1. (30 points) A cargo plane has three compartments for storing cargo: front, center and rear. These compartments have the following limits on both weight and space:

	WJ	22
Compartment	Weight capacity (tons)	Space capacity (cubic meters)
Front	10	6800
Center	16	8700
Rear	8	5300

The following four cargoes are available for shipment on the next flight:

	wti	V;	۱ (
Cargo	Weight (tons)	Volume (cubic meters/ton)	Profit (TL/ton)
C1	18	480	310
C2	15	650	380
C3	23	580	350
C4	12	390	285

We assume

- · that each cargo can be split into whatever proportions/fractions we desire for shipment
- · that each cargo can be split between 2 or more compartments if we so desire

The aim is to determine how much (if any) of each cargo C1, C2, C3 and C4 should be accepted and how to distribute each among the compartments so that the total profit for the flight is maximized.

a) (8 pts) Let us define the utilization rate of a cargo compartment as the ratio of the total cargo weight carried in that compartment to the weight capacity of that compartment (for example, if a total of 8 tons of cargo is carried in the front compartment, the utilization rate will be 8/10=0.8). Formulate this problem as a linear programming problem under the constraint that the utilization rate of each compartment must be the same to maintain the balance of the plane.

Decision Variables:

st
$$\underset{j=1}{\overset{3}{\sim}} x_{ij} \leq wt; \quad \forall i=1,2,3,4 \quad (available cargoes)$$

(a)
$$\frac{3}{5}$$
 XiJ \leq Wt; \forall i=1,2,3,4 (available cargaes)
(b) $\frac{4}{5}$ ViXiJ \leq SJ \forall j=1,2,3 (space capacity for each compartment)

(c)
$$\sum_{i=1}^{1-1} x_{ij} \le w_{j}^{2} \forall j=1,2,3$$
 (weight capacity for each compartment)

(d)
$$\frac{1}{i=1} \times \frac{1}{i=1} \times$$

b) (8 pts) Formulate this problem as a linear programming problem under the constraint that the differences between the utilization rates of any two compartments should not be more than 0.1 to maintain the balance of the plane.

Decision Variables:

Model: Leplace (d) with

$$\begin{vmatrix}
\frac{4}{5} \times i1 & \frac{4}{5} \times i2 \\
\frac{1}{5} \times i1 & \frac{4}{5} \times i2
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i1 & \frac{4}{5} \times i2 \\
\frac{1}{5} \times i1 & \frac{4}{5} \times i3
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i1 & \frac{4}{5} \times i3 \\
\frac{1}{5} \times i1 & \frac{1}{5} \times i3
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i2 & \frac{1}{5} \times i3 \\
\frac{1}{5} \times i2 & \frac{1}{5} \times i3
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i2 & \frac{1}{5} \times i3 \\
\frac{1}{5} \times i2 & \frac{1}{5} \times i3
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i2 & \frac{1}{5} \times i3 \\
\frac{1}{5} \times i2 & \frac{1}{5} \times i3
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i2 & \frac{1}{5} \times i3 \\
\frac{1}{5} \times i2 & \frac{1}{5} \times i3
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i2 & \frac{1}{5} \times i3 \\
\frac{1}{5} \times i2 & \frac{1}{5} \times i3
\end{vmatrix} \le 0.1$$

$$\begin{vmatrix}
\frac{4}{5} \times i2 & \frac{1}{5} \times i3 \\
\frac{1}{5} \times i2 & \frac{1}{5} \times i3
\end{vmatrix} \le 0.1$$

- c) (4 pts) Consider the two LPs in parts a) and b). Which one is more likely to have a larger optimal value? Please justify your answer.
- (b) is more likely to have a larger optimal value since feasible region in (b) includes feasible region in (a),
- d) (10 pts) If cargo can be delivered only in integer amounts (in tons) and if it is not possible to split the cargo between compartments, how would your model in part b) change? Your new model should still be a linear one.

