

Računalniška omrežja

Mrežni sloj

doc. dr. Peter Rogelj (peter.rogelj@upr.si)

Vsebina

- Uvod
- Algoritmi za usmerjanje
- Algoritmi za nadzor preobremenitev
- Kakovost storitev
- Povezovanje omrežij
- Mrežni sloj Interneta

Uvod

Mrežni sloj

Mrežni sloj

- Naloga mrežnega sloja je zagotavljanje poti prenosa med poljubnima končnima vozliščema
 - □Usmerjanje
 - □Naslavljanje
 - □Povezovanje omrežij

Mrežni sloj v referenčnih modelih

OSI Model			
	Data unit	Layer	Function
Host layers	Data	7. Application	Network process to application
		6. Presentation	Data representation, encryption and decryption, convert machine dependent data to machine independent data
		5. Session	Interhost communication
	Segments	4. Transport	End-to-end connections and reliability, flow control
	Packet/Datagram	3. Network	Path determination and logical addressing
Media layers	Frame	2. Data Link	Physical addressing
	Bit	1. Physical	Media, signal and binary transmission

TCP/IP

Aplikacijski sloj

Transportni sloj

Mrežni sloj

Povezovalni sloj

Elementi mrežnega sloja

Usmerjevalniki

- shranijo paket dokler ni v celoti prejet,
- (preverijo pravilnost paketa/ prisotnost napak)
- paket posredujejo naslednjemu usmerjevalniku (ali končnemu vozlišču)

Mrežni sloj

- Mrežni naslovi (ki so nudeni transportnemu sloju) morajo biti urejeni na nivoju celotnega omrejžja (LANi in WAN).
- Mrežni sloj lahko transportnemu sloju nudi
 - Nepovezavno storitev (datagramsko podmrežje)
 - Povezavno storitev (podmrežje tipa navidezni vod)

Nepovezavna storitev

- Datagramsko podmrežje
 - Pakete v nepovezavnem omrežju imenujemo tudi datagrami.
 - □Storitve mrežnega sloja so omejene
 - SEND PACKET, RECEIVE PACKET.
 - Omrežje je nezanseljivo, kontrolo pretoka morajo zagotavljati končna vozlišča
 - detekcija napak, odpravljanje napak, razvrščanje paketov.
 - Vsak paket se po omrežju usmerja neodvisno
 - Vsak paket mora vsebovati poln naslov prejemnika.

Datagramsko podmrežje

Povezavna storitev

- Podmeržje navideznega voda
 - Ob vzpostavitvi povezave med končnima vozliščema se vzpostavi pot skozi omrežje, ki jo imenujemo navidezni vod.
 - □ Ves promet povezave gre po omrežju po isti poti vsak paket nosi oznako navideznega voda.
 - Oznaka voda se mora na usmerjevalnikih spremeniti, v izogib podvajanju oznak vodov iz različnih vozlišč - to imenujemo preklapljanje (komutacija) oznak (label switching).
 - □ Usmerjevalnik skrbi za preslikavo:
 - Prihod(priključek,navidezna povezava) →
 Odhod(priključek, navidezna povezava)

Navidezni vod

Primerjava

Issue	Datagram network	Virtual-circuit network
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Routers do not hold state information about connections	Each VC requires router table space per connection
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC

Algoritmi za usmerjanje

Algoritmi za usmerjanje

- Naloga algoritmov za usmerjanje je določanje vsebine usmerjevalnih tabel.
- Načini usmerjanja:
 - □Statično (odločitve usmerjanje se ne spreminjajo)
 - □ Dinamično (odločitve usmerjanje se spreminjajo glede na topologijo in promet v omrežju)

Algoritmi za usmerjanje

- Načini določitve usmerjevalnih tabel
 - Centralno
 - Vozlišča določijo vsebino usmerjevalnih tabel na osnovi poznavanja celotnega (dela) omrežja.
 - Porazdeljeno
 - Sosednja vozlišča si izmenjujejo tabele ali del usmerjevalnih tabel.
 - □ Lokalno
 - Vozlišča si ne izmenjujejo usmerjevalnih tabel (uporaba preplavljanja ali vzvratnega učenja...)
- Stabilnost:
 - stabilni algoritmi dosežejo ustaljeno stanje.

Poštenost in optimalnost

- Konflikt med poštenostjo in optimalnostjo:
 - Zadosten promet med A in A', B in B' ter C in C' za zasičenje horizontalnih povezav.
 - Maksimiranje pretoka v omrežju pomeni ničen promet med X in X'!
 - Potreben je kompromis med globalno učinkovitostjo in poštenostjo do posameznih povezav.

Princip optimalnosti

Če je usmerjevalnik J na optimalni poti med I in K, sta optimalni tudi poti od I do J in J do K.

- Optimalne poti od vseh virov do danega cilja tvorijo drevo ponora (sink tree).
 - Drevo ponora ni nujno unikatno obstaja lahko več enako dobrih poti.
 - Namen usmerjevalnih algoritmov je poiskati drevesa ponorov za vse usmerjevalnike.
 - Zaradi sprememb na omrežju imajo vozlišča lahko različen pogled na topologijo omrežja, kar je v praksi lahko vir težav!

Drevo ponora

Primer omrežja (a) in drevesa ponora (sink tree) za usmerjevalnik B (b).

Usmerjanje po najkrajši poti

- Dolžina poti se lahko meri
 - □ s številom prehodov prek usmerjevalnikov (hopi),
 - □ z geografsko razdaljo v kilometrih,
 - □ drugo (pasovna širina, cena, povprečna obremenjenost...)
- Obstaja več algoritmov za izračun najkrajše poti med vozlišči na grafu.
 - □ Dijkstra algoritem.
- Potrebno je poznavanje celotnega omrežja
 - □ Samoumevno za statično usmerjanje,
 - V uporabi tudi za dinamično usmerjanje.

Dijkstra algoritem

- Poznane so 'razdalje' povezav med usmerjevalniki, iščemo najkrajšo pot med dvema izmed vozlišč.
- Vsakemu vozlišču pripišemo razdaljo od izvornega vozlišča ter predhodno vozlišče preko katerega ta povezava poteka.
- Ocenjene razdalje/oznake se tekom iskanja najkrajše poti lahko spreminjajo.
- Ko ugotovimo, da je najdena najkrajša možna razdalja do določenega vozlišča, ta postane stalna.
- Običajno poteka iskanje v nasprotni smeri, ker je pomembno kam se usmeri paket in ne od kod se paket pridobi.

