- Let's consider a weighted graph such that $w_{ij} \ge 0$.
- Dijkstra's algorithm proceeds by finding the weight of a shortest path from vertex 1 to a first vertex, the weight of a shortest path from 1 to a second vertex, and so on, until the weight of a shortest path from 1 to n is found.
- The algorithm relies on a series of iterations.
- A distinguished set of vertices P is constructed by adding one vertex at each iteration.
- A labeling procedure is carried out at each iteration: P is the set of vertices with **fixed label** (label won't change in next iterations) and T is the set of vertices with **variable label** (the label may change in next iterations).
- In this labeling procedure, a vertex w is labeled with the weight of a shortest path from 1 to w that contains only vertices already in the distinguished set.
- The vertex added to the distinguished set is one with a minimal label among those vertices not already in the set.

DIJKSTRA'S ALGORITMH

Step 1. Initialization:

$$P = \{1\}$$
 $T = \{2, 3, ..., n\}$
 $u_1 = 0$
 $u_j = w_{1j}$ $j \in \Gamma(1)$
 $u_j = \infty$ $j \notin \Gamma(1)$

Step 2. Choose the vertex to add to the distinguished set

Determine
$$k \in T / u_k = \min_{j \in T} \{u_j\}$$

Set T:= T^{k} and P:= P U $\{k\}$

If T = \emptyset , STOP; u_i is the weight of the shortest path from 1 to j, j=2,...,n.

Paso 3. Update:

$$orall j \in \Gamma(k) \cap T, \quad u_j := \min\{u_j, u_k + w_{kj}\}$$
GOTO Step 2

EXAMPLE:

Apply Dijkstra's algorithm to the weighted graph G = (V, E) shown in next figure in order to find the shortest path from vertex 1 to each of the other vertices in G.

EXAMPLE:

Initialization Iteration 1 $T = \{2, 3, 4, 5, 6\}$ $P = \{1\}$, $u_1 = 0$ $u_2 = w_{12} = 3$ $u_3 = \infty$ $u_4 = w_{14} = 2$ $u_5 = \infty$ $u_6 = \infty$

Iteration 2

```
T = \{2,3,5,6\}
P = \{1,4\}, \ \Gamma(4) \cap T = \{2,5\}
u_2 = \min\{u_2, u_4 + w_{42}\} = \min\{3, 2+8\} = 3
u_3 = \infty
u_5 = \min\{u_5, u_4 + w_{45}\} = \min\{\infty, 2+4\} = 6
u_6 = \infty
Iteration 3
T = \{3,5,6\}
P = \{1,4,2\}, \ \Gamma(2) \cap T = \{3\}
u_3 = \min\{u_3, u_2 + w_{23}\} = \min\{\infty, 3+10\} = 13
u_5 = 6
u_6 = \infty
```



```
Iteration 4 T = \{3,6\} P = \{1,4,2,5\}, \ \Gamma(5) \cap T = \{3\} u_3 = \min\{u_3, \underline{u_5 + w_{53}}\} = \min\{13,6+2\} = 8 u_6 = \infty \text{Iteration 5} T = \{6\} P = \{1,4,2,5,3\}, \ \Gamma(3) \cap T = \{6\} u_6 = \min\{u_6, \underline{u_3 + w_{36}}\} = \min\{\infty, 8+3\} = 11 \text{Iteration 6} T = \emptyset P = \{1,4,2,5,3,6\}, \ \text{STOP}
```

EXAMPLE:

	Path	Weight
From 1 to 2	1 2	$u_2 = 3$
From 1 to 3	1453	$u_3 = 8$
From 1 to 4	1 4	$u_4=2$
From 1 to 5	145	$u_5 = 6$
From 1 to 6	14536	$u_6 = 11$

Let \mathbf{u}_{ij} denote the weight of the shortest path from \mathbf{i} to \mathbf{j} . We will use the unknowns:

