

ST1201 Statistiske metoder

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag - Eksamen desember 2011

Oppgave 1

 \mathbf{a}

Dette er en ANOVA-tabell for k-utvalg med k=4 og $n_j=6$ for j=1,2,3,4. Den fullstendige ANOVA-tabellen blir

Kilde	df	SS	MS	F
Betong	k - 1 = 3	47203.13	15734.38	2.90
Error	$6 \cdot 4 - 4 = 20$	108671.50	5433.58	
Total	$6 \cdot 4 - 1 = 23$	155874.63		

der

$$SSTR = MSTR \cdot 3 = 47203.14,$$

$$\mathrm{MSE} = \frac{\mathrm{SSE}}{20} = \frac{10861.50}{20} = 5433.58,$$

$$SSTOT = SSTR + SSE = 47203.13 + 108671.50 = 155874.63$$

og

$$F = \frac{\text{MSTR}}{\text{MSE}} = \frac{15734.38}{5433.58} = 2.90.$$

Testobservatoren F relaterer seg til hypotesene

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \mod H_1: ikke slik,$$

der μ_i , for i=1,2,3,4, er forventet opptatt fuktighet for betong av type nummer i. Når H_0 er riktig er F Fisher fordelt med 3 og 20 frihetsgrader. Finner kritisk verdi for $\alpha=0.05$ fra tabell til å være $f_{0.05,3,20}=3.10$. Beslutningsregelen blir dermed at vi skal forkaste H_0 når F>3.10. Betongdataene gav F=2.90<3.10 slik at konklusjonen blir at vi skal ikke forkaste H_0 . \mathbf{b}

En to-utvalg t-test baserer seg på at man har observasjoner av stokastiske variabler X_1, \ldots, X_n og Y_1, \ldots, Y_m der alle X_i -er og Y_i er uavhengige av hverandre,

$$X_i \sim N(\mu_X, \sigma^2)$$
 og $Y_i \sim N(\mu_Y, \sigma^2)$.

Man benytter da testobervatoren

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$$

som er Student t-fordelt med n+m-2 frihetsgrader når $H_0: \mu_X = \mu_Y$ er riktig. Variansestimatoren S_P^2 er gitt ved formelen

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}.$$

Vi lar X_i -ene og Y_i -ene være henholdsvis data for betong av type 3 og 4. Ved å benytte oppgitte verdier for S_X^2 og S_Y^2 i tabellen på første side av oppgavesettet får man

$$s_P^2 = \frac{5 \cdot 3593.50 + 5 \cdot 3704.27}{10} = 3648.89 , t = \frac{\frac{3663}{6} - \frac{2924}{6}}{\sqrt{3648.89 \left(\frac{1}{6} + \frac{1}{6}\right)}} = 3.53.$$

Man må her benytte en tosidig test slik at kritisk verdi blir $t_{\frac{\alpha}{2},n+m-2} = t_{0.025,10} = 2.228$. Beslutningsregelen blir dermed at man skal forkaste H_0 dersom T < -2.228 eller T > 2.228. Vi observerte t = 3.53 > 2.228, slik at konklusjonen blir at vi forkaster H_0 .

Det er ikke urimelig at vi i punkt **a**) konkluderer med at det ikke er signifikant forskjell mellom forventningsverdiene til de fire utvalgene, mens vi her i punkt **b**) konkluderer med at det er signifikant forskjell mellom forventningsverdiene til utvalg 3 og 4. Vi kan spesielt legge merke til at vi her i punkt **b**) sammenligner de to av de fire utvalgene som har størst avvik i gjennomsnittsverdi. Vi kan også legge merke til at empirisk varians for utvalg nummer 1 er betydelig større enn for de andre tre utvalgene. ANOVA-analysen baserer seg som kjent på antagelsen om lik varians for alle utvalg. Den store empiriske variansen for utvalg nummer 1 vil dermed føre til at estimatert ("pooled") varians i ANOVA-analysen blir betydelig større enn tilsvarende størrelse i t-testen.

