9 Derivate

Definizione 9.0.1 (Derivata). Dato un $A \subset \mathbb{R}$, una $f: A \to \mathbb{R}$, un $x_0 \in Acc(A) \cap A$. Se esiste il limite $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l$ allora l si dice derivata di f in x_0 . Se $l \in \mathbb{R}$ (è finito) allora f si dice derivabile in x_0 la derivata si indica con f'(x) oppure $Df(x_0)$, $\frac{df}{dx}(x)$, quindi:

Figure 39: Derivata $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ con rapporto incrementale

Osservazione 9.0.1. Osserviamo che l'esistenza della derivata e la derivabilità sono due cose diverse perché la derivata potrebbe valere anche $\pm \infty$. In tal caso f non è derivabile ma esiste la derivata

Esempio 9.0.1. Prendiamo $f(x) = \sqrt{x}$ con $f: [0, +\infty) \to \mathbb{R}$. Calcoliamo al derivata in $x_0 = 0$.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt{x} - \sqrt{0}}{x - 0} = \lim_{x \to 0} \frac{\sqrt{x}}{x} = \lim_{x \to 0} \frac{1}{\sqrt{x}} = \frac{1}{0^+} = +\infty.$$

$$f'(0) = +\infty \text{ quindi } f \text{ non \`e derivabile in } x_0 = 0$$

9.1 Continuità funzioni derivabili

Teorema 9.1.1 (Continuità funzioni derivabili). Se prendiamo una f che è derivabili in x_0 allora f è continua in x_0

Dimotrazione 9.1.1. Per dimostrare questo teorema proviamo a fare il $\lim_{x\to x_0} f(x)$.

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (f(x) - f(x_0) + f(x_0))$ (Andiamo a sommare e sottrarre una costante $f(x_0)$)

 $= f(x_0) + \lim_{x \to x_0} (f(x) - f(x_0))$ (Portiamo fuori una costante dal limite)

 $= f(x_0) + \lim_{x \to x_0} (\frac{f(x) - f(x_0)}{x - x_0}) \cdot (x - x_0)) \text{ (Moltiplichiamo e dividiamo per } x - x_0, \text{ otteniamo il rap. increm.)}$

 $= f(x_0) + f'(x_0) \cdot \lim_{x \to x_0} = f(x_0) + f'(x_0) \cdot 0 = f(x_0) + 0 = f(x_0)$ (Risolviamo il rap. increm.)

Allora $\lim_{x \to x_0} f(x) = f(x_0)$ quindi f è continua in x_0 .

Osservazione 9.1.1. Possiamo però osservare che non è vero il contrario infatti se f è continua non è detto che sia derivabile.

Esempio 9.1.1. Facciamo un esempio per verificare questa osservazione. f(x)|x| con $x_0 = 0$. $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \frac{|x|-0}{x-0} = \frac{|x|}{x}$. Ma abbiamo che |x| = x con $x \ge 0$ e |x| = -x se x < 0 quindi dobbiamo

fare il limite destro e sinistro: $\lim_{x\to 0^+} \frac{|x|}{x} = \frac{x}{x} = 1$ e $\lim_{x\to 0^-} \frac{|x|}{x} = \frac{-x}{x} = -1$.

Essendo diversi questi due limiti non esiste il limite e quindi non esiste la derivata di |x| in $x_0 = 0$

9.2 Derivata destra e sinistra

Definizione 9.2.1 (Derivata destra e sinistra). Se esiste $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ questa si chiama **derivata destra** di f in x_0 . Invece $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ si dice **derivata sinistra**. Si indicano con $f'_+(x_0)$ e $f'_-(x_0)$.

Osservazione 9.2.1. Una funzione f è derivabili in x_0 se e solo se $f'_+(x_0) = f'_-(x_0)$ e sono entrambi finite.

Esempio 9.2.1. Facciamo un esempio di derivata destra e sinistra con f(x) = |x| in $x_0 = 0$. $f'_{+}(0) = 1$ mentre $f'_{+}(0) = -1$ quindi $f'_{+}(x_0) \neq f'_{-}(x_0)$ e quindi f non è derivabile in $x_0 = 0$.