 $\mathbf{u_{ij}}^{(\mathbf{m})}$: weight of the shortest path from vertex \mathbf{i} to \mathbf{j} , not containing vertices \mathbf{m} , $\mathbf{m}+1$, ..., \mathbf{n} (except the endpoints \mathbf{i} and \mathbf{j}). These unknowns can be calculated recursively using the equations:

$$u_{ij}^{(1)} = w_{ij} \quad \forall i, j$$

$$u_{ij}^{(m+1)} = \min \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} \quad \forall i, j,$$

$$m = 1, 2, \dots n$$

It can be proved that $\mathbf{u_{ij}} = \mathbf{u_{ij}}^{(n+1)}$, that is, we obtain the weight of the shortest path among every pair of vertices

$$\begin{array}{ccc}
u_{ij}^{(1)} &=& w_{ij} & \forall i, j \\
\hline
u_{ij}^{(m+1)} &=& \underline{\min} \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} & \forall i, j, \\
\hline
m &=& 1, 2, \dots, n
\end{array}$$

To update the element $\mathbf{u}^{(m+1)}_{ij}$ (row \mathbf{i} and column \mathbf{j}) at iteration $\mathbf{m}+\mathbf{1}$, we must compute: The minimum between:

- -the same element of the previous iteration **m** and
- the sum of two elements:
- element in the same row i and column m (the iteration number),
- element in the same column **j** and row **m** (the iteration number).

EXAMPLE:

$$u_{ij}^{(1)} = w_{ij} \quad \forall i, j$$

$$u_{ij}^{(m+1)} = \min \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} \quad \forall i, j,$$

$$m = 1, 2, \dots n$$

		1	2	3	4	5	6
,	1	∞	3	[13]	2	∞	∞
	2	∞	∞	10	6	∞	∞
	3	∞	1	[11]	[7]	8	3
	4	1	4	[14]	3	4	∞
	5	∞	∞	∞	∞	∞	∞
	6	∞	∞	1	8	4	∞

(m=3)

EXAMPLE:

$$u_{ij}^{(1)} = w_{ij} \quad \forall i, j$$

$$u_{ij}^{(m+1)} = \min \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} \quad \forall i, j, j$$

$$m = 1, 2, \dots n$$

	1	2	3	4	5	6
1	[3]	3	13	2	[6]	16
2	[7]	[10]	10	6	[10]	13
3	[8]	1	11	7	[11]	3
4	1	4	14	3	4	17
5	œ	œ	∞	8	8	80
6	[9]	2	1	8	4	4

EXAMPLE:

$$u_{ij}^{(1)} = w_{ij} \quad \forall i, j$$

$$u_{ij}^{(m+1)} = \min \left\{ u_{ij}^{(m)}, u_{im}^{(m)} + u_{mj}^{(m)} \right\} \quad \forall i, j$$

$$m = 1, 2, \dots n$$

	1	2	3	4	5	6
1	3	3	13	2	6	16
2	7	10	10	6	10	13
3	8	1	[4]	7	[7]	3
4	1	4	14	3	4	17
5	∞	oo	∞	00	∞	∞
_ 6	9	2	1	8	4	4

(m=7)

In order to build the shortest paths, the following matrices are constructed:

$$\Theta^{(m)} = [\theta_{ij}^{(m)}]$$

Where $\theta_{ij}^{(m)}$ represents the preceding vertex to \mathbf{j} in the shortest path from vertex \mathbf{i} to \mathbf{j} at iteration \mathbf{m} .

Initially $\theta_{ij}^{(1)} = i$ if $u_{ij}^{(1)} < +\infty$ and:

$$\theta_{ij}^{(m+1)} = \begin{cases} \theta_{ij}^{(m)} & \text{if } u_{ij}^{(m+1)} = u_{ij}^{(m)} \\ \theta_{mj}^{(m)} & \text{if } u_{ij}^{(m+1)} < u_{ij}^{(m)} \end{cases}$$

$$\theta_{ij}^{(m+1)} = \begin{cases} \theta_{ij}^{(m)} & \text{si} \underbrace{u_{ij}^{(m+1)} = u_{ij}^{(m)}}_{mj} & \text{si} \underbrace{u_{ij}^{(m+1)} = u_{ij}^{(m)}}_{mj} \end{cases}$$

If the element \mathbf{u}_{ij} (m+1) doesn't change at iteration $\mathbf{m}+\mathbf{1}$, then the corresponding element θ_{ij}^{m+1} of the matrix $\Theta^{(m+1)}$ doesn't change.

