Задание 2 (на 18.09.13)

CC10. Приведите пример неразрешимого подмножества $\mathcal{N} \times \mathcal{N}$, такого что все его горизонтальные и вертикальные сечения (т.е. пересечения с $N \times \{x\}$ и с $\{x\} \times N$) разрешимы.

СС11. Постройте пример двух перечислимых множеств, которые нельзя отделить никаким разрешимым (это значит, что не существует такого разрешимого множества, которое содержало бы первое перечислимое множество и не пересекалось бы со вторым).

CC12. а) Докажите, что существует *универсальное* перечислимое множество, т.е. такое перечислимое подмножество $U \subseteq \mathcal{N} \times \mathcal{N}$, что для любого перечислимого подмножества $A \subseteq \mathcal{N}$ найдется такое $a \in \mathcal{N}$, что $A = \{x | (a, x) \in U\}$. б) Покажите, что универсального разрешимого множества не существует.

СС13. Покажите, что существует всюду определенная вычислимая функция a(n), принимающая рациональные значе- ния, что существует предел $\alpha = \lim_{n \to \infty} a(n) \in \mathbb{R}$, но не существует алгоритма, который бы по рациональному числу ϵ выдал такой n_0 , что при $n > n_0$ выполняется $|a(n) - \alpha| < \epsilon$. Определения. Мы называем алгоритмы \mathcal{A} и \mathcal{B} эквивалентными если

- $\forall x \ \mathcal{A}(x)$ останавливается $\iff \mathcal{B}(x)$ останавливается;
- $\forall x$ если $\mathcal{A}(x)$ останавливается, то и $\mathcal{A}(x) = \mathcal{B}(x)$.

Такую же эквивалентность можно ввесли на множестве натуральных чисел $a\equiv b\iff <\!\!a\!\!>\sim$ $<\!\!b\!\!>$. Множество $S\subseteq\mathcal{N}$ называется инвариантным, если $\forall a\in S,b\in\mathbb{N}\setminus S,a\not\equiv b$.

[CC14.] (Теорема Успенского-Райса) Докажите, что если множество S инвариантно и разрешимо, то либо $S = \emptyset$, либо $S = \mathcal{N}$.

[CC15.] Покажите, что множество описаний машин Тьюринга, которые останавливаются на всех входах, является неперечислимым множеством и дополнение его тоже неперечислимо.

СС16. Покажите, что язык 2-SAT (выполнимых формул в 2-КН Φ) лежит в классе Р.

[CC17.] Хорновской формулой называется формула в ДНФ, в которой в каждый конъюнкт максимум одна переменная входит с отрицанием. Покажите, что множество хорновских тавтологий в ДНФ содержится в классе Р

[CC 9.] Машина Тьюринга называется забывчивой, если положение головки в любой момент времени зависит только от длины входа. а) Докажите, что любую машину Тьюринга, работающую время T(n) можно промоделировать за время $O(T^2(n))$ на забывчивой одноленточной машине. б) А на забывчивой двухленточной за время O(T(n)) (странительной двухленточной за время O(T(n))).