Models for Longitudinal Data

Contents

1	Getting Set Up		1
	1.1	Setting chunk options and generating R script	1
	1.2	Installing Packages	2
	1.3	Reading in the data	2
	1.4	Exploring the data	2
2	Linear Regression Per Person		7
	2.1	Linear regression of cog on age per participant	8
3	Lin	ear regression per person and group	9
4	Fitt	ting the Model	10
	4.1	Installing the Packages	10
	4.2	Estimating the fixed effects via bootstrap	11
	4.3	Calculating confidence intervals for the fixed effects via Wald, bootstrap and profile likelihood	12
	4.4	Get the KR-approximated degrees of freedom	13
	4.5	Likelihood ratio tests	13
	4.6	Random effects covariance matrix	13
	4.7	Predicted random effects	13
1 Getting Set Up			
1.	1 \$	Setting chunk options and generating R script	
		<pre>:opts_chunk\$set(warning=FALSE, message=FALSE) :purl("longitudinal-models.Rmd")</pre>	
## ##		cessing file: longitudinal-models.Rmd	
##	# output file: longitudinal-models.R		

1.2 Installing Packages

```
install.packages('lattice')
library('lattice')
```

1.3 Reading in the data

```
early.int1 = read.table("earlyint.txt", header=T, sep=",")
attach(early.int1)
```

1.4 Exploring the data

Spaghetti plot.

```
n = length(unique(id))
interaction.plot(age, id, cog, xlab="Age in years", ylab="IQ", legend=F)
```


Descriptives.

```
early.mean=tapply(cog,list(age,program),mean) #mean
early.sd=tapply(cog,list(age,program),sd) #sd
early.var=tapply(cog,list(age,program),var) #variance
early.n=table(age,program) #frequency
```

Boxplots.

```
boxplot(cog~age, xlab="Age (in years)", ylab="IQ")
```


Boxplots per program.

```
par(mfrow=c(2,1))
boxplot(cog[program==0] ~age[program==0], main="No intervention", main="No intervention", xlab="Age (in year)
boxplot(cog[program==1] ~age[program==1], main="Intervention", main="No intervention", xlab="Age (in year)
```

No intervention

Intervention

General function to plot error bars.

```
errbar=function(x,y,height,width,lty=1,col="black"){
arrows(x,y,x,y+height,angle=90,length=width,lty=lty, col=col)
arrows(x,y,x,y-height,angle=90,length=width,lty=lty, col=col)
}
```

Plotting mean evolutions.

```
plot(age[id==1],early.mean[,1],type="b",xlim=c(1,2), ylim=c(40,160),xlab="Age (in years)",ylab="IQ",axe
axis(side=1,at=c(1,1.5,2),labels=c(1,1.5,2))
axis(side=2,at=seq(40,160,20))

box()
points(age[id==1],early.mean[,2],type="b",col="red")
errbar(age[id==1]-.005,early.mean[,1],early.sd[,1],.1)
errbar(age[id==1]+.005,early.mean[,2],early.sd[,2],.1,col="red")
```

Mean evolution (with 1 SE intervals)

