Exam 1 Review (2019)

Yongjun Park
Hanyang University

Logistics

When, Where:

- Wednesday, Oct 30, 1:00pm –2:30pm
- Room: ITBT 508

• Type:

Open book/note

What to bring:

- Text book, reference books, lecture notes
 - But must print these out
- Pencils
- No laptops or cell phones

Topics Covered

- Lexical analysis: ~50%
- Syntax analysis: ~50%
 - Percentages are VERY approximate
- Not covered
 - Detailed flex/bison syntax
 - However, contents on the slides will be covered
 - And general questions about flex/bison are possible

Textbook

- What have we covered: Ch 1 4
- Things you should know / can ignore
 - Ch 1, 2 Just overviews, don't worry about it
 - Ch 3 Lexical analysis
 - Ch 4 Syntax analysis
- + Project 1/2 related stuffs on Louden book

Open Book Exams

- OPEN BOOK != DON'T STUDY
- Open book means
 - Memorizing things is not that important
 - If you forget something, you can look it up
- But
 - If you are trying to learn (or re-learn) stuff during the test, you won't finish
 - Assume the test is not open book
 - Don't rely on book/notes
 - Treat them as a backup

How to Study

- Re-familiarize yourself with all the material
 - Where to find things if you get confused
- Practice solving problems
 - Do them w/o looking at the answer!
 - Class problems/examples from lectures
 - Examples in book
 - If you are ambitious, exercises at the end of each chapter
 - Practice so that you can do them without thinking much

Exam Format

- Short answer
 - Explain something
 - Short problems to work out
- Longer design problems
 - E.g., construct a parse table
- Range of questions
 - Simple Were you conscience in class?
 - Grind it out Can you solve problems
 - Challenging How well do you really understand things
- Important! move on if you get stuck!

Lexical Analysis (aka Scanning)

- Ch 2-3
- Regular expressions
 - How to write an RE from a textual description
- NFAs
 - RE to NFA (Thompson construction)
- DFAs
 - NFA to DFA
- State minimization
- How does lex/flex work

Example Problem: Regular Expressions

 Write a RE for strings over the alphabet {a,b,c} where the first 'a' precedes the first 'b'

Example Problem: NFA

- What's an ε transition and why do we allow them?
- Create an NFA for the following RE:
 - a ((b | c | a+c) x)* | x+a

Recall: Convert the NFA to a DFA

Problem 1: Multiple transitions

 Move (S,a) is relabeled to target a new state whenever single input goes to multiple states

Problem 2: ε transitions

- Any state reachable by an ε transition is "part of the state"
- ε-closure Any state reachable from S by ε transitions is in the ε-closure; treat ε-closure as 1 big state

Example Problem: DFA

Convert the previous NFA into a DFA

Syntax Analysis (aka Parsing)

- Ch. 4
- Context free grammars
 - Derivations, ambiguity, associativity
- Parsing
 - Top-down
 - LL(1), building parse tables (FIRST, FOLLOW)
 - Bottom-up
 - LR(0), LR(1), SLR, LALR
 - Building parse tables (Closure, Goto), shift/reduce
- Abstract syntax tree

Example Problem: CFG

- Is the following grammar ambiguous? Explain why or why not.
 - $-S \rightarrow E + E$
 - $E \rightarrow num$

Recall: Computing FIRST/FOLLOW

Determining FIRST(X)

- 1. if X is a terminal, then add X to FIRST(X)
- 2. if $X \rightarrow \varepsilon$ then add ε to FIRST(X)
- 3. if X is a nonterminal and X \rightarrow Y1Y2...Yk then a is in FIRST(X) if a is in FIRST(Yi) and ϵ is in FIRST(Yj) for j = 1...i-1
- 4. if ε is in FIRST(Y1Y2...Yk) then ε is in FIRST(X)

Determining FOLLOW(X)

- 1. if S is the start symbol then \$ is in FOLLOW(S)
- 2. if A $\rightarrow \alpha B\beta$ then add all FIRST(β) != ϵ to FOLLOW(B)
- 3. if A $\rightarrow \alpha$ B or α B β and ϵ is in FIRST(β) then add FOLLOW(A) to FOLLOW(B)

Example Problem: FIRST/FOLLOW

- Calculate FIRST and FOLLOW for:
 - $-S \rightarrow uBDz$
 - $-B \rightarrow Bv \mid w$
 - $-D \rightarrow EF$
 - $E \rightarrow y \mid \varepsilon$
 - $F \rightarrow x \mid \varepsilon$

Example Problem: LL(1) Parsing Table

- Construct the LL(1) parsing table for the previous grammar
- Can the grammar be parsed by an LL(1) parser?

Recall: Closure and Goto

- Closure of a parser state:
 - Start with Closure(S) = S
 - Then for each item in S:
 - $X \rightarrow \alpha . Y \beta$
 - Add items for all the productions Y $\rightarrow \gamma$ to the closure of S: Y $\rightarrow . \gamma$
- Goto operation = describes transitions between parser states, which are sets of items
 - If the item [X $\rightarrow \alpha$. Y β] is in I, then
 - Goto(I, Y) = Closure([X $\rightarrow \alpha$ Y $\cdot \beta$])

Example Problem: LR(0) DFA

- Build the LR(0) DFA for:
 - $-S \rightarrow E $$
 - $E \rightarrow id$
 - $E \rightarrow id (E)$
 - $-E \rightarrow E + id$