Geometria-vectorial

Índice general

Ín	dice de cuadros	v
Ín	dice de figuras	vii
Re	esumen	ix
In	troducción	xi
1.	Vectores wwwwwwwwwww	1
2.	Rectas	3
3.	Lugar geométrico	5
4.	Circunferencia	7
5.	Parábola	11
6.	Elipse 6.1. Preliminares	15
7.	Hipérbola	19
Αp	péndice	21
A.	Ecuaciones de primer grado A.1. Raices de una ecuacion de segundo grado	23 23 23
В.	Ecacuaciones lineales de primer grado B.1. Soluciones de ecuacuiones lineales de primer grado	25 25 25 25
Bil	bliografía	27
Índ	dice alfabético	29

Índice de cuadros

Índice de figuras

	Vector		
5.1.	Prábola	 	12
6.1.	Elipse	 	10
7.1.	Hipérbola	 	20

Resumen

Este es un libro sobre la geometria vectorial edicion 2

Introducción

1

Vectores wwwwwwwwwwwwww

2

Rectas

3

Lugar geométrico

Here is a review of existing methods.

Circunferencia

Sea $\vec{a}=(a_1,a_2)$ entonces el vector escalado es $r\vec{a}\parallel\vec{a}$; el vector perpendicular a este es $\vec{a}^\perp=(-a_2,a_1)$ la norma del vector \vec{a} es $\|a\|=\sqrt{a_1^2+a_2^2}$ el vector unitario en la dirección de \vec{a} es $\vec{\mu}=\frac{\vec{a}}{\|\vec{a}\|}$ que es paralela a este. Dado dos puntos P_1 y P_2 estos definen un vector $P_1\vec{P}_2=P_2-P_1$. Los vectores en dirección de los ejes positivos son i=(1,0) y j=(0,1); cualquier vector se pueden expresar en términos de estos es decir $\vec{a}=(a_1,a_2)=a_1(1,0)+a_2(0,1)=a_1i+a_2j$. De acuerdo al ángulo de inclinación del vector se tiene la siguiente representación $\vec{a}=\|\vec{a}\|$ ($\cos\theta,\sin\theta$). C

Teorema 4.1 (russ). Dada el espacio R y $r \in R$ se tiene que $\mathcal{R}(r) = \lim_{t \to \infty} g(y)_r$

 \sum

Dos vectores son ortogonales $(\vec{a} \perp \vec{b})$ si $\left| \vec{a} - \vec{b} \right| = \left| \vec{a} + \vec{b} \right|$ y verifican

$$\left|\vec{b}\right|^2 + \left|\vec{b}\right|^2 + = \left|\vec{a} + \vec{b}\right|^2 \vec{a}\vec{b} = 0 \ \vec{a} \parallel \vec{b}^\perp \ \vec{a} \ \text{y} \ \vec{b} \ \text{son LI si y solo si} \ r\vec{a} + s\vec{b} = 0 \ \text{implica} \ r = 0 \ \text{y} \ s = 0.$$

La proyeccion de \vec{a} sobre \vec{b} es otro vector Proy \vec{b}

$$\vec{a} = \text{Proy}_{\vec{b}}\vec{a} + \text{Proy}_{\vec{b}^\perp}\vec{a} \text{ si hacemos } \vec{a} = p\vec{b} + q\vec{b}^\perp \text{ entonces } q = \frac{\vec{a}\vec{b}}{\|\vec{b}\|^2} \text{ y } p = \frac{\vec{a}\vec{b}^\perp}{\|\vec{b}\|^2}$$

