Tema 3 – Números e operações

Números reais

Praticar – páginas 68 a 73

$$1. -2 - \left(-\frac{3}{4} - \frac{4}{3}\right) =$$

$$= -2 - \left(-\frac{9}{12} - \frac{16}{12}\right) =$$

$$= -2 - \left(-\frac{25}{12}\right) =$$

$$= -\frac{2}{1} + \frac{25}{12} =$$

$$= -\frac{24}{12} + \frac{25}{12} =$$

$$= \frac{1}{12}$$

O simétrico de $\frac{1}{12}$ é $-\frac{1}{12}$.

$$R.: -\frac{1}{12}$$

2. Se as páginas escritas no outono passado correspondem a $\frac{3}{5}$ do número total de páginas, as páginas escritas há 42 anos correspondem a $\frac{2}{5}$ do número toral de páginas, pois $1 - \frac{3}{5} = \frac{5}{5} - \frac{3}{5} = \frac{2}{5}$.

Como 92 páginas correspondem a $\frac{2}{5}$ do número total de páginas, então $92 : \frac{2}{5} = 92 \times \frac{5}{2} = 230$.

R.: O novo romance de Paula tem 230 páginas.

3.
$$\sqrt{16} + (\sqrt{5})^2 - (\sqrt[3]{11})^3 - 2 =$$

= 4 + 5 - 11 - 2 =
= 9 - 13 =
= -4

4.

- 4.1. Na caixa estão 22 cubos.
- **4.2.** Como as dimensões da caixa são $5 \times 6 \times 4$ então, a caixa tem capacidade para 120 cubos.

120 - 22 = 98 cubos.

R.: Para encher completamente a caixa são necessários 98 cubos.

4.3. Como cada cubo tem 64 cm³ de volume e para a encher são necessários 120 cubos,

$$V = 120 \times 64 = 7680$$

R.: $V = 7680 \text{ cm}^3$

5. Como o primeiro quadrado tem 144 cm² de área, então como $\ell = \sqrt{144} = 12$ cm.

O perímetro é igual a $6 \times 2 + 2 \times (12 + 12) = 60$ cm

6. [A] $2000 \times 0.1 = 200 \text{ e } 200 < 2000$

[B] $2 \times 1000 = 2000$

[C] $2000:0.01 = 200\ 000\ e\ 200\ 000 > 2000$

[D] 2:0,001 = 2000

Logo, a opção correta é a [C].

7.
$$2^{5} \times 4 \times \frac{1}{2^{3}} \times \frac{1}{16} =$$

= $2^{5} \times 2^{2} \times 2^{-3} \times \frac{1}{2^{4}} =$
= $2^{7} \times 2^{-3} \times 2^{-4} =$
= $2^{7} \times 2^{-7} =$
= 2^{0}

8.
$$A_{\triangle} = \frac{b \times h}{2}$$

$$A_{[ABC]} = \frac{\frac{7}{3} \times a}{2} = 16 \Leftrightarrow \frac{7}{3} = 32$$

$$\Leftrightarrow 7a = 96$$

$$\Leftrightarrow a = \frac{96}{7}$$

9.
$$-1.75$$
; $\left(\frac{5}{2}\right)^{-1} = \frac{2}{5} = 0.4$;
 -0.1 ; $-1\frac{1}{10} = -\frac{11}{10} = -1.1$ ou seja,
 $-1.75 < -1\frac{1}{10} < -0.1 < \left(\frac{5}{2}\right)^{-1}$

10. 10.1. $2^2 \times \left(\frac{1}{2}\right)^{-3} =$ $= 2^2 \times 2^3 =$ $= 2^5 =$ = 32

10.2.
$$(2^3)^2 \times \left(\frac{7}{5}\right)^0 + \left(\frac{1}{3}\right)^{-1} =$$

$$= 2^6 \times 1 + 3 =$$

$$= 64 + 3 =$$

$$= 67$$
10.3. $3^3 \times (-3)^{-2} - \left(-\frac{1}{3}\right)^2 =$

$$= 3^3 \times 3^{-2} - \frac{1}{9} =$$

$$= \frac{3}{1} - \frac{1}{9} =$$

$$= \frac{27}{9} - \frac{1}{9} =$$

$$= \frac{26}{9}$$
10.4. $-(\sqrt{100})^{-1} \times (-10)^2 + \frac{1}{9}$

$$10.4. -(\sqrt{100})^{-1} \times (-10)^{2} + \frac{(-2)^{0}}{5} =$$

$$= -10^{-1} \times 10^{2} + \frac{1}{5} =$$

$$= -\frac{10}{1} + \frac{1}{5} =$$

$$= -\frac{50}{5} + \frac{1}{5} =$$

$$= -\frac{49}{5}$$

10.5.
$$(2^2)^3 \times \left(\frac{1}{6}\right)^{-6} : \left(\frac{1}{12}\right)^{-8} =$$

$$= 2^6 \times 6^6 : 12^8 =$$

$$= 12^6 : 12^8 =$$

$$= 12^{-2} =$$

$$= \left(\frac{1}{12}\right)^2 =$$

$$= \frac{1}{144}$$

10.6.
$$9 \times 81^3$$
: $(3^2)^8 \times (\sqrt{9})^2 + \left[\left(-\frac{1}{5}\right)^{11}\right]^0 =$

