

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ) КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт по домашней работе № 1

по дисциплине «Аппаратные средства вычислительной техники»

Тема: «Минимизация булевых функций»

Выполнил: Веденеев А.А. студент группы ИУ8-62

Проверил: Рафиков А.Г., преподаватель каф. ИУ8

Цель работы

Минимизировать функцию алгебры логики, используя табличный метод (метод карт Карно), расчетно-табличный метод (метод Квайна-Мак'Класски) и метод неопределенных коэффициентов

Условие задачи

X5	X4	Х3	X2	X1	X0	F
0	0	0	0	0	0	1
0	0	0	0	0	1	0
0	0	0	0	1	0	1
0	0	0	0	1	1	1
0	0	0	1	0	0	1
0	0	0	1	0	1	0
0	0	0	1	1	0	1
0	0	0	1	1	1	0
0	0	1	0	0	0	1
0	0	1	0	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	1
0	0	1	1	0	0	1
0	0	1	1	0	1	1
0	0	1	1	1	0	1
0	0	1	1	1	1	0
0	1	0	0	0	0	1
0	1	0	0	0	1	0
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	0	1
0	1	0	1	0	1	1

0	1	0	1	1	0	1
0	1	0	1	1	1	0
0	1	1	0	0	0	1
0	1	1	0	0	1	0
0	1	1	0	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	1
0	1	1	1	0	1	1
0	1	1	1	1	0	0
0	1	1	1	1	1	0
1	0	0	0	0	0	1
1	0	0	0	0	1	0
1	0	0	0	1	0	0
1	0	0	0	1	1	0
1	0	0	1	0	0	1
1	0	0	1	0	1	0
1	0	0	1	1	0	0
1	0	0	1	1	1	0
1	0	1	0	0	0	0
1	0	1	0	0	1	0
1	0	1	0	1	0	0
1	0	1	0	1	1	1
1	0	1	1	0	0	0

1	0	1	1	0	1	0
1	0	1	1	1	0	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	0	0	0	1	1
1	1	0	0	1	0	0
1	1	0	0	1	1	1
1	1	0	1	0	0	1
1	1	0	1	0	1	1
1	1	0	1	1	0	0

1	1	0	1	1	1	0
1	1	1	0	0	0	0
1	1	1	0	0	1	0
1	1	1	0	1	0	0
1	1	1	0	1	1	0
1	1	1	1	0	0	1
1	1	1	1	0	1	1
1	1	1	1	1	0	0
1	1	1	1	1	1	0

Метод карт Карно

Рисунок 1 - минимизация методом карт Карно

Метод Квайна-Мак'Класски

Наборы, вошедшие в СДНФ:

 $000000,\,000010,\,000100,\,0010000,\,0010000,\,1000000,\,000011,\,000110,\,001010,\\001100,\,010010,\,010100,\,011000,\,100100,\,001011,\,001101,\,001110,\,010101,\\010110,\,011100,\,110001,\,110100,\,011101,\,101011,\,101110,\,110011,\,110011,\\110101,\,111100,\,101111,\,111101$

Из СДНФ нашей функции имеем все минитермы (ранга n=6). Все минитермы, вес которых отличается на 1 попарно сравниваются. После этого получаем минитерму ранга n=5, на месте разряда с различными значениями ставится «~».

При получении новой минитермы необходимо, чтобы «1» и «~» оставались на месте, а на месте новой единицы в новой минитерме ставится «~». Все минитермы, которые не получилось склеить, являются первичными импликантами. Проведем склейку импликант.

Таблица 1 - Нахождение первичных имликант

	I уровень	II уровень	III уровень	IV уровень
	(ранг = 6)	(ранг = 5)	(ранг = 4)	(ранг = 3)
			000~~0	
		0000~0	00~0~0	
		000~00	0~00~0	00~~~0 ✓
$\mathbf{w} = 0$	000000	00~000	00~~00	0~0~~0 ✓
		0~0000	0~0~00	0~~~00 ✓
		~00000	0~~000	
			~00~00 ✓	
		0001~0	001~~0	
		0010~0	010~~0	
	000010 000100	0100~0	00~1~0	
		000~10	0~01~0	
1		001~00	00~~10	
$\mathbf{w} = 1$	001000	010~00	01~~00	
	001000 100000	100~00	0~0~10	
		00~010	0~1~00	
		00~100	00~01~	
		0~0010	0~~100	

