Imperatív programozás

Bevezetés

Kozsik Tamás és mások

A tárgy célja

- Fogalomrendszer
- Terminológia magyarul és angolul
- Tudatos nyelvhasználat
 - Imperatív programozás
 - Procedurális programozás
 - Moduláris programozás
- Részben: programozási készségek
- Linux és parancssori eszközök használata

A tárgy célja, hogy programozási nyelvekkel kapcsolatos fogalmakkal ismertesse meg a hallgatókat (tudás), melyek alapján a hallgatók a programozás során képesek lesznek tudatosan választani a nyelvi eszközök közül (kompetencia). A tárgyalt ismeretkör az imperatív, a procedurális és (kisebb részben) a moduláris programozási paradigmát fedi le, alapot teremtve későbbi, az objektum-orientált és konkurens programozási paradigmákat tárgyaló kurzusoknak. A tárgy utal a vele egy időben tartott Funkcionális programozás kurzusra is (és viszont). A tárgy szoros kapcsolatban áll a vele egy időben tartott Programozás, illetve (kisebb mértékben) a Számítógépes rendszerek kurzusokkal. Jelen tárgynak nem célja, hogy a hallgatókat programozni tanítsa – ez a Programozás kurzus feladata –, de természetesen hozzájárul a hallgatók programozási készségeinek fejlődéséhez.

A tárgy figyelembe veszi, hogy az első félévben szerepel a tantervben, így igyekszik nem építeni meglévő ismeretekre. Másrészt nem "bevezető" kurzus próbál lenni: a meghatározott ismeretkört teljes mélységében (a BSc-záróvizsga szintjén) át kell adja.

A gyakorlatokon Linux operációs rendszert használunk, így a tárgy hozzájárul ahhoz is, hogy a hallgatók felhasználói szinten megismerkedjenek ezzel az operációs rendszerrel, ezen belül is főleg a parancssor használatával. A nyelvi eszközök tudatos használatát azzal is erősíteni kívánja a tárgy, hogy nem integrált fejlesztői környezetben készítjük majd a programokat, hanem közönséges (programozói) szövegszerkesztőkben. Ennek köszönhetően a programírás nem az eszköz által felkínált lehetőségek közüli választás lesz, hanem egy sokkal tudatosabb folyamat.

Használt programozási nyelvek

- C
- Python

Egyszerre két nyelvvel fogunk megismerkedni a félév során: a C-vel és a Pythonnal. Az előbbi az egyik legprimitívebb magas szintű programozási nyelv, melyet régóta használnak nagyon sokféle alkalmazási területen. Jelenleg is az egyik legerőteljesebben használt nyelv. Az egyszerűségéből fakadóan kicsit macerás programozni benne, de a gépközelisége miatt a programozók igen hatékony kódot tudnak írni benne. Sokszor arra is használják a C nyelvet, hogy a más nyelveken írt programokat először erre a nyelvre fordítsák, majd ebből generáljanak gépi kódot.

A Python sokkal fiatalabb nyelv, de napjainkban rendkívül népszerű – főleg azok között, akik nem szakképzett programozók, de a saját szakmájuk művelése mellett időnként szükséges programozniuk is. A Python sokkal magasabb szintű, kényelmesebb nyelv, mint a C. Könnyű benne programot írni – de mint majd látni fogjuk, könnyű benne rossz programot írni is.

A két nyelv nagyon sok mindenben különbözik egymástól, ezért jól össze lehet őket hasonlítani, egymással szembe lehet őket állítani. Nagyon hasznos mindkét nyelv ismerete, és ráadásul a későbbi félévekben tanult további programozási nyelvekhez jó alapot szolgáltatnak majd.

1 Paradigmák és nyelvek

Programozási nyelvek

- Ember-gép kommunikáció
- Ember-ember kommunikáció

A programozási nyelv segítségével vesszük rá a számítógépet arra, hogy kiszámoljon nekünk valamit, illetve, hogy azt csinálja, amit parancsolunk neki. A programozási nyelvnek tehát az az egyik célja, hogy minél jobban megértessük magunkat a számítógéppel. Így a leírt program hatékonyan végrehajtható lesz a számítógépen.

