Técnicas y Dispositivos Digitales II

Teoría General de los Circuitos Secuenciales Sincrónicos (CSS)

Modelos de Mealy y Moore

 Según el tipo de comportamiento del circuito con respecto a las entradas y salidas tenemos dos modelos o tipos de máquina de estado.

 Estas máquinas son de tipo Moore o tipo Mealy.

S_{n+1} = función FF (Y_n)

Biestable	Símbolo	Tabla Característica	Ec. Característica	Tabla de Excitación
SR	S Q	S R Q(siguiente) 0 0 Q 0 1 0 1 0 1 1 1 NA	Q(siguiente) = S + R'Q	Q Q(siguiente) S R 0 0 0 X 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1
JK	— J Q — — ≻ — K Q' >—	J K Q(siguiente) 0 0 Q 0 1 0 1 0 1 1 1 Q'	Q(signiente) = JQ' + K'Q	Q Q(siguiente) J K 0 0 0 X 0 1 1 X 1 0 X 1 1 1 X 0
D	D Q	D Q(siguiente) 0 0 1 1	Q(siguiente) = D	Q Q(siguiente) D 0 0 0 0 1 1 1 0 0 1 1 1
Т	T Q	T Q(siguiente) 0 Q 1 Q'	Q(siguiente) = TQ' + T'Q	Q Q(siguiente) T 0 0 0 0 1 1 1 0 1 1 1 0

S_{n+1} = función FF (Y_n)

S_{n+1} = función FF (Y_n)

Biestable	Símbolo	Tabla Característica	Ec. Característica	Tabla de Excitación
SR	S Q	S R Q(siguiente) 0 0 Q 0 1 0 1 0 1 1 1 NA	Q(siguiente) = S + R'Q	Q Q(siguiente) S R 0 0 0 X 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1
JK	— J Q — → K Q' > —	J K Q(siguiente) 0 0 Q 0 1 0 1 0 1 1 1 Q'	Q(signiente) = JQ' + K'Q	Q Q(siguiente) J K 0 0 0 X 0 1 1 X 1 0 X 1 1 1 X 0
D	D Q	D Q(siguiente) 0 0 1 1	Q(siguiente) = D	Q Q(siguiente) D 0 0 0 0 1 1 1 0 0 1 1 1
Т	T Q	T Q(siguiente) 0 Q 1 Q'	Q(siguiente) = TQ' + T'Q	Q Q(siguiente) T 0 0 0 0 1 1 1 0 1 1 1 0

S_{n+1}= función FF (Y_n) Diagramas de Estados de Biestables

estado, no involucra la entrada Salida Lógica salida Salida Lógica siguiente estado Entrada X Lógica Estado combinacional Excitación actual Sn Lógica Y_n combinacional Flip Flops Estado Reloj -

La salida sólo depende del

- La salida sólo depende del estado, no involucra la entrada
- Z_n función de salida y S_{n+1} función de próximo estado

$$Z_n = H(S_n)$$

$$S_{n+1}=G(X_n,S_n)$$

- La salida sólo depende del estado, no involucra la entrada
- Z_n función de salida y S_{n+1} función de próximo estado

$$Z_n = H(S_n)$$

$$S_{n+1}=G(X_n,S_n)$$

Ventaja

Los cambios en la entrada no originan glitches no deseados a la salida.

- Un cambio en la entrada en cualquier instante del ciclo de reloj influye inmediatamente en la salida
- Z_n función de salida y S_{n+1} función de próximo estado

$$Z_n = H(X_n, S_n)$$

$$S_{n+1}=G(X_n,S_n)$$

- Un cambio en la entrada en cualquier instante del ciclo de reloj influye inmediatamente en la salida
- Z_n función de salida y S_{n+1} función de próximo estado

$$Z_n = H(X_n, S_n)$$

$$S_{n+1}=G(X_n,S_n)$$

Ventaja

Mayor flexibilidad en el diseño, en general requieren menos estados que Moore.

