Прогнозирование урожайности подсолнечника по данным гидрометеорологической информации

Дипломный проект по профессии Data scientist

Олег Воропаев

Отраслевой аналитик, к.э.н.

Цели и задачи дипломного проекта

- 1. Разработка web-скраперов для автоматизации процесса сбора входных данных
- 2. Создание базы данных для хранения собранной информации на платформе PostgreSQL
- 3. Разведочный анализ, предобработка, очистка и подготовка данных для обучения и тестирования модели
- 4. Разработка предиктивной модели для прогнозирования урожайности подсолнечника

Постановка задачи. Современные методы оценки урожайности.

Актуальность задачи

Точный и своевременный прогноз определяет стратегию работы на весь сезон!

Особенность отрасли растениеводства – получение продукции (валового сбора) один раз в сезон.

Главная задача аналитика (сгор-аналитика) — своевременное и точное прогнозирование валового сбора перед началом сезона*.

Цикл производства подсолнечника

Объем валового сбора оказывает сильное **влияние на динамику цен и задает направление тренда** в течение всего сезона.

В случае сильного снижения валового сбора – возникает **дефицит продукции**, в случае сильного роста – появляется **избыток предложения**.

Динамика средних цен и валового сбора подсолнечника в России

^{*} Начало и окончание сельскохозяйственного сезона не совпадает с календарным годом (для подсолнечника нач. сезона сентябрь тек. года — окончание август след. года).

Актуальность задачи

Почему прогнозирование урожайности?

Валовой сбор = Посевная площадь Х Урожайность

Посевная кампания

Старт посевной кампании начинается в апреле, завершается в конце июня*.

На 1 июля уже есть представление о размерах посевных площадей

(сентябрь – ноябрь)

Уборочная кампания

На начало сезона неизвестной переменной остается показатель урожайности

К концу августа – началу сентября большая часть растений достигает фазы «восковой спелости», что позволяет проводить предварительную оценку урожайности

Альтернативные методы оценки урожайности сельскохозяйственных культур

1

КРОП-ТУР. *Кроп-тур* - это выезд специалистов в поля с целью оценки качества и количества будущего урожая. Оценка, урожайности осуществляется лабораторным способом (замеры, взвешивания, визуальная и органолептическая оценка растений и урожая)

Преимущества: профессиональная оценка урожайности; можно увидеть то, что «не видно из кабинета»; широкий охват различных регионов (если маршрут кроп-тура продолжительный).

Недостатки: высокие финансовые затраты на организацию поездки (оплата работ, оборудования, транспорта); необходимо точно угадать со сроками поездки (пораньше-плохо, попозже еще хуже); субъективность специалистов.

Альтернативные методы оценки урожайности сельскохозяйственных культур

2

ЭКСПЕРТНАЯ ОЦЕНКА. *Экспертная (кабинетная) оценка* – это методы, базирующиеся на опыте и знаниях отраслевых специалистов. Способы прогнозирования могут быть различными (экстраполяция, метод аналогов, мониторинг, «танцы с бубном» и т.д.). Качество и точность прогноза зависят от опыта эксперта.

Преимущества: низкие затраты; быстрота; авторские методики оценки могут быть очень эффективными; высококлассный эксперт = точный и качественный прогноз.

Недостатки: слишком много неучтенных факторов, которые «из кабинета не видно»; субъективность специалистов; непрофессиональный эксперт = низкое качество прогнозов.

Оценка урожайности сельскохозяйственных культур методами машинного обучения

ЗМашинное обучение (machine learning, ML) — это наука о разработке алгоритмов и статистических моделей, которые компьютерные системы используют для выполнения задач без явных инструкций, полагаясь на шаблоны и логические выводы.

Постановка задачи

Задача

✓ Прогнозирование урожайности подсолнечника с помощью методов ML.

Признаки

- Данные гидрометеорологической информации;
- Паспорт муниципальных районов;
- Дополнительные авторские фичи.

