

FIG. 1

FIG. 1A

02202020202020202020202020202020

Embodiment 1

FIG. 2A

Embodiment 2

FIG. 2B

Embodiment 3

FIG. 2C

D1 fixed spatial
frequency

D2 variable
frequency

Embodiment 4

FIG. 2D

D1 and D2 fixed
spatial frequency

Embodiment 5

FIG. 2E

FIG. 2F

FIG. 2G

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIG. 2I

Embodiment 10

FIG. 2J

Embodiment 11

FIG. 2K

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIG. 2L

FIG. 2M

000000000000000000000000

FIG. 2N

FIG. 3A1

0 9 8 0 8 2 4 2 2 3 0 4 8 0 6 0 0

FIG. 3A2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIG. 3A3

FIG. 3B1

FIG. 3B2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

FIG. 3B3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

FIG. 3C1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

FIG. 3C2

B

DETERMINE THE DISTANCE FROM THE VLD TO FIRST LENS ELEMENT L1, WHICH PRODUCES AN OUTPUT LASER BEAM HAVING THE DESIRED BEAM SIZE DETERMINED AT BLOCK D

H

DETERMINE THE FOCAL LENGTH OF LENS L1 SO THAT, WHEN THE CORRECT AMOUNT OF SEPARATION EXISTS BETWEEN THE VLD AND LENS L1, THE RESULTING CONVERGENCE/ DIVERGENCE OF THE LASER BEAM WILL ELIMINATE ASTIGMATISM UPON PASSING THROUGH DOE D1 ONLY

I

ASSUME HOE H2 IS A STIGMATIC-TYPE OPTICAL ELEMENT AND DETERMINE THE FOCAL LENGTH OF LENS L2 SO THAT DESIRED AVERAGE FOCAL LENGTH IS ACHIEVED IN OUTPUT LASER BEAM

J

DETERMINE CONSTRUCTION OF DOE D2 TO PRODUCE DESIRED FOCAL LENGTH THROUGH LENS L2

K

FIG. 3C3

FIG. 3D1

9
8
7
6
5
4
3
2
1
0

FIG. 3D2

B

DETERMINE THE FOCAL LENGTH OF THE LENS ELEMENT L1
THAT PRODUCES A BEAM WITH THE CONVERGENCE
DETERMINED IN BLOCK F

D 0 2 0 3 0 2 0 0 4 0 5 0 0 0

FIG. 3D3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIG. 3E

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CHOOSE VALUES FOR COMPRESSION/EXPANSION RATIOS M_1 AND M_2 SO THAT THE BEAM SHAPING FACTOR SATISFIES λ_R
 $M = M_1 M_2$, CHOOSE RECONSTRUCTION (DESIGN)
WAVELENGTH θ_{i1} , AND ANGLE OF INCIDENCE

A

SOLVE FOR ANGLE OF DIFFRACTION θ_{d1} AT DOE D1 USING
EQUATION N0.(4)

B

SOLVE FOR THE FRINGE STRUCTURE SPACING d_1 OF DOE D1,
USING EQUATION N0.(1)

C

SOLVE FOR THE ANGLE OF INCIDENCE θ_{i2} AT DOE D2, USING
EQUATION N0.(7)

D

SOLVE FOR THE DOE TILT ANGLE, ρ , USING EQUATION N0. (3)

E

A

FIG. 3F1

FIG. 3F2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CONVERT THE DESIGN PARAMETERS $\theta_{i1}, \theta_{d1}, \theta_{i2}, \theta_{d2}$, (AND f_2) EXPRESSED AT THE RECONSTRUCTION WAVELENGTH λ_R , INTO CONSTRUCTION PARAMETERS EXPRESSED AT THE CONSTRUCTION WAVELENGTH λ_c , NAMELY: θ_{O1}, θ_{R1} , FOR HOE H1; AND θ_{O2}, θ_{R2} , FOR HOE H2

A

IN THE CASE OF VARIABLE SPATIAL FREQUENCY DOEs, USE COMPUTER-RAY TRACING TO DETERMINE THE DISTANCES OF THE OBJECT AND REFERENCE (BEAM) SOURCES RELATIVE TO THE HOLOGRAPHIC RECORDING MEDIUM (AS WELL AS THE DISTANCES OF ANY ABERRATION-CORRECTING LENSES THEREFROM) EMPLOYED DURING THE HOLOGRAPHIC RECORDING PROCESS

B

FIG. 4A

0
0
0
0
0
0
0
0
0
0
0
0
0
0

θ_R = REFERENCE BEAM ANGLE OF INCIDENCE

θ_O = OBJECT BEAM ANGLE OF INCIDENCE

FIG. 4B

9
8
7
6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
-7
-8
-9

FORMULATE WITHIN A DIGITAL COMPUTER SYSTEM, A MATHEMATICAL DESCRIPTION OF THE OBJECT AND REFERENCE BEAM WAVEFRONTS USED TO CONSTRUCT DOE D1 AND DOE D2, DURING OPTICAL FORMATION THEREOF WHEN USING THE HOLOGRAPHIC RECORDING METHOD SHOWN IN FIG. 4B

A

USE THE DIGITAL COMPUTER SYSTEM TO FORMULATE A MATHEMATICAL DESCRIPTION OF THE INTERFERENCE PATTERN THAT IS GENERATED BY MATHEMATICALLY ADDING THE MATHEMATICAL MODEL OF THE OBJECT BEAM WAVEFRONT TO THE REFERENCE BEAM WAVEFRONT, TO PROVIDE A SPATIAL FUNCTION OF THE COMPUTER GENERATED / REPRESENTED INTERFERENCE PATTERN

B

USE THE DIGITAL COMPUTER SYSTEM TO SAMPLE THE SPATIAL FUNCTION OF THE COMPUTER GENERATED/ REPRESENTED INTERFERENCE PATTERN ALONG THE X AND Y DIRECTIONS THEREOF TO PRODUCE A LARGE SET OF SAMPLED VALUES OF VARYING AMPLITUDE TRANSMITTANCE ASSOCIATED WITH THE COMPUTER GENERATED INTERFERENCE PATTERN

C

(A)

FIG. 4C1

FIG. 4C2

FIG. 4D

Beam Dispersor
Analysis

FIG. 5A

FIG. 5B

FIG. 5B1

FIG. 5B2

FIG. 6A

FIG. 6B

FIG. 6C

100 90 80 70 60 50 40 30 20 10

FIG. 7A

20000000000000000000000000000000

FIG. 7B

60
50
40
30
20
10

FIG. 7C

FIG. 8A

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIG. 8B

00000000000000000000000000000000

FIG. 9

FIG. 10A

0200000000000000

FIG. 10B

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIG. 10C

FIG. 10D

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 13

FIG. 14
(Case A)

FIG. 15
(Case B)

FIG. 16
(Case C)

FIG. 17
(Case D)

FIG. 18

FIG. 19

FIG. 20

0200000000000000

FIG. 21

000000000000000000000000

FIG. 22

FIG. 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIG. 24

2/59

FIG 2A

FIG. 2B

FIG. 2C

4/59

FIG. 2D

S-incident

FIG. 2E

5/59

D1 + D2
fixed SP
freq

FIG. 2F

Embodyment

spatial
D1 fixed ✓ freq
D2 var. freq.

Embodyment 7

FIG. 2G

6/59

P_{incident}

FIG. 2H

Embodiment 9

FIG. 2I

FIG. 2J

FIG. 2K

FIG. 2L

FIG. 2M

θ -incident

D1 & D2
fixed freq.
spatial

FIG. 2N