Descripción de Máquinas de Estados

Herramientas para describir una Máquina de Estados:

- Diagrama de Estados
- Tabla de Transiciones

Definen su funcionamiento. Permiten determinar la respuesta del circuito a cualquier secuencia de entrada.

Diagrama de Estados. Modelo Moore

Estado actual / Salida del estado S1

Las salida se asocia a cada estado, no depende de la entrada. La salida sólo cambia con los flancos del reloj.

Diagrama de Estados. Modelo Moore

Estado actual / Salida del estado S1

Diagrama de Estados. Modelo Moore

Estado actual / Salida del estado S1

Estado siguiente / Salida del estado S2

Diagrama de Estados. Modelo Mealy

Diagrama de Estados. Modelo Mealy

La salida depende del estado actual y de la entrada → se asocia a las transiciones (cambios) entre estados

Diagrama de Estados. Modelo Mealy

Tabla de estados/salida

State	Input X		Output
S	0	1	Z
Α	Α	В	0
В	Α	C0	0
C0	Α	C1	0
C1	А	C1	1

Estado siguiente

Tabla de estados/salida

Estados

State	Inp	ut X	Output
S	0	1	Z
Α	Α	В	0
В	Α	C0	0
C0	Α	C1	0
C1	А	C1	1

Estado siguiente

Tabla de estados/salida

Entradas

State	Input X		Output
S	0	1	Z
Α	Α	В	0
В	Α	C0	0
C0	Α	C1	0
C1	А	C1	1

Estado siguiente

Tabla de estados/salida

Salidas

State	Input X		Output
S	0	1	Z
Α	Α	В	0
В	Α	C0	0
C0	Α	C1	0
C1	А	C1	1

Estado siguiente

Tabla de estados/salida

Estados siguientes

State	Input X		Output
S	0	1	Z
Α	Α	В	0
В	Α	C0	0
C0	Α	C1	0
C1	Α	C1	1

Estado siguiente

Tabla de estados/salida

Relación con Diagrama de Estados

State	Input X		Output
S	0	1	Z
(A)	Α	В	0
В	Α	C0	0
C0	Α	C1	0
C1	А	C1	1

Estado siguiente

Tabla de estados/salida

Relación con Diagrama de Estados

State	Input X		Output
S	0	1	Z
Α	Α	В	0
В	Α	C0	0
C0	Α	C1	0
C1	Α	C1	1

Estado siguiente

Tabla de estados/salida

Relación con Diagrama de Estados

State	Input X		Output
S	0	1	Z
A	Α	→B	0
В	Α	C0	0
C0	Α	C1	0
C1	Α	C1	1

Estado siguiente

Tabla de estados/salida

Máquina de Moore

State	Inp	ut X	Output
S	0	1	Z
Α	Α	В	0
B	A	C0	0
C0	Α	C1	0
C1	Α	C1	1

Estado siguiente

Tabla de estados/salida

Máquina de Moore

State	Inpu	ıt X	Output
S	0	1	Z
(A)	A	В	0
В	Α	C0	0
C0	Α	C1	0
C1	А	C1	1

Estado siguiente

Tabla de estados/salida

Máquina de Moore

State	Input X		Output
S	0	1	Z
Α	A	В	0
В	Ă	C0	0
C0	Α	C1	0
C1	А	C1	1

Estado siguiente

Tabla de estados/salida

Máquina de Moore

Estado siguiente

Tabla de estados/salida

Máquina de Moore

Estado siguiente

Tabla de estados/salida

State	Input X	
S	0	1
Α	A,0	B,0
В	A,0	C,0
С	A,0	C,1

Tabla de estados/salida

de Moore

State	Input X	
S	0	1
Α	A,0	В,0
В	A,0	C,0
С	A,0	C,1

Estados

Tabla de estados/salida

de Moore

State	Input X	
S	0	1
Α	A,0	B,0
В	A,0	C,0
С	A,0	C,1

Entradas

Tabla de estados/salida

Estados siguientes

Tabla de estados/salida

Salidas

Tabla de estados/salida

Relación con Diagrama de Estados

Tabla de estados/salida

Tabla de estados/salida

Relación con Diagrama de Estados

Tabla de estados/salida

Relación con Diagrama de Estados

Tabla de estados/salida

Relación con Diagrama de Estados

 A partir de un circuito se pretende obtener la Tabla de transiciones y/o el Diagrama de estados.

