

CONGRUENCIAS

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 08) 02.AGOSTO.2022

Hacen su aparición en la obra de GAUSS, Disquisitiones Arithmeticae (1801).

Hacen su aparición en la obra de Gauss, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Hacen su aparición en la obra de Gauss, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Ejemplo: $17 \equiv 3 \pmod{7}$, $11 \equiv -4 \pmod{3}$.

Hacen su aparición en la obra de Gauss, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Ejemplo: $17 \equiv 3 \pmod{7}$, $11 \equiv -4 \pmod{3}$.

Ejemplo: $x^2 + y^2 \not\equiv 3 \pmod{4}$.

Hacen su aparición en la obra de GAUSS, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Ejemplo: $17 \equiv 3 \pmod{7}$, $11 \equiv -4 \pmod{3}$.

Ejemplo: $x^2 + y^2 \not\equiv 3 \pmod{4}$.

Solución: $X \equiv 0, 2 \pmod{4} \Rightarrow X^2 \equiv 0 \pmod{4}$; $X \equiv \pm 1 \pmod{4} \Rightarrow X^2 \equiv 1 \pmod{4}$.

Hacen su aparición en la obra de GAUSS, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Ejemplo: $17 \equiv 3 \pmod{7}$, $11 \equiv -4 \pmod{3}$.

Ejemplo: $x^2 + y^2 \not\equiv 3 \pmod{4}$.

Solución: $x \equiv 0, 2 \pmod{4} \Rightarrow x^2 \equiv 0 \pmod{4}; x \equiv \pm 1 \pmod{4} \Rightarrow x^2 \equiv 1 \pmod{4}.$ Haciendo todas las combinaciones posibles, vemos que $x^2 + y^2 \equiv 0 + 0$ ó 0 + 1 ó 1 + 1

(mod 4), esto es, $x^2 + y^2 \equiv 0, 1, 2 \pmod{4}$.

Hacen su aparición en la obra de GAUSS, Disquisitiones Arithmeticae (1801).

Definición

Sean $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, con n > 1. Definimos $a \equiv b \pmod{n}$ si, y sólo si, $n \mid a - b$. En ese caso, decimos que a **es congruente con** b **módulo** n, o que a y b **son congruentes módulo** n.

En caso contrario, escribirmos $a \not\equiv b \pmod{n}$, y decimos que a y n no son congruentes módulo n.

Ejemplo: $17 \equiv 3 \pmod{7}$, $11 \equiv -4 \pmod{3}$.

Ejemplo: $x^2 + y^2 \not\equiv 3 \pmod{4}$.

Solución: $X \equiv 0, 2 \pmod{4} \Rightarrow X^2 \equiv 0 \pmod{4}$; $X \equiv \pm 1 \pmod{4} \Rightarrow X^2 \equiv 1 \pmod{4}$. Haciendo todas las combinaciones posibles, vemos que $X^2 + Y^2 \equiv 0 + 0$ ó 0 + 1 ó 1 + 1 (mod 4), esto es, $X^2 + Y^2 \equiv 0, 1, 2 \pmod{4}$.

Portanto $x^2 + y^2 \not\equiv 3 \pmod{4}$.

Propiedades (Propiedades de las Congruencias)

Para cualesquiera enteros $a,b,c,d,k,n\in\mathbb{Z}$, n>1. se tiene.

- 1. (Reflexividad) $a \equiv a \pmod{n}$,
- **2.** (Simetría) si $a \equiv b \pmod{n}$, entonces $b \equiv a \pmod{n}$,
- 3. (Transitividad) Si $a \equiv b \pmod{n}$, $b \equiv c \pmod{n}$, entonces $a \equiv c \pmod{n}$,
- 4. (Compatibilidad con suma y resta)

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Rightarrow \begin{cases} a+c \equiv b+d \pmod{n}, \\ a-c \equiv b-d \pmod{n}, \end{cases}$$

5. (Compatibilidad con producto)

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Rightarrow ac \equiv bd \pmod{n},$$

- **6.** Si $a \equiv b \pmod{n}$, entonces $ka \equiv kb \pmod{n}$, para todo $k \in \mathbb{Z}$,
- 7. Si $a \equiv b \pmod{n}$, entonces $a^k \equiv b^k \pmod{n}$, para $k \ge 0$.

8. (Cancelación) Si (n, c) = 1, entonces $ac \equiv bc \pmod{n} \Rightarrow a \equiv b \pmod{n}$.

8. (Cancelación) Si (n,c) = 1, entonces $ac \equiv bc \pmod{n} \Rightarrow a \equiv b \pmod{n}$.

<u>Prueba</u>: (1.) Para todo $a \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \mid o = a - a \Rightarrow a \equiv a \pmod{n}$.

(2.)
$$a \equiv b \pmod{n} \Rightarrow n \mid b - a \Rightarrow n \mid a - b \mid b \equiv a \pmod{n}$$
.

(3.)
$$n \mid b-a$$
, $n \mid c-b \Rightarrow n \mid (b-a)+(c-b)=c-a \Rightarrow a \equiv c \pmod{n}$.

(4.)
$$n \mid b - a, n \mid d - c \Rightarrow n \mid (b - a) \pm (d - c) = (b \pm d) - (a \pm c) \Rightarrow a \pm c \equiv b \pm d \pmod{n}$$
.

(5.)
$$n \mid b-a$$
, $n \mid d-c \Rightarrow n \mid (b-a)c$ y $n \mid a(d-c)$. Luego, $n \mid (b-a)c - a(d-c) = bc - ad \Rightarrow ad \equiv bc \pmod{n}$.