Figura 4.1 Vector

Figura 4.2 Circunferencia

pues
$$\left\| \vec{b} \right\| = \left\| \vec{b}^{\perp} \right\|$$
 entonces $\operatorname{Proy}_{\vec{b}} \vec{a} = \frac{\vec{a} \vec{b}}{\left\| \vec{b} \right\|^2} \vec{b} = \frac{\vec{a} \vec{b}}{\left\| \vec{b} \right\|} \frac{\vec{b}}{\left\| \vec{b} \right\|} = \operatorname{Cp}_{\vec{b}} \vec{a} \frac{\vec{b}}{\left\| \vec{b} \right\|}; \operatorname{Cp}_{\vec{b}} \vec{a} = \frac{\vec{a} \vec{b}}{\left\| \vec{b} \right\|}$ recibe el nombre de componente de \vec{a} en la dirección de \vec{b}

Dado P_0 y un vector \vec{a} entonces la recta se define como el conjunto de puntos $\mathcal{L} = \left\{P \in \mathbb{R}^2 / P = P_0 + t \vec{a}; \ t \in \mathbb{R} \right\}$ que recibe el nombre de ecuación vectorial de la recta. $P \in \mathcal{L} \iff (P - P_0) \cdot \vec{a}^\perp = 0$. De la ecuación vectorial de la recta se tiene si $P = (x.y); \ P_0 = (x_0, y_0)$ y $\vec{a} = (a_1, a_2)$ se tiene la ecuación paramétrica de la recta. $x = x_0 + t a_1; \ y = y_0 + t a_2$ de esto se obtiene la ecuación simétrica de la recta

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2}.$$

Sea $\vec{n}=(a,b)=\vec{a}^\perp$ entonces se tiene que si $P\in\mathcal{L}$ entonces $(P-P_0)\cdot\vec{n}=0$ pues son perpendicualres; entonces $P\cdot\vec{n}=P_0\cdot\vec{n}\iff ax+by=-c\implies ax+by+c=0$ que recibe el nombre de ecuación general de la recta. Sea $Q=(x_1,y_1)$ un punto exterior a \mathcal{L} entonces la distancia de Q a \mathcal{L} se define como

$$\begin{split} d[Q;\mathcal{L}] &= |\mathrm{Cp}_{\vec{n}}(Q - P_0)| \\ &= \left| \frac{(Q - P_0) \cdot \vec{n}}{|\vec{n}|} \right| \\ &= \left| \frac{Q \cdot \vec{n} - P_0 \cdot \vec{n}}{|\vec{n}|} \right| \\ &= \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \end{split}$$

Sean \mathcal{L}_1 y \mathcal{L}_2 dos rectas; con vectores directores $\vec{a}=(a_1,a_2)$ y $\vec{b}=(b_1,b_2)$ respectivamente; entonces $\mathcal{L}_1\cap\mathcal{L}_2=(d_1,d_2)$ donde d_1 y d_2 satisfacen el sistema generado por las ecuaciones generales de \mathcal{L}_1 y \mathcal{L}_2 ; $a_1x+a_1y+k_1=0$ y $b_1x+b_1y+k_2=0$.

La pendiente de una recta se deduce de su vector director es decir si $\vec{a}=(a_1,a_2)$ entonces $m=\frac{a_2}{a_1}$; de esto se deduce $\vec{a}=(a_1,a_2)=a_1(1,\frac{a_2}{a_1})=a_1(1,m)$. El angulo generado por las \mathcal{L}_1 con pendiente m_1 y \mathcal{L}_2 con pendiente m_1 ; está dada por $\theta=\arctan\left(\frac{m_1-m_2}{1+m_1m_2}\right)$.

El círculo se define como el conjunto de punto $P=\left(x,y\right)$ que satisfacen la ecuación

$$||P - C|| = r$$

r>0 es el radio, C=(h,k) es el centro entonces la ecuación del círculo es

$$||P - C|| = r \iff (x - h)^2 + (y - k)^2 = r^2.$$

La ecuación de la recta tangente en $P_0=(x_0,y_0)$ $(P=P_0$ en el gráfico) está dada por

$$(Q - P_0) \cdot (P_0 - C) = 0$$

donde $Q = (x, y) \neq P$ cualquiera; entonces

$$(Q - P_0) \cdot (P_0 - C) = 0 \iff (x - x_0, y - y_0)(x_0 - h, y_0 - k) = 0$$

lo cual es equivalente a

$$(x-h)(x_0-h) + (x-k)(y_0-k) = r^2$$

Parábola

Sean la recta \mathcal{L} y el punto F fijos; los puntos P que satisfacen la ecuación

$$d[P;F] = d[P;\mathcal{L}] = |p| \tag{5.1}$$

generan una curva llamada parábola, la excentricidad es el cociente de estas dos distancias que es igual a 1 pues ambas son iguales a |p|.

