AdaBoost

Jiri Matas and Jan Šochman

Centre for Machine Perception
Czech Technical University, Prague
http://cmp.felk.cvut.cz

Presentation

Outline:

- AdaBoost algorithm
 - Why is of interest?
 - How it works?
 - Why it works?
- AdaBoost variants
- AdaBoost with a Totally Corrective Step (TCS)
- Experiments with a Totally Corrective Step

Introduction

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 40
- 12
- 13
- 14
- 15 16

- 1990 Boost-by-majority algorithm (Freund)
- 1995 AdaBoost (Freund & Schapire)
- ◆ 1997 Generalized version of AdaBoost (Schapire & Singer)
- 2001 AdaBoost in Face Detection (Viola & Jones)

Interesting properties:

- AB is a linear classifier with all its desirable properties.
- ◆ AB output converges to the logarithm of likelihood ratio.
- AB has good generalization properties.
- ◆ AB is a feature selector with a principled strategy (minimisation of upper bound on empirical error).
- AB close to sequential decision making (it produces a sequence of gradually more complex classifiers).

What is AdaBoost?

 AdaBoost is an algorithm for constructing a "strong" classifier as linear combination

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

of "simple" "weak" classifiers $h_t(x)$.

What is AdaBoost?

- ___

 AdaBoost is an algorithm for constructing a "strong" classifier as linear combination

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

of "simple" "weak" classifiers $h_t(x)$.

Terminology

- $h_t(x)$... "weak" or basis classifier, hypothesis, "feature"
- $lacktriangleq H(x) = sign(f(x)) \dots$ "strong" or final classifier/hypothesis

What is AdaBoost?

 AdaBoost is an algorithm for constructing a "strong" classifier as linear combination

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

of "simple" "weak" classifiers $h_t(x)$.

Terminology

- $h_t(x)$... "weak" or basis classifier, hypothesis, "feature"
- \bullet H(x) = sign(f(x)) ... "strong" or final classifier/hypothesis

Comments

- The $h_t(x)$'s can be thought of as features.
- Often (typically) the set $\mathcal{H} = \{h(x)\}$ is infinite.

(Discrete) AdaBoost Algorithm - Singer & Schapire (1997)

- Given: $(x_1, y_1), ..., (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, 1\}$
- Initialize weights $D_1(i) = 1/m$

For t = 1, ..., T:

- 1. (Call WeakLearn), which returns the weak classifier $h_t : \mathcal{X} \to \{-1, 1\}$ with minimum error w.r.t. distribution D_t ;
- 2. Choose $\alpha_t \in R$,
- 3. Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor chosen so that D_{t+1} is a distribution

Output the strong classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

(Discrete) AdaBoost Algorithm - Singer & Schapire (1997)

n

- Given: $(x_1, y_1), ..., (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, 1\}$
- Initialize weights $D_1(i) = 1/m$

For t = 1, ..., T:

- 1. (Call *WeakLearn*), which returns the weak classifier $h_t : \mathcal{X} \to \{-1, 1\}$ with minimum error w.r.t. distribution D_t ;
- 2. Choose $\alpha_t \in R$,
- 3. Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor chosen so that D_{t+1} is a distribution

Output the strong classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Comments

- The computational complexity of selecting h_t is independent of t.
- lacktriangle All information about previously selected "features" is captured in D_t !

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

- **Loop step:** Call *WeakLearn*, given distribution D_t ; returns weak classifier $h_t: \mathcal{X} \to \{-1, 1\}$ from $\mathcal{H} = \{h(x)\}$
 - Select a weak classifier with the smallest weighted error $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
 - Prerequisite: $\epsilon_t < 1/2$ (otherwise stop)
 - WeakLearn examples:
 - Decision tree builder, perceptron learning rule \mathcal{H} infinite
 - Selecting the best one from given *finite* set ${\cal H}$

