

STIC Search Report

EIC 1700

STIC Database Tracking Number: 09/485533

TO: Rabon A Sergeant
Location: REM 10D65
Art Unit : 1711
December 28, 2005

Case Serial Number: 09/485533

From: Usha Shrestha
Location: EIC 1700
REMSEN 4B28
Phone: 571/272-3519
usha.shrestha@uspto.gov

Search Notes

=> fil reg
FILE 'REGISTRY' ENTERED AT 13:15:17 ON 28 DEC 2005

=> d his

FILE 'HCAPLUS' ENTERED AT 08:17:15 ON 28 DEC 2005
L1 1 S WO1998-FR01800/PRN,AP
SEL RN

FILE 'REGISTRY' ENTERED AT 08:18:23 ON 28 DEC 2005

L2 12 S E1-E12
L3 889 S 4.264.1/RID
L4 15227 S 46.492.1/RID
E URETDIONE
E URETIDINEDIONE/CN
E URETIDIONE/CN
E URETDIONE/CN
L5 1 S E10
L6 71218 S PUR/PCT
L7 2 S L2 AND L6
L8 162 S L3 AND L6
L9 7609 S L6 NOT 1-50/NR
L10 1 S 220652-25-5/RN
L11 1 S 220588-31-8/RN
L12 245445 S OTHER/PCT
L13 81225 S OTHERO/PCT
L14 245445 S L12 OR L13
L15 2 S L14 AND L2
L16 68 S L14 AND L3
L17 98094 S L14 NOT 2-100/NR
L18 8 S L17 AND L3
L19 4617 S PIR/PCT
L20 0 S L19 AND L2
L21 339 S L19 NOT 1-100/NR
L22 154 S L3 NOT 2-100/NR
L23 42 S L19 AND L3
L24 1 S L23 NOT 2-100/NR
L25 10 S L8 NOT 2-100/NR

FILE 'HCAPLUS' ENTERED AT 12:10:19 ON 28 DEC 2005

L26 734 S L3
L27 5 S L18
L28 1 S L24
L29 5 S L25
L30 9 S L27-L29
L31 323 S L26 (L) PREP/RL
L32 82 S L31 (L) (?URETHAN? OR ?ISOCYANAT?)
L33 32 S L32 AND (HEAT? OR TEMP?)
L34 12 S L33 NOT CAT?
L35 242 S L31 NOT CAT?
L36 68 S L35 AND (HEAT? OR TEMP?)
L37 24 S L32 AND CAT/RL
L38 58 S L32 NOT L37
L39 17 S L38 AND (HEAT? OR TEMP?)

FILE 'REGISTRY' ENTERED AT 12:30:34 ON 28 DEC 2005
L40 154 S L3 NOT 2-100/NR

FILE 'HCAPLUS' ENTERED AT 12:31:05 ON 28 DEC 2005
L41 180 S L40

L42 77 S L41(L) PREP/RL
 L43 27 S L42(L) (?URETHAN? OR ?ISOCYANAT?)
 L44 54 S L42 AND (?URETHAN? OR ?ISOCYANAT?)
 L45 13 S L44 AND CAT?/RL
 L46 41 S L44 NOT L45
 L47 18 S L46 AND (HEAT? OR TEMP?)
 L48 1 S L47 AND L1
 L49 27 S L30 OR L47
 L50 46 S L46 OR L47 OR L49

=> d que 150

L3 889 SEA FILE=REGISTRY ABB=ON PLU=ON 4.264.1/RID
 L6 71218 SEA FILE=REGISTRY ABB=ON PLU=ON PUR/PCT
 L8 162 SEA FILE=REGISTRY ABB=ON PLU=ON L3 AND L6
 L12 245445 SEA FILE=REGISTRY ABB=ON PLU=ON OTHER/PCT
 L13 81225 SEA FILE=REGISTRY ABB=ON PLU=ON OTHERO/PCT
 L14 245445 SEA FILE=REGISTRY ABB=ON PLU=ON L12 OR L13
 L17 98094 SEA FILE=REGISTRY ABB=ON PLU=ON L14 NOT 2-100/NR
 L18 8 SEA FILE=REGISTRY ABB=ON PLU=ON L17 AND L3
 L19 4617 SEA FILE=REGISTRY ABB=ON PLU=ON PIR/PCT
 L23 42 SEA FILE=REGISTRY ABB=ON PLU=ON L19 AND L3
 L24 1 SEA FILE=REGISTRY ABB=ON PLU=ON L23 NOT 2-100/NR
 L25 10 SEA FILE=REGISTRY ABB=ON PLU=ON L8 NOT 2-100/NR
 L27 5 SEA FILE=HCAPLUS ABB=ON PLU=ON L18
 L28 1 SEA FILE=HCAPLUS ABB=ON PLU=ON L24
 L29 5 SEA FILE=HCAPLUS ABB=ON PLU=ON L25
 L30 9 SEA FILE=HCAPLUS ABB=ON PLU=ON (L27 OR L28 OR L29)
 L40 154 SEA FILE=REGISTRY ABB=ON PLU=ON L3 NOT 2-100/NR
 L41 180 SEA FILE=HCAPLUS ABB=ON PLU=ON L40
 L42 77 SEA FILE=HCAPLUS ABB=ON PLU=ON L41(L) PREP/RL
 L44 54 SEA FILE=HCAPLUS ABB=ON PLU=ON L42 AND (?URETHAN? OR
 ?ISOCYANAT?)
 L45 13 SEA FILE=HCAPLUS ABB=ON PLU=ON L44 AND CAT?/RL
 L46 41 SEA FILE=HCAPLUS ABB=ON PLU=ON L44 NOT L45
 L47 18 SEA FILE=HCAPLUS ABB=ON PLU=ON L46 AND (HEAT? OR
 TEMP?)
 L49 27 SEA FILE=HCAPLUS ABB=ON PLU=ON L30 OR L47
 L50 46 SEA FILE=HCAPLUS ABB=ON PLU=ON L46 OR L47 OR L49

=> fil hcap

FILE 'HCAPLUS' ENTERED AT 13:15:35 ON 28 DEC 2005

=> => d 150 1-46 ibib abs hitstr hitind

L50 ANSWER 1 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2005:405056 HCAPLUS
 DOCUMENT NUMBER: 142:433133
 TITLE: Urethonimines bearing double bonds, their
 polymers, gels, ion-conductive compositions,
 and their applications
 INVENTOR(S): Aizawa, Wakana; Iida, Kazuyuki
 PATENT ASSIGNEE(S): Mitsubishi Paper Mills, Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 19 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005119969	A2	20050512	JP 2003-353147	
				2003
				1014
PRIORITY APPLN. INFO.:			JP 2003-353147	
				2003
				1014

OTHER SOURCE(S) : MARPAT 142:433133
 GI

AB The urethonimines are I ($\text{R}^1 = \text{H}$, alkyl; $n = 2-6$). The urethonimines are polymerized in various solvents without undesired side reactions between carbodiimide groups and active H. The polymers, useful as electrolytes for electrochem. devices, e.g., secondary Li batteries, capacitors, and surface modifiers, show good heat resistance because they generate isocyanate and carbodiimide groups suppressing hydrolysis.

IT 850789-28-5P 850789-29-6P 850789-30-9P
 850789-32-1P

(urethonimines bearing double bonds for ion-conductive polymer gels showing good heat resistance for secondary Li batteries, double-layer capacitors, and surface modifiers)

RN 850789-28-5 HCPLUS

CN 2-Propenoic acid, 2-methyl-, methanetetraylbis(nitrilo-2,1-ethanediyl) ester, polymer with [2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]imino]-4-oxo-1,3-diazetidine-1,3-diyl]di-2,1-ethanediyl bis(2-methyl-2-propenoate) (9CI) (CA INDEX NAME)

CM 1

CRN 850789-27-4
 CMF C20 H27 N3 O7

CM 2

CRN 817619-67-3

CMF C13 H18 N2 O4

RN 850789-29-6 HCPLUS

CN 2-Propenoic acid, 2-methyl-, [2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]imino]-4-oxo-1,3-diazetidine-1,3-diyil]di-2,1-ethanediyl ester, polymer with α -(2-methyl-1-oxo-2-propenyl)- ω -methoxypoly(oxy-1,2-ethanediyl) (9CI) (CA INDEX NAME)

CM 1

CRN 850789-27-4

CMF C20 H27 N3 O7

CM 2

CRN 26915-72-0

CMF (C2 H4 O)n C5 H8 O2

CCI PMS

RN 850789-30-9 HCPLUS

CN 2-Propenoic acid, 2-methyl-, [2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]imino]-4-oxo-1,3-diazetidine-1,3-diyl]di-2,1-ethanediyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 850789-27-4

CMF C20 H27 N3 O7

RN 850789-32-1 HCPLUS

CN 2-Propenoic acid, 2-methyl-, [2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]imino]-4-oxo-1,3-diazetidine-1,3-diyl]di-2,1-ethanediyl ester, polymer with ethene, graft (9CI) (CA INDEX NAME)

CM 1

CRN 850789-27-4

CMF C20 H27 N3 O7

CM 2

CRN 74-85-1

CMF C2 H4

IT 850789-27-4P

(urethonimines bearing double bonds for ion-conductive polymer gels showing good heat resistance for secondary Li batteries, double-layer capacitors, and surface modifiers)

RN 850789-27-4 HCPLUS

CN 2-Propenoic acid, 2-methyl-, [2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]imino]-4-oxo-1,3-diazetidinediyl]di-2,1-ethanediyl ester (9CI) (CA INDEX NAME)

IT 850789-31-0P

(urethonimines bearing double bonds for ion-conductive polymer gels showing good heat resistance for secondary Li batteries, double-layer capacitors, and surface modifiers)

RN 850789-31-0 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, methanetetraylbis(nitrilo-2,1-ethanediyl) ester, polymer with [2-[[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]imino]-4-oxo-1,3-diazetidine-1,3-diyl]di-2,1-ethanediyl bis(2-methyl-2-propenoate) and α -(1-oxo-2-propenyl)- ω -methoxypoly(oxy-1,2-ethanediyl) (9CI). (CA INDEX NAME)

CM 1

CRN 850789-27-4

CMF C20 H27 N3 O7

CM 2

CRN 817619-67-3

CMF C13 H18 N2 O4

CM 3

CRN 32171-39-4

CMF (C2 H4 O)n C4 H6 O2

CCI PMS

IC ICM C07D229-00
 ICS C08F020-36; C08F291-00; C08F292-00; H01G009-038; H01M010-40
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 28, 35, 38, 76
 ST urethonimine polymer ionic conductor heat resistance;
 lithium battery urethonimine polymer gel electrolyte; capacitor
 urethonimine polymer gel electrolyte; surface modifier
 urethonimine polymer
 IT Polyoxalkylenes, uses
 (acrylic, urethonimine-containing; urethonimines bearing double
 bonds for ion-conductive polymer gels showing good heat
 resistance for secondary Li batteries, double-layer capacitors,
 and surface modifiers)
 IT Capacitors
 (double layer; urethonimines bearing double bonds for
 ion-conductive polymer gels showing good heat
 resistance for secondary Li batteries, double-layer capacitors,
 and surface modifiers)
 IT Secondary batteries
 (lithium; urethonimines bearing double bonds for ion-conductive
 polymer gels showing good heat resistance for
 secondary Li batteries, double-layer capacitors, and surface
 modifiers)
 IT Surface treatment
 (modifiers; urethonimines bearing double bonds for
 ion-conductive polymer gels showing good heat
 resistance for secondary Li batteries, double-layer capacitors,
 and surface modifiers)
 IT Ionic conductors
 (polymeric; urethonimines bearing double bonds for
 ion-conductive polymer gels showing good heat
 resistance for secondary Li batteries, double-layer capacitors,
 and surface modifiers)
 IT Electrolytic capacitors
 Gels
 Heat-resistant materials
 Polymer electrolytes
 (urethonimines bearing double bonds for ion-conductive polymer
 gels showing good heat resistance for secondary Li
 batteries, double-layer capacitors, and surface modifiers)
 IT 850789-28-5P 850789-29-6P 850789-30-9P
 850789-32-1P
 (urethonimines bearing double bonds for ion-conductive polymer
 gels showing good heat resistance for secondary Li
 batteries, double-layer capacitors, and surface modifiers)
 IT 817619-67-3P 850789-27-4P
 (urethonimines bearing double bonds for ion-conductive polymer
 gels showing good heat resistance for secondary Li
 batteries, double-layer capacitors, and surface modifiers)
 IT 850789-31-0P
 (urethonimines bearing double bonds for ion-conductive polymer
 gels showing good heat resistance for secondary Li
 batteries, double-layer capacitors, and surface modifiers)
 IT 30674-80-7

(urethonimines bearing double bonds for ion-conductive polymer gels showing good heat resistance for secondary Li batteries, double-layer capacitors, and surface modifiers)

L50 ANSWER 2 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2004:20011 HCAPLUS

DOCUMENT NUMBER: 140:78231

TITLE: Pressure-sensitive acrylic adhesives without foaming nor substrate staining and polarizing films therewith showing good processability

INVENTOR(S): Ebata, Norimitsu; Miyazaki, Hideki; Nakagawa, Nobuo; Uemae, Masami

PATENT ASSIGNEE(S): Nippon Carbide Industries Co., Inc., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 29 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
JP 2004002782	A2	20040108	JP 2003-98425	2003 0401
PRIORITY APPLN. INFO.:			JP 2002-103154	A 2002 0405

AB The adhesives comprise (A) high-mol.-weight acrylic copolymers [Mw 900,000-2,500,000, Tg \leq -45°, SP 8.7-9.3 (SP = solubility parameter)] having reactive functional groups 100, (B) low-mol.-weight acrylic copolymers (Mw 50,000-200,000, Tg -40 to 0°, SP 8.7-9.3) prepared from (b1) H2C:CHCO2R1 [R1 = C4-10 (branched) alkyl] whose homopolymers satisfy Tg \leq -50°, (b2) monomers relatively less copolymerizable with b1, and (b3) monomers relatively highly copolymerizable with b1 5-100, and (C) polyfunctional compds. crosslinkable with A 0.001-10 parts. Thus, acrylic acid-n-Bu acrylate (BA) copolymer (Mw 1,200,000, Tg -55°, SP 9.1) was mixed with BA-n-Bu methacrylate-Me acrylate copolymer (Mw 90,000, Tg -15°, SP 9.1) and Duranate E 405-80T (modified HMDI) to give an adhesive composition, which was applied on a release film, laminated with poly(vinyl alc.)/cellulose triacetate polarizing film, and dried to give adhesive layer-equipped film. The film was bonded on a glass sheet showing 180° peel strength 450 and 700 g/25 mm, after aging at 23° and 70°, resp., no foaming nor light-leaking defect after 1000-h aging at 100°, and no glass staining after peeling.

IT 641636-24-0P
(pressure-sensitive acrylic adhesives without foaming nor substrate staining useful for polarizing films)

RN 641636-24-0 HCAPLUS

CN 2-Propenoic acid, polymer with 1,3-bis(6-isocyanatohexyl)-1,3-diazetidine-2,4-dione and butyl 2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 23501-81-7
CMF C16 H24 N4 O4

CM 2

CRN 141-32-2
CMF C7 H12 O2

CM 3

CRN 79-10-7
CMF C3 H4 O2

IC ICM C09J133-08
ICS C09J133-02; C09J133-10; C09J163-00; C09J175-04; C09J183-08
CC 38-3 (Plastics Fabrication and Uses)
Section cross-reference(s): 73, 74
IT 77-99-6DP, Trimethylolpropane, reaction products with (hydrogenated) xylylene diisocyanate or HMDI, polymers with acrylic acid copolymers 822-06-0DP, HMDI, modified, polymers with acrylic acid copolymers 25854-16-4DP, Xylylene diisocyanate, reaction products with trimethylolpropane, polymers with acrylic acid-n-Bu acrylate-2-hydroxyethyl acrylate copolymer 42170-25-2DP, reaction products with trimethylolpropane, polymers with acrylic acid-n-Bu acrylate copolymer 152048-77-6P, Acrylic acid-n-butyl acrylate-TETRAD-C copolymer 416844-24-1P 416844-36-5P, Acrylic acid-n-butyl acrylate-Desmodur N 3400 copolymer 556818-60-1P, Acrylic acid-butyl acrylate-Takenate D 120N copolymer 556818-63-4P, Acrylic acid-n-butyl acrylate-Coronate HX copolymer 641620-83-9P, Acrylic acid-n-butyl acrylate-Duranate E 405-80T copolymer 641620-84-0P 641620-85-1P 641620-86-2P 641620-87-3P, Acrylic acid-n-butyl acrylate-Coronate HL-S copolymer 641620-88-4P, Acrylic acid-butyl acrylate-2-ethylhexyl acrylate-methyl acrylate-Takenate M 631N copolymer 641620-89-5P, Acrylic acid-butyl acrylate-ethyl acrylate-Duranate E 405-80T-2-ethylhexyl acrylate copolymer 641620-90-8P, Acrylic

acid-butyl acrylate-Duranate E 405-80T-methyl methacrylate copolymer 641636-19-3P, Acrylic acid-n-butyl acrylate-hexamethylene diisocyanate isocyanurate copolymer 641636-24-0P
(pressure-sensitive acrylic adhesives without foaming nor substrate staining useful for polarizing films)

L50 ANSWER 3 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2002:359890 HCAPLUS

DOCUMENT NUMBER: 136:355793

TITLE: Diisocyanatononane-based polyisocyanates

INVENTOR(S): Suzuki, Shigeaki; Hori, Hiroshi

PATENT ASSIGNEE(S): Kuraray Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2002138129	A2	20020514	JP 2000-335981	2000 1102
PRIORITY APPLN. INFO.:			JP 2000-335981	2000 1102

AB The polyisocyanates are manufactured by either of (a) biuret formation of 1,9-diisocyanatononane (I) or 1,8-diisocyanato-2-methyloctane (II), (b) reaction of I or II with polyol, or (c) cyclodimerization of I or II. I and II show low vapor pressure and the polyisocyanates show high reactivity. Thus, I was treated with H₂O in the presence of Me₃PO₄ to give biuret polyisocyanate.

