COS210 - Theoretical Computer Science Finite Automata and Regular Languages (Part 5)

Definition

A language L is **regular**, if there exists a **deterministic** finite automaton D that accepts L.

Definition

A language *L* is **regular**, if there exists a **deterministic** finite automaton *D* that accepts *L*.

Theorem

If D is a deterministic finite automaton, then there exists a nondeterministic finite automaton N that accepts the same language as D.

Definition

A language L is **regular**, if there exists a **deterministic** finite automaton D that accepts L.

Theorem

If D is a deterministic finite automaton, then there exists a nondeterministic finite automaton N that accepts the same language as D.

Theorem

A language L is regular, if there exists a nondeterministic finite automaton N that accepts L.

Definition

A language L is **regular**, if there exists a **deterministic** finite automaton D that accepts L.

Theorem

If D is a deterministic finite automaton, then there exists a nondeterministic finite automaton N that accepts the same language as D.

Theorem

A language L is regular, if there exists a nondeterministic finite automaton N that accepts L.

If we want to prove closure properties of the form

$$L, L'$$
 regular $\Rightarrow L \circ p L'$ regular

we can either construct a DFA or an NFA that accepts L op L'.

Remember the following theorem we proved using a **DFA construction**:

Theorem (Closure of Union)

The set of regular languages R over Σ is closed under the Union operation.

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cup L_2$ regular where $L_1 \cup L_2 = \{w : w \in L_1 \text{ or } w \in L_2\}$

We will now prove it again using an **NFA construction** instead.

Closure of the Union Operation: Example

Consider the following regular languages of the automata below:

- $L_1(M_1) = \{ w : \text{string } w \text{ ends with } 00 \}$
- $L_2(M_2) = \{w : \text{string } w \text{ ends with } 11\}$

Closure of the Union Operation: Example

Proving that the union $L_1 \cup L_2$ is regular is a straightforward construction:

 $L(M) = L_1 \cup L_2 = \{w : \text{string } w \text{ ends with } 00 \text{ or ends with } 11\}$

General construction for union:

Theorem (Closure of Union)

The set of regular languages R over Σ is closed under the Union operation.

Proof:

- Show that L_1 , L_2 regular $\Rightarrow L_1 \cup L_2$ regular
- L_1 , L_2 regular \Rightarrow NFAs M_1 , M_2 exist (Theorem 2.5.2)
 - $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ with $L_1 = L(M_1)$
 - $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ with $L_2 = L(M_2)$
- We can assume $Q_1 \cap Q_2 = \emptyset$ (can be always established by renaming states)
- We now construct NFA M with $L(M) = L_1 \cup L_2$.

Proof cont:

- $Q = \{q_0\} \cup Q_1 \cup Q_2$
- $q = q_0$ (q_0 will be the new initial state)
- $F = F_1 \cup F_2$

Proof cont:

- $Q = \{q_0\} \cup Q_1 \cup Q_2$
- $q = q_0$ (q_0 will be the new initial state)
- $F = F_1 \cup F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \\ \delta_2(r,a) & \text{if } r \in Q_2 \end{cases} & \text{(keep all transitions of } M_1) \\ \{q_1,q_2\} & \text{if } r = q_0 \text{ and } a = \epsilon \\ \emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases} & \text{(ϵ-transitions from } q_0 \text{ to } q_1 \text{ and } q_2) \end{cases}$$

Proof cont:

- $Q = \{q_0\} \cup Q_1 \cup Q_2$
- $q = q_0$ (q_0 will be the new initial state)
- $F = F_1 \cup F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \\ \delta_2(r,a) & \text{if } r \in Q_2 \\ \hline \{q_1,q_2\} & \text{if } r = q_0 \text{ and } a = \epsilon \\ \emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases} \text{ (keep all transitions of } M_1)$$

Proof cont:

- $Q = \{q_0\} \cup Q_1 \cup Q_2$
- $q = q_0$ (q_0 will be the new initial state)
- $F = F_1 \cup F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \\ \delta_2(r,a) & \text{if } r \in Q_2 \\ \{q_1,q_2\} & \text{if } r = q_0 \text{ and } a = \epsilon \\ \emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases} \text{ (keep all transitions of } M_1)$$

Theorem (Closure of Concatenation)

The set of regular languages R over Σ is closed under the Concatenation operation.

$$L_1$$
 and L_2 regular $\Rightarrow L_1L_2$ regular where $L_1L_2 = \{ww': w \in L_1 \text{ and } w' \in L_2\}$

Theorem (Closure of Concatenation)

The set of regular languages R over Σ is closed under the Concatenation operation.

