

Ravel: a database-defined network

Anduo Wang* Xueyuan Mei† Jason Croft† Matthew Caesar[†] Brighten Godfrey[†]

*Temple University †University of Illinois Urbana-Champaign

software-defined network

but network keeps evolving

but network keeps evolving

language-level orchestration restricted to each abstraction

composing (+) policy→ graph +? automata

integrate the runtime, hard-wiring internals?

current states of abstraction

our perspective

SDN control revolves around data representation

- discard specialized, pre-compiled, fixed structures
- -adopt a plain data representation

our perspective

SDN control revolves around data representation

- discard specialized, pre-compiled, fixed structures
- -adopt a plain data representation
- use a universal data language

a database-defined network

- relation the plain data representation
 - table stored relation
 - view virtual relation

a database-defined network

- relation the plain data representation
 - table stored relation
 - view virtual relation
- -SQL the universal data language
 - query, update, trigger, rule

a database-defined network

- relation the plain data representation
 - table stored relation
 - view virtual relation
- -SQL the universal data language
 - query, update, trigger, rule
- SQL database the highperformance runtime
 - orchestration challenge: refine runtime behavior by data mediation

Ravel: a realization with SQL database

attractive features

- ad-hoc programmable abstraction via views
- orchestration across abstractions via view mechanism
- orchestration acrossapplications via data mediation
- network control via SQL

abstraction: network tables

abstraction: application view

firewall table

```
CREATE TABLE acl (
  end1 integer, end2 integer, allow integer
);
```

control loop: monitoring firewall view and repairing violation

```
CREATE RULE acl_repair AS
   ON DELETE TO acl_violation
   DO INSTEAD
    DELETE FROM rm WHERE fid = OLD.fid;
```

- many more
 - routing, stateful firewall, service chain policy between subdomains ...
- optimizing application by materializing views
 - (one order of magnitude) faster access with small maintenance overhead (.01~10ms)

orchestration across representations

orchestrated updates: re route via (172, 38)

orchestration across applications

orchestration across applications

orchestrated updates: install alternative route that is load-balanced and safe

evaluation

profiling database delay — route insertion/deletion

evaluation

orchestrating access control(acl), load balancer(lb), and routing(rt): normalized per-rule delay (ms)

conclusion

flexible abstraction via SQL

- ad-hoc, user-defined, orchestratable
- promising performance

looking forward

- application of database features
 - network-wide transaction
 - bootstrapping legacy networks
- enhancing database
 - better runtime: synthesizing orchestration
 - better control decision: property analysis
- interpretability
 - integrate foreign applications, plug-n-play3rd party solvers

demo

playtime

download Ravel and install

ravel-net.org/download

start playing: tutorials, add your own app

ravel-net.org

more to explore

github.com/ravel-net