

Dynamic Programming 1: Sequence Alignment

Selected Topics in Computer Intelligence - 2015

Bioinformatics Programming

Computer Engineering, Chiang Mai University

What is Dynamic Programming?

- A method for solving a complex problem by breaking it down into a collection of simpler subproblems [wikipedia]
 - applicable to problems with optimal substructure
 - Takes far less time than exhaustive search

- When using naive method, many subproblems are solved many times
- Dynamic programming approach seeks to a given subproblem that has been computed
 - Stored previously computed solution of subproblems
 - The next time the same solution is needed, it is simply looked up

Dynamic Programming Applications

Applications in Mathematics, Economics

 \bigcirc

- Optimization problems
- Computer Network Dijkstra's algorithm

- Bioinformatics
 - Sequence alignment DNA sequence comparison
 - Gene Prediction make inferences about gene function
 - Protein-DNA binding
 - Transcription factor binding

Scarites	С	Т	Т	A	G	A	Т	С	G	Т	Α	С	С	A	A	-	-	-	A	A	Т	A	Т	Т	Α	C
Carenum	c	Т	Т	A	G	A	Т	С	G	т	Α	c	c	A	С	Α	-	Т	A	С	-	Т	Т	Т	A	C
Pasimachus	А	Т	Т	A	G	A	Т	С	G	т	А	С	С	A	С	Т	A	т	A	А	G	Т	т	Т	A	C
Pheropsophus	c	т	т	A	G	Α	Т	С	G	т	т	c	c	Α	С	-	-	-	A	С	A	т	Α	т	Α	c
Brachinus armiger	А	Т	Т	A	G	A	Т	С	G	т	А	С	С	А	С	-	-	-	A	Т	A	Т	А	т	Т	C
Brachinus hirsutus	Α	т	т	A	G	Α	Т	С	G	т	Α	С	c	Α	С	-	-	-	A	т	A	Т	Α	т	A	C
Aptinus	c	Т	Т	А	G	А	Т	С	G	Т	А	c	c	A	С	-	-	-	A	С	A	А	Т	Т	A	C
Pseudomorpha	c	Т	т	А	G	А	Т	c	G	т	Α	c	c	-	-	-	-	_	А	С	А	Α	Α	т	А	c

The Power of DNA Sequence Comparison

- A common approach to inferring a newly sequenced gene's function is to find similarities with genes of know function
- □ In 1984, a cancer-causing v-sis oncogene was discovered
 - The oncogene matched a normal gene with platelet-derived growth factor (PDGF)
 - Cancer might be caused by a normal growth gene being switched on at the wrong time

The Power of DNA Sequence Comparison

Health Problems with Cystic Fibrosis

- Cystic Fibrosis (CF)
- Defective gene causes the body to produce abnormally thick mucus that clogs the lung and leads to lung infections
- More than 10M Americans are carriers of defective cystic fibrosis gene
- Searching for the CF gene was narrowed to a region of 1M nucleotides on the human chromosome 7

The Power of DNA Sequence Comparison

■ There is similarities between some segment within the region and a gene to code for adenosine triphosphate (ATP) binding proteins:

span the cell membrane

Many applications of sequence comparison are among the key techniques for the discovery of gene function

- Previously we showed that the naïve greedy solution is NOT actually a correction solution
- Recursive Approach
 - Suppose that there are 3 coin values: 1, 3, 7-cent coins

$$bestNumCoins_{M} = \min \left\{ \begin{array}{l} bestNumCoins_{M-1} + 1 \\ bestNumCoins_{M-3} + 1 \\ bestNumCoins_{M-7} + 1 \end{array} \right.$$

- Best combination for 77 cents:
 - 77-1:76, plus a 1-cent coin
 - 77-3:74, plus a 3-cent coin
 - 77-7:70, plus a 7-cent coin

Recursive Approach in the more general case:

```
bestNumCoins_{M} = \min \left\{ \begin{array}{l} bestNumCoins_{M-c_{1}} + 1 \\ bestNumCoins_{M-c_{2}} + 1 \\ \vdots \\ bestNumCoins_{M-c_{d}} + 1 \end{array} \right. \quad \mathbf{c} = (c_{1}, \dots, c_{d})
```

