

Acknowledgement:
I wish to thank Li Ming for their lectures, notes and blogs.

Lecture 1: Introduction

Neurons in nature

- Human has ~100 billion neurons/nerve cells (& many more supporting cells)
- Each neuron has 3 parts: cell body, dendrites, axon connected up to ~10,000 other neurons. Passing signals to each other via 1000 trillion synaptic connections, approximately 1 trillion bit per second processor.
- Human memory capacity 1~1000 terabytes.

What is our natural system good at?

- Vision
- Hearing (very adaptive)
- Speech recognition / speaking
- Driving
- Playing games
- Natural language understanding

 "Not good at": multiply 2 numbers, memorize a phone number.

Why not other types of learning?

- Linear regression?
 - Why is it linear?
- Bayesian?
 - What is the prior?
- SVM?
 - What are the features?
- Decision tree?
 - What are the nodes/variables?
- PAC learning?
 - What is the function to be learnt?
- KNN?
 - Cluster on what features?

These methods do not suit well with very complex models.

Ups and Downs of Al

- In the 1956 Dartmouth meeting, it has already mentioned neuron networks.
- How did learning go deep. Easy hype target as AI borders science and science fiction.
 - Perceptron popularized by F. Rosenblatt, 1957 (Principles of Neurodynamics 1961).
 - Times: .. A revolution ..
 - New Yorker ...
 - A science magazine title "Human brains replaced?"
 - False claims: "After 5 years all of us will have smart robots in our homes ..."
 - It turns out that Rosenblatt's experiments of distinguishing tanks from trucks were because of lightings.
 - 1969, Minsky and Papert proved Perceptron, being a linear separator, is not very powerful.
 For example, can't do exclusive-or. But this was misconstrued as NNs being too week.
 - 1980s, multi-layer perceptron
 - 1986 Backpropagation, hard to train > 3 layers.
 - 1989: 1 hidden layer can do all, why deep?
 - 2006 RBM initialization (breakthrough) re-kindled fire.
 - < 2009: Game industry has pushed the growth of GPU's</p>
 - 2011: Speech recognition (Waterloo professor Li Deng invited Hinton to Microsoft)
 - 2012: won ILSVRC image competition (with ImageNet training data)
 - 1980's expert system
 - Japan's 5th generation computers (thinking machines)

Perceptron Architecture

By hand!

As long as you pick right features, this can learn almost anything.

This actually gives a powerful machine learning paradigm:

- Pick right features by clustering
- Linearly separate the features.
- This is essentially what Rosenblatt initially claimed for perceptron.
 Chomsky & Papert actually attacked a different target.

Binary threshold neuron

McCulloch-Pitts (1943)

There are two ways of describing the binary threshold neuron:

- 1.Threshold = 0
- 2. Threshold \neq 0

$$z = \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z \ge \theta \\ 0 \text{ otherwise} \end{cases}$$

$$z = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

Avoiding learning biases separately

- By a trick of adding 1 to input.
- We now can learn a bias as if it were a weight.
- Hence we get rid of the threshold.

A converging perceptron learning alg.

- If the output unit is correct, leave its weights unchanged.
- If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
- If the output unit incorrectly outputs a 1, subtract the input vector from the weight vector.

This is guaranteed to find a set of weights that is correct for all training cases if such "solution" exists.

Weight space

- The dimension k is number of the weights $w=(w_1, ..., w_k)$.
- A point in the space represents a weight vector $(w_1, ..., w_k)$ as its coordinates.
- Each training case is represented as a hyper-plane through the origin (assuming we move the threshold to the bias weight)
 - The weights must lie on one side of this hyperplane to get answer correct.

Remember dot product facts:

 $a \cdot b = ||a||||b||\cos(\theta_{ab})$

$$= a_1b_1+a_2b_2+ \dots +a_nb_n$$

Thus, a • b ≥ 0, if
$$-\pi/2 \le \theta_{ab} \le \pi/2$$

a • b ≤ 0, if $-\pi \le \theta_{ab} \le -\pi/2$ or $\pi/2 \le \theta_{ab} \le \pi$

Weight space

A point in the space represents a weight vector Training case is a hyper-plane through the origin, assuming threshold represented by bias.

The cone of feasible solutions

To get all training cases right, we need to find a point on the "right side" of all planes (representing training cases).

The solution region, if exists, is a cone and is convex.

A converging perceptron learning alg.

- If the output unit is correct, leave its weights unchanged.
- If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
- If the output unit incorrectly outputs a 1, subtract the input vector from the weight vector.

This is guaranteed to find a set of weights that is correct for all training cases if such solution exists.

Proof: If there is a generously feasible vector, then each step we move closer to the feasible region. After finitely many steps, the weight vector is in the feasible region.

Note: this is assuming generously feasible vector exists.

The limitations of Perceptrons

- If we are allowed to choose features by hand, then we can do anything. But this is not learning.
- If we do not hand-pick features, then Minsky and Papert showed that perceptrons cannot do much. We will look at these proofs.

XOR cannot be learnt by a perceptron

 We prove that binary threshold output unit cannot do exclusive-or:

Positive examples: $(1,1) \rightarrow 1$; $(0,0) \rightarrow 1$ Negative examples: $(1,0) \rightarrow 0$; $(0,1) \rightarrow 0$

The 4 input-output pairs give 4 inequalities, T being threshold:

$$w_1 + w_2 \ge T$$
, $0 \ge T \rightarrow w_1 + w_2 \ge 2T$
 $w_1 < T$, $w_2 < T \rightarrow w_1 + w_2 < 2T$
Contradiction. QED

Geometric view

- Data-space view
 - Each input is point
 - A weight vector defines a hyperplane
 - The weight plane is perpendicular to the weight vector and misses the origin by a distance equal to the threshold

Blue dots and red dots are not linearly separable.

