THE US INFLATION PHENOMENON | It's Oil, silly

AUTHOR | Rand Sobczak Jr. DATE | 14 September 2021

Generated Deliverables

Data Pre-Processing

Table of contents

04 05 06

Model Description

Model Findings

Next Steps

01

Problem Identification

Developing a model to explain & understand the phenomenon of US Inflation

Inflation is important

It's a **highly debated** phenomenon in economics. Many economists maintain that **moderate** inflation **levels** are needed to **drive consumption**, assuming that higher levels of **spending are crucial** for **economic growth**

Inflation is important

It's a highly debated phenomenon in economics. Many economists maintain that moderate inflation levels are needed to drive consumption, assuming that higher levels of spending are crucial for economic growth

& **stabilizing Inflation** is one of three objectives of the **Federal Reserve who's decisions move** the global **financials markets**

The purpose & goal of this Data Science project is to

build a model to explain & understand the phenomenon of US Inflation

02

Generated Deliverables

The power of API's

Quandl

Quandl is a marketplace for financial, economic and alternative data

Generated Deliverables

Investing.com

A financial platform & news website; one of the top 3 financial websites in the world

FRED

Federal Reserve Economic Data (FRED) a database maintained by the Research division of the Federal Reserve Bank of St. Louis

Problem Identification (cont.)

I **shortlisted 19 variables** to determine their influence on Inflation

Items	Reported	API	API Source	Comments
Inflation	Monthly	Quandl	U.S. Bureau of Labor Statistics	The target variable
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
Corn	Daily	Investpy	Investing.com	One of many commodities
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
Wheat	Daily	Investpy	Investing.com	One of many commodities
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(\ensuremath{DXY}) Proxy for potentially importing inflation
Unemployment Rate	Monthly	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

Target Variable

Economic Data

I **Target variable** | What we seek to understand

Comments	API Source	API	Reported	Items
The target variable	U.S. Bureau of Labor Statistics	Quandl	Monthly	Inflation

Target Variable

Commodities

Economic Dat

I **Commodities** | Where Inflation may show itself

Items	Reported	API	API Source	Comments
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Corn	Daily	Investpy	Investing.com	One of many commodities
Wheat	Daily	Investpy	Investing.com	One of many commodities

Target Variable Commodities

Economic Data

I **Economic Data** | Variables to determine the health of the economy

Items	Reported	API	API Source	Comments
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable

Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(DXY) Proxy for potentially importing inflation
Unemployment Rate	Monthly	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

Source Code

This can be found at my GitHub account referenced at the end

Generated Deliverables

Research Report

Also can be found at my GitHub account referenced at the end

Presentation Report

This one...

03

A Data Pre-Processing

Split it up...

Data Cleaning

Data Frames should talk to each other

 After pulling, the data frame was composed of variables with different lengths <class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 14312 entries, 1946-01-01 to 2021-09-14
Data columns (total 19 columns):

Data	COTAMINS (COCAT IS COTAM	113).	
#	Column	Non-Null Count	Dtype
0	Wage CPI	14303 non-null	float64
1	WTI	12098 non-null	float64
2	Heating Oil	13097 non-null	float64
3	Copper	10450 non-null	float64
4	Sugar	13097 non-null	float64
5	Natural Gas	9925 non-null	float64
6	Cattle	13094 non-null	float64
7	Lean Hogs	13099 non-null	float64
8	Soybeans	10009 non-null	float64
9	Lumber	13099 non-null	float64
10	Capacity Utilization	14043 non-null	float64
11	Corn	13096 non-null	float64
12	M2 Velocity	14161 non-null	float64
13	GDP	14305 non-null	float64
14	Wheat	10011 non-null	float64
15	PMI	14291 non-null	float64
16	USD Index	11283 non-null	float64
17	Unemployment Rate	14291 non-null	float64
18	Initial Jobless Claims	14040 non-null	float64
d+vo	oc. floo+64/10)		

dtypes: float64(19)
memory usage: 2.2 MB

Data Pre-Processing Data Cleaning

Data Frames should talk to each other

- After pulling, the data frame was composed of variables with different lengths
 - Natural Gas being the constraint
 - Forward fill was used

