BIFURCATION OF WEAKLY DISPERSIVE PARTIAL DIFFERENTIAL EQUATIONS

Jonas P. Vean

Norwegian University of Science and Technology, NTNU

24th of June 2020

Introduction

Things that will be needed along the way:

- (i) Aspects of local bifuraction theory and Banach space calculus (Kielhöfer and Buffoni–Toland respectively)
- (ii) Some functional analysis, distribution theory and general information about function spaces like Hölder spaces and spaces of classical symbols $S_{1,0}^m(\mathbb{R})$.

With all of this background, we shall be able to prove existence of small-amplitude traveling solutions to the partial differential equation

$$\partial_t u + L \partial_x u + \partial_x (u^{p+1}) = 0, \quad p \in \mathbb{Z}_{\geq 1}$$

where L is a Fourier multiplier of a Bessel symbol $m(\xi) = (1 + \xi^2)^{\frac{s}{2}}$ for s < 0.

Some Banach space calculus

Continuity of maps between Banach spaces:

Definition

Let $(X,\|\cdot\|_X)$ and $(Y,\|\cdot\|_Y)$ be Banach spaces and $U\subseteq X$ open. A map $F\colon U\to Y$ is called *continuous at* $x\in U$ if for every $\varepsilon>0$ there exists a $\delta>0$ such that for every $y\in Y$ with $\|x-y\|_X<\delta$ we have $\|F(x)-F(y)\|_Y<\varepsilon$. If F is continuous at each and every point $x\in U$ we simply call F continuous. In this case we may write $F\in C(U,Y)$ or $F\in C^0(U,Y)$.

Differentiability of maps of Banach spaces

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and $U \subseteq X$ open. We say that a map $F \colon U \to Y$ is Fréchet differentiable at $x_0 \in U$ if there exists a linear map $A \in \mathcal{L}(X, Y)$ such that

$$\lim_{x \to x_0} \frac{\|F(x) - F(x_0) - A(x - x_0)\|_Y}{\|x - x_0\|_X} = 0.$$

In this case we call A the Fréchet derivative of F at x_0 and write $A = \mathrm{d} F[x_0]$. If F is Fréchet differentiable at every point in X, then the map

$$\mathrm{d}F:X\to\mathcal{L}(X,Y);x\mapsto\mathrm{d}F[x]$$

is well-defined and the evaluation $\mathrm{d}F[x_0](x)$ acts as a directional derivative of F at x_0 "along" the vector $x \in X$.

Partial derivatives of maps of Banach spaces

Definition

Let X, Y and Z be Banach spaces, $U\subseteq X\times Y$ be open in the product topology, and $F\colon U\to Z$ a function. Consider the projection maps $\pi_X(x,y)=x$, $\pi_Y(x,y)=y$, then set $U_{x_0}=\pi_X^{-1}(x_0)\cap U$ and $U_{y_0}=\pi_Y^{-1}(y_0)\cap U$ for $(x_0,y_0)\in U$. If $F(\cdot,y_0)$ has a Fréchet derivative at x_0 on U_{y_0} we denote it by $\partial_x F[(x_0,y_0)]\in \mathcal{L}(X,Z)$ and call it the partial derivative of F with respect to X at $(x_0,y_0)\in U$. Similarly for $y_0\in U_{x_0}$, where F is Fréchet differentiable on U_{x_0} with $\partial_y F[(x_0,y_0)]\in \mathcal{L}(Y,Z)$.

A note on higher order derivatives

It is possible to define higher order derivatives multi-linearly on Banach spaces.

Definition

Let X and Y be Banach spaces, suppose that $F\colon U\to Y,\ U\subseteq X$ open, is continuously Fréchet differentiable on U. If $\mathrm{d} F\colon U\to \mathcal{L}(X,Y)$ is itself differentiable at $x_0\in U$, then we say that the second (order) Fréchet derivative exists and is denoted by $\mathrm{d}(\mathrm{d} F)[x_0]\in \mathcal{L}(X,\mathcal{L}(X,Y))$. Higher k-order Fréchet derivatives are defined similarly when the previous order is defined and continuously differentiable, namely through a k-fold multilinear scheme: $\mathrm{d}(\mathrm{d}\cdots(\mathrm{d} F))[x_0]\in \mathcal{L}(X,\mathcal{L}(\cdots\mathcal{L}(X,Y)))$. A function that is k times continuously Fréchet differentiable on $U\subseteq X$ is said to be of class $C^k(U,Y)$.

