Recall:

1) Span(
$$v_1, ..., v_p$$
) =
$$\begin{cases} \text{the set of all} \\ \text{linear combinations} \\ c_1 v_1 + ... + c_p v_p \end{cases}$$

2) A set of vectors $\{v_1, \ldots, v_p\}$ is linearly independent if the equation

$$x_1\mathbf{v}_1+\ldots+x_p\mathbf{v}_p=\mathbf{0}$$

has only one, trivial solution $x_1 = 0, \ldots, x_p = 0$.

Linear independence vs. Span

 $\{u\}$ linearly independent

 $\{u\}$ linearly dependent

 $\{u,v\}$ linearly independent

 $\{u,v\}$ linearly dependent

Theorem

Let $\{v_1, \ldots, v_p\}$ be a set of vectors in \mathbb{R}^n . The following conditions are equivalent:

- 1) The set $\{v_1, \ldots, v_p\}$ is linearly dependent.
- 2) For some v_i we have $v_i \in \text{Span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_p)$.
- 3) For some v_i we have

$$Span(v_1,\ldots,v_p) = Span(v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_p)$$

Example.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The set {v1, v2, v3} is linearly dependent e.g.

This gives:

50: V2 € Span (V1, V3)

Also, assume that we span (V, , V2, V3) Then:

but using (*) we obtain:

$$W = c_1 v_1 + c_2 (2v_1 + Ov_3) + c_3 v_3$$
$$= (c_1 + 2c_2) v_1 + c_3 v_3$$