4.3 关系的性质

- ■自反性
- ■反自反性
- ■对称性
- ■反对称性
- ■传递性

自反性与反自反性

定义 设R为A上的关系,

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$, 则称R在A上是自反的.
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$, 则称R在A上是反自反的.

实例:

自反关系: A上的全域关系 E_A ,恒等关系 I_A

小于等于关系 L_A ,整除关系 D_A

反自反关系: 实数集上的小于关系

幂集上的真包含关系

实例

例1
$$A=\{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1=\{<1,1>,<2,2>\}$ $R_2=\{<1,1>,<2,2>,<3,3>,<1,2>\}$ $R_3=\{<1,3>\}$

 R_1 既不是自反也不是反自反的, R_2 自反, R_3 反自反

м

对称性与反对称性

定义 设R为A上的关系,

- (1) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$,则称R为A上对称的关系.
- (2) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y)$, 则称R为A上的反对称关系.

实例:

对称关系: A上的全域关系 E_A ,恒等关系 I_A 和空关系 \emptyset

反对称关系: 恒等关系 I_A ,空关系是A上的反对称关系.

实例

例2 设 $A = \{1,2,3\}, R_1, R_2, R_3 \Rightarrow R_4 \Rightarrow$

$$R_1 = \{<1,1>,<2,2>\}, R_2 = \{<1,1>,<1,2>,<2,1>\}$$

$$R_3 = \{<1,2>,<1,3>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}$$

 R_1 对称、反对称.

 R_2 对称,不反对称.

 R_3 反对称,不对称.

 R_4 不对称、也不反对称.

传递性

定义 设R为A上的关系,若 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$, 则称R是A上的传递关系.

实例:

A上的全域关系 E_A ,恒等关系 I_A 和空关系Ø 小于等于关系,小于关系,整除关系,包含关系, 真包含关系

实例

例3 设
$$A = \{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1 = \{<1,1>,<2,2>\}$ $R_2 = \{<1,2>,<2,3>\}$ $R_3 = \{<1,3>\}$

 R_1 和 R_3 是A上的传递关系 R_3 不是A上的传递关系

м

关系性质的充要条件

设R为A上的关系,则

- (1) R在A上自反当且仅当 I_A $\subseteq R$
- (2) R在A上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R在A上对称当且仅当 $R=R^{-1}$
- (4) R在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- (5) R在A上传递当且仅当 R°R $\subseteq R$

м

自反性证明

```
证明模式 证明R在A上自反
任取x,
x \in A \Rightarrow \dots \Rightarrow \langle x, x \rangle \in R
前提 推理过程 结论
```

例4 证明若 $I_A \subseteq R$,则 R在A上自反. 证 任取x, $x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$ 因此 R 在 A 上是自反的.

1

对称性证明

```
证明模式 证明R在A上对称
任取< x, y>
< x, y> \in R \Rightarrow \Rightarrow < y, x> \in R
前提 推理过程 结论
```

例5 证明若 $R=R^{-1}$,则R在A上对称. 证 任取 $\langle x,y \rangle$ $\langle x,y \rangle \in R \Rightarrow \langle y,x \rangle \in R^{-1} \Rightarrow \langle y,x \rangle \in R$ 因此 R 在 A 上是对称的.

反对称性证明

证明模式 证明
$$R$$
在 A 上反对称
任取 $< x, y>$
 $< x, y> \in R \land < y, x> \in R \Rightarrow \dots \Rightarrow x=y$
前提 推理过程 结论

例6 证明若 $R \cap R^{-1} \subseteq I_A$,则R在A上反对称. 证 任取 $\langle x,y \rangle$ $\langle x,y \rangle \in R \land \langle y,x \rangle \in R \Rightarrow \langle x,y \rangle \in R \land \langle x,y \rangle \in R \cap R^{-1}$ $\Rightarrow \langle x,y \rangle \in R \cap R^{-1} \Rightarrow \langle x,y \rangle \in I_A \Rightarrow x = y$ 因此 R 在 A 上是反对称的.

