Week 4 Part B highlights

- Modular arithmetic and applications
- Proof by contradiction
- Strong induction
- Use insights from proofs to develop new algorithms
- Distinguish between and use as appropriate each of structural induction, mathematical induction, and strong induction

Tuesday

Modular Arithmetic, zybook 7.1: It's the arithmetic used on the clock.

"How many minutes past the hour are we at?"

Model with $x \mod 60$

Time:	12:00 pm	12:15pm	12:30 pm	12:45 pm	$1:00 \mathrm{pm}$	1:15pm	$1:30 \mathrm{pm}$	1:45pm
Minutes past noon:	0	15	30	45	60	75	90	105
Minutes past the hour:	0	15	30	45	0	15	30	45

More generally, given an integer m > 1, we can define a ring to be the set $\mathbb{Z}_m = \{0, 1, 2, ..., m - 1\}$. The operation **mod m** can then be seen as a function $f_m : \mathbb{Z} \to \mathbb{Z}_m$ that takes an integer x as input and outputs \mathbf{x} mod \mathbf{m} .

We can define arithmetic operations (like addition, subtraction, multiplication, etc) on the elements in this set \mathbb{Z}_m in the usual way, except that the mod m function is applied afterwards to ensure that the result will again be in \mathbb{Z}_m .

Why is modular arithmetic useful?

Observation: For any integers a, j and positive integer m, $(a + j \cdot m) \mod m = a \mod m$

Definition: Let m be an integer greater than 1. Let a and b be any two integers. Then a is congruent to $b \pmod{m}$, denoted as $a \equiv b \pmod{m}$ if and only if _____

Practice using the notation for congruence

- (i) Write examples of numbers that are congruent to each other (mod 60):
- (ii) Restate the observation $(a + j \cdot m) \mod m = a \mod m$:
- (iii) Compute without a calculator:

$$(365+657) \mod 60 =$$

$$(365 \cdot 657) \mod 60 =$$

Theorem 1: For $a, b, c \in \mathbb{Z}$ and positive integer m

- (i) $a \equiv a \pmod{m}$
- (ii) $a \equiv b \pmod{m}$ iff $b \equiv a \pmod{m}$
- (iii) if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$

Informally: congruence is like equality.

Theorem 2: For $a, b, a', b' \in \mathbb{Z}$ and positive integer m, if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then:

- (i) $(a+b) \equiv (a'+b') \pmod{m}$
- (ii) $(a-b) \equiv (a'-b') \pmod{m}$
- (iii) $(a \cdot b) \equiv (a' \cdot b') \pmod{m}$

Informally: can bring mod "inside" and do it first, for addition and for multiplication.

Some very neat applications of the congruence theorems ¹				
What is $8^{1759} \mod 7$?				
Is the 8000th Fibonacci number divisible by 3?				
Prove some of the tricks you learned in high school to check divisibility by 3 and 11				

¹credits: Prof. Daniel Lokshtanov's Winter 22 offering of CS40.

Proof of some of the congruence theorems

Finding multiplicative inverse of a number mod m : A key step in RSA crypto algorithm

Definition (zybook 6.5.1): A multiplicative inverse mod m (or just inverse mod m) of an integer x, is an integer $s \in \{1, 2, ..., m-1\}$ such that $sx \mod m = 1$.

The multiplicative inverse of x (mod m) only exists when:

Theorem (zybook 6.5.2): Let x and y be integers, then there are integers s and t such that gcd(x,y) = sx + ty

Constructive proof based on Euclid's algorithm, known as extended Euclid's algorithm

Find the inverse of 3 mod 7

Prove or disprove the following claims:

Claim: There is a greatest integer.	Claim: There is a least integer.
Claim: There is a greatest prime number.	Claim: There is a least prime number.

New! Proof by Contradiction (Rosen 1.7 p86, zybook 7.2)

To prove that a statement p is true, pick another statement r and once we show that $\neg p \to (r \land \neg r)$ then we can conclude that p is true.

Extra examples: Prove or disprove that \mathbb{N}, \mathbb{Q} each have a least and a greatest element.

The set of rational numbers, \mathbb{Q} is defined as

$$\left\{\frac{p}{q}\mid p\in\mathbb{Z} \text{ and } q\in\mathbb{Z} \text{ and } q\neq 0\right\} \quad \text{ or, equivalently, } \quad \{x\in\mathbb{R}\mid \exists p\in\mathbb{Z} \exists q\in\mathbb{Z}^+ (p=x\cdot q)\}$$

Extra practice: Use the definition of set equality to prove that the definitions above give the same set.

Goal: The square root of 2 is not a rational number. In other words: $\neg \exists x \in \mathbb{Q}(x^2 - 2 = 0)$

Attempted proof: The definition of the set of rational numbers is the collection of fractions p/q where p is an integer and q is a nonzero integer. Looking for a witness p and q, we can write the square root of 2 as the fraction $\sqrt{2}/1$, where 1 is a nonzero integer. Since the numerator is not in the domain, this witness is not allowed, and we have shown that the square root of 2 is not a fraction of integers (with nonzero denominator). Thus, the square root of 2 is not rational.

