Echtzeitbetriebssysteme

Oliver Jack

Ernst-Abbe-Hochschule Jena Fachbereich Elektrotechnik und Informationstechnik

Sommersemester 2025

Lerneinheit 6. Scheduling-Verfahren Teil 2

- Lernziele dieser Lerneinheit
- Zuteilung nach Prioritäten
- 3 Zeitplanung periodischer Prozesse
- 4 Vergleich der Planungsverfahren
- Zusammenfassung

Lerneinheit 6. Scheduling-Verfahren Teil 2

- Lernziele dieser Lerneinheit
- 2 Zuteilung nach Prioritäten
- 3 Zeitplanung periodischer Prozesse
- 4 Vergleich der Planungsverfahren
- 5 Zusammenfassung

Lernziele

- Kenntnis weiterer Planungsverfahren.
- Kenntnis der Planung nach Prioritäten.
- Kenntnis der Planung periodischer Prozesse

Lerneinheit 6. Scheduling-Verfahren Teil 2

- Lernziele dieser Lerneinheit
- Zuteilung nach Prioritäten
- 3 Zeitplanung periodischer Prozesse
- 4 Vergleich der Planungsverfahren
- 5 Zusammenfassung

Allgemeines

Die einfachen Strategien S1 und S2 werden in der Praxis auch bei Einprozessorsystemen nicht explizit angewandt, da

- kein abgeschlossenes System der Aktionen (Alarme, Interrupts erfordern dynamische Planung)
- Bereitzeitpunkt nur bei zyklischen und Termin-Prozessen bekannt,
- Laufzeiten nicht exakt bekannt, von Daten und Umgebung abhängig
- Synchronisation, Kommunikation und gemeinsame Betriebsmittel verletzen die Forderung nach Unabhängigkeit der Aktionen

Allgemeines (Forts.)

- Bei großen Systemen Zuteilung nach festen Prioritätszahlen
- Priorität aus Wichtigkeit für den technischen Prozess und aus Abschätzungen der aktuellen Fristen oder Spielräume
- Bei gleicher Priorität meist FIFO-Strategie
- Ausreichende Leistungsreserve der CPU mittels worst-case-Betrachtungen

Allgemeines (Forts.)

- Prioritätszahlen sind meist vom Typ char im Bereich [0..255]
- Je größer die Zahl, desto höher die Dringlichkeit (z.B. LYNXOS); oft auch umgekehrt (z.B. VxWorks, PEARL, UNIX)
- Einteilung in Prioritätsgruppen, je nach Härte der Zeitbedingungen

Allgemeines (Forts.)

Wann wird umgeplant?

- Prioritätsinkonsistenz möglichst kurz
- Beim Beenden einer Aktion
- Beim Übergang einer Aktion in Wartezustand.
- Beim Eintreffen einer neuen Anforderung (neuer Prozess wird aktiv)
- Nach bestimmten Zeitintervallen Überprüfung der Situation (z.B. bei Spielraumplanung)

Prioritätsinversion (Priority inversion)

- Behinderung wichtiger Prozesse durch unwichtige darf in Echtzeitsystemen nicht auftreten, also
- Einhaltung der Prioritätssreihenfolge bei allen Anforderungen von Betriebsmitteln (CPU, Semaphore, Netzkommunikation, Puffer, Peripherie), d. h. kein Vordrängen den Warteschlangen
- Prioritätsinversion: Prozess mit niedriger Priorität blockiert einen Prozess mit höherer Priorität.

Begrenzte Inversion (Bounded inversion)

Die Inversion ist durch die Dauer des kritischen Abschnitts beschränkt.

Unbegrenzte Inversion (Unbounded inversion)

Der kritische Abschnitt wird durch weitere Prozesse auf unbestimmte Zeit blockiert.

Prioritätsvererbung (Priority inheritance)

- Der Prozess erbt die h\u00f6here Priorit\u00e4t des Prozesses, solange dieser das gemeinsame Betriebsmittel blockiert.
- Verhindert unbegrenzte Blockierung
- Die Dauer der Blockierung wird auf die Dauer des kritischen Abschnitts begrenzt
- Die Blockierungen werden hintereinander gereiht (Blockierungsketten)
- Es verhindert keine deadlocks

Beispiel zur Prioritätsvererbung

Prioritätsgrenzen (Priority ceiling)

- Jedes Betriebsmittel (Semaphor) s erhält eine Prioritätsgrenze ceil(s) = Maximum der Prioritäten der Prozesse, die auf <math>s zugreifen
- Der Prozess p darf ein BM (Betriebsmittel) nur blockieren, wenn er von keinem anderen Prozess, der andere Betriebsmittel besitzt, verzögert werden kann

Prioritätsgrenzen (Forts.)

Aktuelle Prioritätsgrenze für Prozess p

```
aktceil(p) = max{ceil(s)|s \in lockedsem}
lockedsem = Menge aller von anderen Prozessen blockierten BM
```

• Prozess *p* darf Betriebsmittel *s* benutzen, wenn

 Andernfalls gibt es genau einen Prozess, der s besitzt. Die Priorität dieses Prozesses wird auf aktprio(p) gesetzt

Prioritätsgrenzen (Forts.)

