18.06 Recitation 9

Isabel Vogt

October 1, 2018

- 1. Suppose that A is a 4×4 square matrix with eigenvalues $-0.7 \pm 0.1i$, -0.3, 0.01 and corresponding eigenvectors v_1, v_2, v_3, v_4 .
 - (a) If

$$\frac{dx}{dt} = Ax,$$

for some initial x(0), what does the solution x(t) probably look like after a long time?

- (b) For large t, the matrix e^{At} is approximately a rank ____ matrix because the columns are roughly spanned by ____.
- (c) What must be true of x(0) for the solution to be decaying, and what does the normalized solution

$$\frac{x(t)}{||x(t)||}$$

then probably look like after a long time?

- (d) Suppose that instead we compute the recurrence $x_{n+1} = Ax_n$ for some initial vector x_0 . What can you say about the solution x_n for large n for a typical x_0 ?
- 2. (Strang 6.3, Problem 18) By explicitly differentiating the infinite series definition for e^{At} , show that $e^{At}x(0)$ solves dx/dt = Ax with initial condition x(0).
- 3. (Strang 6.3, Problem 22) If $A^2 = A$ show that $e^{At} = I + (e^t 1)A$. For the 2×2 $A = \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}$ this gives $e^{At} = \underline{\qquad}$.
- 4. (Strang 6.3, Problem 3)
 - (a) If every column of A adds to zero, why is $\lambda = 0$ an eigenvalue?
 - (b) With negative diagonal and positive off-diagonal adding to 0, u' = Au will be a "continuous" Markov equation. For example for

$$\frac{du}{dt} = \begin{pmatrix} -2 & 3\\ 2 & -3 \end{pmatrix} u, \qquad u(0) = \begin{pmatrix} 4\\ 1 \end{pmatrix}.$$

This has an eigenbasis

$$\lambda_1 = 0, v_1 = \begin{pmatrix} 1 \\ 2/3 \end{pmatrix}, \qquad \lambda_2 = -5, v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

1

What is the steady state $u(\infty)$ as $t \to \infty$?

- 5. (Strang 6.3, Problem 26) Give two reasons why the matrix e^{At} is never singular.
 - (a) Write down its inverse.
 - (b) Why are these eigenvalues nonzero? If $Ax = \lambda x$ then

 $e^{At}x = \underline{\qquad}.$