$$XiJ \leq MJAIJ$$
 $Vi=1,...M$
 $Vi=1,2,3$
 $Vi=1,2,3$

Dec. Vor:
$$x_{k} = \int_{0}^{1} \int_{0}^{$$

w E 8 9,1 }

Q. 3)

```
20
Zy, ≥ 10
       J, ≤ J4
      J2+73 <1
       J5 = J6
                           Zeig xy & b; +M - b redundant
Zeig xy >b; - b (const. not)
solisfied)
      89+98+89 321
     Jio + Ji + Jiz + Jis 222,
          2,+2, >1
         2, 2, y, eso, 1 45=1. 20
```

Solution:

le is:

min
$$\tilde{z} = 1000y_1 + 2000y_2 + 600x_1 + 900x_2$$

s.t.

 $20x_1 + 50x_2 \ge 170$
 $30x_1 + 35x_2 \ge 150$
 $40x_1 + 45x_2 \ge 200$
 $x_1 \le 7y_1$ (each line can how 7 writes at a time)

 $x_2 \le 7y_2$
 $x_1 \le 7y_1 \le 9017$

Q. 5)

Let Amont of product produced a nochine i. where i=1,2,3,4.

Yii S 1 if machine i is used for production.

1000y1 + 920y2 +800y3 +700y4 + 20x1 + 28x4

s.t. X,+X2+X3+X4 > 2000 (dward) X1 = 9000 y 1

X2 = 1000 y 2

X3 = 1200 y 3

X4 = 1600 y 4

X1, X2, X3, X4 70 , YINZIYI, Y4 E 80,13

X1, X1, X3, X4 or integers.

Let C be the set of countries, Ni be the set of neighbors of country i. Say there are m countries and m colors.

Define
$$x_1^2 = \{ \begin{cases} 0 & \text{if county} \} \text{ is celeved by } 1 \end{cases}$$

$$x_1^2 \in \{0^{1}\} \text{ A isc } 2^{-1} \text{ in m}$$

$$x_2^2 = \{ 0 & \text{olm} \} \text{ A isc } 2^{-1} \text{ in m}$$

$$x_2^2 = \{ 0 & \text{olm} \} \text{ A isc } 2^{-1} \text{ in m}$$

$$x_2^2 = \{ 0 & \text{olm} \} \text{ A isc } 2^{-1} \text{ in m}$$

$$x_2^2 = \{ 0 & \text{olm} \} \text{ A isc } 2^{-1} \text{ in m}$$

$$x_2^2 = \{ 0 & \text{olm} \} \text{ A isc } 2^{-1} \text{ in m}$$

$$x_2^2 = \{ 0 & \text{olm} \} \text{ A isc } 2^{-1} \text{ in m}$$

$$x_2^2 = \{ 0 & \text{olm} \} \text{ A isc } 2^{-1} \text{ in m}$$

Q. 7) Let's first convert it to the standard form:

Q. 6)

Adding the artificial variables for each row, we will end up with following LP:

min
$$3x_1 + 2x_2 + 4x_3$$

s.t.
$$2x_1 + x_2 + 3x_3 + a_1 = 60$$

$$3x_1 + 3x_2 + 5x_3 - e_1 + a_2 = 120$$

$$x_1, x_2, x_3, e_1, a_1, a_2 \ge 0$$

Two-Phase Method:

The phase-I problem is the following:

Now we need to solve phase-I LP:

Tableau 0:

Z	X ₁	X2	X3	e_1	a_1	a_2	RHS
1	0	0	0	0	-1	-1	0
0	2	1	3	0	1	0	60
0	3	3	5	-1	0	1	120

The simplex tableau above is not in proper format since the row zero coefficients of basic variables a_1 and a_2 are not zero. We add the first and second row to row zero to make these coefficients zero:

Now we can start simplex iterations: since it is a minimization problem we are looking for positive coefficients to decide on entering variables.

x₃ enters and a₁ leaves:

Tableau 1:

20/(1/3)

20/(4/3)

x₂ enters and a₂ leaves:

