

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Анализ алгоритмов"

Tема <mark>Расстояние Левенштейна и Дамерау-Левенштейна</mark>
Студент Талышева О.Н.
Группа <u>ИУ7-55Б</u>
Преподаватели Волкова Л.Л., Строганов Ю.В.

Содержание

1	Ана	литическая часть	4
	1.1	Редакционное расстояние между двумя строками	4
	1.2	Выравнивание строк	4
	1.3	Расстояние Левенштейна	4
	1.4	Расстояние Дамерау-Левенштейна	6
2	Кон	структорская часть	8
3	Tex	нологическая часть	20
	3.1	Требования к программному обеспечению	20
	3.2	Средства реализации	20
	3.3	Реализации алгоритмов	20
	3.4	Тесты	23
4	Исс.	ледовательская часть	24
	4.1	Сравнение работы матричной, рекурсивной и рекурсивно-матричной ре-	
		ализаций алгоритмов	25
	4.2	Сравнение работы алгоритмов Левенштейна и Дамерау-Левенштейна	25
	4.3	Сравнение работы матричных и рекурсивно-матричных алгоритмов Ле-	
		венштейна и Дамерау-Левенштейна	28

Введение

Цель лабораторной работы: исследовать алгоритмы вычисления расстояния Левенштейна и Дамерау-Левенштейна в матричной, рекурсивно-матричной и рекурсивной реализациях. Для достижения этой цели были поставлены следующие задачи:

- изучить алгоритм вычисления расстояния Левенштейна
- изучить алгоритм вычисления расстояния Дамерау-Левенштейна
- применить метод динамического программирования для матричных реализаций алгоритмов
- ullet сравнить матричную, рекурсивно-матричную и рекурсивную реализации алгоритмов
- сравнить алгоритмы вычисления расстояния Левенштейна и Дамерау-Левенштейна

1. Аналитическая часть

1.1. Редакционное расстояние между двумя строками

Часто требуется измерить различие или расстояние между двумя строками (например, в эволюционных, структуральных или функциональных исследованиях биологических строк, в хранении текстовых баз данных, в методах проверки правописания). Есть несколько способов формализации понятия расстояния между строками. Одна общая и простая, формализация называется редакционным расстоянием; она основана на преобразовании (или редактировании) одной строки в другую серией операций редактирования, выполняемых над отдельными символами. Разрешенные операции редактирования — это вставка (I - insertion) символа в первую строку, удаление (D - deletion) символа из первой строки и подстановка или замена (substitution или, лучше, R - replace) символа из первой строки символом из второй строки. Обозначим М — "не-операцию" над правильной буквой (от match).

Строка над алфавитом 1, D, R, M, которая описывает преобразование одной строки в другую, называется редакционным предписанием (предписанием) этих двух строк.

Редакционное расстояние между двумя строками определяется как минимальное число редакционных операций — вставок, удалений и подстановок, необходимое для преобразования первой строки во вторую.

Подчеркием, что совпадения операциями не являются и не засчитываются. Редакционное расстояние иногда называют расстоянием Левенштейна по статье В. Левенштейна, где оно рассматривалось, вероятно, впервые.[4]

1.2. Выравнивание строк

Редакционное предписание — это способ представления конкретного преобразования одной строки в другую. Альтернативный (и часто предпочтительный) способ заключается в показе явного выравнивания (alignment) этих двух строк. (Глобальное) выравнивание двух строк, Sl и S2, получается вставкой пробелов в строки S1 и S2 (возможно, на их концах) и размещением двух получившихся строк друг над другом так, чтобы каждый символ или пробел одной строки оказался напротив одного символа или пробела другой строки.

Термин «глобальный» подчёркивает, что обе строки участвуют в выравнивании полностью.[3]

1.3. Расстояние Левенштейна

Расстояние Левенштейна, или редакционное расстояние, — метрика сходства между двумя строковыми последовательностями. Чем больше расстояние, тем более различны строки. По сути, это минимальное число односимвольных преобразований

(удаления, вставки или замены), необходимых, чтобы превратить одну последовательность в другую.