Oppgave 2

 \mathbf{a}

Rimelighetsfunksjonen blir her

$$L(p) = f_Y(y; p) = \begin{pmatrix} m \\ y \end{pmatrix} p^y (1-p)^{m-y}.$$

Log-rimelilighetsfunksjonen blir dermed

$$l(p) = \ln[L(p)] = \ln\left(\begin{array}{c} m\\ y \end{array}\right) + y \cdot \ln p + (m - y)\ln(1 - p).$$

Deriverer og setter lik null:

$$l'(p) = 0 + \frac{y}{p} + \frac{m-y}{1-p} \cdot (-1) = \frac{y}{p} - \frac{m-y}{1-p} = 0 \Rightarrow y(1-p) = p(m-y) \Rightarrow y - yp = pm - py \Rightarrow p = \frac{y}{m}.$$

Dermed får vi at SME blir

$$\widehat{p} = \frac{Y}{m}.$$

Siden vi kun har en parameter vi skal estimaere, og kun har en observasjon, finner man momentestimatoren ved å sette forventet verdi for Y lik observert verdi for Y. Siden $\mathrm{E}[Y] = mp$ får vi

$$m\widehat{p} = Y \Rightarrow \widehat{p} = \frac{Y}{m}.$$

 \mathbf{b}

En estimator $\widehat{\theta}$ for en parameter θ er en beste estimator hvis den er forventningsrett og har minst like liten varians som enhver annen forventningsrett estimator.

For å vise at en estimator er en *beste* estimator kan man sjekke at den er forventningsrett og sjekke at variansen til estimatoren er lik Cramér-Raos nedre grense for forvenintningsrette estimatorer.

For \widehat{p} har vi

$$E[\widehat{p}] = E\left[\frac{Y}{m}\right] = \frac{E[Y]}{m} = \frac{mp}{m} = p,$$

og

$$\operatorname{Var}[\widehat{p}] = \operatorname{Var}\left[\frac{Y}{m}\right] \frac{\operatorname{Var}[Y]}{m^2} = \frac{mp(1-p)}{m^2} = \frac{p(1-p)}{m}.$$

Regner ut Cramér-Raos nedre grense, Starter med

$$\ln f_Y(y; p) = \ln \binom{m}{y} + y \cdot \ln p + (m - y) \ln(1 - p).$$

Deriverer to ganger med hensyn på p:

$$\frac{\partial \ln f_Y(y;p)}{\partial p} = \frac{y}{p} + \frac{m-y}{1-p} \cdot (-1) = \frac{y}{p} - \frac{m-y}{1-p},$$

$$\frac{\partial^2 \ln f_Y(y;p)}{\partial p^2} = -\frac{y}{p^2} - \frac{m-y}{(1-p)^2} \cdot (-1) = \frac{m-y}{(1-p)^2} - \frac{y}{p^2}.$$

Tar forventningsverdien,

$$E\left[\frac{\partial \ln f_Y(y;p)}{\partial p}\right] = E\left[\frac{m-y}{(1-p)^2} - \frac{y}{p^2}\right] = \frac{m-E[Y]}{(1-p)^2} - \frac{E[Y]}{p^2} = \frac{m-mp}{(1-p)^2} - \frac{mp}{p^2}$$
$$= \frac{m}{1-p} - \frac{m}{p} = \frac{m(1-p+p)}{p(1-p)} = \frac{m}{p(1-p)}.$$

Cramé-Raos nedre grense for varians av forventningsrette estimatorer blir dermed (hvor vi benytter at \hat{p} er basert på kun n = 1 stokastiske variabler),

$$\left\{-n\mathrm{E}\left[\frac{\partial^2 \ln f_Y(Y;\theta)}{\partial \theta^2}\right]\right\}^{-1} = \frac{p(1-p)}{m}.$$

Vi ser dermed at \hat{p} var forventningsrett og at variansen for \hat{p} er lik Cramér-Raos nedre grense. Dermed er \hat{p} en beste estimator for p.

 \mathbf{c}) Vi ser at $\widehat{\theta}$ er forventningsskjev fordi

$$\mathrm{E}\left[\widehat{\theta}\right] = \mathrm{E}\left[Y - \frac{Y^2}{m}\right] = \mathrm{E}[Y] - \frac{\mathrm{E}[Y^2]}{m} = mp - \frac{\mathrm{Var}[Y] + \mathrm{E}[Y]^2}{m}$$

$$= mp - \frac{mp(1-p) + (mp)^2}{m} = mp - p(1-p) + mp^2 = (m-1)p(1-p) = \frac{m-1}{m}\theta \neq \theta.$$

Vi ser at $\widehat{\theta}$ er assymptotisk forventnigsrett fordi

$$\lim_{m \to \infty} E\left[\widehat{\theta}\right] = \lim_{m \to \infty} \left[\frac{m-1}{m}\theta\right] = \theta.$$

Vi ser at vi får en forventningsrett estimator med å dele $\widehat{\theta}$ på (m-1)/m. Den forventingsrette estimatoren blir dermed

$$\widehat{\theta} = \frac{\widehat{\theta}}{\frac{m-1}{m}} = \frac{mY}{m-1} \left(1 - \frac{Y}{m} \right).$$

