Topological Data Analysis

Lecture 10

Computational persistent homology

Boundary matrix

 $K = \{\{0\}, \{1\}, \{2\}, \{3\}, \{12\}, \{14\}, \{23\}, \{24\}, \{34\}, \{234\}\}\}$

Boundary matrix

	1	2	3	4	12	14	23	24	34	234
0	1	1	1	1						
1					1	1				
2					1		1	1		
3							1		1	
4						1		1	1	
12										
14										
23										1
24										1
34										1

One may skip adding B_0 to the full matrix or zero out it

Filtration function

A function $f: K \to \mathbb{R}$ is called a filtration function iff, either

$$f(\tau) \le f(\sigma) \iff \tau \subseteq \sigma$$

(sublevel filtration)

$$f(\tau) \ge f(\sigma) \iff \tau \ge \sigma$$

(superlevel filtration)

$$K_t = \{ \sigma \in K \mid f(\sigma) \le t \}$$

$$K^t = \{ \sigma \in K \mid f(\sigma) \ge t \}$$

sublevel set
$$t \in (-\infty, +\infty)$$

superlevel set
$$t \in (+\infty, -\infty)$$

A filtration is a sequence of sublevel (superlevel) sets s.t.

$$\emptyset \subset K_1 \subset K_2 \subset \ldots \subset K$$

 $\emptyset \subset K^1 \subset K^2 \subset \ldots \subset K$

sublevel filtration

superlevel filtration

Filtration function

Filtered simplicial complex

	1	4	14	3	2	24	34	23	234	12
0										
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

Filtration function provides order on simplices, therefore on columns and rows of the filtration matrix. Ties are broken, first by simplex dimension, second by lexicographic order given by order on vertices.

Standard algorithm for computing persistent homology

Given a $n \times n$ matrix ∂ define a function mapping a column to the row index of its lowest nonzero element

$$low(j) = \begin{cases} max\{i \mid \partial_{ij} \neq 0\}, & \partial_j \neq 0, \\ -1, & \text{otherwise}. \end{cases}$$

Standard algorithm

- reduce ∂ by column additions
- select a current column ∂_j , moving from left to right
- for each k < j add columns ∂_k to current column ∂_j if low(k) = low(j)
- matrix is reduced when $low(\cdot)$ is injective

Algorithm 3: Standard algorithm over \mathbb{F}_2

Input: An $n \times n$ boundary matrix ∂ over \mathbb{F}_2

- 1 for j = 0, ..., n-1 do
- **2** | **while** $\exists k < j \text{ such that } low_{\partial}(k) = low_{\partial}(j) > -1 \text{ do}$
- $\mathbf{3} \quad | \quad \partial_j \leftarrow \partial_j + \partial_k$
- 4 end while
- 5 end for
- 6 return ∂

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1	1		
14										
3							1	1		
2						1				1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			1
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										

Matrix is called reduced if all lowest nonzero elements are in unique rows

Persistence pairing

Persistence pairing

(4, 14) 0

(1, <u>Ø</u>) 0

 \boldsymbol{E}

(2, 24) 0

(12, <u>Ø</u>) 1

(3, 34) 0

(23, 234) 1

Essential simplices correspond to unpaired empty columns

$$P = \{(i, j) \mid i = \text{low}(\partial_j), \partial_j \neq 0\}$$

 $\mathbf{R} =$

$$E = \{j \mid j \notin \text{low}(\cdot), \partial_j = 0\}$$

Persistence diagram

14

3

24

60

34 23 234 12

Persistence pairing

D

 \boldsymbol{E}

(4, 14) 0

(1, <u>Ø</u>) 0

(2, 24) 0

(12, <u>Ø</u>) 1

(3, 34) 0

(23, 234) 1

Persistence diagram

(20, 20) 0

 $(10, \infty) 0$

(40, 50) 0

(80, ∞) 1

(30, 50) 0

(60, 70) 1

	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1	1	1					
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	00	7 0		00	00	40	00	20	20	10
	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1	1	1					
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	00		00	00	00	40	00	20	20	10
	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1	1	1					
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	00		00	00	00	40	00	20	20	10
	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1		1					
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	00	7 0		00	00	40	00	20	20	10
	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1							
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	00	7 0		00	00	40	00	20	20	10
	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1							
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	00	7 0		00	00	10	00	20	20	10
	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1							
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1							
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	1
4										
1										

