

Especialização em Ciência de Dados com Big Data, BI e *Data Analytics*

Fundamentos de *Business Intelligence* (3° Encontro)

Prof. MSc. Fernando Siqueira

Projeto de Data Warehouse

M

Projeto de Data Warehouse

Dicas de Revisão

- Granularidade
- Dimensão Tempo
- Slow Changing Dimension
- Conformidade dos Dados
- Chaves Substitutas (SKs)
- Modelo Dimensional
- Qualidade de Dados

Granularidade

- O grão é uma das mais importantes definições na modelagem de dados do DW.
- Trata-se do menor nível da informação e é definido de acordo com as necessidades levantadas no início do projeto.
- Quanto maior for a granularidade, menor será o detalhe (ou maior será a sumarização).
- Quanto menor for a granularidade, maior será o detalhamento (ou menor será a sumarização)

Dimensão Tempo

- A Dimensão temporal (ou dimensão data para alguns) é a mais importante perspectiva para a análise dos dados.
- Sem ela é difícil fazer a averiguação descritiva dos fatos.
- É imprescindível para a análise das ocorrências durante o tempo.
- É importante que seja avaliado a conformidade, analisando os níveis de detalhes exigidos para essa dimensão, mantendo a coerência de definição entre os diversos Data Marts.

Slow Changing Dimension

- O SCD tem papel fundamental para a visualização de informações históricas e armazenamento de versões dos dados de acordo com variações no tempo.
- Retrata as Dimensões que sofrem atualizações em seus campos e os classifica pelo tipo de mudança existente em cada uma delas.

Exemplo:

Em modelo dimensional você tem a possibilidade de avaliar as vendas de cada filial e de cada vendedor. Se um vendedor é transferido para uma outra filial, deve-se ter o tratamento dessa mudança para não ter uma avaliação incorreta do montante de uma venda para cada filial.

Conformidade dos Dados

- A conformidade propicia o compartilhamento semântico de uma mesma Dimensão entre vários Data Marts, mantendo a consistência das informações geradas pelas diferentes análises.
- Centraliza as alterações, e permite uma otimização no uso dos recursos computacionais.
- A conformidade de Dimensões é imprescindível para um projeto evolutivo de DW exitoso.

Chaves Substitutas (Surrogate Keys)

- Chaves substitutas ou artificiais (surrogate keys), são chaves desprovidas de inteligência de negócio.
- Utilizadas como artificio para o versionamento dos dados e junção entre tabelas Fatos e de Dimensões.

Modelo Dimensional

- Revise também o modelo dimensional resultante na busca de erros que só são evidentes após a implementação do DW.
- Verifique a existência de relacionamentos desnecessários e duplicidade de informações sem propósito e que oneram a performance das análises e consultas.

Qualidade de Dados

- A qualidade dos dados é um dos aspectos mais importante no processo de construção do DW.
- Devemos analisar os dados armazenados a procura de inconsistências e deformidades.
- Caso seja detectado alguma anormalidade nos dados, o processo de ETL deverá ser verificado e revisado para garantir que as informações armazenadas possuam valor para a utilização na tomada de decisão empresarial.

Qualidade de Dados

- A qualidade dos dados é um dos aspectos mais importante no processo de construção do DW.
- Devemos analisar os dados armazenados a procura de inconsistências e deformidades.
- Caso seja detectado alguma anormalidade nos dados, o processo de ETL deverá ser verificado e revisado para garantir que as informações armazenadas possuam valor para a utilização na tomada de decisão empresarial.

Business Intelligence

O Processo Bl ...

O Processo Bl ...

- Conjunto de ferramentas voltadas para acesso e análise ad-hoc de dados
- Objetivo de uma ferramenta OLAP
 - "Transformar dados em informações capazes de dar suporte a decisões gerenciais de forma amigável e flexível ao usuário e em tempo hábil"

OI AP

Características

- OLAP On-Line Analytic Processing: fornece para organização um método de acessar, visualizar, e analisar dados corporativos com alta flexibilidade e performance.
- Disponibiliza os dados em forma de cubos para a análise dos dados em diversos ângulos de visão, sobre os aspectos de negócio. Trata as informações como Dimensões e Indicadores.

- Cubo OLAP Cubo de dados
 - Estrutura que facilita aos usuários visualizar os dados segundo suas dimensões

- Operações de navegação OLAP
 - Slice-dice / drill-down / roll-up / drill-up

100

OLAP

Operações

- Principais operações
 - Pivot
 - Drill-down
 - Driw-up (Roll-up)
 - Slice-and-Dice
- Operações podem ser combinadas para se obter a visualização desejada

OLAP

Operações - PIVOT

- Rotação do hipercubo
- A forma mais comum de visualização
- Corresponde a inversão dos eixos das dimensões para, por exemplo, uma posterior rolagem.