9.3 Punto angoloso o di cuspide

Definizione 9.3.1 (Punto angoloso). Se esiste $f'_{+}(x_0)$ e $f'_{-}(x_0)$ entrambi finite ma diverse tra loro allora x_0 si dice **punto angoloso**

Definizione 9.3.2 (Punto di cuspide). Se $f'_{+}(x_0) = +\infty$ e $f'_{-}(x_0) = -\infty$ (o viceversa) il punto x_0 si dice **punto di cuspide**.

Figure 40: In (a) un punto angoloso ed in (b) un punto di cuspide

Esempio 9.3.1. Prendiamo una $f(x) = \sqrt{|x|}$ con $f: \mathbb{R} \to \mathbb{R}$. $f'_{+}(0) = +\infty$ mentre $f'_{-}(0) = -\infty$, quindi f in $x_0 = 0$ ha un punto di cuspide.

9.4 Retta tangente ad un punto

Osservazione 9.4.1. f è derivabile in x_0 se e solo se $f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0)$. $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$

- $= \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} f'(x_0) = 0$ (Porto tutto dalla stessa parte)
- $= \lim_{x \to x_0} \frac{f(x) f(x_0) f'(x_0) \cdot (x x_0)}{x x_0} = 0 \text{ (Porto tutto alla stesso denominatore)}$
- $= f(x) f(x_0) f'(x_0) \cdot (x x_0) = o(x x_0) \text{ che è uguale } f(x) = f(x) + f(x_0) + f'(x_0) \cdot (x x_0) + o(x x_0).$

La parte $f(x) + f(x_0) + f'(x_0) \cdot (x - x_0)$ ha un utilizzo particolare.

Definizione 9.4.1. Se f è derivabile in x_0 allora la retta $y = f(x_0) + f'(x_0) \cdot (x - x_0)$ si dice retta tangente al grafico di f nel punto di coordinate $(x_0, f(x_0))$.

9.5 Derivate di ordine superiori al primo

 $f: A \to \mathbb{R}$ supponiamo che f sia derivabile in ogni punto $x \in A$. Allora $\exists f'(x) \forall x \in A$ e costituiscono la funzione derivata di f. $f': A \to \mathbb{R}$.

Se la funzione f' è a sua volta derivabile posso calcolare la derivata che chiamo derivata seconda di f ed indico con f''.

Posso in questo modo definire le derivate successive continuando a derivare le funzioni che otteniamo (se ovviamente sono derivabili).

Esempio 9.5.1. $f''(x) = (f')', f'''(x) = (f'')', f^{(4)}(x) = (f''')', ..., f^{(n+1)}(x) = (f^{(n)})'.$ Per convenzione si indica con $f^{(0)}$ la funzione stessa $f^{(0)} = f$.

Definizione 9.5.1. Dato $n \in \mathbb{N}$ si dice che f è di classe C^n se f è derivabile n-volte e $f^{(n)}$ è continua.

9.6 Operazioni sulle derivate

Teorema 9.6.1. Se f, g sono funzioni derivabili in x_0 allora:

- 1. f+g è derivabile in x_0 è vale che $(f+g)'(x_0)=f'(x_0)+g'(x_0)$.
- 2. $f \cdot g$ è derivabile in x_0 e $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$.
- 3. Se $f(x_0) \neq 0$ allora $\frac{1}{f}$ è derivabile in x_0 e $(\frac{1}{f})'(x_0) = -\frac{f'(x_0)}{(f(x_0))^2}$

Osservazione 9.6.1. Se f, g sono derivabili in x_0 e $g(x_0) \neq 0$ allora andando a combinare il punto (2) e (3) del teorema sopra otteniamo che:

$$\frac{f}{g}$$
 è derivabile in x_0 e $(\frac{f}{g})'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{(g(x_0))^2}$

9.6.1 Derivata funzione inversa

Definizione 9.6.1 (Derivabile della funzione inversa). Data una $f:(a,b) \to \mathbb{R}$ continua e strettamente monotona (quindi invertibile), se f è derivabile in x_0 e $f'(x_0) \neq 0$ allora f^{-1} è derivabile in $y_0 = f(x_0)$ ed è uquale a:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Ricordiamo che $x_0 = f^{-1}(y_0)$ è possibile scriverlo come:

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(x_0))}$$

Esempio 9.6.1. Facciamo un esempio con $f(x) = e^x$

$$y=e^x \Longrightarrow x=\log(y) \Longrightarrow f^{-1}(y)=\log(y),$$
 quindi $f'(x)=e^x$

$$(\log(y))' = (f^{-1}(y))' = \frac{1}{f'(f^{-1}(y))} = \frac{1}{e^{f^{-1}(y)}} = \frac{1}{e^{\log(y)}} = \frac{1}{y} \text{ con } y > 0 \text{ quindi la } D(\log(y)) = \frac{1}{y}$$

9.7 Derivate con funzione crescente e decrescenti

Proposizione 9.7.1. Prendiamo $A \subset \mathbb{R}$, una $f: A \to \mathbb{R}$ debolmente crescente in A. Se f è derivabile in un punto $x_0 \in A$ allora $f'(x_0) \geq 0$. Se f è debolmente decrescente, e valgono le stesse condizione scritte prima, $f'(x_0) \leq 0$.

Dimotrazione 9.7.1. Prendiamo $f'(x_0) = \lim_{x \to x_0} = \frac{f(x) - f(x_0)}{x - x_0}$. Ma se f è debolmente crescente

allora $\frac{f(x)-f(x_0)}{x-x_0} \geq 0$, ma visto che f mantiene l'ordinamento, quindi numeratore e denominatore sono concordi in segno. A questo punto passando al limite si mantiene la disuguaglianza, quindi otteniamo che $f'(x_0) = \frac{f(x)-f(x_0)}{x-x_0} \geq 0$.

Osservazione 9.7.1. Se f è strettamente crescente non posso dedurre che $f'(x_0) > 0$. Ma solo che $f'(x_0) \geq 0$ questo perché quando passiamo al limite le disuguaglianze strette potenzialmente si indeboliscono, come visto nel teorema di confronto.

Esempio 9.7.1. Con $f(x) = x^3$ che è strettamente crescente in \mathbb{R} , abbiamo che $f'(x) = 3x^2$ e f'(x) = 0, quindi $f' \ge 0$ mentre f > 0 (la funzione "si indebolisce").

9.8 Teorema di Fermat

Teorema 9.8.1 (Teorema di Fermat). $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$. Se x_0 è un punto interno ad A che è di massimo o di minimo locale per f, e f è derivabile in x_0 , allora $f'(x_0) = 0$.

Dimotrazione 9.8.1. Se f è derivabile in x_0 allora $f'_+(x_0) = f'_-(x_0)$.

Supponiamo che x_0 sia punto di minimo locale per f, in un intorno di x_0 succederà che:

$$f'_{+}(x_0) = \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0} \text{ dove } f(x) - f(x_0) \ge 0 \text{ e } x - x_0 \ge 0. \text{ Quindi } \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \Longrightarrow f'_{+}(x_0) \ge 0$$

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \text{ dove } f(x) - f(x_0) \le 0 \text{ e } x - x_0 \le 0 \Longrightarrow f'_{-}(x_0) \le 0.$$

Ma noi sappiamo che $f'_+(x_0) = f'_-(x_0) \Longrightarrow f'_+(x_0) = 0, f'_-(x_0) = 0 \Longrightarrow f'(x_0) = 0$

Osservazione 9.8.1. Osserviamo che se il punto non è interno al dominio allora il teorema non è necessariamente valido.

Esempio 9.8.1. Prendiamo per esempio $f(x) = x^2$ ma definita come $f: [2,3] \to \mathbb{R}$ dove quindi il min(f) = f(2) = 4 ed il max(f) = f(3) = 9. Se calcoliamo la derivata abbiamo che f'(x) = 2x e f'(2) = 4 ed ancora f'(3) = 9. In questo caso 2 e 3 sono punti agli estremi del dominio e quindi non sono punti interni.

Osservazione 9.8.2. L'ipotesi di derivabilità è necessaria. Quindi possono esserci punti di minimo o di massimo locale dove la derivata non si annulla (perché non esiste).

