What is claimed is:

18

1	1. A control system for managing a production schedule
2	having time constraints that define a maximum elapsed time
3	between operations, comprising:
4	a calculation unit configured to define a plurality of
5	sub-time constraints between each two operations of
6	the production schedule, generate a plurality of
7	equations representing functions of the time
8	constraints and the sub-time constraints, and
9	calculate a value for the sub-time constraints with
10	the equations; and
11	a determination unit configured to define a status for each
12	operation according to a Work-In-Process (WIP)
13	quantity between a first operation and a checked
14	operation of the production line and a throughput rate
15	of the checked operation, check whether the status
16	violates any of the sub-time constraints between the
17	first operation and the checked operation, and release

a lot into the production line if the status for each

- operation satisfies the corresponding sum of the sub-time constraints.
 - 2. The control system as claimed in claim 1 wherein the calculation unit further simulates at least one queue time between two operations, and assigns the queue time to one of the sub-time constraints, thereby obtaining a remnant sub-time constraint.
 - 1 3. The control system as claimed in claim 1 wherein the 2 status is defined as follows:
 - $S = WIP(o_1, o_n)/WPH(o_n),$
 - wherein S is the status of a checked operation (O_n) , $WIP(o_1,o_n)$ is the WIP quantity between the first

 operation (O_1) and the checked operation (O_n) , and $WPH(o_n)$ is the throughput rate of the checked

 operation (O_n) .
 - 4. The control system as claimed in claim 1 wherein the status for each operation is further defined according to a process time for each operation between the first operation and

- 4 the checked operation except that process time attributed to the
- first operation (O_1) and the checked operation (O_n) .
- The control system as claimed in claim 4 wherein the
- 2 status is defined as follows:
- $S = (WIP(o_1, o_n)/WPH(o_n)) PT(o_2, o_{n-1}),$
- wherein S is the status of a subsequent checked operation
- 5 $(o_2 \sim o_{n-1})$, $WIP(o_1, o_n)$ is the WIP quantity between
- the first operation (O_1) and the checked operation
- 7 (O_n) , $WPH(O_n)$ is the throughput rate of the checked
- operation (O_n) , and $PT(o_2, o_{n-1})$ is the total process
- $oldsymbol{0}$ time of operations between the first operation (O_1)
- and the subsequent checked operation ($o_2 \sim o_{n-1}$)
- 11 except that process time attributed to the first
- operation (O_1) and the checked operation (O_n) .
 - 1 6. The control system as claimed in claim 1 wherein the
 - time constraints comprise overlapping time constraints.
 - 1 7. The control system as claimed in claim 1 wherein the
 - 2 time constraints comprise a constraint selected from the group

- 3 consisting of dual-operation, multi-operation, and continuous
- 4 time constraints.
- 1 8. The control system as claimed in claim 1 wherein a
- 2 production line is directed to perform related operations if the
- 3 lot is released to the production line.
- 1 9. The control system as claimed in claim 8 wherein the
- 2 production line is a production line for manufacturing
- 3 semiconductor products.
- 1 10. A method for managing a production schedule having
- time constraints that define a maximum elapsed time between
- 3 operations, comprising the steps of:
- 4 defining a plurality of sub-time constraints between each
- 5 two operations;
- 6 generating plurality of equations according to the time
- 7 constraints and the sub-time constraints;
- 8 calculating the sub-time constraints using the equations;
- 9 defining a status for each operation according to a
- 10 Work-In-Process (WIP) quantity between a first
- operation and a checked operation of the production

12 schedule and a throughput rate of the checked operation; 13 checking whether the status violates the sum of the 14 calculated sub-time constraints between the first 15 operation and the checked operation; and 16 releasing a lot if the status for each operation satisfies 17 the corresponding sum of the sub-time constraints. 18 The method as claimed in claim 10 further comprising 1 11. simulating at least one queue time between two operations, and 2 assigning the queue time to one of the sub-time constraints, 3 thereby obtaining a remnant sub-time constraint. 4 The method as claimed in claim 10 wherein the status 1 is defined as follows: 2

- $S = WIP(o_1, o_n)/WPH(o_n),$
- wherein S is the status of a checked operation (O_n) , $WIP(o_1,o_n)$ is the WIP quantity between the first

 operation (O_1) and the checked operation (O_n) , and $WPH(o_n)$ is the throughput rate of the checked

 operation (O_n) .