10

OLAP

Operações - PIVOT

Operações – PIVOT - Exemplo

Quantidade Vendida (milhares)	2017			
	Liquidificador	Micro-Ondas		
SUL	77	152		

Pivot (local, produto)

Quantidade	2017
Vendida (milhares)	SUL
Liquidificador	77
Micro-ondas	152

M

OLAP

Operações – Drill Down

- Determinam o detalhamento de um consulta
- As consultas são mais restritas se existirem mais detalhes nos critérios de seleção
 - Ex. País x Cidade
- Os resultados são mais detalhados

Operações - Drill Down - Exemplo

Quantidade Vendida (milhares)	2017			
	Liquidificador	Micro-Ondas		
SUL	77	152		

Drill-Down (local.regial.**estado**, produto.tipo.**marca**)

Quantidade Vendida (milhares)		2017				
		Liquidificador		Micro-Ondas		
		Walita	Faet	Sharp	Consul	
	RS	14	16	40	25	
SUL	SC	9	10	12	20	
	PR	15	13	30	25	

OLAP

Operações - Drill Up

- Determinam o detalhamento de um consulta
- As consultas são mais abrangentes se existirem menos detalhes
 - Ex. Cidade x pais
- O resultado é mais sumarizado

Operações – Drill Up

Operações - Drill Up- Exemplo

Quantidade Vendida (milhares)		2017				
		Liquidificador		Micro-Ondas		
		Walita	Faet	Sharp	Consul	
	RS	14	16	40	25	
SUL	SC	9	10	12	20	
	PR	15	13	30	25	

Drill-up (produto.tipo)

Quantidade Vendida (milhares)		2017		
		Liquidificador	Micro-ondas	
	RS	30	65	
SUL	SC	19	32	
	PR	28	55	

Operações – Slice and Dice

- As consultas são realizadas de acordo com as restrições impostas
- As restrições correspondem a atributos de dimensões com determinado valor de consulta Quanto mais atributos de dimensão mais restrito é o conjunto de resposta.
- Uma escolha de atributos de dimensões representa uma fatia(Slice) na visualização das dimensões
- A troca dos atributos de dimensões é uma operação de rolagem (dice).

OLAP

Slice-and-Dice (A.x =x2), B.y=y1 v B.y=y3)

Operações – Slice and Dice

Quantidade Vendida (milhares)		2017				
		Liquidificador		Micro-Ondas		
		Walita	Faet	Sharp	Consul	
RS	RS	14	16	40	25	
SUL	SC	9	10	12	20	
	PR	15	13	30	25	

Slice-and-Dice (local.região.estado = 'SC', produto.tipo.marca = 'Walita', produto.tipo.marca = 'Sharp')

Quantidade Vendida (milhares)		2017		
		Liquidificador	Micro-ondas	
		Walita	Sharp	
SUL	SC	9	12	

Ferramentas de Bl

MicroStrategy

Conceito

Criar e implantar suas próprias análises apoiado na estruturação de uma arquitetura corporativa e de ferramentas que entreguem autonomia na concepção e modelagem para a implementação de relatórios e dashboards.

Contexto

- A complexidade do negócio cresceu além da capacidade de organizações e indivíduos para compreendê-lo e gerenciá-lo.
- A necessidade de velocidade analítica, flexibilidade e inovação exigidas pelo negócio digital mudou o investimento analítico para unidades de negócios dos departamentos de TI tradicionais, mas a mudança em si acrescenta ainda mais complexidade.
- O negócio digital exige análises efetivas e inteligência de negócios para permitir decisões de negócios rápidas e confiáveis. Muitas empresas lutam para conseguir esse objetivo aparentemente simples.

Desafios

- A complexidade do negócio cresceu além da capacidade de organizações e indivíduos para compreendê-lo e gerenciá-lo.
- A necessidade de velocidade analítica, flexibilidade e inovação exigidas pelo negócio digital mudou o investimento analítico para unidades de negócios dos departamentos de TI tradicionais, mas a mudança em si acrescenta ainda mais complexidade.
- O negócio digital exige análises efetivas e inteligência de negócios para permitir decisões de negócios rápidas e confiáveis. Muitas empresas lutam para conseguir esse objetivo aparentemente simples.

