Álgebra Abstracta y Codificación

Taller Preparcial #1

Estudiante: ______ Nota: _____

1. [1 pt] Sea $\mathcal{F}(\mathbb{R})$ el conjunto de las funciones $f: \mathbb{R} \to \mathbb{R}$. $\mathcal{F}(\mathbb{R})$ se vuelve un anillo conmutativo con identidad bajo las siguientes operaciones:

$$(f+g)(x) = f(x) + g(x)$$
$$(f \cdot g)(x) = f(x) \cdot g(x).$$

- a) Diga cuál es el elemento 0, cuál es la identidad y el inverso para la suma de una función f.
- b) Cuales elementos son invertibles en $\mathcal{F}(\mathbb{R})$.
- c) ¿Es $\mathcal{F}(\mathbb{R})$ un campo? ¿Por qué?
- 2. [1 pt] Sea $I \subset \mathbb{Z}[i]$ un ideal, con $I \neq \{0\}$. Demuestre que I contiene un entero distinto de 0.
- 3. [1.5 pt]. Sea $\varphi \colon A \to B$ un homomorfismo de anillos. Demuestre que:
 - a) Si A es conmutativo entonces Im(A) es conmutativo;
 - b) Si A tiene identidad 1, $B \neq \{0\}$ y φ es sobreyectiva, entonces $\varphi(1)$ es la identidad de B:
 - c) Si $I \subset B$ es un ideal entonces $\varphi^{-1}(I) = \{a \in A : \varphi(a) \in I\}$ es un ideal de A.
- 4. [1.5 pt]. Sea

$$A = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, a, b, c \in \mathbb{R} \right\}.$$

Sea $I \subset A$ el conjunto formado por las matrices con a = c = 0. Sea B el conjunto de las matrices con b = 0. Demuestre que:

- a) I es un ideal de A;
- $b)\ B$ es un subanillo de A. ¿Es un ideal?
- c) $A/I \cong B$.