УДК 519.83

ББК 22.18

ТООО: НАЗВАНИЕ СТАТЬИ

Артем И. Пьяных

Московский университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики 119991, Москва, Ленинские горы, 2-й учебный корпус artem.pyanykh@gmail.com

TODO: TITILE ABSTRACT.

Ключевые слова: TODO: ключевые слова.

©2015 А.И. Пьяных

1. Введение

В работе [1] была рассмотрена многошаговая модель биржевых торгов однотипными акциями, в которой торги между собой ведут два игрока. Перед началом торгов случайный ход определяет цену акции на весь период торгов, которая в состояниях рынка L и H равна 0 и 1 соответственно. Выбранная цена сообщается первому игроку и не сообщается второму, при этом второй игрок знает, что первый – инсайдер. Также оба игрока знают вероятность p высокой цены акции.

На каждом шаге торгов игроки одновременно и независимо назначают некоторую цену за акцию. Игроки могут делать произвольные вещественные ставки, причем игрок, предложивший бо́льшую цену, покупает у другого акцию по названной цене. Задачей игроков является максимизация стоимости портфеля, состоящего из некоторого числа акций и суммы денег.

Модель сводится к повторяющейся игре с неполной информацией, как описано в [2], для которой Де Мейером и Салей были найдены оптимальные стратегии игроков и значение игры. Позднее В. Доманским [3] была рассмотрена модификация модели, в которой ставки игроков могли принимать значения только из заданного дискретного множества $\{i/m,\ i=\overline{0,m},\ m\geqslant 1\}$. В данной постановке им было получено решение игры неограниченной продолжительности.

В обеих работах использовался одинаковый механизм проведения транзакции, при котором акция продается по наибольшей из предложенных цен. Можно, однако, рассмотреть и следующий механизм формирования цены акции, предложенный в [4]: игроки одновременно предлагают цены p_1 и p_2 , при $p_1 > p_2$ акция продается по цене $\beta p_1 + (1-\beta)p_2$, где $\beta \in [0,1]$ — заданный коэффициент, характеризующий переговорную силу продавца.

Фактически, в работах [1] и [3] коэффициент β равен 1. Обобщение дискретной модели на случай произвольного β было рассмотрено в [5]. В данной работе обобщение на случай произвольного β проведено для модели игры с непрерывными ставками.

2. Модель игры

Пусть множество состояний рынка $S = \{H, L\}$. На первом шаге

случай выбирает $s \in S$ с вероятностью p(H) = P, p(L) = 1 - P. После этого игроки на протяжении n шагов ведут между собой торги за одну единицу рискового актива.

Обозначим через $\pi_t = (\pi_t^R, \pi_t^N)$ портфель инсайдера на t-ом шаге игры, где π_t^R и π_t^N – количество единиц рискового и безрискового активов соответственно. Пусть также I = [0,1] – множество возможных ставок. Если на t-ом шаге игроки делают ставки $p_{1,t}, p_{2,t} \in I$, то портфель инсайдера $\pi_t = \pi_{t-1} + t(p_{1,t}, p_{2,t})$, где при $\alpha = 1 - \beta$

$$t(p_1, p_2) = \mathbb{1}_{p_1 > p_2}(1, -\beta p_1 - \alpha p_2) + \mathbb{1}_{p_1 < p_2}(-1, \alpha p_1 + \beta p_2),$$

и $\mathbbm{1}_{p_1>p_2}$ принимает значение 1 при $p_1>p_2$ и 0 в противном случае. Стоимость портфеля при этом равна $V(\pi_t)=\mathbbm{1}_{s=H}\,\pi_t^R+\pi_t^N.$

Если положить, что в начальный момент времени оба игрока не имели ни рисковых, ни безрисковых активов, то выигрыш первого игрока будет равен $V(\pi_n)$, а второго $-V(\pi_n)$. Второму игроку этот выигрыш становится известным только после окончания игры.

