ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

МЕХАНИКО - МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ПРИКЛАДНОЙ МЕХАНИКИ И УПРАВЛЕНИЯ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(ДИПЛОМНАЯ РАБОТА) МАГИСТРА

ВОССТАНОВЛЕНИЕ ЧЕЛОВЕКОМ ИСХОДНОЙ ПОЗЫ ПОСЛЕ ТОЛЧКА

Выполнил: студент группы М - 2
Романов Андрей Владимирович
(подпись студента)
(подпись студента)
Научный руководитель:
к.фм.н., доцент Кручинин Павел Анатольевич
(подпись научного руководителя)

Москва 2023

Оглавление

Ві	веде	ние	3
1.	Ma	гематическая модель и решение задачи быстродействия	6
	1.1	Математическая модель	6
	1.2	Постановка задачи быстродействия	8
	1.3	Анализ задачи быстродействия	
	1.4	Решение задачи быстродействия на отдельных этапах времени	10
		1.4.1 Решение системы на первом этапе	10
		1.4.2 Решение системы на втором этапе	11
		1.4.3 Решение системы на третьем этапе	12
		1.4.4 Сопряжение второго и третьего этапов	
	1.5	Поиск аналитического решения	13
2.	Опр	ределение начальных условий в момент завершения толчка	15
	2.1	Постановка задачи	15
	2.2	Применение алгоритмов фильтрации к модельным данным	17
	2.3	Анализ данных со стабилоанализатора и силомера	18
	2.4	Применение алгоритмов фильтрации к экспериментальным данным	20
	2.5	Оценка начальных условий в моменты завершения толчков	20
3.	Ана	ализ полученных решений задачи быстродействия	23
	3.1	Сравнение траекторий и времени возвращения для выборки толчков	23
	3.2	Гипотезы по корректировке задачи	25
За	клю	ч ение	27
Лı	итер	атура	28

Введение

В литературе встречается решение задач оптимального быстродействия для моделей движения человека [1, 2]. Исследование таких задач может помочь объяснить некоторые особенности результатов, наблюдаемых при обследованиях. Проба со ступенчатым воздействием является одной из стандартных проб при стабилометрических исследованиях [3, 4]. При проведении этой пробы обследуемый стоит на платформе стабилоанализатора перед экраном, на котором изображена мишень и отображается движение центра давления человека, после толчка в спину, определяемое по показаниям стабилоанализатора.

В ходе теста производят толкающее воздействие на человека с помощью груза, помещенного на подвижном отвесе [5]. В результате внешнего воздействия тело человека наклоняется вперед и при не очень сильном толчке он не теряет равновесие и не падает, а возвращается в исходное положение за счет изменения угла в голеностопном суставе. Изменение остальных суставных углов может оказаться тоже не столь значительным. Родственные задачи уже решались в работах [6, 7]. Схематическое изображение эксперимента представлено на рисунке 1.

Рис. 1. Схематическое изображение толкателя и положения испытуемого на стабилоплатформе

Исходные данные об отклонении сагиттальной коордианты при различных по силе толчках, предоставлены сотрудниками ИМБП РАН (см. рисунок 2)

Рис. 2. Отклонение сагиттальной координаты при различных по силе толчках

В качестве математической модели используется традиционно модель «перевернутого маятника» [6, 7, 8].

Целью работы является разработка алгоритма управления изменением позы человека, основанного на решении задачи оптимального быстродействия, который можно было бы использовать для возвращения в исходную вертикальную позу. В дальнейшем такое решение предполагается использовать для оценки эффективности управления человеком при возвращении в вертикальную позу, путем сравнения времени реального процесса с полученным эталонным решением оптимальной задачи.

Акутальность работы объясняется тем, что похожие задачи уже решались, но именно эта с такими начальными условиям новая. Решение это задачи может быть применено как в медицине, для оценки оптимальности работы мышщ человека, так и при разработке протезов, иммитирующих работу мышщ.

Задачи работы:

- Описание математической модели
- Постановка задачи быстродействия, используя принцип максимума Понтрягина
- Поиск решения задачи быстродействия

- Определение начального состояния системы, в момент завершения толчка
- Решение задачи быстродействия с вычисленными начальными условиям
- Сравнение реального и оптимального времени возвращения в исходную позу
- Сравнение реальной и оптимальной траектории возвращения в исходную позу
- Интерпретация полученных результатов

Методы исследования:

- Движение человека в саггитальной плоскости описывается моделью перевернутого маятника.
- Для описания движения используется система обыкновенных дифференциальных уравнений с постоянными коэффицентами 3 порядка.
- Начальные условия для задачи быстродействия определяются с данных эксперимента, в ходе которого на человека оказывают толкающее воздействие.
- Проводится графическое моделирование в математических пакетах Matlab и Wolfram Mathematica.

Объем и структура работы. Работа состоит из введения, трех глав и заключения. Полный объем работы составляет 29 страниц, включая 20 рисунков и 2 таблицы.

Глава 1.

Математическая модель и решение задачи быстродействия

1.1. Математическая модель

Для описания движения тела человека в сагиттальной плоскости используем традиционную модель перевернутого маятника (см. рисунок 1.1).

Рис. 1.1. Модель перевернутого маятника

Традиционно предполагаем, что тело человека в ходе теста допустимо моделировать недеформируемым однородным стержнем массы m_T , закрепленным шарнирно в точке O, которая соответствует голеностопному суставу.

