Нешина Екатерина, М1-14

Билет 14

Кольцо многочленов от одной переменной над числовым полем. Корни многочлена. Алгебраическая замкнутость поля комплексных чисел.

Определение 1

Множество G с заданной на нём алгебраической операцией * называется $\it zpynnoù$, если:

- 1) операция ассоциативна: $(a * b) * c = a * (b * c), \forall a, b, c \in G;$
- 2) операция обладает нейтральным элементом $e \in G$: $a * e = e * a = a, \forall a \in G$;
- 3) для любого элемента $a \in G$ существует симметричный элемент $a' \in G$: a * a' = a' * a = e.

Обозначение: G или $\langle G, + \rangle$. Условия 1-3 называются *аксиомами группы*. Группа с коммутативной операцией называется *коммутативной* или *абелевой*. (коммутативность: a * b = b * a).

Определение 1.1 *Мультипликативная группа* - группа, где обратный элемент это a^{-1} , а нейтральный это единица.

Определение 1.2 $A\partial\partial umuвная\ группа$ - нейтральный элемент это 0, противоположный (симметричный) это -a.

Примеры:

- 1) $\langle \mathbb{Z}, + \rangle$; $\langle \mathbb{Q}, + \rangle$; $\langle \mathbb{R}, + \rangle$ аддитивные абелевы группы;
- 2) $\langle \mathbb{Q} \backslash 0, \cdot \rangle$; $\langle \mathbb{R} \backslash 0, \cdot \rangle$ мультипликативные абелевы группы;

Определение 2

Подмножество H группы G называется nodepynnoй группы G, если оно само является группой относительно алгебраической операции в G.

Определение 3

Две группы G_1 и G_2 с операциями $*_1$ и $*_2$ называются изоморфными, если существует биективное отображение $f: G_1 \to G_2$, которое сохраняет групповую операцию, т.е. $f(a*_1b) = f(a)*_2f(b), \forall a,b \in G_1$.

Обозначение: $G_1 \simeq G_2$. Само отображение f называют *изоморфизмом*.

Определение 4

Непустое множество K, наделенное двумя алгебраическими операциями - сложением и умножением, называется кольцом, если эти операции удовлетворяют следующим аксиомам: $\forall a, b, c \in K$

- 1) a + b = b + a;
- 2) (a + b) + c = a + (b + c);
- 3) $\exists 0 \in K : a + 0 = 0 + a;$
- 4) $\forall a \in K \exists -a \in K : a + (-a) = (-a) + a = 0;$
- 5) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- 6) $(a+b) \cdot c = a \cdot b + b \cdot c$, $a \cdot (b+c) = a \cdot b + a \cdot c$.

Определение 5

Кольцо называется коммутативным, если умножение в нём коммутативно;

Кольцо называется кольцом с единицей, если операция умножения обладает нейтральным элементом.

Примеры:

Множества $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ - аддитивные абелевы группы;

Определение 6

- 1) a + b = b + a коммутативность сложения;
- 2) (a + b) + c = a + (b + c) ассоциативность сложения;
- 3) $\exists 0 \in P : a + 0 = 0 + a$ существование нулевого элемента;
- 4) $\forall a \in P \exists -a \in P : a + (-a) = (-a) + a = 0$ существование противоположного элемента;
- 5) $a \cdot b = b \cdot a$ коммутативность умножения;
- 6) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения;
- 7) $\exists e \in P \backslash 0 : a \cdot e = e \cdot a$ существование единичного элемента;
- 8) $\forall a \in P(a \neq 0) \exists a^{-1} \in P : a \cdot a^{-1} = e$ существование обратного элемента для ненулевых элементов;
- 9) $(a+b) \cdot c = a \cdot b + b \cdot c$, $a \cdot (b+c) = a \cdot b + a \cdot c$. дистрибутивность;

Определение 7

Komnлeксные числами называются упорядоченные пары (a,b) вещественных чисел, для которых понятие равенства, суммы, произведения и отождествления с вещественными числами вводятся согласно следующим правилам (аксиомам):

- 1) $(a,b) = (c,d) \leftrightarrow a = c, b = d;$ 2) (a,b) + (c,d) = (a+c,b+d); 3) $(a,b) \cdot (c,d) = (a \cdot c b \cdot d, a \cdot d + b \cdot c);$ 4) пара (a,0) отождествляется с действительным числом a.
 - Обозначения: $z = (a, b), \mathbb{C}$ множество всех комплексных чисел.

