(20416 / 26.1.09)

משתנה מקרי רציף: משתנה מקרי שקבוצת ערכיו האפשריים אינה בת-מניה.

ברוב המקרים קבוצה זו היא קטע של מספרים ממשיים (או מספר סופי של קטעים).

פונקציית הצפיפות של משתנה מקרי רציף: אם X הוא משתנה מקרי רציף, אז פונקציית הצפיפות שלו היא פונקציה ממשית f(x) המוגדרת לכל x ומקיימת:

- $f(x) \ge 0$ א.
- . $P\{a \leq X \leq b\} = \int\limits_a^b f(x)\,dx$: ממשיים a < b כלומר, לכל , $P\{X \in B\} = \int\limits_B f(x)\,dx$ ב. לכל מאורע a מתקיים a < b היא השטח שמתחת לעקומת הצפיפות a < b, המשתרע מהנקודה a ועד לנקודה a
 - .1- אווה (x וומעל לציר (ומעל לציר f(x) וומעל לעקומת השפחת שמתחת לעקומר, כלומר, השטח לומר, כלומר, כלומר, השטח לעקומת הצפיפות יש

. $P\{X \leq a\} = P\{X < a\}$ ולכן , $P\{X = a\} = 0$ ממשי לכל אז מקרי רציף מקרי מקרי הוא משתנה מקרי ממשי ולכל .

. x לכל $F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t) dt$ לכל משתנה מקרי רציף:

 $f(x) = \frac{d}{dx}F(x)$: הקשר בין פונקציית ההתפלגות המצטברת לפונקציית הצפיפות:

. $E[X] = \int\limits_{-\infty}^{\infty} x f(x) dx$ ידי התוחלת של E[X] מסומנת ב- E[X] , ומוגדרת אל-ידי

 $.\,E[X]\!=\!\int\limits_0^\infty\!P\{X\!>\!x\}\,d\!x\,$ אז אז או $P\{X\!\geq\!0\}\!=\!1\,$ כלומר מקרי אי-שלילי, משתנה מקרי אי

תוחלת של פונקציה של משתנה מקרי:

 $\chi(x)$ אם של משתנה של הערכים האפשריים לכל המוגדרת משית ממשית משתנה מקרי $\chi(x)$

.
$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$
 אז

E[aX+b] = aE[X]+b לכן, התוחלת מקיימת את השוויון

. $\operatorname{Var}(X) = E[(X - E[X])^2] = \int\limits_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$ שונות: השונות של X מסומנת ב- $\operatorname{Var}(X)$, ומוגדרת על-ידי

.
$$\operatorname{Var}(X) = E[X^2] - (E[X])^2 = \int\limits_{-\infty}^{\infty} x^2 f(x) dx - (E[X])^2$$
 אפשר להראות שמתקיים

. $Var(aX+b) = a^2 Var(X)$ השונות מקיימת את השוויון

 σ_X או $\mathrm{SD}(X)$: אונותו. סימון של א היא השורש החיובי של שונותו. סימון

. SD(aX+b) = |a|SD(X) סטיית התקן מקיימת את השוויון

X פונקציה של פונקציה של משתנה מקרי: יהי X משתנה מקרי ויהי ויהי פונקציה של משתנה מקרי:

; $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \le g^{-1}(y)\} = F_X(g^{-1}(y))$ אם g היא פונקציה מונוטונית עולה, אז איז g היא פונקציה מונוטונית אולה, אז

; $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \ge g^{-1}(y)\} = 1 - F_X(g^{-1}(y))$ אם g היא פונקציה מונוטונית יורדת, אז איז g היא פונקציה מונוטונית יורדת, אז

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$$
 לכן

פרק 5: סיכום (20416)

משתנים מקריים מיוחדים

$$X \sim U(a,b)$$
 משתנה מקרי אחיד: $a < b$ מששיים ו- a

$$F(x) = \frac{x-a}{b-a}$$
 ; $f(x) = \frac{1}{b-a}$ $a \le x \le b$ $a \le x \le b$ $a \le x \le b$ קטע אינטופי. $a + b$ $a \le x \le b$

$$E[X] = \frac{a+b}{2}$$

$$Var(X) = \frac{(b-a)^2}{12}$$

$Z \sim N(0,1)$ משתנה מקרי נורמלי סטנדרטי:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 ; $F(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

$$E[Z] = 0 Var(Z) = 1$$

 $\Phi(-z)=1-\Phi(z)$, כלומר, $P\{Z\leq -z\}=P\{Z\geq z\}$ מתקיים , לכן מתקיים לכן סימטרית סביב f(z)

$$X \sim N(\mu, \sigma^2)$$
 משתנה מקרי נורמלי: $\sigma^2 > 0$ - ממשי ו

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 ; $F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

$$E[X] = \mu$$
 $Var(X) = \sigma^2$

 $AX + b \sim N(a\mu + b, a^2\sigma^2)$ אז $X \sim N(\mu, \sigma^2)$ טענה:

 $Z=rac{X-\mu}{\sigma}\sim N(0,1)$ אז $X\sim N(\mu\,,\sigma^2)$ ולכן: תוצאה: אם

$$F_X(x) = P\{X \le x\} = P\left\{\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right\} = P\left\{Z \le \frac{x - \mu}{\sigma}\right\} = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

משפט הגבול של דה-מואבר – לפלאס: (הקירוב הנורמלי להתפלגות הבינומית)

$$P\left\{a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b\right\} \to \Phi(b) - \Phi(a)$$
 אם $P\left\{a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b\right\}$ כאשר $S_n \sim B(n,p)$

. np(1-p) > 10 בדרך-כלל הקירוב טוב כאשר

$$X \sim Exp(\lambda)$$
 משתנה מקרי מעריכי:

$$f(x) = \lambda e^{-\lambda x}$$
; $F(x) = 1 - e^{-\lambda x}$ $x > 0$

$$E[X] = \frac{1}{\lambda} \qquad \qquad Var(X) = \frac{1}{\lambda^2} \quad \Rightarrow \quad E[X^2] = \int_0^\infty x^2 f(x) dx = \frac{1}{\lambda^2} + \left(\frac{1}{\lambda}\right)^2 = \frac{2}{\lambda^2}$$

תכונת חוסר-הזכרוו:

. $P\{X>s+t \, \big| \, X>t\} = P\{X>s\}$ משתנה מקרי t אי-שליליים לכל s ו- t אם לכל t ווער אסר-זיכרון אם לכל מקרים את תכונת חוסר-הזיכרון.

הערה: המשתנה המקרי הגיאומטרי מקיים את תכונת חוסר-הזיכרון, אך רק עבור t -ו s שלמים אי-שליליים. הערה: המקרי הגיאומטרי מקיים את תכונת חוסר-הזיכרון.)

$$X \sim Gamma(t,\lambda)$$
 בשתנה מקרי גמא: $t>0$ ו- $\lambda>0$

$$f(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{t-1}}{\Gamma(t)} \quad ; \quad \Gamma(t) = \int_{0}^{\infty} e^{-y} y^{t-1} dy \qquad x > 0$$

$$E[X] = \frac{t}{\lambda}$$

$$Var(X) = \frac{t}{\lambda^2}$$

 $\Gamma(n) = (n-1)!$ אז וחיובי אז $T(t) = (t-1)\Gamma(t-1)$ לכל $\Gamma(t) = (t-1)\Gamma(t-1)$.1 הערות:

- . $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ ו- $\Gamma(1) = \Gamma(2) = 1$: 2
- . $Gamma(\frac{n}{2}, \frac{1}{2}) = \chi^2(n)$ -1 $Gamma(1, \lambda) = Exp(\lambda)$.3

טענה: אם המופעים המתרחשים במרווח-זמן כלשהו מקיימים את שלושת ההנחות של תהליך פואסון עם - קצב λ , אז

- בס מעריכי משתנה מחולף (מתחילת מרווח-הזמן) עד להתרחשות המופע הראשון הוא משתנה מקרי מעריכי עם הזמן הזמן להתרחשות מחולף (מתחילת מרווח-הזמן) עד להתרחשות המופע הראשון הוא משתנה מקרי מעריכי עם הפרמטר λ .
- עם גמא משתנה מקרי הוא המופע ה-n-י הוא משתנה מקרי גמא עם .2 הזמן החולף (מתחילת מרווח-הזמן) עד להתרחשות המופע ה- λ .

$$X \sim Beta(a,b)$$
 איר ביתא: $b>0$ ביתא: $a>0$

$$f(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)} \quad ; \quad B(a,b) = \int_{0}^{1} x^{a-1}(1-x)^{b-1} dx \qquad 0 \le x \le 1$$

$$E[X] = \frac{a}{a+b}$$

$$Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
 .1 : הערות

$$Beta(1,1) = U(0,1)$$
 .2

$$X \sim Cauchy(\theta)$$
 ממשי: θ ממשי:

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}$$

התוחלת והשונות של משתנה מקרי קושי אינן מוגדרות