What is claimed is:

1. A compound of the general formula

including the optical isomers thereof and mixtures of such isomers, wherein Ar₁ and Ar₂ independently of each other stand for an optionally substituted aryl or heteroaryl group,

 R_1 and R_2 stand independently of each other for hydrogen, optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

R₃ designates hydrogen, C₃-C₅alkenyl, C₃-C₅alkynyl or optionally substituted C₁-C₅alkyl;

 R_4 is optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

 R_5 and R_6 are independently of each other hydrogen or optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl; R_7 and R_8 are independently of each other hydrogen or optionally substituted C_1 - C_5 alkyl, optionally substituted C_2 - C_5 alkenyl, C_2 - C_5 alkynyl or optionally substituted C_3 - C_6 cycloalkyl;

W designates a bridge selected from -O-, -S(O)_m- or -NR₃-;

X designates a direct bond or a bridge selected from -O-, $-S(O)_m$ - or $-NR_3$ -; a and b independently of each other stand for a number 1, 2 or 3; and c and m independently of each other stand for a number zero, 1 or 2.

2. A compound according to claim 1 wherein

 Ar_1 stands for an aryl group which is optionally substituted with n radicals independently selected from R_9 ; or stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ; or stands for a 6-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ;

Ar₂ stands for an aryl group which is optionally substituted with n radicals independently

selected from R_9 and from one radical R_{10} ; or stands for a 5-ring-membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur and being optionally substituted with n radicals independently selected from R_{11} ; or stands for a 6-ring- membered heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur, and being optionally substituted with n radicals independently selected from R_{11} ; or stands for a fused bicyclic heteroaryl group comprising as ring members 1 to 4 heteroatoms selected from nitrogen, oxygen or sulfur, and being composed from the 5-ring- or 6-ring-membered heteroaryl groups as defined for A_{12} with an annellated phenyl ring or with an annellated second 6-ring-membered heteroaryl, each ring and the bicyclic heteroaryl being optionally substituted with n radicals independently selected from R_{11} ;

 R_1 and R_2 stand independently of each other for hydrogen or C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or stand for C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or stand for C_2 - C_5 alkynyl; or stand for C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy; C_1 - C_3 alkyl or -NR₁₂R₁₃;

 R_3 designates hydrogen, C_3 - C_5 alkenyl, C_3 - C_5 alkynyl or C_1 - C_3 alkyl optionally substituted by C_1 - C_3 alkoxy; C_3 - C_5 alkenyloxy or C_3 - C_5 alkynyloxy;

 R_4 is C_1 - C_5 -alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or is C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or is C_2 - C_5 alkynyl; or is C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy or C_1 - C_3 alkyl; R_5 and R_6 are independently of each other hydrogen or C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or are C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or are C_2 - C_5 alkynyl; or are C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy; C_1 - C_3 alkyl or -NR₁₂R₁₃;

 R_7 and R_8 are independently of each other hydrogen or C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_3 alkoxy or -NR₁₂R₁₃; or are C_2 - C_5 alkenyl optionally substituted by halogen or C_1 - C_3 alkoxy; or are C_2 - C_5 alkynyl; or are C_3 - C_6 cycloalkyl optionally substituted by halogen, C_1 - C_3 alkoxy; C_1 - C_3 alkyl or -NR₁₂R₁₃;

 R_9 and R'_9 independently of each other stand for C_1 - C_5 alkyl optionally substituted by halogen, C_1 - C_4 alkoxy, $-NR_{12}R_{13}$, $-CO-R_{14}$ or the acyclic or cyclic ketals and acetals of $-CO-R_{14}$, by a -X-aryl which is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, $-NO_2$, $-NR_{12}R_{13}$, $-CO-R_{14}$ or the acyclic or cyclic ketals and acetals of $-CO-R_{14}$; by a -X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, $-NO_2$, $-NR_{12}R_{13}$, $-CO-R_{14}$ or the