Proof:

- Show that L_1 and L_2 regular $\Rightarrow L_1L_2$ regular
- L_1 and L_2 regular \Rightarrow NFAs M_1, M_2 exist (Theorem 2.5.2)
 - $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ with $L_1 = L(M_1)$
 - $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ with $L_2 = L(M_2)$
- We can assume $Q_1 \cap Q_2 = \emptyset$ (can be always established by renaming states)
- We now construct NFA M with $L(M) = L_1L_2$.

Proof cont:

- $Q = Q_1 \cup Q_2$
- $q = q_1$
- $F = F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(r,a) \cup \{q_2\} & \text{if } r \in F_1 \text{ and } a = \epsilon \\ \delta_2(r,a) & \text{if } r \in Q_2 \end{cases}$$

keep all transitions of M_1 and M_2

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_2\}$

Proof cont:

- $Q = Q_1 \cup Q_2$
- $q = q_1$
- $F = F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = egin{cases} \delta_1(r,a) & ext{if } r \in Q_1 ext{ and } r \notin F_1 \ \delta_1(r,a) & ext{if } r \in F_1 ext{ and } a
eq \epsilon \ \delta_1(r,a) \cup \{q_2\} & ext{if } r \in F_1 ext{ and } a = \epsilon \ \delta_2(r,a) & ext{if } r \in Q_2 \end{cases}$$

keep all transitions of M_1 and M_2

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_2\}$

Proof cont:

- $Q = Q_1 \cup Q_2$
- $q = q_1$
- $F = F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \end{cases}$$
$$\delta_1(r,a) \cup \{q_2\} & \text{if } r \in F_1 \text{ and } a = \epsilon$$
$$\delta_2(r,a) & \text{if } r \in Q_2 \end{cases}$$

keep all transitions of M_1 and M_2

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_2\}$

Proof cont:

- $Q = Q_1 \cup Q_2$
- $q = q_1$
- $F = F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \end{cases}$$
$$\delta_1(r,a) \cup \{q_2\} & \text{if } r \in F_1 \text{ and } a = \epsilon$$
$$\delta_2(r,a) & \text{if } r \in Q_2 \end{cases}$$

keep all transitions of M_1 and M_2

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_2\}$

Proof cont:

- $Q = Q_1 \cup Q_2$
- $q = q_1$
- $F = F_2$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(r,a) \cup \{q_2\} & \text{if } r \in F_1 \text{ and } a = \epsilon \end{cases}$$
$$\delta_2(r,a) & \text{if } r \in Q_2$$

keep all transitions of M_1 and M_2

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_2\}$

Theorem (Closure of Star)

The set of regular languages R over Σ is closed under the Star operation.

A regular
$$\Rightarrow A^*$$
 regular where

$$A^* = \{ w_1 w_2 \cdots w_k : k \ge 0 \text{ and } w_i \in A \text{ for all } i = 1, 2, \cdots, k \}$$

Set of all strings that are concatenations of zero or more elements of A

Assume N accepts A. How to construct M accepting A^* based on N?

Cases to be considered:

- 0-concatenations: ϵ
- 1-concatenations: w
- k-concatenations: $w_1 w_2 \dots w_k$

Assume N accepts A. How to construct M accepting A^* based on N?

Cases to be considered:

- 0-concatenations: ϵ
- 1-concatenations: w
- k-concatenations: $w_1 w_2 \dots w_k$

Idea for the construction of M:

- in order to accept ϵ , the initial state of M must be accepting state
- M accepts all 1-concatenations, thus, keep all behaviour of N
- after w_1 would have been accepted, M must reset in order to check if w_2 could be accepted next (and so on)

The NFA M accepts $(L(N))^*$.

