Week 2 Homework for Fintech545

Yue Yu (yy404)

Question 1

a.

b. I used excel to type formulas to calculate 4 moments.

Morrout	Normalized	Unnormalized	Biased	4h o
Moment	formula	formula	formula	python
Mean	1.04897	1.04897	1.04897	1.04897
Variance	5.42722	5.42722	5.421793	5.421793
Skewness	0.88193	11.15068	11.11725	11.11725
Kurtosis	23.07013	767.88858	767.88414	767.88414

c. Biased and unnormalized. Compared to the skewness and kurtosis of biased formula and unnormalized formula, python package scipy is biased and unnormalized.

Question 2

a. Regression - OLS

In OLS regression, the coefficient (beta) for the variable x is 0.7753, for the constant is -0.0874, while the standard deviation is 1.004.

```
Standard Deviation of OLS Error: 1.003756319417732
                           OLS Regression Results
______
Dep. Variable:
                                       R-sauared:
                                                                       0.346
Model:
                                 OLS
                                       Adj. R-squared:
                                                                       0.342
                       Least Squares
Method:
                                       F-statistic:
                                                                       104.6
Date:
                    Thu, 25 Jan 2024
                                       Prob (F-statistic):
                                                                    5.59e-20
Time:
                            14:42:58
                                       Log-Likelihood:
                                                                      -284.54
No. Observations:
                                       AIC:
                                 200
                                                                       573.1
Df Residuals:
                                 198
                                       BIC:
                                                                       579.7
Df Model:
Covariance Type:
                           nonrobust
                        std err
                                                P>|t|
                                                          [0.025
                                                                      0.975]
             -0.0874
                          0.071
constant
                                    -1.222
                                                0.223
                                                           -0.228
                                                                       0.054
              0.7753
                          0.076
                                    10.226
                                                0.000
                                                           0.626
                                                                       0.925
Omnibus:
                              11.922
                                       Durbin-Watson:
                                                                       2.023
Prob(Omnibus):
                               0.003
                                       Jarque-Bera (JB):
                                                                      16.685
Skew:
                               0.387
                                       Prob(JB):
                                                                    0.000238
Kurtosis:
                               4.184
                                       Cond. No.
                                                                        1.09
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified
```

In MLE following the assumption of normality, MLE estimated mean is -0.038, standard deviation is 1.241 and beta is 0.7753.

Obviously, the OLS model exhibits a better fit as its standard deviation is smaller, implying that the model's predicted values are closer to the actual observations. The MLE model shows a relatively poorer fit since its standard deviation is larger, indicating a larger discrepancy between the predicted values and the actual observations. We can see that the beta of MLE is the same as the OLS solution.

b. In MLE under the assumption of t distribution, MLE estimate of mean is 0.003, standard deviation is 0.930 and degrees of freedom is 7.051.

	MLE_Norm	MLE_t
Log Likelihood	-326.942	-597.126
AIC	657.88	1200.252
BIC	664.48	1210.147

Comparing the MLE_Norm and MLE_t models based on Log Likelihood, AIC, and BIC values, we can draw the following conclusions:

1. Log Likelihood:

- The Log Likelihood for the MLE_t model is -597.126, while for the MLE_Norm model, it is -326.942.
- Since a higher Log Likelihood indicates a better fit of the model to the data, the MLE_Norm model performs better in this aspect.

2. AIC (Akaike Information Criterion):

- The AIC for the MLE_t model is 1200.252, whereas for the MLE_Norm model, it is 657.88.
- AIC considers both model fit and complexity, and a lower AIC value suggests a
 relatively better model. Therefore, in terms of AIC, the MLE_Norm model performs
 better.

3. BIC (Bayesian Information Criterion):

- The BIC for the MLE_t model is 1210.147, while for the MLE_Norm model, it is 664.48.
- Similar to AIC, BIC considers both fit and complexity, and a lower BIC value indicates a relatively better model. In terms of BIC, the MLE_Norm model also performs better.

Taking into account Log Likelihood, AIC, and BIC collectively, the MLE_Norm model outperforms the MLE_t model in this comparison, exhibiting both better fit to the data and a simpler model.

c. In MLE following the multivariate normal distribution, estimated mean vector is
 [0.0010227 0.99024382] and estimated covariance matrix is

 In order to estimate X_2 from observed X_1 , I created a multivariate normal distribution object for X_2 given X_1 at the very beginning, then I used Random Value Sample to get the X_2 value. After that, I calculate the mean and confidence interval for the estimated X_2 , which is [0.99024382] and [[0.96147329]] respectively. After plotting histogram graph of estimated x2, I guessed it follows normal distribution. Then, plot Q-Q plot with the expected value and 95% confidence interval to normal distribution. From the Q-Q plot, it is evident that the distribution of X2 is well-fitted to a normal distribution.

