Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук Высшая Школа Экономики

15 марта 2022 г.

Существует три различных варианта этого доклада:

- 1. Краткая презентация, которую несложно рассказать, но может быть сложно понять (ReedMuller-trans.pdf).
- 2. Более длинная презентация с ценными комментариями, дополнительными доказательствами и интересными фактами (ReedMullerslides.pdf).
- 3. Текстовая статья со всем содержимым длинной презентации, комментариями на своих местах, а также бонусным приложением с более подробным описанием алгоритма (ReedMuller-article.pdf). Вы сейчас читаете именно эту версию. Невошедшее в презентацию помечено линями слева, а названия слайдов можно найти справа.

Их все можно посмотреть здесь: https://sldr.xyz/ReedMuller/

По любым вопросам: r-m@sldr.xyz или t.me/iliago или vk.com/iliago.

Содержание

1	Введение						
2	Кодирование						
3	В Свойства кода						
	3.1 Конструкция Плоткина	8					
	3.2 Минимальное расстояние	9					
	3.3 Параметры	10					
4	Декодирование	11					
	4.1 Алгоритм Рида	12					
	4.1.1 Пример	13					
5	Домашнее задание						
6	Источники	16					
\mathbf{A}	Reed's Algorithm: Unique decoding up to half the code						
	distance	17					
	А.1 Дополнительные доказательства	19					
	А.2 Реализация алгоритма	22					

Код описан Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года.

Введение

Обозначается как $\mathrm{RM}(r,m)$, где r — ранг, а 2^m — длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C_m^i$ при помощи 2^m бит. Традиционно, считается что коды бинарные и работают над битами, т.е. \mathbb{F}_2 .

Соглашение: сложение векторов $u,v\in\mathbb{F}_2^n$ будем обозначать как $u\oplus v=(u_1+v_1,u_2+v_2,...,u_n+v_n).$

1 Введение

Всякую булеву функцию можно записать при помощи таблицы истинности:

Булевы функции и многочлен Жегалкина

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

Или при помощи многочлена Жегалкина:

$$f(x,y) = xy + x + y + 1$$

В общем случае, многочлены будут иметь следующий вид:

Многочлены Жегалкина

$$f(x_1, x_2, ..., x_m) = \sum_{S \subseteq \{1, ..., m\}} c_S \prod_{i \in S} x_i$$

Например, для m=2: $f(x_1,x_2)=c_{\{1,2\}}\cdot x_1x_2+c_{\{2\}}\cdot x_2+c_{\{1\}}\cdot x_1+c_{\varnothing}\cdot 1$ Всего $n=2^m$ коэффициентов для описания каждой функции.

Рассмотрим функции, степень многочленов которых не больше r:

Функции небольшой степени

$$\{f(x_1, x_2, ..., x_m) \mid \deg f \le r\}$$

Каждую можно записать следующим образом:

$$f(x_1, x_2, ..., x_m) = \sum_{\substack{S \subseteq \{1, ..., m\} \\ |S| < r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше r переменных.

Замечу, что при $S=\varnothing$, мы считаем, что $\prod_{i\in S}x_i=1$, таким образом всегда появляется свободный член.

Сколько тогда всего коэффициентов используется?

$$k = C_m^0 + C_m^1 + C_m^2 + \ldots + C_m^r = \sum_{i=0}^r C_m^i$$

Если говорить несколько проще, то для составления многочленов мы сложим сначала одночлены (x+y+z+...), затем произведения одночленов (xy+yz+xz+...) и т.д. вплоть до r множителей (поскольку мы работаем в поле \mathbb{F}_2 , здесь нету x^2,y^2,z^2 , т.к. $a^2=a$). Тогда легко видеть, почему k именно такое: мы складываем все возможные перестановки сначала для 0 переменных, потом для одной, двух, и так вплоть до r (не не больше, ведь $\deg f \leq r$).

2 Кодирование

Пусть каждое сообщение (длины k) — коэффициенты многочлена от m переменных степени не больше r. Тогда мы можем его представить при помощи 2^m бит, подставив все возможные комбинации значений переменных. Их 2^m , поскольку рассматриваем многочлены только над \mathbb{F}_2 от m переменных. Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение.

Зафиксировав в таблице порядок строк, можно выделить вектор значений, который и будет кодом.

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array} \implies \text{Eval}(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$$

Вектор значений — обозначается $\mathrm{Eval}(f)$ — столбец таблицы истинности, содержащий значения функции. Имеет смысл только при зафиксированном порядке строк в таблице. У меня он везде самый обычный, как в примере выше.

Здесь и далее я для краткости и удобства записываю битовые векторы не как $(1 \ 0 \ 0 \ 1)$, а как 1001 при помощи нескучного шрифта.

Для кодирования очень важно понимать, как именно биты сообщения ставятся в соответствие коэффициентам многочлена. Поэтому давайте введём **соглашение**: если упорядочить элементы множества у каждого коэффициента по возрастанию, то коэффициенты сортируются в лексиографическом порядке: $c_{1,2}$ раньше $c_{1,3}$, поскольку 2 < 3 и $c_{2,3}$ раньше $c_{3,4}$, поскольку 2 < 3.

Идея кодирования

Пример

Пример для m=4:

$$\begin{split} f(x_1,x_2,x_3,x_4) &= c_{\{1,2,3,4\}} x_1 x_2 x_3 x_4 \\ &+ c_{\{1,2,3\}} x_1 x_2 x_3 + c_{\{1,2,4\}} x_1 x_2 x_4 + c_{\{1,3,4\}} x_1 x_3 x_4 + \\ &+ c_{\{2,3,4\}} x_2 x_3 x_4 \\ &+ c_{\{1,2\}} x_1 x_2 + c_{\{1,3\}} x_1 x_3 + c_{\{1,4\}} x_1 x_4 + c_{\{2,3\}} x_2 x_3 + \\ &+ c_{\{2,4\}} x_2 x_4 + c_{\{3,4\}} x_3 x_4 \\ &+ c_{\{1\}} x_1 + c_{\{2\}} x_2 + c_{\{3\}} x_3 + c_{\{4\}} x_4 + c_{\varnothing} \end{split}$$

Также можно кодировать множества при помощи битов, используя отношение $x \in A \iff v_x = 1$ (нумерация битов слева направо, начиная с единицы), где свойство остортированности сохраняется и хорошо видно (но только в пределах группы мнономов одной степени):

$$\begin{split} f(x_1,x_2,x_3,x_4) &= c_{\mathtt{11111}} x_1 x_2 x_3 x_4 \\ &+ c_{\mathtt{11100}} x_1 x_2 x_3 + c_{\mathtt{11011}} x_1 x_2 x_4 + c_{\mathtt{10111}} x_1 x_3 x_4 + c_{\mathtt{01111}} x_2 x_3 x_4 \\ &+ c_{\mathtt{11000}} x_1 x_2 + c_{\mathtt{1010}} x_1 x_3 + c_{\mathtt{10011}} x_1 x_4 + c_{\mathtt{01110}} x_2 x_3 + \\ &+ c_{\mathtt{01011}} x_2 x_4 + c_{\mathtt{00111}} x_3 x_4 \\ &+ c_{\mathtt{10000}} x_1 + c_{\mathtt{01000}} x_2 + c_{\mathtt{00010}} x_3 + c_{\mathtt{00001}} x_4 + c_{\mathtt{00000}} \end{split}$$

С помощью этого примера легко увидеть порядок для всех остальных конфигураций кода, если вычеркнуть заведомо невозможные слагаемые (напр., содержащие x_4 для m=3 или мономы слишком большой степени для r<4).

