高数试题

1. 极限
$$\lim_{x\to\infty} \left(\frac{x^2}{(x-a)(x+b)}\right)^x = \underline{\hspace{1cm}}_{\circ}$$

2.
$$\forall x = e^{-t}, y = \int_0^t \ln(1+u^2) du, \Rightarrow \frac{d^2y}{d^2x}\Big|_0 = \underline{\hspace{1cm}}_0$$

3.
$$\int_0^{\pi^2} \sqrt{x} \cos \sqrt{x} dx = \underline{\qquad}_{\circ}$$

- 5. 设函数 f(x)在 x=0 处连续,下列命题错误的是
 - (A) 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则f(0)=0.
 - (B) 若 $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则f(0)=0.
 - (C) 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则f'(0)存在.
 - (D) 若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则f'(0)存在
- 6. 求微分方程 $y'' 3y' + 2y = 2xe^x$ 的通解
- 7. 求函数 $f(x) = \int_{1}^{x^{2}} (x^{2} t)e^{-t^{2}} dt$ 的单调区间与极值
- 8. (I) 比较 $\int_0^1 |\ln t| [\ln(1+t)]^n dt$ 与 $\int_0^1 |\ln t| t^n dt, n = 1, 2, \cdots$ 的大小,说明理由
 (II) 设 $M_n = \int_0^1 |\ln t| [\ln(1+t)]^n dt (n = 1, 2, \cdots)$,求极限 $\lim_{n \to \infty} M_n$
- 9. 设函数 f(x), g(x)在[a, b]上连续,在(a, b)内具有二阶导数且存在相等的最大值,f(a)=g(a), f(b)=g(b), 证明:存在 $\xi \in (a,b)$,使得 $f''(\xi)=g''(\xi)$.