

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

<u>Отчет по лабораторной работе №3</u> «ОБРАБОТКА РАЗРЕЖЕННЫХ МАТРИЦ»

Студент Нисуев Нису Феликсович

Группа ИУ7 – 32Б

Преподаватель Барышникова Марина Юрьевна

Оглавление

Оглавление	2
Описание условия задачи	3
Описание технического задания	
Набор тестов	
Описание структуры данных	
Замерный эксперимент	
Описание алгоритма	
-	
Ответы на контрольные вопросы	10

Описание условия задачи

Цель работы: реализация алгоритмов обработки разреженных матриц, сравнение этих алгоритмов со стандартными алгоритмами обработки матриц при различном размере матриц и степени их разреженности.

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- вектор JA, в элементе Nk которого находится номер компонент в A и IA, с которых начинается описание столбца Nk матрицы A.
- 1. Смоделировать операцию умножения вектора-строки хранящегося в форме вектора A и вектора, содержащего номера столбцов этих элементов, и матрицы, хранящейся в указанной форме, с получением результата в форме хранения вектора-строки.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Описание технического задания

Входные данные:

- 1. **Номер команды**: целое число в диапазоне $\{-1\} \cup [1; 5]$.
- 2. Дополнения к таблице: строковое или целочисленное поле (в зависимости от команды)

Выходные данные:

- 1. Результаты произведений в разных формах
- 2. Введенные или сгенерированные вектор-строка и/или матрица в разных формах

Обращение к программе:

Запускается через терминал командой: ./build/app.exe

Аварийные ситуации:

- 1. Ввод некорректного пункта меню
- 2. Некорректные значения размера матрицы
- 3. Некорректное значение процента
- 4. Некорректные данные при вводе матрицы

Набор тестов

Nº	Название теста	Пользовательский ввод	Вывод					
	Негативные тесты							
1	Некорректные размеры	1 S S -1 1	ERROR: Incorrect input					
2	Некорректные данные	1 SS 22 2ф	ERROR: Incorrect input					
3	Некорректная команда	1 S π	ERROR: Incorrect choice					
4	Некорректный процент	2 2 2 -1	ERROR: Incorrect input					
5	Некорректный процент	2 2 2 101	ERROR: Incorrect input					
6	Некорректный пункт меню	10	ERROR: Incorrect action					
	Позитивные тесты							
1	Ввод матрицы и вектора-	1 {Корректный ввод}	Data successfully loaded					
2	Генерация матрицы и вектора-строки	2	Data successfully generated					

		2 2	
		75%	
	D	6	(TC
3	Вывод стандартных матрицы и вектора-строки	A	{Классические матрица и вектор-строка}
		CC	
	2	6	(D
4	Вывод разреженных матрицы и вектора-строки	A	{Разреженные матрица и вектор-строка}
		S S	
5	Вывод замера	5	{Таблица замеров}
	Стандартное умножение с	3	{Результирующий вектор-
6	выводом матрицы в стандартном виде	C	строка в классическом виде}
7	Разреженное умножение с	4	{Результирующий вектор-
/	выводом матрицы в разреженном виде	S	строка в разреженном виде}

Описание структуры данных

```
/// @typedef структура матрицы
typedef struct {
    size_t rows; // Кол-во строк
    size_t cols; // Кол-во столбцов
    int **data; // Элементы матрицы
} matrix_t;
/// @typedef структура вектора-строки
typedef struct {
    size_t size; // Кол-во столбцов
    int *vector; // Вектор-строка
} rvector_t;
/// @typedef структура разреженной матрицы
typedef struct {
    size_t rows;
   size_t cols;
   size_t els_cnt; // Кол-во ненулевых элементов
   int *els; // Элементы матрицы
size_t *el_i; // Номера строк элементов
   ssize_t *el_j; // Индекс первого ненулевого элемента в столбце
} msparce_t;
/// @typedef структура разреженного вектора-строки
typedef struct {
    size_t size;
   size_t els_cnt; // Кол-во ненулевых элементов
   int *els; // Элементы вектора-строки
    size_t *el_j; // Номера столбцов элементов
} rvsparce_t;
```

Введенные данные:

```
Matrix output

Print matrix

[C:Classical, S:Sparce]: C

Matrix sizes: 3 3

Matrix:

1 0 0
0 1 0
0 0 1

Vector output

---

Print vector

[C:Classical, S:Sparce]: C
```

