获得的答案

Proof of the decidability of the language:

- Express the language as $L = \langle R, S \rangle$ | R is a Deterministic Finite Automata(DFA) and S is a regular expression with L(R) = L(S)).
- Recollect the Theorem 4.5 states a Turing machine T that decides the language $EQ_{DFA} = \{\langle P,Q \rangle \mid P \text{ and } Q \text{ are Deterministic Finite Automata's(DFA)}$ $L(P) = L(Q) \}$.
- Assume that T is the Turing Machine which decides language L.
- It can be defined as follows:
- \bullet T = "On input $L = \langle R, S \rangle$, where R is a Deterministic Finite Automata(DFA) and S is a regular expression:
- Convert R into a Deterministic Finite Automata(DFA) D_R using the algorithm in the proof of Kleene's Theorem.
- Operate a Turing machine TM as a decider F using Theorem 4.5 on input $\left\langle \mathit{R}, \mathit{D}_\mathit{S} \right\rangle$.
- If F accepts, accept the language L.
- If F rejects, reject the language L.