Capstone Project Data Analyst: Road Accident Analysis

Project description: India has the highest number of road fatalities in the world. In 2016, for which global figures are available, India accounted for more than a third of global road accident deaths. The World Health Organization says such deaths are under-reported and estimated that in 2016, the figure for India was likely twice as big as that reported by the government.

In this project, perform a detailed statistical data analysis on Road Accidents of India over a period of 2003 to 2016 years using various Python Libraries.

The relevant data supporting for the analysis is available as listed below,

DF - Analysing Accidents per Lakh Population-State-Year.

DF1 - Analysing Offender and Victim Deaths per Gender, State.

DF2 - Analysing Deaths occurred due to improper use of Safety Accessories.

DF3 - Analysing rate of accidents from the year 2003 to 2016 for each state.

DF4 - Analysing accidents/injuries/deaths occurring as per number of lanes.

DF5 - Analysing accidents/injuries/deaths occurring due to various faults/reasons.

DF6 - Analysing accidents/injuries/deaths as per the types of vehicles.

DF7 - Analysing number of accidents which take place as per time of occurrence.

and the exact names of the files for the above data description are,

df = roadAccStats13-16.csv

df1 = Details_of_road_accident_deaths_by_situation_state_2014.csv

df2 = Persons_killed_due_to_Non-use_of_Safety_Device_2016.csv

df3 = datafile.xls - total number of accidents from 2003 to 16 per state.

df4 = laneAccidents.csv

df5 = reasonOfAccident.csv

df6 = typeOfVehicle.csv

df7 = timeOfOccurence.csv

These data files are available in a Data Base folder, which will be shared with you.

With your analysis, you must answer to the below questions either in a statistical analysis or Loading [MathJax]/extensions/Safe.js

III a graphical representation using python code snippets.

```
In [1]: #Imporling all required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")

pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
```

Loading all the Data sets

In [2]: df=pd.read_csv("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/16265379/
 df1=pd.read_csv("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/16265379/
 df2=pd.read_csv("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/16265379/
 df3=pd.read_excel("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/16265379/
 df4=pd.read_csv("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/16265379/
 df5=pd.read_csv("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/16265379/
 df6=pd.read_csv("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/16265379/
 df7=pd.read_excel("C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Capston Project/162653

```
WARNING *** OLE2 inconsistency: SSCS size is 0 but SSAT size is non-zero WARNING *** OLE2 inconsistency: SSCS size is 0 but SSAT size is non-zero
```

DataFrame DF

```
In [3]: columns2=["State/UT-Wise Total Number of Road Accidents during - 2013","State/UT-Wi
```

```
In [4]: df.iloc[36][columns2]
```

Out[4]: State/UT-Wise Total Number of Road Accidents during - 2013 486476.0 State/UT-Wise Total Number of Road Accidents during - 2014 489400 State/UT-Wise Total Number of Road Accidents during - 2015 501423 State/UT-Wise Total Number of Road Accidents during - 2016 480652 Name: 36, dtype: object

1. The percentage of road accidents during all the years.

In [5]: plt.pie(df.iloc[36][columns2],labels=columns2,autopct='%1.4f%%',startangle=150,colc
plt.show()

Loading [MathJax]/extensions/Safe.js | ccedents']=df["State/UT-Wise Total Number of Road Accidents during -

2. Mean Accidents per 1L population for each year.

Mean Accidents Per 1L Population for each Year.


```
In [10]: plt.figure(figsize=(16,5))
    sns.barplot(y=df['Number of Accedents'],x=df["States/UTs"],data=df)
    locs, labels = plt.xticks()
    plt.setp(labels, rotation=90)
    plt.title("Total Number of Accedent in each state.")
    plt.show()
```


1]:	df	.head	d()							
]:		SI. No.	States/UTs	State/UT- Wise Total Number of Road Accidents during - 2013	State/UT- Wise Total Number of Road Accidents during - 2014	State/UT- Wise Total Number of Road Accidents during - 2015	State/UT- Wise Total Number of Road Accidents during - 2016	Share of States/UTs in Total Number of Road Accidents - 2013	Share of States/UTs in Total Number of Road Accidents - 2014	Share c States/U1 in Tota Numbe of Roa Accident - 201
(0	1	Andhra Pradesh	43482.0	24440	24258	24888	8.9	5.0	4.
1	1	2	Arunachal Pradesh	308.0	205	284	249	0.1	0.0	0.
2	2	3	Assam	7211.0	7144	6959	7435	1.5	1.5	1.
3	3	4	Bihar	10200.0	9556	9555	8222	2.1	2.0	1.
4	4	5	Chhattisgarh	13657.0	13821	14446	13580	2.8	2.8	2.
										•

3. The highest number of accident states and least number of accident states.

```
In [12]: #Making a New Dataframe "df_Max_Min" from DataFrame "df" to find Minimum and Maximu
df_Max_Min=df

#Droping "36th" row from data which have "Total" counts
df_Max_Min.drop(36,axis=0,inplace=True)
df_Max_Min.tail()
```

\cap		+	Γ	1	7	٦.	
U	и	L	L	Τ.	_	J	۰

	SI. No.	States/UTs	State/UT- Wise Total Number of Road Accidents during - 2013	State/UT- Wise Total Number of Road Accidents during - 2014	State/UT- Wise Total Number of Road Accidents during - 2015	State/UT- Wise Total Number of Road Accidents during - 2016	Share of States/UTs in Total Number of Road Accidents - 2013	Share of States/UTs in Total Number of Road Accidents - 2014	Share States/I in To Num of Ro Accide - 20
31	32	Dadra & Nagar Haveli	91.0	87	69	70	0.0	0.0	
32	33	Daman & Diu	59.0	39	70	71	0.0	0.0	
33	34	Delhi	7566.0	8623	8085	7375	1.6	1.8	
34	35	Lakshadweep	1.0	1	3	1	0.0	0.0	
35	36	Puducherry	1451.0	1111	1530	1766	0.3	0.2	