Dijkstra algoritem - primer

Topologija omrežja in prvih pet korakov Dijkstra algoritma.

Dijkstra algoritem – primer 2

Katera je optimalna pot med A in H?

Preplavljanje

- Algoritem statičnega usmerjanja.
- Vsak vhodni paket je odposlan na vse izhodne linije, razen na tisto od koder je bil prejet.
 - □ Generira se veliko število enakih paketov.
 - □ Potrebna je omejitev procesa npr. s številom prehodov (hopov).
- Selektivno preplavljanje
 - Paketi se posredujejo le na tiste izhodne linije, ki gredo približno v želeno smer.
- Robusten vendar manj praktičen algoritem.

Usmerjanje z vektorji razdalj

- Ang. Distance Vector Routing (DVR)
- Vsako vozlišče vzdržuje svojo tabelo usmerjevalni vektor, ki za vsako vozlišče določa:
 - □ razdaljo do vozlišča
 - pripadajočo izhodno linijo.
- Možne metrike (do sosednjih vozlišč):
 - Število hopov (1 za sosednja vozlišča).
 - Dolžina čakalne vrste.
 - □ **Zakasnitev** (merjena z ECHO paketi)

Usmerjanje z vektorji razdalj

Primer: določitev vektorja razdalj za vozlišče J.

Usmerjanje z vektorji razdalj

- Pomanjkljivost algoritma je možna počasna konvergenca:
 - □ Dobre novice se širijo 'razmeroma' hitro (slika a).
 - □ Slabe novice se širijo počasi (problem štetja do neskončno) (slika b).

Usmerjanje s stanjem povezav

- Ang. Link State Routing (LSR)
 - Tako deluje OSPF (uporablen v Internetu).
- Postopek za posamezen usmerjevalnik:
 - 1. Najdi sosede in njihove mrežne naslove.
 - 2. Izmeri zakasnitev (ali ceno) za vsakega od sosedov.
 - 3. Zgradi paket z vsemi ugotovljenimi podatki.
 - 4. Zgrajen paket pošlji VSEM usmerjevalnikom.
 - Izračunaj najkrajšo pot do vseh ostalih usmerjevalnikov.
- Izmerjena je celotna topologija omrežja in posredovana vsem usmerjevalnikom.
- Možna je uporaba Dijkstra algoritma za iskanje najkrajših poti do ostalih usmerjevalnikov.

Usmerjanje s stanjem povezav

- Ocenjevanje povezav do sosedov
 - Zakasnitev (ECHO paket, ki ga prejemnik takoj vrne pošiljatelju)
- Kreiranje paketov s stanji povezav
 - Periodično
 - Ob posebnih dogodkih
- Posredovanje paketov s stanji povezav
 - □ S preplavljanjem
 - □ Vsakemu paketu se meri starost.
- Izračun novih poti
 - Za večje število usmerjevalnikov je potrebno veliko pomnilnika... Večje strojne zahteve usmerjevalnikov.

Hierarhično usmerjanje

- S širjenjem omrežij se proporcionalno večajo usmerjevalne tabele...
 - Potrebna je večja pasovna širina za izmenjavo, podatkov o tabelah.
 - Potrebnega je več procesorskega časa za izgradnjo tabel in njihovo pregledovanje.
- Večja omrežja je potrebno urediti hierarhično.
 - Usmerjevalniki so razdeljeni v regije, kjer vsi usmerjevalniki znajo usmerjati znotraj regije, ne pa tudi v druge regije.
- Velika omrežja zahtevajo večnivojsko hietarhijo:
 - □ Regija (region) < gruča (cluster) < področje (zone) < skupina (group) <...

Hierarhično usmerjanje

(a)

Full	tab	ie t	or	1 A

Dest.	Line	Hops	
1A	_	-	
1B	1B	1	
1C	1C	1	
2A	1B	2	
2B	1B	3	
2C	1B	3	
2D	1B	4	
3A	1C	3	
3B	1C	2	
4A	1C	3	
4B	1C	4	
4C	1C	4	
5A	1C	4	
5B	1C	5	
5C	1B	5	
5D	1C	6	
5E	1C	5	
	(b)		

Hierarchical table for 1A

Dest.	Line	Hops
1A	ı	-
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4	1C	3
5	1C	4

(b) (c)

Hierarhično usmerjanje

- Poti med usmerjavlniki različnih regij niso več nujno optimalne!
 - □Na račun manjših tabel se druge regije obravnava enotno.
 - □Če je usmerjanje optimalno za večino usmerjevalnikov v regiji, ni nujno tudi za vse usmerjevalnike v regiji.
 - □Primer: prejšnja prosojnica:
 - Usmerjanje 1A-5C preko regije 3!

Usmerjanje z razpršenim oddajanjem

- Ang. Broadcasting: pošiljanje paketov hkrati na vse destinacije.
 - Primerno kadar so podatki pomembni za večino udeležencev (kdor ne rabi zavrže).
- Metode:
 - □ Pošiljanje vsem prejemnikom (ločeno).
 - Preplavljanje (potraten za pasovno širino).
 - □ Večciljno usmerjanje (paketi z več naslovi).
 - □ Uporaba vpetega drevesa (spanning tree).
 - □ Povratno sledenje (reverse path forwarding).

Razpršeno oddajanje

za usmerjevalnik I.

povratnim sledenjem.

Oddajanje več prejemnikom

- Ang. Multicasting.
- Pošiljanje paketov dobro definiranim skupinam uporabnikov.
 - Za večja omrežja razpršeno oddajanje ni primerno (1000 članov skupine pri milionu vozlišč).
- Multicasting zahteva upravljanje skupin.
 - Kreiranje skupin, včlanjevanje, izstopanje, razpustitev skupin.

Algoritmi za nadzor preobremenitev

Ang. Congestion Control Algorithms

Preobremenitve

- Problem preobremenitev je posebej značilen za datagramska (nepovezavna) omrežja
 - □ v povezavnih omrežjih se preobremenitve lahko prepreči z rezervacijo povezava se vzpostavi le v primeru nezasičenosti.
- Usmerjevalnik prejeme več paketov kot jih je zmožen posredovati naprej (omejene kapacitete izhodnih linij).
- Ustvari se čakalna vrsta
 - Dolžina čakalne vrste je omejena s pomnilnikom usmerjevalnika.
 - □ Paketi, ki jih ni mogoče uvrstiti na čakalno vrsto, so izgubljeni.
- Pakete, ki niso dostavljeni v zahtevanem času, oddajniki pošljejo ponovno!
 - To dodatno poveča promet po omrežju...

