

What is the relation between speed and spontaneity?

The area of Chemistry concerned with reaction rates and the sequence of steps by which reaction occur is called CHEMICAL KINETICS

Rate of reaction

Rate of a Reaction

$$\frac{\text{Rate of a reaction}}{\text{a reaction}} = \frac{\text{of reactant or product}}{\text{Time taken}} = \frac{\text{Final conc.} - \text{initial conc.}}{\text{Time taken}} = \frac{\Delta C}{\Delta t}$$

Units of rate =
$$mol L^{-1} s^{-1}$$

How many types of Rate of reaction are there?

Average rate

An overall rate measured over period of time interval.

Average Rate

For the reaction
$$A + B \longrightarrow C$$

We can calculate the average rate between any two times during the reaction.

(-) indicates disappearance
$$-\frac{\Delta[A]}{\Delta t} = \frac{[A]_{t_2} - [A]_{t_1}}{t_2 - t_1}$$
 of A

Average Rate Over the Course of the Reaction

Instantaneous Rate of Reaction

What is instantons rate and Overall Rate of a reaction?

Instantaneous Rate

Rate measured at any point during the reaction.

Intercept along ordinate

Intercept along abscissa
$$= \tan \theta = \left(\frac{-\Delta c}{\Delta t}\right)$$

$$= \lim_{\Delta t \to 0} \frac{-\Delta C}{\Delta t} = \frac{-dc}{dt}$$

-ve sign implies the decreases in concentration of reactant

 $\lim_{\Delta t \to 0} \frac{\Delta C}{\Delta t} = \frac{dc}{dt}$

Overall rate equation

$$A \longrightarrow 2B$$

At t = 0

$$t = t$$
 $a - x$ $2x$

(Tillal C	onc.)	

Rate of disappearance of A

$$= \frac{-\Delta[A]}{}$$

$$-\frac{-[(a-x)-a]}{-}$$

$$\frac{-x)-a}{\Delta t}$$

Rate of appearance of B =
$$\frac{\Delta B}{\Delta t}$$

$$\frac{\text{of appearance of B}}{\Delta t} = \frac{1}{\Delta t}$$

$$=\frac{2x}{t}$$

Rate of appearance of B = 2 Rate of disappearance of A

Rate of disappearance of A =
$$\frac{\text{Rate of appearance of B}}{2}$$

Instantaneous rate and Overall Rate of a reaction in term of differential rate equation

Overall Rate of the reaction

In general,

$$aA + bB \longrightarrow cC + dD$$

Just divide all the rates with the respective stoichiometric coefficients to get the overall rate of the reaction

Overall rate =
$$\frac{1}{(-a)} \frac{\Delta[A]}{\Delta t} = \frac{1}{(-b)} \frac{\Delta[B]}{\Delta t}$$

$$= \frac{1}{\mathbf{c}} \frac{\Delta[\mathbf{C}]}{\Delta t} = \frac{1}{\mathbf{d}} \frac{\Delta[\mathbf{D}]}{\Delta t}$$

Keeping in mind that with reactants we put a negative sign and with products we put a positive sign

Instantaneous Rate

Similarly we can define instantaneous rate for which $\lim_{\Delta t \to 0}$

Overall instantaneous rate

$$=\frac{1}{(-a)}\frac{d[A]}{dt}=\frac{1}{(-b)}\frac{d[B]}{dt}=\frac{1}{c}\frac{d[C]}{dt}=\frac{1}{d}\frac{d[D]}{dt}$$

Factors affecting rate of a reaction

Nature of reactants

Some substances are more reactive than others

Concentration

 Increasing the concentration of reactants, increases the rate of reactions

The more particles present, the more often they collide

Surface area

- The smaller the size of particle, the greater the surface area.
- Increasing the surface area speeds up the rate of reaction by increasing the collision rate.

Temperature

- Increasing the temperature, increases the rate of reaction
- The higher the temperature, the higher the kinetic energy of particles, the more they collide.

Catalysts and inhibitors

- Catalyst: substance that increases the rate of reaction
- Inhibitor: substance that slows down or inhibits reaction rates.

Explain Rate Law and Order of the reaction.

