Surfaces

Zheng Xie

May 28, 2018

Definition 2.1 (Regular Surface)

A subset $S \subset \mathbb{R}^3$ is a regular surface if for each $p \in S$, there exists a neighborhood $V \in \mathbb{R}^3$, an open set $U \in \mathbb{R}^2$ and an onto map $x: U \to V \cap S$ such that (1)x is differentiable, i.e. if $x(u,v) = (x_1(u,v), x_2(u,v), x_3(u,v)), (u,v) \in U$, then $x_i(u,v)$ have continuous partial derivatives of all orders in U. (2)x is a homeomorphism, i.e. $x^{-1}: V \cap S \to U$ is continuous. (3)(regularity condition) For each $q \in U$,

Definition 2.2 (Principle Curvature)

Let $S \subset \mathbb{R}^3$ be a regular surface.