Vanishing adsorption admissibility criterion for contact discontinuities in the polymer model

Yulia Petrova

 $H + M = Lopes^2$

PUC-Rio

yulia-petrova.github.io

24 October 2023

VI Workshop on Fluids and PDE

Campinas, Brazil, 23rd to 27th October 2023

The talk is based on:

- Y. Petrova, B. Plohr, and Marchesin D. Vanishing adsorption admissibility criterion for contact discontinuities in the polymer model. arXiv:2211.10326.
- F. Bakharev, A. Enin, **Y. Petrova**, and N. Rastegaev. Impact of dissipation ratio on vanishing viscosity solutions of the Riemann problem for chemical flooding model. Journal of Hyperbolic Differential Equations, 20:1–26, 2023.

Motivation: enhanced oil recovery (EOR)

We are interested in the mathematical model of oil recovery.

- porous media (averaged models of flow)
- unknown variables: $s \in [0,1]$ water saturation, 1 s oil concentration
- relatively small speeds (≈ 1 meter per day): Navier-Stokes → Darcy's law
- multiphase flow: oil, water, gas
- applications to EOR methods: thermal, gas, chemical flooding

Two main directions of investigation

Stable displacement (1-dim)

- hyperbolic conservation laws
- main question: find an exact solution for a Riemann problem

$$s_t + f(s,c)_{\chi} = 0$$

$$(sc)_t + (cf(s,c))_{\chi} = 0$$

Example: polymer model

Unstable displacement (2-dim)

- viscous fingering phenomenon
- source of instability: water and oil/polymer have different viscosities

$$c_t + div(uc) = \Delta c$$

$$div(u) = 0, \qquad u = -m(c) \nabla p$$

Example: incompressible porous media equation (IPM) [remember yesterday's talk of Sergey Tikhomirov] 2

Glimm-Isaacson model (KKIT)*

Two-phase oil-water flow with *polymer* in the water (1980)

$$s_t + f(s,c)_{\chi} = 0$$

$$(cs)_t + (cf(s,c))_{\chi} = 0$$

- $s \in [0,1]$ water saturation
- $c \in [0,1]$ polymer concentration in water
- f(s,c) fractional flow function: affected by polymer
 - S-shaped in *s* (for fixed *c*)

Case 1:
$$f_c' < 0$$
 (monotone in c)

Case 2:

f changes monotonicity once

Initial data:
$$(s,c)(x,0) = \begin{cases} (s_L, c_L), & x \le 0 \\ (s_R, c_R), & x \ge 0 \end{cases}$$

Question: find an exact solution s(x, t) and c(x, t) to any Riemann problem

NB: s(x,t) = s(x/t) - self-similar

* KKIT = Keyfitz, Kranzer, Isaacson, Temple

Main idea

Polymer model (1980' E. Isaacson)

$$\begin{aligned} s_t + f(s,c)_{\chi} &= 0\\ (sc)_t + (cf(s,c))_{\chi} &= 0 \end{aligned} \tag{M_0}$$

- Contact discontinuities (linearly degenerate) ⇒ non-uniqueness of solutions to a Riemann problem
- Vanishing viscosity criteria doesn't help
- Existing admissibility criteria needs to be justified from "physical" perspective

Aim: select unique physically admissible weak solution

Main idea: add small physical effect – adsorption of polymer on the rock (1987 'T. Johansen, R. Winther)

$$s_t + f(s,c)_x = 0$$

$$(sc + \alpha a(c))_t + (cf(s,c))_x = 0$$

$$(M_\alpha)$$

Here $\alpha > 0$ - small, a(c) - strictly convex

Contact discontinuities was rarefaction and shock waves was vanishing viscosity criteria is applicable

Vanishing adsorption criterion: the admissible contacts for M_0 are the L^1_{loc} limits of a family of admissible solutions for a Riemann problem for M_{α} as $\alpha \to 0$.

Hyperbolic systems of conservation laws*

$$G(U)_t + F(U)_x = 0$$

- $G(U) \in \mathbb{R}^n$ accumulation function (conserved quantities)
- $F(U) \in \mathbb{R}^n$ flux function (flux of conserved quantities)

$$U_t + F(U)_x = 0$$
$$U_t + DF(U) \cdot U_x = 0$$

Eigenvalues of DF(U) play crucial role

Simplest example: wave equation

$$y_{tt} - c^2 y_{xx} = 0$$

(J. d'Alambert, 1750)

can be rewritten as a system of two first-order equations on the state-vector $u = \begin{pmatrix} y_{\chi} \\ y_{+} \end{pmatrix}$

$$u_t + Du_x = 0$$
 with $D = \begin{pmatrix} 0 & -1 \\ -c^2 & 0 \end{pmatrix}$

• eigenvalues $\lambda_1 = c$ and $\lambda_2 = -c$ are real, the system is hyperbolic (strictly). Solution contains two wave modes that propagate at the velocities λ_1 and λ_2 .

