Counterfactual Evaluation for Recommender Systems

Nicolò Felicioni nicolo.felicioni@polimi.it

RecSys Lab.

 Counterfactual reasoning: thinking about alternatives to events that have already occurred

- Counterfactual reasoning: thinking about alternatives to events that have already occurred
- Intersection between Machine Learning and Causal Inference

- Counterfactual reasoning: thinking about alternatives to events that have already occurred
- Intersection between Machine Learning and Causal Inference
- The theory can be applied in a lot of domains:

- Counterfactual reasoning: thinking about alternatives to events that have already occurred
- Intersection between Machine Learning and Causal Inference
- The theory can be applied in a lot of domains:
 - RecSys/Computational advertisement

- Counterfactual reasoning: thinking about alternatives to events that have already occurred
- Intersection between Machine Learning and Causal Inference
- The theory can be applied in a lot of domains:
 - RecSys/Computational advertisement
 - Medicine

- Counterfactual reasoning: thinking about alternatives to events that have already occurred
- Intersection between Machine Learning and Causal Inference
- The theory can be applied in a lot of domains:
 - RecSys/Computational advertisement
 - Medicine
 - Economics (2021 Nobel prize)
 - o etc.

- Counterfactual reasoning: thinking about alternatives to events that have already occurred
- Intersection between Machine Learning and Causal Inference
- The theory can be applied in a lot of domains:
 - RecSys/Computational advertisement
 - Medicine
 - Economics (2021 Nobel prize)
 - o etc.
- Today we focus on RecSys Evaluation

Suppose we are running an online platform with a recommender

- Suppose we are running an online platform with a recommender
- A recommender is already up and running (baseline)

- Suppose we are running an online platform with a recommender
- A recommender is already up and running (baseline)
- The R&D team develops a new recommender

- Suppose we are running an online platform with a recommender
- A recommender is already up and running (baseline)
- The R&D team develops a new recommender
- We would like to assess its quality (in terms of some metric)

• First idea: use the new recommender with real users

- First idea: use the new recommender with real users
- This is called **Online** Evaluation

- First idea: use the new recommender with real users
- This is called **Online** Evaluation
- Main way to do it: A/B testing

Statistically sound procedure

- Statistically sound procedure
- X High risk
 - Providing bad recommendations to real user can harm the platform!
 - We would like to evaluate the recommender <u>offline</u> first

- First, let the baseline recommender collect data
- Then, evaluate the new recommender on the offline logged dataset

- First, let the baseline recommender collect data
- Then, evaluate the new recommender on the offline logged dataset

Data collection
Baseline
Recommender

New Recommender

A lot cheaper

- A lot cheaper
- X Potentially high bias
 - The matrix may be heavily influenced by the baseline recommender!
 - Furthermore, ratings are not Missing-at-Random

• We run a movie streaming platform

• We run a movie streaming platform

G	Action	Romance	Drama
Action Lovers	5	1	3
Romance Lovers	1	5	3

• We run a movie streaming platform

G	Action	Romance	Drama
Action Lovers	5	1	3
Romance Lovers	1	5	3

• We collect the URM from the baseline recommender:

R		Act	ion		R	om	and	се	I	Dra	ma
Action Lovers	5	5 5	5	5		200	1	L	3	3	3
	5	5		5	1	L			Ū	3	ŭ
Romance			1		5	5 5	5	5	3	3	3
Lovers		1			5	5	5		3		
	7-				5			5	! !	3	

G	Action	Romance	Drama
Action Lovers	5	1	3
Romance Lovers	1	5	3

G	Action	Romance	Drama
Action Lovers	5	1	3
Romance Lovers	1	5	3

\hat{R}_1	Action	Romance	Drama
Action Lovers	5	1	5
Romance Lovers	1	5	5

G	Action	Romance	Drama
Action Lovers	5	1	3
Romance Lovers	1	5	3

\hat{R}_1	Action	Romance	Drama
Action Lovers	5	1	5
Romance Lovers	1	5	5
\hat{R}_2	Action	Romance	Drama
\hat{R}_2 Action Lovers	Action 5	Romance 5	Drama 3

G	Action	Romance	Drama
Action Lovers	5	1	3
Romance Lovers	1	5	3

$ G-\hat{R}_2 $	Action	Romance	Drama
Action Lovers	0	4	0
Romance Lovers	4	0	0

 But we don't know G, we can only use the URM

R		Act	ion	l	R	om	and	ce	ı	Dra	ma	
Action	5	5	5	5			1	Ĺ	3	3		
Lovers	5	5		5	1	L			3	3	3	
					5	5	5		3			
Romance			1			5		5	l 	3	3	
Lovers		1			5	5	5		3			
	9.				5			5	i i	3		

\hat{R}_1	Action	Romance	Drama
Action Lovers	5	1	5
Romance Lovers	1	5	5
\hat{R}_2	Action	Romance	Drama
Action Lovers	5	5	3

 But we don't know G, we can only use the **URM**

R	Action			Romance			Drama				
Action Lovers	5		5				1	L	3		
		5		5						3	
		5	5			ľ			3		3
	5	5	5	5		L 				3	
Romance Lovers					5	5	5		3		
			1		! !	5		5	! !	3	3
		1			5	5	5		3		
	5.				5			5		3	

$ R-\hat{R_1} $	Action	Romance	Drama
Action Lovers	0	0	2 2 2 2 2
Romance Lovers	0	0	2 2 2 2 2

$ R-\hat{R_2} $	Action	Romance	Drama
Action Lovers	0	4	0
Romance Lovers	4 4	0	0

 But we don't know G, we can only use the URM

R	Action			Romance			Drama				
	5		5				1	Ľ	3		
Action		5		5						3	
Lovers		5	5			•			3		3
	5	5	5	5						3	
Romance Lovers					5	5	5		3		
			1		! !	5		5	! !	3	3
		1			5	5	5		3		
	5.				5			5	!	3	

$ R-R_2 $	Action	Romance	Drama	
Action Lovers	0	4	0	16
Romance Lovers	4 4	0	0	

Why do we obtain wrong results with offline evaluation with the observed URM?

