VORLESUNGSINHALTE

- 1 Einleitung
- **2** Sensorprinzipien der Mechanik
- 3 Sensorprinzipien der Wärmelehre
- 3.1 Sensorprinzipien aus Ausdehnung von Flüssigkeiten und festen Körpern
- 3.2 Sensorprinzipien aus Wärmeverlust
- **4** Sensorprinzipien der Elektrostatik und –dynamik
- 5 Sensorprinzipien der Ausbreitung elektromagnetischer Wellen und der Optik

3. SENSORPRINZIPIEN DER WÄREMELEHRE: 3.1 SENSORPRINZIPIEN AUS AUSDEHNUNG VON FLÜSSIGKEITEN UND FESTEN KÖRPERN (1)

Stoff	α / 10 ⁻⁶ K ⁻¹
Aluminium	23,8
Blei	29,4
Chrom	6,6
Eisen	12,1
Glas (Normalglas)	8,2
Kupfer	16,8
Nickel	13
Mangan	23
Messing	16,7
Stahl (V2A)	16
Zink	26,3

Ausdehnung von Festkörpern

$$\frac{\Delta I}{I_0} = \alpha \cdot \Delta T \qquad \frac{\Delta V}{V_0} = \gamma \cdot \Delta T$$

⇒ Temperaturbestimmung

$$\Delta T = \frac{\Delta I}{I_0 \cdot \alpha} \qquad \Delta T = \frac{\Delta V}{V_0 \cdot \gamma}$$

Längenausdehnungskoeffizienten fester Stoffe

[H. Kuchling: Taschenbuch der Physik]

3. SENSORPRINZIPIEN DER WÄREMELEHRE: 3.1 SENSORPRINZIPIEN AUS AUSDEHNUNG VON FLÜSSIGKEITEN UND FESTEN KÖRPERN (2)

Bimetallthermometer

[Simic, Hochheimer, Reichwein: Messen, Regeln und Steuern]

Stabausdehnungsthermometer

[G. Strohrmann: Messtechnik im Chemiebetrieb]

3. SENSORPRINZIPIEN DER WÄREMELEHRE: 3.2 SENSORPRINZIPIEN AUS WÄRMEVERLUST

Konvektionsvorgänge

$$I_{\mathsf{H}}^{2} \cdot R_{\mathsf{H}} = (A + B \cdot \dot{m}^{\mathsf{n}}) \cdot \Delta \vartheta$$

⇒ Massendurchflussbestimmung

$$\dot{m} = -C_1 + C_2 \cdot I_H^{\frac{2}{n}}$$

Hitzdrahtluftmassenmesser in PKW-Einspritzanlage

[P. Gerigk et al: Kraftfahrzeugtechnik]