Цены операций могут зависеть от вида операции (вставка, удаление, замена) и/или от участвующих в ней символов, отражая разную вероятность мутаций в биологии, разную вероятность разных ошибок при вводе текста и т. д. В общем случае:

- D(a, b) цена замены символа а на символ b
- $D(\lambda, b)$ цена вставки символа b
- $D(a, \lambda)$ цена удаления символа а

Необходимо найти последовательность замен, минимизирующую суммарную цену. Расстояние Левенштейна является частным случаем этой задачи при ценах:

- D(a, a) = 0
- D(a, b) = 1, при $a \neq b$
- $D(\lambda, b) = 1$
- $D(a, \lambda) = 1$

Как частный случай, так и задачу для произвольных D, решает алгоритм Вагнера — Фишера, приведённый ниже. Здесь и ниже считается, что все D неотрицательны, и действует неравенство треугольника: замена двух последовательных операций одной не увеличит общую цену (например, замена символа х на у, а потом у на z не лучше, чем сразу х на z).

Например, D('hello', 'hallo') = 1, так как потребуется провести одну замену 'e' на 'a'.

Алгоритм реализуется по следующей формуле:

$$d(S_1,S_2) = D(M,N),$$
где $D(i,j) = egin{cases} 0, & ext{i} = 0, ext{j} = 0 \ i, & ext{i} > 0, ext{j} = 0 \ j, & ext{i} = 0, ext{j} > 0 \ \end{pmatrix}$ $i = 0, ext{j} > 0$ $i = 0, ext{j} > 0$

Таким образом, требуется вычислить матрицу расстояний размерностью $len(str_1)*len(str_2)$, следовательно, объем требуемой памяти растет как $O(len(str_1)*len(str_2))$. Иными словами, для двух мегабайтных строк потребуются гигабайты памяти. Фактически

в кэше будет хранится почти все матрица редактирований, а она не нужна целиком. Искомая цель – правый нижний элемент.

		Л	Α	Б	Р	Α	Д	0	Р
	0	1	2	3	4	5	6	7	8
Γ	1	1	2	З	4	5	6	7	8
И	2	2	2	З	4	5	6	7	8
Б	З	3	თ	2	თ	4	5	6	7
Р	4	4	4	3	2	3	4	5	6
Α	5	5	4	4	3	2	3	4	5
Л	6	5	5	5	4	3	3	4	5
Т	7	6	6	6	5	4	4	4	5
Α	8	7	6	7	6	5	5	5	5
Р	9	8	7	7	7	6	6	6	5

Рис. 1: Пример нахождения расстояния Левенштейна

Для его поиска можно обойтись лишь парой рядов: текущим и предыдущим. А остальные ряды не хранить в памяти. Так будет достигнут конец таблицы, и нижний правый угол и будет искомым значением.

Чтобы использовать еще меньше памяти, можно поменять местами строки, чтобы длина рядов была минимальна. Это существенно экономит память, если одна из строк длинная, а другая короткая.

1.4. Расстояние Дамерау-Левенштейна

Если к списку разрешённых операций добавить транспозицию (два соседних символа меняются местами), получается расстояние Дамерау — Левенштейна. Для неё также существует алгоритм, требующий O(len(str1) * len(str2)) операций. Дамерау показал, что 80% ошибок при наборе текста человеком являются транспозициями. Кроме того, расстояние Дамерау-Левенштейна используется и в биоинформатике.

Цена операции транспозиция также равна 1. При работе алгоритма Левенштейна эта операция реализовалась бы двумя заменами и стоила бы 2. Таким образом, расстояние Дамерау-Левенштейна в некоторых случаях даёт меньший результат, чем расстояние Левенштейна.

