Homological aspects of Morse-Bott theory

Nasos Evangelou-Oost

Advisor: Prof Joseph Grotowski

University of Queensland

29 May 2019

Outline

- Manifolds and homology
- 2 Critical points and Morse theory
- 3 Morse-Bott theory and other applications

Topological spaces

Definition

A **topological space** is a pair (X, \mathcal{T}) , where:

- *X* is a set:
- T is a set of subsets of X, the topology or open sets, which
 is closed under:
 - finite intersections;
 - unions.

In particular, \emptyset and $X \in \mathcal{T}$.

Continuity

Definition

 $f: X \longrightarrow Y$ is **continuous** if the preimage of every open set in Y is an open set in X.

Homotopy

Definition

For continuous maps

$$f,g:X\longrightarrow Y$$

A **homotopy** from f to g is a continuous map

$$h: [0,1] \times X \longrightarrow Y$$

such that

$$h(0, x) = f(x), \qquad h(1, x) = g(x).$$

Manifolds

Definition

- **Manifold**: a space that is *locally homeomorphic* to \mathbb{R}^n for a fixed $n \in \mathbb{N}_0$.
- **Smooth manifold**: 'a manifold on which you can do calculus'.

• 2-manifolds (surfaces)

torus

plane sphere • 3-manifolds, 4-manifolds, Klein bottle

Compactness

Definition

A topological space X is **compact** if every cover $\bigcup_i U_i \supseteq X$ of open sets $\{U_i\}_i$ has a finite subcollection that still covers X.

Example

Except for the line and the plane, all manifolds on the last slide are compact.

Topological equivalence

Definition

If there exists continuous maps

$$f: X \longrightarrow Y$$
, $g: Y \longrightarrow X$

such that

•

$$f \circ g \sim \mathbb{1}_X$$
 and $g \circ f \sim \mathbb{1}_Y$,

then X is **homotopy equivalent** to Y.

•

$$f \circ g = \mathbb{1}_X$$
 and $g \circ f = \mathbb{1}_Y$,

then X is **homeomorphic** to Y.

Topological equivalence: examples

• homeomorphic: 'the same up to bending (but no tearing)';

One homotopy equivalent: 'the same up to bending, expanding, contracting'.

Homology

Fix a field \mathbb{F} . There is a map $H_{\bullet}(\cdot)$, **homology**, that associates...

ullet ...a topological space X to a sequence of ${\mathbb F}$ -vector spaces

$$H_0(X), H_1(X), \ldots$$

where $H_i(X)$ has a basis of the *i*-dimensional 'holes' of X.

ullet ...a continuous map $f:X\longrightarrow Y$ to a sequence of $\mathbb F$ -linear maps

$$H_0(f): H_0(X) \longrightarrow H_0(Y),$$

 $H_1(f): H_1(X) \longrightarrow H_1(Y),$
 \vdots

- If $f \sim g$ then $H_{\bullet}(f) = H_{\bullet}(g)$;
 - if $X \sim Y$ then $H_{\bullet}(X) = H_{\bullet}(Y)$.

Homology, cont.

H• 'linearises' the topology, so some information is lost:

torus

sphere with two circles attached (fake torus)

These two are not homotopy equivalent, but $H_{\bullet}(torus) = H_{\bullet}(fake\ torus)$.

Betti numbers

Definition

Let M be a compact manifold M. The ith Betti number of M is

$$\beta_i := \dim H_i(M; \mathbb{F}).$$

- These count the number of 'holes' in each dimension.
- \bullet For an *n*-manifold, the Betti numbers only go up to *n*.

