講演要旨集執筆要綱(14ポイント)

粉体工学会事務局 ○粉体 一郎, 粉体 二郎, 粉体 三郎

1 緒言

講演要旨の執筆にあたり,以下の各事項に準拠し て下さい. 講演要旨は、講演1件に対して図表を含 めて A4 サイズ, 2 ページです. 書式は, 2 段組み, 1 段当たり 22 字×48 行を基準とします. マージンは, 上下左右それぞれ 25 mm として下さい. フォントは, 標準的なものとして、日本語は明朝体、英文は Times New Roman を推奨しますが、他のフォントでも結構 です. 文字の大きさは 10 ポイント以上, 英数字はす べて半角にして下さい. 文字数, 文字間隔, 行数等に は厳密にはこだわりませんが、読みやすさに配慮し て下さい. 図表は白黒・カラーのどちらでも構いませ んが、要旨集は白黒で印刷します. 印刷時に鮮明にな るように留意して下さい. また図表中の説明や記号な どが小さくなりすぎないように注意して下さい. 数式 などはイタリック体で表記し、上付き/下付きの字が 小さくなりすぎないようにして下さい. 原則 2ペー ジを越す場合には事務局(office@sptj.jp)までご 相談ください.

Fig.1.,図1 | キャプション

2 原稿の書き方

2.1 講演情報

この見本のように、原稿1ページ目の左上部には講演番号を入れるための余白として第1行目の左マージンから8文字分を空白としてあけ、「研究報告」「技術報告」「技術資料」等の種別を記入して下さい.1行あけて第2行目中央に、講演題目を14ポイントで記入して下さい.講演題目からさらに1行あけて第3行目に、発表者の所属、氏名を右寄せで記入して下さい.講演者には必ず○印を付けて下さい.連名などで1行に書ききれない場合は2行以上でも結構です.また原稿1ページ目下欄外に、発表者のローマ字

表記名,連絡先の電話番号,電子メールアドレスを1行で記入して下さい.ローマ字表記名については,氏(頭文字のみ大文字,以下小文字),姓(すべて大文字)の順で記入して下さい.ただし1ページ目のみです.

2.2 本文

本文は、発表者の所属、氏名から1行あけて書き始めて下さい.2ページ目以降は1行目から書いて下さい.また偶数ページ/奇数ページにかかわらず、どのページも印字部分が用紙の中央になるように設定して下さい.

3 講演要旨の提出

講演要旨は、関連行事の要旨提出 URL よりご提出ください.ファイルサイズは 3 MB 以下の、pdf またはwordファイル(拡張子:pdf, doc または docx)のみ受付可能です.ファイルのアップロードには、受付番号とパスワードが必要です.締切までの期間内は、講演要旨の投稿を繰り返すことができます.

4 DEM における Voigt モデル

離散要素法 (DEM) では,接触中の粒子対 i-jを 法線方向と接線方向に直交分解し,それぞれを線形 ばねとダッシュポットを並列接続した Voigt 要素で 近似する [1]. 圧縮を正,接触法線単位ベクトルを n とする.粒子-粒子接触における Voigt モデル(ばね-ダッシュポット)の構成要素と向きを Fig. 2 に示す.

Fig.2. Schematic of particle – particle contact in the Voigt model: (a) normal interaction, (b) tangential interaction.

4.1 法線方向

重なり δ_n と法線相対速度 $v_n = (\boldsymbol{v}_{ij} \cdot \boldsymbol{n})$ から、法線力は

$$\boldsymbol{F}_n = \left(k_n \, \delta_n - \gamma_n \, v_n\right) \boldsymbol{n},\tag{1}$$

で与える. k_n は法線ばね定数, γ_n は法線減衰係数である.

4.2 接線方向

Cundall–Strack に従い [1],接触座標系で積分した接線ばね伸び $\boldsymbol{\xi}_t$ を用いる.接線相対速度は

$$\boldsymbol{v}_{t} = \boldsymbol{v}_{ij} - (\boldsymbol{v}_{ij} \cdot \boldsymbol{n}) \, \boldsymbol{n} - R_{i} \left(\boldsymbol{\omega}_{i} \times \boldsymbol{n} \right) - R_{j} \left(\boldsymbol{\omega}_{j} \times \boldsymbol{n} \right),$$
(2)

で与える. 接線力の試行値と最終値は

$$\boldsymbol{F}_t^* = -k_t \, \boldsymbol{\xi}_t - \gamma_t \, \boldsymbol{v}_t, \tag{3}$$

$$F_t = -\min(\|F_t^*\|, \mu |F_n|) \frac{F_t^*}{\|F_t^*\|},$$
 (4)

で与える. ここで μ はクーロン摩擦係数である.