- 2
- 3
- 4
- 5

6

- 8
- 10
- 11
- 12
- 13
- 14
- 15
- 16

- **Loop step:** Call *WeakLearn*, given distribution D_t ; returns weak classifier $h_t: \mathcal{X} \to \{-1, 1\}$ from $\mathcal{H} = \{h(x)\}$
 - Select a weak classifier with the smallest weighted error $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i) [y_i \neq h_j(x_i)]$
 - Prerequisite: $\epsilon_t < 1/2$ (otherwise stop)
 - WeakLearn examples:
 - Decision tree builder, perceptron learning rule \mathcal{H} infinite
 - Selecting the best one from given *finite* set ${\cal H}$

Demonstration example

Weak classifier = perceptron

•
$$\sim N(0,1)$$
 • $\sim \frac{1}{r\sqrt{8\pi^3}}e^{-1/2(r-4)^2}$

- 2
- 3
- 4

6

- 8
- 10
- 11
- 12
- 13
- 14
- 15
- 16

- **Loop step:** Call *WeakLearn*, given distribution D_t ; returns weak classifier $h_t: \mathcal{X} \to \{-1, 1\}$ from $\mathcal{H} = \{h(x)\}$
 - Select a weak classifier with the smallest weighted error $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
 - Prerequisite: $\epsilon_t < 1/2$ (otherwise stop)
 - WeakLearn examples:
 - Decision tree builder, perceptron learning rule \mathcal{H} infinite
 - Selecting the best one from given *finite* set \mathcal{H}

Demonstration example

Training set

Weak classifier = perceptron

- $\sim N(0,1)$ $\sim \frac{1}{r\sqrt{8\pi^3}}e^{-1/2(r-4)^2}$

- **Loop step:** Call *WeakLearn*, given distribution D_t ; returns weak classifier $h_t: \mathcal{X} \to \{-1, 1\}$ from $\mathcal{H} = \{h(x)\}$
 - Select a weak classifier with the smallest weighted error $h_t = \arg\min_{h_i \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
 - Prerequisite: $\epsilon_t < 1/2$ (otherwise stop)
 - WeakLearn examples:
 - Decision tree builder, perceptron learning rule \mathcal{H} infinite
 - Selecting the best one from given *finite* set \mathcal{H}

Demonstration example

Training set

Weak classifier = perceptron

$$\sim N(0,1)$$

•
$$\sim N(0,1)$$
 • $\sim \frac{1}{r\sqrt{8\pi^3}}e^{-1/2(r-4)^2}$

2

3

4

6

8

10

11

12

13

14

15

AdaBoost as a Minimiser of an Upper Bound on the Empirical Error

- The main objective is to minimize $\varepsilon_{tr} = \frac{1}{m} |\{i: H(x_i) \neq y_i\}|$
- It can be upper bounded by $\varepsilon_{tr}(H) \leq \prod_{t=1}^T Z_t$

AdaBoost as a Minimiser of an Upper Bound on the Empirical Error

m

- The main objective is to minimize $\varepsilon_{tr} = \frac{1}{m} |\{i: H(x_i) \neq y_i\}|$
- It can be upper bounded by $\varepsilon_{tr}(H) \leq \prod_{t=1}^{T} Z_t$

How to set α_t ?

- Select α_t to greedily minimize $Z_t(\alpha)$ in each step
- $Z_t(\alpha)$ is convex differentiable function with one extremum
 - $\Rightarrow h_t(x) \in \{-1, 1\}$ then optimal $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$ where $r_t = \sum_{i=1}^m D_t(i) h_t(x_i) y_i$
- $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)} \le 1$ for optimal α_t
 - \Rightarrow Justification of selection of h_t according to ϵ_t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AdaBoost as a Minimiser of an Upper Bound on the Empirical Error

- The main objective is to minimize $\varepsilon_{tr} = \frac{1}{m} |\{i : H(x_i) \neq y_i\}|$
- It can be upper bounded by $\varepsilon_{tr}(H) \leq \prod_{t=1}^{T} Z_t$

How to set α_t ?