The Rate Law

The *rate law* expresses the relationship of the rate of a reaction to the rate constant and the concentrations of the reactants raised to some powers.

$$aA + bB \longrightarrow cC + dD$$

Rate = $k [A] B D$

positive
- ve, zero or fractional)

m, n: orders (may be

Reaction is **xth order** in A

Reaction is yth order in B

Reaction is (x +y)th order overall

Sum of powers of concentration terms involved in rate law expression is called order of reaction.

What are Characteristics of rate constant?

CHARACTERISTICS OF RATE CONSTANT

1. Rate Constant is the measure of the rate of the reaction. Greater the value of k, faster is the reaction and vice-versa.

2. The value of rate constant is independent of the concentration of reactant.

- 3. The value of rate constant of a particular reaction changes with change in Temperature.
- 4. Units of rate constant depends on the order of reaction.
- 5. The value of k depends on the nature of reactant. Different reactions have different values of k.

Units of the Rate Constant k for Several Overall

Reaction Orders

Overall Reaction Order Units of *k* (t in seconds) 0 mol/L*s (or $mol L^{-1} s^{-1}$) 1/s (or s^{-1}) L/mol*s (or L mol -1 s-1) 3 $L^2 / \text{mol}^2 *s \text{ (or } L^2 \text{mol}^{-2} \text{s}^{-1})$

General formula: Unit of
$$k = \frac{(L/mol)^{order-1}}{Unit of time}$$

Molecularity of Reactions

MOLECULARITY

It represents the number of molecules, colliding with each other in an elementary step.

$$\begin{array}{c}
Step 1 \\
NO_2(g) + NO_2(g) \longrightarrow NO(g) + NO_3(g) \\
Step 2 \\
NO_3(g) + CO(g) \longrightarrow NO_2(g) + CO_2(g)
\end{array}$$

Molecularity is not defined for a complex or overall reaction.

- Q. What is the molecularity of step 1?
- Answer:

- 2
- Q. What is the molecularity of step 2?

Answer:

2

Differentiate between molecularity and order.

Molecularity	Order
1. Theoretical term	1. Experimentally determined
2. Whole number	2. Positive, Negative, Zero, Fraction

Reactions with the different molecularities have different names.

Molecularity	Name of reaction			
1	Unimolecular			
2	Bimolecular			
3	Termolecular			
4	Quartermolecular			

What is integrated rate law for zero order reaction?

Zero order Reaction
$$(n = 0)$$

This is called integrated rate law for zero order reaction

$$e = \frac{-d[A]}{dt} = k[A]^0 = k$$

$$\int_{0}^{t} d [A] = -k \int_{0}^{t} dt$$

$$\int_{A_0}^{f} d[A] = -k \int_{A_0}^{f} dt$$

$$\int_{a}^{[A]t} d[A] = -k \int_{a}^{t} dt$$

$$\int_{A|0}^{A} d[A] = -k \int_{0}^{A} dt$$

$$d [A] = -k \int dt$$

$$d [A] = -k \int dt$$

$$\int d [A] = -k \int dt$$

$$A[0] = -k \int dt$$

$$A[0] = -k \int t \int_{0}^{t}$$

$$\int_{A_{10}}^{A_{10}} d [A] = -k \int_{a_{10}}^{b} dt$$

$$\begin{bmatrix}
A \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
A \\
A
\end{bmatrix}$$

$$\begin{bmatrix}
A \\
A
\end{bmatrix}$$

$$\begin{bmatrix}
A \\
A
\end{bmatrix}$$

 $[\mathbf{A}]_t = [\mathbf{A}]_0 - kt$

 $= [\mathbf{A}]_{\mathbf{0}} - [\mathbf{A}]_{t}$

$$\int_{a}^{t} d[A] = -k \int_{a}^{t} dt$$

$$\int_{0}^{t} d [A] = -k \int_{0}^{t} dt$$

$$d [A] = -k \int_{a}^{t} dt$$

Rate =
$$\frac{-d [A]}{dt}$$
 = $k[A]^0$ =

Rate =
$$\frac{-d[A]}{}$$
 = $k[A]^0$ =

Rate =
$$\frac{-d[A]}{}$$
 = $k[A]^0$ =

Half life t_{1/2}

Time when half of the reactant is consumed

So at
$$t_{1/2}$$
, $[A]_t = \frac{[A_0]}{2}$

Integrated rate law for zero order reaction becomes,

$$\frac{[A_0]}{2} = [A]_0 - k t_{1/2} \quad \Rightarrow \quad t_{1/2} = \frac{[A]_0}{2k}$$

