Classification of orbits in $K^2 \otimes K^3 \otimes K^r$, $r \ge 1$ and lines in the space of the Veronese surface

Michel Lavrauw

Sabancı University - Università di Padova

Finite Geometry Workshop Szeged 2017

Tensor products have many applications

- Computational complexity theory
- Tensors describe quantum mechanical systems (entanglement)
- ▶ Data analysis (chemistry, biology, physics, ...)
- ▶ Signal processing, source separation

Our original motivation:

 Theory of finite semifields: finite non-associative division algebras

Tensor product $\bigotimes_{i \in I} V_i$

Consider m vectorspaces V_i over the field K, $I = \{1, ..., m\}$.

- ▶ fundamental or pure tensors: $v_1 \otimes ... \otimes v_m$, $v_i \in V_i$.
- general element $\tau \in \bigotimes_{i \in I} V_i$

$$\tau = \sum_{i} v_{1i} \otimes \ldots \otimes v_{mi}$$

- ightharpoonup au defines a multilinear map
- choosing bases for each V_i we obtain a hypercube $(a_{i_1 i_2 ... i_m})$

$$\tau = \sum_{i = 1} a_{i_1 i_2 \dots i_m} e_{1 i_1} \otimes \dots \otimes e_{m i_m}$$

Main issue for applications: "decomposition"

An expression

$$\tau = \sum_{i=1}^{r} v_{1i} \otimes \ldots \otimes v_{mi} \tag{1}$$

is called a decomposition of $\tau \in V_1 \otimes \ldots \otimes V_m$.

Four important problems:

- ► Algorithm
- Uniqueness
- ▶ Existence: given τ and r, does (1) exist? \rightarrow rank
- Orbits: how many "different" tensors are there?

This talk

"Orbits": how many "different" tensors are there?

Group action

An element

$$(g_1, g_2, \dots g_m) \in \operatorname{GL}(V_1) \times \operatorname{GL}(V_2) \times \dots \times \operatorname{GL}(V_m)$$

acts on the fundamental tensors:

$$v_1 \otimes v_2 \otimes \ldots \otimes v_m \mapsto v_1^{g_1} \otimes v_2^{g_2} \otimes \ldots \otimes v_m^{g_m}.$$

▶ If $V_i = V = K^n$ for all i, then we also have an action of S_m as follows:

$$\pi: \langle v_1 \otimes v_2 \otimes \ldots \otimes v_m \rangle \mapsto \langle v_{\pi(1)} \otimes v_{\pi(2)} \otimes \ldots \otimes v_{\pi(m)} \rangle.$$

Geometry of tensor spaces

Segre embedding:

$$\sigma : \operatorname{PG}(V_1) \times \operatorname{PG}(V_2) \times \ldots \times \operatorname{PG}(V_m) \to \operatorname{PG}(\bigotimes_i V_i)$$
$$(\langle v_1 \rangle, \langle v_2 \rangle, \ldots, \langle v_m \rangle) \mapsto \langle v_1 \otimes v_2 \otimes \ldots \otimes v_m \rangle$$

- ▶ $S_{n_1,n_2,...,n_m}(K) = Im(\sigma)$ is the Segre variety $(n_i = \dim V_i)$
- ▶ The group $GL(V_1) \times GL(V_2) \times ... \times GL(V_m)$ induces a subgroup G_m of $PGL(n^m 1, K)$.
- $ightharpoonup G_m$ stabilises $S_{n,...,n}$

Aim

Classify the G_m -orbits on $PG(\bigotimes_i V_i)$.

Known results

- ightharpoonup m = 1: trivial
- ▶ m = 2: $V_1 \otimes V_2 \cong \mathcal{M}(n_1 \times n_2, K)$: $\mathrm{rk}(u) = \mathrm{rk}(M_u)$
 - ⇒ one orbit for each rank

