Benign Granularity in Asset Markets

Sergei Glebkin, Semyon Malamud, Alberto Teguia INSEAD EPFL UBC Sauder

FTG Meeting at UT Austin (Fall 2025)

Motivation and what we do

1. Markets are granular (concentrated)

- ► Institutional ownership rose from 29% (1980) to 76% (2015); the top 1% now hold 30% of market cap (Lewellen & Lewellen, 2021).
- ▶ Top-10 managers hold \sim 25% of equity AUM (Ben-David et al., 2021).

2. Markets are illiquid

- Koijen & Yogo (2019); Gabaix & Koijen (2025): demand shocks move prices a lot.
- 3. How do granularity and illiquidity and their interaction shape equilibrium?
 - **Need:** a model with (i) strategic trading (illiquidity), (ii) wealth effects (AUM/wealth distribution matters), (iii) heterogeneous wealth (non-degenerate distributions).
 - We develop such a model and link granularity to returns, volatility, liquidity, and welfare.

Preview of main results

- 1. **Tractable framework:** tractability(our model) ~ tractability(CARA-normal).
 - Yet we allow for: (i) wealth effects and (ii) general distributions.

2. Liquidity & strategic trading

- Strategic traders provide **more** liquidity than price-takers.
- ullet \Rightarrow Aggregate demand is more elastic; **liquidity improves** with concentration.

3. Prices, returns, volatility

- Non-competitive equilibrium outcomes are scaled by a common wedge $\varphi > 1$.
- $\mu/\mu^c = \sigma/\sigma^c = \Lambda^c/\Lambda = \varphi$.
 - \Rightarrow Concentration $\uparrow \Rightarrow$ returns \uparrow , volatility \uparrow , liquidity \uparrow .

4. Welfare & benign granularity

- Higher concentration (merger, flows from small to large) can raise all agents' utility.
- ⇒ Granularity can be benign, not always harmful.

The Model

1. Timing: two-period economy

- t = 0: traders submit demand schedules, market clears at P^* .
- t=1: dividends δ realized.

2. Agents & endowments

- Liquidity Providers (LPs) with wealth shares α_i , $\sum_i \alpha_i = 1$.
- Liquidity Demanders (LDs) with aggregate market order Q.

3. Preferences (LPs)

• Epstein–Zin with EIS = 1, RRA $\gamma > 0$:

$$U_i(c_0^i, c_1^i) = \log(\underbrace{\alpha_i w_0 - q^\top P}_{c_0^i}) + \log\left(E\left[\underbrace{q^\top \delta}_{c_1^i}\right)^{1-\gamma}\right]^{\frac{1}{1-\gamma}}\right).$$

4. Assets

- $N{+}1$ assets, payoffs δ .
- Asset 0 is risk-free with $\delta_0 = 1$.

Trading Mechanism & Equilibrium

- Trading mechanism (uniform-price double auction):
 - LPs $k \in \{1, ..., L\}$ submit demand schedules $D^k : \mathbb{R}^{N+1} \to \mathbb{R}^{N+1}$.
 - LDs submit an *market orders*. Aggregate market order $Q \in \mathbb{R}^{N+1}$.
 - Market clearing at a uniform price P^* : $\sum_{k=1}^{L} D^k(P^*) = Q$
 - All traders are fully rational and take their price impact into account

Key technical problem

1. (Generic) strategic trading FOC:

$$I_i(q_i) + \Lambda_i(q_i)q_i = Marginal Utlity(q_i).$$

- 2. Key problematic term: $\Lambda_i(q_i)q_i$
 - $\Lambda_i(q_i)$ is a *slope* of inverse residual demand, contains derivatives of demands other traders
 - With many heterogenous traders and many assets the FOC is a system of PDEs

Key technical problem

1. (Generic) strategic trading FOC:

$$I_i(q_i) + \Lambda_i(q_i)q_i = Marginal Utlity(q_i).$$

- 2. Key problematic term: $\Lambda_i(q_i)q_i$
 - $\Lambda_i(q_i)$ is a *slope* of inverse residual demand, contains derivatives of demands other traders
 - With many heterogenous traders and many assets the FOC is a system of PDEs

3. Ways out:

- Canonical way out: CARA-Normal, $\Lambda_i(q_i) = \Lambda_i = const$
- Some progress can be made without heterogeneity: FOC is a single PDE
 - Glebkin, Malamud, and Teguia (2025): PDE can be reduced to a first-order ODE
 - ullet Glebkin, Malamud, and Teguia (2023): with CARA the ODE is linear even without normality \Longrightarrow closed form solutions
- Neither symmetry nor CARA works: need wealth effects and wealth heterogeneity

Key technical trick

Ansatz:

- Scale symmetry: $I_i(q) = \beta_i I(q)$ (common shape, scaled by a scalar).
- Homogeneity: $I(tq) = t^{-1}I(q)$ (scale up quantities \Rightarrow prices scale down).

