

Voltage Waveform

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 2

Current Waveform

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 3

Current Waveform

Voltage and Current Waveforms

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 5

AC Power - Power Expression

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 6

AC Power - Power Expression

Power waveform is the product of the voltage and <u>conjugate</u> (the phase angle with + sign) of the current waveforms $S(t) = V_{max} I_{max} \cos wt \times \cos (wt + \theta)$

$$\cos a \times \cos b = \frac{1}{2} [\cos (a + b) + \cos (a - b)]$$

$$S(t) = \frac{1}{2} V_{max} I_{max} [\cos(wt + wt + \theta) + \cos(wt - wt - \theta)]$$

$$= \frac{1}{2} V_{max} I_{max} [\cos(2wt + \theta) + \cos\theta]$$

$$= (V_{max}/\sqrt{2}) (I_{max}/\sqrt{2}) [\cos(2wt + \theta) + \cos\theta]$$

$$= V_{rms} I_{rms} [\cos(2wt + \theta) + \cos\theta]$$

$$V_{rms} = V_{max} / \sqrt{2} \mid \theta = \theta_v - \theta_I = Tan^{-1} (X/R)$$

AC Power – Decomposition of Power Expression

AC Power – Average Power Expression

AC Power – Average Power Expression

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 10

Example

Question

Calculate the average and instantaneous powers dissipated in the load shown in the following circuit;

System Parameters:

$$V_{rms} = 100 \text{ Volts}$$

 $Z_{load} = 3 + j \text{ 4 Ohms} = 5/53.13^{\circ} \text{ Ohms}$

Example

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 12

Example

Example

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 14

Complex Power

Active Power Expression

Expanding the first term in the power expression; $S(t) = V_{rms} [\cos (2wt + \theta) + \cos \theta]$

cos(a+b) = cosa cos b - sin a sin b

Expanding the first term in the power expression; $S(t) = V_{rms} I_{rms} (\cos 2wt \cos \theta - \sin 2wt \sin \theta + \cos \theta)$ and recombining the cosine terms; $= V_{rms} I_{rms} [\cos \theta (1 + \cos 2wt) - \sin 2wt \sin \theta]$

P(t) = Active power

Q(t) = *Reactive* power

Complex Power

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 16

Active and Reactive Power Waveforms – Summary

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 17

Active and Reactive Power Waveforms

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 18

Active and Reactive Power Waveforms

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 19

Active Power Waveform

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 20

Reactive Power Waveform

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 21

Reactive Power Waveform (During the first 5 mseconds)

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 22

Reactive Power Waveform (During the next 5 mseconds)

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 23

Active and Reactive Power Waveforms

Period of Active and Reactive Power Waveforms

Period of Voltage and Current Waveforms

Angle = 90°, Time duration (Period) of ½ revolution = 20/4 sec = 5 msec

```
Angular speed: w = 2\pi f
= 2 x 3.1415 x 50 = 314 rad/sec
```

Time duration (period) of one revolution = 1/f = 1/50= 0.020 sec = 20 msec

Hence,

Angle for $\frac{1}{4}$ revolution = $360^{\circ}/4 = 90^{\circ}$ Time duration (period) of $\frac{1}{4}$ revolution = 20 msec/4= 5 msec

Period of Active and Reactive Power Waveforms

Period of Active and Reactive Power Waveforms

Angle = 90°,
Time duration (Period) of ¼ revolution = 20/4 sec
= 5 msec

Angular speed: $w' = 2 w = 4\pi f$ = 2 x31415 = 628 rad/sec

Hence,

Time duration (period) of one revolution = 10 msec

Time duration (period) of ¼ revolution = 10 msec / 4

= 2.5 msec

Conclusion;

Time duration (period) of active and reactive power waveforms is half of those of voltage and current

Active and Reactive Power Phasors

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 27

Active and Reactive Power Phasors

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 28

Active and Reactive Power Phasors

S - Total power

(k) VA (kVA)

P- Active power

(k) Watt (kW)

Q - Reactive power

(k) VAR (kVAR)

Please note that this angle is dependent only on the resistance R and reactance X of the load, i.e.

 $\theta = Tan^{-1} X/R$ = $Tan^{-1} Q/P$

Basic Conversions

Polar Representation

$$s/\theta$$

Please note that this angle is dependent only on the resistance R and reactance X of the load

$$\theta = Tan^{-1} X/R$$

= $Tan^{-1} Q/P$

$$X/R = Q/P$$

i.e. if $X = 0 \cdot \cdot \cdot \cdot \Rightarrow Q = 0$

$$S = \sqrt{P^2 + Q^2}$$
, $\theta = Tan^{-1}(Q/P)$

Rectangular Representation

$$P + j Q$$

 $P = S \cos \theta$

Active and Reactive Powers (in the first 5 mseconds)

Active and Reactive Powers (in the next 5 mseconds)

Active and Reactive Powers

Active and Reactive Powers

Active and Reactive Powers

Power Meters

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 36

Reactive Power Compensation

Definition

Reactive power compensation is partial or full cancellation of the reactive component of complex power by introducing a negative (compensation) component

Reactive Power Compensation

How is it Realized?

