ALGE	BRA	LINEA	RE	_	LE210	NE 24
Note Title						27/10/2023
Back to si	istemi Dinea	ni J Gousi	deriamo	uu sisteu	ua Dineare	di m
		equa	zioui iu	m - iu cog	zuik.	
Possiaumo s	iciverlo cou	ie				
					∕ n	
	matrice (x = b			m	n = [m
	matrice	1	colonna l	uuga		
	m×m l	uuga m	m di ten	mini noti		
	%	incognile				
Dette Ci,	, Cn le (donne di	A, possic	zuro Scrive	ne il sister	na come
	X1 C1 + X2	C2 + + X	$n \subset m = k$			
<i>C</i> ,,		0) -1' -	. 0		Om . K	~ 1 0. 1 -1-
Cousidena	mo anche	L'appucav	mone Dro	ieane 7:		2 ^m definita da
					×> /	×
Con quest	e uotazioni	si ha ch	L			
Il sistemo	r annette	soluzione	←) be	Ju (A)	(=> b € Sc	sau (Ci,, Cn)
						7.
					b è coi	nb. Dia. di
					Cs,	, Cn
1						
Struttura	generale	Jelle soluzi	sui di v	u sistem	a Ax=	[ط
Se il sist	ewa ha sol	usione, a	llora tut	He le solu	vioui si	Scrivous
come						
		+ t2 02 1	1. +. 15			
	1	-				
		ione				<i>_</i>
	qualunque	Axzb	delle sol	usioui di	$A \times = 0$	K

La din. segue da due fatti:
(1) Se x1 e x2 sous due solusioni, cioè Ax,=b e Ax2 >b,
allora $A(x_1-x_2) = Ax_1 - Ax_2 = b-b = 0$
② Se x, nisolve Axisbe y, nisolve Ax=0, allora
$A(x_1+y_1) = b+0 = b$
Osserviano de le soluzioni di Ax=0 sono il ker (A), quindi
i vz,, vz della formula di sopra souo una base di Ker (A)
Quindi il sistema ha soluzione unica quando
o Ker (A) = 0
· C1,, Cn sous Dia. indip.
_ o _ o _
TEOREMA DI ROUCHÉ - CAPELLI
Considerianno un sistema $A \times = b$.
Costruiamo la matrice $\hat{A} = (A1b)$ (cioè aggingiamo b come
(m+1) - esima colonna
Allora
1) il sistema ammette solusione (=> rango (A) = rango (Á)
2) Se il sistema ha soluvione, allora la soluvione generale
dipende da $K = M - 2$ # incognite rango commune di A e Â
incognite
[Jolea] Cosa possiamo dire di Rango (A) e Rango (À). Ci sono
solo 2 possibilità
• Raugo (Â) = Raugo (A). Que sto avvieur se e solo se b
è comb. Din. delle colonne Ci,, Cn. Ma questo avviene => il
Sistema na soluzione.
• Raugo (Ã) = Raugo (A)+1. Questo avviene ←> b NON e
comb. Din. di Ci,, Cn.
(stiamo usando rango = max # od. Din. àndip.)

Se ci sous sousioni, il numero di porrametri Diberi è k = din toer A Ma per R-N: din (ker (A)) + din (In (A)) = n k raugo (A)=2 Escupio 1 $\begin{cases} 2x + ay - 3z = 2 \\ x + y - z = b \\ x - 3y = 5 \end{cases}$ Domanda Stabilire al vanare di a e b, in quale situazione ci troviaus. $\begin{pmatrix} 2 & a & -3 & 2 \\ 1 & 1 & -1 & b \end{pmatrix} = \hat{A}$ $\begin{pmatrix} 1 & -3 & 0 & 5 \end{pmatrix}$ Se rango (A) = 3, allora per forta rango $(\hat{A}) = 3$ (essendoci solo 3 righe, 11 rango al max \hat{e} 3) solo 3 right, 11 rango al max è 3) Det (A) = -a + 9 + 3 - 6 = -a + 6→ Se a ≠ 6, allora il sistema ha soluzioni che dipendono da m-r = 3-3 =0 porametri ~ sd. unica, qualunque sia b. → Se a = 6, allora rango (A) = 2 (infatti è facile trovane minori 2x 2 con det 70) Quinoli feetto dipende da Rango (Ã). Det = -30+9b-6+15 = 9b-21 Se $b \neq \frac{7}{3}$, allora non ci sono soluzioni (i raughi sour 2e3).

Se a=6 e $b=\frac{7}{3}$, allora uni piacenelole dire che rango $(\hat{A})=2$. Però per dirlo serve che tutti i univori 3×3 di \hat{A} siano =0. Essendo 4, me dovrei fone altri 2.

Ju realtà uou serve farli. Jufatti

- · C2 e C3 sous Div. iudip.
- C4 è comb Din. di C2 e C3 (altrimenti D'ultimo Det ≠0)
- C1 è comb. Diu. di C2 e C3 (altimenti il primo Det ≠0)
 Ma allora

Conclusione: nel caso a = 6 e $b = \frac{7}{3}$ il sistema ha so solusioni che dipendono da m-r = 1 parametro (volendo si risolve banolmente).

[Provone a risolvere con Gauss e vedere cosa succeole]

Esemplo
$$\begin{cases} 2x + ay = 5 \\ ax + 3y = 6 \end{cases}$$

$$\begin{pmatrix} 2 & a & 5 \\ a & 3 & b \end{pmatrix} = \hat{A}$$
 Det $(A) = 6 - a^2$

→ Se
$$6-a^2 \neq 0$$
, cioè $a \neq \pm \sqrt{6}$, allora Rango $(A) = Rango (\hat{A}) = 2$
Quindi soluzione unica $(K = m - R = 2 - 2 = 0)$

 \rightarrow Se $a = \pm 16$, allora eutra iu gioco b.

$$a = \sqrt{6}$$
 (2 $\sqrt{6}$ 5) Det = $\sqrt{6}$ b - 15
 $\sqrt{6}$ 3 b) $\rightarrow 5e$ b $\neq \frac{15}{\sqrt{6}}$, allora NO SOLUZION!

$$\rightarrow$$
 Se $b = \frac{15}{\sqrt{6}}$, allora ∞ sol. (1 param.)

Idan se a = - 16