Correlation between IQ scores at different ages.

```
early.int2 <- reshape(early.int1, timevar = "age", idvar = c("id", "program"), direction = "wide") # re
early.int2</pre>
```

```
##
        id program
                                cog.1.5
                        cog.1
                                             cog.2
## 1
                               98.31060
                                          92.91342
                  1 106.98289
## 2
         2
                  1 108.86019 100.29307
                                          85.29502
## 3
         3
                  1 112.52438
                               96.76684
                                          83.42649
         4
                     90.24428
                               85.27380
                                          76.41052
## 5
         5
                    105.70738 102.39839
                                          88.78872
                               85.09601
## 6
         6
                    93.88987
                                          76.66209
## 7
         7
                  1 109.93899 109.43202
                                          86.68573
## 8
         8
                  1 106.98599 106.09735 105.92056
## 9
         9
                  1 125.33166 114.01277 105.12163
## 10
        10
                     82.49028
                              97.76043 100.77653
##
  11
        11
                    105.22740 113.77558 108.48978
##
  12
                    114.49240 117.93460 122.02861
        12
##
   13
        13
                     91.73435
                               86.60655
                                          82.18117
                               79.56730
##
  14
        14
                     95.37839
                                          82.49799
## 15
        15
                  1 110.07345 108.65272
                                          87.65045
## 16
        16
                     98.01933
                               94.54154
                                          76.07024
## 17
        17
                    87.96931
                               87.25195
                                          98.98177
                  1 108.31917 100.51574
## 18
        18
                                          98.70037
## 19
        19
                     94.18916
                              74.64264
                                          73.31470
## 20
                  1 120.16253 103.18718
                                          90.92738
        20
```

```
## 21
        21
                  1 131.65178 114.16135 95.58954
## 22
        22
                  1 120.85608 98.18288 96.44816
## 23
        23
                  1 116.02689 114.82364 109.35596
##
  24
        24
                  1 108.50925
                              90.67410
                                         95.33989
##
  25
        25
                  1 112.12633 116.82108 116.59443
## 26
                              99.37240 84.50895
        26
                    80.83364
                  1
## 27
        27
                    87.42831
                               91.92213
                                         93.23212
## 28
        28
                  1 112.40877 91.41400 103.47415
##
   29
        29
                  1 123.16009 117.85460 114.91998
##
   30
        30
                  1
                     91.50417 100.18023 77.07159
##
   31
        31
                     98.81854 92.73035 107.11404
  32
                  1 102.57830 120.27905
##
        32
                                         98.31582
##
   33
        33
                    92.71612 113.93789
                                         79.24296
                  1
##
  34
        34
                  1 113.13320 100.72077 103.26529
##
  35
        35
                     83.36287 83.36361
                                         79.02352
                  1
##
  36
        36
                  1
                     94.91031
                              85.72218
                                         78.16092
                    99.20004 108.88909 105.20391
##
   37
        37
                  1
##
   38
        38
                  1 109.00945 106.33822 102.16497
##
                    88.83725
                              95.32658 105.52882
  39
        39
## 40
        40
                    97.11882 85.45274
                                         78.42828
## 41
        41
                  1
                    97.34675 108.54913
                                         78.15538
## 42
                  1 108.46227 115.06198 105.33598
        42
                  1 106.51196 103.23088
                                         72.29365
## 43
        43
                     93.55798
                                         95.85989
## 44
        44
                 1
                              96.57147
## 45
        45
                  1
                    96.66016
                              94.09513
                                         98.27780
## 46
        46
                  1 112.22206 113.36683
                                         90.21796
## 47
        47
                  1 115.75380 105.04866
                                         94.08408
## 48
        48
                    92.02678
                               87.41049
                                         94.53681
                  1
## 49
                    90.05997
                               78.94745
                                         88.01800
        49
                  1
## 50
        50
                  1 118.84066
                               97.71249
                                          93.61212
## 51
        51
                  1 100.83136
                              86.38944
                                          98.09643
## 52
        52
                  1 101.98162 108.36219
                                          84.64359
## 53
        53
                  1 113.60019 107.96398 106.56405
                    87.24872 78.63402 105.24226
## 54
        54
                  1
## 55
        55
                    89.91285 105.28723
                                         71.47761
                  1
## 56
                    97.17166 96.15962
                                         93.83076
        56
                  1
## 57
        57
                     98.54182 73.69470
                                         94.72776
## 58
                  1 116.51412 105.63534
                                         82.82452
        58
## 59
                  0 124.94527 111.91136
                                          91.24352
        59
                              81.08563
                                         83.02724
## 60
        60
                  Λ
                    71.84974
                               79.30242
                                         77.91012
##
  61
        61
                    88.45453
## 62
                  0 101.81687
                               77.26865
                                         82.05273
        62
##
   63
        63
                  0
                    98.83434
                               94.90388
                                         90.39131
##
  64
        64
                  0 106.62630 111.48140
                                         83.56083
## 65
        65
                     90.31671
                               91.30650
                                          81.15678
## 66
                    95.55040
                               95.36279
                                          94.99702
        66
                 0
## 67
        67
                 0 110.57535
                               97.77947
                                          86.48163
## 68
        68
                    95.73969
                               89.27407
                                          92.22706
                  0 108.46676 108.50177
## 69
        69
                                         81.96456
## 70
        70
                   109.57738
                              89.10167
                                         76.92818
## 71
                  0 114.42217 105.91386
        71
                                         93.90563
## 72
        72
                    96.37015 99.40169
                                         90.07637
## 73
        73
                  0 104.56600 109.48258 111.65059
## 74
        74
                 0 99.27624 81.42511 96.03642
```

```
## 75
        75
                0 121.96798 97.03722 98.80731
## 76
       76
                 0 110.88300 104.57459 101.48922
## 77
       77
                   95.49981
                             92.58608
                                       89.33631
## 78
       78
                0 96.03821
                             86.79500
                                       72.39639
##
  79
       79
                0 115.28714 123.02920
                                       98.05151
## 80
                0 89.25232 89.57222
       80
                                       91.68889
## 81
                             99.67131
       81
                 0 119.21283
                                       93.03702
## 82
       82
                0 98.68876
                             98.57612
                                       92.32044
## 83
       83
                0 108.50237
                             90.58188
                                       80.04558
## 84
       84
                0 97.63610 95.12270
                                       90.99789
## 85
       85
                0 98.82146 101.36631 80.64234
## 86
                0 109.60582 96.96958
       86
                                       81.04709
## 87
       87
                0 95.09582 106.02006
                                       99.58778
## 88
                0 98.22010 88.72318
       88
                                       74.19584
## 89
                0 94.03053 100.83250
                                       89.57231
       89
## 90
       90
                0 95.94445
                             91.09095
                                       72.61159
## 91
                0 104.79640
       91
                             85.71041
                                       96.40972
## 92
       92
                0 97.79446
                             98.93178 88.80250
## 93
                0 113.70390 95.20994 74.17274
       93
## 94
       94
                0 111.78680 100.19471
                                       91.77763
## 95
       95
                0 115.63780 111.71134
                                       92.56601
## 96
                0 113.99454 109.34016
                                       97.01341
       96
## 97
                0 129.27171 122.23883
       97
                                       96.33804
## 98
                0 99.92436
                             77.48019
                                       70.84332
       98
## 99
       99
                0 101.59745
                             93.78219 72.94243
## 100 100
                0 119.40051
                             97.75317
                                       84.70497
## 101 101
                 0 109.84539 122.96455
                                       91.49998
                             72.58405
## 102 102
                 0 93.98954
                                       82.19806
## 103 103
                 0 103.16078 86.94306 86.77639
```

```
cor(early.int2[,3:5])
```

```
## cog.1 cog.1.5 cog.2
## cog.1 1.0000000 0.5816070 0.3263912
## cog.1.5 0.5816070 1.0000000 0.4371109
## cog.2 0.3263912 0.4371109 1.0000000
```

