Whitney Humecky WJH190000

Ann Biju AXB190082

Assignment 1 Output and Report

0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 1 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155		Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Rings
2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
4 1 0.200 0.255 0.000 0.2050 0.0005 0.0005 0.005	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4 1 0.550 0.255 0.000 0.2050 0.0055 0.055	4		0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

The head() of our abalone dataset. Provided us with an overview of the columns and datatypes for each column.

	Length	Diameter	Height	Whole_weight	Shucked_weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367
std	0.120093	0.099240	0.041827	0.490389	0.221963
min	0.075000	0.055000	0.000000	0.002000	0.001000
25%	0.450000	0.350000	0.115000	0.441500	0.186000
50%	0.545000	0.425000	0.140000	0.799500	0.336000
75%	0.615000	0.480000	0.165000	1.153000	0.502000
max	0.815000	0.650000	1.130000	2.825500	1.488000
	Viscera_weigh	ht Shell_wei	ght Ri	ngs	
count	4177.00000	30 4177.000	000 4177.000	000	
mean	0.1805	94 0.238	831 9.933	684	
std	0.1096	14 0.139	203 3.224	169	
min	0.0005	0.001	500 1.000	000	
25%	0.09350	0.130	8.000	000	
50%	0.1710	0.234	9.000	000	
75%	0.2530	0.329	000 11.000	000	
max	0.76000	1.005	000 29.000	000	

Output of the describe() function as used on the abalone dataset. The mean tends to stay under 1 for all of the predictors. The Rings means however is 9.9. Normalization definitely helped with scaling the predictors.

Most variables are somewhat normal or assumed to be normal. Diameter, height, and length are skewed left very slightly, but fairly normal in shape. The weights appear to be skewed right, but the values of the weights of the Abalone parts are generally less than 2 grams. The measurements are only represented to a hundredth of a gram. More precise measurement tools may have resulted in a more normally distributed curve for the last 4 predictors regarding weight.

Correlation Matrix

The weight of the shell has the strongest correlation to the number of rings of the abalone at 0.63. The whole weight of the abalone is less strongly correlated at 0.54. This implies that viscera weight, shucked weight (with the weakest correlation with Rings), and whole weight may be reducing the model accuracy.

The above scatter plots show that both the Diameter and Shell Weight have a rather strong positive correlation with Rings Size in abalones. We can also deduce that the majority of diameters and total shell weights are spread around the middle of the graphs. This however does not eliminate outliers, as can be seen in both plots.

Testing the Models:

We tested two models. One used all predictors and one removed shucked weight on the basis of its low correlation to the target (rings) or 0.42. Model 1 had a Stochastic Gradient Descent score of 0.52. Model 2 increased this score incredibly, to 0.99.

OLS Regression results

Model 1 OLS regression had an R-squared value of 0.53

	•	OLS Regress	sion Results			
						=====
Dep. Variable:		Rings	R-squared:		0.528	
Model:		OLS	Adj. R-squared:			0.527
Method:	Lea	st Squares	F-statistic:			665.2
Date:	Fri, 29 Sep 2023		Prob (F-statistic):		0.00	
Time:	00:20:34		Log-Likelihood:		-9250.0	
No. Observations:	4177		AIC:		1.852e+04	
Df Residuals:	4169		BIC:		1.857e+04	
Df Model:		7				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.9337	0.034	289.481	0.000	9.866	10.001
Length	-0.1888	0.219	-0.861	0.389	-0.618	0.241
Diameter	1.3258	0.222	5.972	0.000	0.891	1.761
Height	0.4946	0.065	7.639	0.000	0.368	0.622
Whole_weight	4.5343	0.359	12.622	0.000	3.830	5.239
Shucked_weight	-4.4862	0.183	-24.552	0.000	-4.844	-4.128
Viscera_weight	-1.0773	0.143	-7.538	0.000	-1.358	-0.797
Shell_weight	1.1937	0.158	7.545	0.000	0.884	1.504
Omnibus:		933.799	Durbin-Wat	son:		===== 1.387
Prob(Omnibus):		0.000	Jarque-Ber	a (JB):	260	2.745
Skew:		1.174	Prob(JB):		0.00	
Kurtosis:		6.072	Cond. No.			30.9
=======================================						

