Universidade Federal de Santa Catarina

Engenharia da Computação

Microprocessadores e Microcontroladores ARA7511

Características Gerais dos Sistema Embarcados

Prof. Roderval Marcelino, Dr. Eng.

Tipos de sistemas embarcados

Quatro categorias:

- 1. Sistemas auto-contidos
- 2. Microcontroladores com memória externa
- 3. Processadores digitais de sinais
- 4. Dispositivos de Lógica Programável

1. Sistemas auto-contidos

Composição (usual):

- uma CPU, memória RAM, algum tipo de ROM
- porta serial, portas paralelas, contadores e temporizadores
- e um controlador de interrupções

Características (gerais):

- amplo conjunto de instruções para manipular bits
- acesso diretos aos pinos de e/s
- rápido e eficiente sistema de atendimento de interrupções

Alcance:

- implementar sistemas de controle a baixo custo

2. Microcontroladores com memória externa

Composição (usual):

- barramento de 16 ou 32 bits
- memórias de programa e dados externas
- controladores de DMA e de interrupção

Características (gerais):

- possuem pouco pinos de e/s
- muita memória (Mega Bytes)
- aproveitamento de tecnologias anteriores (8088, Z80, ARM)

Alcance:

- sistemas de controle de memória de massa, máquinas de diversão, outros, estão em plena expansão devido a redução de custo e aumento da velocidade

3. Processadores digitais de sinais(DSP)

Composição (usual):

- multiplicador por hardware
- múltiplas unidades de execução
- pipeline sofisticado
- arquitetura Harvard

Características (gerais):

- arquitetura dedicada ao processamento de sinais
- altas taxas de processamento (execução em um ciclo)

Alcance:

- em expansão (automação, telecomunicações, etc)

4. Dispositivos de Lógica Programável

Composição (usual):

- blocos lógicos interconectados via barramento
- chegam até 500.000 portas

Características (gerais):

- programados por software
- projetados para atender aplicações específicas
- em aplicações de alta performance

Alcance:

- em expansão em várias áreas

Memórias

Memórias de programa:

Memórias

Memórias de programa (uso frequente):

- Firmware: programas que não estão sujeitos a mudança;
- Memória de partida fria (bootstrap): iniciar um sistema;
- Tabelas de dados: funções trigonométricas, p. ex.;
- Conversores de dados: BCD para 7 segmentos, p. ex.;
- Geradores de caracteres: ASCII, p. ex.

Memórias

Memórias de dados:

- 1. **SRAM**: memória estática.
 - Matriz de flip-flops;
 - Sem recarga;
 - Alta velocidade de acesso (~10ns)
- 2. **DRAM:** memória dinâmica.
 - Limitações no tempo de acesso;
 - Células de microcapacitores;
 - Trabalha com recarga (2-10ms);
 - Baixo consumo;

Arquitetura Von Neumann x Harvard

Von Neumann

Único barramento de dados e instruções

Arquitetura mais simples

Mais lento, pois não permite acesso simultâneo as memórias

Geralmente arquitetura CISC

Harvard

Um barramento para dados e outro para instruções

Arquitetura mais complexa

Mais rápido, pois permite acessos simultâneos a memória

Permite pipelining

Geralmente RISC

Arquitetura Von Neumann x Harvard

Von Neumann

Harvard

Fonte: blog do Gabriel Gonçalves da Silva

Arquitetura CISC x RISC

CISC

- Complex Instruction Set
 Computer ou
 computador com um
 conjunto complexo de
 instruções
- Possui grande quantidade de instruções
- Programação mais simples
- Execução passo a passo

RISC

- Reduced Instruction Set
 Computer ou Computado
 r com um Conjunto
 Reduzido de
 Instruções (RISC)
- Pequeno conjunto de instruções
- Programação mais complexa
- Trabalha com pipelining

Ex.: PIC, PowerPC, Motorola 88000

Ex. 386, 486, Z80

Características Gerais dos Sistema Embarcados

Periféricos Embutidos

Timer

Temporizadores e contadores

PWM

Conversor analógico/digital

Comparadores

Driver de display de cristal líquido

Protocolos industrias e automobilísticos

RS485 / RS232

CAN

LIN

Comunicação serial

Síncrona (I2C, SPI)

Assíncrona (RS232)

