Name:	Date:	

- 1. What is the **name** of the element that has the atomic symbol Na?
 - A) Nickel
 - Sodium B)
 - C) Neon
 - D) Nitrogen
 - E) Niobium
- 2. Choose the **FALSE** statement regarding lab safety.
 - A) The panic button should be used to bring emergency assistance to your lab only if it is safe to enter.
 - Teaching Assistants have the right to ask you to leave the lab for safety violations. B)
 - Goggles should be worn at all times, even after you have completed your experimental work.
 - Getting a head-start on the lab by coming in early before the TAs arrive is advisable, and will get you extra marks.
 - E) Emergency assistance on campus is most readily accessed by dialing 88.

You are not permitted to enter the lab without the TA present for supervision.

- 3. How many **atoms of potassium** would be present in 6.05 mL of a $2.582 \text{ mol } \text{L}^{-1}$ solution of potassium oxide?
 - A) 4.38×10^{23}
 - B) 9.67×10^{21}
 - Moles of K_2O = Conc. of K_2O × volume of K_2O = 2.582 mol L^{-1} × 0.00605 L = 0.0156₂₁₁ mol C) 2.61×10^{19}
 - D) 1.88×10^{22}
 - Moles of K = Moles of $K_2O \times 2 = 0.0312_{422}$ mol E) 4.35×10^{20}

Atoms of Na = moles of Na \times N_A (Avogadro's number) = $0.0312_{422} \text{ mol} \times (6.022 \times 10^{23} \text{ mol}^{-1}) = 1.88 \times 10^{22}$

- 4. Which of the following statements is **FALSE**?
 - A) Glucose $(C_6H_{12}O_6)$ and acetic acid (CH_3COOH) have the same empirical formula.
 - B) If only the percentages of each element that comprise a molecule are known a molar mass cannot be determined.
 - C) Mass is an intensive property.
 - D) The molecular formula does not determine the chemical properties of a compound.
 - E) Analysis of isotopically-enriched water can be used to deduce historical global temperatures.

The mass of a substance is dependent on how much substance is present. Therefore it is and extensive property.

- 5. What is the **density** of F₂ gas at 376 °C and 2.36 atm?
 - A) 7.25 g/L
 - B) 1.68 g/L PV = 1

$$PV = nRT$$
 $n = m/MM$ $d = m/V$

- C) 5.51 g/L
- D) 2.79 g/LE) 4.83 g/L

Substitute:
$$PV = \underline{mRT}$$
MM

Rearrange:
$$\frac{PMM}{RT} = \frac{m}{V}$$
 Substitute: $\frac{PMM}{RT} = d$

$$d = (2.36)(37.996) = 1.68 \text{ g/L}$$
$$(0.08206)(376+273.15)$$

- 6. A certain organic molecule contains only oxygen, carbon, and hydrogen. When 0.3869 g of the organic molecule is burned it produced 0.7729 g of CO₂ and 0.3165 g of H₂O. What is the **empirical formula** of the organic molecule? **Similar to Tutorial 1 Challenge Q**
 - A) $C_3H_6O_2$ Moles of C in organic molecule = Moles of CO_2
 - B) C_2H_4O Moles of CO_2 = mass of CO_2/MM_{CO2}
 - C) C_2H_6O = 0.7729 g / 44.009 g mol⁻¹ = 0.01756₂₃₁₆₈ mol
 - D) $C_3H_8O_2$
 - E) CH_2O Moles of H in organic molecule = $2 \times Moles$ of H_2O

$$2 \times \text{Moles of H}_2\text{O} = 2 \times \text{mass of H}_2\text{O/MM}_{\text{H}2\text{O}}$$

= $2 \times 0.3165 \text{ g} / 18.0148 \text{ g mol}^{-1} = 0.03513_{77756} \text{ mol}$

Mass of O in organic molecule = total mass – mass of C – mass of H = $0.3869 - (\text{moles of C} \times \text{MM}_{\text{C}}) - (\text{moles of H} \times \text{MM}_{\text{H}})$ = $0.3869 - (0.01756_{23168} \times 12.011) - (0.03513_{77756} \times 1.0079)$ = 0.1405_{42244} g