В формулу 1 добавляется следующая часть:

$$\begin{cases} i > 1 \\ j > 1 \\ \operatorname{str}_{1}[i-1] = \operatorname{str}_{2}[j] \\ \operatorname{str}_{1}[i] = \operatorname{str}_{2}[j-1] \end{cases}$$

$$(2)$$

В результате получается следующая формула для алгоритма Дамерау-Левенштейна:

$$d(S_1,S_2) = D(M,N), \text{где}D(i,j) = \begin{cases} 0, & \text{$i=0$, $j=0$}\\ i, & \text{$i>0$, $j=0$}\\ j, & \text{$i=0$, $j>0$} \end{cases}$$

$$d(S_1,S_2) = D(M,N), \text{где}D(i,j) = \begin{cases} D(i-1,j)+1 & \text{(удаление)}\\ D(i,j-1)+1 & \text{(вставка)}\\ D(i-1,j-1)+1_{\text{если} a_i \neq b_j} & \text{(замена)} \end{cases}$$

$$\begin{cases} i>0, & \text{$i>0$, $j>0$}\\ 0, & \text{$i>0$, $j>0$} \end{cases}$$

$$\begin{cases} D(i-1,j)+1 & \text{(удаление)}\\ D(i-1,j-1)+1_{\text{если} a_i \neq b_j} & \text{(замена)} \end{cases}$$

$$\begin{cases} i>0, & \text{$i>0$, $j>0$}\\ 0, & \text{$i>0$, $j>0$} \end{cases}$$

$$\begin{cases} i>0, & \text{$i>0$, $j>0$}\\ 0, & \text{$i=0$, $j>0$}\\$$

2. Конструкторская часть

Схемы алгоритмов

На основании теоретических измышлений были разработаны алгоритмы, вычисляющие расстояние Левенштейна и Дамерау-Левенштейна тремя способами:

Рис. 2: Блоксхема алгоритма Левенштейна (матричная реализация)

Рис. 3: Блоксхема алгоритма Левенштейна (матричная реализация) (продолжение)

Рис. 4: Блоксхема алгоритма Левенштейна (матричная реализация) (продолжение (2))

Рис. 5: Блоксхема алгоритма Левенштейна (рекурсивная реализация)

Рис. 6: Блоксхема алгоритма Левенштейна (рекурсивно-матричная реализация)

Рис. 7: Блоксхема алгоритма Левенштейна (рекурсивно-матричная реализация (продолжение))

Рис. 8: Блоксхема алгоритма Дамерау-Левенштейна (матричная реализация)

Рис. 9: Блоксхема алгоритма Дамерау-Левенштейна (матричная реализация) (продолжение)-

Рис. 10: Блоксхема алгоритма Дамерау-Левенштейна (матричная реализация) (продолжение (2))

Рис. 11: Блоксхема алгоритма Дамерау-Левенштейна (рекурсивная реализация)

Рис. 12: Блоксхема алгоритма Дамерау-Левенштейна (рекурсивно-матричная реализация)

Рис. 13: Блоксхема алгоритма Дамерау-Левенштейна (рекурсивно-матричная реализация (продолжение))

3. Технологическая часть

3.1. Требования к программному обеспечению

На вход программе подаются 2 строки из символов, которые входят в таблицу Юникода (UTF-8).

На выход программа выдаёт число – расстояние между строками, вычисленное алгоритмом Левенштейна или Дамерау-Левенштейна матричной или рекурсивной реализацией. Для матричных реализаций также выводится матрица расстояний. Также в зависимости от выбранного пункта меню программа замеряет время работы алгоритмов и рисует получившиеся графики.

3.2. Средства реализации

Рутhon быстро работает с алгоритмами Левенштейна и Дамерау-Левенштейна благодаря эффективной обработке строк и богатой библиотеке, что делает его идеальным для задач текстового сравнения и редактирования. Поэтому программа была реализована на языке Python, для замеров времени была использована функция process_time() из библиотеки time, вычисляющая процессорное время[1].

3.3. Реализации алгоритмов

Листинг 1: реализация матричного алгоритма Левенштейна

Листинг 2: реализация рекурсивного алгоритма Левенштейна

```
def algo_Levenstein_recursion_matrix(str1: str, str2: str) -> int:
    len1, len2 = len(str1) + 1, len(str2) + 1
   mat = [[float("-inf") for i in range(len2)] for j in range(len1)]
    # the recursive part itself
   def recursion_part(str1: str, str2: str, mat: List[float] = []) -> int
       len1, len2 = len(str1), len(str2)
       if mat[len1][len2] > float("-inf"):
            pass
        elif len1 * len2 == 0:
            mat[len1][len2] = abs(len2 - len1)
        else:
            mat[len1][len2] = min(recursion_part(str1, str2[:-1], mat) +
                    recursion_part(str1[:-1], str2, mat) + 1,
                    recursion_part(str1[:-1], str2[:-1], mat) + (str1[-1]
                       != str2[-1]))
        return mat[len1][len2]
   return recursion_part(str1, str2, mat)
```