Целевая переменная

✓ Средняя урожайность подсолнечника по муниципальным районам.

Метрика качества

✓ Root mean square error (RMSE).
 (целевое значение RMSE ≤ 10%)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n}(y_i - \widehat{y}_i)^2}{n}}$$

Входные данные.

Входные данные

Гидрометеорологическая информация

Данные об урожайности подсолнечника

Информация о населенных пунктах

Источник:

Сайт расписания погоды rp5.ru

Набор данных содержит 30 параметров с гидрометеорологической информацией.

Источник:

Официальный сайт Росстат

Набор данных содержит информацию об урожайности сельскохозяйственных культур по муниципальным районам с 2007 года, всего 11 параметров.

Источник:

Сайт платформы ИНИД

Набор данных содержит информацию о населенных пункта РФ (гео-координаты, административно-территориальная классификация, численность и др.), всего 18 параметров.

Цели и задачи дипломного проекта

- 1. Разработка web-скраперов для автоматизации процесса сбора входных данных
- 2. Создание базы данных для хранения собранной информации на платформе PostgreSQL
- 3. Разведочный анализ, предобработка, очистка и подготовка данных для обучения и тестирования модели
- 4. Разработка предиктивной модели для прогнозирования урожайности подсолнечника

Автоматизация процесса сбора входных данных

Для автоматизации процесса сбора данных были разработаны web-скраперы

Сбор гидрометеорологической информации с сайта https://rp5.ru осуществлялся с помощью web-скрапера из ноутбука *«parser_rp5.ipynb»*. Указанный алгоритм был написан на языке программирования Python с использованием библиотеки selenium.

Сбор информации по урожайности сельхозкультур с сайта Росстат осуществлялся с помощью web-скрапера из ноутбука *«parser_rosstat.ipynb»*. Данный web-скрапер также был написан на языке Рython с использованием библиотеки selenium.

Организация процесса хранения данных

Для хранения входной информации была создана реляционная БД **«weather»** (на open-source платформе **PostgreSQL**). Для создания базы и индексирования таблиц использовался код из файла **«weather_DB.sql»**.

В базе созданы три таблицы: **«weather»**, **«settlement»**, **«yield»** Для выгрузки данных из базы, был использован код из файла **«sample_for_ml_model.sql»**.

Связи между таблицами «weather» - «settlement» foreign key «meteoid» «yield» - «settlement» foreign key «digit_id»

Разведочный анализ и предобработка данных.

Цели и задачи дипломного проекта

- 1. Разработка web-скраперов для автоматизации процесса сбора входных данных
- 2. Создание базы данных для хранения собранной информации на платформе PostgreSQL
- 3. Разведочный анализ, предобработка, очистка и подготовка данных для обучения и тестирования модели
- 4. Разработка предиктивной модели для прогнозирования урожайности подсолнечника

Выгрузка из БД

- 1. Данные из таблица *«weather»* были сгруппированы по неделям.
- 2. Данные с гидрометеорологической информацией были разделены на группы по показателям:
 - а. температура (воздуха, почвы, точки росы);
 - b. атмосферное давление;
 - с. влажность воздуха;
 - d. ветер (направление, скорость);
 - е. облачность (высота, форма облаков);
 - f. горизонтальная видимость;
 - g. количество выпавших осадков;
 - h. состояние поверхности почвы.
- 3. Было произведено агрегирование каждого показателя по min, max, average, sum.
- 4. Данные из таблиц *«settlement»* и *«yield»* были выгружены без изменений.
- 5. Описание содержания таблиц БД *«weather»* представлено в файле *«description_project.txt»*

Разведочный анализ параметров гидрометеорологической информации

- 1. Каких-либо значимых аномалий или отклонений в числовых данных нет.
- 2. Некоторые данные имеют пропущенные значения.
- 3. Признаки из одной группы имеют очень высокую степень корреляции. В целом, корреляция переменных не очень высокая.
- 4. Для прогнозирования целевой переменной планируется использовать модели градиентного бустинга. Поэтому некоторые признаки, имеющие высокую корреляцию, было решено оставить.
- 5. Распределение значений переменных, агрегированных по средней, стремится к форме нормального распределения.