IT 420135-71-3P 420789-42-0P
(manufacture of diisocyanatononane-based polyisocyanates)

RN 420135-71-3 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(9-isocyanatononyl)- (9CI) (CA INDEX NAME)

RN 420789-42-0 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis[8-isocyanato-2(or 7)-methyloctyl]- (9CI) (CA INDEX NAME)

2 (D1-Me)

IC ICM C08G018-73
 ICS C08G018-10
 CC 37-2 (Plastics Manufacture and Processing)
 ST isocyanatononane polyisocyanate manuf; biuret
 polyisocyanate diisocyanatononane manuf; polyol
 diisocyanatononane adduct polyisocyanate manuf;
 cyclodimerization diisocyanatononane
 polyisocyanate manuf
 IT 420135-69-9P 420135-70-2P
 (biuret-type, oligomeric; manufacture of diisocyanatononane
 -based polyisocyanates)
 IT 77-99-6DP, Trimethylolpropane, reaction products with
 diisocyanato(iso)nonane 7192-79-2DP, reaction products
 with trimethylolpropane 176506-52-8DP, reaction products with
 trimethylolpropane 420135-71-3P 420789-42-0P
 (manufacture of diisocyanatononane-based
 polyisocyanates)
 IT 7192-79-2 176506-52-8
 (manufacture of diisocyanatononane-based
 polyisocyanates)

L50 ANSWER 4 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 2001:711613 HCAPLUS
 DOCUMENT NUMBER: 136:69773
 TITLE: Synthesis of N-functionalized carbodiimides,
 hydantoins, 1,3-diazetidines, and
 imidazolidine derivatives from N-vinylic
 phosphazenes derived from β -amino acids
 AUTHOR(S): Palacios, Francisco; Legido, Marta; Perez de
 Heredia, Itziar; Ezpeleta, Jose Maria;
 Rubiales, Gloria
 CORPORATE SOURCE: Departamento de Quimica Organica, Facultad de
 Farmacia, Universidad del Pais Vasco, Vitoria,
 01080, Spain
 SOURCE: Heterocycles (2001), 55(9), 1641-1651
 CODEN: HTCYAM; ISSN: 0385-5414
 PUBLISHER: Japan Institute of Heterocyclic Chemistry
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 136:69773
 AB Synthesis of N-vinylic carbodiimides through aza-Wittig reaction
 of N-vinylic phosphazenes with isocyanates is reported.
 These heterocumulenes are used for the preparation of unsym. ureas and
 nitrogen heterocycles such as hydantoins, 1,3-diazetidines,
 imidazolidinones, and bis-imidazolidinone azines.
 IT 384372-45-6P 384372-46-7P
 (preparation of N-functionalized carbodiimides, hydantoins,

1,3-diazetidines, and imidazolidine derivs. from N-vinylic phosphazenes derived from β -amino acids)

RN 384372-45-6 HCPLUS

CN 2-Propenoic acid, 3,3'-(1,3-diethyl-1,3-diazetidine-2,4-diyldene)dinitrilo]bis-, diethyl ester, (2E,2'E)- (9CI) (CA INDEX NAME)

Double bond geometry as shown.

RN 384372-46-7 HCPLUS

CN 2-Butenoic acid, 3,3'-(1,3-diethyl-1,3-diazetidine-2,4-diyldene)dinitrilo]bis-, dimethyl ester, (2E,2'E)- (9CI) (CA INDEX NAME)

Double bond geometry as shown.

CC 28-9 (Heterocyclic Compounds (More Than One Hetero Atom))

ST carbodiimide deriv prepns hydration; hydantoin deriv prepns; diazetidine deriv prepns; imidazolidine deriv prepns; phosphazene vinylic reaction **isocyanate**

IT 103-71-9, Phenyl **isocyanate**, reactions 109-90-0, Ethyl **isocyanate** 110-78-1, Propyl **isocyanate**

81777-30-2 152975-95-6 152975-96-7 384372-48-9 384372-49-0
384372-51-4 421598-34-7

(preparation of N-functionalized carbodiimides, hydantoins, 1,3-diazetidines, and imidazolidine derivs. from N-vinylic phosphazenes derived from β -amino acids)

IT 384372-39-8P 384372-40-1P 384372-41-2P 384372-42-3P

384372-44-5P 384372-45-6P 384372-46-7P

384372-47-8P 384372-50-3P 384842-74-4P 384842-75-5P

384842-76-6P 384842-77-7P 384842-78-8P

(preparation of N-functionalized carbodiimides, hydantoins, 1,3-diazetidines, and imidazolidine derivs. from N-vinylic phosphazenes derived from β -amino acids)

REFERENCE COUNT: 47 THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L50 ANSWER 5 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 2001:581955 HCPLUS

DOCUMENT NUMBER: 135:153862

TITLE: Preparation of two component polyurethane foam compositions for sound and vibration absorbers

INVENTOR(S): Bicknell, Rodney; Kirkham, Helen; Spencer,

PATENT ASSIGNEE(S) : Richard
 Baxenden Chemicals Limited, UK
 SOURCE: PCT Int. Appl., 23 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001057107	A1	20010809	WO 2001-GB408	2001 0131
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
EP 1254187	A1	20021106	EP 2001-948990	2001 0131
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
US 2003119929	A1	20030626	US 2002-182678	2002 0903
PRIORITY APPLN. INFO.:			GB 2000-2175	A
				2000 0131
			WO 2001-GB408	W
				2001 0131

AB The process comprises mixing (A) a polyol resin component, (B) an isocyanate component having a free monomeric diisocyanate content of ≤ 2 wt%, and (C) a catalyst blend comprising ≥ 2 catalytic materials selected from (a) organometallic catalysts, (b) amines, and (c) isocyanurate catalysts. Thus a polyurethane foam was prepared by mixing of polyoxypropylated glycerol, polyoxypropylated toluene diamine, polyoxypropylene diol, diethanolamine, B 8404, triethylene glycol diamine, dibutyltin dilaurate, Baxcat 0, tri(3-dimethylaminopropyl)amine, hexamethylene diisocyanate biuret, and propylene carbonate with tetrafluoroethane, showing core d. 100-120 kg/m³, closed cell content (ASTM D2856) 3.6%, and flammability 3.05 cm/min (1.2 in./min) determined by MVSS-320 test.
 IT 353245-35-9P 353245-36-0P
 (preparation of two component polyurethane foam compns. for sound and vibration absorbers)
 RN 353245-35-9 HCPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, polymer

with Castomer E 1004, α -hydro- ω -hydroxypoly[oxy(methyl-1,2-ethanediyl)] and α,α',α'' -1,2,3-propanetriyltris[ω -hydroxypoly[oxy(methyl-1,2-ethanediyl)]] (9CI) (CA INDEX NAME)

CM 1

CRN 353244-60-7
CMF Unspecified
CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 2

CRN 25791-96-2
CMF $(C_3 H_6 O)_n$ $(C_3 H_6 O)_n$ $(C_3 H_6 O)_n$ C3 H8 O3
CCI IDS, PMS

CM 3

CRN 25322-69-4
CMF $(C_3 H_6 O)_n$ H2 O
CCI IDS, PMS

CM 4

CRN 23501-81-7
CMF C16 H24 N4 O4

RN 353245-36-0 HCPLUS
CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, polymer with Castomer E 1004, α -hydro- ω -hydroxypoly(oxy-1,2-

ethanediyl) and α,α',α'' -1,2,3-propanetriyltris[ω -hydroxypoly[oxy(methyl-1,2-ethanediyl)]] (9CI) (CA INDEX NAME)

CM 1

CRN 353244-60-7
CMF Unspecified
CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 2

CRN 25791-96-2
CMF $(C_3 H_6 O)_n$ $(C_3 H_6 O)_n$ $(C_3 H_6 O)_n$ C3 H8 O3
CCI IDS, PMS

CM 3

CRN 25322-68-3
CMF $(C_2 H_4 O)_n$ H2 O
CCI PMS

CM 4

CRN 23501-81-7
CMF C16 H24 N4 O4

IC ICM C08G018-16
CC 38-3 (Plastics Fabrication and Uses)
Section cross-reference(s): 29, 67
IT 4035-89-6DP, Hexamethylene diisocyanate biuret, polymers with

Mannich base and polyoxypropylated glycerol 23501-81-7DP, polymers with Mannich base, polyoxypropylated glycerol, and TDI prepolymer 25791-96-2DP, polymers with Mannich base, hexamethylene diisocyanate uretdione, and TDI prepolymer 26471-62-5DP, TDI, polymers with Mannich base, polyoxypropylated glycerol, and hexamethylene diisocyanate uretdione 352205-41-5P 352205-43-7P 353244-60-7P, Castomer E 1004 353245-35-9P
353245-36-0P

(preparation of two component polyurethane foam compns. for sound and vibration absorbers)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L50 ANSWER 6 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1999:439337 HCAPLUS

DOCUMENT NUMBER: 131:89112

TITLE: Reducing volatile organic content of coating compositions by using a ketimine of acetone

INVENTOR(S): Richards, Bradley M.; Dantiki, Sudhakar

PATENT ASSIGNEE(S): BASF Corporation, USA

SOURCE: U.S., 5 pp.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
-----	-----	-----	-----	-----
US 5922804	A	19990713	US 1996-672800	1996

-----	-----	-----	-----
-----	-----	-----	0628

PRIORITY APPLN. INFO.: US 1996-672800

1996
0628

GI

AB The volatile organic content of coating compns. is reduced by forming the ketimine of acetone by reacting acetone and a ketimine I, where n = 1-4; R1, R2 are (sep.) alkyl, aryl, cycloaliph. or substituted alkyl, aryl, or cycloaliph. group, except both R1 and R2 ≠ Me; R3 is an aliphatic, aromatic, arylaliph., or cycloaliph. group, which can also contain O, N, S or Si. The ketimine of acetone is subsequently reacted with at least one isocyanate functional crosslinking resin. Thus, 62.2 g uretdione polyisocyanate was added to a 50:50 solution of diketimine and acetone, and the coating sprayed on cold-rolled

steel panels, giving dry film thickness 2.6 mil, dust-free drying time 60 s, and tack-free drying time 105 s.
 IT 23501-81-7DP, Hexamethylene diisocyanate dimer, polymers with ketimines and hydroxy-functional resins (reducing volatile organic content of coating compns. by using a ketimine of acetone)
 RN 23501-81-7 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatoethyl)- (9CI) (CA INDEX NAME)

IC ICM C08L075-02
 ICS C08L075-04; C08G018-10
 INCL 524589000
 CC 42-5 (Coatings, Inks, and Related Products)
 ST coating VOC redn acetone ketimine; **isocyanate** crosslinker acetone ketimine polyol
 IT 23501-81-7DP, Hexamethylene diisocyanate dimer, polymers with ketimines and hydroxy-functional resins (reducing volatile organic content of coating compns. by using a ketimine of acetone)
 IT 584-84-9D, Toluene 2,4-diisocyanate, polymers with ketimines and hydroxy-functional resins 822-06-0D, HMDI, polymers with ketimines and hydroxy-functional resins 1014-98-8D, p-Xylene diisocyanate, polymers with ketimines and hydroxy-functional resins 3173-72-6D, 1,5-Naphthalene diisocyanate, polymers with ketimines and hydroxy-functional resins 3634-83-1D, m-Xylene diisocyanate, polymers with ketimines and hydroxy-functional resins 4098-71-9D, Isophorone diisocyanate, polymers with ketimines and hydroxy-functional resins 5124-30-1D, 4,4'-Diisocyanatodicyclohexylmethane, polymers with ketimines and hydroxy-functional resins 10581-16-5D, 1-Methyl-2,4-diisocyanatocyclohexane, polymers with ketimines and hydroxy-functional resins 25626-25-9D, Benzene, 1,2-bis(isocyanatomethyl), polymers with ketimines and hydroxy-functional resins (reducing volatile organic content of coating compns. by using a ketimine of acetone)

REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L50 ANSWER 7 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1999:157156 HCAPLUS
 DOCUMENT NUMBER: 130:244437
 TITLE: Electrophotographic toner containing polyisocyanate
 INVENTOR(S): Ibuki, Ichiro; Hamatsu, Takao
 PATENT ASSIGNEE(S): Asahi Chemical Industry Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11065169	A2	19990305	JP 1997-219483	1997 0814
PRIORITY APPLN. INFO.:			JP 1997-219483	1997 0814

GI

AB The toner comprises a polyol resin and a colorant as a main component and further a **polyisocyanate** containing a linear crystalline polyuretdione I [X = NHCO₂R₂OH, NHC(O)R₃, NCO; R₁ = R₂, R₂O₂CNR₁R₂O₂C; R₂ = diol residue; R₃ = residue of a compound having 1 active H; R₄ = **diisocyanate** residue; n ≥ 1] with 8-21 weight% of potential NCO%, 2000-20,000 weight average mol. weight, and 60-140° m.p. The toner shows low **temperature fixability** and no offset.

IT 23501-81-7DP, polymer with ethylene glycol and polyester-polyol
 (electrophotog. toner containing polyuretdione-derived polyurethanes with low **temperature fixability** and offset resistance)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

IC ICM G03G009-087

CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
 Section cross-reference(s): 35

ST electrophotog toner **polyisocyanate** polyol

polyuretodione; low **temp** fixability offset resistance toner

IT Electrophotographic toners
(electrophotog. toner containing polyuretodione-derived polyurethanes with low temperature fixability and offset resistance)

IT Polyurethanes, uses
(electrophotog. toner containing polyuretodione-derived polyurethanes with low temperature fixability and offset resistance)

IT Acrylic polymers, preparation
(hydroxy-containing, polymer with polyuretodione; electrophotog. toner containing polyuretodione-derived polyurethanes with low temperature fixability and offset resistance)

IT Polyesters, preparation
(polymers with hexamethylene diisocyanate polyuretodiones and ethylene glycol; electrophotog. toner containing polyuretodione-derived polyurethanes with low temperature fixability and offset resistance)

IT 100-42-5DP, Styrene, hydroxy-containing acrylic resin, polymer with polyuretodione 107-21-1DP, Ethylene glycol, polymer with hexamethylene diisocyanate polyuretodione and polyester-polyols 23501-81-7DP, polymer with ethylene glycol and polyester-polyol
(electrophotog. toner containing polyuretodione-derived polyurethanes with low temperature fixability and offset resistance)

L50 ANSWER 8 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1999:126953 HCAPLUS
 DOCUMENT NUMBER: 130:183894
 TITLE: Method for preparing (poly)isocyanate compositions with reduced viscosity and their use in the manufacture of polyurethane coatings
 INVENTOR(S): Charriere, Eugenie; Bernard, Jean-Marie; Revelant, Denis; Randu, Stephane
 PATENT ASSIGNEE(S): Rhodia Chimie, Fr.
 SOURCE: PCT Int. Appl., 67 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: French
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
WO 9907765	A1	19990218	WO 1998-FR1800	1998 0812
W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
FR 2767328	A1	19990219	FR 1997-10296	

			1997 0812
FR 2767328	B1	20010622	
FR 2779142	A1	19991203	FR 1998-6849
			1998 0529
FR 2779142	B1	20000818	
CA 2301071	AA	19990218	CA 1998-2301071
			1998 0812
AU 9890758	A1	19990301	AU 1998-90758
			1998 0812
AU 757808	B2	20030306	
ZA 9807209	A	20000214	ZA 1998-7209
			1998 0812
EP 1003802	A1	20000531	EP 1998-942735
			1998 0812
EP 1003802	B1	20041222	
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI			
BR 9811904	A	20000815	BR 1998-11904
			1998 0812
EP 1466931	A2	20041013	EP 2004-14335
			1998 0812
EP 1466931	A3	20051102	
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI, CY			
AT 285426	E	20050115	AT 1998-942735
			1998 0812
ES 2230713	T3	20050501	ES 1998-942735
			1998 0812
US 2004106762	A1	20040603	US 2003-682412
			2003 1010
PRIORITY APPLN. INFO.:		FR 1997-10296	A
			1997 0812
		FR 1998-6849	A
			1998 0529
		EP 1998-942735	A3
			1998 0812
		WO 1998-FR1800	W
			1998 0812
		US 2000-485533	A1
			2000 0609

AB The invention concerns a method for preparing a (poly) isocyanate composition with reduced viscosity comprising at least dimers with uretidinedione group from initial monomeric isocyanates, characterized in that the initial reaction medium is heated, in the absence of a dimerization catalyst, at 50-200° for ≤24 h. When trimerization catalysts are present, the products also contain trimers, and, when polyols such as pentaerythritol and trimethylolpropane are present, the products contain carbamate group-containing prepolymers. The products are storage stable and have Hazen color value <100.

IT 23501-81-7P, Hexamethylene diisocyanate dimer
(preparing polyisocyanate compns. containing diisocyanate dimers with reduced viscosity for use in manufacture of polyurethane coatings)

RN 23501-81-7 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

IT 220588-32-9P
(preparing polyisocyanate compns. containing diisocyanate dimers with reduced viscosity for use in manufacture of polyurethane coatings)

RN 220588-32-9 HCPLUS

CN Carbamic acid, (6-isocyanatohexyl)-, 2-[[[[(6-isocyanatohexyl)amino]carbonyl]oxy]methyl]-2-[[[[[6-[3-(6-isocyanatohexyl)-2,4-dioxo-1,3-diazetidin-1-y]hexyl]amino]carbonyl]oxy]methyl]-1,3-propanediyl ester (9CI)
(CA INDEX NAME)

PAGE 1-A

PAGE 1-B

— NCO

IC ICM C08G018-79
 ICS C08G018-32; C08G018-42; C08G018-62
 CC 42-10 (Coatings, Inks, and Related Products)
 ST uretidinedione **diisocyanate** dimer manuf dimerization catalyst absence; trimethylolpropane uretidinedione dimer adduct manuf; pentaerythritol uretidinedione dimer adduct manuf; **polyurethane** coating uretidinedione **diisocyanate** dimer precursor manuf
 IT **Polyurethanes**, uses
 (acrylic; preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT Acrylic polymers, uses
 (**polyurethane**; preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT Coating materials
 (preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT **Polyurethanes**, uses
 (preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT 220652-25-5P 220652-27-7P
 (cured coating; preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT 30228-08-1P
 (in preparation of IPDI dimer; preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT 53895-31-1P
 (preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT 3779-63-3P, Hexamethylene **diisocyanate** trimer
 23501-81-7P, Hexamethylene **diisocyanate** dimer
 (preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT 4035-89-6P 220588-31-8P 220588-32-9P 220588-33-0P
 220617-22-1P, 1,3-Bis(isocyanatonorbornyl)-1,3-diazetidine-2,4-dione
 (preparing **polyisocyanate** compns. containing **diisocyanate** dimers with reduced viscosity for use in manufacture of **polyurethane** coatings)
 IT 30322-28-2P, Hexamethylene **diisocyanate**-trimethylolpropane copolymer

(prepolymers, in preparation of HDI dimer; preparing polyisocyanate compns. containing diisocyanate dimers with reduced viscosity for use in manufacture of polyurethane coatings)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L50 ANSWER 9 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1998:379199 HCPLUS

DOCUMENT NUMBER: 129:55022

TITLE: Uretdione group-containing polyaddition compounds and procedure for their production

INVENTOR(S): Gras, Rainer; Wolf, Elmar

PATENT ASSIGNEE(S): Huels A.-G., Germany

SOURCE: Ger. Offen., 6 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	---	-----	-----	

DE 19650043	A1	19980604	DE 1996-19650043	1996
				1203
PRIORITY APPLN. INFO.:			DE 1996-19650043	1996
				1203

AB Title compds., useful as storage-stable curing agents for polyurethane powders, are manufactured by reaction of uretdiones of HDI, 2-methylpentamethylene diisocyanate, or 2,2,4(2,4,4)-trimethylhexamethylene diisocyanate with R1NHROH [I, R1 = H or C1-6 alkyl, R = (1-3-Me-substituted) C2-12 alkylene, (1-3-Me-substituted) C \leq 12 cycloalkylene] at 0.5 mol I/NCO equiv and optionally with monoamines and(or) alcs. at NCO:OH/NH 1:0.1-0.3 in an inert solvent.

