MACS201a Contrôle du 4 octobre 2021

Documents autorisés : polycopié et notes de cours et TD.

Durée: 2 heures.

Préambule. On note, pour tout $\alpha > 0$ et $\lambda > 0$, $Ga(\alpha, \lambda)$ la loi sur \mathbb{R} admettant la densité

$$x \mapsto \Gamma(\alpha)^{-1} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} \mathbb{1}_{\mathbb{R}_+}(x)$$

où Γ désigne la fonction

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad x > 0.$$

On rappelle que la loi $Ga(\alpha, \lambda)$ admet pour fonction caractéristique

$$\xi \mapsto (1 - i\xi/\lambda)^{-\alpha}$$
.

Exercice 1. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et X une v.a. réelle définie sur cet espace. On note

$$\mathcal{G} = \{ A \in \mathcal{F} : \mathbb{P}(A) \in \{0, 1\} \} .$$

- 1. Montrer que \mathcal{G} est une tribu.
- 2. Donner un exemple d'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ pour lequel $\mathcal{G} = \{\emptyset, \Omega\}$ (tribu grossière) et un exemple pour lequel \mathcal{G} est strictement plus grand que $\{\emptyset, \Omega\}$. On pourra prendre $\Omega = \{0, 1\}$ pour le premier exemple et $\Omega = \mathbb{R}$ pour le second.
- 3. Déterminer $\mathbb{E}[\mathbb{1}_A(X)|\mathcal{G}]$ pour A borélien de \mathbb{R} .
- 4. En déduire une version régulière $(\omega, A) \mapsto K(\omega, A)$ sur $\Omega \times \mathcal{B}(\mathbb{R})$ de $\mathbb{P}^{X|\mathcal{G}}$.

Soient maintenant \mathcal{H} une sous-tribu de \mathcal{F} , et $\mathcal{H}' = \mathcal{H} \vee \mathcal{G}$ la plus petite tribu contenant \mathcal{H} et \mathcal{G} . Soit $\mathcal{C} = \{B \cap C : B \in \mathcal{H}, C \in \mathcal{G}\}$. On suppose dorénavant que X est L^1 .

- 5. Soit $A \in \mathcal{C}$. Exprimer $\mathbb{E}[X\mathbb{1}_A]$ à l'aide de $\hat{X} := \mathbb{E}[X|\mathcal{H}]$.
- 6. Montrer que $\mathbb{E}[X|\mathcal{H}'] = \mathbb{E}[X|\mathcal{H}]$. [Indication : utiliser que $\sigma(\mathcal{C}) = \mathcal{H}'$.]

Exercice 2. Soient X, Y et Z trois v.a. à valeurs réelles définies sur le même espace de probabilité. Soit K un noyau de $\mathbb{R} \times \mathcal{B}(\mathbb{R})$ tel que $\mathbb{P}^{Y|X} = K$.

7. Soient A et B deux boréliens de \mathbb{R} . Montrer que $\mathbb{E}\left[\mathbbm{1}_{A\times B}(X,Y)|X\right]=\mathbbm{1}_{A}(X)K(X,B)$. En déduire que $\mathbb{P}^{(X,Y)|X}=\tilde{K}$, où \tilde{K} est le noyau défini par

$$\tilde{K}(x,C) = \int \mathbbm{1}_C(x,y) \; K(x,\mathrm{d}y) \; , \qquad x \in \mathbb{R} \; , A \in \mathcal{B}(\mathbb{R}^2) \; .$$

On suppose dorénavant que :

