数计院 2011 级 1 班《数学分析》期中考试卷

出卷人 戴道清

2011年11月18日*

1. 用 ε -N 或 ε -δ 语言证明下列极限. $(2 \times 5 \, f)$

(1)
$$\lim_{n \to \infty} \left(\sin \sqrt{n+1} - \sin \sqrt{n} \right) = 0$$

(2)
$$\lim_{x \to 1} \sqrt{\frac{7}{16x^2 - 9}} = 1$$

2. 求下列极限. (5×5分)

(1)
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \frac{3}{n^2 + n + 3} + \dots + \frac{n}{n^2 + n + n} \right).$$

(2)
$$\lim_{n \to \infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3} \right)^n (a, b, c > 0).$$

(3)
$$\lim_{n \to \infty} \sin^2 \left(\pi \sqrt{n^2 + n} \right)$$
.

(4)
$$\lim_{x\to 0} x \left[\frac{1}{x}\right]$$
 ([x] 表示不超过 x 的最大整数).

(5)
$$\lim_{x \to 0} \frac{x(1-\cos x)}{(1-e^x)\sin x^2}$$

3. 计算下列各题. (4×6分)

(1)
$$y = \frac{1+x^2}{1-x^2}$$
, $x y'$.

(2)
$$y = x^3 \sin(2x)$$
, $\Re y^{(10)}$.

(4)
$$y = e^{-x} \cos x$$
, $\Re d^2 y$.

4. (8 分) 证明曲线
$$\begin{cases} x = a(\cos t + t \sin t), \\ y = a(\sin t - t \cos t), \end{cases}$$
 上任一点的法线到原点的距离恒等于 a .

5.
$$(8 \, f)$$
 定义序列 $\{a_n\}_{n=1}^{\infty}$ 为: $a_1 = a > 0$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n}\right)$, $n = 1, 2, \cdots$. 讨论此序列的敛散性. 若其收敛, 则求出其极限值.

6. (10 分) 证明: 若函数 $f:[a,b] \to [a,b]$ 连续, 则方程 f(x) = x 在 [a,b] 上至少有一个不动点, 即存在 $x_0 \in [a,b]$, 使得 $f(x_0) = x_0$.

^{*}指录入时间

7. (8+7分)

- (1) 证明: 若序列 $\{x_n\}$ 收敛,则对任意给定的 $\varepsilon > 0$,存在 $N \in \mathbb{N}^+$,使得当 m,n > N 时,都有 $|x_m x_n| < \varepsilon$. 并试以此证明序列 $\{\sin n\}$ 发散.
- (2) 对 Dirichlet 函数

$$D(x) = \begin{cases} 1, & x \text{ 为有理数,} \\ 0, & x \text{ 为无理数,} \end{cases}$$

证明: D(x) 在 \mathbf{R} 上处处不连续. 进一步, 是否存在 \mathbf{R} 上的实函数 f(x), 使得其仅在 x=0 处连续而 在其余点均间断? 若存在, 请举列说明; 若不存在, 请证明之.

数计院 2011 级 2 班《数学分析》期中考试卷

出卷人 黄煜

2011年11月19日*

1. (10 分) 已知
$$f'(x_0)$$
 存在, 求 $\lim_{\Delta x \to 0} \frac{f(x_0 + 4\Delta x) - f(x_0 - 2\Delta x)}{\Delta x}$.

3. 求下列数列极限. (2×5分)

(1)
$$\lim_{n \to \infty} \frac{n^{\frac{2}{3}} \sin n^2}{n+1}$$
.

(2)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$

4. 证明数列
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 收敛.

5. 求下列函数极限. (3×5分)

(1)
$$\lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\frac{3}{\cos x}}$$
.

(2)
$$\lim_{x \to 0^+} \frac{x}{\sqrt{1 - \cos x}}$$

(3)
$$\lim_{x \to 0} \frac{\ln(1+x) - x}{\cos x - 1}$$
.