$$= 3^2 \times (3^4)^3 : 3^{16} \times 3^2 + 1 =$$

$$= 3^2 \times 3^{12} : 3^{16} \times 3^2 + 1 =$$

$$= 3^{14} : 3^{16} \times 3^2 + 1 =$$

$$= 3^{-2} \times 3^2 + 1 =$$

$$= 3^0 + 1 =$$

$$= 1 + 1 =$$

$$= 2$$

11.
$$\frac{1}{125} = \frac{1}{5^3} = 5^{-3}$$

12. Escrevendo os números de cada uma das opções em notação científica, temos:

[A]
$$3,22 \times 10^5$$

[B]
$$6,46 \times 10^4$$

[C]
$$6120 \times 10^{-2} = 6,12 \times 10$$

[D]
$$0.12 \times 10^8 = 1.2 \times 10^7$$

Entre números escritos em notação científica, é maior aquele cuja potência de base 10 tem maior expoente. Logo, a opção correta é a [D].

- **13.** A opção correta é a [B] porque 2.3×10^{-2} é igual ao produto de um número superior a 1 e inferior a 10 (2,3) por uma potência de base 10 (10^{-2}).
- **14.** Decompondo em fatores primos os números 33 e 75, temos:

$$33 = 3 \times 11$$
 $75 = 3 \times 5^2$

Logo,
$$\frac{33}{75} = \frac{3 \times 11}{3 \times 5^2} = \frac{11}{25}$$

Como a decomposição em fatores primos do denominador da fração própria, 25, não tem fatores diferentes de 2 e de 5, $\frac{11}{25}$ representa uma dízima finita.

Decompondo em fatores primos os números 26 e 84, temos:

$$26 = 2 \times 13$$
 $84 = 2^2 \times 3 \times 7$

Logo,
$$\frac{26}{84} = \frac{2 \times 13}{2^2 \times 3 \times 7} = \frac{13}{42}$$

Como o denominador, 42, tem fatores diferentes de $2 e de 5, \frac{13}{42}$ representa uma dízima infinita.

R.: $\frac{33}{75}$ admite uma representação na forma de dízima finita.

15. 3,(72)

Seja
$$r = 3,727272...$$
 Então $100 \times r = 372,7272...$
 $100 \times r = 99 \times r$, ou seja, $372,(72) - 3,(72) = 369$
 $99 \times r = 369 \Leftrightarrow r = \frac{369}{99}$

$$3,(72) = \frac{369}{99} = \frac{41}{11}$$

16.

16.1.
$$(\sqrt{3} - 1)^2 - (3\sqrt{3} + 5) =$$
 $= (\sqrt{3})^2 - 2 \times \sqrt{3} \times 1 + 1^2 - 3\sqrt{3} - 5 =$
 $= 3 - 2\sqrt{3} + 1 - 3\sqrt{3} - 5 =$
 $= 3 + 1 - 5 - 2\sqrt{3} - 3\sqrt{3} =$
 $= -1 - 5\sqrt{3}$

16.2. $2\sqrt{5} - (-3 + \sqrt{5}) - (\sqrt{2} - 1)(\sqrt{2} + 1) =$
 $= 2\sqrt{5} + 3 - \sqrt{5} - ((\sqrt{2})^2 - 1^2) =$
 $= 2\sqrt{5} + 3 - \sqrt{5} - (2 - 1) =$
 $= 2\sqrt{5} + 3 - \sqrt{5} - 1 =$
 $= 3 - 1 + 2\sqrt{5} - \sqrt{5} =$
 $= 2 + \sqrt{5}$

17. Por exemplo,
$$0.254 = \frac{254}{1000} = \frac{127}{500}$$
 e $0.25(3) = \frac{253 - 25}{900} = \frac{228}{900} = \frac{19}{75}$

18.1.
$$\sqrt{3} \notin \mathbb{Q}$$
 $\sqrt{3}$ é irracional, logo não pertence a \mathbb{Q} .

18.2.
$$-\frac{3}{4}$$
 ∉ \mathbb{Z} $-\frac{3}{4}$ não é inteiro, logo não pertence a \mathbb{Z} .

18.3.
$$-2$$
,(3) ∈ \mathbb{Q}

-2,(3) é uma dízima infinita periódica, logo é irracional, ou seja, pertence a \mathbb{Q} .

$$18.4. \sqrt{16} \in \mathbb{Z}$$

 $\sqrt{16} = 4$ é inteiro, logo pertence a \mathbb{Z} .

