Hamiltonian Monte Carlo within Stan

Daniel Lee
Columbia University, Statistics Department
bearlee@alum.mit.edu

Why MCMC?

- · Have data.
- · Have a rich statistical model.
- No analytic solution.
- · (Point estimate not adequate.)

Review: MCMC

· Markov Chain Monte Carlo. The samples form a Markov Chain.

Markov property:

$$Pr(\theta_{n+1} | \theta_1, ..., \theta_n) = Pr(\theta_{n+1} | \theta_n)$$

· Invariant distribution:

$$\pi \times \Pr = \pi$$

· Detailed balance: sufficient condition:

$$Pr(\theta_{n+1}, A) = \int_A q(\theta_{n+1}, \theta_n) dy$$

$$\pi(\theta_{n+1}) q(\theta_{n+1}, \theta_n) = \pi(\theta_n) q(\theta_n, \theta_{n+1})$$

Review: RWMH

- Want: samples from posterior distribution: $Pr(\theta|x)$
- Need: some function proportional to joint model. $f(x, \theta) \propto \Pr(x, \theta)$
- · Algorithm:

```
Given f(x, \theta), x, N, Pr(\theta_{n+1} | \theta_n)
For n = 1 to N do
```

Sample
$$\hat{\theta} \sim a(\hat{\theta} \mid \theta_{n-1})$$

With probability
$$\alpha = \min\left(1, \frac{f(x, \hat{\theta})}{f(x, \theta_{n-1})}\right)$$
, set $\theta_n \leftarrow \hat{\theta}$, else $\theta_n \leftarrow \theta_{n-1}$

Review: Hamiltonian Dynamics

- (Implicit: d = dimension)
- $\cdot \quad a = position (d-vector)$
- · p = momentum (d-vector)
- · U(q) = potential energy
- K(p) = kinectic energy
- Hamiltonian system: H(q, p) = U(q) + K(p)

Review: Hamiltonian Dynamics

```
• for i = 1, ..., d

\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}
\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}
```

· kinectic energy usually defined as $K(p) = p^T M^{-1} p/2$

• for
$$i = 1, ..., d$$

$$\frac{dq_i}{dt} = [M^{-1}p]_i$$

$$\frac{dp_i}{dt} = -\frac{\partial U}{\partial a}$$

Connection to MCMC

- $\cdot q$, position, is the vector of parameters
- U(q), potential energy, is (proportional to) the minus the log probability density of the parameters
- · p, momentum, are augmented variables
- K(p), kinectic energy, is calculated
- · Hamiltonian dynamics used to update q.
- · Goal: create a Markov Chain such that q_1, \ldots, q_n is drawn from the correct distribution

Hamiltonian Monte Carlo

Algorithm: Given $U(q) \propto -\log(\Pr(q,x))$, q_0 , N, time (ϵ, L) For n=1 to N do Sample $p \sim N(0,1)$ $q_{start} \leftarrow q_{n-1}$, $p_{start} \leftarrow p$ Get q and p at time using Hamiltonian dynamics $p \leftarrow -p$ With probability $\alpha = \min (1, \exp(H(q,p) - H(q_{start}, p_{start}))$, set $q_n \leftarrow q_n$ else $q_n \leftarrow q_{n-1}$.

HMC Example Trajectory

- Blue ellipse is contour of target distribution
- · Initial position at black solid circle
- · Arrows indicate a U-turn in momentum

HMC Review

- Correct MCMC algorithm; satisfies detailed balance
- · Use Hamiltonian dynamics to propose new point
- · Metropolis adjustment accounts for simulation error
- Explores space more effectively than RMWH
- · Difficulties in implementation

Nuances of HMC

- Simulating over discrete time steps: Error requires accept / reject step.
- · leapfrog integrator. ϵ , L.
- · Need to tune amount of time.
- · Negatve momentum at end of trajectory for symmetric proposal.
- Need derivatives of U(q) with respect to each q_i .
- · Samples efficiently over unconstrained spaces. Needs continuity of U(q).

Stan's solutions

- · Autodiff: derivatives of $U(q) \propto -log(\Pr(q, x))$.
- Transforms: taking constrained variables to unconstrained.
- · Tuning parameters: No-U-Turn Sampler.

Different MCMC algorithms

What is Stan?

1. Language for specifying statistical models $\Pr(\theta, X)$

Fast implementation of statistical algorithms; interfaces from command line, R, Python, Matlab

What is Stan trying to solve?

- · Stan: model fitting on arbitrary user model
- · Stan: speed, speed, speed
- Team: easily implement statistics research
- · Team: roll out stats algorithms
- User: easy specification of model
- User: trivial to change model
- User: latest and greatest algorithms available

Language: applied Bayesian modeling

- 1. Design joint probability model for all quantities of interest including:
 - observable quantities (measurements)
 - unobservable quantities (model parameters or potentially observable quantities)
- Calculate the posterior distribution of all unobserved quantities conditional on the observed quantities
- 3. Evaluate model fit

Language: features

- high level language; looks like stats; inspired by BUGS language
- Imperative declaration of log joint probability distribution $\log(\Pr(\theta,X))$
- Statically typed language
- · Constrained data types
- Easy to change models!
- · Vectorization, lots of functions, many distributions

Coin flip example

```
data {
  int<lower=0> N;
  int<lower=0,upper=1> y[N];
}
parameters {
  real<lower=0,upper=1> theta;
}
model {
  theta ~ beta(1,1);
  y ~ bernoulli(theta);
}
```

Language

- · Discuss more later
- · Data types
- Blocks
- · Constraints and transforms

Implementation

- Stan v2.2.0. 2/14/2014.
- · Stan v2.3.0. Will be out within a week.
- · Stan written in templated C++. Model translated to C++.
- Algorithms:
 - MCMC: auto-tuned Hamiltonian Monte Carlo, no-U-turn Sampler (NUTS)
 - Optimization: BFGS

Stan Stats

- · Team: ~12 members, distributed
- · 4 Interfaces: CmdStan, RStan, PyStan, MStan
- · 700+ on stan-users mailing list
- · Actual number of users unknown
 - User manual: 6658 downloads since 2/14
 - PyStan: 1299 downloads in the last month
 - CmdStan / RStan / MStan: ?
- 75+ citations over 2 years
 - stats, astrophysics, political science
 - ecological forecasting: phycology, fishery
 - genetics, medical informatics