Single-machine scheduling with an external resource

Speaker:
Dirk Briskorn
Department of Production and Logistics, University of Wuppertal, Germany

Co-authors:
Morteza Davari
SKEMA Business School, Lille, France
Jannik Matuschke
Research Centre for Operations Management, KU Leuven, Belgium

Oct 2023 @ schedulingseminar.com

External resources

Resources that are rented

Introduction $1|er|\sum w_jC_j$ $1||\sum w_jC_j + \lambda \cdot er$ $1|er|\max L_j$ $1|er|\sum w_jU_j$ Conclusions Reference on 0

External resources

Resources that are rented

Human experts invited in projects

We have two type of costs

- **1** The scheduling cost (γ)
- 2 The renting cost (*er*)

We have two type of costs

1 The scheduling cost (γ)

 $\gamma = \sum C_j, \sum w_j C_j, \max L_j, \sum w_j U_j$

2 The renting cost (*er*)

We have two type of costs

The scheduling cost (γ)

 $\gamma = \sum_{i} C_{j}, \sum_{i} w_{j} C_{j}, \max L_{j}, \sum_{i} w_{j} U_{j}$

The renting cost(er)

Linear function of length of the renting interval

Four variants corresponding to 1 γ					
Problem	To optimize	To respect			
$1 er \gamma$	the scheduling cost (γ)	renting interval length of at most K^r			

Problem	To optimize	To respect
$1 er \gamma$	the scheduling cost (γ)	renting interval length of at most K^r
$1 \gamma er$	renting interval length (er)	scheduling cost at most K^{γ}

Four variants corresponding to 1 γ					
Problem	To optimize	To respect			
$1 er \gamma$	the scheduling cost (γ)	renting interval length of at most K^r			
$1 \gamma er$	renting interval length (er)	scheduling cost at most K^{γ}			
$1\ (\gamma,er)$	Pareto-front of γ and er	-			

Four variants corresponding to $1||\gamma|$

Problem definition

To optimize Problem To respect the scheduling cost (γ) renting interval length of at most K^r $1|er|\gamma$ renting interval length (er) scheduling cost at most K^{γ} $1|\gamma|er$ Pareto-front of γ and er $1||(\gamma, er)|$

 $1||\gamma + \lambda \cdot er|$

the sum of γ and $\lambda \cdot er$

^{*:} $\lambda \ge 0$ denotes the renting cost per time unit.

Problem	γ	Complexity	
	$\sum c_j$	$O(n \log n)$ (Smith [4])	
1γ	$\sum w_j C_j$	$O(n \log n)$ (Smith [4])	
1 7	$\max_{i} L_{j}$	$O(n \log n)$ (Jackson [2])	
	$\sum w_j U_j$	O(nP) (Lawler and Moore [3])	
	$\sum c_j$	Open	
$1 er \gamma$	$\overline{\sum} w_j C_j$	Open	
1 er y	$\max_{L_j} L_j$	Open	
	$\sum w_j U_j$	Open	
	$\sum c_j$	Open	
$1 \gamma er$	$\sum w_j C_j$	Open	
1/7/67	$\max_{L_j} L_j$	Open	
	$\sum w_j U_j$	Open	
	$\sum c_j$	Open	
$1 (\gamma, er)$	$\overline{\sum} w_j C_j$	Open	
$1 (\gamma, er)$	\max_{L_j}	Open	
	$\sum w_j U_j$	Open	
	$\sum c_j$	Open	
$1 \gamma + er$	$\sum w_j C_j$	Open	
1 y + er	$\max L_j$	Open	
	$\sum w_j U_j$	Open	

Introduction 000

$$1|er|\sum w_jC_j$$

References

$1|er|\sum C_j$ is NP-hard

EVEN-ODD-PARTITION: Given integers a_1, \ldots, a_{2m} with $a_{k-1} < a_k$ for $k = 2, \ldots, 2m$ and with total value 2B, is there a subset of m of these numbers with total value of B such that for each $k = 1, \ldots, m$ exactly one of the pair $\{a_{2k-1}, a_{2k}\}$ is in the subset?

Given such an instance of Even-Odd-Partition, we construct an instance of $1|er| \sum C_j$ with 2m + 2 jobs as follows:

•
$$J = \{1, \dots, 2m + 2\}$$
 and $J^r = \{2m + 1, 2m + 2\}$,

•
$$p_j = B^2 + a_j$$
 for each $j = 1, ..., 2m$,

•
$$p_{2m+1} = 0$$
 and $p_{2m+2} = C + D + 1$, and

$$K^r = p_{2m+2} + mB^2 + B$$

where

$$C = \sum_{k=1}^{m} (m+1-k)(p_{2k-1} + p_{2k}) + (mB^2 + B)(m+1)$$

and

$$D = \sum_{i=1}^{2m} p_j = 2mB^2 + 2B.$$

Claim: There is a feasible schedule with total completion time of no more than 2(C + D) + 1 if and only if the answer to the instance of Even-Opd-Partition is yes.

$1|er|\sum C_j$ is NP-hard

Claim

Job 2m + 2 is the last job in σ and job 2m + 1 is not started before $mB^2 + B$.

