Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget

Jaewoo Lee & Daniel Kifer

KDD 2018

Presented by Christian McDaniel

Introduction

Introduction

Iterative optimization algorithm	Differentially Private iterative algorithms
+ min f by finding optimal paramter vector w*	Gradient Descent under Differential Privacy $\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha_t (\nabla f(\mathbf{w}_t) + Y_t)$
1) Initialize w_0 2) Generate {w_t} s.t. w_t tends toward optimal w as t> infinity e.g., Gradient Descent	Prior efforts: Naive conversion 1) Pick T a priori 2) Split the budget evenly
$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha_t(\nabla f(\mathbf{w}_t))$	$\epsilon_1 = \cdots = \epsilon_T = \epsilon/T.$
	3) Update parameters using a noisy graident

Introduction

Naive Privacy conversion has a few issues:

- Accuracy depends on T
 - Too Small v. Too Large
- The nature of the gradient changes as the optimum is approached
 - Early v. Near Optimum

Introduction

Naive Privacy conversion has a few issues:

- Accuracy depends on T
 - Too Small v. Too Large
- The nature of the gradient changes as the optimum is approached
 - Early v. Near

Authors Propose:

- (First known) Adaptive Privacy Budget for zero-mean Concentrated Differential Privacy (more later)
 - re: Larger v. Smaller norm gradients
 - Allows an adaptive T

Introduction

Naive Privacy conversion has a few issues:

- Accuracy depends on T
 - Too Small v Too Large
- The nature of the gradient changes as the optimum is approached
 - Early v. Near

Authors Propose:

- Adaptive Privacy Budget for zCDP
 - At each iteration:
 - Partial allocation to calculating the noisy gradient:

$$\tilde{S}_t = \nabla f(\mathbf{w}_t) + Y_t$$

Authors Propose:

- Adaptive Privacy Budget for zCDP
 - At each iteration:
 - $\circ\;$ Partial allocation to calculating the noisy gradient
 - Allocate the rest to determining the step size:
 - Minimize

$$f(\mathbf{w}_t - \alpha \tilde{S}_t)$$

• Update accordingly:

Background

Background

Differential Privacy

Definition 3.1 ((ϵ , δ)-DP [7, 8]). A randomized mechanism \mathcal{M} satisfies (ϵ , δ)-differential privacy if for every event $S \subseteq \text{range}(\mathcal{M})$ and for all $D \sim D' \in \mathcal{D}^n$,

$$\Pr[\mathcal{M}(D) \in S] \le \exp(\epsilon) \Pr[\mathcal{M}(D') \in S] + \delta$$
.

• When delta=0, said to be pure-DP

Definition 3.2 (L_1 and L_2 sensitivity). Let $q: \mathcal{D}^n \to \mathbb{R}^d$ be a query function. The L_1 (resp. L_2) sensitivity of q, denoted by $\Delta_1(q)$ (resp., $\Delta_2(q)$) is defined as

Background

Gaussian Mechanism

Theorem 3.3 (Gaussian Mechanism [9]). Let $\epsilon \in (0,1)$ be arbitrary and q be a query function with L_2 sensitivity of $\Delta_2(q)$. The Gaussian Mechanism, which returns $q(D) + N(0, \sigma^2)$, with

$$\sigma \ge \frac{\Delta_2(q)}{\epsilon} \sqrt{2\ln(1.25/\delta)} \tag{3}$$

is (ϵ, δ) -differentially private.

Background

Concentrated DP

$$\rho$$
-zCDP,

• for output o in range(M), the privacy loss random variable Z of M is

$$Z = \log \frac{\Pr[\mathcal{M}(D) = o]}{\Pr[\mathcal{M}(D') = o]}$$

- p-zCDP imposes a bound on the moment generating function of Z and requires it to be bound around 0
- Formally it satisfies:

$$e^{D_{\alpha}(\mathcal{M}(D)||\mathcal{M}(D'))} = \mathbb{E}\left[e^{(\alpha-1)Z}\right] \leq e^{(\alpha-1)\alpha\rho}, \ \forall \alpha \in (1, \infty).$$

Background

Concentrated DP Lemmas

Composition

LEMMA 3.5 ([4]). Suppose two mechanisms satisfy ρ_1 -zCDP and ρ_2 -zCDP, then their composition satisfies $(\rho_1 + \rho_2)$ -zCDP.

Background

Concentrated DP Lemmas

• zCDP Gaussian Mechanism

Lemma 3.6 ([4]). The Gaussian mechanism, which returns $q(D) + N(0, \sigma^2)$ satisfies $\Delta_2(q)^2/(2\sigma^2)$ -zCDP.

