Collective Decision Making with Heterogeneous Agents

-Syam Gullipalli

Swarm Intelligence L.079.05719

Solution

- Honeybees house hunting behavior + opinion dynamics
- Main idea from:
 - Valentini, G., Hamann, H., Dorig, M.: Self-organized collective decision making: The weighted voter model. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multiagent System. AAMAS'14, Richland, SC, International Foundation for Autonomous Agents and Multiagent Systems (2014)

Honeybees House-hunting Behavior

Waggle dance

- Upon finding a new site for nest, honeybee returns to the nest and waggle dance.
- Waggle dance encodes the information like distance, quality, angle, etc.
- Recruit nest mates to survey the site.

Survey

Assess the quality of site

Opinion Dynamics

- Classic voter model
 - Communication with neighbors
 - Random agent adopts the opinion of a random neighbor on each time step.

Hybrid Approach

- Classic voter model + house-hunting behavior of honeybees.
- Positive feedback:
 - Waggle dance duration is directly proportional to the quality of site.
 - Higher the quality → longer the waggle dance
 → higher the probability to influence neighbors to take the same decision.

State Machine

Flowchart & Algorithm


```
/* Flowchart to pseudocode */
1. state = INIT;
2. initialOpinion();
3. state = SURVEY;
4. if is room sensed then
     headToLED();
6. else if is at entrance then
     if state == SURVEY then
        getIntoRoom();
   else
        getIntoNest();
11.else if is entered room then
     executeAndFlipState();
13.else
14. senseRoom();
```


Metrics & Time

 v_G – Evaluation of grounds ensor

 v_L - Evaluation of lights ensor

 v_{o} – Evaluation of number of objects

$$v = \begin{cases} (v_G + v_O)/2 \text{ if type Grobot} \\ (v_L + v_O)/2 \text{ if type Lrobot} \end{cases}$$

SURVEY

- Uniform random number between 150 and 300.

WAGGLE

 Exponential value proportional to the average quality v.

$$t = W\lambda(1 - e^{-\lambda v})$$
 where $\lambda = -2$ and $W = 40$

Results (1)

 T_G -No.of type G robots T_L -No.of type L robots

Results (2)

Results (3)

 T_G -No.of type G robots T_L -No.of type L robots

• If T_G is higher than T_L then robots deviates towards the room where v_G value is high.

Thank you

