Lucrare de laborator nr. 11 Fișiere (I)

1. Scopul lucrării

În această lucrare se studiază clasele *FileReader* și *BufferedReader* folosite pentru a citi date date din fișiere text. *FileReader* este folosită pentru a citi un fișier text caracter cu caracter, iar *BufferedReader* pentru a citi linie cu linie.

2. Breviar teroretic

2.1 Generalitati.

Fișierele sunt de două tipuri:

- fișiere text
- fișiere binare

Diferența principală dintre ele este dată de modul de codificare a informației.

Exemplu:

Fie un fișier text ce conține ca informație valoarea numerică 259.

Informația din fișierul text este codificată binar pe baza codurilor Unicode ale celor 3 caractere: '2', '5' si '9'.

Codul caracterului '2' este $50_{10}=2^5+2^4+2^1=0\ 0\ 1\ 1.0\ 0\ 1\ 0$

Deci, in binar: 00110010.

Asemănător sunt codate și celelalte două caractere: '5' si '9'.

Fie un fișier binar de numere întregi, ce conține aceeați informație: 259.

Informatia va fi reprezentată ca număr întreg pe 4 octeți, corespunzător reprezentării în baza 2 a numărului intreg 259: $259_{10}=2^8+2^1+2^0$

Deci in baza 2:

0000000 00000000 00000001 00000011

O altă diferență între fișierele text și fișierele binare este aceea ca fișierele text au înregistrări (linii) de lungime variabilă, iar fișierele

binare au înregistrări de lungime fixă. Astfel, intr-un fișier binar de numere întregi, fiecare înregistrare ocupă 4 octeți.

Putem totuși interpreta un fișier text ca un fișier binar, ce are ca înregistrare de bază octetul.

În Java, clasele care prelucrează fișiere se găsesc în pachetul **java.io**.

În cazul tuturor prelucrărilor de fișiere, se pot genera excepții care sunt obligatoriu de tratat. Cea mai des întâlnită excepție face parte din clasa **IOException**, excepție obligatoriu de tratat.

În Java, clasele ce prelucrează fișiere sunt specializate, atât pentru tipurile de fișiere (text sau binar), cât și pentru operațiile ce se fac asupra fișierelor.

2.2 Clase pentru citire din fișiere text.

Clasa FileReader.

Este o clasă folosită pentru a citi un fișier text caracter cu caracter.

Constructorul:

public FileReader(String numeFisier)

Metode:

a) **public int read(**) – citește și returnează codul caracterului de pe poziția curentă.

Determină avansarea în mod automat pe următoarea poziție a capului de citire.

În caz de sfârșit de fișier returnează -1.

b) public void close() – este folosită pentru a închide fișierul.

Clasa BufferedReader.

Este folosită pentru a citi un fișier text linie cu linie.

Constructorul:

public BufferedReader(FileReader fr)

Metode:

public String readLine()

Returnează sub formă de String, linia curentă citită din fișier. În caz de sfârșit de fișier, returnează **null**.

3. Probleme rezolvate

Problema 1

Se citește de la tastatură numele unui fișier text. Să afișăm dacă este prezent caracterul **a** în fișier.

```
import java.io.*;
import javax.swing.*;
class F1
public static void main(String args[])
 String numeF=JOptionPane.showInputDialog("nume fisier=");
 FileReader fr=null;
 boolean este_a=false;
 try{
 fr=new FileReader(numeF);
 //citesc fișierul caracter cu caracter:
 for(;;) {
  int cod=fr.read( );
  if(cod = = -1) break;
  if((char)cod == 'a') { este a = true;
   break; }
 fr.close( );
 }catch(IOException e){
   System.out.println(e);
   System.exit(1); }
 if (este_a== true) System.out.println("Este prezent a");
 else System.out.println("Nu este prezent a");
Problema 2
       Să se afișeze dacă primul caracter dintr-un fișier text este egal
cu ultimul.
import java.io.*;
class PrimulSiUltimulCaracter
public static void main(String args[])
 FileReader fr=null;
 //Presupunem ca fisierul are cel putin doua caractere!
 try{
```

```
fr=new FileReader("date.txt");
 //citim primul caracter:
 int cod=fr.read();
 char primul=(char)cod;
 //citim urmatorul caracter si cu acesta initializam pe ultimul:
 cod=fr.read();
 char ultimul=(char)cod;
  //citim restul caracterelor, actualizand ultimul caracter:
  for(;;){
   cod=fr.read();
   if(cod==-1)break;//s-a terminat fisier
   ultimul=(char)cod;
  fr.close();
  if(primul==ultimul)System.out.println("da");
  else System.out.println("nu");
 }catch(IOException e){
 System.out.println(e);
 System.exit(1);}
}//main
```

