Exam Tuesday, 31st of October (Halloween)

Covers: Section 4.2 (4.2.5 through end of section), 4.3, 4.4

Limit Superior & Limit Inferior

Definition 4.4.9

Let $\{s_n\}$ be a bounded sequence.

A subsequential limit of $\{s_n\}$ is a real number s such that $s = \lim_{k \to \infty} s_{n_k}$ for some subsequence $\{s_{n_k}\}$. If $S = \{s \in \mathbb{R} : \lim_{k \to \infty} s_{n_k} = s \text{ for some } \{s_{n_k}\} \text{ of } \{s_n\}\}$, then

- a. the **limit superior** (or **upper limit**) of $\{s_n\}$ is given by $\limsup s_n = \sup S$
- b. the **limit inferior** (or **lower limit**) of $\{s_n\}$ is given by $\lim \inf s_n = \inf S$
- c. Clearly, $\lim \inf s_n \leq \lim \sup s_n$. If it happens that $\lim \inf s_n < \lim \sup s_n$, then we say that $\{s_n\}$ oscillates.

-Side Note-

```
\begin{aligned} |\mathbf{s}_n| &\leq \mathbf{M}, \, \forall \, \mathbf{n} \in \mathbb{N} \\ -\mathbf{M} &< \mathbf{s}_n < \mathbf{M} \\ \text{If } \lim_{k \to \infty} s_{n_k} = \mathbf{s} \in \mathbf{S}, \, \text{then} \\ -\mathbf{M} &< s_{n_k} < \mathbf{M}, \, \text{so} \\ -\mathbf{M} &< \mathbf{s} < \mathbf{M} \\ \#18, \, \text{page } 179 \end{aligned}
```

Theorem 1

A bounded sequence $\{s_n\}$ converges to s iff $\lim \inf s_n = \lim \sup s_n = s$

```
Proof.
```

```
Assume \{s_n\} converges to s.

By Theorem 4.4.4, S = \{s\} (contains only one element).

Then,

lim inf s_n = \inf S = s

lim \sup s_n = \sup S = s

So,

lim inf s_n = \limsup s_n = s

\leftarrow

(see HW 8, Exercise 9, page 194)
```

Example 4.4.10

Let: $s_n = (-1)^n + \frac{1}{n}$ Show that $\lim \inf s_n = -1$, $\lim \sup s_n = 1$ Notice that if $n \text{ is even } \Rightarrow s_n = 1 + \frac{1}{n}$ $n \text{ is odd } \Rightarrow s_n = -1 + \frac{1}{n}$ Thus, $\lim_{k \to \infty} s_{2k+1} = -1$ $\lim_{k \to \infty} s_{2k+1} = -1$ Thus, $S = \{-1, 1\}$ Hence, $\lim \sup s_n = 1$

Theorem 4.4.11

Let $\{s_n\}$ be a bounded sequence and let

$$s^* = \lim \sup s_n$$

 $\lim \inf s_n = -1$

$$s_* = \lim \inf s_n$$

a.
$$\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ st}$$

$$s_n < s^* + \epsilon \text{ for } n \ge N$$

b.
$$\forall \epsilon > 0$$
 and $i \in \mathbb{N}$, $\exists j > i$ st

$$s_i > s^* - \epsilon$$

i.e. there are an infinite number of terms of $\{s_n\}$ that are greater than $s^* - \epsilon$

i.e. in the interval ($s^* - \epsilon$, $s^* + \epsilon$), there are an infinite number of terms of s_n .

Outside of that interval, there are a finite number of terms of s_n .

c.
$$\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ st}$$

$$s_n > s_* - \epsilon \ \forall \ n \ge N$$

d.
$$\forall \ \epsilon > 0$$
 and $i \in \mathbb{N}$, $\exists \ j > i \ st$

$$s_j < s_* + \epsilon$$

Proof.

We shall prove a and b. c and d are similar.

(a)

Suppose it's false. i.e.:

Suppose: $\exists \ \epsilon > 0 \ \mathrm{st} \ \forall \ \mathrm{N} \in \mathbb{N} \ , \ \exists \ \mathrm{n} \geq \mathrm{N} \ \mathrm{st}$

$$s_n \ge s^* + \epsilon$$

-Side Note-

In other words, suppose: $\{s_{n_k} \geq s^* + \epsilon \}$

By Theorem 4.4.4, every bounded sequence has a convergent subsequence.

