Wybrane zagadnienia Algebry Lista zadań

Jacek Cichoń WIT, PWr, 2023/24

1 Wstęp

Lab. 1

Liczbami Gaussa nazywamy pierścień $\mathbb{Z}[i] = \{a+bi : a,b \in \mathbb{Z}\}$ z dodawaniem i dzieleniem odziedziczonym z liczb zespolonych. Na $\mathbb{Z}[i]$ określamy funkcję (zwaną normą) $N(a+bi) = a^2+b^2$. Dla $x,y \in \mathbb{Z}[i]$ określamy $x|y \longleftrightarrow (\exists z \in \mathbb{Z}[i])(y=x \cdot z)$

- 1. Napisz algorytm dzielenia z resztą w pierścieniu liczb Gaussa $\mathbb{Z}[i]$, czyli algorytm, który dla danych $x, y \in \mathbb{Z}[i], y \neq 0$ wyznaczy $q, r \in \mathbb{Z}[i]$ takie, że $x = q \cdot y + r$ oraz N(r) < N(y).
- 2. Największym wspólnym dzielnikiem liczb $u, v \in \mathbb{Z}[i]$ nazywamy takie $d \in \mathbb{Z}[i]$, że $(d|u) \wedge (d|v)$ oraz

$$(\forall x \in \mathbb{Z}[i])(x|u \wedge x|v \to x|d)$$
.

Oprogramuj algorytm wyznaczania NWD dla $\mathbb{Z}[i]$.

- 3. Oprogramuj funkcję wyznaczającą NWW(x,y) dla $x,y\in\mathbb{Z}[\imath].$
- 4. Ideał generowany przez liczby a_1, \ldots, a_k oznaczamy przez (a_1, \ldots, a_k) . Korzystając z poprzednich dwóch podpunktów znajdź takie c i d, że $(3+4\imath, 1+3\imath)=(c)$ oraz $(3+4\imath)\cap(1+3\imath)=(d)$.

Lab. 2

Wielomian $a_0 + a_1 \cdot x + \ldots + a_n x^n \in \mathbb{R}[x]$ interpretujemy jako ciąg $[a_0, \ldots, a_n]$.

- 1. Napisz algorytm dzielenia z resztą w pierścieniu wielomianów $\mathbb{R}[x]$.
- 2. Oprogramuj algorytm wyznaczania NWD dla $\mathbb{R}[x]$.
- 3. Oprogramuj funkcję wyznaczającą NWW(x,y) dla $x,y\in\mathbb{R}[x].$
- 4. Korzystając z poprzednich dwóch podpunktów znajdź takie $c(x), d(x) \in \mathbb{R}[x]$, że $(1+x^2, 1+2x+x^2) = (c)$ oraz $(1+x^2) \cap (1+2x+x^2) = (d)$.

Ćwicz. 1

Rozważ prostą przechodzącą przez punkt (-1,0) o współczynniku kierunkowym $t \in \mathbb{R}$. Znajdź drugi punkt przecięcia tej prostej z okręgiem $x^2 + y^2 = 1$. Wyraź otrzymane rozwiązanie jako funkcję p(t) = (x(t), y(t)) oraz wyznacz obraz $\{p(t) : t \in \mathbb{R}\}$.

Ćwicz. 2

Rozważ prostą przechodzącą przez punkt (-1,0) o współczynniku kierunkowym $t \in \mathbb{R}$. Znajdź drugi punkt przecięcia tej prostej z hiperbolą $x^2 - y^2 = 1$. Wyraź otrzymane rozwiązanie jako funkcję p(t) = (x(t), y(t)) oraz wyznacz obraz $\{p(t) : t \in \mathbb{R}\}$.

Niech k będzie ciałem. Dla wielomianów $f_1,\dots,f_k\in k[x_1,\dots,k_n]$ przez $V(f_1,\dots,f_k)$ oznaczamy zbiór

$$V(f_1,\ldots,k_k) = \{(a_1,\ldots,a_n) \in k^n : (\forall i \in \{1,\ldots,k\}) (f_i(a_1,\ldots,a_n) = 0)\}.$$

Zbiór ten nazywamy rozmaitością algebraiczną generowaną przez wielomiany f_1, \ldots, f_k w przestrzeni afinicznej k^n .

Lab. 3

Skorzystaj z jakiejś biblioteki (np. mplot3d z Matplotlib) do wyświetlenia następujących rozmaitości algebraicznych w \mathbb{R}^3 :

- 1. $V(z-x^2-y^2)$
- 2. $V(z^2-x^2-y^2)$
- 3. $V(z-x^2+y^2)$
- 4. V(xz, yz)

Lab. 4

Krzywą czterolistną nazywaną krzywą zadaną następującym równaniem

$$r(\theta) = \sin(2\theta)$$

we współrzędnych biegunowych.

