

Unsupervised Voice Restoration with Unconditional Diffusion Model

Anastasiia Iashchenko 123* , Pavel Andreev 1* , Ivan Shchekotov 123* , Nicholas Babaev 1 , Dmitry Vetrov 24

¹Samsung AI Center, Moscow; ²HSE University, Moscow; ³Skolkovo Institute of Science and Technology, Moscow; ⁴Artificial Intelligence Research Institute, Moscow; *equal contribution

Interspeech 2023

Unsupervised Voice Restoration

Audio restoration tasks are inverse problems with the aim to **Restore the Signal** \mathbf{x} from observations $\mathbf{y} = A(\mathbf{x})$ that have suffered a Known Type of **Degradation** A.

• e.g., bandwidth extension, declipping, and Mel-spectrogram inversion.

These problems are ill-posed in the sense that several different restorations may be equally plausible. Algorithms are typically constructed for

- A particular type of degradation using domain knowledge, and
- Data-driven generative models have also been recently proposed.

Unsupervised Voice Restoration

However, A common shortcoming is that an algorithm engineered for one type of degradation is typically **Not Useful for Others**.

To address this issue, this study introduces UnDiff, which uses a differentiable operator A to guide the **Diffusion Probabilistic Model** to solve various inverse tasks of speech processing.

- Bandwidth extension
- Declipping

- Neural vocoding
- Source separation

UnDiff showcases the latent potential in solving general inverse problems for speech processing under the premise of **Unsupervised Learning**.

Diffusion Models

cite: Score-Based Generative Modeling through Stochastic Differential Equations

Connect normal distribution and data distribution through Markov chain or stochastic differential equation (SDE).

Diffusion Models

Estimate noise ε

$$\mathbb{E}_{\mathbf{x} \sim p_{data}, \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left(\lambda(t) \| \mathbf{s}_{\theta}(\mathbf{x}_{t}, t) - \nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t}) \|_{2}^{2} \right)$$

$$= \mathbb{E}_{\mathbf{x} \sim p_{data}, \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left(\lambda(t) \| \mathbf{s}_{\theta}(\mathbf{x}_{t}, t) - \frac{\varepsilon}{\sqrt{1 - \bar{\alpha}(t)}} \|_{2}^{2} \right)$$
in VP-SDE, $\mathbf{x}_{t} = \sqrt{\bar{\alpha}(t)} \mathbf{x} + \sqrt{1 - \bar{\alpha}(t)} \varepsilon$

Inverse Problems with Diffusion Models

$$p(x|y) = rac{p(y|x)p(x)}{p(y)}$$
 $\Rightarrow
abla_{x_t} \log p(x_t|y) =
abla_{x_t} \log p(y|x_t) +
abla_{x_t} \log p(x_t)$
Unconditional Diffusion Models

Inverse Problems with Diffusion Models

$$egin{aligned} p(\mathbf{x}|\mathbf{y}) &= rac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} \ \Rightarrow &
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}) = \underbrace{
abla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) +
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t)} \ &pprox \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{\hat{x}}_0 = rac{1}{\sqrt{ar{lpha}(t)}} (\mathbf{x}_t - (1 - ar{lpha}(t))\mathbf{s}_{ heta}(\mathbf{x}_t))) \ &= -\xi(t)
abla_{x_t} \|\mathbf{y} - A(\mathbf{\hat{x}}_0)\| \end{aligned}$$

 $A(\mathbf{x})$ is a differentiable degradation operator.

Speech Inverse Tasks: Bandwidth Extension

Frequency bandwidth extension (also known as audio super-resolution) can be viewed as a realistic restoration of waveform's high frequencies.

The observation operator is a lowpass filter

$$\mathbf{y} = A(\mathbf{x}) = LPF(\mathbf{x})$$

And apply data consistency steps, where the observed low frequencies are replaced with the denoised estimate following $\mathbf{\bar{x}}_0 = \mathbf{y} + \mathbf{\hat{x}}_0 - LPF(\mathbf{\hat{x}}_0)$.

We can rewrite \mathbf{s}_{θ} using $\mathbf{\bar{x}}_{0}$

$$r \Rightarrow \mathbf{ar{s}}_{ heta} = rac{1}{1 - ar{lpha}(t)} (x_t - \sqrt{ar{lpha}(t)}ar{x}_0).$$

Speech Inverse Tasks: Declipping

What is clipping?

$$A(\mathbf{x}) = \mathbf{clip}(\mathbf{x})$$
 $= \frac{1}{2}(|\mathbf{x} + c| - |\mathbf{x} - c|)$

cite: Audio Declipping

Speech Inverse Tasks: Neural Vocoding

The majority of modern speech synthesis systems decompose this task into two stages.

- 1. Low-resolution intermediate representations (e.g., linguistic features, melspectrograms) are predicted from text data.
- 2. Transform intermediate representations to raw waveform by **Neural Vocoder**.

Vocoder:
$$\mathcal{L} = ||\mathbf{x} - \operatorname{Vocoder}(A(\mathbf{x}))||_2^2$$

Issue of Supervised Vocoder

Vocoders based on different intermediate representations **CANNOT be Used Universally**.

Speech Inverse Tasks: Neural Vocoding

The majority of modern speech synthesis systems decompose this task into two stages.

- 1. Low-resolution intermediate representations (e.g., linguistic features, melspectrograms) are predicted from text data.
- 2. Transform intermediate representations to raw waveform by **Neural Vocoder**.