Preobremenitve

Ob prevelikem pritoku novih paketov pride do preobremenitev, kar lahko še odatno degradira učinkovitost omrežja.

Principi nadzora preobremenitev

Principi nadzora preobremenitev izhajajo iz teorije regulacijskih sistemov:

- Neposredni (krmilni) principi
 - Preobremenitev se zazna z lokalnim opazovanjem sistema, npr. časa, v katerem je potrjen prejem paketa.
- Povratno-zančni (regulacijski) principi
 - Opazovanje sistema ter zaznavanje kje in kdaj pride do preobremenitve.
 - Posredovanje informacije o preobremenitvi na mesto kjer se lahko ukrepa.
 - Prilagoditev delovanja sistema za odpravo problema.

Preprečevanje preobremenitev

Preboremenitve lahko preprečujemo s pravili na več slojih omrežne arhitekture:

Layer	Policies
Transport	Retransmission policy
	Out-of-order caching policy
	Acknowledgement policy
	Flow control policy
	Timeout determination
Network	 Virtual circuits versus datagram inside the subnet Packet queueing and service policy Packet discard policy Routing algorithm Packet lifetime management
Data link	 Retransmission policy Out-of-order caching policy Acknowledgement policy Flow control policy

V povezavnih omrežjih

Preobremenjeno podmrežje

Podmrežje z izločenimi preobremenjenimi vozlišči ter navidezni vod od A do B.

Opozorilni bit

- V podatkovnih paketih je lahko predviden poseben bit, ki opozarja na prisotnost preobremenitev omrežja.
- Ko paket prispe do prejemnika, se opozorilo posreduje pošiljatelju v potrditvi paketa.
- Pošiljatelj ustrezno omeji promet.
- Če se opozorila ponavljajo, pošiljatelj dodatno zmanjša promet.

Dušilni (choke) paket

- Usmerjevalnik, ki zazna preobremenitev to neposredno sporoči viru s t.i. dušilnim (choke) paketom.
 - V paketu označi naslov prejemnika originalnega paketa.
- Originalni paket se označi, da na nadaljni poti ne generira dodatnih dušilnih paketov.
- Ker ob prejemu dušilnega paketa pošiljatelj tipično oddal že več paketov, njim pripadajočih dušilnih paketov ne upošteva.
 - Vsak dušilni paket vpliva na zmanjšanje prometa v določenem predefiniranem časovnem intervalu.
 - Nadaljni prejeti dušilni paketi dodatno zmanjšajo uporabo omrežja.

Dušilni (choke) paket

- Glede na kritičnost preobremenjenosti lahko obstja več vrst fušilnih (choke) paketov (od opozorilnih do ultimativnih).
- Merilo preobremenjenosti je lahko različno
 - □Zasedenost izhodne linije.
 - Dolžina čakalne vrste.
 - Zasedenost medpomnilnika.
 - □...

Dušilni (choke) paket

Vpliv choke paketov (ki vplivajo na vir)

Hop by Hop choke paketi

- Pri visokih hitrostih na velikih razdaljah dušilni paketi niso učinkoviti, ker so prepočasni.
 - V času do prejema choke paketa lahko pošiljatelj pošlje toliko dodatnih paketov, da dodatno ogrozi delovanje omrežja.
- Alternativa so dušilni paketi, ki se upoštevajo na vseh predhodnih usmerjevalnikih.
 - Usmerjevalniki si s tem začasno porazdelijo breme preobremenitev.

Hop by Hop choke paketi

Vpliv choke paketov (ki vplivajo tudi na predhodne usmerjevalnike)

Load shedding

- Če prej opisani postopki ne odpravijo preobremenitev, so potrebni radikalnejši ukrepi – opuščanje paketov.
 - □ Zavržene pakete običajno pošiljatelj pošlje ponovno.
- Izbira zavrženih paketov
 - □ Naključno
 - Opuščanje novejših (stari so pomembnejši od novih wine)
 - Če od 10 paketov zavržemo prvega, bo najverjetneje potrebno ponoviti vseh 10 paketov.
 - Opuščanje starejših (novi so pomembnejši od starih milk)
 - Npr. v primeru multimedije je novejši paket pogosto pomemnejši od starejšega.

Load shedding

- Inteligentno opuščane paketov
 - □Nekateri paketi so pomembnejši od drugih (primer prenosa videa).
 - □ Aplikacije morajo označiti prioriteto paketov... realno... !?
 - Motivacija za realno označevanje prioritet je lahko denar – paketi nižjih prioritet so cenejši od paketov z visoko prioriteto.

Naključno zgodnje zaznavanje

- Ang. Random Early Detection (RED)
- Usmerjevalnik ne čaka na preobremenjenost, pač pa kritično stanje zazna že prej in ustrezno reagira.
 - Zaznavanje na osnovi nastavljenega praga dolžine čakalne vrste.
 - Usmerjevalnik ne more določiti kateri vir povzroča preobremenitev! Zato za opozarjanje izbere naključen paket.
- Strategije:
 - □ Dušilni (choke) paketi.
 - Opiščanje paketa pošiljatelj nanj ne dobi potrditve in sklepa o zasičenosti – zmanjša pretok. Neprimerno za brezžična omrežja.

Usmerjanje z zavedanjem prometa

- Ang. Traffic Aware Routing.
- V primeru zgostitve prometa po eni poti, je promet možno preusmeriti na drugo pot.
 - Preusmeritev celotnega prometa privede do oscilacij omrežja!

Kakovost storitev

Ang. Quality of Service (QoS)

Potrebe aplikacij

Application	Bandwidth	Delay	Jitter	Loss
Email				
File sharing	_			
Web access				
Remote login				
Audio on demand				
Video on demand				
Telephony				
Videoconferencing	_			

Potrebe aplikacij so različne: pasovna širina, zakasnitev, trepetanje (ang. jitter), izgube.

Potrebe aplikacij

- ATM določa štiri kategorije glede na zahteve QoS:
 - Stalna bitna hitrost (telefonija)
 - Spremenljiva bitna hitrost v realnem času (kompresirana videotelefonija)
 - Spremenljiva bitna hitrost v ne-realnem času (gledanje filma preko Interneta)
 - 4. Razpoložljiva bitna hitrost (prenos datotek)
- Takšne kategorije so koristne tudi pri drugih omrežjih.