- (6.) Aplicando (4.) k-veces consecutivas, con c = a, d = b, se obtiene, $ka \equiv kb \pmod{n}$.
- (7.) Aplicando (5.) k-veces consecutivas, con c = a, d = b, se obtiene, $a^k \equiv b^k \pmod{n}$. Otra alternativa es ver que si $a \equiv b \pmod{n}$, entonces $n \mid b a$

$$\Rightarrow n \mid (b-a)(b^{k-1}+ab^{k-1}+\ldots+a^{k-2}b+a^{k-1})=b^k-a^k. \text{ Así, } a^k\equiv b^k \pmod{n}.$$

(8.) Suponga que $ac \equiv bc \pmod n$, con (n,c) = 1. Entonces $n \mid bc - ac = (b-a)c$. Por el lema de Eulices, como (n,c) = 1, entonces $n \mid b-a \Rightarrow a \equiv b \pmod n$.

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$.

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid -qn = r - a$ $\Rightarrow a \equiv r \pmod{n}$.

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid -qn = r - a$ $\Rightarrow a \equiv r \pmod{n}$. Porque hay n opciones para r, vemos que todo entero es congruente módulo n exactamente con uno de los valores residuos $0, 1, 2, \ldots, n-1$:

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid -qn = r - a$ $\Rightarrow a \equiv r \pmod{n}$. Porque hay n opciones para r, vemos que todo entero es congruente módulo n exactamente con uno de los valores residuos $0, 1, 2, \ldots n - 1$; en particular, $a \equiv 0 \pmod{n}$ si, y sólo si, $n \mid a$.

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid -qn = r - a$ $\Rightarrow a \equiv r \pmod{n}$. Porque hay n opciones para r, vemos que todo entero es congruente módulo n exactamente con uno de los valores residuos $0, 1, 2, \ldots n - 1$; en particular, $a \equiv 0 \pmod{n}$ si, y sólo si, $n \mid a$.

Definición

El conjunto de n enteros $0, 1, 2, \ldots, n-1$ se denomina el **conjunto de residuos mínimos no negativos** o **residuos canónicos**, módulo n.

En general, una colección de n números enteros a_1, a_2, \ldots, a_n forman un **conjunto completo de residuos** (o un **sistema completo de residuos**) módulo n si cada a_i es congruente a alguno de los números $0, 1, 2, \ldots, n-1$, módulo n.

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid -qn = r - a$ $\Rightarrow a \equiv r \pmod{n}$. Porque hay n opciones para r, vemos que todo entero es congruente módulo n exactamente con uno de los valores residuos $0, 1, 2, \ldots n - 1$; en particular, $a \equiv 0 \pmod{n}$ si, y sólo si, $n \mid a$.

Definición

El conjunto de n enteros $0, 1, 2, \ldots, n-1$ se denomina el **conjunto de residuos mínimos no negativos** o **residuos canónicos**, módulo n.

En general, una colección de n números enteros a_1, a_2, \ldots, a_n forman un **conjunto completo de residuos** (o un **sistema completo de residuos**) módulo n si cada a_i es congruente a alguno de los números $0, 1, 2, \ldots, n-1$, módulo n.

Ejemplo: -12, -4, 11, 13, 22, 82, 91 constituyen un sistema completo de residuos módulo 7.

Obs! Dados $a \in \mathbb{Z}$ y $n \in \mathbb{Z}^+$, por el Algoritmo de la División, existen $q, r \in \mathbb{Z}$ tales que a = qn + r, con $0 \le r < n$. Entonces, por definición de congruencia, $n \mid -qn = r - a$ $\Rightarrow a \equiv r \pmod{n}$. Porque hay n opciones para r, vemos que todo entero es congruente módulo n exactamente con uno de los valores residuos $0, 1, 2, \ldots n - 1$; en particular, $a \equiv 0 \pmod{n}$ si, y sólo si, $n \mid a$.

Definición

El conjunto de n enteros $0, 1, 2, \ldots, n-1$ se denomina el **conjunto de residuos mínimos no negativos** o **residuos canónicos**, módulo n.

En general, una colección de n números enteros a_1, a_2, \ldots, a_n forman un **conjunto completo de residuos** (o un **sistema completo de residuos**) módulo n si cada a_i es congruente a alguno de los números $0, 1, 2, \ldots, n-1$, módulo n.

Ejemplo: -12, -4, 11, 13, 22, 82, 91 constituyen un sistema completo de residuos módulo 7.

Obs! $S = \{a_i\}_{i=1}^n \subset \mathbb{Z}$ es un sistema de residuos módulo $n \Leftrightarrow a_i \not\equiv a_j \pmod{n}$, para $i \neq j$.

Teorema

Para enteros arbitrarios $a,b\in\mathbb{Z}$, $a\equiv b\pmod n$ $\Leftrightarrow a\ y\ b\ dejan\ el\ mismo\ residuo\ cuando\ se\ divide\ por\ n.$

Teorema

Para enteros arbitrarios $a,b\in\mathbb{Z}$, $a\equiv b\pmod n \Leftrightarrow a$ y b dejan el mismo residuo cuando se divide por n.

<u>Prueba</u>: (\Rightarrow) Si $a \equiv b \pmod{n}$, de modo que $n \mid b - a$ y b = a + kn para algún entero k.

Teorema

Para enteros arbitrarios $a, b \in \mathbb{Z}$, $a \equiv b \pmod{n} \Leftrightarrow a \ y \ b \ dejan \ el \ mismo \ residuo \ cuando se divide por n.$

<u>Prueba</u>: (\Rightarrow) Si $a \equiv b \pmod{n}$, de modo que $n \mid b-a$ y b=a+kn para algún entero k. Suponga que en la división entre n, a deja un cierto residuo r; es decir, ab=qn+r, con $0 \le r < n$.

