

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

4. Rappresentazione dell'informazione

Architettura dei calcolatori [MN1-1143]

Corso di Laurea in INFORMATICA (D.M.270/04) [16-215] Anno accademico 2022/2023 Prof. Alessandro Capotondi a.capotondi@unimore.it

È vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

È inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia.

Capitoli Libri

- Capitolo 2, «Progettazione Digitale», Fummi et al.,
 McGraw Hill
- Capitolo 1, «Reti Logiche», Morris et al., Pearson

Rappresentazione binaria

- Tutta l'informazione interna ad un computer è codificata con sequenze di due soli simboli: 0 e 1
 - è facile realizzare dispositivi elettronici che discriminano fra due stati, molto meno se gli stati sono tanti
- L'unità elementare di informazione si chiama bit
 - da 'binary digit'
- Byte: sequenza di 8 bit
- word: sequenza di 32, 64, ... bits (4, 8, ... Bytes)
 - È la parola con cui un calcolatore sa lavorare
 - leggere/scrivere dalla memoria, elaborare...

Rappresentazione binaria

- word: sequenza di 32, 64, ... bits (4, 8, ... Bytes)
 - È la parola con cui un calcolatore sa lavorare
 - Processori a 8bit (parole da 1Byte): Intel8080, Zilog Z80

Processori a 16bit (parole da 2Byte): Intel 8086, Motorola 68000

Rappresentazione binaria

- word: sequenza di 32, 64, ... bits (4, 8, ... Bytes)
 - È la parola con cui un calcolatore sa lavorare
 - Processori a 32bit (parole da 4Byte): IA32, ARMv3-ARMv7, RISC-V

2006

1984

Processori a 64bit (parole da 8Byte): AMD64, IA64, SPARCv9, PowerPC

Sistema decimale posizionale (1)

 Un numero (es. 5) può essere rappresentato in molti modi:

- cinque, five, 5, V, XXXXX
- Rappresentazioni diverse hanno proprietà diverse
 - moltiplicare due numeri in notazione romana è molto più difficile che moltiplicare due numeri in notazione decimale
- Noi siamo abituati a lavorare con numeri rappresentati in notazione posizionale in base 10

Sistema decimale posizionale (2)

- La rappresentazione di un numero intero in base 10 è una sequenza di cifre scelte fra l'insieme {0 1 2 3 4 5 6 7 8 9}
- Il valore di una rappresentazione

$$a_N a_{N-1} \dots a_0$$
 , $a_{-1} a_{-2} a_{-3} a_{-4} \dots$

è dato da

$$a_{\rm N} \cdot 10^{\rm N} + a_{\rm N-1} \cdot 10^{\rm N-1} + \ldots + a_{1} \cdot 10^{1} + a_{0} \cdot 10^{0} \\ + \\ a_{-1} \cdot 10^{-1} + a_{-2} \cdot 10^{-2} + a_{-3} \cdot 10^{-3} + a_{-4} \cdot 10^{-4} + \ldots \\ (parte frazionaria)$$

- b = 10 è la base
- 10ⁱ è il peso della cifra a_i nel valore del numero
- Sistema decimale posizionale

Sistema decimale posizionale (3)

• 253 =
$$2 \times 100 + 5 \times 10 + 3 \times 1 =$$

= $2 \times 10^2 + 5 \times 10^1 + 3 \times 10^0$

• 23,47 = 2 x 10 + 3 x 1 + 4 x 0.1 + 7 x 0.01 =
= 2 x 10 + 3 x 1 + 4 x (1/10) + 7 x (1/100) =
= 2 x
$$10^{1}$$
 + 3 x 10^{0} + 4 x 10^{-1} + 7 x 10^{-2}

- Sistema posizionale (romani: sistema non posizionale)
- Sistema decimale (maya: sistema non decimale)

Sistema decimale posizionale (4)

Alcune proprietà di questa notazione :