Moles of O = mass of O /
$$MM_O$$
 Therefore: $C_{0.01756}H_{0.03513}O_{0.008784}$
= 0.1405_{42244} g / 15.999 g mol⁻¹ = C_2H_4O

- 7. In the synthesis of SO_3 from S(s) and $O_2(g)$, water impurities result in production of H₂SO₃ and H₂SO₄ and decrease the percent yield for the synthesis of SO₃ to 84.56%. If 2.586 kg of sulfur is burned in 8.296 kg of oxygen (O₂), how much SO₃ gas would be obtained? $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$
 - A) 13.97 kg Moles of $S(s) = mass of S/MM_S$ divided by coefficient $= 2586 \text{ g} / 32.066 \text{ g mol}^{-1} = 80.64_{6167} \text{ mol} (40.32_{3083})$ B) 5.460 kg
 - C) 4.846 kg
 - D) 2.185 kg Moles of O_2 = mass of O_2/MM_{O_2} $= 8296 \text{ g} / 31.998 \text{ g mol}^{-1} = 259.2_{662} \text{ mol} \quad (86.42_{206})$ E) 9.936 kg

Therefore S(s) is limiting... moles of SO_3 produced = moles of $S(s) \times 84.56\%$ yield $= 80.64_{6167} \text{ mol} \times 84.56\% = 68.19_{4399} \text{ mol}$

Mass of SO_3 = moles of $SO_3 \times MM_{SO_3} = 68.19_{4399} \times 80.063 = 5459_{.8482}$ g = 5.460 kg

- 8. Which configurations correspond to **ground states** of **metallic** elements?
 - (ii) [He] $2s^1 2p^1$ (iii) [Ar] $4s^2 4p^1$ (i) [Ar] $4s^2 3d^{10}$
 - (iv) [Ne] $3s^2 3p^3$ (v) [Nel $3s^1$
 - A) v, ii (i)
 - ground state of Zn metal B) ii, iv (ii) excited state of Mg metal
 - C) i, iii (iii) excited state of Sc metal
 - **D)** i, v (iv) ground state of P (non-metal)
 - E) iii, iv (v) ground state of Na metal

- 9. The *emission* spectrum of atomic hydrogen can be divided into several well-separated series of lines, associated with particular transitions. The Paschen series, in the near infrared, contains all transitions ending at n = 3. Calculate the **longest wavelength** observed in the Paschen series.
 - A) 1.29 μm
 - B) 1.88 µm
 - C) 91.6 nm
 - D) 656 nm
 - E) $2.10 \, \mu m$

From E = hc/λ , longest wavelength = smallest energy Therefore, smallest transition ending in n = 3, $n = 4 \rightarrow n = 3$.

$$\begin{split} E &= R_{\rm H} \, (1/{n_{\rm i}}^2 - 1/{n_{\rm f}}^2) \\ &= 2.178 \times 10^{-18} / (1/(4)^2 - 1/(3)^2) \\ &= -1.058_{75} \times 10^{-19} \, {\rm J} \end{split}$$

E =
$$hc/\lambda$$

1.058₇₅ × 10⁻¹⁹ = (6.6256 × 10⁻³⁴)(2.9979 × 10⁸)/λ
= 1.876 × 10⁻⁶ = 1.88 μm

10. In an experimental set up for measuring the photoelectric effect in metals, using a laser emitting incident light at a wavelength of 2.840 nm, the following observations were made:

For sample A, no electrons were detected; for sample B, the kinetic energy of the electrons was 8.21×10^{-21} J, for sample C, the speed of the electrons was 7.12×10^5 m/s, and for sample D, the wavelength of the electrons was 1.46×10^{-9} m.

Rank the work functions (threshold energy) of these samples from highest to lowest.

- A) $A > D > B > C E_{incident} = hc/\lambda = (6.6256 \times 10^{-34})(2.9979 \times 10^{8})/(2.840 \times 10^{-9}) = 6.994 \times 10^{-19} J$
- B) A > B > D > C $E_{incident} = work function + KE$
- C) B > D > C > A
- D) D > B > C > A Sample A: no electrons ejected therefore work function > 6.994×10^{-17} J
- E) A > C > B > D

Sample B: work function =
$$6.994 \times 10^{-17} \text{ J} - 8.21 \times 10^{-21} \text{ J} = 6.99_3 \times 10^{-17} \text{ J}$$

