser	Asn	Val 1660	Ser	Ala	Gly	Val	Asn 1665	Asn	Asn	Asp
40	Ala	Val 1670	Asn	Tyr	Ala	Gln	Ļeu 1675	Lys	Gln	Ser	Val	Gln 1680	Glu	Thr	Lys
45	Gln	Tyr 1685	Thr	Asp	Gln	Arg	Met 1690	Val	Glu	Met	Asp	Asn 1695	Lys	Leu	Ser
	Lys	Thr 1700	Glu	Ser	Lys	Leu	Ser 1705	Gly	Ġly	Ile	Ala	Ser 1710	Ala	Met ,	Ala
50	No +	m1	61	Т	D	~ 1	7). Tr		m1	D	0 1.	7 . 7		3.6	7 . 7

Met Thr Gly Leu Pro Gln Ala Tyr Thr Pro Gly Ala Ser Met Ala

1	1	4	/3	7	(

1715 1720 1725

Ser Ile Gly Gly Gly Thr Tyr Asn Gly Glu Ser Ala Val Ala Leu $1\dot{7}30$ 1735 1740

Gly Val Ser Met Val Ser Ala Asn Gly Arg Trp Val Tyr Lys Leu 1745 1750 1755

Gln Gly Ser Thr Asn Ser Gln Gly Glu Tyr Ser Ala Ala Leu Gly 1760 1770

15
Ala Gly Ile Gln Trp
1775

20 <210> 35 <211> 227 <212> PRT <213> Escherichia coli <400> 35

Met Asn Leu Lys Lys Thr Leu Leu Ser Val Leu Met Ile Leu Gln Leu

25 1 5 10 15

Cys Leu Leu Val Gly Cys Asp Tyr Ile Glu Lys Ala Ser Lys Val Asp

Asp Leu Val Thr Gln Gln Glu Leu Gln Lys Ser Lys Ile Glu Ala Leu 35 35 40 45

Glu Lys Gln Gln Glu Leu Asp Lys Arg Lys Ile Glu His Phe Glu Lys 40 50 55 60

Gln Gln Thr Thr Ile Ile Asn Ser Thr Lys Thr Leu Ala Gly Val Val 45 65 70 75 80

Lys Ala Val Lys Asn Lys Gln Asp Glu Phe Val Phe Thr Glu Phe Asn 50 85 90 95

115/370

Pro Ala Gln Thr Gln Tyr Phe Ile Leu Asn Asn Gly Ser Val Gly 100 105 110 5 Ala Gly Lys Ile Leu Ser Ile Asp Ala Val Glu Asn Gly Ser Val Ile 115 120 125 10 Arg Ile Ser Leu Val Asn Leu Leu Ser Val Pro Val Ser Asn Met Gly 130 135 140 **1**5 Phe Tyr Ala Thr Trp Gly Gly Glu Lys Pro Thr Asp Ile Asn Ala Leu 145 150 155 20 160 Ala Lys Trp Gln Gln Leu Leu Phe Ser Thr Ala Met Ash Ser Ser Leu 25 165 170 175 Lys Leu Leu Pro Gly Gln Trp Gln Asp Ile Asn Leu Thr Leu Lys Gly 30 180 185 190 Val Ser Pro Asn Asn Leu Lys Tyr Leu Lys Leu Ala Ile Asn Met Ala 35 195 200 205 Asn Ile Gln Phe Asp Arg Leu Gln Pro Ala Glu Ser Pro Gln Arg Lys 40 210 215 220 Asn Lys Lys 225 45 <210> 36 <211> 1109 <212> PRT <213> Escherichia coli

<400> 36

50 Met Lys Arg Val Val Arg Leu Leu Gly Val Gly Leu Leu Leu Val

W O 2005/09/825						116/370								PC1/EF2005/0039/2			
	1				5					10					15		
5	Val Ile	Leu	Leu	Leu	Ile	Leu	Phe	Val	Leu	. Ala	Gln	Thr	Thr	Pro	Leu	-	
				20					25	,				30			
10	Ser Ala	Ala	Gln	Asp	Glu	His	Ala	Val	Trp	Leu	Arg	Leu	Leu	Ile	Thr		
	•	*	35					40					45				
15	Ile Phe		Ile	Cys	Leu	Leu	Ser	Met	Cys	Ile	Phe	Phe	Leu	Phe	Ser		
		50					55					60			,		
20	Asp	Gln	Asn	Glu	Ala	Ser	Thr	Ile	Ser	Leu	Tyr	Ala	Gln	Pro	Thr		
	65					70					75					80	
25	Ile Thr	Lys	Glu	Ile	Asn	Thr	Glu	Gln	Pro	Asn	Tyr	Ala	Ser	Leu	Leu		
,				*	85					90					95		
30 -	Ile Arg	Tyr	Leu	Arg	Asp	Arg	Tyr	Gly	Pro	Phe	Trp	Arg	Arg	Lys	Val		
		•		100					105					110			
35	Leu Pro	Leu	Leu	Val	Thr	Gly	Glu	Pro	Glu	Gln	Ala	Glu	Ala	Ile	Ala		
			115					120					125				
40	Gly Ile	Ļeu	Thr	Gly	Gln	His	Trp	Leu	Glu	Gly	Asp	His	Thr	Val	Leu·		
		130					135				•	140				٠	
45	Tyr Ala	Gly	Gly	Arg	Pro	Thr	Ala	Glu	Pro	Asp	Val	Thr	Leu	Leu	Thr		
	145 160					150					155						
												•				•	

Leu Lys Lys Leu Arg Arg Ser Arg Pro Leu Asp Gly Ile Ile Trp Ala

PCT/EP2005/003972

WO 2005/097823

165 170 175

- Leu Thr Glu Glu Gln Ser Arg Gln Thr Ala Gln Leu Asp Lys Gly
 5 Trp
 180 185 190
- Arg Gly Leu Ile Asn Gly Gly Lys Arg Leu Gly Phe Gln Ala Pro 10 Leu 195 200 205
- Tyr Leu Trp Gln Val Cys Asp Asp Gly Asp Tyr Gln Thr Gly Arg
 15 Pro 210 215 220
- Leu Gln Ser Val Gly Cys Leu Leu Pro Glu Arg Cys Thr Pro Glu

 One of the control o
- 25 Leu Ala Val Met Leu Glu Ala Ala Ala Asp Gly Thr Gly His Val Ala
 245 250 255
- 30 Ala Thr Asp Arg Tyr Arg Met Phe Ser Ala Ala Ser Gly Ser Tyr Pro
 260 265 270
- Cys Arg Ala Gly Tyr Cys Ser Leu Ala Asp Arg Pro Glu Thr Ala Ala
 275
 280
 285
- 40 Gly Arg Arg Ile Phe Phe Pro Ala Pro Ala Arg Pro Asp Val Gln 290 295 300
- Pro Ala Ala Cys Arg Arg Ala Gly Gly Gln His Leu Met Gln Trp Leu
 305 310 315

118/370
110/3/9

	Pro Ala	Ser	Pro	Val	Trp	Ala	Gly	Val	Thr	Val	Ile	Thr	Arg	Ala	Gly
					325					330					335
5	-	Trp	Val	Phe	Leu	Trp	Leu	Arg	Thr	Ala	Leu	Met	Ser	Ala	Val
	Cys			340					345					350	
10	Val	Leu	Val	Ile	Trp	Gly	Ala	Gly	Met	Thr	Thr	Ser	Phe	Phe	Ala
	Asn		355					360					365		
15	Arq	Ala	Leu	Val	Gln	Glu	Thr	Gly	Ile	Gln	Thr	Ala	Arg	Ala	Leu
	Asp	370					, 375					380			
20	mb v	7\ ~~ ~	T 011	Dro	T 011	7\] ->	Glu	Gln	T. 2 11	, 77 = 7	Ala	T. 211	His	Thr	T.011
	Gln 385	ALG	шеu	FIO	neu	390	· OIU		лси	vai	395	ДСС	1110	2112	шcu
25	400										,				
	_	Glu	Leu	Glu	Arg	Leu	Gln	Tyr	Arg	Ile	Arg	Glu	Gly	Ala	Pro
30	Trp			•	405					410					415
	_	Gln	Arg	Phe	Gly	Leu	Glu	Arg	Asn	Gln	Gln	Leu	Leu	Ala	Ala
35	Ala			420					425					430	
55	Phe	Pro	Gly	Tyr	Ala	Gln	Ala	Ala	Asn	Arg	Leu	Val	Arg	Asp	Val
	Ala		435	_				440		3			445		
40		7. 0.50	II d	Tou	Cln	Cln	Gln	T. 211	7) en	73 T to	Phe	Val	Δla	T.011	Pro
	Pro	450	urz	пеп	GIII	GTII	455	пец		r.r.a.	LIIC	460		дсα	110
45					-										٠
	Leu	Ser	·Pro	Gln	Arg		Ala	Thr	Gly	Glu	Gln	Arg	Tyr	Lys	Gln
50	465 480					470					475				

	119/3
	119/3

	Lys Phe	Ala	Leu	Leu	Met	Thr	Ser	Arg	Pro	Glu	Lys	Ala	Asp	Ala	Ala
5					485					490					495
J			r						~ 7		7 1 -	P7	~ 1	70	~~ 7 _
	Phe Pro	Ser	Thr	Thr	Leu	Met	Ala	Asp	GLY	Leu	Arg	Tyr	GLU	Asn	тте
10				500					505					510	
10		_		_		_	TT 7		T	Q	Τ	T 011	mb	Dho	
	Glu Thr	Gly	Val	Arg	GIn	Ser	val			ser	ьеи	Leu		rne	ıτb
15			515					520,			•		525		
15	-n -1	71	T	D	C3	71 ± 0	Dwo	Cln	Tro	Tvc	Ψhr	s a r	Pro	Pro	Pro
	Ala Glu	Asn	Leu	Pro	GIU	uis		GTII	ттЪ	плэ	· T11T	Ser	LLO.	110	110
20	,	530					535					540			
20	_	GD 1	, ,	71 T	77-7	7) 20 ~	T	Tlo	T 011	T 011	7\ r.~	Gla	Tla	Glv	Val
	Leu Arg	unr	СΤΆ	АТА	val		пЛр	TTE	теп	neu		Gln	TTE	СТУ	Val
25	545 560					550			•		555				
	Asn	Ala	Glu	Asn	Thr	Leu	Tyr	Gln	Asn	Val	Leu	Gln	Gln	Val	Ser
30	Arg				565					570					575
							•	•		,					
		Tyr	Ala	Asp	Met	Thr	Leu	Ala	Asp	Met	Thr	Gly	Asp	Thr	Leu
35	Thr			580					585					590	
		Ser	Leu	Phe	Ser	Thr	Glu	Gln	Thr	Val	Pro	Gly	Met	Phe	Thr
40	Arg		595					600					605		
		Ala	Trp	Glu	Gly	Gln	Val	Arg	Glu	Ala	Ile	GLu	Gln	Val	Val
45	Thr	610					615					620			
			Arg	Glu	Glu	Ile	Asp	Trp	Val	Leu	Ser	Asp	Arg	Gln	Gln
50	Asp 625 640					630	•				635		•		

	Thr Ser		Ala	Asp	Ile	Ser	Pro	Asp	Thr	Leu	Arg	Asn	Arg	Leu	Thr
5					645					650					655
			Phe	Thr	Asp	Phe	Ala	Gly	Ser	Trp	Leu	Ala	Phe	Leu	Asn
10	Ser			660					665					670	
		His	Trp	Lys	Lys	Glu	Asp	Ser	Leu	Ser	Gly	Ile	Leu	Asp	Gln
15	Leu		675					680					685		
•	Thr	Leu	Met	Ala	Asp	Ala	Arg	Gln	Ser	Pro	Leu	Ile	Ala	Leu	Thr
20	Asp ·	690					695					700			
	Thr	Leu	Ala	Trp	Gln	Ala	Ala	Thr	Gl v	Ara	Glu	Asn	Ara	Glv	Leu ·
25	Ser 705			<u>T</u>		710				,	715	11011	1119	CIY	I.C.a
	720				•										
30	Asp Lys	Ser	Leu	Ala	Lys	Ser	Ala	Gln	Glu	Leu	Phe	Asn	Gly	Lys	Glụ
	•				725					730					735.
35	Thr Leu	Pro	Gln	Gln	Ser	Arg	Glu	Gly	Asp	Asp	Val	Pro	Val	Gly	Pro'
33	шец	ı		740					745					750	
40		Lys	Thr	Phe	Thr	Pro	Leu	Leu	Arg	Leu	Leu	Gly	Asp	Lys	Ala
40	Gly		755				à	760			¢	,	765		
		Gly	Asp	Ser	Gln	Leu	Ser	Leu	Gln	Thr	Tyr	Leu	Thr	Arg	Val
45	Thr	770					775					780			
	Arg	Val	Arg	Leu	Lys	Leu	Gln	Gln	Val	Thr	Asn	Ala	Pro	Asp	Pro
50	Gln				-					_			0	L	

785 790 795 800 ·

5 Glu Met Thr Gln Gln Leu Ala Gln Thr Val Leu Gln Gly Lys Thr Val 805 810 815

10 Asp Leu Thr Asp Thr Arg Asp Tyr Gly Arg Leu Ile Ala Ala Ser Leu 820 825 830

15 Gly Glu Glu Trp Ser Gly Phe Gly Gln Ala Leu Phe Val Arg Pro Val 835 840 845

20 Glu Gln Ser Trp Arg Gln Val Leu Thr Pro Ala Ala Asp Ser Leu Asn 850 855 860

25 Arg Gln Trp Gln Arg Ala Ile Val Ser His Trp Asn Gln Asp Phe Ala 865 870 875

30
Gly Arg Tyr Pro Phe Lys Ala Ser Gln Asn Asp Ala Ser Leu Pro Leu
885
890
895

Leu Ala Gln Tyr Leu Arg Asp Asp Gly Arg Ile Asn Leu Phe Ile Ala 900 905 910

40
Ala Asn Leu Ser Gly Val Leu Lys Arg Glu Gly Arg Tyr Trp Val
Ala
915
920
925

Asp Ala Met Asn Thr Gln Gly Leu Thr Val Asn Pro Asp Phe Ile Arg
930 935 940

_	
	122/370

Ala Leu Asn Arg Leu Arg Asp Val Ala Asp Thr Ala Phe Ala Ser Gly Asp Ala Gly Ile His Phe Glu Leu Arg Ala Lys Pro Ala Arg Asp Val Met Lys Thr His Leu Val Ile Asp Gly Gln Glu Leu Glu Tyr Phe Asn Gln Lys Glu Arg Trp Gln Arg Phe Asn Trp Pro Asp Glu Gln Trp Gln Pro Gly Ala Ser Leu Ser Trp Thr Ser Thr Gln Ala Met Glu Arg Ile Leu Ala Asp Tyr Arg Gly Ser Trp Ser Leu Ile Arg Leu Leu Glu Gln Ala Gln Val Thr Pro Val Asp Ser Ser Thr Phe Lys Val Val Trp Lys Ala Gln Asp Gly Leu Pró Leu Asn Tyr Leu Leu Arg Val Glu Gln Gly Lys Gly Pro Leu Ala Leu Leu Glu Leu Lys Asn Phe Arg Leu Pro Gly Gln Val Phe Leu Thr Gly Lys Ser Met Lys Asp Val Glu Glu Tyr Gly Glu Asp Ala Asp Glu <210> 37 <211> 178 <212> PRT <213> Escherichia coli <400>

	·	0 200	, 03 . 0					123/3	370				101	,	,0,000	
5	Met Met 1	Phe	Pro	Ile	Arg 5	Phe	Lys	Arg	Pro	Ala 10	Leu	Leu	Cys	Met	Ala 15	
10	Leu Asp	Thr	Val	Val	Leu	Ser	Gly	Cys	Gly 25	Leu	Ile	Gln	Lys	Val	Val	
15	Glu Ile	Ser	Lys 35	Ser	Val	Ala	Ser	Ala 40	Val	Phe	Tyr	Lys	Gln 45	Ile	Lys	
20	Leu Glu	His 50	Leu	Asp	Phe	Phe	Ser 55	Arg	Ser	Ala	Leu	Asn 60	Thr	Asp	Ala	
25	Asp Arg 65	Thr	Pro	Leu	Ser	Thr 70	Met	Val	His		Trp ,75	Gln	Leu	Lys	Thr	80
30	Glu Glu	Asp	Phe	Asp	Lys 85	Aĺa	Asp	Туг	Asp	Thr 90	Leu	Phe	Met	Gln	Glu 95	
35	Lys Lys	Thr	Leu	Glu 100	Lys	Asp	Val	Leu	Ala 105		His	Thr		Trp 110	Val ·	
40	Pro Gln	Glu	Gly 115	Thr	Ala	Ser	Leu	Asn 120	Val	Pro	Leu	Asp	Lys 125	Glu	Thr	·

Phe Val Ala Ile Ile Gly Gln Phe Tyr His Pro Asp Glu Lys Ser Asp 130 135 140

45

50

Ser Trp Arg Leu Val Ile Lys Arg Asp Glu Leu Glu Ala Asp Lys Pro
145 150 155
160

124/370

Arg Ser Ile Glu Leu Met Arg Ser Asp Leu Arg Leu Leu Pro Leu Lys

Asp Lys

38 <211> 280 <212> PRT <213> Escherichia coli <400>

Met Ile Ser Gly Gly Asn Met Leu Lys Glu Trp Met Ile Phe Thr Cys

Ser Leu Leu Thr Leu Ala Gly Ala Ser Leu Pro Leu Ser Gly Cys Ile

Ser Arg Gly Gln Glu Ser Ile Ser Glu Gly Ala Ala Phe Gly Ala Gly

Ile Leu Arg Glu Pro Gly Ala Thr Lys Lys Ala Asp Thr Lys Asp Leu

Asn Val Pro Pro Pro Val Tyr Gly Pro Pro Gln Val Ile Phe Arg Ile 7 O

Asp Asp Asn Arg Tyr Phe Thr Leu Glu Asn Tyr Thr His Cys Glu Asn

Gly Gln Thr Phe Tyr Asn Asn Lys Ala Lys Asn Ile His Val Lys Ile 100.

Leu Asp Ala Ser Gly Tyr Leu Phe Lys Gly Arg Leu Phe Trp Leu Ser

	Thr His	Arg	Asp	Asp	Phe	Leu	Ala	Phe	Pro	Ala	Thr	Leu	Asn	Thr	Arg
5	1113	130					135					140			
		Ser	Cys	Met	Gly	Ser	Asn	Lys	Gly	Cys	Met	Asn	Ala	Val	Įle
10	Val 145				•	150					155				
	160													٠.	
		Thr	Asp	Gly	Gly	Lys	Arg	Arg	Ser	Gly	Val	Pro	Tyr	Gly	Ser
15	Tyr				165					170				•	175
20	Thr Met	Gln	Asn	Pro	Thr	Gly	Ala	Thr	Arg	Asp	Tyr	Asp	Met	Leu	Val
				180					185		•	•		190	
	Asn	Asp	Gly	Phe	Tyr	Leu	Leu	Arq	Tyr	Arq	Gly	Gly	Gln	Gly	Arq
25	Phe	r	195		_		ę	200	_		.	4	205	<i>_</i>	J
			130				-	,					200		
30		Pro	Val	Ile	Leu	Arg	Trp	Ile	Leu	Ser	Thr	Glu	Asp	Ser	Ser
30	Gly	210					215			ı	-	220			
				,	~ 7		- 7			_	-1		_		~ 7
35	Glu	Val	Arg	Ser	GLu	_	Ala	Tyr	Glu	Leu	*	Arg	Pro	GTA	GLu
	225 240					230				å	235			•	
•													•		
40	Val Pro	Pro	Ser	Thr	Gly	Phe	Tyr	Lys	Ile	Asp	Leu	Ser	Arg	Phe	Tyr
					245					250					255
45	Lys	Asn	Asn	Val	Met	Glu	Met	Gln	Cys	Asp	Arg	Thr	Leu	Glu	Pro
	Val			260					265					270	
				_ = 0											
50	Gln	Pro	Ser 275	Glu	Ser	Lys	Ile	Gln 280							

	<21	.0>	39 <	211>	50	1 <2	12>	PRT	<21	3>	Esch	ari <i>c</i>	hia	col+	_ 1	00>
5	39					_ _		1111	\ <u>_</u>	J,		CIIC	III.a	COTT		00>
	Met Met	Glu	His	Val	Ser	Ile	Lys	Thr	Leu	Tyr	His	Leu	Leu	Cys	Cys	
	1				5 .					10					15	
10	Leu	Leu	Phe	Tle	Ser	Ala	Met	Cve	Δla	Τ.Δ11	Ala	Gln	Glu	Ui a	·	
	Pro			20		,	1100	·	25	1100	1114	OTI	Gru	30	GIU	
15									20					50		
	Ile Met	Gly	Ala	Gln	Asp	Glu	Arg	Leu	Ser	Thr	Leu	Ile	His	Gln	Arg	
	2100		35					40	•				45			•
20	Gln	Glu	Δla	Tws	Val	Pro	Zla	T. 611	Ser	77-7	Ser	77-2 1	mb w	т] "	Τ	
	Gly	50		±72	VUI	LLO	55 .	шси	DET	vai ,	261	60	T11T	тте	гАг	
25							55					00				
23	Val Lys	Arg	Gln	Arg	Phe	Val	Tyr	Gly	Val	Ala	Asp	Val	Ala	Ser	Gln	
	65					70			,		75					80
30	Ala	Asn	Thr	Leu	Asp	Thr	Val	Tur	Glu	T,e11	Gly	Ser	Mot	90r	T 170	
	Ala	,			85			- 1 -	C L C	90	С±У		ITC.C	Det	95	
35										50					90	
	Phe Arg	Thr	Gly	Leu	Val	Val	Gln	Ile	Leu	Ile	Gln	Glu	Gly	Arg	Leu	
				100					105				-	110		
40	Gln	Glv	Asp	Asp	Ile	Tle	Thr	Tvr	Leu	Pro	Glu	Met	Δκα	T. 611	7\ a.n	
	Tyr		115	<u>F</u>				120	20 C	110	<u>014</u>	1100	125	пец	VPII	
45								120					149	1		
-	Gln Thr	Gly	Lys	Pro	Ala	Ser	Leu	Thr	Val	Ala	Asp	Phe	Leu	Tyr	His	
		130					135					140				

WO 2005/097823		PCT/EP2005/003972
	127/270	

								127/3	370						
5	Ser Pro 145 160	5 5	y Le	u Pro	⊃ Ph∈	9 Sei 150		. Let	ı Ala	a Arg	155		ı As:	n Pro	o Met
	Cl.	, Co	~ 7\] ·	~ T7~7	71. 7	~ ~ 1	. .	-	_	_					
	Ala) SE	T HT	a val			ı Gın	ı Let	ı Arç			ı Asr	ı Leı	ı Leı	ı Phe
10					165	•				170					175
	Pro Gly	Gl _y	y Ala			Ser	Tyr	Ala	Ser	Ala	Asn	туг	Asp	o Val	Leu
15			,	180					185		•			190)
	Ala Ala	. Val	L Il∈	e Glu	Asn	Val	Thr	Gly	Lys	Thr	Phe	Thr	Glu	val	Ile
20			195					200					205	•	•
	Glu Lys	Arç	g Leu	ı Thr	Gln	Pro	Leu	Gly	Met	Ser	Ala	Thr	Val	Ala	Val
25		210)				215			•		220	•		
	Pne	Asp) Glu	Ile	Ile		Asn	Lys	Ala	Ser	Gly	Tyr	Lys	Leu	Gly
30	225 240		,			230	,			•	235				
	Gly Pro	Lys	Pro	Val	Leu	Phe	His	Ala	Pro	Leu	Ala	Arg	Asn	His	Vaİ
35				٠	245	,	•			250		•			255
	Ala Asp	Ala	Tyr	Ile	His	Ser	Thr	Leu	Pro	Asp	Met	Glu	Ile	Trp	Ile
40				260	•				265					270	
	Ala Met	Trp	Leu	His	Arg	Lys	Ala	Leu	Pro	Ala	Thr	Leu	Arg	Glu	Ala
45			275					280					285		
	Ser	Asn	Ser	Trp	Arg	Gly	Asn	Ser	Asp	Val	Pro	Leu	Ala	Ala	Asp
50	Asn	290					295					300			

W O 2005/09/823		PC 1/EP2005/003
	128/370	

5	Arg Pro 305 320	Ile	Leu	Tyr	Ala	Ser 310	Gly	Trp	Phe	Ile	Asp 315	Ģln	Asn	Gln	Gly
10	Tyr Ala	Ile	Ser	His	Gly 325	Gly	Gln	Asn	Pro	Asn 330	Phe	Ser	Ser	Cys	Ile 335
15	Leu Asn	Arg	Pro	Asp 340	Gln	Gln	Ile	Gly	Ile 345	Val	Ala	Leu	Ala	Asn 350	Met
20	Ser Arg	Asn	Leu 355	Ile	Leu	Gln	Leu	Cys 360	Ala	Asp	Ile	Asp	Asn 365	Tyr	Leu
25	Ile Asp	Gly 370	Lys	Tyr	Ala	Asp	Gly 375	Ala	Gly	Asp	Ala	Ile 380	Thr	Ala	Thr
30	Thr Val 385 400	Leu	Phe	Val	Tyr	Leu 390	Thr	Leu	Leu	Leu	Cys 395	Phe	Trp	Gly	Ala
35	Val Gly	Val	Val	Arg	Gly		Phe	Arg	Val	Tyr 410	Arg	Ala	Thr	Ala	His
40	Pro Ile	Gly	Lys	Gln 420	Gln	Arg	Leu	Arg	Leu 425	Arg	Val	Arg	Asp	Tyr 430	Ile
45	Ala Pro	Leu	Ala 435	Val	Pro	Gly	Leu	Val		Ala	Met	Leu	Tyr 445	Val	Ala
50	Gly Gly	Ile 450	Leu	Ser	Pro	Gly	Leu 455	Asp	Trp	Arg	Phe	Ile	Leu	Val	Trp

	Pro Phe	Ser	Ser	Val	Leu	Ala	Ile	Pro	Phe	Gly	Ile	Ile	Leu	Leu	Ala	
5	465 480					470					475					
	400															
10	Val :	Leu	Thr	Leu	Asn	His	Gln	Ile	Lys	Arg	Ile	Leu	Leu	His	Asn	
10	Lys				485					490					495	
											•					
15	Glu '	Trp	Asp	Asp 500					•							
		•														
20	<210 40	> 4	10 <2	211>	682	2 <21	12>	PRT	<213	3> I	Esche	erich	nia d	coli	< 40	0>
20	Met : Ser	Lys	Asn	Lys	Tyr	Ile	Ile	Ala	Pro	Gly	Ile	Ala	Val	Met	Càs	
	1				5	•				10					15	
25	Ala	7.7.7	Tlo	20x	Sor	Clv	Тиг	7\] a	Sar	Sar	Asn	T.ve	T.170	Glu	Asn	
	Thr	val	TIE	20	Der	GTĀ	тут	ALG	25	DCI	1100	T Y C	шуы	30	7100	
20				20					20					30		
30	Leu	Val	Val	Thr	Ala	Ser	Gly	Phe	Thr	Gln	Gln	Leu	Arg	Asn	Ala	,
	Pro		35					40					45			
35			_			_ 7		_		~ 3		~ 7			_	
	Ala Val		Val	Ser	Val	Ile	•	Ser	GLu	GIn	Leu		ГÀЗ	туѕ	Pro	
		50					55			,		60				
40	Ser	Asp	Leu	Val	Asp	Ala	Val	Lys	Asp	Val	Glu	Gly	Ile	Ser	Ile	
	Thr 65		,	٠		70					75					80
45												à	,			
	Gly Asp	Gly	Asn	Glu	Lys	Pro	Asp	Ile	Ser	Ile	Arg	Gly	Leu	Ser	Gly	
	4235				95					90					95	

50

90

	V	VO 200	05/0978	323				130	/370				PCT	Γ/ EP2 0	05/0039	72
								130	13/0							
	Tyr Ser	Thr	Leu	Ile	Leu	Val	Asp	Gly	Arg	Arg	Gln	Ser	Gly	Arg	Glu	
	per			100					105					110		
					*											
5																
	Arg Val	Pro	Asn	Gly	Ser	Gly	Gly	Phe	Glu	Ala	Gly	Phe	Ile	Pro	Pro	

125

10									÷.						
	Glu	Ala	Ile	Glu	Arg	Ile	Glu	Val	Ile	Arg	Gly	Pro	Met	Ser	Ser
	Leu														
		130	•				135					140			

115

15

20

25

30

35

40

45

Tyr Gly Ser Asp Ala Ile Gly Gly Val Ile Asn Ile Ile Thr Lys Pro 145 150 155

Gln Glu His Gly Lys Phe Gly Asn Ser Thr Thr Asn Asp Phe Tyr Leu 180 185 190

Ser Gly Pro Leu Ile Lys Asp Lys Leu Gly Leu Gln Leu Tyr Gly Gly 195 200 205

Met Asn Tyr Arg Lys Glu Asp Ser Ile Ser Gln Gly Thr Pro Ala Lys 210 215 220

Asp Asn Lys Asn Ile Thr Ala Thr Leu Gln Phe Thr Pro Thr Glu Ser
225 230 235
240

Gln Lys Phe Val Phe Glu Tyr Gly Lys Asn Asn Gln Val His Thr Leu 50 245 250 255

W O 2005/09/625		PC 1/EP2005/003
	131/370	

Thr Pro Gly Glu Ser Leu Asp Ala Trp Thr Met Arg Gly Asn Leu Lys Gln Pro Asn Ser Lys Arg Glu Thr His Asn Ser Arg Ser His Trp Val Ala Ala Trp Asn Ala Gln Gly Glu Ile Leu His Pro Glu Ile Ala Val Tyr Gln Glu Lys Val Ile Arg Glu Val Lys Ser Gly Lys Lys Asp Lys Tyr Asn His Trp Asp Leu Asn Tyr Glu Ser Arg Lys Pro Glu Ile Thr Asn Thr Ile Ile Asp Ala Lys Val Thr Ala Phe Leu Pro Glu Asn Val 345 . 30 : Leu Thr Ile Gly Gly Gln Phe Gln His Ala Glu Leu Arg Asp Asp Ser Ala Thr Gly Lys Lys Thr Thr Glu Thr Gln Ser Val Ser Ile Lys Gln Lys Ala Val Phe Ile Glu Asn Glu Tyr Ala Ala Thr Asp Ser Leu Ala Leu Thr Gly Gly Leu Arg Leu Asp Asn His Glu Ile Tyr Gly Ser Tyr

															•
	Trp Thr	Asn	Pro	Arg	Leu	Tyr	Ala	Val	Tyr	Asn	Leu	Thr	Asp	Asn	Leu
5				420					425					430	
	Leu Glu	Lys	Gly	Gly	Ile	Ala	Lys	Ala	Phe	Arg	Ala	Pro	Ser	Ile	Arg
10	OLu		435					440					445		
		Ser	Pro	Gly	Phẹ	Gly	Thr	Leu	Thr	Gln	Gly	Gly	Ala	Ser	Ile
15	Met	450					455	·				460			
	_	Gly	Asn	Arg	Asp	Leu	Lys	Pro	Glu	Thr	Ser	Val	Thr	Glu	Glu
20	Ile 465 480					470					475	,			
25	Gly Leu	Ile	Ile	Tyr	Ser	Asn	Asp	Ser	Gly	Phe	Ser	Ala	Ser	Ala	Thr
23	пец				485	,				490		•			495
20		Asn	Thr	Asp	Phe	Lys	Asn	Lys	Leu	Thr	Ser	Tyr	Asp	Ile	Gly
30	Thr			500			•		505					510	,
2.5	_	Asp	Pro	Val	Thr	Gly	Leu	Asn	Thr	Phe	Ile	Tyr	Asp	Asn	Val
35	Gly		515					520					525		
40		Ala	Asn	Ile	Arg	Gly	Val	Glu	Leu	Ala	Thr	Gln	Ile	Pro	Val
40	Tyr	530					535					540	,		
	Asp	Lys	Trp	His	.Val	Ser	Ala	Asn	Tyr	Thr	Phe	Thr	Asp	Ser	Arg
45	Arg 545 560					550		•			555				1
50	Lys Pro	Ser	Asp	Asp	Glu	Ser	Leu	Asn	Gly	Lys	Ser	Leu	Lys	Gly	Glu

	W	/ O 2 00:	5/0978	23				133/3	70				PCT/I	E P2 005	/003972
					565					570					575
5	Leu Asp	Glu	Arg	Thr 580	Pro	Arg	His	Ala	Ala 585	Asn	Ala	Lys	Leu	Glu 590	Trp
10	Tyr Lys	Thr	Gln 595	Asp	Ile	Thr	Phe	Tyr 600		Ser	Leu	Asn	Tyr 605		Gly
15	Gln Arg	Ile 610	Trp	Āla	Ala	Gln	Arg 615	Asn	Gly	Ala	Lys	Val 620	Pro	Arg	Val
20	Asn Pro 625 640	Gly	Phe	Thr	Ser	Met 630	Asp	Ile	Gly	Leu	Asn 635	Tyr	Gln	Ile	Leu
25	Asp Ser	Thr	Leu	Ile	Asn 645	Phe	Ala	Val	Leu ,	Asn 650	Val	Thr	Asp	Arg	Lys 655
30	Glu Arg	Asp	Ile	Asp 660	Thr	Ile	Asp	Gly	Asn	Trp	Gln	Val	Asp	Glu 670	Gly
35	Arg	Tyr	Trp 675	Ala	Asn	Val	Arg	Val 680	Ser	Phe					
40	<210 41)> 4	11 <2	211>	164	ł <21	L2> .	PRT	<213	3> F	Esche	erich	nia c	coli	<400>
45	Met Ile 1	Gly	Phe	Arg	Lys 5	Thr	Ile	Ile	Thr	Ser	Val	Gly	Leu	Ile	Phe 15
	Ser Asn	Phe	Ser	Phe	Val	Ala	Lys	Cys	Ser	Gln	Leu	Lys	Asn	Leu	Asn

	W	O 200	5/09782	23				134/3	70				PCT/	EP2005	5/00397	2
	Tvr	Ser	Val	Met	Leu	Cys	Glv			Ser	Asn	Asn	Tle	Leu	Asp	
	Asp	~ ~ ~	35			0,70	J = J		VCL	50±	11011	11011		шси	2100	
			33					40					45		•	
5	Ile Lys	Gly	Gly	Tyr	Lys	Glu	Arg	Asn	Ile	Leu	Met	Leu	Arg	Ala	Ile	
		50					55					60			•	
10										•						
	Lys Phe	Ile	Ile	Ile	Met	Thr	Ile	Val	Asn	Ile	Ile	Phe	Phe	Tyr	Ser	
	65					70					75					8 0
15		Ser	Thr	Ala	Asp	Glu	Met	Val	Leu	Ile	Lys	Lys	Tyr	Gly	Phe	
	Gly				85					90					95	
20																
20		Glu	Arg	Asp	Ile	Lys	Gľy	Arg	Pro	Leu	Ile	Tyr	Pro	Ile	Glu	
	Asn			100					105					110		
25																
	Tyr Asp	Asp	Glu	Cys	Lys	Lys	Lys	Cys	Asn	His	Met	Asn	Tyr	Ile	Ala	
	1101		115					120					125			
30		,										•				
	Val Ala	Asn	Ala	Gln	Leu	Ala	Met	Ser	Lys	Lys	Asn	Asn	Arg	Ile	Phe	
		130					135		•			140				
35		Ile	Thr	Phe	Thr	Asn	Asn	Ser	Ser	Thr	Thr	Tyr	Phe	Phe	Leu	
	Asn 145					150					155					
40	160															
	Ile	Ile	Tyr	Leu												
45	<210 42)> 4	12 <2	211>	218	3 <21	L2>	PRT	<213	3> E	Esche	erich	nia d	coli	<40	00>
50	Met	Asn	Gln	Ile	Lys	Asp	Asn	Lys	Val	Ile	Met	Lys	Ile	Lys	Asn	

Leu

r																
		Ser	Val	Ile	Leu	Leu	Ser	Gly	Gly	Ile	Met	Gly	Thr	Gly	Leu	
5	Tyr	*		20					25					30		
	Ser	Ser	Asp	Asn	His	Gln	Lvs	Ile	Arg	Ser	Arq	Phe	Asn	Ile	Gln	
10	Glu	~ ~ ~	35				2	40	J		-		45			
10																
	Ser Arg	Tyr	Cys	Ala	Ile	Lys	Thr	Asn	Gly	Val	Leu	Gly	Phe	Ser	Asn	
15	J	50					55					60				
	Lys	Asp	Val	Leu	Arg	Glu	Asn	Gly	Asp	Ser	Thr	Gly	Thr	Thr	Ser	
20	Ser 65					70				,	75					80
										•						
	Ser Ser	Thr	Asn			Met	Leu	Met	Glu		Gly	Glu	Asn	Glu		
25				,	85					90					95	
		Glu	Ile	Gly	Ala	Leu	Arg	Trp	Phe	Ser	Asp	Lys	Pro	Ala	Ser	
30	Thr			100					105					110		
	· G]	~]	7)	C]	TT + 0	Dho	C 0 70	Cln	Lys	7\] >	Glv	Cve	Sar	T.A.I	Zsn	
25	Leu	GIU	115	GTĀ	птэ	·	ser	120	туз	ALG	Оту	Cyb	125	пса	710P	
35			110					120					110			,
	Val Val	Arg	Phe	Val	Lys	Gln	Glu	Glu	Thr	Ile	Leu	Ser	Ser	Ile	Lys	
40	va	130			*		135					140				
	Thr	Ile	Asn	Gln	Gln	Gly	Ile	Pro	Glu	Ala	Gln	Pro	Asp	Ser	Met	
45	His 145					150	*				155	•				
	160			-	_											
	Pro	Val	Ile	Arg	Lys	Glu	Ile	Leu	Ala	Glu	Gln	Ala	Glu	Pro	Gly	
50	Phe				165					170					175	

.165

170

	Ile Lys	Asp	Pro	Asp	Tyr	Phe	Asņ	Glu	Thr	Tyr	Phe	Pro	Lys	Gly	Met	
5	1 170			180					185					190		
	Val	Tvr	Gln	Phe	Thr	Gln	Lvs	Val	Ser	Val	Ala	Gly	T.e.ii	Pro	Asn	
10	Gly	-1-	195					200	,	van	1120			110	пър	
10			190					200					205			
	Pro		Arg	Ser	Thr	Pro		Thr	Gly	Ala	*					
15	,	210					215									
	<210 <400		13 <2 13	211>	273	32 <2	212>	PRI	C <23	L3>	Escl	nerio	chia _.	col	i.	,
20		His	Gln	Pro	Pro	Val	Arģ	Phe	Thr	Tyr	Arg	Leu	Leu	Ser	Tyr	
	Leu 1				5					10					15	
25	Val : Ala	Ser	Ala	Ile	Ile	Ala	Gly	Gln	Pro	Leu	Leu	Pro	Ala	Val	Gly	
				20 .					25			•		30		
30	Val :	Ile	Thr	Pro	Gln	Asn	Gly	Ala	Gly	Met	Asp	Lys	Ala	Ala	Asn	
	Gly		35				_	40	_			_	45			
					٠											
35	Val I	Pro	Val	Val	Asn	Ile	Ala	Thr	Pro	Asn	Gly	Ala	Gly	Ile	Ser	
	>	50					55					60				٠
40	70	7)	D1	m1	7)		70		01			~ 7	-	~~ ¬	_	
40	Asn	Arg	rne	Tur	Asp		Asn	val	GTÀ	тЛг		Gly	Leu.	ITE	Leu	
	65					70					75					80
45	Asn <i>l</i>	Ala	Thr	Gly	Lys	Leu	Asn	Pro	Thr	Gln	Leu	Gly	Gly	Leu	Ile	-
	Gln				85					90					95	
50	Asn A	Asn	Pro	Asn	Leu	Lys	Ala	Gly	Gly	Glu	Ala	Lys	Gly	Ile	Ile	

Asn .

700	100		105	110
-----	-----	--	-----	-----

Glu Val Thr Gly Gly Lys Arg Ser Leu Leu Gln Gly Tyr Thr Glu 5 Val 115 120 125

- Ala Gly Lys Ala Ala Asn Val Met Val Ala Asn Pro Tyr Gly Ile 10 Thr 130 135 140
- Cys Asp Gly Cys Gly Phe Ile Asn Thr Pro His Ala Thr Leu Thr

 Thr

 145
 160
- 20 Gly Lys Pro Val Met Asn Ala Asp Gly Ser Leu Gln Ala Leu Glu Val
 165 170 175
- 25 Thr Glu Gly Ser Ile Thr Ile Asn Gly Ala Gly Leu Asp Gly Thr Arg
 180 185 190
- 30 Ser Asp Ala Val Ser Ile Ile Ala Arg Ala Thr Glu Val Asn Ala
 Ala
 195 200 205
- 35 Leu His Ala Lys Asp Leu Thr Val Thr Ala Gly Ala Asn Arg Val Thr 210 215 220
- 40 Ala Asp Gly Arg Val Arg Ala Leu Lys Gly Glu Gly Asp Val Pro Lys 225 230 235 -
- Val Ala Val Asp Thr Gly Ala Leu Gly Gly Met Tyr Ala Arg Arg
 Ile
 245
 250
 255

-	138/370
---	---------

	His Leu	Leu	Thr	Ser	Thr	Glu	Ser	Gly	Val	Gly	Уal	Asn	Leu	Gly	Asn
				260			`		265	٠				270	
5	Tyr Thr	Ala	Arg	Asp	Gly	Asp	Ile	Thr	Leu	Asp	Ala	Ser	Gly	Arg	Leu
			275					280			,		285		
10	Val Gly	Asn	Asn	Ser	Leu	Ala	Thr	Gly	Ala	Val	Thr	Ala	Lys	Gly	Gln
		290					295	-				300			
15	Val Ser	Thr	Leu	Thr	Gly	Asp	His	Lys	Ala	Gly	Gly	Asn	Leu	Ser	Val
20	305 320					310					315				
	Ser Lys	Arg	Arg	Asp	Ile	Val	Leu	Ser	Asn	Gly	Thr	Leu	Asn	Ser	Asp
25	- <u>1</u> -				325					330					335
	Asp Lys	Leu	Ser	Leu	Thr	Ala	Gly	Gly	Arg	Ile	Thr	Gln	Gln	Asn	Glu
30	1			340	•		٠	-	345					350	
	Leu Gln	Thr	Ala	Gly	Arg	Asp	Val	Thr	Leu	Ala	Ala	Lys	Asn	Ile	Thr
35			355					360					365		
	Asp Ala	Thr	Ala	Ser	Gln	Ile	Asn	Ala	Ala	Arg	Asp	Ile	Val	Thr	Val
40	TIE C	370					375					380			
	Ser Leu	Asp	Thr	Leu	Thr	Thr	Gln	Gly	Gln	Ile	Thr	Ala	Gly	Gln	Asn
45	385 400					390					395				
	Thr	Ala	Ser	Ala	Thr	Thr	T _i eii	ሞh r	Gln	Asn	Gly	Tle	T.e.r	T.e.r	70.7 -

139/370

•														~	
	Ser Val	His	Ala	Gly	Leu	Asn ·	Ala	Gly	Thr	Leu	Asn	Asn	Ser	Gly	Ala
5	val			420					425					430	
J	C]	C7	71 7.	ШЬ 10	Tou	mb so	Tour	C1	C 0 22	mb w	□b ×	T 011	C 0 20	7, 0, 20	C 0.10
	Gly	СТА		Thr	Leu	Tur	цеи	_	ser	THE	TIIT	ьеи	•	ASII	ser
10			435					440			•		445		
•	Ser Thr	Leu	Leu	Ser	Gly	Gly.	Pro	Leu	Thr	Met	Asn	Thr	Arg	Asp	Phe
1.5	T11T	450					455					460			
15	_		_							_		_			_ =
	Ser	Ser	GLy	Arg	Thr		Ala	Lys	GTY	ьуs		Asp	TTE	Met	ALa
20	465 480					470			a		475		•		
							4								
	Gly Leu	Lys	Leu	Thr	Ser	Thr	Gly	Leu	Leu	Val	Thr	Met	His	Leu	Val
25					485					490		*			495
	Т	71 7	Cl n) an	Val	ΠЬх	Cln	7\ a x	Clar	17	T 011	Sor	Clv	Clv	Two
2.0	цуs Gly	Ald	GIII		vaı	7117	GIII	Abii		vai	пеп	Ser	GTĀ		пур
30			•	500				`	505			•		510	
		Thr	Val	Ser	Ala	Thr	Ser	Ser	Gly	Lys	Lys	Ser	Val	Thr	His
35	Ser		515		ı		,	520					525		
							-								
	Asp Glu	Ala	Ala	Met	Thr	Leu	Asn	Val	Thr	Thr	Val		Leu	Asp	Gly
40		530					535			٠		540			
	Thr	Ser	Ala	Gly	Asp	Thr	Leu	Arg	Val	Gln	Ala	Asp	Lys	Leu	Ser
45	Thr 545			_	-	550					555				,
	560														
	70 7 -	71 7	C7	7\ 7	C 1 ˙∽	Т о 11	<i>C</i> 1~	C ~ ~	C1	Tvic	7\	T.017	502	т1 о	Λαρ
50	Ala	АТа	GTÀ	Ald	Gl'n	ьец	GTII	ser	дтλ			шеи	ner		
					565		-			570					575

													,		
		Asp	Ala	Arg	Leu	Ala	Gly	Thr	Gln	Ala	Ala	Gln	Gln	Thr	Met
5	Val			580					585			,		590	
		Asn	Ala	Ser	Glu	Lys	Leu	Thr	His	Ser	Gly	Lys	Ser	Ser	Ala
10	Pro		595					600					605		
			Ser	Leu	Ser	Ala	Pro	Glu	Leu	Thr	Ser	Ser	Gly	Val	Leu
15	Val,	610			,		615					620	•		
		Ser	Ala	Leu	Asn	Thr	Gln	Ser	Gln	Thr	Leu	Thr	Asn	Ser	Gly
20	Leu 625 640					630					635				
	Leu	Gln	Gly	Glu	Ala	Ser	Leu	Thr	Val	Asn	Thr	Gln	Arg	Leu	Asp
25	Asn				645					650				-	655
	Gln	Gln	Asn	Gly	Thr	Leu	Tyr	Ser	Ala	Ala	Asp	Leu	Thr	Leu	Asp
30	Ile			660		v			665					670	-
	Pro	Asp	Ile	Arg	Asn	Ser	Gly	Leu	Ile	Thr	Gly	Asp	Asn	Gly	Leu
35	Met		675					680					685		
	Leu	Asn	Ala	Val	Ser	Leu	Ser	Asn	Pro	Gly	Lys	Ile	Ile	Ala	Asp
40	Thr	690					695					700			
•	Leu	Ser	Val	Arg	Ala	Thr	Thr	Leu	Asp	Gly	Asp	Gly	Leu	Leu	Gln
45	Gly 705 720					710					715				
	. 	,										_			

Ala Gly Ala Leu Ala Leu Ala Gly Asp Thr Leu Ser Gln Gly Ser

50

His

	14	1/	3	7

Gly Arg Trp Leu Thr Ala Asp Asp Leu Ser Leu Arg Gly Lys Thr Leu Asn Thr Ala Gly Thr Thr Gln Gly Gln Asn Ile Thr Val Gln Ala Asp Arg Trp Ala Asn Ser Gly Ser Val Leu Ala Thr Gly Asn Leu Thr Ala Ser Ala Thr Gly Gln Leu Thr Ser Thr Gly Asp Ile Met Ser Gln Gly Asp Thr Thr Leu Lys Ala Ala Thr Thr Asp Asn Arg Gly Ser Leu Leu Ser Ala Gly Thr Leu Ser Leu Asp Gly Asn Ser Leu Asp Asn Arg Gly Thr Val Gln Gly Asn His Val Thr Ile Arg Gln Asn Ser Val Thr Asn Ser Gly Thr Leu Thr Gly Ile Ala Ala Leu Thr Leu Ala Ala Arg Met Ala Ser Pro Gln Pro Ala Leu Met Asn Asn Gly Gly Ser Leu Leu Thr

870 -

	•	WO 200	05/0978	323			•	142/	37 0				PCT	/EP200	05/003972
		Gly	Asp	Leu	Thr	Ile	Thr	Ala	Gly	Ser	Ile	Thr	Ser	Ser	Gly
	His				885				•	890	i				895
	Trp Ser	Gln	Gly	Lys	Arg	Val	Leu	Ile	Thr 905	Ala	Asp	Ser	Leu	Ala 910	Asn
10	Glv	Δla	Tle		Δla	Δla	Asp	Ser.		ምb r	Δla	Σrα	T. 211		Clv
	Glu	1114	915		. 131101		715P	920	ПСЦ	T111	71.L.C.	1119	925		
15	Leu Ala	Val	Ser	Thr	Ala	Gly	Ser	Lys	Val	Thr	Ser	Asn	Gly	Glu	Met
	ma	930					935					940			
20	Leu Asn 945	Ser	Ala	Leu	Asn	Leu 950	Ser	Asn	Ser	Gly ·	Gln 955	Trp	Ile	Ala	Lys
25	960										,		•		
	Leu Gly	Thr	Leu	Lys		Asn	Ser	Leu	Thr		Ala	Gly	Asp	Ile	
30					965					970					975
	Val Ala	Asp	Thr		Thr	Leu	Thr	Val		Gln	Thr	Leu	Asn		Gln
35				980					985					990	
	Asn Ser	Gly	Lys 995	Leu	Leù	Ser	Ala	Gly 1000		L Let	ı Thi	: Lei	100		la Asp
40			<i>J J J</i>	si.	•			1000	,				100	, ,	
	Val	Thr 1010		n Asp	o Gly	y Glr	101		ln Gl	Ly. As	sn Va		nr 1 020	Thr I	Ile Thr
45	Ala	Gly 1025		ı Leı	ı Thi	c Asr	n Gly 103		.y Hi	ls Le	eu Gl		Ly ()35	Glu 1	Chr Leu

50 Thr Leu Thr Ala Ser Gly Gly Val Asn Asn Arg Ser Gly Gly Val 1040 1045 1050

5	Leu	Met 1055	Ser	Arg	Asn	Ala	Leu 1060	Asn	Val	Ser	Thr	Ala 1065		Leu	Ser
		Gln 1070	Ser	Thr	Ile	Gln	Gly 1075	Gly	Gly	Gly	Val	Ser 1080		Asn	Ala
10 .		Asp 1085	Arg	Leu	Gln	Asn	Asp 1090	Gly	Lys	Ile	Leu	Ser 1095		Ser	Asn
15	Leu	Thr 1100	Leu	Thr	Ala	Gln	Val 1105	Leu	Ala	Asn	Thr	Gly 1110		Gly	Leu
20	Val	Gln 1115	Ala	Ala	Thr	Leu	Leu 1120	Leu	Asp	Val	Val	Asn 1125	Thr	Val	Asn
25	Gly	Gly 1130	Arg	Val	Leu	Ala	Thr 1135	Gly	Ser	Asp	Val	Lys 1140	Gly	Thr	Thr
	Leu	Asn 1145	Asn	Thr	Gly	Thr	Leu 1150	Gln	Gly	Ala	Thr	Leu. 1155	Val	Asn	Tyr
30	His	Thr 1160	Phe	Ser	Ser	Gly	Thr 1165	Leu	Leu	Gly	Thr	Ser 1170	Gly	Leu	Gly
35	Val	Lys 1175	Gly	Ser		Leu	Leu 1180	Gln	Asn	Gly	Thr	Gly 1185	Arg	Leu	Tyr
40	Ser	Ala 1190	Gly	Asn	Leu	Leu	Leu 1195	Asp	Ala	Gln	Asp	Phe 1200	Ser	Gly	Gln
45	Gly	Gln 1205	Val	Val	Ala	Thr	Gly 1210	Asp	Val	Thr	Leu	Lys 1215	Leu	Ile	Ala
	Ala	Leu 1220	Thr	Asn	His	Gly	Thr 1225	Leu	Ala	Ala	Gly	Lys 1230	Thr	Leu	Ser
50	Val	Thr	Ser	Gln	Asn	Ala	Ile	Thr	Asn	Gly	Gly	Val	Met	Gln	Gly

	111,070	
1235	1240	1245

				•									•		
5	Asp	Ala 1250	Met	Val	Leu	Gly	Ala 1255	Gly	Glu	Ala	Phe	Thr 1260	Asn	Asn	Gly
10	Leu	Thr 1265	Ala	Gly	Lys	Gly	Asn 1270	Ser	Val	Phe	Ser	Ala 1275	Gln	Arg	Leu
	Phe	Leu 1280	Asn	Ala	Pro	Gly	Ser 1285	Leu	Gln	Gly	Gly	Gly 1290	Asp	Val	Ser
15	Leu	Asn 1295	Ser	Arg	Ser	Asp	Ile 1300	Thr	Ile	Ser	Gly	Phe 1305	Thr	Gly	Thr
20	Ala	Gly 1310	Ser	Leu	Thr	Met	Asn 1315	Val		Gly	Thr	Leu 1320	Leu	Asn	Ser
25	Ala	Leu 1325	Ile	Tyr	Ala	Gly	Asn 1330	Asn	Leu	Lys	Leu	Phe 1335	Thr	Asp	Arg
30	Leu	His 1340		Gln	His	Gly	Asp 1345	Ile	Leu	Ala	Gly	Asn 1350	Ser	Leu	Trp
	Val	Gln 1355	Lys	Asp	Ala	Ser	Gly 1360	Gly	Ala	Asn	Thr	Glu 1365	Ile	Ile	Asn
35	Asn	Ser 1370	Gly	Asn	Ile	Glu	Thr 1375	His	Gln	Gly	Asp	Ile 1380	Val	Val	Arg
40	Thr	Gly 1385	His	Leu	Leu	Asn	Gln 1390	Arg	Glu	Gly	Phe	Ser 1395	Ala	Thr	Thr
45	·Thr	Thr 1400	Arg	Thr	Asn	Pro	Ser 1405	Ser		Gln	Gly	Met 1410	Gly	Asn	Ala
50	Leu	Val 1415	Asp	Ile	Pro	Leu	Ser 1420	Leu	Leu	Pro	Asp	Gly 1425	Ser	Tyr	Gly

		WO 2 00	5/0978	23				145/37	n			P	CT/EP	2005/00	03972
	Tyr	Phe 1430		Arg	Glu	Val	Glu 1435			His	Gly	Thr 1440	Pro	Cys	Asn
5	Gly	His 1445	Gly	Ala	Cys.	Asn	Ile 1450	Thr	Met	Asp	Thr	Leu 1455	, Tyr	Tyr	Tyr
10	Ala	Pro 1460	Phe	Ala	Asp	Ser	Ala 1465	Thr	Gln	Arg	Phe	Leu 1,470	Ser	Ser	Gln
-15	Asn	Ile 1475		Thr	Val	Thr	Gly 1480	Ala	Asp	Asn	Pro	Ala 1485	-	_	Ile
	Ala	Ser 1490	Gly	Arg	Asn	Leu	Ser 1495	Ala	Glu	Ala	Glu	Arg 1500	Leu	Glu	Asn
20	Arg	Ala 1505		Phe	Ile	Leu	Ala 1510	Asn	Gly	Asp	Ile	Ala 1515	Leu	Ser	Gly
25	Arg	Glu 1520	Leu	Ser	Asn	Gln	Ser 1525	Trp	Gln	Thr	Gly	Thr 1530	Glu	Asn	Glu
30	Tyr	Leu 1535	Val	Tyr	Arg	Tyr	Asp 1540	Pro	Lys	Thr	Phe	Tyr 1545	Gly	Ser	Tyr
35	Ala	Thr 1550	Gly	Ser	Leu	Asp	Lys 1555	Leu	Pro	Leu	Leu	Ser 1560	Pro	Glu	Phe
,		Asn 1565	Asn	Thr	Įle	Arg	Phe 1570	Ser	Leu	Asp	Gly	Arg 1575	Glu	Lys	Asp
40	Tyr	Thr 1580	Pro	Gly	Lys	Thr	Tyr 1585	Tyr	Ser	Val	Ile	Gln 1590	Ala	Gly	Gly

