

GCE

Physics A

Advanced Subsidiary GCE

Unit G482: Electrons, Waves and Photons

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Annotations available in SCORIS

Annotation	Meaning
T-ID	Benefit of doubt given
Hell	Contradiction
×	Incorrect response
[40.E	Error carried forward
Terr.	Follow through
[HAQ]	Not answered question
2000	Benefit of doubt not given
Nor	Power of 10 error
	Omission mark
THE .	Rounding error ONLY APPLIED ONCE IN THE PAPER; also use as Repeated error
SF.	Error in number of significant figures ONLY APPLIED ONCE IN THE PAPER
✓	Correct response
AF.	Arithmetic error
2	Wrong physics or equation
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit

Annotations in detailed mark schemes

Annotation	Meaning
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

CATEGORISATION OF MARKS

The marking scheme categorises marks on the MABC scheme

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it

refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it

refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-

marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the

candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows that the candidate knew

the equation, then the **C**-mark is given.

A marks: These are accuracy or answer marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

C	uesti	on	Answer		Guidance
1	(a)		resistivity = resistance x area (of cross-section)/length	B1	accept equation with resistance as subject allow over for divide by; do NOT allow formula with a word for each symbol
	(b)	(i)	R = ρ I/A = 1.7 x 10 ⁻⁸ / 6.4 x 10 ⁻³ = 2.7 x10 ⁻⁶ (Ω)	C1 A1	accept 2.66 x10 ⁻⁶ (Ω)
		(ii)	$P = I^2R$ = $8000^2 \times 2.7 \times 10^{-6}$ = 170 W	C1 C1 A1	select formula; can use P = VI & V = IR ecf b(i) 173 (2.7), 170 (2.66)
		(iii)	170 x 9.0 = 1530 W 1.5 x 24 = 36 (kW h) or 170 x 24 = 4080 W 4.08 x 9 = 36.7 (kWh)	B1 B1	ecf b(ii); 1 mark for X 9 or 1 mark for X 24
		(iv)	36 x 15 = 540 p	B1	ecf b(iii) 551(36.7), 555 (37)
	(c)		I = nAev $8000 = 8.4 \times 10^{28} \times 6.4 \times 10^{-3} \times 1.6 \times 10^{-19} \text{ v}$ $v = 9.3 \times 10^{-5} \text{ (m s}^{-1)}$	C1 C1 A1	select formula correct substitution
			Total	12	

			Answer	Marks	Guidance
2	(a)	(i)1	360 (Ω)	B1	
		(i)2	Current	B1	not symbol only; not unit only
		(ii)1	1/10 + 1/20 + 1/40 = 1/R R = 5.7 (Ω)	C1 A1	1/R = 0.175 accept 40/7
		(ii)2	potential difference	B1	accept p.d. or voltage not e.m.f.; not symbol only; not unit only
	(b)	(i)	p.d./voltage must be proportional to current as long as temperature and/or (other) physical conditions remain constant R line is straight and through the origin	M1 A1 B1	symbols may be used but must be defined
		(ii)1	(same current so) at 0.6 A have	B1	accept resistors in series (so V's add); i.e recognise that at 0.6 A each component has 4.5 V across it.
		(ii)2	4.5 V + 4.5 V (=9.0 V) add currents so at 3.0 V have 0.2 A + 0.4 A = 0.6 A	B1 B1 B1	accept attempt to add currents for 1 mark (i.e. method mark)
		(iii)	thermistor heats up/temperature increases resistance (of thermistor/circuit) decreases (so current	B1	max 3 marks
			rises) temperature/resistance becomes constant (after 2 s)	B1 B1	accept thermal energy frees more charge carriers/AW
			because thermal equilibrium reached	B1	<pre>accept energy/power/heat in/generated = energy/power/heat out/lost</pre>
			Total	15	