But this can be easily solved:

- Just pick right features (clusters)
- Then linearly separate the features, solves all.
- This is essentially what Rosenblatt initially claimed for perceptron.
 Chomsky & Papert actually attacked a different target.

Group Invariance Theorem (Minsky-Papert):

Perceptron cannot distinguish following two patterns under translation.

Proof.

Each pixel is activated by 4 different translations of both Pattern A and B.

Hence the total input received by the decision unit over all these patterns is four times the sum of all weights for both patterns A and B.

No threshold can always accept A & reject B. QED.

In general Perceptrons cannot do groups. Image translation forms a group. This was sometimes mis-interpreted as NN's are no good.

Hidden units can learn such features. But deeper NN are hard to train.

Translation with wrap-around of two patterns

Basic Neurons

- To model neurons, we must idealize them:
 - Idealization removes complicated details that are not essential for understanding the main principles.
 - It allows us to apply mathematics and to make analogies to other familiar systems
 - Once we understand the basic principles, its easy to add complexity to make the model more faithful.

Linear neurons

 These are the basic building parts for all other neuron networks.

Binary threshold neuron

- McCulloch-Pitts (1943)
 - First compute a weighted sum of inputs
 - Then send out a fixed size spike of activity if the weighted sum exceeds a threshold.
 - McCulloch and Pitts thought that each spike is like the truth value of a proposition and each neuron combines truth values to compute the truth value of another proposition.
 - This has influenced Von Neumann.

There are two equivalent ways to describe a binary threshold neuron

$$z = \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z \ge \theta \\ 0 \text{ otherwise} \end{cases}$$

$$z = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

$$y = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ otherwise} \end{cases}$$

Rectified Linear Unit (ReLU)

- They compute a linear weighted sum of their inputs.
- The output is a non-linear function of the total input.
- This is the most popularly used neuron.

$$z = b + \sum_{i} x_{i} w_{i}$$

$$y = \begin{cases} z & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Or written as: $f(x) = max \{0,x\}$

A smooth approximation of the ReLU is "softplus" function $f(x) = \ln (1+e^x)$

Sigmoid neurons

$$z = b + \sum_{i} x_{i} w_{i}$$
 $y = \frac{1}{1 + e^{-z}}$

Typically they use the logistic function

They have nice derivatives which makes learning easy.

But they cause vanishing gradients during backpropogation.

Stochastic binary neurons

(Bernoulli variables)

- These have a state of 1 or 0.
- The probability of turning on is determined by the weighted input from other units (plus a bias)

$$p(s_i = 1) = \frac{1}{1 + \exp(-b_i - \sum_i s_i w_{ii})}$$

Softmax function (Normalized exponential function)

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$$

If we take an input of [1,2,3,4,1,2,3], the softmax of that is [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]. The softmax function highlights the largest values and suppress other values.

Comparing to "max" function, softmax is differentiable.

Lecture 3. Fully Connected NN & Hello World of Deep Learning

0–9 handwritten digit recognition:

MNIST Data maintained by Yann LeCun: http://yann.lecun.com/exdb/mnist/ Keras provides data sets loading function at http://keras.io/datasets

Keras & Tensorflow

- Interface of Tensorflow and Theano.
- Francois Chollet, author of Keras is at Google, Keras will become Tensorflow API.
- Documentation: http://keras.io.
- <u>Examples: https://github.com/fchollet/keras/tree/master/examples</u>
- Simple course on Tensorflow: https://docs.google.com/presentation/d/1zkmVGobdPfQgsjlw6gUqJs jB8wvv9uBdT7ZHdaCjZ7Q/edit#slide=id.p

Implementing in Keras


```
model = sequential() # layers are sequentially added
model.add( Dense(input_dim=28*28, output_dim=500))
model.add(Activation( 'sigmoid' )) #: softplus, softsign,relu,tanh, hard_sigmoid
model.add(Dense( output_dim = 500))
model.add (Activation( 'sigmoid' ))
Model.add(Dense(output_dim=10))
Model.add(Activation( 'softmax' ))
model.compile(loss= 'categorical_crossentropy', optimizer= 'adam', metrics=[ 'accuracy' ])
model.fit(x_train, y_train, batch_size=100, nb_epoch=20)
```


model.fit(x_train, y_train, batch_size=100, nb_epoch=20)

numpy array

Number of training examples

Number of training examples

Randomly initialize network parameters

Pick the 1st batch

$$L' = I_1 + I_9 + ...$$

Update parameters

➤ Pick the 2nd batch

L" =
$$I_2 + I_{16} + \dots$$

Update parameters

:

Until all batches have been picked

one epoch

Repeat the above process

Very large batch size can yield worse performance

- Smaller batch size means more updates in one epoch
 - E.g. 50000 examples
 - batch size = 1, 50000 updates in one epoch
 - batch size = 10, 5000 updates in one epoch

166s 1 epoch

17s

10 epochs

Speed - Matrix Operation

Why is batching faster?

One at a time:

Batch by GPU, 2 at a time, 1/2 time cost

Matrix operation