- r=1 (степень многочлена), m=2 (переменных). Это RM(1,2).
- Тогда наш многочлен: $f(x_1,x_2)=c_{\{2\}}x_2+c_{\{1\}}x_1+c_{\varnothing}.$
- Сообщение: 011, тогда $f(x_1,x_2) = 0 + x_1 + 1.$
- Подставим всевозможные комбинации:

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	0

Обратите внимание на то, какой используется порядок переменных в таблице истинности. Очень важно чтобы при кодировании и декодировании было согласие и взаимпонимание касательно того, какому набору переменных соответствует каждая строчка.

• Получили код: Eval(f) = 1100.

Теперь покажем, как можно декодировать когда потерь нет. Этот пример — продолжение предыдущего.

Декодирование когда потерь нет

• Мы получили код: 1100

• Представим таблицу истинности.

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	0

ullet Подстановками в $f(x_1,x_2) = c_2 x_2 + c_1 x_1 + c_0$ получим СЛАУ.

$$\begin{cases} c_0 = 1 \\ c_2 + c_0 = 1 \\ c_1 + c_2 + c_0 = 0 \\ c_1 + c_2 + c_0 = 0 \end{cases}$$

• $c_{\{1\}}=1, c_{\{2\}}=0, c_{\varnothing}=1,$ исходное сообщение: 011.

Коды 0-го порядка

Отдельно стоит рассмотреть вариант кода при r=0, он нам в будущем пригодится для доказательств.

Для случая $\mathrm{RM}(0,m)$ нужна функция от m аргументов, степени не выше 0. Таких функций существует всего лишь две, поскольку мы можем влиять лишь на свободный член. Все остальные коэффициенты обнуляются из-за требования $\deg f \leq 0$.

- $f(x_1, x_2, ..., x_m) = 0$
- $g(x_1, x_2, ..., x_m) = 1$

Таблица истинности:

$$2^{m} \begin{cases} x_{1} & x_{2} & \dots & x_{m} & f(x_{1}, \dots, x_{m}) & g(x_{1}, \dots, x_{m}) \\ \hline 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 & 1 \\ & & \ddots & & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 & 0 & & 1 \end{cases}$$

Здесь число строк, как и в любой другой таблице истинности, равно 2^m , а колонки со значениями никак не зависят от аргументов функций. Получается две колонки – одна с нулями, другая с единицами.

Вывод: это 2^m -кратное повторение символа

- Сообщение 0 даст код $\underbrace{\mathbf{00...0}}_{2^m}$
- Сообщение 1 даст код $\underbrace{11...1}_{2^m}$

Есть ещё один тривиальный случай, когда m=r.

Есть m переменных, и мы рассматриваем многочлены $f \in \mathbb{F}_2[x_1,...,x_m]$: $\deg f \leq m$, т.е. все возможные. Для $\mathrm{RM}(m,m)$ мы используем все доступные коэффициенты многочлена для кодирования сообщения. Тогда нет избыточности: $k = \sum_{i=0}^m C_m^i = 2^m = n$ — длина сообщения равна длине кода.

Коды т-го порядка

Чем меньше порядок кода r, тем больше избыточность.

3 Свойства кода

Доказательство линейности

Хотим показать, что этот код является линейным, т.е. что его кодовые слова образуют линейное пространство, и у нас есть изоморфизм из пространства сообщений (\mathbb{F}_2^k) в пространство слов (\mathbb{F}_2^m).

Для этого необходимо немного формализовать всё описанное раньше.

Пусть C(x) кодирует сообщение $x \in \mathbb{F}_2^k$ в код $C(x) \in \mathbb{F}_2^m$.

$$C(x) = (p_x(a_i) \mid a_i \in \mathbb{F}_2^m)$$

где $p_x(a_i)$ — соответствующий сообщению x многочлен. Пояснение: перебираем все векторы a_i (2^m штук), подставляем каждый в p_x в качестве переменных и таким образом получаем вектор значений (длины 2^m). Именно он и называется кодом.

Причём p_x берёт в качестве своих коэффициентов биты из x. Поскольку многочлены степени не выше r образуют линейное пространство, то $p_{(x \oplus y)} = p_x + p_y$.

Напомню, что базис пространства многочленов выглядит примерно так: 1, x, y, z, xy, yz, xz (для трёх переменных, степени не выше 2).

Чтобы преобразовать сообщение в многочлен, мы берём каждый бит сообщения и умножаем его на соответствующий базисный вектор. Очевидно, такое преобразование будет изоморфизмом. Именно поэтому $p_{(x\oplus y)}=p_x+p_y.$ Обратите внимание, что сообщение x это не просто число (\mathbb{Z}_{2^k}) и мы рассматриваем его биты, а реально вектор битов (\mathbb{Z}_2^k) . У него операция сложения побитовая.

Тогда:

$$C(x\oplus y)_i=p_{(x\oplus y)}(a_i)=p_x(a_i)+p_y(a_i)=C(x)_i+C(y)_i$$

т.е.
$$\forall x, y \quad C(x \oplus y) = C(x) \oplus C(y)$$
, ч.т.д.

Здесь я использую запись $C(x)_i$ для i-го элемента вектора C(x). Поскольку i произвольное, то и весь вектор получился равен. Таким образом, этот код действительно линейный и к нему применимы уже известные теоремы!

1. Существует порождающая матрица G.

$$C(x) = x_{1 \times k} G_{k \times n} = c_{1 \times n}$$

Так можно кодировать сообщения x в коды c. Но искать её мы не будем, обойдёмся одними многочленами, это интереснее.

2. Минимальное расстояние будет равно минимальному весу Хемминга среди всех кодов. Вес Хэмминга вектора — количество в нём ненулевых элементов.

$$d = \min_{\substack{c \in C \\ c \neq 0}} w(c)$$

Доказательство очень просто: минимальное расстояние — вес разности каких-то двух различных кодов, но разность двух кодов тоже

Последствия линейности будет кодом, т.к. мы в линейном пространстве. Значит достаточно найти минимальный вес, но не учитывая нулевой вектор, т.к. разность равна нулю тогда и только тогда, когда коды равны.

3. Корректирующая способность:

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

Однако мы ещё не знаем как выглядят наши коды (как выглядят таблицы истинности функций степени не больше r?). А значит не можем ничего сказать про минимальное расстояние.