Known results for m = 3

- $ightharpoonup \mathbb{F}^2_{
 ho} \otimes \mathbb{F}^3_{
 ho} \otimes \mathbb{F}^3_{
 ho} ext{ [Brahana (1933)]} + ext{[Thrall (1938)]}$
- ▶ $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ [Thrall-Chanler (1938)]
- ▶ $\mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$ has a finite number of orbits only if $a \leq 2$, $b \leq 3$ [Kac (1980)] [Kraśkiewicz-Weyman (2009)]
- ▶ $\mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ [Nurmiev (2000)]
- $ightharpoonup \mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ [Parfenov (2001)]
- $ightharpoonup \mathbb{F}_2^2 \otimes \mathbb{F}_2^2 \otimes \mathbb{F}_2^2$ [Glynn et al. (2006)]
- ▶ $\mathbb{F}_2^2 \otimes \mathbb{F}_2^2 \otimes \mathbb{F}_2^2$ [Havlicek et al. (2012)]
- $ightharpoonup \mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^c$ [Buczyński-Landsberg (2013)]
- computational [Bremner-Stavrou (2013)] for small p
- ▶ geometric $K^2 \otimes K^2 \otimes K^2$ [ML J. Sheekey (2014)]

Aim

Classification of the G_3 -orbits on $\mathrm{PG}(K^a\otimes K^b\otimes K^c)$

Preferably with a proof which is

- Comprehensive
- ▶ Geometric
- Independent
- Elementary
- Insightful

Orbits in $K^2 \otimes K^3 \otimes K^r$, $r \ge 1$

Theorem (ML-J. Sheekey 2016)

Classification of orbits in $K^2 \otimes K^3 \otimes K^r$, $\forall r \geq 1$, for $K = \mathbb{F}_q$, for K an algebraically closed field, and for $K = \mathbb{R}$.

Proof

- ▶ contraction spaces of $A \in K^2 \otimes K^3 \otimes K^3$
- ▶ $PG(A_1)$'s in $\langle S_{3,3}(K) \rangle$
- ▶ rank distribution [a, b, c] of $PG(A_1)$
- ▶ classification of lines in $\langle S_{3,3}(K) \rangle$: 14 orbits
- ▶ classification of orbits in $K^2 \otimes K^3 \otimes K^3$
- ▶ PG(A_3)'s in $\langle S_{2,3}(K) \rangle$
- ▶ all subspaces in $\langle S_{2,3}(K) \rangle$
- ▶ classification in $K^2 \otimes K^3 \otimes K^r$, $\forall r \geq 1$.

The orbits in $K^2 \otimes K^3 \otimes K^3$

Theorem (ML-J. Sheekey 2016)

Orbits in $K^2 \otimes K^3 \otimes K^3$ for $K = \mathbb{F}_q$:

Orbit	Canonical form	Condition	r ₁ (A)
			fo o ol
00	0		[0, 0, 0]
o_1	$e_1 \otimes e_1 \otimes e_1$		[1, 0, 0]
02	$e_1\otimes (e_1\otimes e_1+e_2\otimes e_2)$		[0, 1, 0]
03	$e_1 \otimes e$		[0, 0, 1]
04	$e_1 \otimes e_1 \otimes e_1 + e_2 \otimes e_1 \otimes e_2$		[q+1,0,0]
05	$e_1 \otimes e_1 \otimes e_1 + e_2 \otimes e_2 \otimes e_2$		[2, q-1, 0]
06	$e_1 \otimes e_1 \otimes e_1 + e_2 \otimes (e_1 \otimes e_2 + e_2 \otimes e_1)$		[1, q, 0]
07	$e_1 \otimes e_1 \otimes e_3 + e_2 \otimes (e_1 \otimes e_1 + e_2 \otimes e_2)$		[1, q, 0]
08	$e_1 \otimes e_1 \otimes e_1 + e_2 \otimes (e_2 \otimes e_2 + e_3 \otimes e_3)$		[1, 1, q - 1]
09	$e_1 \otimes e_3 \otimes e_1 + e_2 \otimes e$		[1, 0, q]
010	$e_1 \otimes (e_1 \otimes e_1 + e_2 \otimes e_2 + ue_1 \otimes e_2) + e_2 \otimes (e_1 \otimes e_2 + ve_2 \otimes e_1)$	(*)	[0, q+1, 0]
011	$e_1 \otimes (e_1 \otimes e_1 + e_2 \otimes e_2) + e_2 \otimes (e_1 \otimes e_2 + e_2 \otimes e_3)$		[0, q+1, 0]
012	$e_1 \otimes (e_1 \otimes e_1 + e_2 \otimes e_2) + e_2 \otimes (e_1 \otimes e_3 + e_3 \otimes e_2)$		[0, q+1, 0]
013	$e_1 \otimes (e_1 \otimes e_1 + e_2 \otimes e_2) + e_2 \otimes (e_1 \otimes e_2 + e_3 \otimes e_3)$		[0, 2, q-1]
014	$e_1 \otimes (e_1 \otimes e_1 + e_2 \otimes e_2) + e_2 \otimes (e_2 \otimes e_2 + e_3 \otimes e_3)$		[0, 3, q-2]
015	$e_1 \otimes (e + ue_1 \otimes e_2) + e_2 \otimes (e_1 \otimes e_2 + ve_2 \otimes e_1)$	(*)	[0, 1, q]
016	$e_1 \otimes e + e_2 \otimes (e_1 \otimes e_2 + e_2 \otimes e_3)$		[0, 1, q]
017	$e_1\otimes e+e_2\otimes (e_1\otimes e_2+e_2\otimes e_3+e_3\otimes (\alpha e_1+\beta e_2+\gamma e_3))$	(**)	[0, 0, q+1]

