ОБРАБОТКА И МОДЕЛИРОВАНИЕ ДАННЫХ В MS EXCEL

Екатерина Золотарева

ТЕМА 3. ПРОГНОЗИРОВАНИЕ

Обучение с учителем

Что нужно сделать?

Предсказать значение переменной Y (метки) на основе имеющихся данных о переменных $X_1, X_2, X_3...X_n$ (признаках) = восстановить зависимость

Как?

Минимизировать расхождение между предсказанным и истинным значением переменной Ү.

- **Функция потерь** (cost function) целевая функция, которая оценивает это расхождение
- Обучение модели (training) подбор оптимальных параметров модели за счет минимизации функции потерь

Обучение= оптимизация

Обучение модели (training) - подбор оптимальных параметров модели за счет минимизации функции потерь

Оптимизация — нахождение критических точек, среди которых нам нужны точки минимума

Различные типы критических точек

Общая схема оптимизации

- 1. Записываем функцию f(x), которую хотим оптимизировать
- 2. Берем производную f'(x)
- 3. Приравниваем производную к нулю f'(x)=0
- 4. Решаем уравнение, находим корни х*.
- 5. Среди х* находим такие, которые соответствуют минимуму

Если переменных много

- 1. Записываем функцию f(x1,x2,x3...), которую хотим оптимизировать
- 2. Берем производные по каждой переменной f'_{x1}, f'_{x2}, f'_{x3}. Набор производных это **градиент**
- 3. Приравниваем каждую из производных к нулю
- 4. Решаем систему уравнений, находим корни х1*, х2*, х3*.
- 5. Среди х* находим такие, которые соответствуют минимуму

Функция потерь

- Функция потерь (cost function) целевая функция, которая оценивает расхождение между предсказанным и истинным значением переменной Ү. Нужно найти ее минимум
- Удобно, когда функция имеет одну критическую точку, и она и есть минимум. Такая функция называется выпуклой.

Пример

Задание 12 Профильного ЕГЭ по математике

Задание 12 первой части Профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной.

Вот какие типы задач могут встретиться в этом задании:

Нахождение точек максимума и минимума функций

Исследование сложных функций

Нахождение наибольших и наименьших значений функций на отрезке

https://ege-study.ru/zadanie-12-profilnogo-EGE-po-matematike

ЛИНЕЙНАЯ РЕГРЕССИЯ

Линейная регрессия

Формализация модели

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$
, где

 $\theta_0, \, \theta_1 ... \, \theta_n$ – коэффициенты, **параметры или веса** модели

Целевая функция → min

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
 МНК в «обычной» форме

Кроме МНК могут использоваться и другие методы, например, метод максимального правдоподобия

$$J(\theta) = \frac{1}{2m} \left(X \theta - \vec{y} \right)^T \left(X \theta - \vec{y} \right)$$
 , где $h_{\theta}(X) = X \theta$ МНК в векторной форме

Линейная регрессия. Пример

	atemp	count	Scored labels	
	x	у	h=k1*x+k0	
1	12	100	160	
2	13	110	180	
3	15	320	220	
4	16	350	240	
5	18	300	280	
6	19	400	300	
7	23	430	380	
8	24	500	400	
9	25	450	420	
10	26	380	440	

Надо найти такие значения k0 и k1, для которых суммарная ошибка будет минимальна

Линейная регрессия. Пример

							k1	22,1865766
	atemp	count	Scored labels	Расхождение	Модуль	Квадрат	k0	-89,763613
Номер 🔻	x	y	h=k1*x+k0	y-h ▼	y-h ▼	(y-h)^2	x^2 ▼	x*y ▼
1	12	100	176,475306	-76,47530604	76,475306	5848,47243	144	1200
2	13	110	198,6618827	-88,66188265	88,6618827	7860,92944	169	1430
3	15	320	243,0350359	76,96496412	76,9649641	5923,6057	225	4800
4	16	350	265,2216125	84,77838751	84,7783875	7187,37499	256	5600
5	18	300	309,5947657	-9,594765724	9,59476572	92,0595293	324	5400
6	19	400	331,7813423	68,21865766	68,2186577	4653,78525	361	7600
7	23	430	420,5276488	9,472351203	9,4723512	89,7254373	529	9890
8	24	500	442,7142254	57,28577459	57,2857746	3281,65997	576	12000
9	25	450	464,900802	-14,90080203	14,900802	222,033901	625	11250
10	26	380	487,0873786	-107,0873786	107,087379	11467,7067	676	9880
	191	3340	3340	-3,41061E-13	593,44027	46627,3533	3885	69050

Надо найти такие значения k0 и k1, для которых суммарная квадратичная ошибка (выделена красным) будет минимальна

k0	k 1	b	
191	3885	69050	
10	191	3340	
Ответ			
	-89,763613		
	22,1865766		
	191 10	191 3885 10 191 Ответ - 89,763613	191 3885 69050 10 191 3340

Линейная регрессия: решение (для МНК)

Аналитически:

$$\theta = (X^T X)^{-1} X^T y$$

Повторяем до достижения критерия остановки NB! Существует много вариаций

Численные методы: градиентный спуск

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$$
 или $heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$ в «обычной» форме

$$heta:= heta-lpha
abla J(heta)$$
 или $heta:= heta-rac{lpha}{m}\,X^T(X heta-ec{y})$ вектор-градиент

в векторной форме

Градиентный спуск

https://neurohive.io/ru/osnovy-data-science/gradient-descent/

Линейная регрессия: плюсы

- Оптимальна, когда зависимость близка к линейной
- Легко масштабируется
- Подходит для «разреженных» данных
- Легко интерпретируется
- Служит основой для других алгоритмов

ОЦЕНКА КАЧЕСТВА

Регрессия: оценка качества

Средняя абсолютная ошибка (Mean absolute error)

$$MAE = \frac{\sum_{j=1}^{m} |y^{(j)} - h^{(j)}|}{m}$$

• Средняя относительная ошибка (Relative absolute error)

$$RSE = \frac{\sum_{j=1}^{m} |y^{(j)} - \mathbf{h}^{(j)}|}{\sum_{j=1}^{m} |y^{(j)} - \bar{y}|}$$

Регрессия: оценка качества

Среднеквадратичная ошибка (Root mean squared error)

$$RMSE = \sqrt{\frac{\sum_{j=1}^{m} (y^{(j)} - \mathbf{h}^{(j)})^2}{m}} = \sqrt{\frac{SSE}{m}}$$

• Относительная среднеквадратичная ошибка (Relative squared error)

$$RSE = \frac{\sum_{j=1}^{m} (y^{(j)} - h^{(j)})^2}{\sum_{j=1}^{m} (y^{(j)} - \bar{y})^2} = \frac{SSE}{SST}$$

Регрессия: оценка качества

• Коэффициент детерминации (R²)

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
, где:

$$SST = \sum_{j=1}^{m} (y^{(j)} - \bar{y})^2$$
 - общая дисперсия

$$SSR = \sum_{j=1}^{m} (\mathbf{h}^{(j)} - \bar{y})^2$$
 - объясненная дисперсия

$$SSE = \sum_{j=1}^{m} (y^{(j)} - \mathbf{h}^{(j)})^2$$
 - остатки

 R^2 принимает значения от 0 до 1, чем ближе к 1, тем лучше