The NFA M accepts $(L(N))^*$.

The NFA M accepts $(L(N))^*$.

The NFA M accepts $(L(N))^*$.

Theorem (Closure of Star)

The set of regular languages R over Σ is closed under the Star operation.

Proof:

- Show that A regular $\Rightarrow A^*$ regular
- A regular \Rightarrow NFA N exists (Theorem 2.5.2)
 - $N = (Q_1, \Sigma, \delta_1, q_1, F_1)$ with A = L(N)
- We now construct NFA $M = (Q, \Sigma, \delta, q, F)$ with $L(M) = A^*$.

Proof cont:

- $Q = \{q_0\} \cup Q_1$, where q_0 is a new state.
- $q = q_0$
- $F = \{q_0\} \cup F_1$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(r,a) \cup \{q_1\} & \text{if } r \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

$$\emptyset \qquad \text{if } r = q_0 \text{ and } a \neq \epsilon$$

keep all transitions of N

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_1\}$ introduce ϵ -transition from q_0 to q_1

• It can be concluded that $L(M) = A^*$.

Proof cont:

- $Q = \{q_0\} \cup Q_1$, where q_0 is a new state.
- $q = q_0$
- $F = \{q_0\} \cup F_1$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(r,a) \cup \{q_1\} & \text{if } r \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & \text{if } r = q_0 \text{ and } a = \epsilon \\ \emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

keep all transitions of N

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_1\}$ introduce ϵ -transition from q_0 to q_1

• It can be concluded that $L(M) = A^*$.

Proof cont:

- $Q = \{q_0\} \cup Q_1$, where q_0 is a new state.
- $q = q_0$
- $F = \{q_0\} \cup F_1$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \end{cases}$$

$$\delta(r,a) = \begin{cases} \delta_1(r,a) \cup \{q_1\} & \text{if } r \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

$$\emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

keep all transitions of N

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_1\}$ introduce ϵ -transition from q_0 to q_1

• It can be concluded that $L(M) = A^*$.

Closure of the Star Operation

Proof cont:

- $Q = \{q_0\} \cup Q_1$, where q_0 is a new state.
- $q = q_0$
- $F = \{q_0\} \cup F_1$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \end{cases}$$

$$\delta(r,a) = \begin{cases} \delta_1(r,a) \cup \{q_1\} & \text{if } r \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & \text{if } r = q_0 \text{ and } a = \epsilon \end{cases}$$

$$\emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

keep all transitions of N

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_1\}$ introduce ϵ -transition from q_0 to q_1

• It can be concluded that $L(M) = A^*$.

Closure of the Star Operation

Proof cont:

- $Q = \{q_0\} \cup Q_1$, where q_0 is a new state.
- $q = q_0$
- $F = \{q_0\} \cup F_1$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \end{cases}$$

$$\delta(r,a) = \begin{cases} \delta_1(r,a) \cup \{q_1\} & \text{if } r \in F_1 \text{ and } a = \epsilon \end{cases}$$

$$\{q_1\} & \text{if } r = q_0 \text{ and } a = \epsilon \end{cases}$$

$$\emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

keep all transitions of N

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_1\}$ introduce ϵ -transition from q_0 to q_1

• It can be concluded that $L(M) = A^*$.

Closure of the Star Operation

Proof cont:

- $Q = \{q_0\} \cup Q_1$, where q_0 is a new state.
- $q = q_0$
- $F = \{q_0\} \cup F_1$
- δ , for each $r \in Q$ and each $a \in \Sigma \cup \{\epsilon\}$:

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \notin F_1 \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon \end{cases}$$

$$\delta(r,a) = \begin{cases} \delta_1(r,a) \cup \{q_1\} & \text{if } r \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

$$\emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon \end{cases}$$

keep all transitions of N

for each $r \in F_1$: extend the set of ϵ -successor states by $\{q_1\}$ introduce ϵ -transition from q_0 to q_1

• It can be concluded that $L(M) = A^*$.

Closure of the Star Operation: Alternative Proof?

