بازیابی اطلاعات

دکتر امین گلزاری اسکوئی

a.golzari@azaruniv.ac.ir
a.golzari@tabrizu.ac.ir
https://github.com/Amin-Golzari-Oskouei

دانشگاه صنعتی ارومیه پاییز ۱۴۰۲

فصل م

امتیازدهی، وزن دهی عبارات و مدل فضای بردار

مطالب این فصل

رتبه بندی نتایج مستمو

Term frequency

Tf-idf ranking

Vector space model

بازیابی رتبه بندی شده

- 💠 تا اینجای کار، پرسوجوهای ما همگی بصورت بولی بوده اند.
 - اسناد یا مطابقت دارند یا ندارند.
- 💠 این برای کاربران مرفه ای که درک دقیقی از نیازهای فود و مجموعه دارند فوب است.
- برای برنامه ها نیز خوب است: برنامه ها به رامتی می توانند هزارن نتیجه را مصرف کنند.
 - برای اکثر کاربران خوب نیست.
 - 🖈 اکثر کاربران قادر به نوشتن پرسوجوهای بولی نیستند. . .
- 💠 یا قادر به نوشتن پرسوجوهای بولی هستند، اما فکر می کنند این کار زیادی است.
 - بیشتر کاربران نمیخواهند از هزاران نتیجه عبور کنند.
 - این به ویژه در مورد مستمو وب صادق است.

مشکل جستجوی بولی: یا جشن یا قحطی (یا فراوانی یا هیچ)

- 💠 پرسوجوهای بولی اغلب به نتایج بسیار که (=0) یا بیش از مد (هزاران) منجر میشوند.
- Query 1 (boolean conjunction): [standard user dlink 650]
- \Rightarrow 200,000 hits feast
- Query 2 (boolean conjunction): [standard user dlink 650 no card found]
- $\bullet \to 0$ hits famine
 - در بازیابی بولی، رسیدن به یک پرسومو که تعداد نتیمه موفق قابل مدیریتی را ایماد میکند، مهارت زیادی می خواهد.

جشن یا قحطی: مشکلی در بازیابی رتبه بندی وجود ندارد

- 💠 با رتبهبندی، مجموعههای نتایج بزرگ مسئلهای نیستند.
 - صرف 10 نتیجه برتر را نشان میدهد.
 - 💠 کاربر را غرق در مستمو نمیکند.
- 💠 فرض: الگوریتم رتبهبندی کار میکند، نتایج مرتبط تر نسبت به نتایج کمتر مرتبط، بالاتر رتبهبندی میشوند.

امتیاز دهی به عنوان مبنای بازیابی رتبهبندی شده

💠 ما میخواهیم اسنادی را که مرتبطتر هستند، بالاتر از اسنادی که کمتر مرتبط هستند، رتبهبندی کنیم.

💠 چگونه میتوانیم چنین رتبه بندی اسناد مجموعه را با یک پرسوجو مربوطه انجام دهیم؟

💠 به هر جفت(پرسوجو و سند) یک امتیاز اختصاص دهید، مثلاً بین 1 و 0

این امتیاز میزان طتابق سند و پرسومو را اندازه گیری می کند.

امتيازهاي تطبيق پرسوجو-سند

- (66)
 - 💠 چگونه امتیاز یک جفت پرسوجو-سند را مساب کنیم؟
 - 💠 بیایید با یک پرسومو تک واژهای شروع کنیم.
- 💠 در صورتی که عبارت پرسوجو در سند وجود نداشته باش؛ امتیاز باید 🛮 باشد.
 - 💠 هر چه عبارت پرسومو در سند بیشتر باشد، امتیاز بالاتری خواهد داشت.
 - 💠 ما به تعدادی از روشهای جایگزین برای انجام این کار نگاه خواهیم کرد.

