Long-read amplicon sequencing for microbiome analysis

Yan Hui
Postdoc
Department of Food Science
E-mail: huiyan@food.ku.dk

UNIVERSITY OF COPENHAGEN

Table of Contents

- Reference-based and reference-free strategies for lengthy amplicon analysis
- De novo OTU picking from long amplicons with LACA
- Use NART for long amplicon profiling by read classification

Reference-dependent vs Reference-free analysis

OUTPUT	RRF-dependent	REF-free
Representative sequences	No	Yes
Phylogenetic tree	No	Yes

Per-read query against a known database:

- Limited by database
- No OTUs

The consensus from built clusters:

Clustering by identity, etc.

Sequencing errors

Phred quality scores Q are logarithmically related to the base-calling error probabilities P and defined as $Q = -10 \log_{10} P$.

illumına[®]

PCR >>> More errors in the end

Bio-pore >>> Random error

Molecule-level correction

ONT Duplex

PacBio Circular Consensus Sequencing

(CCS)

Molecule-level correction

Specialized library preparation with e.g., UMI

Clustering-based correction

Metagenomics: microbes in uneven abundance
UMI -> different template (including the phylogenetically same one)

Clustering-based correction

Troubles with long-read alignment

Pairwise alignment

Time complexity

O(C(n,2)/2) = O(n!(n-1)!/2)

For amplicons, n can be millions if reads are pooled.

Noisy alignment with long reads

The relatively high error rate in relatively long reads

cgaaa

3

2

tcgac

2

K-mers binning

- Computers prefer k-mers than text: blast, binning
- Unique k-mer patterns between genomes

Pre-cluster: Use 5-kmer profiles to bin ONT reads

	atcga	tcgac	 cgaaa
read1	1	10	3
read2	1	10	4
readn	1	10	3

Take **blast** result as an example

Raw reads within the cluster

Raw read

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
~	Limosilactobacillus fermentum strain 9-4 chromosome, complete genome	<u>Limosilacto</u>	1827	9070	99%	0.0	90.92%	2085632	CP076082.1
~	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	<u>Limosilacto</u>	1823	9096	99%	0.0	90.86%	2101878	CP050919.1
~	Limosilactobacillus fermentum strain AGR1487 chromosome, complete genome	<u>Limosilacto</u>	1823	9113	99%	0.0	90.86%	1939032	CP047585.1
~	Limosilactobacillus fermentum strain USM 8633 chromosome, complete geno	. <u>Limosilacto</u>	1823	9085	99%	0.0	90.86%	2238401	CP045034.1
\checkmark	Lactobacillus fermentum strain SL1-1 16S ribosomal RNA gene, partial seque	. <u>Limosilacto</u>	1823	1823	99%	0.0	90.86%	1513	MN435796.1
~	Lactobacillus fermentum strain IITKGP-BT13 16S ribosomal RNA gene, parti	<u>Limosilacto</u>	1823	1823	99%	0.0	90.86%	1513	MN267492.1
\checkmark	Lactobacillus fermentum strain BioE LF11 16S ribosomal RNA gene, partial s	Limosilacto	1823	1823	99%	0.0	90.86%	1512	MK779053.1
	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
~	Limosilactobacillus fermentum strain B1 28 chromosome	Limosilacto	1884	9126	100%	0.0	89.82%	1905587	CP039750.1
~	Limosilactobacillus fermentum strain HBUAS54312 16S ribosomal RNA gene,	.Limosilacto	1823	1823	99%	0.0	89.22%	1498	MH817761.1
~	Limosilactobacillus fermentum strain HBUAS62516 16S ribosomal RNA gene,	.Limosilacto	1823	1823	99%	0.0	89.22%	1498	ON005289.1
~	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	Limosilacto	1820	9039	100%	0.0	89.16%	2101878	CP050919.1
~	Limosilactobacillus fermentum 3872 chromosome, complete genome	Limosilacto	1820	9033	100%	0.0	89.16%	2297851	CP011536.1
~	Limosilactobacillus fermentum strain ACA-DC 179 chromosome, complete ge	Limosilacto	1820	9022	100%	0.0	89.16%	2149913	CP082359.1