Esempio 9.8.2. Infatti se prendiamo la funzione f(x) = |x| il punto x = 0 è punto di minimo assoluto (e quindi anche locale) ma la derivata f'(0) non esiste.

Osservazione 9.8.3. Il teorema è condizione necessaria per un massimo o un minimo locale ma non sufficiente.

Esempio 9.8.3. Prendiamo $f(x) = x^3$. $f'(x) = 3x^2$ ma f'(x) = 0 ma x = 0 non è ne punti di massimo ne di minimo.

9.9 Teorema di Rolle

Teorema 9.9.1 (Teorema di Rolle). Sia $f:[a,b] \to \mathbb{R}$ continua in [a,b] e derivabile in (a,b). Se f(a) = f(b) allora $\exists x \in (a,b)$ t.c. f'(c) = 0.

Dimotrazione 9.9.1. Se f è continua in [a,b] per il teorema di Weirstrass assume massimo minimo. Siano x_1 e $x_2 \in [a,b]$ i punti di max e di min (2 dei possibili punti di massimo e minimo, essendo che possono essercene di più), cioè $f(x_1) = max(f)$ e $f(x_2) = min(f)$, distinguiamo 2 casi:

- 1. $x_1 = a, x_2 = b$ o viceversa. Dato che f(a) = f(b) allora sarebbe max(f) = min(f) questo vuol dire che f è costante in $[a, b] \Longrightarrow f'(x) = 0 \forall x \in (a, b)$
- 2. Almeno uno dei due punti x_1 o x_2 non è negli estremi. Allora esiste un punto di massimo o di minimo interno ad (a,b), per il teorema di Fermat f'(c) = 0 (nel quale x_1 o x_2 uguale a c).

9.8 Teorema di Fermat 46

9.10 Teorema di Lagrange

Teorema 9.10.1 (Teorema di Lagrange). Data una $f : [a, b] \to \mathbb{R}$, continua in [a, b] e derivabile in (a, b). Allora $\exists c \in (a, b)$ tale che:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Dimotrazione 9.10.1. Definiamo una nuova funzione $r(x) = f(a) + \frac{f(b) - f(a)}{b - a} \cdot (x - a)$ che è una retta che passa per gli estremi del grafico, che sarebbero (a, f(a)) e (b, f(b)). Definiamo anche g(x) = f(x) - r(x), g è continua in [a,b] e derivabile in (a,b).

$$g(a) = f(a) - r(a) = f(a) - f(a) = 0$$
 $g(b) = f(b) - r(b) = f(b) - f(b) = 0$

Allora g(a) = g(b) e quindi possono applicare Rolle alla funzione g. Quindi $\exists x \in (a,b)$ tale che g'(c) = 0. Calcoliamo ora g'(x).

$$g'(x) = f'(x) - r'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

Se $g'(c) = 0$ allora $f'(c) - \frac{f(b) - f(a)}{b - a} \Longrightarrow f'(c) = \frac{f(b) - f(a)}{b - a}.$

9.10.1 Conseguenze del teorema di Lagrange

Teorema 9.10.2. Dato un $I \subset \mathbb{R}$ sia un intervallo $f: I \to \mathbb{R}$ continua in I e derivabile nei punti interni di I cioé in int(I). Allora valgono le seguenti affermazioni:

- 1. Se $f'(x) = 0 \forall x \in Int(I) \Longrightarrow f$ è contante in I.
- 2. Se $f'(x) \ge 0 \forall x \in Int(I) \Longrightarrow f$ è debolmente crescente in I.
- 3. Se $f'(x) \leq 0 \forall x \in Int(I) \Longrightarrow f$ è debolmente decrescente in I.
- 4. Se $f'(x) > 0 \forall x \in Int(I) \Longrightarrow f$ è strettamente crescente in I.
- 5. Se $f'(x) < 0 \forall x \in Int(I) \Longrightarrow f$ è strettamente decrescente in I.

Dimotrazione 9.10.2. Dimostriamo il punto (4).

Prendiamo $x_1, x_2 \in I$ con $x_1 < x_2$. Devo dimostrare che $f(x_1) < f(x_2)$.