3.1 Конструкция Плоткина

Хотим понять как выглядят кодовые слова.

Конструкция Плоткина: многочлены

- Код вектор значений функции $f(x_1,...,x_m) \in \text{RM}(r,m)$, причём $\deg f \leq r$. Порядок очевидно не больше r, потому что это условие для включения в пространство кодов RM(r,m).
- Разделим функцию по x_1 : $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m)$. Теперь у нас есть две функции от меньшего числа аргументов. Очевидно, так можно сделать всегда, когда m>1.
- Заметим, что $\deg f \leq r$, а значит $\deg g \leq r$ и $\deg h \leq r-1$.

Теперь рассмотрим те же функции, но со стороны их таблиц истинности. Нам же интересны именно коды, а они как раз очень тесно связаны с этими таблицами.

Ранее: $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m).$

Конструкция Плоткина: таблица истинности

• Заметим, что таблица истинности f состоит из двух частей: при $x_1=0$ и при $x_1=1$.

$$\operatorname{Eval}(f) = \left(\frac{\operatorname{Eval}^{[x_1=0]}(f)}{\operatorname{Eval}^{[x_1=1]}(f)}\right)$$

Про обозначения: $\operatorname{Eval}(f)$ — таблица для всей функции (вектор значений, если точнее), $\operatorname{Eval}^{[x_1=0]}(f)$ — кусок таблицы при $x_1=0$, $\operatorname{Eval}^{[x_1=1]}(f)$ — кусок таблицы при $x_1=1$. Они нам после этого доказательства больше не понадобятся.

• Причём $\operatorname{Eval}^{[x_1=0]}(f) = \operatorname{Eval}(g)$, а $\operatorname{Eval}^{[x_1=0]}(f) \oplus \operatorname{Eval}^{[x_1=1]}(f) = \operatorname{Eval}(h)$. Это всё следует из ранее полученного утверждения. Если мы подставим $x_1=0$, то останется только g — первое равенство очевидно. Если же мы рассмотрим $\operatorname{Eval}^{[x_1=1]}(f)$, то получим $\operatorname{Eval}(g+h)$, но если туда прибавить ещё раз $\operatorname{Eval}(g)$, то останется только $\operatorname{Eval}(h)$ (поскольку 1+1=0 в \mathbb{F}_2) — получили второе равенство.

• Таким образом, $\mathrm{Eval}(f) = (\mathrm{Eval}(g) \mid \mathrm{Eval}(g) \oplus \mathrm{Eval}(h)).$ Палочка по центру — конкатенация векторов.

Конструкция Плоткина: вывод

Теперь собираем всё это в одно важное утверждение.

Если дана $f(x_1,...,x_m)$, причём $\deg f \leq r$, то можно её разделить:

$$f(x_1,...,x_m) = g(x_2,...,x_m) + x_1h(x_2,...,x_m)$$

Причём мы уже знаем, что $\deg g \leq r$ и $\deg h \leq r-1$, если $\deg f \leq r$

Также известно, что $\text{Eval}(f) = (\text{Eval}(g) \mid \text{Eval}(g) \oplus \text{Eval}(h)).$

Заметим, что Eval(f) – кодовое слово (как и для g и h).

Тогда:
$$c = \text{Eval}(f) \in \text{RM}(r, m)$$
 (т.к. $\deg f \leq r$)
$$u = \text{Eval}(g) \in \text{RM}(r, m-1)$$
 (т.к. $\deg g \leq r$)
$$v = \text{Eval}(h) \in \text{RM}(r-1, m-1)$$
 (т.к. $\deg h < r-1$)

Напомню, что $\mathrm{RM}(r,m)$ включает в себя **все** функции (их таблицы истинности, если точнее) от m аргументов и степени не выше r. Очевидно, наши годятся.

Теорема. Для всякого кодового слова $c \in RM(r, m)$ можно найти $u \in RM(r, m-1)$ и $v \in RM(r-1, m-1)$, такие что $c = (u \mid u+v)$.

Что здесь важно отметить — оба наших новых кодовых слова u,v получились «меньше», чем исходное c.

Это позволяет, во-первых, устраивать индукцию, чем мы скоро и займёмся. Во-вторых, это позволяет легко строить большие порождающие матрицы, но мы этим не будем заниматься.

Конструкция Плоткина

3.2 Минимальное расстояние

Хотим найти минимальное расстояние для кода RM(r,m)

Минимальное расстояние

$$d = \min_{c \in C, c \neq 0} w(c)$$

Предположим, что $d = 2^{m-r}$ и докажем по индукции.

База: $\mathrm{RM}(0,m)$ — единственный бит повторён 2^m раз. Очевидно, $w(\underbrace{11...1}) = 2^m = 2^{m-0} \geq 2^{m-r}.$

Случай RM(0,m) мы разбирали раньше, но я напомню. Здесь длина сообщения равна $k=\sum_{i=0}^r C_m^i=C_m^0=1$, а длина кода $n=2^m$. Причём мы просто берём один бит и повторяем его 2^m раз (в таблице истинности).

Замечу, что не рассматриваю второй случай $w(\mathfrak{00...0})$, поскольку он нам не нужен для расчёта минимального расстояния. Вариант с нулевым вектором явно выкидывается, см. определение d выше.

Гипотеза: Если $v \in \text{RM}(r-1,m-1), \text{ то } w(v) \geq 2^{m-r}.$

Шаг: Хотим доказать для $c \in RM(r, m)$.

$$\begin{split} w(c) &\stackrel{(1)}{=} w((u \mid u \oplus v)) \stackrel{(2)}{=} w(u) + w(u \oplus v) \geq \\ &\stackrel{(3)}{\geq} w(u) + (w(v) - w(u)) = w(v) \stackrel{IH}{\geq} 2^{m-r} \blacksquare \end{split}$$

Теперь немного объяснений.

Переход (1): используем конструкцию Плоткина, чтобы разбить c на конкатенацию двух кодовых слов поменьше.

Переход (2): $w((x \mid y)) = w(x) + w(y)$. Вес это всего лишь число ненулевых элементов, поэтому нет разницы как мы будем группировать части вектора.

Переход (3): $w(u \oplus v) \ge w(v) - w(u)$. Если у нас в v стоит w(v) бит, то прибавив к нему u, мы сможем изменить (обнулить) не больше w(u) бит. Возможно появится больше единиц, но нас интересует нижняя граница.

Переход (IH): предположение индукции в чистом виде.

До этого мы доказали, что расстояние между кодами не может превышать 2^{m-r} . Однако из этого не следует, что код с таким весом действительно существует. Поэтому чтобы завершить доказательство того, что минимальное расстояние $d=2^{m-r}$, нужно показать сущестование такого кода.

