Simplex Method

Presented by: Narayan Upreti (Roll no:03)

: Shreelata Wagle Khanal (Roll no:43)

Optimization & why?

• In general optimization means the action of making the best or most effective use of a situation or resources.

 Mathematical optimization problems deals with maximizing or minimizing some function relative to some set, often representing a range of choices available in a certain situation.

 The function allows comparison of the different choices for determining which might be "best."

Application area of optimization

Optimization is useful in different fields:

- Manufacturing
- Inventory control
- Scheduling
- Finance
- Mechanics
- Control engineering
- Policy Modeling

- Production
- Transportation
- Networks
- Engineering
- Economics
- Marketing

Optimization technique

• It is a technique to solve the given optimization problem to find its best optimal solution (value).

Different technique can be used to solve the optimization problem.
 Some of them are:

- 1. Graphical method
- 2. Simplex method

Slack Variable

In any lpp , if a constraint has ≤ sign

$$a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + \dots + a_{in}x_n \le b_i$$

then in order to make it an equality, we have to add something positive to LHS,

ie. $a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + \dots + a_{in}x_n + s_i = b_i$

that positive variable s_i is called as slack variable.

Surplus variable

In any lpp , if a constraint has ≥ sign

$$a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + \dots + a_{in}x_n \ge b_i$$

then in order to make it an equality, we have to subtract something positive to LHS,

ie.
$$a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + \dots + a_{in}x_n - s_i = b_i$$

that positive variable s_i is called as surplus variable.

Unrestricted variable

- Any variable x, which takes either positive, negative or zero values is called as unrestricted variables.
- eg. Maximize $Z = 3x_1 + 2x_2$ $x_1 - x_2 \ge 0$ $-3x_1 + x_2 \ge 3$ $x_2 \ge 0$

here variable x_1 is undefined so, it can be either +ve, -ve or 0 values.

• If x_i is an unrestricted variable, we always consider $x_i = x_i' - x_i''$ where $x_i', x_i'' \ge 0$

Canonical form of LPP

- It is said to be in canonical form if it has the following characteristics.
- 1. Objective function is of maximization / minimization type.
- 2. All constraints are of \leq / \geq type.
- 3. All decision variables are of ≥ 0 .

eg. Given lpp

Max
$$Z = 3x_1 + 2x_2 + 7x_3$$

 $6x_1 - 2x_2 + 5x_3 \ge 5$
 $-x_1 + 3x_2 - 4x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Canonical form of LPP

Solution:

The canonical form is

Max
$$Z = 3x_1 + 2x_2 + 7x_3$$

 $-6x_1 + 2x_2 - 5x_3 \le -5$
 $-x_1 + 3x_2 - 4x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Standard form of LPP

- A general LPP is said to be in standard form it has the following characteristics.
- 1. RHS of each constraint is positive.
- 2. All constraints are of = type.
- All decision variable are of ≥ 0.
 eg. Given lpp

Max
$$Z = 2x_1 - 3x_2 + 6x_3$$

 $x_1 - 3x_2 \ge 4$
 $2x_1 - 8x_2 + 3x_3 \le 4$
 $x_1 + x_2 \ge -7$
 $x_1, x_2, x_3 \ge 0$

Standard form of LPP

Solution:

Making each constraint RHS positive, we have

Max
$$Z = 2x_1 - 3x_2 + 6x_3$$

 $x_1 - 3x_2 \ge 4$
 $2x_1 - 8x_2 + 3x_3 \le 4$
 $-x_1 - x_2 \le 7$
 $x_1, x_2, x_3 \ge 0$

Standard form of LPP

Now, The Standard form is

Max
$$Z = 2x_1 - 3x_2 + 6x_3$$

 $x_1 - 3x_2 - s_1 = 4$
 $2x_1 - 8x_2 + 3x_3 + s_2 = 4$
 $-x_1 - x_2 + s_3 = 7$
 $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

Simplex Method Algorithm

- 1. Convert the given general LPP into standard LPP.
 - i. Objective function of Lpp must be maximized. If it is to be minimized then we have to convert it into a problem of maximization by Max $Z'=-Min\ Z$
 - ii. Check all the decision variables are greater than zero.
 - iii. Express the problem in standard form by introducing slack or surplus variable to convert the inequality constraints into equation.
 - iv. All the values of right hand side must be positive.
- 2. Write the values of initial basic feasible solution.
- 3. Write the standard form Lpp into matrix form.
- 4. Construct the initial simplex table.
- 5. Calculate the value of $Z_j C_j = C_B X_j C_j$

Simplex Method Algorithm

- I. If all $(Z_i C_i) \ge 0$, the optimal solution will obtained.
 - II. If at least one $(Z_j C_j)$ is –ve then indicate it by an arrow and this column is called key column.
 - III. If more than one $(Z_j C_j)$ is –ve then choose the most negative of them and this
 - IV. column is called key column.
 - 6. Calculate minimum positive ratio. ie min.ratio = $\frac{X_B}{C_k}$, C_k = key column, > 0
 - 7. Construct the new simplex table by entering incoming vector.
 - 8. Repeat step 5,6.