Orbits in $K^2 \otimes K^3 \otimes K^r$ $r \geq 1$

Theorem (ML-J. Sheekey 2016)

The number of H-orbits of tensors in $\mathbb{F}_q^2 \otimes \mathbb{F}_q^3 \otimes \mathbb{F}_q^r$ is as listed in the following table:

r	1	2	3	4	5	≥ 6
#H-orbits	3	10	21	28	30	31

Theorem (ML-J. Sheekey 2016)

The number of G-orbits of tensors in $\mathbb{F}_q^2 \otimes \mathbb{F}_q^3 \otimes \mathbb{F}_q^r$ is as listed in the following table:

r	1	2	3	≥ 4
#G-orbits	3	9	18	#H–orbits

Orbits in $K^2 \otimes K^3 \otimes K^r$, $r \ge 1$

Theorem (ML-J. Sheekey 2016)

If \mathbb{F} is an algebraically closed field or the field of real numbers, then the number of H-orbits and G-orbits of tensors in $\mathbb{F}^2 \otimes \mathbb{F}^3 \otimes \mathbb{F}^r$ is as listed in the following tables.

r	1	2	3	4	5	≥ 6	
#H-orbits	3	9	18	24	26	27	${\mathbb F}$ algebraically closed
#H–orbits	3	10	20	27	29	30	$\mathbb{F}=\mathbb{R}$

r	1	2	3	≥ 4	
#G−orbits	3	8	15	#H−orbits	\mathbb{F} algebraically closed
#G−orbits	3	9	17	#H-orbits	$\mathbb{F}=\mathbb{R}$

Line orbits in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$

- $ightharpoonup \mathcal{V}_3(\mathbb{F}_q)$ is the Veronese surface in $\mathrm{PG}(5,q)$.
- ▶ $H_3 = Aut(\mathcal{V}_3(\mathbb{F}_q)) \leq PGL(6, q), H_3 \cong PGL(3, q).$

Questions:

- ▶ What are the H_3 -orbits of lines in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$?
- ▶ Which G_2 -orbits of lines in $\operatorname{PG}(\mathbb{F}_q^3 \otimes \mathbb{F}_q^3) \cong \operatorname{PG}(8,q)$ are represented in the space of the Veronese surface $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$?
- ▶ Which G_2 -orbits split under the group H_3 ?

Line orbits in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$

Theorem (ML - Tomasz Popiel)

Classification of orbits of lines in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$.

- ▶ 3 of the 14 G_2 -orbits are not represented (o_4, o_7, o_{11})
- ightharpoonup q odd: G_2 -orbits o_8 , o_{13} , o_{14} , o_{15} split into two H_3 -orbits
- ightharpoonup q even: G_2 -orbits o_8 , o_{12} , o_{13} , o_{16} split into two H_3 -orbits
- ▶ in total 15 H_3 -orbits of lines in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$
- ▶ unique H₃-orbit of constant rank 3 lines