Центр масс стержня расположен в точке C, удаленной от точки O на расстояние

l. Момент инерции стержня относительно фронтальной оси, проходящей через точку O, равен J. Отклонение стержня от вертикали описывается углом φ . Будем считать, что обследуемый ориентирован так, что его сагиттальная плоскость параллельна оси чувствительности платформы, а его стопа неподвижна относительно платформы. Скорость изменения момента M, который приложен в точке O к стержню, будем считать управлением.

На тело воздействует два момента: первый от силы тяжести, второй момент возникает в голеностопе. Запишем уравнение моментов, относительно точки O на ось перпендикулярную плоскости рисунка 1.1

$$J\ddot{\varphi} = m_T g l \sin \varphi + M$$

Уравнение моментов для малых значений угла φ и скорости его изменения запишем, как традиционно принято для этой задачи.

$$J\ddot{\varphi} = m_T g l \varphi + M$$

Необходимо перевести решение уравнения из начального состояния

$$\varphi(0) = \varphi_0, \, \dot{\varphi}(0) = \omega_0$$

в конечное состояние

$$\varphi(t_k) = \varphi_k, \, \dot{\varphi}(t_k) = 0.$$

Перевод состояния тела должен происходить за минимальное время t_k , с помощью изменений значения \dot{M} в голеностопном суставе.

Будем принимать во внимание условия ограниченности скорости изменения момента в голеностопном суставе, как это соответствует физиологически

$$U^- \leqslant \dot{M} \leqslant U^+.$$

Будем считать, что за время толчка нервная система человека не успела среагировать и момент в голеностопном суставе остался неизменным и соответствует значению, обеспечивающему положение равновесия человека до начала движения и после его завершения

$$M(0) = M(t_k) = -m_T g l \varphi_k;$$

Для дальнейшего анализа задачи представим приведенные соотношения в безразмерном виде. Для этого перейдем к новым переменным

$$\theta = \frac{\varphi - \varphi_k}{\varphi_*}, \quad m = \frac{M - M_f}{m_T g l \varphi_*}.$$

В качестве характерного значения угла выберем разность начального и конечного значений угла в голеностопном суставе при выполнении пробы $\varphi_* = \varphi_0 - \varphi_k$

Введем безразмерное время

$$\tau = \frac{t}{t_*}, \ t_* = \sqrt{\frac{J}{m_T g l}}.$$

Управлением u будем считать скорость изменения безразмерного момента. Для этих переменных обезразмеренные уравнения движения примут следующий вид

$$\theta'' = \theta + m; \ m' = u \tag{1.1}$$

Здесь через $m^{'}$ обозначено дифференцирование по безразмерному времени τ . Необходимо решение системы (1.1) перевести из начального положения

$$\theta(0) = 1; \ \theta'(0) = \frac{t_*}{\varphi_*} \omega_0 = \Omega_0; \ m(0) = 0$$

в положение

$$\theta(\tau_f) = 0; \ \theta'(\tau_f) = 0; \ m(\tau_f) = 0$$

с помощью ограниченного управления

$$u^- \leqslant u \leqslant u^+$$
, где

$$u^- = \frac{t_* U^-}{m_T g l \varphi_*}, \quad u^+ = \frac{t_* U^+}{m_T g l \varphi_*}.$$

Далее будем считать, что $u^- = -u^+$

1.2. Постановка задачи быстродействия

Выпишем систему (1.1) в форме Коши

$$\begin{cases} \theta' = \omega, \\ \omega' = \theta + m, \\ m' = u. \end{cases}$$
(1.2)

Ограничение на управление $|u| \leqslant u_{max}$

Начальные условия

$$\theta(0) = 1; \ \omega(0) = \frac{t_*}{\varphi_*} \omega_0 = \Omega_0; \ m(0) = 0$$

Конечные условия

$$\theta(\tau_f) = 0; \ \theta'(\tau_f) = 0; \ m(\tau_f) = 0$$

 $J = \tau_f \to \min$

Для решения задачи оптимального быстродействия будем использовать принцип максимума Понтрягина [9]:

Если $\{y^0(\cdot),u^0(\cdot),[t_0,t_k^0]\}$ — оптимальный процесс, то существует нетривиальная пара $\{\lambda_0\geq 0,\psi(\cdot)\}$ такая, что

- $\max_{u(t)\in\Omega} H(\psi(t), y^0(t), u(t)) = H(\psi(t), y^0(t), u^0(t)) \ \forall t \in T \subseteq [t_0, t_k^0];$
- $\psi(t_k^0) + \lambda_0 (\frac{\partial \varphi_0(y^0(t_k^0))}{\partial y})^T \perp M$ в точке $y^0(t_k^0);$
- $\mathcal{H} = H(\psi(t), y^0(t), u^0(t)) \equiv 0$ при $t \in [t_0, t_k^0]$.

Запишем функцию Понтрягина

$$H(\psi(t), y(t), u(t)) = \psi_1 \cdot \omega + \psi_2 \cdot (\theta + m) + \psi_3 \cdot u$$

Сопряженная система уравнений:

$$\psi_i' = -\frac{\partial H}{\partial y_i}, \ i = 1, \dots, n$$

В данной задаче $y_1 = \theta, y_2 = \omega, y_3 = m$, тогда сопряженная система примет вид

$$\begin{cases} \psi_{1}^{'} = -\frac{\partial H}{\partial \theta} = -\psi_{2} \\ \psi_{2}^{'} = -\frac{\partial H}{\partial \omega} = -\psi_{1} \\ \psi_{3}^{'} = -\frac{\partial H}{\partial m} = -\psi_{2} \end{cases}$$

$$(1.3)$$

1.3. Анализ задачи быстродействия

Рассмотрим собственные числа системы (1.2)

$$\det (\mathcal{A} - \lambda \mathcal{I}) = 0 \Longleftrightarrow \begin{vmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 1 \\ 0 & 0 & -\lambda \end{vmatrix} = 0, \tag{1.4}$$

где \mathcal{I} – единичная матрица.