		0~0100	~~0100 ✓	
		0~1000		
		~00100		
		00001~		
		0011~0		
		0101~0		
		001~10		
		010~10		
	000011	011~00		
	000110	00~011	01 10	
	001010	00~110	01~10~	
$\mathbf{w} = 2$	001100	01~100	~1~100	~1~10~ ✓
	010010	0~0110	0~110~ ✓	
	010100	0~1100	~1010~	
	011000	1~0100		
	100100	~10100		
		00101~		
		00110~		
		01010~		
		1100~1 ✓		
	001011	110~01 ✓		
	001101	11~100		
	001110 010101 010110	0~1101	11~10~ ~1~101 ~1110~	
2		~01011 ✓		
$\mathbf{w} = 3$		~ 01110 ✓		
	011100	~10101		
	110001	~11100		
	110100	01110~		
		11010~		
	011101	11010		
	101011	101~11 ✓		
	1011110	11~101		
$\mathbf{w} = 4$	110011	~11101		
	110011	10111~		
	110101	11110~		
	111100			
$\mathbf{w} = 5$	101111			

111101		

Проводится группировка наборов по весу и склеиваются соседние группы, после чего склеиваются наборы внутри группы пока это возможно:

В результате получаем таблицу.

Рисунок 2 - нахождение ядровых импликантов

Затем находим ядерные импликанты: $0\sim0\sim0$, $0\sim\sim00$, $\sim1\sim10\sim$, $\sim00\sim00$, $00\sim01\sim$, $1100\sim1$.

МДНФ, найденная методом Квайна-Мак'Класски:

$$y = (\overline{x_0} \ \overline{x_2} \ \overline{x_5}) \cup (\overline{x_0} \ \overline{x_4} \ \overline{x_5}) \cup (x_1 \ x_3 \overline{x_4}) \cup (\overline{x_0} \ x_2 \ x_3 \overline{x_4}) \cup (\overline{x_1 x_2} \ \overline{x_4} \ \overline{x_5})$$

$$\cup (\overline{x_0} \ \overline{x_1} \ \overline{x_3} \ x_4) \cup (x_0 \ x_1 \overline{x_2} \ \overline{x_3} \ x_5) \cup (x_0 \ \overline{x_1} x_2 \ x_4 x_5) \cup (\overline{x_1} x_2 x_3 x_4 \overline{x_5})$$

Количество импликант: 9;

Количество термов: 29.

Метод неопределенных коэффициентов

Сначала составляется система уравнений для коэффициентов и приравнивается, соответственно, к значению функции (0 или 1). После чего

удаляются все уравнения, которые равны 0 и коэффициенты, которые входили в них также удаляем в других уравнениях. Получается система:

- $K_{126}^{000} \ \cup \ K_{136}^{000} \ \cup \ K_{156}^{000} \ \cup \ K_{1236}^{0000} \ \cup \ K_{1246}^{0000} \ \cup \ K_{1256}^{0000} \ \cup \ K_{1346}^{0000} \ \cup \ K_{1356}^{0000} \ \cup$
- $K_{12345}^{00000} \cup K_{12346}^{00000} \cup K_{12356}^{00000} \cup K_{12456}^{000000} \cup K_{13456}^{000000} \cup K_{123456}^{000000} = 1$
- $K_{1245}^{000} \cup K_{12345}^{000} \cup K_{12456}^{000} \cup K_{123456}^{0000} = 1$
- $K_{123456}^{0000000} = 1$
- $K_{126}^{000} \cup K_{136}^{000} \cup K_{1236}^{0000} \cup K_{1246}^{0000} \cup K_{1256}^{0000} \cup K_{1346}^{0000} \cup K_{1356}^{0000} \cup K_{12346}^{00000} \cup$
- $K_{12356}^{00000} \cup K_{12456}^{000000} \cup K_{13456}^{000000} \cup K_{123456}^{0000000} = 1$
- $K_{12456}^{00000} \cup \ K_{123456}^{0000000} \ = 1$
- $K_{1245}^{000} \cup K_{12345}^{000} \cup K_{12456}^{000} \cup K_{23456}^{0000} \cup K_{123456}^{0000} = 1$
- $K_{126}^{000} \cup K_{156}^{000} \cup K_{1236}^{0000} \cup K_{1246}^{0000} \cup K_{1256}^{0000} \cup K_{1356}^{0000} \cup K_{1456}^{00000} \cup K_{12345}^{00000} \cup$ $K_{12346}^{00000} \cup K_{12356}^{000000} \cup K_{12456}^{000000} \cup K_{13456}^{000000} \cup K_{123456}^{000000} = 1$
- $K_{1345}^{000} \cup K_{12345}^{000} \cup K_{13456}^{000} \cup K_{123456}^{0000} = 1$
- $K_{123456}^{000000} = 1$
- $K_{136}^{000} \cup K_{156}^{000} \cup K_{1236}^{0000} \cup K_{1256}^{0000} \cup K_{1346}^{0000} \cup K_{1356}^{0000} \cup K_{1456}^{00000} \cup K_{12346}^{00000} \cup$ $K_{12356}^{00000} \cup \ K_{12456}^{00000} \cup \ K_{13456}^{00000} \cup \ K_{123456}^{000000} = 1$
- $K_{136}^{000} \cup K_{1236}^{0000} \cup K_{1346}^{0000} \cup K_{1356}^{00000} \cup K_{12346}^{00000} \cup K_{12356}^{00000} \cup K_{13456}^{000000} =$ 1
- 14. $K_{13456}^{00000} \cup K_{23456}^{00000} \cup K_{123456}^{000000} = 1$
- $K_{245}^{000} \cup K_{1245}^{000} \cup K_{2345}^{000} \cup K_{2456}^{0000} \cup K_{12345}^{0000} \cup K_{123456}^{0000} \cup K_{23456}^{0000} \cup K_{123456}^{0000} = 1$
- $K_{136}^{000} \cup K_{1236}^{000} \cup K_{1346}^{000} \cup K_{1356}^{0000} \cup K_{12346}^{0000} \cup K_{12356}^{0000} \cup K_{13456}^{0000} \cup K_{123456}^{0000} = 1$ 16.
- 17.
- 17. $K_{156}^{000} \cup K_{1256}^{000} \cup K_{1356}^{000} \cup K_{1456}^{0000} \cup K_{12356}^{0000} \cup K_{12456}^{0000} \cup K_{13456}^{0000} \cup K_{123456}^{0000} = 1$ 18. $K_{156}^{000} \cup K_{245}^{000} \cup K_{1245}^{000} \cup K_{1345}^{0000} \cup K_{1356}^{0000} \cup K_{1456}^{0000} \cup K_{2345}^{0000} \cup K_{2456}^{0000} \cup K_{12456}^{00000} \cup K_{13456}^{00000} \cup K_{123456}^{00000} \cup K_{123456}^{000000} \cup K_{123456}^{000000} \cup K_{123456}^{000000} \cup K_{123456}^{000000} \cup K_{123456}^{000000} \cup K_{123456}^{000000} = 1$

- 19. $K_{245}^{000} \cup K_{1245}^{000} \cup K_{1345}^{000} \cup K_{2345}^{0000} \cup K_{2456}^{0000} \cup K_{12345}^{00000} \cup K_{12456}^{00000} \cup K_{13456}^{00000} \cup K_{123456}^{000000} \cup K_{123456}^{000000} = 1$
- 20. $K_{2356}^{000} \cup K_{12356}^{000} \cup K_{23456}^{000000} \cup K_{123456}^{0000000} = 1$
- 21. $K_{2356}^{000} \cup K_{3456}^{000} \cup K_{12356}^{00000} \cup K_{13456}^{00000} \cup K_{23456}^{000000} \cup K_{123456}^{000000} = 1$
- 22. $K_{12356}^{000} \cup K_{23456}^{00000} \cup K_{123456}^{000000} = 1$
- 23. $K_{12345}^{000} \cup K_{23456}^{00000} \cup K_{123456}^{000000} = 1$
- 24. $K_{12345}^{000} \cup K_{12356}^{000} \cup K_{123456}^{000000} = 1$
- 25. $K_{12346}^{000} \cup K_{12356}^{000} \cup K_{123456}^{000000} = 1$
- 26. $K_{12346}^{000} \cup K_{123456}^{000000} = 1$
- 27. $K_{245}^{000} \cup K_{1245}^{000} \cup K_{2345}^{000} \cup K_{2456}^{0000} \cup K_{3456}^{0000} \cup K_{12345}^{00000} \cup K_{12456}^{00000} \cup K_{13456}^{00000} \cup K_{123456}^{000000} \cup K_{123456}^{000000} = 1$
- 29. $K_{245}^{000} \cup K_{1245}^{000} \cup K_{2345}^{000} \cup K_{2456}^{0000} \cup K_{12345}^{00000} \cup K_{12456}^{000000} \cup K_{23456}^{000000} \cup K_{123456}^{000000} = 1$
- 30. $K_{245}^{000} \cup K_{1245}^{000} \cup K_{2345}^{000} \cup K_{2456}^{0000} \cup K_{12345}^{00000} \cup K_{123456}^{00000} \cup K_{23456}^{000000} \cup K_{123456}^{0000000} = 1$