 \mathcal{L} es la recta directriz cuya ecuación es x' = -p en el sistema X'Y'; F es el foco, V = (h, k) el vertice; p es el parámetro de la parábola; y RR' el lado recto de la parábola.

Los puntos P en el sistema X'Y' satisfacen $P=(x,y)=V+x'\vec{u}+y'\vec{u}^\perp$ de donde al despejar x' e y' resultan $x'=[(x,y)-V]\vec{u}$ e $y'=[(x,y)-V]\vec{u}^\perp$ la recta directriz en el sitema X'Y' es $\mathcal{L}=\left\{Q/Q=(V-p\vec{u})+t\vec{u}^\perp,\ t\in\mathbb{R}\right\}$; donde el vértice es $F=V+p\vec{u}$ luego se tiene las ecuaciónes

$$d[P; \mathcal{L}] = \left| \operatorname{Cp}_{\vec{u}} \vec{PQ} \right| = |(Q - P) \cdot \vec{u}| = |x' + p|$$
(5.2)

$$d[P;F] = |P - F| = |(x' - p)\vec{u} + y'\vec{u}^{\perp}|$$
(5.3)

por lo tanto reemplazando (5.2) y (5.3) en (5.1)

$$\begin{split} d\left[P;F\right]^2 &= d\left[P;\mathcal{L}\right]^2 \implies \left|(x'+p)\vec{u} + y'\vec{u}^\perp\right|^2 = \left|x'+p\right|^2 \\ &\implies (x'-p)^2 + y'^2 = (x'+p)^2 \\ &\implies y'^2 = 4px' \end{split}$$

De este modo $P \in \mathcal{P}$ si P satisface la ecuacion vectorial de \mathcal{P}

$$P=(x,y)=V+x'\vec{u}+y'\vec{u}^\perp; \text{ donde } y'^2=4px'; \ |\vec{u}|=1$$

Cuando el eje es paralelo al eje x; se tiene $\vec{u} = i = (1,0)$ entonces

$$(x,y) = V + x'\vec{u} + y'\vec{u}^{\perp} = (h + x', k + y')$$

12 5 Parábola

Figura 5.1 Prábola

implica x'=x-h y y'=y-k en $y'^2=4px'$ resulta $(y-k)^2=4p(x-h)$ $(y^2=4px$ si V está en el origen); entonces $F=V+p\vec{u}=(h+p,k); \mathcal{L}: x=h-p$. Si p<1 la parábola se invierte simétricamente a la directriz.

Cuando el eje es paralelo al eje y; $\vec{u} = j = (0, 1)$ entonces

$$(x,y) = V + x'\vec{u} + y'\vec{u}^{\perp} = (h - y', k + x')$$

implica x'=y-k y y'=h-x en $y'^2=4px'$ resulta $(x-h)^2=4p(y-k)$ $(x^2=4py$ si V está en el origen); entonces $F=V+p\vec{u}=(h,k+p); \mathcal{L}: x=k-p$. Si p<1 la parábola se invierte simétricamente a la directriz.

