Examenul național de bacalaureat 2024 Proba E. d) FIZICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la zece.

A. MECANICĂ (45 de puncte)

Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	d	3р
2.	C	3р
3.	b	3р
4.	a	3р
5.	b	3р
TOTAL	pentru Subiectul I	15p

A. Subiectul al II-lea

II.a.	Pentru:	4p
	$F_{e} - F_{f2} = m_2 a 1p$	
	$F_{e} = k \cdot \Delta \ell$	
	$F_{f2} = \mu m_2 g $ 1p	
	rezultat final $k = 230 \text{ N/m}$	
b.	Pentru:	4p
	$F \cdot \cos \alpha - F_{f1} - F_{e} = m_{1}a $ 1p	
	$N_1 = m_1 g - F \cdot \sin \alpha$ 1p	
	$F_{f1} = \mu N_1 $ 1p	
	rezultat final $F = 7.5$ N	
C.	Pentru:	3р
	$\Delta V = a \cdot \Delta t_1 $ 2p	
	rezultat final $\Delta v = 1,2 \text{ m/s}$	
d.	Pentru:	4p
	$\Delta \vec{P} = \vec{F}_{\text{ext}} \cdot \Delta t $ 1p	
	$\Delta P = (-\mu m_1 g - \mu m_2 g) \cdot \Delta t $ 1p	
	$\Delta P = m_1 v_1 + m_2 v_2 - m_1 v_0 - m_2 v_0 $ 1p	
	rezultat final $v_2 = 0.52 \text{ m/s}$	
TOTAL	pentru Subiectul al II-lea	15p

A. Subiectul al III-lea

III.a.	Pentru:		4p
	$E_0 = E_{c0} + E_{p0}$	1p	
	$E_0 = E_{c0} + E_{p0}$ $E_{c0} = \frac{mv_0^2}{2}$ $E_{p0} = mgh$	1p	
	$E_{p0} = mgh$	1p	
	rezultat final $E_0 = 645 \text{ J}$	1p	
b.	Pentru:		4p
	2 2 (0.6)	1p	
	$L_{G} = mgh$ $L_{F_{i}} = -\mu \cdot mgh \cdot ctg\alpha$	1p	
	$L_{F_f} = -\mu \cdot mgh \cdot ctg\alpha$	1p	
	rezultat final $\mu = 0.3$	1p	

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

C.	Pentru:	3р
	$-\frac{m{v_1}^2}{2} = L_{F_t \text{ orizontala}} $ 1p	
	$L_{F_{f} orizontala} = -\mu mgd_{0} $ 1p	
	rezultat final: $d_0 = 13.5 \text{ m}$	
d.	Pentru:	4p
	$P_{f med} = \frac{L_{F_{f orizontala}}}{\Delta t} $ 1p	
	$\Delta t = \frac{d_0}{v_m}$	
	$v_m = \frac{v_1}{2}$	
	rezultat final: $P_{fmed} = -135 \text{ W}$	
TOTAL pentru Subiectul al III-lea		

B. ELEMENTE DE TERMODINAMICĂ (45 de puncte) Subjectul I Nr.Item Soluţie, rezolvare Punctaj I.1. 3р 2. а 3p 3. d 3p 4. 3p а 3р 5. **TOTAL pentru Subiectul I** 15p

B. Subiectul al II-lea

II.a.	Pentru:	3р
	$p_0V_2 = v_2RT$	
	$V_2 = \ell S$	
	rezultat final $v_2 = 0.1 \text{ mol}$	
b.	Pentru:	4p
	$\rho_0 V_2 = \rho_1 V_2'$	
	$V_2' = (\ell - x)S$	
	rezultat final $x = 7.5$ cm	
C.	Pentru:	4p
	pV = vRT	
	$v = v_1 + v_2 $ 1p	
	$v_1 = \frac{p_1 V}{RT}$	
	rezultat final $p = 3.10^5$ Pa	
d.	Pentru:	4p
	$v_{am} = \frac{m_{am}}{\mu_{am}}$	
	$m_{am} = v_2 \mu_2 + v_1 \mu_1$ 2p	
	rezultat final $\mu_{am} = 12 \text{ g/mol}$	
TOTAL	pentru Subiectul al II-lea	15p

B. Subjectul al III-lea

III.a.	Pentru:	3р
	reprezentare corectă în coordonate $p-V$ 3p	
b.	Pentru:	4p
	$T_2 = 4T_1$	
	$V_3 = 4V_1 $ 1p	
	$L_{23} = vRT_2 \ln \frac{V_3}{V_2} $ 1p	
	rezultat final $T_1 = 500 \text{ K}$	
C.	Pentru:	4p
	$L_{tot} = L_{12} + L_{23} + L_{31} $ 1p	
	$L_{12} = \frac{vR(T_2 - T_1)}{2}$ 1p	
	$L_{31} = vR(T_1 - T_3)$	
	rezultat final L_{tot} =1,3 kJ	
d.	Pentru:	4p
	$Q_{primit} = L_{tot} + Q_{cedat} $ 1p	
	$Q_{codat} = L_{31} + \nu C_{\nu} \left(T_1 - T_3 \right) $ 1p	
	$\eta = \frac{L_{tot}}{Q_{primit}}$	
	rezultat final $\eta \cong 14,8\%$	
TOTAL	pentru Subiectul al III-lea	15p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU (45 de puncte) Subjectul I Nr.Item Soluţie, rezolvare Punctaj I.1. C. 3р 2. c. 3р 3. 3p a. 4. b. 3p

3р

15p

C. Subjectul al II-lea

d. **TOTAL pentru Subiectul I**

5.