Teorema

Para enteros arbitrarios $a,b \in \mathbb{Z}$, $a \equiv b \pmod{n} \Leftrightarrow a \ y \ b \ dejan \ el \ mismo \ residuo \ cuando se divide por n.$

<u>Prueba</u>: (\Rightarrow) Si $a \equiv b \pmod{n}$, de modo que $n \mid b-a$ y b=a+kn para algún entero k. Suponga que en la división entre n, a deja un cierto residuo r; es decir, ab=qn+r, con $0 \le r < n$. Por lo tanto, b=a+kn=(qn+r)+kn=(q+k)n+r, por lo que b tiene el mismo residuo que a.

(\Leftarrow) Por otro lado, suponga que podemos escribir $b = q_1 n + r$ y $b = q_2 n + r$, con el mismo residuo o < r < n

Teorema

Para enteros arbitrarios $a,b \in \mathbb{Z}$, $a \equiv b \pmod{n} \Leftrightarrow a$ y b dejan el mismo residuo cuando se divide por n.

<u>Prueba</u>: (\Rightarrow) Si $a \equiv b \pmod{n}$, de modo que $n \mid b-a$ y b=a+kn para algún entero k. Suponga que en la división entre n, a deja un cierto residuo r; es decir, ab=qn+r, con $0 \le r < n$. Por lo tanto, b=a+kn=(qn+r)+kn=(q+k)n+r, por lo que b tiene el mismo residuo que a.

(\Leftarrow) Por otro lado, suponga que podemos escribir $b=q_1n+r$ y $b=q_2n+r$, con el mismo residuo o $\leq r < n$. Entonces,

$$b-a=(q_2n+r)-(q_1n+r)=(q_2-q_1)n,$$

de modo que $n \mid b - a$. Esto es $a \equiv b \pmod{n}$. \square

Teorema

Para enteros arbitrarios $a, b \in \mathbb{Z}$, $a \equiv b \pmod{n} \Leftrightarrow a \ y \ b \ dejan \ el \ mismo \ residuo \ cuando se divide por n.$

<u>Prueba</u>: (\Rightarrow) Si $a \equiv b \pmod{n}$, de modo que $n \mid b-a$ y b=a+kn para algún entero k. Suponga que en la división entre n, a deja un cierto residuo r; es decir, ab=qn+r, con $0 \le r < n$. Por lo tanto, b=a+kn=(qn+r)+kn=(q+k)n+r, por lo que b tiene el mismo residuo que a.

(\Leftarrow) Por otro lado, suponga que podemos escribir $b=q_1n+r$ y $b=q_2n+r$, con el mismo residuo o $\leq r < n$. Entonces,

$$b-a=(q_2n+r)-(q_1n+r)=(q_2-q_1)n,$$

de modo que $n \mid b - a$. Esto es $a \equiv b \pmod{n}$. \square

Ejemplo: -56 y -11 pueden escribirse como -56 = (-7)9 + 7, -11 = (-2)9 + 7. Esto muestra que $-56 \equiv -11 \pmod{9}$.

Ejemplo: Mostramos que 41 | $2^{20} - 1$.

Ejemplo: Mostramos que 41 | $2^{20} - 1$. Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$,

Ejemplo: Mostramos que 41 | $2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$.

Ejemplo: Mostramos que 41 | $2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$. Pero $81 \equiv -1 \pmod{41} \Rightarrow 81 \cdot 81 \equiv 1 \pmod{41}$.

Ejemplo: Mostramos que 41 | $2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$. Pero $81 \equiv -1 \pmod{41} \Rightarrow 81 \cdot 81 \equiv 1 \pmod{41}$. Esto muestra que $2^{20} - 1 \equiv 81 \cdot 81 - 1 \equiv 1 - 1 \equiv 0 \pmod{41}$.

Ejemplo: Mostramos que 41 $\mid 2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$. Pero $81 \equiv -1 \pmod{41} \Rightarrow 81 \cdot 81 \equiv 1 \pmod{41}$. Esto muestra que $2^{20} - 1 \equiv 81 \cdot 81 - 1 \equiv 1 - 1 \equiv 0 \pmod{41}$.

Ejemplo: Hallar el residuo de 1! + 2! + 3! + 4! + ... + 99! + 100! al dividir por 12.

Ejemplo: Mostramos que 41 $\mid 2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$. Pero $81 \equiv -1 \pmod{41} \Rightarrow 81 \cdot 81 \equiv 1 \pmod{41}$. Esto muestra que $2^{20} - 1 \equiv 81 \cdot 81 - 1 \equiv 1 - 1 \equiv 0 \pmod{41}$.

Ejemplo: Hallar el residuo de 1! + 2! + 3! + 4! + ... + 99! + 100! al dividir por 12.

Comenzamos observando que $4! \equiv 24 \equiv 0 \pmod{12}$;

Ejemplo: Mostramos que 41 | $2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$. Pero $81 \equiv -1 \pmod{41} \Rightarrow 81 \cdot 81 \equiv 1 \pmod{41}$. Esto muestra que $2^{20} - 1 \equiv 81 \cdot 81 - 1 \equiv 1 - 1 \equiv 0 \pmod{41}$.

Ejemplo: Hallar el residuo de 1! + 2! + 3! + 4! + ... + 99! + 100! al dividir por 12.

Comenzamos observando que $4! \equiv 24 \equiv 0 \pmod{12}$; así, para $k \ge 4$, se tiene que

$$k! = 4! \cdot 5 \cdot 6 \cdots k \equiv 0 \cdot 5 \cdot 6 \cdots k \equiv 0 \pmod{12}$$
.