acyclic or cyclic ketals and acetals of -CO-R₁₄; or stand for C₃-C₆cycloalkyl, optionally substituted by halogen, hydroxy, =O, C₁-C₄alkoxy, NR₁₂R₁₃; or stand for C₁-C₄alkoxy optionally substituted by halogen, C1-C4alkoxy, by -X-aryl which is optionally substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, -CN, -NO2, -NR12R13, -CO-R14 or the acyclic or cyclic ketals and acetals of -CO-R₁₄; by a X-linked-5- or 6-ring-membered heteroaryl group optionally substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stand for C2-C5alkenyl optionally substituted by halogen or aryl; or stand for C2-C5alkynyl optionally substituted by halogen, tri-alkyl-silyl or aryl; or stand for C2-C5alkenyloxy optionally substituted by halogen or aryl; or stand for C2-C5alkynyloxy optionally substituted by halogen, trialkyl-silyl or aryl; or stand for C₃-C₆cycloalkoxy optionally substituted by C₁-C₃alkyl, halogen or C1-C4alkoxy; or stand for halogen; or stand for -NR12R13 , or stand for -NR2-CO-R12; or stand for -NR2-CO-OR12; or stand for -NR2-CO-NR8R9; or stand for -NR2-CO-SR12; or stand for –NR2-CS-OR12; or stand for -NR2-CS-NR8R9; or stand for -NR2-CS-SR12; or stand for $-NR_2-C(=N-O-R_{12})-S-OR_{12}$; or stand for $-NR_2-C(=N-O-R_{12})-NR_8R_9$; or stand for -NR2-C(=N-O-R12)-SR12; or stand for -S(O)p-C1-C4alkyl optionally substituted by halogen; or stand for -NR2-SO2-NR8R9; or stand for nitro, for cyano or for -CS-NH2; R₁₀ stands for hydrogen; or stands for -X-aryl which is optionally substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, -CN, -NO2, -NR12R13, -CO-R14 or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for a X-linked 5-membered aromatic or nonaromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, -CN, -NO2, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for a X-linked 6-membered aromatic or non-aromatic heterocyclic ring comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄; or stands for -CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO- R_{14} ; or stands for -O-CO- R_{14} ; or stands for -C(=N-O- R_{12})- R_{14} ; R₁₀ and one R'₉ together form a 3- or 4-membered non-aromatic bridge forming an annellated ring which may contain a carbonyl function or nitrogen, oxygen or sulfur as ring members and is optionally substituted by C₁-C₃alkyl; R₁₁ is hydrogen, halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -NR₁₂R₁₃, -NO₂, -CN,

W designates a bridge selected from -O-, $-S(O)_m$ - or $-NR_3$ -;

-CO-R₁₄ or the acyclic or cyclic ketals and acetals of -CO-R₁₄;

- X designates a direct bond or a bridge selected from -O-, -S(O)_m- or -NR₃-;
- a stands for a number 1, 2 or 3;
- b stands for a number 1, 2 or 3;
- c stands for a number zero, 1 or 2;
- m stands for a number zero, 1 or 2;
- n stands for a number 1 or 2;
- p stands for a number 0, 1 or 2;

 R_{12} and R_{13} independently of each other stand for hydrogen; C_1 – C_5 alkyl optionally substituted by halogen, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alaloalkyl, C_1 - C_4 alkoxy or -CN; or stand for C_3 – C_5 alkenyl optionally substituted by halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxyl, C_1 - C_4 alkoxy or -CN; or stand for C_3 – C_5 alkynyl optionally substituted by halogen, C_1 - C_4 alkoxyl, C_1 - C_4 alkoxyl, C_1 - C_4 alkoxyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl)amino, or aryl which in turn is optionally substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alloalkyl, C_1 - C_4 alkyl, C_1 - C_4 alloalkyl, C_1 - C_4 alloalkyl, C_1 - C_4 alloalkyl, C_1 - C_4 alkylor or -CN; or together form a 5-ring-membered non-aromatic carbocyclic ring; or together form a 6-ring-membered non-aromatic carbocyclic ring which is interrupted by -CO- or -N(C_1 - C_4 alkyl)-;