*A. Bressan "Hyperbolic conservation laws: an illustrated tutorial", lecture notes from Cetraro, Italy 2009

Hyperbolic systems of conservation laws

Inviscid Burgers equation (1948)

$$u_t + \left(\frac{u^2}{2}\right)_x = 0$$

- non-linearity implies wave speed $\lambda(u) = u$ depends on state u
- so the wave can spread (rarefaction wave) or concentrate (shock wave)

General scalar conservation law

$$u_t + f(u)_x = 0$$

 existence, uniqueness of solution of Cauchy problem was established by Olga Oleinik (1957)

Shock speed σ between the states u_- and u_+ is defined by the Rankine-Hugoniot condition $\sigma = \frac{f(u_-) - f(u_+)}{u_- - u_+}$

Riemann problem (1858)

Riemann solved the initial-value problem with data having a single jump

$$U(x,0) = \begin{cases} U_L, & x \le 0 \\ U_R, & x \ge 0 \end{cases}$$

Solution to a Riemann problem is important because:

- it appears in a long-term behaviour of Cauchy problem
- helps to prove the existence of solutions to Cauchy problem (Glimm's method)
- helps to construct numerical solution (Godunov method)

$$U_t + F(U)_{\chi} = 0$$

Representation of solution U = (s, c) for 2×2 systems:

Eigenvalues of DF(U): $\lambda_1(U) < \lambda_2(U)$

Take U_L and $\lambda_1(U)$

Take U_R and $\lambda_2(U)$

We have constructed a solution!

Characteristic families: s and c-waves

s-waves

- $\lambda^{s} = f'_{s}$
- Solve the Buckley-Leverett equation c = const
- Riemann invariant c = const
- "line" family

c-waves

- $\lambda^c = f/s$
- Are contact discontinuities
- Riemann invariant f/s = const
- "contact" family

- For both families, the rarefaction and shock curves coincide! But in a different way (Temple'1983)
- Any solution for a Riemann problem is a combination of s and c waves

Non-strictly hyperbolic system

The coordinate system of wave curves is singular and the wave speeds coincide on a co-dimension one curve (coincidence locus): $\lambda^s = f_s' = f/s = \lambda^c$ s and c waves are tangent on coincidence curve

Non-uniqueness of solutions

A contact discontinuity between U_{-} and U_{+} is admissible if and only if:

Criterion 1 (Isaacson):

either $U_-, U_+ \in \{\lambda^s \ge \lambda^c\}$ or $U_-, U_+ \in \{\lambda^s \le \lambda^c\}$

Criterion 2 (de Souza-Marchesin):

c is continuous and monotone along the sequence of contact curves, connecting U_{-} and U_{+}

What is the (physical) motivation of these criteria?

Main result

Polymer model

$$s_t + f(s,c)_{\chi} = 0$$

$$(sc + \alpha a(c))_t + (cf(s,c))_{\chi} = 0$$

$$(M_{\alpha})$$

Criterion 3: vanishing adsorption (Petrova-Marchesin-Plohr):

A contact discontinuity between U_- and U_+ for M_0 is admissible if and only if it is the L^1_{loc} limit of a family of admissible solutions for a Riemann problem for M_α as $\alpha \to 0$.

Theorem 1 (P., Marchesin, Plohr, 2022, arxiv:2211.10326)

If f satisfies the monotonicity assumption $f_c{'}<0$, then the set of admissible Riemann solutions for M_0 is the same for criteria 1, 2 and 3.

Corollary: any solution to a Riemann problem for M_0 exists and is unique.

Question: what happens when f is non-monotone in c?

What happens when f is non-monotone in c?

$$s_t + f(s,c)_{\chi} = 0$$

$$(sc)_t + (cf(s,c))_{\chi} = 0$$

Example: "boomerang"

$$f(s,c) = \frac{s^2}{s^2 + \mu(c)(1-s)^2}$$
 with $\mu(c) = 1 + 4c(1-c)$

Riemann problem: $s_L = s_R = 0.82$, $c_L = 1$, $c_R = 0$

Results of numerical modelling:

...a more careful look...

$$s_t + f(s,c)_{\chi} = 0$$

$$(sc)_t + (cf(s,c))_{\chi} = 0$$

Let's call the corresponding contact discontinuity undercompressive.

Is this contact discontinuity admissible by the existing criteria?

