Chapter 8

Written Exercises, Pages 288-290

1. $2\sqrt{3}$ 3. $3\sqrt{5}$ 5. $20\sqrt{2}$ 7. $18\sqrt{10}$ 9. $6\sqrt{5}$ 11. $\frac{\sqrt{21}}{7}$ 13. $6\sqrt{3}$ 15. $\frac{\sqrt{3}}{9}$ 17. 9

19. $10\sqrt{10}$ 21. $11\sqrt{10}$ 23. 9 25. $3\sqrt{5}$ 27. 9 29. 3 31. x = 10, $y = 2\sqrt{29}$, $z = 5\sqrt{29}$

33. $x = \frac{\sqrt{2}}{6}$, $y = \frac{\sqrt{3}}{6}$, $z = \frac{\sqrt{6}}{6}$ 35. x = 5.4, y = 9.6, z = 7.2 37. $x = \sqrt{2}$, y = 2, $z = \sqrt{2}$

39. x = 4, $y = 2\sqrt{5}$, $z = 3\sqrt{5}$ **41.** a. cd, ce b. $a^2 + b^2 = cd + ce = c(d + e) = c^2$ **43.** Key steps of proof: 1. $\triangle PST \sim \triangle TRO$ (SAS \sim) 2. $m \angle PTS = m \angle TOR$ (Corr. \triangle of $\sim \triangle$ are \cong .) 3. $m \angle OTR +$ $m \angle TQR = 90$ (Thm. 3-11 Cor. 4) 4. $m \angle PTS + m \angle QTR = 90$ (Subst.) 5. $m \angle PTQ + m \angle PTS +$ $m \angle QTR = 180$ and $m \angle PTQ = 90$ (\angle Add. Post.)

Written Exercises, Pages 292-294

1. 5 3. 8 5. $10\sqrt{3}$ 7. 8 9. 25 11. $8\sqrt{2}$ 13. 3 15. $4\sqrt{2}$ 17. 68 19. 3 **21.** $3\sqrt{5}$ **23.** 12 **25.** 10 **27.** 17 **29.** 20 **31.** a. 5 b. 4.8 **33.** 13 **35.** $e\sqrt{3}$ **37.** 12 39. 12

Mixed Review Exercises, Page 294

2. >, A 3. > 4. \overline{AB} 5. B, C 6. AB 7. BX, CX 1. AC

Written Exercises, Pages 297-298

1. acute 3. rt. 5. obt. 7. a. rt. b. rt. 9. $(ST)^2 = 13^2 - 12^2 = 25$; $(ST)^2 = (RS)^2 + (RT)^2 = 13^2 - 12^2 = 25$ 25. By the conv. of the Pythag. Thm., $\triangle RST$ is a rt. \triangle . 11. acute 13. obt. 15. $12 < x \le 16$ 17. \overline{RM} ; $\angle RST$ is obt. and $\angle STU$ is acute, so RT > SU. 19. a. is greater than the sum of the squares of the other 2 sides, then the \triangle is an obt. \triangle . b. 1. $n^2 = j^2 + k^2$ (Pythag. Thm.) 2. $l^2 > j^2 + k^2$ (Given)

3. $l^2 > n^2$ and l > n (Subst.) 4. $m \angle S > m \angle V = 90$ (SSS lneq. Thm.) 5. $\triangle RST$ is obt. \triangle . (Def. of obt. \triangle)

Written Exercises, Pages 302-303

Written Exercises, Pages 302–303 1. 4; $4\sqrt{2}$ 3. $\sqrt{5}$; $\sqrt{10}$ 5. $3\sqrt{2}$; $3\sqrt{2}$ 7. $4\sqrt{2}$; 8 9. $7\sqrt{3}$; 14 11. 5; 10 13. 5; $5\sqrt{3}$ 15. $\sqrt{3}$; $2\sqrt{3}$ 17. $12\sqrt{2}$ 19. 36 21. x = 4, $y = \frac{4\sqrt{3}}{3}$ 23. $x = 6\sqrt{2}$, y = 12 25. $x = 8\sqrt{2}$,

 $y = 4\sqrt{6}$ 27. $OB = \sqrt{2}$, OC = 2, $OD = 2\sqrt{2}$, OE = 4 29. 16, $16\sqrt{3}$ 31. A $30^{\circ} - 60^{\circ} - 90^{\circ}$ \triangle with hyp. 2 has legs 1 and $\sqrt{3}$. Any \triangle with sides in ratio 1: $\sqrt{3}$:2 is \sim to this $30^{\circ}-60^{\circ}-90^{\circ}$ \triangle and thus is a $30^{\circ} - 60^{\circ} - 90^{\circ} \triangle$. 33. GH = GI = 6, $JG = 6\sqrt{3}$, $HI = 6\sqrt{2}$, JH = 12 35. a. $4\sqrt{2} + 4\sqrt{6}$

b. $(1 + \sqrt{3}):2$ 37. $\frac{3j + j\sqrt{3}}{4}$ 39. $4\sqrt{2}$

Self-Test 1, Page 304

1. $3\sqrt{5}$ 2. a. 4 b. $2\sqrt{5}$ c. $4\sqrt{5}$ 3. a. rt. b. acute c. obtuse 4. $4\sqrt{5}$ 5. $20\sqrt{2}$ cm 6. $6\sqrt{3}$ cm 7. 12

Written Exercises, Pages 308-310

1. 13.7 **3.** 48.3 **5.** 55.4 **7.** 57° **9.** 27° **11.** 31° **13.** $w = 60, z \approx 54$ **15.** w = 75, $z \approx 89$ 17. w = 160, $z \approx 117$ 19. about 4° 21. 65° 23. 174 cm 25. a. 0.7002, 0.4663, 1.1665 **b.** 60°, 1.7321 **c.** No **d.** No **27. a.** 5 **b.** 22° **29.** about 136 ft

Written Exercises, Pages 314-316

1. $x \approx 21, y \approx 28$ 3. $x \approx 89, y \approx 117$ 5. $x \approx 28, y \approx 10$ 7. $v^{\circ} \approx 26^{\circ}$ 9. $x \approx 9, v^{\circ} \approx 63^{\circ}$ 11. $v^{\circ} \approx 37^{\circ}$, $w^{\circ} \approx 106^{\circ}$ 13. a. $\sqrt{115}$ b. $y \approx 40$, $x \approx 10.7$ c. Yes; $\sqrt{115} \approx 10.7$ 15. about 149 m 17. 0.4 m 19. a. $AB = AC \approx 16$ b. ≈ 15 21. length ≈ 17 cm, width ≈ 5 cm 23. about 12 cm

Written Exercises, Pages 318-320

11. $\approx 14^{\circ}$ 13. a. $\angle A$ b. A; a player at A has a wider \angle over which to aim at the goal.