CAPÍTULO 12. COMPOSICIÓN DE CONSULTAS

*12.1). Hallar el salario medio y la edad media en años de los empleados que tienen comisión y los que no.

Solución:

SELECT 'CON COMISION', CURRENT DATE, AVG (SALAR),

AVG (YEAR (CURRENT DATE - FECNA))

FROM TEMPLE

WHERE COMIS IS NOT NULL

UNION

SELECT 'SIN COMISION', CURRENT DATE, AVG (SALAR),

AVG (YEAR (CURRENT DATE - FECNA))

FROM TEMPLE

WHERE COMIS IS NULL

Resultado (suponiendo que el CURRENT DATE vale 5.7.1990):

COL-1	COL-2COL-3	COL-4	
CON COMISION	1990-07-05	2664,28	36
SIN COMISION	1990-07-05	3285,00	36

12.2). Para los empleados que no tienen comisión obtener por orden alfabético el nombre y el cociente entre su salario y el número de hijos (como el ejercicio 6.3), pero si un empleado no tiene hijos, obtener el salario sin más, indicando este caso con un literal.

Solución:

SELECT NOMEM, SALAR / NUMHI, '(SALARIO / HIJOS)'

FROM TEMPLE

WHERE COMIS IS NULL AND NUMHI > 0

UNION

SELECT NOMEM, SALAR, '(SALARIO)'

FROM TEMPLE

WHERE COMIS IS NULL AND NUMHI = 0

ORDER BY 1

NOMEM	COL-2	COL-3
AGUIRRE, AUREO	4500,00	(SALARIO)
CAMPOS, ROMULO	2000,00	(SALARIO / HIJOS)
CAMPS, AURELIO	4500,00	(SALARIO / HIJOS)
FIERRO, CLAUDIA	4000,00	(SALARIO)
FLOR, DOROTEA	580,00	(SALARIO / HIJOS)
GALVEZ, PILAR	1900,00	(SALARIO / HIJOS)
GARCIA, AUGUSTO	4200,00	(SALARIO)
GIL, GLORIA	900,00	(SALARIO / HIJOS)
LARA, LUCRECIA	1850,00	(SALARIO)
LOPEZ, ANTONIO	1200,00	(SALARIO / HIJOS)
MARTIN, MICAELA	1800,00	(SALARIO)
MORA, VALERIANA	2100,00	(SALARIO / HIJOS)
MORAN, CARMEN	2150,00	(SALARIO / HIJOS)
MUÑOZ, AZUCENA	1750,00	(SALARIO)

PEREZ, JULIO	4400,00	(SALARIO)
POLO, OTILIA	3800,00	(SALARIO)
PONS, CESAR	1033,33	(SALARIO / HIJOS)
RUIZ, FABIOLA	1900,00	(SALARIO / HIJOS)
SANZ, CORNELIO	2025,00	(SALARIO / HIJOS)
VEIGA, JULIANA	750,00	(SALARIO / HIJOS)

12.3). Para los empleados que trabajan en la calle de Atocha y su salario supera al salario medio de su departamento, obtener por orden alfabético su nombre y su salario total (salario, o salario más comisión en los que la tengan).

Solución:

SELECT NOMEM, SALAR + COMIS

FROM TEMPLE E, TDEPTO D, TCENTR C

WHERE E.NUMDE = D.NUMDE AND D.NUMCE = C.NUMCE AND

SEÑAS LIKE '%ATOCHA%' AND SALAR > (SELECT AVG (SALAR)

FROM TEMPLE

WHERE NUMDE = E.NUMDE)

AND COMIS IS NOT NULL

UNION

SELECT NOMEM, SALAR

FROM TEMPLE E, TDEPTO D, TCENTR C

WHERE E.NUMDE = D.NUMDE AND D.NUMCE = C.NUMCE AND

SEÑAS LIKE '% ATOCHA%' AND SALAR > (SELECT AVG (SALAR)

FROM TEMPLE

WHERE NUMDE = E.NUMDE)

AND COMIS IS NULL

ORDER BY 1

Otra formulación usando la función escalar COALESCE:

SELECT NOMEM, COALESCE (SALAR + COMIS, SALAR)

FROM TEMPLE E, TDEPTO D, TCENTR C

WHERE E.NUMDE = D.NUMDE AND D.NUMCE = C.NUMCE AND

SEÑAS LIKE '%ATOCHA%' AND SALAR > (SELECT AVG (SALAR) FROM TEMPLE

WHERE NUMDE = E.NUMDE)

ORDER BY NOMEM

Resultado:

NOMEM	COL-2
AGUIRRE, AUREO	4200
DIEZ, AMELIA	3700
GARCIA, OCTAVIO	4600
LARA, DORINDA	3500
LASA, MARIO	4600
PEREZ, MARCOS	5300
SANZ, LAVINIA	3800
TEROL, LUCIANO	4000

12.4). Hallar por departamento la masa salarial total (suma de todos los salarios y comisiones del departamento) y el nombre, por orden alfabético.