Asp Val Lys Thr Arg Phe Thr Ser Ser Ile Asn Asn Gly Thr Thr

Thr Ala His Ala Gly Ser Val Ser Pro Val Val Ser Ala Pro Val 1610 1620

	Leu	Asn 1625	Thr	Leu	Ser	Gln	Gln 1630	Thr	Gly	Gly	Asp	Ser 1635	Leu	Thr	Gln
5	Thr	Ala 1640	Leu	Gln	Gln	Tyr	Glu 1645	Pro	Val	Val	Val	Gly 1650	Ser	Pro	Gln
.10	Trp	His 1655	Asp ·	Glu	Leu	Ala	Gly 1660	Ala	Leu	Lys		Ile 1665	Ala	Gly	Gly
15	Ser	Pro 1670	Leu	Thr	Gly	Gln	Thr 1675	Gly	Ile	Ser	Asp	Asp 1680	Trp	Pro	Leu
20	Pro	Ser 1685	Gly	Asn	Asn	Gly	Tyr 1690	Leu	Val	Pro		Thr 1695	Asp.	Pro	Asp
	Ser	Pro 1700	Tyr	Leu	Ile	Thr	Val 1705	Asn	Pro	Lys	Leu	Asp 1710		Leu	Gly
25	Gln	Val 1715		Ser	His	Leu	Phe 1720	Ala	Gly	Leu	Tyr	Glu 1725	Leu	Leu	Gly
30	Ala	Lys 1730	Pro	Gly	Gln	Ala	Pro 1735	Arg	Glu	Thr	Ala	Pro 1740	Ser	Tyr	Thr
35	Asp	Glu 1745	Lys	Gln	Phe	Leu	Gly 1750	Ser	Ser	Tyr	Phe	Leu 1755	Asp	Arg	Leu
40	Gly	Leu 1760	Lys	Pro		Lys	Asp 1765	Tyr	Arg	Phe	Leu	Gly 1770		Ala	Val
	Phe	Asp 1775	Thr	Arg	Tyr	Val	Ser 1780	Asn	Ala	Val	Leu	Ser 1785	Arg	Thr	Gly
45	Ser	Arg 1790	Tyr	Leu	Asn	Gly	Leu 1795	Gly	Ser	Asp	Thr	Glu 1800	Gln	Met	Arg
50	Tyr	Leu 1805	Met	Asp	Asn	Ala	Ala 1810	Arg	Gln	Gln	Lys	Gly 1815	Leu	Gly.	Leu

5	Glu	Phe 1820	Gly	Val	Ala	Leu	Thr 1825	Ala	Glų	Gln	Ile	Ala 1830	Gln	Leu	Asp
10	Gly	Ser 1835			Trp	Trp	Glu 1840	Ser	Val	Thr	Ile	Asn 1845	Gly	Gln	Thr
10	Val	Met 1850	Val	Pro	Lys	Leu	Tyr 1855	Leu	Ser	Pro	Glu	Asp 1860	Ile	Thr	Leu
15	His	Asn 1865	Gly	Ser	Val	Ile	Ser 1870	gly	Asn	Asn	Val	Gln 1875	Leu	Ala	Gly
20	Gly	Asn 1880	Ile	Thr	Asn	Ser	Gly 1885	Gly	Ser	Ile	Asn	Ala 1890	Gln	Asn	Asp ·
25	Leu	Ser 1895	Leu	Asp	Ser	Ser	Gly 1900	Tyr	Ile	Asp	Asn	Leu 1905	Asn	Ala	Gly
	Leu	Ile 1910	Ser	Ala	Gly	Gly	Ser 1915	Leu	Asp	Leu	Ser	Ala 1920	Ile	Gly	Asp
30	Ile	Ser 1925	Asn	Ile	Ser	Ser	Val 1930	Ile	Ser	Gly	Lys	Thr 1935	Val	Gln	Leu
35	Glu	Ser 1940	Val	Ser	Gly	Asn	Ile 1945	Ser	Asn	Ile	Thr	Arg 1950	Arg	Gln	Gln
40	Trp	Asn 1955	Ala	Gly	Ser	Asp	Ser 1960	Gln	Tyr	Gly	Gly	Val 1965	His	Leu	Ser
45	Gly	Thr 1970	Asp	Thr	Gly	Pro	Val 1975	Ala	Thr	Ile	Lys	Gly 1980	Thr	Asp	Ser
	Leu	Ser 1985	Leu	Asp	Ala	Gly	Lys 1990	Asn	Ile	Asp	ile	Thr 1995	Gly	Ala	Thr
50	Val	Ser	Ser	Gly	Gly	Asp	Leu	Gly	Met	Ser	Ala	Gly	Asn	Asp	Iļe

148/370

		2000					2005					2010			
5	Asn	Ile 2015	Ala	Ala	Asn	Leu	Ile 2020	Ser	Gly	Ser	Lys	Ser 2025	Gln	Ser	Gly
10	Phe	Trp 2030	His	Thr	Asp	Asp	Asn 2035	Ser	Ser	Ser	Ser	Thr 2040	Thr	Ser	Gln
	Gly	Ser 2045	Ser	Ile	Ser	Ala	Gly 2050	Gly	Asn	Leu	Ala	Met 2055	Ala	Ala	Gly
15	His	Asn 2060	Leu	Asp	Val	Thr	Ala 2065	Ser	Ser	Val	Ser	Ala 2070	Gly	His	Ser
20	Ala	Leu 2075	Leu	Ser	Cys	Arg	Ser 2080	Arg	Pro	Ser	Leu	G L u 2O85	Cys	Ser	Gln
25	Gly	Lys 2090	Ala	Lys	Thr	Ser	Arg 2095	Asn	Gly	Arg	Ser	Glu 2l00	Ser	His	Glu
30	Ser	His 2105	Ala	Ala	Val	Ser	Thr 2110	Val	Thr	Ala	Gly	Asp 2115	Asn	Phe	Leu
	Leu	Val 2120	Ala	Gly	Arg	Asp	Ile 2125	Ala	Ser	Gln	Ala	Ala 2130	Gly	Met	Ala
35	Ala	Glu 2135	Asn	Asn	Val	Val	Ile 2140	Arg	Gly	Gly	Arg	Asp 2145	Val	Asn	Leu
40	Val	Ala 2150	Glu	Ser	Ala	Gly	Ala 2155	Gly	Asp	Ser	Tyr	Thr 21.60	Ser	Lys	Lys
45	Lys	Lys 2165	Glu	Ile	Asn	Glu	Thr 2170	Val	Arg	Gln	Gln	GLy 2175	Thr	Glu	Ile
50	Ala	Ser 2180	Gly	Gly	Asp	Thr	Thr 2185	Val	Asn	Ala	Gly	Arg 2190	Asp	Ile	Thr
											•				

	Ala	Val 2195	Ala	Ser	Ser	Val	Thr 2200	Ala	Thr	Gly	Asn	Ile 2205	Ser	Val	Asn
5	Ala	Gly 2210	Arg	Asp	Val	Ala	Leu 2215	Thr	Thr	Ala	Thr	Glu 2220	Ser	Asp	Tyr
10	His	Tyr 2225	Leu	Glu	Thr	Lys	Lys 2230	Lys	Ser	Gly	Gly	Phe 2235	Leu	Ser	Lys
15	Lys	Thr 2240	Thr	Arg	Thr	Ile	Ser 2245	Glu :	Asp	Ser	Ala	Thr 2250	Arg	Glu	Ala
	Gly	Ser 2255	Leu	Leu	Śer ,	Gly	Asn 2260	Arg	Val	Thr	Val	Asn 2265	Ala	Gly	Asp
20	Asn	Leu 2270	Thr	Val	Glu	Gly	Ser 2275	Asp	Val	Val	Ala	Asp 2280	Arg	Asp	Val
25	Ser	Leu 2285	Ala	Ala	Gly	Asn	His 2290	Val	Asp	Val	Leu	Ala 2295	Aļa	Thr	Ser
30	Thr	Asp 2300	Thr	Ser	Trp	Arg	Phe 2305	Lys ,	Glu	Thr	Lys	Lys 2310	Ser	Gly	Leu
35	Met	Gly 2315	Thr	Gly	Gly	Ile	Gly 2320	Phe	Thŕ	Ile	Gly	Ser 2325	Ser	Lys	T hr
	Thr	His 2330	Asp	Arg	Arg	Glu	Ala 2335	Gly	Thr	Thr	Gln	Ser 2340	Gln	Ser	Ala
40	Ser	Thr 2345	Ile	Gly	Ser	Thr	Ala 2350	Gly	Asn	Val	Ser	Ile 2355	Thr	Ala .	Gly
45	Lys	Gln 2360	Ala	His	Ile	Ser	Gly 2365	Ser	Asp	Val	Ile	Ala 2370	Asn	Arg	Asp
50	Ile	Ser 2375	Ile	Thr	Gly	Asp	Ser 2380	Val	Val	Val	Asp	Pro 2385	Gly.	His	Asp

W O 2005/07/025	
	150/370

	Arg	Arg 2390	Thr	Val	Asp	Glu	Lys 2395	Phe	Glu	Gln	Lys	Lys 2400	Ser	Gly	Leu
5	Thr	Val 2405	Ala	Leu	Ser	Gly	Thr 2410	Val	Gly	Ser	Ala	Ile 2415	Asn	Asn	Ala
10	Val	Thr 2420	Ser	Ala	Gln	Glu	Thr 2425	Lys	Glu	Ser	Ser	Asp 2430	Ser	Arg	Leu
15		Ala 2435	Leu	Gl.n	Ala	Thr	Lys 2440	Thr	Ala	Leu	Ser	Gly 2445	Val	Gln	Ala
20	Gly	Gln 2450	Ala	Ala	Thr	Met	Ala 2455	Ser	Ala	Thr	Gly	Asp 2460	Pro	Asn	Ala
	Gly	Val 2465	Ser	Leu	Ser	Leu	Thr 2470	Thr	Gln	Lys	Ser	Lys 2475	Ser	Gln	Gln
25	Ніs	Ser 2480	Glu	Ser	Asp	Thr	Val 2485	Ser	Gly	Ser	Thr	Leu 2490	Asn	Ala	Gly
30	Asn	Asn 2495	Leu	Ser	Val	Val	Ala 2500	Thr	Gly	Lys	Asn	Arg 2505	Gly	Asp	Asn
35	Arg	Gly 2510	Asp	Ile	Val,	Ile	Ala 2515	Gly	Ser	Gln	Leu	Lys 2520	Ala	Gly	Gly
40	Asn	Thr 2525	Ser	Leu	Asp	Ala	Ala 2530	Asn	Asp	Ile	Leu	Leu 2535	Ser	Gly	Ala
	Ala	Asn 2540	Thr	Gln	Lys	Thr	Thr 2545	Gly	Arg	Asn	Ser	Ser 2550	Ser	Gly	Gly
45	Gly	Val 2555	Gly	Val	Ser	Ile	Gly 2560	Ala	Gly	Lys	Gly	Ala 2565	Gly	Ile	Ser
50	Ala	Phe 2570	Ala	Ser	Val	Asn	Ala 2575	Ala	Lys	Gly	Arg	Glu 2580	Lys	Gly	Asn

5	Gly	Thr 2585	Thr	Thr	Asp	Lys	Thr 2590	Val	Thr	Ile	Asn	Ser 2595	Gly	Arg	Asp
	Thr	Val 2600	Leu	Asn	Gly	Ala	Gln 2605	Val	Asn	Gly	Asn	Arg 2610	Ile	Ile	Ala
10	Asp	Val 2615	Gly	His	Asp	Leu	Leu 2620		Ser	Ser	Gln	Gln 2625	Asp	Thr	Ser
15	Lys	Tyr 2630	Asp	Ser	Lys	Gln	Thr 2635	Ser	Val	Ala	Ala	Gly 2640	Gly	Ser	Phe
20	Thr	Phe 2645	Gly	Ser	Met	Thr	Gly 2650	Ser	Gl _, y	Tyr	Ile	Ala 2655	Ala	Ser	Arg
25	Āsp	Lys 2660	Met	Lys	Ser	Arg	Phe 2665	Asp	Ser	Val	Ala	Glu 2670	Gln	Thr	Gly
	Met	Phe 2675		Arg	Val	Met	Val 2680	Ala	Ser	Thr	Ser	Gln 2685	Trp	Val	Asn
30	Ile	Pro 2690	Asn	Trp	Met	Val	Arg 2695	Ser	Leu	Pro	His	Cys 2700	His	Thr	Gly
35	Glu	Lys 2705	Pro	Pro	Gly	Tyr	Arg 2710		Leu	Gly	Leu	Val 2715	Thr	Leu	Gln
40	Arg	Ser 2720	Gly	Ile	Ile	Lys	Ser 2725	Ser	His	Arg	Trp	Asn 2730	Gln	Ser	
45	<210 44	0> 44	4 <21	L1>	321	<212	2> PE	RT <2	213>	Esc	cheri	chia	coli	. <4	100>
43	Met Asn	Met I	Leu I	Lys I	Lys 1	Chr 1	[le Ph	ne I]	Le Le	eu Th	nr Le	eu Phe	e Sei	Gly	7
	1		•	Ç	5				10)				15	

	V	VO 200	5/09782	23				152/3	570				PCT/	EP200	5/0039	72
	Val	Ile	Ala	Ala	Thr	Val	Glu			Phe	Glu	Asn	Glu	Gln	Tyr	
	Asn			20					25			•		30		
5	Tyr Asn	Ala	Tyr	Arg	Ser	Ala	Asp	Val	Phe	Met	Pro	Tyr	Ile	Lys	Ser	
			35		•			40					45			
10	Phe Met	Asn	Pro	Val	Thr	Asp	Ser	Ala	Leu	Asn	Val	Ser	Leu	Thr	Tyr	
	Met	50					55					60				
15	_	Gln	Asp	Gln	Tyr	Gly	Lys	Lys	His	Lys	Lys	Thr	Ser	Glu	Asp	
	Arg 65					70	•				75					80
20		Lys	Thr	Asn	Arg	Asp	Arg	Ile	Glu	Leu	Tyr	Leu	Lys	Gly	Tyr	
	Thr				85					90		•			95	
25		Asn	Arg	Gly	Ala	Tyr	Ser	Phe	Ser	Pro	Ser	Ala	Gly	Phe	Arg	
	Tyr			100					105	-				110		
30	Glu Trp	Ser	Trp	Asp	Val	Asn	Tyr	Asp	Asn	Pro	Lys	Lys	Gln	Asp	ГÀз	
			115					120					125			
35	Lys Asp	Leu	Glu	Leu	Arg	Phe	Tyr	Pro	Asn	Met	Thr	Tyr	Lys	Leu	Asn	
	1101	130					135					140				
40	Lys	Leu	Ser	Leu	Tyr		Asn	Gly	Phe	Val		Pro	Val	Phe	Phe	
45	145 160					150					155					
	Thr Leu	Gln	Gln	Glu	Ser	Arg	Lys	Asp	Asn	Asn	Tyr	Val	Lys	Gly	Lys	

153/37

	Gly Leu	Ala	Lys	Arg	Tyr	Asn	Asn	Asp	Tyr	Tyr	Gln	Glu	Leu	Gln	Ile
	цеu			180	,				185					190	
5	Gly	Val	Arg	Tyr	Lys	Phe	Asn	Asn	Asp	Asn	Thr	Leu	Trp	Ala	Ser
	vai		195					200					205		
10	_	Asn	Glu	Arg	Lys	Tyr	Asn	Gln	His	Ser	Ser	Lys	Tyr	Asp	Arg
*	Trp	210		1			215					220			
15		Leu	Arg	Gly	Gly	Tyr	Asp	Phe	Lys	Val	Thr	Glu	Glu	Phe	Val
20	Leu 225 240					230					235				
20	Ser	Pro	Phe	Ile	Arg	Tyr	Asp	Leu	Ser	Tyr	Arg	Glu	Lys	Asn	Leu
25	Glu				245				·	250.					255
	Ser Thr	Thr	Ser	Asn	Asn	Gly	Leu	Ser	Lys	Asn	Asn	Lys	Glu	Ile	Arg
30	T11T			260					265	•				270	
	Gly Gly	Ala	Ser	Phe	Ser	Tyr	Lys	Ile	Ile	Pro	Ser	Val	Lys	Leu	Val
35 -	017		275					280		*			285		
	Glu His	Ile	Tyr	Arg	Gln	Thr	Thr	Asn	Ile	Glu	Asn	Tyr	Tyr	Gly.	Glu
40		290					295				-	300			
	Ser Thr	Glu	Asp	Ļys	Asn	Arg	Met	Phe	Tyr	Lys	Leu	Gly	Ile	Asn	Lys
45	305 320					310					315	,			
	Phe												-		

210>	45 <211>	587 <212>	DPT /2135	Fecherichia	

<210> 45 <211> 587 <212> PRT <213> Escherichia coli <400> 45

- Met Gln His Arg Gln Lys Asn Ile Leu Thr Lys Thr Ser Leu Leu 5 Ser 1 5 10 15
- Arg Ala Leu Ser Val Pro Cys Cys Asp Met Phe Arg Arg Gly Ser 10 Pro 20 25 30
- Trp Ile Cys Tyr Leu Ser Leu Ser Val Phe Ser Gly Cys Phe Ile 15 Pro 35 40 45
- Ala Phe Ser Ser Pro Ala Ala Met Leu Ser Pro Gly Asp Arg Ser 20 Ala 50 55 60
- Ile Gln Gln Gln Gln Gln Leu Leu Asp Glu Asn Gln Arg Gln

 Arg
 65 70 75 80
- Asp Ala Leu Glu Arg Pro Leu Thr Ile Thr Pro Ser Pro Glu Thr 30 Ser 85 90 95
- Gly Ala Thr Arg Leu Thr Ser Ala Glu Thr Asp Arg Leu Val Pro
 40 Trp
 115 120 125
- Val Asn Gln Cys Leu Asn Ile Thr Gly Leu Thr Ala Val Thr Asp 45 Ala 130 135 140
- Val Thr Asp Gly Tyr Ile Arg Arg Gly Tyr Ile Thr Ser Arg Ala $50\,$ Phe

Leu Thr Glu Gln Asp Leu Ser Gly Gly Val Leu His Ile Thr Val Met

Glu Gly Arg Leu Gln Gln Ile Arg Ala Glu Gly Ala Asp Leu Pro

Ala 185 [^]

Arg Thr Leu Lys Met Val Phe Pro Gly Met Glu Gly Lys Val Leu Asn

Leu Arg Asp Ile Glu Gln Gly Met Glu Gln Ile Asn Arg Leu Arg Thr

Glu Pro Val Gln Ile Glu Ile Ser Pro Gly Asp Arg Glu Gly Trp

Val Val Thr Leu Thr Ala Leu Pro Glu Trp Pro Val Thr Gly Ser Val

Gly Ile Asp Asn Ser Gly Gln Lys Ser Thr Gly Thr Gly Gln Leu Asn

Gly Val Leu Ser Phe Asn Asn Pro Leu Gly Leu Ala Asp Asn Trp Phe .275

Val Ser Gly Gly Arg Ser Ser Asp Phe Ser Val Ser His Asp Ala Arg

	W	/ O 2 00:	5/0978	23				156/3	70		,		PCT/	EP2005	5/003972
	Asn Asp	Phe	Ala	Ala	Gly	Va l	Ser	Leu	Pro	Tyr	Gly	Tyr	Thr	Leu	Val
5	305 320					31 0					315				
	Tyr Gly	Thr	Tyr	Ser	Trp	Ser	Asp	Tyr	Leu	Ser	Thr	Ile	Asp	Asn	Arg
10	011				325					330					335
	Trp Leu	Arg	Trp	Arg	Ser	Thx	Gly	Asp	Leu	Gln	Thr	His	Arg	Leu	Gļy
15				340					345					350	
	Ser Gly	His	Val	Leu	Phe	Arg	Asn	Gly	Asp	Met	Lys	Thr	Ala .	Leu	Thr
20			355					360				,	365		
	Gly Leu	Leu	Gln	His	Arg	Ile	Ile	His	Asn	Tyr	Leu	Asp	Asp	Val	Leu
25		370		,			375		٠			380			
	Gln His	Gly	Ser	Ser	Arg	Lys	Leu	Thṛ	Ser	Phe	Ser	Val	Gly	Leu	Asn .
30	385	-		,		390				r	395	•			
							•								

Thr His Lys Phe Leu Gly Gly Val Gly Thr Leu Asn Pro Val Phe

Arg Gly Met Pro Trp Phe Gly Ala Glu Ser Asp His Gly Lys Arg

Asp Leu Pro Val Asn Glm Phe Arg Lys Trp Ser Val Ser Ala Ser

Gln Arg Pro Val Thr Asp Arg Val Trp Trp Leu Thr Ser Ala Tyr

Thr

Gly

Phe

Ala

Glin Trp Ser Pro Asp Arg Leu His Gly Val Glu Gln Leu Ser Leu Gly Gly Glu Ser Ser Val Arg Gly Phe Lys Asp Gln Tyr Ile Ser Gly Asn Asn Gly Gly Tyr Leu Arg Asn Glu Leu Ser Trp Ser Leu Phe Ser Leu Pro Tyr Val Gly Thr Val Arg Ala Val Ala Ala Leu Asp Gly Gly Trp Leu His Ser Asp Ser Asp Pro Tyr Ser Ser Gly Thr Leu Trp Gly Ala Ala Ala Gly Leu Ser Thr Thr Ser Gly His Val Ser Gly Ser Phe Thr Ala Gly Leu Pro Leu Val Tyr Pro Asp Trp Leu Ala Pro Asp His Leu Thr Val Tyr Trp Arg Val Ala Val Ala Phe <210> 46 <211> 744 <212> PRT <213> Escherichia coli <400> Met Asn Lys His Thr Leu Leu Thr Val Leu Phe Leu Asn Leu Ile 15 '

	V	V O 2 00)5/0978	323				158/	370				PCT	EP200	5/00391	72
	Cys Gln	Thr	Pro		Phe	Ala	Gln	Asn		Gln	Val	Ala	Thr		Gly	
				20					25					30		
5		Thr	Asp	Leu	Asn	Phe	Ser	Ser	Leu	Ile	Asp	Ser	Ala	Lys	Ile	
	Gly		35					40					45			
1.0					•	•										
10	Arg Gly	Asn	Asn	Ala	Trp	Leu	Ala	Gly	Asn	Asn	Asn	₽he	Leu	Glu	Ala	
	_	50					55					60				٠.
15	Lvs	Phe	Tvr	Thr	Leu	Pro	Thr	Asp	Phe	Phe	Ile	Glu	Ser	Ara	Glv	
	Gly	2110	1											,	2	•
	65					70					75					80
20 .	•					*		k.								
	Lys Val	Ile	Ala	Asn	Ser	His	Asp	Gly	Met	Thr	Val	Phe	Tyr	Thr	Ile	
	val				85					90					95	
25				A												-
		Val	Thr	Gln	Thr	Phe	Arg	Leu	Glu	Ala	Asp	L ęu	Thr	Leu	Glu	
	Gln			100		٠			105					110		
30																
30	_	Gly	Pro	Glu	Val	Asn	Gly	Lys	Ser	Pro	Ala	Gly	Gln	Glu	Gly	
	Ala		115					120					125			
35																
33	Gly Gln	Leu	Phe	Val	Arg	Asp	Ile	Ile	Gly	Pro	Gln	Ærg	Gln	Glu	Pro	
	GIII	130					135					ユ40	-			
40			•													•
40	Ser Asn	Ala	Gly	Thr	Glu	Glu	Tyr	Pro	Gln	Ala	Ser	Asn	Ile	Leu	Met	
	145					150					155		-			
45	160															
	Ala	Phe	Ile	Thr	Gln	Asn	Lys	Lys	Asn	Asp	Asn	⊥eu	Val	Gļn	Ile	

175

Thr

50

. 165

	Ser Ile	Ile	Val	Arg	Glu	Gly	Val	Ile	Lys	Thr	Trp	Gly	Asn	Glu	Gly
				180				_	185					190	
5	Thr Lys	Ile	Lys	Lys	Gln	Pro	Ile	Ile	Glu	Asn	Ile	Asn	Phe	Thr	Gln
	пуs		195					200					205		
1.0		Asn	Ile	His	Met	Thr	Ile	Glu	Arg	Leu	Pro	Glu [,]	Lys	Phe	Ile
	Leu	210	•			-	215		•			Ź20			•
15	Thr	Ala	Phe	Asp	Thr	Asp	Arg	Lys	Glu	Asn	Gln	.Ser	Trp	Gln	Phe
	Ser 225 240		r			230				ı	235		•		
20	240										•				
	Asp Ile	Tyr	Ser	Gly	Phe ·	Met	Äsn	Gln	Leu	Asp	Asn	Asn	Ser	Leu	Ala
25					245					250					255
	Gly Ser	Phe	Phe	Ala	Ala	Arg	Asn	Ala	Lys	Leu	Årg	Val	Lys	Asn	Ala
30		•		260					265					270	
	Phe Arg	Lys	Pro	Gly	Lys	Pro	Leu	Val	Asp	Tyr	Lys	Gl'n	Leu	Thr	Ser
35	111.9		275	•				280	,	•			285	i.	
		Phe	Ser	Arg	Val	Arg	His	Lys	Ala	Pro	Glu	Leu	Phe	Leu	Ala
40	Ser	290					295					300			
		Gln	Ser.	Val	Val	Arg	Asn	Ser	Thr	Thr	Leu	Gln	Phe	Leu	Ala
45	Asn 305 320					310					315				
		Ala	Gly	Ile	Val	Ser	Ile	Asp	Asn	Asp	Lys	Gln	Thr	Lys	Gln
50	Val				325					330					335

Gln Ala Gly Glu Leu Val Gln Phe Pro Val Thr Leu Gln Lys Lys His Asn Asp Phe Thr Val Asn Phe Asn Val Asp Gly Asn Ile Ser Lys Lys Ala Ile Arg Ile Glu Gln Val Lys Ser Asn Leu Thr Asp Pro Tyr Glu .375 Ile Tyr Val Cys Ser Asp Cys Arg Gln Gly Ala Arg Gly Ser Lys Asn Asp Pro Val Asp Leu Gln Thr Ala Val Lys Phe Val Ala Pro Gly Gly Asn Ile Tyr Leu Asn Asp Gly Gln Tyr His Gly Ile Thr Leu Asp Arg .425 Glu Leu Ser Gly Ile Pro Gly Lys Tyr Lys Thr Ile Ser Ala Ile Asn Pro His Lys Ala Ile Phe Ile Asn Lys Thr Phe Asn Leu Asp Ala Ser Tyr Trp His Leu Lys Ser Val Val Phe Asp Gly Asn Val Asp Asn Gly Asn Asn Lys Pro Ala Tyr Leu Arg Ile Ala Gly Ser Tyr Asn Ile Ile

	Glu Ser	His	Val	Ile	Ala	Arg	Asn	Asn	Asp	Asp	Thr	Gly	Ile	Ser	Ile
5			-	500					505					510	
		Lys	Asp	Lys	Asn	Arg	Phe	Phe	Trp	Pro	Ala	His	Asn	Leu	Val
10	Leu		515					520					525		
		Ser	Asp	Ser	Tyr	Asn	Asn	Leu	Asp	Leu	Ser	Gly	Ile	Asn	Ala
15	Asp	530 _.				•	535				*	540			
	Gly	Phe	Ala	Ala	Lys	Leu	Gly	Val	Gly	Pro	Gly	Asn	Ile	Phe	Arq
20	Gly 545				,	550				•	555		1		J
	560													•	
25	Cys Lys	Ile	Ala	His		Asn	Ala	Asp	Asp		Trp	Asp	Leu	Phe	Asn
	_				565					570					575
30	Ile Ala	Glu	Asp	Gly	Pro	Asn	Ala	Ser	Val	Thr	Ile	Glu	Asn	Ser	Val
		•	-	580					585		-			590	
35	Tyr Ser	Glu	Asn	Gly	Leu	Pro	Tyr	Asn	Lys	Ala	Asp	Ile	Leu	Lys	Gly
,			595					600					605		
40	Ile Asn	Gly	Asn	Gly	Gly	Glu	Gly	Gln	Pro	Ser	Lys	Ser.	Gln	Val	Ile
70	ASII	610	1				615					620			
45	Ser	Ile	Ala	Ile	Asn.	Asn	Asn	Met	Asp	Gly	Phe	Thr	Asp	Asn	Phe
45	Asn 625 640				•	630					[.] 635				
	010						•								
50	Thr Arg	Gly	Ser	Leu	Ile	Val	Arg	Asn	Asn	Ile	Ala	Met	Asn	Asn	Ala

	W	O 2005	5/09782	3				162/3	70				PCT/	EP2005	5/003972
					645					650			•		655
5	Tyr	Asn	Tyr	Ile	Leu	Arg	Thr	Asn	Pro 665	Tyr	Lys	Phe	Pro	Ser	Ser
10	Leu Ile	Phe	Asp 675	Asn	Asn	Tyr	Ser	Ile 680		Asp	Asp	Trp	Glu 685		Lys
15	Lys Leu	Asp 690	Phe	Leu	Gly	Asp	Thr 695	Val	Asn	Ser	Val	Asn 700	Tyr	Lys	Leu
20	Val Arg 705 720	Ser	His	Glu	Thr	Gly 710	Pro	Val	Gln	Lys'	Asp 715	Leu	Phe	Phe	Thr
25	Asp Ile	Asp	Ser	Gly	Asn 725	Ile	Ile	Tyr	Pro	Asp 730	Phe	Phe	Leu	Asn	735
30	Asn	Lys	Phe	Asn 740	Glx	Thr	Met	Pro					•	,	
35	<210 47)> "	47 <2	211>	136	5 <21	L2>	PRT	<213	3> E	Esche	erich	nia d	coli	<400>
40	Met Phe 1	Ĺys	Thr	Phe	Ile 5	Lys	Thr	Leu	Leu	Val	Ala	Val	Thr	Ile	Leu 15
45	Ser Lys	Val	Phe	Ala 20	Thr	Ala	Lys	Gln	Val	Lys	Leu	Pro	Asn	Asn 30	Ile
٠	Tyr Met	Val	Asn	Thr	Thr	Glu	Ala	Phe	Ser	Cys	Thr	Glu	Ile	Asp	Gly

W U 2005/09/823		PC 1/EP2005/0039
	163/370	

Asn Cys Gln Thr Lys Asn Pro Phe Asn Tyr Lys Asp Asn Ser Tyr Val Phe Val Leu Glu Arg Gly Gly Ala Trp Cys Tyr Asp Tyr Thr Val Ser Val Leu Asn Leu Lys Thr Gly Lys Ala Gln Met Leu Glu Tyr Lys Asp Asn Gln Leu Cys Ser Gly Ser Asn Lys Pro Phe Phe Glu Ile Lys Gly Val Pro Thr Val Gly Val Ile Asp Thr Ser Gly Lys Pro Val Val Val Ala Leu Asp Lys Leu Lys Thr 48 <211> 225 <212> PRT <213> Escherichia coli <400> Met Gln Leu Pro Val Lys Leu Leu Met Ser Leu Ile Ser Leu Val Ser Val Ile Ala Arg Ala Gly Lys Tyr Lys Asn Tyr Ile Arg Asp Glu Ile Lys Tyr Trp Arg Tyr Thr Ser Tyr Lys Gly Glu Phe Pro Glu Gly Phe Thr Asp Glu Lys Phe Ser Ser Ala Ile Tyr Asn Gly Arg Ile Phe

			_	_									_			
	Phe	Met	Lys	Arg	Leu		Thr	Leu	Met	Leu		Leu	Ala	Val	Leu	
5	65					70					75					80
-	Thr Cys	Gly	Phe	Asn	Val	Glu	Ala	Ala	Ser	Val	Lys	Gln	Ala	Leu	Ser	
10	0,70			•	85					9.0					95	
	Asp Tyr	Pro	Asn	Ala	Arg	Ala	Glu	Gln	Pro	Gly	Ala	Cys	Pro	Thr	Thr	
15		•		100					105			7		110		
	Glu	T,e11	Tur	Glii	Gly	Asn	Δ]=	Δla	ψαν	T.v.e	70.7 ==	Δla	T.011	7) s.n.	Tura	
	Ala	200		o_u	019	1101	1124	1114	- <i>y</i> -	шуо	riid	71 <u>1</u> C	шса	1100	шуо	
20			115					120					125			
	Leu	Lys	Pro	Val	Gly	Leu	Ser	Gly	Met	Phe	Gly	Lys	Gly	Gly	Tyr	
	Met	130		٠	-		135					140				
25		100					100					T40				
		Gly	Pro	Gly	Gly	Asn	Val	Thr	Pro	Val	Thr	Ile [.]	Asn	Gly	Thr	
	Val 145					150					155					
30	160								,		-					
	Trn	T.017	Gln	Clv.	Asp	G] tz	Cve	Tare	7\] a	7) s n	Thr	Cvc	61 m	T rr	7\ a.m.	
	Phe	шса	OIII	CIY		CTY	Cys	шуз	ALA			СуЗ	Gry	ттЪ	-	
35					165					170			*.		175	
	Iİe	Val	Thr	Leu	Tyr	Asn	Pro	Lvs	Thr	His	Glu	Val	Val	Glv	Tvr	
	Arg				-			~		•				_	- 1 -	
40				180				*	185				•	190		
		Phe	Gly	Leu	Asp	Asp	Pro	Ala	Tyr	Leu	Val	Trp	Phe	Gly	Glu	
45	Ile		195					200					205			ŧ
			-						•		•		,			
		Val	His	Glu	Phe	Ala	Tyr	Leu	Val	Lys	Asn	Tyr	Val	Ala	Ala	•
50	Val	210					215	•				220				

Asn

<210> 49 <211> 721 <212> PRT <213> Escherichia coli <400>

Met Lys Thr Gln Ile Thr Phe Ala Ala Leu Leu Pro Ala Leu Ala Ser

Phe Ile Pro Leu His Ala His Ala Ser Ser Thr Ser Glu Asp Glu Met

Ile Val Thr Gly Asn Thr Ala Ala Asp Thr Thr Asp Ser Ala Ala Gly

Ala Gly Phe Lys Thr Asn Asp Ile Asp Val Gly Pro Leu Gly Thr Lys

Ser Trp Ile Glu Thr Pro Tyr Ser Ser Thr Thr Val Thr Lys Glu Met 70.

Ile Glu Asn Gln Gln Ala Gln Ser Val Ser Glu Met Leu Lys Tyr Ser

Pro Ser Thr Gln Met Gln Ala Arg Gly Gly Met Asp Val Gly Arg Pro

Gln Ser Arg Gly Met Gln Gly Ser Val Val Ala Asn Ser Arg Leu Asp

Gly Leu Asn Ile Val Ser Thr Thr Ala Phe Pro Val Glu Met Leu Glu

5	Arg Ala 145 160	Met	Asp	Val	Leu	Asn 150	Ser	Leu	Thr	Gly	Ala 155	Leu	Tyr	Gly	Pro
10	Ser Glu	Pro	Ala	Gly	Gln 165	Phe	Asn	Phe	Val	Ala 170	Lys	Arg	Pro	Thr	Glu 175
15	Thr Thr	Leu	Arg	Lys	Val	Thr	Leu	Gly	Tyr 185	Gln	Ser	Arg	Ser	Ala 190	Phe
20	Gly Gly	His	Ala 195	Asp	Leu	Gly	Gly	His 200	Phe	Asp	Glu	Asn	Lys 205	Ārg	Phe
25	Tyr Asp	Arg 210	Val	Asn	Leu	Leu	Asp 215	Gln	Glu	Gly	Glu	Gly 220	Asn	Val	Asp
30	Ser Ile 225 240	Thr	Leu	Arg	Arg	Lys 230	Leu	Val	Ser	Val	Ala 235	Leu	Asp	Trp	Asn
35	Gln Ile	Pro	Gly	Thr	Gln 245	Leu	Gln	Leu	Asp	Ala 250	Ser	His	Tyr	Glu	Phe 255
40	Gln Leu	Lys	Gly	Tyr 260	Val	Gly	Ser	Phe	Asn 265	Tyr	Gly	Pro	Asn	Val 270	Lys
45	Pro Ala	Ser	Ala 275	Pro	Asn	Pro	Lys	Asp 280	Lys	Asn	Leu	Ala	Leu 285	Ser	Thr
50	Gly Tyr	Asn	Asp	Leu	Thr	Ţhr	Asp	Thr	Ile	Ser	Thr	Arg	Leu	Ile	His

290 - 295

Phe Asn Asp Asp Trp Ser Met Asn Ala Gly Val Gly Trp Gln Gln Ala Asp Arg Ala Met Arg Ser Val Ser Ser Lys Ile Leu Asn Asn Gln Gly Asp Ile Ser Arg Ser Met Lys Asp Ser Thr Ala Ala Gly Arg Phe Arg Val Leu Ser Asn Thr Ala Gly Leu Asn Gly His Ile Asp Thr Gly Ser Ile Gly His Asp Leu Ser Leu Ser Thr Thr Gly Tyr Val Trp Ser Leu Tyr Ser Ala Lys Gly Thr Gly Ser Ser Tyr Ser Trp Gly Thr Thr Asn Met Tyr His Pro Asp Ala Ile Asp Glu Gln Gly Asp Gly Lys Ile Arg Thr Gly Gly Pro Arg Tyr Arg Ser Ser Val Asn Thr Gln Gln Ser Val

Thr Leu Gly Asp Thr Val Thr Phe Thr Pro Gln Trp Ser Ala Met Phe
435
440
445

	168/379

	Tyr Gly	Leu	. Ser	Gln	Ser	Trp	Leu	Glr	Thr	Lys	Asn	Tyr	Asp	Lys	His
	, 4	450					455	ı				460			
5	Asn	Gln	Thr	: Asn	Gln	Val	Asp	Glu	Asn	Glv	T,e11	Ser	Pro	7) G D	7\] ¬
	Ala 465					470	,			. 0-1	475		110	ASII	. Ala
10	480										1,0	٠			
	Leu	Met	Tyr	Lys	Ile	Thr	Pro	Asn	Thr	Met	Ala	Tyr	Vạl	Ser	Tyr
1.5	Ala	,			485					490					495
15		~													
	Asp Lys	Ser	Leu			Gly	Gly	Thr		Pro	Thr	Asp	Glu	Ser	Val
20 ·				500	*				505					.510	•
,	Asn	Ala	Gly	Gln	Thr	Leu	Asn	Pro	Tyr	Arg	Ser	Lys	Gln	Tyr	Glu
	Val		515					520					525		
25															
	Gly Phe	Leu	Lys	Ser	Asp	Ile	Gly	Glu	Met	Asn	Leu	Gly	Ala	Ala	Leu
30		530					535	e				540			
	Arg	Leu	Glu	Arg	Pro	Phe	Ala	Tyr	Leü	Asp	Thr	Asp	Asn	Val	Tyr
0.5	Lys 545					550					555				
35	560			•											
٠,	Glu	Gln	Gly	Asņ	Gln	Val	Asn	As , n	Gly	Leu	Glu	Leu	Thr	Ala	Ala
40	Gly				565					570					575
	÷				•										
	Asn Asp	Val	Trp	Gln	Gly	Leu	Asn	Ile	Tyr	Ser	Gly	Val	Thr	Phe	Leu.
45				580					585	,	*			590	
	Pro	Lys	Leu	Lys	Asp	Thr	Ala	Asn	Ala	Ser	Thr	Ser	Asn	Lvs	Gln
50	Val		595		~			600					605	<u> </u>	
				•											

169/3
102/3

Val Gly Val Pro Lys Val Gln Ala Asn Leu Leu Ala Glu Tyr Ser Leu Pro Ser Ile Pro Glu Trp Val Tyr Ser Ala Asn Val His Tyr Thr Gly Lys Arg Ala Ala Asn Asp Thr Asn Thr Ser Tyr Ala Ser Ser Tyr . Thr Thr Trp Asp Leu Gly Thr Arg Tyr Thr Thr Lys Val Ser Asn Val Pro. Thr Thr Phe Arg Val Val Val Asn Asn Val Phe Asp Lys His Tyr Trp Ala Ser Ile Phe Pro Ser Gly Thr Asp Gly Asp Asn Gly Ser Pro Ser Ala Phe Ile Gly Gly Gly Arg Glu Val Arg Ala Ser Val Thr Phe Asp Phe <210> 50 <211> 669 <212> PRT <213> Escherichia coli <400> Met Lys Asn Ile Thr Leu Trp Gln Arg Leu Arg Gln Val Ser Ile Ser. 1.0

WO 2005/097823		PCT/EP2005/003972
	170/370	

	Thr Ile	Ser	Leu	Arg	Cys	Ala	Phe	Leu	Met	Gly	· Ala	Leu	Leu	Thr	Leu	
				20					25			٠		30		
5	Val Ile	Ser	Ser 35	Val	Ser	Leu	Týr	Ser	Trp	His	Glu	Gln	Ser	Ser	Gln	
10	Arg Leu	Tyr 50	Ser	Leu	Asp	Lys	Tyr 55	Phe	Pro	Arg	Ile	His	Ser	Ala	Phe	
15	Ile Leu 65	Glu	Gly	Asn	Leu	Asn	Leu	Val	Val	Asp		Leu	Asn	Glu	Phe	
20	05			*		70					75	,		-		80
,	Gln Ile	Ala	Pro	Asn	Thr	Thr	Val	Arg	Leu	Gln 90	Leu	Arg	Thr	Gln	Ile 95	
25										50					93	
•	Gln Arg	His	Leu		Thr	Ile	Glu	Arg		.Ser	Arg	Gly	Leu	Ser	Ser	
30				100		-			105					110	•	
30	Glu Leu	Arg		Gln	Leu	Thr	Val		Leu	Gln	Asp	Ser	Arg	Ser	Leu	
35			115					120					125			
33	Ser Lys	Glu 130	Leu	Asp	Arg	Ala •	Leu 135	Tyr	Asn	Met	Phe	Leu 140	Leu	Arg	Glu	
40							100				-	T 40		•		
	Val Thr	Ser	Glu	Leu	Ser	Ala	Arg	Ile	Asp	Trp	Leu	His	Asp	Asp	Phe	
45	145 160					150					155					
	Thr	Glu	Leu	Asn	Ser	Leu	Val	Gln	Asp	Phe.	Thr	Trp	Gln	Gln	Gly	•
50	TIIT				165					170					175	

WO 2005/097823	PCT/EP2005/003972
----------------	-------------------

171/370 Leu Leu Asp Gln Ile Ala Ser Arg Gln Gly Asp Thr Ala Gln Tyr Leu Lys Arg Ser Arg Glu Val Gln Asn Glu Gln Gln Val Tyr Thr Leu Ala Arg Ile Glu Asn Gln Ile Val Asp Asp Leu Arg Asp Arg Leu Asn Glu Leu Lys Ser Gly Arg Asp Asp Ile Gln Val Glu Thr His Leu Arg Tyr Phe Glu Asn Leu Lys Lys Thr Ala Asp Glu Asn Ile Arg Met 25 5 Leu Asp Asp Trp Pro Gly Thr Ile Thr Leu Arg Gln Thr Ile Asp Glu Leu Leu Asp Met Gly Ile Val Lys Asn Lys Met Pro Asp Thr Met Arg Glu Tyr Val Ala Ala Gln Lys Ala Leu Glu Asp Ala Ser Arg Thr Arg Glu Ala Thr Gln Gly Arg Phe Arg Thr Leu Leu Glu Ala Gln Leu Gly

Ser Thr His Gln Gln Met Gln Met Phe Asn Gln Arg Met Glu Gln Ile

11	77	. /	-
1	72	4	J

Val His Val Ser Gly Gly Leu Ile Leu Val Ala Thr Ala Leu Ala Leu Leu Ala Trp Val Phe Asn His Tyr Phe Ile Arg Ser Arg Leu Val Lys Arg Phe Thr Leu Leu Asn Gln Ala Val Val Gln Ile Gly Leu Gly Gly Thr Glu Thr Thr Ile Pro Val Tyr Gly Asn Asp Glu Leu Gly Arq Ile Ala Gly Leu Leu Arg His Thr Leu Gly Gln Leu Asn Val Gln Lys Gln Gln Leu Glu Gln Glu Ile Thr Asp. Arg Lys Val Ile Glu Ala Asp Leu Arg Ala Thr Gln Asp Glu Leu Ile Gln Thr Ala Lys Leu Ala Val Val Gly Gln Thr Met Thr Thr Leu Ala His Glu Ile Asn Gln Pro Asn Ala Leu Ser Met Tyr Leu Phe Thr Ala Arg Arg Ala Ile Glu Gln Thr Gln Lys Glu Gln Ala Ser Met Met Leu Gly Lys Ala Glu Gly Val

					•										
	Ile Arg		Arg	Ile	Asp	Ala	Ile	Ile	Arg	Ser	Leu	Arg	Gln	Phe	Thr .
5	,			500					505					510	i.
	7) 70 00	7\] ¬	Clu	Tou	C_{1}	mb ×	Con	Ton	1114 -	71 7	T - T	70	-	~ 7	~ 3
	Met	Ата	Giu	пеп	GIU	T 11T	ser	ьеи	птѕ	Ата	vaı	Asp	ьeu	Ala	Gln
10		-	515	•				520					525		
		Ser	Ala	Ala	Trp	Glu	Leu	Leu	Ala	Met	Arg	His	Arg	Ser	Leu
15	Gln	530					535					540			
.1.0		000					333					540	•		
	Ala	Thr	Leu	Val	Leu	Pro	Gln	Gly	Thr	Ala	Thr	Val	Ser	Gly	Asp
20	Glu 545					550					555				-
	560										333				
									,						
25	Val Asp	Arg	Thr	Gln	Gln	Val	Leu	Val	Asn	Val	Leu	Ala	Asn	Ala	Leu
					565					57.0					575
					-										
30	Val Gly	Cys	Gly	Gln	Gly	Ala	Val	Tle	Thr	Val	Asn	Tro	Gln	Mat	Gla
30									T 11.L			F	C 1.1.1	HEL	GLII
	Gry			580					585			112	CIII	590	
	Gry											112			
3.5	Lys	Thr	Leu	580					585					590	٠
35		Thr		580					585					590	٠
35	Lys	Thr	Leu	580				Gly	585				Gly	590	٠
	Lys Glu Ala		Leu	580 Asn	Val	Phe	Ile	Gly 600	585 Asp	Asn	Gly	Pro	Gly 605	590 Trp	Pro
35	Lys Glu		Leu 595	580 Asn	Val	Phe	Ile	Gly 600	585 Asp	Asn	Gly	Pro	Gly 605	590 Trp	Pro
	Lys Glu Ala	Leu	Leu 595	580 Asn	Val	Phe	Ile	Gly 600	585 Asp	Asn	Gly	Pro Thr	Gly 605	590 Trp	Pro
40	Lys Glu Ala Val	Leu 610	Leu 595	580 Asn Pro	Val Ser	Phe Leu	Ile Leu 615	Gly 600 Lys	585 Asp	Asn Phe	Gly	Pro Thr 620	Gly 605 Ser	590 Trp Lys	Pro Glu
	Lys Glu Ala Val Gly Met 625	Leu 610	Leu 595 Leu	580 Asn Pro	Val Ser	Phe Leu	Ile Leu 615	Gly 600 Lys	585 Asp	Asn Phe	Gly	Pro Thr 620	Gly 605 Ser	590 Trp Lys	Pro Glu
40	Lys Glu Ala Val Gly Met	Leu 610	Leu 595 Leu	580 Asn Pro	Val Ser	Phe Leu Leu	Ile Leu 615	Gly 600 Lys	585 Asp	Asn Phe	Gly Thr	Pro Thr 620	Gly 605 Ser	590 Trp Lys	Pro Glu
40	Lys Glu Ala Val Gly Met 625 640	Leu 610 Leu	Leu 595 Leu	580 Asn Pro	Val Ser Gly	Phe Leu Leu 630	Ile Leu 615	Gly 600 Lys	585 Asp Pro	Asn Phe Val	Gly Thr Ser 635	Pro Thr 620 Leu	Gly 605 Ser Met	590 Trp Lys	Pro Glu Gln

Val Leu Gln Phe Arg Leu Thr Asp Val Glu Asp Ala Lys 51 <211> 753 <212> PRT <213> Escherichia coli <400> <210> Met Asn Val Ile Lys Leu Ala Ile Gly Ser Gly Ile Leu Leu Cys Gly Ala Tyr Ser Gln Ser Ile Ser Glu Lys Thr Asn Ser Asp Lys Gly Ala Ala Glu Phe Ser Pro Leu Ser Val Ser Val Gly Lys Thr Thr Ser Glu Glu Glu Ala Leu Glu Lys Thr Gly Ala Thr Ser Ser Arg Thr Thr Asp Lys Asn Leu Gln Ser Leu Asp Ala Thr Val Arg Ser Met Pro Gly Thr Tyr Thr Gln Ile Asp Pro Gly Gln Gly Ala Ile Ser Val Asn Ile Arg Gly Met Ser Gly Phe Gly Arg Val Asn Thr Met Val Asp Gly Ile Thr Gln Ser Phe Tyr Gly Thr Ser Thr Ser Gly Thr Thr Thr

WU 2005/09/823			PC 1/EP2005/0039
	-	175/370	

								1/5/3	70							
	His Leu		Ser	Thr	Asn	Asn	Met	Ala	Gly	Val	Leu	Ile	Asp	Pro	Asn	
	пси	130					·135					140				
5	Gly 145	Val	Ala	Val	Asp	Val 150	Thr	Arg	Gly	Asp	Ser 155	Ser	Gly	Ser	Glu	
10	160				Vi											
	Ile Asp	Asn	Ala	Leu	Ala	Gly	Ser	Ala	Asn	Met	Arg	Thr	Ile	Gly	Val	
15					165					170					17,5	
	Asp Ser		Ile	Phe	Asn	Gly	Asn	Thr	Tyr	Gly	Leu	Arg	Ser	Arg	Phe	· ·
20				180					185					190		
	Val Gly	Gly	Ser	Asn	Gly	Leu	Gly	Arg	Ser	Gly	Met	Ile	Ala	Ĺeu	Gly	
25	4		195					200					205			
	Lys Ala	Ser	Asp	Ala	Phe	Thr	Asp	Thr	Gly	Ser	Ile	Gly	Val	Met	Ala	-
30	1120	210					215				٠.	220				
	Val Ile 225	Ser	Gly	Ser	Ser		Tyr	Ser	Asn	Phe		Asn	Gly	Ser	Gly	ı
35	240		•			230					235					
		Ser	Lys	Glu	Phe	Gly	Tyr	Asp	Lys	Tyr	Met	Lys	Gln	Asn	Pro	
40	Lys	-			245					250					255	,
	Ser Phe	Gln	Leu		Lys	Met	Asp	Ile	•	Pro	Asp	Glu	Phe	Asn	Ser	
45				260					265					270		
	Glu Ile	Leu	Ser	Ala	Arg	Thr	Tyr	Glu	Asn	Lys	Phe	Thr	Arg	Arg	Asp	

Ile

'Thr Ser Asp Asp Tyr Tyr Ile Lys Tyr His Tyr Thr Pro Phe Ser Glu Leu Ile Asp Phe Asn Val Thr Ala Ser Thr Ser Arg Gly Asn Gln Tyr Arg Asp Gly Ser Leu Tyr Thr Phe Tyr Lys Thr Ser Ala Gln Asn Arg Ser Asp Ala Leu Asp Ile Asn Asn Thr Ser Arg Phe Thr Val Ala 2.0 Asp Asn Asp Leu Glu Phe Met Leu Gly Ser Lys Leu Met Arg Thr Arg Tyr Asp Arg Thr Ile His Ser Ala Ala Gly Asp Pro Lys Ala Asn Gln Glu Ser Ile Glu Asn Asn Pro Phe Ala Pro Ser Gly Gln Gln Asp Ile 38.5 Ser Ala Leu Tyr Thr Gly Leu Lys Val Thr Arg Gly Ile Trp Glu Ala Asp Phe Asn Leu Asn Tyr Thr Arg Asn Arg Ile Thr Gly Tyr Lys Pro Ala Cys Asp Ser Arg Val Ile Cys Val Pro Gln Gly Ser Tyr Asp Ile

r	Asp	Asp	T.V.S	Glu	Glv	Gl v	Phe	Asn	Pro	Ser	Val	Gln	T.e.11	Ser	70 T ==
5	Gln	450	ביים	014	CLy	CIY	455	71011	110	DCT	VUL	460	шец	per	Ата
	*** 7		_		-	0. 1	_		7			~			
,	Arg	Thr	Pro	Trp	Leu		Pro	Phe	Ile	Gly	Tyr	Ser	Lys	Ser	Met
10	465 480					470			٠		475				
1.5		Pro	Asn	Ile	Gln	Glu	Met	Phe	Phe	Ser	Asn	Ser	Gly	Gly	Ala
15	Ser				485			•		490					495
20		Asn	Pro	Phe	Leu	Lys	Pro	Glu	Arg	Ala	Glu	Thr	Trp	Gln	Ala
20	Gly			500					505					510	
. 25		Asn	Ile	Asp	Thr	Arg	Asp	Leu	Leu	Val	Glu	Gln	Asp	Ala	Leu
23	Arg		5,15					520					525		
30		Lys	Ala	Leu	Ala	Tyr	Arg	Ser	Arg	Ile	Gln	Asn	Tyr	Ile	Tyr
,30	Ser	530	•		-		535					540			
35	Glu Glu	Ser	Tyr	Leu	Val [.]	Cys	Ser	Gly	Gly	Arg	Lys	Cys	Ser	Leu	Pro
33	545 560	٧				550					555				•
														-	
40	Val Asn	Ile	Gly	Asn		Trp	Glu	Gly	Ile		Asp	Glu	Tyr	Ser	Asp
					565					570	·e				575
45		Tyr	Ile	Tyr	Val	Asn	Ser	Ala	Ser	Asp	Val	Ile	Ala	Lys	Gly
	Phe			580					585					590	
50	Glu Ser	Leu	Glu	Met	Asp	Tyr	Asp	Ala	Gly	Phe	Ala	Phe	Gly	Arg	Leu

1	7	8	3	7

Phe Ser Gln Gln Gln Thr Asp Gln Pro Thr Ser Ile Ala Ser Thr His

Phe Gly Ala Gly Asp Ile Thr Glu Leu Pro Arg Lys Tyr Met Thr

Asp Thr Gly Val Arg Phe Phe Asp Asn Ala Leu Thr Leu Gly Thr

Ile Lys Tyr Thr Gly Lys Ala Arg Arg Leu Ser Pro Asp Phe Glu Gln

Asp Glu His Thr Gly Ala Ile Ile Lys Gln Asp Leu Pro Gln Ile Pro 680 -

Thr Ile Ile Asp Leu Tyr Gly Thr Tyr Glu Tyr Asn Arg Asn Leu Thr

Leu Lys Leu Ser Val Gln Asn Leu Met Asn Arg Asp Tyr Ser Glu Ala

Leu Asn Lys Leu Asn Met Met Pro Gly Leu Gly Asp Glu Thr His Pro

Ala Asn Ser Ala Arg Gly Arg Thr Trp Ile Phe Gly Gly Asp Ile Arq

Phe

<210> 52 <211> 133 <212> PRT <213> Escherichia coli <400> Met Ser Ser Lys Thr Lys Cys Trp Leu Trp Met Leu Leu Val Ile Ser Glu Thr Ser Ala Thr Ser Thr Leu Lys Met Phe Asp Asn Ser Gly Met Thr Lys Thr Leu Leu Leu Ala Leu Ile Val Val Leu Tyr Cys Ile Cys Tyr Tyr Ser Leu Ser Arg Ala Val Lys Asp Ile Pro Val Gly Leu Ala Tyr Ala Thr Trp Ser Gly Thr Gly Ile Leu Met Val Ser Thr Leu Gly Ile Leu Phe Tyr Gly Gln His Pro Asp Thr Ala Ala Ile Ile Gly Met Val Ile Ile Ala Ser Gly Ile Ile Ile Met Asn Leu Phe Ser Lys Met Gly Ser Glu Glu Ala Glu Glu Thr Pro Val Thr Asn Leu Lys Lys Ile Ala Asn

180/3/0	

<210> 53 <211> 286 <212> PRT <213> Escherichia coli <400> 53

- Met Tyr Ile Lys Lys His Trp Ile Ala Leu Ser Ile Leu Leu Ile 5 Pro 1 5 10 15
- Cys Ile Gly Asn Ala Gln Glu Ile Lys Ile Asp Glu Ser Trp Leu

 10 His
 20 25 30
- Gln Ser Leu Asn Val Ile Gly Arg Thr Asp Ser Arg Phe Gly Pro
 15 Arg
 35 40 45
- Leu Thr Asn Asp Leu Tyr Pro Glu Tyr Thr Val Ala Gly Arg Lys
 20 Asp
 50 55 60
- Trp Phe Asp Phe Tyr Gly Tyr Val Asp Leu Pro Lys Phe Phe Gly
 Val
 65 70 75 80
- Gly Ser His Tyr Asp Val Gly Ile Trp Asp Glu Gly Ser Pro Leu 30 Phe 85 90 95
- Thr Glu Ile Glu Pro Arg Phe Ser Ile Asp Lys Leu Thr Gly Leu 35 Asn 100 105 110
- Leu Ala Phe Gly Pro Phe Lys Glu Trp Phe Ile Ala Asn Asn Tyr 40 Val 115 120 125
- Tyr Asp Met Gly Asp Asn Gln Ser Ser Arg Gln Ser Thr Trp Tyr 45 Met 130 . 135 . 140
- Gly Leu Gly Thr Asp Ile Asp Thr Gly Leu Pro Ile Lys Leu Ser . $50\,$ Ala

145	150	155
160		

- 5 Asn Ile Tyr Ala Lys Tyr Gln Trp Gln Asn Tyr Gly Ala Ala Asn Glu
 165 170 175
- 10 Asn Glu Trp Asp Gly Tyr Arg Phe Lys Ile Lys Tyr Ser Ile Pro Leu 180 185 190
- 15 Thr Asn Leu Phe Gly Gly Arg Leu Val Tyr Asn Ser Phe Thr Asn Phe
 195 200 205
- 20 Asp Phe Gly Ser Asp Leu Ala Asp Lys Ser His Asn Asn Lys Arg
 Thr
 210 215 220
- 25 Ser Asn Ala Ile Ala Ser Ser His Ile Leu Ser Leu Leu Tyr Glu His 225 230 235 240
- 30

 Trp Lys Phe Ala Phe Thr Leu Arg Tyr Phe His Asn Gly Gly Gln
 Trp

 245

 250

 255
- Asn Ala Gly Glu Lys Val Asn Phe Gly Asp Gly Pro Phe Glu Leu Lys
 260 265 270
- 40
 Asn Thr Gly Trp Gly Thr Tyr Thr Thr Ile Gly Tyr Gln Phe
 275
 280
 285
- 45 <210> 54 <211> 172 <212> PRT <213> Escherichia coli <400> 54
 - Met Arg Ile Ala Pro Arg Thr Phe Phe Ala Ile Ser Ala Leu Ala Phe
- 50 1 5 10 15

182/370

Ile Val Ala Ser Gly Phe Ser Phe Trp Arg Leu Ser Pro Ala Glu Asn Thr Gly Ile Met Ser Cys Ser Thr Lys Gly Ile Met Arg Phe Glu Asn Met Glu Lys Glu Asn Val Asn Gly Asn Ile His Phe Asn Phe Gly Ser Gln Gly Lys Gly Ser Met Val Leu Glu Gly Tyr Thr Asp Ser Ala Gly Trp Leu Tyr Leu Gln Arg Tyr Val Lys Phe Thr Tyr Thr Ser Lys Arg Val Ser Ala Thr Glu Arg His Tyr Arg Ile Ser Gln Trp Glu Ser Ser Ala Ser Ser Ile Asp Glu Ser Pro Asp Val Ile Phe Asp Tyr Met Arg Glu Met Ser Asp Ser His Asp Gly Leu Phe Leu Asn Ala Gln Lys Leu Asn Asp Lys Ala Ile Leu Leu Ser Ser Ile Asn Ser Pro Leu Trp Ile Cys Thr Leu Lys Ser Gly Ser Lys Leu Asp

183/370

<210> 55 <211> 182 <212> PRT <213> Escherichia coli <400> 55

Met Lys Ile Lys Val Ile Ala Leu Ala Thr Phe Val Ser Ala Val 5 Phe 1 5 10 15

Ala Gly Ser Ala Met Ala Tyr Asp Gly Thr Ile Thr Phe Thr Gly

10 Lys
20 25 30

Val Val Ala Gln Thr Cys Thr Val Asn Thr Ser Asp Lys Asp Leu

15 Ala

35 40 45

Val Thr Leu Pro Thr Val Ala Thr Ser Ser Leu Lys Asp Asn Ala 20 Ala 50 55 60

Thr Ser Gly Leu Thr Pro Phe Ala Ile Arg Leu Thr Gly Cys Ala
25 Thr
65 70 75 80

Gly Met Asn Ser Ala Gln Asn Val Lys Ala Tyr Phe Glu Pro Ser 30 Ser 85 90 95

Asn Ile Asp Leu Ala Thr His Asn Leu Lys Asn Thr Ala Thr Pro

Thr

100 105 110

Lys Ala Asp Asn Val Gln Ile Gln Leu Leu Asn Ser Asn Gly Thr 40 Ser 115 120 125

Thr Ile Leu Leu Gly Glu Ala Asp Asn Gly Gln Asp Val Gln Ser 45 Glu 130 135 140

Thr Ile Gly Ser Asp Gly Ser Ala Thr Leu Arg Tyr Met Ala Gln 50 Tyr

	WO 2005/097823									184/370				PCT/EP2005/003972			
	145 160		٠			150					155		•				
5	Tyr His	Ala	Thr	Gly	Gln	Ser	Thr	Ala	Gly	Asp	Val	Lys	Ala	Thr	Val		
	******				165					170					175		
10	Tyr	Thr	Ile	Ala 180	Tyr	Glu											
15	<21 56	0>	56 <	211>	35	9 <2	12>	PRT	<21	3> :	Esch	eric	hia d	coli	<4	00>	
	Met Lys	Lys	Arg	Ile	Phe	Phe	Ile	Pro	Leu	Phe	Leu	Ile	Leu	Leu	Pro		
20	1				5	. ,				10					15		
. •	Leu Val	Ala	Val	Ala	Gļļy	Pro	Asp	Asp	Tyr	Val	Pro	Ser	Gln	Ile	Ala		
25				20					25				•	30			
	Asn His	Thr	Ser	Thr	Leu	Pro	Gly	Val	Val	Ile	Gly	Pro	Ala	Asp	Ala		
30			35					40					45				
	Thr Tyr	Tyr	Pro	Arg	Val	Ile	Gly	Glu	Leu	Ala	Gly	Thr	Ser	Asn	Gln		
35		50		_			55					60		,		•	
	Val Pro	Phe	Asn	Gly	Gly	Ala	Ile	Ala	Leu	Met	Arg	Gly	Lys	Phe	Thr		
40	65	•				70					75					80	
	Ala Lys	Leu	Pro	Lys	Ile	Ġly	Ser	Ile	Thr	Val	Tyr	Phe	Pro	Ser	Arg		
45	<i>J</i>			•	85					90					95		
	Gln Glv	Arg	Asp	Ser	Ser	Asp	Phe	Asp	Ile	Tyr	Asp	Ile	Gly	Val	Ser		

105

110 ·

Gly

50

185/37
103/3/

Leu Gly Ile Ile Gly Met Ala Gly Tyr Trp Pro Ala Thr Pro Leu Val Pro Ile Asn Ser Ser Gly Ile Tyr Ile Asp Pro Val Gly Ala Asn Thr Asn Pro Asn Thr Tyr Asn Gly Ala Thr Ala Ser Phe Gly Ala Leu Phe Val Ala Phe Val Ala Thr Gly Arg Leu Pro Asn Gly Tyr Ile . 20 Thr Ile Pro Thr Arg Gln Leu Gly Thr Ile Leu Leu Glu Ala Lys Arg Thr Ser Leu Asn Asn Lys Gly Leu Thr Ala Pro Val Met Leu Asn Gly 2.00 Gly Arg Ile Gln Val Gln Ser Gln Thr Cys Thr Met Gly Gln Lys Asn Tyr Val Val Pro Leu Asn Thr Val Tyr Gln Ser Gln Phe Thr Ser Leu Tyr Lys Glu Ile Gln Gly Gly Lys Ile Asp Ile His Leu Gln Cys Pro 250 -Asp Gly Ile Asp Val Tyr Ala Thr Leu Thr Asp Ala Ser Gln Pro Val

186/37
100/3

Asn Arg Thr Asp Ile Leu Thr Leu Ser Ser Glu Ser Thr Ala Lys Gly.

