ESPACES EUCLIDIENS

Feuille 1

Exercice 1.1. Soit V un K-espace vectoriel, et $\alpha \in V^*$ une forme linéaire non nulle. Montrez que α est surjective. Deduisez-en la dimension de $Ker(\alpha)$ lorsque V est de dimension finie n.

Exercice 1.2. Soit \mathcal{B} la base canonique de \mathbb{R}^3 , et considérons la base

$$C = \{(1,0,1), (1,1,0), (0,-1,2)\}$$

de \mathbb{R}^3 .

- (a) Décrivez les formes linéaires qui composent la base \mathcal{C}^* de $(\mathbb{R}^3)^*$ (en résolvant les systèmes d'équations linéaires correspondant aux conditions sur les éléments de la base duale).
- (b) Exprimer les coordonnées $\{\phi\}_{\mathcal{B}^*}$ et $\{\phi\}_{\mathcal{C}^*}$ de la forme linéaire

$$\phi: \mathbb{R}^3 \to \mathbb{R}$$
$$(x, y, z) \mapsto y + 2z$$

relativement à \mathcal{B}^* et \mathcal{C}^* .

Exercice 1.3. Soient x_0, x_1, \dots, x_n des éléments de \mathbb{K} deux à deux distincts. Montrer que la famille $\mathcal{B} = \{L_i \mid 0 \le i \le n\}$ de polynômes définis par

$$L_i(X) = \prod_{\substack{j=0\\j\neq i}}^n \frac{X - x_j}{x_i - x_j}$$

est une base de $\mathcal{P}_n^{\mathbb{K}}$, l'espace des polynômes de degré $\leq n$. Montrer que la base duale de \mathcal{B} est donnée par $\mathcal{B}^* = \{\varphi_0, \dots, \varphi_n\}$ où φ_i est définie par $\varphi_i(P) = P(x_i)$ pour tout $P \in \mathcal{P}_n^{\mathbb{K}}$.

Exercice 1.4. Soit V un K-espace vectoriel de dimension n. Soient \mathcal{B} et \mathcal{C} des bases de V, et soient \mathcal{B}^* et \mathcal{C}^* les bases duales de V^* . On considère les matrices de passage $P = \{\mathrm{id}_V\}_{\mathcal{B}}^{\mathcal{C}}$ et $Q = \{\mathrm{id}_{V^*}\}_{\mathcal{B}^*}^{\mathcal{C}^*}$.

- (a) On déduit de la Proposition 1.33 du cours que $Q = {}^tP^{-1}$.
- (b) Supposons donnée une base \mathcal{C} quelconque de K^n . Déduisez de (a) un procédé pour trouver la base duale \mathcal{C}^* de $(K^n)^*$.
- (c) En identifiant K^n et $(K^n)^{**}$ par l'isomorphisme canonique ev, notez que ce même procédé permet de trouver \mathcal{C} à partir de \mathcal{C}^* .

Exercice 1.5. On considère la base $\mathcal{B} = \{f_1, f_2, f_3\}$ de \mathbb{R}^3 donnée par

$$f_1 = (1, 2, 4), \quad f_2 = (2, 8, 11) \quad \text{et} \quad f_3 = (1, 3, 5).$$

- (a) En utilisant l'exercice 1.4.b, déterminez la base duale de $(\mathbb{R}^3)^*$. Vérifiez le résultat.
- (b) Déterminez des équations des plans $P_1 = \text{Vect}(f_2, f_3), P_2 = \text{Vect}(f_1, f_3)$ et $P_3 = \text{Vect}(f_1, f_2)$.

 Que remarquez-vous?

Exercice 1.6. On considère
$$\mathcal{C}=\{\phi_1,\phi_2,\phi_3\}\subset (\mathbb{R}^3)^*$$
 avec
$$\phi_1(x,y,z)=x+2y,$$

$$\phi_2(x,y,z)=2x+y+z,$$

$$\phi_3(x,y,z)=x+z.$$

Montrer que \mathcal{C} est une base de $(\mathbb{R}^3)^*$ et, en utilisant l'exercice 1.3.c, détérminer la base duale de \mathbb{R}^3 . Vérifiez le résultat.

Page internet: http://www.math.univ-paris13.fr/~ausoni/cours-S4-2018.html