Analiza danych rzeczywistych przy pomocy modelu ARMA

Natalia Klepacka, Joanna Kołaczek

8lutego 2023

Spis treści

1	\mathbf{Wstep}	2
2	Przygotowanie danych do analizy	2
3	Modelowanie danych przy pomocy ARMA 3.1 Dobór rzędu modelu	
4	Ocena dopasowania modelu	7
5	Weryfikacja założeń dotyczących szumu 5.1 Średnia	
6	Podsumowanie	11
7	Źródła	11

1 Wstęp

Niniejszy raport powstał na potrzeby realizacji laboratorium z Komputerowej Analizy Szeregów Czasowych, prowadzonych przez mgr Justynę Witulską, do wykładu prof. Agnieszki Wyłomańskiej. Będziemy analizować dane dotyczące średniej dziennej temperatury w Londynie, na przestrzeni lat 1979-1987. Dane pochodzą z tej strony. Są to informacje kolekcjonowane przez European Climate Assessment and Dataset - projekt zbierający dane o pogodzie w Europie. W raporcie przeprowadzimy dekompozycji Walda oraz przy pomocy kryteriów informacyjnych dobierzemy rzędy modelu ARMA, aby następnie wyestymować wartości parametrów tegoż modelu. Na koniec zweryfikujemy również, czy założenia dotyczące szumu są spełnione.

Życzymy Czytelnikowi miłej lektury.

2 Przygotowanie danych do analizy

Na wykresie [1] przedstawiona jest zależność średniej dziennej temperatury w Londynie od czasu. Wyraźnie widoczna jest sezonowość, natomiast nie możemy być pewni co do obecności trendu. Wykresy autokorelacji [2] oraz częściowej autokorelacji [3] potwierdzają, że nie możemy mówić tu o szeregu stacjonarnym.

Rysunek 1: Wykres temperatury w Londynie

Rysunek 2: Autokorelacja

Rysunek 3: Częściowa autokorelacja

Aby usunąć możliwy trend, stosujemy dla naszych danych regresję liniową. Efekt widzimy na wykresie [4]. Obliczony współczynnik kierunkowy był bardzo bliski 0, co oznacza, że w danych nie występuje trend liniowy. Wyraz wolny wyniósł około 10, więc odejmujemy tę wartość od wartości oryginalnych, aby ich średnia była bliska 0.

Rysunek 4: Regresja liniowa

Kolejnym krokiem będzie próba usunięcia sezonowości. Na poprzednich wykresach mogliśmy za-

uważyć, że dane układają się w kształt funkcji sinusoidalnej. Załóżmy, że da się je opisać przy pomocy funkcji $f(x) = c \cdot \sin(d \cdot x + e)$. Używamy pakietu scipy , a konkretnie funkcji optimize.curve_fit , aby dopasować odpowiednie współczynniki c, d, e. Efekt widzimy na wykresie 5.

Rysunek 5: Krzywa sinusoidalna

Aby dokończyć proces dekompozycji, wystarczy od naszych danych odjąć wartości otrzymanej funkcji w danym czasie [6]. Możemy teraz ponownie sprawdzić, jak prezentują się wykresy autokorelacji i częściowej autokorelacji. Od tego momentu będziemy zakładać, że szereg czasowy jest stacjonarny w słabym sensie.

Rysunek 6: Dane po dekompozycji

Rysunek 7: Autokorelacja

Rysunek 8: Częściowa autokorelacja

3 Modelowanie danych przy pomocy ARMA

3.1 Dobór rzędu modelu

W celu dobrania rzędu modelu wyliczyłyśmy wartości kryteriów informacyjnych

- Kryterium Informacyjne Akaikego (AIC),
- Bayesowskie Kryterium Informacyjne (BIC),
- Kryterium Informacyjne Hannana-Quinna (HQIC)

dla wartości p i q z przedziału [0,9]. Otrzymałyśmy winiki widoczne w tabelach [1][2][3]. Najlepiej dopasowane pary wg poszczególnych kryteriów to

- p = 5, q = 6 dla AIC,
- p = 1, q = 1 dla BIC,
- p=3, q=0 dla HQIC.

Jako że nie da się określić modelu jednoznacznie najlepiej dopasowanego, do dalszej analizy zdecydowałyśmy się przyjąć najmniej skomplikowany model, czyli ARMA(1, 1).

p	q	AIC	BIC	HQIC
5	6	10933.960861	11010.577298	10961.678129
7	8	10934.090625	11034.281350	10970.336283
9	7	10934.984168	11041.068465	10973.361923
7	9	10935.015702	11041.100000	10973.393458
4	4	10935.166047	10994.101768	10956.487023

Tabela 1: Kryteria informacyjne wg AIC

p	q	AIC	BIC	HQIC
1	1	10945.997929	10969.572218	10954.526320
3	0	10940.398608	10969.866469	10951.059096
1	2	10941.710972	10971.178832	10952.371459
2	1	10944.132071	10973.599931	10954.792559
2	2	10938.737268	10974.098700	10951.529853

Tabela 2: Kryteria informacyjne wg BIC

p	q	AIC	BIC	HQIC
3	0	10940.398608	10969.866469	10951.059096
2	2	10938.737268	10974.098700	10951.529853
3	1	10938.935705	10974.297137	10951.728290
1	2	10941.710972	10971.178832	10952.371459
1	3	10940.538468	10975.899900	10953.331053

Tabela 3: Kryteria informacyjne wg HQIC

Jako że nie da się określić modelu jednoznacznie najlepiej dopasowanego, do dalszej analizy zdecydowałyśmy się przyjąć najmniej skomplikowany model, czyli ARMA(1, 1).

