

第七章 回溯法

- •7.1 一般方法
- •7.2 效率估计
- •7.3 n-皇后问题
- •7.4 子集和数问题
- •7.5 图着色问题
- •7.6 小结

7.1 一般方法

- •适用的问题特点
- •多米诺性质
- •基本概念
- •动态树
- •设计思想
- •算法描述

回溯法的基本思想

- ■例:迷宫游戏
- ■回溯法是一种搜索算法,是通用的解题法。
- •以深度优先的方式系统地搜索问题的解。

方法适用的问题特点

- 方法适用于解决多阶段决策问题, 也称为组合问题
 - •问题的解向量用元组来表示,元素x;通常取自于某个有穷集S;,1≤i≤n,n表示问题规模
 - 固定长n-元组(x₁, ..., xn)
 - 可变长k-元组(x₁, ..., x_k), k<n
 - •问题的目标:

组合搜索

- •满足约束条件的一个解或多个解;通常用限界函数表示约束条件;
- 满足约束条件的最优解; 此时需要定义目标函数, 使目标函数取极值的解是最优解。
- 问题满足多米诺性质
- 适用于求解组合数较大的问题。

组合优化

多米诺性质

- •多米诺性质
 - 设P(x₁,...,x_i)是关于向量(x₁,...,x_i)的某种性质的判定,当P(x₁,...,x_{i+1})为真 时,一定有P(x₁,...,x_i)为真,0<i<n
- •根据多米诺性质,如果P(x₁,...,x_i)不成立,则P(x₁,...,x_{i+1})亦不成立
- •一个满足多米诺性质的组合问题
 - ●是指能够根据约束条件和目标函数不断检验正在构造的部分解向量 (x₁,...,x_i), 0<i<n, 一旦发现不成立,则无需考虑后续x_{i+1},...,x_n的取值

问题的多米诺性质是回溯法提高算法效率的关键

- 设限界函数B实现问题的约束条件,对于n-元组(x₁,...,xn), xi∈ Si,
- 硬性处理
 - • $|S_i|=m_i$,向量个数 $m=m_1\times m_2\times ...\times m_n$,对这m个n-元组逐一检测是否满足 $B(x_1,...,x_n)$,从而找出问题的解。
- •回溯法利用多米诺性质
 - •B无需等待,可以提前检验正在构造中的部分向量 $(x_1,...,x_i)$,如果发现不能导致问题的解,终止该向量继续构造,即不再构造 $x_{i+1},...,x_n$ 的取值,从而减少了 $m_{i+1} \times ... \times m_n$ 个向量。

测试次数比硬性处理的m次要少得多

回溯求解的基本概念

- •显式约束:每个xi的取值集合Si,可能与问题实例有关,也可能无关
 - x_i>=0, S_i={所有非负实数}
 - x_i=0或1, S_i={0,1}
- ●隐式约束:描述了xi彼此相关的情况,与问题实例有关

对应限界函数

- •解空间:满足显式约束条件的所有元组
- •可行解:解空间中满足隐式约束条件的元组。
- •解空间树:基于解空间画成的树形状

解空间树

回溯法解决问题的过程就是在解空间树上搜索答案状态结点的过程

•解空间树:基于解空间画成的树形状

•问题状态:解空间树中的所有结点。

•解状态X:由根到节点X的路径确定了解空间中的一个元组

•答案状态X: 由根到解状态节点X的路径确定了问题的一个解。

4-皇后问题

O LE STOP

- ●问题描述:在4*4棋盘上放4个皇后,使每两个皇后之间都不能互相 "攻击",即每两个皇后都不能在同一行、同一列及同一条斜角线上。
- •回溯法准备工作
 - •确定元组表达形式:
 - •固定长元组, **4-**元组(**x**₁, **x**₂, **x**₃, **x**₄), i皇后放在i 行**x**_i 列。
 - •确定约束条件:
 - 显式约束: S_i={1, 2, 3, 4 }, 1≤i≤4
 - 隐式约束: 没有两个x_i可以相同, 且没有两个皇后可以在同
 - 一条斜角线上。
 - 检验问题满足多米诺性质
 - •确定解空间树

Q Q Q Q Q Q Q Q

(2,4,1,3)

解空间: 44

解空间: 4!

