Predicting How Many Rushing Yards in a Given Run Play

Grant Nolasco

Background

VISITOR SIDELINE

Background

Data

- The dataset comes from NFL Next Gen Stats
 - Has player tracking data/information about the offense and defense/other data about the game like weather and stadium
 - 31,007 running plays from 2017-2019 season and total of around 682,000 rows
 - 49 columns
 - Each play has 22 rows and each row has information about each player at the time of handoff

Gameld	PlayId	Team	X	Y	s	A	Dis	Orientation	Dir	 Week	Stadium	Location	StadiumType	Turf	GameWeather
2017090700	20170907000118	away	46.09	34.84	1.69	1.13	0.40	278.01	182.82	 1	Gillette Stadium	Foxborough, MA	Outdoor	Field Turf	Clear and warm
2017090700	20170907000118	away	45.33	32.64	0.42	1.35	0.01	332.39	161.30	 1	Gillette Stadium	Foxborough, MA	Outdoor	Field Turf	Clear and warm
2017090700	20170907000118	away	46.00	33.20	1.22	0.59	0.31	356.99	157.27	 1	Gillette Stadium	Foxborough, MA	Outdoor	Field Turf	Clear and warm
2017090700	20170907000118	away	48.54	27.70	0.42	0.54	0.02	0.23	254.36	 1	Gillette Stadium	Foxborough, MA	Outdoor	Field Turf	Clear and warm
2017090700	20170907000118	away	50.68	35.42	1.82	2.43	0.16	347.37	195.69	 1	Gillette Stadium	Foxborough, MA	Outdoor	Field Turf	Clear and warm

Rules

- No external dataset
- Runtime of code cannot exceed four hours
- The goal is to minimize this function

$$C = \frac{1}{199N} \sum_{m=1}^{N} \sum_{n=-99}^{99} (P(y \le n) - H(n - Y_m))^2,$$

where N is the number of plays in the dataset, P is the predicted probability that the number of yards gained is less than n, Y is the actual yardage gained, and H is a heaviside step function

Challenges

- Categorical columns have multiple misspellings (e.g Sunny was written as sUNNY) and/or different interpretations of the same thing
 - Bucketed every possible string into general categories (e.g Weather column has Clear, Rainy, Overcast, Snowy, NA)
- Few of the columns had almost 10% missing values
 - Imputed the mean for numerical columns and the mode for categorical columns
- 2017 has different acceleration/directional values compared to 2018/2019
 - Had to standardize 2017 values to closely match the distribution of 2018/2019 numbers

EDA

- Voronoi diagram
 partitions a plane into a
 set of regions in which
 each region is associated
 with a single point
- The region of a particular point means that that area is the closest to that particular point compared to the rest

Random Forest

- A classification/regression tool that consists of a lot of decision trees

Results

The final dataset includes 43 columns such as the quantiles of defense's space based on the voronoi diagram and quantiles of distance from runner

Parameters	Values Tested						
num_trees	10, 32, 55, <u>77</u> , 100						
min_samples_split	2 , 5, 10						
min_samples_leaf	1 , 2, 4						
max_features	auto, sqrt						
max_depth	<u>5</u> , 11, 17, 23, 30, None						
bootstrap	True, <u>False</u>						

CRPS Score of 0.013311

Additional Steps (if given time)

- Look into other algorithms to test out (e.g Neural Network)
- Potentially add in other columns that could be of importance (e.g space that the OL has)
- Do feature importance to do dimensionality reduction and potentially remove noisy features
- Once the best model has been determined, use that model and submit it to the competition!