Vorlesung 15 NP-Vollständigkeit

Wdh.: Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Wdh.: Optimierungs- versus Entscheidungsproblem

Mit Hilfe eines Algorithmus, der ein Optimierungsproblem löst, kann man die Entscheidungsvariante lösen.

Umgekehrt gilt:

Satz

Wenn die Entscheidungsvariante von KP in polynomieller Zeit lösbar ist, dann auch die Optimierungsvariante.

Dieser Satz gilt auch für TSP und BPP.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 434

Version 25. November 2022

Wdh.: Alternative Charakterisierung der Klasse NP

Satz

Eine Sprache $L \subseteq \Sigma^*$ ist genau dann in NP, wenn es einen Polynomialzeitalgorithmus V (einen sogenannten Verifizierer) und ein Polynom p mit der folgenden Eigenschaft gibt:

 $x \in L \Leftrightarrow \exists y \in \{0, 1\}^*, |y| \le p(|x|) : V \text{ akzeptiert } y \# x.$

Wdh.: Polynomielle Reduktionen

Definition (Polynomielle Reduktion)

 L_1 und L_2 seien zwei Sprachen über Σ_1 bzw. Σ_2 . Dann heißt L_1 polynomiell reduzierbar auf L_2 , wenn es eine Reduktion von L_1 nach L_2 gibt, die in polynomieller Zeit berechenbar ist. Wir schreiben $L_1 \leq_p L_2$.

Lemma

Angenommen $L_1 \leq_p L_2$, dann gilt: $L_2 \in P \Rightarrow L_1 \in P$.

Satz

 $COLORING \leq_{p} SAT.$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 436

Version 25. November 2022

Wdh.: Das Erfüllbarkeitsproblem – SAT

Problem (Erfüllbarkeitsproblem / Satisfiability – SAT)

Eingabe: Aussagenlogische Formel φ in KNF Frage: Gibt es eine erfüllende Belegung für φ ?

SAT-Beispiel 1:

$$\varphi = (\bar{x}_1 \vee \bar{x}_2 \vee x_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_4) \wedge (x_2 \vee x_3 \vee x_4)$$

 φ ist erfüllbar, denn $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$ ist eine erfüllende Belegung.

Wdh.: Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 438

Version 25. November 2022

NP-schwere Probleme

Definition (NP-schwer)

Ein Problem L heißt NP-schwer (engl. NP-hard), wenn gilt:

$$\forall L' \in NP : L' \leq_p L.$$

Satz

Wenn L NP-schwer ist, dann gilt: $L \in P \Rightarrow P = NP$

Beweis: Ein Polynomialzeitalgorithmus für L liefert mit der Reduktion $L' \leq_p L$ einen Polynomialzeitalgorithmus für alle $L' \in NP$. \square

Fazit: Für NP-schwere Probleme gibt es keine Polynomialzeitalgorithmen, es sei denn P= NP.

Def: NP-Vollständigkeit

Definition (NP-vollständig)

Ein Problem L heißt NP-vollständig (engl. NP-complete), falls gilt

- 1. $L \in NP$, und
- 2. L ist NP-schwer.

Die Klasse der NP-vollständigen Probleme wird mit NPC bezeichnet.

Wir werden zeigen, dass SAT, CLIQUE, KP-E, BPP-E, TSP-E und weitere Probleme NP-vollständig sind.

Unter der Annahme, dass $P \neq NP$, hat also keines dieser Probleme einen Polynomialzeitalgorithmus.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 440

Version 25. November 2022

NP-Vollständigkeit des Erfüllbarkeitsproblems

Der Ausgangspunkt für unsere NP-Vollständigkeitsbeweise ist das Erfüllbarkeitsproblem.

Satz (Cook und Levin)

SAT ist NP-vollständig.

Unter der Annahme, dass $P \neq NP$, hat SAT also keinen Polynomialzeitalgorithmus.

Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 442

Version 25. November 2022

Beweis des Satzes von Cook und Levin

- ► Es gilt SAT ∈ NP, denn die erfüllende Belegung kann als Zertifikat verwendet werden.
- Wir müssen jetzt noch zeigen, dass SAT NP-schwer ist.