Дано: $RM(r, m), 0 \le r \le m$

Хотим: такой $c \in \text{RM}(r, m)$, что $w(c) = 2^{m-r}$

Рассмотрим функцию:

$$f(x_1, x_2, ..., x_m) = \prod_{i=1}^r x_i = x_1 x_2 ... x_r$$

Очевидно, $\deg(f) \leq r$, а значит она подходит под требования $\mathrm{RM}(r,m)$. В её таблице истинности ровно 2^{m-r} строк, когда f(...)=1:

Небольшое пояснение: функция равна единице тогда и только тогда, когда $x_1=x_2=\ldots=x_r=1$. Получается, r аргументов из m зафиксированы, но другие могут меняться произвольно. Получается как раз 2^{m-r} вариантов. На этом доказательство о минимальном весе можно завершить.

3.3 Параметры

Теперь можно подвести итоги исследования свойств. Для бинарного кода $\mathrm{RM}(r,m)$:

Свойства и параметры

Kod с весом 2^{m-r}

- 0 < r < m
- Длина кода: 2^m
- Длина сообщения: $k = \sum_{i=0}^r C_m^i$
- Минимальное расстояние: $d = 2^{m-r}$
- Корректирующая способность: $t=2^{m-r-1}-1$, поскольку $t=\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{2^{m-r}}{2}-\frac{1}{2}\right\rfloor=\left\lfloor2^{m-r-1}-0.5\right\rfloor=2^{m-r-1}-1$

- Существует порождающая матрица G для кодирования, она позволяет делать так: C(x) = xG. Но я, как обычно, её избегаю. Рекомендую почитать «Коды Рида-Маллера: Примеры исправления ошибок», если интересно.
- Проверочная матрица H совпадает с порождающей для $\mathrm{RM}(m-r-1,m)$, но это я это доказывать не собираюсь. Однако доказательство можно найти в «Reed-Muller Codes: Theory and Algorithms», раздел Duality.

Возможеные
варианты

r	0	1	2	3	4
1	k = 1 $n = 2$ $t = 0$	k = 2 $n = 2$ $t = 0$	_	_	_
2	k = 1 $n = 4$ $t = 1$	k = 3 $n = 4$ $t = 0$	k = 4 $n = 4$ $t = 0$		_
3	k = 1 $n = 8$ $t = 3$	k = 4 $n = 8$ $t = 1$	k = 7 $n = 8$ $t = 0$	k = 8 $n = 8$ $t = 0$	_
4	k = 1 $n = 16$ $t = 7$	k = 5 $n = 16$ $t = 3$	k = 11 $n = 16$ $t = 1$	k = 15 $n = 16$ $t = 0$	k = 16 $n = 16$ $t = 0$

У красных кодов минимальное расстояние d равно единице — они совершенно бесполезны, там количество кодов равно количеству сообщений; у желтых кодов d=2 — они могут определить наличие ошибки, но не могут её исправить. Для всех остальных кодов d=2(t+1).

Напоминание: k — длина сообщения, n — длина кода, а t — количество ошибок, которое код точно сможет исправить. Заодно о параметрах кода: m — количество переменных у функции (очень влияет на длину кода), а r — максимальная степень многочлена (очень влияет на длину сообщения, и соотвественно надёжность кода), причём $r \leq m$. Конечно, таблицу можно продолжать и дальше.

W кстати, случай m=0, k=0 (не влез) будет собой представлять колирование единственного бита совершенно без изменений.

4 Декодирование

Этот код является линейным кодом, к нему применимы все обычные (и неэффективные методы):

• Перебор по всему пространству кодовых слов в поисках ближайшего. Этот способ применим ко всем кодам, но никто в здравом уме им не пользуется.

Как линейный код

• С использованием синдромов: $s = rH^T$. Здесь s — синдром, r — полученное сообщение, H — проверочная матрица. Этот метод обычен для линейных кодов.

Эти способы нужно иметь в виду, но о них было рассказано и без меня, так что я их пропущу.

4.1 Алгоритм Рида

Начать стоит с нескольких определений, без которых алгоритм Рида объяснить не получится.

Определения

- 1. Пусть $A \subseteq \{1, ..., m\}$ для $m \in \mathbb{N}$
- 2. Подпространство $V_A\subseteq \mathbb{F}_2^m$, которое обнуляет все v_i , если $i\notin A$: $V_A=\{v\in \mathbb{F}_2^m: v_i=0\ \forall i\notin A\}$
- 3. Аналогично для $V_{\bar{A}}$, где $\bar{A}=\{1,...,m\}\setminus A$: $V_{\bar{A}}=\{v\in\mathbb{F}_2^m:v_i=0\ \forall i\in A\}$

Пример:

- Пусть $m = 3, A = \{1, 2\}$, тогда...
- $\mathbb{F}_2^m = \{$ 000, 001, 010, 011, 100, 101, 110, 111 $\}$ все 8 векторов этого пространства
- $V_A = \{ \mathtt{000}, \mathtt{010}, \mathtt{100}, \mathtt{110} \} \; (v_3 = 0 \; \forall v)$ обнулилась третья позиция, первые две остались
- $\bar{A} = \{1, 2, 3\} \setminus A = \{3\}$
- $V_{\bar{A}} = \{$ 000, 001 $\}$ $(v_1 = v_2 = 0 \ \forall v)$ осталась только третья позиция, остальные обнулились.

Смежные классы

Если фиксировано $V_A\subseteq \mathbb{F}_2^m$, то для каждого $b\in \mathbb{F}_2^m$ существует смежный класс V_A+b :

$$(V_A + b) = \{v + b \mid v \in V_A\}$$

Утверждается, что если брать $b \in V_{\bar{A}}$, то полученные смежные классы будут все различны (и это будут все смежные классы). Почему все смежные классы (V_A+b) можно получить именно перебором $b \in V_{\bar{A}}$ можно найти в разделе «Дополнительные доказательства» из пдфки [ссылка]

Теперь, наконец, сам алгоритм Рида с объяснением, что тут происходит. Почему он именно такой и почему это работает — см. раздел (на русском) «Reed's Algorithm: Unique decoding up to half the code distance» [A] в пдфке.

