I Claim:

1. A system for producing an output sound field that is representative of an input sound field, comprising:

a microphone array for receiving the input sound field and producing therefrom a microphone signal ("P_{in}") representative of the input sound field wherein P_{in} comprises B-format channels, an FL (front left) channel, and an FR (front right) channel;

an encoder for producing an encoded signal ("Sout") from Pin wherein Sout comprises an ITU-compatible six channel signal;

a decoder for producing a decoded signal ("Pout") from Sout wherein Pout comprises B-format channels, an FL channel, and an FR channel; and

a plurality of speakers for producing the output sound field from Pout.

- 2. The system of Claim 1 wherein the hybrid microphone array is comprised of: at least 6 microphones; and a baffle including a substantially ellipsoidal structure.
- 3. The system of Claim 2 wherein four of said microphones are arranged in a tetrahedron.
- 4. The system of Claim 3 wherein the plurality of speakers produces the output sound field from S_{out} .
- 5. The system of Claim 4 wherein the plurality of speakers are arranged in a 2D arrangement.
- 6. The system of Claim 1 wherein P_{in} and S_{out} are each a 6 x 1 matrix and the encoder produces S_{out} by multiplying P_{in} by a 6 x 6 transformation matrix ("S").

7. The system of Claim 1 wherein S comprises the quantities:

	s(L,FL)	s(L,FR)	s(L,W)	s(L,X)	s(L,Y)	s(L,Z)
	s(R,FL)	s(R,FR)	s(R,W)	s(R,X)	s(R,Y)	s(R,Z)
	s(C, FL)	s(C,FR)	s(C,W)	s(C,X)	s(C,Y)	s(C,Z)
	s(SC, FL)	s(SC, FR)	s(SC, W)	s(SC, X)	s(SC, Y)	s(SC,Z)
Charles of the Control	s(SL, FL)	s(SL,FR)	s(SL,W)	s(SL, X)	s(SL, Y)	s(SL,Z)
-	s(SR, FL)	s(SR,FR)	s(SR,W)	s(SR, X)	s(SR, Y)	s(SR,Z)

wherein:

L represents a left speaker channel for an ITU-compatible six channel signal;

R represents a right speaker channel for an ITU-compatible six channel signal;

C represents a center speaker channel for an ITU-compatible six channel signal;

SC represents a surround center speaker channel for an ITU-compatible six channel signal;

SL represents a surround left speaker channel for an ITU-compatible six channel signal;

SR represents a surround right speaker channel for an ITU-compatible six channel signal;

FL represents the front left speaker channel;

FR represents the front right speaker channel;

W represents a B-format channel;

X represents a B-format channel;

Y represents a B-format channel;

Z represents a B-format channel;

and wherein

8. The system of Claim 7 wherein S comprises the following approximate quantities:

.850	0	0	0	0	0
0	.850	0	0	0	0
0	0	.601	.736	0	.425
0	0	.601	736	0	.425
0	0	.601	368	.638	425
0	0	.601	368	638	425

9. The system of Claim 7 wherein S comprises the following approximate quantities:

10. The system of Claim 7 wherein S comprises the following approximate quantities:

.850	0	0	0	0	0
0	.850	0	0	0	0
0	0	.601	.736	0	.425
0	0	.601	425	0	.736
0	0	.601	425	.736	0
0	0	.601	425	736	0

11. The system of Claim 7 wherein S comprises the following approximate quantities:

	.850	0	0	0	0	0
	0	.850	0	0	0	0
l	0	0	.601	.850	0	0
l	0	0	.601	425	0	.736
	0	0	.601	531	.638	184
	0	0	.601	531	638	184

12. The system of Claim 7 wherein S comprises the following approximate quantities:

.850	0	0	0	0	0
0	.850	0	0	0	0
0	0	.601	.425	0	736
0	0	.601	850	0	0
0	0	.601	106	.638	.552
0	0	.601	106	638	.552

13. The system of Claim 7 wherein S comprises the following approximate quantities:

.850	0	0	0	0	0
0	.850	0	0	0	0
0	0	.601	.850	0	0
0	0	.601	0	0	.850
0	0	.601	368	.736	.213
0	0	.601	368	736	.213

- 14. The system of Claim 6 wherein P_{out} is a 6 x 1 matrix and the decoder produces P_{out} by multiplying S_{out} by the inverse of S.
- 15. The system of Claim 1 wherein the plurality of speakers are arranged in a 3D arrangement.
 - 16. The system of Claim 15 wherein the plurality of speakers is ten.

