

Business Analytics

Lecture 2

Probability

Dr Yufei Huang

Q&A

Q: How many decimal points to keep in the answers?

A: We usually keep 3 digits, if some calculation table gives 4 digits, then keep 4.

Q: I'm using Windows, can't find Data Analysis tool in Excel.

A: Please follow this link:

https://support.office.com/en-gb/article/Load-the-Analysis-ToolPak-6a63e598-cd6d-42e3-9317-6b40ba1a66b4

Q: I'm using mac book, can't find Data Analysis tool in Excel.

A: Please follow this link:

https://support.microsoft.com/en-gb/help/2431349/how-to-find-and-install-data-analysis-toolpak-or-solver-for-excel-for

Q: Can I hand write and scan the report?

A: Hand writing is ok. But it is recommended to type in word, then save as a pdf file. Otherwise, Turnitin function on Moodle will not work.

Contents

- Set Theory
 - Definitions
 - Union, Intersection, Compliment
- Probability Theory
 - Definitions
 - Probability rules
 - Conditional probability
 - Bayes theorem

Set Theory

Definition. A set is a collection of objects, called elements or members.

Examples:

- R is the set of all real numbers between -∞ and ∞.
- {1,2,4,7} is the set including the numbers 1,2,4,7.
- Intervals are also sets, e.g. all numbers between 3 and 4
- Set of daily prices of the stock of HP during the last year.

Set Theory

Definition. A subset is any collection of elements in a set. An empty set is a set which contains no elements (Φ).

Examples

- (3,4) is a subset of R.
- The price of HP's stock on the first day of each month is a subset of the set of its daily prices during a year.
- The empty set is a subset of any set.

Set Theory: Union

 Union. Let A,B, be two sets. Their union is the set which includes all elements which are in A or in B. It is denoted by AUB.

A: the set of daily prices of HP's stock between January and April 2014.

B: the set of HP's daily prices between March and May 2014.

A∪B: the set of HP's daily prices between January and May 2014.

Set Theory: Intersection

 Intersection. Let A,B, be two sets. Their intersection is the set which includes all elements which are in A and in B. It is denoted by A∩B.

Example:

A: the set of daily prices of HP's stock between January and April 2014.

B: the set of HP's daily prices between March and May 2014.

A∩B: the set of HP's prices between March and April.

Set Theory: Compliment

Compliment. Let A be a subset of a set D.
 Its complement, A, consists of all of the elements in D apart from those in A.

Example.

D is the set of a survey results.

A is the set of men's answers.

 \overline{A} is the set of the women's answers.

 An important set is the set of all possible subsets of a given set, A.

Example.

If A={1,2,3}, the set of all subsets consists of:

 $\{ \Phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}.$

Probability Theory: Definitions

- An experiment is any process or procedure for which more than one outcome is possible.
- Examples:
 - Tossing a coin: Possible outcome: head
 - Rolling a die: Possible outcome: 6
 - The price of IBM's stock tomorrow: Possible outcome: \$187.81
- Sample Space is the set of all possible outcomes of an experiment.
- Examples:
 - Tossing a coin: {head, tail}
 - Rolling a die: {1,2,3,4,5,6}
 - The price of IBM's stock tomorrow: [0, ∞)
- An event is a subset of a sample space.
- Examples:
 - The price of IBM's stock tomorrow is between \$180 and \$190.

Probability Theory: Definitions

- Probability is a numerical measure of the chance that an event will occur.
- Probability Measure is a function P from the set of all of the events of a sample space Ω to [0,1], which satisfies for all disjoint events

$$A_1, A_2, ..., A_n$$
:

- P(A) ≥ 0
- $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$.
- $-P(\Omega)=1$
- A probability measure is a function which assigns a probability to each outcome in the sample space.
- Note. for any event A, 0≤P(A) ≤1:
 - P(A)=0, if A never happens.
 - P(A)=1, if A always happens.