19. Como é o dobro da diferença entre dois números, as alíneas [A] e [C] não podem ser as corretas. O triplo da raiz cúbica de 11 representa-se por $3(\sqrt[3]{11})$, então a opção correta é a [B].

$$20.1. - \left(+\frac{2}{5} - \frac{7}{10} \right) - \left(0, 4 - \frac{9}{5} \right) =$$

$$= -\frac{2}{5} + \frac{7}{10} - \frac{4}{10} + \frac{9}{5} =$$

$$= -\frac{4}{10} + \frac{7}{10} - \frac{4}{10} + \frac{18}{10} =$$

$$= \frac{7}{10} + \frac{18}{10} - \frac{4}{10} - \frac{4}{10} =$$

$$= \frac{25}{10} - \frac{8}{10} =$$

$$= \frac{17}{10}$$

$$20.2. \left(-\frac{1}{2}\right) \times \left(-\frac{3}{4} + 3\right) - \left(0.2 + \frac{1}{2}\right) =$$

$$= -\frac{1}{2} \times \left(-\frac{3}{4}\right) - \frac{1}{2} \times 3 - \left(\frac{2}{10} - \frac{1}{2}\right) =$$

$$= \frac{3}{8} - \frac{3}{2} - \left(\frac{2}{10} - \frac{5}{10}\right) =$$

$$= \frac{3}{8} - \frac{3}{2} - \left(-\frac{3}{10}\right) =$$

$$= \frac{15}{40} - \frac{60}{40} + \frac{12}{40} =$$

$$= \frac{27}{40} - \frac{60}{40} =$$

$$= -\frac{33}{40}$$

$$20.3. -2 \frac{1}{3} \times \left(-0.5 + 2\frac{1}{4}\right) =$$

$$20.3. -2\frac{1}{3} \times \left(-0.5 + 2\frac{1}{4}\right) =$$

$$= -\frac{2 \times 3 + 1}{3} \times \left(-\frac{1}{2} + \frac{2 \times 4 + 1}{4}\right) =$$

$$= -\frac{7}{3} \times \left(-\frac{2}{4} + \frac{9}{4}\right) =$$

$$= \frac{7}{3} \times \frac{7}{4} =$$

$$= -\frac{49}{12}$$

21. [A]
$$5 \times \left(-\frac{3}{2}\right) + 1 = -\frac{15}{2} + \frac{1}{1} = -\frac{15}{2} + \frac{2}{2} = -\frac{13}{2}$$

[B]
$$\frac{5}{8} \times 0 \times \left(-\frac{37}{2}\right) + 5 = 0 + 5 = 5$$

[C] $|-3| \times (-2 + 1) - \frac{1}{2} = 3 \times (-1) - \frac{1}{2} = 3$

$$= -\frac{3}{1} - \frac{1}{2} = -\frac{6}{2} - \frac{1}{2} = -\frac{7}{2}$$

[D]
$$-(-5) \times \left(\frac{1}{2} - \frac{1}{4}\right) = 5 \times \left(\frac{2}{4} - \frac{1}{4}\right) = 5 \times \frac{1}{4} = \frac{5}{4}$$

$$\left| -\frac{13}{2} \right| = \frac{13}{2} = 6.5$$

$$|5| = 5$$

$$\left| -\frac{7}{2} \right| = \frac{7}{2} = 3.5$$

 $\left| \frac{5}{4} \right| = \frac{5}{4} = 1.25$

Assim, $-\frac{13}{2}$ tem maior valor absoluto e, portanto, a opção correta é a [A].

22. Como
$$32 = 2^5$$
, então $32^7 = (2^5)^7 = 2^{5 \times 7} = 2^{35}$.

23

23.1.
$$2^6 = 2^{2 \times 3} = (2^2)^3$$
, então $(2^2)^3 = 2^6$

23.2.
$$\left(\frac{1}{4}\right)^{-3} = 4^3$$

23.3.
$$\left(\frac{1}{4}\right)^8 = 4^{-8} = 4^{-6} \times 4^{-2} = (4^{-2})^3 \times 4^{-2}$$
, então

$$(4^{-2})^3 \times 4^{-2} = \left(\frac{1}{4}\right)^8$$

24.

24.1.
$$\left[\left(\frac{5}{2} \right)^2 \right]^3 \times \left(\frac{3}{1} - \frac{1}{2} \right)^4 =$$

$$=\left(\frac{5}{2}\right)^6 \times \left(\frac{6}{2} - \frac{1}{2}\right)^4 =$$

$$=\left(\frac{5}{2}\right)^6\times\left(\frac{5}{2}\right)^4=$$

$$=\left(\frac{5}{2}\right)^{10}$$

24.2.
$$\left[-\left(-\frac{3}{5} \right)^4 \right]^3 \times \left(\frac{3}{5} \right)^5 =$$

$$=-\left(\frac{3}{5}\right)^{12}\times\left(\frac{3}{5}\right)^{5}=$$

$$=-\left(\frac{3}{5}\right)^{17}=\left(-\frac{3}{5}\right)^{17}$$

24.3.
$$\frac{\left(\frac{3}{2}\right)^6 \times 2^6 : 9^6}{\left[\left(\frac{1}{3}\right)^2\right]^3} = \frac{\left(\frac{3}{2} \times 2\right)^6 : 9^6}{\left(\frac{1}{3}\right)^6} =$$

$$=\frac{3^6:9^6}{\left(\frac{1}{3}\right)^6}=$$

$$=\left(\frac{3}{9}\right)^6:\left(\frac{1}{3}\right)^6=$$

$$=\left(\frac{1}{3}\right)^6:\left(\frac{1}{3}\right)^6=$$

$$=\left(\frac{1}{3}\right)^0$$

25. Como o cubo tem 216 cm³ de volume, a aresta tem 6 cm de comprimento ($\sqrt[3]{216} = 6$).

O perímetro da planificação é igual a 84 cm $(14 \times 6 = 84)$.