6. (10 分) 己知
$$f(x) = \begin{cases} \frac{\ln(1+x)}{x}, & x > 0, \\ 1, & x = 0, 证明 f(x) 在 x = 0 处连续. \\ \frac{\sqrt{1+x} - \sqrt{1-x}}{x}, & x < 0, \end{cases}$$

- 7. (10 分) 若 f(x) 在 [a,b] 连续, 恒正, 证明 $\frac{1}{f(x)}$ 在 [a,b] 连续.
- 8. (5 分) 若 $\forall x \in \mathbf{R}$, 有 f'(x) = kf(x), 求 f(x).
- 9. $(10 \, \text{分}) f$ 在 [a,b] 可导, 证明: $\exists \varepsilon \in (a,b)$ 使得 $3\varepsilon^2 \big(f(a) f(b) \big) = \big(b^3 a^3 \big) f'(\varepsilon)$.
- 10. (10 分) $\lim_{x\to a^-} f(x) = A$ 的充要条件是: 对于任意的严格单调上升且以 a 为极限的数列 $\{x_n\}$ 均有 $\lim_{n\to\infty} f(x_n) = A$.

^{*}指录入时间

数计院 2011 级 3, 4 班《数学分析》期中考试卷

出卷人 何伟弘

2011年11月15日*

1. (10分)

- (1) 设有数列 $\{x_n\}$ 和常数 A, 如果 A 的任意邻域 $(A-\varepsilon,A+\varepsilon)$ 内都包含有 $\{x_n\}$ 的无穷多项,问 $\lim_{n\to\infty}x_n=A$ 吗? 肯定则给出证明,否定则举出反例说明.
- (2) 若 $\lim_{x\to +\infty} f(x)g(x)=0$, 且 g(x) 有界, 则 $\lim_{x\to \infty} f(x)=0$ 吗? 肯定则给出证明, 否定则举出反例说明.
- 2. (10 分) 设 $f(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 2, & 1 < x \le 2, \end{cases}$ g(x) = f(2x) + f(x+1), 写出 g(x) 的定义式, 并作出 g(x) 的图形.
- 3. (10 分) 求 a, 使 $y = ax^2 与 y = \ln x$ 相切, 并求出切点处的切线方程.
- 4. (10 分) 设 C > 0, $x_1 = \sqrt{C}$, $x_{n+1} = \sqrt{C + x_n}$, 证明 $\lim_{n \to \infty} x_n$ 存在并求其最大值.
- 5. $(10 \, \text{分})$ 讨论函数 $y = \frac{1}{1 e^{\frac{x}{x-1}}}$ 的间断点 (类型).
- 6. (30分) 计算
 - (1) 设 $y = \tan(x+y)$, 求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.
 - (2) 设 $\begin{cases} y = \ln \tan \frac{t}{2} + \cos t, \\ x = \sin t, \end{cases} \stackrel{\text{d}y}{\Rightarrow} \frac{d^2y}{dx} \Big|_{x=\frac{1}{2}} \approx \frac{d^2y}{dx^2}.$
 - (3) 已知 $\lim_{x \to +\infty} ((x^5 + 7x^4 + 2)^c x)$ 存在且不为 0, 确定 c 并求出极限值.

 - (5) $\lim_{x \to +\infty} \ln(1+2^x) \ln\left(1+\frac{3}{x}\right).$
- 7. $(10 \, f)$ 讨论函数 $f(x) = \lim_{n \to +\infty} \sqrt[n]{2 + (2x)^n + x^{2n}}$ 在 $[0, +\infty)$ 上的连续性及其导函数.
- 8. (10 分) 证明 Darboux 定理: 若 f(x) 在 [a,b] 可导, $f'(a) \neq f'(b)$, c 为介于 f'(a) 与 f'(b) 之间的实数, 则存在 $\xi \in (a,b)$ 使得 $f'(\xi) = c$.
- 9. (10 分) (选做) 设 f(x) 在 x = 0 点连续, f(0) = 0, 且 $\lim_{x \to 0} \frac{f(2x) f(x)}{x} = A$, 求证 f'(0) = A.

^{*}指录入时间

数计院 2011 级 5 班《数学分析》期中考试卷

出卷人 张海樟

2011年11月21日*

1. (8 分) 用 ε-δ 语言求极限
$$\lim_{x\to 1} \frac{1+x^2}{x+1}$$
.

