Статистические методы улучшения классификации в задаче прогнозирования послеоперационных кардиологических осложнений

Комлева Дарья Михайловна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Алексеева Н.П. Рецензент: к.ф.-м.н., доц. Коробейников А.И.

Проблема анализа кардиологических данных

- Снижение риска возникновения осложнений после операции АКШ (Аорто-коронарное шунтирование)
- 112 индивидов в раннем послеоперационном периоде
- 11 количественных и 43 категориальные признака, характеризующие предоперационный и интраоперационный период
- Механизм возникновения СМВ трудно предсказуем с клинической точки зрения

Цель — Классификация индивидов и прогнозирование послеоперационного осложнения СМВ (Синдром Малого сердечного Выброса)

Байесовская процедура классификации в случае двух популяций

 $x=(x_1,\dots,x_p)$ — реализация случайного вектора признаков, $q_1,\ q_2$ — априорные вероятности популяций $W_1,\ W_2,\ \mu_1,\ \mu_2$ — вектора средних, $\hat{\Sigma}=\hat{\Sigma}_1=\hat{\Sigma}_2$ — ковариационные матрицы, $\beta=\hat{\Sigma}^{-1}(\mu_1-\mu_2)$ — коэффициенты дискриминантной функции $f(x)=x^T\beta$.

Правило классификации: $x \in W_1$, если

$$\frac{\beta^T \mu_1 - \beta^T \mu_2}{2} + \ln(\frac{q_1}{q_2}) \leqslant x^T \beta.$$

Ограничения метода:

- $\hat{\Sigma} = \hat{\Sigma}_1 = \hat{\Sigma}_2$
- Проблема включения в анализ категориальных признаков
- Сложность интерпретации дискриминантных функций в случае большого количества признаков

Другие методы классификации

Методы	Основные преимущества	
Пошаговый дискриминантный анализ	Редукция размерности	
Регуляризованный дискриминантный анализ (RDA) [Фридман, 1989]	p >> n	
Дискриминантный анализ с разрежением	Редукция размерности,	
(SDA) [L.Clemmensen, 2011]	p >> n	
Метод опорных векторов	Нелинейность	
(SVM) [Вапник, 1963]		
Случайный лес	Рейтинговый подход,	
(Random Forest) [Breiman, 2001]	случайное дерево	
Стратификационный дискриминантный	Рейтинговый подход,	
анализ [Алексеева, 2012]	разделяемые подвыборки	

Методы можно использовать как изолированно, так и в сочетании.

Алгоритм стратификационного дискриминантного анализа в случае популяций $W_0,\ W_1$

- Переменные: классифицирующие $X=(X_1,\dots,X_p)$, расслаивающие бинарные $Y=(Y_1,\dots,Y_k)$. Итоговая характеристика Z=-1, если $X\in W_0,\,Z=1$, если $X\in W_1$.
- N_c пороговое значение объемов подвыборок, P_c граница правильной классификации, c граничное значение апостериорной вероятности или дискриминантной функции
- Расслоение популяций на (W_0^{i0},W_1^{i0}) при $Y_i=0$ и (W_0^{i1},W_1^{i1}) при $Y_i=1,\ i=1,\ldots,k$. Объемы выборок n_0^{il} , n_1^{il} .
- Применение LDA(SLDA,RDA,SDA) с переменными $X=(X_1,\dots,X_p)$ для $(W_0^{il},W_1^{il}),\ l=0,1,\ i=1,\dots,k$ при условии $n_0^{il}\geq N_c,n_1^{il}\geq N_c.$

Выходные данные алгоритма LDAwS

- ullet Вероятность правильной классификации $P_{il}(X)$. Апостериорная вероятность или дискриминантная функция $d_{il}(X)$.
- Стратифицирующее множество подвыборок $\mathcal{L}(X) = \{(i,l)| \ n_0^{il} \geq N_c, n_1^{il} \geq N_c, P_{il}(X) > P_c\}$
- ullet Средняя дискриминантная функция $d_m(X) = \sum\limits_{(i,l) \in \mathcal{L}} d_{il}(X)$
- Множество правильно классифицирующих подвыборок $\mathcal{L}_*(X) = \{(i,l)|\ (i,l) \in \mathcal{L}(X), \mathrm{sgn}(d_{il}-c)Z = 1\}$
- Индекс классификации

$$I(X) = \frac{\operatorname{card}(\mathcal{L}_*(X))}{\operatorname{card}(\mathcal{L}(X))}.$$

Расширение множества дихотомических признаков

Конечно-линейная стратификация.

Определение

Пусть $X=(X_1,\ldots,X_m)^T$ вектор дихотомических признаков с компонентами, принимающими значения 0 и 1, $au=(t_1,\ldots,t_k)\in(1,2,\ldots,m)$. Симптом k ранга — линейная комбинация вида $X_{\tau}=A_{\tau}X(\mod 2)$, где $A_{\tau}=(a_1,\ldots,a_m)$ — вектор-строка с компонентами

$$a_j = \begin{cases} 1, & j \in \tau \\ 0, & j \notin \tau. \end{cases}$$

В задаче прогнозирования СМВ достаточно использование симптомов ранга k=2,3 по m=43 бинарным признакам.

