Mathematics

 คณิตศาสตร์นั้นมีบทบาทสำคัญใน competitive programming และจะ เป็นไปไม่ได้เลยที่จะเป็น competitive programmer ที่ประสบความสำเร็จ โดยที่ไม่มีทักษะทางด้านคณิตศาสตร์

• ในส่วนนี้จะพูดถึงแนวคิดเชิงคณิตศาสตร์และสูตรที่สำคัญที่ถูกใช้บ่อย

Sum

ผลรวมนั้นจะอยู่ในรูป

$$\sum_{k=1}^{n} x^{k} = 1^{k} + 2^{k} + 3^{k} + \dots + n^{k}$$

- เมื่อ k เป็นจำนวนเต็มบวก
- ทั้งนี้มีรูปแบบปิด ตัวอย่างเช่น

•
$$\sum_{x=1}^{n} x = 1 + 2 + 3 + \dots = \frac{n(n+1)}{2}$$

•
$$\sum_{x=1}^{n} x^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

ลำดับเลขคณิต

 ลำดับเลขคณิต (Arithmetic progression) เป็นลำดับของจำนวนที่ผลต่าง ระหว่างตัวเลขสองตัวที่ติดกันใดๆ เป็นค่าคงที่ ตัวอย่างเช่น

- เป็นลำดับเลขคณิตที่มี "ผลต่างร่วม" 4
- ผลรวมของลำดับเลขคณิตหรือ อนุกรมเลขคณิต สามารถคำนวณได้
 จากสูตร

$$a + \dots + b = \frac{n(a+b)}{2}$$

เมื่อ a เป็นเลขตัวแรก, b เป็นเลขตัวสุดท้าย และ n เป็นจำนวนตัวเลข

- ตัวอย่างเช่น
- 3 + 7 + 11 + 15 =

- นอกจากนี้ยังสามารถหาพจน์ที่ n ได้
- ให้ a₁, a₂, a₃,... เป็นลำดับเลขคณิต ผลต่างระหว่างพจน์ที่ n+1 กับพจน์ที่
 n มีค่าเป็น d (d=a₂-a₁) ดังนั้น
- $a_n = a_1 + (n-1)*d$

ลำดับเรขาคณิต

- ลำดับเรขาคณิต (Geometric progression) คือลำดับของจำนวนที่
 อัตราส่วนร่วม (common ratio) ระหว่างจำนวนสองจำนวนที่ติดกันเป็น ค่าคงที่ ตัวอย่างเช่น
 3,6,12,24 เป็น ลำดับเรขาคณิตที่มี อัตราส่วนร่วมเป็น 2
- ผลรวมของลำดับเรขาคณิตหรืออนุกรมเรขาคณิตสามารถคำนวณได้
 จากสูตร
- ullet $a+ak+ak^2+\cdots+b$ มีรูปแบบปิดไหม

•
$$a + ak + ak^2 + \dots + b = \frac{bk - a}{k - 1}$$

หามาได้อย่างไร

- ตัวอย่างเช่น
- 3+6+12+24 =
- นอกจากนี้ยังสามารถหาพจน์ที่ n ได้
- ullet จากสูตร $a_n=a_1 r^{n-1}$
- หมายเหตุ special case ของอนุกรมเรขาคณิต

$$1 + 2 + 4 + 8 + \dots + 2^{n-1} = 2^n - 1$$

ลำดับฮาร์มอนิก

อนุกรมฮาร์มอนิกอยู่ในรูปของ

•
$$\sum_{x=1}^{n} \frac{1}{x} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

- ullet ขอบเขตบน(Upper bound) ของอนุกรมฮาร์มอนิคคือ $log_2\left(n
 ight)+1$
- เราสามารถแปลงพจน์ ¹/_k เพื่อให้ k กลายเป็นค่าสองยกกำลังที่ใกล้ที่สุด
 ที่ไม่เกิน k ตัวอย่างเช่น ถ้า k=6 เราสามารถประมาณผลรวมได้ดังนี้

•
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} < 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$$

- ullet ซึ่งได้ upper bound เป็น $\log(n)+1$
- มากจาก 1, 2*1/2, 4*1/4,... แต่ละเลขซ้ำรวมกันเป็น 1

Set Theory

- Set คือ กลุ่มของสมาชิก ตัวอย่างเช่น เซต
- $X = \{2, 6, 7\}$
- ประกอบด้วยสมาชิก 2,6 และ 7
- เซตที่ไม่มีสมาชิกหรือ เซตว่างแทนด้วย Ø
- ullet และ |X| แทนขนาดของเซต X หรือจำนวนสมาชิก
- ullet ตัวอย่างเช่น |X|=3