Tableau 2:

Z	X ₁	X2	X 3	e_1	a_1	a_2	RHS
1	0	0	0	0	-1	-1	0
0	3/4	0	1	1/4	3/4	-1/4	15
0	-1/4	1	0	-3/4	-5/4	3/4	15

Both a_1 and a_2 left the basis so we can delete their columns from the tableau and move onto phase-II. We write the original objective function coefficients to the tableau:

Tableau 0:

Z	X ₁	X2	X3	e_1	RHS
1	-3	-2	-4	0	0
0	3/4	0	1	1/4	15
0	-1/4	1	0	-3/4	15

Again, notice that this tableau is not in proper format, we need to make row zero coefficients of basic variables x_2 and x_3 zero:

Tableau 0:

Z	X ₁	X2	X3	e ₁	RHS
1	-1/2	0	0	-1/2	90
0	3/4	0	1	1/4	15
0	-1/4	1	0	-3/4	15

Stop. The tableau is optimal since there is no positive entry in row zero.

The optimal solution is $x_1^*=0$, $x_2^*=x_3^*=15$ with objective value 90.

Now let's solve the same problem with Big-M method.

Big-M method:

The LP is the following:

Tableau 0:

Z	X1	X2	X 3	e ₁	a ₁	a_2	RHS
1	-3	-2	-4	0	-M	-M	0
0	2	1	3	0	1	0	60
0	3	3	5	-1	0	1	120

Let's put the tableau in the proper format first:

Tableau 0

Tableau 0	Tableau U:								
Z	X1	X2	X3	e_1	a_1	a_2	RHS		
1	5M-3	4M-2	8M-4	-M	0	0	180M		
0	2	1	3	0	1	0	60		
0	3	3	5	-1	0	1	120		

60/3

x_3 enters and a_1 leaves:

Tableau 1:

Z	X ₁	X ₂	X3	e_1	a_1	a_2	RHS
1	-(M+1)/3	(4M-2)/3	0	-M	(4-8M)/3	0	80 +20M
0	2/3	1/3	1	0	1/3	0	20
0	-1/3	4/3	0	-1	-5/3	1	20

20/(1/3)

x₂ enters and a₂ leaves:

Tableau 2:

Z	X1	X2	X3	e ₁	a_1	a ₂	RHS
1	-1/2	0	0	-1/2	1/2-M	1/2-M	90
0	3/4	0	1	1/4	3/4	-1/4	15
0	-1/4	1	0	-3/4	-5/4	3/4	15

Stop. The tableau is optimal since there is no positive entry in row zero.

The optimal solution is $x_1^*=0$, $x_2^*=x_3^*=15$ with objective value 90.

Q. 8) First Tableau:

X 1	X2	e_1	e_2	X 3	X4	RHS
-2	-3	0	0	-M	-M	0
2	1	-1	0	1	0	4
1	-1	0	-1	0	1	1

 x_3 and x_4 are basic variables but their row zero coefficients are not zero so we need to add the first and the second row to row zero after multiplying by M:

X 1	X2	e_1	e_2	X 3	X4	RHS
3M-2	-3	-M	-M	0	0	5M
2	1	-1	0	1	0	4
1	-1	0	-1	0	1	1

Then, x_1 enters x_4 leaves.

Second Tableau:

X1	X2	S ₁	e_1	Х3	X4	RHS
0	0	0	0	-1	-1	0
1	1	1	0	0	0	3
2	1	0	-1	1	0	4
1	1	0	0	0	1	3

 x_3 and x_4 are basic variables but their row zero coefficients are not zero so we need to add the second and the third row to row zero:

X 1	X2	S ₁	e_1	X 3	X4	RHS
3	2	0	-1	0	0	7
1	1	1	0	0	0	3
2	1	0	-1	1	0	4
1	1	0	0	0	1	3

Then, x_1 enters x_3 leaves.