Criteria 1: NO

Criteria 2: YES

Criteria 3: YES

Theorem 2 (P., Marchesin, Plohr, 2022, arxiv:2211.10326)

The undercompressive contact discontinuities satisfy the vanishing adsorption admissibility criterion

Main step in proof of Thm 2

$$s_t + f(s,c)_{\chi} = 0$$

$$(sc + \alpha a(c))_t + (cf(s,c))_{\chi} = 0$$

Add diffusion terms _____

$$s_t + f(s,c)_{\chi} = \varepsilon_1 s_{\chi\chi}$$

$$(sc + \alpha a(c))_t + (cf(s,c))_{\chi} = \varepsilon_1 (cs_{\chi})_{\chi} + \varepsilon_2 c_{\chi\chi}$$

$$\varepsilon_1, \varepsilon_2 \to 0, \quad k = \frac{\varepsilon_1}{\varepsilon_2}$$

Travelling wave ansatz
$$s = s(x - \sigma t) = s(\xi),$$
 $c = c(x - \sigma t) = c(\xi)$

$$c = c(x - \sigma t) = c(\xi)$$

$$\begin{cases} \alpha \cdot s_{\xi} = f - \sigma(s + d_1) \\ c_{\xi} = \frac{\varepsilon_1}{\varepsilon_2} \cdot \sigma \cdot (d_1 c - d_2 - a(c)) \end{cases}$$

Theorem 3 (Bakharev, Enin, P., Rastegaev, 2023, JHDE)

For any $k = \frac{\varepsilon_1}{\varepsilon_2} > 0$ there exists $s_-(k)$ and $s_+(k)$ and velocity $\sigma(k)$ such that there exists a travelling wave, connecting two saddle points $(s_{-}(k), 1)$ and $(s_{+}(k), 0)$ with velocity $\sigma(k)$.

References

Muito obrigada pela sua atenção!

Own works:

- 1. F. Bakharev, A. Enin, Y. Petrova, and N. Rastegaev. Impact of dissipation ratio on vanishing viscosity solutions of the Riemann problem for chemical flooding model. Journal of Hyperbolic Differential Equations, 20:1–26, 2023.
- 2. Y. Petrova, B. Plohr, and Marchesin D. Vanishing adsorption admissibility criterion for contact discontinuities in the polymer model. arXiv:2211.10326.

Other references:

Polymer model:

- 1. W. Shen. On the Cauchy problems for polymer flooding with gravitation. Journal of Differential Equations, 261(1):627–653, 2016.
- 2. W. Shen. On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding. Nonlinear Differential Equations and Applications NoDEA, 24(4):37, 2017.
- 3. B. Temple. Global solution of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws. Advances in Applied Mathematics, 3(3):335–375, 1982.
- 4. T. Johansen and R. Winther. The solution of the Riemann problem for a hyperbolic system of conservation laws modeling polymer flooding. SIAM Journal on Mathematical Analysis, 19(3):541–566, 1988.
- 5. Keyfitz, B.L. and Kranzer, H.C., 1980. A system of non-strictly hyperbolic conservation laws arising in elasticity theory. Archive for Rational Mechanics and Analysis, 72(3), pp.219-241.
- 6. E. L. Isaacson, Global solution of a Riemann problem for a non-strictly hyperbolic system of conservation laws arising in enhanced oil recovery, Rockefeller University, New York, NY, preprint (1981).

Feliz aniversario, Helena e Milton!!!

Parabéns pra vocês Nesta data querida Muitas felicidades Muitos anos de vida É pique, é pique É pique, é pique, é pique É hora, é hora É hora, é hora, é hora Ra-tim-bum!

$$H + M = Lopes^2$$

Types of shocks

- 1-family Lax: $\lambda_1(U_-) > \sigma > \lambda_1(U_+)$ along with $\sigma < \lambda_2(U_-)$ and $\sigma < \lambda_2(U_+)$
- 2-family Lax: $\lambda_2(U_-) > \sigma > \lambda_2(U_+)$ along with $\sigma > \lambda_1(U_-)$ and $\sigma > \lambda_1(U_+)$
- overcompressive: $\lambda_1(U_-) > \sigma > \lambda_1(U_+)$ and $\lambda_2(U_-) > \sigma > \lambda_2(U_+)$
- crossing: $\lambda_2(U_-) > \sigma > \lambda_1(U_-)$ and $\lambda_1(U_+) < \sigma < \lambda_2(U_+)$.

Types of contact discontinuities

- 1-family: $\lambda_1(U_-) = \sigma = \lambda_1(U_+)$ along with $\sigma < \lambda_2(U_-)$ and $\sigma < \lambda_2(U_+)$;
- 2-family: $\lambda_2(U_-) = \sigma = \lambda_2(U_+)$ along with $\sigma > \lambda_1(U_-)$ and $\sigma > \lambda_1(U_+)$;
- overcompressive: $\lambda_1(U_-) = \sigma > \lambda_1(U_+)$ and $\lambda_2(U_-) = \sigma > \lambda_2(U_+)$;
- crossing: $\lambda_2(U_-) > \sigma = \lambda_1(U_-)$ and $\lambda_1(U_+) = \sigma < \lambda_2(U_+)$.