

1 Why

We generalize the notion of sequence to index sets beyond the naturals.

2 Definition

A sequence is a function on the natural numbers; this set has two important properties: (a) we can order the natural numbers and (b) we can always go "further out."

To elaborate on property (b): if handed two natural numbers m and n, we can always find another, for example $\max\{m, n\}+1$, larger than m and n. We might think of larger as "further out" from the first natural number: 1.

Combining these to observations, we define a directed set:

Definition 1. A directed set is a set D with a partial order \leq satisfying one additional property: for all $a, b \in D$, there exists $c \in D$ such that $a \leq c$ and $b \leq c$.

Definition 2. A net is a function on a directed set.

A sequence, then, is a net. The directed set is the set of natural numbers and the partial order is $m \leq n$ if $m \leq n$.

2.1 Notation

Directed sets involve a set and a partial order. We commonly assume the partial order, and just denote the set. We use the letter D as a mnemonic for directed.

For nets, we use function notation and generalize sequence notation. We denote the net $x: D \to A$ by $\{a_{\alpha}\}$, emulating notation for sequences. The use of α rather than n reminds us that D need not be the set of natural numbers.