En principio se podría pensar en formularla así:

SELECT	NOMDE, SUM (SALAR) + SUM (COMIS)
FROM	TEMPLE E, TDEPTO D
WHERE	D.NUMDE = E.NUMDE
GROUP BY	D.NUMDE, D.NOMDE
ORDER BY	NOMDE

Sin embargo esta solución no es correcta para los departamentos en que ningún empleado trabaje a comisión. Para corregir este defecto se podría reformular así:

SELECT	NOMDE, SUM (SALAR) + SUM (COMIS)
FROM	TEMPLE E, TDEPTO D
WHERE	D.NUMDE = E.NUMDE
GROUP BY	D.NUMDE, D.NOMDE
HAVING	COUNT (DISTINCT COMIS) > 0
, n. w. o. v	
UNION	
SELECT	NOMDE, SUM (SALAR)
SELECT FROM	NOMDE, SUM (SALAR) TEMPLE E, TDEPTO D
522201	
FROM	TEMPLE E, TDEPTO D
FROM WHERE	TEMPLE E, TDEPTO D D.NUMDE = E.NUMDE
FROM WHERE GROUP BY	TEMPLE E, TDEPTO D D.NUMDE = E.NUMDE D.NUMDE, D.NOMDE

Se podría también reformular con la ayuda de la función COALESCE:

SELECT	NOMDE,
	COALESCE (SUM (SALAR) + SUM (COMIS), SUM (SALAR))
FROM	TEMPLE E, TDEPTO D
WHERE	D.NUMDE = E.NUMDE
GROUP BY	NOMDE
ORDER BY	NOMDE

O también:

SELECT NOMDE,

SUM (COALESCE (SALAR + COMIS, SALAR))

FROM TEMPLE E, TDEPTO D WHERE D.NUMDE = E.NUMDE

GROUP BY NOMDE ORDER BY NOMDE

Resultado:

NOMDE	COL-2
DIRECCION COMERCIAL	9450
DIRECCION GENERAL	15500
FINANZAS	11100
ORGANIZACIÓN	2700
PERSONAL	12400
PROCESO DE DATOS	16200
SECTOR INDUSTRIAL	24750
SECTOR SERVICIOS	24600

12.5). Efectuar una explosión de la organización de departamentos. Es decir, para cada departamento obtener su nombre, el de los que dependen de él y el nivel al que dependen. Si un departamento depende directamente de otro este nivel será 1, si depende de uno que depende directamente de éste será 2, y así sucesivamente. Se considerará que un departamento depende de sí mismo a nivel 0. La primera columna del resultado será el nombre de un departamento, la segunda el de un departamento que depende de él, y la tercera el nivel al que depende. Considerar un máximo de 4 niveles de dependencia. Presentar el resultado por orden alfabético. Si de un departamento no depende ningún otro, aparecerá al menos dependiendo de sí mismo a nivel 0.

Solución:

NOMDE, NOMDE, 0 **SELECT TDEPTO FROM** UNION **SELECT** D0.NOMDE, D1.NOMDE, 1 **FROM** TDEPTO D0, TDEPTO D1 WHEREDO.NUMDE = D1.DEPDE UNION **SELECT** D0.NOMDE, D2.NOMDE, 2 TDEPTO D0, TDEPTO D1, TDEPTO D2 **FROM** WHEREDO.NUMDE = D1.DEPDE AND D1.NUMDE = D2.DEPDE UNION **SELECT** D0.NOMDE, D3.NOMDE, 3 **FROM** TDEPTO D0, TDEPTO D1, TDEPTO D2, TDEPTO D3 D0.NUMDE = D1.DEPDE AND D1.NUMDE = D2.DEPDE AND WHERE D2.NUMDE = D3.DEPDEUNION **SELECT** D0.NOMDE, D4.NOMDE, 4 FROM TDEPTO D0, TDEPTO D1, TDEPTO D2, TDEPTO D3, TDEPTO D4 WHERE D0.NUMDE = D1.DEPDE AND D1.NUMDE = D2.DEPDE AND D2.NUMDE = D3.DEPDE AND D3.NUMDE = D4.DEPDE

Resultado:

ORDER BY

1, 3, 2

NOMDE	NOMDE1	COL-3
DIRECCION COMERCIAL	DIRECCION COMERCIAL	. 0
DIRECCION COMERCIAL	SECTOR INDUSTRIAL	1
DIRECCION COMERCIAL	SECTOR SERVICIOS	1
DIRECCION GENERAL	DIRECCION GENERAL	0
DIRECCION GENERAL	DIRECCION COMERCIAL	. 1
DIRECCION GENERAL	FINANZAS	1
DIRECCION GENERAL	ORGANIZACION	1
DIRECCION GENERAL	PERSONAL	2
DIRECCION GENERAL	PROCESO DE DATOS	2
DIRECCION GENERAL	SECTOR INDUSTRIAL	2
DIRECCION GENERAL	SECTOR SERVICIOS	2
DIRECCION GENERAL	PERSONAL CONTRATAD	O 3
FINANZAS	FINANZAS	0
ORGANIZACION	ORGANIZACION	0
ORGANIZACION	PERSONAL	1
ORGANIZACION	PROCESO DE DATOS	1
ORGANIZACION	PERSONAL CONTRATAD	O 2
PERSONAL	PERSONAL	0
PERSONAL	PERSONAL CONTRATAD	O 1
PERSONAL CONTRATADO	PERSONAL CONTRATAD	O 0
PROCESO DE DATOS	PROCESO DE DATOS	0
SECTOR INDUSTRIAL	SECTOR INDUSTRIAL	0
SECTOR SERVICIOS	SECTOR SERVICIOS	0

12.6). Como el ejercicio anterior, pero añadiendo al resultado una columna con el nombre del director del departamento de la segunda columna y otra con la masa salarial total de ese departamento (salarios más comisiones).

Se puede formular usando la función escalar COALESCE o no, análogamente a como se ha hecho en ejercicios anteriores. Mostramos aquí la solución con COALESCE por ser de formulación más breve:

SELECT D0.NOMDE, D0.NOMDE, 0, ED.NOMEM.

