买粉名称:	伤真器配置	姓名:	严加铧	学号:	32201017			
7.4 <u>7.</u> 1.14.			<u>, , , , , , , , , , , , , , , , , , , </u>	, , ,, _	0220101	专业:	电气工程及	其自动化
						姓名:	严旭铧	
	246 . 9	上海市	7 11人士	区上		学号:	3220101731	L
	洲江	・イメ	、知了	风石		日期:	2024.3.26	
						地点:	紫金港东三。	406
课程名称:_	_电路与电子技术 2_	实验指导	老师:	张伟	成绩:_			-
实验名称:_	仪用放大电	路及其应用实	实验实	验类型:_	模电实验	同组	1学生姓名: 1	褚玘铖

实验 5 仪用放大电路及其应用实验

实验目的

- 1. 了解热电阻传感器的原理与应用;
- 掌握普通运放构成的放大电路的电路结构及设计方法; 2.
- 3. 了解仪表放大器与运算放大器的性能区别;
- 4. 掌握仪表放大器的电路结构及设计方法;
- 5. 比较各电路的测量精度分析与指标测试。

二、 实验要求

- 1. 测量单个通用运算放大器构成的差分放大电路的差模电压放大倍数和共模电压放大倍数,并计 算此电路的共模抑制比。
- 2. 用单个通用运算放大器设计一个差分放大电路,并与热电阻传感器、零点与增益调节电路、万 用表一起构成温度计,调节好电路后进行温度测量实验,测量结果记录在自拟的表格中,并以 热电阻分度表查找的温度为横坐标,测量的温度为纵坐标,画出此温度计的特性曲线并计算其 测量精度。
- 3. 用通用运算放大器设计一个仪用放大器,重复实验内容2的实验过程。

三、 实验内容

- 1. 用单个通用运算放大器设计一个差分放大电路,并与热电阻传感器、零点与增益调节电路、万 用表一起构成温度计。
 - (1) 实验原理
 - i. 热电阻传感器

实验中用到了热电阻传感器。本实验中用到的是 Pt100 热电阻温度传感器。热电阻传感器 主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检 测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、 镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。 用于测量-200℃~+500℃范围内的温度。相关参数如下:

测量范围: -200℃-+850℃ 允许偏差值 △ °C: A 级 ± (0.15+0.002|t|) \pm

B 级

(0.30+0.005|t|)

热响应时间: ≤30s 允许最大电流: ≤5mA

Pt100 热电阻分度表

温度	0	1	2	3	4	5	6	7	8	9
$^{\circ}$ C					电阻值	(Ω)				
-90	64.30	63.90	63.49	63.09	62.68	62.28	61.88	61.47	61.07	60.66
-80	68.33	67.92	67.52	67.12	66.72	66.31	65.91	65.51	65.11	64.70
-70	72.33	71.93	71.53	71.13	70.73	70.33	69.93	69.53	69.13	68.73
-60	76.33	75.93	75.53	75.13	74.73	74.33	73.93	73.53	73.13	72.73
-50	80.31	79.91	79.51	79.11	78.72	78.32	77.92	77.52	77.12	76.73
-40	84.27	83.87	83.48	83.08	82.69	82.29	81.89	81.50	81.10	80.70
-30	88.22	87.83	87.43	87.04	86.64	86.25	85.85	85.46	85.06	84.67
-20	92.16	91.77	91.37	90.98	90.59	90.19	89.80	89.40	89.01	88.62
-10	96.09	95.69	95.30	94.91	94.52	94.12	93.73	93.34	92.95	92.55
0	100.00	99.61	99.22	98.83	98.44	98.04	97.65	97.26	96.87	96.48
0	100.00	100.39	100.78	101.17	101.56	101.95	102.34	102.73	103.12	103.51
10	103.90	104.29	104.68	105.07	105.46	105.85	106.24	106.63	107.02	107.40
20	107.79	108.18	108.57	108.96	109.35	109.73	110.12	110.51	110.90	111.29
30	111.67	112.06	112.45	112.83	113.22	113.61	114.00	114.38	114.77	115.15
40	115.54	115.93	116.31	116.70	117.08	117.47	117.86	118.24	118.63	119.01
50	119.40	119.78	120.17	120.55	120.94	121.32	121.71	122.09	122.47	122.86
60	123.24	123.63	124.01	124.39	124.78	125.16	125.54	125.93	126.31	126.69
70	127.08	127.46	127.84	128.22	128.61	128.99	129.37	129.75	130.13	130.52
80	130.90	131.28	131.66	132.04	132.42	132.80	133.18	133.57	133.95	134.33
90	134.71	135.09	135.47	135.85	136.23	136.61	136.99	137.37	137.75	138.13
100	138.51	138.88	139.26	139.64	140.02	140.40	140.78	141.16	141.54	141.91
110	142.29	142.67	143.05	143.43	143.80	144.18	144.56	144.94	145.31	145.69
120	146.07	146.44	146.82	147.20	147.57	147.95	148.33	148.70	149.08	149.46