 A partir de un circuito se pretende obtener la Tabla de transiciones y/o el Diagrama de estados.

• Ejemplo:

Ejemplo:

$$D_n = \overline{S_n}.X_n + \overline{X_n}.S_n = X_n \oplus S_n$$

$$Z_n = X_n . S_n$$

Ejemplo:

$$D_n = \overline{S_n}.X_n + \overline{X_n}.S_n = X_n \oplus S_n$$

$$Z_n = X_n . S_n$$

FFD:
$$Q_{n+1}=D_n$$

Ejemplo:

$$S_{n+1} = \overline{S_n}.X_n + \overline{X_n}.S_n = X_n \oplus S_n$$

$$Z_n = X_n . S_n$$

Ejemplo:

$$S_{n+1} = \overline{S_n}.X_n + \overline{X_n}.S_n = X_n \oplus S_n$$

$$Z_n = X_n . S_n$$

Salida depende también de la entrada→ Mealy

• Ejemplo:

Tabla de transiciones:

• Ejemplo:

Tabla de transiciones:

Ejemplo:

Tabla de transiciones:

$$S_{n+1} = \overline{S_n}.X_n + \overline{X_n}.S_n = X_n \oplus S_n$$

Ejemplo:

Tabla de transiciones:

Estado	Entrada X _n		
S _n	0	1	
0	0 •		
1			
		_	•

Con $S_n=0$ y $X_n=0$: $S_{n+1}=S_n \oplus X_n=0 \oplus 0=0$

Ejemplo:

Tabla de transiciones:

Estado	Entrada X _n		
S _n	0	1	
0	0,0 ←		
1			

Con
$$S_n=0$$
 y $X_n=0$: $S_{n+1}=S_n \oplus X_n=0 \oplus 0=0$

$$Z_n = S_n \cdot X_n = 0 \cdot 0 = 0$$

• Ejemplo:

Tabla de transiciones:

Estado	Entrada X _n		
S _n	0	1	
0	0,0	1,0	
1	1,0	0,1	

• Ejemplo:

• Ejemplo:

Diagrama de Estados:

0

1

Con
$$S_n=0$$
 y $X_n=0$

• Ejemplo:

Con
$$S_n=0$$
 y $X_n=0$ \Longrightarrow $S_{n+1}=S_n \oplus X_n=0 \oplus 0=0$

• Ejemplo:

Con
$$S_n=0$$
 y $X_n=0$ \Longrightarrow $S_{n+1}=S_n \oplus X_n=0 \oplus 0=0$ $Z_n=S_n \cdot X_n=0 \cdot 0=0$

• Ejemplo:

- A veces se desea obtener un diagrama de tiempos que ilustre su funcionamiento.
- Esto es posible con la secuencia de entrada y el estado inicial.

 A veces se desea obtener un diagrama de tiempos que ilustre su funcionamiento.

X=01101000 S_{inicial}=0

y el est

• El proceso se resume en los siguientes pasos:

Paso 1) Obtener las ecuaciones de entrada de los FF y de salida del circuito, mediante análisis combinacional.

• El proceso se resume en los siguientes pasos:

Paso 1) Obtener las ecuaciones de entrada de los FF y de salida del circuito, mediante análisis combinacional.

Paso 2) Obtener ecuaciones de estado siguiente teniendo en cuenta la tabla de los biestables involucrados (FF-D, FF-JK, FF-T, etc.)

