Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

(Currently Amended) An image generation system comprising:

a memory which stores a program and data for image generating; and

at least one processor which is connected to the memory and performs processing for image generating,

the processor performing:

means for generating a motion of an object formed by a plurality of parts, by moving an Nth part through a physical simulation based on hit information when the Nth part is hit and sequentially transmitting the hit information to the N+1th, N+2th, N+3th parts so that the N+1th, the N+2th, the N+3th parts are sequentially moved through a physical simulation based on the transmitted hit information; and

means for generating an image including an image of the object on which the motion is generated.

2. (Currently Amended) The image generation system according to claim 1, wherein the hit information is a force vector in the direction of hitting, and the processor further performing:

movingwherein each of the parts is moved through a rotation moment obtained by the force vector.

3. (Currently Amended) The image generation system according to claim 2, the processor further performing:

sequentially attenuating wherein the magnitude of the force vector is sequentially attenuated while being the force vector is transmitted to each of the parts.

4. (Currently Amended) The image generation system according to claim 1,

the processor further performing:

wherein acting a rotational resistance force acts on each of the parts depending on the angular velocity of each of the parts.

5. (Currently Amended) The image generation system according to claim 1, the processor further performing:

actingwherein a restoring force for returning an object back to a given posture acts on each of the parts.

6. (Currently Amended) The image generation system according to claim 1, the processor further performing:

switchingwherein processing is switched from a play of the object's motion based on motion data to a generation of the object's motion through the physical simulation when the object is hit.

7. (Currently Amended) The image generation system according to claim 1, the processor further performing:

switchingwherein processing is switched from a generation of the object's motion through the physical simulation to a play of the object's motion based on motion data when a given condition is satisfied.

8. (Currently Amended) An image generation system comprising:

a memory which stores a program and data for image generating; and

at least one processor which is connected to the memory and performs processing for image generation.

the processor performing:

means for playing a motion of an object formed by a plurality of parts based on prestored motion data regardless of a position of a shooter;

means for generating the motion of the object through a physical simulation; and

means for switching processing from a play of the object's motion based on motion data to a generation of the object's motion through a physical simulation when the object is hit.

(Currently Amended) An image generation system comprising:
 <u>a memory which stores a program and data for image generating; and</u>
 <u>at least one processor which is connected to the memory and performs</u>

<u>processing for image generating,</u>

the processor performing:

means for playing a motion of an object formed by a plurality of parts based on prestored motion data regardless of a position of a shooter;

means for generating the motion of the object through a physical simulation; and means for switching processing from a generation of the object's motion through a physical simulation to a play of the object's motion based on the motion data when a given condition is satisfied.

10. (Currently Amended) The image generation system according to claim 9, the processor further performing:

switchingwherein processing is switched from the generation of the object's motion through the physical simulation to the play of the object's motion based on the motion data, in at least one of cases where a given time period has elapsed after the object has been hit and where a parameter relating to the object reaches a given value.

11. (Currently Amended) The image generation system according to claim 8, the processor further performing:

causingwherein the object is eaused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

12. (Currently Amended) The image generation system according to claim 9,

the processor further performing:

causingwherein the object is caused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

13. (Currently Amended) A computer-usable program embodied in an information storage medium or a carrier wave, comprising a processing routine for realizing:

means for generating a motion of an object formed by a plurality of parts, by moving an Nth part through a physical simulation based on hit information when the Nth part is hit and sequentially transmitting the hit information to the N+1th, N+2th, N+3th parts so that the N+1th, the N+2th, the N+3th parts are sequentially moved through a physical simulation based on the transmitted hit information; and

means for generating an image including an image of the object on which the motion is generated.

14. (Currently Amended) The program according to claim 13,

wherein the hit information is a force vector in the direction of hitting, and the program comprising a processing routine for realizing:

movingwherein each of the parts is moved through a rotation moment obtained by the force vector.

15. (Currently Amended) The program according to claim 14, the program comprising a processing routine for realizing:

sequentially attenuating wherein the magnitude of the force vector is sequentially attenuated while being the force vector is transmitted to each of the parts.

16. (Currently Amended) The program according to claim 13, the program comprising a processing routine for realizing:

actingwherein a rotational resistance force aets on each of the parts depending on the angular velocity of each of the parts.

17. (Currently Amended) The program according to claim 13, the program comprising a processing routine for realizing:

acting wherein-a restoring force for returning an object back to a given posture acts-on each of the parts.

18. (Currently Amended) The program according to claim 13, the program comprising a processing routine for realizing:

switchingwherein processing is switched from a play of the object's motion based on motion data to a generation of the object's motion through the physical simulation when the object is hit.

19. (Currently Amended) The program according to claim 13, the program comprising a processing routine for realizing:

switchingwherein processing is switched from a generation of the object's motion through the physical simulation to a play of the object's motion based on motion data when a given condition is satisfied.

20. (Currently Amended) A computer-usable program embodied in an information storage medium or a carrier wave, comprising a processing routine for realizing:

means for playing a motion of an object formed by a plurality of parts based on prestored motion data regardless of a position of a shooter;

means for generating the motion of the object through a physical simulation; and means for switching processing from a play of the object's motion based on motion data to a generation of the object's motion through a physical simulation when the object is hit.

21. (Currently Amended) A computer-usable program embodied in an information storage medium or a carrier wave, comprising a processing routine for realizing:

means for playing a motion of an object formed by a plurality of parts based on prestored motion data regardless of a position of a shooter;

means for generating the motion of the object through a physical simulation; and means for switching processing from a generation of the object's motion through a physical simulation to a play of the object's motion based on the motion data when a given condition is satisfied.