Sei $L \subseteq \Sigma^*$ ein Problem aus NP. Wir müssen zeigen, dass $L \leq_p SAT$.

Dazu konstruieren wir eine polynomiell berechenbare Funktion f, die jedes $x \in \Sigma^*$ auf eine Formel φ abbildet, so dass gilt

$$x \in L \Leftrightarrow \varphi \in SAT$$
.

M sei eine NTM, die L in polynomieller Zeit erkennt. Wir werden zeigen

$$M$$
 akzeptiert $x \Leftrightarrow \varphi \in SAT$.

Eigenschaften von M

- ▶ O.B.d.A. besuche M keine Bandpositionen links von der Startposition.
- Eine akzeptierende Rechnung von M gehe in den Zustand q_{accept} über und bleibe dort in einer Endlosschleife.
- Sei $p(\cdot)$ ein Polynom, so dass M eine Eingabe x genau dann akzeptiert, wenn es einen Rechenweg gibt, der nach p(n) Schritten im Zustand q_{accept} ist, wobei n die Länge von x bezeichne.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 444

Version 25. November 2022

Beweis des Satzes von Cook und Levin

Beobachtung:

Sei $K_0 = q_0 x$ die Startkonfiguration von M. M akzeptiert genau dann, wenn es einen Rechenweg, d.h. eine mögliche Konfigurationsfolge

$$K_0 \vdash K_1 \vdash \cdots \vdash K_{p(n)}$$

gibt, bei der $K_{p(n)}$ im Zustand q_{accept} ist.

Weiteres Vorgehen:

Wir konstruieren die Formel φ derart, dass φ genau dann erfüllbar ist, wenn es solch eine akzeptierende Konfigurationsfolge gibt.

Variablen in φ

- ightharpoonup Q(t, k) für $t \in \{0, ..., p(n)\}$ und $k \in Q$
- ► H(t,j) für $t,j \in \{0,...,p(n)\}$
- ► S(t,j,a) für $t,j \in \{0,\ldots,p(n)\}$ und $a \in \Gamma$

Interpretation der Variablen:

- ▶ Die Belegung Q(t, k) = 1 soll besagen, dass sich die Rechnung zum Zeitpunkt t im Zustand k befindet.
- ▶ Die Belegung H(t,j) = 1 steht dafür, dass sich der Kopf zum Zeitpunkt t an Bandposition j befindet.
- ▶ die Belegung S(t, j, a) = 1 bedeutet, dass zum Zeitpunkt t an Bandposition j das Zeichen a geschrieben steht.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 446

Version 25. November 2022

Beweis des Satzes von Cook und Levin – Illustration

Kodierung einzelner Konfigurationen in der Teilformel φ_t :

Für jedes $t \in \{0, ..., p(n)\}$, benötigen wir eine Formel φ_t , die nur dann erfüllt ist, wenn es

- 1. genau einen Zustand $k \in Q$ mit Q(t, k) = 1 gibt,
- 2. genau eine Bandposition $j \in \{0, ..., p(n)\}$ mit H(t, j) = 1 gibt, und
- 3. für jedes $j \in \{0, ..., p(n)\}$ jeweils genau ein Zeichen $a \in \Gamma$ mit S(t, j, a) = 1 gibt.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 448

Version 25. November 2022

Beweis des Satzes von Cook und Levin

Erläuterung zur Formel φ_t :

Für eine beliebige Variablenmenge $\{y_1, \ldots, y_m\}$ besagt das folgende Prädikat in KNF, dass genau eine der Variablen y_i den Wert 1 annimmt:

$$(y_1 \vee \ldots \vee y_m) \wedge \bigwedge_{i \neq j} (\bar{y}_i \vee \bar{y}_j)$$

- ▶ Die Anzahl der Literale in dieser Formel ist quadratisch in der Anzahl der Variablen.
- Die drei Anforderungen können also jeweils durch eine Formel in polynomiell beschränkter Länge kodiert werden.

Wir betrachten nun nur noch Belegungen, welche die Teilformeln $\varphi_0, \ldots, \varphi_{p(n)}$ erfüllen und somit Konfigurationen $K_0, \ldots, K_{p(n)}$ beschreiben.