Reactive power compensation is realized by connecting a capacitor bank in parallel with the load, satisfying the reactive power need of the load.

Power Factor

Definition

Cosine of the angle between S and P is called Power Factor of the load

Power Factor = p.f. = $\cos \theta$ = $\cos (Tan^{-1} Q/P)$

Please note that reducing Q means reducing the angle θ , and hence increasing power factor

Hence, reactive power compensation is sometimes called as "Power Factor Correction", i.e. correcting power factor to a value, near unity

Full or Partial Compensation

Full Compensation

Full compensation is the case, where Power Factor is unity

Power Factor_{new} =
$$p.f._{new}$$
 = $cos \theta_{new}$
= $cos (Tan^{-1} 0 / P) = 1$

Partial Compensation

Partial compensation is the case, where Power Factor is raised to a level below unity

Power Factor_{new} = p.f._{new} = cos
$$\theta_{new}$$

= cos ($Tan^{-1} Q_{new} / P$)

Charging Principle Applied by TEDAS

If |Q/P| < 1/3

Then, reactive power is **free**

Please note that /Q/P/>1/3 means; $Tan^{-1}(1/3) = 18.435^{\circ}$ $\cos 18.435^{\circ} = 0.949 \approx 0.95$

Why Full Compensation is not Worthwhile?

Full compensation is not worhwhile, since compensation beyond 0.95 p.f. requires unnecessarily large and expensive capacitive banks.

Reactive power needed to raise p.f. from 0.95 to 1 is the same as that for raising p.f. from 0.83 to 0.95 (not worthwhile)

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 42

Application of Reactive Power Compensation

Reduction of Equipment Loading

- Transformers
- Lines
- Cables

are priced with respect to the power rating (kVA)

Prices of these equipments on the other hand, are determined by the cross-section (mm²) of the equipment

Cross	Current		
Section	Capacity		
(mm²)	(Amp)		
1.0	12.0		
1.5	16.0		
2.5	21.0		
4.0	27.0		
6.0	35.0		
10.0	48.0		
16.0	65.0		
25.0	88.0		
35.0	110.0		
50.0	140.0		
70.0	175.0		
95.0	215.0		
120.0	225.0		

Cross section (size) of the cable (mm²)

Application of Reactive Power Compensation

Reduction of Equipment Loading

Hence, the power rating S (kVA) of a cable is merely determined by the cross section, which must be minimized in order to reduce the investment to be made for the cable

Application of Reactive Power Compensation

Alternative Ways of Reducing S (kVA)

Alternative Ways of Reducing S (kVA)

- a) Reducing the overall loading;
 P + jQ (kW + j kVAR) (Overall comsumption)
 Unreasonable, unacceptable, since the active consumption (P) is determined only with respect to the needs of the consumer
- a) Reducing only Q (kVAR) Possible, reasonable

Please note that active power remains unchanged after compensation

Example

The factory shown on the RHS draws a load at 6300 V nominal voltage

P + j Q = 120 kW + j 140 kVAR

Calculate the amount of reactive power needed in order to raise the power factor of the factory to 0.95 (Lagging)

(Although the system shown on the RHS is obviously three-phase, for simplicity in solution, it is assume here, to be single-phase)

 $Q_{comp} = \Delta Q = Q - Q_{new}$

Example

Answer

Uncompensated (Given) Case

Tan
$$\theta = Q/P$$

= 140 / 120 = 1.1667
 $\theta = \text{Tan}^{-1} 1.167 = 49.40^{\circ}$
p.f.: $\cos \theta = 0.65$ (lagging)

Compensated Case

$$\cos \theta_{new} = 0.95,$$
 $\theta_{new} = \cos^{-1} 0.95 = 18.19^{\circ}$
 $\tan \theta_{new} = \tan 18.19^{\circ} = 0.3286$
 $\tan \theta_{new} = Q_{new} / P \longrightarrow Q_{new} = 0.3286 \times P$
 $= 39.43 \text{ kVAR}$
 $Q_{comp} = \Delta Q = Q - Q_{new} = 140 - 39.43 = 100.57 \text{ kVAR}$

Example

Question

Now, for the previous problem, calculate the reduction in line losses as a result of this compensation by assuming that line impedance is

R + j X = 10 + j 20 Ohms

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 49

Example

$$S = VI^* \rightarrow I = S/V = \sqrt{120^2 + 140^2}/6300$$

= 184.39 x 1000 / 6300 = 29.268 Amp

$$S_{\text{new}} = V I_{\text{new}}^* \rightarrow I_{\text{new}} = \sqrt{120^2 + 39.43^2 / 6300}$$