SUM (COALESCE (EM.SALAR + EM.COMIS, EM.SALAR))

FROM TDEPTO DO, TEMPLE ED, TEMPLE EM

WHERE D0.DIREC = ED.NUMEM AND D0.NUMDE = EM.NUMDE

GROUP BY D0.NUMDE, D0.NOMDE, ED.NOMEM

UNION

SELECT D0.NOMDE, D1.NOMDE, 1, ED.NOMEM,

SUM (COALESCE (EM.SALAR + EM.COMIS, EM.SALAR))

FROM TDEPTO D0, TDEPTO D1,

TEMPLE ED. TEMPLE EM

WHERE D0.NUMDE = D1.DEPDE AND

D1.DIREC = ED.NUMEM AND D1.NUMDE = EM.NUMDE

GROUP BY D0.NUMDE, D0.NOMDE, D1.NUMDE, D1.NOMDE, ED.NOMEM

UNION

SELECT D0.NOMDE, D2.NOMDE, 2, ED.NOMEM,

SUM (COALESCE (EM.SALAR + EM.COMIS, EM.SALAR))

FROM TDEPTO D0, TDEPTO D1, TDEPTO D2,

TEMPLE ED. TEMPLE EM

WHERE D0.NUMDE = D1.DEPDE AND D1.NUMDE = D2.DEPDE AND

D2.DIREC = ED.NUMEM AND D2.NUMDE = EM.NUMDE

GROUP BY D0.NUMDE, D0.NOMDE, D1.NUMDE, D2.NUMDE,

D2.NOMDE, ED.NOMEM

UNION

SELECT D0.NOMDE, D3.NOMDE, 3, ED.NOMEM,

SUM (COALESCE (EM.SALAR + EM.COMIS, EM.SALAR))

FROM TDEPTO D0, TDEPTO D1, TDEPTO D2, TDEPTO D3,

TEMPLE ED, TEMPLE EM

WHERE D0.NUMDE = D1.DEPDE AND D1.NUMDE = D2.DEPDE AND

D2.NUMDE = D3.DEPDE AND D3.DIREC = ED.NUMEM AND

D3.NUMDE = EM.NUMDE

GROUP BY D0.NUMDE, D0.NOMDE, D1.NUMDE, D2.NUMDE, D3.NUMDE,

D3.NOMDE, ED.NOMEM

UNION

SELECT D0.NOMDE, D4.NOMDE, 4, ED.NOMEM,

SUM (COALESCE (EM.SALAR + EM.COMIS, EM.SALAR))

FROM TDEPTO D0, TDEPTO D1, TDEPTO D2, TDEPTO D3, TDEPTO D4,

TEMPLE ED, TEMPLE EM

WHERE D0.NUMDE = D1.DEPDE AND D1.NUMDE = D2.DEPDE AND

D2.NUMDE = D3.DEPDE AND D3.NUMDE = D4.DEPDE AND D4.DIREC = ED.NUMEM AND D4.NUMDE = EM.NUMDE

GROUP BY D0.NUMDE, D0.NOMDE, D1.NUMDE, D2.NUMDE, D3.NUMDE,

D4.NUMDE, D4.NOMDE, ED.NOMEM

ORDER BY 1, 3, 2

NOMDE	NOMDE1	COL-3	NOMEM	COL-5
	DIRECCION COMERCIAL	0	1 21122, 111111000	9450
DIRECCION COMERCIAL	SECTOR INDUSTRIAL	1	PEREZ, MARCOS	24750
DIRECCION COMERCIAL	SECTOR SERVICIOS	1	GARCIA, OCTAVIO	24600
DIRECCION GENERAL	DIRECCION GENERAL	C	LOPEZ, ANTONIO	15500
DIRECCION GENERAL	DIRECCION COMERCIAL	1	PEREZ, MARCOS	9450
DIRECCION GENERAL	FINANZAS	1	GARCIA, AUGUSTO	11100
DIRECCION GENERAL	ORGANIZACION	1	PEREZ, JULIO	2700
DIRECCION GENERAL	PERSONAL	2	PEREZ, JULIO	12400
DIRECCION GENERAL	PROCESO DE DATOS	2	CAMPS, AURELIO	16200
DIRECCION GENERAL	SECTOR INDUSTRIAL	2	PEREZ, MARCOS	24750
DIRECCION GENERAL	SECTOR SERVICIOS	2	GARCIA, OCTAVIO	24600
FINANZAS	FINANZAS	0	GARCIA, AUGUSTO	11100
ORGANIZACION	ORGANIZACION	0	PEREZ, JULIO	2700
ORGANIZACION	PERSONAL	1	PEREZ, JULIO	12400
ORGANIZACION	PROCESO DE DATOS	1	CAMPS, AURELIO	16200
PERSONAL	PERSONAL	0	PEREZ, JULIO	12400
PROCESO DE DATOS	PROCESO DE DATOS	0	CAMPS, AURELIO	16200
SECTOR INDUSTRIAL	SECTOR INDUSTRIAL	0	PEREZ, MARCOS	24750
SECTOR SERVICIOS	SECTOR SERVICIOS	0	GARCIA, OCTAVIO	24600

Al aparecer la tabla de Empleados en la yunción, desaparecen 4 filas respecto al ejercicio anterior; corresponden a aquéllas en las que figura el departamento de PERSONAL CONTRATADO, y que no tiene empleados.