Claim

Exactly m jobs are scheduled between 2m + 1 and 2m + 2 in σ .

$$p_1 = 8$$
 $p_2 = 4$ $p_3 = 3$ $p_4 = 6$ $p_5 = 4$ $p_6 = 6$ $p_7 = 4$ $p_8 = 2$ $p_8 = 10$ $p_8 =$

1 2 3 4 5 6 7 8

$$p_1 = 8$$

$$w_1 = 16$$

$$p_2=4\\w_2=8$$

$$p_3 = 3$$

 $w_3 = 3$

3

$$p_4 = 6$$

$$w_4 = 24$$

$$p_5 = 4$$

 $w_5 = 28$

$$p_6 = 6$$
$$w_6 = 12$$

$$w_7 = 12$$

$$p_8 = 2$$

$$w_8 = 20$$

 $w_i/p_i =$

5

6

10

 $w_i/p_i =$

Step 1: Create a sequence according to WSPT↓

10

 $w_i/p_i =$

1 4 7 2 3 10

Step 1: Create a sequence according to WSPT↓

 $w_i/p_i =$

If $K^r \ge 31$, this sequence is optimal.

But, what if $K^r < 31$?

10

Step 2: Re-number jobs according to WSPT.

Step 2: Re-number jobs according to WSPT.

Step 2: Re-number jobs according to WSPT.

Step 2: Re-number jobs according to WSPT.

Step 2: Re-number jobs according to WSPT.

Step 3: Form set *H* of *ordinary jobs* between α and β .

What if $\overline{K^r} = 23$?

Step 2: Re-number jobs according to WSPT.

Step 3: Form set *H* of *ordinary jobs* between α and β .

Step 2: Re-number jobs according to WSPT.

Step 3: Form set *H* of *ordinary jobs* between α and β .

Step 4: Find a subset $S \subseteq H$ to be moved around such that $er \leq K^r$.

Step 2: Re-number jobs according to WSPT.

Step 3: Form set *H* of *ordinary jobs* between α and β .

Step 4: Find a subset $S \subseteq H$ to be moved around such that $er \leq K^r$.

What if $\overline{K^r} = 23$?

Step 2: Re-number jobs according to WSPT.

Step 3: Form set *H* of *ordinary jobs* between α and β .

Step 4: Find a subset $S \subseteq H$ to be moved around such that $er \leq K^r$.

Step 2: Re-number jobs according to WSPT.

Step 3: Form set *H* of *ordinary jobs* between α and β .

Step 4: Find a subset $S \subseteq H$ to be moved around such that $er \leq K^r$.

Three different scenarios

Scenario 1:

Three different scenarios

Scenario 1:

Scenario 2:

Three different scenarios

Scenario 1:

Scenario 2:

Scenario 3:

$\sigma \rightarrow \sigma_{X,Y}$

Given sequence σ (the WSPT sequence)

^{**}Remember: Jobs are re-numbered according to WSPT.

^{**}Note: $S = X \cup Y \subseteq H$.

$\sigma \rightarrow \sigma_{X,Y}$

Given sequence σ (the WSPT sequence)

I try to find sequence $\sigma_{X,Y}$

that minimizes $\sum w_i C_i$.

^{**}Remember: Jobs are re-numbered according to WSPT.

^{**}Note: $S = X \cup Y \subseteq H$.

Lemma

For each instance of $1|er|\sum_i w_i C_j$ there exists $X^*, Y^* \subseteq H$ with $\max X^* < \min Y^*$ such that σ_{X^*,Y^*} is optimal.

^{**}Remember: Jobs are re-numbered according to WSPT.

Lemma

For each instance of $1|er|\sum w_jC_j$ there exists $X^*,Y^*\subseteq H$ with $\max X^*<\min Y^*$ such that σ_{X^*,Y^*} is optimal.

The benefit is that it shows: there is κ^* such that

$$X^* \subseteq H \cap J[\alpha+1, \kappa^*-1]$$

and

$$Y^* \subseteq H \cap J[\kappa^*, \beta - 1].$$

^{**}Remember: Jobs are re-numbered according to WSPT.

Lemma

For each instance of $1|er|\sum w_jC_j$ there exists X^* , $Y^*\subseteq H$ with $\max X^*<\min Y^*$ such that σ_{X^*,Y^*} is optimal.

The benefit is that it shows: there is κ^* such that

$$X^* \subseteq H \cap J[\alpha+1,\kappa^*-1]$$

and

$$Y^* \subseteq H \cap J[\kappa^*, \beta - 1].$$

^{**}Remember: Jobs are re-numbered according to WSPT.

Lemma

For each instance of $1|er|\sum w_jC_j$ there exists X^* , $Y^*\subseteq H$ with $\max X^*<\min Y^*$ such that σ_{X^*,Y^*} is optimal.

The benefit is that it shows: there is κ^* such that

$$X^* \subseteq H \cap J[\alpha+1,\kappa^*-1]$$

and

$$Y^* \subseteq H \cap J[\kappa^*, \beta - 1].$$

^{**}Remember: Jobs are re-numbered according to WSPT.

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

X_{κ,ρ_1} and Y_{κ,ρ_2} for every tuple (κ,ρ_1,ρ_2)

$$X_{\kappa,\rho_1}\in \underset{X\in X_{\kappa,\rho_1}}{\arg\min}\{f_\kappa(X)\}\quad \text{ and }\quad Y_{\kappa,\rho_2}\in \underset{Y\in \mathcal{Y}_{\kappa,\rho_2}}{\arg\min}\{g_\kappa(Y)\}.$$

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

X_{κ,ρ_1} and Y_{κ,ρ_2} for every tuple (κ,ρ_1,ρ_2)

$$X_{\kappa,\rho_1}\in \underset{X\in X_{\kappa,\rho_1}}{\arg\min}\{f_\kappa(X)\}\quad \text{ and }\quad Y_{\kappa,\rho_2}\in \underset{Y\in \mathcal{Y}_{\kappa,\rho_2}}{\arg\min}\{g_\kappa(Y)\}.$$