simplex method Maximization example

```
Q. Max Z = 3n1 + 2n2 + Sn3
        subject to
                          M1 + 2M2 + M3 5 430
                          371, + 2713 · < 460
                          n, + 4n2 & 420
                           71, M2, M3 ≥ 0
    Solution:
                 By introducing slack variables S1,52,53, convert the Problem in standard form.
                          Max Z = 3m, +2m, +5m3 +05, +052 +053
                Subject to,

M, + 2M2 + M3 + S1 = 430
                                 n_1 + u n_2 + S_3 = u 20
                                \mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3}, \mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3} \geq 0
      An initial basic feasible solution às given by,
                       712=12=13 = 0, S1=430, S2=460, S3=420
         Writing in matrix form, AX=B
           \begin{bmatrix} \eta_{1} & \eta_{2} & \eta_{3} & s_{1} & s_{2} & s_{3} \\ 1 & 2 & 1 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 & 1 & 0 \\ 1 & 4 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_{1} \\ \eta_{2} \\ \eta_{3} \\ s_{1} \\ s_{2} \\ s_{3} \end{bmatrix} = \begin{bmatrix} 430 \\ 460 \\ 420 \end{bmatrix}
```

An initial simplex table,

								coming vector		
			Cj	3	2	5	0	0	0	
1	GB CB	B	XB	211	2/2	7/3	SI	52	S3	Min ration = XB/CK
chi chi	0	SI	430	1	2	1	1	0	0	430/1=430
	0	52	460	3	0	2	0	1	0	460/2 = 230
	0	Sg	420	1	Ч	0	0	0	1	1012 - 230
	7	1-6		- 2	0					
		3-6	j	-3	-2	-51	0	0	0	No optimal

Calculation for initial simplex table,

$$z_j - c_j = c_B x_j - c_j$$

$$Z_1 - C_1 = C_0 \times_1 - C_1$$

= $(0 \times 1 + 0 \times 3 + 0 \times 1) - 3$
= 3

 $Z_2-C_2=+2$ and same for other.

1st Iteration

Gi	3	2	5	0	0	0
XB			213	31	52	53
200	-1/2	2	0	1		
230	3/2	0	1	0	1/2	0
420	1	4	0	0	0	1
	9/2	-21	0	0	5/2	0
	XB 200 230 420	XB 91 200 -1/2 230 3/2 420 1	XB N1 N2 200 -1/2 2 230 3/2 0 420 1 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

calculation for above table,

$$\frac{u_{30} \times 2 - u_{60} \times 1}{2} = \frac{860 - u_{60}}{2} = 200$$

$$\frac{420\times2 - 460\times0}{2} = 420$$

$$2j-cj = c_8\times j - cj$$

$$\frac{1 \times 2 - 3 \times 1}{2} = -\frac{1}{2}$$
 $z_1 - c_1 = c_0 x_1 - c_1$

$$\frac{1\times2-3\times0}{2}=1$$

$$\frac{2 \times 2 - 0 \times 1}{2} = 2$$

$$\frac{2}{2} - \frac{1}{2} = \frac{1}{2} \times 2 - \frac{1}{2} = \frac{1}{2$$

$$\frac{0 \times 2 - 1 \times 1}{2} = -\frac{1}{2}$$

$$\frac{0\times2-0\times1}{2}=0$$

$$z_j-c_j=c_8x_j-c_j$$

$$= (0x - \frac{1}{2} + 5x \frac{3}{2} + 0x \frac{1}{2}) - 3$$

And same process for Other.

		Cj	3	2	5	0	0	0	1 ×8
CB	B	XB	211	12)	Na	SA	So	53	20% = 100
0	SI	200	-1/2	2	0	1	1/2	0	12 -200)
5	213	230	3/2	0	1	0	1/2	0	-
0	53	420	1	ч	0	0	0	1	42% = 105
	zj-cj		3/2	-29	0	0	5/2	0	

2 Second Iteration.

		cj	3	2	5	0	0	0	
CB	B	XB	211	212	212	Sn	52	53	
2	212	100	-1/4	1	0	1/2	-1/4	0	
5	713	230	3/2	0	1	0	1/2	0	
0	53	20	2	0	0	-2	1	1	
_ =	Zj-C	j	4	0	0	1	2	0	Opti

Calculation for above table,

$$\frac{420 \times 2 - 200 \times 4}{2} = 20$$

$$\frac{1 \times 2 - (-\frac{1}{2}) \times 4}{2} = 2$$

$$\frac{0 \times 2 - 4 \times 1}{2} = -2$$

$$\frac{0 \times 2 - 4 \times (-\frac{1}{2})}{2} = 1$$

$$\frac{1 \times 2 - 4 \times 0}{2} = 1$$

$$Z_{j}-C_{j} = C_{B}X_{j}-C_{j}$$

$$Z_{1}-C_{1} = (BX_{1}-C_{1})$$

$$=(2X-1/4+5\cdot3/2+0\times2)-3$$

$$= 4$$

$$Z_{2}-C_{2} = (BX_{2}-C_{2})$$

$$=(2X_{1}+5X_{0}+0X_{0})-2$$
and some for other.