- a) X suit la loi Ga(2,1), de densité $x \mapsto \mathbb{1}_{\mathbb{R}_+}(x)xe^{-x}$, cf. ci-dessus.
- b) pour tout $x>0,\,K(x,\cdot)$ est la loi uniforme sur l'intervalle [0,x], notée $\mathbf{U}([0,x]).$
- c) On pose Z = X Y.
- 8. Déterminer la densité jointe $f^{(X,Y)}$ du vecteur aléatoire (X,Y).
- 9. Calculer $\mathbb{P}(Y \leq t)$ pour tout $t \geq 0$.
- 10. Déterminer la loi conditionnelle de Z sachant X. On pourra utiliser la question 7.
- 11. Que dire des lois \mathbb{P}^Y et \mathbb{P}^Z (non-conditionnelles) de Y et Z?
- 12. Déterminer la loi (non-conditionnelle) de (Y, Z).
- 13. Retrouver la loi de X à partir de celle du couple (Y,Z). On pourra calculer la fonction caractéristique de X.
- 14. Calculer $Cov(Y, Z|X) = \mathbb{E}[YZ|X] \mathbb{E}[Y|X]\mathbb{E}[Z|X]$, quelle différence immédiate voit-on entre la loi conditionnelle de (Y, Z) sachant X et la loi non-conditionnelle?

Corrigé

- Solution de l'exercice 1 1. \mathcal{G} contient Ω car $\mathbb{P}(\Omega) = 1$. Si $A \in \mathcal{G}$, $A^c \in \mathcal{G}$ puisque $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$. Soit maintenant $(A_i)_{i \in \mathbb{N}} \in \mathcal{G}^{\mathbb{N}}$. S'il existe n tel que $\mathbb{P}(A_n) = 1$, alors, clairement, $\mathbb{P}(\cup_i A_i) = 1$. Sinon alors $\mathbb{P}(A_i) = 0$ pour tout $i \in \mathbb{N}$. Alors $\mathbb{P}(\cup_i A_i) = 0$. On a bien dans les $2 \operatorname{cas} \cup_i A_i \in \mathcal{G}$.
 - 2. Cas où $\mathcal G$ est la tribu grossière : $\Omega=\{0,1\},\ \mathcal F$ =parties de $\Omega,\ \mathbb P(\{i\})=1/2$ pour i=0,1. Cas où $\mathcal G$ n'est pas la tribu grossière : $\Omega=[0,1],\ \mathcal F=\mathcal B([0,1]),\ \mathbb P=$ loi uniforme sur [0,1].
 - 3. Soit $B \in \mathcal{G}$. Si $\mathbb{P}(B) = 0$ alors $\mathbb{E}[\mathbb{1}_A(X)\mathbb{1}_B] = 0$ et si $\mathbb{P}(B) = 1$ alors $\mathbb{E}[\mathbb{1}_A(X)\mathbb{1}_B] = \mathbb{P}(X \in A)$. Dans tous les cas, on a

$$\mathbb{E}\left[\mathbb{1}_A(X)\mathbb{1}_B\right] = \mathbb{E}\left[\mathbb{P}(X \in A)\mathbb{1}_B\right] .$$

On conclut donc

$$\mathbb{E}\left[1_A(X) | \mathcal{G} \right] = \mathbb{P}(X \in A) .$$

- 4. On peut donc prendre $K(\omega, A) = \mathbb{P}^X(A)$.
- 5. Soit $A = B \cap C$ avec $B \in \mathcal{H}, C \in \mathcal{G}$. On a, si $\mathbb{P}(C) = 0$

$$\mathbb{E}\left[X\,\mathbb{I}_A\right] = 0 = \mathbb{E}\left[\mathbb{E}\left[X|\,\mathcal{H}\right]\,\mathbb{I}_A\right] ,$$

et si $\mathbb{P}(C) = 1$,

$$\mathbb{E}\left[X\mathbb{1}_{A}\right] = \mathbb{E}\left[X\mathbb{1}_{B}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{H}\right]\mathbb{1}_{B}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{H}\right]\mathbb{1}_{A}\right].$$

6. La classe \mathcal{C} est un π -système. L'ensemble des A de \mathcal{H}' qui vérifient

$$\mathbb{E}\left[X \mathbb{1}_{A}\right] = \mathbb{E}\left[X \mathbb{1}_{B}\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{H}\right] \mathbb{1}_{B}\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{H}\right] \mathbb{1}_{A}\right]$$

est un $\lambda\text{-système}.$ On en déduit que c'est tout $\mathcal{H}'.$ D'où le résultat.

