YTEMPIRE Technical Specifications

Version 1.0 - Local Deployment Edition

Table of Contents

- 1. Executive Summary
- 2. Infrastructure Design
 - Local Architecture Foundation
 - Network Topology and Security
 - Container Orchestration Strategy
 - Content Delivery Architecture
 - <u>Disaster Recovery and Backup</u>
- 3. Performance Requirements
 - <u>Service Latency Targets</u>
 - Throughput Requirements
 - Concurrent Processing Limits
 - Storage and Bandwidth Projections
 - <u>Auto-scaling Configuration</u>
- 4. <u>Technical Implementation Details</u>
- 5. Migration Path to Cloud

Executive Summary

This technical specification document defines the infrastructure design and performance requirements for YTEMPIRE's local deployment, with a clear migration path to cloud infrastructure. The specifications are optimized for the target hardware (AMD Ryzen 9 7950X3D, RTX 5090, 128GB RAM) while maintaining enterprise-grade reliability and scalability patterns.

Key Design Principles:

- Local-First Architecture: Maximizing on-premises hardware utilization
- Cloud-Ready Design: Seamless migration path when scaling beyond local capacity
- **Performance Optimization**: Leveraging GPU acceleration and multi-core processing
- **Security by Design**: Defense-in-depth approach with isolated security zones
- Operational Excellence: Comprehensive monitoring and automated recovery

Infrastructure Design

Local Architecture Foundation

Primary Infrastructure Components

yaml			

```
infrastructure:
compute:
 primary_workstation:
  cpu: AMD Ryzen 9 7950X3D
  cores: 16
  threads: 32
  base_clock: 4.2 GHz
  boost_clock: 5.7 GHz
  I3_cache: 128MB (3D V-Cache)
 gpu:
  model: NVIDIA RTX 5090
  vram: 32GB GDDR7
  cuda_cores: 16384
  tensor_cores: 512
  rt_cores: 128
  memory_bandwidth: 1TB/s
 memory:
  capacity: 128GB DDR5
  speed: 5600MHz
  channels: 2
  configuration: 4x32GB
 storage:
  primary:
   type: NVMe Gen5 SSD
   capacity: 4TB
   read_speed: 12GB/s
   write_speed: 10GB/s
   iops: 2M
  secondary:
   type: NVMe Gen4 SSD
   capacity: 8TB
   read_speed: 7GB/s
   write_speed: 6GB/s
  backup:
   type: NAS (Synology DS1821+)
   capacity: 48TB (6x8TB RAID6)
   network: 10GbE
```

Resource Allocation Strategy

python

```
class ResourceAllocator:
 """Intelligent resource allocation for local deployment"""
 def __init__(self):
    self.cpu_allocation = {
      'system_reserved': 2, # cores
      'orchestrator': 2,
      'trend_analysis': 4,
      'content_generation': 3,
      'video_processing': 3,
      'auxiliary_services': 2
   self.memory_allocation = {
      'system_reserved': 16, # GB
      'docker_services': 32,
      'ml_models': 40,
      'video_processing': 24,
      'cache_layer': 16
   }
    self.gpu_allocation = {
      'stable_diffusion': 8, # GB VRAM
      'llm_inference': 12,
      'video_encoding': 6,
      'tensor_operations': 4,
      'system_reserved': 2
   }
```

Local-First Architecture Decisions

Component Technology Choice		Justification	
Container Runtime Docker 24.0 + Docker Compose		Simplicity for local deployment, easy migration to K8s	
Service Mesh None (initially)		Overhead not justified for 6 services	
Load Balancer Nginx 1.24		Lightweight, powerful reverse proxy	
Service Discovery Docker DNS + Consul		Automatic with migration path	
Secrets Management	HashiCorp Vault (
4	1	•	