Ejemplo: Mostramos que 41 $\mid 2^{20} - 1$.

Observe que $2^5 \equiv 32 \equiv -9 \pmod{41}$, de donde $2^{20} = (2^5)^4 \equiv (-9)^4 \equiv 81 \cdot 81 \pmod{41}$. Pero $81 \equiv -1 \pmod{41} \Rightarrow 81 \cdot 81 \equiv 1 \pmod{41}$. Esto muestra que $2^{20} - 1 \equiv 81 \cdot 81 - 1 \equiv 1 - 1 \equiv 0 \pmod{41}$.

Ejemplo: Hallar el residuo de 1! + 2! + 3! + 4! + ... + 99! + 100! al dividir por 12.

Comenzamos observando que $4! \equiv 24 \equiv 0 \pmod{12}$; así, para $k \ge 4$, se tiene que

$$k! = 4! \cdot 5 \cdot 6 \cdots k \equiv 0 \cdot 5 \cdot 6 \cdots k \equiv 0 \pmod{12}$$
.

De esta manera,

$$1! + 2! + 3! + 4! + \ldots + 100! \equiv 1! + 2! + 3! + 0 + \ldots + 0 \equiv 9 \pmod{12}$$
.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod n$ entonces $a \equiv b \pmod n$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema

Si ca \equiv cb (mod n), entonces a \equiv b (mod $\frac{n}{d}$), donde d = (c, n).

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema

Si ca \equiv cb (mod n), entonces a \equiv b (mod $\frac{n}{d}$), donde d = (c, n).

<u>Prueba</u>: Por hipótesis, $n \mid cb - ca$ y podemos escribir c(b-a) = cb - ca = kn, para algún $k \in \mathbb{Z}$.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema

Si ca \equiv cb (mod n), entonces a \equiv b (mod $\frac{n}{d}$), donde d = (c, n).

<u>Prueba</u>: Por hipótesis, $n \mid cb - ca$ y podemos escribir c(b - a) = cb - ca = kn, para algún $k \in \mathbb{Z}$. Como (c, n) = d, existen enteros primos relativos r, s que satisfacen c = dr, n = ds.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema

Si $ca \equiv cb \pmod{n}$, entonces $a \equiv b \pmod{\frac{n}{d}}$, donde d = (c, n).

<u>Prueba</u>: Por hipótesis, $n \mid cb - ca$ y podemos escribir c(b-a) = cb - ca = kn, para algún $k \in \mathbb{Z}$. Como (c, n) = d, existen enteros primos relativos r, s que satisfacen c = dr, n = ds. Sustituyendo en la ecuación anterior,

$$dr(b-a) = kds$$
 \Rightarrow $r(b-a) = ks$,

de modo que $s \mid r(b-a)$.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema

Si ca \equiv cb (mod n), entonces a \equiv b (mod $\frac{n}{d}$), donde d = (c, n).

<u>Prueba</u>: Por hipótesis, $n \mid cb - ca$ y podemos escribir c(b-a) = cb - ca = kn, para algún $k \in \mathbb{Z}$. Como (c, n) = d, existen enteros primos relativos r, s que satisfacen c = dr, n = ds. Sustituyendo en la ecuación anterior,

$$dr(b-a) = kds$$
 \Rightarrow $r(b-a) = ks$,

de modo que $s \mid r(b-a)$. Como (r,s)=1, el Lema de Euclides garantiza que $s \mid b-a$.

Vimos que una de las propiedades básicas de congruencias es que si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{n}$, siempre que (c, n) = 1. Cuando $(c, n) \neq 1$ la cancelación en general no vale. Por ejemplo, $2(4) \equiv 2(1) \pmod{6}$, pero $4 \not\equiv 1 \pmod{6}$.

Con las precauciones adecuadas, se puede permitir la cancelación

Teorema

Si ca \equiv cb (mod n), entonces a \equiv b (mod $\frac{n}{d}$), donde d = (c, n).

<u>Prueba</u>: Por hipótesis, $n \mid cb - ca$ y podemos escribir c(b-a) = cb - ca = kn, para algún $k \in \mathbb{Z}$. Como (c, n) = d, existen enteros primos relativos r, s que satisfacen c = dr, n = ds. Sustituyendo en la ecuación anterior,

$$dr(b-a) = kds$$
 \Rightarrow $r(b-a) = ks$,

de modo que $s \mid r(b-a)$. Como (r,s)=1, el Lema de Euclides garantiza que $s \mid b-a$. Portanto, $a \equiv b \pmod{s}$; en otras palabras, $a \equiv b \pmod{\frac{n}{d}}$.

Corolario

Si $ca \equiv cb \pmod{n}$, y(c,n) = 1, entonces $a \equiv b \pmod{n}$.

Corolario

Si
$$ca \equiv cb \pmod{n}$$
, $y(c,n) = 1$, entonces $a \equiv b \pmod{n}$.

Corolario

Si ca \equiv cb (mod p), y p \nmid c, con p primo, entonces a \equiv b (mod p).

Corolario

Si ca \equiv cb (mod n), y (c, n) = 1, entonces $a \equiv b \pmod{n}$. \square

Corolario

Si $ca \equiv cb \pmod{p}$, $y \not p \nmid c$, con p primo, entonces $a \equiv b \pmod{p}$.

<u>Prueba</u>: Las condiciones p primo y $p \nmid c$ implican que (c, p) = 1.

Corolario

Si ca \equiv cb (mod n), y (c, n) = 1, entonces $a \equiv b \pmod{n}$. \square

Corolario

Si $ca \equiv cb \pmod{p}$, $y \not p \nmid c$, con p primo, entonces $a \equiv b \pmod{p}$.