We find the optimal triple (κ, ρ_1, ρ_2)

$$(\kappa^*, \rho_1^*, \rho_2^*) \in \underset{(\kappa, \rho_1, \rho_2) \mid p(I[\alpha, \beta]) - \rho_1 - \rho_2 \leq K^r}{\arg \min} \{ f_{\kappa}(X_{\kappa, \rho_1}) + g_{\kappa}(Y_{\kappa, \rho_2}) \}$$

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

X_{κ,ρ_1} and Y_{κ,ρ_2} for every tuple (κ,ρ_1,ρ_2)

$$X_{\kappa,\rho_1} \in \mathop{\arg\min}_{X \in \mathcal{X}_{\kappa,\rho_1}} \{f_\kappa(X)\} \quad \text{ and } \quad Y_{\kappa,\rho_2} \in \mathop{\arg\min}_{Y \in \mathcal{Y}_{\kappa,\rho_2}} \{g_\kappa(Y)\}. \quad \quad \text{Done in } \mathrm{O}(nP^2) \to \mathsf{next slide}$$

We find the optimal triple (κ, ρ_1, ρ_2)

$$(\kappa^*, \rho_1^*, \rho_2^*) \in \underset{(\kappa, \rho_1, \rho_2) | p(J(\alpha, \beta)) - \rho_1 - \rho_2 \le K^r}{\arg \min} \{ f_{\kappa}(X_{\kappa, \rho_1}) + g_{\kappa}(Y_{\kappa, \rho_2}) \}$$
 Done in O(nP).

Computing $X_{\kappa,\rho}$

$$\begin{split} \theta_{1,\rho}(\alpha-1,\varrho) &= \left\{ \begin{array}{ll} 0 & \text{if } \varrho = 0 \\ \infty & \text{otherwise} \end{array} \right., \\ \theta_{1,\rho}(j,\varrho) &= \min \left\{ \begin{array}{ll} \left\{ \begin{array}{ll} \theta_{1,\rho}(j-1,\varrho-p_j) + w_j \cdot (t_\alpha + \varrho) & \text{if } j \in J^o \\ \infty & \text{if } j \in J^r \\ \theta_{1,\rho}(j-1,\varrho) + w_j \cdot (p(J[1,j]) + \rho - \varrho) \end{array} \right\}. \end{split}$$

Computing $X_{\kappa,\rho}$ (Similarly for $Y_{\kappa,\rho}$)

$$\theta_{1,\rho}(\alpha-1,\varrho) = \begin{cases} 0 & \text{if } \varrho = 0 \\ \infty & \text{otherwise} \end{cases},$$

$$\theta_{1,\rho}(j,\varrho) = \min \begin{cases} \begin{cases} \theta_{1,\rho}(j-1,\varrho-p_j) + w_j \cdot (t_\alpha+\varrho) & \text{if } j \in J^o \\ \infty & \text{if } j \in J^r \end{cases} \\ \theta_{1,\rho}(j-1,\varrho) + w_j \cdot (p(J[1,j]) + \rho - \varrho) \end{cases}.$$
 Done in O(nP).

Computing $X_{\kappa,\rho}$ (Similarly for $Y_{\kappa,\rho}$)

$$\begin{split} \theta_{1,\rho}(\alpha-1,\varrho) &= \left\{ \begin{array}{ll} 0 & \text{if } \varrho = 0 \\ \infty & \text{otherwise} \end{array} \right., \\ \theta_{1,\rho}(j,\varrho) &= \min \left\{ \begin{array}{ll} \left\{ \begin{array}{ll} \theta_{1,\rho}(j-1,\varrho-p_j) + w_j \cdot (t_\alpha+\varrho) & \text{if } j \in J^o \\ \infty & \text{if } j \in J^r \end{array} \right\}. \end{array} \right. \quad \text{Done in O}(nP). \end{split}$$

So for all (κ, ρ) , the algorithm runs in $O(n^2P^2)$?

Computing $X_{\kappa,\rho}$ (Similarly for $Y_{\kappa,\rho}$)

$$\begin{split} \theta_{1,\rho}(\alpha-1,\varrho) &= \left\{ \begin{array}{ll} 0 & \text{if } \varrho = 0 \\ \infty & \text{otherwise} \end{array} \right., \\ \theta_{1,\rho}(j,\varrho) &= \min \left\{ \begin{array}{ll} \left\{ \begin{array}{ll} \theta_{1,\rho}(j-1,\varrho-p_j) + w_j \cdot (t_\alpha+\varrho) & \text{if } j \in J^o \\ \infty & \text{if } j \in J^r \end{array} \right\}. \end{array} \right. \quad \text{Done in O}(nP). \end{split}$$

So for all (κ, ρ) , the algorithm runs in $O(n^2P^2)$?

Computing $X_{\kappa,\rho}$ (Similarly for $Y_{\kappa,\rho}$)

$$\begin{split} \theta_{1,\rho}(\alpha-1,\varrho) &= \left\{ \begin{array}{ll} 0 & \text{if } \varrho = 0 \\ \infty & \text{otherwise} \end{array} \right., \\ \theta_{1,\rho}(j,\varrho) &= \min \left\{ \begin{array}{ll} \left\{ \begin{array}{ll} \theta_{1,\rho}(j-1,\varrho-p_j) + w_j \cdot (t_\alpha+\varrho) & \text{if } j \in J^o \\ \infty & \text{if } j \in J^r \end{array} \right\}. \end{array} \right. \quad \text{Done in O}(nP). \end{split}$$

So for all (κ, ρ) , the algorithm runs in $O(n^2P^2)$?

