

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q6 We have,

$$(x,y) \in R \Leftrightarrow x + 2y = 8$$

Now,

$$x + 2y = 8$$

$$\Rightarrow x = 8 - 2y$$

Putting y = 1, 2, 3, we get x = 6, 4, 2 respectively

For
$$y = 4$$
, we get $x = 0 \notin N$

Also, for y > 4, $x \notin N$

$$R = \{(6,1), (4,2), (2,3)\}$$

Thus,

$$R^{-1} = \left\{ \left(1,6\right), \; \left(2,4\right), \; \left(3,2\right) \right\}$$

$$\Rightarrow$$
 $R^{-1} = \{(3,2), (2,4), (1,6)\}$

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q7 We have,

$$A = \{3,5\}, B = \{7,11\}$$

and, $R = \{(a,b): a \in A, b \in B, a - b \text{ is odd}\}$

For the elements of the given sets A and B, we find that

$$3-7=-4$$
, $3-11=-8$, $5-7=-2$ and $5-11=-6$

Thus, ${\cal R}$ is an empty relation from ${\cal A}$ into ${\cal B}$.

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q8

we nave

$$A = \{1, 2\}$$
 and $B = \{3, 4\}$

$$n(A) = 2 \text{ and } n(B) = 2$$

$$\Rightarrow$$
 $n(A) \times n(B) = 2 \times 2 = 4$

$$\Rightarrow n(A \times B) = 4$$

$$\left[\because n \left(A \times B \right) = n \left(A \right) \times n \left(B \right) \right]$$

So, there are $2^4 = 16$ relations from A to B.

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q9

(i) We have,

$$R = \{(x, x + 5) : x \in \{0, 1, 2, 3, 4, 5\}\}$$

For the elements of the given sets, we find that

$$R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$$

Clearly, Domain (R) = $\{0,1,2,3,4,5\}$ and Range (R) = $\{5,6,7,8,9,10\}$

(ii) We have,

$$R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$$

For the elements of the given sets, we find that

$$x = 2, 3, 5, 7$$

$$(2,8) \in R$$
, $(3,27) \in R$, $(5,125) \in R$ and $(7,343) \in R$

$$\Rightarrow$$
 R = {(2,8), (3,27), (5,125), (7,343)}

Clearly, Domain $(R) = \{2,3,5,7\}$ and Range $(R) = \{8,27,125,343\}$

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q10

(i) We have,

$$R = \{(a,b): a \in N, a < 5, b = 4\}$$

$$\Rightarrow$$
 a = 1,2,3,4 and b = 4

Thus,
$$R = \{(1,4), (2,4), (3,4), (4,4)\}$$

Clearly, Domain $(R) = \{1, 2, 3, 4\}$ and Range $(R) = \{4\}$

(ii) We have,

$$S = \{(a, b) : b = |a - 1|, a \in z \text{ and } |a| \le 3\}$$

For
$$a = -3, -2, -1, 0, 1, 2, 3$$
 we get
 $b = 4, 3, 2, 1, 0, 1, 2$ respectively

Thus,
$$S = \{(-3, 4), (-2, 3), (-1, 2), (0, 1), (2, 1), (3, 2)\}$$

Domain
$$(S) = \{-3, -2, -1, 0, 1, 2, 3\}$$
 and

Range (R) = {0,1,2,3,4}

********** END ********