Classifications of mappings

Throughout we will use some terms more commonly used in differential topology or similar fields.

Definition

Let X and Y be Banach spaces, $U \subseteq X$ open, $F: U \to Y$ a continuous function. The function F is called a *homeomorphism* if it is bijective and if F^{-1} is continuous on Y. Furthermore, if $F \in C^k(U,Y)$ is k times continuously Fréchet differentiable and bijective with $F^{-1} \in C^k(Y,U)$, then we say that F is a C^k -diffeomorphism.

Inverse Function Theorem

Theorem

Let X and Y be Banach spaces, $x_0 \in U$ be an open neighborhood of $U \subseteq X$ and let $F \in C^1(U,Y)$ such that the Fréchet derivative $\mathrm{d} F[x_0] \in \mathcal{L}(X,Y)$ is a homeomorphism. Then there exists a connected open set $\tilde{U} \subset U$ with $x_0 \in \tilde{U}$ such that $F|_{\tilde{U}} \colon \tilde{U} \to V$ for some $V \subseteq Y$ open with $F(x_0) \in V$ is a local C^1 -diffeomorphism.

Remark

If one instead assumes $F \in C^k(U, Y)$, then F with the above assumptions becomes a local C^k -diffeomorphism.

Implicit Function Theorem

Theorem

Let X, Y and Z be Banach spaces and let $U \subseteq X \times Y$ be open in the product topology. Let $(X_0, y_0) \in U$. Assume $F \colon U \to Z$ is of class $F \in C^k(U, Z)$ such that $F(x_0, y_0) = 0$ and $\partial_x F[(x_0, y_0)] \in \mathcal{L}(X, Z)$ is a homeomorphism. Then there exists an open ball $B(y_0; r)$, r > 0, and a connected open set $V \subseteq U$ and a mapping $\phi \in C^k(B(y_0; r), X)$ such that

$$(x_0, y_0) \in V \text{ and } F(\phi(y), y) = 0 \text{ for all } y \in B(y_0; r).$$

Local Bifurcations

Our problem will go along the lines of the following:

- Want solutions $x \in X$, for a Banach space X, to $F(\lambda, x) = 0$ given that we know $F(\lambda, 0) = 0$ for all $\lambda \in \mathbb{R}$.
- Need to have a special kind of function F as in the problem above to say anything constructive about the behaviour of the solutions $x \in X$.

Definition

(Nonlinear Fredholm Operators)

Let X and Z be Banach spaces, $U \subset X$ open, $F \colon U \to Z$ Fréchet differentiable. Assume furthermore that $\mathrm{d}F[x], x \in U$ satisfies

- (i) dim ker $(\mathrm{d}F[x])<\infty$, the kernel is finite dimensional
- (ii) $\operatorname{codim} \operatorname{im}(\operatorname{d} F[x]) < \infty$
- (iii) the image $\operatorname{im}(\operatorname{d} F[x])$ is closed in Z

then we call F a nonlinear Fredholm operator with Fredholm index given by the integer dim $\ker(dF[x]) - \operatorname{codim} \operatorname{im}(dF[x])$.

Lyapunov-Schmidt Reduction

Considering the function $F\colon U\to Z$ for $U\subset X\times Y$ open, we consider the conditions $F(x_0,y_0)=0$, $F\in C(U,Z)$ and $\partial_x F\in C(U,\mathcal{L}(X,Z))$. Furthermore, we assume that $F(\cdot,y_0)$ is a nonlinear Fredholm operator with respect to x for some $y_0\in V$.

We may decompose the Banach spaces X and Z into

$$X = \ker(\partial_x F[(x_0, y_0)]) \oplus X_0$$
 and $Z = \operatorname{im}(\partial_x F[(x_0, y_0)]) \oplus Z_0$.

We define projections $P: X \to \ker(\partial_x F[(x_0, y_0)])$ and $Q: Z \to Z_0$ in the natural way.

Lyapunov–Schmidt Reduction (cont.)