If the element $\mathbf{u_{ij}}^{(m+1)}$ changes at iteration $\mathbf{m+1}$, then the corresponding θ_{ij}^{m+1} element of the matrix

 $\Theta^{(m+1)}$ is substituted by the element occupying the same column and row \mathbf{m} .

EXAMPLE:

$$(m=1)$$

(m=2)

	1	2	3	4	5	6
1	8	3	∞	2	8	8
2	8	8	10	6	8	8
3	∞	1	∞	9	∞	3
4	1	8	∞	∞	4	∞
5	∞	οo	∞	∞	∞	∞
_6	∞	∞	1	∞	4	∞

	1	2	3	4	5	6
1	∞	3	8	2	∞	8
2	∞	8	10	6	∞	8
3	∞	1	8	9	8	3
4	1	[4]	∞	[3]	4	∞
5	∞	∞	∞	∞	∞	∞
6	∞	8	1	∞	4	∞

	1	2	3	4	5	6
1	∞	3	[13]	2	8	8
2	∞	∞	10	6	∞	∞
3	∞	1	[11]	[7]	8	3
4	1	4	[14]	3	4	8
5	∞	∞	∞	∞	∞	∞
_6	∞	∞	1	8	4	∞

	1	2	3	4	5	6
1		1		1		
2			2	2		
3		3		3		3
4	4	4			4	
5						
6			6		6	

	1	2	3	4	5	6
1		1		1		
2			2	2		
3		3		3		3
4	4	[1]		[1]	4	
5						
6			6		6	

\Box	1	2	3	4	5	6
1		1	[2]	1		
_2			2	2		
3		3	[2]	[2]		3
4	4	1	[2]	1	4	
5						
6			6		6	

EXAMPLE:

		1	2	3	4	5	6
	1	- x	3	13	2	∞	[16]
	2	∞	[11]	10	6	∞	[13]
(m=4)	3	∞	1	11	7	×	3
	4	1	4	14	3	4	[17]
	5	oc o	∞	∞	8	8	∞
	6	8	[2]	1	[8]	4	[4]

	1	2	3	4	5	6
1		1	[2]	1		
2			2	2		
3		3	[2]	[2]		3
4	4	1	[2]	1	4	
5						
_6			6		6	

	1	2	3	4	5	6
1		1	2	1		[3]
2		[3]	2	2		[3]
3		3	2	2		3
4	4	1	2	1	4	[3]
5						
6		[3]	6	[2]	6	[3]

	1	2	3	4	5	6
1	[4]	1	2	1	[4]	3
2	[4]	[1]	2	2	[4]	3
3	[4]	3	2	2	[4]	3
4	4	1	2	1	4	3
5						
6	[4]	3	6	2	6	3

EXAMPLE:

		1	2	3	4	5	6
	1	3	3	13	2	6	16
	2	7	10	10	6	10	13
(m=6)	3	8	1	11	7	11	3
	4	1	4	14	3	4	17
	5	00	∞	∞	∞	∞	∞
	6	9	2	1	8	4	4

	1	2	3	4	5	6
1	[4]	1	2	1	[4]	3
2	[4]	[1]	2	2	[4]	3
3	[4]	3	2	2	[4]	3
4	4	1	2	1	4	3
5						
6	[4]	3	6	2	6	3

	1	2	3	4	5	6
1	4	1	2	1	4	3
2	4	1	2	2	4	3
3	4	3	2	2	4	3
4	4	1	2	1	4	3
5						
6	4	3	6	2	6	3

\Box	1	2	3	4	5	6
1	4	1	2	1	4	3
2	4	1	2	2	4	3
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	4	3	[6]	2	[6]	3
4	4	1	2	1	4	3
5						
_6	4	3	6	2	6	3