- 1. Narysuj wykres tej krzywej na płaszczyźnie.
- 2. Spróbuj znaleźć wielomian w(x,y) taki, że $r[\mathbb{R}] = V(w)$.

Lab. 5

Zapoznaj się poleceniami systemu Wolfram Alpha służącymi go działań na wielomianach (np. PolynomialQuotientRemainder) oraz generowania krzywych i powierzchni zadawanych równaniami parametrycznymi.

2 Wielomiany i rozmaitości

Ćwicz. 3

Które z następujących podzbiorów \mathbb{R}^2 są rozmaitościami algebraicznymi:

- 1. skończony podzbiór \mathbb{R}^2
- 2. $\mathbb{Z} \times \mathbb{Z}$
- 3. $\mathbb{R} \times [0, \infty)$?

Ćwicz. 4

Ustalmy ciało k liczbę $n \ge 1$. Pokaż, że rodzina rozmaitości algebraicznych w k^n jest domknięta na skończone sumy oraz skończone przekroje. Czy jest ona domknięta na operację dopełnienia?

Lab. 6

Zaproponuj algorytm który wyznacza punkty minimalne dla skończonych podzbiorów $A\subseteq \mathbb{N}^k$ dla porządku

$$(x_1,\ldots,x_k) \leqslant (y_1,\ldots,y_k) \longleftrightarrow \bigwedge_{i=1}^k (x_i \leqslant y_i)$$

- 1. Ile jest punktów minimalnych w zbiorze $\{n,k\} \in \mathbb{N}^2 : n \cdot k \geqslant 11\}$?
- 2. Ile jest punktów minimalnych w zbiorze $\{n, k\} \in \mathbb{N}^2 : (n-10)^2 + (y-10)^2 \leq 25\}$?

Ćwicz. 5

Załóżmy, że k jest ciałem oraz $A \subseteq k^n$. Niech

$$I(A) = \{ f \in k[x_1, \dots, x_n] : (\forall a \in A)(f(a) = 0) \}.$$

Pokaż, że I(A) jest ideałem.

Ćwicz. 6

Pokaż, że $I(V(x^n, x^m)) = \langle x, y \rangle$ dla dowolnych $n, m \ge 1$.

Ćwicz. 7

Ideał I nazywamy radykalnym, jeśli z tego, że $x^n \in I$ wynika, że $x \in I$.

- 1. Pokaż, że ideały postaci I(A) są radykalne.
- 2. Pokaż, że ideał $\langle X^2, y^2 \rangle$ nie jest radykalny.

Ćwicz. 8

Niech k będzie dowolnym nieskończonym ciałem.

1. Pokaż, że dowolny wielomian $f \in k[x,y]$ można zapisać w postaci

$$f = g(x) + (x - y)h(x, y)$$

dla pewnego wielomianu $g \in k[x]$ oraz $h \in k[x, y]$.

2. Pokaż, że $I(V(x-y)) = \langle x-y \rangle$.

Ćwicz. 9

Pokaż, że $I(V(x^n, x^m)) = \langle x, y \rangle$ dla dowolnych $n, m \ge 1$.

Ćwicz, 10

Niech $\mathcal{R}=(R,+,\cdot)$ będzie pierścieniem. Załóżmy, że $a,b,c,q\in R$ oraz $a=q\cdot b+c$. Pokaż, że

$$\langle a, b \rangle = \langle b, c \rangle$$
.

Lab. 7

Wyznacz za pomocą dowolnego systemu obliczeń algebraicznych

- 1. GCD $(x^4 + x^2 + 1, x^4 x^2 2x 1, x^3 1)$
- 2. GCD $(x^3 + x^2 4x 4, x^3 x^2 4x + 4, x^3 2x^2 x + 2)$

Ćwicz. 11

Czy wielomian $x^2 - 2$ należy do następującego ideału

$$\langle x^3 + x^2 - 4x - 4, x^3 - x^2 - 4x + 4, x^3 - 2x^2 - x + 2 \rangle$$
?

Lab. 8

Napisz pseudokod procedury, która dla danych wielomianów $f,g\in k[x]$ znajduje takie $A,B\in k[x]$, że $nwd(f,g)=A\cdot f=B\cdot g.$

Wskazówka: Wzoruj się na algorytmie wyznaczania największego wspólnego dzielnika dla liczb całkowitych

Ćwicz. 12

W zadaniu tym zajmujemy wielomianami z pierścienia $\mathbb{C}[x]$.