2. (20分) 求下列极限:

(1)
$$\lim_{n \to \infty} \frac{4 - n + n^2 - 2n^3}{n^2 + n^3}$$

(2)
$$\lim_{n \to \infty} \sqrt[n]{1 + 3^n + 5^n}$$

(3)
$$\lim_{x \to \pi} \frac{\sin x}{\sqrt{x} - \sqrt{\pi}}$$

(4)
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x}$$

(5)
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x-1}\right)^{3x-1}$$

(6)
$$\lim_{x \to 0} \frac{\cos 4x - \cos 2x}{x^2}$$

(7)
$$\lim_{x \to a} \frac{a^x - x^a}{x - a} \ (a > 0)$$

3. (10分)选择做下列两小题中的一题.

(1) 设
$$x_1 = 1$$
, $x_{n+1} = \frac{x_n + 2}{3 + x_n}$. 求证: x_n 收敛并求其极限.

(2) 设
$$c$$
 为一正常数, $x_1 = 1$, $x_{n+1} = \frac{c}{n} \cdot x_n$. 求证: x_n 收敛并求其极限.

4. (8 分) (函数极限的保序性) 设
$$\lim_{x\to x_0}f(x)=a,$$
 $\lim_{x\to x_0}g(x)=b$ 且存在 $\delta>0$ 使得

$$f(x) \leqslant g(x), \quad \forall \, 0 < |x - x_0| < \delta.$$

求证: $a \leq b$.

5. (18 分) 求下列函数的高阶导数 $\frac{\mathrm{d}y}{\mathrm{d}x}$:

(1)
$$y = e^x \tan x$$

(2)
$$y = \frac{(1+x^3)(x^4+2-\sin x)}{x^2+e^x}$$

(3)
$$y = \frac{x^2 - x + 1}{e^x + 1}$$

^{*}指录入时间

(4)
$$y = x^{\ln(\pi + \arcsin x)}$$

(5)
$$x = e^{3t} \cos^2 t$$
, $y = e^{3t} \sin^2 t$

(6)
$$\arctan \frac{y}{x} = \ln \sqrt[3]{x^2 + y^2}$$

6. (16分) 求下列函数的高阶导数:

(1)
$$y = \frac{1}{x^2 - 2x - 3}$$
, $\Re y^{(n)}$.
(2) $y = \frac{x}{\sqrt{1 - x}}$, $\Re y^{(n)}$.

(2)
$$y = \frac{x}{\sqrt{1-x}}, \ \Re y^{(n)}.$$

(3)
$$y = x^2 \sin 2x$$
, $\Re y^{(30)}$.

(4)
$$e^{xy} - xy + 3 = 0$$
, $\Re y^{(2)}$.

7. (10 分) 设 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, 其中 a, b 为有限实数. 记

$$u_n = \frac{x_1 y_n + x_2 y_{n-1} + \dots + x_{n-1} y_2 + x_n y_1}{n}.$$

求证: $\lim_{n\to\infty} u_n = ab$.

8. (10 分) 设 f 为从闭区间 [0,1] 到 [0,1] 的连续函数 (即 f 的值域包含于 [0,1] 中). 求证: f 在 [0,1] 有不动 点, 即证明存在 $\xi \in [0,1]$ 使得 $f(\xi) = \xi$.

9. (附加题, 3分) 分析 Riemann 函数

$$f(x) = \begin{cases} \frac{1}{p}, & \text{若 } x = \frac{p}{q}, p, q \text{ 为互质正整数,} \\ 0, & \text{若 } x \text{ 为无理数} \end{cases}$$

在 (0,1) 的连续性.

Midterm Exam for Mathematical Analysis, Fall 2011, Sun Yat-sen University 2:30-5:00pm, Thursday, November 10th, 2011

1. (8 pts) Find the limit $\lim_{x\to 1} \frac{1+x^2}{x+1}$ by the $\varepsilon-\delta$ language.

Proof: We shall show that the limit is 1. To this end, observe that

$$\left| \frac{1+x^2}{x+1} - 1 \right| = \frac{|x|}{|1+x|} |x-1|.$$

When 0 < |x - 1| < 1, we have 0 < x. In this case,

$$\frac{|x|}{|1+x|} = \frac{x}{1+x} < 1,$$

which follows that

$$\left| \frac{1+x^2}{x+1} - 1 \right| \le |x-1|.$$

Therefore, for any $\varepsilon > 0$, it suffices to choose $\delta = \min\{1, \varepsilon\}$.

