COMP 15 Data Structures Balanced Trees — AVL Trees

Balanced Trees

- •A "balanced" binary search tree is one with a condition that is (1) easy to maintain, and (2) ensures that the depth of the tree is on the order of log **N**.
- A simple idea is to require that the left and right subtrees have the same height...

Balanced Trees: a bad binary tree

Balanced Trees

•Another balance condition could be to insist that every node must have left and right subtrees of the same height: too rigid to be useful: only perfectly balanced trees with 2 -1 nodes would satisfy the condition (even with the guarantee of small depth).

•An *AVL* tree (Adelson-Velskii and Landis) is a compromise. It is the same as a binary search tree, but with *added invariant*: for every node, the height of the left and right subtrees can differ only by 1 (and an empty tree has a height of -1).

Not an AVL Tree

•Height information is kept for each node, and the height is almost log N in practice.

- When we insert into an AVL tree, we have to update the balancing information back up the tree
- •We also have to maintain the AVL property tricky! Think about inserting 6 into the tree: this would upset the balance at node 8.

 As it turns out, a simple modification of the tree, called rotation, can restore the AVL property.

- •After insertion, only nodes on the path from the insertion might have their balance altered, because only those nodes had their subtrees altered.
- •We will re-balance as we follow the path up to the root updating balancing information.

•We will call the node to be balanced, α

- •Because any node has at most two children, and a height imbalance requires that α 's two subtrees' heights differ by two, there can be four violation cases:
- 1. An insertion into the left subtree of the left child of α .
- 2. An insertion into the right subtree of the left child of α .
- 3. An insertion into the left subtree of the right child of α .
- 4. An insertion into the right subtree of the right child of α .

AVL Trees: rotations

- •For "outside" cases (left-left, right-right), we can do a "single rotation"
- For "inside" cases (left-right, right, left), we have to do a more complex "double rotation."

 k_2 violates the AVL property, as X has grown to be 2 levels deeper than Z. Y cannot be at the same level as X because k_2 would have been out of balance before the insertion. We would like to move X up a level and Z down a level (fine, but not strictly necessary).

Visualization: Grab k_1 and shake, letting gravity take hold. k_1 is now the new root. In the original, $k_2 > k_1$, so k_2 becomes the right child of k_1 . X and Z remain as the left and right children of k_2 and k_3 , respectively. Y can be placed as k_3 's left child and satisfies all ordering requirements.

Insertion of 6 breaks AVL property at 8 (not 5!), but is fixed with a single rotation (we "rotate 8 right" by grabbing 7 and hoisting it up)

It is a symmetric case for the right-subtree of the right child. k_1 is unbalanced, so we "rotate k1 left" by hoisting k2)

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Insert 3, 2, 1, 4, 5, 6, 7

AVL Trees: Single Rotation doesn't work for right/left, left/right!

Subtree Y is too deep (unbalanced at k_2), and the single rotation does not make it any less deep.

Instead of three subtrees, we can view the tree as four subtrees, connected by three nodes.

We can't leave k_2 as root, nor can we make k_1 root (as shown before). So, k_3 must become the root.

Double rotation also fixes an insertion into the left subtree of the right child (k_1 is unbalanced, so we first rotate k_3 right, then we rotate k_1 left)

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Before: Insert 3, 2, 1, 4, 5, 6, 7 Continuing: Insert 16, 15, 14, 13, 12, 11, 10, 8, 9

AVL Trees: How to Code

- Coding up AVL tree rotation is straightforward, but can be tricky.
- A recursive solution is easiest, but not too fast. However, clarity generally wins out in this case.
- To insert a new node into an AVL tree:
 - 1. Follow normal BST insertion.
 - 2. If the height of a subtree does not change, stop.
 - 3. If the height does change, do an appropriate single or double rotation, and update heights up the tree.
 - 4. One rotation will always suffice.
- Example code can be found here: http://www.sanfoundry.com/cpp-program-implement-avl-trees/

Other Balanced Tree Data Structures

- 2-3 tree
- AA tree
- AVL tree
- Red-black tree
- Scapegoat tree
- Splay tree
- Treap

Advanced Reading

Wikipedia article on self-balancing trees (be sure to look at all the implementations): http://en.wikipedia.org/wiki/Self-balancing binary search tree

Red Black Trees:

https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

YouTube AVL Trees: http://www.youtube.com/watch?v=YKt1kquKScY

References

Wikipedia article on AVL Trees: http://en.wikipedia.org/wiki/AVL_tree

Really amazing lecture on AVL Trees: https://www.youtube.com/ watch?v=FNeL18KsWPc

Assigned reading:

See Mon, 2/23/2015: http://www.cs.tufts.edu/comp/15/schedule/