Case Study 3 Rubric – Wildfire Detection with CNNs

Alexandra Vesselinov DS 4002 Spring 2025

General Description

Submit to Canvas a PDF of your written portion and a link to your GitHub repository.

This case study is your opportunity to demonstrate your ability to apply deep learning to a real-world image classification task using wildfire imagery. You will take on the role of an environmental data scientist responsible for developing a binary classifier to detect active wildfire zones.

Why am I doing this?

This study allows you to show your conceptual understanding and technical abilities in machine learning. Through hands-on modeling, you will explore how a CNN can be trained to classify environmental data and reflect on model performance, accuracy, and future improvements. The assignment emphasizes reproducibility, evaluation, and communication of results.

What am I going to do?

You will build a CNN model using Keras and TensorFlow to classify wildfire images as either "fire" or "no fire." You will then evaluate your model's performance and explain the results using a short written report. All relevant code, data, and output should be stored in your GitHub repository.

You will submit:

- Written portion PDF includes analysis, reflection, and references
- GitHub repository includes code and all supporting materials
- Reference list on a separate page of the PDF using IEEE style

How will I know I have succeeded?

You will meet expectations when you follow the criteria in the rubric below:

Category	Details			
----------	---------	--	--	--

Formatting	 Submit all materials in the formats outlined below: Written Portion: Submit as a PDF GitHub Repository: Include code, images, model outputs References: List IEEE-style citations at the end 	
Written Portion	 Summarize the goal and motivation of the case study What is the problem and why does it matter? Outline your analysis plan Include a flowchart or diagram outlining the steps of your CNN modeling process (e.g., Data Cleaning → Preprocessing → Model Training → Evaluation) Report results Discuss your final model performance (accuracy, precision, recall, F1-score) Comment on the significance of the results in terms of real-world application 	
Reflection	 Discuss challenges you faced during the project What issues arose in model training, tuning, or evaluation? What did you learn while solving these issues? Discuss what you would do differently in a future project 	
Code	 Include the fully functioning Jupyter Notebook or Python script Must contain: Image preprocessing and augmentation CNN model construction using Keras Training/validation/test split Model training and evaluation Visualization of loss and accuracy curves Confusion matrix of results Code should be modular and clearly commented 	
References	 Include at least 2–3 external sources to support your methodology and analysis Example: Blog posts on CNNs, Keras documentation, or academic articles (Use IEEE format) 	