= 126.312 x 1000 / 6300 = 20.049 Amp

$$P_{loss}$$
 = R I ² = 10 x 29.268² = 8566.39 Watts

$$P_{loss-new} = R I_{new}^2 = 10 \times 20.495^2 = 4019.84 \text{ Watts}$$

 ΔP_{loss} = 8566.39 - 4019.84 = 4546.55 Watts

Example

Now, calculate the return rate of the investment to be made for the compensator, by assuming that the retail price of electricity is 16 US Cents/kWh and the price of capacitor is 60 USD / kVAR for a 100 kVAR bank

Capacitor Prices (USD/kVAR)

LV-ACB List Price Low Voltage Automatic Capacitor Banks 80 VOLT AUTOMATIC CAPACITOR BANKS

BANK	STEP X	HODEL	LIST
RATII	NG KVAR	NUMBER	PRICE
(KVA)	R)		
150	3 X 50	150LVA480F2B	\$7,526
200	4 X 50	200LVA480F2B	\$8,389
250	5 X 50	250LVA480F2B	\$8,864
300	6 X 50	300LVA480F2B	\$9,727
350	7 X 50	350LVA480F2B	\$10,202
400	4 X100	400LVA000F2B100	\$10,580
400	8 X 50	400LVA480F2B	\$11,065
450	9 X 50	450LVA480F2B	\$11,540
500	5 X 100	500LVA480F2B100	\$11,918
500	10 X 50	500LVA480F2B	\$12,404
550	11 X 50	550LVA480F2B	\$12,830
600	6 X 100	600LVA48LVAB100	\$13,256
600	12 X 50	600LVA48LV2B	\$13,742
650	13 X 50	650LVA48LVAB	\$12,280
700	7 X 100	700LVA460F2B100	\$14,594
700	14 X 50	700LVA480F2B	\$15,080
750	15 X 50	750LVA40LV2B	\$15,506
800	8 X 100	800LVA-0LY2B100	\$15,933
800	16 X 50	800LVA480F2B	\$16,418
900	9 X 100	900LVA480F2B100	\$17,174
001000	10 X 100	1000LVA000F2B100	\$18,414

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 51

Example

Calculation of the Return Rate

 ΔP_{loss} = 8566.39 - 4019.84 = 4,546.55 Watts

Investment = $100.57 \text{ kVAR} \times 60.00 \text{ USD/kVAR}$

= 6.034,20 USD

Saving / hour = $4,546.55 / 1000 \text{ kW} \times (16 / 100 \text{ USD})$

= 0,7274 USD / hour

Return Rate = Investment / (Saving / hour)

= 6.034,20 / 0.7274

= 8,295.57 hours = 345.45 days

= 0.95 years

Three - Phase Compensator Bank

Example

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 53

 $Q_{comp} = \Delta Q = Q - Q_{new}$

120.0

225.0

Question

Question

Now, for the previous problem, calculate the shunt capacitance in Farads needed for the amount of compensation found above

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 54

Medium Voltage Capacitor Banks

Shunt connection of large capacity capacitors in power systems

Installation of MV Capacitor Banks

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 56

LV (Low Voltage) Capacitor Banks

Electronic Capacitors in a Motherboard

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 58

Another Example

- Early in the history or electricity, Thomas Edison's General Electric company was distributing DC electricity at 110 volts in the United States.
- Then Nikola Tesla the devised a system of three-phase AC electricity at 240 volts. Threephase meant that three alternating currents slightly out of phase were combined in order to even out the great variations in voltage occurring in AC electricity. He had calculated that 60 cycles per second or 60Hz was the most effective frequency. Tesla later compromised to reduce the voltage to 110 volts for safety reasons.

Another Example

Europe goes to 50 Hz:

With the backing of the Westinghouse Company, Tesla's AC system became the standard in the United States. Meanwhile, the German company AEG started generating electricity and became a virtual monopoly in Europe. They decided to use 50 Hz instead of 60 Hz to better fit their metric standards, but they kept the voltage at 110 V.

Another Example

Unfortunately,

- 50 Hz AC has greater losses and is not as efficient as 60 HZ.
- Due to the slower speed, 50Hz electrical generators are 20 % less effective than 60Hz generators. Electrical transmission at 50 Hz is about 10-15 % less efficient. 50Hz transformers require larger windings and 50 Hz electric

Another Example

Europe goes to 220 V

Europe stayed at 110 V AC until the 1950s, just after World War II. They then switched over to 220 V for better efficiency in electrical transmission. Great Britain not only switched to 220 V, but they also changed from 60Hz to 50 Hz to follow the European lead. Since many people did not yet have electrical appliances in Europe after the war, the change-over was not that expensive for them.

Another Example

U.S. stays at 110 V, 60Hz

The United States also considered converting to 220 V for home use but felt it would be too costly, due to all the 110 V electrical appliances people had. A compromise was made in the U.S. in that 220 V would come into the house where it would be split to 110 V to power most appliances. Certain household appliances such as the electric stove and electric clothes dryer would be powered at 220 V.

Did everybody follow this part carefully ?