Разведочный анализ целевой переменной

- 1. Территориальное расположение муниципального района один из важных признаков при определении величины урожайности.
- 2. Динамика урожайности по годам имеет трендовую составляющую. Для выявления трендовой компоненты планируется использовать SSA.
- 3. Для повышения эффективности прогнозирования урожайности, планируется провести обучение моделей на данных по каждому региону отдельно.
- 4. Распределение объектов по регионам неравномерное. Обучение моделей будет проводиться на наборах данных, имеющих более 30 объектов.

Схема цикла вегетации подсолнечника

Оптимальные сроки сева подсолнечника, наступают когда верхний слой почвы прогреется до 8°С и выше. Средний срок вегетации подсолнечника — 150-155 дней (сильно варьируется в зависимости от сортов и гибридов — 90-160 дней).

Условно, выделяют 5 фаз роста и развития растений (всходы, бутонизация, цветение, созревание, хозяйственная спелость).

Трансформация данных для создания тренировочных и тестовых датасетов

І. Для каждого уникального *meteoid* и *year* создаем минидатасет, где мин. индекс (i_start) начинается с недели на которой **t°** почвы >=8 °C, а макс. индекс (i_end) равен i_start+21

Исходные данные

Date	Year	Features	meteoid
week1	2007	temp., press, etc	1
•••	•••	(min, max, avg, sum)	1
week52	2007		1
•••	•••	•••	•••
week1	2021	temp., press, etc	n
•••	•••	(min, max, avg, sum)	n
week52	2021		n

II. Все features в датасете группируются и агрегируются по соответствующим фазам (по номерам соотв. недель)

Создание набора данных по сезонам

Date	Year	Features	meteoid	Phase
weeks for I phase (t >=8°C)	2007	agg. feat.	1	1
weeks for II phase	2007	agg. feat	1	2
weeks for III phase	2007	agg. feat	1	3
weeks for IV phase	2007	agg. feat	1	4

III. Строки мини-датасета транспонируются в вектор

(строки с уникальными phase конкатенируются)

Выходной датасет

IV. Добавляем к вектору строку с агрегированными данными за весь сезон (за I-IV фазы)

Входной вектор признаков для обучения модели

Для обучения *на вход в модель подается вектор признаков*, который содержит одинаковые переменные, сгруппированные по фазам вегетации, плюс признаки агрегированные за весь сезон. **Целевая переменная** – урожайность подсолнечника по муниципальному району за определенный год.

Виды датасетов для обучения модели

С цель сокращения использования вычислительных ресурсов, оптимизации моделей и улучшения их интерпретации был также создан датасет с сокращенным количеством переменных (датасет типа «total» - 45 переменных). В этом датасете признаки агрегировались по всему сезону (см. набор данных «total_data» и «weather» из ноутбука «preparation_mldata_4phase.ipynb»). Датасет «phase» содержит 165 переменных.

Добавление новых признаков / удаление малоинформативных признаков

Были добавлены следующие features:

- **1. Гидротермический коэффициент Селянинова** (ГТК) feature name GTK
- 2. Суховей (ОПЯ* суховей) feature name dry_wind
- 3. Индикатор переувлажнения feature name precipitation_speed
- **4. Диапазон фичи** (разница max-min) features name diff_<feature name>
- **5.** Границы района max, min и среднее значение геокоординат (долготы и широты) по муницип. району, features <...>_border, central_lat, central_lon
- 6. Количество населенных пунктов в районе.
- 7. Севооборот значение каждого 4-го года (от 0 до 3)

$$GTK = \frac{\left(\sum precipitation\right) \times 10}{\sum air temperature}$$

$$dry_wind = \frac{avg.wind\ speed\ \times avg.air\ temperature}{avg.humidity}$$

$$precipitation_speed = \frac{\left(\sum precipitation\right)}{\sum precipitation\ time}$$

$$diff_{-} < feat.name > =$$
 $max_{-} < feat.name > - min_{-} < feat.name >$

Были удалены следующие features: признаки, которые имели низкие веса в листе feature impotance по результатам обучения моделей CatBoost и XGBoost (на параметрах default)

Предиктивная модель для прогнозирования урожайности.

Цели и задачи дипломного проекта

- 1. Разработка web-скраперов для автоматизации процесса сбора входных данных
- 2. Создание базы данных для хранения собранной информации на платформе PostgreSQL
- 3. Разведочный анализ, предобработка, очистка и подготовка данных для обучения и тестирования модели
- 4. Разработка предиктивной модели для прогнозирования урожайности подсолнечника

Типы обучаемых моделей

Модели регрессии

I. Модели градиентного бустинга:

- CatBoost Regressor;
- XGB Regressor.

II. Модель линейной регрессии

- Sklearn Linear Regression

Нейронные сети

I. LSTM Bidirectional.

II. Полносвязная нейронная сеть

Результат обучения LSTM Bidirectional

Результаты обучения модели.

Train Score: 1.23 RMSE

Test Score: 3.49 RMSE

Комментарий к модели:

- Обучение и тестирование модели проводилось на датасете с сокращенным количеством переменных («total») 45 признаков;
- Размер batch 32;
- Количество эпох 1000
- Наименование файла с результатами «lstm_tot_at_epoch_{epoch}.h5»

LSTM Bidirectional Summary.

Model: "LSTM Bidirectional"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 1, 42)	14280
lstm_1 (LSTM)	(None, 1, 84)	42672
bidirectional (Bidirectiona	l (None, 1, 168)	113568
lstm_4 (LSTM)	(None, 1, 42)	35448
lstm_5 (LSTM)	(None, 10)	2120
dense (Dense)	(None, 1)	11

Total params: 208,099

Trainable params: 208,099
Non-trainable params: 0

Результат обучения полносвязной нейронной сети

Результаты обучения модели.

Train Score: 5.97 RMSE

Test Score: 6.48 RMSE

Комментарий к модели:

- Обучение и тестирование модели проводилось на датасете с сокращенным количеством переменных («total») – 45 признаков;
- Размер batch 32;
- Количество эпох 1000
- Наименование файла с результатами «nnmodel_at_epoch_{epoch}.h5»

Полносвязная нейронная сеть Summary.

Model: "Sequential"

Layer (type)	Output	Sha	ape	Param #
dense_1 (Dense)	(None,	1,	42)	1806
batch_normalization (BatchNo	(None,	1,	42)	168
dense_2 (Dense)	(None,	1,	42)	1806
dropout (Dropout)	(None,	1,	42)	0
batch_normalization_1 (Batch	(None,	1,	42)	168
dense_3 (Dense)	(None,	1,	20)	860
dropout_1 (Dropout)	(None,	1,	20)	0
batch_normalization_2 (Batch	(None,	1,	20)	80
dense_4 (Dense)	(None,	1,	10)	210
dense_5 (Dense)	(None,	1,	1)	11

Total params: 5,109
Trainable params: 4,901
Non-trainable params: 208

Результаты обучения нейронных сетей

Результаты обучения нейронных сетей.

Model name	RM	test to train		
Model Haine	train	test		
LSTM Bidirectional	1.23	3.49	+2.26	
Fully connected NN	5.97	6.48	+0.51	
LSTM vs. Full. conn. NN	-4.74	-2.99		

Комментарий:

- Обучение и тестирование нейронных сетей проводилось на датасете с сокращенным количеством переменных («total») – 45 признаков;
- Рекуррентная нейросеть показала более лучшие результаты, как на тренировочном, так и на тестовом датасете.