- Reversing the order of computation:
 - The solution for M relies on solutions for M c_1 , M c_2 , and so on
 - We can use previously computed solutions to form solutions to larger problems - avoiding recomputation

```
\begin{array}{lll} \mathsf{DPCHANGE}(M,\mathbf{c},d) \\ 1 & bestNumCoins_0 \leftarrow 0 \\ 2 & \mathbf{for} \ m \leftarrow 1 \ \mathbf{to} \ M \\ 3 & bestNumCoins_m \leftarrow \infty \\ 4 & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ d \\ 5 & \mathbf{if} \ m \geq c_i \\ 6 & \mathbf{if} \ bestNumCoins_{m-c_i} + 1 < bestNumCoins_m \\ 7 & bestNumCoins_m \leftarrow bestNumCoins_{m-c_i} + 1 \\ 8 & \mathbf{return} \ bestNumCoins_M \end{array}
```

- Reversing the order of computation:
 - \blacksquare The solution for 9 cents ($bestNumCoins_9$)
 - Depends on the solution of 8, 6, and 2 cents

Based on the Manhattan tourist problem, we can use it to describe DNA sequence alignment problem

Manhattan Tourist Problem:

- Tourist want to see as many as attractions as possible
- Tourist are allowed to move along traffic direction – one way
- Which path give the maximum number of attractions to visit?

- The map can be represented as a graph
 - Vertices the intersections of streets
 - Edges the streets that connect different intersections
 - Weight the number of attractions on every block
- Path a continuous sequence of edges
 - Length of a path the sum of the weights in the path
- Goal of the Manhattan Tourist problem
 - Find the a path with the maximum # attractions
 - The longest path in the graph

Problem Formulation

Manhattan Tourist Problem:

Find a longest path in a weighted grid.

Input: A weighted grid *G* with two distinguished vertices: a *source* and a *sink*.

Output: A longest path in *G* from *source* to *sink*.

Source vertex: (0, 0) Sink vertex: (4, 4)

- The brute force approach is NOT an option even for a moderately large grid
- What about the greedy approach?
 - Choosing between two possible directions based on # attractions tourists would see if moved one block on each direction
 - This may provide a "good" option in the beginning

- The more general problem
 - Finding the longest path from source (0, 0) to arbitrary vertex (i, j)
 - The length of the best path : $S_{i,j}$ ($0 \le i \le n$ and $0 \le j \le m$)
 - \square $S_{n,m}$ the weight of the path that is the solution to the problem
- Solving the more general problem
 - \blacksquare Finding the longest length to all vertex (i, j)
 - Starting from $S_{i,0}$ ($0 \le i \le n$)
 - Starting from $S_{0,i}$ ($0 \le j \le n$)

Example

$$s_{1,1} = \max \left\{ \begin{array}{l} s_{0,1} + \text{ weight of the edge (block) between (0,1) and (1,1)} \\ s_{1,0} + \text{ weight of the edge (block) between (1,0) and (1,1)} \end{array} \right.$$

Example

$$s_{1,2} = \max$$
 $\begin{cases} s_{1,1} + \text{ weight of the edge between (1,1) and (1,2)} \\ s_{0,2} + \text{ weight of the edge between (0,2) and (1,2)} \end{cases}$

Example

$$s_{i,j} = \max \left\{ \begin{array}{l} s_{i-1,j} + \text{ weight of the edge between } (i-1,j) \text{ and } (i,j) \\ s_{i,j-1} + \text{ weight of the edge between } (i,j-1) \text{ and } (i,j) \end{array} \right.$$

■ The algorithm ManhattanTourist

```
\begin{array}{lll} \operatorname{MANHATTANTOURIST}(\overset{\downarrow}{\mathbf{w}},\overset{\rightarrow}{\mathbf{w}},n,m) & \downarrow \\ 1 & s_{0,0} \leftarrow 0 & w & : 2 \mathrm{D} \text{ array of vertical weights} \\ 2 & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n & w & : 2 \mathrm{D} \text{ array of horizontal weights} \\ 3 & s_{i,0} \leftarrow s_{i-1,0} + \overset{\downarrow}{w}_{i,0} & \downarrow \\ 4 & \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ m & \downarrow \\ 5 & s_{0,j} \leftarrow s_{0,j-1} + \overset{\rightarrow}{w}_{0,j} & \overset{\downarrow}{w}_{i,j} : \text{weight of the edge from } (i-l,j) \ \mathrm{to} \ (i,j) \\ \hline 6 & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n & w_{i,j} : \text{weight of the edge from } (i,j-l) \ \mathrm{to} \ (i,j) \\ \hline 7 & \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ m \\ 8 & s_{i,j} \leftarrow \max \left\{ \begin{array}{c} s_{i-1,j} + \overset{\downarrow}{w}_{i,j} \\ s_{i,j-1} + \overset{\downarrow}{w}_{i,j} \end{array} \right. \\ \hline 9 & \mathbf{return} \ s_{n,m} \end{array}
```

