Embedded Systems Hands-On 1: Design and Implementation of Hardware/Software Systems

TECHNISCHE UNIVERSITÄT DARMSTADT

Task 7: Project Application

Goal

- Apply knowledge and skills learned in Task 1 to 6
- ► Focus on Hardware- or Software development

Organization

- ▶ 10 weeks for
 - planning,
 - implementation,
 - debugging,
 - and documentation
- No strict implementation requirements, besides
 - Exploit Raspberry Pi and/or the extension board
 - Limited Budget (30€) for additional hardware
 - Schematics and board layouts for generated hardware (KiCad)
- Every group is assigned a dedicated project (no duplicates, no first come first serve)
 - Generate an issue in your Gitlab project
 - Specify up to three desired topics with priorities
 - Discuss feasibility of own project with me in advance

Organization

- 9.8.2020: Deadline to select topic / discuss own project
- 23.8.2020: Decide about required hardware (BOM)
- ▶ 18.10.2020: Video submission deadline (seafile)
- ▶ 30.10.2020: Last day for colloquium

Organization

- Virtual Demo Day
- 2-minute video of project
 - Present goal of project
 - Insights into your implementation
 - Live Demo of the project
- Videos will be shared among participants

Organization - Lab Work

- E104 is available for e.g. measurements
 - One group at a time
 - Keep distance
 - Open the windows
 - Desinfect your hands
- B013 is available for soldering
 - One group at a time
 - Face mask required
 - Open the windows

 - Desinfect your hands
- Contact me at least one day in advance

Selected projects from last year

- Pi-Plantbot
 - Control water pump
 - Measure humidity in pot
 - Telegram bot
- E-ccordion
 - New music instrument with many Buttons
 - Microcontroller generates MIDI signals
- LoRa communication
 - Long range communication between two extension boards
 - Example: Tic-Tac-Toe
- Acustic communication
 - Generate sound signals
 - Detect sound signals via microphone

T7.1: Voice Recorder

- Choose appropriate codec
- Sample analog audio jack
- Encode on Cortex-M0
- Bluetooth streaming to end device
- Decode and playback on end device
- Optional: Store/display records

T7.2: Audio Player

- Choose appropriate codec
- Encode on source device
- Bluetooth streaming to Cortex-M0
- Decode on Cortex-M0
- Analog output via speaker board

T7.3: Animated LED

- Transmit text/picture from source device to Cortex-M0 via Bluetooth
- Capture position / acceleration of Cortex-M0
- ► Build (LED board)
- Position-dependent LED control to display content due to persistence of vision

THE BRICK - LIM DOING SCIENCE! STEP BRICK - THE

T7.4: Game Controller

- Bidirectional Bluetooth link to end device
- Cortex-M0 provides sensor data (light, position, acceleration, magnetic field, ...) and joystick status on request or periodic
- Cortex-M0 receives content to be displayed on TFT
- Example app on end device

T7.5: Game Boy Emulator

- Emulator on Cortex-A53
- Video output on TFT (not HDMI)
- Jump-And-Run controller by Cortex-M0 sensors (position, acceleration) and joystick

T7.6: Radio Controlled Clock

- Analog DCF77 receiver including resonator and demodulator
- Decode time signal on Cortex-M0
- Display date and time on TFT

T7.7: Doppler Speed Gauge

- Sample analog audio jack
- ► Transformation into frequency domain
- Detect significant frequency changes of dominant noise source
- Calculate speed of noise source
- Display results on TFT
- Optional: Results via Bluetooth

T7.8: Wake-Up Light

- Build (dimmable LED board)
- Capture movement of sleeping person by acceleration sensor (mounted on mattress)
- Analyze sleeping pattern
- Wait for shallow sleep in wake-up time slot configurable via Bluetooth
- Slowly increase LED intensity to trigger wake-up

T7.9: Morse En/Decoder

- Bidirectional Bluetooth link to end device
- Generate speaker board
- Encode received characters and playback morse code
- Sample audio input and joystick
- Decode received morse symbols
- ► Transmit decoded characters to end device

T7.10: Robot Arm

- Assemble the robot arm
- ► Implement I²C slave on ATMEGA64 controller
- ► Connect Cortex-M0 as master to robot arm via I²C
- ▶ Implement whiteboard writer controlled by Cortex-M0

Define your own project

Announcements

- ► Task 5.2 cancelled
- Task 1-6 deadline extended: 9.8.2020

Embedded Systems Hands-On 1: Design and Implementation of Hardware/Software Systems

heinz@esa.tu-darmstadt.de

