Introduction
Présentation des outils théoriques
Méthodes probabilistes de simulation
Sampling des permutations
Conclusion

Soutenance d'EA

Jose MORAN Dhruv SHARMA

25 Février 2016

Sommaire

- Introduction

Présentation des outils théoriques Méthodes probabilistes de simulation Sampling des permutations Conclusion

Présentation

Lors de cet EA, nous nous sommes intéressés à des méthodes stochastiques de simulation de systèmes quantiques, notamment en utilisant des intégrales de chemin. Présentation des outils théoriques Méthodes probabilistes de simulation Sampling des permutations Conclusion

Présentation

Lors de cet EA, nous nous sommes intéressés à des méthodes stochastiques de simulation de systèmes quantiques, notamment en utilisant des intégrales de chemin.

 \Rightarrow lien entre la physique statistique et la physique quantique à N-corps.

Présentation des outils théoriques Méthodes probabilistes de simulation Sampling des permutations Conclusion

Objectifs

Simuler des systèmes bosoniques avec des méthodes stochastiques :

- Avec des méthodes de Monte-Carlo diffusif.
- Avec des méthodes de Monte-Carlo d'intégrale de chemin.

Méthodes probabilistes de simulation Sampling des permutations Conclusion

Plan

- Présentation des différents outils théoriques.
- Présentation des méthodes numériques et de leurs résultats
- Le problème des permutations

Sommaire

- Introduction
- 2 Présentation des outils théoriques
 - Formule de Trotter et fonction de partition
 - L'intégrale de chemin
- Méthodes probabilistes de simulation
- 4 Sampling des permutations
- Conclusion

Description du système

On se propose d'étudier un système à N corps dans d dimensions décrit par un hamiltonien :

$$\hat{H} = \hat{T} + \hat{V} \tag{1}$$

Où $\hat{V}(x_1, ..., x_N) = \sum_{i=1}^N v(x_i) + \sum_{i < j} w(x_i, x_j)$ est la somme d'un potentiel global et d'un potentiel d'interaction entre les particules.

Fonction de partition

Toutes les informations pertinentes sont contenues dans la fonction de partition :

$$Z = \text{Tr}(e^{-\beta \hat{H}}) \tag{2}$$

Avec
$$\beta = \frac{1}{k_B T}$$
.

Licite si \hat{H} est borné inférieurement et à résolvante compacte.

Dans la pratique :

- Le potentiel global est confinant et le potentiel d'interaction est borné.
- On travaille sur un tore

La fonction de partition (suite)

 $e^{-\beta H}$ est un opérateur à noyau. C'est à dire que :

$$\exists k_{\beta}, \int_{L\mathbb{T}^d} k_{\beta}(X, X') dX' = (e^{-\beta H} \psi)(X)$$
 (3)

Ce qui permet d'écrire la fonction de partition :

$$Z(\beta) = \operatorname{Tr}\left(e^{-\beta H}\right) = \int k_{\beta}(X, X) dX$$
 (4)

Formule de Trotter

On utilise la formule de Trotter :

$$(e^{-\beta}\psi)(X) = \lim_{M \to \infty} \left[\left(e^{-\frac{\beta}{2M}\hat{V}} e^{-\frac{\beta}{M}\hat{T}} e^{-\frac{\beta}{2M}\hat{V}} \right)^M \psi \right] (X)$$
 (5)

Pour montrer que, à M grand, le système quantique est équivalent à M systèmes classiques intéragissant entre eux, selon un potentiel :

$$\mathcal{V}(X_0, X_1, \dots, X_M) = \frac{1}{2\beta\sigma^2} \sum_{i=0}^{M-1} |X_{i+1} - X_i|^2 + \frac{1}{M} \left(\frac{V(X_0) + V(X_1)}{2} + \sum_{i=1}^{M-1} V(X_i) \right)$$
(6)

Interprétation comme intégrale de chemin

On trouve pour M grand:

$$\left(e^{-\beta H}\right) \simeq \frac{1}{\left(2\pi\sigma^2\right)^{\frac{dNM}{2}}} \int_{()^M} \left(\prod_{i=1}^M \mathrm{d}X_i\right) e^{-\beta \mathcal{V}(X,X_1,\dots,X_M)} \psi(X_1) \quad (7)$$

et on calcule alors :

$$Z(\beta) \simeq \frac{1}{(2\pi\sigma^2)^{\frac{dNM}{2}}} \int_{()^M} \mathrm{d}X \left(\prod_{i=2}^M \mathrm{d}X_i \right) e^{-\beta S_M(X, X_M, \dots, X)} \tag{8}$$

⇒ interprétation comme une intégrale de chemin.