Graphs of zero order reaction

Graph of Rate v/s Time

Rate of reaction remains constant for 0 order reactions

Graph of [A] v/s t

Examples of Zero Order Law:

1)
$$2HI_{(g)} \xrightarrow{Au} H_{2(g)} + I_{2(g)}$$
2) $2NH_{3(g)} \xrightarrow{Pt} N_{2(g)} + 3H_{2(g)}$

Both gases are at high pressure

3)
$$N_2O(g) \longrightarrow N_2(g) + \frac{1}{2}O_2(g)$$

4)
$$H_2(g) + Cl_2(g) \xrightarrow{hv} 2 HCl(g)$$

INTEGRATED RATE LAW FOR FIRST ORDER REACTION & GRAPHS

First order Reactions

Differential rate will be

$$\frac{-d [A]}{dt} = k[A]^1$$

$$\Rightarrow \frac{-a [A]}{[A]} = -k da$$

Integrating between the limits

$$\int_{[A]_0}^{[A]} \frac{-d [A]}{[A]} = -k \int_0^t dt$$

$$\begin{bmatrix} \ln [A] \end{bmatrix}_{[A_0]}^{[A_t]} = -k \, dt$$

$$\ln [A_t] - \ln [A_0] = -kt$$

$$\ln [A_t] = \ln [A_0] - kt$$

$$\ln [A_t] = \ln [A_0] - kt$$

$$This is called integrated rate law for first order reaction
$$\therefore \int \frac{dx}{x} = \ln x$$$$

$$\Rightarrow \ln \frac{[A_t]}{[A_0]} = -kt$$

$$-\ln \frac{[A_t]}{[A_1]} = kt$$

$$-\ln\frac{[A_t]}{[A_t]} = kt$$

$$\ln \frac{[A]_0}{[A]_t} = k$$

$$\therefore$$
 - $\ln x =$

$$\ln \frac{[A]_0}{[A]_t} = kt \qquad \left[\therefore -\ln x = \frac{l}{x} \right] \qquad k = \frac{2.303}{t} \log \frac{[A]_0}{[A]_t}$$

Logarithmic form

$$\frac{\mathbf{A}_{0}}{\mathbf{A}_{1}} = \mathbf{e}^{\mathbf{k}t}$$

$$\left[\mathbf{A}\right]_t = \left[\mathbf{A}\right]_0 \, \mathrm{e}^{-\mathrm{k}t}$$

Exponential form

Half life $t_{1/2}$

Half life of first order reaction is independent

At
$$t = t_{1/2}$$
, $[A]_t = \frac{[A_0]}{2}$

Rate law becomes $\rightarrow ln \frac{[A_0]}{2} = ln [A_0] - k t_{1/2}$

$$k t_{1/2} = ln [A_0] - ln \frac{[A_0]}{2} = ln2$$

$$t_{1/2} = \frac{ln2}{k} = \frac{0.693}{k}$$

$$t_{1/2} = \frac{ln2}{k} = \frac{0.693}{k}$$

Time of completion =
$$\infty$$

$$k = \frac{2.303}{t} \log \left(\frac{a}{a - x} \right)$$

In terms of amount consumed

Graph for first order reaction

EXAMPLES OF FIRST ORDER REACTION

Examples of first order reaction:

- 1) All the radioactive decays are first order reactions
- $2) \left[2N_2O_5 \longrightarrow 4NO_2 + O_2 \right]$
- $3) \left[2H_2O_2 \longrightarrow 2H_2O + O_2 \right]$
- 4) $SO_2Cl_2 \longrightarrow SO_2 + Cl_2$
- 5) $CH_3CH_2CI \longrightarrow CH_2 = CH_2 + H^+ + CI^-$

$$t_{3/4}$$
 or $t_{75\%} = 2 t_{1/2}$

 $t_{87.5\%} = 3 t_{1/2}$

 $t_{99.9\%} = 10 t_{1/2}$

Practical method of analysis of first order reaction.