R₁₄ stands for C₁-C₅alkyl optionally substituted by halogen, C₁-C₄alkoxy, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino; aryl which in turn is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino or C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di(C₁-C₄alkyl)aminocarbonyl; or by a 5- or 6-ring hetero-aromatic ring which in turn is optionally substituted by halogen, C₁-C₄alkyl, C₁-C₄haloalkyl C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di- $(C_1-C_4$ alkyl)aminocarbonyl; or stands for C_3-C_6 cycloalkyl optionally substituted by halogen, hydroxy, =0, C₁-C₄alkoxy or C₁-C₄alkylamino, di(C₁-C₄alkyl)amino; or stands for C₁-C₄alkoxy optionally substituted by halogen, C₁--C₄alkoxy; C₁-C₄alkylamino, di(C₁-C₄alkyl)amino; or stands for phenyl which is optionally substituted by halogen, C₁-C₄alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO2, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di-(C₁-C₄alkyl)aminocarbonyl; or stands for a 5- or 6-ring membered heteroaryl comprising nitrogen, oxygen or sulfur as ring members and being optionally substituted by halogen, C1-C4alkyl, C1-C4haloalkyl; C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkylcarbonyl,

C₁-C₄alkoxycarbonyl, C₁-C₄alkylaminocarbonyl or di-(C₁-C₄alkyl)aminocarbonyl.

- A compound according to claims 1 or 2 wherein 3. wherein Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ of Ar₁ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN and -CO-R₁₄; and the optional substituents R'₉ of Ar₂ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN, -CO-R₁₄, -NR₁₂R₁₃, -NR₂-CO-R₁₂, -NR₃-CO-OR₁₂, -NR₂-CO-NR₈R₉, $-NR_2-CO-SR_{12}$, $-NR_2-CS-OR_{12}$, $-NR_2-CS-NR_8R_9$, $-NR_2-CS-SR_{12}$, $-S(O)_0-C_1-C_4$ alkyl, $-S(O)_0-C_1-C_4$ haloalkyl, $-NR_2-SO_2-NR_8R_9$, nitro, cyano and $-CS-NH_2$; and the optional substituent R₁₀ on Ar₂ is selected from optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy.
- A compound of formula I according to claim 1 wherein 4. Ar₁ and Ar₂ independently stand for optionally substituted aryl groups; and the optional substituents R₉ of Ar₁ are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN and -CO-R₁₄; and the optional substituents R'9 of Ar2 are preferably selected from the group comprising halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₃-C₆cycloalkyl, -CN, $-\text{CO-R}_{14} \ , \ -\text{NR}_{12} \\ \text{R}_{13} \ , \ -\text{NR}_2 \\ -\text{CO-R}_{12}, -\text{NR}_3 \\ -\text{CO-OR}_{12} \ , \ -\text{NR}_2 \\ -\text{CO-NR}_8 \\ \text{R}_9 \ , \ -\text{NR}_2 \\ -\text{CO-SR}_{12} \ , \ -\text{NR}_3 \\ -\text{CO-OR}_{12} \ , \ -\text{NR}_2 \\ -\text{CO-NR}_8 \\ \text{R}_9 \ , \ -\text{NR}_2 \\ -\text{CO-SR}_{12} \ , \ -\text{NR}_3 \\ -\text{CO-OR}_{12} \ , \ -\text{NR}_4 \\ -\text{CO-OR}_{12} \ , \ -\text{NR}_5 \\ -\text{CO-OR}_{12} \ , \ -\text{NR}_6 \\ -\text{CO-OR}_{12} \ , \ -\text{N$ $-NR_2-CS-OR_{12}$, $-NR_2-CS-NR_8R_9$, $-NR_2-CS-SR_{12}$, $-S(O)_0-C_1-C_4$ alkyl, $-S(O)_0-C_1-C_4$ haloalkyl, -NR₂-SO₂-NR₈R₉, nitro, cyano and -CS-NH₂; and the optional substituent R₁₀ on Ar₂ is selected from halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, -NR₁₂R₁₃, -CO-R₁₄ and the acyclic or cyclic ketals and acetals of -CO-R₁₄; -O-CO-R₁₄, optionally substituted phenyl, optionally substituted imidazolyl, optionally substituted thiazolyloxy, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyloxy, optionally substituted pyrimidinyl, optionally

substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl,

optionally substituted oxadiazolyloxy, optionally substituted triazolyloxy and optionally substituted pyrazolyloxy; and

 R_1 , R_2 , R_5 , R_6 , R_7 and R_8 independently of each other are hydrogen or methyl; and R_3 is hydrogen or C_1 - C_4 alkyl optionally substituted with C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, or C_3 - C_4 alkynyloxy; and

 R_4 is hydrogen or C_1 - C_4 alkyl optionally substituted with halogen, C_1 - C_3 alkoxy, C_1 - C_3 alkylamino or di- C_1 - C_3 alkylamino; and

W is -O-; and

X is a direct bond; and

the suffixes (a) and (b) designate the number 1; and the suffix (c) stands for the number zero.

