Élève 1*

Question de cours. Énoncer le CSSA.

Exercice. Soit $(a_n)_{n\geq 1}$ une suite de réels positifs ou nuls tels que la série $\sum a_n$ converge.

- 1. Montre que si $\alpha > 1/2$, la série $\sum_{n} \frac{\sqrt{a_n}}{n^{\alpha}}$ converge.
- 2. Que dire dans le cas $\alpha = 1/2$?

Exercice.

- 1. Montrer que pour toute bijection $\varphi: \mathbb{N}^* \to \mathbb{N}^*$, la série $\sum 1/(n\varphi(n))$ converge, on notera $S(\varphi)$ sa somme. Montrer que $\varphi \mapsto S(\varphi)$ est majorée et déterminer son sup.
- 2. Montrer que pour toute bijection $\varphi: \mathbb{N}^* \to \mathbb{N}^*$, la série $\sum \varphi(n)/n^2$ diverge, on notera $S_n(\varphi)$ sa somme partielle. Montrer que $\varphi \mapsto S_n(\varphi)$ est minorée et déterminer son inf.

Élève 2

Exercice CCP.

- 1. Soient (u_n) et (v_n) deux suites réelles. On demandera à (v_n) d'être non nulle a.p.d.c.r.
 - a) Prouver que si $u_n \sim v_n$ alors u_n et v_n sont de même signe a.p.d.c.r.
 - b) Dans cette question, on suppose que (v_n) est positive. Montrer que si $u_n \sim v_n$ alors $\sum u_n$ et $\sum v_n$ sont de même nature.
- 2. Nature de $\sum_{n\geq 2} \frac{((-1)^n+i)\sin(1/n)\ln n}{\sqrt{n+3}-1}$

Exercice. Déterminer, pour $\alpha \in \mathbb{R}$, la nature de la série de terme général $u_n = \left(\frac{1}{4^n} \binom{2n}{n}\right)^{\alpha}.$

Élève 3

Exercice CCP.

- 1. Démontrer la règle de d'Alembert pour le cas < 1.
- 2. Nature de $\sum_{n>1} \frac{n!}{n^n}$.

Exercice. On considère $u_n = (n^3 + 6n^2 - 5n - 2)/n!$.

- 1. Montrer que $\sum u_n$ converge.
- 2. Montrer que $\mathcal{B} = (1, X, X(X-1), X(X-1)(X-2))$ est une base de $\mathbb{R}_3[X]$ et décomposer $P=X^3+6X^2-5X-2$ dans cette base.
- 3. En déduire $\sum_{n=0}^{\infty} u_n$.

Élève 4

Exercice CCP.

- 1. Soient (u_n) et (v_n) deux suites réelles. On demandera à (v_n) d'être non nulle a.p.d.c.r.
 - a) Prouver que si $u_n \sim v_n$ alors u_n et v_n sont de même signe a.p.d.c.r.
- b) Dans cette question, on suppose que (v_n) est positive. Montrer que si $u_n \sim v_n$ alors $\sum u_n$ et $\sum v_n$ sont de même nature. 2. Nature de $\sum_{n\geq 2} \frac{((-1)^n+i)\sin(1/n)\ln n}{\sqrt{n+3}-1}$.

Exercice. Déterminer, pour $\alpha \in \mathbb{R}$, la nature de la série de terme général $u_n = \left(\frac{1}{4^n} \binom{2n}{n}\right)^{\alpha}.$

Élève 5

Exercice CCP. On considère $u_n = \cos(\pi \sqrt{n^2 + n + 1})$.

- 1. Montrer qu'au voisinage de $+\infty$, on a $\pi\sqrt{n^2+n+1}=n\pi+\frac{\pi}{2}+\alpha\frac{\pi}{n}+$ $\mathcal{O}(\frac{1}{n^2})$ où α est un réel que l'on déterminera.
- 2. Montrer que la série $\sum_{n>1}u_n$ converge. Converge-t-elle absolument ?

Exercice. Soit (u_n) une suite positive et décroissante. Prouver que si la série $\sum u_n$ converge, alors $nu_n \to 0$ à mesure que $n \to \infty$.

Élève 6

Exercice CCP.

- 1. Démontrer la règle de d'Alembert pour le cas < 1.
- 2. Nature de $\sum_{n\geq 1} \frac{n!}{n^n}$.

Exercice. Soit $\sum u_n$ une série à termes positifs convergente. Montrer que la série $\sum_{n\geq 1} \frac{\sqrt{u_n}}{n}$ est convergente.