

СПбГЭТУ «ЛЭТИ»

Кафедра Вычислительной техники Дисциплина «Искусственный интеллект»

Лекция 11 Логические модели представления знаний: Логика предикатов первого порядка

Логика предикатов 1-го порядка: Алфавит

- Алфавит ЛППП включает следующие группы символов:
 - предметные константы: a, b, c, d,...
 - идентификаторы (имена) конкретных объектов рассматриваемой предметной области элементов области интерпретации **D**
 - предметные переменные: $x, y, z, v, u, w, ... x_n, y_n, z_n, ...$
 - могут принимать значения констант
 - функциональные символы: f, g, h,...
 - предикатные символы: P, Q, R, S, T,...
 - обозначают свойства и отношения объектов в рассматриваемой предметной области (области интерпретации)
 - логические связки: ¬, v, &, \rightarrow , ↔ (имеют традиционный смысл)
 - *два логических квантора*: ∃ существования; ∀ всеобщности
 - $\forall x P(x), \exists x Q(x, y)$
 - скобки: (,),

Логика предикатов 1-го порядка: Язык

- Терм:
 - предметная *константа*;
 - предметная *переменная*;
 - или функциональная форма;
- Функциональная форма:
 - синтаксически задается функциональным символом со списком аргументовтермов в скобках:

$$f(t_1, ..., t_n)$$
, где $t_1, ..., t_n$ – термы
Например: $f(a, x, g(y))$

 интерпретируется как некоторая *п*–местная функция, заданная на области интерпретации:

 $D^n \to D$; (отображение декартового произведения в область интерпретации) Примеры интерпретации :

$$f(x, y) - "x + y"$$
; $g(x) - "x^2"$; $f(a, x, g(x)) - "a-x+x^2"$

Логика предикатов 1-го порядка: Язык + интерпретация

- Предикатная форма или атом:
 - синтаксически задается предикатным символом со списком аргументовтермов: $P(f_1, ..., f_n)$;
 - соответствует отношению, заданному на предметной области: D^n → {F, T};
 - число предметных переменных, к которым относится данная предикатная форма, называется ее местностью.

Пример: P(x) – "x – четное число" – одноместная предикатная форма Q(x, y) – "x > y" – двуместная предикатная форма

• Область интерпретации D (Domain) – множество объектов, свойства и отношения которых предполагается описывать средствами языка логики предикатов 1-го порядка

Правила построения формул в ЛППП

- 1. Любая предикатная форма (*amoм*) является формулой логики предикатов первого порядка.
- 2. Если *X* и *Y* формулы, то:

$$\neg X$$
, $(X \lor Y)$, $(X \& Y)$, $(X \to Y)$, $(X \leftrightarrow Y)$ – тоже формулы

- 3. Если x предметная переменная, A некоторая формула, то: $\forall xA, \; \exists xA$ тоже формулы
- 4. Других формул нет

Квантификаторы

• *Область действия квантификатора* – формула, к которой относится данный квантификатор:

$$\forall x [P(x) \& Q(x, y)] \lor R(u) \& Q(z, b)$$
 область действия

• Переменная, находящаяся в области действия соответствующего квантификатора, называется связанной:

$$\forall x [P(x) \& Q(x, y)] \lor R(u) \& Q(z, b)$$

В противном случае – свободной:

$$\forall x [P(x) \& Q(x, y)] \lor R(u) \& Q(z, b)$$

• Формула, не содержащая свободных переменных, называется замкнутой

$$\forall x \exists y \exists u \forall z [P(x) \& Q(x, y) \lor R(u) \& Q(z, b)]$$

• Замкнутая формула *является высказыванием*! (Независимо от интерпретации переменных, но *при фиксированной интерпретации языка*)

Пример формализации высказывания в ЛППП

Пример: «Для любых двух чисел, если одно из них четно, а другое – нечетно, то их сумма нечетна»

Область интерпретации D – множество чисел

$$P(x) - «x - четно»$$

$$f(x, y) - \langle x + y \rangle$$

$$\forall x \ \forall y \ [P(x) \& \neg P(y) \rightarrow \neg P(f(x, y))]$$

Формула замкнутая. Высказывание истинное

Погика первого порядка - логика, в которой рассматриваются только высказывания об объектах, свойствах и отношениях *предметной области*.

Если требуется рассматривать высказывания о высказываниях – нужна *погика* второго порядка и т. д.

Метод резолюций в логике предикатов

- Особенности реализации метода резолюций в логике предикатов обусловлены *более сложным синтаксисом языка* (наличием у атомов аргументов, функциональных форм, квантификаторов и др.) и проявляются на двух этапах:
 - на этапе преобразования формул из стандартной формы в клаузальную (аналог КНФ);
 - на этапе применения правила резолюций к дизъюнктам, у которых атомы контрарной пары отличаются аргументами:

$$(\neg P(x) \lor Q(y))$$
 и $(P(f(z)) \lor \neg R(x))$

Можно ли построить резольвенту?