روش اول: ضریب جاکارد

💠 یک معیار رایج برای سنجش میزان همپوشانی دو مجموعه

🌣 فرض کنید A و B دو مجموعه هستند

$$ext{JACCARD}(A,B)=rac{|A\cap B|}{|A\cup B|}$$
 هريب ماکارد: $(A
eq \emptyset ext{ or } B
eq \emptyset)$

- JACCARD (A, A) = 1 *
- JACCARD (A, B) = 0 if $A \cap B = 0$ *
- نیاز نیست هم اندازه باشند. B و A 💠
- 💠 همیشه عددی بین 0 و 1 اختصاص می دهد.

ضریب جاکارد: مثال

امتیاز تطابق پرسوجو و سند که ضریب جاکارد برای آن مماسبه میکند، چقدر است؟

- ❖ Query: "dies of March"
- ❖ Document "Caesar died in March"
- \Rightarrow JACCARD(q, d) = 1/6

ایراد جاکارد چیست؟

- 💠 میزان تکرار عبارت را در نظر نمیگیرد(یک اصطلاع چند تکرار دارد؟)
 - اصطلاعات نادر آموزنده تر از اصطلاعات متداول هستند.
 - 💠 ماکارد این بمث را در نظر نمی گیرد.
- 💠 ما به روش پیمیدهتری برای عادی سازی طول یک سند نیاز داریم.
- جداً در این بمث، به جای جاکارد برای عادی سازی طول از $|A\cap B|/\sqrt{|A\cup B|}$ (کسینوس) استفاده خواهیم کرد، به جای $|A\cap B|/A\cap B|$ (به جای عادی سازی طول.

مدل استقلال دودويي

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth .
ANTHONY BRUTUS CAESAR CALPURNI A CLEOPATR A MERCY WORSER	1 1 1 0 1 1	1 1 1 1 0 0	0 0 0 0 0 1 1	0 1 1 0 0 1 1	0 0 1 0 0 1 1	1 0 1 0 0 1 0

مر سند به صورت یک بردار باینری $\{0,\,1\}^{|\mathrm{V}|}$ نشان داده می شود. *

مدل استقلال دودويي

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth .
ANTHONY	157	73	0	0	0	1
BRUTUS	4	157	0	2	0	0
CAESAR	232	227	0	2	1	0
CALPURNIA	0	10	0	0	0	0
CLEOPATRA	57	0	0	0	0	0
MERCY	2	0	3	8	5	8
WORSER	2	0	1	1	1	5

هر سند به صورت یک بردار باینری $N^{|V|}$ نشان داده میشود. 💠

مدل کیسه کلمات

- ❖ ما دریک سند ترتیب کلمات را در نظر نمیگیریم.
- John is quicker than Mary and Mary is quicker than John *
 - 💠 به ترتیب یکسان نشان داده میشوند.
 - به این، مدل کیسه کلمات می گویند.
- 💠 به تعبیری، این یک گاه به عقب است؛ شاخص موقعیتی توانست این دو سند را از هم متمایز کند.
 - 💠 ما بعداً در این دوره به "بازیابی" اطلاعات موقعیتی غواهیم پرداخت.
 - 💠 اما فعلا توجهمان روى مدل كيسه كلمات خواهد بود.

Term frequency tf

- در سند d به عنوان تعداد دفعاتی که d در d رخ می دهد تعریف می شود. t
 - 💠 ما می خواهیه از tf هنگاه محاسبه امتیازهای تطبیق پرسوجو و سند استفاده کنیه.
 - اما چگونه؟
 - 💠 فرکانس عبارت خام آن چیزی نیست که ما میخواهیم زیرا:
 - سندی با f = 10 وقوع عبارت مرتبط تر از سندی با f = 1 وقوع عبارت است.
 - ❖ اما 10 برابر مرتبط تر نیست.
 - 💠 میزان مرتبط بودن با میزان تکرار افزایش نمییابد.