4-皇后问题的解空间树

•n=4时, 叶节点个数=4! =24, 解空间是从根节点到叶节点的所有路径。

ERSITA CE

子集和数问题

- ●问题描述:已知n+1个正数:w_i(1≤i≤n)和M,要求找出w_i的和数是M的所有子集。
- •回溯法准备工作
 - 确定元组表达形式
 - •固定长元组:用大小固定的n-元组 $(x_1, ..., x_n)$ 表示
 - 可变长元组:用大小可变的k-元组(x₁,...,xk)表示, k≤n
 - •确定约束条件:显示约束和隐式约束
 - 检验问题满足多米诺性质
 - 确定解空间树:问题状态、解状态和答案状态

子集和数问题——固定长元组

- ●n元组表达(x₁,x₂,..x_n), x_i表示是否选择w_i, 如果选择w_i,则x_i=1;否则x_i=0。
 - 显式约束: x_i∈{0,1},1≤i≤n;
 - 隐式约束: ∑ w_ix_i=M, 1≤i≤n
- •多米诺性质: 如果部分解向量大于M, 则包含它的解向量也大于M
- •例: n=4, (w₁, w₂, w₃, w₄)= (11,13,24,7), M=31。
 - 可行解1:11,13,7
 - 可行解2: 24,7
- ■固定长元组: 4-元组:
 - 可行解1: (1,1,0,1)
 - 可行解2: (0,0,1,1)
- ●解空间共计2n=24=16个元组

• 子集和数问题的4-元组表达的解空间树

• 问题状态:全部结点31个

•解状态:叶结点16个

• 答案状态: 当前实例2个

从根结点到叶结点的一条路 径确定解空间中的一个元组

子集和数问题——可变长元组

- •K-元组表达, (x₁,..x_k), 1≤k≤n,
 - 显式约束: x_i∈{j|j是w_j的下标值, 1≤j≤n},1≤i≤k,如果选择w_i,则w_i的下标在k-元组中。不同的解k值不同。
 - ●隐式约束:没有两个 x_i 是相同的,且相应的 w_i 的和等于 $M, x_i \le x_{i+1}, 1 \le i < k$
- •多米诺性质:如果部分解向量大于M,则包含它的解向量也大于M

避免重复情况,

如(1,2,4)和(1,4,2)

- •例: n=4, (w₁, w₂, w₃, w₄)= (11,13,24,7), M=31。
 - 可行解1: 11,13,7
 - 可行解2: 24,7
- •k-元组:
 - 可行解1: (1,2,4)
 - 可行解2: (3,4)
- ●解空间共计2n=24=16个元组

• 子集和数问题的n=4时, k-元组表达的解空间树

动态树

- •静态树: 即解空间树,树结构与所要解决的问题实例无关。
- •动态树: 树结构与实例相关, 在求解过程中生成结点。
 - •活结点: 自己已经生成而其儿子结点还没有全部生成的结点。
 - •E-结点(正在扩展的结点): 当前正在生成其儿子结点的活结点。
 - 死结点: 不再进一步扩展或者其儿子结点已全部生成的结点。

动态树中问题状态的生成

- •第一种状态生成方法
 - ●当前的E-结点R 一旦生成一个新的儿子结点C, 这个C结点就变成一个新的E-结点, 当检测完了子树C后, R结点就再次成为E-结点, 生成下一个儿子结点。
 - •该方法也称为深度优先生成法,对应回溯法。
- •第二种状态生成方法:
 - •一个E-结点一直保持到变成死结点为止。
 - 当活结点用队列保存时,该方法也称为宽度优先生成法,对应分枝限界法。
 - •当活结点用栈保存时,该方法也称为D-检索生成法

回溯法的设计思想

- •针对问题定义解空间树结构:元组、显式约束条件、隐式约束条件。
- 检验问题满足多米诺性质。
- •以深度优先方式搜索解空间树,在搜索过程中使用限界函数避免无效搜索。
 - 首先根结点成为一个活结点,同时也是当前的扩展结点。沿当前扩展结点向纵深方向移至一个新的活结点,该活节点成为当前新的扩展结点。
 - •如果当前扩展结点不能再向纵深方向移动,则其成为死结点。回溯至最近的一个活结点,并使该活结点成为当前新的扩展结点。
- •在解空间树中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