Phe Gly Ile Arg Leu Tyr Lys Asp Ser Asp Val Thr Ala Ile Ser

Gly Glu Asp Ser Pro Val Lys Gly Asn Gly Ser Gln Trp His Phe

Asp Tyr Arg Gly Glu Val Asn Pro His Ile Asn Leu Arg Ala Asn Tyr

Ile Lys Ile Ala Asp Ala Thr Thr Pro Gly Ser Val Lys Ala Ile Ala

Thr Ile Thr Phe Ser Tyr Gln

<210> 57 <211> 844 <212> PRT <213> Escherichia coli <400>

Met Asn Ala Asn Asn Leu Ser Cys Leu Ile Tyr Cys Arg Cys Ser Leu

Leu Leu Phe Ala Ala Leu Gly Leu Thr Val Thr Asn His Ser Phe Ala

Ala Glu Glu Ala Glu Phe Asp Ser Glu Phe Leu His Leu Asp Lys Gly

Ile Asn Ala Ile Asp Ile Arg Arg Phe Ser His Gly Asn Pro Val Pro

WO 2005/097823 PCT/EP2005/003972 187/370

Glu Gly Arg Tyr Tyr Ser Asp Ile Tyr Val Asn Asn Val Trp Lys Gly Lys Ala Asp Leu Gln Tyr Leu Arg Thr Ala Asn Thr Gly Ala Pro Thr Leu Cys Leu Thr Pro Glu Leu Leu Ser Leu Ile Asp Leu Val Lys Asp Thr Met Ser Gly Asn Thr Ser Cys Phe Pro Ala Ser Thr Gly Leu Ser 120 . Ser Ala Arg Ile Asn Phe Asp Leu Ser Thr Leu Arg Leu Asn Ile Glu Ile Pro Gln Ala Leu Leu Asn Thr Arg Pro Arg Gly Tyr Ile Ser Pro Ala Gln Trp Gln Ser Gly Val Pro Ala Ala Phe Ile Asn Tyr Asp Ala Asn Tyr Tyr Gln Tyr Ser Ser Ser Gly Thr Ser Asn Glu Gln Thr Tyr

Leu Gly Leu Lys Ala Gly Phe Asn Leu Trp Gly Trp Ala Leu Arg His

Arg Gly Ser Glu Ser Trp Asn Asn Ser Tyr Pro Ala Gly Tyr Gln Asn

210	215	220

Ile Glu Thr Ser Ile Met His Asp Leu Ala Pro Leu Arg Ala Gln . Phe Thr Leu Gly Asp Phe Tyr Thr Asn Gly Glu Leu Met Asp Ser Leu Leu Arg Gly Val Arg Leu Ala Ser Asp Glu Arg Met Leu Pro Gly Ser Leu Arg Gly Tyr Ala Pro Ala Val Arg Gly Ile Ala Asn Ser Asn Ala Lys Val Thr Ile Tyr Gln Asn Ala His Ile Leu Tyr Glu Thr Thr Val Pro Ala Gly Pro Phe Val Ile Asn Asp Leu Tyr Pro Ser Gly Tyr Ala Gly Asp Leu Leu Val Lys Ile Thr Glu Ser Asn Gly Gln Thr Arg Met Phe Thr Val Pro Phe Ala Ala Val Ala Gln Leu Ile Arg Pro Gly Phe Ser Arg Trp Gln Met Ser Val Gly Lys Tyr Arg Tyr Ala Asn Lys

V	V O 20 0	5/09782	23				189/370						PCT/EP2005/003972			
	Asn	Asp	Leu	Ile	Ala	Gln	Gly	Thr	Tyr	Gln	Tyr	Gly	Leu	Thr		
ASII	370					375					380	,				
Asp Ala 385	Ile	Thr	Leu	Asn		Gly	Leu	Thr	Thr		Ser	Gly	Tyr	Thr		
400																
	Leu	Ala	Gly	Leu	Ala	Phe	Asn	Thr	Pro	Leu	Gly	Aļa	Ile	Ala		
				405					410					415		
	Ile	Thr	Leu	Ser	Arg	Thr	Ala	Phe	Arg	Tyr	Ser	Gly	Val	Thr		
ALG			420			•		425			,		430			
	Gly	Tyr	Ser	Leu	His	Ser	Ser	Tyr	Ser	Ile	Asn	Ile	Pro	Ala		
per	-	435					440					445				
	Thr	Asn	Ile	Thr	Leu	Ala	Ala	Tyr	Arg	Tyr	Ser	Ser	Lys	Asp		
1110	450					455					460					
	His	Leu	Lys	Asp	Ala	Leu	Ser	Ala	Asn	His	Asn	Ala	Phe	Ile		
465 480					47 <u>0</u>			,		475						
Asp Phe	Val	Ser	Val	Lys	Ser	Thr	Ala	Phe	Tyr	Arg	Pro	Arg	Asn	Gln		
	,			485					490					495		
	Ile	Ser	Ile	Asn	Gln	Glu	Leu	Gly	Glu	Lys	Trp	Gly	Gly	Met		
т Лт			500					505					510	,		
	Tyr Asn Asp Ala 385 400 Gly Ser Asp Arg Lys Ser Asn Phe	Tyr Asn 370 Asp Ile Ala 385 400 Gly Leu Ser Gly Ser Gly 450 Tyr His Asp 465 480 Asp Val Phe Gln Ile	Tyr Asn Asp 370 Asp Ile Thr Ala Ser Ile Thr Arg Ile Thr Asp 435 Asp Gly Tyr 435 Asn Thr Asn 450 Tyr His Leu Asn 450 Asp 465 480 Cln Ile Ser	Asn 370 Asp Ile Thr Leu Ala 385 400 Gly Leu Ala Gly 420 Lys Gly Tyr Ser 435 Asn Thr Asn Ile 450 Tyr His Leu Lys Asp 465 480 Asp Yal Ser Val Phe Tyr Ile Ser Ile	Asp Asn Asp Leu Ilee 370 Asp Ala Ilee Thr Leu Asn Asp Ala Gly Leu 405 Asp Ala Yal Ser 420 Ash Ash Ash Ash Ile Thr 435 Ash Ash Ash Ash Ile Thr 450 Tyr Asp 465 Asp Asp Asp Asp 465 Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp	Tyr Asn 370Asp Thr Thr 400Leu Asn 385 400Thr 405Leu 405Asp Asp 420Ala 390Asp Arg ArgThr 420Leu 435Arg 420Arg Arg 420Asn Phe 450Tyr 435Ser 436Leu 450His 470Tyr Asp 465 480His 481Leu 482Asp 485Ala 470Asp PheVal 485Ser 485Val 485Lys 485Ser 485Gln TyrThe Asp 485SerThe Asp 485Asp 485Asp 485	Asn Asn Leu Ile Ala Gin 375 Asp Ile Thr Leu Asn Ser Gly 390 Gly Leu Ala Gly Leu Ala Phe 405 Asp Ile Thr Leu Ser Arg Thr 420 Lys Gly Tyr Ser Leu His Ser 435 Asn Thr Asn Ile Thr Leu Ala 455 Asn Asn Thr Asn Ile Thr Leu Ala 455 Tyr His Leu Lys Asp Ala Leu Asp 465 480 Asp Val Ser Val Lys Ser Thr 485 Gln Ile Ser Ile Asn Gln Glu Glu	Tyr Asn Asn 370 Asp Asp Tyr Leu Asp A	Hotel Parish Hote	Tyr Asn 370 Asp 1 Leu Leu Ile Ala Gly Leu Tyr Asp 400 Thr Leu Asn Ser Gly Leu Thr Thr Asp 400 Leu Ala Ser Gly Leu Thr Pro Asp Arg Ile Thr Leu Ser Arg Thr Ala Pro Asp Arg Ile Thr Leu Ser Arg Thr Ala Pro Arg Asp 450 Thr Asp Ile Thr Leu Ala Ile Arg Asp 465 480 Thr Asp Ala Leu Ala Arg Arg Asp 465 480 Thr Arg Arg <td>Ash Asp Leu Ile Ala Gln Gly Thr Tyr Gln Asp Ile Thr Leu Ash Ser Gly Leu Thr Ala Asp Leu Ala Gly Leu Ala Phe Asn Thr Pro Leu Asp Ile Thr Leu Ser Arg Thr Ala Phe Asn Thr Pro Leu Asp Ile Thr Leu Ser Arg Thr Ala Phe Arg Tyr Arg Tyr Asp Ile Thr Leu Br Arg Thr Ala Phe Arg Tyr Arg Ile <</td> <td> Type</td> <td> Type</td> <td> Type Ash Asp Asp Leu Ile Ala Glu Glu The Tyr Glu Tyr Glu Leu Ash 375 375 380</td>	Ash Asp Leu Ile Ala Gln Gly Thr Tyr Gln Asp Ile Thr Leu Ash Ser Gly Leu Thr Ala Asp Leu Ala Gly Leu Ala Phe Asn Thr Pro Leu Asp Ile Thr Leu Ser Arg Thr Ala Phe Asn Thr Pro Leu Asp Ile Thr Leu Ser Arg Thr Ala Phe Arg Tyr Arg Tyr Asp Ile Thr Leu Br Arg Thr Ala Phe Arg Tyr Arg Ile <	Type	Type	Type Ash Asp Asp Leu Ile Ala Glu Glu The Tyr Glu Tyr Glu Leu Ash 375 375 380		

Leu Thr Gly Thr Thr Tyr Asn Tyr Trp Gly His Lys Gly Ser Arg

Asn

W O 2005/09 / 623		PC 1/EP2
	190/370	

Glu Tyr Gln Ile Gly Tyr Ser Asn Phe Trp Lys Gln Leu Gly Tyr Gln Ile Gly Leu Ser Gln Ser Arg Asp Asn Glu Gln Gln Arg Arg Asp Asp Arg Phe Tyr Ile Asn Phe Thr Leu Pro Leu Gly Gly Ser Val Gln Ser Pro Val Phe Ser Thr Val Leu Asn Tyr Ser Lys Glu Glu Lys Asn Ile Gln Thr Ser Ile Ser Gly Thr Gly Glu Asp Asn Gln Phe Ser Tyr Gly Ile Ser Gly Asn Ser Gln Glu Asn Gly Pro Ser Gly Tyr Met Asn Gly Gly Tyr Arg Ser Pro Tyr Val Asn Ile Thr Thr Val Gly His Asp Thr Gln Asn Asn Gln Arg Ser Phe Gly Ala Ser Gly 655 . Ala Val Val Ala His Pro Tyr Gly Val Thr Leu Ser Asn Asp Leu Ser Asp Thr Phe Ala Ile Ile His Ala Glu Gly Ala Gln Gly Ala Val Ile

	Asn Val	Asn	Ala	Ser	Gly	Ser	Arg	Leu	Asp	Phe	Trp	Gly	Asn	Gly	Val
5		690		•			695					700			
			Val	Thr	Pro	Tyr	Glu	Lys	Asn	Gln	Ile	Ser	Ile	Asp	Pro
10	Ser 705 720	-				710					715				
15	Asn Ile	Leu	Asp	Leu	Asn	Val	Glu	Leu	Ser	Ala	Thr	Glu	Gln	Glu	Ile
15	,				725			,		730		*			735
20	Pro Gly	Arg	Ala	Asn	Ser	Ala	Thr	Leu	Val	Lys	Phe	Asp	Thr	Lys	Thr
20	GTĀ			740					745					750	
25		Ser	Leu	Leu	Phe	Asp	Ile	Arg	Met	Ser	Thr	Gly	Asn	Pro	Pro
25	Pro		755					760				•	765		b.
20		Ala	Ser	Glu	Val	Leu	Asp	Glu	His	Gly	Gln	Leu	Ala	Gly	Tyr
30	Val	770					775					780			
35	Ala His	Gln	Ala	Gly	Lys	Val	Phe	Thr	Arg	Gly	Leu	Pro	Glu	Lys	Gly
	785 800					790					795				
40	Leu	Ser	Val	Val	Trp	Gly	Pro	Asp	Asn	Lys	Asp	Arq	Cvs	Ser	Phe
	Val				805	_		-		810	•	5			815
15	M	TT 2 _	77-7	7) T	TT2	70	T	70			~ 7	_	- 7		
45	Pro	HIS	vaı		HIS	Asn	туз	Asp	Asp	Met	GIn	Ser	Gln		Val
				820					825					830	
50 .	Val	Leu	Cys 835	Ile	Gln	His	Pro	Asn 840	Gln	Glu	Lys	Thr			

192/370

<210> 58 <211> 277 <212> PRT <213> Escherichia coli <400> Met Val Lys Cys His Thr Leu Ile Asn Arg Arg Asn Lys Cys Leu Leu 1 . Ile Val Phe Ile Val Leu Ile Gly Trp Ile Ile Phe Arg Pro Lys Ala Tyr Thr Tyr Ser Leu Asn Asp Lys Glu Lys Glu Met Leu Ile Met Leu Ser Gln His Pro Glu Thr Arg Tyr Phe Gly Phe Tyr Ser Ile Glu Leu Pro Ala Asp Tyr Lys Pro Thr Gly Met Val Met Phe Ile Gln Gly Ser Ala Met Ile Pro Val Glu Thr Lys Leu Gln Tyr Tyr Pro Phe Leu Gln Tyr Met Thr Arg Tyr Glu Ala Glu Leu Lys Asn Thr Ser Ala Leu Asp Pro Leu Asp Thr Pro Tyr Leu Lys Gln Val His Pro Leu Ser Pro Met Asn Gly Val Ile Phe Glu Arg Met Lys Ala Lys Tyr Thr

WO 2005/097823		PCT/EP2005/003972
	102/270	

	WO 2005/09/823							193/370						PC1/EP2005/0039/2				
5	Asp Thr 145 160	Phe	Ala	Arg	Val	Leu 150	Asp	Ala	Trp	Lys	Trp 155	Glu	Asn	Gly	Val			
•	Phe Asp	Ser	Val	Lys	Ile 165	Glu	Ala	Lys	Asp	Gly 170	Arg	Ala	Thr	Arg	Tyr .			
10													•					
	_	Ile	Ser	Lys	Ile	Ala	Glu	Tyr	Ser	Tyr	Gly	Tyr	Asn	Ile	Pro			
15	Glu			18.0					185		- ,			190				
	_	Lys	Val	Gln	Leu	Leu	Thr	Ile	Ĺeu	Ser	Gly	Leu	Gľn	Pæo	Arg			
20	Ala		195					200					205					
	-	Asn	Gln	Pro	Pro	Ser	Glu	Asn	Lys	Leu	Ala	Ile	Gln	Tyr	Ala			
25	Gln	210					215					220						
		Asp	Ala	Ser	Leu	Leu	Gly	Glu	Tyr	Glu	Leu	Ser	Val	Asp	Tyr			
30	Lys 225 240					230					235							
	Asn	Ser	Asn	Asn	Ile	Lys	Ile	Ser	Leu	Gln	Thr	Asp	Asn	As n	Ser			
35	Tyr				245					250					255			
		Asp	Ser	Leu	Leu	Asp	Ile	Arg	Tyr	Pro	Ser	Asn	Gly	As n	Arg			
40	Ala			260					265			-		27 0				
45	Trp	Tyr	Asn 275	Ser	Ile													

<210> 59 <211> 366 <212> PRT <213> Escherichia coli <400> 59

50 Met Leu Pro Glu Pro Val Tyr Arg Arg Trp Ile Ile Leu Leu Ile Ser

	V	VO 200	5/0978	23				194/	'370		PCT/EP2005/003972					
	1.				5					10					15	
5	Met Ala	Leu	Thr	Val 20	Gly	Thr	Leu	Phe	Ile 25	Leu	Ser	Val	Trp	Asn 30	Ser	
10	Thr Leu	Tyr	Trp	Asp	Ile	Phe	Ile	Tyr 40	Gly	Val	Leu	Pro	Met 45	Leu	Phe	
15	Trp Val	Leu 50	Cys	Leu	Phe	Gly	Ile 55	Alą	Leu	Asn	Lys	Tyr 60	Glu	Gln	Ser	·
20	Ala Leu 65	Ala	Cys	Ile	Ser	Trp 70	Glu	Ser	Glu	Arg	Gln 75	Gln	Val	Lys	Gln	80
25	Trp Leu	Gln	His	Trp	Ser 85	Gln	Lys	Gln	Leu	Ala 90	Ile	Val	Gly	Asn	Val 95	
30	Phe Glu	Thr	Pro	Glu 100	Glu	Lys	Gly	Met	Ser 105	Val	Leu	Leu	Gly	Pro 110	Gln	,
35	Glu Ser	Ile	Pro 115	Ala	Tyr	Pro	Lys	Lys 120	Ala	Arg	Pro	Leu	Phe	Ser	Ala	
40	Arg Thr	Tyr 130	Ser	Leu	Ser	Ser	Ile 135	Phe	His	Asp	Ile	His 140	Gln	Gln	Leu	
45	Gln Leu 145 160	Gln	Phe	Pro	Asp	Tyr 150	Arg	His	Tyr	Leu	His 155	Thr	Ile	Tyr	Val	

Gln Pro Glu Lys Trp Arg Gly Glu Thr Val Arg Gln Ala Ile Phe

50

His

195/370 165 170 175

- Gln Trp Asp Leu Val Pro Glu Arg Thr Asn Thr Leu Asn Gln Ile 5 Gln 180 185 190
- Ser Leu Tyr Asp Glu Arg Phe Asp Gly Leu Ile Leu Val Val Cys 10 Leu 195 200 205
- Gln Asn Trp Pro Glu Asn Lys Pro Glu Asp Thr Ser Glu Leu Val 15 Ser 210 215 220
- Ala Gln Leu Ile Ser Ser Ser Phe Val Arg Gln His Gln Ile
 Pro
 225 230 235
 240
- 25 Val Ile Ala Gly Leu Gly Arg Val Met Pro Leu Glu Pro Glu Glu Leu 245 250 255
- 30 Glu His Asn Leu Asp Val Leu Phe Glu Tyr Asn Gln Leu Asp Asn Lys 260 265 270
- 35 Gln Leu Gln His Val Trp Val Ser Gly Leu Asp Glu Gly Thr Ile Glu 275 280 285
- 40 Asn Leu Met Gln Tyr Ala Glu Gln His Gln Trp Ser Leu Pro Lys Lys 290 295 300
- 45 Arg Pro Leu His Met Ile Asp His Ser Phe Gly Pro Thr Gly Glu Phe 305 310 315 320

WO 2005/097823 196/370										PCT/EP2005/003972				
Ile Thr	Phe	Pro	Val	Ser	Leu	Ala	Met	Leu	Ser	Glu	Ala	Ala	Lys	Glu
				325					330					335

Glu Gln Asn His Leu Ile Ile Tyr Gln Ser Ala Gln Tyr Ala Gln Lys 34,5

Lys Ser Leu Cys Leu Ile Thr Arg Lys Leu Tyr Leu Arg Thr

<210> 60 <211> 260 <212> PRT <213> Escherichia coli <400> . 60

Met Leu Asn Arg Lys Leu Asn Ile Arg Leu Arg His Ser Leu Asn 1.

His Cys Ile Pro Ser Ile Ile Ile Asn Asn Thr Val Arg Ser Phe Gln

Arg Ser Val Met Asn Thr Arg Ala Leu Phe Pro Leu Leu Phe Thr Val

Ala Ser Phe Ser Ala Ser Ala Gly Asn Trp Ala Val Lys Asn Gly Trp

Cys Gln Thr Met Thr Glu Asp Gly Gln Ala Leu Val Met Leu Lys Asn

Gly Thr Ile Gly Ile Thr Gly Leu Met Gln Gly Cys Pro Asn Gly Val

Gln Thr Leu Leu Gly Ser Arg Ile Ser Ile Asn Gly Asn Leu Ile

197/3

	Thr Val	Ser	Gln	Met	Cys	Asn	Gln	Gln	Thr	Gly	Phe	Arg	Ala	Val	Glu
5			115					120					125		
	Glu Ile	Ile	Gly	Gln	Ala	Pro	Glu	Met	Val	Lys	Lys	Ala	Val	His	Ser
- 10		130					135					140			
	Ala Glu	Ĝlu	Arg	Asp	Val	Ser	Val	Leu	Gln	Ala	Phe	Gly	Val	Arg	Met
15	145 160					150					155				
	Phe Ser	Thr	Arg	Gly	Asp	Met	Leu	Lys	Val	Cys	Pro	Lys	Phe	Val	Thr
20		,			165					170			•		175
	Leu Ser	Ala	Gly	Phe	Ser	Pro	Lys	Gln	Thr	Thr	Thr	Ile	Asn	Lys	Asp
25				180					185				•	190	
	Val Glu	Leu	Gln	Ala	Ala	Arg	Gln	Ala	Tyr	Ala	Arg	Glu	Tyr	Asp	Glu
30		4	195					200					205		
	Thr Lys	Thr	Glu	Thr	Ala	Asp	Phe	Gly	Ser	Tyr	Glu	Val	Lys	Gly	Asn
35	*	210					215		•			220			
	Val Val	Glu	Phe	Glu	Val	Phe	Asn	Pro	Glu	Asp	Arg	Ala	Tyr	Asp	Lys
40	225 240					230					235	,			
45	Thr Glu	Val	Thr	Val	Gly	Ala	Asp	Gly	Asn		Thr	Gly	Ala	Ser	Val
10	g <u>r</u> u				245					250					255
50	Phe	Ile		Lys 260											

198/370	

<210> 61 <211> 385 <212> PRT <213> Escherichia coli <400>

- Val Val Ile Ile Asn Ser Thr Ile Leu Ser Gly Ala Gly Ala Ile
- Ser Leu Thr Ser Leu Leu Pro Asp Ile Arg Lys Met Leu Leu Val Thr
- Asp Arg Asn Ile Ala Gln Leu Asp Gly Val Gln Gln Ile Arg Ala Leu
- Leu Glu Lys His Cys Pro Gln Val Asn Val Ile Asp Asn Val Pro Ala
- Glu Pro Thr His His Asp Val Arg Gln Leu Met Asp Ala Pro Gly Asp 7.5
- Ala Ser Phe Asp Val Val Gly Ile Gly Gly Ser Val Leu Asp
- Val Ala Lys Leu Leu Ser Val Leu Cys His Pro Gln Ser Pro Gly Leu
- Asp Ala Leu Leu Ala Gly Glu Lys Pro Thr Gln Arg Val Gln Ser Trp
- Leu Ile Pro Thr Thr Ala Gly Thr Gly Ser Glu Ala Thr Pro Asn Ala
- Ile Leu Ala Ile Pro Glu Gln Ser Thr Lys Val Gly Ile Ile Ser Gln

	V	VO 200	05/0978	323				199/3	370				PCT	/EP200	5/0039
	145 160					150					155				
5	Val Ser	Leu	Leu	Pro		Tyr	Val	Ala	Leu		Pro	Glu	Leu	Thr	
					165		•			170		٠			175
10	Met His	Pro	Ala	His	Ile	Ala	Ala	Ser	Thr	Gly	Ile	Asp	Ala	Leu	Cys
	1110		•	180					185					190	
15	Leu Asn	Leu	Glu	Cys	Phe	Thr	Ala	Thr	Val	Ala	Asn	Pro	Val	Ser	Asp
			195	,			,	200					205	•	,
20	Ala Ala		Leu	Thr	Gly	Leu		Lys	Leu	Phe	Arg		Ile	Gln	Pro
		210	1	1			215					220			
25	Val Ala	Asn	Asp	Pro	Gln	Asp	Leu	Arg	Ala	Lys	Leu	Glu	Met	Leu	Trp
	225 240					230					235				
30	Ser	Tvr	Тvr	Gly	Glv	Val	Ala	Tle	Thr	His	Ala	Glv	Thr	His	T.e.11
,	Val	- 1		J—1	245					250		1			255
35					210					200				š.	200
33	His Gly	Ala	Leu	Ser	Tyr	Pro	Leu	Gly	Gly	Lys	Tyr	His	Leu	Pro	His
	Ory			260					265					270	
40		Ala	Asn	Ala	Ile.	Lèu	·Leu	Ala	Pro	Cys	Met	Ala	Phe	Val	Arg
	Pro		275					280			-		285		

45

Trp Ala Val Glu Lys Phe Ala Arg Val Trp Asp Cys Ile Pro Asp Ala

290

295

300

WO 2005/097823	PCT/EP2005/003972

	V	VO 200	5/0978	323				200/3	370				PCT	EP200	5/003972
5	Glu Trp 305 320	Thr	Ala	Leu	Ser	Ala 310	Glu	Glu	Lys	Ser	His	Ala	Leu	Val	Thr
	Leu Ala	Gln	Ala	Leu	Val 325	Asn	Gln	Leu	Lys	Leu 330	Pro	Asn	Asn	Leu	
10					525					330					335
	Leu Leu	Gly	Val		Pro	Glu	Asp	Ile	Ala	Ser	Leu	Ser	Glu	Ala	Ala
15	,			340					345					350	
	Asn Gln	Val	Lys	Arg	Leu	Met	Asn	Asn	Val	Pro	Cys	Gln	Ile	Asp	Leu
20			355					360	٠				365		
		Val	Gln	Ala	Ile	Tyr	Gln	Thr	Leu	Phe	Pro	Gln	His	Pro	Phe
25	Lys	370					375					380			
	·Glu 385														,
30	<210 62)> (62 <2	211>	105	5 <21	L2>	PRT	<213	3> E	Esche	erich	nia d	coli	~4·00>
35	Met Leu	Asn		Arg	Lys	Leu	Phe	Cys	Pro	Gly	Asn	Thr	Pro	Arg	Ile
	1				5					10					15
40	Leu Cys	Phe	Leu	Phe	Phe	Phe	Val	Val	Ser	Ala	Ile	Thr	Thr	Ile	Ala
	. 4			20					25					30	
45	Gly Leu	Tyr	Thr	Glu	Lys	Asn	Ala	Thr	Gly	Asn	Val	Leu	Leu	Leu	Phe
	,		35				_	40				•	45		

Leu Leu Leu Ala His Arg Asn Thr Leu Thr Ser Ile Thr Ala Leu

5	Leu Tyr 65	Phe	Leu	Phe	Cys	Cys 70	Ala	Leu	Tyr	Ala	Pro	Ala	Gly	Met	Thr	80
10	Gly Thr	Lys	Ile	Asn	Asn 85	Ser	Phe	Ile	Val	Ala 90	Leu	Leu	Gln	Thr	Thr 95	
15	Asp	Glu	Ala	Ala 100	Glu	Phe	Thr	Gly	Met 105							
,	63)>	53 <2	211>	147	/ <21	L2>	PRT	<213	3> E	Esche	erich	nia o	coli	<40	0>
20	Met Phe 1	Asn	Ile	Gln	Ala 5	Ile	Lys	Glu	Met	Val	Asn	Leu	Ile	Cys	Ser 15	
25	Leu Tyr	Phe	Ile	Phe 20	Phe	Leu	Ser	Ser	Ala 25	Phe	Val	Ser	Phe	Gly 30	Cys	
30	Ala Trp	Ile	Tyr 35	Glu	Leu	Phe	Leu	Trp	Asn	Asp	Ile	Ile	Val 45	Tyr	Ser	
35	Gly Ser	Туг 50	Ile	Leu	Ile	Val	Phe 55	Leu	Pro	Phe	Thr	Leu 60	Tyr	Val	Met	
40	Phe Val 65	Glu	Ile	Leu	Phe	Phe	Ala	Ile	Ser	Gly	Arg 75	Arg	Leu	Ser	Lys	80
45	Thr Ser	Met	Val	Arg	Leu 85	Trp	Leu	Ile	Ile	Lys 90	Ile	Ile	Ile	Ala	Phe 95	
50	Ile	Cys	Ala	Val	Leu	Ile	Phe	Ser	Ser	Ile	Tyr	Lys	Lys	Glu	Leu	

Leu

100 105 110

Ser Arg Asn Tyr Ile Ala Cys Ser Gly Ile Pro Ser Gly Trp Met 5 Pro 115 120 125

Gly Leu Ala Thr Lys Tyr Val Lys Glu Lys Ser Leu Cys Glu Lys

10 Asn
130 135 140

Gly Asn Asn . 15 145

Met Phe Pro Ile Arg Phe Lys Arg Pro Ala Leu Leu Cys Met Ala Met 1 5 10 15

25
Leu Thr Val Val Leu Ser Gly Cys Gly Leu Ile Gln Lys Val Val Asp
20
25
30

30
Glu Ser Lys Ser Val Ala Ser Ala Val Phe Tyr Lys Gln Ile Lys Ile
35
40
45

Leu His Leu Asp Phe Phe Ser Arg Ser Ala Leu Asn Thr Asp Ala Glu
50 55 60

Asp Thr Pro Leu Ser Thr Met Val His Val Trp Gln Leu Lys Thr Arg
65 70 75 80

Glu Asp Phe Asp Lys Ala Asp Tyr Asp Thr Leu Phe Met Gln Glu Glu 85 90 95

	v	VO 2 00	05/0978	323									PCT/	EP2005	5/003972
								203/3	370				-		
	Lys Lys	Thr	Leu	Glu	Lys	Asp	Val	Leu	Ala	Lys	His	Thr	Val	Trp	Val
-				100					105					110	
5	Pro Gln	Glu	Gly	Thr	Ala	Ser	Leu	Asn	Val	Pro	Leu	Asp	Lys	Glu	Thr
			115					120					125		÷ ,
10		Val	Ala	Ile	Ile	Gly	Gln	Phe	Tyr	His	Pro	Asp	Glu	Lys	Ser
	Asp	130					135					140			
15	Ser	Trp	Arq	Leu	Val	Ile	Lys	Arq	Asp	Glu	Leu	Glu	Ala	Asp	Lvs
	Pro 145 160	1-	y ,			150	2				155			1	
20	100		•					*							
	Arg Lys	Ser	Ile	Glu		Met	Arg	Ser	Asp		Arg	Leu	Leu	Pro	
25					165					170					175
	Asp	Lys	-											3	
30															•
.50	<210 65)> (65 <2	211>	209	9 <21	12>	PRT	<213	3> E	Esche	erich	nia c	coli	<400>
35	Met Val	Phe	Leu	Lys	Arg	Lys	Trp	Tyr	Tyr	Ala	Val	Thr	Thr	Ser	Val
33	1				5 .					10					15
40	Ile Gln	Thr	Leu	Cys	Gly	Gly	Gly	Tyr	Tyr	Met	Tyr	Arg	Gln	Glu	Tyr
70	OTII			20					25					30	
45	Met Pro	Val	Val	Thr	Val	Pro	Thr	Ala	Asp	Ala	Asn	Asp	Pro	Asn	Trp
. •			35					40					45		
50		Lys	Arg	Ile	Gln	Phe	Asp	Thr	Ser	Glu	Trp	Leu	Gln	Gln	Leu
50	Gln	50					55					60			

W U 2005/09/823		PC 1/EP200
	204/370	

5	Tyr Pro 65	Ile	Lys	Ile	Asp	Asp	His	Tyr	Ile	Leu	Asn 75	Thr	Gln	Tyr	Thr	80
10	Ile Ala	Ala	Asn	Leu	Asp 85	Asp	Phe	Gly	Ile	Thr	Leu	Lys	Leu	Gln	Asn 95	
15	Leu Glu	Asn	Gly	Ser	Asp	Lys	Arg	Leu	Pro	Ala	Leu	Tyr	Gly	Leu 110	Ala	
20	Met Cys	Asp	Ala 115	Gln	Lys	Phe	Lys	Asp 120	*	Met	Arg	Gly	Lys 125	Ile	Lys	
25	Glu Asn	Tyr 130	Leu	Arg	Thr	Thr	Phe	Asp	Ala	Glu	Thr	Leu 140	Lys	Pro	Val	
30	Asp Phe 145 160	Tyr	Phe	Leu	Ile	Ser 150	Phe	Thr	Tyr	Lys	Asp	Lys	Trp	Tyr	Glu	
35	Glu Leu	Thr	Glu	Arg	Lys 165	Ile	Ser	Lys	Thr	Ser 170	Asp	Asp	Gly	Tyr	Phe	
40	Trp Thr	Ala	Phe	Asp 180	Asn	Thr	Val	His	Glu 185	Ala	Gly	Tyr	Trp	His 190		
45	Asp Val	Pro	Ala 195	Ala	Tyr	Ser	Tyr	Arg 200	Asp	Tyr	Gln	Asn	Gly 205	Lys	Ala	
,	Tivs															

Lys

	·	. 0	2,0570					205	/370				,	,	, 0 0 0 0	_
	<210 66	0> (66 < <i>;</i>	211>	42	4 <23	12>	PRT	<21	3> 1	Esch	eric	hia (coli	<40	OO>
5	Met Arg	Asp	Ile	Trp	Arg	Gly	His	Ser	Phe	Leu	Met	Thr	Ile	Ser	Ala	
	1				5					10					15	
10		Arg	Gln	Tyr	Val	Phe	Ser	Leu	Met	Sex	Ile	Leu	Leu	Gln	Glu	
	Arg	÷		20		•			25					30		
15	Lys Ile	Met	Asn	Ile	Phe	Thr	Leu	Ser	Lys	Ala	Pro	Leu	Tyr	Leu	Leu	
	7		35	•				40					45			
20	Ser Arg	Leu	Phe	Leu	Pro	Thr	Met	Ala	Met	Ala	Ile	Asp	Pro	Pro	Gĺu	
	nrg	50	, .				55	,				60				
25	Glu Asp	Leu	Ser	Arg	Phe	Ala	Leu	Lys	Thr	Asn	Tyr	Leu	Gln	Ser	Pro	
	65					7.0			*		75 ·	•				80
30	Glu Phe	Gly	Val	Tyr	Glu	Leu	Ala	Phe	Asp	Asn	Ala	Ser	Lys	Lys	Val	
	1116	•			85					90					95	
35	Ala Leu	Ala	Val	Thr	Asp	Arg	Val	Asn	Arg	Glu	Ala	Asn	Lys	Gly	Tyr	
	1 00			100					105					110		

40 Tyr Ser Phe Asn Ser Asp Ser Leu Lys Val Glu Asn Lys Tyr Thr Met
115 120 125

45 Pro Tyr Arg Ala Phe Ser Leu Ala Ile Asn Gln Asp Lys His Gln Leu
130 135 140

Tyr Ile Gly His Thr Gln Ser Ala Ser Leu Arg Ile Ser Met Phe Asp

145 150 155 160

- 5 Thr Pro Thr Gly Lys Leu Val Arg Thr Ser Asp Arg Leu Ser Phe Lys 165 170 175
- 10 Ala Ala Asn Ala Ala Asp Ser Arg Phe Glu His Phe Arg His Met Val 180 185 190
- 15 Tyr Ser Gln Asp Ser Asp Thr Leu Phe Val Ser Tyr Ser Asn Met Leu

 195 200 205
- 20 Lys Thr Ala Glu Gly Met Lys Pro Leu His Lys Leu Leu Met Leu Asp
 210 215 220
- Gly Thr Thr Leu Ala Leu Lys Gly Glu Val Lys Asp Ala Tyr Lys Gly 225 230 235
- Thr Ala Tyr Gly Leu Thr Met Asp Glu Lys Thr Gln Lys Ile Tyr Val

 245
 250
 255
- 35
 Gly Gly Arg Asp Tyr Ile Asn Glu Ile Asp Ala Lys Asn Gln Thr
 Leu
 260
 265
 270
- Leu Arg Thr Ile Pro Leu Lys Asp Pro Arg Pro Gln Ile Thr Ser Val . 275 280 285
- Gln Asn Leu Ala Val Asp Ser Ala Ser Asp Arg Ala Phe Val Val Val 290 295 300

207/370

Phe Asp His Asp Asp Arg Ser Gly Thr Lys Asp Gly Leu Tyr Ile Phe 305 310 315

320

5

Asp Leu Arg Asp Gly Lys Gln Leu Gly Tyr Val His Thr Gly Ala 325

330

335

10

Ala Asn Ala Val Lys Tyr Asn Pro Lys Tyr Asn Glu Leu Tyr Val 340 345 350

15

Asn Phe Thr Ser Gly Thr Ile Ser Val Val Asp Ala Thr Lys Tyr Ser 355 360 . . 365

20

Ile Thr Arg Glu Phe Asn Met Pro Val Tyr Pro Asn Gln Met Val Leu 370 375 380

25

Ser Asp Asp Met Asp Thr Leu Tyr Ile Gly Ile Lys Glu Gly Phe Asn 385 390 395

30 400

Arg Asp Trp Asp Pro Asp Val Phe Val Glu Gly Ala Lys Glu Arg Ile 35 405 410 415

Leu Ser Ile Asp Leu Lys Lys Ser 420

40

<210> 67 <211> 489 <212> DNA <213> Escherichia coli <400> atgaaactga aagctattat attggccacc ggtcttatta actgtattgt

45 attttcagca 60

caggcagtgg atacgacgat tactgtgacg ggtaatgttt tgcaamgaac atgtaatgta 120

ccagggaatg tggatgtttc tttgggtaat ctgtatgtat cagactttcc 50 caatgcagga 180

agtggatctc catgggttaa ttttgatctg tctctcaccg gatgccagaa tatgaatact 240

5 gttcgggcaa catttagtgg tactgcggat gggcagacat actatgcgaa tacagggaat 300

gctggcggta tcaagattga aattcaggac agggatggaa gtaatgcatc atatcacaat 360

10

ggtatgttca agacgcttaa tgtacaaaat aataatgcaa cctttaatct taaagcccgt 420

gcagtgagta aaggccaggt tactcctgga aatatcagtt ctgttataac cgtcacctat 480

acctatgcg 489

20

<210> 68 <211> 2019 <212> DNA <213> Escherichia coli <400> 68

atgaaaatga cacggcttta tcctctggcc ttggggggat tattgctccc cgccattgct 60

25

aatgcccaga cttcacagca agacgaaagc acgctggtgg ttaccgccag taaacaatct 120

tcccgctcgg catcagccaa caacgtctcg tctactgttg tcagcgcgcc 30 ggaattaagc 180

gacgccggcg tcaccgccag cgacaaactc cccagagtct tgcccgggct caatattgaa 240 .

35 aatageggea acatgetttt ttegaegate tegetaegeg gegtetette agegeaggae 300

ttctataacc ccgccgtcac cctgtatgtc gatggcgtcc ctcagctttc caccaacacc 360

40

atccaggcgc ttaccgatgt gcaaagcgtg gagttgctgc gaggcccaca gggaacgtta 420

tatggcaaaa gcgctcaggg cgggatcatc aacatcgtca cccagcagcc 45 ggacagcacg 480

ccgcgcggct atattgaagg cggcgtcagt agccgcgaca gttatcgaag taagttcaac 540

50 ctgagcggcc ccattcagga tggcctgctg tacggcagcg tcaccctgtt acgccaggtt 600

WO 2005/097823 PCT/EP2005/003972 209/370

	gatgacggcg	acatgattaa 660	ccccgcgacg	ggaagcgatg	acttaggcgg
5	agcataggga aatgggcttt	atgtgaaact 720	gcgtctggcg	ccggacgatc	agccctggga
10	gccgcctcac gaatgatatt	gcgaatgtac ·780	ccgcgccacc	caggacgcct	atgtgggatg
	aagggccgta gcgctgcact	agctgtcgat 840	cagcgatggt	tcaccagacc	cgtacatgcg
15	gacagccaga cctgatcagc	ccctgagtgg 900	gaaatacacc	accgatgact	gggttttcaa
	gcctggcagc cgtcaatatg	agcagcatta 960	ttcgcgcacc	ttcccttccg	gttcgttaat
20	tctcagcgct cgatgcgcgt	ggaatcagga 1020	tgtgcaggag	ctgcgcgctg	caaccctggg
25	accgttgata aaattcagcc	tggtgtttgg 1080	gctgtaccgg	cagaacaccc	gcgagaagtt
	tacgacatgc tgaaacgctg	cgacaatgcc 1140	ttatttaagc	agtaccggct	ataccaccgc
30	gccgcataca cggcggcgtg	gtgacctgac 1200	ctggcattta	accgatcgtt	ttgatatcgg
	cgcttctcgc caacccgttt	atgataaatc 1260	cagtacacaa	tatcacggca	gcatgctcgg
35	ggcgaccagg aggctatatg	gtaagagcaa 1320	tgacgatcag	gtgctcgggc	agctatccgc
40	ctgaccgatg ttccgggtac	actggagagt 1380	gtatacccgt	gtagcccagg	gatataaacc
10	aacatcgtgc atccatcaac	ctactgcggg 1440	tcttgatgcc	aaaccgttcg	tcgccgagaa
45	tatgaacttg gacgttttat	gcacccgcta 1500	cgaaaccgct	gacgtcacgc	tgcaagccgc
	acccacacca attaagcaat	aagacatgca 1560	gctttactct	ggcccggtcg	ggatgcagac
50	gcgggtaaag tgcgccaggc	ccgacgccac 1620	cggcgttgag	cttgaagcga	agtggcggtt

	tggtcatggg cagtgagttg	atatcaatgg 1680	caacgtgatc	cgttccgaat	tcaccaatga	
5	tatcacggta cgtgaacggc	accgggtgcc 1740	gttcgtacca	cgttatggcg	cgggaagcag	
10	gtgattgata ggtcgggccg	cgcgctatgg 1800	cgcactgatg	ccccgactgg	cggttaatct [.]	
10	cattatttcg ggacagcagc	atggcgacaa 1860	ccagttgcgg	caaggcacct	atgccaccct	
15	ctgggctggc cctgttcgac	aggcgactga 1920	acggatgaac	atttccgtct	atgtcgataa	
	cgtcgttacc ggtcaatatg	gtacctatgg 1980	ctacatgaac	ggcagcagcg	ccgtcgcgca	
20	ggtcgcaccg 2019	tcggtatcaa	tacgcgaatt	gatttcttc		
25	<210> 69 <	<211> 738 <	<212> DNA <	<213> Esche	erichia coli	<400>
	atgaataagg agtaaatgca	tttttgttgt 60	ttcagtggtg	gccgcagcct	gtgtatttgc	
30	ggagcaaagg ctctgtgatg	aaggtaaaag 120	cggtttttat	ctgaccggta	aagccggtgc	
	tcactttcag gtataaaggc	accagcgttt 180	cctgtcagga	gatgaggaag	aaacatcaaa _.	
35	ggcgatgacc tttttatccg	atgatacggt 240	attcagtggc	ggtattgcgg	tcggttatga	•
40	cagttcagta agctgattcg	ttccggttcg 300	tacagaactg	gagttttacg	ctcgtggaaa	
40	aagtataacg cctgaagaat	tagataaaga 360	cagctggtca	ggtggttact	ggcgtgatga	
45	gaggtgtcag tgacagcgca	tcaacacact 420	aatgctgaat	gcgtactatg	acttccggaa	
	ttcacaccat aacaaccggt	gggtatccgc 480	agggattggc	tacgccagaa	ttcaccagaa	•

atcagtacct gggattatga gtacggaagc agtggtcgcg aatcgttgtc acgttcaggc 540

tctgctgaca acttcgcatg gagccttggc gcgggtgtcc gctatgacgt aaccccggat 600

- 5 atcgctctgg acctcagcta tcgctatctt gatgcaggtg acagcagtgt gagttacaag 660
 - gacgagtggg gcgataaata taagtcagaa gttgatgtta aaagtcatga catcatgctt 720

10 ggtatgactt ataacttc 738

- 15 <210> 70 <211> 498 <212> DNA <213> Escherichia coli <400> 70 atgaaactga aagctattat attggccacc ggtcttatta actgtattgc attttcagca 60
- 20 caggcagtgg atacgacgat tactgttaca gggagggtat tgccacgtac ctgtaccatt 120
 - ggtaatggag gaaacccaaa cgccaccgtt gttttggata acgcttacac ttctgacctg 180

25
atagcagcca acagcacctc tcagtggaaa aatttttcgt tgacattgac
gaattgtcag 240

- aatgtaaaca atgttacttc atttggtgga accgcagaaa atacaaatta 30 ttacagaaat 300
 - acaggggatg ctactaatat catggttgag ctacaggaac aaggtaatgg taatacccc 360
- . 35 ttgaaagttg gttcaacaaa agttgttaca gtgagcaatg ggcaggcgac attcaatctt 420
 - aaagtccgtg ccgtaagcaa aggtaatgct ggtgcgggaa gtattaattc acaaattact 480

gtcacctata cctatgcg 498

- 45 <210> 71 <211> 3885 <212> DNA <213> Escherichia coli <400> 71 atgaataaaa tatactccct taaatatagt gctgccactg gcggactcat tgctgtttct 60
- 50 gaattagcga aaagagtttc tggtaaaaca aaccgaaaac ttgtagcaac aatgttgtct 120

WO 2005/097823 PCT/EP2005/003972 212/370

		*			
	ctggctgttg atgggcgaga	ccggtacagt 180	aaatgcagca	aatattgata	tatcaaatgt
5	gactatcttg agacgtaaca	atcttgcaca 240	aaataaaggt	attttccagc	ccggagcaac
10	atcactttaa ggatttttct	aaaacggaga 300	taaattctct	ttccataatc	tctcaattcc
10	ggtgcagcag tactgttgca	cgagtggcgc 360	agctaccgca	ataggaggtt	cttatagtgt
15	cataacaaaa ttcttadagg	agaaccetca 420	ggccgcagaa	acccaggttt	acgctcagtc
	gttgttgaca atttgttgtg	gaagaaattc 480	caatgatttt	gagattcaga	ggttaaataa
20	gaaacagtag tgcattagaa	gtgccacccc 540	ggcagagacc	aaccctacaa	catattctga
25	cgctacggta tgctggctct	tagtcacttc 600	tgacggttca	aaaaaaatca	taggttttcg
23	ggaggaacat atatagccat	catttattaa 660	tggtgaatcc	aaaatctcaa	caaattcagc
30	gatctgttaa catgatgatt	gtgctagtct 720	atttgaggtc	acccaatggg	actcatacgg
	tataaaaatg ctctggagca	ataaaacatt 780	tcgtaatctt	gaaatattcg	gagacagcgg
35	tacttatatg tggtattgcc	ataacaaact 840	agaaaaatgg	gtattagtcg	gaacaaccca
40	agcgttaatg ggttagtgag	gtgaccaact 900	gacatggata	acaaaataca	atgataaact
	ttaaaagata cattaaaaac	cctatagtca 960	taaaataaat	ctgaatggca	ataatgtaac
45	acagatataa aaaaataact	cattacacca 1020	aaacaatgca	gataccactg	gtactcaaga
	aaagacaaag taatttggat	atattgtgtt 1080	cacaaatggg	ggagatgtcc	tgtttaagga
50	tttggtagcg cggtcaggga	gtggtattat 1140	ctttgacgaa	ggccatgaat	ataacataaa

WO 2005/097823 PCT/EP2005/003972 213/370

	tttacattta ctggaatgca		aattgatatç	ggaaaagaaa	gcattgtaaa
5	ttgtattcca tgttcaaaaa		tttacacaaa	ataggccccg	gtactctgaa
10	aaacaggggg agaaggaaca		gataggtgaa	ggaaatgtta	ttcttaatga
10	tttaacaata agataattcc		aagcggaaat	ggtaaggtaa	tactaaataa
15	cttggcaatg gctagattta		ggggatattt	tttactaaac	gtggtggtac
	aatggacaca aacaataact		tactagaatt	gccgccactg	acgatggaac
20	aactcagata ctacatatat		agccgttctg	gcaatcaata	acgaagactc
. 25	catgggaaca ggataagaaa		tataaaacta	acgcacaata	ttaattctca
. 23	actaatgcaa tgaagtcagt	aattaattct . 1680	ggatggtagt	gtcaacacaa	aaaatgatgt
30	aatgccagtc aagctcagcg	ttaccatgca 1740	aggccatgca	acagagcatg	caatattcag
	aatcattgct gaaagaaaca		tctttgtgga	acggactggg	tcaccgtttt
35	gagagttcat gcagacctca	ataataaaaa 1860	attcaattct	gattacaaaa	gtaataatca
40	tttgatcagc cctgaacaat		aaccggggtg	tttaaatttg	atacattaca
	gctgactttt aaataaatca	caatatcacg 1980	caatgccaat	gttgaaggaa	atatatcagc
45	gctatcacaa aaatattact	tcggcgataa 2040	aaatgtttac	attgataatc	ttgcagggaa
	aataatggtt agaaactaaa	ttgacttcaa 2100	acaaactatc	agtactaatc	tatccatagg
50	tttacaggtg agctgtagtt	gcatcactgc 2160	acataacagc	caaatagcca	taggtgatca

WO 2005/097823 PCT/EP2005/003972 214/370

		4		•	•
	acacttaatg aggagcaaaa	gtgcaacctt 2220	tctggataat	actcctataa	gtatagataa
5	gttatagcac tgaactgact	aaaattccat 2280	gttcacaaca	aaaggtattg	atatctccgg
10	atgatgggaa ctacgctgct	tccctgaaca 2340	gaatagtaaa	actgtaacgc	cgggtctcca
10	gatggattca ggcatctgtc	ggctgagtgg 2400	tggaaatgca	aatttcattg	ccagaaatat
15	accggaaata tgaaactgaa		tgatgcagca	accattactc	tgggacagcc
	acaccgacta tggctttgat	tatcgtctgc 2520	ttatcaggca	tgggcagaga	ctcttttgta
20	accgcttatc taatgcgatc	gaggcgcaat 2580	aacagccccc	aaagctacag	ttagcatgaa
25	tggcatctaa tatggtgcgt	atagccagtc 2640	atcaattaat	cgtctagaaa	caaaagacag
25	tttactggtg tatagatgac	ataatgggaa 2700	gtttacaacc	cttacagtga	acaaccttac
3O	agtgcatttg caataaatcg		aaatctggcc	caagcagatc	agcttgttgt
	ttgtctggta aaacagcaac	aaaacaacct 2820	tctgttagtc	gacttcattg	agaaaaatgg
35	ggactgaata ctttaaagct	tcgatctggt 2880	cagegeaeca	aaaggaactg	cagtagatgt
40	acgactcgga gaacgataca	gtattggctt 2940	cagtgatgta	acaccggtta	tcgagcaaaa
	gacaaagcaa tgcggctaaa		gatcggctat	aaatctgtgg	ccaacgccga
45	aaggcaacat caacaacctt	tactgatgtc 3060	aggcggctat	aaagccttcc	ttgctgaggt
	aacaaacgta ggcccgaatc		gcgtgacatt	aacggtgagt	ccggtgcatg
5O	attagcggaa cgttcaggtc		cggcggtgga	ttcagtgaca	actacaccca