In [13]: # Find the highest number of accidents state
 max_accidents_state = df_Max_Min.loc[df['Number of Accedents'].idxmax(), 'States/UT
 max_accidents_count = df_Max_Min['Number of Accedents'].max()

Find the Least number of accidents state
 min_accidents_state = df_Max_Min.loc[df['Number of Accedents'].idxmin(), 'States/UT
 min_accidents_count = df_Max_Min['Number of Accedents'].min()

The state with the highest number of accidents is Tamil Nadu with 273978.0 acciden

print(f"The state with the highest number of accidents is {max_accidents_state} wit
print(f"The state with the least number of accidents is {min_accidents_state} with

The state with the least number of accidents is Lakshadweep with 6.0 accidents.

DataFrame DF1

Print the results

4. Offenders and victims who died according to gender as well the as the total deaths.

In [14]: df1.head()

\cap	+	Γ1	47	
υι	1 L	1	41	٠.

	States/UTs	Year	CrimeHead	Offenders (Driver/Pedestrian) Died_Male	Offenders (Driver/Pedestrian) Died_Female	Offenders (Driver/Pedestrian) Died_Transgender	(
0	Andhra Pradesh	2014	Truck/Lorry (Total)	445	30	0	
1	Andhra Pradesh	2014	Truck/Lorry - Normal Goods Carriers	357	25	0	
2	Andhra Pradesh	2014	Truck/Lorry - Trailer/Container Carriers	12	0	0	
3	Andhra Pradesh	2014	Truck/Lorry - Tankers	10	0	0	
4	Andhra Pradesh	2014	Truck/Lorry - Others	66	5	0	

In [15]:

Out[15]: (1443, 11)

df1.shape

```
In [16]: columns1=["Died_Male","Died_Female","Died_Transgender"]
List1=[np.round(df1["Offenders (Driver/Pedestrian) Died_Male"].sum()/df1["Offenders
```

In [17]: plt.pie(List1,labels=columns1,autopct='%0.1f%%',startangle=150,colors=['lightBlue',
 plt.title("Percentage of Offenders who died according to gender.")
 plt.show()

Percentage of Offenders who died according to gender.


```
In [18]: columns1=["Victims Died_Male","Victims Died_Female","Victims Died_Transgender"]
   List1=[np.round(df1["Victims Died_Male"].sum()/df1["Victims Died_Total"].sum()*100,
```

In [19]: plt.pie(List1,labels=columns1,autopct='%0.1f%%',startangle=150,colors=['lightBlue',
 plt.title("Percentage of Victim who died according to gender.")
 plt.show()

Percentage of Victim who died according to gender.

In [20]: columns1=["Offenders (Driver/Pedestrian) Died_Total","Victims Died_Total"]
 List1=[np.round(df1["Offenders (Driver/Pedestrian) Died_Total"].sum()/(df1["Offenders (Driver/Pedestrian))

Percentage of total offender and Victim who died in accedents.

DataFrame DF2

35 36 Puducherry 16 0 16 0 0 36 Total Total 8616 1519 10135 4499 1139	•		S. No.	State/ UT	Non- wearing of Helmet - Male	Non- wearing of Helmet - Female	Non- wearing of Helmet - Total	Non- wearing of seat belt - Male	Non- wearing of seat belt - Female	Non- wearing of seat belt - Tota
36 Total Total 8616 1519 10135 4499 1139	l Total 8616 1519 10135 4499 1139 5638	35	36	Puducherry	16	0	16	0	0	(
1010		36	Total	Total	8616	1519	10135	4499	1139	5638

Out[24]:		S. No.	State/ UT	Non- wearing of Helmet - Male	Non- wearing of Helmet - Female	Non- wearing of Helmet - Total	Non- wearing of seat belt - Male	Non- wearing of seat belt - Female	Non- wearing of seat belt - Total
	34	35	Lakshadweep	0	0	0	0	0	0
	35	36	Puducherry	16	0	16	0	0	0

```
In [25]: columns1=["Non-wearing of Helmet - Male","Non-wearing of Helmet - Female"]
   List1=[np.round(df2["Non-wearing of Helmet - Male"].sum()/df2["Non-wearing of Helmet
In [26]: List1
Out[26]: [85.0, 15.0]
```

5. Percentage of Deaths occurring due to non-wearing of helmets between male and female.

In [27]: plt.pie(List1,labels=columns1,autopct='%0.1f%%',startangle=150,colors=['lightBlue',
 plt.title("Percentage of Deaths occuring due to non-wearing of healmets between mal
 plt.show()

Percentage of Deaths occuring due to non-wearing of healmets between male and female.