Un outil puissant

- Outil théorique utilisé generalisant la loi de moindre action pour des systemes quantiques.
- S'agit de sommer la contribution des chemins quantiques reliant deux points x_0 et x_n à deux instants de temps t_0 et t_n .
- La correspondance entre l'integrale de chemin et la physique statistique est fait par la fonction de partition.

Un outil puissant

- Outil théorique utilisé generalisant la loi de moindre action pour des systemes quantiques.
- S'agit de sommer la contribution des chemins quantiques reliant deux points x_0 et x_n à deux instants de temps t_0 et t_n .
- La correspondance entre l'integrale de chemin et la physique statistique est fait par la fonction de partition.
- L'application numerique se base sur la formule de trotter et l'algorithme de Metropolis.

L'integrale de chemin-suite

Le terme

$$E = \sum_{j=1}^{M-1} \left[\frac{m}{2} \left(\frac{\mathbf{R}_{j+1} - \mathbf{R}_j}{\Delta \tau} \right)^2 + V(\mathbf{R}_j) \right]$$
 (9)

peut être interpreter comme un terme d'energie potentielle pour un système de MNd particules, ayant des coordonnées \mathbf{R}_j , pour un système à N particules en d dimensions et à M pas de temps.

- Les Nd particules sont couplés entre eux par le potentiel V.
- Les particules voisins espacés dans le temps sont couplés par un "ressort" de constant $\frac{m}{\Delta \tau}$.

Sommaire

- 1 Introduction
- 2 Présentation des outils théoriques
- 3 Méthodes probabilistes de simulation
 - L'algorithme Metropolis
 - Monte-Carlo Diffusif
 - Path-Integral Monte-Carlo
- 4 Sampling des permutations
- Conclusion

Comment faire du sampling efficace sur des chaînes de Markov?

- Construit une chaine de Markov satisfaisant les conditions d'ergodicité et la stationnarité.
- La stationnarité est écrit comme un bilan detaillé

$$\pi(x)P(x \to x') = \pi(x')P(x' \to x) \tag{10}$$

 $\pi(x)$ est la distribution stationnaire et $P(x \to x')$ est la probabilité de passage de l'état x à l'état x' pour la chaine de Markov.

•

•

$$P(x \to x') = g(x \to x')A(x \to x') \tag{11}$$

$$\frac{A(x \to x')}{A(x' \to x)} = \frac{P(x')}{P(x)} \frac{g(x' \to x)}{g(x \to x')}$$
(12)

 De manière generale, nous choisissons g(x) la distribution uniforme et la probabilité d'acceptation satisfaisant les conditions requises :

$$A(x \to x') = \min\left(1, \frac{P(x')}{P(x)}\right) \tag{13}$$

• Commode de prendre la probabilité P(x) comme la distribution de Boltzmann :

$$P(x) = \frac{e^{-\beta E_x}}{\mathcal{Z}} \tag{14}$$

L'algorithme de Metropolis

L'algorithme se déroule de manière suivante :

- Nous commençons avec un état x
- 2 Nous choisissons un nouvel état x' selon la loi uniforme
- **3** Nous acceptons l'état x' selon la loi $A(x \to x')$. Si l'état est accepté, le nouvel état du système est x'. Sinon, le système reste dans l'état x (et donc il n'y a pas de transition)
- Nous répétons les étapes 2 et 3 jusqu'à la génération de λ états.

Description de l'algorithme

On fait une marche aléatoire dans notre système, avec le processus défini par :

$$X_{t+1}^i = X_t^i - \vec{\nabla} V_{tot}(X_t^i, X_t^j) + \sigma \sqrt{\Delta t} \xi_t$$
 (15)

et on utilise la formule de Feynman-Kac :

$$\int_{\Omega} g(x)u(\beta,x)dx = \mathbb{E}\left(g(x_{\beta})e^{-\int_{0}^{\beta} V(x_{s})ds}\right)$$
(16)

pour calculer des valeurs importantes du système (par exemple l'énergie moyenne)

Potentiel utilisé

FIGURE - Potentiel utilisé.

Potentiel utilisé

Potentiel utilisé :

FIGURE – Lignes de potentiel.

Résultats des simulations

FIGURE – Simulation de deux particules classiques en intéraction entre elles.