IT 208587-38-6P, reaction products with dibutylamine

208587-38-6P 208594-47-2DP, reaction products with butanol 208594-49-4P 208666-50-6P

(polyaddn. compds. of uretdione group-containing diisocyanate dimers and amino alcs. for crosslinkers for polyurethane powders)

RN 208587-38-6 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatoethyl)-, polymer with 2-aminoethanol (9CI) (CA INDEX NAME)

CM 1

CRN 23501-81-7

CMF C16 H24 N4 O4

CM 2

CRN 141-43-5
CMF C2 H7 N O $\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{OH}$ RN 208587-38-6 HCPLUS
CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, polymer with 2-aminoethanol (9CI) (CA INDEX NAME)

CM 1

CRN 23501-81-7
CMF C16 H24 N4 O4

CM 2

CRN 141-43-5
CMF C2 H7 N O $\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{OH}$ RN 208594-47-2 HCPLUS
CN 1,3-Diazetidine-2,4-dione, 1,3-bis(5-isocyanatomethylpentyl)-, polymer with 2-(methylamino)ethanol (9CI) (CA INDEX NAME)

CM 1

CRN 208594-46-1
CMF C16 H24 N4 O4
CCI IDS

2 (D1-Me)

CM 2

CRN 109-83-1
CMF C3 H9 N OHO-CH₂-CH₂-NH-CH₃RN 208594-49-4 HCPLUS
CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatotrimethylhexyl)-, polymer with 2-aminoethanol (9CI) (CA INDEX NAME)

CM 1

CRN 208594-48-3
CMF C22 H36 N4 O4
CCI .IDS

6 (D1-Me)

CM 2

CRN 141-43-5
CMF C2 H7 N OH₂N-CH₂-CH₂-OHRN 208666-50-6 HCPLUS
CN 1,3-Diazetidine-2,4-dione, 1,3-bis(5-isocyanato-2(or 4)-methylpentyl)-, polymer with 1-amino-2-propanol (9CI) (CA INDEX NAME)

CM 1

CRN 208594-46-1
 CMF C16 H24 N4 O4
 CCI IDS

2 (D1-Me)

CM 2

CRN 78-96-6
 CMF C3 H9 N O

IC ICM C08G018-79
 ICS C08G018-32; C09D175-04; C09D005-46; C08L075-04
 CC 37-6 (Plastics Manufacture and Processing)
 ST uretdione diisocyanate amino alc polyadduct manuf;
 polyurethane powder latent crosslinker
 IT Crosslinking agents
 (latent; polyaddn. compds. of uretdione group-containing
 diisocyanate dimers and amino alcs. for crosslinkers
 for polyurethane powders)
 IT Polyurethanes, uses
 (polyaddn. compds. of uretdione group-containing
 diisocyanate dimers and amino alcs. for crosslinkers
 for polyurethane powders)
 IT Polyurethanes, preparation
 Polyurethanes, preparation
 (polyurea-; polyaddn. compds. of uretdione group-containing
 diisocyanate dimers and amino alcs. for crosslinkers
 for polyurethane powders)
 IT Polyureas
 Polyureas
 (polyurethane-; polyaddn. compds. of uretdione
 group-containing diisocyanate dimers and amino alcs. for
 crosslinkers for polyurethane powders)
 IT Alcohols, preparation
 Amines, preparation
 (reaction products, with uretdione group-containing
 diisocyanate-amino alcs. copolymers; polyaddn. compds.
 of uretdione group-containing diisocyanate dimers and

amino alcs. for crosslinkers for polyurethane powders)

IT 71-36-3DP, 1-Butanol, reaction products with uretdione group-containing diisocyanate dimer-amino alcs. copolymers, preparation 111-92-2DP, Dibutylamine, reaction products with uretdione group-containing diisocyanate dimer-amino alcs. copolymers 208587-38-6DP, reaction products with dibutylamine 208587-38-6P 208587-39-7DP, reaction products with dibutylamine 208587-39-7P 208594-47-2DP, reaction products with butanol 208594-49-4P 208666-50-6P
(polyaddn. compds. of uretdione group-containing diisocyanate dimers and amino alcs. for crosslinkers for polyurethane powders)

L50 ANSWER 10 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1998:15965 HCAPLUS

DOCUMENT NUMBER: 128:89733

TITLE: Microcapsules with walls from conversion products of uretdione group-containing polyisocyanates and guanidine derivatives

INVENTOR(S): Hagedorn, Manfred; Nehen, Ulrich; Ramzy, Sabry; Klug, Guenter; Weisser, Juergen

PATENT ASSIGNEE(S): Bayer A.-G., Germany

SOURCE: Ger. Offen., 10 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
-----	-----	-----	-----	-----
DE 19623566	A1	19971218	DE 1996-19623566	1996

PRIORITY APPLN. INFO.: DE 1996-19623566

0613
1996
0613

GI

AB Microcapsules with high d. and good storage stability, useful for carbonless copying paper, have walls prepared by reaction of the title compds. Typical microcapsules were manufactured by mixing a 10% aqueous guanidine carbonate solution with an emulsion containing crystal violet lactone, diisopropyl naphthalene, polyvinyl alc., and a

60:40 diisocyanate I-OCN(CH₂)₆NHCON[(CH₂)₆NCO]CONH(CH₂)₆
NCO mixture 90 min at 80°.

IT 200507-27-3P

(microcapsules with walls from conversion products of uretdione group-containing polyisocyanates and guanidine derivs. for carbonless copying paper)

RN 200507-27-3 HCPLUS

CN Carbonic acid, compd. with guanidine (1:2), polymer with 1,3-bis(6-isocyanatohexyl)-1,3-diazetidine-2,4-dione and N,N',2-tris(6-isocyanatohexyl)imidodicarbonic diamide (9CI) (CA INDEX NAME)

CM 1

CRN 23501-81-7

CMF C₁₆ H₂₄ N₄ O₄

CM 2

CRN 4035-89-6

CMF C₂₃ H₃₈ N₆ O₅

CM 3

CRN 593-85-1

CMF C H₅ N₃ . 1/2 C H₂ O₃

CM 4

CRN 463-79-6

CMF C H₂ O₃

CM 5

CRN 113-00-8
 CMF C H5 N3

IC ICM B01J013-16
 ICA B41M005-165
 CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 74
 ST microcapsule guanidine uretdione contg polyurea; carbonless
 copying paper microcapsule polyurea; hexanedisiisocyanate
 based uretdione contg polyurea microcapsule
 IT Copying paper
 Microcapsules
 (microcapsules with walls from conversion products of uretdione
 group-containing polyisocyanates and guanidine derivs.
 for carbonless copying paper)
 IT Polyureas
 (uretdione-containing; microcapsules with walls from conversion
 products of uretdione group-containing polyisocyanates
 and guanidine derivs. for carbonless copying paper)
 IT 200507-27-3P
 (microcapsules with walls from conversion products of uretdione
 group-containing polyisocyanates and guanidine derivs.
 for carbonless copying paper)

L50 ANSWER 11 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1997:632095 HCPLUS
 DOCUMENT NUMBER: 127:248526
 TITLE: Polyaddition products of dissecondary diamines
 and polyisocyanate mixtures
 containing uretdione groups
 INVENTOR(S): Wolf, Elmar
 PATENT ASSIGNEE(S): Huels Aktiengesellschaft, Germany
 SOURCE: Eur. Pat. Appl., 7 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 795569	A1	19970917	EP 1997-100842	1997 0121
R: AT, BE, CH, DE, ES, FR, GB, IT, LI, NL, SE DE 19610465	A1	19970918	DE 1996-19610465	1996 0316
JP 10036483	A2	19980210	JP 1997-58184	1997 0313
CA 2200044	AA	19970916	CA 1997-2200044	1997

US 5912314	A	19990615	US 1997-819365	0314
				1997
PRIORITY APPLN. INFO.:			DE 1996-19610465	0317
				A
				1996
				0316

AB The title products, useful as curing agents for **polyurethanes** (e.g., powder coatings) (no data), are prepared from uretdione derivative **polyisocyanates** [≥ 40 mol% IPDI uretdione **diisocyanate**] and disecondary diamines (NCO-NH ratio 1:0.5-0.9) at room temp -60° in inert solvents. Reaction of 3 equivalent N,N'-bis[3-methyl-1-(3-methylpropyl)butyl]-2,2 (or 4),4-trimethyl-1,6-hexanediamine (prepared in >98% purity by reductive amination of the diprimary diamine with iso-Bu₂CO) with 4 equivalent 1:1 mixture of HMDI and IPDI uretdione derivative **diisocyanates** gave a product with m.p. 68-81° and NCO content 2.6 and 12.5% before and after, resp., being heated at 180°.

IT 23501-81-7DP, 1,3-Bis(6-isocyanatohexyl)-2,4-uretdione, reaction products with disecondary diamines (polyaddn. products of disecondary diamines and **polyisocyanate** mixts. containing uretdione groups)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

IC ICM C08G018-79

ICS C08G018-32; C08G018-80

CC 35-2 (Chemistry of Synthetic High Polymers)
Section cross-reference(s): 27

ST diamine disecondary adduct **diisocyanate**; uretdione **diisocyanate** adduct diamine; HMDI uretdione adduct diamine; IPDI uretdione adduct diamine; crosslinker **polyurethane** powder coating

IT Crosslinking agents
(adducts of disecondary diamines and uretdione **diisocyanates** as crosslinking agents for **polyurethane** powder coatings)

IT Polyurethanes, uses
(adducts of disecondary diamines and uretdione **diisocyanates** as crosslinking agents for **polyurethane** powder coatings)

IT Amines, preparation
(diamines, disecondary, reaction products with uretdione **diisocyanates**; polyaddn. products of disecondary diamines and **polyisocyanate** mixts. containing uretdione groups)

IT Coating materials

(powder; adducts of dissecondary diamines and uretdione diisocyanates as crosslinking agents for polyurethane powder coatings)

IT 192528-25-9DP, reaction products with uretdione diisocyanates
 (polyaddn. products of dissecondary diamines and polyisocyanate mixts. containing uretdione groups)

IT 23501-81-7DP, 1,3-Bis(6-isocyanatoethyl)-2,4-uretdione, reaction products with dissecondary diamines 41094-42-2DP, N,N'-Diisobutylisophoronediamine, reaction products with uretdione diisocyanates 53895-31-1DP, IPDI dimer, uretdione group-containing, reaction products with dissecondary diamines 192462-35-4DP, reaction products with uretdione diisocyanates 192528-26-0DP, reaction products with uretdione diisocyanates
 (polyaddn. products of dissecondary diamines and polyisocyanate mixts. containing uretdione groups)

L50 ANSWER 12 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1996:513130 HCAPLUS

DOCUMENT NUMBER: 125:144831

TITLE: One component-type fast heat-curable polyurethane elastomer compositions and their molding method

INVENTOR(S): Hirayama, Shinji; Konishi, Shin; Hashimoto, Sadako; Morikawa, Yukihiro

PATENT ASSIGNEE(S): Inoue MTP KK, Japan; Nippon Polyurethane Kogyo KK; Nippon Polyurethane Industry Co., Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08134164	A2	19960528	JP 1994-306908	1994 1115
JP 3509967	B2	20040322	JP 1994-306908	1994 1115
PRIORITY APPLN. INFO.:				

AB The title compns. comprise (1) polyurethane precursors with equivalent ratio of uretdione group to active H (r-1) 0.25-1.0 prepared by treating (A) polyisocyanates at least containing polyisocyanates with uretdione groups and (B) ≥2 active H-containing compds. with mol. weight 18-20,000 at equivalent ratio of the active H to the NCO (r-2) >1.0 and (2) 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and/or their salts. The title molding method comprises injecting the compns. at a temperature lower or equal to the ring-opening temperature of the uretdione group (T), molding, and heating at a temperature higher or equal to T for reacting and curing. Thus, 100 parts a composition comprising a precursor with r-1 0.72 prepared by treating uretdione group-containing HDI derivative and polytetramethylene ether polyol at ratio r-2 1.3, 0.5 part DBN, and 0.5 part Irganox 1010 were fed to a reactor and stirred at 80° to give a composition, which was

press molded and cured at 200°.

IT 180163-58-0P

(rubber; one component-type fast heat-curable polyurethane elastomer compns. and their molding method)

RN 180163-58-0 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatoethyl)-, polymer with α -hydro- ω -hydroxypoly(oxy-1,4-butanediyl) (9CI)
(CA INDEX NAME)

CM 1

CRN 25190-06-1

CMF (C₄ H₈ O)_n H₂ O

CCI PMS

CM 2

CRN 23501-81-7

CMF C₁₆ H₂₄ N₄ O₄

IC ICM C08G018-10

ICS C08G018-20; C08G018-70; C08G018-79

CC 39-9 (Synthetic Elastomers and Natural Rubber)

IT 180163-58-0P

(rubber; one component-type fast heat-curable polyurethane elastomer compns. and their molding method)

L50 ANSWER 13 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1996:209693 HCPLUS

DOCUMENT NUMBER: 124:235011

TITLE: Liquid polyisocyanates containing aromatic and aliphatic isocyanate groups for use in lacquers

INVENTOR(S): Brahm, Martin; Pedain, Josef; Schmalstieg, Lutz

PATENT ASSIGNEE(S): Bayer A.-G., Germany

SOURCE: Eur. Pat. Appl., 8 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.

KIND DATE

APPLICATION NO.

DATE

EP 696606	A1	19960214	EP 1995-111814	
				1995 0727
EP 696606	B1	19991124		
R: AT, BE, DE, ES, FR, GB, IT, NL				
DE 4428107	A1	19960215	DE 1994-4428107	
				1994 0809
AT 186928	E	19991215	AT 1995-111814	
				1995 0727
ES 2139791	T3	20000216	ES 1995-111814	
				1995 0727
US 5606004	A	19970225	US 1995-509258	
				1995 0731
CA 2155473	AA	19960210	CA 1995-2155473	
				1995 0804
JP 08059771	A2	19960305	JP 1995-219446	
				1995 0807
JP 3604204	B2	20041222		
PRIORITY APPLN. INFO.:			DE 1994-4428107	A
				1994 0809

AB The title **polyisocyanates** are prepared by mixed trimerization of TDI (optionally containing other aromatic **isocyanates**) with aliphatic **isocyanates** (e.g., uretedione group-containing dimer of HDI). The **polyisocyanates** are especially useful as crosslinkers for OH-containing binders in two-component **polyurethane** lacquers.

IT 23501-81-7DP, 1,3-Bis(6-isocyanatohexyl)-1,3-diazetidine-2,4-dione, reaction products with TDI (liquid; preparation and use as crosslinkers for two-component **polyurethane** lacquers)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

IC ICM C08G018-79
ICS C08G018-02

CC 42-10 (Coatings, Inks, and Related Products)

ST liq aliph arom **polyisocyanate** crosslinker
polyurethane; TDI HDI **polyisocyanate** liq
crosslinker **polyurethane**; lacquer **polyurethane**

IT crosslinker liq polyisocyanate
 Coating materials
 (liquid polyisocyanates prepared from aromatic and aliphatic isocyanates for use as hardeners in two-component polyurethane lacquers)

IT Urethane polymers, uses
 (liquid polyisocyanates prepared from aromatic and aliphatic isocyanates for use as hardeners in two-component polyurethane lacquers)

IT Crosslinking agents
 (liquid polyisocyanates prepared from aromatic and aliphatic isocyanates for use in two-component polyurethane lacquers)

IT 584-84-9DP, 2,4-Tdi, reaction products with aliphatic polyisocyanates 26471-62-5DP, TDI, reaction products with aliphatic polyisocyanates
 (liquid; preparation and use as crosslinkers for two-component polyurethane lacquers)

IT 23501-81-7DP, 1,3-Bis(6-isocyanatoethyl)
)-1,3-diazetidine-2,4-dione, reaction products with TDI
 28574-90-5DP, Hexamethylene diisocyanate trimer,
 reaction products with TDI
 (liquid; preparation and use as crosslinkers for two-component polyurethane lacquers)

L50 ANSWER 14 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1996:130831 HCAPLUS

DOCUMENT NUMBER: 124:205122

TITLE: Coating compositions containing aldimines and isocyanates

INVENTOR(S): Braun, David W.; Colyer, Emmerson Keith;
 Dantiki, Sudhakar; Tye, Anthony J.; Shah, Rajnikant P.; Mormile, Patrick J.; Richards, Bradley M.; Koevenig, Brian P.; Laginess, Thomas J.; Stateczny, Henry J.

PATENT ASSIGNEE(S): BASF Corp., USA

SOURCE: Eur. Pat. Appl., 27 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 686654	A1	19951213	EP 1995-107978	1995 0526
EP 686654	B1	20031001		
R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, NL, SE				
AT 251190	E	20031015	AT 1995-107978	1995 0526
ES 2208660	T3	20040616	ES 1995-107978	1995 0526
AU 9520459	A1	19951214	AU 1995-20459	1995 0602

AU 701598 CA 2151014	B2 AA	19990204 19951207	CA 1995-2151014	1995 0605
BR 9502671	A	19970805	BR 1995-2671	1995 0605
JP 08060089	A2	19960305	JP 1995-162929	1995 0606
ZA 9504597	A	19961205	ZA 1995-4597	1996 0605
AU 9888361	A1	19981203	AU 1998-88361	1998 1008
AU 736624 PRIORITY APPLN. INFO.:	B2	20010802	US 1994-254211	A 1994 0606
			AU 1995-20459	A3 1995 0602

AB High-solids compns. with good pot life for coatings contain (a) (R₁CH:N)nR₂ [R₁ = (substituted) alkyl, (substituted) aryl, (substituted) cycloalkyl, substituted heterocyclic group, R₂ = monomeric or polymeric aliphatic, aromatic, arylaliph. or cycloaliph. group which may contain O, N, S, or Si, n > 1], (b) a polyisocyanate functional component, and (c) optionally, other active hydrogen compds. A typical composition contained 1:2 (mol ratio) isophoronediamine-isobutyraldehyde adduct 72.56, catalyst 0.82, HDI uretdione 90.88, and flow modifier and photostabilizers 5.75 parts.