2 Linear Regression Per Person

Creating the time variable.

```
early.int1$age0<-early.int1$age-1
```

Displaying the linear regression per person.

```
cf = sapply(early.int1$id, function(x) coef(lm(cog~age0, data=subset(early.int1, id==x))))
Sx<-reorder(early.int1$id, cf[1,])

xyplot(cog ~ age0|Sx, groups=program, data=early.int1, type=c('p','r'), auto.key=T,aspect="xy", par.set')</pre>
```


2.1 Linear regression of cog on age per participant.

Coefficients.

```
lin.reg.coef = by(early.int1, early.int1$id, function(data) coef(lm(cog ~ age0, data=data)))
lin.reg.coef1 = unlist(lin.reg.coef)
names(lin.reg.coef1) = NULL
lin.reg.coef2 = matrix(lin.reg.coef1,length(lin.reg.coef1)/2,2,byrow = TRUE)
```

R-Squared.

```
lin.reg.r.squared = by(early.int1, early.int1$id, function(data) summary(lm(cog ~ age, data=data))$r.sq
lin.reg.r.squared1 = as.vector(unlist(lin.reg.r.squared))
```

Histograms.

```
par(mfrow=c(3,1))
hist(lin.reg.coef2[,1],xlab="Intercept",col="lightblue",main="Histogram of individual intercepts")
hist(lin.reg.coef2[,2],xlab="Slope",col="lightblue",main="Histogram of individual slopes")
hist(lin.reg.r.squared1,xlab="R squared",col="lightblue",main="Histogram of individual R squared")
```