- 1. Niech $f \in \mathbb{C}[x]$ będzie niezerowym wielomianem. Pokaż, że $V(f) = \emptyset$ wtedy i tylko wtedy, gdy f jest wielomianem stałym.
- 2. Załóżmy, że $f, \ldots, f_k \in \mathbb{C}[x]$. Pokaż, że $V(f_1, \ldots, f_k) = \emptyset$ wtedy i tylko wtedy, gdy $1 \in \langle f_1, \ldots, f_k \rangle$
- 3. Opisz procedurę rozstrzygającą, czy dla danych wielomianów $f, \ldots, f_k \in \mathbb{C}[x]$ rozmaitość $V(f_1, \ldots, f_k)$ jest niepusta.

Ćwicz. 13

Załóżmy, że $f \in \mathbb{C}[x]$ jest wielomianem postaci

$$f = c(x - a_1)^{r_1} (x - a_2)^{r_2} \cdots (x - a_k)^{r_k}$$

gdzie a_1, \ldots, a_k są parami różne oraz $c \neq 0$. Niech

$$f_{red} = (x - a_1)(x - a_2) \cdots (x - a_k)$$
.

- 1. Pokaż, że $V(f) = \{a_1, \dots, a_k\}.$
- 2. Pokaż, że I jest ideałem oraz, że $I(V(f)) = \langle f_{red} \rangle$.
- 3. Pokaż, że

$$f_{red} = \frac{f}{\gcd(f, f')} \ ,$$

gdzie f' oznacza formalną pochodną wielomianu f.

3 Porządki jednomianowe i dzielenie wielomianów

Ćwicz. 14

Niech \prec będzie porządkiem jednomianowym. Pokaż, że jeśli $\alpha \prec \beta$ oraz $\gamma \prec \delta$ to

$$\alpha + \gamma \prec \beta + \delta$$
.

Ćwicz. 15

Niech \leq będzie porządkiem jednomianowym na \mathbb{N}^k . Niech

$$\alpha \sqsubseteq \beta \longleftrightarrow (\forall i)(\alpha_i \leqslant \beta_i)$$
.

Pokaż, że jeśli $\alpha \sqsubseteq \beta$ to $\alpha \preceq \beta$ (czyli, że $\sqsubseteq \subseteq \preceq$).

Ćwicz. 16

Dla $\alpha, \beta \in \mathbb{N}^k$ określamy

$$lcm(\alpha, \beta) = (max(\alpha_1, \beta_1), max(\alpha_2, \beta_2), \dots, max(\alpha_k, \beta_k))$$
.

- 1. Pokaż, że $lcm(\alpha, lcm(\beta, \gamma)) = lcm(lcm(\alpha, \beta), \gamma)$.
- 2. Pokż, że jeśli $\alpha \sqsubseteq \gamma$ i $\beta \sqsubseteq \gamma$ to $lcm(\alpha, \beta) \sqsubseteq \gamma$.

Ćwicz, 17

Pokaż, że

$$1 \prec x \prec x^2 \prec x^3 \prec x^4 \prec \dots$$

jest jedynym porządkiem monomialnym na N.

Ćwicz, 18

Ciąg liczb (u_1,\ldots,u_k) jest liniowo niezależny nad ciałem liczb wymiernych $\mathbb Q$ jeśli dla dowolnych $\lambda_1,\ldots,\lambda_k\in\mathbb Q$ mamy

$$\left(\sum_{i=1}^k \lambda_i u_i = 0\right) \to (\lambda_1 = \lambda_2 = \dots = \lambda_k = 0) .$$

1. Pokaż, że ciąg $(1, \sqrt{2}, \sqrt{3})$ jest niezależny nad \mathbb{Q} .

2. Załóżmy, że (u_1,\dots,u_k) jest niezależnym nad $\mathbb Q$ ciągiem liczb dodatnich. Na $\mathbb N^k$ definiujemy porządek

$$(\alpha \prec \beta) \longleftrightarrow \left(\sum_{i=1}^k \alpha_i u_i < \sum_{i=1}^k \beta_i u_i\right)$$

Pokaż, że \prec jest porządkiem monomialnym na \mathbb{N} .

Ćwicz. 19

Rozstrzygnij, czy podane wielomiany należą do podanego idealu $I \subseteq \mathbb{R}[x]$:

- 1. $f(x) = x^2 2x + 1$, $I = \langle x 1 \rangle$
- 2. $f(x) = x^3 1$, $I = \langle x^9 1, x^5 + x^3 x^2 1 \rangle$
- 3. $f(x) = x^3 + 1$, $I = \langle x^2 1, x^2 3x + 2 \rangle$.