Определение 8

Комплексные числа - это числа вида $z=a+b\cdot i$, где a,b - вещественные числа, а i - мнимая единица, то есть число, для которого выполняется $i^2=-1$.

Теорема 1: Операция сопряжения комплексного числа обладает следующими свойствами:

- 1) $\overline{\overline{z}} = z$;
- 2) $z = \overline{z} \leftrightarrow z \in \mathbb{R}$;
- 3) $\overline{z} + z = 2 \cdot a, \forall z = a + b \cdot i;$
- 4) $\overline{z} \cdot z = a^2 + b^2, \forall z = a + b \cdot i;$
- 5) $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}; \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}; \ \overline{(z_1/z_2)} = \overline{z_1}/\overline{z_2}, z_2 \neq 0.$

Определение 9

Modyлем комплексного числа $z=a+b\cdot i$ называется число $r=\sqrt{a^2+b^2}$. Обозначение: |z|.

Определение 10

Аргументом комплексного числа $z \neq 0$ называется угол φ между положительным направлением оси абсцисс и радиус-вектором точки M, отсчитываемый от оси абсцисс в любом направлении, при этом положительным считается направление против часовой стрелки.

Обозначение: argz.

Теорема 2:

Любоме комплексное число $z \neq 0$ может быть записано в виде $z = r \cdot (\cos\varphi + i \cdot \sin\varphi)$, где $r = |z|, \varphi = argz$.

Теорема 3:

При умножении комплексных чисел их модули умножаются, а аргументы складываются; при делении комплексных чисел их модули делятся, а аргументы вычитаются.

Toopona 4

Если
$$z = r \cdot (\cos\varphi + i \cdot \sin\varphi), n \in \mathbb{Z}$$
, то $z^n = r^n \cdot (\cos\eta\varphi + i \cdot \sin\eta\varphi)$.

Теорема 5:

Для ненулевого числа $z = r \cdot (cos\varphi + i \cdot sin\varphi)$ существует ровно n различных корней $\alpha_1, \alpha_2, ..., \alpha_n$ n-й степени:

$$\alpha_k = \sqrt[n]{r} \cdot (\cos\frac{\varphi + 2\pi k}{n} + i \cdot \sin\frac{\varphi + 2\pi k}{n}), k = \overline{0, n - 1}.$$

Определение 11

Пусть P - поле. Многочленом (полиномом) n-ой степени от переменной x над полем P называется выражение

$$a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n$$
,

где $a_i, i = \overline{0, n}$, - фисксированные числа из поля P и $a_n \neq 0$. Эти числа называются коэффициентами многочлена, а число $a_n-cmapuum$ коэффициентом. Число $0\in P$ по определению считается многочленом с нулевыми коэффициентами и называется нулевым многочленом.

Обозначение: f(x) или $f_n(x)$ - многочлен, degf - степень многочлена, P[x] - множество всех многочленов от пепременной x над полем P. Итак,

$$f(x) = \sum_{k=0}^{n} a_k \cdot x^k \in P[x], degf = n$$

Определение 12

Cуммой многочленов $f(x)=\sum_{k=0}^n a_k\cdot x^k$ и $g(x)=\sum_{k=0}^s b_k\cdot x^k$ называется многочлен

$$h(x) = \sum_{k=0}^{\max(n,s)} c_k \cdot x^k, c_k = a_k + b_k.$$

Обозначение: f(x) + g(x).

Определение 13

Произведением многочленов $f(x)=\sum_{k=0}^n a_k\cdot x^k$ и $g(x)=\sum_{k=0}^s b_k\cdot x^k$ называется многочлен

$$h(x) = \sum_{k=0}^{n+s} c_k \cdot x^k, \, \text{ide } c_k = \sum_{i+j=k} a_i \cdot b_j, k = \overline{0, n+s}.$$

Обозначение: $f(x) \cdot g(x)$.