(Pre)dimenzioniranje omrežja

- Doseganje QoS je mogoče s (pre)dimenzioniranjem omrežja.
 - □Večje kapacitete usmerjevalnikov
 - □Večji medpomnilniki
 - □Večje kapacitete kanalov.
 - □Ne prihaja do preobremenjenosti in zastojev.
 - □Cena!
 - Čedalje večje potrebe/zahteve!

Medpomnenje

Kakovost storitev lahko izboljšamo z medpomnenjem (na strani prejemnika):

Oblikovanje prometa

 Kakovost storitev lahko izboljšamo z glajenjem toka podatkov (na strani pošiljatelja).

Algoritem luknjastega vedra (ang. leacky)

Algoritem vedra z žetoni

- Ang. token bucket
- Dopušča nekaj grčavosti v prometu (ang. bursts).
- Delovanje
 - Luknjasto vedro drži žetone, ki jih v stalnih časovnih intervalih generira ura.
 - Žetoni se nabirajo tudi kadar ni vhodnega prometa in se porabijo po eden za vsak paket.
 - Promet se tako gladi glede na kapaciteto vedra in hitrost pritoka žetonov.
 - □ Nikoli ne pride do izgube paketov.

Primeri

- a) Vhod v vedro
- a) Izgod iz luknjastega vedra.
- Izhod iz vedra z žetoni s kapaciteto 250KB.
- Izhod iz vedra z žetoni s kapaciteto 500KB.
- Izhod iz vedra z žetoni s kapaciteto 750KB.
- a) Izhod iz vedra z žetoni s kapaciteto 500KB, ki se polni iz 10-MB/sec luknjastega vedra.

Rezervacija sredstev

- Usmerjevalniki v omrežju težko zagotavljajo kvalitete storitev, če paketi potujejo po različnih poteh.
- Če paketom določimo specifično pot, jim je mogoče vnaprej zagotoviti
 - □Pasovno širino
 - Medpomnilnik
 - □Procesorski čas.

Proporcionalno usmerjanje

- Drugačen pristop od prej omenjenih:
 - □Vsakemu toku podatkov je določenih več poti.
 - □Po vsaki od poti je posredovan določen delež celotnega prometa.
 - □ Pristop je poznan tudi pod ang. imenom **Multipath** routing.

Integrirane storitve

- Pristop QoS, ki temelji na toku podatkov in rezervaciji sredstev.
- Skupina protokolov, ki jih je IETF standardizirala za pretočne vsebine.
- Glavni protokol je RSVP (Resource reSerVation Protocol).
 - Skrbi za rezervacijo sredstev usmerjevalmikov med virom pretočnih vsebin in prejemnikov.
- RSVP omogoča
 - Posredovanje od več pošiljateljev več sprejemnikom.
 - Posameznikom omogoča prosto spreminjanje kanalov.
 - Optimira uporabljeno pasovno širino in za reduciranje preobremenitev.

RSVP

Rezervacija sredstev poteka s sledenjem povratne poti (reverse path forwarding) po vpetem drevesu (spanning tree).

Senders D Н G K Receivers

Omrežje

Vpeto drevo za pošiljatelja 2

RSVP

Vozlišče 3 zahteva kanal do vozlišča 1

Vozlišče 3 zahteva dodaten kanal do vozlišča 2

Vozlišče 5 zahteva kanal do vozlišča 1

RSVP

- Integrirane storitve so močno orodje, vendar imajo nekaj slabosti:
 - Potreben je korak vzpostavitve kanala, ki zakasni začetek podatkovnega toka.
 - Usmerjevalniki morajo vzdrževati stanje posameznih tokov (flow).
 - Potrebna je kompleksna izmenjava informacij o tokovih med usmerjevalniki.
 - Velika občutljivost na izpade usmerjevalnikov.
- RSVP ni v široki uporabi.
- Alternativa je enostavnejši pristop, ki ga je IETF imanoval diferencirane storitve (DiffServ - Differentiated Services).
 - Namesto posvečanja podatkovnim tokovom temelji na razvrščanju podatkov v razrede.

Diferencirane storitve

- DiffServ uvaja razrede s pripadajočimi pravili za posredovanje.
- Operater omrežja lahko "prodaja" storitve.
 - □Vsak vhodni paket vsebuje tip storitve.
 - □Glede na tip storitve je paket deležen različnih ugodnosti pri posredovanju.
- Primer enostavne delitve na dva razreda
 - □Običajni paketi (regular)
 - □Pospešeni paketi (expedited).

Delitev na dva razreda

- Pospešeni paketi (expedited packets) so deležni obravnave kot da je omrežje brez prometa.
- Primer: 10% pospešenega prometa, 90% običajnega → 20% pasovne širine je namenjene pospešenemu prometu.

Assured Forwarding

- Bolj izdelana shema razredov storitev:
 - 4 prioritetni razredi,
 - 3 razredi verjetnosti izgube paketa.
 - □ Skupaj 12 razredov (4x3).

MPLS

- Ang. MultiProtocol Label Switching.
 - Switching: preklapljanje (za razliko od usmerjanja temelji na oznaki paketa, ki kot indeks v posredovalni tabeli govori o izhodnem kanalu - hitrejše od usmerjanja).
 - Vsakemu paketu je dodana oznaka. V paketu se ohrani naslov prejemnika, s katerim se usmerja izven labeliranih poti.
 - MPLS glava vsebuje podatek o ekvivalenčnem razredu posredovanja (FEC/QoS), po principu DiffServ.

Povezovanje omrežij

Povezovanje omrežij

Primer medsebojno povezanih omrežij

Razlike med omrežji

	različnosti		
nudena storitev	povezavna ali nepovezavna		
protokoli	IP, IPX, ATM, MPLS, AppleTalk		
naslavljanje	Hierarhično (IP) ali nehierarhično (802)		
multicasting	Prisotno ali neprisotno, enako broadcasting		
velikost paketa	Vsako omrežje določa svojo maks. velikost		
kakovost storitev	Obstoj QoS, različni načini zagotavljanja 75		

Primer: povezava ethernet omrežij

Povezava omrežij s stikalom (switch).

Povezava omrežij z usmerjevalnikom (router).

