

PROPOSAL PROGRAM KREATIFITAS MAHASISWA

PENGIRIMAN DAN PENERIMAAN INFORMASI SUARA DALAM AIR MENGGUNAKAN SINAR INFRA MERAH DENGAN TEKNIK MODULASI LEBAR PULSA

BIDANG KEGIATAN PKM PENELITIAN

Diusulkan Oleh:

Regina Nur Shabrina; 181331057; 2018

Firdha Rachmadhani; 161331045; 2016

Muhammad Aldi Saefurohman; 171311015; 2017

POLITEKNIK NEGERI BANDUNG BANDUNG

PENGESAHAN PKM PENELITIAN

Penerimaan 1. Judul Kegiatan : Pengiriman dan

Dalam Suara Air Informasi Menggunakan Sinar Infra Merah dengan Teknik Modulasi Lebar Pulsa

2.Bidang Kegiatan : PKM-P

3.Ketua Pelaksana Kegiatan

a.Nama Lengkap Regina Nur Shabrina

b.NIM : 181331057 c.Jurusan Teknik Elektro

d.Univ/Institut/Politeknik : Politeknik Negeri Bandung

e.Alamat Rumah/ No. HP : Jl. Margaluyu No. 100 RT. 03 RW. 02 ,Kota Cimahi, Kode Pos 40525 /

089659005517

f. Email reginanursh@gmail.com

4. Anggota Pelaksana Kegiatan/Penulis 2 Orang

5.Dosen Pendamping

a.Nama Lengkap dan Gelar DR. Eril Mozef, MS., DEA

b.NIDN 0004046504

c.Alamat Rumah dan No Hp/Telp : Jalan Mars Utara 1 No II Rt 02 Rw 02,

Margahayu Raya, Bandung 40286 /

08122269339

6. Biaya Kegiatan Total

Ketua Jurusan,

a.Kemeristekdikti Rp12.012.000,-

b.Sumber lain

angka V 7. Jangka Waktu Pelaksanaan : 5 Bulan

Bandung,7 Januari 2019

Ketua Pelaksana Kegiatan,

(Regina Nur Shabrina)

NIM.181331057

Dosen Pendamping,

(DR. Éril Mozef, MS., DEA)

NIDN.0004046504

NIP. 19600316 198710 1 001

BSEE., M.Eng.)

NIP. 19540101 198403 1 001

Direktur Politeknik

DAFTAR ISI

HALAMAN SAMPUL i
PENGESAHAN PKM PENELITIANii
DAFTAR ISIiii
DAFTAR TABELiv
BAB I PENDAHULUAN
1.1 Latar Belakang1
1.2 Luaran yang Diharapkan
1.3 Manfaat
BAB II TINJAUAN PUSTAKA
BAB III METODE PENELITIAN4
3.1 Perancangan
3.2 Tahapan Penelitian yang akan dilaksanakan
3.3 Indikator capaian yang terukur di setiap tahapan
3.4 Teknik Pengumpulan Data dan Analisis Data
BAB IV BIAYA DAN JADWAL KEGIATAN9
4.1 Anggaran Biaya9
4.2 Jadwal Kegiatan
DAFTAR PUSTAKA
LAMPIRAN-LAMPIRAN11
Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing
Lampiran 2. Justifikasi Anggaran Kegiatan
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas. 22
Lampiran 4. Surat Pernyataan Ketua Pelaksana

DAFTAR TABEL

Tabel 4.1 Anggaran Biaya	9
Tabel 4.2 Jadwal Kegiatan	9

BAB I PENDAHULUAN

1.1 Latar Belakang

Komunikasi di dalam air menjadi kebutuhan komunikasi modern yang mendunia. Seperti komunikasi antar kapal selam, satelit dengan kapal selam, kapal biasa dengan kapal selam (Vikrant,dkk.,2012,h.1). Komunikasi dalam air memiliki peran penting dalam pengaplikasian eksplorasi minyak dan gas, pengawasan pada lingkungan, navigasi, mengontrol polusi di laut (Camila, dkk., 2016, h.1). Selain itu dapat digunakan untuk mendeteksi dan peringatan awal bencana di dalam laut serta untuk kepentingan keamanan dan pertahanan nasional (Xi, dkk., 2015, h.1). Sistem komunikasi ini juga diminati oleh industri dan komunitas yang bergerak pada bidang ilmu pengetahuan, eksplorasi lepas pantai, dapat pula diaplikasikan untuk mengamati perubahan iklim, dan penelitian pada bidang oseanografi (Hemani dan George, 2016, h.1).