Теорема 6:

Множество P[x] всех многочленов над полем P является xоммутативным xольцом c единицей u без делителей нуля.

Доказательство:

Проверим все аксиомы кольца. Прежде всего отметим, что P[x] - аддитивная абелева группа: коммутативность и ассоциативность сложения очевидны, нулём является нулевой многочлен, противоположным к многочлену $f(x) = \sum_{k=0}^{n} a_k \cdot x^k$ является многочлен $-f(x) = \sum_{k=0}^{n} (-a_k) \cdot x^k$. Коммутативность умножения следует из определения. Докажем ассоциативность умножения. Пусть $f_n(x) = \sum_{k=0}^{n} a_k \cdot x^k$, $g_s(x) = \sum_{k=0}^{s} b_k \cdot x^k$, $h_p(x) = \sum_{k=0}^{p} c_k \cdot x^k$. Обозначим через $\alpha_k, \beta_k, \gamma_k$ и δ_k коэффициенты при x^k у многочленов $f(x) \cdot g(x), g(x) \cdot h(x), (f(x) \cdot (g(x)) \cdot h(x))$ и $f(x) \cdot (g(x) \cdot h(x))$ соответственно.

Токгда из определения произведения получаем:

$$\gamma_k = \sum_{i+j=k} \alpha_i \cdot c_j = \sum_{i+j=k} \left(\sum_{r+t=i} a_r \cdot b_t \right) \cdot c_j = \sum_{r+t+j=k} a_r \cdot b_t \cdot c_j,$$

$$\delta_k = \sum_{r+i=k} a_r \cdot \beta_i = \sum_{r+i=k} a_r \cdot (\sum_{t+j=i} b_t \cdot c_j) = \sum_{r+t+j=k} a_r \cdot b_t \cdot c_j,$$

т.е. $\gamma_k = \delta_i$. Отсюда, если учесть, что deg(fg)h = degf(gh) = n + s + p, следует равенство (f(x)g(x))h(x) =f(x)(g(x)h(x)).

Роль единицы при умножении многочленов играет число 1, рассматриваемое как многочлен нулевой степени. Справедливость аксиомы дистрибутивности вытекает из равенства $\sum_{i+j=k} (a_i + b_i) \cdot c_j = \sum_{i+j=k} a_i \cdot c_j + a_i \cdot c_j$ $\sum_{i+j=k} b_i \cdot c_j$, так как левая часть этого равенства является коэффициентом при x^k в многочлене (f(x) +g(x)h(x), а правая часть - коэффициентом при той же степени x в многочлене f(x)h(x)+g(x)h(x).

Наконец, из degfg = degf + degg следует, что в P[x] нет делителей нуля.

Теорема доказана.

Множество P[x] является линейным пространством над полем P.

Теорема 7:

Для любых двух многочленов $f(x), g(x) \in P[x]$, где $g(x) \neq 0$ существует, и притом единственная, пара многочленов $q(x), r(x) \in P[x]$ такая, что:

$$f(x) = g(x)q(x) + r(x),$$

где либо $r(x) = 0,$
либо $degr < degg.$

Корни многочленов

Определение 14

Если $f(x) = \sum_{k=0}^{n} a_k \cdot x^k$ - многочлен над полем P, c - некоторое число из поля P, то число $f(c) = \sum_{k=0}^{n} a_k \cdot c^k$ называется значением многочлена f(x) при x = c.

Теорема 8 (теорема Безу):

Остаток от деления многочлена f(x) на x-c равен f(c).

Доказательство:

Разделим согласно теореме 7 многочлен f(x) на многочлен x-c. Тогда $f(x)=(x-c)\cdot q(x)+r(x)$, где degr< deg(x-c)=1,так что r(x)=r - константа. Беря значение обеих частей этого равенства при x=c, получим, что r=f(c).

Теорема доказана.

Следствие:

Число $c \in P$ является корнем многочлена $f(x) \in P[x]$ тогда и только тогда, когда многочлен f(x) делится на x-c в кольце P[x].

