

AD-A094 347

ROSENSTIEL SCHOOL OF MARINE AND ATMOSPHERIC SCIENCE --ETC F/G 8/8
A STUDY OF THE FEASIBILITY OF INCREASING CIRCULATION IN THE WAT--ETC(U)
JUN 73 J F MICHEL

UNCLASSIFIED UM-RSMAS-73044

NL

For I
AD A
094517

END
DATE
TIME
2-81
DTIC

Ordered
2/25/80

LEVEL

①
B.S.

PY-79
OSPREY

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL OF MARINE AND ATMOSPHERIC SCIENCE

AD A094347

REPORT

June 1973

A STUDY OF THE FEASIBILITY OF INCREASING CIRCULATION
IN THE WATERWAYS OF THE COLLIER BAY AREA
MARCO ISLAND, FLORIDA

by

John F. Michel, Associate Professor
Division of Ocean Engineering

DTIC
ELECTED
FEB 2 1981
C

DTIC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

MIAMI, FLORIDA 8049 9

3 061

ROSENSTIEL SCHOOL OF MARINE AND ATMOSPHERIC SCIENCE
UNIVERSITY OF MIAMI

①
DTIC
ELECTED
FEB 2 1981
S C

REPORT

June 1973

A STUDY OF THE FEASIBILITY OF INCREASING CIRCULATION
IN THE WATERWAYS OF THE COLLIER BAY AREA,
MARCO ISLAND, FLORIDA

by

① John F. Michel, Associate Professor
Division of Ocean Engineering

for

The Deltona Corporation
Miami, Florida

Rickenbacker Causeway
Miami, Florida 33149
UM-RSMAS-73044

F. G. Walton Smith
Dean

Table of Contents

	<u>Page</u>
Purpose of the Study	1
Description of the Area	1
Description of the Systems	1
Figure 1 - Plan View of Systems	2
Approach to the Problem	3
The Numerical Model	3
Figure 2 - Schematic Diagram of the Numerical Model	6
Application of the Model	7
Figure 3 - Tidal Relations for Landmark and Castaways Waterways for Neap Tide	9
Figure 4 - Tidal Relations for Landmark and Castaways Waterways for Spring Tide	10
Table 1 - Summary of Model Operation	11
Conclusions	11
Recommendations	12
Appendix	13

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes _____	
Avail and/or Dist	Special
A	

A STUDY OF THE FEASIBILITY OF INCREASING CIRCULATION
IN THE WATERWAYS OF THE COLLIER BAY AREA
MARCO ISLAND, FLORIDA

Purpose of the Study

This study was designed to determine the feasibility of improving the circulation of the Landmark and Castaways Waterway systems at Marco Island. In view of the fact that many of the waterways had already been built, only minor changes in configuration could be considered.

Description of the Area

Marco Island is located on the Gulf Coast of Florida at Latitude 25°56'N. The island itself is approximately four miles long and is isolated from the mainland by the Marco River. Major inlets consisting of Big Marco Pass to the north and Caxambas Pass to the south provide good exchange between the River and the Gulf. The tide is well mixed and has a mean range of 1.7 feet and a spring range of 2.6 feet.

Description of the Systems

The waterways systems are shown on Figure 1. The Landmark system has a planned surface area of approximately 2200 acres and is tributary to Caxambas Pass on the south. The longest distance to Caxambas Pass is 11,000 feet.

The Castaways system has an area of 2400 acres and drains into the Marco River near Big Marco Pass via Collier Bay. Its maximum distance to the Marco River is 9,500 feet.

The landward ends of the two waterways are separated only by State Road 92 and a tier of lots on both sides, a total of 350 feet.

P - 1

FIGURE 1 - PLAN VIEW OF SYSTEM

Approach to the Problem

In attacking this problem, it was immediately evident that the proximity of the landward ends of the waterways might be used to advantage by connecting them at one or more points. A quick study of the records of tide gauges located near the mouths of the system showed a phase difference. This indicated that a differential head would exist across State Road 92. This head would be available to promote interchange between the two systems. The actual extent of the interchange could be predicted by means of a numerical model.

The Numerical Model

This model was based on the application of Manning's formula to a series of separate reaches in the system. Reaches are selected so that their geometry can be considered to be uniform throughout. For each reach, a storage area and a resistance coefficient is determined.

