Spiking neural network simulation with Brian

*Marcel Stimberg*ISIR (Sorbonne Université)

marcel.stimberg@sorbonne-universite.fr

Why study networks of neurons?

- Studying neurons in isolation has its limits
 - the brain is highly recurrent, the output of a neuron affects the network and therefore its input
- Everything we perceive, think, or do results from the activity of many neurons
- **Memories** (short and long-term) are stored on the network level, not in individual neurons
- Dynamics of the network (and not just of individual neurons) are important for healthy brains ("brain rhythms") as well as in disease (e.g. epilepsy)

Modelling networks of neurons

Three main components:

- 1) Individual neurons

 How is a single neuron modeled?
- 2) Synaptic connectivity Which neurons connect to each other?
- 3) Synaptic models

What is the effect of a spike arriving at the synapse?

Also: how does this effect change over time (plasticity)

Individual neurons

Hodgkin-Huxley formalism

integrate-and-fire model

→ see lecture/tutorial 7

Synaptic connectivity

Structured connectivity

C. elegans connectome

Yan et al., Nature (2017)

Synaptic connectivity

Structured connectivity

Superficial layers of V1 in Macague monkeys

Synaptic connectivity

Unstructured (random) connectivity

Gerstner et al., Neuronal Dynamics , chapter 12

Excitatory neuron

Inhibitory neuron

Synapses

Why can we talk about excitatory/inhibitory *neurons* and not just synapses?

→ "Dale's law"
Neurons release the same neurotransmitter(s) on every synapse

Postsynaptic neuron

Excitatory neuron

Inhibitory neuron

© 2000 UTHSCH

Postsynaptic neuron

t (ms)

Synapses

For each spike: increase I_{syn} by J_{ij}

Between spikes: I_{syn} exponentially decays to 0

Current-based synapse

Synapses

 $I_{syn} = g_{syn} (E_{syn} - V_m)$

For each spike:

increase g_{syn} by J_{ij}

Between spikes:

 q_{\perp} exponentially decays to 0

synaptic current membrane potential

exponential conductance-based

Neurons in a network

In the mouse cortex

- Neurons: ~90000/mm³
 Synapses: ~8000 per neuron ~2700000000 synapses/mm³
- Fewer inhibitory neurons (~20% of all neurons)

Wellcome Collection gallery (2018-03-27): https://wellcomecollection.org/works/xq4qbgyd CC-BY-4.0

Network models: approaches

With thousands of neurons and millions of synapses (even in a very small part of the brain), how can we decide on the parameters? How can we get closer to an understanding of the system?

Roughly, two opposing approaches:

Try to gather as much data as possible Use complex models and supercomputers

© Blue Brain Project/EPFL

Simplify everything as much as possible Use mathematics to gain insights

Network models: approaches

Today, we'll simplify things a lot

- Leaky integrate-and-fire point neuron model (no Hodgkin-Huxley dynamics, no neuronal morphology, ...)
- Homogeneous population, all neurons are "the same" (no neuron types, no heterogeneity, ...)
- Simple synapse model ("delta synapses") (no synaptic dynamics, no adaptation, no plasticity...)
- Random connectivity between neurons (no structure, no position in space, ...)

Network dynamics

How can we characterize network activity?

Individual neurons:

Weakly or strongly active? Firing regularly or irregularly?

Network:

Synchronized or unsynchronized? Oscillating?

Firing rate, ISI distribution → CV

e.g. spectral analysis (auto)correlation