Hands on -6
3(h)
So for Average Case Ochileition
Stp.1: Partitioning work
→ Select a privet
-> perform Comparisions to clivide the array into two parts This takes O(n) time
So afterpartioning array divides into two parts size i and n-i-1 (i is left of privatelements)
Step 2: Rowrsine work
So avig case we sam over all possible size of
the left Subarray i, weighted by the probabliting of Selecting that pivol
of Selecting that pivol
n-1
$T(n) = O(n) + \frac{1}{n} \leq (T(u) + T(n-i-1))$
So we simply this to almost ilqual
$T(n) = O(n) + 2 \leq T(u)$ $n = 0$ $n = 0$
Now apply musters theorm.
Now apply musters theorm. T(n): aT(D)+O(nd)

	For Quich Sort
	$T(n) = 2T(\frac{n}{2}) + O(n)$
	a=2 2 roavisive Calls
	b=2 For each Irecursive (al on Sulphablem of size 1)
	d=1 OCn)
	Compare nd with ndogs
	$n^{\log_2} = n^{\prime}$
	$n \frac{\log^2}{n} = n'$ So here $n^d = n'$
	Case 2: d=log6
	T(n1= O(ndlogn)
	1(11=10(11 209-1)
1.	So T(n1= O (ndogn)
	So ((n)= () (ndgn)
	Time Congressity of Quick Sort
	Substitute Charles
* 1	