Universidad Autónoma de Yucatán Facultad de Matemáticas Ingeniería de Software

Lector de temperatura - Parcial 1

Daniel Baas Víctor Perera Mariana Rocha Rafael Rodríguez

Internet de las Cosas Dr. Irving Aaron Cifuentes González

Mérida, Yucatán a 12 de Septiembre de 2018

Índice

Introducción	2
Materiales	2
LM35	2
Puerto serie	2
Bluetooth	2
ESP32	3
Método	4
Resultado	7

Introducción

Se ha desarrollado una aplicación capaz de leer la temperatura local constantemente para permitir visualización en tiempo real a través de un sitio web.

Materiales

A continuación se enlistan los materiales usados para la construcción del proyecto.

LM35

El sensor de temperatura electrónico LM35 cuenta con un rango de medición garantizada de -55°C hasta 150°C de baja corriente de alimentación.

Se usó este sensor debido al bajo costo, facilidad de adquisición y, debido a la amplia documentación disponible para el uso de este, su fácil uso

El sensor cuenta con tres pines Vcc, OUT y GND en donde Vcc es el pin que recibe la corriente de alimentación para su funcionamiento, OUT envía la información del sensor y GND conecta a tierra.

Puerto serie

Un puerto serie es *una interfaz de comunicación serial* que permite el paso de información (transferencia y referencia) de un bit a la vez de manera asíncrona.

El puerto serie viene incluido en periféricos de entrada y/o salida como dispositivos USB para el intercambio de información. El puerto serie, en nuestro caso, se usó para la conexión del microcontrolador ESP32 con una computadora con un USB.

Bluetooth

Bluetooth es un estándar de tecnología inalámbrica para el intercambio de información a corta distancia. A través del uso de ondas de radio con frecuencias entre 2402 y 2480 MHz. Usando dispositivos bluetooth para la conexión del sensor con el receptor de la información permite la movilización del sensor de temperatura a áreas de difícil acceso.

ESP32

El microcontrolador ESP32 permite el control dispositivos de manera programada como el módulo bluetooth que se encuentra implementado en la tarjeta u otros añadidos como el sensor de temperatura.

Método

El sensor LM35 y el controlador ESP32 se conectaron en conjunto en una protoboard para la transmisión de datos a un servidor local (ver llustración 1). El sensor percibe los cambios de temperatura del ambiente para transmitirle la información al ESP32 que a su vez lo transmite por Bluetooth a una computadora con servidor local Node.js

Ilustración 1: Diagrama de bloques

El servidor transmite la información de la temperatura a un sitio web local para mostrar gráficamente la temperatura. La información mostrada en el sitio web es en tiempo real.

Ilustración 2: Circuito

El sensor recibe alimentación de 3.3v y se ha conectado al pin 19 del ESP32 para su funcionamiento. También se conecta a tierra a través del ESP32. Los datos recolectados por el sensor son enviados al ESP32 por el puerto A0 de manera analógica (ver Ilustración 2).

Por defecto la temperatura debe convertirse a grados Centígrados, para ello se usó la siguiente fórmula:

$$\frac{\left(\frac{\textit{V alorDelSensor} * 3.3}{2048}\right)}{(0.01)}$$

En donde:

- ValorDelSensor es el valor que el sensor envía al ESP32. Este es un voltaje en mV
- 3.3 es el valor del voltaje que se le brinda al sensor
- 2048 es un valor de conversión para pasar el valor obtenido del sensor a un valor que pueda ser procesado por el ESP32
- 0.01 es una conversión de mV a V

Una vez que se ha obtenido la temperatura en °C y se ha pasado a voltaje se envía la información por Bluetooth y por el puerto COM8.

Se conectó una computadora por Bluetooth para la recepción de la información y transmitirla a un servidor web. El ESP32 envía por Bluetooth la información de temperatura,

y la computadora recibe dicha información también vía Bluetooth, transmitida por puerto COM8. En la computadora se instaló un servidor local con Node.js para retransmitir los datos usando sockets a una página web local (localhost).

Adicionalmente, como la información la recibe por el puerto COM8 es posible ver a través de una consola los datos recibidos del ESP32 en la computadora (ver Ilustración 3: Consola).

```
cmd - node index (Admin)
                                                                 P → □ → △ □
                                         Search
<1> cmd - node ind...
rafael@RAFAEL D:\Dropbox\LIS\8vo semestre\Internet de las Cosas\Ejer
cios\Parcial1# node index
Listening to requests on port 8000...
27.71
28.52
27.55
Someone connected.
29.49
24.98
38.67
22.88
27.88
33.03
39.16
33.68
34.32
36.74
33.35
38.03
                      « 190108[64] 1/1 [+] NUM PRI; 70x20 (1,621) 25V
node.exe[*64]:9236
```

Ilustración 3: Consola

Posteriormente, mediante el uso de los conceptos básicos de programación web (HTML, CSS y JS), se creó una gráfica para la visualización de las temperaturas en tiempo real. (ver llustración 5: Página Web).

El servidor Node.js hace uso de la biblioteca "serialport" para recibir la información de temperatura a través de COM8 y socket.io para enviar los datos entre el servidor y la página web. La página web hace uso de la biblioteca Chart.js para graficar los datos en tiempo real.

Resultado

El circuito se armó de acuerdo las especificaciones descritas en Ilustración 2 y se obtuvo el siguiente resultado:

Ilustración 4: Circuito Armado

El sitio web está alojado de manera local con la dirección *localhost:8080*. La página web muestra en tiempo real la temperatura local, fecha actual y gráfica la temperatura histórica de los últimos minutos (ver Ilustración 5).

Gráfica de temperatura

Ilustración 5: Página web