Object Oriented Software Engineering Lecture 1

Introduction to Software Engineering: Modelling

Dr. Graham McDonald graham.mcdonald@glasgow.ac.uk Room 406, SAW Building

Apollo 11

Margaret Hamilton: The woman whose code safely put humans on the moon.

Margaret Hamilton is credited with coining the term software engineering.

Apollo 11

The spaceflight that landed the first two people on the Moon. Commander Neil Armstrong and Lunar Module Pilot Buzz Aldrin.

2

Software Engineering

Designing software then was not easy:

"When the computer crashed, sirens were loud... we had found a new way to debug, using sound."

Margaret Hamilton (ICSE 2018)

https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/

Understanding Systems

A simple system interacting with its environment using input and output messages.

Abstraction

One way of understanding such complex systems in order to implement them is via abstraction.

Understanding Systems

A complex system with multiple sub-systems and interactions.

A software system is a web of interconnected sub-systems, where each sub-systems may or may not be divided into further sub-systems.

Abstraction

Suppose an artist, a novelist and a programmer were asked to abstract (i.e., represent) a real-life object of an animal?

Object Oriented Design

 An object combines data and operations on that data (object is an instance of class)

Data: class variablesOperations: methods

Object Oriented Software Engineering

Lecture 1: Part 2
Introduction to Software Engineering: Modelling

Dr. Graham McDonald graham.mcdonald@glasgow.ac.uk Room 406, SAW Building

Object Oriented Design

• Three principles of Object Oriented Design

Encapsulation:

Combining data and operations in one entity.

> Inheritance:

Classes can inherit from other classes (sub-classing) e.g. animals, dogs and so on.

Polymorphism:

Means "many forms".

Object Oriented Design

Given a problem statement and requirements, you carry out the following activities:

- ➤ Identify Objects
- ➤ Identify Operations
- Create Interfaces
- ➤ Object Interaction Design
- >etc.

15

Object Design – Identify Objects

- Identify (real-world) Objects:
 - Identify objects that exist in the problem Statement and requirements
 - Typically, select nouns, ignoring irrelevant ones, such as synonyms

Object Design – Identify Operations

- Identify the operations of objects:
 - > Typically selecting verbs from the problem statement
 - Associate each operation with the object that is responsible for providing the behaviour

Object Design – Identify Objects

- Look for relationships amongst the objects that were Identified
 - ➤ Generalization relates to inheritance
 - **Containment** − where one object contains another
 - ➤ Multiplicity determine the quantity relationships between objects (e.g. one animal can have many legs)

Object Design – Create Interface

- An interface is created for each object that is to be represented by a class
 - The interface describes how the class can be used, by specifying its **public** operations.
- An interface should include:
 - > Return type
 - > Purpose (i.e. a description)
 - ➤ Pre and post conditions

10

18

Object Interaction Design

- Describe how the objects **communicate** with each other via **operations**.
- and how the object, operations and communication affects the end-users.

What Makes A Good Software Design?

- A balance of:
 - 1. Modularity
 - 2. Modifiability
 - 3. Ease of Use
 - 4. Efficient
 - 5. Correct
 - 6. Maintainability
 - 7. Understandability
 - 8. Reusable
 - 9. Portable
 - 10. Fail-Safe
 - 11. ... etc

Software Design

Designing software is a **symbiotic relationship** between the enduser and designer that requires the software designer to make the right design decisions:

- Every design decision reflects an intent on how the software is to function or be used
- > as well as end users' expectations as to how the software is compatible with contextual norms.

20