Why do we obtain wrong results with offline evaluation with the observed URM?

Missing values are not Missing-at-Random!

Why do we obtain wrong results with offline evaluation with the observed URM?

- Missing values are not Missing-at-Random!
- The baseline recommender may have biased the data collection

Why do we obtain wrong results with offline evaluation with the observed URM?

- Missing values are not Missing-at-Random!
- The baseline recommender may have biased the data collection
- Users tend to rate items they like

How to debias the results?

If we knew the probability of observing a rating:

P	Action	Romance	Drama
Action Lovers	0.8	0.1	0.5
Romance Lovers	0.1	8.0	0.5

We could de-bias the results

 What would have happened if the users had observed all the items?

- What would have happened if the users had observed all the items?
- We answer this counterfactual question with the Inverse
 Propensity Scoring (IPS) technique

- What would have happened if the users had observed all the items?
- We answer this counterfactual question with the Inverse
 Propensity Scoring (IPS) technique
- If a rating has a probability p of being observed, we balance this by re-weighting the corresponding error by 1/p

- What would have happened if the users had observed all the items?
- We answer this counterfactual question with the Inverse
 Propensity Scoring (IPS) technique
- If a rating has a probability p of being observed, we balance this by re-weighting the corresponding error by 1/p
 - If a rating has a probability 0.1 of being observed, we multiply the corresponding error by 10

R	Action			R	Romance			Drama				
Action Lovers		5 5 5		5	1		1	Ľ	3	3	3	
Romance Lovers	20 20	1	1		5 5 5	5 5 5	5 5	5	3	3	3	
P	Δ	۱cti	on		R	om	and	се	ı	Dra	ma	
Action Lovers	0.8				0.	1			0.	5		
Romance Lovers		0.	1			0.	8		r 1 1 1 1 1 1	0.	5	

\hat{R}_1 .	Action	Romance	Drama
Action Lovers	5	1	5
Romance Lovers	1	5	5
^			
\hat{R}_2	Action	Romance	Drama
R_2 Action Lovers	Action 5	Romance 5	Drama 3

R	Action			R	Romance			Drama				
Action Lovers	5	5	5	5			-	1	3	3		
	5	5		5		L 			3	3	3	
Romance Lovers	_			5	5 5		5	3	3	3		
Loveis	-	1			5	5	5	5	3	3		
P	Action			Romance			Drama					

		5 5	3
P	Action	Romance	Drama
Action Lovers	0.8	0.1	0.5
Romance Lovers	0.1	0.8	0.5

$ R-\hat{R_1} $	Action	Romance	Drama
Action Lovers	0	0	2 2 2 2 2
Romance Lovers	0	0	2 2 2 2 2

$ R-\hat{R_2} $	Action	Romance	Drama
Action Lovers	0	4	0
Romance Lovers	4 4	0	0

R	Action			Romance			Drama					
Action Lovers	5	5 5		5	_	L	-	ľ	3	3	3	
Romance Lovers		1	1		5 5 5	5 5 5		5	3	3	3	
P		Action		Romance			Drama					

P	Action	Romance	Drama
Action Lovers	0.8	0.1	0.5
Romance Lovers	0.1	8.0	0.5

R	Action	Romance	Drama		
Action Lovers	5 5 5 5 5 5 5	1	3 3 3 3		
Romance Lovers	1 1	5 5 5 5 5 5 5 5 5	3 3 3 3 3		
P	Action	Romance	Drama		
Action Lovers	0.8	0.1	0.5		

8.0

0.5

$ R-\hat{R_1} _{II}$	PS	Romance	Drama	
	7 (01:011	rtomanoo	4	
Action		i i i	4	
Lovers	0	0	4 4	
			4 4	40
Romance	0	0	4 4	
Lovers	0	U	4	
			. 4	
$ R-\hat{R_2} _I$	PS Action	Romance	Drama	
		40		
Action	0		0	
Lovers	U	40	U	
			,	160
Romance Lovers	40 40	0	0	

• Online Evaluation: reliable, but risky

- Online Evaluation: reliable, but risky
- Offline Evaluation: can be unreliable if used naively

- Online Evaluation: reliable, but risky
- Offline Evaluation: can be unreliable if used naively
- Counterfactual Evaluation: could improve reliability of offline evaluation in RecSys
 - Missing: what to do when P is not known, theoretical guarantees (bias, variance, convergence), other types of estimators, etc.

- Online Evaluation: reliable, but risky
- Offline Evaluation: can be unreliable if used naively
- Counterfactual Evaluation: could improve reliability of offline evaluation in RecSys
 - Missing: what to do when P is not known, theoretical guarantees (bias, variance, convergence), other types of estimators, etc.
- Interesting lecture on the topic: https://www.youtube.com/watch?v=HMo9fQMVB4w

Thanks for the attention

nicolo.felicioni@polimi.it

RecSys Lab.

