PromptKD: Unsupervised Prompt Distillation for Vision-Language Models

```
Zheng Li<sup>1</sup>, Xiang Li<sup>2,1</sup>*, Xinyi Fu<sup>3</sup>, Xin Zhang<sup>1</sup>, Weiqiang Wang<sup>3</sup>, Shuo Chen<sup>4</sup>, Jian Yang<sup>1</sup>*

<sup>1</sup> PCA Lab, VCIP, College of Computer Science, Nankai University

<sup>2</sup> NKIARI, Shenzhen Futian, <sup>3</sup> Tiansuan Lab, Ant Group, <sup>4</sup> RIKEN

{zhengli97, zhasion}@mail.nankai.edu.cn, {xiang.li.implus, csjyang}@nankai.edu.cn
{fxy122992, weigiang.wwq}@antgroup.com, shuo.chen.ya@riken.jp
```

Problem/Objective

- CLIP + KD
- Unsupervised distillation

Contribution/Key Idea

- domain-specific prompt-based knowledge distillation
- reuse pre-stored text features
- unlabeled로 student모델 학습

Figure 1. Harmonic mean (HM) comparison on base-to-novel generalization. All methods adopt the **ViT-B/16 image encoder** from the pre-trained CLIP model. PromptKD achieves state-of-the-art performance on 11 diverse recognition datasets.

Remaining Method

Figure 2. Affinity mimicking for language-image models. The loss includes image-to-text loss (yellow) and text-to-image loss (blue).

Fig. 1 Prompt engineering vs Context Optimization (CoOp). The former needs to use a held-out validation set for words tuning, which is inefficient; the latter automates the process and requires only a few labeled images for learning.

TinyCLIP [1]

Prompt Learning [2]

- 기존 CLIP + KD 연구 → CLIP의 image/text encoder 다시 학습 → Cost ↑
 - → Distillation의 Cost를 줄여보자
- **기존 Prompt 연구** → Hard-to-soft Label로의 전환 등 prompt를 설계/학습
 - \circ \rightarrow prompt를 distillation 도구로 사용해보자

Classic KD vs PromptKD

Figure 2. Architecture comparison between classic KD paradigm for CLIP (likewise CLIP-KD [44]) and our prompt distillation framework. (a) Classic KD methods perform distillation between independent teacher and student models. Students are typically fully fine-tuned by teachers' soft labels. (b) PromptKD breaks the rules of teacher-student independence. We propose to reuse the previously well-trained text features from the teacher pre-training stage and incorporate them into the student image encoder for both distillation and inference.

- Cost 감소
 - Unsupervised
 - Text feature saving
- Prompt 활용
 - Img Encoder Frozen → visual prompt + project

Method

● 2 Stage Training 2 日日

Method - Stage 1 (Teacher model Training)

- Large CLIP 모델 → pretrain
- CLIP → (+ domain-specific few-shot fine-tuning) → teacher 완성
 - o 16 few-shot 사용
- 각 class 이름 → prompt에 넣어서 class 별 feature vector 추출/저장

Method - Stage 2 (Student prompt distillation)

- Frozen Image encoder
 - o 앞에 visual prompt 학습 (visual soft prompt)
 - 뒤에 project layer 학습 (MLP)
- Text Algorithm 1 Pseudocode of PromptKD in PyTorch. r 사용

```
# tea_t: text encoder of teacher CLIP
# tea_i: image encoder of teacher CLIP
# stu_i: image encoder of student CLIP
# 1_tea: teacher output logits
# l_stu: student output logits
# Proj: Feature Projector
# init
f_txt_t = tea_t(txt_of_all_classes)
# forward
for img in unlabeled dataset:
    f_{img_t} = tea_i(img)
    f img_s = stu i(img)
    f_{imq_s} = Proj(f_{imq_s})
    # get output predictions
    l_tea = f_img_t * f_txt_t.t()
    l_stu = f_img_s * f_txt_t.t()
    # calculate distillation loss
    loss = KLDivergence(l_stu, l_tea)
    loss.backward()
```

• Method - Stage 3 (Inference)