Background

Concentrated DP Lemmas

• zCDP - pure-DP conversion

Lemma 3.7 ([4]). If $\mathcal M$ satisfies ϵ -differential privacy, them $\mathcal M$ satisfies $(\frac{1}{2}\epsilon^2)$ -zCDP.

Background

Concentrated DP Lemmas

• zCDP - (e,d)-DP

Background

NoisyMax

```
Algorithm 1: NoisyMax(\Omega, \Delta_1(f), \epsilon)
```

Input: Ω : a set of candidates, $\Delta_1(f)$: sensitivity of f, ϵ : privacy budget for pure differential privacy

 $_{1} \widetilde{\Omega} = \{ \widetilde{v}_{i} = v + \operatorname{Lap}(\Delta_{1}(f)/\epsilon) : v \in \Omega, i \in [|\Omega|] \}$

2 **return** arg max $j \in [|\Omega|]$ \tilde{v}_j

NoisyMin = NoisyMax on - f(w)

NoisyMax

Implementation

Φ

- Initialize Phi with m equally-spaced pts b/t 0 and a_max
- Proposed to update a_max in Phi every riters

$$\alpha_{\max} = (1 + \eta) \max(\alpha_t, \alpha_{t-1}, \dots, \alpha_{t-\tau+1}),$$

• Set m=20, r=10, n_=0.1,a_max=2

The Algorithm

DP-AGD

The Algorithm

Three Main Parts:

- 1. Calculate the Noisy Gradient
- 2. Determine the best step size
- 3. Adjust the privacy budget (if needed)

The Algorithm

Consider ERM

$$\underset{\mathbf{w} \in C}{\text{minimize}} f(\mathbf{w}; D) := \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; d_i)$$

The Algorithm

Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1, \ldots, d_n\}$, objective function $f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w}; d_i)$

- p nmax: privacy budget in terms of p-zCDP
- p_ng: initial privacy budget for the gradient approximation
- E_tot, delta_tot: the budget parameters re (E,delta)-DP
- gamma: budget increase rate
- C_obj and C_grad: clipping thresholds for gradient calc and obj fnxn
- {d_1,...,d_n}: set of n observations where each d_i = (x_i, y_i)
- objective function: ERM

The Algorithm

Algorithm 2: DP-AGD

Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1, \ldots, d_n\}$, objective function $f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w}; d_i)$

1 Initialize \mathbf{w}_0 and Φ

The Algorithm

Algorithm 2: DP-AGD

Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1, \ldots, d_n\}$, objective function $f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w}; d_i)$

1 Initialize \mathbf{w}_0 and Φ

2 $t \leftarrow 0, \rho \leftarrow \text{solve}(5) \text{ for } \rho \text{ // To compare to } (\epsilon, \delta)\text{-DP Algs}$

$$\epsilon_{\text{tot}} \ge \rho + 2\sqrt{\rho \log(1/\delta_{\text{tot}})}$$
.

(Lemma 3.8)

The Algorithm

Algorithm 2: DP-AGD

Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1, \ldots, d_n\}$, objective function $f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w}; d_i)$

- 1 Initialize \mathbf{w}_0 and Φ
- 2 $t \leftarrow 0, \rho \leftarrow \text{solve}(5) \text{ for } \rho // \text{ To compare to } (\epsilon, \delta) \text{-DP Algs}$
- ³ while $\rho > 0$ do
- · Checking use of privacy budget

Three Main Parts:

- 1. Calculate the Noisy Gradient
- 2. Determine the best step size
- 3. Adjust the privacy budget (if needed)

The Algorithm

1) Private Gradient Approximation

-	_
Algorithm 2: DP-AGD	
Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1, \ldots, d_n\}$, objective function $f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w}; d_i)$	+ Gradient Clipping technique (instead of assuming norm(x) <= 1)
1 Initialize \mathbf{w}_0 and Φ	
2 $t \leftarrow 0, \rho \leftarrow \text{solve (5) for } \rho // \text{ To compare to } (\epsilon, \delta) \text{-DP Algs}$ 3 while $\rho > 0$ do	+ variance of noise depends on

The Algorithm

1) Private Gradient Approximation

_	-
$a + c = 0$ $a + c = colve (5)$ for $a = 1/2$ To compare to $(c + \delta) = DD + 1/2c$	+ Add the noise