The following relationships will then hold for the nth reach for continuity and energy loss:

$$\left(\frac{Q_n - Q_{n+1}}{A_n} \right) = \frac{\Delta H}{\Delta t} \quad (1)$$

where:

Q_n = flow into the reach (ft^3/s)

Q_{n+1} = flow out of the reach (ft^3/s)

A_n = storage area (ft^2)

ΔH = increase in surface elevation (ft)

Δt = interval of time (s)

The head loss in the reach is related to the flow by

$$\eta_n - \eta_{n+1} = k_n \left(\frac{Q_n^2 + Q_{n+1}^2}{2} \right) \quad (2)$$

where:

η_n = water surface elevation at entrance (ft)

η_{n+1} = water surface elevation at exit (ft)

k_n = resistance coefficient for the reach (s/ft^2)

where: k_n is derived from Manning's formula

$$u_n = \frac{1.486}{n} R_n^{2/3} S_n^{1/2} \quad (3)$$

and:

$$\bar{Q}_n = \left(\frac{Q_n^2 + Q_{n+1}^2}{2} \right)^{1/2} = u_n a_n \quad (4)$$

where: \bar{Q}_n = the root mean square discharge in the reach (ft^3/s)

u_n = velocity averaged vertically and horizontally (ft/s)

1.486 = a conversion factor from metric to English units.
 $(3.281 \text{ ft/m})^{1/3}$

n = Manning's roughness coefficient ($ft^{-1/6}$)

R_n = the hydraulic radius (ft) which is the cross sectional area of the channel, a_n (ft^2) divided by the wetted perimeter, p_n (ft)

S = the hydraulic gradient (ft/ft)

which for uniform flow

$$= \Delta \eta / L_n \text{ where } L_n = \text{the length of the reach (ft)}$$

Substituting in Equation (4) and squaring we have

$$\bar{Q}_n^2 = \left(\frac{1.486}{n} \right)^2 \frac{a_n^{10/3}}{P_n^{4/3}} \frac{\Delta T}{L_n} \quad (5)$$

which gives:

$$k_n = \frac{n^2 P_n^{4/3} L_n}{2,208 a_n^{10/3}} \quad (6)$$

Obviously in an area affected by tide k_n will vary with time as P_n and a_n vary with the water surface elevation. In the present model, this variation was found to be insignificant due to the large depth (20 ft) of the canals; so it was ignored.

Figure 2 shows a schematic diagram of the waterways systems as modelled.

The boundary conditions are prescribed by the water surface elevations at the mouth and the geometry.

In analyzing these elevations, the raw data from tide gauges is smoothed to eliminate transient effects such as wind set up by utilizing a tidal component analysis involving a least squares fit to isolate the mean tide level and sine and cosine coefficients for the four principal frequencies of tide producing forces according to the formula:

$$\eta = \eta_0 + \sum_{n=1}^4 (S_n \sin \sigma_n t + C_n \cos \sigma_n t)$$

FIGURE 2.
SCHEMATIC DIAGRAM OF NUMERICAL MODEL

where:

η = tide level at time t

η_0 = mean tide level

s_n = coefficient for the sine term for the nth frequency

c_n = coefficient for the cosine term for the nth frequency

σ_n = frequency or $2\pi/T_n$ where T_n is the period of the nth frequency

For this study the analysis included components having periods as shown: M2-12.42 hours, S2-12.00 hours, K1-23.93 hours and O1-25.82 hours.

The components are used to compute typical spring and neap tides to be used in the model. In the case of this study hourly values were computed for 26 hour periods at spring and neap tide.

In operating the model, the first approximation for discharges is based on a frictionless condition. The head loss and storage volume is then recomputed by Equations (1) and (2) on the basis of these flows to determine a second approximation. This is averaged with the preceding value and the process is repeated until a reasonable tolerance is obtained.

Application of the Model

On the basis of using the tidal differences in the two waterway systems to increase flushing, the model as shown on Figure 2 was revised to provide a channel 20 feet wide and 10 feet deep connecting Reach No. 105 (Castaways Waterway) of the Castaways system with Reach No. 510 (Shenandoah Waterway) of the Landmark system. A similar channel was provided to connect Reach No. 107 (Copperfield Waterway) with Reach No. 508 (Landmark Waterway). These connections are shown by dotted lines on Figure 2. These channels were found to have a resistance coefficient, $k = 100,000 \times 10^{-12}$,

considerably more than the total resistance of all channels in the network.

