(б.т) Пространство RM

Напомним, что декартовым им прямим произведением множесь А и В называется мнотество Ахв всех упорядочениях пар (а,в), где aeA n beb.

a \in A u \in B. Mepez \mathbb{R}^m nor organ obosnarar nousbegonus \mathbb{R}^{\times} ... $\times \mathbb{R}^n$ moznu \mathbb{R}^m nucleon bug $x=(x^1,...,y^{m})$, rucho $x^i\in\mathbb{R}$ naprobables i-ii roopgunarai $\tau.x$. Из курса менейной алгебра известно, что мютество Вт образует

векторые пространство относительно операции

 $x + y := (x^i + y^1, ..., x^i + y^i, ..., x^m + y^m), \text{ age } x, y \in \mathbb{R}^m$ $\lambda x^{i} := (\lambda x^{i}, ..., \lambda x^{i}, ..., \lambda x^{m}), \text{ age } x \in \mathbb{R}^{m} + \lambda \in \mathbb{R}.$

Расстояние метру точнами xи y мнотества R^m мотет богть задано gop my rois

(6.1)
$$d(x,y) := \sqrt{(x^i-y^i)^2 + ... + (x^i-y^i)^2 + ... + (x^m-y^m)},$$

при т=1,2 им 3 оно совпадает с нашим привыгими представлениями o hace moskuu.

Утвертдение в.1: Заданная (в.1) дунжуня расстояния $d: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ OTLAGAEM chaicmballu:

1) $d(x,y) \ge 0$ gue beex $x,y \in \mathbb{R}^m$;

2) $d(x,y) = 0 \Leftrightarrow x = y;$

3) d(x,y) = d(y,x) que beex $x, y \in \mathbb{R}^m$;

4) перавенство треугомника

 $d(x,z) \leq d(x,y) + d(y,z)$

gus bax x,y, z & IRm

Dokazamenscibo: Chariciba 1)-3) orebugunu aspazau bomarusnomas. Доказательство неравенства треугольника опирается на менлу

Лемма: (неравенство Коши-бунаковского)

Des mosen a, $\delta \in \mathbb{R}^m$ bornounseres repubención (6.2) $\sum_{i=1}^m a^i \delta^i \leq \sqrt{\sum_{j=1}^m (a_j)^2} \cdot \sqrt{\sum_{i=1}^m (b_i)^2}$

Donagasen cibo sessure: Dognarus $(a,b):=\sum_{l=1}^{m}a^{l}b^{l}$ mozga prebuguo, emo que brez $a,b,c\in\mathbb{R}^{m}$ is brez $\lambda\in\mathbb{R}$ bonnomesores pabenerba (a,b)=(b,a), (a+b,c)=(a,c)+(b,c) is $(\lambda a,b)=\lambda(a,b)$.

hugobatersuo $(a+\lambda b, a+\lambda b) = (a,a+\lambda b) + (\lambda b, a+\lambda b) = (a+\lambda b, a) + \lambda (a+\lambda b, b) =$

 $= (a, a) + (\lambda b, a) + \lambda (a, b) + \lambda (\lambda b, b) = \lambda^2 (b, b) + 2\lambda (a, b) + (a, a)$ Benezuria (a+26, a+26) > 0 ges beex LER & circy ee onpegararens.

Поэтому квадратняй трежени $(6,6)\lambda^2 + 2(a,6)\lambda + (a,a)$ имеет неполомительной дискриминант, т.е. $\mathcal{D} = 4(a,6)^2 - 4(a,a)(b,6) \le 0$

Omnyga novyzaev repalencibo $\left(\sum_{i=1}^{m}a^{i}\delta^{i}\right)^{2}=:(a,b)\leqslant(a,a)(b,b):=\left(\sum_{i=1}^{m}(a^{i})^{2}\right)\left(\sum_{i=1}^{m}(b^{i})^{2}\right),$

и кото рого учеротвения мемил тривиались вотекает.