Van azonban egy másik, talán még fontosabb cél is: nagy szoftverek fejlesztésénél a programkód az egyik legfontosabb eszköz a fejlesztők közötti kommunikáció során. Tehát a programozási nyelvnek alkalmasnak kell lennie arra, hogy az egyik ember elmondhassa a gondolatait, és azt egy másik ember könnyen megérthesse. Tehát a programozási nyelvnek az emberi gondolkodási sémákat követőnek (is) kell lennie.

Programozási paradigmák

Gondolkodási sémák, szükséges nyelvi eszközök

Például:

- Imperatív programozás
- Funkcionális programozás
- Logikai programozás
- Szekvenciális programozás
- Konkurens programozás
- Párhuzamos programozás
- Elosztott programozás
- Procedurális programozás
- Moduláris programozás
- Objektumelvű programozás
- Aspektuselvű programozás
- Komponenselvű programozás
- Szolgáltatáselvű programozás
- Szerződésalapú programozás

A programozási paradigmák két kérdésre próbálnak válaszolni.

- Milyen gondolkodási sémát kívánunk kifejezni?
- Milyen eszközökre van szükség ehhez?

Sokféle programozási paradigma létezik: ezek a kurzuson az imperatív és a procedurális paradigmával foglalkozunk részletesebben, de a moduláris programozás témakörébe is betekintünk. Ugyanebben a

félévben egy másik tárgyból a funkcionális programozási paradigma kerül bemutatásra. A logikai programozással inkább a mesterszakon lehet találkozni. A következő félévben az objektumelvű programozással foglalkozunk majd. Az alapszakon előkerül még a konkurens programozás is, míg a párhuzamos és elosztott programozás inkább a mesterszakon kerül elő. A negyedik blokkban felsorolt paradigmákkal is találkozhatunk a mesterszakon.

Egy programozási nyelv akár több paradigmát is támogathat. Például a Python nyelv az objektumelvű paradigmát is támogatja, bár az ehhez kötődő nyelvi elemekkel ebben a félévben nem fogunk foglalkozni.

Imperatív programozás

Akkor beszélünk imperatív programokról, amikor explicit mi vezéreljük, hogy a program hogyan változtatja meg az állapotát. A program utasítások sorozataként van megadva, melyeket egymás után végrehajtunk. Az utasítások a számítógép memóriájába írhatnak, onnan olvashatnak. A memória pillanatnyi tartalma határozza meg a program *állapotát*.

Procedurális programozás

A megoldandó feladatot felbonthatjuk az elvégzendő feladatok (algoritmusok) szerint. Ezeket alprogramokként (függvények, eljárások) valósítjuk meg, köztük pl. paraméterátadással, függvény visszatérő értékével kommunikálunk. Ez a procedurális programozás. Ebben az esetben probléma lehet, hogy háttérbe szorulnak az adatszerkezetek. Pl. FORTRAN, Algol60, C, Go nyelvek.

Kezdetben döntően procedurális nyelvek léteztek, hiszen az assembly programok, a FORTRAN, COBOL, Algol60 és társai ilyen elvek mentén épültek fel, bár a Lisp 1957-ben már funkcionális nyelv volt.

Objektumelvű programozás

Amikor a valós világ objektumait próbáljuk modellezni, akkor összegyűjtjük a hasonló tulajdonságúakat, elhanyagoljuk a feladat szempontjából kevéssé fontos különbségeket és absztrakció segítségével egymással egy szűk interfészen kommunikáló osztályokat alkotunk belőlük. Itt az osztályok adatszerkezetén és a rajtuk értelmezett műveleteken van a hangsúly. Ez az objektumelvű (object-oriented) programozás. Pl. Simula67, Smalltalk, Eiffel, Java, C#.

Deklaratív programozás

Más esetekben egyszerűen csak deklarálni akarjuk a program elvárt működését, nem akarjuk explicit meghatározni annak mikéntjét. Ez a deklaratív programozás, amit több kategóriára szoktak bontani.

Funkcionális programozás

A kívánt eredmény egymást hívó függvényekként van definiálva. Ezek a függvények mellékhatás-mentesek, nincsen értékadás, minden memóriaterület egyszer kap csak értéket, és később ez az érték nem változik (referencial transparency). Az ilyen programok helyességét könnyebb belátni. A számításokat, függvényeket könnyen át lehet adni paraméterként ún. magasabb rendű függvényeknek. Ilyen nyelvek pl. Lisp, ML, Haskell, Clean.

Logikai programozás

A rendszer tényeit és következtetési szabályait adjuk meg. Pl. Prolog.

