

Точные решения > Интегральные уравнения Вольтерра > Линейные интегральные уравнения Вольтерра первого рода и родственные интегральные уравнения с переменным пределом интегрирования

1. Линейные интегральные уравнения Вольтерра первого рода и родственные интегральные уравнения с переменным пределом интегрирования

1-1. Интегральные уравнения, ядра которых содержат степенные функции

1.
$$\int_a^x (x-t)y(t) dt = f(x).$$

$$2. \int_a^x (Ax + Bt + C)y(t) dt = f(x).$$

$$3. \int_a^x (x-t)^n y(t) dt = f(x).$$

$$4. \int_a^x \sqrt{x-t} \, y(t) \, dt = f(x).$$

5.
$$\int_a^x \frac{y(t) dt}{\sqrt{x-t}} = f(x)$$
. Уравнение Абеля.

6.
$$\int_a^x (x-t)^{\lambda} y(t) dt = f(x).$$

7.
$$\int_a^x \frac{y(t)\,dt}{(x-t)^\lambda} = f(x)$$
. Обобщенное уравнение Абеля.

1-2. Интегральные уравнения, ядра которых содержат экспоненциальные функции

8.
$$\int_a^x e^{\lambda(x-t)}y(t)\,dt=f(x).$$

9.
$$\int_a^x e^{\lambda x + \beta t} y(t) dt = f(x).$$

10.
$$\int_a^x \bigl[e^{\lambda(x-t)}-1\bigr]y(t)\,dt=f(x).$$

11.
$$\int_a^x \left[e^{\lambda(x-t)} + b\right] y(t) dt = f(x).$$

12.
$$\int_{a}^{x} \left[e^{\lambda(x-t)} - e^{\mu(x-t)} \right] y(t) dt = f(x).$$

13.
$$\int_a^x \frac{y(t) dt}{\sqrt{e^{\lambda x} - e^{\lambda t}}} = f(x).$$

1-3. Интегральные уравнения, ядра которых содержат гиперболические функции

14.
$$\int_a^x \operatorname{ch}[\lambda(x-t)]y(t) dt = f(x).$$

15.
$$\int_{a}^{x} \{ \operatorname{ch}[\lambda(x-t)] - 1 \} y(t) dt = f(x).$$

16.
$$\int_a^x \{\operatorname{ch}[\lambda(x-t)] + b\} y(t) \, dt = f(x).$$

17.
$$\int_a^x \cosh^2[\lambda(x-t)]y(t) dt = f(x).$$

18.
$$\int_a^x \sin[\lambda(x-t)]y(t) dt = f(x).$$

19.
$$\int_a^x \{\operatorname{sh}[\lambda(x-t)] + b\} y(t) \, dt = f(x).$$

20.
$$\int_a^x \sinh(\lambda\sqrt{x-t})y(t) dt = f(x).$$

1-4. Интегральные уравнения, ядра которых содержат логарифмические функции

$$21. \int_0^x \ln(x-t)y(t) dt = f(x).$$

22.
$$\int_a^x [\ln(x-t) + A] y(t) dt = f(x).$$

23.
$$\int_{a}^{x} (x-t) [\ln(x-t) + A] y(t) dt = f(x).$$

1-5. Интегральные уравнения, ядра которых содержат тригонометрические функции

24.
$$\int_a^x \cos[\lambda(x-t)]y(t) dt = f(x).$$

25.
$$\int_{a}^{x} \{\cos[\lambda(x-t)] - 1\} y(t) dt = f(x).$$

$$26. \int_a^x \{\cos[\lambda(x-t)] + b\} y(t) dt = f(x).$$

27.
$$\int_a^x \sin[\lambda(x-t)]y(t) dt = f(x).$$

28.
$$\int_{a}^{x} \sin(\lambda \sqrt{x-t}) y(t) dt = f(x).$$

1-6. Интегральные уравнения, ядра которых содержат специальные функции

29.
$$\int_a^x J_0(\lambda(x-t))y(t) dt = f(x).$$

30.
$$\int_a^x J_0(\lambda\sqrt{x-t})y(t)\,dt=f(x).$$

31.
$$\int_a^x I_0(\lambda(x-t))y(t) dt = f(x).$$

32.
$$\int_a^x I_0(\lambda\sqrt{x-t})y(t)\,dt=f(x).$$

1-7. Интегральные уравнения, ядра которых содержат произвольные функции

33.
$$\int_a^x [g(x)-g(t)]y(t)\,dt=f(x).$$

34.
$$\int_a^x [g(x) - g(t) + b]y(t) dt = f(x).$$

35.
$$\int_a^x [g(x) + h(t)]y(t) dt = f(x)$$
.

36.
$$\int_a^x K(x-t)y(t) dt = f(x).$$

37.
$$\int_a^x \sqrt{g(x)-g(t)}\,y(t)\,dt=f(x).$$

38.
$$\int_a^x \frac{y(t) dt}{\sqrt{g(x) - g(t)}} = f(x).$$

Веб-сайт EqWorld содержит обширную информацию о решениях различных классов обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, интегральных уравнений, функциональных уравнений и других математических уравнений.