Take **blast** result as an example

Denoised consensus

Polished consensus

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
\checkmark	Limosilactobacillus fermentum strain AGR1485 chromosome L	imosila	2728	13615	100%	0.0	100.00%	2226862	CP047584.1
	Lactobacillus fermentum strain shebah-101 16S ribosomal R L	imosila	2728	2728	100%	0.0	100.00%	1494	MN625236.1
\checkmark	Lactobacillus fermentum strain HB 16S ribosomal RNA gene L	imosila	2728	2728	100%	0.0	100.00%	1509	MN589591.1
$\overline{\mathbf{Z}}$	Lactobacillus fermentum strain SL5-1 16S ribosomal RNA ge L	imosila	2728	2728	100%	0.0	100.00%	1513	MN435802.1
$\overline{\mathbf{Z}}$	Limosilactobacillus fermentum strain B1 28 chromosome	imosila	2728	13574	100%	0.0	100.00%	1905587	CP039750.1
	Limosilactobacillus fermentum strain HDB1096 16S ribosom L	<u>imosila</u>	2728	2728	100%	0.0	100.00%	1492	MK537375.1
	Lactobacillus fermentum strain LF 16S ribosomal RNA gene, L	imosila	2728	2728	100%	0.0	100.00%	1564	MK245999.1
	Lactobacillus fermentum strain LMEM36 16S ribosomal RNA L	<u>imosila</u>	2728	2728	100%	0.0	100.00%	1545	MK239985.1
$\overline{\mathbf{v}}$	Lactobacillus fermentum strain LMEM19 16S ribosomal RNA L	<u>imosila</u>	2728	2728	100%	0.0	100.00%	1529	MK239955.1
	Lactobacillus fermentum strain S1 16S ribosomal RNA gene, L	<u>imosila</u>	2728	2728	100%	0.0	100.00%	1531	MK226442.1
$\overline{\mathbf{v}}$	Limosilactobacillus fermentum strain MTCC 5898 chromosome L	<u>imosila</u>	2728	13600	100%	0.0	100.00%	2098685	CP035904.1
~	Lactobacillus fermentum strain LMEM 5 16S ribosomal RNA L	<u>imosila</u>	2728	2728	100%	0.0	100.00%	1528	MK418591.1
	Lactobacillus fermentum strain LMEM 37 16S ribosomal RN L	<u>imosila</u>	2728	2728	100%	0.0	100.00%	1557	MK418588.1
$\overline{\mathbf{Z}}$	Limosilactobacillus fermentum strain LDTM 7301 chromoso L	imosila	2728	13593	100%	0.0	100.00%	2046196	CP031195.1
$\overline{\mathbf{Z}}$	Lactobacillus fermentum strain PRS1 16S ribosomal RNA ge L	imosila	2728	2728	100%	0.0	100.00%	1515	MH472943.1

De novo OTU picking from long amplicons with LACA

UNIVERSITY OF COPENHAGEN

LACA: an automatic workflow for Long Amplicon Consensus Analysis

GitHub: https://github.com/yanhui09/laca

Example

Use **NART** for long amplicon profiling by read classification

UNIVERSITY OF COPENHAGEN

NART: A tool for Nanopore Amplicon Real-Time analysis

- GitHub: https://github.com/yanhui09/nart
- Demo video:
 <u>https://www.youtube.com/watch?v=TkdJGLOsc</u>
 Pg

Directed Acyclic Graph (DAG)

Lowest Common Ancestor by read classification (minimap2lca, blast2lca) Limosilactobacillus fermentum Raw read

