```
In [16]: import pandas as pd
         import numpy as np
         import seaborn as sb
         import matplotlib.pyplot as plt
         data = pd.read csv("iris.csv")
In [17]: data.head()
            sepal_length sepal_width petal_length petal_width
                                                          species
         0
                   5.1
                                         1.4
                              3.5
                                                    0.2 Iris-setosa
                   4.9
                              3.0
                                         1.4
                                                    0.2 Iris-setosa
                   4.7
                              3.2
                                         1.3
         2
                                                    0.2 Iris-setosa
                   4.6
                              3.1
                                         1.5
                                                    0.2 Iris-setosa
                              3.6
                   5.0
                                         1.4
          4
                                                    0.2 Iris-setosa
In [18]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 5 columns):
             Column
                           Non-Null Count Dtype
             sepal_length 150 non-null
                                            float64
             sepal_width 150 non-null
                                            float64
             petal_length 150 non-null
                                            float64
             petal_width 150 non-null
                                            float64
             species
                          150 non-null
                                            object
        dtypes: float64(4), object(1)
        memory usage: 6.0+ KB
In [19]: data.describe()
```

Out[19]:		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

Out[22]: sepal_length float64
sepal_width float64
petal_length float64
petal_width float64
species object
dtype: object

-- -

In [23]: data.tail()

Out[23]:

		sepal_length	sepal_width	petal_length	petal_width	species
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

In [29]: data.hist()
 plt.show()

In [75]: data.boxplot()
 plt.show()


```
sb.boxplot(
    data=data,
    x=None, y=None, hue=None, order=None, hue_order=None,
    orient=None, color=None, palette="Set2", saturation=0.75,
    width=0.8, dodge=True, fliersize=5, linewidth=None,
    whis=1.5, ax=None
)
```

Out[49]: <Axes: >


```
In [67]: plt.scatter(data["sepal_length"], data["sepal_width"])
    plt.xlabel('Sepal Length')
    plt.ylabel('Sepal Width')
    plt.show()
```



```
In [77]: sb.boxplot(data=data, x="sepal_length", y="species")
    plt.title('Distribution of sepal length')
```

Out[77]: Text(0.5, 1.0, 'Distribution of sepal length')

Distribution of sepal length


```
In [78]: Q1 = data.drop(columns=['species']).quantile(0.25)
    Q3 = data.drop(columns=['species']).quantile(0.75)
    IQR = Q3 - Q1

In [83]: outliers = ((data.drop(columns=['species']) < (Q1 - 1.5 * IQR)) | (data.drop(columns=['species']) > (Q3 + 1.5 * IQR)
    outlier_counts = outliers.sum()
In [84]: print(outlier_counts)
sepal_length    0
sepal_width    4
petal_length    0
```