Operation of the revised model utilizing existing data from the David Key and Yacht Club tide gauges and allowing 25% of the velocity head for entrance and exit losses showed that the discharge through the canals would be more than trebled on both spring and neap tides.

The situation was further improved by simulating gates at the channels to allow flow only to the north. Under these conditions, it was shown that the net rate of exchange per 24 hour period would exceed 130×10^6 cubic feet on a spring tide and 90×10^6 cubic feet on a neap tide.

Since the tidal data used could not be assumed to reflect the exact conditions in the waterways, two recording gauges were installed in the waterways themselves and operated during the period 1-26 April 1973. These gauges were accurately referenced to each other and to Sea Level Datum, 1929, by differential leveling.

These data were then reduced and tides were reconstructed for 10 April 1973 to produce a neap tide and for 17 April to produce a spring tide. Plots of these are shown on Figures 3 and 4.

The model was then operated utilizing the reconstructed tides. Conditions with and without gates were assumed and volumes of net flow toward the north were computed. From these volumes and the total volume of the waterway systems: Castaways - 145×10^6 ft³, Landmark - 131×10^6 ft³, the exchange time for the total volumes was computed.

FIGURE 3 - TIDAL RELATIONS FOR LANDMARK AND CASTAWAYS WATERWAYS
FOR NEAP TIDE

50 100 PLOT MTS

10

FIGURE 4 - TIDAL RELATION FOR LANDMARK AND CASTAWAYS WATERWAYS
FOR SPRING TIDE

The results of operating the model are shown in detail in the Appendix. A summary is shown on Table 1.

TABLE 1

	Net North Flow (ft ³ /day x 10 ⁻⁶)	Time to Exchange Total Waterway Volume (days)
1. Without Gates		
a. Castaways System		
(1) Neap Tide	81	1.80
(2) Spring Tide	33	4.39
b. Landmark System		
(1) Neap Tide	87	1.51
(2) Spring Tide	21	4.49
2. With Gates		
a. Castaways System		
(1) Neap Tide	112	1.31
(2) Spring Tide	96	1.53
b. Landmark System		
(1) Neap Tide	117	1.12
(2) Spring Tide	92	1.43

Conclusions

As a result of this study, we conclude that the circulation of the Castaways and Landmark Waterway systems can be greatly improved by the construction of two concrete channels 20 ft. wide by 10 ft. deep by 350 feet long under State Road 92. These channels will provide total exchange in one to three days which will provide exceptionally good water quality as compared to the configuration as currently planned.

The installation of gates that will allow flow only to the north will further improve the circulation, but the cost of constructing,

maintaining and operating these gates will outweigh the benefits gained.

Recommendations

We recommend as follows:

1. That the westernmost channel connecting the existing Landmark and Copperfield Waterways be constructed as soon as practicable.
2. That after this is constructed the flows in the existing system be analyzed in detail to check the authenticity of the model.
3. That a channel connecting Shenandoah Waterway with Castaways Waterway be included in future plans for developing the Collier Bay Tract.
4. That the design of both channels be modified on the basis of results of the analysis recommended in Paragraph 2 above. At this stage it may be considered desirable to add tide gates.

APPENDIX**RESULTS OF MODEL RUNS****CONTENTS**

Explanation of Format	I
TABLE A - Castaways Waterway Without Tide Gate	II
TABLE B - Landmark Waterway Without Tide Gate	III
TABLE C - Castaways Waterway With Tide Gate	IV
TABLE D - Landmark Waterway With Tide Gate	V

Explanation of Format

These tables show flow conditions for neap and spring tides.

The columns are as follows:

Column

- | | |
|--------|--|
| 1 & 7 | Time in hours after 0000 hrs. on 1 April 1973 |
| 2 & 8 | Tide height above MSL 1929 datum at mouth of system |
| 3 & 9 | Flow in ft ³ /s through the channel. Flow to the north is positive. |
| 4 & 10 | Flow past Station 1 marked C 1 and L 1 on Figure 2 for Castaways and Landmark respectively |
| 5 & 11 | Flow past Station 2 |
| 6 & 12 | Flow past Station 3 |