Remember:

$$\underbrace{A^*}_{\mathsf{star}} = \underbrace{\{\epsilon\} \cup A \cup AA \cup AAA \cup \ldots \cup A^{\infty}}_{\mathsf{union and concatenation}}$$

Question:

Can we prove the closure of star based on the following argumentation?

Closure of Union and Closure of Concatenation \Rightarrow Closure of Star

Closure of the Star Operation: Alternative Proof?

Remember:

$$\underbrace{A^*}_{\mathsf{star}} = \underbrace{\{\epsilon\} \cup A \cup AA \cup AAA \cup \ldots \cup A^{\infty}}_{\mathsf{union and concatenation}}$$

Question:

Can we prove the closure of star based on the following argumentation?

Closure of Union and Closure of Concatenation \Rightarrow Closure of Star

Answer and justification:

- No
- infinite union means infinitely many states in proof by construction:

$$Q' = \underbrace{Q \cup Q \cup \ldots \cup Q}_{\infty}$$

• result will be no longer a finite automaton

Closure of the Complement and Intersection Operation

Theorem (Closure of Complement)

The set of regular languages over Σ is closed under the Complement operation.

$$L \text{ regular} \Rightarrow \overline{L} \text{ regular} \quad \text{where} \quad \overline{L} = \{w \in \Sigma^* : w \notin L\}$$

Theorem (Closure of Intersection)

The set of regular languages over Σ is closed under the Intersection operation.

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular where

$$L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}$$

Closure of the Complement and Intersection Operation

Theorem (Closure of Complement)

The set of regular languages over Σ is closed under the Complement operation.

$$L \text{ regular} \Rightarrow \overline{L} \text{ regular} \quad \text{where} \quad \overline{L} = \{w \in \Sigma^* : w \notin L\}$$

Theorem (Closure of Intersection)

The set of regular languages over Σ is closed under the Intersection operation.

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular where

$$L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}$$

Closure of the Complement Operation

$$D = (Q, \Sigma, \delta, q, \mathbf{F})$$

$$M = (Q, \Sigma, \delta, q, \mathbf{Q} \backslash \mathbf{F})$$

then M accepts \overline{L}

Closure of the Complement Operation

$$D = (Q, \Sigma, \delta, q, \mathbf{F})$$

$$M = (Q, \Sigma, \delta, q, \mathbf{Q} \backslash \mathbf{F})$$

then M accepts \overline{L}

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular

Proof:

 L_1 and L_2 regular

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular

$$L_1$$
 and L_2 regular $\Rightarrow \overline{L_1}$ and $\overline{L_2}$ regular (closure of complement)

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular

$$L_1$$
 and L_2 regular $\Rightarrow \overline{L_1}$ and $\overline{L_2}$ regular (closure of complement) $\Rightarrow \overline{L_1} \cup \overline{L_2}$ regular (closure of union)

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular

$$L_1$$
 and L_2 regular $\Rightarrow \overline{L_1}$ and $\overline{L_2}$ regular (closure of complement) $\Rightarrow \overline{L_1} \cup \overline{L_2}$ regular (closure of union) $\Rightarrow \overline{\overline{L_1} \cup \overline{L_2}}$ regular (closure of complement)

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular

$$L_1$$
 and L_2 regular $\overline{L_1}$ and $\overline{L_2}$ regular (closure of complement) $\overline{L_1} \cup \overline{L_2}$ regular (closure of union) $\overline{L_1} \cup \overline{L_2}$ regular (closure of complement) $\overline{L_1} \cup \overline{L_2}$ regular (closure of complement) $\overline{L_1} \cap \overline{L_2}$ regular (De Morgan)

$$L_1$$
 and L_2 regular $\Rightarrow L_1 \cap L_2$ regular

```
L_1 and L_2 regular \overline{L_1} and \overline{L_2} regular (closure of complement) \overline{L_1} \cup \overline{L_2} regular (closure of union) \overline{\overline{L_1}} \cup \overline{L_2} regular (closure of complement) \overline{\overline{L_1}} \cap \overline{\overline{L_2}} regular (closure of complement) \overline{L_1} \cap \overline{L_2} regular (De Morgan) \overline{L_1} \cap L_2 regular (double complement elemination)
```