Class Participation Fungsi Multivariables

4 - 7 Mei 2023

Semua mahasiswa akan mengerjakan tujuh soal (satu soal untuk setiap bagian). Satu soal dapat dikerjakan oleh **maksimal** enam mahasiswa (menjawab soal yang telah dijawab oleh enam mahasiswa tidak akan direkap).

Unggah jawaban Anda di forum pada laman SCELE paling lambat hari Minggu, 7 Mei 2023 pukul 20.00 WIB.

Bagian A: Function of Two or More Variables

- 1. Carilah nilai g(2, -1), domain, dan range dari fungsi g(x, y) = cos(x + 2y)
- 2. Carilah nilai F(3, 1), domain, dan range dari fungsi $F(x, y) = 1 + \sqrt{4 y^2}$
- 3. Carilah nilai g(1, 2, 3), dan domain dari fungsi $g(x,y,z) = x^3 y^2 z \sqrt{10-x-y-z}$

Carilah domain dan sketsakan fungsi berikut

4.
$$f(x, y) = \sqrt{2x - y}$$

5.
$$f(x, y) = \sqrt{xy}$$

6.
$$f(x, y) = \sqrt{x^2 - y^2}$$

7.
$$f(x,y) = \sqrt{1-x^2} - \sqrt{1-y^2}$$

8.
$$f(x,y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$$

9.
$$f(x,y) = \frac{\sqrt{y-x^2}}{1-x^2}$$

$$10.f(x,y) = \arcsin(x^2 + y - 2)$$

Bagian B: Partial Derivatives

Carilah $\frac{\partial z}{\partial x}$ dan $\frac{\partial z}{\partial y}$

1.
$$x^2 + 2y^2 + 3z^2 = 1$$

$$2. e^z = xyz$$

3.
$$x^2 - y^2 + z^2 - 2z = 4$$

$$4. yz + xlny = z^2$$

Carilah semua turunan parsial kedua dari fungsi berikut.

5.
$$f(x,y) = x^3y^5 + 2x^4y$$

$$6. f(x,y) = \sin^2(mx + ny)$$

7.
$$w = \sqrt{u^2 + v^2}$$

8.
$$v = e^{xe^y}$$

Carilah turunan parsial pertama dari fungsi berikut.

9.
$$f(x,y) = \frac{x}{(x+y)^2}$$

$$10.w = \frac{e^v}{u+v^2}$$

Bagian C: Limits and Continuity

Cari limit berikut atau nyatakan tidak ada.

1.
$$\lim_{(x,y)\to(1,-1)} e^{-xy} cos(x+y)$$

2.
$$\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2}$$

3.
$$\lim_{(x,y)\to(1,0)} ln\left(\frac{1+y^2}{x^2+xy}\right)$$

4.
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^2}{x^2 + 2y^2}$$

5.
$$\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}$$

Carilah limit berikut menggunakan koordinat polar.

6.
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$

7.
$$\lim_{(x,y)\to(0,0)} \frac{e^{-x^2-y^2}-1}{x^2+y^2}$$

8.
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$

Tentukan himpunan titik dimana fungsi berikut kontinu.

9.
$$G(x,y) = ln(x^2 + y^2 - 4)$$

$$10.G(x,y) = tan^{-1}((x + y)^{-2})$$

Bagian D: Differentiability

Carilah gradient ∇f

$$1. \quad f(x,y) = xe^{xy}$$

$$2. \quad f(x,y) = x^2 y \cos y$$

3.
$$f(x,y) = \frac{x^2y}{x+y}$$

4.
$$f(x, y) = \sin^3(x^2y)$$

5. $f(x, y) = x^2ye^{x-z}$

5.
$$f(x, y) = x^2 y e^{x-z}$$

Carilah gradient vector persamaan berikut di titik **p** kemudian carilah persamaan tangent plane di titik p

6.
$$f(x,y) = x^2y - xy^2$$
; $\mathbf{p} = (-2, 3)$

7.
$$f(x,y) = x^3y + 3xy$$
; $\mathbf{p} = (2, -2)$

8.
$$f(x,y) = \frac{x^2}{y}$$
; **p** = (2, -1)