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
\checkmark	Limosilactobacillus fermentum strain 9-4 chromosome, complete genome	Limosilacto	1827	9070	99%	0.0	90.92%	2085632	CP076082.1
~	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	Limosilacto	1823	9096	99%	0.0	90.86%	2101878	CP050919.1
✓	Limosilactobacillus fermentum strain AGR1487 chromosome, complete genome	<u>eLimosilacto</u>	1823	9113	99%	0.0	90.86%	1939032	CP047585.1
~	Limosilactobacillus fermentum strain USM 8633 chromosome, complete geno	. <u>Limosilacto</u>	1823	9085	99%	0.0	90.86%	2238401	CP045034.1
\checkmark	Lactobacillus fermentum strain SL1-1 16S ribosomal RNA gene, partial seque	. <u>Limosilacto</u>	1823	1823	99%	0.0	90.86%	1513	MN435796.1
✓	<u>Lactobacillus fermentum strain IITKGP-BT13 16S ribosomal RNA gene, parti</u>	Limosilacto	1823	1823	99%	0.0	90.86%	1513	MN267492.1
~	<u>Lactobacillus fermentum strain BioE LF11 16S ribosomal RNA gene, partial s</u>	<u>Limosilacto</u>	1823	1823	99%	0.0	90.86%	1512	MK779053.1
	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
~	Limosilactobacillus fermentum strain B1 28 chromosome	<u>Limosilacto</u>	1884	9126	100%	0.0	89.82%	1905587	CP039750.1
~	Limosilactobacillus fermentum strain HBUAS54312 16S ribosomal RNA gene,	.Limosilacto	1823	1823	99%	0.0	89.22%	1498	MH817761.1
~	Limosilactobacillus fermentum strain HBUAS62516 16S ribosomal RNA gene,	.Limosilacto	1823	1823	99%	0.0	89.22%	1498	ON005289.1
~	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	<u>Limosilacto</u>	1820	9039	100%	0.0	89.16%	2101878	CP050919.1
\checkmark	Limosilactobacillus fermentum 3872 chromosome, complete genome	<u>Limosilacto</u>	1820	9033	100%	0.0	89.16%	2297851	CP011536.1
\checkmark	<u>Limosilactobacillus fermentum strain ACA-DC 179 chromosome, complete ge</u>	<u>Limosilacto</u>	1820	9022	100%	0.0	89.16%	2149913	CP082359.1

Emu:

Species-level abundance estimation through an expectation—maximization algorithm

https://www.nature.com/articles/nbt1406 https://www.nature.com/articles/s41592-022-01520-4

U

nart &nawf

NART is composed of two sets of scripts: nart and nawf, which controls real-time analysis and workflow performance, respectively.

```
Usage: nart [OPTIONS] COMMAND [ARGS]...

NART: A tool for Nanopore Amplicon Real-Time (NART) analysis. To follow updates and report issues, see: https://github.com/yanhui09/nart.

Options:
-v, --version Show the version and exit.
-h, --help Show this message and exit.

Commands:
monitor Start NART to monitor a directory.
run Start NART workflow.
visual Start NART app to interactively visualize the results.
```

```
Usage: nawf [OPTIONS] COMMAND [ARGS]...

NAWF: A sub-tool to run Nanopore Amplicon WorkFlow. The workflow command initiates the NAWF in a single batch, using either a fastq file from one ONT run or a fastq file generated during sequencing. To follow updates and report issues, see: https://github.com/yanhui09/nart.

Options:
-v, --version Show the version and exit.
-h, --help Show this message and exit.

Commands:
config Generate the workflow config file.
run Start workflow in a single batch.
```


Usage

Amplicon analysis in single batch

nawf can be used to profile any single basecalled fastq file from a Nanopore run or batch.

```
nawf config -b /path/to/basecall_fastq -d /path/to/database
nawf run all
```

init config file and check

Real-time analysis

nart provide utils to record, process and profile the continuously generated fastq batch.

Before starting real-time analysis, you need nawf to configure the workflow according to your needs.

```
nawf config -d /path/to/database
```

init config file and check

In common cases, you need three independent sessions to handle monitor, process and visulization, repectively.

1. Minitor the bascall output and record

nart monitor -q /path/to/basecall_fastq_dir

monitor basecall output

2. Start amplicon analysis for new fastq

nart run -t 10

real-time process in batches

3. Update the feature table for interactively visualize in the browser

nart visual

interactive visualization

RT-philosophy

ONT sequencing and basecalling in batches

- nart monitor => fqs.txt (record fastq files)
- nart run => nawf (start the workflow in batches & update the feature table)
- nart visual => interactively visualize profiles.

Exercises

UNIVERSITY OF COPENHAGEN

Exercise

MAC2023:

https://yanhui09.github.io/MAC2023/

Cross-platform support, incl. MacOS

Linux/amd64 platform

Thanks