Ada beberapa media komunikasi di dalam air yaitu gelombang akustik, Radio Frekuensi (RF) dan cahaya. Gelombang akustik merambat dengan baik di dalam air dan dapat mencapai jarak yang sangat jauh (Goh, 2009, h.1). Kekurangannya adalah bandwidth yang terbatas dan kecepatan transmisi datanya sangat rendah di dalam air yaitu dalam beberapa bps (Vikrant, 2012, h.1). Selain itu radio frekuensi yang memiliki rentang frekuensi tinggi yaitu dalam MHz hingga Ghz (Goh, 2009, h.1). Namun radio frekuensi (gelombang radio) memiliki redaman yang sangat besar di dalam air (Anguita, 2009, h.1). Selanjutnya adalah cahaya infra merah. Dibandingkan dengan Radio Frekuensi (RF) transmisi infra merah tidak dikendalikan oleh peraturan komunikasi federal. Proyek ini juga dapat membangun privasi untuk mengirim dan menerima data (Mohamad, 2013, h.65). Namun jarak transmisinya pendek. Berdasarkan sumber yang telah kami dapatkan, jarak transmisi komunikasi di dalam air menggunakan media sinar infra merah adalah kurang lebih 3 meter (Menying, dkk., 2012, h.1).

Berdasarkan uraian paragraf sebelumnya, kami memutuskan untuk memilih media komunikasi cahaya atau sinar infra merah di dalam air. Adapun teknik modulasi yang kami pilih adalah *Pulse Width Modulation* (PWM). Teknik modulasi PWM ini sebagai pengatur intensitas cahaya LED IR yang akan kami gunakan. Teknik modulasi ini juga dapat disebut sebagai teknik modulasi lebar pulsa yang merupakan sebuah cara memanipulasi lebar sinyal yang dinyatakan dengan pulsa dalam satu perioda untuk mendapatkan tegangan rata — rata yang berbeda. Pengontrolan intensitas cahaya tersebut berguna untuk mengatur nyala terang LED IR dengan cara mengatur lebar pulsa. Lebar pulsa dalam modulasi PWM bervariasi. Namun, memiliki amplitudo dan frekuensi dasar yang tetap (Andri, 2016, h.1). Variasi tersebut didapat dari perubahan panjang pulsa dalam satu periode dan dilakukan berulang — ulang (Toni, 2016, para.3). Dengan pengaplikasian teknik

modulasi PWM, besar kecilnya intensitas cahaya LED IR akan ditentukan sesuai kebutuhan. Sehingga meminimalisir jumlah daya yang hilang pada LED IR. Intensitas cahaya akan diperbesar seiring bertambahnya jarak transmisi pada komunikasi suara dalam air.

Kami akan mensimulasikan baik *software* maupun *hardware* dalam penelitian yang berjudul "Pengiriman dan Penerimaan Informasi Suara Dalam Air Menggunakan Sinar Infra Merah dengan Teknik Modulasi Lebar Pulsa" sesuai dengan teknik atau metode yang telah kami pilih.

1.2 Luaran yang Diharapkan

Target luaran yang diharapkan dalam program ini :

- a. Metode / teknik modulasi Pulse Width Modulation (PWM) untuk komunikasi dalam air
- b. Hasil simulasi software dan hardware
- c. Publikasi dalam prosiding seminar nasional

1.3 Manfaat

Pembuktian teori dan parameter yang diterapkan pada pengiriman dan penerimaan informasi suara dalam air menggunakan media sinar infra merah dengan teknik modulasi PWM

BAB II TINJAUAN PUSTAKA

2.1 Tinjauan Pustaka

Permasalahan pada komunikasi didalam air adalah *distance error, time error, speed error* (Menying, dkk., 2011, h.1). Hal ini disebabkan karena komunikasi di air dan di udara sangatlah berbeda. Komunikasi di dalam air sangatlah dipengaruhi oleh konsentrasi air, tekanan, suhu, kuantitas cahaya, angin, dan gelombang air (Camila, dkk., 2016, h.1).

Berdasarkan informasi tersebut kami akan melakukan simulasi *software* dan *hardware* untuk membuktikan metode yang akan diterapkan dalam komunikasi suara menggunakan media sinar infra merah. Adapun *hardware* yang akan digunakan berbentuk silinder yang panjangnya 2 hingga 3 meter yang berisi air. Di ujung – ujung *hardware* tersebut terdapat rangkaian pengirim dan penerima. Lalu uji coba akan dilakukan di ruangan laboratorium dengan mensimulasikan keadaan danau atau laut. Keadaan tersebut akan menjadi acuan untuk metode yang akan diterapkan pada pengirim dan penerima. Targetnya, pengirim dapat mengirim suara yang dapat diterima oleh penerima. Pada uji coba akan ditemukan gangguan cahaya sekeliling.