DataFrame DF3

```
df3.iloc[36:37, :]
  In [28]:
  Out[28]:
                 States/Uts
                              2003
                                      2004
                                               2005
                                                       2006
                                                                2007
                                                                          2008
                                                                                   2009
                                                                                             2010
                                                                                                      201
             36
                   All India 73589.0 79357.0 83491.0
                                                     93917.0
                                                             101161.0
                                                                       106591.0
                                                                                110993.0
                                                                                          119558.0
                                                                                                   121618.
             df3.drop("States/Uts",axis=1,inplace=True)
  In [29]:
             df3.columns
             Index([2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014,
  Out[29]:
                    2015, 2016],
                   dtype='object')
Loading [MathJax]/extensions/Safe.js
```

6. The number of accidents happening per state from the year 2003 to 2016.

```
In [31]: plt.figure(figsize=(20,10))
    plt.plot(DataFrameDF3)
    plt.xlabel("Year")
    plt.ylabel("No of Accedents")
    plt.title("No Of Accedents/Year")
    plt.show()
```


DataFrame DF4

```
In [32]: df4.head()
```

Out[32]:

S.No		State/UT	Single Lane - Accident - 2014	Single Lane - Accident - 2014 per 1L people	Single Lane - Killed - 2014	Single Lane - Killed - 2014 per 1L people	Single Lane - Injured - 2014	Single Lane - Injured - 2014 per 1L people	Two Lanes - Accident - 2014	Lane Accide - 20 per peo
0	1	Andhra Pradesh	8634.0	16.473750	2958.0	5.643891	13541.0	25.836350	10327.0	19.7040
1	2	Arunachal Pradesh	90.0	6.504173	60.0	4.336115	152.0	10.984826	115.0	8.3108
2	3	Assam	3888.0	12.459312	1217.0	3.899944	3195.0	10.238555	2432.0	7.7934
3	4	Bihar	3731.0	3.584073	1815.0	1.743525	2475.0	2.377534	4156.0	3.9923
4	5	Chhattisgarh	7961.0	31.164370	2244.0	8.784430	7762.0	30.385359	4696.0	18.3831
										•

7. Number of ACCIDENTS for 1,2,3,4 LANE per 1L population of resp. state.

8. Number of people INJURED for 1,2,3,4 type of lane per 1L population of resp. State.

9. Number of people KILLED for 1,2,3,4 LANES per 1L population of resp. States.

10. Number of Accidents, people KILLED, INJURED on SINGLE LANE per 1L population.

11. Number of accidents, people INJURED, KILLED on DOUBLE LANE per 1L population.

12. Number of accidents, people INJURED, KILLED on THREE LANE per 1L population.

13. Number of accidents, people INJURED, KILLED on FOUR LANE per 1L population.

14. Total Number of INJURED, KILLED, ROAD ACCIDENTS irrespective of lanes per 1L population of resp. State.

```
df4["Total Injured"]=df4[["Single Lane - Injured - 2014 per 1L people", "Two Lanes
In [40]:
          df4["Total Killed"]=df4[["Single Lane - Killed - 2014 per 1L people","Two Lanes - k
         df4["Total Accident"]=df4[["Single Lane - Accident - 2014 per 1L people", "Two Lanes
         df4.plot(x="State/UT", y=["Total Injured",
In [41]:
                                    "Total Killed",
                                    "Total Accident"],
                   color = ['darkblue', 'orange', 'green'],
                   width = 0.80,
                   kind="bar",
                   figsize=(18, 8))
         plt.legend(["Total Injured","Total Killed","Total Accident"])
         plt.title("Total Number of INJURED, KILLED, ROAD ACCIDENTS irrespective of lanes pe
         # Display plot
         plt.show()
```