- Il massimo numero rappresentabile con N cifre è 99....9 (N volte 9, la cifra che vale di più), pari a 10^N-1
 - es: su tre cifre il massimo numero rappresentabile è 999 pari a 10³-1
 =1000-1
- Quindi se voglio rappresentare K diversi numeri (cioè 0, 1, 2, ..., K-1) mi servono almeno almeno x cifre dove 10x è la più piccola potenza di 10 che supera K
 - **es**: se voglio 25 configurazioni diverse mi servono almeno 2 cifre perché 10²=100 è la più piccola potenza di 10 maggiore di 25

Notazione posizionale in base 2 (1)

- La rappresentazione di un numero intero in base 2 è una sequenza di cifre scelte fra {0,1}:
 - es: 10, 110, 1
- Il valore di una rappresentazione

b = 2 è la base, 2i è il peso della cifra ai nel valore del numero

Notazione posizionale in base 2 (2)

Esempi:

```
• 10 = 1*2^{1} + 0*2^{0} = 2

• 110 = 1*2^{2} + 1*2^{1} + 0*2^{0} = 4 + 2 + 0 = 6

• 1 = 1*2^{0} = 1
```

10 si legge "uno-zero" e non "dieci" !!!

Notazione posizionale in base 2 (3)

Per la base 2 valgono proprietà analoghe a quelle viste per la base 10:

- Il massimo numero rappresentabile con N cifre è 11....1 (N volte 1, la cifra che vale di più), pari a 2^N-1
 - es: su tre cifre il massimo numero rappresentabile è 111 pari a 2³-1 = 8 1
 = 7
- Quindi se voglio rappresentare K diversi numeri (cioè 0, 1, 2, ..., K-1) mi servono almeno almeno x cifre dove 2^x è la più piccola potenza di 2 che supera K
 - es : se voglio 25 configurazioni diverse mi servono almeno 5 cifre perché
 2⁵=32 è la più piccola potenza di 2 maggiore di 25

- Successione di divisioni per 2:
 - termina quando il quoziente è 0
- La conversione in binario si ottiene leggendo i resti determinati in ordine inverso

$$13_{10} = ()_2$$

- Successione di divisioni per 2:
 - termina quando il resto è 0
- La conversione in binario si ottiene leggendo i resti determinati in ordine inverso

$$13_{10} = ($$
 $1)_2$

- Successione di divisioni per 2:
 - termina quando il resto è 0
- La conversione in binario si ottiene leggendo i resti determinati in ordine inverso

$$13_{10} = (01)_2$$

Architettura dei calcolatori

16

- Successione di divisioni per 2:
 - termina quando il resto è 0
- La conversione in binario si ottiene leggendo i resti determinati in ordine inverso

$$13_{10} = (101)_2$$

- Successione di divisioni per 2:
 - termina quando il resto è 0
- La conversione in binario si ottiene leggendo i resti determinati in ordine inverso

$$13_{10} = (1101)_2$$

Architettura dei calcolatori

18

Somma pesata delle cifre binarie:

es.:
$$1101_2$$
 = $1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
= $8 + 4 + 0 + 1$
= 13_{10}

19

Numeri binari interi: esempi

0	0	8	1000	16	10000
1	1	9	1001	17	10001
2	10	10	1010	18	10010
3	11	11	1011		
4	100	12	1100		
5	101	13	1101		
6	110	14	1110		
7	111	15	1111		

Numeri binari interi: esempi(2)

```
2^{0} = 1
2^{1} = 2
2^{2} = 4
2^{3} = 8
2^{4} = 16
2^{5} = 32
2^{6} = 64
2^{7} = 128
```

```
2^{8} = 256

2^{9} = 512

2^{10} = 1024

2^{11} = 2048

2^{12} = 4096

....

2^{16} = 65536

....

2^{24} \cong 16 milioni
```

21

Aritmetica binaria

 Necessità di codificare nel mondo dei numeri binari ogni operazione aritmetica.