3(a)(i)energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)M1(ii)any source has an internal resistance where energy is transferred into thermal energy /lost as heatB1(b)(i) $V = IR 1.2 = 0.2 R$ R = 6.0 \(\Omega\$C1(iii) $1.6 - 1.2 = 0.4 = 0.2 r$ r = 2.0 \(\Omega\$C1(c)(i) $I = 1.2 = 0.2 \times 3600 \times 1.5$ C1(d)Substitution needed to social substitution needed to social substitut	Guidance
(ii) any source has an <u>internal resistance</u> where energy is transferred into thermal energy /lost as heat (b) (i) $V = IR \ 1.2 = 0.2 \ R$ C1 substitution needed to scor allow 6 Ω (ii) $1.6 - 1.2 = 0.4 = 0.2 \ r$ C1 allow 2 Ω	narge
where energy is transferred into thermal energy /lost as heat (b) (i) $V = IR \ 1.2 = 0.2 \ R$ (ii) $IR = 0.0 \ \Omega$ (iii) $IR = 0.4 = 0.2 \ R$ (iv) $IR = 0.4 = $	
(b) (i) $V = IR \ 1.2 = 0.2 R$	cross the cell when a current is
$R = 6.0 \Omega$ A1 allow 6 Ω (ii) $1.6 - 1.2 = 0.4 = 0.2 r$	ined
(ii) $1.6 - 1.2 = 0.4 = 0.2 \text{ r}$ C1 A1 allow 2Ω	ore mark
$r = 2.0 \Omega$ A1 allow 2Ω	
(c) (i)1 Q = It = 0.20 x 3600 x 1.5	
=1100 A1 1080 allow 1 mark max fo	or 0.3 or 18
correct unit, B1 allow C, kC, A s exception 0.3 A h or 18 A	A min scores 3 marks
(i)2 energy = QV = 1100×1.2 or $I^2Rt = 0.2^2 \times 6 \times 5400$ C1 ecf (c)(i)1 substitution ne	
= 1320 (J) A1 1296(1080) allow 1 mark	
	een observation and reason to
because <u>internal</u> resistance remains constant/cell operates at constant emf	
I falls <u>rapidly/towards zero</u> over last hour or so B1	
because cell's/chemical energy is used up (so E falls) B1 accept r of cell increases	causing fall in V or I
Total 17	

Q	Question		Answer	Marks	Guidance
4	(a)		is a transfer of energy as a result of oscillations (of the source/medium/particles through which energy is travelling)	M1 A1	allow carries allow information accept without the transfer of the medium/particles/matter
	(b)		displacement/oscillation (of particles) is normal/perpendicular to direction of energy transfer in transverse wave displacement/oscillation (of particles) is parallel to direction of energy transfer in longitudinal wave	B1 B1	allow vibrations allow to direction of wave motion/propagation/velocity/travel NOT transverse wave can travel through a vacuum give max 1 mark for 2 similar poor definitions, e.g. direction of travel, waves oscillate, etc. (two such errors scores zero)
	(c)	(i)	wavefronts/paths spread out after passing through a gap or around an obstacle/AW	B1	NOT wave changes direction
		(ii)	use a slit/hole/ barrier width of gap/position beyond barrier comparable to wavelength microphone/observer's ear suitably placed sound detected/heard outside 'geometrical shadow' region (showing diffraction)	B1 B1 B1 B1	accept doorway/end of wall accept position of detector beyond doorway N.B. good diagram can illustrate first 3 marking points allow 'hears sound' in suitable context only observation mark which is QWC mark must be in words 2 marks max for double slit experiment(1st and 3rd m.p.)
	(d)	(i)	$v = f\lambda$ giving 340 = 1200 x λ $\lambda = 0.28$ (m)	C1 A1	substitution needed to score mark POT error for using 1.2 kHz giving 280 m N.B. λ = 0.3 SF error (remember apply only once)
		(ii)	waves superpose/interfere at points along PQ (constructively and destructively) path difference from sources of nλ for maximum/loud sound/intensity path difference of (2n + 1)λ/2 for minimum/quiet sound/intensity	B1 B1 B1	max 2/3 for writing phase difference is $n\lambda$ or path difference is 2π i.e. mixing path and phase consistently through answer allow waves arrive in phase $(0, 2\pi, 360^{\circ}, \text{etc})$ allow waves arrive in anti-phase $(\pi, 180^{\circ}, \text{etc})$ do not allow waves arrive out of phase or answers in terms of peaks and troughs for 2^{nd} and 3^{rd} marks
		(iii)	$a = \lambda D/x$ giving $a = 0.28 \times 3.0/0.50$ a = 1.7 m	C1 A1	ecf (d)(i) substitution needed to score mark
		(iv)	intensity of sound (at maxima) unchanged/AW positions of maxima and minima reversed/AW	B1 B1	allow volume or amplitude
			Total	18	

C	uesti	on	Answer	Marks	Guidance
5	(a)		energy is trapped in pockets/ where the shape or energy does not move along/energy is stored/AW	B1	accept any two sensible but different features
			there are nodes/positions of zero amplitude/motion there are positions where there is max.	B1	allow there are nodes and antinodes as 1 marking point penalise displacement for amplitude once only
			amplitude/antinodes	B1	permanee anoptaconnent for ampittace error error
			different/adjacent points have different amplitudes/AW	B1	
			all points between nodes in phase/all points in adjacent λ/2's in anti-phase/AW	B1	
	(b)		incident wave is reflected (at the fixed end of the string)	B1	
			and the <u>reflected</u> wave (or <u>it</u>) <u>interferes/superposes</u> with		
			the incident wave (to produce the stationary wave)	B1	
	(c)	(i)	points which are the same distance from the nodes		
			will have the same amplitude	M1	
			so Y (has the same amplitude as X)	A1	N.B . some will add Z stating it is the same distance from the node – these candidates can score the first mark
		(ii)	all points on the string oscillate with the same	M1	
			frequency	A1	
			so Y and Z (have the same f as X)		
		(iii)	all points in alternate segments of the string oscillate	M1	accept e.g. have positive displacement at the same time
			in phase/AW		
			so Z (is in phase with X)	A1	
			Total	10	