DataFrame DF5

```
In [42]: df5.columns
```

```
Out[42]: Index(['S1. No', 'States/UTs',
                   'Fault of Driver-Total No. of Road Accidents - 2014',
                   'Fault of Driver-Total No. of Road Accidents - 2014 per 1L people',
                   'Fault of Driver-Number of Persons-Killed - 2014',
                   'Fault of Driver-Number of Persons-Killed - 2014 per 1L people',
                   'Fault of Driver-Number of Persons-Injured - 2014',
                   'Fault of Driver-Number of Persons-Injured - 2014 per 1L people',
                   'Fault of Driver of other vehicles-Total No. of Road Accidents - 2014',
                   'Fault of Driver of other vehicles-Total No. of Road Accidents - 2014 per 1
           L people',
                   'Fault of Driver of other vehicles-Number of Persons-Killed - 2014',
                   'Fault of Driver of other vehicles-Number of Persons-Killed - 2014 per 1L p
           eople',
                   'Fault of Driver of other vehicles-Number of Persons-Injured - 2014',
                   'Fault of Driver of other vehicles-Number of Persons-Injured - 2014 per 1L
                   'Fault of Pedestrian-Total No. of Road Accidents - 2014',
                   'Fault of Pedestrian-Total No. of Road Accidents - 2014 per 1L people',
                   'Fault of Pedestrian-Number of Persons-Killed - 2014',
                   'Fault of Pedestrian-Number of Persons-Killed - 2014 per 1L people',
                   'Fault of Pedestrian-Number of Persons-Injured - 2014',
                   'Fault of Pedestrian-Number of Persons-Injured - 2014 per 1L people',
                   'Defect in Condition of Motor Vehicle-Total No. of Road Accidents - 2014'
                   'Defect in Condition of Motor Vehicle-Total No. of Road Accidents - 2014 pe
           r 1L people',
                   'Defect in Condition of Motor Vehicle-Number of Persons-Killed - 2014',
                   'Defect in Condition of Motor Vehicle-Number of Persons-Killed - 2014 per 1
           L people',
                   'Defect in Condition of Motor Vehicle-Number of Persons-Injured - 2014',
                   'Defect in Condition of Motor Vehicle-Number of Persons-Injured - 2014 per
           1L people',
                   'Defect in Road Condition-Total No. of Road Accidents - 2014',
                   'Defect in Road Condition-Total No. of Road Accidents - 2014 per 1L peopl
           e',
                   'Defect in Road Condition-Number of Persons-Killed - 2014',
                   'Defect in Road Condition-Number of Persons-Killed - 2014 per 1L people',
                   'Defect in Road Condition-Number of Persons-Injured - 2014',
                   'Defect in Road Condition-Number of Persons-Injured - 2014 per 1L people',
                   'Weather Condition-Total No. of Road Accidents - 2014',
                   'Weather Condition-Total No. of Road Accidents - 2014 per 1L people',
                   'Weather Condition-Number of Persons-Killed - 2014',
                   'Weather Condition-Number of Persons-Killed - 2014 per 1L people',
                   'Weather Condition-Number of Persons-Injured - 2014',
                   'Weather Condition-Number of Persons-Injured - 2014 per 1L people',
                   'Fault of Passenger-Total No. of Road Accidents - 2014',
                   'Fault of Passenger-Total No. of Road Accidents - 2014 per 1L people',
                   'Fault of Passenger-Number of Persons-Killed - 2014',
                   'Fault of Passenger-Number of Persons-Killed - 2014 per 1L people',
                   'Fault of Passenger-Number of Persons-Injured - 2014',
                   'Fault of Passenger-Number of Persons-Injured - 2014 per 1L people',
                   'Poor light-Total No. of Road Accidents - 2014',
                   'Poor light-Total No. of Road Accidents - 2014 per 1L people',
                   'Poor light-Number of Persons-Killed - 2014',
                   'Poor light-Number of Persons-Killed - 2014 per 1L people',
                   'Poor light-Number of Persons-Injured - 2014',
                   'Poor light-Number of Persons-Injured - 2014 per 1L people',
                   'Falling of boulders-Total No. of Road Accidents - 2014',
                   'Falling of boulders-Total No. of Road Accidents - 2014 per 1L people',
                   'Falling of boulders-Number of Persons-Killed - 2014',
                   'Falling of boulders-Number of Persons-Killed - 2014 per 1L people',
                   'Falling of boulders-Number of Persons-Injured - 2014',
                   'Falling of boulders-Number of Persons-Injured - 2014 per 1L people',
Loading [MathJax]/extensions/Safe.js auses/causes not known-Total No. of Road Accidents - 2014',
                         causes/causes not known-Total No. of Road Accidents - 2014 per 1L pe
```

```
ople',
    'Other causes/causes not known-Number of Persons-Killed - 2014',
    'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L peopl
e',
    'Other causes/causes not known-Number of Persons-Injured - 2014',
    'Other causes/causes not known-Number of Persons-Injured - 2014 per 1L peop
le',
    'Population'],
    dtype='object')
```

15. Number of people KILLED for each different REASON per 1L population of that state.

```
df5.plot(x="States/UTs", y=["Fault of Driver-Number of Persons-Killed - 2014 per 11
In [43]:
          "Fault of Driver of other vehicles-Number of Persons-Killed - 2014 per 1L people",
          "Fault of Pedestrian-Number of Persons-Killed - 2014 per 1L people",
          "Defect in Condition of Motor Vehicle-Number of Persons-Killed - 2014 per 1L people
          "Defect in Road Condition-Number of Persons-Killed - 2014 per 1L people",
          "Weather Condition-Number of Persons-Killed - 2014 per 1L people",
          "Fault of Passenger-Number of Persons-Killed - 2014 per 1L people",
          "Poor light-Number of Persons-Killed - 2014 per 1L people",
          "Falling of boulders-Number of Persons-Killed - 2014 per 1L people",
          "Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people"],
         color = ['red', 'black', 'green', 'blue', 'yellow', 'brown', 'purple', 'orange', 'pi
         kind="bar",
         figsize=(20, 10))
         plt.legend(["Driver", "Other Driver's", "Pedestrian",
                      "Condition of Vehicle", "Road Condition",
                      "Weather Condition", "Passenger", "Poor light",
                      "Boulders", "Other causes"])
         plt.title("Number of people KILLED for each diffrent REASON Per 1L Population of th
         # Display plot
         plt.show()
```


16. Number of people INJURED for each reason per 1L people of that state.

```
df5.plot(x="States/UTs", y=["Fault of Driver-Number of Persons-Injured - 2014 per 1
In [44]:
          "Fault of Driver of other vehicles-Number of Persons-Injured - 2014 per 1L people",
          "Fault of Pedestrian-Number of Persons-Injured - 2014 per 1L people",
          "Defect in Condition of Motor Vehicle-Number of Persons-Injured - 2014 per 1L peopl
          "Defect in Road Condition-Number of Persons-Injured - 2014 per 1L people",
          "Weather Condition-Number of Persons-Injured - 2014 per 1L people"
          "Fault of Passenger-Number of Persons-Injured - 2014 per 1L people",
          "Poor light-Number of Persons-Injured - 2014 per 1L people",
          "Falling of boulders-Number of Persons-Injured - 2014 per 1L people",
          "Other causes/causes not known-Number of Persons-Injured - 2014 per 1L people"],
         color = ['red', 'black', 'green', 'blue', 'yellow', 'brown', 'purple', 'orange', 'pi
         kind="bar",
         figsize=(20, 10))
         plt.legend(["Driver", "Other Driver's", "Pedestrian",
                      "Condition of Vehicle", "Road Condition",
                      "Weather Condition", "Passenger", "Poor light",
                      "Boulders", "Other causes"], loc="upper right")
         plt.title("Number of people INJURED for each REASON Per 1L People of that state")
         # Display plot
         plt.show()
```