Theorem

(Lyapunov-Schmidt Reduction)

Let X, Y and Z be Banach spaces, $F \colon U \to Z$ as before with $U \subset X \times Y$ open, and P, Q projections onto $\ker(\partial_x F[(x_0, y_0)])$ and Z_0 respectively. Then there is an open neighborhood \tilde{U} of (x_0, y_0) in $U \subset X \times Y$ such that our problem F(x, y) = 0 with $(x, y) \in \tilde{U}$ is equivalent to a finite-dimensional problem

$$\Phi(\xi, y) = 0 \qquad (\xi, y) \in U_0 \times V \subset \ker(\partial_x F[(x_0, y_0)]) \times Y$$

where $\Phi: U_0 \times V \to Z_0$ is continuous with $\Phi(\xi_0, y_0) = 0$.

Furthermore, we have that if $F: U \to Z$ has regularity $F \in C^k(U, Z)$, then for the function Φ we have $\Phi \in C^k(U_0 \times V, Z_0)$. Given this, we also have

$$\partial_{\xi}\Phi[(\xi_0,y_0)]=0.$$

Notes on the proof of Lyapunov–Schmidt

- Define a function G based (cleverly) on the projection maps P and Q and our Fredholm operator F;
- show G is bilinear, continuous both ways and therefore a homeomorphism;
- due to the implicit function theorem on G we obtain our result.

The choice G = (I - Q)F(Px + (I - P)x, y) happens to give us the resulting bifurcation function and solution curves as seen in the theorem.

The Crandall–Rabinowitz theorem

Theorem

Assume $F \in C^2(V \times U, Z)$ is a nonlinear Fredholm operator (satisfying the Lyapunov–Schmidt conditions) for $0 \in U \subset X$ and $\lambda_0 \in V \subset \mathbb{R}$ open, along with the normalized assumptions as outlined above. Furthermore, assume that

$$\ker(\partial_x F[(\lambda_0, 0)]) = \operatorname{span}\{v_0\}, \quad v_0 \in X, \quad \|v_0\|_X = 1$$

and that the second mixed partial derivatives commute and satisfy

$$\partial^2_{x\lambda} F[(\lambda_0,0)] v_0 \not\in \operatorname{im}(\partial_x F[(\lambda_0,0)]).$$

Then there is a second, distinct solution curve $\gamma\colon (-\delta,\delta)\to V\times U$ through $\gamma(0)=(\lambda_0,0)$ which is continuously differentiable and solves $F(\gamma(s))=0$ for all $s\in (-\delta,\delta)$. Finally, there are only two solutions intersecting at the bifurcation point $(\lambda_0,0)$, namely the trivial solution line curve and γ as above.

The Korteweg-de Vries and Whitham equations

The Korteweg–de Vries (KdV) equation is a nonlinear PDE given by

$$\partial_t \eta + c_0 \, \partial_x \eta + \frac{3}{2} \frac{c_0}{h_0} \eta \, \partial_x \eta + \frac{1}{6} c_0 h_0^2 \, \partial_x^3 \eta = 0$$

where h_0 , c_0 are constants determined by the physical constraints of the problem considered. A modified version of this equation was put forward by Gerald B. Whitham and remedies peaking and wave breaking behaviours of KdV, taking the form

$$\partial_t \eta + \frac{3}{2} \frac{c_0}{h_0} \eta \, \partial_x \eta + K_{\text{Whitham}} * \partial_x \eta = 0$$

where $K_{Whitham}$ is a convolution kernel given by

$$\mathcal{K}_{\mathsf{Whitham}} = \mathcal{F}^{-1}igg(\sqrt{rac{g\; anh\;h_0\xi}{\xi}}igg).$$

Schwartz space, Distributions and Tempered distributions

Given what may be established about the Schwartz space, distributions and tempered distributions, consider these definitions:

Definition

(Fourier transform of tempered distributions) Let $T \in \mathcal{S}'(\mathbb{R}^n)$. Then the Fourier transform of T denoted \mathcal{F} T is defined formally by

$$\mathcal{F} T(\varphi) = T(\mathcal{F}\varphi), \quad \varphi \in \mathscr{S}(\mathbb{R}^n).$$

Definition

(Convolutions on Tempered Distributions)

Given $\psi \in \mathscr{S}(\mathbb{R}^n)$ and $f \in \mathscr{S}'(\mathbb{R}^n)$ we define the distribution $\psi * f$ by

$$\langle \psi * f, \varphi \rangle = \langle f, \tilde{\psi} * \varphi \rangle \quad \text{for } \varphi \in \mathscr{S}(\mathbb{R}^n)$$

where $\tilde{\psi}(x) = \psi(-x)$.

