CS 640: Introduction to Computer Networks

Aditya Akella

Lecture 23 - CSMA/CA, Ad Hoc and Sensor Networks

Scenarios and Roadmap

- Point to point wireless networks
 - Example: Your laptop to CMU wireless
 - Challenges:
 - Poor and variable link quality (makes TCP unhappy)
 - Many people can hear when you talk
 - Pretty well defined.
- Ad hoc networks (wireless++)
 - Rooftop networks (multi-hop, fixed position)
 - Mobile ad hoc networks
 - Adds challenges: routing, mobility
 - Some deployment + some research
- Sensor networks (ad hoc++)
 - Scatter 100s of nodes in a field / bridge / etc.
 - Adds challenge: Serious resource constraints
 - Current, popular, research.

2

IEEE 802.11 Wireless LAN

- · 802.11b
 - 2.4-2.5 *G*Hz unlicensed radio spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code
 - widely deployed, using base stations
- 802.11a
 - 5-6 GHz range
 - up to 54 Mbps
- · 802.11g
 - 2.4-2.5 GHz range
 - up to 54 Mbps
- All use CSMA/CA for multiple access
- All have base-station and ad-hoc network versions

•	

IEEE 802.11 Wireless LAN

- Wireless host communicates with a base station
 - Base station = access point (AP)
- Basic Service Set (BSS) (a.k.a. "cell") contains:
 - Wireless hosts
 - Access point (AP): base station
- · BSS's combined to form distribution system

4

Ad Hoc Networks

- Ad hoc network: IEEE 802.11 stations can dynamically form network without AP
- · Applications:
 - Laptops meeting in conference room, car
 - Interconnection of "personal" devices

5

CSMA/CD Does Not Work

- Collision detection problems
 - Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal
 - Hard to build a radio that can transmit and receive at same time

Hidden Terminal Effect

- · Hidden terminals: A, C cannot hear each other

 - Obstacles, signal attenuation

 - Collisions at B

 - Collision if 2 or more nodes transmit at same time
- · CSMA makes sense:
 - Get all the bandwidth if you're the only one transmitting
 Shouldn't cause a collision if you sense another transmission
- · Collision detection doesn't work
- CSMA/CA: CSMA with Collision Avoidance

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 CSMA: sender

- If some channel idle for DIFS (Distributed Inter Frame Space) then transmit entire frame (no collision detection) detection)
- If sense channel busy then binary backoff

802.11 CSMA: receiver

If received OK
 return ACK after SIFS - Short IFS (ACK is needed
 due to hidden terminal
 problem)

8

Collision Avoidance Mechanisms

- Problem:
 - Two nodes, hidden from each other, transmit complete frames to base station
 - Wasted bandwidth for long duration!
- Solution:
 - Small reservation packets
 - Nodes track reservation interval with internal "network allocation vector" (NAV)

Collision Avoidance: RTS-CTS Exchange

- Explicit channel reservation
 Sender: send short RTS:
 request to send
 Receiver: reply with short
 CTS: clear to send
 CTS reserves channel for
 sender, notifying (possibly
 hidden) stations
- RTS and CTS short:
 - collisions less likely, of shorter duration
 - end result similar to collision detection
- · Avoid hidden station collisions
- Not widely used/implemented
 Consider typical traffic patterns

IEEE 802.11 MAC Protocol

802.11 CSMA Protocol: others

- NAV: Network Allocation Vector; maintained by each node
- 802.11 RTS frame has transmission time field
- Others (hearing CTS) defer access for NAV time units
- Reserve bandwidth for NAV time units

11

Ad Hoc Routing

- · Find multi-hop paths through network
 - Adapt to new routes and movement / environment changes
 - Deal with interference and power issues
 - Scale well with # of nodes
 - Localize effects of link changes

Traditional Routing vs Ad Hoc

- · Traditional network
 - Well-structured
 - ~O(N) nodes & links
- All links work ~= well
- · Ad Hoc network
 - N^2 links but many stink! - Topology may be really

 - Reflections & multipath cause strange interference

- Change is frequent

Problems using DV or LS

- · DV loops are very expensive
 - Wireless bandwidth << fiber bandwidth...
- · LS protocols have high overhead
- N^2 links cause very high cost
- Periodic updates waste power
- · Need fast, frequent convergence

14

Proposed protocols

- · Destination-Sequenced Distance Vector (DSDV)
- Dynamic Source Routing (DSR)
- · Ad Hoc On-Demand Distance Vector (AODV)
- · Let's look at DSR

DSR

- · Source routing
 - Intermediate nodes can be out of date
- · On-demand route discovery
 - Don't need periodic route advertisements
- (Design point: on-demand may be better or worse depending on traffic patterns...)