addizione:

```
0+0=0
0+1=1
1+0=1
1+1=0 col riporto di 1
```

sottrazione

```
0-0=0

0-1=1 col prestito di 1 dalla cifra precedente

1-0=1

1-1=0
```

Aritmetica binaria

 Necessità di codificare nel mondo dei numeri binari ogni operazione aritmetica.

addizione:

$$0+0=0$$

 $0+1=1$
 $1+0=1$
 $1+1=0$ col riporto di 1
 $0101 + 5_{10} + 0_{1$

sottrazione

```
0-0=0

0-1=1 col prestito di 1 dalla cifra precedente

1-0=1

1-1=0
```

Aritmetica binaria (2)

moltiplicazione:

• es.: per 2, 2^2 , 2^3 , ... \leftrightarrow shift (traslazione) verso <u>sinistra</u> di 1, 2, 3 bit

```
1101 \times 100 = 110100
(13 \times 4 = 52)
```

24

La rappresentazione dei numeri all'interno di un computer

- Usa la notazione binaria
- Ogni numero viene rappresentato con un numero finito di cifre binarie (bit)
- Numeri di 'tipo' diverso hanno rappresentazioni diverse
 - es. interi positivi, interi (pos. e neg.), razionali, reali, complessi

La rappresentazione dei numeri all'interno di un computer (1)

- Abbiamo già incontrato alcuni termini utili:
 - byte: una sequenza di 8 bit
 - word (parola): 2, 4, 8 byte (dipende dalla macchina) unità minima che può essere fisicamente letta o scritta nella memoria (ed elaborata)
- Tipicamente gli interi positivi si rappresentano usando 4 o 8 byte
 - Esistono varianti a 2 byte (es. il tipo short int in C)

LSB (Least Significant Bit)

La rappresentazione dei numeri all'interno di un computer (2)

- Alcuni punti importanti:
 - se uso 4 byte (32 bit) posso rappresentare solo i numeri positivi da 0 a 2³² 1, che sono molti ma non tutti!
 - se moltiplico o sommo due numeri molto elevati posso ottenere un numero che non è rappresentabile
 - es: vediamo cosa succede in base 10 con solo 3 cifre :

$$500 + 636 = 1136$$
 risultato 136

se uso solo 3 cifre non ho lo spazio fisico per scrivere la prima cifra (1) che viene 'persa', è un fenomeno chiamato **overflow**

La rappresentazione dei numeri all'interno di un computer (3)

- Interi positivi e negativi:
 - ci sono diverse convenzioni di rappresentazione
 - modulo e segno in cui il primo bit viene riservato al segno (1 negativo, 0 positivo) e gli altri 31 al modulo
 - Complemento a due
 - Complemento a uno (la trascuriamo)
 - rimane comunque il problema dell'overflow

La rappresentazione dei numeri all'interno di un computer (4)

Numeri relativi

Modulo e segno (es con 3 bit)

es.: $+2 \leftrightarrow 010 \text{ e} -2 \leftrightarrow 110$

0 segno + 1 segno -

- codifica semplice
- operazioni aritmetiche più complesse

Errato!

29

- Occorre differenziare tra i bit del numero e quelli di segno
- Bisogna codificare in modo diverso le operazioni aritmetiche.

La rappresentazione dei numeri all'interno di un computer (5)

Complemento a due (es con 4 bit)

es:
$$+5 = 0101$$
 Come si rappresenta -5 ??

- Partendo da +5 = 0101:
 - 1. si invertono gli 1 con gli 0: 1010
 - 2. si aggiunge 1:

$$1010 + 1 = 1011 = -5$$

$$-1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= -8 + 0 + 2 + 1 = -5$$

- Il primo bit non rappresenta solo il segno!
- Non occorre più pertanto differenziare i bit.