Third Tableau:

X1	X2	X 3	S ₁	S ₂	e_1	RHS
-2	-1	-1	0	0	0	0
1/3	2/3	0	1	0	1/3	1
2	1	0	0	1	0	3
2/3	1/3	1	0	0	-1/3	1

x₃ is a basic variable but its row zero coefficient is not zero so we need to add the third row to row zero:

X ₁	X2	X3	S 1	S ₂	e_1	RHS
-4/3	-2/3	0	0	0	-1/3	1
1/3	2/3	0	1	0	1/3	1
2	1	0	0	1	0	3
2/3	1/3	1	0	0	-1/3	1

Then, x_1 enters and s_2 leaves (or x_3 leaves).

Q. 9)

a) (5 pts) The tableau is final and there exists a unique optimal solution.

b) (5 pts) The simplex method determines an unbounded solution from this tableau.

c) (5 pts) The current bfs is degenerate (not necessarily optimal).

d) (5 pts) The current solution is optimal, there are alternative optimal solutions but no alternative optimal bfs.

$$\lambda = 0$$
 Latio test is not finite $E > 0$ $B, C \le 0$ D any

e) (10 pts) Find a specific set of values for unknowns A-E satisfying the general conditions in part d). Give the current optimal bfs and an alternative optimal solution that is not a bfs.

A = 0 B=0 C=0 D=0 E=0

$$x_1$$
 enters no leaving variable

 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 1 \\ 0 \end{pmatrix} + x_1 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ is on alternative optimal solution for any $x_1 > 0$

b) Let assume we want that point $A = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$ be unique optimal Solution, then $-C = (-\alpha, -b)$ Should lie in the following region $\begin{pmatrix} -3 \\ -1 \end{pmatrix}$, e.g. $-C = (-4, 1) \Rightarrow \alpha = 4$

the optimel solution is (6) and the optimal solution value is 4x0 + (-1)x8 = -6

- C) -C should lie in the following region (-3)
 eg. -C = (1,1) => 0=-1

 (-3)

 (-3)

 (-3)

 (-3)
- There are two possible cases => (Case 1: -C = (-3,1))

 For case 1, point A is the only optimal (Case 2: -C = (-1,-2))

 extreme point and for Case 2, point B

 is the only optimal extreme point

e) min
$$ax + b(y''-y')$$

$$-x-2(y''-y') + S_1 = 4$$

$$-3x + (y''-y') + S_2 = 6$$

$$x, y', y', S_1, S_2 > 0$$

$$x_1, y_2$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_1, y_2$$

$$x_2$$

$$x_1, y_2$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_1, y_2$$

$$x_2$$

$$x_3$$

$$x_4$$

Q. 11)

The shaded area is the feasible region, the initial bfs can determined using this region.

Simplex tableau:

	Basic		\downarrow					
	Var.	x1	x2	e1	s1	s2	s3	RHS
	Z	-4	-5	0	0	0	0	0
	s1	1 ,	3	-1	1	0	0	22
\leftarrow	s2	0	1	0	0	1	0	6
	s3	2 ₩	-5	0	0	0	1	0
	Z	-4	0	0	0	5	0	30
\leftarrow	s1	1	0	-1	1	-3	0	4
	x2	0	1	0	0	1	0	6
	s3	2	0	0	0	5 ↓	1	30
	Z	0	0	-4	4	-7	0	46
	x1	1	0	-1	1	-3	0	4
	x2	0	1	0	0	1	0	6
\leftarrow	s3	0	0	2 🖖	-2	11	1	22
	Z	0	0	-30/11	30/11	0	7/11	60
	x1	1	0	-5/11	5/11	0	3/11	10
	x2	0	1	-2/11	2/11	0	-1/11	4
\leftarrow	s2	0	0	2/11	-2/11	1	1/11	2
	Z	0	0	0	0	15	2	90
	x1	1	0	0	0	5/2	1/2	15
	x2	0	1	0	0	1	0	6
	e1	0	0	1	-1	11/2	1/2	11

Tableau stops with optimality.