Why is it a reasonable guess? Start with a competitive case

$$\sup_{q} \left\{ \log(\alpha_i w_0 - q^\top P) + \log \left(E \left[\left(q^\top \delta \right)^{1-\gamma} \right]^{\frac{1}{1-\gamma}} \right) \right\}.$$

FOC:

$$\left(\alpha_{i}w_{0}-q^{\top}P\right)\frac{E\left[\left(q^{\top}\delta\right)^{-\gamma}\delta\right]}{E\left[\left(q^{\top}\delta\right)^{1-\gamma}\right]}=P\quad\Longrightarrow\quad I_{i}(q)=\frac{\alpha_{i}w_{0}}{2}\frac{E\left[\left(q^{\top}\delta\right)^{-\gamma}\delta\right]}{E\left[\left(q^{\top}\delta\right)^{1-\gamma}\right]}.$$

Key technical trick

1. (Generic) strategic FOC:

$$I_i(q_i) + \Lambda_i(q_i)q_i = Marginal Utlity(q_i).$$

- With many heterogenous traders and many assets the FOC is a system of PDEs
- 2. **Add scale-symmetry:** $I_i(q) = \beta_i I(q)$ (common shape, scaled by a scalar).

FOC becomes:
$$I(q) \underbrace{-k\nabla I(q)}_{=\Lambda(q)} q = \text{Marginal Utlity}(q)$$
, where k is a scalar

- single PDE for a common inverse demand I(q) that determines all demands via a simple rescaling
- 3. **Key problematic term** is now $\nabla I(q)q$
- 4. Add homogeneity: $I(tq) = t^{-1}I(q)$
 - **Euler's theorem.** Differentiate wrt to t: $\nabla I(tq)q = -t^{-2}I(q)$. Evaluate at t=1: $\nabla I(q)q = -I(q)$. PDE becomes a linear equation!

Non-competitive equilibrium

Theorem

There exists a unique scale-symmetric equilibrium with a homogeneous I(Q). The inverse demands are given by $I_i(q) = I(q/\beta_i)$. The function I(q) is given by

$$I(q) = rac{w_0}{2\phi} rac{E\left[\left(\delta^{ op}q
ight)^{-\gamma}\delta
ight]}{E\left[\left(\delta^{ op}q
ight)^{1-\gamma}
ight]}.$$

The scaling constants are given by

$$\beta_i = \alpha_i \phi + 1 - \sqrt{(\alpha_i \phi)^2 + 1}.$$

The constant ϕ is the unique positive solution to

$$\sum_{i=1}^{L} \left(\alpha_i \phi + 1 - \sqrt{\left(\alpha_i \phi \right)^2 + 1} \right) = 1.$$

Aggregate comparison: strategic vs. competitive

1. Single scaling wedge:

$$\frac{\mu_k}{\mu_k^c} = \frac{\sigma_k}{\sigma_k^c} = \frac{\Lambda_{kl}^c}{\Lambda_{kl}} = \varphi > 1$$

Returns ↑ and volatility ↑ under market power (tilt in favor of LPs).

2. Surprising part — and key mechanism — liquidity improves:

$$\frac{\Lambda_{kl}^c}{\Lambda_{kl}} = \varphi > 1$$

Similar result when the concentration improves. Empirical evidence:

- Aggregate Amihud's lambda is positively associated with changes in concentration (HHI of mutual funds AUM) ← (See empricail section)
- ullet Hedge fund closures lead to improved liquidity \leftarrow (Pugachev, 2022)

