











### Propriedades dos Materiais

A forma como os materiais aparecem no mundo real tem a ver com sua cor, e as condições de iluminação que o rodeiam.

### Propriedades dos Materiais

#### Adição de luz

 Não existe regra (como no RGB) para ajudar a definir as propriedades ideais de luzes e materiais (os resultados geralmente são obtidos com prática e análise)

#### Material no OpenGL

Cálculo do efeito das luzes:

- O cálculo do RGB das três componentes de luz é feito de forma similar, no entanto a direcionalidade das luzes difusas e especular depende do ângulo de incidência da luz;
- O Calculo do RGB obtido a partir da incidência da luz (ambiente, neste caso) com RGB (0.5, 0.5, 0.5) numa superfície com propriedades refletivas de luz ambiente (0.5, 1.0, 0,5) pode ser calculado da seguinte forma:



#### Material no OpenGL

Ativação da Luz

glEnable(GL\_LIGHTING);

Efeito de brilho – Propriedade GL SHININESS:

glMateriali(GL\_FRONT, GL\_SHININESS,128);

Função que define o expoente especular dos materiais.

- Com valor próximo de 0, o fogo é grande, provocando uma incidência semelhante a difusa/ambiente;
- A medida que aumentamos o valor, provoca um ponto de luz mais definido;
- O valor de GL SHININESS pode variar entre 1 e 128

## Depth Buffer

Inicialmente, os valores de profundidade são especificados para serem o maior possível através do comendo:

• glClear(GL\_DEPTH\_BUFFER\_BIT)

Habilita-se o depth-buffering através do:

• glEnable(GL\_DEPTH\_TEST)



#### Modelos de Sombreamento

#### Flat Shading

• Mantém a cor constante e tem resultado melhor para superfícies planas.

#### **Gouraud Shading**

- Conhecido como sombreamento por interpolação de intensidade ou por interpolação de cor;
- Elimina descontinuidades de intensidade;





#### Blending

Para habilitar o "blending" deve ser utilizado o comando glEnable(GL\_BLEND), e para desabilitar o comando glDisable(GL\_BLEND);

É necessária a definição da função de blending que é feita através do comando

glBlendFunc(GLenum sFactor, Glenum dFactor)

- GLenum sFactor: Indica como computar o fator de blending da fonte;
- Glenum dFactor:Indica como computador o fator de blending do destino.

# Blending

#### Valores possíveis de parâmetros de glBlendFunc:

| Constante              | Aplicado a       | Fator de Blending Calculado   |
|------------------------|------------------|-------------------------------|
| GL_ZERO                | Fonte ou Destino | (0, 0, 0, 0)                  |
| GL_ONE                 | Fonte ou Destino | (1, 1, 1, 1)                  |
| GL_DST_COLOR           | Fonte            | (Rd, Gd, Bd, Ad)              |
| GL_SRC_COLOR           | Destino          | (Rs, Gs, Bs, As)              |
| GL_ONE_MINUS_DST_COLOR | Fonte            | (1, 1, 1, 1)-(Rd, Gd, Bd, Ad) |
| GL_ONE_MINUS_SRC_COLOR | Destino          | (1, 1, 1, 1)-(Rs, Gs, Bs, As) |
| GL_SRC_ALPHA           | Fonte ou Destino | (As, As, As, As)              |
| GL_ONE_MINUS_SRC_ALPHA | Fonte ou Destino | (1, 1, 1, 1)-(As, As, As, As) |
| GL_DST_ALPHA           | Fonte ou Destino | (Ad, Ad, Ad, Ad)              |
| GL_ONE_MINUS_DST_ALPHA | Fonte ou Destino | (1, 1, 1, 1)-(Ad, Ad, Ad, Ad) |
| GL_SRC_ALPHA_SATURATE  | Fonte            | (f, f, f, 1); f=min(As, 1-Ad) |

Fonte: Sobrinho (2003);