Computing $X_{\kappa,\rho}$ (Similarly for $Y_{\kappa,\rho}$)

$$\begin{split} \theta_{1,\rho}(\alpha-1,\varrho) &= \left\{ \begin{array}{ll} 0 & \text{if } \varrho = 0 \\ \infty & \text{otherwise} \end{array} \right., \\ \theta_{1,\rho}(j,\varrho) &= \min \left\{ \begin{array}{ll} \left\{ \begin{array}{ll} \theta_{1,\rho}(j-1,\varrho-p_j) + w_j \cdot (t_\alpha+\varrho) & \text{if } j \in J^o \\ \infty & \text{if } j \in J^r \end{array} \right\}. \end{array} \right. \quad \text{Done in O}(nP). \end{split}$$

So for all (κ, ρ) , the algorithm runs in $O(n^2P^2)$? Done in $O(nP^2)$.

1 2	3 4	5 6	7 8	
(2,8)	(3,8)	(4,8)	(5,8)	
				$\kappa = 7, \rho = 8$
(2,0)	(3,0)	(4,0)	(5,0)	

Final Result for $1|er|\sum w_jC_j$ and $1|er|\sum C_j$

Lemma

 $1|er|\sum w_jC_j$ can be solved in $O(nP^2)$ -time.

Final Result for $1|er| \sum w_j C_j$ and $1|er| \sum C_j$

Lemma

 $1|er|\sum w_jC_j$ can be solved in $O(nP^2)$ -time.

Lemma

 $1|er|\sum w_jC_j$ can be solved in O(nPW)-time.

Final Result for $1|er| \sum w_j C_j$ and $1|er| \sum C_j$

Lemma

 $1|er|\sum w_jC_j$ can be solved in $O(nP^2)$ -time.

Lemma

 $1|er|\sum w_jC_j$ can be solved in O(nPW)-time.

Theorem

 $1|er|\sum w_iC_i$ can be solved in $O(nP\min\{P,W\})$ -time.

Final Result for $1|er|\sum w_jC_j$ and $1|er|\sum C_j$

Lemma

 $1|er|\sum w_jC_j$ can be solved in $O(nP^2)$ -time.

Lemma

 $1|er|\sum w_jC_j$ can be solved in O(nPW)-time.

Theorem

 $1|er| \sum w_i C_i$ can be solved in $O(nP \min\{P, W\})$ -time.

Corollary

 $1|er|\sum_{i}C_{i}$ can be solved in $O(n^{2}P)$ -time.

$$1\|\sum w_jC_j+\lambda\cdot er$$

$$1\|\sum w_jC_j+\lambda\cdot er$$

We want to minimize the sum $\sum w_j C_j + \lambda \cdot er$.

$$1\|\sum w_jC_j+\lambda\cdot er$$

We want to minimize the sum $\sum w_j C_j + \lambda \cdot er$.

p = 2	p=4	p = 6	p = 4	p = 6	p = 8	p = 4	$p = 3^{\frac{3}{3}}$	7
1	2	3	4	5	6	7	8	

We want to minimize the sum $\sum_{i} w_{j}C_{j} + \lambda \cdot er$.

p = 2	p=4	A_4	n = 4	p = 6	B_4	p = 4	p = 3	
1	2	3	4	5	6	7	8	

$$1\|\sum w_jC_j+\lambda\cdot er\|$$

We want to minimize the sum $\sum w_j C_j + \lambda \cdot er$.

$$\underbrace{w(A_4)p_4 - \lambda \cdot p_4}_{\text{moving } A_4 \text{ forward}} - \underbrace{w_4 P(A_4)}_{\text{moving } 4 \text{ backward}} < 0$$

We want to minimize the sum $\sum_{i} w_{i}C_{i} + \lambda \cdot er$.

$$\underbrace{w(A_4)p_4 - \lambda \cdot p_4}_{\text{moving } A_4 \text{ forward}} - \underbrace{w_4 P(A_4)}_{\text{moving } 4 \text{ backward}} < 0 \quad \rightarrow \quad \frac{w_4}{p_4} > \frac{w(A_4) - \lambda}{p(A_4)}$$

We want to minimize the sum $\sum_{i} w_i C_i + \lambda \cdot er$.

$$p = 2$$
 $p = 4$ $p = 6$ $p = 4$ $p = 6$ $p = 8$ $p = 4$ $p = 3$ $p = 6$ $p = 8$ $p = 4$ $p = 3$ $p = 6$ $p = 8$ $p = 4$ $p = 3$ $p = 6$ $p = 8$ $p = 4$ $p = 8$ $p =$

$$\underbrace{w(A_4)p_4 - \lambda \cdot p_4}_{\text{moving } A_4 \text{ forward}} - \underbrace{w_4 P(A_4)}_{\text{moving 4 backward}} < 0 \quad \rightarrow \quad \frac{w_4}{p_4} > \frac{w(A_4) - \lambda}{p(A_4)}$$
$$\rightarrow \quad \frac{w_4}{p_4} \ge \frac{w(J^r)}{p(J^r)}$$

$$1\|\sum w_jC_j+\lambda\cdot er\|$$

We want to minimize the sum $\sum_{i} w_{j}C_{j} + \lambda \cdot er$.

p=2 $p=4$	p = 6	p=4	p = 6	B_4 $p=8$	p = 4	p = 3	
1 2	3	4	5	6	7	8	
	l					+	
						_	

$$\underbrace{-w(B_4)p_4 - \lambda \cdot p_4}_{\text{moving } B_4 \text{ backward}} + \underbrace{w_4 P(B_4)}_{\text{moving } 4 \text{ forward}} < 0$$

We want to minimize the sum $\sum w_j C_j + \lambda \cdot er$.

