红酒质量分析报告

回归分析小组 2024 年 1 月 4 日

目录

1	问题	背景	1
2	数据	岩说明	1
3	描述	性统计	2
	3.1	数值特征	2
	3.2	因变量描述	2
	3.3	自变量描述	2
		3.3.1	3
4	数据	建模	3
	4.1	全模型	3
5	结论	没建议	3

1 问题背景

随着酒类产品在市场上的广泛受欢迎,对于酒的质量和特征的深入了解变得至关重要。为了更好地了解酒的品质,我们进行了一项回归分析,重点关注了酒的酸度,二氧化硫(SO_2)含量等特征。这些特征在很大程度上影响了酒的口感、风味和保存能力。

2 数据说明

我们通过 UC Irvine仓库下载了红酒数据,数据集中的特征包含酒的各类化学成分指标以及酒的品质评价。其中,成分指标,如 pH 值、 SO_2 含量、残糖量等通过物理化学检测得出;酒的品质由专业品酒师做出评价。(每个样本由三个品酒师做出评价,每个人的评分为 0(差)到 10(好)的一个整数,最终评价取三人的中位数)。红酒共 1599 条数据,其中不含缺失值,共记录了 12 个特征,特征说明如 1 所示。

表 1: 酒的特征说明

变量名	中文含义	变量类型	单位
fixed acidity	固定酸度	连续型变量	g/L
Volatile Acidity	挥发性酸度	连续型变量	g/L
Citric Acid	柠檬酸	连续型变量	g/L
Residual Sugar	残糖	连续型变量	g/L
Chlorides	氯化物	连续型变量	g/L
Free Sulfur Dioxide	游离二氧化硫	连续型变量	g/L
Total Sulfur Dioxide	总二氧化硫	连续型变量	g/L
Density	密度	连续型变量	g/mL
рН	葡萄酒的 pH 值	连续型变量	
Sulphates	硫酸盐	连续型变量	g/L
Alcohol	醇度	连续型变量	%
Quality	酒品	离散型变量	

3 描述性统计

3.1 数值特征

对数据的初步描述如表 2,表3和表4 所示,包含平均值、最小值、最大值、中位数。

表 2: 数据描述 1-4

fixed.acidity	volatile.acidity	citric.acid	residual.sugar
Min.: 4.60	Min. :0.1200	Min. :0.000	Min.: 0.900
1st Qu.: 7.10	1st Qu.:0.3900	1st Qu.:0.090	1st Qu.: 1.900
Median: 7.90	Median: 0.5200	Median: 0.260	Median: 2.200
Mean:8.32	Mean $:0.5278$	Mean $:0.271$	$\mathrm{Mean}:2.539$
3rd Qu.: 9.20	3rd Qu.:0.6400	3rd Qu.:0.420	3rd Qu.: 2.600
Max. :15.90	Max. :1.5800	Max. :1.000	Max. :15.500

表 3: 数据描述 5-8

chlorides	free.sulfur.dioxide	total.sulfur.dioxide	density
Min. :0.01200	Min.: 1.00	Min.: 6.00	Min. :0.9901
1st Qu.:0.07000	1st Qu.: 7.00	1st Qu.: 22.00	1st Qu.:0.9956
Median: 0.07900	Median :14.00	Median: 38.00	Median: 0.9968
Mean $:0.08747$	Mean : 15.87	Mean: 46.47	Mean $: 0.9967$
3rd Qu.:0.09000	3rd Qu.:21.00	3rd Qu.: 62.00	3rd Qu.:0.9978
Max. :0.61100	Max. :72.00	Max. :289.00	Max. :1.0037

3.2 因变量描述

首先通过直方图观察酒品分布情况,可以发现,数据主要集中在5,6。

3.3 自变量描述

我们通过自变量的分布图和自变量与酒品的箱线图对其进行描述。下面展示部分具有代表性的数据。

表 4: 数据描述 9-12

рН	sulphates	alcohol	quality
Min. :2.740	Min. :0.3300	Min.: 8.40	Min. :3.000
1st Qu.:3.210	1st Qu.:0.5500	1st Qu.: 9.50	1st~Qu.:5.000
Median $:3.310$	Median: 0.6200	Median $:10.20$	Median $:6.000$
Mean $:3.311$	Mean $:0.6581$	Mean $:10.42$	Mean $:5.636$
3rd Qu.:3.400	3rd Qu.:0.7300	3rd Qu.:11.10	3rd Qu.:6.000
Max. :4.010	Max. $:2.0000$	Max. :14.90	Max. :8.000

图 1: 酒品数据分布

3.3.1

4 数据建模

我们首先使用线性模型全模型,通过红酒的化学成分特征,对酒品进行 回归分析。

4.1 全模型

5 结论及建议