EXADEMY

ONLINE NATIONAL TEST

Course: UPSC - CSE - Mathematics Optional

Test 1

Subject: LINEAR PROGRAMMING Time: 1 Hour

Total Questions: 5 Total Marks: (5x10 = 50)

- A small business enterprise makes dresses and trousers. To make a dress requires 21
 hour of cutting and 20 minutes of stitching. To make a trousers requires 15 minutes
 of cutting and 21 hour of stitching. The profit on a dress is R40 and on a pair of trousers
 R50. The business operates for a maximum of 8 hours per day. Determine how many
 dresses and trousers should be made to maximize profit and what the maximum profit
 is. Use GRAPHICAL METHOD. (10 Marks)
- A factory makes two types of beds, type A and type B. Each month x of type A and y of type B are produced. The following constraints control monthly production:
 - Not more than 50 beds of type A and 40 beds of type B can be made.
 - (ii) To show a profit at least 60 beds in all must be made.
 - (iii) The maximum number of beds that can be produced is 80 (10 Marks)

- a. The diagram shows the four constraints. Write down in terms of x and y the inequalities that represent these constraints. (2.5 Marks)
- b. Copy the given diagram into your answer book and shade the feasible region.

(2.5 Marks)

- c. If the objective function is given by the equation, $y = -2x + \frac{P}{150}$, where P is the monthly profit in rands, what is the profit per bed of the two types of bed. (2.5 Marks)
- d. How many of each type of bed must be produced per month to maximise profit? What is the maximum profit? (2.5 Marks)
- 3. Convert the following problem into a maximisation problem. (10 Marks)

 (Don't Change in Canonical or Standard Form)

Minimize
$$Z = f(X) = 2x_1 - x_2 + \frac{1}{2} x_3$$
Subject to
$$x_1 + x_2 - x_3 \le 5$$

$$2x_1 + 3x_3 \ge 6$$

$$x_1 + 3x_2 \le -7$$

$$x_1, x_2, x_3 \ge 0$$

4. Write the Canonical form of the following LPP (10 Marks)

Subject to,
$$3X_1 + 4X_2 \le 6$$

 $X_1 + 3X_2 \ge 2$

 $X_1, X_2 \ge 0$

Max. $Z = X_1 + 5X_2$

5. Solve the following LPP using Algebraic Method

(10 Marks)

Subject to,
$$2X_1 + X_2 \le 100$$

 $X_1 + X_2 \le 80$
 $X_1, X_2 \ge 0$

Max. $Z = 3X_1 + 2X_2$

A small business enterprise makes dresses and trousers. To make a dress requires 1 hour of

cutting and 20 minutes of stitching. To make a trousers requires 15 minutes of cutting and

 $\frac{1}{2}$ hour of stitching. The profit on a dress is R40 and on a pair of trousers R50. The business operates for a

maximum of 8 hours per day.

Determine how many dresses and trousers should be made to maximize profit and what the maximum profit is.

Solution:

Step 1: To solve the above problem we would have to translate the conditions or constraints from a verbal to a symbolic form. We first introduce our variables.

Let x be the number of dresses and y the number of trousers.

Step 2: Next we express the constraints as a system of inequalities.

 $x \geq 0$ and $y \geq 0$, x and y being whole numbers ie. x , $y \in N_0$

Cutting Time:
$$\frac{1}{2}x + \frac{1}{4}y \le 8$$
 ie. $2x + y \le 32$

Cutting Time:
$$\frac{1}{2}x + \frac{1}{4}y \le 8 \text{ ie. } 2x + y \le 32$$
Stitching Time:
$$\frac{1}{3}x + \frac{1}{2}y \le 8 \text{ ie. } 2x + 3y \le 48$$

Graph the system of inequalities and shade in the region that satisfy the constraints. The shaded region is called the feasible region.

P = 40x + 50y

Since the objective (in this case) is to make a maximum profit, the profit equation is called the objective function.

