Shrinkage Methods: Ridge regression, LASSO

Mingjun Zhong

Department of Computing Science

University of Aberdeen

Motivation

Remember linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

• Least-square estimate (LSE):

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

- Why we are not happy with LSE?
 - ✓ Interpretation: Large number of predictors, which predictors are more important?
 - ✓ For example: the <u>location</u> or the <u>size</u> of the house is more important for house prices?
- Mitigations *subset selection* or *shrinkage*:
 - ✓ *Interpret* model: determine a small subset of parameters; the strongest effects; sacrifice small details

Best-subset selection

- Number of predictors p, subset of size $k \in \{0,1,2,\cdots,p\}$
- House price example:
 - p = 2
 - X1: location; X2: size
 - Y: price
 - Then K=0,1, or 2
 - All possible models:
 - \circ When k=0, $Model1: y = \beta_0 + \epsilon$
 - \circ When k=1, Model2: $y = \beta_0 + \beta_1 x_1 + \epsilon$, and Model3: $y = \beta_0 + \beta_1 x_2 + \epsilon$
 - When k=2, $Model4: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$
 - There are four models, which is the best?

Shrinkage methods

- Subset selection:
 - Pros: Interpretable
 - Cons: Discrete
- Shrinkage methods:
 - Ridge Regression
 - The Lasso
 - They are continuous

Linear regression

• Linear regression loss function:

$$loss(\beta) = \sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

• The best fit is to find $\hat{\beta}^{lse}$ (*lse: least squared errors*) to minimize the loss:

$$\hat{\beta}^{lse} = argmin_{\beta}[loss(\beta)]$$

- Notation $\underset{\beta}{argmin_{\beta}}$ means finding the $\underset{\beta}{argument}$ to $\underset{\beta}{minimize}$ the loss.
- There is a unique solution \hat{eta}^{lse} .
- Roughly, if $\beta_1 > \beta_2$, then x_1 (location) is more important than x_2 (size) for interpreting y.
- Both β_1 and β_2 are not zero generally true.
- But we want to select a subset of predictors for predicting house prices we want to turn some variables to zero, and so a subset is selected.

House price example:

 x_1 : location of a house

 x_2 : the size of a house

y: house price

Ridge regression

• Ridge regression loss function:

$$loss(\beta) = \sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
• The best fit is to find $\hat{\beta}^{ridge}$ to minimize the loss:

- $\hat{\beta}^{ridge} = argmin_{\beta}[loss(\beta)]$
- $\lambda \ge 0$: complexity parameter controls the amount of shrinkage
 - Larger the value, greater the amount of shrinkage
 - Larger λ (= smaller radius r), second factor dominates, all nonnegative thus shrinks
 - Also used in Deep Neural Networks called weight decay
- There is a **unique** solution $\hat{\beta}^{ridge}$ for any λ (or r).
- Both β_1 and β_2 are not zero generally true. But some are very close to zero.
- But we want to select a subset of predictors for predicting house prices we want to turn some variables to zero, and so a subset is selected.

House price example:

 x_1 : location of a house

 x_2 : the size of a house

y: house price

LASSO regression

• Ridge regression loss function:

$$loss(\beta) = \sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
• The best fit is to find $\hat{\beta}^{lasso}$ to minimize the loss:

- $\hat{\beta}^{lasso} = argmin_{\beta}[loss(\beta)]$
- $\lambda \geq 0$: complexity parameter controls the amount of shrinkage
 - Larger the value, greater the amount of shrinkage
 - Larger λ , second factor dominates, all non-negative thus shrinks
 - Also used in Deep Neural Networks called weight decay
- No closed solution $\hat{\beta}^{lasso}$ for any λ (or r).
- For suitable λ , one of β_1 and β_2 is very close to zero (nearly) - generally true.
- When there are many variables, many of them would be zero.
- Need to choose the right λ .
- A subset is selected.
- Solution can be found by using <u>sklearn.linear model</u>.Lasso

House price example:

 x_1 : location of a house

 x_2 : the size of a house

y: house price

How to choose λ ?

- Larger λ , more chances some of the β_j s are close to 0, and so those features x_i s are not important for the model
- $\lambda = 0$, Lasso = ridge = LSE (least squared errors).
- We need to choose best λ : $\lambda = 0, 0.0001, 0.001, 0.0011, \cdots, 0.01, \cdots, 0.1, 0.2, \cdots, 0.9, 1, \cdots$
- Each λ corresponds to one model, we need to use model selection methods like Cross-Validation to compare those models. (Covered later)

Summary

- Subset selection:
 - Pros: Interpretable
 - Cons: Discrete
- Shrinkage methods:
 - Ridge Regression
 - The Lasso
 - They are continuous
 - Need to select the best complexity parameter λ
 - Interpretable: can choose important variables/predictors
 - The idea is widely used in deep learning (weight decay)
- Ridge and Lasso methods can turn off some predictors and thus subset selection