CAN 总线通讯协议 (用户版)

编制: 日期: 年月日

审核: 日期: 年月日

批准: 日期: 年月日

修改记录

版本	描述	日期	编者
V001	根据《储能电源产品模块化通讯协议 V024》 内容制定	2019/8/17	
V002	根据《储能电源产品模块化通讯协议 V026》 内容制定	2020/1/15	
V003	根据《储能电源产品模块化通讯协议 V028》 内容制定	2020/5/15	
V004	修改 CANID 描述部分内容	2020/06/16	
V 005	修改 CANID 描述部分内容和应用机型内容	2020/8/25	
V006	BIDC 系列的模块 CAN 广播 ID 改为 0x3F	2021/6/16	

1规范说明

本协议规定了BIM系列V2G(Vehicle-to-grid,车辆到电网) 模块、BIDC系列DCDC模块、GSTS系列STS模块与EMS(Energy Management System,能量管理系统)之间的CAN通信协议.

本协议采用的CAN标示符为29位扩展帧,通讯波特率1000k、500k、250k、125kpbs可设,默认1000kpbs.

本协议的数据传输采用大端模式,即先发送高位,在发送低位.(例如0x1234, 先发送0x12,再发送0x34)).

本:	łж	ίÙ	中	捁	仚	卒	믔	刑	무	
~	IJJ.	ᄶ	×	J /J	μЭ	,	ΗН	ᆂ	\neg	

序号	产品型号	产品说明
1	B I M 3 O O 1 O O	ACDC模块
2	B I M 7 5 O 4 O	ACDC模块
3	B I D C 3 0 0 1 0 0	DCDC模块
4	BIDC75040	DCDC模块
5	STS	STS模块
8		

2网络拓扑结构

CAN总线互联结构如下图所示, CAN-BUS 为若干个网络节点之间的数据通信的总线.在一条CAN-BUS上存在多个模块节点和一个EMS, EMS 通过CAN通讯获取各电源模块的数据、状态,同时可以控制电源模块的工作模式和运行状态.

CAN-BUS 网络拓扑图

3 CAN 数据帧格式

CAN 数据帧由 29 位标示符域和 64 位数据域两部分构成。

3.1 CAN 标示符域

使用 CAN 扩展帧的 29 位标示符做了重新定义,下表为 29 位标示符域的定义,

Identify 11bit R D R E				Identify extension 18bit							
PR	ilO	R	D P	PF	S R R	I D E		PF	F	PS	SA
Bit26-	-Bit28	25	24	Bit18 - Bit23			1	.7	16	Bit15 – Bit8	Bit7 – Bit0
							•	详细	说明		
PRIO	帧优先	级,共	3bit,	可以有8个优先级,默	认为	0					
R	固定为	0									
DP	固定为	0									
	定义帧	类型:									
PF	0x74:	查询帧	ħ								
PF	0x73:	设置帧	ţ								
	0x72/0x22/0xF2: 查询或者设置响应帧										
PS	PS:目的地址,即接收方ID。										
SA	SA:源地	址,艮	叩发送	方 ID∘							

3.2 数据域

数据域的长度为 64 位(8 字节),当一条消息的长度大于 8 字节时,发送方需要把消息拆分为多个 CAN 数据帧发送,当发送最后一帧数据时 PF 的 ME 标识应置 1。本协议将 64 位数据域定义为 4 个 16 位字: WORD0、WORD1、WORD2、WORD3。其中 WORD0 用来传输数据帧序号 Order,也就是当前传输的数据帧在数据表(用来定义实际数据的表格,见下文)中的位置,WORD1~WORD3 用来传输帧序号所连带的 3 个实际数据。具体如下表所示:

64bit 数据域						
WORD3	WORD2	WORD1	WORD0			
Bit63-Bit48	Bit47-Bit32	Bit31-Bit16	Bit 15-Bit0			
Data2	Data1	Data0	Order			

注意:实际数据传输时 WORD0 和 WORD1 互换, WORD2 和 WORD3 互换。

3.3 CAN 数据帧

本协议定义的一帧完整的数据帧如下所示:

CANID	WORDO	WORD1	WORD2	WORD3
SA:本地地址				
PS:远端地址	0rder	Data0	Data1	Data2
PF:功能帧				

3.3.1 查询帧

CANID	WORDO	WORD1	WORD2	WORD3
SA:上位机 ID				
PS:下位机 ID	0rder	StartOrder	Len	0
PF = 0x74				

