Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

 (Currently Amended) A composition comprising a synergistically effective active compound combination of anthranilamides at least one anthranilamide of the formula (I)

in which

A1 and A2 independently of one another represent oxygen or sulfur,

X¹ represents N or CR¹⁰,

R¹ represents hydrogen or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkyll or C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-alkoxycarbonyl,

dialkylamino, C_3 - C_6 -cycloalkylamino, $(C_1$ - C_4 -alkyl)- C_3 - C_6 -cycloalkylamino and R^{11} ,

- R² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,
- represents hydrogen, R¹¹ or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

R² and R³ may be attached to one another and form the ring M,

R⁴ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-haloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₆-cycloalkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-cycloalkylamino,

trialkylsilyl or represents phenyl, benzyl or phenoxy, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl and C₃-C₆-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkylthio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents

independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

- in each case independently of one another represents a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring which may optionally contain one or two ring members from the group consisting of C(=O), SO and S(=O)₂ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy, or independently of one another represents C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (cyano)-C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)-C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl)-C₁-C₄-alkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)alkyl may optionally be substituted by one or more halogen atoms,
- J in each case independently of one another represents an optionally substituted 5- or 6-membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- independently of one another represents $-C(=E^1)R^{19}$, $-LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$, $-C(=E^1)LR^{19}$, $-OP(=Q)(OR^{19})_2$, $-SO_2LR^{18}$ or $-LSO_2LR^{19}$, where each E^1 independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, N-S=O, N-CN or N-NO₂,
- R⁷ represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-

- alkylsulfonyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, haloalkylsulfonyl,
- R⁹ represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulfinyl or halogen,
- R^{10} represents hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, halogen, cyano or C_1 - C_4 -haloalkoxy,
- in each case independently of one another represents in each case optionally mono- to trisubstituted C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfenyl, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulfenyl, phenylthio or phenylsulfenyl, where the substituents independently of one another may be selected from the list W, $-S(O)_nN(R^{16})_2$, $-C(=O)R^{13}$, $-L(C=O)R^{14}$, $-S(C=O)LR^{14}$, $-C(=O)LR^{13}$, $-S(O)_nNR^{13}C(=O)R^{13}$, $-S(O)_nNR^{13}C(=O)LR^{14}$ or $-S(O)_nNR^{13}S(O)_2LR^{14}$,
- L in each case independently of one another represents O, NR¹⁸ or S,
- in each case independently of one another represents -B(OR¹⁷)₂, amino, SH, thiocyanato, C_3 - C_8 -trialkylsilyloxy, C_1 - C_4 -alkyl disulfides, -SF₅, -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -C(=E¹)LR¹⁹, -LC(=E¹)LR¹⁹, -OP(=Q)(OR¹⁹)₂, -SO₂LR¹⁹ or -LSO₂LR¹⁹,
- Q represents O or S,
- in each case independently of one another represents hydrogen or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-

 C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -cycloalkylamino or (C_1 - C_4 -alkyl)- C_3 - C_6 -cycloalkylamino,

R¹⁴ in each case independently of one another represents in each case optionally mono- or polysubstituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino and (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino or represent optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

 R^{15}

in each case independently of one another represents hydrogen or represents in each case optionally mono- or polysubstituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ represents a cycle which forms the ring M,

- R^{16} represents C_1 - C_{12} -alkyl or C_1 - C_{12} -haloalkyl, or $N(R^{16})_2$ represents a cycle which forms the ring M,
- R¹⁷ in each case independently of one another represents hydrogen or C₁-C₄-alkyl, or B(OR¹⁷)₂ represents a ring in which the two oxygen atoms are attached via a chain having two to three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C₂-C₆-alkoxycarbonyl,
- R^{18} in each case independently of one another represents hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl, or $N(R^{13})(R^{18})$ represents a cycle which forms the ring M,
- in each case independently of one another represents hydrogen or represents in each case mono- or polysubstituted C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, CO₂H, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W,
- M in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom attached to the substituent pair R^{13} and R^{18} ,

 $(R^{15})_2$ or $(R^{16})_2$, contains two to six carbon atoms and optionally additionally a further nitrogen, sulfur or oxygen atom, where the substituents independently of one another may be selected from the group consisting of C_1 - C_2 -alkyl, halogen, cyano, nitro and C_1 - C_2 -alkoxy,

in each case independently of one another represents C1-C4-alkyl, C2-C4-Walkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C_2 - C_4 haloalkenyl, C2-C4-haloalkynyl, C3-C6-halocycloalkyl, halogen, cyano, C1-C4- C_1 - C_4 -haloalkoxy, C₁-C₄-alkylthio, C_1 - C_4 -alkoxy, nitro, alkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-alkylamino, C2-C8-dialkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino, C_2 - C_4 -C₃-C₆-cycloalkylamino, alkylcarbonyl, C2-C6-alkoxycarbonyl, CO2H, C2-C6-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl or C₃-C₆-trialkylsilyl,