El proceso se resume en los siguientes pasos:

Paso 1) Obtener las ecuaciones de entrada de los FF y de salida del circuito, mediante análisis combinacional.

Paso 2) Obtener ecuaciones de estado siguiente teniendo en cuenta la tabla de los biestables involucrados (FF-D, FF-JK, FF-T, etc.)

Paso 3) Obtener la tabla de estados/salida, asociando un símbolo de estado a cada código de las variables de estado (Ej: A=00, B=01, C=10, D=11).

El proceso se resume en los siguientes pasos:

Paso 1) Obtener las ecuaciones de entrada de los FF y de salida del circuito, mediante análisis combinacional.

Paso 2) Obtener ecuaciones de estado siguiente teniendo en cuenta la tabla de los biestables involucrados (FF-D, FF-JK, FF-T, etc.)

Paso 3) Obtener la tabla de estados/salida, asociando un símbolo de estado a cada código de las variables de estado (Ej: A=00, B=01, C=10, D=11).

Paso 4) Dibujar Diagrama de Estados.

El proceso se resume en los siguientes pasos:

Paso 1) Obtener las ecuaciones de entrada de los FF y de salida del circuito, mediante análisis combinacional.

Paso 2) Obtener ecuaciones de estado siguiente teniendo en cuenta la tabla de los biestables involucrados (FF-D, FF-JK, FF-T, etc.)

Paso 3) Obtener la tabla de estados/salida, asociando un símbolo de estado a cada código de las variables de estado (Ej: A=00, B=01, C=10, D=11).

Paso 4) Dibujar Diagrama de Estados.

Paso 5) Desarrollar diagramas de tiempo, para una secuencia de entrada y un estado inicial dados.

Ejemplo: Realice el análisis del Siguiente Circuito.

$$Z_{0(n)} = Q_{0(n)}$$

$$Z_{1(n)} = Q_{1(n)}$$

$$\begin{split} D_{0(n)} &= Cnt_{(n)} \oplus \ Q_{0(n)} = \overline{Cnt}_{(n)}.\ Q_{0(n)} + Cnt_{(n)}.\ \overline{Q_0}_{(n)} \\ D_{1(n)} &= \overline{Cnt}_{(n)}.\ Q_{1(n)} + Cnt_{(n)}.\ \overline{Q_1}_{(n)}.\ Q_{0(n)} + Cnt_{(n)}.\ \overline{Q_0}_{(n)} \end{split}$$

$$Z_{0(n)} = Q_{0(n)}$$
 Salidas no dependen de la entrada \rightarrow Moore

$$\begin{split} D_{0(n)} &= Cnt_{(n)} \oplus \ Q_{0(n)} = \overline{Cnt}_{(n)}.\ Q_{0(n)} + Cnt_{(n)}.\ \overline{Q_0}_{(n)} \\ D_{1(n)} &= \overline{Cnt}_{(n)}.\ Q_{1(n)} + Cnt_{(n)}.\ \overline{Q_1}_{(n)}.\ Q_{0(n)} + Cnt_{(n)}.\ \overline{Q_0}_{(n)} \end{split}$$

Paso 2) Ecuaciones de estado siguiente.

$$Z_{0(n)} = Q_{0(n)}$$

$$Z_{1(n)} = Q_{1(n)}$$

$$\begin{split} D_{0(n)} &= Cnt_{(n)} \oplus Q_{0(n)} = \overline{Cnt}_{(n)} \cdot Q_{0(n)} + Cnt_{(n)} \cdot \overline{Q_0}_{(n)} \\ D_{1(n)} &= \overline{Cnt}_{(n)} \cdot Q_{1(n)} + Cnt_{(n)} \cdot \overline{Q_1}_{(n)} \cdot Q_{0(n)} + Cnt_{(n)} \cdot \overline{Q_0}_{(n)} \end{split}$$