当 Order = 0 时,表示查询多帧数据,此时 StartOrder 表示起始帧序号,Len 表示需要查询的个数。

当 Order > 0 时,表示查询单帧数据,此时 Order 表示要查询的帧序号, StartOrder 和 Len 均为 0。

注意: 查询帧只能读取帧数据位可读(R或者RW)的内容。

3.3.2 查询响应帧

单帧查询响应

CANID	WORDO	WORD1	WORD2	WORD3
SA:下位机 ID				
PS:上位机 ID	0rder	Data0	Data1	Data2
PF= 0x72 / 0xF2				

Order 表示被查询的帧序号,数据为 Data0、Data1、Data2;

多帧查询响应

Frame 1

CANID	WORDO	WORD1	WORD2	WORD3
SA:下位机 ID				
PS:上位机 ID	Order1	Data0	Data1	Data2
PF= 0x72 / 0xF2				

Frame 2

CANID	WORDO	WORD1	WORD2	WORD3
SA:下位机 ID				
PS:上位机 ID	Order2	Data0	Data1	Data2
PF= 0x72 / 0xF2				

.....

Frame Len

CANID	WORDO	WORD1	WORD2	WORD3
SA:下位机 ID				
PS:上位机 ID	OrderN	Data0	Data1	Data2
PF= 0x72				

Order 表示被查询的帧序号,数据为 Data0、Data1、Data2;

3.3.3 设置/控制帧

CANID	WORDO	WORD1	WORD2	WORD3
SA:上位机 ID				
PS:下位机 ID	0rder	SetValue	0	0
PF= 0x73				

Order 表示被设置/控制的帧序号, SetValue 表示设置/控制量, Data1 和 Data2 为 0。

注意:设置/控制帧只支持单帧。

3.3.4 设置/控制响应帧

CANID	WORDO	WORD1	WORD2	WORD3
SA:下位机 ID				
PS:上位机 ID	Order	SetValue	0	0
PF= 0x72 / 0xF2				

Order 表示需要设置/控制的帧序号,SetValue 表示设置/控制量,Data1 和 Data2 为 0。

4 数据表

4.1 通讯接口定义

- 波特率: 1000kbps(默认);
- CAN-BUS 总线节点地址列表如下:

节点名称		节点源地址		
		SA	备注说明	
		(Bit7 - Bit0)		
BIDC 系列	节点 CAN ID	0x20 + 模块 ID	模块 ID 取值 [0,31],单模块默认为 0	
	广播 CAN ID	0x3F		
BIM 系列	节点 CAN ID	0x20 + 模块 ID	模块 ID 取值 [0,14],单模块默认为 0	
	广播 CAN ID	0x2F		
GSTS 系列	节点 CAN ID	0 x1 3	STS 模块 SA 固定为 Ox13	
	广播 CAN ID	0 x1 5	STS 模块广播 SA 固定为 0x15	
EMS(上位机)	节点 CAN ID	0x0F	固定地址	

4.2 数据表

4.2.1 数据表说明:

- 同一数据表中 Order 必须是唯一且不为 0 的:
- 同一 Order 中的三个数据系数和数据类型必须一致;
- 实际值 = Data * 系数:
- RSVD 表示未使用的数据,暂时保留,读取返回 0,写入失效;
- 数据属性分为只读(R)、只写(W)、可读可写(R/W)
- 数据类型 USHORT 表示 16 位无符号数:
- 数据类型 SHORT 表示 16 位有符号数。
- 若无特殊说明,常见数据的单位定义如下:

电压值单位为 V (伏);

电流值单位为 A (安);

温度值单位为℃(摄氏度);

频率值单位为 Hz(赫兹);

有功功率值单位为 W(瓦特):

无功功率值单位为 VAR(乏) 视在功率值单位为 VA(伏安)

- 故障告警的详细内容,请参考附表。
- 本协议包含 DCDC 和 DCAC 两部分数据,请注意区分。

4.2.2 数据表

请参考《XXXXXX 电源模块 CAN 数据表(用户版)》

4.2.3 附表

请参考《XXXXXX 电源模块 CAN 数据表(用户版)》