Types of Probability

- Subjective Probability
- A-priori Classical Probability
- Empirical Classical Probability

Subjective Probability

- Subjective Probability: Probability values are assigned subjectively by people.
- Example:
 - I have a feeling that the probability that IBM's stock price tomorrow will be higher than \$190 is 80%.
 - Someone less optimistic might estimate this probability by 50%.
- Advantage: Does not involve calculations
- Disadvantage: Subjective
 - Bilgin (2012) showed that people judge losses to have higher probabilities than gains
 - "It is very likely that this will happen" → Estimate the probability

A-priori Classical Probability

- A-priori classical probability: the probability is determined according to a certain theory.
- Example: Random walk model predicts that the probability that IBM's stock price will increase tomorrow is 50%, because according to the random walk model, the probability of an increase in the price equals to the probability of decrease.
- Advantages:
 - May be used to develop theories
 - Helps calculations
- Disadvantages:
 - One needs a trustworthy theory

Empirical Classical Probability

- Empirical classical probability:
 - Probability is based on observed data.

- Example: One monitors a very large number of trading days, e.g. 1000. and observes, 481 times that the price increased, then Prob.=481/1000=0.481.
- Advantages:
 - Does not require a theory
 - Based on real data
- Disadvantages:
 - Requires collection of data (time, money,...)
 - Based on the assumption that probability distributions do not change.
 (Is this assumption true?)

Exercise

In a marketing survey, 1000 consumers were asked whether they intend to buy a new product or not, and in a follow-up survey, the same group of consumers were asked whether they have bought this product. The data is shown below:

	Actually Purchased		
Planned to Purchase	Yes	No	Total
Yes	200	100	300
No	250	450	700
Total	450	550	1000

- 1. What is the probability that a person plans to purchase this product?
- 2. What approach did we use here?

Solution

	Actually Purchased		
Planned to Purchase	Yes	No	Total
Yes	200	100	300
No	250	450	700
Total	450	550	1000

1. The probability that a person plans to purchase this product within a year is:

P(planned to purchase) =
$$\frac{\text{number of people who planned to purchase}}{\text{number of people in the sample}}$$
$$-\frac{200+100}{0.03} = 0.3$$

2. We used the empirical classical probability approach.

Probability Rules

- 1. $P(A)+P(\overline{A})=1$
- 2. $P(A \cap B) + P(A \cap \overline{B}) = P(A)$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Can you prove the above rules graphically?

Conditional Probability

 Definition: The probability of certain events depends on the probability of other events.

Example:

- Fruit and veges depend on the sun. (http://www.nzherald.co.nz/lifestyle/news/article.cfm?c_id=6&objectid=11723008)

We denote the probability of A given B by P(A|B).

• If P(B)
$$\neq$$
0, then P(A | B) = $\frac{P(A \cap B)}{P(B)}$

Exercise

In a marketing survey, 1000 consumers were asked whether they intend to buy a new product or not, and in a follow-up survey, the same group of people were asked whether they have bought this product. The data is shown below:

	Actually Purchased		
Planned to Purchase	Yes	No	Total
Yes	200	100	300
No	250	450	700
Total	450	550	1000

- What is the probability that a consumer purchased this product given that he or she planned to purchase?
- What is the probability that a consumer did not purchase this product given that he or she planned to purchase?

Solution

	Actually Purchased		
Planned to Purchase	Yes	No	Total
Yes	200	100	300
No	250	450	700
Total	450	550	1000

$$P(Purchased \mid Planned) = \frac{P(Purchased and planned)}{P(Planned)} = \frac{200/1000}{300/1000} = \frac{200}{300} = 0.6667$$

$$P(Did \ not \ purchase \ | \ Planned) = \frac{P(Did \ not \ purchase \ and \ planned)}{P(Planned)} = \frac{100/1000}{300/1000} = \frac{100}{300} = 0.3333$$

