·PS2 marking: <u>almost</u> done, but not quite...

TT2 marking: in progress — hard to say when it will be done Kecap: 0, S2, O (asymptotic notation) For all functions fig: IN -> R =0 · g & O(F) Jc, n, ERT, thell, $n \geqslant n_0 \Rightarrow g(n) \leq cf(n)$ "I is an upper bound on q" . g ∈ S2 (F) 3c,noERT, YneN, $n \ge n_0 \implies g(n) \ge c f(n)$

"If is a lower bound on g" Note: ges2(f) (=) • $g \in \mathcal{O}(\mathcal{F})$ $g \in O(\mathcal{F})$ $n, g \in \Omega(\mathcal{F})$ "fis a tight bound ong" $g \in \Theta(F) \neq g = f \uparrow$ Ex: Prove that ta, b eRt, an+b & \Omega(n^2). Let a, b & Rt wis: antb & sie, L> Yc,no ∈Rt, Jn∈N, n≥nol an+b< c·n² Let Gn & R+ Let n = ? WTS: n=no n an+b<cn2 ROUGH WORK a,b,c,n, ER+ $antb < cn^2$ -idea li solve for n

-idea 2:
$$an+b < cn^2 \Leftrightarrow \frac{a}{c}n+\frac{b}{c} < n^2$$

if $\frac{a}{c}n < \frac{n^2}{2}$ and $\frac{b}{c} < \frac{n^2}{2}$, then $\int \frac{a}{n+2} dn = \frac{n^2}{2}$

(back to proof)

let $n = \max(n_0, \lceil \frac{2a}{c} \rceil, \lceil \frac{2b}{c} \rceil) + 1$
 $\lceil n = \lceil n_0 + \frac{2a}{c} + \lceil \frac{2b}{c} \rceil \rceil \pmod{d}$ would also work \rceil

Then, $n > \lceil n_0 \rceil \Rightarrow n > n$

and $n > \frac{2a}{c} \Rightarrow \frac{n^2}{2} > \frac{a}{c}n$

and $n > \frac{2a}{c} \Rightarrow \frac{n^2}{2} > \frac{a}{c}n$

and $n > \frac{2a}{c} \Rightarrow \frac{n^2}{2} > \frac{a}{c}n$
 $n > \frac{a}{c}n + \frac{b}{c}$
 $n > \frac{a}{c}n + \frac{b}{c}$

Properties of 0, 12, 0 (Theorems 5.1-5.8 in the course notes.) Example: Prove that \f,g: N->R ?0 $g \in O(f) \implies f + g \in \Theta(f)$ (where (f+g)(n) = f(n)+g(n), $\forall n \in \mathbb{N}$). Proof: Let fig: IN -> R ?. Assume $g \in O(P)$: $\exists c_o, n_o \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ni n_o \Rightarrow g(n) \leq c_o f(n)$ (note; this introduces variables c., n. in the prof) WTS: ftgeO(f): fc, cz, n, eRt, frell, $n' \ge n, \Rightarrow c, f(n') \le (f+g)(n') \le c_2 f(n')$ Let $c_1 = 1$, $c_2 = c_0 + 1$, $n_1 = n_0$

so pick $(c_i = 1)$ want: (f+g)(n') < C2 f(n') know: $g(n') \leq c_0 f(n')$ as long as $n' \geq N_0$ =) $f(n')+g(n') \in (c_0+1) f(n')$ so pick $c_2=c_0+1$) only one condition on n' $(n'>n_0)$, so pick $(n_1=n_0)$ EXERCISE: finish writing the prof... For reference, here is one way to finish the proof. Let c,=1, c2=6+1, n,=no. Then c1, C2, n, ERT

know: $g(n') \ge 0 \implies f(n') + g(n') \ge f(n')$

want: c, f(n') < f(n')+g(n')

Let n'E/N and assume n'zn,. Then $f(n') \leq f(n') + g(n')$ (because g(n') > 0) Also, $f(n')+g(n') \leq f(n')+c_0f(n') = (c_0+1)f(n')$ (because n = n,= no and by the assumption that ge O(f)) So $C_1 f(n') \leq (f+g)(n') \leq C_2 f(n')$.