Desafios

- Líderes de dados e análise identificaram três desafios principais:
 - □ Primeiro, eles precisam verificar quais recursos de análise são essenciais para oferecer valor comercial.
 - □ Em segundo lugar, eles devem gerenciar os papéis, habilidades e conhecimentos emergentes que permitirão que as equipes de análise façam seus próprios trabalho e treinem usuários empresariais para realizar suas próprias análises quando apropriado.
 - □ Em terceiro lugar, eles são dificultados por processos e tecnologias existentes na criação de soluções de análise ágeis que suportam diretamente iniciativas empresariais digitais.

Self-Service BI

Self-Service BI

Pontos de Atenção

- As necessidades de cada empresa é que direcionarão a solução e as questões como segurança, integridade e disponibilização da informação, que devem ser cuidadosamente analisadas.
- É preciso planejar a adoção de soluções self-service, assim como implantar processos de utilização e governança consistentes. Porque a competitividade de sua organização no futuro depende da definição dessas políticas hoje.

Ferramentas de Visualização de Dados

M

Visualização de Dados

"O uso de representações visuais para explorar, dar sentido e comunicar dados".

- Visualização de dados vs. Visualização de informações
 - □ Informação = agregação, resumo e contextualização de dados
- Relacionado a gráficos de informação, visualização científica e gráficos estatísticos
- Muitas vezes inclui gráficos, ilustrações, ...

ĸ.

Visualização Analítica

- Um termo recentemente cunhado
 - □ Visualização de informações + análise preditiva
- Visualização de informações
 - □ Descritivo, orientado para trás
 - "O que aconteceu" o que está acontecendo "
- Análise preditiva
 - □ Preditivo, focado no futuro
 - "O que vai acontecer" "por que isso vai acontecer"
- Há um forte movimento em direção à análise visual

visual analytics

O Crescimento da Visualização de Dados e Analítica

- Quadrante Mágico para Plataformas de Business Intelligence e Analytics
- Muitas empresas de visualização de dados estão no 4º quadrante
- Existe um movimento para a visualização

M

O Crescimento da Visualização de Dados e Analítica

- Novos players
 - □ Tableau, QlikView, Spotfire, ...
- Aumento do foco dos big players
 - MicroStrategy melhorando Visual Insight
 - □ Microsoft reforçando PowerPivot with Power View
 - □ IBM lançando Cognos Insight
 - □ Oracle adquirindo Endeca
 - □ SAP lançando Visual Intelligence
 - □ SAS lançando Visual Analytics

- O Bl costumava ser tudo relacionado ao uso de dados para suporte de decisão gerencial
- Agora, é uma parte do Business Analytics
 - BI = Análise descritiva

LDW – Logical Data Warehouse

Introdução

- Nas últimas décadas, o DW se tornou uma ferramenta essencial para que as organizações compreendam os clientes, melhorem os processos e até executem as operações diárias.
- No entanto, forças convergentes aceleram as mudanças de negócios e tecnologia que desafiam a eficácia do DW tradicional.
- Como resultado, muitos pressupostos do DW e práticas comuns não podem mais ser considerados como adquiridos.

Motivação

- Os seguintes pontos propuseram oportunidades e desafios para a evolução do DW:
 - As mídias sociais: embora a mídia social seja uma mina de ouro para análise de sentimentos, o DW não consegue processar e integrar redes sociais devido a barreiras causadas por dados não estruturados e volumes de dados maciços.
 - Computação em nuvem: infraestrutura como serviço (laaS) e plataforma como serviço (PaaS) menor custo de entrada, diminui os requisitos de habilidades e entrega soluções mais rápidas. Em contraste, as análises "out-of-the-box" oferecidas pelo software como aplicações de serviço (SaaS) reduzem a necessidade do DW.

Motivação

- Os seguintes pontos propuseram oportunidades e desafios para a evolução do DW:
 - Mobilidade: novos dispositivos móveis podem capturar instantaneamente dados de alta fidelidade por exemplo, tempo, localização e identidade. Eles também permitem que business intelligence (BI) atinja uma base de usuários mais ampla. O desafio é processar dados capturados rapidamente e fornecer insights relevantes para os contextos dos usuários.

