RoHS

HALOGEN

FREE GREEN

Vishay Semiconductors

Color Sensor With I²C Interface

DESCRIPTION

VEML3328 sensor senses red, green, blue, clear, and IR light by incorporating photodiodes, amplifiers, and analog / digital circuits into a single CMOS chip. With this sensor, the brightness and color temperature of a display backlight can be adjusted based on the ambient light source, and it can differentiate indoor from outdoor lighting environments.

VEML3328 provides excellent temperature compensation capability for keeping the output stable under changing temperature. The sensor's functions are easily operated via the simple command format of I²C (SMBus compatible) interface protocol. VEML3328 has a low operating voltage range of 2.6 V to 3.6 V and is packaged in a lead (Pb)-free OPLGA package which offers the best market-proven reliability.

FEATURES

- Package type: surface-mount
- Dimensions (L x W x H in mm): 2.0 x 1.25 x 1.0
- Integrated modules: color sensor and signal conditioning IC
- Supports low transmittance (dark) lens design
- Provides 16-bit resolution for each channel (R, G, B, C, and IR)
- Package: OPLGA4
- Temperature compensation: -40 °C to +85 °C
- Low power consumption I²C (SMBus compatible) interface
- Floor life: 168 h, MSL 3, according to J-STD-020
- Output type: I²C bus
- Operation voltage: 2.6 V to 3.6 V
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- Handheld device
- Notebook
- Consumer device
- · Industrial and mechanical application

PRODUCT SUMMARY						
PART NUMBER	OPERATING VOLTAGE RANGE (V)	I ² C BUS VOLTAGE RANGE (V)	PEAK SENSITIVITY (nm)	OUTPUT CODE		
VEML3328	2.6 to 3.6	1.7 to 3.6	590, 610, 560, 470, 825 (C, R, G, B, IR)	16 bit, I ² C		

ORDERING INFORMATION			
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS
VEML3328A3OG	Tape and reel	MOQ: 2500 pcs	2.00 mm x 1.25 mm x 1.00 mm

Note

(1) MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION SYMBOL MIN. MAX. UNIT							
Supply voltage		V_{DD}	0	4	V		
Operation temperature range T _{amb} -40 +85 °C							
Storage temperature range		T _{stg}	-40	+85	°C		

www.vishay.com

Vishay Semiconductors

RECOMMENDED OPERATING CONDITIONS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION SYMBOL MIN. MAX. UNIT							
Supply voltage		V_{DD}	2.6	3.6	V		
Operation temperature range T _{amb} -40 +85 °C							
I ² C bus operating frequency		f _(I2CCLK)	10	400	kHz		

PIN DESCRIPTIONS							
PIN ASSIGNMENT	SYMBOL	TYPE	FUNCTION				
1	GND	-	Power supply ground; all voltages are referenced to GND				
2	SDA	I / O (open drain)	I ² C digital bus data input / output				
3	SCL	I	I ² C digital bus clock input				
4	V_{DD}	-	Supply voltage				

BLOCK DIAGRAM

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER		TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Supply voltage			V_{DD}	2.6	3.0	3.6	V	
Supply current (1)			I _{DD}	500	580	1000	μΑ	
I2C signal input (1)	Logic high		V _{IH}	1.2	-	-	V	
I ² C signal input ⁽¹⁾	Logic low		V _{IL}	=	-	0.4]	
			λ_{PC}	=	590	-		
			λ_{PR}	-	610	-	nm	
Peak sensitivity wav	elength		λ_{PG}	=	560	-		
			λ _{PB}	=	470	-		
			λ_{PIR}	-	825	-		
		520 nm LED ⁽¹⁾⁽²⁾	С	-	57	-		
		850 nm LED (1)(2)	IR	=	25	-		
Irradiance responsiv	ity	643 nm LED ⁽¹⁾⁽²⁾	R	-	41	-	counts/(µW/cm²)	
		520 nm LED ⁽¹⁾⁽²⁾	G	-	39	-	1	
		460 nm LED (1)(2)	В	-	34	-		
Sensitivity		5000 K WLED (1)(3)	G	=	0.003	-	lx/count	
Dark offset (1)(3)			RGBCIR	0	-	3	counts	
Operating temperatu	ıre range		T _{amb}	-40	-	+85	°C	
Shutdown current (1))	Light condition = dark	I _{DD}	0	800	1000	nA	