			•			
	ggtgcggata gaccatgacc	acaaacatga 3240	actcgatggc	cttgacctct	tcaccggggt .	
5	tataccgaca tgtgggtgcc	gccatgcagg 3300	cagtgatgcc	ttcagtggtg	aaacgaagtc	
10	ggtctctatg cggtaagtac	cctctgccat 3360	gtttgagtcc	ggagcatata	tcgacctcat	
	gttcaccatg agactacagc	acaacgagta 3420	taccgcaact	ttcgccggcc	ttggcaccag	
15	tcccactcct tgactctgca	ggtatgccgg 3480	tgcggaagtc	ggttaccgtt	accatgtaac	
•	tggattgagc gttctcctgg	cgcaggcgga 3540	acttgtttac	ggtgctgtat	ccgggaaaca	,
20	aaggaccagg gattgggcgt	gaatgaacct 3600	caccatgaag	gataaggact	ttaatccgct	¥
25	accggtgttg agcccgcgcc	atgtgggtaa 3660	atccttctcc	ggtaaggact	ggaaagtcac	
23	ggccttggct tgatgcgtcc	accagtttga 3720	cctgtttgcc	aacggtgaaa	ccgtactgcg	·
30	ggtgagaaac tggtctcáac	gtatcaaagg 3780	tgaaaaagac	ggtcgtatgc	tcatgaatgt	,
	gccgaaattc atttggtaaa	gcgataatct 3840	tcgcttcggt	cttgagtttg	agaaatcggc	
35	tacaacgtgg 3885	ataacgcgat	caacgccaac	ttccgttact	ctttc	
40	<210> 72 < 72	=211> 426 <	(212> DNA <	(213> Esche	erichia coli	<400>
40		ttcccagtcc 60	caccgctgtt	gttatggcgc	tggtagccat	
45	cccagcccta caccacaggt	gcagggtaaa 120	gcttatgcca	tatcctccca	gagcccacaa	
	ttactgccag aaacagcatt	tacgggaaat 180	ttgctttccc	caccacgggg .	acgatggcag	
50	gagccaagca tatgaccaga	tcagcagggc 240	agcccataca	gacagactca	gatttgtctg	

acagggagca	caaccagcag	accgttctgc	ccgataccga	gaagcccggc
actgaacgca	. 300			

- 5 agtggccagc aggacagtgg tttttggggc gtatcttcga tcccaggtga cattttaatg 360
 - tttcaactcc atgtattaat tgtgtttatt tgtaaaatta atttatctga caataacatt 420

10 tcttat 426

40

tcatctttct

- 15 <210> 73 <211> 954 <212> DNA <213> Escherichia coli <400> 73 atgtatgccc gcgagtatcg ctcaacacgc ccgcataaag cgattttctt
- 20 tgcctcaccc ttatctgtag tgcgcaagtt tatgcgaagc cggatatgcg gccactgggg 120

- ccgaatatag ccgataaagg ctccgtgttt taccatttca gcgccacctc tttcgactct 180
- 25 gtcgatggca cacgccatta tcgggtatgg acggccgtgc cgaatacaac cgcaccggca 240
- tcgggttacc cgattttata tatgcttgac ggtaacgcag ttatggaccg 30 cctggatgac 300
 - gaactgctca aacaattgtc agaaaaaca ccgccagtga tcgtggctgt cgggtatcag 360
- 35 accaacetee etttegatet caacageagg gettaegaet ataegeeage ageagaaage 420
 - agaaaaacag atctccactc agggcgtttt agccgtaaga gtggtggcag caacaacttc 480
 - cgccagttac tggaaacgcg tattgcccca aaagtggaac agggactgaa tatcgatcgg 540
- caacgccgcg gcttatgggg gcactcctac ggcggcctct tcgtgctgga ttcctggctg 600
 - tecteetett actteeggte gtactacage geeageeegt egttgggeag aggttatgat 660
- 50 gctttgctaa gccgcgttac ggcggttgag cctctgcaat tctgcaccaa acacctggcg 720

- ataatggaag gctcggcgac acagggtgat aaccgggaaa cgcatgctgt cggggtgctg 780 .
- 5 tcgaaaattc ataccaccct cactatactg amagataaag gcgtcaatgc cgtattttgg 840

10

40

- gatttcccca acctgggaca cgggccgatg ttcaatgcct cctttcgcca ggcactgtta 900
- gatatcagtg gtgaaaacgc aaattacaca gcaggttgtc atgagttaag ccac
- 15 <210> 74 <211> 2175 <212> DNA <213> Escherichia coli <400> 74 atgagaatta acaaaatcct ctggtcgcta actgtgctcc tagttgggtt gaatagccag 60
- 20 gtatcagtag ccaaatactc cgacgatgat aatgacgaga ctctggtggt ggaagccacc 120
- gctgagcagg tattaaaaca gcagccgggc gtgtcggtta ttaccagcga ggatattaaa 180
 - aagacccctc cggtaaacga cctttcagat at tattcgta aaatgcctgg tgttaatctt 240
- accggcaata gcgcctcggg cacacgcggt aa taaccgcc agatcgatat 30 tcgtggtatg 300
 - gggccggaaa acaccttaat tttaattgat ggtgtaccgg tgacgtcacg taactccgtg 360
- 35 cgttatagct ggcgtgggga gcgtgatacc cgcggtgaca ccaactgggt gccaccggaa 420
 - caggttgagc gtattgaagt gatccgcggc cctgcggcgg cgcgctacgg ttcgggggcc 480
- gccggggggg tggtgaacat cattaccaaa cgtcccacca acgactggca cggttcgctg 540
- tcgttataca ccaaccagcc ggaaagtagc gaagagggcg ctacgcgtcg cgccaatttc 600
 - agccttagtg ggcctctggc tggtgatgct cttaccacgc gtttgtatgg taacctgaat 660
- aaaacggatg ctgacagttg ggatattaat tctccggtcg gtacgaaaaa cgcagccggg 720

WO 2005/097823 PCT/EP2005/003972 218/370

	catgaagggg aaatccgcag	tacgtaacaa 780	agatattaac	ggcgtt gtct	cgtggaaatt
5	cagattctcg gggcgatacg	atttcgaagt 840	cggatatagc	cgccag ggga	atatctatgc
10	cagaacagtt agagacgaac	cttccagtgc 900	agttaccgaa	agcctg gcaa	aatccggcaa
ίο	cgcctgtacc gggacaaagt	gacagaatta 960	tggcattacg	cataat ggta	tctgggactg
15	cgctttggtg attatccggc		gaaaaccaat	aatacc cgca	tgaatgaagg
	ggtggtgaag gagttcctgg		agcgggtgaa	aagtttacga	ccaatcgcct
20	cgaaccagcg gctgaccgtt		tattcctttg	aatgtgatgg	ttgatcaaac
25	ggtgcagagt gacggtgaat	ggaaccgcga 1200	taagctcgat	gatcct tcct	ctaccagcct
23	gacagagata aaatcattct	tcagcggtat 1260	ttctggctct	gctgcggatc	gcagcagtaa
30	caaatcagtg gaatatcatt	cgctgtatat	tgaagataac	attgagccgg	ttcctggcac
-	cccggcctgc cagtctgaat	gctttgatta 1380	tctcagcgac	tccggcggga	acttcagccc
35	ctttcgcagg aacctttaaa		ttatttcaaa	gtcaaagcag	gggttgcccg
40	gccccaaacc caatggctgt	-	cagtgaaggc	tatctgctct	actcgaaagg
40	ccaaaagata cgatccggaa	ttacatcagg 1560	cgggtgctac	ctgatcggta	ataaagatct
45	atcagcgtca cgcaagtgtg	_	tggactggag	ttcacctggg	aagattacca
	acctacttcc tatcgggcaa	_	ccagaataag	atcgtggccg	gggataacgt
50	accgcttcag ggtggacggt		cctcaagtgg	cagaatggcg	ggaaagctct

	atcgaagcca taccaatgcc	gtatgtcttt 1800	cccactggtg	aaagagcgtc	tgaactggaa
5	acatggatga catcccgaaa		gcaaaaagac	accggtaatc	ctctgtcggt
10	tatactatca cagcttcaac	_	taactggacc	atcacccagg	cgttttctgc
10	tggacgttat tgaagatact		aaaaccgcgt	actcatgcgg	aaacccgcag
15	ggcggtctgt cttcaattac		gctgggcgct	tattcactgg	tggggacgaa
	gatattaata taaacagatc		tcttaatgtc	ggcgtcagta	atatcctcaa
20	ttccgatctt ttatgccgga	ctgaaggggc 2160	gaatacctat	aacgagccag	gccgggct ta
25	gttaccgcat 2175	cattc		•	
	<210> 75 < <400> 75	<211> 3042	<212> DNA	<213> Esch	nerichia coli
30	<400> 75		<212> DNA aaaatatctt		
30	<400> 75 atgggtaacc atcaaatttc	aatggcaaca 60	aaaatatctt	cttgagtaca	
30 35	<400> 75 atgggtaacc atcaaatttc ccttcacctg tgacttgccg	aatggcaaca 60 aaagagttgt 120	aaaatatctt	cttgagtaca attaagaatt	atgagttg gt
35	<400> 75 atgggtaacc atcaaatttc ccttcacctg tgacttgccg tggtttagtc aaaccggagt	aatggcaaca 60 aaagagttgt 120 ggattgatcc 180	aaaatatctt cagcgattac tgataatgct	cttgagtaca attaagaatt tatttcatct	atgagttg gt gttttaaa ac
	<400> 75 atgggtaacc atcaaatttc ccttcacctg tgacttgccg tggtttagtc aaaccggagt aatagcagat agtactgaca	aatggcaaca 60 aaagagttgt 120 ggattgatcc 180 cttatactgg 240	aaaatatctt cagcgattac tgataatgct atgggatcat	cttgagtaca attaagaatt tatttcatct cttgggaaat	atgagttg gt gttttaaa ac gcttttct ca
35	<400> 75 atgggtaacc atcaaatttc ccttcacctg tgacttgccg tggtttagtc aaaccggagt aatagcagat agtactgaca ctcactcaag tgatgcaaat	aatggcaaca 60 aaagagttgt 120 ggattgatcc 180 cttatactgg 240 ccgctcttat 300 gaatttataa	aaaatatctt cagcgattac tgataatgct atgggatcat	cttgagtaca attaagaatt tattcatct cttgggaaat tatcgttttg	atgagttg gt gttttaaa ac gcttttct ca ataaaaca ga atgtttt ga
35 40	<pre><400> 75 atgggtaacc atcaaatttc ccttcacctg tgacttgccg tggtttagtc aaaccggagt aatagcagat agtactgaca ctcactcaag tgatgcaaat tcaagcacag aaatgaagaa</pre>	aatggcaaca 60 aaagagttgt 120 ggattgatcc 180 cttatactgg 240 ccgctcttat 300 gaatttataa 360	aaaatatctt cagcgattac tgataatgct atgggatcat taatattggt	cttgagtaca attaagaatt tattcatct cttgggaaat tatcgttttg gcagatgtgt	atgagttg gt gttttaaa ac gcttttct ca ataaaaca ga atgtttt ga ttaacgaa ga

WO 2005/097823 PCT/EP2005/003972 220/370

•			*		
*	aattattata tgagcgtgaa	tttcttctgc 540	tttgtatctt	tataaaaatg	gagagcttga
5	tataatttct attctttgat	ccatgaacgc 600	cttaaatcgc	agtgataata	tatcactatt
10	atttatggat ggtaatgctt	attacgcatc 660	tgatattttt	gtagccaaaa	ataatgataa
10	ttcattcctg tttgcggctt	gtgcaaaaaa 720	accttttta	ttcaagaaga	atatcgctga
15	acccttaaag acatttttca	aacttattaa 780 :	ggatagtgac	aacaaacaat	tactttccca
	ttatatagtc acatgcaata	gtcaagatgg 840	agtttcctat	gcaggagtaa	attctgttct
20	gaaaatgatg acttagcaat	gtaattttaa 900	tgagtcttac	tttctgtatt	ccaataagac
0.5	aaagatgttt tgatggtgat	ttgatgctat 960	agctatttct	gttaagaaac	gcagtttcag
25	atcgttataa actccagacg	aatcaaacag .1020	tgaagctcaa	cgagactatg	ctctgactat
30	attttatcaa tccgcttgga	tgacccctat 1080	atttgatatc	gtagtcccgg	aggtatctgt
•	ctggggatta tggtgatact	ttacttccag	tatggggatc	agttttgatc	aactgattaa
35	tatgaagaac gcttggtctg	gtcgttctgc 1200	tatacctggt	ttggcgacaa	atgcagtatt
40	tcttttgcaa acttagcagc	ttccactctt 1260	gattagtaag	gcaggaataa	accaggaggt
4.0	gttataaata tttgaaggaa	atgagggcag 1320	gactctgaat	gaaacaaata	tcgatatatt
45	tatggaattg gcttaaaagt		tatatcctca	actaatttgt	tagacgttaa
	tccgggcagc tgtcgctgta	atgtcaatat 1440	tgtaaagctt	agtgatgaag	ataatcaaat
50	aaagggagtt atatgagatt	ctctgagcgg 1500	catctactat	gaagtggaca	ttgaaacagg

WO 2005/097823 PCT/EP2005/003972 221/370

	ttatcccgaa tcgaggtggt	gaatttatcg 1560	taccgaatat	aataatgaaa	ttctctggac
5	ggtctaaaag attttttaaa	gggggcagcc 1620	atttgatttt	gaaagtctca	atattcctgt
10	gatgaaccct tgacagctca	attctgcagt 1680	gaccggatct	ccgttatcat	ttattaatga
10	cttttatatc ggatattgtt	ctgatacaaa 1740	cccaaaatta	ccgcaaccaa	cgtcagaaat
15	aattatgtta gagaggagct	agggttctgg 1800	aagctttggg	gatagatttg	taactttgat
	actgaggaag tacagaagaa	aagcatggaa 1860	tattgcctct	tatcatacgg	ctgggggaag
20	ttacacgaaa tgaatatacc	ttttgttagg 1920	tcagggccca	cagtcaagct	taggttttac
25	tcaaatgtta tataaaagtg	acagtgcaga 1980	tgcagcaagc	agacgacact	ttctggtagt
243	cacgtaaaat aattcctgat	atatcaccaa 2040	taataatgtt	tcatatgtta	atcattgggc
30	gaagccccgg tgagccatca	ttgaagtact 2100	ggctgtggtt	gacaggagat	ttaattttcc
	acgcctcctg taaagaaagt	atatatcaac 2160	catacgtaaa	ttgttatctc	tacgatattt
35	atcgaaagca tgatgtgctt	cctccaaatc 2220	taactttcag	aaattaagtc	gcggtaatat
40	aaaggacggg ttttgaagcc	gaagtatttc 2280	atcgacacgt	cagcgtgcaa	tctatccgta
-10	gctaatgctg ctttgataac	atgagcaaca 2340	acctctcttt	ttctacatca	aaaaagatcg
45	catggctatg tccaacattg	atcagtattt 2400	ctatgataat	acagtggggc	taaatggtat
	aacacctata ttattggaag	ctggggaaat 2460	tccatcagaċ	tcatcttcac	tcggctcaac
50	aagtataatc tcgtggggcg	ttactaatga 2520	aacaagcata	attcgtgtgt	caaattctgc

				•	
	aatggtatta cattacaagc	aaatagcact 2580	tgaggaagtc	caggagggta	aaccagtaat .
5	ggaaatctaa ttataaggta	gtggttgtac 2640	gacaattgtt	gcccgaaaag	aaggatatat
10	catactggta gaaaaaagca	caacaaaatc 2700	tttggctgga	tttaccagta	ctaccggggt
	gttgaagtac aataatgagc	ttgagctact 2760	tacaaaagaa	ccaatacctc	gcgtggaggg
15	aatgatttct aacttactca	tagtcgatta 2820	tctgtcggaa	aattttgaag	.at,tcattaat
	tcatctgaaa ttctgttttc	aaaaaccaga 2880	tagtcaaatc	actattattc	gtgataatgt
20	ccttacttcc tgtactggtg	ttgataatat 2940	acctgaacat	ggctttggta	categgegae
25	agagtggacg gaatgcagat	gcaatgttgt 3000	cgtaaggtct	ctgtctgaga	gttattctct
•	gcctccgaaa 3042	tatcggtatt	gaaggtattt	tcaaaaaaat	tt
30	<210> 76 < <400> 76	(211> 1362	<212> DNA	<213> Esch	nerichia coli
	atggtggaca aacggacgtt	tgattaatga 60	aagtgcacgg	caaacgccag	tcattgcaca
35	ctggttatcg gcggttaggt	ggggcggtcc 120	ggcaggatta	tccgctgcca	ttgcggcagg
40	gccagaacca gcaggtcggg	tgattgttga 180	gcgctacggg	tcgctaggcg	gcgtattgac
	gtagaaagtt gatctgtcgt	ttgcctggta 240	tcgtcatccg	gggacggaag	attgtgaagg
45	gagtatgaag gtcaattagc	gccgcgcacg 300	agcgctgggt	ttcacacgac	cagaacctca

50 gttgagccgt tatatcactc ctgggttgtg gacgtgatca aggacgggga tacgttatgc 420

gaagttatag atactgaagg atttaaagtt gtcgccgatc agatgattac ggaatctggc 360

WO 2005/097823 PCT/EP2005/003972 223/370

	ggtgttatcg aatcgtcgat	tcgagaataa · 480	atcaggtcga	ggggcaattc	tggcgaaaag
5	tgcacggggg acggagcaag	atgctgatat 540	tgccgctcgt	gcaggcgcgc	cctggacgaa
10	gaccaactga ggcacgcttt	tgggcgtcac 600	cgtgatgttc	agttgcgcag	gtgttgatgt
,	aaccgttttg aaactggacg	ttgcggaaga 660	acttaagccg	acctacgcgg	attggggcaa
15	attcaaacca tatttttacc	cgggtaaaga 720	agacccgatg	tttagcccgt	atatggagga
	cgcgcgcaac aacctggtcg	aggatggtgt 780	gattccaggt	gacgcccagg	cgattgccgg
20	accttttctg tggttttgac		ggctttccag	atgaatatgg	tgtacgcctt
25	tgtaccgatg agcattatgg	tcttcgattt 900	aaccaaagct	gagattgccg	gaaggcagca
	gcaattgacg acgcaatttt	cactacgcca 960	ctatgttccg	ggctttgaaa	atgtacggtt
30	ggtgccacgc tattgctgat	tggggacgcg 1020	tġaatcacgg	cttattgagg	gggaaatacg
	gattacgtcc ggaatttatt	ttaatcaggg 1080	gcgttgttcg	gacagtgtag	ggattttccc
35	gatggttccg cccttatggt		tttgccaacg	accgggcgtt	tctttcagat
40	tgtctggtgc ttccgcaggc	cgcaaaaagt 1200	ggagaacctt	ttggtcgccg	gtcgctgtat
	gtagttgcac tgaggccgca	atacttctat 1260	gcgtaacatg	atgtgttgtg	ccgttaccgg
45	ggtactgccg tgctatccct	ccgtggttţc 1320	gctacagcaa	aattgcaccg	tgcgtcaggt
	gatttgcaaa 1362	acacgctgca	acagcagggc	gttcgtctgg	ca

<210> 77 <211> 759 <212> DNA <213> Escherichia coli <400> 77 atgtctgcca aaagacgact tcttattgcg tgtaccttga taacagctat

atgtctgcca aaagacgact tcttattgcg tgtaccttga taacagctat ctatcatttt 60

cctgcatatt cttcattaga atataaagga acctttggtt caataaatgc gggttatgca 120

gactggaaca gtggatttgt aaacactcac cgtggtgaag tatggaaagt 10 gactgcggat 180

tttggggtaa attttaaaga agcagaattt tactcatttt atgaaagtaa tgtactcaat 240

15 catgctgtag cagggagaaa tcatacggtt tcagcaatga cgcatgtcag actctttgac 300

tctgatatga cattctttgg caaaatttat ggccaatggg ataactcatg gggtgacgat 360

ctggacatgt tttatggatt cggttacctc ggctggaacg gcgagtgggg ctttttaaa 420 .

ccgtatattg gattgcataa tcaatctggt gactacgtat cagctaaata 25 tggtcaaacg 480

aatggttgga atggttatgt tgttggctgg acagcagtat taccatttac gttatttgac 540

30 gaaaaatttg ttttatctaa ctggaatgaa atagaactgg acaggaacga tgcttacacg 600

gagcagcaat ttggccggaa cgggttaaat ggcggtttaa ctattgcctg gaagttctat 660

cctcgctgga aagcaagtgt gacgtggcgt tatttcgata ataagctggg ctacgatggc 720

tttggcgatc aaatgattta tatgcttggt tatgatttc 759

<210> 78 <211> 1476 <212> DNA <213> Escherichia coli <400> 78

45 atggccagtt tgatcggcct tgcagtttgc acagggaatg cttttagtcc tgccttagcc 60

gcagaggcta aacaacctaa tttagtcatt attatggcgg atgatttagg ttatggcgat 120

35

40

5

20

WO 2005/097823 PCT/EP2005/003972 225/370

	ttagcaacat tgcccaggaa	atggtcatca 180	gatcgttaaa	acacctaata	tcgacaggct
5	.ggggtcaaat acgcgcaggg	ttactgacta 240	ctatgccccc	gctcctttaa	gttcaccttc
	ctattaaccg ttcaggcaaa	gccggatgcc 300	atttcgtact	ggaattcgct	catggattcc
10	gatgttgcct gcaagggtac	tagggcgtaa 360	cgaactcacg	attgctaatc	tactcaaagc
15	gacacggcaa cgatcagcca	tgatgggtaa 420	gctgcatctg	aatgcaggcg	gcgatcgcac
	caagcacaag tgttaccgac	atatgggctt 480	tgattactca	ctggctaata	cggcgggctt
20	gccacgctgg gacaggctgg	ataacgctaa 540	agaaçgcccg	cgttatggca	tggtttaccc
	ctacgtaatg tgtcagttcg	ggcaacccac 600	tccacgagcc	gataaaatga	gcggtgagta
25	gaagtcgtca ctatgttgct	actggctgga 660	taacaaaaag	gacagcaagc	ctttcttcct
` 20	tttaccgaag gtactcacaa	tgcatagccc 720	cctggcttcg	cccaaaaaat	acctcgacat
30	tatatgagcg ggcagacaaa	cgtatcagaa 780 .	gcagcatcct	gatttatttt	atggcgactg
35	ccctggcgtg acaggttgga	gtgtggggga 840	atattatgcc	aatatcagct	atctggatgc
•	aaagtgctgg tatttttacc	ataaaatcaa 900	agcgatgggt	gaagaagata	acacaatcgt
40	agtgataacg tttggcaggg	gtccggtaac 960	gcgtgaagcg	cgcaaagtgt	atgagctgaa
	gaaacggatg tcgtgttcca	gattacgcgg 1020	tcgcaaggat	aacctttggg	aaggcggaat
45	gccattatta acccgtttat	aatatggtaa 1080	acatctacca	cagggaatgg	tttcagatac
50	ggtctggact tacagaccgt	ggatgcctac 1140	tttagcgaaa	atgatgaact	tcaaattacc

actttcgatg	gtgaatcgct	ggttcctgtt	cttgagcaaa	aagcattgaa
acgcgaaaag	1200			

ccattaattt tcgggattga tatgccattc caggatgatc caaccgatga 5 atgggcgatc ·1260

cgtgatggtg actggaagat gattatcgat cgcaataata aaccgaaata tctctacaat 1320

10 ctgaaatctg atcgttatga aacacttaat ctgatcggta aaaaaccaga tattqaaaaa 1380

cagatgtatg gtaagttttt aaaatataaa actgatattg ataatgattc tctaatgaaa 1440

gccagaggtg ataaaccaga agcggtgacc tggggc 1476

15

45

- <210> 79 <211> 954 <212> DNA <213> Escherichia coli <400> 20 gtgacaacaa ctatctgcgc tatgggcgaa ttgctggccg agtttttgtc ccqcaaccca 60
- 25 catcaaaaat tcactcagcc tggggagttt atcgggccat ttcccagcgg tgcgccagca 120

atttttgctg ctcaggtggc aaaactgtcc catcgggcca tcttctttgg atgtgttggt

- 30 aatgatgatt ttgcccgact cattatagag cgtctccgtc atgaaggtgt cattaccgat 240
- gggatccatg ttatgaacaa tgccgtcaca ggtacggcgt tcgtgagtta 35 tcaaaatccc 300

cagcagcggg atttcgtctt taatatccct aacagcgcct gcggtttgtt tactqccqaq 360

- 40 cacattgata aggatctgct taaacagtgt aaccatctgc atattgtggg ctcatcgttg 420
 - ttctcatttc gcatgatcga tgtcatgcgt aaagcaataa cgacgatcaa atcggctggc 480

ggcaccgttt ctttcgatcc caatattcgc aaagagatgc tgagcattcc tgaaatggcg 540

caggeteteg attatttgat tgaatatacg gatattttta tececagega 50 aaqcqaactc 600

cctttcttcg	cgcgtcacaa	aaatctgtca	gaggaacaga	ttgttagcga
tetteteeac	660			

- tcttctccac
- qqcqqcqtaa aacatqtqqc qataaaacqc qcccaqcqtq qqqccaqcta 5 ttacaagctt 720
 - aaaaacggta cattacacgc ccagcatgtt gcaggtcacg atatcgaaat tatcgatcca 780
- 10 acgggtgcag gcgactgctt tggcgcaacg tttatcactc ttttcttatc 840 caatttccca
 - gcacacaagg cgctgcaata tgcaaatgcc agcggcgcgc tcgccgtaat gcggcaaggt
- 15 ccgatggaag ggatatcete actggcagae attgaagaet ttttgcagea geae 954
- <210> 80 <211> 513 <212> DNA <213> Escherichia coli <400> 20 atgaagatat tcattagttt atttttgttt ataatatcaa caaattcttt toctoatoat 60
- 25 atcactcatg ccggagtggt tcgtattgaa gggttaatta ccgaaaaaac ctgcattatt 120
 - tctgatgagt caaaaaattt tacagttaat atgccagacg tacccagtag ttcggtaagg 180
 - agtgcagggg atgttactga aaaggtttat ttttccataa cgttaacccg ctgtggtagt 240
- gatgttggca acgcgtatat aaagtttacc ggcaatacag tttctgaaga 35 taccaattta 300
 - tataagctgg aagatggctc ggtagagggg cttgcactta cgatttttga taaqaacaaa 360
- 40 ggcagtatta gtaatgatgt taaaagcatg gttttttcac ttacatcatc agttgataat 420
 - atattqcatt tttttqcqqc ttacaaaqca ttaaaaaata atqtccaacc 480 aggggatgca
 - aatgcgtcag tatcgtttat tgtcacctat gat 513

30

45

50 <210> 81 <211> 603 <212> DNA <213> Escherichia coli <400> 81

atgattaaat teeggettta tatteeeet qtaatteteg qttttqttat

cqtaccatta 60

ttggtatggc cgacggttat tgccttagcc gtacttatat tcacgttaac 5 ttttctggcg 120

gaaataatat totootttoo gotootggtt gtgogtattt otottoagga atta caactt 180

10 gagt tattgg ttgtatatgc acttttttc agtgtaatgg gtggcatcgg ttggcaattc

tcccgcagaa cgcctcctga attaaaaaac aggctacatt gctggctggt. cttttctcca

15

gtctatttct ggttaattct ctcgaatttc attctttata tttctccaga gaaatcagcg 360

ttgctggaaa atatccgaaa tttctttctg acatttgtct ggcttcccct 20 qaatttttcc 420

cctttttggc cgcagccgtg gactgatttt gtcggcccga ttagtgccca gcttggtttt 480

25 gcgttgggat attattgcca gtggcgtagc aaaaatagaa gccataggaa gaagtggggc 540

gattgggtaa cgtgcttaag tttggcgatt ttagctctgg ggccgttatt caattatta 600

30

45

caa 603

gctgatgtct

35 <210> 82 <211> 702 <212> DNA <213> Escherichia coli <400> atgaaattca atttatctaa tttatccqca qtattactqq catcaqqtat

40 actg Cggtaa ccgcagcacc cggcgatgca acacaatttg qtqqqqqqa tactgactgg 120

60

agcaccgttg attatcccag gctcactgat atggatgaca acgttgattc aatggggggg 180

aaaatccgct ttactggccg tgtagtgaaa gctacctgta aggtcgcaac cgattcaaaa 240

cagattgaag ttgtcctgcc ggttgtgcct tccaaccttt tcactggtat 50 300 cgacqtagaa

WO 2005/097823 PCT/EP2005/003972 . 229/370

	gcacaggggg tagcaataca	cgagcaacca 360	gaccgatttc	aatattaatc	tgaccgaatg
5	gatgatcaga taaaacgctc	aaattgagtt 420	ccgttttacc	ggtactgcag	atagcgctaa
	gctaacgaag ggcgactggt	tagaaggatc 480	aacggatgct	gacaacagcg	gcaatgcggg
10	gtagggattc cctgaatacc	gaatttactc 540	caaaggtacg	acgaataatg	gtctgattaa
15	actgcggcag tgctacgacc	agggtagcgc 600	ctccaccgcc	gcttatacaa	ttccaggaaa
13	catgatttca tgttgcacca	gcgcggcctt 660	tactgcaggt	tatgctcaaa	acggtagcac
20	ggtgtagtta 702	agtcaacagc	aagttttgtt	gtgctgtacg	ag
	<210> 83 <	:211> 1008	<212> DNA	<213> Esch	nerichia coli
	<400> 83				
25	atgcgtatac tatattttca	atacttattg 60	gtatagaaga	tatttcattt	tattgattat
30	aatgttcttt atattgttat	cttctattgc 120	taatgctgaa	gatatggggc	gagaacgtgc
30	ccgggttcac tggtactata	cgagtaataa 180	tactacgcct	gcatcctttt	cttataattt
35	gtggtttctg aatctggaag	atgtcaacaa 240	aaatgcgcct	ggcactgtat	tgccatcaca
	gttggaacct cttcagtgct	ataaggctta 300	ttgtaattct	cttgatgatt .	atgaaattta
40	gtctctggaa tgtatttatt	tagatccgtc 360	tggtgccagt	ggtgatcatc	aagggagtga
45	ccactcaccc aaatggcaca	atgaaatatc 420	tgtctctact	catataaaac	tttataatca
45	atgacagata ggacagaagc	aaattgtgcc 480	attcgaaaat	tataatacca	attatccggg
50	aaaccatcta tgataaaaaa	attgggcatc 540	aggtactgaa	ggatatatta	aaatcaggat

attatatctg atgtttcatt aagtaacgta ttattggtgt cattatatgt cagccagatc 600

cctaccgaac atggtcctat ccctgtcttt aatgcctaca taggaaactt 5 aaatattcag 660

gttccgcaag gttgcactat taatgagggt acgagtttta ctgttaatat gccggatgtg 720

10 tgggccagtg aattgagccg ggctggtgcc ggagcgaagc ccgctggtgt tactcctgta 780

15

30

45

gcaacaacta ttccgattaa ttgtacgaat aaagatacag atgcggtaat gacgttggta 840

ttcgacggta acatttccgc cacacgtgat accaatggga aacaaagtat tattcaggca 900

caagataatc ctgatgttgg tattatgatt atggatagtc agcaaaactc cgtagattta 960

aatgccctgg caacatcagt aggcgttccg ttcagattgg tggaaaac 1008

atgaacctaa agctcaaaag atgcgaatat tggatggcgg cacaaaagca gatgaaacgg 60

gttgtgccgc ttcttctggt tattatgcct gcatgttcaa tcgcgggaat gcgctttaac 120

cctgcttttc tgtcgggtga tactgaa.gct gttgctgact tatcccgctt cgagaaaggg 180

atgacttatc ttcctggtag ctatgaagtc gaagtttggg tcaatgattc ccctttactc 240

40 tetegtactg taacttttaa ageagaegat gagaateaae tgatteeetg eettteaett 300

gctgacttat taagccttgg aattaacaaa aatgcgctgc cagagcaggc tttggcttca 360

tctgaaaata gttgccttga tttgcgtatc tggtttcccg atgtgcatta catgccggag 420

ctggatgcac agagacttaa actgaccttt ccacaggcga taataaaacg 50 tgacgctcgc 480

WO 2005/097823 PCT/EP2005/003972 231/370

	ggatatattc gaattatgac		gtgggataac	ggtatta cag	cttttttgct
5	ttttctggta aaatcttcgc	ataacgatcg 600	tggtgattac	tcttcaa ata	actattattt
	gctgggatca tcgtgggagt	atattggtgc 660	atggcgtttt	cgcgatt att	caacctggag
10	aattcagcag tattcctttc		gcatatcagt	agtacgt tgc	agcgcgttat
15	agaagtgaat cagtgttagt	taacgctagg 780	agatacatgg	tcatcat cag	atgttttcga
15	attcgtggca aagtggtttc	taaaactgga 840	atctgacgaa	aatatgttgc	ccgatagtca
20	gctcccacgg acagaatggt	tgcgcggaat 900	tgcgaaaagt	cgcgctcagg	taacaatcaa
	tatgtcattt tcttaacccg	atcaaaccta 960 _.	tatgccgccg	ggaccgtttg	agattagcga
25	acatcatctg agaaactgtc		ggaagttacc	atcaaagagt	ctgataattc
30	tataccgtac aaaatattct	cttatgccgc 1080	tgtccccatc	ctgcaacgag	aaggtcattt
	actacggttg tgtatttcag	gccaatatcg 1140	aagcaatagc	tataaccaga	aaagtcctta
35	ggggaattaa acaattctct		accctgggat	attacggctt	atggtggggc
	gaggattacc tggtgcaaca	gggcgttggc 1260	gctcggcctt	ggcctgaatc	tgggtgtatt
40	tcgtttgatg tcaagggcaa	ttactcaggc 1320	taacagttcg	cttgtggatg	ggagcaaaca
45	tcttatcgtt ccatattatt	ttctttattc 1380	caaatcgtta	gttcagacag	gaacagcatt
- 43	ggctatcgtt ccaacaaatg		gggcttttac	actttaagtg	atacgacata
50	tcagggactg taactggaat	ttgttgatcc 1500	aaaaacgtta	gatgataaag	attacgttta

WO 2005/097823 PCT/EP2005/003972 232/370

	gatttttata atcgcaacct		tagcaaacgt	ggaaaatttc	aggctagtgt
5	ttcggtaact gaatactgat	acgggtctat 1620	gtatttatcg	gctagtcagc	aaacatactg
	aaaaaagatt ctatctaaat		agttggttat	aacaccagta	ttaagggtat
10	gttgcgtgga ctcgctaaat		atcaccaggg	acaaatgcgg	ataaaattgt
15	gtctcattac atcatcgaat		ttggttatct	tccacgaatg	atgggcgctc
13	gccatgactg ccaatatacg		ttatagtcag	gataaccacg	gacaggtaaa
20	ggggtatctg acatggtttt		ggagcagcat	aatctcagt t	ataacataca
	gctaatcagg ggcatatggt		tagtggttct	gttggtgtt a .	attatcgtgg
25	tccttgaatt ctatggcatc		ttacgataat	gaaggtaat c	aacaaataaa
30	agtggtgctc aggtgaaact		tgaaaatggt	cttacgttga	gtcaaccatt
50	aatgttttga gacaggaata		tggagcgaat	aatgtggat g	ttcagcgggg .
35	tccactgact acgtaataat		tgcagttgtt	ccttatgca a	cagaatatag
	atttcattag ttccactgaa	_	aatgaatatg	catactgaa c	tggatatcac
40	gttattccgg cggtattcgt		gttagttcgt	gcagagttt g	ctgctcatat
45	ggtttgttca agccagcgct		tcgtaataaa	tcagtccca t	teggtgetae
43	cagattaaaa actttatctc		aattaccggg	attgtcggc g	ataatggaca
50	tcaggattgc tcagcaaaaa		tgttattaat	atccagtgg g	gagacggtgt

tgtcaggcta attacaagct ccctgaaaca gaactggata atcctgttag ctatgcaact 2580

ctggagtgcc gc 5 2592

15

30

45

85 <211> 507 <212> DNA <213> Escherichia coli <400><210> 85

10 atgggagcga tttatgttaa acgtttgatt ctgtcggtag cactgataat accgatagca

tccaatgctt ctgatgcttt gaaccagccg agcagtagtc taaatgatgg tgttgagact 120

ttttttattt cctgctttga tatgcctcag gaaacaacta ctgatatgga cgcttgtcag 180

agagttcagt tagctcaggt tagttgggtt aagaataagt attcggtggc 20 cgccctgaat 240

cgtttgaaac aagacaacaa ggatgatcca cagcgtctgc aggaattaac tgcttctttt 300

25 aacgcggaaa gtgaagcttg gacagaatta attgagaaag cgtcaaagtc 360 cqtccaqqtt

gattatgtag gaggaactat agctggcact gcagttgcat cacgtcaaat tggtcttctg 420

gaattacaat cccacgatat ctgggagcac tggctacgat ctcgaggact 480 .

tcttttgcca gaaccaaagt tcaaatc 35 507

> 86 <211> · 2139 <212> DNA <213> Escherichia coli <210> <400>

40 atggctatgt tcacaccttc attctcagga ctcaaaggtc gggcgctctt ttcactgctt 60

tttgcggcac cgatgattca tgcaacagac tctgtaacga ccaaaqatgg cgaaacaatc 120

actgttacag cagatgcaaa taccgcaact gaggcaaccg atggttatca 180

acctccacgg cgacattaac cgatatgccg atgctggata tcccqcaggt 50 240 ggtcaatacg

WO 2005/097823 PCT/EP2005/003972 234/370

	gttagcgatc gctttataac		aaaccagaat	gcgacaacgc	tggatgaggc
5	gtcagtaacg tgtacgccgt	tggtacagac 360	caatacatta	ggcgggactc	aggatgcttt
	gggtttggcg cgtacttcct	caaaccggga 420	tggctccatc	atgaccaacg	gtctgcgaac
10	cgtagtttca ctccacgctg		agagcgtgtg	gaagtgctaa	aaggcccggc
	tatggcattc ggaaaaaaca	tcgatcctgg 540	cggactgatt	aacgtcgtga	ccaagcgccc
15	ttccatggtt gcaacttgat	cggtttcagc · 600	cacctcctcc	agttttggtg	gcggcactgg
20	atcacaggtc agtgcaggat	ccattgaagg 660	cactcagctg	gcgtatcgcc	ttaccgggga
	gaagattact gtcactcacc	ggçgaaactt 720	cggtaaagag	cgcagtacat	ttattgcccc
25	tggtttggtg taaaactcca	ataatgcaac 780	agtaaccatg	ctctattccc	atcgggacta
	ttcgatcgtg tgatcgaaaa	gaacgatttt 840	cgaccttacg	acgaaacagc	ccgtaaacgt
30	atacgttttg gcaactcaac	acgaaccgtt 900	taatattaca	gatggtcagt	ccġatctggc
35	gcagaatatc cagccaggat	atctcaatag 960	ccagtggaca	gcgcgctttg	attacagcta
	aaatacagcg aacactgaca	ataatcaggc 1020	gcgtgttacc	gcgtatgatg	caacgacagg
40	cggcgtgttg tgcggatctg		gggatctacc	cagcgtatgc	atgctactcg
	caagggaatg gtcatatgaa	ttgatattgc 1140	cggattctat	aatgagattc	tgggtggggt
45	tattatgatc tttcaatata	ttctgcgtac 1200	agatatgatt	cgctgtaaaa	aagctaaaga
50	tacaaccctg ggacagcgat	tttatggtaa 1260	taccagcaaa	tgtacaacgg	tttcggcgtc

cadacdatca	aacaggagaa	ctactcacct	tatocacado	ac

cagacgatca aacaggagaa ctactcagct tatgcacagg acgcgctcta tctgaccgat 1320

aactggattg ccgtcgccgg gatccgctat cagtattaca cgcaatatgc 5 gggtaaaggc 1380

cgtcctttta atgtcaatac tgacagccgc gatgaacaat ggacgcccaa actggggtta 1440

10 gtctacaaac tgacgccatc ggtatcctta tttgccaatt attcgcaaac atttatgccg 1500

cagtcgtcaa ttgccagcta cattggcgat cttccaccag aatcatctaa tgcttacgaa 1560

15 gtcggggcaa aattcgagct attcgatggt atcaccgcag atattgcgct qtttgatatc 1620

cataaacgta atgtgttgta taccgaaagt attggtgatg aaaccatcgc 20 caaaacggca 1680

ggccgcgttc gttcaagagg ggtagaagtc gaccttgcgg gagcattaac tgaaaacatt 1740

25 aatatcattg ccagctacgg ctataccgat gcaaaggttc tggaagatcc tgattatgca 1800

gggaaaccat tgccgaatgt tcctcgtcat accggttcgc tattcctgac ctatgatatt 1860

30

45

50

cataacatgc caggcaataa cacactgacg tttggcggtg gcggacatgg tgtaagccgt 1920

cgttcggcaa ccaatggggc tgactattat ctgcctggct atttcgttgc 35 cgatgccttc 1980

gccgcataca aaatgaaatt gcagtatccg gtcactctgc aattaaacgt caaaaacctg 2040

40 tttgataaaa cgtattacac ctcttccatc gccacaaata atctgggcaa ccagattggc 2100

gatccgcgtg aagtgcaatt cacggtgaaa atggaattt 2139

<210> 87 <211> 1818 <212> DNA <213> Escherichia coli <400> 87

atgaaaatat cgtggaatta tatatttaag aacaaatggc gatttcacat tacaagcatt .60

WO 2005/097823 PCT/EP2005/003972 236/370

	tcacttttc ttttaatacc	ttatcatgct 120	cgcggtttca	atcgcttttt	tgcacttgcg
5	ttgtccagta ttccaccatc	ccgataaaat 180	gcggcttgaa	atgtataagt	ccacattata
	gagcaatttt tcaggcggta	atgttttacc 240	ctatatgctc	tcaacagacc	atatcatccg
10-	attacgcctg tttcaatact	acgatatgac 300	gtccagcgaa	ctcaatcaac	gaattgcaca
15	caactcaaaa cgcttctagc	ccgcagcaat 360	atttattctg	gatacccaag	gtaaggccat
15	aactggcagg ctattataaa	accccggcag 420	ctatgtaggg	caaaattata	gctatcgccc
20	cacgccatgt gaatacaccg	ctggcttaaa 480	tggacgcttt	tacggtattg	gtagcactac
4	ggattcttcc tgtagtagta	tctctacaag 540	tataaaagat	aaaġgaaaaa	ttgtcggtgt
25	aaaataagtc tattatcgtg	ttaatgaaat 600	tgaaaaagca	tgggccgaag	gtcctgaaaa
	aatgatgaac gcgaacactg	atgggattat 660	atttttaagt	tcaaaatcgc	catggcgaat
30	caaccgttac tagtctcgac	ctgttcaggc 720	aaaacaaaaa	ctacaatcta	cccgccaata
35	aatctttac tttcctgaaa	cggcggatta 780	ttatccctgt	tataccgtga	gcaattttac
	gataaaaaag agccattcca	aacaactctg 840	tttattcccg	caatattata	cgcaacaaat
40	gaatttaact gtcatgggct	ggaaaatgac 900	aattatggtc	cccttagata	acctgtactg
	atttcgttag taaatactgg	tcattacact 960	aattatttac	ctgctgtttt	tgttatttat
45	agaatgcgat agaaaaacag	ctcatgcaca 1020	acaattatta	acacttgcga	atgaaacatt
50	gttaaagagc ggagataaaa	gtacatctgc 1080	cctggaattg	atcaatcaaa	aattaataca

gagcgcagtc aagctgaaca agtattacaa attacgcgta gtgaactggc agagtccagc 1140

aaactggcgg cgcttggaca gatggcaacc gaaattgccc atgaacaaaa 5 tcaaccgtta 1200

gccgccattc acgcacttac tgataacgcg cgtactatgc taaaaaaaga gatgtatccg 1260

10 caggttgaac agaatctgaa acatattatt tcagtgattg agcggatgac gcagctcatt 1320

tecgaactta aageatttge etegegeeat egegtaeeta aaggttetge egatgteate 1380

aaagtgatgt atagegeegt ggegttaett aateacagea tggagaaaaa taacattgag 1440

cgacgaataa aagccccatc catgccgtta tttgtcaatt gcgatgagct 20 cggtcttgaa 1500

cagatattca gtaatttaat tagcaacgcc ttagattcta tggaaggtag ctcttacaaa 1560

25 cgactggata tcgccattcg ccaggcaaat aacaaagtta ttattaccat taaagacagc 1620

ggtggcggtt ttgcacctga agttgtcgat cgcatatttg aaccattttt taccactaaa 1680

cgtagaggaa tggggttggg actggcaata gtcagcgaaa ttgtccgaaa ttcgaacggc 1740

gcactccacg ccagtaatca tcctgaaggc ggcgcagtaa tgacattaac ctggcctgaa 1800

tggggagaag aacatgaa 1818

15

30

45

40
 <210> 88 <211> 303 <212> DNA <213> Escherichia coli <400>
88
 gtgcttacac cacaacattt acgttgtgtg ttaacatgta gcgatttact
 gactcttttg 60

agtggtaccg ttatgtctca aatgcccctc tattttctta atacccaaaa gaaactcact 120

gctcactatg aatggcttca aatcaacctg actgatacct acgaactagt 50 taaaaggtta 180

atgccgattc cttcactgga cgtggtggtt aaagtaggga aacttgtcct cccqqaqaaa 240 gggcatcatg gtttttaccc tgaagctgga gttgtctata gaacagtagc 5 tccagaaaat 300 cca 303 10 89 <211> 789 <212> DNA <213> Escherichia coli <210> 89 atgatgaaaa atacaggcta tatcttagct ctttqtctqa caqcatcqqq gcatgtccta 60 15 gcccatgatg tctggattac aggtaaacag gcagagaaca acgttaccgc agagattggt 120 tatggtcata atttcccctc aaaggggaca attcctgaca gaagggattt 20 ctttgaaaat 180 ccccggcttt ataacgggaa agagacaata acactgaagc cagcgtccac ggattatgtc 240 25 tataaaactg agtctgcaag caaagataat ggttacgttc tgtcaacgta tatgaaaccg 300 ggatactggt cgagaacctc gtcaggatgg aaaccggtca gccgggaggg cagaaatgat 360 30 qtqqcttact gtgaatttqt cactaaatat qcaaaatctt ttattcctqq tgaacagcag 420 atgccagcac aactctatca gtctccaaca gggcatgagc ttgaaatcat 35 tccqttatcc 480 gatataagtc gtttcagtga aaatgtgaag ctgaaagttc tgtataaaac atccccactc 540 40 gccggagcta tcatggagct tgactcggtc agttatctga catcatcccq tcatactcat 600 gcagttgagc acaaacatcc tgttcataaa gcagaactca cctttgtaac taatqaqqat 660 45 ggtatcgtca cagtaccttc tcttcatatc ggacagtggc tggcgaaagt ccaaaataag 720

aaaagttttc aggacaaaag cctgtgtgat gaaactgtcg atgtggcaac

780

50

cttaagcttc

tcccgaaat 789

5	.	2011\ 110 <i>4</i>	<010 main	· · · · · · · · · · · · · · · · · · ·	
5	<400> 90		<212> DNA gctaatagta	ggatttatta	nerichia coli tactttttgc
10	attgctatta tgaaaacgga	gtgacaggga 120	ttctacgctt	tctaggttga	aatcagcagg
15	gatgtagaag tctggatgtt	ctcagtatgc 180	tttggggctc	atgtatttgt	atggagaaat
13	gattatcagc tccgcgtgcg	aggcaaagat 240	ttggtatgaa	aaagccgctg	accaaaatga
20	caggccaaac ttatcagcaa	tcggtgtgat 300	gtatgcaaat	ggtctcgggg	taaatcagga
	tcaaaattat atttttgctt		ggcggctgcg	caaaatgatg	ttgatgcgca
25	ggggagatgt aaagatgtgg	atgacgatgg 420	tctcggggta	agccaagact	accagcatgc
30	tatgaaaaag tgttctatac		aaatgatgag	cgtgctcagg	tcaatctcgc
50	gcaaagggta tgaaaaggct	atggtgttga 540	acaggattat	cgacaggcca	aaagctggta
35.	gcagctcaaa caatgctaat	•	tgcgcägttc	gctcttggaa	ttctgtatgc
	ggtgtagagc agaacaaaat	aggactatca 660	gcaggcaaaa	gactggtatg	agaaagcagc
40	ttcgccaatg tgttaaacaa	ctcagtttaa 720	tcttggtatg	ctctattaca	aaggtgaggg
45	aactttcggc gccgaatgcc	aagccagaga 780	atggtttgaa	aaagccgcat	ctcaaaatca
TJ	caatataatt ctatcgacag	taggtcagat 840	ttattactac	ggtcagggtg	tgactcagag
50	gcgaaagact atataatctc		agcggcagag	aaaggtcatg	tcgatgctca

003972

	WO 2005/09	07823			PCT/EP2005/00397
			240/37	70	
	ggtgtaatat aaaggcttgg	acgaaaatgg 960	tgaaggtgtg	agtcagaact	atcaacaggc
5	tatgaaaagg cgttatgaat	cagceteaca 1020	aaatgatgcg	caggcgcagt	tcgaacttgg
	gaactgggtc tgagcggtca	agggtgaaag 1080	catagacctg	aaacaagcaa	gacattacta
10	tgtaataatg 1134	ggcttaagaa	aggttgtgaa	cggttaaaag	agttattata caaa
15	<210> 91 < <400> 91	211> 1962	<212> DNA	<213> Esch	nerichia coli
13		tcagaactgt · 60	catttgtaca	ttaattatac	ttccggtggg
20	gcgaccagtc aggaaatcag	attcttctat 120	ggttaaagat	acaatcacca	ttgtcgcgac
	aacacggtat accgtggagt	ttgaaacgcc 180	gtcgatggtc	agtgtcgtca	cgaatgacac
25	cagaatgcgg ccagactggt	ttacatcggc 240	cggcatgctg	aaaggtgttg	ccggtctcag
20	gcaggacgga cggggtactt	ccaatgggca	gacctttaat	ttacgcggct	atgacaaaag
30	gttcttgttg cacttatctg	acggcgttcg 360	ccaactcagt	gacatggcaa	aaagcagtgg
35	gatccggcac tctgtacggc	tcgtcaaacg 420	tatcgaagtt	gtccgcgggc	caaactccag
•	agtggcgggc ttttcttccc	tgggaggtgt 480	agtggacttc	agaactgccg	atgcagcaga
40	cccggagaga ccacagcaca	caaacggttt 540	aagtctgtgg	ggaaatatcg	ccagtggtga
	ggctcggggc ttctgtcatt	tcacctggtt 600	tggtaaaact	ggaaaaacag	atgcgctcct

atgcgtaaaa gaggtaatat ctatcaaagt gatggtgagc acgcacctaa caaggaaaaa 660

45

cctgcagccc tgtttgcgaa aggctctgtc ggtataacag acagtaacaa agcaggtgcc 720 50

WO 2005/097823 PCT/EP2005/003972 241/370

			•		
•	agcttgcgtc gacacatggt	tctaccggaa 780	taacaccact	gaaccgggca	attccactca
5	gacagcggcc gtaccagtac	tgcgtgacag 840	aa aaacagta	caaaatgacg	tacagttctg
	gctcctgtgg tgatatcact	ataacagcct 900	catcaatgta	aagtcaacgt	tatatctcag
10	atcaagacaa ctccggtgtt	acggtcacaa 960	ca aaacggca	gaatggagaa	acaacagaac
15	aatgttgtca aagttatggc	acaggagtca 1020	ta ctctgatt	tttccgggag	cccatcagtt
13	gctgaatatt tccggaagga		gcagaagcca	gaaggctctg	ccacactata
20	aacattgact ctacccggtt	_	gt atttccag	gatgaaatga	caatgaaaag
	aacattatcg tgccggagaa		ctatgaccgg	tacaagagct	tcaatccccg
25	ctgaaagccg agactggctg		cc caa ^l gggcg	gcgatttcag	tctcaccgac
30	atgatgtacg aatgtacagg	-	ct ctgcattc	cgagcgccca	caatggcaga
30	gatgatgtac ccttaatctg		ca agggtaaa	cccaattact	gggttcctaa
35	aaaccagaaa tggcctgctt		ccgtgagatt	ggcgcaggta	ttcaactgga
	acagacaatg cagaaactat		gttaaaaggc	ggatatttcg	gaacggatgc
40	attgccacac atcccgggcc		gaaacggatg	cgttcttatt	cttataatgt
45	cgtatctggg ctggatgctt		gcagggtaat	taccagtctg	attatgttga
43	tcttataacc ctccggcaat		tatggatgcc	agcagcaggg	aatggctggg
50	cctgacacac ttatgccgga	_	catcagcata	cctgttggtc	atagaggcgt

	WO 2005/0978	823	242/3	70	PCT/EP2005/0
	tggcgtgctg ccatcaggct	_	atcagccacg	catgtgaaaa	aaggcgatcc
5	ggttatacca aggctttgag		ttcactgtct	tataagcctg	taagtgttaa
	gcgtcagtaa aggtgtgccg		tgccttcaac	aagcttgcca	tgaatggcaa
10	ctttcaggca 1962	gaactgtcag	tctttatacc	cgttatcagt	gg
15	<400> 92		,	<213> Esch	nerichia coli acacagtaaa
20	gaactagccc ttcagtactt	gaagggtatg 120	taaagggagt	acccgcagag	gaaaaagact
	acctctctgg	cactatctgc	attactccca	accgttgctg	gtgcatcaac

aacaatcctt accagacata ccgcgacttt gcagaaaaca aagggcagtt

gcaacaaaca ttcctatttt taataataaa gcggaattag taggacatct

cccatggttg attttagcag tgtgaatgta agctcaaatc ccggcgttgc

aacccgcaat atatagccag tgtaaaacat aataaaggat atcagagcgt

gatggtcaga acagttacca tattgtggat cgtaatgaac acagttcatc

acaccaagac ttgataagct cgtaactgag gttgctccgg ctaccgtaac

acagctgata tattgaaccc ttcaaaatac tcggcattct acagggctgg

cagtatattc aggatagtca gggtaagcga cattgggtaa caggtgggta

acaggaggaa tactcccgac atcattcttt tatcacggct cagacggcat

25

30

35

40

45

50

ggttggtggc

tcaggctggc

tgataaagcg

aacattaatt

cagcttcggt.

tgatctccac

cagctcatca

ttcgggaagt

tggttatctg

tcagctgtat

180

240

300

360

420

480

540

600

660

720

WO 2005/097823 PCT/EP2005/003972 243/370

	atggggggca cggcgacagt	acatacatga 780	tcatagcatc	ctgccctctt	ttggagaggc
5	ggttctccat cggtgtttac	tatttggctg 840	gaatacggcc	aaagggcagt	gggaạctggt
	tcgggagtag ttttctctca	gaggggggac 900	caatttgata	tattctctta	ttcctcagag
10	cagatctatt cggcgccccc		tgacgctccc	gtcttttta	atgcctcatc
	ctgcaatgga ttccgatgaa	aatttgacag 1020	cagcaccggc	actggctctc	tgaaacaggg
15	tatgccatgc gacattcctg		aggttctgac	ctgaacgcag	gtaaaaatct
20	ggacataatg ttcactgaca	gtcagattga 1140	cctggaaaac	tctgtcacgc	agggtgccgg
•	tttactgatg ggccggtatt		caccacttca	aacggaagta	cctggaccgg
25	attgtggaca tgacaacctg		cgtaaactgg	caggttaatg	gtgtgaaagg
	cataaaatcg gggcggcctg		cctggttgta	cagggaaccg	gtgttaatga
30	aaagtcgggg acacgttcag		tgtcctcaat	cagcaggctg	acagttcagg
35	gcattcagta agacaaccag		tgccagcggc	cgcccgacag	tegtgetgge
	caggttaatc tgttaacggg		atcctggggc	taccgggggg	gggttctgga
40	aatgacctga cggtaacagc		gctgaatgcc	gccgattatg	gcgcaactct
	agtgataaaa cgtaaaagtt		cactctggat	tatcagacgc	gtccggcaga
45	aatgaatggt taataatccc		caggggaaca	gtaggttcat	tatatattta
50	tatactcata gttccctacc	ccgtcgatta 1740	ttttatcctg	aaaacaagta	gttatggctg

WO 2005/097823 PCT/EP2005/003972 244/370

	ggtcaggtca tgcacaggca		ctgggaatat	gtcggacatg	accagaacag
5	ctgcttgcaa gctgggaaat		taataaaggg	tatctgtatc	atggcaagtt
	attaatttct ggacggctca	caaataaagc 1920	aaccccgggt	acaaccggcg	catt ggttat
10	gcgaatatgt gggccacċcg		tactcaggaa	aacggtcgtc	tgac cattca
15	gttatccatg gggcgacaat	cttcaacgtc 2040	tcagagtatt	gcaaatacag	tctcgtctct
13	tccgttctga gacgttcagc	cacageceae 2100	ctcatttaca	caggatgact	ggga gaacag
20	tttggttcgc cacactgaac	tcgtgttaaa 2160	agatacagac	tttggtctgg	gccg caatgc
	acaaccatcc atttatcgac	aggcagataa 2220	ctccagcgtc	acgctgggcg	acagtcgggt
25	aaaaaagatg tgcaactaaa	gccagggaac 2280	agcatttacc	cttgaagaag	gcacatctgt
20	gatgcagata agtgctgaat	aaagcgtctt 2340	caacggcacc	gtcaacctgg	ataatcagtc
30	atcaatgaga tatctcctca	tattcaatgg 2400	cggaataqag	gcgaacaaca	gtac <gtgaa< td=""></gtgaa<>
35	gacagtgccg gaacaaggga		ctcaacgctg	accagtaccg	ccctgaatct
	gcaaatgttc ttctgatgcc		gagttttgtt	tctgacggtc	cggtgaatat
40	accctgagtc tgtatacgat	tgaacagccg 2580	tcctgatgag	gtatctcaca	cacttttacc
,	tatgccggtt gccgtacagt	catggaacct 2640	gaagggagac	gatgcccgcc	tgaacgtggg
45	atgttgtcag aggggaaggg		tgttcaggat	aaagggactg	tcaccctcgg
50	gaactgagtc taacgggtac	ctgacctgac 2760	tcttcagaat	cagatgttgt	acagcctgtt