Since all zj-cj zo, the solution is optimum and given by M2 = 100, M3 = 230, M1 = 0 Max Z = GXB = (2×100 + 5×230 + 0×20) = 1350

simplex method Minimization Example

```
Min Z = n2 -3 n2 + 2n3
Subject to 311 - 712 + 273 57
           -241+492 512
          -49/4 +37/2 +87/3 510
             \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 \geq 0
Soln
By introducing slack variables 51,52,53.
   convert the problem in standard form.
   Max Z' = - Min Z
           = - 4, +3 M2 - 2M3 + Os, + OS2 + OS3
     Subject to.
             3n, -n2 + 2n3 + S1 = 7
            -27, +4m2 +52 = 12
            -471 + 372 +873 +53=10
               Mr, M2, M3, S1, 82, S3 ≥ 0
 An initial basic feasible colution is given by,
        n_1 = n_2 = n_3 = 0, s_1 = 7, s_2 = 12, s_3 = 10.
    Writing in Matrix form, AX = B
```

						incom	ning v	rector	,	
			G	-1	3/	-2	0	0	0	
	CB	B	XB	nı	12/2	213	SA	52	52	Min ratio= XB
outgoing-	0	S1	7	3	-1	2	1	O	0	-
vector (0	52	12	-2	4	O	0	1	0	12/4 = 3
	0	53	10	-4	3	8	0	0	1	10/3 = 3.33
	Zj.	- Cj		1	-31	2	0	0	0	No optimal

calculation for initial simplex table.

$$z_{1}-c_{1}=c_{8}\times_{1}-c_{1}$$

$$=(0\times3+0\times-2+0\times-4)+(-1)$$

$$=1$$

$$Z_2 - C_2 = C_8 X_2 - C_2$$

= $(0 \times (-1) + 0 \times 4 + 0 \times 3) - 3$
= 3

and some for other.

$$R_2' \rightarrow R_2$$

C;		C;	-1	3	-2	0		-	7
CB	B	XB	na	212	212	SA		0	-
0	51	10	5/2	0	2	1	1/4	0	
3	212	3	-1/2	1	0	0	1/4	0	
0	53	1	-5/2	0	8	0	-3/4	1	
	j-cj		- 1/2	10	2	0	3/4	0	No optima

$$R'_{1} \rightarrow R_{1} + R'_{2}$$

$$R'_{3} \rightarrow R_{3} - 3R'_{2}$$

Calculation for above table.

$$Zj-cj=c_{B}xj-cj$$

$$= (0 \times \frac{5}{2} + 3 \times \frac{-1}{2} + 0 \times \frac{-5}{2}) - (-1)$$

$$= -\frac{1}{2}$$

$$z_2 - \zeta = c_B x_2 - c_2$$

and same process for other.

	1							_,
	Cj	-1	3	-2	0	0	0	
G B	XB	2/2	n2	N3	SI	52	53	Min. Ratio = XB
0 51	10	15/2	0	2	1	1/4	0	10/5/9=4)
3 2	3	-1/2	1	0	0	1/4	0	-
0 53	1	-5/2	0	8	0	-3/4	1	-
Zj-	-1/21	0	2	0	3/4	0		

@ Second Iteration

$$R'_1 \rightarrow 2/3 R_1$$

			_							
	1		G	-1	3	-2	0			7
	GB	B	XB	124	212		2	0	0	-
	-1	24	И	1	712	2/3	81	52	53	
	3	1	1-		U	4/5	1/5	7/10	0	
		2/2	5	0	1	2/5	1/5	3/10		1
	0	53	11	0	0		2	10	0	
	7	-Gi				10	1	-1/2	1	
L				0	0	13/2	11/2	4,	-	
	R.	->	0 1	, .1			15	1/5	0	0

optimal

$$R_2 \rightarrow R_2 + \frac{1}{2}R_1^{\prime}$$
 $R_3 \rightarrow R_3 + \frac{5}{2}R_1^{\prime}$
calculation Z_{j-c_j} for above table.
 $Z_{j-c_j} = C_B X_{j} - C_j$

$$Z_{1}-C_{1} = (BX_{1}-C_{1})$$

$$= (-3x_{1}+3x_{0}+0x_{0})-(-1)$$

$$= 0$$

$$Z_{2}-C_{3} = (BX_{2}-C_{2})$$

$$= (-4x_{0}+3x_{1}+0x_{0})-3$$

$$= 0$$

$$Z_{3}-C_{3} = (-1xY_{5}+3x^{2}Y_{5}+0x_{10})-2$$

$$= \frac{12}{7}S$$
and same process for others.

Since, all $Z_{3}-C_{3} \geq 0$, then solution is optimum.

The optimal solution is given by,
$$Max z^{1} = C_{8}X_{8}$$

$$= (-1xu + 3x_{5} + 0x_{4})$$

$$= 14$$

$$\therefore Mon Z = -Max(z^{1})$$

$$= -Max(z^{1})$$

Thank you

Any Queries???