Sinar matahari memancarkan radiasi gelombang elektromagnetik (Randy, 2007, para.7). Pada komunikasi suara dengan media sinar infra merah, penerima menerima sinyal cahaya inframerah dari pengirim. Dari teori sebelumnya yang telah dibahas dapat disimpulkan, jika penerima bekerja dibawah sinar matahari yang juga memancarkan gelombang sinar infra merah (karena infra merah termasuk kedalam spektrum elektromagnetik), maka penerima tersebut juga menerima sinar inframerah dari cahaya matahari. Hal tersebut akan menyebabkan adanya kesalahan saat penerima bekerja untuk menerima sinyal inframerah. Karena penerima menerima banyak sumber cahaya, yaitu cahaya dari pengirim dan dari cahaya tampak (cahaya sekeliling). Dengan demikian, komunikasi antara pengirim dan penerima akan terganggu.

Untuk itu perlu dilakukan uji coba untuk mengetahui karakteristik rambatan sinar inframerah di dalam air pada 3 keadaan yang berbeda berdasarkan intensitas cahaya (pada satuan lux) yaitu 0 lux (gelap), \pm 100 lux (di dalam ruangan), \pm 10000 lux (dibawah sinar matahari). Untuk mengetahui intensitas cahaya lingkungan adalah dengan aplikasi luxmeter pada *smartphone*. Pada saat komunikasi terjadi antara pengirim dan penerima di ruangan gelap yaitu 0 lux (tidak ada cahaya dari luar ruangan masuk) penerima menerima sinar infra merah dengan optimal. Saat komunikasi pengirim dan penerima dilakukan pada \pm 100 lux (di dalam ruangan) dan \pm 10000 lux (dibawah sinar matahari) komunikasi tidak akan seoptimal seperti di ruangan gelap, karena terdapat cahaya tampak di lingkungan sekeliling yang menghambat kinerja penerima.

Selain itu yang perlu di uji bagaimana perambatan sinar infra merah di dalam air dengan beberapa macam jenis air. Karena semakin tinggi tingkat kekeruhan air dan konsentrasi air laut, semakin menghambat komunikasi antara pengirim dan penerima. Karena setiap jenis air memiliki sifat yang berbeda.

Solusi dari permasalahan sistem komunikasi suara di dalam air dengan media sinar infra merah adalah dengan diberinya suatu rangkaian penguat. Rangkaian penguat tersebut di maksudkan untuk memberi daya maksimum kepada beban. Input dari sistem penguat berupa sinyal kecil yang kemudian dikuatkan oleh beberapa penguat tegangan dan akhirnya diumpankan ke penguat daya untuk memperoleh daya yang besar (Herman, 2008, h.99). Rangkaian penguat ini menjadi solusi terhadap gangguan cahaya tampak / cahaya sekeliling pada saat simulasi. Dengan demikian, komunikasi antara pengirim dan penerima di dalam air dapat dilakukan tanpa adanya gangguan dari cahaya tampak dan jarak transmisi akan lebih jauh dibandingkan tanpa menggunakan rangkaian penguat.

Berdasarkan referensi yang telah kami dapat sistem komunikasi cahaya dengan menggunakan sinar infra merah dapat dilakukan pada jarak transmisi \pm 3 meter (Menying, dkk., 2012, h.1).

BAB III METODE PENELITIAN

3.1 Perancangan

Pengirim

Gambar 3.1 Blok diagram komunikasi suara dalam air menggunakan sinar infra merah dengan teknik modulasi PWM

Berdasarkan blok diagram yang ditampilkan pada gambar 3.1, skema perancangan komunikasi suara ini terbagi menjadi dua bagian yaitu pengirim dan penerima. Pada sisi pengirim, sinyal sinusoidal yang merupakan sinyal informasi dikuatkan di rangkaian penguat sebelum masuk ke rangkaian modulator PWM. Sinyal yang telah dikuatkan selanjutnya di modulasi menggunakan teknik modulasi PWM. Sinyal sinusoidal yang bersifat analog diubah menjadi sinyal digital yang bertujuan untuk menstabilkan intensitas cahaya LED IR dan menghindari gangguan cahaya lingkungan atau cahaya tampak. Kemudian terdapat osilator gelombang gergaji yang masuk ke rangkaian modulator PWM yang merupakan frekuensi pembawa. Setelah melewati rangkaian modulator PWM, sinyal sinusoidal yang bersifat digital akan dikirim ke LED IR yang memancarkan cahaya IR di dalam air.

Pada sisi penerima, terdapat *phototransistor* (sensor cahaya) yang digunakan untuk menangkap cahaya infra merah didalam air yang kemudian dikirimkan ke rangkaian penguat 1. Setelah dikuatkan, sinyal digital didemodulasi di demodulator PWM. Dalam tahap ini, sinyal digital tersebut diubah lagi ke sinyal analog yang akhirnya dikuatkan kembali pada rangakian penguat 2. Dengan demikian sinyal yang dikirim akan sama seperti sinyal yang diterima yaitu sinyal masukan dan keluaran adalah sinyal sinusoidal informasi (suara).

