Assignment -2

Data Visualization and Pre-processing

Assignment Date	27 September 2022
Student Name	R. Vignesh Kumar
Student Roll Number	912419104038
Maximum Marks	2 Marks

Task 1:

1. Download the dataset: Dataset

- Assignment-2

1. Download the dataset: Dataset

Task 2:

2.Loading the Churn Modelling dataset

Solution:

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

import warnings
warnings.filterwarnings("ignore")

▼ 2.Loading the Churn_Modelling dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")
```

from google.colab import drive drive.mount('/content/drive')

[] from google.colab import drive drive.mount('<u>/content/drive</u>')

Mounted at /content/drive

data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Vignesh/Churn Modelling.csv")

data.info()

[] data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Vignesh/Churn_Modelling.csv")

[] data.info()

data.head()

[] data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

data.head()

[] data.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

data.shape

```
[ ] data.shape
(10000, 14)
```

Task 3:

3. Visualization of Dataset

Univariate Analysis

• Distribution Plot

Solution:

sns.displot(data['Age'], color ='skyblue')

3. Visualization of Dataset

▼ Univariate Analysis

Distriution Plot

[] sns.displot(data['Age'], color ='skyblue')

<seaborn.axisgrid.FacetGrid at 0x7fe54134b650>

800 - 700 - 600 - 9

sns.distplot(data["Age"],hist=False,color='skyblue')

Histograms

data['Geography'].value_counts()


```
[ ] plt.hist(x=data.Geography, bins=6, color='blue')
plt.title("Geographic Distribution of Population with CreditCard")
plt.xlabel("Geography")
plt.ylabel("Population")
plt.show()
```


sns.histplot(x=data.Age,hue=data['Tenure'], bins =10,)

• Bar Plot

data['Gender'].value_counts()

Bar Plot

[] data['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64

pd.crosstab(data['Gender'],data['Geography']).plot(kind='bar')

[] pd.crosstab(data['Gender'],data['Geography']).plot(kind='bar')

• Box Plot

sns.boxplot(data["Age"],color='blue')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53d76ab90>

[] sns.boxplot(data["Age"],color='blue')

Bivariate Analysis

sns.barplot(data['Geography'], data["Age"])

→ Bivariate Analysis

sns.barplot(data["NumOfProducts"],data["Age"])

data['HasCrCard'].value_counts()

data['HasCrCard'].value_counts().head(20).plot.bar()

• Line Chart

sns.lineplot(data['Age'], data['CreditScore'])

Line Chart

Multi-Variate Analysis

• Scatter Plot

data['IsActiveMember'].value_counts()

▼ Multi-Variate Analysis

```
Scatter Plot

[ ] data['IsActiveMember'].value_counts()

1    5151
0    4849
Name: IsActiveMember, dtype: int64
```

sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

• Point Plot

sns.pointplot(x=data['NumOfProducts'],y=data['Tenure'],color='skyblue')

Point Plot

[] sns.pointplot(x=data['NumOfProducts'],y=data['Tenure'],color='skyblue')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53dae2a90>
6.0
5.8
5.6
5.6
5.7
5.0
4.8
4.6
NumO/Products

HeatMap

data.head()

HeatMap

[] data.head() RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 1 15634602 Hargrave 619 France Female 42 2 0.00 101348.88 15647311 Hill 608 Spain Female 41 1 83807.86 0 112542.58 8 159660.80 502 0 2 3 15619304 Onio France Female 42 113931.57 0 15701354 699 France Female 39 1 0.00 2 0 93826.63 0 Boni 5 15737888 Mitchell 850 Spain Female 43 2 125510.82 79084.10

data_cor = data.iloc[:,3:].corr()
data_cor

[] data_cor = data.iloc[:,3:].corr()
 data_cor

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
Estimated Salary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

plt.figure(figsize = (16,8)) sns.heatmap(data_cor,linecolor='white',linewidth=0.5, annot=True)

Pair Plot

data.head()sns.pairplot(data=data[["Age","Tenure","Balance","NumOfProducts"]],ki nd="kde",)

Task 4:

- 4. Descriptive Statistic Analysis
 - 1. Mean
 - 2. Medium
 - 3. Mode
 - 4. Standard Deviation
 - 5. Variance

Solution:

data.describe().T

- ▼ 4.Descriptive Statistic Analysis
 - 1. Mean
 - 2. Medium
 - 3. Mode
 - 4. Standard Deviation
 - 5. Variance

	count	mean	std	min	25%	50%	75%	max
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+03	7.500250e+03	10000.00
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+07	1.575323e+07	15815690.00
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+02	7.180000e+02	850.00
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+01	4.400000e+01	92.00
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+00	7.000000e+00	10.00
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+04	1.276442e+05	250898.09
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+00	2.000000e+00	4.00
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+00	1.000000e+00	1.00
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+00	1.000000e+00	1.00
Estimated Salary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+05	1.493882e+05	199992.48
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000e+00	0.000000e+00	1.00

data['Age'].mean()

[] data['Age'].mean()
38.9218

data['Age'].median()

[] data['Age'].median()

37.0

data['Age'].mode()

[] data['Age'].mode()

0 37 dtype: int64

data['EstimatedSalary'].mean()