Interpreting the OLS Summary

Coef = The coefficient is the estimated change in target variable per one unit of change in a specific predictor variable - assuming all other predictors remain constant. Length, shucked weight, and viscera weight show that as they increase by 1 unit, the target (number of rings) decreases. This is suspicious because we'd assume that the age of the abalone (which corresponds to number of rings plus 1.5) would be positively related to size of the abalone. The intercept coefficient is the overall change in rings per unit of change in the combined predictors. Here that is 9.9.

standard error = 0.034

Standard error is the precision of the coefficient estimate. The lower the standard error, the more precise. Overall, this model is very precise at 0.034. None of the individual SEs are above 0.4.

T-value = The t-value of the whole weight is highest at 12.84, meaning that it is the predictor with the most significant effect on Rings size. T-value of Shucked weight is the lowest at -24.552, indicating a negative proportional relation with Rings size.

P-value = The probability of observing this t-value. P-value close to 1 is extremely likely, and close to 0 is incredibly unlikely. Typically a significance threshold of 0.05 is used to determine if

the null hypothesis is unlikely to be true. Here the only value that is considered possible by that standard, is the t-value for length.

R-squared = 0.528

Value of 0.528 shows that the target and predictors are only roughly correlated. The testing of this model is likely to be erroneous because of this, since only approximately 52% of variability in the data can be predicted by this model.

R-squared adjusted = 0.527

Very similar to R-squared value, indicating that most predictors' effects were captured in the R-squared value itself.

F-statistic = 665.2

F-statistic is the value of the fit of the model compared to a model of just the intercept value. The probability of the F-statistic (0.00) shows that the model is shown to have a significant relationship with the target (null hypothesis is that there is no significant relationship).

The columns 0.025 and 0.975 =

The 95% confidence range of the coefficients. The range between the first and the second column is the range in which the true value of the coefficient would lie. There is less than a 5% chance that the true coefficient is not in this range. A very small confidence interval indicates a highly precise model because it is dependent on the standard error.

MODEL 2 Model 2 had a slightly lower R-square of 0.46. For this reason we will analyze the OLS output for Model 1.

vedati emetir ati ead	uy sacisii		sion Results		ıø/uist-þack	ages (II oiii þi	
Dep. Variable:		Rings				0.459	
Model:			Adj. R-squared:		0.459		
Method:	Least Squares				590.4		
Date:	Fri, 29 Sep 2023		Prob (F-statistic):		0.00		
Time:	00:20:42				-9532.0		
No. Observations:		4177		AIC:		1.908e+04	
Df Residuals:		4170	BIC:		1.912e+04		
Df Model:		6					
Covariance Type:		nonrobust					
==========							
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	9.9337	0.037	270.611	0.000	9.862	10.006	
Length	-0.6224	0.234	-2.664	0.008	-1.080	-0.164	
Diameter	1.4207	0.237	5.984	0.000	0.955	1.886	
Height	0.5510	0.069	7.961	0.000	0.415	0.687	
Whole_weight	-2.7804	0.215	-12.949	0.000	-3.201	-2.359	
Viscera_weight	-0.1318	0.147	-0.895	0.371	-0.420	0.157	
Shell_weight	3.6212	0.132	27.406	0.000	3.362	3.880	
Omnibus:		1176.229	 Durbin-Wat			===== 1.234	
Prob(Omnibus):	0.000		Jarque-Bera (JB):		3939.076		
Skew:		1.404	Prob(JB):		0.00		
Kurtosis:		6.841	Cond. No.			20.7	
		0.071					