Algorithms & Data Structure Day 6: Tree

Kiran Waghmare

Imagination is more important than knowledge

- Albert Einstein

```
Node structure:
class Node
   int data;
    Node next;
    Node prev;
    Node (int d)
        data = d;
        next = null;
        prev = null;
```

```
next
            data
prev
            this.data = d;
```

```
head
                                         data
case 2:
void insertAfter(Node n,int newedata)
    if(n = null)
                                          this.data = d;
        {return;}
    Node new node = new Node (new data);
    new node.next = n.next;
    n.next = new node;
    new node.prev = n;
    new node.next.prev = new node;
```

```
nead
void delete(Node n)
    if(head == null)
        return;
    if (head == n)
        head = n.next
    //It is not a last node
    if(n.next != null)
        n.next.prev = n.prev;
    if(n.prev != null)
        n.prev next = n.next;
    return;
```


CDAC Mumbai:Kiran Waghmare

Defining Binary Trees

- Binary tree is a specific type of tree in which each node can have at most two children namely left child and right child.
- There are various types of binary trees:
 - Strictly binary tree
 - Full binary tree
 - Complete binary tree
- Strictly binary tree:

 A binary tree in which every node, except for the leaf nodes, has non-empty left and right children.

в

Balanced tree

As difference beween height of left subtree and right subtree is 1

Unbalanced tree

As difference between height of left subtree and right subtree is 2

Examples of the Binary Tree

Representing a Binary Tree (Contd.)

OPERATIONS ON TREES

Traversing a Binary Tree

1)TRAVERSING

- You can implement various operations on a binary tree.
- A common operation on a binary tree is traversal.
- Traversal refers to the process of visiting all the nodes of a binary tree once.
- There are three ways for traversing a binary tree:
 - Inorder traversal
 - Preorder traversal
 - Postorder traversal

Binary Tree Traversals

Traversal Examples

21

CDAC Mumbai:Kiran Waghmare

Expression Binary Tree Traversal

If an expression is represented as a binary tree, the inorder traversal of the tree gives us an infix expression, whereas the postorder traversal gives us a postfix expression as shown in Figure.

Inorder : a + b * c + d * e

postorder : abc*+de*+

Strictly binary tree data structure is used to represent mathematical expressions.

Binary Tree - Representing Algebraic Expressions

Thanks