Deep Learning with PyTorch

Advance Machine Learning 2024/2025

Teaching Assistant: Simone Alberto Peirone

Slide credits: Antonio Alliegro

Deep Learning with PyTorch

- Prerequisites:
 - Object Oriented Programming
 - Python
 - Numpy
 - Basic understanding of Deep Learning

Deep Learning Frameworks

(Facebook AI)

(Google, tensorflow.org)

(Facebook AI, pytorch.org)

Python Deep Learning API (keras.io)

Several Others...

Deep Learning Frameworks

(Facebook AI)

Python Deep Learning API (keras.io)

(Google, tensorflow.org)

(Facebook AI, pytorch.org)

Several Others...

(Facebook AI, pytorch.org)

• Why PyTorch?

(Facebook AI, pytorch.org)

(Python as main programming language)

- Why PyTorch?
 - Pythonic Nature:
 - Follows standard Python conventions,
 - Python developers should feel more confident with PyTorch than with any other DL framework

(Facebook AI, pytorch.org)

(Python as main programming language)

- Why PyTorch?
 - Pythonic Nature: ...
 - **Easy to learn**: intuitive syntax and similar to Numpy

(Facebook AI, pytorch.org)

(Python as main programming language)

- Why PyTorch?
 - Pythonic Nature: ...
 - Easy to learn: intuitive syntax and similar to Numpy
 - Strong Community: Find help on https://discuss.pytorch.org

PyTorch

https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#what-is-pytorch

- An Open Source Framework for Deep Learning (and Machine Learning)
- Deep Learning:
 - Mathematical computing on Multidimensional Arrays (aka Tensors)
 - Highly benefit from ParallelComputing

PyTorch

https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#what-is-pytorch

- Exploit Parallel Computing
- CPU: few cores that can handle a few threads at a time - not ideal for DL
- GPU:
 - Increased level of parallelism
 - Hundreds of cores that can handle thousands of threads simultaneously
 - e.g. NVIDIA RTX 3090 has 10496CUDA cores!

PyTorch

https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#what-is-pytorch

- PyTorch let us easily exploit GPUs' power
- Thus being a 'replacement for Numpy to exploit the parallelism offered by GPUs'
- Offering
 - Strong performance
 - Automatic Differentiation
 - High Flexibility

Tensors

- Tensors are the PyTorch counterpart of Numpy arrays
- Contain only numerical values
- Used to encode:
 - Signal to process (e.g. images, strings of text, videos, ...)
 - Internal states and parameter of neural networks
- All of PyTorch computation takes place on Tensors

Figure 3.1 A deep neural network learns how to transform an input representation to an output representation. (Note: The numbers of neurons and outputs are not to scale.)

Tensors

- Create a Tensor 't' of size (2,3) from scratch:
 - Zeros init:
 t = torch.zeros(size=(2,3), dtype=torch.float32)
 - Ones init: t = torch.ones(size=(2,3), dtype=torch.float32)
 - Random init:t = torch.rand(size=(2,3), dtype=torch.float32)
- Properties:
 - t.size() returns its shape OSS. size() is a method of the Tensor class! (not a property)
 - t.device whether it is store on CPU or GPU (+index)
 - t.dtype values type (e.g. torch.int8, torch.float32, torch.bool, ...)

1. Create a tensor from scratch in PyTorch

2. Check tensor 't' properties

Tensors

- From NumPy array to Tensor:
 - use torch.from_numpy() static method
 - line 36
- From Tensor to NumPy array:
 - use tensor.**numpy()** method
 - line 38
- Move tensor between CPU and GPU:
 - Tensor are initialized on CPU by default
 - o **tensor.device** to check where it is stored
 - o tensor.cuda() to move it on GPU:0
 - **tensor.cpu()** to move it on CPU

3. Numpy bridge

4. Move tensor to GPU, you need a CUDA capable device

- Define the neural network architecture
- While training:

- Define the neural network architecture
- While training:
 - 1. **Forward pass**: feed input data to the network to obtain the Network Prediction