5. A compound of formula I according to claim 1 wherein

Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R_9 and R_9' of Ar₁ and Ar₂ are selected from the group comprising C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy and C_3 - C_6 cycloalkyl; and the optional substituent R_{10} on Ar₂ is selected from -CO- C_1 - C_4 alkyl, -CO- C_1 - C_4 alkyl, optionally substituted phenyl, optionally substituted phenoxy, optionally substituted imidazolyl, optionally substituted imidazolyloxy, optionally substituted thiazolyloxy, optionally substituted thiadiazolyl, optionally substituted pyridyloxy, optionally substituted pyridyl, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted pyrimidinyl, optionally substituted oxadiazolyl, optionally substituted oxadiazolyl, optionally substituted triazolyl, optionally substituted pyrazolyl, optionally substituted pyrazolyl, optionally substituted pyrazolyl, optionally substituted pyrazolyloxy; and

 R_1 and R_5 are independently C_1 - C_4 alkyl and R_2 and R_6 are hydrogen; and R_3 is hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy- C_1 - C_4 alkyl; and R_4 is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; and W is -O-; and X is a direct bond; and the suffixes (a) and (b) designate the number 1; and the suffix (c) stands for the number zero.

6. A compound of formula I according to claim 1 wherein; or wherein

Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, iodo, cyano, hydroxy, amino, nitro, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy, allyloxy, propargyloxy, benzyloxy, trifluoromethyl, trifluoromethoxy, 2-cyano-2-methyl-butyloxy, methylsulfonyl, methylsulfinyl, methylthio, cyclopentyl, cyclohexyl, aminocarbonylmethyl, methoximinoethyl, aminocarbonyl, butylcarbonylamino, tert-butylcarbonylamino, triazol-1-ylmethyl, 1,2,4-triazol-1-ylmethyl, N-morpholinocarbonylamino, aminocarbonyloxy-ethoxy, morpholinocarbonyloxyethoxy and cyanopyridyloxyethoxy; and

the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, dimethylaminocarbonyl, acetyl, propionyl, acetoxy, methoxycarbonyl, ethoxycarbonyl, benzoyl, methoximinoethyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 1-(3,4-dimethylpyrazolyl), 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), N-pyrrolidin-2-onyl, and 2-quinoxalinyl, and

 R_1 and R_5 are independently C_1 - C_4 alkyl and R_2 and R_6 are hydrogen; and R_3 is hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy- C_1 - C_4 alkyl; and R_4 is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; and W is -O-; and X is a direct bond; and the suffixes (a) and (b) designate the number 1; and the suffix (c) stands for the number zero.

7. A compound according to claim 1, wherein

Ar₁ and Ar₂ independently of each other stand for optionally substituted phenyl; and the optional substituents R₉ and R'₉ of Ar₁ and Ar₂ are selected from the group comprising bromo, chloro, fluoro, methyl, ethyl, methoxy, ethoxy, trifluoromethyl and trifluoromethoxy; and

the optional substituent R₁₀ on Ar₂ is selected from aminocarbonyl, acetyl, methoxycarbonyl, ethoxycarbonyl, 1-imidazolyl, 5-(3-methyl-1,2,4-thiadiazolyloxy), 2-pyridyl, 2-pyridyloxy, 4-pyrimidinyl, 2-(3,5-dichloropyridyloxy), 2-(4,6-dimethoxypyrimidinylthio), 2-oxadiazolyl, 2-(5-methyl-oxadiazolyl), 2-(5-ethyl-oxadiazolyl), 1-triazolyl, 1-pyrazolyl, 4-(2-methylthiazolyl), 2-(1,3,4-oxydiazolyl), and N-pyrrolidin-2-onyl, and

and the second s

 R_1 and R_5 are methyl and R_2 and R_6 are hydrogen; and R_3 is hydrogen, methyl, ethyl, propyl, ethoxymethyl or methoxymethyl, and R_4 is methyl, ethyl, propyl or fluoromethyl; and W is -O-; and X is a direct bond; and the suffixes (a) and (b) designate the number 1; and the suffix (c) stands for the number zero.