WO 2005/097823 PCT/EP2005/003972 245/370

		~~~			
	gacagacacc		cctgaatgca	ccggatgcca	ccgtcagcat
5	cagtggtcga gacaatagtc	tgaacggaaa 2880	ctccacġgca	ggaaatatga	aacttaaccg
•	ggttttaacg ggacgcggtt		atcgttcacg	acactgacaa	cagataatct
10	cagtcagcat gataaacaag	ttgtcatgcg 3000	tacagacctt	aacaaggcag	acaaactggt
15	tcggcaacag ctctgacaag	gtcatgacaa 3060	cagcatctgg	gttaacttcc	tgaaaaaacc
13	gacacgcttg tctgttcagg		ggtcagcgca	cctgaagcga	cagctgataa
20	gcatcaacac cagaaaagag	gggttgtggg 3180	attcagtgat	gtcaccccca	cccttagtgt
	gacgggaaaa cggccagggt	aagagtgggt 3240	cctcgatggt	taccaggttg	cacgtaacga
25	aaggctgccg agttaacaac	ccacattcat 3300	gcacatcagc	tataacaact	tcatcactga
30	ctgaacaaac gtgggtgcgt	gcatgggcga 3360	tttgagggat	attaacggcg	aagccggtac
30	ctgctgaacg cctgctgcag		tgctgatggc	ggtttcactg	accactatac
35	atgggggctg cgtgatggcc	accgtaagca 3480	cgaactggga	agtatggacc	tgtttaccgg
	acctacactg atcatggggt		gtcagcaggc	ctgtacagcg	gtaaaacaaa
40	ggtggtttct gattgccaaa	atgccagtgg 3600	tctgttccgg	tccggcgctt	actttgattt
45	tatattcaca acagaacttc	atgaaaacaa 3660	atatgacctg	aactttgccg	gagctggtaa
73	cgcagccatt gacagatacg		aggtgcagaa	gtcggatacc	gttatcatct
50	acgtttgttg aacatttaac		ggaactggtc	tggggaagac	tgcagggcca

tggaacgaca	gtggaatgga	tgtctcaatg	cgtcgtaaca	gcgttaatcc
tctggtaggc	3840			

- agaaccggcg ttgtttccgg taaaaccttc agtggtaagg actggagtct 5 gacagcccgt 3900
  - gccggcctgc attatgagtt cgatctgacg gacagtgctg acgttcacct gaaggatgca 3960
- 10 gcgggagaac atcagattaa tggcagaaaa qacqqtcqta tqctttacqq 4020 tgtggggtta
  - aatqcccggt ttggcgacaa tacgcgtctg gggctggaag ttgaacgctc 4080 tgcattcggt
  - aaatacaaca cagatgatgc gataaacgct aatattcgtt attcattc 4128

15

45

- 20 <210> 93 <211> 1047 <212> DNA <213> Escherichia coli <400> 93 atgattacac tttttcgact actggcgatt ctttgccttt tttttaacgt ttcagctttt 60
- 25 gctgttgatt gctatcagga tgggtacaga ggaacaaccc tcataaatgg agatttacca 120
  - acgttcaaaa ttccagagaa tgcgcaacct gggcaaaaaa tttqqqaqaq 180 cggagatatt
- 30 aatatcacag tttattgtga caatgcacca ggatggtcaa gtaataaccc atcagaaaat 240
- gtctatgcct ggatcaaatt gccccaaata aatagtgccg atatgttgaa 35 taatccgtat 300
  - ttaacatttg gcgtgactta taatggtgta gattatgaag ggacaaatga aaaaattgat 360
- actcatgcgt gcctggataa atatgaacaa tactataatg ggtattatca 40 tgaccctgta 420
  - tgcaatggca gcactcttca aaaaaatgta acatttaacg cccattttcg cgtctatgta 480
    - aaattcaaaa gccgcccggc aggagatcag acggtaaact ttggcacagt 540 caacgtgctg
- caattcgacg gtgaaggcgg ggcgaacatg gcccccaacg cgaaaaattt 50 600 acgctatgcg

	attacggggt catttccccg	tagataatat 660	ttcattcctt	gactgtagtg	tcgacgtccg
5	gaaagtcaga tttcccaccg	tagtcaattt 720	tgggcagatc	gctgcgaatt	ccattgcaac
	aaggcagcat cgaacagttt	tcagcgtttc 780	taccataaaa	gacattgcgt	ctgattgtac
10	gatģttgcaa tctggaaata	ccagtttctt 840	tacttcagat	acattatatg	acaatacgca
15	ggtaacggct taaatttaac	tgctcatgcg 900	aattactgat	caaaaaacgc	aagaagatat
13	cagttcaaat aacccgcgat	tatttagtac 960	ttatattccc	ggtcagagtg ,	cggcaatggc
20	taccaggccg atttcagaaa	aattaaccca 1020	aaaacctggt	gaaccactcg	tctatggccc
	gacctgatag 1047	ttaaaatcaa	ctaccac		
25					
20		<211> 2520	<212> DNA	<213> Esch	nerichia coli
	<400> 94	aaaacacgtt			•
30	<400> 94 atgaacaata aaatgccctg	aaaacacgtt 60 tgtgttccct	ttcccgggat	aagttatccc	atgcaattaa
	<400> 94 atgaacaata aaatgccctg tctggcgttg attcaacgtc	aaaacacgtt 60 tgtgttccct	ttcccgggat actcttcgtt	aagttatccc ttgccagtcc	atgcaattaa
30	<400> 94 atgaacaata aaatgccctg tctggcgttg attcaacgtc gatatgattg gaaaaaaggc	aaaacacgtt 60 tgtgttccct 120 acgcagaaga	ttcccgggat actcttcgtt ccgtgagaat	aagttatccc ttgccagtcc atcgacatct	atgcaattaa acgccgtaga ctcgttttga
30	<400> 94 atgaacaata aaatgccctg tctggcgttg attcaacgtc gatatgattg gaaaaaaggc tatatcccc gttgccacaa	aaaacacgtt 60  tgtgttccct 120  acgcagaaga 180  ctggtagata	ttcccgggat actcttcgtt ccgtgagaat cctcgttcgt	aagttatccc ttgccagtcc atcgacatct gtgcaaataa	atgcaattaa acgccgtaga ctcgttttga ataaaaatat
30 35 40	<400> 94 atgaacaata aaatgccctg tctggcgttg attcaacgtc gatatgattg gaaaaaaggc tatatcccc gttgccacaa acgttaatac ctgcttaacc	aaaacacgtt 60  tgtgttccct 120  acgcagaaga 180  ctggtagata 240  tggaatggt	ttcccgggat actcttcgtt ccgtgagaat cctcgttcgt aaaagccgat	aagttatccc ttgccagtcc atcgacatct gtgcaaataa aatgaaagtg	atgcaattaa acgccgtaga ctcgttttga ataaaaatat gttcgttact
30 35	<400> 94 atgaacaata aaatgccctg tctggcgttg attcaacgtc gatatgattg gaaaaaaggc tatatccccc gttgccacaa acgttaatac ctgcttaacc aaagaaaatt gcaaaacata	aaaacacgtt 60  tgtgttccct 120  acgcagaaga 180  ctggtagata 240  tggaatgggt 300  tgactaattt 360  aatgtctcga	ttcccgggat actcttcgtt ccgtgagaat cctcgttcgt aaaagccgat cggtcttaat	aagttatccc ttgccagtcc atcgacatct gtgcaaataa aatgaaagtg acggaatta	atgcaattaa acgccgtaga ctcgtttga ataaaaatat gttcgttact ttgaatcatt

# WO 2005/097823 PCT/EP2005/003972 248/370

	tggacgccac ttacaacgtg	cagagttttg 540	ggataccggt	atcaccgggt	ttatccttga
5	tacgccagcc ctcctatggt	agtatgcccc 600	acatcacgga	gacagcaccc	aaaacgtcag
	acgttaggct taatcagaat	ttaacctcgg 660	cgcatggcgc	ttacgtagcg	attaccaata
10	tttgctgatg tctgtttcgc	gacgctcggt 720	aaaccgcgac	agcgaatttg	cgcgaactta
15	cctatcccct ctccaatctt	cctggtcgtc 780	aaaattcact	atgggccagt	acgacctgag
	tacgatacct gctgccgcca	tccactttac 840	tggcgcatcg	ctggaaagtg	atgaaagcat
20	gatttacagg gaaagtaact	gttatgcgcc 900·	acaaattacc	ggcatcgcgc	agaccaacgc
	gtggcacaaa ttttactatt	atggtcgtgt 960	actttatcaa	accactgtcg	cgccaggccc
25	tctgatttgg agaagatggc	ggcaatcgtt 1020	tcaggggcag	ctggatgtca	cagtggaaga
30	cgcaccagca taaagggcaa	ccttccaggt	tggctccgca	tccattccct	atttaacccg
	gtgcgctata tatcaataat	aaacgtcact 1140	gggaaaaccg	acatccgtcg	ggcataacga
35	ccctttttct gttgtatggt	ggacggcgga 1200	agcctcctgg	ggctggctga	acaatgtgtc
	ggtggcatgt ctttaacctt	tcaccgctga 1260	tgattatcag	gctatcacta	ccggtattgg
40	aaccaattcg acagcaacaa	gttcgctttc 1320	ttttgatgtc	actggagcag	acgcgtcttt
45	aatagcggca tttcgaatcg	atctgcgtgg	ttacagctat	cgcttcaact	atgcaaagca
	acaggcagtc cgtgtcgatg	agattacctt 1440	cgcgggttat	cgcttctcag	ataaagatta
50	agtgagtacc agagagttat	tcagctcgcg 1500	taatggcgat	gagtcaatcg	ataatgaaaa

## WO 2005/097823 PCT/EP2005/003972 249/370

	gtcatttcct caacgttaca	tgaaccagta 1560	ctttgaaacg	ctggaattaa	actcttatct
. 5	cgcaatactt aagcaaaaac	attgggacag 1620	cgccagcaat	accaactact	ccgtatctgt
	tttgatattg aatccgctgg	gċgatttcaa 1680	aggtatatct	gcatcgctgg	cagtaagtcg
10	gatgacgacg acaaaaccgc	aagagaatca 1740	atattacttc	tctttctctc	tacctttaca
15	aacatctcct gatttcctgg	acagtatgca 1800	gcgaacggga	agcagtaata	cttcgcagat
	tacgattcat ggacgacaat	cagatcgcaa 1860	caatatctgg	aatatttcag	cgtcggcaac
20	atacgtgatg gtggggacgc	gcgaaccaac 1920	actgcgcggc	agctaccagc	actattcgcc
	ctgaacatța aggctggtac	atggcagtgt 1980	acagccgaat	cagtacaatt	ctgttaccgc
25	ggttcactta tggcgataac	ccgctacacg 2040	tcatggtgtc	gcccttcacg	attatagcta
30	gcccgcatga taaccgtacc	tggtcgatac 2100	cgatggcatc	tccggcattg	aaatcaactc
	gttaccaacg cacctccatg	ggctgggcat 2160	cgccgtgata	ccttcgttat	cgaactacac
35	ttgcgggtga ggttattcgt	acaataacga 2220	tctgccagaa	ggtgtcgatg	tcgaaaactc
	actacgctca cggataccaa	cccagggtgc 2280	catcggctac	gcaaaactga	atgccaccac
40	atcgtcggcg gaatgtcacg	_	ggaaaatggc	cgcttccctc	cactaggtgt
45	gataaagcga ttatctcagc		tgtgggcctg	gtagcggaag	atggcttcgt
	ggtattcagg tgaagtcacg	-	tctgcattta	acctggggtg	ataatacctg
50	ccgccaaacc aacagtcaaa	aaagtaacat 2520	tagtgaaagc	gcgataattt	taccttgtaa

250/370

<210> 95 <211> 507 <212> DNA <213> Escherichia coli <400> 95 ttgatgaaca caaaacagtc tgttgctcaa ctcgccgtac cgcaccgcaa 5 gcgcctttca 60 tcaacgatgg tggtggcgct gttactttgt gtggttgctg gcgcggtgat 120 gattaatgcc 10 gctgattttc cagcaactgc cattgaaacg gatcccggtg caagtgcctt ccctaccttc 180 tatgcctgtg ccctgattgt gctcgctgtc ttgctggtga tacgcgatct 240 tttgcaggca 15 aaaccageet ettgegeeaa egeacaggaa aaaceggeat teaggaaaac agcaacagga 300 attgcggcaa ccgcgtttta tattgtggcg atgagctact gcggttatct 20 cattactact 360 cctgttttcc tcatcgtcat tatgacgttg atgggctaca ggcgatgggt 420 actcacaccg 25 ggtattgcgc tgctgttaac ggcaatcctc tggttgctgt ttgtcqaaqc gttacaggtg 480 ccattgcctg tcggcacatt tttcgaa 507 30 <210> 96 <211> 933 <212> DNA <213> Escherichia coli <400> atggtacttc ttgcaggcgc tgccctcagc attgcgcctg tacaggcagc 35 ctcctaccca 60 accaaacaga togagttagt cgttccctac gctgccqqaq qcqqtacqqa 120 tctggttgcc 40 cgtgcctttg ctgatgccgc caaaaaccat ttacccgtca gcatcggggt tatcaataaa 180 cctggcggag gcggtgctat cggcctgagt gaaatcgccg ctgcccgccc 240 taacggttac 45 aaaattggtt taggcacggt tgaactgacc acccttccca gcctcggaat ggtgcgtttt 300 aaaaccagcg actttaaacc cattgcccgt ctgaatgcgg atccggctgc 50 tatcacagtc 360

cgtgccgatg cgccgtggaa tagctatgaa gaatttatgg cttactccaa agcgaatccc 420

agcgaatccc 420

ggaaaagtac gcattggtaa ctcaggcacc ggagctatct ggcatctggc 5 ggcagctgca 480

ctggaagaca aaacgggcac aaagttttct catgtcccgt atgacggcgc agccctgcc 540

10 attacaggcc tgttaggcgg gcatattgaa gcggtttccg taagcccagg agaagttatc 600

aaccatgtga atggcggcaa gctgaagaca ctggtagtga tggcggatga gcgaatgaa 660

accatgeetg aegteeegae gttaaaagag aaaggegttg ateteteeat eggeacetgg 720

cgcggcctga ttgtgtcgca aaaaacgccg caggatgtgg tggatgttct 20 ggcaaaggca 780

gcaaaagaga cggctgaaga gcctgcattc caggatgcac tgcaaaagtt gaatctcaac 840

25 tatgcatggc ttgacgctgc cagcttccag acccaaatca gcgaacagga aaagtacttt 900

gacgagttgc tgactcgcct gggcctgaaa aaa 933

30

45

15

<210> 97 <211> 2166 <212> DNA <213> Escherichia coli <400> 97

atgctgcgat ggaaacgctg tattattcta acatttatct ctggtgctgc tttcgcggcg 60

ccagagataa atgttaagca aaacgaatcg ttacctgatt taggtagcca ggcagcacaa 120

40 caggatgaac aaaccaacaa gggtaaatcg ctgaaagagc gcggagccga ttacgtcatc 180

aactccgcca cgcaagggtt tgaaaacttg acccctgagg cgctggaatc tcaggccaga 240

agctatctgc aaagtcaaat cacctcaacc gcacaatctt atattgaaga cacactctct 300

ccctacggta aggtccgttt gaacctctcc attggtcagg gcggcgatct 50 ggatggcagt 360

## WO 2005/097823 PCT/EP2005/003972 252/370

	tccatcgatt cagccaattt		ctggtacgat	aatcaaacca	ctgtttattt
5	tctgcgcaac aaggtataat	gaaaagaaga 480	tcgtacgatc	gggaatattg	gccttggggt
	tttgataaat ccgtggacat		tggaaatata	ttttatgatt	atgactttac
10	cgccgtttag aggcaactat		cgaagcctgg	acggattatt	taaaattctc
15	tatcacccac agaacgccct	tttctgactg 660	gaaagactct	gaagatttcg	acttttatga
	gcgcgcggtt actggggggc		tgccgaagtc	tggttacctt	cttatccgca
20	aaaattgtct ggataatttg		ttacggcgat	gaagtcgccc	tttttggtac
	gagaaagatc gttactgaca		aacgcttgga	ctgaattatc	aaccagtgcc
25	gttgggacgg taatgccact		ggggaccgga	gataacagtg	atgtcagcat
30	cttaattatc agtgaaagcg	agttcggcgt 960	tccgctaaaa	gatcaattgg	atagcgataa
	gcgcactcgc tattgttctg		ccgtcttgat	ttcgttgagc [*]	gtaataactt
35	gaatacaaag tgccaccaac	aaaaagatcc .1080	gcttgatgtc	accctgtggt	tgaaagcgga
	gagcaccctg ggaaaaatgt		taaggacact	cccgaagcgg	ccgtcggtct
40	aagtggacca ctcctggcag	ttaacgcact 1200	cattaatcat	cattacaaaa	tcgttgcggc
45	gcgaaaaaca tactctgaca	atgccgcccg 1260	cacgctggtg	atgccggtta	tcaaagagaa
	gagggtaaca ttccgatcaa	ataaccactg 1320	gaacctggtg	ctgcctgcct	ggcagtacag
50	gccgaacaag tgaaaagggc	aaaaactcaa 1380	tacctggcga	gtacgtctgg	cgctggaaga

253/370

50

cqqtqaaacc

120

aaccgacaga actetggcgt ggtggaaate accgttcage aggaccgtaa aatagagttg 1440 attgttaata acatcgcgaa cccagaaqaq aacaaccaca qccacgaaqc 5 cagcgcacag 1500 gcagatggcg ttgatggtgt agtgatggat ctcgatgtaa ccgacagctt 1560 tggcgataac 10 accgaccgca acggcgatgc gttgccggaa gataacctta cgcctcagct ttacqacqcq 1620 caggacaaac gagtgacgtt aaccaacaag ccctgctcga ccgataaccc ctacattttt 1680 15 attgccaaac aagataaaga aaagggcact gtcaccctct ccagtacctt 1740 acctggcacc tatcgctgga aagcaaaagc cgcgccctac gatgacagta actatqtgga 20 tgtcactttc 1800 ctcggggcag aaattggtgg gctaaatgct tttatctatc gtgtggggc ggctaaaccc 1860 25 agcaacctga taggtaaaga taaagaaccg ttgccgtcaa caacatttat cgatttgttt 1920 tatggcgcga caacaataaa qacggtgtct tccaqcaqqt cqaaaaacct 1980 gacgaagaga 30 tggtgcagta cgactacaag tgggaattta ccggcaagag catcaatggt aagtgggtgc 2040 acaggcgaac actccaatga ggacattgtg attccggcca ctaaccgtga 35 agcggcgcaa 2100 acctatggcg cacaagcggg agatggcttg cagggatacg gtttacgcgt gctgtatacc 2160 40 aaaaaa 2166 <210> 98 <211> 957 <212> DNA <213> Escherichia coli <400> 45 98 atgaagcagg ataaaagacg cggtctgacc cggatcgcat tagcgctggc actggcaggt 60 tattgtgtgg cacctgtggc gctggctgáa gacagcgcct gggtcgacag

254/370

aatattttcc aggggaccat tccgtggctc tattcggaag ggggaagtgc tacgacagat 180 gccgaccgtg taacgttgac ttctgatcta aaaggcgctc gcccgcaagg 5 catgaaacgg 240 acaagcgttt ttactcgggt gataaatatt ggtgataccg aaggcgacgt ggatcttggt 300 ggattgggcg ataacgcgaa aactatcgat actatccgct ggatgagcta 10 caaggatgcg 360 cagggggggg atccaaaaga gctggcaacg aaggtgacca gttacactct taccgatgcc 15 gaccgtggtc gctatatcgg tattgaaatt acgccaacca cgcagaccgg tacgccaaac 480 gtcgggactg cgctgcatct ttatgacgtt tctactgcca gcggcggcgg 20 aagcgacagc 540 gataacgttg caccggggcc ggtggttaac cagaacctga aagtcgccat ctttgttgat 600 25 ggtaccagta tcaaccttat caacggtagc acaccaatcg aacttggcaa aacctacgtg 660 gccaaactgt actcggatga gaacaaaaat ggcaagtttg atgcgggtac cgatgctgac 720 30 gtcaccgcca attatgactt ccgttgggta ctttctggca gcagccaaca gct tggcact 780 tcgggtggca tcgttaactc aagcttcgat aataacaatt tggtcatccc 35 tgcgaccaac 840 gac gaageca gaaccaacct taacggccct gcgcgcgatg gaaaagaggc actttccatc 900 40 ccgaccaacg gcgacggggt acagggttac aaacttcaca ttatttacaa acacaaa 957 <210> 99 <211> 1887 <212> DNA <213> Escherichia coli 45 <40O> 99 atgaagaaag tgctcactct ctcactactg gctctgtgtg tgtctcatag tgcagtagca gcaaactata cgttcaataa cgataatatt gccctctcgt ttgatgatac 50

aaactcgacg

# WO 2005/097823 PCT/EP2005/003972 255/370

	attgtgctga gttctttctg	agga ccgtag 180	aactaaccat	ccgatcacac	cacaggaatt
5	acactaccgg catcaaaaaa	atgagacaaa 240	aatccacacc	gcagatttca	aaatcaagca
	caggacaatg agtgcagttg	cgattgtcat 300	cgactttacg	cgcccagatt	ttaacgtaac
10	aaccttgtga tgggcaacca	agggaaaata 360	tgccagcatc	gactacacta	ttgccgccgt
1.~	cgagacgtcg tccttacgta	ccaa gattac 420	cttcttcccg	accaaaaaac	agtttcaggc
15	gacggcgcaa gccgaataaa	tcactagctc 480	accgatcatt	gcggactcgt	tctttatcct
20	ccgatcgtga actgaaaact	atacctacgc 540	ctatgaagca	acaaccaatc	tcaacgtaga
	ccaattcagc cccggaaacc	çaga gacgcc 600	ggttagcttt	accacctggt	tcggtacttt
25	agccagttgc tccgtacaag	gacgcagtgt 660	gaaccagttt	attaatgccg	tacgtccacg
	ccttatttgc caccgaacag	attacaacag 720	ttggatggat	atcggctttt	tcactccgta
30	gatgttctgg cggagtggcg	gacgcatgga 780	cgaatggaac	aaggaattca	ttagcggccg
35	ttagacgctt gttatttggc	ttctgctgga 840	cgatggctgg	gacgatctta	ccggacgctg
	ccggcattca gcacagctcc	gcaa cggttt 900	tagcaaagta	cgagagaaag	ccgatagcct
40	gttgggctat ttcgcgtttc	ggctttcacc 960	gtggggggt	tacaataagc	cgcagcgacg
•	gcatgcaaaa cgggagcgaa	gagtatgggt 1020	tcgaaaccgt	ggacggcaag	ctggcgcttt
45	ctacttaaaa cattacctcg	actt caatga 1080	gcagatcatt	aatcttatca	aaaatgaaca
.50	tttaaactcg gttcgcctcg	acggaatggg 1140	gaacgccagt	tcacatataa	agggtagccc

			256/3	70	
• •	gattttgatg gaatctattt		tctgctgcac	aatatgcgca	gagcaaaccc
5	atcaacctga tgattctatc		caacgccagc ·	ccgtcctggt	tgttctatgc
	tggcgtcagg gcagtggata		aaacctgtat	ggccccggca	cgccggtgca
10	acatategtg attecegetg		ataccgctct	attgtacgta	aaggcccgct
15	aactcgctga gttagagaag		gatagtcagc	gccgagaatg	cctattacgg
	gtgcaaacgg cggcacccag		tgccgatcag	gtctggagct	acttcgcgac
20	ctgcaggagc tacgctggcg		cccgtccatg	ctgaacaagg	tgaagtggga
	aaggctgcaa ctggattggc	aatggtcgaa 1620	ggaaaatgcc	agcgtgctgg	ttgataccca
25	ggcgacccaa caaagccatt	cggcgcttgc 1680	cgtgtacggc	tgggcatcct	ggagcaaaga
30	ctcggtttgc ggcgaaggat		ggataagcca	cagacctact	atctggattt
	ttcgaaatac cggcagcaat •	cggcaggaaa 1800	cgcggcgcag	tttagtctga	aagcggtata
35	aaaacagtgc gctggaaacg		taaaaacgcg	acggtgatta	cgttgcagcc
	ctggtgtttg 1887	aggcggtgac	cattaac		
40	Z210> 100	ZO115 F304	<010\ DXIZ		1
	<400> 100	<211> 5334	. <212> DNA	A <213> ESC	cherichia coli
45	atgaacaaaa cgttgccagc	tatttaaagt 60	tatctggaat	ccggcaacag	gcagttacac
	gaaacggcga ttctgcactg		taaaaaaagc	gggcgcagta	agctgttaat
50	gttgcgggtg tgggcagcca	ggttgttgtc 180	gtcgtttggg	gcaagtgcag	ataattacac

# WO 2005/097823 PCT/EP2005/003972 257/370

	actgattatg aggggcaaaa		agcaggtgac	ggctgggttg	ctatcggtaa
5	gcaaatacct cgcgatagcc		tagtggcgcg	agtacagctt	taggatatga
	gaaggtgagt agcatccatg		catcgggtca	aaaacccttg	caactggtgg
10	gcgttcgggg tgcatcgtca		agcaatgggt	gacagaagtg	tcgcgctagg
15	gtagcaaatg tggttttaca		gatggctttt	ggtcgttacg	caaagacgaa
	tctcttgcta gttaggaaat	ttggggactc 540	ctcccttgcc	gatggtgaaa	aaactattgc
20	acggctaaag tgcgtcaaaa	cttacgaaat 600	tatgagcatc	gccctcggtg	ataatgccaa
	gagtatgcaa cctcgcattc	tggcgctggg 660	agcaagtagc	aaagctggcg	gtgctgatag
25	ggcagaaaat cagtagcagt	ctacagctaa 720	tagcactggc	tcactggcaa	taggtgctga
30	tcgaacgața gaattcgatg	acgccatcgc 780	gatagggaac	aaaacgcaag	ccctgggagt
	gccctgggta taacaccagt	atgcaagtca 840	ggcatctggc	gaatccagta	ttgcattagg
35	gaagccagcg caaagtgaac	aacaaaatgc 900	gattgcgctg	gġgcaaggta	gcattgcaag
	tcaatcgcgt attgggagag	tgggaagtaa 960	cagtttgtcc	tcgggagaga	atgccatcgc
40	ggtagtgccg ggcaaacggc	ctggtggcag 1020	caacagcctt	ġctttcggta	gccagtccag
45	aatgattctg tgtcgctatc		tgtaggggct	gcagcagcga	ccgacaattc
15	ggcgcaggat cgcaacaaaa		tgcaagcaat	acggtttcag	ttggcaacag
50	cgcaaaattg tgccatcaac		tgctggtgcc	ataagcaaca	ccagtaccga

258/370

	ggctcacago aggcgctact	tttatacgat 1260	cagtgattca	gtcgccaagc	: gactcggagg
5	gtaggcagcg aacctataat	atggcaccgt 1320	aaccgcagta	agctacgcgt	tgagaagcgg
	aacgtgggtg taaaaccgcg	atgetetgte 1380	aggaatcgac	aataataccc	tacaatggaa
10	ggggcgttca tgttgctaaa	gcgccaatca 1440	cggtgcaaat	gccaccaaca	aaatcactaa
15	ggtacggttt cgacctgcag	ctgcaaccag 1500	caccgatgta	gtaaacggct	ctcaattgta
	caggatgctc cgaagccacc	tgttgtggaa 1560	cggcacagca	ttcagtgccg	cacacggcac
20	agcaaaatca cgccgttaac	ctaacgtcac 1620	cgctggcaac	ctgactgccg	gcagcactga
	ggctctcagc catcgccact	tcaaaaccac 1680	caacgacaac	gtgacgacca	acaccaccaa
25	aacaccacca cgactccctg	atatcaccaa 1740	cctgactgac	gctgttaacg	gtctcggtga
30	ctgtggaaca caccagcaaa	aagcagctgg 1800	cgcattcagc	gccgcgcacg	gcaccgaagc
	atcaccaacg taacggctcc	tcaccgctgg 1860	caacctgact	gccggtagca	ctgacgccgt
35	cagctcaaaa cactaacacc	ccaccaacga 1920	caacgtgacg	accaacacca	ccaacatcgc
	accaatatca cctgctgtgg	ccaacctgac 1980	tgacgctgtt	aacggtctcg	gtgacgactc
40	aacaaaacag caagatcacc	ctggcgcatt 2040	cagegeegeg	cacggcactg	acgccaccag
45	aacgtcaccg ctcccagctc	ctggcaacct 2100	gactgccggc	agcactgacg	ccgttaacgg
	aaaaccacca caccaccaat	acgacaacgt 2160	gacgaccaac	accaccaaca	tcgccactaa
50	atcaccaacc gtggaacaaa	tgactgacgc 2220	tgttaacggt	ctcggtgacg	actccctgct

# WO 2005/097823 PCT/EP2005/003972

		•		. •	
	acagctggcg caccaatgtc	cattcagcgc 2280	cgcgcacggc	actgacgcca	ccagcaagat
5	aaagccggtg gctcaaaacc	acctgacage 2340	tggcagcact	gacgccgtta	acggctctca
	accaacgata cgctgttaac		caacaccacc	aacatcacca	acctgactga
10	ggtctcggtg cgccgctcac	acgactccct 2460	gctgtggaac	aaaacagctg	gcgcattcag
1.5	ggcactgacg agctggcagc	ccaccagcaa 2520	gatcaccaat	gtcaaagccg	gtgacctgac
15	actgacgccg gaccaacacc	ttaacggctc 2580	ccagctcaaa	accaccaacg	ataacgtgtc
20	accaacatca tctgctgtgg	ctaacctgac 2640	ggattccgtt	ggcgacctta	aggacgattc
	aacaaagcgg caagatcacc	ctggcgcatt 2700	cagcgccgcg	cacggtaccg	aagctaccag
25	aacttactgg ctcacaactt	ctggcaagat 2760	atcttctaac	agcactgatg	ccattaatgg
20	tatggcgtag cagcgátacg	cggattcatt 2820	tacgtcatat	cttggtggtg	gtgctgatat
30	ggtgtattaa cgtcggtgat	gtgggccaac 2880	ctacactatt	ggtggtactg	actacactaa
35		ccattaacac 2940	atcatttagc	acatcactcg	gcgacgccct
	gcaaccgcag tgtaatcact	gcaaattcag 3000	cgccaáacac	ggcattaata	atgctcccag
40 ⁻	gatgttgcaa ttcacaactt	acggtgcagt 3060	ctcgtccacc	agcagcgacg	ccattaacgg
4.5	tatggtgtta gaacactgac	gtgactacat 3120	tgccgatgct	ctgggcggga	atgctgtggt
45	ggcagtatca cgtcggtgac	ctacaccaac 3180	ttatgccatc	gctggcggca	gttacaacaa
50	gcgctggaag aacagccaat		cacgctggat	gatgctctgc	tgtgggatac

	260/3	7

	ggcggtaacg tgtaatcact	gtgcatttag 3300	cgccgctcac	gggaaagata	aaactgccag
5	aacgtcgcta ctcacagctc	acggtgcagt 3360	ctctgccacc	agcaacgatg	ccattaatgg
	tatagcacta caacgctgac	ataagtacat 3420	cgctgatgcg	ctgggtggtg	atgcagaagt
10	ggtactatca cgtcggtgaa	ctgcaccgac 3480	ttacaccatt	gcaaataccg	attacaacaa
15	gccctggatg tgcctacaac		taacgcgctg	ctgtgggatg	aagacgcagg
-	gccagccatg tctctccaca	atggcaatgc 3600	cagcaaaatc	accaacgttg	cggctggtga
20	accagtaccg ggttacgcaa	atgctgttaa 3660	cggttcccag	ttaaacgcaa	ccaatattct
	aatagccaaa cgaggaaaac	tgattaacca 3720 ·	gcttgctggt	aacactagcg	aaacctacat
25	ggtgcgggta cgatgccagc	ttaactatgt 3780	acgtaccaac	gacagcggct	tagcgttcaa
30	gcttcaggta tgccagcagt		agctgtaggt	tataacgcag	ttgcctctca
		gtcaggacag 3900	catcagcgaa	gttgatacgg	gtatcgctct
35	tccgtttcca ggaagaaggt		agttaaaggg	actcgtaaca	ccagcgtatc
	gttgtgattg gattggtgat		cacggatggc	gaactgcttg	gcgcgttgtc
40	gacggtaaat tgatgcggtc		catcaacgtc	gcggatggtt	ctgaagccca
45	actgttcgcc caaatactat		cgccattggt	gcagtcgcaa	ccacaccaac
	cacgccaact ggcaatgggc		agactcactg	gcagtcggtg	aagactcgct
50	gcgaaaacca gctggttctg		taatgcgggt	attggtatcg	gcctgaacac

# WO 2005/097823 PCT/EP2005/003972 261/370

	gctgatgcga tgccgacagc		tgctatcggt	tctaacgcac	gcgcaaatca	
5 ·	attgcaatgg cactgcctac		tcagactacc	cgtggtgcgc	agaccaacta	
	aacatggatg agacggtcaa	caccgcagaa 4440 .	ctctgtgggt	gagttctctg	tcggcagtga	
10	cgtcagatca cgtgggtcag	ccaacgtcgc 4500	agcaggttcg	gcggataccg	atgcggttaa	
15	ttgaaagtaa cctgaacact	cggacgcgca 4560	ggtttcccag	aatacccaga	gcattactaa	
	caggtcacta cgatatcgta	atctggatac 4620	tcgcgtgacc	aatatcgaaa	acggcattgg	
20	accaccggta caacgcgcag	gcactaagta 4680	cttcaagacc	aacaccgatg	gcgcagatgc	
	ggtaaagaca cagcgtcgca	gtgttgcgat . 4740	tggttctggt	tccattgctg	ccgctgacaa	
25	ctgggcacgg ttctaccaac	gttccgtagc 4800	agacgaagaa	aacaccatct	ctgtgggttc	
30	cagcgtcgta taacgtttcg	tcaccaacgt 4860	tgctgccggt	gttaatgcca	ccgatgcggt	
	caactgaagt tggctctatc	cttctgaagc 4920	aggcggcgtt	cgctacgaca	ccaaagctga	
35	gactacagca cagcaacgtt	acatcactct 4980	cggtggcggc	aatagcggta	cgactcgcat	
	tctgctggcg aagtgtgcag	tgaacaacaa 5040	cgacgcagtg	aactatgcgc	agttgaagca	
40	gaaacgaagc gtccaaaact	aatacaccga 5100	tcagcgcatg	gttgagatgg	ataacaaact	
45	gaaagcaagc gccgcaggct	tgagtggtgg 5160	tatcgcttct	gcaatggcaa	tgaccggtct	
	tacacgccgg tgaatcggct	gtgccagcat 5220	ggcctctatt	ggtggcggta	cttacaacgg	
50	gttgctttag attacaaggt	gtgtgtcgat 5280	ggtgagcgcc	aatggtcgtt	gggtctacaa	

agtaccaata gccagggtga atactccgcc gcactcggtg ccggtattca gtgg 5334

- 5 <210> 101 <211> 681 <212> DNA <213> Escherichia coli <400> 101 atgaacctaa agaaaacact gttaagcgtg ttaatgatat tgcaactttg cttattggta 60 10 gggtgtgact atattgaaaa agcgagtaag gtcgacgatc tcgttacaca gcaagagttg 120 caaaaaagca aaattgaggc gcttgaaaaa caacaagaac tcgacaagcg 180 caagatagaa 15 cactttgaaa aacaacaaac taccatcata aacagtacca aaacgctcgc tggtgtggtg 240 aaggcagtta aaaacaaaca ggacgaattt gtctttacag aatttaaccc 20 ggcacaaacc 300 caatacttta ttttaaataa cggctctgtt ggtttggcag ggaaaatact gtctattgac 360
- 25 gcagtagaaa acggcagtgt tattcgtatt tcactggtta acttattaag tgttcctgta 420
  - tcaaatatgg gtttctacgc aacatggggg ggagaaaaac ccaccgacat caacgcatta 480
- 30 gcaaaatggc agcaattgct atttagtacc gcaatgaact cctccctgaa attattacca 540
- ggtcaatggc aagacattaa tttgacgcta aaaggtgtct cgcccaacaa cctcaaatat 600
  - ctgaaattag ccatcaacat ggcaaatatt cagttcgacc gtcttcaacc tgctgaatct 660
- 40 ccacagcgga aaaacaaaaa a 681
- <210> 102 <211> 3327 <212> DNA <213> Escherichia coli
  45 <400> 102
   atgaaaagag ttgtgcgtct tttgggtgtg gggttactgc tccttgttgt
   qttgttqctc 60
- attttgtttg ttctggctca gaccacaccg ctgatatcag cacaggatga 50 gcatgctgtc 120

# WO 2005/097823 PCT/EP2005/003972 263/370

	tggcttcgtc catatttt.tc	tgttgataac 180	agcgattgtg	atctgtttgc	taagtatgtg
5	ctcttttctt accgactgat	tccggcagaa 240	cgaagcctcg	acgatatcac	tatacgctca
	ataaaggaaa atatttacgc	taaatacgga 300	gcagccgaac	tatgcatcac	tgctgacgat
10	gaccgctacg cggcgagcct	gtccgttctg 360	gcggcgtaaa	gtccgcctgc	tgctggtgac
15	gaacaggcag aggcgaccac	aagccatcgc 420 -	gccggggctg	accgggcaac	actggctgga
	acggtgctga gctgaccgcc	tatatggcgg 480	caggccaaca	gcggagcctg	atgtcacact
20	ttaaaaaaac gacagaagaa	tgcgccgcag 540	ccgtccgctg	gacggcatca	tctgggcgct [.]
	cagageegee eggeggtaag	agacagcgca 600	actcgacaaa	ggctggcgcg	gactgataaa
25	cgactcggtt tgattatcag	ttcaggctcc 660	actctatttg	tggcaggtct	gtgacgacgg.
30	accggacgcc	ccctgcaaag 720	cgtcggctgc	ctgctgccgg	aacgctgtac
	ctggctgtaa tactgaccga	tgctggaagc 780	agecgctgac	ggaacagggc	atgtcgcagc
35	taccgcatgt ttgctcactg	tttctgctgc 840	gtctggctca	tacccttgca	gagcggggta
	gcagaccgtc gcctgcgcgg	ctgaaaccgc 900	tgctggcagg	cggcgcattt	tetteeetge
40	cctgatgttc gcagtggctg	agcccgccgc 960	ttgccgccgt	gccggaggcc	agcacctcat'
45	ccgtcaccgg gtgggttttc		cgtgacggtg	ataacgcgcg	cgggcgcacg
	ctgtggctgc gggggccgga	gtaccgcact 1080	gatgtccgct	gtctgcgtgc	tggtgatatg
50	atgacgacct ccagacggca		caaccgcgct	cttgttcagg	aaaccggtat

# WO 2005/097823 PCT/EP2005/003972 264/370

	cgtgcgcttg taccctgcag	atacccgcct 1200	gccgctggca	gaacaactgg	tggcgctgca
5	ggcgaactgg tcagcgtttt	aacgcctgca 1260	atatcgtatc	cgcgaaggtg	cgccgtggta
	ggccttgaac gcaggcggca	gtaaccaaca 1320	actgctcgcc	gccgcttttc	ccggctatgc
10	aaccggctgg cgcctttgtc	tgcgcgacgt 1380	ggccgttgac	catctgcaac	agcaactgaa
15	gccctgccgc taagcagctt	ccaacagtcc 1440	tcagcgtacc	gccaccggtg	aacaacgcta
15	aaggcattgc cagtaccacg	tgatgacttc 1500	ccgcccggaa	aaggccgacg	ctgccttttt
20	ctgatggcgg gagcgtgttg	acggtctgcg 1560	ctacgagaat	atcccggaag	gtgtgcggca
	ccgtcactgc gaaaacatcg	tgaccttctg 1620	gacggcgaac	ctgccggaac	acccgcagtg
25 .	ccgccaccgg tggtgtgcgt	aactgaccgg 1680	cgcagtgcgt	aaaatcctgc	tgcgccagat
	aatgccgaaa ctacgccgat	acaccctcta 1740	ccagaacgtg	ctgcaacagg	tgtcccgcaa
30	atgacgctgg tacggaacag	cggacatgac 1800	cggggatacc	ctcaccgaat	ctcttttcag
35	acggtgccgg agccatcgag	ggatgttcac 1860	ccgtcaggcg	tgggaaggac	aggtcaggga
	caggtggtga ccagcaggat	cggcgcggcg 1920	cgaggaaatc	gactgggtac	tcagcgaccg
40	acctctgcgg ctactttacc	atatctcgcc 1980	ggatacgctg	cgtaaccgtc	tcacctcacg
45	gactttgccg ggaagactcg	gaagetgget 2040	ggcgtttctc	aacagcattc	actggaaaaa
45	ctctccggca gccactgatt	ttctcgacca 2100	gctgacactg	atggccgatg	cccgtcagtc
50	gcgctgacgg tggtctgtca	acaccctcgc 2160	gtggcaggcg	gcgacaggca	gggaaaaccg

# WO 2005/097823 PCT/EP2005/003972 265/370

	gactcgctgg gccgcagcaa	cgaaatcggc 2220	acaggaactg	tttaacggca	aggagaaaac	
5	tcccgtgaag gccgctgctg	gtgacgacgt 2280	gcctgtcggg .	ccgctggata	aaaccttcac	
	cgtttgctgg gacctacctc	gcgataaggc 2340	cggaggcggc	gacagccagc	tgagtctaca	
10	accegegtea egaceegeag	cccgcgtgcg 2400	cctcaaactg	caacaggtga	ccaacgcccc	
1.5	gagatgaccc cctcaccgac	aacaactggc 2460	gcagacggtc		aaaccgttga	
15	acccgcgact tggcttcggt	acggacggtt 2520	aatcgccgcc	agtctgggcg	aagaatggag	
20	caggcgctgt gcctgcggcg	tcgttcgccc 2580	ggtagagcag	tcgtggcggc	aggtgctgac	
	gacagcctga ggacttcgct	accgccagtg 2640	gcagcgggcg	attgtcagcc	actggaatca	
25	ggccgctatc ggcgcagtac	cgttcaaagc 2700	ctcacagaac	gatgcctccc	tececetget	
20	ctgcgcgatg cgtgctgaaa	acgggcgcat 2760	caacctgttt	atcgccgcca	acctttccgg	
30	cgagagggcc ggtcaatccg	gctactgggt 2820	ggctgacgcc	atgaacacgc	aggggctgac	
35	gactttatcc tgccagcggc	gcgccctgaa 2880	ccgcctgcgc	gacgtggccg	ataccgcctt	
	gatgccggga gaagacgcat	tacattttga 2940	actgcgggca	aaaccggcgc	gtgacgtgat	
40	ctggtgattg gcagcgtttt	acgggcagga 3000	gctggaatat	ttcaaccaga	aagaacgctg	
	aactggccgg cacacaggcg	atgaacagtg 3060	gcaacccggc	gcatcgctaa	gctggaccag	
45	atggagcgca gctggaacag	tactggcgga	ttaccgggga	agctggagtc	ttattcgcct	
50	gcgcaggtga gcaggacggc	cgccggtgga 3180	cagcagcacc	tttaaggtgg	tgtggaaagc	

ctgccgctga attacctgct acgggttgaa cagggtaaag ggccgctggc gctgctggag 3240

ctgaaaaact tccgcctgcc gggacaggtg tttctgaccg gaaaaagtat 5 gaaggatgtg 3300

gaagagtatg gggaagacgc cgatgag · 3327

10 <210> 103 <211> 534 <212> DNA <213> Escherichia coli <400> 103 atgtttccta ttcgttttaa acgtccggcg ttgctctgta tggcgatgct gacggttgtt 60

15 ctgagtggct gcggcctgat tcagaaagtg gtggatgaat cgaaaagcgt 120 ggcctcagcc

gttttctaca aacaaatcaa aatactgcat ctcgatttct tctcccgcag 20 cqccctgaat 180

acggatgcgg aagatacgcc gctttccacg atggtgcatg tctggcaact gaaaacccgc 240

25 .gaagattttg acaaggcgga ttacgacacc ctgtttatgc aggaagagaa gacgctggag 300

aaqqacgtac tggcaaaaca caccgtctgg gtaaaaccgg aaggcacggc atccctgaat 360

gtgccgctgg ataaagagac gcagtttgtc gccattattg ggcagtttta tcaccctgat 420

gaaaaaagcg acagctggcg tctggtgatc aaaagggacg aactggaggc 35 cgacaagccg 480

cgctcgattg aactgatgag aagcgacctg cgactgctgc ctctcaagga taaa 534

40 <210> 104 <211> 840 <212> DNA <213> Escherichia coli <400> 104 atgatttcag ggggaaatat gttgaaagaa tggatgatat ttacgtgcag.

60

120

tttattgact ctggctgggg cgtcactgcc cctcagtggc tgtatttcca gaggccagga

gaaggggcgg catttggggc agggatcctg cgcgaaccqq qaqcaacaaa

50 aaaagccgac 180

gtctatatcc

30

			-	
acgaaagacc	tcaatgtgcc	accaccggtt	tatggtccgc	cgcaggtgat
2+++0002++	2.4.0			*

- atttcgcatt 240
  gatgacaacc gctatttcac gctagaaaat tatacccact gcgagaacgg
- tataataata aagcaaaaaa cattcatgtt aaaatattag acgcttcagg gtatttattt 360

5

30

45

gcagacgttt

- 10 aaaggccgct tattctggtt atcaacgcgt gatgattttc tggcctttcc tgccacgtta 420
  - aataccagac acgcttcctg tatggggtcg aataaaggct gtatgaatgc ggtcattgtc 480
- 15 actacegatg gtggaaaaag acgeagtggt gtgccataeg geagttatae ceagaateeg 540
- accggtgcca cgagggatta tgacatgctg gtgatgaatg acggcttcta 20 cctgcttaga 600
  - tatcgggggg gacagggcag atttagtocg gtgatactta gatggattct cagtactgaa 660
- 25 gatagetetg gtgttgtgeg tteagaagat gettatgaat tgtteegtee eggagaagag 720
  - gtaccctcca ccggttttta taaaatcgac ctgtcacgtt tttatcccaa aaacaacgtt 780
  - atggaaatgc agtgtgacag gacgctggag ccagttcaac cttcagagag taaaattcaa 840
- 40 tccgctatgt gcgctttggc gcaagaacat gagcctatcg gggcgcaaga tgagcgctg 120
  - tcgacattaa ttcaccaacg gatgcaggag gccaaggtcc cagccctttc
    - accattaagg gggtacgtca gcgatttgtc tacggtgttg ccgatgtggc tagtcagaaa 240
- gcgaatactc tagacacagt ttacgagctg ggatcgatga gtaaggcgtt 50 taccggactt 300

#### WO 2005/097823 PCT/EP2005/003972

#### 268/370

	gtggtgcaaa cattacctat	tactgattca 360	ggaaggcaga	ctccggcaag	gggatgatat
5	ctgccggaaa ggctgatttc		ttatcaggga	aaacctgctt	ccctgaccgt
	ctttatcata ccctatgcct	catcaggatt 480	gcctttttca	acactggctc	ggctggaaaa
10	gggagcgctg gggtgcgaag		actgcgcaac	gagaatctgc	tgtttgcgcc
15	tttagctatg tgtgacggga	cctccgccaa 600	.ttatgatgtg	ttgggcgcgg	tgattgaaaa
	aaaaccttta gtcggcgact	cagaggtcat 660	tgcggaacga	ctcacgcagc	cgctgggcat
20	gtggcagtta actgggattc	agggggatga 720	gattattgtc	aacaaggcaa	gcggctataa
	ggcaaacccg cgcctatatc	ttctgtttca 780	tgcgcctctg	gcccggaacc	atgttcctgc
25	catagcactc aaaggctttg	tgcctgatat 840	ggaaatatgg	atagacgcct	ggttgcacag
30	ccggcaacgc tgttccgctt	tgcgtgaggc 900	gatgagtaac	agttggcgtg	gtaatagtga
,	gccgcagaca tcaaggccct	atcgtatcct 960	ctatgccagc	ggttggttta	tcgaccagaa
35	tacatcagtc gcgaccggat	acggtgggca 1020	gaatccaaac	ttttcttctt	gcattgcgtt
	cagcagattg acagctttgc		gctggcaaat	atgaattcga	atctgatact
40	gcggatatcg tgatgcaatt	ataattatct 1140	gcgcattggc	aaatatgctg	acggcgctgg
15	acagccaccg gggggcggtg	ataccctttt 1200	cgtctacctc	acgttgttgc	tgtgtttttg
45	gttgtagtgc tggaaaacag		ccgtgtttat	cgcgcaacgg	cgcatggccc
50	cagaggttac tgggctcgtg	gtttacgcgt 1320	acgtgactat	atcatcgcct	tggcggttcc

gccgccatgc tctatgtcgc accgggtata ctatctccag gacttgactg qcqttttatc 1380

titggtatggg gtccatcgag cgtgttggcg ataccgttcg gaattatcct gttagctttc 1440

gttctgacat taaatcatca aattaaacga attctattac acaacaagga gtgggacgat 1500

10 gag 1503

<210> 106 <211> 2046 <212> DNA <213> Escherichia coli
15 <400> 106

atgaagaaca aatatatcat tgctccgggc attgccgtga tgtgttctgc agttatatca 60

tcaggttatg ccagttctga taaaaaagaa gatacgcttg ttgttactgc ctccgggttc 120

actcagcagc tcagaaatgc cccggccagt gtctcagtca ttacttcaga acaactgcaa 180

25 aaaaaaccgg tttcagatct ggtcgatgca gtaaaagatg ttgaagggat tagtatcact 240

ggtgggaatg aaaaaccgga tatcagtata cgtggtctaa gtggcgatta cacgctgatt 300

30

45

ctggtcgatg gacgacgtca gagcggtcgg gaatccagac caaacggcag cggcggtttt . 360

gaagccggat ttatccctcc tgtggaagca attgaacgca ttgaagtgat 35 ccgtggccct 420

40 gttaataacc aaacatggga tggcgtactt ggacttgggg ggattattca ggaacatggg 540

aaatttggta actcaaccac aaatgacttc tatctgtcag gcccattgat taaggataaa 600

cttggtcttc agctatatgg aggaatgaac tatcgcaagg aagatagtat ctctcaggga 660

acaccggcaa aagataataa gaatataacg gcaacgctcc agtttactcc 50 gactgaaagc 720

			270/3		
	cagaagtttg acctggtgag	tttttgaata 780	tggaaaaaat	aaccaggtgc	atacattaac
5	tctctcgatg aagagaaacg	cctggactat 840	gcggggaaat	cttaaacaac	caaacagtaa
	cataattcac actgcatcct	gtagtcactg 900	ggtagcagca	tggaatgccc	agggcgaaat
10	gaaattgctg aaaagataaa	tttatcagga 960	gaaagttatt	cgtgaggtta	aatcaggtaa
15	tataatcatt cacaatcata	gggatcttaa 1020	ttacgagtca	agaaaaccgg	aaataaccaa
	gatgcaaaag tcaatttcag		tctgccggaa	aatgtactga	ccatcggagg
20	catgcagagc acagtctgtt	tccgtgatga 1140	ctcagccacg	ggtaaaaaaa	cgacagaaac
	tcaattaaac ttctctcgcc	agaaagctgt 1200	ttttatagaa	aatgaatatg	cagcaacgga
25	ctgactggag gaatccaaga		cgataatcat	gaaatctatg	gcagttactg
20	ttgtacgctg cgcaaaagca		gaccgataat	ctcacactca	aaggggggat
30	tttcgggctc gcagggtggt	cttcaattcg 1380	tgaggtgagt	cctggatttg	gaacactgac
35.	gcctctatta cgaagagatc	tgtatggaaa 1440	cagggacctg	aaaccggaga	ccagtgtaac
	ggtattattt taatactgat	atagtaatga 1500	tagtggtttt	tcggcgagcg	cgacgctgtt
40	tttaaaaata cgggttaaac		ttacgatata	ggtacaaaag	atccagtcac
45	acttttattt tgcaactcag	atgataatgt 1620	aggtgaggca	aatatcagag	gggtggagct
45	attcctgtgt ctctcgtcga	_	gcatgtatct	gcaaactata	catttactga
50	aaaagtgatg ggaaagaact	acgaaagtct 1740	caatggcaag	tcgctgaaag	gggaacctct

#### 271/370

cccagacatg cagccaatgc aaaactggaa tgggattaca ctcaggatat tacattttat 1800

tcatctctga attatacggg aaaacaaatc tggccagcac aaagaaatgg 5 tgctaaggtt 1860

ccccqcqttc qtaatqqatt cacatctatq qatattqqtc taaattacca gattctgcca 1920

10 gacacgctga ttaattttgc cgttcttaac gtcacagaca gaaagagcga ggatatcqat

accattgatg gtaactggca ggtcgatgaa ggacgccgtt attgggctaa 2040 tgtaagagta

15 tccttc 2046

20 <210> 107 <211> 492 <212> DNA <213> Escherichia coli <400> 107 atggggttta gaaaaacaat aatcacttcg gtacgtttga tatttatttc attctctttt 60

25 gtggcaaagt gctctcaact caaaaatttg aataattact cagtgatgct 120 ttgtggaaaa

gtgtcaaata atatcctgga tgatattggt ggttataaag aaagaaatat attaatqctq 180

30 cgagctataa aaaaaatcat aataatgaca atcctaaata ttatattttt ctattccttt. 240

caatcgactg cggatgaaat ggttttaata aaamaatacg ggtttgggct 35 300 tgagagagat

atcaaaggaa ggccattaat ttatcctatc gaaaattatg atgagtgtaa gaaaaaatgc 360

40 aatcatatga attatatagc ggatgtcaat gctcaattag ctatgagtaa 420 aaaaaataac

aggatttttg ctaacataac ctttactaac aatagctcta ccacgtattt ttttctaaat 480

attatctacc ta 492

45

50 <210> 108 <211> 654 <212> DNA <213> Escherichia coli <400> 108

# WO 2005/097823 PCT/EP2005/003972 272/370

	atgaatcaaa atcagtcatt	ttaaagataa 60	taaggtaatt	atgaaaataa	aa aatttaat
5	ttactatcag tcaaaaaatc	gaggtattat 120	ggggactgga	ttgtactcga	gcgataacca
	cgcagcaggt tgtccttgga	ttaatataca 180	ggaatcatat	tgtgccatta	ag actaatgg
10	ttcagcaacc caccagttcc	gaaaggatgt 240	attgcgagaa	aatggtgatt	ca accggaac
1.5	agcactaatg ggagattggg	ccatgatgct 300	gatggaaaat	ggtgaaaatg	aa atcagtct
15	gcgttaaggt tttctcccaa		taaacctgcc	agtaccgaag	aa cgagggca
20	aaagcagggt catactttct		tttggttcgt	tttgttaagc	ag gaagaaac
	tcgataaagg cagcatgcat	tgaccatcaa 480	ccagcaggga	atacctgaag	cg cagccaga
25	cctgttatcc tgatccagac	gaaaagagat 540	tctggctgag	caggcagaac	cc ggatttat
