National University of Computer and Emerging Sciences, Lahore Campus

AL HAVE	Course Name:	Internet of Things (IoT)	Course Code:	CN503
WIONAL OWNERS	Program:	MS(CS)	Semester:	Fall 2018
S	Duration:	2 Hour 30 Minutes	Total Marks:	40
	Paper Date:	1/1/2019	Weight	40
Sewin White	Section:	ALL	Page(s):	10
S IMIRO	Exam Type:	Final		

Student: Name: Roll No.

Instruction/Notes: Attempt questions on this paper. You may use rough sheet but it should not be attached to this paper as it will not be marked.

Question 1: Choose the best option for the following MCQs and provide your answer in the below table. Answers outside the table **will not** be considered. **[10 Marks]**

MCQ	Answer	MCQ	Answer
1.1		1.6	
1.2		1.7	
1.3		1.8	
1.4		1.9	
1.5		1.10	

ı 1	مبدوالم	uc to	control	alactronic	components
L. <u>1</u>	allows	us to	COTILIO	electronic	components

- a) RETful API
- b) RESTful API
- c) HTTP
- d) MQTT
- 1.2. MQTT stands for _____
- a) Message Queue Telemetry Things
- b) Message Queuing Transport Telemetry
- c) Message Queue Transport of Things
- d) Message Queuing Telemetry Transport
- 1.3 Among the following set of protocols which protocol can be considered 'lightweight'?
- a) MQTT
- b) HTTP
- c) CoAP
- d) XMPP
- 1.4 Raspberry Pi uses which of the following types of instruction sets/architecture?
- a) Reduced Instruction Set Computing (RISC)
- b) Complex Instruction Set Computing (CISC)
- c) Can be a combination of (a) and (b)
- d) None of the above

5 laaS stands for	
Infrastructure as a Service	
Infrastructure as a Software	
Internet as a Service	
Internet as a Software	
6 Mobile Cloud applications move the Power and away from mol	bile
none and into cloud.	
Computing and internet	
Data storage and computing Computing and data storage	
Internet and computing	
7 NFC stands for	
Near Fast Communication	
Near Field Communication	
Near Field Customer	
Near Field Connection	
8 Which category finds an increase in applications targeting health and fitness?	
Personal IoT	
Group IoT	
Community IoT	
Industrial IoT	
9 are used to overcome the challenges of managing the resources of the IoT.	
Clustering	
Software agents	
Synchronization techniques	
Cluster, Software agent, and Synchronization techniques	
10 Which of the following is NOT an example of Software Defined IoT Network protoco	ol?
OpenFlow	
OpFlex	
RESTful API	
CSMA/CD	

For the following question, write/draw neat and clean answers. No credit will be given for an incomplete or in-cohesive answer. If you make any assumptions, state them clearly.

Question 2:

Depict the 3-layer and 5-layer architectural model prevalent in Internet of Things by creating suitable diagrams. Also briefly discuss the difference between the respective models.

[5 Marks]

Question 3:

Application Protocol			
(list at least 5)			
Infrastructure Protocol	Routing		
(list at least 1 each)	Network		
	Link Layer		
	Physical/Device		
3.2 The following set of sh	ort guestions relate t	to Bluetooth Low-Energy (BLE).	
5.2 The following set of sin	ore questions relate ([3 Mar	rks]
3.2.1 Describe the lowest la	yer of the BLE-stack a	nd the purpose/operation of this layer.	
3.2.2 What is the role of Log	ical Link Control in th		
3.2.2 What is the role of Log	ical Link Control in th		
3.2.2 What is the role of Log	ical Link Control in th		
			and
3.2.2 What is the role of Log 3.2.3 Define and explain t Generic Access Profile (GAP)	he difference betwee	e BLE-Stack?	and
3.2.3 Define and explain t	he difference betwee	e BLE-Stack?	and
3.2.3 Define and explain t	he difference betwee	e BLE-Stack?	and
3.2.3 Define and explain t	he difference betwee	e BLE-Stack?	and
3.2.3 Define and explain t	he difference betwee	e BLE-Stack?	and
3.2.3 Define and explain t	he difference betwee	e BLE-Stack?	and
3.2.3 Define and explain t	he difference betwee	e BLE-Stack?	and

3.1 Complete the following table by listing examples of (IoT) protocols at the

[2 Marks]

infrastructure and application layer.