Als Nächstes konstruieren wir eine Formel φ'_t für $1 \le t \le p(n)$, die nur für solche Belegungen erfüllt ist, bei denen K_t eine direkte Nachfolgekonfiguration von K_{t-1} ist.

Die Formel φ_t' kodiert zwei Eigenschaften:

- 1. Die Bandinschrift von K_t stimmt an allen Positionen außer möglicherweise der Position, an der der Kopf zum Zeitpunkt t-1 ist, mit der Inschrift von K_{t-1} überein.
- 2. Zustand, Kopfposition und Bandinschrift an der Kopfposition verändern sich gemäß der Übergangsrelation δ .

Vorlesung BuK im WS 22/23, M. Grohe

Seite 450

Version 25. November 2022

Beweis des Satzes von Cook und Levin

Die Eigenschaft, dass die Bandinschrift von K_t an allen Positionen außer möglicherweise der Position, an der der Kopf zum Zeitpunkt t-1 ist, mit der Inschrift von K_{t-1} übereinstimmt, kann wie folgt kodiert werden:

$$\bigwedge_{i=0}^{p(n)} \bigwedge_{z \in \Gamma} ((S(t-1,i,z) \land \neg H(t-1,i)) \Rightarrow S(t,i,z))$$

Dabei steht $A \Rightarrow B$ für $\neg A \lor B$. D.h., die Formel lautet eigentlich

$$\bigwedge_{i=0}^{p(n)} \bigwedge_{z \in \Gamma} (\neg(S(t-1,i,z) \land \neg H(t-1,i)) \lor S(t,i,z))$$

Das De Morgansche Gesetz besagt, dass $\neg(A \land B)$ äquivalent zu $\neg A \lor \neg B$ ist. Dadurch ergibt sich folgende Teilformel in KNF:

$$\bigwedge_{i=0}^{p(n)} \bigwedge_{z \in \Gamma} (\neg S(t-1,i,z) \vee H(t-1,i) \vee S(t,i,z))$$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 451

Version 25. November 2022

Für die Eigenschaft, dass Zustand, Kopfposition und Bandinschrift an der Kopfposition sich gemäß der Ubergangsrelation δ verändern, ergänzen wir für alle $k \in Q$, $j \in \{0, ..., p(n) - 1\}$ und $a \in \Gamma$ die folgende Teilformel

$$(Q(t-1,k) \wedge H(t-1,j) \wedge S(t-1,j,a)) \Rightarrow \bigvee_{(k,a,k',a',\kappa) \in \delta} (Q(t,k') \wedge H(t,j+\kappa) \wedge S(t,j,a')),$$

wobei κ die Werte L=-1, N=0 und R=1 annehmen kann.

Wie lässt sich diese Teilformel in die KNF transformieren?

Vorlesung BuK im WS 22/23, M. Grohe

Seite 452

Version 25. November 2022

Beispielübergangsklausel

$$Q(t-1,q_1) \wedge H(t-1,j) \wedge S(t-1,j,0) \Longrightarrow (Q(t,q_1) \wedge H(t,j+1) \wedge S(t,j,B)) \vee (Q(t,q_2) \wedge H(t,j-1) \wedge S(t,j,1))$$

Ersetzen von $A \Rightarrow B$ durch $\neg A \lor B$ und Anwenden des De Morganschen Gesetzes ergibt die Teilformel

$$\neg Q(t-1,k) \lor \neg H(t-1,j) \lor \neg S(t-1,j,a)) \lor$$

$$\bigvee_{(k,a,k',a',\kappa) \in \delta} (Q(t,k') \land H(t,j+\kappa) \land S(t,j,a')),$$

wobei κ die Werte L=-1, N=0 und R=1 annehmen kann.

Jetzt müssen noch die inneren \land -Verknüpfungen "ausmultipliziert" werden, d.h. wir ersetzen wiederholt eine Formel der Form $X \lor (A \land B \land C)$ durch eine äquivalente Formel $(X \lor A) \land (X \lor B) \land (X \lor C)$. Wiederholte Anwendung führt zu einer Formel in KNF.