Листинг 3: реализация рекурсивно-матричного алгоритма Левенштейна

```
def algo_Damerau_Levenstein_matrix(str1: str, str2: str) -> int:
    len1, len2 = len(str1) + 1, len(str2) + 1
    if len2 > len1:
        str1, str2 = str2, str1
        len1, len2 = len2, len1
    old_str = [i for i in range(len2)]
    cur_str = [0 for _ in range(len2)]
   for i in range(1, len1):
        cur_str[0] = i
        for j in range(1, len2):
            m = str1[i - 1] != str2[j - 1]
            cur_str[j] = min(cur_str[j - 1] + 1,
                            old_str[j] + 1,
                            old_str[j - 1] + m)
            if (i > 1) and (j > 1) and m and (str1[i - 2] == str2[j - 1])
               and (str1[i - 1] == str2[j - 2]):
                cur_str[j] = min(cur_str[j], old_str[j - 1])
        old_str = cur_str.copy()
   return cur_str[-1]
```

Листинг 4: реализация матричного алгоритма Дамерау-Левенштейна

```
def algo_Damerau_Levenstein_recursion(str1: str, str2: str) -> int:
```

Листинг 5: реализация рекурсивного алгоритма Дамерау-Левенштейна

```
def algo_Damerau_Levenstein_recursion_matrix(str1: str, str2: str) -> int:
    len1, len2 = len(str1) + 1, len(str2) + 1
    mat = [[float("inf") for i in range(len2)] for j in range(len1)]
    # the recursive part itself
   def recursion_part(str1: str, str2: str, mat: List[float] = []) -> int
        len1, len2 = len(str1), len(str2)
        if mat[len1][len2] < float("inf"):</pre>
            pass
        elif len1 * len2 == 0:
            mat[len1][len2] = abs(len2 - len1)
        else:
            mat[len1][len2] = min(recursion_part(str1, str2[:-1], mat) +
               1,
                    recursion_part(str1[:-1], str2, mat) + 1,
                    recursion_part(str1[:-1], str2[:-1], mat) + (str1[-1]
                        != str2[-1]))
            if ((len(str1) >= 2) and (len(str2) >= 2) and (str1[-1] ==
               str2[-2]) and (str1[-2] == str2[-1])):
                mat[len1][len2] = min(mat[len1][len2], recursion_part(str1
                   [:-2], str2[:-2], mat) + 1)
        return mat[len1][len2]
   return recursion_part(str1, str2, mat)
```

Листинг 6: реализация рекурсивно-матричного алгоритма Дамерау-Левенштейна

3.4. Тесты

Строка 1	Строка 2	Ожидание	матричный	рекурсивный	рекурсивно- матричный
λ	λ	0	0	0	0
a	a	0	0	0	0
abc	abc	0	0	0	0
λ	a	1	1	1	1
a	λ	1	1	1	1
a	b	1	1	1	1
abc	abs	1	1	1	1
odc	abc	2	2	2	2
ods	abc	3	3	3	3
abcs	abc	1	1	1	1
bc	abc	$ \hspace{.05cm} 1$	1	1	1
bac	abc	2	2	$\overline{2}$	2

Таблица 1: Таблица тестов для алгоритмов Левенштейна

Строка 1	Строка 2	Ожидание	матричный	рекурсивный	рекурсивно- матричный
λ	λ	0	0	0	0
a	a	0	0	0	0
abc	abc	0	0	0	0
λ	a	1	1	1	1
a	λ	1	1	1	1
a	b	1	1	1	1
abc	abs	1	1	1	1
odc	abc	2	2	2	2
ods	abc	3	3	3	3
abcs	abc	1	1	1	1
bc	abc	1	1	1	1
bac	abc	1	1	1	1

