## Quant Bio Lab 1

## Question 1

#### 1a

Command: (in the asm folder). samtools faidx ref.fa. We then took the second column of the outputted text file and got 233806 bp

## **1**b

 $\begin{tabular}{ll} \textbf{Commands}: fastQC frag180.1.fq, fastQC frag180.2.fq, fastQC jump2k.1.fq.fq fastQC jump2k.2.fq. \\ Open the HTML files that are provided. 35,178 reads in frag180.1.fq and frag180.2.fq , each 100bp. 70,355 sequences, each 50 bp for the jump2k files. \\ \end{tabular}$ 

#### 1c

This should be  $\frac{reads*readlength}{genomesize}$ . In our case this is equal to  $\frac{35,178*100}{233,806}$  which is 15x coverage for each file. If you include all files, then this would be multiplied by 4, for 60x.

#### 1d

.

# Question 2

#### 2a

**Commands:** jellyfish count -m 21 -C -s 1000000 \*.fq, jellyfish histo mer\_counts.jf  $\xi$  reads.histo. This gives you a value of 1091 kmers which are seen 50 times in the file.

Figure 1: frag180.1



Figure 2: frag180.2



Figure 3: jump2k.1



Figure 4: jump2k.2



#### **2**b

**Commands:** jellfish dump -c mer\_counts.jf > kmers.txt, sort kmers.txt -k 2 -rn | head Kmers:

GCCCACTAATTAGTGGGCGCC 105

CGCCCACTAATTAGTGGGCGC 104

CCCACTAATTAGTGGGCGCCG 104

ACGGCCCCACTAATTAGTGG 101

CAGGCCAGCTTATAAGCTGGC 98

AACAGGCCAGCTTATAAGCTG 98

ACAGGCCAGCTTATAAGCTGG 97

AGGCCAGCTTATAAGCTGGCC 95

AGCATCGCCCACATGTGGGCG 83

GCATCGCCCACATGTGGGCGA 82

## 2c

233,468

## 2d

It is extremely close, although undershot by a few hundred bp. This is undershot because the genome coverage is not enough to guarantee 100 percent coverage.

## Question 3

#### 3a

**Command:** grep -c > contigs.fasta. This gives us a contig count of 4.

## 3b

105831+47861+41352+39423= 234467, which is longer than the genome. This makes sense, because contigs probably contain some shared regions.

## 3c

105831

## 3d

47861 is the N50 size because  $105831 + 47861 > \frac{233806}{2}$ 

## Problem 4

## **4a**

Command: dnadiff ref.fa asm/contigs.fa. Both alignments are 100 percent.

## **4**b

Commands: nucmer ref.fa asm/contigs.fa, show-coord out.delta. This gives us four alignments, the longest of which is the full first contig which is 105831 long.

## 4c

There is one insertion into the third contig, denoted by the gap between the third and fourth alignments.

# Problem 5

#### **5**a

The insert is at the 13853 position of the third contig. In the reference its at 26789.

#### 5b

14565 - 13854 = 711

#### 5c

 $\label{lem:command:samtools} \begin{tabular}{ll} Command: samtools faidx contigs.fasta \\ NODE_3_length_41352_cov_20.588756:13854-14565 > NODE_3_length_41352_cov_20.588756:13854-14565 \\ \begin{tabular}{ll} Lower Low$ 

TAACGATTTACATCGGGAAAGCTTAATGCAATTCACGCAGATATTCAGCTTAGAAGGTA
CGCAGCGGTGACGGGTGCGGTCCATAATCTATGAAGCTATGAATTCGTACCTCAAGTAA TGTTTTCTTCGCTGCAGTTCAGAAGTGATAAAGGTATCCCGCTTAGCCTGGCATACTTTG TGCGTTCGTACCGCCCAGCATTAATGACTTGTGTAGGCAAGTAATGAACGACTCTTCTAC GCCGCGCCTAACCTCCGCACATAATGGCAGCATGTGGTAGTTACATACGCACAGAAGTGG TTCGGTTTTAACTATAGTCAGATATGAATAAGCTGCGTGTGTCGTTGTGTCGGCGTGTCG TACTTACCTCCTGACATAGGTGAATTTCAGCCTACTGTAAGTTTGGAGTCGCGCTCTTTT CTTATTATATTCTTTGGTATGTGTGTGATGGGTTCCTGTCGTACGTGTTGGCTTAGC GGACTTGTAGACGGGATCAAGGTTGTCTGACCCTCCGGTCGACCGTGGGTCGCCGTCCC GGCCAGAATACAAGCCGCTTAGACTTTCGAAAGAGGGTAAGTTACTACGCGCGAACGTTA TACCTCGTTTCAGTATGCACTCCCTTAAGTCACTCAGAAAAGACTAAGGGGCT

#### 5c

Command: python ported\_decoder.py -d -input hidden.txt -rev\_comp Message: Congratulations to the 2020 CMDB @ JHU class! Keep on looking for little green aliens...