Oppgave 3

 \mathbf{a}

Rimelighetsfunksjonen blir

$$L(\alpha, \beta) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_0} \exp\left\{ -\frac{1}{2\sigma_0^2} (y_i - \alpha - \beta(x_i - \bar{x}))^2 \right\} \right].$$

Logrimelighetsfunksjonen blir

$$l(\alpha, \beta) = \sum_{i=1}^{n} \left[-\frac{1}{2} \ln(2\pi) - \ln \sigma_0 - \frac{1}{2\sigma_0^2} (y_i - \alpha - \beta(x_i - \bar{x}))^2 \right]$$
$$= -\frac{n}{2} \ln(2\pi) - n \ln \sigma_0 - \frac{1}{2\sigma_0^2} \sum_{i=1}^{n} (y_i - \alpha - \beta(x_i - \bar{x}))^2.$$

Partiellderiverer med hensyn på α og setter lik null,

$$\frac{\partial l}{\partial \alpha} = -\frac{1}{2\sigma_0^2} \sum_{i=1}^n 2(y_i - \alpha - \beta(x_i - \bar{x})) \cdot (-1) = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - n\alpha - \beta \sum_{i=1}^{n} (x_i - \bar{x}) = 0 \Rightarrow \alpha = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

hvor vi har benyttet at $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$. Partiellderiverer så med hensyn på β og setter lik null,

$$\frac{\partial l}{\partial \beta} = -\frac{1}{2\sigma_0^2} \sum_{i=1}^n 2(y_i - \alpha - \beta(x_i - \bar{x})) \cdot (-(x_i - \bar{x})) = 0$$

$$\Rightarrow \sum_{i=1}^n y_i(x_i - \bar{x}) - \alpha \sum_{i=1}^n (x_i - \bar{x}) - \beta \sum_{i=1}^n (x_i - \bar{x})^2 = 0$$

$$\Rightarrow \beta = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

hvor vi igjen har benyttet at $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$.

Sannsynlighetsmaksimeringsestimorene for α og β er dermed gitt ved

$$\widehat{\alpha} = \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \quad \text{og} \quad \widehat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) Y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

Ved å benytte at Y_1, \ldots, Y_n er uavhengige får vi

$$\operatorname{Var}\left[\widehat{\beta}\right] = \operatorname{Var}\left[\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})Y_{i}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}\right] = \frac{\operatorname{Var}\left[\sum_{i=1}^{n}(x_{i}-\bar{x})Y_{i}\right]}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{2}} = \frac{\sum_{i=1}^{n}\operatorname{Var}\left[(x_{i}-\bar{x})Y_{i}\right]}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\operatorname{Var}\left[Y_{i}\right]\right)} = \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\sigma_{0}^{2}}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{2}} = \frac{\sigma_{0}^{2}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{2}} = \frac{\sigma_{0}^{2}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}.$$

b) $\widehat{\beta}$ er en lineærkombinasjon av Y_i -ene som er uavhengige og normalfordelte variabler. Dermed blir også $\widehat{\beta}$ normalfordelt, dvs.

$$\widehat{\beta} \sim N\left(\beta, \frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right).$$

Dermed har vi også at

$$\frac{\widehat{\beta} - \beta}{\sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \sim \mathcal{N}(0, 1)$$

slik at

$$P\left(-z_{\frac{a}{2}} \le \frac{\widehat{\beta} - \beta}{\sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \le z_{\frac{a}{2}}\right) = 1 - a$$

Løser hver ulikhet med hensyn på β . Starter med den første,

$$-z_{\frac{a}{2}} \le \frac{\widehat{\beta} - \beta}{\sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \Leftrightarrow -\widehat{\beta} - z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} \le -\beta \Leftrightarrow \widehat{\beta} + z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} \ge \beta$$

$$\frac{\widehat{\beta} - \beta}{\sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \le z_{\frac{a}{2}} \Leftrightarrow -\beta \le -\widehat{\beta} + z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} \Leftrightarrow \beta \ge \widehat{\beta} - z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Må dermed også ha at

$$P\left(\widehat{\beta} - z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} \le \beta \le \widehat{\beta} + z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}\right) = 1 - a.$$

Et $(1-a) \cdot 100\%$ konfidensintervall for β blir dermed

$$\left[\widehat{\beta} - z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}, \beta + z_{\frac{a}{2}} \sqrt{\frac{\sigma_0^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}\right].$$

 \mathbf{c}

For å finne et prediksjonsintervall tar vi utgangspunkt i

$$\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - Y_0.$$

Denne vil være normalfordelt fordi det er en lineærkombinasjon av uavhengige normalfordelte variabler, nemlig Y_1, \ldots, Y_n og Y_0 . Dette kan vi se ved å sette inn i uttrykket over hva vi i punkt **a**) fant for $\widehat{\alpha}$ og $\widehat{\beta}$.

