Dynamic Inconsistency in Dual-Shock Monetary Policy

A Post-COVID Framework

Arthur Mota

University of São Paulo

June 2025

Outline

- Introduction
- 2 Theoretical Framework
- **3** Optimal Policy Analysis
- 4 Enhanced Dynamic Inconsistency
- **5** Fed Policy 2020-2024
- **6** Policy Implications
- Conclusion

Motivation: The Post-COVID Inflation Puzzle

When Traditional Frameworks Break Down

Fed's 2020-2024 Experience:

- August 2021: Inflation characterized as "transitory"
- Attributed to supply chain disruptions
- March 2022: Fastest rate hiking cycle since 1980s
- 525 basis points in 17 months

The Problem

Traditional monetary policy frameworks assume central banks face standard inflation-unemployment trade-offs. But what happens when supply and demand shocks occur simultaneously with conflicting optimal responses?

This policy reversal highlights a fundamental gap in monetary theory

Traditional vs. Dual-Shock Environment

Why Existing Theory Falls Short

Kydland-Prescott (1977) assumes:

- Standard Phillips curve with symmetric shocks
- Homogeneous disturbances
- Clear inflation-unemployment trade-off

Modern reality features:

- **Supply shocks:** Create inflation without output expansion
- Demand shocks: Generate traditional trade-offs
- Simultaneous occurrence: Conflicting optimal responses
- Imperfect information: Difficulty distinguishing shock sources

Key Insight

When shocks require different policy responses, traditional dynamic inconsistency problems are amplified

Research Contributions

Three Key Innovations

Extended Kydland-Prescott Framework

- Dual-shock environment with supply and demand disturbances
- Shows how shock uncertainty amplifies time-inconsistency
- Characterizes new sources of policy mistakes

Oual-Shock Phillips Curve

- Separates supply from demand pressures
- Modified Taylor rule with shock-specific responses
- Asymmetric and nonlinear central bank optimization

Empirical Application

- Fed's 2020-2024 experience as case study
- Shows shock misidentification costs
- Policy implications for modern central banking

The Dual-Shock Phillips Curve

Separating Supply from Demand Pressures

Traditional Phillips Curve:

$$\pi_t = \alpha \pi_t^e + \beta y_t + \varepsilon_t$$

Our Dual-Shock Phillips Curve:

$$\pi_t = \alpha \pi_t^e + \beta_D \max(D_t, 0) + \beta_S S_t + \varepsilon_t$$
 (1)

Where:

- D_t = demand shocks (only positive shocks create inflation)
- S_t = supply shocks (affect inflation regardless of sign)
- π_t^e = inflation expectations

Key innovation: Asymmetric treatment reflects different inflationary mechanisms

Output Gap and Policy Rule

Completing the Model Structure

Output gap evolution:

$$y_t = \phi_D D_t - \phi_S |S_t| + \eta_t \tag{2}$$

- Demand shocks boost output
- Supply disruptions reduce output (regardless of direction)

Modified Taylor rule:

$$r_t = r^* + \phi_{\pi}(\pi_t - \pi^*) + \phi_y y_t + \phi_S f(S_t) + u_t$$
 (3)

Where $f(S_t) = S_t \cdot \mathbb{1}(|S_t| > \bar{S})$ represents threshold-based supply shock responses

Central Bank Loss Function

State-Dependent Preferences

Enhanced loss function with shock-specific terms:

$$L_t = \mathbb{E}_0 \sum_{s=0}^{\infty} \beta^s \left[\alpha (\pi_{t+s} - \pi^*)^2 + \lambda_D (y_{t+s})^2 + \lambda_S \omega (S_{t+s}) + \gamma (\Delta \pi_{t+s})^2 \right]$$
(4)

Key features:

- ullet $\omega(S_t) = \exp(\kappa |S_t|) 1$ captures non-linear costs of supply disruptions
- λ_D, λ_S represent differential weights on shock types
- ullet $\gamma \geq 0$ reflects preferences for inflation smoothing

Innovation

Non-linear supply shock costs create convexity, amplifying dynamic inconsistency problems

Shock Processes and Information

Persistence and Signal Extraction

Both shocks follow persistent AR(1) processes:

$$D_t = \rho_D D_{t-1} + \epsilon_{D,t}, \quad \epsilon_{D,t} \sim N(0, \sigma_D^2)$$
 (5)

$$S_t = \rho_S S_{t-1} + \epsilon_{S,t}, \quad \epsilon_{S,t} \sim N(0, \sigma_S^2)$$
 (6)

With potential correlation: $\mathbb{E}[\epsilon_{D,t}\epsilon_{S,t}] = \sigma_{DS}$

Information friction:

- Central bank observes aggregate outcomes
- Faces signal extraction problem distinguishing shock sources
- Must infer D_t and S_t from π_t and y_t

Critical Point

Information friction creates additional dynamic inconsistency as policy commitments become suboptimal when shock composition differs from expectations

Equilibrium Existence

Mathematical Foundations

Theorem (Equilibrium Existence)