Carilah persamaan w = T(x, y, z) tangent hyperplane di titik **p**

9.
$$f(x, y, z) = 3x^2 - 2y^2 + xz^2$$
; $\mathbf{p} = (1, 2, -1)$

$$10.f(x, y, z) = xyz + x^2; \mathbf{p} = (2, 0, -3)$$

Bagian E: Directional Derivatives and Gradients

Carilah turunan direksional fungsi pada titik tertentu searah dengan vektor v yang diberikan

1.
$$f(x, y) = e^x \sin y$$
, $(0, \pi/3)$, $\mathbf{v} = < -6, 8 >$

2.
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, (1, 2), $\mathbf{v} = <3, 5>$

3.
$$g(p,q) = p^4 - p^2 q^3$$
, (2, 1), $\mathbf{v} = \mathbf{i} + 3\mathbf{j}$

Carilah turunan direksional fungsi pada titik tertentu searah dengan yang diindikasikan oleh sudut $\boldsymbol{\theta}$

4.
$$f(x,y) = x^3 y^4 + x^4 y^3$$
, (1, 1), $\theta = \pi/6$

5.
$$f(x,y) = ye^{-x}$$
, $(0, 4)$, $\theta = 2\pi/3$

6.
$$f(x,y) = e^x \cos y$$
, (0, 0), $\theta = \pi/4$

Carilah gradien dari fungsi berikut, evaluasi nilainya pada titik P, dan cari rate of change fungsinya pada titik P searah dengan vektor **u**.

7.
$$f(x,y) = \sin(2x + 3y)$$
, $P(-6, 4)$, $u = \frac{1}{2} < \sqrt{3}$, $-1 > 0$

8.
$$f(x,y) = \frac{y^2}{x}$$
, $P(1, 2)$, $u = \frac{1}{3} < 2, \sqrt{5} >$

9.
$$f(x,y) = x^2yz - xyz^3$$
, $P(2, -1, 1)$, $u = < 0, \frac{4}{5}, -\frac{12}{13} >$

$$10.f(x,y) = y^2 e^{xyz},$$
 $P(0, 1, -1),$ $\mathbf{u} = \langle \frac{3}{13}, \frac{4}{13}, \frac{12}{13} \rangle$

Bagian F: The Chain Rule

Carilah $\frac{dz}{dt}$ atau $\frac{dw}{dt}$

1.
$$z = x^2 + y^2 + xy$$
, $x = \sin t$, $y = e^t$

2.
$$z = cos(x + 4y)$$
, $x = 5t^4$, $y = \frac{1}{t}$

3.
$$z = tan^{-1} \left(\frac{y}{x} \right), \qquad x = e^t, \qquad y = 1 - e^{-t}$$

4.
$$z = \sqrt{1 + x^2 + y^2}$$
, $x = \ln t$, $y = \cos t$

5.
$$w = xe^{\frac{y}{z}}$$
, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

Carilah $\frac{\partial z}{\partial s}$ dan $\frac{\partial z}{\partial t}$

6.
$$z = x^2 y^3$$
, $x = s \cos t$, $y = s \sin t$

7.
$$z = arcsin(x - y)$$
, $x = s^2 + t^2$, $y = 1 - 2st$

8.
$$z = e^{x+2y}$$
, $x = \frac{s}{t}$, $y = \frac{t}{s}$
9. $z = e^r \cos \theta$, $r = st$, $\theta = \sqrt{s^2 + t^2}$
10. $z = tan(\frac{u}{v})$, $u = 2s + 3t$, $v = 3s - 2t$

Bagian G: Tangent Planes and Approximations

Carilah persamaan dari bidang tangen pada permukaan yang diberikan pada titik yang ditentukan.

1.
$$z = 3y^{2} - 2x^{2} + x$$
, $(2, -1, -3)$
2. $z = 3(x - 1)^{2} + 2(y + 3)^{3} + 7$, $(2, -2, 12)$
3. $z = \sqrt{xy}$, $(1, 1, 1)$
4. $z = xe^{xy}$, $(2, 0, 2)$
5. $z = x \sin(x + y)$, $(-1, 1, 0)$
6. $z = \ln(x - 2y)$, $(3, 1, 0)$

Jelaskan mengapa fungsi berikut differentiable pada titik yang diberikan kemudian cari linearization L(x, y) dari fungsi pada titik tersebut.

7.
$$f(x,y) = 1 + x \ln(xy - 5)$$
, (2, 3)

8.
$$f(x,y) = x^3 y^4$$
, (1, 1)