- Most of the dynamic programming algorithms in the context of DNA sequence comparison will be similar to MANHATTANTOURIST e.g., sequence comparison algorithm
 - Using appropriate model to the specific biological problem
 - Defining the weight that reflect the cost of mutation
- However, the real Manhattan is NOT a perfect grid
 - We can use Directed Acyclic Graph (DAGs) to represent the imperfect grid

Longest Path in DAGs

- Directed Acyclic Graphs
 - Directed edges one directional edge
 - No directed cycles no loops
 - Graph representation:

G = (V, E) , V is the set of vertices, E is the set of edges

Longest Path in a DAG Problem:

Find a longest path between two vertices in a weighted DAG.

Input: A weighted DAG *G* with *source* and *sink* vertices.

Output: A longest path in *G* from *source* to *sink*.

Longest Path in DAGs

- Directed Acyclic Graphs
 - indegree # edges entering a vertex
 - outdegree # edges leaving a vertex
 - Predecessor any vertex that can be reached by traveling backwards along inbound edge

- \square Suppose a vertex v has indegree of 3
 - lacksquare Set of predecessor $\{u_1, u_2, u_3\}$
 - \blacksquare The longest path to v:

$$s_v = \max \left\{ \begin{array}{l} s_{u_1} + \text{ weight of edge from } u_1 \text{ to } v \\ s_{u_2} + \text{ weight of edge from } u_2 \text{ to } v \\ s_{u_3} + \text{ weight of edge from } u_3 \text{ to } v \end{array} \right.$$

Longest Path in DAGs

In general,

$$s_v = \max_{u \in Predecessors(v)} (s_u + \text{ weight of edge from } u \text{ to } v)$$

- The order to visit the vertices topological ordering
 - lacksquare S_u of all predecessors of v must have been computed before visiting the vertex v
- Three popular strategies
 - Column by column
 - Row by row
 - Diagonal by diagonal

- What is "sequence similarity"?
- Hamming distance is NOT typically used to compare DNA sequence or protein sequences
 - lacktriangle Assumes that the i^{th} symbol of one sequence is aligned against the i^{th} symbol of the other
- \Box i^{th} symbol in one sequence is often corresponds to a symbol at a different (and unknown) position in the other
 - DNA replication errors cause substitutions, insertions, and deletions leading to modified DNA text

Example of sequence similarity

```
A T A T A T A T -
: : : : : : : :
- T A T A T A T A
```

(a) Alignment of ATATATAT against TATATATA.

```
A T A T A T A T
: : : : : : :
- T A T A - A T
```

(b) Alignment of ATATATAT against TATAAT.

Edit Distance

- Introduced by Valadimir Levenshtein in 1966
- The minimum # editing operations needed to transform one string into another
 - Insertion, deletion, and substitution

- Edit Distance allows to compare strings of different length
- \blacksquare The alignment of string v (n-character) and w (m-character)
 - lacktriangle Two-row matrix with $oldsymbol{v}$ in the 1st row and $oldsymbol{w}$ in the 2nd row
 - Characters in each string appear in order, NOT necessarily adjacently
 - Matches columns that contain the same letter in both row
 - Mismatches columns that contain different letter
 - *indels* columns that contain one space
 - insertions contains space in the top row

П	deletions - contains	concein	thak	anttom row
	aetetions – Commans	s space in		JOHOHHOW

