Classification and Performance Evaluation

Classification

- Tujuan : Memberikan label pada citra masukan
- Pendekatan klasifikasi adalah supervised, berbeda dengan klasterisasi.
 Supervised artinya ada proses pengawasan berupa proses "pelatihan" atau training sebelum "diujikan" atau testing/prediction
- Klasifikasi sering disebut juga prediksi

Classification Methods

Ada beberapa metode klasifikasi yang sering digunakan pada citra, yaitu:

- K-nearest neighbors classifier
 - Classifier yang bekerja dengan menentukan titik kedekatan (distance based)
 - Termasuk kategori lazy learners, karena tidak bisa membangun model secara eksplisit
- Support Vector Machine
 - Dibahas pada modul lab praktikum citra
 - Cara kerjanya adalah dengan menentukan hyperplanes untuk memisahkan data tiap kelasnya/tiap label
- Neural Networks
 - Mengikuti konsep neuron pada otak manusia
 - Akan dibahas lebih detail di MK Computer Vision/Sistem Cerdas
- and many more.....

Classification Performance Evaluation

- Kriteria Evaluasi yang dicari pada pengolahan citra:
 - Accuracy (akurasi)
 - Speed (kecepatan dalam komputasi)
 - Robustness (keajegan, hasil tidak berubah-ubah)
 - Scalability (dapat diukur secara matematis)
 - Interpretability (hasil tergambar dengan jelas)

Speed and Robustness

Speed

 Yang unggul dalam pencit adalah metode yang membutuh komputasi lebih cepat dibandingkan metode lainnya.

Robustness

- Performa classifier tergantung pada data latih
- Metode klasifikasi dikatakan robust jika hasil uji tidak jauh dengan data yang telah dilatih.
- Dapat mengatasi outliers.

Scalability & Interpretability

Scalability

- Scalability artinya adalah kemampuan sebuah metode classifier dalam mempelajari data besar dengan baik
- Berkorelasi erat dengan kecepatan komputasi

Interpretability

- Mampu mengenali data latih yang menghasilkan prediksi yang tepat, sesuai dengan penciri data latih
- Model dan hasil sederhana dan mudah dipahami

Accuracy

- Tested with a testing set
 - Data tanpa label/identitas kelas
 - Model yang akan memberikan label sesuai dengan data latihnya
 - Jumlah label yang diprediksikan tepat dibandingkan dengan total seluruh label
 - Mengetahui eror sistem/algoritma
- Akurasi biasa diinterpretasikan dalam bentuk persentase :
 - Persentase data test yang diprediksikan tepat

$$Accuracy = \frac{no \ of \ correctly \ classified \ test \ data}{total \ no \ of \ test \ data} \times 100\%$$

Classification Results

- True Negatives (TN)
 - Hasil klasifikasi Negatif, Kelas seharusnya Negatif
- False Negatives (FN)
 - Hasil klasifikasi Negatif, Kelas seharusnya Positif
- False Positives (FP)
 - Hasil klasifikasi Positif, Kelas seharusnya Negatif
- True Positives (TP)
 - Hasil klasifikasi Positif, Kelas seharusnya Positif

Confusion Matrix

• For a binary classification

Cross-Validation

- From a single set of data \rightarrow separated into smaller sections
- K-folds
 - Separate data into k sections

- At each fold evaluate the results (e.g the accuracy)
- Take average

Confusion Matrix

- For multi-class classification
 - Contoh hasil confusion matrix multiclass classification

Predicted class

Accuracy of each class / overall

Training Classifiers

 Sama dengan pada saat kita akan mengenalkan anak kecil dengan telepon

- Kamu akan memberikan contoh gambar-gambar telepon kan?
 - Training data

Training Classifiers (2)

Kira-kira kenapa akhirnya mereka paham?

- Karena mengenali fiturnya
- How do we ensure they understood correctly??
 - Give appreciation when they give correct recognition
 - Give punishment when they give incorrect recognition

Reinforcement! Supervised learning!

Training Data

- Berapa banyak data yg dibutuhkan untuk melatih?
 - Secukupnya
 - Depends on the complexity of the classification and model
 - Terlalu banyak data menyebabkan overfitting
 - Delete some
 - Terlalu sedikit data kan tidak dapat dikenali oleh model klasifikasi
 - 555

Data augmentation

* Usually for deep machine learning models

Data Augmentation for Images

• Flips

Rotations

Data Augmentation for Images (2)

Crop

• Dilation / Scale

Data Augmentation for Images (3)

• Translation

Addition of noise

Data Augmentation for Images (4)

Color manipulation

***If the feature used for classification is not color

Why data augmentation?

- Model seperti apa yang memerlukan data augmentasi?
 - Non-linear models
 - Such as neural networks and deep networks
 - We will look into this next week: machine learning and CNN

Feature Engineering

- Feature engineering is the process of using knowledge of the data to create features that make machine learning algorithms work better.
- Feature Engineering is an art as well as a science
- Data Scientists often spend 70% of their time in the data preparation phase before modeling.

Types of Features

Raw features

- are obtained directly from the dataset
- no extra data manipulation or engineering.

Derived features

- are obtained from feature engineering.
- created features from existing data attributes.
- manipulated the existing data/ features into a better representation

Basic Features

• If you have basic features...

What can you do with them?

Brainstorming

• Manipulate these into different features

Ideas

- Individually: manipulate
 - Color feature

- Combination of multiple features
 - Concat