Результаты умножений:

разреженное

```
Multiply vector-column result

Print vector
[C:Classical, S:Sparce]: C

Vector size: 3

Vector: 1 2 3
```

стандартное

```
Multiply vector-column result

Print vector
[C:Classical, S:Sparce]: C

Vector size: 3

Vector: 1 2 3
```

Замерный эксперимент

Проводилось 1000 замеров для указанных размеров и процентов

кенности	матриц. Измеря	ілась памя	ть всех струк	тур
Size	Sparceness, %	Measures	 Std matrix	 Sparce matrix
 10x10 	0 % 	Mem, b		1576 0
	 25% 	Mem, b Time, mcs		1252 0
	 50% 	Mem, b Time, mcs		- 916 0
	 75% 	Mem, b Time, mcs		- 532 0
	 100% 	Mem, b Time, mcs		- 136 0
50x50	 0% 	Mem, b Time, mcs		- 31656 7
	 25% 	Mem, b Time, mcs		- 24012 6
	 50% 	Mem, b Time, mcs		- 16356 6
	 75% 	Mem, b Time, mcs		- 8688 3
	 100% 	 Mem, b Time, mcs		- 456 0
 100x100	 0% 	Mem, b Time, mcs		- 123256 24
	 25% 	Mem, b Time, mcs		- 92956 53
	 50% 	Mem, b Time, mcs		- 62656 43
	 75% 	Mem, b Time, mcs		- 32356 17
	 100% 	Mem, b Time, mcs		- 856 0
500x500	 0% 	Mem, b Time, mcs		- 3016056 542
	 25% 	Mem, b Time, mcs		- 2264556 1821
	 50% 	Mem, b Time, mcs		- 1513056 1557
	 75%	 Mem, b	1008032	- 761556

l I		Time, mcs	441	797
		 Mem, b	1008032 445	 4056 0
1000x1000 		Mem, b		 12032056
		Mem, b	4016032 2768	 9029056
		Mem, b		 6026056 9921
			4016032 4922	 3023056
		 Mem, b		 8056 0

Вывод: разреженные матрицы начинают занимать меньше памяти при разреженности более 50%. Также алгоритм произведения разреженных матриц начинает работать быстрее чем стандартный при разреженности менее 75%

Описание алгоритма

- 1. Ввод команды (возможные команды представлены в меню)
- 2. Пока пользователь не введет -1 (выход из программы), ему будет предложено вводить номера команд и выполнять действия по выбору

Ответы на контрольные вопросы

1. Что такое разреженная матрица, какие способы хранения вы знаете?

Разреженная матрица — матрица, содержащая большое кол-во нулевых элементов. Хранить такую можно как обычную матрицу, с помощью линейных связных списков, кольцевых связных списков, двунаправленных стеков и очередей.

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Под обычную матрицу выделяется N * M ячеек памяти. Память под разреженную матрицу выделяется в зависимости от схемы хранения. Кроме того, память зависит от количества ненулевых элементов.

3. Каков принцип обработки разреженной матрицы?

Т.к. разреженные матрицы содержат большое кол-во нулей, то и хранятся они в таких структурах, которые «запоминают» только ненулевые элементы. Поэтому алгоритмы обработки оперируют лишь значащими данными, что даёт выигрыш по памяти и скорости по сравнению с алгоритмами обработки обычных матриц.

4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Разреженность матрицы следует учитывать только в том случае, если из этого можно извлечь выгоду за счёт игнорирования нулевых элементов. При достижении определенного процента наполнения ненулевыми элементами происходит значительное падение эффективности по времени.

Вывод

Использовать специальные структуры данных для (разреженных) матриц имеет смысл лишь при большом кол-ве элементов, т.к. тогда выигрыш по памяти будет существенен, и лишь при заполненности до 25% — иначе стандартные алгоритмы обработки матриц будут эффективнее во всех случаях, начиная с размерности 50х50, нежели те, которые реализуются для обработки разреженных матриц. Тем более, чем большая размерность у матриц, тем меньше процент заполненности ненулевыми элементами необходим для того, чтобы стандартный способ сложения матриц превосходил по скорости способ обработки разреженных.