<u>Prueba</u>: Las condiciones p primo y $p \nmid c$ implican que (c, p) = 1.

Ejemplo: Considere la congruencia $42 \equiv 15 \pmod{2}$ 7. Como (3, 27) = 3, debido al teorema anterior podemos "cancelar" el factor 3 en la congruencia.

Corolario

Si ca \equiv cb (mod n), y (c, n) = 1, entonces $a \equiv b \pmod{n}$. \square

Corolario

Si $ca \equiv cb \pmod{p}$, $y \not p \nmid c$, con p primo, entonces $a \equiv b \pmod{p}$.

<u>Prueba</u>: Las condiciones p primo y $p \nmid c$ implican que (c, p) = 1.

Ejemplo: Considere la congruencia $42 \equiv 15 \pmod{2}$ 7. Como (3, 27) = 3, debido al teorema anterior podemos "cancelar" el factor 3 en la congruencia. Así $14 \equiv 5 \pmod{9}$.

Corolario

Si $ca \equiv cb \pmod{n}$, y(c,n) = 1, entonces $a \equiv b \pmod{n}$. \Box

Corolario

Si $ca \equiv cb \pmod{p}$, $y \not p \nmid c$, con p primo, entonces $a \equiv b \pmod{p}$.

<u>Prueba</u>: Las condiciones p primo y $p \nmid c$ implican que (c, p) = 1.

Ejemplo: Considere la congruencia $42 \equiv 15 \pmod{2}$ 7. Como (3,27) = 3, debido al teorema anterior podemos "cancelar" el factor 3 en la congruencia. Así $14 \equiv 5 \pmod{9}$. Una ilustración adicional es la congruencia $-35 \equiv 45 \pmod{8}$. Aquí, 5 y 8 son primos relativos, y podemos cancelar el factor 5 para obtener $-7 \equiv 9 \pmod{8}$.

Corolario

Si $ca \equiv cb \pmod{n}$, y(c,n) = 1, entonces $a \equiv b \pmod{n}$. \Box

Corolario

Si $ca \equiv cb \pmod{p}$, $y \not p \nmid c$, con p primo, entonces $a \equiv b \pmod{p}$.

<u>Prueba</u>: Las condiciones p primo y $p \nmid c$ implican que (c, p) = 1.

Ejemplo: Considere la congruencia $42 \equiv 15 \pmod{2}$ 7. Como (3,27) = 3, debido al teorema anterior podemos "cancelar" el factor 3 en la congruencia. Así $14 = 5 \pmod{9}$. Una ilustración adicional es la congruencia $-35 \equiv 45 \pmod{8}$. Aquí, 5 y 8 son primos relativos, y podemos cancelar el factor 5 para obtener $-7 \equiv 9 \pmod{8}$.

Obs! En el teorema, no es necesario que $c \not\equiv 0 \pmod{n}$, pues en ese caso tendrías $c \equiv 0 \pmod{n} \Rightarrow (c,n) = n$, y la conclusión sería $a \equiv b \pmod{1}$, se mantiene automáticamente para todos entero a y b.

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$.

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$. Además, los residuos de dividir 5^n por 13 se repiten en ciclos de 4:

$$5^0 \equiv 1 \pmod{13}, \qquad 5^4 \equiv 1 \pmod{13},$$
 $5^1 \equiv 5 \pmod{13}, \qquad 5^5 \equiv 5 \pmod{13},$
 $5^2 \equiv -1 \pmod{13}, \qquad 5^6 \equiv -1 \pmod{13},$
 $5^3 \equiv -5 \pmod{13}, \qquad 5^7 \equiv -5 \pmod{13}, \dots$

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$. Además, los residuos de dividir 5^n por 13 se repiten en ciclos de 4:

$$5^0 \equiv 1 \pmod{13}, \qquad 5^4 \equiv 1 \pmod{13},$$
 $5^1 \equiv 5 \pmod{13}, \qquad 5^5 \equiv 5 \pmod{13},$
 $5^2 \equiv -1 \pmod{13}, \qquad 5^6 \equiv -1 \pmod{13},$
 $5^3 \equiv -5 \pmod{13}, \qquad 5^7 \equiv -5 \pmod{13}, \dots$

Por otro lado, tenemos que $3 \equiv -1 \pmod{4}$, de modo que $3^{20} \equiv (-1)^{20} \equiv 1 \pmod{4}$.

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$. Además, los residuos de dividir 5^n por 13 se repiten en ciclos de 4:

$$5^0 \equiv 1 \pmod{13}, \qquad 5^4 \equiv 1 \pmod{13},$$
 $5^1 \equiv 5 \pmod{13}, \qquad 5^5 \equiv 5 \pmod{13},$
 $5^2 \equiv -1 \pmod{13}, \qquad 5^6 \equiv -1 \pmod{13},$
 $5^3 \equiv -5 \pmod{13}, \qquad 5^7 \equiv -5 \pmod{13}, \dots$

Por otro lado, tenemos que $3 \equiv -1 \pmod{4}$, de modo que $3^{20} \equiv (-1)^{20} \equiv 1 \pmod{4}$. Esto es, 3^{20} deja residuo 1 al dividirse por 4.

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$. Además, los residuos de dividir 5^n por 13 se repiten en ciclos de 4:

Por otro lado, tenemos que $3 \equiv -1 \pmod{4}$, de modo que $3^{20} \equiv (-1)^{20} \equiv 1 \pmod{4}$. Esto es, 3^{20} deja residuo 1 al dividirse por 4. Así, $5^{3^{20}} \equiv 5^1 \equiv 5 \pmod{13}$.

Ejemplo: Hallar el residuo de la división 5³²⁰ entre 13.

