

INTRODUCCIÓN A LA TEORÍA DE GRAFOS: EL PROBLEMA DE LOS CAMINOS MÁS CORTOS

Antonio Hervás Jorge 2017

OBJETIVOS

•Vamos a ver un problema interesante.

•Aparecen pesos de las aristas de nuevo, y esto caracteriza el problema.

•Nos quedaremos con ganas de ver más casos..

Problema de encontrar el/los camino/s más cortos

desde un vértice X
a otro y/o
al resto de los vértices
del grafo.

entre todos y cada uno de los vértices del grafo.

El problema de los caminos más cortos con un sólo origen

- G = (V,E) un grafo dirigido.
- $C = [C(p,q)]_{n \times n}$ la matriz de pesos del grafo G.
- s ∈ V un vértice origen.

Determinar el **coste del camino más corto** del vértice origen **S al resto** de los vértices de **V**.

(El **coste total del camino** es la **suma de los pesos** de los arcos del camino)

Pesos de las aristas del grafo

POSITIVAS

Algoritmo de DIJKSTRA.

NEGATIVAS

Algoritmo de BELLMAN-FORD.

• Los pesos **C(p,q)** de todas las aristas **deben ser positivos**.

Edger W. Dijkstra. 1930/2002 TEORIA DE GRAFOS

Los pesos **C(p,q)** de todas las aristas **deben ser positivos**.

Si una **arista no está en el grafo** le asignamos un **peso + ∞.**

TEORÍA DE GRAFOS

- Los pesos **C(p,q)** de todas las aristas **deben ser positivos**.
- Si una **arista no está en el grafo** le asignamos un **peso +** ∞
- A cada vértice se le asignará una etiqueta 1(xi).

- Los pesos C(p,q) de todas las aristas deben ser positivos.
- Si una arista no está en el grafo le asignamos un peso +∞.
- A cada vértice se le asignará una etiqueta 1(x;).
 - Representará una cota superior de la longitud del camino más corto del vértice de partida al vértice x_i.

"About the use of language: it is impossible to sharpen a pencil with a blunt axe. It is equally vain to try to do it with ten blunt axes instead."

Edsger Dijkstra

- Los pesos **C(p,q)** de todas las aristas **deben ser positivos**.
- Si una arista no está en el grafo le asignamos un peso +∞.
- A cada vértice se le asignará una etiqueta 1(x,).
 - Representará una cota superior de la longitud del camino más corto del vértice de partida al vértice x;
 - Será variable en principio, pero en cada iteración se fijará una.

Los pesos **C(p,q)** de todas las aristas **deben ser positivos**.

Si una arista no está en el grafo le asignamos un peso + ∞.

A cada vértice se le asignará una etiqueta 1(x,).

- Representará una cota superior de la longitud del camino más corto del vértice de partida al vértice x_i.
- Será variable en principio, pero en cada iteración se fijará una.

En cada iteración disminuyen las etiquetas de los vértices.

(A medida que se alcancen los vértices desde el vértice de partida)

- Los pesos C(p,q) de todas las aristas deben ser positivos.
- Si una arista no está en el grafo le asignamos un peso +∞.
- A cada vértice se le asignará una etiqueta 1(x_i).
 - Representará una cota superior de la longitud del camino más corto del vértice de partida al vértice x_i.
 - Será variable en principio, pero en cada iteración se fijará una.
- En cada iteración disminuyen las etiquetas de los vértices.
 (A medida que se alcancen los vértices desde el vértice de partida)
- El algoritmo acaba cuando se fije la etiqueta del vértice buscado (o todas las etiquetas sean fijadas)

[Paso1] Sea **s** el vértice origen, asignarle una etiqueta que será fija l(s) = 0.

$$l(x_i) = + \infty \quad \forall x_i \in V /* \text{ variable } */ \text{Sea P} = s.$$

[Paso 2] Para todo $x_i \in \Gamma$ (P) con etiqueta variable, actualizar las etiquetas:

$$I(x_i) = min [I(x_i), I(P) + C(P, x_i)]$$

- [Paso 3] Sea $x_i = min [I(x_j)], x_j con etiqueta variable.$
- [Paso 4] Marcar la etiqueta de x_i como fija y hacer $P = x_i$.

Matemática Discreta

Departamento de Matemática Aplicada

[*Paso 5*]

(1) Si sólo se desea el camino de s a t.

Si P = t

entonces

I(P) es la longitud del camino más corto buscado STOP.

sino ir al PASO2.

(2) Si se desean los caminos más cortos de s al resto de los vértices.

Si todos los vértices tienen etiqueta fija **entonces** estas indican las longitudes de los caminos más cortos. STOP.

sino ir al PASO 2.

TEOREMA.

El algoritmo de **DIJKSTRA** suministra los caminos más cortos de un vértice v al resto de vértices en un grafo conexo con una matriz de pesos positivos.