Motivação

- Os seguintes pontos propuseram oportunidades e desafios para a evolução do DW:
 - Informações: grande análise de dados apresenta vantagens competitivas e novas oportunidades de negócios. No entanto, 3Vs - de características importantes dos dados impõem grandes desafios ao DW.
 - Primeiro, o volume de dados está crescendo exponencialmente a cada ano, e o TDW muitas vezes não consegue atender a SLAs.
 - Em segundo lugar, as organizações devem trabalhar com uma <u>variedade</u> cada vez maior de formatos de dados por exemplo, feeds, mídia social e informações contextuais; O TDW não pode processar uma variedade de formatos de dados.
 - Em terceiro lugar, o negócio de hoje requer informações em tempo real (velocidade de dados), mas a maioria dos TDWs ainda operam em um mundo em lote.

Conceito

"O Logical Data Warehouse (LDW) é uma arquitetura de gerenciamento de dados para análise que combina os pontos fortes dos armazéns de repositório tradicionais com gerenciamento de dados alternativo e estratégia de acesso."

Benefícios

- Os principais benefícios do LDW são melhorar a tomada de decisões e proporcionar uma vantagem competitiva.
- O LDW aproveita o potencial da inteligência de negócios em dados em repouso e em movimento, a fim de fornecer informações poderosas para ambientes operacionais e estratégicos.
- Novos paradigmas de computação, como Hadoop e CEP, utilizados pelo LDW, têm potencial para ajudar as organizações a atender às crescentes demandas de 3Vs.

Benefícios

- O LDW também melhora a agilidade e reutilização do data warehouse seguindo uma arquitetura em camadas.
- Os sistemas podem ser alterados de forma mais fácil e rápida usando novos padrões de integração de dados, como a federação de dados e a integração orientada para mensagens.
- Esses padrões são mais flexivelmente acoplados e flexíveis do que o tradicional ETL.

Componentes

- Repository Management
- Data Virtualization
- Distributed Processes
- Auditing Statistics and Performance Evaluation Services
- Metadata Management
- SLA Management

Arquitetura

Ferramenta de Visualização Prática

M

Prática

- Tableau
 - https://www.tableau.com/pt
- Power BI
 - https://powerbi.microsoft.com/pt-br/
- Portal da Transparência
 - http://www.portaltransparencia.gov.br/downloads/

Avaliação

Avaliação

1. Propor uma arquitetura de BI para uma empresa

Avaliação

- 1. Selecionar um estudo de caso (sugestões nos links abaixo)
 - www.portaltransparencia.gov.br/downloads/
 - www.kaggle.com/
- Elaborar a matriz de necessidades contendo os indicadores e as perspectivas de análise.
- Construir o diagrama multidimensional
 - Dica: utilizar a ferramenta MySQL Workbench
- 4. Construir um *dashboard* no Power BI ou Tableau para ajudar os diretores do estudo de caso a tomarem alguma decisão.

M

Avaliação

Orientações:

- Poderá ser em equipe (2 integrantes) ou individual
- Deverá ser entregue por e-mail os seguintes itens:
 - Projeto da Arquitetura BI da empresa
 - Matriz de necessidades
 - Diagrama multidimensional em uma ferramenta de modelagem de dados
 - Arquivo do Power Bl ou Tableau com o dashboard
- Data de entrega: 11/11/2017 23:59 (1,0 a menos por cada dia de atraso)
 - Trabalho entregue antecipadamente(até 04/11/2017) valerá até 11,00 pontos
- Email: <u>fssiqueira@gmail.com</u>
 - □ Assunto: [UNI7-CD 2017 T2] FBI Entrega Trabalho

Considerações Finais

A Nova Plataforma do Bl

Analytic Workflow Component	Traditional BI Platform	Modern BI Platform
Data source	Upfront dimensional modeling required (IT-built star schemas)	Upfront modeling not required (flat files/flat tables)
Data ingestion and preparation	IT-produced	IT-enabled
Content authoring	Primarily IT staff, but also some power users	Business users
Analysis	Predefined, ad hoc reporting, based on predefined model	Free-form exploration
Insight delivery	Distribution and notifications via scheduled reports or portal	Sharing and collaboration, storytelling, open APIs

A Nova Plataforma do Bl

Gestão de Dados

"Controlar e alavancar eficazmente o uso dos ativos de dados e sua missão e objetivos são atender e exceder às necessidades de informação de todos os envolvidos (stakeholders)da empresa em termos de disponibilidade, segurança e qualidade."

(DMBOK, 2009)

Gestão de Dados

Especialização em Ciência de Dados com Big Data, BI e *Data Analytics*

Prof. Fernando Siqueira

fssiqueira@gmail.com

Especialização em Ciência de Dados com Big Data, BI e *Data Analytics*

NUNCA DESISTA DOS SEUS SONHOS

Prof. Fernando Siqueira

fssiqueira@gmail.com