Hölder spaces

Definition

Let $\Omega \subseteq \mathbb{R}^n$ be open, and denote the space of bounded, continuous functions over Ω as $BC(\Omega)$, and likewise with $BC^k(\Omega)$ for k-times differentiable, bounded continuous functions. We say a function $f \in BC^k(\Omega)$ is Hölder k-times continuously differentiable with exponent $0 < \alpha \le 1$ if each derivative of f up to order k has finite $C^{0,\alpha}$ -norm given by

$$||f||_{C^{0,\alpha}(\Omega)} := \sup_{x \in \Omega} |f(x)| + \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|f(x) - f(y)|}{||x - y||^{\alpha}}$$
$$[f]_{\alpha} := \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|f(x) - f(y)|}{||x - y||^{\alpha}}.$$

Hölder spaces (cont.)

Furthermore, the norm of $C^{k,\alpha}(\Omega)$ is given by

$$||f||_{C^{k,\alpha}(\Omega)} = \sum_{|\beta| \le k} ||\partial^{\beta} f||_{BC(\Omega)} + \sum_{|\beta| = k} [\partial^{\beta} f]_{\alpha}.$$

The space of all Hölder continuous functions over Ω with exponent α is then the Hölder space

$$C^{0,\alpha}(\Omega) = \{ f \in BC(\Omega) \mid ||f||_{C^{0,\alpha}(\Omega)} < \infty \}.$$

This will be the main space we consider for bifuractions.

Exponents α strictly larger than 1 are not interesting for us.

Symbol classes

Definition

(Symbol Classes)

Let Ω be an open subset of \mathbb{R}^n . If $s \in \mathbb{R}$ and $0 \le \delta < \rho \le 1$ we let $S^s_{\rho,\delta}(\Omega \times \mathbb{R}^n)$ be the set of all functions $a(x,\xi)$ such that for any compact $K \subset \Omega$ and multi-indices α,β there exists constants $C_{K,\alpha,\beta} > 0$ such that for all $x \in K$ and $\xi \in \mathbb{R}^n$ one has

$$|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}a(x,\xi)| \leq C_{K,\alpha,\beta}(1+|\xi|)^{s-\rho|\alpha|+\delta|\beta|}.$$

We call $S^s_{\rho,\delta}(\Omega \times \mathbb{R}^n)$ the symbol class of order s.

Of particular interest to us are the *classical symbols* given by $S_{1,0}^s(\mathbb{R},\mathbb{R})$. An important family of such symbols are the *Bessel symbols* given by

$$m(\xi)=(1+\xi^2)^{\frac{s}{2}},\quad s\in\mathbb{R}\setminus\{0\}.$$

Back to the problem at hand

Our main focus will be the family of equations given by

$$\partial_t u + L \partial_x u + \partial_x (u^{p+1}) = 0, \quad p \in \mathbb{Z}_{\geq 2}.$$

Here, the Fourier multiplier L will be assumed to be a Bessel symbol on the Fourier side

$$m(\xi) = (1 + \xi^2)^{\frac{s}{2}}, \quad s < 0.$$

This is a classical symbol. Note that it is also real and symmetric as a function.

We furthermore use the ansatz of traveling solutions $u(t,x)=\eta(x-ct)$ and get

$$-c\,\eta' + L\eta' + \eta^p\,\eta' = 0$$

which after integrating and normalizing becomes

$$-c\,\eta+L\eta+\eta^{p+1}=0.$$

The wave-speed parameter c>0 will be our bifurcation parameter in the analysis that follows.

Main theorem

Theorem

For a given L>0 there exists a local bifurcation curve consisting of 2L-periodic, even and continuous solutions to the weak normalized equation. Furthermore, owing to the dispersion relation $m(\xi)$ of the equation, the wave speed at the bifurcation point is given by

$$c^* = \left(1 + \frac{\pi^2}{L^2}\right)^{\frac{s}{2}}$$

where in particular as $L \to \infty$ one has $c^* \to 1$.

