GroundingDINO for Open-Set Lesion Detection in Medical Imaging

Samuel J. Roughley¹, Johanna P. Müller², Shangqi Gao^{3,4}, Zeyu Gao^{3,4}, Marta Ligero⁵, Rudolfs Blums⁶, Mireia Crispin-Ortuzar^{3,4}, Julia Schnabel^{6,7,8,9}, Bernhard Kainz^{2,10}, Cosmin I. Bercea^{6,7}, and Ines Prata Machado^{3,4}

Department of Physics, University of Cambridge ² Friedrich-Alexander University Erlangen-Nürnberg ³ Department of Oncology, University of Cambridge ⁴ Early Cancer Institute, University of Cambridge ⁵ Else Kroener Fresenius Center for Digital Health, Technical University Dresden ⁶ Technical University of Munich ⁷ Helmholtz Al and Helmholtz Center Munich ⁸ Munich Center for Machine Learning ⁹ King's College London ¹⁰ Imperial College London

Motivation

Radiological error rate of ~1/3¹,²

Computational diagnostic tools must demonstrate robust performance on rare pathologies

Natural imaging methods incorporate semantic information to obtain open-set capabilities

Can we use language to improve the detection of lesions on CT scans?

Contributions:

- First investigation of GroundingDINO model³ for medical anomaly detection
- 2. Examine impact of prompt design on closed-set and open-set performance

Grounding DINO Contains cross-modality fusion Prompt Generation Respection Age Bacchion Respection Age Bacchion Respection Respect

Modular design allows for multiple points of cross-modality fusion

Method

Provide semantic information through a text prompt to guide the detection, enabling **open-set** capabilities

Three types of text prompt explored:

- I. Generic ("lesion")
- II. Organ-specific ("[organ] lesion")
- III. Visual description

Increasing Increasing semantic semantic information

Dataset: CT scans of chest-abdomen-pelvis region, containing 6,382 lesions across range of organs

Results

Grounding DINO outperforms YOLOv11n on closed- and open-set performance with minimal contextual information (generic prompts)

Enhanced language guidance

Organ specification improves closed-set performance on rarer lesion classes

Introducing visual descriptions highlights **overfitting**; GroundingDINO memorises prompt-image pairs, highlighted by **uniform activation** across prompts

Future work: Changes to loss function, text encoder, or further prompt engineering may be required to better leverage language-based cues

References:

- 1. Kim & Mansfield., AJR, 2014, 10.2214/ajr.13.11493
- 2. Berlin, AJR, 2007, 10.2214/ajr.06.1270
- 3. Liu et al. 2024, *arXiv:2303.05499*

SCAN TO DISCOVER MORE