جایگزین تناوب خام: وزن تناوب لگاریتمی

پ وزن فرکانس لگاریته عبارت t در d به صورت زیر تعریف می شود. 💠

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{otherwise} \end{array}
ight.$$

$$tf_{td} \to w_{td}: 0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, etc.$$

- d و q رای یک مفت سند-پرسومو: ممع بر عبارات یک مفت سند-پرسومو
- 💠 اگر هیچ یک از عبارت های پرسوجو در سند وجود نداشته باشد، امتیاز 🛮 است.

💠 امتیاز تطبیق جاکارد و امتیاز تطبیق tf را برای جفتهای پرسش و سند زیر محاسبه کنید.

- q: [information on cars] d: "all you've ever wanted to know about cars"
- q: [information on cars] d: "information on trucks, information on planes, information on trains"
- q: [red cars and red trucks] d: "cops stop red cars more often"

تناوب در سند در مقابل تناوب در مجموعه

❖ علاوه بر فراوانی عبارت (تکرار عبارت در سند) . . .

💿 💠 . . همچنین می خواهیه از فراوانی عبارت در مجموعه برای وزن دهی و رتبه بندی استفاده کنیه.

وزن مطلوب براي عبارات نادر

- 💠 عبارات نادر و کمیاب آموزنده تر از عبارات پر تکرار هستند.
- 💠 عبارتی را در پرسومو در نظر بگیرید که در مجموعه نادر است (به عنوان مثال، ARACHNOCENTRIC.)
 - سند ماوی این اصطلاع به امتمال زیاد مرتبط است.
 - 💠 ما برای عبارات کمیاب مانند ARACHNOCENTRIC وزن های بالا می خواهیم.

وزن مطلوب براي عبارات نادر

- 💠 عبارت متداول نسبت به عبارات نادر اطلاعات کمتری دارند.
- پ عبارتی را در پرس و جو در نظر بگیرید که در مجموعه مکرر است (به عنوان مثال، LINE ،INCREASE ،GOOD).سندی که ماوی این اصطلام است بیشتر از سندی که ندارد مرتبط است. . .
 - ♦ ... اما کلماتی مانند INCREASE،GOOD و LINE شاخص های مطمئنی برای میزان ارتباط نیستند.
 - \star \to برای عبارات مگرر مانند GOOD، INCREASE و INCREASE ما وزن های مثبت می خواهیم. . . .
 - اما با وزن کمتری نسبت به عبارات نادر. 🛠

تناوب سند

- 💠 ما برای اصطلامات کمیاب مانند ARACHNOCENTRIC وزن های بالا می خواهیم.
- ♦ ما وزن كه(مثبت)را براى كلمات متداول مانند LINE و INCREASE ،GOOD مى غواهيم.
 - 💠 ما از تناوب سند استفاده خواهیه کرد تا این را در محاسبه امتیاز تطبیق لماظ کنیه.
 - 💠 فراوانی سند، تعداد اسناد موجود در مجموعه ای است که این عبارت در آن وجود دارد.

وزن idf

- 💠 dft تناوب سند است، تعداد اسنادی که t در آنها رخ میدهد.
 - dft ❖ معیار معکوس میزان اطلاعات مفید عبارت t است.
 - نیم: idf عبارت t را به صورت زیر تعریف میکنیم:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

.تعداد اسناد موجود در مجموعه است. (N)

- ن idft معیاری برای آموزنده بودن این عبارت است.
- idf بان "که کردن" اثر [N/df,] به جای [log N/df,] ابان "که کردن" اثر
- 💠 توجه داشته باشید که ما از تبدیل لگاریتمی برای تناوب عبارت و تناوب سند استفاده می کنیم.

مث**الی برای** idf

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \tfrac{1,000,000}{\mathsf{df}_t}$$

روبەرو دارىھ	از فرمول	با استفاده ا	**
--------------	----------	--------------	----

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

بر رتبه بندی idf تاثیر

- 💠 idf بر رتبه بندی اسناد برای پرسوجوها با مداقل دو عبارت تأثیر میگذارد.
- به عنوان مثال، در پرسومو "arachnocentric line"، وزن دهی idf وزن نسبی ARACHNOCENTRIC را افزایش میدهد و وزن نسبی LINE را کاهش میدهد.
 - idf 💠 تأثیر کمی بر رتبه بندی برای پرسوموهای تک عبارتی دارد.