Solución:

 $5^4 \equiv 1 \pmod{13}$. Además, los residuos de dividir 5^n por 13 se repiten en ciclos de 4:

Por otro lado, tenemos que $3 \equiv -1 \pmod{4}$, de modo que $3^{20} \equiv (-1)^{20} \equiv 1 \pmod{4}$. Esto es, 3^{20} deja residuo 1 al dividirse por 4. Así, $5^{3^{20}} \equiv 5^1 \equiv 5 \pmod{13}$.

Ejercicio: Hallar el residuo de la división de 3¹⁰⁰⁰ entre 101.

Ejemplo: Muestre que la ecuación diofantina $x^3 - 117y^3 = 5$ no admite soluciónes enteras.

Ejemplo: Muestre que la ecuación diofantina $x^3 - 117y^3 = 5$ no admite soluciónes enteras.

Solución:

117 es múltiplo de 9, y tenemos

$$x^3 - 117y^3 = 5 \qquad \Leftrightarrow \qquad x^3 \equiv 5 \pmod{9}.$$

Ejemplo: Muestre que la ecuación diofantina $x^3 - 117y^3 = 5$ no admite soluciónes enteras.

Solución:

117 es múltiplo de 9, y tenemos

$$x^3 - 117y^3 = 5 \qquad \Leftrightarrow \qquad x^3 \equiv 5 \pmod{9}.$$

Si analizamos los residuos cúbicos módulo 9, cuando x recorre cualquier sistema de residuos, tenemos

O sea, x^3 sólo puede dejar residuos o, 1 u 8 módulo 9. Así, si (x,y) fuese una solución de la ecuación, tendríamos $x^3 \equiv 5 \pmod 9$, algo imposíble. Portanto, dicha ecuación no posee soluciones enteras.

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Solución:

Sin pérdida, supongamos que m > n.

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Solución:

Sin pérdida, supongamos que m>n. Para cualquier primo p dividiendo $2^{2^n}+a^{2^n}$, y $a^{2^n}\equiv -2^{2^n}\pmod p$.

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Solución:

Sin pérdida, supongamos que m > n. Para cualquier primo p dividiendo $2^{2^n} + a^{2^n}$, y $a^{2^n} \equiv -2^{2^n} \pmod{p}$.

Elevamos al cuadrado ambos lados de la ecuación m-n veces para obtener

$$a^{2^m} = (a^{2^n})^{2^{m-n}} \equiv (-2^{2^n})^{2^{m-n}} \equiv 2^{2^m} \pmod{p}.$$

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Solución:

Sin pérdida, supongamos que m > n. Para cualquier primo p dividiendo $2^{2^n} + a^{2^n}$, y $a^{2^n} \equiv -2^{2^n} \pmod{p}$.

Elevamos al cuadrado ambos lados de la ecuación m-n veces para obtener

$$a^{2^m} = (a^{2^n})^{2^{m-n}} \equiv (-2^{2^n})^{2^{m-n}} \equiv 2^{2^m} \pmod{p}.$$

Como a es impar, tenemos $p \neq 2$, luego $2^{2^m} + 2^{2^m} = 2^{2^m+1} \not\equiv 0 \pmod{p}$,

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Solución:

Sin pérdida, supongamos que m > n. Para cualquier primo p dividiendo $2^{2^n} + a^{2^n}$, y $a^{2^n} \equiv -2^{2^n} \pmod{p}$.

Elevamos al cuadrado ambos lados de la ecuación m-n veces para obtener

$$a^{2^m} = (a^{2^n})^{2^{m-n}} \equiv (-2^{2^n})^{2^{m-n}} \equiv 2^{2^m} \pmod{p}.$$

Como a es impar, tenemos $p \neq 2$, luego $2^{2^m} + 2^{2^m} = 2^{2^m+1} \not\equiv 0 \pmod p$, de modo que $a^{2^m} \equiv 2^{2^m} \not\equiv -2^{2^m} \pmod p$.

Por tanto, $p \nmid a^{2^m} + 2^{2^m}$, lo que muestra el resultado deseado.

Ejemplo: Sea a un número entero impar. Demuestre que $2^{2^n} + a^{2^n}$ y $2^{2^m} + a^{2^m}$ son primos relativos para todos $m, n \in \mathbb{Z}^+$, con $n \neq m$.

Solución:

Sin pérdida, supongamos que m > n. Para cualquier primo p dividiendo $2^{2^n} + a^{2^n}$, y $a^{2^n} \equiv -2^{2^n} \pmod{p}$.

Elevamos al cuadrado ambos lados de la ecuación m-n veces para obtener

$$a^{2^m} = (a^{2^n})^{2^{m-n}} \equiv (-2^{2^n})^{2^{m-n}} \equiv 2^{2^m} \pmod{p}.$$

Como a es impar, tenemos $p \neq 2$, luego $2^{2^m} + 2^{2^m} = 2^{2^m+1} \not\equiv 0 \pmod p$, de modo que $a^{2^m} \equiv 2^{2^m} \not\equiv -2^{2^m} \pmod p$.

Por tanto, $p \nmid a^{2^m} + 2^{2^m}$, lo que muestra el resultado deseado.

Obs! Cuando a = 1, esto conduce a una propiedad de los números de Fermat $2^{2^n} + 1$.

La notación usual para números naturales es chamada la notación **base 10**, con dígitos $0,1,2,\ldots,9$.