3.2 Tahapan Penelitian yang akan dilaksanakan:

a. Menguji karakteristik air yaitu air jernih, air garam dan air keruh terhadap cahaya infra merah. Berdasarkan informasi yang kami dapatkan, redaman air dapat dihitung dengan rumus:

$$I_z = I_0 e^{-kz}$$

$$\ln I_z = \ln I_0 - kz$$

Keterangan: e = 2,7183

 I_z = Intensitas cahaya depth z

I_o = Intensitas cahaya di bawah permukaan laut atau danau

- b. Mencari hubungan antara daya pancar cahaya (intensitas cahaya) infra merah dan jarak transmisi dalam air.
- c. Menginventarisir cahaya cahaya pengganggu dalam air.
- d. Menentukan teknik pengolahan cahaya yang tepat untuk mengatasi gangguan cahaya pengganggu dalam air tersebut, misalnya teknik modulasi dalam protokol.
- e. Membuat komunikasi suara satu arah.
- f. Melakukan uji coba kinerja sistem.

Berikut teknik pengukuran yang diuji di dalam pipa akrilik diameter ± 7 cm dengan panjang 2 meter berisi air:

1. Pengukuran dengan parameter konstan

Gambar 3.2.1 Pengukuran dengan parameter konstan

Pada sisi led infra merah di pasang power supply 12 V. Sedangkan pada sisi fototransistor (sensor cahaya) di pasang Multimeter digital. Awalnya LED IR dan fototransistor di posisikan pada jarak 0 cm. Kemudian di jauhkan perlahan – lahan hingga 200 cm. Pengambilan data dilakukan setiap 10 cm dan dicatat besar redaman air yang diukur dengan multimeter digital.

Signal Generator Centrator Pennjang (2 s.id Alay) Photostransistor/photodioda

2. Pengukuran dengan Parameter Dinamis

Gambar 3.2.2 Pengukuran dengan Parameter Dinamis

Pada sisi led infra merah, di pasang signal generator. Sedangkan pada sisi fototransistor di pasang osiloskop/spektrum analyzer. Awalnya LED IR dan fototransistor di posisikan pada jarak 0 cm. Kemudian di jauhkan perlahan – lahan hingga 200 cm. Pengambilan data dilakukan setiap 10 cm dan dilihat bentuk gelombangnya di osiloskop. Bentuk gelombang tersebut merupakan gelombang sinar infra merah yang diterima oleh sensor cahaya (fototransistor) yang dikirim oleh LED IR.

Pengukuran dengan parameter konstan dan dinamis ini dilakukan pada air jernih, air garam dan air keruh, dengan intensitas cahaya (lux) yang berbeda yaitu 0 lux (gelap), \pm 100 lux (cahaya ruangan) dan \pm 10.000 lux (dibawah sinar matahari). Hasil dari pengukuran tersebut bertujuan untuk mendapatkan besar intensitas cahaya yang dikirim dan diterima terhadap jarak.

3.3 Indikator capaian yang terukur di setiap tahapan:

- a. Mendapatkan kurva redaman cahaya dalam air. Kurva yang diharapkan tidak berbentuk kurva linier melainkan kurva ekponensial
- b. Mendapatkan grafik hubungan antara daya pancar cahaya dan jarak transmisi dalam air

Gambar 3.3 Kurva intensitas cahaya terhadap jarak (Scott, 2019)

Gambar di atas merupakan grafik hubungan antara daya pancar cahaya (intensitas cahaya) terhadap jarak (cm). Grafik ini menjadi acuan untuk didapatkan hasil pengukuran dari hubungan daya pancar terhadap jarak. Grafik tersebut tidak bersifat linier melainkan eksponensial. Dari grafik tersebut dapat di analisis bahwa semakin jauh jarak transmisi, semakin kecil intensitas cahaya yang diterima.