IT 173923-56-3P 174423-54-2P
(high-solids compns. containing aldimines and polyisocyanates with good pot life for coatings)

RN 173923-56-3 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatoethyl)-, polymer with N,N'-bis(2-methylpropylidene)-4-[(2-methylpropylidene)amino]methyl]-1,8-octanediamine (9CI) (CA INDEX NAME)

CM 1

CRN 173923-55-2
CMF C21 H41 N3

CM 2

CRN 23501-81-7
CMF C16 H24 N4 O4

RN 174423-54-2 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, polymer with α -hydro- ω -[methyl-2-[(2-methylpropylidene)amino]ethoxy]poly[oxy(methyl-1,2-ethanediyl)]ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (3:1) (9CI) (CA INDEX NAME)

CM 1

CRN 174423-53-1

CMF $(\text{C}_3 \text{ H}_6 \text{ O})_n (\text{C}_3 \text{ H}_6 \text{ O})_n (\text{C}_3 \text{ H}_6 \text{ O})_n \text{ C}_{27} \text{ H}_{53} \text{ N}_3 \text{ O}_3$

CCI IDS, PMS

3 (D1-Me)

PAGE 1-B

CM 2

CRN 23501-81-7

CMF C16 H24 N4 O4

IC ICM C08G018-32
 ICS C08G018-79; C09D017-00; C09D007-02; C07C251-16
 CC 42-10 (Coatings, Inks, and Related Products)
 ST polyisocyanate aldimine copolymer coating; storage
 stable polyisocyanate aldimine coating; isophorone
 bisisobutyldimine HDI uretdione copolymer coating
 IT Polyamides, uses
 (imine-group-containing; high-solids compns. containing aldimines and
 polyisocyanates with good pot life for coatings)
 IT Coating materials
 (high-solids, high-solids compns. containing aldimines and
 polyisocyanates with good pot life for coatings)
 IT Polyisocyanurates
 (polyamide-, imine- and uretdione-group-containing; high-solids
 compns. containing aldimines and polyisocyanates with
 good pot life for coatings)
 IT Polyamides, uses
 (polyisocyanurate-, imine- and uretdione-group-containing;
 high-solids compns. containing aldimines and
 polyisocyanates with good pot life for coatings)
 IT 173923-54-1P 173923-56-3P 173923-58-5P 173923-60-9P
 173923-61-0P 173923-62-1P 174423-54-2P 174587-94-1P
 (high-solids compns. containing aldimines and
 polyisocyanates with good pot life for coatings)

L50 ANSWER 15 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1994:633093 HCAPLUS
 DOCUMENT NUMBER: 121:233093
 TITLE: New aliphatic polyisocyanate curing agents for
 higher solids urethane coatings
 AUTHOR(S): Wojcik, R. T.; Goldstein, S. L.; Malofsky, A.
 G.; Barnowski, H. G., Jr.; Chandalia, K. B.
 CORPORATE SOURCE: Chem. Res. Cent., Olin Corp., Cheshire, CT,
 06410, USA
 SOURCE: Proceedings of the Waterborne, High-Solids,
 and Powder Coatings Symposium (1993), 20th,
 26-48
 CODEN: PWHSE6
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Polyisocyanate curing agents prepared from hexamethylene
 diisocyanate (HDI) are used com. in High Solids Paints for
 automotive, maintenance, and industrial finishes. These products
 are based on isocyanurate or biuret chemical. Olin has an active
 research program to develop low viscosity polyisocyanates. In
 this program, the authors made very pure HDI isocyanurate trimer
 and HDI uretdione cross-linkers and studied their effect on 2K
 polyurethane coatings processing and performance. These curing
 agents were formulated into High Solids Paints with com. available
 polyols. Appearance VOC, paint coverage, coating appearance
 (gloss & DOI), mech. performance (hardness, flexibility, and

impact), environmental durability (gloss retention, chalking, and cracking), and chemical/moisture resistance were compared to standard 2K polyurethane coatings formulated with com. HDI polyisocyanurate (LuxateTM HT2000). The coatings made with the new curing agent had lower VOC and superior appearance compared to the com. polyisocyanate. The mech. properties and environmental durability of the coatings were similar. Compared to the coatings made with LuxateTM HT2000, these curing agents had slower dry times and reduced surface hardness. This paper suggests formulation methods to decrease the dry times and increase surface hardness.

IT 158407-53-5 158407-54-6

(New aliphatic polyisocyanate curing agents for higher solids urethane coatings)

RN 158407-53-5 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, polymer with G-Cure 105P70 (9CI) (CA INDEX NAME)

CM 1

CRN 158191-40-3

CMF Unspecified

CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 2

CRN 23501-81-7

CMF C16 H24 N4 O4

RN 158407-54-6 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, polymer with Acryloid AU 946 and QM 1007 (9CI) (CA INDEX NAME)

CM 1

CRN 158191-13-0

CMF Unspecified

CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 2

CRN 115628-82-5

CMF Unspecified

CCI PMS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 3

CRN 23501-81-7
CMF C16 H24 N4 O4

CC 42-3 (Coatings, Inks, and Related Products)
IT 158407-53-5 158407-54-6
(New aliphatic polyisocyanate curing agents for higher solids urethane coatings)

L50 ANSWER 16 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1994:484214 HCPLUS

DOCUMENT NUMBER: 121:84214

TITLE: Process for producing uretidione dimers of isocyanates using catalysts which are bound to inorganic matrixes

INVENTOR(S): Goldstein, Stephen L.; Hamer, Anthony D.; Katz, Lawrence E.; McGahey, Michael J.; Smith, Curtis P.

PATENT ASSIGNEE(S): Olin Corp., USA

SOURCE: U.S., 7 pp.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5315004	A	19940524	US 1993-43075	1993 0405
US 5461020	A	19951024	US 1994-241249	1994 0511
PRIORITY APPLN. INFO.:			US 1993-43075	A2 1993 0405

GI

I

AB The invention relates to a process for preparing a dimer by

cyclodimerizing a polyisocyanate in the presence of a dimerization catalyst which is covalently bound to an insol. inorg. matrix. Said polyisocyanate is contacted with the catalyst at a temperature of between 20-135°C to form an uretidione (cyclodimerized isocyanate). Thus, silica-bound N,N-bis[3-(diethoxymethylsilyl)propyl]-4-pyridinamine was used as cyclodimerization catalyst for HDI. The IR spectrum of the products showed no absorption due to isocyanurates; 15% of HDI were converted to hexamethylene diisocyanate dimer [1,3-bis(6-isocyanatohexyl)-2,4-uretidinedione] (I).

IT 23501-81-7P, Hexamethylene diisocyanate dimer
 (preparation of, with inorg. matrix-bound (dialkylamino)pyridine as cyclodimerization catalyst)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

IC ICM C07D229-00
 ICS C08G018-74

INCL 540202000

CC 35-2 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 27, 28

ST uretidione hexamethylene diisocyanate dimer;
 cyclodimerization catalyst pyridinamine silica bound

IT Glass, nonoxide
 (cyclodimerization catalyst-supports for diisocyanate
)

IT Clays, uses
 Zeolites, uses
 (inorg. matrix-bound amines as cyclodimerization catalysts for diisocyanates)

IT Glass, oxide
 (inorg. matrix-bound, cyclodimerization catalysts for diisocyanate)

IT Amines, uses
 (aryl, inorg. matrix-bound, cyclodimerization catalysts for diisocyanate)

IT Dimerization catalysts
 (cyclo-, inorg. matrix-bound (dialkylamino)pyridine for isocyanates)

IT Dimerization
 (cyclo-, of diisocyanates with inorg. matrix-bound (dialkylamino)pyridine)

IT Amines, uses
 (tertiary, inorg. matrix-bound, cyclodimerization catalysts for diisocyanate)

IT 128823-47-2D, 4-Pyridinamine, N,N-bis[3-(diethoxymethylsilyl)propyl]-, inorg. matrix-bound 129677-07-2D,
 4-Pyridinamine, N-[(ethenylphenyl)methyl]-N-methyl-, inorg.
 matrix-bound
 (as cyclodimerization catalyst for diisocyanate)

IT 1344-28-1, Aluminum oxide (Al₂O₃), uses 7631-86-9, Silica, uses
 (inorg. matrix-bound amines as cyclodimerization catalysts for
 diisocyanates)

IT 7803-51-2D, Phosphine, alkyl or alkylamino derivs.
 (inorg. matrix-bound, cyclodimerization catalysts for
 diisocyanate)

IT 23501-81-7P, Hexamethylene diisocyanate dimer
 26747-90-0P, TDI dimer 53895-31-1P, IPDI dimer
 (preparation of, with inorg. matrix-bound (dialkylamino)pyridine as
 cyclodimerization catalyst)

L50 ANSWER 17 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1994:247474 HCAPLUS

DOCUMENT NUMBER: 120:247474

TITLE: Use of alkylthio-substituted aromatic diamines
 as curing agents for polyisocyanates
 in coating and sealing compositions

INVENTOR(S): Hentschel, Karl Heinz; Walter, Ulrich

PATENT ASSIGNEE(S): Bayer A.-G., Germany

SOURCE: Eur. Pat. Appl., 13 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 570798	A1	19931124	EP 1993-107559	1993 0510
DE 4217023	A1	19931125	DE 1992-4217023	1992 0522
CA 2096466	AA	19931123	CA 1993-2096466	1993 0518
JP 06049410	A2	19940222	JP 1993-139886	1993 0520
PRIORITY APPLN. INFO.:			DE 1992-4217023	A 1992 0522

AB Arom diamines containing ≥ 1 C1-4 alkylthio group ortho to each amino group, especially a mixture of 2,4- and 2,6-diamino-1-methyl-3,5-bis(methylthio)benzenes, are used, optionally with other polyamines and/or polyols, as hardeners for polyisocyanates in 2-component coating or sealing compns. which contain little or no solvent and cure at room temp without forming bubbles or voids.

IT 23501-81-7DP, Hexamethylene diisocyanate dimer, polymers with alkylthio aromatic diamines and polyols (preparation of, for two-component coating and sealing compns.)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

IC ICM C08G018-38
 ICS C08G018-10; C09D175-02; C04B041-48; C09K003-10
 CC 42-10 (Coatings, Inks, and Related Products)
 ST amine arom alkylthio polyurea **polyurethane**; sulfide
 amine arom polyurea **polyurethane**; crosslinking alkylthio
 amine polyurea **polyurethane**; sealant polyurea
polyurethane alkylthio amine
 IT Crosslinking agents
 (diamines, aromatic, alkylthio, for **polyurea-polyurethanes**
 in coatings and sealants)
 IT **Urethane polymers, preparation**
 (polyurea-, preparation of, for two-component coatings and sealants,
 alkylthio aromatic diamines in)
 IT Coating materials
 Sealing compositions
 (two-component, **polyurea-polyurethanes** for, alkylthio
 aromatic diamine-containing)
 IT 584-84-9DP, **2,4-Diisocyanatotoluene**, polymers with
 alkylthio aromatic diamines, and polyols 822-06-0DP, HDI, polymers
 with alkylthio aromatic diamines and polyols 3779-63-3DP, polymers
 with alkylthio aromatic diamines and polyols 5873-54-1DP, **2,4'-Diisocyanatodiphenylmethane**, polymers with alkylthio aromatic
 diamines and polyols 9016-87-9DP, PAPI, polymers with alkylthio
 aromatic diamines and polyols 23501-81-7DP, Hexamethylene
 diisocyanate dimer, polymers with alkylthio aromatic diamines
 and polyols 25322-69-4DP, Polypropylene glycol, polymers with
 alkylthio aromatic diamines and **polyisocyanates**
 25723-16-4DP, Polypropylene glycol trimethylolpropane ether,
 polymers with alkylthio aromatic diamines and **polyisocyanates**
 26471-62-5DP, Tdi, polymers with alkylthio aromatic diamines and
 polyols 54511-70-5DP, polymers with alkylthio aromatic diamines and
polyisocyanates 102093-68-5DP, polymers with
polyisocyanates and polyols 104983-85-9DP, polymers with
polyisocyanates and polyols 106264-79-3DP, Ethacure 300,
 polymers with **polyisocyanates** and polyols
 107120-02-5DP, polymers with alkylthio aromatic diamines and
polyisocyanates
 (preparation of, for two-component coating and sealing compns.)

L50 ANSWER 18 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1994:137262 HCPLUS
 DOCUMENT NUMBER: 120:137262
 TITLE: Aqueous **polyurethane** binder
 combination, process for its preparation and
 its use
 INVENTOR(S): Blum, Harald; Kubitza, Werner; Probst,
 Joachim; Sonntag, Michael; Schneider, Volker
 PATENT ASSIGNEE(S): Bayer A.-G., Germany
 SOURCE: Eur. Pat. Appl., 20 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent

LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 542105	A1	19930519	EP 1992-118831	1992 1103
EP 542105 R: AT, BE, CH, DE, ES, FR, GB, IT, LI, NL, SE DE 4137429	B1 A1	19960124 19930519	DE 1991-4137429	1991 1114
AT 133430	E	19960215	AT 1992-118831	1992 1103
ES 2084909	T3	19960516	ES 1992-118831	1992 1103
US 5331039	A	19940719	US 1992-973368	1992 1109
CA 2082785	AA	19930615	CA 1992-2082785	1992 1112
JP 05295072	A2	19931109	JP 1992-326290	1992 1112
JP 2923718 KR 217448	B2 B1	19990726 19990901	KR 1992-21281	1992 1113
PRIORITY APPLN. INFO.:			DE 1991-4137429	A 1991 1114

AB The title binders, useful for varnishes, coats, sealants, and adhesives with reduced organic solvent content, are obtained by mixing a polyisocyanate component and a H₂O-thinned polyester-polyol component which is a blend of ≥2 hydroxy-, urethane-, carboxy-, or sulfonate-containing (acrylate-grafted) polyester resins. An aqueous dispersion (A) of a polyester-urethane-polyol prepared from trimethylolpropane, isophthalic acid, saturated fatty acids (Prifrac 2950), neopentyl glycol, hexahydrophthalic anhydride, dimethylolpropionic acid, and isophorone diisocyanate had solids content 48.5%, pH 7.4 (NH₄OH), acid number 10, and OH group content 4.6%. Another aqueous dispersion (B) prepared by polymerization of 2-hydroxyethyl methacrylate, Me methacrylate, Bu acrylate, and acrylic acid in BuOAc solvent followed by emulsification of the polymer solution in H₂O with azeotropic removal of the solvent, had solids content 30%, pH 7.0 (NH₄OH), carboxy group content 139 mequiv/100 g solids, and OH group content 4.6%. A (storage-stable) blend containing A 50, B 50, thickener 1.14, emulsifier 0.8, defoamer 0.93, and deionized H₂O 4.9 parts was mixed with 28.88 parts solvent-free 70:30 HMDI dimer-HMDI trimer mixture (average NCO group content 22.5%, viscosity 200 mPa·s, 23°) to give a 2-component title binder having NCO/OH ratio

1.5 and open time .apprx.5 h. A 200- μm (wet thickness) clear coat was dust-free dry after 2-3 h at room temperature and after 10-14 days had pendulum hardness 100-120 s.

IT 23501-81-7DP, Hexamethylene diisocyanate dimer,
polymers with polyester polyols
(preparation of aqueous dispersions of, as binders)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA
INDEX NAME)

IC ICM C08G018-42

ICS C08G018-40; C08G018-72; C08G018-08; C09D175-06

CC 42-10 (Coatings, Inks, and Related Products)

Section cross-reference(s) : 37

ST polyester aq dispersion prepn **polyurethane binder**;
lacquer **polyurethane** aq polyester dispersion; HMDI dimer
trimer aq **polyurethane binder**

IT Binding materials

(aqueous **polyurethane** compns.)

IT Sealing compositions

(aqueous **polyurethane** compns. as)

IT Coating materials

(aqueous **polyurethane** compns. for)

IT Adhesives

(binders for, aqueous **polyurethane** compns. as)

IT Fatty acids, compounds

(C14-16, reaction products, with polyols and isophorone
isocyanate, preparation of, for aqueous **polyurethane**
binder compns.)

IT Polyesters, preparation

(sulfo-containing, preparation of aqueous dispersions of, for
polyurethane binder compns.)

IT Polyesters, preparation

(sulfo-containing, graft, preparation of aqueous dispersions of, for
polyurethane binder compns.)

IT Polyesters, preparation

(urethane group-containing, preparation of aqueous dispersions of,
for **polyurethane** binder compns.)

IT 77-99-6DP, polyester urethane polyols, polymers with

polyisocyanates 85-42-7DP, Hexahydrophthalic anhydride,

polyester urethane polyols, polymers with

polyisocyanates 121-91-5DP, 1,3-Benzenedicarboxylic

acid, polyester urethane polyols, polymers with

polyisocyanates 126-30-7DP, Neopentyl glycol, polyester

urethane polyols, polymers with **polyisocyanates**

4098-71-9DP, polyester urethane polyols, polymers with

polyisocyanates 4767-03-7DP, polyester urethane

polyols, polymers with **polyisocyanates**

23501-81-7DP, Hexamethylene diisocyanate dimer,

polymers with polyester polyols 28574-90-5DP, polymers with

polyester polyols

IT (preparation of aqueous dispersions of, as binders)
 26351-99-5P, Acrylic acid-Butyl acrylate-2-Hydroxyethyl
 methacrylate-Methyl methacrylate copolymer 153162-68-6P
 153354-09-7P 153354-10-0P
 (preparation of aqueous dispersions of, for polyurethane
 binders)

L50 ANSWER 19 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1994:32937 HCPLUS
 DOCUMENT NUMBER: 120:32937
 TITLE: Modified polyureas for use in coatings
 INVENTOR(S): Muenzmay, Thomas; Hassel, Tillmann
 PATENT ASSIGNEE(S): Bayer A.-G., Germany
 SOURCE: Ger. Offen., 10 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4133572	A1	19930415	DE 1991-4133572	1991 1010
EP 538649	A1	19930428	EP 1992-116542	1992 0928
EP 538649 R: BE, DE, ES, FR, GB, IT, NL, SE ES 2088067	B1 T3	19960612 19960801	DE 1991-4133572 ES 1992-116542	1992 0928
US 5284928	A	19940208	US 1992-956518	1992 1005
CA 2079980	AA	19930411	CA 1992-2079980	1992 1006
CA 2079980 JP 06122750	C A2	20030211 19940506	JP 1992-290963	1992 1006
JP 3107665	B2	20001113	DE 1991-4133572	A 1991 1010
PRIORITY APPLN. INFO.:				

AB Polyureas useful as binders for coatings contain anionic N-[(cyanoamino)carbonyl]urea groups and, optionally, terminal anionic cyanourea groups. Stirring hexanediol polycarbonate (OH number 56) 2240, a monofunctional ethylene oxide-rich polyether (OH number 26) 178, 3,5-bis(6-isocyanatohexyl)tetrahydro-1,3,5-oxadiazine-2,4,6-trione 336.4, HMDI 200.9, and IPDI 442.4 g at 80°, adding 94.8 g 1,4-butanediol, adding 6.5 kg acetone, adding 36.0 g ethylenediamine and 25.0 g hydrazine hydrate in 500 g H₂O, stirring at 50°, adding a solution of cyanamide 33.6, Et₃N 80.7, and acetone 300 g, stirring 60 min with removal of CO₂, adding 8.6 kg H₂O, and distilling acetone in vacuo

gave a dispersion (31.4% solids) showing DIN cup number 4 viscosity 12.5 s.