2. (20 pts) Find the following limits. (Show your work!):

(2.1)
$$\lim_{n \to \infty} \frac{4 - n + n^2 - 2n^3}{n^2 + n^3}$$
 (2.2)
$$\lim_{n \to \infty} \sqrt[n]{1 + 3^n + 5^n}$$

(2.1)
$$\lim_{n \to \infty} \frac{4 - n + n^2 - 2n^3}{n^2 + n^3}$$
 (2.2)
$$\lim_{n \to \infty} \sqrt[n]{1 + 3^n + 5^n}$$
 (2.3)
$$\lim_{x \to \pi} \frac{\sin x}{\sqrt{x} - \sqrt{\pi}}$$
 (2.4)
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x} - 1}{x}$$

(2.3)
$$\lim_{x \to \pi} \frac{\sin x}{\sqrt{x} - \sqrt{\pi}}$$
(2.4)
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x - 1}}{x}$$
(2.5)
$$\lim_{x \to \infty} \left(\frac{2x + 3}{2x - 1}\right)^{3x - 1}$$
(2.6)
$$\lim_{x \to 0} \frac{\cos 4x - \cos 2x}{x^2}$$

(2.7)
$$\lim_{x \to a} \frac{a^{x} - x^{a}}{x - a} \quad (a > 0).$$

• (2.1)

$$\lim_{n \to \infty} \frac{4 - n + n^2 - 2n^3}{n^2 + n^3} \lim_{n \to \infty} \frac{\frac{4}{n^3} - \frac{1}{n^2} + \frac{1}{n} - 2}{\frac{1}{n} + 1} = -2.$$

• (2.2) As $5^n < 1 + 3^n + 5^n < 3 \times 5^n$

$$5 < \sqrt[n]{1+3^n+5^n} \le 5\sqrt[n]{3}.$$

By $\lim_{n\to\infty} \sqrt[n]{3} = 1$ and the squeeze theorem, $\lim_{n\to\infty} \sqrt[n]{1+3^n+5^n} = 5$.

• (2.3)

$$\lim_{x \to \pi} \frac{\sin x}{\sqrt{x} - \sqrt{\pi}} = \lim_{x \to \pi} \frac{\sin x - \sin \pi}{x - \pi} (\sqrt{x} + \sqrt{\pi}) = (\sin x)' \big|_{x = \pi} (2\sqrt{\pi}) = -2\sqrt{\pi}.$$

• (2.4)

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = \lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x - 0} = \left(\sqrt[3]{1+x}\right)' \Big|_{x = 0} = \frac{1}{3}.$$

• (2.5) $\lim_{x \to \infty} \left(\frac{2x+3}{2x-1} \right)^{3x-1} = \lim_{x \to \infty} \left(1 + \frac{4}{2x-1} \right)^{\frac{2x-1}{4} \frac{4(3x-1)}{2x-1}} = e^6.$

• (2.6)
$$\lim_{x \to 0} \frac{\cos 4x - \cos 2x}{x^2} = \lim_{x \to 0} \frac{-2\sin(3x)\sin(x)}{x^2} = \lim_{x \to 0} -6\frac{\sin(3x)\sin(x)}{3x} = -6.$$

• (2.7)
$$\lim_{x \to a} \frac{a^x - x^a}{x - a} = (a^x - x^a)' \Big|_{x = a} = a^a \ln a - aa^{a-1} = a^a (\ln a - 1).$$

3. (10 pts) Do one and only one of the following two questions:

- (3.1) Let $x_1 = 1$ and $x_{n+1} = \frac{x_n + 2}{3 + x_n}$. Prove that x_n converges and find the limit.
- (3.2) Let c be a positive constant, $x_1 = 1$ and $x_{n+1} = \frac{c}{n}x_n$. Show that x_n converges and find the limit.
 - (3.1) Note that $x_2 = \frac{3}{4} < 1 = x_1$. We notice that for $n \ge 2$

$$x_{n+1} - x_n = \frac{x_n + 2}{3 + x_n} - \frac{x_{n-1} + 2}{3 + x_{n-1}} = \frac{x_n - x_{n-1}}{(3 + x_n)(3 + x_{n-1})}.$$

It can then be shown by induction that x_n is decreasing. Clearly, $0 < x_n < 1$. By the bounded monotone convergence theorem, x_n converges. Denote by a the limit. Then

$$a = \frac{2+a}{3+a},$$

which together with $0 \le a \le 1$ yields that $a = \sqrt{3} - 1$.

