Name:	Punkte:/31P
Datum:	Note:
Theorie Rechnerarchitektur Steuerwerk Bringe die 5 Teilschritte des Von-Neumann Zyklus in die richtige Reihenfolge (durch Nummeri	/2P erung)
 Execute Write Back Decode Fetch Instruction Fetch Operands 1.b) CISC vs. RISC Ordne die folgenden (typischen) Eigenschaften der jeweiligen Architektur zu 	/3P
CISC RISC Befehlsausführung meist in einem Takt Steuerwerk kann mittels Mikrocode realisiert werden Sehr viele allgemeine Register Für Pipelining optimiert Programme sind "kürzer" (benötigen weniger Programmspeicher) Datentransfer fast nur über Load-Store Befehle 1.c) 0-Adressarchitektur Welcher Wert liegt am Stack nach folgender Programmausführung? (Tip: Skizziere die Vorgäng	/2P ge am Stack)
push 0x02 push 0x04 push 0x0C add mult push 0x01 add	
Ergebnis: 1.d) DLX Architektur Add NPC Zero? Branch Cond IR W Laken Cond Add NPC Laken Cond Branch Cond W Laken Cond Branch Cond W Laken Cond W Lak	/3P

Trage die fehlenden Namen der Komponenten ein. Mögliche Begriffe: ALU, Daten, Adressse, Steuersignale, Datenspeicher, Stack, Programmspeicher, Register, Pipeline, MEM, ID, IF, CPI, WB, EX

2) Praxis Assemblerprogrammierung

```
.include "m16def.inc"
clr XH
       ldi XL, 0x67
       clr YH
ldi YL, 0x60
       ldi R16, 0x02
out SPH, R16
       ldi R16, 0x00
       out SPL, R16
       rcall strcat
end:
       rjmp end
strcat:
       ld R16, X+
       cpi R16, 0x00
       brne strcat
dec XL
cp:
       ld R16, Y+
       st X+, R16
       cpi R16, 0x00
       brne cp
       ret
```

Speicherauszug:

0x5F 0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70 0x71 0x72 0x37 | 0x35 | 0x41 | 0x48 | 0x45 | 0x4C | 0x49 | 0x00 | 0x48 | 0x69 | 0x20 | 0x00 | 0x4A | 0x5A | 0x42 | 0x6C | 0x63 | 0x52 | 0x51 | 0x32 | Wie groß ist das Programm in Bytes? ___/1P 2.b) Wie viele Takte benötigt das Programm bis zum Erreichen des Labels end? /2P

2.c) Ausführung des Programms	

____ Takte

/3P

Was steht im Speicher nach der Ausführung?

0x5F	0x60	0x61	0x62	0x63	0x64	0x65	0x66	0x67	0x68	0x69	0x6A	0x6B	0x6C	0x6D	0x6E	0x6F	0x70	0x71	0x72

Welche Werte haben die Register nach der Ausführung?

R16	X	Y	SP

	2.d)	Fragen zum Program	m
--	------	--------------------	---

,	/3P

	richtig	falsch
Das Programm zählt die Anzahl der 0x00 Bytes		
Das Programm nutzt den Stack		
Es wird nur das Register R16 verwendet		
Es werden Daten kopiert		
Die Laufzeit ist abhängig von den Daten im Speicher		
Am Ende der Routine ist der X Zeiger wieder am ursprünglichen Wert		
2.e) Wie verändern sich die Register?		

/コロ
//P

	R16	R17	R18	R19
	0x80	0x01	0x82	0x02
add R16, R18				
adc R17, R19				
inc R19				
sub R17, R19				
eor R17, R19				

3) Praxis Rechnerarchitektur

ALU	Operation	Beschreibung
000	Result=A	Legt Operand A auf den Ausgang
001	Result=B	Legt Operand B auf den Ausgang
010	Result=A+B	Addiert A und B
011	Result=A-B	Subtrahiert B von A
100	Result=A AND B	Bitweise UND Verknüpfung
101	Result=A OR B	Bitweise OR Verknüpfung
110	Result=A EOR B	Bitweise Exclusive-OR
111	Result=A>>1	Logisches Rechtsschieben von A

3.a) Setze die entsprechenden Steuersignale für den Datenpfad

/4P

Befehl	EnA	EnIX	StM	MuxALU	MuxMA	OpALU	Beschreibung
ld IX, A							Lädt Register IX mit dem Wert aus Register A
or A, Imm.							Ver-ODER-t Register A mit Konstante
ld A, (Imm.)							Lädt Register A mit dem Wert an der Adresse Imm.
st (IX), A							Speichert Register A an der Adresse IX
nop							Führt keine Operation aus (No Operation)
ld IX, (IX)							Lädt Register IX mit dem Wert an der Adresse IX
and A, (IX)							Ver-UND-et Register A mit Wert an Adresse IX
st (IX), Imm.							Speichert die Konstante an Adresse IX

3.b) Fragen zum Logisim Prozessor

__/4P

	richtig	falsch
Der Prozessor unterstützt indirekte Adressierung		
Es gibt zwei Register zur allgemeinen Verwendung (GPR)		
Es handelt sich um eine typische RISC Architketur		
CPI ist konstant 2		
Man kann ein Programm schreiben, dass die Operation "links schieben" durchführt		
Man kann hier den Von-Neuman-Flaschenhals mittels Caches vermeiden		
Der Architektur fehlt ein eigener Stackpointer		
Es handelt sich um eine Harvard Architektur		

3.c) DLX Pipeline: Zeichne die Datenhazards ein

___/2P