Раскрывая определитель, получим $\lambda_1=0,\quad \lambda_2=1,\quad \lambda_3=-1,$ в литературе [13] нет готового решения, для задач с нулевыми собственными значениями.

При $\psi_3 \equiv 0$ следует, что $\psi_2 \equiv 0$ и $\psi_1 \equiv 0$ следовательно особого управления нет.

Тогда для условия максимизации функции Понтрягина

$$u = \begin{cases} -u_{max}, & \text{при } \psi_3 < 0 \\ +u_{max}, & \text{при } \psi_3 \geqslant 0 \end{cases}$$

Продифференцируем по безразмерному времени второе уравнение из (1.3) и подставим в него первое, получим

$$\psi_2'' = \psi_2$$

Решая систему (1.3), получим

$$\begin{cases} \psi_1 = -C_1 e^{\tau} + C_2 e^{-\tau} + C_3, \\ \psi_2 = C_1 e^{\tau} + C_2 e^{-\tau}, \\ \psi_3 = -C_1 e^{\tau} + C_2 e^{-\tau} + C_3. \end{cases}$$

Анализируя корни уравнения $\psi_3(\tau)=0$, для различной комбинации коэффициентов C_1,C_2,C_3 , получим, что число корней не может быть больше двух. В системе может быть не более двух переключений u.

Аналагичный вывод можно получить, применив теорему Фельдбаума о числе переключений оптимального управления[10]

1.4. Решение задачи быстродействия на отдельных этапах времени

Пусть $u^* = \text{const}$ управление на первом участке траектории до первого переключения $u^* = -u_{max}$.

Пусть первое переключение управления происходит в момент времени $\tau = \tau_1$, а второе в момент времени $\tau = \tau_2$. Рассмотрим систему (1.2) на трех этапах, при переходе между которыми меняется управление.

Решая систему (1.2), получим

$$\begin{cases}
m(\tau) = \tau u + C_1, \\
\theta(\tau) = \frac{1}{2}e^{-\tau} \left((C_1 + C_2 + C_3)e^{2\tau} - 2e^{\tau}(\tau u + C_1) + C_1 + C_2 - C_3 \right), \\
\omega(\tau) = \frac{1}{2}e^{-\tau} \left((C_1 + C_2 + C_3)e^{2\tau} - 2e^{\tau}u - C_1 - C_2 + C_3 \right).
\end{cases} (1.5)$$

1.4.1. Решение системы на первом этапе

Этап 1. $u = -u_*$ начальные условия

$$m(0) = 0$$
; $\theta(0) = 1$; $\omega(0) = \Omega_0$;

Из (1.5) получим

$$\begin{cases} 0 = -\tau u_* + c_1, \\ 1 = \frac{1}{2}e^{-\tau} \left(C_1 (e^{\tau} - 1)^2 + C_2 (e^{2\tau} + 1) + C_3 e^{2\tau} - C_3 + 2e^{\tau} \tau u_* \right), \\ \Omega_0 = \frac{1}{2}e^{-\tau} \left(C_1 (e^{2\tau} - 1) + C_2 (e^{2\tau} - 1) + C_3 e^{2\tau} + C_3 + 2e^{\tau} u_* \right). \end{cases}$$

Тогда

$$\begin{cases} C_1 = 0, \\ C_2 = 1, \\ C_3 = -u_* + \Omega_0. \end{cases}$$

Подставим полученные константы в (1.5)

$$\begin{cases} m_1(\tau) = -\tau u_*, \\ \theta_1(\tau) = \frac{e^{\tau} + e^{-\tau}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau} - e^{-\tau}) + \tau u_*, \\ \omega_1(\tau) = \frac{e^{\tau} - e^{-\tau}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau} + e^{-\tau}) + u_*. \end{cases}$$

1.4.2. Решение системы на втором этапе

Этап 2. $u = u_*$ начальные условия

$$m(\tau_1) = m_1(\tau_1); \ \theta(\tau_1) = \theta_1(\tau_1); \ \omega(\tau_1) = \omega_1(\tau_1);$$

$$\begin{cases} m(\tau_1) = -\tau_1 u_*, \\ \theta(\tau_1) = \frac{1}{2} e^{-\tau_1} \left(\left(e^{2\tau_1} - 1 \right) \Omega_0 + e^{2\tau_1} + \left(2e^{\tau_1} \tau_1 - e^{2\tau_1} + 1 \right) u_* + 1 \right), \\ \omega(\tau_1) = \frac{1}{2} e^{-\tau_1} \left(\left(e^{2\tau_1} + 1 \right) \Omega_0 - \left(e^{\tau_1} - 1 \right) \left(-e^{\tau_1} + \left(e^{\tau_1} - 1 \right) u_* - 1 \right) \right). \end{cases}$$

