本次习题课是关于级数理论. 主要有两个部分: I. 级数理论总结. II. 习题

第 I 部分: 级数理论总结

一. 级数的基本概念

- 无穷级数, 简称级数, 是指记号 $\sum_{n=1}^{+\infty} a_n$, 常简写作 $\sum_{n\geq 1} a_n$ 或 $\sum a_n$, 其中 $\{a_n\}$ 为一个数列;
- $S_n = \sum_{k=1}^n a_k$ 称为级数 $\sum a_n$ 的前 n 项和;
- 称级数 $\sum_{n=1}^{+\infty} a_n$ 收敛是指级数的部分和序列 $\{S_n\}$ 收敛. 设 $S_n \to S$, 则称级数 $\sum_{n=1}^{+\infty} a_n$ 收敛于和 S, 并记作 $\sum_{n=1}^{+\infty} a_n = S$.
- 若级数 $\sum a_n$ 不收敛, 则称级数 $\sum a_n$ 发散.
- 无穷级数 $\sum_{n=1}^{+\infty} a_n$ 与无穷限广义积分 $\int_a^{+\infty} f(x) dx$ 有许多类似的性质和结论.

二. 级数的基本性质

• 线性性质: 若两个级数 $\sum a_n$ 和 $\sum b_n$ 均收敛, 则级数 $\sum (\lambda a_n + \mu b_n)$ 也收敛, 且

$$\sum (\lambda a_n + \mu b_n) = \lambda \sum a_n + \mu \sum b_n.$$

- 收敛级数的一般项趋于零, 即若级数 $\sum a_n$ 收敛, 则 $a_n \to 0$, $n \to +\infty$.
- 对一个级数增加有限项或减少有限项,不改变这个级数的收敛性质.
- 加括号级数:如果一个级数收敛,则它的任意加括号级数均收敛.反之不成立.但
 是如果一个加括号级数收敛,且每个括号中的各项有相同的符号,则原级数收敛.

三. 一般级数的收敛性判别

• Cauchy 收敛准则: 级数 $\sum a_n$ 收敛, 当且仅当对任给 $\varepsilon > 0$, 存在自然数 N, 使得

$$\left| \sum_{k=n}^{m} a_k \right| < \varepsilon, \quad \forall n, m, \quad n \ge m \ge N.$$

- Leibniz 判別法: 如果数列 $\{a_n\}$ 单调趋向于零, 则交错级数 $\sum_{n=1}^{+\infty} (-1)^n a_n$ 收敛. (这样的级数称为 Leibniz 型级数)
- Dirichlet 判别法: 级数 $\sum_{n=1}^{+\infty} a_n b_n$ 收敛, 如果 (i) 部分和序列 $S_n = \sum_{k=1}^n a_k$ 有界, 且 (ii) 数列 b_n 单调趋向于零.
- Abel 判别法: 级数 $\sum_{n=1}^{+\infty} a_n b_n$ 收敛, 如果 (i) 级数 $\sum_{k=1}^{+\infty} a_n$ 收敛, 且 (ii) 数列 b_n 单调有界.

四. 非负级数的收敛性判别

- 非负级数收敛, 当且仅当它的部分和序列有上界.
- 比较判别法: 设 $\sum a_n$ 和 $\sum b_n$ 为两个非负级数, 且 $a_k \leq b_k$, $\forall k \geq k_0$.
 - (i) 若级数 $\sum b_n$ 收敛, 则 $\sum a_n$ 收敛;
 - (ii) 若级数 $\sum a_n$ 发散, 则 $\sum b_n$ 发散.
- 比较判别法的极限形式: 设 $\sum a_n$ 和 $\sum b_n$ 为两个非负级数, 且当 n 充分大时 $b_n > 0$. 假设极限 $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ 存在, 包括情形 $\ell = +\infty$.
 - (i) 若 $0 < \ell < +\infty$, 则级数 $\sum a_n$ 和 $\sum b_n$ 同时收敛或同时发散;
 - (ii) 若 $\ell = 0$ 且 $\sum b_n$ 收敛, 则 $\sum a_n$ 也收敛;
 - (iii) 若 $\ell = +\infty$ 且 $\sum b_n$ 发散, 则 $\sum a_n$ 也发散.

