N, Z, Q, R, C

Surjekcija, injekcija, bijekcija, inverzna funkcija

Za funkciju $f: A \rightarrow B$ kažemo da je surjekcija ako je njena slika jednaka čitavoj kodomeni, tj. f(A) = B. Riječima: f je surjekcija ako

za svaki
$$b \in B$$
 postoji $a \in A$ takav da je $b = f(a)$.

Svaki element kodomene B je 'pogođen' s bar jednim elementom domene A.

Za funkciju $f:A \to B$ kažemo da je **injekcija** ako različitim vrijednostima argumenta pridružuje različite vrijednosti u slici, tj.

ako je
$$a_1 \neq a_2$$
, onda je $f(a_1) \neq f(a_2)$.

Funkcija $f:A\to B$ koja je istodobno injekcija i surjekcija zove se bijekcija. U tom slučaju možemo definirati inverznu funkciju $f^{-1}: B \to A$ na sljedeći način:

$$f^{-1}(b) = a$$
 onda i samo onda ako vrijedi $f(a) = b$.

Osnovni teorem aritmetike

se jos i Osnovnog teorema aritmetike. On kaže da za svaki prirodan broj $a\geqslant 2$ postoje jednoznačno određeni prosti brojevi u rastućem slijedu, $p_1 < p_2 < \ldots < p_k$, takvi da

$$a = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k},$$

gdje su n_i prirodni brojevi koji su također jednoznačno određeni (n_i se zove kratnostprostog broja p_i u tom rastavu). Na pr. $12=4\cdot 3=2^2\cdot 3^1$, $9=3^2$, $11=11^1$.

Kartezijev produkt

DEFINICIJA. Ako su A_1, \ldots, A_n neprazni skupovi, onda definiramo **Kartezijev** produkt

$$A_1 \times A_2 \times \ldots \times A_n$$

kao skup svih poredanih n–teraca (a_1,a_2,\ldots,a_n) takvih da je $a_k\in A_k$ za sve $k=1,\ldots,n$. Taj se skup označava kraće sa $\prod_{k=1}^n A_k$.

Beskonačan skup / prebrojiv / neprebrojiv

Za skup A kažemo da je beskonačan ako nije konačan. Postoje dvije osnovne vrste beskonačnih skupova:

- (i) za beskonačan skup A kažemo da je **prebrojiv** ako se skup njegovih elemenata može poredati u beskonačan slijed: $A = \{a_1, a_2, a_3, \ldots\}$
- (ii) za beskonačan skup A kažemo da je **neprebrojiv** ako se ne može poredati u slijed.

Ekvipotentnost

DEFINICIJA. Kažemo da je skup A **ekvipotentan** (jednakobrojan) sa skupom B ako postoji bijekcija $f: A \to \check{B}$.

Kardinalni broj / alef nula

DEFINICIJA. Za skupove A i B kažemo da imaju isti kardinalni broj ako su ekvipotentni, dotično ako postoji bijekcija s jednog na drugi. Pišemo |A| = |B|.

Definicija. Ako je skup A prebrojiv, onda njegov kardinalni broj označavamo sa \aleph_0 i zovemo "alef nula" (prema prvom slovu \aleph "alef" hebrejskoga pisma), i pišemo $|A|=\aleph_0$. Kardinalni broj skupa ${\bf R}$ realnih brojeva označavamo sa c i zovemo **kontinuum**. Pišemo $|\mathbf{R}| = c$.

"Svaki beskonačan podskup prebrojiva skupa je prebrojiv" + primjedba

Teorem 3. Svaki beskonačan podskup prebrojiva skupa je prebrojiv.

Dokaz. Umjesto skupa $A=\{a_1,a_2,\ldots\}$ dovoljno je tvrdnju dokazati za $\mathbf{N}=\{1,2,\ldots\}$. Neka je dakle $A=\mathbf{N}$ i B beskonačan podskup od \mathbf{N} . Odaberimo najmanji prirodni broj b_1 u B. Zatim iz B izbacimo b_1 i gledamo najmanji element b_2 u preostalom skupu $B \setminus \{b_1\}$. Neka je zatim b_3 najmanji prirodni broj u $B \setminus \{b_1, b_2\}$, itd. Nije teško provjeriti da je funkcija $f: \mathbf{N} \to B$ definirana sa $f(k) = b_k$ bijekcija,

Р
пімієть А. Iz prethodnog teorema vidimo da će neki skup
 Abiti prebrojiv onda i samo onda ako postoji injektivno preslikavanje
 $f:A\to {\bf N}$ čija je slika f(A)beskonačan podskup od
 ${\bf N}$. Naime ako fgledamo kao funkciju
 $f:A\to f(A)$, onda je f bijekcija i skup f(A) je prebrojiv.

Sljedeće svojstvo imaju samo beskonačni skupovi.

