Lec	ture III - Aspects of Monlinean Waves, I
Recall	
- dib	persion ology of basic plasma waves
- ma	et interesting + i'on acoustic were
	2= 4262/1+ K2/2
	onlinear waver? > evolution sect int. To finite amplitude
(- {	solitons
=	odynamio Waves / & hocks
Wave	e, for queli-neutral con acourtic
ne =	- No BXA relp
ani +	$a_{\times}(vn_{i}) = 0$
3- 51	+ 9x 9x 1: + 13v:v: 3v

	asd	
	2v	+ ngn =-16.1 gg
	94	9× 9×
		= 0 / Tel / In (Ne)
		=-Te dhe
	100	$= \frac{T_0}{N_c} \frac{\partial N_0}{\partial x} \qquad (QN)$
(-	50	$\frac{\partial n\hat{c} + \partial x (n\hat{c} v) = 0}{\partial t}$
. 4		DV + UDV = -TE DNE Dr Dr Dx
->	w.	morphic to 1D ges-dy nemics h coothermal EQS
- P	50	study geo dynamics
(-		

- Simple Wever! J.D Gar Dynamics CF Stenday/Lifehits
Whothern shocks etc. 20 + 2x (OV) =0 ides 8+1 +1 8×1 + 1 8× 6 = 9 P = P(P) - 5 chitistly homogeneous - 5 = const, till shock forms - Sepred us & rela Corlow do =0 along (v + 4 dp) ou =0 V=V(P)) = d (DV) = V+ DdV contervativ c

$$V = V(P)$$

$$P = P(P)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}$$

8

co terms density

80 dP = 0 Cs 0=0(v) 2x) = V = C6(V) X = f [V + Coar] + fa) simple weren solution [nentineer. Checks /ineurised limit $X = + \left[\int \pm C_{5}(\omega) \right] + f(\omega) + X_{0}$ X = Xo I CoCO)+ -> why "Simple"] - No characteristic = alternate approach To if no characteristic scale
all quantities depend only) on

$$\frac{P}{V} = F(E) \quad E = \frac{1}{V} \quad \frac{Z}{V}$$

$$\frac{P}{V} = \frac{1}{V} \quad \frac{P}{V} \quad$$

E = V±Cs

x = (v±a) t.

From "eigenvector", relate V, & etc.

(3-1) DO + DV =0

pdv = csdo

- corresponds to hubstings version

$$= can also white!$$

$$V = \int + (-dpdV)^{1/2}$$

$$d(1/p) = dV = -1 do dp = cido do$$

$$V = \int (2 dpcido)^{1/2}$$

$$= \int dp cs$$

+> Physios of Simple Wave

- have established simple wave in gas dynamics with key element of scale invariance

- now elwidate sample were physican => shocks

Finilarity Flow - somple were with

went there

Con write general solution,

For adiabetic process:

$$PO^{-1} = const$$
 $T = CS^{-1} = const$
 $T = CS^{-1} = CS^{-1} = CS^{-1}$
 $T = CS^{-1} = CS^{-$

$$C = C_0 \pm \frac{1}{2}(8-1)V$$

$$P = P_0 \left(1 \pm \frac{(8-1)}{2}V/c_0\right)^{2/8-1}$$

$$P = P_0 \left(1 \pm \frac{1}{2}(8-1)V/c_0\right)^{2/8-1}$$

$$x = + \left[v + C_{c}(v) \right] + C(v)$$

Now:

- point on wave profile mover at

and du/do>0

speed characters with dentity!

Difference 30 - need f(u) LO Generally: =0 inflection (DX) = = = (8+1) + +P ~ formation

-> 5h	echs - Flows with Discontinuity
	ce were steepen and breek
	Dolocontinuity appears
- 5	noch " - focalized region of rapid change / discontinuity
	cosipetion essential in shech (thickness ~ lmp)
Chassi	pricture:
P=, P2	, V, Ø
	Picture. Vi D upotreem Pi, P, (ched)
downstre	F
	10 cation of shock in rest frame
→ Shoc int	a thermal energy compression

(
- 5	0	ist egrating,
V	Jor	k in shock frame - U = 0
9t	0	= -uaxo
- 51	ip.	p = (02-01)U
		U=0.
(7	E-	5
		OVX = BVXO Centinuity Mass Flux
en	20	Y = Un plane
0	Vn	$\left(\frac{1}{2}V^2 + \frac{y}{8}P^2\right) = \frac{8}{8}Vn\left(\frac{v^2}{2} + \frac{y}{8}P^2\right)$
þ	d	PV

 $= ()_{G} - ()$

1x2 + xp/0 =0 in shock frame Fixed coordinate frame: Vx = Vn - U normal V
in fixed coords - shock add = bef. COMPREDION hesting