$$A \longrightarrow Products,$$

Integrated rate law is

$$k = \frac{2.303}{t} \log \left(\frac{[A_0]}{[A_t]} \right) = \frac{2.303}{t} \log \left(\frac{a}{a - x} \right)$$

Case I

When gases are produced

Case I

When gases are produced

$$A(s) \longrightarrow B(s) + C(g)$$

$$t = t$$
 $a - x$ x

$$t = \infty \quad 0 \qquad \qquad a \qquad \qquad a$$

Time

 ∞

t = 0

Total pressure

 $\mathbf{P}\infty$

 \mathbf{t} $\mathbf{P}_{\mathbf{t}}$

PV = nRT P ∝ n considering V,R,T to be constant

The pressure after time t will be more than initial pressure (t=0)

The proportionality constant inequation (ii) and (iii) will be same, so we will get eq. no.(iv) as the constant will cancel out.

$$\Rightarrow \frac{P_{\infty}}{P_{\infty}-P_{t}} = \frac{a}{a-x} \qquad ...(iv)$$

Hence, the integrated rate law becomes

$$k = \frac{2.303}{t} \log \left(\frac{P_{\infty}}{P_{\infty} - P_{t}} \right)$$

Example

$$A(s) \longrightarrow B(g) + C(g)$$

$$t \quad a-x \quad x \quad x$$

$$\infty$$
 0 a a

So,

$$P_{t} \propto 2x \propto 2a$$

$$P - P \propto 2(a - x)$$

$$\Rightarrow \frac{\mathbf{P}_{\infty}}{\mathbf{P}_{\infty} - \mathbf{P}_{\mathbf{t}}} = \frac{a}{a - x}$$

$$k = \frac{2.303}{t} \log \left(\frac{P_{\infty}}{P_{\infty} - P_{t}} \right)$$

Case II When one of the components can be determined by titration.

Case II When one of the components can be determined by titration.

Example Redox Titration $H_2O_2 \longrightarrow H_2O + \frac{1}{2} O_2$ 0: a $t: a-x \qquad x \qquad \frac{x}{2}$ Amount of H_2O_2 left, is determined by titrating with KMnO₄.

Time	Volume of KMnO ₄
0	$\mathbf{V_0}$
I	ľ
1	I
t	Vt

Here,

$$\propto a$$
 ...(i)

$$V_t \propto a - x$$
 ...(ii)

$$\Rightarrow \boxed{\frac{\mathbf{V}_0}{\mathbf{V}_t} = \frac{a}{a - x}}$$

$$\therefore k = \frac{2.303}{t} \log \left(\frac{V_0}{V_t} \right)$$

Because the constant in both of the equations is same therefore it will get canceled on dividing both the equations

What is Rate determining step?

Rate of a complex reaction is determined by the rate of slowest step i.e. Rate Determining Step (RDS).

Example

A + 2B
$$\longrightarrow$$
 C+ D (overall reaction)

Step 1

A + B $\xrightarrow{k_1}$ C + I $r_1 = k_1$ [A][B]

Step 2

B + I $\xrightarrow{k_2}$ D $r_2 = k_2$ [B][I]

If it is giving that step 1 is R.D.S then overall $rate = k_1 [A][B]$

Overall molecularity = 2 = Molecularity of R.D.S (limited applicability)

In general, molecularity is not defined for a complex reaction.

But some time molecularity of the complex reaction is taken equal to the molecularity of the R.D.S

Overall order = 2

What is Pseudo first order reactions?