Дискриминантный анализ с разрежением (SDA)

Пусть X — матрица наблюдений,

Y-n imes K матрица фиктивных переменных для K классов,

 θ_k — K-вектор корректирующих коэффициентов для классов,

 λ , γ — неотрицательные параметры,

 Ω — положительно определенная матрица.

Параметры $(heta_k,eta_k)$ являются решением задачи:

$$\begin{split} & \min_{\beta_k, \theta_k} \left\{ ||Y\theta_k - X\beta_k||^2 + \gamma {\beta_k}^T \Omega \beta_k + \lambda ||\beta_k||_1 \right\}, \\ & \frac{1}{n} {\theta_k}^T Y^T Y \theta_k = 1, \\ & {\theta_k}^T Y^T Y \theta_l = 0 \ \forall l < k. \end{split}$$

Соотношение между коэффициентами SDA и LDA в случае двух классов

Утверждение (1)

ullet Если $X^TX=I$, то коэффициенты \hat{eta}_{SDA} имеют вид:

$$\hat{\beta}_{SDA} = \left(|(I + \gamma \Omega) X^T Y \theta| - \lambda/2 \right)_+ \operatorname{sgn} \left((I + \gamma \Omega) X^T Y \theta \right),$$

где $z_{+}=z$, если z>0, иначе $z_{+}=0$.

В случае центрированных данных \hat{eta}_{LDA} и \hat{eta}_{SDA} соотносятся как:

$$\hat{\beta}_{SDA} = \frac{n\sqrt{q_1q_2}}{(n-2)} (\hat{\beta}_{LDA} + \frac{n-2}{n} \hat{\Sigma}_b^{-1} (\hat{\mu}_2 - \hat{\mu}_1) - \lambda/2)_+$$

$$\operatorname{sgn} (\hat{\beta}_{LDA} + \frac{n-2}{n} \hat{\Sigma}_b^{-1} (\hat{\mu}_2 - \hat{\mu}_1)).$$

 $m{Q}$ Если $X^TX
eq I$ и $\lambda = 0$, то \hat{eta}_{SDA} и \hat{eta}_{LDA} соотносятся как:

$$\hat{\beta}_{SDA} = \frac{n\sqrt{q_1q_2}}{(n-2)} \left(\hat{\beta}_{LDA} + \frac{n-2}{n} \hat{\Sigma}_b^{-1} (\hat{\mu}_2 - \hat{\mu}_1) \right)$$

Регуляризованный дискриминантный анализ

Во-первых с помощью параметра регуляризации lpha, где 0<lpha<1, вычисляется комбинация:

$$\hat{\Sigma}_i(\alpha) = (1 - \alpha)\hat{\Sigma}_i + \alpha\hat{\Sigma}.$$

Затем, используя параметр регуляризации γ , где $0<\gamma<1$, строится следующая оценка:

$$\hat{\Sigma}_i(\alpha, \gamma) = (1 - \gamma)\hat{\Sigma}_i(\alpha) + \gamma \frac{1}{d} \operatorname{tr}[\hat{\Sigma}_i(\alpha)]I,$$

где $\frac{1}{d}\operatorname{tr}[\hat{\Sigma}_i(\alpha)]$ — среднее значение диагональных элементов матрицы $\hat{\Sigma}_i(\alpha)$,

 $\hat{\Sigma}_i$ — ковариационные матрицы для каждого класса, $\hat{\Sigma}$ — общая ковариационная матрица.

Сравнение методов на данных по Синдрому Малого Выброса (СМВ)

Таблица 1: Доли правильной классификации

Метод	Обучающая	Контрольная	Вся
	выборка	выборка	выборка
LDA	0.611	0.636	0.616
RDA	0.64	0.545	0.625
SDA	0.644	0.5	0.616
LDA Greedy Wilks	0.622	0.682	0.553
SVM	1	0.636	0.928
Random Forest	1	0.545	0.911
LDAwS	0.9	0.91	0.955
RDAwS	0.9	0.86	0.973
SDAwS	0.9	0.91	0.955

LDAwS, RDAwS, SDAwS на всех данных

Рис. 1: Результаты LDAwS

Рис. 3: Результаты SDAwS

Рис. 2: Результаты RDAwS

Рис. 4: Без стратификации

LDAwS, RDAwS, SDAwS с обучением

Рис. 5: Результаты LDAwS

Рис. 7: Результаты SDAwS

13/14

Рис. 6: Результаты RDAwS

Рис. 8: Без стратификации

Основные результаты

- Алгоритмы LDAwS, RDAwS, SDAwS реализованы в виде программного кода на языке R.
- Для прогнозирования СМВ использовались разнообразные методы классификации с разбиением выборки на обучающую и контрольную.
- Наилучший результат показывают методы RDAwS и SDAwS, 86-92% правильной классификации.
- Стратификационный дискриминантный анализ позволяет отделить людей с наиболее вероятным возникновением послеоперационного осложнения с небольшой перестраховкой.
- Для больных без осложнений характерен более высокий индекс правильной классификации.