注: 经常用于级数比较的标准级数:

- (1) $\sum q^n$ (级数收敛, 当且仅当 |q| < 1);
- (2) $\sum \frac{1}{n^p}$ (级数收敛, 当且仅当 p > 1);

- (3) $\sum \frac{\ln n}{n^p}$ (级数收敛, 当且仅当 p > 1);
- (4) $\sum \frac{1}{n(\ln n)^p}$ (级数收敛, 当且仅当 p > 1);
- (5) $\sum \frac{1}{n \ln n (\ln \ln n)^p}$ (级数收敛, 当且仅当 p > 1).
- 比值判别法 (ratio test): 设 $\sum a_n$ 为正项级数,
 - (i) 如果 $\overline{\lim}_{n\to+\infty} \frac{a_{n+1}}{a_n} < 1$, 则正项级数 $\sum a_n$ 收敛;
 - (ii) 如果 $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} > 1$, 则正项级数 $\sum a_n$ 发散.
- 根值判别法 (root test): 设 $\sum a_n$ 为非负级数, 记 $a = \overline{\lim}_{n \to +\infty} \sqrt[n]{a_n}$.
 - (i) 若 a < 1, 则级数 $\sum a_n$ 收敛;
 - (ii) 若 a > 1, 则级数 $\sum a_n$ 发散.
- Raabe 判别法: 对于正项级数 $\sum a_n$
 - (i) 如果存在正数 $\rho > 1$, 使得 $n(\frac{a_n}{a_{n+1}} 1) \ge \rho$, $\forall n \ge n_0$, 则级数 $\sum a_n$ 收敛;
 - (ii) 如果 $n(\frac{a_n}{a_{n+1}}-1) \le 1$, $\forall n \ge n_0$, 则级数 $\sum a_n$ 发散.

五. 级数的绝对收敛, 条件收敛, 以及级数重排

- 称级数 $\sum a_n$ 为绝对收敛, 如果级数 $\sum |a_n|$ 收敛; 称级数 $\sum a_n$ 为条件收敛, 如果级数 $\sum a_n$ 收敛, 但级数 $\sum |a_n|$ 发散.
- 如果一个级数绝对收敛, 那么它自身收敛;
- 如果一个级数绝对收敛,那么它的任何重排级数也收敛,并且每个重排级数和原级数有相同的和.
- Riemann 重排定理: 如果一个级数条件收敛, 那么对于任给一个数 S (可取 $S=+\infty$ 或 $S=-\infty$), 存在这个级数的重排级数收敛于 S. (这个结果有时称为 4R 定理, Riemann's Remarkable Rearrangement Result)

六. 无穷乘积

• 设 p_1, p_2, \cdots 为一个数列, 记号 $\prod_{n=1}^{+\infty} p_n$ 称为无穷乘积.

- $P_n = p_1 p_2 \cdots p_n$ 称为无穷乘积 $\prod_{n=1}^{+\infty} p_n$ 的前 n 项部分乘积. 若部分乘积序列 $\{P_n\}$ 有极限 $P \perp P \neq 0$,则称无穷乘积 $\prod_{n=1}^{+\infty} p_n$ 收敛,并记作 $\prod_{n=1}^{+\infty} p_n = P$.
- 若部分乘积序列 $\{P_n\}$ 无极限,或有极限零,则称无穷乘积 $\prod_{n=1}^{+\infty} p_n$ 发散.
- 无穷乘积 $\prod_{n=1}^{+\infty} p_n$ 收敛的必要条件是通项趋向于 1, 即 $p_n \to 1$.
- 若无穷乘积 $\prod_{n=1}^{+\infty} p_n$ 收敛, 则它的余项 $R_n \stackrel{\triangle}{=} \prod_{k=n+1}^{+\infty} p_k \to 1, n \to +\infty$.
- 无穷乘积 $\prod_{n=1}^{+\infty} (1+a_n)$ 收敛,当且仅当级数 $\sum_{n=1}^{+\infty} \ln(1+a_n)$ 收敛.假设 $a_n \geq 0$, $\forall n \geq 1$,则 $\prod_{n=1}^{+\infty} (1+a_n)$ 收敛,当且仅当 $\sum_{n=1}^{+\infty} a_n$ 收敛.
- 假设 $\sum_{n=1}^{+\infty} a_n^2$ 收敛, 则无穷乘积 $\prod_{n=1}^{+\infty} (1+a_n)$ 收敛, 当且仅当 $\sum_{n=1}^{+\infty} a_n$ 收敛.