4-皇后问题的动态树

回溯法的形式化描述

- •假设要找出所有的答案结点
- \bullet ($x_1,x_2,...,x_{i-1}$)是状态空间树中由根出发的一条路径,到达结点Y
- T(x₁,...x_{i-1})是元素x_i的集合,对于每一个x_i,(x₁,x₂,...,x_{i-1},x_i)是一条由根到结点Y的一个儿子结点的路径
- •对于限界函数 B_i ,如果路径 $(x_1,x_2,...,x_{i-1},x_i)$ 不可能延伸到一个答案结点,则 $B_i(x_1,x_2,...,x_i)$ 取假值,否则取真值

算法7.1 回溯法的非递归算法描述


```
procedure BACKTRACK(n)
  int k, n
  local X(1: n)
  k ← 1
  while (k>0) do
    if (还剩有没检验的X(k)使得X(k)∈T(X(1)...X(k-1))
        and B(X(1)...X(k))=TRUE)
    then if (X(1) ...X(k))是一条抵达答案结点的路径)
         then print (X(1)...X(k))
          endif
          k \leftarrow k+1
    else k \leftarrow k-1
    endif
  repeat
end BACKTRACK
```


算法7.2 回溯法的递归算法描述

```
procedure RBACKTRACK(k)
                             进入算法时,解向量X中的前k-1
global X(1:n);
                             个分量X(1) ...X(k-1)已经被赋值
int k, n;
for (满足下式的每个X(k), X(k) ∈ T(X(1)...X(k-1))
    and B(X(1),...X(k))=true) do
  if (X(1),...,X(k))是一条抵达答案结点的路径 then
      print (X(1)...X(k)) endif
   call RBACKTRACK(k+1)
 repeat
end RBACKTRACK
```


7.2 回溯法的效率分析

- •决定回溯法效率的因素
- •回溯法的效率估计
- ●蒙特卡罗方法的一般思想
- 效率估计算法
- •蒙特卡罗方法的特点

决定回溯法效率的因素

- •生成下一个X(k)的时间
 - •生成一个结点的时间
- •满足显式约束条件的X(k)的数目
 - •子结点的数量
- •限界函数Bi的计算时间
 - 检验结点的时间
- •对于所有的i,满足Bi的X(k)的数目
 - 通过检验的结点数量

B_i能够大大减少生成的结点数,但在 计算时间和减少程度上要进行折中

思考:哪一个因素会导致不同实例产生的结点数不同?

回溯法的效率估计

Bi的时间等

- ●由于回溯法对同一问题不同实例的巨大差异,在n很大时,对某些实例是十分有效的。因此,在采用回溯法计算某个实例之前,应估算其工作效能。
- •用回溯算法处理一棵树所要生成的结点数,可以用蒙特卡罗方法估算出来

估计活结点的个数, 即动态树结点个数

蒙特卡罗方法的一般思想

- •假定限界函数是固定的
 - 在状态空间中生成一条随机路径。
 - ●设x是这条路径上的位于第i级的一个结点。
 - •设限界函数确定x的可用儿子结点的数目为mio
 - •从这m_i个儿子结点中随机选中一个,重复上述过程,直到当前结点是 叶结点或者儿子结点都被限界为止。

不受限界结点的估计数: $\mathbf{m}=\mathbf{1}+\mathbf{m}_1+\mathbf{m}_1*\mathbf{m}_2+\mathbf{m}_1*\mathbf{m}_2*\mathbf{m}_3+...$ \mathbf{m}_i 表示第i级结点平均没受限界的儿子结点数。