تناوب در سند در مقابل تناوب در مجموعه

کلمه	تناوب در مجموعه	تناوب در سند
INSURANC	10440	3997
Е	10422	8760
TRY		

- پ تناوب مجموعه t: تعداد توکن های t موجود در مجموعه 💠
 - 💠 فراوانی سند t: تعداد اسنادی که t در آن وجود دارد.
 - این ارقاه؟ 💠
- 💠 کداه کلمه عبارت مستموی بهتری است (و باید وزن بیشتری داشته باشد)؟
- 💠 این مثال نشان می دهد که تناوب در سند برای وزن دهی بهتر از تناوب در مجموعه است.

وزن دهی tf-idf

ن است. tf-idf یک عبارت ماصل ضرب وزن tf-idf یک عبارت ماصل ضرب وزن

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- tf-weight
- idf-weight

- 💠 شناخته شده ترین طرح وزن دهی در بازیابی اطلاعات
- ❖ توجه: "-" در tf-idf یک خط فاصله است، نه علامت منفی!
 - tf x idf 'tf.idf ؛ نام های دیگر

خلاصه: tf-idf

💠 یک وزن tf-idf برای هر عبارت t در هر سند d تعیین میکنیه:

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

ن tf-idf با تعداد رخدادها در یک سند (فراوانی عبارت) 💠

نادر بودن این واژه در مجموعه افزایش می یابد. (فراوانی سند وارونه)

تمرین: تکرر عبارت، مجموعه و سند

- کمیت	نماد	تعریف
فراوانی عبارت	$tf_{t,d}$	تعداد رفداد t در d
فراوانی سند	df_t	تعداد اسناد موجود در مجموعه ای که t در آنها وجود دارد
فراوانی مجموعہ	cf_t	تعداد کل رفداد t در مجموعه

- در رابطه بین df و scf و df
 - Scf و tf و ابطه
 - Sdf و tf و ابطه

مدل استقلال دودويي

	Anthony	Julius Caesar	The Tempest	Hamlet	Othello		Macbeth
	Cleopatra						
ANTHONY	1	1		0	0	0	1
BRUTUS	1	1		0	1	0	0
CAESAR	1	1		0	1	1	1
CALPURNIA	0	1		0	0	0	0
CLEOPATRA	1	0		0	0	0	0
MERCY	1	0		1	1	1	1
WORSER	1	0		1	1	1	0
• • •							

هر سند به صورت یک بردار باینری $\{0,\,1\}^{|\mathrm{V}|}$ نشان داده می شود. خ

Count matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello		Macbeth
ANTHONY	157	73	0		0	0	1
BRUTUS	4	157	0	,	2	0	0
CAESAR	232	227	0	,	2	1	0
CALPURNIA	0	10	0		C	0	0
CLEOPATRA	57	0	0		C	0	0
MERCY	2	0	3		8	5	8
WORSER	2	0	1		1	1	5

. هر سند به صورت یک بردار باینری $N^{|V|}$ نشان داده می شود.

Binary → count → weight matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
	Cleopatra		Total production			
ANTHONY	5.25	3.18	0.0	0.0	0.0	0.35
BRUTUS	1.21	6.10	0.0	1.0	0.0	0.0
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0
CALPURNIA	0.0	1.54	0.0	0.0	0.0	0.0
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0
MERCY	1.51	0.0	1.90	0.12	5.25	0.88
WORSER	1.37	0.0	0.11	4.15	0.25	1.95

مر سند اکنون به عنوان یک بردار با ارزش واقعی از $R^{|V|}$ ازش واقعی داده می شود.