• (3.2) Clearly, $x_n > 0$ for all $n \in \mathbb{N}_+$. For n > [c], c/n < 1. Thus, $x_{n+1} = \frac{c}{n}x_n < x_n$. It implies that x_n is decreasing after excluding some finite terms. By the bounded monotone convergence theorem, x_n converges. Denote by a the limit. Then

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{c}{n} x_n = \lim_{n \to \infty} \frac{c}{n} \lim_{n \to \infty} x_n = 0 \cdot a = 0.$$

4. (8 pts) Suppose that $\lim_{x\to x_0} f(x) = a$, $\lim_{x\to x_0} g(x) = b$, and there exists $\delta > 0$ such that

$$f(x) < q(x), \ \forall \ 0 < |x - x_0| < \delta.$$

Show that $a \leq b$.

Proof: Assume to the contrary that a > b. Then for $\varepsilon_0 = \frac{a-b}{2}$, there exists some $\delta > 0$ such that for $0 < |x - x_0| < \delta$

$$|f(x) - a| < \varepsilon_0 = \frac{a - b}{2} \Rightarrow f(x) > a - \frac{a - b}{2} = \frac{a + b}{2}$$

and

$$|g(x) - b| < \varepsilon_0 = \frac{a - b}{2} \Rightarrow g(x) < b + \frac{a - b}{2} = \frac{a + b}{2}.$$

The above two equation contradicts the assumption that $f(x) \leq g(x)$ when x is sufficiently close to x_0 .

5. (18 pts) Find first order derivatives $\frac{dy}{dx}$ of the following functions:

(5.1)
$$y = e^x \tan x$$

$$(5.2) \quad y = \frac{(1+x^3)(x^4+2-\sin x)}{x^2+e^x}$$

(5.3)
$$y = \frac{x^2 - x + 1}{e^x + 1}$$
 (5.4) $y = x^{\ln(\pi + \arcsin x)}$

(5.5)
$$x = e^{3t} \cos^2 t, \ y = e^{3t} \sin^2 t$$
 (5.6) $\arctan \frac{y}{x} = \ln \sqrt[3]{x^2 + y^2}.$

•
$$(5.1)$$
 $y' = e^x \tan x + \frac{e^x}{\cos^2 x}$

• (5.2)

$$\ln|y| = \ln|1 + x^3| + \ln(x^4 + 2 - \sin x) - \ln(x^2 + e^x).$$

Taking the derivative on both sides above yields

$$\frac{y'}{y} = \frac{3x^2}{1+x^3} + \frac{4x^3 - \cos x}{x^4 + 2 - \sin x} - \frac{2x + e^x}{x^2 + e^x}.$$

Thus,

$$y' = \frac{(1+x^3)(x^4+2-\sin x)}{x^2+e^x} \left(\frac{3x^2}{1+x^3} + \frac{4x^3-\cos x}{x^4+2-\sin x} - \frac{2x+e^x}{x^2+e^x}\right).$$

• (5.3)
$$y' = \frac{(2x-1)(e^x+1) - e^x(x^2-x+1)}{(e^x+1)^2}.$$

• (5.4)

$$\ln y = \ln(\pi + \arcsin x) \cdot \ln x.$$

Taking the derivative on both sides above gives

$$\frac{y'}{y} = \frac{1}{\sqrt{1 - x^2}(\pi + \arcsin x)} \ln x + \frac{\ln(\pi + \arcsin x)}{x}.$$

Therefore,

$$y' = x^{\ln(\pi + \arcsin x)} \left(\frac{\ln x}{(\pi + \arcsin x)\sqrt{1 - x^2}} + \frac{\ln(\pi + \arcsin x)}{x} \right).$$