Histogram of individual intercepts

Histogram of individual slopes

Histogram of individual R squared

3 Linear regression per person and group

Plotting individual regression lines per group.

```
reg.coef = cbind(lin.reg.coef2, early.int1[early.int1$age==1,]$program)
mean.int = tapply(reg.coef[,1], reg.coef[,3], mean)
mean.slope = tapply(reg.coef[,2], reg.coef[,3], mean)
par(mfrow=c(1,2))
plot(age, cog, type="n", xlim=c(1,2), ylim=c(40,160), main="No intervention", xlab="Age-1 (in years)",
axis(side=1, at=c(1,1.5,2), labels=c(1,1.5,2))
axis(side=2, at=seq(40,160,20))
box()
for (i in 1:103) {
  if (reg.coef[i,3]==0){
    curve(cbind(1,x)%*%reg.coef[i,1:2], add=T, col="gray")
    curve(cbind(1,x)%*%c(mean.int[1], mean.slope[1]), add=T, lwd=2)
 }
}
plot(age, cog, type="n", xlim=c(1,2), ylim=c(40,160), main="Intervention", xlab="Age-1 (in years)", ylab
axis(side=1, at=c(1,1.5,2), labels=c(1,1.5,2))
axis(side=2, at=seq(40,160,20))
```

```
box()

for (i in 1:103){
   if (reg.coef[i,3]==1){
      curve(cbind(1,x)%*%reg.coef[i,1:2], add=T, col="gray")
      curve(cbind(1,x)%*%c(mean.int[2], mean.slope[2]), add=T, lwd=2)
   }
}
```

No intervention Intervention 140 100 100 $\underline{\circ}$ <u>Ø</u> 80 80 9 9 40 40 1 1.5 2 1.5 2 1

4 Fitting the Model

4.1 Installing the Packages

Age-1 (in years)

```
install.packages("lme4")
install.packages("arm")
install.packages("pbkrtest")

library(lme4)
library(lattice)
library(arm)
library(car)
```

Age-1 (in years)

Creating the time variable.

```
early.int1$age0<-early.int1$age-1
```

Fitting the model with maximum likelihood.

```
early.lmer1 = lmer(cog~1+age0*program+(1 + age0|id), REML = FALSE, data=early.int1)
summary(early.lmer1)
```

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: cog ~ 1 + age0 * program + (1 + age0 | id)
     Data: early.int1
##
##
                BIC
                      logLik deviance df.resid
##
       AIC
             2362.4 -1158.3
                               2316.5
##
    2332.5
##
## Scaled residuals:
##
       Min
                 1Q
                     Median
                                           Max
## -2.25362 -0.59088 0.02131 0.56850 2.29366
##
## Random effects:
## Groups
            Name
                        Variance Std.Dev. Corr
##
  id
             (Intercept) 84.02
                                 9.166
##
            age0
                        39.44
                                 6.281
                                          -0.55
## Residual
                        60.31
                                 7.766
## Number of obs: 309, groups: id, 103
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 104.3007
                           1.7274 60.380
              -16.2555
## age0
                            1.8860 -8.619
## program
                -0.9646
                            2.3020 -0.419
## age0:program 6.3187
                            2.5133
                                    2.514
## Correlation of Fixed Effects:
##
              (Intr) age0
                            progrm
## age0
              -0.629
              -0.750 0.472
## program
## age0:progrm 0.472 -0.750 -0.629
```

4.2 Estimating the fixed effects via bootstrap

```
fixed.boot = bootMer(early.lmer1, fixef, use.u = TRUE, nsim = 250)
fixed.boot

##
## PARAMETRIC BOOTSTRAP
##
## Call:
## bootMer(x = early.lmer1, FUN = fixef, nsim = 250, use.u = TRUE)
```

```
##
##
## Bootstrap Statistics :
##
                               std. error
         original
                   bias
## t1* 104.3007437 0.01424596
                                 1.025219
## t2* -16.2554565 -0.07347919
                                 1.606066
## t3* -0.9646326 0.03266867
                                 1.431340
## t4* 6.3187112 0.09511476
                                 2.274090
summary(fixed.boot)
##
## Number of bootstrap replications R = 250
                original bootBias bootSE
## (Intercept) 104.30074 0.014246 1.0252 104.28389
               -16.25546 -0.073479 1.6061 -16.31605
## age0
## program
                -0.96463 0.032669 1.4313 -0.99671
## age0:program 6.31871 0.095115 2.2741
                                            6.50525
     Calculating confidence intervals for the fixed effects via Wald, bootstrap
     and profile likelihood
confint(early.lmer1,par=5:8,method="Wald",oldNames = FALSE) # Only for fixed effects vc will return NA
##
                    2.5 %
                              97.5 %
## (Intercept) 100.915097 107.686391
## age0
               -19.951912 -12.559002
## program
                -5.476396
                            3.547131
## age0:program
                1.392761 11.244662
confint(early.lmer1,method="boot",boot.type ="perc",oldNames = FALSE,nsim=500)
##
                                           97.5 %
                                2.5 %
## sd_(Intercept)|id
                            6.6248377 11.1720202
## cor_age0.(Intercept)|id -1.0000000
                                       0.9999961
## sd age0|id
                            0.8700550
                                        9.9647573
## sigma
                            6.6032140
                                        8.6957184
## (Intercept)
                          100.7225482 107.7892045
## age0
                          -19.9596571 -12.6528151
## program
                           -5.4528343
                                       3.9271159
## age0:program
                            0.8768822 11.1150900
confint(early.lmer1, level = 0.95,method="profile",oldNames = FALSE)
                                         97.5 %
                               2.5 %
## sd_(Intercept)|id
                            7.005366 11.406182
## cor_age0.(Intercept)|id -1.000000
                                       1.000000
## sd_age0|id
                            0.000000
                                       9.975354
## sigma
                            6.814978
                                       8.953288
```

