201-SH2-AB - Exercises #19 - Elasticity

1. For each demand equation, compute the elasticity of demand and determine whether the demand is elastic, unitary, or inelastic at the indicated price.

(a)
$$x = -\frac{5}{4}p + 20;$$
 $p = 10$

(b)
$$x = -\frac{3}{2}p + 9;$$
 $p = 2$

(c)
$$x + \frac{1}{3}p - 20 = 0;$$
 $p = 30$

(d)
$$p = 144 - x^2$$
; $p = 96$

(e)
$$p = 169 - x^2$$
; $p = 29$

2. The demand equation for the Roland portable hair dryer is given by

$$x = \frac{1}{5}(225 - p^2) \qquad (0 \le p \le 15)$$

where x (measured in units of a hundred) is the quantity demanded per week and p is the unit price in dollars.

- (a) Compute the elasticity of demand.
- (b) Is the demand elastic or inelastic when p = 8? And when x = 25?
- (c) At what price is the demand unitary?
- (d) If the demand is increased by 1% from x=25, what will be the corresponding percentage change in price? Will the revenue increase or decrease?
- (e) If the unit price is increased by 2% from \$8, what will be the corresponding percentage change in demand? Will the revenue increase or decrease?
- 3. The management of Titan Tire Company has has determined that the quantity demanded x of their Super Titan tires per week is related to the unit price p by the equation

$$x = \sqrt{144 - p} \qquad (0 \le p \le 144)$$

where p is measured in dollars and x in units of a thousand.

- (a) Compute the elasticity of demand when $p=63,\,p=96,$ and x=6.
- (b) Is the demand elastic, unitary, or inelastic when p = 63, p = 96, and x = 6?
- 4. The proprietor of Showplace, a video store, has estimated that the rental price p (in dollars) of prerecorded DVDs is related to the quantity x (in thousands) rented per day by the demand equation

$$x = \frac{2}{3}\sqrt{36 - p^2} \qquad (0 \le p \le 6)$$

Currently, the rental price is \$2/disc.

- (a) Compute the elasticity of demand.
- (b) Is the demand elastic or inelastic at this rental price?
- (c) If the rental price is increased by 3%, what will be the corresponding percentage change in demand? Will the revenue increase or decrease?

5. The quantity demanded each week x (in units of a hundred) of the Mikado digital camera is related to the unit price p (in dollars) by the demand equation

$$x = \sqrt{400 - 5p} \qquad (0 \le p \le 80)$$

- (a) Compute the elasticity of demand.
- (b) Is the demand elastic or inelastic when p = 40? When x = 10?
- (c) At what price is the demand unitary?
- (d) If the demand is increased by 4% from x = 10, what will be the corresponding percentage change in price? Will the revenue increase or decrease?
- (e) If the unit price is increased by 5% from \$40, what will be the corresponding percentage change in demand? Will the revenue increase or decrease?
- 6. The demand equation for a certain product is 2x + 5p 60 = 0, where p is the unit price and x is the quantity demanded of the product. Find the elasticity of demand and determine whether the demand is elastic or inelastic, at the indicated prices.
 - (a) p = 3
 - (b) p = 6
 - (c) p = 9
- 7. The demand equation for a certain product is $x = 100 0.01p^2$.
 - (a) Find the elasticity of demand.
 - (b) Is the demand elastic, unitary, or inelastic when p = 40?
 - (c) If the price is \$40 and it is raised by 6%, what will be the corresponding percentage change in demand? Will the revenue increase or decrease?
- 8. \star The demand equation for a certain product is

$$p = 9\sqrt[3]{1000 - x}$$

- (a) Find the elasticity of demand.
- (b) Is the demand elastic, unitary, or inelastic when p = 60?
- (c) If the price is \$60 and it is raised by 7%, what will be the corresponding percentage change in demand? Will the revenue increase or decrease?

Answers

1. (a)
$$E(p) = -\frac{p}{p-16}$$
; $E(10) = \frac{5}{3}$; or $\eta = \frac{p}{p-16} = -\frac{5}{3}$; elastic

(b)
$$E(p) = -\frac{p}{p-6}$$
; $E(2) = \frac{1}{2}$; or $\eta = \frac{p}{p-6} = -\frac{1}{2}$; inelastic

(c)
$$E(p) = -\frac{p}{p-60}$$
; $E(30) = 1$; or $\eta = \frac{p}{p-60} = -1$; unitary

(d)
$$E(p) = -\frac{p}{2p - 288}$$
; $E(96) = 1$; or $\eta = \frac{p}{2p - 288} = -1$; unitary

(e)
$$E(p) = -\frac{p}{2p - 338}$$
; $E(29) \approx 0.104$; or $\eta = \frac{p}{2p - 338} \approx -0.104$; inelastic

2. (a)
$$E(p) = -\frac{2p^2}{p^2 - 225}$$
 or $\eta = \frac{2p^2}{p^2 - 225}$

- (b) Inelastic when p = 8; elastic when x = 25
- (c) p = 8.66
- (d) Price decreases by 0.625%; Revenue will increase
- (e) Demand decreases by 1.59%; Revenue will increase

3. (a)
$$E(p) = -\frac{p}{2p - 288}$$
 or $\eta = \frac{p}{2p - 288}$
$$E(63) = \frac{7}{18} \text{ or } \eta = -\frac{7}{18}$$

$$E(96) = 1 \text{ or } \eta = -1$$

When
$$x = 6$$
, we have $p = 108$ and $E(108) = \frac{3}{2}$ or $\eta = -\frac{3}{2}$

(b) Inelastic; unitary; elastic

4. (a)
$$E(p) = -\frac{p^2}{p^2 - 36}$$
 or $\eta = \frac{p^2}{p^2 - 36}$

- (b) Inelastic
- (c) Demand will decrease by 0.375%; Revenue will increase

5. (a)
$$E(p) = -\frac{p}{2p - 160}$$
 or $\eta = \frac{p}{2p - 160}$

- (b) Inelastic when p = 40; elastic when x = 10
- (c) \$53.33
- (d) Price decreases by 2.667%; Revenue will increase.
- (e) Demand decreases by 7.5%; Revenue will increase

6.
$$E(p) = -\frac{p}{p-12}$$
 or $\eta = \frac{p}{p-12}$

(a)
$$E(3) = \frac{1}{3}$$
 or $\eta = -\frac{1}{3}$; inelastic

(b)
$$E(6) = 1$$
 or $\eta = -1$; unitary

(c)
$$E(9) = 3$$
 or $\eta = -3$; elastic

7. (a)
$$E(p) = -\frac{2p^2}{p^2 - 10000}$$
 or $\eta = \frac{2p^2}{p^2 - 10000}$

- (b) Inelastic
- (c) Demand decreases by 2.29%; Revenue will increase

8. (a)
$$E(p) = -\frac{3p^3}{p^3 - 729000}$$
 or $\eta = \frac{3p^3}{p^3 - 729000}$

- (b) Elastic
- (c) Demand decreases by 8.84%; Revenue will decrease

Source: Soo T. Tan. Applied Calculus for the Managerial, Life, and Social Sciences. 10th Edition