1.1 Alacsony szintű és magas szintű programozás

Gépi kód

```
ÇD$
            äð
                   i@CD$
                                                              ÇD$$þÿÿÿÇD$(
                                                                                    ÇD$
                                                                                                 CD$0
                                   $èüÿÿÿCD$<
                                                                                $èüÿÿÿÇD$<
                          $èüÿÿÿÉÃU®
                                                                                 ;Eø
                               UôÁâ
Unsorted array is:
                        %d
                       GCC: (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3
Sorted array is:
                                            .note.GNU-stack
                                 .comment
                                                                                                               .
quickS
                                  partition
             printf^@quickSort^(
```

Eleinte a számítógépek programozása úgy történt, hogy bedrótozták (de tényleg, a szó szoros értelmében) a programot. Minden újabb program betáplálása újradrótozást igényelt. Ehhez képest már nagy előrelépést jelentett, amikor újradrótozás nélkül lehetett bevinni a gép memóriájába a gépi kódot. A gépi kódot is nehéz programozási nyelvként felfogni.

Assembly

```
quickSort:
.LFB1:
        .cfi_startproc
        pushl
                 %ebp
        .cfi_def_cfa_offset 8
        .cfi_offset 5, -8
        movl
                 %esp, %ebp
        .cfi_def_cfa_register 5
        subl
                 $40, %esp
        movl
                 12(%ebp), %eax
                 16(%ebp), %eax
        cmpl
        jge
                 .L6
                 16(%ebp), %eax
        movl
        movl
                 %eax, 8(%esp)
                 12(%ebp), %eax
        movl
        movl
                 %eax, 4(%esp)
```

Az assembly nyelvek már egyértelműen programozási nyelvnek tekinthetők. Nagyon közel vannak a számítógép utasításaihoz: a gépi kódhoz könnyebben megjegyezhető, szöveges parancsokat határoz meg.

"Magas szintű" programozási nyelvek

- Fortran
- LISP

- $\bullet \quad Algol$
- COBOL
- BASIC
- C

stb.

Modern, kényelmes nyelvek

- Python
- Haskell
- C++
- Java
- Ada

stb.

1.2 Programozási nyelvek történelme

Ada Lovelace (Analytical Engine, Charles Babbage)

