

Huazhong University of Science & Technology

## Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang



## RF Power Amplifier

## Radio Frequency Power Amplifier



- > Comparison
  - lacktriangle RF Power Amplifier vs. RF Small Signal Amplifier?
  - RF Power Amplifier vs. Audio Power Amplifier?

### RF Power Amplifier — Principle





#### **Key Concepts**

- > Reversely Biased
- $> \theta_c < 90^\circ$  (Class C)
- $\succ$  Cosine Pulses  $i_c$
- ➤ Nonlinear+Linear

RF Power Amplifier — Time & Frequency







## RF Power Amplifier vs. RF Small Signal Amplifier

- > Samilarity
  - **♦** Radio frequency
  - **♦** Load is resonance

- Difference
  - **◆** Amplitude of input
  - ◆ Quiescent point of Transistor
  - **♦** Dynamic range



## RF Power Amplifier vs. Audio Power Amplifier

- > Similarity
  - ♦ High Power
  - ♦ High Efficiency

#### Difference

|                    | RF Power Amplifier | Audio Power Amplifier |
|--------------------|--------------------|-----------------------|
| Load               | Parallel Resonance | Resistance            |
| Status             | Class C            | Class A / B           |
| Relative Bandwidth | Radio Narrowband   | Audio Wideband        |



## Output Power and Efficiency

## RF Power Amplifier — Power & Efficiency

Power: Output Power 
$$P_o$$
 = DC Power $P_c$  = Efficiency: Collector  $\eta_c$  =  $\frac{P_o}{P_c}$  =  $\frac{P_o}{P_o + P_c}$ 

 $ightharpoonup P_c 
ightharpoonup P_o 
ightharpoonup \eta_c 
ightharpoonup P_o 
ightharpoonup \eta_c 
ightharpoonup P_c 
ightharpoo$ 

Collector
Dissipation Power  $P_c$   $P_c = \frac{1}{T} \int_0^T i_C \cdot v_{CE} dt$ 



## RF Power Amplifier — Decrease $P_c$



$$P_c = \frac{1}{T} \int_0^T i_C \cdot v_{CE} \, dt$$

How to decrease  $P_c$ :

- $\succ$  LC Resonant on  $\omega$   $i_{cmax} \Leftrightarrow v_{CEmin}$
- $\triangleright$  Decrease  $\theta_c$

## RF Power Amplifier — Decrease $P_c$



$$P_c = \frac{1}{T} \int_0^T i_C \cdot v_{CE} \, dt$$

#### How to decrease $P_c$ :

- $\succ LC$  Resonant on  $\omega$ 
  - $i_{cmax} \Leftrightarrow v_{CEmin}$
- $\triangleright$  Decrease  $\theta_c$

## RF Power Amplifier—Detailed Definition in v

$$i_c = I_{c0} + I_{cm1} \cos \omega t + I_{cm2} \cos 2 \omega t + \cdots + I_{cmn} \cos n\omega t + \cdots$$



Collector Efficiency

for 
$$\eta_c = \frac{P_o}{P_=} = \frac{\frac{1}{2} V_{cm} \cdot I_{cm1}}{V_{cc} \cdot I_{c0}} = \frac{1}{2} \xi g_1(\theta_c)$$

DC Power  $P_= = V_{cc} \cdot I_{c0}$ 

Utilization Factor  $g_1(\theta_c)$ 

 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ 

 $v_{CE} = V_{CC} - V_{cm} \cos \omega t$ 

 $\Leftrightarrow$  Compute  $I_{cm1}$  &  $I_{c0} \Leftarrow$  Analyze  $i_c$  by Fourier Series

## Summary—Output Power & Efficiency





RF Power Amplifier Computation



RF Power Amplifier — Clue 
$$\begin{cases} P_o = \frac{1}{2}V_{cm} \cdot I_{cm1} = \frac{V_{cm}^2}{2R_p} = \frac{1}{2}I_{cm1}^2R_p \\ \eta_c = \frac{P_o}{P_=} = \frac{\frac{1}{2}V_{cm} \cdot I_{cm1}}{V_{cc} \cdot I_{c0}} = \frac{1}{2}\xi g_1(\theta_c) \end{cases}$$

