Vv417 Lecture 3

Jing Liu

UM-SJTU Joint Institute

September 12, 2019

Definition

If ${\bf A}$ is a square matrix, and if a matrix ${\bf B}$ of the same size can be found such that

$$AB = BA = I$$

then A is said to be invertible (or nonsingular) and B is called an inverse of A.

- ullet If no such matrix ${\bf B}$ can be found for ${\bf A}$, then ${\bf A}$ is said to be singular.
- ullet Note the relationship between ${\bf A}$ and ${\bf B}$ is mutual

$$BA = AB = I$$

Theorem

If ${\bf A}$ is invertible and ${\bf B}$ is an inverse of ${\bf A}$, then ${\bf B}$ is invertible and ${\bf A}$ is its inverse

Q: Is there a square matrix with a row or a column of zeros that is invertible?

Theorem

Every matrix with a row or a columns of zeros is singular.

Q: Suppose B is an inverse of A. Is B unique for A?

Theorem

If B and C are both inverses of the matrix A, then B = C.

- Therefore we can now speak of "the" inverse of an invertible matrix.
- If A is invertible, then its inverse will be denoted by

$$\mathbf{A}^{-1}$$

 $\mathsf{Q} \colon \mathsf{Suppose} \ \mathbf{A} \ \mathsf{and} \ \mathbf{B} \ \mathsf{are} \ \mathsf{invertible}. \ \mathsf{Can} \ \mathsf{we} \ \mathsf{say} \ \mathsf{anything} \ \mathsf{regarding} \ \mathsf{the} \ \mathsf{product}$

AB

Theorem

If ${\bf A}$ and ${\bf B}$ are invertible matrices with the same size, then ${f AB}$ is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

Proof

We can establish the formula by showing

$$\mathbf{A}\mathbf{B}\left(\mathbf{B}^{-1}\mathbf{A}^{-1}\right) = \left(\mathbf{B}^{-1}\mathbf{A}^{-1}\right)\mathbf{A}\mathbf{B} = \mathbf{I}$$

We do it by starting from the left

$$\mathbf{A}\mathbf{B}\left(\mathbf{B}^{-1}\mathbf{A}^{-1}\right) \, = \mathbf{A}\left(\mathbf{B}\mathbf{B}^{-1}\right)\mathbf{A}^{-1} = \mathbf{I}$$

Similarly, it is clear

$$\left(\mathbf{B}^{-1}\mathbf{A}^{-1}\right)\mathbf{A}\mathbf{B} = \mathbf{B}^{-1}\left(\mathbf{A}^{-1}\mathbf{A}\right)\mathbf{B} = \mathbf{I}$$

• By induction, the last result can be extended to three or more matrices:

Theorem

A product of any number of invertible matrices is invertible, and the inverse of the product is the product of the inverses in the reverse order.

Definition

If ${\bf A}$ is a square matrix, then we define the nonnegative integer powers of ${\bf A}$ to be

$$\mathbf{A}^0 = \mathbf{I}$$
 and $\mathbf{A}^n = \mathbf{A}\mathbf{A}\cdots\mathbf{A}$ [n factors]

and if A is invertible, then we define the negative integer powers of A to be

$$\mathbf{A}^{-n} = \left(\mathbf{A}^{-1}\right)^n = \mathbf{A}^{-1}\mathbf{A}^{-1}\cdots\mathbf{A}^{-1}$$
 [n factors]

• The usual laws of exponents hold since the definitions parallel those for \mathbb{R} .

$$\mathbf{A}^r \mathbf{A}^s = \mathbf{A}^{r+s}$$
 and $(\mathbf{A}^r)^s = \mathbf{A}^{rs}$

• In addition, we have the following properties of negative exponents.

Theorem

If ${\bf A}$ is invertible and n is a nonnegative integer, then

- 1. \mathbf{A}^{-1} is invertible and $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$.
- 2. \mathbf{A}^n is invertible and $(\mathbf{A}^n)^{-1} = \mathbf{A}^{-n} = (\mathbf{A}^{-1})^n$.
- 3. $\alpha \mathbf{A}$ is invertible for nonzero scalar α , and $(\alpha \mathbf{A})^{-1} = \alpha^{-1} \mathbf{A}^{-1}$.