12.7). Supongamos que algunos departamentos se van a trasladar a otro local. Disponemos de una tabla llamada TTRASL con una sola columna llamada NUMDE donde hay una fila por cada departamento que se traslada al local nuevo. Se desea producir una lista por orden alfabético de todos los departamentos, indicando cuáles se trasladan y cuáles no. Este tipo de operaciones en que se combinan filas de una tabla con las de otra, incluyendo en el resultado también las que no están emparejadas, se conoce en teoría de Bases de Datos relacionales como yunción externa ("outer join"), que se tratará en un capítulo posterior, pero aquí pedimos formularla utilizando el predicado EXISTS y la cláusula UNION. En la tabla TTRASL hemos dado de alta los departamentos 100 y 110.

Solución:

SELECT D.*, 'SE TRASLADA' FROM TDEPTO D, TTRASL T WHERE D.NUMDE = T.NUMDE

UNION

SELECT D.*, 'NO SE TRASLADA' FROM TDEPTO D WHERE NOT EXISTS (SELECT *

> FROM TTRASL T WHERE D.NUMDE = T.NUMDE)

ORDER BY 7

NUMDE	NUMCE	DIREC	TIDIR	PRESU	DEPDE	NOMDE	COL-8
110	20	180	P	150	100	DIRECCION COMERCIAL	SE TRASLADA
100	10	260	P	120	-	DIRECCION GENERAL	SE TRASLADA
130	10	310	P	20	100	FINANZAS	NO SE TRASLADA
120	10	150	F	30	100	ORGANIZACION	NO SE TRASLADA
121	10	150	P	20	120	PERSONAL	NO SE TRASLADA
123	-	150	F	100	121	PERSONAL CONTRATADO	NO SE TRASLADA
122	10	350	P	60	120	PROCESO DE DATOS	NO SE TRASLADA
111	20	180	F	110	110	SECTOR INDUSTRIAL	NO SE TRASLADA
112	20	270	P	90	110	SECTOR SERVICIOS	NO SE TRASLADA

CAPÍTULO 13. EXPRESIONES DE TABLA ANIDADA

13.1). Sin hacer uso de la cláusula de agrupamiento de filas se desea obtener una lista de los empleados del departamento 121, su salario y el mayor salario existente dentro del conjunto completo de los empleados.

Solución:

SELECT NUMEM, SALAR, (SELECT MAX(SALAR) FROM TEMPLE) AS MAXSALAR FROM TEMPLE WHERE NUMDE = 121

ó

SELECT NUMEM, SALAR, MAXSALAR FROM TEMPLE, (SELECT MAX(SALAR) AS MAXSALAR FROM TEMPLE) AS XXX WHERE NUMDE = 121

Resultado:

MAXSALAR	SALAR	NUMEM	
7200	3100	110	
7200	4400	150	
7200	3000	190	
7200	1900	370	

13.2). Lo mismo que el anterior pero especificando el mayor salario del departamento.

Solución:

SELECT NUMEM, SALAR,
(SELECT MAX(B.SALAR) FROM TEMPLE B
WHERE B.NUMDE=A.NUMDE) AS MAXSALAR
FROM TEMPLE A
WHERE NUMDE = 121;

ó

SELECT NUMEM, SALAR, MAXSALAR
FROM TEMPLE A, TABLE (SELECT MAX(B.SALAR) AS MAXSALAR
FROM TEMPLE B
WHERE B.NUMDE=A.NUMDE) AS XXX

WHERE NUMDE = 121;

Resultado:

MAXSALAR	SALAR	NUMEM
4400	3100	110
4400	4400	150
4400	3000	190
4400	1900	370

13.3). Hallar los departamentos cuyo presupuesto supera al presupuesto medio de los departamentos que dependen del mismo del que depende él, incluido él mismo.

SELECT D1.NUMDE, D1.PRESU, PREMED
FROM TDEPTO D1,
TABLE (SELECT AVG (PRESU) AS PREMED
FROM TDEPTO D2
WHERE D2.DEPDE = D1.DEPDE
) AS D3
WHERE D1.PRESU > PREMED

Resultado:

NUMDE	PRESU	PREMED
110	150	66,66
111 122	110 60	100,00 40.00

ORDER BY D1.NUMDE

Formulación equivalente:

SELECT D1.NUMDE, D1.PRESU, AVG (D2.PRESU) AS PREMED FROM TDEPTO D1, TDEPTO D2
WHERE D1.DEPDE = D2.DEPDE
GROUP BY D1.NUMDE, D1.PRESU
HAVING D1.PRESU > AVG (D2.PRESU)
ORDER BY D1.NUMDE

CAPÍTULO 14. EXPRESIONES CONDICIONALES ("CASE")

14.1). Obtener con el uso de expresiones CASE el número de empleados nacidos antes del 67 y los que ingresaron en la compañía después del 84.

Solución:

SELECT SUM (CASE WHEN FECNA < '01.01.1967' THEN 1 ELSE 0 END), SUM (CASE WHEN FECIN > '31.12.1984' THEN 1 ELSE 0 END) FROM TEMPLE

Resultado:

14.2). Obtener cuántos empleados con fecha de nacimiento superior al 1 de enero de 1980; incluir en la consulta la media de los salarios. Buscar dos columnas adicionales (usando funciones o expresiones conocidas) a incluir en la consulta que permitan transformar los resultados nulos de la media de salarios en valor cero.

