Практическая работа № 3.

РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ МЕТОДОМ ИТЕРАЦИЙ

1. Цель работы

Научиться решать уравнения методом итераций и делать соответствующие выводы.

2. Пояснения к работе

В работе приводится 20 вариантов заданий. Номер варианта обучающийся определяет по порядковому номеру в списке учебной группы.

При выполнении практической работы обучающийся должен уметь:

- использовать метод итераций для решения алгебраических и трансцендентных уравнений;
- разрабатывать алгоритмы и программы для решения алгебраических и трансцендентных уравнений методом итераций, учитывая необходимую точность получаемого результата;

знать:

- оценку точности вычислений;
- методы решения алгебраических и трансцендентных уравнений с помощью ЭВМ.

3. Теоретические сведения

Любое уравнение можно представить в виде:

$$f(x)=0$$
 (2.1)
 $\varphi_1(x)=\varphi_2(x)$ (2.2)

Или

Решить уравнения (2.1) и (2.2) численными методами, означает:

- Установить имеют ли уравнения корни;
- Определить сколько корней;
- Найти значения корней (с заданной степенью точности).

І этап: Отделение корней – определение количества корней и нахождение промежутков, на каждом из которых лежит только один корень уравнения.

ІІ этап: Уточнение корней до заданной степени точности.

Корень ξ (кси) уравнения (2.1) считается отделенным на отрезке [a,b], если на этом отрезке данное уравнение не имеет других корней.

Отделить корни это означает разбить всю область допустимых значений на отрезки, в каждом из которых содержится ровно по одному корню или корней на этом промежутке нет.

Отделение корней

Графический метод отделения корней

1случай. Пусть задано уравнение f(x)=0, строим график функции y=f(x) Значения действительных корней уравнения есть абсциссы точек пересечения графика функции y=f(x) с осью Ox.

Рисунок 2.1

 ξ_1 отделен на отрезке $[a_1;b_1]$, и. т. д.

2 случай. Представляем уравнение в виде $\phi_1(x) = \phi_2(x)$ и строим графики этих функций.

Рисунок 2.2

Значения действительных корней уравнения есть абсциссы точек пересечения графиков функций $y_1 = \varphi_1(x)$ и $y_2 = \varphi_2(x)$.

Аналитический метод отделения корней

Процедура отделения корней:

- 1) Найти производную f'(x) и стационарные точки;
- 2) Составить таблицу знаков функции f(x) и определить интервалы $(\alpha; \beta)$, где функция имеет на концах разные знаки.

Уточнение корней

Уточнить корень это значит довести его значение до заданной степени точности.

Метод итераций (последовательных приближений)

Пусть дано уравнение f(x)=0, где f(x) непрерывная функция. Требуется определить вещественный корень этого уравнения, заключенный на отрезке [a;b].

Заменим данное уравнение равносильным ему уравнением $x = \varphi(x)$.

Выберем каким-либо способом $x_0 \in [a; b]$ и подставим его в правую часть уравнения, тогда получим $x_1 = \varphi(x_0)$, затем значение x_1 подставим снова в правую часть уравнения (2.9) получим второе приближение $x_2 = \varphi(x_1)$, повторяя этот процесс получим последовательность чисел $x_{n+1} = \varphi(x_n)$.

Возможны два случая:

- 1) Последовательность x_0 , x_1 ,..., x_n ,... сходится, то есть имеет предел и тогда этот предел будет корнем уравнения f(x)=0.
 - 2) Последовательность расходится, то есть не имеет предела.

Теорема (условие сходимости итерационного процесса).

Пусть на отрезке [a;b] имеется единственный корень уравнения $x=\varphi(x)$ и во всех точках этого отрезка производная $|\varphi'(x)|$ удовлетворяет неравенству: $|\varphi'(x)| \le q < 1$.

Если при этом выполняется условие $a \le \varphi(x) \le b$, то итерационный процесс сходится, а за нулевое приближение x_0 можно взять любое число из отрезка [a; b].

Последнее условие означает, что все приближения $x_0, x_1, ..., x_n, ...$ также находятся на отрезке [a; b], чем меньше $|\phi'(x)|$, тем лучше сходимость итерационного процесса.