Question 4: Please read the given scenario and accordingly provide solutions to the follow-up questions. [10 Marks]

Scenario Overview

You have been given the task of designing and IoT-based solution for the sea-food/fishing supply chain industry. Fish from Karachi harbour are to be transported to distributed ware-housing across the country before being delivered to points-of-sale (retail shops and vendors) for consumer consumption. The general schematic is given in Figure 1.

Figure. 1. Producer, logistics, storage and selling of sea-food supply chain

The port/harbour is the **producer**, distributed warehouses are responsible for **logistics and storage** and retailers **sell** it to consumers. You have been given the following set of requirements to generate an loT solution.

- 1. All fish/sea-food produced needs to be **tracked** and **recorded** from producer all the way to consumer.
- 2. There should be **sufficient security in the solution** to avoid tempering of the original product and retailers selling stale/out-dated sea-food. The consumer should be able to validate the genuineness of the product.
- 3. Given the substantial amount of sea-food consumed, the IoT solution should be **resource-efficient** and economical.
- 4.1 At the producer, describe the best technical solution(s) possible to cater to the above requirements. Note: we need to ensure that only genuine and fresh product is sold to the consumer and the consumer is also able to validate the product/track its history. [1 Mark]

[Note: If a heterogeneous solution is used then hig offer compatibility between protocols at each level].	
Architectural Diagram (Producer):	
	Technology Used
	Physical Layer:
	Data Link Layer:
	Network Layer:
	Application Layer:
	Other:
Architectural Diagram (Warehouse):	
	Technology Used
	Physical Layer:
	Data Link Layer:
	Network Layer:
	Application Layer:
	Other:

4.2 Draw a detailed architectural diagram depicting the <u>system workflow</u> as well as the <u>physical</u>, <u>data link</u>, <u>network</u>, <u>transport/security</u> and <u>application layer</u> protocols that are to

[6 Marks]

be used for this end-to-end solution at each avenue.

Architectural Diagram (Retailer & Consumer):	
	Technology Used
	Physical Layer:
	Data Link Layer:
	Network Layer:
	Application Layer:
	Other:
4.3 Assume that due to a security lapse at one of the warehouses, sea-food has been destroyed while at another warehouse a few coare missing. Since, security was a fundamental requirement of y steps an IoT network administrator/forensic analyst should follow in of these unfortunate incidents. Also discuss the challenges that the 4.3.1 Steps of Investigation [Refer to your solution of 4.2]	ontainers of the product our solution, advise the ordermining the causes

	4.3.2	Investic	ation	Challend	ae(s) and	Possible	Solution(s)
--	-------	----------	-------	----------	------	-------	-----------------	-----------	----

Question 5: Please read the given scenario and accordingly provide solutions to the follow-up questions. [10 Marks]

Scenario Overview

Lahore development authority has to create an air pollution response center in collaboration with traffic police. This response center is supported by the Safe City Project, which collects information from IoT pollution monitoring devices/sensors, and provides it to the city authorities, traffic police as well as the citizens through their GPS-enabled mobile devices.

Requirement:

- 1. When congestion and air pollutants are high in certain areas traffic lights are **re-configured in real-time** to limit the flow of cars in these parts.
- 2. Citizens can also **view pollution values in city areas** and avoid traveling/change routes as applicable.
- 3. **Historical records** of air pollution values need to be **stored** and made available to authorities to enable any future prediction models.

You as an IoT engineer have been given the task of designing an **optimal solution** for the above requirements from scratch.

5.1 Please recommend the communication technologies required to enable efficient communication among the different stake-holders, i.e. the city municipal authority, traffic police and user devices according to the given requirements. [1 Mark]

5.2 Draw a high	level/ab	stract figure of	the system	described	in the	scenario.	Label	the
communication	links,	system/devices,	nodes,	protocols,	etc.	based	on	your
recommendations answered in 5.1.							[4 Ma	rks]

[Note: If a heterogeneous solution is used then highlight the necessary steps required to offer compatibility between protocols at each level].

