دورة سنة 2008 العادية	امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة ساعتان	عدد المسائل: أربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I - (4 points)

Dans le plan complexe (P) rapporté à un repère orthonormé (O; \overrightarrow{u} , \overrightarrow{v}) on considère les points A, B et C d'affixes respectives $a = \sqrt{3} - i$, $b = \sqrt{3} + i$ et c = 2i.

- 1) Montrer que les trois points A, B et C sont sur un même cercle de centre O.
- 2) Ecrire $\frac{c-b}{a-b}$ sous formes algébrique et exponentielle.
- 3) Soit M un point de (P) privé de O, d'affixe z = x + iy (x et y sont des réels). On pose $Z = \frac{z - b}{z}$.
 - a- Déterminer l'ensemble (E) des points M tels que |Z|=1.
 - b- Vérifier que A et C appartiennent à (E).
 - c- Déterminer l'ensemble (F) des points M tels que Z est un imaginaire pur.

II- (4points)

Pour encourager le tourisme intérieur, une agence de tourisme propose à ses clients des week-ends de 2 jours avec trois options :

- Pension complète
- Demi-pension
- Pension de luxe.

L'agence publie l'annonce publicitaire suivante :

Option Destination	Pension complète	Demi-pension	Pension de luxe
Montagne	150 000 LL	100 000 LL	200 000 LL
Plage	100 000 LL	75 000 LL	150 000 LL

Cette agence estime que 65% de ses clients choisissent la montagne, et le reste la plage et que parmi les clients de chaque destination, 55% choisissent la pension complète, 30% choisissent la demi-pension, et le reste la pension de luxe.

On interroge au hasard un client.

Soit les événements suivants :

- A : « le client interrogé a choisi la montagne».
- B: « le client interrogé a choisi la plage».
- C : « le client interrogé a choisi la pension complète».
- D : « le client interrogé a choisi la demi-pension».
- S : « le client interrogé a choisi la pension de luxe».

- 1) a- Calculer les probabilités suivantes : P (A∩C), P (B∩C) et P (C).
 b- Le client interrogé a choisi la pension complète, quelle est la probabilité qu'il ait choisi la plage?
- 2) Soit X la variable aléatoire égale à la somme payée à l'agence par un client.
 - a-Montrer que $P(X=150\ 000) = 0.41$ et déterminer la loi de probabilité de X.
 - b- Calculer l'espérance mathématique E (X). Que représente le nombre ainsi trouvé?
 - c- Estimer la somme reçue par l'agence lorsqu'elle sert 200 clients.

III- (4points)

Dans l'espace rapporté à un repère orthonormé direct (O; i, j, k), on considère les points : A(1; 2; 0), B(2; 1; 3), C(3; 3; 1), D(5; -3; -3) et E(-3; 7; 3).

- 1) Trouver une équation du plan (P) déterminé par A, B et C.
- 2) Déterminer un système d'équations paramétriques de la droite (DE).
- 3) Démontrer que (P) est le plan médiateur de [DE].
- 4) Démontrer que (BC) est orthogonale à (DE).
- 5) a- Calculer l'aire du triangle BCD.b- Calculer le volume du tétraèdre ABCD et déduire la distance de A au plan BCD.

IV- (8 points)

Soit f la fonction définie sur IR par $f(x) = (x - 1)e^x + 1$ et (C) sa courbe représentative dans un repère orthonormé (O; i, j).

- 1) a- Calculer $\lim_{x\to -\infty} f(x)$ et déduire une asymptote (d) à (C).
 - b- Etudier, suivant les valeurs de x, la position relative de (C) et (d).
 - c-Calculer $\lim_{x\to +\infty} f(x)$ et donner f(2) sous forme décimale.
- 2) Calculer f'(x) et dresser le tableau de variations de f.
- 3) Montrer que la courbe (C) admet un point d'inflexion W dont on déterminera les coordonnées.
- 4) a- Tracer (d) et (C).
 - b- Discuter graphiquement, suivant les valeurs du réel m, le nombre de solutions de l'équation $(m-1)e^{-x} = x-1$.
- 5) Calculer l'aire du domaine limité par (C), l'axe des abscisses et les deux droites d'équations x = 0 et x = 1.
- 6) a- Montrer que la fonction f admet sur $[0; +\infty[$ une fonction réciproque g et tracer la courbe représentative (G) de g dans le repère (O; $\overrightarrow{i}, \overrightarrow{j}$).
 - b-Trouver l'aire du domaine limité par (G), l'axe des ordonnées et la droite (d).