Таблица 2: Таблица тестов для алгоритмов Дамерау-Левенштейна

В ходе проведённого тестирования (с помощью pytest) ошибок в алгоритмах не выявлено:

Рис. 14: Результаты тестов с использованием pytest

4. Исследовательская часть

Для сравнения времени реализаций алгоритмов Левенштейна и Дамерау-Левенштейна в их матричных и рекурсивных реализациях программа была запущена на рандомно сгенерированных строках длинами от 1 до 9 с шагом 2 по 50 замеров каждая строка, среднее значение было вынесено в таблицу и для наглядности изображено на графике:

Рис. 15: График времени работы всех алгоритмов в зависимости от длин строк

+	+			+			·	
алгоритм	1	2	3	4	5	6	7	8
Алгоритм Левенштейна	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(матричная реализация) Алгоритм Левенштейна	0.0	0.0	0.0	0.00031	0.0	0.0022	0.0069	0.055
(рекурсивная реализация) Алгоритм Левенштейна	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(рекурсивно-матричная реализация) Алгоритм Дамерау-Левенштейна	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(матричная реализация) Алгоритм Дамерау-Левенштейна	0.0	0.0	0.0	0.0	0.0	0.0016	0.013	0.063
(рекурсивная реализация)Алгоритм Дамерау-Левенштейна	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.00063
(рекурсивно-матричная реализация)	 	 		 	 		 	 +

Рис. 16: Таблица времени работы всех алгоритмов в зависимости от длин строк

4.1. Сравнение работы матричной, рекурсивной и рекурсивно-матричной реализаций алгоритмов

Из графиков, приведённых выше, очевидно, что матричная реализация обоих алгоритмов быстро становится эффективнее рекурсивной на много порядков. Это происходит из-за того, что при рекурсии даже на небольшой длине строк происходит много рекурсивных вызовов для подстрок, на что тратится большое количество времени и памяти. В то время как для матричной реализации данные, на основе которых вычисляются следующие значения, хранятся в двух массивах длинной в кратчайшую из двух строк, что экономит как время, так и память. При этом рекурсивно-матричная реализация оказалась почти столь же быстрой, как и матричная благодаря исключению повторных вычислений идентичных веток рекурсии, что в разы сократило количество вычислений.

4.2. Сравнение работы алгоритмов Левенштейна и Дамерау-Левенштейна

Рис. 17: График времени работы матричных реализаций алгоритмов в зависимости от длин строк

++									
алгоритм	25	50	75	100	125				
+	+				++				
Алгоритм Левенштейна	0.0	0.0	0.00031	0.0016	0.0028				
(матричная реализация)		ĺ			i i				
Алгоритм Дамерау-Левенштейна	0.0	0.0	0.00094	0.0022	0.0031				
(матричная реализация)									
+	+			·	++				

Рис. 18: Таблица времени работы матричных реализаций алгоритмов в зависимости от длин строк

Рис. 19: График времени работы рекурсивных реализаций алгоритмов в зависимости от длин строк

алгоритм	1	3	5	7	9
Алгоритм Левенштейна (рекурсивная реализация)	0.0	0.0	0.00063	0.016	0.27
Алгоритм Дамерау-Левенштейна (рекурсивная реализация) +	0.0	0.0	0.00063 	0.0091 	0.28

Рис. 20: Таблица времени работы рекурсивных реализаций алгоритмов в зависимости от длин строк

Рис. 21: График времени работы рекурсивно-матричных реализаций алгоритмов в зависимости от длин строк

+ алгоритм	25	50	75	100	+ 125
+ Алгоритм Левенштейна	 0_00031	0.0028	 0.0056		+ 0.015
(рекурсивно-матричная реализация)	į į		į į		į į
Алгоритм Дамерау-Левенштейна (рекурсивно-матричная реализация)	0.00094 	0.00031	0.0072	0.011	0.024
<u>+</u>					

Рис. 22: Таблица времени работы рекурсивно-матричных реализаций алгоритмов в зависимости от длин строк

Видно, что алгоритм Левенштейна оказался немного быстрее алгоритма Дамерау-Левенштейна из-за дополнительной проверки во втором, что компенсируется меньшей эффективностью первого при наличии перестановок букв в строках.