- c. Mendapatkan daftar dari cahaya pengganggu dalam air
- d. Menggunakan teknik modulasi PWM pada komunikasi suara dalam air. Diharapkan sinyal yang dikirim dan diterima sama. Artinya komunikasi suara dalam air berhasil dilakukan.
- e. Pengiriman dan penerimaan informasi suara berhasil dilakukan pada jarak 2 meter

3.5 Teknik Pengumpulan Data dan Analisis Data

3.5.1 Teknik pengumpulan data

Dalam hal ini terdapat dua cara yaitu:

a. Analog

Mengumpulkan data kuat sinyal yang diterima di berbagai kondisi lingkungan air, lalu mengamati apa yang mempengaruhi kuat sinyal sinar infra merah yang dikirim.

b. Digital

Menerima informasi berupa suara yang dikirimkan, lalu diamati apakah sinyal informasi (suara) yang dikirim sama dengan sinyal informasi (suara) yang diterima.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Untuk Pembuatan sistem komunikasi suara dua arah ini,di perlukan :

No	Pengeluaran	Harga (Rp)
1	Peralatan Penunjang	6.560.000
2	Bahan Habis Pakai	3.322.000
3	Perjalanan	550.000
4	Lain-Lain	1.580.000
	Total Keseluruhan(Rp)	12.012.000

4 Tabel 4.1 Anggaran Biaya

4.2 Jadwal Kegiatan

	Tania Wasiakan		Bulan		Bulan 2 3 4 5	
No	Jenis Kegiatan	1	2	3	4 5	
1	Perancangan					
2	Menguji Karakteristik air dan mendapatkan kurva redaman cahaya di dalam air .					
3	Mendapatkan hubungan daya pancar cahaya infra merah terhadap jarak transmisi.					
4	Menginventarisir / mendapatkan daftar cahaya – cahaya pengganggu dalam air dan menentukan teknik modulasi protokol					
5	Membuat komunikasi suara satu arah					
6	Melakukan Uji Coba Kinerja Sistem beserta analisis dan pemecahan masalah					
7	Penulisan laporan					

Tabel 4.2 Jadwal Kegiatan

DAFTAR PUSTAKA

- Anguita, Brizzolara, dan Parodi. 2009. "Building an Underwater Wireless Sensor Network based on Optical Communication: Research Challenges and Current Results". IEEE Xplore. Diakses pada 3 Januari 2019. http://www.ieeexplore.ieee.org/document/5210866
- Camila, dkk. 2016. "A survey of underwater wireless communication technologies". Journal of Communication and Information Systems, vol. 31, no.1, h. 4.
- Goh, J.H. 2009. "Underwater Wireless Communication System", Journal of Physics: Conference Series, vol.178, no.1, h.1.
- Haryanto, Toni. 2016. "Analog Output pada Arduino Menggunakan PWM (*Pulse Width Modulation*)". Diakses 15 Januari 2019. https://www.codepolitan.com/tutorial/analog-output-arduino-menggunakan-pwm-pulse-width-modulation#
- Kaushal, Hemani dan Kaddoum, Georges. 2016. "Underwater Optical Wireless Communication". Digital Object Identifier 10, vol.4, no.1109, h.1-2.
- Marzuki, Andri. 2016. "Pulse Width Modulation (PWM)". Diakses 13 Januari 2019. http://andri_mz.staff.ipb.ac.id/pulse-width-modulation-pwm/
- Menying, dkk. 2011. "Simple Underwater wireless communication system sciverse science direct". Procedia Engineering, no.15, h.2460 2462.
- Mohamad, dkk. 2013. "Development of Optical Wireless Audio System Using Infrared Light Communications". IOSR Journal of Electronics and Communication Engineering. vol.8, h.65.
- Nelson,Scott. 2019. "Infrared Heat Lamps vs. LED Light Theraphy Devices".

 Diakses 16 Januari 2019.

 https://cdn.shopify.com/s/files/1/1155/1380/files/chart-2_629b8f24-916d-4704-9e90-2993ed2c9d81.png?v=1529368198
- Russel, Randy. 2007. "The Multispectral Sun". Windows To The Universe.

 Diakses 3 Januari 2019.

 https://www.windows2universe.org/sun/spectrum/multispectral_sun_overview.html
- Surjono, Herman Dwi. 2008. Elektronika Analog. Jember: Cerdas ulet kreatif.
- Vikrant, Anjesh, dan Jha. 2012. "Comparison of Underwater Laser Communication Cystem with Underwater Acoustic Sensor Network". International Journal of Scientific & Engineering Research, vol.3, no.10, h.1 4.
- Zhang, XI., Cui, Jun-Hong., Das, Santanu, Gerla, Mario., Chitre, Mandar. 2015. "Underwater Wireless Communication and Network Theory and Application Part 1". IEEE Communication Magazine. November 2015, h.1.

