Fonctions et équations quadratiques

Enseignement de Spécialité. 1^{re}G

Définition et forme canonique

Une fonction quadratique est définie sur $\mathbb R$ par

$$f(x) = ax^2 + bx + c$$
 forme réduite

Son déterminant est donné par

$$\Delta = b^2 - 4ac$$

On pose $\alpha = \frac{-b}{2a}$ et $\beta = \frac{-\Delta}{4a}$. La fonction f s'écrit :

$$f(x) = a(x - \alpha)^2 + \beta$$
 forme canonique
$$= a\left(x - \frac{-b}{2a}\right)^2 + \frac{-\Delta}{4a}$$

Forme factorisée, racines et signe d'un trinome

 \square Si $\Delta > 0$, alors f admet deux racines distinctes

$$r_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$r_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad \qquad r_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

f est factorisable sous la forme :

$$f(x) = a(x - r_1)(x - r_2)$$
 forme factorisée

\boldsymbol{x}	$-\infty$	r_1	r_2	$+\infty$
Signe de f	signe de	e a 0 sign	e de -a 0 sign	ne de a

Si $\Delta = 0$ alors f admet une racine double $r = \frac{-b}{2a}$

$$f(x) = a(x - r)^2$$

x	$-\infty$		r		$+\infty$
Signe		signe de a		signe de a	
de f		Signe de a	<u> </u>	Signe de a	: : : :

Si $\Delta < 0$ alors f n'admet pas de racines et n'est pas factorisable.

x	$-\infty$	$+\infty$
Signe de f	signe de a	- - - - - - - - - - - - - - - - - - -

Forme factorisée, racines et signe d'un trinome

Si $f(x) = ax^2 + bx + c$ est factorisable, alors

la somme des racines est $r_1 + r_2 = \frac{-b}{a}$ ($\alpha = \frac{r_1 + r_2}{2} = \frac{-b}{2a}$)

le produit des racines est $r_1 r_2 = \frac{c}{a}$

Représentation graphique

La représentation graphique d'une fonction quadratique est une **parabole** d'équation $y = ax^2 + bx + c$.

Cette parabole est la translation de la parabole $y = ax^2$.

Sens de variation

La forme canonique $f(x) = a(x - \alpha)^2 + \beta$ permet de déterminer le sens de variation de f:

Si a > 0 alors f admet un **minimum** β atteint en α .

Si a < 0 alors f admet un **maximum** β atteint en α .

Techniques de factorisations/résolutions

- par regroupement 3x(2x+5)+5(2x+5) = (3x+5)(2x+5)
- par différence de carrés ... $x^2 5 = (x \sqrt{5})(x + \sqrt{5})$
- par produit-somme
- par complétion au carré
- par la formule quadratique