Machine Learning Project Plan

This document outlines the steps for the Machine Learning project plan. Each step is listed in a table with additional columns for Points, Self Grade, and Grader Grade. On UB Learns, upload a completed version of this sheet. The project is due 12/18/2024 @11:59 PM. No late submissions. I will ignore all emails about late submissions. You MUST keep your apps running for one week, so you can turn it off 12/25/2024 @11:59PM.

Google colab:

link:https://colab.research.google.com/drive/1j4ag97wiIy5P7s5v6NHXa2ttC46ochDg?usp =sharing

jupyter link:

///C:/Users/91741/Downloads/Python%20S%20%20(2).html

URL to your Jupyter Book:

Step	Points	Self	Grader
		Grade	Grade
Create a normalized database (3NF).	20	20	
Write SQL join statement to fetch data from the database and	5	5	
into Pandas DataFrame.			
Explore the data to determine if you need to stratify it by some	10	10	
attribute when doing train/test split. Perform the train/test split.			
Explore the data using yprofile and correlation matrix. Make	10	10	
observations about features, distributions, capped values, and			
missing values. Create a list of data cleanup tasks.			
Experiment #1: Create a pipeline for preprocessing	20	20	
(StandardScaler, MinMaxScaler, LogTransformation,			
OneHotEncoding) and Logistic Regression. Log F1-			
score/(TP,TN,FN,FP) in MLFlow on DagsHub. – Cross validation			
3/10 folds. Results—mean/std of CV results and results on the			
whole training data - add in parameter hyper tuning			
Experiment #2: Create a pipeline for preprocessing and use	10	10	
LogisticRegression, RidgeClassifier, RandomForestClassifier,			
and XGBClassifier. Log results in MLFlow on DagsHub.			
Experiment #3: Perform feature engineering and attribute	10	10	
combination. Log results in MLFlow.			
Experiment #4: Perform feature selection using Correlation	10	10	
Threshold, Feature Importance, and Variance Threshold. Log			
results in MLFlow.			

Experiment #5: Use PCA for dimensionality reduction on all the	10	10	
features. Create a scree plot to show which components will be			
selected for classification. Log results in MLFlow.			
Experiment #6: Design and execute a custom experiment. Log	10	10	
results in MLFlow.			
Experiment #7: Design and execute another custom	10	10	
experiment. Log results in MLFlow.			
Create meaningful F1-score plots to compare experiments and	10	10	
determine the best model.			
Save the final model using joblib.	20	20	
Create a FastAPI application to serve the model.			
Containerize the FastAPI application using Docker and push to			
Docker Hub.			
Deploy the containerized API to a cloud platform.			
Create a Streamlit app to interact with the deployed model for	15	13	
real-time classification.			
Create a 12-15 minute video explaining the project. Walk	30	30	
through the Jupyter Notebook explaining your project. Your			
presentation should be coherent, organized, and you must			
speak clearly. -5 points for not having video with face. Use			
Zoom to record your video. Maybe you can record to cloud to			
link your video or you can upload to UB Box.			
Create a JupyterBook website with your resume, embedded	20	20	
video, and final code. Include links to MLFlow/DagsHub			
experiments, Docker Hub container, deployed model, and			
Streamlit app.			
Grade	220	218	

Use the following section to inform your grader why you missed certain things or how they were not applicable to your project so your grades can be adjusted.

Note: Please refer google colab note since my jupyter is not opening sometimes so please refer my google colab.