Homework 3

CSE 310 Fall 2021

Due date: **November 9, 2021; 11:59 PM**Submission via Blackboard.

1. Dijkstra's algorithm

A. Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from *x* to all network nodes. Show how the algorithm works by computing a table similar to the ones discussed in class. **(15 points)**

Step	N'	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	х	8	8	3,x	6,x	6,x	8,x
1	ΧV	7,v	6,v	3,x	6,x	6,x	8,x
2	xvu	7,v	6,v	3,x	6,x	6,x	8,x
3	xvuw	7,v	6,v	3,x	6,x	6,x	8,x
4	xvuwy	7,v	6,v	3,x	6,x	6,x	8,x
5	xvuwyt	7,v	6,v	3,x	6,x	6,x	8,x
6	xvuwytz	7,v	6,v	3,x	6,x	6,x	8,x

x to t: xvt,7(path,distance); x to u: xvu,6; x to v: xv, 3; x to w: xw, 6; x to y: xy, 6; x to z: xz, 8

B. For the same network as part A, using Dijkstra's algorithm, and showing your work similar to part A, compute the shortest path from *t* to all network nodes. **(10 points)**

Step	N'	D(z),p(z)	D(x),p(x)	D(w),p(w)	D(u),p(u)	D(v),p(v)	D(y),p(y)
0	t	8	∞	∞	2,t	4,t	7,t
1	tu	8	∞	5,u	2,t	4,t	7,t
2	tuv	8	7,v	5,u	2,t	4,t	7,t
3	tuvw	8	7,v	5,u	2,t	4,t	7,t
4	tuvwx	15,x	7,v	5,u	2,t	4,t	7, t
5	tuvwxy	15,x	7,v	5,u	2,t	4,t	7,t
6	tuvwxyz	15,x	7,v	5,u	2,t	4,t	7,t

```
t to z: tvxz,15;
```

2. Distance vector

A. Consider the three-node topology shown below. Compute the distance tables after the initialization step and after each iteration of a synchronous version of the distance-vector algorithm, similar to our discussion in class. **(10 points)**

Node x:

from

After initialization:

1		X	У	Z
	Х	0	3	4
	У	8	8	8
	Z	8	8	8

After first iteration:

	Х	У	Z
Х	0	3	4
→ Y	3	0	6
/ z	4	6	0

After second iteration:

	Х	У	Z
Х	0	3	4
У	3	0	6
Z	4	6	0

Node y:

After initialization:

	Х	У	Z
Х	8	8	8
У	4	0	6
Z	8	8	8

After first iteration:

\	\	Х	У	Z
	×	0	3	4
	У	3	0	6
	Z	4	6	0

After second iteration:

	Х	У	Z
∀ X	0	3	4
У	3	0	6
∠ Z	4	6	0

Node z:

After initialization:

, ii coi ii ii cianzacioiii					
	X	У	Z		
Х	8	8	8		
У	8	8	8		
Z	4	6	0		

After first iteration:

	X	У	Z
×	0	3	4
У	3	0	6
Z	4	6	0

After second iteration:

/ \					
	Х	У	Z		
▼ x	0	3	4		
У	3	0	6		
Z	4	6	0		

B. Consider the network shown below and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node *z* for each iteration. **(15 points)**

from

	u	V	x	У	Z
V	8	∞	8	8	8
x	8	8	8	8	8
Z	8	6	2	8	0
	u	V	х	У	Z
V	1	0	3	8	6
х	8	3	0	3	2
Z	7	5	2	5	0
	u	V	х	У	Z
V	1	0	3	3	5
х	4	3	0	3	2
Z	6	5	2	5	0
	u	V	х	У	Z
V	1	0	3	3	5
х	4	3	0	3	2
Z	6	5	2	5	0