Goal: Consider the system of two metallic spheres connected by a wire as shown in the figure below. Assume that a=5 cm, b=1 cm, and d=1 m, as well as that the total charge of the two spheres is Q=600 pC. Find the potential of the spheres and the electric field intensities E_a , E_b near the surfaces of the spheres.

Steps:

1. Since the two metallic sphere are connected by a wire, the total charge distributes itself between two spheres such that the potential on each sphere is equal, i.e. $V_a = V_b$. Provide expressions for potentials V_a and V_b assuming uniform surface charge densities ρ_{sa} and ρ_{sb} on the spheres.

Solution:

$$V_a = \frac{Q_a}{4\pi\varepsilon_0 a}$$
$$V_b = \frac{Q_b}{4\pi\varepsilon_0 b}$$

where,

$$Q_a = \rho_{sa} 4\pi a^2$$
$$Q_b = \rho_{sb} 4\pi b^2$$

2. Compute charges Q_a and Q_b , and surface charge densities ρ_{sa} and ρ_{sb} .

Solution:

$$Q = Q_a + Q_b$$
.

By equating V_a and V_b in part 1 and using the above relation, we get

$$Q_a = rac{a}{a+b}Q = 500 \,\mathrm{pC}\,,$$
 $Q_b = rac{b}{a+b}Q = 100 \,\mathrm{pC}\,.$

3. What is the value of potential V_a and V_b ?

Solution:

$$V_a = V_b = 90 \,\mathrm{V} \,.$$

4. Use the electrostatic boundary condition for perfect conductors to find the electric fields \mathbf{E}_a and \mathbf{E}_b . *Solution:*

$$E_a = \frac{\rho_{sa}}{\varepsilon_0} = \frac{Q_a}{4\pi\varepsilon_0 a^2} = 1.8 \, \text{kV/m}$$

$$E_b = \frac{\rho_{sb}}{\varepsilon_0} = \frac{Q_b}{4\pi\varepsilon_0 b^2} = 9 \, \text{kV/m}$$

Answer:

$$V_a = V_b = 90 \ V$$

$$E_a = 1.8 \ kV/m, \ E_b = 9 \ kV/m$$