Sample C: KE =
$$\frac{1}{2}$$
mu² = $\frac{1}{2}$ (9.10 × 10⁻³¹)(7.12 × 10⁵)² = 2.306 × 10⁻¹⁹
Therefore work function = 6.994 × 10⁻¹⁷ J - 2.306 × 10⁻¹⁹ = 6.97₁ × 10⁻¹⁷ J

Sample D: RECALL: an electron is not a photon and you must use DeBroglie equation
$$\lambda = h/m_e u; \ 1.460 \times 10^{-9} = (6.6256 \times 10^{-34})/(\ 9.10 \times 10^{-31}) \ u; \ u = 4.89_{69} \times 10^5 \ m/s \\ KE = \frac{1}{2}mu^2 = \frac{1}{2}(9.10 \times 10^{-31})(4.89_{69} \times 10^5)^2 = 1.13_{15} \times 10^{-19} \\ Therefore work function = 6.994 \times 10^{-17} \ J - 1.13_{15} \times 10^{-19} = 6.98_3 \times 10^{-17} \ J$$

- 11. Which one of the following statements is **FALSE?**
 - A) As the principal quantum number, *n*, increases, so does the average distance from the nucleus where the electron may be found.
 - B) As the wavelength of light increases, the energy decreases.
 - C) When l = 2, m_l can be -2, -1, 0, 1, or 2.
 - D) Light is emitted when electrons are promoted to higher energy levels.
 - E) The photoelectric effect occurs when light strikes the surface of a metal and electrons are ejected.

Light is absorbed when electrons are promoted to higher energy levels and emitted when electrons relax to lower energy levels.

- 12. Which one of the following is **NOT an allowed set** of quantum numbers (n, l, m_l, m_s) for an electron?
 - A) 2, 2, 1, $-\frac{1}{2}$

possible values of l = 0, ..., n - 1.

- B) $2, 1, -1, -\frac{1}{2}$
- C) $3, 2, 0, \frac{1}{2}$
- D) $3, 1, -1, \frac{1}{2}$
- E) $1, 0, 0, \frac{1}{2}$

- 13. What is the **maximum** number of electrons having the principal quantum n = 3 for a given atom?
 - For n = 3 shell, l = 0, 1, 2 therefore a total of 3 subshells;
 - B) 2
 - For l = 0, $m_l = 0$ therefore 1 orbital;
 - Proof by Eq. (a) For l = 1, $m_l = -1$, 0, 1 therefore 3 orbitals;
 - For l = 2, $m_l = -2, -1, 0, 1, 2$ therefore 5 orbitals;

Therefore a total of 9 orbitals exist for n = 3 and each orbital can contain up to 2 electrons for a total of 18 electrons.

- 14. Which of the following statements about periodic trends are **TRUE**?
 - (i) The bonds in a molecule of SO₃ are ionic.
 - (ii) The ions Ca²⁺ and S²⁻ are isoelectronic because they contain the same number of electrons.
 - (iii) The metallic character of elements in row three increases with atomic number.
 - (iv) The energy required for removing an electron from an atom in the gas phase is called the atom's ionization energy.
 - A) ii, iii
 - B) ii, iv
 - C) iii, iv
 - D) i, iii
 - E) i, iv
- i) FALSE. S is less electronegative than O because electronegativity
- increases up a group. Both are non-metals and therefore the bonds are polar covalent.
- ii) TRUE. Ca²⁺ and S²⁻ are isoelectronic and both have the same electron configuration as Ar.
- iii) FALSE. Metallic character increases going across a row from right to left. Therefore metallic character decreases with increasing atomic number in row 3.
- iv) TRUE. The energy required for removing an electron from an atom in the gas phase is called the atom's **ionization energy**.
- 15. Which of the following statements about periodic trends are **TRUE**?
 - (i) The ground-state electron configuration of Ca has no unpaired electrons.
 - (ii) The oxide of sulfur is a basic oxide.
 - (iii) Li loses electrons more easily than Cs.
 - (iv) The electronegativity of nitrogen is smaller than that of fluorine.
 - A) i, iv i) TRUE. Ca has two paired 4s electrons.
 - B) i, iii ii) FALSE. Metal oxides are basic, non-metal oxides are acidic.
 - C) ii, iv iii) FALSE. Ionization energy increases going up a group.
 - D) ii, iii iv) TRUE. Electronegativity increases going across a period
 - E) i, ii from left to right.