LAMPIRAN-LAMPIRAN

Lampiran I. Biodata Ketua, Anggota dan Dosen Pembimbing Biodata Ketua Pengusul

A. Identitas Diri

1.	Nama Lengkap	Regina Nur Shabrina
2.	Jenis Kelamin	Perempuan
3.	Program Studi	D3 - Teknik Telekomunikasi
4.	NIM	181331057
5.	Tempat dan Tanggal Lahir	Cimahi, 10 April 2000
6.	Email	reginanursh@gmail.com
7.	Nomor Telepon/Hp	089659005517

B. Kegiatan Kemahasiswaan Yang Sedang /Pernah Diikuti

No	Nama Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
I	Workshop 5G	Peserta Workshop	Politeknik Negeri Bandung, 2018
2	Sosialisasi 4 Pilar MPR RI	Peserta Sosialisasi	Universitas Pendidikan Indonesia, 2018
3	Seminar Beasiswa	Peserta Seminar	Politeknik Negeri Bandung, 2018
4	Alfest 9 th	Peserta Seminar	Politeknik Negeri Bandung, 2018
5	Workshop Tim Pengabdian Kepada Masyarakat	Peserta Workshop	Politeknik Negeri Bandung, 2018

C. Penghargaan dalam 10 Tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No	Jenis Penghargaan	Institusi Penghargaan	Tahun
1	Juara Umum 2	SMP Negeri 10 Cimahi	2013
2	Juara Umum 3	SMP Negeri 10 Cimahi	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Penelitian.

Bandung, 7 Januari 2019 Pengusul,

Regina Nur Shabrina

Biodata Anggota Pengusul I

1. Identitas Diri

1	Nama Lengkap	Firdha Rachmadhani
2	Jenis Kelamin	Perempuan
3	Program Studi	D3 Teknik Telekomunikasi
4	NIM	161331045
5	Tempat dan Tanggal Lahir	Malang,30 Januari 1997
6	E-mail	firdharachma35@gmail.com
7	Nomor Telepon/HP	+6281221755154

2. Kegiatan Kemahasiswaan Yang Sedang /Pernah Diikuti

No	Nama Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Latihan Kepemimpinan Manajerial Mahasiswa Tingkat Dasar	Peserta	Politeknik Negeri Bandung,November 2016
2	Seminar Beasiswa	Peserta	Politeknik Negen Bandung,2017
3	Android Basic User Interface & Android Basic: User Input	Peserta pelatihan	SMAN 1 Batujajar, Oktober – Desember 2017
4	kegiatan Kontes Robot Indonesia	Tim Support Robotika Polban	Universitas Tarumanegara,Mei 2018
5	Workshop 5G	Peserta Seminar	Politeknik Negeri Bandung, Desember 2018

3. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Peserta Indonesia Android Kejar 3.0	Google Developer	2017
2	Juara I Polban Mencari Bakat	Politeknik Negeri Bandung	2017
3	2 nd Expectable champion of singing contest west java level 2014	SMAN 1 Cisarua	2014
4	Juara I Solo Pop Indonesia	SMAN I Cimahi	2014
5	Juara I Solo Vokal FLS2N	Dinas Pendidikan Kota Cimahi	2010

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Pekan Kreativitas Mahasiswa Penelitian

Bandung, 7 Januari 2019

Pengusul,

Firdha Rachmadhani

Biodata Anggota Pengusul 2

A. Identitas Diri

1	Nama Lengkap	Muhammad Aldi Saefurohmar
2	Jenis Kelamin	Laki-laki
3	Program Studi	D3 Teknik Elektronika
1	NIM	171311015
5	Tempat dan Tanggal Lahir	Sukabumi, 11 April 1999
6	E-mail	ferraldis@gmail.com
7	Nomor Telepon/HP	085280020997

B. Kegiatan Kemahasiswaan Yang Sedang /Pernah Diikuti

No	Nama Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	IKA Polban	Internet Of Things	9 Maret 2018
2	IKA Polban	Renewable Energy	1 Juli 2018

C. Penghargaan dalam 5 tahun Terakhir

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
			1

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan proposal program kreativitas mahasiswa bidang kegiatan PKM Karsa Cipta.

Bandung, 7 Januari 2019

Pengusul.

Muhammad Aldi Saefurohman

4. Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Dr. Eril Mozef, MS, DEA.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP/NIDN	196504042000021000/0004046504
5	Tempat danTanggal Lahir	Padang, 04 April 1965
6	Alamat E-mail	erilmozef@gmail.com
7	Nomor Telepon/HP	08122269339

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Universite Henry Poincare, Nancy Perancis	Universite Henry Poincare, Nancy Perancis	Universite Henry Poincare Nancy Perancis
Jurusan/Prodi	Teknik Elektro	Teknik Elektro	Teknik Elektro
Tahun Masuk- Lulus	1989-1992	1992-1994	1994-1997

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Elekronika Analog	Wajib	3
2	Elekronika Digital	Wajib	3
3	Alat Ukur dan Pengukuran	Wajib	3
4	Aplikasi Mikrokontroler	Wajib	3
5	Manajemen Proyek	Wajib	3
6	Seminar	Wajib	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Linear Array Processors with Multiple Access Modes for Real-Time Image Processing	ne.	2003
2	Real-time Connected Component Labeling on One-dimensional Array Processors Based on Content-Addressable Memory:Optimization and Implementation	-	1996

