$$Y=eta_0+eta_1X_1+eta_2X_2\ldotseta_nX_n+e$$

Conceptos Basicos:

- Root Mean Squared Error (RMSE): la raiz cuadrada de la media del error al cuadrado, metrica para comprar modelos de Regresion
- Residuals Standard Error (RSE): lo mismo que RMSE solo que ajustado a los grados de libertad
- R-Squared (Coeficient of determination, R2): la proporcion de la varianza explicada por el modelo, rango entre 0 y 1
- t-Statistic : nos indica la importancia o el peso de la caracteristica que usa el modelo, El coeficiente para un Predictor divido por el error estandar del coeficiente
- Weighted Regresion : la regresion con los registros teniendo diferentes pesos

Primer modelo de Regresion Lineal Multiple

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model
import numpy as np
```

data=pd.read_csv('datasets\House_sales.csv', delimiter= "\t")
data

Out[2]:		DocumentDate	SalePrice	PropertyID	PropertyType	ym	zhvi_px	zhvi_idx	AdjSalePrice	NbrLivingUnits	SqFtLot	Bathroo	ns Bedroor	ns BldgGrade	YrBuilt	YrRenovated	TrafficNoise	LandVal	ImpsVal :
	1	2014-09-16	280000	1000102	Multiplex	2014- 09-01	405100	0.930836	300805.0	2	9373	3	00	6 7	1991	0	0	70000	229000
	2	2006-06-16	1000000	1200013	Single Family	2006- 06-01	404400	0.929228	1076162.0	1	20156	3	75	4 10	2005	0	0	203000	590000
	3	2007-01-29	745000	1200019	Single Family	2007- 01-01	425600	0.977941	761805.0	1	26036	1	75	4 8	1947	0	0	183000	275000
	4	2008-02-25	425000	2800016	Single Family	2008- 02-01	418400	0.961397	442065.0	1	8618	3	75	5 7	1966	0	0	104000	229000
	5	2013-03-29	240000	2800024	Single Family	2013- 03-01	351600	0.807904	297065.0	1	8620	1	75	4 7	1948	0	0	104000	205000
	27057	2011-04-08	325000	9842300710	Single Family	2011- 04-01	318700	0.732307	443803.0	1	5468	1	75	3 7	1951	0	0	201000	172000
	27058	2007-09-28	1580000	9845500010	Single Family	2007- 09-01	433500	0.996094	1586196.0	1	23914	4	50	4 11	2000	0	1	703000	951000
	27061	2012-07-09	165000	9899200010	Single Family	2012- 07-01	325300	0.747472	220744.0	1	11170	1	00	4 6	1971	0	0	92000	130000
	27062	2006-05-26	315000	9900000355	Single Family	2006- 05-01	400600	0.920496	342207.0	1	6223	2	00	3 7	1939	0	0	103000	212000
	27063	2007-01-09	465000	9906000035	Single Family	2007- 01-01	425600	0.977941	475489.0	1	4400	1	50	3 7	1928	0	0	311000	268000

22687 rows × 22 columns

```
#hacemos un subset con los valores que son de nuestro interes

subset =['AdjSalePrice', 'SqFtTotLiving', 'SqFtLot', 'Bathrooms', 'Bedrooms']

data=data[subset]
```

```
#generamos 2 variables predictors , contendran nuestros X y outcome que contendra nuestra Y o target

predictors=['SqFtTotLiving','SqFtLot','Bathrooms','Bedrooms']

outcome= 'AdjSalePrice'

house_lm = linear_model.LinearRegression() #creamos el modelo

house_lm.fit(data[predictors],data[outcome]) #lo ajustamos con nuestro X e Y
```

Out[4]: LinearRegression()

print('Intercept', house_lm.intercept_)

for name, coef in zip(predictors, house_lm.coef_): # la funcion zip toma iterables, los agrega y los imprime
 print(name, coef)

Intercept 96960.38147618511 SqFtTotLiving 327.82525951863505 SqFtLot -0.08468587956197739 Bathrooms 13256.96375140121

RSE: Error Residual Estandar :

fitted= house_lm.predict(data[predictors])# pronosticamos

Atributos para medir el desempeño de nuestros modelos

 $RSE = \sqrt{rac{\sum_{i=1}^{n}(\overline{y}-y_i)^2}{(n-1-p)}}$

siendo p= predictors

RMSE: Raiz Cuadrada de la media del error:

 $RSE = \sqrt{rac{\sum_{i=1}^{n}(\overline{y}-y_i)^2}{n}}$

 $\label{lem:condition} \mbox{Volviendo al codigo calcularemos estos valores}:$

```
RMSE = np.sqrt(mean_squared_error(data[outcome], fitted))
RSE= np.sqrt(np.sum((data[outcome]-fitted)**2)/(data[outcome].size-1-len(predictors)))
print("RMSE: ",round(RMSE,3))
print("RSE: ",round(RSE,3))
```

RMSE: 272275.56 RSE: 272305.575

In []