Обозначим через $h_t = (p_{1,1}, p_{2,1}, \dots, p_{1,t}, p_{2,t})$ историю ставок к моменту времени t, через H_t – множество всевозможных h_t . Тогда стратегией первого игрока является последовательность ходов $\sigma = (\sigma_1, \dots, \sigma_n)$, где $\sigma_t : S \times H_{t-1} \to \Delta(I)$ – отображение в множество $\Delta(I)$ вероятностных распределений на I.

Аналогично стратегией второго игрока назовем последовательность ходов $\tau = (\tau_1, \dots, \tau_n)$, где $\tau_t : H_{t-1} \to \Delta(I)$.

Пара стратегий (σ, τ) вместе с вероятностью хода случая P индуцирует на (S, H_n) вероятностное распределение $\Pi[P, \sigma, \tau]$. Тогда выигрыш первого игрока

$$g_n(P, \sigma, \tau) = \mathbb{E}_{\Pi[P, \sigma, \tau]} V(\pi_n),$$

а нижнее и верхнее значения игры даются формулами

$$V_{1,n}(P) = \sup_{\sigma} \inf_{\tau} g_n(P, \sigma, \tau), \quad V_{2,n}(P) = \inf_{\tau} \sup_{\sigma} g_n(P, \sigma, \tau).$$

Полученную игру обозначим $G_n(P)$. В случае, когда $V_{1,n}(P) = V_{2,n}(P)$, будем говорить, что игра имеет значение $V_n(P)$.

Стратегии σ^* и τ^* первого и второго игроков назовем оптимальными, если

$$\inf_{\tau} g_n(P, \sigma^*, \tau) = V_{1,n}(P), \ \sup_{\sigma} g_n(P, \sigma, \tau^*) = V_{2,n}(P).$$

Приведем без доказательства следующую (см. [1]):

Лемма 2.1. $V_{1,n}(\cdot)$ и $V_{2,n}(\cdot)$ – вогнутые непрерывные функции. Кроме того, для любого $P \in [0,1]$ выполняется неравенство

$$0 \leqslant V_{1,n}(P) \leqslant V_{2,n}(P) \leqslant 2nP(1-P).$$

3. Оценка снизу выигрыша первого игрока

Следуя [1], начнем с анализа рекурсивной структуры игры $G_n(P)$. Рассмотрим стратегию σ первого игрока как пару $(\sigma_1, \tilde{\sigma})$, где σ_1 – ход игрока на первом шаге игры, а $\tilde{\sigma}$ – семейство стратегий в игре продолжительности n-1, зависящих от ставок $(p_{1,1}, p_{2,1})$ на первом шаге. Аналогично стратегию τ второго игрока можно представить как пару $(\tau_1, \tilde{\tau})$.

Ход игрока σ_1 на первом шаге игры вместе с P индуцирует вероятностное распределение $\Pi[P,\sigma_1]$ на $(s,p_{1,1})$. Обозначим через

$$P(p_{1,1}) = \Pi[P, \sigma_1](s = H \mid p_{1,1})$$

апостериорную вероятность состояния H при условии, что первый игрок сделал ставку $p_{1,1}$. Т.к. $p_{2,1}$ не зависит от s, то

$$P(p_{1,1}) = \Pi[P, \sigma_1, \tau_1](s = H \mid p_{1,1}, p_{2,1}).$$

Таким образом, для значения выигрыша первого игрока справедливо представление

$$g_{n+1}(P, \sigma, \tau) = g_1(P, \sigma_1, \tau_1) +$$

$$+ \mathbb{E}_{\Pi[P, \sigma_1, \tau_1]} g_n(P(p_{1,1}), \tilde{\sigma}(p_{1,1}, p_{2,1}), \tilde{\sigma}(p_{1,1}, p_{2,1})).$$

Приведем без доказательства следующую (см. [1]):

