In-Switch Traffic Distribution Approximation

Sean Bergen

Arizona State University

2024

Overview

- 1 Motivation
- 2 Background Information
 - Streaming Algorithms and Sketches
 - A (Brief) Introduction to Stochastics
- 3 Model
- 4 Sketch
- 5 Algorithm
- 6 Experiment Design
- 7 Results
 - Theory
 - Experimental
- 8 Future Work
- 9 References
- 10 Appendix

Motivation

Motivation

Categorize traffic rates relative to each other

Motivation

- Categorize traffic rates relative to each other
- Keep operators of algorithm simple to allow for implementation in P4

Background Information

- Streaming Algorithms
- Sketches
- Stochastics

Streaming Algorithms

Streaming Algorithms

■ Formalized by N. Alon et al[1]

Streaming Algorithms

- Formalized by N. Alon et al[1]
- Algorithm operates "on-line" on a stream of data

Streaming Algorithms

- Formalized by N. Alon et al[1]
- Algorithm operates "on-line" on a stream of data
- Stream usually only examined once

Sketches

What if we want to examine stream history as part of the algorithm?

Sketches

- What if we want to examine stream history as part of the algorithm?
- Probabilistic data structures, highly compressed[2]

Sketches

- What if we want to examine stream history as part of the algorithm?
- Probabilistic data structures, highly compressed[2]
- Often used alongside streaming algorithms

Sketches

- What if we want to examine stream history as part of the algorithm?
- Probabilistic data structures, highly compressed[2]
- Often used alongside streaming algorithms
- Count-Min Sketch[3]

A (Brief) Introduction to Stochastics

Random Variables and Stochastic Processes

A (Brief) Introduction to Stochastics

Random Variables and Stochastic Processes

Random variable X produces events from universe U

Random Variables and Stochastic Processes

- Random variable X produces events from universe U
- Stochastic Process \rightarrow Observing X over time

Random Variables and Stochastic Processes

- Random variable X produces events from universe U
- Stochastic Process \rightarrow Observing X over time
- A fair coin vs a sequence of coin flips

■ Discrete time, r.v. X, switch S

- Discrete time, r.v. X, switch S
- Every timestep X chooses some packet σ across all possible ones it could choose Ω from some distribution

- Discrete time, r.v. X, switch S
- Every timestep X chooses some packet σ across all possible ones it could choose Ω from some distribution
- X forms an input stream of observed packets that S reads from

■ Packets having closer group numbers means closer rates

- Packets having closer group numbers means closer rates
- Lower group number means higher rate, inspiration from power laws and Zipf's Law

- Packets having closer group numbers means closer rates
- Lower group number means higher rate, inspiration from power laws and Zipf's Law

Packet Type	Buffer	Group
σ_0	0	19
σ_1	0	20
σ_2	1	13
σ_3	2	19
σ_4	1	19
σ_5	0	16

Streaming Algorithm

Algorithm 1 A

```
 \begin{array}{l} 1 \colon n \leftarrow \mathbb{N} \\ 2 \colon m \leftarrow \mathbb{N}, m < n \end{array} 
                                                                                                                               ▷ n is window size
                                                                                                                        3: Sketch s is empty initially
4: while Stream not empty do
5:
6:
          for i = 0: i < n: i + + do
              Read next packet p, \sigma_p \leftarrow "type" (p)

    ▶ Type could be srcIP, dstIP, ...

7:
              if \sigma_p \not\in s then
8:
                   Add \langle \sigma_p, 1, m \rangle to s
                                                                                                                        \triangleright \sigma_D acts as a key to s
9:
10:
              else
                     s[\sigma_D] buffer + 1, s[\sigma_D] group = max(1, group - 1)
11:
12:
                end if
                for All other \sigma \neq \sigma_{D} \in s do
13:
                     s[\sigma] buffer - 1
14:
                     if s[\sigma] buffer < 0 then
15:
                          s[\sigma] buffer = 1, s[\sigma] group = min(m, group + 1)
16:
17:
18:
19:
                     end if
                end for
            end for
            Send/Save/Process s, then clear for next window
20: end while
```

■ Generated a stream of 8,000 random packets, 6 different σ , n = 40, m = 20

- Generated a stream of 8,000 random packets, 6 different σ , n = 40, m = 20
- Probability distribution over σ was [0.1, 0.2, 0.4, 0.05, 0.15, 0.1]

