Intro

Conte

Physica picture

Markov process

Monte Carlo

Outro

Jet evolution in a dense QCD medium

Linnéa Gräns Samuelsson

Internship at CEA Saclay Supervisors: Edmond Iancu and Gregory Soyez

June 30, 2017

Jet evolution in a dense QCD medium

Linnéa Gräns Samuelsson

Intro

Conte

Physica picture

Markov

Monte Carl simulation

Outro

the medium: a quark gluon plasma created in a heavy ion collision

 the jet: a collimated spray of particles generated via successive branchings of a parton with high energy produced in the collision

Structure of presentation:

- Context
- Physical picture
- Markov process
- Monte Carlo simulation ← my contribution

Intro

Context

Physica

Markov

Monte Carl

Outr

Observation: jet loses energy in medium. Missing energy found among soft hadrons at large angles.

• Question 1: why large angles?

Intro

Context

Physica

Markov

Monte Carl

Outr

Difference in energy loss, competition between geometry and fluctuations:

• Question 2: how large fluctuations?

Markov

Monte Carlo simulation

0...

Physical picture

Source of energy loss: medium induced radiation.

• Scattering destroys quantum coherence

Formation time: $\Delta t_f = \frac{\omega}{k_\perp^2}$, from criterion $\lambda_\perp < \Delta x_\perp$.

(Note: mostly gluon emissions \Rightarrow consider only these.)

Intro

Conto

Physical picture

Markov process

Monte Carlo simulation

Outro

Physical picture

Scattering gives broadening of transverse momentum

 $\Delta t_f \gg$ mean free path \gg Debye length

- \Rightarrow multiple scatterings lead to one emission *and* scattering centers are independent
- \Rightarrow random walk
- $\Rightarrow \langle k_{\perp}^2
 angle \sim \hat{q} \Delta t$, with \hat{q} being the jet quenching parameter.

Monte Carlo

Outro

$$\Delta t_f = \frac{\omega}{k_{\perp}^2} \qquad \langle k_{\perp}^2 \rangle \sim \hat{q} \Delta t$$

$$\Delta t_f \sim \sqrt{\frac{\omega}{\hat{q}}}$$

Angles:
$$\theta_f = \frac{k_{\perp}}{\omega} = \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$$
 \Rightarrow we favour soft gluons at large angles!

BUT not the end of the story...

Small ω gives small $\Delta t_f \Rightarrow$ need to consider multiple branchings. Hardest scale for multiple branchings:

$$\omega_{br} = \bar{\alpha}^2 \hat{q} L^2.$$

$$(\bar{\alpha} = \alpha_s N_c / \pi)$$

Primary gluons emitted with ω_{br} can undergo democratic branchings (child gluons split energy \sim equally).

Intro

Conte

Physical picture

Markov

Monte Carlo simulation

Outro

Mechanism for energy loss:

- $\mathcal{O}(1)$ of primary gluon emissions with $\omega \sim \omega_{br}$.
- They then branch democratically, transporting away all energy.
- Hence both energy loss and its fluctuations on the scale ω_{br} .

Intro

Conto

Physical picture

Markov

Monte Carlo simulation

Outro

Time between branchings ≫ formation time

- ⇒ branchings are independent
- ⇒ Markov process

Outro

Markov process

Branching rate from BDMPS-Z spectrum:

$$\frac{\mathrm{d}^2 P(z,\tau)}{\mathrm{d}z\mathrm{d}\tau} = \frac{K(z)}{2\sqrt{x}}$$

- $au = \frac{ ext{propagation time}}{ ext{democratic branching time for leading particle}}$, $x = \frac{\omega}{E}$
- Splitting kernel: $K(z) = \frac{[1-z(1-z)]^{5/2}}{[z(1-z)]^{3/2}} \approx \frac{1}{[z(1-z)]^{3/2}}$

For the energy spectrum we consider $D(x,\tau) \equiv x n(x,\tau)$, for the fluctuations we also need $D^{(2)}(x,x'\tau) \equiv x x' n^{(2)}(x,x',\tau)$.

$$\frac{\partial}{\partial t} \longrightarrow \left(D(t)\right) \longrightarrow = \longrightarrow \left(D(t)\right) \xrightarrow{\frac{x}{z}} x - \longrightarrow \left(D(t)\right) \xrightarrow{x} zx$$

Monte Carlo simulation

Outr

Analytic result, simple kernel:

•
$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} \exp\left(-\frac{\pi\tau^2}{1-x}\right)$$
.

- $\int_0^1 dx \, D(x,\tau) = e^{-\pi\tau^2} \Rightarrow$ energy decreasing in time.
- ullet Formally: condensate at x=0. Physically: thermalization.

Monte Carl simulation

0....

Analytic result, simple kernel:

- At small τ , loss $\simeq \pi \omega_{br}$.
- $D^{(2)}(x,x'\tau)$ used to find fluctuations. To order τ^4 :

$$\sigma_{\epsilon}(\tau) \simeq \langle \epsilon(\tau) \rangle / \sqrt{3}$$

Intro

Conte

Physica picture

Markov

Monte Carlo simulation

Outro

New work: Monte Carlo simulation

https://github.com/gsoyez/SimpleMediumBranching

Outro

Monte Carlo simulation

Result: full kernel ⇒ less efficient branching

Simple splitting kernel, numerical versus analytic:

- Good agreement overall
- Small x bias < 1%

Corrections from the full splitting kernel:

- Leading peak still present at $\tau=0.5$
- Less energy lost at $\tau = 1$

Recall:

Simple
$$K(z)=\frac{1}{[z(1-z)]^{3/2}}$$
 Full $K(z)=\frac{[1-z(1-z)]^{5/2}}{[z(1-z)]^{3/2}}$

Jet evolution in a dense QCD medium

Linnéa Gräns Samuelsson

Intro

- .

Physica

Markov

Monte Carlo simulation

Outr

Monte Carlo simulation

Result: full kernel ⇒ less efficient branching

Jet evolution in a dense QCD medium

Linnéa Gräns Samuelsson

Intro

.

Physica

Markov process

Monte Carlo simulation

Outr

Energy loss and its fluctuations - new result!

Full kernel \Rightarrow shifted in τ but same qualitative picture.

Intr

Conte

Physica picture

Markov process

Monte Carlo simulation

Outro

Summary:

- Democratic branchings ⇒ energy found at large angles
- Prediction: large fluctuations in energy loss
- My contribution: Monte Carlo simulation
- First results for full kernel: same qualitative behaviour, quantitative differences

THE END

Questions?