

3D Printing for Bone Tissue Engineering Applications

Group 3: Dylan Dolan, Vishant Gandhi, Chelsea Lang, Darian Ngo, Brittany Truong

UNIVERSITY OF CALIFORNIA, RIVERSIDE

- I. Problem
- II. Objective
- III. Previous Studies
- IV. Proposed Development
 - A. Design Criteria
 - B. Synthesis and Fabrication
 - C. Experiment
 - V. Concluding Remarks

- I. Problem
- II. Objective
- III. Previous Studies
- IV. Proposed Development
 - A. Design Criteria
 - B. Synthesis and Fabrication
 - C. Experiment
 - V. Concluding Remarks

Problem

- There are 1.3 million surgeries for bone damage annually
- Most common broken bone is the clavicle
- Most Common type of break is a fracture

Problem

- Traditional scaffold manufacturing methods
 - Electrospinning
 - Use of electrical charge to create nonwoven scaffolds
 - Solvent Casting
 - Dissolution of polymer-ceramic particle mixture
 - Freeze Drying
 - Synthetic polymer is dissolved then poured into moulds with liquid Nitrogen

- I. Problem
- II. Objective
- III. Previous Studies
- IV. Proposed Development
 - A. Design Criteria
 - B. Synthesis and Fabrication
 - C. Experiment
 - V. Concluding Remarks

Objective

Use 3D Printing with Hydrogel Composites

- Low cost
- Rapid manufacturing of personalized scaffolds
- Potentially solve donor shortage problem

- I. Problem
- II. Objective
- **III. Previous Studies**
- IV. Proposed Development
 - A. Design Criteria
 - B. Synthesis and Fabrication
 - C. Experiment
 - V. Concluding Remarks

Previous Studies

- 3D printed collagen scaffolds
 - Direct-write printing
 - Adjustable variables
 - Created 104 customized layers
- 3D printed ceramic and composite scaffolds
 - Inkjet printing
 - Freedom to vary porosity
 - Achieved close mechanical strength of cortical bone
 - Experimental: 122 MPa
 - Cortical: 100-150 MPa

^[1] Smith CM, Christian JJ, Warren WL, Williams SK. Characterizing Environmental Factors that Impact the Viability of Tissue-Engineered Constructs Fabricated by a Direct-Write Bioassembly Tool. Tissue Engineering. 2007;13(2)373-383

^[2] Roohani-Esfahani SI, Newman P, Zreiqat. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci Rep. 2016;6:1-8

- I. Problem
- II. Objective
- III. Previous Studies
- **IV. Proposed Development**
 - A. Design Criteria
 - B. Synthesis and Fabrication
 - C. Experiment
 - V. Concluding Remarks

Design Criteria

- Biocompatibility
- Biodegradability
- Pore interconnectivity, pore size, and porosity
- Mechanical properties similar to natural human bone
- None/minimized inflammatory response

Synthesis & Fabrication

Biomaterial Selection

- Bioceramics
 - Nano-Hydroxyapatite
- Polymer/Protein
 - Fibroin

Synthesis & Fabrication

Synthesis & Fabrication

Stereolithography (SLA) Printer

Experiment

In Vitro

- A test within a cell culture
- 3D print scaffold and implant it with a cell culture

In Vivo

- A test within a live subject such as an animal
- Apply for IACUC approvals
- Obtain female rats and induce fracture with anesthetics and immune suppressors

- I. Problem
- II. Objective
- III. Previous Studies
- IV. Proposed Development
 - A. Design Criteria
 - B. Synthesis and Fabrication
 - C. Experiment
 - V. Concluding Remarks

Concluding Remarks

Limitations

- Though 3D printing materials have low stability and take lots of time to make
- Nano-HA is printable but it is quite hard to make
 - Would require surface modifications to make it:
 - Adhere, Proliferate, & Grow better
 - This would allow us to increase biocompatibility and osteoplastic potential
- Fibroin as a polymer is beneficial but has drawbacks
 - There aren't enough modifiable amino acid side chain groups compared to other collagens or scaffolds

Do, Anh-Vu et al. "3D Printing of Scaffolds for Tissue Regeneration Applications." *Advanced healthcare materials* vol. 4,12 (2015): 1742-62. doi:10.1002/adhm.201500168

Concluding Remarks

- Future Works
 - Change the ratio of nano-HA/polymer (or protein)
 - Change the polymer or protein
 - Improve 3D printing resolution
 - Reduce post processing work

Questions?

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Contributions

Dylan: Significance of Problem

Vishant: Experiment & Limitations

Chelsea: Objective, Design Criteria

Brittany: Previous Studies

Darian: Synthesis & Fabrication, Future Work