Deterministic Networking (DetNet) Data Plane guaranteed Latency Based Forwarding (gLBF)

for bounded latency with low jitter and asynchronous forwarding in Deterministic Networks

draft-eckert-detnet-glbf-01

Toerless Eckert, Futurewei Technologies USA (tte@cs.fau.de),

Alexander Clemm, Futurewei Technologies USA (alexander@futurewei.com),

Stewart Bryant, Independent (sb@stewartbryant.com),

Stefan Hommes, ZF Friedrichshafen AG (stefan.hommes@zf.de)

IETF117 DetNet WG meeting 07/26/2023, rev 1.0

Overview

- Detailed step-by-step explanation of gLBF in draft
 - And 07/19/2023 interim
 - See https://wiki.ietf.org/en/group/detnet/wmosq (TBD)
 - https://datatracker.ietf.org/meeting/interim-2023-detnet-08/materials/slides-interim-2023-detnet-08-sessa-deterministic-networking-detnet-data-plane-guaranteed-latency-based-forwarding-glbf-00
- This slide deck focusses on comparison and justification (benefits)
 - Details aspects that where questioned during interim and on WG list.

What is gLBF

gLBF is UBS (TSB-ATS) with Dampers – instead of shapers (regulators)

UBS (TSN-ATS)

- Example: R1..R4 in **metro network ring**, each being a spoke to many source/receiver nodes (not shown)
- Relevant end-to-end bounded (guaranteed) queuing latency for Flow F SOURCE->RECEIVER:
- L = L(1) + L(2) + (L3)
- Each L(i) calculated from all admitted flows (calculus).
- Without competing traffic, queuing latency for F will be 0.
- With maximum amount of competing traffic, queuing latency for F will be L
- We call this "in-time" packets can arrive as early as possible, but never later than bounded latency.
- Shapers do not increase the per-hop bounded latency. They ensure that the per-hop latency can be calculated independently of the latency across any other hop!

gLBF

- gLBF replaces shapers with stateless damper
- End-to-end bounded, (guaranteed) queuing latency for Flow F SOURCE->RECEIVER:
- L = L(1) + L(2) + (L3)
- Each L(i) calculated from all admitted "competing" flows (UBS calculus) EXACTLY AS FOR UBS.
- Latency through UBS queue/scheduling with be exactly as in UBS depending on amount of competing traffic
- But latency through UBS queu/scheduler plus following Damper will always exactly be L(i)
- We call this "on-time" packets can arrive as early as possible, but never later than bounded latency.
- Dampers are there to replace shaper and their problems, and they also provide on-time service.

Why?

Benefits of Dampers over Shaper/Regulators

System model with RFC2212/TSN-ATS

System model with RFC2212/TSN-ATS

System model with gLBF (or TCQF/CQSF/...)

Why gLBF instead of UBS/RFC2212 1. The stateful shaper (regulator) problems

- Operate (download/troubleshoot) per-flow shaper state on every hop.
 - Increases control-plane load N-times (N=#hops), increases troubleshooting complexity
 - SPs replaced RSVP-TE with SR to exactly eliminate these problems. And Shaper state is more complex than RSVP-TE "steering state".
 - Similarly in multicast, steering/replication state is being eliminated by BIER because of state complexity.
- Cost / feasibility of high-speed and large number of hardware shaper
 - Shaper require read/compute/write cycles to shaper state memory which may need to have hundred of thousand of entries.

Benefits of on-time (synchronous)

Resynchronizing packets via playout buffer and clock synchronization

Why gLBF instead of UBS/RFC2212 2. On-time is most often better than in-time

- Reduced need for clock synchronization
 - On-time allows lightweight devices to operate without clock synchronization
 because they do not need playout buffering. This simplifies applications / control-loops
 - Can eliminate need for network to provide "clock synchronization as a service" to applications
- No need for network size dependent playout buffering
 - Network takes care of buffering. Applications do not need to be designed with specific network size (playout buffer) in mind.

AFAIK: in-time services (guaranteed bouneded latency!) always requires shapers/interleavers (not a UBS specific issue!).

In large networks, this will be most cost/operations expensive.

Why not Damper with ANY queuing/scheduling?

Benefits of using UBS

Standard system requirement

Why not Damper with ANY queuing/scheduling?

- We can not build a standardized control plane without picking a queuing/scheduling with standardized, public validated calculus.
- We can not know whether Damper + "Some Queuing/Scheduling" can be implemented at high-speed/low-cost.
- UBS is the most simple calculus (easier than RFC2212) with well vetted calculus
 - But yet extremely flexible to manage latency for each flow.
- Using UBS allows to reuse / share much of controller plane that may be built for TSN-ATS
 - Includes complex network-wide bandwidth+latency path + queue(priority) selection algorithms
 - Which may use backtracking or Deep Learning.
- Should even be of interest to small-scale networks (replacing UBS)
 - With minimal overall design changes.

Positioning

Positioning

- Proposed as 2nd gen solution after TCQF/CSQF
 - These methods already provide on-time, stateless forwarding And have high-speed, low-cost large-scale network validation.
 - gLBF Adds more flexibility (UBS calculus instead of fixed cycles) and elimination of per-hop clock-synchronization
 - TCQF / CSQF solutions / deployment should be able to easily evolve / migrate into gLBF
 - E.g.: configure gLBF buffers to be same size on each hop: ~= TCQF!
- Why longer term ?
 - gLBF requires new network packet header metadata (delay value)
 - TCQF (TC, DSCP) and CSQF (SRH) work with existing headers! Faster to adopt!
 - gLBF has no high-speed implementation, wide-area deployment validation yet
 - But 2 high-speed algorithm implementation proposals we think can be done at "Low cost".

Validation

Validation

- Simulation with 2 hops (minimum setup) to prove that without Damper (or Shaper), we can not calculate the bounded latency
 - Flows will exceed their calculated latency
- With Damper inserted, flows again will be forwarded within calculated maximum queuing latency (in Router4 FIFO).

Validation

Latency of packets of one of the 9 flows across Router 4 FIFO queue.

Upper picture: no Damper, some packets exceed bounded latency

Lower picture: Damper added, all packets stay within calculated limit.

Images (C) 2023, Springer, Journal of Network and Systems Management, 31, Article number: 34 (2023)

Questions?

Backup Slides

gLBF model: metadata, forwarding, state

- Measured time
- Calculated time

- Assumes forward step to have no relevant time variation to allow T measurement to be taken after it (egres linecard). If relevant, move T before forward and include in calculations.
- Calculating Td instead of measuring it means Dampen and Queuing/Scheduling can be single-staged in implementation.