1) Dada la siguiente carga de trabajo:

Trabajo	Ráfaga CPU	Prioridad		
1	10	3		
2	1	1		
3	2	3		
4	1	4		
5	5	2		

Representar, mediante un diagrama de Gantt, el acceso a la CPU de los anteriores procesos al aplicar planificación **FCFS**, **RR** (q=2), **SRT** y por **prioridad apropiativo**. En cada caso, calcular el tiempo de ejecución y de espera de cada trabajo. Suponer que todos los procesos llegaron en 0

2) Dada la siguiente tabla de segmentos considerando que cada marco tiene 4096 bytes de longitud

Segmento	Marco				
0	2				
1	-				
8	0				
3	1				
6	3				
5	-				

Determinar las direcciones físicas correspondientes a las siguientes direcciones virtuales, si es que existen a) (1,0), b) (2,1000), c) (6,100), d) (0,5) e)(8,12)

- 3) Realice un programa que tenga 2 procesos, padre e hijo donde el padre debe escribir una determinada cantidad de veces una letra y el hijo debe hacer lo mismo con un número. El programa debe leer antes de crear los procesos, 4 valores: Letra, cant1, numero, cant2, donde cant1 y cant2 son las cantidades de Letra que escribirá el padre y de numero que escribirá el hijo
- 4) Realice un programa que cree 2 hilos. En el primero muestre 10 letras 'A' y en el segundo 10 letras 'Z'. Sincronice las acciones para que muestre las letras 'Z' y luego las letras 'A' (no hace falta que incluya los includes). (tipos y métodos utiles pthread_t, pthread_create, pthread_join, sem_t, sem_init, sem_post, sem_wait, etc)

Cuando crea hilos, por qué es necesario agregar join al final y que puede pasar si se omite?

- 5) Si en una partición de un disco donde el tamaño de bloque es de 2KB. Se utiliza un sistema de ficheros basado en nodos-i, donde cada nodo-i consta de dos índices directos, dos indirectos simples y uno indirecto doble. Si para referenciar a un bloque se utilizan 16 bits,
 - a. Cuál es el tamaño máximo que podría tener el archivo?
 - b. Cuántos bloques de datos puede tener como máximo un archivo?
 - c. Cuántos de bloques enlaces tiene el inodo si el fichero ocupa el máximo tamaño posible?
 - d. Cuantos bloques de enlaces utilizaría un archivo de 5300KB

1) Dada la siguiente carga de trabajo:

Trabajo	Ráfaga CPU	Prioridad		
1	10	3		
2	1	1		
3	2	3		
4	1	4		
5	5	2		

Representar, mediante un diagrama de Gantt, el acceso a la CPU de los anteriores procesos al aplicar planificación **FCFS**, **RR** (q=2), **SRT** y por **prioridad apropiativo**. En cada caso, calcular el tiempo de ejecución y de espera de cada trabajo. Suponer que todos los procesos llegaron en 0

2) Dada la siguiente tabla de segmentos considerando que cada marco tiene 4096 bytes de longitud

Segmento	Marco				
0	2				
1	-				
8	0				
3	1				
6	3				
5	-				

Determinar las direcciones físicas correspondientes a las siguientes direcciones virtuales, si es que existen a) (1,0), b) (2,1000), c) (6,100), d) (0,5) e)(8,12)

3) Realice un programa que tenga 2 procesos, padre e hijo donde el padre debe escribir una determinada cantidad de veces una letra y el hijo debe hacer lo mismo con un número. El programa debe leer antes de crear los procesos, 4 valores: <u>letra</u>, <u>cant1</u>, <u>numero</u>, <u>cant2</u>, donde <u>cant1</u> y <u>cant2</u> son las cantidades de <u>letra</u> que escribirá el <u>padre</u> y de <u>numero</u> que escribirá el <u>hijo</u>

4) Dado los siguientes contenidos en los clusters de un disco con FAT:

Cluster	120	121	122	123	124	125	126	127	128	129	130	131	132
Contenid	F	F	Α	Р	F	Т	S	L	T		Е	С	Α
0													
Y en la FAT los enlaces de un archivo son													
Entrada	120	121	122	123	124	125	126	127	128	129	130	131	132
Siguiente	eof	122	131	158	132	190	121	eof	130	127	126	129	128

Suponer que el cluster de comienzo del archivo es el 124

- a) Cual es las información del archivo
- b) Si la FAT es de 12 bits, cual sería la cantidad de clusters máximos que se pueden referenciar con dicho filesystem?
- c) En caso de tener un disco de 1Mb, de cuanto sería el tamaño de cada cluster y cuantos sectores tendría cada uno?
- d) Cuanto espacio ocuparía en el disco el archivo del ejercicio?
- 5) Determinar cuántos fallos de página se producirán con la siguiente lista de referencias 0 7 2 0 6 0 2 2 7 0 1 7 1 2 0 1 5 6 1 2 0 6 5 2, considerando los algoritmos FIFO, óptimo y LRU. Suponga primero que dispone de 3 marcos de página. Determine si al utilizar 4 marcos de página se verifica la anomalía de Belady.