• (5.5)

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{3e^{3t}\cos^2 t - 2e^{3t}\cos t \sin t}{3e^{3t}\sin^2 t + 2e^{3t}\sin t \cos t} = \frac{3\cos^2 t - 2\cos t \sin t}{3\sin^2 t + 2\sin t \cos t} = \frac{3 - 2\tan t}{3\tan^2 t + 2\tan t}.$$

• (5.6) Taking derivatives about x on both sides, we have

$$\frac{1}{1 + \frac{y^2}{x^2}} \frac{y'x - y}{x^2} = \frac{1}{3} \frac{1}{x^2 + y^2} (2x + 2yy').$$

By simplifying the above equation, we get

$$xy' - y = \frac{1}{3}(2x + 2yy').$$

It follows that y' = (2x + 3y)/(3x - 2y).

6. (16 pts) Find higher order derivatives of the following functions:

(6.1)
$$y = \frac{1}{x^2 - 2x - 2}$$
, find $y^{(n)}$ (6.2) $y = x^2 \sin 2x$, find $y^{(30)}$

(6.1)
$$y = \frac{1}{x^2 - 2x - 3}$$
, find $y^{(n)}$ (6.2) $y = x^2 \sin 2x$, find $y^{(30)}$ (6.3) $y = \frac{x}{\sqrt{1 - x}}$, find $y^{(n)}$ (6.4) $e^{xy} - xy + 3 = 0$, find $y^{(2)}$.

• (6.1) Note that $y = \frac{1}{4}(\frac{1}{x-3} - \frac{1}{x+1})$. Thus,

$$y^{(n)} = \frac{(-1)^n n!}{4} \left(\frac{1}{(x-3)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right).$$

• (6.2) By Leibniz's formula

$$(x^{2} \sin 2x)^{(30)} = {30 \choose 0} x^{2} (\sin 2x)^{(30)} + {30 \choose 1} (x^{2})' (\sin 2x)^{(29)} + {30 \choose 2} (x^{2})'' (\sin 2x)^{(28)}$$

$$= x^{2} 2^{30} \sin(2x + \frac{30\pi}{2}) + 60x 2^{29} \sin(2x + \frac{29}{2}\pi) + 870 \cdot 2^{28} \sin(2x + \frac{28}{2}\pi)$$

$$= -2^{30} x^{2} \sin(2x) + 60 \cdot 2^{29} x \cos(2x) + 870 \cdot 2^{28} \sin(2x).$$

• (6.3) By Leibniz's formula,

$$\left(\frac{x}{\sqrt{1-x}}\right)^{(n)} = x\left((1-x)^{-\frac{1}{2}}\right)^{(n)} + nx\left((1-x)^{-\frac{1}{2}}\right)^{(n-1)}$$

$$= x(1-x)^{-\frac{2n+1}{2}} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n} + nx(1-x)^{-\frac{2n-1}{2}} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^{n-1}}.$$

• (6.4) Taking the derivatives with respect to x on both sides, we get

$$e^{xy}(y + xy') - (y + xy') = 0,$$

which implies that

$$y' = -\frac{y(e^{xy} - 1)}{x(e^{xy} - 1)} = -\frac{y}{x}.$$

Thus,

$$y'' = -\frac{y'x - y}{x^2} = -\frac{-\frac{y}{x}x - y}{x^2} = \frac{2y}{x^2}.$$

7. (10 pts) Suppose that $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, where a, b are finite real numbers. Set

$$u_n = \frac{x_1 y_n + x_2 y_{n-1} + \dots + x_{n-1} y_2 + x_n y_1}{n}$$

Show that $\lim_{n\to\infty} u_n = ab$.

Proof: Since x_n and y_n are convergent, they are both bounded. Thus, there exists some constant M > 0 such that

$$|x_n| \le M$$
, $|y_n| \le M$ for all n .