В данной системе оставляются коэффициенты с минимальным количеством индексов, которые присутствуют в максимальном количестве строк. В итоге получается следующая система:

- 31. $K_{136}^{000} \cup K_{156}^{000} \cup K_{2356}^{0000} = 1$
- 32. $K_{136}^{000} \cup K_{1245}^{0001} = 1$
- 33. $K_{1245}^{0001} = 1$
- 34. $K_{136}^{000} \cup K_{156}^{000} \cup K_{2356}^{0000} = 1$
- 35. $K_{136}^{000} \cup K_{1245}^{0001} = 1$
- 36. $K_{136}^{000} = 1$
- $37. \quad K_{156}^{000} = 1$
- 38. $K_{1245}^{0001} = 1$
- 39. $K_{1245}^{0001} \cup K_{23456}^{01011} = 1$
- $40. \quad K_{156}^{000} \cup K_{1345}^{0110} = 1$
- $41. \quad K_{1345}^{0110} = 1$
- 42. $K_{23456}^{01011} = 1$
- 43. $K_{136}^{000} \cup K_{156}^{000} = 1$

```
44. \quad K_{136}^{000} = 1
```

45.
$$K_{136}^{000} \cup K_{156}^{000} \cup K_{245}^{110} = 1$$

$$46. \quad K_{245}^{110} = 1$$

$$47. \quad K_{136}^{000} = 1$$

48.
$$K_{156}^{000} = 1$$

49.
$$K_{156}^{000} \cup K_{245}^{110} \cup K_{1345}^{0110} = 1$$

50.
$$K_{245}^{110} \cup K_{1345}^{0110} = 1$$

$$51. \quad K_{2356}^{0000} = 1$$

52.
$$K_{2356}^{0000} = 1$$

$$53. \quad K_{12356}^{10111} = 1$$

$$54. \quad K_{23456}^{01011} = 1$$

$$55. \quad K_{12356}^{10111} = 1$$

$$56. \quad K_{12346}^{11001} = 1$$

$$57. \quad K_{12346}^{11001} = 1$$

$$58. \quad K_{245}^{110} = 1$$

$$59. \quad K_{245}^{110} = 1$$

60.
$$K_{245}^{110} = 1$$

МДНФ, найденная методом неопределенных коэффициентов:

$$y = (\overline{x_1} \ \overline{x_3} \ \overline{x_6}) \cup (\overline{x_1} \ \overline{x_5} \ \overline{x_6}) \cup (\overline{x_2} \ x_4 \overline{x_5}) \cup (\overline{x_1} \ x_3 \ x_4 \overline{x_5}) \cup (\overline{x_2} \overline{x_3} \ \overline{x_5} \ \overline{x_6})$$

$$\cup (\overline{x_1} \ \overline{x_2} \ \overline{x_4} \ x_5) \cup (\overline{x_1} \ x_2 \overline{x_3} \ \overline{x_4} \ x_6) \cup (\overline{x_1} \ \overline{x_2} x_3 \ x_5 x_6) \cup (\overline{x_2} x_3 x_4 x_5 \overline{x_6})$$

Количество импликант: 9;

Количество термов: 29.

Выводы

В работе была проведена минимизация ФАЛ тремя различными методами: табличным (карты Карно), расчетно-табличным (метод Квайна— Мак'Класки) и методом неопределенных коэффициентов во всех трех методах результаты совпали(в первом методе обратная нумерация х). Каждый метод привел к одинаковой сложности мДНФ, так можно сделать вывод что карты Карно удобны для ручного вычисления при числе переменных < 4, в отличии от двух других методов которые легче алгоритмизировать и запрограммировать для вычисления от большего числа переменных. Однако важно учитывать, что сложность алгоритмов Квайна— Мак'Класки и неопределенных коэффициентов растет экспоненциально.