(A_4			B_4		3	7
p = 2 $p = 4$	p = 6	p = 4	p = 6	p = 8	p = 4	p = 3	
1 2	3	4	5	6	7	8	

$$\underbrace{-w(B_4)p_4 - \lambda \cdot p_4}_{\text{moving } B_4 \text{ backward}} + \underbrace{w_4 P(B_4)}_{\text{moving 4 forward}} < 0 \longrightarrow \underbrace{\frac{w_4}{p_4}} < \underbrace{\frac{w(B_4) + \lambda}{p(B_4)}}$$

We want to minimize the sum $\sum_{i} w_{i}C_{i} + \lambda \cdot er$.

$$p = 2$$
 $p = 4$ $p = 6$ $p = 4$ $p = 6$ $p = 8$ $p = 4$ $p = 3$ $p = 4$ $p = 6$ $p = 8$ $p = 4$ $p = 3$ $p = 4$ $p = 6$ $p = 8$ $p = 4$ $p = 8$ $p =$

$$\underbrace{-w(B_4)p_4 - \lambda \cdot p_4}_{\text{moving } B_4 \text{ backward}} + \underbrace{w_4 P(B_4)}_{\text{moving } 4 \text{ forward}} < 0 \quad \rightarrow \quad \frac{w_4}{p_4} < \frac{w(B_4) + \lambda}{p(B_4)}$$

$$\rightarrow \quad \frac{w_4}{p_4} < \frac{w(J^r)}{p(J^r)}$$

$|1|| \sum w_j C_j + \lambda \cdot er$ for job 4

		A_4			B_4		3	7
p = 2	p = 4	p = 6	p = 4	p = 6	p = 8	p = 4	p = 3	
1	2	3	4	5	6	7	8	
		1						

$1\|\sum w_j C_j + \lambda \cdot er \text{ for job 4}$

So, if

$$\frac{w_4}{p_4} > \frac{w(A_4) - \lambda}{p(A_4)}$$
 and $\frac{w_4}{p_4} \ge \frac{w(J^r)}{p(J^r)}$,

then 4 is moved before the Renting interval $(\rightarrow X)$.

$1 \| \sum w_j C_j + \lambda \cdot er$ for job 4

So, if

$$\frac{w_4}{p_4} > \frac{w(A_4) - \lambda}{p(A_4)}$$
 and $\frac{w_4}{p_4} \ge \frac{w(J^r)}{p(J^r)}$,

then 4 is moved before the Renting interval $(\rightarrow X)$.

and if

$$\frac{w_4}{p_4} < \frac{w(B_4) + \lambda}{p(B_4)}$$
 and $\frac{w_4}{p_4} < \frac{w(J^r)}{p(J^r)}$,

then 4 is moved after the Renting interval $(\rightarrow Y)$.

So, if

$$\frac{w_4}{p_4} > \frac{w(A_4) - \lambda}{p(A_4)}$$
 and $\frac{w_4}{p_4} \ge \frac{w(J^r)}{p(J^r)}$,

then 4 is moved before the Renting interval $(\rightarrow X)$.

and if

$$\frac{w_4}{p_4} < \frac{w(B_4) + \lambda}{p(B_4)}$$
 and $\frac{w_4}{p_4} < \frac{w(J^r)}{p(J^r)}$,

then 4 is moved after the Renting interval $(\rightarrow Y)$.

Otherwise 4 stays inside the Renting interval.

$$X_{\lambda} := \left\{ j \in H : \frac{w_j}{p_j} > \frac{w(A_j) - \lambda}{p(A_j)} \text{ and } \frac{w_j}{p_j} \ge \frac{w(J^r)}{p(J^r)} \right\},$$

$$Y_{\lambda} := \left\{ j \in H : \frac{w_j}{p_j} < \frac{w(B_j) + \lambda}{p(B_j)} \text{ and } \frac{w_j}{p_j} < \frac{w(J^r)}{p(J^r)} \right\}.$$

$$X_{\lambda} := \left\{ j \in H : \frac{w_j}{p_j} > \frac{w(A_j) - \lambda}{p(A_j)} \text{ and } \frac{w_j}{p_j} \ge \frac{w(J^r)}{p(J^r)} \right\},$$

$$Y_{\lambda} := \left\{ j \in H : \frac{w_j}{p_j} < \frac{w(B_j) + \lambda}{p(B_j)} \text{ and } \frac{w_j}{p_j} < \frac{w(J^r)}{p(J^r)} \right\}.$$

Lemma

 $\sigma_{X_{\lambda},Y_{\lambda}}$ is an optimal sequence for $1\|\sum w_{j}C_{j} + er$ with unit rental cost λ .

$1\|\sum w_jC_j+\lambda\cdot er$

$$X_{\lambda} := \left\{ j \in H : \frac{w_j}{p_j} > \frac{w(A_j) - \lambda}{p(A_j)} \text{ and } \frac{w_j}{p_j} \ge \frac{w(J^r)}{p(J^r)} \right\},$$

$$Y_{\lambda} := \left\{ j \in H : \frac{w_j}{p_j} < \frac{w(B_j) + \lambda}{p(B_j)} \text{ and } \frac{w_j}{p_j} < \frac{w(J^r)}{p(J^r)} \right\}.$$

Lemma

 $\sigma_{X_{\lambda},Y_{\lambda}}$ is an optimal sequence for $1 \| \sum w_j C_j + er$ with unit rental cost λ .

