Depth-First Search and Topological Sort

Dr. G P Gupta

1

Depth-First Search

- · Graph G=(V,E) directed or undirected
- · Adjacency list representation
- Goal: Systematically explore every vertex and every edge
- · Idea: search deeper whenever possible
 - Using a Stack (LIFO); (Note: FIFO queue used in BFS)

Depth-First Search

- Maintains several fields for each v∈V
- Like BFS, colors the vertices to indicate their states. Each vertex is
 - Initially white,
 - grayed when discovered,
 - blackened when finished
- Like BFS, records discovery of a white *v* during scanning
 Adj[*u*] by π[*v*]← *u*

Depth-First Search

- Unlike BFS, predecessor graph G_π produced by DFS forms spanning forest
- $G_{\pi}=(V,E_{\pi})$ where

 $\mathbf{E}_{\pi} = \{(\pi[\nu], \nu) : \nu \in \mathbf{V} \text{ and } \pi[\nu] \neq \mathbf{NIL}\}$

• G_{π} = depth-first forest (DFF) is composed of **disjoint depth-first trees (DFTs)**

Depth-First Search

- DFS also timestamps each vertex with two timestamps
- d[v]: records when v is first discovered and grayed
- f[v]: records when v is finished and blackened
- Since there is only one discovery event and finishing event for each vertex we have 1≤ d[v] < f[v]≤ 2|V|

Depth-first Search

- Input: G = (V, E), directed or undirected. No source vertex given!
- · Output:
 - 2 timestamps on each vertex. Integers between 1 and 2|V|.
 - -d[v] = discovery time
 - -f[v] = finishing time
- Discovery time the first time it is encountered during the search.
- **Finishing time** A vertex is "finished" if it is a leaf node or all vertices adjacent to it have been finished.

Depth-First Search

DFS(G)

1

```
for each vertex u \in G.V
2
       u.color = WHITE
3
       u.\pi = NIL
   time = 0
4
   for each vertex u \in G.V
       if u.color == WHITE
           DFS-VISIT(G, u)
```

Depth-First Search

DFS-VISIT(G, u)

// white vertex u has just been discovered 1 time = time + 12 u.d = time $3 \quad u.color = GRAY$ 4 for each $v \in G.Adj[u]$ // explore edge (u, v)if v.color == WHITE $v.\pi = u$ DFS-VISIT(G, v)// blacken u; it is finished $8 \quad u.color = BLACK$ 9 time = time + 110 u.f = time

Depth-First Search

DFS(G)

for each $u \in V$ do $color[u] \leftarrow white$ $\pi[u] \leftarrow \text{NIL}$ $time \leftarrow 0$ for each $u \in V$ do **if** color[u] = white**then DFS-VISIT**(G, u)

DFS-VISIT(G, u) $color[u] \leftarrow gray$ $d[u] \leftarrow time \leftarrow time + 1$ for each $v \in Adj[u]$ do if color[v] = white then $\pi[v] \leftarrow u$ **DFS-VISIT**(G, v) $\operatorname{color}[u] \leftarrow black$ $f[u] \leftarrow time \leftarrow time + 1$

Depth-First Search

- Running time: $\Theta(V+E)$
- Initialization loop in $DFS : \Theta(V)$
- Main loop in DFS: $\Theta(V)$ exclusive of time to execute calls to DFS-VISIT
- **DFS-VISIT** is called exactly once for each $v \in V$ since
 - DFS-VISIT is invoked only on white vertices and
 - **DFS-VISIT**(G, u) immediately colors u as gray
- For loop of **DFS-VISIT**(G, u) is executed |Adj[u]| time
- Since Σ |Adj[u]| = E, total cost of executing loop of DFS-VISIT is Θ(E)

Depth-First Search: Example

Topological sort

- use depth-first search to perform a topological sort of a directed acyclic graph
- Application
 - for scheduling in project management

-

Topological sort

- We have a set of tasks and a set of dependencies (precedence constraints) of form "task A must be done before task B"
- **Topological sort**: An ordering of the tasks that conforms with the given dependencies
- **Goal**: Find a topological sort of the tasks or decide that there is no such ordering

Examples

- Scheduling: When scheduling task graphs in distributed systems,
 - usually we first need to $\underline{sort\ the\ tasks\ topologically}\ ...$ and then
 - assign them to resources (the most efficient scheduling is an NPcomplete problem)
- Or during compilation to order modules/libraries

Examples

- · Resolving dependencies:
 - apt-get uses topological sorting to obtain the admissible sequence in which a set of Debian packages can be installed/removed

topological sort

- TOPOLOGICAL-SORT(**G**):
 - 1) call DFS(G) to compute **finishing** times f[v] for each vertex v
 - 2) as each vertex is finished, insert it onto the **front** of a linked list
 - 3) return the linked list of vertices

Time complexity of TS(G)

• Running time of topological sort:

 $\Theta(n + m)$ where n=|V| and m=|E|

• Why? Depth first search takes $\Theta(n + m)$ time in the worst case, and inserting into the front of a linked list takes $\Theta(1)$ time