Находим константы интегрирования

$$\begin{cases}
-\tau_{1}u_{*} = \tau_{1}u_{*} + C_{1}, \\
\frac{1}{2}e^{-\tau_{1}}\left(\left(e^{2\tau_{1}} - 1\right)\Omega_{0} + e^{2\tau_{1}} + \left(2e^{\tau_{1}}\tau_{1} - e^{2\tau_{1}} + 1\right)u_{*} + 1\right) = \\
= \frac{1}{2}e^{-\tau_{1}}\left(C_{1}\left(e^{\tau_{1}} - 1\right)^{2} + C_{2}e^{2\tau_{1}} + C_{3}e^{2\tau_{1}} - 2e^{\tau_{1}}\tau_{1}u_{*} + C_{2} - C_{3}\right), \\
\frac{1}{2}e^{-\tau_{1}}\left(\left(e^{2\tau_{1}} + 1\right)\Omega_{0} - \left(e^{\tau_{1}} - 1\right)\left(-e^{\tau_{1}} + \left(e^{\tau_{1}} - 1\right)u_{*} - 1\right)\right) = \\
= \frac{1}{2}e^{-\tau_{1}}\left(C_{1}\left(e^{2\tau_{1}} - 1\right) + C_{2}e^{2\tau_{1}} + C_{3}e^{2\tau_{1}} - 2e^{\tau_{1}}u_{*} - C_{2} + C_{3}\right).
\end{cases}$$

$$\begin{cases}
C_{1} = -2\tau_{1}u_{*}, \\
C_{2} = -e^{-\tau_{1}}\left(-e^{\tau_{1}} + e^{2\tau_{1}}u_{*} - 2e^{\tau_{1}}\tau_{1}u_{*} - u_{*}\right), \\
C_{3} = e^{-\tau_{1}}\left(e^{\tau_{1}}\Omega_{0} - e^{\tau_{1}}u_{*} + e^{2\tau_{1}}u_{*} + u_{*}\right).
\end{cases}$$

Подставим начальные условия для второго этапа в (1.5), получим

$$\begin{cases} m_2(\tau) = (\tau - 2\tau_1) u_*, \\ \theta_2(\tau) = \frac{e^{\tau} + e^{-\tau}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau} - e^{-\tau}) + u_* (e^{\tau - \tau_1} - e^{-\tau + \tau_1} + 2\tau_1 - \tau), \\ \omega_2(\tau) = \frac{e^{\tau} - e^{-\tau}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau} + e^{-\tau}) + u_* (e^{\tau - \tau_1} + e^{-\tau + \tau_1} - 1). \end{cases}$$

1.4.3. Решение системы на третьем этапе

Этап 3. $u = -u_*$ конечные условия

$$m(\tau_f) = 0; \ \theta(\tau_f) = 0; \ \omega(\tau_f) = 0;$$

Подставим начальные условия в (1.5), получим

$$\begin{cases} 0 = C_1 - \tau_f u_*, \\ 0 = \frac{1}{2} e^{-\tau_f} \left(C_1 \left(e^{\tau_f} - 1 \right)^2 + C_2 \left(e^{2\tau_f} + 1 \right) + C_3 e^{2\tau_f} - C_3 + 2u_* e^{\tau_f} \tau_f \right), \\ 0 = \frac{1}{2} e^{-\tau_f} \left(C_1 \left(e^{2\tau_f} - 1 \right) + C_2 \left(e^{2\tau_f} - 1 \right) + C_3 e^{2\tau_f} + C_3 + 2u_* e^{\tau_f} \right). \end{cases}$$

$$\begin{cases} C_1 = u_* \tau_f, \\ C_1 = \frac{1}{2} u_* e^{-\tau_f} \left(-2e^{\tau_f} \tau_f + e^{2\tau_f} - 1 \right), \\ C_2 = -\frac{1}{2} u_* e^{-\tau_f} \left(e^{2\tau_f} + 1 \right). \end{cases}$$

Тогда решение на этом этапе имеет вид

$$\begin{cases} m_3(\tau) = u_* (\tau_f - \tau), \\ \theta_3(\tau) = \frac{1}{2} u_* (-e^{\tau - \tau_f} + e^{\tau_f - \tau} - 2\tau_f + 2\tau), \\ \omega_3(\tau) = u_* - \frac{u_*}{2} (e^{\tau - \tau_f} + e^{-\tau + \tau_f}). \end{cases}$$

1.4.4. Сопряжение второго и третьего этапов

Так как момент, угол отклонения и угловая скорость представлют собой кусочно-непрерывные фукнции времени, то можно сопрячь систему на втором и третьем этапе в момент времени τ_2 .

$$\begin{cases} m_2(\tau_2) = m_3(\tau_2), \\ \theta_2(\tau_2) = \theta_3(\tau_2), \\ \omega_2(\tau_2) = \omega_3(\tau_2). \end{cases}$$

Получим

$$\begin{cases} (\tau_2 - 2\tau_1) u_* = u_* (\tau_f - \tau_2), \\ \frac{e^{\tau_2} + e^{-\tau_2}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau_2} - e^{-\tau_2}) + u_* (e^{\tau_2 - \tau_1} - e^{-\tau_2 + \tau_1} + 2\tau_1 - \tau_2) = \\ = \frac{1}{2} u_* \left(-e^{\tau_2 - \tau_f} + e^{\tau_f - \tau_2} - 2\tau_f + 2\tau_2 \right), \\ \frac{e^{\tau_2} - e^{-\tau_2}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau_2} + e^{-\tau_2}) + u_* (e^{\tau_2 - \tau_1} + e^{-\tau_2 + \tau_1} - 1) = \\ = u_* - \frac{u_*}{2} (e^{\tau_2 - \tau_f} + e^{-\tau_2 + \tau_f}). \end{cases}$$