If we let $\{s_{n_k}\}$ be a subsequence of itself and label it differently:

 $\{s_{n_l}\}_{i=1}^{\infty}$,

then

 $s_{n_l} \longrightarrow s \text{ as } l \longrightarrow \infty$

So, for N = 1, $\exists n_1 \ge N$ st

$$s_{n_1} \ge s^* + \epsilon$$

Then,

for $N = n_1 + 1$, $\exists n_2 \ge n_1 + 1 > n_1$ st

$$s_{n_2} \ge s^* + \epsilon$$

So, inductively, we find a subsequence $\{s_{n_k}\}$ st

$$s_{n_k} \ge s^* + \epsilon \ \forall \ \mathbf{k} \in \mathbb{N}$$

Since $\{s_{n_k}\}$ is itself a bounded sequence, there is a subsequence of $\{s_{n_k}\}$ that we refer to by:

$$\{s_{n_l}\}_{l=1}^{\infty}$$

 st

 $\lim s_{n_l} = s \in k \text{ (Theorem 4.4.7)}$

 $\lim_{l \to \infty} \int_{0}^{\infty} \int_{0}^{\infty} ds \, ds = 0$ where $s \ge s^* + \epsilon$

Since s \in S, we see that $\limsup s_n = s^* \ge s^* + \epsilon$, which is a contradiction.

Hence, (a) is true.

(b)

Suppose it's false. i.e.:

Suppose: $\exists \epsilon > 0 \text{ and } \exists i \in \mathbb{N} \text{ st } \forall j > i,$

$$s_j \le s^* - \epsilon$$

Thus, if $\{s_{n_k}\}$ is a subsequence st $\lim_{k\to\infty} s_{n_k} = s$, then

$$s \le s^* - \epsilon$$

which is like saying:

$$s^* \le s^* - \epsilon$$

(a contradiction)

For further clarification, notice that $s^* - \epsilon$ is an upper bound for all $s \in S$, which says: $s^* \le s^* - \epsilon$ (a contradiction)

Summary:

In (a), we said $\exists N_1 \in \mathbb{N} \text{ st } s_n < s + \epsilon \ \forall n \geq N_1$

In (b), we said $\exists N_2 \in \mathbb{N} \text{ st s} - \epsilon < s_n \ \forall \ n \geq N_2$

At the bottom of page 190:

Furthermore.

if $s^* \in \mathbb{R}$ satisfying (a) and (b),

then $s^* = \lim \sup s_n$

Also,

if $s_* \in \mathbb{R}$ satisfying (c) and (d),

then $s_* = \lim \inf s_n$

We shall complete the proof by proving the result for s*

Let: $s^* \in \mathbb{R}$ satisfy (a) and (b)

We claim that $s^* = \lim \sup s_n$, and will prove it by contradiction.

Suppose: $s^* \neq \lim \sup s_n$

Case:

i) $s^* > \lim \sup s_n$

So, $s^* - \epsilon$ is between $\limsup s_n$ and s^*

Let:

$$\epsilon = \frac{s^* - \lim \sup s_n}{2}$$

Version One:

By (b), for this $\epsilon > 0$, and for $i \in \mathbb{N}$, $\exists j \in \mathbb{N}$ st

j > i and

$$s_i > s^* - \epsilon$$

Since there are an infinite number of possible values of j, there is a subsequence $\{s_{n_k}\}$ st

$$s_{n_k} > s^* - \epsilon$$

 $\forall \ k \in \mathbb{N}$

This contradicts the definition of $\lim \sup s_n$.

Thus, there is a further subsequence converging to a limit s st

$$s \ge s^* - \epsilon \ge s^*$$

Which is also a contradiction.

Version Two:

By **(b)**, for
$$i = 1, \exists j = n_1 > 1$$
 st

$$s_{n_1} > s^* - \epsilon$$

Then, for $i = n_1$, $\exists j - n_2 > n_1$ st

$$s_{n_2} > s^* - \epsilon$$

So, inductively, we find a subsequence $\{s_{n_k}\}$ of $\{s_n\}$ st

$$s_{n_k} > s^* - \epsilon$$

Since $\{s_{n_k}\}$ is a bounded sequence.

So, there is a convergent subsequence $\{s_{n_l}\}$ of $\{s_{n_k}\}$ st $\lim_{l\to\infty} s_{n_l} = s$ where $s \geq s^* - \epsilon$

So, for $s \in S$, $\limsup s_n \ge s \ge s^* - \epsilon = \frac{\limsup s_n + s^*}{2} > \limsup s_n$, a contradiction.

Hence, $s^* \not > \lim \sup s_n$.

ii) $s^* < \lim \sup s_n$

Let:
$$\epsilon = \frac{\lim \sup s_n - s^*}{2}$$

By (a),
$$\exists N(\epsilon) \in \mathbb{N}$$
 st

$$s_n < s^* + \epsilon \text{ for } n \ge N$$

Thus, $\exists s \in S \text{ st}$

$$s < s^* + \epsilon$$

Thus, $\limsup s_n \le s^* + \epsilon = \frac{\limsup s_n + s^*}{2} < \limsup s_n$, a contradiction.

Hence, $s^* < \lim \sup s_n$

Cases (i) and (ii) together yield the contradiction that $s^* = \lim \sup s_n$, another contradiction. On page 195, problem # (a): Prove that $\limsup s_n = \lim_{n \to \infty} (\sup \{s_{n+1}, s_{n+2}, s_{n+3}...\})$

Side Note

If $\{s_{n_k}\}$ is a subsequence of $\{s_n\}$ st $\lim_{k\to\infty} s_{n_k} = s$.