第 II 部分: 习题

- 一. 级数的基本概念练习
- 1. 设级数 $\sum_{n=1}^{+\infty} u_n$ 收敛, 判断如下哪些级数必收敛.

(i)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{u_n}{n}$$
; (ii) $\sum_{n=1}^{+\infty} u_n^2$; (iii) $\sum_{n=1}^{+\infty} (u_n - u_{2n})$; (iv) $\sum_{n=1}^{+\infty} (u_n + u_{n+1})$;

2. 设 $0 < nu_n \le 1$, 判断下列哪些级数收敛.

(i)
$$\sum_{n=1}^{+\infty} u_n$$
; (ii) $\sum_{n=1}^{+\infty} (-1)^n u_n$; (iii) $\sum_{n=1}^{+\infty} \sqrt{u_n}$; (iv) $\sum_{n=1}^{+\infty} u_n^2 \ln n$;

- 3. 设正项级数 $\sum_{n=1}^{+\infty} u_n$ 收敛, 判断以下哪些结论正确.
- (i) 极限 $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}<1$;
- (ii) 极限 $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} \le 1$;
- (iii) 若极限 $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}$ 存在, 则极限值小于1;
- (iv) 若极限 $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}$ 存在, 则极限值小于等于1.

二. 求收敛级数之和.

<u>注</u>:一般而言, 求出收敛级数之和是困难的, 不存在普适的求和方法. 然而有两种方法常用于求一些特殊的级数之和: (a) 裂项消去法; (b) 利用已知结果求级数之和. 下述习题的前三题可用裂项消去法求和; 后四题可用已知结论求和.

1. 求级数
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+2)(n+3)}$$
 之和.

- 2. 求级数 $\sum_{n=1}^{+\infty} \frac{1}{n(n+m)}$ 之和, 其中 m 为正整数. (注: 这是课本习题 5.1 题 7)
- 3. 求级数 $\sum_{n=1}^{+\infty} \arctan \frac{1}{2n^2}$ 之和. (注: 这是课本习题 5.1 题 6 (7))
- 4. 求级数 $\sum_{n=1}^{+\infty} \frac{2n-1}{2^n}$ 之和.
- 5. 设收敛级数 $\sum_{n=1}^{+\infty} a_n = S$, 求极限

$$\lim_{n \to +\infty} \frac{1}{n} \Big(na_1 + (n-1)a_2 + (n-2)a_3 + \dots + 2a_{n-1} + a_n \Big).$$

6. 考虑交错级数

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} + \cdots$$

的一个重排级数

$$\frac{1}{1} + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots, \tag{1}$$

排列规则为按顺序两正一负. 证明上述重排级数收敛, 并求出这个级数的和.

7. 设级数 $\sum_{n=1}^{+\infty} u_n$ 绝对收敛,且 $\sum_{n=1}^{+\infty} (-1)^{n-1} u_n = 2$, $\sum_{n=1}^{+\infty} u_{2n-1} = 5$. 求级数 $\sum_{n=1}^{+\infty} u_n$ 的和.

- 三. 级数的收敛性判别
- 1. 证明下述级数发散.

(i)
$$\frac{1}{1} + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \cdots$$

(ii)
$$\frac{1}{1} - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

- 2. 假设正项级数 $\sum a_k$ 发散, 判断级数 $\sum \frac{a_k}{1+a_k}$ 的收敛性.
- 3. 设 a > 0, 讨论如下交错级数的收敛性, 以及绝对收敛性

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} \frac{a}{1+a^n}.$$
 (2)

4. 设 $a \neq 0$, 考虑级数

$$\sum_{n=1}^{+\infty} \sin\left(\pi\sqrt{n^2 + a^2}\right) \tag{3}$$

的收敛性,以及绝对收敛性.

5. 讨论如下级数的条件收敛和绝对收敛性

$$\sum_{n=2}^{+\infty} \ln\left[1 + \frac{(-1)^n}{n^p}\right], \quad p > 0.$$
 (4)

四. 级数杂题

1. 假设正项级数 $\sum_{n=1}^{+\infty} a_n$ 收敛, 且

$$\lim_{n \to +\infty} [n^p (e^{1/n} - 1)a_n] = 1, \tag{5}$$

其中 p > 0, 求正数 p 的取值范围.