(c) Student Inference

 $2 \cdot Base \cdot Novel$

Base + Novel

HM =

PromptKD: Unsupervised Prompt Distillation for Vision-Language Models

(j) DTD

• Experiment

	_				_					_		
ViT-B/16	Base	Novel	HM	ViT-B/16	Base	Novel	HM		ViT-B/16	Base	Novel	HM
CLIP	69.34	74.22	71.70	CLIP	72.43	68.14	70.22		CLIP	96.84	94.00	95.40
CoOp	82.69	63.22	71.66	CoOp	76.47	67.88	71.92		CoOp	98.00	89.81	93.73
CoCoOp	80.47	71.69	75.83	CoCoOp	75.98	70.43	73.10		CoCoOp	97.96	93.81	95.84
MaPLe	82.28	75.14	78.55	MaPLe	76.66	70.54	73.47		MaPLe	97.74	94.36	96.02
PromptSRC	84.26	76.10	79.97	PromptSRC	77.60	70.73	74.01		PromptSRC	98.10	94.03	96.02
PromptKD	86.96	80.73	83.73	PromptKD	80.83	74.66	77.62		PromptKD	98.91	96.65	97.77
Δ	+2.70	+4.63	+3.76	Δ	+3.23	+3.93	+3.61		Δ	+0.81	+2.62	+1.75
(a) Aver	age over	11 datase	ts.	(b) ImageNet					((c) Caltech101		
ViT-B/16	Base	Novel	НМ	ViT-B/16	Base	Novel	НМ		ViT-B/16	Base	Novel	HM
CLIP	91.17	97.26	94.12	CLIP	63.37	74.89	68.65		CLIP	72.08	77.80	74.83
CoOp	93.67	95.29	94.47	CoOp	78.12	60.40	68.13		CoOp	97.60	59.67	74.06
CoCoOp	95.20	97.69	96.43	CoCoOp	70.49	73.59	72.01		CoCoOp	94.87	71.75	81.71
MaPLe	95.43	97.76	96.58	MaPLe	72.94	74.00	73.47		MaPLe	95.92	72.46	82.56
PromptSRC	95.33	97.30	96.30	PromptSRC	78.27	74.97	76.58		PromptSRC	98.07	76.50	85.95
PromptKD	96.30	98.01	97.15	PromptKD	82.80	83.37	83.13		PromptKD	99.42	82.62	90.24
Δ	+0.97	+0.71	+0.85	Δ	+4.53	+8.40	+6.55		$\overset{\circ}{\Delta}$	+1.35	+6.12	+4.29
(d) OxfordPets			(e) StanfordCars				(f) Flowers102					
ViT-B/16	Base	Novel	НМ	ViT-B/16	Base	Novel	HM		ViT-B/16	Base	Novel	HM
CLIP	90.10	91.22	90.66	CLIP	27.19	36.29	31.09		CLIP	69.36	75.35	72.23
CoOp	88.33	82.26	85.19	CoOp	40.44	22.30	28.75		CoOp	80.60	65.89	72.51
CoCoOp	90.70	91.29	90.99	CoCoOp	33.41	23.71	27.74		CoCoOp	79.74	76.86	78.27
MaPLe	90.71	92.05	91.38	MaPLe	37.44	35.61	36.50		MaPLe	80.82	78.70	79.75
PromptSRC	90.67	91.53	91.10	PromptSRC	42.73	37.87	40.15		PromptSRC	82.67	78.47	80.52
PromptKD	92.43	93.68	93.05	PromptKD	49.12	41.81	45.17		PromptKD	83.69	81.54	82.60
$\overset{\cdot}{\Delta}$	+1.76	+2.15	+1.95	$\overset{\cdot}{\Delta}$	+6.39	+3.94	+5.02		$\overset{\cdot}{\Delta}$	+1.02	+3.07	+2.08
(g) Food101			(h) FGVCAircraft					(i) SUN397				
ViT-B/16	Base	Novel	HM	ViT-B/16	Base	Novel	HM		ViT-B/16	Base	Novel	HM
CLIP	53.24	59.90	56.37	CLIP	56.48	64.05	60.03		CLIP	70.53	77.50	73.85
CoOp	79.44	41.18	54.24	CoOp	92.19	54.74	68.69		CoOp	84.69	56.05	67.46
CoCoOp	77.01	56.00	64.85	CoCoOp	87.49	60.04	71.21		CoCoOp	82.33	73.45	77.64
MaPLe	80.36	59.18	68.16	MaPLe	94.07	73.23	82.35		MaPLe	83.00	78.66	80.77
PromptSRC	83.37	62.97	71.75	PromptSRC	92.90	73.90	82.32		PromptSRC	87.10	78.80	82.74
PromptKD	85.84	71.37	77.94	PromptKD	97.54	82.08	89.14		PromptKD	89.71	82.27	86.10
Δ	+2.47	+8.40	+6.19	Δ	+4.64	+8.18	+6.82		Δ	+2.61	+3.47	+3.36
	/	. 0. 10	. 0.17			. 0.10	. 0.02			. 2.01		

(k) EuroSAT

(l) UCF101

Figure 4. Improved ImageNet classification accuracy of the student model with increasing numbers of unlabeled images per category used for distillation.

