Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness

- DNNs' vulnerability to adversarial attacks limits their widespread deployment for safety-critical applications.
- Improve adversarial robustness Introduction of perturbations during the training process.
- Drawback: need fixed, pre-defined perturbations and require significant hyperparameter tuning
- Solution: an end-to-end feature perturbation learning approach

Adversarial attack algorithms

• Fast Gradient Sign Method (FGSM) – 利用Loss对Input的 gradients

$$x' = x + \epsilon \cdot \mathrm{sign}\Big(
abla_x \mathcal{L} \big(f_W(x), x \big) \Big)$$

• Projected gradient descent (PGD) $x_{t+1} = \text{bound}_{l_n}(FGSM(x_t), x_0)$

C&W attack

$$min[||\delta||_p + c \cdot f(x+\delta)]$$
 s.t. $x+\delta \in [0,1]^n$

Motivation

- Require pre-defined perturbations and require significant hyperparameter tuning
- How to select the distribution of the noise in the neural networks?

 Learning the model parameters and the perturbation distributions of the perturbation-injection modules in an end-to end learning framework.

- 1. Perturbation-injected network training: the network parameters are trained by gradient descent while the proposed perturbation-injection modules add layer-wise noise to the feature maps
- **2. Perturbation-injection module training**: the parameters of the perturbation-injection modules are updated via gradient descent and based on the regularization term added to the network loss function, while network parameters are fixed.

- Network : $Y \sim P(X; W, \theta)$
 - θ : noise parameters
- $P_l(X_l; W_l, \theta_l) = f_l(X_l; W_l) + Q(\theta_l)$
 - activation of layer I+ noise distribution with parameter following Gaussian distribution
 - $Q(\theta_l) = \theta_l N(0,1)$
 - $P_l(X_l; W_l, \theta_l) \approx N(f_l(X_l; W_l), \theta_l)$
- Loss Function:

$$\underset{W,\theta}{\arg\min} \Big[\mathcal{L}\Big(P(X;W,\theta),T\Big) + \gamma \cdot g(\theta) \Big]$$

$$g(\theta) = -\frac{\theta^{1/2}}{\tau}$$

: Training set D = Input $\{(x_i, t_i), i = 1, \dots, n\}$ Number of training epochs, I θ_{min} , the lower bound for θ θ_0 , initial values for θ Learning rate, lr, and constant γ : Learned parameters WOutput Learned noise distributions $Q(\theta)$ for $t \leftarrow 1$ to I do **Perturbation-injected training:** update W based on the loss function $\mathcal{L}(\cdot)$ Eq. (7) while θ is fixed $W^{t} \leftarrow W^{t-1} - lr \cdot \nabla_{W} \mathcal{L}\left(P(X; W^{t-1}, \theta^{t-1}), T\right)$ **Perturbation-injection module training:** update θ based on Eq. (7) while W is fixed $\theta^t \leftarrow \theta^{t-1} - lr \cdot \nabla_{\theta} \mathcal{L}\Big(P(X; W^{t-1}, \theta^{t-1}), T\Big) -$ $\gamma \cdot \nabla_{\theta} g(\theta^{t-1})$ Values of θ^t smaller than θ_{min} are projected to θ_{min}

end

Results On Cirfar 10

Table 1. Evaluating the effectiveness of the proposed perturbation-injection modules by comparing against adversarial training algorithm

		No defense			Vanilla[24]			Learn2Perturb-R			Learn2Perturb		
Model	#Parameter	Clean	PGD	FGSM	Clean	PGD	FGSM	Clean	PGD	FGSM	Clean	PGD	FGSM
ResNet-V1(20)	269,722	92.1	0.0 ± 0.0	14.1	83.8	39.1±0.1	46.6	81.15 ± 0.02	50.23 ± 0.14	55.89 ± 0.04	83.62 ± 0.02	51.13 ± 0.08	58.41 ± 0.07
ResNet-V1(56)	853,018	93.3	0.0 ± 0.0	24.2	86.5	40.1 ± 0.1	48.8	82.35 ± 0.03	53.30 ± 0.10	58.71 ± 0.04	84.82 ± 0.04	54.84 ± 0.10	61.53 ± 0.04
ResNet-V2(18)	11.173.962	95.2	0.1 ± 0.0	43.1	85.46	43.9 ± 0.0	52.5	82.46 ± 0.17	53.33 ± 0.12	59.09 ± 0.17	85.30 ± 0.09	56.06 ± 0.16	62.43 ± 0.06

metitoria sizes una empuernes. Result ure reporteu oj sumanta ue riudon seculos or une rumasimiess intorteu in ulcos menious.

			PNI [14]		I	Adv-BNN [<mark>22</mark>]	Learn2Perturb		
Model	#Parameter	Clean	PGD	FGSM	Clean	PGD	FGSM	Clean	PGD	FGSM
ResNet-V1(20)	269,722	84.90 ± 0.1	45.90 ± 0.1	54.50±0.4	65.76 ± 5.92	44.95±1.21	51.58±1.49	83.62 ± 0.02	51.13 ± 0.08	58.41 ± 0.07
ResNet-V1(32)	464,154	85.90 ± 0.1	43.50 ± 0.3	51.50 ± 0.1	62.95 ± 5.63	54.62 ± 0.06	50.29 ± 2.70	84.19 ± 0.06	54.62 ± 0.06	59.94 ± 0.11
ResNet-V1(44)	658,586	84.70 ± 0.2	48.50 ± 0.2	55.80 ± 0.1	76.87 ± 0.24	54.62 ± 0.06	58.55 ± 0.49	85.61 ± 0.01	54.62 ± 0.06	61.32 ± 0.13
ResNet-V1(56)	853,018	86.80 ± 0.2	46.30 ± 0.3	53.90 ± 0.1	77.20 ± 0.02	54.62 ± 0.06	57.88 ± 0.02	84.82 ± 0.04	54.62 ± 0.06	61.53 ± 0.04
ResNet-V1(20)[1.5×]	605,026	86.00 ± 0.1	46.70 ± 0.2	54.50 ± 0.2	65.58 ± 0.42	28.07 ± 1.11	36.11±1.29	85.40 ± 0.08	53.32 ± 0.02	61.10 ± 0.06
ResNet-V1(20)[2 \times]	1,073,962	86.20 ± 0.1	46.10 ± 0.2	54.60 ± 0.2	79.03 ± 0.04	53.46 ± 0.06	58.30 ± 0.14	85.89 ± 0.10	54.29 ± 0.02	61.61 ± 0.05
ResNet-V1(20)[4 \times]	4,286,026	87.70 ± 0.1	49.10 ± 0.3	57.00 ± 0.2	82.31 ± 0.03	52.61 ± 0.12	59.01 ± 0.04	86.09 ± 0.05	55.75 ± 0.07	61.32 ± 0.02
ResNet-V2(18)	11,173,962	87.21±0.00	49.42±0.01	58.06 ± 0.02	82.15±0.06	53.62 ± 0.06	60.04 ± 0.01	85.30 ± 0.09	56.06±0.08	62.43±0.06

Results On Cirfar 100

Figure 5. FGSM attack on CIFAR-100 with different epsilons for the l_{∞} ball on ResNet-V2(18).

Figure 6. PGD attack on CIFAR-100 with different epsilons for the l_{∞} ball on ResNet-V2(18).