Pseudo – Unimolecular Reactions / Pseudo first order reactions

When a reactant is made much more concentrated than the other, it is made to have no effect on the rate of that particular expt i.e. appears to be zero order.

```
Rate = k[A]^1[B]^1 reaction is 2^{nd} order
```

```
For expt where [B] >> [A],

[B] = constant

Rate = k'[A]<sup>1</sup> reaction appears to be 1st order pseudo ('fake') 1st order
```

Pseudo – Unimolecular Reactions / Pseudo first order reactions

Example

$$CH_{3}COOC_{2}H_{5} + H_{2}O \xrightarrow{H^{+}} CH_{3}COOH + C_{2}H_{5}OH$$

If it is given that the reactions is elementary

$$r = k[CH_3COOC_2H_5] [H_2O]$$

If H₂O is taken in excess (i.e. H₂O is solvent)

then concentration of H₂O is constant

$$r = (k[H_2O]) [CH_3COOC_2H_5]$$

=
$$k'[CH_3COOC_2H_5]$$

 \therefore Order of the reaction = 1

If it is elementary, \Rightarrow Molecularity = 1

Other example of Pseudo-Unimolecular reaction is inversion of cane sugar.

Collision theory

Collision Theory

For any reaction to occur -

(a) Molecules must collide with each other.

once molecules collide they may react together or they may not -

- (b) Molecules must have sufficient energy, and
- (c) Molecules must have correct geometry.

Activated Complex

Explain collision frequency and energy factor

 $A + B \longrightarrow Products$

 \therefore Rate law will be, r = k[A][B]

We are going to derive this equation

Collision frequency:

Collision frequency is the no. of collisions taking place Per second per unit volume at a given temperature

No. of collisions will be proportional to the concentration of colliding species

Collision frequency $\propto [A][B]$

Collision frequency = Z[A][B] (Z = Collision freq. constant)

Energy factor:

Only the molecules having energy more than the threshold energy result in successful collisions.

Arrhenius equation

Probability factor: It is the probability that a collision is properly aligned.

Now,

0 • P • 1

Reaction Rate = Collision frequency × Energy factor × Probability factor

$$= \mathbf{Z}[\mathbf{A}]]\mathbf{B}] \times \mathbf{f} \times \mathbf{p}$$

$$= (Zpf)[A][B] = k[A][B]$$

$$\Rightarrow k = \mathbf{Z}pf = \mathbf{Z}pe^{-\mathbf{E}_a/\mathbf{R}T}$$

$$\Rightarrow k = Ae^{-E_a/RT}$$
 Arrhenius equation

 Derive Arrhenius equation.

Taking logarithm of Arrhenius equation

$$\Rightarrow \ln k = \ln A - \frac{E_a}{RT}$$

$$\log k = \log A - \frac{E_a}{2.303RT}$$

Logarithmic form of Arrhenius equation.

Now, let us write Arrhenius Equations for two different temperatures :

$$\log k_2 = \log A - \frac{E_a}{2.303 \text{ RT}_2} \dots (1)$$

$$\log k_1 = \log A - \frac{E_a}{2.303 \text{ RT}_1} \dots (2)$$

Derive Arrhenius equation.

$$(1) - (2)$$

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \text{ R}} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$
 is always a p term.

Activation energy is always a positive term.

If
$$T_2 \cdot T_1$$
, then $\frac{1}{T_2} \cdot \frac{1}{T_1}$

$$\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
 will be positive and hence, $k_2 \cdot k_1$

with rise in temperature, rate constant increases.

What is temperature coefficient?

Temperature coefficient

Temperature coefficient =
$$\frac{K_T + 10}{K}$$

For most reactions, temperature coefficient lies between 2 and 3, mostly it is 2.

Ratio of rate constants at two temperature separated by 10°C is called temperature coefficient

Activation Energy

Effect of temperature on activation energy

Effect of temperature on activation energy

$$\log \frac{k_2}{k_1} = \boxed{\frac{E_a}{2.303 \text{ R}} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]}$$

In Arrhenius equation, we considered that E_a is constant during change from T_1 to T_2 , but this is true only for a small change of temperature.

If the change in temperature is large then we will get the following graph.

Effect of temperature on activation energy

Catalyst and its effect on reaction

A catalyst speeds up a reaction by providing alternate path for the reaction to occur and the $E_{\rm a}$ of this path is lower than the actual path.

Some catalysts can change the fundamental mechanism of the reaction, it can change a one transition state pathway to a two transition state pathway.

Catalyst may also form intermediates which have lower energy and form Products through a different path.