4.3. Сравнение работы матричных и рекурсивно-матричных алгоритмов Левенштейна и Дамерау-Левенштейна

Так как на общем графике матричный и рекурсивно-матричный алгоритмы были очень близки по скорости, были проведены отдельные замеры (на 5-и точках с длиной строк от 25 до 125 символов с шагом 25).

Рис. 23: График времени работы матричных и рекурсивно-матричных реализаций алгоритмов в зависимости от длин строк

+		·		+	+	++
1	алгоритм	25	50	75	100	125
	Алгоритм Левенштейна (матричная реализация)	0.0	0.00031	0.00094	0.0	0.0019
 (реку	Алгоритм Левенштейна /рсивно-матричная реализация)	0.00094	0.0031	0.0053	0.0072	0.013
i Ai	лгоритм Дамерау-Левенштейна (матричная реализация)	0.0	0.0016	0.00094	0.0025	0.0031
	лгоритм Дамерау-Левенштейна урсивно-матричная реализация)	0.0	0.0013	0.0053	0.01	0.014
+			·	 	+	++

Рис. 24: Таблица времени работы матричных и рекурсивно-матричных реализаций алгоритмов в зависимости от длин строк

По результатам приведённых графиков видно, что и в алгоритме Левенштейна и Дамерау-Левенштейна рекурсивно-матричный метод работает дольше матричного. Это объясняется затратами на вызов функции при рекурсии и на дополнительные проверки является ли искомое значение уже посчитанным. На небольших длинах строк разница в

скорости работы алгоритмов отличается несущественно, однако с увеличением данных растёт и разница во времени.

Вывод

По результатам проведённых исследований была выявлена большая скорость работы алгоритма Левенштейна над алгоритмом Дамерау-Левенштейна за счёт уменьшения числа проверок, что, однако, даёт иной результат при наличии возможности перестановок символов в строках. При этом матричный вариант выигрывает по скорости в обоих алгоритмах, на втором месте оказался рекурсивно-матричный метод, который делает меньше рекурсивных вызовов, чем рекурсивный метод, и исключает повторные вычисления идентичных веток, так как при вызове каждой новой функции в этом методе передаётся в качестве аргумента ссылка на матрицу, которая хранит уже посчитанные значения, но на эту матрицу также необходима память, а проверки на уже вычисленные значения не всегда приносят положительный результат и занимают время.

Заключение

В результате выполнения лабораторной работы были исследованы алгоритмы вычисления расстояния Левенштейна и Дамерау-Левенштейна в матричной, рекурсивно-матричной и рекурсивной реализациях.

В частности:

- были изучены алгоритмы вычисления расстояния Левенштейна и Дамерау-Левенштейна;
- применён метод динамического программирования для матричных реализаций алгоритмов;
- сравнены матричная, рекурсивно-матричная и рекурсивная реализации алгоритмов;
- сравнены алгоритмы вычисления расстояния Левенштейна и Дамерау-Левенштейна.

Список литературы

- [1] Python Documentation. time.process_time() Документация по стандартной библиотеке Python. Дата обращения: 03 сентября 2024 г. [Электронный ресурс]. Доступно по адресу: https://docs-python.ru/standart-library/modul-time-python/funktsija-process-time-modulja-time/
- [2] Tirinox. Алгоритм Левенштейна на Python: реализация и объяснение. Дата обращения: 02 сентября 2024 г. [Электронный ресурс]. Доступно по адресу: https://tirinox.ru/levenstein-python/
- [3] Гасфилд Дэн. Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология / Пер. с англ. И. В. Романовского. СПб.: Невский Диалект; БХВ-Петербург, 2003. 654 с: ил.
- [4] Левенштейн В. И. Двоичные коды с исправлением выпадений, вставок и замещений символов. Доклады Академий Наук СССР, 1965. 163.4:845-848.
- [5] Ниёзов Д. Л. Применение методов нечеткого сравнения строк в прикладных задачах: Выпускная квалификационная работа (Бакалаврская работа). — Тольятти: Тольяттинский государственный университет, 2020. — 45 стр.