- $\triangleright$  Key: compute  $I_{c0}$  &  $I_{cm1}$
- $\Leftarrow$  Analyze Cosine Pulse  $i_c$

$$\rightarrow i_c =? (\theta_c =? i_{cmax} =?)$$

- > By Fourier Series
- ← Piecewise Linear Approximation

(Transfer Curve, Output Curve)

## RF Power Amplifier — Piecewise Linear Approximation





Transfer Equation:

$$i_c = g_c(v_{BE} - V_{BZ}) \quad (v_{BE} > V_{BZ})$$
 (1)

Critical Line Equation:  $i_c = g_{cr}v_{CE}$ 

$$i_c = g_{cr} v_{CE} \tag{2}$$

Critical Line Gradient

Trans-conductance

#### Periodic Cosine Pulses

Transfer Equation: 
$$i_c = g_c(v_{BE} - V_{BZ})$$
 (1)

Base Equation : 
$$v_{BE} = -V_{BB} + V_{bm} \cos \omega t$$
 (3)

Substitute (3) into (1),

$$i_c = g_c(-V_{BB} + V_{bm}\cos\omega t - V_{BZ}) \quad (4)$$

If  $\omega t = \theta_c$ ,  $i_c = 0$ , Substitute into (4),

$$\mathbf{0} = g_c(-V_{BB} + V_{bm}\cos\theta_c - V_{BZ}) \tag{5}$$

Obtain 
$$\cos \theta_c = \frac{V_{BB} + V_{BZ}}{V_{bm}}$$



### Periodic Cosine Pulses

$$\begin{cases} i_c = g_c(-V_{BB} + V_{bm}\cos\omega t - V_{BZ}) & (4) \\ 0 = g_c(-V_{BB} + V_{bm}\cos\theta_c - V_{BZ}) & (5) \end{cases}$$

$$(4)-(5)$$
, 得

$$i_c = g_c V_{bm}(\cos \omega t - \cos \theta_c) \quad (6)$$

If  $\omega t = 0$ ,  $i_c = i_{cmax}$ , Substitute into (6)

$$i_{cmax} = g_c V_{bm} (1 - \cos \theta_c) \tag{7}$$

(6) ÷ (7), 
$$i_c = i_{cmax} \left( \frac{\cos \omega t - \cos \theta_c}{1 - \cos \theta_c} \right)$$
 Cosine Pulse Formula



# Periodic Cosine Pulses-Decompose $i_c = i_{cmax} \left( \frac{\cos \omega t - \cos \theta_c}{1 - \cos \theta_c} \right)$

$$i_c = i_{cmax} \left( \frac{\cos \omega t - \cos \theta_c}{1 - \cos \theta_c} \right)$$

 $i_{cmax} = g_c V_{bm} (1 - \cos \theta_c)$ 

> By Fourier Series

$$i_c = I_{c0} + I_{cm1} \cos \omega t + I_{cm2} \cos 2 \omega t + \cdots + I_{cmn} \cos n\omega t + \cdots$$

Compute Coefficents
$$I_{c0} = \frac{1}{2\pi} \int_{-\theta_c}^{+\theta_c} i_c \, d\omega t = i_{cmax} \cdot \alpha_0(\theta_c)$$

$$\alpha_0(\theta_c) = \frac{\sin \theta_c - \theta_c \cos \theta_c}{\pi(1 - \cos \theta_c)}$$
Output Power
$$\alpha_n = \frac{1}{2\pi} \int_{-\theta_c}^{+\theta_c} i_c \cos \omega t \, d\omega t = i_{cmax} \cdot \alpha_1(\theta_c)$$

$$\alpha_1(\theta_c) = \frac{\theta_c - \cos \theta_c \sin \theta_c}{\pi(1 - \cos \theta_c)}$$
0.5
0.4
0.3
1.0

$$\alpha_0(\theta_c) = \frac{1}{\pi(1-\cos\theta_c)}$$

$$I_{cm1} = \frac{1}{2\pi} \int_{0}^{+\theta_{c}} i_{c} \cos \omega t \, d\omega t = i_{cmax} \cdot \alpha_{1}(\theta_{c})$$

$$\alpha_1(\theta_c) = \frac{\theta_c - \cos\theta_c \sin\theta_c}{\pi(1 - \cos\theta_c)}$$

