Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 6627 CALIBRATION DATE: 17-May-22 SBE 16plus V2 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

i = -2.281951e-004j = 3.490268e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.0000	2746.52	0.0000	0.00000
0.9999	34.5872	2.95823	5392.56	2.9582	0.00000
4.4999	34.5672	3.26352	5594.30	3.2635	-0.00000
15.0000	34.5266	4.23982	6194.77	4.2398	-0.00000
18.4999	34.5181	4.58305	6392.22	4.5830	0.00000
23.9999	34.5089	5.13792	6698.82	5.1379	0.00000
29.0000	34.5043	5.65694	6973.09	5.6569	0.00000
32.5000	34.5017	6.02730	7162.19	6.0273	-0.00000

f = Instrument Output (Hz) / 1000.0

 $t = temperature (^{\circ}C); p = pressure (decibars); \delta = CTcor; \epsilon = CPcor;$

Conductivity $(S/m) = (g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

