Table 1: M3 Global Spectral Parameter Summary Products (global wavelengths used in formulas, rounded to nearest nm)

	CLASS	NAME	PARAMETER	FORMULATION	RATIONALE
1	Pipe	R750	0.75 µm reflectance	R749	Reference I/F (%)
2	Pipe	UVVIS	ultraviolet – visible ratio	R419/R749	UV-visible spectral ratio (relative I/F, %)
3	Pipe	VISUV	visible- ultraviolet ratio	R749/R419	Visible-UV spectral ratio (relative I/F, %)
4	Pipe	VISNIR	visible-nearIR ratio	R699/R1579	Optical maturity & mare- highland
5	Pipe	R950_750	Ratio of 950 nm to 750 nm, mafic absorption	R949/R749	Quick look at mafic absorption
6	Pipe	BD620	band depth at 620 nm	$1 - \frac{R619}{\left(\frac{R749 - R419}{749 - 419}\right) \cdot (619 - 419) + R419}$	Possible Ti or impact melt
7	Pipe	BD950	band depth at 950 nm	$1 - \frac{R949}{\left(\frac{R1579 - R749}{1579 - 749}\right) \cdot (949 - 749) + R749}$	OPX comparison with Kaguya
8	Pipe	BD1050	band depth at 1050 nm	$1 - \frac{R1049}{\left(\frac{R1579 - R749}{1579 - 749}\right) \cdot \left(1049 - 749\right) + R749}$	OLV comparison with Kaguya
9	Pipe	BD1250	band depth at 1250 nm	$1 - \frac{R1249}{\left(\frac{R1579 - R749}{1579 - 749}\right) \cdot \left(1249 - 749\right) + R749}$	PLAG comparison with Kaguya
10	Pipe	R1580	1.6 µm reflectance	R1579	IR albedo
11	Pipe	BDI1000	band depth	$\begin{split} \sum_{n=0}^{26} & 1 - \frac{R(789 + 20n)}{R_C(789 + 20n)} \\ & R_C = 1 \mu \text{m continuum reflectance at the given} \\ & \text{wavelength} \\ & \text{(sums band depths from 789-1308nm)} \end{split}$	Fe mineralogy
12	Pipe	1um_Min	1μm band center	Wavelength between 890-1349 nm at which $1 - \frac{R_{\lambda}}{R_{C\lambda}} \text{ is maximized}$	Fe mineralogy
13	Pipe	1um_FWHM	1μm band width	locate the two points where continuum-removed reflectance intersects $0.5 \cdot 1 - \left[\frac{R(1um_min)}{R_C(1um_min)} \right]$	Fe mineralogy

14	Pipe	1um_Sym	1 μm	a = 1um_min - short wavelength point found in 1um_FWHM b = long wavelength point found in 1um_FWHM – 1um_min 1um_sym = b/a	Numbers greater than 1 may be enriched in olivine
15	Pipe	BD1um_Ratio		$BD930 = 1 - \frac{R929}{\left(\frac{R1579 - R699}{1579 - 699}\right) \cdot (929 - 699) + R699}$ $BD990 = 1 - \frac{R989}{\left(\frac{R1579 - R699}{1579 - 699}\right) \cdot (989 - 699) + R699}$ $BD1um Ratio = BD930/BD990$	Enhancement in low Ca pyroxene relative to high Ca pyroxene
16	Pipe	2um_Ratio	2 μm ratio	R1578/R2538	
17	Pipe	BDI2000	integrated	$\sum_{n=0}^{21} 1 - \frac{R(1658 + 40n)}{R_{C2}(1658 + 40n)}$ $R_{C2} = 2\mu \text{m continuum reflectance at the given wavelength}$ (sums band depths from 1658-2498nm)	Fe mineralogy
18	Pipe	BD2um_Ratio		$a = 1 - \frac{R1898}{\left(\frac{R2578 - R1578}{2578 - 1578}\right) \cdot \left(1898 - 1578\right) + R1578}$ $b = 1 - \frac{R2298}{\left(\frac{R2578 - R1578}{2578 - 1578}\right) \cdot \left(2298 - 1578\right) + R1578}$	Enhancement in low Ca pyroxene relative to high Ca pyroxene
19	Pipe	Thermal_Ratio		$BD2um_Ratio = a/b$ $R2538/R2978$	
20	•	BD3000	3 μm band depth using 2μm continuum	$1 - \frac{R2978}{\left(\frac{R2538 - R1578}{2538 - 1578}\right) \cdot (2978 - 1578) + R1578}$	H ₂ O
21	Pipe	R540	0.55 µm reflectance	R539	Reference I/F (%)
22	Pipe	Vis_Slope	UV-visible continuum slope	R749 – R419 749 – 419	UV-Vis slope (%/nm)
23	Supl	Tilt	1 µm tilt	R909-R1009	Tompkins and Pieters
24	Pipe	1um_Slope	Continuum slope between 0.70 and 1.6 µm	<u>R1579 – R699</u> 1579 – 699	Vis-NIR slope (%/nm)
25	Supl	Curvature	1 µm band curvature	$\frac{R749 + R1009}{2 \cdot R909}$	Tompkins and Pieters
26	Pipe	R2780	2.8 µm reflectance	R2778	Reference I/F (%)