Degradation Operator of Vocoding Task

$$A(\mathbf{x}) = \mathrm{Mel}(\mathbf{x})$$

Speech Inverse Tasks: Source Separation

The goal of single-channel speech separation is to extract individual speech signals from a mixed audio signal, in which multiple INDEPENDENT speakers are talking simultaneously.

$$p(x^{(1)},x^{(2)}|y) = p(x^{(1)}|y)p(x^{(2)}|y) = rac{p(y|x^{(1)},x^{(2)})p(x^{(1)})p(x^{(2)})}{p(y)}
onumber \
abla_{x_t^{(1)}} \log p(x_t^{(1)}|y) =
onumber \
onumber \$$

Specifically, note that y depends only the sum of x1 and x2,

Speech Inverse Tasks: Source Separation

$$p(y|x_t^{(1)},x_t^{(2)}) = p(y|x_t^{(1)}+x_t^{(2)}) = \mathcal{N}(y;rac{1}{\sqrt{ar{lpha}(t)}}(x_t^{(1)}+x_t^{(2)}),rac{2(1-ar{lpha}(t))}{ar{lpha}(t)})$$

$$\log p(y|x_t^{(1)},x_t^{(2)}) = -rac{1}{2}rac{arlpha(t)(y-rac{1}{\sqrt{arlpha}(t)}(x_t^{(1)}+x_t^{(2)}))^2}{2(1-arlpha(t))} + C$$

$$\phi
ightarrow
abla_{x_t^{(1)}} \log p(y|x_t^{(1)},x_t^{(2)}) = rac{\sqrt{ar{lpha}(t)}(y-rac{1}{\sqrt{ar{lpha}(t)}}(x_t^{(1)}+x_t^{(2)}))}{2(1-ar{lpha}(t))}.$$

 $abla_{x_t^{(1)}} \log p(y|x_t^{(1)},x_t^{(2)})$ and $abla_{x_t^{(2)}} \log p(y|x_t^{(1)},x_t^{(2)})$ can be derived without the need to compute the gradient of $\|\mathbf{y}-A(\mathbf{x}_t)\|_2^2$.

Architecture of Diffusion Model

Diffwave

cite: DiffWave: A Versatile Diffusion Model for Audio Synthesis

FFC-AE

Experiments

Table 2: Results of bandwidth extension (BWE) on VCTK.

Model	Supervised	WV-MOS	LSD	MOS		
Ground Truth	-	4.17	0	4.09 ± 0.09		
BWE 2kHz →8kHz						
HiFi++ [15]	✓	4.05	1.09	3.93 ± 0.10		
Voicefixer [31]	\checkmark	3.67	1.08	3.64 ± 0.10		
TFiLM [32]	\checkmark	2.83	1.01	2.71 ± 0.10		
UnDiff (Diffwave)	×	3.48	0.96	3.59 ± 0.11		
UnDiff (FFC-AE)	×	3.59	1.13	3.50 ± 0.11		
Input	-	2.52	1.06	2.42 ± 0.09		
BWE 4kHz →8kHz						
HiFi++ [15]	✓	4.22	1.07	$\overline{4.04 \pm 0.10}$		
Voicefixer [31]	\checkmark	3.95	0.98	3.92 ± 0.10		
TFiLM [32]	\checkmark	3.46	0.83	3.43 ± 0.10		
UnDiff (Diffwave)	×	4.00	0.76	3.74 ± 0.11		
UnDiff (FFC-AE)	×	3.88	0.96	3.72 ± 0.10		
Input	-	3.34	0.85	3.39 ± 0.10		

Table 3: Results of declipping (input SNR = 3 db) on VCTK.

Model	Supervised	WV-MOS	SI-SNR	MOS
Ground Truth	-	3.91	-	3.84 ± 0.11
A-SPADE [33]	×	2.63	8.48	2.67 ± 0.11
S-SPADE [34]	×	2.69	8.50	2.55 ± 0.11
Voicefixer [31]	\checkmark	2.79	-22.58	2.98 ± 0.12
Undiff (Diffwave)	×	3.62	10.57	$\textbf{3.59} \pm \textbf{0.12}$
Undiff (FFC-AE)	×	3.01	7.35	3.06 ± 0.12
Input	-	2.30	3.82	2.19 ± 0.09

Table 4: Results of neural vocoding (LJ speech dataset).

Model	Supervised	WV-MOS	MOS
Ground Truth	-	4.32	4.26 ± 0.07
HiFi-GAN (V1) [18] Diffwave [10] Griffin-Lim [35]	✓ ✓ ×	4.36 4.19 3.30	4.23 ± 0.07 4.15 ± 0.07 3.46 ± 0.08
Undiff (Diffwave) Undiff (FFC-AE)	×	3.99 4.08	3.79 ± 0.08 4.12 ± 0.07

Experiments: Source Separation

Table 5: *Results of source separation (VCTK dataset).*

Model	Supervised	SI-SNR	STOI
Mixture (input)	-	-0.04	0.69
Undiff (Diffwave)	×	5.73	0.79
Undiff (FFC-AE)	×	3.39	0.76
Conv-TasNet [36]	✓	15.94	0.95

Although Undiff is able to correctly separate voices in local regions, it mixes different voices within one sample.

Figure 1: Failure case of source separation with Undiff model.

Conclusions

- The results highlight the potential of the Unconditional Diffusion Models to serve as general voice restoration tools.
- Enabling models to produce globally coherent voices during source separation could be An interesting directions for future work.