Результаты обучения регрессионных моделей на default - параметрах

Результаты обучения регрессионных моделей.

Model name	RMSE	phase to	
Model Hame	total	phase	total
Linear Regression	114 676.876	-	_
CatBoost Regressor	2.811	2.747	-0.064
XGB Regressor	2.147	2.119	-0.028
Best results	2.147	2.119	-0.028

Комментарий:

- Обучение и тестирование модели проводилось на датасете с полным и сокращенным количеством переменных («phase» и «total») 165 и 45 признаков;
- Модели показывают более лучшие результаты на полном датасете («phase»);
- Более лучшие результаты на обоих датасетах показала модель XGB Regressor;
- Модель Linear Regression показала худшие результаты ($r^2 = 0.2$).

Подбор оптимальных параметров модели с помощью метода grid_search

Оптимизированные параметры регрессионных моделей

XGBoost regressor:

```
'colsample_bytree': 0.6,
'gamma': 0.05,
'learning_rate': 0.075,
'max_depth': 10,
'min_child_weight': 1,
'n_estimators': 5000,
'objective': 'reg:squarederror',
'random_state': 2,
'subsample': 1
```


CatBoost regressor:

```
'loss_function': 'RMSE',
'verbose': False,
'max_leaves': 64,
'depth': 6,
'random_seed': 2,
'iterations': 5000,
'learning_rate': 0.075,
'12_leaf_reg': 0.07
}
```


Результаты обучения моделей с оптимизированными параметрами

Model name	RMSI	RMSE test phase to RMSE test		phase to RMSE t	
Model Halle	total phase		total	total	phase
На общих данных (general		optimal t	o default		
CatBoost Regressor	2.635	2.164	-0.471	-0.176	-0.583
XGB Regressor	2.022	1.979	-0.043	0.125	-0.140
Best results	2.022	1.979	-0.043		

Комментарий:

- Результаты обучения и тестирования моделей с оптимизированными параметрами лучше, чем с default-параметрами;
- Результаты обучения моделей на датасете с полным количеством признаков («phase») лучше, чем на сокращенном («total»);

География регионов производства семян подсолнечника в России

1. Приволжский ФО

Вал. сбор 4.67 млн. т Урож. 12.9 ц/га Доля 36.0%

3. Центральный ФО

Вал. сбор 3.36 млн, т Урож. 23.6 ц/га Доля 25.9%

2. Южный ФО

Вал. сбор 3.62 млн. т Урож. 19.1 ц/га Доля 27.9%

6. Уральский ФО

Вал. сбор 0.09 млн. т Урож. 9.8 ц/га Доля 0.7%

7	Регион	Урожай- ность, ц/га	сбор, тыс. т	площади, тыс. га	Валового сбора	Посевных площадей
	РОССИЙСКАЯ ФЕДЕРАЦИЯ	16,2	12 973,1	8 607,2	100,0%	100,0%
	1. ПРИВОЛЖСКИЙ ФО	12,9	4 671,9	3 837,4	36,0%	44,6%
١	2. ЮЖНЫЙ ФО	19,1	3 624,4	2 034,3	27,9%	23,6%
ı	3. ЦЕНТРАЛЬНЫЙ ФО	23,6	3 360,5	1 518,1	25,9%	17,6%
J	4. СИБИРСКИЙ ФО	10,2	665,0	745,9	5,1 %	8,7 %
/	5. СЕВЕРО-КАВКАЗСКИЙ ФО	16,7	559,3	362,9	4,3%	4,2 %
	6. УРАЛЬСКИЙ ФО	9,8	91,9	108,9	0,7%	1,3%
	7. ДАЛЬНЕВОСТОЧНЫЙ ФО	9,8	0,2	0,5	0,0%	0,0%

