Optimization for Data Science

Unconstrained nonlinear optimization

Constrained nonlinear optimization

Connections to data science

Three pillars of data science

Fundamentals of optimization

What is optimization?

"An optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function."*

*"http://en.wikipedia.org/wiki/Mathematical_optimization"

What is optimization?

• ... the use of specific methods to have been determine the "best" solution to a problem

•Find the best functional representation

for data

•Find the best hyperplane to classify data

Why optimization for machine learning

- (Almost) All machine learning (ML) algorithms can be viewed as solutions to optimization problems
 - Even in cases where, the original machine learning technique has a basis derived from other fields
- A basic understanding of optimization approaches help in
 - More deeply understand the working of the ML algorithm
 - Rationalize the workings of the algorithm
 - And (may be !!!), develop new algorithms ourselves

Components of an optimization problem

- Objective function
 - We look at minimization problem
- Decision variables
- Constraints

Types of optimization problems

- Depending on the type of objective function, constraints and decision variables
 - Linear programming problem
 - Nonlinear programming problem

Nonlinear pros....
Convex vs Non-convex
Integer programming problem (linear and nonlinear)
Mixed integer linear programming problem

Mixed programming problem

Convex vs Non-convex

Integer programming problem

Convex vs Non-convex vs Non-conve

Nonlinear Optimization

Univariate Optimization - Local and Global Optimum

Univariate optimization

Univariate Optimization – Conditions for Local Optimum

Univariate optimization

$$\min_{x} f(x) \\
x \in R$$

Approximate f(x) as a quadratic function using Taylor series at a point x^k

$$f(x) \approx f(x^k) + \frac{1}{1!} f'(x^k) (x - x^k) + \frac{1}{2!} f''(x^k) (x - x^k)^2$$

$$f(x) \approx f(x^*) + \frac{1}{1!} f'(x^*) (x - x^*) + \frac{1}{2!} f''(x^*) (x - x^*)^2$$

When $x^k = x^*$,

Positive

 $f(x) - f(x^*) \approx \frac{1}{2!} f''(x^*)(x - x^*)^2$ Has to be positive

Always positive

Univariate Optimization – Summary

Univariate optimization

$$\frac{\min_{x} f(x)}{x \in R}$$

Necessary and sufficient conditions for x^* to be the minimizer of the function f(x)

First order necessary condition: $f'(x^*) = 0$ Second order sufficiency condition: $f''(x^*) > 0$

Univariate Optimization – Numerical Example

$$\min_{x} f(x)$$

$$f(x) = 3x^{4} - 4x^{3} - 12x^{2} + 3$$

First order condition

$$f'(x) = 12 x^3 - 12 x^2 - 24 x = 0$$

$$= 12 x(x^2 - x - 2x) = 0$$

$$= 12 x(x + 1)(x - 2) = 0$$

$$x = 0, x = -1, x = 2$$

$$f(-1) = -2$$

 $x^* = -1$, is a local minimizer of f(x)

Second order condition

$$f''(x) = 36 x^{2} - 24 x - 24$$

$$f''(x)|_{x=0} = -24$$

$$f''(x)|_{x=-1} = 36 > 0$$

$$f''(x)|_{x=2} = 72 > 0$$

$$f(2) = -29$$

 $x^* = 2$, is a global minimizer of f(x)