ii. 零点与增益调整电路

RW1 用于增益的调节,RW2 用于零点的调节。

iii. 测温电路实验对象

该模块包含半导体制冷器件,热电阻测量电路,冷却风扇,悬臂梁力传感器及测量电路。

本实验只使用半导体制冷器件和热电阻测量电路,半导体制冷器件用来调节温度,热电阻测量电路用于测温。

iv. 半导体制冷器件温控模块

温度测量:

R2

1K

V-

Rt

100

R1

1K

R3

91

RW

47

V+

- 1、以 Pt100 的电阻值为温度标准值。
- 2、电源为+5V 直流电压。
- 3、室温时,加+5V 电源,调节 RW 使 V+和 V-端的电压相等,使 R3+RW 的电阻值 与热电阻 Rt 的阻值相等;

然后去掉+5V 电源,将 V+和 V-两端短路,测量短路点与地之间的电阻值,乘以二即为室温时热电阻 Rt 的阻值:

对照热电阻 Pt100 的分度表,即可得到此时的室温值。

- 4、调节 RW, 使 R3+RW=100 Ω (测量电压)。
- 5、温度测量时,保持 R3+RW 的阻值 $100\,\Omega$ 不变,测量 V+与 V-两端间的电压值,可以计算热电阻 Pt100 在某个温度下的电阻值,查表得到温度实际值。

v. 测量电路的线性度

在采用直线拟合线性化时,输出输入的校正曲线与其拟合曲线之间的最大偏差,就 称为非线性误差或线性度。

通常用相对误差 γ L 表示:

γ L=±(Δ Lmax/yFS)×100%

ΔLmax - 最大非线性误差; yFS - 量程输出。

vi. 测量电路的测量精度

传感器的精度是指测量结果的可靠程度,是测量中各类误差的综合反映,测量误差越小, 传感器的精度越高。

传感器的精度用其量程范围内的最大基本误差与满量程输出之比的百分数表示,其 基本误差是传感器在规定的正常工作条件下所具有的测量误差,由系统误差和随机误差 两部分组成。

$$A = \frac{\Delta A}{Y_{E,S}} \times 100\%$$

△A ─ 测量范围内允许的最大 绝对误差

YF.S 一满量程输出

工程技术中为简化传感器精度的表示方法,引用了精度等级的概念。精度等级以一系列标准百分比数值分档表示,代表传感器测量的最大允许误差。

它是以一系列标准百分数值表示

 $(0.02,0.05,0.1, 0.2, 0.5, 1.0, 1.5,2.5,4.0\cdots)$

(2) 实验设计与仿真

i. 实验原理图

差动放大电路放大倍数为39倍,后面增益调节电路放大倍数1倍至2倍。测量时 实验箱上 GND 与 GND1 须连接在一起。需要注意的是,第一级之前需要进行输入电阻 的匹配,防止输入电阻不合适,对后续的运放和测温电路的输入电阻产生影响。

在实验开始之前,需要在尚未查分输入时调节 RW2,消除输入失调的影响。后续需要改 ii. 变 RW2 的组织来调节增益,改变相同温度对应的输出电压的大小以用于对比测试测温 的效果。

利用降温风扇对热电阻进行温度调节(实际上,降温风扇让它升温了)。用两只万用表 iii. 同时分别测量 V-和 Vout,并用手机录制视频,之后再根据视频进行数据录入。为了进 行测温效果的对比,我们将 RW1 分别调至 $3k\Omega$ 和 $8.1k\Omega$,这样得到的第二级的放大倍 数分别为 1.3 倍和 1.81 倍。

(3) 实验数据及数据处理

由于给出的 Pt100 热电阻分度表是离散的,为了更加精确地测量,我们先对其数据进行 i.

图 1 热电阻 Pt100 Rt-T 拟合直线

了线性拟合,得到了如下拟合结果:

其中 Rt/T 拟合直线的表达式为:

Rt = $0.38696T + 100.06055 (\Omega)$

由此反解出:

 $T = 2.5842Rt - 258.57983(^{\circ}C)$

由该拟合公式可以很简便地将测算得的Rt转换成温度。

ii. 室温下:

当 V+ = V-时,Rt0 = 54.1×2 = 108.2 Ω ,代入计算得到 T = 21.03 $^{\circ}$ C。当日下午的室温在 20 $^{\circ}$ C左右,比较合理。

iii. RW1 = $3k\Omega$ 时:

表 1 RW1=3kΩ 时的数据

序号	Vo/V	V-/mV	Rt/Ω	对应温度/℃	计算 V+/mV	计算 Rt/Ω	对应温度/℃
1	2.12	497.3	110.44	26.83	496.31	110.20	26.20
2	2.194	498.5	110.74	27.60	497.77	110.56	27.13
3	2.273	500	111.11	28.55	499.33	110.95	28.13
4	2.364	501.6	111.51	29.57	501.13	111.39	29.27
5	2.434	503.1	111.88	30.53	502.51	111.73	30.15
6	2.517	504.5	112.22	31.43	504.14	112.14	31.20
7	2.578	505.9	112.57	32.32	505.35	112.43	31.97
8	2.658	507.3	112.92	33.22	506.93	112.82	32.98
9	2.741	508.8	113.29	34.18	508.56	113.23	34.03
10	2.806	510	113.59	34.95	509.85	113.55	34.85
11	2.876	511.4	113.93	35.85	511.23	113.89	35.73
12	2.957	513	114.33	36.87	512.82	114.29	36.76
13	3.022	514.3	114.65	37.71	514.11	114.60	37.58
14	3.099	515.7	115.00	38.61	515.62	114.98	38.56
15	3.169	517.2	115.37	39.57	517.00	115.33	39.45
16	3.236	518.4	115.67	40.34	518.33	115.65	40.29

其中,Rt 由分压计算得到,V+由通过放大电路的放大倍数相除再加上V-得到。对应温度由拟合曲线计算出。

图 2 RW1 = 3kΩ 时的 Rt-T 拟合直线

iv. RW1 = $8.1k\Omega$ 时:

表 2 RW1 = 8.1kΩ **时的数据**

序号	Vo/V	V-/mV	Rt/Ω	对应温度/℃	计算 V+/mV	计算 Rt/Ω	对应温度/℃
1	3.203	500.5	111.23	28.87	499.87	111.08	28.47
2	3.322	502	111.61	29.83	501.56	111.50	29.55
3	3.416	503.2	111.90	30.60	502.89	111.83	30.40
4	3.534	504.8	112.30	31.62	504.56	112.24	31.47
5	3.616	506.1	112.62	32.45	505.73	112.53	32.21
6	3.723	507.3	112.92	33.22	507.24	112.90	33.18
7	3.812	508.7	113.26	34.12	508.50	113.21	33.99
8	3.909	510	113.59	34.95	509.88	113.56	34.87
9	4.018	511.4	113.93	35.85	511.42	113.94	35.86
10	4.11	512.8	114.28	36.74	512.72	114.26	36.70
11	4.222	514.2	114.63	37.64	514.31	114.66	37.71
12	4.333	515.8	115.03	38.67	515.88	115.05	38.72
13	4.419	517	115.32	39.44	517.10	115.35	39.51
14	4.51	518.3	115.65	40.28	518.39	115.67	40.34

实验名称: 仿真器配置 姓名: 严旭铧 学号: 3220101731

图 3 RW1 = 8.1kΩ 时的拟合直线

(4) 数据分析

可以发现,两次得到的结果线性度都比较好,整体来看比较精确。 测量精度计算:

当 RW1 = 3k
$$\Omega$$
 时, $A = \frac{\Delta A}{Y_{F,S}} = \frac{0.43}{50} = 0.86\%$;

$$\stackrel{\mbox{\tiny \perp}}{\equiv}$$
 RW1 = 8.1k Ω 时,A = $\frac{\Delta A}{Y_{F.S}} = \frac{0.40}{50} = 0.80\%$ 。

- 2. 用通用运算放大器设计一个仪用放大器,并与热电阻传感器、零点与增益调节电路、万用表一 起构成温度计。
 - (1) 实验原理

i. 仪用放大器

该典型电路为三运放结构,由两级放大电路组成。第一级为双端输入、双端输出的差分放大器结构,输入电阻很高;第二级为差分输入式比例放大器,从而使整体电路具有较高的共模抑制比。适用于大电阻微弱信号的放大。

由于运算放大器 A1、A2、A3 均处于放大状态,运放 A1 的反向输入端电压为 Vs1,运放 A2 的反相输入端电压为 Vs2,有:

$$\frac{Vo1-Vs1}{R2} = \frac{Vs1-Vs2}{R1} \qquad \qquad \frac{Vo2-Vs2}{R2} = \frac{Vs2-Vs1}{R1}$$

$$Vo1 = \frac{R2}{R1}(Vs1 - Vs2) + Vs1$$
 $Vo2 = \frac{R2}{R1}(Vs2 - Vs1) + Vs2$

$$Vo = Vo2 - Vo1 = -(1 + \frac{2R2}{R1})(Vs1 - Vs2)$$

仪用放大电路电压放大倍数:

