

ÉCOLES D'INGÉNIEUR généralistes du numérique

Interro 2A Maths pour l'Info L2 le 8 avril 2016

Exercice 1

Voici un automate fini non déterministe :

	Etat	a	b
E/S	0	3	0,2
	1	-	1,2,3
	2	0,1,2	4
Е	3	-	0,1
S	4	-	4

a) Obtenir l'automate fini déterministe complet minimal équivalent à cet automate :

Déterminisation et complétion :

2 Commission Completion :				
		a	b	
E/S	03	3	012	
	3	Р	01	
S	012	0123	01234	
S	01	3	0123	
S	0123	0123	01234	
S	01234	0123	01234	
	Р	Р	Р	

b) Obtenir l'automate fini déterministe complet minimal reconnaissant le langage complémentaire à celui que reconnait l'automate initial.

 $\Theta_0 = \{T,NT\}, T = \{03,012,01,0123,01234\}, NT = \{3, P\}$

				sous Θ_0	
		a	b	a	b
	03	3	012	NT	Т
	012	0123	01234	T	Т
Т	01	3	0123	NT	Т
	0123	0123	01234	T	Т
	01234	0123	01234	T	Т
NT	3	Р	01	NT	T
	Р	Р	Р	NT	NT

 $\Theta_1 = \{A,B,(3),(P)\}, A = \{01,03\}, B = \{012,0123,01234\}$

				sous Θ_1	
		а	b	a	b
Λ	03	3	012	3	В
Α	01	3	0123	3	В
	012	0123	01234	В	В
В	0123	0123	01234	В	В
	01234	0123	01234	В	В

Aucune séparation ne se produit, $\Theta_2 = \Theta_1 = \Theta_{fin}$. L'automate minimal consiste en 4 états, A est initial car contient 03, A et B sont terminaux car descendent du groupe T, les transitions sont :

ÉCOLES D'INGÉNIEUR généralistes du numérique

Interro 2A

		a	b
E/S	Α	3	В
	3	Р	Α
S	В	В	В
	Р	Р	Р

Exercice 2.

 a) construire, suivant les règles données en cours, un automate asynchrone reconnaissant le langage qu'on peut exprimer par l'expression rationnelle suivante : L=a* + (ab)*.

Vu que cet automate a été donné dans le tuyau par erreur, je fais l'automate reconaissant $\mathbf{L} = \mathbf{a} + \mathbf{b} + (\mathbf{aba})$. (En corrigeant, j'ai accepté toute expression de cette sorte à condition que le dessin correspondant soit correct).

b) Déterminiser cet automate asynchrone.

		a	b
E/S	0'	3'8'	5'
	3'8'	3'	4'9'
S	5'	Р	Р
	3'	3'	5'
	4'9'	10'	5'
S	10'	8'	Р
	8'	Р	9'
	Р	Р	Р

L'automate semble trop grand pour que le dessin soit utile.