

Hash files

TF

Assume we have a file with 250,000 records, each of them of size 300 bytes, 75 of which for the key field. Each block is of size 1024 bytes. A block pointer is 4 bytes.

- a) If we use a hash organization with 1200 buckets, how many blocks do we need for the bucket directory?
- b) How many blocks do we need for the buckets, assuming a uniform distribution of records into buckets?
- c) Still assuming a uniform distribution of records, what is the average number of accesses needed to find a record in the file?
- d) How many buckets should we create to have instead an average number of accesses less or equal 10, still assuming a uniform distribution of records in the buckets?

	Tat Blod=	Bod, per	Budet - N	Blockn = 70	. 1200 = 1	34000
2)	O MPOL	Polocini DA co	27001.4 PE 047	70-205	0BC-00	
<i>/</i>		Bodn por			**	
	THE TOTAL PROPERTY.	2		eces		
)		Ay Time				
		6 mall 5, 6				1616
	,	pinds tells ((1264)	
90	o Tyse g	plant (CI)	CANT WI	(1)0 2)=:		
	Blck B	det 2 no	=> 13ck x	Budet < 20	>	
	1 2 1 1 1 1 1	D k t				
=)	Decol	Redet L		=7		
Than Mad fica BILE						
	Record	* Budet				
	Letary	2		> Record	x Bude	2 60
Jan Maritier Bros						
	N°B	rocal L	60	Nono	1-607	Nº read
		12000		N° Bu	Sict z	Noracod
				NEBU	let z	250000
	N° Bodet	7 4167				60

Assume we have a file with 780.000 records, each of them of size 250 bytes. Each block is of size 1024 bytes. A block pointer is 4 bytes. We are using a hash organization with 2500 buckets.

- A) How many blocks do we need to use for the bucket directory and for the buckets, assuming a uniform distribution of records?
- b) How many blocks do we need to use, assuming that 30% of records are uniformly distributed in 1000 buckets, and the remaining 70% is uniformly distributed in the remaining 1500 buckets?

(SAM

Assume we have a file of 150.000 records, each of them of size 250 bytes, 50 of which are used for the key field. Each block is of size 1024 bytes. A block pointer is of size 4 bytes.

- a) If we use an ISAM organization, we assume that blocks are filled at most at 70% of their capacity, how many blocks do we need for the index file?
- b) If we use binary search, what is the maximum number of accesses to blocks to find a record in the file for case a)?