3.2 Estymacja parametrów modelu

Do estymacji parametrów wykorzystamy metodę największej wiarygodności zaimplementowaną w pythonowym pakiecie statsmodels. Metoda ta zakłada, że zmienne składające się na szum mają rozkład normalny. Wartości współczynników można zobaczyć w tabeli [4]

	coef	std err	Z	P> z	[0.025]	[0.975]
const	0.2230	0.150	1.486	0.137	-0.071	0.517
ar.L1	0.7205	0.017	42.821	0.000	0.687	0.753
ma.L1	0.1546	0.023	6.580	0.000	0.109	0.201
sigma2	3.4663	0.096	35.996	0.000	3.278	3.655

Tabela 4: Współczynniki modelu

4 Ocena dopasowania modelu

Partial Autocorrelation

1.0
0.8
0.6
0.4
0.2
0.0
0 10 20 30 40 50

Rysunek 9: Autokorelacja

Rysunek 10: Częściowa autokorelacja

Od pewnego momentu wszystkie wartości funkcji autokorelacji i częściowej autokorelacji mieszczą się w przedziałach ufności, co sugeruje, że model jest dobrze dopasowany do danych.

5 Weryfikacja założeń dotyczących szumu

Szum Z_t w modelu ARMA powinien spełniać poniższe założenia:

- 1. Średnia Z_t jest bliska 0
- 2. Wariancja Z_t jest taka sama dla każdego t
- 3. Z_t są niezależne

4. Z_t mają rozkład normalny

Rysunek 11: Residua modelu

5.1 Średnia

Na podstawie wykresu[11] możemy stwierdzić, że średnia prawdopodobnie jest równa 0. Dodatkowym sprawdzeniem może być wykonanie testu t. Test ten sprawdza hipotezę zerową "Średnia z próby jest równa μ " przeciwko hipotezie alternatywnej "Średnia z próby jest różna od μ ". Jak widać poniżej[1], wynik testu potwierdza wnioski wyciągnięte z wykresu — nie ma podstaw do odrzucenia hipotezy zerowej.

```
sp.stats.ttest_1samp(resid, popmean=0)

#output
Ttest_1sampResult(statistic=0.04706184306961072, pvalue=0.9624674462497231)
```

Kod 1: Test t

5.2 Wariancja

Na wykresie[11] nie widać znaczących zmian w wariancji zależnych od czasu, jednak dla pewności wykonamy test Levene'a jednorodności wariancji. Test ten sprawdza hipotezę zerową "Wszystkie próbki pochodzą z populacji o tej samej wariancji" przeciwko hipotezie alternatywnej "Przynajmniej dwie próbki pochodzą z populacji o różnych wariancjach". W tym celu dzieli próbkę na mniejsze podgrupy i porównuje ze sobą ich mediany.

Kod 2: Test Levene'a

Zgodnie z wynikiem testu[2] nie ma podstaw do odrzucenia hipotezy zerowej, zatem możemy przyjąć, że wariancja residuów prawdopodobnie jest stała.

5.3 Niezależność

Z wykresów funkcji autokorelacji[12] i częściowej autokorelacji[13] można łatwo wywnioskować, że residua są realizacjami niezależnych zmiennych losowych.

Rysunek 12: Autokorelacja

Rysunek 13: Częściowa autokorelacja

Dystrybuanta rozkładu residuów niemal idealnie pokrywa się z dystrybuantą rozkładu normalnego[14]. Podobnie histogram wartości[15] dobrze przybliża teoretyczną gęstość. Wykres kwantylowy[16] pokrywa się odrobinę gorzej, ale nadal wystarczająco dobrze, żebyśmy mogli uznać, że dane pochodzą z rozkładu normalnego.

Rysunek 14: Dystrybuanta residuów

Rysunek 15: Gęstość residuów

Rysunek 16: Wykres kwantylowy

6 Podsumowanie

Na podstawie przeprowadzonej analizy możemy stwierdzić, że między poziomem szczęścia a PKB per capita dla danego kraju występuje dosyć silna zależność liniowa. Niestety badanie residuów wykazało, że nie mają one rozkładu normalnego. Oznacza to, że co prawda punktowe estymacje zostały przez nas wykonane poprawnie, jednak wszystkie estymacje przedziałowe oparte były o założenie o normalności rozkładu residuów, zatem nie mają zastosowania w tym modelu. Niestety nie znając rozkładu ϵ , nie możemy wyznaczyć faktycznych przedziałów ufności.

7 Źródła

- Wykłady
- Dokumentacja pakietów statsmodels i scipy
- https://www.kaggle.com/datasets/emmanuelfwerr/london-weather-data
- https://en.wikipedia.org/wiki/Student%27s_t-test
- https://en.wikipedia.org/wiki/Levene%27s_test