26.1. Como 1 minuto é igual a 60 segundos $300\ 000 \times 60 = 18\ 000\ 000 = 1,8 \times 10^7$

R.: A luz percorre 1.8×10^7 km num minuto.

26.2.
$$\frac{6.8 \times 10^2}{3 \times 10^5} = \frac{6.8}{3} \times 10^{-3} \approx$$

$$\approx 2,27 \times 10^{-3} \approx$$

R.: Demora, aproximadamente, 0,002 27 segundos.

27.
$$10 \times (A + B) = 10 \times (2,24 \times 10^6 + 3,2 \times 10^5) =$$

$$= 10 \times (22,4 \times 10^5 + 3,2 \times 10^5) =$$

$$= 10 \times 25,6 \times 10^5 =$$

$$= 25,6 \times 10^6 =$$

$$= 2,56 \times 10^7$$

28. Como a área do quadrado é igual a 289 cm², o comprimento do lado é $\ell = \sqrt{289} = 17$ cm.

Sendo E o ponto médio de [AB], então

$$\overline{AE} = \overline{EB} = \frac{17}{2} = 8.5 \text{ cm}$$

Logo, $\overline{BC} = 2 \times 8.5$, ou seja, $\overline{BC} = 17$ cm.

$$A_{\triangle} = \frac{b \times h}{2}$$

$$A_{[BEF]} = \frac{\overline{BE} \times \overline{BC}}{2}$$

$$A_{[BEF]} = \frac{8.5 \times 17}{2} = 72.25 \text{ cm}^2$$

29

29.1. Por exemplo,
$$\frac{3}{2}$$
.

 $\frac{3}{2}$ = 1,5 e, por isso, é uma dízima finita.

29.2. Por exemplo,
$$\frac{18}{3}$$
.

 $\frac{18}{3}$ = 6 e, por isso, é um número inteiro.

29.3. Por exemplo, $\frac{47}{9}$.

 $\frac{47}{9}$ = 5,(2) e, por isso, é uma dízima infinita periódica.

30. Como
$$\frac{18}{10} = \frac{3 \times 6}{3 \times 10} = \frac{6}{10}$$

 $\frac{6}{10}$ é uma fração decimal porque o denominador é uma potência de 10.

31.1. a)
$$\sqrt[3]{-1} = -1$$
; 0; $\sqrt{9} = 3$; $\frac{12}{3} = 4$

b)
$$-\frac{7}{3} = -2,(3) \text{ e } 0,(7)$$

c) $-\frac{7}{3}$; $\sqrt[3]{-1}$; 0; $\sqrt{9}$; 0,(7) e $\frac{12}{3}$

31.2.
$$-\sqrt{10} < -\frac{7}{3} < \sqrt[3]{-1} < 0 < 0, (7) < \sqrt{9} < \frac{12}{3}$$

32.

32.1.
$$(\sqrt{7} - 2)^2 + 4\sqrt{7} - \left(\frac{1}{3} + \frac{2}{1}\right)^{-1} =$$

$$= 7 - 4\sqrt{7} + 4 + 4\sqrt{7} - \left(\frac{1}{3} + \frac{6}{3}\right)^{-1} =$$

$$= 11 - \left(\frac{7}{3}\right)^{-1} =$$

$$= 11 - \frac{3}{7} =$$

$$= \frac{77}{7} - \frac{3}{7} =$$

$$= \frac{74}{7}$$

32.2.
$$-\left(\frac{2}{5}\right)^{-1} + (\sqrt{3})^2 + \sqrt{3}(1 - \sqrt{3}) =$$

= $-\frac{5}{2} + 3 + \sqrt{3} - 3 =$
= $-\frac{5}{2} + \sqrt{3}$

33.

33.1.
$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

33.2. $\mathbb{R} \setminus \mathbb{Q} \cup \mathbb{Q}$

34. Como
$$p \in]7 - 0.1; 7 + 0.1[=]6.9; 7.1[e $q \in]5 - 0.1; 5 + 0.1[=]4.9; 5.1[$, temos: $6.9 \times 4.9 $\Leftrightarrow 33.81$$$$

35.
$$P = 6 \times (2\sqrt{3} - 5) = (12\sqrt{3} - 30)$$
 cm

36.
$$A_{\square} = \ell^2$$

 $A = (\sqrt{2} - 3)^2 =$
 $= 2 - 6\sqrt{2} + 9 =$
 $= (11 - 6\sqrt{2}) \text{ cm}^2 \approx 3 \text{ cm}^2$

37. Por exemplo, 0,0015 =
$$\frac{3}{2000}$$
.

38. Por exemplo,
$$a = \sqrt{11}$$
 e $b = \sqrt{\frac{171}{10}}$

39.

