THE MARA-LEB VACUUM SYSTEM

Gas Cell

Recoils from MARA are stopped and neutralised in the gas cell using a buffer gas (He or Ar).

They are evacuated using the gas flow and laser ionised inside the gas cell or in the gas jet.

Transport

lons are transported to detector stations using ion optics.

They are mass selected before the detector station via a dipole magnet.

VACUUM CHAMBERS

Differential pumping section

1. Gas Cell Chamber

- 1. Gas Cell Chamber
- 2. Second Chamber

- 1. Gas Cell Chamber
- 2. Second Chamber
- 3. Extraction Chamber

- 1. Gas Cell Chamber
- 2. Second Chamber
- 3. Extraction Chamber

Other chambers are pumped regularly

VACUUM SYSTEM

Connection to MARA

MARA is kept at high vacuum, so the gas cell needs a thin window that can withstand pressure differences of up to ~1E10 mbar, but not stop recoils before entering the cell

DIFFERENTIAL PUMPING

Differential pumping section

The gas cell chamber is going to have a constant inflow of gas, thus needing more powerful pump and valves that allow for the regulation of the gas flow into the screw pump.

Normal pumping section

Thanks to the gate valves, entire sections of the beamline can be pumped separately and isolated to open other sections.

Apertures and Pipes

- A_0 : d = 0.5 1.2 mm
- A_{12} : d = 5 mm, ℓ = 10 cm
- A_{23} : d = 5 mm, ℓ = 10 cm

Physical Properties

- Volumes = 100 L
- Surface area = 1.2 m²
- Outgassing = 1.8E-7 mbar L/s/cm

Apertures and Pipes

- A_0 : d = 0.5 1.2 mm
- A_{12} : d = 5 mm, ℓ = 10 cm
- A_{23} : d = 5 mm, ℓ = 10 cm

Physical Properties

- Volumes = 100 L
- Surface area = 1.2 m²
- Outgassing = 1.8E-7 mbar L/s/cm²

Pumping Speeds

- $v_1 = 1056 L/s (Screw)$
- v₂ = 2000 L/s (Turbo)
- v₃ = 1000 L/s (Turbo)

Gas Cell Load

- $Q_0(He) = 55-650 \text{ mbar L/s}$
- $Q_0(Ar) = 20-200 \text{ mbar L/s}$

Leak Loads

Q_{leak} = 1E-7 mbar L/s

Pumping Speeds

- $v_1 = 1056 L/s (Screw)$
- $v_2 = 2000 L/s (Turbo)$
- $v_3 = 1000 L/s (Turbo)$

Gas Cell Load

- $Q_0(He) = 55-650 \text{ mbar L/s}$
- $Q_0(Ar) = 20-200 \text{ mbar L/s}$

Leak Loads

Q_{leak} = 1E-7 mbar L/s

Target Pressures

- $P_0 = 500-1000 \, \text{mbar} \, (\text{He or Ar})$
- $P_1 \simeq 0.01 0.1 \, mbar$
- $\bullet~P_2 \simeq 10 \text{E-}6$ $0.01\,\text{mbar}$
- $P_3 \simeq 10E-6 \, mbar$

Square = Aperture + d_0 =1.2 mm **Triangle** = Aperture + d_0 =0.5 mm

Solid Line = Pipe + d_0 =1.2 mm **Dashed Line** = Pipe + d_0 =0.5 mm