Task 2 (Supervised Learning)

Importing Standard Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

Reading csv files

```
In [3]: url = 'http://bit.ly/w-data'
data = pd.read_csv(url)
```

In [4]: data

Out[4]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

```
In [5]: data.head()
Out[5]:
            Hours Scores
                      21
         0
               2.5
         1
               5.1
                      47
         2
              3.2
                      27
         3
              8.5
                      75
              3.5
                      30
In [6]: data.shape
Out[6]: (25, 2)
```

Calculating statistical data

```
In [7]: data.describe()
Out[7]:
```

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

Plotting a Scatterplot

```
In [8]: plt.style.use('seaborn')
    Hours = [2.5,5.1,3.2,8.5,3.5,1.5,9.2,5.5,8.3,2.7,7.7,5.9,4.5,3.3,1.1,8.9,2.5,1.9,6.1,7.4,2.7,4.8,3.8,6.9,7.8]
    Scores = [21,47,27,75,30,20,88,60,81,25,85,62,41,42,17,95,30,24,67,69,30,54,35,76,86]
    colors = [7,5,9,7,5,7,2,5,3,7,1,2,8,1,9,2,5,6,7,5,3,5,7,8,9]
    sizes = [289,486,381,255,191,315,185,228,174,538,239,394,399,153,273,293,436,501,397,539,401,289,456,278,309]
    plt.scatter(Hours, Scores, s=sizes, c=colors, cmap='Greens', edgecolor='Black',linewidth=1, alpha=0.75)
    cbar = plt.colorbar()
    cbar.set_label('Satisfaction')
    plt.title('Study Hours vs Scores')
    plt.xlabel('Study Hours')
    plt.ylabel('Scores')
    plt.tight_layout()
    plt.show()
```


cleaning of data

train_test_split

```
In [16]: from sklearn.model_selection import train_test_split
    marks_train,marks_test,duration_train,duration_test=train_test_split(marks,duration,test_size=0.2,random_state=0.2)
In [17]: marks_train.shape
Out[17]: (20, 1)
In [18]: duration_test.shape
Out[18]: (5, 1)
```

Visualization

```
In [26]: plt.scatter(marks_train,duration_train,color='green')
    plt.plot(marks_train,duration_pred2,color='red')
```

Out[26]: [<matplotlib.lines.Line2D at 0x1dfe5e26108>]


```
In [29]: from sklearn.metrics import mean_squared_error
    score = mean_squared_error(duration_pred,duration_test)
    print(score)
    r_score = np.sqrt(mean_squared_error(duration_pred,duration_test))
    print(r_score)
```

21.5987693072174

4.6474476121003665

```
In [30]: duration_pred1 = reg.predict([[9.25]])
    duration_pred1
```

Out[30]: array([[93.69173249]])

```
In [ ]:
```