

EQUIVALENCE CONSTANTS BETWEEN DEVIATIONS AND MAXIMUM SLOPE

ARI BENVENISTE, LOUIS BURNS, BRIANNA HUYNH POMONA COLLEGE, DEPARTMENT OF MATHEMATICS AND STATISTICS

Introduction

Given a real-valued function, its (maximum or absolute) deviation and maximum slope both calculate how far the function is from not being constant. If we consider a fixed finite subset of the reals and the family of real-valued functions on that set, its deviation and maximum slope must be equivalent as seminorms by finite-dimensionality. Our work focuses on the study of equivalence constants (with respect to both maximum and absolute deviation) for any fixed finite subset of reals.

NORMS AND SEMINORMS

Let V be a vector space over \mathbb{R} with zero denoted 0_V . A **seminorm** s on V is a function $s:V\to [0,\infty)$ such that for all $u,v\in V$ and $\alpha\in\mathbb{R}$, we have

- 1. $s(0_v) = 0$
- 2. $s(\alpha u) = |\alpha| s(u)$
- 3. $s(u+v) \le s(u) + s(v)$

If s(u) = 0 implies that $u = 0_V$, then we call s a **norm**.

EQUIVALENCE CONSTANTS

Let s, L be two seminorms on a vector space V over \mathbb{R} such that $s(u) = 0 \iff L(u) = 0$. If there exists

$$\alpha L(u) \le s(u) \le \beta L(u)$$

for all $u \in V$, then we call α, β equivalence constants. α, β are sharp equivalence constants if there exist $v, w \in V$ such that

$$\alpha L(v) = s(v)$$
 and $s(w) = \beta L(w)$

Additionally, if V is a finite dimensional vector space, then there exist equivalence constants $\alpha, \beta > 0$.

MAXIMUM SLOPE

Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite subset of \mathbb{R} . Consider the vector space of real-functions on X with pointwise addition and scalar multiplication, denoted $F(X, \mathbb{R})$.

For every $f \in F(X, \mathbb{R})$, we denote its **maximum slope** by

$$L(f) = \max \left\{ \frac{|f(x_j) - f(x_k)|}{|x_j - x_k|} : j, k \in \{1, 2, \dots, n\} \right\}.$$

L is a seminorm on $F(X,\mathbb{R})$ such that

$$L(f) = 0$$

if and only if f is a constant function.

DEVIATIONS AND EQUIVALENCE CONSTANTS

Maximum Deviation

Let $F(X,\mathbb{R})$ be a vector space of real-valued functions on a finite subset of \mathbb{R} . The **maximum deviation** D_{∞} is

$$D_{\infty} = ||f - avg(f)||_{\infty} = \max\{|f(x_k) - avg(f)| : k = 1, 2, \dots, n\}$$

where

$$avg(f) = \frac{f(x_1) + f(x_2) + \ldots + f(x_n)}{n}$$

When f is constant, $f = avg(f) \Rightarrow D_{\infty}(f) = 0$. Since $F(X,\mathbb{R})$ is finite dimensional, we found the following equivalence relation:

$$\alpha_n L(f) \le D_{\infty}(f) \le \beta_n L(f)$$

where

$$\alpha_n = \frac{1}{2} \min\{|x_j - x_k| : j, k = 1, 2, \dots, n, j \neq k\}$$

$$\beta_n = \frac{1}{n} \max \left\{ \sum_{j=1, j \neq k}^n |x_j - x_k| : k = 1, 2, \dots, n \right\}$$

Absolute Deviation

We define **absolute deviation** D_1 on the finite dimensional vector space $F(X, \mathbb{R})$

$$D_1 = ||f - avg(f)||_1 = \sum_{k=1}^{N} |f(x_k) - avg(f)|$$

When f is constant, $f = avg(f) \Rightarrow D_1(f) = 0$. We found the following equivalence relation

$$\alpha_n L(f) \le D_1(f) \le \beta_n L(f)$$

where

$$\alpha_n = \frac{1}{2} \min\{|x_j - x_k| : j, k = 1, 2, \dots, n, j \neq k\}$$

$$\beta_n = \frac{1}{n} \sum_{k=1}^n \sum_{j=1, j \neq k}^n |x_j - x_k|$$

AN EXAMPLE: $f(x) = \sqrt{x}$

Limit of α_n

Let $X = \{1, \frac{1}{2}, \dots, \frac{1}{2^n}\}$. We have the following relationship from above

$$\frac{1}{2^{n+1}}L(f) \le D_{\infty}(f) \le \left(1 - \frac{1}{2^n}\right)L(f)$$

Let $f(x) = \sqrt{x}$ be defined on X. Thus,

$$L(f) = 2^{\frac{n}{2}}(\sqrt{2} - 1) \Rightarrow \alpha_n L(f) = \frac{\sqrt{2} - 1}{2^{\frac{n+2}{2}}}$$

Now, we look at the limits as n approaches infinity. We note that the limit of α_n is zero.

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \frac{1}{2^{n+1}} = 0$$

And the limit of L(f) is infinity

$$\lim_{n \to \infty} L(f) = \lim_{n \to \infty} 2^{\frac{n}{2}} (\sqrt{2} - 1) = \infty$$

Putting the two limits together, the limit is zero.

$$\lim_{n \to \infty} \alpha_n L(f) = \lim_{n \to \infty} \frac{\sqrt{2} - 1}{2^{\frac{n+2}{2}}} = 0$$

Maximum Deviation

Finally, we show that $D_{\infty}(f)$ must be finite on X

$$D_{\infty}(f) = \max\{|f(x_k) - avg(f)| : k = 0, 1, 2, \dots, n\}$$

$$= |f(1) - avg(f)|$$

$$= \sqrt{1} - \frac{\sqrt{1} + \sqrt{\frac{1}{2}} + \sqrt{\frac{1}{4}} + \dots + \sqrt{\frac{1}{2^n}}}{n+1}$$

$$= 1 - \frac{1}{n+1} \frac{\sqrt{2^{1-n}} - 2}{\sqrt{2} - 2}$$

Fig 1. Comparing the average with finite points versus infinite points.

FUTURE WORK

We have begun work on refining the β values by testing the too-large values on multiple different sets. We tested the β values on $X = \{3, 9, 27\}, X = \{5, 25, 125\}$, and $X = \{4, 16, 64\}$.

For $X = \{3, 9, 27\}$, we calculated a β_3 value of 32 which is too large by a factor of $\frac{7}{8}$.

Fig 2. Graphic visualization of the β_3 value for $X = \{3, 9, 27\}$.

For $X = \{4, 16, 64\}$, we calculated a β_3 value of 80 which is too large by a factor of $\frac{9}{10}$.

Finally, For $X = \{5, 25, 125\}$, we calculated a β_3 value of 160 which is too large by a factor of $\frac{11}{12}$.

In general for $X = \{n, n^2, n^3\}$ where n > 1 the β_3 value is off by a factor of $\frac{2(n+1)-1}{2(n+1)}$. For this particular sequence of x values, the following equivalence relation will achieve sharpness:

$$D_1(f) \le \frac{2(n+1)-1}{2(n+1)} \beta_3 L(f)$$

REFERENCES

References

[1] J. B. Conway. *A Course in Functional Analysis, Second Edition*, Graduate Texts in Mathematics, Springer Science+Business Media, New York, NY, 2010.

ACKNOWLEDGEMENTS

We would like to thank our advisor, Professor Konrad Aguilar, and the Mathematics and Statistics Department at Pomona College for their support of this project.