Лемма 3.1. Для любого $P \in [0,1]$ выполняется неравенство

$$V_{1,n+1} \geqslant \max_{\sigma_1} \min_{p_{2,1}} g_1(P, \sigma_1, p_{2,1}) + \mathbb{E}_{\Pi[P,\sigma_1]} V_{1,n}(P(p_{1,1})). \tag{3.1}$$

Параметризуем стратегию σ_1 при помощи пары функций (f,Q) из [0,1] в [0,1], удовлетворяющих:

$$\diamond$$
 f – не убывает на $[0,1]$, $(3.2a)$

$$\Rightarrow \int_0^1 Q(u) \, \mathrm{d}u = P, \tag{3.2b}$$

$$\diamond \quad \forall x, y \in [0, 1] : f(x) = f(y) \implies Q(x) = Q(y). \tag{3.2c}$$

Если случайная величина u равномерно распределена на [0,1], то положим $f(u)=p_{1,1}$ и Q(u)=P(f(u)), что дает нам $\Pi[P,\sigma_1]$.

Лемма 3.2. $V_{1,n+1}(P) \geqslant \sup_{(f,Q)} \inf_{p_{2,1}} F_{n+1}\left((f,Q),p_{2,1}\right), \ \epsilon \partial e^{-\frac{1}{2}}$

$$F_{n+1}((f,Q), p_{2,1}) = \int_0^1 \mathbb{1}_{f(u) > p_{2,1}}(Q(u) - \beta f(u) - \alpha p_{2,1}) du + \int_0^1 \mathbb{1}_{f(u) < p_{2,1}}(\alpha f(u) + \beta p_{2,1} - Q(u)) du + \int_0^1 V_{1,n}(Q(u)) du.$$
(3.3)

Доказательство получается подстановкой f и Q в (3.1).

Будем искать уравнивающую стратегию первого игрока. Пусть $p_{2,1}=f(\gamma),\ \gamma\in[0,1]$ и $f(\cdot)$ строго возрастает в $\gamma.$ Тогда

$$F_{n+1}((f,Q), f(\gamma)) = \int_{\gamma}^{1} (Q(u) - \beta f(u) - \alpha f(\gamma)) du + \int_{0}^{\gamma} (\alpha f(u) + \beta f(\gamma) - Q(u)) du + \int_{0}^{1} V_{1,n}(Q(u)) du.$$
(3.4)

По предположению $F_{n+1}\left((f,Q),f(\gamma)\right)$ не зависит от γ , следовательно

$$\frac{\partial F_{n+1}}{\partial \gamma} = (\gamma - \alpha)f'(\gamma) + 2f(\gamma) - 2Q(\gamma) = 0.$$

Отсюда

$$f(u) = (u - \alpha)^{-2} \int_{\alpha}^{u} 2(x - \alpha)Q(x) dx.^{1}$$
 (3.5)

¹При $u = \alpha$ доопределим $f(\alpha)$ по непрерывности как $Q(\alpha)$.

Подставив (3.5) в (3.4) при $\gamma = 1$ получим

$$\Phi(Q) = F_{n+1}((f(u), Q), f(1)) =
= \int_0^1 (2s - 1)Q(s) ds + \int_0^1 V_{1,n}(Q(u)) du.$$
(3.6)

Найдем Q как решение изопериметрической вариационной задачи

$$\Phi(Q) \to \max, \quad \int_0^1 Q(u) \, \mathrm{d}u = P.$$
(3.7)

Перед тем, как перейти к решению (3.7), заметим, что если функция $f(\cdot)$ – вогнутая и ограниченная, ее субдифференциал $\partial f(\cdot)$ не является однозначно определенным в худшем случае не некотором счетном множестве точек. Таким образом, если то, как определена $f'(\cdot)$ на множестве меры нуль не существенно, $f'(\cdot)$ можно доопределить единственным образом как непрерывную слева или справа функцию.