- ถ้าเซต X มี a เป็นสมาชิก เขียนแทนด้วย $a \in X$ หากไม่เป็นสมาชิก เขียนแทนด้วย $a \notin X$
- ullet ตัวอย่างในเซตก่อนหน้าจะได้ว่า $2\in X$ และ 10
 otin X
- เซตใหม่สามารถถูกสร้างได้จากการดำเนินการ
- ullet Intersection $A \cap B$ ประกอบด้วยสมาชิกที่อยู่ใน A และ B
- ullet Union $A\cup B$ ประกอบด้วยสมาชิกที่อยู่ใน A หรือ B
- o Complement $ar{A}$ ประกอบด้วยสมาชิกที่ไม่อยู่ใน A ซึ่งขึ้นกับ universal set ที่มีทุกสมาชิกที่เป็นไปได้
- ullet Difference $Aackslash B=A\cap ar{B}$ ประกอบด้วยสมาชิกที่อยู่ใน A แต่ไม่อยู่ใน B

- ถ้าแต่ละสมาชิกของ A เป็นสมาชิกของ S เราจะเรียกว่า A เป็น subset ของ S แทนด้วย $A \subset S$
- เซต S จะมีซับเซต 2 | S | ซึ่งรวม empty set ตัวอย่างเช่นซับเซตของเซต {2, 4, 7} คือ Ø, {2}, {4}, {7}, {2, 4}, {2, 7}, {4, 7}, {2, 4, 7}

- เซตของจำนวนต่างๆ
- N แทน จำนวนธรรมชาติ natural numbers
- Z แทน จำนวนเต็ม integers
- Q แทน จำนวนตรรกยะ rational numbers
- R แทน จำนวนจริง real numbers
- ทั้งนี้ N สามารถนิยามได้สองแบบขึ้นกับเหตุการณ์นั้นคือ
 - N={0,1,2,3,...} หรือ N={1,2,3,...}

นอกจากนี้เรายังสามารถสร้างเซตโดยใช้กฎในรูปนี้ได้

$$\{f(n): n \in S\}$$

เมื่อ f(n) คือบางฟังก์ชัน เซตนี้ประกอบด้วยทุกสมาชิกในรูป f(n) เมื่อ n คือสมาชิกใน S ตัวอย่างเช่น เซต

$$X = \{2n : n \in Z\}$$

เซต X ประกอบด้วยจำนวนเต็มคู่ทุกตัว

Logic

- ค่าของนิพจน์ทางตรรกศาสตร์นั้นเป็นได้ true(1) หรือ false (0)
- ตัวดำเนินการทางตกรรกศาสตร์ที่สำคัญได้แก่ ¬(negation),
 ∧(conjunction), V(disjunction), →(implication), ↔(equivalence)
 ตารางด้านล่างแสดงความหมายของการดำเนินการเหล่านี้

A	В	$\neg A$	$\neg B$	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$
0	0	1	1	0	0	1	1
0	1	1	0	0	1	1	0
1	0	0	1	0	1	0	0
1	1	0	0	1	1	1	1

- ประพจน์ (Proposition) คือข้อความที่สามารถระบุค่าความจริงได้ว่าเป็น จริงหรือเท็จ แต่จะไม่เป็นจริงและเท็จพร้อมกัน
- Predicate เป็นนิพจน์ที่มีค่าเป็นจริงหรือเท็จขึ้นกับ parameter ของมัน
 Predicate ส่วนใหญ่แทนด้วยตัวอักษรตัวใหญ่ ตัวอย่างเช่น เราสามารถ
 นิยามว่า P(x) มีค่าเป็นจริงถ้า x เป็นจำนวนเฉพาะ
- จากนิยามจะได้ว่า P(7) เป็นจริงแต่ P(8) เป็นเท็จ

- ตัวบ่งปริมาณ(Quantifier) เชื่อมระหว่างนิพจน์ทางตรรกศาสตร์กับ สมาชิกของเซต ตัวบ่งปริมาณที่สำคัญได้แก่
- ∀ (for all) และ ∃ (there is, for some)
- 🕳 ตัวอย่างเช่น
- $\forall x (\exists y (y < x))$
- หมายความว่า สำหรับแต่ละสมาชิก x ในเซต จะมีสมาชิก y ในเซตที่ y มีค่าน้อยกว่า x ซึ่งเป็นจริงกับเซตของ integer แต่ไม่จริงสำหรับเซตของ natural numbers