27	Pipe	OLINDEX	Olivine index	$\begin{bmatrix} 1 & \frac{R_{1750} - R_{650}}{1750 - 650} (860 - 650) + R_{650} \\ 0.1 & \frac{R_{860}}{1750 - 650} + 0.5 \end{bmatrix} (1047 - 650) + R_{650} \\ + 0.5 & \frac{R_{1047}}{1750 - 650} \end{bmatrix} (1047 - 650) + R_{650} \\ + 0.25 & \frac{R_{1750} - R_{650}}{1750 - 650} (1230 - 650) + R_{650}}{R_{1230}} $	olivine will be strongly positive
28	Pipe	BD1900	Band depth at 1900nm: low Ca pyroxene index	$1 - \frac{R1898}{\left(\frac{R2498 - R1408}{2498 - 1408}\right) \cdot \left(1898 - 1408\right) + R1408}$	pyroxene will be positive; favors LCP
29	Pipe	BD2300	Band depth at 2300nm: high Ca pyroxene index		pyroxene will be positive; favors HCP
30	Pipe		Continuum slope between 1.6 and 2.5 μm	$\frac{R2538 - R1578}{2538 - 1578}$	NIR slope (%/nm)
31	Pipe	Thermal_Slope		$\frac{R2978 - R2538}{2978 - 2538}$	Thermal slope (%/nm)
32	Pipe	NBD1400	1.4 μm OH band	$RC = \frac{(R1348 + R1368)}{2}$ $LC = \frac{(R1428 + R1448)}{2}$ $BB = R1408$ $NBD1400 = 1 - 2 \cdot \frac{BB}{(RC + LC)}$	H₂O
33	Pipe	NBD1480	1.48 μm OH band	$RC = \frac{(R1428 + R1448)}{2}$ $LC = \frac{(R1508 + R1528)}{2}$ $BB = R1488$ $NBD1480 = 1 - 2 \cdot \frac{BB}{(RC + LC)}$	H ₂ O
34	Pipe	NBD2300	2.3 μm OH band	$RC = \frac{(R2218 + R2258)}{2}$ $LC = \frac{(R2378 + R2418)}{2}$ $BB = \frac{(R2298 + R2338)}{2}$ $NBD 2300 = 1 - 2 \cdot \frac{BB}{(RC + LC)}$	H ₂ O

35	Pipe	HBD2700	2.7 μm OH band	$RC = \frac{(R2578 + R2618 + R2658)}{3}$ $BB = \frac{(R2698 + R2738)}{2}$ $HBD 2700 = 1 - \frac{BB}{RC}$	H ₂ O
36	Pipe	HBD2850	3 μm ice band	$HBD 2700 = 1 - \frac{BB}{RC}$ $RC = \frac{(R 2538 + R 2578 + R 2618)}{3}$ $BB = \frac{(R 2817 + R 2857 + R 2897)}{3}$ $HBD 2850 = 1 - \frac{BB}{RC}$	Ice
37	Supl	Lucey_OMAT	Optical Maturity – Clementine Legacy	$\lfloor (R749) \rceil$	Based on Lucey et al, JGR (2000)
38	Supl	Mare_OMAT	Optical Maturity Mare	$(R749 \cdot 0.1813) - \left[\left(\frac{R949}{R749} \right) \cdot 0.9834 \right]$ most mature=-1.05, least mature=-0.65	Based on Wilcox et al. 2005 - untested
39	Pipe	HInd_IsFeO	Optical Maturity Highlands	$I_{s} / FeO = e^{\left[\frac{\left(1.82 - \frac{R749}{R889}\right)}{0.057}\right]}$	Based on Fischer
40	IP	LSCC_Maturity	Optical Maturity – revised for hyperspectral data	$I_{s}/FeO = e^{L}$ $\log[I_{s}/FeO] = \sum_{k=1}^{46} W_{k} \cdot \frac{R_{k}}{R_{k+1}} \cdot 10 + C$ k in 50nm increments from 300-2600nm $W_{k} \text{ is weighting coefficient from table}$	Based on all Lunar Soil Consortium data
41	Supl	FE_est	Iron Estimate	$ \left[17.427 \cdot \left(-\arctan\left\{ \left[\left(\frac{R949}{R749} \right) - Y_0 \right] / (R749 - X_0) \right\} \right) \right] - 7.565 $ $X_0 = 0.08 \ Y_0 = 1.19 $	Iron estimate based on Lucey's work
42	Supl	FE_est_mare	Iron Estimate Mare	$-137.97 \cdot \left[\left(R749 \cdot 0.9834 \right) + \left(\frac{R949}{R749} \cdot 0.1813 \right) \right] + 57.46$	Wilcox et al, JGR (2005), Clementine based

Class codes:

Pipe = currently classified as "pipeline" in M3tools
Supl = currently classified as "supplemental" in M3tools
IP = currently classified as "in progress" in M3tools