FFD: $Q_{(n+1)} = D$

$$Q_{0(n+1)} = Cnt_{(n)} \oplus Q_{0(n)} = \overline{Cnt}_{(n)} \cdot Q_{0(n)} + Cnt_{(n)} \cdot \overline{Q_0}_{(n)}$$

$$Q_{1(n+1)} = \overline{Cnt}_{(n)}. \ Q_{1(n)} + Cnt_{(n)}. \ \overline{Q_1}_{(n)}. \ Q_{0(n)} + Cnt_{(n)}. \ \overline{Q_0}_{(n)}$$

Paso 3) Tabla de estados/salida.

ESTADO ACTUAL Q ₁ Q ₀	ESTADO SIGUIENTE Q ₁ (siguiente)		Salida
	Cnt=0	Cnt=1	Z_0Z_1
0 0	0 0	0 1	0 0
0 1	0 1	1 0	0 1
1 0	1 0	1 1	1 0
1 1	1 1	0 0	1 1

Paso 3) Tabla de estados/salida.

ESTADO ACTUAL	ESTADO SIGUIENTE		Salida
	Cnt=0	Cnt=1	Z_0Z_1
Α	Α	В	0 0
В	В	С	0 1
С	С	D	1 0
D	D	Α	1 1

Asignación arbitraria: 00 → A

01 **→** B

10 **→** C

11 → D

Paso 4) Diagrama de Estados.

Paso 4) Diagrama de Estados.

Ejemplo 2:

$$\begin{split} Z_{(n)} &= X_{(n)} . Q_{(n)} \\ T_{(n)} &= X_{(n)} . Q_{(n)} + \overline{X}_{(n)} . \overline{Q_{(n)}} = \overline{X_{(n)} \oplus Q_{(n)}} \end{split}$$

$$Z_{(n)} = X_{(n)} \cdot Q_{(n)}$$
 Salidas dependen de la entrada \rightarrow Mealy
$$T_{(n)} = X_{(n)} \cdot Q_{(n)} + \overline{X}_{(n)} \cdot \overline{Q_{(n)}} = \overline{X_{(n)} \oplus Q_{(n)}}$$

Paso 2) Ecuaciones de estado siguiente.

$$Z_{(n)} = X_{(n)} . Q_{(n)}$$

$$T_{(n)} = X_{(n)} . Q_{(n)} + \overline{X}_{(n)} . \overline{Q_{(n)}} = \overline{X_{(n)} \oplus Q_{(n)}}$$

FF T:
$$Q_{(n+1)} = \overline{T}_{(n)} \cdot Q_{(n)} + T_{(n)} \cdot \overline{Q}_{(n)}$$

FF T:
$$Q_{(n+1)} = \overline{T}_{(n)} \cdot Q_{(n)} + T_{(n)} \cdot \overline{Q}_{(n)}$$

$$Q_{(n+1)} = (X_{(n)} \oplus Q_{(n)}) \cdot Q_{(n)} + \overline{X_{(n)} \oplus Q_{(n)}} \cdot \overline{Q}_{(n)}$$

Paso 3) Tabla de estados/salida.

Estado	Entrada X _n	
S _n	0	1
0	1/0	0/0
1	1/0	0/1

$$Z_{(n)} = X_{(n)} .Q_{(n)}$$

$$Q_{(n+1)} = (X_{(n)} \oplus Q_{(n)}).Q_{(n)} + \overline{X_{(n)} \oplus Q_{(n)}}. \overline{Q}_{(n)}$$

Tabla de Transiciones

Paso 3) Tabla de estados/salida.

Estado	Entrada X _n	
S _n	0	1
Α	B/0	A/0
В	B/0	A/1

• Tabla de Estados (Asignación arbitraria de símbolos)

Paso 4) Diagrama de Estados.