Декодирует сообщение u, если использовался $\mathrm{RM}(r,m)$. Для $\mathrm{RM}(2,2)$: $f(x_1,x_2)=u_{\{1,2\}}x_1x_2+u_{\{2\}}x_2+u_{\{1\}}x_1+u_{\varnothing}.$

Алгоритм Puda для кода RM(r,m)

$$\begin{array}{l} \mathbf{Data:} \ vector \ y = (y_z \in \mathbb{F}_2 \mid z \in \mathbb{F}_2^m) \\ \mathbf{for} \ t \leftarrow r \ \mathbf{to} \ 0 \ \mathbf{do} \\ & \mathbf{foreach} \ A \subseteq \{1,...,m\} \ with \ |A| = t \ \mathbf{do} \\ & c = 0 \\ & \mathbf{foreach} \ b \in V_{\bar{A}} \ \mathbf{do} \\ & \begin{vmatrix} c + = \left(\sum\limits_{z \in (V_A + b)} y_z\right) \ \mathrm{mod} \ 2 \\ & \mathbf{end} \\ & u_A \leftarrow \mathbf{1} \ [c \geq 2^{m-t-1}] \\ & \mathbf{end} \\ & y - = \mathrm{Eval} \left(\sum\limits_{\substack{A \subseteq \{1,...,m\} \\ |A| = t}} u_A \prod_{i \in A} x_i \right) \\ & \mathbf{end} \\ & \mathbf{end} \end{array}$$

На вход поступает бинарный вектор y длины 2^m . Это вектор значений функции, возможно с ошибками (но их не больше, чем $t=2^{m-r-1}-1$). Цель — восстановить все коэффициенты при многочлене вида $f(x_1,...,x_m)=u_\varnothing+u_1x_1+x_2x_2+...+u_{1,2,...,r}x_{1,2,...,r}$, где $\deg f\leq r$. Обратите внимание, что для индексов при u используются подмножества $A\subseteq\{1,...,m\}, |A|\leq r$, причём каждый u_A умножается на моном $\prod_{i\in A}x_i$.

Будем восстанавливать сначала коэффициенты u_A при старших степенях, потом поменьше и так пока не восстановим их все. Начинаем с t=r. Хотим восстановить все коэффициенты при мономах степени t. Для этого перебираем все A, |A| = t и для каждого восстанавливаем коэффициент u_A при $x_{A_1} x_{A_2} ... x_{A_t}$.

Чтобы восстановить коэффициент, нужно перебрать все смежные классы вида $(V_A + b)$:

$$\begin{split} V_A &= \{v \in \mathbb{F}_2^m \\ &: v_i = 0 \, \forall i \notin A \} \\ b &\in \{v \in \mathbb{F}_2^m \\ &: v_i = 0 \, \forall i \in A \} \end{split}$$

Считаем количество (c) смежных классов, в которых $\sum_{z\in (V_A+b)} y_z=1\pmod 2$. Если это количество больше порогового значения, то считаем, что $u_A=1$, иначе же $u_A=0$. Пороговое значение (2^{m-t-1}) здесь половина от числа смежных классов. Таким образом, если большинство сумм дало 1, то $u_A=1$, иначе $u_A=0$.

Затем мы вычитаем из y (вектор значений функции) всё найденное на этой итерации, после чего переходим к мономам меньшей степени. Повторять до восстановления всех коэффициентов.

4.1.1 Пример

Пример

Ранее: 011 кодируется как 1100 при помощи RM(1,2) (см. самый первый пример).

Положим $y_{00} = 1, y_{01} = 1, y_{10} = 0, y_{11} = 0$ — именно так, поскольку 1100 — вектор значений, который мы сейчас распаковываем обратно в таблицу истинности. В индексе при y находится вектор значений переменных, а его (y) значение — значение функции при этих аргументах.

Здесь
$$m=2$$
, значит $A\subseteq \{1,2\}$. Причём $r=1$, т.е. $|A|\le 1$.

Как происходит кодирование, схематически:

$$\mathbf{101} \leadsto (f(x_1, x_2) = x_1 + 1) \leadsto \begin{vmatrix} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{vmatrix} \leadsto \begin{vmatrix} y_{00} = & 1 \\ y_{01} = & 1 \\ y_{10} = & 0 \\ y_{11} = & 0 \end{vmatrix} \leadsto \mathbf{1100}$$

Теперь начинаем декодирование.

Шаг 1/3: $t = 1, A = \{1\}$

- Здесь $V_A=\{{\tt 00,10}\}$ (меняется только первый бит) , $V_{\bar A}=\{{\tt 00,01}\}$ (первый бит обнулился) . Нужно рассмотреть два смежных класса—по одному на каждый вектор из $V_{\bar A}$.
- $(V_A + 00) = \{00, 10\}$, cymma: $y_{00} + y_{10} = 1 + 0 = 1$
- $(V_A + 01) = \{01, 11\}$, cymma: $y_{01} + y_{11} = 1 + 0 = 1$
- Итого: $u_A = u_{\{1\}} = 1$

Шаг 2/3: $t = 1, A = \{2\}$

- ullet Здесь $V_A=\{{\tt 00,01}\}, V_{ar{A}}=\{{\tt 00,10}\}.$ Нужно рассмотреть два смежных класса по одному на каждый вектор из $V_{ar{A}}.$
- $(V_A + 00) = \{00, 01\}$, cymma: $y_{00} + y_{01} = 1 + 1 = 0$
- $(V_A + \mathbf{10}) = \{\mathbf{10}, \mathbf{11}\}$, cymma: $y_{\mathbf{10}} + y_{\mathbf{11}} = 0 + 0 = 0$
- Итого: $u_A = u_{\{2\}} = 0$

Перед переходом к t=0, нужно вычесть из y вектор значений следующей функции:

$$g(x_1,x_2)=u_{\{2\}}x_2+u_{\{1\}}x_1=0x_2+1x_1=x_1$$

Здесь мы берём все u, полученные при t=1, домножаем каждую на соответствущие ей x-ы и получаем функцию от m переменных.

Вычислим $\mathrm{Eval}(g)$: $\begin{array}{c|cccc} x_1 & x_2 & g(x_1, x_2) \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$

Очень важно, чтобы у вас во всех таблицах истинности (в т.ч. той, которая использовалась при кодировании для получения y) был одинаковый порядок строк. Иначе чуда не выйдет.

Тогда $y \leftarrow y - \mathrm{Eval}(g) = \mathtt{1100} \oplus \mathtt{0011} = \mathtt{1111}.$ Полезно заметить, что в \mathbb{F}_2 сложение и вычитание — одно и то же.

Теперь $y_{00} = 1, y_{01} = 1, y_{10} = 1, y_{11} = 1$

 $\mathbf{\Pi}$ родолжение \mathbf{n} римера: t=0

Шаг 3/3: $t = 0, A = \emptyset$

- ullet Здесь $V_A=\{ullet 00\},$ но $V_{\bar A}=\{ullet 00,01,10,11\}.$ Нужно рассмотреть **четы- ре** смежных класса.
- $(V_A + 00) = \{00\}$, cymma: $y_{00} = 1$
- $(V_A + 01) = \{01\}$, cymma: $y_{01} = 1$
- $(V_A + 10) = \{10\}$, cymma: $y_{10} = 1$
- $(V_A + 11) = \{11\}$, cymma: $y_{11} = 1$
- Итого: $u_A = u_{\emptyset} = 1$

Получили $u_{\{2\}}=0, u_{\{1\}}=1, u_{\varnothing}=1.$ Это значит, что исходный многочлен был таков:

$$f(x_1,x_2)=u_{\{2\}}x_2+u_{\{1\}}x_1+u_\varnothing=0+x_1+1,$$

а исходное сообщение: 011, как и ожидалось.

Время работы

Утверждается, что время работы алгоритма — $O(n \log^r n)$, где $n = 2^m$ — длина кода.