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 9762 entries, 1991-04-18 to 2021-09-14
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Wage CPI	9762 non-null	float64
1	WTI	9762 non-null	float64
2	Heating Oil	9762 non-null	float64
3	Copper	9762 non-null	float64
4	Sugar	9762 non-null	float64
5	Natural Gas	9762 non-null	float64
6	Cattle	9762 non-null	float64
7	Lean Hogs	9762 non-null	float64
8	Soybeans	9762 non-null	float64
9	Lumber	9762 non-null	float64
10	Capacity Utilization	9762 non-null	float64
11	Corn	9762 non-null	float64
12	M2 Velocity	9762 non-null	float64
13	GDP	9762 non-null	float64
14	Wheat	9762 non-null	float64
15	PMI	9762 non-null	float64
16	USD Index	9762 non-null	float64
17	Unemployment Rate	9762 non-null	float64
18	Initial Jobless Claims	9762 non-null	float64
1.0	63 164/46)		

dtypes: float64(19) memory usage: 1.5 MB

Data Pre-Processing Data Cleaning (cont.)

Data Frames should talk to each other (cont.)

- Different lengths
- Cut the data to April 1991

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 9762 entries, 1991-04-18 to 2021-09-14
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype			
0	Wage CPI	9762 non-null	float64			
1	WTI	9762 non-null	float64			
2	Heating Oil	9762 non-null	float64			
3	Copper	9762 non-null	float64			
4	Sugar	9762 non-null	float64			
5	Natural Gas	9762 non-null	float64			
6	Cattle	9762 non-null	float64			
7	Lean Hogs	9762 non-null	float64			
8	Soybeans	9762 non-null	float64			
9	Lumber	9762 non-null	float64			
10	Capacity Utilization	9762 non-null	float64			
11	Corn	9762 non-null	float64			
12	M2 Velocity	9762 non-null	float64			
13	GDP	9762 non-null	float64			
14	Wheat	9762 non-null	float64			
15	PMI	9762 non-null	float64			
16	USD Index	9762 non-null	float64			
17	Unemployment Rate	9762 non-null	float64			
18	Initial Jobless Claims	9762 non-null	float64			
dtypes: float64(19)						

dtypes: float64(19) memory usage: 1.5 MB

Data Pre-Processing Data Cleaning (cont.)

Data Frames should talk to each other (cont.)

- Different lengths
- Cut the Data
- Concatenated with Inflation
 - Only 321 observations

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 321 entries, 1991-04-30 to 2021-07-31 Data columns (total 20 columns): Non-Null Count Column Dtype Inflation 321 non-null float64 float64 Wage CPI 321 non-null WTI float64 321 non-null Heating Oil 321 non-null float64 Copper 321 non-null float64 321 non-null float64 Sugar Natural Gas 321 non-null float64 Cattle 321 non-null float64 Lean Hogs 321 non-null float64 Soybeans float64 321 non-null Lumber 321 non-null float64 Capacity Utilization float64 321 non-null 12 float64 Corn 321 non-null M2 Velocity 321 non-null float64 GDP float64 14 321 non-null Wheat float64 321 non-null PMI float64 16 321 non-null USD Index float64 321 non-null Unemployment Rate 321 non-null float64 Initial Jobless Claims 321 non-null float64 dtypes: float64(20)

memory usage: 52.7 KB

 Items
 Reported
 API
 API Source
 Comments

 Inflation
 Monthly
 Quandl
 U.S. Bureau of Labor Statistics
 The target variable

Data Cleaning (cont.)

Winsorizing

 Winsorizing is the transformation of statistics by limiting extreme values in data to reduce the effect of potential spurious outliers

Data Pre-Processing Data Cleaning (cont.)

Winsorizing

- Winsorizing is the transformation of statistics by limiting extreme values in data to reduce the effect of potential spurious outliers
- Inflation was Winsorized differently on each of the approaches (described next)

Exploratory Data Analysis

Investigating the Time Relationships

- Quarter on Quarter (for all)
 - Compared a quarterly change on Variables & Inflation
- Month on Month (for all)
- Quarter on Quarter for Variables (past) & Inflation (forwards)
- Quarter on Quarter w/ Rolling Averages

Exploratory Data Analysis

Quarter on Quarter (for all)

Feature Correlation Heat Maps with the Pearson correlation coefficients

Exploratory Data Analysis (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
 - The same as the previous but looked at a monthly change
- Quarter on Quarter for Variables (past) & Inflation (forwards)
- Quarter on Quarter w/ Rolling Averages

Exploratory Data Analysis

Month on Month (for all)

