Vertex of the Quadratic

Given a quadratic $x(c) = ac^2 + bc + c$ compute its value at $c_1 = -\frac{b}{2a}$ namely $X(c_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{c}_{1^+}\mathsf{h}$, namely $x(c_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = x(c_1+h) - x(c_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$X(c) = 3c^2 + 18c + 44$

800

Example 2.

