

Fundamentals of Data Engineering

Trainer: Nilesh Ghule

NoSQL Databases

- Key-value databases e.g. redis, dynamodb, riak
 - Based on Amazon's Dynamo database.
 - Keys are unique and values can be of any type i.e. JSON, BLOB, etc. mages audio video, ...
 Implemented as big distributed hash-table for fast
 - searching.
- Wide Column databases e.g. hbase, cassandra, sz-now 1787m bigtable, ...
 - Values of columns are stored contiguously.
 - Better performance while accessing few columns & aggregations.
 - Good for data-warehousing, business intelligence, **CRM**, ...

NoSQL Databases

- · Graph databases e.g. Neo4J, Titan, ...
 - Graph is collection of vertices and edges.
 - Excellent performance, while dealing with all relations of an entity

(irrespective of size of data).

collection

groups: ["politics", "news"]

- Document oriented databases e.g. MongoDb,
 CouchDb, ...
 - Document contains data <u>as key-value pair</u> as <u>JSON</u> or XML.
 - Document schema is flexible & are added in collection for processing.

```
JSON: Java Script Object Notation
XML: extensible Markup Language
```

RDBMS STABLE COLUMNS STABLES

@ Rows

do < 3

doc 2

2005

Collection

Oriented

Tooll: 1,

SAL

mane: "James"

ollection

marks: 99.0,

selds

batch: "Om46

NoSQL Databases

- <u>Search databases</u> e.g. <u>Elasticsearch, Solr, Lucene, ...</u>
 - For faster search Text search, Log analysis.
 - Indexed, Exact/Fuzzy matches, Anomaly detection, Analytics.

- Time series databases e.g. Influx, Druid, …
 - Values organized by time like stock market, weather,
 ...
 - Optimized for retrieval, statistical processing, ...
 - Used for measurement data (weather, ...) and event-based data (accidents, ...)

Date	Ozone (µg/m³)	Temperature (°C)	Relative humidity (%)	n deaths
1 Jan 2002	4.59	-0.2 ►	75.7	199
2 Jan 2002 \	4.88	0.1	77.5	231
3 Jan 2002	4.71	0.9 🔽	81.3	210
4 Jan 2002 \	4.14	0.5	85.4	203
5 Jan 2002	2.01	4.3	93.5	224
6 Jan 2002	2.4	7.1 🗸	96.4	198

Data warehousing

- Data warehouse is a single, complete and consistent store of data obtained from a variety of different sources made available to end users in a what they can understand and use in a business context.
- Data warehousing is a process of transforming data into information and making it available to users in a timely enough manner to make a difference.

DWH Products -> Relational Db - SQL

Extract - Transform - Load

- Extracting: Extract data from sources into staging area
- Conditioning: Data types conversion to fit warehouse.
- House holding: Grouping similar data
- Enrichment: Add relevant data from external sources
- Scoring: Computation of probability of an event
- Scrubbing: Data cleaning: find duplicate, missing data
- Merging: Merging data from various sources.
- De-normalize: Duplicate data to reduce joins.
- Loading: Load data in warehouse models like Star, Snowflake, Galaxy.
- Delta Updating: Incremental data uploading
- Partitioning: Dividing the data in logical parts to improve performance.

DWH Schemas

• <u>DWH schema is how data is stored in tables in</u> warehouse for the efficient processing of the data.

• A fact table stores metrics, measurements, or facts about business processes. e.s. price, sellence, profit, tan, cut, prodict, and id fid

• Dimension tables are tables used to store data attributes or dimensions. es. cutom (1d, nm, city) ... products

 Star schema: Single facts table and a few dimension tables (de-normalized) – Simple design.

 Snowflake schema: Single facts table and connected dimension/sub-dimension tables (normalized).

 Galaxy or Fact-Constellation schema: Multiple facts tables mapped to multiple dimension/subdimension tables.

id, nm, all

Snowtha

Cid, pr. Sp. problitan, Pid

OLTP (Database) vs OLAP (Data warehouse)

- Online Transaction Processing
- Modeled to run the business
- Detailed/Transactional normalized real-time data
- Transaction performance
- Read/Write operations
- Isolated data (Application specific)
 Limited data (100 MB to 100 GB)

- Online Analytical Processing
- Modeled to analyze/optimize business
- Summarized/refined redundant snapshot data

Shistoric (roathly, weekly, daily).

- Analytical query performance
- Mostly Read operations
- Integrated data (from all sources) –
 Huge data (100 GB to Few TB)

Data lake vs Data warehouse vs Data mart

Data engineering

 Data engineering is the development, implementation, and maintenance of systems and processes that take in raw data and produce high-quality, consistent information that supports downstream use cases, such as analysis and machine learning.

 Data engineer manages data engineering lifecycle, beginning with getting data from source systems & ending with serving data for use cases, such as analysis or machine learning.

https://youtu.be/hZu_87l62J4

Traditional ETL vs Hadoop ELT

- ETL stands for Extract, Transform and Load.
- The ETL process typically extracts data from the source/transactional systems, transforms it to fit the model of data-warehouse and finally loads it to the data warehouse.
- The transformation process involves cleansing, enriching and applying transformations to create desired output.
- Data is usually dumped to a staging area after extraction.

- ELT stands for Extract, Load and Transform.
- As opposed to loading just the transformed data in the target systems, the ELT process loads the entire data into the data lake. This results in faster load times.
- The <u>load process</u> can also perform some <u>basic validations</u> and data cleansing rules.
- The data is then transformed for analytical reporting as per demand.

Data storage

- Data storage is related to multiple stages in data engineering life cycle i.e. ingestion, transformation and serving.
- Storage needs to be selected based on <u>read/write requirement</u>, <u>speed</u>, durability, consistency, availability, scalability, fault tolerance, ... factors.
- Storage tradeoffs
 - Local storage vs Distributed storage
 - Strong consistency vs Eventual consistency
- Storage options are: File storage, Local disk storage, Network attached storage (NAS), Cloud file systems (S3/Blob), Block storage, RAID, Storage area network (SAN), Object storage, HDFS, Streaming storage.

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

