

1.

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PEC-IT601A Advanced Algorithms UPID: 006589

Time Allotted : 3 Hours Full Marks :70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

		Group-A (very Short Answer Type Question)		
Ar	swer	any ten of the following :	[1 x 10 = 10]	
	(1)	Which property does Matroids exhibit?		
	(II)	If the number of equations is less than the number n of unknowns or the rank of A is less than n is	, then the system	
	(III)	Dynamic programming works withsubproblems.		
		Analgorithm maximizes or minimizes a criterion function.		
	(V)	analysis gives the average performance of each operation in worst case.		
(VI)		The complexity of BFS is		
		Which elimination can be used to find the triangular matrices ?		
	(VIII)	Which algorithm finds the shortest path between every pair of vertices ?		
a. アン・スプレイス・ファイング・カーカーサーク・CO タアビスシックバ		The problem X is said to beto another problem Y if there exist an algorithm A for algorithm can be used to solve X .	er problem Y if there exist an algorithm A for Y and that	
	(X)	In <i>mathematics</i> , is a process which combines two functions on a set to produce function on the set.	another	
	(XI)	$F(n)=2^n + n^2 is \Theta()$.		
	(XII)	Every alternating odd cycle must pass through at least one edge.		
		Group-B (Short Answer Type Question)		
		Answer any three of the following:	[5 x 3 = 15]	
2.	State	te white path theorem and parenthesis theorem [5]		
3.		What is alternating BFS tree? Classify the non- tree edges in alternating BFS tree. [5]		
4.	Write an algorithm to compute alternating BFS tree. [5]			
(O)		Gaussian elimination to find the upper and lower triangular matrices.	[5]	
		2 3 1 5 6 13 5 19 2 19 10 23 4 10 11 31		
6.	Wha	t is satisfiability problem? Show that the Satisfiability problem is NP.	[5]	
		Group-C (Long Answer Type Question)		
		Answer any three of the following:	[15 x 3 = 45]	
7.		t do you mean by amortized analysis? Define the three methods of amortized analysis. Explaunting method and potential method using the stack example.	in the [1+6+4+4]	
3.		at is matroid? Define the two properties of matroid. Write an greedy algorithm that works for oid to find optimal subset and also analyse its complexity.	or any [2+4+5+4]	
9.	MST	Define weighted matroid. Define minimum spanning tree. Define optimal subset of matroid. How can an MST problem be viewed/formulated as finding an optimal subset of matroid? Using the same find the 2+2+2+5+4 minimum spanning tree of the graph G.		

10. State min-cut max-flow theorem. Find the flow of the network using Edmond Karp algorithm.

[3+12]

11. What do you mean by reduction and polynomial reduction? How can you reduce maximum independent [1+2+6+6 set problem to clique decision problem? Reduce 3CNF problem to largest independent set problem.]

*** END OF PAPER ***