- $^{(1)}$ Test condition: V_{DD} = 3 V, temperature: 25 °C $^{(2)}$ IT: 100 ms, HD(0) x 1, gain 1 (0 : 0) x 1, and gain 2 (0 : 0) x 1
- (3) IT: 400 ms, HD(0) x 1, gain 1 (1:0) x 4, and gain 2 (1:0) x 4

I ² C BUS TIMING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
DADAMETED	CVMDOL	STANDARD MODE		FAST MODE			
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNIT	
Clock frequency	f _(I2CCLK)	10	100	10	400	kHz	
Bus free time between start and stop condition	t _(BUF)	4.7	-	1.3	-	μs	
Hold time after (repeated) start condition; after this period, the first clock is generated	t _(HDSTA)	4.0	-	0.6	-	μs	
Repeated start condition setup time	t _(SUSTA)	4.7	-	0.6	-	μs	
Stop condition setup time	t _(SUSTO)	4.0	-	0.6	-	μs	
Data hold time	t _(HDDAT)	-	3450	-	900	ns	
Data setup time	t _(SUDAT)	250	-	100	-	ns	
I ² C clock (SCK) low period	t _(LOW)	4.7	-	1.3	-	μs	
I ² C clock (SCK) high period	t _(HIGH)	4.0	-	0.6	-	μs	
Clock / data fall time	t _f	=	300	-	300	ns	
Clock / data rise time	t _r	-	1000	-	300	ns	

PARAMETER TIMING INFORMATION

Fig. 2 - I²C Bus Timing for Sending Word Command Format

Fig. 3 - I²C Bus Timing for Receiving Word Command Format

TYPICAL PERFORMANCE CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 4 - Normalized Responsivity vs. Wavelength

Fig. 5 - Normalized Responsivity vs. Angular Displacement

APPLICATION INFORMATION

Pin Connection With the Host

VEML3328 is a cost effective solution for color and IR sensor with I²C interface. The standard serial digital interface easily accesses "light intensity" without using complex calculations and programming by an external controller.

The additional capacitor near the V_{DD} pin in the circuit is used for power supply noise rejection. The value is recommended at 0.1 μ F. The pull-high resistors for the I^2 C bus design are recommended to be 2.2 $k\Omega$.

Fig. 6 - Hardware Pin Connection Diagram (Slave Address 0x10)

Digital Interface

VEML3328 contains a command register written via the I²C bus. All operations can be controlled by the command register. The simple command structure allows the user to easily program the operation setting and latch the light data from VEML3328. VEML3328's I²C command format description for read and write operations between VEML3328 and the host is shown in Fig. 7. The white areas indicate the host activity and the gray areas indicate VEML3328's acknowledgement of the host access activity.

Command Register Format

VEML3328 uses 0x10 slave address for 7-bit I^2C addressing protocol. VEML3328 has 16-bit resolution for each channel (R, G, B, C, and IR).