Уравнение f(x)=0 к виду $x=\varphi(x)$ можно привести следующим способом:

$$\varphi(x) = x - \frac{f(x)}{k}$$
,

где k следует выбирать так, чтобы $|k| \ge Q/2$, где $Q = \max |f'(x)|$ на отрезке [a; b] и знак k совпадал бы со знаком f(x) на отрезке [a; b]. Уточнение корня происходит по формуле:

$$x_{n+1} = \varphi(x_n), n = 0,1,2,....$$

Определение точности вычисленных приближенных значений корня

Пусть ξ точное значение корня уравнения $x = \varphi(x)$, а число q определяется из соотношения $|\varphi'(x)| \le q < 1$, тогда справедливо соотношение:

$$\left| \xi - x_n \right| \le \frac{q}{1 - q} \cdot \left| x_n - x_{n-1} \right|$$

Если поставить условие, что истинное значение корня ξ должно отличаться от приближенного значения на величину ε , то приближения x_0 , x_1 ,..., x_n ,... надо вычислять до тех пор, пока не будет выполняться неравенство:

$$\frac{q}{1-q} \cdot |x_n - x_{n-1}| \le \xi \quad _{\mathbf{ИJIU}} |x_n - x_{n-1}| \le \xi \cdot \frac{1-q}{q}$$

4. Задание

- 1. Отделите корни уравнения графически и уточните один из них методом итераций с точностью до 0,001.
 - 2. Дайте ответы на контрольные вопросы.
 - 3. Оформите отчёт.

4. Порядок выполнения работы

На основании исходных данных, представленных в приложении А (таблица А.3) и теоретических сведений:

- 1. Отделите корни графически.
- 2. Уточните один из них методом итераций с точностью до 0,001:
- -составьте блок-схему алгоритма уточнения корней методом итераций,
- -составьте программу для решения уравнений указанным методом.
- 2. Дайте ответы на контрольные вопросы.
- 3. Оформите отчет.

6.Содержание отчета

Отчет должен быть выполнен в соответствии с Общими требованиями к оформлению документов учебной деятельности обучающихся. Отчет должен содержать следующие разделы:

- 1. Наименование работы.
- 2. Цель работы.
- 3. Отделение корней графически и уточнение один из них методом итераций с точностью до 0,001.
 - 4. Ответы на контрольные вопросы.
 - 5. Вывод.

1. Контрольные вопросы

- 4. В чем заключается этап уточнения корней при использовании численных методов решения уравнений?
- 5. Дайте определение сходящегося итерационного процесса.

2. Список источников, рекомендуемых для выполнения практической работы

1. Балабко, Л. В. Численные методы [Электронный ресурс] : учебное пособие / Л. В. Балабко, А. В. Томилова ; М-во образования и науки Рос. Федерации, Федер. гос. авт. образоват. учреждение высш. проф. образования "Сев. (Аркт.) федер. ун-т им. М. В. Ломоносова". — Электрон. текстовые дан. — Архангельск : Северный (Арктический) федеральный университет, 2014. — 160, [2] с. : ил., табл. — Режим доступа

http://lib.narfu.ru/index.php?option=com_irbis&view=irbis&Itemid=108&task=set_static _req&search_form_enable=0&select_catalog_enable=0&req_description_enable=0&che ckbox_enable=0&number_enable=0&lang=ru&bns_string=ELIB&sys_code=-281114507, свободный. – Загл. с экрана.

2. Колдаев, В. Д. Численные методы и программирование [Электронный ресурс] : учебное пособие для студентов учреждений среднего профессионального образования / В. Д. Колдаев ; под ред. Л. Г. Гагарина. — Электрон. текстовые дан. — Москва : ФОРУМ : ИНФРА-М, 2018. — 335 с. : ил. — (Среднее профессиональное образование). — Режим доступа : http://znanium.com/bookread2.php?book=672966, доступ из ЭБС «Znanium.com». — Загл. с экрана.

Таблица А.3 - Исходные данные для выполнения задания

вариант		вариант	
1	$\ln x + (x+1)^3 = 0$	2	$x2^x = 1$
3	$0.5x + \lg(x - 1) = 0.5$	4	$x - \cos x = 0$
5	$3x + \cos x + 1 = 0$	6	$x + \ln x = 0.5$
7	$2 - x = \ln x$	8	$(x-1)^2 = \frac{1}{2}e^x$
9	$(2-x)e^x=0.5$	10	$2,2x-2^x=0$
11	$x^2 + 4\sin x = 0$	12	$2x - \lg x = 7$
13	$5x - 8 \ln x = 8$	14	$3x - e^x = 0$
15	$x(x+1)^2 = 1$	16	$x = (x+1)^3$
17	$x^2 = \sin x$	18	$x^3 = \sin x$
19	$x = \sqrt{lg(x+2)}$	20	$x^2 = ln(x+1)$