Применяя метод множителей Лагранжа (см. [6]), получим решение (3.7) в следующем виде:

$$Q(u) = V_{1,n}^{*\prime}(1 - \lambda - 2u), \text{ где}^2$$
 (3.8)

$$\int_0^1 V_{1,n}^{*\prime} (1 - \lambda - 2u) \, \mathrm{d}u = P, \tag{3.9}$$

Так как $V_{1,n}(\cdot)$ определена на [0,1], то $V_{1,n}^{*\prime}(\cdot)$ не возрастает на $\mathbb R$ от 1 до 0. Следовательно λ , удовлетворяющая (3.9), существует. Кроме того доопределим $V_{1,n}^{*\prime}(\cdot)$ таким образом, чтобы Q(u) была непрерывной справа при $u < \alpha$ и непрерывной слева при $u \geqslant \alpha$.

Лемма 3.3. Пара функций (f,Q), определенная в (3.5), (3.8) принимает значения в [0,1] и удовлетворяет (3.2a) – (3.2c), т.е. является корректной параметризацией стратегии первого игрока.

Доказательство. Так как $V_{1,n}^{*\prime}(\cdot)$ убывает от 1 до 0, то $Q(\cdot)$ принимает значения в [0,1] и, кроме того, не убывает на [0,1].

Далее, можно заметить, что f(u) является математическим ожиданием Q(x), где x – случайная величина распределенная между α

 $^{^2}$ Через $f^*(x^*) = \inf_x \left\{ x \cdot x^* - f(x) \right\}$ обозначена сопряженная к $f(\cdot)$ функция.

и u с плотностью $2|x-\alpha|/(u-\alpha)^2$. Следовательно, $f(\cdot)$ также принимает значения в [0,1].

Сделаем замену переменного $t = (x - \alpha)/(u - \alpha)$ в (3.5). Тогда

$$f(u) = \int_0^1 2tQ \left(t(u - \alpha) + \alpha\right) dt.$$

Отсюда видно, что (3.2a) выполнено. Далее, (3.2b) выполнено по построению. Чтобы показать, что (3.2c) выполняется, рассмотрим несколько случаев.

Пусть $\alpha < u_1 < u_2$. Тогда, так как Q не убывает, почти при всех $t \in [0,1]$ выполнено $Q(t(u_1-\alpha)+\alpha) = Q(t(u_2-\alpha)+\alpha)$. Из непрерывности Q слева следует равенство при t=1, т.е. $Q(u_1)=Q(u_2)$.

При $\alpha = u_1 < u_2$ имеем $f(u_1) = f(\alpha) = Q(\alpha)$. Отсюда почти при всех $t \in [0,1]$ выполнено $Q(t(u_2 - \alpha) + \alpha) = Q(\alpha)$. Снова из непрерывности Q слева получаем $Q(u_1) = Q(u_2) = Q(\alpha)$.

Доказательство при $u_1 < u_2 \leqslant \alpha$ получается аналогично с заменой непрерывности слева на непрерывность справа. Так же рассматривается и случай $u_1 < \alpha < u_2$. Таким образом (3.2c) выполнено.

Лемма 3.4. Если $f(u_1) = f(u_2)$ при $u_1 < u_2$, то f(u) = Q(u) при $u \in [u_1, u_2]$.

Доказательство. Действительно, если $f(u_1) = f(u_2)$, то из леммы 3.3 следует, что $f(\cdot)$ и $Q(\cdot)$ константны на $[u_1, u_2]$. Тогда из (3.5) для $f(u_2)$ имеем

$$f(u_2) = (u_2 - \alpha)^{-2} \int_{\alpha}^{u_2} 2(x - \alpha)Q(x) dx =$$

$$= (u_2 - \alpha)^{-2} \left(\int_{\alpha}^{u_1} 2(x - \alpha)Q(x) dx + \int_{u_1}^{u_2} 2(x - \alpha)Q(x) dx \right) =$$

$$= (u_2 - \alpha)^{-2} \left((u_1 - \alpha)^2 f(u_1) + \int_{u_1}^{u_2} 2(x - \alpha)Q(u_1) dx \right) =$$

$$= (u_2 - \alpha)^{-2} \left((u_1 - \alpha)^2 f(u_1) + \left((u_2 - \alpha)^2 - (u_2 - \alpha)^2 \right) Q(u_1) \right).$$

С другой стороны, для $f(u_1)$ справедливо

$$f(u_1) = (u_2 - \alpha)^{-2} \left((u_1 - \alpha)^2 f(u_1) + \left((u_2 - \alpha)^2 - (u_2 - \alpha)^2 \right) f(u_1) \right).$$

Таким образом, $f(u_1) = Q(u_1)$, а следовательно f(u) = Q(u) при $u \in [u_1, u_2]$.

