Trishla Shah Batch - CSE55 Enrollment No. - 22162171032

Institute of Computer Technology B. Tech Computer Science and Engineering

Sub: Algorithm Analysis and Design <u>Practical 11</u>

AIM:

A government official needs to visit several cities within a state. To minimize travel costs, they want to find the shortest path between their starting city and each destination city.

Task:

Given a graph representing the cities and their connecting roads, determine the minimum cost path from a given starting city to all other cities.

Input:

Enter total number of nodes: 5

Enter the node from where you want to calculate the distance: A Enter Data (Weight):

	Α	В	С	D	E
Α	0	20	30	∞	∞
В	∞	0	∞	15	∞
С	∞	∞	0	∞	25
D	∞	∞	∞	0	10
E	∞	∞	∞	∞	0

Output:

	Α	В	С	D	E
Α	0	20	30	35	45
В	∞	0	∞	15	25

С	∞	∞	0	∞	25
D	∞	8	∞	0	10
E	∞	8	∞	∞	0

OR

Source	Destination	Cost
Α	Α	0
	В	20
	С	30
	D	35
	E	45

Code :-

import sys

```
def dijkstra(graph,
    start_node): n = len(graph)
    visited = [False] * n
    distance = [sys.maxsize] *
    ndistance[start_node] = 0

for _ in range(n):
    min_distance =
    sys.maxsize min_index =-1
```

```
for i in range(n):
       if not visited[i] and distance[i] <
          min_distance: min_distance = distance[i]
          min_index = i
     visited[min_index] =
    True
     for j in range(n):
       if graph[min_index][j] != float('inf') and not visited[j]:
          new_dist = distance[min_index] + graph[min_index][j]
          if new_dist < distance[j]:</pre>
            distance[j] = new_dist
  return distance
def print_distances(distance, cities):
  print("Source Destination Cost")
  for i in range(len(cities)):
     if distance[i] ==
       sys.maxsize:
       print(f"{cities[i]K: ∞")
     else:
```

```
cities = ['A', 'B', 'C', 'D', 'E']
graph = [
  [0, 20, 30, float('inf'), float('inf')],
  [float('inf'), 0, float('inf'), 15, float('inf')],
  [float('inf'), float('inf'), 0, float('inf'), 25],
  [float('inf'), float('inf'), float('inf'), 0, 10],
  [float('inf'), float('inf'), float('inf'), 0]
start_city = 'A'
start_node = cities.index(start_city)
distances = dijkstra(graph,
start_node) print_distances(distances,
```

print(f"{cities[i]K: {distance[i]K")

Output :-

cities)

```
PS 30:\Sem 5\Algorithm Analysis and Design> & C:\Insers\princ\AppCosta\Local\Programs\Python\Python312\python.exe "d:\Inm 5\Algorithm Analysis and Design\P action3-2\Inters\princ\AppCosta\Local\Programs\Python\Python312\python.exe "d:\Inm 5\Algorithm Analysis and Design> & C:\Insers\princ\AppCosta\Local\Programs\Python\Python312\python.exe "d:\Inm 5\Algorithm Analysis and Design> & C:\Insers\princ\AppCosta\Local\Programs\Python\Python312\python.exe "d:\Inm 5\Algorithm Analysis and Design> & C:\Insers\princ\AppCosta\Local\Programs\Python\Python312\python.exe "d:\Insers\princ\Python312\python.exe "d:\Insers\princ\Python312\python312\python.exe "d:\Insers\princ\Python312\python312\python312\python312\python.exe "d:\Insers\princ\Python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python312\python\Pithon312\python312\python312\python312\python312\python312\pyth
```