Then $s \in S$

Corollary 4.4.12

Let $\{s_n\}$ be a bounded sequence and let $s^* = \limsup s_n$, $s_* = \liminf s_n$. Then, s_* , $s^* \in S$ (i.e. s_* , s^* are themselves subsequential limit points).

Proof.

For $\epsilon = 1$, by Theorem 4.4.11 (a), $\exists N_1 \in \mathbb{N}$ st

$$s_n < s^* + 1, \text{ for } n \ge N_1 \tag{1}$$

By Theorem 4.4.11, (b), for $\epsilon = 1$, $i = N_1$, $\exists n_1 > i = N_1$ st

$$s_{n_1} > s^* - 1$$

and

$$s^* - 1 < s_{n_1} < s^* + 1$$
 using (1)

For $\epsilon = \frac{1}{2}$, $\exists N_2 \in \mathbb{N}$ st

$$s_n < s^* + \frac{1}{2}$$
 for $n \ge N_2$ using (a) (2)

Also, for $i = \max\{n_1, N_2\}$, $\exists j = n_2 > i$ (i.e. $n_2 > n_1$ and $n_2 > N_2$) st

$$s^* - \frac{1}{2} < s_{n_2} < s^* + \frac{1}{2}$$

Inductively, we can construct a sequence $\{s_{n_k}\}$ of $\{s_n\}$ st

$$s^* - \frac{1}{k} < s_{n_k} < s^* + \frac{1}{k}$$

Hence, $|s_{n_k} - \mathbf{s}^*| < \frac{1}{k} \longrightarrow 0$ as $\mathbf{k} \longrightarrow \infty$

Hence, $\mathbf{s}^* = \lim_{k \to \infty} s_{n_k}$, which completes the proof.

Theorem 4.4.14

Assume that $\{r_n\}$ converges to $r \in \mathbb{R}$ where r > 0 and $\{s_n\}$ is bounded. Then $\limsup r_n s_n = r \lim \sup s_n$

Proof.

 $\exists M_1, M_2 \in \mathbb{R} \text{ st}$

$$|s_n| \leq M_1$$
 and $|r_n| \leq M_2$, $\forall n \in \mathbb{N}$

So,

$$|r_n s_n| \le M_1 M_2$$

Thus, the sequence $\{r_n s_n\}$ is bounded, which means $\limsup r_n s_n$ exists.

By Corollary 4.4.12, \exists a subsequence $\{s_{n_k}\}$ of $\{s_n\}$ st $\lim_{k\to\infty}\,s_{n_k}=\lim\sup s_n$

Then, $\lim_{k\to\infty} r_{n_k} s_{n_k} = (\lim_{k\to\infty} r_{n_k})(\lim_{k\to\infty} s_{n_k}) = r \lim \sup s_n$ (i.e. $r \lim \sup s_n$ is a subsequential limit point of the sequence $\{r_n s_n\}$)

Thus, r $\limsup s_n \leq \limsup r_n s_n$ (1)

Also, assume that $\{r_{n_l}s_{n_l}\}$ is a subsequence of $\{r_ns_n\}$ st

$$\lim_{l \to \infty} r_{n_l} s_{n_l} = t$$

Then,

$$\lim_{l\to\infty} s_{n_l} = \lim_{l\to\infty} s_{n_l} \bigl(\lim_{l\to\infty} \frac{r_{n_l}}{r}\bigr) = \lim_{l\to\infty} \frac{s_{n_l} r_{n_l}}{r} = \frac{t}{r} \leq \limsup\, \mathbf{s}_n$$

So, $t \le r \lim \sup s_n$ (which says $r \lim \sup s_n$ is an upper bound)

So, $\limsup r_n s_n \le r \lim \sup s_n$ (2)

(1) and (2) imply that $\limsup r_n s_n = r \limsup s_n$

Unbounded Sequences

Case:

- i) $\{s_n\}$ is unbounded above. By Theorem 4.4.8, there is a monotonic subsequence $\{s_{n_k}\}$ of $\{s_n\}$ st $\lim_{k \to \infty} s_{n_k} = \infty$ In this case, we define $\limsup s_n = \infty$
- ii) $\{s_n\}$ is bounded above but unbounded below.

subcase (i): \exists a subsequence $\{s_{n_k}\}$ st $\lim_{k\to\infty} s_{n_k} = s \in \mathbb{R}$

In this case, $s \in S$, and, as before, $\limsup s_n = \sup S$

subcase (ii): No subsequence of $\{s_n\}$ converges to a finite limit.

In this case, $\lim_{n\to\infty} \mathbf{s}_n = -\infty$, and we define $\limsup \mathbf{s}_n = -\infty$

So for any $M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ st

$$s_n < M$$
 for $n \ge N$

and $S = \{-\infty\}$