Definition

The **Poincaré polynomial of** M is

$$\mathscr{P}_{M;\mathbb{F}}(t) := \beta_0 + \beta_1 t + \dots + \beta_n t^n$$

Example

$$\begin{split} \mathscr{P}_{\mathbb{R}^n;\mathbb{R}} &= 1, & \mathscr{P}_{S^n;\mathbb{R}} &= 1 + t^n, & \mathscr{P}_{T^2;\mathbb{R}} &= 1 + 2t + t^2, \\ \mathscr{P}_{K;\mathbb{R}} &= 1 + t, & \mathscr{P}_{K;\mathbb{Z}_2} &= 1 + 2t + t^2. \end{split}$$

Smooth maps and critical points

Definition

A map $f: M \longrightarrow \mathbb{R}$ on a smooth manifold M is **smooth** if locally, the partial derivatives

$$\frac{\partial^{i} f}{\partial x_{1}^{i_{1}} \cdots \partial x_{n}^{i_{n}}}, \qquad i := i_{1} + \cdots + i_{n}$$

exist and are continuous for all $i_1, \ldots, i_n \in \mathbb{N}_0$.

Definition

 $c \in M$ is a *critical point* if df(c) = 0.

Locally: if the Jacobian vanishes at c:

$$\left[\frac{\partial f}{\partial x_i}(c)\right]_i = [0]_i.$$

Nondegenerate critical point

 $f: M \longrightarrow \mathbb{R}$ is a smooth map on a smooth manifold M.

Definition

 $c \in M$ is a **nondegenerate critical point** if dc = 0 and locally

$$\det H \neq 0, \qquad H := \left[\frac{\partial^2 f}{\partial x_i \, \partial x_j}(c)\right]_{ij}.$$

If the Hessian is nonsingular at c then f is 'not too flat' at c.

Definition

The **index** λ_c is the number of negative eigenvalues of H.

 λ_c is the number of independent directions along which f will decrease from c.

Examples of degenerate and nondegenerate critical points

$$(c = origin.)$$

DEGENERATE

 $f(x, y) = x^2$

NONDEGENERATE

$$f(x,y) = -x^2 - y^2$$
$$\lambda_0 = 2$$

$$f(x, y) = x^2 - y^2$$

$$\lambda_0 = 1$$

Idea of Morse theory

Marston Morse

Nondegenerate critical points of real-valued maps are linked to the topology.

Attaching disks

Definition

A space X is obtained from a space A by **attaching an** i-**disk** with a map $\alpha: \partial D^i \longrightarrow A$ if

$$X = \frac{A \coprod D^i}{\partial D^i \sim \alpha(\partial D^i)}.$$

Example: the upright torus

The height map $f := \operatorname{Proj}_z$ of a torus embedded in \mathbb{R}^3 standing tangent to the xy-plane has 4 nondegenerate critical points with indices $\lambda = 0, 1, 1, 2$.

$$d_i := f(c_i)$$

$$M^a := f^{-1}(-\infty, a]$$

a ∈	M ^a ∼	attach	
$(-\infty, d_1)$	Ø		$\stackrel{z}{\uparrow}_{d_4}$
			\bigcup_{d_2}
			\downarrow
			_

$$M^a := f^{-1}(-\infty, a]$$

a ∈	M ^a ∼	attach	
$(-\infty, d_1)$	Ø		z ↑,,
(d_1, d_2)	~ •	D^0	$ \begin{array}{c} $
			d_2
			† d ₁
			-

$$M^a := f^{-1}(-\infty, a]$$

a ∈	M ^a ∼	attach	
$(-\infty, d_1)$	Ø		z ↑ ,
(d_1, d_2)	○ ~ •	D^0	$ \begin{array}{c} $
(d_2,d_3)	~ 0	D^1	$\begin{bmatrix} a \\ d_2 \\ d_1 \end{bmatrix}$
			-

$$M^a := f^{-1}(-\infty, a]$$

a ∈	M ^a ∼	attach	_
$(-\infty, d_1)$	Ø		z ↑ ,
(d_1, d_2)	○ ~ •	D^0	$ \begin{array}{c} d_4 \\ a \\ d_3 \end{array} $
(d_2, d_3)	~ O	D^1	d ₂
(d_3,d_4)	0 ~ 0	D^1	d ₁

$$M^a := f^{-1}(-\infty, a]$$

a ∈	M ^a ∼	attach	_
$(-\infty, d_1)$	Ø		- z
(d_1, d_2)	○ ~ •	D^0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(d_2, d_3)	~ O	D^1	
(d_3, d_4)	0 ~ 0	D^1	d_1
(d_4,∞)		D^2	

The Morse theorems

Suppose $f^{-1}[a, b]$ is compact $\forall [a, b] \subset \mathbb{R}$. Then:

Theorem (Morse [1934])

If $f^{-1}[a, b]$ contains no critical points, then

$$M^b \sim M^a$$
.