La notación usual para números naturales es chamada la notación **base 10**, con dígitos $0,1,2,\ldots,9$. Esto significa por ejemplo, que

$$196883 = 1 \cdot 10^5 + 9 \cdot 10^4 + 6 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10^1 + 3 \cdot 10^0.$$

La notación usual para números naturales es chamada la notación **base 10**, con dígitos $0,1,2,\ldots,9$. Esto significa por ejemplo, que

$$196883 = 1 \cdot 10^5 + 9 \cdot 10^4 + 6 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10^1 + 3 \cdot 10^0.$$

El siguiente resultado muestra cómo escribir cualquier natural en cualquier base d > 1.

La notación usual para números naturales es chamada la notación **base 10**, con dígitos $0,1,2,\ldots,9$. Esto significa por ejemplo, que

$$196883 = 1 \cdot 10^5 + 9 \cdot 10^4 + 6 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10^1 + 3 \cdot 10^0.$$

El siguiente resultado muestra cómo escribir cualquier natural en cualquier base d > 1.

Teorema (Representación en Bases)

Sean $n\in\mathbb{N}$, y d>1. Existe una única secuencia (los dígitos de n en la base d) $a_0,a_1,\ldots,a_k,\ldots$ con las siguientes propiedades

- 1. para todo $k \in \mathbb{N}$, $0 \le a_k < d$,
- **2.** existe $m \in \mathbb{N}$ tal que $a_k = 0$, para tod $k \ge m$,
- 3. $n=\sum_{k\geq 0}a_kd^k$.

La notación usual para números naturales es chamada la notación **base 10**, con dígitos $0,1,2,\ldots,9$. Esto significa por ejemplo, que

$$196883 = 1 \cdot 10^5 + 9 \cdot 10^4 + 6 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10^1 + 3 \cdot 10^0.$$

El siguiente resultado muestra cómo escribir cualquier natural en cualquier base d > 1.

Teorema (Representación en Bases)

Sean $n \in \mathbb{N}$, y d > 1. Existe una única secuencia (los dígitos de n en la base d) $a_0, a_1, \ldots, a_k, \ldots$ con las siguientes propiedades

- **1.** para todo $k \in \mathbb{N}$, $0 \le a_k < d$,
- **2.** existe $m \in \mathbb{N}$ tal que $a_k = 0$, para tod $k \ge m$,
- 3. $n=\sum_{k\geq 0}a_kd^k$.

<u>Prueba</u>: Usando el Algoritmo de la División, escribimos $n = n_0 = n_1 d + a_0$, $0 \le a_0 < d$, $n_1 = n_2 d + a_1$, $0 \le a_1 < d$; y en general, $n_k = n_{k+1} d + a_k$, con $0 \le a_k < d$, y vale (1).

Afirmamos primero que $n_k = o$, para algún $k \in \mathbb{N}$.

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \left| \frac{n_1}{d} \right| < d^{m-1}$,

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \left\lfloor \frac{n_1}{d} \right\rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$.

Afirmamos primero que $n_k=0$, para algún $k\in\mathbb{N}$. De hecho, si $n_0< d^m$, entonces $n_1=\left\lfloor\frac{n_1}{d}\right\rfloor< d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k< d^{m-k}$. En particular, para $k\geq m$, tenemos $n_k<1\Rightarrow n_k=0$. Se sigue de ahí que $a_k=0$, para todo $k\geq m$, lo que muestra (2).

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \lfloor \frac{n_1}{d} \rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0 < d$ $n=0 \cdot d+a_0 \Rightarrow n=a_0=a_0 \cdot d^0$.

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \lfloor \frac{n_1}{d} \rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0 < d$ $n=0 \cdot d+a_0 \Rightarrow n=a_0=a_0 \cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d.

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \lfloor \frac{n_1}{d} \rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m. lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0 < d$ $n=0 \cdot d+a_0 \Rightarrow n=a_0=a_0 \cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d. Entonces, si $n=(a_m\cdots a_1a_0)_d$, tenemos que $n_1=dn+a_0$.

Afirmamos primero que $n_k=0$, para algún $k\in\mathbb{N}$. De hecho, si $n_0< d^m$, entonces $n_1=\left\lfloor\frac{n_1}{d}\right\rfloor< d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k< d^{m-k}$. En particular, para $k\geq m$, tenemos $n_k<1 \Rightarrow n_k=0$. Se sigue de ahí que $a_k=0$, para todo $k\geq m$, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0 < d$ $n=0 \cdot d+a_0 \Rightarrow n=a_0=a_0 \cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d. Entonces, si $n=(a_m\cdots a_1a_0)_d$, tenemos que $n_1=dn+a_0$. En particular $n_1=(a_m\cdots a_1)_d$. Por la hipótesis inductiva aplicada a n_1

$$n = dn + a_0 = d\left(\sum_{j=0}^{m-1} a_{j+1}d^j\right) + a_0$$

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \left\lfloor \frac{n_1}{d} \right\rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0< d$ $n=0\cdot d+a_0 \Rightarrow n=a_0=a_0\cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d. Entonces, si $n=(a_m\cdots a_1a_0)_d$, tenemos que $n_1=dn+a_0$. En particular $n_1=(a_m\cdots a_1)_d$. Por la hipótesis inductiva aplicada a n_1

$$n = dn + a_o = d\left(\sum_{j=o}^{m-1} a_{j+1} d^j\right) + a_o = \sum_{j=o}^{m-1} a_{j+1} d^{j+1} + a_o$$

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \left\lfloor \frac{n_1}{d} \right\rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0< d$ $n=0\cdot d+a_0 \Rightarrow n=a_0=a_0\cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d. Entonces, si $n=(a_m\cdots a_1a_0)_d$, tenemos que $n_1=dn+a_0$. En particular $n_1=(a_m\cdots a_1)_d$. Por la hipótesis inductiva aplicada a n_1

$$n = dn + a_0 = d\left(\sum_{j=0}^{m-1} a_{j+1}d^j\right) + a_0 = \sum_{j=0}^{m-1} a_{j+1}d^{j+1} + a_0 = \sum_{j=1}^m a_jd^j + a_0 = \sum_{j=0}^m a_jd^j.$$

