Math 118. Combinatorics. Spring 2013

Problem Set 2. Due on Wednesday, 4/24/2013.

- 1. Give direct proofs (bijective or using generating functions, or both) of the following statements:
 - (a) The number of partitions of n into parts congruent to $\pm 1 \mod 3$ equals the number of partitions of n where every part appears at most twice.
 - (b) The number of partitions of n into parts congruent to $\pm 1 \mod 6$ equals the number of partitions of n into distinct parts congruent to $\pm 1 \mod 3$.
- 2. Let f(n) (respectively, g(n)) be the number of partitions $\lambda \vdash n$ into distinct parts, such that the largest part λ_1 is even (respectively, odd). Prove that

$$f(n) - g(n) = \begin{cases} 1, & \text{if } n = k(3k+1)/2 \text{ for some } k \ge 0\\ -1, & \text{if } n = k(3k-1)/2 \text{ for some } k \ge 1\\ 0, & \text{otherwise.} \end{cases}$$

- 3. Let e(n) = # of partitions of n with an even number of even parts, o(n) = # of partitions of n with an odd number of even parts. Show that e(n) o(n) = # of self-conjugate partitions of n. Recall that λ is self-conjugate if $\lambda = \lambda'$.
- 4. (*) Let f(n) be the number of partitions of 2n whose Young diagram can be tiled with n dominoes. For instance, (4,3,3,3,1) is such a partition. Prove that f(n) is equal to the number of ordered pairs (λ, μ) of partitions satisfying $|\lambda| + |\mu| = n$.