Problema 3

Pentru fișierul text test.txt să se afișeze numărul de apariții pentru fiecare caracter din fișier. Afișarea se va face în ordine crescătoare a numărului de apariții. Se consideră că în fișier codurile ASCII ale caracterelor fac parte din intervalul [0, 127] (deci sunt maxim 128 de caractere diferite).

```
import java.io.*;
class NrAparitii
{
  public static void main(String args[])
  {
    final int NR_CAR=128;
    int contor[]=new int[NR_CAR];
    int i;
    for(i=0;i<NR_CAR;i++)contor[i]=0;
    FileReader fr=null;
    i=0;//indexul caracterului curent citit din fisier</pre>
```

```
//citim fisierul caracter cu caracter:
try{
fr=new FileReader("test.txt");
for(;;){
 int cod=fr.read();//codul ASCII al caracterului citit
 if(cod==-1)break;//s-a terminat fisierul
 //numaram caracterul citit:
 contor[cod]++;
}catch(IOException e){
 System.out.println(e);
 System.exit(1);
//sortare a 2 vectori paraleli:
char vectorCaractere[]=new char[NR_CAR];
for(i=0;i< NR\_CAR;i++)
vectorCaractere[i]=(char)i;
int j;
for(i=0;i< NR\_CAR;i++)
for(j=i+1;j< NR\_CAR;j++)
  if(contor[i]>contor[j]){
   int aux=contor[i];
   contor[i]=contor[j];
   contor[j]=aux;
   char temp=vectorCaractere[i];
   vectorCaractere[i]=vectorCaractere[j];
   vectorCaractere[j]=temp;
//afisare, doar cele ce apar cel putin o data:
for(i=0;i< NR\_CAR;i++)
if(contor[i]!=0)
  System.out.println(vectorCaractere[i]+": "+contor[i]);
```

Problema 4

Pentru fișierul text scrisoare.txt, să se calculeze și afișeze câte linii sunt în fișier și câte linii încep cu caracterul $\bf A$.

import java.io.*;

```
class CateLinii
public static void main(String args[])
 FileReader fr=null;
 BufferedReader bfr=null;
 int contorLinii=0;
 int contorLinii_A=0;
 try{
 fr=new FileReader("scrisoare.txt");
 bfr=new BufferedReader(fr);
 for(;;) {
  String s=bfr.readLine();
   if(s==null) break;
  //am citit o linie:
  contorLinii++;
  //Incepe cu A?
  if(s.charAt(0) = = 'A')contorLinii\_A + +;
 }//for;;
 bfr.close( );
 fr.close( );
 }catch(IOException e){
  System.out.println(e);
  System.exit(1); }
 System.out.println("numar linii ="+contorLinii);
 System.out.println("numar linii ce incep cu A = "+contorLinii_A);
}//main
}//class
Problema 5
 Să se calculeze și afișeze care este cea mai lungă linie din fișierul
text "scrisoare.txt".
Algoritmul:
 Inițializăm maximul (lungimea celei mai lungi linii din fișier) cu 0.
 Citim pe rând fiecare linie și comparăm lungimea ei cu maximul.
  Dacă este mai mare, schimbăm maximul.
import java.io.*;
class LiniaCeaMaiLunga
{
```

```
public static void main(String args[])
{
 FileReader fr=null;
 BufferedReader bfr=null;
 int\ lMax=0;
 String linieMax="";//stringul vid
 try{
 fr=new FileReader("scrisoare.txt");
 bfr=new BufferedReader(fr);
 for(;;) {
  String s=bfr.readLine();
  if(s==null) break;
   int l=s.length();
   if(l>lMax) \{ lMax=l;
      linieMax=s; }
 }//for;;
 bfr.close( );
 fr.close( );
 }catch(IOException e){
     System.out.println(e);
     System.exit(1); }
 System.out.println(linieMax);
}//main
}//class
```

