вариант	ф. номер група поток курс специалност	
Име:		

Устен изпит по логическо програмиране 5 февруари 2021 год.

Зад. 1. а) Какво означава едно множество от съждителни формули да е неизпълнимо? Нека $\Gamma \cup \{\psi\}$ е множество от съждителни формули. Да се докаже, че $\Gamma \models \psi$ точно тогава, когато

 $\Gamma \cup \{ \neg \psi \}$ е неизпълнимо. б) Да се опише алгоритъм, който по дадено крайно множество от съждителни формули Г разпознава дали то е изпълнимо.

Зад. 2. Нека S е множество от дизюнкти, а D е дизюнкт а) Какво е резолютивен извод от S? Какво означава $S \vdash D$?

6) Нека $S \stackrel{r}{\vdash} D$. Докажете, че има такова крайно подмиожество S₀ Ha S, че S₀ F D.

 ${\tt Зад.}\ {\tt 3.}\ {\tt Некв}\ {\tt S}\ {\tt e}\ {\tt множество}\ {\tt от}\ {\tt c}{\tt ъждителни}\ {\tt дизюнкти,}\ {\tt косто}$ е затворено относно правилото за резолюцията и не съдържа празния дизюнкт. Да се докаже, че S има булев модел.

Зад. 4. Нека П е множество от съждителни правила и факти, а N е множество от съждителни цели. Да се докаже, че ако $\Pi \cup N$ е неизпълнимо, то съществуват крайно подмножество Π_0 на Π и цел G от N, такива че $\Pi_0 \vdash G$.

Пожелаваме ви приятна и успешна работа!

			nomov	курс	специалност
вариант	ф. номер	група	поток	курс	Cheditation
Ш.1					
Име:					(2020 /2021

Теоретичен изпит по логическо програмиране (2020/2021) 5 II 2021 r.

формулите: 1. Конгруентни ЛИ caЗад. $a) \ \forall \textbf{x} \, \forall \textbf{y} \, \forall \textbf{y} \, p(\textbf{x},\textbf{y}) \ \text{ii} \ \forall \textbf{y} \, \forall \textbf{x} \, \forall \textbf{x} \, p(\textbf{y},\textbf{x}); \ \textbf{6}) \ \forall \textbf{x} \, \forall \textbf{x} \, \forall \textbf{y} \, p(\textbf{y},\textbf{x})$ $_{\mathbf{H}} \ \forall \mathbf{y} \, \forall \mathbf{x} \, \forall \mathbf{x} \, \mathbf{p}(\mathbf{x}, \mathbf{y})? \ _{\mathbf{B}}) \ \forall \mathbf{y} \, \forall \mathbf{z} \, \forall \mathbf{x} \, \mathbf{p}(\mathbf{x}, \mathbf{y}) \ _{\mathbf{H}} \ \forall \mathbf{y} \, \forall \mathbf{x} \, \forall \mathbf{x} \, \mathbf{p}(\mathbf{x}, \mathbf{y});$ r) $\forall x \forall x q(x) u \forall x q(x)$?

Зад. 2. Намерете $(p(x_1,z) \lor x_1 + x_2 = f(t,y))[s]$ и $\forall x_3 (p(x_3,z) \Rightarrow \exists y (f(y,x_3) = x_2 + z))[s]$, където sе субституцията $x_1, x_2, x_3, y, z, t := f(x_1 + x_2, z), y +$ $x_3, y, f(y, y), (t + x_3) + x_1, x_1 + f(x_2, t).$

Зад. 3. Формулирайте дефинициите на 1) оценка и 2) стойност на терм в структура при оценка. Ако структурата ${\bf M}$ е с универсум реалните числа, ${f f}^{\bf M}(a,b)=a\!+\!b$ и $\mathbf{g}^{\mathbf{M}}(a,b)=ab$, намерете терм, чиято стойност в \mathbf{M} при коя да е оценка v е равна на $(v(\mathbf{x}))^2 + v(\mathbf{y})$.

Зад. 4. Празното запитване е изпълнимо във всяка структура или не е изпълнимо в никоя структура? Обосновете се!

Зад. 5. Приложете алгоритъма за унификация към CHCTEMATA $\{h(z, f(y), g(z)) = h(x, t, y), f(x) = y\}.$

Зад. 6. Да се докаже, че ако празният дизюнкт е тъждествено верен в структурата М, то универсумът на М съдържа само един елемент.

Може да използвате без доказателство всички твърдения от лекциите или записките, но трябва да посочите кои твърдения използвате.

Пожселаваме ви приятна и успешна работа!

			TOTOY	курс	специалност
вариант	ф, номер	група	поток	курс	Christian
O.I.2					
Име:					

Устен изпит по логическо програмиране 5 февруари 2021 год.

Зад. 1. а) Нека $\Gamma \cup \{\psi\}$ е множество от съждителни формули. Какво означава $\Gamma \models \psi$? Да се докаже, че за всяка съждителна формула φ е в сила $\Gamma \models \varphi \Longrightarrow \psi$ точно тогава, когато $\Gamma, \varphi \models \psi$. б) Да се опише алгоритъм, който по дадено крайно множество от съждителни формули Г разпознава дали то е неизпълнимо.

