REPUBLIQUE DE CÔTE D'IVOIRE

Concours GIC session 2016

Composition : **Physique 1** (mécanique, thermodynamique)

Durée : 4 Heures

Instructions générales:

Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Dans chaque cas la numérotation de la question posée devra être indiquée.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Conformérnent à l'usage international, les vecteurs sont représentés en gras.

MECANIQUE

- Toute réponse non justifiée ne sera pas prise en considération.
- Toutes les grandeurs physiques seront exprimées en fonction des paramètres du problème (ou des paramètres spécifiés) et simplifiées à l'extrême.
- Elles seront évaluées numériquement chaque fois que demandé (A.N.).

Les parties I et II sont indépendantes

Partie I

Un solide (S) est constitué de deux tiges homogènes rigidement liées l'une à l'autre, AO et OB, faisant entre elles un angle constant de 90° (figure 1). Chaque tige a pour masse m et pour longueur 21. (S) peut tourner autour d'un axe horizontal (Δ) passant par O (soit Oz) (figure 2).

I-1 La liaison en O est une liaison pivot parfaite. Un ressort de masse négligeable, de constante de raideur k, est accroché à l'une de ses extrémités en A, l'autre extrémité C étant maintenue fixe. Lorsque l'ensemble est en équilibre dans le champ de pesanteur, AO est horizontal, et OB vertical.

On donne le moment d'inertie d'une tige de masse m et de longueur 21, par rapport à un axe perpendiculaire à la tige et qui passe par une extrémité : $I = 4ml^2/3$.

 G_1

figure 2

- **I-1** a. On note J le moment d'inertie de l'ensemble des 2 tiges par rapport à l'axe Δ . Calculer J.
- I-1 b. Déterminer l'allongement du ressort lorsque le système est à l'équilibre.
- **I-2** On se propose d'étudier les oscillations de petit angle θ autour de la position d'équilibre ; on pourra de ce fait considérer que la force exercée par le ressort sur le solide reste verticale pendant tout le mouvement.
- I-2 a. Déterminer l'équation différentielle vérifiée par θ . Montrer que le mouvement est sinusoïdal de pulsation ω_0 . Donner l'expression de la période en fonction de m, g, k, l et J.
- I-2 b. Application numérique : calculer la période sachant que m = 0.1 kg, l = 0.1 m, $g = 9.8 \text{ m.s}^{-2}$, $k = 12 \text{ N.m}^{-1}$
- **I-3** Donner le portrait de phase de cet oscillateur ; préciser la position relative de deux trajectoires de phase d'énergie différente.

Partie II

Pour les applications numériques, on prendra :

- $g = 10 \text{ N kg}^{-1}$
- R = 1 m
- h = 1 m
- a = 0.1 m
- m = 0.01 kg
- $\mu_s = 0.53$
- $\mu_d = 0.36$
- v = 0.8

Soit un référentiel galiléen $\mathcal{R}_0 = (O, \mathbf{e}_{\mathbf{x}_0}, \mathbf{e}_{\mathbf{y}_0}, \mathbf{e}_{\mathbf{z}})$, où $\mathbf{e}_{\mathbf{z}}$ représente la verticale ascendante. Par rapport à ce référentiel, on considère un disque horizontal en acier, \mathfrak{D} , de rayon R et de centre O. Le disque peut tourner autour de l'axe vertical $\mathbf{e}_{\mathbf{z}}$ passant par son centre O et se situe à une hauteur h du sol horizontal.