Proof

- ullet 1. and 2. are trivial given the definition of inverse and integer powers of A.
- Statement 3. is true if we can show

$$(\alpha \mathbf{A})(\alpha^{-1}\mathbf{A}^{-1}) = (\alpha^{-1}\mathbf{A}^{-1})(\alpha \mathbf{A}) = \mathbf{I}$$

$$\bullet \frac{(\alpha \mathbf{A})(\alpha^{-1}\mathbf{A}^{-1}) = \alpha \alpha^{-1}\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}}{(\alpha^{-1}\mathbf{A}^{-1})(\alpha \mathbf{A}) = \alpha \alpha^{-1}\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}} \Longrightarrow (\alpha \mathbf{A})^{-1} = \alpha^{-1}\mathbf{A}^{-1}$$

Definition

Matrices $\bf A$ and $\bf B$ are said to be row equivalent if either $\bf A$ or $\bf B$ can be obtained from the other by a sequence of elementary row operations, which is denoted by

$\mathbf{A} \sim \mathbf{B}$

- Q: Are elementary matrices row equivalent to each other?
- Q: Is every elementary matrix invertible?

Equivalence Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (1.) A is invertible.
- (2.) Ax = 0 has only the trivial solution.
- (3.) The reduced echelon form of A is I_n .
- (4.) A is expressible as a product of elementary matrices.

- We will prove the equivalence by establishing the chain of implications
- (1.) \Longrightarrow (2.): Let \mathbf{x}_0 be any solution of

$$\mathbf{A}\mathbf{x}_0 = \mathbf{0} \implies \mathbf{A}^{-1}\mathbf{A}\mathbf{x}_0 = \mathbf{A}^{-1}\mathbf{0} \implies \mathbf{x}_0 = \mathbf{0}$$

- Any solution of it must be trivial, so the trivial solution is the only solution.
- \bullet (2.) \Longrightarrow (3.): Having only the trivial solution, we must have the following

$$\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{bmatrix}$$

ullet The reduced echelon form of ${f A}$ is the left part of the above matrix

$$\operatorname{rref}(\mathbf{A}) = \mathbf{I}_n$$

• (3.) \Longrightarrow (4.): $\operatorname{rref}(\mathbf{A}) = \mathbf{I}_n$ implies there is a sequence of row operations

$$\mathbf{E}_k \mathbf{E}_{k-1} \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \mathbf{I}$$

• Since elementary matrices are invertible,

$$\mathbf{E}_{1}^{-1}\mathbf{E}_{2}^{-1}\cdots\mathbf{E}_{k-1}^{-1}\mathbf{E}_{k}^{-1}\mathbf{E}_{k}\mathbf{E}_{k-1}\cdots\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \mathbf{E}_{1}^{-1}\mathbf{E}_{2}^{-1}\cdots\mathbf{E}_{k-1}^{-1}\mathbf{E}_{k}^{-1}\mathbf{I}$$

$$\mathbf{A} = \mathbf{E}_{1}^{-1}\mathbf{E}_{2}^{-1}\cdots\mathbf{E}_{k-1}^{-1}\mathbf{E}_{k}^{-1}$$

• (4.) \implies (1.): If **A** is a product of elementary matrices,

$$\mathbf{A} = \mathbf{E}_1^* \mathbf{E}_2^* \cdots \mathbf{E}_{k-1}^* \mathbf{E}_k^*$$

then A must be invertible for it is a product of invertible matrices.

Q: What do the equivalence theorem and its proof give us?

1. The first application of the last theorem is that it gives us a way to determine whether a given matrix is invertible.

Check if the
$$rref(A)$$
 is **I**.