EXAMPLE:	
-----------------	--

(m=7) 2 3 4 5

	1	2	3	4	5	6
1	3	3	13	2	6	16
2	7	10	10	6	10	13
3	8	1	[4]	7	[7]	3
4	1	4	14	3	4	17
5	00	œ	∞	∞	∞	∞
_6	9	2	1	8	4	4

	1	2	3	4	5	6
1	4	1	2	1	4	3
2	4	1	2	2	4	3
3	4	3	[6]	2	6]	3
4	4	1	2	1	4	3
5						
6	4	3	6	2	6	3

BUILDING THE PATHS:

Shortest path from 3 to 5:

- 1. Weight: $U_{35}^{(7)} = 7$
- 2. Path:
 - Preceding vertex to 5: $heta_{35}^{(7)}=$ 6
 - Preceding vertex to 6: $\theta_{36}^{(7)}=$ 3

EXAMPLE: Let's consider a graph with V={A,B,C,D,E,F} and weighting matrix:

$$\Omega = \begin{bmatrix} \infty & 2 & \infty & 5 & 8 & \infty \\ \infty & \infty & 1 & 2 & 6 & \infty \\ 1 & \infty & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & \infty \\ 1 & \infty & 7 & \infty & \infty & 4 \\ 3 & \infty & \infty & \infty & \infty & \infty \end{bmatrix}$$

If we want to calculate the shortest path from A to E and its weight, with the restriction of **not containing the vertices C and F as internal**.

We reorder the vertices of the graph placing the non internal vertices at the end.

EXAMPLE: Shortest path from A to E and its weight, with the restriction of **not containing the vertices C and F as internal**. Possible reorderings:

- A, B, D, E, C, F: Stop at iteration 5.
- B, D, A, E, C, F: Stop at iteration 3.

		A	B	C	D	E	F
	\overline{A}	∞	2	∞	5	8	∞
	B	∞	∞	1	2	6	∞
$\Omega =$	C	1	∞	∞	3	∞	∞
	D	∞	∞	∞	∞	3	∞
	E	1	∞	7	∞	∞	4
	F	3	∞	∞	∞	∞	∞

Permute columns

	B	D	\boldsymbol{A}	\boldsymbol{E}	C	F
B	∞ ∞ 2 ∞ ∞ ∞ ∞	2	∞	6	1	∞
D	∞	∞	∞	3	∞	∞
A	2	5	∞	8	∞	∞
E	∞	∞	1	∞	7	4
C	∞	3	1	∞	∞	∞
F	∞	∞	3	∞	∞	∞

EXAMPLE: With the reordered matrix we apply Floyd-Warshall's method.

EXAMPLE: With the reordered matrix we apply Floyd-Warshall's method.

$$, \ \Theta^{(2)} \equiv \begin{array}{|c|c|c|c|c|c|} \hline & B & D & A & E & C & F \\ \hline B & B & B & B & B \\ \hline D & & & D & & \\ \hline D & & & D & & \\ \hline A & A & [B] & & A & [B] \\ E & & & E & E & E \\ \hline C & C & C & \\ F & & F & & \\ \hline \end{array}$$

$$\Omega^{(3)} \equiv \begin{array}{|c|c|c|c|c|c|c|c|} \hline B & D & A & E & C & F \\ \hline B & \infty & 2 & \infty & [5] & 1 & \infty \\ D & \infty & \infty & \infty & 3 & \infty & \infty \\ A & 2 & 4 & \infty & [7] & 3 & \infty \\ E & \infty & \infty & 1 & \infty & 7 & 4 \\ C & \infty & 3 & 1 & [6] & \infty & \infty \\ F & \infty & \infty & 3 & \infty & \infty & \infty \\ \hline \end{array}$$

EXAMPLE: With the reordered matrix we apply Floyd-Warshall's method.

BUILDING THE PATHS:

Shortest path from A to E and its weight, with the restriction of not containing the vertices C and F as internal:

- Weight: $u_{AF}^{(3)} = 7$
- 2. Path:
 - Preceding vertex to E: $\theta_{AE}^{(3)} = D$ Preceding vertex to D: $\theta_{AD}^{(3)} = B$ A, B, D, E

 - Preceding vertex to B: $\theta_{AB}^{(3)} = A$