Обозначим $K(\lambda) = \int_0^1 V_{1,n}^* (1 - \lambda - 2u) \, \mathrm{d}u$. Тогда $K'(\lambda) = P$. Подставив (3.8), (3.9) в (3.6), получим

$$\Phi(Q) = \lambda \int_0^1 Q(s) \, ds + \int_0^1 \left[(2s - 1 - \lambda)Q(s) + V_{1,n}(Q(s)) \right] ds =$$

$$= PK^{*\prime}(P) - \int_0^1 \left[(1 + \lambda - 2s)Q(s) + V_{1,n}(Q(s)) \right] ds =$$

$$= PK^{*\prime}(P) - \int_0^1 V_{1,n}^* (1 + \lambda - 2s) \, ds =$$

$$= PK^{*\prime}(P) - K(\lambda) = PK^{*\prime}(P) - K(K^{*\prime}(P)) = K^*(P).$$

Выше было использовано несколько свойств субдифференциалов замкнутых вогнутых функций, в частности эквивалентность следующих условий (см., например, [7, Теорема 23.5]):

- (a) $x^* \in \partial f(x)$,
- (b) $x \in \partial f^*(x^*)$,
- (c) $\langle z, x^* \rangle f(z)$ достигает минимума по z в точке x.

Теорема 3.1. Для выигрыша первого игрока в игре $G_n(P)$ справедлива оценка $V_{1,n+1}(P) \geqslant K^*(P)$.

Доказательство. Из леммы 3.1 следует, что нам достаточно доказать, что при любом $p_{2,1} \in [0,1]$ выполнено $F_{n+1}((f,Q),p_{2,1}) \geqslant K^*(P)$.

Рассмотрим несколько случаев. Пусть $p_{2,1} < f(0)$. Тогда

$$F_{n+1}((f,Q), p_{2,1}) = \int_0^1 [Q(u) - \beta f(u) - \alpha p_{2,1}] du + \int_0^1 V_{1,n}(Q(u)) du \geqslant F_{n+1}((f,Q), f(0)) = K^*(P).$$

Аналогично можно показать, что при $p_{2,1} > f(1)$

$$F_{n+1}((f,Q),p_{2,1}) \geqslant F_{n+1}((f,Q),f(0)) = K^*(p).$$

Пусть теперь $p_{2,1} = f(\gamma), \ \gamma \in [0,1]$. Кроме того, введем обозначения

$$\gamma^{-} = \inf \{ x \mid f(x) = f(\gamma) \}, \quad \gamma^{+} = \sup \{ x \mid f(x) = f(\gamma) \}.$$

Тогда

$$F_{n+1}((f,Q), p_{2,1}) = \int_{\gamma^{+}}^{1} (Q(u) - \beta f(u) - \alpha f(\gamma)) du + \int_{0}^{\gamma^{-}} (\alpha f(u) + \beta f(\gamma) - Q(u)) du + \int_{0}^{1} V_{1,n}(Q(u)) du.$$
(3.10)

Однако, из леммы 3.4 следует, что $Q(u) = f(\gamma)$ при $u \in [\gamma^-, \gamma^+]$. А значит (3.10) совпадает с (3.4) и $F_{n+1}((f,Q), p_{2,1}) \geqslant K^*(p)$ по построению.