Er

3	Design of Linear Array Processors with Content-	
	Addressable Memory for Intermediate Level	1996
	Vision	
4	Parallel Architecture Dedicated to Connected	1996
	Component Analysis	1330
5	LAPCAM, Linear Array of Processors Using	
	Content-addressable Memories: A New Design of	1996
	Machine Vision for Parallel Image Computation	
6	Parallel Architecture Dedicated to Connected	
	Component Labelling in O(n log n): FPGA	1996
	Implementation	·
7	Architecture dediee a l'algorithme parallel O(n	1996
	log n) d'etiquetage de composantes connexes	1550
8	Architecture electronique de traitements	
	d'images binaires:etiquetage et mesures pour le	1995
	controle en temps reel video	
9	Circuit configurables dans le traitement	
	d'images:etiquetage et mesures en temps reel	1995
	video	
10	Ammeloration de l'Architecture Parallele pour le	1998
	Traitement d'image LAPCAM	1996
11	Design and Simulation of High Speed	
	Interconnection Network:Orthogonal	2002
	Addressable Crossbar for LAPCAM Parallel	2002
	Architecture for Image Processing	
12	VHDL Design and Simulation of MAM Memory	
	for LAPCAM Parallel Architecure for Image	2002
	Processing	
13	Linear Array Processors with Multiple Access	
	Modes Memory for Real-Time Image	2002
	Proceessing	
14	Penghitung Jumlah Objek Bergerak Pada Citra	2002
	Videio Secara Waktu-nyata	2002
15	Disain dan Simulasi Control Unit dengan VHDL	
	untuk Prosesor Element RISC Arsitektur Paralel	2002
	Pengolahan Citra LAPCAM	
16	Disain dan Simulasi Arithmetic Logic Unit dan	
	File Register untuk Prosesor Element RISC	2002
	LAPCAM dengan VHDL	
17	LAPCAM : An Optimal Parallel Architecture for	0001
	Image Processing Realization and Evaluation	2001
18	Perancangan dan Simulasi Protokol dan	2007
	Penerima Serial Untuk Konfigurasi Jaringan	2006

	Interkoneksi Berkecepatan Tinggi, Orthogonal Addressable Crossbar	
19	Implementasi Paralel dan Waktu-nyata Beberapa Algoritma Prapengolangan Citra dengan Multi- mikrokontroler RISC	2002
20	Sistem Pengolahan Citra Stand-Alone Ekonomis Berbasis Mikrokontroler	2002
21	Memory MAM (Multi-mode Memory) untuk Pengolahan Citra Paralel Prinsip, Aplikasi dan Performansi	2002
22	Algoritma Labeling Citra Biner Dengan Performansi Optimal Processor-Time	2002
23	Perancangan Pra-Pengolahan Citra Filtering dan Binerisasi Secara Waktu-Nyata dengan Virtual Peripheral	2002

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Robot Sumo (Pembimbing) International Islamic School Robot Olympiad, Bandung		2013
2	Technical Award, Robot Sumo (Pembimbing) International Islamic School Robot Olympiad, Bandung		2013
3	5 Technical Award, Kategori Robot Prison Break (Pembimbing) International Robot Olympiad 14th, GwangJu, KoreaSelatan		2012
4	1 Special Award, Robot Shove(Pembimbing) International Robot Olympiad 14th, GwangJu, KoreaSelatan		2012

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Program Kreativitas Mahasiswa Karsa Cipta.

Bandung, 7 Januari 2019 Dosen Pendamping,

DR. Eril Mozef, MS, DEA

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Peralatan Penunjang

No	Komponen	Volume	Harga Satuan(Rp)	Harga Total (Rp)
1	Multimeter Digital	1 buah	863.000	880.000
2	Alat Pengering Komponen (Hairdryer)	1 buah	100.000	100.000
3	usb osiloskop	1 buah	1.500.000	1.500.000
4	Signal generator	1 buah	500.000	500.000
5	Adaptor 12 Volt	3 buah	70.000	210.000
6	Glue Gun	1 buah	75.000	75.000
7	Toolset Elektrik	1 Paket	400.000	500.000
8	Alat berat (besi 10 cm)	2 buah	10.000	20.000
9	Penyambung pipa akrilik letter L	2 buah	50.000	100.000
10	Pipa Akrilik p=2m,d=7 cm	2 buah	700.000	1.500.000
11	Toolkit	1 set	400.000	400.000
12	Stand solder	3 buah	25.000	75.000
13	Multimeter Analog	1 buah	700.000	700.000
	Sub Tot		6.560.000	