	12	234	23	34	24	2	3	14	4	1
12						1				1
234			1							
23						1	1			
34							1		1	1
24						1			1	1
2										
3										
14									1	
4										
1										

	12	234	23	34	24	2	3	14	4	1
12						1				
234			1							
23						1	1			1
34							1		1	1
24						1			1	
2										
3										
14									1	
4										
1										

	12	234	23	34	24	2	3	14	4	1
12						1				
234			1							
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	
4										
1										

Persistence pairing

				10			00	70	00	
1	4	14	3	2	24	34	23	234	12	
				1						12
							1			234
			1	1						23
	1		1							34
	1			1						24
										2
										3
	1									14
										4
										1
_	1									14

Persistence pairing

 \boldsymbol{E}

(4, 14) 0

(1, <u>Ø</u>) 0

(2, 24) 0

(12, <u>Ø</u>) 1

(3, 34) 0

(23, 234) 1

$$P = \{(j, i) \mid i = \text{low}(\partial_j), \partial_j \neq 0\}$$

$$E = \{j \mid j \notin \text{low}(\cdot), \partial_j = 0\}$$

Persistence diagram

	80	70	60	50	50	40	30	20	20	10
	12	234	23	34	24	2	3	14	4	1
12						1				
234			1							
23						1	1			
34							1		1	
24						1			1	
2										
3										
14									1	
4										
1										

Persistence pairing

 \boldsymbol{E}

(4, 14) 0

P

(1, <u>Ø</u>) 0

(2, 24) 0

(12, <u>Ø</u>) 1

(3, 34) 0

(23, 234) 1

Persistence diagram

(20, 20) 0

(10, ∞) 0

(40, 50) 0

(80, ∞) 1

(30, 50) 0

(60, 70) 1

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			1
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							
4			1			1	1			
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										

Given a matrix, the leftmost columns are defined

$$L := \{ \partial_j \mid \exists k < j : low(k) = low(j) > -1 \}$$

Given a leftmost column $\ensuremath{\mathscr{C}} \in L$, its neighbors

$$N(\ell) := \{j > \ell \mid low(j) = low(\ell)\}$$

```
Algorithm 4: Parallel column additions

Input: An n \times n boundary matrix \partial over \mathbb{Z}_2

1 while \partial is not reduced do

2 | \mathcal{L} \leftarrow \{j \mid \not\exists k < j : \text{low}_{\partial}(k) = \text{low}_{\partial}(j) > -1\}

3 | for \ell \in \mathcal{L} do

4 | for j \in \mathcal{N}(\ell) do

5 | \partial_j \leftarrow \partial_j + \partial_\ell

6 | end for

7 | end for

8 end while

9 return \partial
```

34 23 234 12

34 23 234 12

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1	1		1
14										
3							1	1		
2						1				
24									1	
34									1	
23									1	
12										

Leftmost, neighbors
Leftmost, neighbors

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							
4			1			1	1			
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										

Leftmost, neighbors

Given a matrix, the leftmost columns are defined

$$L := \{ \partial_j \mid \exists k < j : low(k) = low(j) > -1 \}$$

Given a leftmost column $\ensuremath{\mathscr{C}} \in L$, its neighbors

$$N(\ell) := \{j > \ell \mid low(j) = low(\ell)\}$$

```
Algorithm 5: The final form of our implemented algorithm
    Input: An n \times n boundary matrix \partial over \mathbb{F}_2
 1 while \partial is not reduced do
        for j = 0, ..., n - 1 do
             Set column low_{\partial}(j) to zero
        end for
        \mathcal{L} \leftarrow \{j \mid \not\exists k < j : low_{\partial}(k) = low_{\partial}(j) > -1\}
        for \ell \in \mathcal{L} do
            for j \in \mathcal{N}(\ell) do
            \partial_j \leftarrow \partial_j + \partial_\ell
             end for
         end for
11 end while
12 return \partial
```

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1	1		
2						1		1		1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			
14										
3							1			
2						1				1
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							1
4			1			1	1			1
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										

	10	20	20	30	40	50	50	60	70	80
	1	4	14	3	2	24	34	23	234	12
1			1							
4			1			1	1			
14										
3							1			
2						1				
24									1	
34									1	
23									1	
12										