Векторные представления слов (word embeddings) курс «Практикум на ЭВМ», весна 2019

Расширения модели

Попов Артём Сергеевич

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

25 марта 2018 г.

Задача построения представлений слов (word embeddings)

Расширения модели

Дано:
$$D = \{w_1, w_2, \dots, w_N\}$$
 — текстовая коллекция $w_i \in W$ — словарь коллекции

Найти: векторное представление $v_w \in \mathbb{R}^m$ для каждого слова w , где $m \ll |W|$

Какие представления считать хорошими?

- ▶ Близким по смыслу словам соответствуют близкие по расстоянию вектора
- ▶ Интерпретируемые арифметические операции в пространстве \mathbb{R}^m
- Качество конечной задачи.

Гипотеза дистрибутивности

Гипотеза дистрибутивности (Harris, 1954):

слова, которые встречаются рядом с одними и теми же словами, имеют схожее значение

Расширения модели

встречаются рядом \Leftrightarrow встречаются в окне k:

```
... an efficient method for learning high quality vector ...
                 контекст. k = 2
                                        контекст, k = 2
```

Как можно использовать word embeddings?

1. Решать задачи поиска близких слов, синонимов и т.п.

Расширения модели

- 2. Получить представление документа, которое будет использоваться в других задачах машинного обучения
- 3. Использовать в качестве фиксированного представления в сложной архитектуре (например, рекуррентной сети)
- 4. Использовать для инициализации представлений в сложной архитектуре

Матричные разложения для построения представлений

Расширения модели

- $ightharpoonup X \in \mathbb{R}^{|W| \times |W|}, \quad X_{uw} = f(u, w, D),$ например $X_{uw} = n_{uw}$.
- $ightharpoonup n_{uw}$ сколько раз слова u и w встретились вместе
- $lackbox{lack} U \in \mathbb{R}^{|W| imes m}$ матрица представлений
- $lackbox{V} \in \mathbb{R}^{|W| imes m}$ матрица доп. представлений

Хотим построить матричное разложение X:

$$X = UV^T$$

Способы построения разложения:

Матричные разложения для построения представлений

Расширения модели

- $ightharpoonup X \in \mathbb{R}^{|W| \times |W|}, \quad X_{uw} = f(u, w, D),$ например $X_{uw} = n_{uw}$.
- $ightharpoonup n_{uw}$ сколько раз слова u и w встретились вместе
- $lackbox{lack} U \in \mathbb{R}^{|W| imes m}$ матрица представлений
- $lackbox{V} \in \mathbb{R}^{|W| imes m}$ матрица доп. представлений

Хотим построить матричное разложение X:

$$X = UV^T$$

Способы построения разложения:

- ► SVD
- ► Glove
- ▶ TopicModel (разложение через KL)

SVD разложение

SVD разложение PPMI:

$$X_{wc} = PPMI(w, c) = \max\left(\log \frac{n_{wc}|D|}{n_w n_c}, 0\right),$$
 $X = \hat{U}_d \Sigma_d \hat{V}_d^T, \qquad U = \hat{U}_d \Sigma_d, \qquad V = \hat{V}_d^T.$

Расширения модели

Glove:

$$\mathcal{L} = \sum_{w \in W} \sum_{c \in W} F(n_{wc})(\langle u_w, v_c \rangle + b_w + \hat{b}_c - \log n_{wc}) \longrightarrow \max_{U, V}$$

$$F(n_{wc}) = egin{cases} (n_{wc}/n_{max})^\epsilon, & n_{wc} < n_{max} \ 1, & ext{uhave} \end{cases}$$

Расширения модели

Обозначения далее:

... an efficient method for learning high quality vector ... high quality vector ...