- n. in each case independently of one another represents 0 or 1,
- p in each case independently of one another represents 0, 1 or 2,

where, if (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² if present and (d) if R¹² is not present, at least one of

the radicals R^6 and R^{11} is different from C_2 - C_6 -alkylcarbonyl, C_2 - C_6 -alkylaminocarbonyl and C_3 - C_8 -dialkylaminocarbonyl, and where the compound of the general formula (I) may also be an N-oxide or salt,

and at least one insecticidally active compound from of group[[s]] 2 below, selected from

A) benzoylureas, preferably

(2-1) chlorfluazuron (known from DE A 28 18 830)

$$\begin{array}{c|c}
F & O & O \\
\hline
F & O & O \\
\hline
F & O & O \\
\hline
CI & CI \\
O & O & O \\
\hline
CI & CI \\
O & O & O \\
\hline
CI & CI \\
O & O & O \\
\hline
CI & CI \\
O & O & O \\
\hline
CI & O &$$

and/or

(2-2) diflubenzuron (known from DE A 21 23 236)

and/or

(2-3) lufenuron (known from EP-A 0 179 022)

and/or -

(2-4) teflubenzuron (known from EP-A 0-052-833)

(2-5) triflumuron (known from DE-A 26 01 780)

and/or

(2-6) novaluron (known from US 4,980,376)

and/or

(2-7) hexaflumuron (known from EP-A 0 071 279)

and/or

(2-8) bistrifluoron (DBI-3204) (known from WO 98/00394)

(2-22) flufenoxuron (known from EP A 0 161 019)

and/or

- B) macrolides, preferably
 - (2-9) emamectin (known from EP-A 0 089 202)

and/or

- C) diacylhydrazines, preferably
 - (2-10) methoxyfenozide (known from EP-A 0 639 559)

and/or

(2-11) tebufenozide (known from EP A 339 854)

and/or

(2-12) halofenozide (known from EP-A 0 228 564)

(2-13) chromafenozide (ANS-118) (known from EP-A 0 496 342)

and/or

(2-14) Trichogramma spp. (known from The Pesticide Manual, 11th Edition, 1997, p. 1236)

and/or

(2-15) Verticillium lecanii (known from The Pesticide Manual, 11th Edition, 1997, p. 1266)

and/or

(2-16) fipronil (known from EP A 0 295 117)

and/or

(2-17) ethiprole (known from DE-A 196 53 417)

$$\mathsf{F_3C} \overset{\mathsf{CI}}{\underbrace{\hspace{1cm}}} \overset{\mathsf{N}}{\underset{\mathsf{CI}}{\overset{\mathsf{N}}{\underset{\mathsf{NH_2}}{\overset{\mathsf{CN}}{\overset{\mathsf{N}}{\underset{\mathsf{II}}{\overset{\mathsf{N}}{\underset{\mathsf{CI}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N$$

(2-18) cyromazine (known from DE-A 27 36 876)

$$\begin{array}{c|c} H_2N & & H \\ & & I \\ N & & N \\ & & NH_2 \end{array}$$

and/or

(2-19) azadirachtin (known from The Pesticide Manual, 11th Edition, 1997, p. 59) and/or

(2-20) diofenolan known from DE-A 26 55 910)

and/or

(2-21) indoxacarb (known from WO 92/11249)

 (Original) The composition as claimed in claim 1 comprising at least one active compound from the group of the anthranilamides of the formula (I-1) in which

in which

R² represents hydrogen or C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl which is optionally substituted by one R⁶,

R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of one another represents O or NR¹⁸,

R⁷ represents C₁-C₄-haloalkyl or halogen,

 R^9 represents C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, $S(O)_p$ - C_1 - C_2 -haloalkyl or halogen,

 R^{15} in each case independently of one another represents hydrogen or represents in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -

- alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylsulfinyl and C_1 - C_4 -haloalkylsulfonyl,
- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R^{19} in each case independently of one another represents hydrogen or C_1 - C_6 alkyl,
- p independently of one another represents 0, 1, 2.
- (Currently Amended) The composition as claimed in claim 1 comprising wherein
 the at least one active compound of group 2 is selected from the group consisting of
 - (2-5) triflumuron
 - (2-22) flufenoxuron
 - (2-9) emamectin
 - (2-10) methoxyfenozide
 - (2-16) fipronil
 - (2-17) ethiprole and
 - (2-21) indoxacarb.
- 4. (Currently Amended) The composition as claimed in claim 1 comprising anthranilamides the at least one anthranilamide of the formula (I) and at the least one active compound from of group 2 in a ratio of 200:1 to 1:200.
- 5. (Cancelled)

