This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

JP 404213827 A AUG 1992

m

(54) WAFER SURFACE WASHING UNIT FOR MANUFACTURE OF SEMICONDUCTOR

(11) 4-213827 (A) (43

(43) 4.8.1992 (19) JP

(21) Appi. No. 2-401235 (22) 11.12.1990

(71) NEC YAMAGATA LTD (72) HIDENORI TAKEDA

(51) Int. Cl. H01L21/304

PURPOSE: To evenly wash away the title wafer surface in the specific washing capacity constantly without deteriorating said capacity by a method wherein the distance between a wafer surface and an ultrasonic nozzle is specified to be the odd number times of a quarter (1/4) of the ultrasonic wavelength.

CONSTITUTION: A semiconductor wafer 11 fixed on a chuck 14 is driven while an ultrasonic nozzle 1 is scanned in the horizontal direction along the surface of the wafer 11 so that the ultrasonic-oscillated pure water may be discharged from the ultrasonic nozzle 1 so as to wash away the wafer 11. At this time, the ultrasonic nozzle 1 is operated both horizontally and vertically by the horizontally driving part 3 and the vertically driving part 4 respectively controlled by a horizontally controlling part 5 and a vertically controlling part 6. Otherwise, without vertically operating the ultrasonic nozzle 1, the ultrasonic wavelength can be fluctuated by an ultrasonic oscillator 3 so that the same washing capacity as that by operating the ultrasonic nozzle 1 may be developed.

7: ultrasonic signal line, 2: cup. 9: rectifier plate. 10: motor shaft. 12: pure water piping. 11: nozzie bracket. a: vertical operation. b: borizontal operation.

(19)日本国特許庁 (JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出職公開番号

特開平4-213827

(43)公開日 平成4年(1992)8月4日

(51) Int.Cl.*

雙別記号 庁内整理番号

技術表示箇所

H01L 21/304

3 4 1 N 8831-4M

S 8831-4M

審査請求 未請求 請求項の数2(全 5 頁)

(21)出顧番号

特職平2-401235

(71)出版人 390001915

FΙ

山形日本電気株式会社

(22)出版日

平成2年(1990)12月11日

山形県山形市北町4丁目12番12号

(72)発明者 武田 秀則

山形渠山形市北町四丁目12番12号山形日本

電気株式会社内

(74)代理人 弁理士 内原 晉

(54) 【発明の名称】 半導体製造用ウエーハ表面洗浄装置

(57)【要約】

【構成】半導体ウェーハ11をチャック14に固定して 回転させ、ウェーハ11の表面に沿って水平方向に超音 波ノズル1をスキャンさせ、この超音波ノズル1より超 音波振動を与えた解水を吐出させてウェーハ11の洗浄 を行なう。超音波ノズル1は、水平方向側響部5で制御 される水平方向駆動部3 によって水平動作すると同時 に、垂直方向朝御部6で制御される垂直方向駆動部4に よって上下動作も行なう。あるいは、超音波ノズル1の 上下動作は行なわずに、超音波発振器2により超音波の **波長を変えることによって、超音波ノズル1を動作させ** たと同じ洗浄能力を与えている。

【効果】ウェーハ11の表面と超音波ノズル1との距離 「が超音波波長の1/4の奇数倍になるようにすることに よって、常に一定な洗浄能力にてウェーハ表面を洗浄す ることができる。

【特許請求の範囲】

【牌求項1】 半導体ウェーハを回転させ、ウェーハ面 に沿って水平方向に超音波ノズルをスキャンさせ、この 超音波ノズルより超音波振動を与えた純水をウェーハ面 に吐出して洗浄を行なう半導体製造用ウェーハ表面洗浄 装置において、前配超音波ノズルを垂直方向にも動作さ せる垂直方向駆動部と、この動作量を制御する垂直方向 制御部とを有することを特徴とする半導体製造用ウェー ハ表面洗浄芸者。

【請求項2】 半導体ウェーハを回転させ、ウェーハ面 に沿って水平方向に超音波ノズルをスキャンさせ、この 超音波ノズルより超音波振動を与えた純水をウェーハ面 に吐出して洗浄を行なう半導体製造用ウェーハ表面洗浄 装置において、純水を振動させるための超音波の発振局 波数を可変できる超音波発振器を有することを特徴とす る半導体製造用ウェーハ表面洗浄装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体製造用ウェーハ表 洗浄装置に関する。

[0002]

【従来の技術】従来の半導体製造用ウェーハ表面洗浄装 責は、図7の構成図に示すように、超音波ノズル1、超 音波発振器 2、超音波信号ライン7、純水配管12、ノ ズルプラケット13、カップ8、チャック14、整液板 9を有し、超音波ノズル1とチャック表面との間には一 定な距離しが設けられている。この従来の半導体製造用 ウェーハ表面洗浄装置は、ウェーハ11をチャック14 に固定してモータシャフト10により回転させ、水平方 30 向制御部5で制御される水平方向駆動部によって超音波 ノズル1をウェーハ11と水平方向に、かつウェーハの 中心付近から外属に向けて左右に一定速度でスキャンさ せ、超音波ノズル1より超音波振動している純水をウェ ーハ11に吐出しながらウェーハ表面を洗浄していた。 [0003]

【発明が解決しようとする課題】この従来の装置では、 超音波ノズルとウェーハチャック表面との距離が固定さ れているため、ウェーハ表面に形成された各種解膜や配 維パターンの段差等によって、超音波ノズルとウェーハ 表面との距離しが超音波の波長人の1/4の偶数倍(L = (入/4) ×2 n、n=1, 2, 3 ······) となってし まう場合があり、入射波と反射波が互いに打消し合って **佐浄能力が著しく低下してしまうという問題があった。** [0004]

【集闘を解決するための手段】本発明の半導体製造用ウ ェーハ表面洗浄装置は、超音波により純水に複動を与え る超音波ノズルを垂直方向にも動作させる垂直方向駆動 部と、この動作量を制御する垂直方向制御部とを有する 洗浄装置、または純水を援動させるための超音波の発援 50 馬波数を可変できる超音波発振器を有する洗浄装置であ ろ.

