## **DESIGUALDADES**

Una desigualdad es un enunciado de la forma a < b

La cual se lee respectivamente, a es menor que b o también que b es mayor que a.

Podemos decir que en dicho enunciado el símbolo < la "abertura" señala a la expresión mayor y la "punta" a la expresión menor.

Por ejemplo 5>3 se lee 5 es mayor que 3 o que 3 es menor que 5. -1<6 se lee -1 es menor que 6 o que 6 es mayor que -1

También una desigualdad puede tener la forma  $a \le b$ , la cual se lee a es menor ó igual que b o también que b es mayor o igual que a. Este enunciado es cierto si se cumple una de las dos condiciones: que a sea menor que b o que sean iguales.

#### Ejemplo:

El enunciado  $4 \le 7$  es cierto, ya que se cumple que 4 es menor que 7

El enunciado  $4 \ge 7$  es falso, ya que no se cumple que 4 sea mayor que 7, ni que 4 sea igual a 7.

El enunciado  $3 \le 3$  es cierto, ya que se cumple que 3 es igual a 3, aunque no se cumple que 3 < 3

El enunciado  $a \le c \le b$  es equivalente a que  $a \le c$  y a la vez que  $c \le b$ 

 $a \le c \le b \Leftrightarrow a \le c \quad y \quad c \le b$ 

Aunque algunas veces la expresión  $a \le c \le b$  es más comprensible si se lee del centro hacia los lados, es decir, c es mayor o igual que a y que c sea menor o igual que b ( **significa** que el valor de c debe de estar entre a y b, incluyendo dichos valores).

#### Eiemplo:

El enunciado  $1 \le 4 \le 3$  es falso

El enunciado  $-3 \le 0 < 5$  es cierto

El enunciado  $1 \le 3 < 3$  es falso, sin embargo  $1 \le 3 \le 3$  es cierto

#### **INTERVALOS**

<u>Un intervalo</u> es un conjunto denso de números reales y se representa por medio de corchetes

Un conjunto se dice que es denso si entre dos números cualesquiera existe otro número que pertenece al conjunto.

## Clases de intervalos

1. Intervalo cerrado [a,b]. también puede escribirse como  $\{x \in \mathbb{R} \mid a \le x \le b\}$  gráficamente



2. Intervalo abierto a,b también puede escribirse en notación de conjunto como  $x \in \mathbb{R} / a < x < b$ . Gráficamente



3. i) Intervalo semicerrado a la izquierda [a,b[ también puede escribirse en notación de conjunto como  $\{x \in \mathbb{R} \mid a \le x < b\}$ . Gráficamente



ii) Intervalo semicerrado a la derecha  $abla^{a}$  también puede escribirse en notación de conjunto como  $abla^{a}$ . Gráficamente



- 4. intervalos al infinito
  - i) intervalo  $[a, +\infty[, \{x \in \mathbb{R} / x \ge a\}]$
  - ii) intervalo  $]-\infty,b]$ ,  $\{x \in \mathbb{R} / x \le b\}$
  - iii) intervalo  $]-\infty,b[$ ,  $\{x \in \mathbb{R} / x < b\}$
  - iv) intervalo  $a, +\infty$   $\{x \in \mathbb{R} / x > a\}$

# Cuyas graficas respectivamente son:



MATEMÁTICA I CICLO I 2019

#### **ALGUNAS OPERACIONES CON INTERVALOS**

Con los intervalos pueden efectuarse las operaciones siguientes:

- i)  $AUB = \{x \in \mathbb{R} \mid x \in A \text{ } ó \text{ } x \in B\}$
- ii)  $A \cap B = \{x \in \mathbb{R} \mid x \in A \ y \ x \in B\}$

## Ejemplo 1:

Dados  $A = [2, +\infty[y \ B = ]-3, 4]$  efectuar las operaciones  $AUB, A \cap B$ .

### Solución

Respuestas

$$AUB = ]-3, +\infty[$$

$$A \cap B = [2, 4]$$

# Ejercicio 1:

Dados  $A = \begin{bmatrix} 0, 6 \end{bmatrix}$  y  $B = \begin{bmatrix} -6, 4 \end{bmatrix}$ , efectuar las operaciones AUB,  $A \cap B$ .

## RESOLUCION DE INECUACIONES LINEALES

Estas desigualdades son aquellas que tienen la forma  $ax+b \le 0$  en la cual a y b son constantes. (El símbolo de desigualdad puede ser  $\le$ ,  $\ge$ , < o > )

Para resolver desigualdades utilizamos las propiedades siguientes:

1.  $A \le B \iff A + C \le B + C$  (NOTA: Hacer ejemplos con números)

2.  $A \leq B \iff A-C \leq B-C$ 

3.  $\operatorname{si} C > 0$  y  $A \le B$  entonces  $CA \le CB$ 

4. si C < 0 y  $A \le B$  entonces  $CA \ge CB$ 

## Ejemplo 2: Resolver 2x < 6x - 2

## Solución

$$2x < 6x - 2$$

2x-6x < 6x-2-6x restamos a ambos miembros 6x

$$-4x < -2$$

 $\left(-\frac{1}{4}\right)\left(-4x\right) > \left(-\frac{1}{4}\right)\left(-2\right)$  multiplicamos a ambos miembros por  $-\frac{1}{4}$ ,

por lo que invertimos la dirección de la desigualdad (según lo indica la prop. 4)

$$x > \frac{1}{2}$$

En forma de intervalo la solución es  $\left]\frac{1}{2}, +\infty\right[$ 

De forma análoga a las ecuaciones, las desigualdades pueden resolverse con la única diferencia que cuando un número negativo esta multiplicando (o dividiendo) y pasa a dividir (o a multiplicar) la desigualdad se invierte.