17. Number of ACCIDENTS for each reason per 1L people of that state.

```
In [45]: df5.plot(x="States/UTs", y=[
    "Fault of Driver-Total No. of Road Accidents - 2014 per 1L people",
    "Fault of Driver of other vehicles-Total No. of Road Accidents - 2014 per 1L people
    "Fault of Pedestrian-Total No. of Road Accidents - 2014 per 1L people",
    "Defect in Condition of Motor Vehicle-Total No. of Road Accidents - 2014 per 1L people",
    Loading [MathJax]/extensions/Safe.js ion-Total No. of Road Accidents - 2014 per 1L people",
```


18. Total number of ROAD ACCIDENTS, INJURIES, DEATHS due to FAULT OF THE DRIVER per 1L population of that state.

19. Total number of ROAD ACCIDENTS, INJURIES, DEATHS due to the FAULT OF DRIVER'S FROM OTHER VEHICLES per 1L people of that state.

```
In [47]:

df5.plot(x="States/UTS", y=[
    'Fault of Driver of other vehicles-Total No. of Road Accidents - 2014 per 1L people
    'Fault of Driver of other vehicles-Number of Persons-Injured - 2014 per 1L people',
    'Fault of Driver of other vehicles-Number of Persons-Killed - 2014 per 1L people'
],

color = ['green', 'blue','yellow'],
    kind="bar",
    figsize=(20, 10))

plt.legend(["Accident","Injured","Killed"],loc='upper left')

plt.title("Total Number of ROAD ACCIDENTS,INJURIES, DEATHS Due to FAULT OF THE DRIV

# Display plot
plt.show()
```


20. Total number of ROAD ACCIDENTS, INJURIES, DEATHS due to the FAULT OF PEDESTRIANS per 1L people of that state

21. Total number of ROAD ACCIDENTS, INJURIES, DEATHS due to the DEFECTS IN THE VEHICLE per 1L people of that state.

```
In [49]: df5.plot(x="States/UTs", y=[
    'Defect in Condition of Motor Vehicle-Total No. of Road Accidents - 2014 per 1L pec
    'Defect in Condition of Motor Vehicle-Number of Persons-Injured - 2014 per 1L peopl
    'Defect in Condition of Motor Vehicle-Number of Persons-Killed - 2014 per 1L people
    ],
    color = ['green', 'blue','yellow'],
    kind="bar",
    figsize=(20, 10))
    plt.legend(["Accident","Injured","Killed"],loc='upper left')
    plt.title("Total Number of ROAD ACCIDENTS,INJURIES, DEATHS Due to FAULT OF DEFECTS
    # Display plot
    plt.show()
```


22. Total number of ROAD ACCIDENTS, INJURIES, DEATHS due to DEFECTS IN THE ROAD CONDITION per 1L people of that state.

```
In [50]: df5.plot(x="States/UTs", y=[
    'Defect in Road Condition-Total No. of Road Accidents - 2014 per 1L people',
    'Defect in Road Condition-Number of Persons-Injured - 2014 per 1L people',
    'Defect in Road Condition-Number of Persons-Killed - 2014 per 1L people',
    ],
    color = ['green', 'blue','yellow'],
    kind="bar",
    figsize=(20, 10))
    plt.legend(["Accident","Injured","Killed"],loc='upper left')
    plt.title("Total Number of ROAD ACCIDENTS,INJURIES, DEATHS Due to DEFECT IN ROAD CC
    # Display plot
    plt.show()
```



```
In [51]:
    df5.plot(x="States/UTS", y=[
    'Weather Condition-Total No. of Road Accidents - 2014 per 1L people',
    'Weather Condition-Number of Persons-Injured - 2014 per 1L people',
    'Weather Condition-Number of Persons-Killed - 2014 per 1L people',
    ],
    color = ['green', 'blue', 'yellow'],
    kind="bar",
    figsize=(20, 10))
    plt.legend(["Accident", "Injured", "Killed"], loc='upper left')
    plt.title("Total Number of ROAD ACCIDENTS, INJURIES, DEATHS Due to WEATHER CONDITION
    # Display plot
    plt.show()
```



```
In [53]: df5.plot(x="States/UTS", y=[
    'Poor light-Total No. of Road Accidents - 2014 per 1L people',
    'Poor light-Number of Persons-Injured - 2014 per 1L people',
    'Poor light-Number of Persons-Killed - 2014 per 1L people',
    ],

color = ['green', 'blue','yellow'],
    kind="bar",
    figsize=(20, 10))

plt.legend(["Accident","Injured","Killed"],loc='upper left')

plt.title("Total Number of ROAD ACCIDENTS,INJURIES, DEATHS Due to POOR LIGHT Per 1L

# Display plot
    plt.show()
```



```
In [55]:
    df5.plot(x="States/UTs", y=[
        'Other causes/causes not known-Total No. of Road Accidents - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Injured - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes not known-Number of Persons-Killed - 2014 per 1L people',
        'Other causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/causes/cause
```



```
In [56]:
           df5["Total Accidents"] = df5[['Fault of Driver-Total No. of Road Accidents - 2014 p
            'Fault of Driver of other vehicles-Total No. of Road Accidents - 2014 per 1L people
            'Fault of Pedestrian-Total No. of Road Accidents - 2014 per 1L people',
            'Defect in Condition of Motor Vehicle-Total No. of Road Accidents - 2014 per 1L pec
            'Defect in Road Condition-Total No. of Road Accidents - 2014 per 1L people',
            'Weather Condition-Total No. of Road Accidents - 2014 per 1L people',
            'Fault of Passenger-Total No. of Road Accidents - 2014 per 1L people',
            'Poor light-Total No. of Road Accidents - 2014 per 1L people',
            'Falling of boulders-Total No. of Road Accidents - 2014 per 1L people',
            'Other causes/causes not known-Total No. of Road Accidents - 2014 per 1L people']].
            df5["Total Killed"]=df5[[
            'Fault of Driver-Number of Persons-Killed - 2014 per 1L people',
            'Fault of Driver of other vehicles-Number of Persons-Killed - 2014 per 1L people',
            'Fault of Pedestrian-Number of Persons-Killed - 2014 per 1L people',
            'Defect in Condition of Motor Vehicle-Number of Persons-Killed - 2014 per 1L people
            'Defect in Road Condition-Number of Persons-Killed - 2014 per 1L people',
            'Weather Condition-Number of Persons-Killed - 2014 per 1L people',
            'Fault of Passenger-Number of Persons-Killed - 2014 per 1L people',
            'Poor light-Number of Persons-Killed - 2014 per 1L people',
            'Falling of boulders-Number of Persons-Killed - 2014 per 1L people',
Loading [MathJax]/extensions/Safe.is | auses not known-Number of Persons-Killed - 2014 per 1L people'
            ]].sum(axis=1)
```

```
df5["Total Injured"]=df5[[
'Fault of Driver-Number of Persons-Injured - 2014 per 1L people',
'Fault of Driver of other vehicles-Number of Persons-Injured - 2014 per 1L people',
'Fault of Pedestrian-Number of Persons-Injured - 2014 per 1L people',
'Defect in Condition of Motor Vehicle-Number of Persons-Injured - 2014 per 1L people',
'Defect in Road Condition-Number of Persons-Injured - 2014 per 1L people',
'Weather Condition-Number of Persons-Injured - 2014 per 1L people',
'Fault of Passenger-Number of Persons-Injured - 2014 per 1L people',
'Poor light-Number of Persons-Injured - 2014 per 1L people',
'Falling of boulders-Number of Persons-Injured - 2014 per 1L people',
'Other causes/causes not known-Number of Persons-Injured - 2014 per 1L people']].su
```

```
In [57]: df5.head()
```