Solución:

SELECT COUNT (*) AS C1, AVG (SALAR) AS A1,
COALESCE (AVG (SALAR), 0) AS A2,
CASE WHEN AVG (SALAR) IS NULL THEN 0 ELSE AVG (SALAR)
END AS A3
FROM TEMPLE
WHERE FECNA > '1.1.1980'

C1	A1	A2	A3

0 - 0 0

14.3). Obtener por grupos de empleados, los de los números de empleado del 100 al 199, los del 200 al 299, y el resto, los máximos salarios, los mínimos y las medias.

Solución:

```
SELECT CASE_NUMEM, MAX (SALAR) AS MAXS, MIN (SALAR) AS MINS, AVG (SALAR) AS AVGS

FROM (SELECT SALAR,

CASE WHEN NUMEM BETWEEN 100 AND 199 THEN 'LOS 100S'

WHEN NUMEM BETWEEN 200 AND 299 THEN 'LOS 200S'

END AS CASE_NUMEM

FROM TEMPLE) AS X

GROUP BY CASE NUMEM
```

Resultado:

CASE_NUMEM	MAXS	MINS	AVGS
LOS 100S	4800	2900	3542,85
LOS 200S	7200	2700	3937,50
-	4500	1000	2457,89

14.4). Obtener los números de departamento de aquellos con presupuestos superiores a 90.000 € mostrando el presupuesto inicial y el nuevo teniendo en cuenta que se incrementa en un 10% para los que tienen dependencia de DIRECCIÓN GENERAL, y el 5% al resto. Además se sube un 3% adicional si tiene director EN PROPIEDAD.

Solución:

```
SELECT NUMDE, PRESU,

PRESU + PRESU*((CASE WHEN DEPDE = 100 THEN 0.10

ELSE 0.05 END) +

(CASE WHEN TIDIR = 'P' THEN 0.03

ELSE 0.00 END)

AS NUEVOPRESU

FROM TDEPTO

WHERE PRESU > 90
```

Resultado:

NUMDE	PRESU	NUEVOPRESU
100	120	129,60
110	150	169,50
111	110	115,50
123	100	105,00

14.5). Transformar la sentencia SQL anterior en otra que haga uso de la cláusula UNION.

Solución:

```
SELECT NUMDE, PRESU, PRESU*1.13 AS NUEVOPRESU FROM TDEPTO
WHERE DEPDE = 100 AND TIDIR = 'P' AND PRESU > 90
UNION ALL
SELECT NUMDE, PRESU, PRESU*1.10 AS NUEVOPRESU FROM TDEPTO
WHERE DEPDE = 100 AND TIDIR = 'F' AND PRESU > 90
UNION ALL
SELECT NUMDE, PRESU, PRESU*1.08 AS NUEVOPRESU
```

FROM TDEPTO

WHERE (DEPDE <>100 OR DEPDE IS NULL) AND TIDIR = 'P' AND PRESU >90 UNION ALL

SELECT NUMDE, PRESU, PRESU*1.05 AS NUEVOPRESU

FROM TDEPTO

WHERE (DEPDE <> 100 OR DEPDE IS NULL) AND TIDIR = 'F' AND PRESU > 90

14.6). Obtener los números de empleado, sus departamentos y la suma de salarios y comisiones, para aquellos cuyo salario sea mayor de 4 veces lo que ingresa por comisiones y que no estén pagados sólo en salario.

 $SELECT\ NUMEM,\ NUMDE,\ (SALAR+COMIS)\ AS\ "SALARIO+COMISIONES"$

FROM TEMPLE

WHERE (CASE WHEN COMIS IS NULL THEN NULL

WHEN COMIS = 0 THEN NULL

ELSE SALAR / COMIS

END) > 4

ORDER BY NUMEM

Resultado:

NUMEM	NUMDE	SALARIO+COMISIONES
180	110	5300
270	112	4600

14.7). Formar tres grupos con los departamentos. En uno se incluirán los departamentos 110, 120 y 130, y lo llamaremos "GRUPO A". En otro los departamentos 111, 112, 121 y 122, y será el "GRUPO B". El resto se incluye en un grupo llamado "OTROS". Para cada grupo hallar el presupuesto máximo, el mínimo y el medio.

SELECT GRUPOS,

MAX (PRESU) AS MAX, MIN (PRESU) AS MIN, AVG (PRESU) AS MEDIA

FROM (SELECT PRESU, CASE

WHEN NUMDE IN (110,120,130) THEN 'GRUPO A' WHEN NUMDE IN (111,112,121,122) THEN 'GRUPO B'

ELSE 'OTROS'

END AS GRUPOS

FROM TDEPTO) AS X

GROUP BY GRUPOS

ORDER BY GRUPOS

Resultado:

GRUPOS	MAX	MIN	MEDIA
GRUPO A	150	20	66,66
GRUPO B	110	20	70,00
OTROS	120	120	110,00

CAPÍTULO 15. OTRA MANERA DE ESPECIFICAR LAS YUNCIONES ("JOINS")

15.1). Obtener la lista de los departamentos que no tienen empleados asignados. Mostrar el número y nombre.

Solución:

SELECT D.NUMDE AS DEPTO, NOMDE FROM TDEPTO D LEFT OUTER JOIN TEMPLE E ON D.NUMDE = E.NUMDE

EXCEPT

SELECT D.NUMDE AS DEPTO, NOMDE

FROM TDEPTO D INNER JOIN TEMPLE E ON D.NUMDE = E.NUMDE

ORDER BY DEPTO

Resultado:

DEPTO NOMDE
-----123 PERSONAL CONTRATADO

O también:

SELECT NUMDE AS DEPTO, NOMDE FROM TDEPTO WHERE NOT EXISTS (SELECT

FROM TEMPLE

WHERE TEMPLE.NUMDE = TDEPTO.NUMDE)

ORDER BY DEPTO

15.2). Hallar cuántos empleados hay que no tengan departamento asignado.