Primer povezave različnih omrežij

Prenos paketa po različnih omrežjih

Mrežni in linijski sloj

Tuneliranje

- Povezovanje dveh različnih omrežij je lahko težavno.
- Rešitev za poseben primer (enaka končna omrežja) je tuneliranje.

Tuneliranje avtomobilov med Francijo in Anglijo

Tuneliranje (paketov)

Tuneliranje paketov (npr. med Francijo in Anglijo)

Usmerjanje med omrežji

Ang. Internetwork Routing

Povezana omrežja (internetwork).

Graf povezanih omrežij.

- Prehod (gateway) usmerjevalnik med različnimi protokoli (multiprotocol router)
- Usmerjanje znotraj omrežij (lahko) uporablja drugačen protokol kot usmerjanje med omrežji.

Fragmentacija

- Vsako omrežje določa svojo največjo dovoljeno velikost paketov.
- Vzroki za omejitve so različni:
 - Strojna oprema (ethernet okvirji)
 - Operacijski sistem (velikost medpomnilnika 512b)
 - Protokoli (število bitov v polju za dolžino okvirjev)
 - Zmanjšanje napak pri prenosu.
 - Preprečevanje dolgotrajne zasedenosi kanala z istim paketom.
- Velikosti paketov se gibljejo med 48B (ATM) in 65515B (IP).
- Podatkovna polja višjih slojev so tipično večja.

Fragmentacija

- Fragmentacija je potrebna kadar želimo velik paket posredovati po omrežju, ki tolikšne velikosti ne dovoljuje.
- Možna sta dva načina fragmentacije:

1. Transparentna fragmentacija

- Vsi fragmenti so posredovani med istima prehodoma.
- Prehod, ki prejme fragmentirane pakete, te spet sestavi v originalni paket.
- Drugim omrežjem je fragmentacija skrita.
- Pri fragmentaciji je potreben podatek o vrstnem redu fragmentu in končnem fragmentu.

2. Netransparentna fragmentacija

- Po fragmentaciji je vsak fragment obravnavan ločeno kot ločen paket.
- Vsak od prehodov mora biti sposoben rekonstruirati originalne paket.
- Problem napak pri prenosu!

Fragmentacija

Transparentna fragmentacija

Neransparentna fragmentacija

Fragmentacija - primer

Number of the first elementary fragment in this packet

Originalni paket z 10B.

Fragmenti po prehodu preko omrežja z omejitvijo dolžine paketa 8B.

Fragmenti po prehodu preko omrežja z omejitvijo dolžine paketa 5B.

Fragmentacija in MTU

Razkrivanje MTU poti

- MTU Maximum Transmission Unit
 - Največja podatkvna enota, ki jo sloj lahko posreduje do končnega vozlišča (brez fragmentacije).
 - Razkrivanje MTU poteka v IP omrežju z ICMP paketi. V odgovoru sporočila "Destination Unreachable (Datagram Too Big)" je naveden MTU.

Mrežni sloj Interneta

Mrežni sloj interneta

Internet je povezana skupina omrežij!

Združuje jih skupen mrežni sloj (na osnovi IP protokola).

Omrežje TCP/IP

- Nepovezavno (datagramsko) omrežje
 - Med končnima vozliščema ne pride do vzpostavitve zveze.
 - Ne zagotavlja sekvenčnosti dostave.
 - Ne preprečuje podvajanja in izgubljanja paketov.
- Naslavljanje v mrežnem sloju temelji na IP naslovih.
 - □ IPv4: B.B.B.B (B je 8bitno nepredznačeno bitno število, zapisano destiško)
 - □ IPv6: 16 bajtov, zapisano kot 8 skupin s 4 šestnastiškimi znaki (npr: 8000:0000:0000:0000:0123:4567:89AB:CDEF)

Naslavljanje IPv4

- CIDR: Classless InterDomain Routing
 - Delitev na naslov omrežja in naslov vozlišča določa naslovna maska
 - Primer: nn.nn.nn/20 pomeni, da je zgornjih 20 bitov omrežnih.

Razredi IP naslovov

- Razredi IP naslovov so se opustili zaradi pomanjkanja naslovov.
- Nadosmestili so jih posebni CIDR naslovni bloki

Posebni CIDR bloki

CIDR address block	Description	Reference
0.0.0.0/8	Current network (only valid as source address)	RFC 1700 &
10.0.0.0/8	Private network	RFC 1918 &
127.0.0.0/8	Loopback	RFC 5735 &
169.254.0.0/16	Link-Local	RFC 3927 🗗
172.16.0.0/12	Private network	RFC 1918 &
192.0.0.0/24	Reserved (IANA)	RFC 5735 🗗
192.0.2.0/24	TEST-NET-1, Documentation and example code	RFC 5735 &
192.88.99.0/24	IPv6 to IPv4 relay	RFC 3068 🗗
192.168.0.0/16	Private network	RFC 1918 &
198.18.0.0/15	Network benchmark tests	RFC 2544 &
198.51.100.0/24	TEST-NET-2, Documentation and examples	RFC 5737 🗗
203.0.113.0/24	TEST-NET-3, Documentation and examples	RFC 5737 🗗
224.0.0.0/4	Multicasts (former Class D network)	RFC 3171 &
240.0.0.0/4	Reserved (former Class E network)	RFC 1700 &
255.255.255.255	Broadcast	RFC 919 🗗

Posebni naslovni bloki

- a) Splošni naslov vozlišča (vsi naslovi vozlišča): 0.0.0.0/8.
- b) Vozlišče v lokalnem omrežju.
- c) Naslov za razpršeno oddajanje (broadcast) v lokalnem omrežju.
- d) Raslov za razpršeno oddajanje v oddaljenem omrežju.
- e) Naslov za lokalno zanko (trenutno vozlišče): 127.0.0.0/8

IP naslovi – razdelitev omrežja

Razdelitev omrežja na z IP naslovi (predpono omražja)

Naslavljanje

- Poznamo štiri vrste naslavljanja:
 - Unicast: običajno naslavljanje, en pošiljatelj in en prejemnik.
 - □ **Broadcast**: razpršeno oodajanje, en pošiljatel pošlje paket vsem v omražju (lokalnem ali oddaljenem).
 - Multicast: oddajanje več prejemnikom, en pošiljatelj pošlje paket skupini prejemnikov. Skupina se identificira z multicast IP naslovom.
 - Anycast: en pošiljatelj pošlje spororočilo enemu izmed prejemnikov – tistemu, ki mu je najbližji (isti naslov v omrežju pripada več vozliščem).