2. Secondly, the theorem gives a way to find the inverse of an invertible matrix.

$$\mathbf{E}_k \mathbf{E}_{k-1} \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \mathbf{I}$$
 $\mathbf{E}_k \mathbf{E}_{k-1} \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} \mathbf{A}^{-1} = \mathbf{I} \mathbf{A}^{-1}$
 $\mathbf{E}_k \mathbf{E}_{k-1} \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{I} = \mathbf{A}^{-1}$

Inversion Algorithm

To find the inverse of an invertible matrix A, find a sequence of elementary row operations that reduces A to the identity and then perform that same sequence of operations on I to obtain A^{-1} .

Exercise

Find the inverse of the following matrix if it is invertible $\mathbf{A} = \begin{bmatrix} 0 & 4 & 1 \\ 3 & 8 & 1 \end{bmatrix}$.

Solution

1.
$$\mathbf{E}_{1,3}$$

$$\begin{bmatrix} 0 & 4 & 1 & 1 & 0 & 0 \\ 3 & 8 & 1 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

2.
$$\mathbf{E}_{(-3)1,2}$$
 $\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 3 & 8 & 1 & 0 & 1 & 0 \\ 0 & 4 & 1 & 1 & 0 & 0 \end{bmatrix}$

3.
$$\mathbf{E}_{(\frac{1}{2})2}$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 2 & -2 & 0 & 1 & -3 \\ 0 & 4 & 1 & 1 & 0 & 0 \end{bmatrix}$$

4.
$$\mathbf{E}_{(-4)2,3}$$
 $\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & \frac{1}{2} & -\frac{3}{2} \\ 0 & 4 & 1 & 1 & 0 & 0 \end{bmatrix}$ 8. $\mathbf{E}_{(-2)2,1}$ $\begin{bmatrix} 1 & 2 & 0 & -\frac{1}{5} & \frac{2}{5} & -\frac{1}{5} \\ 0 & 1 & 0 & \frac{1}{5} & \frac{1}{10} & -\frac{3}{10} \\ 0 & 0 & 1 & \frac{1}{5} & -\frac{2}{5} & \frac{6}{5} \end{bmatrix}$

$$\mathbf{A}^{-1} = \begin{bmatrix} -3/5 & 1/5 & 2/5 \\ 1/5 & 1/10 & -3/10 \\ 1/5 & -2/5 & 6/5 \end{bmatrix}$$

5.
$$\mathbf{E}_{(\frac{1}{5})3}$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1\\ 0 & 1 & -1 & 0 & \frac{1}{2} & -\frac{3}{2}\\ 0 & 0 & 5 & 1 & -2 & 6 \end{bmatrix}$$

6.
$$\mathbf{E}_{(1)3,2}$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & -1 & 0 & \frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & 1 & \frac{1}{5} & -\frac{2}{5} & \frac{6}{5} \end{bmatrix}$$

7.
$$\mathbf{E}_{(-1)3,1}$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1\\ 0 & 1 & 0 & \frac{1}{5} & \frac{1}{10} & -\frac{3}{10}\\ 0 & 0 & 1 & \frac{1}{5} & -\frac{2}{5} & \frac{6}{5} \end{bmatrix}$$

$$\left[\begin{array}{cccccc} 1 & 2 & 0 & -\frac{1}{5} & \frac{2}{5} & -\frac{1}{5} \\ 0 & 1 & 0 & \frac{1}{5} & \frac{1}{10} & -\frac{3}{10} \\ 0 & 0 & 1 & \frac{1}{5} & -\frac{2}{5} & \frac{6}{5} \end{array} \right]$$

Q: Notice the above algorithm of computing A^{-1} is essentially Gauss-Jordan elimination. Can we use gaussian elimination with back substitution?

Matlab


```
Command Window

>> AB = GaussianElimination(A,B)

AB =

3 8 1 0 1 0 0
0 4 1 1 0 0
0 0 5/6 1/6 -1/3 1

>> Ainv = BackSubstitution(AB)

Ainv =

-3/5 1/5 2/5
1/5 1/10 -3/10
1/5 -2/5 6/5

>>
```

• We made the following assertion in our very first lecture.