2. Bahan Habis Pakai

	Danan Habis Fakai	Volume	Harga	Harga	
No	Bahan Habis		Satuan(Rp)	Total(Rp)	
1	Protoboard	2 buah	35.000	70.000	
2	Transistor daya	5 buah	30.000	150.000	
3	Earphone dan	2 set	200,000	400,000	
	microphone		200.000	400.000	
4	IR LED Illuminator	3 buah	400.000	1.200.000	
5	Lem kaca	2 kaleng	15.000	30.000	
6	Plastik bening	1 box	20.000	20.000	
7	Lem Waterproof	1 kaleng	20.000	20.000	
8	garam	500 gram	10.000	50.000	
9	timah	2 roll	20.000	40.000	
10	Perekat casing ir led (isolasi)	6 buah	15.000	90.000	
11	Perekat casing ir led (lakban)	6 buah	15.000	90.000	
12	Refill glue Gun	20 buah	5.000	100.000	
13	Busa aquarium	4 buah	15.000	60.000	
14	Foto transistor	6 buah	30.000	180.000	
15	Resistor (Varian)	20 buah	100	2.000	
16	Waterproof case for IR LED	2 buah	200.000	400.000	
17	Male 3.5mm Stereo Jack	2 buah	30.000	60.000	
18	Female 3.5mm Stereo Jack	2 buah	30.000	60.000	
19	Kabel bakar	20 meter	1.000	20.000	
20	PCB	3 buah	20.000	60.000	
21	Kapasitor (Varian)	10 varian	3.000	30.000	
22	Dioda	10 buah	1.000	10.000	
23	Kabel Tembaga	10 meter	3.000	30.000	
24	Kabel pelangi	5 set	15.000	75.000	
	(male-to-male)	3 301	13.000	75.000	
25	Kabel pelangi (female-to-female)	5 set	15.000	75.000	
Sub Total (Rp) 3.322.000					

3. Perjalanan

No.	Perjalanan	Volume	Harga satuan	Harga (Rp)	
	Bahan bakar			400.000	
	kendaraan untuk				
1	Perjalanan ke	40 litar	10.000		
1	toko Elektronik	40 liter			
	di Bandung dan				
	Workshop Kreasi				
2	Ongkos kirim	20 kali	15.000	300.000	
	barang online	20 Kali			
3	Biaya Parkir	25 kali	2.000	50.000	
	Sub Total (Rp)				

4. Lain-lain

No	Lain - lain	Volume	Harga satuan (Rp)	Harga (Rp)	
1	Pembuatan Casing	2 set	100.000	200.000	
1	Sistem				
2	Seminar	1 tim	900.000	900.000	
3	Log book	1 buah	40.000	40.000	
4	Spidol Permanent	1 buah	10.000	10.000	
5	Pulpen	3 buah	10.000	30.000	
6	Sticky notes	1 paket	15.000	15.000	
7	Kertas A4	1 rim	60.000	60.000	
8	Gunting	1 buah	20.000	20.000	
9	Tinta Printer	1 set	200.000	200.000	
10	Kain hitam	3 meter	35.000	105.000	
		1.580.000			
		Total K	Keseluruhan(Rp)	12.012.000	
	(Terbilang Dua Belas Juta Dua Belas Ribu Rupiah)				

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/mi nggu)	Uraian Tugas
1	Regina Nur Shabrina/ 181331057	D3-Teknik Telekomunikasi	Teknik elektro	10 jam	Mendapatkan Karakteristik air dan hubungan daya pancar cahaya infra merah terhadap jarak transmisi
2	Firdha Rachmadhani /161331045	D3-Teknik Telekomunikasi	Teknik elektro	10 jam	Membuat rangkaian pengirim
3	Muhammad Aldi Saefurohman /171311015	D3-Teknik Elektronika	Teknik Elektro	10 jam	Membuat rangkaian penerima

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PELAKSANA

Saya yang menandatangani Surat Pernyataan ini:

Nama : Regina Nur Shabrina

NIM : 181331057

Program Studi : D3-Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal PKM-P saya dengan judul: "Pengiriman dan Penerimaan Informasi Suara Dalam Air Menggunakan Sinar Infra Merah dengan Teknik Modulasi Lebar Pulsa" yang diusulkan untuk tahun anggaran 2019 bersifat orisinal dan belum pernah dibiayai oleh lembaga atau sumber lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Bandung, 2 Januari 2019

Yang menyatakan, Ketua Pelaksana Kegiatan

Mengetahui,
Ketua Jurusan

Ketua Jurusan

Ketua Jurusan

Ketua Jurusan

Malayusfi, BSEE., M. Eng.

NIP. 19540101 198403 1 001

METERAI SEMPEL SESSES AT 1948 GOOD SE ENAMFIBURUPIAH

Regina Nur Shabrina NIM. 181331057