Out[57]:

	SI. No	States/UTs	Fault of Driver- Total No. of Road Accidents - 2014	Fault of Driver- Total No. of Road Accidents - 2014 per 1L people	Fault of Driver- Number of Persons- Killed - 2014	Fault of Driver- Number of Persons- Killed - 2014 per 1L people	Fault of Driver- Number of Persons- Injured - 2014	Fault of Driver- Number of Persons- Injured - 2014 per 1L people	Fault of Driver of other vehicles- Total No. of Road Accidents - 2014	V Ti
0	1	Andhra Pradesh	21359.0	40.753165	6743	12.865705	26287.0	50.155834	288.0	С
1	2	Arunachal Pradesh	30.0	2.168058	19	1.373103	30.0	2.168058	20.0	1
2	3	Assam	6895.0	22.095410	2429	7.783865	6281.0	20.127813	2.0	С
3	4	Bihar	5008.0	4.810784	2646	2.541800	3374.0	3.241131	608.0	С
4	5	Chhattisgarh	9108.0	35.654451	2458	9.622161	8710.0	34.096428	726.0	2

```
In [58]: df5.plot(x="States/UTs", y=[
    'Total Accidents',
    'Total Injured',
    'Total Killed'],

color = ['green', 'blue','red'],
    kind="bar",
    figsize=(20, 10))

plt.legend(["Accident","Injured","Killed"],loc='upper center')

plt.title("Total Number of ROAD ACCIDENTS,INJURIES, DEATHS In general for each stat
    # Display plot
    plt.show()
```


DataFrame DF6

24. Number of Total Accidents for each vehicle type per 1L people of that state.

```
df6.plot(x="States/UTs", y=[
In [59]:
          'Two-Wheelers - Number of Road Accidents - Total - 2014 per 1L people',
          'Auto-Rickshaws - Number of Road Accidents - Total - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Road Accidents - Total - 2014 per 1L people',
          'Buses - Number of Road Accidents - Total - 2014 per 1L people',
          'Trucks, Tempos, MAVs, Tractors - Number of Road Accidents - Total - 2014 per 1L peop
          'Other Motor Vehicles - Number of Road Accidents - Total - 2014 per 1L people',
          'Other Vehicles/Objects - Number of Road Accidents - Total - 2014 per 1L people',
         ],
         color = ['red','black','green', 'blue','yellow','brown','purple'],
         kind="bar",
         figsize=(20, 10))
         plt.legend(['Two-Wheelers','Auto-Rickshaws','Cars, Jeeps,Taxis','Buses','Trucks, Te
          'Other Vehicles/Objects',],loc='upper right')
         plt.title("Number of Total ACCIDENTS for each vehical type Per 1L People of that st
         # Display plot
         plt.show()
```



```
In [60]: df6.plot(x="States/UTs", y=[
          'Two-Wheelers - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Auto-Rickshaws - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Trucks, Tempos, MAVs, Tractors - Number of Road Accidents - Fatal - 2014 per 1L peop
          'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Other Vehicles/Objects - Number of Road Accidents - Fatal - 2014 per 1L people',
         ],
         color = ['red','black','green', 'blue','yellow','brown','purple'],
         kind="bar",
         figsize=(20, 10))
         plt.legend(['Two-Wheelers','Auto-Rickshaws','Cars, Jeeps,Taxis','Buses','Trucks, Te
          'Other Vehicles/Objects',],loc='upper center')
         plt.title("Number of Fatal ACCIDENTS for each vehical type Per 1L People of that st
         # Display plot
         plt.show()
```


