测试

测试CNN注意力

下面是在我自己的模型上,使用用p=2之后mean()处理: 在Fashion-MNIST

• 原图

• 教师和学生的处理

其中教师网络在最后已经收敛到一个点,实际上已经做出了决策 学生网络由于还停留在中间隐藏,还处于关注的状态

在Cifar10

• 原图

教师和学生的pow(2).sum(dim=1)处理

• 教师和学生的sum处理

我们发现,到后面,实际上已经脱离了注意力的范畴了 一方面,注意力关注于边界,并不是物体 一方面,后面的图过于抽象,不能使用注意力来抽象理解了

项目

模型	教师	基线	学生(AT+KD)	学生(KD)
参数量	2243546	691674	691674	691674
训练损失	0.174	0.23	1.75	
训练准确	94.02%	90.14%	90.15%	
AT损失	-	-	1.17	
验证准确	89.91%	88.40%	88.19%	

教师

• 损失

准确率

基线

• 损失

• 准确率

25

Step

Value

90.142

40

45

Relative

33.87 min

50

55

60 ×

学生

• AT损失

Run ↑

• 蒸馏损失

• 总损失

准确率

验证