Средняя за 5 лет (2017-2021гг)

Валовой Посевные

4. Сибирский ФО

Вал. сбор 0.67 млн. т **Урож. 10.2 ц/га** Доля 5.1%

5. Северо-Кавказский ФО

Вал. сбор 0.56 млн. т **Урож. 16.7** ц/га Доля 4.3%

7. Дальневосточный ФО

Вал. сбор 0.00 млн. т **Урож.** 9.8 ц/га Доля 0.0%

Средняя доля от, %

Результаты обучения моделей с оптимизированными параметрами

- 1. Проведено обучение и тестирование моделей на данных по 40 регионам
- 2. Доля производства семян подсолнечника в указанных регионах составляет 99,8%
- З. Совокупная доля посевных площадей данных регионов составляет 99,7%
- 4. Взвешенное значение RMSE по регионам дает лучшее значение, чем простое среднее:

CatBoost reg. – значение RMSE
$$_{wg}$$
 = 1.498 (vs. RMSE = 2.273)

XGBoost reg. – значение RMSE_{wq} = 1.601 (vs. RMSE = 2.273)

5. Использование лучшего значения RMSE по моделям снижает до RMSE_{wg} = 1.458

$$RMSE_{wg} = \sum (w_{reg} \times RMSE_{reg})$$

где: $RMSE_{wq}$ — взвешенное значение RMSE;

 ${m w}_{reg}$ — доля региона в общем объеме производства;

 $\pmb{RMSE_{reg}}$ – значение RMSE модели для региона.

Общие результаты обучения регрессионных моделей

D	Средняя	я за 5 лет	CatB	CatBoost regressor		XGBoost regressor			Best RMSE value of models		
Регион	Урожай- ность	Доля произ-ва	RMSE	RMSE _{wg}	RMSE _{wg} to RMSE	RMSE	RMSE _{wg}	RMSE _{wg} to RMSE	RMSE	RMSE _{wg}	RMSE _{wg} to RMSE
РОССИЙСКАЯ ФЕДЕРАЦИЯ	16,2	100,0%	2,273	1,498	-0,775	2,273	1,601	-0,672	2,118	1,458	-0,660
1. ПРИВОЛЖСКИЙ ФО	12,9	36,0%	2,131	1,283	-0,848	2,208	1,447	-0,761	1,945	1,198	-0,747
2. ЮЖНЫЙ ФО	19,1	27,9%	1,990	2,117	0,126	2,030	2,179	0,150	1,981	2,115	0,134
3. ЦЕНТРАЛЬНЫЙ ФО	23,6	25,9%	1,732	1,225	-0,507	1,677	1,296	-0,381	1,677	1,203	-0,475
4. СИБИРСКИЙ ФО	10,2	5,1%	2,477	1,071	-1,407	2,593	1,259	-1,334	2,477	1,071	-1,407
5. СЕВЕРО-КАВКАЗСКИЙ ФО	16,7	4,3%	3,487	1,392	-2,096	3,562	1,334	-2,228	3,293	1,319	-1,974
6. УРАЛЬСКИЙ ФО	9,8	0,7%	1,829	1,706	-0,123	1,918	1,795	-0,124	1,829	1,706	-0,123
7. ДАЛЬНЕВОСТОЧНЫЙ ФО	9,8	0,0%	2,357	2,201	-0,156	1,273	0,488	-0,785	1,273	0,488	-0,785

Итоговые результаты модели прогнозирования урожайности подсолнечника

Результаты обучения регрессионных моделей.

Параметр	Значение	В % к средней урожайности
Средняя урожайность, ц/га	16,2	-
Значение RMSE _{wg}	1,458	9,0%
CatBoost	1,498	9,3%
XGBoost	1,601	9,9%

Прогнозирование урожайности подсолнечника по данным гидрометеорологической информации

Отраслевой аналитик, к.э.н.

