МдАД: Линейная алгебра

Осень 2018

Линейная алгебра 2: 6 октября

Преподаватель: Антон Савостьянов

Ассистент: Даяна Мухаметшина

Контакты: *Антон Савостьянов, почта*: a.s.savostyanov@gmail.com, *telegram*: @mryodo Даяна *Мухаметшина*, *почта*: dayanamuha@gmail.com, *telegram*: @anniesss1

Правила игры: Домашние задания следует присылать в читаемом виде на почту преподавателя не позднее указанного при выдаче задания крайнего срока (дедлайна).

При выполнении домашнего задания приветствуется использование среды ETeX; допустим набор в редакторах Word (Libreoffice, Google Docs) и отсканированные письменные материалы.

Выполненное домашнее задание должно содержать решение задачи, по которому возможно восстановить авторский ход решения, а не только ответ.

Задача 1. Вычислите ранг матрицы $A=\begin{pmatrix} 5 & 3 & 8\\ 4 & 3 & 1\\ 3 & 2 & 3 \end{pmatrix}$. Укажите набор линейно независимых строк и столбцов данной матрицы.

Задача 2. Найдите обратные матрицы для следующих

(a)
$$\begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix}$

Задача 3. Вычислите определители следующих матриц:

$$(a) \begin{pmatrix} 4 & 7 \\ -1 & 0 \end{pmatrix} \quad (b) \begin{pmatrix} -1 & 5 & 4 \\ 3 & -2 & 0 \\ -1 & 3 & 6 \end{pmatrix} \quad (c) \begin{pmatrix} \frac{1}{2!} & \frac{1}{3!} & \frac{1}{4!} & \frac{1}{5!} & \frac{1}{6!} \\ 1 & \frac{1}{2!} & \frac{1}{3!} & \frac{1}{4!} & \frac{1}{5!} \\ 0 & 1 & \frac{1}{2!} & \frac{1}{3!} & \frac{1}{4!} \\ 0 & 0 & 1 & \frac{1}{2!} & \frac{1}{3!} \\ 0 & 0 & 0 & 1 & \frac{1}{2!} \end{pmatrix}$$

Задача 4. Даны линейные пространства V и W. Положим $\dim V=2$, $\dim W=3$. Линейное отображение из V в W в базисах из (e_1,e_2) в (f_1,f_2,f_3) задано матрицей

$$A = \begin{pmatrix} 2 & 1\\ 4 & 2\\ -2 & -1 \end{pmatrix}$$

Найдите:

- (а) образы базисных векторов, выразите их в координатах и как линейную комбинацию базисных:
- (b) образ вектора $v=2e_1-3e_2$, выразите его в координатах и как линейную комбинацию базисных.

Задача 5. Пусть дан оператор $f: \mathbb{R}^2 \to \mathbb{R}^2$ с матрицей в стандартном базисе $A = \begin{pmatrix} 17 & -6 \\ 35 & -2 \end{pmatrix}$:

- (a) Найдите образы векторов $v_0 = (0,0)$, $v_1 = (1,0)$, $v_2 = (1,3)$;
- (b) Найдите такие числа λ , что $\det(A \lambda E) = 0$ (то есть собственные числа);
- (c) Найдите ядра операторов $A \lambda E$ для всех найденных выше λ .

Задача 6*. Пусть оператор f невырожденный, то есть, если f(v)=0 для некоторого вектора v, то v=0. Докажите, что оператор f и обратный к нему оператор f^{-1} имеют одни и те же собственные векторы. Как связаны между собой собственные значения операторов f и f^{-1} ?