39.1.
$$-\frac{4}{3} = \frac{5}{3} + ?$$

Como
$$-\frac{4}{3} - \frac{5}{3} = -\frac{9}{3} = -3$$
, então $\frac{5}{3} + (-3) = -\frac{4}{3}$.

39.2.
$$-\frac{4}{3} = -\frac{2}{3} \times ?$$

Como
$$-\frac{4}{3}: \left(-\frac{2}{3}\right) = -\frac{4}{3} \times \left(-\frac{3}{2}\right) = +2$$
, então

$$-\frac{4}{3} = -\frac{2}{3} \times 2$$

39.3.
$$-\frac{4}{3} = ? - ?$$

Por exemplo,
$$-\frac{1}{3} - 1 = -\frac{4}{3}$$
.

40. Como $A_{[ABCD]}=144~{\rm cm}^2$, então $\ell=\sqrt{144}=12~{\rm cm}$. O triângulo [DCE] é equilátero, então $\overline{CE}=\overline{BC}=12~{\rm cm}$. Como o diâmetro da circunferência é $\overline{CE}=12~{\rm cm}$, e $P=d\times\pi$, então $P=12\times\pi=12\pi\approx38$ R.: $P\approx38~{\rm cm}$

41.
$$3 \times \left(\frac{1}{3}\right)^{3714} = 3 \times 3^{-3714} = 3^{-3713}$$

42. Como o cubo tem 64 cm³ de volume, a sua aresta tem 4 cm ($\sqrt[3]{64}$ = 4).

Assim, $\overline{AB} = \overline{BE} = \overline{EK} = 4$ cm

Sabendo que \overline{BC} = 10 cm, \overline{CD} = \overline{BE} = 4 cm e

$$DJ = EK = 4 \text{ cm}$$

$$V_{[ACDFGIIL]} = c \times \ell \times h$$

$$V_{[ACDFGIJL]} = \overline{AC} \times \overline{CD} \times \overline{DF}$$

$$V_{[ACDFGIJL]} = (4 + 10) \times 4 \times 4 = 224$$

R.: $V = 224 \text{ cm}^3$

43. [A] Se a < 0 então $a^3 < 0$ e $-a^3 > 0$

- [B] Se a < 0 então -a > 0
- [C] Se a < 0 então $a^3 < 0$
- DSe a < 0 então $a^2 > 0$

Logo, a resposta correta é a [C].

44. $2^4 \times 11$ e $5^2 \times 11$ não são quadrados perfeitos, ou seja, as opções [C] e [D] não são corretas.

Como $2^2 \times 5^2$ e $4^2 \times 5^2$ são quadrados perfeitos e divisores de P, o maior é $4^2 \times 5^2$, podemos concluir que a opção correta é a [B].

45. Vamos determinar a área, por exemplo, subtraindo à área do retângulo inicial a área das placas retiradas.

$$A_{\square} = c \times \ell$$

$$A_{\square} = \sqrt{5} \times \sqrt{20} = \sqrt{100} = 10$$

Cada placa retirada é um retângulo com $\sqrt{3}$ cm de altura e $(\sqrt{5} - 2)$ cm de base

$$\frac{\sqrt{20}-4}{2} = \frac{2\sqrt{5}-4}{2} = \sqrt{5}-2$$

Logo,
$$A = \sqrt{3} \times (\sqrt{5} - 2) = (\sqrt{15} - 2\sqrt{3}) \text{ cm}^2$$

Logo, $A_{\text{pedida}} = 10 - (2\sqrt{15} - 4\sqrt{3}) =$
 $= (10 - 2\sqrt{15} + 4\sqrt{3}) \text{ cm}^2$

46.
46.1.
$$-1 - 2(\sqrt{7} - 2) + 3\sqrt{7} =$$

 $= -1 - 2\sqrt{7} + 4 + 3\sqrt{7} =$
 $= -1 + 4 - 2\sqrt{7} + 3\sqrt{7} =$
 $= 3 + \sqrt{7}$
46.2. $(1 - \sqrt{3})^2 - (2 - \sqrt{5})(2 + \sqrt{5}) =$
 $= 1 - 2\sqrt{3} + 3 - (4 - 5) =$
 $= 1 + 3 - 2\sqrt{3} - (-1) =$
 $= 1 + 3 + 1 - 2\sqrt{3} =$
 $= 5 - 2\sqrt{3}$
46.3. $(\sqrt{7} - \sqrt{2})(\sqrt{7} + \sqrt{2}) - 5\sqrt{2} =$
 $= 7 - 2 - 5\sqrt{2} =$
 $= 5 - 5\sqrt{2}$
46.4. $(\sqrt{7} - \sqrt{4})^2 - 2 \times (4\sqrt{7} - 3) + (\sqrt[3]{7})^3 =$
 $= (\sqrt{7} - 2)^2 - 8\sqrt{7} + 6 + 7 =$
 $= 7 - 4\sqrt{7} + 4 - 8\sqrt{7} + 6 + 7 =$
 $= 7 + 4 + 6 + 7 - 4\sqrt{7} - 8\sqrt{7} =$
 $= 24 - 12\sqrt{7}$
46.5. $3^{-2} \times (2\sqrt{5} - \sqrt{11})(2\sqrt{5} + \sqrt{11}) =$
 $= \frac{1}{3^2} \times [(2\sqrt{5})^2 - (\sqrt{11})^2] =$
 $= \frac{1}{9} \times (20 - 11) =$
 $= \frac{1}{9} \times 9 =$
 $= 1$