IT 23501-81-7DP, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts (coatings, water-thinned, manufacture of)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

IC ICM C08G018-78

ICS C08G018-79; C08G018-32; C08G018-65; C09D175-02

CC 42-7 (Coatings, Inks, and Related Products)

Section cross-reference(s): 37

ST cyanamid adduct polyurea aq coating; polyurethane polyurea deriv aq coating; cyanobiuret polyurea deriv aq coating; polycarbonate polyurea polyurethane aq coating; oxadiazinetrione cyanoheptyl copolymer aq coating

IT Urethane polymers, uses

(polycarbonate-polyoxyalkylene-polyurea-, cyanobiuret group-containing, coatings, water-thinned, manufacture of)

IT Polyureas

(polycarbonate-polyoxyalkylene-polyurethane-, cyanobiuret group-containing, coatings, water-thinned, manufacture of)

IT Polyoxyalkylenes, uses

(polycarbonate-polyurea-polyurethane-, cyanobiuret group-containing, coatings, water-thinned, manufacture of)

IT Polycarbonates, uses

(polyoxyalkylene-polyurea-polyurethane-, cyanobiuret group-containing, coatings, water-thinned, manufacture of)

IT 107-15-3DP, 1,2-Ethanediamine, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts 110-63-4DP, 1,4-Butanediol, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts 302-01-2DP, Hydrazine, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts 420-04-2DP, Cyanamide, reaction products with polyureas, triethylamine salts 822-06-0DP, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts 4098-71-9DP, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts 23501-81-7DP, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts 25037-68-7DP, polymers with polyisocyanates, polyols and diamines, reaction products with cyanamide, triethylamine salts 50639-37-7DP, polymers with polyols, polyisocyanates and diamines, reaction products with cyanamid, triethylamine salts 152145-38-5DP, reaction products with cyanamide, triethylamine salts 152145-39-6DP, reaction products with cyanamide,

triethylamine salts
 (coatings, water-thinned, manufacture of)

L50 ANSWER 20 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1994:32124 HCPLUS
 DOCUMENT NUMBER: 120:32124
 TITLE: Free-flowing, thermoplastic, post-curable
 powdered polyurethanes, optionally expandable
 INVENTOR(S): Werner, Joachim; Meckel, Walter; Liman,
 Ulrich; Wegener, Dirk; Rasshofer, Werner;
 Rosthauser, James W.
 PATENT ASSIGNEE(S): Bayer A.-G., Germany
 SOURCE: Eur. Pat. Appl., 18 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 539802	A1	19930505	EP 1992-117604	
				1992
				1015
R: BE, DE, ES, FR, GB, IT, NL, SE DE 4135475	A1	19930429	DE 1991-4135475	
				1991
				1028
DE 4209709	A1	19930930	DE 1992-4209709	
				1992
				0325
PRIORITY APPLN. INFO.:			DE 1991-4135475	A
				1991
				1028
			DE 1992-4209709	A
				1992
				0325

AB The title polyurethanes, useful in slush molding, are prepared by the reaction of emulsions of components bearing free NCO groups (or NCO-reactive groups) with components bearing an average of 2 NCO-reactive groups in the presence of a sep. prepared component bearing blocked NCO groups in an inert organic liquid carrier. Adipic acid-hexanediol-neopentyl glycol polyester (OH number 56) 68.2 and HMDI 19.7 parts were heated to 80°, mixed with 3.6 parts reaction product of 800 parts HMDI isocyanurate trimer and 543.9 parts Et 4-hydroxybenzoate, 2 parts Bu₂Sn dilaurate, 233 parts isoctane, and 7.8 parts 1,4-butanediol, stirred for 2 h at 90°, and cooled to give a free-flowing powder with particle size distribution 93.1% 100-315 µm and m.p. 160°. Heating a 1000-µm layer of this powder on glass at 200° for 20 min gave a film with tensile strength 27 MPa, elongation 751%, cut growth resistance 584 N/cm, and softening point 160°.

IT 151931-82-7
 (powder, preparation of thermoplastic, from emulsions)

RN 151931-82-7 HCPLUS

CN Hexanedioic acid, polymer with 1,3-bis(6-isocyanatohexyl)-1,3-

diazetidine-2,4-dione, 1,4-butanediol, 1,6-diisocyanatohexane,
2,2-dimethyl-1,3-propanediol and 1,6-hexanediol (9CI) (CA INDEX
NAME)

CM 1

CRN 23501-81-7

CMF C16 H24 N4 O4

CM 2

CRN 822-06-0

CMF C8 H12 N2 O2

OCN-(CH₂)₆-NCO

CM 3

CRN 629-11-8

CMF C6 H14 O2

HO-(CH₂)₆-OH

CM 4

CRN 126-30-7

CMF C5 H12 O2

CM 5

CRN 124-04-9

CMF C6 H10 O4

CM 6

CRN 110-63-4
 CMF C4 H10 O2

IC ICM C08G018-08
 ICS C08G018-10; C08G018-80; C08G018-79; C08J003-24
 ICA C08L075-04
 CC 37-3 (Plastics Manufacture and Processing)
 IT 151931-81-6 151931-82-7 151931-83-8 151931-84-9
 (powder, preparation of thermoplastic, from emulsions)

L50 ANSWER 21 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1993:604627 HCAPLUS
 DOCUMENT NUMBER: 119:204627
 TITLE: Polyisocyanate mixtures and their preparation and use as crosslinking agents in aqueous binder compositions
 INVENTOR(S): Reiff, Helmut
 PATENT ASSIGNEE(S): Bayer A.-G., Germany
 SOURCE: Ger. Offen., 9 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4129953	A1	19930311	DE 1991-4129953	1991 0910
EP 531820	A1	19930317	EP 1992-114682	1992 0828
EP 531820 R: DE, FR, GB, IT CA 2077633	B1 AA	19970709 19930311	CA 1992-2077633	1992 0904
CA 2077633 US 5258452	C A	20021119 19931102	US 1992-940564	1992 0904
PRIORITY APPLN. INFO.:			DE 1991-4129953	A 1991 0910

AB A polyisocyanate composition containing (cyclo)aliphatic isocyanate groups and having average NCO functionality

≥ 2.1 and a modifier containing ≥ 1 tertiary N and ≥ 1 isocyanate-reactive group are used to prepare a polyisocyanate mixture having an NCO functionality 2.3-4.3. The mixture is useful as a crosslinking composition, which forms stable aqueous emulsions. Reacting 50 g (2-hydroxyethyl)morpholine with 1 kg trimerized hexamethylene diisocyanate [mixture of tris(6-isocyanatoethyl) isocyanurate and higher homologs] having average NCO functionality 3.3 and adding 43.3 g Me₂SO₄ gave a product (NCO content 17.9%; quaternary N content 32.7 mequiv./100 g), which was mixed (25 g) with 75 g water to give an emulsion showing storage stability >1 day.

IT 23501-81-7DP, reaction products with amines
(preparation of emulsifiable, as crosslinking agents)

RN 23501-81-7 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatoethyl)- (9CI) (CA INDEX NAME)

IC ICM C08G018-78
ICS C08G018-79; C08G018-48; C09D175-04; C09J175-04

ICI C09D175-04, C09D133-04; C09D167-00, C09D167-08

CC 37-6 (Plastics Manufacture and Processing)

ST isocyanate mixt prepn emulsion crosslinker;
hexamethylene diisocyanate trimer deriv crosslinker;
hydroxyethylmorpholine polyisocyanate mixt emulsion
crosslinker; polyisocyanate mixt prepn emulsion
crosslinker; quaternary ammonium polyisocyanate emulsion
crosslinker; amine polyisocyanate emulsion crosslinker;
binder emulsion crosslinker polyisocyanate; adhesive
emulsion crosslinker polyisocyanate;
polyurethane emulsion crosslinker polyisocyanate

IT Emulsifying agents
(amine-polyisocyanate reaction products, for
polyisocyanate mixts. as crosslinking agents)

IT Adhesives
Binding materials
Coating materials
(crosslinking agents for, emulsifiable polyisocyanate
mixts. as)

IT Emulsions
(of polyisocyanate mixts., as crosslinking agents)

IT Crosslinking agents
(polyisocyanates, emulsifiable, for adhesives and
coatings)

IT Urethane polymers, preparation
(preparation and crosslinking of, emulsifiable
polyisocyanates for)

IT Quaternary ammonium compounds, preparation
(preparation of isocyanate group-containing, emulsifiable, as
crosslinking agents)

IT 77-78-1DP, Dimethylsulfate, quaternization products with amine
derivs. of polyisocyanates 103-76-4DP,

N-(2-Hydroxyethyl)piperazine, reaction products with **polyisocyanates** 108-19-0DP, Biuret, **isocyanate** derivs., reaction products with amines 622-40-2DP, N-(2-Hydroxyethyl)morpholine, reaction products with **polyisocyanates** 822-06-0DP, Hexamethylene diisocyanate, biuret and isocyanurate derivs., reaction products with amines 3040-44-6DP, N-(2-Hydroxyethyl)piperidine, reaction products with **polyisocyanates** 3779-63-3DP, Tris(6-isocyanatohexyl) isocyanurate, reaction products with amines 4035-89-6DP, N,N',N''-Tris(6-isocyanatohexyl)biuret, reaction products with amines 4098-71-9DP, Isophorone diisocyanate, trimers, reaction products with amines 9003-11-6DP, Ethylene oxide-propylene oxide copolymer, reaction products with amino derivs. of **polyisocyanates** 9038-95-3DP, Ethylene oxide-propylene oxide copolymer monobutyl ether, reaction products with amino derivs. of **polyisocyanates** 14037-23-1DP, reaction products with **polyisocyanates** 23501-81-7DP, reaction products with amines 25322-68-3DP, Polyethylene glycol, reaction products with amino derivs. of **polyisocyanates** 76996-65-1DP, reaction products with amino derivs. of **polyisocyanates** (preparation of emulsifiable, as crosslinking agents)

L50 ANSWER 22 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1992:86069 HCPLUS

DOCUMENT NUMBER: 116:86069

TITLE: Syntheses and reactions of urethanes of cellobiose and cellulose-containing uretdione groups

AUTHOR(S): Meyer-Stork, L. Sebastian; Hoecker, Hartwig; Berndt, Heinz

CORPORATE SOURCE: RWTH Aachen, Aachen, 5100, Germany

SOURCE: Journal of Applied Polymer Science (1992), 44(6), 1043-9

CODEN: JAPNAB; ISSN: 0021-8995

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Urethanes of cellobiose and cellulose-containing uretdione groups are synthesized by the reaction of aliphatic and aromatic diisocyanate uretdiones with the saccharides. The syntheses are performed as a heterogeneous reaction in AcNMe₂ using dibutyltin dilaurate as catalyst, as well as a homogeneous reaction in AcNMe₂-LiCl. Thus, semisynthetic prepolymers are formed that offer the reactivity of (blocked) isocyanate groups. To demonstrate their reactivity, ring opening of the uretdiones is performed by the addition of a secondary amine to yield the corresponding ureas.

IT 23501-81-7DP, Hexamethylene diisocyanate dimer, reaction products with cellobiose or cellulose (preparation and structural characterization of)

RN 23501-81-7 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA INDEX NAME)

CC 43-3 (Cellulose, Lignin, Paper, and Other Wood Products)
 Section cross-reference(s): 35
 ST urethane cellobiose cellulose uretedione
 IT 528-50-7DP, D-Cellobiose, reaction products with hexamethylene diisocyanate dimer or TDI dimer 9004-34-6DP, Cellulose, reaction products with hexamethylene diisocyanate dimer or TDI dimer 23501-81-7DP, Hexamethylene diisocyanate dimer, reaction products with cellobiose or cellulose 26747-90-0DP, TDI dimer, reaction products with cellobiose or cellulose (preparation and structural characterization of)

L50 ANSWER 23 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1988:529114 HCAPLUS
 DOCUMENT NUMBER: 109:129114
 TITLE: Synthesis and hydrolysis of (siloxyethyl)ureas
 AUTHOR(S): Vostokov, I. A.; Vasyaeva, L. V.
 CORPORATE SOURCE: Gos. Nauchno-Issled. Inst. Azotn. Prom., Dzerzhinsk, USSR
 SOURCE: Zhurnal Obshchey Khimii (1987), 57(10), 2329-33
 CODEN: ZOKHA4; ISSN: 0044-460X
 DOCUMENT TYPE: Journal
 LANGUAGE: Russian
 OTHER SOURCE(S): CASREACT 109:129114
 AB 3,4-C12C6H3NHCONRCH2CH2OSiMe3 (R = H, CH2CH2OSiMe3, SiMe3) were prepared in 95-100% yields by treating 3,4-C12C6H3NCO with RNHCH2CH2OSiMe3. Hydrolysis of R1NHCONRCH2CH2OSiMe3 [R1 = C1(CH2)6, 3-C1C6H4, 3,4-C12C6H3; R = H, CH2CH2OSiMe3] gave 61-100% R1NHCONRCH2CH2OH.
 IT 23336-46-1P (preparation of)
 RN 23336-46-1 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-chlorohexyl)- (9CI) (CA INDEX NAME)

CC 29-6 (Organometallic and Organometalloidal Compounds)
 ST addn isocyanate siloxyethylamine; siloxyethylurea; urea siloxyethyl phenyl; hydrolysis siloxyethylurea; hydroxyethyurea
 IT Addition reaction (of Ph isocyanates with siloxyethylamines, siloxyethylureas by)

IT 1025-36-1P 1785-02-0P 3420-84-6P 4459-90-9P 15145-34-3P
 16122-64-8P 23336-46-1P 23544-79-8P 69796-24-3P
 87919-35-5P 91933-84-5P 116422-02-7P 116422-03-8P
 116422-04-9P
 (preparation of)
 IT 20836-42-4
 (reaction of, with Ph isocyanate)
 IT 17165-52-5
 (reaction of, with Ph isocyanate derivs.)
 IT 111-42-2, Diethanolamine, reactions 5804-92-2 20836-40-2
 (reaction of, with dichlorophenyl isocyanate)
 IT 102-36-3 103-71-9, Phenyl isocyanate, reactions
 2909-38-8 13654-91-6, 6-Chlorohexyl isocyanate
 (reaction of, with siloxyethylamines)

L50 ANSWER 24 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1988:511355 HCAPLUS

DOCUMENT NUMBER: 109:111355

TITLE: Analysis of chemical structures of isocyanurate-oxazolidone resins by infrared absorption spectroscopy

AUTHOR(S): Yokoyama, Takashi; Koyama, Toru; Kinjo, Noriyuki; Narahara, Toshikazu

CORPORATE SOURCE: Hitachi Res. Lab., Hitachi Ltd., Hitachi, 319-12, Japan

SOURCE: Kobunshi Ronbunshu (1988), 45(6), 491-8
 CODEN: KBRBA3; ISSN: 0386-2186

DOCUMENT TYPE: Journal

LANGUAGE: Japanese

AB Isocyanurate-oxazolidone resins were prepared from 2,4-TDI and 2,2-bis[p-(2,3-epoxypropoxy)phenyl]propane (I) using N-methylmorpholine as a catalyst. Model polymers containing isocyanurate, oxazolidone, and uretidindione rings were prepared from TDI, MDI, tri-Ph isocyanate, and I in order to form calibration curves for IR spectra. Composition of hetero rings in the cured product varied with curing temperature, time, and compound ratio. Isocyanate groups changed mainly to isocyanurate rings with .apprx.20 mol% of the groups becoming oxazolidone rings. Product contents of uretidindione rings were <6 mol%. Reaction routes were analyzed from conversion ratios. Variations in the bending strength of the resins made from modified MDI and I are discussed in relation to hetero ring content.

IT 5663-08-1DP, 1,3-Diazetidine, derivs., polymers
 (preparation of, from diisocyanates and bis(epoxypropylphenyl)propane, hetero ring formation in, effect of curing conditions on)

RN 5663-08-1 HCAPLUS

CN 1,3-Diazetidine (9CI) (CA INDEX NAME)

CC 37-4 (Plastics Manufacture and Processing)

IT Ring closure and formation
 (in polymerization of diisocyanates and bis(epoxypropylphenyl)propane)

IT Polymerization

(of diisocyanates with bis[(epoxypropyl)phenyl]propane, mechanism of oxazolidone and isocyanurate and uretidindione ring formation in)

IT Chains, chemical
 (structure of, of diisocyanate-
 bis(epoxypropylphenyl)propane copolymers, effect of curing
 conditions on)

IT 504-76-7DP, Oxazolidine, derivs., polymers 5663-08-1DP,
 1,3-Diazetidine, derivs., polymers
 (preparation of, from diisocyanates and
 bis(epoxypropylphenyl)propane, hetero ring formation in, effect
 of curing conditions on)

L50 ANSWER 25 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1988:406994 HCAPLUS

DOCUMENT NUMBER: 109:6994

TITLE: Formation of a uretonimine in the production
 of heat-treated 4,4'-diphenylmethane
 diisocyanate

AUTHOR(S): Ivanov, M. G.; Golov, V. G.; Rogulev, V. A.;
 Mushkin, Yu. I.; Vodop'yanov, V. G.; Gerega,
 V. F.

CORPORATE SOURCE: USSR

SOURCE: Khimicheskaya Promyshlennost (Moscow, Russian
 Federation) (1988), (4), 208-10

CODEN: KPRMAW; ISSN: 0023-110X

DOCUMENT TYPE: Journal

LANGUAGE: Russian

OTHER SOURCE(S): CASREACT 109:6994

AB In the thermal decarboxylation of MDI to give carbodiimide monomers containing NCO groups, a substituted uretonimine (1,3-diazacyclobutane derivative) was formed from reaction of the carbodiimide moiety with NCO groups of the MDI or the carbodiimide. The reaction was reversible at 120-180°. At 70° and lower, the reaction equilibrium shifted almost completely to the side of uretonimine formation. At 120° the equilibrium reaction mixture contained significant amts. of carbodiimide, resulting in a decrease in the content of trifunctional uretonimine and in a decrease of product functionality to 2. Kinetic data are given for the equilibrium reaction, and permit calcn. of the time necessary for achieving stable physicochem. properties of the product. Thus, 90-95% conversion of carbodiimide to uretonimine was achieved after 10-15 days at 20° or after 5-7 h at 70°.

IT 5663-08-1DP, 1,3-Diazacyclobutane, derivs.
 (formation of, in thermal decarboxylation of MDI to carbodiimide, kinetics and equilibrium of)

RN 5663-08-1 HCAPLUS

CN 1,3-Diazetidine (9CI) (CA INDEX NAME)

CC 35-2 (Chemistry of Synthetic High Polymers)

IT 5663-08-1DP, 1,3-Diazacyclobutane, derivs.

(formation of, in thermal decarboxylation of MDI to carbodiimide, kinetics and equilibrium of)

L50 ANSWER 26 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1986:552526 HCPLUS
 DOCUMENT NUMBER: 105:152526
 TITLE: Studies of methyl isocyanate
 chemistry in the Bhopal incident
 AUTHOR(S): D'Silva, Themistocles D. J.; Lopes, Anibal;
 Jones, Russell L.; Singhawangcha, Sureerat;
 Chan, John K.
 CORPORATE SOURCE: Res. Dev. Dep., Union Carbide Agric. Prod.
 Co., Inc., Research Triangle Park, NC, 27709,
 USA
 SOURCE: Journal of Organic Chemistry (1986), 51(20),
 3781-8
 CODEN: JOCEAH; ISSN: 0022-3263
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 OTHER SOURCE(S): CASREACT 105:152526
 GI

AB Following the MeNCO leak from Tank 610 at the Bhopal plant, the residual material from the tank was analyzed for its contents. Approx. 70% of the residue was comprised of 3 cyclic materials: MeNCO cyclotrimer, di-Me isocyanurate (I), and dihydrotrimethyltriazinedione (II). Minor quantities of methyl-substituted ureas, biurets, and amine hydrochlorides were also found. The composition of the residue was replicated very closely by the products obtained when a mixture of MeNCO (84.4%), CHCl₃ (12.0%), and water (3.6%) was heated at 225° under pressure in a stainless steel reactor. Exptl. results are consistent with the view that under these conditions MeNCO reacts initially with water to form 1,3-dimethylurea (III) and 1,3,5-trimethylbiuret (IV). At 100-225° these products decompose to reactive intermediates which further react exothermically to form the aforementioned cyclic materials, trimethylurea, and mono-, di-, and trimethylamine hydrochlorides. The decomposition of III and IV is facilitated by the presence of CHCl₃ and metals. Other expts. involving ¹³C-enriched CHCl₃ support the proposed mechanisms for formation of I and II.