- Generated a stream of 8,000 random packets, 6 different σ , n = 40, m = 20
- Probability distribution over σ was [0.1, 0.2, 0.4, 0.05, 0.15, 0.1]
- Saved sketch for each of the 200 windows

Interesting Theoretical Results

Interesting Theoretical Results

Theorem

The maximum number of different σ that can get to group 1 for a given n, m is $|\log\left(\frac{n}{m}\right)| + 1, n, m \in \mathbb{N}, n > m$

Interesting Theoretical Results

Theorem

The maximum number of different σ that can get to group 1 for a given n, m is $\lfloor \log \left(\frac{n}{m} \right) \rfloor + 1, n, m \in \mathbb{N}, n > m$

Theorem

A (loose) lower bound for the number of different σ before at least 1σ is guaranteed to be at group m is $\lfloor \frac{n}{2} \rfloor + 1$

Interesting Theoretical Results

Theorem

The maximum number of different σ that can get to group 1 for a given n, m is $\lfloor \log \left(\frac{n}{m} \right) \rfloor + 1, n, m \in \mathbb{N}, n > m$

Theorem

A (loose) lower bound for the number of different σ before at least 1σ is guaranteed to be at group m is $\lfloor \frac{n}{2} \rfloor + 1$

Remark

For m=2, there is a tight bound where if the number of different σ is $\geq \lfloor \log \left(\frac{n}{m} \right) \rfloor + 2$ then there will always be at least σ in group m

More Theory Results

More Theory Results

Using Markov Chain Properties

Consider p(x) = 0.4 for a packet in the previous example:

Using Markov Chain Properties

Consider p(x) = 0.4 for a packet in the previous example:

Probability distribution of the Markov Chain after 5 moves

Probability distribution of the Markov Chain after 5 moves

										-		
ΓØ	(3, 0)	(3, 1)	(2, 0)	(2, 1)	(2, 2)	(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1,5) 7	
0.07776	0.10368	0.22464	0.06912	0.13824	0.06912	0	0.1152	0.06912	0.10752	0.01536	0.01024	
0	0	0.23328	0		0	0	0.288	0	0.2112	0	0.0256	
0	0.18144	0	0.10368	0	0.12096	0.1728	0	0.31104	0	0.08448	0.0256	
0	0	0.23328	0	0.1728	0	0	0.35712		0.2112	0	0.0256	
0	0.07776	0	0.20736	0	0.05184	0.1728	0	0.38016	0	0.08448	0.0256	
0	0	0.07776	0	0.2592	0	0	0.31104	0	0.24192	0	0.11008	
0	0	0.1296	0	0.27648	0	0	0.35712	0	0.2112	0	0.0256	
0	0.07776	0	0.10368	0	0.05184	0.27648	0	0.38016	0	0.08448	0.0256	
0	0	0.07776	0	0.15552	0	0	0.41472	0	0.24192	0	0.11008	
0	0	0	0.07776	0	0	0.20736	0	0.36288	0	0.1152	0.2368	
0	0	0	0	0.07776	0	0	0.20736	0	0.1728	0	0.54208	
L 0	0	0	0	0	0	0	0	0	0	0	1	

Probability distribution of the Markov Chain after 5 moves

r Ø	(3, 0)	(3, 1)	(2, 0)	(2, 1)	(2, 2)	(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1,5)	
0.07776	0.10368	0.22464	0.06912	0.13824		0	0.1152	0.06912	0.10752	0.01536	0.01024	
0	0	0.23328	0	0.24192	0	0	0.288	0	0.2112	0	0.0256	
0	0.18144	0	0.10368	0	0.12096	0.1728	0	0.31104	0	0.08448	0.0256	
0	0	0.23328	0	0.1728	0	0	0.35712	0	0.2112	0	0.0256	
0	0.07776	0	0.20736	0	0.05184	0.1728	0	0.38016	0	0.08448	0.0256	
0	0	0.07776	0	0.2592	0	0	0.31104	0	0.24192	0	0.11008	
0	0	0.1296	0	0.27648	0	0	0.35712	0	0.2112	0	0.0256	
0	0.07776	0	0.10368	0	0.05184	0.27648	0	0.38016	0	0.08448	0.0256	
0	0	0.07776	0	0.15552	0	0	0.41472	0	0.24192	0	0.11008	
0	0	0	0.07776	0	0	0.20736	0	0.36288	0	0.1152	0.2368	
0	0	0	0	0.07776	0	0	0.20736	0	0.1728	0	0.54208	
L 0	0	0	0	0	0	0	0	0	0	0	1	

