We can now prove the existence of Hilbert bases. We define a partial order on families $(u_k)_{k\in K}$ as follows: for any two families $(u_k)_{k\in K_1}$ and $(v_k)_{k\in K_2}$, we say that

$$(u_k)_{k \in K_1} \le (v_k)_{k \in K_2}$$

iff $K_1 \subseteq K_2$ and $u_k = v_k$ for all $k \in K_1$. This is clearly a partial order.

Proposition A.7. Let E be a Hilbert space. Given any orthogonal family $(u_k)_{k \in K}$ in E, there is a total orthogonal family $(u_l)_{l \in L}$ containing $(u_k)_{k \in K}$.

Proof. Consider the set S of all orthogonal families greater than or equal to the family $B = (u_k)_{k \in K}$. We claim that every chain in S is bounded. Indeed, if $C = (C_l)_{l \in L}$ is a chain in S, where $C_l = (u_{k,l})_{k \in K_l}$, the union family

$$(u_k)_{k \in \bigcup_{l \in L} K_l}$$
, where $u_k = u_{k,l}$ whenever $k \in K_l$,

is clearly an upper bound for C, and it is immediately verified that it is an orthogonal family. By Zorn's Lemma A.6, there is a maximal family $(u_l)_{l\in L}$ containing $(u_k)_{k\in K}$. If $(u_l)_{l\in L}$ is not dense in E, then its closure V is strictly contained in E, and by Proposition 48.7, the orthogonal complement V^{\perp} of V is nontrivial since $V \neq E$. As a consequence, there is some nonnull vector $u \in V^{\perp}$. But then u is orthogonal to every vector in $(u_l)_{l\in L}$, and we can form an orthogonal family strictly greater than $(u_l)_{l\in L}$ by adding u to this family, contradicting the maximality of $(u_l)_{l\in L}$. Therefore, $(u_l)_{l\in L}$ is dense in E, and thus it is a Hilbert basis. \square

Remark: It is possible to prove that all Hilbert bases for a Hilbert space E have index sets K of the same cardinality. For a proof, see Bourbaki [27].

Definition A.4. A Hilbert space E is separable if its Hilbert bases are countable.

At last, we can prove that every Hilbert space is isomorphic to some Hilbert space $\ell^2(K)$ for some suitable K.

Theorem A.8. (Riesz–Fischer) For every Hilbert space E, there is some nonempty set K such that E is isomorphic to the Hilbert space $\ell^2(K)$. More specifically, for any Hilbert basis $(u_k)_{k\in K}$ of E, the maps $f:\ell^2(K)\to E$ and $g:E\to\ell^2(K)$ defined such that

$$f\left((\lambda_k)_{k\in K}\right) = \sum_{k\in K} \lambda_k u_k \quad and \quad g(u) = \left(\langle u, u_k \rangle / \|u_k\|^2\right)_{k\in K} = (c_k)_{k\in K},$$

are bijective linear isometries such that $g \circ f = id$ and $f \circ g = id$.

Proof. By Proposition A.4 (1), the map f is well defined, and it is clearly linear. By Proposition A.2 (3), the map g is well defined, and it is also clearly linear. By Proposition A.2 (2b), we have

$$f(g(u)) = u = \sum_{k \in K} c_k u_k,$$