Esempio

Altre basi numeriche utilizzate

- Ottale (base 8): { 0, 1, 2, 3, 4, 5, 6, 7} (10↔8)
- Esadecimale (base 16): { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} (10↔16)
- Usate perché semplici conversioni da base 2 a base 8 o 16:
 - Partendo dal numero in base 2:
 - 1. Se ne raggruppano le cifre a blocchi di 3 (ottale) o 4 (esadecimale)
 - 2. Si convertono i singoli gruppi nella base di destinazione

Altre basi numeriche utilizzate

Esempio: 111000110101₂

Conversione in base 8

$$111 000 110 101 = 7065_8$$

Conversione in base 16

$$1110 0011 0101 = E35_{16}$$

Ulteriore sistema di codifica dei numeri

BCD (Binary-Coded Decimal)

- Si codificano in binario (4 bit) le singole cifre decimali.
- es.: 254

- nessun errore di conversione
- precisione dei calcoli decimali
- spreco di cifre
- usato nelle calcolatrici tascabili

https://en.wikipedia.org/wiki/Binary-coded_decimal

La rappresentazione dei numeri all'interno di un computer (6)

Razionali

- numero finito di cifre periodiche dopo la virgola
 - ad esempio 3.12 oppure 3.453
- rappresentazione solitamente su 4/8 byte

Rappresentazione in virgola fissa :

- riservo X bit per la parte frazionaria
- es : con 3 bit per la parte intera e 2 per quella frazionaria 011.11, 101.01

Parte intera

Parte frazionaria

La rappresentazione dei numeri all'interno di un computer (7)

- Come si converte in base 10 una rappresentazione in virgola fissa?
 - es:

101.01 =
$$1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} =$$

= $4 + 0 + 1 + 0 + 0.25 = 5.25$

dove
$$2^{-1} = 1/2 = 0.5$$
, $2^{-2} = 1/2^2 = 0.25$
e in generale $2^{-n} = 1/2^n$

36

La rappresentazione dei numeri all'interno di un computer (8)

- Problemi della rappresentazione in virgola fissa
 - overflow
 - underflow
 - quando si scende al di sotto del minimo numero rappresentabile
 - es. vediamo in base 10, con 2 cifre riservate alla parte frazionaria
 0.01 / 2 = 0.005 non rappresentabile usando solo due cifre!!!

La rappresentazione dei numeri all'interno di un computer (9)

- Problemi della rappresentazione in virgola fissa (cont.)
 - spreco di bit per memorizzare molti '0' quando lavoro con numeri molto piccoli o molto grandi
 - **es**. in base 10, con 5 cifre per la parte intera e 2 cifre per la parte frazionaria 10000.00 oppure 00000.02
 - i bit vengono usati più efficientemente con la notazione esponenziale o floating point (virgola mobile)

La rappresentazione dei numeri all'interno di un computer (10)

- Rappresentazione in virgola mobile
 - idea:
 - <u>quando lavoro con numeri molto piccoli</u> uso tutti i bit disponibili per rappresentare le cifre dopo la virgola
 - quando lavoro con numeri molto grandi le uso tutte per rappresentare le cifre in posizioni elevate
 - questo permette di rappresentare numeri piccoli con intervalli minori fra loro rispetto ai numeri grandi
 - questo riduce gli errori nel calcolo a parità di bit utilizzati

La rappresentazione dei numeri all'interno di un computer (11)

- Rappresentazione in virgola mobile (cont.)
 - ogni numero N è rappresentato da una coppia (mantissa M, esponente E) con il seguente significato

$$N = M * 2^E$$

- esempi:
 - 1. <u>in base 10</u>, con 3 cifre per la mantissa e 2 cifre per l'esponente riesco a rappresentare

```
349\ 000\ 000\ 000 = 3,49\ *\ 10^{11} con la coppia (3.49,11) perché M = 3.49 ed E = 11
```

La rappresentazione dei numeri all'interno di un computer (12)