20	tattttaatg acaaaaggtc	aaacttattt 600	cccgaaaggg	atgaaggtgt	at caatttac
30	tcggtggcgg 654	ggcttcctga	tgggcctgga	cgcagtacgc	cctttaccgg agca
				·	
35	<210> 109 <400> 109	<211> 8198	3 <212> DNA	A <213> Esc	che richia coli
	7	ctcccgttcg 60	cttcacttac	cgcctgctga	gt tacctggt
40	atcgccgggc aaacggggcc	agccgttgtt 120	accggctgtg	ggggccgtca	tc accccaca
<i>15</i>	ggaatggata gaacggggcc	aagcggcaaa 180	tggtgtgccg	gtcgtgaaca	tt gccacgcc
45	gggatttcgc gattctcaat	ataaccggtt 240	tacggattac	aacgtcggga	ag gaagggct
50	aatgccaccg taacccgaac	gtaagcttaa 300	tccgacgcag	cttggtggac	tg atacagaa

# WO 2005/097823 PCT/EP2005/003972 273/370

	ctgaaagcgg taagcgttca	gcggggaagc 360	gaagggtatc	atcaacgaag	tgaccggc gg
5	ctgctgcagg tgccaacccg	gctatacgga 420	agtggccggc	aaagcggcga	atgtgatg <i>g</i> t
	tatggtatca gctcaccacg	cctgtgacgg 480	ctgtggcttt	atcaacacgc	cgcacgcgac
10	ggcaaacctg tgaaggcagt	tgatgaatgc 540	cgacggcagc	ctgcaggcgc	tggaggtgac
15	atcaccatca cattattgcc	atggcgcggg 600	cctggacggc	acccggagcg	atgccgta-tc
13	cgtgcaacgg tgcaggcgct	aagtgaatgc 660	cgcgcttcat	gcgaaggatt	taactgtcac
20	aaccgtgtaa tgtgccgaaa	ctgcagatgg 720	tcgtgtcaga	gccctgaagg	gcgaaggtga
•	gttgccgttg tctgacctcc		tctcggtgga	atgtacgcca	ggcgtattca
25	actgaaagtg cgatatcacc	gtgtcggggt 840	taatcttggt	aacctttatġ	cccgcgatgg
20	ctggatgcca cgtcactgca	gcggcagact 900	gactgtcaac	aacagtctcg	ccacgggggc
30	aaaggtcagg gagcgtcagc	gcgtcacctt 960	aaccggcgac	cataaagcgg	gaggtaac⊂t
35	agccggagag cctcagcctg	atatcgttct 1020	cagcaatgga	acgcttaaca	gcgacaagga-
	accgccggcg ggatgtaacg		tcaacagaat	gaaaaactga	ctgccggc⊂g
40	cttgccgcga ccgcgatatc	aaaacatcac 1140	acaggatacc	gccagccaga	ttaacgcggc
	gtgactgtcg gcagaatctc		gctgacaaca	cagggacaga	taaccgccgg
45	acggccagcg tcatgcggga		gacgcaggac	ggaatattgc	tggcgaaaag
50	ctcaatgccg gacgctcggc		taacagtggc	gccgttcagg	gagctaccct

# WO 2005/097823 PCT/EP2005/003972 274/370

	agtacaacgc catgaatacc	tcagcaacag 1380	tggctccctg	ctcagtggcg	gtcccctgac
5	cgcgacttta catggccagt	cccagagcgg 1440	ccgcactggc	gcgaagggca	aagtggatat
	gggaaactga ggcgcaggat	ccagtacagg 1500	tttgctggtg	acgatgcact	tggtgctgaa
10	gtgacacaga gacgagetec	acggtgtgct 1560	gtccggcggc	aaagggctga	cggtcagtgc
1.5	ggtaaaaaat aacagtggcg	cggtcaccca 1620	cagcgatgct	gcgatgacgc	tgaatgtgac
15	ctggacgggg actgagtacc	aaaccagtgc 1680	cggtgacacc	ctccgggttc	aggcagacaa
20	gcagcgggcg agatgcacgt		gagcggcaaa	aatctcagca	tcaacgccag
	cttgcaggta aaagctcacc	cgcaggcagc 1800	acaacagacc	atggtggtga	acgccagtga
25	cacageggga gaceageage	aaagcagtgc 1860	cccgtcgctc	agcctcagtg	cgccggaact
20	ggcgtacttg cagcggtctg	ttggttccgc 1920	cctgaataca	cagtcacaga	ccctgaccaa
30	ttgcaggggg gcagaacggc	aggcctcact 1980	caccgttaac	acacagaggc	ttgataatca
35	acgctgtaca cagcgggctt		cctgacgctg	gatataccgg	acatccgcaa
	atcaccggtg gggaaaaatc	ataatggttt 2100	aatgttaaat	gctgtctccc	tcagcaatcc
.40	atcgctgaca gttgcagggc	cgctgagcgt 2160	cagggcgacc	acgctggatg	gtgacggcct
	gccggtgcac acgctggctg		tggcgacacc	ctctcacagg	gtagtcacgg
45	acggcggacg cacgcaggga	acctctccct 2280	ccggggcaaa	acactgaata	ccgcagggac
50	cagaatatca ggcaaccggt		ggacagatgg	gcgaacagtg	gttcćgtgct

# WO 2005/097823 PCT/EP2005/003972 275/370

	aaccttactg gagccagggt	cttcggcaac 2400	cggtcagttg	accagtaccg	gcgatatcat
5	gacaccacgc ggccggcacg		caccacggac	aaccggggca	gtctgctttc
	ctctcccttg ccatgtcacg	atggaaattc 2520	actggataac	cgcggcactg	tccagggtaa
10	attcgccaga actgacgctt	acagtgtcac 2580	caacagtggc	acgctcaccg	ggatcgccgc
15	gccgcccgta attgctgacc		tcaacctgcg	ctgatgaata	acggaggttc
10	agcggcgatc gcagggcaaa	tgacaatcac 2700	cgcaggcagt	attaccagtt	ccggacactg
20	cgggtgctga ggctgacagc	tcaccgcaga 2760	cagtctggca	aacagcgggg	cgatccaggc
	ctgactgcac cacctcgaac	gtctgacggg 2820	tgagctcgtc	agcacagcgg	gcagcaaagt
25	ggtgaaatgg tgcaaaaaat	cgctcagtgc 2880	actgaattta	agcaacagcg	gacaatggat
30	ctgaccctga ggatactctc		actgaccagt	gcgggtgaca	tcaccggtgt
	acgctcacgg cagtgcaggt	tgaatcagac 3000	gctgaacaat	caggcgaacg	gaaaactgct
35	gtgctgacgc aaatgtcacc	tgaaggcaga 3060	cagtgtcaca	aacgacgggc	aattacaggg
	accatcacgg gctgacgctg		cacaaacggc	gggcatctgc	agggcgaaac
40	acagectecg gaatgeactg		caaccgttcc	ggtggtgttc	tgatgagccg
45	aatgtcagta cggggtttcc		gagtaaccag	agcacgatac	agggtggagg
	ctgaacgcca taacctcacg		gcagaacgac	ggcaaaatcc	tctccggcag
50	ctgacggcgc caccctgctg		gaacaccggc	agcggactgg	tacaggctgc

# WO 2005/097823 PCT/EP2005/003972 276/370

	ctggatgtgg tgacgttaaa	tgaatactgt 3420	caacggcgga	cgcgtacttg	ccaccggcag
5	ggaaccacgc ttaccacaca	tgaataatac 3480	cggtacgctt	cagggtgcga	ctctggtgaa
	ttcagcagcg ttcactgctg	gtaccctgct 3540	gggaacctcc	gggcttggcg	tcaagggcag
10 .	caaaatggta tcaggacttc	cagggcggct 3600	gtacagtgca	ggcaacctgc	tgcttgacgc
1.5	agtggtcagg tgctgccctc	ggcaggtggt 3660	ggccaccggt	gatgtcacac	tgaaactgat
15	acgaatcatg aaatgccatc	gtaccctggc 3720	cgcagggaaa	accettteeg	tcacgtcgca
20	accaacggcg ggcattcacc	gtgtcatgca 3780	gggtgatgcc	atggtgctcg	: gtgccggaga
	aacaatggac tcttttcctt	tgactgccgg 3840	taaaggcaac	agtgttttca	gcgcacagcg
25	aacgcaccgg gagtgatatc	gttcacttca 3900	gggcggtggc	gatgtgagtc	tgaacagccg
	accatcagtg cggtaccctg	gttttaccgg 3960	cacggcaggc	agtctgacaa	tgaatgtggc
30	ctgaacagtg ccgtctgcat	cgctgattta 4020	tgcggggaat	aacctgaagc	tgtttacaga
35	aaccagcatg tgcttccggc	gtgatatcct 4080	ggccggcaac	agtctgtggg	tacagaagga
	ggtgcaaaca gggcgatatt	cagagattat 4140	caataattcc	gggaatattg	agacgcatca
40	gttgtaagaa aacaacaacc	ccgggcatct 4200	tctgaaccag	cgggagggat	tttctgccac
15	cggactaacc tcccctttcc	cctcatccat 4260	tcagggaatg	ggaaatgctc	tggttgatat
45	cttcttcctg gcacggtacg	acggcagcta 4320	tggctatttc	acccgtgaag	ttgaaaatca
50	ccctgcaacg ttacgcgccg	ggcacggggc 4380	atgcaatatc	acaatggata	cgctttatta

# WO 2005/097823 PCT/EP2005/003972 277/370

	tttgctgaca agtaaccggt	gtgccacaca 4440	gcgctttctc	agcagccaga	acatcacaac
5	gctgataatc ggctgaacga	cggcaggccg 4500	cattgcgtca	gggcgtaatc	tttctgctga
	ctggaaaacc gggcagagag	gggcgtcatt 4560	tatcctggcg	aatggggata	tegeactete
10	ttaagcaatc ccgctacgac	agagctggca 4620	gacggggaca	gagaatgaat	atctggtata
. 1.5	ccgaaaacgt cctgctgtca	tttacggtag 4680	ctatgcaaca	ggctctctgg	ataaactgcc
15	ccggaatttg agattacacg	aaaacaatac 4740	catcagattt	tcactggatg	gccgggaaaa
20	cccggtaaga ccgttttacc	cgtattattc 4800	cgttattcag	gcgggcgggg	atgttaagac
	agcagtatca ggtggtctct	ataacggaac 4860	aaccactgca	catgcaggta	gtgtcagtcc
25	gcacctgtac acagacagcg	tgaatacgtt 4920	aagtcagcag	accggcggag	acagtctgac
20	ctgcagcagt actggcaggt	atgagccggt 4980	ggtggttggc	tctccgcaat	ggcacgatga
30	gccctgaaaa cagtgatgac	atattgccgg 5040	aggttcgcca	ctgaccggtc	agaccggtat
35	tggccactgc ggacagtccg	cttccggcaa 5100	caatggatac	ctggttccgt	ccacggaccc
	tatctgatta ccatttgttt	cggtgaaccc 5160	gaaactggat	ggtctcggac	aggtggacag
40	gccggactgt aacggctccg	atgagcttct 5220	tggagcgaag	ccgggtcagg	cgccacgtga
	tcgtataccg cctcgggctg	atgaaaaaca 5280	gtttctgggc	tcatcgtatt	ttcttgaccg
45	aaaccggaaa gtatgtcagt	aagattatcg 5340	tttcctgggg	gatgcggtct	ttgatacccg
50	aacgcggtgc agacacggaa	tgagccggac 5400	gggttcacgt	tatctcaacg	gactgggttc

# WO 2005/097823 PCT/EP2005/003972 278/370

	cagatgcggt attagagttt	atctgatgga 5460	taacgcggcc	agacaacaga	aaggactggg
5	ggtgtggcgc gtggtgggag	tgacagctga 5520	acagattgct	cagcttgacg	gcagcatact
	tcagtcacca gccggaagat	tcaacggaca 5580	aacagtcatg	gtcccgaaac	tgtatctgtc
10	atcaccctgc gggcggcaat	ataacggcag 5640	cgttatcagc	gggaacaacg	tgcaacttgc
15	atcaccaaca cagttccggc	gcggcggcag 5700	catcaacgca	cagaacgacc	tctcgctcga
15	tatatcgaca cctgagcgcc	acctgaatgc 5760	ggggctgata	agcgcgggcg	gtagcctgga
20	atcggggata actggaaagc	tcagcaatat 5820	cagctcagtc	atcagcggta	aaaccgtaca
	gtgagtggca cagtgacagc	acatcagcaa 5880	tatcacccgg	cgtcagcaat	ggaatgcggg
25	caatatggtg cattaaaggc	gtgtgcatct 5940	cageggtaeg	gacaccggtc	cggttgcgac
	actgattcac aacggtctcg	tttcgctgga 6000	tgcagggaaa	aacattgata	ttaccggggc
30	tccggtggag aaacctgata	accttggaat 6060	gtctgcgggt	aatgatatca	acattgccgc
35	agtgggagca atcatccacc	aaagtcagtc 6120	cggtttctgg	cacactgatg	acaacagttc
	acctcacagg aggccataat	gcagcagcat 6180	cagcgccggc	ggtaacctgg	cgatggctgc
40	ctggatgtca ttgcaggtca	cggcatcctc 6240	tgtttctgcc	gggcacagcg	ccctgctttc
	cgacctagtc caggtcagaa	ttgaatgcag 6300	tcagggaaaa	gcaaaaacaa	gtcgcaacgg
45	agtcatgaaa cctccttgtt	gccacgcagc 636.0	tgtgtccacg	gtgacagcgg	gcgataactt
50 [°]	gccggtcgtg cgtggtcatc	atattgccag 6420	tcaggdtgcc	ggtatggctg	cggaaaataa

# WO 2005/097823 PCT/EP2005/003972 279/370

		-		e e	
	cggggcggac cagctatacg	gtgatgtgaa 6480	cctggtggca	gagtctgccg	gcgcaggcga
5	tcgaagaaaa aatcgccagc	agaaagagat 6540	taacgagaca	gtccgtcagc	agggaacgga
	ggtggtgaca atccgttacc	ccaccgtcaa 6600	cgcaggacgg	gatatcaccg	ctgttgcgtc
10	gcaaccggca ggcgacagaa	atatcagcgt 6660	gaatgccggt	cgtgatgttg	ccctgaccac
1.5	agtgactatc taagaaaacc	actatctgga 6720	aacgaagaaa	aaaagcggag	gttttctcag
15	acccgcacca gtcggggaac	tcagtgagga 6780	cagtgccacc	cgtgaagcag	gctccctgct
20	cgcgtgaccg ggtggctgac	ttaacgccgg 6840	tgataacctg	acggtagagg	gttcggatgt
	cgggatgtgt cagtacagat	cactggcggc 6900	gggtaaccat	gttgatgttc ,	ttgctgccac
25	acgtcctggc cggtattggt	gctttaagga 6960	aacgaagaaa	tccggtctga	tgggtaccgg
30	ttcaccattg aacgcagagt	gcagcagtaá 7020	gacaacgcac	gaccggcgcg	aggccgggac
30	cagagtgcca gggcaaacag	gcaccatcgg 7080	ctccactgcc	ggtaatgtca	gtattaccgc
35	gctcatatca cggtgacagt	gcggttcgga 7140	tgtgattgcg	aaccgggata	tcagcattac
. *	gtggtggttg gcagaagaaa	acccggggca 7200	tgaccgtcgt	actgtggacg	aaaaatttga
40	agcgggctga tgcggttacc	cggttgccct 7260	ttccggcacg	gtgggcagtg	ccatcaataa
45	agtgcacagg ggccacaaag	agacgaagga 7320	gagcagtgac	agccgtctga	aagccctgca
<b>-T</b> -J	acagcgctgt aaccggtgac	ctggtgtgca 7380	ggccggacag	gctgcgacaa	tggcctccgc
50	ccgaatgcgg acaacattct	gagtcagcct 7440	gtcgctcacc	acccagaaat	cgaaatcaca

	VV 0 2003/05/	023	280/37	0	T C 1/E1 2005/0055/72
-	gaaagtgaca tgttgtcgca	cagtatccgg 7500	cagtacgctg	aatgccggga	ataatctgtc
5	accggcaaaa ccagcttaag		taaccgcgga	gatattgtga	ttgcaggaag
•	gccggtggta cgccgcaaac	acacaagcct 7620	ggatgccgcg	aatgatattc	tgttgagtgg
10	acacaaaaaa cagtatcggt	caacgggcag 7680	gaacagcagc	agtggcggtg	gcgtgggtgt
15	gcaggtaaag aggcagggag		cagcgccttt	gccagcgtta	atgcggcaaa
13	aaaggtaacg ggatacggta	gtactactac 7800	cgacaaaacc	gtcaccatca	acagtggtcg
20	ctgaacggtg cgacctgctg		cggcaacagg	attatcgccg	atgtgggcca
	ataagcagcc ggctgccggc	agcaggacac 7920 .	cagtaagtac	gacagtaaac	agaccagcgt
25	ggcagtttta ccgggataag		catgaccggc	tcaggttaca	tegetgeete
30	atgaagagcc ggtgatggtg		cgttgctgaa	caaaccggaa	tgtttgcccg
	gcttcgacat gcctcactgc	cacagtgggt 8100	aaacataccc	aactggatgg	tgcggtcatt
35	cacaccggag acaacgaagc	aaaaaccacc 8160	tggataccgg	acgctgggtt	tagtgacttt
	gggattataa 8198	agtcaagtca	caggtggaat	cagtctga	
40					
	<210> 110 <400> 110	<211> 963	<212> DNA	<213> Esch	nerichia coli
45		_	atttatatta	acgttattct	ctggcaacgt
70	actgtagaat tgcagatgtc	taggttttga 120	aaatgagcaa	tataattatg	cttatcgttc
50	ttcatgccgt		taatttcaac	cctgttactg	attctgcttt

50

gaatgtgtca

	281/370	0
	201/0/	v

ct cacctata tgtatcagga tcaatatggg aaaaaacata aaaaaacatc tgaggacaga 240 tt taaaacca atcgcgatcg catagagctc tatcttaaag gttatacttt 5 300 aaatagggga gcatattctt tttctccttc cgcaggtttc cgttatgagt catgggatgt aaactacgat 360 10 aa toogaaaa agcaggataa gtggaaactg gaactacgot tttatootaa tatgacttat 420 aa actcaatg accagttaag cctatatatg aatggttttg ttgcccctgt atttttaaa 480 15 acacaacaag agtcgagaaa agataacaat tatgtaaagg gtaagttagg qqcqaaacqt .540 1:0 · tataacaacg attattatca ggaactccag attctgggtg tcagatataa 20 atttaataat 600 gataatacgc tctgggcatc agtctataat gaaagaaaat ataatcaaca tt cctcaaaa 660 25 tatgatcgct ggcaattgcg tggaggctat gattttaaag ttacaqagga gtttgttttg 720 agtccattca taagatatga cctctcttat agagaaaaaa acctcgaaag ca caaqtaat 780 30 aa tggtttat caaaaaataa taaagaaatt cgaactggag ccagcttttc 840 ctataaaatt at cccttctg taaaactggt aggagaaata tacaggcaaa caaccaacat 35 tgaaaactat 900 tatggagagc attctgaaga caaaaaccgc atgttctaca aacttggtat aaacaaaca 960 40 ttt 963 <210> 111 <211> 1761 <212> DNA <213> Escherichia coli 45 <4 0 0> 111 at gcagcacc ggcagaaaaa cattetgacg aaaacgtccc ttttatcccg tgcgttgtct 60 qt ccctqtt gtgatatgtt ccggcqcgqc tctccgtgga tatqctatct

50

ctccctctcc

# WO 2005/097823 PCT/EP2005/003972 282/370

	•				
	gttttttctg gtctccgggt	gttgtttcat 180	cccgcattt	tcgtctccgg	cagccatgct
5	gaccgcagtg gcgtcagcgt	caattcagca 240	gcaacagcag · .	cagttgctgg	atgaaaacca
	gatgcgctgg cggtactgaa	agegeeeget 300	gaccatcacg	ccgtctccgg	aaacgtctgc
10	ggtccctgct gacgtctgca	ttacggtgtc 360	aagcattgtt	gtcagtgggg	ccacccgact
1.5	gaaaccgaca gctgaccgcg	gactggtgcc 420	gtgggtgaat	cagtgtctga	atatcacggg
15	gtcacggatg ccgggccttt	ccgtgacgga 480	cggctatata	cgccggggat	atat caccag
20	ctgacagagc aggcaggctg		agggggcgta	ctgcacataa	cggtcatgga
	cagcáaatcc ggttttcccg	gggcggaagg 600	cgctgacctt	cctgcccgca	ccctgaagat
25	ggaatggagg gcagattaat	ggaaggttct 660	gaacctgcgg	gatattgagc	aggggatgga
20	cgtctgcgta gggatggtcg	cggagccggt 720	acagattgaa	atatcgcccg	gtgaccgtga
30	gtggtgacac catcgacaac	tgacggcatt 780	gccggaatgg	cctgtcacag	ggagcgtggg
35	agcgggcaga taataatcct		tacggggcag	ttaaatggtg	tcctttcctt
	ctggggctgg ttcggtgtca	ctgacaactg	gtttgtcagc	gggggacgga	gcagtgactt
40	Catgatgcga Cctggtggat	ģgaattttgc 960	cgccggtgtc	agtctgccgt	atggctatac
. ~	tacacgtatt gcggtggcgt	catggagtga 1020	ctacctcagc	accattgata	accggggctg
45	tccacgggag ccgtaacggg	acctgcagac 1080	tcaccggctg	ggactgtcgc	atgtcctgtt
50	gacatgaaga ttatctggat	cagcactgac 1140	cggaggtctg	cagcaccgca	ttattcacaa

283/370

	gatgttctgc gctgaatcac	ttcagggcag 1200	cagccgtaaa	ctcacttcat	tttctgtcgg
5	acccacaagt ggggatgccc	ttctgggggg 1260	ggtcggaaca	ctgaatccgg	tattcacacg
	tggttcggcg tcagttccgg	cagaaagcga 1320	ccacgggaaa	aggggagacc	tgcccgtaaa
10	aaatggtcgg gtggctgacc	tgagtgccag 1380	ttttcagcgc	cccgtcacgg	acagggtgtg .
1.5	agcgcttatg gagcctcggg	cccagtggtc 1440	accggaccgt	cttcatggtg	tggaacaact
15	ggtgagagtt cggcggttat	cagtgcgtgg 1500	ctttaaggat	cagtatatct	ccggtaataa
20	ctgcggaatg tgtccgtgca	agctgtcctg 1560	gtctctgttc	tccctgccat	atgtgggaac
	gtggctgcac ctcgtccggc	tggacggcgg	ctggctgcac	tctgacagcg	atgacccgta
25	acgctgtggg cggttcgttc	gtgctgctgc 1680	cgggctcagc	accaccagtg	gccatgtttc
20	actgccggac cacggtttac	tgcctctggt 1740	ttacccggac	tggcttgccc	ctgaccatct
30	tggcgcgttg 1761	ccgtcgcgtt	t	. ,	
35	<210> 112 <400> 112	<211> 2220	<212> DNA	A <213> Esc	cherichia coli
		acacactatt 60	actgactgtt	ctttttctga	atttgatttg
40	tttgctcaaa cttttcatcg	actggcaggt	ggcgacgttt	ggtcagtcta	cggatctcaa
45	ctgatagatt caataatttt	cggccaagat 180	cggacggaat	aatgcctggc	ttgcaggaaa
	cttgaagctg ccgtggggga	gaaaatttta 240	cactttacca	acagattttt	ttattgaaag
50	aaaattgcta ggttactcag	actcccatga 300	cggtatgacc	gtcttttata	ctattgttcc

	WO 2005/097	7823			PCT/EP200
			284/37		
	acattccgac gaatggaaaa	tggaggctga 360	tttgac atta	gaacagattg	gtccggaggt
5	tcaccagcgg tcctcagcga	gacaggaggg 420	agctggattg	tttgtcagag	atattatcgg
	caggaacctc attgatgaat	agtcagctgg 480	aacaga agaa	tatccccágg	cctctaatat
10	gcctttatta aattgttcgt		aaagaa tgat	aacttagtac	agattacttc
1.5	gaaggagtaa gccgatcatt	taaaaacatg 600	gggtaatgaa	ggtattacaa	ttaagaaaca
15	gagaatataa actaccagag	actttacgca 660	aaaaagaaat	attcatatga	cgatcgagcg
20	aagttcatcc gcaattttct	tgaccgcttt 720	tgataccgat	cgtaaagaaa	atcagtcatg
	gattactcag tttttttgcc		tcaactggat	aataatagtt	tagctattgg
25	gcacgaaatg gccactggtt	cgaaactaag 840	ggtgaaaaat	gcatcattta	aaccgggcaa
	gattacaaac ccctgaactt	aattaacttc 900	acgtcaattc	agtcgtgtcc	ggcataaagc
· 30	tttcttgctt tttggccaat	cacctcaatc 960	cgttgtaaga	aactcaacaa	ctcttcaatt
35	caggctggaa ggcgggtgaa	tagtcagtat 1020	tgataa <b>t</b> gat	aagcagacta	agcaggtgca
,	ctggtacagt caactttaac	ttccagttac 1080	tttgcaaaaa	aaacataatg	acttcaccgt
40	gttgatggga aaacctgact	atatatcaaa 1140	aaaagctata	cgcatagagc	aggttaaatc
	gatccttatg cagcaaaaat	agatttacgt 1200	atgtagtgat	tgtcgacagg	gggccagagg
45	gaccctgtag tatatacctt	atttacagac 1260	agccgtaaaa	tttgtcgcac	ccggcggtaa

aacgatggtc aatatcatgg aattacctta gatcgggaat taagtggaat acctggcaag 1320

tataaaacaa	tttctgccat	taatccacat	aaagccattt	ttataaacaa
gacattcaat	1380			

ctggatgcaa gttactggca tctaaaatcc gtggtctttg acggcaatgt 5 ggataatgga 1440

aataataaac cagcatattt gcgtatagct ggtagctata atattattga 1500 gcatgtgata

10 gccagaaata atgatgatac gggaatttct atttcagcga aagataaaaa ccgttttttc 1560

tggccagctc ataacttagt tttaaactca gattcatata ataatcttga tttatccqqq 1620

15

attaatgccg atggttttgc tgcaaaatta ggtgtcggac cgggaaacat ttttcgagga 1680

tgcattgcac ataataatgc agatgatggt tgggacctat ttaacaaaat 20 tgaagatggt 1740

ccaaatgcat ctgttactat tgagaattct gtagcctatg aaaatggcct gccatacaat 1800

. 25 aaageggata teetaaaagg gagtattgge aatggeggtg aaggteaace caqtaaatca 1860

caagttatta attccattgc tattaataat aatatggatg gattcactga taattttaat 1920

30

actgggtcat tgatagttag aaataatata gcaatgaaca atgcacgcta taattatatt. 1980

ttaagaacta acccatataa attcccatca tctatccttt ttgataataa 35 ttattcaatc 2040

agagatgatt gggaaaataa aataaaagac ttcttaggtg atacagttaa cagtgtgaat 2100

40 tataaattgc ttgtttcaca tgaaacagga ccggtacaaa aagatttatt tttcacacga 2160

gatgatagtg gaaatattat ctatcctgat ttttttctta atatcattaa taaatttaat 2220

45

113 <211> 408 <212> DNA <213> <210> Escherichia coli <400> 113

atgaaaactt ttatcaaaac tttactcgtt gctgtaacta ttctgttctc 50 tgtcttcgct

acggcgaaac	aagtaaaact	gccaaacaac	atcaaatacg	ttaatactac
agaggcgttt	120			

- tcctgtactg agattgacgg tatgaattgc cagacgaaga atccgtttaa 5 ctataaagat 180
  - aacagctatg ttttcgtgct tgaacgtggt ggtgcctggt gttacgacta cactgtctcg 240
- 10 gtacttaacc tgaaaaccgg gaaagcacag atgctcgaat acaaagacaa ccagctgtgc 300
  - tcaggtagca acaaaccgtt cttcgaaatc aaaaatggcg taccgacggt aggagtcatc 360
- gacacatccg gaaaacctgt cgttgtggct ctggacaaac ttaaaacc 408
- 20 <210> 114 <211> 675 <212> DNA <213> Escherichia coli <400> 114 atgcaattac ctgtaaagtt attaatgagc cttatatctc tggtcagcgt tattgcacgt 60
- 25 gccgggaaat ataaaaatta catccgggat gaaataaaat actggcgata tacatcatac 120
  - aaggggggg aatttccgga aggtttcact gatgagaaat tttccagcgc catttacaac 180
- 30 ggaagaatat ttacaatgaa acgtttacat accctgatgt tatttctggc ggttctgttt 240
- actggcttta acgtggaagc agcgagcgtg aaacaagcgc tcagctgcga cccaaacgcc 300
  - cgggctgaac aacctggagc gtgtccaaca acgtacgagt tgtacgaagg tgacgctgcc 360
- 40 tacaaagctg cgcttgacaa agcattaaaa ccggtcggac tgagcggcat gttcggtaaa 420

- ggcgggtata tggatggccc tggcggaaac gtaacgccag taaccættaa cggtacagtc 480
- tggctccagg gcgacggttg caaagccaat acctgcggct gggactttat cgtaacactc 540
- tataacccaa aaacccatga agtcgttggc taccgctact ttggtttaga 50 tgacccggcc 600

tacctggttt ggttcggcga aattggcgtg catgaattcg cgtatctggt gaaaaactac 660

gtagctgcgg ttaac 5 675

15

30

45

<210> 115 <211> 2163 <212> DNA <213> Escherichia coli <400> 115

10 atgaaaactc aaataacttt cgctgcgctt ttgccagcat tagcgtcttt cataccgctt 60

catgctcatg cctcgtctac ttctgaagat gaaatgattg tcacgggcaa caccgccgcc 120

gacaccaccg attctgccgc cggtgccggt ttcaaaacga acgatataga tgtcggccg 180

ctgggaacga aatcctggat cgaaacacca tattccagca ccactgttac 20 taaagagatg 240

attgaaaatc agcaggcgca aagcgtcagc gagatgctga aatactctcc cagtacgcaa 300

25 atgcaggcgc gcggtggaat ggatgtcggg cgtccgcaaa gtcgggggat gcagggcagc 360

gtggtggcca acagccgtct ggacgggctg aatatcgttt caacaaccgc gtttccggtg 420

gaaatgcttg agcgcatgga tgtgcttaac agtttgaccg gcgcgctgta cggcccggcg 480

agcccagcag ggcagtttaa tttcgtggcg aagcgcccaa ccgaagagac 35 qctqcgtaaa 540

gtgacgctgg gctatcaaag ccgcagtgcg tttaccggcc atgccgatct gggtggccat 600

40 tttgatgaaa acaaacggtt tggctatcgc gtgaacctgc ttgatcagga agggaaggc 660

aatgtggatg acagcacgct gcgtcgcaaa ctcgtttccg ttgcgctcga ctggaatatt 720

cagccgggca ctcagctaca gctcgacgcc agccattacg aatttatcca gaaaggctat 780

gtcggtagct ttaactatgg gccgaacgtc aaactgccgt ctgcgccgaa 50 tccgaaggac 840

WO 2005/097823			<b>288</b> /3	PCT/EP	
	aaaaatctgg cagcactcgc	cgctcagcac 900	tgcgggcaac	gacctcacta	ccgataccat
5	ctgatccact gcagcaggct	actttaacga 960	cgactggtcc	atgaacgctg	gcgtgggctg
	gaccgcgcga tatctctcgt	tgcgtagtgt 1020	ttccagtaaa	atactcaaca	atcagggcga
10	tcgatgaagg cgccgggctg	attccaccgc 1080	tgccggacgt	tttcgcgtcc	tgagcaacac
15	aatggtcata cacgggatat	ttgataccgg 1140	ctctatcggc	cacgatctgt	cactttctac
10	gtctggtcgc tacaacaaat	tttatagtgc 1200	caaaggaacá	ggttccagct	atagctgggg
20	atgtatcacc cggcgggccg	cggatgcgat 1260	agatgagcag	ggcgatggca	aaatccgcac
	cgataccgct ggtgacattt	ccagcgtaaa 1320	tactcagcag	agcgttacgc	tcggcgatac
25	acgccgcagt taaaaactac	ggtcggcaat 1380	gttctatctc	agccagagct	ggctgcagac
30	gataagcacg gaacgccgcg	gtaatcaaac 1440	gaaccaggtt	gatgaaaatg	gtttaagtcc
	ctgatgtata ttcgctggag	aaattacccc 1500	taacacaatg	gcctacgtta	gctatgccga
35	cagggcggta gctaaacccg	ccgcaccgac	ggatgagagc	gtaaaaaatg	ccggtcaaac
,	tatcgcagca gaatctaggc	agcagtatga 1620	agtggggcta	aaatcggaca	tcggcgagat
40	gccgcgctgt cgtgtataaa	tccgactgga 1680	acgtccgttt	gcctatcttg	atacggataa
	gagcagggta tgtgtggcag	accaggttaa 1740	caacggcctt	gagttaaccg	ctgccgggaa
45	gggctgaata tacggcgaat	tttacagcgg 1800	cgtgaccttc	ctcgacccga	aactgaaaga

gcctcaacca gcaataaaca ggttgtcggc gtgccgaaag tgcaggccaa tctgttggcg 1860

50 tctgttggcg

			289/37	70	
	gaatacagtt ttatacgggc		accggaatgg	gtttacagcg	ctaacgtcca
5	aaacgcgcgg atgggat <u>t</u> tg		caacacctct	tacgccagca	gctataccac
	ggaacgcgtt ggtggtaaac		agtgagcaac	gtcccaacca	ctttccgcgt
10	aacgtgtttg tggcgataac		ctgggcttct	atcttcccat	cgggtaccga
15	ggttccccaa caccttcgat		cggcggcggc	cgcgaagtgc	gtgcatccgt
•	ttc 2163				
20	<210> 116 <400> 116	<211> 200	7 <212> DNA	A <213> Esc	cherichia coli
		taacgctgtg 60	gcagcgttta	agacaggtca	gtatcagtac
25	tgcgcatttc tctgtattca	tgatgggggc 120	acttctgacc	ctgattgtca	gtagtgtcag
	tagcatgaac	aaaaataaaa			
30	ccgtattcac		aattcgttac	tcgctggata	agtattttcc
30	ccgtattcac	180	-	tcgctggata ctggtggtag	
30	ccgtattcac tctgctttcc tgaatttttg	180 ttattgaagg 240	gaacctgaat	2 22	accagctaaa
	ccgtattcac tctgctttcc tgaatttttg caggctccca gcatctcgac	180 ttattgaagg 240 acaccacggt 300	gaacctgaat gcgattgcaa	ctggtggtag	accagctaaa agattattca

ttgcaggaca gtcgatcact gttatccgag ttggatcgtg cgctttacaa catgtttta 420

ctacgggaaa aggtgagtga gctatcagcg cggattgact ggttacacga tgattttact 480

accgagctta attctttagt gcaggatttc acctggcagc agggaacgct gctggatcaa 540

atcgcctccc gacagggcga tacggcgcaa tacctgaagc gatctcgtga

50

agtgcaaaat 600

## WO 2005/097823 PCT/EP2005/003972 290/370

	gaacagcagc cgatctgcgt	aggtttatac 660	cctggcacgc	attgaaaatc	agattgttga
5	gacagactca aactcatctc	atgagctcaa 720	atcaggacgt .	gatgacgaca	tacaggtgga
	cgttattttg ggatgactgg	aaaatctgaa 780	aaaaacggca	gatgaaaata	tacgtatgct
10	cctggcacca aatcgtaaaa	ttaccctgag 840	gcagaccatc	gatgaattgc	tggatatggg
15	aacaaaatgc agaggatgcc	cggatacgat 900	gcgtgaatat	gtcgccgccc	aaaaagcctt
13	agtcgcacca gcagcttggc	gggaagcgac 960	acagggtcgc	ttcagaacgt	tactggaagc
20	agtactcatc tcacgttagc	aacaaatgca 1020	gatgtttaat	caacgaatgg	aacaaattgt
	ggtgggctga attcaaccat	tcctggtggc 1080	gacagcactg	gcgttactgc	ttgcatgggt
25	tattttatcc cgttgtgcaa	gctcacggtt 1140	ggtgaaacgc	tttaccctac	tgaatcaggc
20	attggtctgg actggggaga	gaggcacgga 1200	aacgactatt	ccagtttatg	ggaatgatga
30⊧	attgcaggat gcaacttgaa	<del>-</del>	tactctcggc	caactcaatg	tgcaaaaaca
35	caagaaatta ggacgaactg		ggtgatagaa	gccgatctgc	gtgccaccca
	attcagacag ccacgagatc	caaagttggc 1380	ggtagtcggg	caaacgatga	ccacgctggc
40	aatcagccgc cattgaacag	taaatgcgct 1440	gtcaatgtat	ctgtttacag	cccgcagggc
4.5	acccagaaag tagtcgtatt	aacaggccag 1500	catgatgctt	ggtaaagccg	aaggggtgat
45	gacgccatta aacatcactc	tccgttcact 1560	acggcagttt	acceggegeg	ccgaactgga
50	catgccgttg catgcgtcat	· ·	gatgttcagt	gcggcctggg	aacttctggc

		291/370					
	cgctctctgc aggtgatgag	aagctacgct 1680	tgttctgccg	caaggtacag	ccacagtttc		
5	gtcagaaccc ttgtgggcaa	agcaggtact 1740	ggttaacgta	ctggcgaatg	cgcttgatgt		
	ggcgctgtca attcattggc		ctggcaaatg	cagggtaaaa	cgctgaacgt		
10	gataatggcc gtttaccacc	cgggctggcc 1860	tgaggcattg	ttgccttcgt	tattgaagcc		
15	agtaaagaag ggagcaaatg		tattggtctt	tcaatttgtg	tgtcgttgat		
13	aaaggggaat actgcaattc		atcaacgatg	accaggaatg	cctgtgtggt		
20	agactaacgg 2007	atgtggaaga	tgctaag				
					Ň.		
	<400> 117				cherichia coli		
25	atgaacgtta cggtgcttac	taaaactggc 60	tatcggctca	ggcatattat	tgctcagctg		
30	tcacaatcca attcagtccg	tcagtgaaaa 120	aactaattcc	gacaaaaaag	gagcggcaga		
20	ctcagcgttt aacaggcgcg		gacgaccagt	gagcaggaag	ctctcgagaa		
35	accagttccc gcgtagtatg		caaaaacctg	caatcacttg	acgcaacagt		
	cctggtactt tattcgaggc	atactcaaat 300	agatcctggt	cagggagcaa	tcagtgtgaa		
40	atgagcggat tttttacgga		aaacactatg	gtcgatggta	ttacccagag		
45	acctctacct cgtacttata		gacgcatggt	tcaactaaca	atatggctgg .		
43	gatcctaact ctctgaaggg		agțtgatgtt	acacgcggtg	acagcagtgg		
50	atcaacgccc tgtaatattt	ttgccggtag 540	tgcaaatatg	cgtactattg	gcgttgacga		

	aacggtaata gctgggacgc	catatggcct 600	tcgttcacgt	ttctctgtcg	gtagtaatgg
5	agcggaatga aagcattggc	tcgcccttgg 660	tggaaaaagc	gacgctttta	cggatacggg
	gttatggctg ttctggaatt	ctgtgagcgg 720	cagttctgtg	tactctaatt	tctcaaatgg
10	aacagcaaag ccaactgtat	agtttggtta 780	tgataaatat	atgaagcaʻga	accccaaatc .
15	aaaatggata aacctatgaa	tcagaccaga 840	cgaatttaac	agcttcgaac	tttccgctcg
13	aataaattta tcattacacc	cacgtcgtga 900	tataaccagt	gacgactatt	acattaaata
20	cctttttctg	aattaattga 960	ctttaacgta	acggccagta	ccagtcgcgg
	tatcgtgatg ttctgacgcg	gctcgctgta 1020	tactttctac	aaaacctcag	cgcaaaatcg
25	ctggatatca gtttatgctg	acaataccag 1080	ccggttcact	gtcgcggaca	atgacctgga
30	ggcagcaaac gggcgacccg	tgatgcgtac · 1140	ccgctatgac	cggaccattc	actcagcggc
	aaagcgaatc gcaggatatt	aggaatcgat 1200	cgagaacaat	ccgttcgcac	cctccggcca
35	tcagcgctgt tttcaatctc	ataccgggct 1260	gaaggttacg	cgcggcatct	gggaggcaga
	aactacacac cgttatctgc	gtaacaggat 1320	cacagggtac	aagcccgcct	gcgattcacg
40	gtgccacagg ttcagttcag	gtagctacga 1380	tattgacgat	aaagagggtg	gcttcaaccc
45	ctttctgctc atccatgcgc	aggtaacacc 1440	atggcttcag	ccgttcattg	gctacagcaa
13	gccccgaaca gaacccattc	tccaggagat 1500	gttcttctct	aattcaggag	gcgcatccat
50	ctgaagcctg cagagattta	aacgtgcaga 1560	aacctggcag	gcgggtttta	acattgatac

	293/370				
	ctggtcgaac gatccagaac	aggatgccct 1620	gcgctttaag	gctctggcgt	accgcagcag
5	tacatctaca tctgcctgag	gcgagtctta 1680	tctggtttgt	tctggaggtc	gtaaatgcag
	gtgattggca gtacatctac	atggctggga 1740	gggcattagc	gatgaataca	gcgacaatat
10	gttaactcgg ttatgatgca	caagcgacgt 1800	tatcgcaaag	ggcttcgaac	tggagatgga
15	ggttttgctt aacctccatc	ttggccgact 1860	ctctttcagc	cagcagcaaa	cagaccagcc
,	gccagcaccc catgacgctg	actttggcgc 1920	aggggatata	accgaactgc	ccagaaaata
20	gatactggtg aaaatacaca	ttcgcttctt 1980	cgataacgcg	ttgaccctgg	gcactatcat
	ggcaaggctc cgcaataatc	gtcgcctgtc 2040	gcctgatttt	gagcaggacg	aacataccgg
25	aaacaggatt cgagtacaac	tgccgcagat 2100	cccaacgatt	atcgatctct	atggtactta
30	cgcaacctga ttcggaggcg	cactgaaact 2160	ttcggtacaa	aacctgatga	acagagatta
	ctgaataagc caattccgcg	tcaacatgat 2220	gccaggtctt	ggtgacgaga	cccacccagc ·
35	cgtggcagaa 2259	catggatatt	tggcggggac	attcgtttc	-
	<210> 118 <400> 118	<211> 399	<212> DNA	<213> Esch	merichia coli
40	atgtcttcga tgaaacctct	aaacaaaatg 60	ctggctatgg	atgttactgg	tcatcctttc
45	gcaacatcca gctgctgctg	cacttaaaat 120	gttcgataac	agtgaggga	tgacaaaaac
	gccctaatcg agtaaaagat	tcgtactgta 180	ttgcatttgt	tactactcgc	tttcacgggc

atccccgttg gtctggctta cgccacatgg tccggtactg gcattttgat ggtttcaacc 240

	cttgggattt tatggtcatc	tattttacgg 300	tcaacacccg	gataccgccg	ccattattgg
5	atagccagcg agaggcggaa	gtattatcat 360	tatgaatctg	ttctcaaaaa	tgggcaġtga
	gaaactccag 399	ttaccaacct	cgataaaaaa	atcgctaac	
10		,			
	<210> 119 <400> 119	<211> 858	<212> DNA	<213> Esch	nerichia coli
15	atgtatataa cattggaaac	aaaagcactg 60	gatagcttta	tccattctat	taataccttg
13	gctcaggaaa cattggtcgc	ttaaaattga 120	tgaaagctgg	ttacatcaaa	gcttgaatgt
20	acagactctc tactgtagca	gctttggccc 180	aagactgact	aacgacctct	accctgaata
	ggaagaaaag ctttggcgtc	actggtttga 240	tttttatggt	tatgttgatc	taccgaaatt
25	ggcagtcact ggaaatagaa	atgatgttgg 300	gatctgggat	gagggctcac	cactatttac
20	cctcggtttt atttaaagaa	ccattgacaa 360	attgaccgga	ttaaatcttg	cgttcggccc
30	tggttcattg ccggcaaagt	caaacaacta 420	tgtctatgat	atgggtgaça	accagtcatc
35	acatggtata gctttctgcc	tggggcttgg 480	tacagatatc	gacacgggtc	taccaattaa
	aatatatacg tgaatgggac	ccaagtatca 540	gtggcaaaac	tatggtgccg	ctaatgaaaa
40	ggatatcgat aggacgattg	tcaaaataaa 600	atatagcatc	cctcttacaa	atttattcgg
15	gtatacaata gtcacacaat	gttttactaa 660	ctttgatttt	ggctccgatc	ttgcggacaa
45	aataaacgaa atatgaacac	ccagtaatgc 720	tattgcttca	aġccatatcc	tttcccttct
50	tggaaatttg tgcgggagag	catttacact 780	acgttatttt	cacaacggtg	gacaatggaa

aaggttaact tcggagatgg tccatttgaa ttaaaaaata caggatgggg aacctatact 840

actattggtt atcaattt

*5* 858

<210> 120 <211> 516 <212> DNA <213> Escherichia coli <400> 120

10 atgagaatcg caccgcgtac cttctttgct atttccgccc tggcgtttat tgtcgcctcc 60

ggatttagtt tctggcggtt gtcccctgct gaaaatacag ggattatgag ttgttcaaca 120

15

30

45

aaaggcatca tgcgttttga gaatatggaa aaggagaacg ttaacggtaa tattcacttt 180

aactttggca gccagggtaa aggttcgatg gtgctcgaag gctacacgga ctctgccgct 240

ggctggctgt acctgcaacg ctatgtcaaa tttacctata ccagtaaacg tgtttccgcc 300

25 acggaacgcc attaccgcat cagccagtgg gaatccagcg cctcatcgat agatgaatca 360

ccagatgtga tttttgacta ctttatgcgt gaaatgtctg acagccatga cgggctgttc 420

ctcaacgccc agaagctgaa cgataaagcg attttgctca gttctattaa ttcaccgctt 480

tggatctgta cccttaaatc tggcagcaaa ttagac 35 516

<210> 121 <211> 546 <212> DNA <213> Escherichia coli <400> 121

40 atgaaaataa aagttatagc attggctaca tttgtttctg ctgtgtttgc tggttcagct 60

atggcctatg acggaacaat tacgtttacc ggtaaagttg tagctcagac ctgcacagtt 120

gacaatgctg ctacgtcagg gctgacaccc tttgccattc gtttaactgg 50 ttgtgcaact 240

ggtatgaata	gtgctcagaa	tgttaaagcg	tactttgage	cttcaaqtaa
990009000	9 - 9	- 5 5 - 5		
cattgactta	300			

- gctacacata atttaaaaaaa tactgctact ccaactaaag cggataatgt
  - ttgctaaata gtaatggaac ttcaactatt cttttggggg aagcggataa tgggcaagat 420
- 10 gtccagtctg agacaatcgg atctgatgga agtgccacat tgcgttatat ggcccagtat 480
  - tatgcaacag gacaatctac cgcaggggat gtaaaagcga cggtccatta taccattgcc 540

15 tacgaa 546

30

45

5

acagattcag

360

- 20 <210> 122 <211> 1077 <212> DNA <213> Escherichia coli <400> 122 atgaaagaa tctttttcat accattgttt ttaattttac tccctaagct ggcggtagcg 60
- 25 ggtccggatg attatgtgcc ttcgcagata gcggttaata catccacatt gccaggtgtt 120
  - gtgattggtc ctgctgatgc ccatacctat ccccgggtga taggagagct ggcgggaaca 180

agtaaccagt atgttttaa tggcggtgcc atcgctctga tgcgtggaaa gtttacaccc 240

- gcactgccta aaattggaag tattacggta tactttccat caaggaaaca 35 gcgtgattca 300
  - tctgattttg atatctatga tattggtgta tccggactgg gtattattat tggcatggcg 360
- 40 ggctattggc ccgcaacgcc tctggtcccc ataaatagct caggtatata tattgaccct 420
  - gtaggtgcca atacaaaccc caatacttat aacggtgcga cagcaagctt cggagctcgt 480

ttgtttgttg cttttgtcgc aacgggaaga ttacccaatg gatatataac aatacccacc 540

aggcagcttg gtactatttt gttggaagca aaacgtacaa gtttaaataa 50 taaaggactg 600

	WO 2005/09	7823	297/3	70	PCT/EP2005/003972
			29//3	,	
	acagcacctg atgtaccatg	ttatgttaaa 660	tggtgggcgc	attcaggtac	agagtcagac
5	gggcaaaaaa cacatctttg	actatgtggt 720	gccattaaat	accgtatatc	aatcacagtt
	tataaagaaa tggaattgat	tacagggagg 780	taaaattgac	atacacctac	aatgcccgga
10	gtttatgcta attgacctta	cattgacaga 840	tgcatcacag	ccagtgaaca	gaacagatat
15	agcagtgaat tgatgtaact	ccactgcaaa 900	aggatttggc	atcaggctat	ataaagacag
13	gccatcagct gcacttctcc	atggtgaaga 960	ctccctgtg	aaaggaaatg	gcagtcaatg
20	gattacaggg aaaaattgct	gagaggtaaa 1020	tccacatatc	aatttaagag	ccaattatat
	gatgcaacta 1077	cacctggaag	tgtgaaggct	attgcaacta	ttactttctc atatcaa
25					
23	<400> 123	·		,	cherichia coli
30	atgaacgcta gctttttgct	ataatctgtc 60	atgcctgatt	tactgtcgtt	gttctcttct
	gcattagggt gtttgattct	taacagtaac 120	aaaccattca	tttgctgctg	aagaggctga
35	gagtttttgc tagtcatggt	atttggataa 180	agggataaat	gctattgata	teegeegett
	aaccctgtgc atggaagggg	ctgagggcag 240	gtattattct	gatatttatg	ttaataatgt
40	aaggctgatt atgcctgacg	tgcagtattt 300	acgtactgcc	aataccggtg	ctccgacgtt
45	cctgagetge cacctcctge	tttcattgat 360	tgatttagtc	aaagatacta	tgtcgggaaa
70	tttccggcgt gactttaagg	caacagggct 420	ttcttcagcc	agaattaatt	ttgacttatc

ttgaatatcg aaatccctca ggcactgctg aatacacgtc caagaggata tatttcccct 480

tatttcccct

VV O 2003/07/023	
	298/370

	gctcagtggc ctattaccag	aaagtggtgt 540	tcctgcagca	tttataaact	atgatgctaa
, 5	tatagctctt tggattcaat	ccgggacgag 600	taacgaacag	acttatctgg	gattaaaagc
	ttgtggggat ctatcctgcc	gggctttgcg 660	ccaccgtggc	agtgagagct	ggaataatag
10	ggatatcaga agcacaattc	atatagaaac 720	aagtataatg	catgaccttg	ccccattgag
15	acattagggg gcggggagtc	atttttatac 780	gaatggtgag	ctaatggata	gcctcagttt
15	aggttagcat tcctgctgtc	cggatgaacg 840	aatgttaccc	ggctctttac	gtggctatgc
20	cggggaatag tatcctctat	ctaacagtaa 900	tgctaaagta	accatttatc	aaaatgctca
	gaaacgacgg tggatatgct	tgccagccgg 960	accatttgtc	atcaatgatt	tatatcccag
25	ggtgacette caeggtteet		aacagagtct	aatggccaga	cacgaatgtt
30	tttgcggccg gtcagtggga	ttgctcaact 1080	cattcgtccc	ggatttagtc	gctggcaaat
50	aagtatcgtt ctatcaatac	atgcgaataa 1140	aaçatataat	gatttaatag	cacaaggcac
35	ggcctgacga atatacagcg	_	tttaaacagt	ggtcttacca	cagcttcagg
	gggttagctg cattacattg	gcctggcctt 1260	taatacccct	ctgggtgcta.	tagcatctga
40	tccagaacag gcactcaagt	cattcaggta 1320	ttccggtgta	acgcgtaaag	gttatagtct
45	tatagcatca tcgttattca	atattccagc 1380	ctcaaacaca	aatataactc	tggcggctta
43	tcaaaagatt gtttattgat	tttatcatct 1440	gaaggatgcg	ctatcagcta	atcacaacgc
50	gatgtttctg gatttcaatc	taaaaagtac 1500	agcgttttat	cgtcccagga	atcaattcca

## WO 2005/097823 PCT/EP2005/003972

	aaccaggaat ctataattac	taggtgaaaa 1560	atggggtggg	atgtatttaa	caggaacaac
5	tggggacata ctggaaacaa	aaggaagtcg 1620	taatgaatac	cagattgggt	acagcaactt
	ctcggctatc ccgtgatgac	aaattggatt 1680	gtctcagtca	agagataatg	agcaacaacg
10 .	agattttata ggtgttttcc	ttaattttac 1740	tctccctctg	ggaggaagtg	ttcaaagccc
15	actgttttaa tagtggtact	attatagcaa 1800	agaagagaaa	aatagtattc	agacatcaat
13	ggcggggagg aaacgggcct	ataatcagtt 1860	ctcttatggt	atttcaggaa	acagccagga
20	tccggttatg cacaacagtc	caatgaatgg 1920	gggttatcgt	tcaccttatg	taaatataac
	gggcatgata ggtggtcgca	ctcagaataa 1980	taatcaaagg	tcatttggtg	cgtcgggagc
25	cacccctatg tatccatgct	gagtgacatt 2040	gagtaatgac	ctgagtgata	cttttgccat
30	gaaggagctc tttttgggga		catcaataat	gcctctggta	gtcgtctgga
30	aatggtgttg cgatccctcc	ttccttatgt 2160	tacaccctat	gagaaaaatc	aaattagcat
35	aatttaga tt tcgtgcta at		attatcggcg	acggagcagg	aaatcattcc
	agcgccacgt tgatattcgt	tagtgaaatt 2280	tgacactaaa	acaggaagaa	gtctgttatt
40	atgtctactg tggacagttg	-	tccaatggct	tctgaagttc	tggatgaaca
15	gccggatatg aaaaggtcat		cgggaaggta	tttaccaggg	gactccctga
45	ctcagcgttg tcatgttgca		agataataaa	gacagatgtt	catttgtata
50	cacaataa ag gcacccta at	atgatatgca 2520	atctcagctc	gttcctgttc	tgtgtataca

caggaaaaaa ca 2532

<210> 124 <211> 831 <212> DNA <213> Escherichia coli 5 <400> 124

atggtaaaat gtcatactct gattaaccgt agaaataaat gtctgctgat tgtttttata

10 gtccttattg gatggattat attcagacct aaagcatata cttattcact

gaaaaagaga tgctcataat gttatcacaa catcctgaaa ctcggtactt tggattttat 180

15 tccatagaac ttccggctga ttacaaacca acaggaatgg ttatgttcat acaaggatcg 240

gcgatgatcc ctgtagaaac aaagctacaa tattatcctc cttttctgca 20 atatatgaca 300

cgatatgagg cagaactaaa aaacacctca gcattagatc cactggatac gccttatttg 360 ,

25 aagcaagttc acccactaag tccacctatg aatggagtca tttttgaacg aatqaaaqcq 420