第一级通过B函数检验的结点个数有多少个? 1/

第二级通过B函数检验的结点个数有多少个? m₁个

从第二级中随机选中一个结点,它的子结点共有m2个满足B函数检验,推断第三级通过B函数检验的结点个数一共有多少个? m1 m2个

算法7.3 效率估计算法


```
Procedure ESTIMATE() //程序沿着状态空间树中一条随机路径产生
 这棵树中不受限界结点的估计数//
 m \leftarrow 1; r \leftarrow 1; k \leftarrow 1
  loop
    T_k \leftarrow \{X(k): X(k) \in T(X(1), ..., X(k-1)) \text{ and } B_k(X(1), ..., X(k))\}
    if SIZE(T_k)=0 then exit endif
    r \leftarrow r*SIZE(T_k)
                                第k级的结点数
    m \leftarrow m + r
    X(k) \leftarrow CHOOSE(T_k)
                                前k级的结点总数
    k ←k+1
 repeat
                                从Tk中随机地挑选一个元素
  return m
end ESTIMATE
```


蒙特卡罗方法的特点

•优点:

找到所有答案结点的情况非常有用,

限界函数固定不变,计算方便,对状态空间树中同一级结点都适用。

•缺点:

只求一个解时,生成的结点数远小于m,

随着检索的进行,限界函数应该更强,使得m的值更小。

7.3 n-皇后问题

- ●问题描述
- •解空间树
- •问题分析
- •限界函数
- •算法描述
- •效率估计

问题描述

• n-皇后问题:

• 在一个n*n棋盘上放n个皇后, 使每两个皇后之间都不能互相"攻击", 即使得每两个皇后都不能在同一行、同一列及同一条斜角线上。

• 基于回溯法求解:

• n-元组(x₁,...x_n):表示皇后i放在i行x_i列上。

显式约束条件: x_i∈{1, 2, ..., n}, 1≤i≤n

解空间: nⁿ

与问题实例无关, 解空间: **n**!

• 隐式约束条件: 没有两个x_i可以相同, 且没有两个皇后可以在同一条斜角线上。

解空间树

•n=4时, 叶结点个数=4! =24, 解空间是从根结点到叶结点的所有路径。

问题分析

●开始把根结点作为唯一的活结点,根结点就成为E-结点而且路径为();接着生成儿子结点,那么结点2被生成,这条路径为(1),即把皇后1放在第1列上。

• 结点2变成E-结点,它再生成结点3,路径变为(1,2),

结点3被杀死,此时回溯。

•回溯到结点2生成结点8,路径变为(1,3),则结点8成为E-结点,它生成结点9和结点11都会被杀死,所以结点8也被杀死,应回溯。

•回溯到结点2生成结点13,路径变为(1,4),结点13成为E-结点,它的儿子不

可能导致答案结点,因此结点13也被杀死,回溯。

●结点2的所有儿子都不能导致答案棋盘格局,因此结点2也被杀死;再回溯到结点1生成结点18,路径变为(2)。

•结点18的儿子结点19、结点24被杀死,回溯。

- 结点18生成结点29, 结点29成为E-结点, 路径变为(2,4)。
- 结点29生成结点30, 路径变为(2,4,1)。
- 结点30生成结点31,路径变为(2,4,1,3),找到一个4-皇后问题的可行解。

●在n-皇后问题中, (x₁,x₂,..xn)表示一个解, xi表示第i个皇后放在第i行的列数。

- 同一条斜角线上的每个元素
 - •由左到右具有相同的"行-列"值;
 - •由右到左具有相同的"行+列"值。

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	a ₁₆	a ₁₇	a ₁₈
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	a ₂₆	a ₂₇	a ₂₈
a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	a ₃₆	a ₃₇	a ₃₈
a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅	a ₄₆	a ₄₇	a ₄₈
a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅	a ₅₆	a ₅₇	a ₅₈
a ₆₁	A ₆₂	a ₆₃	a ₆₄	a ₆₅	a ₆₆	a ₆₇	a ₆₈
a ₇₁	a ₇₂	a ₇₃	a ₇₄	a ₇₅	a ₇₆	a ₇₇	a ₇₈
a ₈₁	a ₈₂	a ₈₃	a ₈₄	a ₈₅	a ₈₆	a ₈₇	a ₈₈

设有两个皇后位于 (i, X(i)) 和 (k, X(k))位置上

$$\begin{cases} i - X(i) = k - X(k) \\ i + X(i) = k + X(k) \end{cases}$$
 \Longrightarrow $|X(i) - X(k)| = |i - k|$

// 前k-1行的皇后已经放置,现在确定第k行皇后欲放在X(k)列上,是否可以?