20				Data.			Working Variables. Result Variables.													
acted receiving cl	Indication of change in the value on any Variable.	Statement of Results.	1V ₁ 0 0 0 1	1V ₂ O 0 0 2	1V ₃ O 0 0 4	°V₄ ○ 0 0 0	°V₃ ○ 0 0 0	0V ₆ ⊙ 0 0 0	°V ₇	ev.s	°v,	°V ₁₀ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	ov _{II} ○ 0 0 0	6V ₁₂ O 0 0 0	°Y₁₃ ○ 0 0 0 0	B, in a decimal OA	B ₃ in a decimal O ₁₈ fraction.	B _s in a decimal O decimal of fraction.	0 0 0 B	
$ \begin{vmatrix} - & {}^{1}V_{4} & {}^{-1} \\ + & {}^{1}V_{5} & {}^{+1} \\ + & {}^{2}V_{5} + {}^{2} \\ + & {}^{1}V_{11} + {}^{-1} \\ - & {}^{0}V_{13} - {}^{2} \end{vmatrix} $	1V ₁ 2V ₅ 2V ₄ 1V ₁₁ 1V ₂ 2V ₁₁	$ \begin{vmatrix} \text{i} V_2 = \text{i} V_2 \\ \text{i} V_3 = \text{i} V_3 \\ \text{i} V_4 = 2 V_4 \\ \text{i} V_1 = \text{i} V_1 \\ \text{i} V_1 = \text{i} V_1 \\ \text{i} V_5 = 2 V_5 \\ \text{i} V_1 = \text{i} V_1 \\ \text{j} V_5 = 0 V_5 \\ \text{2} V_4 = 0 V_4 \\ \text{2} V_4 = 0 V_4 \\ \text{3} V_{11} = 2 V_{11} \\ \text{1} V_{22} = \text{1} V_{22} \\ \text{4} V_{11} = 0 V_{11} \\ \text{0} V_{13} = \text{1} V_{13} \\ \text{1} V_3 = \text{1} V_3 \\ \text{1} V_1 = \text{1} V_1 \\ \text{1} \end{bmatrix} $	$ \begin{array}{l} = 2 n \\ = 2 n - 1 \\ = 2 n + 1 \\ = 2 n + 1 \\ = 2 n - 1 \\ = 1 \\ = 1 \\ = 1 \\ = 1 \\ = 2 n - 1 \\ = 1 \\ = 2 n - 1 \\ = 1 \\ = 2 n - 1 \\ = 1 \\ $	1	2 2	n	2 n 2 n - 1 0	2 n 2 n + 1 0	2 n				 n – 1	$\begin{array}{c} 2n-1 \\ 2n+1 \\ 1 \\ 2n-1 \\ \hline 2 \\ 2n+1 \\ \hline 0 \end{array}$		$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \delta_0$				
+ 1V ₆ + 1 × 1V ₂₁ × 3 + 1V ₁₂ + 1	0V ₂ 1V ₂	$\begin{cases} {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \end{cases}$ $\begin{cases} {}^{1}V_{12} = {}^{6}V_{12} \\ {}^{1}V_{13} = {}^{2}V_{13} \end{cases}$	$ \begin{aligned} &= 2 + 0 = 2 \\ &= \frac{2n}{2} = A_1 \\ &= B_1 \cdot \frac{2n}{2} = B_1 A_1 \\ &= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \\ &= n - 2 (= 2) \end{aligned} $		2				2n	2 2			 n - 2	$\frac{2 n}{2} = \Lambda_1$ $\frac{2 n}{2} = \Lambda_1$ \dots	$B_1.\frac{2\pi}{2} = B_1 A_1$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	В1			
+ 1V ₁ + 2 + 3V ₆ + 2 × 1V ₉ × 2 × 1V ₂₂ × 3 + 2V ₁₂ + 3	1V ₇ 2V ₇	$ \begin{cases} v_7 = v_7 \\ z_7 = 2v_6 \\ z_7 = 2v_7 \end{cases} $ $\begin{cases} v_8 = v_8 \\ z_{11} = v_{11} \\ z_{12} = v_{12} \end{cases} $ $\begin{cases} v_8 = v_8 \\ v_{11} = v_{11} \\ z_{12} = v_{12} \\ z_{12} = v_{12} \end{cases} $ $\begin{cases} v_1 = v_1 \\ z_{12} = v_2 \\ z_{12} = v_{12} \end{cases} $ $\begin{cases} v_2 = v_2 \\ z_{12} = v_{12} \\ v_{12} = v_{12} \end{cases} $ $\begin{cases} v_2 = v_2 \\ v_{12} = v_{12} \\ z_{13} = v_{13} \end{cases} $ $\begin{cases} v_1 = v_1 \\ z_{13} = v_2 \\ z_{13} = v_{13} \end{cases} $	$= B_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 A$ $= A_0 + B_1 A_1 + B_3 A_3 \dots$	1 1					2 n - 1 2 n - 1 2 n - 2 2 n - 2	4	2n-1 3 0	2n-5 4 0 		$\begin{cases} \frac{2n}{2}, \frac{2n-1}{3} \\ \frac{2n}{3}, \frac{2n-1}{3} \\ \frac{2n}{3}, \frac{2n-1}{3} \\ 0 \\ \dots \\ \end{cases}$	B ₂ A ₃	$\left\{ \Lambda_2 + B_1 \Lambda_1 + B_2 \Lambda_2 \right\}$		B ₃		

Augusta Ada King, Countess of Lovelace (née Byron, 1815–1852)

A programozás őskora

- Fizikai huzalozás (pl. ENIAC, 1945)
- Gépi kód (Neumann-architektúra, 1945)
- Assembly (1949–)
- Magas szintű programozási nyelvek
 - Plankalkül (Konrad Zuse, 1942–1945)
 - Fortran (John Backus et al., 1954)
 - LISP (John McCarthy, 1958)
 - Algol (1958, 1960, 1968)
 - COBOL (1959)
 - BASIC (Kemény–Kurtz, 1964)

Néhány fontos nyelv

- Simula-67 (Dahl–Nygaard, 1967)
- Pascal (Niklaus Wirth, 1970)
- C (Dennis Ritchie, 1972)
- Ada (1980)
- SQL (Chamberlin–Boyce, 1974)
- C++ (Bjarne Stroustrup, 1985)
- Eiffel (Bertrand Meyer, 1986)