- Define the neural network architecture
- While training:
 - 1. **Forward pass**: feed input data to the network to obtain the Network Prediction
 - 2. **Compute Loss**: compare Network Prediction with Ground Truth

- Define the neural network architecture
- While training:
 - 1. **Forward pass**: feed input data to the network to obtain the Network Prediction
 - 2. **Compute Loss**: compare Network Prediction with Ground Truth
 - 3. **Backward pass**: Chain Rule to compute the gradients of Network parameters w.r.t to the loss function (**PyTorch Autograd**)

- Define the neural network architecture
- While training:
 - Forward pass: feed input data to the network to obtain the Network Prediction
 - 2. **Compute Loss**: compare Network Prediction with Ground Truth
 - 3. **Backward pass**: Chain Rule to compute the gradients of Network parameters w.r.t to the loss function (**PyTorch Autograd**)
 - 4. **Update** the network parameters (**PyTorch Optimizer**)

- Define the neural network architecture
- While training:
 - 1. **Forward pass**: feed input data to the network to obtain the Network Prediction
 - 2. **Compute Loss**: compare Network Prediction with Ground Truth
 - 3. **Backward pass**: Chain Rule to compute the gradients of Network parameters w.r.t to the loss function (**PyTorch Autograd**)
 - 4. **Update** the network parameters (**PyTorch Optimizer**)
 - Repeat from 1... until convergence

Computational Graph

- The Computational Graph is a directed graph keeping track of all Operations performed on Variables
- To support 'Forward Pass' and 'Backward Pass'
- Nodes represent:
 - Variables: can feed their output into operations
 - Operations: can feed their output into other operations

PyTorch Autograd

- Do we need to build a Computational Graph by ourselves?
- No, Autograd takes care of it!
- Every operations applied to Variables is tracked by PyTorch through the Autograd tape
- Thus providing automatic differentiation

A graph is created on the fly

from torch.autograd import Variable

prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W x = Variable(torch.randn(20, 10))

x = Variable(torch.randn(1, 10))

PyTorch - Basic Components

- Network Architecture
 - Define a subclass of 'torch.nn.Module'
- Dataset
 - Define a subclass of 'torch.utils.data.Dataset'
- Loss Function + Optimizer
 - Network Prediction penalization + Update Network parameters
- Training Loop
 - Simple python script: sort of main function interconnecting all components

Network

- All neural networks (and layers) in PyTorch are a subclass of the torch
 Module class
 - o torch.nn.Module: base class for all neural network modules
 - Modules can also contain other Modules, allowing to nest them in a tree structure
 - https://pytorch.org/docs/stable/nn.html#torch.nn.Module
- Pre-defined models for addressing different tasks
 - https://pytorch.org/vision/stable/models.html

- Define a simple MLP
 - Two Fully Connected layers spaced out by ReLU activation function

```
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.fcl = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)

def forward(self, x):
    out = self.fcl(x)
    out = self.relu(out)
    out = self.fc2(out)
    return out
```

- Define a simple MLP
 - Two Fully Connected layers spaced out by ReLU activation function

initialization: instantiate linear layers and relu (encapsulated)

```
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.fcl = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)

def forward(self, x):
    out = self.fcl(x)
    out = self.relu(out)
    out = self.fc2(out)
    return out
```

- Define a simple MLP
 - Two Fully Connected layers spaced out by ReLU activation function

initialization: instantiate linear layers and relu (encapsulated)

```
import torch.nn as nn
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
   def __init__(self, input_size, hidden_size, num_classes):
       super(NeuralNet, self). init ()
       self.fcl = nn.Linear(input size, hidden size)
       self.relu = nn.ReLU()
       self.fc2 = nn.Linear(hidden size, num classes)
   def forward(self, x):
                                  forward function:
       out = self.fcl(x)
                                  describe the flow of input data (x)
       out = self.relu(out)
       out = self.fc2(out)
                                  through the network layers
       return out
```