On considère le référentiel $\mathcal{R} = (O, \mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z)$ lié au disque. Le mouvement de rotation du disque par rapport à \mathcal{R}_0 est repéré par l'angle $\varphi = (\mathbf{e}_{\mathbf{x}_0}, \mathbf{e}_{\mathbf{x}})$, orienté de $\mathbf{e}_{\mathbf{x}_0}$ vers $\mathbf{e}_{\mathbf{x}}$ (cf. <u>figure 1</u>). Les axes $\mathbf{e}_{\mathbf{x}_0}$ et $\mathbf{e}_{\mathbf{x}}$ sont confondus à l'instant de la mise en mouvement du disque qui sera pris comme origine des temps. Le mouvement donné au disque (à t = 0) est un mouvement de rotation uniformément accéléré, caractérisé par l'accélération angulaire $\ddot{\varphi} = \alpha > 0$. Le seul champ de forces externe est le champ de pesanteur terrestre que l'on considérera comme uniforme, $\mathbf{g} = -g \mathbf{e}_{\mathbf{z}}$.

Figure 1:

Mouvement d'une pièce de monnaie sur le disque

Le but du problème est l'étude du mouvement d'une pièce de monnaie placée sur le disque.

Une pièce de monnaie en cuivre est posée sur le disque. Elle est assimilée à un point matériel M, de masse m. Elle est placée sur le disque avant sa mise en mouvement en A (a, 0, 0) avec 0 < a < R. Le contact entre M et \mathfrak{D} est caractérisé par un coefficient de frottement solide statique $\mu_s > 0$ et un coefficient de frottement solide dynamique μ_d ($0 < \mu_d < \mu_s$).

On note:

- **R** la force de contact exercée par le disque sur le point *M*.
- $N = N e_x$ sa composante normale au disque.
- $\mathbf{T} = T_x \mathbf{e_x} + T_y \mathbf{e_y}$ sa composante dans le plan du disque.

1. Mouvement sur le disque

1.1 Mise en mouvement

On s'intéresse dans cette partie au mouvement de M dans \mathcal{C} , c'est-à-dire, au mouvement de la pièce par rapport au disque.

On note:

$$\mathbf{OM} = x \, \mathbf{e_x} + y \, \mathbf{e_y} + z \, \mathbf{e_z}$$

- **1.1.1** Phase précédant la mise en mouvement de la pièce
 - a. Exprimer $\varphi(t)$, ω_{R/R_0} et $d\omega_{R/R_0}/dt$ en fonction de α .
 - b. Donner l'expression des forces d'inertie dans \mathcal{R} . Les exprimer en fonction de m, a, α et t, <u>en supposant</u> M immobile dans \mathcal{R} .
 - c. Rappeler les lois de Coulomb sur le frottement entre deux solides.
 - d. Ecrire les équations d'équilibre de *M* dans sa position initiale *A*.
 - e. Donner la condition pour que *M* soit à l'équilibre.
 - f. Déterminer l'accélération maximale α_d du disque pour qu'au démarrage (à $t=0^+$) le point M reste immobile. A.N.
 - g. Calculer, en fonction de α et du rapport $\beta = \alpha_d/\alpha$ et dans le cas $\alpha < \alpha_d$, le temps t_l au bout duquel le point M se met en mouvement.
 - h. Calculer, en fonction de α et β , la vitesse angulaire de rotation ω_l atteinte par le disque lorsque le point M se met en mouvement.
 - i. Calculer de même, l'accélération maximale α_r pour que le point M reste immobile pendant au moins une rotation du disque. A.N. : calculer α_r et $\beta_r = \alpha_d/\alpha_r$.

1.1.2 Conditions initiales du mouvement

On suppose désormais, et pour toute la suite, $\alpha < \alpha_r$

- a. Montrer qu' alors β^2 peut être considéré comme grand devant 1.
- b. En déduire une expression approchée de ω_l . A.N.
- c. En déduire une expression approchée de t_l . A.N. : calculer $t_r = t_l$ (α_r).
- d. Donner une borne supérieure des erreurs relatives correspondantes : $\Delta t_l / t_l$ et $\Delta \omega_l / \omega_l$. A.N.
- e. Comparer alors $\|\mathbf{T}_{\mathbf{x}}\|$ et $\|\mathbf{T}_{\mathbf{v}}\|$ à l'instant t_l^- .
- f. En déduire la direction **approchée** initiale du mouvement de M et des valeurs initiales **approchées** \mathbf{T}_l^- et \mathbf{T}_l^+ de \mathbf{T} à \mathbf{t}_l^- et \mathbf{t}_l^+ . A.N.