- Select α_t to greedily minimize $Z_t(\alpha)$ in each step
- $lacktriangleq Z_t(\alpha)$ is convex differentiable function with one extremum
 - $\Rightarrow h_t(x) \in \{-1, 1\}$ then optimal $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$ where $r_t = \sum_{i=1}^m D_t(i) h_t(x_i) y_i$
- $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)} \le 1$ for optimal α_t
 - \Rightarrow Justification of selection of h_t according to ϵ_t

Comments

- The process of selecting α_t and $h_t(x)$ can be interpreted as a single optimization step minimising the upper bound on the empirical error. Improvement of the bound is guaranteed, provided that $\epsilon_t < 1/2$.
- The process can be interpreted as a component-wise local optimization (Gauss-Southwell iteration) in the (possibly infinite dimensional!) space of $\bar{\alpha} = (\alpha_1, \alpha_2, \dots)$ starting from. $\bar{\alpha}_0 = (0, 0, \dots)$.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Effect on the training set

Reweighting formula:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} = \frac{exp(-y_i \sum_{q=1}^t \alpha_q h_q(x_i))}{m \prod_{q=1}^t Z_q}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

Increase (decrease) weight of wrongly (correctly) classified examples. The weight is the upper bound on the error of a given example!

Effect on the training set

Reweighting formula:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} = \frac{exp(-y_i \sum_{q=1}^t \alpha_q h_q(x_i))}{m \prod_{q=1}^t Z_q}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

8

Effect on the training set

Reweighting formula:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} = \frac{exp(-y_i \sum_{q=1}^t \alpha_q h_q(x_i))}{m \prod_{q=1}^t Z_q}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

Effect on the training set

Reweighting formula:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} = \frac{exp(-y_i \sum_{q=1}^t \alpha_q h_q(x_i))}{m \prod_{q=1}^t Z_q}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

Effect on the training set

Reweighting formula:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} = \frac{exp(-y_i \sum_{q=1}^t \alpha_q h_q(x_i))}{m \prod_{q=1}^t Z_q}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

Increase (decrease) weight of wrongly (correctly) classified examples. The weight is the upper bound on the error of a given example!

Effect on the training set

Reweighting formula:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t} = \frac{exp(-y_i \sum_{q=1}^t \alpha_q h_q(x_i))}{m \prod_{q=1}^t Z_q}$$

$$exp(-\alpha_t y_i h_t(x_i)) \begin{cases} < 1, & y_i = h_t(x_i) \\ > 1, & y_i \neq h_t(x_i) \end{cases}$$

- Error of h_t on D_{t+1} is 1/2
- Next weak classifier is the most "independent" one

 γ

Initialization...

For t = 1, ..., T:

• Find
$$h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$$

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$

Initialization...

For t = 1, ..., T:

- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

t = 1

m

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

m

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

m

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

m

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

m

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

m

Initialization...

For t = 1, ..., T:

- Find $h_t = \arg\min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^m D_t(i)[y_i \neq h_j(x_i)]$
- If $\epsilon_t \geq 1/2$ then stop
- Set $\alpha_t = \frac{1}{2} \log(\frac{1+r_t}{1-r_t})$
- Update

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Does AdaBoost generalize?

 η

Margins in SVM

$$\max \min_{(x,y)\in S} \frac{y(\vec{\alpha} \cdot \vec{h}(x))}{\|\vec{\alpha}\|_2}$$

Margins in AdaBoost

$$\max \min_{(x,y)\in S} \frac{y(\vec{\alpha} \cdot \vec{h}(x))}{\|\vec{\alpha}\|_1}$$

Maximizing margins in AdaBoost

$$P_S[yf(x) \le \theta] \le 2^T \prod_{t=1}^T \sqrt{\epsilon_t^{1-\theta} (1-\epsilon_t)^{1+\theta}} \qquad \text{where } f(x) = \frac{\vec{\alpha} \cdot \vec{h}(x)}{\|\vec{\alpha}\|_1}$$