Ćwicz. 20

Rozważmy Graded Lex porządek. Niech $f=x^3-x^2y-x^2z$ ora
z $g_1=x^2y-z$ oraz $g_2=xy-1$.

- 1. Podziel f przez (g_1,g_2) i oznacz resztę przez r_1
- 2. Podziel f przez (g_2, g_1) i oznacz resztę przez r_2

Obliczenia te, niestety, wykonaj ręcznie.

3. Sprawdź, czy $r_1 - r_2 \in \langle g_1, g_2 \rangle$.

Ćwicz. 21

Znajdź parametryzację rozmaitości algebraicznych wyznaczonych przez następujące układy równań:

1. W przestrzeni \mathbb{R}^3 lub \mathbb{C}^3 :

$$2x + 3y + z = 3$$
$$x + 2y = 2$$
$$-x + y + z = 1$$

2. W przestrzeni \mathbb{R}^4 lub \mathbb{C}^4 :

$$x + y + u + z = 1$$
$$x - y + u = 2$$

3. W przestrzeni \mathbb{R}^3 lub \mathbb{C}^3 :

$$y = x^2$$
$$z = x^4$$

Ćwicz. 22

Wyznacz reprezentację niejawną rozmaitości algebraicznych sparametryzowanych w następujący sposób:

1. W przestrzeniach \mathbb{R}^3 lub \mathbb{C}^3 :

$$x = t + 1$$
$$y = 2t + 1$$

$$z = -t + 1$$

2. W przestrzeni \mathbb{R}^4 lub \mathbb{C}^4 :

$$x_1 = t + u$$

$$x_2 = t - u$$

$$x_3 = 2t + u$$

$$x_4 = t - 3u$$

3. W przestrzeni \mathbb{R}^3 lub w \mathbb{C}^3 :

$$x_1 = t^2, \quad x_2 = t^3, \quad x_3 = t^6$$

Ćwicz. 23

Ustalmy liczby $n,m\in\mathbb{N}$. Niech $V=\{(t,t^n,t^m):t\in\mathbb{R}\}$. Pokaż, że V jest rozmaitością algebraiczną oraz wyznacz I(V).

Ćwicz. 24

Załóżmy, że $f \in k[x_1, \ldots, x_n]$ oraz $f \notin \langle x_1, \ldots, x_n \rangle$. Pokaż, że $\langle x_1, \ldots, x_n, f \rangle = k[x_1, \ldots, x_n]$.

Ćwicz. 25

Załóżmy, że $(V_n)_{n\in\mathbb{N}}$ jest nieskończonym ciągiem rozmaitości algebraicznych takich, że $(\forall n\in\mathbb{N})(V_{n+1}\subseteq V_n)$. Pokaż, ze jest $N\in\mathbb{N}$ takie, że $(\forall n>N)(V_n=V_N)$.

Ćwicz. 26

Załóżmy, że

$$a + b + c = 1$$

 $a^{2} + b^{2} + c^{2} = 2$
 $a^{3} + b^{3} + c^{3} = 1$

Jaka wartość ma $a^5 + b^5 + c^5$?

Ćwicz, 27

Jaka jest odległość punktu P=(2,1,1) od sfery $S=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}$? Wskazówka: Użyj metodę mnożników Lagrange'a. Znajdź bazę Grobnera dla porządku leksykograficznego w którym $\lambda>x>y>z$.

Lab. 9

Narysuj wykresy następujących krzywych algebraicznych oraz wyznacz ich punkty osobliwe

1.
$$(x^2 + y^2 + 4y)^2 - 16(x^2 + y^2) = 0$$

2.
$$2(x^2+9)(y^2-16)+(x^2-9)^2+(y^2-16)^2=0$$

3.
$$350x^2y^2 - 15^2(x^2 + y^2) + 12^2(x^4 + y^4) + 81 = 0$$

Ćwicz, 28

Pokaż, że każde ciało algebraicznie domkniete jest nieskończone.

Ćwicz. 29

Załóżmy, że k jest nieskończonym ciałem. Niech f_1, \ldots, f_k będą elementami $k[x] \setminus \{0\}$. Pokaż, że jest $a \in k$ takie, że $f_i(a) \neq 0$ dla wszystkich $i = 1, \ldots, k$.

