Comparing Raw Survival Data to Exponential Models

Eric Delmelle

2025-09-16

Load Data and Create Kaplan-Meier Curve

• note that we create a new variable 'time_years' where we divide the time into years.

```
library(survival)
library(ggplot2)
library(dplyr)

# Load lung cancer data
data(lung)
lung_clean <- lung %>%
    filter(!is.na(time)) %>%
    mutate(time_years = time / 365.25)

# Create Kaplan-Meier estimate
surv_obj <- Surv(lung_clean$time_years, lung_clean$status - 1)
km_fit <- survfit(surv_obj ~ 1)

print(paste("Sample size:", length(lung_clean$time_years)))

## [1] "Sample size: 228"

print(paste("Number of deaths:", sum(lung_clean$status == 2)))</pre>
```

Compare Different Exponential Models

```
# Time points for plotting exponential curves
time_grid <- seq(0, 3, length.out = 200)

# Try different lambda values
lambda_values <- c(0, 0.3, 0.6, 0.9, 1, 1.2, 1.8)

# Create plot data
plot_data <- data.frame()
for(lambda in lambda_values) {
   temp_data <- data.frame()</pre>
```

```
time = time_grid,
    survival = exp(-lambda * time_grid),
    lambda = paste("lambda =", lambda)
 plot_data <- rbind(plot_data, temp_data)</pre>
# Extract KM data
km_data <- data.frame(</pre>
 time = km_fit$time,
 survival = km_fit$surv
# Create the comparison plot
ggplot() +
  # Kaplan-Meier curve (observed data)
  geom_step(data = km_data,
            aes(x = time, y = survival),
            color = "black", linewidth = 2.5, alpha = 0.8) +
  # Different exponential models
  geom_line(data = plot_data,
            aes(x = time, y = survival, color = lambda),
            linewidth = 1.5) +
  xlim(0, 3) + ylim(0, 1) +
  labs(
   title = "Observed Survival vs Exponential Models",
    subtitle = "Black line = Observed data (Kaplan-Meier)",
   x = "Time (years)",
   y = "Survival Probability",
   color = "Exponential Models"
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
    plot.subtitle = element_text(hjust = 0.5, size = 12),
   legend.position = "right",
   legend.title = element_text(face = "bold")
```


Side-by-Side Comparison

```
# Create individual plots for each lambda
plots <- list()</pre>
for(i in 1:length(lambda_values)) {
  lambda <- lambda_values[i]</pre>
  exp_data <- data.frame(</pre>
    time = time_grid,
    survival = exp(-lambda * time_grid)
  )
  p <- ggplot() +</pre>
    geom_step(data = km_data,
               aes(x = time, y = survival),
               color = "black", linewidth = 2) +
    geom_line(data = exp_data,
               aes(x = time, y = survival),
               color = "red", linewidth = 1.5, linetype = "dashed") +
    xlim(0, 3) + ylim(0, 1) +
```


Summary

From these plots we can see:

- lambda = 0.3: Too small curve drops too slowly, overestimates long-term survival
- lambda = 0.6: Decent follows the general trend but a bit optimistic
- lambda = 0.9: Good fit closely matches the observed curve

- lambda = 1.2: Decent slightly pessimistic but reasonable
- lambda = 1.8: Too large drops too quickly, underestimates survival

The exponential model $S(t) = \exp(-lambdat)$ provides a simple way to model survival, but finding the right lambda value is crucial for a good fit to the data!

Finding the Best Lambda Using Maximum Likelihood

Now let's use mathematics to find the optimal lambda value and see how it compares to our visual assessment:

```
# Prepare data for MLE calculation
lung_clean <- lung_clean %>%
  mutate(event = status - 1) # Convert to 0/1 coding
times <- lung_clean$time_years</pre>
events <- lung_clean$event</pre>
# Calculate key statistics for MLE
n <- length(times)</pre>
d <- sum(events) # number of deaths</pre>
total_time <- sum(times) # sum of all observed times
cat("=== Data Summary for MLE ===\n")
## === Data Summary for MLE ===
cat("Sample size (n):", n, "\n")
## Sample size (n): 228
cat("Number of deaths (d):", d, "\n")
## Number of deaths (d): 165
cat("Number censored:", n - d, "\n")
## Number censored: 63
cat("Total observed time:", round(total_time, 2), "person-years\n\n")
## Total observed time: 190.54 person-years
# Test many lambda values to find the best one
test_lambdas <- seq(0.1, 2.0, by = 0.05) # More fine-grained search
results <- data.frame()
for(lam in test_lambdas) {
  # Log-likelihood formula: d * log(lambda) - lambda * sumt_i
 11 <- d * log(lam) - lam * total_time</pre>
```

```
results <- rbind(results, data.frame(
    lambda = lam,
    log_likelihood = 11
  ))
}
# Find the best lambda
best_result <- results[which.max(results$log_likelihood), ]</pre>
best_lambda <- best_result$lambda</pre>
best_ll <- best_result$log_likelihood</pre>
cat("=== Search Results ===\n")
## === Search Results ===
cat("Best lambda from search:", best_lambda, "\n")
## Best lambda from search: 0.85
cat("Log-likelihood at best lambda:", round(best_ll, 2), "\n")
## Log-likelihood at best lambda: -188.77
# Compare with our visual guesses
visual_lambdas \leftarrow c(0.3, 0.6, 0.9, 1.2, 1.8)
cat("\n=== How Our Visual Guesses Compare ===\n")
##
## === How Our Visual Guesses Compare ===
for(lam in visual_lambdas) {
  11 <- d * log(lam) - lam * total_time</pre>
  diff <- best_ll - ll</pre>
  cat("lambda =", lam, ": Log-likelihood =", round(11, 2),
      ", Difference from best:", round(diff, 2), "\n")
## lambda = 0.3 : Log-likelihood = -255.82 , Difference from best: 67.05
## lambda = 0.6 : Log-likelihood = -198.61 , Difference from best: 9.84
## lambda = 0.9 : Log-likelihood = -188.87 , Difference from best: 0.1
## lambda = 1.2 : Log-likelihood = -198.56 , Difference from best: 9.79
## lambda = 1.8 : Log-likelihood = -245.98 , Difference from best: 57.21
```