Theorem

 $1 \| \sum_{i} w_{j} C_{j} + \lambda \cdot er \ can \ be \ solved \ in \ time \ O(n \log n).$

 $1|er|\max L_j$

$1|er|\max L_j$ is NP-hard

Partition: Given integer numbers a_1, \ldots, a_m , is there a subset of $\{a_1, \ldots, a_m\}$ with total value of $B = \frac{1}{2} \sum_{i=1}^m a_i$?

Given an instance of Partition, we construct an instance of $1|er| \max L_j$ with m + 2 jobs as follows:

- $J = \{1, ..., m+2\}$ and $J^r = \{m+1, m+2\}$,
- $p_j = a_j$ and $d_j = 2B + 1$ for each $j = 1, \dots, m$,
- $p_{m+1} = 1$, $d_{m+1} = B + 1$, $p_{m+2} = 1$ and $d_{m+2} = 2B + 2$, and
- $K^r = B + 2$.

$\overline{1|er|}$ max L_i is NP-hard

Claim

There is a feasible schedule with maximum lateness of at most zero if and only if the answer to the instance of Partition is yes.

$\sigma \rightarrow \sigma_{X,Y}$

Given sequence σ (the EDD sequence)

^{**}Remember: Jobs are re-numbered according to EDD.

^{**}Note: $S = X \cup Y \subseteq H$.

$\sigma \rightarrow \sigma_{X,Y}$

Given sequence σ (the EDD sequence)

I try to find sequence $\sigma_{X,Y}$

that minimizes $\max L_j$.

^{**}Remember: Jobs are re-numbered according to EDD.

^{**}Note: $S = X \cup Y \subseteq H$.

Lemma

For each instance of $1|er|\max L_j$ there exists $X^*, Y^* \subseteq H$ with $\max X^* < \min Y^*$ such that σ_{X^*,Y^*} is optimal.

^{**}Remember: Jobs are re-numbered according to EDD.

Lemma

For each instance of $1|er| \max L_j$ there exists $X^*, Y^* \subseteq H$ with $\max X^* < \min Y^*$ such that σ_{X^*, Y^*} is optimal.

The benefit is that it shows: there is κ^* such that

$$X^*\subseteq H\cap J[\alpha+1,\kappa^*-1]$$

$$Y^* \subseteq H \cap J[\kappa^*, \beta - 1].$$

^{**}Remember: Jobs are re-numbered according to EDD.

Lemma

For each instance of $1|er| \max L_j$ there exists $X^*, Y^* \subseteq H$ with $\max X^* < \min Y^*$ such that σ_{X^*, Y^*} is optimal.

The benefit is that it shows: there is κ^* such that

$$X^*\subseteq H\cap J[\alpha+1,\kappa^*-1]$$

$$Y^* \subseteq H \cap J[\kappa^*, \beta - 1].$$

^{**}Remember: Jobs are re-numbered according to EDD.

Lemma

For each instance of $1|er| \max L_j$ there exists $X^*, Y^* \subseteq H$ with $\max X^* < \min Y^*$ such that σ_{X^*, Y^*} is optimal.

The benefit is that it shows: there is κ^* such that

$$X^*\subseteq H\cap J[\alpha+1,\kappa^*-1]$$

$$Y^* \subseteq H \cap J[\kappa^*, \beta - 1].$$

^{**}Remember: Jobs are re-numbered according to EDD.

Lemma

For each instance of $1|er| \max L_j$ there exists $X^*, Y^* \subseteq H$ with $\max X^* < \min Y^*$ such that σ_{X^*, Y^*} is optimal.

The benefit is that it shows: there is κ^* such that

$$X^*\subseteq H\cap J[\alpha+1,\kappa^*-1]$$

$$Y^* \subseteq H \cap J[\kappa^*, \beta - 1].$$

^{**}Remember: Jobs are re-numbered according to EDD.

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

X_{κ,ρ_1} and Y_{κ,ρ_2} for every tuple (κ,ρ_1,ρ_2)

$$X_{\kappa,\rho_1}\in \underset{X\in X_{\kappa,\rho_1}}{\arg\min}\{f_\kappa'(X)\}\quad \text{ and }\quad Y_{\kappa,\rho_2}\in \underset{Y\in \mathcal{Y}_{\kappa,\rho_2}}{\arg\min}\{g_\kappa'(Y)\}.$$

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

X_{κ,ρ_1} and Y_{κ,ρ_2} for every tuple (κ,ρ_1,ρ_2)

$$X_{\kappa,\rho_1}\in \underset{X\in X_{\kappa,\rho_1}}{\arg\min}\{f_\kappa'(X)\}\quad \text{ and }\quad Y_{\kappa,\rho_2}\in \underset{Y\in \mathcal{Y}_{\kappa,\rho_2}}{\arg\min}\{g_\kappa'(Y)\}.$$

We find the optimal triple (κ, ρ_1, ρ_2)

$$(\kappa^*,\rho_1^*,\rho_2^*)\in \mathop{\arg\min}_{(\kappa,\rho_1,\rho_2)|p(J(\alpha\beta))-\rho_1-\rho_2\leq K'}\{\max\{f_\kappa'(X_{\kappa,\rho_1}),g_\kappa'(Y_{\kappa,\rho_2})\}\}$$

