МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФН

КАФЕДРА

«ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Численные методы

Домашняя работа №2-2

«Интерполяционные сплайны 3-ей степени единичного дефекта»

Группа: <u>ФН11-52Б</u>

Вариант №8

Студент: Зеликова В.И.

Преподаватель: Кутыркин В.А.

Оценка:

ЗАДАНИЕ

На отрезке [0;2] задана равномерная сетка $A = \langle \tau_0, \tau_1, ..., \tau_k \rangle$, где k = 10, с шагом $h = 0, 2 = \mathrm{stp}(A)$ и определена функция $f(\tau) = 2 \sin(\frac{\pi \tau}{2}) \sqrt{2(58-n) + N\tau^2 \sqrt{23-N}}$, где n = 10 номер группы и N = 10 номер студента в журнале группы. Для M = 10 номер задачу M = 10 номер студента в журнале группы. Для M = 10 номер задачу M = 10 номер студента в журнале группы. Для M = 10 номер задачу M = 10 номер студента в журнале группы. Для M = 10 номер задачу M = 10 номер задачения стравнить в узлах равномерной сетки M = 10 номер задачения функции M = 10 номер задачения в задачения задачу M = 10 номер задачения в задач

Решение:

Для N = 8; n = 52

Функция $f(\tau)$ имеет вид:

$$f(\tau) = 2 \cdot \sin(\frac{\pi \cdot \tau}{2}) \cdot \sqrt{12 + 8 \cdot \tau^2 \cdot \sqrt{15}} \tag{1}$$

График $f(\tau)$:

Интерполяционный сплайн определяется как кусочно-заданная функция, которая на отрезке $[\tau_{i-1}, \tau_i]$ определяется функцией $\phi(\tau) = a_i + b_i \cdot (\tau - \tau_{i-1}) + c_i \cdot (\tau - \tau_{i-1})^2 + d_i \cdot (\tau - \tau_{i-1})^3$, i = 0...40, а на остальной области по умолчанию доопределяется нулем.

Построим совмещенные графики интерполяции сплайном третьей степени единичного дефекта для функции $f(\tau)$ (черная линия точками), построенного на равномерной сетке из 11 узлов, с графиком функции $f(\tau)$ (красная линия)

Как можно видеть, на отрезке [0;2] интерполяционный сплайн точно воспроизводит функцию - отклонения значений функции и ее интерполяции невелики.

Построим совмещенные графики производных интерполяции сплайном третьей степени единичного дефекта для функции (черная линия точками), построенного на равномерной сетке из 11 узлов, с графиком функции (красная линия):

На совмещенном графике видно, что на отрезке [0;2] графики производных функции $f(\tau)$ и ее интерполяции сплайном третьей степени единичного дефекта практически полностью совпадают: отклонения наблюдаются лишь на концах рассматриваемого отрезка.

Вычисленные в точках значения производной для интерполяции сплайнами:

τ	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
p(τ)	10.539	12.026	13.973	15.139	13.828	9.449	2.09	-7.514	-18.21	-28.34	-36.91

Вычисленные в точках τ_i значения производной для функции $f(\tau)$:

τ	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
p1(τ)	10.883	11.924	14.004	15.137	13.834	9.452	2.094	-7.518	-18.189	-28.42	-36.63

Результаты:

Сплайн 3-ей степени единичного дефекта хорошо приближает значения исходной функции, как в узлах сетки, так и в их окрестностях. Производные сплайна также принимают значения, близкие к значениям производных исходной функции, однако в узлах существуют небольшие отклонения, увеличивающиеся при приближении к концам отрезка интерполяции.