

Технології графічного процесінгу & розподілених обчислень

Лекція 2: Вступ до CUDA C

Кочура Юрій Петрович iuriy.kochura@gmail.com @y_kochura

Огляд

Сьогоднішні виклики обчислень

- Навички виконання обчислень є важливими для вивчення практично усіх дисциплін
- Наука про дані та машинне навчання стають основними навичками в більшості STEM
- Практично всі процесори багатоядерні, від мікроконтролерів до суперкомп'ютерів
- Бізнес та наукові відкриття потребують ШІ та прискорених обчислень

The future of computing: a conversation with John Hennessy (Google I/O '18)

Пристрої

Device type	Device name	Transistor count	Date of introduction	Designer(s)	MOS process	Area	Transistor density, tr./mm2
Deep learning engine / IPU[g]	Colossus GC2	23,600,000,000	2018	Graphcore	16 nm	~800 mm2	29,500,000
Deep learning engine / IPU	Wafer Scale Engine	1,200,000,000,000	2019	Cerebras	16 nm	46,225 mm2	25,960,000
Deep learning engine / IPU	Wafer Scale Engine 2	2,600,000,000,000	2020	Cerebras	7 nm	46,225 mm2	56,250,000
Network switch	NVLink4 NVSwitch	25,100,000,000	2022	Nvidia	N4 (4 nm)	294 mm2	85,370,000

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Year in which the microchip was first introduced Data source: Wikipedia (wikipedia.org/wiki/Transistor count)

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Джерело слайду: en.wikipedia.org 5/58

Сьогодні

- Масштабованість та портативність у гетерогенних паралельних обчисленнях
- GPU-прискорені vs лише CPU програми
- Способи прискорення виконання програм
- Приклади паралельних обчислень
- Процес компіляції CUDA C/C++
- Ядра: функції GPU
- Ієрархія потоків
- Демо

Масштабованість та портативність у гетерогенних паралельних обчисленнях

Масштабованість

Масштабованість

Той самий додаток ефективно працює на нових поколіннях ядер.

Масштабованість

Той самий додаток ефективно працює на кількох однакових ядрах.

Портативність

Той самий додаток ефективно працює на різних типах ядер.

Портативність

Той самий додаток ефективно працює в системах з різною організацією та інтерфейсами.

GPU-прискорені vs лише CPU програми

Способи прискорення виконання програм

Програми

Бібліотеки

Директиви компілятора

Мови програмування

Прості у використанні Висока продуктивність Прості у використанні Портативний код Висока продуктивність Висока гнучкість

Бібліотеки

Бібліотеки: проста, високо-якісне прискорення

- Простота використання: використання бібліотек дозволяє прискорювати обчислень на GPU без поглиблених знань програмування GPU
- Багато бібліотек для прискорення обчислень на GPU дотримуються стандартних API, що дозволяє прискорювати роботу з мінімальними змінами коду
- Якість: бібліотеки пропонують високоякісні реалізації функцій, які зустрічаються у великій кількості додатків

Математичні бібліотеки

cuBLAS

GPU-accelerated basic linear algebra (BLAS) library

cuFFT

GPU-accelerated library for Fast Fourier Transforms

CUDA Math Library

GPU-accelerated standard mathematical function library

cuRAND

GPU-accelerated random number generation (RNG)

cuSOLVER

GPU-accelerated dense and sparse direct solvers

cuSPARSE

GPU-accelerated BLAS for sparse matrices

cuTENSOR

GPU-accelerated tensor linear algebra library

AmgX

GPU-accelerated linear solvers for simulations and implicit unstructured methods

Бібліотеки паралельних алгоритмів

Thrust

Бібліотека паралельних алгоритмів і структур даних C++ з GPU

Бібліотеки візуальної обробки

nvJPEG

High performance GPU-accelerated library for JPEG decoding

NVIDIA Performance Primitives

Provides GPU-accelerated image, video, and signal processing functions

NVIDIA Video Codec SDK

A complete set of APIs, samples, and documentation for hardwareaccelerated video encode and decode on Windows and Linux

NVIDIA Optical Flow SDK

Exposes the latest hardware capability of NVIDIA Turing™ GPUs dedicated to computing the relative motion of pixels between images

Бібліотеки комунікації

NVSHMEM

OpenSHMEM standard for GPU memory, with extensions for improved performance on GPUs.

NCCL

Open-source library for fast multi-GPU, multi-node communications that maximizes bandwidth while maintaining low latency.