- Step 5: To determine the maximum profit and the number of items that will give the maximum profit we can use one of two methods:
 - 5.1 Substitute each of the ordered pairs of the vertices of the feasible region, excluding (0;0), ie. (0;16), (16;0) and (12;8) into profit equation.

Scanned with CamScanner

(i)
$$P = 40(0) + 50(16)$$
 (ii) $P = 40(16) + 50(0)$ (iii) $P = 40(12) + 50(8)$
= $0 + 800$ = $640 + 0$ = 880 = 880

The maximum profit is R880,00 for x = 12 and y = 8.

Solution:

2.1
$$0 \le x \le 50$$
 , $0 \le y \le 40$
 $x+y \ge 60$, $x+y \le 80$

P = 300x + 150y

Profit on type A is R300 and on type B is R150

∴ 50 of type A and 30 of type B must be produced to maximise profit. The maximum profit is P = 300(50) + 150(30) = 19500 Rands

3. Minimize
$$Z = f(x) = 2x_1 - 2x_2 + \frac{1}{2}x_3$$

Subto, $x_1 + x_2 - x_3 \le 5$
 $2x_1 + 3x_3 \ge 6$
 $x_1 + 3x_2 \le -7$
 $x_1, x_2, x_3 \ge 0$

Max
$$(-Z) = -2x_1 + 2x_2 - \frac{1}{2}x_3$$

Sub to, $x_1 + x_2 - x_3 \le 5$
 $2x_1 + 3x_3 \ge 6$
 $x_1 + 3x_2 \le -7$
 $x_1, x_2, x_3 \ge 0$

Max
$$Z = 31 + 532$$

Sub to, $3x_1 + 432 \le 6$
 $x_1 + 332 > 2$
 $x_1, x_2 > 0$

CANONICAL FORM

MON
$$Z = x_1 + 5x_2$$

Sub to, $3x_1 + 4x_2 \le 6$
 $-x_1 - 3x_2 \le -2$
 $x_1, x_2 > 0$

Max
$$Z = 3\pi_1 + 2\pi_2$$

Sub to, $2\pi_1 + 3\pi_2 \le 100$
 $3\pi_1 + 3\pi_2 \le 80$
 $3\pi_1, 3\pi_2 \ge 0$

STANDARD FORM

TANDARD TORTY

[Max
$$Z = 3x_1 + 2x_2 + 0s_1 + 0s_2$$

Sub to, $2x_1 + x_2 + s_1 = 100$
 $x_1 + x_2 + x_2 = 80$
 $x_1 + x_2 + x_3 = 80$
 $x_1 + x_2 + x_3 = 80$

List of Possibilities

Non-Basic Variables

$$\alpha_{1}, \alpha_{2}$$
 α_{1}, α_{2}
 α_{1}, α_{2}
 $\alpha_{1} = 0, \alpha_{2} = 0$
 $\alpha_{1}, \alpha_{2} = 0$
 $\alpha_{1}, \alpha_{2} = 0$
 $\alpha_{1}, \alpha_{2} = 0$

3.
$$\chi_1$$
, χ_2 NAX B. $\chi_1 = 0$, $\chi_2 = 0$

D.
$$\chi_2$$
, S_1 D. $\chi_2 = 0$, $S_1 = 0$

E.
$$\Re_2$$
, S_2 NAX[E.] $\Re_2 = 0$, $S_2 = 0$
F. S_1 , S_2 F. $S_1 = 0$, $S_2 = 0$

Basic Variables $S_1 = 100$, $S_2 = 80$ $M_2 = 100$, $S_2 = 30$ $M_2 = 80$, $S_1 = 100$ $M_1 = 80$, $S_2 = 30$ $M_1 = 80$, $S_2 = 30$ $M_1 = 80$, $M_2 = 60$

$$Z_{A} = 0$$
 $Z_{C} = 160$ $Z_{E} = 940$
 $Z_{B} = 960$ $Z_{D} = 150$ $Z_{F} = 180$
 $Z_{B} = 180$

$$Z_{max} = \frac{180}{500}$$
 for $x_1 = 20$ $x_2 = 60$