- การใช้สัญลักษณ์ ที่อธิบายไปแล้ว เราสามารถแสดงประพจน์ได้หลาย ชนิดตัวอย่างเช่น
- $\forall x((x > 1 \land \neg P(x)) \rightarrow (\exists a(\exists b(a > 1 \land b > 1 \land x = ab)))$
- หมายความว่า ถ้าจำนวน x มีค่ามากกว่า 1 และไม่เป็นจำนวนเฉพาะแล้ว
 จะมีจำนวน a และ b ที่มีค่ามากกว่า 1 และคูณกันได้ x ซึ่งประพจน์นี้เป็น
 จริงในเซตของจำนวนเต็ม

Functions

- ฟังก์ชัน $m{x}$ จะปัดจำนวน x ลงไปเป็นจำนวนเต็มมากที่สุดที่น้อยกว่า x และ $m{x}$ จะปัดจำนวน x ขึ้นไปเป็นจำนวนเต็มที่น้อยที่สุดที่มากกว่า x
- ตัวอย่างเช่น
- $\bullet \left[\frac{3}{2} \right] = 1 \left[\frac{3}{2} \right] = 2$
- ฟังก์ชัน min(x₁, x₂, x₃, ..., x_n) และ max(x₁, x₂, x₃, ..., x_n) จะคืนค่าที่ น้อยที่สุดและมากที่สุดจาก x₁, x₂, x₃, ..., x_n
- ตัวอย่างเช่น
 - min(1,2,3) = 1 และ max(1,2,3) = 3

- factorial n! ถูกนิยามได้ด้วย
- $\prod_{x=1}^{n} x = 1 * 2 * 3 * \cdots * n$
- หรือนิยามด้วย recursive
- 0! == 1
- n! = n*(n-1)!

- Fibonacci numbers นั้นเกิดขึ้นได้ในหลายๆ เหตุการณ์ สามารถถูกนิยาม ได้ด้วย
- f(0) = 0 f(1) = 1
- f(n) = f(n-1)+f(n-2)
- ซึ่งจะได้ลำดับ 0,1,1,2,3,5,8,13,21,34,55,...
- ยังมี closed-form สำหรับคำนวณ Fibonacci numbers ซึ่งบางครั้ง
 เรียกว่า Binet's formular

•
$$f(n) = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$

Logarithms

- logarithm ของจำนวน x แทนด้วย log_k(x) เมื่อ k เป็นฐานของ logarithm
- ตามนิยาม $\log_k(x) = a$ เมื่อ $k^{\alpha} = x$
- คุณสมบัติของ logarithms คือ logk(x) เท่ากับจำนวนครั้งที่เราต้องหาร x
 ด้วย k ก่อนที่เราจะถึง 1 ตัวอย่างเช่น log₂(32) = 5 เพราะว่านำ 2 ไป
 หาร 5 ครั้ง
- 32 -> 16 -> 8 -> 4 -> 2 -> 1
- Logarithms นั้นถูกใช้ในการวิเคราะห์อัลกอริทึม เพราะว่าอัลกอริทึมที่มี ประสิทธิภาพหลายอันถูกแบ่งครึ่งในแต่ละขั้น ดังนั้น เราสามารถ ประมาณประสิทธิภาพการทำงานได้โดยใช้ logarithms

- Logarithms ของผลคูณคือ
- ทำให้ได้ว่า
- Logarithms ของผลหารคือ
- $\log_k \left(\frac{a}{b}\right) = \log_k(a) \log_k(b)$
- อีกสูตรที่ใช้บ่อยคือ
- $\bullet \log_u(x) = \frac{\log_k(x)}{\log_k(u)}$

- ซึ่งทำให้เราสามารถคำนวณ logarithms ของฐานใดๆ ได้ ถ้าเรามีวิธีการ คำนวณ logarithms ของบางฐาน
- ullet natural logarithms หรือ logarithms ฐานธรรมชาติ ln(x) ของจำนวน x คือ logarithm ที่ฐานเป็น epprox 2.71828
- อีกคุณสมบัติหนึ่งของ logarithms คือ จำนวนหลักของจำนวนเต็ม x ใน ฐาน b คือ $[\log_b(x)+1]$
- ตัวอย่างเช่น แทน 123 ฐานสองจะได้ 1111011 นั่นคือ
 [log₂(123) + 1] = 7