47. 3% da água é
$$0.03 \times 1.4 \times 10^9 =$$

= $3 \times 10^{-2} \times 1.4 \times 10^9 =$
= $3 \times 1.4 \times 10^{-2} \times 10^9 =$

 $= \sqrt{3} + 4 \times 5 \times 9 \times 3 \times (2\sqrt{3} - 1) =$

 $= \sqrt{3} + 540 (2\sqrt{3} - 1) =$ $= \sqrt{3} + 1080\sqrt{3} - 540 =$

 $= 1081\sqrt{3} - 540$

46.6. $\sqrt{3} + (2\sqrt{5})^2 \times (3\sqrt{3})^2 \times (2\sqrt{3} - 1) =$

$$=4.2 \times 10^7 \text{ km}^3$$
 de água doce

$$\frac{2}{3} \times 4.2 \times 10^7 = 2.8 \times 10^7$$

Logo, a quantidade de água retida no gelo glaciar é $2.8 \times 10^7 \, \mathrm{km}^3$.

48. [A] $\sqrt{4} = 2 \in \mathbb{Q}$, logo não é irracional.

[B]
$$\sqrt{\frac{1}{4}} = 0.5 \in \mathbb{Q}$$
 , logo não é irracional.

[C]
$$4^{-1} = \frac{1}{4} = 0.25 \in \mathbb{Q}$$
, logo não é irracional.

[D] $\sqrt{0.4} \notin \mathbb{Q}$, logo não é irracional. Logo a opção correta é a [D].

49

49.1. $\sqrt{13}$ porque é um número irracional.

49.2. Por exemplo,
$$\frac{1}{3}$$
.

49.3. $\sqrt{121}$ porque é igual a 11.

50

50.1.
$$3 \times \left(2\frac{1}{3} - \frac{3}{2}\right) + \left(\frac{1}{3} \times 0.25\right) =$$

$$= 3 \times \left(\frac{7}{3} - \frac{3}{2}\right) + \left(\frac{1}{3} \times \frac{1}{4}\right) =$$

$$= 3 \times \frac{5}{6} + \frac{1}{12} =$$

$$= \frac{15}{6} + \frac{1}{12} =$$

$$= \frac{31}{12}$$
50.2. $\left(\frac{1}{3}\right)^{-1} \times \left(\frac{2}{5} - \frac{1}{4}\right)^{-1} + \left(\frac{5}{4} : 4^{-1}\right)^2 =$

$$= 3 \times \left(\frac{8}{20} - \frac{5}{20}\right)^{-1} + \left(\frac{5}{4} : \frac{1}{4}\right)^{2} =$$

$$= 3 \times \left(\frac{3}{20}\right)^{-1} + \left(\frac{5}{4} \times 4\right)^{2} =$$

$$= 3 \times \frac{20}{3} + 5^{2} =$$

$$= 20 + 25 =$$

$$= 45$$

51.
$$1,68 \times 10^{-27} \times 7 \times 10^4 =$$

= $1,68 \times 7 \times 10^{-27} \times 10^4 =$
= $11,76 \times 10^{-23} =$
= $1,176^{-22}$

52.
$$\sqrt{13}$$

$$9 < 13 < 16 \Leftrightarrow 3^2 < 13 < 4^2$$

Multiplicando por 10²

$$30^2 < 13 \times 10^2 < 40^2$$

$$35^2 = 1225 < 1300$$
, temos $35^2 < 13 \times 10^2 < 40^2$

$$36^2 = 1296 < 1300$$
, temos $36^2 < 13 \times 10^2 < 40^2$

$$37^2 = 1369 > 1300$$
, temos $36^2 < 13 \times 10^2 < 37^2$

Como 36 e 37 são inteiros consecutivos,

$$\left(\frac{36}{10}\right)^2 < 13 < \left(\frac{37}{10}\right)^2 \Leftrightarrow \frac{36}{10} < \sqrt{13} < \frac{37}{10}$$

Logo, os dois primeiros algarismos da representação em dízima de $\sqrt{13}$ são 3 e o 6 .