17. The system of Claim 16 wherein:

a first two of said speakers are positioned so that:

azimuthally, one is approximately 8 degrees to the left of and the other is approximately 8 degrees to the right of the 12 o'clock position of a listener; and

elevationally, both are positioned substantially on a horizontal plane that intersects the listener's ears;

a second two of said speakers are positioned so that:

azimuthally, one is approximately 45 degrees to the left of and the other is approximately 45 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned substantially on said horizontal plane;

a third two of said speakers are positioned so that:

azimuthally, one is approximately 135 degrees to the left of and the other is approximately 135 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned substantially on said horizontal plane:

a fourth two of said speakers are positioned so that:

azimuthally, one is approximately 90 degrees to the left of and the other is approximately 90 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned above said horizontal plane;

and

a fifth two of said speakers are positioned so that:

azimuthally, one is approximately 90 degrees to the left of and the other is approximately 90 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned below said horizontal plane.

- 18. The system of Claim 17 further comprising at least two additional speakers.
- 19. The system of Claim 18 wherein:
 - a sixth two of said speakers are positioned so that:
 - azimuthally, one is approximately 172 degrees to the left of and the other is approximately 172 degrees to the right of the 12 o'clock position of a listener; and
 - elevationally, both are positioned substantially on a horizontal plane that intersects the listener's ears;
- 20. A system for providing an encoded signal ("S_{out}") representative of an input sound field, comprising:

a microphone array for receiving the input sound field and producing therefrom a microphone signal ("P_{in}") representative of the input sound field wherein P_{in} comprises B-format channels, an FL (front left) channel, and an FR (front right) channel;

an encoder for producing S_{out} from P_{in} wherein S_{out} comprises an ITU-compatible six channel signal.

- 21. The system of Claim 20 wherein the hybrid microphone array is comprised of: at least 6 microphones; and a baffle including a substantially ellipsoidal structure.
- 22. The system of Claim 21 wherein four of said microphones are arranged in a tetrahedron.
- 23. The system of Claim 20 wherein P_{in} and S_{out} are each a 6 x 1 matrix and the encoder produces S_{out} by multiplying P_{in} by a 6 x 6 transformation matrix ("S").

24. The system of Claim 20 wherein S comprises the quantities:

	s(L,FL)	s(L,FR)	s(L,W)	s(L,X)	s(L,Y)	s(L,Z)	
	s(R,FL)	s(R,FR)	s(R,W)	s(R,X)	s(R,Y)	s(R,Z)	
	s(C,FL)	s(C,FR)	s(C,W)	s(C,X)	s(C,Y)	s(C,Z)	
	s(SC,FL)	s(SC, FR)	s(SC, W)	s(SC, X)	s(SC, Y)	s(SC,Z)	
10	s(SL,FL)	s(SL, FR)	s(SL,W)	s(SL, X)	s(SL, Y)	s(SL,Z)	
	s(SR,FL)	s(SR,FR)	s(SR,W)	s(SR, X)	s(SR, Y)	s(SR,Z)	

wherein:

L represents a left speaker channel for an ITU-compatible six channel signal;

R represents a right speaker channel for an ITU-compatible six channel signal;

C represents a center speaker channel for an ITU-compatible six channel signal;

SC represents a surround center speaker channel for an ITU-compatible six channel signal;

SL represents a surround left speaker channel for an ITU-compatible six channel signal;

SR represents a surround right speaker channel for an ITU-compatible six channel signal;

FL represents the front left speaker channel;

FR represents the front right speaker channel;

W represents a B-format channel;

X represents a B-format channel;

Y represents a B-format channel;

Z represents a B-format channel;

and wherein

25. The system of Claim 24 wherein S comprises the following approximate quantities:

.850	0	0	0	0	0
0	.850	0	0	0	0
0	0	.601	.736	0	.425
0	0	.601	736	0	.425
0	0	.601	368	.638	425
0	0	.601	368	638	425

26. The system of Claim 24 wherein S comprises the following approximate quantities:

27. The system of Claim 24 wherein S comprises the following approximate quantities:

28. The system of Claim 24 wherein S comprises the following approximate quantities:

29. The system of Claim 24 wherein S comprises the following approximate quantities:

.850	0	0	0	0	0
0	.850	0	0	0	0
0	0	.601	.425	0	736
0	0	.601	850	0	0
0	0	.601	106	.638	.552
0	0	.601	106	638	.552

30. The system of Claim 24 wherein S comprises the following approximate quantities:

- 31. The system of Claim 23 wherein P_{out} is a 6 x 1 matrix and the decoder produces P_{out} by multiplying S_{out} by the inverse of S.
- 32. A method for producing an output sound field that is representative of an input sound field, comprising the steps of:

providing a microphone array for receiving the input sound field and producing therefrom a microphone signal ("P_{in}") representative of the input sound field wherein P_{in} comprises B-format channels, an FL channel, and an FR channel;

producing an encoded signal ("Sout") from Pin wherein Sout comprises an ITU-compatible six channel signal;

producing a decoded signal (" P_{out} ") from S_{out} wherein P_{out} comprises B-format channels, an FL channel, and an FR channel; and

providing a plurality of speakers for producing the output sound field from P_{out} to thereby represent the input sound field.