Lab. 10

Parasolka Whitney'a zadana jest równaniami parametrycznymi

$$x = u \cdot i$$

$$y = v$$

$$z = u^2$$

1. Wyznacz bazę Groebnera dla monomialnego porządku leksykografice
źznego gdzie u>v>x>y>z i sprawdź, że trzecim ideałem eliminacyjny
 I_2 jest

$$\langle x^2 - y^2 z \rangle$$
 .

- 2. Pokaż, że w ciele $\mathbb C$ każde częściowe rozwiązanie $(a,b,c)\in\mathbb C^3$ równania $x^2-y^2z=0$ rozszerza się pełnego rozwiązania w $\mathbb C^5$.
- 3. Co się dzieje w ciele \mathbb{R} ?
- 4. Narysuj wykres równania $x^2 y^2 z = 0$ (w \mathbb{R}^3).
- 5. Wyznacz punkty osobliwe rozmaitości $V(x^2 y^2z)$.

Lab. 11

Przeprowadź proces implicityzacji parametrycznego generowania okręgu

$$x(t) = \frac{1 - t^2}{1 + t^2}$$

$$y(t) = \frac{2t}{1+t^2}$$

oraz wyznacz czym się różni otrzymana rozmaitość algebraiczna (okrąg jednostkowy) od obrazu $\{x(t), y(t)\}$: $t \in \mathbb{R}$.

Ćwicz, 30

Załóżmy, że $f, g \in \mathbb{Z}[x]$. Pokaż, że $Res(f, g) \in \mathbb{Z}$.

Ćwicz, 31

Niech $f,g \in k[x]$ będą niezerowymi wielomianami, k = deg(f), l = deg(g).

1. Pokaż, że

$$Res(f, g, x) = (-1)^{k \cdot l} Res(g, f, x)$$
.

Zwróć uwagę na przypadek l=0 lub l=0.

2. Załóżmy, że $\kappa \neq 0$ oraz $\lambda \neq 0$. Pokaż, że

$$Res(\kappa f, \lambda g) = \kappa^{deg(g)} \lambda^{\deg(f)} Res(f, g, x)$$
.

Lab. 12

Conchoida Slusa jest zadana we współrzędnych biegunowych równaniem parametrycznym

$$r = \frac{1}{\cos(t)} + a\cos(t)$$

(a jest parametrem tej krzywej).

- 1. Korzystając z baz Grobnera wyznacz najmniejszą rozmaitość algebraiczną zawierającą tą krzywą. Otrzmać masz krzywą algebraiczną stopnia trzeciego.
- 2. Narysuj wykresy tych krzywych dla $a \in \{-4, -2, 0, 1, 2, 3\}$.

Ćwicz. 32

Pracujemy z ciałem \mathbb{R} . Pokaż, że dla dowolnej rodziny wielomianów w_1, \ldots, w_k z $k[x_1, \ldots, x_n]$ istnieje wielomian $w \in k[x_1, \ldots, x_n]$ taki, że $V(w_1, \ldots, w_k) = V(w)$.

Ćwicz. 33

- 1. Wyznacz w ciałach \mathbb{R} oraz \mathbb{C} rozmaitość V(x,y).
- 2. Czy istnieje wielomian $w(x,y) \in \mathbb{C}[x,y]$ takie, że $V(w) = \{(0,0)\}$?

Ćwicz. 34

Niech I będzie ideałem w pierścieniu R. Niech

$$\sqrt{I} = \{ a \in R : (\exists m \geqslant 1) (a^m \in I) \} .$$

Pokaż, że \sqrt{I} jest ideałem.

Ćwicz, 35

Załóżmy, że $G=\{g_1,\ldots,g_k\}\subseteq k[x_1,\ldots,x_n]$ oraz $f\in G$ oraz, że LM(f) i LM(g) są względnie pierwsze. Pokaż, że istnieją wielomiany A_1,\ldots,A_k takie, że

$$S(f,g) = \sum_{i=1}^{k} A_i g_i$$

oraz $multdeg(A_ig_i) \leq multdeg(f)$.

Ćwicz. 36

Załóżmy, że $G = \{g_1, \ldots, g_k\} \subseteq k[1_1, \ldots, x_n]$ oraz $f, g \in G$ oraz, że LM(f) i LM(g) są względnie pierwsze. Pokaż, że istnieją wielomiany A_1, \ldots, A_k takie, że

$$S(f,g) = \sum_{i=1}^{k} A_i g_i$$

oraz $multdeg(A_ig_i) \leq multdeg(S(f,g))$.

Ćwicz. 37

Pokaż, że z NullStellenSatz wynika słabe NullStellenSatz.

c.d.n. Powodzenia, Jacek Cichoń