5 Домашнее задание

Замечание: каких-либо требований на методы решения нет, но если используете код — приложите его. Различных способов решить существует больше одного.

Номер варианта можете определять как $1 + ((5n + 98) \mod 2)$, но главное напишите его и своё имя.

Для кодирования использовался тот же порядок строк в таблице истинности, что и в остальной презентации; аргументы идут по столбцам слева направо по возрастанию номера. При формировании сообщения, слагаемые сортируются лексиографически, а затем по убыванию степени (см. примеры в презентации).

Вариант 1

- 1. Закодировать сообщение: 1001.
- 2. Декодировать код, если ошибок нет: 1010, использовался RM(1,2).

3. Декодировать код, полученный с ошибками: 1101 1010, использовался $\mathrm{RM}(1,3)$

Вариант 2

- 1. Закодировать сообщение: 0101.
- 2. Декодировать код, если ошибок нет: 0110, использовался RM(1,2).
- 3. Декодировать код, полученный с ошибками: 1111 0100, использовался $\mathrm{RM}(1,3)$

6 Источники

- 1. https://arxiv.org/pdf/2002.03317.pdf великолепный обзор, очень рекомендую.
- 2. http://dha.spb.ru/PDF/ReedMullerExamples.pdf очень хорошо и подробно, но используется подход через матрицы, а не через полиномы, а это не весело.
- 3. https://en.wikipedia.org/wiki/Reed-Muller_code кратко, чётко, понятно, но не описано декодирование.
- 4. https://ru.bmstu.wiki/Коды_Рида-Маллера в целом всё есть, но написано очень непонятно;

Это вольный перевод раздела V-A из «Reed-Muller Codes: Theory and Algorithms» с моими комментариями и некоторыми дополнительными доказательствами.

A Reed's Algorithm: Unique decoding up to half the code distance

В этом разделе описывается алгоритм Рида для $\mathrm{RM}(r,m)$. Он исправляет любые ошибки, вес которых не превышает 2^{m-r-1} , половину минимального расстояния кода.

Для подмножества $A\subseteq\{1,...,m\}$ определим моном $x_A=\prod_{i\in A}x_i$, где x_i — аргументы булевой функции [напр., $x_{\{1,2\}}=x_1x_2$]. Также будем использовать $V_A:=\{z\in\mathbb{F}_2^m:z_i=0\ \forall i\notin A\}$ для обозначения подпространства в \mathbb{F}_2^m размерности |A|, т.е. V_A это подпространство, в котором для всех векторов z зафиксированы биты $z_i=0$ при $i\notin A$. Для подпространства V_A (в пространстве \mathbb{F}_2^m) существует $2^{m-|A|}$ смежных класса вида $V_A+b:=\{z+b\mid z\in V_A\}$, где фиксировано $b\in F_2^m$ [доказательство далее]. Тогда для любого $A\subseteq\{1,...,m\}$ и $b\in\mathbb{F}_2^m$ мы имеем

$$\sum_{z \in (V_A + b)} \operatorname{Eval}_z(x_A) = 1,$$

а для любых $A \nsubseteq B$,

$$\sum_{z \in (V_A + b)} \operatorname{Eval}_z(x_B) = 0$$

Эти две суммы над \mathbb{F}_2 [т.е. 1+1+1=1]. Первая сумма вытекает из того, что $\operatorname{Eval}_z(x_A)=1$ если и только если $z_i=1\ \forall i\in A$, причём существует только один такой $z\in (V_A+b)$ [доказательство далее]. Для доказательства второй суммы, нужно заметить, что поскольку $A\not\subseteq B$, то $\exists i\in A\setminus B$, а значит бит z_i не влияет на значение $\operatorname{Eval}_z(x_B)$. Отсюда, $\operatorname{Eval}_{z,z_i=0}(x_B)=\operatorname{Eval}_{z,z_i=1}(x_B)$, а значит все единички в этой сумме взаимоуничтожатся.

Предположим, что битовый вектор $y=(y_z\mid z\in\mathbb{F}_2^m)$ — зашумлённая версия кодового слова $\mathrm{Eval}(f)\in\mathrm{RM}(r,m)$, такого что y и $\mathrm{Eval}(f)$ отличаются не более чем в 2^{m-r-1} позициях. Алгоритм Рида позволяет восстановить исходное кодовое слово из y, извлекая коэффициенты полинома f. Поскольку $\deg f\leq r$, мы всегда это можем записать $f=\sum_{A\subseteq\{1,\ldots,m\},|A|\leq r}u_Ax_A$, где u_A — коэффициенты соответствующих мономов. Алгоритм Рида сначала извлекает все коэффициенты при монмах степени r, затем при степени r-1, и так далее пока не найдёт их все.

Чтобы восстановить коэффициент u_A при |A|=r [при мономе степени r], алгоритм Рида вычисляет сумму $\sum_{z\in (V_A+b)} y_z$ для каждого из 2^{m-r} смежных классов подпространства V_A , а затем выбирает коэффициент большинством голосов¹ среди этих 2^{m-r} сумм. Если там больше единиц, чем нулей, то восстаналиваем $u_A=1$, иначе $u_A=0$. Заметим, что если $y=\mathrm{Eval}(f)$, т.е. ошибки нет, то:

$$\sum_{s \in (V_A + b)} y_z = \sum_{s \in (V_A + b)} \operatorname{Eval}_z \left(\sum_{\substack{B \subseteq \{1, \dots, m\} \\ |B| < r}} u_B x_B \right) = \sum_{\substack{B \subseteq \{1, \dots, m\} \\ |B| < r}} u_B \sum_{s \in (V_A + b)} \operatorname{Eval}_z(x_B).$$

Из полученных ранее равенств и при условии, что $B\subseteq\{1,...,m\}$ и $|B|\leq r=|A|$, получаем $\sum_{z\in (V_A+b)} \mathrm{Eval}_z(x_B)=1$ тогда и только тогда, когда B=A [из равенства: $A\subseteq B$, из ограничения: $|B|\leq |A|$]. Отсюда $\sum_{z\in (V_A+b)} y_z=u_A$ для всех 2^{m-r} смежных классов вида V_A+b если $y=\mathrm{Eval}(f)$. Поскольку мы допустили, что y и $\mathrm{Eval}(f)$ отличаются не более чем в 2^{m-r-1} позициях, есть меньше чем 2^{m-r-1} смежных классов, в которых $\sum_{z\in (V_A+b)} y_z \neq u_A$. После голосования большинством среди этих 2^{m-r} сумм, мы найдём правильное значение u_A .