Bayes Theorem

- Bayes' Theorem: $P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B})}$
- Purpose: If we know $P(A|B), P(B), P(A|\overline{B})$ and $P(\overline{B})$, then we can calculate P(B|A).
- Example: A factory manager uses quality test to identify defective products. The probability that a product is defective is 0.03. When the product is defective, the probability that this quality test will give a positive result is 0.90. When the product is not defective, the probability of a positive test result is 0.02. Suppose that the quality test has given a positive result. What is the probability that the product is actually defective?
- Solution: D: the product is defective, \overline{D} : the product is not defective T: test is positive, \overline{T} : test is negative $P(D)=0.03, \ P(\overline{D})=1-0.03=0.97, \ P(T|D)=0.90, \ P(T|\overline{D})=0.02$ $P(D|T)=\frac{P(T|D)P(D)}{P(T|D)P(D)+P(T|\overline{D})P(\overline{D})}=\frac{0.9*0.03}{0.9*0.03+0.02*0.97}=0.582$
- Exercise: Can you prove Bayes Theorem using conditional probability? SCHOOL OF

Bayes Theorem in Court

http://www.theguardian.com/law/2011/oct/02/formula-justice-bayes-theorem-miscarriage

Independent Events

- Definition: Two events, A and B are called independent if P(A|B)=P(A).
 Namely, the outcome of B does not affect the probability of occurrence of A.
- Example: Two coin tosses are independent if the coins are fair.
- Note: The following necessary and sufficient conditions for independent events are equivalent:

$$P(B | A) = P(B)$$
 $P(A | B) = P(A)$ $P(A \cap B) = P(A) * P(B)$

Exercise: Can you prove the above note?

Exercise

In a marketing survey, 1000 consumers were asked whether they intend to buy a new product or not, and in a follow-up survey, the same group of consumers were asked whether they have bought this product. The data is shown below:

	Actually Purchased		
Planned to Purchase	Yes	No	Total
Yes	200	100	300
No	250	450	700
Total	450	550	1000

- Given that a consumer planned to purchase, what is the probability that he/she finally purchased the product?
- Given that a consumer planned not to purchase, what is the probability that he/she finally purchased the product?
- Are consumers' willingness to purchase and their actual purchase decisions independent or not? Why?

Solution

	Actually Purchased		
Planned to Purchase	Yes	No	Total
Yes	200	100	300
No	250	450	700
Total	450	550	1000

• Solution.

$$P(Purchased \mid Planned) = \frac{P(Purchased and planned)}{P(Planned)} = \frac{200/1000}{300/1000} = \frac{200}{300} = 0.6667$$

$$P(Purchased \mid Planned\ Not) = \frac{P(Purchase\ and\ Planned\ Not)}{P(Planned\ Not)} = \frac{250/1000}{700/1000} = \frac{250}{700} = 0.3571$$

$$P(Purchased | Planned) = 0.6667$$
 $P(Purchased) = 0.45$

So the two events are not independent.

The Birthday Problem

To start, P(two people share birthday) = 1 - <math>P(no people share birthday).

The probability of two people sharing birthday is difficult to get, but we can get the probability of no people sharing birthday:

- One person
 This person can have any birthday. P(no)=(365/365)=1
- Two persons
 P(no)=(365/365) * (364/365)=99.73%
- Three persons
 P(no)=((365/365) * (364/365) * (363/365)=99.18%

.

n persons

```
P(no)=((365/365) * ((365-1)/365) * ((365-2)/365)*...*((365-n+1)/365)
=365! / ((365-n)! * 365^n)=[365*364*...*(365-n+1)]/ 365^n
```

P(two people share birthday)=1- P(no people share birthday) =1-[365*364*...*(365-n+1)]/ 365^n

The Birthday Problem

Next, we will solve the Birthday Problem using Excel.

References

Chapter 2 of:

Aczel, A., & J. Sounderpandian. 2008. Complete Business Statistics. McGraw-Hill/Irwin, Seventh Edition.

Additional reading:

 Levine, Stephan, Krehbiel, & Berenson. Statistics for managers using Microsoft Excel. Prentice Hall, Upper Saddle River, New Jersey. Chapter 4: Basic probability.

