Sprawozdanie z Laboratorium Aparatury Automatyzacji						
		Temat laboratorium				
Ćw. 5		Dobór nastaw regulatorów przemysłowych				
Wydział EAliIB		ilB	^{Kierunek} Automatyka i Robotyka	Rok	III	
Zespół Zespół nr 7		ł nr 7	Grupa Grupa 7, piątek 8:00	Data	20 stycznia 2023	
L.p.	Skład grupy ćwiczeniowej					
1	Jakub Szczypek					
2	Iwona Fąfara					
3	Dawid Antosz					

Spis treści

1.	Wstęp	1
	Opis stanowiska	
	· Wykonanie ćwiczenia	
	Wnioski	

1. Wstęp

Celem ćwiczenia było zapoznanie się z niektórymi metodami strojenia i samostrojenia regulatorów przemysłowych. Wykorzystaliśmy dobór nastaw regulatora metodą Zieglera-Nicholsa, metodą Astroma – Hagglunda oraz metodą samostrojenia. Zapoznaliśmy się z uniwersalnym dwukanałowym regulatorem cyfrowym EFTRONIK XS stosowanym w układach pomiarów i regulacji ciągłych procesów przemysłowych.

2. Opis stanowiska

Budowa stanowiska:

- DTR regulatora EFTRONIK XS
- OWON Oscyloskop
- Włącznik sieciowy

EFTRONIK XS jest jedną z największych maszyn, z którymi mieliśmy do czynienia w laboratorium. Ma postać szafy z umieszczonym w jej górnej części regulatorem, włącznikiem sieciowym oraz wskaźnikami stanu wejść i wyjść binarnych i przełącznikami służącymi do zadania sygnału "1" lub "0" na wejścia binarne.

W dolnej części szafy jest umieszczony obiekt regulacji typu cieplnego. Na ścianie czołowej obiektu znajduje się zespół przełączników służących do wyboru wyjścia obiektu do badań. Poniżej znajduje się wskaźnik analogowy wyskalowany w '%' pokazujący sterowanie bezpośrednio podawane na obiekt. Obok wskaźnika znajduje się zadajnik ANS-11, z którego za pośrednictwem przycisku P1 można podawać zakłócenie na wejście badanego obiektu.

Rys.1. Uproszczony schemat stanowiska z zamkniętym układem regulacji.

Wygląd stanowiska przedstawiamy na rysunku poniżej zasięgniętym z instrukcji ćwiczenia:

Zdj.1. Przedstawienie wyglądu stanowiska pracy.

Na poniższym zdjęciu przedstawiamy wygląd panelu operatorskiego, dzięki któremu byliśmy w stanie komunikować się z regulatorem EFTRONIK XS.

Zdj.2. Wygląd panelu operatorskiego z wyświetlaczami i przyciskami funkcyjnymi. 'P' oznacza aktywny tryb programowania.

3. Wykonanie ćwiczenia

Wykonanie ćwiczenia rozpoczęliśmy od uruchomienia stanowiska, zlikwidowaliśmy alarmy podając logiczną '1' na 4-te wejście regulatora. Włączyliśmy oscyloskop i ustawiliśmy czułość kanału na 500mV/działkę oraz podstawę czasu na 100sek/działkę. W późniejszych przykładach została zmieniona na 50sek/działkę.

Zaczęliśmy od ręcznego doboru nastaw regulatora dla metody Z-N. Naszym celem było znalezienie wzmocnienia krytycznego, które mieliśmy rozpoznać dzięki wykresom sygnałów na oscyloskopie. Wyzerowaliśmy w regulatorze PID wartości Ti oraz Td a wzmocnienie k ustawiliśmy na 2.

Posługiwaliśmy się adresowaniem warstw, aby dobrze ustawić parametry regulatora. Posłużyliśmy się przyciskiem MODE, żeby wprowadzić szafę w tryb programowania, zadaliśmy kod '4113' oraz wartości parametrów. Następnie przyciskiem MODE przeszliśmy w tryb pracy i byliśmy gotowi odczytywać sygnały. Przyciskiem ANS-11 mogliśmy zadawać zakłócenie. Przyciskaliśmy go na okres 30 sekund i odpuszczaliśmy, żeby sygnał mógł się ustabilizować.

Zdj.3. Zaobserwowane 3 kolejne okresy oscylacji dla k = 2.

Możemy zauważyć, że po odpuszczeniu przycisku podającego skok zakłócający amplituda oscylacji dla wzmocnienia k=2 zaczyna wygasać.

Zdj.4. Wzmocnienie k = 2,6. Podstawa czasu 100sek/działkę.

Zdj.5 Wzmocnienie k = 2,65.

Zdj.6. Wzmocnienie k = 2,65, jeden okres.

Pomiary przeprowadziliśmy kolejno dla wartości wzmocnienia k = 2, k = 2,6 oraz k = 2,65. Sygnał wyjściowy o stałej amplitudzie, wygaszonych zakłóceniach, zaobserwowaliśmy dla k = 2,65. Parametry o wyższych wartościach nie okazały się lepsze. Zgodnie z przyjętą metodą była to granica stabilności układu i tą wartość przyjęliśmy za poprawną.