A unique rational expectations equilibrium exists if:

- $|\alpha + \phi_{\pi}\beta_{D}\phi_{D}| < 1$ (determinacy condition)
- $\sigma_D^2 + \sigma_S^2 < \infty$ (bounded shocks)
- $|
 ho_D|, |
 ho_S| < 1$ (stationary processes)

Economic interpretation:

- Condition 1: Ensures unique stable inflation path
- Condition 2: Standard for well-behaved stochastic processes
- Condition 3: Prevents explosive shock dynamics

The model can be solved using standard linear rational expectations techniques after appropriate linearization

Optimal Policy Under Commitment

First-Best Response

Under commitment, central bank chooses entire sequence $\{\pi_t\}_{t=0}^{\infty}$:

$$\pi_t^C = \frac{\alpha \pi^* + \frac{\lambda_D \phi_D}{\beta_D} D_t + \frac{\lambda_S}{\beta_S} \frac{\partial \omega(S_t)}{\partial S_t} S_t}{\alpha + \frac{\lambda_D \phi_D^2}{\beta_D^2} + \frac{\lambda_S}{\beta_S^2} \left(\frac{\partial \omega(S_t)}{\partial S_t}\right)^2}$$
(7)

Key properties:

- $\frac{\partial \pi_c^c}{\partial D_t} > 0$ (accommodate positive demand shocks)
- ullet $\frac{\partial \pi_{s}^{c}}{\partial S_{s}} < 0$ (lean against supply shocks)
- Response magnitudes depend on shock persistence

Insight

Optimal policy treats demand and supply shocks asymmetrically

Under discretion, central bank reoptimizes each period:

$$\pi_t^D = \frac{\alpha \pi^* + \lambda_D \phi_D D_t + \lambda_S \frac{\partial \omega(S_t)}{\partial S_t} S_t}{\alpha + \lambda_D \phi_D^2 + \lambda_S \left(\frac{\partial \omega(S_t)}{\partial S_t}\right)^2}$$
(8)

Comparison with commitment:

- Higher average inflation: $\mathbb{E}[\pi_t^D] > \mathbb{E}[\pi_t^C]$
- Suboptimal shock responses: $\left|\frac{\partial \pi_t^D}{\partial S_t}\right| < \left|\frac{\partial \pi_t^C}{\partial S_t}\right|$
- Welfare losses increasing in shock variances

Classic Kydland-Prescott inflation bias persists but is amplified by dual shocks

The Enhanced Time-Inconsistency Problem

New Sources of Policy Mistakes

Theorem (Enhanced Dynamic Inconsistency)

Policy chosen at t = 0 is time-inconsistent if any of the following hold:

- **1 Shock uncertainty:** $Var_0(S_t) \neq Var_t(S_t)$ due to learning
- **2** Learning effects: $\mathbb{E}_0[D_t|\Omega_0] \neq \mathbb{E}_t[D_t|\Omega_t]$ (evolving estimates)
- **3** Correlation surprises: $Cov_0(D_t, S_t) \neq Cov_t(D_t, S_t)$ realized

Economic mechanism:

- Non-linear loss function creates convexity in shock responses
- Information updates change optimal policy prescriptions
- Initial commitments become suboptimal ex-post

Key Insight

Traditional time-inconsistency problems are amplified when central banks face imperfect information about shock composition

Welfare loss from discretion: $\Delta W = \mathbb{E}[L^D] - \mathbb{E}[L^C]$

$$\Delta W = \underbrace{\frac{\alpha \lambda_D^2 \phi_D^2 \sigma_D^2}{(1 - \beta)(\mathsf{denom})^2}}_{\mathsf{Demand \ component}} + \underbrace{\frac{\alpha \lambda_S^2 \mathbb{E}\left[\left(\frac{\partial \omega(S_t)}{\partial S_t}\right)^2\right] \sigma_S^2}{(1 - \beta)(\mathsf{denom})^2}}_{\mathsf{Supply \ component}} + \mathsf{cross \ terms} \tag{9}$$

Key findings:

- Welfare losses increase more than proportionally with shock variances
- Non-linear supply shock costs $(\omega(S_t))$ amplify welfare costs
- Cross-correlation between shocks creates additional welfare losses

Implication: Traditional frameworks perform poorly during high volatility periods

Communication and Credibility

The Role of Central Bank Communication

Modified Phillips curve with credibility:

$$\pi_t = \alpha [\theta_t \pi_t^{e,informed} + (1 - \theta_t) \pi_t^{e,confused}] + \beta_D D_t + \beta_S S_t + \varepsilon_t$$
 (10)

Where $\theta_t \in [0,1] =$ private sector confidence in central bank's shock identification **Communication challenges:**

- Private agents must form expectations over both outcomes and central bank competence
- ullet Low credibility ($heta_t$ small) leads to poorly anchored expectations
- Creates additional welfare costs from suboptimal expectation formation

Policy Implication

Central bank communication becomes more complex but critical in dual-shock environments