Upper bounds based on margin

$$P_{\mathcal{D}}[yf(x) \le 0] \le P_S[yf(x) \le \theta] + \mathcal{O}\left(\frac{1}{\sqrt{m}} \left(\frac{d\log^2(m/d)}{\theta^2} + \log(1/\delta)\right)^{1/2}\right)$$

AdaBoost variants

- lacktriangle Discrete $(h: \mathcal{X} \rightarrow \{0, 1\})$
- Multiclass AdaBoost.M1 ($h : \mathcal{X} \rightarrow \{0, 1, ..., k\}$)
- Multiclass AdaBoost.M2 ($h: \mathcal{X} \rightarrow [0,1]^k$)
- Real valued AdaBoost.R ($Y = [0, 1], h : \mathcal{X} \rightarrow [0, 1]$)

Schapire & Singer 1997

- Confidence rated prediction $(h : \mathcal{X} \to R)$, two-class)
- Multilabel AdaBoost.MR, AdaBoost.MH (different formulation of minimized loss)
- ... Many other modifications since then (Totally Corrective AB, Cascaded AB)

- ı
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16

Pros and cons of AdaBoost

- _

Advantages

- Very simple to implement
- Feature selection on very large sets of features
- Fairly good generalization

Disadvantages

- Suboptimal solution for $\bar{\alpha}$
- Can overfit in presence of noise

Adaboost with a Totally Corrective Step (TCA)

Given: $(x_1, y_1), ..., (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, 1\}$ Initialize weights $D_1(i) = 1/m$

For t = 1, ..., T:

- 1. (Call *WeakLearn*), which returns the weak classifier $h_t : \mathcal{X} \to \{-1, 1\}$ with minimum error w.r.t. distribution D_t ;
- 2. Choose $\alpha_t \in R$,
- 3. Update D_{t+1}
- 4. (Call *WeakLearn*) on the set of h_m 's with non zero α 's. Update α . Update D_{t+1} . Repeat till $|\epsilon_t 1/2| < \delta, \forall t$.

Comments

- All weak classifiers have $\epsilon_t \approx 1/2$, therefore the classifier selected at t+1 is "independent" of all classifiers selected so far.
- It can be easily shown, that the totally corrective step reduces the upper bound on the empirical error without increasing classifier complexity.
- The TCA was first proposed by Kivinen and Warmuth, but their α_t is set as in stadard Adaboost.
- Generalization of TCA is an open question.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Experiments with TCA on the IDA Database

- Discrete AdaBoost, Real AdaBoost, and Discrete and Real TCA evaluated
- Weak learner: stumps.
- Data from the IDA repository (Ratsch:2000):

	Input	Training	Testing	Number of
	dimension	patterns	patterns	realizations
Banana	2	400	4900	100
Breast cancer	9	200	77	100
Diabetes	8	468	300	100
German	20	700	300	100
Heart	13	170	100	100
Image segment	18	1300	1010	20
Ringnorm	20	400	7000	100
Flare solar	9	666	400	100
Splice	60	1000	2175	20
Thyroid	5	140	75	100
Titanic	3	150	2051	100
Twonorm	20	400	7000	100
Waveform	21	400	4600	100

Note that the training sets are fairly small

m

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- ___

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- ◆ Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- Ш

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- ◆ Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- ◆ Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

Ш

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- ◆ Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

_

__

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- ◆ Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- ◆ Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

- ____

- Training error (dashed line), test error (solid line)
- Discrete AdaBoost (blue), Real AdaBoost (green),
- ◆ Discrete AdaBoost with TCA (red), Real AdaBoost with TCA (cyan)
- the black horizontal line: the error of AdaBoost with RBF network weak classifiers from (Ratsch-ML:2000)

Conclusions

A modification of the Totally Corrective AdaBoost was introduced

The AdaBoost algorithm was presented and analysed

- Initial test show that the TCA outperforms AB on some standard data sets.