若 $R_3 = R_4$. 则:

$$Av = -(1 + \frac{2R2}{R1})$$

只要调节 R1 的大小,即可方便地调整放大器的增益而并不影响电路的对称性。

(2) 实验设计与仿真

i. 实验原理图

该方案用三个运放一同搭建起一个仪用放大电路进行工作。仪用放大电路放大倍数为 41 倍,后面增益调节电路放大倍数 1 倍至 2 倍。测量时实验箱上 GND 与 GND1 须连接在一起。

由于运放和电源数较多,我们采用把所有运放连接到同一个 12V 稳压电源。所有的地(包括实验箱上的模拟地)都与稳压电源共地连接。

- ii. 与内容一同理,用风扇调温度,测 V-和 Vout,并依次调节 RW1 为 $3k\Omega$ 和 $8.1k\Omega$ 。
- (3) 实验数据与结果
 - i. RW1 = $3k\Omega$ 时:

表 3 RW1=3kΩ 时的数据

序号	Vo/V	V-/mV	Rt/Ω	对应温度/℃	计算 V+/mV	计算 Rt/Ω	对应温度/℃
1	2.439	501	111.36	29.19	500.26	111.18	28.72
2	2.528	502.7	111.78	30.28	501.93	111.59	29.79
3	2.613	504.2	112.15	31.24	503.52	111.98	30.80
4	2.713	506	112.59	32.39	505.40	112.45	32.00
5	2.8	507.5	112.97	33.35	507.03	112.85	33.05
6	2.882	509	113.34	34.31	508.57	113.23	34.03
7	2.96	510.5	113.71	35.27	510.03	113.59	34.97
8	3.036	511.9	114.06	36.17	511.46	113.95	35.88
9	3.122	513.5	114.45	37.19	513.07	114.35	36.92
10	3.171	514.5	114.70	37.84	513.99	114.58	37.51
11	3.217	515.4	114.93	38.41	514.86	114.79	38.06
12	3.297	516.9	115.30	39.38	516.36	115.16	39.03

图 4 RW1=3kΩ 时的拟合直线

ii. RW1 = $8.1k\Omega$ 时:

表 4 RW1=8.1kΩ 时的数据

TO THE OUT OF THE PARTY OF THE									
序号	Vo/V	V-/mV	Rt/Ω	对应温度	计算 V+	计算 Rt	对应温度		
1	3.529	500.3	111.19	28.74	502.05	111.62	29.86		
2	3.593	501.1	111.38	29.26	502.92	111.83	30.42		
3	3.67	502.1	111.63	29.89	503.95	112.09	31.08		
4	3.743	503.1	111.88	30.53	504.94	112.33	31.71		
5	3.81	504	112.10	31.11	505.84	112.56	32.29		
6	3.891	505	112.35	31.75	506.93	112.83	32.98		
7	3.972	506.1	112.62	32.45	508.02	113.10	33.68		
8	4.041	507.1	112.87	33.09	508.95	113.33	34.28		
9	4.11	508	113.09	33.67	509.88	113.56	34.87		
10	4.2	509.2	113.39	34.44	511.10	113.86	35.65		
11	4.266	510	113.59	34.95	511.99	114.08	36.22		
12	4.339	511	113.83	35.59	512.97	114.32	36.85		
13	4.493	513	114.33	36.87	515.04	114.84	38.19		
14	4.56	514	114.58	37.51	515.95	115.06	38.77		
15	4.645	515	114.83	38.16	517.09	115.35	39.50		
16	4.725	516.1	115.10	38.86	518.17	115.62	40.19		

实验名称: 仿真器配置 姓名: 严旭铧 学号: 3220101731

17	4.802	517.1	115.35	39.51	519.21	115.87	40.86
18	4.869	518.1	115.60	40.15	520.11	116.10	41.44
19	4.96	519.2	115.87	40.86	521.34	116.40	42.23
20	5.032	520.2	116.12	41.50	522.31	116.65	42.86

图 5 RW1=8.1kΩ 时的拟合直线

(4) 数据分析与处理

可以发现,当 $RW1 = 8.1 k\Omega$ 时,测得的温度值偏高。我们推测这是因为输出电压偏大,可能是由于未对 RW2 充分调零或者中间某个电阻由于温度或其他因素而发生改变,使得输出电压偏大。

精度计算:

当 RW1 =
$$3k\Omega$$
 时,A = $\frac{\Delta A}{Y_{F.S}} = \frac{0.49}{50} = 0.98\%$;

$$\stackrel{\underline{}_{1}}{\rightrightarrows}$$
 RW1 = 8.1k Ω 时,A = $\frac{\Delta A}{Y_{F,S}}$ = $\frac{1.36}{50}$ = 3.72%。