Damit ist die Beschreibung von φ_t' abgeschlossen.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 455

Version 25. November 2022

Beweis des Satzes von Cook und Levin

Die Gesamtformel φ ergibt sich nun wie folgt:

$$Q(0, q_0) \wedge H(0, 0) \wedge \bigwedge_{i=0}^{n} S(0, i, x_i) \wedge \bigwedge_{i=n+1}^{p(n)} S(0, i, B)$$
$$\wedge \bigwedge_{i=0}^{p(n)} \varphi_i \wedge \bigwedge_{i=1}^{p(n)} \varphi'_i \wedge Q(p(n), q_{accept})$$

Die Länge von φ ist polynomiell beschränkt in n, und φ ist effizient aus x berechenbar.

Gemäß unserer Konstruktion ist φ genau dann erfüllbar, wenn es eine akzeptierende Konfigurationsfolge der Länge p(n) für M auf x gibt. \square

Kochrezept für NP-Vollständigkeitsbeweise

- ► Um nachzuweisen, dass SAT NP-schwer ist, haben wir in einer "Master-Reduktion" alle Probleme aus NP auf SAT reduziert.
- ▶ Die NP-Vollständigkeit von SAT können wir jetzt verwenden, um nachzuweisen, dass weitere Probleme NP-schwer sind.

Lemma

Wenn L* NP-schwer ist, dann gilt: $L^* \leq_p L \Rightarrow L$ ist NP-schwer.

Beweis: Gemäß Voraussetzung gilt $\forall L' \in NP \colon L' \leq_p L^*$ und $L^* \leq_p L$. Aufgrund der Transitivität der polynomiellen Reduktion folgt somit $\forall L' \in NP \colon L' \leq_p L$.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 457

Version 25. November 2022

Kochrezept für NP-Vollständigkeitsbeweise

Wie beweist man, dass eine Sprache L NP-vollständig ist?

- 1. Man zeige $L \in NP$.
- 2. Man wähle eine NP-vollständige Sprache L'.
- 3. Man entwerfe eine Funktion f, die Instanzen von L' auf Instanzen von L abbildet. (Beschreibung der Reduktionsabbildung)
- 4. Man zeige, dass f in polynomieller Zeit berechnet werden kann.(Polynomialzeit)
- 5. Man beweise, dass f eine Reduktion ist: Für $x \in \{0, 1\}^*$ ist $x \in L'$ genau dann, wenn $f(x) \in L$. (Korrektheit)

NP-Vollständigkeit von 3-SAT

Eine Formel in k-KNF besteht nur aus Klauseln mit jeweils k Literalen, sogenannten k-Klauseln.

Beispiel einer Formel in 3-KNF:

$$\varphi = \underbrace{(\bar{x}_1 \vee \bar{x}_2 \vee x_3)}_{\text{3 Literale}} \wedge \underbrace{(\bar{x}_1 \vee x_2 \vee \bar{x}_3)}_{\text{3 Literale}}$$

Problem (3-SAT)

Eingabe: Aussagenlogische Formel φ in 3-KNF Frage: Gibt es eine erfüllende Belegung für φ ?

- ▶ 3-SAT ist ein Spezialfall von SAT und deshalb wie SAT in NP.
- ► Um zu zeigen, dass 3-SAT ebenfalls NP-vollständig ist, müssen wir also nur noch die NP-Schwere von 3-SAT nachweisen.
- ▶ Dazu zeigen wir SAT \leq_p 3-SAT.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 459

Version 25. November 2022

$SAT \leq_p 3-SAT$

Lemma

 $SAT \leq_p 3-SAT$.

Beweis:

- Gegeben sei eine Formel φ in KNF.
- Wir transformieren φ in eine erfüllbarkeitsäquivalente Formel φ' in 3KNF, d.h.

 φ ist erfüllbar $\Leftrightarrow \varphi'$ ist erfüllbar .

- ► Aus einer 1- bzw 2-Klausel können wir leicht eine äquivalente 3-Klausel machen, indem wir ein Literal wiederholen.
- ▶ Was machen wir aber mit k-Klauseln für k > 3?

