- **Опр. 1.** Метрическим пространством называется множество X, на парах точек которого задана функция $\rho \colon X \times X \to \mathbb{R}$ (называемая метрикой), удовлетворяющая следующим условиям:
 - (неотрицательность) $\rho(x,y) \ge 0$ для любых $x \ u \ y$;
 - (невырожденность) $\rho(x,y) = 0$ тогда и только тогда, когда x = y;
 - $(cummempuvhocmb) \rho(x,y) = \rho(y,x);$
 - (неравенство треугольника) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$.
 - 1. Докажите, что аксиома «неотрицательности» в определении выше избыточна.
- **Опр. 2.** Пусть X- метрическое пространство с метрикой $\rho(\cdot,\cdot)$. Открытым (замкнутым) шаром $B_{\varepsilon}(x)$ ($\bar{B}_{\varepsilon}(x)$) с центром $x\in X$ и радиусом $\varepsilon>0$ называется множество

$$B_{\varepsilon}(x) \stackrel{\text{def}}{=} \left\{ y \in X \colon \rho(x,y) < \varepsilon \right\} \quad \left(\bar{B}_{\varepsilon}(x) \stackrel{\text{def}}{=} \left\{ y \in X \colon \rho(x,y) \leq \varepsilon \right\} \right).$$

- **Опр. 3.** Подмножество U метрического пространства X, такое что для всякой точки $x \in U$ существует открытый шар c центром b x, содержащийся b u u0 (u0, u1), называется открытым.
 - 2. Докажите, что для произвольного метрического пространства X
 - (a) само X и пустое подмножество \varnothing являются открытыми множествами;
 - (b) объединение любого семейства открытых множеств открыто;
 - (с) пересечение двух открытых множеств открыто.
- **Опр. 4.** Пусть X метрическое пространство. Подмножество $F \subset X$ называется замкнутым, если его дополнение $X \setminus F$ открыто.
 - 3. Докажите, что для произвольного метрического пространства X
 - (a) само X и пустое подмножество \varnothing являются замкнутыми множествами;
 - (b) пересечение любого семейства замкнутых множеств замкнуто;
 - (с) объединение двух замкнутых множеств замкнуто.
- Опр. 5. Говорят, что последовательность точек $(x_n)_{n\in\mathbb{N}}$ метрического пространства (X,ρ) сходится к точке x, если для всякого $\varepsilon>0$ существует такое $N_{\varepsilon}\in\mathbb{N}$, что для всякого целого числа $n>N_{\varepsilon}$ справедливо неравенство $\rho(x,x_n)<\varepsilon$.
- Опр. 6. Пусть (X, ρ_1) и (Y, ρ_2) метрические пространства. Отображение $f\colon X\to Y$ называется непрерывным в точке x_0 , если для всякого $\varepsilon>0$ существует такое $\delta>0$, что для всякого $x\in X$, такого, что $\rho_1(x_0,x)<\delta$, выполняется неравенство: $\rho_2\big(f(x_0),f(x)\big)<\varepsilon$.
- **Опр. 7.** Пусть X метрическое пространство и $x \in X$. Окрестностями точки x называются открытые множества, содержащие x.
 - 4. Дано отображение $f \colon X \to Y$ метрического пространства X в метрическое пространство Y. Докажите, что f непрерывна в точке $x_0 \in X$ тогда и только тогда, когда для всякой окрестности $V \ni f(x_0)$ существует такая окрестность $U \ni x_0$, что $f(U) \subset V$.
- Опр. 8. Пусть $(x_n)_{n\in\mathbb{N}}$ последовательность точек в метрическом пространстве X и $x\in X$. Точка x называется предельной точкой последовательности (x_n) , если существует подпоследовательность последовательности (x_n) , сходящаяся κ x.
- **Опр. 9.** Метрическое пространство X называется компактным, если всякая последовательность его точек имеет предельную точку.
- **Опр. 10.** Семейство открытых подмножеств $\{U_{\alpha}\}$ метрического пространства X называется (открытым) покрытием, если $X = \bigcup_{\alpha} U_{\alpha}$.

