IS IMAGENET WORTH 1 VIDEO? LEARNING STRONG IMAGE ENCODERS FROM 1 LONG UNLABELLED VIDEO

ICLR 2024, Honorable Mention

Table of Contents

- I Introduction
- II Dataset Walking Tours (WTours)
- III Method Discover and tRAck (DoRA)
- **IV** Experiments
- **V** Conclusion

Introduction

Motivation

Smith, L. B., Jayaraman, S., Clerkin, E., & Yu, C. (2018). "The Developing Infant Creates a Curriculum for Statistical Learning". *Trends in Cognitive Sciences*

- 1. Self-supervised learning (SSL) enables large-scale pretraining without labeled data but still relies heavily on static images.
- 2. In contrast, humans develop visual understanding much faster by continuously perceiving their surroundings.
- 3. Existing video-based SSL struggles as it mainly uses object-centric internet videos.

Introduction

Contribution

1. WT(Walking Tours) dataset is introduced as a first-person video dataset that closely mirrors human visual perception.

2. **DORA**, a novel SSL approach, is proposed to learn by tracking objects over time, inspired by human development.

3. It achieves **ImageNet-level performance** using only a single WT video, outperforming traditional image-based pretraining in segmentation and detection tasks.

Walking Tours (WTours)

Comparison with other video datasets

DATASET	Domain	Ego	PRE	BAL	Annot	Avg. Dur (SEC)	DUR (HR)	#VIDEOS	FRAME RESOLUTION			
Diverse Pretraining												
Kinetics-400 (Kay et al., 2017)	Actions	X	/	1	Class	10.2	851	400	340 × 255			
WebVid-2M (Bain et al., 2021)	Open	×	/	×	Weak	18	13k	_	320×240			
HowTo100M (Miech et al., 2019)	Instructions	X	/	X	Weak	4	135k	-	_			
Egocentric												
Epic-Kitchens (Damen et al., 2022)	Cooking	1	X	Х	Loc.	510	100	37	1920 × 1080			
Ego-4D (Grauman et al., 2022)	Daily	1	X	×	Loc.	1446	120	931	1920×1080			
Meccano (Ragusa et al., 2023)	Industry	1	X	×	Loc.	1247	849	20	1920×1080			
Assembly-101 (Sener et al., 2022)	Assembly	✓	X	X	Loc.	426	167	362	1920×1080			
ImageNet-aligned												
R2V2 (Gordon et al., 2020)	ImageNet	Х	/	/	Class	_	_	_	467 × 280			
VideoNet (Parthasarathy et al., 2022)	ImageNet	X	/	1	Class	10	3055	_				
Walking Tours (ours)	Urban	1	1	Х	None	5880	23	10	3840 × 2160			

- Compared to existing video datasets, this dataset contains longer, higher-resolution, and more continuous videos.
- Unlike curated datasets with controlled class balance, it is **open-ended**, **scalable**, **and does not require manual labeling**.
- A rich variety of objects per frame makes it well-suited for representation learning.

Walking Tours (WTours)

Dataset Analysis

- Gradual brightness transitions occur, unlike other datasets that exhibit random fluctuations.
- A higher number of unique object classes per frame contributes to greater semantic richness.
- **Minimal shot transitions** provide a more continuous learning experience compared to movie datasets with frequent scene cuts.

Overview

Preliminaries

Video Clip
$$\mathbf{X}_t \in \mathbb{R}^{h \times w \times c}$$
 for $t \in \{1, \dots, T\}$

of patches
$$n=hw/p^2$$

EMA
$$\theta' \leftarrow \alpha \theta' + (1 - \alpha)\theta$$

Preliminaries

Output Embeddings
$$Z_t = g_{ heta}(\mathbf{X}_t) \in \mathbb{R}^{(n+1) imes d} = [Z^{ ext{[CLS]}}; ilde{Z}]$$

[CLS] Embeddings
$$Z^{ ext{[CLS]}} \in \mathbb{R}^{1 imes d}$$

Patch Embeddings
$$ilde{Z} \in \mathbb{R}^{n imes d}$$

Discovering objects with multi-head attention

Query & Key Embeddings for MHA

$$Q, K \in \mathbb{R}^{(n+1) \times d}$$

$$Q^i, K^i \in \mathbb{R}^{(n+1)\times d/h}$$
 for $i = 1, \dots, h$

Self-Attention Matrix

$$A^i := \operatorname{softmax} \left(Q^i(K^i)^\top / \sqrt{d} \right) \in \mathbb{R}^{(n+1) \times (n+1)}$$