اسناد به عنوان بردار

- $\in \mathbb{R}^{|V|}$ اکنون هر سند به عنوان یک بردار با ارزش واقعی وزنهای $\mathrm{tf} ext{-idf}$ نشان داده می شود
 - بنابراین یک فضای برداری با ارزش واقعی |V|ابعدی داریه. ੋ
 - 💠 عبارات محورهای فضا هستند.
 - اسناد نقاط یا بردارهایی در این فضا هستند.
 - 💠 ابعاد بسیار بالا: وقتی این را در موتورهای مستموی وب اعمال میکنید
 - 💠 دهها میلیون بعد ایجاد میشود.
 - 💠 هر بردار بسیار پراکنده است بیشتر ورودی ها صفر هستند.

پرسوجو بهعنوان بردار

- 💠 ایده کلیدی ۱: همین کار را برای پرسوموها انماه دهید: آنها را به عنوان بردار در فضای با ابعاد بالا نشان دهید.
 - 💠 ایده کلیدی 2: اسناد را بر اساس نزدیکی و مطابقت آنها به پرسومو رتبه بندی کنید.
 - 🌣 میزان دقیق بودن = شباهت
 - مجاورت pprox فاصله منفی
- به یاد داشته باشید ما این کار را انجام میدهیم چون میخواهیم مدل بولی همه یا هیچ، مشن یا قمطی را کنار
 بگذاریم.
 - 💠 به جای آن، اسناد مربوطه را بالاتر از اسناد غیر مرتبط قرار میدهیم.

چگونه شباهت فضای برداری را رسمی یا فرمالیته کنیم؟

- 💠 برش اول: (منفی)فاصله بین دو نقطه
 - 💠 (= فاصله بین نقاط انتهایی دو بردار)
 - اقلیدسی؟ فاصله اقلیدسی
- 💠 فاصله اقلیدسی ایده بدی است چون فاصله اقلیدسی برای بردارهایی با طول های مختلف زیاد است.

چرا فاصله فکر بدی است؟

فاصله اقلیدسی \vec{d}_2 بزرگ است اگرچه توزیع عبارات در پرسوجو q و توزیع اصطلاعات در سند d2 بسیار شبیه هستند.

سؤالاتی در مورد تنظیم فضای برداری پایه؟

به جای فاصله از زاویه استفاده کنید

- اسناد را بر اساس زاویه به وسیله پرسومو رتبه بندی کنید
- 🌣 آزمایش فکری: یک سند d را بردارید و به غودش اضافه کنید. این سند را 'd بنامید.' و برابر d است.
 - پک از نظر معنایی " d و 'd دارای محتوای یکسانی هستند. 💠
- 💠 زاویه بین دو سند 0 است که مربوط به مداکثر شباهت است متی اگر فاصله اقلیدسی بین دو سند بسیار زیاد باشد.

از زاویه تا کسینوس

- 💠 دو مفهوه زیر معادل هستند.
- 💠 اسناد را با توجه به زاویه بین پرسوجو و سند به ترتیب کاهشی رتبه بندی کنید.
- 💠 اسناد را بر اساس کسینوس (پرس و جو، سند) به ترتیب افزایش رتبه بندی کنید.
 - ❖ کسینوس یک تابع کاهنده یکنواخت زاویه برای بازه [0∘, 180∘] است.

نرمال سازي طول

- 💠 چگونه کسینوس را محاسبه کنیم؟
- 💠 یک بردار را می توان با تقسیم هریک از اجزای آن بر طول آن نرمال کرد در اینجا از نرم L2 استفاده میکنیم:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

💠 این بردارها را پس از نرمالسازی بر روی کره واحد نشان میدهد:

$$||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$$

- 💠 در نتیجه، اسناد طولانی تر و اسناد کوتاه تر دارای وزنهایی به همان ترتیب اندازه هستند.
- 💠 تأثیر بر دو سند d و'd (bپیوست شده به خود) از اسلاید قبلی: آنها پس از نرمال سازی طول بردارهای یکسانی دارند.

