Relatório Trabalho Inteligência Artificial AV1

Aluno: Diego Castelo (2214642)

Professor: Vasco Furtado

Descrição das heurísticas escolhidas

Heurística 1: Quantidade de peças na posição correta

O próximo estado escolhido será o que tem mais peças nas posições corretas de acordo com o estado final.

Estratégia de busca que implementei junto com a heurística 1: O próximo estado não pode ser o mesmo que o anterior.

Essa heurística foi escolhida para que o algoritmo não entre em um loop facilmente quando o próximo melhor estado for igual ao anterior.

Heurística 2: Distância de Manhattan

É a soma das distâncias horizontais e verticais entre dois pontos se movendo somente na vertical e horizontal.

Comparativo dos resultados obtidos

Buscas Cegas:

Algoritmo	Memória (tamanho da lista)	Tempo	Movimentos
Busca Largura	17289	3.3304779529571533 s	19
Busca Profundidade	100000+ e estourou	infinito	infinito
Busca Iterativa em Profundidade	30	1.822007417678833 s	19

Buscas Heurísticas:

Algoritmo	Memória (tamanho da lista)	Тетро	Movimentos
Guloso com Heurísticas	8	0.025453567504882812 s	8
Hill Climb	3	0.0046617984771728516 s	5

Buscas Cegas:

1	2	3	4	1	2	3	4
9	12	13	5	12	13	14	5
b	15	14	7	11	b	15	6
11	10	6	8	10	9	8	7

Algoritmo	Memória(tamanho da lista)	Тетро	Movimentos
Busca Largura	31009	2.5101952552795 41s	12
Busca Profundidade	100000+ e estourou	infinito	infinito
Busca Iterativa em Profundidade	30	3.9665176868438 72 s	12

Buscas Heurísticas:

1	2	3	4
12	15	13	5
10	11	14	7
b	9	6	8

1	2	3	4
12	13	14	5
11	b	15	6
10	9	8	7

Algoritmo	Memória(tamanho da lista)	Тетро	Movimentos
Guloso com Heurísticas	tende ao infinito	tende ao infinito	tende ao infinito
Hill Climb	tende ao infinito	tende ao infinito	tende ao infinito

Conclusão:

As buscas cegas tendem a manter um padrão no consumo de memória e de tempo nos casos apresentados. Vimos que usar a busca por profundidade nesse caso é bem ruim porque tende ao infinito (testando várias vezes o código se tornava bem comum), por isso foi levantado que o uso desse tipo de busca para esse problema é equivocado.

Por conta de terem complexidades de tempo e espaço idênticas, pudemos observar que a busca por largura e a busca iterativa por profundidade desempenharam quase idênticas em ambos os casos das 8 peças e das 15 peças.

No caso das buscas por heurísticas pudemos ver uma disparidade grande entre os dois casos. No caso das 8 peças acredito que o resultado tenha sido satisfatório já que as heurísticas do algoritmo guloso não são tão elaboradas, já a do Hill Climbing é um pouco mais performática. Já nos casos de 15 peças o resultado foi falho, o principal motivo de que está tendendo ao infinito foi a má construção dessas heurísticas resultando na não solução de casos que deveriam ser "simples", o resultado deveria ter sido parecido com a das 8 peças.

Então podemos concluir que o resultado da implementação dos algoritmos foi um sucesso para as buscas cegas, mas para a busca com heurística foi falha em casos mais complexos como o das 15 peças.