FINAL EXAM

MSEG 302 Spring 2018

Materials Science and Engineering The University of Delaware

May 17th, 2018

Prof. David C. Martin

Name:	lley		
Honor Pledge:			

"I have neither given nor received aid on this examination, nor have I witnessed any one else giving or receiving such assistance".

Sign here only if true:____

Potentially useful information:

Avogadro's number: Nav

 $6.02 \times 10^{23} \ molecules/mol$. $1.38 \times 10^{-23} \ J/atom-K$

Boltzmann's constant: k

Gas constant: R

8.314 J/mol-K

Electron charge: e

1.602 x 10⁻¹⁹ C

1 MPa = 145 psi

 $g = Acceleration of gravity: 9.8 \text{ m/sec}^2$

 $1 \text{ N} = 1 \text{ kg m/sec}^2$

	4	*			-1-			-
		Qt	Q2	Q3	Q4	25	Q6_	707
	X	15	16	15	9	29	17	91
	T	5	5	5	4	5	4	18
1	Max	25	26	24	12	32	12	125
7	Min	0	0	0	0	0	0	38
T						1		

1. The following figure shows the phase diagram for a binary mixture of titanium (Ti) and nickel (Ni). The atomic percents are shown at the top, and the mass (weight) percents at the bottom of the figure.

7 fotal (0,5 each)

a) The single phase regions are all labeled in this diagram. Label all of the two-phase regions with the phases present in each case.
See figure - 14 such 20 regions
b) What would be the phase or phases present in a mixture of 2 grams of nickel with 48 grams of titanium at 1000 C?
c) How much additional nickel (in grams) would have to be added to this alloy in order for it to start to form liquid at 1000 C?
d) What would be composition of the first liquid that starts to form as nickel is added to this alloy? $26 \text{ wt/o} \text{ N}$
e) How much additional nickel (in grams) would have to be added to the original alloy to convert it entirely to liquid?
f) What is the composition and melting point of the titanium-nickel alloy with the lowest melting point? $28 \text{ wt} / 6 \text{ Ni}$, $7m = 942 \text{ C}$
g) What are the compositions and relative amounts of the first phase or phases formed when this lowest melting point alloy is cooled from the liquid into a solid? 37 wt 70 (β_{T_i} , 12 wt 70 Ni), 63 wt 76 (γ_{T_i}), 38 wt 76 Ni)
h) 35 grams of nickel is mixed with 15 grams of titanium and held at 1200 C. What are compositions and relative amounts of the phases present? (1) WH70 (L) (5 WH70 Ni), 40 WH70 (Ti Ni3, 78 WH70 Ni)
i) 50 grams of additional nickel is added to the alloy from part h. What are the compositions and relative amounts of the phases present at 1200 C for this new mixture? WT/O WT/O (Ni) 88 WT/O Ni) + 40 WT/O (Ti Ni) + 78 WT/O Ni)
j) 200 grams of additional nickel is added to the alloy from part i. What are the compositions and relative amounts of the phases present at 1200 C for this new mixture?
95 wt % Ni (100%)

2. Enclosed is the phase diagram for iron and carbon.
a) At what temperature does pure BCC iron first transform to FCC iron on heating?
b) At what temperature does pure FCC iron transform back to BCC iron on heating?
c) At what temperature does pure iron melt into a liquid?
d) What is the maximum concentration of carbon possible in the FCC phase of iron before causing precipitation of either Fe ₃ C or liquid?
e) At what temperature is the carbon solubility in FCC iron a maximum?//47 *C
f) What is the lowest melting temperature of any iron-carbon alloy?
g) What is the composition of the iron-carbon alloy with the lowest melting temperature?
h) The composition of an iron-carbon alloy is to be adjusted so that it will be precisely 50% liquid and 50% solid by weight at 1300 C. What is the required composition? - 2, /6 wt/6 C
i) What is the highest temperature at which an iron-carbon alloy is stable as a single phase FCC solid solution?
j) What is the composition of this FCC iron-carbon alloy that is stable as a single phase at the highest temperature?
k) A 1 kg sample of an iron-carbon alloy with the eutectoid composition is heated to 800 C. Carbon is then added at constant temperature until the sample is precisely 50% austenite and 50% cementite. How much carbon was added?
1) For a hypocutectoid steel, does the carbon solubility in ferrite increase, decrease, or remain the same when the sample is heated at temperatures just above the eutectoid temperature (727 C)?
m) For a hypereutectoid steel, does the carbon solubility in ferrite increase, decrease, or remain the same when the sample is cooled at temperatures just below the eutectoid temperature (727 C)?

