Problem 1

a.
$$2n = \mathcal{O}(n)$$
 : $c \cdot n \ge 2n$ when $c = 2$

b.
$$n^{2} \neq \mathcal{O}(n)$$
: no c exists such that $c \cdot n \geq n^{2}$ for arbitary values of n

c.
$$n^2 = \mathcal{O}\left(n\log^2 n\right) :: \mathcal{O}\left(n \cdot \log^2 n \cdot \log^2 n\right) = \mathcal{O}\left(n \cdot n\right) = \mathcal{O}\left(n^2\right)$$
 Assuming \log_2

d.
$$n \log n = \mathcal{O}(n^2) :: \mathcal{O}(n^2) = \mathcal{O}(n \cdot n) \wedge \log n \leq n$$

e.
$$3^n = 2^{\mathcal{O}(n)} :: 3^n = 2^{n \cdot \log_2 3}$$
 Notice then $\log_2 3$ is a constant

f.
$$2^{2^n} = \mathcal{O}(2^{2^n}) : c \cdot 2^{2^n} \ge 2^{2^n}$$
 when $c = 1$

Problem 2

a.
$$n = o(2n)$$
 : $\lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2}$

b.
$$2n = o(n^2) :: \lim_{n \to \infty} \frac{2n}{n^2} = 0$$

c.
$$2^n = o(3^n) : \lim_{n \to \infty} \frac{2^n}{3^n} = 0$$

d.
$$1 = o(n)$$
: $\lim_{n \to \infty} \frac{1}{n} = 0$

e.
$$n \neq o(\log n)$$
 : $\lim_{n \to \infty} \frac{n}{\log n} = \infty$

f.
$$1 \neq o(\frac{1}{n})$$
: $\lim_{n \to \infty} \frac{1}{1/n} = \infty$

Problem 3

1.
$$1274 \mod 10505 = 1274$$

2.
$$10505 \mod 1274 = 313$$

3.
$$1274 \mod 313 = 22$$

4.
$$313 \mod 22 = 5$$

5.
$$22 \mod 5 = 2$$

6.
$$5 \mod 2 = 1$$

1274 and 10505 are relatively prime

- 1. $7289 \mod 8029 = 7289$
- $2.8029 \mod 7289 = 740$
- 3. $7289 \mod 740 = 629$
- 4. $740 \mod 629 = 111$
- 5. $629 \mod 111 = 74$
- 6. 111 $\mod 74 = 37$

7289 and 8029 are not relatively prime

Problem 4

\mathbf{X}	У	$(x \vee y) \wedge (x \vee \sim y) \wedge (\sim x \vee y) \wedge (\sim x \vee \sim y)$
0	0	0
0	1	0
1	0	0
1	1	0

No combinations produce a one, so the formula is not satisfiable

Problem 5

Union. Let L_1, L_2 be languages in P. M_1 and M_2 accept L_1 and L_2 respectively. We can construct a machine, M_0 , which has two tapes. M_0 simulates M_1 on the first tape and M_2 on the second. Run the input to M_0 on the first tape. If the machine accepts in polynomial time, accept. Otherwise, run the input on the second tape. If the machine accepts, accept. Otherwise reject.

Complement. Suppose M is a machine which accepts the language L in polynomial time. We can use M to construct M'. M' simulates M. If M accepts in polynomial time, then M' rejects. If M rejects, then M' accepts.

Concatanation. Suppose M_1, M_2 accept L_1 and L_2 in polynomial time. We can construct M_0 which maintains a counter, i. We simulate M_1 and M_2 on M_0 . For the input, s, we run the sub-string s_0, s_1, \ldots, s_i on M_1 . If M_1 rejects, we increment i and repeat. If M_1 accepts, we run the remaining input on M_2 . If M_2 accepts, accept, otherwise reject.

Problem 6

Union. Let L_1, L_2 be languages in NP. By definition, We can construct two polynomial time verifiers for L_1 and L_2 . We can therefore construct a verifier, V_0 , for $L_1 \cup L_2$. This verifier returns true if either V_1 or V_2 return true. Because bothe V_1 and V_2 run in polynomial time, V_0 also runs in polynomial time. This means that $L_1 \cup L_2$ is in NP.

Concatenation. Let V_1 and V_2 be polynomial time verifiers for the languages L_1 and L_2 in NP. We can construct another polynomial time verifier which verifies L_1L_2 by splitting our input at i. We run a substring of the input from the start to i, s_0, s_1, \ldots, s_i on V_1 , which runs in polynomial time. If V_1 does not verify, then increment i and repeat. If V_1 does verify, run the remaining input on V_2 . Because both V_1 and V_2 run in polynomial time, this verifier is polynomial, so the concatanation of two NP languages is also NP.

Problem 7

In the worst case, this algorithm must iterate over each unmarked node once for each loop where we mark a node (to mark additional nodes). We safely excude marked nodes from this loop. This means we need to perform $|v| + (|v|-1) + (|v-2|) + \cdots + 0 = \sum_{i=0}^{|v|} |v| - i$ operations. This is clearly less than n^2 operations, so this algorith is $\mathcal{O}\left(n^2\right)$ which is polynomial.

Problem 8

For a DFA to accept Σ^* , every accept state which can be reached from our initial state, q_0 , must be accepting. If we perform a depth-first search on the states on our DFA rooted at q_0 , we will have to check a maximum of |Q| states. If we encounter a non-accepting state, we reject. The complexity of this algorithm is therefore $\mathcal{O}(|Q|)$. This is a polynomial function, so this language must be in P.