Бібліотеки глибинного навчання

NVIDIA cuDNN

GPU-accelerated library of primitives for deep neural networks

NVIDIA TensorRT™

High-performance deep learning inference optimizer and runtime for production deployment

NVIDIA Riva

Platform for developing engaging and contextual AIpowered conversation apps

NVIDIA DeepStream SDK

Real-time streaming analytics toolkit for Albased video understanding and multi-sensor processing

NVIDIA DALI

Portable, open-source library for decoding and augmenting images and videos to accelerate deep learning applications

Директиви компілятора

Директиви компілятора: проста, портативне прискорення

- Простота використання: Компілятор подбає про деталі керування паралелізмом і переміщенням даних
- Портативність: Код є загальним, не специфічним для будь-якого типу апаратного забезпечення та може бути розгорнутий на кількох мовах
- Невизначеність: Продуктивність коду може відрізнятися в різних версіях компілятора

OpenACC

• Директиви компілятора для C/C++ та Fortran

Приклад:

Мови програмування

Мови програмування: висока продуктивність та гнучке прискорення

- Продуктивність: Програміст може найкраще контролювати паралельність та переміщення даних
- Гнучкість: Обчислення не потрібно пристосовувати до обмеженого набору бібліотечних шаблонів або типів директив
- Багатослівність: Програмісту часто потрібно виразити більше деталей

Мови програмування **GPU**

GPU Computing Applications Libraries and Middleware cuFFT PhysX VSIPL cuDNN cuBLAS CULA Thrust MATLAB SVM OptiX cuRAND MAGMA NPP Mathematica TensorRT OpenCurrent iRay cuSPARSE **Programming Languages** Java Directives С C++ DirectCompute Python Fortran (e.g. OpenACC) Wrappers **CUDA-Enabled NVIDIA GPUs** Tesla A Series NVIDIA Ampere Architecture (compute capabilities 8.x) GeForce 2000 Series Quadro RTX Series Tesla T Series **NVIDIA Turing Architecture** (compute capabilities 7.x) DRIVE/JETSON Quadro GV Series Tesla V Series **NVIDIA Volta Architecture** AGX Xavier (compute capabilities 7.x) Tegra X2 GeForce 1000 Series Quadro P Series Tesla P Series **NVIDIA Pascal Architecture** (compute capabilities 6.x) Data Center Embedded Workstation Desktop/Laptop

Приклади паралельних обчислень

Перетворення **RGB** зображення у відтінки сірого


```
for each pixel {
    pixel = gsConvert(pixel)
}
// Every pixel is independent
// of every other pixel
```


$$O = r \cdot 0.21 + g \cdot 0.72 + b \cdot 0.07$$

Додавання векторів

Процес компіляції **CUDA C/C++**

• Типовий код CUDA C/C++: хост (CPU) + пристрій (GPU)

CUDA/OpenCL — модель виконання

- Послідовні або помірно паралельні частини в коді, що виконуються хостом
- Високо паралельні частини в коді, що виконуються пристроєм: ядро

Ядра (Kernels)

• Ядро визначається за допомогою специфікатора __global__

```
// Kernel definition
__global___ void VecAdd(float* A, float* B, float* C)
{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}
int main()
{
...
// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
...
}
```

Ієрархія потоків

Сітка: масив блоків

Блок: масив потоків

gridDim

Кількість блоків у кожному вимірі:

- gridDim.x = 8
- gridDim.y = 3
- gridDim.z = 2

Сітка: масив блоків

blockIdx

Кожен блок має унікальний індекс у сітці:

- blockIdx.x (від 0 до gridDim.x -1)
- blockIdx.y (від0 до gridDim.y-1)
- blockIdx.z (від 0 до gridDim.z -1)

Сітка: масив блоків

blockDim

Кількість потоків у блоці:

- blockDim.x = 4
- blockDim.y = 4
- blockDim.z = 4

threadIdx

Кожен потік має унікальний індекс у блоці:

- threadIdx.x (від 0 до blockDim.x -1)
- threadIdx.y (від 0 до blockDim.x -1)
- threadIdx.z (від 0 до blockDim.x -1)

Приклад: одновимірний випадок

Джерело слайду: NVIDIA, DLI

Для виконання ядра потрібно вказати кілікість блоків та кількість потоків в одному блоці

Джерело слайду: NVIDIA, DLI 44 / 58

${\tt gridDim.x}$ визначає кількість блоків у сітці, у цьому випадку ${\tt gridDim.x}=2$

GPU

Джерело слайду: NVIDIA, DLI 45 / 58 ${ t blockIdx.x}$ визначає поточний індекс блоку у сітці, у цьому випадку ${ t blockIdx.x}=0$

GPU

Джерело слайду: NVIDIA, DLI 46 / 58

blockIdx.x визначає поточний індекс блоку у сітці, у цьому випадку blockIdx.x=1

GPU

Джерело слайду: NVIDIA, DLI 47 / 58 blockDim.x визначає кількість потоків у блоці, у цьому випадку blockDim.x=4

GPU

Джерело слайду: NVIDIA, DLI 48 / 58

Усі блоки у сітці містять <mark>однакову</mark> кількість потоків

GPU

Джерело слайду: NVIDIA, DLI 49 / 58

GPU

Джерело слайду: NVIDIA, DLI

GPU

Джерело слайду: NVIDIA, DLI 51 / 58

GPU

Джерело слайду: NVIDIA, DLI 52/58

GPU

Джерело слайду: NVIDIA, DLI 53 / 58

GPU

Джерело слайду: NVIDIA, DLI 54 / 58

GPU

Джерело слайду: NVIDIA, DLI 55 / 58

GPU

Джерело слайду: NVIDIA, DLI 56 / 58

GPU

Джерело слайду: NVIDIA, DLI 57/58

Демо: запит пристрою

Демо: додавання векторів

Додаток

• NVIDIA, CUDA Quick Start Guide

