Automation of Vascular Interventional Surgery

2018 Jan 3 Michael Lee & Emily Hsu & WJ SUN

OVERVIEW

- Motivation
- System Architecture
- Surgeon side
- Patient side
- Future Works

VASCULAR INTERVENTIONAL SURGERY

KEY ISSUE in SURGIAL PROCESS

Radiation lead clothing up to 5 kilograms

Automation can reduce the radiation dose of the surgeon

Current Status: Inspection Catheter

SYSTEM ARCHITECTURE

MASTER – SLAVE INTERACTION

Patient (Slave) Side

Surgeon (Master) Side

Translational, Rotational Motion

Motion Command by Manipulating catheter

Force Measured
shear stress on blood vessel

Simulate Force Feedback

SURGEON SIDE BRAKE

Design Target

get force feedback from patient side, and realize the force environment on the surgeon side.

Experiment Target:

plot the friction curve of different brake materials, and find the suitable operation region of realizing force feedback.

SURGEON SIDE BRAKER MECHANISM

Technology sponge

Low density sponge

POSITION CONTORL OF SERVO MOTOR

Friction Force Measurement

TECHNOLOGY SPONGE

LOW DENSEITY SPONGE

COMPARE SPONGE

Vessel Segmentation Identify blockage in blood vessels

Patient Side Functions

- 1. Design of mechanism
- 2. Implementation of mechanism
- 3. Issues

System Overview Patient Side

DESIGN DEMO

IMPLEMENTATION OF GRIPPER

DESIGN OF ROTOR

DESIGN OF ROTOR

DESIGN OF ROTOR

Bearing is needed to overcome friction

PREVIOUS MANIPULATOR DESIGN

Getting Axial Force Feedback is Hard

EXPERIMENT OF LOAD CELL

EXPERIMENT OF LOAD CELL

Time

CONECPT DESIGN OF ALINGER

CONECPT DESIGN OF ALINGER

FUTURE WORKS

Testing more kinds of brake materials Improve position control of the brake

Select suitable bearing and load cell for the design

The idea of aligner need to be verified