Instantiate the neural network object

```
Instantiate
network object
⇒ model
```

```
input_size, hidden_size, num_classes = 784, 500, 10
model = NeuralNet(input_size=input_size, hidden_size=hidden_size, num_classes)
print('Our model:')
print(model)

Our model:
NeuralNet(
  (fcl): Linear(in_features=784, out_features=500, bias=True)
  (relu): ReLU()
  (fc2): Linear(in_features=500, out_features=10, bias=True)
)

# FORWARD
forward_res = model(img)
```

- Instantiate the neural network object
- Invoke forward on data

```
Instantiate
network object
⇒ model
```

```
input_size, hidden_size, num_classes = 784, 500, 10
model = NeuralNet(input_size=input_size, hidden_size=hidden_size, num_classes=num_classes)
print('Our model:')
print(model)

Our model:
NeuralNet(
   (fc1): Linear(in_features=784, out_features=500, bias=True)
   (relu): ReLU()
   (fc2): Linear(in_features=500, out_features=10, bias=True)
)
```

```
# FORWARD
forward_res = model(img)
```

calls network forward function on 'img' ⇒ logits

Data Reading

- Define Preprocessing
 - https://pytorch.org/docs/stable/torchvision/transforms.html
- Create a Dataset class
 - https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
- Choose a Sampling Strategy
 - https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

Dataset Class

```
In [8]: import torch
        import pandas as pd
        from torch.utils.data import DataLoader, Dataset
        from torchvision import transforms
        class DatasetMNIST(Dataset):
            def init (self, file path, transform=None):
                self.data = pd.read csv(file path)
                self.transform = transform
            def len (self):
                return len(self.data)
            def getitem (self, index):
                # load image as ndarray type (Height * Width * Channels)
                # be carefull for converting dtype to np.uint8 [Unsigned integer (0 to 255)]
                # in this example, i don't use ToTensor() method of torchvision.transforms
                # so you can convert numpy ndarray shape to tensor in PyTorch (H, W, C) --> (C, H, W)
                image = self.data.iloc[index, 1:].values.astype(np.uint8).reshape((1, 28, 28))
                label = self.data.iloc[index, 0]
                if self.transform is not None:
                    image = self.transform(image)
                return image, label
```

Dataset Class

- torch.data.Dataset: base class for all datasets
- Basic Methods to override:
 - o init(): initial processing, loading data in memory, ...
 - len(): returns the total number of samples in the dataset
 - o **getitem**(idx): given and index return a data sample from the dataset
- Transforms: pre-processing or data-augmentation to be applied on each sample

DataLoader

- PyTorch provides an efficient way to iterate a Dataset through
 DataLoader (torch.utils.data.DataLoader)
- Its constructor takes as input an object of type Dataset
- Provides:
 - Data Batching: we want to forward to our network batches of data (e.g. 32 images at a time)
 - Data Shuffling
 - Parallel Data Loading: multiple threads/workers loading data in parallel

DataLoader

Constructor takes as input an object of type Dataset

Example: Instantiating a DataLoader object

Loss

- In PyTorch there are some predefined Loss Function that we can use
- Examples are torch.nn.CrossEntropyLoss (classification) and torch.nn.MSELoss (regression)

```
In [1]: import torch
In [2]: import torch.nn
Instantiate
In [3]: loss_fn = torch.nn.CrossEntropyLoss()
In [4]: # define some stub tensors for network pred and ground truth
In [5]: pred = torch.rand(3, 5, requires_grad=True)
In [6]: ground_truth = torch.empty(3, dtype=torch.long).random_(5)
In [7]: # compute loss
In [8]: loss = loss_fn(pred, ground_truth)
In [9]: # now backward
In [10]: loss.backward()
```

Loss

- In PyTorch there are some predefined Loss Function that we can use
- Examples are torch.nn.CrossEntropyLoss (classification) and torch.nn.MSELoss (regression)

```
In [1]: import torch

In [2]: import torch.nn

In [2]: import torch.nn

In [3]: loss_fn = torch.nn.CrossEntropyLoss()

In [4]: # define some stub tensors for network pred and ground truth

In [5]: pred = torch.rand(3, 5, requires_grad=True)

In [6]: ground_truth = torch.empty(3, dtype=torch.long).random_(5)

In [7]: # compute loss

Compute

In [8]: loss = loss_fn(pred, ground_truth)

In [9]: # now backward

In [10]: loss.backward()
```

CrossEntropyLoss example - CrossEntropyLoss takes as input the network logits since it encapsulates a softmax op. inside!