The Algorithm

1) Private Gradient Approximation

_	_	
Algorithm 2: DP-AGD	_	
Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1,\ldots,d_n\}$, objective function $f(\mathbf{w})=\sum_{i=1}^n\ell(\mathbf{w};d_i)$ 1 Initialize \mathbf{w}_0 and Φ 2 $t\leftarrow 0$, $\rho\leftarrow$ solve (5) for ρ // To compare to (ϵ,δ) -DP Algs 3 while $\rho>0$ do 4 $i\leftarrow 0$		
$ \begin{array}{c c} $		
6 $\widetilde{\mathbf{g}}_t \leftarrow \mathbf{g}_t + N(0, (C_{\text{grad}}^2/2\rho_{\text{ng}})\mathbf{I})$ 7 $\rho \leftarrow \rho - \rho_{\text{ng}}$		

The Algorithm

1) Private Gradient Approximation

The Algorithm

2) Step Size Selection

-	_
Algorithm 2: DP-AGD Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1,\ldots,d_n\}$, objective function $f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w};d_i)$ 1 Initialize \mathbf{w}_0 and Φ 2 $t \leftarrow 0$, $\rho \leftarrow$ solve (5) for ρ // To compare to (ϵ,δ) -DP Algs 3 while $\rho > 0$ do 4 $i \leftarrow 0$ 5 $\mathbf{g}_t \leftarrow \sum_{i=1}^n \left(\nabla \ell(\mathbf{w}_t;d_i)/\max(1,\frac{\ \nabla \ell(\mathbf{w}_t)\ _2}{C_{\text{grad}}})\right)$ 6 $\widetilde{\mathbf{g}}_t \leftarrow \mathbf{g}_t + N(0,(C_{\text{grad}}^2/2\rho_{\text{ng}})\mathbf{I})$ 7 $\rho \leftarrow \rho - \rho_{\text{ng}}$ 8 $\widetilde{\mathbf{g}}_t \leftarrow \widetilde{\mathbf{g}}_t/\ \widetilde{\mathbf{g}}_t\ _2$ 9 while $i = 0$ do 10 $\Omega = \{f(\mathbf{w}_t - \alpha \widetilde{\mathbf{g}}_t) : \alpha \in \Phi\}$ 11 $\rho \leftarrow \rho - \rho_{\text{nmax}}$ 12 $i \leftarrow \text{NoisyMax}(-\Omega, C_{\text{obj}}, \sqrt{2\rho_{\text{nmax}}})$	+ Find optimal step size + NoisyMax(set of candidates, sensitivity, privacy budget for pure DP - Lemma 3.7) + Control the variance of the updates

The Algorithm

2) Step Size Selection

The Algorithm

3) Adoptive Noise Reduction - Gradient Averaging

_	_
15 else 16 $\rho_{\text{old}} \leftarrow \rho_{\text{ng}}$ 17 $\rho_{\text{ng}} \leftarrow (1+\gamma)\rho_{\text{ng}}$ 18 $\widetilde{g}_t \leftarrow \text{GradAvg}(\rho_{\text{old}}, \rho_{\text{ng}}, g_t, \widetilde{g}_t, C_{\text{grad}})$ 19 $\rho \leftarrow \rho - (\rho_{\text{ng}} - \rho_{\text{old}})$	+ Increase p_t to p_t+1
25 Function GradAvg(ρ_{old} , ρ_H , g , \tilde{g} , C_{grad}): 26 $\tilde{g}_2 \leftarrow g + N(0, (\frac{C_{\text{grad}}^2}{2(\rho_H - \rho_{\text{old}})})I)$ 27 $\tilde{S} \leftarrow \frac{\rho_{\text{old}}\tilde{g} + (\rho_H - \rho_{\text{old}})\tilde{g}_2}{\rho_H}$ 28 return \tilde{S} 29 end	+ Only use p_t+1 - p_t + Average the gradient from steps t and t+1 to only use a total of p_t+1 across both