[CLS] – Attention Vector

$$A^{[\text{CLS}]} := [a_{1,2}, \dots, a_{1,n}] \in \mathbb{R}^{1 \times n}$$

Random Subset of Attention Vectors

$$A^{\mathcal{I}} := [(A^{i_1})^{\text{[CLS]}}; \dots; (A^{i_k})^{\text{[CLS]}}] \in \mathbb{R}^{k \times n}$$

Object Prototypes

$$P := A^{\mathcal{I}} \tilde{Q} \in \mathbb{R}^{k \times d}$$

$$T_t := \operatorname{softmax}\left(P\tilde{K}_t^{\top}/\sqrt{d}\right) \in \mathbb{R}^{k \times n}$$

k – attention maps....?

Discovering objects with multi-head attention

Overlapping object regions detected!

Establishing object-patch correspondences

Object Prototypes

$$P := A^{\mathcal{I}} \tilde{Q} \in \mathbb{R}^{k \times d}$$

Output of Teacher Network

$$Z = g_{\theta'}(\mathbf{X}_{t_0}) \in \mathbb{R}^{(\bar{n}+\bar{1}) \times d}$$

Transport Matrix

$$M \in \mathbb{R}^{k \times n}$$

 $e^{-C/\epsilon}$

Cost Matrix

$$C := -P\tilde{Z}^{\top} \in \mathbb{R}^{k \times n}$$

Optimal Transport Plan

$$M^* = \operatorname{SK}\left(\exp\left(P\tilde{Z}^{\top}/\epsilon\right)\right) \in \mathbb{R}^{k \times n}$$

Establishing object-patch correspondences

Optimal Transport Plan

$$M^* = \operatorname{SK}\left(\exp\left(P\tilde{Z}^{\top}/\epsilon\right)\right) \in \mathbb{R}^{k \times n}$$

Refined Object Prototypes

$$P' = M^* \tilde{Z} \in \mathbb{R}^{k \times d}$$

Refined Attention Map

$$T'_t := \operatorname{softmax}\left(P'\tilde{K}_t^{\top}/\sqrt{d}\right) \in \mathbb{R}^{k \times n}$$

Multi-object masking

Masked Video Clip

$$\mathbf{X}^{o_i} := \mathbf{X} \odot \mathbf{T}^i$$

Multi-Object Loss

$$L_t^{\mathrm{O}} := \sum_{u,v \in V} \mathbb{1}_{u \neq v} \sum_{i=1}^k f_{\theta'}(\mathbf{X}_t^u)^{[\mathtt{CLS}]} \log \left(f_{\theta}(\mathbf{X}_t^{v,o_i})^{[\mathtt{CLS}]} \right).$$

IV **Experiments**

Ablations

METHOD	PRETRAIN	#FRAMES	LP	CORLOC
		(M)		
DINO	Movie _{rom}	0.19	34.9	51.5
DoRA	Movie _{rom}	0.19	35.3	51.6
DINO	K-400*	0.2	40.7	52.4
DORA	K-400*	0.2	43.0	55.2
DINO	EK*	0.2	38.6	53.5
DoRA	EK*	0.2	41.8	56.0
DINO	WT _{Venice}	0.2	33.8	51.2
DORA	WT _{Venice}	0.2	44.5	56.2

МЕТНОО	k	LP	CorLoc
DINO	Ж	33.8	51.2
DoRA	1	39.9	53.9
DORA	2	43.1	55.7
DORA	3	44.5	56.2
DoRA	4	39.2	53.8
Dora	5	36.7	50.3
Dora	6	35.8	48.8
DORA	16	28.3	48.5
DORA	32	27.1	46.8
b) #Obje	ects	k or	ı WTv

Dora Dora	1	Random Object		
(c) SK	and	masking	on	WT _{Venice}

DINO

Dora

Dora

METHOD SK MASK

LP CORLOC

51.2

49.8

55.3

33.8

42.5

Random 33.0

Object

- (a) WTours pretraining outperforms Kinetics-400 and movie-based datasets on downstream tasks.
- (b) Tracking 3 objects (k=3) achieves the best performance by balancing detail and matchability.
- (c) Multi-object masks with SK algorithm yield better results than random masking.