Loss

- In PyTorch there are some predefined Loss Function that we can use
- Examples are torch.nn.CrossEntropyLoss (classification) and torch.nn.MSELoss (regression)

```
In [1]: import torch
                                                                                         In [12]: print("pred: ", pred)
                 In [2]: import torch.nn
                                                                                         pred: tensor([[0.7878, 0.1673, 0.6948, 0.4985, 0.4380],
Instantiate
                 In [3]: loss fn = torch.nn.CrossEntropyLoss()
                                                                                                 [0.8667, 0.6241, 0.0718, 0.2107, 0.5227],
                                                                                                 [0.0934, 0.7967, 0.5874, 0.6695, 0.9948]], requires grad=True)
    loss
                 In [4]: # define some stub tensors for network pred and ground truth
                                                                                         In [13]: print(pred.shape)
                 In [5]: pred = torch.rand(3, 5, requires_grad=True)
                                                                                         torch.Size([3, 5])
                 In [6]: ground truth = torch.emptv(3, dtype=torch.long).random (5)
                                                                                        In [14]: print("ground truth: ", ground truth)
                                                                                         ground truth: tensor([0, 3, 4])
                 In [7]: # compute loss
 Compute
                                                                                         In [15]: print(ground truth.shape)
                 In [8]: loss = loss_fn(pred, ground_truth)
                                                                                         torch.Size([3])
     loss
                 In [9]: # now backward
                 In [10]: loss.backward()
Backward
```

CrossEntropyLoss example - CrossEntropyLoss takes as input the network logits since it encapsulates a softmax op. inside!

Optimizer

- Updates network parameters depending on the gradients computed at the backward step (loss.backward() in previous slide)
- Optimizer constructor takes as inputs at least:
 - o parameters: parameters to optimize (e.g. a neural network)
 - Ir: learning rate to use in the update rule
- Basic method:
 - step(): update model parameters do this only after the loss.backward()

```
Instantiate
Optimizer
```

```
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
```

doc: https://pytorch.org/docs/stable/optim.html

Optimization Step

```
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
```

Training loop example

Just code...

```
criterion = nn.CrossEntropyLoss()
 1.
      optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
 2.
 3.
      for epoch in range(100): # loop over the dataset multiple times
 4.
 5.
          tot loss, tot samples = 0.0, 0
          for i, data in enumerate(train dataloader):
 6.
              # Step 1: Retrieving a batch of input from the dataloader
 7.
              inputs, labels = data
 8.
 9.
              tot samples += inputs.size(0)
10.
11.
              # Step 2: Zeroing the parameter gradients - always do this before doing loss.backward()!!!
12.
              optimizer.zero grad()
              # Step 3: forward (get network prediction)
13.
              outputs = model(inputs)
14.
15.
              # Step 4: compute loss
16.
17.
              loss = criterion(outputs, labels)
              # Step 5: Compute gradients for each of the model learnable parameters
18.
              loss.backward()
19.
20.
              # Step 4: Update model parameters according to the gradients
              optimizer.step()
21.
22.
              # logging, accumulating loss value for current epoch...
23.
              tot loss += (loss.data[0] * inputs.size(0))
24.
25.
          # End epoch here
           print("Epoch %d loss is: %.6f" % (epoch, (tot loss * 1.0 / float(tot samples))))
26.
      # End Training here
27.
```

It's your turn!

https://colab.research.google.com/drive/1jwBxRTNnu0oxkx6xGQ44UHxJ WVYw3jeX?usp=sharing