Theorem

A system of linear equations has zero, one, or infinitely many solutions. There are no other possibilities.

We are now in a position to prove this fundamental result.

Proof

- There are many examples where we have no or a unique solution, thus we only need to show systems that have more than one solution actually have infinitely many solutions.
- Consider an arbitrary system

$$Ax = b$$

• Assume that Ax = b has more than one solution, say,

 \mathbf{x}_1 and \mathbf{x}_2

ullet Let ${f x}_0={f x}_1-{f x}_2$, as ${f x}_1$ and ${f x}_2$ are distinct, we can conclude ${f x}_0$ is non-zero

$$Ax_0 = A(x_1 - x_2) = Ax_1 - Ax_2 = b - b = 0$$

thus \mathbf{x}_0 is a solution to the corresponding homogeneous system.

• Now consider $\mathbf{x}_1 + \alpha \mathbf{x}_0$ where $\alpha \in \mathbb{R}$, and see whether it is a solution,

$$\mathbf{A}\left(\mathbf{x}_{1} + \alpha \mathbf{x}_{0}\right) = \mathbf{A}\mathbf{x}_{1} + \alpha \mathbf{A}\mathbf{x}_{0} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

thus the vector $\mathbf{x}_1 + \alpha \mathbf{x}_0$ is also a solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ for all $\alpha \in \mathbb{R}$.

• Because \mathbf{x}_0 is non-zero and α is any scalar, we can conclude $\mathbf{A}\mathbf{x} = \mathbf{b}$ has infinitely many solutions.

Theorem

Let ${\bf A}$ be an $n \times n$ matrix, then either ${
m rref}\,({\bf A})$ has a row of zeros or ${
m rref}\,({\bf A}) = {\bf I}.$

• Two procedures for solving linear systems

Gauss-Jordan elimination and Gaussian elimination.

ullet The following theorem provides an formula for the solution of a linear system of n equations in n unknowns when the coefficient matrix is invertible.

Theorem

If A is an invertible square matrix of size n, then for each $b \in \mathbb{R}^n$, the system of equations Ax = b has exactly one solution, namely,

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Proof

- It is clear that $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ is a solution, $\mathbf{A}(\mathbf{A}^{-1}\mathbf{b}) = \mathbf{b}$.
- To show it is the only solution, consider any solution x_0 ,

$$\mathbf{A}\mathbf{x}_0 = \mathbf{b} \implies \mathbf{x}_0 = \mathbf{A}^{-1}\mathbf{b}$$

Exercise

Under what conditions would the following system be consistent?

Solution

Form the augmented matrix and apply Gauss Elimination

$$\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 1 & 0 & 1 & b_2 \\ 2 & 1 & 3 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 1 & 1 & b_1 - b_2 \\ 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}$$

- Thus the coefficient matrix is not invertible.
- It has a solution if and only if

$$b_3 - b_2 - b_1 = 0$$

Exercise

Under what conditions would the following system be consistent?

Solution

Form the augmented matrix and apply Gauss Elimination

$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 2 & 5 & 3 & b_2 \\ 1 & 0 & 8 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -40b_1 + 16b_2 + 9b_3 \\ 0 & 1 & 0 & 13b_1 - 5b_2 - 3b_3 \\ 0 & 0 & 1 & 5b_1 - 2b_2 - b_3 \end{bmatrix}$$

- Invertible coefficient matrix, so it is consistent for any set of b_1 , b_2 and b_3 .
- And the solution is unique.

• Up to now, to show that an $n \times n$ matrix ${\bf A}$ is invertible, it has been necessary to find an ${\bf B}$ such that

$$\mathbf{AB} = \mathbf{I}$$
 and $\mathbf{BA} = \mathbf{I}$

• The next theorem shows that if we produce an $n \times n$ matrix $\mathbf B$ satisfying either condition, then the other condition will hold automatically.

Theorem

Let A be a square matrix.

- 1. If B is a square matrix satisfying BA = I, then $B = A^{-1}$.
- 2. If B is a square matrix satisfying AB = I, then $B = A^{-1}$.

