Exercícios de Escalonamento da Produção

Exercício 1: Suponha o seguinte conjunto de lotes a serem processados em processador único.

Lote	1	2	3	4	5	6
Data de entrega	24	35	5	40	24	15
Tempo de processamento	8	10	5	4	3	7

- 1.1 Defina a sequência para estes lotes se o objetivo for minimizar o tempo de percurso médio.
- 1.2 Se o objetivo for minimizar o atraso médio a sequência é a mesma? Diga qual é o atraso médio e o tempo de percurso médio.
- 1.3 Estabeleça a sequência ótima para lançamento dos lotes, de modo a minimizar o atraso máximo e diga qual o tempo de percurso médio obtido.

Exercício 2. Minimize o número de trabalhos em atraso no seguinte conjunto de lotes e diga qual o valor de atraso desses lotes.

Lote	1	2	3	4	5	6
Data de entrega	15	6	9	23	20	30
Tempo de processamento	10	3	4	8	10	6

Exercício 3. Utilize a Técnica de Pesquisa de Vizinhança (*Neigborhood Search Technique - NST*) para minimizar o número de trabalhos em atraso (Na) no seguinte conjunto de lotes:

Lote	1	2	3	4	5	6
Data de entrega	3	9	10	2	8	11
Tempo de processamento	2	4	5	1	6	7

Para aplicar a técnica utilize:

- a regra "SPT" para selecionar a 1ª semente
- como mecanismo de geração de vizinhança a troca entre pares adjacentes
- a 1ª sequência que melhorar o desempenho será a nova semente

Exercício 4. Considere que um fabricante produz 4 tipos de gasolina, cujos tempos de preparação da unidade de produção são os indicados no quadro:

	De corrida	Super	Normal	Sem chumbo
De corrida		30	50	90
Super	40		20	80
Normal	30	30		60
Sem chumbo	20	15	10	

- 4.1 Determine a sequência ótima que minimiza o tempo total de preparação utilizando o método de Little *et al* e diga qual o seu valor.
- 4.2 Determine uma sequência possível utilizando o heurístico da "cidade" mais próxima ainda não visitada e diga qual o tempo total de preparação.
- 4.3 Determine ainda uma sequência da fabricação das gasolinas utilizando o heurístico de Karg & Thompson e diga qual o tempo total de preparação.

Exercício 5. Considere ter de processar 8 trabalhos independentes que permitem interrupção em 3 processadores paralelos cujos tempos de processamento se apresentam na tabela seguinte:

Lote	1	2	3	4	5	6	7	8
Tempo de processamento	2	10	12	5	7	3	13	4

- 5.1 Utilize o algoritmo de McNaughton para determinar a sequência que minimiza o tempo total de produção (*makespan*).
- 5.2 Calcule o tempo de percurso médio associado a essa sequência.
- 5.3 Aplique novamente o algoritmo, sabendo que o tempo de processamento do lote 8 é de 30 unidades de tempo.

Exercício 6. Considere ter de processar 8 trabalhos independentes que não permitem interrupção em 3 processadores paralelos cujos tempos de processamento se apresentam na tabela seguinte:

Lote	1	2	3	4	5	6	7	8
Tempo de processamento	2	10	12	5	7	3	13	4

- 6.1 Determine a sequência que minimiza o tempo total de produção (*makespan*) e diga qual o seu valor.
- 6.2 Calcule o tempo de percurso médio associado à sequência obtida em 1.1.
- 6.3 Como poderia minimizar o tempo de percurso médio na solução obtida no exercício 1.1.? Calcule novamente o seu valor.
- 6.4 Determine a sequência que minimiza o tempo médio de percurso por trabalho e calcule o seu valor.

Exercício 7. Suponha que tem de produzir 5 lotes numa linha de produção com 2 máquinas. A primeira operação de cada lote é feita na máquina 1 (M1) e a segunda operação na máquina 2 (M2). Os tempos de processamento de cada lote em cada máquina apresentam-se na tabela seguinte:

Lote	1	2	3	4	5
t _{i1} (M1)	5	1	9	3	10
t _{i2} (M2)	2	6	7	8	3

- 7.1 Determine a sequência que minimiza o tempo total de produção.
- 7.2 Através de um diagrama de Gantt mostre a sequência dos lotes em cada máquina e diga qual o valor do tempo total de produção.

Exercício 8. Considere ter de processar 4 lotes numa linha de produção com 3 máquinas, cujos tempos de processamento estão na tabela seguinte:

	L1	L2	L3	L4
M1	3	11	7	10
M2	4	1	9	12
M3	10	5	13	2

Encontre a sequência que minimiza o tempo total de produção (*makespan*), diga qual o seu valor e construa o diagrama de Gantt.

Exemplo 9: Considere que numa pequena oficina tem 2 máquinas (A e B) e há necessidade de produzir 7 lotes, cada um exigindo uma ou duas operações a serem executadas naquelas máquinas. O tempo de processamento das operações de cada lote e a máquina onde são executadas estão na tabela seguinte:

Lote	L	1	L	2	L	.3	L	,4	L	<i>i</i> 5	L	.6	L	7
1ª op.	В	5	A	7	В	2	A	4	В	6	A	3	В	5
2ª op.	-	-	-	-	-	-	В	5	A	2	В	7	A	3

- 9.1 Determine a sequência que minimiza o tempo total de produção (makespan).
- 9.2 Construa o diagrama de Gantt e diga qual o valor do tempo total de produção.

Exemplo 10: Suponha ter de produzir, numa oficina, 4 lotes (L1 a L4) em 3 máquinas (M1 a M3), de acordo com as sequências operatórias apresentadas na tabela. Utilizando a regra de prioridade MWRT e a regra SPT para desempate, resolva o problema da afetação e sequenciação dos lotes nas máquinas e diga qual o valor do tempo total de produção.

Operações	Op	.1	Op	.2	Op.3		
L1	M1	4	M2	3	M3	2	
L2	M2	1	M1	4	M3	4	
L3	M3	3	M2	2	M1	3	
L4	M2	3	M3	3	M1	1	