A T - G T T A T -A T C G T - A - C

Resulting matrix and a path:

$$\left(\begin{array}{c}0\\0\end{array}\right)\left(\begin{array}{c}1\\1\end{array}\right)\left(\begin{array}{c}2\\2\end{array}\right)\left(\begin{array}{c}2\\3\end{array}\right)\left(\begin{array}{c}3\\4\end{array}\right)\left(\begin{array}{c}4\\5\end{array}\right)\left(\begin{array}{c}5\\5\end{array}\right)\left(\begin{array}{c}6\\6\end{array}\right)\left(\begin{array}{c}7\\6\end{array}\right)\left(\begin{array}{c}7\\7\end{array}\right)$$

$$(0,0) \to (1,1) \to (2,2) \to (2,3) \to (3,4) \to (4,5) \to (5,5) \to (6,6) \to (7,6) \to (7,7)$$

Alignment Grid

$$row \longrightarrow 0$$
 1 2 2 3 4 5 6 7 7
 $v = A T - G T T A T -$
 $w = A T C G T - A - C$
 $col \longrightarrow 0$ 1 2 3 4 5 5 6 6 7
A T - G T T A T -
A T C G T - A - C

Every alignment corresponds to a path in the alignment grid from (0, 0) to (n, m)

By choosing different scoring function, we can solve different string comparison prob.

- The simplest form of a sequence similarity analysis
- LCS problem allows only insertion and deletion
 - Eliminates substitute operation
- Subsequence (of a string)
 - An ordered sequence of characters from a string
 - Not necessarily consecutive

```
If v = ATTGCTA then

AGCA, ATTA are subsequences of v

TGTT, TCG are NOT subsequences
```

Common subsequence of two string: v and w

$$v_{i_t} = w_{j_t} \text{ for } 1 \le t \le k.$$

$$1 \le i_1 < i_2 < \dots < i_k \le n$$
$$1 \le j_1 < j_2 < \dots < j_k \le m$$

e.g., TCTA is common subsequence to ...

ATCTGAT and TGCATA

We are looking for the longest CS

$$s(v, w)$$
 - length of LCS of v and w
 $d(v, w)$ - edit distance between v and w

$$d(v, w) = n + m - 2s(v, w)$$

Alignment:

- Every common subsequence corresponds to an alignment with no mismatches
 - By removing all diagonal edges whose characters do NOT match, we get an LCS edit graph
- Looks like Manhattan Tourist Problem?

$$s_{i,0} = s_{0,j} = 0$$
 $1 \le i \le n$
 $1 \le j \le m$

$$s_{i,j} = \max \begin{cases} s_{i-1,j} + 0 \\ s_{i,j-1} + 0 \\ s_{i-1,j-1} + 1, & \text{if } v_i = w_j \end{cases}$$

LCS algorithm – similarity score

b - backtracking pointers:

- Takes ←, ↑, or [↑]
 (deletion, insertion, match)
 - specify which of the cases holds

- PRINTLCS algorithm
 - Recursively print out

```
PRINTLCS(b, v, i, j)

1 if i = 0 or j = 0

2 return

3 if b_{i,j} = " \ "

4 PRINTLCS(b, v, i - 1, j - 1)

5 print v_i

6 else

7 if b_{i,j} = " \ "

8 PRINTLCS(b, v, i - 1, j)

9 else

10 PRINTLCS(b, v, i, j - 1)
```


b - backtracking pointers:

- Takes ←, ↑, or \
 (deletion, insertion, match)
- specify which of the cases holds

- □ LCS algorithm edit distance
 - lacksquare Initial conditions: $d_{i,0}=i$, $d_{0,j}=j$ $egin{array}{c} 1 \leq i \leq n \ 1 \leq j \leq m \end{array}$

$$n = 7$$
 $m = 6$

$$d_{i,j} = \min \left\{ \begin{array}{l} d_{i-1,j} + 1 \\ d_{i,j-1} + 1 \\ d_{i-1,j-1}, \quad \text{ if } v_i = w_j \end{array} \right.$$

Global Sequence Alignment

- Generalizing scoring
 - \blacksquare Extend the k-letter alphabet to include gap, '-'
 - \square k is typically 4 (for DNA) and 20 (for protein)
 - lacksquare δ scoring matrix of size $(k+1) \times (k+1)$
 - \square $\delta(x,y)$ the score of column (x,y)
 - Alignment score sum of the scores of the columns

Global Alignment Problem:

Find the best alignment between two strings under a given scoring matrix.