1.2 Mouvement

Dès que le point M se met en mouvement, la vitesse de rotation du disque est maintenue constante à la valeur ω_l qu'elle avait à ce moment-là.

1.2.1 Equations différentielles du mouvement

- a. Etablir les équations différentielles **exactes** du mouvement de M vérifiées par x, y et z.
- b. Calculer, en fonction de $\varepsilon = \mu_s \mu_d$ et de g, l'accélération initiale **approchée** à t_l^+ . A.N.

1.2.2 Mouvement guidé

A partir de maintenant et pour toute la suite du mouvement sur le disque, la pièce est contrainte à se déplacer suivant $\mathbf{e}_{\mathbf{x}}$.

- a. Etablir l'équation horaire du mouvement de M. On exprimera x, y et z en fonction de a, ω_l , t_l et
- $\delta = \mu_d / \mu_s$.
- b. Déterminer alors, en fonction de ω_l , r = R/a, δ et α , l'instant t_s où la pièce arrive au bord du disque. A.N.: calculer pour $\alpha = \alpha_r$ l'instant d'arrivée au bord t_b et la durée du mouvement $\tau = t_b - t_r$.
- c. Donner l'expression de l'évolution temporelle de la force de contact **R**. A.N. : la calculer à t_b .

2. Sortie du disque

2.1 On s'intéresse ici aux conditions initiales du mouvement de M par rapport au sol (référentiel \mathcal{R}_0).

- a. Dans les conditions du mouvement guidé, calculer la vitesse V_s de M par rapport à \mathcal{R} dans la base de \mathcal{R} . Commenter ce résultat. A.N.
- b. Calculer l'angle φ_s qu'elle fait avec $\mathbf{e}_{\mathbf{x}_0}$. A.N. : calculer sa valeur φ_r pour $\alpha = \alpha_r$ (on précisera le nombre de tours complets effectués).
- c, Soit V_0 la vitesse de M par rapport à \mathcal{R}_0 . Calculer sa norme V_0 . A.N.
- d. Calculer l'angle θ qu'elle fait avec l'axe $\mathbf{e}_{\mathbf{x}_0}$. A.N.: calculer sa valeur θ_r pour $\alpha = \alpha_r$.

2.2 On désigne désormais par $t_0 = 0$ l'instant origine où la pièce quitte le disque. Son point de sortie M_0 est choisi comme origine du référentiel du laboratoire : $\mathcal{R}_0' = (M_0, \mathbf{e}_{\mathbf{x}_0}, \mathbf{e}_{\mathbf{y}_0}, \mathbf{e}_{\mathbf{z}})$.

Le disque a été accéléré avec une accélération angulaire α de telle sorte que la vitesse de M à l'instant t_0 soit parallèle à $\mathbf{e}_{\mathbf{x}_0}$ et de même sens : $\mathbf{V}_0 = V_0 \mathbf{e}_{\mathbf{x}_0}$ avec $V_0 > 0$.

On prendra pour les applications numériques $V_0 = 10 \text{ m/s}$.

- a. Déterminer la vitesse V_{1^-} en M_1 à l'instant où le point M entre en contact avec le sol. On donnera sa norme et ses composantes dans \mathcal{R}_0 '. A.N.
- b. Calculer la durée de la chute τ_c . A.N.
- c. Calculer alors la distance horizontale parcourue d_0 . A.N.