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Exploratory Data Analysis (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
- Q on Q for Variables (past) & Inflation (forwards)
 - Looked at a previous 1 Quarter change for variables to a 1 Quarter change in Inflation in the future
- Quarter on Quarter w/ Rolling Averages

Exploratory Data Analysis

Q on Q for Variables (past) & Inflation (forwards)

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
- Q on Q for Variables (past) & Inflation (forwards)

Quarter on Quarter w/ Rolling Averages

 Similar to # 1 albeit used a rolling average for those that were reported more often than once a Quarter as a Variable "may have had" a bad day or week when the Quarter ended

Exploratory Data Analysis

Quarter on Quarter w/ Rolling Averages
Feature Correlation Heat Maps with the
Pearson correlation coefficients
(cont.)

Data Pre-Processing Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

 We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation on our "best"

Exploratory Data Analysis

Quarter on Quarter w/ Rolling Averages
Feature Correlation Heat Maps with the
Pearson correlation coefficients
(cont.)

Exploratory Data Analysis (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables; this lead to an average increase in their Pearson correlation
 coefficients of 173 bps with one seeing a 460 bps increase

Exploratory Data Analysis

Quarter on Quarter w/ Rolling Averages
Feature Correlation Heat Maps with the
Pearson correlation coefficients
(cont.)

Pre-Processing

Splitting & Scaling

- Chosen data frame
 - The Quarter on Quarter w/ Rolling Averages was chosen
 - Inflation not Winsorized but 8 are
- Train, Test Split
- Scaling

Pre-Processing (cont.)

- Chosen data frame
- Train, Test Split
 - The data was then split for Training & Testing to be sent to different Scaling Approaches
- Scaling

Pre-Processing (cont.)

- Chosen data frame
- Train, Test Split
- Scaling
 - 3 scaling approaches were tried to "normalize" the variables:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)Log Transformation (LG)

Pre-Processing (cont.)

- Chosen data frame
- Train, Test Split
- Scaling
 - 3 scaling approaches were tried to "normalize" the variables:

 - MinMax Scaling (MM)
 - Log Transformation (LG)

Pre-Processing (cont.)

- Chosen data frame
- Train, Test Split
- Scaling
 - 3 scaling approaches were tried to "normalize" the variables:
 - Standard Scaling (SS) MinMax Scaling (MM)

 - Log Transformation (LG)

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried to "normalize" the variables:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)

	Wages CPI_SS	WTI_SS	Wages CPI_MM	WTI_MM	Wages CPI_LG	WTI_LG
count	2.180000e+02	2.180000e+02	218.000000	218.000000	2.180000e+02	2.180000e+02
mean	-4.838128e-18	2.750094e-17	0.694134	0.579751	-2.340126e-16	-1.018553e-17
std	1.002301e+00	1.002301e+00	0.099718	0.153589	1.002301e+00	1.002301e+00
min	-6.977019e+00	-3.783391e+00	0.000000	0.000000	-4.203779e+00	-3.308051e+00
25%	-2.671202e-01	-5.665365e-01	0.667559	0.492937	-3.922100e-01	-6.014282e-01
50%	1.153214e-01	-3.959852e-02	0.705608	0.573683	2.665979e-02	-8.488108e-02
75%	4.280369e-01	6.677299e-01	0.736719	0.682071	3.947888e-01	6.501558e-01
max	3.074376e+00	2.742497e+00	1.000000	1.000000	4.675375e+00	3.071756e+00

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed

R ² results for nothing scaled below	MAE results for nothing scaled below	RMSE results for nothing scaled below	
Test 0.2925 (nothing scaled)	Test 0.5214 (nothing scaled)	Test 0.7133 (nothing scaled)	
R ² results for X & y scaled below	MAE results for X & y scaled below	RMSE results for X & y scaled below	
SS Train 0.5055 Test 0.2962	SS Train 0.5085 Test 0.5859	SS Train 0.7032 Test 0.8086	
MM Train -6.3454 Test -6.8587	MM Train 0.2581 Test 0.2538	MM Train 0.2694 Test 0.2685	
LG Train 0.4983 Test 0.2781	LG Train 0.5172 Test 0.603	LG Train 0.7083 Test 0.8218	
R ² results for X only scaled below	MAE results for X only scaled below	RMSE results for X only scaled below	
SS Train 0.5133 Test 0.2925	SS Train 0.4461 Test 0.5214	SS Train 0.6139 Test 0.7133	
MM Train 0.057 Test -0.042	MM Train 0.5971 Test 0.6354	MM Train 0.8545 Test 0.8657	
LG Train 0.5005 Test 0.2732	LG Train 0.4545 Test 0.5291	LG Train 0.6219 Test 0.723	