SELECT COUNT (*) AS EMPLES FROM (SELECT NUMEM

FROM TEMPLE E LEFT OUTER JOIN TDEPTO D

ON E.NUMDE = D.NUMDE

EXCEPT

SELECT NUMEM

FROM TEMPLE E INNER JOIN TDEPTO D

ON E.NUMDE = D.NUMDE

) AS TD

Resultado:

EMPLES

0

O también:

SELECT COUNT (*) AS EMPLES FROM (SELECT NUMEM

FROM TEMPLE E

WHERE NOT EXISTS (SELECT NUMDE

FROM TDEPTO D

WHERE D.NUMDE = E.NUMDE)

) AS T

15.3). Para cada centro, obtener la suma de los salarios de los empleados que trabajan en él. Los centros que no tengan empleados se mostrarán con una suma cero.

SELECT C.NUMCE AS CENTRO, COALESCE (SUM (SALAR), 0) AS SUMA

FROM (TCENTR C LEFT OUTER JOIN TDEPTO D

ON C.NUMCE = D.NUMCE)

LEFT OUTER JOIN TEMPLE E

ON D.NUMDE = E.NUMDE

GROUP BY C.NUMCE ORDER BY CENTRO

Resultado:

CENTRO SUMA

10	57900
20	45100
50	0

15.4). Hallar los departamentos que tienen un presupuesto mayor que el del departamento del cual dependen. Incluir también los departamentos que no dependan de otro. Mostrar número de departamento, número de departamento del que dependen y presupuestos de ambos.

SELECT D1.NUMDE AS DEPTO, D1.DEPDE AS DEPEND, D1.PRESU AS PRESU1, D2.PRESU AS PRESU2 FROM TDEPTO D1 LEFT OUTER JOIN TDEPTO D2 ON D1.DEPDE = D2.NUMDE WHERE (D1.PRESU>D2.PRESU OR D2.PRESU IS NULL) ORDER BY DEPTO

Resultado:

PRESU2	PRESU1	DEPEND	DEPTO
-	120	-	100
120	150	100	110
30	60	120	122
120	100	121	123

Con la yunción externa se obtienen todos los emparejamientos de dependencias incluida la del departamento 100 que no depende de nadie. Mediante la cláusula WHERE se filtran, por un lado aquellas dependencias donde el presupuesto del departamento primero es mayor del del departamento del que dependen, y por otro mantenemos el departamento 100 porque el presupuesto del departamento del que depende (ninguno) es nulo.

15.5). Para los empleados de los departamentos 100 y 110, obtener un listado de ellos que incluya: nombre y salario medio de los que cobran más que él, sea cual sea su departamento. Mostrar también los que no tengan a nadie con mayor salario que el suyo.

SELECT T1.NOMEM AS NOMBRE, AVG (E2.SALAR) AS SAL_MEDIO FROM (SELECT * FROM TEMPLE WHERE NUMDE IN (100,110)) AS T1 LEFT OUTER JOIN TEMPLE E2 ON T1.SALAR < E2.SALAR GROUP BY T1.NOMEM ORDER BY NOMBRE

Resultado:

NOMEM	SAL_MEDIO
ALBA, ADRIANA	6000,00
CAMPOS, ROMULO	3419,23
GALVEZ, PILAR	4706,25
LOPEZ, ANTONIO	-
MORAN, CARMEN	3730,95
PEREZ, MARCOS	7200,00

15.6). Considerando solo los empleados de los departamentos 100 y 110, obtener un listado de ellos que incluya: nombre y salario medio de los que cobran más que él. Mostrar también los que no tengan a nadie con mayor salario que el suyo.

SELECT T1.NOMEM AS NOMBRE, AVG (T2.SALAR) AS SAL_MEDIO FROM (SELECT * FROM TEMPLE WHERE NUMDE IN (100,110)) AS T1 LEFT OUTER JOIN (SELECT * FROM TEMPLE WHERE NUMDE IN (100,110)) AS T2 ON T1.SALAR < T2.SALAR GROUP BY T1.NOMEM ORDER BY NOMBRE

Resultado:

SAL_MEDIO
6000,00
4490,00
5500,00
-
5075,00
7200,00

15.7). Considerando solo los empleados de los departamentos 100 y 110, obtener un listado de ellos que incluya: nombre, comisión, y cuántos empleados de estos departamentos tienen una comisión mayor que la suya. Este valor se mostrará como un *Nulo* en los que no tengan comisión.

SELECT T1.NOMEM AS NOMBRE, T1.COMIS AS COMISION,

CASE

WHEN T1.COMIS IS NOT NULL AND MAX (T2.COMIS) IS NULL

THEN 0

WHEN T1.COMIS IS NOT NULL THEN COUNT (*)

ELSE T1.COMIS

END AS EMPLES

FROM (SELECT * FROM TEMPLE WHERE NUMDE IN (100,110)) AS T1

LEFT OUTER JOIN

(SELECT * FROM TEMPLE WHERE NUMDE IN (100,110)) AS T2

ON T1.COMIS < T2.COMIS

GROUP BY T1.NOMEM, T1.COMIS

ORDER BY NOMBRE

Resultado:

NOMBRE	COMISION	EMPLES
ALBA, ADRIANA	-	_
CAMPOS, ROMULO	-	-
GALVEZ, PILAR	-	_
LOPEZ, ANTONIO	-	-
MORAN, CARMEN	-	_
PEREZ, MARCOS	500	0

15.8). Contestar al ejercicio 12.7 empleando la yunción externa. Recordemos su enunciado:

Supongamos que algunos departamentos se van a trasladar a otro local. Disponemos de una tabla llamada TTRASL con una sola columna llamada NUMDE donde hay una fila por cada departamento que se traslada al local nuevo. Se desea producir una lista por orden alfabético de todos los departamentos, indicando cuáles se trasladan y cuáles no. En la tabla TTRASL hemos dado de alta los departamentos 100 y 110.