$$I_{cmn} = \frac{1}{2\pi} \int_{-\theta_c}^{+\theta_c} i_c \cos n\omega t \, d\omega t = i_{cmax} \cdot \alpha_n(\theta_c)$$

$$\alpha_n(\theta_c) = \frac{2}{\pi} \cdot \frac{\sin n\theta_c \cos \theta_c - n \cos n\theta_c \sin \theta_c}{n(n^2 - 1)(1 - \cos \theta_c)}$$



lcmax

## Periodic Cosine Pulses-Decompose $i_c = i_{cmax} \left( \frac{\cos \omega t - \cos \theta_c}{1 - \cos \theta_c} \right)$

$$e\left[i_{c}=i_{cmax}\left(\frac{\cos\omega t-\cos\theta_{c}}{1-\cos\theta_{c}}\right)\right]$$

> By Fourier Series

$$i_c = I_{c0} + I_{cm1} \cos \omega t + I_{cm2} \cos 2 \omega t + \cdots + I_{cmn} \cos n\omega t + \cdots$$

> Compute Coefficents

$$I_{c0} = \frac{1}{2\pi} \int_{-\theta_c}^{+\theta_c} i_c \, d\omega t = i_{cmax} \cdot \alpha_0(\theta_c)$$

$$I_{cm1} = \frac{1}{2\pi} \int_{-\theta_c}^{+\theta_c} i_c \cos \omega t \, d\omega t = i_{cmax} \cdot \alpha_1(\theta_c)$$

$$\eta_c = \frac{P_o}{P_e} = \frac{\frac{1}{2} V_{cm} \cdot I_{cm1}}{V_{cc} \cdot I_{c0}} = \frac{1}{2} \xi \cdot g_1(\theta_c)$$

$$g_1(\theta_c) = \frac{I_{cm1}}{I_{c0}} = \frac{\alpha_1(\theta_c)}{\alpha_0(\theta_c)}$$

> Tradeoff between Power & Efficiency, Optimal  $\theta_c$  around 70



## Summary—Computation of RF Power Amplifier

 $-\theta_c \ 0 + \theta_c \ \omega t$ 





$$g_1(\theta_c) = \frac{\alpha_1(\theta_c)}{\alpha_0(\theta_c)}$$

Exp 4-1 The transfer characteristic of a RF power amplifier is as figure. The parameters of transistor are :  $f_T \ge 150 MHz$ ,  $A_p \ge 13 dB$ ,  $I_{cmax} = 3A$ ,  $P_{cmax} = 5W$ .  $V_{BZ} = 0.6V$ ,  $V_{BB} = 1.4V$ ,  $\theta_c = 70^{\circ}$ ,  $V_{CC} = 24V$ ,  $\xi = 0.9$ . Compute all metrics.

Figure 
$$\Rightarrow g_c = \frac{1A}{(2.6-0.6)V} = 0.5A/V$$
  $\cos \theta_c = \frac{V_{BB} + V_{BZ}}{V_{bm}}, \Rightarrow V_{bm} = \frac{1.4 + 0.6}{\cos 70^{\circ}} = 5.8 V$ 

Solution: 
$$i_{cmax} = g_c V_{bm} (1 - \cos \theta_c)$$
, Compute  $I_{cm1}$ ,  $I_{c0}$ 

$$i_{cmax} = \frac{1}{2} \times 5.8 \times (1 - \cos 70^{\circ}) = 2A < I_{cmax}$$
 (Safe)

$$\Rightarrow \begin{cases}
I_{cm1} = i_{cmax} \cdot \alpha_1(70^\circ) = 2 \times 0.436 = 0.872A \\
I_{c0} = i_{cmax} \cdot \alpha_0(70^\circ) = 2 \times 0.253 = 0.506A
\end{cases}$$

$$P_{o} = \frac{1}{2}I_{cm1} \cdot V_{cm} = \frac{1}{2}I_{cm1} \cdot (\xi V_{cc}) = \frac{1}{2} \times 0.872 \times 0.9 \times 24 = 9.4W$$

$$P_{=} = V_{cc} \cdot I_{c0} = 24 \times 0.506 = 12W \quad \Rightarrow P_{c} = P_{=} - P_{o} = 2.6W < P_{cmax} \text{ (Safe)}$$

$$\eta_c = \frac{P_o}{P_-} = \frac{9.4}{12} = 78\%$$