Usmerjanje v omrežjih TCP/IP

- Usmerjanje izvajajo vozlišča na osnovi protokola IPv4
- V avtonomnih omrežjih/sistemih (AS) se uporablja OSPF (ang. Open Shortest Path First)
 - □ Usmerjanje s stanjem povezav (Link State Routing –LSR).
 - Sosednja vozlišča si izmenjujejo stanja neposrednih povezav.
 - Na podlagi poznavanja povezav v celem omrežju (oz. delu omrežja), zgradijo usmerjevalno tabelo.
- Za usmerjanje med avtonomnimi sistemi se uporablja BGP (ang. Border Gateway Protocol).
 - Gre za usmerjanje med državami, kjer pomembnovlogo igra politika.
 - BGP temelji na usmerjanje z vektorji raqzdalj (Distance Vector Routing -DVR).
 - Poleg cene povezave BGP hrani tudi podatek o uporabljeni celotni poti povezave.
 - Sosedna vozlišča si poleg cene povezav izmenjujejo tudi celotno uporabljeno pot povezav.

BGP

Omrežje BGP usmerjevalnikov.

Information F receives from its neighbors about D

From B: "I use BCD"
From G: "I use GCD"
From I: "I use IFGCD"
From E: "I use EFGCD"

Informacija o poti, ki jo F prejme od sosedov za usmerjanje do D.

Arhitektura TCP/IP

- Version: 4 (IPv4)
- Header length: dolžina glave kot št. 32 bitnih besed.
- Type of service: Tip storitve (diferencirane storitve), redko v uporabi.
- Total length: skupna dolžina datagrama, vklučno z okvirjem, opcijami...

- Identification: identifikator datagrama vsi fragmenti istega paketa imajo enako oznako (paket se lahko fragmentira).
- Flags: zastavice o fragmentaciji paketa:
 - DF: Don't fragment (paket se ne sme fragmentirati)
 - MF: More fragments, oznaka za zadnji fragment
- Fragment offset: relativna pozicija fragmenta od začetka originalnega datagrama merjeno kot mnogokratnik 8 bajtov.

- Time to live: vrednost se zmanjša za ena pri vsakem prehodu skozi vozlišče, ko pade na 0, se izgubi, pošiljatelj pa dobi opozorilo, tu nastopi ICMP.
- Protocol: oznaka vsebovanega protokola (podatki) (TCP, UDP...)
- Header checksum: kontrolna vsota glave.

- Options: opcijski podatki namenjni varnosti, beleženju poti paketa, vnaprejšnjemu zahtevanju poti, časovnemu žigosanju...
- Padding: ničelni biti s katerimi se zagotovi, da je dolžina glave mnogokratnik 32 bitov.
- Paket vsebuje do 64 KB podatkov.

ICMP

- Ang. Internet Control Message Protocol
- Nadzorni protokol mrežnega sloja.
 - ICMP sporočilo je lahko poizvedba, odgovor, ali obvestilo o napaki.
- Skrbi za upravljanje omrežja:
 - □ sporočanje napak,
 - preizkušanje dosegljivosti vozlišč/omrežij,
 - □ nadzor zasičenosti omrežij,
 - □ preusmerjanje,
 - merjenje zmogljivosti,
 - podomrežno naslavljanje.

ICMP

ICMP paketi se prenašajo v IP paketih.

ICMP paket:

Obstaja okrog 30 tipov ICMP sporočil, ki se naprej delijo po kodah.

Tipi in kode ICMP sporočil

Message type	Description	
Destination unreachable	Packet could not be delivered	
Time exceeded	Time to live field hit 0	
Parameter problem	Invalid header field	
Source quench	Choke packet	
Redirect	Teach a router about geography	
Echo and Echo reply	Check if a machine is alive	
Timestamp request/reply	Same as Echo, but with timestamp	
Router advertisement/solicitation	Find a nearby router	

Nekaj glavnih tipov ICMP sporočil

Glej: http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Multicasting in IGMP

- Multicasting pošiljanje paketov skupini vozlišč.
- Vsaka skupina (group) se identificira s svojim IP naslovom.
- Za usmerjanje multicast paketov skrbijo posebni multicast usmerjevalniki.
- Za upravljanje multicast skupin se uporablja protokol IGMP.

Multicasting in IGMP

- IGMP (ang. Internet Group Management Protocol)
 - Omogoča upravljanje multicast skupin (pridružitev skupini, zapustitev skupine).
 - □ IGMP paketi se prenašajo v IP okvirjih.

IP in Ethernet

- Izvorno vozlišče pošilja IP paket ponornemu vozlišču v Ethernet okvirju
- Izvorno vozlišče pozna IP naslov ponornega vozlišča, Ethernet naslova pa ne!
- Kako naj potem pošlje paket?
- ARP ang. Address Resolution Protocol!

ARP

- ARP: (ang. Address Resolution Protocol) skrbi za preslikavo med IP in Ethernet (MAC) naslovi.
 - Če vozlišče (vozlišče IP1) ne pozna Ethernet naslova prejemnika (vozlišče IP2), pošlje poizvedovalni okvir (broadcast).
 - Iskano vozlišče se odzove s svojim Ethernet naslovom.
 - Sedaj izvorno vozlišče lahko formira Ethernet okvir.

ARP

Postopek poizvedbe postaje W po MAC naslovu postaje Y.

ARP paket

 ARP paket se prenaša v okvirju linijskega sloja (npr. Ethernet II)

ARP

- Kaj če je ponorno vozlišče v drugem omrežju, ki ju povezuje usmerjevalnik?
 - Usmerjevalniki obravnavajo ARP okvirje drugače kot končna vozlišča.
 - V primeru, da je ponorno vozlišče v drugem omrežju, se usmerjevalnik na poizvedbo ARP predstavi kot ponorno vozlišče in vrne svoj Ethernet naslov.
 - Izvorno vozlišče sedaj pošlje paket na Ethernet naslov usmerjevalnika.
 - Usmerjevalnik posreduje paket na drugo omrežje (po potrebi s poizvedbo ARP).
 - Druga možnost: oddajno vozlišče iz svoje usmerjevalne tabele neposredno ugotovi, da je prejemnik v drugem omrežju in neposredno pošlje paket usmerjevalniku.

