Problema 1

Sejam $\bar{S} \in \mathbb{S}_{++}^n$ e $\alpha \in \mathbb{R}_{++}$. Prove que os conjuntos

$$\{X \in \mathbb{S}_{++}^n \mid \langle \bar{S}, X \rangle \leq \alpha\} \in \{X \in \mathbb{S}_{++}^n \mid \langle \bar{S}, X \rangle = \alpha\}$$

são não-vazios, convexos e compactos. Mostre ainda que o interior do primeiro conjunto não é vazio.

Resposta

Vamos chamar o primeiro conjunto de A e o segundo de B, isto é

$$A = \{X \in \mathbb{S}_{++}^n \mid \langle \bar{S}, X \rangle \leq \alpha \}$$
 e

$$B = \{ X \in \mathbb{S}_{++}^n \mid \langle \bar{S}, X \rangle = \alpha \}.$$

Agora, devemos provar algumas propriedades sobre A e B.

Proposição 1.1. A e B são não-vazios.

 $Demonstração. \text{ Já que } \bar{S} \in \mathbb{S}^n_{++}, \ \bar{S} \neq 0, \ \log_{\bar{S}} \langle \bar{S}, \bar{S} \rangle \neq 0. \text{ Escolhermos } \beta = \frac{\alpha}{\langle \bar{S}, \bar{S} \rangle}. \text{ Já que } \alpha > 0 \text{ e } \langle \bar{S}, \bar{S} \rangle > 0, \\ \beta > 0. \text{ Agora, escolhemos } \bar{X} = \beta \bar{S}. \text{ Temos que para todo } h \in \mathbb{R}^n,$

$$h^T \bar{X} h = h^T \beta \bar{S} h = \beta h^T \bar{S} h > 0,$$

portanto, $\bar{X} \in \mathbb{S}^n_{++} \subseteq \mathbb{S}^n_{+}$. Além disso, $\langle \bar{S}, X \rangle = \alpha$. Logo, $\bar{X} \in A$ e $\bar{X} \in B$. Portanto, $A \neq \emptyset$ e $B \neq \emptyset$. \square

Proposição 1.2. A e B são convexos.

Demonstração. Agora, queremos mostrar que A e B são convexos. Sejam $X, Y \in \mathbb{S}^n_+$ quaisquer escolhemos Z = (X + Y)/2. Temos que, para todo $h \in \mathbb{R}^n$,

$$h^{T}Zh = h^{T}(X+Y)h/2 = (h^{T}Xh + h^{T}Yh)/2 > 0,$$

então $Z \in \mathbb{S}^n_{++}$, além disso,

$$\langle Z, \bar{S} \rangle = (\langle X, \bar{S} \rangle + \langle Y, \bar{S} \rangle)/2.$$

Assim, se existe $\beta \in \mathbb{R}$ tal que $\langle X, \bar{S} \rangle = \langle Y, \bar{S} \rangle = \beta$, então $\langle Z, \bar{S} = \beta$, ou seja, B é convexo. Além disso, se existe $\beta \in \mathbb{R}$ tal que $\langle X, \bar{S} \rangle \leq \beta$ e $\langle Y, \bar{S} \rangle \leq \beta$, então, $\langle Z, \bar{S} \rangle \leq \beta$, ou seja, A é convexo. \square

Proposição 1.3. A e B são limitados.

Demonstração. Sejam $T \in \mathbb{S}^n \setminus \{0\}$ e $X \in A$. Sabemos que A é limitado se e somente se existe $\theta \in \mathbb{R}_+$ tal que $X + \theta T \notin A$.

Se $\langle T, \bar{S} \rangle = 0 \rangle$, basta escolher $\theta = \frac{\alpha - \langle X, \bar{S} \rangle}{\langle T, \bar{S} \rangle} + 1$. Já que $\alpha \geq \langle X, \bar{S} \rangle$, $\theta \geq 1 > 0$, logo, $\theta \in \mathbb{R}_+$ e $\langle X + \theta T, \bar{S} \rangle = \alpha + \langle T, \bar{S} \rangle > \alpha$, logo, $X + \theta T \notin A$.

Caso contrário, pelo **Ex. 21**, já que $X \in \mathbb{S}_{++}^n$, $T \notin \mathbb{S}_{+}^n \setminus 0$. Logo, existe $h \in \mathbb{R}^n$ tal que

$$h^T T h < 0$$
, portanto,

se
$$\theta = -\frac{h^T X h}{h^T T h} + 1$$
, $\theta \ge 1 > 0$. Logo, $\theta \in \mathbb{R}_+$ e já que

$$h^{T}(X + \theta T)h = h^{T}Xh + \theta h^{T}Th = 0 + h^{T}Th < 0.$$

 $X+\theta T\notin \mathbb{S}^n_{++}$, logo, $X+\theta T\notin A$. Assim, mostramos que A é limitado. Já que $B\subseteq A, B$ também é limitado. \Box

\mathbf{P}_{1}	roposição	1.4.	A	P	R	$s\tilde{a}o$	fechados
1	ι υρυσιζαυ	T.T.	41	·	$\boldsymbol{\mathcal{L}}$	340	recruates.

Demonstração. Sabemos que \mathbb{S}^n_{++} é fechado. $C = \{X \in \mathbb{S} \mid \langle X, S \rangle \leq \alpha\}$ é um semiespaço, logo, é fe	echado.
$D = \{X \in \mathbb{S} \mid \langle X, \bar{S} \rangle = \alpha\}$ é um hiperplano, logo, é fechado. $A = \mathbb{S}_{++}^n \cap C$ e $B = \mathbb{S}_{++}^n \cap D$, ou seja, t	anto A
quanto B são fechados.	

Proposição 1.5. A tem interior não vazio.

Demonstração.

Com isso, temos que A e B são não-vazios, convexos e compactos e A tem interior não-vazio.