Spring 1984

ALGEBRA QUALIFYING EXAM

Do at least eight problems with at least two from each of the four sections.

Group Theory

- 1. Let $\phi: G \to H$ be a surjective homomorphism of groups, and let $K = \ker \phi$. If H_1 is a subgroup of H show that there is a unique subgroup G, of G such that
 - (i) K & G10
 - (ii) $\phi(G_1) = H_1$.
- 2. Lat G be a group of order 56. Show that either
 - (i) a 2-Sylow subgroup is normal, or
 - (ii) a 7-Sylow subgroup is normal:

(Extra credit: Give examples of groups G_1, G_2 of order 56 such that a 7-Sylow subgroup of G_1 is not normal and a 2-Sylow of G_2 is not normal.)

- 3. Let P be a finite p-group (p is prime), and let H be a proper subgroup of P. Show that $H_p(H) \stackrel{>}{\rightarrow} H$.
- 4. Prove that no group can be written as the union of two proper subgroups. Give an example of a group which is a union of three proper subgroups.
- 5. Let A be an abelian group with generators a,b and relations 2a b = 0, -a + 2b = 0. Compute the structure of A.
- 6. Let G be the group with presentation $\langle a,b|a^2=b^3\rangle$. Show that G is infinite. (Hint: This is not hard at all! Let G_0 be the subgroup of $GL(2,\mathbb{Z})=2\times2$ honsingular matrices with integer entries, generated by $a_0=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$, $b_0=\begin{bmatrix}0&1\\-1&1\end{bmatrix}$

Show that a_0,b_0 satisfy the given relation, and that G_0 is infinite.)

Rings and Modules

- Let \$1R₁ * R₂ be a homomorphism of rings.
 - a) If I_2 is an ideal of R_2 , show that $\phi^{-1}(I_2)$ is an ideal of R_1 .
 - b) If I_1 is an ideal of R_1 show by example that $\phi(I_1)$ need not be an ideal of R_2 .
- 2. Prove that "Chinese Remainder Theorem": If n is a positive integer with n = ab, a and b relatively prime, then there is an isomorphism of rings

$$\frac{\mathbb{Z}}{(n)} \stackrel{\sim}{\sim} \frac{\mathbb{Z}}{(a)} \times \frac{\mathbb{Z}}{(b)} .$$

- 3. Let R be a ring and let M be a left R-module. Let $Ann(M) = \{r \in R | rM = 0\}$ be the annihilator of M.
 - a) Show that Ann(M) is a 2-sided ideal of R
 - b) If M is irreducible, and if R commutative, show that there is an isomorphism of R-modules

- 4. Let R be an integral domain such that every ideal of R is free. Prove that R is a principal ideal domain.
- 5. Let R be a ring and let M be a left R-module. Prove the so-called Noether isomorphism theorem: if M₁,M₂ are R-submodules of M then

$$\frac{\mathsf{M}_1 + \mathsf{M}_2}{\mathsf{M}_2} \cong \frac{\mathsf{M}_1}{\mathsf{M}_1 \cap \mathsf{M}_2} .$$

(Hint: Map $H_1 + \frac{M_1 + M_2}{H_2}$ in the more or less obvious way.

Is the map surjective? What is the kernal?)

Linear Algebra

京中 小橋 年 瀬谷

.

- 1. Let F be a field, and let V be a vector space over F.
 - a) Define what it means for a subset S C V to be a basis.
 - b) Using Iora's lemma, show that any vector space has a basis.
 - 2. Let $\{v_1,\ldots,v_n\}$ be a basis for the vector space V over F. If $w\in V$ satisfies $w\notin \langle v_2,\ldots,v_n\rangle$ (where $\langle v_1,\ldots,v_n\rangle$ are a basis.
 - 3. Let $T:V \rightarrow V$ be a linear transformation such that $T^2 = T$. Prove that the subspaces TV and (I = T)V are T-invariant and that $V = TV \oplus (I T)V$.
 - 4. Give an example of a matrix A with rational entries such that minimal polynomial = $(x + 1)^2(x^2 + 1)^2(x^4 + x^3 + x^2 + x + 1)$, characteristic polynomail = $(x + 1)^3(x^2 + 1)^3(x^4 + x^3 + x^2 + x + 1)$
 - 5. Let $T_1, T_2: V \rightarrow V$ be linear transformations, where V is a finite dimensional vector space over an algebraically closed field. If $T_1T_2 = T_2T_1$, prove that there exists a vector $v \in V$ which is an eigenvector for both T_1 and T_2 .

Pields and Galois Theory

- Let F ⊂ K be fields and let α ε K.
 - a) State what it means for a to be algebraic over F.
 - b) Prove that a is algebraic over F if F[a] is a finite dimension F-vector space.
- 2. Let F be a finite field, and let F* be the non-zero elements of F, regarded as a multiplicative group. Show that F* is a cyclic group. (Hint: If e = exponent of F*, how many roots in F are there to the polynomial x* - 1 ?)
- 3. Let $\sqrt[3]{2}$ be a real cube root of 2, and let ζ be the complex number $\zeta = \exp(\frac{2\pi i}{3})$. Let $K_1 = \mathbb{Q}[\sqrt[3]{2}]$, $K_2 = \mathbb{Q}[\zeta]$, $K_3 = \mathbb{Q}[\sqrt[3]{2},\zeta]$. Prove that K_1 is not normal over \mathbb{Q} but that K_2 , K_3 are normal over \mathbb{Q} .

4. Let P G R be a separable normal extension of P₁ and let

G be the Galois group of the extension. Let H be a subgroup

of G and let L = field of invariants of H, i.e.

L = {c ∈ R | hc = c for all h ∈ H}. Without using the

fundamental theorem of Galois theory, prove that L is

normal over F if and only if H is a normal subgroup of G.