Говорят, что корень c имеет **кратность** m, если рассматриваемый многочлен делится на $(x-c)^m$ и не делится на $(x-c)^{m+1}$. Например, многочлен x^2-2x+1 имеет единственный корень, равный 1, кратности 2. Выражение «кратный корень» означает, что кратность корня больше единицы.

Алгебраическая замкнутость поля $\mathbb C$

Определение 15

Поле P называется алгебраически замкнутым, если любой многочлен $f(x) \in P[x]$ степени $n \ge 1$ обладает в P хотя бы одним корнем.

Теорема 9 (основная теорема алгебры):

Поле С комплексных чисел алгебраически замкнуто.

Лемма 1

Пусть $f(z) = a_1 \cdot z + a_2 \cdot z^2 + ... + a_n \cdot z^n$ - многочлен с нулевым свободным членом. Тогда для любого $\varepsilon > 0$ найдётся $\delta > 0$ такое, что для всех z, для которых $|z| < \delta$, выполняется неравенство $|f(z)| < \varepsilon$.

Доказательство:

Пусть |z|<1. Тогда в силу $||z_1|-|z_2||\leq |z_1\pm z_2|\leq |z_1|+|z_2|$ и $|z_1\cdot z_2|=|z_1|\cdot |z_2|$

$$|f(z)| = |z| \cdot |a_1 + a_2 \cdot z + \dots + a_n \cdot z^{n-1}| \le |z| \cdot (|a_1| + |a_2| + \dots + |a_n|).$$

Положим $M = |a_1| + |a_2| + ... + |a_n|$ и возьмём $\delta = min(1, \epsilon/M)$. Тогда для всех z, для которых $|z| < \delta$, выполняется неравенство $|f(z)| \le |z| \cdot M < \epsilon/M \cdot M = \epsilon$.

Лемма доказана.

Лемма 2

Многочлен $f(z) = a_0 + a_1 \cdot z + a_n \cdot z^n$ есть непрерывная функция во всех точках комплексной плоскости.

Доказательство:

Пусть z_0 - произвольное комплексное число. Разложим многочлен f(z) по степеням $z-z_0: f(z)=c_0+c_1\cdot (z-z_0)+...+c_n\cdot (z-z_0)^n$. Тогда $c_0=f(z_0)$, так что $f(z)-f(z_0)=c_1\cdot (z-z_0)+...+c_n\cdot (z-z_0)^n$.

Правая часть представляет собой многочлен от $z-z_0$ с нулевым свободным членом. По лемме 1 для любого $\epsilon>0$ найдётся $\delta>0$ такое, что $|f(z)-f(z_0)|<\epsilon$ для всех z, для которых $|z-z_0|<\delta$.

Лемма доказана.

Лемма 3

Модуль многочлена есть непрерывная функция.

Доказательство:

Утверждение вытекает из леммы 2 и свойств модулья комплексных чисел $(||z_1|-|z_2|| \le |z_1\pm z_2| \le |z_1|+|z_2|)$: $|f(z)-f(z_0)| \ge ||f(z)|-|f(z_0)||$.

Лемма доказана.

Лемма 4

Если f(z) - многочлен степени $n \ge 1$, то для любого M > 0 существует R > 0 такое, что для всех z, для которых |z| > R, выполняется неравенство |f(z)| > M.

Доказательство:

Пусть $f(z) = a_0 + a_1 \cdot z + ... + a_n \cdot z^n$. Запишем его в виде

$$(1)f(z) = a_n \cdot z^n \cdot \left(1 + \frac{a_{n-1}}{a_n} \cdot z^{-1} + \dots + \frac{a_0}{a_n} \cdot z^{-n}\right) = a_n \cdot z^n \cdot \left(1 + g(z^{-1})\right)$$