IV Experiments

Dense Scene Understanding

Метнор	EPOCHS	PRETRAIN	(a) Sema	NTIC SEC	3.	(b) OBJECT DET.		(c) INSTANCE SEG.	
	Erociio		mIoU	GAIN	Acc_m	GAIN	mAP	GAIN	mIoU	GAIN
ViT-S/16	100	none	25.1		33.3		28.6		24.3	
iBOT (Zhou et al., 2022a)	100	WT _{Venice}	33.9		43.3		37.6		33.0	
AttMask (Kakogeorgiou et al., 2022)	100	WT_{Venice}	33.6		42.7		36.5		32.5	
VITO (Parthasarathy et al., 2022)	300	VideoNet	39.4		_		44.0		_	
DINO (Caron et al., 2021)	100	IN-1k	33.9		44.3		39.9		35.1	
DoRA (ours)	100	WT_{all}	36.9		48.0		40.7		36.3	
DINO (Caron et al., 2021)	100	WT _{Venice}	32.4		43.7		37.1		32.1	
DoRA (ours)	100	WT _{Venice}	35.4	+3.0	45.5	+1.8	39.5	+2.4	34.7	+2.6

Consistent performance gains over DINO in semantic segmentation and object detection, even with fewer training frames.

IV Experiments

Video Understanding

Метнор	FPOCHS	PRETRAIN	(a) VIDE	O OBJECT S	EGMENT	TATION	V		(b)	OBJEC*	T TRAC	KING	
MEI HOD	Li ochi	T REFIGURE	$(\mathcal{J}\&\mathcal{F})_m$	Gain \mathcal{J}_m	GAIN .	\mathcal{F}_m (GAIN	mAO	Gain	$SR_{0.5}$	GAIN	$SR_{0.75}$	GAIN
ViT (Dosovitskiy et al., 2020)	100	None	26.9	25.4		28.3		23.1		19.0		3.4	
iBOT (Zhou et al., 2022a)	100	WT _{Venice}	57.4	56.7		58.0		41.5		47.5		16.6	
DINO (Caron et al., 2021)	100	IN-1k	59.4	57.4	(61.4		46.4		54.3		24.1	
DoRA (ours)	100	WT_{all}	57.6	55.1	-	60.2		45.9		53.4		23.7	
DINO (Caron et al., 2021)	100	WT _{Venice}	54.6	53.0		56.2		37.4		41.4		13.4	
DoRA (ours)	100	WT _{Venice}	58.4	+3.8 56.4	+3.4	60.4	+4.2	41.4	+4.0	47.2	+5.8	18.2	+4.8

DORA outperforms DINO in video object segmentation and multi-object tracking under challenging conditions.

IV Experiments

Image classification and unsupervised object discovery

Метнор	EPOCHS	PRETRAIN	#FRAMES	ES (a) CLASSIFICATION			(b) OBJECT DISCOVERY				
	Er ocus	TRETRAIN	(M)	LP	GAIN	k-NN	GAIN	JACC.	GAIN	CorLoc	GAIN
SimCLR (Chen et al., 2020)	100	WT _{Venice}	0.2	26.3		25.9		40.4		50.2	
SwAV (Caron et al., 2020)	100	WT_{Venice}	0.2	28.0		26.4		40.6		51.4	
iBOT (Zhou et al., 2022a)	100	WT_{Venice}	0.2	36.8		32.8		43.0		53.1	
AttMask (Kakogeorgiou et al., 2022)	100	WT_{Venice}	0.2	35.8		31.9		43.5		54.5	
VicReg (Bardes et al., 2021)	100	WT_{Venice}	0.2	36.5		30.1		42.7		52.1	
DINO (Caron et al., 2021)	100	WT_{Venice}	0.2	33.8		29.9		43.8		51.2	
DoRA (ours)	100	WT _{Venice}	0.2	45.4	+11.6	33.8	+3.9	44.0	+0.2	56.2	+5.0
DINO (Caron et al., 2021)	100	WT_{all}	1.5	36.6		31.1		42.9		55.8	
DoRA (ours)	100	WT_{all}	1.5	45.3	+8.7	35.7	+4.6	44.3	+1.4	57.1	+1.3

DORA surpasses DINO in image classification and object discovery, showing efficient learning even with limited video data.

V Conclusion

Why Best Paper?

- Achieves ImageNet-level performance using a single video, highlighting the potential of data-efficient AI learning.
- Unlike curated datasets with controlled class balance, it is open-ended, scalable, and does not require manual labeling.

Limitation

• Optimized for specific types of videos, requiring further validation across diverse datasets.