Mechanism: Why liquidity improves

Strategic FOC:

$$I_i(q_i) = \text{Marginal Utility}_i(q_i) - \Lambda_i(q_i)q_i.$$

- 1. $\Lambda_i(q_i)q_i$ increasing in $q \Rightarrow$ strategic inverse demand steeper than competitive \Rightarrow imperfect competition = less liquidity
- 2. $\Lambda_i(q_i)q_i$ decreasing in $q \Rightarrow$ strategic inverse demand flatter than competitive \Rightarrow imperfect competition = more liquidity
- 3. **CARA–Normal:** $\Lambda_i = \text{const} \Rightarrow \text{imperfect competition} = \text{less liquidity}$ (conventional wisdom).
- 4. Our case: $\Lambda_i(q_i)q_i$ decreases in $q_i \Rightarrow$ imperfect competition = more liquidity
 - Unlike CARA, EZ utility implies $c_0^i, c_1^i > 0$. \Rightarrow Expenditure $q_i^{\top} I_i(q_i)$ must be bounded. \Rightarrow Expenditure reduction $q_i^{\top} \Lambda_i q_i$ must also be bounded. \Rightarrow Impossible if $\Lambda_i(q_i)q_i$ increases in q.

11/17

Cross-section of investor behavior: Results

- 1. Larger LPs (α_i big) make larger trades and supply more liquidity in absolute terms, but have a higher price impact.
- 2. But their **turnover share** β_i grows more slowly than their wealth share α_i .
- 3. Turnover vs. wealth share: for the largest LPs, $\beta_i < \alpha_i$; for the smallest, $\beta_i > \alpha_i$.
- 4. **Empirical match:** Koijen & Yogo (2019) show that the biggest funds' turnover share is below their wealth share.

Cross-section of investor behavior: Illustration

Large-market limit and HHI

1. Herfindahl-Hirschman Index (HHI):

$$\mathrm{HHI}(L) = \sum_{i=1}^{L} \alpha_i^2, \qquad \mathrm{HHI}(\infty) = \lim_{L \to \infty} \mathrm{HHI}(L).$$

2. Proposition:

- If $HHI(\infty) = 0$: $\varphi(\infty) = 1 \Rightarrow$ competitive limit.
- If $\mathrm{HHI}(\infty) > 0$: $\varphi(\infty) > 1 \Rightarrow$ wedge persists; market power survives in large markets.

3. **Regulatory tool:**

 HHI provides a structural link between ownership concentration and the degree of competition in equilibrium.

Large-market limit — illustrative examples

1. Example 1: Equal shares

- $\alpha_i = 1/L$ for all i.
- HHI(L) = $1/L \rightarrow 0$.
- Market converges to competitive benchmark.

2. Example 2: One large + many small

- One LP has fixed share s > 0, others fragmented.
- $\mathrm{HHI}(L) \to s^2 \text{ as } L \to \infty.$
- Wedge persists: $\varphi(\infty) > 1$.

3. Example 3: Fat-tailed wealth distribution

- Wealth shares follow a heavy-tailed law (e.g., Pareto).
- HHI does not vanish even as $L \to \infty$.
- Persistent wedge: large investors retain market power.

Benign granularity: when concentration is welfare-improving

- $1. \ \ Conventional \ view: \ concentration \uparrow raises \ volatility, \ systemic \ risk, \ fragility.$
- 2. Our result: concentration \uparrow also improves liquidity, via more elastic aggregate demand.

Benign granularity: when concentration is welfare-improving

- 1. Conventional view: concentration ↑ raises volatility, systemic risk, fragility.
- 2. Our result: concentration \(\gamma \) also improves liquidity, via more elastic aggregate demand.
- 3. Welfare effect:
 - In sufficiently non-competitive markets
 - a merger of two funds can raise the utility of **all** participants.
 - Mechanism: liquidity improves ⇒ better risk-sharing and intertemporal smoothing; prices tilt in favor of remaining LPs.

Conversely, in sufficiently competitive markets, increased concentration reduces welfare (conventional view).

4. This is what we call **benign granularity**.

Conclusion

Granularity in asset markets can be benign.

- Concentration raises returns and volatility, but can **improve liquidity**.
- Welfare effects are non-monotone: in sufficiently non-competitive markets, more inequality can benefit all participants.
- Empirics: changes in mutual-fund HHI predict volatility (VIX \uparrow) and liquidity (Amihud \downarrow).
- **Bridge:** connects strategic trading models with the empirical institutional liquidity literature.
- Technical contribution: extend strategic trading to EZ preferences → tractable strategic equilibrium with wealth effects.