Automatic Synthesis of Low Complexity Translation Operators for the Fast Multipole Method

Isuru Fernando, Andreas Klöckner February 28, 2021

Outline

- Introduction to Taylor series based Fast Multipole Method
- Compressed Taylor Series based Multipole and Local expansions
- Results accuracy and time complexity

N-body problem

Let \mathbf{s} be sources and \mathbf{t} be targets. Potential at target \mathbf{t}_i is the sum of all potentials from the sources \mathbf{s} given by,

$$\psi(\mathbf{t},\mathbf{s})_i = \sum_j G(t_i,s_j).$$

For example,

$$G(t_i, s_j) = \frac{1}{\mathsf{dist}(t_i, s_j)}.$$

If the number of sources and and targets are both n then, calculating the potential of all targets takes $\mathcal{O}(n^2)$ time.

Fast Multipole Method

Algorithm by Greengard and Rokhlin (1987) to compute the potentials in $\mathcal{O}(n)$ time.

Figure 1: Carrier et al, 1988

Useful for solving partial differential equations with Integral equation methods where integrals of the following form are evaluated.

$$\int G(x,y)\sigma_y dy.$$

Taylor Series based FMM

Local expansion:

$$\psi(\mathbf{t}, \mathbf{s}) = \sum_{|m| \le k} \underbrace{\frac{D_{\mathbf{t}}^m \psi(\mathbf{t}, \mathbf{s}) \Big|_{\mathbf{t} = \mathbf{c}}}{m!}}_{\text{depends on src/ctr}} \underbrace{(\mathbf{t} - \mathbf{c})^m}_{\text{depends on tgt/ctr}}$$

Multipole expansion:

$$\psi(\mathbf{t}, \mathbf{s}) = \sum_{|m| \le k} \frac{D_{\mathbf{s}}^m \psi(\mathbf{t}, \mathbf{s}) \Big|_{\mathbf{s} = \mathbf{c}}}{\frac{m!}{\text{depends on tgt/ctr}}} \underbrace{(\mathbf{s} - \mathbf{c})^m}_{\text{depends on src/ctr}}$$

Л

Taylor Series based FMM

Expansion Types:

- Special purpose expansions (Spherical harmonics, Fourier-bessel based)
- Linear Algebra (Eg: Kernel-independent FMM)
- Taylor series based expansions

Pros	Cons		
- Works for all Green's functions	- Expansions $O(p^3)$ compared to $O(p^2)$		
	- Translations $\mathrm{O}(p^6)$ compared to $\mathrm{O}(p^2\log(p))$		
	- Stability issues		

Table 1: Pros and cons of Taylor series based expansions

Compressed Multipole Expansion

When the potential ψ satisfies the 2D Helmholtz equation we have,

$$\psi_{xx} + \psi_{yy} + \kappa^2 \psi = 0$$

Recall,

$$\psi(\mathbf{t},\mathbf{s}) = \sum_{|m| \le p} \frac{D_{\mathbf{s}}^{m} \psi(\mathbf{t},\mathbf{s}) \Big|_{\mathbf{s} = \mathbf{c}}}{\frac{m!}{\text{depends on tgt/ctr}}} \underbrace{(\mathbf{s} - \mathbf{c})^{m}}_{\text{depends on src/ctr}}$$

From the PDE we have

$$c_1\psi_{xx} + c_2\psi_{yy} + c_3\psi = c_1\psi_{xx} + c_2(-\psi_{xx} - \kappa^2\psi) + c_3\psi$$

= $(c_1 - c_2)\psi_{xx} + 0\psi_{yy} + \psi(c_3 - \kappa^2c_2).$

Compressed Multipole Expansion

For 2D Helmholtz equation we also have,

$$\psi_{xxyy} + \psi_{yyyy} + \kappa^2 \psi_{yy} = 0$$

$$\psi_{xxxx} + \psi_{xxyy} + \kappa^2 \psi_{xx} = 0$$

All the coefficients represented by red dots get zeroed.

Multipole expansion coefficients go from $\mathcal{O}(p^d)$ to $\mathcal{O}(p^{d-1})$.

Compressed Local Expansion

Recall,

$$\psi(\mathbf{t}, \mathbf{s}) = \sum_{|m| \le p} \frac{D_{\mathbf{t}}^{m} \psi(\mathbf{t}, \mathbf{s}) \Big|_{\mathbf{t} = \mathbf{c}}}{\frac{m!}{\text{depends on src/ctr}}} \underbrace{(\mathbf{t} - \mathbf{c})^{m}}_{\text{depends on tgt/ctr}}$$

Out of $\mathcal{O}(p^d)$ coefficients, only $\mathcal{O}(p^{d-1})$ are independent.

This makes the number of terms of a local expansion to be $\mathcal{O}(p^{d-1})$.

Calculating derivatives for Local Expansion

Tausch (2003) proposes an algorithm which has an amortized $\mathcal{O}(p)$ time.