Problema 6

Se citește numele unui fișier text ce conține mai multe linii. Să se afișeze dacă toate liniile sunt diferite între ele sau nu.

```
import java.io.*;
import javax.swing.*;
class LiniiDiferite
{
  public static void main(String args[])
  {
    String numeF=JOptionPane.showInputDialog("nume fisier=");
    FileReader fr=null;
    BufferedReader bfr=null;
    //Vom copia toate liniile din fisier, intr-un vector de Stringuri:
    String s[]=new String[1000];//dimensiune acoperitoare
```

```
//initializare pt. numarul de linii din fisier:
 int N=0;
 try{
  fr=new FileReader(numeF);
  bfr=new BufferedReader(fr);
  for(;;){
   String linie=bfr.readLine();
   if(linie==null)break;//s-a terminat fisierul
  //copiem linia in vectorul s[]:
   s[N]=linie;
  N++;
 bfr.close();
fr.close();
}catch(IOException e){
   System.out.println(e);
   System.exit(1);}
//Verificam daca vectorul s[] are toate elementele diferite:
for(int i=0; i< N-1; i++)
 for(int j=i+1;j< N;j++)
   if(s[i].compareTo(s[j])==0){
    System.out.println("Nu are toate liniile diferite!");
    return;}
System.out.println("Are toate liniile diferite!");
}//main
Problema 7
       Pentru fișierul text scrisoare.txt, să se calculeze și afișeze de
câte ori apare cuvântul este în acest fișier.
import java.io.*;
import java.util.*;
class ContorizareCuvant
public static void main(String args[])
 FileReader fr=null;
 BufferedReader bfr=null;
 //initializari:
```

```
int contor=0:
try{
 fr=new FileReader("scrisoare.txt");
  bfr=new BufferedReader(fr);
  for(;;){
   String linie=bfr.readLine();
   if(linie==null)break;//s-a terminat fisierul
   //Extragem cuvintele din aceasta linie:
   StringTokenizer tk=new StringTokenizer(linie);
   int \ n=tk.countTokens();
   for(int i=0;i< n;i++)
    String cuvant=tk.nextToken();
    if(cuvant.compareTo("este")==0)contor++;
  bfr.close();
  fr.close();
 }catch(IOException e){
  System.out.println(e);
  System.exit(1);}
System.out.println("numar aparitiii: "+contor);
}//main
```

Problema 8

Să se afișeze care este cel mai lung cuvânt dintr-un fișier text dat. Se consideră că în fișier nu se află cuvinte despărțite în silabe, la cap de rând.

```
import java.io.*;
import java.util.*;
class CelMaiLungCuvant
{
  public static void main(String args[])
  FileReader fr=null;
  BufferedReader bfr=null;
  //initializari:
```

```
String cuvantMax="";
int lungimeMax=0;//initializare pt. dimensiunea celui mai lung
                    //cuvant
 try{
 fr=new FileReader("referat.txt");
  bfr=new BufferedReader(fr);
 for(;;){
   String linie=bfr.readLine();
   if(linie==null)break;//s-a terminat fisierul
   //Extragem cuvintele din aceasta linie:
   StringTokenizer tk=new StringTokenizer(linie);
   int \ n=tk.countTokens();
   for(int i=0;i< n;i++)
    String cuvant=tk.nextToken();
    int lungime=cuvant.length();
    if(lungime>lungimeMax){
       lungimeMax=lungime;
       cuvantMax=cuvant;
  bfr.close();
 fr.close();
 }catch(IOException e){
  System.out.println(e);
  System.exit(1);}
System.out.println("Cel mai lung cuvant este: "+cuvantMax);
}//main
```

