CONTENIDO

Introducción	27
Capítulo 1	
FACTS: soluciones moderna para la industria eléctrica	29
Introducción	29
Concepto de sistemas flexibles de transmision de CA (FACTS)	30
Clasificación en función de la conexión	
Ventajas en la utilización de dispositivos FACTS	38
Aspectos operativos	39
Localización	40
Referencias	41
Capítulo 2	
Diodos, tiristores e IGBT	
Resumen	
Diodos	
Tipos básicos de diodos rectificadores de potencia	45
Circuitos rectificadores	
Rectificador monofásico onda completa, carga resistiva	49
Rectificadores trifásicos	49
Tiristores	
Tipos de tiristores	52
Formas de encender un tiristor	
Apagado de un tiristor	54
Circuitos de disparo de tiristores	55
IGBT	56
Estados de los IGRT	58

Selección de IGBT	58
Circuito de puerta	59
Consideraciones térmicas	
Referencias	
Comárelo 2	
Capítulo 3 El capacitor serie controlado por tiristores (TCSC)	63
Resumen	
Estructura del TCSC	63
Reactor controlado por tiristores (TCR)	
Modos de operacion del TCSC	
Características de estado estacionario.	65
Análisis del TCSC en sus diferentes modos de operación	
Modo de bloqueo	
Modo de conducción	76
Modo vernier	
Análisis de estabilidad del TCSC mediante el mapa de Poincaré	
Mapa de Poincaré	
Modelado del sistema	
Estabilidad de un sistema periódico	
Estabilidad de un sistema discreto	
Ejemplos de aplicación	
Conclusiones	
Referencias	
Capítulo 4 Introducción a los inversores	00
Resumen	
Conceptos preliminares	
La configuración multipulso	
Inversor de seis pulsos	
Inversor de 12 pulsos	
Inversor de 12 puisos	
Topología diodo anclado	
Topología capacitor anclado	
Modulación por ancho de pulso (PWM)	
Modulación senoidal	
Sobremodulación en esquemas de PWM senoidal	
Referencias.	

Capítulo 5	
Análisis del inversor de 6 y 12 pulsos	7
Resumen 12'	7
Introducción	
Análisis del StatCom basado en un inversor de seis pulsos	9
Análisis armónico	3
El compensador estático síncrono (StatCom) basado en una	
VSC de seis pulsos	7
Señales de corriente	8
Periodos de conducción de transistores y diodos143	3
Corriente del capacitor14	
Voltaje del capacitor14	5
Intercambio de potencia activa y reactiva149	
Corriente del capacitor	
Convertidor de 12 pulsos	
Señales de corriente CA	
Corriente del capacitor16	
Voltaje del capacitor170	
Conclusiones 17	
Referencias. 17	
Capítulo 6	
Modelado del StatCom	3
Resumen 17.	
Modelado mediante funciones de conmutación	3
Inversor de 12 pulsos	
Modelado del StatCom a frecuencia fundamental	8
Inversor de 12 pulsos	
Inversor de 24 pulsos	
Inversor de 48 pulsos	
Modelo en el marco de referencia dq0	
Conclusiones 19	
Referencias. 192	
	_
Capítulo 7	
La estabilidad de voltaje y el StatCom	3
Resumen 193	
Fundamentos 193	
Restricciones en la transferencia de potencia	
Curvas PV	
El concepto del margen de estabilidad de voltaje200	
StatCom en estado estacionario	

Consideración del StatCom en el problema de flujos de carga	
trifásico	207
Descripción del estudio	212
Análisis de un caso de referencia	213
Análisis de los casos trifásicos desbalanceados	218
Resultados	220
Conclusiones	
Referencias	239
Capítulo 8	
Modelado y aplicación del SSSC	
Resumen	
Compensador serie estático síncrono	
Inclusión del SSSC en el problema de flujos de potencia	244
Resultados de flujos de potencia incluyendo un dispositivo SSSC.	246
Modelado en espacio de estado SSSC	248
Estructura del convertidor	
Modelo del SSSC	
Corrientes de linea	
Corriente del capacitor	
Representación del inversor	259
Resultados de simulación	
Referencias	263
Capítulo 9	26
Controlador unificado de flujos de potencia (UPFC)	
Resumen	
Concepto del controlador unificado de flujos de potencia	
Descripción del UPFC	
Principios de operación del UPFC	270
Conexión de un UPFC en la línea de transmisión	
Características de estado estacionario	
Gráficas P-Q	
Diagramas de potencia	
Análisis de estado estacionario	288
Análisis de flujos de carga en sistemas de potencia	200
con UPFC	289
Inserción del dispositivo UPFC en el sistema simplificado	290
Ecuaciones de equilibrio en un sistema multi-máquinas	20.4
con un UPFC	
Ejemplo	297

Compensación de líneas	300
Compensación serie	
Compensación en derivación	301
Compensación serie-derivación	
Conclusiones	
Referencias	
Capítulo 10	
FACTS basados en convertidores CA-CA	309
Resumen	
Definiciones	
Concepto del convertidor matricial	313
Representación vectorial de la suma de señales senoidales	
Cálculo de los índices de modulación con la representación	
vectorial	319
Elementos de hardware	
Incorporación del controlador $-\Gamma$ en la formulación de flujos de	
potencia	328
Convertidor de CD conmutado para el control de flujo	
de potencia	328
Convertidor de conmutación vectorial (VeSC)	332
Ejemplo de un convertidor	335
Aplicación del VESC usado como un UPFC	340
Principio de operación	
Resultados de simulación	
Caso de 9 nodos	344
Caso de 39 nodos	346
Conclusiones	349
Referencias	350
Términos y siglas	351