CPN, CPS

216	-102	757	757	757	1514	384	121	1915	1915	1915	1915	1915	1915
217	-117	1311	1468	1365	3062	285	130	1109	1014	1014	1014	1014	1014
218	-110	1611	1537	1585	3012	266	111	1060	811	811	811	811	811
219	-82	1732	1437	1626	2541	367	73	1200	1466	1466	1466	1466	1466
220	-44	1703	1274	1557	2901	368	25	2126	1792	1792	1792	1792	1792
221	5	1547	1059	1379	1742	389	17	1955	1514	1514	1514	1514	1514
222	47	1259	817	1105	1283	390	39	1339	1102	1102	1102	1102	1102
223	75	900	605	797	977	391	36	778	746	746	746	746	746
224	88	450	313	402	517	362	6	1655	1359	1359	1359	1359	1359
225	84	-318	-276	-304	-519	393	44	2217	1691	1691	1691	1691	1691
226	68	0	168	58	470	394	101	2249	1649	1649	1649	1649	1649
227	47	636	856	712	1880	395	150	1918	1402	1402	1402	1402	1402
228	30	989	1167	1051	2477	396	176	1336	1062	1062	1062	1062	1062
229	22	1259	1343	1288	2753	397	173	673	642	642	642	642	642
230	29	1398	1324	1372	2590	398	137	1969	-1591	-1591	-1591	-1591	-1591
231	49	1410	1199	1337	2232	399	76	2475	-1834	-1834	-1834	-1834	-1834
232	77	1298	1003	1195	1773	400	1	2620	-1832	-1832	-1832	-1832	-1832
233	107	989	673	879	1096	401	-70	-2415	-1669	-1669	-1669	-1669	-1669
234	129	318	86	237	-11	402	-122	-1785	-1239	-1239	-1239	-1239	-1239
235	136	-881	-955	-907	-1968	403	-145	-121	-120	-120	-120	-120	-120
236	123	-1219	-1083	-1172	-2056	404	-134	1987	1871	1871	1871	1871	1871
237	91	-1362	-1026	-1246	-1784	405	-94	2666	2245	2245	2245	2245	2245
238	44	-1337	-843	-1166	-1293	406	-34	2972	2341	2341	2341	2341	2341
239	-10	-1132	-565	-935	-678	407	31	2954	2270	2270	2270	2270	2270
240	-60	-663	-138	-481	143	408	84	2623	2065	2065	2065	2065	2065
241	-96	711	1089	842	2479	409	116	1814	1477	1477	1477	1477	1477

TABLE A - CASTAWAYS WATERWAY WITHOUT TIDE GATE

216	-85	757	757	1514	384	207	1916	1916	1916	1916	1916	1916	3832
217	-66	1311	1442	1537	3121	385	169	1109	845	655	1218		
218	-33	1611	1839	2005	4089	386	104	-1000	-1451	-1777	-3710		
219	7	1732	2009	2209	4515	387	28	-1900	-2427	-2808	-5799		
220	45	1703	1966	2156	4405	388	-35	-2126	-2563	-2879	-5909		
221	76	1547	1761	1917	3909	389	-68	-1955	-2184	-2350	-4778		
222	94	1259	1383	1474	2991	390	-61	-1336	-1291	-1256	-2494		
223	99	900	934	959	1931	361	-17	778	1082	1303	2713		
224	94	450	415	390	768	392	55	1655	2153	2515	5203		
225	81	-318	-409	-474	-978	393	135	2217	2771	3172	6537		
226	68	0	-91	-156	-342	364	201	2242	2706	3027	6233		
227	59	636	573	528	1035	395	234	1919	2146	2312	4703		
228	59	989	989	989	1978	306	224	1336	1266	1216	2409		
229	69	1259	1328	1378	2780	397	170	-673	-1047	-1316	-2767		
230	87	1398	1522	1613	3269	398	83	-1969	-2572	-3069	-6226		
231	108	1410	1555	1660	3372	399	-16	-2475	-3161	-3658	-7554		
232	127	1298	1429	1524	3095	400	-106	-2620	-3244	-3695	-7607		
233	136	989	1051	1096	2214	401	-165	-2415	-2824	-3120	-6382		
234	132	-318	290	270	530	402	-180	-1785	-1889	-1965	-3665		
235	113	-881	-1013	-1108	-2262	403	-147	-121	107	273	625		
236	79	-1219	-1455	-1626	-3333	404	-76	1987	2478	2835	5841		
237	36	-1362	-1660	-1876	-3855	405	16	2666	3303	3764	7751		
238	-9	-1337	-1649	-1875	-3858	406	107	2972	3602	4058	8337		
239	-48	-1132	-1403	-1598	-3290	407	175	2954	3424	3766	7696		
240	-73	663	-837	-962	-1984	408	205	2623	2830	2981	6034		
241	-81	711	655	615	1211	409	193	1814	1730	1670	3312		

