



# Nuclei isolation from mouse lung for single nucleus RNASeq

Jeffrey Koenitzer<sup>1</sup>, Ben Humphreys<sup>2,3</sup>

<sup>1</sup>Division of Pulmonary and Critical Care, Department of Medicine, Washington University in St. Louis School of Medicine, USA, <sup>2</sup>Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, USA, <sup>3</sup>Department of Developmental Biology, Washington University in St. Louis School of Medicine, USA



dx.doi.org/10.17504/protocols.io.bdv2i68e



Jeffrey Koenitzer 🕜



#### **ABSTRACT**

This protocol is for nuclei isolation from mouse lung for single nucleus RNASeq.

It is adapted directly from Joshi et al., with adjustments to RNase inhibitor concentrations and removal of FACS sorting steps.



Nikita Joshi, Alexander Misharin. Single-nucleus isolation from frozen human lung tissue for single-nucleus RNA-seq http://dx.doi.org/10.17504/protocols.io.zu8f6zw

#### THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Koenitzer, J. R., Wu, H., Atkinson, J. J., Brody, S. L., Humphreys, B. D. (2020). Single nucleus RNASeq profiling of mouse lung: reduced dissociation bias and improved detection of rare cell types compared with single cell RNASeq. bioRxiv. preprint doi: https://doi.org/10.1101/2020.03.06.981407

## ATTACHMENTS

Protocol for nuclei isolation from mouse lung for single nucleus RNASeq.pdf step-by-step\_Lung nuclear isolation protocol v1.pdf

#### **MATERIALS**

| NAME V                                                     | CATALOG #      | VENDOR V                 |
|------------------------------------------------------------|----------------|--------------------------|
| RNaseZap®                                                  | AM9780         | Thermo Scientific        |
| cOmplete ULTRA Tablets, Mini, EDTA-free, EASYpack          | 05 892 791 001 | Roche                    |
| RNasin Plus Ribonuclease Inhibitors                        | N2615          | Promega                  |
| SUPERaseIN RNase Inhibitor                                 | AM2696         | Thermo Fisher Scientific |
| RNase free H2O                                             | AM9938         | Thermo Scientific        |
| Albumin, Bovine Serum, 10% Aqueous Solution, Nuclease-Free | 126615-25ML    | Millipore Sigma          |
| Gibco™ DPBS no calcium no magnesium                        | 14190144       | Thermo Fisher Scientific |

mprotocols.io 04/07/2020

Citation: Jeffrey Koenitzer, Ben Humphreys (04/07/2020). Nuclei isolation from mouse lung for single nucleus RNASeq. https://dx.doi.org/10.17504/protocols.io.bdv2i68e



MATERIALS TEXT



The *Nuclei Isolation Kit* contains the *Nuclei EZ Lysis Buffer* that is required for the praparation of Lysis Buffer and cOmplete stock (10x).

# **Storage Conditions**

| Material                                          | Storage |
|---------------------------------------------------|---------|
| 1x DPBS                                           | 4 °C    |
| Nuclei EZ Lysis Buffer (from kit NUC-101)         | 4 °C    |
| cOmplete ULTRA Tablets, Mini, EDTA-free, EASYpack | 4 °C    |
| RNasin Plus Ribonuclease Inhibitors               | -20 °C  |
| SUPERaseIN RNase Inhibitor                        | -20 °C  |
| RNase free H2O                                    | RT      |
| RNaseZap                                          | RT      |
| Bovine serum albumin, 10% solution, nuclease free | -20 °C  |

gentleMACS™ C Tubes
Tissue dissociators and tubes
gentleMACS™ 130-093-237 🖘

gentleMACS™ Dissociator
Tissue Dissociator
MACS 130-093-235 ←

pluriStrainer® 40 μm
Cell Strainer
pluriSelect 43-50040 🖘



C-Chip™ Disposable Hemacytometers (Fuchs Rosenthal)
Counting Chamber
INCYTO DHCF015 □

Falcon™ 15mL Polystyrene Conical Centrifuge Tubes Centrifuge Tubes Falcon™ 352095 🖘

Ambion® RNase-free 50 ml Conical Tubes
Centrifuge Tubes
Ambion® AM12502 🖘

TPP 60 mm Tissue Culture Dishes
Tissue Culture Dish
TPP TP93060 ©

SAFETY WARNINGS

Please see SDS (Safety Data Sheet) for hazards and safety warnings.

BEFORE STARTING

**Prepare Working Solutions** 

Complete stock (10x)

 $\textbf{Citation:} \ \, \textbf{Jeffrey Koenitzer, Ben Humphreys (04/07/2020).} \ \, \textbf{Nuclei isolation from mouse lung for single nucleus RNASeq.} \\ \underline{\textbf{https://dx.doi.org/10.17504/protocols.io.bdv2i68e}}$ 

- 1 ml Nuclei EZ Prep lysis buffer
- 1 tablet cOmplete ULTRA tablets

Lysis Buffer - 2 ml per < 6 mm<sup>3</sup> tissue

- 200 µl cOmplete stock
- 1.775 ml Nuclei EZ Prep lysis buffer
- 12.5 µl RNasin Plus
- 12.5 µl SUPERaseIN

Wash Buffer - 4 ml per < 6 mm<sup>3</sup> tissue

- 3.575 ml dPBS
- **3**400 µl 10% BSA
- 12.5 µl RNasin Plus
- □ 12.5 μl SUPERaseIN

Resuspension Buffer - 1 ml

- **0.977 ml dPBS**
- □ 10 μl 10% BSA
- **a**6.25 μl RNasin Plus
- **3**6.25 µl SUPERaseIN
- 1 Pre-cool all instruments (including centrifuges), buffers, and tubes.



- 2 Remove mouse lung sample from -80 °C freezer and trim a ~6 mm<sup>3</sup> piece.
- Thaw on small plastic weighing boat until able to insert 26G needle to tissue, then inject ice cold **1 ml Lysis Buffer** to 'inflate' the tissue. Add the remaining Lysis Buffer and chop to the smallest pieces possible with scissors (60 s).
- 4 Transfer the minced tissue and buffer to a GentleMacs C tube.
- 5 Close, invert, and transfer directly to MACS Tissue dissociator.

6 Run  $m_lung_01$  program and  $m_lung_02$  program in sequence, stopping the latter after  $\odot$  **00:00:20**.



Foam after GentleMacs

7 Place tube § On ice.

8

Reduce foam by centrifugation ( \$\mathbb{750} x g 00:01:00 ).



Foam after centrifugation



Using a wide bore tip, pipette up and down to recover any pelleted material and pass lysate through 40 µm filter to 50 ml conical tube.





- Pass suspension through a 5  $\mu m$  strainer into 50 ml conical tube. 11
- 12

Centrifuge at **600 x g, 4°C 00:05:00**.

13 Resuspend in  $\blacksquare 500 \mu l$  Resuspension Buffer. 14



Count nuclei by hemocytometer and dilute to desired concentration (e.g. 10,000 per µl).



Note: it is easier to resuspend in lower volumes and dilute than to concentrate nuclei via further centrifugation.



40x Nuclear suspension with scant debris

### 15 Proceed to 10x Chromium.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

7