4.3 転がり摩擦

球粒子は接線摩擦のみでは過大回転しやすいため,接触点まわりの転がり抵抗モーメント au_r を導入して回転を抑制する [2]. 有効半径は $R^*=R_iR_j/(R_i+R_j)$,相対角速度は $\omega_{\rm rel}=\omega_i-\omega_j$ と表される. 回転ばね角度履歴 au_r を用いて

$$\boldsymbol{\tau}_r^* = -k_r \, \boldsymbol{\theta}_r - \gamma_r \, \boldsymbol{\omega}_{\text{rel}},\tag{5}$$

$$\boldsymbol{\tau}_r = -\min \left(\|\boldsymbol{\tau}_r^*\|, \ \mu_r |\boldsymbol{F}_n| R^* \right) \frac{\boldsymbol{\tau}_r^*}{\|\boldsymbol{\tau}_r^*\|}. \tag{6}$$

静的・動的の転がり抵抗を統一的に表現でき,安息 角や回転率の再現性が高い.

5 時間積分

本研究では、粒子の並進・回転運動をシンプレクティック・オイラー法で時間積分する.粒子iの質量を m_i 、慣性モーメントを I_i 、位置を r_i 、速度を v_i 、角速度を ω_i 、回転角(姿勢パラメータ)を θ_i 、作用する合力・合モーメントをそれぞれ F_i 、 τ_i とすると、運動方程式は

$$m_i \dot{\boldsymbol{v}}_i = \boldsymbol{F}_i, \quad \dot{\boldsymbol{r}}_i = \boldsymbol{v}_i, \quad I_i \dot{\boldsymbol{\omega}}_i = \boldsymbol{\tau}_i, \quad \dot{\boldsymbol{\theta}}_i = \boldsymbol{\omega}_i. \quad (7)$$

シンプレクティック・オイラー法による更新は、まず速度・角速度を更新し、その新しい値で位置・角度を更新する.

$$\boldsymbol{v}_i^{n+1} = \boldsymbol{v}_i^n + \Delta t \, \frac{\boldsymbol{F}_i^n}{m_i},\tag{8}$$

$$\boldsymbol{\omega}_{i}^{n+1} = \boldsymbol{\omega}_{i}^{n} + \Delta t \frac{\boldsymbol{\tau}_{i}^{n}}{I_{i}}, \tag{9}$$

$$\boldsymbol{r}_i^{n+1} = \boldsymbol{r}_i^n + \Delta t \, \boldsymbol{v}_i^{n+1}, \tag{10}$$

$$\boldsymbol{\theta}_i^{n+1} = \boldsymbol{\theta}_i^n + \Delta t \, \boldsymbol{\omega}_i^{n+1}. \tag{11}$$

6 シミュレーション条件

本研究のシミュレーションに用いた主要パラメータを Table 1 に示す.

Table 1. Simulation parameters.

Symbol	Parameter	Value	Units
ρ R	density particle radius (all same)	2.50×10^{3} 1.00×10^{-3}	kg m ⁻³
k_n γ_n k_t γ_t μ	normal spring normal dashpot tangential spring tangential dashpot Coulomb friction	1.00×10^{4} 1.00×10^{-3} 6.00×10^{3} 1.00×10^{-3} 5.00×10^{-1}	$N m^{-1}$ $kg s^{-1}$ $N m^{-1}$ $kg s^{-1}$
$ \frac{\eta_r}{k_r} \\ \gamma_r \\ \mu_r $	viscous rolling resistance rotational spring rotational dashpot rolling friction	2.00×10^{-8} 1.00×10^{-6} 1.00×10^{-8} 5.00×10^{-2}	$N m s$ $N m rad^{-1}$ $N m s rad^{-1}$

参考文献

- [1] P. A. Cundall and O. D. L. Strack, Géotechnique, **29** (1979) 47–65.
- [2] K. Iwashita and M. Oda, Journal of Engineering Mechanics (ASCE), **124** (1998) 285–292.