Uncertainty and Disturbance Estimator Based Robust Pitch Autopilot

Outline

RAKSHITH VISHWANATHA, SHARATH RAO, ABHISHEK BASRITHAYA, T.S. CHANDAR

P.E.S. Institute of Technology, Bangalore, India 17th October 2018

Outline of work

Problem Statement

Missile Model Missile Model Controller Design

Performance of UDE based controller with second order actuator in the loop

Conclusion and future work

Problem Statement

- ► ADD Dist in pitch plane
- ► ADD Provide robust solution
- ► ADD Analysis and Comparitive study

Missile Model

As referred from [];

- Transfer Function of linearized roll dynamics
 - 1. $\dot{\alpha}(t) = K_{\alpha}M(t)C_{\alpha}[\alpha(t),\delta(t),M(t)]\cos(\alpha(t)) + q(t)$
 - 2. $\dot{q}(t) = K_a M^2(t) C_m [\alpha(t), \delta(t), M(t)]$
 - 3. $\delta(t) = -\omega_a \delta(t) + \omega_a \delta_c(t)$
 - 4. $C_n(\alpha, \delta, M) = a_n \alpha^3 + b_n \alpha |\alpha| + c_n \left(2 \frac{M}{3}\right) \alpha$
 - 5. $C_m(\alpha, \delta, M) = a_m \alpha^3 + b_m \alpha |\alpha| + c_m \left(-7 + \frac{8M}{3}\right) \alpha + d_m \delta$
- Transfer Function of second order actuator
 - 1. $\dot{M}(t) = \frac{1}{2} [-|a_z(t)| \sin|\alpha(t)| + a_x M^2(t) \cos\alpha(t)]$
 - 2. $a_z = K_z M^2(t) C_n[\alpha(t), \delta(t), M(t)]$
 - 3. $a_x = \frac{0.7P_0S\hat{C}_d}{1}$

Aerodynamic constants

Table: Performance specifications

ω_{a}	Actuator bandwidth	150 rad/s
ζ_a	Drag coefficient	9000 $1/s^2$
m	Mass	204.023 kg
d	Diameter	0.2286 m
I_y	Pitch moment of inertia	247.44 kgm ²
C_d	Drag moment	0.3
М	Mach	2.25

Block Diagram of UDE Controller-Observer

Plant dynamics in state space form

- ► Trip Diff
- ► $d_n \approx 0$ relative degree
- alpha constraints

$$\ddot{\alpha} = K_q M^2 (3a_m \alpha^2 + 2b_m |\alpha| + c_m \left(-7 + \frac{8M}{3} \right)) \dot{\alpha}$$
$$- K_q M^2 d_m \omega_a \delta + K_\alpha M (6a_n \alpha + 2b_n sgn(\alpha)) \dot{\alpha}^2$$
$$+ K_\alpha M (3a_n \alpha^2 + 2b_n |\alpha| + c_n \left(2 - \frac{M}{3} \right)) \ddot{\alpha}$$
$$+ K_\alpha M^2 d_m \omega_a \delta_c$$

where to get the form al-trip-dot = a + bu,

$$a = K_q M^2 (3a_m \alpha^2 + 2b_m |\alpha| + c_m \left(-7 + \frac{8M}{3}\right)) \dot{\alpha}$$
$$- K_q M^2 d_m \omega_a \delta + K_\alpha M (6a_n \alpha + 2b_n sgn(\alpha)) \dot{\alpha}^2$$
$$+ K_\alpha M (3a_n \alpha^2 + 2b_n |\alpha| + c_n \left(2 - \frac{M}{3}\right)) \ddot{\alpha}$$
$$b = K_q M^2 d_m \omega_a$$

Thus,

$$\delta_c = \frac{1}{b}(u_a + \nu)$$

$$u_a = -a$$

$$\nu = \ddot{\alpha}^* + m_1(\alpha^* - \alpha) + m_2(\dot{\alpha}^* - \dot{\alpha}) + m_3(\ddot{\alpha}^* - \ddot{\alpha})$$

UDE Augmented IOL Controller

Defining u_a , ν and u_d

1.
$$d = \Delta a + \Delta b \delta_c + w$$

2.
$$\ddot{\alpha} = a + b\delta_c + d$$

ightharpoonup To define u_d

1.
$$\hat{d} = G_f(s)d$$

2.
$$G_f(s) = \frac{1}{1+s\tau}$$
 we finally get

3.
$$u_d = \frac{-1}{\tau} \left[\ddot{\alpha} - \int \nu dt \right]$$

UDE Observer based Control law

The final UDE based control law using the expressions for u_a , ν and u_d

$$\ddot{\alpha} = a_1 \alpha + a_2 \dot{\alpha} + a_3 \ddot{\alpha} + d_1 + b \delta_c$$

