Théorie des nombres algorithmique (Aspects classiques)

2023-2024

Table des matières

1	Formalisme			
	1.1	Automates finis et langages	7	
	1.2	Machines de Turing	8	
	1.3	Exponentiation rapide	8	
2	Ari	thmétique et modules	9	

TABLE DES MATIÈRES

Introduction

Le cours discute l'algorithmique quantique et le but c'est l'algo de Shor $[\operatorname{Sho}97]\,!$

TABLE DES MATIÈRES

Chapitre 1

Formalisme

1.1 Automates finis et langages

Un alphabet est un ensemble de symboles, on regarde en général $\Sigma = \{0, 1\}$ les binaires. Ensuite y'a le langage élémentaire :

$$\{\emptyset, \in, 0, 1\}$$

À partir du langage élémentaire on construit les langages régulier, par concaténations et unions finies.

Définition 1.1.1 (Langage). On prends comme convention que les sous ensembles

$$L\subset \Sigma^*$$

où $\Sigma = \{0, 1\}.$

Pour les automates on prends des 5-tuples $(Q, \Sigma, \delta, q_0, F)$ où Q est un ensemble d'états Σ l'alphabet,

$$\delta \colon Q \times \Sigma \to Q$$

une fonction de transition, q_0 l'état initial et F l'ensemble des états acceptés/terminaux. On étant ensuite δ en

$$\delta^* \colon Q \times \Sigma^* \to Q$$

par $\delta^*(q, w) = \delta^*(\delta(q, w_n), w_0 \dots w_{n-1})$ avec $w_{=}w_0 \dots w_n$. Le truc fun c'est qu'on peut déf le langage accepté par l'automate par :

$$L_{\delta} = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \}.$$

1.2 Machines de Turing

En gros c'est un automate fini plus une tape infinie à droite et une tête de lecture qui écrit et efface sur la tape.

Définition 1.2.1 (Machine de Turing). Une machine de Turing est un tuple (Σ, K, S, s) avec $S \colon K \times \Sigma \to (\mathbb{K} \cup \{Y, N, H\} \times \Sigma \times \{\bullet, \leftarrow, \to\})$ où on a les états... Un langage $L \subset \Sigma^*$ est accepté par M ssi $w \in L \leftrightarrow$ la machine s'arrête sur Y.

Définition 1.2.2 (Langage décidable). Un langage est décidable si il existe une machine de Turing qui l'accepte.

Définition 1.2.3 (Fonction récursive). Fonction qui est calculable par une machine de Turing.

Étant donné une fonction $f: \mathbb{N} \to \mathbb{N}$.

Définition 1.2.4. On dit qu'une machine de Turing a complexité O(f) si elle termine en temps f(|n|) pour une entrée n de taille |n|.

Définition 1.2.5 (PTIME). Dans l'ensemble des langages 2^{Σ^*} on regarde PTIME l'ensemble des langages décidables de complexité polynomial.

Définition 1.2.6 (FPTIME). Dans l'ensemble des fonctions $(\Sigma^*)^{\Sigma^*}$ on déf FPTIME l'analogue pour les fonctions.

1.3 Exponentiation rapide

Algorithm 1 Calcul de $a^e \mod N$

- 1: Écrire $e = \sum e_i 2^i$.
- 2: Calculer et enregistrer $a^{2^i} \mod N$ en réduisant à chaque carré par N pour les $e_i \neq 0$.
- 3: Multiplier $\prod_i a^{2^i} = a^e \mod N$.

Chapitre 2

Arithmétique et modules

Théoreme 2.0.1. Soit $r \leq 1$ et $M \leq \mathbb{Z}^r$ alors il existe a_1, \ldots, a_s avec $0 \leq s \leq r$ et une base v_1, \ldots, v_r de \mathbb{Z}^r telle que $a_1 \mid \ldots \mid a_s$ et

$$M = \bigoplus_{i}^{s} a_i v_i$$

Grâce à lui on peut résoudre un système linéaire AX=0 en calculant une base de $\ker(A)$.

Théoreme 2.0.2. Soit G un groupe abélien de type fini. Alors il existe $a_1 \mid \ldots \mid a_s \mid t.q$

$$G \simeq \mathbb{Z}^r \oplus \bigoplus_{i=1}^r (\mathbb{Z}/a_i\mathbb{Z})$$

et la décomposition est unique.

Bibliographie

[Sho97] Peter W. Shor. « Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer ». In: $SIAM\ Journal\ on\ Computing\ 26.5\ (oct.\ 1997),\ p.\ 1484-1509.\ ISSN: \\ 1095-7111.\ DOI: 10.1137/s0097539795293172.\ URL: http://dx.doi.org/10.1137/S0097539795293172.$