Crandall-Rabinowitz revisited

Let W be a Banach algebra, and let $c \in (0,1)$ be a parameter. Let $\mathcal{L} \colon W \to W$ be the Fréchet derivative at $0 \in W$ with respect to the function u of the map

$$\mathcal{J}: u \longmapsto -cu + Lu + u^{p+1}.$$

Suppose also that both \mathcal{L} and $\partial_c \mathcal{L}$ exist and are continuous on and onto W, and that for some specific parameter $c^* \in (0,1)$ the following conditions hold:

- (i) dim ker(\mathcal{L}) = 1;
- (ii) $W = \ker(\mathcal{L}) \oplus \operatorname{im}(\mathcal{L})$;
- (iii) $(\partial_c \mathcal{L}) \ker(\mathcal{L}) \cap \operatorname{im}(\mathcal{L}) = 0.$

Then there exists $\varepsilon>0$ and a continuous bifurcation curve $\{(c_s,\phi_s)\ |\ |s|<\varepsilon\}$ with $c_s|_{s=0}=c^*$. Furthermore ϕ_0 is the vanishing solution of the normalized equation and $\{\phi_s\}_s$ are nontrivial solutions to the normalized equation with corresponding wave speeds $\{c_s\}_s$. In addition to all of this, we have for all solutions $\phi_s\in W$ that

$$\operatorname{dist}(\phi_s, \ker(\mathcal{L})) = o(s)$$
.

As soon as we show that the maps \mathcal{L} , $\partial_c \mathcal{L}$ have the listed properties and the existence of $c^* \in (0,1)$ are established, then the existence of $\{\phi_s\}_s$ is guaranteed immediately by Crandall-Rabinowitz as stated before.

Linearization of the normalized equation gives, assuming $L\psi=K*\psi$

$$\mathcal{L}\psi := \psi - \frac{1}{c}K * \psi = 0$$

where if $\psi \in L^{\infty}(\mathbb{R})$ we see that in the distributional sense we have

$$\hat{\psi}\left(1-\frac{1}{c}m(\xi)\right)=0.$$

Note that $\hat{\psi}, \frac{1}{c}\widehat{K*\psi}$ and $\frac{1}{c}\hat{K}$ all exist as tempered distributions in the space $\mathscr{S}'(\mathbb{R})$. Furthermore, one may establish that

$$\frac{1}{c}\widehat{K*\psi}(\varphi) = \frac{1}{c}(\hat{\psi}\hat{K})(\varphi), \quad \text{ for any } \varphi \in \mathscr{S}(\mathbb{R}).$$

as per the usual convolution theorem.

Given our equation as above, we start to examine whenever $\hat{\psi}$ vanishes. Given c<1 we see that the equation

$$1 - \frac{1}{c}(1 + \xi^2)^{\frac{s}{2}} = 0$$

has two solutions $\pm \xi_0$ since the Bessel function is in particular always decreasing and symmetric about $\xi=0$. For c=1 we have only one solution, namely $\xi=0$. Lastly, for c>1 we have no solutions to the above equation - which immediately implies that the distribution $\hat{\psi}(\varphi)$ has to vanish for all φ when c>1. Then it turns out that the nontrivial solutions to the linearized equation are given by the functions

$$\begin{cases} \psi(x) = C, & c = 1, \\ \psi(x) = C \cos(\xi_0 x), & c < 1, \end{cases}$$

for constants $C \in \mathbb{R} \setminus \{0\}$.

We then see that in the case of 2L-periodic and even solutions to our linearized equation we have

$$\dim \ker(\mathcal{L}) = 1$$
 if and only if $\xi_0 = k\pi/L$ for $k \in \mathbb{Z}_{\geq 1}$.

Now, choose the lowest mode of frequency k=1 as above. This ensures uniqueness of c in the dispersion relation of our equation, and also allows us to establish the proposed c^* as in the theorem.

The rest of the proof involves looking at how the maps \mathcal{L} and $\partial_c \mathcal{L}$ behave, which is unfortunately rather technical.

Generalizing to arbitrary classical symbols

Things of note:

- the dispersion relation $m(\xi)$ for the symbol has to be given explicitly in order to calculate c^* , thus existence of solutions have to be established per case
- given a regularizing classical symbol, there should be no problems regarding consistency of equations