Teorema 5.1 (Ecuaciones de la recta tangente de una parábola). La ecuación de la recta tangente a $y^2 = 4px$ en el punto $P_0 = (x_0, y_0)$ está dada por

$$y = \frac{2p}{y_0}(x + x_0) \tag{5.4}$$

y la ecuación de la recta tangente a $(y-k)^2=4p(x-h)$ en el punto $P_0=(x_0,y_0)$ está dada por

$$(y_0 - k)(x_0 - k) = 4p \left[\left(\frac{x + x_0}{2} - h \right) \right]$$
 (5.5)

similarmente la ecuación de la recta tangente a $(x-h)^2 = 4p(y-k)$ en el punto $P_0 = (x_0, y_0)$ está dada por

$$(x_0 - h)(x_0 - h) = 4p \left[\left(\frac{y + y_0}{2} - h \right) \right].$$
 (5.6)

Demostración. En efecto sea ...

Ejercicio 5.1. Al realizarse una transformacion de coordenadas, el eje de una parabola \mathcal{P} resulta orientada segun el vector (3,4). En X'Y' un punto $Q'=(20,-20)'\in\mathcal{P}$ en els sistema xy el foco de \mathcal{P} E=(11,5). Determinar en el sistema xy un punto R de la parabola \mathcal{P} tal que el trinagulo QVR sea rectangulo en V vertice de la parábola.

Ejercicio 5.2. La circunferencia $\mathcal{C}=(x-3)^2+(y-3)^2=25$ es tangente a una parábola \mathcal{P} en $P_0=(x_0,y_0),\,y_0>7$. La recta $\mathcal{L}:4x-3y+12=0$ es normal a \mathcal{P} y \mathcal{C} en P_0 y corta al eje focal de \mathcal{P} en el punto R. Si $\left|\vec{C_0P_0}\right|=\left|\vec{P_0R}\right|$ y si la distancia $d[P_0;$ eje focal] = 4, hallar la ecuación de la parábola \mathcal{P} . C_0 es el centro de la circunferencia y la absisa del vértice es menor que 6.

Solución. $P_0=C_0\pm r\vec{u}_{\mathcal{L}}$ donde $r=5,~C_0=(3,8)~{\rm y}~\vec{u}_{\mathcal{L}}=\frac{(3,4)}{5}$ es decir $P_0=(3,8)\pm 5\frac{(3,4)}{5}$ de esto consideramos $P_0=(x_0,y_0)=(6,12)$ por condición del problema con esto la recta tangente a \mathcal{C} y \mathcal{P} es $\mathcal{L}_T:(x,y)(3,4)=(3,4)(6,12)$ equivalentemente $\mathcal{L}_T:3x+4y=66$.

Ya que $\left|C_0\vec{P}_0\right|=5=\left|\vec{P_0R}\right|$ y $d[P_0;$ eje focal] $=d[P_0;Q]=4$ entonces el triángulo P_0QR es un triángulo rectángulo notable, por lo tanto $\left|\vec{QR}\right|=3$ por el Teorema de Pitágoras, además $\vec{P_0R}=\vec{P_0Q}+\vec{QR}$ es decir si $\vec{P_0Q}=(v_1,v_2)$ se tiene la ecuacion $(3,4)=4(v_1,v_2)\pm 3(-v_2,v_1)$ que al resolverla se tiene $\vec{P_0R}=(v_1,v_2)=(1,0)$ o $\vec{P_0R}=(v_1,v_2)=\left(\frac{24}{25},\frac{7}{25}\right)$ entonces $Q=P_0+4(0,1)=(6,16)$ o $Q=P_0+4\left(\frac{24}{25},\frac{7}{25}\right)=\left(6+\frac{96}{25},12+\frac{28}{25}\right)$ esto indica considerar Q=(6,16) pues el vertice (tiene absisa menor que 6), debe estar a la derecha de P_0 pues la recta \mathcal{L}_T tiene pendiente negativa. Por lo tanto $\mathcal{L}_T\cap\mathcal{F}: x=16=\left(\frac{2}{3},16\right)$ y por propiedad de la tangente a una parábola se tiene el vértice $V=\left(\frac{\mathcal{L}_T\cap\mathcal{F}+Q}{2}\right)=\left(\frac{10}{3},16\right)$. La ecuación de la parabola en le sistema original es $(y-h)^2=4\rho(x-k)$ donde $(h,k)=\left(\frac{10}{3},16\right)$ y $(6,12)\in\mathcal{P}$ se tiene $(-4)^2=4\rho(8/3)$ de donde $\rho=\frac{3}{2}$ entonces la recta directriz pasa por $\left(\frac{10}{3},16\right)+\frac{3}{2}(1,0)=\left(\frac{7}{3},16\right)$ por tanto $\mathcal{L}_D: x=\frac{7}{3}$ y la ecuacion de la parábola es