IT 36909-44-1P
 (preparation and detection of, Me isocyanate chemical and
 Bhopal incident in relation to)
 RN 36909-44-1 HCPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-dimethyl- (9CI) (CA INDEX NAME)

CC 23-21 (Aliphatic Compounds)
 ST methyl **isocyanate** chem Bhopal; cyclotrimerization methyl **isocyanate**; triazinetrione methylated; isocyanurate dimethyl; triazinedione dihydrotrimethyl
 IT Trimerization
 (cyclo-, of Me **isocyanate**, Bhopal incident in relation to)
 IT 75-44-5
 (Me **isocyanate** reactions in presence of, Bhopal incident in relation to)
 IT 96-31-1
 (detection and reactions of, Me **isocyanate** chemical and Bhopal incident in relation to)
 IT 506-59-2 593-51-1 593-81-7 632-22-4 7439-89-6, analysis
 7440-02-0, analysis 7440-47-3, analysis
 (detection of, Me **isocyanate** chemical and Bhopal incident in relation to)
 IT 67-66-3, uses and miscellaneous
 (effect of, on Me **isocyanate** chemical)
 IT 6452-47-7
 (preparation and Me **isocyanate** reactions in presence of, Bhopal incident in relation to)
 IT 13188-08-4P
 (preparation and cyclocondensation of, Me **isocyanate** dimer from)
 IT 827-16-7P 6726-48-3P 36909-44-1P 41221-01-6P.
 54070-65-4P
 (preparation and detection of, Me **isocyanate** chemical and Bhopal incident in relation to)
 IT 632-14-4P 816-00-2P
 (preparation, detection, and reaction of, Me **isocyanate** chemical and Bhopal incident in relation to)
 IT 31717-44-9
 (reaction of, with Me **isocyanate**, Bhopal incident in relation to)
 IT 590-28-3
 (reaction of, with Me **isocyanate**, dimethyltriazinetrione from)

L50 ANSWER 27 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1983:488088 HCAPLUS

DOCUMENT NUMBER: 99:88088

TITLE: Synthesis of carbamoyl **isocyanates**
 by the exchange reaction of carbamoyl
 chlorides with trimethylisocyanatosilane*
 **

AUTHOR(S): Kozyukov, V. P.; Mironov, V. F.

CORPORATE SOURCE: Gos. Nauchno-Issled. Inst. Khim. Tekhnol.
 Elementoorg. Soedin., Moscow, USSR

SOURCE: Zhurnal Obshchey Khimii (1983), 53(6), 1434-5

CODEN: ZOKHA4; ISSN: 0044-460X

DOCUMENT TYPE: Journal
LANGUAGE: Russian
OTHER SOURCE(S) : CASREACT 99:88088
GI

II

AB R₂NC(O)NCO (I, R = Me, Et) are prepared in 70-90% yields by treatment of R₂NCOCl with Me₃SiNCO in the presence of SnCl₄ 3-5 h. I readily dimerize to give II which can be decomposed to the monomer at 200-300° and 2-3 mm pressure.

IT *68661-66-5P 86790-60-5P**
(preparation and conversion to monomer)

RN 68661-66-5 HCAPLUS

CN 1,3-Diazetidine-1,3-dicarboxamide, N,N,N',N'-tetramethyl-2,4-dioxo-
(9CI) (CA INDEX NAME)

RN 86790-60-5 HCAPLUS

CN 1,3-Diazetidine-1,3-dicarboxamide, N,N,N',N'-tetraethyl-2,4-dioxo-(9CI) (CA INDEX NAME)

CC 28-4 (Heterocyclic Compounds (More Than One Hetero Atom))

ST diazetidinedione; isocyanate dimethylcarbamoyl cyclodimerization

**IT Condensation reaction
(of carbamoyl chlorides with trimethylsilyl isocyanate)**

)
 IT Dimerization
 (cyclo-, of dialkylcarbamoyl **isocyanates**)
 IT 68661-66-5P 86790-60-5P
 (preparation and conversion to monomer)
 IT 79-44-7 88-10-8
 (reaction of, with trimethylsilyl **isocyanate**)

L50 ANSWER 28 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1981:462141 HCAPLUS
 DOCUMENT NUMBER: 95:62141
 TITLE: Cycloaddition reactions between acyl (or thioacyl) **isocyanates** (or **isothiocyanates**) and **isocyanates** (or **isothiocyanates**)
 AUTHOR(S): Raton, Serge; Moyne, Jose; Longeray, Remi
 CORPORATE SOURCE: Cent. Rech. Decines, Rhone-Poulenc Rech. Dev., Decines-Charpieu, 69150, Fr.
 SOURCE: Bulletin de la Societe Chimique de France (1981), (1-2, Pt. 2), 28-32
 DOCUMENT TYPE: CODEN: BSCFAS; ISSN: 0037-8968
 LANGUAGE: Journal French
 OTHER SOURCE(S): CASREACT 95:62141
 GI

AB The reaction of RCONCZ [R = Ph, O₂NCH₂, 2,4-Me(Cl)C₆H₃OCH₂, 4,3,5-Cl(O₂N)C₆H₂, ClCH₂, PhOCH₂, Me₂N; Z = O, S] with R₁NCZ₁ (R₁ = Me, Et, Ph, 4-FC₆H₄; Z₁ = O, S) gave oxadiazines I. Thus, PhCONCO was added MeNCO in ether at 20°, and the mixture was stirred 120 h to give I (Z = Z₁ = O, R = Ph, R₁ = Me).
 IT 78488-11-6P
 (preparation of)
 RN 78488-11-6 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1-(chloroacetyl)-3-methyl- (9CI) (CA INDEX NAME)

CC 28-22 (Heterocyclic Compounds (More Than One Hetero Atom))
 Section cross-reference(s): 23, 25

ST oxadiazinedione; cycloaddn benzoyl **isocyanate**; methyl
isocyanate cycloaddn
IT Cycloaddition reaction
(of acyl **isocyanates** and carbamoyl isothiocyanate derivative with organic **isocyanates** and isothiocyanates, oxadiazines and thiadiazines from)
IT 4461-30-7 4461-31-8 4461-37-4 5843-49-2 41835-30-7
61831-98-9
(cycloaddn. reaction of, with Me **isocyanate**)
IT 103-71-9, reactions 109-90-0
(cycloaddn. reaction of, with benzoyl **isocyanate** and carbamoyl isothiocyanate derivative)
IT 624-83-9
(cycloaddn. reaction of, with benzoyl **isocyanates** and carbamoyl isothiocyanate derivative)
IT 4461-33-0
(cycloaddn. reaction of, with organic **isocyanates**)
IT 16011-79-3
(cycloaddn. reaction of, with organic **isocyanates** and isothiocyanates)
IT 61831-87-6P 61831-88-7P 61831-89-8P 61831-90-1P
61831-91-2P 61831-92-3P 61831-94-5P 61831-95-6P
61831-96-7P 61831-97-8P 78488-10-5P **78488-11-6P**
78488-12-7P 78488-13-8P 78488-14-9P 78488-15-0P
(preparation of)

L50 ANSWER 29 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 1980:75625 HCPLUS
DOCUMENT NUMBER: 92:75625
TITLE: Coordination properties of **isocyanates**
AUTHOR(S): Varentsova, N. V.; Gol'dshtein, I. P.;
Shufrina, R. R.; Shcherbakova, E. S.;
Tarakanov, O. G.; Gur'yanova, E. N.
CORPORATE SOURCE: Nauchno-Issled. Fiz.-Khim. Inst. im. Karpova,
Moscow, USSR
SOURCE: Zhurnal Obshchey Khimii (1979), 49(9), 2082-90
CODEN: ZOKHA4; ISSN: 0044-460X
DOCUMENT TYPE: Journal
LANGUAGE: Russian

AB Calorimetric, cryoscopic and spectral data indicated that BuNCO and PhNCO formed complexes with electron acceptors, e.g., SnCl₄, CF₃CO₂H, BBr₃ and AlBr₃. The last 2 compds. also formed complexes with cyclic dimers and trimers of the **isocyanates**. The heats of formation of 2:1 complexes of AlBr₃ with BuNCO and PhNCO were -28.3 and -17.2 kcal/mol, resp.; the values for the corresponding BBr₃ complexes were -25.5 and -14.3 kcal/mol. The **isocyanates** did not form complexes with tertiary amine donors.

IT 72606-17-8P 72606-20-3P
(preparation of)
RN 72606-17-8 HCPLUS
CN Boron, hexabromo[μ-(1,3-dibutyl-1,3-diazetidine-2,4-dione-O:O')]di- (9CI) (CA INDEX NAME)

RN 72606-20-3 HCPLUS

CN Boron, tribromo(1,3-dibutyl-1,3-diazetidine-2,4-dione-O)-, (T-4)-
(9CI) (CA INDEX NAME)

CC 22-8 (Physical Organic Chemistry)

ST isocyanate complex electron acceptor; tin chloride complex isocyanate; aluminum bromide complex isocyanate; boron bromide complex isocyanate; fluoroacetic acid complex isocyanate

IT Ultraviolet and visible spectra
(of isocyanate complexes with aluminum bromide)IT Infrared spectra
(of isocyanate complexes with boron bromide)IT Molecular association
(of isocyanates with electron acceptors)IT 110-86-1, reactions 121-44-8, reactions 280-57-9
(attempted complexation of, with isocyanates)IT 7727-15-3 10294-33-4
(complexation of, with isocyanates)IT 72576-88-6P 72576-89-7P 72576-90-0P 72606-14-5P
72606-15-6P 72606-16-7P 72606-17-8P 72606-18-9P
72606-19-0P 72606-20-3P 72606-21-4P 72606-22-5P
72606-23-6P 72606-24-7P 72627-57-7P
(preparation of)

L50 ANSWER 30 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1979:22234 HCPLUS

DOCUMENT NUMBER: 90:22234

TITLE: Synthesis and properties of
(N,N-dimethyl)dichloromethaniminium
chlorosulfateAUTHOR(S): Kukhar, V. P.; Pasternak, V. I.; Shevchenko,
M. V.

CORPORATE SOURCE: Inst. Org. Khim., Kiev, USSR

SOURCE: Zhurnal Organicheskoi Khimii (1978), 14(9),
1841-6

CODEN: ZORKAE; ISSN: 0514-7492

DOCUMENT TYPE:
LANGUAGE:
OTHER SOURCE(S):
GI

Journal
Russian
CASREACT 90:22234

VI

VII

AB $\text{Cl}_2\text{C:NMe}_2 + \text{X}^-$ [I; X = Cl (II)] reacted with Me_2SO_4 to give I [X = ClSO_3 (III)] via the intermediate I [X = MeOSO_3 (IV)]. III was also prepared directly from II in 81% yield by treatment with ClSO_3H , and along with I (X = ClSO_3SO_3) by treatment with SO_3 . Analogously, Z:NMe₂⁺ X⁻ (V; Z = CH₂, ClCH; X = Cl) reacted with SO₃ to give 85-96% V (Z = same; X = ClSO₃, ClSO₃SO₃). Pyrolysis of III gave 80% Me_2NCOC_1 , SO_2 and Cl_2 . III and IV cyclized with o-H₂N₂C₆H₄OH to give benzoxazole VI. III reacted with p-ClC₆H₄SO₂Cl₂ to give 41% p-ClC₆H₄SO₂N:CClNMe₂, and with Cl₂NC₂OEt to give 83% Me₂NCONCO, which underwent partial cyclodimerization to VI on distillation and reacted with PhNH₂ to give Me₂NCONHCONHPh.

IT 68661-66-5P

(preparation of)

RN 68661-66-5 HCPLUS

CN 1,3-Diazetidine-1,3-dicarboxamide, N,N,N',N'-tetramethyl-2,4-dioxo- (9CI) (CA INDEX NAME)

CC 23-4 (Aliphatic Compounds)

Section cross-reference(s): 28

IT 62-53-3, reactions

(addition reaction of, with dimethylcarbamoyl isocyanate)

IT 2617-87-0P 13858-89-4P 34520-13-3P 68661-60-9P 68661-62-1P

68661-66-5P 68661-67-6P

(preparation of)

L50 ANSWER 31 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1978:615264 HCPLUS

DOCUMENT NUMBER: 89:215264

TITLE: Synthesis of 1,3-dialkyldiazetidinediones from

AUTHOR(S): N,N'-dialkylaminocarbonylcarbamic chlorides
 (2,4-dialkylallophanoyl chlorides)
 White, Dabney K.; Greene, Frederick D.
 Dep. Chem., Massachusetts Inst. Technol.,
 Cambridge, MA, USA
 SOURCE: Journal of Organic Chemistry (1978), 43(23),
 4530-2
 DOCUMENT TYPE: CODEN: JOCEAH; ISSN: 0022-3263
 LANGUAGE: Journal
 English
 OTHER SOURCE(S): CASREACT 89:215264
 GI

AB Hydrolyzing the title carbamoyl chlorides, RN:CClNRCOCl (R = CHMe₂, cyclohexyl, CMe₃) in acetone-water gave 60-80% RNHCONRCOCl (I). Treating I with 1,4-diazabicyclo[2.2.2]octane in ether gave 55-84% 1,3-dialkyl-2,4-diazetidinediones II (R = CHMe₂, cyclohexyl, CMe₃, Me). Use of NaH or KOCMe₃ to promote ring closure of I gave mixts. of products.

IT 30885-14-4P 36909-44-1P 67463-80-3P
 (preparation of)

RN 30885-14-4 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(1,1-dimethylethyl)- (9CI) (CA INDEX NAME)

RN 36909-44-1 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-dimethyl- (9CI) (CA INDEX NAME)

RN 67463-80-3 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(1-methylethyl)- (9CI) (CA INDEX NAME)

CC 28-4 (Heterocyclic Compounds (More Than One Hetero Atom))
 IT 15234-14-7P 30885-14-4P 36909-44-1P
 51170-55-9P 67463-80-3P 67463-81-4P
 (preparation of)
 IT 75-65-0, reactions
 (reaction of, with iso-Pr isocyanate)

L50 ANSWER 32 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1978:6583 HCPLUS
 DOCUMENT NUMBER: 88:6583
 TITLE: Alkoxy carbonylisourea isocyanates
 INVENTOR(S): Fuchs, Julius Jakob
 PATENT ASSIGNEE(S): du Pont de Nemours, E. I., and Co., USA
 SOURCE: U.S., 5 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4045473	A	19770830	US 1975-603651	1975 0811
US 4075201	A	19780221	US 1977-776258	1977 0310
PRIORITY APPLN. INFO.:			US 1975-603651	A3 1975 0811

GI

AB MeO₂CN:C(OMe)NH₂, prepared from MeOC(NH₂):NH and MeO₂CCl, was treated with Cl₂CO to give the diazepidine biscarbamate I via MeO₂CN:C(OMe)NCO. I was treated with cyclohexylamine to give RNHC(OMe):NCO₂Me (II, R = cyclohexyl). II (R = p-ClC₆H₄) was similarly prepared II were herbicidal (no data).
 IT 64836-49-3P

(preparation and reaction with amines)

RN 64836-49-3 HCPLUS

CN 1,3-Diazetidine-1,3-dicarboximidic acid, N,N'-bis(methoxycarbonyl)-
2,4-dioxo-, dimethyl ester (9CI) (CA INDEX NAME)

IC C07C127-26

INCL 260482000C

CC 25-28 (Noncondensed Aromatic Compounds)

Section cross-reference(s): 5

ST allophanimide prepn herbicide; diazetidine biscarbamate;
isocyanate alkoxycarbonylisourea

IT 64836-49-3P

(preparation and reaction with amines)

L50 ANSWER 33 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1977:423111 HCPLUS

DOCUMENT NUMBER: 87:23111

TITLE: 1,3-Dialkyldiazetidin-2,4-diones. Structure
and molecular spectraAUTHOR(S): Kuhn, Norbert; Schwarz, Wolfgang; Schmidt,
ArminCORPORATE SOURCE: Inst. Anorg. Chem., Univ. Stuttgart,
Stuttgart, Fed. Rep. Ger.SOURCE: Chemische Berichte (1977), 110(3), 1130-9
CODEN: CHBEAM; ISSN: 0009-2940

DOCUMENT TYPE: Journal

LANGUAGE: German

GI

AB Diazetidinediones I (R = Me, Et) were prepared by cyclizing dimerization of the corresponding RNCO (R = Me, Et) with SbCl5. The vibrational spectra of I (R = Me, Et) were discussed. The crystal and mol. structure of I (R = Me) were determined, as well as 1H NMR data for I (R = Me, Et).

IT 36909-44-1P

(preparation and crystal and mol. structure and spectra of)

RN 36909-44-1 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-dimethyl- (9CI) (CA INDEX NAME)

IT 23336-34-7P

(preparation and spectra of)

RN 23336-34-7 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-diethyl- (9CI) (CA INDEX NAME)

CC 28-4 (Heterocyclic Compounds (More Than One Hetero Atom))

Section cross-reference(s): 22, 75

ST alkyl isocyanate cyclodimerization; diazetidinedione
crystal mol structure; vibrational spectra diazetidinedione; NMR
diazetidinedione

IT 7647-18-9

(cyclodimerization of alkyl isocyanates in presence
of)

IT 36909-44-1P

(preparation and crystal and mol. structure and spectra of)

IT 23336-34-7P

(preparation and spectra of)

L50 ANSWER 34 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1977:190109 HCPLUS

DOCUMENT NUMBER: 86:190109

TITLE: Trialkyl- and triaryl(isocyanatomethyl
chlorophosphoranesAUTHOR(S): Kozhushko, B. N.; Gumenyuk, A. V.; Paliichuk,
Yu. A.; Shokol, V. A.

CORPORATE SOURCE: Inst. Org. Khim., Kiev, USSR

SOURCE: Zhurnal Obshchey Khimii (1977), 47(2), 333-9

CODEN: ZOKHA4; ISSN: 0044-460X

DOCUMENT TYPE: Journal

LANGUAGE: Russian

GI

AB $\text{R}_3\text{P}^+\text{CH}_2\text{NCO Cl}^-$ (I; R = Ph, p-MeOC₆H₄, p-MeC₆H₄) and II (R = Pr, octyl, decyl) were prepared in 84-96% yields by treating R₃P with ClCH₂NCO in ether at 0-10°. I dimerized in the presence of Pr₃P in CHCl₃ to give the corresponding aryl dimers II. Treating I or II with R₁OH gave 12 R₃P⁺CH₂NHCO₂R₁ Cl⁻ (R₁ = Me, Et, Pr, Me₂CH, Bu, Ph, α-naphthyl) in 50-92% yield.