Сократим первое уравнение на u_* , выражение для τ_f из первого уравнения подставим во второе и третье

$$\begin{cases}
\tau_{f} = 2(\tau_{2} - \tau_{1}), \\
\frac{e^{\tau_{2}} + e^{-\tau_{2}}}{2} + \frac{\Omega_{0} - u_{*}}{2}(e^{\tau_{2}} - e^{-\tau_{2}}) + u_{*}\left(e^{-\tau_{1} + \tau_{2}} - e^{\tau_{1} - \tau_{2}} + \frac{e^{\tau_{2} - \tau_{f}} - e^{-\tau_{2} + \tau_{f}}}{2}\right) = 0, \\
\frac{e^{\tau_{2}} - e^{-\tau_{2}}}{2} + \frac{\Omega_{0} - u_{*}}{2}(e^{\tau_{2}} + e^{-\tau_{2}}) + u_{*}\left(e^{\tau_{1} - \tau_{2}} + e^{-\tau_{1} + \tau_{2}} + \frac{e^{\tau_{2} - \tau_{f}} + e^{-\tau_{2} + \tau_{f}}}{2} - 2\right) = 0.
\end{cases} (1.6)$$

Введем замену переменных

$$y = 2x - 2y = 1$$
 (1)

$$\begin{cases} z = \frac{y}{x}, \\ \frac{1}{2} \left(u_* \left(\frac{x^2}{y} - \frac{y}{x^2} - \frac{2x}{y} + \frac{2y}{x} - y + \frac{1}{y} \right) + \left(y - \frac{1}{y} \right) \Omega_0 + y + \frac{1}{y} \right) = 0, \\ \frac{u_* \left(\frac{y^2}{x^2} + x^2 + \frac{2y^2}{x} + 2x - y^2 - 4y - 1 \right) + (y^2 + 1) \Omega_0 + y^2 - 1}{2y} = 0. \end{cases}$$

 $x = e^{\tau_1}, \ y = e^{\tau_2}, \ z = e^{\frac{\tau_f}{2}}$

$$\begin{cases}
z = \frac{y}{x}, \\
(\Omega_0 - u_*) \left(xy - \frac{x}{y} \right) + u_* \left(\frac{x^3}{y} - \frac{y}{x} - \frac{2x^2}{y} + 2y \right) + \frac{x}{y} + xy = 0, \\
(\Omega_0 - u_*) \left(xy + \frac{x}{y} \right) + u_* \left(\frac{x^3}{y} + \frac{y}{x} + \frac{2x^2}{y} + 2y - 4x \right) - \frac{x}{y} + xy = 0.
\end{cases}$$
(1.7)

Полученную систему (1.7) можно решить численно, подставив вместо Ω_0 и u_* конкретные значения. Отбор корней проводим из условия, что x>1, y>1, z>1. Но также стоит провести дальнейший анализ для поиска аналитического решения.

1.5. Поиск аналитического решения

$$\begin{cases} y = zx, \\ (\Omega_0 - u_*) \left(x^2 z - \frac{x}{zx} \right) + u_* \left(\frac{x^3}{zx} - \frac{zx}{x} - \frac{2x^2}{zx} + 2zx \right) + \frac{x}{zx} + x^2 z = 0, \\ (\Omega_0 - u_*) \left(x^2 z + \frac{x}{zx} \right) + u_* \left(\frac{x^3}{zx} + \frac{zx}{x} + \frac{2x^2}{zx} + 2zx - 4x \right) - \frac{x}{zx} + x^2 z = 0. \end{cases}$$
(1.8)

$$\begin{cases}
(\Omega_0 - u_*) \left(x^2 z - \frac{1}{z} \right) + u_* \left(\frac{x^2}{z} - z - \frac{2x}{z} + 2zx \right) + \frac{1}{z} + x^2 z = 0, \\
(\Omega_0 - u_*) \left(x^2 z + \frac{1}{z} \right) + u_* \left(\frac{x^2}{z} + z + \frac{2x}{z} + 2zx - 4x \right) - \frac{1}{z} + x^2 z = 0.
\end{cases}$$
(1.9)

Сложим и вычтем уравнения системы

$$\begin{cases}
2(\Omega_0 - u_*)x^2z + u_* \left(2\frac{x^2}{z} + 4zx - 4x\right) + 2x^2z = 0, \\
2(\Omega_0 - u_*)\frac{1}{z} + u_* \left(2z + \frac{4x}{z} - 4x\right) - \frac{2}{z} = 0.
\end{cases}$$
(1.10)

$$\begin{cases}
2(\Omega_0 - u_*)x^2z + u_* \left(2\frac{x^2}{z} + 4zx - 4x\right) + 2x^2z = 0, \\
2(\Omega_0 - u_*)\frac{1}{z} + 2u_*z + 4x\left(\frac{u_*}{z} - u_*\right) - \frac{2}{z} = 0.
\end{cases}$$
(1.11)

$$\begin{cases}
2(\Omega_0 - u_*)x^2z + u_* \left(2\frac{x^2}{z} + 4zx - 4x\right) + 2x^2z = 0, \\
x = \left(\frac{1}{2z} - \frac{u_*z}{2} - (\Omega_0 - u_*)\frac{1}{2z}\right)\frac{z}{u_*(1-z)}
\end{cases}$$
(1.12)

$$\frac{\left(u_*\left(z^2-1\right)+\Omega_0-1\right)\left(-u_*\left(z^4+\Omega_0\left(z^2-1\right)^2\right)+u_*^2(z-1)^4+u_*-\Omega_0^2z^2+z^2\right)}{2u_*^2(z-1)^2}=0$$

$$\begin{bmatrix}
(u_* (z^2 - 1) + \Omega_0 - 1) = 0, \\
-u_* (z^4 + \Omega_0 (z^2 - 1)^2) + u_*^2 (z - 1)^4 + u_* - \Omega_0^2 z^2 + z^2 = 0
\end{cases}$$
(1.13)

$$\begin{bmatrix} u_* z^2 + \Omega_0 - 1 - u_* = 0, \\ (-u_* \Omega_0 + u_*^2 - u_*) z^4 - 4u_*^2 z^3 + (2u_* \Omega_0 + 6u_*^2 - \Omega_0^2 + 1) z^2 - 4u_*^2 z + -u_* \Omega_0 + u_*^2 + u_* = 0 \\ (1.14) \end{bmatrix}$$