 ${
m d}1={
m non-linear\ terms},\ {
m a}1$ is coeffs alpha, a2 is coeffs alpha-dot, a3 is coeffs alpha-ddot Now,

$$\ddot{\alpha} = a_{1o}\alpha + a_{2o}\dot{\alpha} + a_{3o}\ddot{\alpha} + b_o\delta_c + d_2$$

Conclusion and future work

UDE Observer based Control law

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = x_3$
 $\dot{x}_3 = a_{1o}x_1 + a_{2o}x_2 + a_{3o}x_3 + b_o\delta_c + d_2$
 $y = x_1$

Intro with observer poles we get

$$\dot{\hat{x}}_1 = \hat{x}_2 + \beta_1 e_o
\dot{\hat{x}}_2 = \hat{x}_3 + \beta_2 e_o
\dot{\hat{x}}_3 = a_{1o} \hat{x}_1 + a_{2o} \hat{x}_2 + a_{3o} \hat{x}_3 + b \delta_c + \hat{d}_2 + \beta_3 e_o
\hat{v} = \hat{x}_1$$

$$\begin{bmatrix} \dot{e}_c \\ \dot{e}_o \\ \dot{\tilde{e}}_d \end{bmatrix} = \begin{bmatrix} (A - BK) & -(BK) & -B_d \\ 0 & (A - LC) & B_d \\ 0 & 0 & -\frac{1}{\tau} \end{bmatrix} \begin{bmatrix} e_c \\ e_o \\ \tilde{d}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \dot{d}_2 \tag{1}$$

$$|sI - (A - BK)| |sI - (A - LC)| |s - (-\frac{1}{\tau})| = 0$$
 (2)

- \triangleright (A, B) is controllable and (A, C) is observable
- $\triangleright \tau$ is strictly a positive number
- Selecting appropriate controller and observer poles ensures stability of error dynamics
- If $d_2 \neq 0$, then bounded-input, bounded-output stability can be assured.

Performance of UDE based controller

Parameters for simulation

- filter constant $\tau = 0.01$
- ightharpoonup desired settling time $t_s = 180$ ms
- \triangleright damping factor $\zeta = 0.8$
 - 1. Using these values, feedback gains m_1 and m_2 were evaluated to be $m_1 = 42.45$. $m_2 = 771.13$
- ightharpoonup external disturbance $d_{ext} = 200 \text{ rad/}s^2$
- \blacktriangleright taking ω_{RR} to be -3 rad/s against the nominal value of 2 rad/s
- desired roll orientation = 0 deg
- \blacktriangleright initial condition in $\phi = 10$ deg
- all other values as referred from Table.1

For this controller and plant system, the phase margin was found to be 69 deg, validating the proposed control law

Performance of UDE (Case 1)

Performance of UDE (Case 1)

Cascading second order actuator Second order actuator as referred in

- [1] of the form $\frac{\delta(s)}{\delta_c(s)}=\frac{\omega_A^2}{s^2+2\zeta_A\omega_As+\omega_A^2}$ is introduced
 - $\triangleright \omega_A$ is actuator bandwidth in rad/s
 - \triangleright ζ_A is actuator damping ratio

Performance of UDE based controller with second order actuator in the loop

For simulation:

- \triangleright τ continues to be 0.01
- ▶ All other simulation parameters are as per Table.1

Comparative analysis (Case 2)

Performance of UDE based controller with second order actuator in the loop Conclusion and future work

Comparative analysis (Case 2)

ADD SOME CONTENT HERE FOR CASE 2

Performance of UDE based controller with second order actuator in the loop Conclusion and future work

Results and conclusions

Performance of UDE based controller with second order actuator in the loop Conclusion and future work

Novelty and future work

Performance of UDE based controller with second order actuator in the loop Conclusion and future work

References

S. E. Talole, A. A. Godbole, and J. P. Kolhe, "Robust autopilot design for tactical missiles," J. of Guidance, Control and Dynamics, 34(1), Jan - Feb 2011, pp. 107-117.

Q. C. Zhong, and D. Rees, "Control of LTI systems based on an uncertainty and disturbance estimator," ASME Trans. J. of Dynamic systems, Measurement and Control, 126(4), 2004, pp. 905-910.

K. Ogata, Modern Control Engineering, 5th ed. PHI, New Delhi, 2010, pp. 743-746.

Performance of UDE based controller with second order actuator in the loop Conclusion and future work

Thank You!