```
[ ] data['EstimatedSalary'].mean()
   100090.239881
                data ['Estimated Salary'].median(),)\\
[ ] data['EstimatedSalary'].median()
   100193.915
                data['EstimatedSalary'].mode())
[ ] data['EstimatedSalary'].mode()
   0 24924.92
dtype: float64
                data['Balance'].mean()
[ ] data['Balance'].mean()
   76485.889288
                data['CreditScore'].std()
[ ] data['CreditScore'].std()
   96.65329873613035
                data['Tenure'].var()
[ ] data['Tenure'].var()
   8.364672627262726
```

Task 5:

5. Handling Missing Values

Solution:

data.isna().any()

▼ 5.Handling Missing Values

```
RowNumber False
CustomerId False
Surname False
CreditScore False
Geography False
Gender False
Age False
Tenure False
Balance False
NumOfProducts False
HasCrCard False
ISACtiveNember False
EstimatedSalary False
EstimatedSalary False
dtype: bool
```

data.isnull().sum()

Task 6:

6. Finding Outliers and Replacing Them

Solution:

```
outliers = data.quantile(q=(0.25,0.75)) outliers
```

▼ 6. Finding Outliers and Replacing Them

Exited dtype: float64

0.0000

```
[ ] outliers = data.quantile(q=(0.25,0.75))
[ ] outliers
      RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 🥕
   0.25 2500.75 15628528.25 584.0 32.0 3.0 0.00 1.0 0.0 51002.1100 0.0
                                                     2.0
   0.75 7500.25 15753233.75
                          718.0 44.0 7.0 127644.24
                                                           1.0
                                                                       1.0
                                                                             149388.2475
                                                                                          0.0
             iqr = outliers.loc[0.75]-outliers.loc[0.25]
             iqr[2:]
[ ] iqr = outliers.loc[0.75]-outliers.loc[0.25]
[ ] iqr[2:]
   EstimatedSalary 98386.1375
```

upper = outliers.loc[0.75] + 1.5 * iqr upper[2:]

```
[ ] upper = outliers.loc[0.75] + 1.5 * iqr
```

[] upper[2:]

 CreditScore
 919.0000

 Age
 62.0000

 Tenure
 13.00000

 Balance
 319110.60000

 NumOfProducts
 3.50000

 HasCrCard
 2.50000

 IsActiveMember
 2.50000

 EstimatedSalary
 296967.45375

 Exited
 0.00000

 dtype: float64

lower = outliers.loc[0.25] - 1.5 * iqr lower[2:]

```
[ ] lower = outliers.loc[0.25] - 1.5 * iqr
```

[] lower[2:]

383.00000
14.00000
-3.00000
-191466.36000
-0.50000
-1.50000
-1.50000
-96577.09625
0.00000

sns.boxplot(data['Age'], color= 'Coral',)

[] sns.boxplot(data['Age'], color= 'Coral',)

upper['Age']

[] upper['Age']

62.0

data['Age'].mode()

[] data['Age'].mode()

0 37 dtype: int64

sns.boxplot(data['Tenure'], color= 'cyan',)

[] sns.boxplot(data['Tenure'], color= 'cyan',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53b061b50>

sns.boxplot(data['EstimatedSalary'], color= 'cyan',)

[] sns.boxplot(data['Balance'], color= 'cyan',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53afd6050>

sns.boxplot(data['CreditScore'], color= 'cyan',)

sns.boxplot(data['EstimatedSalary'], color= 'cyan',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53afb8d50>

EstimatedSalary

data['CreditScore'].mode()

[] data['CreditScore'].mode()

0 850 dtype: int64

lower['CreditScore']

[] lower['CreditScore']

383.0

data["CreditScore"] = np.where(data["CreditScore"]<390,850,data["CreditScore"]) sns.boxplot(data['CreditScore'], color= 'blue',)

Task 7:

7. Checking for categorical columns and perform encoding

Solution:

data.info()

▼ 7. Checking for categorical columns and perform encoding