 ${\tt Зад.}$ 2. Нека S е множество от съждителни дизюнкти. Да се докаже, че ако всяко крайно подмножество на S е изпълнимо, то и S е изпълнимо.

Зад. 3. Нека А е фамилия от множества.

а) Какво е трансверзала за А? Какво е минимална трансвер-

зала за А? б) Да се докаже, че ако А е безкрайно и изброимо множество, чинто елементи са непразни крайни множества, то A има минимална трансверзала.

 $\mathtt{3ag.}\ 4.\ \mathtt{a})$ Нека S е множество от съждителни хорнови дизюнкти и M е непразно множество от модели на S. Да се докаже,

че сечението на M е също модел на S.6) Вярно ли е, че всяка хорнова програма има най-малък модел?

Пожселаваме ви приятна и успешна работа!

вариант Ш.2	ф. номер	група	поток	курс	специалност
Име:					(2020/2021)

Теоретичен изпит по логическо програмиране (2020/2021) 5 II 2021 r.

Зад. 1. Г е крайно множество от формули. Докажете, че можем по такъв начин да заменим всяка формула в Γ с конгруентна на нея, че никои две формули в полученото множество не съдържат квантори с една и съща променлива. Къде във Вашите разсъждения използвате крайността на Г?

Зад. 2. Формулирайте дефинициите на 1) субституция и 2) резултат от прилагане на субституция към терм. Намерете f(x,x)[x,y:=y,y], f(g(x),x)[x,y:=y,y], f(g(x),x)[x,y:=g(x),y] if f(g(x),x)[x,y:=x,g(y)].

Зад. 3. Структурата М е с универсум реалните числа, $\mathbf{f}^{\mathbf{M}}(a,b)=a+b$ и $\mathbf{g}^{\mathbf{M}}(a,b)=ab$. Оценката v в \mathbf{M} е такава, че $v(\mathbf{x})=5, v(\mathbf{y})=-2, v(\mathbf{z})=3$ и за всички останали променливи $v(\mathbf{v})=0$. Да се докаже, че съществува и да се посочи такава оценка w в \mathbf{M} , че за всеки терм τ е изиълнено $\llbracket \tau
rbracket^{\mathbf{M}} w = \llbracket \tau [\mathtt{x},\mathtt{z} := \mathtt{f}(\mathtt{x},\mathtt{y}),\mathtt{g}(\mathtt{z},\mathtt{x})]
rbracket^{\mathbf{M}} v.$

Зад. 4. Логическата програма съдържа клауза p(f(x),y):=r(x,y). Намерете състояние, към което може да се сведе състоянието $(?-p(x,y) \parallel x = y)$.

Зад. 5. Приложете алгоритъма за унификация към $\text{chctemata } \{h(y)=t, g(y,f(z),z)=g(h(x),y,x)\}.$

Зад. 6. Формулирайте дефинициите за непосредствена(съждителна) и либерална резолвента.

Можсе да използвате без доказателетво всички твордения от лекциите или записките, но трябва да посочите кои твърдения използвате.

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
0.11.1					
Име:					

Устен изпит по логическо програмиране 5 февруари 2021 год.

Зад. 5. Нека \mathcal{L} е език на предикатното смятане, а \mathcal{L}_1 е разширението на \mathcal{L} с една нова индивидна конствита е. Нека φ е формула от \mathcal{L} с Var^{free} $[\varphi] \subseteq \{y\}$. Нека \mathcal{A} е структура за \mathcal{L} . Да се докаже, че следните са еквивалентии:

- (i) $A \models \varphi$; (ii) $A \models \forall y \varphi$;
- (iii) $\varphi[y/c]$ е вярна във всяко обогатяване на ${\mathcal A}$ до структура зв ${\mathcal L}_1$.

Зад. 6. Нека $\mathcal L$ е предикатен език от първи ред, а $\mathcal A$ и $\mathcal B$ са структури за $\mathcal L$.

- в) Какво означава и с изоморфно влагане на А в В?
- 6) Нека h е изоморфию влагане на A в B. Нека τ е терм и $\tau[x_1,\ldots,x_n]$. Да се докаже, че за произволни a_1,\ldots,a_n от универсума на A е в сила равенството $h(\tau^A[a_1,\ldots,a_n]) = \tau^B[h(a_1),\ldots,h(a_n)]$.
- в) Нека h е изоморфно влагане на \mathcal{A} в \mathcal{B} . Нека φ е затворена универсална формула от \mathcal{L} . Да се докаже, че вко $\mathcal{B} \models \varphi$, то $\mathcal{A} \models \varphi$.

Зад. 7. Нека φ е предикатна формула, а x и y са индивидни променливи. Да се докаже, че ако y ияма свободни участия във φ и свободните участия на x във φ не са в област на действие на квантор по y, то $\forall x \varphi$ и $\forall y \varphi[x/y]$ са логически еквивалентии.

