2022-2023 学年第 1 学期

《 线性代数 》期末考试卷

3.3.	~	-	- 	
注	首	瑘.	IJП	
14	∞	Ŧ	ヘ火	ě

1.	共一	占道プ	ト題;
	<i>/</i> '		•/

- 2. 考试作答时间: 08:00-10:00;
- 3. 提交试卷格式为 PDF 文件, 命名方式为【班级+学号+姓名】;
- 4. 请提前在每张答题纸上页眉居中写明【班级-学号-姓名】等信息,并按照【x/y】 的格式写上页码号,所有题目要标注题号,并确保按照先后顺序排列,未作答题目也要标注题号及签名,并写上【此题无解答】,不允许遗漏题目;
- 5. 在答题纸上不需要抄题,但要写清题号。
- 6. 考前在答题白纸上书写以下文字: "本人已知悉并将遵守《线上考试诚信承诺书》相关要求。"

一、判断题(本题共 5×2 =10 分)

1.	若 n 维向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则 n 维向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线	性相	美.
		()
2.	如果两个向量组的秩相等,那么这两个向量组等价.	()
3.	如果齐次线性方程组有基础解系,那么它有无穷多个基础解系.	()
4.	若方阵 A, B 相似,则 A, B 有相同的特征值和特征向量.	()
5.	若 A,B 均为 n 阶正定矩阵,则 AB 也是正定矩阵.	()

二、单项选择题(本题共 7×3 =21 分)

Α.	$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$;	$\mathbf{b}. \ \alpha_1, \alpha_2, \alpha_1 + \alpha_2$	<i>t</i> ₃ ;
C.	$\alpha_1, \alpha_2, 2\alpha_1 - 3\alpha_2;$		D. $\alpha_2, \alpha_3, 2\alpha_2 +$	$-\alpha_3$.
2. 设 a	$\alpha_1 = (1, 1, 0, 0), \alpha_2 = (0, 0, 1)$	$(1,1), \ \alpha_3 = (1,$	$0,1,0), \ \alpha_4 = (1,1,$	1,1) ,
则它的	的极大无关组为()			
A. α_1	$\alpha_1, \alpha_2; \text{B.} \alpha_1, \alpha_2, \alpha_4;$	C. α_1, α_2	α_3 ; D. α_1, α_2	$,\alpha_3,\alpha_4$.
3. 设 <i>A</i>	为 3 阶方阵, 其特征	值为1,2,-	3,与之对应的	特征向量依次为
$P_1, P_2,$	P_3 , $ \% P = (P_3, P_2, P_1)$,	则 $P^{-1}AP$ =	: () .	
A. [$\begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$; B. $\begin{bmatrix} -3 \\ \end{bmatrix}$	1 ₂ ; C.	$\begin{bmatrix} 1 & & & \\ & 2 & & \\ & & -3 \end{bmatrix}; D$	$\begin{bmatrix} 2 & & \\ & 1 & \\ & & -3 \end{bmatrix}.$
4. 若向量	量组 (a+1, 2, -6),(1, a,	-3), $(1, 1, a)$	n-4)线性无关,	则 <i>a</i> 取值 ()
	D; B. 不等于 0; 为 <i>m×n</i> 矩阵,则当 <i>R</i> (A			<i>K</i> =0有非零解.
A. <i>n</i>	n; B. −1;	C. m;	D. 0.	
6. 设A	是 $m \times n$ 实矩阵,且 $R(x)$	4)=n,则二:	次型 $X^T(A^TA)X$	是().
A. 不	、定二次型; B. 半正定	定二次型; C.	正定二次型;	D. 负定二次型.
7. 若方	程组 <i>AX</i> =0 只有零解,贝	$ \exists AX = \beta, \ \exists$	其中β≠0	().
	必有无穷多解; 必定没有解;			

三、填空题(本题共 7×3=21 分)

- 2. 写出线性方程组 $x_1 + x_2 + x_3 + x_4 = 0$ 的解空间的一组基 , , . .
- 3. 设A,B 为满足AB=0的两个非零矩阵,则A的列向量组必是线性_____.
- 4. 设A为 3 阶方阵,其特征值为 1, 2, 3, 则 $(A^*)^{-1}$ 的特征值为 , , .
- 5. 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组 AX=0的通解为______.
- 6. 二次型 $\mathbf{f} = \mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2 + 2\mathbf{x}_1\mathbf{x}_2 + 2\mathbf{x}_1\mathbf{x}_3 + 2\mathbf{x}_2\mathbf{x}_3$ 所对应的矩阵A的迹 tr(A)为
- 7. 若 A 为 n 阶正定矩阵,B 为 n 阶半正定矩阵,则 A+B 是 矩阵.

四、 (本题共10分,每小题5分)

- 1. 讨论向量组 $\alpha_1 = (2,1,1)$, $\alpha_2 = (1,2,-1)$, $\alpha_3 = (-2,3,0)$ 的线性相关性.
- 2. 设A为n阶方阵, 其特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 求|A-E|.
- 五、(本题 12 分) 当λ取何值时,下面的线性方程组

$$\begin{cases} x_1 + x_2 - x_3 = 1, \\ 2x_1 + 3x_2 + \lambda x_3 = 3, \\ x_1 + \lambda x_2 + 3x_3 = 2 \end{cases}$$

- (1) 方程组有唯一解(不必求出唯一解);
- (2) 方程组无解;
- (3) 方程组有无穷多解,并求出其通解(用解向量形式表示).

六、(本题 13 分)

已知二次型 $f(x_1,x_2,x_3)=ax_1^2+ax_2^2+ax_3^2+4x_1x_2+4x_1x_3+4x_2x_3$,通过正交变换将二次型化成标准型 $f=6y_3^2$.

- (1) 写出此二次型对应的矩阵A;
- (2) 确定 a 的值;
- (3) 求一个正交变换 X = QY, 将二次型化为标准型 $f = 6y_3^2$.

七、(本题共13分)

- 1. (7分)设 γ_0 是非齐次方程组AX = b,($b \neq 0$)的一个解向量, $\alpha_1, \alpha_2, \cdots, \alpha_{n-r}$ 是对应齐次方程组AX = 0的一个基础解系,证明 γ_0 , $\gamma_0 + \alpha_1$, $\gamma_0 + \alpha_2$, \cdots , $\gamma_0 + \alpha_{n-r}$ 线性无关.
 - 2. (6分)设 $A \in n$ 阶实反对称阵 $A^T = -A$, E 为 n 阶单位阵, $X \in R^n$.

证明: (1) $X^T A X = 0$; (2) $|E - A| \neq 0$.