The Algorithm

```
Algorithm 2: DP-AGD
     Input: privacy budget \rho_{\mathsf{nmax}}, \rho_{\mathsf{ng}}, \epsilon_{\mathsf{tot}}, \delta_{\mathsf{tot}}, budget increase
                    rate \gamma, clipping thresholds C_{\text{obj}}, C_{\text{grad}}, data \{d_1, \ldots, d_n\}, objective function f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w}; d_i)
 _1\, Initialize \mathbf{w}_0 and \Phi
 _{2}~t\leftarrow 0, \rho\leftarrow solve (5) for \rho // To compare to (\epsilon,\delta)\text{-DP Algs}
 _3 while 
ho > 0 do
            \mathbf{g}_t \leftarrow \sum_{i=1}^n \left( \nabla \ell(\mathbf{w}_t; d_i) / \max(1, \frac{\|\nabla \ell(\mathbf{w}_t)\|_2}{C_{\mathrm{grad}}}) \right)
            \widetilde{\mathbf{g}}_t \leftarrow \mathbf{g}_t + N(0, (C_{\text{grad}}^2/2\rho_{\text{ng}})\mathbf{I})
                                                                                                                                                + loop, dynamically computing budget p (lines
             \rho \leftarrow \rho - \rho_{\mathsf{ng}}
            \widetilde{\mathbf{g}}_t \leftarrow \widetilde{\mathbf{g}}_t / \|\widetilde{\mathbf{g}}_t\|_2
                                                                                                                                                19, 11, 7)
             while i = 0 do
                     \Omega = \{f(\mathbf{w}_t - \alpha \widetilde{\mathbf{g}}_t) : \alpha \in \Phi\}
                     \rho \leftarrow \rho - \rho_{\mathsf{nmax}}
11
                                                                                                                                                + thanks to composition propterties
                     i \leftarrow \text{NoisyMax}(-\Omega, C_{\text{obj}}, \sqrt{2\rho_{\text{nmax}}})
12
                     if i > 0 then
                      if \rho > 0 then \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \alpha_i \widetilde{\mathbf{g}}_t
14
15
                     else
                            \rho_{\mathsf{old}} \leftarrow \rho_{\mathsf{ng}}
16
                            \rho_{\sf ng} \leftarrow (1+\gamma)\rho_{\sf ng}
                            \widetilde{\mathbf{g}}_t \leftarrow \text{GradAvg}(\rho_{\text{old}}, \rho_{\text{ng}}, \mathbf{g}_t, \widetilde{\mathbf{g}}_t, C_{\text{grad}})
18
                            \rho \leftarrow \rho - (\rho_{\mathsf{ng}} - \rho_{\mathsf{old}})
19
                    end
20
21
             end
            t \leftarrow t + 1
```

The Algorithm

Algorithm 2: DP-AGD
Input: privacy budget ρ_{nmax} , ρ_{ng} , ϵ_{tot} , δ_{tot} , budget increase rate γ , clipping thresholds C_{obj} , C_{grad} , data $\{d_1, \ldots, d_n\}$, objective function $f(\mathbf{w}) = \sum_{i=1}^n \ell(\mathbf{w}; d_i)$

```
def agd_rho(X, y, rho, eps_total, delta, grad_func, loss_func, test_func,
            obj_clip, grad_clip, reg_coeff=0.0, batch_size=-1, exp_dec=1.0,
            gamma=0.1, splits=60, verbose=False):
    N, dim = X.shape
    # parameters
    eps_nmax = (eps_total * 0.5) / splits
    sigma = compute_sigma(eps_nmax, delta, grad_clip)
    # intial privacy budget
    rho nmax = 0.5 * (eps nmax**2)
    rho ng = (grad clip**2) / (2.0 * sigma**2)
    # rho_ng = rho_nmax
    # initialize the parameter vector
   w = np.zeros(dim)
    t = 0
    chosen_step_sizes = []
    \max \text{ step size} = 2.0
    n candidate = 20
```

```
def agd rho():
while rho > 0:
        if verbose:
            loss = loss_func(w, X, y) / N
            acc = test func(w, X, y)
            print "[{}] loss: {:.5f} acc: {:5.2f}".format(t, loss, acc*100)
        if batch size > 0:
            # build a mini-batch
            rand idx = np.random.choice(N, size=batch size, replace=False)
            mini X = X[rand_idx, :]
            mini y = y[rand idx]
        else:
            mini X = X
            mini y = y
        # non-private (clipped) gradient
        grad = grad_func(w, mini_X, mini_y, grad_clip)
        sigma = grad clip / math.sqrt(2.0 * rho ng)
        noisy grad = grad + sigma * np.random.randn(dim)
        noisy unnorm = np.copy(noisy grad)
        noisy grad /= np.linalg.norm(noisy grad)
        rho -= rho ng
```

```
def agd_rho():
    . . .
   while rho > 0:
        while idx == 0:
            # used up the budget
            if rho < 0:
                break
            if idx > 0:
                # don't do the update when the remain budget is insufficient
                if rho >= 0:
                    w[:] = candidate[idx-1]
                rho -= rho_ng
            else:
                rho_old = rho_ng
                rho_ng *= (1.0 + gamma)
                # max_step_size *= 0.9
                if verbose:
                    print "\tbad gradient: resample (rho_ng={})".format(rho_ng)
                noisy_grad = grad_avg(rho_old, rho_ng, grad, noisy_unnorm,
                                       grad_clip)
                noisy_grad /= np.linalg.norm(noisy_grad)
                rho -= (rho_ng - rho_old)
                if reg_coeff > 0:
                    noisy_grad += reg_coeff * w
```

```
def agd_rho():
    ...
    while rho > 0:
    ...
    while idx == 0:
        ...
        chosen_step_sizes.append(step_sizes[idx])
        t += 1

    if (t % 10) == 0:
        max_step_size = min(1.1*max(chosen_step_sizes), 2.0)
        del chosen_step_sizes[:]
```

```
def grad_avg(rho_old, rho_H, true_grad, noisy_grad, grad_clip):
    dim = true_grad.shape[0]
    sigma = grad_clip / math.sqrt(2.0 * (rho_H - rho_old))

# new estimate
    g_2 = true_grad + sigma * np.random.randn(dim)

beta = rho_old / rho_H
    # weighted average
    s_tilde = beta * noisy_grad + (1.0 - beta) * g_2

return s_tilde
```