- 5. (Лемма о лебеговом числе) Докажите, что для всякого открытого покрытия компактного метрического пространства X существует такое число $\varepsilon > 0$, что для всякой точки $x \in X$ шар $B_{\varepsilon}(x)$ содержится в одном из множеств покрытия.
- 6. Докажите, что метрическое пространство X компактно тогда и только тогда, когда во всяком открытом покрытии $\{U_{\alpha}\}$ существует конечное подпокрытие $\{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\}$, т.е. $X = U_{\alpha_1} \cup U_{\alpha_2} \cup \dots \cup U_{\alpha_n}$.

Упражнения

1. Является ли (\mathbb{R}, ρ) метрическим пространством, если

a)
$$\rho(x,y) = \sqrt{|x-y|}$$
; b) $\rho(x,y) = (x-y)^2$; c) $\rho(x,y) = \sin^2(x-y)$.

- 2. Является ли отображение $\tau \colon (X \times Y) \times (X \times Y) \to \mathbb{R}$ метрикой на $X \times Y$ для любых метрических пространств $(X, \rho), (Y, \sigma),$ если
 - (a) $\tau((x_1, y_1), (x_2, y_2)) = \rho(x_1, x_2) + \sigma(y_1, y_2);$
 - (b) $\tau((x_1, y_1), (x_2, y_2)) = \min(\rho(x_1, x_2), \sigma(y_1, y_2));$
 - (c) $\tau((x_1, y_1), (x_2, y_2)) = \max(\rho(x_1, x_2), \sigma(y_1, y_2)).$
- 3. Докажите, что пара (\mathbb{R}^n, ρ_p) , где $\rho_p(x,y) \stackrel{\text{def}}{=} (|x_1 y_1|^p + \ldots + |x_n y_n|^p)^{1/p}$, является метрическим пространством при $p \geqslant 1$ (приведенная метрика называется L^p -метрикой).
- 4. Докажите, что пара $(\mathbb{R}^n, \rho_\infty)$, где $\rho_\infty(x, y) \stackrel{\text{def}}{=} \max(|x_1 y_1|, \dots, |x_n y_n|)$, является метрическим пространством (приведенная метрика называется L^∞ -метрикой).
- 5. Докажите, что все L^p -метрики $(1\leqslant p\leqslant \infty)$ определяют на \mathbb{R}^n одно и тоже семейство открытых множеств.
- 6. Докажите, что функции

a)
$$\rho_{\infty}(f,g) \stackrel{\text{def}}{=} \max_{x \in [0,1]} (|f(x) - g(x)|);$$
 b) $\rho_{1}(f,g) \stackrel{\text{def}}{=} \int_{0}^{1} |f(x) - g(x)| dx.$

являются метриками на множестве C[0,1] непрерывных функций, заданных на отрезке [0,1].

- 7. Рассмотрим метрическое пространство $(B[0,1], \rho_{\infty})$, где B[0,1] множество всех ограниченных функций $f \colon [0,1] \to \mathbb{R}$. Докажите, что множество C[0,1] является замкнутым, но не открытым подмножеством в B[0,1].
- 8. Докажите, что единичный открытый шар из пространства $(C[0,1], \rho_{\infty})$ не является открытым множеством в пространстве $(C[0,1], \rho_1)$.
- 9. Докажите, что единичный открытый шар из пространства $(C[0,1], \rho_1)$ является открытым множеством в пространстве $(C[0,1], \rho_\infty)$.
- 10. Пусть (K, ρ) метрическое пространство. Отображение $f \colon K \to K$ называется изометрией, если для всех $x, y \in K$ справедливо равенство $\rho(x, y) = \rho \big(f(x), f(y) \big)$. Докажите, что если K компактное пространство и
 - (a) отображение g не уменьшает расстояние, т. е. $\rho(g(x), g(y)) \ge \rho(x, y)$ для всех $x, y \in K$, то оно является изометрией;
 - (b) отображение g сюръективно и не увеличивает расстояние, то оно является изометрией;
 - (c) отображение g изометрично, то оно является биекцией.