После вычисления всех коэффициентов при мономах степени r, мы можем посчитать:

$$y' = y - \operatorname{Eval}\left(\sum_{\substack{B \subseteq \{1,\dots,m\}\\|B|=r}} u_B x_B\right).$$

Это зашумленная версия кодового слова $\mathrm{Eval}(f-\sum_{B\subseteq\{1,\ldots,m\},|B|=r}u_Bx_B)\in\mathrm{RM}(r-1,m),$ и количество оошибок в y' меньше чем 2^{m-r-1} из предположения. Тогда мы можем аналогичным образом восстановить все коэффициенты при мономах степени r-1 используя y'. Повторять эту процедуру пока не будут восстановлены все коэффициенты f.

Теорема. При декодировании кода RM(r,m) для фиксированного r и растущего m, алгоритм Рида корректно устраняет любую ошибку c весом Хэмминга не больше 2^{m-r-1} за $O(n\log^r n)$ по времени, где $n=2^m$ — длина кода.

[в источнике она без доказательства, но вы можете прочитать алгоритм ниже и попытаться доказать это самостоятельно]

¹В оригинале — «performs a majority vote»; я не смог придумать лучшего перевода.

Algorithm 1: Reed's algorithm for decoding RM(r, m)

 $\begin{aligned} \mathbf{Data:} & \text{ Parameters } r \text{ and } m \text{ of the RM code, and a binary vector} \\ & y = (y_z \mid z \in \mathbb{F}_2^m) \text{ of length } n = 2^m \\ \mathbf{Result:} & \text{ A codeword } c \in \text{RM}(r,m) \\ & t \leftarrow r \\ \mathbf{while} & t \geq 0 \text{ do} \\ & | \text{ for each } subset \ A \subseteq \{1,...,m\} \ \text{ with } |A| = t \text{ do} \\ & | \text{ Calculate } \sum_{z \in (V_A + b)} y_z \text{ for all the } 2^{m-t} \text{ cosets of } V_A \\ & | num1 \leftarrow \text{ number of cosets } (V_A + b) \text{ such that } \sum_{z \in (V_A + b)} y_z = 1 \\ & | u_A \leftarrow \mathbf{1} \left[num1 \geq 2^{m-t-1} \right] \\ & \mathbf{end} \\ & y \leftarrow y - \text{Eval} \left(\sum_{A \subseteq \{1,...,m\}, |A| = t} u_A x_A \right) \\ & t \leftarrow t - 1 \end{aligned}$ \mathbf{end} $c \leftarrow \text{Eval} \left(\sum_{A \subseteq \{1,...,m\}, |A| \leq r} u_A x_A \right)$ $\mathbf{return} \ c$

Подсказка: «coset» — смежный класс.

В оригинале $\mathbf{1}[\cdot]$ описана как «indicator function» (характеристическая функция), но для меня это несёт мало смысла в этом контексте. Впрочем, из доказательства понятно, что здесь должно иметься ввиду:

$$\mathbf{1} \left[num1 \ge 2^{m-t-1} \right] = \begin{cases} 1, & num1 \ge 2^{m-t-1} \\ 0, & num1 < 2^{m-t-1} \end{cases}$$

А.1 Дополнительные доказательства

Далее я подробно доказываю некоторые утверждения, которые не были мне совершенно очевидны, и которые я не смог доказать в четыре слова чтобы включить в основной текст.

Лемма. Для подпространства V_A (размерности |A| в пространстве \mathbb{F}_2^m) существует $2^{m-|A|}$ смежных класса вида $V_A+b:=\{z+b\mid z\in V_A\},$ где фиксировано $b\in F_2^m$.

Доказательство. Из теоремы Лагранжа, известно что $|G|=|H|\cdot [G:H]$, где $H\subseteq G$, а [G:H] — число различных смежных классов. В нашем случае, $H=V_A, G=\mathbb{F}_2^m$. Тогда $|V_A|=2^{\dim V_A}=2^{|A|}$. Таким образом получаем:

$$[G:H] = \frac{|G|}{|H|} = \frac{|F_2^m|}{|V_A|} = \frac{2^m}{2^{|A|}} = 2^{m-|A|} \qquad \Box$$

Лемма. Eval $_z(x_A)=1$ если и только если $z_i=1\ \forall i\in A,$ причём существует только один такой $z\in (V_A+b).$

Доказательство. Во-первых, $\operatorname{Eval}_z(x_A) = \operatorname{Eval}_z(x_{A_1}x_{A_2}...x_{A_k})$ по определению x_A . Конечно же, оно будет верно если и только если $x_{A_1} = x_{A_2} = ... = x_{A_k} = 1$. Другими словами, $\forall i \in A \quad z_i = 1$, если подставить значения вектор z на место переменных x. Таким образом, первая часть доказана.

Напомню определение V_A :

$$V_A = \{ z \in \mathbb{F}_2^m \mid z_i = 0 \, \forall i \notin A \}$$

Теперь докажем существование вектора. Пусть искомый вектор существует и равен $z=v+b,v\in V_A$. Требуется, чтобы $z_i=1\ \forall i\in A$. Т.е. $v_i+b_i=1$, а значит $v_i=1-b_i$ (при $i\in A$, конечно). Такой v действительно существует в подпространстве V_A , потому что определение никак не ограничивает элементы $v_i,i\in A$.

Единственность следует из того, что все остальные элементы v обязательно обнуляются по определению V_A ($v_i=0$, если $i\notin A$). Теперь можно сказать, что $v_i=\begin{cases} 1+b_i, & i\in A\\ 0, & i\notin A \end{cases}$ и никак иначе, из чего получаем единственность искомого z=v+b.

Лемма. Pазмерность V_A равна |A|.

Доказательство. Это почти очевидное утверждение. Если рассмотреть каждый из векторов в V_A , то у него могут меняться только те координаты, которые не обнулены, и их ровно |A|. Получается по одному базисному вектору на каждый элемент из |A|.

Следующая теорма необходима для эффективной реализации алгоритма Рида на нормальном языке программрования.

Теорема. Пусть $A = \{1, ..., m\} \setminus A$. Для фиксированного A, множество смежных классов $\{V_A + b \mid b \in V_{\bar{A}}\}$ будет содержать их все, причём все различны.

Доказательство. Здесь используются верхние индексы, никакого возведения в степень.

Сначала докажем, что все эти смежные классы различны. Рассмотрим любые два: (V_A+b^1) и (V_A+b^2) , где $b^1,b^2\in V_{\bar A}$ и $b^1\neq b^2$. Можно сказать, что векторы b^1 и b^2 отличаются хотя бы в одном бите, назовём его i-ым. Причём $i\in \bar A$, поскольку все другие биты в $V_{\bar A}$ обнулены. Покажем, что

любые векторы $x \in (V_A + b^1)$ и $y \in (V_A + b^2)$ тоже будут отличаться в i-ом бите.

$$\begin{aligned} x &= v^1 + b^1 & y &= v^2 + b^2 & b^1 \neq b^2 \\ x_i &= v_i^1 + b_i^1 & y_i &= v_i^2 + b_i^2 & b_i^1 \neq b_i^2 \end{aligned}$$

Заметим, что $v_i^1=v_i^2=0$, поскольку $v_1,v_2\in V_A$, но $i\notin A$. Получается, что $x_i=0+b_i^1$ и $y_i=0+b_i^2$, причём $b_i^1\neq b_i^2$. Таким образом $x\neq y$ для любых $x\in (V_A+b^1),y\in (V_A+b^2)$.