3a. The temperature dependence the conductivity of a certain intrinsic semiconductor is known to vary as:

$$\sigma = \sigma_0 \exp\left(-\frac{E_g}{kT}\right)$$

where E_g is the band gap, k is Boltzmann's constant and T is the absolute temperature.

The conductivity of a sample of this intrinsic semiconductor triples when the temperature is raised from 25° C to 60° C. Calculate the band gap E_g of this material in either kJ/mol or eV.

3b. If silicon single crystals were doped with small amounts of boron, what are the most likely outcomes?

- a) the conductivity would a) increase, b) decrease, c) stay about the same.
- b) the number of p-type carriers would a) increase, b) decrease, c) stay about the same.
- c) the number of n-type carriers would a) increase, b) decrease, c) stay about the same

3c. Calculate the conductivity of the intrinsic semiconductor germanium from the following characteristics:

carrier density (where # holes= # electrons): 2.4×10^{19} carriers/m³ electron mobility: 0.39 m²/(volt sec) hole mobility: 0.19 m²/(volt sec) charge/electron = charge/hole 1.6×10^{-19} coulombs/carrier

3d. In an experiment on an n-doped sample of germanium, it is found that the resistivity is 1×10^{-5} ohm m. What is the carrier density in this sample?

$$P = 1 \times 10^{-5}$$

$$T = \frac{1}{p} \approx ne \mu e \quad n = \pm 1.6 \times 10^{24}$$

4. Poly(isoprene) has a repeat unit with the chemical formula C_5H_8 . The crystal unit cell for poly(isoprene) is orthorhombic, with dimensions a=1.24 nm, b=0.89 nm, and c=0.81 nm. The theoretical density of these poly(isoprene) crystals is 1.0 gm/cm³. How many poly(isoprene) repeat units are there in each unit cell?

 $M_0 = 68.12 \text{ g/mol}$ 68.12 g/mol 68.12 g/mol 60 C5Hz $0 = 10 \cdot 10^{-10} \text{ Mo}$

P= N. Mo Vuc Mar

Vuc = a.b. C

solving for n gives 28

5. For the following materials, describe an object that would be a good candidate for being manufactured from the substance, and name one important physical property that significantly influences this choice.

Item	Object	Property
Silicon single crystal	compute chip	doping to change
Carbon-fiber epoxy composite	airplane port	High strength /weight
Plain carbon steel	car frame	toughross, cost
Polyisoprene rubber	subby band	elongation
Polyethylene	shopping bog	toughness low P
Tungsten carbide	cutting tool	Strong Shit, tough
PPTA (Kevlar) fiber	billistic fabric	high T, E, lowf
MPDI (Nomex) aramid fiber	racing attive	flame resistance
Pyrex (borosilicate) glass	andow, beaks	clarity, humal stals.
GaAs semiconductor	LED	high M, band gas
Stainless steel	cuttery	comoson resisti
Concrete	Sidevalk	compressive J, cost
Ni-based superalloy	purpose place	creep resistance
Barium titanite	achato	preselecticity
Aluminum oxide	abrasive got	I, hardness,
Copper	ure	_Conductivity

6. You are asked to consider several different candidate materials in the design of a round, cylindrical shaft that is 2 m long. During operation, the shaft must support a tensile load of 100,000 N. To insure quality and avoid potential failures, you are asked to make sure the applied stress is only 25% of the tensile strength.

Given the data below, estimate the diameter, mass, and total cost for each material.

Data	0	Ti-	
Data	/	Trens	

Materials	Density (gm/cm ³)	Tensile strength	Cost
		(MPa)	(\$/kg)
Polyethylene	0.96	25	0.75
Stainless Steel	7.9	900 .	1.00
Glass	2.5	60	0.10
Carbon-fiber composite	1.5	3000	10.

Results

Material	Diameter (cm)	Mass (kg)	Cost (\$)
Polyethylene	14.3	31	23
Stainless Steel	2,4	7.1	7,1
Glass	9,2	33	3,3
Carbon-fiber composite	1.3	0,4	4

$$T = \frac{F}{A}$$

$$t = C$$

$$A = IIA$$
 $M = P \cdot V$