Then $|a|, |b| \leq M$. Let $\varepsilon > 0$ be fixed. There exists some integer m > 0 such that for n > m

$$|x_n - a| \le \frac{\varepsilon}{4M}, \quad |y_n - b| \le \frac{\varepsilon}{4M}.$$

4

We then observe that for n > m

$$|u_{n} - ab| = \frac{|(x_{1}y_{n} - ab) + (x_{2}y_{n-1} - ab) + \dots + (x_{n}y_{1} - ab)|}{n}$$

$$\leq \frac{|x_{1}y_{n} - ab| + \dots + |x_{m}y_{n+1-m} - ab|}{n} + \frac{|x_{m+1}y_{n-m} - ab| + \dots + |x_{n-m}y_{m+1} - ab|}{n} + \frac{|x_{n+1-m}y_{m} - ab| + \dots + |x_{n}y_{1} - ab|}{n}.$$

For $1 \leq j \leq m$,

$$|x_j y_{n+1-j} - ab| \le M^2 + |ab| \le 2M^2$$
 and $|x_{n+1-j} y_j - ab| \le M^2 + |ab| \le 2M^2$.

For $m+1 \le j \le n-m$,

$$|x_j y_{n+1-j} - ab| \le |x_j y_{n+1-j} - a y_{n+1-j}| + |a y_{n+1-j} - ab| \le M \frac{\varepsilon}{4M} + |a| \frac{\varepsilon}{4M} \le \frac{\varepsilon}{2}.$$

By the above two equations,

$$\frac{|x_1y_n - ab| + \dots + |x_my_{n+1-m} - ab|}{n} \le \frac{2mM^2}{n},$$

$$\frac{|x_{m+1}y_{n-m} - ab| + \dots + |x_{n-m}y_{m+1} - ab|}{n} \le \frac{n - 2m}{n} \frac{\varepsilon}{2},$$

and

$$\frac{|x_{n+1-m}y_m - ab| + \dots + |x_ny_1 - ab|}{n} \le \frac{2mM^2}{n}.$$

Combining the above three estimates, we have for n > m

$$|u_n - ab| \le \frac{4mM^2}{n} + \frac{\varepsilon}{2}.$$

As $\frac{4mM^2}{n} \to 0$ as $n \to \infty$, there exists m' > 0 such that for n > m'

$$\frac{4mM^2}{n} < \frac{\varepsilon}{2}.$$

Thus, for $n > \max\{m, m'\}$, $|u_n - ab| < \varepsilon$, which completes the proof.

8. (10 pts) Let f be a continuous function from [0,1] to [0,1], that is, the range of f is contained in [0,1]. Show that f has a fixed point in [0,1], namely, show that there exists $\xi \in [0,1]$ such that $f(\xi) = \xi$.

Proof: Set g(x) = f(x) - x. Then g is continuous on [0,1]. The question reduces to show the existence of a zero of g on [0,1]. Since the range of f is contained in [0,1],

$$0 \le f(x) \le 1$$
, for all $x \in [0, 1]$.

As a consequence, $f(0) \ge 0$ and $f(1) \le 1$. It follows that $g(0) \ge 0$ and $g(1) \le 0$. By the intermediate value theorem for continuous functions, there exists some $\xi \in [0,1]$ such that $g(\xi) = 0$, or equivalently, $f(\xi) = \xi$.

9. (Bonus question, 3 pts) Analyze the continuity of the following function f on (0,1)

$$f(x) = \begin{cases} \frac{1}{p}, & \text{if } x = \frac{p}{q}, \ p, q \text{ are relatively prime positive integers,} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

Proof: We first show that for all $x_0 \in (0,1)$

$$\lim_{x \to x_0} f(x) = 0.$$

Let $\varepsilon > 0$ be fixed. We see that $|f(x) - 0| \ge \varepsilon$ only when $x = \frac{p}{q}$ and

$$\frac{1}{p} \ge \varepsilon,$$

which is equivalent to $p \leq 1/\varepsilon$. When $x = \frac{p}{q}$ and $|x - x_0| < \frac{x_0}{2}$, we must have

$$\frac{x_0}{2} < \frac{p}{a},$$

which implies that

$$q < \frac{2p}{x_0}.$$

The conclusion is that when $|x-x_0| \leq \frac{x_0}{2}$ for $|f(x)-0| \geq \varepsilon$, we must have $x=\frac{p}{q}$, and