Unlabeled 수 많을수록 good, 일정해짐

		Target Dataset										
ZSL	ViT-B/16	Caltech 101	Oxford Pets	Standford Cars	Flowers 102	Food101	FGVC Aircraft	SUN397	DTD	Euro SAT	UCF101	Avg.
	CoOp	93.70	89.14	64.51	68.71	85.30	18.47	64.15	41.92	46.39	66.55	63.88
In-	CoCoOp	94.43	90.14	65.32	71.88	86.06	22.94	67.36	45.73	45.37	68.21	65.74
ductive	MaPLe	93.53	90.49	65.57	72.23	86.20	24.74	67.01	46.49	48.06	68.69	66.30
	PromptSRC	93.60	90.25	65.70	70.25	86.15	23.90	67.10	46.87	45.50	68.75	65.81
Trans-	PromptKD	93.61	91.59	73.93	75.33	88.84	26.24	68.57	55.08	63.74	76.39	71.33
ductive	Δ	+0.01	+1.34	+8.23	+5.08	+2.69	+2.34	+1.47	+8.21	+18.24	+7.64	+5.52

Table 2. Comparison of PromptKD with existing advanced approaches on cross-dataset benchmark evaluation. Based on our pipeline, we perform unsupervised prompt distillation using the unlabeled domain data respectively (i.e., the transductive setting). The source model is trained on ImageNet [4]. "ZSL" denotes the setting type for Zero-Shot Learning. PromptKD achieves better results on 9 of 10 datasets.

- 도메인 간 Generalization 성능 평가, Source : ImageNet → Target : Each Dataset
- Inductive
 - 모델 학습때 unlabeled test 데이터 x
- Transductive
 - > 모델 학습때 test 도메인 데이터 이용

Method	Domain Data	Base	Novel	HM
CLIP	Zero-shot	72.08	77.80	74.83
PromptSRC	Few-shot	98.07	76.50	85.95
CLIP-PR [13]		65.05	71.13	67.96
UPL [9]	Unlabeled	74.83	78.04	76.40
LaFTer [27]		79.49	82.91	81.16
FPL [26]		97.60	78.27	86.87
IFPL [26]	Few-shot	97.73	80.27	88.14
GRIP [26]	+	97.83	80.87	88.54
PromptKD	Unlabeled	99.42	82.62	90.24
Δ	-	+1.59	+1.75	+1.70

Table 3. Comparison with existing works using unlabeled data on Flowers102. Our method performs better than previous methods.

Method	Base	Novel	HM
CLIP	72.43	68.14	70.22
Projector Only	78.48	72.79	75.53
Full Fine-tune	75.90	70.95	73.34
w/o Shared Text Feature	78.79	73.37	75.98
PromptKD	79.27	73.39	76.22

Table 5. Ablation study of different distillation ways.

Role (Method)	Img Backbone	Base	Novel	HM
CLIP	ViT-B/16	72.43	68.14	70.22
PromptSRC	ViT-B/16	77.60	70.73	74.01
Teacher (CLIP)	ViT-L/14	79.18	74.03	76.52
Student	ViT-B/16	76.53	72.58	74.50
Teacher (MaPLe)	ViT-L/14	82.79	76.88	79.73
Student	ViT-B/16	78.43	73.61	75.95
Teacher (PromptSRC)	ViT-L/14	83.24	76.83	79.91
Student	ViT-B/16	79.27	73.39	76.22

Table 6. Comparison of different pre-training methods. Teacher pre-training with PromptSRC brings the best student performance.

Figure 5. Comparison of distillation results for teachers with different capacities. Better teachers lead to better performance.

● 좋은 backbone 사용 → 좋은 result

Method	GFLOPs (test)	FPS	HM
CoOp	162.5	1344	71.66
CoCoOp	162.5	15.08	75.83
PromptSRC	162.8	1380	79.97
PromptKD	42.5	1710	83.73

Table 7. Comparison of computation costs among existing methods on the SUN397 dataset. Our PromptKD is more efficient than previous methods during testing.

• PromptKD는 test-time에서 매우 가볍고 빠르며 성능도 좋다