I claim:

- 1. A method for use in producing epothilones and analogs and derivatives thereof, comprising:
- (a) performing an aldol condensation of a first compound selected from the formulas:

$$R_1$$
 R_2 R_3 R_4 R_4 R_5 R_5 R_6 R_6 R_6 R_6

and stereoisomers thereof, with a second compound selected from the formulas:

and stereoisomers thereof, thereby to form a third compound selected from the formulas:

and

HOOC
$$R$$
 R_{3} R_{4} R_{3} R_{4} R_{4} R_{7} R_{7} R_{7} R_{8} $R_{$

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 , R_6 , R_7 and R_8 are each selected from H and a protecting group; and wherein M is an alkali metal; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound selected from the formulas:

$$R_{5}O$$
 R_{3}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{3}
 R_{2}
 R_{1}
 R_{3}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 $R_{$

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 , R_7 and R_8 are each selected from H and a protecting group.

- 2. A method according to claim 1 wherein R_1 , R_3 and R_4 are each methyl, and R_2 is H or methyl.
 - 3. A method according to claim 2 wherein R_2 is H.
 - 4. A method according to claim 2 wherein R_2 is methyl.
 - 5. A method according to claim 2 wherein at least one of R₅ R₈ is TBS.
 - 6. A method according to claim 2 wherein R_6 , R_7 and R_8 are each TBS.
 - 7. A method according to claim 2 wherein R_5 is PMB.
 - 8. A method according to claim 2 wherein R₆ is SEM.
- 9. A method according to claim 1 wherein R_5 is selected from PMB, DPS and TBS; wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM; wherein R_7 is selected from H, TBS, TROC, $-CO(CH_2)_4CH_3$ and $-CO(CH_2)_3CH=CH_2$; and wherein R_8 is selected from H and TBS.
- 10. A method according to claim 1 wherein said fourth compound is of a formula selected from:

and stereoisomers thereof, where R₂ is H or methyl; and wherein said fourth compound is converted to a fifth compound of a formula selected from:

and stereoisomers thereof, where R2 is H or methyl.

11. A method according to claim 10 wherein said fifth compound is converted to a sixth compound of a formula selected from:

and stereoisomers thereof, where R_2 is H or methyl and wherein R_9 is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof.

12. A method according to claim 10 wherein said fifth compound is converted to a sixth compound of a formula selected from:

and stereoisomers thereof, where R₂ is H or methyl.

13. A method according to claim 12 wherein said fifth compound is converted to a sixth compound of a formula selected from:

14. A method according to claim 13 wherein said sixth compound is of a formula selected from:

and stereoisomers thereof, where R2 is H or methyl.

15. A method according to claim 1 wherein said fourth compound is of a formula selected from:

and stereoisomers thereof, where R_2 is H or methyl, R_7 is H or TBS, and R_8 is H, TBS, or TROC.

- 16. A method according to claim 15 wherein said fourth compound is further converted to Epothilone B.
 - 17. A method according to claim 15 wherein R_7 and R_8 each are H.
- 18. A method according to claim 17 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

19. A method according to claim 18 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

20. A method according to claim 17 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

and stereoisomers thereof.

21. A method according to claim 20 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein R_{12} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

23. A method according to claim 22 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

and stereoisomers thereof.

24. A method according to claim 23 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein R_{12} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

25. A method according to claim 24 wherein said sixth compound is further converted to a seventh compound of a formula selected from:

and stereoisomers thereof, wherein R_{12} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

26. A method according to claim 25 wherein said seventh compound is further converted to an eighth compound of a formula selected from:

and stereoisomers thereof, wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

27. A method according to claim 22 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

and stereoisomers thereof.