After 5 moves, it is class 3 with probability 0.32832, class 2 with probability 0.27648, class 1 with 0.31744, and was never observed with probability 0.07776

Probability distribution of the Markov Chain after 5 moves

1	r Ø	(3, 0)	(3, 1)	(2, 0)	(2, 1)	(2, 2)	(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1,5) 7	
	0.07776	0.10368	0.22464	0.06912	0.13824	0.06912	0	0.1152	0.06912	0.10752	0.01536	0.01024	
	0	0	0.23328	0	0.24192	0	0	0.288	0	0.2112	0	0.0256	
	0	0.18144	0	0.10368	0	0.12096	0.1728	0	0.31104	0	0.08448	0.0256	
	0	0	0.23328	0	0.1728	0	0	0.35712	0	0.2112	0	0.0256	
	0	0.07776	0	0.20736	0	0.05184	0.1728	0	0.38016	0	0.08448	0.0256	
	0	0	0.07776	0	0.2592	0	0	0.31104	0	0.24192	0	0.11008	
	0	0	0.1296	0	0.27648	0	0	0.35712	0	0.2112	0	0.0256	
	0	0.07776	0	0.10368	0	0.05184	0.27648	0	0.38016	0	0.08448	0.0256	
	0	0	0.07776	0	0.15552	0	0	0.41472	0	0.24192	0	0.11008	
	0	0	0	0.07776	0	0	0.20736	0	0.36288	0	0.1152	0.2368	
	0	0	0	0	0.07776	0	0	0.20736	0	0.1728	0	0.54208	
	L o	0	0	0	0	0	0	0	0	0	0	1	

After 5 moves, it is class 3 with probability 0.32832, class 2 with probability 0.27648, class 1 with 0.31744, and was never observed with probability 0.07776

We can compute the expected value of the class $\mathbb{E}(x)=1.85536$

Experimental Results

Future Work and Open Questions

- Tighter bound on interval before group *m* packets are guaranteed
- P4 implementation of sketch that chooses σ as srcIP (in progress)
- Adding time dynamics with minimal increase to computational complexity
- \blacksquare Determining sweet spot for m, n in relation to each other

References

Noga Alon, Yossi Matias, and Mario Szegedy.

The space complexity of approximating the frequency moments.

In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC '96, page 20–29, New York, NY, USA, 1996. Association for Computing Machinery.

Jelani Nelson.

Notes on sketching and streaming, 2016.

Graham Cormode.

Count-min sketch., 2009.

To prove this, we work backwards from the last σ to reach group 1 back to the first one

To prove this, we work backwards from the last σ to reach group 1 back to the first one

• σ_1 needs m-1 packets to get to group 1

To prove this, we work backwards from the last σ to reach group 1 back to the first one

- σ_1 needs m-1 packets to get to group 1
- \bullet σ_2 can also only need m-1 packets and end with a buffer of 0

To prove this, we work backwards from the last σ to reach group 1 back to the first one

- σ_1 needs m-1 packets to get to group 1
- \bullet σ_2 can also only need m-1 packets and end with a buffer of 0
- \bullet σ_3 now needs 2(m-1) packets to end with a buffer of 0 ...

To prove this, we work backwards from the last σ to reach group 1 back to the first one

- σ_1 needs m-1 packets to get to group 1
- σ_2 can also only need m-1 packets and end with a buffer of 0
- \bullet σ_3 now needs 2(m-1) packets to end with a buffer of 0 ...

This can be generalized to the following equation:

$$\sum_{i=0}^{n} 2^{i} \cdot (m-1) \le n - (m-1)$$
$$= \lfloor \log \left(\frac{n}{m-1} \right) \rfloor + 1$$

Proof for Lower Bound on Group *m* Packets

In order for no packets to be at group m, every σ must appear more than once.

Proof for Lower Bound on Group m Packets

In order for no packets to be at group m, every σ must appear more than once.

By Pigeonhole principle, if there are $\lfloor n/2 \rfloor + 1$ different σ within a window of length n, then at least one of them cannot have appeared more than once, so at least one must be in group m

Proof for Lower Bound on Group *m* Packets

In order for no packets to be at group m, every σ must appear more than once.

By Pigeonhole principle, if there are $\lfloor n/2 \rfloor + 1$ different σ within a window of length n, then at least one of them cannot have appeared more than once, so at least one must be in group m Can we do better? Yes, this is an extremely loose bound, my intuition is that the lower bound before m is guaranteed is also logarithmic because of the buffers of each σ that we add in a window

