Cough Check Algorithm for Mobile All-Day-Long Environment

모바일 ADL 환경에서 기침소리 체크를 위한 알고리즘 개발

목 차

- 마일스톤
 - 기존 알고리즘 (floornoise)
 - 개발/연구 방향
- 개발/연구 내용
 - 개발/연구 일정
 - 진행 중인 사항

기존 알고리즘 (floornoise)

- 시간의 흐름에 따른 음원의 음압 (dBA) 측정 가능
- Threshold 기준치 초과 시에 local Maximum dBA 발생 지점 체크
- 기준치 초과 횟수 측정 가능

개발/연구 방향

사용자 기침소리 판별 (+ 추출)

개발/연구 방향

개발/연구 방향

배경소음 제거/보정

큰 소리 체크

기침소리 판별

사용자 기침소리 판별

사용자 기침소리 카운팅

- 1. Python 코드 내에서 audio data handling을 위한 프로세스 구성 (이후 과정에서 사용하는 기능에 따라 floornoise와 차이 발생할 수 있음)
- 2. 음원에서 유의미한 음성 신호 (큰 소리)를 체크하고 개별 음원으로 분할
- 3. 각각의 음원이 기침 소리인지 판별
- 4. 기침 소리라고 판별된 음원이 사용자의 기침소리인지 판별
- 5. 사용자의 기침 소리를 카운팅하고 트랜드 그래프 구성
- 6. REST API 개발

현재 개발 완료

Cough size를 20dBA로 설정하고 test audio file 선택 해당 음원의 0초~2.5초 사이 LAeq는 약 14dBA, LAmax는 34dBA

LAeq	14
LAmax	34

초기 Counted Cough 역시 0으로 시작

2

Next 버튼을 눌러 다음 frame으로 이동한 상황

2.5~5.1초 사이 LAeq는 22dBA, LAmax는 75dBA

이전 frame의 LAeq(14dBA)보다 현재 frame의 LAmax가 20dBA 이상 크므로 Counted Cough 1 증가

LAeq	14	22
LAmax	34	75

3

Next 버튼을 눌러 다음 frame으로 이동한 상황

5.1~7.6초 사이 LAeq는 22dBA, LAmax는 74dBA

이전 frame의 LAeq(22dBA)보다 현재 frame의 LAmax가 20dBA 이상 크므로 Counted Cough 1 증가

LAeq	14	22	22
LAmax	34	75	74

4

Next 버튼을 눌러 다음 frame으로 이동한 상황

7.6~10.2초 사이 LAeq는 28dBA, LAmax는 69dBA

이전 frame의 LAeq(22dBA)보다 현재 frame의 LAmax가 20dBA 이상 크므로 Counted Cough 1 증가

LAeq	14	22	22	21
LAmax	34	75	74	69

5

Next 버튼을 눌러 마지막 frame으로 이동한 상황

10.2~11.2초 사이 LAeq는 16dBA, LAmax는 18dBA

이전 frame의 LAeq(29dBA)보다 현재 frame의 LAmax가 20dBA 이상 크지 않으므로 Counted Cough 값에 변동 없음

LAeq	14	22	22	21	16
LAmax	34	75	74	69	18