53.
$$6 \times (3 - \sqrt{2}) = 18 - \sqrt{2} \approx 9.6$$

R.: $P \approx 9.6$ cm

Praticar + – páginas 74 a 84

1.

$$1.1. \frac{3}{7} \times \left[2 + \left(-\frac{7}{3}\right)\right] =$$

$$=\frac{3}{7}\times2+\frac{3}{7}\times\left(-\frac{7}{3}\right)=$$

$$=\frac{6}{7}+(-1)=$$

$$=-\frac{1}{7}$$

1.2.
$$\left(-\frac{3}{2}\right) \times \left(5 \times \frac{2}{9}\right) =$$

$$= \left(-\frac{3}{2} \times \frac{5}{9}\right) \times 2 =$$

$$=-\frac{5}{6}\times 2=$$

$$=-\frac{5}{3}$$

1.3.
$$(-5) \times \frac{3}{2} = \frac{3}{2} \times (-5) = -\frac{15}{2}$$

1.4.
$$\left(-\frac{7}{2}\right) \times 0 = \mathbf{0}$$

1.5.
$$\left(-\frac{9}{5}\right) \times 1 = -\frac{9}{5}$$

2

2.1. Se o volume é igual a 125 m³ a aresta tem 5 m ($\sqrt[3]{125}$ = 5).

R.:
$$a = 5 \text{ m}$$

2.2. A área total é igual à área das 6 faces.

Logo,
$$A = 6 \times 5^2 = 150$$

R.:
$$A = 150 \text{ m}^2$$

3.

3.1.
$$(-3)^7 \times \left(\frac{2}{3}\right)^7 = (-2)^7$$

3.2.
$$\left(-\frac{5}{7}\right)^8 : \left(-\frac{10}{3}\right)^8 =$$

$$= \left[-\frac{5}{7} : \left(-\frac{10}{3} \right) \right]^8 =$$

$$=\left(\frac{5}{7}\times\frac{3}{10}\right)^8=$$

$$=\left(\frac{3}{14}\right)^8$$

3.3.
$$\left(-\frac{2}{3}\right)^3 : \left(-\frac{4}{9}\right)^3 =$$

$$=\left(\frac{2}{3}:\frac{4}{9}\right)^3=$$

$$=\left(\frac{2}{3}\times\frac{9}{4}\right)^3=$$

$$=\left(\frac{3}{2}\right)^3$$

3.4.
$$\left[\left(\frac{17}{10} \right)^2 \right]^5 = \left(\frac{7}{10} \right)^{2 \times 5} = \left(\frac{7}{10} \right)^{10}$$

3.5.
$$\left[\left(-\frac{3}{5} \right)^2 \right]^9 = \left(-\frac{3}{5} \right)^{18}$$

3.6.
$$\left(\frac{1}{2}\right)^5 \times \left(-\frac{2}{5}\right)^5 : \left(-\frac{1}{5}\right)^3 =$$

$$= \left[\frac{1}{2} \times \left(-\frac{2}{5}\right)\right]^5 : \left(-\frac{1}{5}\right)^3 =$$

$$=\left(-\frac{1}{5}\right)^5:\left(-\frac{1}{5}\right)^3=$$

$$=\left(-\frac{1}{5}\right)^2$$

4. A medida do lado de cada um dos quadrados mais pequenos é $\ell = \sqrt{16} = 4$ cm.

Assim, o lado do quadrado maior mede 24 cm $(6 \times 4 = 24)$. Logo, o seu perímetro é $P = 24 \times 4 = 96$ cm.

5.
$$3000: \left(1 - \frac{3}{5}\right) = 3000: \frac{2}{5} = 7500$$

R.: O percurso total tem 7500 m.

6.
$$3.78 \times 10^x = 37800000$$

$$\Leftrightarrow 10^x = \frac{37\ 800\ 000}{3.78}$$

$$\Leftrightarrow 10^x = 10\ 000\ 000$$

$$\Leftrightarrow 10^x = 10^7$$

$$\Leftrightarrow x = 7$$

7.
$$A \to \frac{3}{5}$$

8.

8.1. 34 000 000 000 =
$$3.4 \times 10^{10}$$

8.2.
$$0{,}000\ 089 = 8{,}9 \times 10^{-5}$$

8.3.
$$416 \times 10^{-6} = 4{,}16 \times 10^{2} \times 10^{-6} = 4{,}16 \times 10^{-4}$$

8.4.
$$0,000 \ 34 \times 10^4 = 3,4 \times 10^{-4} \times 10^4 = 3,4 \times 10^0$$

9.1.
$$1 - \left(\frac{1}{2} + \frac{4}{9}\right) = 1 - \left(\frac{9}{18} + \frac{8}{18}\right) = 1 - \frac{17}{18} = \frac{1}{18}$$

$$3.^{\circ} \text{ dia} \rightarrow \frac{1}{18}$$

9.2.
$$A = 216 \text{ cm}^2$$

a)
$$\frac{1}{2} \times 216 = 108$$

 $\frac{1}{2}$ × 216 representa a área do muro pintada no primeiro dia, ou seja, 108 m².

b)
$$\frac{4}{9} \times 216 = 96 \text{ m}^2$$

R.: No segundo dia pintou 96 m².

10. Se V = 10 648, então a = 22 cm ($\sqrt[3]{10648} = 22$). Assim, o raio é igual a 11 cm $\left(\frac{22}{2} = 11\right)$.

11. [A]
$$(-7)^0 = 1$$

[B]
$$[(-3)^2]^3 = (-3)^6 = 3^6$$

[C]
$$[(-5)^2]^3 = (-5)^6 = 5^6$$

[D]
$$\left(\frac{1}{2}\right)^4 : \left(\frac{1}{4}\right)^4 = \left(\frac{1}{2} \times 4\right)^4 = 2^4$$

Logo a opção correta é a [C].