For any given trio of values κ , ρ_1 , and ρ_2 , we want to find the best X and Y. And then

$$X \to X_{\kappa,\rho_1}$$
 and $Y \to Y_{\kappa,\rho_2}$

X_{κ,ρ_1} and Y_{κ,ρ_2} for every tuple (κ,ρ_1,ρ_2)

$$X_{\kappa,\rho_1} \in \arg\min_{X \in \mathcal{X}_{\kappa,\rho_1}} \{f_\kappa'(X)\} \quad \text{ and } \quad Y_{\kappa,\rho_2} \in \arg\min_{Y \in \mathcal{Y}_{\kappa,\rho_2}} \{g_\kappa'(Y)\}. \quad \quad \text{Done in } \mathrm{O}(nP) \to \mathsf{next \ slide}$$

We find the optimal triple (κ, ρ_1, ρ_2)

$$(\kappa^*, \rho_1^*, \rho_2^*) \in \underset{(\kappa, \rho_1, \rho_2)|p(J[\alpha\beta]) - \rho_1 - \rho_2 \le K^r}{\arg \min} \{ \max\{f_\kappa'(X_{\kappa, \rho_1}), g_\kappa'(Y_{\kappa, \rho_2})\}\}$$
 Done in O(nP).

Dynamic programming for computing $X_{\kappa,\rho}$

Accelerated jobs do not have maximum lateness

Jobs in *X* do not imply maximum lateness since $d_{\alpha} \leq d_{j}$ and $C_{\alpha} \geq C_{j}$ for each $j \in X$.

Computing $X_{\kappa,\rho}$ (Similarly for $Y_{\kappa,\rho}$)

$$\theta_{3}(\alpha+1,\rho) = \left\{ \begin{array}{ll} p(J[1,\alpha]) - d_{\alpha} & \text{if } \rho = 0 \\ \infty & \text{otherwise} \end{array} \right.,$$

$$\theta_{3}(\kappa+1,\rho) = \min \left\{ \begin{array}{ll} \max \left\{ \begin{array}{ll} \theta_{3}(\kappa,\rho), \\ p(J[1,\kappa]) - d_{\kappa} \end{array} \right\}, \\ \left\{ \begin{array}{ll} \theta_{3}(\kappa,\rho-p_{\kappa}) + p_{\kappa} & \text{if } \kappa \in J^{o} \\ \infty & \text{if } \kappa \in J^{r} \end{array} \right\}.$$

Dynamic programming for computing $X_{\kappa,\rho}$

Accelerated jobs do not have maximum lateness

Jobs in *X* do not imply maximum lateness since $d_{\alpha} \leq d_{j}$ and $C_{\alpha} \geq C_{j}$ for each $j \in X$.

Computing $X_{\kappa,\rho}$ (Similarly for $Y_{\kappa,\rho}$)

$$\theta_{3}(\alpha+1,\rho) = \begin{cases} p(J[1,\alpha]) - d_{\alpha} & \text{if } \rho = 0\\ \infty & \text{otherwise} \end{cases},$$

$$\theta_{3}(\kappa+1,\rho) = \min \begin{cases} \max \left\{ \begin{array}{l} \theta_{3}(\kappa,\rho),\\ p(J[1,\kappa]) - d_{\kappa} \end{array} \right\},\\ \begin{cases} \theta_{3}(\kappa,\rho-p_{\kappa}) + p_{\kappa} & \text{if } \kappa \in J^{o}\\ \infty & \text{if } \kappa \in J^{r} \end{cases}. \text{Done in } O(nP). \end{cases}$$

$$1|er|\sum w_jU_j$$

Lemma

For each instance of $1|er|\sum w_jU_j$ there exist disjoint sets $X^*,Y^*,Z^*\subseteq J$ such that the sequence σ_{X^*,Y^*,Z^*} is optimal and, moreover,

- **1** all jobs in $X^* \cup Y^* \cup Z^*$ are non-tardy in σ_{X^*,Y^*,Z^*} ,
- $(X^* \cup Z^*) \cap J^r = \emptyset, and$

Lemma

For each instance of $1|er|\sum w_jU_j$ there exist disjoint sets $X^*,Y^*,Z^*\subseteq J$ such that the sequence σ_{X^*,Y^*,Z^*} is optimal and, moreover,

- **1** all jobs in $X^* \cup Y^* \cup Z^*$ are non-tardy in σ_{X^*,Y^*,Z^*} ,
- $(X^* \cup Z^*) \cap J^r = \emptyset, and$

$\mathcal{X}_{\kappa,\rho_1,\rho_2}, \mathcal{Y}_{\kappa,\rho_1}^{\prime\prime}$, and $\mathcal{Z}_{\kappa,\rho_2}$ for every tuple (κ,ρ_1,ρ_2)

$$X_{\kappa,\rho_{1},\rho_{2}} = \begin{cases} (X,Y') & X,Y' \subseteq J[1,\kappa-1], X \cap Y' = \emptyset = X \cap J^{r}, \\ \sum_{j' \in X \cup Y'; j' \leq j} p_{j'} \leq d_{j}, \forall j \in X \cup Y', \\ p(Y' \cap J^{o}) \leq K^{r} - p(J^{r}), \\ p(X \cup Y') = \rho_{1}, \rho_{1} + p(J^{r} \setminus Y') = \rho_{2} \end{cases}$$

$$\mathcal{J}''_{\kappa,\rho_{1}} = \begin{cases} Y'' & Y'' \subseteq J^{r}[\kappa,n], \rho_{1} + \sum_{j' \in Y''; j' \leq j} p_{j'} \leq d_{j}, \forall j \in Y'' \end{cases}$$

$$\mathcal{Z}_{\kappa,\rho_{2}} = \begin{cases} Z & Z \subseteq J^{o}[\kappa,n], \rho_{2} + \sum_{j' \in Z; j' \leq j} p_{j'} \leq d_{j}, \forall j \in Z \end{cases}$$

