

Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ingeniería Eléctrica (DIE)

Organización y Arquitectura de Computadoras

Grupo: 3

Tarea 4: Diseño de máquinas de estado empleando memorias: Direccionamiento entrada-estado

Alumno: Suxo Pérez Luis Axel

Maestra: M.I. Pedro Ignacio Rincón Gómez

Semestre 2022-2

Fecha de entrega: 11 de febrero de 2022

A) Diseñe una carta ASM con hasta 16 estados, 4 entradas (X, Y, Z, W) y 4 salidas (S0, S1, S2, S3) y determine la tabla de verdad por el método de Direccionamiento Entrada-Estado.

	Entra Men		à		Salidas de Memoria													
Estado presente				Prueba		Liga V				Liga F				Salidas				
P_3	P_2	P_1	P_0	K_1	K_0	V_3	V_2	V_1	V_0	F_3	F_2	$\boldsymbol{F_1}$	$\boldsymbol{F_0}$	S_3	S_2	S_1	S_0	
0	0	0	0	*	*	0	0	0	1	0	0	0	1	0	0	0	1	
0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	
0	0	1	0	0	1	0	1	0	1	0	0	1	1	0	0	1	0	
0	0	1	1	*	*	0	1	0	0	0	1	0	0	1	0	0	0	
0	1	0	0	*	*	0	0	0	0	0	0	0	0	0	0	1	0	
0	1	0	1	1	0	1	0	0	0	0	1	1	0	0	0	0	1	
0	1	1	0	*	*	0	1	1	1	0	1	1	1	0	0	1	0	
0	1	1	1	*	*	0	0	0	0	0	0	0	0	0	1	0	0	
1	0	0	0	*	*	1	0	0	1	1	0	0	1	0	1	0	0	
1	0	0	1	*	*	0	0	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	1	1	1	1	0	1	1	0	1	1	0	1	0	0	
1	0	1	1	*	*	1	1	0	0	1	1	0	0	1	0	0	0	
1	1	0	0	*	*	0	0	0	0	0	0	0	0	0	0	0	1	
1	1	0	1	*	*	1	1	1	0	1	1	1	0	0	0	0	1	
1	1	1	0	*	*	1	1	1	1	1	1	1	1	0	1	0	0	
1	1	1	1	*	*	0	0	0	0	0	0	0	0	0	0	1	0	

B) Determine el número de bits de memoria que se ahorran al implementar una carta ASM que posee 4 entradas (X, Y, Z, W), 20 estados, 8 salidas (S0-S7), mediante el método de "direccionamiento entrada-estado" respecto al método "direccionamiento por trayectoria".

R= Son 6016 bits los que se ahorran.

$$(2^5 * 20) \ bits = 640 \ bits$$
 $(2^9 * 13) \ bits = 6656 \ bits$ $\{(2^9 * 13) - (2^5 * 20)\} \ bits = 6016 \ bits$