Теперь докажем, что мы перечислили все смежные классы. Как доказано ранее, их всего $2^{m-|A|}$. С другой стороны, $|V_{\bar{A}}|=2^{|\bar{A}|}=2^{m-|A|}$. Поскольку все элементы множества различны, то оно содержит все смежные классы.

А.2 Реализация алгоритма

Замечание: этот код действительно реализует алгоритм Рида, но он использует не те же соглашения, что даны в презентации (можете проверить на примерах). Если вы собираетесь использовать его в ДЗ, убедитесь описать, чему соответствуют биты и как у вас выглядит таблица истинности.

```
import itertools, math
                                                                     return evaluate(lambda: all subsets(r, m), m, u)
__all__ = ['encode', 'decode', 'code_info']
                                                                  # Возвращает все векторы из подпространства V\subseteq \mathbb{F}_2,
                                                                  # если даны базисные векторы для V.
# Возвращает длину сообщения k = \sum_{i=0}^r C_m^i, корректирующую
\hookrightarrow способность t=2^{m-r-1}-1 и длину кода n=2^m
                                                                  def _subspace(basis):
                                                                     for i in range(2**len(basis)):
def code_info(r, m):
                                                                         result = 0
                                                                         for mask in basis:
  >>> code_info(1, 2)
                                                                             if (i & 1) = 1:
  {'k': 3, 'd': 2, 't': 0, 'n': 4}
                                                                                 result |= mask
  >>> code_info(2, 4)
                                                                             i \gg = 1
  {'k': 11, 'd': 4, 't': 1, 'n': 16}
                                                                         vield result
  return {'k': sum(math.comb(m, i) for i in range(0, r+1)),
                                                                  # Возвращает все векторы из подпространства V_A\subseteq \mathbb{F}_2^m
           'd': 2**(m-r), 't': 2**(m-r - 1) - 1, 'n': 2**m}
                                                                  def subspaceV_A(_m, A):
# Возвращает \{A\subseteq \{0,...,m-1\}: |A|=t\}
                                                                     >>> [bin(i) for i in subspaceV_A(3, 0b10)]
def subsets(m, t):
                                                                     ['0b0', '0b10']
                                                                     >>> [bin(i) for i in subspaceV_A(3, 0b101)]
  >>> [bin(i) for i in subsets(3, 1)]
                                                                     ['0b0', '0b1', '0b100', '0b101']
  ['0b1', '0b10', '0b100']
  >>> [bin(i) for i in subsets(3, 2)]
                                                                    basis = []
  ['0b11', '0b101', '0b110']
                                                                    mask = 1
  >>> [bin(i) for i in subsets(3, 3)]
                                                                    while mask ≤ A:
  ['0b111']
                                                                        if (A & mask) \neq 0:
                                                                             basis.append(mask)
  for i in itertools.combinations(range(0, m), t):
                                                                         mask <<= 1
      # i содержит выбранные биты, ровно t штук.
                                                                     return _subspace(basis)
      yield sum(1 << j for j in i)</pre>
                                                                  # Возвращает все векторы из подпространства V_{ar{A}}
# Возвращает \{A\subseteq \{0,...,m-1\}: |A|\leq r\}
                                                                  def subspaceV_minusA(m, A):
def all_subsets(r, m):
                                                                     >>> [bin(i) for i in subspaceV_minusA(3, 0b10)]
  >>> [bin(i) for i in all_subsets(3, 3)]
                                                                     ['0b0', '0b1', '0b100', '0b101']
  ['0b0', '0b1', '0b10', '0b100', '0b11', '0b101', '0b110',
                                                                     >>> [bin(i) for i in subspaceV_minusA(3, 0b101)]

    '0b111']

                                                                     ['0b0', '0b10']
  return itertools.chain.from_iterable(
                                                                    basis = []
      subsets(m, t) for t in range(0, r+1))
                                                                     for i in range(m):
# Вычисляет \operatorname{Eval}\left(\sum_{A\in As}u_{A}x_{A}\right)
                                                                        mask = 1 \ll i
def evaluate(get_As, m, u):
                                                                         if (A & mask) = 0:
                                                                             basis.append(mask)
                                                                     return _subspace(basis)
  f(x_0,x_1,x_2) = x_0x_2 будет иметь вектор значений 00000101
  >>> bin(evaluate(lambda: [0b101], 3, {0b101: 1}))
                                                                  # Алгоритм Рида по псевдокоду, который был в статье
  '0b101'
                                                                  def decode(r, m, y):
  f(x_0, x_1) = 1 + x_1 будет иметь вектор значений 1100
                                                                     Попробуйте изменить здесь бит и запустить тесты снова!
  >>> bin(evaluate(lambda: [0b00, 0b10], 2, {0:1, 2:1}))
  '0b1100'
                                                                     >>> decode(2, 4, 0b1000111010001110)
                                                                     ('0b1000111010001110', [1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0])
  result = 0
                                                                    u = [None] * (2**m)
  for z in range(2**m):
      summ = 0
      for A in get_As():
                                                                    while t \ge 0:
          # Вычисляю x_A = x_{A_1} x_{A_2} ... x_{A_k}, подставляя в
                                                                         for A in subsets(m, t):
           \hookrightarrow качестве x_i = z_i
                                                                             for b in subspaceV_minusA(m, A):
          # Это равно единице тогда и только тогда, когда
                                                                                 coset = (v + b for v in subspaceV_A(m, A))
           \hookrightarrow все биты из A также стоят в z.
           xProduct = 1 if (z \& A) = A else 0
                                                                                  # s = \sum_{z \in (V_A + b)} y_z
          summ += u[A] * xProduct
                                                                                  s = sum((y \gg z) \& 1  for z  in coset)
      result = (result << 1) | (summ % 2)
                                                                                 if (s \% 2) = 1:
  return result
                                                                                      num1 += 1
                                                                             u[A] = int(num1 \ge 2**(m - t - 1))
# Кодирует сообщение u при помощи кода \mathrm{RM}(r,m)
                                                                         y = y ^ evaluate(lambda: subsets(m, t), m, u)
def encode(r, m, msg):
  >>> bin(encode(2, 4, [1,1,1,0,0,1,1,0,1,0,0]))
                                                                     c = evaluate(lambda: all_subsets(r, m), m, u)
  '0b1000111010001110'
                                                                     msg = [u[A] for A in all_subsets(r, m)]
                                                                     return bin(c), msg
  u = [None] * (2**m)
                                                                  # «Тесты»:
  for i, A in zip(msg, all_subsets(r, m), strict=True):
                                                                  import doctest; doctest.testmod()
      u[A] = i
                                                                  # Try: `python -i ReedMuller.py
```