Input: Strings **v**, **w** and a scoring matrix δ .

Output: An alignment of v and w whose score (as defined by the matrix δ) is maximal among all possible alignments of v and w.

Global Sequence Alignment

- Needleman-Wunsch Algorithm
 - lacktriangle Score $s_{i,j}$ of an optimal alignment:

$$s_{i,j} = \max \begin{cases} s_{i-1,j} - \sigma \\ s_{i,j-1} - \sigma \\ s_{i-1,j-1} - \mu, \text{ if } v_i \neq w_j \\ s_{i-1,j-1} + 1, \text{ if } v_i = w_j \end{cases}$$

- \blacksquare Mismatches are penalized by: $-\mu$
- \blacksquare Indels (or gaps) are penalized by: $-\sigma$
- \blacksquare Matches are rewarded with: +1
- Resulting score:

 $\#matches - \mu \cdot \#mismatches - \sigma \cdot \#indels$

Global Sequence Alignment

Example

Scores: Match +1 Mismatch 0 Gap -1

Global Sequence Alignment

■ Example (cont.)

Global Sequence Alignment

■ Example (cont.)

- □ GSA problem seek similarities between 2 entire strings
 - Protein sequences from the same family
 - Often very conserved
 - Almost have the same length in organisms
- In many biological applications
 - Score of an alignment between substrings may be larger than that of the entire strings
- Homeobox genes regulate embryonic development
 - Present in variety of species (very different)
 - One region in each gene is highly conserved

■ Family of proteins shared only isolated regions of similarity were found - superfamily

☐ Global vs. Local Alignment

tccCAGTTATGTCAGgggacacgagcatgcagagac

aattgccgccgtcgttttcagCAGTTATGTCAGatc

☐ Global vs. Local Alignment

Local alignment has much worse score according to the global scheme

Local alignment correctly locates the conserved domain

- □ In 1981, Temple Smith & Michael Waterman modified the global algorithm that solves the local sequence alignment
- Biologist attempts to maximize the alignment score over substring $v_i...v_{i'}$ of v and $w_i...w_{i'}$ of w
 - This is Local Alignment Problem

Local Alignment Problem:

Find the best local alignment between two strings.

Input: Strings **v** and **w** and a scoring matrix δ .

Output: Substrings of v and w whose global alignment, as defined by δ , is maximal among all global alignments of all substrings of v and w.

- Finding the longest path among paths between arbitrary vertices (i, j) and (i', j') in the edit graph
- \square Making vertex (0,0) a predecessor of every vertex (i,j)
 - \blacksquare Adding edges of weight 0 from (0,0) to every vertices
 - Provide a "free ride" from source to any other vertices
- Finding the longest path to every other vertex

$$s_{i,j} = \max \begin{cases} 0 \\ s_{i-1,j} + \delta(v_i, -) \\ s_{i,j-1} + \delta(-, w_j) \\ s_{i-1,j-1} + \delta(v_i, w_j) \end{cases}$$

- Backtracking starts at the highest scoring matrix cell and proceeds until a cell with score=0
 - Giving the highest scoring local alignment
- \square Scoring matrix (δ or H):

$$H(i,0) = 0, \ 0 \le i \le m$$

$$H(0,j) = 0, \ 0 \le j \le n$$

$$H(i,j) = \max \begin{cases} 0 \\ H(i-1,j-1) + s(a_i,b_j) \\ \max_{i \in J} H(i-k,j) + W_i \end{cases}$$

Note: this algorithm puts **v** in row direction w in column direction

 $H(i,j) = \max \begin{cases} 0 & \bigvee \\ H(i-1,j-1) + s(a_i,b_j) & \text{Match/Mismatch} \\ \max_{k \geq 1} \{H(i-k,j) + W_k\} & \text{Deletion} \\ \max_{l \geq 1} \{H(i,j-l) + W_l\} & \text{Insertion} \end{cases}, \ 1 \leq i \leq m, 1 \leq j \leq n$

s(a,b) is a similarity function on the alphabet

H(i,j) – is the maximum Similarity-Score between a suffix of a[1...i] and a suffix of b[1...j] W_i is the gap-scoring scheme