- Rappresentazione in virgola mobile (cont.)
 - esempi:
 - 2. <u>in base 10</u>, con 3 cifre per la mantissa e 2 per l'esponente riesco a rappresentare

```
0.000\ 000\ 002 = 2.0\ ^*\ 10^{-9} con la coppia (2.0,-9) perché M = 2.0 ed E = -9
```

 sia 0.000 000 002 che 349 000 000 000 non sono rappresentabili in virgola fissa usando solo 5 (3M+2E) cifre decimali

Lo standard IEEE 754

- Insieme di rappresentazioni di valori numerici e simbolici usato per floating point computation
 - Realizzabile attraverso software (librerie) o hardware
 - Vari tipi di precision
- float e double in C seguono questo standard
- Il numero viene formato con
 - 1. un bit di segno
 - 2. un esponente
 - 3. la mantissa

Lo standard IEEE 754

- Si specificano 3 parametri:
 - P: precisione o numero di bit che compongono la mantissa
 - E_{max}: esponente massimo
 - E_{min}: esponente minimo
- Ad esempio per la precisione singola (32 bit)
 - **P**=23, \mathbf{E}_{max} =127 e \mathbf{E}_{min} =-126
 - 1 bit segno; 8 bit esponente;

- La mantissa viene normalizzata scegliendo l'esponente in modo che sia sempre nella forma 1,xxxx...
- L'esponente è polarizzato, ovvero ci si somma E_{max}
 - costante di polarizzazione o bias

Esempio

- $0.15625_{(10)} = \frac{1}{8} + \frac{1}{32} = 2^{-3} + 2^{-5} = 0.00101_{(2)}$
- $0.00101_{(2)} = 1.01_{(2)} \times 2^{-3}$ Normalizzazione della mantissa
 - Parte intera della mantissa (prima cifra) sempre diversa da zero
- In base 2 l'unica cifra diversa da 0 è 1 → posso non memorizzarla
 - Parte frazionaria della mantissa: $.01_{(2)}$
 - Esponente: -3
 - Esponente polarizzato (precisione singola): -3 + 127 = 124

Esempio

- $0.15625_{(10)} = \frac{1}{8} + \frac{1}{32} = 2^{-3} + 2^{-5} = 0.00101_{(2)}$
- $0.00101_{(2)} = 1.01_{(2)} \times 2^{-3}$
- Per la precisione doppia (64 bit)
 - **P**=52, **E**_{max}=1023 e **E**_{min}=-1022 (1 bit *segno*; 11 bit *esponente*)
 - Parte frazionaria della mantissa: .01₍₂₎
 - Esponente: -3
 - Esponente polarizzato (precisione singola): -3 + 1023 = 1020

Lo standard IEEE 754

• Per la precisione singola usare le seguenti relazioni:

	esp	M	numero
Numero normalizzato	0 <esp<255< td=""><td>qualsiasi</td><td>(-1)^s (1,M) 2^{esp-127}</td></esp<255<>	qualsiasi	(-1) ^s (1,M) 2 ^{esp-127}
Numero denormalizzato	esp=0	M ≠ 0	(-1) ^s (0 ,M) 2 ⁻¹²⁶ Riduce la perdita di precisione se underflow
Zero	esp=0	M = 0	(-1) ^s 0
Infinito	esp=255	M = 0	(-1) ^s ∞
NaN (Not a Number)	esp=255	M ≠ 0	NaN

Range e precisione

I numeri piu' piccoli (vicini allo zero) rappresentabili

```
• Esp=1, M=0 \Rightarrow \pm 2^{-126} \approx \pm 1.17549 \times 10^{-38} (norm. singola) \pm 2^{-1022} \approx \pm 2.22507 \times 10^{-308} (norm. doppia) 
• Esp=0, M=00...1 \Rightarrow \pm 2^{-149} \approx \pm 1.40130 \times 10^{-45} (denorm. singola) \pm 2^{-1074} \approx \pm 4.94066 \times 10^{-324} (denorm. doppia)
```

I numeri finiti piu' grandi (Iontani dallo zero) rappresentabili sono

• Esp=254, M=11...1
$$\rightarrow \pm (1-2^{-24}) \times 2^{128} \approx \pm 3.40282 \times 10^{38}$$
 (prec. **singola**) $\pm 1.79769 \times 10^{308}$ (prec. **doppia**)

Esempio

 Voglio rappresentare il numero -36,47 usando la convenzione IEEE754, ovvero vedere come viene realmente memorizzata la variabile

float
$$f=-36.47$$

 Prima di tutto calcolo la rappresentazione binaria. A tal fine calcolo parte intera e frazionaria mediante iterazione di divisioni/moltiplicazioni per 2.