The problem in the above attempted proof is that

Proof:

Lemma 1: For every two integers p and q, not both zero, $gcd\left(\frac{p}{gcd(p,q)}, \frac{q}{gcd(p,q)}\right) = 1$.

Lemma 2: For every two integers a and b, not both zero, with gcd(a,b) = 1, it is not the case that both a is even and b is even.

Lemma 3: For every integer x, x is even if and only if x^2 is even.

Greatest common divisor (Rosen 4.3 p265) Let a and b be integers, not both zero. The largest integer d such that d is a factor of a and d is a factor of b is called the greatest common divisor of a and b and is denoted by gcd(a,b).

Definition (Rosen p257): An integer p greater than 1 is called **prime** if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

Theorem (Rosen p336): Every positive integer greater than 1 is a product of (one or more) primes.

Proof by strong induction, with b = 2 and j = 0.

Basis step: WTS property is true about 2.

Inductive step: Consider an arbitrary integer $n \ge 2$. Assume (as the IH) that the property is true about each of $2, \ldots, n$. WTS that the property is true about n + 1.

Case 1:

Case 2:

New! Proof by Strong Induction (Rosen 5.2 p337, zybook 7.1)

To prove that a universal quantification over the set of all integers greater than or equal to some base integer b holds, pick a fixed nonnegative integer j and then:

Basis Step: Show the statement holds for b, b + 1, ..., b + j.

Recursive Step: Consider an arbitrary integer n greater than or equal to b+j, assume (as the **strong**

induction hypothesis) that the property holds for each of $b, b + 1, \ldots, n$, and use

this and other facts to prove that the property holds for n+1.

For which	non-negative integers n	can we make	change for n with	coins of value	5 cents and 3 c	cents?
Restating:	We can make change for	or	_, we cannot make	e change for		_, and
				*		

Proof of \star by mathematical induction (b=8)

Basis step: WTS property is true about 8

Inductive step: Consider an arbitrary $n \geq 8$. Assume (as the IH) that there are nonnegative integers x, y such that n = 5x + 3y. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'. We consider two cases, depending on whether any 5 cent coins are used for n.

Case 1: Assume
Define x' =and y' =(both in N by case assumption).
Calculating:

$$5x' + 3y' \stackrel{\text{by def}}{=}$$

$$\stackrel{\text{rearranging}}{=}$$

$$\stackrel{\text{IH}}{=}$$

Case 2: Assume

Therefore n=3y and $n\geq 8$, by case assumption. Therefore, $y\geq 3$ Define x'=2 and y'=y-3 (both in N by case assumption). Calculating:

$$5x' + 3y' \stackrel{\text{by def}}{=} 5(2) + 3(y - 3) = 10 + 3y - 9$$

$$\stackrel{\text{rearranging}}{=} 3y + 10 - 9$$

$$\stackrel{\text{IH and case}}{=} n + 10 - 9 = n + 1$$

Proof of \star by strong induction (b = 8 and j = 2)

Basis step: WTS property is true about 8, 9, 10

Inductive step: Consider an arbitrary $n \ge 10$. Assume (as the IH) that the property is true about each of $8, 9, 10, \ldots, n$. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'.

Algorithms for making change

Change making (greedy) algorithm in pseudocode

```
procedure change(c_1, c_2, \ldots, c_r): values of denominations of coins, where c_1 > c_2 > \ldots > c_r; n: a positive integer)

for i := 1 to r

d_i := 0 {d_i counts the number of coin of denomination c_i used}

while n \ge c_i

d_i := d_i + 1 {Add a coin of denomination c_i}

n := n - c_i

return d_1, d_2, \ldots, d_r {d_i the number of coins of denomination c_i in the change for i = 1, 2, \ldots, r}
```

The greedy approach doesn't work with 5¢ and 3¢ coins even for large values of n. However, we can write two new algorithms inspired by the proofs that we completed using mathematical induction and strong induction.

Recursive algorithms for making change

One recursive algo for making change using 5¢ and 3¢ coins

```
procedure change1(n:a positive integer)

if n = 8

3 (d_1, d_2) := (1, 1)

4 (x, y) := change1(n-1)

5 if x \ge 1

6 (d_1, d_2) := (x - 1, y + 2)

7 else

8 (d_1, d_2) := (2, y - 3)

9 return (d_1, d_2) {d_1, d_2 are the number of 5¢ and 3¢ coins respectively }
```

Another recursive algo for making change using 5¢ and 3¢ coins

```
procedure change2(n:a positive integer)
     if n = 8
 2
       (d_1, d_2) := (1, 1)
 3
     if n = 9
       (d_1, d_2) := (0, 3)
 5
 6
     if n = 10
       (d_1, d_2) := (2, 0)
     (x,y) := change1(n-3)
 9
     (d_1, d_2) := (x, y + 1)
10
11
     return (d_1,d_2) \{d_1, d_2 \text{ are the number of } 5 \% \text{ and } 3 \% \text{ coins respectively } \}
12
```


Discrete Mathematics Material created by Mia Minnes and Joe Politz is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. Adapted for CMPSC 40 by Diba Mirza.