1.
$$(a) \ \psi(\theta) = \frac{1}{\sqrt{27}} e^{\pm in\theta}$$
, where $n^2 = \frac{2T}{4^2} E_n$.

(b)
$$E_n = \frac{\hbar^2 n^2}{2T}$$

(e)
$$n = 0, \pm 1, \pm 2, \dots$$

(n is an integer)

2.
$$A = \sqrt{\frac{3}{4\pi}}$$

3. Y's is an eigen function of operator
$$\hat{L}^2$$
; corresponding Eigen value = $2t^2$

(a) For hydrogen atom problem, Hamitonian can be expansed as a sum of Hamiltonian for centre of mass motion and relative motion between electron and neutron.

eletive motion between
$$\frac{1}{2}$$
 Hreat $\frac{1}{2}$ In potential energy operator there is a factor operator there is a factor $\frac{1}{2}$ \frac

It is not possible to solve the Schrödinger equation by 'seperation of voriable' method in 2,4,2 co-ordinate system, which lead to invoke spherical polar co-ordinates (r,o, \$);

For, rigid notor, internuclear distance is constant, However in case of Hydrogen atom problem radius is not constant. In both cases there is contribution of angular part (Θ, ϕ) ;

12 > Total angular momentum operator.

Took and to roman and the second of

e disseption to the entiretime! and any anne application of the significant

the state of the s er romana and salada e cabi esta esta e cabe

into the interest of the