Operador Unitario, Autoadjunto y Normal

Roberto Alvarado

May 19, 2023

Universidad San Francisco de Quito

Autoadjunto

Sea un operador linear acotado $T: H \longrightarrow H$ se le llama autoadjunto o Hermitiano si

$$T = T^*$$

Unitario

Sea un operador linear acotado $T: H \longrightarrow H$ se le llama unitario si T es biyectivo y

$$T^* = T^{-1}$$

Normal

Sea un operador linear acotado $T: H \longrightarrow H$ se le llama normal si

$$T^*T = TT^*$$

Para el operador adjunto

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

Cuando se trata de un operador autoadjunto

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$

Auto adjunto o Unitario implica Normal

Autoadjunto

$$TT^* = T^*T$$
 $TT = TT$

Unitario

$$TT^* = T^*T$$

$$TT^{-1} = T^{-1}T$$

$$I = I$$

Normal no implica Autoadjunto o Unitario

Sea T=2iI, el adjunto es $T^*=-2iT$, y el inverso es $T^{-1}=-\frac{1}{2}iT$ cumple que

$$TT^* = T^*T$$

Pero

$$T \neq T^*$$

Y a la vez

$$T \neq T^{-1}$$

Producto interior definido

$$\langle x, y \rangle = \xi_0 \overline{\delta}_0 + \dots + \xi_n \overline{\delta}_n$$

en notación matricial

$$\langle x, y \rangle = x^T \overline{y}$$

Sea $T: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ un operador linear acotado. Teniendo una base para \mathbb{C}^n , tenemos que podemos representar T y T^* como matrices cuadradas de dimensión n, respectivamente A y B.

Adjunto Hermitiano

$$\langle Tx, y \rangle = (Ax)^T \overline{y} = x^T A^T \overline{y}$$

 $\langle x, T^* y \rangle = x^T \overline{By}$
 $\langle x, T^* y \rangle = x^T \overline{By}$

Autoadjunto

$$x^T A^T \overline{y} = x^T \overline{B} \overline{y}$$

Entonces para que sea autoadjunto

$$B = \overline{A^T}$$

Recuerdo de matrices

Hermitiana si
$$\overline{A}^T = A$$

Hermitiana asimétrica si $\overline{A}^T = A$
Unitaria si $\overline{A}^T = A^{-1}$
Normal si $A\overline{A}^T = \overline{A}^T A$

Simétrica si
$$A^T = A$$

Ortogonal si $A^T = A^{-1}$

Operadores y Matrices en \mathbb{C}^n

Matriz Hermitiana si T es auto-adjunta Matriz Unitaria si T es unitario Matriz Normal si es normal

Operadores y Matrices en \mathbb{R}^n

Matriz Simétrica si T es auto adjunta Matriz Ortogonal si T es unitario

Auto-adjunto

Sea $T: H \longrightarrow H$ un operador linear acotado

• Si T es autoadjunto entonces $\langle Tx, x \rangle$ es real $\forall x \in H$

$$\overline{\langle Tx, x \rangle} = \langle x, Tx \rangle = \langle Tx, x \rangle$$

■ Si H es complejo, y $\langle Tx, x \rangle$ es real $\forall x \in H$ entonces el operador es autoadjunto

$$\langle Tx, x \rangle = \overline{\langle Tx, x \rangle} = \overline{\langle x, T^*x \rangle} = \langle T^*x, x \rangle$$

$$T - T^* = 0$$

Autoadjunto de un producto

Sea S,T dos operadores lineales autoadjuntos, ST es autoadjunto si y solo si $\,$

$$ST = TS$$

$$ST = (ST)^* = T^*S^* = TS$$

 $(ST)^* = T^*S^* = TS = ST$

Secuencia de operadores autoadjuntos

Sea (T_n) una secuencia de de operadores lineales autoadjuntos en H. Supongamos que converge a T

$$T_n \longrightarrow T \quad ||T_n - T|| \longleftarrow 0$$

Entonces T es un operador linear acotado autoadjunto en H.

Demostración

Tenemos que demostrar que

$$||T-T^*||=0$$

Sabemos que

$$||T_n^* - T^*|| = ||T_n - T||$$

Demostración

$$||T - T^*|| \le ||T - T_n|| + ||T_n - T_n^*|| + ||T_n^* - T||$$

$$= 2||T_n - T|| \longrightarrow 0$$

$$||T - T^*|| = 0$$

$$T = T^*$$

Sea U,V un operador unitario sobre H.

U es isométrico

$$||Ux||^2 = \langle Ux, Ux \rangle = \langle x, U^*Ux \rangle = \langle x, Ix \rangle = ||x||^2$$

- ||U|| = 1 siendo $H \neq \{0\}$
- U^{-1} es unitario

$$(U^{-1})^* = U^{**} = U = (U^{-1})^{-1}$$

UV es unitario UV es biyectivo

$$(UV)^* = V^*U^* = V^{-1}U^{-1} = (UV)^{-1}$$

■ U es normal

$$(UV)^* = V^*U^* = V^{-1}U^{-1} = (UV)^{-1}$$

 Un operador linear acotado T en un espacio de Hilbert es unitario si y solo si T es isométrico y sobreyectiva

Demostración

$$\langle TT^*x, x \rangle = \langle Tx, Tx \rangle = \langle Ix, x \rangle$$

Entonces

$$\langle (T^*T - I)x, x \rangle = 0$$

Entonces

$$TT^* = I$$

. . .

$$T^* = T^{-1}$$