СЛАЙД 1

Здравствуйте уважаемые председатель и члены аттестационной комиссии. Тема моей выпускной кваллификационной работы — Решение задачи сегментации факела выбросов на основе данных тепло-видео системы наблюдения. Сегодня очень важен вопрос загрязнения окружающей среды и сегментация факела выбросов поможет эфективней контролировать выбросы предприятий.

СЛАЙД 2

Целью данной работы является разработка алгоритма сегментации факела выбросов с использованием тепло-видео систем. Задачи представлены на слайде.

СЛАЙД 3

Мной были исследованы современные методы контроля вредных выбросов. Их классификация представленна на слайде. Было выявлено, что инструментальный метод является трудным в исполнении и дорогим, тогда как расчетный метод — недостаточно точным. Одним из решений этой проблемы является сегментация факела выбросов.

СЛАЙД 4

Для сегментации выбросов можно использовать тепловизоры, так как выбросы имеют высокую температуру, что обеспесивает их лучшую видимость на тепловых снимках, в отличии от оптических. Также они дешевле чем газоанализаторы.

СЛАЙД 5

Постановка задачи сегментации факела выбросов звучит следующим образом: X – пространство пар изображений и соответствующих им матрц температур. Z – пространство масок соответствующей разменрности где каждый пиксель отражает вероятность принадлежности к факелу. Необходимо восстановить функцию (1). (ПОКАЗЫВАЙ НА КАРТИНКИ!!!)

СЛАЙД 6

Задача сегментации факела выбросов делится на 3 основных этапа. Это подготовка даных (ТЫК), Детекция трубы (ТЫК), Сегментация факела (ТЫК).

СЛАЙД 7

Оссобенностью использованного тепловизора является вывод матрицы температур в формате цветного 3-х канального сжатого изображения, поэтому требуется переход к одноканальному изображению в оттенках серого, где черный соответствует холодному, белый — горячему.

СЛАЙД 8

Поэтому необходимо классифицировать цвета по 256 классам. Из за сжатия и искажения цветов было решено использовать модель классификации «к ближайших соседей», которая для каждого цвета находит ближайший цвет из тестовой выборки и классифицирует его классом этого цвета.

СЛАЙД 9

Здесь представленна схема этого алгоритма. Ключевой момент – подготовка классификатора цветов, для этого обучаем модель на 256 оттенках серого и классифицируем все RGB пространство.

СЛАЙД 10

Для анализа точности алгоритма была сформулированна следующая метрика точности, соответсвующая среднему евклидовому расстоянию между интенсивностью пикселей, которую вы можете увидеть на слайде.

СЛАЙД 11

Здесь видно как меняется точность в зависимости от степени сжатия изображения.

СЛАЙД 12

Здесь показан пример результата подготовки данных до подготов-

ки и после, теловизионное изображение преобразовано к одноканальному формату, оба изображения имеют один размер.

СЛАЙД 13

2 этап – задача детекции трубы. Зачастую температура трубы выше чем температуры выбросов, как следствие алгоритмы сегментации основанные на температуре сегментируют и трубу. Поэтому нам необходима детекция трубы заданной на образце

Алгоритм делится на три шага: первый шаг получение ключевых точек на изображении образце и на входном изображении. Второй шаг – классификация ключевых точек по точкам на изображении образце. третий шаг восстановление координат прямоугольника с трубой.

СЛАЙД 14

Шаги 1 и 3 представленны в виде схем. Получаем пирамиду изображений в разной степени размытых фильтром гаусса, после каждую точку проверяем на локальный экстремум в пирамиде и контрастность, и добавляем дескриптор в случае успеха. для востановления координат мы некоторое количесво раз выбираем 2 случайные ключевые точки, восстанавливаем по ним прямоугольник и обновляем лучшый результат.

СЛАЙД 15 3 этап — сегментация методом водораздела, он был выбран потому что матрица температур является черно белым изображеним с низкой контрастностью, а также потому что данный алгоритм позволяет работать с маркерами. Простыми словами можно описать алгоритм следующим образом: градиент функции представляется в виде поверхности, в маркерах проделываются отверстия, и начинается затопление этой поверхности. В месте соединения воды появляется водораздел являющийся границей классов сегментации.

СЛАЙД 16

Тут можно увидеть алгоритм сегментации. Находятся маркеры, клас-

су выбросов соответствует самая «горячая точка трубы», классу не выбросов соответствует самая холодная точка изображения. Вычисляется градиент, преобразовывается с помощью маркеров и делится на секции уровней. Для каждой секции уровня вычисляется новая зона влияния каждого маркера. После из полученной маски исключается прямоугольник с трубой

СЛАЙД 17

Для тестирования алгоритма была сформирована синтетическая тестовая выборка и на рисунке 12 можно увидеть пример работы алгоритма сегментации.

СЛАЙД 18

Данная тестовая выборка была в ручную размечена и на рисунке 15 представлеенна визуализация разницы масок, размеченых вручную и масок полученных с помощью алгоритма. (ТЫК!!!)

СЛАЙД 19

Для оценки точности решено было использовать коэффициент Серенсена - Дайса, вычисляемый по формуле 3. Здесь ТР FР и FN — площади соответствующих сегментов. Метрика позволяет оценивать как качество сегментации, так и ее объем. Получившаяся точность — 86,2%

СЛАЙД 20

В ходе работы был разработан алгоритм сегментации факела выбросов, исползующий данные тепло-видео систем наблюдения. Данная работа выполнена в рамках проекта «Экомонитор» института естественных и точных наук.

Была разработана математическая модель алгоритмов подготовки данных, детекции трубы и сегментации факела выбросов методом водораздела. Данные алгоритмы были разработаны, реализованы и протестированы. Таким образом цель работы достигнута, а все поставленные задачи решены

СЛАЙД 21

Спасибо за внимание, готов ответить на ваши вопросы