Q-Q Plot of Estimated x2 with Expected Value and 95% Confidence Interval

d. Please see the detailed prove in last page.

$$\beta = (X^{T}X)^{-1}X^{T}y$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} ((y_{i} - x_{i} \beta)^{2})$$

Question 3

According to the models built, log likelihood, AIC and BIC can be used to analyze their performance:

	AR (1)	AR(2)	AR (3)	MA (1)	MA(2)	MA(3)
Log Likelihood	-819.328	-786.540	-713.330	-780.702	-764.971	-763.434
AIC	1644.656	1581.079	1436.660	1567.404	1537.941	1536.868
BIC	1657.299	1597.938	1457.733	1580.047	1554.800	1557.941

Analyzing the provided values for different AR and MA models:

- 1. Log Likelihood: A higher log-likelihood value indicates better model fit. In this case, AR(3) has the highest log-likelihood (-713.330), suggesting it fits the data best among the specified models.
- 2. AIC (Akaike Information Criterion): Lower AIC values indicate better model fit, balancing goodness of fit and model complexity. AR(3) has the lowest AIC (1436.660), suggesting it provides a better trade-off between fit and complexity compared to other models.
- 3. BIC (Bayesian Information Criterion): Similar to AIC, lower BIC values indicate better model fit with a penalty for model complexity. AR(3) also has the lowest BIC (1457.733), supporting its better fit relative to the other models.

In summary, based on the log-likelihood, AIC, and BIC values, the AR(3) model appears to provide the best fit among the specified AR and MA models for the given dataset.

AR(1)

SARIMAX Results							
Dep. Variable:	:		x No.	 Observations:		500	
Model:		ARIMA(1, 0,	0) Log	Likelihood		-819.328	
Date:	Th	u, 25 Jan 20	24 AIC			1644.656	
Time:		16:29:	:59 BIC			1657.299	
Sample:		- 5	0 HQIC			1649.617	
Covariance Typ	oe:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2.1258	0.070	30.473	0.000	1.989	2.263	
ar.L1	0.2019	0.045	4.512	0.000	0.114	0.290	
sigma2	1.5517	0.105	14.743	0.000 	1.345	1.758 	
Ljung-Box (L1)	(Q):		2.51	Jarque-Bera	(JB):		1.42
Prob(Q):			0.11	Prob(JB):			0.49
Heteroskedasti	icity (H):		1.37	Skew:			0.00
Prob(H) (two-s	sided): 		0.04 	Kurtosis: 			2.74
Warnings: [1] Covariance AR(1) MSE: 2.1			sing the o	uter product	of gradient	s (complex-	step).

ARIMA(1, 0, 0) Fit -1 Actual Fitted -2 ó

AR(2)

			SARIM	AX Res	sul	ts			
Dep. Variable:				x No	o.	Observations:	:	500	
Model:		ARIMA(2	2, 0, 0) Lo	og	Likelihood		-786.540	
Date:	TI	hu, 25 🕽	Jan 202	4 A]	ΙĊ			1581.079	
Time:		1	16:30:2	5 B1	C			1597.938	
Sample:			- 50		SIC			1587.694	
Covariance Type	e:		ор	g 					
	coef	std 6	err		z	P> z	[0.025	0.975]	
const	2.1270	0.6	949	43.66	53	0.000	2.032	2.222	
ar.L1	0.2732	0.6	942	6.48	36	0.000	0.191	0.356	
ar.L2 -	0.3505	0.6	943	-8.06	58	0.000	-0.436	-0.265	
sigma2	1.3603	0.6	94	14.45	55	0.000	1.176	1.545	
Ljung-Box (L1)	(Q):			15.51	L	Jarque-Bera	(JB):		 3.12
Prob(Q):				0.00	9	Prob(JB):			0.21
Heteroskedastic	ity (H)	:		1.26	9	Skew:			0.11
Prob(H) (two-si	ded):			0.24	1	Kurtosis:			2.68
Warnings: [1] Covariance AR(2) MSE: 2.18			ed usi	ng the	=== = 0	uter product	of gradient	s (complex-	step

AR(3)