$$p \le 1/\varepsilon, \ q < \frac{2p}{x_0} \le \frac{2}{x_0\varepsilon}.$$

Such rational points are finitely many. We denote them by x_1, x_2, \ldots, x_m (the point x_0 is not counted here). Let

$$\delta = \min\{\frac{x_0}{2}, |x_1 - x_0|, \dots, |x_m - x_0|\}.$$

For $0 < |x - x_0| < \delta$, x is not in the set $\{x_1, \dots, x_m\}$. As a result, $|f(x) - 0| < \varepsilon$. We have hence proved that

$$\lim_{x \to x_0} f(x) = 0.$$

Therefore, rational points are removable discontinuity points of f while f is continuous on irrational points.

数计院 2011 级 6 班《数学分析》期中考试卷

出卷人 冼军

2011年11月25日*

一. 填空题. (4×4分)

- 1. 函数 $f(x) = x [x], x \in (-\infty, +\infty)$ 的最小正周期为_____.
- 2. 己知函数满足 $af(x)+bf(\frac{1}{x})=\frac{c}{x},\,a,\,b,\,c$ 均为常数, $|a|\neq |b|$, 则函数 f(x)=_____.
- 3. $f(x), x \in (-\infty, +\infty)$ 如何表示成为两个非负函数之差_____.
- 4. 己知 $\lim_{x\to\infty} \left(\sqrt{ax^2+bx+c}-\alpha x-\beta\right)$ (a,b,c 为常数, a>0), 则 $\alpha=$ _____.

二. 计算和证明题. (84分)

- 1. 用定义证明: (13分)
 - (1) $\lim_{n\to\infty} \frac{1}{n^{\alpha}} = 0$, $\sharp \vdash \alpha > 0$

(2)
$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^3} = 0$$

- 2. 确定函数 $x_1>0,\,x_{n+1}=\frac{3(1+x_n)}{3+x_n},\,n=1,2,3,\cdots$,证明此数列存在极限并求极限. (7 分)
- 3. 计算下列函数极限. (5×4分)

$$(1) \lim_{n \to \infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \right)$$

$$(2) \lim_{n \to \infty} \frac{\sum_{p=1}^{n} p!}{n!}$$

(3) 求函数
$$f(x) = \frac{1}{x} - \left[\frac{1}{x}\right]$$
 在点 $x = \frac{1}{n}$ (n 为自然数) 的左、右极限.

(4)
$$\lim_{x\to 0} (1+ax)^{\frac{1}{\sin x}}$$

^{*}指录入时间

(5)
$$\lim_{n \to \infty} (1+x) (1+x^2) \cdots (1+x^{2n}), \, \sharp r |x| < 1$$

4. 讨论函数
$$f(x) = \begin{cases} \cos \frac{\pi x}{2}, & |x| \leqslant 1, \\ |x-1|, & |x| > 1 \end{cases}$$
 的连续区间与间断点. (8 分)

- 5. 求下列函数的导数或微分. (4×5分)
 - (1) $\arcsin \frac{1+2\cos x}{2+\cos x}$

(2)
$$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}$$

(3) $\ln |x-1|$

(4)
$$x^y - y^x = 1$$
, $\Re \frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

(5)
$$y = y(x)$$
 是方程
$$\begin{cases} 3t^2 + 2t + 3 = x, & \text{所确定的隐函数, 求 } \frac{d^2y}{dx^2}. \end{cases}$$

- 6. 证明 $\lim_{x \to x_0^+} f(x) = \infty$ 的充要条件是对任何数列 $\{x_n\}$ 且 $x_n > x_0, x_n \to x_0 (n \to \infty)$,都有 $\lim_{n \to \infty} f(x_n) = \infty$. (8分)
- 7. 设 f(x) 在 [a,b] 上连续,且当 f(a)=f(b),证明一定存在长度为 $\frac{b-a}{2}$ 的区间 $[\alpha,\beta]\subset [a,b]$,使得 $f(\alpha)=f(\beta)$,即在区间 $[a,\frac{b+a}{2}]$ 上一定存在 α ,使得 $f(\alpha)=f(\alpha+\frac{b-a}{2})$.