22. (Currently Amended) The program according to claim 21, the program comprising a processing routine for realizing:

switchingwherein processing is switched from the generation of the object's motion through the physical simulation to the play of the object's motion based on the motion data, in at least one of cases where a given time period has elapsed after the object has been hit and where a parameter relating to the object reaches a given value.

23. (Currently Amended) The program according to claim 20, the program comprising a processing routine for realizing:

causingwherein the object is caused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

24. (Currently Amended) The program according to claim 21, the program comprising a processing routine for realizing:

causingwherein the object is caused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

25. (Previously Presented) An image generation method comprising: generating a motion of an object formed by a plurality of parts, by moving an Nth part through a physical simulation based on hit information when the Nth part is hit, parts so that the N+1th, the N+2th, the N+3th ... parts are sequentially moved through a physical simulation based on the transmitted hit information; and

generating an image including an image of the object on which the motion is generated.

- 26. (Previously Presented) The image generating method according to claim 25, wherein the hit information is a force vector in the direction of hitting, the method further comprising:
 moving each of the parts through a rotation moment obtained by the force
- 27. (Previously Presented) The image generation method according to claim 26, further comprising:

vector.

sequentially attenuating the magnitude of the force vector while the force vector is transmitted to each of the parts.

28. (Previously Presented) The image generation method according to claim 25, further comprising:

acting a rotational resistance force on each of the parts depending on the angular velocity of each of the parts.

29. (Previously Presented) The image generation method according to claim 25, further comprising:

acting a restoring force for returning an object back to a given posture on each of the parts.

30. (Previously Presented) The image generation method according to claim 25, further comprising:

switching processing from a play of the object's motion based on motion data to a generation of the object's motion through the physical simulation when the object is hit.

31. (Previously Presented) The image generation method according to claim 25, further comprising:

switching processing from a generation of the object's motion through the physical simulation to a play of the object's motion based on motion data when a given condition is satisfied.

32. (Previously Presented) An image generation method comprising:

playing a motion of an object formed by a plurality of parts based on prestored motion data regardless of a position of a shooter;

generating the motion of the object through a physical simulation; and switching processing from a play of the object's motion based on motion data to a generation of the object's motion through a physical simulation when the object is hit.

33. (Previously Presented) An image generation method comprising:

playing a motion of an object formed by a plurality of parts based on prestored motion data regardless of a position of a shooter;

generating the motion of the object through a physical simulation; and switching processing from a generation of the object's motion through a physical simulation to a play of the object's motion based on the motion data when a given condition is satisfied.

34. (Previously Presented) The image generation method according to claim 33, further comprising:

switching processing from the generation of the object's motion through the physical simulation to the play of the object's motion based on the motion data, in at least one

of cases where a given time period has elapsed after the object has been hit and where a parameter relating to the object reaches a given value.

35. (Previously Presented) The image generation method according to claim 32, further comprising:

causing the object to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

36. (Previously Presented) The image generation method according to claim 33, further comprising:

causing the object to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

37. (Currently Amended) An image generation system comprising:

a memory which stores a program and data for image generating; and

at least one processor which is connected to the memory and performs

processing for image generating,

the processor performing:

means for playing a motion of an object formed by a plurality of parts based on prestored motion data;

means for generating the motion of the object through a physical simulation; and means for switching processing from a play of the object's motion based on motion data to a generation of the object's motion through a physical simulation when the object is hit;

causingwherein the object is caused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

38. (Currently Amended) An image generation system comprising:

a memory which stores a program and data for image generating; and

at least one processor which is connected to the memory and performs processing for image generating,

the processor performing:

means for playing a motion of an object formed by a plurality of parts based on prestored motion data;

means for generating the motion of the object through a physical simulation; and means for switching processing from a generation of the object's motion through a physical simulation to a play of the object's motion based on the motion data when a given condition is satisfied;

causing wherein the object is eaused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

39. (Currently Amended) A computer-usable program embodied in an information storage medium or a carrier wave, comprising a processing routine for realizing: means for playing a motion of an object formed by a plurality of parts based on prestored motion data;

means for generating the motion of the object through a physical simulation; and means for switching processing from a play of the object's motion based on motion data to a generation of the object's motion through a physical simulation when the object is hit;

causing wherein the object is caused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

40. (Currently Amended) A computer-usable program embodied in an information storage medium or a carrier wave, comprising a processing routine for realizing:

means for playing a motion of an object formed by a plurality of parts based on prestored motion data;

means for generating the motion of the object through a physical simulation; and means for switching processing from a generation of the object's motion through a physical simulation to a play of the object's motion based on the motion data when a given condition is satisfied;

causingwherein the object is caused to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

41. (Previously Presented) An image generation method comprising:

playing a motion of an object formed by a plurality of parts based on prestored motion data;

generating the motion of the object through a physical simulation;
switching processing from a play of the object's motion based on motion data
to a generation of the object's motion through a physical simulation when the object is hit;
and

causing the object to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.

42. (Previously Presented) An image generation method comprising:

playing a motion of an object formed by a plurality of parts based on prestored motion data;

generating the motion of the object through a physical simulation; and switching processing from a generation of the object's motion through a physical simulation to a play of the object's motion based on the motion data when a given condition is satisfied; and

causing the object to perform a connecting motion which connects a motion generated by the physical simulation with a motion played based on the motion data.