- Blockierung nur für die Dauer eines kritischen Abschnitts
- Verhindert Deadlocks
- Schwieriger zu realisieren, zusätzlicher Prozesszustand
- Vereinfachtes Protokoll:
 Immediate priority ceiling
 Prozesse, die Betriebsmittel s belegen, erhalten die Priorität ceil(s)

Beispiel mit Prioritätsgrenzen

Beispiel mit Immediate Priority Ceiling

Lerneinheit 6. Scheduling-Verfahren Teil 2

- Lernziele dieser Lerneinheit
- 2 Zuteilung nach Prioritäten
- 3 Zeitplanung periodischer Prozesse
- 4 Vergleich der Planungsverfahren
- 5 Zusammenfassung

Bezeichnungen

- Prozesse werden periodisch aktiviert
- n Prozesse $p_i, i = 1, \ldots, n$
- Periode $T(p_i)$
- Ausführungszeit $a(p_i)$
- \bullet $B(p_i)$ Bereitzeit relativ zum Beginn einer Periode
- $F(p_i)$ Frist relativ zum Beginn einer Periode

Beispiel: Messwerterfassung

- Drei Prozesse p_i
- Jeweils Werte einlesen, umrechnen, skalieren, auf Platte speichern
- Kenngrößen der Prozesse:

i	$T(p_i)$	$B(p_i)$	$a(p_i)$	$F(p_i)$
1	3	0	1	3
2	9	0	1	9
3	18	0	1	18

Einplanbarkeit auf Grund von Last

Auslastung durch Prozess P_i

$$\varrho_i = \frac{a(p_i)}{T(p_i)}$$

Gesamte Auslastung

$$\varrho = \sum_{i=1}^{n} \varrho_i = \sum_{i=1}^{n} \frac{a(p_i)}{T(p_i)}$$

• Bei m Einheiten eines Betriebsmittel gilt: $\varrho \leq m$ notwendig für Zeiteinhaltung, aber nicht hinreichend!

Einplanung nach Fristen

- Bei einem Betriebsmittel, $\varrho \le 1$ und $T(p_i) = F(p_i)$ für alle i ist Einplanung nach Fristen optimal.
- Beweisidee: vor dem Verletzen einer Frist ist das Betriebsmittel nie unbeschäftigt

Einplanung nach Raten (Rate-monotonic scheduling, Smallest period-first)

- Rate $R_i = 1/T(p_i)$
- hohe Rate = hohe Priorität
- Prozesse mit hohen werden Raten zuerst bedient.
- Ratenplanung benutzt also statische Prioritäten.
- Optimal, falls eine Lösung mit statischen Prioritäten existiert.
- Verfahren mit dynamischen Prioritäten können aber evtl. bessere Ergebnisse liefern.

Einplanbarkeitstest 1 für Ratenplanung

• Bei n Aktionen ist Ratenplanung sicher erfolgreich, falls

$$\varrho = \varrho_{max} = n * (2^{1/n} - 1) = n * (\sqrt[n]{2} - 1)$$
$$\lim_{n \to \infty} \varrho_{max} = \ln 2 \approx 0.69$$

- Beweis (Liu, Layland 1973) durch Worstcase-Analyse
- Das heißt aber nicht, dass Ratenplanung für Systeme mit $\varrho > \varrho_{max}$ nicht doch Lösungen findet, nur ist dies nicht garantiert.
- Für Spezialfälle (Perioden gleich oder Perioden Teiler einer größeren) gibt es günstigere Abschätzungen.

Einplanbarkeitstest 2 für Ratenplanung

- Für einen Satz periodischer Aktionen p_i gibt die Ratenplanung einen erfolgreichen Plan, falls unter der Annahme gleichzeitigen Starts (worst case) alle Aktionen innerhalb ihrer ersten Periodenzeit $T(p_i)$ beendet werden.
- Der Test ist auch bei grosser Anzahl von Prozessen durch Simulation effizient ausführbar, falls die Perioden nicht teilerfremd sind.
- Beweisidee: Gleichzeitiger Start ist worst case-Situation, da alle höherprioren Aktionen eine Ausführung von pi verzögern

Lerneinheit 6. Scheduling-Verfahren Teil 2

- Lernziele dieser Lerneinheit
- Zuteilung nach Prioritäten
- 3 Zeitplanung periodischer Prozesse
- 4 Vergleich der Planungsverfahren
- 5 Zusammenfassung

Planungsverfahren

Strategie	präemptiv	nicht präemptiv	
Suchen		optimale Pläne O(n!), NP-vollständig	
Fristen Spiel-	optimal	optimal bei gleicher Bereitzeit	
raum			
Spielraum	optimal glei-	bei NP-vollständig Anomalien	
(Mehrpr.)	cher Bereitzeit		
Monotone Ra-	optimal bei		
ten	beschränkter		
	Auslastung		

Lerneinheit 6. Scheduling-Verfahren Teil 2

- Lernziele dieser Lerneinheit
- Zuteilung nach Prioritäten
- 3 Zeitplanung periodischer Prozesse
- 4 Vergleich der Planungsverfahren
- Susammenfassung

Zusammenfassung

- In der Praxis wird oft nach Prioritäten geplant.
- Zuteilung nach Prioritäten muss das Problem der Prioritätsinversion beachten und behandeln. Verfahren dazu sind Prioritätsvererbung und Prioritätsgrenzen.
- Ein erstes Verfahren zur Planung periodischer Prozesse ist die Ratenplanung mit statischen Prioritäten.