lespages y compiladore le parial - 2023/05/03

1. La siguiente gramática abstracta corresponde a un lenguaje para dar órdenes a un robot.

$$\langle ord \rangle ::= mover \langle int \rangle$$
 $\mid girar$
 $\mid si pos = \langle coord \rangle hacer \langle ord \rangle$
 $\mid si dir = \langle dir \rangle hacer \langle ord \rangle$
 $\mid \langle ord \rangle; \langle ord \rangle$
 $\langle int \rangle ::= \dots \mid -2 \mid -1 \mid 0 \mid 1 \mid 2 \mid \dots$
 $\langle dir \rangle ::= EO \mid NS$
 $\langle coord \rangle ::= (\langle int \rangle, \langle int \rangle)$

ver ejemplo intercambia la dirección actual ejecuta la orden si la posición actual es la dada

ejecuta la orden si la dirección actual es la dada ejecuta la primera orden y luego la segunda

Sea $D = \{NS, EO\}$ el conjunto de direcciones y sea $\Sigma = (\mathbb{Z} \times \mathbb{Z}) \times D$ el conjunto de estados. Escribí las ecuaciones semánticas con el siguente tipo: $[\![_]\!]$: $\langle ord \rangle \to \Sigma \to \Sigma$. Por ejemplo,

$$[\![\mathbf{mover}\ k]\!]((x,y),d) = \begin{cases} ((x+k,y),d) & \text{si } d = EO \\ ((x,y+k),d) & \text{si } d = NS \end{cases}$$

[mover Ic](
$$(x,y),d$$
) = { ($(x+ic,y),d$) si d = 60
($(x,y+ic),d$) si d = 60
($(x,y),d$) = { ($(x,y),d$) = si d = NS
[si pos = c hacer p]($(x,y),d$) = { [p]($(x,y),d$) si c=($(x,y),d$) si no
[si di=d hacer p]($(x,y),d$) = { [p]($(x,y),d$) si d=d'
($(x,y),d$) si no
[p;q]s=[q]([p]s)

2. Considerá la siguiente ecuación recursiva:

$$f(x) = \begin{cases} 0 & \text{si } x = 0\\ 8 - f(x - 2) & \text{si } x \neq 0 \end{cases}$$

Sea $F: (\mathbb{Z} \to \mathbb{Z}_{\perp}) \to (\mathbb{Z} \to \mathbb{Z}_{\perp})$ el funcional asociado a esa ecuación. ¿Existe $x \in \mathbb{Z}$ tal que $F^3(\perp)(x) = 10$?

$$\begin{array}{c} F f_{X=} \left\{ \begin{array}{c} 0 \\ 8 - f(x-z) \end{array} \right. & \text{si } x \neq 0 \end{array}$$

$$\begin{cases}
f^{2} + x = 1 \\
f^{2} + x =
\end{cases}
\begin{cases}
0 & \text{si } x = 0 \\
1 - 1 (x - 2) & \text{si } x \neq 0
\end{cases}$$

$$f^{2} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
1 - 1 (x - 2) & \text{si } x \neq 0
\end{cases}$$

$$f^{2} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
1 - 1 (x - 2) & \text{si } x \neq 0
\end{cases}$$

$$f^{2} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
4 - 1 + 1 + 1 + 1 + 1
\end{cases}$$

$$f^{2} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
1 - 1 + 1 + 1 + 1
\end{cases}$$

$$f^{2} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
1 - 1 + 1 + 1 + 1
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
1 - 1 + 1 + 1 + 1
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0 \\
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x = \begin{cases}
0 & \text{si } x \neq 0
\end{cases}$$

$$f^{3} + x \neq 0$$

No existe x tal que F3_1x=10.

- 3. Decidí si cada una de las siguientes afirmaciones es verdadera o falsa. Justificá tu respuesta.
 - (a) En cualquier predominio infinito siempre hay cadenas interesantes.
 - (b) Sea $f: P \to P'$ una función continua entre los predominios P y P', entonces $f(\sqcup_i x_i) \leqslant \sqcup_i (f(x_i))$, asumí que x_i es una cadena interesante.

(a) Falso IN con el orden discreto en un prodominio inpuito dende todo los elemento non maximales.

4. Considerá el lenguaje imperativo simple con fallas. Se
a \boldsymbol{c} el programa siguiente

while $x \neq 0$ do if x > 0 then d := 1 + d; x := x - 1 else fail

- (a) Escribí de la forma más sencilla posible la ecuación para $F(f)(\sigma)$ donde F es el funcional asociado al ciclo de ese programa.
- (b) Proponé un estado σ (dando los valores de x y d) tal que $F^1(\bot)(\sigma) \neq \bot$.

(a)
$$f \neq g = \begin{cases} f_* \text{ [if } x>0 \text{ then } d:=1+d_{x^*} = x-1 \text{ dist faill } g = s \text{ for } x=0 \end{cases}$$

$$\begin{cases} f_* \text{ [d}_2 = 3+d_{x^*} = x-1 \text{] } g = s \text{ for } x \neq 0 \end{cases} \text{ for } x \neq 0 \end{cases}$$

$$\begin{cases} f_* \text{ [faill } g = s \text{] } g = s \text{$$

$$F = \sum_{i=1}^{n} \sum_{j=1}^{n} \left[S | d = 1 + s d | x = s \times -1 \right] \quad Si \quad S \times \neq 0 \quad 6 \times 70$$

$$F = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \left[S | d = 1 + s d | x = s \times -1 \right] \quad Si \quad S \times \neq 0 \quad 6 \times 70$$

$$Si \quad S \times \neq 0 \quad Si \quad S \times \neq 0$$

$$Si \quad S \times \Rightarrow 0$$

$$F = \sum_{j=1}^{n} \sum_{j=1}^{n} S = \begin{cases} 1 \\ S = 0 \end{cases} \quad Si \quad S \times \neq 0 \end{cases}$$

$$Si \quad S \times \Rightarrow 0$$

- Decidí si las siguientes equivalencias son correctas. Si no lo son proponé contraejemplos concretos. Si lo son, hacé la demostración.
 - (a) catchin c with (fail; c') $\equiv c$; c'.
 - (b) catchin (c; fail) with $c' \equiv \operatorname{catchin} c \operatorname{with} c'$.

Recordá que en catchin c with c' se ejecuta c y si se produce una falla, entonces se ejecuta c' en el estado donde se produjo la falla.

Ecatchin c with (fail;c') DE

= [fail; (']+([c]o)

= [fail; c']+ [slx:0]

= [6|x =0]

= [c'] ([cD6)

= [x?=1]x([x:=0]s)

= [[x:=1]] x [6|x:0)

= [81 x201 x21]

[8|x:1]

Catching (cifai) with c'Do

= [c']+ ([c; fail]s)

= (c'D+ ([faild + lcDs)

= [x:=x+3]+ ([fuil]. [skip]6)

= [x;=x+1]+ ([fail]s)

= [x:=x+1]+ (aboit,6)

= [0|x:6x11]

Teatching o with 1 18

- Bratching skip with x:=x+n 10

= [x3=x+1]+ ([slap]s) = [x3=x+1]+ 6
= [x;=x+1] + 6
<u>-</u> σ.