Дальнейшее решение строится на основе перебора знака u_* , выбор знака + или - определяется на основании полученных корней, одно из решений явно будет не подходящим, исходя из физической реализации процесса.

Глава 2.

Определение начальных условий в момент завершения толчка

2.1. Постановка задачи

Для корректного решения задачи быстродействия необходимо как можно лучше оценить начальные условия в момент завершения толчка. Экспериментальные данные содержат только записи силомера и стабилоанализатора, поэтому определять начальные условия будем на основе данных с саггитальной стабилограммы и силомера.

Рассмотрим силы действующие на модель стержня, иммитирующего тело человека (см. рисунок 1.1) и силы действующие на систему «стопы ног – платформа стабилоанализатора».

Рис. 2.1. Силы действующие на на систему «стопы ног – платформа стабилоанализатора»

Где F – это внешняя толкающая сила, y – саггитальная координата центра давления, l_1 – высота точки к которой прикладывается толкающая сила , h – суммарная высота стопы и платформы стабилоанализатора, N – нормальная реакция опоры

Ниже представлена система уравнений соответствующая рисунку 1.1

$$\begin{cases}
ml\ddot{\theta} = -R_y - F, \\
0 = R_z - mg, \\
J\ddot{\theta} = mlg\sin\theta - Fl_1\cos\theta + M_x.
\end{cases}$$
(2.1)

Проведем линеаризацию по θ в окрестности нуля

$$\begin{cases}
ml\ddot{\theta} = -R_y - F, \\
0 = R_z - mg, \\
J\ddot{\theta} = mlg\theta - Fl_1 + M_x.
\end{cases}$$
(2.2)

Ниже представлена система уравнений соответствующая рисунку 2.1

$$\begin{cases} M_x = Ny + F_y h, \\ F_y = R_y, \\ N \approx mg. \end{cases}$$
 (2.3)

Из (2.2) и (2.3) выразим M_x

$$M_{x} = mgy - h\left(F + ml\ddot{\theta}\right)$$

$$(J + mlh) \ddot{\theta} = mgl\theta + mgy - Fl_{1} - Fh$$

$$\frac{(J + mlh)l\ddot{\theta}}{mgl} = l\theta + y - \frac{F}{mg}(l_{1} + h);$$
Замена: $\eta = -l\theta$; $T^{2} = \frac{J + mlh}{mgl};$

$$T^{2}\ddot{\eta} = \eta - y + \frac{F}{mg}(l_{1} + h)$$

$$T^{2}\ddot{\eta} = \eta - (y - \frac{F}{mg}(l_{1} + h))$$

$$(2.4)$$

Выражение (2.4) можно свести к уравнению фильтра, путем корректировки входных данных y

$$T^2\ddot{\eta} = \eta - y \tag{2.5}$$

Где y- входные данные стабилоанализатора, $\eta-$ выходные данные оценки координаты центра масс

В работе [12] получено такое же уравнение для связи центра масс и центра давления. Показано, что его решение неустойчиво и приводит к катастрофическому нарастанию ошибки оценки на временах больше 0.5с.

Для использования предположения об отсутствии экспоненциальных составляющих,

порожденных решением однородного уравнения, запишем передаточную функцию, соответствующую уравнению (2.5)

$$G(s) = -\frac{1}{T^2 s^2 - 1}$$

В работе [12] приведены два способа фильтрации данных: через преобразование Фурье и через фильрацию в прямом и обратном времени.

2.2. Применение алгоритмов фильтрации к модельным данным

Для оценки точности методов фильтрации проверим эти методы на модельных данных. Пусть наша система задается уравнением

$$J\ddot{\theta} = m_T g l\theta + M - F l_1 \cos \theta$$

 Γ де M - момент в голеностопном суставе Рассмотрим перевернутый маятник с спиральной пружиной в основании и вязким трением. Получим следующее выражение

$$J\ddot{\theta} = mgl\theta - C\theta - P\dot{\theta} - Fl_1 \tag{2.6}$$

Где C и P неизвестные коэффиценты. Подберем эти коэффиценты такими, чтобы (2.6) соответствовало затухающим колебаниям с периодом $T\approx 2c$

Движение центра масс и центра давления

2
0
-2
-4
-5
-6
-8
-10
-12
-14
0
2
4
6
8
10
17

Рис. 2.2. Пример зависимости $F(t) = 5(1 - \cos(4\pi \cdot 2.5t))$

Рис. 2.3. Модельное движение центра масс и центра давления

Восстановим η двумя способами

Погрешности обоих методов очень небольшие, почти идеально восстанавливают исходную траекторию центра масс. Для Фурье преобразования $\frac{RMSE}{max|\eta(t)|}=0.0079,$ для двойной фильтрации $\frac{RMSE}{max|\eta(t)|}=0.0007.$

Рис. 2.4. Восстановление через преобразование Фурье

Рис. 2.5. Восстановление через двойную фильтрацию

Рис. 2.6. Ошибка восстановления через преобразвоание Фурье , RMSE=0.0761

Рис. 2.7. Восстановление через двойную фильтрацию, RMSE=0.0061

2.3. Анализ данных со стабилоанализатора и силомера

Оценим массу, на рисунках 2.8 и 2.9 представлены графики показаний массы испытуемого человека

Среднее значение рассчитаем по рисунку 2.9, m = 67.8кг

Проанализируем силу толчков (см. рис. 2.10), сила толчка колеблется от 1 до 10 H, в первую очередь возьмем толчки большей силы, так как на них предположительно лучше удастся провести исследование.