$$(y-16)^2 = 4\rho \left(x - \frac{10}{3}\right)$$

por ser paralela al eje x.

Ejercicio 5.3. Los puntos A=(60,13) y B=(-4,61) estan sobre una parábola $\mathcal P$ además son simétricos con recpecto al eje focal. Desde un punto Q sobre el eje focal se traza un recta tangente a $\mathcal P$ que pasa por B, hallar la ecuación de $\mathcal P$ y las ecuaciones de las rectas tangentes trazadas desde Q.

Solución. Ya que A y B son simétricas entonces $P_0 = \frac{A+B}{2} = (28,37) \in \mathcal{L}_F$ donde \mathcal{L}_F es el eje focal paralelo al vector $\vec{AB}^{\perp} = (B-A)^{\perp} = (-64,48) \parallel (-4,3) = \vec{v}_L$

14 5 Parábola

es decir \vec{v}_F y P_0 nos genera la ecuación del eje focal $\mathcal{L}_F: 4x+3y=1$. De otro lado dado el punto $Q=(20,x)\in\mathcal{L}_F$ que al reemplazarlo en la recta del eje focal nos genera x=-27 de donde Q=(20,-27) ademas el vértice de la parabola es $V=\frac{Q+P_0}{2}=(4,5)$ por propiedad.

Con el objetivo de hallar el valor de ρ en la ecuación $y'^2=4\rho x'$ se halla las coordenadas de B en el nuevo sistema de coordenadas centrada en V con vector director $\vec{u}=\frac{(3,4)}{5}$, haciendo uso de la relación

$$(x,y) = V + x'\vec{u} + y'\vec{u}^{\perp}$$

se obtiene x'=[B-V] $\vec{u}=40$ y y'=[B-V] $\vec{u}^\perp=40$ por tanto reemplazando B=(-4,61)=(40,40)' en $y'^2=4\rho x'$ se tiene que $\rho=10$

Los vectores directores de las rectas tangentes en el sistema X'Y' son (2,1) y (2,-1) respectivamente por tanto sus ecuaciones son $\mathcal{L}_A: 2y'=x'+40$ y $\mathcal{L}_B=-2y'=x'+40$ estas ecuaciones en el sistema original con $x'=[(x,y)-(4,5)]\frac{(3,4)}{5}$ y $y'=[(x,y)-(4,5)]\frac{(-4,3)}{5}$ reemplazadas resultan $\mathcal{L}_A: 2y-11x-166=0$ y $\mathcal{L}_B: 5x-10y-170=0$

1. ww

Elipse

6.1. Preliminares

Ejemplo 6.1. wwwwwwww

Dados dos puntos distintos F_1 y F_2 llamados focos; la elipse \mathcal{E} es el conjunto formado por los puntos P que satisfacen la ecuación

$$|P - F_1| + |P - F_2| = 2a (6.1)$$

 $C=(\underline{h},\underline{k})$ es el centro de la elipse; x' eje focal, V_1 y V_2 son los vértices de la elipse; $\overline{V_1V_2}$ el eje mayor $\overline{RR'}$ el lado recto; $\overline{B_1B_2}$ el eje menor de longitud 2b. En el sistema X'Y' se tiene $B_1=(0,b)'$; $B_2=(0,-b)'$; $F_1=(-c,0)'$; $F_2=(c,0)'$ y C=(0,0)'.