Plot: Likelihood Function

Let's visualize how the likelihood changes across different lambda values:

```
# Create the likelihood plot
ggplot(results, aes(x = lambda, y = log_likelihood)) +
  geom_line(color = "blue", linewidth = 1.2) +
 geom_point(color = "blue", size = 1, alpha = 0.6) +
 # Mark the optimal lambda
  geom_point(aes(x = best_lambda, y = best_ll),
            color = "red", size = 4, shape = 17) +
 geom_vline(xintercept = best_lambda, color = "red",
             linetype = "dashed", alpha = 0.7) +
  # Mark our visual lambda guesses
  geom_vline(data = data.frame(lam = visual_lambdas),
             aes(xintercept = lam),
             color = "gray", linetype = "dotted", alpha = 0.8) +
 labs(
   title = "Log-Likelihood Function for Different lambda Values",
   subtitle = paste("Red triangle = Optimal lambda (", best_lambda, "), Gray lines = Visual guesses",
   x = "Lambda (lambda)",
   y = "Log-Likelihood"
 ) +
 theme_minimal() +
   plot.title = element_text(hjust = 0.5, face = "bold"),
   plot.subtitle = element_text(hjust = 0.5)
```


Analytical Solution

The exponential distribution has a simple analytical solution for the MLE:

```
# The MLE formula: lambda_hat = d / sumt_i
lambda_mle_analytical <- d / total_time</pre>
ll_analytical <- d * log(lambda_mle_analytical) - lambda_mle_analytical * total_time</pre>
cat("=== Analytical MLE Solution ===\n")
## === Analytical MLE Solution ===
cat("lambda_MLE = d / sumt_i = ", d, " / ", round(total_time, 2), " = ", round(lambda_mle_analytical, 4
## lambda_MLE = d / sumt_i = 165 / 190.54 = 0.866
cat("Log-likelihood:", round(ll_analytical, 2), "\n")
## Log-likelihood: -188.74
cat("\n=== Comparison of Methods ===\n")
##
## === Comparison of Methods ===
cat("Grid search best lambda:", best_lambda, "\n")
## Grid search best lambda: 0.85
cat("Analytical MLE lambda:", round(lambda_mle_analytical, 4), "\n")
## Analytical MLE lambda: 0.866
cat("Difference:", round(abs(best_lambda - lambda_mle_analytical), 4), "\n")
## Difference: 0.016
cat("\nThe analytical solution is exact - any tiny difference is due to our grid spacing.\n")
## The analytical solution is exact - any tiny difference is due to our grid spacing.
```

Final Comparison: Visual vs Mathematical

```
# Create a final comparison plot showing survival curves
final_lambdas <- c(0.9, best_lambda)</pre>
final_labels <- c("lambda = 0.9 (Visual guess)", paste("lambda = ", best_lambda, "(MLE)"))
final_plot_data <- data.frame()</pre>
for(i in 1:length(final_lambdas)) {
 temp_data <- data.frame(</pre>
   time = time grid,
   survival = exp(-final_lambdas[i] * time_grid),
   model = final_labels[i]
 final_plot_data <- rbind(final_plot_data, temp_data)</pre>
# Create color mapping
mle_label <- paste("lambda =", best_lambda, "(MLE)")</pre>
color_mapping <- c("lambda = 0.9 (Visual guess)" = "green")</pre>
color_mapping[mle_label] <- "red"</pre>
ggplot() +
  # Kaplan-Meier curve
  geom_step(data = km_data,
            aes(x = time, y = survival),
            color = "black", linewidth = 2.5, alpha = 0.8) +
  # Comparison models
  geom_line(data = final_plot_data,
            aes(x = time, y = survival, color = model),
            linewidth = 1.8, alpha = 0.8) +
  scale_color_manual(values = color_mapping) +
  xlim(0, 3) + ylim(0, 1) +
  labs(
   title = "Visual Assessment vs Mathematical Optimum",
    subtitle = "Black = Observed data (Kaplan-Meier)",
    x = "Time (years)",
    y = "Survival Probability",
    color = "Models"
  ) +
 theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
    plot.subtitle = element_text(hjust = 0.5, size = 12),
    legend.position = "bottom"
```

Visual Assessment vs Mathematical Optimum Black = Observed data (Kaplan-Meier) 1.00 0.75 Survival Probability 0.25 0.00 Time (years) Models — lambda = 0.85 (MLE) — lambda = 0.9 (Visual guess) cat("\n=== Conclusion ===\n") ## ## === Conclusion === cat(". Visual assessment (lambda = 0.9) was very close to optimal!\n") ## • Visual assessment (lambda = 0.9) was very close to optimal!

```
cat("• Mathematical MLE gives lambda =", round(lambda_mle_analytical, 3), "\n")
```

• Mathematical MLE gives lambda = 0.866

```
cat("• Both models fit the data quite well\n")
```

\bullet Both models fit the data quite well

cat("• The likelihood plot shows a clear single peak at the MLE\n")

 $\ensuremath{\mbox{\#\#}}$ • The likelihood plot shows a clear single peak at the MLE