- ightharpoonup W множество всех слов, |W| мощность множества
- ► Слово w_i вектор [0, ..., 0, 1, 0, ..., 0] длины |W|
- ightharpoonup последовательность $(w_{i+1}, w_{i+2}, \ldots, w_{i+n}) w_{i+1}^{i+n}$
- $ightharpoonup v_w \in \mathbb{R}^m$ представление слова
- $ightharpoonup u_w \in \mathbb{R}^m$ дополнительное представление слова
- ► Если f(w) скалярная функция, то:

$$\operatorname{softmax}_{w \in W} f(w) = \frac{\exp(f(w))}{\sum_{w' \in W} \exp(f(w'))}$$

Расширения модели

Модель CBOW

Идея: по словам контекста предсказать центральное слово

¹T. Mikov, K. Chen, G. Corrado, J. Dean; Efficient Estimation of Word Representations in Vector Space; 2013

Модель Skip-gram

Идея: по центральному слову предсказать слова из контекста

Расширения модели

- Лучше CBOW для моделирования редких слов
- На практике намного медленнее CBOW
- ightharpoonup Сложность итерации SGD для модели O(|W|m)

Skip-gram как count-based метод

Skip-gram можно записать как count-based метод:

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{\substack{j=-k\\j\neq 0}}^{k} \log p(w_{i+j}|w_i) = \sum_{w\in W} \sum_{c\in W} n_{wc} \log p(c|w) =$$

$$= \sum_{w\in W} n_c \sum_{c\in W} \frac{n_{wc}}{n_w} \log p(c|w) \to \max_{U,V} \quad (1)$$

Добавление константы не меняет задачи оптимизации:

$$(1) \Leftrightarrow \sum_{w \in W} n_w \sum_{c \in W} \frac{n_{wc}}{n_w} \left(\log p(c|w) - \log \frac{n_{wc}}{n_w} \right) =$$

$$= -\sum_{w \in W} n_w \sum_{c \in W} \hat{p}(c|w) \log \frac{\hat{p}(c|w)}{p(c|w)} \to \max_{U,V}$$

Расширения модели

KL-дивергенция и её свойства

Мера расстояния между распределениями

$$P = \{p_i\}_{i=1}^s$$
 u $Q = \{q_i\}_{i=1}^s$.

$$\mathit{KL}(P||Q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}$$

- 1. $KL(P||Q) \ge 0$
- 2. $KL(P||Q) = 0 \Leftrightarrow P = Q$
- 3. KL(P||Q) мера вложенности P в Q

Skip-gram как count-based метод

Функционал можно записать как минимизацию суммы KL:

$$-\sum_{w \in W} n_w \sum_{c \in W} \hat{p}(c|w) \log \frac{\hat{p}(c|w)}{p(c|w)} =$$

$$= -\sum_{w \in W} n_w KL(\hat{p}(c|w)||p(c|w)) \to \max_{U,V} \Leftrightarrow$$

$$\Leftrightarrow \sum_{w \in W} n_w KL(\hat{p}(c|w)||p(c|w)) \to \min_{U,V}$$

Таким образом, в модели skip-gram тоже строится матричное разложение.

Расширения модели

Способы ускорения модели

- 1. Явная аппроксимация софтмакса
 - ► Hierarchical softmax
 - Differentiated softmax
- 2. Методы, основанные на сэмплировании
 - ► Noise contrastive estimation
 - Negative sampling
 - ► Importance sampling
 - Self-normalization
 - Infrequent Normalization

¹S. Ruder; On word embeddings - Part 2: Approximating the Softmax; http://ruder.io/word-embeddings-softmax/

Hierarchical softmax (Иерархический мягкий максимум)

▶ Софтмакс вычисляется как путь в дереве Хафммана.

Расширения модели

- Для каждой вершины задано представления
- В листах дерева находятся представления для слов

Пусть n(w) задаёт путь до слова $w, n(w) = [n_1, n_2, n_3, \ldots]$

$$p(w|w_i) = \prod_{i=1}^{|n(w)|} p(\underbrace{n_i \to n_{i+1}}_{\text{right or left}} | n_i, w_i)$$

$$p(right|n, w) = \sigma(\langle v_n, v_w \rangle) = 1 - p(left|n, w)$$

Negative sampling (сэмплирование негативных примеров)

Skip-gram: вероятность встретить пару (w, c) в коллекции

Skip-gram negative sampling: вероятность того, что пара (w, c) может встретиться в коллекции:

$$p(1|c,w) = \sigma(\langle v_c, u_w \rangle) = 1 - p(0|c,w)$$

В чём проблема следующей модели?