- 6. (Previously Presented) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 1 is mixed with extenders and/or surfactants.
- 7. (Previously Presented) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 1 are allowed to act on animal pests and/or their habitat.
- 8. (Currently Amended) The composition as claimed in claim 2 comprising anthranilamides the at least one anthranilamide of the formula (I) and the at least one active compound from of group 2 in a ratio of 200:1 to 1:200.
- 9. (Currently Amended) The composition as claimed in claim 3 comprising anthranilamides the at least one anthranilamide of the formula (I) and the at least one active compound from of group 2 in a ratio of 200:1 to 1:200.
- 10. (Previously Presented) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 2 is mixed with extenders and/or surfactants.
- 11. (Previously Presented) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 3 is mixed with extenders and/or surfactants.

- 12. (Previously Presented) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 4 is mixed with extenders and/or surfactants.
- 13. (Previously Presented) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 8 is mixed with extenders and/or surfactants.
- 14. (Previously Presented) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 9 is mixed with extenders and/or surfactants.
- 16 15. (Currently Amended) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 2 are allowed to act on animal pests and/or their habitat.
- 17 16. (Currently Amended) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 3 are allowed to act on animal pests and/or their habitat.
- 18 17. (Currently Amended) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 4 are allowed to act on animal pests and/or their habitat.

- 19 18. (Currently Amended) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 8 are allowed to act on animal pests and/or their habitat.
- 20 19. (Currently Amended) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 9 are allowed to act on animal pests and/or their habitat.
- 20. (New) The composition according to claim 1 wherein:
- R² represents hydrogen or methyl,
- R^3 represents C_1 - C_4 -alkyl,
- R⁴ represents methyl, trifluoromethyl, trifluoromethoxy, fluorine, chlorine, bromine or iodine,
- R⁵ represents hydrogen, fluorine, chlorine, bromine, iodine, trifluoromethyl or trifluoromethoxy,
- R⁷ represents chlorine or bromine, and
- R⁹ represents trifluoromethyl, chlorine, bromine, difluoromethoxy or trifluoroethoxy.
- 21. (New) The composition according to claim 20 wherein the at least one active compound of group 2 is fipronil (2-16).
- 22. (New) The composition according to claim 21 wherein the ratio of the at least one anthranilamide of formula (I) and fipronil (2-16) is from 10:1 to 1:10.

- 23. (New) The composition according to claim 22 wherein the ratio of the at least one anthranilamide of formula (I) and fipronil (2-16) is from 5:1 to 1:5.
- 24. (New) The composition according to claim 23 wherein the ratio of the at least one anthranilamide of formula (I) and fipronil (2-16) is 1:5.
- 25. (New) The composition according to claim 20 wherein the at least one active compound of group 2 is ethiprole (2-17).
- 26. (New) The composition according to claim 25 wherein the ratio of the at least one anthranilamide of formula (I) and ethiprole (2-17) is from 10:1 to 1:10.
- 27. (New) The composition according to claim 26 wherein the ratio of the at least one anthranilamide of formula (I) and ethiprole (2-17) is from 5:1 to 1:5.
- 28. (New) The composition according to claim 27 wherein the ratio of the at least one anthranilamide of formula (I) and ethiprole (2-17) is 1:5.
- 29. (New) The composition according to claim 20 wherein the at least one anthranilamide of formula (I-1) is

30. (New) The composition according to claim 20 wherein the at least one anthranilamide of formula (I-1) is

31. (New) The composition according to claim 20 wherein the at least one anthranilamide of formula (I-1) is

32. (New) The composition according to claim 20 wherein the at least one anthranilamide of formula (I-1) is

33. (New) The composition according to claim 20 wherein the at least one anthranilamide of formula (I-1) is

34. (New) The composition according to claim 20 wherein the at least one anthranilamide of formula (I-1) is

35. (New) The composition according to claim 20 wherein the at least one anthranilamide of formula (I-1) is

- 36. (New) The composition according to claim 35 wherein the at least one active compound of group 2 is fipronil (2-16).
- 37. (New) The composition according to claim 36 wherein the ratio of the compound (I-1-9) to fipronil (2-16) is 1:1.

- 38. (New) The composition according to claim 35 wherein the at least one active compound of group 2 is ethiprole (2-17).
- 39. (New) The composition according to claim 38 wherein the ratio of the compound (I-1-9) to ethiprole (2-17) is 1:1.