Es prácticamente imposible enseñar buena programación a los alumnos que han tenido una exposición previa al BASIC: como programadores potenciales están mentalmente mutilados sin esperanza de regeneración.

-Edsger Dijkstra

www.frasesgo.com

lauduos más cortos de (1) al resto de vertices.

	e1	ℓ^2	£3	P4	€5	
1	0					- • 5
2	W	6	6	_	/5.\	
3	∞	11	11	77	11	- 10.5 (816
4	00	6				
5	∞	∞	00	10	_	
						W. 1

si teuemos dos iguales.
elegimos el que más nos comengo.

• Proporciona el camino más corto entre dos o más vértices de un grafo conexo.

Richard E. Bellman Richard E. Bellman (26 de agosto 1920 – 19 marzo de 1984)

Lester Randolph Ford Jr.

- Proporciona el camino más corto entre dos o más vértices de un grafo conexo.
- Ponderado con matriz de pesos general (positivos o negativos).

porciona el **camino más corto entre dos o más vértices** grafo conexo.

derado con matriz de pesos general (positivos o negativos).

o deben existir ciclos de peso total negativ

Proporciona el camino más corto entre dos o más vértices e un grafo conexo.

Ponderado con matriz de pesos general (positivos o negativos).

No deben existir ciclos de peso total negativos.

Se asignan **etiquetas 1**^k(x) a los vértices.

- Proporciona el **camino más corto entre dos o más vértices** de un **grafo conexo**.
- Ponderado con matriz de pesos general (positivos o negativos).
- No deben existir ciclos de peso total negativos.
- Se asignan **etiquetas 1^k(x)** a los vértices.
 - Representa la longitud del camino más corto del vértice s al vértice x que contenga k o menos aristas.
 - Permanecerán variables hasta la última iteración.

Proporciona el **camino más corto entre dos o más vértices** e un **grafo conexo**.

Ponderado con matriz de pesos general (positivos o negativos).

No deben existir ciclos de peso total negativos.

Se asignan **etiquetas 1^k(x)** a los vértices.

- Representa la longitud del camino más corto del vértice s al vértice x que contenga k o menos aristas.
- Permanecerán variables hasta la última iteración.
- Al final de la iteración k calcularemos la etiqueta k + 1.

oporciona el **camino más corto entre dos o más vértices** un **grafo conexo**.

onderado con matriz de pesos general (positivos o negativos).

- o deben existir ciclos de peso total negativos.
- e asignan **etiquetas 1^k(x)** a los vértices.
 - Representa la longitud del camino más corto del vértice s al vértice x que contenga k o menos aristas.
 - Permanecerán variables hasta la última iteración.
 - Al final de la iteración k calcularemos la etiqueta k + 1.

l **algoritmo acabará** cuando calcule los **caminos de longitud n - 1** o los más largos si son de longitud menor).


```
[Paso 1] Inicialización.
                S = \Gamma (s):
                k = 1:
                Y las etiquetas:
                 I^{1}(s) = 0:
                 para los x_i \in \Gamma(s): I^k(x_i) = C(s, x_i)
                 para el resto de los vértices I^k(x_i) = \infty
[Paso 2]
              Para todo x_i \Gamma \in (S) actualizar las etiquetas:
                I^{k+1}(x_i) = \min[I^k(x_i), \min_{x_i \in T_i} \{I^k(x_i) + C(x_i, x_i)\}]
                T_i = \Gamma^{-1}(x_i) \cap S
                I^{k+1}(\mathbf{x}_i) = I^k(\mathbf{x}_i) para \mathbf{x}_i \in \Gamma(S)^{T}
```


[Paso 3] Test de finalización.

a) Si $k \le n-1$ y $\forall x_i, 1^{k+1}(x_i) = 1^k(x_i) \Rightarrow$ STOP. Se han obtenido las longitudes de los caminos más cortos

se nan obtenido las longitudes de los caminos m y vienen dadas por las etiquetas actuales.

- b) Si k < n-1 y hay algún x_i , $1^{k+1}(x_i) \neq 1^k(x_i) \Rightarrow PASO 4$.
- C) Si $\mathbf{k} = \mathbf{n} \cdot \mathbf{1}$ y hay $\mathbf{algún} \ \mathbf{x_i} \cdot \mathbf{1^{k+1}} \neq \mathbf{1^k} (\mathbf{x_i}) \Rightarrow$ NO HAY SOLUCIÓN. STOP.

[Paso 4] $S = \{ x_i / I^{k+1} (x_i) \neq I^k (x_i) \}$

S contiene los vértices cuyo camino más corto es de cardinalidad k+1.

[Paso 5] k = k+1; ir al PASO 2.

Camino mínimo entre todos los vértices del grafo.

Actúa directamente sobre la matriz de pesos, sin asignar etiquetas a los vértices.