SELECT D.NOMDE,

CASE

WHEN T.NUMDE IS NULL THEN 'NO SE TRASLADA'

ELSE 'SE TRASLADA'

END AS TRASLADO

FROM TDEPTO D LEFT OUTER JOIN TTRASL T

ON D.NUMDE = T.NUMDE

ORDER BY NOMDE

NOMDE	TRASLADO

SE TRASLADA
SE TRASLADA
NO SE TRASLADA
NO SE TRASLADA
NO SE TRASLADA
NO SE TRASLADA
NO SE TRASLADA
NO SE TRASLADA
NO SE TRASLADA

15.9). Obtener el conjunto de empleados con su número, departamento al que pertenecen y director del departamento aunque no exista el número del departamento. Finalmente se seleccionarán sólo las filas donde el departamento del empleado sea el 110, y donde los empleados tengan un salario inferior a los 3.000 euros.

Solución:

SELECT NUMEM, A.NUMDE, DIREC FROM TEMPLE A LEFT OUTER JOIN TDEPTO B ON A.NUMDE=B.NUMDE WHERE A.NUMDE = 110 AND SALAR < 3000

Resultado:

NUMEM	NUMDE	DIREC
390	110	180
510	110	180

CAPÍTULO 16. EXPRESIONES DE TABLA COMÚN Y RECURSIVIDAD

16.1). Obtener el valor mínimo de las medias de salario de los empleados por departamento.

Solución:

WITH TEMP1 AS

(SELECT NUMDE, AVG (SALAR) AS AVGSALAR FROM TEMPLE GROUP BY NUMDE), TEMP2 AS (SELECT MIN (AVGSALAR) AS MINSALAR FROM TEMP1)

SELECT * FROM TEMP2

Resultado:

MINSALAR ----- 2181.25

16.2). Obtener el conjunto de departamentos cuyos empleados tengan una media de número de hijos inferior a la media de todos los empleados.

Solución:

WITH TEMP1 AS

(SELECT AVG (NUMHI) AS MEDIAHID, NUMDE AS #NUMDE FROM TEMPLE GROUP BY NUMDE),

TEMP2 (MEDIAHI) AS (SELECT AVG (NUMHI) FROM TEMPLE)

SELECT NUMDE, NOMDE FROM TDEPTO, TEMP1, TEMP2 WHERE NUMDE = #NUMDE AND MEDIAHID < MEDIAHI

Resultado:

NUMDE	NOMDE
112	SECTOR SERVICIOS
122	PROCESO DE DATOS

16.3). Reformular la sentencia SQL anterior haciendo uso de la subselección en cláusula FROM.

Solución:

SELECT NUMDE, NOMDE
FROM TDEPTO, (SELECT AVG (NUMHI) AS MEDIAHID, NUMDE AS #NUMDE
FROM TEMPLE
GROUP BY NUMDE) AS T1,
(SELECT AVG (NUMHI) AS MEDIAHI FROM TEMPLE) AS T2
WHERE NUMDE = #NUMDE AND MEDIAHID < MEDIAHI

16.4). Obtener para un número de hijos entre 0 y 9, cuántos empleados hay.

Solución:

SELECT NHIJOS, COALESCE (NUMEMPS,0) AS NUMEMPS FROM NUM_HIJOS LEFT OUTER JOIN (SELECT NUMHI, COUNT(*) AS NUMEMPS FROM TEMPLE WHERE NUMHI < 10 GROUP BY NUMHI) AS XXX

 $\begin{tabular}{ll} ON NHIJOS = NUMHI\\ ORDER BY 1 \end{tabular}$

Resultado:

NHIJOS	NUMEMPS
0	14
1	7
2	6
3	4
4	1
5	1
6	1
7	0
8	0
9	0

16.5). Mostrar una tabla con el conjunto de filas que reflejen los elementos de la jerarquía del siguiente gráfico. Se trata de un diagrama de piezas y subpiezas que las forman.

Solución:

PIEZA	SUBPIEZA	
00	01	
00	02	
01	03	
01	04	
01	05	
01	06	
02	07	
02	08	
03	09	
03	10	
04	11	
05	12	
05	13	
11	14	
11	15	
06	15	
06	16	

16.6). Obtener el listado de las piezas dependientes de la pieza 04.

Solución:

WITH TABLA1 (PIEZA, SUBPIEZA) AS (SELECT PIEZA, SUBPIEZA FROM PIEZAS WHERE PIEZA = '04'

UNION ALL

SELECT C.PIEZA, C.SUBPIEZA FROM PIEZAS C, TABLA1 P WHERE P.SUBPIEZA = C.PIEZA)

SELECT PIEZA, SUBPIEZA FROM TABLA1

PIEZA	SUBPIEZA
04	11
11	14
11	15

16.7). ¿ Cuántas piezas distintas hay dependientes de la 00?.