Esempio (2)

(parte intera)

36 div	<i>r</i> 2	(resto)		
18	18		4	
9		0		
4		1		
2		0		
1		0		
0		1		

(parte frazionaria)

0,47 x 2	1		0	,94
0,94 x 2			1	,88
0,88 x 2			1	,76
0,76 x 2			1	,52
0,52 x 2			1	,04
0,04 x 2			0	,08
		•••		•••

$$-36.47_{10} = -100100,011110..._{2} = -1,0010001111x2^{5}$$

Ora ho tutti gli elementi da collocare nella rappresentazione.

Esempio (2)

Si continua finché la parte frazionaria è diversa da zero (o finché ci sono cifre nella rappresentazione...)

(parte intera)

36 div 2		(resto)	
18		0	4
9		0	
4		1	
2		0	
1		0	
0	,	1	

(parte frazionaria)

$0,47 \times 2$		0	,94	
0,94 x 2		1	,88	
0,88 x 2		1	,76	
0,76 x 2		1	,52	
0,52 x 2		1	,04	
0,04 x 2		0	,08	7
	•••		•••	

$$-36.47_{10} = -100100,011110..._{2} = -1,0010001111x2^{5}$$

Ora ho tutti gli elementi da collocare nella rappresentazione.

Esempio (3)

Rivediamo l'esempio di prima

•
$$0.15625_{(10)} = \frac{1}{8} + \frac{1}{32} = 2^{-3} + 2^{-5} = 0.00101_{(2)}$$

(parte frazionaria)

0,15625 x 2		0	,3125
0,3125 x 2		0	,625
0,625 x 2		1	, 25
0,25 x 2		0	, 5
0,5 x 2	7	1	,00

Un tool online per giocare con IEEE-754

https://www.h-schmidt.net/FloatConverter/IEEE754.html

- Vogliamo rappresentare i giorni della settimana :
 - {Lu, Ma, Me, Gio, Ve, Sa, Do}
 - usando sequenze 0 e 1
- Questo significa costruire un codice, cioè una tabella di corrispondenza che ad ogni giorno associa una opportuna sequenza
- In principio possiamo scegliere in modo del tutto arbitrario....

Una possibile codifica binaria per i giorni della settimana

Lunedì 0100010001

Martedì 001

Mercoledì 1100000

Giovedì 1

Venerdì 101010

Sabato 111111

Domenica 000001

- Problema: la tabella di corrispondenza fra codifiche tutte di lunghezza diversa
 - spreco di memoria
 - devo capire come interpretare una sequenza di codifiche
 - 110000011 = Me Gio Gio
 - 110000011 = Gio Gio Do Gio
- Soluzione: si usa un numero di bit uguale per tutti, il minimo indispensabile

- Per rappresentare 7 oggetti diversi servono almeno 3 bit (minima potenza di due che supera 7 è 8= 2³) quindi :
 - 000 Lunedì
 - 001 Martedì
 - 010 Mercoledì
 - 011 Giovedì
 - 100 Venerdì
 - 101 Sabato
 - 110 Domenica
 - 111 non ammesso

Architettura dei calcolatori

Codice binario

Codice binario - Funzione dall'insieme delle 2ⁿ configurazioni di n bit ad un insieme di M informazioni (*simboli alfanumerici*, *colori*, *eventi*, *stati interni*, ecc.).