Kodiranje (prema Osnovnom teoremu aritmetike)

Teorem 1. Skup $A = \mathbf{N} \cup \mathbf{N}^2 \cup \mathbf{N}^3 \cup \dots$ je prebrojiv. Drugim riječima, skup svih konačnih sljedova prirodnih brojeva je prebrojiv.

Dokaz. Odaberimo slijed prostih brojeva $p_1=2$, $p_2=3$, $p_3=5$, $p_4=7$, $p_5=11$ itd. Skup prostih brojeva je beskonačan. Definirajmo funkciju $f:A \to \mathbf{N}$ sa

$$f(n_1,\ldots,n_k)=p_1^{n_1}\ldots p_k^{n_k}.$$

Dokažimo da je ova funkcija injekcija. Neka je $f(n_1, \ldots, n_k) = f(m_1, \ldots, m_i)$, tj. $p_1^{n_1} \dots p_k^{n_k} = p_1^{m_1} \dots p_j^{m_j}$. Budući da imamo jednakost brojeva koji su rastavljeni na proste faktore, prema *Osnovnom teoremu aritmetike* slijedi da je k = j i $n_i = m_i$ za sve $i = 1, \dots, k$. Time je injektivnost od f dokazana.

Slika preslikavanja f je očevidno beskonačan skup (već za "jednočlane" sljedove

nje skup pripadnih vrijednosti oblika $f(n)=2^n\,,$ dakle beskonačan skup). Tvrdnja slijedi iz Primjedbe 1.3.1.

DEFINICIJA. Funkcija $f: A \to \mathbf{N}$ iz dokaza prethodnog teorema zove se kodiranje skupa A. Npr. trojcu (6, 14, 9) bit će pridružen kôd $2^6 3^{14} 5^9$.

BINARNE RELACIJE

• Binarna relacija

DEFINICIJA. **Binarna relacija** na skupu X je bilo koji neprazan podskup $\rho \subseteq X \times X$. Kažemo da su elementi x i y u relaciji ρ (ili x je u relaciji s y) ako je $(x,y) \in \rho$. U tom slučaju pišemo $x \rho y$.

Relacija ekvivalencije (refleksivnost, simetričnost, tranzitivnost)

DEFINICIJA. Binarna relacija $\rho\subseteq X\times X$ zove se **relacija ekvivalencije** ako je refleksivna, simetrična i tranzitivna, tj. ako za sve x, y i z u X vrijedi:

- (a) $x \rho x$ (refleksivnost),
- (b) iz $x \rho y$ slijedi $y \rho x$ (simetričnost),
- (c) iz $x \rho y$ i $y \rho z$ slijedi $x \rho z$ (tranzitivnost).

Razred (klasa) ekvivalencije

DEFINICIJA. Neka je ρ relacija ekvivalencije na X. Razred (klasa) ekvivalencije [x] elementa $x \in X$ je skup svih elemenata iz X koji su u relaciji sx. Dakle [x] je podskup od X definiran sa

$$[x] = \{ y \in X : y \rho x \}.$$

Zbog $x \rho x$ je uvijek $x \in [x]$. Bilo koji element y iz [x] zove se *reprezentant razreda* [x].

Kvocjentni skup

DEFINICIJA. Ako je ρ relacija ekvivalencije na skupu X, onda skup svih pripadnih razreda ekvivalencije zovemo **kvocjentni skup** od X s obzirom na relaciju ρ i označavamo sa X/Q:

$$X/_{\rho} = \{[x]\}_{x \in X}$$

KOMBINATORIKA

• Partitivni skup 2^X

Varijacije

- o Varijacije bez ponavljanja $\frac{n!}{(n-k)!}$
- Permutacije
 - Permutacije bez ponavljanja *n*!
 - Permutacije s ponavljanjem
 - Multinomni teorem $\frac{n!}{n_1! \cdot ... \cdot n_k!}$
- Varijacije s ponavljanjem n^k

Kombinacije

- \circ Kombinacije bez ponavljanja $\binom{n}{\nu}$
 - Pascalov trokut
 - Binomna formula $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$
- o Kombinacije s ponavljanjem $\binom{n+k-1}{\nu}$

• Formula uključivanja i isključivanja

- O Broj surjekcija $|Sur(A,B)| = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m$
- o Deranžmani (permutacije u kojima niti jedan element ne stoji na svome mjestu)

$$d_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

• Funkcije izvodnice

- o Pravilo deriviranja i integriranja
- $\circ \quad {\binom{-n}{k}} = (-1)^k {\binom{n+k-1}{k}}$

Dirichletovo načelo

- Neka je n predmeta smješteno u m kutija i n > m. Onda postoji kutija s barem 2 predmeta.
- o (poopćeno) Ako je n predmeta smješteno u m kutija, onda postoji kutija koja sadrži barem $\left|\frac{n-1}{m}\right|+1$ predmeta.