COMMAND	REGISTER NAME	DATE BYTE	BIT	FUNCTION DESCRIPTION	R/W
CODE	Reserved	LOW / HIGH	7	Set 0	
	HD		6	High dynamic range mode (1) = x 1/3	
		_		(0) = x 1	
	IΤ	Low	5:4	Integration time setting (0:0) = 50 ms (0:1) = 100 ms (1:0) = 200 ms (1:1) = 400 ms	
	AF		3	Auto / manual force mode 0 = auto mode 1 = force mode	
	TRIG		2	Proceed one detecting cycle at manual force mode 0 = no trigger 1 = trigger one time detect cycle	
0x00	Reserved	7	1		
			0	Shutdown setting	
	SD		7	00 = power on 11 = shut down	R/W
	SD_ALS only	High	6	0 = power on all channels 1 = power on G, C, and IR (R, B shut down)	
	Gain 1		5:4	(0:0) = x1 (0:1) = x2 (1:0) = x4 (1:1) = reserved	
	Gain 2		3:2	(1:1) = x1/2 (0:0) = x1 (0:1) = x2 (1:0) = x4	
	Reserved		1:0	Set (0 : 0)	
0x01	Reserved	Low	7:0		
		High	7:0		
0x02	Reserved	Low	7:0 7:0		
		High Low	7:0		
0x03	Reserved	High	7:0		
	C_LSB	Low	7:0	C LSB data	
0x04	C_MSB	High	7:0	C MSB data	_
0.05	R_LSB	Low	7:0	R LSB data	
0x05	R_MSB	High	7:0	R MSB data	
0x06	G_LSB	Low	7:0	G LSB data	
UXUU	G_MSB	High	7:0	G MSB data	R
0x07	B_LSB	Low	7:0	B LSB data	
OAUI	B_MSB	High	7:0	B MSB data	
0x08	IR_LSB	Low	7:0	IR LSB data	
	IR_MSB	High	7:0	IR MSB data	
0x0C	ID_L	Low	7:0	Device ID 0x28	
	Reserved	High	7:0		

Note

• Slave address is 7-bit addressing protocol

Data Access

VEML3328 has 16-bit high resolution sensitivity for each channel. To represent the 16-bit data, it has to apply two bytes. One byte is for LSB and the other byte is for MSB. The host needs to follow the read word protocol. The data format shows as below

· Data byte low represents LSB and data byte high represents MSB

PACKAGE INFORMATION in millimeters

Fig. 8 - VEML3328A3OG Package Dimensions

Fig. 9 - VEML3328A3OG PCB Layout Footprint

RECOMMENDED STORAGE AND REBAKING CONDITIONS							
PARAMETER	CONDITIONS	MIN.	MAX.	UNIT			
Storage temperature		5	50	°C			
Relative humidity		-	60	%			
Open time		=	168	h			
Total time	From the date code on the aluminized envelope (unopened)	-	12	months			
Dobakina	Tape and reel: 60 °C	-	22	h			
Rebaking	Tube: 60 °C	-	22	11			

RECOMMENDED INFRARED REFLOW

Soldering conditions which are based on J-STD-020 C

IR REFLOW PROFILE CONDITION							
PARAMETER	CONDITIONS	TEMPERATURE	TIME				
Peak temperature		255 °C + 0 °C / - 5 °C (max.: 260 °C)	10 s				
Preheat temperature range and timing		150 °C to 200 °C	60 s to 180 s				
Timing within 5 °C to peak temperature		-	10 s to 30 s				
Timing maintained above temperature / time		217 °C	60 s to 150 s				
Timing from 25 °C to peak temperature		-	8 min (max.)				
Ramp-up rate		3 °C/s (max.)	-				
Ramp-down rate		6 °C/s (max.)	-				

Recommend Normal Solder Reflow is 235 °C to 255 °C

Fig. 10 - VEML3328 OPLGA Solder Reflow Profile Chart

RECOMMENDED IRON TIP SOLDERING CONDITION AND WARNING HANDLING

- 1. Solder the device with the following conditions:
 - 1.1. Soldering temperature: 400 °C (max.)
 - 1.2. Soldering time: 3 s (max.)
- 2. If the temperature of the method portion rises in addition to the residual stress between the leads, the possibility that an open or short circuit occurs due to the deformation or destruction of the resin increases
- 3. The following methods: VPS and wave soldering, have not been suggested for the component assembly
- 4. Cleaning method conditions:
 - 4.1. Solvent: methyl alcohol, ethyl alcohol, isopropyl alcohol
 - 4.2. Solvent temperature < 45 °C (max.)
 - 4.3. Time: 3 min (min.)

TAPE PACKAGING INFORMATION in millimeters

Fig. 11 - VEML3328 A3OG Package Carrier Tape

Fig. 12 - Reel Dimensions