ACACACTA vs. AGCACACA

$$H(i,j) = \max \begin{cases} 0 \\ H(i-1,j-1) + s(a_i,b_j) \\ \max_{k \ge 1} \{H(i-k,j) + W_k\} \\ \max_{l \ge 1} \{H(i,j-l) + W_l\} \end{cases}$$

$$S(a,b) = +2 \text{ if } a = b \text{ (match)}, -1 \text{ if } a \ne b \text{ (mismatch)}$$

$$W_i = -i$$

$$s(a,b) = +2$$
 if $a = b$ (match), -1 if $a \neq b$ (mismatch) $W_i = -i$

$$H = \begin{pmatrix} - & A & C & A & C & A & C & T & A \\ - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A & 0 & 2 & 1 & 2 & 1 & 2 & 1 & 0 & 2 \\ G & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ C & 0 & 0 & 3 & 2 & 3 & 2 & 3 & 2 & 1 \\ A & 0 & 2 & 2 & 5 & 4 & 5 & 4 & 3 & 4 \\ C & 0 & 1 & 4 & 4 & 7 & 6 & 7 & 6 & 5 \\ A & 0 & 3 & 3 & 6 & 6 & 9 & 8 & 7 & 8 \\ C & 0 & 2 & 4 & 5 & 8 & 8 & 11 & 10 & 9 \\ A & 0 & 4 & 3 & 6 & 7 & 10 & 10 & 10 & 12 \end{pmatrix}$$

ACACACTA vs. AGCACACA

Backtracking: (8,8), (7,7), (7,6), (6,5), (5,4), (4,3), (3,2), (2,1), (1,1), and (0,0),

A-CACACTA AGCACAC-A

Example

Two modifications to Needleman-Wunsch:

- 1) Allow a node to start at 0.
- 2) Record the highestscoring node, and trace back from there.

G

Why does this algorithm yield an optimal local alignment?

Scores: Match +4 Mismatch -1 Gap -2

Scores: Match +4 Mismatch -1 Gap -2

Scores: Match +4 Mismatch -1

Gap -2

- Biologically similar proteins may NOT exhibit a strong sequence similarity
 - Pairwise alignment can fail to identify biological related sequences
- Simultaneous comparison of many sequences often allows to find similarities that are invisible in pairwise comparison

 \blacksquare Multiple alignment of strings $v_1, ..., v_k$

- No column in a multiple alignment contains only spaces
- This a generalization of the pairwise alignment, k > 2 sequences
- Multiple alignment score:
 - Sum of the columns, with optimal alignment (max the score)
- Consensus of an alignment:
 - A string of the most common characters in each column

- \square Suppose that we have 3 sequences: u, v, and w
 - We want to find the "best" alignment of all three
 - Every multiple alignment corresponds to a path in 3D Manhattan like edit graph !!!
 - \blacksquare To get to vertex (i, j, k) in a 3D edit graph:

- Some improvements of the algorithm, and many heuristics have been proposed
 - Compute all optimal pairwise alignment between very pair of strings
 - Combine them together in such a way that pairwise alignments induced by multiple alignment are close to the optimal ones
- Not always possible to combine...

Compatible vs. Incompatible pairwise alignments

(b) Incompatible pairwise alignments

- Greedy progressive multiple alignment
 - Iteratively adds one string to the growing multiple alignment
 - Select a pair of strings with greatest similarity and merge them into a new string
 - "once a gap, always a gap" principle
 - The choice of the closest strings at the beginning provide the most reliable information about a real alignment seed
 - If we start with bad seed, the error will propagate all the way to the whole multiple alignment

- k-dimensional scoring matrices are NOT very practical
- The choice of scoring function can affect the quality of the resulting alignment
 - No single scoring approach is perfect in all circumstances
- We want to assignment higher scores to the columns with a low variation in letters
 - High scores correspond to highly conserved sequences

- Entropy approach:
 - The score is the sum of the entropies of the columns, defined as

$$\sum_{x \in \mathcal{A}'} p_x \log p_x$$
 where p_x is the frequency of letter $x \in \mathcal{A}'$

- The more conserved the column, the larger the entropy score
 - A column that has each nucleotides present k/4 times will have a $score = 4 \times (1/4 \log (1/4)) = -2$
 - \blacksquare A completely conserved column has a score = 0
- It can be difficult to design efficient algorithms that optimize this scoring function