Condizione necessaria per la codifica: $2^n >= M$ (se vi sono M simboli da codificare, occorrono almeno $2^n >= M$ differenti configurazioni binarie)

Proprietà di un codice

Codice: rappresentazione convenzionale dell'informazione.

La scelta di un codice è condivisa da sorgente e destinazione, ed ha due gradi di libertà:

- il numero n di bit (qualsiasi, purché 2ⁿ >= M)
- l'associazione tra configurazioni e informazioni

A parità di n e di M, le associazioni possibili sono:

$$C = 2^{n!} / (2^{n}-M)!$$

n.bit, n.informazioni	associazioni possibili
n = 1, M = 2	C = 2
n = 2, M = 4	C = 24
n = 3, M = 8	C = 40.320
n = 4, M = 10	C = 29.059.430.400

Codici ridondanti e codici non ridondanti

- Poichè 2ⁿ ≥ M, dato M il n. minimo di bit è n_{min} = [lg₂ M]
- Un codice che utilizza un numero n > n_{min} è detto codice ridondante

Rappresentazione di caratteri e stringhe

- Tipologia di caratteri:
 - alfabeto e interpunzioni: A, B, .., Z, a, b, .., z, ;, :, ", ...
 - cifre e simboli matematici: 0, 1, ..., 9, +, -, >, ...
 - caratteri speciali: £, \$, %, ...
 - caratteri di controllo: CR, DEL,
- Le stringhe sono sequenze di caratteri terminate in modo particolare.
- I caratteri sono un insieme finito di oggetti e seguono la strategia vista per i giorni della settimana

Rappresentazione di caratteri e stringhe (2)

- ASCII (American Standard Code for Information Interchange):
 - Codice a 7 bit (standard)
- ASCII esteso a 8 bit (non standard)

```
es.: A 01000001( 00101000
```

• **UNICODE**: su 16 bit (65536 diverse configurazioni): più recente, permette di rappresentare anche alfabeti diversi e simboli per la scrittura di lingua orientali.

Rappresentazione di caratteri e stringhe (3)

ASCII a 7 bit

I 7 bit sono suddivisi logicamente in due campi di 3 e 4 bit.

I primi tre bit rappresentano categorie di caratteri, mentre gli ultimi quattro servono a rispettare l' ordinamento dei caratteri all' interno di ogni categoria.

Rappresentazione di caratteri e stringhe (4)

Categorie

1°bit	2°bit	3°bit	Caratteri rappresentati
0	1	0	simboli di punteggiatura, simboli speciali e di operazione
0	1	1	numerali
1	0	0	maiuscole (A - O)
1	0	1	maiuscole (P - Z)
1	1	0	minuscole (a - o)
1	1	1	minuscole (p - z)

Rappresentazione di caratteri e stringhe (5)

- 4°, 5°, 6°, 7° bit
- Nei numerali sono costituiti dalla codifica in binario su 4 bit delle cifre decimali (codice BCD).
- Per i caratteri dell'alfabeto la codifica è tale da rispettare l'ordinamento alfabetico

Esempi

b (2ª lettera) : 110 0010

B: 100 0010

Cos'è un'immagine digitale

Un'immagine digitale può essere vista come una funzione bidimensionale f(x,y), dove f rappresenta l'intensità o livello di grigio dell'immagine in quel punto: 0 rappresenta il **nero**, 255 il **bianco**

Un'*immagine* è quindi una **matrice** di elementi chiamati **pixels** (picture elements).

La natura fisica del suono

onde che trasportano energia lontano dalla sorgente (oggetto che

vibra)

Rappresentazione di audio

- E' possibile rappresentare il suono con la sua forma d'onda
- Al calcolatore, basta rappresentare una opportuna sequenza di campioni della forma d'onda

Evaluation (it is your moment)

Collegati

https://menti.com

Inserisci il codice

5857 4380

Mentimeter

Oppure usa il QR code

https://www.menti.com/alsu4t2mc2uq