

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № __4__

Название: Исследование мультиплексоров

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-41Б		E.A.	
			Варламова	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель		A		
		(Подпись, дата)	(И.О. Фамилия)	

Цель работы — изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

1. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8

- 1 цифровых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем.
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика. На вход счетчика подать импульсы генератора с частотой 500 кГц.
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ.

Вариант 4: 1 1 0 1 1 0 0 1

Рисунок 1 Коммутатор MUX 8 – 1 цифровых сигналов

Рисунок 2 Временная диаграмма коммутатора

2. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8

– 1 аналоговых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика. На вход счетчика подать импульсы генератора с частотой 500 кГц;
- b) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора на логическом анализаторе и осциллографе.

Рисунок 3 Коммутатор MUX 8 – 1 цифровых сигналов

Рисунок 4 Временные диаграммы коммутатора

3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8 — 1 цифровых сигналов в качестве формирователя Φ AЛ четырех переменных. Φ AЛ задается преподавателем. Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя Φ AЛ и провести ее анализ.

Вариант 4: ФАЛ (3 6 7 8 11 12 13 15) => (0001 0011 1001 1101)

Построим таблицу истинности:

Набор	X4	X3	X2	X1	f	D
0	0	0	0	0	0	D0 = 0
1	0	0	0	1	0	
2	0	0	1	0	0	D1 = X1
3	0	0	1	1	1	
4	0	1	0	0	0	D2 = 0
5	0	1	0	1	0	
6	0	1	1	0	1	D3 = 1
7	0	1	1	1	1	
8	1	0	0	0	1	D4 = !X1
9	1	0	0	1	0	
10	1	0	1	0	0	D5 = X1
11	1	0	1	1	1	
12	1	1	0	0	1	D6 = 1
13	1	1	0	1	1	
14	1	1	1	0	0	D7 = X1
15	1	1	1	1	1	

Таблица 1 Таблица истинности ФАЛ

Рисунок 5 Коммутатор MUX 8 - 1 цифровых сигналов в качестве формирователя $\Phi A \Pi$ четырех переменных

По временной диаграмме видим, что схема соответствует ФАЛ:

Рисунок 6 Временная диаграмма сигналов формирователя $\Phi A \Pi$

4. Наращивание мультиплексора.

Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4. Исследовать мультиплексор MUX 16-1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15- из таблицы, заданной преподавателем. Провести анализ временной диаграммы сигналов мультиплексора MUX 16-1. мультиплексора MUX 16-1.

Вариант 4:

D0...D15: (0001 0011 1001 1101)

Pисунок 7 Mультиплексор MUX 16 - 1 на основе простого мультиплексора MUX 4 - 1 и дешифратора DC 2

Рисунок 8 Временная диаграмма мультиплексора 16 - 1

Видим, что схема построена верно.

Вывод: были изучены принципы построения, практического применения и экспериментального исследования мультиплексоров.