Duboke konvolucijske neuronske mreže za raspoznavanje znakova

Matija Ilijaš

2. srpnja 2015.

Sadržaj

Optičko prepoznavanje znakova

Umjetne neuronske mreže

Duboko učenje

Duboke konvolucijske mreže

Implementacija

Rezultati

Optičko prepoznavanje znakova

- engl. Optical Character Recognition OCR
- Područje računalnog vida, raspoznavanja uzoraka
- Dva glavna zadatka OCR sustava:
 - Segmentacija znakova iz slike
 - Klasifikacija znakova
- ▶ U ovom radu analiziraju se metode klasifikacije
- Standarna metoda provodi se u dva koraka:
 - Predprocesiranje slike znaka
 - Klasifikacija znaka

Umjetne neuronske mreže

- Algoritam strojnog učenja inspiriran strukturom i funkcionalnošću ljudskog mozga
- ▶ Paralelna obrada podataka, nelinearna veza ulaza i izlaza
- Neuron težinska suma ulaza sa dodanom nelinearnošću
- Standarna arhitektura neuronske mreže
 - ▶ Potpuno povezana i aciklička
 - Sigmoidalna prijenosna funkcija

Učenje neuronskih mreža

- Neuronska mreža nelinearna funkcija sa više varijabli
- Učenje mreže traženje minimuma te funkcije s obzirom na grešku klasifikacije
- Koristi se Backpropagation algoritam koji implementira metodu gradijentnog spusta

Duboko učenje

- ► Ideja prvi put prezentirana u radovima Kunihika Fukushime i Yanna Lecuna prije gotovo 30 godina
- Učenje korisnih značajki podataka povezanih u obliku hijerarhije - inspirirano vizualnim korteksom mozga sisavaca
- Uče se duboki kompleksni modeli na velikoj količini podataka tek nedavno postalo moguće učenjem na grafičkim karticama
- Metode nenadziranog učenja
 - Učenje hijerarhije na neoznačenim podatcima
 - Autoenkoderi, ograničeni Boltzmann strojevi
- Metode nadziranog učenja
 - Učenje Backpropagation algoritmom
 - Specijalne arhitekture (npr. konvolucijske)

Učenje hijerarhije značajki

- Kvalitetna značajka diskriminantna, robusna na promjene osvijetljenja i geometrijske transformacije
- Ručno određivanje značajki promatranje svojstva ulaznih podataka te naglašavanje onih maksimalno diskriminantnih
- Negativna posljedica ručnog određivanja je gubitak dijela korisnih informacija
- Rješenje: određivanje diskriminantnih značajki izravno iz skupa podataka
- Jedna razina apstrakcije LDA i PCA metoda
- Više razina apstrakcije hijerarhija značajki naučena dubokim učenjem na skupu podataka

Učenje hijerarhije značajki

Duboke konvolucijske mreže

- Prvi model razvio Yann Lecun 1989. godine
- Iskorištavaju svojstvo lokalne prostorne korelacije prirodnih slika
- Lokalni prostorni filteri ostvareni konvolucijom oponašaju lokalne receptore vizualnog korteksa
- Cilj je naučiti konvolucijske jezgre specifične za dane podatke
 učenje lokalnih značajki iz podataka
- Prvi dio arhitekture zadužen za formiranje hijerarhije značajki, drugi za klasifikaciju
- Nadzirano učenje Backpropagation algoritmom

Lokalni prostorni filteri

$$y(m,n) = x(m,n) * h(m,n) = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x(i,j)h(m-i,n-j)$$

Dijeljenje težina

- Naučeni lokalni filter prepoznaje lokalnu značajku na samo jednoj poziciji u prostoru
- Mapa značajki skup inačica lokalnih filtera koje pokrivaju sve moguće podprostore
- Element konvolucijskog sloja je matrica vrijednosti odziva pripadajućeg filtera za svaku poziciju u prostoru
- Dijeljenjem težina između parametara mreže smanjuje se ukupan broj slobodnih parametara, te se kao posljedica:
 - Smanjuje trajanje učenja
 - Poboljšava sposobnost generalizacije

Dijeljenje težina

Lokalno udruživanje

- ▶ engl. Pooling
- Oblik nelinearnog poduzorkovanja
- Slika se dijeli na nepreklapajuće podprozore fiksne veličine
- Maksimalno lokalno udruživanje uzimanje maksimalne vrijednosti svakog podprozora
- Koriste se kao dodatni sloj nakon svakog sloja konvolucije, što
 - smanjuje količinu računanja u višim slojevima
 - ostvaruje jedan oblik invarijantnosti na translaciju

Lokalno udruživanje

Ispravljena linearna jedinica

- engl. Rectified Linear Unit ReLU
- Rješava problem nestajućeg gradijenta
- Ubrzava učenje svojim jednostavnim računanjem

$$f(x) = \max(x, 0)$$

Konačni model

- Sastoji se od slojeva za formiranje hijerarhije značajki i slojeva za klasifikaciju
- Svaki sloj za formiranje hijerarhije sastoji se od:
 - Konvolucijskog sloja
 - Sloja ispravljenih linearnih jedinica
 - Sloja maksimalnog lokalnog udruživanja
- Slojevi za klasifikaciju su standarni i potpuno povezani

