1. Determine o centro de massa do hemisfério sólido de raio R e densidade constante (Figura 1).

Figura 1

- 2. Calcula $I_{zz},\,I_{xz}$ e I_{yz} para
 - a) o cilindro de raio R ${\bf e}$ altura L $({\bf Figura}~2)$,
 - b) o cubo de lado L (Figura 3),
 - c) a esfera de raio R (Figura 4).

Figura 2

Figura 3

Figura 4

3. Uma barra rígida de comprimento l tem a sua massa concentrada em dois pontos, de massas m_1 e m_2 (Figura 5). A barra está presa por uma das extremidades, podendo girar livremente em torno desse ponto, e está submetida à força da gravidade.

Demonstra que a equação de movimento é dada por:

$$\ddot{\theta} + \frac{g}{l} \left(\frac{2m_1 + m_2}{4m_1 + m_2} \right) sen(\theta) = 0.$$

Figura 5