IT 62779-07-1P 62779-08-2P 62779-09-3P
(preparation and reaction with alcs.)

RN 62779-07-1 HCAPLUS

CN Phosphonium, [(2,4-dioxo-1,3-diazetidine-1,3-diyl)bis(methylene)]bis[tripropyl-, dichloride (9CI) (CA INDEX NAME)

● 2 Cl⁻

RN 62779-08-2 HCAPLUS

CN Phosphonium, [(2,4-dioxo-1,3-diazetidine-1,3-diyl)bis(methylene)]bis[trioctyl-, dichloride (9CI) (CA INDEX NAME)

● 2 Cl⁻

RN 62779-09-3 HCAPLUS
 CN Phosphonium, [(2,4-dioxo-1,3-diazetidine-1,3-diyl)bis(methylene)]bis[tris(decyl)-, dichloride (9CI) (CA INDEX NAME)

●2 Cl⁻

CC 29-7 (Organometallic and Organometalloidal Compounds)
 ST phosphonium isocyanatomethyl alkyl aryl; phosphorane
 isocyanatomethyl alkyl aryl; isocyanate
 phosphorane
 IT Alcohols, reactions
 (reaction of, with isocyanatomethylphosphonium
 chlorides)
 IT 21955-22-6P 62779-07-1P 62779-08-2P
 62779-09-3P 62779-10-6P 62779-11-7P 62779-12-8P
 62779-13-9P 62779-14-0P
 (preparation and reaction with alcs.)
 IT 603-35-0, reactions 855-38-9 1038-95-5 2234-97-1 4731-53-7
 17621-07-7
 (reaction of, with chloromethyl isocyanate)
 IT 64-17-5, reactions 67-56-1, reactions 67-63-0, reactions
 71-23-8, reactions 71-36-3, reactions 108-95-2, reactions
 1321-67-1
 (reaction of, with isocyanatomethylphosphonium
 chlorides)

L50 ANSWER 35 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1976:509180 HCAPLUS
 DOCUMENT NUMBER: 85:109180
 TITLE: Thermostable polymers obtained by
 heating an aromatic imine with a
 polyisocyanate
 INVENTOR(S): Balme, Maurice; Gruffaz, Max; Rollet, Bernard
 PATENT ASSIGNEE(S): Societe des usines chimiques de Rhone-Poulenc,
 Fr.
 SOURCE: Fr. Demande, 20 pp.
 CODEN: FRXXBL
 DOCUMENT TYPE: Patent
 LANGUAGE: French
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

FR 2279780	A1	19760220	FR 1974-25386	
				1974
				0722
FR 2279780	B1	19770325		
PRIORITY APPLN. INFO.:			FR 1974-25386	A
				1974
				0722

AB Polymers resistant to heating at $\leq 180^\circ$ were prepared by treating 4,4'-diisocyanatodiphenylmethane (I) with a benzylideneaminobenzene and optionally a bismaleimide. A mixture of 75.8 g 4,4'-bis(benzylideneamino)methane and 50 g I was heated 135 min at 260° and 5.8 g CO₂ was evolved. A polyimine diisocyanate was obtained which softened at 176-80° and 50 g of this polymer was treated with 150 g 4,4'-bis(maleimido)diphenylmethane and heated 30 min at 165-70° to give a polymer softening at 148-50° which was molded in 1 hr at 250° and 200 bars to give a product with initial flexural strength 5.1 kg/mm² and flexural modulus 232 kg/mm² which changed to 6.8, 6.5, and 6.7 kg/mm² and 266, 257, and 226 kg/mm² for strength and modulus resp., after 1160, 2230, and 3250 hr at 250°.

IT 5663-08-1DP, 1,3-Diazetidine, derivs., polymers
(heat-resistant)

RN 5663-08-1 HCPLUS

CN 1,3-Diazetidine (9CI) (CA INDEX NAME)

IC C08G033-02
CC 35-3 (Synthetic High Polymers)
ST benzylideneamino arom isocyanate polymer; polyimine polyisocyanate prep; heat resistant polyimine isocyanate
IT Heat-resistant materials
(aromatic imine-aromatic diisocyanate polymers)
IT 5663-08-1DP, 1,3-Diazetidine, derivs., polymers
55719-52-3 55719-53-4 55753-37-2
(heat-resistant)

L50 ANSWER 36 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
ACCESSION NUMBER: 1976:91789 HCPLUS
DOCUMENT NUMBER: 84:91789
TITLE: Polyaddition products containing uretdione groups
INVENTOR(S): Mueller, Hanns P.; Wagner, Kuno; Mueller, Richard
PATENT ASSIGNEE(S): Bayer A.-G., Fed. Rep. Ger.
SOURCE: Ger. Offen., 36 pp.
CODEN: GWXXBX
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2420475	A1	19751106	DE 1974-2420475	1974 0427
DE 2420475 AU 7579786	C2 A1	19871203 19761007	AU 1975-79786	1975 0403
CA 1084196	A1	19800819	CA 1975-223960	1975 0407
US 4044171	A	19770823	US 1975-569112	1975 0417
DK 7501793	A	19751028	DK 1975-1793	1975 0424
SE 7504773	A	19751028	SE 1975-4773	1975 0424
NL 7504862	A	19751029	NL 1975-4862	1975 0424
GB 1492102	A	19771116	GB 1975-17005	1975 0424
BE 828385	A1	19751027	BE 1975-155767	1975 0425
FR 2268840	A1	19751121	FR 1975-13112	1975 0425
FR 2268840 BR 7502548	B1 A	19790330 19760303	BR 1975-3232	1975 0425
ES 436992	A1	19770116	ES 1975-436992	1975 0425
AT 7503187	A	19770515	AT 1975-3187	1975 0425
AT 341221 CH 616169	B A	19780125 19800314	CH 1975-5330	1975 0425
JP 50149793	A2	19751201	JP 1975-50261	1975 0426
JP 57046447	B4	19821004		
PRIORITY APPLN. INFO.:			DE 1974-2420475	A 1974 0427

AB Dimerization of diisocyanates in the presence of Bu₃P or dibutyltin dilaurate (I) and polymerization with diols gave uretedione group-containing polyurethanes useful as hardeners for powdered

Polyester-based coating materials. Thus, a mixture of 2,4-tolylene diisocyanate 313.2, MeOCH₂CH₂OAc 975, PhMe 325, and Bu₃P 7.2 parts was stirred for 3.5 hr at 10-15°, treated with 10% S solution in PhMe 22.8 hexamethylene diisocyanate 33.6, benzoyl chloride 0.3, I 0.4, and 2-ethyl-1,3-hexanediol 182 parts, and stirred for 4 hr at 100° to give polyurethane (II) [58407-19-5] with 140-55° m.p., 3826 mol. weight and 11.35% latent NCO content. A mixture of polyester 100, II 34, TiO₂, and butyl acrylate-2-ethylhexyl acrylate copolymer [58247-84-0] 10 parts was melted, solidified, pulverized sprayed on a metal sheet at 20-100 kV, and hardened at 160-220° to give a coating with 9 mm Erichsen deep-drawing elasticity (DIN 53 156), 37% elongation as determined with conical mandrel (ASTM D 522-41), and 3H pencil hardness (DIN 46 450).

IT 58247-83-9
 (coatings, containing polyesters, electrostatic powder)
 RN 58247-83-9 HCPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatoethyl)-, polymer with 1,2-ethanediol and 2-ethyl-1,3-hexanediol (9CI) (CA INDEX NAME)

CM 1

CRN 23501-81-7
 CMF C16 H24 N4 O4

CM 2

CRN 107-21-1
 CMF C2 H6 O2HO-CH₂-CH₂-OH

CM 3

CRN 94-96-2
 CMF C8 H18 O2

IT 58247-81-7 58247-82-8
 (hardeners, for polyesters)
 RN 58247-81-7 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, polymer with 1,4-butanediol (9CI) (CA INDEX NAME)

CM 1

CRN 23501-81-7

CMF C16 H24 N4 O4

CM 2

CRN 110-63-4

CMF C4 H10 O2

HO-(CH₂)₄-OH

RN 58247-82-8 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 23501-81-7

CMF C16 H24 N4 O4

IC C08G

CC 42-9 (Coatings, Inks, and Related Products)

IT 31532-63-5 58247-83-9 58407-19-5

(coatings, containing polyesters, electrostatic powder)

IT 58247-81-7 58247-82-8 58342-52-2 58383-47-4

58383-48-5 58383-49-6 58383-50-9 58383-51-0 58383-52-1

58383-53-2 58383-54-3 58383-55-4 58383-56-5

(hardeners, for polyesters)

L50 ANSWER 37 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1975:514346 HCPLUS

DOCUMENT NUMBER: 83:114346

TITLE: Triallyl isocyanurate and products from the organomagnesium compounds reactions

AUTHOR(S): Etienne, Andre; Lonchambon, Georges;

CORPORATE SOURCE: Giraudeau, Pierre; Jaubert, Bernard
 Lab. Chim. Ind., Conservatoire Natl. Arts
 Metiers, Paris, Fr.

SOURCE: Comptes Rendus des Seances de l'Academie des
 Sciences, Serie C: Sciences Chimiques (1975),
 280(15), 995-8
 CODEN: CHDCAQ; ISSN: 0567-6541

DOCUMENT TYPE: Journal

LANGUAGE: French

OTHER SOURCE(S): CASREACT 83:114346

GI For diagram(s), see printed CA Issue.

AB Triallyl isocyanurate (I) was prepared by trimerizing CH₂:CHCH₂NCO in ClCH₂CH₂Cl in the presence of Bu₃P. I hydrolyzed in base to 1,3,5-triallylbiuret. Reaction of I with organomagnesium halides gave the triazinols II (R = Me, Et, CH₂Ph, Ph, C₆H₄Cl-4). II dehydrated on distillation under N to give III (X = CH₂, CHMe, CHPh), which formed salts with acids.

IT 23336-35-8P 56601-12-8P
 (preparation of)

RN 23336-35-8 HCAPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-di-2-propenyl- (9CI) (CA INDEX NAME)

RN 56601-12-8 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-di-2-propenyl- (9CI) (CA INDEX NAME)

CC 28-21 (Heterocyclic Compounds (More Than One Hetero Atom))
 IT 4015-16-1P 23336-35-8P 36020-44-7P 56601-12-8P
 56601-16-2P 56601-17-3P 56601-18-4P 56601-19-5P
 56601-20-8P 56601-22-0P 56601-23-1P 56601-25-3P
 56601-27-5P 56601-29-7P 56601-30-0P
 (preparation of)
 IT 998-40-3
 (trimerization of allyl isocyanate in presence of)

L50 ANSWER 38 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1972:572104 HCAPLUS
 DOCUMENT NUMBER: 77:172104
 TITLE: Phosphorothio(isocyanatidic)
 bis(dimethylamide) and bis(diethylamide)
 AUTHOR(S): Boden, Gisela; Grosskreutz, Werner; Kessler,
 Gudrun; Scheler, Hermann

CORPORATE SOURCE: Sekt. Chem., Tech. Univ. Dresden, Dresden, Ger. Dem. Rep.

SOURCE: Zeitschrift fuer Chemie (1972), 12(8), 299

CODEN: ZECEAL; ISSN: 0044-2402

DOCUMENT TYPE: Journal

LANGUAGE: German

AB The reaction of $(R_2N)_2P(S)Cl$ with $AgOCN$ gave $(R_2N)_2P(S) NCO$ [R = Me (I) or Et (II)]. I was also prepared by reaction of $(Me_2N)_2P(S)NH_2$ (III) with $COCl_2$. Reaction of I with $NH_3(g)$ gave $(Me_2N)_2P(S)NHCONH_2$. Reaction of II with $2,4,5-Cl_3C_6H_2NH_2$ gave $(Et_2N)_2P(S)NHCONHC_6H_2Cl_3-2,4,5$. Hydrolysis of I and II gave III and $(Et_2N)_2P(S)NH_2$, resp. Reaction of dimeric $(Et_2N)_2PNCO$ (IV) with S gave $[(Et_2N)_2P(S)NCO]_2$ (V) of uretedione structure. The reaction of dimeric IV with $SPCl_3$ gave V, $Et_2NP(S)Cl_2$, $Et_2NP(S)(NCO)_2$, and II.

IT 38590-06-6P
(preparation of)

RN 38590-06-6 HCPLUS

CN Phosphonothioic diamide, P,P'-(2,4-dioxo-1,3-diazetidine-1,3-diyl)bis[N,N,N',N'-tetraethyl- (9CI) (CA INDEX NAME)

CC 78-8 (Inorganic Chemicals and Reactions)

ST phosphorothioisocyanatidic diamide;
isocyanatothiophosphoric diamide; thiocyanatothiophosphoric diamide; ureidothiophosphoric diamide; amide thiophosphoryl

IT 1069-08-5P 5022-58-2P 38590-03-3P 38590-05-5P
38590-06-6P 38590-08-8P 38590-10-2P
(preparation of)

L50 ANSWER 39 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1971:540742 HCPLUS

DOCUMENT NUMBER: 75:140742

TITLE: Di-tert-butyluretidinedione

AUTHOR(S): Stowell, John C.; Greene, Frederick D.; Bergmark, William R.

CORPORATE SOURCE: Dep. Chem., Louisiana State Univ., New Orleans, LA, USA

SOURCE: Journal of Organic Chemistry (1971), 36(20), 3056-7

CODEN: JOCEAH; ISSN: 0022-3263

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Reaction of $Me_3CNHCONHMe_3$ with pyridine-phosgene affords di-tert-butyluretidinedione and di-tert-butylcarbodiimide. Both photolysis and thermolysis (200°) of the uretidinedione afford Me_3CNCO .

IT 30885-14-4P
(preparation of)

RN 30885-14-4 HCPLUS

CN 1,3-Diazetidine-2,4-dione, 1,3-bis(1,1-dimethylethyl)- (9CI) (CA INDEX NAME)

CC 28 (Heterocyclic Compounds (More Than One Hetero Atom))
 ST uretidinedione butyl; isocyanate butyl
 IT 30885-14-4P
 (preparation of)

L50 ANSWER 40 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1971:13211 HCPLUS
 DOCUMENT NUMBER: 74:13211
 TITLE: Silicon-nitrogen cleavage reactions in
 N,N-dimethyl-N',N-dimethyl-N',N'-
 bis(trimethylsilyl)hydrazine
 AUTHOR(S): Glemser, Oskar; Kluever, Horst
 CORPORATE SOURCE: Anorg.-Chem. Inst., Univ. Goettingen,
 Goettingen, Fed. Rep. Ger.
 SOURCE: Chemische Berichte (1970), 103(11), 3661-6
 CODEN: CHBEAM; ISSN: 0009-2940
 DOCUMENT TYPE: Journal
 LANGUAGE: German
 AB Treatment of Me₂NN(SiMe₃)₂ (I) with COF₂ in petroleum ether at -30° to 0° or with POF₃ in MeCN at -20°, yielded Me₃SiF (II) and bis(dimethylaminoisocyanate) or Me₂NN[P(O)F₂]SiMe₃, resp. Reaction of I with P₂O₃F₄ containing HOP(O)F₂ in Et₂O at 0° gave Me₂NNHP(O)F₂ and Me₃SiOP(O)F₂. Heating I and POCl₃ at 80° yielded Me₂NN[P(O)Cl₂]₂ and Me₃SiCl. Reaction of I and PSF₃ in MeCN at 30° in an autoclave gave Me₂NN[P(S)F₂]SiMe₃ and II.
 IT 29938-12-3P
 (preparation of)
 RN 29938-12-3 HCPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-bis(dimethylamino)- (9CI) (CA INDEX NAME)

CC 29 (Organometallic and Organometalloidal Compounds)
 IT 29938-12-3P 29938-13-4P 29938-14-5P 29938-15-6P
 30041-94-2P
 (preparation of)

L50 ANSWER 41 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1970:100564 HCPLUS
 DOCUMENT NUMBER: 72:100564
 TITLE: Chemistry of chloroisocyanate. III.