Robert W. Floyd 1936/2001

Stephen Warshall. 1935/2006

Actúa directamente sobre la matriz de pesos, in asignar etiquetas a los vértices.

Calcula la longitud de los caminos más cortos entre odos los vértices del grafo.

- Actúa directamente sobre la matriz de pesos, sin asignar etiquetas a los vértices.
- Calcula la longitud de los caminos más cortos entre todos los vértices del grafo.
- **Detecta los ciclos de peso negativo** (en el case de que existan).

$$C = (c_{ij})$$

- Matriz de pesos del grafo.
 Se actualiza en cada iteración.

$$C = (c_{ij})$$

- Matriz de pesos del grafo.
- Se actualiza en cada iteración.

- Matriz de pesos de un grafo donde:
 - los vértices son los del grafo original
- las aristas son los caminos más cortos
 con k o

menos aristas en el grafo de partida.

- Al principio, la diagonal de la matriz C sólo hay ceros.
- Si algún valor de la diagonal se hace negativo

TEORÍA DE GRAFOS

Paso3]
$$\forall i \neq k / c_{ik} \neq \infty$$

 $\forall j \neq k / c_{kj} \neq \infty$

$$\mathbf{c}_{ij} = \mathbf{min} \left\{ \mathbf{c}_{ij}, \mathbf{c}_{ik} + \mathbf{c}_{kj} \right\}$$

[Paso4] a) Si $\exists c_{ii} < o \Rightarrow STOP$, circuito de pesos negativos.

b)Si \forall i, $c_{ii} \ge 0 \land k = n \Rightarrow STOP$.

 $[c_{ij}]_{n\times n}$ representa las longitudes de los caminos más cortos de x_i a

c) $c_{ii} > 0$, \forall **i, k < n** \Rightarrow ir al PASO 2.

S	Q	u		1	2	3	4	5	6
{}	$\{1,2,3,4,5,6\}$	_	D	0	∞	∞	∞	∞	∞
			P	NULO	NULO	NULO	NULO	NULO	NULO

S	Q	u		1	2	3	4	5	6
{1}	$\{2,3,4,5,6\}$	1	D	0	∞	40	∞	10	5
			P	NULO	NULO	1	NULO	1	1

S	Q	u		1	2	3	4	5	6
{1,6}	$\{2,3,4,5\}$	6	D	0	25	40	∞	10	5
			P	NULO	6	1	NULO	1	1

S	Q	u		1	2	3	4	5	6
$\{1,6,5\}$	$\{2,3,4\}$	5	D	0	25	40	30	10	5
			P	NULO	6	1	5	1	1

S	Q	u		1	2	3	4	5	6
$\{1,6,5,2\}$	${3,4}$	2	D	0	25	40	30	10	5
			P	NULO	6	1	5	1	1

S	Q	u		1	2	3	4	5	6
$\{1,6,5,2,4\}$	$\{3\}$	4	D	0	25	35	30	10	5
			P	NULO	6	4	5	1	1

S	Q	u		1	2	3	4	5	6
$\{1,6,5,2,4,3\}$	{}	3	D	0	25	35	30	10	5
			P	NULO	6	4	5	1	1

Aplicando BELLMAN-FORD

destino origen\	1	2	3	4	5
1	0	00	00	00	00
2	1	0	2	00	00
3	4	1	0	00	00
4	00	8	8	0	4
5	00	8	2	2	0

Aplicando BELLMAN-FORD

	D ₁	1	D ₂	1	D ₃	E	04	L) 5
n		$d_{2i} + D_i^*$	$d_{21} + D_1^{\alpha}$	$d_{51} + D_1^{\alpha}$	$d_{12}+D_2^+$	$d_{st} + D_s^*$	$d_{42} + D_2^*$	$d_{33} + D_3^{\alpha}$	$d_{54} + D_4^5$
0	0	00		90		90		00	
1	0	1+0	2+∞	4+0	1+∞	4+∞	8+∞	2+ ∞	2+ ∞
1	0	1	00	4	00	00	00	90	00
2	0	1+0	2+4	4+0	1+1	4+∞	8+1	2+4	2+ ∞
2	0	1	6	4	2	∞	9	6	00
3	0	1+0	2+2	4+0	1+1	4+6	8+1	2+2	2+9
3	0	1	4	4	2	10	9	4	11
	0	1+0	2+2	4+0	1+1	4+4	8+1	2+2	2+9
4	0	1	4	4	2	8	9	4	11
5	0	1+0	2+2	4+0	1+1	4+4	8+1	2+2	2+8
3	0	1	4	4	2	8	9	4	10

Aplicando FLOYD- WARSHALL

Algoritmo de Floyd: Ejemplo

A_0	1	2	3
1	0	8	5
2	3	0	α
3	α	2	0

Aplicar Warshall a los dos grafos anteriores.

Aplicando ORDEN TOPOLOGICO

mR 5 3 4 2 1

mL 5 4 2 3 1

C

