WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

《Calculus II》 Exam Paper B

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	1-6	7-17	18	Sum
Score				

- —. Please fill the correct answers in the following blanks. $(3' \times 6 = 18')$
- 1. If $\vec{a} = <-1,2,1>$, $\vec{b} = <2,-1,2>$, then $(\vec{a}-\vec{b})\times(\vec{a}+\vec{b})$ is ______.
- 2. The directional derivative of $f(x, y, z) = x^2 + y^2 + z^2$ at the point (1, -1, 2) in the direction of

$$\vec{a} = \sqrt{2}\vec{i} - \vec{j} - \vec{k}$$
 is ______.

- 3. Let $z = (1 xy)^y$, $\frac{\partial z}{\partial x}$ is _____.
- 4. The sum of the series $\sum_{k=1}^{+\infty} \frac{2^k}{(2^{k+1}-1)(2^k-1)}$ is ______.
- 5. The divergence of the vector field $\vec{A} = 2e^{xy}\vec{i} + 2\cos(xy)\vec{j} + 2xz^2\vec{k}$ is

The curl of the vector field $\vec{B} = 2(2z-3y)\vec{i} + 2(3x-z)\vec{j} + 2(y-2x)\vec{k}$ is

6. The minimum distance between $y = x^2$ and x - y - 2 = 0 is ______

- \equiv Finish the following questions. (7-17: $7' \times 11 = 77'$; 18: $5' \times 1 = 5'$)
- 7. Determine the convergence or divergence of the following series.

$$(1) \sum_{k=1}^{+\infty} \frac{\arctan k}{1+k^2};$$

(2)
$$\sum_{n=1}^{+\infty} \frac{n^3}{(2n)!}$$

8. Expand the function $f(x) = 2 \ln \frac{1+x}{1-x}$ into power series of x.

9. Let $\begin{cases} x = t - \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ and y is a function of x, find $\frac{d^2y}{dx^2}$.

10. Let $z = xf\left(xy, \frac{y}{x}\right)$, f has continuous second partial derivatives, find $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial y \partial x}$

11. Show that $\lim_{(x,y)\to(0,0)} \frac{xy+y^3}{x^2+y^2}$ does not exist.

12. Compute $\iint_D 2yd\sigma$, D is the region determined by $2a^2 \le x^2 + y^2 \le 2ay$ (a > 0).

13. Evaluate $\iint_{S} \sin(y^3) dA$, where S is the region bounded by $y = \sqrt{x}$, y = 2 and x = 0.

14. Find the area of the part of sphere $x^2 + y^2 + z^2 = a^2$ inside the cylinder $x^2 + y^2 = ax$ (a > 0).

15. Evaluate $\int_{C} (x^2 + y^2 + z^2) ds$, C is the curve $x = 4\cos t$, $y = 4\sin t$, z = 3t, $0 \le t \le 2\pi$.

16. Find the volume of Ω bounded by $z = 4 - x^2 - y^2$ and $x^2 + y^2 = 2x$ in the first octant.

17.Let $\int_L xy^2 dx + y\varphi(x) dy$ is independent of path, and $\varphi(x)$ is continuous and derivative, and $\varphi(0) = 0$, compute $\int_{(0.0)}^{(1.1)} xy^2 dx + y\varphi(x) dy$.

18. Determine whether $(8x^3 + 18x^2y^2)dx + (12x^3y + 12y^5)dy$ is conservative, if yes please find u(x, y) such that $du(x, y) = (8x^3 + 18x^2y^2)dx + (12x^3y + 12y^5)dy$.