问题 1 聘用问题

某服务部门一周中每天需要不同数目的雇员,周一到周四每天至少需要 50 人,周五至少需要 80 人,周六和周日至少需要 90 人,规定应聘者需连续工作 5 天,试确定聘用方案。

表 1 聘用方案

	周一	周二	周三	周四	周五	周六	周日
	x_1	x_1	x_1	x_1	x_1		
		x_2	x_2	x_2	x_2	x_2	
			x_3	x_3	x_3	x_3	x_3
	x_4			x_4	x_4	x_4	x_4
	x_5	x_5			x_5	x_5	x_5
	x_6	x_6	x_6			x_6	x_6
	x_7	x_7	x_7	x_7			x_7
n_i	50	50	50	50	80	90	90

1.符号说明

符号	说明
x_i	数量为 x_i 个人在周一至周日中第 i 天开始上班
s_i	每周当天工作的总人数 s_i
n_i	周一至周日每天所需要上班的人数 n_i

2.问题分析

约束 1: 周一到周四每天至少需要 50 人, 周五至少需要 80 人, 周六和周日至少需要 90 人;

约束 2: 规定应聘者工作为连续的 5 天;

3.模型建立

目标函数: 使得聘用总人数最少

$$minf = \sum_{i=1}^{7} x_i \ (i = 1, 2 \dots 7)$$

一周内每天工作的总人数应该是:如果应聘者工作连续的 5 天中包括这一天,那么所有符合条件的应聘者的人数的总和就是当天工作的总人数:

$$\begin{cases} s_1 = x_1 + x_4 + x_5 + x_6 + x_7 \\ s_2 = x_1 + x_2 + x_5 + x_6 + x_7 \\ s_3 = x_1 + x_2 + x_3 + x_6 + x_7 \\ s_4 = x_1 + x_2 + x_3 + x_4 + x_7 \end{cases}$$

$$s_5 = \sum_{i=1}^{5} x_i$$

$$s_6 = \sum_{i=2}^{6} x_i$$

$$s_7 = \sum_{i=3}^{7} x_i$$

当天工作的总人数应该大于等于当天所需要的人数:

$$x_i \in Z$$

数学模型:

$$minf = \sum_{i=1}^{7} x_i \ (i = 1, 2 \dots 7) = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

$$\begin{cases} s_1 = x_1 + x_4 + x_5 + x_6 + x_7 \\ s_2 = x_1 + x_2 + x_5 + x_6 + x_7 \\ s_3 = x_1 + x_2 + x_3 + x_6 + x_7 \\ s_4 = x_1 + x_2 + x_3 + x_4 + x_7 \end{cases}$$

$$s_5 = \sum_{i=1}^{5} x_i$$

$$s_6 = \sum_{i=2}^{7} x_i$$

$$s_7 = \sum_{i=3}^{7} x_i$$

$$s_i \ge n_i$$

$$x_i \in Z$$

4.结果分析

表 2 聘用结果

	周一	周二	周三	周四	周五	周六	周日
	0	0	0	0	0		
		4	4	4	4	4	
			40	40	40	40	40
	3			3	3	3	3
	40	40			40	40	40
	3	3	3			3	3
	4	4	4	4			4
s_i	50	51	51	51	87	90	90

lingo 代码:

```
model:
```

```
min=x1+x2+x3+x4+x5+x6+x7;
x7+x6+x5+x4+x1>50;
x7+x6+x5+x1+x2>50;
x7+x6+x1+x2+x3>50;
x7+x1+x2+x3+x4>50;
x1+x2+x3+x4+x5>80;
x2+x3+x4+x5+x6>90;
x3+x4+x5+x6+x7>90;
@gin(x1);
@gin(x2);
@gin(x3);
@gin(x4);
@gin(x5);
@gin(x6);
@gin(x7);
End
```

问题 2 投资问题

某银行经理计划用一笔资金进行为期 20 年的有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其它证券的收益需按 50%的税率到期一次性纳税。此外还有以下要求:

- ①政府及代办机构的证券总共至少要购进 400 万元;
- ②所购证券的平均信用等级不超过 1.49, 信用等级数字越小, 信用程度越高;
- ③可重复投资,收益可以进行投资。当证券到期后,本金和收益只要能够投资就一定要进行再次投资。但是要求所购所有证券的平均到期限不超过 5 年,以此鼓励购买短期证券。 若该经理有 1000 万元资金,应如何投资?

表 1 证券投资

证券编号	证券种类	信用等级	到期年限	到期税前总收益(%)
А	市政	2	9	52.49
В	代办机构	2	15	100.00
С	政府	1	4	16.99
D	政府	1	3	11.84
Е	市政	5	2	7.12

1. 符号说明

符号	说明
x_{ij}	第 i 年对第 j 种证券的投资金额 x_{ij}
r_{j}	第j种证券的收益率
t_{j}	第j种证券的税率
c _i	第 j 种证券的信用等级
y_{j}	第j种证券的到期年限

2. 问题分析

表 2 投资年份

	А	(9年)	В ((15年)	С	(4年)	D	(3年)	Е	(2年)
	可以购买的	结存后可以继续								
	年份	投资的年份								
1	TRUE									
2	TRUE									
3	TRUE		TRUE		TRUE		TRUE		TRUE	TRUE
4	TRUE		TRUE		TRUE		TRUE	TRUE	TRUE	TRUE
5	TRUE		TRUE		TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
6	TRUE		TRUE		TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
7	TRUE				TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
8	TRUE				TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
9	TRUE				TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
10	TRUE	TRUE			TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
11	TRUE	TRUE			TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
12	TRUE	TRUE			TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
13		TRUE			TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

14	TRUE		TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
15	TRUE		TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
16	TRUE							
17	TRUE							
18	TRUE	TRUE		TRUE	TRUE	TRUE	TRUE	TRUE
19	TRUE	TRUE		TRUE		TRUE	TRUE	TRUE
20								

约束 1: 证券编号 E 为最短到期年限 2 年,

1.1 最后一次投资的年份有两年:包括在19和20年份收益的投资的本息;

1.2 首次本金投资的年份有两年,最早的收益发生在第3年;

约束 2: 总金额有 1000 万资金;

约束 3: 年初投资总额是上一年到期本金与收益之和;

约束 4: 有些不能年份投资为零;

约束 5: 政府及代办机构的证券总共至少要购进 400 万元;

约束 6: 所购证券的平均信用等级不超过 1.49;

约束 7: 所购所有证券的平均到期限不超过 5年;

约束 8: 纳税规定上市政证券的收益可以免税, 其它证券的收益需按 50%的税率到期一次性

纳税;

3. 模型建立

目标函数:每种证券最后一次投资的本利的总和。证券编号 E 为最短到期年限 2 年,所以最后一次投资的年份有两年:包括在 19 和 20 年份收益的投资的本息:

$$maxf = \sum_{i=1}^{5} \sum_{i=20-\gamma_i}^{21-\gamma_j} \left(x_{ij} + x_{ij} r_j (1-t_j) \right)$$

首次本金投资的年份有两年,最早的收益发生在第3年:

$$\sum_{i=1}^{2} \sum_{i=1}^{5} x_{ij} = 1000$$

收益年份不在20年内收不到钱,不进行投资:

$$x_{ij} = 0 \qquad i + y_j > 21$$

年初的投资总额是 上一年到期本金与利益之和:

$$\sum_{j=1}^{5} x_{ij} = \sum_{j=1}^{5} (x_{i-j,j} + x_{i-j,j} r_j (1 - t_j))$$

政府及代办机构的证券总共至少要购进 400 万元:

$$\sum_{i=1}^{20} \sum_{j=2}^{4} x_{ij} > 400$$

所购证券的平均信用等级不超过 1.49:

$$\frac{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij} c_j}{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij}} < 1.49$$

所购所有证券的平均到期限不超过5年:

$$\frac{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij} y_j}{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij}} < 5$$

数学模型:

$$maxf = \sum_{i=1}^{5} \sum_{i=20-\gamma_i}^{21-\gamma_j} \left(x_{ij} + x_{ij} r_j (1-t_j) \right)$$

$$\begin{cases} \sum_{i=1}^{2} \sum_{j=1}^{5} x_{ij} = 1000 \\ x_{ij} = 0 \quad i + y_{j} > 21 \end{cases} \\ \sum_{j=1}^{5} x_{ij} = \sum_{j=1}^{5} (x_{i-j,j} + x_{i-j,j} r_{j} (1 - t_{j})) \\ \sum_{j=1}^{20} \sum_{j=1}^{4} x_{ij} > 400 \\ \frac{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij} c_{j}}{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij}} < 1.49 \\ \frac{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij} y_{j}}{\sum_{i=1}^{20} \sum_{j=1}^{5} x_{ij}} < 5 \end{cases}$$

4. 结果分析

表 3 投资方案

	А	В	С	D	E
1	707.7289				292.2711
3	313.0808				
10				1079.216	
12	446.0281			31.38878	
14			1170.895		
15				33.247	
18				1305.578	

```
Lingo 代码:
model:
sets:
zq/1..5/:a,b,r,c;
sj/1..19/:;
link(sj,zq):x;
endsets
data:
a=2 2 1 1 5;
b=9 15 4 3 2;
r=0.5249 1 0.1699 0.1184 0.072;
c=0 0.5 0.5 0.5 0;
enddata
\max=0 sum (link(i,j)|i#ge#(20-b(j))#and#i#le#(21-y(j)):x(i,j)+
x(i,j)*r(j)*(1-t(j));
@sum(link(i,j)|i#ge#1#and#i#le#2:x(i,j))=1000;
@for(link(i,j)|i#gt#(21-b(j)):x(i,j)=0);
@for(sj(i)|i#ge#3:@sum(zq(j):x(i,j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(j)|i#ge#(b(j)+1):(x(i-j))=@sum(zq(i)-i#ge#(b(i-j)+1):(x(i-j))=@sum(zq(i)-i#ge#(b(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x(i-j)+1):(x
b(j),j)+x(i-b(j),j)*r(j)*(1-c(j))));
@sum(link(i,j)|j#ge#2#and#j#le#4:x(i,j))>400;
@sum(link(i,j):x(i,j)*a(j))/@sum(link(i,j):x(i,j))<1.49;
@sum(link(i,j):x(i,j)*b(j))/@sum(link(i,j):x(i,j))<5;
End
```