		SAF	RIMAX Resul	ts			
Dep. Variable:			x No.	Observations:	 :	 500	
Model:		ARIMA(3, 0	, 0) Log	Likelihood		-713.330	
Date:	Т	hu, 25 Jan 2	2024 AIC			1436.660	
Time:		16:30	9:41 BIC			1457.733	
Sample:			0 HQIC			1444.929	
			500				
Covariance Typ	e:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2.1209	0.085	24.990	0.000	1.955	2.287	
ar.L1	0.4515	0.040	11.179	0.000	0.372	0.531	
ar.L2	-0.4887	0.037	-13.104	0.000	-0.562	-0.416	
ar.L3	0.5047	0.040	12.769	0.000	0.427	0.582	
sigma2	1.0132	0.068	14.939	0.000	0.880	1.146	
Ljung-Box (L1)	(0):	=======	-====== 0.02	Jarque-Bera	======== (JB):		== 84
Prob(Q):	,		0.90	Prob(JB):	` ′	0.6	56
Heteroskedasti	city (H)		1.04	Skew:		-0.6	93
Prob(H) (two-s			0.81	Kurtosis:		2.8	81
=======================================		=======		========		========	==
Warnings: [1] Covariance AR(3) MSE: 2.1			using the o	uter product	of gradient	s (complex-ste	ep)

Dep. Variable:				Observations:		500
Model:	_	ARIMA(0, 0,		Likelihood		-780.702
Date:	- 1	hu, 25 Jan 20				1567.404
Time:		16:31:				1580.047
Sample:		_	0 HQIC			1572.365
C		- 5				
Covariance Typ	e: 		pg 			
	coef	std err	Z	P> z	[0.025	0.975]
const	2.1236	0.085	25.028	0.000	1.957	2.290
ma.L1	0.6434	0.034	18.847	0.000	0.577	0.710
sigma2	1.3282	0.090	14.782	0.000	1.152	1.504
Ljung-Box (L1)	====== (0):	=========	======= 11.73	======== Jarque-Bera	:======= (ЈВ):	:=======
Prob(0):	(0)			Prob(JB):	(,-	
Heteroskedasti	city (H)	:	1.39	` '		
Prob(H) (two-s	ided):		0.04	Kurtosis:		
==========	======	========	=======	========		:=======

	=======	SAR =========	RIMAX Resul =======	.TS :=======	:=======	:=======
Dep. Variable	:		x No.	Observations:		500
Model:		ARIMA(0, 0,	2) Log	Likelihood		-764.971
Date:	T	hu, 25 Jan 2	024 AIC			1537.941
Time:		16:31	:40 BIC			1554.800
Sample:			0 HQIC	:		1544.556
Covariance Typ	oe:		500 opg			
========	coef	std err	z	P> z	[0.025	0.975]
const	2.1255	0.060	35.199	0.000	2.007	2.244
ma.L1	0.4344	0.044	9.775	0.000	0.347	0.522
ma.L2	-0.2306	0.047	-4.949	0.000	-0.322	-0.139
sigma2	1.2473	0.086	14.558	0.000	1.079	1.415
 Ljung-Box (L1)) (Q):		0.02	Jarque-Bera	(JB):	
Prob(Q):			0.88	Prob(JB):		
Heteroskedast:	icity (H)		1.28	Skew:		-
Prob(H) (two-	sided):		0.11	Kurtosis:		

MA(3)

		SAR1	MAX Resul	ts 			
Dep. Variab Model: Date: Time: Sample: Covariance	Th	ARIMA(0, 0, u, 25 Jan 20 16:31:	3) Log 224 AIC 51 BIC 0 HQIC		:	500 -763.434 1536.868 1557.941 1545.137	
=======	coef	std err	z	P> z	[0.025	0.975]	
const ma.L1 ma.L2 ma.L3 sigma2	2.1259 0.5582 -0.2286 -0.1531 1.2394	0.059 0.045 0.053 0.048 0.085	35.880 12.333 -4.308 -3.216 14.592	0.000 0.000 0.000 0.001 0.000	2.010 0.469 -0.333 -0.246 1.073	2.242 0.647 -0.125 -0.060 1.406	
Ljung-Box (Prob(Q): Heteroskeda Prob(H) (tw	sticity (H):	========	1.60 0.21 1.25 0.15	Jarque-Bera Prob(JB): Skew: Kurtosis:	(ЈВ):		1.75 0.42 -0.06 2.73
Warnings: [1] Covaria	ance matrix c	alculated us	ing the o	uter product	of gradient	s (complex-	·step)

when Zity: = Zixixib, it equal to zero

$$\frac{\partial}{\partial s^{2}} \left(-\frac{N}{2} \ln(270) - \frac{N}{2} \ln(s^{2}) - \frac{1}{2} s^{2} \sum_{i=1}^{N} (y_{i} - x_{i}^{2} b_{i}^{2}) \right)$$

$$= \frac{1}{2} \left[\frac{1}{8} \sum_{i=1}^{N} (y_{i} - x_{i}^{2} b_{i}^{2} - N) \right]$$