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity
 - GDP

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity
 - GDP
 - Unemployment Rate

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity
 - GDP
 - Unemployment Rate
 - Initial Jobless Claims

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, ""
- The results of these below

R ² results for nothing scaled below Test 0.2925 (nothing scaled)	MAE results for nothing scaled below Test 0.5214 (nothing scaled)	RMSE results for nothing scaled below Test 0.7133 (nothing scaled
R ² results for X & y scaled below	MAE results for X & y scaled below	RMSE results for X & y scaled below
SS Train 0.5055 Test 0.2962	SS Train 0.5085 Test 0.5859	SS Train 0.7032 Test 0.8086
WH Train 6.3454 Test 6.8587	## Train 0.2581 Test 0.2538	MM Train 0.2694 Test 0.2685
LG Train 0.4983 Test 0.2781	LG Train 0.5172 Test 0.603	LG Train 0.7083 Test 0.8218
R ² results for X only scaled below	MAE results for X only scaled below	RMSE results for X only scaled below
SS Train 0.5133 Test 0.2925	SS Train 0.4461 Test 0.5214	SS Train 0.6139 Test 0.7133
WH Train 0.057 Test 0.042	MM Train 0.5971 Test 0.6354	MM Train 0.8545 Test 0.8657
LG Train 0.5005 Test 0.2732	LG Train 0.4545 Test 0.5291	LG Train 0.6219 Test 0.723
		DNCC country for the LC 0 CC continues to large
R ² results for the LG & SS combination below	MAE results for the LG & SS combination below	RMSE results for the LG & SS combination below
SS Train 0.5053 Test 0.2788	SS Train 0.4488 Test 0.5229	SS Train 0.6189 Test 0.7202

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- As SS & LG posted the best result, ""
- The results of these below
- The resulting x5 Data frames went to a Random Forest Model

```
R<sup>2</sup> results for X & y scaled below

1 SS Train | 0.5055 Test 0.2962

2 LG Train | 0.4983 Test 0.2781

R<sup>2</sup> results for X only scaled below

3 SS Train | 0.5133 Test 0.2925

4 LG Train | 0.5005 Test 0.2732

R<sup>2</sup> results for the LG & SS combination below

5 SS Train | 0.5053 Test 0.2788
```

04

Model Description

The Random Forest

The Random Forest Model was then used

with the goal of determining what variables best explain & understand Inflation

05

Model Findings

What's moving Inflation

Where's Inflation coming from?

- The standard process was taken on x5
 - Grid Search
 - Random Forest
 - Hyperparameter search using Grid Search CV

Model Findings

- The standard process was taken on x5
- The results
 - Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches

Model Findings

(cont.)

The standard process was taken on x5

The results

 Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many

Model Findings

(cont.)

• The standard process was taken on x5

The results

 Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables

Model Findings

(cont.)

* Only one shown here; all are found in the Report

- The standard process was taken on x5
- The results
 - Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
 - It was then decided to isolate each to their respective variables

Model Findings

(cont.)

(cont.)

Where's Inflation coming from? (cont.)

The standard process was taken on x5

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results

```
MAE results for X & v scaled below
                                                                                         RMSE results for X & v scaled below
R2 results for X & y scaled below
                                            SS Train | 0.5143 Test 0.6133
                                                                                         SS Train | 0.7128 Test 0.8232
SS Train | 0.492 Test 0.2706
                                            LG Train | 0.5261 Test 0.5955
                                                                                         LG Train | 0.7292 Test 0.8171
LG Train | 0.4682 Test 0.2862
R2 results for X only scaled below
                                            MAE results for X only scaled below
                                                                                         RMSE results for X only scaled below
SS Train | 0.492 Test 0.2734
                                            SS Train | 0.4526 Test 0.6034
                                                                                         SS Train | 0.6272
                                                                                                           Test 0.8216
LG Train | 0.7563 Test 0.6524
                                            LG Train | 0.2229 Test 0.294
                                                                                         LG Train | 0.4343 Test 0.5702
```

 R^2 results for the LG & SS combination below MAE results for the LG & SS combination below SS Train | 0.4776 Test 0.2918 MAE results for the LG & SS combination below SS Train | 0.4343 Test 0.5702

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results
- & showed that the process presented notable improvement from Pre-processing

Comparing final to the averages in the Pre-processing Step

37.92 bps increase in R²

A -23.52 bps decrease in MAE

A -15.28 bps decrease in RMSE

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results
- & showed that the process presented notable improvement from Pre-processing
- WTI held the dominate place on all of the different structures of scaling. To best position ourselves to understand Inflation; the verdict is...