Q	uesti	on	Answer	Marks	Guidance
6	(a)	(i)	gamma rays, u.v., visible/light, i.r., microwaves	B1	two out of five needed for mark
		(ii)	similarity: travel in a vacuum/same speed (in vacuum)/at c/transverse (wave)/can be polarised/caused by accelerating charges/are oscillating electric and magnetic fields	B1	any one for mark NOT can be reflected/refracted/diffracted/interfere,etc.
			difference: different λ, f, (photon) energy	B1	any one for mark
		(iii)	wavelength of X-rays is close to atomic spacing/AW or wavelength of radio waves many/million times the atomic separation	B1	
			maximum/significant diffraction occurs when radiation wavelength ~ spacing (between diffracting planes) within material	B1	
	(b)		advantage produces vitamin D (in skin cells) disadvantage damage DNA/cause cancer/sunburn, etc.	B1 B1	allow any sensible use, e.g. sterilise equipment, forensic science, disco lighting, etc. NOT tanning, photosynthesis
	(c)	(i)	2 x 10 ⁻¹⁰ m	B1	
		(ii)	E = hc/ λ = 6.63 x 10 ⁻³⁴ x 3.0 x 10 ⁸ /2 x 10 ⁻¹⁰ = 9.9(5) x 10 ⁻¹⁶ number = 1 x 10 ⁹	C1 C1 A1 B1	Select equation and attempt to apply it ecf (c)(i) accept 1 x 10 ⁻¹⁵ , i.e 1 SF mark scored for 1 x 10 ⁻⁶ /value of E
	(d)	(i)	diode symbol all three components in series	B1 B1	allow LED symbol; basic requirement is triangle along wire direction with bar, with or without circle and line through ecf for diode symbol
		(ii)	maximum ammeter reading when aerials in line/parallel zero signal/current when aerials at 90° to each other at 180° same signal/ammeter reading as at 0° quoting $I = I_{\circ} cos^2 \theta$ to indicate variation through 180°	B1 B1 B1 B1	accept ammeter reading falls as aerial is rotated accept minimum allow full marks for answers in terms of only ammeter reading or signal strength max 3 out of 4 marking points
			Total	17	

C	Question		Answer	Marks	Guidance	
7	(a)	(i)	photoelectric effect (experiment) or (discrete) counting of gamma rays or Compton effect	B1	NOT the gold leaf/ the zinc plate experiment, etc.	
		(ii)	Young's slits (experiment)	B1	accept any interference/diffraction <u>experiment</u> , e.g. <u>using</u> a diffraction grating, a double slit <u>experiment</u> , etc.	
	(b)	(i)	φ is the minimum energy required to release an electron from the metal/surface	B1	allow escape from	
		(ii)	$KE_{max} = hf - \phi$ or $hf = \phi + KE_{max}$ the straight line equation is $y = mx + c$ (where m is the gradient and c the y-intercept) hence giving $c = (-) \phi$ and $m = h$	B1 M1 A1	can be copied from the data sheet	
		(iii)1	h = 32 x $10^{-20}/5$ x 10^{14} or 40 x $10^{-20}/6.25$ x 10^{14} or 20 x $10^{-20}/3$ x 10^{14} etc = 6.4×10^{-34} (J s)	M1 A1	any sensible attempt at gradient gains 1 mark check that answer is consistent with figures and not just quoted, e.g. 6.7 for third set of data above	
		(iii)2	$8.75 \pm 0.25 \times 10^{14} \text{ (Hz)}$	B1	tolerance is to within the grid square N.B . SF applies i.e answer must be 9.0 NOT 9	
		(iii)3	$\phi = 6.4 \times 10^{-34} \times 8.75 \times 10^{14}$ = 5.6 x 10 ⁻¹⁹ (J)	C1 A1	ecf (b)(iii)1,2 or ecf b(iii) 2 x 6.6(3) x 10^{-34} ans = 1 x 2; 5.8 x 10^{-19} (J) if use h = 6.6 x 10^{-34} allow use of φ = hf – KE _{max} at (15,40) for example	
			Total	11		

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