33. The method of Claim 32 wherein the hybrid microphone array is comprised of: at least 6 microphones; and a substantially ellipsoidal baffle.

H2160-00002

- 34. The method of Claim 33 wherein four of said microphones are arranged in a tetrahedron.
- 35. The method of Claim 34 wherein the plurality of speakers produces the output sound field from S_{out} .
- 36. The method of Claim 35 wherein the plurality of speakers are provided in a 2D arrangement.
- 37. The method of Claim 32 wherein P_{in} and S_{out} are each a 6 x 1 matrix and the encoder produces S_{out} by multiplying P_{in} by a 6 x 6 transformation matrix ("S").

30

38. The method of Claim 32 wherein S comprises the quantities:

s(L,FL)	s(L,FR)	s(L,W)	s(L,X)	s(L,Y)	s(L,Z)
s(R,FL)	s(R,FR)	s(R,W)	s(R,X)	s(R,Y)	s(R,Z)
s(C,FL)	s(C,FR)	s(C,W)	s(C,X)	s(C,Y)	s(C,Z)
s(SC, FL)	s(SC,FR)	s(SC,W)	s(SC, X)	s(SC, Y)	s(SC,Z)
s(SL, FL)	s(SL,FR)	s(SL,W)	s(SL, X)	s(SL, Y)	s(SL,Z)
s(SR, FL)	s(SR, FR)	s(SR,W)	s(SR, X)	s(SR, Y)	s(SR,Z)

wherein:

L represents a left speaker channel for an ITU-compatible six channel signal;

R represents a right speaker channel for an ITU-compatible six channel signal;

C represents a center speaker channel for an ITU-compatible six channel signal;

SC represents a surround center speaker channel for an ITU-compatible six channel signal;

SL represents a surround left speaker channel for an ITU-compatible six channel signal;

SR represents a surround right speaker channel for an ITU-compatible six channel signal;

FL represents the front left speaker channel;

FR represents the front right speaker channel;

W represents a B-format channel;

X represents a B-format channel;

Y represents a B-format channel;

Z represents a B-format channel;

and wherein

39. The method of Claim 38 wherein S comprises the following approximate quantities:

40. The method of Claim 38 wherein S comprises the following approximate quantities:

41. The method of Claim 38 wherein S comprises the following approximate quantities:

42. The method of Claim 38 wherein S comprises the following approximate quantities:

43. The method of Claim 38 wherein S comprises the following approximate quantities:

.850	0	0	0	0	0
0	.850	0	0	0	0
0	0	.601	.425	0	736
 0	0	.601	850	0	0
0	0	.601	106	.638	.552
0	0	.601	106	638	.552

44. The method of Claim 38 wherein S comprises the following approximate quantities:

- 45. The method of Claim 37 wherein P_{out} is a 6 x 1 matrix and the decoder produces P_{out} by multiplying S_{out} by the inverse of S.
- 46. The method of Claim 32 wherein the plurality of speakers are arranged in a 3D arrangement.
 - 47. The method of Claim 46 wherein the plurality of speakers is ten.

48. The method of Claim 47 wherein:

a first two of said speakers are positioned so that:

azimuthally, one is approximately 8 degrees to the left of and the other is approximately 8 degrees to the right of the 12 o'clock position of a listener; and

elevationally, both are positioned substantially on a horizontal plane that intersects the listener's ears;

a second two of said speakers are positioned so that:

azimuthally, one is approximately 45 degrees to the left of and the other is approximately 45 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned substantially on said horizontal plane;

a third two of said speakers are positioned so that:

azimuthally, one is approximately 135 degrees to the left of and the other is approximately 135 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned substantially on said horizontal plane;

a fourth two of said speakers are positioned so that:

azimuthally, one is approximately 90 degrees to the left of and the other is approximately 90 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned above said horizontal plane;

and

a fifth two of said speakers are positioned so that:

azimuthally, one is approximately 90 degrees to the left of and the other is approximately 90 degrees to the right of the 12 o'clock position of the listener; and

elevationally, both are positioned below said horizontal plane.