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results
- & showed that the process presented notable improvement from Pre-processing
- WTI held the dominate place on all of the different structures of scaling. To best position ourselves to understand Inflation; the verdict is...
- We will borrow some words to help explain

The wise words of Bill Clintons' advisor to his 1992 political campaign

"

11

- lames Carville

The wise words of Bill Clintons' advisor to his 1992 political campaign

"It's the economy, stupid"

- James Carville

Borrowed words...

Our **Conclusion**

06

☼ Next Steps

Keep going

Variables not included

- Steel
 - 2008 was the furthest I could pull

Next Steps

Variables not included

- Steel
- . Gasoline
 - 2005 was the furthest I could pull

Next Steps

Next Steps

Variables not included

- Steel
- Gasoline
- US Wages Hourly Earnings
 - Limited Data as well

Next Steps

Variables not included

- Steel
- Gasoline
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services
 - Only goes until 2006

Next Steps

Variables not included

- Steel
- Gasoline
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services
- Growth in M2
 - Possible collinearity with M2 Velocity

More attention may be applicable to the below:

- Get more data
 - The big set back would be the size of the data frame. With only 321 observations, machine learning is limited

More attention may be applicable to the below:

- Get more data
- Winsorizing
 - Winsorization on Inflation & other variables may be re-examined

Next Steps (cont.)

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide
 - Reassess the Variables which were chosen in the SS & LG divide; discussed in Pre-processing

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide

Predict Wages CPI Itself

Develop a model to remove ourselves from the US govt's reporting

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide
- Predict Wages CPI Itself

Build a Better Imported / Exported USD

- The DXY doesn't correctly address the potential import of inflation to the US as it's weighting is a weighted geometric mean of the:
 - Eurozone (EUR),
 - Japan (JPY),
 - United Kingdom (GBP),
 - Canada (CAD),
 - Sweden (SEK) &
 - Switzerland (CHF)

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide
- Predict Wages CPI Itself

Build a Better Imported / Exported USD

- The DXY doesn't correctly address the potential import of inflation to the US as it's weighting is a
 weighted geometric mean of various currencies
- This doesn't take into account the US's largest trading partner, China. Imports in 2020 shown below

China	Canada	Vietnam	South Korea	Switzerla	Ireland
		3.6%			% 2.8%
		India	France 7	Thailand Singa	pore Netherlands Brazil
20% Mexico	12%	2.3%	1.9%	1.7% 1.3	3% 1.2% 1.0%
	Japan	Italy	Deigiaiii	ustralia South Africa	olombia Chile Saudi Arabia Poland
		2.2%	Indonesia St	weden 0.49% 0	0.48% 0.47% 0.41% 0.38% Costa Mungary Finland Finland
	5.2%	United	0.91% De	enmark 0.34%	0.24% 0.23% 0.23% 0.22% 0.22%
	Germany	2.2%		0.51% 0.29% ustria Ecuador 0.5004 0.27%	Portugal
		Malaysia	Spain Tu	0.50% Bangladosh 0.27%	0.17% Noaragua 84
14%	5.0%	1.9%	I and a land	nilippines	0.10% Egypt United

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide
- Predict Wages CPI Itself

Build a Better Imported / Exported USD

- The DXY doesn't correctly address the potential import of inflation to the US as it's weighting is a
 weighted geometric mean of various currencies
- This doesn't take into account the US's largest trading partner, China. Imports in 2020 shown below
- It takes into account less than 40% of US Import Trade

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide
- Predict Wages CPI Itself
- Build a Better Imported / Exported USD
- Random Forest was used, while Gradient Boosting may be something to explore:
 - i.e. Boosting over Bagging

Thanks

By **Rand Sobczak Jr.**rand.sobczak@gmail.com
+1 313 447 8634

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**