$SAT \leq_p 3-SAT$

▶ Sei $k \ge 4$ und C eine k-Klausel der Form

$$C = \ell_1 \vee \ell_2 \vee \ell_3 \cdots \vee \ell_k$$
.

▶ In einer Klauseltransformation ersetzen wir C durch die Teilformel

$$C' = (\ell_1 \vee \cdots \vee \ell_{k-2} \vee h) \wedge (\bar{h} \vee \ell_{k-1} \vee \ell_k)$$
,

wobei *h* eine zusätzlich eingeführte Hilfsvariable bezeichnet.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 461

Version 25. November 2022

$SAT \leq_p 3-SAT$

Beispiel für die Klauseltransformation:

Aus der 5-Klausel

$$x_1 \lor \bar{x}_2 \lor x_3 \lor x_4 \lor \bar{x}_5$$

wird in einem ersten Transformationsschritt die Teilformel

$$(x_1 \vee \bar{x}_2 \vee x_3 \vee h_1) \wedge (\bar{h}_1 \vee x_4 \vee \bar{x}_5)$$
,

also eine 4- und eine 3-Klausel. Auf die 4-Klausel wird die Transformation erneut angewendet. Wir erhalten die Teilformel

$$(x_1 \lor \bar{x}_2 \lor h_2) \land (\bar{h}_2 \lor x_3 \lor h_1) \land (\bar{h}_1 \lor x_4 \lor \bar{x}_5)$$
 ,

die nur noch 3-Klauseln enthält.

$SAT \leq_p 3-SAT$

Nachweis der Erfüllbarkeitsäguivalenz:

 φ' sei aus φ durch Ersetzen einer Klausel C durch C' entstanden.

Zu zeigen: φ erfüllbar $\Rightarrow \varphi'$ erfüllbar

- ightharpoonup Sei B eine erfüllende Belegung für φ .
- ▶ B weist mindestens einem Literal aus C hat den Wert 1 zu.
- ► Wir unterscheiden zwei Fälle:
 - 1) Falls $\ell_1 \vee \cdots \vee \ell_{k-2}$ erfüllt ist, so ist φ' erfüllt, wenn wir h=0 setzen.
 - 2) Falls $\ell_{k-1} \vee \ell_k$ erfüllt ist, so ist φ' erfüllt, wenn wir h=1 setzen.
- ightharpoonup Also ist φ' in beiden Fällen erfüllbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 463

Version 25. November 2022

$SAT \leq_p 3-SAT$

Zu zeigen: φ' erfüllbar $\Rightarrow \varphi$ erfüllbar

- ▶ Sei B' nun eine erfüllende Belegung für φ' .
- ► Wir unterscheiden wiederum zwei Fälle:
 - Falls B' der Variable h den Wert 0 zuweist, so muss B' einem der Literale $\ell_1, \ldots, \ell_{k-2}$ den Wert 1 zugewiesen haben.
 - Falls B' der Variable h den Wert 1 zuweist, so muss B' einem der beiden Literale ℓ_{k-1} oder k den Wert 1 zugewiesen haben.
- ln beiden Fällen erfüllt B' somit auch φ .

$SAT \leq_p 3-SAT$

- ▶ Durch Anwendung der Klauseltransformation entstehen aus einer k-Klausel eine (k-1)-Klausel und eine 3-Klausel.
- Nach k-3 Iterationen sind aus einer k-Klausel somit k-2 viele 3-Klauseln entstanden.
- Diese Transformation wird solange auf die eingegebene Formel φ angewendet, bis die Formel nur noch 3-Klauseln enthält.
- ▶ Wenn n die Anzahl der Literale in φ ist, so werden insgesamt höchstens n-3 Klauseltransformationen benötigt.
- Die Laufzeit ist somit polynomiell beschränkt.

Korollar

3-SAT ist NP-vollständig.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 465

Version 25. November 2022

Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Karps Liste mit 21 NP-vollständigen Problemen

Es gibt mittlerweile mehrere tausende Berechnungsprobleme verschiedenster Natur, deren NP-Vollständigkeit bekannt ist.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 467

Version 25. November 2022