Speeding up Initial Data Generation in Einstein Toolkit

Vedant Puri¹
Roland Haas¹ Eloisa Bentivegna²

¹University of Illinois

 $^2\mbox{University}$ of Catania, Italy

11 May 2018

Motivation

Einstein Toolkit

Scheduled Relaxation Jacobi

Preconditioned Krylov Subspace Method

Motivation

- Modelling scenarios in astrophysics with numerical relativity simulations requires the production of suitable initial data sets.
- Initial data generated is needed for simulating black hole and neutron star mergers, cosmology and gravitational wave simulations.
- However, producing initial data is computationally intensive.

Initial Data

- ▶ Obtained by solving constraint equations of general relativity together with equilibrium equations for matter.
- Laplacian dominated elliptic boundary value problems.

Metric for binary neutron star pair.

Motivation

Einstein Toolkit

Scheduled Relaxation Jacobi

Preconditioned Krylov Subspace Method

Einstein Toolkit

Free open source, community toolkit for astrophysics simulations.

- Cosmology
- Accretion disks after neutron star collisions
- Core collapse supernovae
- General relativistic magnetohydrodynamic simulations
- Binary black hole, neutron star mergers

CT_Multilevel, a Multigrid Solver

- Existing multigrid solver in Einstein Toolkit developed by Eloisa Bentivegna. It is implemented using Cactus Computational Toolkit.
- Intended for cosmology and initial data problems.
- Multigrid solvers speed up convergence by passing the solution between a hierarchy of grids spanning the same space.

Successive Over-Relaxation (SOR)

At every grid, CT_Multilevel solves a Dirichlet boundary value problem using SOR. It solves algebraic equation Au = f iteratively:

$$u_{i+1} = u_i + \omega(Au_i - f)$$

- SOR is extremely robust. It can handle nonlinear equations without any modifications.
- But it is slow.
- We intend to modify the smoothing operation, i.e. replace SOR with a faster algorithm, while leaving the multigrid scheme intact.

Motivation

Einstein Toolkit

Scheduled Relaxation Jacobi

Preconditioned Krylov Subspace Method

Scheduled Relaxation Jacobi (SRJ)

▶ SRJ (Adsuara et al, 2015) is an extension of Successive Over-Relaxation where a set of optimal ω , relaxation factors, are precomputed to minimise the total number of iterations.

$$u_{i+1} = u_i + \omega(Au - f)$$

Since SRJ methodology has only been developed for linear equations, we linearize the equation using a Newton-Raphson scheme.

Scheduled Relaxation Jacobi Results

$$\triangle u + exp(x + y)u = (x^2 + y^2 + exp(x + y))e^{xy}$$
, 256x256 grid.

Scheduled Relaxation Jacobi Results

$$\triangle u = u^3 - \frac{3}{(x+1)^2(y+1)} - \frac{3}{(x+1)(y+1)^2}$$
, 256x256 grid.

Motivation

Einstein Toolkit

Scheduled Relaxation Jacob

Preconditioned Krylov Subspace Method

Preconditioned Krylov Subspace Method (KSM)

- Krylov Subspace methods are a class of iterative linear solvers.
- ► A suitable preconditioner improves convergence rate.
- We linearize with Newton-Raphson scheme and solve using preconditioned KSM.
- ▶ We will only show results for linear equations because all methods share the same Newton-Raphson scheme.

The Preconditioner

A **preconditioner** is a lower order approximation to the inverse of a matrix. Since the Laplacian is the dominant term, we construct a preconditioner to solve for it directly.

- ▶ Convert $\triangle u = f$ into an algebraic set of equations, Mu = f.
- Invert M matrix-free using a discrete sine transform in $\mathcal{O}(N)$ complexity.

$$\triangle u + exp(x+y)u = (x^2 + y^2 + exp(x+y))e^{xy}$$
, 500x500 grid.

Solve $\triangle u + exp(x + y)u = (x^2 + y^2 + exp(x + y))e^{xy}$ for varying grid sizes.

- We have two $\mathcal{O}(N)$ that reduce the number of iterations for a single grid.
- ▶ See how the schemes behaves inside a multigrid solver.
- Suitable treatment for the error equation?
- ► Implement in CT_Multilevel.

Einstein Toolkit

Free open source, community toolkit for astrophysics simulations.

- Cosmology
- Accretion disks after neutron star collisions
- Core collapse supernovae
- General relativistic magnetohydrodynamic simulations
- Binary black hole, neutron star mergers