Получение клаузальной формы

Прежде всего надо преобразовать формулы в форму, позволяющие применить метод резолюции

В логике предикатов преобразования формул к нужной форме – более сложная задача вследствие более богатого синтаксиса языка (наличия квантификаций, свободных и связанных вхождений переменных и др.)

В ЛППП аналогом КНФ является клаузальная форма.

Преобразование формул ЛППП из стандартной формы в клаузальную выполняется в три этапа:

- 1. Преобразование в предваренную форму.
- 2. Получение замкнутой и сколемовской формы.
- 3. Преобразование матрицы в КНФ получение клаузальной формы.

Преобразование формул в предваренную форму

• *Предваренная форма* – представление формулы, в котором *все квантификации размещаются в начале*, затем следует формула, не содержащая квантификаций:

$$K_1 K_2 \dots K_n M$$
,

где K_i (i = 1,...n) — квантификатор всеобщности или существования (\forall -квантификация либо \exists -квантификация); M — формула не содержащая квантификаций (матрица).

- Конечная последовательность квантификаций в начале формулы называют префиксом
 - Квантификации в префиксе относятся к различным переменным и их порядок, в общем случае, имеет значение.
- Для любой формулы логики предикатов существует *погически эквивалентная ей предваренная форма*.

Алгоритм преобразования формул в предваренную форму

Алгоритм получения предваренной формы для произвольной формулы логики предикатов включает следующие шаги:

- 1. Исключение связок импликации и эквивалентности.
- 2. Переименование для всех подформул (при необходимости) связанных переменных таким образом, чтобы никакая переменная не имела бы одновременно свободных и связанных вхождений.
- 3. Удаление квантификаций, область действия которых не содержит вхождений квантифицированной переменной.
- 4. Сужение области действия отрицаний и снятие двойных отрицаний. При этом помимо законов де Моргана и инволюции используются следующие тождества:

$$\neg(\forall xA) = \exists x(\neg A);$$
$$\neg(\exists xA) = \forall x(\neg A).$$

5. Перенос всех квантификаций в начало формулы по следующим правилам:

```
(\forall xA \& \forall xB) = \forall x(A \& B);
(\forall xA \lor \forall xB) = \forall x(A \lor B);
(\forall xA \& B) = \forall x(A \& B),  если формула B не содержит x;
(\exists xA \& B) = \exists x(A \& B),  если формула B не содержит x.
(\forall xA \lor B) = \forall x(A \lor B),  если формула B не содержит x;
(\exists xA \lor B) = \exists x(A \lor B),  если формула B не содержит x.
```

При выполнении этого шага некоторые с*вязанные переменные могут быть переименованы*. Например, формула ∃хР(х) & ∀хQ(х) будет сначала преобразована в ∃хР(х) & ∀уQ(у), после чего применены правила преобразования

Пример преобразования формулы в предваренную форму

Пример. Преобразовать в предваренную форму следующую формулу:

$$\exists y \forall x (\neg Q(x, y) \lor \neg P(y)) \rightarrow (R(v) \& \forall v \exists z \forall w S(v, z))$$

Решение.

1. Исключение связок импликации и эквивалентности:

$$\neg \exists y \forall x (\neg Q(x, y) \lor \neg P(y)) \lor (R(v) \& \forall v \exists z \forall w S(v, z))$$

2. Переименование.

$$\neg \exists y \forall x (\neg Q(x, y) \lor \neg P(y)) \lor (R(v) \& \forall u \exists z \forall w S(u, z))$$

3. Удаление ненужных квантификаций:

$$\neg \exists y \forall x (\neg Q(x, y) \lor \neg P(y)) \lor (R(v) \& \forall u \exists z S(u, z))$$
 [удален $\forall w$]

4. Сужение области действия отрицаний и снятие двойных отрицаний:

$$\forall y (\neg \forall x (\neg Q(x, y) \lor \neg P(y))) \lor (R(v) \& \forall u \exists z S(u, z))$$

$$\forall y \exists x (\neg (\neg Q(x, y) \lor \neg P(y))) \lor (R(v) \& \forall u \exists z S(u, z))$$

$$\forall y \exists x (\neg \neg Q(x, y) \& \neg \neg P(y)) \lor (R(v) \& \forall u \exists z S(u, z))$$

$$\forall y \exists x (Q(x, y) \& P(y)) \lor (R(v) \& \forall u \exists z S(u, z))$$

5. Перенос квантификаций в начало формулы.