100

传递性证明

证明模式 证明R在A上传递 任取< x, y>, < y, z> $< x, y> \in R \land < y, z> \in R \Rightarrow \dots \Rightarrow < x, z> \in R$ 前提 推理过程 结论

例7 证明若 $R^{\circ}R \subseteq R$,则R在A上传递.

证 任取<*x*,*y*>, <*y*, *z*>

 $\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R^{\circ}R \Rightarrow \langle x,z \rangle \in R$ 因此 R 在 A 上是传递的.

关系性质判别

	自反	反自反	对称	反对称	传递
表达式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R^{\circ}R\subseteq R$
关系 矩阵	主对角线元素全是1	主对角 线元素 全是0	矩阵是 对称矩 阵	若 r_{ij} =1, 且 $i \neq j$,则 r_{ji} =0	对M ² 中1 所在位置, M中相应 位置都是1
关系图	每 顶 都 环	每个顶 点都没 有环	如果两个顶 点之间有边, 是一对方向 相反的边(无 单边)	之间有边, 一定是一 条有向边	如果顶点 x_i 到 x_j 有 边, x_j 到 x_k 有 边,则从 x_i 到 x_k 有边

10

实例

例8 判断下图中关系的性质,并说明理由.

- (a)不自反也不反自反;对称,不反对称;不传递.
- (b)反自反,不是自反的;反对称,不是对称的; 是传递的.
- (c)自反,不反自反;反对称,不是对称;不传递.

运算与性质的关系

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$
$R_1 \cap R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V	\checkmark
$R_1 \cup R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	×
R_1 – R_2	×	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×
$R_1 \circ R_2$		×	×	×	×

例:设A是集合, R_1 和 R_2 是A上的关系,如果 R_1 和 R_2 是自反的,则 $R_1 \cup R_2$ 也是自反的证明:

由于 R_1 和 R_2 是A上的自反关系,故有 $I_A \subseteq R_1$ 和 $I_A \subseteq R_2$

从而 $I_A \subseteq R_1 \cup R_2$, 所以 $R_1 \cup R_2$ 也是自反的

例:设A是集合, R_1 和 R_2 是A上的关系, 如果 R_1 和 R_2 是对称的,则 $R_1 \cap R_2$ 也是对称的

证明:

证明:
对任意的
$$< x, y >$$
,有
 $< x, y > \in R_1 \cap R_2$
 $\Leftrightarrow < x, y > \in R_1 \wedge < x, y > \in R_2$
 $\Leftrightarrow < y, x > \in R_1 \wedge < y, x > \in R_2$
 $\Leftrightarrow < y, x > \in R_1 \cap R_2$
所以 $R_1 \cap R_2$ 是对称的

例:设A是集合, R_1 和 R_2 是A上的关系,如果 R_1 和 R_2 是对称的,则 $R_1 \cup R_2$ 也是对称的

证明:

由 R_1 和 R_2 的对称性有

$$R_1 = R_1^{-1}$$
和 $R_2 = R_2^{-1}$ $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1} = R_1 \cup R_2$ 所以 $R_1 \cup R_2$ 是对称的

例:设A是集合, R_1 和 R_2 是A上的关系,如果 R_1 和 R_2 是传递的,则 $R_1 \cap R_2$ 也是传递的证明:

由R₁和R₂的传递性有

$$R_1 \circ R_1 \subseteq R_1 \land R_2 \circ R_2 \subseteq R_2$$

利用定理4.2,有

$$(R_1 \cap R_2) \circ (R_1 \cap R_2)$$

$$\subseteq (R_1 \circ R_1) \cap (R_1 \circ R_2) \cap (R_2 \circ R_1) \cap (R_2 \circ R_2)$$

$$\subseteq (R_1 \cap R_2) \cap (R_1 \circ R_2) \cap (R_2 \circ R_1)$$

$$\subseteq (R_1 \cap R_2)$$

所以 $R_1 \cap R_2$ 也是传递的