X Objective:

The goal of this study is to perform a **linear static analysis** and subsequently conduct a **buckling (stability) analysis** of a curved shell structure using **Code_Aster**. The structure includes **stiffeners** and **ribs**, and the analysis is focused on extracting **critical buckling modes** and understanding structural behavior under a specified moment load.

1. Initialization

DEBUT()

We begin the script using DEBUT(), which is required in every Code_Aster command file to initialize the session.

2. Mesh Import

mesh = LIRE MAILLAGE(FORMAT='MED', UNITE=20)

- Why: We import a .med mesh file generated earlier (e.g., from Gmsh).
- Choice of format: 'MED' is the standard mesh format used in Code_Aster.
- **Unit 20:** Matches the unit used in the .export file.

3. Model Definition

model = AFFE_MODELE(...)

 MODELISATION = 'DKT': We chose 'DKT' (Discrete Kirchhoff Triangle), a shell element suitable for thin-walled structures and plate bending, especially where curvature and rotational DOFs are important.

- **PHENOMENE = 'MECANIQUE'**: We're dealing with mechanical deformations.
- **TOUT = 'OUI'**: Applies the model to all mesh elements.

4. Elemental Properties

elemprop = AFFE_CARA_ELEM(...)

- We defined varying thicknesses (EPAIS) for different parts:
 - o Curved surface: 5 mm (very thin shell).
 - Stiffeners: 25 mm (adds longitudinal stiffness).
 - Ribs: 50 mm (transverse stiffening).
- **VECTEUR** specifies the **local orientation** of the shell elements for correctly applying thickness and stiffness directions.

Why multiple thicknesses?

To simulate realistic structural behavior. Curved shells alone are weak in buckling; stiffeners and ribs provide directional rigidity.

5. Material Properties

mater = DEFI_MATERIAU(...)

- We defined isotropic elasticity with:
 - **E = 70 GPa**: Common for Aluminum alloys.
 - **NU = 0.3**: Poisson's ratio, standard value for metals.

fieldmat = AFFE_MATERIAU(...)

• Applies the material to the entire model.

6. Boundary Conditions

bc = AFFE_CHAR_MECA(DDL_IMPO=...)

- All degrees of freedom (DX, DY, DZ, DRX, DRY, DRZ) are constrained for the fixed group.
- This creates a **fully clamped edge** or zone, essential to simulate realistic fixed support in buckling problems.

7. Loading

load = AFFE_CHAR_MECA(FORCE_NODALE=...)

- A moment (MX = 1.0) is applied to the group Node.
- This replicates a **unit moment** applied to trigger buckling.
- The direction (MX) aligns with axis **X**, making it easy to interpret buckling about the X-axis.

8. Static Analysis

reslin = MECA_STATIQUE(...)

- Solves the **linear static problem** at time INST=1.0.
- **OPTION = 'SIEF_ELGA'**: Stores **stress resultants (forces and moments)** at Gauss points, which are later used to compute geometric stiffness (KG matrix).

9. Post-Processing: Result Export

IMPR RESU(FORMAT='MED', RESU=...)

- Exports linear analysis results for visualization in tools like Salome.
- UNITE=80 is a standard choice for exporting results.

10. Extract Stress Field

field = CREA_CHAMP(...)

- **Purpose**: Extract the stress field from the static result (SIEF_ELGA) to compute the **geometric stiffness matrix** used in buckling analysis.
- Why: Euler buckling requires initial stress fields to assess how close the structure is to instability.

11. Stiffness Matrix Assembly

ASSEMBLAGE(...)

- Generates two matrices:
 - KM: Linear mechanical stiffness (RIGI_MECA).
 - **KG**: Geometric stiffness (RIGI_GEOM), derived from pre-stress.
- Why needed: Buckling is an eigenvalue problem that solves: $(KM-\lambda KG)\phi=0(KM \lambda KG) = 0$

12. Buckling Mode Calculation

modes = CALC_MODES(...)

- TYPE_RESU = 'MODE_FLAMB': Requests buckling modes (not vibration).
- OPTION = 'PLUS PETITE': Finds lowest (most critical) eigenvalues (first to buckle).
- NMAX_CHAR_CRIT = 12: Calculates first 12 buckling modes.
- SOLVEUR_MODAL = 'SORENSEN': A robust eigenvalue solver suitable for large problems.
- PREC_SHIFT, SEUIL_CHAR_CRIT: Precision settings for numerical stability.

13. Export Buckling Modes

IMPR_RESU(FORMAT='MED', ...)

- Saves buckling mode shapes for viewing in Salome or ParaVis.
- You can visually inspect how the structure deforms when it buckles.

14. End of Analysis

FIN()

Marks the end of the script.

Summary of Choices:

Feature	Why Chosen
MODELISATION='DKT	Shell formulation suited for curved thin structures
Variable EPAIS	Realistic modeling of stiffeners and ribs
Unit moment MX	For normalized buckling analysis
SIEF_ELGA extraction	Required for calculating KG
RIGI_MECA, RIGI_GEOM	Fundamental matrices for buckling problem
SORENSEN solver	Efficient and accurate for modal/buckling problems
Export to .med	Easy integration with Salome for visualization