Рис. 2.8. Масса на всем интервале наблюдений

Рис. 2.9. Масса на интервале исследуемых толчков

Рис. 2.10. Силовое воздействие на интервале наблюдения

Рис. 2.11. Саггитальное отклонение центра давления при толчках

2.4. Применение алгоритмов фильтрации к экспериментальным данным

Рассмотрим один конкретный толчок (около момента времени 1120) и для него применим два способа фильтрации (см. рис. 2.12 и 2.13)

Визуально видно, что ожидаемая и полученная траектория центра масс совпадают, без каких-либо аномальных отклонений

2.5. Оценка начальных условий в моменты завершения толчков

В задаче быстродейтсвия присутсвует несколько неизвестных параметров:

 m_T - масса тела человека, u_* - модуль оптимального управления, t_* - коэффицент обезразмеривания времени, $\varphi_* \approx \varphi_0$ - характерное значение угла отклонения тела

$$m_T = 67.8$$
кг

$$l = 0.88 \text{M}$$

Рис. 2.12. Восстановление с использованием двойной фильтрации

Рис. 2.13. Восстановление с использованием преобразования Фурье

$$t_* = \sqrt{\frac{J}{m_T g l}} = \sqrt{\frac{1/3 \cdot m_T l^2}{m_T g l}} = \sqrt{\frac{l}{3g}}$$
$$u^- = \frac{t_* U^-}{m g l \varphi_*}, \quad u^+ = \frac{t_* U^+}{m g l \varphi_*}.$$

 $|U^+| = |U^-| = \dot{M} \approx \Delta M \cdot \nu$, где $\nu-$ частота дискретизации данных на стабилоанализаторе $\nu = 50 \Gamma$ ц

В работе [14] показано, что $\Delta y = \frac{\Delta M}{mg}$.

Возьмем 5 толчков и по ним определим средний возникающий момент в голеностопе см. таблицу 2.1

	xStart(сек)	xEnd(сек)	$\Delta Y(\mathbf{m}\mathbf{m})$	$\Delta M(\mathbf{H} \cdot \mathbf{m})$
1	1098.9	1099.3	64.7	43.1
2	1120.8	1121.0	61.5	40.9
3	1133.2	1133.6	72.6	48.3
4	1185.9	1186.2	65.18	43.4
5	1277.8	1278.0	67.3	44.7

Таблица 2.1. Данные для расчета возникающего момента в голеностопе, см. рис. 2.11

Среднее значение
$$\Delta M=44.07~{\rm H\cdot M}$$
 Среднее значение $U^+=\frac{\Delta M}{\Delta t}=144.7~{\rm H\cdot M/c}$, $\Delta t_i=xEnd_i-xStart_i$

Рис. 2.14. Определение начальных условий в момент завершения толчка

На рисунке 2.14 представлены графики исходных данных, данные силомера, восстановленая траектория центра масс и ее первая производная, вычисленная как первая разность, умноженная на частоту дискретизации.

Вертикальная ось - Н, мм, мм/с для соответствующих величин. Момент завершения толчка соответствует точке с абсциссой 245. В ней берем начальные условия:

$$\varphi_0 = 0.0292, \quad \omega_0 = 0.1490$$

На основе которых можем уже решать задачу быстродействия

Глава 3.

Анализ полученных решений задачи быстродействия

3.1. Сравнение траекторий и времени возвращения для выборки толчков

Посчитаем безразмерное u_*

$$u_* = \frac{t_* U^-}{mql\varphi_*} = 1.46$$

При таком значении действительных корней уравнения (1.14) больших 1 нет, при обоих комбинациях знаков u_* .

Объяснение этому явлению такое: в реальности в голеностопе уже возник некоторый возвращающий момент, за счет нервной системы или быстрореагирующих мышц ноги, который не даст человеку упасть. Но в нашей постановке задачи, считается, что момент не успел возникнуть. Для корректировки завысим значение u_* в 2-3 раза.

Рис. 3.1. Оптимальная траектории в безразмерном виде u=3.2

Посторим полученные траектории для различных значений u_* (см. рис. 3.2, 3.3).

Данные со стабилоанализатора, содержат погрешности, спокойное положение немного блуждает, поэтому скорректируем координаты центра масс, на ее среднее значение до и после толчка. Корректировка представляет собой аналог вычитания линейного тренда.

Рис. 3.2. Оптимальные(голубые) и реальные(оранжевые) траектории на возвратном движении человека отметка 1120

Проведем аналогичный анализ для нескольких толчков, результаты представлены в таблице 3.1.

