Compito Laboratorio di Fisica I

28 Novembre 2011

(1.6) 1. Avendo misurato la massa del picnometro vuoto $m_P = (25.2 \pm 0.1) \ g$ e quella del picnometro riempito con acqua fino al segno di affioramento $m_{P+A} = (124.9 \pm 0.1) \ g$ e tenendo conto che la temperatura ambiente durante la misura è variata tra 15 °C e 19 °C, determinare il volume dell'acqua contenuta nel picnometro.

Si ricorda che la densità assoluta dell'acqua assume i seguenti valori (in g/cm^3): 0.99910 a 15 oC 0.99821 a 20 oC 0.99705 a 25 oC

(1.6) 2. Calcolare i valori delle seguenti funzioni, nei punti indicati, con una approssimazione relativa di 10^{-2} : $\cos(x/2)$ in $x = 0.8^{\circ}$; $\frac{1}{(2-x^2)}$ in $x = 4.0 \cdot 10^{-2}$

(1.0) 3. La relazione

$$\alpha = G \cdot \left(\beta \cdot e^{-t} + \frac{\tau}{\gamma} \log P\right)$$

dove β è una pressione, α il modulo di una forza, t un intervallo di tempo e τ un momento di inerzia, è, sulla base di sole considerazioni dimensionali, palesemente errata. Apportare le correzioni necessarie e determinare le dimensioni di G e γ e le loro unità di misura nei sistemi S.I. e c.g.s., calcolando anche il fattore di conversione tra di esse.

(0.5) 4. Determinare il numero di cifre significative dei risultati delle seguenti misure della grandezza fisica z (Δz indica l'incertezza di misura):

z 3.146 $1.43172 \cdot 10^3$ $2.3424 \cdot 10^{-2}$ $0.000541 \cdot 10^3$ Δz $2 \cdot 10^{-2}$ 0.3 $1. \cdot 10^{-4}$ $1 \cdot 10^{-2}$

- (0.5) 5. Determinare la miglior stima sia del "valore vero" sia dell'incertezza di misura dalla seguente serie di misure, giustificando la procedura utilizzata: 127.46; 127.48; 127.47; 127.47; 127.47; 127.45; 127.50; 127.46; 127.44; 127.49; 127.48
- (1.5) 6. Determinare, con approssimazione del 1% e del 0.1%, i valori delle seguenti operazioni: $(\frac{16}{36})^{\frac{5}{2}}$; $\sqrt{52}$
- (0.8) 7. Avendo misurato con un compasso di Palmer il diametro di una sfera, si sono ottenuti i seguenti valori (in mm):

22.20 22.24 22.16 22.19 22.22

Si è poi misurato l'offset dello strumento ottenendo i valori:

-2.20 -2.21 -2.19 -2.20

Determinare la miglior stima del raggio della sfera e della sua incertezza di misura.

(2.5) 8. La grandezza ρ è legata alla alla grandezza T dalla relazione $\rho = A/\sqrt{T} + B$. I risultati di alcune misure delle due grandezze sono i seguenti:

 $T (mm^2)$ 1.000 4.000 9.000 16.00 25.00 36.00 ρ (Pa) 21.7 20.9 20.6 20.520.4 20.6 $\Delta \rho \ (Pa)$ 0.5 0.20.20.40.6 0.3

Determinare graficamente A e B, dando anche una stima della loro incertezza.