где $g(z^{-1})$ - многочлен от z^{-1} с нулевым свободным членом. Всилу леммы 1 для $\epsilon=1/2$ найдётся $\delta>0$ такое, что при $|z^{-1}|<\delta$ имеет место неравенство $|g(z^{-1})|<1/2$. Модуль $a_n\cdot z^n$ может быть сделан сколь угодно большим, именно при $|z|>\sqrt[n]{2\cdot M/|a_n|}$ будет $|a_n\cdot z^n|>2\cdot M$. Возьмём $R=\max(\sqrt[n]{2\cdot M/|a_n|},1/\delta)$. Тогда если |z|>R, то $|z^{-1}|<\delta$ и $z>\sqrt[n]{2\cdot M/|a_n|}$, так что согласно (1)

$$|f(z)| = |a_n \cdot z^n| \cdot |1 + g(z^{-1})| \ge |a_n \cdot z^n| \cdot |1 - |g(z^{-1})|| > 2 \cdot M \cdot (1 - 1/2) = M$$

Лемма доказана.

Определение 16

Число $z_0 = x_0 + i \cdot y_0$ называется пределом последовательности $z_n = x_n + i \cdot y_n$, если для любого $\epsilon > 0$ существует натуральное число N такое, что $|z_n - z_0| < \epsilon$ для всех n > N.

Обозначение: $\lim_{n\to\infty} z_n = z_0$.

Определение 17

Последовательность z_n называется ограниченной, если существует число R>0 такое, что $|z_n|\leq R$.

Лемма 5

Из любой ограниченной последовательности z_n можно можно выделить сходящуюся последовательность.

Доказательство:

Пусть $z_n = x_n + i \cdot y_n$ и $|z_n| \leq R$, тогда $|x_n| \leq R$, так что x_n - ограниченная последовательность действительных чисел. Из неё согласно теореме Больцано-Вейерштрасса можно выделить сходящуюся подпоследовательность $x_{n_k} \to x_0$. Рассмотрим соответствующую подпоследовательность мнимых частей y_{n_k} . Она ограничена, и из неё также можно выделить сходящуюся подпоследовательность $y_{n_{k_m}} \to y_0$. Тогда соответствующая подпоследовательность $z_{n_{k_m}}$ сходится к $z_0 = x_0 + i \cdot y_0$.

Лемма доказана.

Лемма 6

Точная нижняя грань модуля многочлена достигается, т.е. существует число z_0 такое, что $|f(z_0)| \le |f(z)|$ при всех комплексных z.

Доказательство:

Рассмотрим множество всевозможных значений модуля многочлена f(z). Так как $|f(z)| \ge 0$, то это множество ограничено снизу и, следовательно, имеет точную нижнюю грань. Обозначим её через m. Тогда для любого натурального числа n можно найти комплексное число z_n такое, что

$$|f(z_n)| \le m + \frac{1}{n}$$

.

Воспользуемся леммой 4: для M=m+1 найдём R такое, что при |z|>R будет $|f(z)|>M\geq m+\frac{1}{n}$. Отсюда и из $|f(z_n)| \le m + \frac{1}{n}$ следует, что $|z_n| \le R$. Последовательность z_n оказалась ограниченной, и из неё согласно лемме 5 можно выделить сходящуюся подпоследовательность $z_{n_k} \to z_0$. Тогда в силу непрерывности |f(z)| (лемма 3)

$$\lim_{k \to \infty} |f(z_{n_k})| = |f(z_0)|.$$

С другой стороны, из $|f(z_n)| \le m + \frac{1}{n}$ и определения нижней грани имеем $m \le |f(z_{n_k})| \le m + \frac{1}{n_k}$, поэтому

$$\lim_{k \to \infty} |f(z_{n_k})| = m.$$

Сопоставление $\lim_{k\to\infty} |f(z_{n_k})| = |f(z_0)|$ и $\lim_{k\to\infty} |f(z_{n_k})| = m$ приводит к требуемому равенству

$$|f(z_0)| = m.$$

Лемма доказана.

Лемма 7 (лемма Даламбера

Если f(z) - многочлен степени $n \ge 1$ и $f(z_0) \ne 0$, то найдётся число z_1 такое, что $|f(z_1)| < |f(z_0)|$.

Доказательство:

Разложим многочлен f(z) по степеням $z - z_0$:

$$f(z) = c_0 + c_1 \cdot (z - z_0) + \dots + c_n \cdot (z - z_0)^n$$
.