- Erlang (Armstrong-Virding-Williams, 1986)
- Haskell (1990)
- Python (Guido van Rossum, 1990)
- Java (James Gosling, 1995)
- JavaScript (Brendan Eich, 1995)
- PHP (Rasmus Lerdorf, 1995)
- C# (2000)
- Scala (Martin Odersky, 2004)

A Simula-67 volt az első objektum-orientált programozási nyelv. A Pascal is nagyon jelentős, számos másik nyelv származik belőle. Oktatási céllal ma is használják, mert egyszerű és logikus. A többi nyelvet azért soroltam fel, mert ezeket mind tanítjuk az IK-n. Lehet, hogy másokat is, de most ez jutott az eszembe.

Legnépszerűbb nyelvek (2018. szeptember, TIOBE-index)

Sep 2018	Sep 2017	Change	Programming Language	Ratings	Change
1	1		Java	17.436%	+4.75%
2	2		С	15.44796	+8.06%
3	5	^	Python	7.653%	+4.67%
4	3	•	C++	7.394%	+1.83%
5	8	^	Visual Basic .NET	5.308%	+3.33%
6	4	•	C#	3.295%	-1.48%
7	6	•	PHP	2.775%	+0.57%
8	7	•	JavaScript	2.131%	+0.11%
9		*	SQL	2.062%	+2.06%
10	18	*	Objective-C	1.509%	+0.00%
11	12	^	Delphi/Object Pascal	1.292%	-0.49%
12	10	•	Ruby	1.291%	-0.64%
13	16	^	MATLAB	1.276%	-0.35%
14	15	^	Assembly language	1.232%	-0.41%
15	13	~	Swift	1.223%	-0.54%
16	17	^	Go	1.081%	-0.49%
17	9	*	Perl	1.073%	-0.88%
18	11	*	R	1.016%	-0.80%
19	19		PL/SQL	0.850%	-0.63%
20	14	*	Visual Basic	0.682%	-1.07%

A C nyelv kialakulása

A C egy általános célú programozási nyelv, melyet Dennis Ritchie fejlesztett ki Ken Thompson segítségével 1969 és 1973 között a UNIX rendszerekre AT&T Bell Labs-nál. Idővel jóformán minden operációs rendszerre készítettek C fordítóprogramot, és a legnépszerűbb programozási nyelvek egyikévé vált. Rendszerprogramozáshoz és felhasználói programok készítéséhez egyaránt jól használható. Az oktatásban és a számítógép-tudományban is jelentős szerepe van.

A C minden idők legszélesebb körben használt programozási nyelve, és a C fordítók elérhetők a ma elérhető számítógép-architektúrák és operációs rendszerek többségére. (from wikipedia).

A C nyelv fejlődése

- 1969 Ken Thompson kifejleszti a B nyelvet (egy egyszerűsített BCPL)
- 1969 Ken Thompson, Dennis Ritchie és mások elkezdenek dolgozni a UNIX-on
- 1972 Dennis Ritchie kifejleszti a C nyelvet
- 1972-73 UNIX kernel-t újraírják C-ben
- 1977 Johnson Portable C Compiler-e

- 1978 Brian Kernighan és Dennis Ritchie: The C Programming Language könyve
- 1989 ANSI C standard (C90) (32 kulcsszó)
- 1999 ANSI C
99 standard (+5 kulcsszó)
- 2011 ANSI C11 standard (+7 kulcsszó)
- 2018 C18 ISO/IEC standard

Mi alapvetően az ANSI C-t, azaz a C90-et fogjuk használni.

A Python nyelv kialakulása és fejlődése

- Inspiráció: ABC, ALGOL 68, APL C, C++, CLU, Dylan, Haskell, Icon, Java, Lisp, Modula-3, Perl, Standard ML
- 1990 Guido van Rossum
- 2000 Python 2.0
- 2008 Python 3.0

Mi a python3-at fogjuk használni, az iparban nagyon sok a python2.7.

Tényleg nagyon fontos, hogy mindig a python3-at indítsuk el, mert a sima python sok gépteremben a 2.7-es verziót jelenti, és az nagyon más, mint a 3-as. Vannak olyan programok, amik érvényesek az egyik verzióban, de érvénytelenek a másikban, és ami még rosszabb, vannak olyan programok, amelyek mindkét verzióban érvényesek, de mást jelentenek!