Solución:

WITH TABLA1 (PIEZA, SUBPIEZA) AS (SELECT PIEZA, SUBPIEZA FROM PIEZAS WHERE PIEZA = '00'

UNION ALL

SELECT C.PIEZA, C.SUBPIEZA FROM PIEZAS C, TABLA1 P WHERE P.SUBPIEZA = C.PIEZA

SELECT COUNT (DISTINCT SUBPIEZA) FROM PIEZAS

Resultado:

COL-1 -----16

16.8). ¿ Qué subpieza forma parte de más de una pieza?.

Solución:

WITH TABLA2 (SUBPIEZA) AS (SELECT SUBPIEZA FROM PIEZAS WHERE PIEZA = '00'

UNION ALL

SELECT C.SUBPIEZA FROM PIEZAS C, TABLA2 P WHERE P.SUBPIEZA = C.PIEZA

SELECT SUBPIEZA FROM TABLA2 GROUP BY SUBPIEZA HAVING COUNT(*) > 1

Resultado:

SUBPIEZA -----15

16.9). ¿ Cuáles son las subpiezas de ·último nivel?.

Solución:

WITH TABLA3 (SUBPIEZA, NIVEL) AS (SELECT SUBPIEZA, 1 FROM PIEZAS WHERE PIEZA = '00'

UNION ALL

```
SELECT C.SUBPIEZA, P.NIVEL+1
FROM PIEZAS C, TABLA3 P
WHERE P.SUBPIEZA = C.PIEZA
```

SELECT SUBPIEZA, NIVEL FROM TABLA3 WHERE NIVEL = (SELECT MAX (NIVEL) FROM TABLA3)

Resultado:

SUBPIEZA	NIVEL	
14	<i>1</i>	
15	4	

16.10). Mostrar las piezas de nivel 2 con las piezas de las que dependen.

Solución:

```
WITH TABLA4 (PIEZA, SUBPIEZA, NIVEL) AS
(SELECT PIEZA, SUBPIEZA, 1
FROM PIEZAS
WHERE PIEZA = '00'

UNION ALL

SELECT C.PIEZA, C.SUBPIEZA, P.NIVEL+1
FROM PIEZAS C, TABLA4 P
WHERE P.SUBPIEZA = C.PIEZA
AND P.NIVEL+1 < 3
)
```

SELECT DISTINCT SUBPIEZA, PIEZA FROM TABLA4 WHERE NIVEL = 2

Resultado:

SUBPIEZA	PIEZA
03	01
04	01
05	01
06	01
07	02
08	02

16.11). Supongamos que hay dos tablas, llamadas TCURSO y TCURRI. La primera tiene una sola columna llamada NOMCU y la segunda tiene dos, llamadas NOMEM y NOMCU. La tabla TCURSO tiene una fila por cada curso de idiomas impartido a los empleados de la empresa, con el nombre del curso correspondiente en la columna NOMCU. La TCURRI tiene una fila por cada empleado y curso, con el nombre del empleado en la columna NOMEM y el de curso en la NOMCU. El significado de una fila de TCURRI (cuyo nombre viene de curriculum) es que el empleado ha asistido al curso correspondiente.

Se desea hallar una relación de los nombres de los empleados que han asistido a todos los cursos impartidos. En el ej. 11.32 se resolvió esta consulta mediante sentencias correlacionadas. Resolverla ahora mediante expresiones de tabla común

Este tipo de consultas en las que se buscan los valores de una tabla que están combinados con todos los de otra se llama DIVISION en Teoría de Bases de Datos Relacionales.

Solución:

WITH T1 (NOMEM) AS

(SELECT DISTINCT NOMEM FROM TCURRI),

T2 (NOMEM, NOMCU) AS

(SELECT * FROM T1, TCURSO EXCEPT

SELECT * FROM TCURRI)

SELECT * FROM T1 EXCEPT SELECT DISTINCT NOMEM FROM T2

Supongamos los siguientes contenidos de las tablas (cursos de inglés, I, y francés, F):

TCURSO)	NOMCU	TCURRI) NOMEN	1 NOMCU
	I	PEPE	I
	F	PACO	I
		PACO	F

Resultado:

NOMEM -----PACO

16.12) El siguiente diagrama PERT (Project Evaluation and Review Technique) representa las actividades de un proyecto.

Cada arco del grafo representa una actividad, con su nombre y duración entre paréntesis. Los nodos representan precedencia entre las actividades. Así por ejemplo la actividad F, que sale del nodo 4, no puede empezar hasta que hayan terminado completamente las que llegan al nodo, es decir, la C y la E.

Este grafo se almacena en una tabla TPROY (ORG, DES, NOM, DUR). Cada fila es un arco, con ORG = nodo origen, DEL = nodo destino, NOM = nombre, DUR = duración. Contenido:

ORG	DES	NOM	DUR
1	2	A	10
1	3	D	4
2	5	В	2
2	4	C	4
3	4	E	6
4	5	F	5

Se desea hallar la duración del proyecto.

Solución:

La duración del proyecto es la del camino más largo del grafo yendo desde el nodo inicial al final.

WITH CAMINOS (DES, TRAMOS, DUR) AS

(SELECT DES, 1, DUR

FROM TPROY

WHERE ORG = 1

UNION ALL

SELECT P.DES, TRAMOS + 1, C.DUR + P.DUR

FROM CAMINOS C INNER JOIN TPROY P

ON C.DES = P.ORG AND AND TRAMOS < 10)

SELECT MAX (DUR) AS DURACION

FROM CAMINOS

WHERE DES = 5

Aunque un diagrama de este tipo no puede tener ciclos, hemos incluido un control de 10 tramos como máximo para evitar este caso si se presenta por error.

Resultado:

DURACION -----19