Dado $P \in \mathcal{E}$, la excentricidad e se define como

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e = \frac{d[P; F_2]}{d[P; \mathcal{L}_2]}$$
(6.2)

$$d[B_i; F_1] = d[B_i; F_2] = a \text{ y } d[V_i; C] = d[V_i; C] = a, i = 1, 2.$$

Teorema 6.1. En la elipse se verifican las siguientes igualdades

1.
$$d[B_1; F_i] = d[B_2; F_i] = a$$

2.
$$d[V_1; C] = d[V_2; C] = a$$

3.
$$d[C; \mathcal{L}_1] = d[C; \mathcal{L}_2] = \frac{c}{c}$$

4.
$$c = d[P; F_1] = d[P; F_2] \implies c = ae$$

Demostración. 1. Ya que $d[B_1; F_1] + d[B_1; F_2] = 2a = d[B_2; F_1] + d[B_2; F_2]$ es decir $2d[B_1; F_i] = 2a = 2d[B_2; F_i]$ entonces $d[B_1; F_i] = a = d[B_2; F_i]$ i = 1, 2.

2. Por la definición (6.1) de la elipse se tiene

$$d[V_1; F_2] + d[V_1; F_1] = 2a (6.3)$$

16 6 Elipse

Figura 6.1 Elipse

además la diferencia

$$d[V_1; F_2] - d[V_1; F_1] = 2c (6.4)$$

restando las ecuaciones (6.3) y (6.4) se tiene

$$d[V_1; F_1] = a - c (6.5)$$

entonces haciendo uso de (6.5) en $d[V_1; C] = d[V_1; F_1] + d[F_1; C] = (a-c) + c = a$; de manera similar para el vértice V_2 .

3. En efecto se sabe que

$$\frac{d\left[B;F_{i}\right]}{d\left[B;\mathcal{L}_{i}\right]}=e\Longleftrightarrow\frac{a}{d\left[B;\mathcal{L}_{i}\right]}=e$$

además $d\left[B_i;\mathcal{L}_i\right]=d\left[C;\mathcal{L}_i\right]$ por lo tanto $\frac{a}{d\left[C;\mathcal{L}_i\right]}=e.$

4. Pues

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e$$

implica $\frac{a-c}{\frac{a}{e}-a} = e$ es decir c = ae.

a>b y $a^2=b^2+c^2;$ pues $a=d\left[B_1;F_2\right]=d\left[(0,b^2+c^2)';(c,0)'\right]^2=\sqrt{b};$ 0< e<1 debido a que $0< e=\frac{a}{e}<1$ y a>c>0.

$$P = (x,y) = C + x'\vec{u} + y'\vec{u}^{\perp}; x' = [(x,y) - C]\vec{u}; y' = [(x,y) - C]\vec{u}^{\perp}$$

$$F_1 = C + c\vec{u}$$
 y $F_2 = C - c\vec{u}$ entonces

6.1 Preliminares 17

$$|P - F_1| + |P - F_2| = |C + x'\vec{u} + y'\vec{u}^{\perp} - C + c\vec{u}| + |C + x'\vec{u} + y'\vec{u}^{\perp} - C - c\vec{u}| = \sqrt{(x' + c)^2 + y'^2} + \sqrt{(x' - c)^2 + y'^2} = 2a$$

por lo tanto resolviendo $\sqrt{(x'+c)^2+y'^2}+\sqrt{(x'-c)^2+y'^2}=2a$ resulta $(a^2-c^2)x'^2+ay'^2=a^2(a^2-c^2)\implies b^2x'^2+a^2y'^2=a^2b^2$

De este modo $P \in \mathcal{E}$ si P satisface la ecuación vectorial

$$P=(x,y)=V+x'\vec{u}+y'\vec{u}^{\perp}; \ {
m donde} \ {x'^2\over a^2}+{y'^2\over b^2}=1; \ |\vec{u}|=1$$

