Geo212

Données ouvertes et indicateurs comme traces d'urbanité

www.geo212.fr

FOSS4G - Mai 2016

L'expertise Géo212

- Comprendre un territoire pour "bien" le cartographier
 - ➤ Le point de vue géographique : grandes masses, évolutions passées et à venir, éléments dimensionnants ...
 - Spécifier le contenu de la carte
 - Adéquation contenu de la carte / sources disponibles (imageries, cartographies préexistantes, sources ouvertes, etc.)
 - Préparation des sources et des processus pour la production

Comprendre l'espace urbain

- Parce que dans un projet de production ou mise à jour cartographique, la zone urbaine occupe un espace particulier et dimensionnant
 - Elle est plus complexe à décrire
 - Elle évolue plus vite (en moyenne)
 - Elle nécessite une analyse adaptée :
 - Sources images spécifiques
 - Effort de production/mise à jour accru
- Il est indispensable de **piloter la production/mise à jour**

Comment aborder l'espace urbain ?

- En déclinant la problématique à différentes échelles
 - > Sur une vaste région du monde
 - > Sur un pays
 - > Sur une ville
 - > A **l'intérieur** de la ville
- En adaptant l'analyse à chaque échelle
- En intégrant des sources (ouvertes) adaptées

Sur une vaste région du monde

- La détection de zones urbaines à petite échelle
 - Savoir où sont les zones à évolution « risquée » partout dans le monde.

Plusieurs « filières » à l'échelle mondiale

Analyse d'image

Base de données ouvertes

Cartographie participative

Facebook Connectivity Lab: Connecter le monde avec de meilleures cartes

Figure 2A: Dense settlement where a short-range wireless hotspot would be efficient. Imagery: DigitalGlobe

Figure 2B: Sparse, scattered settlement that would benefit from long-range cellular technology. Imagery: DigitalGlobe

Sur une vaste région du monde

- La détection de zones urbaines à petite échelle
 - Savoir où sont les zones à évolution « risquée » partout dans le monde.

Plusieurs « filières » à l'échelle mondiale

Analyse d'image

Base de données ouvertes

Cartographie participative

Global Urban FootPrint

Global Mapping of Human Settlements

• La détection de zones urbaines à petite échelle

Savoir où sont les zones à évolution « risquée » partout

dans le monde.

une donnée GlobCover ou Modis Land Cover ; une donnée Geoname à moins de 2 km ; Indicateur d'urbanisation OpenStreetMap.

Sur une ville

- Mesurer l'effort de production/mise à jour
 - Mesurer « l'urbanisation » : enveloppe urbaine, densité de bâtiments, évolutions

Ressource Coût Délai

- Préparer la production
 - > Extraire le bâti

<u>Outil Geo212 MNF : présentation</u> IGARSS 2015

Mesure de l'effort macroscopique de mise à jour

- Localisation des extensions
- > + 16 % de surface bâtie (quantification)

Détection automatique de l'urbain sur image 2015

Surface bâtie initiale 2012

Préparation de la mise à jour

- > + 9000 bâtiments
 (entre 2012 et 2015)
- Quantification
 détaillée des résultats

- > Aide à la saisie
- ➤ Identification individuelle de bâti
- Extraction individuelle des objets

Conclusions

Perspectives

- Coupler les dispositifs de veille et pilotage
 - Adapter les traitements grande échelle à la petite
- Extraire précisément la géométrie de chaque objet
- Enrichissement attributaire de chaque objet
 - > Hauteur automatique via MNS
 - Visualisation 3D
- Qualification de la performance d'identification (consolider les 94% de détections actuels)