C. Subi	ectui ai II-lea		
II.a.	Pentru:		3р
	$E_1 = I_1 (R_1 + R_2 + R_3 + r)$	2p	
	rezultat final: $I_1 = 0.5 \text{ A}$	1p	
b.	Pentru:		4p
	$R_{\rm e} = R_3 + R_p$	1p	
	$R_{p} = \frac{R_{4} \left(R_{1} + R_{2} \right)}{R_{1} + R_{2} + R_{4}}$	1p	
	$I_1' = \frac{E_1}{R_e + r_1}$	1p	
	rezultat final $I'_1 \cong 0.7A$	1p	
C.	Pentru:		4p
	$E_1 = I_1'' \cdot (r + R_1) + I \cdot (R_3 + R_2)$	1p	
	$E_2 = I_2'' \cdot r + I \cdot (R_3 + R_2)$	1p	
	$I_1'' + I_2'' = I$	1p	
	rezultat final $I_1'' = 0,25$ A	1p	
d.	Pentru:		4p
	$U_V = E_2 - I_0 r$	2p	
	$I_0 = 0 \text{ A}$	1p	
	rezultat final $U_V = 4V$	1p	
TOTAL	pentru Subiectul al II-lea		15p

C. Subjectul al III-lea

C. Suble	ctul al III-lea	
III.a.	Pentru:	3р
	$P_n = \frac{U_n^2}{R_B}$	
	rezultat final $R_B = 100 \Omega$	
b.	Pentru:	4p
	$P_n = U_n \cdot I_n$	
	$nE = I_A (nr + R_A) + I_n (R_B + R)$	
	$P_{total} = nEI_A$	
	rezultat final $P_{total} = 80W$	
C.	Pentru:	4p
	$I_A - I_n - I_{CM} = 0$	
	$U_{CM} = I_n (R_B + R) $ 1p	
	$W_{\rm CM} = U_{\rm CM}I_{\rm CM}\Delta t$ 1p	
	rezultat final $W_{CM} = 14,4 \text{ kJ}$	
d.	Pentru:	4p
	$R_{MN} = 2R_{CM}$	
	$R_{CM} = \frac{U_{CM}}{I_{CM}}$	
	rezultat final $R_{MN}\cong 533~\Omega$	
TOTAL	pentru Subiectul al III-lea	15p

	,	,	,	
D. OPTICĂ				(45 de puncte)
Subiectul I				

Nr.Item	Soluţie, rezolvare	Punctaj
l.1.	C	3р
2.	b	3р
3.	d	3р
4.	d	3р
5.	a	3р
TOTAL	nentru Subjectul I	15p

D. Subie	ctul al II-lea	
II.a.	Pentru:	3p
	$f = C^{-1}$	
	rezultat final $f = 0.15 \text{ m}$	
b.	Pentru:	4p
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$	
	$\begin{bmatrix} x_2 & x_1 & t \end{bmatrix}$	
	$x_2 = -3x_1$ 1p	
	rezultat final $-x_1 = 0.2 \text{ m}$	
C.	Pentru:	4p
	$\beta = \frac{x_2}{x_1}$ $\beta = -3$ $\beta = \frac{y_2}{y_1}$ 1p	
	$\beta = -3$	
	$\beta = \frac{y_2}{y_1}$	
	rezultat final $ y_1 = 2 \text{ cm}$	
d.	Pentru:	4p
	$\frac{1}{f_{S}} = \frac{2}{f}$	
	$\frac{1}{x_2'} - \frac{1}{x_1} = \frac{1}{f_S}$	
	rezultat final $x'_2 = 0.12 \mathrm{m}$	
TOTAL	pentru Subiectul al II-lea	15p

D Subjectul al III-lea

D. Suble	ctui ai iii-lea	
III.a.	Pentru:	3p
	$i = \frac{D\lambda}{2\ell}$	
	rezultat final $\lambda = 5.5 \cdot 10^{-7} \text{m}$	
b.	Pentru:	4p
	$\lambda = \frac{c}{v}$	
	rezultat final $v \cong 5,5 \cdot 10^{14}$ Hz	
C.	Pentru:	4p
	$x_k^{\text{max}} = \frac{kD\lambda}{2\ell}$	
	$x_k^{\min} = \frac{(2k+1)D\lambda'}{4\ell}$	
	$x_k^{\text{max}} = x_k^{\text{min}}$	
	rezultat final $\lambda' = 4,4 \cdot 10^{-7} \text{ m}$	
d.	Pentru:	4p
	$\Delta x = \frac{(n-1)eD}{2\ell}$	
	rezultat final $e = 5,5 \mu\text{m}$	
TOTAL	pentru Subiectul al III-lea	15p