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \left\lfloor \frac{n_1}{d} \right\rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0< d$ $n=0\cdot d+a_0 \Rightarrow n=a_0=a_0\cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d. Entonces, si $n=(a_m\cdots a_1a_0)_d$, tenemos que $n_1=dn+a_0$. En particular $n_1=(a_m\cdots a_1)_d$. Por la hipótesis inductiva aplicada a n_1

$$n = dn + a_0 = d\left(\sum_{j=0}^{m-1} a_{j+1}d^j\right) + a_0 = \sum_{j=0}^{m-1} a_{j+1}d^{j+1} + a_0 = \sum_{j=1}^m a_jd^j + a_0 = \sum_{j=0}^m a_jd^j.$$

Para la unicidad, suponga que n admite dos representaciones en base d: $\sum_{j\geq 0} a_k d^k = n = \sum_{k\geq 0} b_k d^k$.

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \left\lfloor \frac{n_1}{d} \right\rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0 < d$ $n=0 \cdot d+a_0 \Rightarrow n=a_0=a_0 \cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d. Entonces, si $n=(a_m\cdots a_1a_0)_d$, tenemos que $n_1=dn+a_0$. En particular $n_1=(a_m\cdots a_1)_d$. Por la hipótesis inductiva aplicada a n_1

$$n = dn + a_{o} = d\left(\sum_{j=o}^{m-1} a_{j+1}d^{j}\right) + a_{o} = \sum_{j=o}^{m-1} a_{j+1}d^{j+1} + a_{o} = \sum_{j=o}^{m} a_{j}d^{j} + a_{o} = \sum_{j=o}^{m} a_{j}d^{j}.$$

Para la unicidad, suponga que n admite dos representaciones en base d: $\sum_{j\geq 0} a_k d^k = n = \sum_{k\geq 0} b_k d^k$. Si las secuencias $\{a_k\}$ y $\{b_k\}$ son distintas, existe un menor índice j tal que $a_j \neq b_j$. Tomamos

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j}$$

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$.

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$. Pero $0 \le a_k, b_k < d \Rightarrow 0 \le |a_j - b_j| < d$, implica que $a_j - b_j = 0$, y portanto $a_j - b_j$ no puede ser un múltiplo de d, un absurdo.

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$. Pero $0 \le a_k, b_k < d \Rightarrow 0 \le |a_j - b_j| < d$, implica que $a_j - b_j = 0$, y portanto $a_j - b_j$ no puede ser un múltiplo de d, un absurdo. Esto muestra que la representación en base d es única. \square

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$. Pero $0 \le a_k, b_k < d \Rightarrow 0 \le |a_j - b_j| < d$, implica que $a_j - b_j = 0$, y portanto $a_j - b_j$ no puede ser un múltiplo de d, un absurdo. Esto muestra que la representación en base d es única. \square

Notación: Ignorando los ceros iniciales, escribimos $n=(a_ma_{m-1}\cdots a_1a_0)_d=\sum_{k=0}^m a_kd^k$, y llamamos a ésta la **representación en base** d **de** n.

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$. Pero $0 \le a_k, b_k < d \Rightarrow 0 \le |a_j - b_j| < d$, implica que $a_j - b_j = 0$, y portanto $a_j - b_j$ no puede ser un múltiplo de d, un absurdo. Esto muestra que la representación en base d es única. \square

Notación: Ignorando los ceros iniciales, escribimos $n=(a_m a_{m-1}\cdots a_1 a_0)_d=\sum_{k=0}^m a_k d^k$, y llamamos a ésta la **representación en base** d **de** n.

Ejemplo: La representación binaria de n = 105 es

$$105 = 1\dot{2}^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0\dot{2} + 1 = 2^6 + 2^5 + 2^3 + 1,$$

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$. Pero $0 \le a_k, b_k < d \Rightarrow 0 \le |a_j - b_j| < d$, implica que $a_j - b_j = 0$, y portanto $a_j - b_j$ no puede ser un múltiplo de d, un absurdo. Esto muestra que la representación en base d es única. \square

Notación: Ignorando los ceros iniciales, escribimos $n=(a_m a_{m-1}\cdots a_1 a_0)_d=\sum_{k=0}^m a_k d^k$, y llamamos a ésta la **representación en base** d **de** n.

Ejemplo: La representación binaria de n = 105 es

$$105 = 1\dot{2}^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0\dot{2} + 1 = 2^6 + 2^5 + 2^3 + 1,$$

o, en forma compacta, $105 = (1101001)_2$.

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$. Pero $0 \le a_k, b_k < d \Rightarrow 0 \le |a_j - b_j| < d$, implica que $a_j - b_j = 0$, y portanto $a_j - b_j$ no puede ser un múltiplo de d, un absurdo. Esto muestra que la representación en base d es única. \square

Notación: Ignorando los ceros iniciales, escribimos $n = (a_m a_{m-1} \cdots a_1 a_0)_d = \sum_{k=0}^m a_k d^k$, y llamamos a ésta la **representación en base** d **de** n.

Ejemplo: La representación binaria de n = 105 es

$$105 = 1\dot{2}^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0\dot{2} + 1 = 2^6 + 2^5 + 2^3 + 1,$$

o, en forma compacta, $105 = (1101001)_2$.

Ejemplo: Por otro lado, la representación $(1001111)_2$ corresponde a

$$n = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 1 = 2^6 + 2^3 + 2^2 + 1 = 79.$$