Problema 9

Se dă fișierul text date.txt, care conține numere întregi (în fiecare linie sunt unul sau mai multe numere întregi separate prin unul sau mai multe spații). Să se calculeze și afișeze care este cel mai mare număr din fișier.

```
import java.io.*;
import java.util.*;
class NumarMaxim
{
```

```
public static void main(String args[])
ſ
FileReader fr=null;
BufferedReader bfr=null;
try{
  fr=new FileReader("date.txt");
  bfr=new BufferedReader(fr);
  //initializam maximul cu primul numar citit din fisier, de aceea,
  // prima linie o citim separat (presupunem ca fisierul are cel putin
  // o linie):
  String linie=bfr.readLine();
  //Extragem numerele din din aceasta linie:
  StringTokenizer tk=new StringTokenizer(linie);
  int n=tk.countTokens();
  //initializez maximul cu primul numar:
  int max=Integer.parseInt(tk.nextToken());
  //extragem restul numerelor din prima linie:
  int i,nr;
  for(i=1;i< n;i++){}
     nr=Integer.parseInt(tk.nextToken());
     if(nr>max)max=nr;
  //citim restul liniilor din fisier:
  for(;;){
   linie=bfr.readLine();
   if(linie==null)break;//s-a terminat fisierul
   //Extragem numerele din din aceasta linie:
   tk=new StringTokenizer(linie);
   n=tk.countTokens();
   for(i=0;i< n;i++)
     nr=Integer.parseInt(tk.nextToken());
     if(nr>max)max=nr;
   bfr.close();
  fr.close();
  System.out.println("Maxim="+max);
 }catch(IOException e){
  System.out.println(e);
  System.exit(1);}
```

```
}//main
}
```

Problema 10

Se dă fișierul text cuvinte.txt, care conține câte un cuvânt pe fiecare linie. Să se copieze toate cuvintele într-o colecție ArrayList, și apoi să se afișeze prin parcurgerea ei, acestă colecție.

```
import java.io.*;
import java.util.*;
class IncarcaInArrayList
public static void main(String args[])
FileReader fr=null;
BufferedReader bfr=null;
ArrayList<String> al=new ArrayList<String>();
fr=new FileReader("cuvinte.txt");
 bfr=new BufferedReader(fr);
for(;;) {
  String s=bfr.readLine();
  if(s==null) break;
  //am citit un cuvant, il adaugam in colectia al:
  al.add(s);
 bfr.close( );
fr.close();
}catch(IOException e){
  System.out.println(e);
  System.exit(1);}
//Afisare colectie:
Iterator it=al.iterator();
while(it.hasNext())
  System.out.println(it.next());
}//main
}//class
```

3. Probleme propuse

Problema 1

Se citește de la tastatură numele unui fișier text. Să se calculeze și afișeze de câte ori apare caracterul A în fișier.

Problema 2

Se citește de la tastatură numele unui fișier text. Să se calculeze și afișeze care vocală apare de cele mai multe ori în fișier.

Problema 3

Se citește un număr natural N. Se citesc numele a N fișiere text. Să se afișeze în care fișier apare de cele mai multe ori caracterul **A**.

Problema 4

Se dă fișierul text date.txt, care conține numere întregi (în fiecare linie sunt unul sau mai multe numere întregi separate prin unul sau mai multe spații). Să se calculeze și afișeze media aritmetică a numerelor din fișier.

Problema 5

Se dă fișierul text date.txt, care conține numere întregi (în fiecare linie sunt unul sau mai multe numere întregi separate prin unul sau mai multe spații). Să se afișeze dacă toate numerele din fișier sunt diferite între ele sau nu.

Problema 6

Se dă fișierul text clasa.txt ce conține pe fiecare linie numele complet al unui elev și media lui anuală. Să se afișeze numele elevului care are cea mai mare medie.

Problema 7

Se citește de la tastatură numele unui fișier text. Să se calculeze și afișeze care este linia din fișier care conține cele mai multe cuvinte.

Problema 8

Se dă fișierul text date.txt, care conține numere întregi (în fiecare linie sunt unul sau mai multe numere naturale separate prin unul sau mai multe spații). Să se calculeze și afișeze care este cel mai mare număr prim din fișier.