$$\forall y [\exists x (Q(x, y) \& P(y)) \lor R(v) \& \forall u \exists z S(u, z)]$$

 $\forall y \exists x [Q(x, y) \& P(y) \lor R(v) \& \forall u \exists z S(u, z)]$
 $\forall y \exists x \forall u [Q(x, y) \& P(y) \lor R(v) \& \exists z S(u, z)]$
 $\forall y \exists x \forall u \exists z [Q(x, y) \& P(y) \lor R(v) \& S(u, z)] - предваренная форма$

Получение замкнутой формы

- Предваренная форма в общем случае *может содержать свободные* переменные
- При анализе выполнимости достаточно оперировать *только* замкнутыми формулами, т.е. формулами не содержащими свободных переменных
- Действительно, если *A* формула, содержащая свободные переменные *x*₀, ..., *x*_n, которая (после переименования) *не содержит ни одного связанного вхождения* этих переменных, то замкнутая формула ∃*x*₁ ... ∃*x*_n *A* выполнима тогда и только тогда, когда выполнима формула *A*.
- Например, формула:

$$\forall y \exists x [Q(x, y) \& S(u, z)]$$

после преобразования в замкнутую форму примет вид:

$$\exists u \exists z \forall y \exists x [Q(x, y) \& S(u, z)]$$

Сколемовская форма

- Всякой замкнутой формуле *A* можно поставить в соответствие формулу S_A , не содержащую кванторов существования, такую, что формулы *A* и S_A либо *обе выполнимы*, либо *обе невыполнимы*
 - Таким образом, проверка невыполнимости формулы А может быть сведена к проверке невыполнимости формулы S_A
- Форма _{S_A} называется *сколемовской формой*
- Алгоритм получения сколемовской формы (сколемизация) из замкнутой предваренной формы включает следующие шаги:
 - 1. Сопоставить каждой ∃-квантифицированной переменной список предшествующих ей в префиксе ∀-квантифицированных переменных и некоторый функциональный символ, местность которого равна мощности полученного списка.
 - 2. В матрице формулы заменить каждое вхождение каждой ∃- квантифицированной переменной на терм, полученный путем добавления к соответствующему функциональному символу списка аргументов, сопоставленных этой переменной.
 - 3. Удалить из формулы все ∃-квантификации.

Пример получения сколемовской формы

Сколемизируем полученную выше замкнутую формулу:

$$\forall y \exists x \forall u \exists z [Q(x, y) \& P(y) \lor R(v) \& S(u, z)]$$

 Каждой ∃-квантифицированной переменной ставится в соответствие функциональную форму от предшествующих ей в префиксе ∀-квантифицированных переменных:

$$x - f(y)$$
;
 $z - g(y, u)$

2. Подставим в формулу функциональные формы:

$$\forall y \exists x \forall u \exists z [Q(f(y), y) \& P(y) \lor R(v) \& S(u, g(y, u))].$$

3. Удалим ∃-квантификации:

$$\forall y \, \forall u \, [Q(f(y), y) \, \& \, P(y) \, \lor \, R(v) \, \& \, S(u, g(y, u))] - \, c$$
колемовская форма, (замкнутая, универсально квантифицированная)

Квантификаторы можно явно не выписывать:

$$[Q(f(y), y) \& P(y) \lor R(v) \& S(u, g(y, u))]$$

Метод резолюций в логике предикатов. Унификация

• При реализации метода резолюций дизъюнкты могут содержать атомы контрарной пары с различными аргументами:

$$(\neg P(x) \lor Q(y))$$
 и $(P(f(z)) \lor \neg R(x))$

где $x_i \neq t_i$.

Непосредственно построить резольвенту нельзя!

- Для решения этой проблемы используется унификация
- *Подстановка* σ есть отображение множества V переменных в множество T термов. Подстановка σ задается множеством упорядоченных пар:

$$\sigma = \{(x_1, t_1), \ldots, (x_n, t_n)\},\$$

- Пусть t терм, а σ подстановка, тогда терм $\sigma[t]$ получается одновременной заменой всех вхождений переменных x в t на их образы относительно σ .
- Например, пусть t = h(f(x), y, v) и $\sigma = \{(x, a), (y, g(b, z)), (v, w)\},$ тогда $\sigma[t] = h(f(a), g(b, z), w)$