PLACE(k)

令X(k)与X(i)逐个比较, i=1..k-1。

若存在X(k)=X(i)或者|X(i)-X(k)|=|i-k|

则返回false;

否则返回true。

算法7.4 能否放置一个新皇后?


```
procedure PLACE(k)
//若一个皇后能放在第k行和第X(k)列,则返回true,否则返回false。
//X是全程数组,进入此过程时已置入了k个值,ABS是绝对值函数。
int i, k
i←1
while (i<k) do
 if (X(i)=X(k) \text{ or } ABS(X(i)-X(k))=ABS(i-k))
   then return false
 endif
 i ← i+1
repeat
return true
end PLACE
```

算法7.5 n-皇后问题的回溯算法描述


```
procedure NQUEENS(n)
int k, n, X(1:n)
X(1) \leftarrow 0; k \leftarrow 1
while (k>0) do
   X(k) \leftarrow X(k)+1
   while (X(k) \le n \text{ and not } PLACE(k)) do
       X(k) \leftarrow X(k)+1; repeat //当前列X(k)不能放皇后k时,放到下一列
   if(X(k)≤n)
       then if(k=n)
               then print (X)
               else k ←k+1; X(k) ←0 //准备求解下一个皇后
             endif
       else k ← k-1; //没有合适的位置, 回溯
   endif
repeat
end NQUEENS
```

8-皇后问题的效率估计

●在8-皇后问题中, (x₁,x₂,..x₀)表示一个解, x₁表示第i个皇后放在第i行的列数。

• 显式: S_i={1, 2, 3, 4, 5, 6, 7, 8}, 1≤i≤8

• 隐式: 没有两个x_i可以相同, 且没有两个皇后可以在同一条斜角线上。

• 硬性处理法: 88

状态空间树结点个数: 1+8+8²+…+8⁸

•没有两个xi可以相同:8!

状态空间树结点个数: 1+8+8*7+8*7*6+...+8*7*6*5*4*3*2*1=69281

•限界函数实现隐式约束条件?

使用蒙特卡罗方法估计

8-皇后问题的不受限结点的估计值

多次实验后取平均值1625

不受限结点的估计数大约是8-皇后状态空间树的结点总数的

1625/69281=2.34%

7.4 子集和数问题

- ●问题描述
- 限界函数
- 效率估计
- 递归回溯算法
- •实例运行结果

问题描述

- •子集和数问题:
 - •假定有n个不同的正数W(1:n),找出这些数中所有使得和为M的组合。 元素W(i)称为权。
- •回溯法求解:
 - •用固定长的n-元组X来表示,解向量元素X(i)取1或0值,表示解中是否包含权数W(i)。∑W(i)X(i)=M,1≤i≤n

• 6-元组表达的解空间树

解状态: 叶结点26=64个

● 部分解结点: 2⁰ +2¹+ 2²+ 2³+ 2⁴+ 2⁵= 2⁶-1=63个

问题状态:全部结点64+63个 $x_1 = 1$ $x_2 = 0$ $x_2 = 1$ $x_2 = 0$ **(25)** (18) $x_3 = 0$ $x_3 = 0$ $x_3 = 0$ $x_3 = 0$ $x_3=1$ $x_3 = 1$ $x_3 = 1$ 5 (31)

> 从根结点到<mark>叶结点</mark>的一条路 径确定解空间中的一个元组

限界函数

• 当满足条件:
$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M$$

- X(1),..,X(k)能导致一个答案结点,
- •如果一开始W(i)按非降次序排列,那么当满足条件:

$$\sum_{k=1}^{k} W(i) X(i) + W(k+1) > M$$

- X(1),..,X(k)不能导致一个答案结点。
- 综上,限界函数B_k(X(1),...,X(k))=true,当且仅当:

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M \quad \exists \sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