aaatacaccc cagattttgc acqagtattg gatgcatgga aatgggaaaa tggcgttacg 480

30

45

ttttcagtaa aaatagaagc taaagatggt agagcaaccc gctatgatgg aattagtaag 540

attgccgaat acagttatgg atataatatt ccagaaaaaa aagtacagtt 35 acttactatt 600

ctttcaggac tacaacctcg tgcagataac caacccccat cagaaaataa attggcgata 660

40 caatatgcac aggttgacgc ttcactactt ggagagtatg aattatctgt agattataaa 720

aatagcaata atattaaa at aagtttgcag acggataata atagttatat tgactcatta 780

ttagatataa gatatccgag taatggaaac agagcatggt ataactctat a 831

<210> 125 <211> 1098 <212> DNA <213> Escherichia coli 50 <400> 125

301/370

	atgctacctg gttaacagtt	agcctgttta 60	tcgacgctgg	attatattat	taatatctat
5	ggtactctgt ttttatttat	ttattttatc 120	ggtct ggaat	tctgcgacat	actgggatat
	ggcgttctgc gaacaaatat	caatgctgtt 180	tctttggcta	tgtttgtttg	gtattgcgct
10	gaacaatccg taaacaactc	ttgcagcctg 240	tataa gttgg	gagtctgaaa	gacaacaagt
15	tggcaacact tacaccggaa	ggagccaaaa 300	acaactggca	atagttggga	atgttctttt
13	gaaaaaggca tcctaaaaag		actggggcca	caggaagaga	tccctgcata
20	gcacgaccgt tgatattcac	_	atcccgttat	tctctttcgt	ctatattcca
	cagcaactga ctacgtatta	cacaacaatt 480	tcctgattat	cgtcattatc	tacatactat
25	cagcctgaga atgggactta	aatggcgtgg 540	agaaaccgtg	agacaggcta	ttttccatca
30	gtacctgaac aagatttgac		tcttaatcaa	atccagtctc	tttatgatga
30	ggtctaattc agatacgagt		tttacaaaac	tggccggaga	ataaacctga
35	gaactggtat ccagataccc		tatctcctca	tcgtcatttg	tacggcaġca
	gttattgctg gcataatctg		tgtaatgcca	ttagaacccg	aggagttgga
40	gatgtgttat ctgggtctct	ttgaatataa 840	ccaattggat	aacaaacaac	tacagcatgt
45	ggtttagatg tcaatggtca		agaaaacctt	atgcagtatg	ctgaacaaca
43	cttcctaaaa aggagagttt	aacggcccct 960	acacatgatt	gatcattcct	ttggccctac
50	atttttcctg acaaaatcat	tctctctggc 1020	aatgctgtca	gaggctgcca	aagaaactga

ttaattatct atcagtcagc acagtatgct caga aaaaga gcctttgcct 1080 gattacccgg

aagctttatt taaggaca 5 1098

acqaatqqaa

45

<210> 126 <211> 780 <212> DNA <213> Escherichia coli <400> 126

10 atgttgaaca gaaaactaaa tatacggcta cgtcattccc tgaacagtca ctgcatacct 60

tccatcatta tcaataacac cgtacgttca tttcagaggt cagtcatgaa 120 taccagaget

15

ctttttcccc tgctgttcac tgtggcatca ttctccgcct ccgccggcaa ctgggctgtc 180

aaaaacggct ggtgtcagac catgacggaa gatggtcagg cgctggtaat 20 gctgaaaaat 240

ggcacgattg gtattaccgg cctgatgcag ggatgcccga atggtgtaca gacgctcctg 300

25 ggcagccgta tcagtattaa cggtaacctg atccccacat cacaaatgtg 360 taatcagcag

acgggattca gggctgttga ggtggaaatc ggacaggcgc cggaaatggt caaaaaaqcc 420

30 gttcactcca tagcagagcg tgatgtgtcc gttttacagg catttggtgt

480

ttcacccgcg gtgatatgct gaaggtctgt ccgamatttg tcacatcact 35 tgccggtttt 540

tccccgaaac agacgaccac tattaataaa gattccqtcc tqcaqqctqc ccggcaggca 600

40 tacgcccggg aatatgacga ggaaacaaca gaaaccqctq attttqqctc ttacgaagta 660

aaaggcaata aggttgagtt tgaagtattc aatcctgaag accgtgcgta 720 cgacaaagtg

acceptcacege ttegeteetea cegetaatece accepteeca ecepteaatt tatcggaaaa 780

50 <210> 127 <211> 1155 <212> DNA <213> Escherichia coli <400> 127

## WO 2005/097823 PCT/EP2005/003972 303/370

~	gtggtaatta cctgacgtcg	tcaatagcac 60	gatactgagc	ggcgcæggcg	ctatcccttc
5	ctcttacccg gcagctcgac	acatcagaaa 120	aatgctgctg	gtcactgacc	gtaatattgc
	ggtgtgcagc cgttatcgat	agattcgcgc 180	cttactggaa	aagcactgcc	cgcaggttaa
10	aatgtgcccg ccctggcgat	cagagcccac 240	gcatcatgat	gtgcgccagc	taatggatgc
15	gcctcttttg ggcgaagctg	atgtggtggt 300	cgggatcggc	ggtggcagcg	tgttggatgt
13	ctatcggtgc gggtgaaaaa	tttgccatcc 360		gggctggatg	cgctgcttgc
20	ccgactcagc ctcagaagcc	gggtgcaatc 420	atggttgatt	cctacaaccg	ccggaaccgg
	acgccgaatg tatttcccag	cgattctggc 480	aatccctgag	caaagcacga	aggtgggtat
25	gtgctgttac gcccgcgcat	cagactatgt 540	ggcgcttttc	ccggaa.ctga	ccaccagcat
30	attgcggcgt taccgcgacc	ccacgggcat 600	tgatgctctt	tgccacttac	tggagtgttt
30	gtggcaaatc tttccggcac	cggtcagcga 660	taacgcggcg	ctgact gggt	taagtaaact
35	attcaacccg gctgtgggcg	ccgtgaacga 720	tcctcaggat	ctgcgcgcaa	aactggaaat
	tcttactatg tgcgctctcc	gcggcgtagc 780	gataacccat	gcgggcacgc	atctcgttca
40	tacccgttag cttgctggcg	gtggcaaata 840	tcatctgccg	catggcgtcg	cgaatgccat
45	ccgtgcatgg ctgggattgc	cgtttgttcg 900	cccctgggcg	gtcgagaaat	ttgcccgggt
,	attcccgatg ggtgacctgg	cggaaaccgc 960	cctgagcgcg	gaagaa aaat	ctcatgccct
50	ttacaggcat cggcgtaccg	-	actcaagcta	cccaacaatc	tegeggetet

## 304/370

ccaqaqqata ttqcctctct qaqcqaqqcq qcactqaacq tqaaqcqcct 1080 tatqaacaat gtgccgtgcc aaattgatct acaggacgta caggccattt accaaacact 5 gtttccgcaa 1140 catccattta aggag 1155 10 <210> 128 <211> 315 <212> DNA <213> Escherichia coli <400> 128 atgaatatca gaaaactgtt ttgtccggga aacacccccc ggattttatt gtttttattc 60 15 ttttttgttg tttctgcaat aaccacaatt gcatgcggat acactgagaa gaatgcaaca 120 ggaaatgtgc tgcttctgtt tctccttctg ctccttgcac acagaaatac 20 180 cctcacatcc attacaqcqc tqttatttct qttctqttqt qcactqtatq cqcctqccqq tatgacgtac 240 qqtaaaatca acaacagttt tattgtcgcg ttgttgcaga ccacaactga 25 tgaggcagcg 300 gagtttaccg ggatg 315 30 <210> 129 <211> 441 <212> DNA <213> Escherichia coli 35 atttatattc 60 tttctqtcct cggcttttgt ttcttttggg tgttatgcta tttatgaatt gtttttatgg 120 40 aatgatatta ttgtatatag ctggggatat atattaattg tctttt tacc tttcacatta 180 tatgtaatgt cgtttgagat tttgtttttt gctattagtg ggcgacgatt gtctaaagta 240 45 acaatggtgc gcctttggtt gataattaaa attattattg ctttctctat

ttgatttttt cttcaattta caaaaaagaa ttattatcta gaaattatat

4

300

360

ttgcgcagtg

tacttataat

ggtatcccgt ctgggtggat gccgggtctg gcaacgaaat acgttaaaga aaaatcatta 420

tgcgaaaaaa atggcaataa t

5

15

30

45

441

<210> 130 <211> 534 <212> DNA <213> Escherichia coli <400> 130

10 atgtttccta ttcgttttaa acgtccggcg ttgctctgta tggcgatgct gacggttgtt 60

ctgagtggct gcgggctgat tcagaaagtg gtggatgaat cgaaaagcgt ggcctcagcc 120

gttttctaca aacaaatcaa aatactgcat ctcgatttct tctcccgcag cgccctgaat 180

acggatgcgg aagatacgcc gctttccacg atggtgcatg tctggcaact 20 gaaaacccgc 240

gaagattttg acaaggcgga ttacgacacc ctgtttatgc aggaagagaa gacgctggag 300

25 aaggacgtac tggcaaaaca caccgtctgg gtaaaaccgg aaggcacggc atccctgaat 360

gtgccgctgg ataaagagac gcagtttgtc gccattattg ggcagtttta tcaccctgat 420

gaaaaaagcg acagctggcg tctggtgatc aaaagggacg aactggaggc cgacaagccg 480

cgctcgattg aactgatgag aagcgacctg cgactgctgc ctctcaagga taaa 35 534

<210> 131 <211> 627 <212> DNA <213> Escherichia coli <400> 131

40 atgttcttaa aaagaaaatg gtattacgca gtgacgacat ctgtcgtcat tactttgtgt 60

ggtggaggat attatatgta caggcaagaa tatcagatgg ttgtcactgt accaactgct 120

gacgcgaacg atcccaactg gccaaataaa aggatacagt ttgataccag cgaatggcta 180

cagcaacttc aatatattaa aatagatgat cattatatat tgaatactca 50 atatactcca 240

	attgctaatt aaatgggtcg	tggatgactt 300	tggtattaca	ttaaaattac	agaacgcatt
5	gataaaagac atttaaagac	ttcctgcact 360	atatggcctt	gctgagatgg	atgctcagaa
*	ctgatgcgcg ggaaacatta	gtaaaattaa 420	atgtgaatat	ctgaggacga	catttgatgc
10	aagcctgtca gtatgaattt	atgattattt 480	ccttatttct	tttacttata	aagataagtg
15	gagacagaaa ggcatttgat	gaaaaatatc 540	taaaacaagt	gatgatgggt	attttttgtg
13	aatactgtcc ttcctataga	acgaagcagg 600	ctáttggcat	aacacagatc	cggctgcgta
20	gattaccaga 627	atggtaaggc	tgtgaaa		
	•		•		
	<400> 132				cherichia coli
25	atggatattt cagacaatac	ggcggggaca 60	ttcgtttctg	atgacaattt	ccgctaggtt
30	gttttctctc cactttatcc	ttatgtcaat 120	tttattgcag	gaacgaaaaa	tgaatatttt
	aaagcaccgc ggctatcgat	tatacctgtt 180	aatttcacta	tttttaccca	cgatggccat
35	ccacctgaac gtcccctgat	gcgaactttc 240	gcgatttgcc	ctgaaaacga	attaccttca
	gaaggcgtct agcagtcacc	atgaactggc 300	gtttgataat	gccagtaaaa	aggtgtttgc
40	gatcgtgtaa agattcgctg		caataaaggc	tatctgtatt	cgtttaattc
45	aaagtcgaaa aaatcaggat		gatgccatac	cgggcatttt	cgctggcgat
45	aaacatcagc tatgtttgac		acacacccag	tcagcgtccc	tgcgtatcag
50	accccaaccg ggcaaacgct	gcaaactggt 540 .	aagaaccagc	gacaggttaa	gttttaaagc

WO 2005/097823 PCT/EP2005/003972 307/370

gcagattcgc	gttttgagca	ttttcgccat	atggtttaca	gccaggattc
cgataccctg	600			

tttgtgagtt atagcaatat gctgaaaacg gccgagggca tgaagcctct 5 gcataagctg 660

ttaatgctcg acgggacgac gcttgcctta aaaggcgagg ttaaggatgc ttacaaaggt 720

10 acagcgtatg gtctgacgat ggatgaaaaa acacagaaaa tctacgttgg cggaagagat 780

tacatcaacg aaattgatgc gaaaaatcag acgctgctgc gtaccatccc gttgaaagat 840

15
ccgagaccac aaatcacaag tgtgcagaat ctggcggtgg actccgcttc
tgaccgtgcc 900

tttgtggtgg tattcgacca tgacgatcgt tccggtacaa aagatggact 20 ctatattttt 960

gacttacgcg acggtaaaca gcttggctat gtgcacacag gagccggagc taacgcggtg 1020

25 aaatacaatc cgaaatataa cgaactgtat gtcaccaact tcactagcgg caccatcagc 1080

gtagtggatg ccaccaaata cagcatcacc cgtgaattta acatgccggt ctacccaaac 1140

30 cagatggtgt tgtcggacga tatggatacc ctttacattg gcatcaaaga aggctttaac 1200

cgcgattggg atcctgatgt gtttgtggaa ggagctaaag aacgtattct 35 gagcattgat 1260

ttgaaaaagt cg 1272

Met Ala Ile Pro Ala Tyr Leu Trp Leu Lys Asp Asp Gly Gly Ala 45 Asp 1 5 10 15

Ile Lys Gly Ser Val Asp Val Gl<br/>n Gly Arg Glu Gly Ser Ile Glu  $50\,$  Val

20 25 30

308/3

<400> 134

												4				
	Val Gly	Ala	Leu	Asp	His	Asp	Val	Tyr	Ile	Pro	Thr	Asp	Asn	Asn	Thr	
5			35					40					45			
		Leu	Thr	Gly	Thr	Arg	Thr	His	Lys	Pro	Phe	Thr	Phe	Thr	Lys	
10	Glu	50	<i>:</i>				55					60				
		Asp	Ala	Ser	Ser	Pro	Tyr	Leu	Tyr	Lys	Ala	Val	Thr	Thr	Gly	
15	Gln 65				•	70					75				_	80
	m	Τ	T	шь	71 7	<i>C</i> .1	Dha	T	Dh -	M	7)	T]_	7)		70 7	
20	Gly	тeп	Lys	THE	85	GIU	Pne	туз	èue	90	Arg	тте	ASN	Asp		
20					0.5					90					95	
	Gln Val	Glu	Val	Glu	Tyr	Phe	Asn	Ile	Thr	Leu	Asp	Asn	Val	Lys	Leu	
25				100					105					110		
	_	Val	Ala	Pro	Leu	Met	His	Asp	Ile	Lys	Asp	Pro	Ser	Arg	Glu	
30	Lys		115					120			-		125		•	
	His	Asn	His	Leu	Glu	Ara	Ile	Glu	Phe	Ara	Tvr	Glu	Lvs	Ile	Thr	
35	Trp	130		-,-			135			····· 5	. 2	140	2 -			
	Arg	Tyr	Lys	Asp	Gly		Ile	Ile	His	Ser		Ser	Trp	Asn	Glu	
40	145 160					150					155					
	Dwo	C 0 x	7. ] _	-												
45	ETO	Ser							•	4						
	<210	)> 1	L34 <	<211>	> 55	50 <2	212>	PRT	· <21	L3>	Esch	nerio		coli		

309/370

	Val Leu 1	Arg	Asn	Thr	Leu 5	Lys	Gln	Ala	Ile	Val	Leu	Trp	Gly	Met	Val	
5	Leu Arg	Leu	Val	Leu 20	Trp	Ser	Val	Phe	Ile 25	Ser	Pro	Ser	Gly	Val	Leu	
10	Trp Ile	Ala	Gly 35	Ala	Ala	Ala	Ile	Val	Leu	Ala	Val	Ala	Ala 45	Leu	Leu	•
15	Tyr Leu	Arg 50	Arg	Arg	Gln	Ala	Trp 55	Thr	Glu	Met	Thr	Gly.	Asp	Ala	Gly	-
20	Ser Cys 65	Ser	Leu	Pro	Pro	Glu 70	Thr	Tyr _.	Arg	Gln	Pro 75	Val	Val	Leu	Val	80
25	Gly Val	Gly	Leu	Ser	Ala 85	His	Leu	Ser	Thr	Asp 90	Ser	Pro	Val	Arg	Gln 95	
30	Ser Ala	Glu	Gly	Leu 100	Tyr	Leu	His	Val	Pro 105	Asp	Glu	Glu	Gln	Leu 110	Val	
35	Gln Leu	Val	Glu 115	Arg	Leu	Leu	Thr	Leu 120	Arg	Pro	Ala	Trp	Ala 125	Ser	Gln	٠
40	Ala Val	Val	Ala	Tyr	Thr	Ile	Met 135	Pro	Gly	Ile	His	Arg [*]	Asp	Val	Ala	
45 50	Leu Arg 145 160	Ala	Gly	Arg	Leu	Arg	Arg	Phe	Ala	His	Ser	Met	Ala	Thr	Val	

WO 2005/097823	PCT/EP2005/003972
----------------	-------------------

310/370 Arg Arg Ala Gly Val Asn Val Pro Trp Leu Leu Trp Ser Gly Leu Ser Gly Ser Pro Leu Pro Glu Arg Ala Ser Ser Pro Trp Phe Ile Cys Thr Gly Gly Glu Val Gln Val Ala Thr Ser Thr Glu Thr Thr Met Pro Ala Gln Trp Ile Ala Gln Ser Gly Val Gln Glu Arg Ser Gln Arg Leu Cys Tyr Leu Leu Lys Ala Glu Ser Leu Met Gln Trp Leu Asn Leu Asn Val Leu Thr Ala Leu Asn Gly Pro Glu Ala Lys Cys Pro Pro Leu Ala Met Thr Val Gly Leu Val Pro Ser Leu Pro Ala Val Asp Asn Asn Leu Trp Gln Leu Trp Ile Thr Ala Arg Thr Gly Leu Thr Pro Asp Ile Ala Asp Thr Gly Thr Asp Asp Ala Leu Pro Phe Pro Asp Ala Leu Leu Arg Gln 

Leu Pro Arg Gln Ser Gly Phe Thr Pro Leu Arg Arg Ala Cys Val Thr 

WO 2005/09/823		PC1/EP2005/0039/2
	311/370	

		Met Ser	Leu	Gly	Val	Thr	Thr	Val	Ala	Gly	Ile	Ala	Ala	Leu	Cys	Leu
	5				*	325					330				,	335
		Ala His	Thr	Ala	Asn	Arg	Gln	Leu	Leu	Arg	Gln	Val	Gly	Asp	Asp	Leu
	10	112.5			340					345					350	
			Phe	Tyr	Ala	Val	Pro	Val	Glu	Glu	Phe	Ile	Thr	Lys	Ala	Arg
	15	His		355					360					365		
	٠	Leu Arg	Ser	Val	Leu	Lys	Asp	Asp	Ala	Thr	Met	Leu	As <u>.</u> p	Gly	Tyr	Tyr
	20	ALG	370					375			,		380			
		Glu Arg	Gly	Glu	Pro	Leu	Arg	Leu	Gly	Leu	Gly	Leu	Tyr	Pro	Gly	Glu
	. 25	385 400					390					395				•
		Tle	Ara	Gln	Pro	Val	Len	Ara	Δla	Tle	Ara	Asn	Trn	Ara	Pro	Pro
	30	Glu	9			405	,				410	110F	L	11119		415
		Gln	Tivs	Met	Glu	Val	Thr	Ala	Ser	T.e.ii	Gln	Val	Gln	Thr	Val	Z ra
-	35	Leu			420			1120	201	425	0444	, 41	0111	1111	430	111.9
		Asp	Ser	Met	Ser	T.e11	Phe	Asn	Val	Gly	Gln		Ara	T.011	Twe	7 sp
	40	Gly.	501	435		200	1110	110p	440	Q±,y	0.111	1114	1119	445	туу	nop.
		Sar	Thr	T.ve	Val	T. 611	₹7a]	7) e n	7\] =	Teu	T = 77	7\ s.p.	Tlo	7\ 20.00	717-2	Tuo
	45	Pro	450	пур	Val	лец	vaı	455	ALA	Бец	Val	ASII	460	ALG	Ala	пуѕ
			<b>*</b>	<b>-</b>	<del>~</del> "	~		73. 77			cm 1	77				
	50	Glu 465	Trp	ьeu	Ile	ьeu	470		стλ	Tyr	Thr	475	Ата	Thr	GTÀ	Asp
		480														

5	Lys Asn		Asn	Gln	Gln 485	Leu	Ser	Leu	Arg	Arg 490	Ala	Glu	Ala	Val	Arg 495
10	Trp Gln	Met	Leu	Gln 500	Thr	Ser	Asp	Ile	Pro 505	Ala	Thr	Cys	Phe	Ala	Val
15	Gly Gly	Leu	Gly 515	Glu	Ser	Gln	Pro	Ala 520	Ala	Thr	Asn	Asp	Thr 525	Pro	Gln
20	Arg Asp	Ala 530	Val	Asn	Arg	Arg	Val 535	Glu	Ile	Ser	Leu	Val 540	Pro	Arg	Ser
25	Ala 545	Cys	Gln	Asp	Val	Lys 550								·	
	<210	)> :	135 <	<211>	> 19	94 <2	212>	PRT	r <21	3>	Esch	nerio	rhia	coli	
	<400	)> [	135					2.202	د خکہ		1001	1011	)II.L.a	COTI	L
30			135				Trp					•			
30	Met Leu 1	Ile	Lys	Ser	Thr 5	·Phe		Arg	Ala	Leu 10	Ala	Leu	Thr	Ala	Thr 15
·	Met Leu 1 Ile Pro	Ile	Lys Thr	Ser Gly 20	Thr 5 Cys	Phe Ser	Trp	Arg	Ala Gln 25	Leu 10 Pro	Ala Glu	Leu Gln	Thr Glu	Ala Gly 30	Thr 15 Arg
35	Met Leu 1 Ile Pro Gln Gly	Ile Leu Ala	Lys Thr Trp 35	Ser Gly 20 Leu	Thr 5 Cys	Phe Ser	Trp	Arg Ser Thr	Ala Gln 25 Leu	Leu 10 Pro	Ala	Leu Gln Leu	Thr . Glu Pro 45	Ala Gly 30 Ala	Thr 15 Arg

WO 2005/097823	PCT/EP2005/003972

313/370
65 70 75 80

Ile Thr Leu Ala Gly Leu Ser Ser Val Gly Ile Arg Leu Phe Leu

5 Val 85 90 95

Thr Tyr Asp Ala Lys Gly Leu Arg Ala Glu Gln Ser Ile Val Val 10 Pro 100 105 110

Gln Leu Pro Pro Ala Ser Gln Val Leu Ala Asp Val Met Leu Ser 15 His 115 120 125

Trp Pro Ile Ser Ala Trp Gln Pro Gln Leu Pro Thr Gly Trp Thr 20 Leu 130 135 140

Arg Asp Asn Gly Asp Lys Arg Glu Leu Arg Asn Ala Ser Gly Lys
Leu
145
160
155

30 Val Thr Glu Ile Thr Tyr Leu Asn Arg Gln Gly Lys Arg Val Pro Ile 165 170 175

35 Ser Ile Glu Gln His Val Phe Lys Tyr His Ile Thr Ile Gln Tyr Leu
180 185 190

40 Gly Asp

50

<210> 136 <211> 129 <212> PRT <213> Escherichia coli
45 <400> 136

Met Lys Arg Tyr Ile Lys Trp Phe Ala Ile Thr Ile Phe Ile Ser Met 5 10 10 15

	W		314/370								PCT/EP2005/003972					
	Leu Thr	Ser	Ala	Cys	Val	Arg	Thr	Ala	Pro	Val	Gln	Gln	Ile	Ser	Thr	
				20					25					30		
5	Val Lys	Ser	Val	Gly	His	Thr	Gln	Glu	Gln	Val	Lys	Asņ	Ala	Ile	Leu	
	<b>-</b> 1,0		35					40					45			
10	Ala	Gly	Ala	Gln	Arg	Lys	Trp	Ile	Met	Thr	Gln	Val	Ser	Pro	Gly	
	Val	50					55					60		•		
15	Ile Ile	Lys	Ala	Arg	Tyr	Gln	Thr	Arg	Asn	His	Val	Ala	Glu	Val	Arg	
	65					70					75			,		80.
20	Thr Asn	Tyr	Thr	Ala	Thr	Tyr	Tyr	Asn	Ile	Lys	Tyr	Asp	Ser	Ser	Leu	
					85					90		•			95	•
25	Leu Val	Gln	Ala	Ser	Asp	Gly	Lys	Ile	His	Lys	Asn	Tyr	Asn	Arg	Trp	
	,			100					105					110		
30	Arg	Asn	Leu	Asp	Lys	Asp	Ile	Gln	Val	Asn	Leu	Ser	Thr	Glv	Ala	
	Thr	,	115					120				-	125	4		
35	Leu						٠	,								
40	<210 <400		.37 < .37	(211>	· 41	.5 <2	212>	PRT	<21	.3>	Esch	erio	hia	coli		
	Met Thr	Lys	Arg	Lys	His	Leu	Leu	Leu	Leu	Leu	Leu	Phe	Ser	Phe	Ser	
45	1			•	5					10		*			15	

Asn Ser Ala Pro Leu Tyr Ser Leu Ile Arg Glu Ala Val Met His

Asp

315/370

				•												
		Ile	Val	Met	Glu	Ala	Arg	Ala	Glu	Leu	Thr	Ser	Ala	Gln	Ser	
-	Arg		35					40					45			••
5						•										
	Ile Gly	Glu	Gln	Ala	Ser	Ser	Ala	His	Trp	Pro	Val	Val	Thr	Ala	Thr	
10		50					55					60				
	Ser	Lvs	Leu	Leu	Ser	Gln	Ser	His	Ara	Tvr	Ser	Tvr	Asp	Tvr	Asp	
	Thr 65	-1-				70				- <b>.</b>	75	<u>J</u> —		— <u>,</u> —	<u>F</u>	80
15	63			k		70					75					00
-	,	Asp	Ile	Leu	Pro	Gly	Ile	Arg	Gly	Glu	Val	Asn	Ile	Phe	Ala	
	Ser				85		·			90					95	
20	,															
	Gly Tyr	Ala	Ile	Glu	Ala	Asp	Val	Arg	Arg	Ser	Glu	Ser	Glu	Ala	Glu	
25	- 1 -			100					105					110		
23	П.т.~	Uic	П.т.х	Lys	Mo+	Clu	Glu	Thr	Tue	Cli	Glu	Thr.	Tle	Llie'	Ser	
	Phe	птэ	_	пуз	Mec	Giu	GIU	v	пур	OLU	OLU	T111		1113	DCI	
30			115			•		120					125			
	Val	Ser	Leu	Tyr	Leu	Asp	Ala	Leu	Arg	Glu	Lys	Gln	Ser	Ile	Ala	
	Val	130					135					140				
35																
	Leu Asn	Glu	Gln	Ser	Leu	Ser	Arg	His	Asn	Ala	Ile	Ļeu	Asn	Asp	Leu	
40	145 160					150		*			155					
40	7.00												-			
		Ile	Ser	Ile	His	Asp	Thr	Gly	Arg	Glu	Ser	Glu	Leu	Val	Gln	
45	Ala				165					170					175	
								•								
	Glu Arg	Ala	Arg	Arg	Leu	Met	Val	Arg	Gln	Gln	Ile	Asn	Ser	Arg	Ser	
50	ر			180					185					190		
		1														

WO 2005/097823		PCT/EP2005/003972
	316/370	

Val Leu Lys Thr Thr Leu Gly Lys Leu Ser Thr Trp Thr Lys Asn Pro Val Thr Glu Ala Asp Leu Glu Asn Pro Phe Ser Arg Met Thr Glu Ala Lys Leu Leu Thr Asp Phe Thr Gln Ala Pro Gln Lys Gly Asn Pro Ser Trp Leu Ala Ser Gln Ala Asp Val Glu Ser Lys Lys Ala Ala Leu Lys Ala Gln Glu Leu Ala Arg Tyr Pro Arg Val Asp Leu Thr Gly Ser Val Thr Arg Asp Asp Gln Gln Ile Gly Val Asn Leu Ser Trp Asp Leu Phe Asn Arg Asn Ala Ser Tyr Gly Val Thr Glu Lys Ala Ala Gln Ile Val Ala Ala Thr Gly Arg Leu Asp Ser Val Ala Arg Met Ile Asp Glu Thr Gly Arg Leu Ser Leu Ile Thr Val Arg Gln Ser Arg Gly Glu Met Glu 330 . Thr Leu Arg Arg Gln Glu Gln Ala Ser Ala Arg Val Val Asp Phe Tyr 

		7														
5	Arg Asn		Gln 355	Phe	Gln	Val	Ala	Arg 360	Lys	Thr	Leu	Ile	Glu 365		Leu	
	Ala Glu	Glu	Asn	Glu	Leu	Tyr	Ser	Val	Gly	Leu	Ser	Arg	•	*	Thr	
10		370				•	375.			•	-	380		-		
15	Met 385	Gln	Met	Leu	His	Gly 390	Met	Lèu	Asp	Tyr	Leu 395	Tyr	Ser	Gln	Gly	
	400	T our	Т			C.I	T7 7	70			<b>6</b> .7					
20		пец	тЛ2		405	GTÀ	Val	As n	Leu	410	СΤΆ	GLU	GLu	GLu	Lys 415	
25	<210 <400	0> 1 0> 1	L38 < L38	<211	> 20	01 <2	212>	PR:	r <2:	13>	Esch	nerio	chia	coli	L . ·	
	Met Ser 1	Lys	Phe	Leu	Pro 5	Leu	Leu	Ala	Leu	Leu 10	Ile	Ser	Pro	Phe	Val	;
30		Leu	Thr	Leu	Asp	Asp	Leu	Gln	Gln	Arg	Phe	Thr	Glu	Gln	Pro	
35	Val			20		. •			25			•	•	30		
	Ile Gln	Arg	Ala 35	His	Phe	Asp	Gln	Th x	Arg	Thr	Ile	Lys	Asp	Leu	Pro	
40 `-	Pro	Leu		Ser	Gln	Glv	Gln	Met	Leu	Tle	Ala	Ara	-	Gln	Glv	
	Leu	50				- · - <u>J</u>	55					60	110p	0211	<u>Cry</u>	
45	Leu Asp	Trp	Asp	Gln	Thr	Ser	Pro	Phe	Pro	Met	Gln	Leu	Leu	Leu	Asp	
	65	,				70		-			75					80

WO 2005/097823	PCT/EP2005/003972
----------------	-------------------

	•	05/0978	823				318	/370	PCT/EP2005/00397						
	Lys Thr		Met	Val	Gln 85	Val	Ile	Asn	Gly	Gln 90	Pro	Pro	Gln	Ile	Ile 95
5	Ala Ala	Glu	Asn	Asn		Gln	Met	Phe	Gln 105		Asn	His	Leu	Leu 110	
10	Leu Glu	Phe	Gln 115	••	Asp	Arg	Lys	Val	Leu	Glu	Gln	Asn	Phe		Val
15	Phe Thr	Ala 130	Asp	Lýs	Gly	Glu	Gly 135	Arg	Trp	Thr	Leu	Arg	Leu ·	Thr	Pro
20	Thr Lys 145	Thr	Pro	Leu	Asp	Lys	Ile	Phe	Asn	Thr	Ile	Asp	Leu	Ala	Gly
30	Thr Thr	Tyr	Leu	Glu	Ser	Ile	Gln	Leu	Asn	Asp 170	Lys,	Gln	Gly	Asp	Arg
35	Asp Asp	Ile	Ala	Leu 180	Thŗ	Gln	His	Gln	Leu 185	Thr	Pro	Ala	Gln	Leu 190	Thr
40	Asp <210		His 195					200	-		Esch	nerio	chia	coli	
	<100		30												

<400> 139 Met Glu Asn Phe Phe Met Lys Asn Ser Lys Val Phe Tyr Arg Ser Ala 

Leu Ala Thr Ala Ile Val Met Ala Leu Ser Ala Pro Ala Phe Ala . Thr 

. 5	Asp Thr	Ser	Thr	Val	Ser	Thr	Asp	Pro	Val	Thr	Leu	Asn	Thr	Glu	Lys	
10	Thr Ala	<b>L</b> еџ 50	Asp	Gln	Asp	Val	Val 55	Ile	Asn	Gly	Asp	Asn 60	Lys	Ile	Thr	
15	Val Phe 65	Thr	Ile	Glu	Thr	Ser 70	Asp	Ser	Asp	Lys	Asp	Leu	Asn	Val	Thr	80
20	Gly Val	Gly	His	Asp	Ile 85	Thr	Ala	Ala	Ser	Thr 90	Val	Asn	Gln	Asp	Phe 95	
25	Glu Thr	Gly	Val	Lys 100	Val	Ser	Gly	Asn	Lys 105	Asn	Val	Val	Ile	Asn	Ala	
3Ó	Asp Ala	Ser	Thr 115	Ile	Thr	Ala	Gln	Gly 120	Glu	Gly	Thr	Tyr	Val	Arg	Thr	
35	Met Phe	Val	Ile	Asp	Ser	Thr	Gly 135	Asp	Val	Val	Val	Asn 140	Gly	Gly	Asn	
40	Val Ala 145 160	Ala	Lys	Asn	Glu	Lys 150	Glý	Ser	Ala	Thr	Gly 155	Ile	Ser	Leu	Glu	
45	Thr Gln	Thr	Gly	Asn	Asn 165	Leu	Thr	Leu		Gly 170	Thr	Thr	Ile	Asn	Ala 175	
50	Gly Lys	Asn	Lys	Ser 180	Tyr	Ser	Asn	Gly	Ser 185	Thr	Ala	Ile	Phe	Ala 190	Gln	

5	Gly Thr	Asn	Leu 195	Leu	Gln	Gly	Phe	Asp 200	Gly	Asp	Ala	Thr	Asp 205	Asn	Ile
10	Leu Thr		Asp	Ser	Asn	Ile	Ile 215	Asn	Gly	Gly	Ile	Glu 220	Thr	Ile	Val
15	Ala Asp 225 240	Gly	Asn	Lys	Thr	Gly 230	Ile	His	Thr	Val	Asn 235	Leu	Asn	Ile	Lys
20	Gly Ser	Ser	Val	Ile	Gly 245	Ala	Ala	Asn	Asn	Lys 250	Gln	Thr	Ile	Ту <i>т</i>	Ala 255
25	Ala Ser	Ser	Ala	Gln 260	Gly	Ala	Gly	Ser	Ala 265	Thr	Gln	Asn	Leu	Asn 27 O	Leu
30	Val Ser	Ala	Asp 275	Ser	Thr	Ile	Tyr	Ser 280	Asp	Val	Leu	Ala	Leu 285	Ser	Glu
35	Glu Arg	Asn 290	Ser	Ala	Ser	Thr	Thr 295	Thr	Asn	Val	Asn	Met 300	Asn	Vаl	Ala
40	Ser Ala 305 320	Tyr	Trp	Glu	Gly	Asn  310	Ala	Tyr	Thr	Phe	Asn	Ser	Gly	Asp	Lys
45	Gly Gly	Śer	Asp	Leu	Asp 325		Asn	Leu	Ser	Asp 330	Ser	Ser.	Val	Trp	Lys 335
50	Lys Ser	Val	Ser	Gly	Ala	Gly	Asp	Ala	Ser	Val	Ser	Leu	Gln	Asn	Gly

340 345 350

Val Trp Asn Val Thr Gly Ser Ser Thr Val Asp Ala Leu Ala Val 5 Lys

355 360 365

Asp Ser Thr Val Asn Ile Thr Lys Ala Thr Val Asn Thr Gly Thr  $10\,$  Phe

370 375 380

Ala Ser Gln Asn Gly Thr Leu Ile Val Asp Ala Ser Ser Glu Asn

15 Thr 385 390 395 400

20 Leu Asp Ile Ser Gly Lys Ala Ser Gly Asp Leu Arg Val Tyr Ser Ala

405 410 415

25 Gly Ser Leu Asp Leu Ile Asn Glu Gln Thr Ala Phe Ile Ser Thr Gly

420 425 . 430

30 Lys Asp Ser Thr Leu Lys Ala Thr Gly Thr Thr Glu Gly Gly Leu Tyr
435 440 445

35 Gln Tyr Asp Leu Thr Gln Gly Ala Asp Gly Asn Phe Tyr Phe Val Lys 450 455 460

40 Asn Thr His Lys Ala Ser Asn Ala Ser Ser Val Ile Gln Ala Met Ala 465 470 475

465 470 475

45
Ala Ala Pro Ala Asn Val Ala Asn Leu Gln Ala Asp Thr Leu Ser Ala
485
490
495

322/370	
---------	--

		Arg Trp	Gln	Asp	Ala 500	Val	Arg	Leu	Ser	Glu 505		. Asp	Lys	Gly	Gly 510	Val
	5 .	Ile Ala	Gln	Tyr 515	Phe	Gly	Gly	Lys	Gln 520		His	Thr	Thr	Ala 525		Asn
	10	Ser Arg	Tyr 530	Asp	Leu	Asp	Val	Asn 535	Gly	Val	Met	Leu	Gly 540	Gly	Asp	Thr
	15 20	Phe Ser 545 560	Met	Thr	Glu	Asp	Gly 550	Ser	Trp	Leu	Ala	Gly 555	Val	Ala	Met	Ser
•	25	Ala Gly	Lys	Gly	Asp	Met 565	Thr	Thr	Met	Gln	Ser 570	Lys	Gly	Asp	Thr	Glu 575
•	30	Tyr Phe	Ser	Phe	His 580	Ala	Tyr	Leu		Arg 585	Gln	Туг	Asn	Asn	Gly 590	Ile
	35	Ile Val	Asp	Thr 595	Ala	Ala	Gln	Phe	Gly 600	His	Tyr	Ser	Asn	Thr 605	Ala	Asp
	40	Arg Asn	Leu 610	Met	Asn	Gly	Gly	Gly 615	Thr	Ile	Lys	Ala	Asp 620	Phe	Asn	Thr
	45	Gly Asn 625 640	Phe	Gly	Ala	Met	Val 630	Lys	Gly	Gly	Tyr	Thr 635	Trp	Lys	Asp	Gly
	50	Gly Glu	Leu	Phe		Gln 645	Pro	Tyr	Ala	Lys	Leu 650	Ser	Ala	Leu		Leu 655

Gly Val Asp Tyr Gln Leu Asn Gly Val Asp Val His Ser Asp Ser Tyr 660 665 670 5 Asn Ser Val Leu Gly Glu Ala Gly Thr Arg Val Gly Tyr Asp Phe Ala 675 680 685 10 Val Gly Asn Ala Thr Val Lys Pro Tyr Leu Asn Leu Ala Ala Leu Asn-690 695 700 15 Glu Phe Ser Asp Gly Asn Lys Val Arg Leu Gly Asp Glu Ser Val Asn 705 710 715 20 720 Ala Ser Ile Asp Gly Ala Ala Phe Arg Val Gly Ala Gly Val Gln Ala 25 725 730 735 Asp Ile Thr Lys Asn Met Gly Ala Tyr Ala Ser Leu Asp Tyr Thr Lys 30 740 745 750 Gly Asp Asp Ile Glu Asn Pro Leu Gln Gly Val Val Gly Ile Asn Val 35 755 760 765 Thr Trp 770 40 <210> 140 <211> 660 <212> PRT <213> Escherichia coli <400> 140

45 Met Ser Arg Pro Gln Phe Thr Ser Leu Arg Leu Ser Leu Leu Ala Leu

1 5 10 15

50 Ala Val Ser Ala Thr Leu Pro Thr Phe Ala Phe Ala Thr Glu Thr Met

20	25	30
	2.0	50

Thr Val Thr Ala Thr Gly Asn Ala Arg Ser Ser Phe Glu Ala Pro 5 Met 35 40 45

Met Val Ser Val Ile Asp Thr Ser Ala Pro Glu Asn Gln Thr Ala

10 Thr
50 55 60

Ser Ala Thr Asp Leu Leu Arg His Val Pro Gly Ile Thr Leu Asp
15 Gly
65 70 75 80

Thr Gly Arg Thr Asn Gly Gln Asp Val Asn Met Arg Gly Tyr Asp 20 His 85 90 95

Arg Gly Val Leu Val Leu Val Asp Gly Val Arg Gln Gly Thr Asp
25 Thr
100 105 110

Gly His Leu Asn Gly Thr Phe Leu Asp Pro Ala Leu Ile Lys Arg

Val

115 120 125

Glu Ile Val Arg Gly Pro Ser Ala Leu Leu Tyr Gly Ser Gly Ala 35 Leu 130 135 140

Gly Gly Val Ile Ser Tyr Asp Thr Val Asp Ala Lys Asp Leu Leu
40 Gln
145 150 155
160

45 Glu Gly Gln Ser Ser Gly Phe Arg Val Phe Gly Thr Gly Gly Thr Gly
165 170 • 175

Asp His Ser Leu Gly Leu Gly Ala Ser Ala Phe Gly Arg Thr Glu Asn

				180					185	•				190	
. 5	Leu Arg	Asp	.Gly 195	Ile	Val	Ala	Trp	Ser 200	Ser	Arg	Asp	Arg	Gly 205	Asp	Leu
10	Gln Met	Ser 210	Asn	Gly	Glu	Thr	Ala 215	Pro	Asn	Asp	Glu	Ser 220	Ile	Asn	Asn
15	Leu Gly 225 240	Ala	Lys	Gly	Thr	Trp 230	Gln	Ile	Asp	Ser	Ala 235	Gln	Ser .	Leu	Ser
20	Leu Gln	Val	Arg	Tyr	Tyr 245	Asn	Asn	Asp	Ala	Arg 250	Glu	Pro	Lys	Asn	Pro [.] 255
25	Thr Thr	Val	Glu	Ala 260	Ser	Asp	Ser	Ser	Asn 265	Pro	Met	Val	Asp	Arg 270	Ser
30	Ile Asn	Gln	Arg 275	Asp	Ala	Gln	Leu	Ser 280	Tyr	Lys	Leu	Ala	Pro 285	Gln	Gly
35	Asp Ile	Trp 290	Leu	Asn	Ala	Asp	Ala 295	Lys	Ile	Tyr	Trp	Ser 300	Glu	Val	Arg
40	Asn Thr 305 320	Ala	Gln	Asn	Thr	Gly 310	Ser	Ser	Gly	Glu	Tyr 315	Arg	Glu	Gln	Ile
45	Lys Phe	Gly	Ala	Arg	Leu 325	Glu	Asn	Arg	Ser	Thr 330	Leu	Phe	Ala	Asp	Ser 335

W	O 200	5/09782	23									PCT/I	E <b>P2</b> 005	5/003972	2
							326/3	70						•	
la	Ser	His	Leu	Leu	Thr	Tvr	Glv	Glv	Glu	Tvr	Tvr	Ara	Gln	Glu	

-	Ala Gln	Ser	His	Leu	Leu	Thr	Tyr	Gly	Gly	Glu	Tyr	Tyr	Arg	Gln	Glu
	CIII			340					345					350	•
5	His Phe		Gly	Gly	Ala	Thr	Thr	Gly	Phe	Pro	Gln	Ala	Lys	Ile	Asp
	T 110		355					360					365		
10		Ser	Gly	Trp	Leu	Gln	Asp	Glu	Ile	Thr	Leu	Arg	Asp	Leu	Pro
	Ile	370					375					380			
15		Leu	Leu	Gly	Gly	Thr	Arg	Tyr	Asp	Ser	Tyr	Arg	Gly	Ser	Ser
	Asp 385 400				•	390			-		395				
20						_			_		_	_	_		
	Gly Met	Tyr	Lys	_		Asp	Ala	Asp	Lys		Ser	Ser	Arg	Ala	
25					405					410					415
	Thr Gln	Ile	Asn	Pro	Thr	Asn	Trp	Leu		Leu	Phe	Gly	Ser	_	Ala
30				420					425					430	
	Ala His	Phe	Arg	Ala	Pro	Thr	Met	Gly	Glu	Met	Tyr	Asn	Asp	Ser	Lys
35			435					440					445		
	Phe Asn	Ser	Ile	Gly	Arg	Phe	Tyr	Thr	Asn	Tyr	Trp	Val	Pro	Asn	Pro,
40	ASII	450					455		•			460		• .	
	Leu Arg	Arg	Pro	Glu	Thr	Asn	Glu	Thr	Gln	Glu	Tyr	Gly	Phe	Gly	Leu
45	465 480					470					475				
		Asp	Āsp	Leu	Met	Leu	Ser	Asn	Asp	Ala	Leu	Glu	Phe	Lys	Ala
50	Ser				485	٠				490					495

										3				4
Tyr Phe	Phe	Asp	Thr	Lys	Ala	Lys	Asp	Tyr	Ile	Ser	Thr	Thr	Val	Asp
rne			500					505					510	
	_	_												

5

10

Ala Ala Ala Thr Thr Met Ser Tyr Asn Val Pro Asn Ala Lys Ile Trp 515 520 525

Gly Trp Asp Val Met Thr Lys Tyr Thr Thr Asp Leu Phe Ser Leu Asp
530 535 540

Val Ala Tyr Asn Arg Thr Arg Gly Lys Asp Thr Asp Thr Gly Glu
Tyr
545 550 555
20 560

Ile Ser Ser Ile Asn Pro Asp Thr Val Thr Ser Thr Leu Asn Ile Pro 565 570 575

Ile Ala His Ser Gly Phe Ser Val Gly Trp Val Gly Thr Phe Ala Asp

580 585 590

Arg Ser Thr His Ile Ser Ser Ser Tyr Ser Lys Gln Pro Gly Tyr Gly

35 595 600 605

Val Asn Asp Phe Tyr Val Ser Tyr Gln Gly Gln Gln Ala Leu Lys Gly

40 610 620

Met Thr Thr Leu Val Leu Gly Asn Ala Phe Asp Lys Glu Tyr Trp
45 625 630 635

Ser Pro Gln Gly Ile Pro Gln Asp Gly Arg Asn Gly Lys Ile Phe
50 Val
645 650 655

Ser Tyr Gln Trp 660

5

<210> 141 <211> 719 <212> PRT <213> Escherichia coli <400> 141

- 10 Met Arg Asp Glu Met Leu Tyr Asn Ile Pro Cys Arg Ile Tyr Ile Leu 1 5 10 15
- 15 Ser Thr Leu Ser Leu Cys Ile Ser Gly Ile Val Ser Thr Ala Thr Ala
  20 25 30
- 20 Thr Ser Ser Glu Thr Lys Ile Ser Asn Glu Glu Thr Leu Val Val Thr 35 40 45
- 25 Thr Asn Arg Ser Ala Ser Asn Leu Trp Glu Ser Pro Ala Thr Ile Gln 50 55 60
- 30 Val Ile Asp Gln Gln Thr Leu Gln Asn Ser Thr Asn Ala Ser Ile Ala 65 70 75 80
- 35 Asp Asn Leu Gln Asp Ile Pro Gly Val Glu Ile Thr Asp Asn Ser Leu
  85 90 95
- 40 Ala Gly Arg Lys Gln Ile Arg Ile Arg Gly Glu Ala Ser Ser Arg Val 100 105 110
- 45 Leu Ile Leu Ile Asp Gly Gln Glu Val Thr Tyr Gln Arg Ala Gly Asp
  115 120 125
- 50 Asn Tyr Gly Val Gly Leu Leu Ile Asp Glu Ser Ala Leu Glu Arg Val

130 135 140

Glu Val Val Lys Gly Pro Tyr Ser Val Leu Tyr Gly Ser Gln Ala 5 Ile 145 150 155

160

10 Gly Gly Ile Val Asn Phe Ile Thr Lys Lys Gly Gly Asp Lys Leu Ala
165 170 175

15 Ser Gly Val Val Lys Ala Val Tyr Asn Ser Ala Thr Ala Gly Trp Glu

180 185 190

- 20 Glu Ser Ile Ala Val Gln Gly Ser Ile Gly Gly Phe Asp Tyr Arg Ile 195 200 205
- 25 Asn Gly Ser Tyr Ser Asp Gln Gly Asn Arg Asp Thr Pro Asp Gly Arg 210 215 220
- 30 Leu Pro Asn Thr Asn Tyr Arg Asn Asn Ser Gln Gly Val Trp Leu Gly 225 230 235 240
- Tyr Asn Ser Gly Asn His Arg Phe Gly Leu Ser Leu Asp Arg Tyr Arg

  245
  250
  255
- 40

  Leu Ala Thr Gln Thr Tyr Tyr Glu Asp Pro Asp Gly Ser Tyr Glu
  Ala

  260

  270
- Phe Ser Val Lys Ile Pro Lys Leu Glu Arg Glu Lys Val Gly Val Phe

  275 280 285

Tyr Asp Thr Asp Val Asp Gly Asp Tyr Leu Lys Lys Ile His Phe Asp Ala Tyr Glu Gln Thr Ile Gln Arg Gln Phe Ala Asn Glu Val Lys Thr Thr Gln Pro Val Pro Ser Pro Met Ile Gln Ala Leu Thr Val His Asn Lys Thr Asp Thr His Asp Lys Gln Tyr Thr Gln Ala Val Thr Leu Gln Ser His Phe Ser Leu Pro Ala Asn Asn Glu Leu Val Thr Gly Ala Gln Tyr Lys Gln Asp Arg Val Ser Gln Arg Ser Gly Gly Met Thr Ser Ser Lys Ser Leu Thr Gly Phe Ile Asn Lys Glu Thr Arg Thr Arg Ser Tyr 400 -Tyr Glu Ser Glu Gln Ser Thr Val Ser Leu Phe Ala Gln Asn Asp Trp Arg Phe Ala Asp His Trp Thr Trp Thr Met Gly Val Arg Gln Tyr Trp Leu Ser Ser Lys Leu Thr Arg Gly Asp Gly Val Ser Tyr Thr Ala Gly 

W O 2003/09 / 623		
	331/370	

	Ile Glu	: Ile	e Ser	. Asp	Thr	Ser	Leu	Ala	a Arc	, Glu	. Ser	Ala	Ser	: Asp	His
. 5		450			•		455					460			
10	GLu 465		Thr	Ser	Thr	Ser 470		Arg	ı Tyr	Ser	Gly	Phe	Asp	Asn	Leu
10	480				,	-	**								
	Leu Gln	Arg	Ala	Ala	Phe	Ala	Gln	Gly	Tyr	Val	Phe	Pro	Thr	Leu	Ser
15					485					490					495
	Leu Pro	Phe	Met	Gln	Thr	Ser	Ala	Gly	Gly	Ser	Val	Thr	Tyr	Gly	Asn
20				500					505					510	
	Asp Tyr	Leu	·Lys	Ala	Glu	His	Ser	Asn	Asn	Phe	Glu	Leu	Gly	Ala	Arg
25			515					520					525		
٠	Asn Ala	Gly	Asn	Thr	Trp	Leu	Ile	Asp	Ser	Ala	Val	Tyr	Tyr	Ser	Glu
30		530					535				,	540			
	Lys Asn	Asp	Tyr	Ile	Ala	Ser	Leu	Ile	Cys	Asp	Gly	Ser	Ile	Val	Cys.
35	545 560			•		550					555				
	<b>0</b> 1	70	_,			_									
40	Ile	Asn	Thr	Asņ	565	Ser	Arg	Ser	Ser	Tyr 570	Tyr	Tyr	Tyr	Asp	1
								•						,	575
45	Asp Gly	Arg	Ala		Thr	Trp	Gly	Leu		Ile	Ser	Ala	Glu	Tyr	Asn
				580					585			•		590	
50	Trp Tyr	Val	Phe	Ser	Pro	Tyr	Ile	Ser	Gly	Asn	Leu	Ile	Arg	Arg	Gln
	_		595					600					605		•

	Glu	Thr	Ser	Thr	Leu	Lys	Thi	r Thr	Asn	Thr	Gly	Glu	Pro	Ala	Ile
5	Asn	610					615	5				620	•		
	•		•	-	4	• ,									÷
	Gly Ile	Arg	Ile	Gly	Leu	Lys	His	Thr	Leu	Val	Met	Gly	Gln	Ala	Asn
10	625 640					630					635				
•													-		
15	Ile Ser	Ser	Asp	Val	Phe	Ile	Arg	Ala	Ala	Ser	Ser	Ala	Lys	Asp	Asp.
					645					650					655
	7) a 22	C1	mh m	C1	m1	70	T 7	T	~ 3	_					
20	Ala	атЛ	TIIT		Thr	Asn	val	Pro		Trp	Ala	Thr	Leu	Asn	Phe
				660				No.	665		¥			670	
	Val	Asn	Thr	Glu	Phe	Glv	Asn	Glu	Asp	Gln	Ser	Δκα	Tle	7\ a n	Ton
25	Ala		675			1		680	1100	OLII	DCI	n. g		ASII	теп
	٠		075					000				,	685		
20	Leu	Asn	Asn	Leu	Thr	Asp	Lys	Arg	Tyr	Arg	Thr	Ala	His	Glu	Thr
30	TTe	690					695				*	700			
								`.							
35	Pro . 705	Ala	Ala	Gly	Phe	Asn 710	Ala	Æla	Ile	Gly	Phe 715	Val	Trp	Asn	Phe
	<b></b>		10	.077											
40	<210; <400;	> 1 > 1	42 < 42	(211>	19	9 <2	212>	PRI	<21	.3>	Esch	eric.	hia	coli	
	Met Z Ser	Arg :	Lys	Val	Cys	Ala	Val	Ile	Leu	Ser	Ala	Ala	Ile	Cys	Leu
	1				5					10					15
45	T7. 7	~	~ 7		_										
	Val S Ser	ser (	ΛŢ	Ala	Pro .	Ala	Trp	Ala	Ser	Glu	His	Gln	Ser	Thr	Leu
				~ ~											

. 25

30

	Ala Leu	Gly	Tyr	Leu	His	Ala	Arg	Thr	Asn	Ala	Pro	Gly	Ser	Asp	Asn	
			35					40					45			
5 .	7 00	C1	Tlo	7\ a x		T	M	7. ~ ~		<i>C</i> ]	D1		7)	73. 7	<del></del>	
	Gly	,	тте	ASII	Val	тйг		Arg	Tyr	GTU	Pne		Asp	ATA	Leu	
		50					55					60				
10	Leu	Ile	Thr	Ser	Phe	Ser	Tyr	Ala	Asn	Ala	Glu	Asp	Glu	Gln	Lys	
	Thr 65					70		4			75		,		_	80
15						,										
10		Tyr	Ser	Asp	Thr	Arg	Trp	His	Glu	Asp	Ser	Val	Arg	Asn	Arg	
	Trp	•			85	-				90					95	
20																
	Phe Ser	Ser	Val	Met	Ala	Gly	Pro	Ser	Val	Arg	Val	Asn	Glu	Trp	Phe	
				100			,		105					110		
25	Ala	Tvr	Ser	Met	Ala	Glv	Val	Ala	Tyr	Ser	Ara	Val	Ser	Thr	Phe	
•	Ser	- <u>J</u> -	115			1		120	-1-		9	,	125		1110	
30			7.10					120		,			120			
30		Asp	T _. yr	Leu	Arg	Val	Thr	Asp	Asn	Lys	Gly	Lys	Thr	His	Asp	
	Val	130					135					140	*			
35																
	Leu Trp	Thr	Gly	Ser	Asp	Asp	Gly	Arg	His	Ser	Asn	Thr	Ser	Leu	Ala	
	145 160					150					155					
40	100					•										
		Ala	Gly	Val	Gln	Phe	Asn	Pro	Thr	Glu	Ser	Val	Thr	Ile	Asp	
	Leu				165					170			•		175	
45						•										
	Ala Ile	Tyr	Glu	Gly	Ser	Gly	Ser	Gly	Asp	Trp	Aŗg	Thr	Asp	Ala	Phe	٠
50				180					185					190		
				*												

Val Gly Ile Gly Tyr Arg Phe 195

5 <210> 143 <211> 456 <212> PRT <213> Escherichia coli <400> 143

Met Lys Lys Ser Thr Leu Ser Leu Ala Ile Gly Leu Leu Leu Ala Cys
10 1 5 10 15

Ser Thr Gly Met Ala Lys Thr Gln His Leu Thr Leu Glu Gln Arg Leu 25 30

Glu Ala Ala Glu Met Arg Ala Ala Lys Ala Glu Gly Gln Val Lys Gln 20 35 40 45

Leu Gln Thr Gln Gln Ala Ala Glu Ile Arg Glu Ile Lys Thr Ala Gln
25 50 55 60

Gly Asn Thr Pro Val Asn Gly Gln Ser Thr Thr Glu Ser Glu Lys Lys 30 65 70 75 80

Asn Ala Thr Pro Pro Asn Leu Leu Leu Ser Gly Tyr Gly Asp Leu Lys
35 85 90 95

Ile Tyr Gly Asp Val Glu Phe Asn Met Asp Ala Glu Ser Asn His Gly
40 100 105 110

Leu Leu Ala Met Thr Asn Ala Asp Val Asn Ser Asp Pro Thr Asn Glu
45 ' 115 120 125

Trp Asn Leu Asn Gly Arg Ile Leu Leu Gly Phe Asp Gly Met Arg
Lys
50 130 135 140

5	Leu Asp 145 160		Asn	Gly	Tyr	Phe	Ala	Gly	Phe		Ala 155	Gln	Pro	Leu	Gly
10	Met Lys	His	Gly	Ser	Val	Asn	Ile	Asp	Asp	Ala	Val	Phe	Phe	Phe	Gly 175
15	Glu Met	Asn	Asp	Trp 180	Lys	Val	Lys	Val	Gly 185	Arg	Phe	Glu	Ala	Tyr 190	Asp
20	Phe Ala	Pro	Leu 195	Asn	Gln	Asp	Thr	Phe 200	Val	Glu	His	Ser	Gly 205	Asn	Thr
25	Asn Glu	Asp 210	Leu ,	Tyr	Asp	Asp	Gly 215	Ser	Gly	Tyr	Ile	Tyr 220	Met	Met	Lys
30	Gly Gln 225 240	Arg	Gly	Arg	Ser	Asn 230	Ala	Gly	Gly	Asn	Phe 235	Lėu	Val	Ser	Ļys
35	Leu Thr	Asp	Asn	Trp	Tyr 245	Phe	Glu	Leu	Asn	Thr 250	Leu	Leu	Glu	Asp	Gly 255
40	Ser Gln	Leu	Tyr	Asn 260	Asp	Gly	Asn	Tyr	His 265		Arg	Asp	Met	Glu 270	Gln
45	Lys Glu	Asn	Val 275	Ala	Tyr	Leu	Arg	Pro 280	Val	Ile	Ala	Trp	Ser 285	Pro	Thr
50	Glu Ala	Phe 290	Thr	Val	Ser	Ala	Ala 295	Met	Glu	Ala	Asn	Val	Val	Asn	Asn

Tyr Gly Tyr Thr Asp Ser Lys Gly Asn Phe Val Asp Gln Ser Asp 310 -Thr Gly Tyr Gly Met Ser Met Thr Trp Asn Gly Leu Lys Thr Asp Glu Asn Gly Ile Val Val Asn Leu Asn Thr Ala Tyr Leu Asp Ala Asn 35 0 Asn Glu Lys Asp Phe Thr Ala Gly Ile Asn Ala Leu Trp Lys Arg Phe Glu Leu Gly Tyr Ile Tyr Ala His Asn Lys Ile Asp Glu Phe Ser Gly Val Val Cys Asp Asn Asp Cys Trp Ile Asp Asp Glu Gly Thr Tyr Asn Ile His Thr Ile His Ala Ser Tyr Gln Phe Ala Asn Val Met Asp Met Glu Asn Phe Asn Ile Tyr Leu Gly Thr Tyr Tyr Ser Ile Leu Asp Ser 43 O Asp Gly Asp Lys Ile His Gly Asp Asp Ser Asp Asp Arg Tyr Gly Ala Arg Val Arg Phe Lys Tyr Phe Phe

	<21 <40		144 144	<211	> 1'	74 <:	212>	PR'	Г <2:	13>	Esc	heri	chia	col	i	
5				Lys	Ala 5	Phe	Leu	Ala	Cys	Val	Leu	Met	Ser	Val	Val 15	
10	Thr Pro	Gly	Cys	Glu 20	Thr	Ala	Lys	Lys	Ile 25		Gln	Val	Ile	Arg		
15	Asp Val	Ile	Gln 35		Gly	Lys	Leu	Met		Gln	Ser	Thr			Thr	
20	Thr Ala			Thr	Glu	Pro		·	Asn	Leu	Thr		45 Asp	Gly	Glu	
25	Phe	50 Pro	Val	Asp	Val		55 Leu	Val	Tyr	Leu		60 Asp	Asp	Ser	Lys	
30	65 His Val	Ala	Ala	Asp	Tyr	70 Asp	Gln	Val	Ala	Thr	75 Thr	Ala	Leu	Pro	Asp	