```
## (Intercept) 100.883287 107.718200

## age0 -19.986640 -12.524273

## program -5.518786 3.589521

## age0:program 1.346481 11.290942
```

4.4 Get the KR-approximated degrees of freedom

```
#early.lmer1.df.KR = get_ddf_Lb(early.lmer1, fixef(early.lmer1))
```

4.5 Likelihood ratio tests

```
early.lmer1.noprog<-lmer(cog~1+age0+(1 + age0|id), REML = FALSE, data=early.int1)
early.lmer1.intprog<-lmer(cog~1+age0+program+(1 + age0|id), REML = FALSE, data=early.int1)
anova(early.lmer1.noprog,early.lmer1.intprog,early.lmer1)
## Data: early.int1
## Models:
## early.lmer1.noprog: cog ~ 1 + age0 + (1 + age0 | id)
## early.lmer1.intprog: cog ~ 1 + age0 + program + (1 + age0 | id)
## early.lmer1: cog ~ 1 + age0 * program + (1 + age0 | id)
                     npar
                              AIC
                                   BIC logLik deviance Chisq Df Pr(>Chisq)
## early.lmer1.noprog
                        6 2336.8 2359.2 -1162.4
                                                   2324.8
## early.lmer1.intprog
                         7 2336.7 2362.8 -1161.3
                                                   2322.7 2.0840 1
                                                                       0.14885
## early.lmer1
                         8 2332.5 2362.4 -1158.3 2316.5 6.1345 1
                                                                      0.01326 *
## ---
```

4.6 Random effects covariance matrix

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
D.early = unclass(VarCorr(early.lmer1))$id
D.early
```

```
(Intercept)
                                age0
                  84.01946 -31.89378
## (Intercept)
## age0
                 -31.89378 39.44496
## attr(,"stddev")
## (Intercept)
                      age0
                  6.280522
     9.166213
##
## attr(,"correlation")
               (Intercept)
## (Intercept) 1.0000000 -0.5540135
## age0
                -0.5540135 1.0000000
```

4.7 Predicted random effects

```
early.lmer1.re = ranef(early.lmer1)$id
head(early.lmer1.re,10)
##
      (Intercept)
                        age0
## 1
         1.406085 -1.0998501
## 2
         1.700819 -3.2167576
##
         1.996405 -4.4674896
       -11.103349 0.6994181
         1.444739 -1.7280748
## 5
##
        -9.633038 -0.2479249
## 7
         4.787570 -3.5798370
## 8
         5.221722 1.2096924
## 9
        14.723774 -4.3028253
        -7.682855 7.2428573
## 10
plot(early.lmer1.re, main="Random intercept (b0i) versus random slope (b1i)")
```

Random intercept (b0i) versus random slope (b1i)

OLS vs LM Estimates ## Creating the subject specific intercepts and slopes

```
ind.coef=coef(early.lmer1)$id
head(ind.coef)
```

```
## (Intercept) age0 program age0:program
## 1 105.70683 -17.35531 -0.9646326 6.318711
```

```
## 3 106.29715 -20.72295 -0.9646326 6.318711
## 4 93.19739 -15.55604 -0.9646326 6.318711
## 5 105.74548 -17.98353 -0.9646326 6.318711
## 6 94.66771 -16.50338 -0.9646326 6.318711

int.subject=ind.coef[,1]+ind.coef[,3]
slope.subject=ind.coef[,2]+ind.coef[,4]
```

plot(int.subject,slope.subject, main="Random intercept versus random slope (Including the fixed effects

Random intercept versus random slope (Including the fixed effects

6.318711

2

106.00156 -19.47221 -0.9646326