AUTHOR(S) : 1,3-Dichlorouretidinedione, a new
 chloroisocyanate dimer
 Gottardi, W.; Henn, D.
 CORPORATE SOURCE: Inst. Anorg. Anal. Chem., Univ. Innsbruck,
 Innsbruck, Austria
 SOURCE: Monatsh. Chem. (1970), 101(1), 264-74
 DOCUMENT TYPE: CODEN: MOCHAP
 Journal
 LANGUAGE: German
 GI For diagram(s), see printed CA Issue.
 AB The phys. and chemical properties of 1,3-dichlorouretidine-2,4-dione
 (I) (ibid., 1969) are described. Upon heating, I gave,
 depending on the conditions, ClNCO, Cl₂NCONCO, or
 1,3,5-trichloro-2,4,6-trioxohexahydro-s-triazine. The reaction of
 I with EtOH gave ClNHCONHCO₂Et and H₂NCONHCO₂Et.
 IT 24604-62-4P
 (preparation of)
 RN 24604-62-4 HCPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-dichloro- (9CI) (CA INDEX NAME)

CC 28 (Heterocyclic Compounds (More Than One Hetero Atom))
 ST chloro uretidinone; uretidinone chloro; isocyanate
 chloro dimer; dimer isocyanate chloro; uretidinediones
 IT 14628-80-9P 24604-62-4P 26231-93-6P 26231-94-7P
 26231-96-9P
 (preparation of)

L50 ANSWER 42 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1970:67449 HCPLUS
 DOCUMENT NUMBER: 72:67449
 TITLE: Chemistry of chlorine isocyanate.
 1. Polymerization, thermal behavior, and
 photolysis
 AUTHOR(S): Gottardi, W.; Henn, D.
 CORPORATE SOURCE: Inst. Anorg. Anal. Chem., Univ. Innsbruck,
 Innsbruck, Austria
 SOURCE: Monatsh. Chem. (1969), 100(6), 1860-7
 DOCUMENT TYPE: CODEN: MOCHAP
 Journal
 LANGUAGE: German
 AB Liquid ClNCO polymerized on standing at 50° to
 1,3-dichlorouretidinedione, trimers, and low polymers. ClNCO(g)
 was stable in the dark at normal pressures and temps.,
 and at reduced pressures and elevated temps. ClNCO was
 extremely sensitive to photolysis, decomposing to Cl₂CO, N, CO, and
 Cl₂CONCO. The possibility of storing ClNCO and using it
 synthetically were discussed.
 IT 24604-62-4P
 (preparation of)
 RN 24604-62-4 HCPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-dichloro- (9CI) (CA INDEX NAME)

CC 35 (Synthetic High Polymers)
 ST chlorine **isocyanate** thermolysis photolysis;
 isocyanate chlorine thermolysis photolysis; thermolysis
 photolysis chlorine **isocyanate**; photolysis thermolysis
 chlorine **isocyanate**
 IT Ring closure
 (in oligomerization, of chlorine **isocyanate**)
 IT Photolysis
 (of chlorine **isocyanate**)
 IT Polymerization
 (oligomerization, of chlorine **isocyanate**)
 IT 24604-62-4P 27341-09-9P
 (preparation of)

L50 ANSWER 43 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1970:31905 HCAPLUS
 DOCUMENT NUMBER: 72:31905
 TITLE: Carbofunctional organosilicon compounds. VI.
 Uretidinedione derivatives of
 isocyanates
 AUTHOR(S): Smetankina, N. P.; Miryan, N. I.; Didkovskii,
 V. E.
 CORPORATE SOURCE: Inst. Khim. Vysokomol. Soedin., Kiev, USSR
 SOURCE: Zhurnal Obshchey Khimii (1969), 39(9), 2016-20
 CODEN: ZOKHA4; ISSN: 0044-460X
 DOCUMENT TYPE: Journal
 LANGUAGE: Russian
 AB Heating 14 g Cl(CH₂)₃SiEt₃ (I) with 11.8 g KOCN in dry
 Me₂NCHO with 0.12 g Et₄NI 10 min at 145° under argon gave
 37% Et₃Si(CH₂)₃NCO and 41.6% its dimer, b₁ 167-70°, n_{20D}
 1.4875. Similarly were prepared the dimers [R₃Si(CH₂)_nNCO]₂ in
 25-50% yields (R₃ and n shown); Me₃, 1, b₅ 153°, Et₃, 1,
 b_{0.06} 172-4°, 1.48 80; Me₃, 3, b_{0.015}
 120°, 14610; Ph₃, 3, b_{0.04} 160-2°, 1.4800;
 and MeEt₂, 3, undistd. Heating 2 g I with 1.6 g KOCN
 and 0.08 g Et₄NI in Me₂NCHO 1.5 hr at 150° in argon atmospheric
 gave 70% above dimer. Ir spectral curves were shown. Thus, the
 haloalkylsilanes in reacting with KOCN yield not only the
 isocyanates but polymers with ring systems in the chain.
 The NCO group band in the **isocyanates** of Si lay in the
 2270 cm⁻¹ region, while the 1690 cm⁻¹ band is that of the CO group
 of the uretidinedione ring of the above dimers.
 IT 24602-17-3P 24602-19-5P 24602-21-9P
 24602-22-0P 24602-23-1P
 (preparation of)
 RN 24602-17-3 HCAPLUS
 CN 2,4-Uretidinedione, 1,3-bis[3-(triethylsilyl)propyl]- (8CI) (CA
 INDEX NAME)

RN 24602-19-5 HCAPLUS

CN 2,4-Uretidinedione, 1,3-bis[3-(diethylmethylsilyl)propyl]- (8CI) (CA INDEX NAME)

RN 24602-21-9 HCAPLUS

CN 2,4-Uretidinedione, 1,3-bis[(trimethylsilyl)methyl]- (8CI) (CA INDEX NAME)

RN 24602-22-0 HCAPLUS

CN 2,4-Uretidinedione, 1,3-bis[(triethylsilyl)methyl]- (8CI) (CA INDEX NAME)

RN 24602-23-1 HCAPLUS

CN 2,4-Uretidinedione, 1,3-bis[3-(trimethylsilyl)propyl]- (8CI) (CA INDEX NAME)

CC 29 (Organometallic and Organometalloidal Compounds)
 ST silyl isocyanate dimers; isocyanate dimers
 silyl; dimers silyl isocyanate; uretidinediones silyl
 IT 7440-21-3DP, Silicon, organic carbonyl derivs. 24602-17-3P
 24602-18-4P 24602-19-5P 24602-20-8P
 24602-21-9P 24602-22-0P 24602-23-1P
 26246-60-6P
 (preparation of)

L50 ANSWER 44 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN
 ACCESSION NUMBER: 1969:481328 HCPLUS
 DOCUMENT NUMBER: 71:81328
 TITLE: Uretidinediones with aliphatic substituents
 PATENT ASSIGNEE(S): Farbenfabriken Bayer A.-G.
 SOURCE: Fr., 6 pp.
 CODEN: FRXXAK
 DOCUMENT TYPE: Patent
 LANGUAGE: French
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
FR 1532054		19680705	FR	
DE 1670720			DE	
GB 1153815			GB	
PRIORITY APPLN. INFO.:			DE	
				1966
				0721

GI For diagram(s), see printed CA Issue.
 AB Substituted uretidinediones (I) are prepared by the dimerization at 60-140° of aliphatic isocyanates in the presence of a tertiary phosphine having ≥1 aliphatic substituent or BF₃ catalyst in an organic solvent and interrupting the reaction after 5-50% conversion, isolating I, and returning unreacted isocyanates to the reaction mixture. Thus, 657 parts freshly distilled BuNCO was heated at 60° with 9.85 parts Bu₃P for 4 hrs. or until a NCO content of 35.6% was obtained, the reaction stopped by adding 6.3 g. Me₂SO₄, and the mixture heated at 80° to give 16.5% conversion, and the mixture fractionated at 1.2 mm. to give 546 parts BuNCO in the cold trap and forecut (b. 45-92°) 3.6, I (R = Bu) (b. 92-3°) 49.0, intermediate fraction (b. 94-154°) 1.9, isocyanurate (b. 155-8°) 40.7, and residue 13.0 parts. Similarly prepared were the following I (R and b.p./mm. given): Et, 73-4°/760, allyl, 66°/1.0; MeOCH₂, 86°/1.0; 6-chlorohexyl, -; 5-(isocyanatomethyl)-3,3,5-trimethylcyclohexylmethyl, -. 1,6-Hexamethylene diisocyanate uretidinedione was also prepared

IT 23336-34-7P 23336-35-8P 23336-44-9P
 23336-45-0P 23336-46-1P 23501-81-7P
 (preparation of)
 RN 23336-34-7 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-diethyl- (9CI) (CA INDEX NAME)

RN 23336-35-8 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-di-2-propenyl- (9CI) (CA INDEX NAME)

RN 23336-44-9 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-dibutyl- (9CI) (CA INDEX NAME)

RN 23336-45-0 HCAPLUS
 CN 2,4-Uretidinedione, 1,3-bis(methoxymethyl)- (8CI) (CA INDEX NAME)

RN 23336-46-1 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-chlorohexyl)- (9CI) (CA INDEX NAME)

RN 23501-81-7 HCAPLUS
 CN 1,3-Diazetidine-2,4-dione, 1,3-bis(6-isocyanatohexyl)- (9CI) (CA
 INDEX NAME)

IC C07D
 CC 28 (Heterocyclic Compounds (More Than One Hetero Atom))
 ST **isocyanates** dimerization; dimerization
isocyanates; uretidinediones from **isocyanates**
 IT 715-63-9P 846-74-2P 1025-15-6P 17576-39-5P 21132-72-9P
 23336-34-7P 23336-35-8P 23336-44-9P
 23336-45-0P 23336-46-1P 23370-68-5P
 23501-78-2P, s-Triazine-2,4,6(1H,3H,5H)-trione,
 1,3,5-tris(methoxymethyl)- 23501-81-7P 23544-79-8P
 (preparation of)

L50 ANSWER 45 OF 46 HCAPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1967:75614 HCAPLUS

DOCUMENT NUMBER: 66:75614

TITLE: Preparation and properties of
 chlorofluoromethylsulfenyl pseudohalides

AUTHOR(S): Haas, Alois; Oh, Dong-Young

CORPORATE SOURCE: Univ. Goettingen, Goettingen, Fed. Rep. Ger.

SOURCE: Chemische Berichte (1967), 100(2), 480-91

CODEN: CHBEAM; ISSN: 0009-2940

DOCUMENT TYPE: Journal

LANGUAGE: German

OTHER SOURCE(S): CASREACT 66:75614

AB Cl₂FCSCl (I) and ClF₂CSCl (II) without solvent gave with AgOCN the corresponding monomeric **isocyanates** but in C₆H₆ the **isocyanurates** were formed. The hydrolysis and alcoholysis of the **isocyanates** is described. ClF₂CSNCO dimerized slowly at 20° to the corresponding uretidinedione. I and II with AgSCN yielded Cl₂FCSSCN and ClF₂CSSCN, resp., which decomposed readily to (Cl₂FCS)₂ and (ClF₂CS)₂, resp., and (SCN)_x. The ir and ¹⁹F N.M.R. spectra of the new compds. are discussed. Gradual differences in the phys. and chemical properties were observed in the course of the reaction and in the behavior of the compds. with increasing degree of fluorination. Characteristic ir bands were assigned to the groups Cl₂FCS and ClF₂CS; these bands and the ¹⁹F chemical shifts can be used for the identification.

IT 14674-07-8P
 (preparation of)

RN 14674-07-8 HCPLUS
 CN 2,4-Uretidinedione, 1,3-bis[(chlorodifluoromethyl)thio]- (8CI)
 (CA INDEX NAME)

CC 23 (Aliphatic Compounds)
 ST NMR SULFENYL PSEUDOHALIDES; CHLOROFLUOROMETHYLSULFENYL
 PSEUDOHALIDES; IR SULFENYL PSEUDOHALIDES; SULFENYL PSEUDOHALIDES;
 PSEUDOHALIDES CHLOROFLUOROMETHYLSULFENYL; ISOCYANATES;
 ISOCYANURATES; URETIDINEDIONES
 IT 692-58-0P 14673-88-2P 14673-90-6P 14673-91-7P 14673-92-8P
 14673-93-9P 14674-05-6P 14674-06-7P 14674-07-8P
 14674-08-9P 14999-95-2P 15085-84-4P
 (preparation of)

L50 ANSWER 46 OF 46 HCPLUS COPYRIGHT 2005 ACS on STN

ACCESSION NUMBER: 1967:18702 HCPLUS

DOCUMENT NUMBER: 66:18702

TITLE: Thioacyl isocyanates. V.

Substituted thiazoline-4,5-diones and their thermal cleavage into isocyanates and mustard oils

AUTHOR(S): Goerdeler, Joachim; Jonas, Klaus

CORPORATE SOURCE: Univ. Bonn, Bonn, Germany

SOURCE: Chemische Berichte (1966), 99(11), 3572-81

CODEN: CHBEAM; ISSN: 0009-2940

DOCUMENT TYPE: Journal

LANGUAGE: German

OTHER SOURCE(S): CASREACT 66:18702

GI For diagram(s), see printed CA Issue.

AB cf. CA 64, 19456d. A series of 2-X substituted 4,5-dihydro-4,5-dioxothiazoles (I) with functional groups in the 2-position was prepared and converted thermally into the corresponding XC(:S)NCO (II). The II were either isolated as such or captured with amines or PhCH:NPh. The dimerization of the II gave 6-(X substituted)-3-[C(:S)X substituted] 2,3-dihydro-4H-1,3,5-thiadiazine-2,4-diones (III) and in 1 case the N,N'-bis(-thionopyruvyl)analog (IV) of diazetidinedione. All isocyanates rearranged thermally to the corresponding XC(O)NCS; the rate of the rearrangement showed clearly substituent dependence. Me2NCSNH2 (1 g.) and 3.3 cc. Et3N in 150 cc. AcOEt and 1 cc. (COCl)2 in 30 cc. AcOEt added simultaneously dropwise with stirring at -30° to 100 cc. dry AcOEt and warmed to 4° yielded 0.8 g. yellow I (X = Me2N), m. 190° (decomposition) (repptd. from dry CHCl3 with petroleum ether). Similarly were prepared the following I (X, m.p. with decomposition, and % yield given): Et2N, 90° (repptd. from C6H6 with petroleum ether), 71; piperidino (V), 126° (AcOEt), 73; MePhN, 140° (repptd. from CHCl3 with petroleum ether), 73; EtPhN (VI), 160° (repptd. from CHCl3 with petroleum ether), 75; BuPhN, 118° (petroleum ether-AcOEt), 65. The appropriate O-alkyl or aryl thiocarbamate in CH2Cl2 and an equivalent amount (COCl)2

in CH₂Cl₂ added dropwise simultaneously at 0° dropwise during about 0.5 hr. to dry CH₂Cl₂ or (CH₂Cl)₂ and evaporated rapidly yielded the corresponding I. In this manner were prepared the following I (X, m.p., and % yield given): MeO, 118° (decomposition) (reptd. from C₆H₆ with petroleum ether), 69; EtO, 44-6° (petroleum ether), 65; PhO (VII), 118-20° (decomposition), 72; cyclohexyloxy (VIII), 97° (decomposition) (reptd. from C₆H₆ with petroleum ether), 52. H₂NCS₂Me (1.1 g.) in 20 cc. CH₂Cl₂ and 1 cc. (COCl)₂ in 20 cc. CH₂Cl₂ added to 30 cc. CH₂Cl₂ at 0° gave 1.2 g. canary-yellow I (X = MeS) (IX), m. 108° (decomposition). O-Cyclohexyl thiocarbamate (1.6 g.) in 15 cc. CH₂Cl₂ and 1 cc. (COCl)₂ in 15 cc. CH₂Cl₂ added dropwise simultaneously at 0° to 15 cc. CH₂Cl₂ gave 1.1 g. thiazolidine-2,4,5-trione, m. 158°. The appropriate I and stainless steel spirals distilled in vacuo into a receiver cooled at -60° gave the corresponding II (X, m.p., nD/temp., temperature, and pressure in mm. Hg given): MeO (X), -, 1.498/24°, 63, 120°, 120; EtO (XI), -, 1.492/19°, 67, 110°, 14; PhO, -24 to -22°, 1.500/20°, 86, 135°, 0.4; cyclohexyloxy, about 30°, 1.520/16°, 77, 120°, 0.4; MeS, -22 to -20°, -, 78, 120°, 14. XI kept 3 days at -20° in a little C₆H₆, diluted with petroleum ether, and cooled to -30° gave nearly quant. III (X = EtO), m. 80° (decomposition). Similarly were prepared the following III in nearly quant. yields (X, m.p., reaction temperature, and reaction time given): cyclohexyloxy, 90-100° (decomposition), room temperature, 30 hrs.; PhO, about 140°, room temperature, 15 min.; MeS, 142° (decomposition), -20°, overnight. Crystalline V (1 g.) kept 3 min. at 140° in vacuo and cooled to 0° gave 0.4 g. III (X = piperidino) (XII), m. 160° (decomposition). X kept 20 hrs. at -60 to -20° and the product reptd. from AcOEt with petroleum ether at 0° gave nearly 100% IV, m. 170° (decomposition). The appropriate I (2.5 millimoles) and 0.45 g. PhCH:NPh in 10 cc. MePh heated 4 min. at 100° gave the corresponding 2,3,5,6-tetrahydro-4H-2-(X-substituted)-6-phenyl-1,3,5-thiadiazin-4-ones (XIII) (X, m.p. with decomposition, and % yield given): EtPhN, 170-5°, 93; MeO, 160°, 94; PhO, 140-50°, 95; cyclohexyloxy, 180-90°, 76; Ph₂N, 170-5°, 90. XII (0.4 g.) and 0.35 g. p-O₂NC₆H₄NH₂ in 40 cc. MePh kept 5 hrs. at 60° yielded 0.4 g. beige XC(:S)NHCONHAr (XIV) (X = piperidino, Ar = p-O₂NC₆H₄), m. 204° (decomposition). 2-Diphenylaminothiazoline-4,5-dione (0.35 g.) in 10 cc. MePh heated 3 min. at 100°, cooled to 0°, treated with 0.15 g. PhNH₂, and kept 1 hr. at room temperature gave 0.25 g. XIV (X = Ph₂N, Ar = Ph), m. 135-7° (decomposition) (petroleum ether). I (X = MeO) (0.35 g.) and 0.25 g. PhNH₂ gave similarly 0.5 g. XIV (X = MeO, Ar = Ph). VII (0.5 g.) and 0.25 g. PhNH₂ gave similarly during 0.5 hr. at room temperature 0.65 g. XIV (X = PhO, Ar = Ph), m. 182-4° (decomposition) (ligroine, b. 100-40°). VIII (0.5 g.) in 15 cc. MePh kept 4 min. at 100°, cooled to 0°, and treated with 2.5 g. PhNH₂ gave 0.6 g. XIV (X = cyclohexyloxy, Ar = Ph), m. 136° (ligroine). II (X = MeS) (1.3 g.) and 0.9 g. PhNH₂ gave similarly 2.15 g. XIV (X = MeS, Ar = Ph), m. 200-5° (decomposition) (ligroine). V (0.5 g.) in 100 cc. MePh kept 20 min. at 100°, cooled to room temp., and treated 1 hr. with 0.25 g. PhNH₂ yielded 0.6 g. N-piperidinoformyl-N'-phenylthiourea (XV), m. 125° (decomposition) (ligroine). V (0.5 g.) and 0.35 g. p-O₂NC₆H₄NH₂ gave

similarly at room temperature during 2 hrs. 0.6 g. beige p-NO₂ derivative of XV, m. 152° (decomposition) (EtOH). VI (0.6 g.) with 0.35 g. p-O₂NC₆H₄NH₂ gave similarly 0.7 g. p-O₂NC₆H₄NHCSNHO₂CNETPh, m. 180° (decomposition) (Me₂CO). IX (0.4 g.) and 0.25 g. PhNH₂ yielded 0.45 g. MeSCONHCSNHPH, m. 168° (decomposition) (petroleum ether-AcOEt).

IT 13163-42-3P

(preparation of)

RN 13163-42-3 HCAPLUS

CN 1,3-Uretidinedicarbothioic acid, 2,4-dioxo-, O,O'-dimethyl ester
(8CI) (CA INDEX NAME)

CC 28 (Heterocyclic Compounds (More Than One Hetero Atom))

ST ISOCYANATES THIOACYL; THIAZOLINEDIONES; MUSTARD OILS;

THIOACYL ISOCYANATES; THIAZOLINEDIONES;

ISOCYANATES THIOACYL; THIOACYL ISOCYANATES;

MUSTARD OILS

IT Allophanic acid, 4-phenyl-1,3-dithio-, S-methyl ester

Biuret, 1,1,5-triphenyl-2-thio-

Carbonic acid, dithio-, monoanhydride with isocyanic acid,
S-methyl esterCarbonic acid, dithio-, monoanhydride with isocyanic acid,
S-methyl ester

Formic acid, isocyanatodithio-, methyl ester

(preparation of)

IT 5729-32-8P 13163-09-2P 13163-10-5P 13163-11-6P 13163-12-7P

13163-13-8P 13163-20-7P 13163-31-0P 13163-32-1P

13163-33-2P 13163-34-3P 13163-35-4P 13163-36-5P, Isocyanic
acid, anhydride with S-methyl dithiocarbonate 13163-36-5P

13163-37-6P 13163-38-7P 13163-39-8P 13163-40-1P

13163-41-2P 13163-42-3P 13163-43-4P 13163-44-5P

13163-45-6P 13163-46-7P 13163-47-8P 13163-49-0P

13163-50-3P 13163-51-4P 13163-52-5P 13163-53-6P

13163-54-7P 13332-83-7P 13332-84-8P 13332-85-9P

13332-86-0P 13332-87-1P 13559-72-3P

(preparation of)