Bubogen meneps reposencisto mpegroromenta y reposencista komubyun kule korus. 3ane run gan omoro, runo $\sum_{i=1}^{m} (a^{i} + b^{i})^{2} = \sum_{i=1}^{m} a^{i}(a^{i} + b^{i}) + \sum_{i=1}^{m} b^{i}(a^{i} + b^{i}) < \sqrt{\sum_{i=1}^{m} (a^{i})^{2}} \sqrt{\sum_{i=1}^{m} (a^{i} + b^{i})^{2}} + \sqrt{\sum_{i=1}^{m} (b^{i})^{2}} \sqrt{\sum_{i=1}^{m} (a^{i} + b^{i})^{2}}$

Deserve in a $\sqrt{\sum_{i=1}^{m} (a^i + b^i)^2}$ represent it represently $\sqrt{\sum_{i=1}^{m} (a^i + b^i)^4} \leq \sqrt{\sum_{i=1}^{m} (a^i)^4} + \sqrt{\sum_{i=1}^{m} (b^i)^4},$

uz comoporo uczouoc nepaleucto nonzaera ecu noncum b neu a'=x-y', b'=y'-z', 1=1,...,m.

Henocpegesberno us enpegerence (6.1) eregyem, two gue bæz i=1,...,m $|x^{i}-y^{i}| \leq d(x,y) \leq \sqrt{m} \max_{1\leq j \leq m} |x^{j}-y^{j}|.$

Это двойное неравенство покадпват, то расстояние метру тогнами мало (точки близки друг к другу) 🖨 когда их коердината мало отмесаются друга от друга.

Множество R^m и введённое на нем расстояние (61) образуют метрическое пространство IR^m

(6.1) Bampeisune reaccor rogenomed Rm

Mhomecibo $B(a;\delta):=\{x\in\mathbb{R}^m:\ d(a,x)<\delta\}$ Tygen nazmbamb m-перыпи назрон с устран в могке $a\in\mathbb{R}^m$ радиуса $\delta>0$

Опредемние 6.1: Годиномисть $U \subseteq \mathbb{R}^m$ называется открыты ($f \in \mathbb{R}^m$), есм дих вахной тогии $x \in U$ существует инар B(x,S), т.г. $B(x,S) \subset U$. Пустое мнотесть \emptyset стигаелах открыти по определянию.

Пример 6.1: 1) Lамо пространство \mathbb{R}^m авичется открыти мнотеством A) Bсаний мар B(a, t) авичется открыти f \mathbb{R}^m мнотеством. Dействий авио, если $x \in B$ (a, t), то выбирах D < S < t - p(a, x), имеен B(z, S > t) B(a, t).

mome abereses omkpaman

Ouregene une 6.2: Tiegmun mecto FCR^m magnetare zamenyman ($1R^m$), ecu ero go nome une $R^m \setminus T$ reserve omerano R^m

Thurse 6.2: Muonesto $\overline{B}(a,z):=\{x\in\mathbb{R}^m:\ d(a,z)\leqslant z\}$, respubaçuos zauxuyennu mapau, shuretar zauxuyennu b \mathbb{R}^m .

Замегамие: Руст $\{U_{A}\}_{A\in A}$ — совомучность открыта в R^{m} миожесть. Гогда

1) Déseguerence $U_{A}U_{A}$ mome aluxeres omagnerne encourecton. Desirburestous, eaux $x \in U_{A \in A}U_{A}$, mo $x \in U_{A \circ}$, n b cum operation en-be $U_{A \circ}$ realigêtes B(x,S), m. r. $B(x,S) \subseteq U_{A \circ}$. Cuegobaterous, map $B(x,S) \subseteq U_{A \circ}$.

map $B(\pi, S) \subset V_{ald} V_{al}$.

2) Repectreture $N_{i=1}^{i} V_{i}$ eleastes omepromon unimedian Deviation elem $\chi \in N_{i}^{h} V_{i}$, mo $\chi \in V_{i}^{h} V_{i}^{h}$, gas less i=1,...,n, $\chi \in V_{i}^{h} V_{i}^{h}$, mo $\chi \in V_{i}^{h} V_{i}^{h}$, $\chi \in V_{i}^{h} V_{i}^{h}$.

Пример 6.3: Copera $S(a,z):=\{x\in\mathbb{R}^m: ol(a,z)=z\}$ являейся замкизти мнотеством, посмомну ей фополнение являейся объединением двух откратох мно тесть: мара B(a,z) и его внешности.

