Radiometry and HDR Basics

C0417 – Advanced Computer Graphics: Photographic Image Synthesis
Abhijeet Ghosh
Lecture 02, Jan. 14th 2019

1

Radiometry & Geometric Optics

- Light transport modeled using geometric or ray optics
 - light as particle, not wave!
 - some exceptions, i.e., polarization
- Basic properties of geometric optics:
 - Linearity
 - Energy conservation

Basic Quantities

- Radiant Flux or Power Φ: Energy flowing through a surface per unit time. Units - Joules/second (J/s) or Watts (W).
 - Emission from light sources typically described with flux

- Irradiance E : area density of incoming flux (W/m²)
 - for a sphere of radius r, E = Φ / $4\pi r^2$
 - energy received from an isotropic source falls off with squared distance!

3

Basic Quantities

- Intensity I : flux density per solid angle [W/sr]
 - $-I = d\Phi/d\omega$
 - useful for describing point light sources, with zero area!

- Radiance L: radiant flux density per unit area, per unit solid angle [W/m²sr]
 - L = $d^2\Phi/(dA \cos\theta d\omega)$
 - radiance remains constant along a direction!

Lambert's Law

 Irradiance E proportional to cosine of the angle between light direction I and surface normal n

$$E = d\Phi/dA$$
,

hence $E_1 = \Phi/A$,

and
$$E_2 = \Phi \cos \theta / A$$
.

5

Incident and Exitant Radiance

- Incident radiance $L_i(x,\omega)$, due to light arriving from a source
- Exitant radiance $L_r(x,\omega)$, due to reflection from a surface

In general $L_i(x,\omega) \neq L_r(x,\omega)$

BRDF

- Bidirectional Reflectance Distribution Function [Nicodemus et al. 77]
 - formalizes the reflection of light at a surface!

7

BRDF

• Defined as the ratio of reflected radiance to incident irradiance:

$$\begin{split} f_r(\mathbf{x}, \, \omega_r, \, \omega_i) &= \mathsf{dL}_r(\mathbf{x}, \, \omega_r)/\mathsf{dE}_i(\mathbf{x}, \, \omega_i) \\ &= \mathsf{dL}_r(\mathbf{x}, \, \omega_r)/(\mathsf{L}_i(\mathbf{x}, \, \omega_i) \, \cos\theta \, \mathsf{d}\omega_i). \end{split}$$

- the units of a BRDF are inverse steradian [1/sr].

BRDF

• Physically based BRDFs have 2 important properties:

Helmholtz Reciprocity: $f_r(\mathbf{x}, \omega_r, \omega_i) = f_r(\mathbf{x}, \omega_i, \omega_r)$.

and

Energy Conservation: $\int_{\Omega} f_r(\mathbf{x}, \, \omega_r, \, \omega_i) \cos \theta_i \, d\omega_i \leq 1$, for all ω_r in Ω .

9

Radiance imaging with cameras

Camera settings:

Shutter speed – 1 sec

Aperture - f/8

gain – ISO 100

ND filters

Radiance in the Real World – Dynamic Range

Sony VX2000 video camera

Office interior
Indirect light from window
1/60th sec shutter
f/5.6 aperture
0 ND filters
0dB gain

11

Dynamic Range in the Real World

16 times the light as inside

Outside in the shade 1/1000th sec shutter f/5.6 aperture 0 ND filters 0dB gain

Dynamic Range in the Real World

64 times the light as inside

Outside in the sun
1/1000th sec shutter
f/11 aperture
0 ND filters
0dB gain

13

Dynamic Range in the Real World

5,000,000 times the light as inside

Straight at the sun
1/10,000th sec shutter
f/11 aperture
13 stops ND filters
0dB gain

Dynamic Range in the Real World

1/1500th the light than inside

Very dim room 1/4th sec shutter f/1.6 aperture 0 stops ND filters 18dB gain

15