Solution de l'exercice 2 7. On a

$$\mathbb{E} \left[\mathbb{1}_{A \times B}(X, Y) | X \right] = \mathbb{E} \left[\mathbb{1}_{A}(X) \mathbb{1}_{B}(Y) | X \right] = \mathbb{1}_{A}(X) \mathbb{E} \left[\mathbb{1}_{B}(Y) | X \right] = \mathbb{1}_{A}(X) K(X, B).$$

Or ce dernier correspond exactement à $\tilde{K}(X, A \times B)$. Les mesures de probabilités sur les boréliens de \mathbb{R}^2 sont caractérisées par leurs valeurs sur les ensembles produits $A \times B$ avec A et B boréliens. Donc $\tilde{K}(x,\cdot)$ est l'unique probabilité qui étend $A \times B \mapsto \mathbb{1}_A(x)K(x,B)$ sur $\mathcal{B}(\mathbb{R}^2)$. D'où le résultat.

8. La densité jointe de (X,Y) s'écrit

$$(x,y) \mapsto e^{-x} \mathbb{1}_{[0,x]}(y) \mathbb{1}_{\mathbb{R}_+}(x)$$
.

9. On a

$$\mathbb{P}(Y > t) = \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{Y > t\}} \mid X\right]\right] = \int_0^\infty ((x - t)_+ / x) x e^{-x} dx = \int_t^\infty (x - t) e^{-x} dx = e^{-t}.$$

10. La loi conditionnelle de (X,Y) sachant X est \tilde{K} . On en déduit, pour tout borélien B

$$\mathbb{E} \left[\mathbb{1}_B(X - Y) | X \right] = \int \mathbb{1}_B(x - y) \tilde{K}(X, dxdy) = \int \mathbb{1}_B(X - y) K(X, dy)$$
$$= \int_0^X \mathbb{1}_B(X - y) X^{-1} dy = \int_0^X \mathbb{1}_B(z) X^{-1} dz ,$$

en posant z = X - y. D'où $\mathbb{P}^{Z|X} = K$.

- 11. Comme $\mathbb{P}^{Y|X} = \mathbb{P}^{Z|X}$ on en conclut que $\mathbb{P}^Y = \mathbb{P}^Z$.
- 12. On écrit pour des boréliens A et B

$$\mathbb{E} \left[\mathbb{1}_{A \times B}(Y, Z) \right] = \mathbb{E} \left[\mathbb{1}_{A}(Y) \mathbb{1}_{B}(X - Y) \right]$$

$$= \int \mathbb{1}_{A}(y) \mathbb{1}_{B}(x - y) e^{-x} \mathbb{1}_{[0, x]}(y) \mathbb{1}_{\mathbb{R}_{+}}(x) dx dy$$

$$= \int \mathbb{1}_{A}(y) \mathbb{1}_{B}(z) \mathbb{1}_{[0, \infty)}(y) \mathbb{1}_{[0, \infty)}(z) e^{-y - z} dy dz.$$

D'où (Y,Z) a pour densité $(y,z)\mapsto \mathbbm{1}_{[0,\infty)}(y)\mathbbm{1}_{[0,\infty)}(z)\mathrm{e}^{-y-z}$. et l'on conclut que Y et Z sont indépendants de même loi exponentiel de paramètre 1.

- 13. La fonction caractéristique de Y et Z est $\xi \mapsto (1 i\xi)^{-1}$. La fonction caractéristique de Y + Z est donc $\xi \mapsto (1 i\xi)^{-2}$, qui est bien celle d'une $\mathbf{Ga}(2,1)$.
- 14. Comme Y+Z=X, on se doute que Y et Z ne sont pas indépendants conditionnellement à X. En effet :

$$\begin{split} \mathbb{E}\left[\left.YZ\right|X\right] - \mathbb{E}\left[\left.Y\right|X\right] \mathbb{E}\left[\left.Z\right|X\right] &= \mathbb{E}\left[\left.XY - Y^2\right|X\right] - X^2/4 \\ &= X^2/2 - X^{-1} \int_0^X y^2 \mathrm{d}y - X^2/4 \\ &= -X^2/12. \end{split}$$