Visto x_1 o x_2 stanno in I osservo che $(x_1, x_2) \subset Int(I)$. Allora applico il teorema di Lagrange all'intervallo $[x_1, x_2]$ (lo posso fare perché la funzione è continua in $[x_1, x_2]$ e derivabile in (x_1, x_2)). Quindi $\exists c \in (x_1, x_2)$ tale che: $f'(x) = \frac{f(x_1) - f(x_1)}{x_2 - x_1}$.

Ma
$$f'(c) > 0 \Longrightarrow \frac{f(x_1) - f(x_1)}{x_2 - x_1} > 0$$
, quindi $f(x_2) - f(x_1) > 0$ (perché $x_2 - x_1 > 0$ visto che $x_1 < x_2$) $\Longrightarrow f(x_2) > f(x_1)$.

Osservazione 9.10.1. Se f non è definita su un intervallo il teorema potrebbe no essere vero.

Esempio 9.10.1.
$$f(x) = \frac{1}{x}$$
 e $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$. $f'(x) = -\frac{1}{x^2} < 0 \forall x \neq 0$, ma f non è decrescente in $\mathbb{R} \setminus \{0\}$. f è strettamente decrescente in $(-\infty, 0)$ e in $(0, +\infty)$

Esempio 9.10.2. Prendiamo $f:(0,+\infty)\to\mathbb{R}, \ f(x)=\arctan(x)+\arctan\frac{1}{x}$ che è derivabile. $f'(x)=\frac{1}{1+x^2}+\frac{1}{1+(\frac{1}{x})^2}\cdot(-\frac{1}{x^2})=\frac{1}{1+x^2}-\frac{1}{x^2+1}=0\Longrightarrow f$ è costante in $(0,+\infty)$.

Per calcolare la costante basta calcolare in un qualsiasi punto, per comodità prendiamo x = 1. $f(1) = \arctan(1) + \arctan\frac{1}{1} = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$. Quindi $f(x) = \frac{\pi}{2}$ se x > 0 (visto che $x \in (0, +\infty)$).

Se x < 0 f è costante perché f'(x) = 0 (va definita la funzione $f: (-\infty, 0) \to \mathbb{R}$). Per calcolare la costante valuto f in x = -1. $f(-1) = \arctan(-1) + \arctan\frac{1}{-1} = -\frac{\pi}{4} - \frac{\pi}{4} = -\frac{\pi}{2}$. Quindi $f(x) = -\frac{\pi}{2}$ se x < 0.

Questa seconda considerazione si poteva anche dedurre dal fatto che f(x) è una funzione dispari.

Proposizione 9.10.1. Dato un $I \subset \mathbb{R}$, una $f : A \to \mathbb{R}$, ed un $x_0 \in I$, f derivabili in $I \setminus \{x_0\}$ e continua in I. Valgono (con f' non necessariamente definita in x_0):

1. Se $f'(x) \le 0$ in un introno sinistro di x_0 e $f'(x) \ge 0$ in un intorno destro di x_0 allora x_0 è punto di minimo locale per f.

2. Se $f'(x) \ge 0$ in un intorno sinistro di x_0 e $f'(x) \le 0$ in un intorno destro di x_0 allora x_0 è punto di massimo locale per f.

Esempio 9.10.3. Data una $f(x) = x^3 - x$, $f: \mathbb{R} \to \mathbb{R}$. $f'(x) = 3x^2 - 1$, studiamo il segno di f': $3x^2 - 1 \ge 0 \iff 3x^2 \ge 1 \iff x^2 \ge \frac{1}{3} \implies |x| \ge \frac{1}{\sqrt{3}}$ cioè $x \in (-\infty, -\frac{1}{\sqrt{3}}] \cup [\frac{1}{\sqrt{3}}, +\infty)$

Esempio 9.10.4. Vediamo ora un caso in cui f non sia derivabile in x_0 .

$$f(x) = |x| f$$
 non è derivabile in $x_0 = 0$, $f'(x) = \begin{cases} 1 & sex \ge 0 \\ -1 & sex < 0 \end{cases}$.

Avrò dunque che $x_0 = 0$ è punto di minimo anche se in quel punto la funzione non è derivabile.