- 49. The method of Claim 48 further comprising at least two additional speakers.
- 50. The method of Claim 49 wherein:

a sixth two of said speakers are positioned so that:

azimuthally, one is approximately 172 degrees to the left of and the other is approximately 172 degrees to the right of the 12 o'clock position of a listener; and

elevationally, both are positioned substantially on a horizontal plane that intersects the listener's ears;

51. A method for producing an encoded signal ("S_{out}") representative of an input sound field, comprising the steps:

providing a microphone array for receiving the input sound field and producing therefrom a microphone signal (" P_{in} ") representative of the input sound field wherein P_{in} comprises B-format channels, an FL (front left) channel, and an FR (front right) channel;

producing S_{out} from P_{in} wherein S_{out} comprises an ITU-compatible six channel signal.

- 52. The method of Claim 51 wherein the hybrid microphone array is comprised of: at least 6 microphones; and a substantially ellipsoidal shaped baffle.
- 53. The method of Claim 52 wherein four of said microphones are arranged in a tetrahedron.
- 54. The method of Claim 51 wherein P_{in} and S_{out} are each a 6 x 1 matrix and the encoder produces S_{out} by multiplying P_{in} by a 6 x 6 transformation matrix ("S").

55. The method of Claim 51 wherein S comprises the quantities:

	s(L,FL)	s(L,FR)	s(L,W)	s(L,X)	s(L,Y)	s(L,Z)
	s(R,FL)	s(R,FR)	s(R,W)	s(R,X)	s(R,Y)	s(R,Z)
	s(C,FL)	s(C,FR)	s(C,W)	s(C,X)	s(C, Y)	s(C,Z)
	s(SC, FL)	s(SC,FR)	s(SC, W)	s(SC, X)	s(SC, Y)	s(SC,Z)
	s(SL, FL)	s(SL,FR)	s(SL,W)	s(SL, X)	s(SL, Y)	s(SL,Z)
ļ	s(SR, FL)	s(SR,FR)	s(SR,W)	s(SR, X)	s(SR, Y)	s(SR,Z)

wherein:

L represents a left speaker channel for an ITU-compatible six channel signal;

R represents a right speaker channel for an ITU-compatible six channel signal;

C represents a center speaker channel for an ITU-compatible six channel signal;

SC represents a surround center speaker channel for an ITU-compatible six channel signal;

SL represents a surround left speaker channel for an ITU-compatible six channel signal;

SR represents a surround right speaker channel for an ITU-compatible six channel signal;

FL represents the front left speaker channel;

FR represents the front right speaker channel;

W represents a B-format channel;

X represents a B-format channel;

Y represents a B-format channel;

Z represents a B-format channel;

and wherein

56. The method of Claim 55 wherein S comprises the following approximate quantities:

57. The method of Claim 55 wherein S comprises the following approximate quantities:

58. The method of Claim 55 wherein S comprises the following approximate quantities:

59. The method of Claim 55 wherein S comprises the following approximate quantities:

60. The method of Claim 55 wherein S comprises the following approximate quantities:

61. The method of Claim 55 wherein S comprises the following approximate quantities:

62. The method of Claim 54 wherein P_{out} is a 6 x 1 matrix and the decoder produces P_{out} by multiplying S_{out} by the inverse of S.

63. In a system for producing a 2D output sound field that is a function of an input sound field, where the system includes a microphone for receiving the input sound field and producing therefrom a microphone signal comprising B-format channels, an encoder for receiving the microphone signal and producing therefrom an encoded signal comprising an ITU-compatible six channel signal, and a first plurality of speakers arranged in a 2D configuration for receiving the encoded signal and producing therefrom the 2D output sound field, the improvement comprising:

a microphone array in place of said microphone wherein said microphone array receives the input sound field and produces therefrom a microphone array signal representative of the input sound field wherein the microphone array signal comprises B-format channels, an FL channel, and an FR channel;

said encoder further comprising circuitry for providing said encoded signal from said microphone array signal;

a decoder for producing a decoded signal from said encoded signal wherein said decoded signal comprises B-format channels, an FL channel, and an FR channel; and

a second plurality of speakers in addition to the first plurality of speakers, said first and second plurality of speakers arranged in a 3D configuration and receiving said decoded signal and producing therefrom a 3D output sound field.

64. The system of Claim 63 wherein the hybrid microphone array is comprised of:

at least 6 microphones; and

a baffle including a substantially ellipsoidal structure.