

Increasing and Decreasing Functions Ex 17.2 Q10 We have,

$$f(x) = x^{3} - 15x^{2} + 75x - 50$$

$$f'(x) = 3x^{2} - 30x + 75$$

$$f'(x) = 3(x^{2} - 10x + 25)$$

$$= 3(x - 5)^{2}$$

Now,

$$X \in R$$

$$\Rightarrow (x-5)^2 > 0$$

$$\Rightarrow 3(x-5)^2 > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing function for all $x \in R$.

Increasing and Decreasing Functions Ex 17.2 Q11 We have,

$$f(x) = \cos^2 x$$

$$f'(x) = 2\cos x (-\sin x)$$

$$\Rightarrow f'(x) = -2\sin x \cos x$$

$$\Rightarrow$$
 $f'(x) = -\sin 2x$

Now,

$$X \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow$$
 $2x \in (0,\pi)$

$$\Rightarrow$$
 $\sin 2x > 0$ when $2x \in (0, \pi)$

$$\Rightarrow$$
 - $\sin 2x < 0$

$$\Rightarrow$$
 $f'(x) < 0$

Hence, f(x) is a decreasing function on $\left(0, \frac{\pi}{2}\right)$.

Increasing and Decreasing Functions Ex 17.2 Q12

We have
$$f(x) = \sin x$$

$$f'(x) = \cos x$$
Now,
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\Rightarrow \cos x > 0$$

$$\Rightarrow f'(x) > 0$$
Therefore, $f(x) = \sin x$ is an increasing function on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Increasing and Decreasing Functions Ex 17.2 Q13
We have,
$$f(x) = \cos x$$

$$f'(x) = -\sin x$$
Now,
$$If x \in (0, \pi)$$

$$\Rightarrow \sin x > 0$$

$$\Rightarrow -\sin x < 0$$
Hence, $f(x)$ is decreasing function on $(0, \pi)$
If $x \in (-\pi, 0)$

$$\Rightarrow \sin x < 0$$

$$\Rightarrow -\sin x > 0$$

$$\Rightarrow -\sin x > 0$$

$$\Rightarrow -\sin x > 0$$
Hence, $f(x)$ is increasing function on $(-\pi, 0)$
If $x \in (-\pi, \pi)$
Thus, $\sin x > 0$ for $x \in (0, \pi)$ and $\sin x < 0$ for $x \in (-\pi, 0)$

$$\Rightarrow -\sin x < 0$$
 for $x \in (-\pi, 0)$
Hence, $f(x)$ is neither increasing nor decreasing on $(-\pi, \pi)$.

******* END *******