28. A method according to claim 27 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof.

- 29. A method according to claim 28 wherein said sixth compound is further converted to Epothilone B.
- 30. A method according to claim 27 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein R_{11} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

31. A method according to claim 30 wherein said sixth compound is further converted to a seventh compound of a formula selected from:

and stereoisomers thereof, wherein R_{11} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

32. A method according to claim 31 wherein said seventh compound is further converted to an eighth compound of a formula selected from:

and stereoisomers thereof, wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

33. A chemical compound formed according to the method of claim 1.

34. A chemical compound according to claim 33 wherein said compound is selected from the formulas:

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 and R_6 are each selected from H and a protecting group; wherein R_7 is selected from H, a protecting group and COR_{11} ; wherein R_8 is selected from H, a protecting group and COR_{12} ; wherein R_9 is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_{10} is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

35. A chemical compound having a formula selected from:

HOOC
$$R_{7}O$$
 R_{8} R_{2} R_{3} R_{3} $R_{4}O$ R_{5}

and

HOOC
$$R$$
 R_7 R_8 R

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 , R_6 , R_7 and R_8 are each selected from H and a protecting group.

- 36. A chemical compound according to claim 35 wherein R_1 , R_3 and R_4 are each methyl, and R_2 is H or methyl.
 - 37. A chemical compound according to claim 36 wherein R₂ is H.
 - 38. A chemical compound according to claim 36 wherein R₂ is methyl.
- 39. A chemical compound according to claim 36 wherein at least one of $R_{\rm 5}$ $R_{\rm 8}$ is TBS.
- 40. A chemical compound according to claim 36 wherein R_6 , R_7 and R_8 are each TBS.
 - 41. A chemical compound according to claim 36 wherein R₅ is PMB.
 - 42. A chemical compound according to claim 36 wherein R₆ is SEM.
- 43. A chemical compound according to claim 35 wherein R_5 is selected from PMB, DPS and TBS; wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM; wherein R_7 is selected from H, TBS, TROC, and -CO(CH₂)₄CH₃; and wherein R_8 is selected from H, TBS and TROC.
- 44. A method for producing a chemical compound having a formula selected from

HOOC
$$R_{7}O$$
 O OR_{8} R_{2} R_{3} R_{3} OR_{6}

and

HOOC
$$R$$
 R_{7} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{7} R_{4} R_{5} R_{7} R_{8} R_{1} R_{2} R_{3} R_{4} R_{4} R_{5} R_{7} R_{8} R_{1} R_{2} R_{3} R_{4} R_{4}

and stereoisomers thereof, which is useful in producing epothilones and analogs and derivatives thereof, comprising performing an aldol condensation of a first compound selected from the formulas:

with a second compound selected from the formulas:

wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 , R_6 , R_7 and R_8 are each selected from H and a protecting group; and wherein M is an alkali metal.

- 45. A method according to claim 44 wherein M is Li.
- 46. A method according to claim 44 wherein R_1 , R_3 and R_4 are each methyl and wherein R_2 is H or methyl.
- 47. A method according to claim 44 wherein R_5 is selected from PMB, DPS and TBS; wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM; wherein R_7 is selected from H, TBS, TROC, and -CO(CH₂)₄CH₃; and wherein R_8 is selected from H, TBS and TROC.
 - 48. A chemical compound having a formula selected from:

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_8

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 and R_6 are each selected from H and a protecting group.

- 49. A chemical compound according to claim 48 wherein R_1 , R_3 and R_4 are each methyl and wherein R_2 is H or methyl.
- 50. A chemical compound according to claim 48 wherein R_5 is selected from PMB, DPS and TBS; and wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM.
- 51. A chemical compound according to claim 48 wherein R_1 , R_3 and R_4 are each methyl; wherein R_2 is H or methyl; wherein R_5 is selected from PMB, DPS and TBS; and wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM.
- 52. A chemical compound according to claim 51 wherein R_5 is selected from TBS and DPS and wherein R_6 is selected from TMS, TBS and PMB.
- 53. A process for producing a chemical compound useful in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) reacting a first compound of a formula selected from:

and stereoisomers thereof, with a second compound of a formula:

thereby to form a third compound of a formula selected from:

$$R_1$$
 R_2 R_3 OR_5

and stereoisomers thereof, wherein R_1 , R_2 , and R_3 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 and R_6 are each selected from H and a protecting group; and

(b) converting said third compound into a fourth compound of a formula selected from:

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5 R_6 R_6 R_6

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 and R_6 are each selected from H and a protecting group.

- 54. A method according to claim 53 wherein R_1 , R_3 and R_4 are each methyl; wherein R_2 is H or methyl; wherein R_5 is selected from PMB, DPS and TBS; and wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM.
- 55. A method according to claim 53 wherein said third compound is of a formula selected from:

and stereoisomers thereof.

