Capstone project

on

Face Emotion Recognition

By

Shubhangi Dharmik

(Individual)

Procedure

- 1. Problem statement
- 2. Introduction
- 3. Data summary
- 4. Method used
- 5. Analysis
- 6. Evaluation of Model
- 7. Results
- 8. Deployment of model
- 9. Conclusions

Problem Statement

- Digital classrooms are conducted via video telephony software program (exZoom). We have to detect emotion of students.
- We will solve this challenge by applying deep learning algorithms to live video data. The solution to this problem is by recognizing facial emotions.
- The main objective is to build a model which can recognize the facial emotion of students through web cam in real time.

Data Summary

Dataset taken from kaggle FER2013

- **Emotion** The dataset consist of emotions that is happy, sad, angry, neutral, surprise, disgust and fear.
- Pixels –
- Usage usage are divided into three test that is training test, private test and public test.

Method

- Clean data
- Data Preprocessing
- Split into train test and validation
- Visualize image through emotion
- Initialize the CNN
- Train the model
- Testing

Method

Convolutional neural network

Fig. 6. Facial landmarks system structure.

Model summary

Model: "sequential_1"			
Layer (type)	Output		Param #
conv2d_6 (Conv2D)			640
conv2d_7 (Conv2D)	(None,	44, 44, 64)	36928
max_pooling2d_3 (MaxPooling2	(None,	22, 22, 64)	0
dropout_4 (Dropout)	(None,	22, 22, 64)	0
conv2d_8 (Conv2D)	(None,	20, 20, 64)	36928
conv2d_9 (Conv2D)	(None,	18, 18, 64)	36928
max_pooling2d_4 (MaxPooling2	(None,	9, 9, 64)	0
dropout_5 (Dropout)	(None,	9, 9, 64)	0
conv2d_10 (Conv2D)	(None,	7, 7, 128)	73856
conv2d_11 (Conv2D)	(None,	5, 5, 128)	147584
max_pooling2d_5 (MaxPooling2	(None,	2, 2, 128)	0
flatten_1 (Flatten)	(None,	512)	0
dense_3 (Dense)	(None,	1024)	525312
dropout_6 (Dropout)	(None,	1024)	0
dense_4 (Dense)	(None,	1024)	1049600
dropout_7 (Dropout)	(None,	1024)	0
dense_5 (Dense)	(None,	7)	7175

Evaluation of model

For face detection OpenCV has been used. Given a realtime live stream, the face detector examines each location of the image and classifies it as a face or no face region.

The largest face region is extracted as the region of interest, converted to a grayscale image and resized pixels

Result

- The emotion of the face is predicted and the label
 with the largest associated probability is taken. The
 live stream is displayed in a window with a bounding
 box around the largest face and the emotion label is
 shown above the bounding box in real-time
- We get the accuracy of training data is 72% and for test data it is approximately 60%, the accuracy will be better if number of epoch is increased

Accuracy and Loss

Confusion matrix

Deployment of model

Saving file fer.json and fer2013.h5 model

For the deployment of model we use google cloud platform.

For that we need a docker file for the deployment of the model

deployment link:

[https://face-emotion-detection-326315.as.r.appspot.com]

Streamlit

Demo

Streamlit app

Conclusions

- The goal of this work has been to design a deep neural network for real time facial emotion recognition.
- We get accuracy 72% for training and 60% in testing at 30th epoch.
- By using more types of data augmentation, by increasing number of epoch, increasing the number of layers, deepening the network and adding regularization further better accuracy can likely be obtained.

Thank You