Bonus lab report

team01 B09901026何式功 B09901030藍照淇 B09901035陳亮瑜

層級架構

DE2_115.sv

SW_Core.sv

SW_Wrapper.sv

Block diagram SW_Core.sv

Block diagram SW_Wrapper.sv

FSM SW_Core.sv

FSM SW_Wrapper.sv

Fitter summary

```
Fitter Summary
Fitter Status
                                    Successful - Thu May 26 12:55:42 2022
Quartus II 64-Bit Version
                                    15.0.0 Build 145 04/22/2015 SJ Full Version
Revision Name
                                    DE2-115
Top-level Entity Name
                                    DE2_115
                                    Cyclone IV E
Family
Device
                                    EP4CE115F29C7
Timing Models
                                   Final
Total logic elements
                                    50,932 / 114,480 ( 44 % )
    Total combinational functions
                                   49,956 / 114,480 ( 44 % )
    Dedicated logic registers
                                   12,112 / 114,480 ( 11 % )
Total registers
                                    12112
Total pins
                                    518 / 529 (98 %)
Total virtual pins
Total memory bits
                                   0/3,981,312(0%)
Embedded Multiplier 9-bit elements
                                  0 / 532 (0 %)
Total PLLs
                                    1/4(25%)
```

timing analyzer

	Clock	Setup	Hold	Recovery	Removal	Minimum Pulse Width
1	✓ Worst-case Slack	18.860	0.180	33.238	2.834	9.400
1	CLOCK2_50	N/A	N/A	N/A	N/A	16.000
2	CLOCK3_50	N/A	N/A	N/A	N/A	16.000
3	CLOCK_50	N/A	N/A	N/A	N/A	9.400
4	my_qsys altpll_0 sd1 pll7 clk[0]	18.860	0.180	33.238	2.834	19.707
2	✓ Design-wide TNS	0.0	0.0	0.0	0.0	0.0
1	CLOCK2_50	N/A	N/A	N/A	N/A	0.000
2	CLOCK3_50	N/A	N/A	N/A	N/A	0.000
3	CLOCK_50	N/A	N/A	N/A	N/A	0.000
4	my_qsys altpll_0 sd1 pll7 clk[0]	0.000	0.000	0.000	0.000	0.000

short-read mapping的原理是什麼

answer:

把short-read再切成更短的seed, 尋找reference sequence中和seed完全相同的位置,接著把seed擴展為原本的長度,此時shrot-read對應到多組candidate,利用SW algorithm可以得到各組candidate和short-read的相似分數。分數最高者即為和 short-read最相似的sequence。

但是也有可能選不同的seed, 所以也可以用不同的seed去找candidate, 再從各組 seed的最高分candidate中再選出一組最高分的。

用軟體實現SW algorithm的挑戰 & 硬體的優勢

answer:

差別在時間複雜度。

在軟體上實現SW algorithm, 當reference sequence和short-read sequence的長度變為n倍, 需要的運算時間會變成n^2倍。

硬體描述語言因為可以實現平行運算,當你short-read變成n倍時我也可以開n個module同時計算,所以需要的運算時間只會變成n倍。當然相對應的就是會使用更多的硬體資源。