56. A method according to claim 55 wherein said third compound is further converted to a compound of formula:

which is thereafter reacted with a compound of formula:

thereby to form a compound of formula:

which is thereafter converted to said fourth compound of formula:

wherein P₁ is selected from TBS and SEM.

- 57. A process for producing a chemical compound useful in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) converting a first compound of a formula selected from:

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

and stereoisomers thereof, to a second compound of a formula selected from

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_5 R_6 R_6 R_6 R_6

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 and R_6 are each selected from H and a protecting group.

58. A method according to claim 57 wherein said first compound is of formula:

$$R_2$$
 O_2
 O_2
 O_3
 O_4
 O_4
 O_5
 O_6

wherein R_2 is selected from H and methyl, R_5 is selected from TBS and DPS and wherein R_6 is selected from TMS and TBS.

- 59. A process for producing a chemical compound useful in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) converting a first compound of a formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_6

to a second compound of a formula selected from

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_6 is selected from H and a protecting group.

- 60. A process for producing a chemical compound useful in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) converting a first compound of a formula selected from:

$$P_1O$$
 S
 R_2
 R_3
 N
 S
 OR_6

and stereoisomers thereof, to a second compound of a formula selected from

$$R_3$$
 R_4
 R_3
 R_4
 R_4
 R_4

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein P_1 and R_6 are each selected from H and a protecting group.

- 61. A process for producing a chemical compound useful in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) converting a first compound of a formula selected from:

and stereoisomers thereof, to a second compound of a formula selected from

$$R_1$$
 R_2
 OR_5
 OR_6

and stereoisomers thereof, wherein R_1 , R_2 , and R_3 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_5 and R_6 are each selected from H and a protecting group.

62. A chemical compound having a formula selected from:

wherein M is an alkali metal and wherein R₇ is selected from H and a protecting group.

- 63. A chemical compound according to claim 62 wherein M is Li.
- 64. A chemical compound according to claim 62 wherein R₇ is selected from H and TBS.
- 65. A process for producing a chemical compound useful in producing epothilones and analogs and derivatives thereof, comprising
 - (a) converting a first compound of a formula:

$$\begin{array}{c|c} & & & \\ & & & \\$$

to a second compound of a formula:

wherein R₇ is selected from H and a protecting group.

- 66. A method according to claim 65 wherein R_7 is TBS.
- 67. A process for producing a chemical compound useful in producing epothilones and analogs and derivatives thereof, comprising
 - (a) reacting a first compound of a formula:

with a second compound of a formula:

thereby to form a third compound of a formula:

and

(b) converting said third compound to a fourth compound of a formula:

- 68. A process for use in producing epothilones and analogs and derivatives thereof, comprising:
 - (a) converting a first compound of a formula selected from:

and stereoisomers thereof to a second compound of a formula selected from:

HO
$$R_1$$
 R_2 R_3 R_4 R_5 R_7

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_7 is selected from H and a protecting group.

69. A chemical compound having a formula selected from:

OCOR₁₂ O Ö ST OR₇ R_2 OCOR₁₂ °∎ ∏ O C COR₁₁ O COR₁₁ OCOR₁₂ S | O C COR₁₁ O O COR₁₁ O COR₁₁ Ō C COR₁₁ O COR₁₁ O COR₁₁

$$R_{10}$$
 R_{10}
 R

and stereoisomers thereof, wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 , R_6 , R_7 and R_8 are each selected from H and a protecting group; wherein R_9 is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein

 R_{10} is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 70. A chemical compound according to claim 69 wherein at least one of R_{11} and R_{12} is selected from -(CH₂)_xCH₃ and -(CH₂)_yCH=CH₂, where x and y are integers.
- 71. A chemical compound according to claim 69 wherein x and y are selected from the integers 3 and 4.
 - 72. A chemical compound according to claim 70 wherein x is 4 and y is 3.
 - 73. A chemical compound having a formula selected from:

and stereoisomers thereof, wherein R is H or methyl, R_7 is H or COR_{11} , R_8 is H or COR_{12} , and wherein R_{11} and R_{12} are each selected from -(CH_2)₄ CH_3 and -(CH_2)₃ $CH=CH_2$.