16

DSR Components

- · Route discovery
 - The mechanism by which a sending node obtains a route to destination
- Route maintenance
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid

17

DSR Route Discovery

- · Route discovery basic idea
 - Source broadcasts route-request to Destination
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - · Target is found, or
 - · A node that has a route to Destination is found

C Transmits a Packet to F Source C BHF B Destination F

Forwarding Route Requests

- A request is forwarded if:
 - Node is not the destination
 - Node not already listed in recorded source route
 - Node has not seen request with same sequence number
 - IP TTL field may be used to limit scope
- Destination copies route into a Routereply packet and sends it back to Source

23

Route Cache

- All source routes learned by a node are kept in Route Cache
 - Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache

Sending Data

- · Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - · Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery

25

Discussion

- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - Caching used to minimize use of discovery
- Periodic messages avoided
- But need to buffer packets
- · How do you decide between links?

26

Capacity of multi-hop network

- Assume N nodes, each wants to talk to everyone else. What total throughput (ignore previous slide to simplify things)
 - O(n) concurrent transmissions. Great! But:
 - Each has length O(sqrt(n)) (network diameter)
 - So each Tx uses up sqrt(n) of the O(n) capacity.
 - Per-node capacity scales as 1/sqrt(n)
 - Yes it goes down! More time spent Tx'ing other peoples packets...
- But: If communication is local, can do much better, and use cool tricks to optimize
 - Like multicast, or multicast in reverse (data fusion)
 - Hey, that sounds like ... a sensor network!

		-
•	ι	1

Sensor Networks - smart

- devices
 First introduced in late 90's by groups at UCB/UCLA/USC
- · Small, resource limited devices
 - CPU, disk, power, bandwidth, etc.
- · Simple scalar sensors temperature, motion
- · Single domain of deployment
 - farm, battlefield, bridge, rain forest
- for a targeted task
 - find the tanks, count the birds, monitor the bridge
- · Ad-hoc wireless network

Sensor System Types -Smart-Dust/Motes · Hardware

- - UCB motes
 - 4 MHz CPU
 - 4 kB data RAM
 - 128 kB code
 - 50 kb/sec 917 Mhz radio
 - Sensors: light, temp.,
 - · Sound, etc.,
 - And a battery.

Sensors and power and radios

- · Limited battery life drives most goals
- · Radio is most energy-expensive part.
- 800 instructions per bit. 200,000 instructions per packet. (!)
- · That's about one message per second for ~2 months if no CPU.
- Listening is expensive too. :(

Sensor nets goals

- Replace communication with computation
- · Turn off radio receiver as often as possible
- Keep little state (4 KB isn't your pentium 4 ten bazillion gigahertz with five ottabytes of DRAM).

31

Power

- · Which uses less power?
 - Direct sensor -> base station Tx
 Total Tx power: distance^2
 - Sensor -> sensor -> base station?
 - Total Tx power: n * (distance/n) ^2 =~ d^2 / n
 - Why? Radios are omnidirectional, but only one direction
- matters. Multi-hop approximates directionality. · Power savings often makes up for multi-hop capacity

 - These devices are *very* power constrained!
- Reality: Many systems don't use adaptive power control. This is active research, and fun stuff.

32

Example: Aggregation

- · Find avg temp in the 7th floor of this bldg.
- · Strawman:
 - Flood query, let a collection point compute avg.
 - Huge overload near the CP. Lots of loss, and local nodes use lots of energy!
- Better:
 - Take local avg. first, & forward that.
 - Send average temp + # of samples
 - Aggregation is the key to scaling these nets.
- The challenge: How to aggregate.
 - How long to wait?
 - How to aggregate complex queries?
 - How to program?