word2vec

$$\sum_{i=1}^{N}\sum_{\substack{j=-k\ i
eq 0}}^{k}\log p(1|w_{i+j},w_i)
ightarrow \max_{V,U}$$

Skip-gram: вероятность встретить пару (w, c) в коллекции

Skip-gram negative sampling: вероятность того, что пара (w,c) может встретиться в коллекции:

$$p(1|c, w) = \sigma(\langle v_c, u_w \rangle) = 1 - p(0|c, w)$$

В чём проблема следующей модели?

$$\sum_{i=1}^N \sum_{\substack{j=-k \ i
eq 0}}^k \log p(1|w_{i+j},w_i)
ightarrow \max_{V,U}$$

Переобучение. Только один класс в модели.

Negative sampling (сэмплирование негативных примеров)

Чтобы не переобучаться, будем на каждой итерации сэмплировать п случайных негативных примеров:

$$\sum_{i=1}^{N} \big(\sum_{\substack{j=-k \\ i \neq 0}}^{k} \log p(1|w_{i+j}, w_i) + \sum_{w_k' \sim p(w)^{3/4}} \log p(0|w_i, w_k') \big) \to \max_{V,U}$$

Расширения модели

Часто функционал записывают так:

$$\sum_{i=1}^{N} \big(\sum_{\substack{j=-k \\ i \neq 0}}^{k} \log p(1|w_{i+j}, w_i) + K \mathbb{E}_{w \sim p(w)^{3/4}} \log p(0|w_i, w) \big)$$

¹T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean; Distributed Representations of Words and Phrases and their Compositionality; 2013

Infrequent Normalization

Заменим сумму по всем объектам на сумму по сэмплам:

Расширения модели

$$\operatorname{softmax}_{w \in W} f(w) \approx \frac{\exp(f(w))}{\exp(f(w)) + \sum_{w' \in W'} \exp(f(w'))}$$

W' сэмплируется на каждой итерации

Простой способ выбрать W' — взять все слова в батче

¹J. Andreas, D. Klein; When and why are log-linear models self-normalizing?; 2015

²W. Chen, D. Grangier, M. Auli; Strategies for Training Large Vocabulary Neural Language Models: 2016

Count-based

Трюки для модели:

► Subsampling — случайное удаление частых слов С вероятностью $1 - t/n_w$ удаляем слово из обучения t — выбранные порог, n_w — частота слова

Расширения модели

- ► Dynamic window случайный выбор размер контекста на каждой итерации
- ▶ Комбинация итоговых векторов использовать в качестве представления $\alpha v_w + (1 - \alpha u_w)$

Практические рекомендации:

- ▶ На небольших датасетах нужно использовать больше негативных сэмплов
- ▶ Если документы специфичные, лучше учить модель с нуля, а не использовать предобученные

Агрегация векторов для представления документа

Расширения модели

- Сумма векторов
- Среднее векторов
- ► Сумма с tf-idf весами
- ► Координатный max-pool
- ► Координатный hierarchical-pool (усреднение соседних по окну слов, затем max-pool)

Очень хороший бейзлайн в любой задаче!

Модель представлений FastText

Проблема OOV слов (Out of vocabulary): отсутствие векторов для слов, которых не было в коллекции.

Расширения модели

FastText — поиск представлений для буквенных нграмм.

B Skip-gram меняется только подсчёт вектора v_{w} :

$$v_w = \sum_{g \in G_w} g_w, \quad G_w -$$
 нграммы для w

$$p(w|w_i) = \operatorname{softmax}_{w \in W} \langle v_w, u_{w_i} \rangle$$

¹P. Bojanowski, E. Grave, A. Joulin, T. Mikolov; Enriching Word Vectors with Subword Information; 2016

Count-based

- $ightharpoonup f_{\theta}(w)$ строит векторное представление для wпосимвольно
- ► MSE для предобученных векторов и выходов f_{θ} :

Расширения модели

0000000

$$\mathcal{L} = \sum_{w \in W} \|f_{ heta}(w) - v_w\|^2 o \min_{ heta}$$

Модель классификации FastText

Идея: end-to-end линейная классификация + эмбединги

Расширения модели

0000000

- 1. По входному предложению строится набор нграмм
- 2. Усредняются представления нграмм
- 3. Применяется линейный слой с softmax активацией