Empirical Application: The Fed's Experience

Theory Meets Reality

Stylized Facts from 2020-2024:

- Occurrence of Supply and Demand Shocks
 - Supply: COVID disruptions, Ukraine war, China zero-COVID
 - Demand: Massive fiscal stimulus, sectoral reallocation
 - NY Fed Supply Chain Pressure Index peaked while durable goods consumption surged
- Initial Shock Misidentification
 - Fed characterized inflation as "transitory"
 - Attributed primarily to supply bottlenecks
 - Underweighted concurrent demand pressures
- Oramatic Policy Reversal
 - March 2022: Fastest hiking cycle since 1980s
 - Treated situation as demand shock requiring aggressive tightening

Policy Mistakes and Dynamic Inconsistency

The "Transitory" Narrative

August 2021 - Chair Powell's Jackson Hole Speech:

"Inflation driven by a narrow group of goods and services directly affected by the pandemic"

Our framework explains this as:

- Treating situation as pure supply shock
- Optimal response: accommodation
- Time-inconsistent as demand pressures intensified

March 2022 - Policy Reversal:

- 525 basis points in 17 months
- Effectively treating as demand shock
- Created financial stress (banking sector strains March 2023)

Theoretical Prediction Confirmed

Evolving information and shock misidentification led to time-inconsistent policy reversal

Taylor Rule Analysis

Why Traditional Rules Failed

Standard Taylor Rule in 2021:

- Suggested rates should rise to 2-3%
- Fed maintained near-zero rates
- Created significant policy gap

Our dual-shock framework would have prescribed:

- Earlier but more measured tightening
- Conditional on shock identification
- Avoiding both initial error and subsequent overcorrection

Communication challenges:

- "Transitory" messaging created forward guidance constraints
- Limited policy flexibility when new information emerged
- Market-based inflation expectations rose as confidence declined

Welfare Costs

Quantifying the Policy Mistakes

Observed outcomes:

- Core PCE inflation peaked at 5.6% (February 2022)
- 3.6 percentage points above target for extended period
- Real wages declined substantially
- Financial stress from subsequent policy correction

Our framework predicts:

- Welfare losses from discretionary policy increase under dual shocks
- Particularly severe when shock identification fails
- Cross-correlation between shocks amplifies costs

International Evidence

ECB communication became more complex (readability scores requiring 13-15 years education), confirming broader pattern of communication challenges

Policy Recommendations

Rethinking Monetary Policy Frameworks

Opening Shock-Specific Policy Responses

- Separate response coefficients for supply and demand shocks
- Improve real-time shock identification capabilities
- Sectoral inflation decompositions and supply chain monitoring

2 Enhanced Communication Strategies

- Conditional forward guidance linked to observable shock indicators
- Explicit acknowledgment of uncertainty
- Clear frameworks for policy flexibility

Modified Rule-Based Frameworks

- Rules must account for shock heterogeneity
- Simple Taylor rules fail when supply shock variance exceeds thresholds
- Need for asymmetric and state-dependent responses

Future Research Directions

Extensions and Applications

Fiscal-Monetary Interactions

- How fiscal policy affects dual-shock dynamics
- Coordination challenges during crisis periods
- Debt sustainability considerations

International Spillovers

- Cross-border transmission of dual shocks
- Coordination across central banks
- Exchange rate implications

Financial Stability

- Banking sector responses to dual shocks
- Systemic risk considerations
- Macroprudential policy interactions

Empirical Validation

- Structural estimation of dual-shock models
- Cross-country analysis
- Historical episode studies

Key Contributions

Theoretical and Policy Advances

Extended Kydland-Prescott Framework

- Shows dual-shock environments amplify dynamic inconsistency
- Identifies new sources of time-inconsistency problems
- Provides rigorous mathematical foundation

Practical Policy Framework

- Dual-shock Phillips curve separates inflationary pressures
- Modified Taylor rule with shock-specific responses
- Enhanced loss function captures non-linear costs

Empirical Relevance

- Fed's 2020-2024 experience validates theoretical predictions
- Shock misidentification led to significant policy mistakes
- Communication challenges affected expectation formation

Broader Implications

The Future of Monetary Policy

Traditional frameworks are increasingly inadequate:

- Global supply chain vulnerability
- Increased geopolitical tensions
- Climate-related supply disruptions
- Technological disruptions

Central banks must adapt:

- Enhanced shock identification capabilities
- More sophisticated communication strategies
- Flexible but credible policy frameworks
- International coordination mechanisms

Bottom Line

In an era of increased economic fragmentation and shock complexity, monetary policy theory must evolve beyond traditional assumptions while maintaining rigorous foundations

Thank You

Questions & Discussion

Contact Information:

Arthur Mota University of São Paulo arthurmota@alumni.usp.br

Key Takeaway

When central banks face simultaneous supply and demand shocks requiring conflicting responses, traditional dynamic inconsistency problems are fundamentally amplified, requiring new theoretical frameworks and policy approaches.