Очевидно, что $c_0 = f(z_0) \neq 0$. Пусть c_k - первый ненулевой коэффициент в $f(z) = c_0 + c_1 \cdot (z - z_0) + ... + c_n$ $(z-z_0)^n$ после c_0 (такой коэффициент имеется, так как f(z) не константа). Тогда

$$(z-z_0)^n$$
 после c_0 (такой коэффициент имеется, так как $f(z)$ не константа). Тогда $f(z)=c_0+c_k\cdot(z-z_0)^k+c_{k+1}\cdot(z-z_0)^{k+1}+\ldots+c_n\cdot(z-z_0)^n=c_0\cdot(1+\frac{c_k}{c_0}\cdot(z-z_0)^k+\frac{c_k}{c_0}\cdot(z-z_0)^k\cdot(\frac{c_{k+1}}{c_k}\cdot(z-z_0)^k+\frac{c_k}{c_0}\cdot(z-z_0)^k+\frac{c_k}{c_0}\cdot(z-z_0)^k+\frac{c_k}{c_0}\cdot(z-z_0)^k\cdot g(z-z_0)),$ (2) где $g\cdot(z-z_0)=\frac{c_{k+1}}{c_k}\cdot(z-z_0)+\ldots+\frac{c_n}{c_k}\cdot(z-z_0)^{n-k}$ - многочлен от $z-z_0$ с нулевым свободным членом. По лемме 1 для $\epsilon=1/2$ найдётся такое δ , что если $|z-z_0|<\delta$, то $|g(z-z_0)|<1/2$. Оценим правую часть (2). Пусть $\frac{c_k}{c_0}=R\cdot(cos\theta+isin\theta), z-z_0=r\cdot(cos\varphi+isin\varphi)$. Выберем r так, чтобы $R_1x^k<1$. Пля этого изукие распу $x<\frac{k}{1/R_0}$ Делео ногожим $\theta+k$ ($z=\pi$, по розгийн $c=(\pi-\theta)/k$. При техом

 $R\cdot r^k<1$. Для этого нужно взять $r<\sqrt[k]{1/R}$. Далее положим $\theta+k\cdot \varphi=\pi$, т.е. возьмём $\varphi=(\pi-\theta)/k$. При таком

выборе $\frac{c_k}{c_0} \cdot (z-z_0)^k = -R \cdot r^k$. Теперь положим $z_1 = z_0 + r \cdot (\cos\varphi + i\sin\varphi)$ при $r < \min(\delta, \sqrt[k]{1/R})$ и $\varphi = (\pi-\theta)/k$. Тогда из (2) следует, что $f(z_1) = c_0 \cdot (1-R \cdot r^k - R \cdot r^k \cdot g(z_1-z_0))$, и тем самым $|f(z_1)| = |c_0| \cdot |1-R \cdot r^k - R \cdot r^k \cdot g(z_1-z_0)| \le |c_0| \cdot (|1-R \cdot r^k| + R \cdot r^k \cdot |g(z_1-z_0)|) \le /\varepsilon$ силу выбора r и $|g(z-z_0)| < 1/2/ \le |c_0| \cdot (1-R \cdot r^k + R \cdot r^k/2) = |c_0| \cdot (1-R \cdot r^k/2) < |c_0| = |f(z_0)|$.

Лемма доказана.

Доказательство основной теоремы:

Пусть f(z) - произвольный многочлен над полем $\mathbb C$ от комплексной переменной z степени $n\geq 1$. Согласно лемме 6 множество всевозможных значений |f(z)| имеет точную нижнюю грань m,которая достигается в некоторой точке z_0 , так что $|f(z_0)|=m$. Тогда $f(z_0)=0$, так как в противном случае, если $f(z_0)\neq 0$, то согласно лемме 7 найдётся точка z_1 , для которой $|f(z_1)| < |f(z_0)| = inf|f(z)|$, что невозможно. Таким образом, z_0 корень f(z) и поле \mathbb{C} комплексных чисел алгебраически замкнуто.

Теорема доказана.

