

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

Matemáticas II (MA-1112) Enero-Marzo 2008

Nombre:	
Carné:	Sección:

 1^{er} Examen Parcial $(25\,\%)$ Duración: 1h 50min Tipo B

Justifique todas sus respuestas

Pregunta 1. Halle la antiderivada más general de las siguientes funciones

a)
$$(2 \text{ puntos}) f(x) = x \sin(5x^2 + 2)$$

b) (2 puntos)
$$g(t) = \frac{t-4}{(t^2-8t+2)^4}$$

c) (2 puntos)
$$h(z) = \sqrt[5]{z} + \sec(z)\tan(z)$$

Pregunta 2. (3 puntos) Calcule

$$\int_0^{\frac{1}{\sqrt{2}}} \frac{x \arcsin(x^2)}{\sqrt{1 - x^4}} dx$$

Pregunta 3. (6 puntos) Calcule el área encerrada por las curvas y = sen(x), $y = \cos(x)$ cuando x está en el intervalo $\left[0, \frac{\pi}{2}\right]$.

Pregunta 4. (6 puntos) Halle la suma de Riemann R_P de la función $f(x) = x^2 + 4$ en el intervalo [-3, 2] asociada a la partición

$$P: x_0 = -3, x_1 = -1, x_2 = 0, x_3 = 1, x_4 = 2$$

evaluando en el punto donde la función alcanza el máximo en cada intervalo

Pregunta 5. (4 puntos) Halle f(2) siendo f una función continua que satisface para todo $x \geq 0$ la fórmula

$$\int_0^{x^2(1+x)} f(t)dt = x.$$

Soluciones

1) a) Usamos la sustitución $u = 5x^2 + 2$, du = 10xdx. Entonces

$$\int x \sin(5x^2 + 2) dx = \frac{1}{10} \int \sin(u) du = -\frac{1}{10} \cos(u) + C = -\frac{1}{10} \cos(5x^2 + 2) + C$$

b) Usamos la sustitución $u=t^2-8t+2,\,du=(2t-8)dt=2(t-4)dt,$ entonces

$$\int \frac{t-4}{(t^2-8t+2)^4} dt = \frac{1}{2} \int u^{-4} du = \frac{1}{2} \frac{u^{-3}}{(-3)} + C = -\frac{1}{6(t^2-8t+2)^3} + C$$

- c) $\int (\sqrt[5]{z} + \sec(z)\tan(z))dz = \int (z^{\frac{1}{5}} + \sec(z)\tan(z))dz = \frac{5z^{\frac{6}{5}}}{6} + \sec(z) + C$
- 2) Sea $I = \int_0^{\frac{1}{\sqrt{2}}} \frac{x \arcsin(x^2)}{\sqrt{1-x^4}} dx$. Usamos la sustitución $u = x^2$, du = 2x dx, entonces

$$I = \frac{1}{2} \int_0^{\frac{1}{2}} \frac{\arcsin(u)}{\sqrt{1 - u^2}} dx.$$

Ahora usamos la sustitución $v = \arcsin(u), dv = \frac{1}{\sqrt{1-u^2}}du$, entonces

$$I = \frac{1}{2} \int_0^{\frac{\pi}{6}} v dv = \frac{1}{2} \left[\frac{v^2}{2} \right]_0^{\frac{\pi}{6}} = \frac{1}{4} \left(\left(\frac{\pi}{6} \right)^2 - 0^2 \right) = \frac{\pi^2}{144}.$$

Nota: También se puede calcular la integral I usando la sustitución $z = \arcsin(x^2)$, $dz = \frac{2x}{\sqrt{1-x^4}}dx$.

3) Queremos calcular el área de la región sombreada (la línea gruesa es la gráfica del seno y la delgada la del coseno)

El área encerrada viene dada por:

$$A = \int_0^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x - \cos x) dx = [\sin x + \cos x]_0^{\frac{\pi}{4}} + [-\cos x - \sin x]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$
$$= \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - 0 - 1\right) + \left(-0 - 1 + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right) = 2\sqrt{2} - 2 = 2(\sqrt{2} - 1).$$

4) Observamos que la función $f(x) = x^2 + 4$ es decreciente en $(-\infty, 0]$ y creciente en $[0, \infty)$, por lo que para los intervalos negativos de la partición usamos el extremo izquierdo del intervalo al evaluar la función y en los intervalos positivos usamos el extremo derecho del intervalo al evaluar la función. Tenemos entonces que

$$\bar{x}_1 = -3, \ \bar{x}_2 = -1, \ \bar{x}_3 = 1, \ \bar{x}_4 = 2.$$

Finalmente,

$$R_P = \sum_{i=1}^{4} f(\bar{x}_i) \Delta x_i = f(-3) \cdot 2 + f(-1) \cdot 1 + f(1) \cdot 1 + f(2) \cdot 1 = 13 \cdot 2 + 5 + 5 + 8 = 44.$$

5) La continuidad de f nos permite usar el Primer Teorema Fundamental del Cálculo para derivar la fórmula

$$\int_0^{x^2(1+x)} f(t)dt = x,$$

y obtener

$$f(x^2(1+x))(2x+3x^2) = 1 \Rightarrow f((x^2(1+x))) = \frac{1}{2x+3x^2}.$$

Como queremos calcular f(2), resolvemos $x^2(1+x)=2$ obteniendo x=1. Entonces

$$f(2) = \frac{1}{2(1) + 3(1)^2} = \frac{1}{5}.$$