效率估计

•n=6,M=30,W=(5,10,12,13,15,18)

结点编号	S	r	W(i+1)	B值	1 (1)
2	5	68	10	Т	$X_1=1$ 0
3	0	68	10	Т	$2\uparrow$ (2) (3)
4	10	58	12	Т	$X_2=1$ 0
5	0	58	12	Т	2 \(\tau \) (5)
6	22	46	13	F	$X_3=1$ 0
7	10	46	13	Т	1 (6) (7)

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M$$

$$\sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

效率估计

•n=6,M=30,W=(5,10,12,13,15,18)

结点编号	S	r	W(i+1)	B值	1个	1
8	23	33	15	F		$X_1=1$ 0
9	10	33	15	Т	2个	(2)
10	25	18	18	F		$X_2=1$ 0
11	10	18	18	F	2个	$\begin{pmatrix} 4 \end{pmatrix}$ $\begin{pmatrix} 5 \end{pmatrix}$
$\sum_{i=1}^{k} W(i)$	X(i) +	$\sum_{i=k+1}^{n} W(i)$	≥ M	1个 1个	$X_3=1$ 0 7 $X_4=1$ 0 9
$\sum_{i=1}^{k} W(i)$	X(i)	+ W	V(k+1)	\leq M	0	$X_{5}=1$ 0 11

不受限界结点的估计数: m=1+2+2*2+2*2*1+2*2*1*1+0=15

算法7.6 子集和数的递归回溯算法

Procedure SUMOFSUB(s,k,r)

Procedure Sulvior Subjack, r //找出W(1:n)中和数为M的所有子集。 $\mathbf{s} = \sum_{i=1}^{k-1} \mathbb{W}(i) \mathbf{X}(i)$ 且 $\mathbf{r} = \sum_{\mathbf{j}=k}^{n} \mathbb{W}(\mathbf{j})$

//进入此过程时X(1),..X(k-1)的值已确定。

//这些W(j)按非降次序排列。 $W(1) \leq M, \sum_{i=1}^{n} W(i) \geq M$ integer W(1:n), M, n;

boolean X(1:n)

integer s, k, r

//生成左儿子。由于B_{k-1}=true, 因此s+W(k)≤M 且s+r ≥ M

if s+W(k) = M

then **print(X)**

else if $s+W(k)+W(k+1) \le M$ then call SUBOFSUB(s+W(k), k+1, r-W(k)) endif

endif

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M$$

$$\sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

$$S = \sum_{j=1}^{k-1} W(i) X(i) H r = \sum_{j=k}^{n} W(j)$$

左子树-递归入口

//生成右儿子和计算Bk的值

If $s+r-W(k) \ge M$ and $s+W(k+1) \le M$ then $X(k) \leftarrow 0$; call SUMOFSUB(s,k+1,r-W(k)) endif

end SUMOFSUB

$$s = \sum_{j=1}^{k-1} W(i) X(i)$$
 $r = \sum_{j=k}^{n} W(j)$

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M$$

$$\sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

右子树-递归入口

思考:如果不将W预排序,算法怎样设计?算法效率怎样变化?

实例

- •n=6,M=30,W=(5,10,12,13,15,18)
- ●使用限界函数前,状态空间树中所有结点都会被访问到,叶结点(解状态)个数为26=64个,部分解结点63个。
- •使用限界函数后,动态树一共生成33个结点.

M=30,W=(5,10,12,13,15,18)

$s+W(i+1) \le M$ 且 $s+r \ge M$

结点编号	S	r	W(i+1)	B值
2	5	68	10	Т
3	15	58	12	Т
4	27	46	13	F
5	15	46	13	Т
6	28	33	15	F
7	15	33	15	Т
8	5	58	12	Т
9	17	46	13	Т
10	5	46	13	Т
11	18	33	15	F
12	20	33	15	F
13	10	46	13	

$s+W(i+1) \le M$ 且 $s+r \ge M$

结点编号	S	r	W(i+1)	B值
13	0	68	10	Т
14	10	58	12	Т
15	22	46	13	F
16	10	46	13	Т
17	23	33	15	F
18	10	33	15	Т
19	25	18	18	F
20	5	18	18	F
21	0	58	12	Т
22	12	46	13	Т
23	25	33	15	F
24	12	33	15	

