ALGEBRA

Factors and Zeros of Polynomials

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of the equation p(x) = 0. Furthermore, (x - a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula

If $p(x) = ax^2 + bx + c$, and $0 \le b^2 - 4ac$, then the real zeros of p are $x = (-b \pm \sqrt{b^2 - 4ac})/2a$.

Special Factors

$$x^{2} - a^{2} = (x - a)(x + a)$$

$$x^{3} - a^{3} = (x - a)(x^{2} + ax + a^{2})$$

$$x^{3} + a^{3} = (x + a)(x^{2} - ax + a^{2})$$

$$x^{4} - a^{4} = (x - a)(x + a)(x^{2} + a^{2})$$

Binomial Theorem

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x + y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$(x + y)^{6} = x^{6} + nx^{6} +$$

Rational Zero Theorem

If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ has integer coefficients, then every rational zero of p is of the form x = r/s, where r is a factor of a_0 and s is a factor of a_n .

Factoring by Grouping

$$acx^3 + adx^2 + bcx + bd = ax^2(cx + d) + b(cx + d) = (ax^2 + b)(cx + d)$$

Arithmetic Operations

$$ab + ac = a(b + c)$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \left(\frac{a}{b}\right)\left(\frac{d}{c}\right) = \frac{ad}{bc}$$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$$

$$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$$

$$a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\frac{a - b}{c - d} = \frac{b - a}{d - c}$$

$$\frac{ab + ac}{a} = b + c$$

Exponents and Radicals

$$a^{0} = 1, \quad a \neq 0$$
 $(ab)^{x} = a^{x}b^{x}$ $a^{x}a^{y} = a^{x+y}$ $\sqrt{a} = a^{1/2}$ $\frac{a^{x}}{a^{y}} = a^{x-y}$ $\sqrt[n]{a} = a^{1/n}$ $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$ $\sqrt[n]{a^{m}} = a^{m/n}$ $a^{-x} = \frac{1}{a^{x}}$ $\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$ $(a^{x})^{y} = a^{xy}$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

FORMULAS FROM GEOMETRY

Triangle

$$h = a \sin \theta$$

Area =
$$\frac{1}{2}bh$$

(Law of Cosines)

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Sector of Circular Ring

(p = average radius,

$$w =$$
width of ring,

 θ in radians)

Area =
$$\theta pw$$

Right Triangle

(Pythagorean Theorem)

$$c^2 = a^2 + b^2$$

Ellipse

Area = πab

Circumference
$$\approx 2\pi \sqrt{\frac{a^2+b^2}{2}}$$

Equilateral Triangle

$$h = \frac{\sqrt{3}s}{2}$$

Area =
$$\frac{\sqrt{3}s^2}{4}$$

Cone

$$(A = area of base)$$

Volume =
$$\frac{Ah}{3}$$

Parallelogram

Area =
$$bh$$

Right Circular Cone

Volume =
$$\frac{\pi r^2 h}{3}$$

Trapezoid

Area =
$$\frac{h}{2}(a+b)$$

Frustum of Right Circular Cone

$$Volume = \frac{\pi(r^2 + rR + R^2)h}{3}$$

Lateral Surface Area = $\pi s(R + r)$

Circle

Area =
$$\pi r^2$$

Circumference =
$$2\pi r$$

Right Circular Cylinder

Volume =
$$\pi r^2 h$$

Lateral Surface Area = $2\pi rh$

Sector of Circle

(
$$\theta$$
 in radians)