35	Leu Asp	Gly	Lys	Asn	85 Tyr	Ile	Asp	His	Gln	90 Asp	Phe	Asn	Leu	Leu	95 Pro	•
40		Val	Lys	100 Thr	Leu	Pro	Pro	Ile	105 Lys	Leu	Asp	Glu	Lys	110 Thr	Gly	
45	Tyr	Cl.,	115	Tlo	7\ 1 ~	Фт.,~	Dho	120	7) 0.20	7.00		7) ] ~	125	C1	Шж	
	Lys	130	vaı	エエロ	Ala	т Хт	135	, per	vah	vsh	GTII	140	TIIT	чти	ттЪ	

WO 2005/097823		PCT/EP2005/003972
	338/370	

Gln Ile Glu Ser Val Glu Ser Ile Gly His His Tyr Arg Leu Leu Val His Il'e Arg Ala Ser Ala Ile Glu Met Lys Lys Glu Glu Asn 145 <211> 1144 <212> PRT <213> Escherichia coli <210> <400> Leu Thr Leu Ala Trp Ile Phe Leu Leu Val Trp Ile Trp Trp Gln Gly Pro Lys Trp Thr Leu Tyr Glu Gln His Trp Leu Ala Pro Leu Ala .20 Arg Trp Leu Ala Thr Ala Val Trp Gly Leu Ile Ala Leu Val Trp Leu Thr Trp Arg Val Met Lys Arg Leu Gln Lys Leu Glu Lys Gln Gln Lys Gln Gln Arg Glu Glu Lys Asp Pro Leu Thr Val Glu Leu His Arg Gln Gln Gln Tyr Leu Asp His Trp Leu Leu Arg Leu Arg Arg His Leu Asp Asn Arg Arg Tyr Leu Trp Gln Leu Pro Trp Tyr Met Val Ile Gly 

Pro Ala Gly Ser Gly Lys Ser Thr Leu Leu Arg Glu Gly Phe Pro

Ser

5	Asp Pro	Ile		Tyr	Thr	Pro	Glu 135		Ile	Arg	Gly	Val	Glu	Tyr	His
10	Leu Asp 145 160	Ile	Thr	Pro	Arg	Val	Gly	Asn	Gln	Ala	Val	Ile	Phe	Asp	Val
15	Gly Leu	Val	Leu	Thr	Thr 165	Pro	Gly	Gly	Asp	Asp	Leu	Leu	Arg	Arg	Arg 175
20	Arg Pro	Glu	His	Trp 180	Leu	Gly	Trp	Leu	Met 185	Gln	Thr	Arg	Ala	Arg 190	Gln
25	Leu Ala	Asn	Gly 195	Leu	Ile	Ļeu	Thr	Le _u 200	Asp	Leu	Pro	.Asp	Leu 205	Leu	Thr
30	Asp Leu	Lys 210	Ser	Arg	Arg	Glu	Thr 215	Leu	Val	Gln	Asn	Leu 220	Arg	Gln	Gln
35	Gln Val 225 240	Glu	Ile	Arg	Gln	Ser 230	Leu	His	Cys	Arg	Leu 235	Pro	Val	Tyr	Val
40	Leu Ser	Thr	Arg	Leu	Asp 245	Leu	Leu	Asn	Gly	Phe	Ala	Ala	Leu	Phe	His 255
45	Leu Arg	Asp	Lys	Lys 260	Asp	Arg	Asp	Ala	Ile 265	Leu	Gly	Val	Thr	Phe 270	Thr
50	Arg Trp	Ala	His	Glu	Ser	Asp	Gly	Trp	Arg	Ser	Glu	Leu	Gly	Ala	Phe

340/3

Gln Thr Trp Val Gln Gln Val Asn Leu Ala Leu Ser Asp Leu Val Leu Ala Gln Thr Gly Ala Ala Pro Arg Ser Ala Val Phe Ser Phe Ser Gln Met Gln Gly Thr Gly Glu Ile Val Thr Ala Leu Leu Ala Ala Leu Leu Asp Gly Glu Asn Met Asp Val Met Leu Arg Gly Val Trp Leu Thr Ser Ser Leu Gln Arg Gly Gln Val Asp Asp Ile Phe Thr Gln Ser Ala Ala Arg Gln Tyr Gly Leu Gly Asn Ser Ser Leu Ala Thr Trp Pro Leu Val Glu Thr Thr Pro Tyr Phe Thr Arg Arg Leu Phe Pro Glu Val Leu Leu Ala Glu Pro Asn Leu Ala Gly Glu Asn Ser Val Trp Leu Asn

Ser 

Ser Arg Arg Arg Leu Thr Ala Phe Ser Thr Cys Gly Ala Ala Leu Ala 

341	/370

	Ala Gln	Leu	Met	,Val	Gly	Ser	Trp	His	His	Tyr	Tyr	Asn	Gln	Asn	Trp
	,		435					440					445		
5		Gly	Val	Asn	Val	Leu	Ala	Gln	Ala	Lys	Ala	Phe	Met	Asp	Val
	Pro	450					455		,			4.60			
10	Pro	Pro	Gln	Gly	Thr	Asp	Glu	Phe	Gly	Asn	Leu	Gln	Leu	Pro	Leu
	Leu 465					470					475				
15	480								•						
	Asn His	Pro	Val	Àrg	Asp	Ala	Thr	Leu	Ala	Tyr	Gly	Asp	Tyr	Arg	Asp
20					485					490					495
	Gly Pro	Phe	Leu	Ala	Asp	Met	Gly	Leu	Tyr	Gln	Gly	Ala	Arg	Val	Gly
25	110			500					505					510	
		Val [.]	Glu	Gln	Thr	Tyr	Ile	Gln	Leu	Leu	Glu	Gln	Arg	Tyr	Leu
30	Pro		515			•		520					525		
	Ser	Leu	Met	Asn	Gly	Leu	Ile	Arg	Asp	Leu	Asn	Ile	Ala	Pro '	Pro
25	Glu	530		,		•	535					540			
35	Ser	Glu	Glu	Tivs	Leu	Ala	Val	T.eu	Ara	Val	Val	Δrα	Met	Ma+	Glu
	Asp 545	<b>J J.</b>	014			550		±0u		Vai	555	<i>1</i> 111 9		Mec	GIU
40	560						•								
	Lys Arg	Ser	Gly	Arg	Asn	Asn	Glu	Ala	Val	Lys	Gln	Tyr	Met	Ala	Arg
45	***** 9		•		565	,	,			570					575
		Ser	Asn	Glu	Phe	His	Gly	Gln	Arg	Asp	Ile	Gln	Ala	Gln	Leu
50	Met		٠	580	4				585		•			590	

WO 2005/097823					342/3	70				PCT/	EP200	5/0039	72		
7 ~ 7	иiс	T 011	7 00	Ттт	7\ 7 ~	T 011	$C_{111}$	ціа	mb w	7\ ~~~	Пип	1114	77.7.	~1	

•					*			342/3	570								
	Val Arg	His		Asp	Tyr	Ala	Leu		His	Thr	Asp	Trp			Gln		
5			595					600				•	605				
	Gln Lys	Sėr	Ser	Asp	Ser	Asp	Ala	Val	Ser	Arg	Trp	Thr	Pro	Tyr	Asp		
10	, _	610	,				615					620					
		Ile	Ile	Asn	Ala	Gln	Gln	Glu	Leu	Ser	Lys	Leu	Pro	Ile	Tyr		
15	Gln 625 640		•	,		630					635				~	•	
	Ara	Val	Ψvr	Gln	Thr	T.e.i	Δra	Thr	T.ve	Δla	T. <b>21</b> 1	Ser	V = 1	Len	Pro		
20	Ala			0411	645	БСС	,		<b>11</b> 10	650		DCI	vai	пси	655		
	Asp	Leu	Asn	Leu	Ara	Asp	Gln	Val	Glv	Pro	Thr	Phe	Asp	Asn	Val		
25	Phe	•		660	3	1			665	,				670			
	<b>V</b> > 7	7\ ] ¬	<i>C</i> 1 17	71	7) 970	Clu	T 170	T 011	V- 1	Tlo	Dro	Cln	Dha	Tou	mb a	•	
30	Arg	AIA	675	Asn	Ash	GIU	пуъ	680	vai	TTE	FLO	GIII	685	ьeu	THE		
								_									
35	Tyr Glu	Gly 690	Leu	Gln	Ser	Tyr	Phe 695	Val	Lys	Gln	Arg	Glu 700	Ģly	Leu	Val		
,,,				-		•	,					700					
	Ala	Thr	Ala	Leu	Asp		Trp	Val	Leu	Asn		Thr	Gln	Ser	Val		
10	705 720					710					715						
15		Ser	Glu	Ala	Asp	Arg	Glu	Glu	Ile	Gln	Arg	His	Ile	Thr	Glu		•
15	Gln			٨	725					730					735		
	Tyr Leu	Ile	Ser	Asp	Tyr	Thr	Ala	Thr	Trp	Arg	Ala	Gly	Met	Asp	Asn		
	_ ~			740					745					750			

	Asn	Val	Ara	Asp	Tvr	Glu	Ala	Met	Ser	Ala	Leu	Thr	Asp	Ala	Leu
5	Glu		755	1	<u> </u>			760					765		20 <b>u</b>
10	Gln Leu	Ile 770	Ile	Şer	Gly	Asp	Gln 775	Pro	Phe	Gln	Arg	Ala 780	Leu	Thr	Ala
15	Arg Lys 785 800	Asp	Asn	Thr	His	Ala 790	Leu	Thr	Leu	Ser	Gly 795	Lys	Leu	Asp	Asp
20	Ala Arg	Arg	Glu	Ala	Ala	Ile	Asn	Glu	Met	Asp 810	Tyr	Arg	Leu	Leu	Ser 815
25	Leu Lys	Gly	His	Glu 820	Phe	Ala	Pro	Glu	Asn 825	Ser	Ala	Leu	Glu	Glu 830	Gln
30	Asp Leu	Lys	Ala 835	Ser	Thr	Leu	Gln	Ala 840	Val	Tyr	Gln	Gln	Leu 845	Thr	Glu
35	Ser	Arg 850	Tyr	Leu	Leu	Ala	Ile 855	Gln	Asn	Ser	Pro	Val 860	Pro	Gly	Lys
40	Ala Pro 865 880	Leu	Lys	Ala		Gln 870		Arg	Leu		Gln 875	Asn	Ser	Ser	Asp
45	Ile Asn	Phe	Ala	Thr	Arg 885	Gln	Met	Ala	Lys	Thr 890	Leu	Pro	Ala	Pro	Leu 895
50	Arg Val	Trp	Val	Gly	Lys	Leu	Ala	Āsp	Gln	Ala	Trp	His	Val	Val	Met

900 905 910

Glu Ala Val Arg Tyr Met Glu Val Asp Trp Arg Asp Asn Val Val 5 Lys . 915 920 925

Pro Phe Asn Glu Gln Leu Ala Asp Asn Tyr Pro Phe Asn Pro Arg

10 Ala
930 935 940

Thr Gln Asp Ala Ser Leu Asp Ser Phe Glu Arg Phe Phe Lys Pro
15 Asp
945 950 955
960

20 Gly Ile Leu Asp Asn Phe Tyr Lys Asn Asn Leu Arg Leu Phe Leu Glu 965 970 975

25 Asn Asp Leu Thr Phe Gly Asp Asp Gly Arg Val Leu Ile Arg Glu Asp 980 985 . 990

30 Ile Arg Gln Gln Leu Asp Thr Ala Gln Lys Ile Arg Asp Ile Phe Phe 995 1000 1005

35 Ser Gln Gln Asn Gly Leu Gly Ala Gln Phe Ala Val Glu Thr Val 1010 1020

Ser Leu Ser Gly Asn Lys Arg Arg Ser Val Leu Asn Leu Asp Gly 1025 1035

Gln Leu Val Asp Tyr Ser Gln Gly Arg Asn Tyr Thr Ala His Leu 1040 1045 1050

45

Val Trp Pro Asn Asn Met Arg Glu Gly Asn Glu Ser Lys Leu Thr 1055 1065

Leu Ile Gly Thr Ser Gly Arg Ala Pro Arg Ser Ile Ala Phe Ser

345/37

1070 1075 1080

Gly Pro Trp Ala Gln Phe Arg Leu Phe Gly Ala Gly Gln Leu Thr 5 1085 1090 1095

Asn Val Thr Ser Asp Thr Phe Asn Val Arg Phe Asn Val Asp Gly 1100 1105 1110 10

Gly Ala Met Val Tyr Gln Val His Val Asp Thr Glu Asp Asn Pro 1115 1120 1125

15 Phe Thr Gly Gly Leu Phe Ser Leu Phe Arg Leu Pro Asp Thr Leu 1130 1135 1140

20 Tyr

<210> 146 <211> 489 <212> DNA <213> Escherichia coli 25 <400> 146 atggctattc ctgcttatct ctggctgaaa gatgacggcg gcgcggatat caaaggttcc 60

gtggacgttc aggggcgcga aggtagcatc gaagtggtgg cgctggatca 30 cgatgtgtac 120

atcccgaccg acaataacac cggcaaactg accggtaccc gtactcacaa gccttttacg 180

tttaccaaag aaatcgatgc gtccagcccg tatctctaca aagctgtgac 35 caccggacag 240

accetgaaaa eggeagaatt taagttttae egeateaaeg atgeeggtea ggaagtggag 300

tacttcaaca tcacgcttga taacgtcaag ctggtcagag tcgctccgct tatgcacgac 360

atcaaggatc cttccagaga gaagcataac cacctggaac gtattqagtt 45 ccgctacgag

aaaatcacct ggacttacaa agacggcaac atcattcatt ccgactcgtg gaatgagcgt 480

50 ccttccqcc 489

	<210> 147 400 147		0 <212> DN	A <213> Es	cherichia coli
5	gtgaggaaca gctggtgctg	cgctgaaaca 60	ggccatcgtg	ctgtggggaa	tggtgttact
10	tggtcagtgt ggctatcgtt	ttatcagtcc 120	gtctggcgtg	ctgagatggg	ccggtgcggc
10	ctggcggttg gatgaccggc	ccgcgttgtt 180	gatttatcgg	cgcaggcagg	cgtggacgga
15	gatgccgggt gctggtctgt	tgtcatcgct 240	gccgccggaa	acctaccgac	agccggtagt
	ggcggtctgt agaagggctg		gtccactgac	agcccggtcc	gccaggtttc
20	tatctgcatg gctgaccctt	ttcctgatga 360	agaacagctt	gtggcgcagg	tggagcgatt
. 25	cgcccggcgt catacaccgg	gggcatcgca 420	gcttgccgtg	gcgtatacca	tcatgcccgg
23	gatgtggcgg gacggtgcgt	ttctggccgg 480	acggctgcga	cggttcgccc	acagtatggc
30	cgtcgggcag ctcgccgttg	gcgtaaacgt 540	cccctggctt	ctctggagcg	ggctgtccgg
	ccgga aagag ggtag caaca	cgagttcacc 600	gtggtttatc	tgtaccggcg	gcgaagttca
35	tccacagaga ggagcgcagt	ccaccatgcc 660	cgcgcagtgg	attgcacaat	ccggcgtaca
40	cagcgactct tcttaatgtg	gttacctgct 720	gaaagctgaa	agcctgatgc	agtggctgaa
40	ctgac ggcac cgtgg ggctg	tgaacggccc 780	ggaggcgaaa	tgtccaccac	tggcgatgac .
45	gtcccctcgt cgccagaacc	tgcctgcggt 840	ggataacaac	ctgtggcagt	tgtggatcac
	ggcct gacgc cccgg atgcc	cggatatcgc 900	ggacaccggc	acagacgatg	cgctgccatt
50	ctgtt acggc ctgcg tgacc	agttgccgcg 960	tcagtcgggc	tttaccccgc	tgcgacgagc

	atgctgggcg cacggcaaat	tcaccaccgt	ggcgggtatc	gccgcgctgt	gcctgtcagc
5	cgccagttat cccggtggag	tacggcaggt	cggtgacgat	ctgcaccggt	tttatgccgt
10	gaatttatca catgctcgat	ccaaagcccg 1140	tcacctgtcg	gtgctgaaag	acgatgcgac
10	gggtattacc cggcgaacgc	gggaaggaga 1200	acccctgcgc	ctcggtctgg	ggttataccc
15	atccgccagc aaaaatggag		cgccattcgc	gactggcgtc	cgcctgaaca
	gtgacggctt gtttgacgtc	cgcttcaggt 1320	tcagaccgtg	cgtcttgaca	gtatgtcgct
20 .	ggacaggccc ggtgaacatc	gcctgaaaga 1380	cggctcgaca	aaagtgctgg	tggacgcact
25	cgggcaaaac cggcgatgaa	cgggctggct 1440	gatcctcgtg	gccggatata	ccgatgccac
	aaaagcaatc gatgctgcag	agcagttatc 1500	gctgcggcgt	gccgaagcgg	tgcgcaactg
30	accagcgaca ccagcctgcg		ctgttttgcc	gtacagggac	tgggcgagag
	gcgaccaacg cagtcttgtt		gggccgggca	gtcaaccggc	gtgtcgaaat
35	ccgcgttctg 1650	acgcctgtca	ggacgtgaaa		
40	<210> 148 <400> 148	<211> 582	<212> DNA	<213> Esch	erichia coli
	atgatcaaat cctcactggc		gcgagcgctc	gccctgaccg	ctacgcttat
45	tgtagccact acctggtacg	cgcaaccgga 120	acaggaaqgc -	cgcccgcagg	cgtggctgca
	ctcatcacgc actgttgacc	tgcctgcgcc 180	ggggatttca	cccgcagtca	attcccagca
50	ggcagcttca agatcagaaa	acggcaaaac 240	ccagtctctg	ctagtgatgc	ttaatgccga

atcaccettg coggetgte gteggtegge attegeetgt ttetggtgae ctacgatgca 300 5 aaaqqqctac gcgccgagca atccatcqtc qtcccacagt taccqcccqc aagtcaggta 360 ctggctgacg tgatgctcag ccactggccg attagcgcct ggcaaccqca 420 acttcccaca 10 ggctggacgc ttcgcgacaa cggcgacaaa cgcgagctgc gtaacqccaq cggcaaactg 480 gtcacggaaa tcacctatct gaatcgccag ggaaaacgcg tgccaatcag 15 cattgagcag 540 catgtcttta aataccacat caccattcaa tacttaggtg ac 582 20 <210> 149 <211> 387 <212> DNA <213> Escherichia coli <400> 149 atgaaacgtt atataaaatg gtttgccatc acaattttta tcaqtatqtt gagtgcctgt 60 25 gtccgtacgg ccccagtgca acagataagc accactgtca gtcgtgcgtca 120 tactcaqqaq 30 gacgcaagtg 180 tcccctggag ttattaaagc tcgctatcaa acacgaaatc acgttgcaga ggttcgtatt 24.0 35 acatatacag ctacctacta taacatcaaa tatgacagta gcctgaatct gcaggcttct 300 gatggaaaaa ttcataaaaa ctataaccgc tgggtgcgta acctggataa agatatacag 360 40 gttaacttat ctacaggagc aacgtta 387 45 150 <211> 1245 <212> DNA <213> Escherichia coli <400> . 150 atgaagcgta aacatttgtt attattattg ttgttttcat tttccactaa cagtgcgcct 60 50 ctttactcct taattaggga ggcagttatg cacgatccca tagtaatgga agcccggrgcg 120

## WO 2005/097823 PCT/EP2005/003972 349/370

	gagttaactt gccagttgtc		ccgcatagag	caggcaagct	ctgcacattg
5		gaagtaaact	cctttcacaa	agtcaccgtt	attcctacga
	gaagatattt ggctattgag		tcgtggtgaa	gtgaatatat	ttgcttcagg
10	gcggatgtgc ggaagaaaca		gtcagaagcc	gaatattatc	attataaaat
15	aaagaggaaa ggaaaaacaa		ttttgtttca	ttatatcttg	atgcactcag
	tccattgcgg tgacctgaat	tacttgaaca 480	gagcctttcc	cggcataacg	caattcttaa
20	accatcagta agccagaagg	ttcatgatac 540	cgggcgggag	tctgagcttg	ttcaggccga
25	ttgatggttc gctgggaaaa	ggcagcagat 600	aaattctagg	agcagagtac	ttaaaaccac
23	ctgtccactt ttttctagg	ggacaaaaaa 660	tccggtaacc	gaagctgatc	ttgaaaatcc
30	atgacagagg taacccgtcg	ccaaattatt [*] 720	aactgatttt	acacaggctc	cacagaaagg
	tggcttgcca acaggagctt	gccaagctga 780	tgttgagagt	aaaaaagcgg	cactgaaagc
35	gcccggtacc gcagataggg	ctcgggtgga 840	tttaacgggg	tctgtaaccc	gggatgacca
40	gtcaatctgt agaaaaagct	cttgggacct 900	ctttaaccgt	aatgccagtt	atggtgttac
	gcgcaaatag tgatgaaacc	tggcagctac 960	cggacgactg	gactctgtcg	cccgaatgat
45	gggcgattat gctcagacgt	ctctgataac 1020	agtcagacaa	agtcgagggg .	aaatggaaac
	cagga acagg ggtgg caaga	cttcagccag 1080	agttgtggac	ttttatcgtc	ttcagtttca
50	aaaacactga actct cccgg	ttgaattact 1140	gaatgctgaa	aacgaactgt	acagtgtcgg

gttcagacgg aggatcagat gctccacggt atgctggatt atctgtattc ccagggaatg 1200

- 5 ctcctgaaat ggagcggagt gaatctttct qqtqaaqaaq aaaaa 1245
- 151 <211> 603 <212> DNA <213> Escherichia coli

10 <400> 151 atqaaa tttt taccqctgct ggcgctgctq attagcccqt ttgtgagcqc cctgaccctg 60

gacgat cttc agcaacgctt taccgaacaa ccggtgatcc gcgcccattt 15 tgatca aacc 120

cggacgatta aagatctgcc gcagccgctg cgatctcagg gtcagatgtt 180 gatege.ccgc

20 gaccaggggt tattgtggga tcaaacctca ccgttcccca tgcagctatt gctgga tgat · 240

aaacgcatgg tgcaggtgat caacggtcag ccgccgcaaa tcatcacggc 300 agaaaa caac

25

ccgcagatgt tccagtttaa ccacctgctg cgcgcgctgt tccaggccga tcqcaaaqtq 360

ctggaa caaa acttccgcgt cgaatttgct gacaaaggcg aaggccgctg 30 gacgetgege 420

ctgacqccqa ccaccacqcc qctqqataaa attttcaaca ccatcqatct cgccgggaaa 480

35 acctat Ctgg agagcattca acttaatgat aaacagggcg atcgcaccga tattqctctt 54.0

acccaa cate aactgacgee agegeaactg accgatgacg aacaccaacg ttttgccgcc 600

40

cag 603

tatqqctctt

- 45 < <210> 152 <211> 2295 <212> DNA <213> Escherichia coli <400> 152 atgaaaaaca gtaaggtatt ttaccgcagc gcattagcga cagctattgt
- 50 tetgeaccag cattegetac tgatageacg gtateaactg atceggttac gctgaataca 120

#### WO 2005/097823 PCT/EP2005/003972 351/370

	gagaagacga tacagccgta	ctctggatca 180	agatgttgtt	attaacggtg	ataacaagat
5	acaattgaaa tcacgatatt	cgtcagattc 240	agataaagac	cttaatgtta	cttttggcgg
10	accgccgcat tggtaacaaa	caacggtaaa 300	ccaagatttc	gttgaaggtg	taaaagttag
10	aatgttgtga cacctatgtc	ttaatgctac 360	agactccacc	atcacagctc	aaggtgaagg
15	cggactgcaa taatttcgtt	tggtcattga 420	ttcaactggc	gatgttgttg	ttaatggcgg
	gcaaaaaatg gggaaataat	aaaaaggtag 480	tgcgacaggg	atatctctgg	aagcgaccac
20	ttaacgctca caacggctct	atggtacaac 540	cataaatgct	caaggtaata	agagttacag
25	acggcaattt tgcaaccgac	ttgctcaaaa 600	gggtaatttg	ttgcagggtt	ttgacggtga
20	aacatcaccc agttactgcc	ttgctgactc 660	aaatattatt	aatggcggga	ttgaaacaat
30	gggaataaga agtaattggg	cgggaattca 720	tacagtcaac	ctgaatatta	aggatggctc
	gcggctaata aggttcagca	ataaacaaac 780	aatttatgcc	tctgcttcgg	cacaaggcgc
35	acgcaaaatt cctggccctt		tgttgctgat	tcaaccatct	actctgatgt
40	tctgaaagcg tgcccgctct	agaattcagc 900	cagtaccaca	acaaatgtaa	atatgaacgt
	tactgggaag tgatctggat	gtaatgctta 960	taccttcaat	agcggcgata	aagcgggtag
45	ataaatcttt agatgccagt	ccgatagttc 1020	agtctggaaa	ggcaaagttt	caggggcagg
	gtatctctgc tgatgctctg	aaaacgggtc 1080	tgtctggaat	gttacgggtt	cctcaactgt
50	gcagtaaaag cacgtttgct	acagtacggt 1140	taatatcacg	aaggctacag	tcaatactgg

	tctcaaaacg tatcagcggt	gcactctgat 1200	tgttgatgcc	tcttctgaaa	acactctgga
5	aaagcgagcg caatgaacaa	gtgacttgcg 1260	tgtttacagt	gcgggttcat	tggatcttat
10	acggcattta aacggaaggt	tttctaccgg 1320.	caaagacagc	actctaaaag	ccacaggcac
10	ggtctgtatc cgtaaaaaac	aatatgacct 1380	gacacaggga	gctgatggta	acttttattt
15	acgcataaag tccggctaac	catccaacgc 1440	cagctccgtg	attcaggcaa	tggcagctgc
	gtcgctaatc tctgagcgaa	tgcaggctga 1500	cacgctctcc	gcccgtcagg	atgctgtccg
20	aatgacaagg taccaccgcg	gtggcgtatg 1560	gattcagtac	tttggcggta	aacagaaaca
25	ggaaatgcat tacccgcttc	cctatgacct 1620	ggatgtaaat	ggtgtaatgc	tgggtggtga
25	atgactgaag aggtgacatg	atggtagctg 1680	gctggccggt	gtggcgatgt	cttctgcgaa
30	actaccatgc cctgagccgc	agagcaaagg 1740	tgacactgaa	ggttacagct	tccacgctta
	cagtataaca cagcaacacg	acggtatctt 1800	cattgatact	gctgcacagt	ttggtcacta
35	gcagatgttc caccaatggt		tggtggcggt	accatcaaag	ctgactttaa
40	tttggtgcga gtttattcag	tggttaaagg 1920	cggttacaca	tggaaagacg	gtaatggcct
40	Ccatatgcca Caacggcgtg		tctgactctg	gaaggtgtgg	attatcaact
45	gacgttcatt Cgtgggttat	ctgacagcta 2040	taactctgtg	ctgggtgagg	ccggtacgcg
	gacttcgctg actgaacgaa	tgggcaacgc 2100	gaccgttaaa	ccttatctga	atctggccgc
50	ttctctgatg Cattgacggt	gcaacaaagt 2160	ccgtctgggt	gatgagtctg	tcaatgccag

gcagcattcc gcgtgggtgc aggtgtacaa gctgatatca ccaaaaacat 2220 gggagcatat gcaagccttg actacaccaa aggtgacgac attgagaacc cgctacaggg 5 tgtagttggt · 2280 atcaatgtga cctgg 2295 10 <210> 153 <211> 1980 <212> DNA <213> Escherichia coli <400> 153 atgtcacgtc cgcaatttac ctcgttgcgt ttgagtttgt tggctttggc 15 tgtttctgcc 60 accttgccaa cgtttgcttt tgctactgaa accatgaccg ttacggcaac 120 ggggaatgca 20 cgtagttcct tcgaagcgcc tatgatggtc agcgttatcg acacttccgc 180 tcctgaaaat caaactgcta cttcagccac tgatttgctg cgtcatgttc ctggaattac tcttgatggt 240 25 accggacgaa ccaacggtca ggatgtaaat atgcgtggct atgatcatcg 300 cggcgtgctg gttcttgtcg atggtgttcg ccagggaacg gataccggac acctgaatgg 30 360 cacttttctc gatccggcgc tgatcaagcg tgttgagatt gttcgcggac cttcagcatt actgtatggc 420 35 agtggcgcgc tgggtggagt gatctcctac gatacggtcg atgcaaaaga tttattgcag 480 gaaggacaaa gcagtggttt tcgtgtcttt ggtactggcg gcacggggga 540 ccatagcctg 40 . ggattaggcg cgagcgcgtt tgggcgaact gaaaatctgg atggtattgt ggcctggtcc agtcgcgatc ggggtgattt acgccagagc aatggtgaaa ccgcqccqaa 45 660 tgacgagtcc attaataaca tgctggcgaa agggacctgg caaattgatt cagcccagtc tctgagcggt 720 50 ttagtgcgtt actacaacaa cgacgcgcgt gaaccaaaaa atccgcagac cgttgaagct 780

	tct gatagca gca gctttct	gcaacccgat 840	ggtcgatcgt	tcaacaattc	aacgcgatgc
5	tat aaactcg tta ctggtcg		taacgactgg	ttaaatgcag	atgcaaaaat
10	gaa gtccgta aca gataaca		aaacacgggg	agttcaggcg	agtatcgtga
10	aaa ggagcaa ttctcactta		ccgttccact	ctatttgccg	acagtttcgc
15	ctgacatatg gacgacgggc		ttatcgtcag.	gaacaacatc	cgggtggcgc
	ttcccgcaag caccttacgc		ttttagctct	ggttggctac	aagatgagat
20	gat etgeega tag eagegae	ttaccctgct	tggcggaacc	cgctatgaca	gttatcgcgg
	ggctacaaag tatcaacccg		cgacaaatgg	tcatctcgtg	cggggatgac
25	accaactggc gacgatgggc		tggctcatat	gctcaggcat	tacgagaaca
30	gaaatgtata ctattgggtg		acacttctcg	attggtcgct	tctataccaa
	ccaaacccga tgggctgcgt	acttacgtcc	ggaaactaac	gaaactcagg	agtacggttt
35	tttgatgacc ctttgatacc	tgatgttgtc 1500	caatgatgct	ctggaattta	aagccagcta
	aaagcgaaag tatgtcgtat	attatatctc 1560	cacgaccgtc	gatttcgcgg	cggcgacaac
40	aacgtcccga cactgatctg		ctggggctgg	gatgtgatga	cgaaatatac
45	tttagccttg cggggaatat	atgtggccta 1680	taaccgtacc	cgcggcaaag	acaccgatac
	atctccagca cgctcacagc		taccgttacc	agtaccctga	atattccgat
50	ggcttctctg cagcagcagc	ttggttgggt 1800	cggtacgttt	gccgatcgct	caacacatat
	•				

	•			•	
	tacagcaaac agggcagcag		tggtgtgaat	gatttctacg	tcagttatca
5	gcgctcaaag agagtactgg	gcatgaccac 1920	tactctggta	ttgggcaacg	ccttcgataa
10	tcgccgcaag ttatcaatgg		ggatggtcgt	aacggaaaaa	ttttcgtgag
	<210> 154 <400> 154	<211> 215	7 <212> DNA	A <213> Esc	cherichia coli
15		aaatgttata 60	taatatacct	tgtcgaattt	atatcctttc
	ttatgcattt aa aaatcagc	ctgggatagt 120	ttctactgca	accgcaactt	cttcagaaac
20	aa cgaagaga gg aaagcccg	cgctcgtcgt 180	gaccacgaat	cgttcggcaa	gcaacctttg
25	gcgactatac ctccatagcc	aggttattga 240	ccaacaaaca	ttgcagaact	ccaccaatgc
	gataatttgc aggccgtaaa	aggacatccc 300	cggagtagag	ataacagaca	actccttggc
30	ca aatccgca tg gtcaggag	ttcgtggcga 360	agcatcctcc	cgtgttttaa	ttctcattga
	gtaacttatc tgagtctgcg	agcgcgccgg 420	agataattat	ggtgtgggac	tgttgataga
35	ct ggagcgtg ac aggcaatt		gaaaggtcca	tattccgtac	tgtacggttc
40	gg cggtattg tg gagttgtg	ttaacttcat 540	aaccaaaaag	ggaggtgaca	aacttgcatc
70	aa agctgttt ccaggggagc		aacagcaggc	tgggaagaat	caatcgcggt
45	at cggtggat tcgtgatacg	ttgattatcg 660	catcaacggt	agttattctg	atcagggcaa
	ccggatggac atggttgggt	gtctgccgaa 720	taccaactat	cgtaacaata	gtcagggtgt
50	tataactccg cgcgacgcaa	gaaaccatcg 780	ttttggcctc	tcgcttgatc	gctacagact

# WO 2005/097823 PCT/EP2005/003972 356/370

	acttactatg acctaaactt		cggaagctat	gaggcattta	gtgtcaaaat
5	gaadgagaga totaaaaaaa		attctatgaç	acagacgtgg	acggtgacta
10	attcatttcg agtaaaaacg		gcagaccatc	cagcgccaat	ttgccaacga
10	acacagcctg gactgacacc		gatgattcag	gctctgaccg	ttcataacaa
15	catgataagc gcctgctaat	aatacactca 1080	ggcggtcaca	ttgcagagtc	acttttcgct
	aatgaacttg gtccggtggc		acagtacaaa	caagacaggg	tcagccaaag
20	atgacctcaa tcgctcctat	gcaaatctct 1200	gaccggcttc	attaataagg	aaacacgaac
25	tatgagtcag attegcegat	agcaaagtac 1260	agtctcacta	ttcgcacaaa	atgactggcg
23	cactggacat gacgcgtggt	ggacaatggg 1320	agttcgccaa	tactggcttt	cttcaaagtt
30	gacggagtat agagtctgcg	catataccgc 1380	aggcattata	agcgatacct	ctcttgccag
	agtgat cacg taacttggag		atctacaagc	ctgcgctatt	caggtttcga
35	ttacgcgctg ttttatgcag		aggctacgta	tttcccacac	tctcccagct
40	acatct gcgg acactccaat		cacatacgga	aatcctgatc	ttaaggctga
40	aactttgaat cgcagtttac	taggtgcacg 1620	atataatggt	aatacgtggc	tgattgacag
45	tactca gaag agtttg caat		tattgcaagt	ctgatctgtg	atggcagtat
	ggtaacacca tcgggcaaaa		tagtagctac	tattattatg	acaatattga
50	acatgg ggac atatat cagt	tggaaataag 1800	cgcggaatat	aatggctggg	ttttctcgcc

				as-	,
	ggcaatttaa tacaggagaa	ttcgtcggca 1860	atatgaaact	tcaacattaa	aaacaactaa
5	ccagcgataa ggccaacata	acggacgtat 1920	agggctgaaa	catactcttg	tgatgggtca
10	atctctgatg cggtaccgaa	tttttattcg 1980	tgctgcctct	agtgcaaaag	atgacagtaa
	acaaatgttc cggtaacgag		cactctcaac	tttgcagtaa	atacagaatt
15	gatcagtccc ccgtacagca	ggattaacct 2100	agcactcaat	aacctgacag	acaaacgcta
	catgaaacta 2157	ttcctgcagc	aggttttaat	gcagctatag	gttttgtatg gaatttc
20				•	
	<400> 155			<213> Esch gcagccatct	nerichia coli
25	atccggtgcg	60 .			
	cctgcatggg tgcccgtacg		tcagtccaca	ctgagcgcgg	ggtatcttca
30	aacgctcccg tgagtttacg		tctgaacggg	attaacgtga	aataccgtta
	gacgcgctgg gcaaaaaacg		gtccttcagt	tatgccaatg	ctgaggatga
35	cactacagcg cagcgtgatg		gcatgaagat	tccgtgcgta	accgctggtt
: 40	gcggggccgt gggtgtggct		gaatgaatgg	ttcagcgcgt	attcgatggc
40	tacagccgtg caaggggaaa	400	ctccggggat	tatctccgcg	taactgacaa
45	acgcacgatg tctggcgtgg		aagtgatgac	ggtcgccaca	gcaacacgtc .
	ggggctggcg ttatgaaggt		cccgaccgaa	tccgtgacca	ttgaccttgc
50	tccggtagtg ccgtttctga		aacggatgca	tttattgttg	gtatcggata

#### WO 2005/097823 PCT/EP2005/003972 358/370

	<210> 156 <400> 156	<211> 1368	8 <212> DN	A <213> Esc	cherichia coli
5			tttagccatc	ggtttattat	tggcatgtag
10	gcaaaaacac gcgggcagca		gctggaacaa	cgcctggaag	cggcagaaat
	aaagcagagg ccgcgaaatt		acagcttcag	acacaacaag	ccgccgagat
15	aaaaccgcac agagaagaaa		gccggtaaac	ggtcaatcaa	cgacggagtc
	aacgccaccc ctacggtgac	cgcctaatct 300	cctgctttca	gggtatggcg	atttaaaaat
20	gtagaattta caacgctgat		ggaaagtaat	catggcctgc	tggcaatgac
25	gtgaatagcg aggttttgat		tgaatggaat	ctcaatggtc	gtattctgtt
23	ggtatgcgaa gctgggggat	aactggataa 480	tggctatttc	gctgggttct	ccgcacaacc
30	atgcacggtt aaacgactgg		cgatgatgcg	gttttcttct	ttggcaaaga
	aaggtcaaag ggataccttt	taggccgttt 600	tgaagcctac	gatatgttcc	cgctgaatca
35	gttgaacatt ttatatctat	ccggtaatac 660	tgcgaacgat	ctttatgacg	atggcagcgg
40	atgatgaaag cagcaaacaa	agggccgcgg 720	acgttctaac	gctggcggta	atttcctcgt
40	ctcgataact tttatataac	ggtattttga 780	attaaacacg	ttactggaag	acggaacatc
45	gacggtaatt tctgcgtccg	atcatggacg 840	cgatatggaa	cagcagaaaa	atgttgctta
	gtaattgcct agcgaatgtg	ggtcgccgac 900	ggaagaattc	accgtttccg	cagcgatgga
50	gtaaataatg gtccgatcgt	cttatggtta 960	taccgatagc	aagggtaatt	ttgtcgatca

	accggttatg aaatggcatc		gacctggaat	ggcctgaaaa	ccgatccgga
5	gtggttaatc cacggcaggg		ctatttagat	gctaataatg	aaaaagattt
10	attaacgcgc taagattgat	tgtggaaacg 1140	tttcgagctg	ggttatatct	atgcacataa
10	gaatttagtg aacatacaac		tgataacgat	tgctggattg	atgatgaagg
15	attcacacca gaactttaat		ttatcagttc	gctaatgtga	tggatatgga
	atttacctcg acacggcgac		ctccattctg	gatagcgacg	gcgataagat
20	gatagtgatg 1368	accgttacgg	cgcacgcgtt	cgctttaaat	acttcttc
25	<210> 157 <400> 157	<211> 522	<212> DNA	<213> Escl	nerichia coli
23	i i	aagcgtttct 60	ggcctgcgtt	ctgatgagcg	tcgtattaac
30	acagcgaaaa aaagctgatg	aaatcagcca 120	gġtgatccgc	aatccggata	ttcaggtcgg
	gatcagtcaa cctgacggcg	ccgagctgac 180	cgtcacgctg	ctgaccgagc	cggacagcaa
35	gatggcgaag ctcaaaattc	cegegeeggt 240	ggatgtccag	ttggtttatc	tgagcgacga
40	catgccgccg ggggaaaaac	actacgacca 300	ggttgccacc	accgcgctgc	ccgacgtgct
70	tatatcgatc gccgccgatc	accaggactt 360	caacctgttg	ccggataccg	taaaaacact
45	aagttggatg cgaccaggcc	agaaaaccgg 420	ttatatcggt	gtcattgcct	atttttcaga
	acagaatgga cctgctggtg	aacaaattga 480	gtcggtagaa	agtatcggcc	accactatcg
50	catatccgcg	ccagtgcgat	tgagatgaaa	aaagaggaaa	ac

	<210> 158 <400> 158		2 <212> DN	A <213> Es	cherichia coli
5	ctgacgctgg aaaatggacg		tctgctggtg	tggatctggt	ggcagggtcc
10	ctctatgagc cgccgtctgg		ggctccgctg	gcaaaccgct	ggctggcgac
	ggacttatcg aaagctggaa		gctcacctgg	cgggtgatga	agcgtctgca
15	aaacagcaga actccaccgc	aacagcagcg 240	ggaggaagaa	aaagatccgt	tgaccgtgga
	cagcagcaat taaccgccgt	atctggatca 300	ctggctgctg	cgcctgcgcc	gccatctgga
20	tatctgtggc caaaagcacg	agttgccgtg 360	gtatatggtc	attggtcctg	cgggtagcgg
25	ctgctgcgcg ccggggtgtg		gtctgacatt	gtttacacgc	cggaaagcat
	gaataccacc cgatgttgac	cgctgatcac 480	accgcgagtg	ggcaaccagg	cggtaatttt
30	ggcgtactga cgaacactgg	ccactcccgg 540	cggggatgat	ctgctccgcc	gccgcctgcg
	ctgggctggc cctgacgctc	tgatgcaaac 600	gcgcgctcgc	cageegetea	acggtcttat
35	gatcttcccg acaaaatttg	atctgctgac 660	ggcggataaa	tecegeegtg	agacactggt
40	cgccagcaac ttacgtggtg	ttcaggagat 720	ccgtcagagc	ctgcactgcc	gtctgcccgt
40	ctgacacggc ggataaaaaa	tggatctgct 780	gaacggcttt	gccgcgctgt	tccattcact
45	gaccgcgatg tgacggctgg	cgatcctcgg 840	cgtcacattt	acccgccgcg	cccatgaaag
	cgcagcgaac ggcgctgtcg	tgggggcttt 900	ctggcagacg	tgggtacaac	aggtgaacct
50	gatctggtgc cttctcccgt	tegcacaaac 960	cggtgctgct	ccccgcagcg	ctgtgttcag

### WO 2005/097823 PCT/EP2005/003972 361/370

	cagatgcagg ggacggtgag	gaacaggaga 1020	aatcgtcacc	gcactgctcg	ccgcattgct
5	aacatggatg tggccaggtg	taatgctgcg 1080	tggcgtctgg	ctcacatcct	cgctacagcg
10	gatgatattt ctcgctggca	tcacgcagtc 1140	cgccgcccgc	cagtacggac	tgggtaacag
10	acctggcctc ggaagtcctg	tggtggagac 1200	gacgccgtat	tttactcgcc	gcctcttccc
15	ctggctgagc ccggcgcagg	cgaacctggc 1260	gggtgaaaac.	agcgtctggc	tgaacagctc
,	ctgaccgcct aagctggcac	tttccacctg 1320	tggcgcggca	ctggcggcat	tgatggtcgg
20	cattattaca taaagccttt	atcagaactg 1380	gcagtctggc	gttaacgtac	tggcacaagc
25	atggacgtac gccattgctt	caccaccgca	gggaacggat	gaattcggca	atctgcaatt
20	aacccggtac ttttctggcg	gcgatgccac 1500	cctggcctat	ggtgattatc	gcgatcacgg
30	gatatgggat ctacattcag	tgtaccaggg 1560	cgcccgcgta	gggccgtatg	tggagcaaac
	cttcttgagc tctaaacatt	agcgttatct 1620	cccctcgtta	atgaacggcc	tgatccggga
35	gccccgccag gatggaagac		aaagctcgct	gtgctgcgcg	tagtgcgcat
40	aaaagtgggc gagcaatgaa	gcaacaacga 1740	ggcggtaaaa	cagtacatgg	cacggcgctg
-10	tttcacggcc tgcgctggag		tcaġgcgcaa	ctgatggtgc	atctggacta
45	cacaccgact ccgctggacc	ggcacgcgca 1860	gcgccaaagc	agcgacagcg	atgctgtcag
	ccctatgata catataccag		taatgcgcag	caggaactga	gcaagctgcc
50	cgtgtctacc tttgaatttg		caccaaagca	ttaagcgtgt	tgcccgccga

## WO 2005/097823 PCT/EP2005/003972 362/370⁻

	cgcgaccagg tgaaaaactg		cttcgacaac	gtgttcgtcg	ccggtaatga
5		agttcctcac	ccgctatgga	ctgcaaagct	attttgtcaa
		agctgaccgc	gctggattcg	tgggtactga	acctgacgca
10	tacagcgagg catcagtgac		agagatccag	cgccatatca	ccgaacagta
15	tataccgcca tgaggccatg		cggaatggat	aacctcaacg	tccgtgacta
	teggegetga ceagegtgeg		ggagcagatt	atcagcggcg	atcagccatt
20	ctgacggcgc ggatgataag		tacccacgcg	ctgacgctct	ccggcaaact
	gcgagggaag ggggcatgag		tgagatggat	taccgcctgt	tatcccggct
25 .	ttcgcaccgg gctacaggcc		actggaggag	caaaaggaca	aggcgagtac
30	gtgtaccagc ctcgccagtg	aactgaccga 2580	gctgcaccgt	tacctgctgg	cgatccagaa
	ccggggaaat cagcgatcca	cggcgctgaa 2640	agcagtacag	ctacggctgg	atcaaaacag
35	atcttcgcca ctgggtaggt		ggcaaaaacc	ctgcctgcgc	ctcttaaccg
	aagctcgcgg catggaagtg		gcatgtggtg	atggtggaag	ccgttcgtta
40	gactggcgcg ctatccgttt		gaaacccttc	aacgagcagc	ttgccgataa
45	aatccgcgcg taaaccggat	ccacacagga 2880	tgcctcactg	gattcgtttg	aacgtttctt
	ggcattctgg cgatctgacc	acaatttcta 2940	caagaacaac	ctgcgcctgt	tccttgaaaa
50	. tttggcgacg ggataccgcg	acggcagagt 3000	gttaatccgt	gaagatatcc	ggcagcaact

		aaaa tgcc		gcga 30		tt c	ttca	gcca	g ca	gaac	gggc	tgg	gcgc	aca	
5		accg ccag				gg c	aata	agcg	g cg	cagc	gtac	tta	acct	gga	,
10		gact catg		gcca 31		cg  c	aact	acac	c gc	ccat	ctgg	tct	ggcc	gaa	
10		ggca cagt		aaag 32		ct g	acgc	tgat	t gg	cacc	agcg	gca	gagc	acc	
15		ttca caat		gacc 33		gc g	cagt	tccg	c ct	gttc	ggcg	cgg	gcca	gtt	
		agtg: ccag		cctt [*] 33		gt g	cgct	ttaa	c gt	ggac	ggcg	gcg	caati	ggt	
20		gtgg: ttta		ccga 34:		aa c	ccgt	tcac	c gg	cggt	ctgt	tca	gaat	gtt	
25	gata 3432	acgt† 2	tgt (	at								٠			
	<210 <400		159 - 159	<211	> 72	25 <	212>	PR	r <23	13>	Escl	neri	chia	col	i.
30	Met Gly 1	Arg	Ile	Asn ·		Ile	Leu	Trp	Ser		Thr	Val	Leu	Leu	
	Τ		-		5					10					15
35	Leu Asp	Asn	Ser	Gln	Val	Ser	Val	Ala	Lys	Tyr	Ser	Asp	Asp	Asp	Asn
				20					25					30	
40	Glu Gln	Thr	Leu	Val	Val	Glu	Ala	Thr	Ala	Glu	Gln	Val	Leu	Lys	Gln
			35					40			,		45		
45	Pro Pro		Val	Ser	Val	Ile	Thr	Ser	Glu	Asp	Ile		Lys	Thr	Pro
		50					55					60			,

Val Asn Asp Leu Ser Asp Ile Ile Arg Lys Met Pro Gly Val Asn

50

Leu

.

75

80

Thr Gly Asn Ser Ala Ser Gly Thr Arg Gly Asn Asn Arg Gln Ile 5 Asp 85 90 95

70

65

Ile Arg Gly Met Gly Pro Glu Asn Thr Leu Ile Leu Ile Asp Gly Val  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ 

Pro Val Thr Ser Arg Asn Ser Val Arg Tyr Ser Trp Arg Gly Glu
15 Arg
115 120 125

Asp Thr Arg Gly Asp Thr Asn Trp Val Pro Pro Glu Gln Val Glu 20 Arg 130 135 140

Ile Glu Val Ile Arg Gly Pro Ala Ala Ala Arg Tyr Gly Ser Gly
Ala
145
160

30 Ala Gly Gly Val Val Asn Ile Ile Thr Lys Arg Pro Thr Asn Asp Trp 165 170 175

35 His Gly Ser Leu Ser Leu Tyr Thr Asn Gln Pro Glu Ser Ser Glu Glu
180 185 190

40 Gly Ala Thr Arg Arg Ala Asn Phe Ser Leu Ser Gly Pro Leu Ala Gly
195 200 205

45 Asp Ala Leu Thr Thr Arg Leu Tyr Gly Asn Leu Asn Lys Thr Asp Ala
210 215 220

50 Asp Ser Trp Asp Ile Asn Ser Pro Val Gly Thr Lys Asn Ala Ala Gly

225 230 235

240

5 His Glu Gly Val Arg Asn Lys Asp Ile Asn Gly Val Val Ser Trp Lys

245 250 255

10 Leu Asn Pro Gln Gln Ile Leu Asp Phe Glu Val Gly Tyr Ser Arg Gln 260 265 270

15 Gly Asn Ile Tyr Ala Gly Asp Thr Gln Asn Ser Ser Ser Ala Val 275 280 285

20 Thr Glu Ser Leu Ala Lys Ser Gly Lys Glu Thr Asn Arg Leu Tyr Arg 290 295 300

25 Gln Asn Tyr Gly Ile Thr His Asn Gly Ile Trp Asp Trp Gly Gln Ser 305 310 315 320

30
Arg Phe Gly Val Tyr Tyr Glu Lys Thr Asn Asn Thr Arg Met Asn Glu
325
330
335

Gly Leu Ser Gly Gly Gly Glu Gly Arg Ile Leu Ala Gly Glu Lys
Phe
340
345
350

Thr Thr Asn Arg Leu Ser Ser Trp Arg Thr Ser Gly Glu Leu Asn Ile

355
360
365

Pro Leu Asn Val Met Val Asp Gln Thr Leu Thr Val Gly Ala Glu Trp
370 375 380

WO 2005/097823 PCT/EP2005/003972 366/370 Asn Arg Asp Lys Leu Asp Asp Pro Ser Ser Thr Ser Leu Thr Val Asn 385 390 395 400 5 Asp Arg Asp Ile Ser Gly Ile Ser Gly Ser Ala Ala Asp Arg Ser Ser 405 410 415 10 Lys Asn His Ser Gln Ile Ser Ala Leu Tyr Ile Glu Asp Asn Ile Glu 420 425 430 15 Pro Val Pro Gly Thr Asn Ile Ile Pro Gly Leu Arg Phe Asp Tyr Leu 435 440 445 20 Ser Asp Ser Gly Gly Asn Phe Ser Pro Ser Leu Asn Leu Ser Gln Glu 450 455 460 25

Leu Gly Asp Tyr Phe Lys Val Lys Ala Gly Val Ala Arg Thr Phe Lys 465 470 475

Ala Pro Asn Leu Tyr Gln Ser Ser Glu Gly Tyr Leu Leu Tyr Ser Lys

485
490
495

Gly Asn Gly Cys Pro Lys Asp Ile Thr Ser Gly Gly Cys Tyr Leu Ile
40 500 505 510

Gly Asn Lys Asp Leu Asp Pro Glu Ile Ser Val Asn Lys Glu Ile Gly

525

Leu Glu Phe Thr Trp Glu Asp Tyr His Ala Ser Val Thr Tyr Phe Arg 530 535 540

	,	Gln 545	L ·	) Tyr	· Gln	. Asn	Lys 550		· Val	. Ala	. Gly	7 Asp 555		Val	Ile	Gly
	5	560														•
		Thr Ala	Ala	Ser	Gly	Ala	Tyr	·Ile	Leu	Lys	Trp	Gln	Asn	Gly	Gly	Lys
	10					565					570	l				575
	*															
		Leu Glu	Val	Asp		Ile	Glu	Ala	Ser	Met	Ser	Phe	Pro	Leu	Val	Lys
	15				580					585					590	
		Arg	Leu	Asn	Trp	Asn	Thr	Asn	Ala	Thr	Trp	Met	Ile	Thr	Ser	Glu
	20	Gln		595					600					605		
,									•					000		
		Lys Asn	Asp	Thr	Gly	Asn	Pro	Leu	Ser	Val	Ile	Pro	Lys	Tyr	Thr	Ile
	25		610	-				615					620			
		Asn Asn	Ser	Leu	Asn	Trp	Thr	Ile	Thr	Gln	Ala	Phe	Ser	Ala	Ser	Phe
	30	625 640					630					635				
		010							~							
	35	Trp Arg	Thr	Leu	Tyr	Gly	Arg	Gln	Lys	Pro	Arg	Thr	His	Ala	Glu	Thr
		9				645					650				-	655
	40	Ser Ser	Glu	Asp	Thr	Gly	Gly	Leu	Ser	Gly	Lys	Glu	Leu	Gly	Ala	Tyr
		201			660					665					670	
	45	Leu	Val	Gly	Thr	Asn	Phe	Asn	Tyr	Asp	Ile	Asn	Lys	Asn	Leu	Arg
	43	Leu		675					680				•	685		
										,						
	50	Asn Ser	Val	Gly	Val	Ser	Asn	Ile	Leu	Asn	Lys	Gln	Ile	Phe	Arg	Ser
			690					695					700			

	Glu Gly Al	a Asn Thr T	yr Asn Glu	Pro Gly Arg	ı Ala Tyr Tyr Al	.a
5	Gly 705	7	10	715	- i	720
10	Val Thr Al	a Ser Phe 725				
15	<400> 160 atgagaatta	acaaaatcct			cherichia coli tagttgggtt	÷.
	gtatcagtag ggaagccacc	ccaaatactc 120	cgacgatgat	aatgacgaga	ctctggtggt	
20	gctgagcagg ggatattaaa	tattaaaaca 180	gcagccgggc	gtgtcggtta	ttaccagcga	
25 .	aagacccctc tgttaatctt	cggtaaacga 240	cctttcagat	attattcgta	aaatgcctgg	
	accggcaata tcgtggtatg		cacacgcggt	aataaccgcc	agatcgatat	
30	gggccggaaa taactccgtg	acaccttaat 360	tttaattgat	ggtgtaccgg	tgacgtcacg	
	cgttatagct gccaccggaa	ggcgtgggga 420	gcgtgatacc	cgcggtgaca	ccaactgggt	
35	caggttgagc ttcgggggcc	gtattgaagt 480	gatccgcggc	cctgcggcgg	cgcgctacgg	
40	gccggggggg	tggtgaacat 540	cattaccaaa	cgtcccacca	acgactggca	
	tcgttataca cgccaatttc		ggaaagtagc	gaagagggcg	ctacgcgtcg	
45	agccttagtg taacctgaat	ggcctctggc 660	tggtgatgct	cttaccacgc	gtttgtatgg	
	aaaacggat g cgcagccggg	ctgacagttg 720	ggatattaat	tctccggtcg	gtacgaaaaa .	

catgaagggg tacgtaacaa agatattaac ggcgttgtct cgtggaaatt

50

aaatccgcag 780

	cagattctcg gggcgatacg	atttcgaagt 840	cggatatagc	: cgccagggga	ı atatctatgc
5	cagaacagtt agagacgaac	cttccagtgc 900	agttaccgaa	agcctggcaa	aatccggcaa
10	cgcctgtacc gggacaaagt		tggcattacg	cataatggta	tctgggactg
	cgctttggtg attatccggc	tttattacga 1020	gaaaaccaat	aatacccgca	tgaatgaagg
15	ggtggtgaag gagttcctgg	gacgtatttt 1080	agcgggtgaa	aagtttacga	ccaatcgcct
	cgaaccagcg gctgaccgtt	gtgagcttaa 1140	tattcctttg	aatgtgatgg	ttgatcaaac
20	ggtgcagagt gacggtgaat	ggaaccgcga 1200	taagctcgat	gatccttcct	ctaccagcct
25	gacagagata aaatcattct	tcagcggtat 1260	ttctggctct	gctgcggatc	gcagcagtaa
	caaatcagtg gaatatcatt	cgctgtatat 1320	tgaagataac	attgagccgg	ttcctggcac
30	cccggcctgc cagtctgaat	gctttgatta 1380	tctcagcgac	tccggcggga	acttcagccc
	ctttcgcagg aacctttaaa	aattgggcga 1440	ttatttcaaa	gtcaaagcag	gggttgcccg
35	gccccaaacc caatggctgt	tgtatcaatc 1500	cagtgaaggc	tatctgctct	actcgaaagg
40	ccaaaagata cgatccggaa	ttacatcagg 1560	cgggtgctac	ctgatcggta	ataaagatct
	atcagcgtca cgcaagtgtg	ataaagaaat 1620	tggactggag	ttcacctggg	aagattacca
45	acctacttcc tatcgggcaa	gcaatgatta 1680	ccagaataag	atcgtggccg	gggataacgt
	accgcttcag ggtggacggt	gcgcatatat 1740	cctcaagtgg	cagaatggcg	ggaaagctct
50	atcgaagcca taccaatgcc	gtatgtcttt 1800	cccactggtg	aaagagcgtc	tgaactggaa

# WO 2005/097823 PCT/EP2005/003972 370/370

	acatggatga catcccgaaa		gcaaaaagac	accggtaatc	ctctgtcggt
5 .	tatactatca cagcttcaac	ataactcgct 1920	taactggacc	atcacccagg	cgttttctgc
10	tggacgttat tgaagatact		aaaaccgcgt	actcatgcgg	aaacccgcag
	ggcggtctgt cttcaattac		gctgggcgct	tattcactgg	tggggacgaa
15	gatattaata taaacagatc	aaaatctgcg 2100	tcttaatgtc	ggcgtcagta	atatcctcaa
	ttccgatctt ttatgccgga		gaatacctat	aacgagccag	gccgggctta
20	gttaccgcat 2175	cattc			