Résultats des simulations

FIGURE - Energie en fonction de la température

Résultats des simulations

FIGURE - Simulation de deux particules quantiques

Difficultés

- Taux d'acceptation pour le système classique (2 particules, 10^4 pas) : $\sim 85\%$
- ullet Temps de calcul pour le système classique : \sim 20s.
- Taux d'acceptation pour le système quantique ($M=10,\ 10^4$ pas) : $\sim 2\%$.
- Temps de calcul pour le système quantique : $\sim 3 \mathrm{min}$.

Description de l'algorithme

- Nous commençons avec une particule donnée et on fixe deux points x₀ et x_M. Ici M est le paramètre qui apparaît dans la décomposition de Trotter. Il s'agit de diviser l'axe de temps imaginaire β en M tranches.
- 2 Nous initialisons les positions $x_1 \cdots x_{M-1}$ de manière aléatoire.
- Nous choisissons une "tranche" de temps imaginaire k parmi les M − 2 tranches possibles et on effectue un petit déplacement du chemin d'une distance dx.
- Ensuite, nous calculons la différence d'action entre le chemin de départ et le nouveau chemin.

Resultats

Resultats

Levy Sampling

- \bullet Les simulations pour PIMC sont trop lentes. Taux d'acceptation $\sim 10\%$
- Echantillonnage avec peu de rejections? ⇒ Levy Sampling

Il s'agit d'interpolation stochastique entre deux points x_1 et x_M donnés.

L'algorithme de Levy

- De manière recursive, echantilloner les points entre x_i et x_N .
- Pour oscillateur harmonique :

$$\langle x_k \rangle = \frac{\Gamma_1}{\Gamma_2} \tag{17}$$

$$\sigma^2 = \frac{1}{\Gamma_1} \tag{18}$$

$$\Gamma_1 = \coth \Delta_\tau' + \coth \Delta_\tau'' \tag{19}$$

$$\Gamma_2 = \frac{x'}{\sinh \Delta_{\tau}'} + \frac{x''}{\sinh \Delta_{tau}''} \tag{20}$$

οù

$$\pi^{\text{oh}}(x_k|x',x'') \propto \exp\left[-\frac{(x_k - \langle x_k \rangle)^2}{2\sigma^2}\right]$$
 (21)

Resultats

FIGURE – 6 chemins de Lévy construits pour différents points de départ.

Sommaire

- 1 Introduction
- 2 Présentation des outils théoriques
- Méthodes probabilistes de simulation
- Sampling des permutations
 - Statistique et mécanique quantique
 - La difficulté des bosons
- Conclusion

Statistique et mécanique quantique

Les fonctions d'onde pour les bosons sont symétriques par échange de particules.

 \Rightarrow il faut symétriser la fonction d'onde en sommant sur toutes les permutations. Il faut donc en tenir compte pour la fonction de partition.

Permutation des Bosons

 La matrice de densité pour un système à N bosons est écrit comme :

$$\rho_{B}(\mathbf{R}, \mathbf{R}'; \beta) = \frac{1}{N!} \sum_{P} \rho_{D}(\mathbf{R}, P\mathbf{R}'; \beta)$$
 (22)

 Somme sur toutes les permutations ⇒ Echantillonnage efficace des permutations aussi.

Un algorithme pour permutation sampling

- Tout d'abord nous choisissons deux instants τ_1 et τ_2 entre lesquels nous voulons effectuer un échange.
- Ensuite, nous supprimons les parties de chemin entre ces deux instants pour les deux particules. Pour les parties restantes en dehors de ces deux instants, nous échangeons les chemins entre les deux particules comme montré plus haut.
- Une fois échangés, nous créons deux nouveaux sous-chemins entre les instants τ_1 et τ_2 avec la construction de Lévy. La construction est faite comme si les particules étaient libres. Nous avons maintenant deux nouveaux chemins qui ont des positions permutées.

Two particle exchange

• Finalement, comment choisissons nous si nous devons accepter ces deux chemins? Pour cela, nous comparons la différence d'énergie telle qu'elle est décrite en (9) mais cette fois les valeurs de M sont celles qui correspondent aux instants τ_1 et τ_2 . Ainsi nous avons une probabilité d'acceptation :

$$A(\text{old} \to \text{new}) = \min\left(1, \frac{\exp(-\beta E_{\text{new}})}{\exp(-\beta E_{\text{old}})}\right)$$
(23)

Sommaire

- Introduction
- 2 Présentation des outils théoriques
- 3 Méthodes probabilistes de simulation
- Sampling des permutations
- Conclusion