Area =
$$\frac{\theta r^2}{2}$$

$$s = r\theta$$

Sphere

Volume =
$$\frac{4}{3}\pi r^3$$

Surface Area = $4\pi r^2$

Circular Ring

$$(p = average radius,$$

$$w = \text{width of ring})$$

Area = $\pi(R^2 - r^2)$

$$=2\pi pw$$

Wedge

$$(A = area of upper face,$$

$$B = area of base)$$

$$A = B \sec \theta$$

TRIGONOMETRY

Definition of the Six Trigonometric Functions

Right triangle definitions, where $0 < \theta < \pi/2$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} \quad \csc \theta = \frac{\text{hyp}}{\text{opp}}$$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}} \quad \sec \theta = \frac{\text{hyp}}{\text{adj}}$
 $\tan \theta = \frac{\text{opp}}{\text{adj}} \quad \cot \theta = \frac{\text{adj}}{\text{opp}}$

Circular function definitions, where θ *is any angle.*

$$\sin \theta = \frac{y}{r} \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \cot \theta = \frac{x}{y}$$

Reciprocal Identities

$$\sin x = \frac{1}{\csc x} \quad \sec x = \frac{1}{\cos x} \quad \tan x = \frac{1}{\cot x}$$

$$\csc x = \frac{1}{\sin x} \quad \cos x = \frac{1}{\sec x} \quad \cot x = \frac{1}{\tan x}$$

Quotient Identities

$$\tan x = \frac{\sin x}{\cos x} \quad \cot x = \frac{\cos x}{\sin x}$$

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$
 $1 + \cot^2 x = \csc^2 x$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\csc\left(\frac{\pi}{2} - x\right) = \sec x \qquad \tan\left(\frac{\pi}{2} - x\right) = \cot x$$

$$\sec\left(\frac{\pi}{2} - x\right) = \csc x \qquad \cot\left(\frac{\pi}{2} - x\right) = \tan x$$

Even/Odd Identities

$$\sin(-x) = -\sin x$$
 $\cos(-x) = \cos x$
 $\csc(-x) = -\csc x$ $\tan(-x) = -\tan x$
 $\sec(-x) = \sec x$ $\cot(-x) = -\cot x$

Sum and Difference Formulas

$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$

$$\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$$

Double-Angle Formulas

$$\sin 2u = 2 \sin u \cos u$$

$$\cos 2u = \cos^2 u - \sin^2 u = 2 \cos^2 u - 1 = 1 - 2 \sin^2 u$$

$$\tan 2u = \frac{2 \tan u}{1 - \tan^2 u}$$

Power-Reducing Formulas

$$\sin^2 u = \frac{1 - \cos 2u}{2}$$
$$\cos^2 u = \frac{1 + \cos 2u}{2}$$
$$\tan^2 u = \frac{1 - \cos 2u}{1 + \cos 2u}$$

