CALCULATION OF POWER AND TORQUE FOR MAHINDRA ZOR DV 3W

Dimensions - (3100*1460*1762)

GVW - 995 kg ~ 1000 kg

Gradeability - 0-7 degree (0 degree is considered)

Air density - 1.2 kg/m³ @27 degree celsius

Velocity - 0-20 km/hr in 2.3 sec (Uniform velocity is considered)

0.5s - 1.2075 m/s

1s - 2.4152 m/s

1.5s - 3.6230 m/s

2.0s - 4.830 m/s

2.3s - 5.556 m/s

Acceleration – (final velocity – initial velocity)/change in time

Max acceleration -2.415 m/s^2 (At high velocity acceleration is low and at low velocity acceleration is high. Hence acceleration considered 1.3m/s^2 .)

RESISTANCE FORCES

- 1) Rolling resistance forces(F_{rr}) = GVW* C_{rr} = 1000 * 9.81 * $\cos(0)$ * 0.01 = 98.1 N
- 2) Aerodynamic Drag Force(F_{ad}) = 0.5 * rho * C_d * Area * v^2 = 0.5* 1.2 *0.45* 2.5725 * (5.556)² = 21.44 N
- 3)Acceleration Force(F_{acc}) = m*a = 1000* 1.3 = 1300 N
- 4)Gradient resistance force(F_{gr})= GVW * g * sin(0)* 9.81 = 0 N

Total tractive force(F_{total}) = $F_{ad} + F_{rr} + F_{acc} + F_{gr} = 98.1 + 21.44 + 1300 + 0 = 1419.54 N$

Tyre – MRF SAVARI LT155 D12

1) Tyre radius(R_w)= Rim radius + sectional height = 152.4+124 = 276.4mm = 0.276m

TRACTIVE TORQUE = tractive force *tyre radius = 1968.05*0.276 = 543.18 Nm

Here the flow is of wheel – gear box – motor

CONDITION-1(Taking wheel as base)

Power required to overcome,

- 1) Drag force(P_{aero}) = F_{aero} * v = 21.44 *5.556 = 119.120 W
- 2) Rolling resistance(P_{rr}) = F_{rr} *v = 98.1 * 5.556 = 545.43 W
- 3) Gradient resistance(P_{gr}) = 0
- 4) Power required for acceleration(P_a)

Work done(W) = Force * displacement =
$$m*a*dis$$

= $m*(v/t)*0.5*a*t^2$
= $0.5*m*v^2$

Now,

Avg acceleration power(P_{acc}) = W / time period = $(0.5*m*v^2)/t$ = $0.5*F_{acc}*v$ = 3611kW @ 20km/hr

Peak acceleration power(Peak
$$P_{acc}$$
) = F_{acc} *v = 1300*5.556
= 7222.8 W(7.2kW)

Total power required to overcome road loads = $P_{aero} + P_{rr} + P_{gr} + P_{acc}$ = 119.120+545.43+0+3611 = 4275.55 W ~ 4.2 kW

Peak power required = $P_{aero} + P_{rr} + P_{gr} + Peak P_{acc}$ = 119.120+545.43+0+7222.8 = 7887.35 ~ 8kW

CONDITION-2(Considering transmission)

WHEEL RPM:

Omega =
$$v/r = 5.556/0.276$$
 [r-radius of wheel]
= 20.129 rad/sec

Now,

 $N_{\text{wheel}} = (\text{omega*60})/(2*3.14) = 192.218 \text{ rpm} @ 20 \text{km/hr} (@50 \text{km/hr} - 480 \text{ rpm})$

WHEEL TORQUE:

Wheel torque =
$$F_{total}$$
*perpendicular distance(Radius of wheel)
= 1968.05*0.276 = 543.18 Nm

GEAR RATIO:

Gear ratio = (RPS/Top speed)*tyre circumference
=
$$(4000/13.88*60)*(2*3.14*0.276)$$
 [@50km/hr the rpm will be 3000]
= $8.3 \sim 8$

{FOR gear ratio 10:1

Nm = 10*192.218=1922.18

Tmotor = 543.18/10=54.3

power of motor = 10.86kW}

Now,

Speed of motor(N_m) = gear ratio * N_{wheel} = 4*480 = 1819 rpm ~ 1800 rpm

Torque of motor (T_m) = Peak power*60/(2*3.14*1920) = 8000*60/(2*3.14*1800) = 42.46 Nm

Hence,

By

Rated power is 4.2kW

Hence we consider the maximum power of 8 kW for PMSM motor