Fixed Point and Functional Iteration

Definition x is called a fixed point of a given function f if f(x) = x.

If $f: \mathbb{R} \to \mathbb{R}$ is a function, then the fixed point of f can be viewed as the intersection of the curve y = f(x) and the straight line y = x.

The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function. For instance, given a function f(x) and a root x_* such that $f(x_*) = 0$, let g(x) = x - f(x). Then $g(x_*) = x_* - f(x_*) = x_*$. That is, x_* is a fixed point for g(x). Conversely, suppose that g(x) has a fixed point at x_* . Then one may define f(x) = x - g(x) so that $f(x_*) = x_* - g(x_*) = x_* - x_* = 0$, i.e., x_* is a zero of f(x).

Functional Iteration

To determine a fixed point x_* for a continuous function f, we choose an initial point x_0 and generate a sequence of points $\{x_k\}_{k\geq 0}$ by

$$x_{k+1} = f(x_k), \quad k \ge 0.$$

This algorithm is called fixed-point iteation or functional iteration.

say,

$$\lim_{k \to \infty} x_k = x_*,$$

then, since f is continuous,

$$f(x_*) = f(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} x_{k+1} = x_*.$$

That is, x_* is a fixed point of f.

Note that Newton's method for solving g(x) = 0

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

is just a special case of functional iteration in which

$$f(x) = x - \frac{g(x)}{g'(x)}.$$

Definition A function (mapping) f is said to be contractive if there exists a constant $0 \le \lambda < 1$ such that

$$|f(x) - f(y)| \le \lambda |x - y|$$

for all x, y in the domain of f.

Theorem (Contractive Mapping Theorem) Suppose $f: D \to D$, where $D \subseteq \mathbb{R}$ is a closed set, is a contractive mapping. Then f has a unique fixed point in D. Moreover, this fixed point is the limit of every sequence obtained by

$$x_{k+1} = f(x_k)$$

with any initial point x_0 .

Theorem (Contractive Mapping Theorem) Suppose $f: D \to D$, where $D \subseteq \mathbb{R}$ is a closed set, is a contractive mapping. Then f has a unique fixed point in D. Moreover, this fixed point is the limit of every sequence obtained by

$$x_{k+1} = f(x_k)$$

with any initial point x_0 .

Proof: We first show that $\lim_{k\to\infty} x_k$ exists. Since

$$x_k = x_0 + (x_1 - x_0) + (x_2 - x_1) + \dots + (x_k - x_{k-1}) = x_0 + \sum_{i=1}^k (x_i - x_{i-1}),$$

 $\{x_k\}_{k\geq 0}$ converges if and only if $\sum_{i=1}^{\infty}(x_i-x_{i-1})$ converges and it is sufficient to show $\sum_{i=1}^{\infty}|x_i-x_{i-1}|$ converges.

Since f is contractive, we have

$$|x_{i} - x_{i-1}| = |f(x_{i-1}) - f(x_{i-2})|$$

$$\leq \lambda |x_{i-1} - x_{i-2}|$$

$$\leq \lambda^{2} |x_{i-2} - x_{i-3}|$$

$$\vdots$$

$$\leq \lambda^{i-1} |x_{1} - x_{0}|.$$

Then we have

$$\sum_{i=1}^{\infty} |x_i - x_{i-1}| \leq \sum_{i=1}^{\infty} \lambda^{i-1} |x_1 - x_0|$$

$$= |x_1 - x_0| \sum_{i=1}^{\infty} \lambda^{i-1}$$

$$= \frac{1}{1-\lambda} |x_1 - x_0|$$
 since $0 \leq \lambda < 1$.

This show that $\sum_{i=1}^{\infty} |x_i - x_{i-1}|$ is bounded, hence it converges.

the sequence $\{x_k\}_{k\geq 0}$ converges for any initial point x_0 .

Let $\lim_{k\to\infty} x_k = x_*$. Then we have showed that x_* would be a fixed point of f. (note: contractivenedd implies continuity)

To prove the uniqueness, let x and y both be fixed points of f. Then

$$|x - y| = |f(x) - f(y)| \le \lambda |x - y|.$$

Since $\lambda < 1$, this forces |x - y| = 0. That is, x = y.