Theorem (Morse [1934])

If $f^{-1}[a,b]$ contains exactly one nondegenerate critical point of index λ , then

$$M^b \sim M^a \cup D^\lambda$$
.

Morse inequalities

Definition

If $f: M \longrightarrow \mathbb{R}$ has only nondegenerate critical points it is a **Morse** map.

Definition

Let $\mu_{\lambda} := \#$ critical points of index λ of a Morse map $f: M \longrightarrow \mathbb{R}$ on a compact manifold M. The **Morse polynomial** of f is

$$\mathscr{M}_f(t) := \mu_0 + \mu_1 t + \cdots + \mu_n t^n,$$

Theorem (Morse [1934])

$$\mathcal{M}_f(t) - \mathcal{P}_{M:\mathbb{F}}(t) = (1+t)\mathcal{N}(t)$$

where N(t) is a polynomial with coefficients in \mathbb{N}_0 .

Euler characteristic

Definition

For M a compact manifold, the **Euler characteristic** is

$$\chi_M := \sum_{i=0}^n \beta_i(M)(-1)^i = \mathscr{P}_{M;\mathbb{F}}(-1).$$

From the Morse inequalities

$$\mathcal{M}_f(t) - \mathcal{P}_{M:\mathbb{F}}(t) = (1+t)N(t),$$

we have

$$\mathcal{M}_f(-1) = \chi_M$$
.

Morse-Bott theory

Many 'natural' maps cannot be Morse because their critical points are not isolated.

Definition

 $f: M \longrightarrow R$ is **Morse-Bott** if the critical points are a disjoint union of (orientable) submanifolds such that the Hessian is nondegenerate restricted to the normal directions.

Morse-Bott inequalities

 $f: M \longrightarrow \mathbb{R}$ is Morse-Bott (critical set are disjoint nondegenerate submanifolds).

Definition

Manifolds and homology

The Morse-Bott polynomial of f is

$$\mathscr{M}_{f;\mathbb{F}}(t)\coloneqq\sum_{C\in\pi_0(\mathsf{Cr}\,f)}t^{\lambda_C}\mathscr{P}_{C;\mathbb{F}}(t).$$

Theorem (Bott [1954])

$$\mathscr{M}_{f:\mathbb{F}}(t) - \mathscr{P}_{M:\mathbb{F}}(t) = (1+t)N(t)$$
 for some $N(t) \in \mathbb{N}_0[t]$.

Other applications

Historical:

- Milnor [1956]: discovery of exotic spheres.
- Bott [1959]: Periodicity Theorem: π_n of infinite classical Lie groups are periodic.
- Smale [1961]: Generalised Poincaré conjecture in Dim ≥ 5: every homotopy sphere is a sphere.
- Witten [1982]: Supersymmetric quantum field theory.

Modern:

- String topology [1999–]: algebraic structures on homology of free loop spaces.
- Discrete Morse theory
 [2002–] (topological data analysis, persistent homology, combinatorial topology)

THANK YOU!

Figures from:

Manifolds and homology

Augustin Banyaga and David Hurtubise.

Lectures on Morse homology, volume 29 of Kluwer Texts in the Mathematical Sciences.

Kluwer Academic Publishers Group, Dordrecht, 2004.

Wikimedia Commons.

URL: https://commons.wikimedia.org/wiki/.

Allen Hatcher

Algebraic topology.

Cambridge University Press, Cambridge, 2002.

Peter Hilton.

A brief, subjective history of homology and homotopy theory in this century. Mathematics magazine, 61(5):282-291, 1988.

J. Milnor.

Morse theory.

Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.