M=30,W=(5,10,12,13,15,18)

$s+W(i+1) \le M$ 且 $s+r \ge M$

结点编号	S	r	W(i+1)	B值
25	27	18	18	F
26	12	18	18	Т
27	0	46	13	Т
28	13	33	15	Т
29	28	18	18	F
30	13	18	18	F
31	0	33	15	Т
32	15	18	18	F
33	0	18	18	F

7.5 图着色问题

- ●问题描述
- •图的m-着色判定问题
- •解空间树
- ●回溯算法
- •实例分析

问题描述

- ●图着色问题(Graph Coloring Problem, GCP) 又称着色问题,是最著名的NP-完全问题之一。
- ●数学定义:给定无向连通图G=(V,E),其中V为顶点集合,E为边集合,用不同的颜色给图中顶点着色,要求任何两个相邻顶点的着色不同。
- •问:最少需要多少种颜色?

图的m-着色判定问题

- ●给定无向连通图G=(V,E),其中V为顶点集合,E为边集合,用m种不同颜色给图中顶点着色,问:是否存在任何两个相邻顶点颜色不同的着色方案?
- •本节用回溯来解决图的m着色判定问题,如果判定答案为"是",要求给出着色方案。

解空间树

•考虑n=4(4个顶点)的连通图, m=3(3种颜色)

• n元组表示: X= (x₁,..x₄), x_i表示结点i的颜色。

• 显式: 1≤ x_i ≤3。

● 隐式: 若结点i和j之间有边存在,则x_i≠x_{j。}

算法7.7 回溯法求解图着色判定问题


```
Procedure MCOLORING(V,E,C,n,m)
// 图G=(V,E),n个顶点, m种颜色
C(1:n) \leftarrow 0; k \leftarrow 1 //C 记录决策序列,从第一个顶点开始
while (k≥1)
  C(k) \leftarrow C(k) + 1
  while (not OK(k) and C(k) \le m) do C(k) \leftarrow C(k) + 1 repeat
  if C(k) \le m then
        if k=n then print(C); return true //全部着色,打印
              else k ← k+1; C(k) ← 0 //准备为下一个顶点着色
        endif
     else k ← k-1 //顶点k无法着色,回溯
  endif
Repeat //k=0表示整颗树遍历完毕
return false
END MCOLORING
```


算法7.8 判断顶点k的着色是否合法

```
procedure OK(k)
  int i, k
  i ← 1
 while (i<k) do
    if (i和k之间有边存在 and C(i)=C(k))
        then return false
    endif
    i ← i+1
  repeat
  return true
end OK
```

实例分析

(a) 一个无向图

n=5个顶点的无向图, m=3, 对应的完全状态空间树是完全m叉树, 最后一层有多少个叶子结点?

(b) 回溯法搜索空间

7.6 小结

- ●回溯法适用的问题
 - 多阶段决策问题/组合问题满足多米诺性质
- •回溯法的设计思想概述
 - •确定解向量: n-元组/k-元组
 - •分解约束条件:显示&隐式
 - 确定解空间树
 - •设计限界函数B
 - 深度优先方式搜索树

- •解空间树的分类
 - •集合树:问题的解是对已知集合元素的取舍
 - •如子集和数问题, 0/1背包问题
 - •排列树:问题的解是对已知集合元素的排列
 - •如n-皇后问题, 图着色判定问题
- •回溯法的效率问题
 - •解空间树的大小:决定最坏情况
 - •限界函数B的剪枝能力:决定动态树
 - •求问题全部的解时,可以用蒙特卡洛方法估计算法效率

- •回溯法的改进
 - •根据树的分支情况设计优先策略,如优先搜索结点少/解多的分支
 - •利用搜索树的对称性对子树进行剪裁
 - 分解成子问题, 求解完子问题的解之后合并出原问题的解
- •n-皇后问题
- •子集和数问题
- •图的着色问题

能够识别出适合回溯法的可计算性问题、独立设计算法和分析算法复杂度。

本章结束