Proof

- If we can show that A is invertible, then we can multiply BA = I on both sides by A^{-1} , and obtain what we need $BAA^{-1} = IA^{-1} \implies B = A^{-1}$.
- To show ${\bf A}$ is invertible, we only need to show ${\bf A}{\bf x}={\bf 0}$ has only trivial sol.
- Let x_0 be any solution of Ax = 0, then $BAx_0 = B0 \implies x_0 = 0$.

Equivalence Theorem

If ${\bf A}$ is an $n \times n$ matrix, then the following statements are equivalent,

- (1.) A is invertible.
- (2.) Ax = 0 has only the trivial solution.
- (3.) The reduced echelon form of A is I_n .
- (4.) A is expressible as a product of elementary matrices.
- (5.) $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$.
- (6.) $\mathbf{A}\mathbf{x} = \mathbf{b}$ has exactly one solution for every $\mathbf{b} \in \mathbb{R}^n$.

Proof

• We have proved (1.), (2.), (3.), (4.) are equivalent, it is sufficient to show

$$(1.) \implies (6.) \implies (5.) \implies (1.)$$

• (1.) \implies (6.) This is essentially identical to the theorem on page $\boxed{15}$.

- (6.) \Longrightarrow (5.) This is almost self-evident, for if Ax = b has exactly one solution for every $b \in \mathbb{R}^n$, then Ax = b is consistent for every $b \in \mathbb{R}^n$.
- (5.) \implies (1.) It the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^n$, then

$$\mathbf{A}\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{A}\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \cdots \quad \mathbf{A}\mathbf{x}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

have at least one solution each. Consider the product

$$\mathbf{AC} = \mathbf{A} \left[egin{array}{ccccc} \mathbf{x}_1^* & \mathbf{x}_2^* & \cdots & \mathbf{x}_n^* \end{array}
ight] = \left[egin{array}{cccc} \mathbf{A}\mathbf{x}_1^* & \mathbf{A}\mathbf{x}_2^* & \cdots & \mathbf{A}\mathbf{x}_n^* \end{array}
ight] = \mathbf{I}$$

where \mathbf{x}_1^* , \mathbf{x}_2^* , ..., \mathbf{x}_n^* are solutions of the respective systems.

ullet We then invoke the theorem on page $oxed{18}$, and conclude old A is invertible.

 We have shown the product of invertible matrices is invertible. Next we have the converse.

Theorem

Suppose A and B are matrices of $n \times n$. If AB is invertible, then A and B must also be invertible.

Proof

• We will use statements (1.) and (2.) of the equivalence theorem,

Bx = 0 having only the trivial solution $\iff B$ is invertible

- So we will first need to show $\mathbf{B}\mathbf{x}=\mathbf{0}$ has only the trivial solution.
- Let x_0 be any solution of Bx = 0

$$\mathbf{B}\mathbf{x}_0 = \mathbf{0} \implies \mathbf{A}\mathbf{B}\mathbf{x}_0 = \mathbf{A}\mathbf{0} \implies (\mathbf{A}\mathbf{B})\,\mathbf{x}_0 = \mathbf{0}$$

so \mathbf{x}_0 is also a solution of $(\mathbf{AB}) \mathbf{x}_0 = \mathbf{0}$.

ullet However, ${f AB}$ is known to be invertible, so the backward implication states

$$\mathbf{x}_0 = \mathbf{0}$$

is the only solution.

• The vector \mathbf{x}_0 is defined as a solution of

$$\mathbf{B}\mathbf{x} = \mathbf{0}$$

thus ${\bf B}$ is invertible by the forward implication of the equivalence theorem.

Notice A is a product of

$$\mathbf{A} = \mathbf{AI} = \mathbf{ABB}^{-1} = (\mathbf{AB})\,\mathbf{B}^{-1}$$

• Since ${\bf B}$ is invertible, ${\bf B}^{-1}$ is invertible. Together with the given fact ${\bf AB}$ is invertible, ${\bf A}$ must be invertible because the product of invertible matrices is invertible.