- A compound of formula I according to claim 1 selected from the group comprising 8. 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-chlorophenoxy)-methyl]-2-[(2-chlorophenyl)-methyl]-sulfonylamino-propionitrile, 2-[(4-chlorophenoxy)-methyl]-2-[(2-fluorophenyl)-methyl]-sulfonylamino-propionitrile, 2-[(4-trifluoromethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-chloro-3-methylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-butryronitrile, 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-methoxy-propionitrile, 2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, 2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, (-)-2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-imidazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-cyanophenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, 2-[(4-[1,3,4]oxadiazol-4-yl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile, 2-[(4-methoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, 2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, (-)2-[(4-ethoxyphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-methoxycarbonylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- 2-[(4-propionylphenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-chlorophenoxy)-methyl]-2-benzylsulfonylamino-3-fluoro-propionitrile,

- 2-{[4-(2-methyl-thiazol-4-yl)-phenoxy]-methyl}-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-pyrazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-(5-oxo-5,6,7,8-tetrahydronaphth-2-yloxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-chloro-phenoxy)-methyl]-2-benzylsulfonylamino-3-methyl-butyronitrile,
- 2-[(4-iso-propyl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-nitro-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(4-cyano-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile,
- 2-[(3-fluoro-4-propionyl-phenoxy)-methyl]-2-benzylsulfonylamino-propionitrile,
- (-) -2-[(4-[1,2,4]triazol-1-yl-phenoxy)-methyl]-2-benzylsulfonylamino-butyronitrile, and
- (-)-2-[(4-acetylphenoxy)-methyl]-2-benzylsulfonylamino-propionitrile.
- 9. A process for the preparation of a compound of formula I according to claim 1, which comprises reacting
- a) reacting the the sulfonylating agent of formula II

$$Ar_1 - X - \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = A \qquad (II)$$

wherein wherein Ar_1 , a, X and R_1 to R_2 , are defined as under formula I, and A stands for a leaving group like an anhydride, i.e. $-O-SO_2-(CR_1R_2)_a-X-Ar_1$ or $-O-CO-C_1-C_4$ alkyl, but preferably for halogen, especially bromine or more preferably chlorine, with an amino-acetonitrile of formula III

$$\begin{array}{c|c}
R_3 & R_4 & R_5 \\
N & R_6 \\
D & R_8 \\
C & R_8 \\
C & R_8 \\
C & R_9 \\
C & R_9$$

wherein Ar_2 , b, c, W and R_3 to R_8 , are defined as under formula I, or

b) coupling the reacting the compound of formula XIII

$$L = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}_a = \begin{bmatrix} 0 & R_3 & R_4 \\ N & -1 & -1 \\ 0$$

wheren Ar_1 , Ar_2 , a, b, c, W and R_1 to R_8 are defined as under formula I and L is a leaving group such as e.g. halogen, preferably chlorine, bromine or iodine or a sulfonyloxy group such as e.g. methylsulfonyloxy-, toluylsulfonyloxy- or trifluoromethylsulfonyloxy- group, is

coupled with a compound of formula XIV

$$Ar_1 - X'$$
 (XIV)

wherein Ar₁ is defined as under formula I and X' is either an anionic radical species of X such as O⁻, S⁻, S(O)_m⁻ combined with an alkaline- or earthalkaline- metal cation as counterion or is defined as X-H such as OH, SH, NHR₃ if at the same time the reaction is generally carried out in the presence of a base such as alkaline-, earthalkaline-carbonates or hydrogencarbonates such e.g. sodium or potassium-carbonate, sodium or potassium – hydrogen-carbonate, cesium-carbonate or an agent capable of scavenging the formed acid.

- 10. A composition for controlling and protecting against phytopathogenic microorganisms, comprising a compound of formula I according to claim 1 as active ingredient together with a suitable carrier.
- 11. The use of a compound of formula I according to claim 1 in protecting plants against infestation by phytopathogenic microorganisms.
- 12... A method of controlling and preventing an infestation of crop plants by phytopathogenic microorganisms, which comprises the application of a compound of formula I according to claim 1 as active ingredient to the plant, to parts of plants or to the locus thereof.
- 13. A method according to claim 12, wherein the phytopathogenic microorganisms are fungal organisms.