- 1 13. The method as claimed in claim 10 further comprising defining the status for each operation according to a process time for each operation between the first operation and the checked operation except that process time attributed to the first operation (O_1) and the checked operation (O_n) .
- 1 14. The method as claimed in claim 13 wherein the status 2 is defined as follows:
- $S = (WIP(o_1, o_n)/WPH(o_n)) PT(o_2, o_{n-1}),$

wherein S is the status of a subsequent checked operation 4 $(o_2 \sim o_{n-1})$, $WIP(o_1, o_n)$ is the WIP quantity between 5 the first operation (O_1) and the checked operation 6 (O_n) , WPH (o_n) is the throughput rate of the checked operation (O_n) , and $PT(o_2, o_{n-1})$ is the total process 8 time of operations between the first operation (O_1) 9 and the subsequent checked operation ($o_2 \sim o_{n-1}$) 10 except that process time attributed to the first 11 operation (O_1) and the checked operation (O_n) . 12

- 1 15. The method as claimed in claim 10 wherein the time
- 2 constraints comprise overlapping time constraints between the
- 3 operations.
- 1 16. The method as claimed in claim 10 wherein the time
- 2 constraints comprise a constraint selected from the group
- 3 consisting of dual-operation, multi-operation, and continuous
- 4 time constraints.
- 1 17. The method as claimed in claim 10 further comprising
- 2 performing related operations if the lot is released to a
- 3 production line.
- 1 18. The method as claimed in claim 17 wherein the
- 2 production line is a production line for semiconductor products.
- 1 19. A dispatch method that accommodates overlapping time
- 2 constraints that define a maximum elapsed time between select
- 3 operations in a production schedule, comprising the steps of:
- 4 defining a plurality of sub-time constraints between each
- 5 two operations;

6 generating plurality of equations according to the time constraints and the sub-time constraints; 8 simulating at least one queue time between two operations; assigning the queue time to one of the sub-time constraints; 9 10 and calculating a remnant sub-time constraint using the 11 12 equations. The dispatch method as claimed in claim 19 wherein the 1 production schedule is applied in manufacturing semiconductor 2 3 devices. 1 21. A method for managing the manufacture of production 2 lots of semiconductor devices, the method operable on a production schedule defining a plurality of time constraints 3 4 between corresponding production operations, comprising the steps of: 5 6 defining a plurality of sub-time constraints between each 7 two operations; 8 generating plurality of equations according to the time 9 constraints and the sub-time constraints;

calculating the sub-time constraints using the equations; 10 defining a status for each operation according to a 11 12 Work-In-Process (WIP) quantity between a first operation and a checked operation and a throughput 13 rate of the checked operation; 14 checking whether the status violates the sum of the sub-time 15 16 constraints between the first operation and the 17 checked operation; releasing a lot of a semiconductor product into a production 18 line when the status for each operation satisfies the 19 corresponding sum of the sub-time constraints; and 20 manufacturing the semiconductor product when the lot is 21 released to the production line. 22 1 22. The method as claimed in claim 21 further comprising simulating at least one queue time between two operations, and 2

1 23. The method as claimed in claim 21 wherein the status 2 is defined as follows:

thereby obtaining a remnant sub-time constraint.

assigning the queue time to one of the sub-time constraints,

3

4

$$S = WIP(o_1, o_n)/WPH(o_n),$$

- 4 wherein S is the status of a checked operation (O_n) ,
- 5 $WIP(o_1, o_n)$ is the WIP quantity between the first
- operation (O_1) and the checked operation (O_n) , and
- 7 $WPH(o_n)$ is the throughput rate of the checked
- 8 operation (O_n) .
- 1 24. The method as claimed in claim 21 further comprising
- 2 defining the status for each operation according to a process
- 3 time for each operation between the first operation and the
- 4 checked operation except that process time attributed to the
- first operation (O_1) and the checked operation (O_n) .
- 1 25. The method as claimed in claim 24 wherein the status
- 2 is defined as follows:
- $S = (WIP(o_1, o_n)/WPH(o_n)) PT(o_2, o_{n-1}),$
- 4 wherein S is the status of a subsequent checked operation
- 5 $(o_2 \sim o_{n-1})$, $WIP(o_1, o_n)$ is the WIP quantity between
- the first operation (O_1) and the checked operation
- 7 (O_n) , $WPH(O_n)$ is the throughput rate of the checked
- 8 operation (O_n) , and $PT(o_2, o_{n-1})$ is the total process

12

time of operations between the first operation (O_1) and the subsequent checked operation $(O_2 \sim O_{n-1})$ except that process time attributed to the first

operation (O_1) and the checked operation (O_n) .

- 1 26. The method as claimed in claim 21 wherein the time 2 constraints comprise overlapping time constraints between the 3 operations.
- The method as claimed in claim 21 wherein the time constraints comprise a constraint selected from the group consisting of dual-operation, multi-operation, and continuous time constraints.
- 1 28. The method as claimed in claim 21 wherein the step of 2 manufacturing the semiconductor product comprises performing 3 related operations thereon.
- 29. A semiconductor product produced according to the method for managing the manufacture of production lots of semiconductor devices of claim 21.