25. Number of Persons Killed for each vehicle type per 1L people of that state.

```
In [61]: df6.plot(x="States/UTs", y=[
          'Two-Wheelers - Number of Persons - Killed - 2014 per 1L people',
          'Auto-Rickshaws - Number of Persons - Killed - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Persons - Killed - 2014 per 1L people',
          'Buses - Number of Persons - Killed - 2014 per 1L people',
          'Trucks, Tempos, MAVs, Tractors - Number of Persons - Killed - 2014 per 1L people',
          'Other Motor Vehicles - Number of Persons - Killed - 2014 per 1L people',
          'Other Vehicles/Objects - Number of Persons - Killed - 2014 per 1L people',
          color = ['red','black','green', 'blue','yellow','brown','purple'],
          kind="bar",
         figsize=(20, 10))
         plt.legend(['Two-Wheelers','Auto-Rickshaws','Cars, Jeeps,Taxis','Buses','Trucks, Te
          'Other Vehicles/Objects',],loc='upper center')
         plt.title("NUMBER OF PERSONS Killed for each vehical type Per 1L People of that sta
         # Display plot
          plt.show()
```



```
df6.plot(x="States/UTs", y=[
In [62]:
          'Two-Wheelers - Number of Persons - Injured - 2014 per 1L people',
          'Auto-Rickshaws - Number of Persons - Injured - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Persons - Injured - 2014 per 1L people',
          'Buses - Number of Persons - Injured - 2014 per 1L people',
          'Trucks, Tempos, MAVs, Tractors - Number of Persons - Injured - 2014 per 1L people',
          'Other Motor Vehicles - Number of Persons - Injured - 2014 per 1L people',
          'Other Vehicles/Objects - Number of Persons - Injured - 2014 per 1L people',
         ],
         color = ['red','black','green', 'blue','yellow','brown','purple'],
         kind="bar",
         figsize=(20, 10))
         plt.legend(['Two-Wheelers','Auto-Rickshaws','Cars, Jeeps,Taxis','Buses','Trucks, Te
          'Other Vehicles/Objects',],loc='upper right')
         plt.title("NUMBER OF PERSONS Injured for each vehical type Per 1L People of that st
         # Display plot
         plt.show()
```



```
In [63]:

df6.plot(x="States/UTs", y=[
    'Two-Wheelers - Number of Persons - Injured - 2014 per 1L people',
    'Two-Wheelers - Number of Persons - Killed - 2014 per 1L people',
    'Two-Wheelers - Number of Road Accidents - Total - 2014 per 1L people',
    'Two-Wheelers - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Two-Wheelers - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road Accidents - Fatal - 2014 per 1L people',
    'Journal of Road
```



```
In [64]: df6.plot(x="States/UTs", y=[
    'Cars, Jeeps,Taxis - Number of Persons - Injured - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Persons - Killed - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Total - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    ',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    ',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    ',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    ',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    ',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    ',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Cars, Jeeps,Taxis - Num
```



```
In [65]:

df6.plot(x="States/UTs", y=[
    'Buses - Number of Persons - Injured - 2014 per 1L people',
    'Buses - Number of Persons - Killed - 2014 per 1L people',
    'Buses - Number of Road Accidents - Total - 2014 per 1L people',
    'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per 1L people',

    'Buses - Number of Road Accidents - Total - 2014 per
```



```
In [66]:

df6.plot(x="States/UTs", y=[
    'Trucks, Tempos,MAVs,Tractors - Number of Persons - Injured - 2014 per 1L people',
    'Trucks, Tempos,MAVs,Tractors - Number of Persons - Killed - 2014 per 1L people',
    'Trucks, Tempos,MAVs,Tractors - Number of Road Accidents - Total - 2014 per 1L people',
    'Trucks, Tempos,MAVs,Tractors - Number of Road Accidents - Fatal - 2014 per 1L people',
    'Color = ['red','green', 'blue','yellow'],
    kind="bar",
    figsize=(20, 10))

plt.legend(['Injured','Killed','Total Accidents','Fatal Accidents'],loc='upper right
    plt.title("Number of persons Injured,Killed; Road Accidents Total and Fatal for Tru

# Display plot
    plt.show()
```



```
In [67]:

df6.plot(x="States/UTs", y=[
    'Other Motor Vehicles - Number of Persons - Injured - 2014 per 1L people',
    'Other Motor Vehicles - Number of Persons - Killed - 2014 per 1L people',
    'Other Motor Vehicles - Number of Road Accidents - Total - 2014 per 1L people',
    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people',

    'Other Motor Vehicles - Number of Road Accidents - Fatal
```