Cuando el eje es paralelo al eje x; $\vec{u}=i=(1,0)$ entonces $(x,y)=V+x'\vec{u}+y'\vec{u}^\perp=(h+x',k+y') \implies x'=x-h$ y y'=y-k en $\frac{x'^2}{a^2}+\frac{y'^2}{b^2}=1$ resulta $\frac{(y-k)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ ($\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ si V está en el origen); entonces $F_1=C+c\vec{u}=(h+c,k)$; $\mathcal{L}_1:x=h+\frac{a}{e}$ y $\mathcal{L}_2:x=h-\frac{a}{e}$.

Cuando el eje es paralelo al eje $y; \vec{u}=j=(0,1)$ entonces $(x,y)=V+x'\vec{u}+y'\vec{u}^\perp=(h-y',k+x') \implies x'=y-k$ y y'=h-x en $\frac{x'^2}{a^2}+\frac{y'^2}{b^2}=1$ resulta $\frac{(y-k)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ ($\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ si V está en el origen); entonces $F_1=C+c\vec{u}=(h+c,k); \mathcal{L}_1:x=k+\frac{a}{e}$ y $\mathcal{L}_2:x=k-\frac{a}{e}$.

Corolario 6.1. The characteristic function of the sum of two independent random variables X_1 and X_2 is the product of characteristic functions of X_1 and X_2 , i.e.,

$$\varphi_{X_1+X_2}(t) = \varphi_{X_1}(t)\varphi_{X_2}(t)$$

Ejercicio 6.1 (Characteristic Function of the Sample Mean). Let $\bar{X} = \sum_{i=1}^{n} \frac{1}{n} X_i$ be the sample mean of n independent and identically distributed random variables, each with characteristic function φ_X . Compute the characteristic function of \bar{X} .

Solución. Applying Theorem, we have

$$\varphi_{\bar{X}}(t) = \prod_{i=1}^{n} \varphi_{X_i} \left(\frac{t}{n} \right) = \left[\varphi_X \left(\frac{t}{n} \right) \right]^n.$$

Hipérbola

Los puntos P de un hipérbola verifican la siguiente ecuación

$$||P - F_1| - |P - F_1|| = 2a$$

 $C=(\underline{h,k})$ es el centro de la hipérbola; V_1 y V_2 son los vértices; F_1 y F_2 son los focos; $\overline{V_1V_2}$ es el eje transversal; $\overline{B_1B_2}$ es el eje conjugado; X' es el eje focal

$$d\left[C;F_{1}\right]=d\left[C;F_{2}\right]=c$$

 $F_1=(-c,0); F_1=(c,0)$ en el sistema coordenado $X'Y'; \mathcal{C}$ circunferencia con centro en C, radio c que pasa por los focos.

$$d[V_1; C] = d[V_2; C] = a$$

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e = \frac{d[P; F_2]}{d[P; \mathcal{L}_2]}$$

c=ae; $d\left[C;\mathcal{L}_{1}
ight]=d\left[C;\mathcal{L}_{2}
ight]=rac{a}{e}$ y e>1; en efecto

$$\frac{d[R; F_1]}{d[R; \mathcal{L}_1]} = \frac{\frac{b^2}{a}}{c - d[C; \mathcal{L}_1]} = \frac{c^2 - a^2}{a(c - d[C; \mathcal{L}_1])}$$

$$\frac{d\left[V_2; F_1\right]}{d\left[V_2; \mathcal{L}_1\right]} = \frac{c - a}{a - d\left[C; \mathcal{L}_2\right]}.$$

De la primera

$$d[C; \mathcal{L}_2] = a - \frac{c - a}{e} \implies c - d[C; \mathcal{L}_2] = a - \frac{(c - a)(e + 1)}{e}.$$

De la segunda ecuación

$$c^{2} - a^{2} = ae \frac{(c-a)(e+1)}{e} \implies c + a = a(e+1) \implies c = ae$$