THERMODYNAMIQUE

DIVERSES TRANSFORMATIONS REVERSIBLE D'UN GAZ PARFAIT

- Dans tout le problème, on considèrera l'unité de masse du gaz parfait étudié (par exemple 1 kg). On mesurera les quantités de chaleur en joules ; les quantités de chaleur et de travail seront comptées positivement lorsqu'elles seront reçues par le système.
- On rappelle que dans une transformation réversible d'un fluide, la quantité de chaleur mise en jeu δQ (c'est-à-dire échangée avec le milieu extérieur) s'écrit sous les formes :
 - $\delta Q = c_{\rm v} dT + l d{\rm v}$ (lorsque la température varie de dT et le volume de $d{\rm v}$)
 - $\delta Q = c_n dT + h dp$ (lorsque la température varie de dT et la pression de dp)

Avec
$$l = T \left(\frac{\partial p}{\partial T} \right)_{v}$$
, $h = -T \left(\frac{\partial v}{\partial T} \right)_{p}$, $\gamma = \frac{c_{p}}{c_{v}}$

 c_p et c_v sont des grandeurs constantes indépendantes de la température; $c_p - c_v = r$ pour un gaz parfait.

Partie I

- 1/ En combinant l'expression pv^{γ} =constant avec l'équation d'état d'un gaz parfait, écrire les équations de l'adiabatique d'un tel gaz avec les variables p et T puis avec les variables v et T.
- Donner l'expression du travail échangé avec le milieu extérieur dans une transformation adiabatique réversible d'un gaz parfait. On souhaite que les candidats établissent cette expression.
- 2/ On considère une transformation réversible subie par le gaz parfait qui, n'étant ni isotherme ni adiabatique, peut être décrite par l'équation pv^n =constante avec n différent de γ mais indépendant de T.

Exprimer la quantité de chaleur élémentaire δQ reçue par le gaz lorsque la température varie de dT et le volume de dv. On l'exprimera en fonction de γ , n, p et dv.

- 3/ a) La relation qui vient d'être établie permet de comparer γ et n. Faire cette comparaison.
- b) A partir d'un état p_1 , v_1 , T_1 (point A) du gaz parfait, on réalise une compression adiabatique réversible du gaz qui l'amène au point B caractérisé par p_2 , v_2 , T_2 . Revenant à 1'état initial p_1 , v_1 , T_1 (point A), on réalise une compression réversible obéissant à 1 'équation pv^n = constante qui amène le gaz au point C caractérisé par p'_2 , v_2 , T'_2 .

Quelle est la disposition relative des deux courbes issues de A? Une figure claire pour chaque cas est indispensable. Comparer T_2 et T'_2 .

Partie II

1/ On considère une machine thermique qui, fonctionnant avec le gaz parfait précédent, décrit un cycle de Carnot réversible (où n'interviennent par conséquent que deux isothermes et deux adiabatiques) entre deux températures T_1 (source chaude) et T_2 (source froide).

Evaluer pour les quatre trajets en utilisant impérativement les notations indiquées sur la figure ci-contre, les travaux et les quantités de chaleur reçues par le gaz. On évaluera également pour les quatre mêmes trajets les variations d'énergie interne; on fera ensuite le bilan et on calculera le rendement du cycle.

2/ On se propose de passer de l'état initial A à l'état B du cycle précédent par un chemin direct réversible, ni isotherme ni adiabatique d'équation pv^n = constante. Evaluer le travail W et la quantité de chaleur Q échangée avec le milieu extérieur lors de cette transformation. Q s'exprimera en fonction des seules grandeurs: c_v , T_2 , T_1 , n et γ .

3/ On réalise le cycle AA'BA (avec retour par le trajet direct BA d'équation pv^n =constante). Calculer la valeur de n telle que le rendement de ce cycle soit égal au rendement du cycle de Carnot étudié en II 1/. Application numérique. - Calculer n avec les valeurs suivantes:

$$\frac{p_A}{p_{A'}} = 10$$
, $T_1 = 700$ K, $T_2 = 200$ K, $\gamma = 1.4$.

Fin de l'énoncé