**Ejercicio 2: Resolver** 
$$\frac{2}{3}x+2<\frac{1}{6}x-1$$

# **Ejemplo 3:** Resolver $2 \le x + 5 < 9$

# Solución

$$2 \le 2x + 5 < 9$$

$$2-5 \le 2x+5-5 < 9-5$$

restando 5 a cada miembro

$$-3 \le 2x < 4$$

$$\frac{-3}{2} \le \frac{2x}{2} < \frac{4}{2}$$

dividiendo entre 2 cada miembro

$$\frac{-3}{2} \le x < 2$$

por lo tanto el C.S.=
$$\left[-\frac{3}{2}, 2\right[$$

## O también

$$2 \le 2x + 5 < 9$$

$$2-5 \le 2x < 9-5$$

$$-3 \le 2x < 4$$

$$\frac{-3}{2} \le x < \frac{4}{2}$$

por lo tanto el C.S.=
$$\left[-\frac{3}{2}, 2\right]$$

**Ejercicio 3:** Resolver  $\frac{1}{2} < 3 - 2x \le 3$ 

# RESOLUCION DE INECUACIONES CUADRÁTICAS EN UNA VARIABLE

Para resolver estas desigualdades puede seguirse los pasos siguientes:

- 1. Se transforma la desigualdad en  $ax^2 + bx + c \le 0$  (donde  $\le$  puede ser  $\ge$ , < ó >)
- 2. Se factoriza la parte izquierda
- 3. Se determina cada una de las raíces de los factores obtenidos en 2)
- 4. Se construye un cuadro de variación para ver el comportamiento de la expresión  $ax^2 + bx + c$  en los diferentes intervalos determinados por las raíces de los factores
- 5. Se concluye en base a los resultados, los cuales están determinados por la ultima fila del cuadro de variación

**Ejemplo 4: Resolver** 
$$3x^2 \ge \frac{x}{2} + 1$$

# <u>Solución</u>

6

$$3x^2 \ge \frac{x}{2} + 1$$

$$2(3x^2) \ge 2(\frac{x}{2}) + 2(1)$$
 multiplicando por 2

$$6x^2 \ge x + 2$$

$$6x^2 - x - 2 \ge 0$$

pasando todos los terminos diferentes de cero

a un solo lado

$$(2x+1)(3x-2) \ge 0$$
 factorizando

Encontrar las raíces de cada factor

$$2x+1=0$$
  $3x-2=0$ 

$$x = -\frac{1}{2} \qquad x = \frac{2}{3}$$

| <b>-α</b>    | -1/. | 2 2/ | 3 +∞ |
|--------------|------|------|------|
| 2x+1         | _    | +    | +    |
| 3x – 2       | -    | -    | +    |
| (2x+1)(3x-2) | +    | _    | +    |

El producto de los dos factores es mayor o igual a cero (positivo) en dos intervalos, por lo tanto

C. S.= 
$$\left] -\infty, -\frac{1}{2} \right] \cup \left[ \frac{2}{3}, +\infty \right[$$

Ejercicio 4: Resolver  $x(6x+1) \le 2$ 

# RESOLUCIÓN DE INECUACIONES CON ALGUNOS TÉRMINOS FRACCIONARIOS CON VARIABLE EN EL DENOMINADOR

Para resolver estas inecuaciones se procede de de la siguiente manera:

- 1. Se trasladan todos los términos a un solo miembro de la desigualdad
- 2. Se suma o se resta las fracciones transformándola a la forma  $\frac{a}{b} < 0$  (puede ser también  $\leq$ ,  $\geq$ ,  $\delta >$ )
- 3. Se factoriza (si es posible) el numerador y el denominador.
- 4. Luego se encuentra las raíces de cada uno de los factores, tanto del numerador como del denominador
- 5. Posteriormente se construye un cuadro de variación, teniendo el cuidado de excluir los valores que hacen cero el denominador

# Ejemplo 5: Resolver $x \ge \frac{2}{x+1}$

## Solución

$$x \ge \frac{2}{x+1}$$

$$x - \frac{2}{x+1} \ge 0$$

$$\frac{x(x+1) - 2}{x+1} \ge 0$$
 efectuando la diferencia
$$\frac{x^2 + x - 2}{x+1} \ge 0$$

$$\frac{(x+2)(x-1)}{x+1} \ge 0$$
 factorizando el numerador encontrar las raíces del numerador y del denom

encontrar las raíces del numerador y del denominador

$$x+2=0$$
  $x-1=0$   $x+1=0$   
 $x=-2$   $x=1$   $x=-1$ 

#### Construir un cuadro de variación

| +0                       | 0 | -2 - | 1 | 1 | <b>+</b> ∞ |
|--------------------------|---|------|---|---|------------|
| x+2                      | - | +    | + | + |            |
| x-1                      | - | -    | - | + |            |
| x+1                      | - | -    | + | + |            |
| $\frac{(x+2)(x-1)}{x+1}$ | - | +    | - | + |            |

C.S.= 
$$[-2,-1]$$
 $\cup$ [1,+ $\infty$ [

8

Otra forma.....

$$x \ge \frac{2}{x+1}$$

$$0 \ge \frac{2}{x+1} - x$$

Continuarlo.... Tiene que dar el mismo resultado anterior

Ejercicio 5: Resolver 
$$2 \le \frac{3}{x}$$

Ejercicio 6: Resolver 
$$\frac{x-2}{x+1} > \frac{x-1}{x}$$