2. 设函数 f(x) 在 (-1,1) 上二阶连续可微, 且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$. 证明级数

$$\sum_{n=2}^{+\infty} f\left(\frac{1}{n}\right) \tag{6}$$

绝对收敛.

3. 设

$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx, \quad \forall n \ge 1, \tag{7}$$

讨论级数

$$\sum_{n=1}^{+\infty} \frac{a_n}{n^p},\tag{8}$$

的收敛性, 其中 p > 0.

4. 设正项数列 $\{x_n\}$ 单调下降, 且级数 $\sum_{n=1}^{+\infty} (-1)^n x_n$ 发散. 判断级数

$$\sum_{n=1}^{+\infty} \left(\frac{1}{1+x_n}\right)^n \tag{9}$$

的收敛性,并说明理由.

- 5. 若正项级数 $\sum_{k=1}^{+\infty} x_n$ 收敛, 且数列 $\{x_n\}$ 单调下降, 证明 $\lim_{n\to+\infty} nx_n=0$.
- 6. 设 $\sum_{n=1}^{+\infty} a_n$ 为正项级数, 其部分和记作 $S_n = \sum_{k=1}^n a_k$, 则级数 $\sum_{n=1}^{+\infty} a_n$ 收敛 \Longleftrightarrow $\sum_{n=1}^{+\infty} \frac{a_n}{S_n}$ 收敛.
- 7. 证明 (i) 对于任意收敛的正项级数 $\sum_{n=1}^{+\infty} a_n$, 存在一个收敛的正项级数 $\sum_{n=1}^{+\infty} b_n$, 使得 $\frac{a_n}{b_n} \to 0$, $n \to +\infty$; (ii) 对于任意发散的正项级数 $\sum_{n=1}^{+\infty} a_n$, 存在一个发散的正项级数 $\sum_{n=1}^{+\infty} b_n$, 使得 $\frac{b_n}{a_n} \to 0$, $n \to +\infty$.

 \underline{i} : (i) 设 $\sum_{n=1}^{+\infty} a_n$ 和 $\sum_{n=1}^{+\infty} b_n$ 为两个正项级数, 均收敛. 设 $\sum_{n=1}^{+\infty} a_n = A$, $\sum_{n=1}^{+\infty} b_n = B$. 记 $S_n = \sum_{k=1}^n a_k$, $T_n = \sum_{k=1}^n b_k$, 则 $S_n \to A$, $T_n \to B$. 当 $\frac{a_n}{b_n} \to 0$ 时, 由 Stolz 定理可知

$$\lim_{n \to +\infty} \frac{A - S_n}{B - T_n} = \lim_{n \to +\infty} \frac{\sum_{k=n+1}^{+\infty} a_k}{\sum_{k=n+1}^{+\infty} b_k} = \lim_{n \to +\infty} \frac{a_{n+1}}{b_{n+1}} = 0.$$

故此时可以说, 级数 $\sum_{n=1}^{+\infty} b_n$ 收敛的速度,比级数 $\sum_{n=1}^{+\infty} a_n$ 收敛的速度要慢. 例如级数 $\sum \frac{1}{n^2}$ 比级数 $\sum \frac{1}{n^3}$ 收敛得慢, 因为 $\frac{1/n^3}{1/n^2} = \frac{1}{n} \to 0$.

(ii) 设 $\sum_{n=1}^{+\infty} a_n$ 和 $\sum_{n=1}^{+\infty} b_n$ 为两个正项级数, 均发散. 记 $S_n = \sum_{k=1}^n a_k$, $T_n = \sum_{k=1}^n b_k$, 则 $S_n \to +\infty$, $T_n \to +\infty$. 当 $\frac{a_n}{b_n} \to 0$ 时, 由 Stolz 定理可知

$$\lim_{n\to +\infty}\frac{S_n}{T_n}=\lim_{n\to +\infty}\frac{S_n-S_{n-1}}{T_n-T_{n-1}}=\lim_{n\to +\infty}\frac{a_n}{b_n}=0.$$

故此时可以说, 正项级数 $\sum_{n=1}^{+\infty} a_n$ 发散的速度比 $\sum_{n=1}^{+\infty} b_n$ 发散的速度要慢. 例如级数 $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ 比级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散得慢, 因为 $\frac{1/(n \ln n)}{1/n} = \frac{1}{\ln n} \to 0$.

(iii) 习题中的结论说明, 不存在收敛最慢的正项级数, 也不存在发散最慢的正项级数.