Sum-to-Product Formulas

$$\sin u + \sin v = 2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$

$$\sin u - \sin v = 2\cos\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$

$$\cos u + \cos v = 2\cos\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$

$$\cos u - \cos v = -2\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$

Product-to-Sum Formulas

$$\sin u \sin v = \frac{1}{2} [\cos(u - v) - \cos(u + v)]$$

$$\cos u \cos v = \frac{1}{2} [\cos(u - v) + \cos(u + v)]$$

$$\sin u \cos v = \frac{1}{2} [\sin(u + v) + \sin(u - v)]$$

$$\cos u \sin v = \frac{1}{2} [\sin(u + v) - \sin(u - v)]$$

DERIVATIVES AND INTEGRALS

Basic Differentiation Rules

$$1. \ \frac{d}{dx}[cu] = cu'$$

4.
$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$$

7.
$$\frac{d}{dx}[x] = 1$$

10.
$$\frac{d}{dx}[e^u] = e^u u'$$

13.
$$\frac{d}{dx}[\sin u] = (\cos u)u'$$

16.
$$\frac{d}{dx}[\cot u] = -(\csc^2 u)u'$$

$$19. \ \frac{d}{dx} [\arcsin u] = \frac{u'}{\sqrt{1 - u^2}}$$

22.
$$\frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1+u^2}$$

25.
$$\frac{d}{dx}[\sinh u] = (\cosh u)u'$$

28.
$$\frac{d}{dx}[\coth u] = -(\operatorname{csch}^2 u)u'$$

31.
$$\frac{d}{dx}[\sinh^{-1} u] = \frac{u'}{\sqrt{u^2 + 1}}$$

34.
$$\frac{d}{dx}[\coth^{-1} u] = \frac{u'}{1 - u^2}$$

$$2. \frac{d}{dx}[u \pm v] = u' \pm v'$$

5.
$$\frac{d}{dr}[c] = 0$$

8.
$$\frac{d}{dx}[|u|] = \frac{u}{|u|}(u'), \quad u \neq 0$$

11.
$$\frac{d}{dx}[\log_a u] = \frac{u'}{(\ln a)u}$$

14.
$$\frac{d}{dx}[\cos u] = -(\sin u)u'$$

17.
$$\frac{d}{dx}[\sec u] = (\sec u \tan u)u'$$

$$20. \ \frac{d}{dx} [\arccos u] = \frac{-u'}{\sqrt{1-u^2}}$$

23.
$$\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

26.
$$\frac{d}{dx}[\cosh u] = (\sinh u)u'$$

29.
$$\frac{d}{dx}[\operatorname{sech} u] = -(\operatorname{sech} u \tanh u)u'$$

32.
$$\frac{d}{dx}[\cosh^{-1}u] = \frac{u'}{\sqrt{u^2 - 1}}$$

35.
$$\frac{d}{dx}[\operatorname{sech}^{-1} u] = \frac{-u'}{u\sqrt{1-u^2}}$$

$$3. \frac{d}{dx}[uv] = uv' + vu'$$

6.
$$\frac{d}{dx}[u^n] = nu^{n-1}u'$$

$$9. \frac{d}{dx}[\ln u] = \frac{u'}{u}$$

12.
$$\frac{d}{dx}[a^u] = (\ln a)a^u u'$$

$$\mathbf{15.} \ \frac{d}{dx}[\tan u] = (\sec^2 u)u'$$

18.
$$\frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$$

$$21. \frac{d}{dx} [\arctan u] = \frac{u'}{1 + u^2}$$

24.
$$\frac{d}{dx}[\arccos u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

27.
$$\frac{d}{dx}[\tanh u] = (\operatorname{sech}^2 u)u'$$

30.
$$\frac{d}{dx}[\operatorname{csch} u] = -(\operatorname{csch} u \operatorname{coth} u)u'$$

33.
$$\frac{d}{dx}[\tanh^{-1} u] = \frac{u'}{1 - u^2}$$

36.
$$\frac{d}{dx}[\operatorname{csch}^{-1} u] = \frac{-u'}{|u|\sqrt{1+u^2}}$$

Basic Integration Formulas

$$1. \int kf(u) \ du = k \int f(u) \ du$$

$$3. \int du = u + C$$

$$5. \int \frac{du}{u} = \ln|u| + C$$

$$7. \int a^u du = \left(\frac{1}{\ln a}\right) a^u + C$$

$$9. \int \cos u \, du = \sin u + C$$

$$\mathbf{11.} \int \cot u \, du = \ln|\sin u| + C$$

$$13. \int \csc u \, du = -\ln|\csc u + \cot u| + C$$

$$15. \int \csc^2 u \, du = -\cot u + C$$

$$17. \int \csc u \cot u \, du = -\csc u + C$$

$$19. \int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$

2.
$$\int [f(u) \pm g(u)] du = \int f(u) du \pm \int g(u) du$$

4.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

$$6. \int e^u du = e^u + C$$

$$8. \int \sin u \, du = -\cos u + C$$

$$\mathbf{10.} \int \tan u \, du = -\ln|\cos u| + C$$

$$12. \int \sec u \, du = \ln |\sec u + \tan u| + C$$

$$14. \int \sec^2 u \, du = \tan u + C$$

$$16. \int \sec u \tan u \, du = \sec u + C$$

18.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

$$20. \int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$$