شباهت کسینوس بین پرس و جو و سند

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- ن در پرسوجو است. i در پرسوجو است. 💠 ipqi
 - ن di جبارت i در سند است. 💠 di
 - 💠 ||و||طول های و هستند.
- این شباهت کسینوسی و یا به طور معادل، کسینوس زاویه بین و است.

کسینوس برای بردارهای نرمال شده

•برای بردارهای نرمال شده، کسینوس معادل ماصل ضرب نقطه ای یا اسکالری است.

$$cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$$

(اگر \vec{q} و \vec{d} به صورت طولی نرمال شده باشند.)

شباهت كسينوسي

مثال

term frequencies (counts)

How similar are these novels? SaS: Sense and Sensibility PaP: Pride and Prejudice WH: Wuthering Heights

term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERIN	0	0	38
G			

شال

•

term frequencies (counts)

log frequency weighting

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	115	58	20	AFFECTION	3.06	2.76	2.30
JEALOUS	10	7	11	JEALOUS	2.0	1.85	2.04
GOSSIP	2	0	6	GOSSIP	1.30	0	1.78
WUTHERING	0	0	38	WUTHERING	0	0	2.58

برای ساده کردن مثال idf weighting را انجام نمی دهیم.

محاسبه امتياز كسينوس

CosineScore(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each pair $(d, tf_{t,d})$ in postings list
- 6 **do** Scores[d]+ = $w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top *K* components of *Scores*[]

tf-idf weighting اجزای

Term frequency		Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2+w_2^2++w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\text{max}\{0, \text{log} \tfrac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$					

مثال tf-idf

- 💠 ما معمولا از وزنهای مختلف برای پرسشها و اسناد استفاده میکنیم.
 - 💠 علامت گذاری: ddd.qqq
 - lnc.ltn. مثال:
 - 💠 سند: tf لگاریتمی، بدون وزن دهی df، عادی سازی کسینوس.
 - نرس و جو: tf لگاریتمی، idf، بدون نرمال سازی.
 - نکنید؟ ایا بد نیست سند را با idf وزن نکنید؟

- * Example query: "best car insurance"
- Example document: "car insurance auto insurance"

مثال Inc.Itn :tf-idf

Query: "best car insurance". Document: "car insurance auto insurance".

word	query				document				product	
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

کلید ستون ها:

tf-raw = تناوب عبارت خام (بدون وزن)،

tf-wght = تناوب عبارت وزن دار لگاریتمی، df = تناوب سند، idf = تناوب معکوس سند،

وزن: وزن نهایی عبارت در پرس و جو یا سند، n'lized= وزن های سند پس از نرمال سازی کسینوس، product - ماصل ضرب وزن درخواست نهایی و وزن سند نهایی

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

 $1/1.92 \approx 0.52$

 $1.3/1.92 \approx 0.68$ Final similarity score between query and

document: $_{i} w_{ai} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$

سوال؟

خلاصه: بازیابی رتبه بندی شده در مدل فضای برداری

- نمایش دهید tf-idf پرسومو را به عنوان یک بردار وزنی 💠
 - مر سند را به عنوان یک بردار وزنی tf-idf نشان دهید
- 💠 شباهت کسینوس بین بردار پرسوجو و هر بردار سند را محاسبه کنید
 - 💠 اسناد را با توجه به درغواست رتبه بندی کنید
 - را به کاربر برگردانید K (به عنوان مثال، K) را به کاربر برگردانید

برداشت این فصل

- 💠 رتبه بندی نتایج جستجو: چرا مهم است (در مقابل ارائه مجموعه ای از نتایج بولی نامرتب)
 - 💠 فراوانی عبارت: این یک عنصر کلیدی برای رتبه بندی است.
 - ندی سنتی 🛠: شناخته شده ترین طرح رتبه بندی سنتی 🛠
- 💠 مدل فضای برداری: یکی از مهم ترین مدل های رسمی برای بازیابی اطلاعات (همراه با مدل های بولی و اعتمالی)

a.golzari@azaruniv.ac.ir
a.golzari@tabrizu.ac.ir
https://github.com/Amin-Golzari-Oskouei