Esempio 9.10.5. $f(x) = \sqrt{|x|}$, questa funzione ha una cuspide in x = 0, in questo punto quindi la funzione non è derivabile ma ugualmente il punto è un punto di minimo.

Teorema 9.10.3. Dato $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$, $x_0 \in Int(A)$, con f derivabile 2 volte in x_0 e $f'(x_0) = 0$. Valgono allora le seguenti affermazioni:

- 1. Se x_0 è punto di minimo locale $\Longrightarrow f''(x_0) \ge 0$.
- 2. Se x_0 è punto di massimo locale $\Longrightarrow f''(x_0) \leq 0$.
- 3. Se $f''(x_0) > 0 \Longrightarrow x_0$ è punto di minimo locale.
- 4. Se $f''(x_0) < 0 \Longrightarrow x_0$ è punto di massimo locale.

Note 9.10.1. In questo teorema le condizioni (1) e (2) sono **necessarie** mentre le (3) e (4) sono **sufficienti**.

Esempio 9.10.6. Dato $f(x) = x^2$ e f'(x) = 2x, f''(x) = 2, f'' è sempre > 0. f'(0) = 0, $f''(x) > 0 \Longrightarrow x = 0$ è punti di minimo locale.

Esempio 9.10.7. Definiamo una $g(x) = -x^2$ e g'(x) = -2x, g''(x) = -2. g'(0) = 0 e $g''(0) = -2 < 0 \Longrightarrow x_0 = 0$ è punto di massimo locale.

Note 9.10.2. Se $f''(x_0) = 0$ (la disuguaglianza quindi è debole) non posso affermare niente.

Esempio 9.10.8. Per verificare la nota prendiamo $h(x) = x^3$, $h'(x) = 3x^2$ e h''(x) = 6x. h'(0) = 0, h''(0) = 0 ma $x_0 = 0$ non è ne di massimo ne di minimo locale.

Esempio 9.10.9. $f(x) = x^4$, $f'(x) = 4x^3$ e $f''(x) = 12x^3$. f(0) = 0 e f''(0) = 0 e in questo caso $x_0 = 0$ è punto di minimo. Mentre se prendo $g(x) = -x^4$ e g'(0) = 0 e g''(0) = 0 e quindi $x_0 = 0$ è punto di massimo.

9.11 Teorema di Cauchy

Teorema 9.11.1. Siano $f,g:[a,b]\to\mathbb{R}$ continue in [a,b] e derivabili in (a,b). Allora $\exists c\in(a,b)$ t.c.

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a))$$

Se inoltre $q'(x) \neq 0 \forall x \in (a,b)$ allora la relazione precedente si può scrivere come:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Questa formula ci dice che c'è un punto in cui il rapporto delle derivate delle due funzioni in quel punto è uguale al rapporto degli incrementi totali delle funzioni sull'intervallo. Inoltre l'ipotesi $g'(x) \neq 0 \ \forall x \in (a,b)$ garantisce che non ci siano punti in cui la derivata prima si annulli.

9.12Teorema di de l'Hopital

Teorema 9.12.1. Siano $a, b \in \mathbb{R}$, siano $f, g : (a, b) \to \mathbb{R}$ derivabili in (a, b). Se valgono le seguenti condizioni:

1.
$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$$
 oppure $\lim_{x \to a^+} f(x) = \pm \infty$ e $\lim_{x \to a^+} g(x) = \pm \infty$.

2. $g'(x) \neq 0$ in un introno destro di a.

3.
$$\exists \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}.$$

allora $\exists \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$. (Stesso risulta con per $x \to b^-$)

Note 9.12.1. Questo teorema funziona anche nel caso di x_0 interno all'intervallo perché basta fare i due limiti destro e sinistro, e se coincidono otteniamo il limite complessivo.