По ней видно, что среднее отношение реального времени завершения толчка к оптимальному равно 2.8 для сильных (номер 1-5) толчков и 1.86 для слабых (7-9) при управлении $u_*=3.2$. При таком управлении для нескольких толчков, максимальная амплитуда наиболее близка к реальной, поэтому для дальнейшего анализа будем рассматривать $u_*=3.2$

Рис. 3.3. Оптимальные (голубые) и реальные (оранжевые) траектории на возвратном движении человека отметка 1130

Номер толчка	1	2	3	4	5	6	7	8	9
$F_{max}(\mathbf{H})$	6.01	6.87	8.21	8.56	9.73	4.74	5.49	1.97	3.3
Время толчка(сек)	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
φ_0	0.026	0.028	0.033	0.033	0.035	0.022	0.018	0.008	0.007
ω_0	0.1490	0.1767	0.1689	0.1955	0.2139	0.0989	0.1453	0.0513	0.0786
Момент(кг*м)	14.88	19.21	17.95	19.28	19.95	9.97	14.16	6.38	7.95
$real/opt u_* = 3.2$	2.8	2.7	2.8	2.8	2.9	2.7	1.8	1.8	2.0
real/opt $u_* = 3.6$	3.1	3.0	3.1	3.1	3.2	2.9	2.0	2.0	2.3

Таблица 3.1. Анализ различных толчков

3.2. Гипотезы по корректировке задачи

Результаты эксперимента совпадают с ожидаемым результатом, но за счет допущений задачи, оптимальная траектория отличается от реальной. Нервная система могла не успеть среагировать, но тогда среагировали камбаловидная или икроножная мышцы, без предварительного сигнала от мозга. За счет чего и успел возникнуть момент.

Ниже представлен список предложений, которые можно использовать для уточнения решения задачи:

1) Считать, что после изменения момент в голеностопе уже успел измениться, что изменит начальные условия для задачи быстродействия;

- 2) Использовать ДУСы для определения начальных условий после толчка;
- 3) Уточнить физиологические способности человека, для более детального описания процесса возврата;
- 4) Уменьшить погрешность исходнго эксперимента: добавить видеозапись, провести эксперимент на нескольких здоровых людях, точнее откалибровать стабилограф, для удаления шумов;
- 5) Провести набор различных по силе толчков, близких к критическим к падению человека.

Заключение

В дипломной работе были представлены оптимальные алгоритмы управления движением позой при ступенчатом воздействии, основанные на модели «перевернутого маятника» удовлетворяющие принципу максимума Понтрягина. В задаче ставилось ограничение на скорость изменения момента в голеностопном суставе.

Проводимый эксперимент и математические модели взяты из литературы, подобные исследования уже проводились.

В ходе работы:

- Показано, что решение оптимальной задачи быстродействия при ограниченной скорости изменения момента в голеностопном суставе может иметь решение, которое хорошо качественно совпадает с картиной, наблюдаемой в стабилометрических исследованиях;
- Представлено аналитическое решение задачи быстродействия;
- Время необходимое для восстановления исходной позы получилось соизмеримым с реальным времени возвращения после толчка;
- Проведен анализ допущений, которые могут скорректировать соответствие математической модели и реального процесса;

Литература

- 1. Pandy M.G., Zajac F.E., Sim E., Levine W.S. An optimal control model for maximum height human jumping// Journal of Biomechanics.-1990, vol. 23 pp.1185-1198.
- 2. Happee R. Time optimality in the control of human movements// Biological cybernetics-1992, vol. 66 pp. 357-366.
- 3. Слива С.С., Войнов И.Д., Слива А.С. Стабилоанализаторы в адаптивной физической культуре и спорте// IV Международная научная конференция по вопросам состояния и перспективам развития медицины в спорте высших достижений «СПОРТМЕД-2009» М.: Экспоцентр, 2009.— С.121-123.
- 4. Муртазина Е.П. Функциональные особенности выполнения стабилографических тестов у испытуемых с различными антропометрическими данными // Известия ЮФУ. Технические науки.- 2009.-№9-С.123-127.
- 5. Мельников А.А., Филёва В.В. Методика определения устойчивости вертикальной позы под влиянием внешнего толкающего воздействия // Физиология. 2015. С. 31–37.
- 6. Кручинин П.А. Анализ результатов стабилометрических тестов со ступенчатым воздействием с точки зрения механики управляемых систем // Биофизика. − 2019. − Т. 64. №5. − С. 1–11.
- 7. П. А. Кручинин и Е. А. Касаткин, Изв. ЮФУ. Техн. науки 10 (159), 254 (2014).
- 8. Гурфинкель В.С., Коц Я.М., Шик М.Л. Регуляция позы человека М.: Наука, 1965 256 с.
- 9. Александров В.В., Лемак С.С., Парусников Н.А. Лекции по механике управляемых систем. Москва, Механико-математический факультет МГУ, 2020, 165 с.
- 10. Фельдбаум А.А. Основы теории оптимальных автоматических систем. М.: Физматгиз, 1963. 552 с.
- 11. Касаткин Е.А., Кручинин П.А. Оптимальное управление позой человека при выполнении стабилометрической пробы со ступенчатым воздействием: Курсовая работа, Москва, 2014, 22 с.
- 12. П.А. Кручинин, М.А. Подоприхин, И.Д. Бекеров Сравнительный анализ алгоритмов оценки движения центра масс по результатам стабилометрических измерений // Биофизика. 2021. Т. 66, №5. С. 997–1004.

- 13. Фалб Питер Л., Атанс Майкл Оптимальное управление, Машиностроение, 1968, 764 с.
- 14. П.А. Кручинин Исследование колебаний человека при спокойном стоянии //Задача спецпрактикума по теоретической и прикладной механике. Изд-во мех.-мат. ф-та МГУ, 2022, 36 с.