Определении 6.3: Окрестъестью $m. \chi \in \mathbb{R}^m$ назмаленая открытой множество $u \in \mathbb{R}^m$, содержание эту точку.

Onpegenerus 64: Frocka x EIRM maznbaorca

- brympervier morkou eurome abs $E \in \mathbb{R}^m$ ecu $x \in E$ u cyuze cibye \bar{z} okpermiociz $\mathcal{U}(x) \in E$,

- bremseis morrois uno mecida $E \subset \mathbb{R}^m$, ecu ora absaemas buyomberseis morrois gonacuerus $\mathbb{R}^m \setminus E$;

гранигной тогкой ино тесть $E \subset \mathbb{R}^m$ вели любая окрестиветь $\mathcal{U}(x)$ годержий как точки E, так и точки его дополнения $\mathbb{R}^n \mid \mathcal{E}$

- предельной тогкой множества $E \subseteq \mathbb{R}^m$, сем для мовой окрестности $\mathcal{U}(x)$ пересегение $\mathcal{U}(x) \cap E$ гразется бесконегнам множеством.

Mounep 6.4: 1) Copepa S(a, z) sligetas zpaningen rak que mapa B(a, z) man u que замкиутого мара $\overline{B}(a,z)$ max u que zoukuymoro mepa u = 0.00, ...

2) Zoukuymui map $\overline{B}(a,z) = B(a,z) \cup S(a,z)$ cocmout uz beex morek,

1 R(a-1)

явиенициках предемногим дих откроного мара В(а, г).

Определение 6.5: Объединение мнотесть. E и веж его пределичах тогах могах и \mathbb{R}^m называетах замыжаемих множества E в \mathbb{R}^m , ободиагаемих герез E.

Утвертдения 6.3: Множество F замкиуто в R = когда F содартит ве chou apegessione Toeles, m.e. F=F.

Dokazarenso bo: siyar F zamenymo u $x \in \mathbb{R}^m$: $x \in \mathcal{F}$. Snorga menomoloas experm nocio $u(z) \in \mathbb{R}^n \setminus \mathcal{F}$ b can emportocia gono menua, m.e. u(z) because не содаржит тоген инсотсетва Г. Глогда и не авгаетах предельной для Г.

Tyers $\mathcal{F} = \mathcal{F}$. Ecu $x \in \mathbb{R}^m \setminus \mathcal{F} = \mathbb{R}^m \setminus \mathcal{F}$, mo morka x no slaserne πρεσειενού ges \mathcal{F} . Ho morga cymecibyer $\mathcal{U}(z)$, κοπορεε cogepute $\mathcal{F}(z)$ κομείνος τικο τοτεί $\mathcal{F}(z)$, $\mathcal{F}(z)$ το $\mathcal{F}(z)$ momen babbass $U_i(z)$, m.x. $x_i \in U_i(x)$ gue beez i=1,...,n. Resecteune $\bigcap_{i=1}^n V_i(z)$ He copep mus Total unomecto \mathcal{F} , m.e. $\mathcal{N}_{ij}^{n}U_{i}(z)\subset\mathbb{R}^{n}\backslash\mathcal{F}$. Tokum ospozow, дополнение 12т 9 стироко, а село Я замкиуто

Onpegenence 6.6: Mnomecto K maznesesce Konnanton & R" ecun из мобого его покрппия { Ид } 264 открптпии множествами nomno us biero nouruse nognonportue & Udi Ji.

Πρимер 6.5: 1) Ompezok $I=\{a \in x \leq 6\}$ & R' abserce κομηματομ β cury remnor toppene - levera; cuy remnor ROPARS - MOVER,

2) n - repriori rapareenenneg $I := \{x \in \mathbb{R}^m : a^i \le x \le b^i, i=1,...,m\}$ abuserce Kompakton & R"

Teopana 6.1: (критерий компактности в Rm) Mnomecilo K < IR™ sleetce comnaxman ⇔ Korga K - oepamizennoe, т.е. содержащевая в некотором шаре, и запищтое в Р.Т.