Figura 7.1 Hipérbola

luego $d[C;\mathcal{L}_2]=a-\frac{(c-a)(ae+a)}{e}=\frac{a}{e}$ y el caso $d[C;\mathcal{L}_1]$ es similar. Finalmente $e=\frac{c}{a}>1$ pues 0< a< c.

$$P = (x, y) = C + x'\vec{u} + y'\vec{u}^{\perp} x' = [(x, y) - C]\vec{u}$$
 y $y' = [(x, y) - C]\vec{u}^{\perp}$

 $F_1 = C + c\vec{u}$ y $F_2 = C - c\vec{u}$ tambien $V_1 = C + a\vec{u}$ y $V_2 = C - a\vec{u}$ entonces

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e \iff d[P; F_1]^2 = e^2 d[P; \mathcal{L}_1]^2$$

haciendo uso de c=ae y $c^2=a^2+b^2$ se tiene lo siguiente

$$(x'-c)^2 + y'^2 = e^2 \left(x' - \left(\frac{a}{e}\right)\right)^2$$

$$(c^2 - a^2)x'^2 + a^2y'^2 = a^2(c^2 - a^2)$$

$$b^2x'^2 - a^2y'^2 = a^2b^2$$

De este modo $P \in \mathcal{H}$ si P satisface la ecuación vectorial

$$P=(x,y)=V+x'\vec{u}+y'\vec{u}^{\perp}; \text{ donde } \frac{x'^2}{a^2}-\frac{y'^2}{b^2}=1; \ |\vec{u}|=1.$$

Cuando el eje es paralelo al eje X; $\vec{u} = i = (1, 0)$ entonces

$$(x,y) = V + x'\vec{u} + y'\vec{u}^{\perp} = (h + x', k + y')$$

se tiene x'=x-h y y'=y-k en $\frac{x'^2}{a^2}-\frac{y'^2}{b^2}=1$; resulta

$$\frac{(y-k)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

entonces $F_1=C+c\vec{u}=(h-\frac{a}{e},k)$ y $F_2=C+c\vec{u}=(h-\frac{a}{e},k)$; $\mathcal{L}_1:x=h-\frac{a}{e}$ y $\mathcal{L}_2:x=h+\frac{a}{e}$ y las asíntotas de $y'=\pm\frac{a}{b}x'$ se convierte en $(y-k)=\pm\frac{a}{b}(x-h)$. Además $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$; si V está en el origen.

Cuando el eje es paralelo al eje Y; $\vec{u} = j = (0, 1)$ se tiene

$$(x,y) = V + x'\vec{u} + y'\vec{u}^{\perp} = (h - y', k + x')$$

implica que x'=y-k y y'=h-x en $\frac{x'^2}{a^2}-\frac{y'^2}{b^2}=1;$ resulta

$$\frac{(y-k)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

entonces $F_1=C+c\vec{u}=(h+c,k);$ $\mathcal{L}_1:x=k+\frac{a}{e}$ y $\mathcal{L}_2:x=k-\frac{a}{e}$ y las asíntotas de $y'=\pm\frac{b}{a}x'$ se convierte en $(y-k)=\pm\frac{b}{a}(x-h)$. Además $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1;$ si V está en el origen.

(Vincze and Kozma, 2014) ## Ejercicios

A

Ecuaciones de primer grado

(Xie, 2015)

A.1. Raices de una ecuacion de segundo grado

A.2. Propiedades de una ecuacion de segundo grado

B

Ecacuaciones lineales de primer grado

- B.1. Soluciones de ecuacuiones lineales de primer grado
- **B.2.** Soluciones ...
- B.3. Forma matricial de una ecuación lineal

Bibliografía

Vincze, C. and Kozma, L. (2014). College geometry.

Xie, Y. (2015). *Dynamic Documents with R and knitr*. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Índice alfabético

elipse, 15