Implementacija

- Sustav za učenje i testiranje različitih arhitektura neuronskih mreža
- Prilikom razvijanja zadovoljena dva glavna uvjeta:
 - Brzo učenje kompleksnih modela na velikoj količini podataka
 - Detaljna analiza rada naučenih modela
- Sustav je podijeljen na dva podsustava razvijena sa zasebnim alatima:
 - Sustav za učenje
 - Sustav za testiranje
- Dodatno implementirana prilagodba OCR sustavu tvrtke Microblink

Sustav za učenje

- Implementiran u razvojnom alatu Torch koji omogućuje paralelno izvođenje procesa učenja na grafičkoj kartici
- Napisane skripte u jeziku LuaJIT za lagano definiranje arhitektura mreža i određivanje parametara učenja
- ► Naučeni Torch modeli se spremaju u posebnom formatu i šalju sustavu za testiranje

```
-- Simple 2-layer neural network
model = nn.Sequential()
model:add(nn.Reshape(ninputs))
model:add(nn.Linear(ninputs,nhiddens))
model:add(nn.Tanh())
model:add(nn.Linear(nhiddens,noutputs))
```

Sustav za testiranje

- ▶ Implementiran u jeziku C++ korištenjem OpenCV biblioteke
- ➤ Za pokretanje Torch modela koristi se C++ biblioteka JTorch
- Analiza točnosti klasifikacije
 - Matrica greške klasifikacije
 - Prikaz krivo klasificiranih primjera
- Analiza kompleknosti modela
 - Broj slobodnih parametara
 - Prosječno trajanje klasifikacije
- Simultano analiziranje više modela
 - ► Tablice točnosti po klasama
 - Tablice trajanja klasifikacije

Rezultati

- Modeli učeni i testirani na internim skupovima podataka tvrtke Microblink
- Slike znakova sa osobnih iskaznica, tzv. strojno čitljivih područja (MRZ)
 - 37 klasa znakova fonta ocrb
 - Obuhvaćaju znamenke, velika slova i znak manje
- Sintetizirani skup podataka
 - Dobiven slikanjem printanih imitacija osobnih iskaznica
 - Više različitih modela mobitela i uvjeta osvijetljenja
 - 300 tisuća slika za učenje, 150 tisuća za testiranje
- Ručno označeni skup podataka
 - Dobiven slikanjem osobnih iskaznica u različitim uvjetima
 - ▶ 12 tisuća ručno označenih slika za testiranje

Rezultati

- Utjecaj predprocesiranja podataka
- Pronalaženje optimalne arhitekture
 - Standarnih neuronskih mreža
 - Konvolucijskih neuronskih mreža
- Usporedba optimalnih arhitektura
 - Točnost klasifikacije
 - Kompleksnost i trajanje klasifikacije
- Usporedba sa Microblink klasifikatorom

Utjecaj predprocesiranja podataka

Skup podataka	Adaptivni prag	Microblink interni	Bez predprocesiranja
Sintetizirani	98.29%	97.87%	99.57%
Ručno označeni	96.35%	97.66%	99.21%

Pronalaženje optimalne standarne arhitekture

Pronalaženje optimalne konvolucijske arhitekture

Usporedba točnosti optimalnih arhitektura

Skup podataka	Standarna arhitektura	Konvolucijska arhitektura
Sintetizirani	99.91%	99.57%
Ručno označeni	96.31%	99.21%

 Konvolucijska arhitektura bolje generalizira na ručno označenom skupu

Arhitektura	Znamenka '0'	Slovo 'O'	Znamenka '8'	Slovo 'B'
Standarna	74.15%	91.97%	98.69%	38.57%
Konvolucijska	97.55%	95.35%	99.81%	99.29%

Najveća razlika u točnosti kod teških slučajeva sličnih klasa

Usporedba kompleknosti optimalnih arhitektura

Svojstvo	Standarna arhitektura	Konvolucijska arhitektura
Računske operacije	170550	97780
Slobodni parametri	170550	6930
Trajanje klasifikacije	0.202 ms	0.223 ms

- Po broju računskih operacija standarni model gotovo dvostruko kompleksniji, no prosječno trajanje klasifikacije je približno jednako
- ► Konvolucijska arhitektura ima za red veličine manji broj slobodnih parametara od standarne arhitekture

Usporedba sa Microblink klasifikatorom

Klasifikator	Sintetizirani skup	Ručno označeni skup
Microblink	86.93%	91.69%
Standarna mreža	99.91%	96.31%
Konvolucijska mreža	99.57%	99.21%

Neuronske mreže bolje klasificiraju na oba testna skupa

Klasifikator	Prosječno trajanje klasifikacije
Microblink	0.025 ms
Standarna mreža	0.202 ms
Konvolucijska mreža	0.223 ms

▶ Microblink klasifikator za red veličine brži od neuronskih mreža

Zaključak

- Pokazana je prednost prosljeđivanja neobrađenih slika dubokom klasifikatoru u svrhu očuvanja informacija slike
- Dodavanjem dubine bilo kojoj arhitekturi neuronske mreže pospješuje se njena sposobnost generalizacije
- Pokazana je prednost korištenja konvolucijske arhitekture zbog dodatnog ograničenja na njenu kompleksnost što pospješuje generalizaciju
- Rezultati klasifikatora tvrtke Microblink lošiji su od rezultata standarnih i konvolucijskih neuronskih mreža, što se može objasniti:
 - Negativnim utjecajem predprocesiranja podataka
 - Korištenjem značajki samo jedne razine apstrakcije
- Naučene mreže su za red veličine sporije od Microblink klasifikatora, no još uvijek dovoljno brze za primjenu u stvarnom vremenu na mobilnom uređaju

Hvala na pažnji!