```
[ ] data.info()
     <class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
     Data columns (total 14 columns):
                              Non-Null Count Dtype
      # Column
      0 RowNumber
                               10000 non-null
           CustomerId
                               10000 non-null
                              10000 non-null
          Surname
                                                 object
           CreditScore
                               10000 non-null
           Geography
Gender
                               10000 non-null
                                                 object
                               10000 non-null
                               10000 non-null
                                                 int64
                               10000 non-null
                                                  int64
           Balance
NumOfProducts
                              10000 non-null
10000 non-null
                                                 int64
      10 HasCrCard
11 IsActiveMember
                               10000 non-null
                                                 int64
                            10000 non-null
                                                 int64
      12 EstimatedSalary 10000 non-null
13 Exited 10000 non-null
     dtypes: float64(2), int64(9), object(3)
     memory usage: 1.1+ MB
```

data.dtypes.value counts()

```
[ ] data.dtypes.value_counts()

int64    9
object    3
float64    2
dtype: int64
```

```
# Encoding Categorical variables into numerical variables'
# Label Encoding

from sklearn.preprocessing import LabelEncode
label = LabelEncoder()

data['Gender'] = label.fit_transform(data['Gender'])
data['Geography'] = label.fit_transform(data['Geography'])
data.head(8)
```

		Encoding Categorical variables into numerical variables Label Encoding														
	rom sklearr abel = Labe			g import L	abelEncoder											
					m(data['Gende form(data['Ge											
] d	ata.head(8)															
	RowNumbe	r (CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exit	
	0	1	15634602	Hargrave	619	0	0	42	2	0.00	1	1	1	101348.88		
	1 :	2	15647311	Hill	608	2	0	41	1	83807.86	1	0	1	112542.58		
	2	3	15619304	Onio	502	0	0	42	8	159660.80	3	1	0	113931.57		
	3	4	15701354	Boni	699	0	0	39	1	0.00	2	0	0	93826.63		
	4	5	15737888	Mitchell	850	2	0	43	2	125510.82	1	1	1	79084.10		
	5	6	15574012	Chu	645	2	1	44	8	113755.78	2	1	0	149756.71		
	6	7	15592531	Bartlett	822	0	1	50	7	0.00	2	1	1	10062.80		
	7	В	15656148	Obinna	850	1	0	29	4	115046.74	4	1	0	119346.88		

Task 8:

8. Split the data into dependent and independent variables

Solution:

```
data_new = data.drop(['CustomerId', 'Surname', 'RowNumber'], axis = 1)
data_new.info()

data_new.shape

x = data_new.iloc[:,0:10]
y = data_new.iloc[:,10
print(x.shape)
print(y.shape)
print(x.columns)

x.head(8)
```

```
[ ] x = data_new.iloc[:,0:10]
   y = data_new.iloc[:,10]
   print(x.shape)
   print(y.shape)
  print(x.columns)
   (10000, 10)
   [ ] x.head(8)
     CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
     619 0 0 42 2 0.00
                                                1 1 101348.88
   1
             2 0 41 1 83807.86
                                                                  112542.58
         502 0 0 42 8 159660.80
   2
                                                                  113931.57
   3
             0 0 39 1
                                            2
                                                            0
                                                                  93826.63
                                  0.00
     850 2 0 43 2 125510.82
                                                          1 79084.10
                2 1 44 8 113755.78
   5
                                                                  149756.71
                0 1 50 7 0.00
                                                                  10062.80
                1 0 29
          850
                           4 115046.74
                                                                  119346.88
```

Task 9:

9. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

▼ 9. Split the data into training and testing

```
[] from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(y_test.shape)
print(y_test.shape)

(8000, 10)
(8000, 10)
(2000, 10)
(2000, 10)
```

Task 10:

10. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)

x_train = pd.DataFrame(x_train)
x_train.head()
```

▼ 10. Scale the independent variables