Esempio 9.12.1. Facciamo un esempio per capire il funzionamento di questo teorema.

$$f(x) = 2\cos(x) - 2 + x^2$$
 e $g(x) = x^4$ $f'(x) = -2\cos(x) + 2x$ e $g'(x) = 4x^3$

Calcoliamo $\lim_{x\to 0} \frac{2\cos(x)-2+x^2}{x^4} = \frac{0}{0}.$ $f(x) = 2\cos(x)-2+x^2 \quad \text{e} \quad g(x) = x^4 \qquad f'(x) = -2\cos(x)+2x \quad \text{e} \quad g'(x) = 4x^3$ Provo a fare $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \frac{-2\sin(x)+2x}{4x^3} = \frac{0}{0}, \text{ ancora indeterminato quini applico de l'Hopital.}$

$$f(x) = -2\sin(x) + 2x e g(x) = 4x^3$$
, quindi $f'(x) = -2\cos(x) + 2x e g(x)12x^2$

 $\lim_{x\to 0} \frac{-2\cos(x)+2}{12x^2} = \frac{0}{0}$, ancora indeterminato quindi riapplico de l'Hopital.

$$\lim_{x \to 0} \frac{2\sin(x)}{24x} = \frac{1}{12} \lim_{x \to 0} \frac{\sin(x)}{x} = \frac{1}{12} \cdot 1 = \frac{1}{12}$$

Esempio 9.12.2. $\lim_{x\to +\infty} \frac{e^x}{x^2} = \frac{+\infty}{+\infty}$, applico de l'Hopital derivando numeratore e denominatore.

$$\lim_{x \to +\infty} \frac{e^x}{2x} = \frac{+\infty}{+\infty}, \text{ derivo di nuovo, } \lim_{x \to +\infty} \frac{e^x}{2} = +\infty.$$

Osservazione 9.12.1. Verificare sempre l'ipotesi (1) di de l'Hopital, cioè di essere una forma indeterminata.

Esempio 9.12.3. $\lim_{x\to 0} \frac{\cos(x)}{x^2} = \frac{1}{0^+} = +\infty.$

Se non mi accordo che l'ipotesi (1) non vale e applicando de l'Hopital (sbagliando) e derivo: $\lim_{x\to 0} \frac{-\sin(x)}{2x} =$ $-\frac{1}{2}$, sbagliano.

Osservazione 9.12.2. Potrebbe non esistere il $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ ma esistere il $\lim_{x\to x_0} \frac{f(x)}{g(x)}$.

Esempio 9.12.4. $f(x) = x^2 \sin(\frac{1}{x}) e g(x) = x$.

 $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \frac{x^2 \sin(\frac{1}{x})}{x} = \frac{0}{0}.$ Se applico de l'Hopital e quindi derivo succede che: $f'(x) = 2x \sin\frac{1}{x} + x^2 \cos\frac{1}{x} \cdot (-\frac{1}{x^2}) = 2x \sin\frac{1}{x} - \cos\frac{1}{x} e \ g'(x) = 1$

$$f'(x) = 2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x} \cdot (-\frac{1}{x^2}) = 2x \sin \frac{1}{x} - \cos \frac{1}{x} e g'(x) = 1$$

 $\lim_{x\to 0}\frac{f'(x)}{g'(x)}=\lim_{x\to 0}\frac{2x\sin\frac{1}{x}-\cos\frac{1}{x}}{1} \text{ ma } 2x\sin\frac{1}{x} \text{ tende a } 0 \text{ mentre } -\cos\frac{1}{x} \text{ non esiste quindi il limite complessivamente non esiste.}$

Ma invece non uso de l'Hopital e faccio $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{x^2 \cdot \sin\frac{1}{x}}{x} = 0$. Quindi noto che in questo caso $\exists \lim \frac{f(x)}{g(x)}$ ma invece $\nexists \lim \frac{f'(x)}{g'(x)}$. Sarebbe quindi sbagliato dire che se $\nexists \lim \frac{f'(x)}{g'(x)} \Longrightarrow \nexists \lim \frac{f(x)}{g(x)}.$

Osservazione 9.12.3. Se $\exists \lim_{x \to x_0} f(x) = l \in \mathbb{R}$ (limite finito), e $\nexists \lim_{x \to x_0} g(x) \Longrightarrow \nexists \lim_{x \to x_0} (f+g) = 0$.