Forventningsverdien til dette uttrykket blir

$$\mathrm{E}\left[\widehat{\alpha}+\widehat{\beta}(x_0-\bar{x})-Y_0\right]=\mathrm{E}\left[\widehat{\alpha}\right]+\mathrm{E}\left[\widehat{\beta}\right](x_0-\bar{x})-\mathrm{E}[Y_0]=\alpha+\beta(x_0-\bar{x})-(\alpha+\beta(x_0-\bar{x}))=0.$$

Siden Y_0 åpenbart er uavhengig av $\widehat{\alpha}$ og $\widehat{\beta}$ får vi for tilhørende varians

$$\operatorname{Var}\left[\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - Y_0\right] = \operatorname{Var}\left[\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x})\right] + \operatorname{Var}[Y_0]$$

$$= \operatorname{Var}\left[\widehat{\alpha}\right] + \operatorname{Var}\left[\widehat{\beta}(x_0 - \bar{x})\right] + 2\operatorname{Cov}\left[\widehat{\alpha}, \widehat{\beta}(x_0 - \bar{x})\right] + \operatorname{Var}[Y_0]$$

$$= \operatorname{Var}\left[\widehat{\alpha}\right] + (x_0 - \bar{x})^2 \operatorname{Var}\left[\widehat{\beta}\right] + 2(x_0 - \bar{x})\operatorname{Cov}\left[\widehat{\alpha}, \widehat{\beta}\right] + \operatorname{Var}[Y_0]$$

Fra oppgaveteksten har vi uttrykk for $\operatorname{Var}\left[\widehat{\alpha}\right]$ og $\operatorname{Var}\left[\widehat{\beta}\right]$, og $\operatorname{Var}\left[Y_{0}\right]=\sigma_{0}^{2}$. Trenger å regne ut $\operatorname{Cov}\left[\widehat{\alpha},\widehat{\beta}\right]$. Ved å benytte at $\operatorname{Cov}\left[Y_{i},Y_{j}\right]=\operatorname{Var}\left[Y_{i}\right]=\sigma_{0}^{2}$ dersom i=j og lik 0 hvis $i\neq j$ får vi at

$$\operatorname{Cov}\left[\widehat{\alpha}, \widehat{\beta}\right] = \operatorname{Cov}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}, \frac{\sum_{j=1}^{n} (x_{j} - \bar{x}) Y_{j}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right]$$

$$= \frac{1}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left[Y_{i}, (x_{j} - \bar{x}) Y_{j}\right]$$

$$= \frac{1}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{j} - \bar{x}) \operatorname{Cov}\left[Y_{i}, Y_{j}\right]$$

$$= \frac{1}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \sum_{i=1}^{n} (x_{i} - \bar{x}) \sigma_{0}^{2} = \frac{\sigma_{0}^{2}}{n \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \sum_{i=1}^{n} (x_{i} - \bar{x}) = 0.$$

Dermed får vi at

$$\operatorname{Var}\left[\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - Y_0\right] = \frac{\sigma_0^2}{n} + \frac{\sigma_0^2(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} + \sigma_0^2 = \sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right),$$

og dermed også

$$\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - Y_0 \sim N\left(0, \sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)\right)$$

og

$$\frac{\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - Y_0}{\sqrt{\sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}} \sim N(0, 1),$$

slik at

$$P\left(-z_{\frac{a}{2}} \le \frac{\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - Y_0}{\sqrt{\sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}} \le z_{\frac{a}{2}}\right) = 1 - a.$$

Løser så hver ulikhet hver for seg med hensyn på Y_0 og setter deretter ulikhetene sammen igjen med Y_0 alene i midten, og får

$$P\left(\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - z_{\frac{\alpha}{2}} \sqrt{\sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \le Y_0$$

$$\leq \widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) + z_{\frac{\alpha}{2}} \sqrt{\sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)} \right) = 1 - a.$$

Et $(1-a) \cdot 100\%$ prediksjonsintervall for Y_0 blir dermed

$$\left[\widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) - z_{\frac{a}{2}} \sqrt{\sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}, \widehat{\alpha} + \widehat{\beta}(x_0 - \bar{x}) + z_{\frac{a}{2}} \sqrt{\sigma_0^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}\right].$$

Vi ser at prediksjonsintervallet blir kortest når $x_0 - \bar{x} = 0$, dvs. når $x_0 = \bar{x}$.