SIO 209: Signal Processing for Ocean Sciences Class 16

Florian Meyer

Scripps Institution of Oceanography Electrical and Computer Engineering Department University of California San Diego

0

Speech Processing

Concatenated tube model of the speech production process

- Reflection coefficients characterize the acoustic impedance contrast between adjacent tubes with different diameters
- J. L. Flanagan, "Speech Analysis, Synthesis and Perception." Springer-Verlag, 1972
- L. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing." Prentice Hall, 1975
- L. Rabiner and R. Schafer, "Digital Processing of Speech Signals." Prentice Hall, 1978
- J. Markel, "Digital Inverse Filtering A New Tool for Formant Trajectory Estimation." IEEE Trans. Audio and Electroacoustics, 1972

1

Example: Homomorphic Speech Processing

• Model of speech production

A vocoder extracts parameters of excitation signal and the vocal tract filter; transmitting these parameters (instead of the sampled speech signal) can reduce data rate significantly

6

Speech Transmission

• Direct digitization of speech results in a data rate of 64 kB/s since typically 8 Bits/sample are used and $f_{\rm s}=8{\rm kHz}$ (speech is bandlimited to $4-5{\rm kHz}$)

- We take segments ("frames") that are 25 ms long, i.e., there are 40 segments/sec
- For each segment we need to obtain
 - the \hat{A} vector (10–14 coefficients)
 - voiced/unvoiced decision
 - pitch period
 - amplitude

 \longrightarrow Results in a data rate of $1.0-2.4 \mathrm{kb/s}$