Na podstawie przeprowadzonych przez nas pomiarów oraz odczytania jednego okresu sygnału wyjściowego z oscyloskopu jesteśmy w stanie przedstawić wartości: $\mathbf{k}_{kr} = \mathbf{2,65}$ oraz $\mathbf{T}_{kr} = \mathbf{84}$ sek.

W kolejnym kroku posłużyliśmy się (Tab.1.), aby obliczyć wartości nastaw regulatora.

	K _p	T _i	T _d
P	$\frac{k_{kr}}{2}$		
Pi	$0,45*k_{kr}$	$\frac{T_{osc}}{1,2}$	
P _d	0,6 * k _{kr}	$\frac{T_{osc}}{2}$	$\frac{T_{osc}}{8}$

Tab.1. Przeliczniki wartości nastaw dla regulatora.

Zgodnie ze wzorami znanymi z metody Zieglra-Nicholsa wyznaczyliśmy nastawy regulatora PID.

Z obliczeń otrzymaliśmy wartości: $K_p = 1,2$ oraz $T_i = 42$ oraz $T_d = 10,5$.

Następnie obliczone wyżej wartości podaliśmy do pamięci regulatora. Podaliśmy na stałe skok zakłócający o wartości 30% na wejściu obiektu. Teraz chcieliśmy zarejestrować odpowiedź zamkniętego układu regulacji na skok zakłócenia. Odpowiedź obiektu znajduje się poniżej.

Zdj.7. Odpowiedź układu zamkniętego na skok zakłóceń o wartości 30% na wejściu obiektu.

Zauważyliśmy, że temperatura początkowo zaczęła rosnąć a później stopniowo spadała. Rejestrację sygnału zakończyliśmy w momencie, gdy regulator zniwelował działanie zakłócenia. Układ się ustabilizował a zakres oscylował 1,98 do 2,02.

Zdj.8. Odpowiedź układu zamkniętego o konkretnych parametrach wejściowych, bez podanego zakłócenia.

Można zauważyć, że mamy do czynienia z zakłóceniem o przeciwnej polaryzacji.

W kolejnych krokach przygotowaliśmy układ do procedury samostrojenia. Posłużyliśmy się doborem nastaw regulatora metodą Astroma-Hagglunda.

Adres	Wartość	Opis
4138	0001	Maksymalny czas trwania 3 etapu identyfikacji, określony przez zastępczą stałą czasową obiektu.
4139	0020	Dopuszczalna amplituda wahań sygn. sterującego
4140	0050	Dopuszczalny zakres wahań wielkości mierzonej przed eksperymentem (wartość wpisana dzielona jest przez 10).
4141	0050	Dopuszczalny zakres wahań wielkości mierzonej podczas eksperymentu.
4142	0001	Nastawy wyliczane dla reg. PID
4143	0001	Nastawy wprowadzane automatycznie.

Rys.2. Parametry procedury samostrojenia, z których skorzystaliśmy.

Proces samostrojenia trwał długo i był sygnalizowany kolorem diody S-TUNE. Kolor świadczył o etapie skończonego procesu. Samostrojenie zaczęło się od koloru czerwonego, później pomarańczowego a na końcu dioda przybrała kolor zielony.

Po zakończonym procesie samostrojenia pokazały się nam kolejno parametry dla regulatora PID. Zmienić wyświetlający się parametr mogliśmy posługując się strzałkami góra-dół na panelu operatorskim.

Poniżej tabelka przedstawiająca porównanie wyników dla obu metod.

Tab.2. Porównanie nastaw dla metod Z-N i Samostrojenia.

Nastawa	Metoda Zieglera-Nicholsa	Metoda Samostrojenia
k	1,2	1,421
Ti	42	41,52
T _d	10,5	9,966

Zdj.9.,10.,11. Parametry, które otrzymaliśmy dzięki zastosowaniu metody samostrojenia.

Zdj.12. Wykres podania zakłóceń – samostrojenie.

Zdj.13. Wykres podania zakłóceń – dobór ręczny nastaw.

4. Wioski

Ćwiczenie udało nam się wykonać w całości. Na początku mieliśmy małe problemy z oscyloskopem, dopiero później udało nam się zatrzymać sygnał wyjściowy obiektu i przybliżyć działkę na tyle, żeby swobodnie odczytać T_{osc}. Adresowanie zmiennych na pewno nie należy do najprostszych, ale przygotowaliśmy się przed zajęciami na tyle dobrze, że nie mieliśmy z tym większych problemów. Dużym minusem regulatora EFTRONIK XS jest czas odpowiedzi całego układu i powolne rysowanie odpowiedzi obiektu na oscyloskopie. Mimo długiego oczekiwania na wyniki obie użyte przez nas metody okazały się być proste do realizacji. Ćwiczenie było przyjemne w wykonywaniu.