Зад. 8. Нека $\mathcal L$ е език на предикатното смятане без формално равенство и Const $_{\mathcal L} \neq \emptyset$.

- а) Какво означава А е ербранова структура за С?
- б) Нека Δ е множество от затворени универсални формули от \mathcal{L} . Да се докаже, че следните са еквивалентии:
 - (1) Δ няма модел;

UMe:

- (2) Д няма ербранов модел;
- (3) има крайно подмножество на $CSI(\Delta)$, което е булево неизпълнимо.

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност		вариант	ф. номер	група	поток	курс	специалност	
TV.1							₩.2						

Теоретичен изпит по логическо програмиране (2020/2021) 5 II 2021 г.

Зад. 1. Да се докаже, че стойността на кой да е терм τ в ербранова структура **H** при оценка v е равна на резултата от прилагането на v като субститущия към терма τ . Каква е стойността на τ в **H**, когато τ не съдържа променливи?

Зад. 2. Да се докаже, че за всяка формула може да се намери еквивалентна на нея формула в пренекспа нормална форма.

Зад. 3. Докажете теоремата за коректност на метода на резолюциите.

В доказателствата може да използвате наготово всички твърдения (не помощни леми), които на лекциите или в записките са били доказани преди твърденията, които тук се иска да бъдат доказани.

Пожелаваме ви приятна и успешна работа!

вариант	ф. помер	група	поток	курс	специвлиост
O.II.2				_	
Име:					

Устои изпит по логическо програмиране 5 февруари 2021 год.

Зад. 5. Нека \mathcal{L} е език на предикатното смятане, а \mathcal{L}_1 е разширението на \mathcal{L} с една нова индивидна константа с. Нека φ е формула от \mathcal{L} с Var $^{fron}[\varphi] \subseteq \{y\}$. Нека \mathcal{A} е структура за \mathcal{L} . Да се докаже, че следните са еквивалентни:

- (i) φ е изпълнима в A;
- (ii) $A \models \exists y \varphi$;
- (iii) $\varphi[y/c]$ е вярна в някое обогатявано на ${\cal A}$ до структура за ${\cal L}_1$.

Зад. 6. Нека $\mathcal L$ е предикатен съик от първи ред, а $\mathcal A$ и $\mathcal B$ са структури за $\mathcal L$.

- а) Какво означава h е изоморфизам на А варху В?
- 6) Нека h е изоморфизъм на A върху B. Нека τ е терм и $\tau[x_1,\ldots,x_n]$. Да се докаже, че за произволни a_1,\ldots,a_n от универсума на A е в сила равенството $h(\tau^A[a_1,\ldots,a_n]) = \tau^B[h(a_1),\ldots,h(a_n)].$
- в) Нека h е изоморфизъм на \mathcal{A} върху \mathcal{B} . Нека φ е формула от \mathcal{L} . Да се докаже, че ако $\varphi[x_1, x_2, \ldots, x_n]$, то за произволни a_1, \ldots, a_n от универсума на \mathcal{A} е в сила: $\mathcal{A} \models \varphi[a_1, a_2, \ldots, a_n] \longleftrightarrow \mathcal{B} \models \varphi[a_1, a_2, \ldots, a_n]$.

Зад. 7. Нека φ е предикатна формула, а x и y са индивидни променливи. Да се докаже, че ако x няма свободни участия във φ и свободните участия на y във φ не са в област на действие на квантор по x, то $\exists y \varphi$ и $\exists x \varphi[y/x]$ са логически еквивалентни.

Зад. 8. Нека \mathcal{L} е език на предикатното смятане без формално равенство.

- а) Какво означава А с свободна ербранова структура за С?
 б) Нека Г е множество от безкванторни формули от С. Да се докаже, че следните са еквивалентни:
 - (1) Ге изпълнимо:
 - (2) има такава свободна ербранова структура $\mathcal A$ за $\mathcal L$, че $\mathcal A \models_{\Gamma} \Gamma$, където Id(x)=x за всяка индив. променлива x;
- (3) всяко крайно подмножество на Г е булево изпълнимо.

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
1又.2					
Име:					

Теоретичен изпит по логическо програмиране (2020/2021) 5 II 2021 г.

Зад. 1. Ако φ е затворена формула, а v е оценка в структурата \mathbf{M} , да се докаже, че φ е вярна в \mathbf{M} при оценка v тогава и само тогава, когато φ е тъждествено вярна в \mathbf{M} , тогава и само тогава, когато φ е изпълнима в \mathbf{M}

Зад. 2. Да се докаже, че за всяка формула може да се намери еквивалентна на нея формула в отрицателна нормална форма.

Зад. 3. Опишете алгоритъма за унификация и докажете, че завършва след краен брой стъпки.

В доказателствата може да използвате наготово всички твърдения (не помощни леми), които на лекциите или в записките са били доказани преди твърденията, които тук се иска да бъдат доказани. Пожелаваме ви приятна и успешна работа!