Dimotrazione 9.12.1. Per assurdo se $\exists \lim_{x \to x_0} (f+g)(x) = m$ allora g(x) = (f+g)(x) - f(x) dove $(f+g)(x) \to m$ mentre $f(x) \to l$ quindi $g(x) = (f+g)(x) - f(x) \to m-l$ ma questo è assurdo perché $\nexists \lim_{x \to x_0} g(x).$

Corollario 9.12.1.1. Se f è continua in x_0 e derivabile in un intorno di x_0 (eccetto al più in x_0) e se esiste $\lim_{x \to x_0} f'(x) = l \in \overline{\mathbb{R}} \Longrightarrow f'(x_0) = l$.

Esempio 9.12.5. Prendiamo $f(x) = \begin{cases} x^2 + 1 & \text{se } x \ge 0 \\ x^2 & \text{se } x < 0 \end{cases}$. f è derivabile in $x_0 = 0$?

$$f'(x) = \begin{cases} 2x & se \ x > 0 \\ 2x & se \ x < 0 \end{cases}$$
 (per ora non consideriamo 0).

 $\lim_{x\to 0^+}f'(x)=0$ e $\lim_{x\to 0^-}f'(x)=0$, quindi f non è derivabile in $x_0=0$ perché f non è continua, e quindi non posso usare il corollario.

Osservazione 9.12.4. Se $\nexists \lim_{x \to x_0} f'(x)$ non è detto che f non sia derivabile in x_0 .

Esempio 9.12.6.
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$
. La funzione è continua in $x_0 = 0$ perché $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$ · limitata $= 0 = f(0)$.

Vediamo se è derivabile:

- 1. Calcolare il limite della derivata. Se $x \neq 0$ $f'(x) = 2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x} \cdot (-\frac{1}{x^2}) = 2x \sin \frac{1}{x} \cos \frac{1}{x}$. $\lim_{x \to 0} f'(x) = \lim_{x \to 0} 2x \sin \frac{1}{x} \cos \frac{1}{x} = 0$ una cosa che non esiste \Longrightarrow non esiste il limite di f'(x). Da questo no posso concludere che f non è derivabile in $x_0 = 0$.
- 2. Limite del rapporto incrementale: $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}-0}{x} = \lim_{x\to 0} x \sin\frac{1}{x} = 0$. Quindi f è derivabile e f'(0) = 0.

Esempio 9.12.7. Esempio di de l'Hopital.

Calcoliamo $\lim_{x\to 0^+}\frac{e^{-\frac{1}{x}}}{x^2}=\frac{e^{-\frac{1}{0^+}}}{0^+}=\frac{0}{0}$ e quindi posso usare de l'Hopital.

 $\lim_{x\to 0^+}\frac{e^{-\frac{1}{x}\cdot(\frac{1}{x^2})}}{2x}=\lim_{x\to 0^+}\frac{e^{-\frac{1}{x}}}{2x^3}, \text{ notiamo dunque che la situazione è peggiorata andando ad usare d l'Hopital rispetto a come si era partiti.}$

Possiamo osservare che $\frac{e^{-\frac{1}{x}}}{x^2} = \frac{\frac{1}{x^2}}{\frac{x^2}{x^2}} \to \frac{\infty}{\infty}$, riproviamo con de l'Hopital.

 $\lim_{x\to 0^+}\frac{\frac{1}{e^{\frac{1}{x}}}}{e^{\frac{1}{x}}}\text{ derivando viene che }\lim_{x\to 0^+}\frac{\frac{-2}{e^{\frac{1}{x}}}}{e^{\frac{1}{x}}\cdot(-\frac{1}{x^2})}=\lim_{x\to 0^+}\frac{2x^2}{e^{\frac{1}{x}}\cdot x^3}=\lim_{x\to 0^+}\frac{\frac{2}{e^{\frac{1}{x}}}}{e^{\frac{1}{x}}},\text{ in questo caso la situazione è migliorata anche se è ancora indeterminato del tipo }\sum_{\infty}^{\infty},\text{ applico di nuovo de l'Hopital.}$

$$\lim_{x \to 0^+} \frac{-\frac{2}{x^2}}{e^{\frac{1}{x}} \cdot (-\frac{1}{x^2})} = \lim_{x \to 0^+} \frac{2}{e^{\frac{1}{x}}} = \frac{2}{\infty} = 0.$$