Usmerjevalnik

- Usmerjevalniki so naprave omrežnega sloja.
 - Primer: usmerjevalnik na Ethernet omrežju:

Primer: ARP in usmerjevalniki

Kako se začne komunukacija od V1 do V5?

ARP in mostovi, stikala

- Mostovi/stikala so za ARP "nevidni".
 - Okvir po potrebi zadržijo ali pošljejo naprej.
 - □ V vsebino okvirja ne posegajo.

RARP, BOOTP, DHCP

- RARP (ang. Reverse ARP)
 - Poizvedovanje po IP naslovu postaje (pridobivanje svojega IP naslova) na podlagi MAC naslova.
 - □ Uporablja omejeno razpršeno oddajanje (limited broadcasting) in ne seže preko usmerjevalnikov → ta problem odpravlja protokol BOOTP.
- BOOTP (ang. Bootstrap Protocol)
 - Uporablja UDP sporočila, ki so posredovana tudi preko usmerjevalnikov.
 - Poleg IP naslova omogoča pridobivanje podatka o strežniku z zagonsko sliko, IP naslov privzetega usmerjevalnika in masko podmrežja.
 - □ BOOTP zahteva ročno konfiguracijo tabel za preslikavo med IP in MAC naslovi → ta problem odpravlja protokol DHCP.

DHCP

- DHCP (ang. Dynamic Host Configuration Protocol)
 - Omogoča ročno ali avtomatsko dodeljevanje IP naslovov.
 - Protokol aplikacijsega sloja.
 - V večini sistemov zamenjuje protokola RARP in BOOTP.
 - □ Deluje kot poseben strežnik za dodeljevanje IP naslovov (ne nujno na istem LAN omrežju, če obstaja DHCP relay agent).

DHCP

Postopek

- V omrežju se pojavi novo (gostujoče) vozlišče.
- □ Novo vozlišče pošlje DHCP DISCOVER paket z izbrano številko transakcije na splošni naslov (255.255.255.255) z naslovom izvora 0.0.0.0.
- DHCP strežnik ponudi razpoložljiv IP naslov pošlje IP paket z izbranim IP naslovom, pripadajočo naslovno masko, časom trajanja veljavnosti dodelitve naslova in številko transakcije, ki je enaka kot v poizvedbi.
- Vozlišče (odjemalec) odgovori z zahtevo IP paketom z enakimi parametri kot ponudba DHCP strežnika.
- DHCP strežnik potrdi zahtevo.
- V primeru, da se čas dodelitve izteka, odjemalec pošlje zahtevo za obnovitev – podaljšanje časa veljavnosti dodeljenega naslova.

DHCP opcije

 DHCP protokol definira več opcij, ki ustrezajo konfiguriranju različnih nastavitev odjemalca.

Tag 🖫	Name ∑	
0	Pad	
1	Subnet Mask	
2	Time Offset	
3	Router	[General]
4	Time Server	SUBNETMASK=255.255.252.0
5	Name Server	ROUTER_1=10.94.22.1; ip routerja
6	Domain Server	
7	Log Server	[Settings]
8	Quotes Server	<pre>IPBIND_1=10.94.22.12; ip mrezne kartice</pre>
9	LPR Server	
10	Impress Server	[00-1F-96-2E-FF-A8]
11	RLP Server	IPADDR=10.94.22.10; ip sagema
12	Hostname	OPTION 72=10.94.22.12; ip mrezne kartice
13	Boot File Size	OPTION 42=10.253.7.11; ntp server
14	Merit Dump File	- D:
15	Domain Name	Primer nastavitev DHCP strežnika
16	Swap Server	
17	Root Path	
18	Extension File	
19	Forward On/Off	
20	SrcRte On/Off	

Glej: http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xml

23	Default IP TTL
24	MTU Timeout
25	MTU Plateau

NAT ©

NAT

- Ang. Network Address Translation
 - □ NAT je bil razvit kot odgovor na pomanjkanje IPv4 naslovov.
 - Vse naprave v lokalnem omrežju navzven dostopajo z enim samim IP naslovom, dodeljene imajo navzven nevidne lokalne IP naslove (CIDR naslovni bloki za privatna omrežja).
 - Preslikavo med motranjimi in zunanjim naslovom opravlja NAT usmerjevalnik.

Name	Address range	Number of addresses	Classful description	Largest CIDR block
24-bit block	10.0.0.0-10.255.255.255	16 777 216	Single Class A	10.0.0.0/8
20-bit block	172.16.0.0-172.31.255.255	1 048 576	Contiguous range of 16 Class B blocks	172.16.0.0/12
16-bit block	192.168.0.0-192.168.255.255	65 536	Contiguous range of 256 Class C blocks	192.168.0.0/16

Naslovna področja privatnih omrežij.

NAT

NAT naslavljanje temelji na preslikavi:

- □ notranji IP naslov in številka vrat v
- □ zunanji IP naslov in številka vrat.

Preslikava je (v vsakem trenutku) bijektivna.

Delovanje NAT

- Notranje omrežje je navzven vidno (dosegljivo) z enim samim naslovom, naprimer IP=192.72.150.
- Denimo, da vozlišče "odjemalec" z naslovom IP=192.168.0.12 v notranjem omrežju dostopa do "strežnika" IP = 193.2.73.10 v zunanjem omrežju.
- Strežnik posluša na vratih s številko 80 (spletni stežnik), odjemalec pa se pripne na vrata 5500.
- NAT umerjevalnik sprejme paket odjemalca, zamenja njegov IP naslov s svojim IP naslovom in številko vrat z novo – zanj unikatno številko vrat (naprimer 15500). Pod to številko zabeleži lokalni naslov odjemalca in lokalno številko vrat.
- Tak paket pošlje v zunanje omrežje. Vsa vozlišča v zunanjem omrežju obravnavajo ta paket kot da ga je poslal NAT usmerjevalnik.
- Strežnik se odzove odjemalcu pošlje odgovor v paketu NAT usmerjevalniku – torej na najegov IP naslov in na izbrano številko vrat (15500).
- NAT usmerjevalnik sprejme paket. V svoji tabeli pod številko 15500 najde lokalni naslov odjemalca (192.168.0.12) in njegovo številko vrat (5500) ter posreduje paket na njegov naslov.