§50. Каноническое разложение многочлена над полем комплексных чисел

T е о р е м а 50.1. Для любого многочлена $f(z)=\sum_{k=0}^n a_k z^k\in\mathbb{C}[z]$ степени $n\geq 1$ существуют числа $c_1,c_2,\ldots,c_n\in\mathbb{C}$ такие, что

$$f(z) = a_n(z - c_1)(z - c_2) \dots (z - c_n). \tag{50.1}$$

Это разложение единственно с точностью до порядка сомножителей.

Доказательство. Из алгебраической замкнутости поля $\mathbb C$ следует существование корня $c_1\in\mathbb C$ многочлена f(z). Тогда в кольце $\mathbb C[z]$ многочлен f(z) делится (теорема 49.1) на многочлен $z-c_1$, так что $f(z)=(z-c_1)f_1(z)$, где $f_1(z)\in\mathbb C[z]$, deg $f_1=n-1$. Если $n-1\geq 1$, то к многочлену $f_1(z)$ также применима основная теорема алгебры и, следовательно, $f(z)=(z-c_1)(z-c_2)f_2(z)$, где $f_2(z)\in\mathbb C[z]$, deg $f_2=n-2$, $c_2\in\mathbb C$. Применив эти рассуждения n раз, найдем числа $c_1,c_2,\ldots,c_n\in\mathbb C$ такие, что

$$f(z) = (z - c_1)(z - c_2) \dots (z - c_n) f_n, \qquad (50.2)$$

где $\deg f_n = 0$ и, следовательно, f_n – константа. Сравнив коэффициенты при z^n в обеих частях равенства (50.2), получим, что $f_n = a_n$. Тем самым доказано существование разложения (50.1).

Докажем его единственность. Пусть существует другое разложение:

$$f(z) = a_n(z - d_1)(z - d_2) \dots (z - d_n). \tag{50.3}$$

Каждое число c_i из первого разложения встречается среди чисел d_1, \ldots, d_n второго разложения, так как в противном случае для $c_i \neq 20^{\circ}$

 d_j , $j=\overline{1,n}$, из (50.1) получим, что $f(c_i)=0$, а из (50.3) – что $f(c_i)\neq 0$. Аналогично каждое число d_j встречается в первом разложении.

Покажем теперь, что если $c_i = d_j$, то c_i встречается в (50.1) столько же раз, сколько d_j в (50.3). Пусть c_i равно d_j и встречается в (50.1) k раз, а в (50.3) – m раз и пусть k > m. Положим $(z - c_i)^m = \varphi(z)$. Тогда

$$\varphi(z)(z-c_i)^{k-m}\prod_{c_s\neq c_i}(z-c_s)=\varphi(z)\prod_{d_s\neq d_j}(z-d_s),$$

откуда следует, что

$$\varphi(z)\bigg((z-c_i)^{k-m}\prod_{c_s\neq c_i}(z-c_s)-\prod_{d_s\neq d_j}(z-d_s)\bigg)=0.$$

 ${f Tak}$ как в кольце ${\Bbb C}[z]$ нет делителей нуля и ${f arphi}(z)
eq 0$, то

$$(z-c_i)^{k-m}\prod_{c_s\neq c_i}(z-c_s)=\prod_{d_s\neq d_j}(z-d_s).$$

Положив в этом равенстве $z=c_i$, придем к противоречию. Итак, $k \leq m$. Аналогично показывается, что $m \leq k$. Значит, k=m.

Теорема 50.2 (о каноническом разложении многочлена над полем \mathbb{C}). Для любого многочлена $f(z) = \sum_{k=0}^{n} a_k z^k \in \mathbb{C}[z]$ степени $n \geq 1$ существуют числа $c_1, c_2, \ldots, c_m \in \mathbb{C}$, где $c_i \neq c_j$ при $i \neq j$, и числа $k_1, k_2, \ldots, k_m \in \mathbb{N}$, где $k_1 + k_2 + \ldots + k_m = n$, такие, что

$$f(z) = a_n(z - c_1)^{k_1}(z - c_2)^{k_2} \dots (z - c_m)^{k_m}. \tag{50.4}$$

Это разложение единственно с точностью до порядка сомножителей.