4. Оценка сверху выигрыша второго игрока

Следуя [1], рассмотрим двойственную игру $G_n^*(x)$, определенную следующим образом. Перед началом игры инсайдер выбирает текущее состояние $s \in S$. Если s = H, то он вынужден заплатить второму игроку пенальти размера x в конце игры. В остальном игра аналогична G_n .

Таким образом, стратегией первого игрока является пара (P, σ) , где $P \in [0, 1]$, а σ – стратегия в G_n . Множество стратегий второго игрока не отличается от аналогичного в G_n .

Выигрыш второго игрока, который он стремится максимизировать, определяется как

$$g_n^*(x, (P, \sigma), \tau) = xP - g_n(P, \sigma, \tau),$$

а верхнее и нижнее значения игры даются, соответственно, форму-

$$W_{1,n}(x) = \inf_{(P, \sigma)} \sup_{\tau} g_n^*(x, (P, \sigma), \tau), \quad W_{2,n}(x) = \sup_{\tau} \inf_{(P, \sigma)} g_n^*(x, (P, \sigma), \tau).$$

Приведем без доказательства следующие результаты (см. [1]).

Лемма 4.1. $W_{2,n}(\cdot)$ – вогнутая функция. Кроме того, для любого $x \in \mathbb{R}$ выполнено $\partial W_{2,n}(x) \in [0,1]$. В частности, $W_{2,n}(\cdot)$ является липшицевой.

Лемма 4.2. Для любого $x \in \mathbb{R}$ выполняется неравенство

$$W_{2,n+1} \geqslant \sup_{\tau_1} \inf_{p_{1,1}} W_{2,n}(x - g_1^H(p_{1,1}, \tau_1 + g^L(p_{1,1}, \tau_1)) - g_1^L(p_{1,1}, \tau_1),$$

где
$$g_1^H(p_{1,1},\tau_1) = g_1(1,p_{1,1},\tau_1)$$
 и $g_1^L(p_{1,1},\tau_1) = g_1(0,p_{1,1},\tau_1)$.

Аналогично тому, как это было сделано для первого игрока, параметризуем τ_1 при помощи неубывающей функции $h:[0,1] \to [0,1]$. Если случайная величина u равномерно распределена на [0,1], положим $h(u) = p_{2,1}$. Подобным образом может быть получено любое распределение τ_1 .

Лемма 4.3. $W_{2,n+1} \geqslant \sup_h \inf_{p_{1,1}} G(p_{1,1},h)$, где

$$G(p_{1,1},h) = W_{2,n} \left(x - \int_0^1 (\mathbb{1}_{h(u) < p_{1,1}} - \mathbb{1}_{h(u) > p(u)}) \, \mathrm{d}u \right) - \int_0^1 \left[\mathbb{1}_{h(u) < p_{1,1}} (-\beta p_{1,1} - \alpha h(u)) + \mathbb{1}_{h(u) > p_{1,1}} (\alpha p_{1,1} + \beta h(u)) \right] \, \mathrm{d}u.$$

$$(4.1)$$

5. Значение игры

СПИСОК ЛИТЕРАТУРЫ

- De Meyer B., Saley H. On the strategic origin of Brownian motion in finance // Int J Game Theory. 2002. V. 31. P. 285–319
- 2. Aumann R.J., Maschler M.B. Repeated Games with Incomplete Information. The MIT Press, Cambridge, London
- 3. Domansky V. Repeated games with asymmetric information and random price fluctuations at finance markets // Int J Game Theory. 2007. V. 36(2). P. 241–257
- 4. Chatterjee K., Samuelson W. Bargaining under Incomplete Information // Operations Research. 1983. V. 31. N. 5. P. 835–851
- 5. Пьяных А.И. Многошаговая модель биржевых торгов c асимметричной информацией и элементами переговоров // TODO

- 6. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1965.
- 7. Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973.

TODO: TITLE OF THE ARTICLE

Artem Pyanykh, Moscow State University, postgraduate student (artem.pyanykh@gmail.com).

Abstract: TODO: TITILE ABSTRACT.

Keywords: TODO: keywords.