【0005】次に、図4、図5を用いてその作用を説明 する。すなわち、図4において、一定な波長人の超音波 により、チャック表面と超音波ノズルとの距離を一定に してウェーハ表面を洗浄する場合、ウェーハ表面18と 超音波ノズル1との距離が超音波波長入の1/4の奇数 倍((λ/4)×n、1、3、5······2 n-1) になる と、超音波の純水入射波15と純水反射波16とが位相 10 が同じため互いに干渉して鈍水合成波17となり、接幅 がAから2Aへと増強されるため洗浄能力が大きく向上

【0006】また、図5のように、仮に超音波ノズル1 とウェーハ表面18の距離が超音波波長入の1/4の偏 数倍 ((\lambda / 4) × n 、n = 2 、4 、6 ······ 2 n) にな ると、純水入射波15と純水反射波16とが位相が18 0度ずれているため互いに打消し合い、純水合成波17 の振幅Aがほとんど常となるため、洗浄能力が著しく低 下する。そこで、超音波ノズルを垂直方向に超音波波長 面洗浄袋置に関し、特に超音波を用いたウェーハ表面の 20 入の1/4の奇数倍だけ上下動させることにより、超音 波相殺現象を打消すことになり、ウェーハ表面に均一に 超音波を放射することができる。

[0007]

【実施例】次に、本発明について図面を参照して説明す る。図1は本発明の実施例1の構成図である。図2は実 施例1の超音波ノズルの動作を説明する側面図、図3は その平面図である。本実施例は、従来構造に加えて垂直 方向駆動部4および垂直方向制御部6を新たに設置し、 超音波ノズル1が水平動作の他に垂直動作も行なえるよ うにしている。すなわち、カップ8内のチャック14に ウェーハ11を固定して回転させ、超音波ノズル1を超 音波波長入の1/4の奇数倍だけ連続的 (例えば入~ (3/4)×λ. あるいはん~(5/4)×λ)に上下 運動させながら水平方向に移動させることにより、ウェ 一八去面の羅羅や配蓋等の段券に影響されることなくか ェーハ表面を均一に洗浄することができる。

【0008】、図2および図3を用いてその動作を説明す る。超音波ノズル1を垂直方向に超音波波長入の(1/ 4) × (2 n-1) 程度揺動させ (n=1~10程 度)、ウェーハ中心から純水放射径4の1/2程度水平 方向に移動させて行く(図2)。 垂直方向は垂直方向制 毎部6にて任意のnを設定し、水平方向駆動部3では純 水放射径のウェーハ表面での重なり量が一定となるよう な非義形速度で微動させる。すなわち、純水放射径が大 きい時には早くスキャンし、純水放射径が小さい時には ゆっくりとスキャンさせる(図3)。この練返し動作を ウェーハセンターからウェーハエッジまで行なう。これ により、ウェーハ全面に均一に超音波を当てることが可 館となる。

【0009】次に、本発明の実施例2について説明す

.7 る。図6の特性図に示すように、超音波ノズルとウェー ハ表面との距離を変えることが不可能な場合は、超音波 発援器の発援する波長をT=t1+t2+t3+t4と し、ウェーハ表面と超音波ノズルとの距離が超音波波長 の1/4の奇数倍になるように、超音波波長を、例えば t 1>t 2>t 3>t 4となるように連続的に変化させ る。すなわち、本実施例は超音波ノズルより純水を水平 方向にスキャンさせながらウェーハ表面を洗浄する時、 同時に超音波波長を1/4波長だけ一定時間に変えるこ とができる超音波発振器を有している。従って、本実施 10 3 例では実施例1で用いた垂直方向駆動部および垂直方向 制御部は不要となる。また、水平方向のスキャンは、実 施例1と同様に純水放射径の重なり量が一定になるよう な非業形スキャンである。このように、超音波発振器の 超音波波長を変化させることによって、実施例1と同様 な効果を得ることができる。

[0010]

【発明の効果】以上説明したように本発明は、ウェーハ 表面と超音波ノズルとの距離が超音波波長の1/4の奇 数倍になるようにすることによって、洗浄能力を低下さ 20 せることがなく、常に一定な洗浄能力にてウェーハ表面 を均一に洗浄することが 可能であるという効果を有す . る。

【図面の簡単な説明】

- 【図1】本発明の実施例1の構成図である。
- 【図2】本発明の実施例1の動作説明図である。

- 【図3】本発明の実施例1の他の動作説明図である。
- 【図4】本発明の作用を説明する原理図である。
- 【図5】本発明の作用を説明する他の原理図である。
- 【図 6】 本発明の実施例 2 に用いる超音被発振器の特性 図である。

【図7】従来の洗浄装置の構成図である。

【符号の説明】

- 1 超音波ノズル
- 2 超音波発摄器
- 3 水平方向駆動部
- 4 垂直方向驱動部
- 5 水平方向新賀部
- 6 垂直方向制御部
- 7 超音波信号ライン
- 8 カップ
- 9 整流板
- 10 モータシャフト
- 11 ウェーハ
- 12 純水配管
- 13 ノズルブラケット
- 14 チャック
- 15 純水入射波
- 16 純水反射波
- 17 純水合成波
- 18 ウェーハ表面

[21]

[图2]

(5)

特開平4-213827

[四7]