NAT in arhitektura modela TCP/IP

- NAT krši več pravil arhitekturnega modela TCP/IP:
 - □ IP naslov z NAT ni več unikaten .
 - NAT spreminja Internet z nepovezavnega proti povezavnim omrežjem.
 - Omrežje mora hraniti stanje povezave, kar je značilnost povezavnih omrežij.
 - Ob izpadu NAT usmerjevalnika izpadejo vse povezave preko njega.
 - NAT krši pravila ločenosti slojev.
 - Povezuje omrežni in transportni sloj, tako da je omrežni sloj odvisen od transportnega (TCP, UDP), ki določa številko vrat.
 - Ne prepušča drugih protokolov, ki se prenašajo v IP okvirjih!
 - Nepopolna preslikava IP naslovov.
 - Nekatere aplikacije IP naslov prenašajo v podatkih paketa. Na vsebino paketov NAT ne vpliva (težave z aplikacijskimi protokoli FTP, H.323...).
 - Omejitev števila povezav.
 - Na voljo je največ 65536 vrat, med katerimi so nekateri rezervirani.

IPv6

- IPv4 se sooča s pomanjkanjem naslovov, zato ga postopno zamenjuje IPv6.
 - □ 128 bitni naslovi (16 bajtov).
 - Če celotno površino Zemlje (kopno in morje) pokrijemo z IP naslovi, je teh 7x10²³ na vsakem m².
 - Zapis z osmimi skupinami štirih šestnajstiških simbolov, npr: 8000:0000:0000:0000:0123:4567:89AB:CDEF
 - Pri zapisu lahko začetne ničle izpustimo, skupine ničel pa nadomestimo z dvojnim dvopičjem, npr: 8000::123:4567:89AB:CDEF
 - IPv4 naslovi so del IPv6 naslovnega prostora, uporabi se decimalni zapis s pikami. ::192.31.20.46

IPv6

- Poleg spremenjenega naslavljanja uvaja še vrsto drugih sprememb.
 - Bolj učinkovito usmerjanje: hierarhičen sistem naslavljanja, zato krajše usmerjevalne tabele, enostavnejše in zato hitrejše usmerjanje.
 - □ Zagotavljanje kakovosti storitev (QoS), pomembno predvsem za časovno kritične podatke (govor, slika, vodenje procesov).
 - Možnost zagotavljanja varnosti (tajnosti in verodostojnosti), preprečevanje zlorabe.
 - Možnost nadgrajevanja v prihodnosti.

IPv6 glava paketa

IPv6 glava paketa

- Verzija: 6 (IPv6)
- Razred pretoka: za razlikovanje med paketi z različnimi zahtevami QoS (Differentiated Services).
- Oznaka pretoka: izvoru in ponoru omogoča vzostavitev pseudopovezave s specifičnimi lastnostmi. Vsak pretok se identificira z oznako pretoka, ter naslovoma pošiljatelja in prejemnika.
- Dolžina paketa: dolžina podatkovnega dela paketa brez 40 bajtne glave.
- Naslednja glava: tip naslednje glave (oz. podaljška). Obstaja šest tipov dopolnilnih glav. V zadnji glavi to polje določa protokol transportnega sloja.
- **Št. prehodov**: enako kot TTL pri IPv4. Izvorno vozlišče postavi začetno vrednost, ki se zmanjša za ena ob vsakem prehodu skozi vmesno vozlišče. Ko pride do 0 se paket zavrže in o tem obvesti pošiljatelja.

IPv6 glava v primerjavi z IPv4

128

IPv6 glava v primerjavi z IPv4

- IPv6 glava je v primerjavi z glavo IPv6 poenostavljena, imam manjše število polj.
- Manjka polje 'checksum'.
 - Potrebe po tem polju ni zaradi postoja 'checksum' polj v protokolih linijskega in transportnega sloja.
 - □ Hkrati 'checksum' zmanjšuje zmogljivost sistema.
- Največja velikost podatkovnega dela paketa IPv6 64kB (brez galve) in ne dopušča fragmentacije.
 - Možna je razširitev velikosti podatkov (do 4GB) z dopolnilno glavo (jumbograms).

IPv6 dopolnilne glave

- Dopolnilne glave IPv6 so opcijske.
- Trenutno je določenh 6 dopolnilnih glav:

Extension header	Description
Hop-by-hop options	Miscellaneous information for routers
Destination options	Additional information for the destination
Routing	Loose list of routers to visit
Fragmentation	Management of datagram fragments
Authentication	Verification of the sender's identity
Encrypted security payload	Information about the encrypted contents

Mobilnost vozlišč:

- Mobilna samo končna vozlišča.
- Mobilna vsa vozlišča, vključno z usmerjevalniki (ad hoc omrežja).

Usmerjanje:

- Usmerjanje v omrežju z mobilnimi končnimi vozlišči.
- Usmerjanje v omrežjih z mobilnimi usmerjevalniki (bolj kompleksno).

- Vsako vozlišče ima svoj naslov v domačem omrežju, po katerem je znano vsem drugim vozliščem.
- Vozlišče gostuje v drugem omrežju in pri tem uporablja svoj (domači) naslov.
 - Kako naj gostujoče vozlišče komunicira z drugimi vozlišči?
- Rešitev: posredniki v domačem in gostiteljskem omrežju:
 - Posrednik v gostiteljskem omrežju občasno objavi svojo prisotnost ali pa se gostujoči naznani sam.
 - Gostujoče vozlišče se 'prijavi' v gostiteljskem omrežju s svojim domačim IP naslovom.
 - Posrednik v gostiteljskem omrežju kontaktira domače omrežje gostujočega.
 - Glede na odgovor posrednika v domačem omrežju sporoči gostujočemu, da je gostovanje odobreno.
 - Gostujoče vozlišče je sedaj pripravljeno na komunikacijo, kot bi bilo v domačem omrežju.

Delovanje:

- Denimo, da poljubno drugo vozlišče pošlje paket na njegov naslov – torej v domače omrežje.
- Posrednik v domačem omrežju ve, da ponorno vozlišče gostuje.
 Zato 'ovije' ta paket v nov paket, ki ga naslovi na posrednika gostitelja oblika 'tuneliranja'.
- Posrednik dobi paket, ga 'odvije' ter pošlje gostujočemu v ovojnici linijskega sloja (ethernet okvirju).
- Domači posrednik pošlje izvornemu vozlišču naslov posrednika gostitelja rekoč, naj tunelira pakete k gostitelju.
- Od tedaj naprej poteka komunikacija direktno med omrežjema izvora in ponora – preko posrednika v gostiteljskem omrežju.