Композиция подстановок. Унификатор

- Композиция двух подстановок σ_1 и σ_2 есть функция ($\sigma_2 \circ \sigma_1$), определяемая следующим образом:
- $(\sigma_2 \circ \sigma_1)[t] = \sigma_2[\sigma_1[t]].$
- Таким образом, композиция представляет собой результат применения σ_2 к термам подстановки σ_1 с последующим добавлением всех пар из σ_2 , содержащих переменные, не входящие в σ_1 .

```
Например, пусть \sigma_1 = \{ (z, g(x, y)) \} и \sigma_2 = \{ (x, a), (y, b), (v, c), (z, d) \}, тогда (\sigma_2 \circ \sigma_1) = \{ (z, g(a, b)), (x, a), (y, b), (v, c) \}.
```

- Терм t_2 называется *конкретизацией* (частным случаем, примером) терма t_1 , если существует подстановка σ , такая, что $t_2 = \sigma[t_1]$. Терм t вполне конкретизирован, если он не содержит ни одной переменной.
- Применение подстановки к литералу означает применение ее ко всем термам аргументам этого литерала. Результат применения подстановки σ к литералу L обозначим σ[L].
- Подстановка σ называется унификатором для множества литералов $\{L_1, L_2, ..., L_k\}$, если имеет место равенство: $\sigma[L_1] = \sigma[L_2] = ... = \sigma[L_k]$. Множество $\{L_i\}$ литералов называется в этом случае *унифицируемым*.
- Таким образом, унификатор порождает общий пример для множества литералов

Наиболее общий унификатор

•Наиболее общий (или простейший) унификатор (НОУ) для $\{L_i\}$ – унификатор σ_1 , такой что, если σ_2 - какой-нибудь унификатор для $\{L_i\}$, дающий $\sigma_2\{L_i\}$, то найдется подстановка σ_3 , такая, что

$$\sigma_2\{L_i\} = (\sigma_3 \circ \sigma_1) \{L_i\}.$$

Другими словами, НОУ сводим к любому другому унификатору путем композиции с некоторой подстановкой. Поэтому НОУ *порождает наименее конкретизированный общий пример*.

Алгоритм построения НОУ.

- 1. Положить k := 0, $\sigma_k := \varepsilon$ (пустая подстановка). Перейти к п. 2.
- 2. Если $\sigma_k\{L_i\}$ не является одноэлементным множеством, то перейти к п. 3. Иначе положить НОУ:= σ_k и закончить работу.
- 3. Каждая из литер в $\sigma_k\{L_i\}$ рассматривается как цепочка символов и выделяются первые термы аргументы, не являющихся одинаковыми у всех элементов $\sigma_k\{L_i\}$. Эти термы образуют множество рассогласования B_k

 B_k упорядочивается так, что в начале располагаются переменные, а затем - остальные термы.

Пусть V_k – первый элемент B_k , а U_k - следующий за ним элемент.

Тогда, если V_k - переменная, не входящая в U_k , то принять $\sigma_{k+1} := \{(U_k, V_k)\} \circ \sigma_k$, k:=k+1, перейти к п. 2.

В противном случае окончить работу с отрицательным результатом.

Построение НОУ. Пример

- Найти НОУ для следующего множества литералов (или установить его неунифицируемость)
- $\{L_i\} = \{P(x, z, v_i), P(x, f(y), y), P(x, z, b)\}.$
- Решение:
 - 1. k := 0, $σ_0 := ε$.
 - 2. Имеем $\sigma_0 \circ \{L_i\} = \{P(x, \mathbf{z}, \mathbf{v}), P(x, \mathbf{f}(\mathbf{y}), \mathbf{y}), P(x, \mathbf{z}, \mathbf{b})\}.$

Элементы множества различны, поэтому переходим к составлению множества рассогласования.

- 3. $B_0 = \{z, f(y), z\} = \{z, f(y)\}$, отсюда $\sigma_1 := \{(z, f(y))\} \circ \varepsilon = \{(z, f(y))\}$. $\sigma_1 \circ \{L_i\} = \{P(x, f(y), v), P(x, f(y), y), P(x, f(y), b)\}$ элементы множества различны.
- 4. $B_1 = \{v, y, b\}$, $\sigma_2 = \{(v, y)\} \circ \sigma_1 = \{(v, y)\} \circ \{(z, f(y))\} = \{(z, f(y)), (v, y)\}$. $\sigma_2 \circ \{L_i\} = \{P(x, f(y), y), P(x, f(y), y), P(x, f(y), b)\} = \{P(x, f(y), y), P(x, f(y), b)\} элементы множества различны.$
- 5. $B_2 = \{y, b\}, \ \sigma_3 = \{(y, b)\}, \ \sigma_2 = \{(z, f(b)), (v, b), (y, b)\}.$ $\sigma_{3^{\circ}}\{L_i\} = \{P(x, f(b), b), P(x, f(b), b), P(x, f(b), b)\} = \{P(x, f(b), b)\}.$

Получили одноэлементное множество, содержащее общий пример для исходного множества литералов, а σ_3 - есть НОУ.