TABLE B - LANDMARK WATERWAY WITHOUT TIDE GATE

216	-102	757	757	1514	384	121	1916	1916	3832
217	-117	1311	1468	1365	3062	385	130	109	1076
218	-110	1611	1537	1585	3016	386	112	0	-174
219	-82	1732	1437	1629	2641	387	73	0	-298
220	-41	1703	1271	1553	2201	388	25	0	-835
221	5	1547	1063	1379	1742	389	-17	0	-248
222	47	1259	817	1105	1283	390	-39	0	-1144
223	75	900	605	797	977	391	-36	778	-308
224	88	450	313	402	517	392	-6	1655	-1099
225	84	0	114	86	-129	393	44	2217	-1069
226	68	0	168	58	470	394	101	0	-203
227	47	636	856	72	1889	395	150	746	-976
228	30	989	1167	1051	2477	396	176	1339	1467
229	22	1259	1343	1288	2753	397	173	0	1545
230	29	1398	1324	1372	2590	398	137	0	2428
231	49	1410	1199	1337	2232	399	76	1062	2428
232	77	1298	1003	1195	1773	400	1	0	2964
233	107	989	673	879	1096	401	-70	0	2822
234	129	318	86	237	-11	402	-122	0	1649
235	136	0	124	172	-889	403	-145	0	2040
236	123	0	410	321	-563	404	-134	1987	2034
237	91	0	643	423	-115	405	-94	1666	1691
238	44	0	795	472	345	406	-34	2972	1697
239	-10	0	822	452	709	407	31	2954	2034
240	-60	0	674	331	955	408	84	2623	2065
241	-96	711	1089	842	2479	409	116	1814	1477

TABLE C - CASTAWAYS WATERWAY WITH TIDE GATE

216	-85	757	757	1514	1514	1916	1916	1916	1916	1916	1916	3832
217	-66	1311	1442	1537	3121	385	169	1109	845	655	1218	
218	-33	1611	1839	2005	4089	386	104	0	-814	-1140	-3073	
219	7	1732	2009	2209	4515	387	28	0	-917	-1298	-4289	
220	45	1703	1966	2156	4405	388	-35	0	-820	-1136	-4166	
221	76	1547	1761	1917	3909	389	-68	0	-577	-743	-3171	
222	94	1259	1383	1474	2991	390	-61	0	-235	-200	-1438	
223	99	900	934	959	1931	391	-17	778	1082	1303	2713	
224	94	450	415	390	768	392	55	1655	2153	2515	5203	
225	91	0	-19	-84	-588	393	135	2217	2771	3172	6537	
226	68	0	-91	-156	-342	394	201	2449	2706	3037	6233	
227	59	636	573	528	1035	395	234	1918	2146	2312	4703	
228	59	989	989	989	1978	396	224	1336	1266	1216	2409	
229	69	1259	1328	1378	2780	397	170	0	-657	-928	-2377	
230	87	1398	1522	1613	3269	398	83	0	-918	-1355	-4572	
231	108	1410	1555	1660	3372	399	-16	0	-1003	-1500	-5396	
232	127	1298	1429	1524	3095	400	-106	0	-916	-1367	-5279	
233	136	989	1051	1096	2214	401	-165	0	-631	-927	-4189	
234	132	318	290	270	530	402	-180	0	-175	-251	-2251	
235	113	0	66	-29	-1183	403	-147	0	426	592	944	
236	79	0	38	-133	-1840	404	-76	1987	2478	2835	5841	
237	36	0	9	-207	-2186	405	16	2666	3303	3764	7751	
238	-9	0	-11	-237	-2220	406	107	2972	3602	4058	8337	
239	-48	0	-16	-211	-1903	407	175	2954	3424	3766	7696	
240	-73	0	-25	-150	-1172	408	205	2623	2830	2981	6034	
241	-81	711	655	615	1211	409	193	1814	1730	1670	3312	

TABLE D - LANDMARK WATERWAY WITH TIDE GATE