Experimental Results

Experimental Results

Experimental Results

Baselines:

ObjPert: Objective Perturbation, add linear perturbation term to the objective function and solve using non-private solver

OutPert: Output Perturbation, perturb the output after batch GD for predetermined steps

PrivGene: DP genetic algorithm

SGD-Adv: DP algorithm using advanced composition wwith privacy amplification output (upper bound)

SGD-MA: Uses an improved composition method called moments accountant

NonPrivate: Non-private L-BFGS algorithm

Majority: Chooses majority class

• All known DP algorithms use a predetermined privacy budget sequence

Experimental Results

Experiment Design

- Report the classification accuracy and final objective value
- Perform 20 repeats of 5-fold CV

Preprocessing:

- one-hot encoding of all binary variables
- rescale numberical variables on [0,1]
- for OhiPert normalie to unit norm (ner requirements)

Experimental Results

Effects of Parameters

- Ran DP-AGD on Adult dataset
- Overall: robust to parameters moderate settings have small effect

Experimental Results

Effects of Parameters (DP-AGD on Adult)

• Splits (T): Estimate initial privacy budget via number of splits

$$\epsilon_{\mathsf{nmax}} = \epsilon_{\mathsf{ng}} = \frac{\epsilon_{\mathsf{tot}}}{2 \cdot \mathsf{splits}}$$

(a) Effect of splits (left: accuracy, right: obj. value)

- Less effect when budget is large
- Too cmall y Too large

Experimental Results

Effects of Parameters (DP-AGD on Adult)

- -----

Experimental Results

Effects of Parameters (DP-AGD on Adult)

• C_grad

(c) Effect of C_{grad} (left: accuracy, right: obj. value)

- C_x are the clipping parameters: sets a bound on the sensitivity to satisfy zCDP
- C_grad refers to the gradient calculation
- Too small: low sensitivity, but can cause too much information loss
- Too large: high sensitivity, results in too much noise

Experimental Results

Effects of Parameters (DP-AGD on Adult)

• C_obj

Experimental Results

Logistic Regression

Figure 2: Logistic regression by varying ϵ (Top: classification accuracies, Bottom: objective values)

_	-
+ DP-AGD outperforms / performs competitively + especially when budget is very small	+ SGD-Adv and SGD-MA depend on T (predetermined) + SGD-MA outperforms all others when budget > 0.8 (more splits due to tight bound on privacy loss)> impractical under strict privacy control

Experimental Results

SVM

Figure 3: SVM by varying ϵ (Top: classification accuracies, Bottom: objective values)

- DP-AGD scores competitive accuracies
 - shows unstable behavior on BANK (acc. decreases despite increased use of budget)
 - Still, objective value consistently decreases as the budget is increased

Experimental Results

KDDCup99

Conclusions:

- First known iterative optimization algorithm for differential privacy
- satisfies zCDP, which is weaker than (e)-DP, but stronger than (e,d)-DP
- Per-iteration privacy budget is adaptively determined during runtime based on utility of privacy-preserving statistics
- Uses gradient averaging to utilize non-descending gradients and preserve the budget
- Outperforms or performs competitively with baselines, with an advantage under strict privacy settings
- Code available: https://github.com/ppmlguy/DP-AGD
 (https://github.com/ppmlguy/DP-AGD
- Citation:

```
@inproceedings{Lee2018ConcentratedDP,
title={Concentrated Differentially Private Gradient Descent with Adapti
ve per-Iteration Privacy Budget},
author={Jaewoo Lee and Daniel Kifer},
booktitle={KDD},
year={2018}
}
```

 Lee, J., & Kifer, D. (2018). Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget. KDD.

Questions?