Optimal job sets for given triple $(\kappa, \rho_1, \rho_2) \in \Xi$

$$\begin{split} (X_{\kappa,\rho_1,\rho_2},Y'_{\kappa,\rho_1,\rho_2}) &\in \underset{(X,Y') \in X_{\kappa,\rho_1,\rho_2}}{\arg\max} w(X) + w(Y'), \\ Y''_{\kappa,\rho_1} &\in \underset{Y'' \in \mathcal{Y}''_{\kappa,\rho_1}}{\arg\max} w(Y''), \text{ and } \\ Z_{\kappa,\rho_2} &\in \underset{Z \in \mathcal{Z}_{\kappa,\rho_2}}{\arg\max} w(Z) \end{split}$$

Optimal job sets for given triple $(\kappa, \rho_1, \rho_2) \in \Xi$

$$(X_{\kappa,\rho_1,\rho_2},Y'_{\kappa,\rho_1,\rho_2}) \in \underset{(X,Y') \in X_{\kappa,\rho_1,\rho_2}}{\arg\max} w(X) + w(Y'),$$

$$Y''_{\kappa,\rho_1} \in \underset{Y'' \in \mathcal{Y}''_{\kappa,\rho_1}}{\arg\max} w(Y''), \text{ and }$$

$$Z_{\kappa,\rho_2} \in \underset{Z \in \mathcal{Z}_{\kappa,\rho_2}}{\arg\max} w(Z)$$

We find the optimal triple (κ, ρ_1, ρ_2)

$$(\kappa^*, \rho_1^*, \rho_2^*) \in \argmax_{(\kappa, \rho_1, \rho_2) \in \Xi} \{ w(X_{\kappa, \rho_1, \rho_2}) + w(Y'_{\kappa, \rho_1, \rho_2}) + w(Y''_{\kappa, \rho_1}) + w(Z_{\kappa, \rho_2}) \}$$

Optimal job sets for given triple $(\kappa, \rho_1, \rho_2) \in \Xi$

$$\begin{split} (X_{\kappa,\rho_1,\rho_2},Y'_{\kappa,\rho_1,\rho_2}) &\in \mathop{\arg\max}_{(X,Y') \in X_{\kappa,\rho_1,\rho_2}} w(X) + w(Y'), \\ Y''_{\kappa,\rho_1} &\in \mathop{\arg\max}_{Y'' \in \mathcal{Y}''_{\kappa,\rho_1}} w(Y''), \text{ and } \\ Z_{\kappa,\rho_2} &\in \mathop{\arg\max}_{Z \in \mathcal{Z}_{\kappa,\rho_2}} w(Z) \end{split}$$

We find the optimal triple (κ, ρ_1, ρ_2)

$$(\kappa^*, \rho_1^*, \rho_2^*) \in \underset{(\kappa, \rho_1, \rho_2) \in \Xi}{\arg\max} \{ w(X_{\kappa, \rho_1, \rho_2}) + w(Y'_{\kappa, \rho_1, \rho_2}) + w(Y''_{\kappa, \rho_1}) + w(Z_{\kappa, \rho_2}) \} \qquad \text{Done in O}(nP^4).$$

Results

Problem	γ	Complexity
1 γ	$\sum_{i} C_{i}$	$O(n \log n)$ (Smith [4])
	$\sum_{i} w_j C_j$	$O(n \log n)$ (Smith [4])
	$\max L_j$	$O(n \log n)$ (Jackson [2])
	$\sum w_j U_j$	O(nP) (Lawler and Moore [3])
	$\sum c_j$	$O(n^2P)$
$1 er \gamma$	$\sum w_j C_j$	$O(nP\max(P,W))$
	$\max_{L_j} L_j$	$\mathrm{O}(nP)$
	$\sum w_j U_j$	$O(nP^4)$
	$\sum C_j$	$O(n^2P)$
$1 \gamma er$	$\sum w_j C_j$	$O(nP\max(P,W))$
	$\max_{j} L_{j}$	O(nP)
	$\sum w_j U_j$	$O(nP^4\log(P))$
$1 (\gamma,er)$	$\sum C_j$	$O(nP^2)$
	$\sum w_j C_j$	$O(nP^2)$
	$\max_{j} L_{j}$	$O(nP^2)$
	$\sum w_j U_j$	$O(nP^5)$
	$\sum C_j$	$O(n \log n)$
$1 \gamma + er $	$\sum w_j C_j$	$O(n \log n)$
	$\max_{j} L_{j}$	$O(nP^2)$
	$\sum w_j U_j$	$O(nP^5)$

Future Research

- Multiple machines
- Multiple resources
- Multiple renting intervals
- Specific applications...?

References

- [1] Briskorn, D., Davari, M., and Matuschke, J. (2021). Single-machine scheduling with an external resource. *European Journal of Operational Research*, 293(2):457–468.
- [2] Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness. Research Report 43, Management Science Research Project, University of California, Los Angeles, CA.
- [3] Lawler, E. and Moore, J. M. (1969). A functional equation and its application to resource allocation and scheduling problem. *Management Science*, 16:77–84.
- [4] Smith, W. E. (1956). Various optimizers for single-stage production. *Naval Research Logistics Quarterly*, 3:59–66.

Single-machine scheduling with an external resource

Speaker: Dirk Briskorn

Dirk Briskorn

Department of Production and Logistics, University of Wuppertal, Germany

Co-authors:

Morteza Davari

SKEMA Business School, Lille, France

Jannik Matuschke

Research Centre for Operations Management, KU Leuven, Belgium

Oct 2023 @ schedulingseminar.com