Olimpiada Națională de Matematică 2008 Etapa județeană și a Municipiului București 1 martie 2008

CLASA A XI-A

Subjectul 1. Dacă $A \in \mathcal{M}_2(\mathbb{R})$, să se arate că

$$\det(A^2 + A + I_2) \ge \frac{3}{4}(1 - \det A)^2.$$

Subiectul 2. Fie $A, B \in \mathcal{M}_n(\mathbb{R})$. Să se arate că rang $A + \operatorname{rang} B \leq n$, dacă şi numai dacă există o matrice inversabilă $X \in \mathcal{M}_n(\mathbb{R})$, astfel încât $AXB = O_n$.

Subiectul 3. Fie $(x_n)_{n\geq 1}$, $(y_n)_{n\geq 1}$ două şiruri de numere reale strict pozitive, astfel încât, pentru orice $n \in \mathbb{N}^*$,

$$x_{n+1} \ge \frac{x_n + y_n}{2}, \ y_{n+1} \ge \sqrt{\frac{x_n^2 + y_n^2}{2}}.$$

- a) Să se arate că șirurile $(x_n+y_n)_{n\geq 1}$ și $(x_ny_n)_{n\geq 1}$ au limită.
- b) Să se arate că șirurile $(x_n)_{n\geq 1}$, $(y_n)_{n\geq 1}$ au limită și limitele lor sunt egale.

Subiectul 4. Să se determine pentru ce valori ale lui $a \in [0, \infty)$ există funcții continue $f : \mathbb{R} \to \mathbb{R}$, astfel încât

$$f(f(x)) = (x - a)^2$$
, pentru orice $x \in \mathbb{R}$.

Timp de lucru 3 ore

Toate subiectele sunt obligatorii