HKUST

MATH2011 Introduction to Multivariable Calculus

Midterm Examination	Name:	
18:00-19:00; Mar. 29, 2014	Student I.D.:	
	Lecture Section:	

Directions:

- DO NOT open the exam until instructed to do so.
- Please have your student ID ready for checking.
- You may not use a calculator during the exam.
- You may write on both sides of the examination papers.
- You must show the steps in order to receive full credits.

Question No.	Points	Out of
1		25
2		30
3		20
4		25
Total		100

1. (25pts) Find the area of the region between the curve $r=2+\sin 3\theta$ and the unit circle centered at the origin.

Area of the region =
$$\int_{0}^{2\Pi} \frac{1}{2} [(2+\sin 3\theta)^{2} - 1^{2}] d\theta$$

= $\int_{0}^{2\Pi} (\frac{3}{2} + 2\sin 3\theta + \frac{1}{2}\sin^{2} 3\theta) d\theta$
= $\int_{0}^{2\Pi} (\frac{3}{2} + 2\sin 3\theta + \frac{1}{4}(1-\cos 6\theta)) d\theta$
= $\int_{0}^{2\Pi} (\frac{7}{4} + 2\sin 3\theta - \frac{1}{4}\cos 6\theta) d\theta$
= $(\frac{7}{4}\theta - \frac{2}{3}\cos 3\theta - \frac{1}{24}\sin 6\theta)\Big|_{0}^{2\Pi} = \frac{7\pi}{2}$

2. (30pts) A hunter stands 10 m horizontally away from a bird and 5 m vertically below the bird on a tree. Assuming the arrow is shot at an angle 45° relative to the horizontal direction

a.(20pts) In order to shoot the bird, what is the initial speed $|\vec{v}_0|$ of the arrow? **b.**(10pts) Calculate the arc-length of the trajectory travelled by the arrow from the hunter to the bird with an initial speed obtained in question **a.**

Hint: 1). The gravitational acceleration is $g=10 \text{ m/s}^2$. 2). $\int \sqrt{x^2+1} dx = \frac{x}{2} \sqrt{x^2+1} + \frac{1}{2} \ln(x+\sqrt{x^2+1}) + c$, where c is a constant (MATH2011)[2014](s)midterm-lchenak*_94193.pdf downloaded by dgmwong from http://petergao.net/ustpastpaper/down.php?course=MATH2011&id=6 at 2020-10-28 05:40:47. Academic use within HKUST only.

(a)
$$\overrightarrow{\alpha} = \langle 0, -10 \rangle$$
 acceleration

 $\overrightarrow{V}o = \langle V_0 \cos 45^\circ, V_0 \sin 45^\circ \rangle = \langle \frac{V_0}{\sqrt{2}}, \frac{V_0}{\sqrt{2}} \rangle$ initial

 $\overrightarrow{V}o = \langle V_0 \cos 45^\circ, V_0 \sin 45^\circ \rangle = \langle \frac{V_0}{\sqrt{2}}, \frac{V_0}{\sqrt{2}} \rangle$ velocity

 $\overrightarrow{V}o = \langle V_0 \cos 45^\circ, V_0 \sin 45^\circ \rangle = \langle \frac{V_0}{\sqrt{2}}, \frac{V_0}{\sqrt{2}} \rangle$ This is velocity as a function of t .

 $\overrightarrow{\Gamma}(t) = \langle 0, 0 \rangle + \int_0^t \overrightarrow{V}(\tau) d\tau$
 $= \langle \frac{V_0}{\sqrt{2}}t, \frac{V_0}{\sqrt{2}}t - 5t^2 \rangle$ position.

The hunter stands at $(0, 0)$

The bird is at $(10, 5)$

$$\begin{cases} \frac{V_0}{\sqrt{2}}t = 10 & t = 1 \\ \frac{V_0}{\sqrt{2}}t - 5t^2 = 5 & V_0 = |0\sqrt{2}| (m/s) \end{cases}$$

(b) Arc length

$$L = \int_0^t ||\overrightarrow{V}(\tau)| d\tau$$

$$= \int_0^t$$

3. (20pts) The intersection line of two orthogonal planes (α and β) is the y-axis. The point $P_0(1,1,1)$ is on plane α . Find the equation of plane β .

Select two points on y axis

P₁ (0,0,0), P₂ (0,1,0)

Plane
$$\propto$$
 contains P₀, P₁, P₂

P₁P₀ = <1,1,1>, P₁P₂ = <0,1,0>

Their product:

 $\vec{N}_{\alpha} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \end{vmatrix} = \vec{i} - \vec{k}$

=<1,0,-1>

Normal vector of plane \propto .

 $\vec{N}_{\beta} = \vec{N}_{\alpha} \times \vec{j} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 1 \end{vmatrix} = \vec{i} + \vec{k}$

=<1,0,1>

Equation of plane β : $\vec{N}_{\beta} \cdot \langle x, y, z \rangle = 0$

Note that (0,0,0) is in β .

4. (25pts) Find the domain and range of the function $f(x,y) = \sqrt{x^2 + y^2 - 4}$. Then sketch three level curves of the given function on xy-plane.

 $\chi^2 + y^2 \geqslant 4$ is the domain $f(x,y) \geqslant 0$: range is $[0,+\infty)$ Level curves $z_0 = \sqrt{\chi^2 + y^2 - 4}$ $\chi^2 + y^2 = 4 + z_0^2 \geqslant z^2$ Circles centered at (0,0) with radii equal or larger than 2.

Note: Circles must be labeled with radii and levels