Estado	Entrada X _n	
S _n	0	1
Α	B/0	A/0
В	B/0	A/1

FFT:
$$T_n = 1 \rightarrow Q_{n+1} = \overline{Q}_n$$

 $T_n = 0 \rightarrow Q_{n+1} = Q_n$

Si la entrada de FFT vale 1 la salida en n+1 se debe invertir

FFT:
$$T_n = 1 \rightarrow Q_{n+1} = \overline{Q}_n$$

 $T_n = 0 \rightarrow Q_{n+1} = Q_n$

FFT:
$$T_n = 1 \rightarrow Q_{n+1} = \overline{Q}_n$$

Si la entrada de FFT vale 1 y estoy $T_n = 0 \rightarrow Q_{n+1} = Q_n$

en Qn=0→ la salida en n+1 Qn+1=1

FFT:
$$T_n = 1 \rightarrow Q_{n+1} = \overline{Q}_n$$

by $T_n = 0 \rightarrow Q_{n+1} = Q_n$

Si la entrada de FFT vale 1 y estoy en Qn=0→ la salida en n+1 Qn+1=1

FFT:
$$T_n = 1 \rightarrow Q_{n+1} = \overline{Q_n}$$

by $T_n = 0 \rightarrow Q_{n+1} = Q_n$

Si la entrada de FFT vale 1 y estoy en Qn=0→ la salida en n+1 Qn + 1 = 1

FFT:
$$T_n = 1 \rightarrow Q_{n+1} = \overline{Q}_n$$

 $T_n = 0 \rightarrow Q_{n+1} = Q_n$

Volviendo al Ej: Circuito Secuencial Mealy con FF-T.

- Secuencia de Entrada: 0 1 1 0 1 0 0 0
- Y=0 en t=0

Diagrama de Tiempos

$$Z = X.Q_1.Q_2$$

$$J_1 = X.Q_2$$

$$K_1 = \overline{X}$$

$$J_2 = X$$

$$K_2 = \overline{X} + \overline{Q}_1$$

Paso 2) Ecuaciones del estado siguiente

$$Z = X.Q_{1}.Q_{2}$$

$$J_{1} = X.Q_{2}$$

$$K_{1} = \overline{X}$$

$$Q_{1(n+1)} = X_{(n)}.Q_{2(n)}Q_{1(n)} + X_{(n)}.Q_{1(n)}$$

$$J_{2} = X$$

$$K_{2} = \overline{X} + \overline{Q}_{1}$$

$$Q_{2(n+1)} = X_{(n)}.Q_{2(n)} + (\overline{X}_{(n)} + \overline{Q}_{1(n)}).Q_{2(n)}$$

FF JK
$$\rightarrow$$
 $Q_{(n+1)} = J_{(n)} \cdot Q_{(n)} + \overline{K}_{(n)} \cdot Q_{(n)}$

Paso 3) Tabla de estados/salida con Mapa K.

$$Z = X.Q_1.Q_2$$

$$J_1 = X.Q_2$$

$$K_1 = \overline{X}$$

$$J_2 = X$$

$$K_2 = \overline{X} + \overline{Q}_1$$

Todo esto ocurre en el tiempo n

Mapas K:

Conociendo el FF y sabiendo sus entradas puedo predecir qué ocurrirá en el tiempo n+1

Tabla de Transiciones

Conociendo el FF y sabiendo sus entradas puedo predecir qué ocurrirá en el tiempo n+1

Tabla de Transiciones

Conociendo el FF y sabiendo sus entradas puedo predecir qué ocurrirá en el tiempo n+1

Conociendo el FF y sabiendo sus entradas puedo predecir qué ocurrirá en el tiempo n+1

$$Q1(n)=0$$

Tabla de Transiciones

Tabla de Transiciones

 $J_1K_1 \ J_2K_2 \ J_1K_1 \ J_2K_2$

Otro Ejemplo:

- Secuencia de entrada x = 0 0 1 1 1 1 0
- $Q_{1(0)}Q_{2(0)}=10$ en t=0