¹A. Joulin et al; Bag of Tricks for Efficient Text Classification; 2016

Deep Averaging Network

Расширения модели

0000000

Чем DAN отличается от FastText:

- 1. Больше одного линейного слоя
- 2. Аналог dropout при усреднении

¹M. Iyyer, V. Manjunatha, J. Boyd-Graber, H. Daume III; Deep Unordered Composition Rivals Syntactic Methods for Text Classification; 2015

Модель представлений paragraph2vec (doc2vec)

P-DBOW (paragraph distributed bag of words)

$$\sum_{d\in D}\sum_{i=1}^{n_d}\log p(w_i|d)\to \max_{V,U}$$

$$p(w|d) = \operatorname{softmax}_{w \in W} \langle v_w, u_d \rangle$$

PV-DM (paragraph vectors distributed model)

$$\sum_{d \in D} \sum_{i=1}^{n_d} \log p(w_i | w_{i-k}^{i-1}, w_{i+1}^{i+k}, d) \to \max_{U, V}$$

$$p(w|\ldots) = \operatorname{softmax}_{w \in W} \langle v_w, u^{-i} + u_d \rangle$$

¹Distributed Representations of Sentences and Documents; 2014

Задача поиска статей

Задача близости триплетов (датасет стаей arxiv.org)

Вход: список троек документов $d_1, d_2, d_3: d_1 \sim d_2, d_1 \nsim d_3$ Проверим свойство $sim(d_1, d_2) > sim(d_1, d_3)$ для модели Выход: Доля правильных ответов

модель	результат		
Topic Model	0.88		
P-DBOW	0.802		
Skip-gram (усред.)	0.867		

Расширения модели

0000000

Некоторые практические рекомендации

- ► Никогда не использовать paragraph2vec
- ▶ Учить свои FastText представления только если есть большая обучающая выборка

Расширения модели

0000000

▶ Можно модифицировать модели, подставляя внутрь сложный энкодер

Count-based

Измерение качества

Задача близости:

Данные: Список троек: w_1, w_2 — слова, x — близость

между ними

Модель: Измеряем близости между w_1 и w_2 , например

 $\cos(u_{w_1}, u_{w_2})$

Мера: Корреляция Спирмена между двумя списками

Расширения модели

близостей

Задача аналогий:

Данные: Список четвёрок слов W_1, W_2, W_3, W_4

 w_1 относится к w_2 так же, как w_3 к w_4

Модель: Находим самое близкое слово к $u_{w_2} - u_{w_1} + u_{w_2}$

Мера: Доля правильно найденных слов

Задача близости

При правильной обработке коллекции count-based не уступают word2vec в задаче близости:

win	Method	WordSim	WordSim	Bruni et al.	Radinsky et al.
		Similarity	Relatedness	MEN	M. Turk
2	PPMI	.732	.699	.744	.654
	SVD	.772	.671	.777	.647
	SGNS	.789	.675	.773	.661
	GloVe	.720	.605	.728	.606
5	PPMI	.732	.706	.738	.668
	SVD	.764	.679	.776	.639
	SGNS	.772	.690	.772	.663
	GloVe	.745	.617	.746	.631

Расширения модели

¹Levy et. al. Improving distributional similarity with lessons learned from word embeddings, 2015

Count-based

Задачу аналогий word2vec решает существенно лучше:

Расширения модели

	Method	Google	MSR
win		Add / Mul	Add / Mul
2	PPMI	.552 / .677	.306 / .535
	SVD	.554 / .591	.408 / .468
	SGNS	.676 / .689	.617 / .644
	GloVe	.649 / .666	.540 / .591
5	PPMI	.518 / .649	.277 / .467
	SVD	.532 / .569	.369 / .424
	SGNS	.692 / .714	.605 / .645
	GloVe	.700 / .712	.541 / .599

Задача классификации (отзывы клиентов супермаркета)

Расширения модели

Вход: коллекция отзывов, 50584 документов, 17 классов

Качество на отложенной выборке:

На специфичных коллекциях предобученные эмбединги могут плохо работать

Count-based

CBOW на маленьких коллекциях часто лучше skip-gram:

Расширения модели