26. Total accidents, fatal accidents, killed and injured for each state per 1L people of that state.

```
In [69]:
         df6["Total Injured"]=df6[['Two-Wheelers - Number of Persons - Injured - 2014 per 1L
          'Auto-Rickshaws - Number of Persons - Injured - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Persons - Injured - 2014 per 1L people',
          'Buses - Number of Persons - Injured - 2014 per 1L people',
          'Trucks, Tempos, MAVs, Tractors - Number of Persons - Injured - 2014 per 1L people',
          'Other Motor Vehicles - Number of Persons - Injured - 2014 per 1L people',
          'Other Vehicles/Objects - Number of Persons - Injured - 2014 per 1L people',]].sum(
          df6["Total Killed"]=df6[['Two-Wheelers - Number of Persons - Killed - 2014 per 1L p
          'Auto-Rickshaws - Number of Persons - Killed - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Persons - Killed - 2014 per 1L people',
          'Buses - Number of Persons - Killed - 2014 per 1L people',
          'Trucks, Tempos, MAVs, Tractors - Number of Persons - Killed - 2014 per 1L people',
          'Other Motor Vehicles - Number of Persons - Killed - 2014 per 1L people',
          'Other Vehicles/Objects - Number of Persons - Killed - 2014 per 1L people',]].sum(&
          df6["Total Total Accidents"]=df6[['Two-Wheelers - Number of Road Accidents - Total
          'Auto-Rickshaws - Number of Road Accidents - Total - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Road Accidents - Total - 2014 per 1L people',
          'Buses - Number of Road Accidents - Total - 2014 per 1L people',
          'Trucks, Tempos, MAVs, Tractors - Number of Road Accidents - Total - 2014 per 1L peop
          'Other Motor Vehicles - Number of Road Accidents - Total - 2014 per 1L people',
          'Other Vehicles/Objects - Number of Road Accidents - Total - 2014 per 1L people',]]
          df6["Total Fatal Accidents"]=df6[['Two-Wheelers - Number of Road Accidents - Fatal
          'Auto-Rickshaws - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Cars, Jeeps, Taxis - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Buses - Number of Road Accidents - Fatal - 2014 per 1L people',
          'Trucks, Tempos,MAVs,Tractors - Number of Road Accidents - Fatal - 2014 per 1L peop
          'Other Motor Vehicles - Number of Road Accidents - Fatal - 2014 per 1L people'
          'Other Vehicles/Objects - Number of Road Accidents - Fatal - 2014 per 1L people',]]
```

```
Loading [MathJax]/extensions/Safe.js tes/UTs", y=[

"Total Injured", "Total Killed", "Total Total Accidents", "Total Fatal Accidents"
```

```
color = ['red','green', 'yellow','blue'],
kind="bar",
figsize=(20, 10))

plt.legend(['Injured','Killed','Total Total Accidents','Total Fatal Accidents'],loc
plt.title("Total Accidents, Fatal Acciendts, Killed and Injured for each Per 1L Pec
# Display plot
plt.show()
```


DataFrame DF7

In [71]: df7.head()

Out[71]: 00-03-06-12-15-21-600hrs 300hrs S. 900hrs 1200hrs 1500hrs 1800hrs 2100hrs 2400hrs States/Uts Accid - Day -No. - Day - Day -- Day -- Night - Night Night Night - 2014 2014 2014 2014 - 2014 - 2014 - 2014 - 2014 Andhra 0 1 2548 3448 3491 3606 4058 2989 2031 2269 Pradesh Arunachal 1 2 43 30 28 20 23 19 26 16 Pradesh 2 3 1034 1633 1092 1456 979 416 308 226 Assam 3 823 901 Bihar 1433 1661 1484 1485 1092 677 4 5 Chhattisgarh 1677 2316 2064 2550 2256 1394 755 809 df7.columns = ["S. No.", "States/Uts", "06-900hrs - Day - 2014", "09-1200hrs - Day "12-1500hrs - Day - 2014", "15-1800hrs - Day - 2014", "18-2100hrs -

27. Number of Accidents happening in DAY and NIGHT TIME for 2014 and 2016.


```
DayNightSum=pd.DataFrame((
In [74]:
             df7[["06-900hrs - Day - 2014",
                   "09-1200hrs - Day - 2014"
                   "12-1500hrs - Day - 2014",
                   "15-1800hrs - Day - 2014",
                   "06-900hrs - (Day) - 2016",
                   "09-1200hrs - (Day) - 2016",
                   "12-1500hrs - (Day) - 2016",
                   "15-1800hrs - (Day) - 2016",]].sum(axis=1),
              df7[["18-2100hrs - Night - 2014",
                  "21-2400hrs - Night - 2014",
                  "00-300hrs - Night - 2014",
                  "03-600hrs - Night - 2014",
                  "18-2100hrs - (Night) - 2016",
                  "21-2400hrs - (Night) - 2016",
                  "00-300hrs - (Night) - 2016",
                  "03-600hrs - (Night) - 2016"]].sum(axis=1)))
         DayNightData=pd.DataFrame(DayNightSum.T)
         DayNightData["States/Uts"]=df7["States/Uts"]
         DayNightData.columns=["Day Time","Night Time","States/Uts"]
```

In [75]: DayNightData.head(3)

Out[75]:	Out[75]:		Night Time	States/Uts
	0	27281	22047	Andhra Pradesh
	1	279	175	Arunachal Pradesh
	2	10008	4571	Assam

27. Number of Accidents happening in DAY and NIGHT TIME for 2014 and 2016.

```
In [76]: plt.figure(figsize=(20,10))
    plt.plot(DayNightData[["Day Time","Night Time"]])
    plt.legend(["Day Time","Night Time"])

Loading [MathJax]/extensions/Safe.js
    pit.xticks([0,1,2,3,4,5,6,7,8,9,10,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,
```

```
["Andhra Pradesh", "Arunachal Pradesh", "Assam", "Bihar", "Chhattisgarh",
"Kerala", "Madhya Pradesh", "Maharashtra", "Manipur", "Meghalaya", "Mizoram", "Naga
"Tripura", "Uttarakhand", "Uttar Pradesh", "West Bengal", "A & N Islands", "Chandig
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.show()
```


In []: