

LEAVING CERTIFICATE EXAMINATION, 2006

MATHEMATICS — HIGHER LEVEL

PAPER 1 (300 marks)

THURSDAY, 8 JUNE – MORNING, 9:30 to 12:00

WARNING: Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.

Attempt SIX QUESTIONS (50 marks each).

1. (a) Find the real number a such that for all $x \neq 9$,

$$\frac{x-9}{\sqrt{x}-3} = \sqrt{x} + a.$$

- **(b)** $f(x) = 3x^3 + mx^2 17x + n$, where m and n are constants. Given that x - 3 and x + 2 are factors of f(x), find the value of m and the value of n.
- (c) $x^2 t$ is a factor of $x^3 px^2 qx + r$.
 - (i) Show that pq = r.
 - (ii) Express the roots of $x^3 px^2 qx + r = 0$ in terms of p and q.
- 2. (a) Solve the simultaneous equations

$$y = 2x - 5$$
$$x^2 + xy = 2.$$

- (b) (i) Find the range of values of $t \in \mathbb{R}$ for which the quadratic equation $(2t-1)x^2 + 5tx + 2t = 0$ has real roots.
 - (ii) Explain why the roots are real when t is an integer.
- (c) $f(x) = 1 b^{2x}$ and $g(x) = b^{1+2x}$, where b is a positive real number. Find, in terms of b, the value of x for which f(x) = g(x).

- 3. (a) Given that z = 2 + i, where $i^2 = -1$, find the real number d such that $z + \frac{d}{z}$ is real.
 - (b) (i) Use matrix methods to solve the simultaneous equations 4x 2y = 58x + 3y = -4
 - (ii) Find the two values of k which satisfy the matrix equation

$$\begin{pmatrix} 1 & k \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ k \end{pmatrix} = 11.$$

- (c) (i) Express $-8 8\sqrt{3}i$ in the form $r(\cos\theta + i\sin\theta)$.
 - (ii) Hence find $\left(-8 8\sqrt{3} i\right)^3$.
 - (iii) Find the four complex numbers z such that $z^4 = -8 8\sqrt{3} i.$ Give your answers in the form a + bi, with a and b fully evaluated.
- **4.** (a) -2+2+6+...+(4n-6) are the first *n* terms of an arithmetic series. S_n , the sum of these *n* terms, is 160. Find the value of *n*.
 - (b) The sum to infinity of a geometric series is $\frac{9}{2}$. The second term of the series is -2. Find the value of r, the common ratio of the series.
 - (c) The sequence $u_1, u_2, u_3, ...$, defined by $u_1 = 3$ and $u_{n+1} = 2u_n + 3$, is as follows: 3, 9, 21, 45, 93.....
 - (i) Find u_6 , and verify that it is equal to the sum of the first six terms of a geometric series with first term 3 and common ratio 2.
 - (ii) Given that, for all k, u_k is the sum of the first k terms of a geometric series with first term 3 and common ratio 2, find $\sum_{k=1}^{n} u_k$.

5. (a) Find the value of the middle term of the binomial expansion of $\begin{pmatrix} x & y \end{pmatrix}^8$

$$\left(\frac{x}{y} - \frac{y}{x}\right)^8.$$

- **(b)** (i) Express $\frac{2}{(r+1)(r+3)}$ in the form $\frac{A}{r+1} + \frac{B}{r+3}$.
 - (ii) Hence find $\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}$.
 - (iii) Hence evaluate $\sum_{r=1}^{\infty} \frac{2}{(r+1)(r+3)}.$
- (c) (i) Given two real numbers a and b, where a > 1 and b > 1, prove that $\frac{1}{\log_b a} + \frac{1}{\log_a b} \ge 2.$
 - (ii) Under what condition is $\frac{1}{\log_b a} + \frac{1}{\log_a b} = 2$.
- **6.** (a) Differentiate $\sqrt{x}(x+2)$ with respect to x.
 - **(b)** The equation of a curve is $y = 3x^4 2x^3 9x^2 + 8$.
 - (i) Show that the curve has a local maximum at the point (0, 8).
 - (ii) Find the coordinates of the two local minimum points on the curve.
 - (iii) Draw a sketch of the curve.
 - (c) Prove by induction that $\frac{d}{dx}(x^n) = nx^{n-1}$, $n \ge 1$, $n \in \mathbb{N}$.

7. (a) Taking $x_1 = 2$ as the first approximation to the real root of the equation $x^3 + x - 9 = 0$,

use the Newton-Raphson method to find x_2 , the second approximation.

(b) The parametric equations of a curve are:

$$x = 3\cos\theta - \cos^3\theta$$

y = 3\sin\theta - \sin^3\theta, where $0 < \theta < \frac{\pi}{2}$.

- (i) Find $\frac{dy}{d\theta}$ and $\frac{dx}{d\theta}$.
- (ii) Hence show that $\frac{dy}{dx} = \frac{-1}{\tan^3 \theta}$.
- (c) Given $y = \ln\left(\frac{3+x}{\sqrt{9-x^2}}\right)$, find $\frac{dy}{dx}$ and express it in the form $\frac{a}{b-x^n}$.
- 8. (a) Find (i) $\int \sqrt{x} dx$ (ii) $\int e^{-2x} dx$.
 - **(b)** Evaluate **(i)** $\int_{1}^{2} x (1+x^2)^3 dx$ **(ii)** $\int_{0}^{\frac{\pi}{4}} \sin 5\theta \cos 3\theta d\theta.$
 - (c) The diagram shows the graphs of the curves y = f(x) and y = g(x), where $f(x) = 12 3x^2$ and $g(x) = 9x^2$.
 - (i) Calculate the area of the region enclosed by the curve y = f(x) and the *x*-axis.
 - (ii) Show that the region enclosed by the curves y = f(x) and y = g(x) has half that area.

Blank Page