We found several formulae to calculate these in amortized $\mathcal{O}(1)$ time. For Laplace 3D

$$\begin{split} r^2 \frac{\partial^{n+m+l}}{\partial x^n y^m z^l} \left(\frac{1}{r}\right) &= -(2n-1)x \frac{\partial^{n+m-1}}{\partial x^{n-1} y^m z^l} \left(\frac{1}{r}\right) - (n-1)^2 \frac{\partial^{n+m-2}}{\partial x^{n-2} y^m z^l} \left(\frac{1}{r}\right) - 2my \frac{\partial^{n+m-1}}{\partial x^n y^{m-1} z^l} \left(\frac{1}{r}\right) \\ &- m(m-1) \frac{\partial^{n+m-2}}{\partial x^n y^m z^{-2} z^l} \left(\frac{1}{r}\right) - 2lz \frac{\partial^{n+m-1}}{\partial x^n y^m z^{l-1}} \left(\frac{1}{r}\right) - l(l-1) \frac{\partial^{n+m-2}}{\partial x^n y^m z^{l-2}} \left(\frac{1}{r}\right) \end{split}$$

For Biharmonic 2D,

$$\begin{split} r^2 \frac{\partial^{n+m}}{\partial x^n y^m} \left(r^2 \log(r) \right) &= -2(n-2) x \frac{\partial^{n+m-1}}{\partial x^{n-1} y^m} \left(r^2 \log(r) \right) - (n-1)(n-4) \frac{\partial^{n+m-2}}{\partial x^{n-2} y^m} \left(r^2 \log(r) \right) \\ &- 2 m y \frac{\partial^{n+m-1}}{\partial x^n y^{m-1}} \left(r^2 \log(r) \right) - m(m-1) \frac{\partial^{n+m-2}}{\partial x^n y^{m-2}} \left(r^2 \log(r) \right). \end{split}$$

Compressed Multipole Translation

Let $\alpha_k = (\mathbf{s} - \mathbf{c}_1)^k$ be already computed multipole coefficients around center \mathbf{c}_1 . Then,

$$(\mathbf{s} - \mathbf{c})^k = ((\mathbf{s} - \mathbf{c}_1) + (\mathbf{c}_1 - \mathbf{c}))^k$$

$$= \sum_{l \le k} {k \choose l} (\mathbf{s} - \mathbf{c}_1)^l (\mathbf{c}_1 - \mathbf{c})^{k-l}$$

$$= \sum_{l \le k} \beta_{k,l} (\mathbf{s} - \mathbf{c}_1)^l$$

Cost: $\mathcal{O}(p^{2d})$.

Compressed Multipole Translation

Faster Compressed Multipole Translation

Note: For local to local translation, reverse all arrows.

Faster Compressed Multipole Translation

Faster Compressed Multipole Translation

Divide the problem into 2 subproblems

Compressed Multipole to Local Translation

From multipole expansion, we get,

$$\psi(\mathbf{t}, \mathbf{s}) = \sum_{|m| \le k} \underbrace{\frac{D_{\mathbf{s}}^m \psi(\mathbf{t}, \mathbf{s}) \Big|_{\mathbf{s} = \mathbf{c}}}{m!}}_{\text{depends on tgt/ctr}} \underbrace{(\mathbf{s} - \mathbf{c})^m}_{\text{depends on src/ctr}}$$

To translate this multipole expansion to a local expansion, we need to get the derivatives of the above expression and evaluate at new center.

Cost: $\mathcal{O}(p^{2d-2})$.

Compressed Multipole to Local Translation

Multipole to local translation matrix is a block Toeplitz matrix of smaller toeplitz matrices.

Compressed Multipole to Local Translation

Multipole to local translation matrix is a block Toeplitz matrix of smaller toeplitz matrices.

Use a Fast Fourier Transform (FFT) to do the translation.

Cost:

- $\mathcal{O}(p^{d-1}\log(p))$ for elliptic PDEs
- $\mathcal{O}(p^d \log(p))$ for other PDEs

Time complexities

	P2L/M2P	P2M/L2P	M2M	M2L	L2L
Taylor Series	p ³	p ³	p ⁶	p ⁶	p ⁶
Compressed Taylor Series without fast derivatives	ρ^3	ρ^3	ρ^3	ρ^3	p ³
Compressed Taylor Series with fast derivatives	p ²	p ³	ρ^3	$p^2 \log(p)$	p ³
Spherical Harmonic Series	p ²	p ²	$p^2 \log(p)$	$p^2 \log(p)$	$p^2 \log(p)$

Table 2: Time complexities for expansions, translations and evaluations

All operations are exact except for M2M in Compressed Taylor.

Here P is Point, L is Local expansion and M is Multipole expansion.

Code generation

With Compressed Taylor generating code for Stokes

$$\mu \nabla^2 \mathbf{u} - \nabla p + \mathbf{f} = \mathbf{0}$$
$$\nabla \cdot \mathbf{u} = 0$$

is done simply by giving the PDE as,

```
w = make_pde_syms(dim, dim+1)
mu = sym.Symbol("mu")
u = w[:dim]
p = w[-1]
pdes = PDE(mu * laplacian(u) - grad(p), div(u))
```

which generates code for the expansion, translations and evaluations.

Results - Error M2M

Results - FLOP count

Summary

- Kernel generic method for elliptic constant coefficient linear PDEs.
- Only needs the PDE and the Green's function for the PDE.
- Asymptotically better than full Taylor Series in,
 - Number of FLOPs
 - Storage
- Next goal: A fast Stokes solver on a GPU.

Ackowledgements:

- NSF grants 19-11019 and 16-54756
- Siam travel grant