Our ref.: 0503-9655-USf/yianhou/Kevin/TKHR

- 1 30. A semiconductor product produced according to the
- 2 method for managing the manufacture of production lots of
- 3 semiconductor devices of claim 22.
- 1 31. A semiconductor product produced according to the
- 2 method for managing the manufacture of production lots of
- 3 semiconductor devices of claim 23.
- 1 32. A semiconductor product produced according to the
- 2 method for managing the manufacture of production lots of
- 3 semiconductor devices of claim 24.
- 1 33. A semiconductor product produced according to the
- 2 method for managing the manufacture of production lots of
- 3 semiconductor devices of claim 25.
- 1 34. A semiconductor product produced according to the
- 2 method for managing the manufacture of production lots of
- 3 semiconductor devices of claim 26.
- 1 35. A semiconductor product produced according to the
- 2 method for managing the manufacture of production lots of
- 3 semiconductor devices of claim 27.

36. A semiconductor product produced according to the 1 method for managing the manufacture of production lots of 2 semiconductor devices of claim 28. 3 A computer-readable medium comprising executable 1 instructions for controlling a production schedule defining a 2 plurality of time constraints between corresponding production 3 operations, comprising: 4 computer-readable program code for defining a plurality of 5 sub-time constraints between each two operations; 6 computer-readable program code for generating a plurality 7 of equations according to the time constraints and 8 the sub-time constraints; 9 computer-readable program code for calculating the 10 sub-time constraints using the equations; 11 computer-readable program code for defining a status for 12 each operation according to a Work-In-Process (WIP) 13 quantity between the first operation and the checked 14 operation of the production schedule and a throughput 15

rate of the checked operation;

16

- computer-readable program code for checking whether the 17 status violates the sum of the sub-time constraints 18 between the first operation and the checked 19 operation; and 20 computer-readable program code for releasing a lot into the 21 production line if the status for each operation 22 satisfies the corresponding sum of the sub-time 23 24 constraints.
 - 1 38. The computer-readable medium as claimed in claim 37
 2 further comprising computer-readable program code for
 3 simulating at least one queue time between two operations, and
 4 assigning the queue time to one of the sub-time constraints,
 5 thereby obtaining a remnant sub-time constraint.
 - 1 39. The computer-readable medium as claimed in claim 37
 2 wherein the status is defined as follows:
 - $S = WIP(o_1, o_n)/WPH(o_n),$

6

wherein S is the status of a checked operation (O_n) , $WIP(o_1,o_n)$ is the WIP quantity between the first

operation (O_1) and the checked operation (O_n) , and

- 7 $WPH(o_n)$ is the throughput rate of the checked operation (O_n) .
- 1 40. The computer-readable medium as claimed in claim 37 further comprising computer-readable program code for defining the status for each operation according to a process time for each operation between the first operation and the checked operation except that process time attributed to the first operation (O_1) and the checked operation (O_n) .
- 1 41. The computer-readable medium as claimed in claim 40
 2 wherein the status is defined as follows:
- $S = (WIP(o_1, o_n)/WPH(o_n)) PT(o_2, o_{n-1}),$
- wherein S is the status of a subsequent checked operation $(o_2 \sim o_{n-1})$, $WIP(o_1,o_n)$ is the WIP quantity between the first operation (O_1) and the checked operation (O_n) , $WPH(o_n)$ is the throughput rate of the checked operation (O_n) , and $PT(o_2,o_{n-1})$ is the total process time of operations between the first operation (O_1) and the subsequent checked operation $(o_2 \sim o_{n-1})$

- 11 except that process time attributed to the first
- operation (O_1) and the checked operation (O_n) .
 - 1 42. The computer-readable medium as claimed in claim 37
 - 2 wherein the time constraints comprise overlapping time
 - 3 constraints between the operations.
 - 1 43. The computer-readable medium as claimed in claim 37
 - 2 wherein the time constraints comprise a constraint selected from
 - 3 the group consisting of dual-operation, multi-operation, and
 - 4 continuous time constraints.
 - 1 44. The computer-readable medium as claimed in claim 37
 - 2 wherein the production line is a production line for
 - 3 semiconductor products.
 - 1 45. A computer-readable medium for dispatching product
 - 2 lots in a in a production process having a plurality of
 - 3 overlapping time constraints between corresponding production
 - 4 operations, comprising:
 - 5 computer-readable program code for defining a plurality of
 - sub-time constraints between each two operations;

7	computer-readable program code for generating plurality of
8	equations according to the time constraints and the
9	sub-time constraints;
LO	computer-readable program code for simulating at least one
L1	queue time between two operations;
L2	computer-readable program code for assigning the queue time
13	to one of the sub-time constraints; and
L4	computer-readable program code for calculating a remnant
L5	sub-time constraint using the equations.
1	46. The computer-readable medium as claimed in claim 45
2	wherein the production process is a production process for
3	manufacturing semiconductor products.