- 16. Which atom/ion has the largest radius?
 - A) Ba²⁺
 - B) Br

Rb⁺, Br⁻ and Kr are isoelectronic and have electron configurations resembling Kr.

- C) Rb^+
- S
- \overline{D}) Te²⁻

Te²⁻, and Ba²⁺ are isoelectronic and have electron configurations

E) Kr resembling Xe.

Radius generally increases going down a group and therefore Te^{2-} , and Ba^{2+} are likely largest. Te^{2-} would have the largest radius because Ba^{2+} has more protons pulling on the electrons (greater Z_{eff}).

- 17. Which atom has the **lowest** (least negative) electron affinity?
 - A) Mg

The electron is added to a new subshell and is very unfavourable.

- B) B
- C) Al
- D) S
- E) F

- 18. What is the **electron pair geometry** for the sulfite anion, SO_3^{2-} ?
 - A) Trigonal bypyramidal
 - B) Tetrahedral
 - C) Octahedral
 - D) Trigonal pyramidal
 - E) Trigonal planar

 AX_3E – electron pair geometry = tetrahedral

– molecular shape = trigonal pyramidal

- 19. Determine the **FALSE** statement regarding bonding.
 - A) NH₄Cl has only covalent bonding. Ionic bonding is also present.
 - B) The bonding in BaF_2 is ionic.
 - C) In a coordinate covalent bond, both electrons originate from one atom.
 - D) The bond in H₂ is non-polar (pure) covalent.
 - E) The bonds in CO_2 are polar covalent.
- 20. Consider the charge minimized Lewis structure for the bromate ion (BrO₃⁻). What is the average Br-O bond order, number of resonance structures for the ion and lone pairs of electrons on bromine (respectively)?

	vi ono on oronni.	10 (105p 0001 (01)).		
	bond	resonance	electron	
	<u>order</u>	structures	lone pairs	
A)	$^{4}/_{3}$	1	2	
A) B) C)	5/3	3	1	
C)	$\frac{5}{3}$	2	2	
D)	3	3	2	
E)	⁴ / ₃ • •	2	•• – 1	
	•0•		:o:	•••••
	- 11		Ī	ĬĬ
	- 11			
	• D •	••-	· ¬ · ·	! ••
	: Br—	-0:	BrO.	→ :Br==O
		••		••
	• 0		• 0 -	•••••
	.0.			•••

- 21. A series of molecules have the general formula $SbF_nCl_{(5-n)}$ where n = 0,1,2,3,4,5. How many **unique**, **non-polar** molecules exist for this series.
 - A) 2
 - B) 5
 - **C**) 4
 - D) 1
 - E) 3

The lone electron pairs on the terminal atoms have been omitted for clarity. They each possess 6 lone electrons.

- 22. Which of the following elements is **most electronegative**?
 - A) As
 - B) Si
 - C) Li
 - D) Ga
 - E) C1

Electronegativity increases up a group and from left to right.

- 23. In which of the following species would you expect to see the **largest, unequal** distribution of electron density.
 - A) H₂
 - B) LiBr
 - C) CsF
 - D) HCl
 - E) HI

Electronegativity increases up a group and from left to right. Cs is bottom left of the periodic table and F is top right. Therefore these will have the greatest difference in electronegativity and will have the largest unequal distribution of electron density with the most density on F (most electronegative) and least on Cs (least electronegative).

- 24. Determine the **FALSE** statement regarding the Lewis structure of the trifluorooxonium ion (OF_3^+)
 - A) The ion only has single bonds.
 - B) There are 6 bonding electrons within the ion.
 - C) The oxygen atom has a formal charge of +1.
 - D) The formal charge on all fluorine atoms is 0.
 - E) There are 11 lone pairs of electrons within the ion.

There are only 10 lone pairs of electrons.

- 25. Which of the following molecules would be linear? A) ${\rm IF_2}^+$

 - B)
 - SO_2 PCl_2^+ C)
 - H_2Se
 - D) E) NO_2^+

 $AX_2E_2\\$ Bent

 AX_2E Bent

 AX_2E Bent

 $AX_2E_2\\$ Bent

AX₂ Linear