Задача А. Дерево отрезков с операцией на отрезке

Имя входного файла: segment-tree.in Имя выходного файла: segment-tree.out

Ограничение по времени: 0.5 секунд Ограничение по памяти: 64 мегабайта

Реализуйте эффективную структуру данных для хранения элементов и увеличения нескольких подряд идущих элементов на одно и то же число.

Формат входных данных

В первой строке вводится одно натуральное число $N~(1\leqslant N\leqslant 100\,000)$ — количество чисел в массиве.

Во второй строке вводятся N чисел от 0 до $100\,000$ — элементы массива.

В третьей строке вводится одно натуральное число M ($1 \le M \le 30\,000$) — количество запросов.

Каждая из следующих М строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (g — получить текущее значение элемента по его номеру, а — увеличить все элементы на отрезке).

Следом за д вводится одно число — номер элемента.

Следом за а вводится три числа — левый и правый концы отрезка и число add, на которое нужно увеличить все элементы данного отрезка массива $(1 \le add \le 100\,000)$.

Формат выходных данных

Выведите в одну строку через пробел ответы на каждый запрос д.

segment-tree.in	segment-tree.out
5	4
2 4 3 5 2	2
5	14
g 2	5
g 5	
a 1 3 10	
g 2	
g 4	

Задача В. Range Variation Query

Имя входного файла: rvq.in
Имя выходного файла: rvq.out
Ограничение по времени: 0.5 секунда
Ограничение по памяти: 64 мегабайта

В начальный момент времени последовательность a_n задана следующей формулой: $a_n = n^2 \mod 12345 + n^3 \mod 23456$.

Требуется много раз отвечать на запросы следующего вида:

- найти разность между максимальным и минимальным значениями среди элементов $a_i, a_{i+1}, \ldots, a_i;$
- ullet присвоить элементу a_i значение j.

Формат входных данных

Первая строка входного файла содержит натуральное число k — количество запросов ($1 \le k \le 100\,000$). Следующие k строк содержат запросы, по одному на строке. Запрос номер i описывается двумя целыми числами x_i, y_i .

Если $x_i > 0$, то требуется найти разность между максимальным и минимальным значениями среди элементов a_{x_i}, \dots, a_{y_i} . При этом $1 \leqslant x_i \leqslant y_i \leqslant 100\,000$.

Если $x_i < 0$, то требуется присвоить элементу $a_{|x_i|}$ значение y_i . В этом случае $-100\,000 \leqslant x_i \leqslant -1$ и $|y_i| \leqslant 100\,000$.

Формат выходных данных

Для каждого запроса первого типа в выходной файл требуется вывести одну строку, содержащую разность между максимальным и минимальным значениями на соответствующем отрезке.

rvq.in	rvq.out
7	34
1 3	68
2 4	250
-2 -100	234
1 5	1
8 9	
-3 -101	
2 3	

Задача С. Разреженные таблицы

Имя входного файла: sparse.in Имя выходного файла: sparse.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Формат входных данных

В первой строке входного файла даны три натуральных числа $n, m \ (1 \le n \le 10^5, 1 \le m \le 10^7)$ и $a_1 \ (0 \le a_1 < 16\,714\,589)$ — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и $v_1 \ (1 \le u_1, v_1 \le n)$ — первый запрос.

Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \mod 16714589.$$

Например, при n = 10, $a_1 = 12345$ получается следующий массив: a = (12345, 305498, 7048017, 11694653, 1565158, 2591019, 9471233, 570265, 13137658, 1325095).

Запросы генерируются следующим образом:

$$u_{i+1} = ((17 \cdot u_i + 751 + ans_i + 2i) \bmod n) + 1,$$

$$v_{i+1} = ((13 \cdot v_i + 593 + ans_i + 5i) \bmod n) + 1,$$

где ans_i — ответ на запрос номер i.

Обратите внимание, что u_i может быть больше, чем v_i .

Формат выходных данных

В выходной файл выведите u_m , v_m и ans_m (последний запрос и ответ на него).

sparse.in	sparse.out
10 8 12345 3 9	5 3 1565158

ЛКШ.2014.Август.В.День 7 Берендеевы поляны, 4 августа 2014

Задача D. Мега-инверсии

Имя входного файла: mega.in
Имя выходного файла: mega.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Инверсией в перестановке p_1, p_2, \ldots, p_N называется пара (i,j) такая, что i < j и $p_i > p_j$. Назовём мега-инверсией в перестановке p_1, p_2, \ldots, p_N тройку (i,j,k) такую, что i < j < k и $p_i > p_j > p_k$. Напишите алгоритм для быстрого подсчёта количества мега-инверсий в перестановке.

Формат входных данных

Первая строка входного файла содержит целое число N ($1 \le N \le 100\,000$). Следующие N чисел описывают перестановку: p_1, p_2, \ldots, p_N ($1 \le p_i \le N$), все p_i попарно различны. Числа разделяются переводами строк.

Формат выходных данных

Единственная строка выходного файла должна содержать одно число, равное количеству мегаинверсий в перестановке p_1, p_2, \dots, p_N .

mega.in	mega.out
4	4
4	
3	
2	
1	