12.

12.1.
$$(2^4:2^5)^2 \times 4^{-2} =$$

$$=(2^{-1})^2 \times (2^2)^{-2} =$$

$$= 2^{-2} \times 2^{-4} =$$

$$= 2^{-6} =$$

$$=\left(\frac{1}{2}\right)^6=$$

$$=\frac{1}{64}$$

12.2.
$$\left(\frac{2}{3}\right)^{-2} \times \left(\frac{3}{2}\right)^4 \times \left(\frac{2}{3}\right)^6 =$$

$$= \left(\frac{3}{2}\right)^2 \times \left(\frac{3}{2}\right)^4 \times \left(\frac{2}{3}\right)^6 =$$

$$=\left(\frac{3}{2}\right)^6 \times \left(\frac{2}{3}\right)^6 =$$

$$= \left(\frac{3}{2} \times \frac{2}{3}\right)^6 =$$

$$= 1^6 = 1$$

12.3.
$$\left(\frac{1}{3}\right)^{-2} + (-1)^{202} - (2^2)^{-1} =$$

= $3^2 + 1 - 2^{-2} =$

$$= 3^2 + 1 - 2^{-2} =$$

$$= 9 + 1 - \frac{1}{4} =$$

$$= 10 - \frac{1}{4} = \frac{39}{4}$$

12.4.
$$\left(3^{-3} \times \frac{1}{3^2}\right)^3 \times 3^{15} =$$

$$= (3^{-3} \times 3^{-2})^3 \times 3^{15} =$$

$$= (3^{-5})^3 \times 3^{15} =$$

$$= 3^{-15} \times 13^{15} =$$

$$= 3^0 =$$

13. 400 mil milhões =
$$400 \times 10^9 = 4 \times 10^{11}$$

$$4 \times 10^{11} \times 0,0008 = 0,0032 \times 10^{11} = 3,2 \times 10^{8}$$

14. Como $\frac{1}{2} < \frac{3}{5} < \frac{3}{4}$, o ponto de abcissa $\frac{3}{5}$ é o ponto C.

15.
$$\frac{3}{2}$$
 < 1,5001 < 1,501 < 1,5011 < 1,51

16.1.
$$(3.6 \times 10^{-7}) \times (2.4 \times 10^{11}) =$$

$$= (3.6 \times 2.4) \times (10^{-7} \times 10^{11}) =$$

$$= 8.64 \times 10^4$$

16.2.
$$(1,25 \times 10^{-3}) + (2,45 \times 10^{-4}) =$$

$$= 1,25 \times 10^{-3} + 0,245 \times 10^{-3} =$$

$$= 1,495 \times 10^{-3}$$

16.3.
$$(7,44 \times 10^5) - (1,4 \times 10^6) =$$

$$= 7,44 \times 10^5 - 14 \times 10^5 =$$

$$=-6.56\times10^{5}$$

16.4.
$$\frac{4,8 \times 10^6}{2 \times 10^3} + 4,2 \times 10^4 =$$

= 2,4 × 10³ + 4,2 × 10⁴ =
= 2,4 × 10³ + 42 × 10³ =
= 44,4 × 10³ =
= 4,44 × 10⁴

17.
$$4,32 \times 10^{-1} = 0,432$$

[B]
$$4,32 \times 10^{-1}$$
 não é menor do que $0,4312$.

[C]
$$4,32 \times 10^{-1}$$
 não é maior do que 4,3.

[D]
$$4,32 \times 10^{-1}$$
 não é maior do que 0,432.

Logo, a opção correta é a [A].

18. A opção correta é a [D] porque uma dízima infinita não periódica é um número irracional.

19.
$$7\frac{1}{2} = \frac{15}{2}$$
; $5\frac{3}{4} = \frac{23}{4}$
 $\frac{15}{2} - \frac{23}{4} = \frac{30}{4} - \frac{23}{4} = \frac{7}{4}$
R.: Sobrou $\frac{7}{4}$ m.

20. [A]
$$\sqrt{\frac{16}{25}} = \frac{4}{5} e^{\frac{4}{5}} \in \mathbb{Q}$$

[B] $\frac{\sqrt{27}}{\sqrt{3}} = \sqrt{\frac{27}{3}} = \sqrt{9} = 3 e^{\frac{27}{3}} \in \mathbb{Q}$

[C]
$$\sqrt{100} = 10 \text{ e } 10 \in \mathbb{Q}$$

[D]
$$\sqrt{14} \in \{\text{n.}^{\text{os}} \text{ irracionais}\}\$$

Logo, a opção correta é a [D].

21. [A]
$$\frac{2+\sqrt{7}}{2}$$
 não é racional

[B]
$$\pi$$
 – 1 não é racional

[C]
$$\sqrt{4} + 0.2 = 2.2$$

A opção correta é a [C] porque $3.1 > \sqrt{7}$.

são números irracionais.

23. [A]
$$\frac{\sqrt{5}}{3}$$
 é um número irracional.

B π é um número irracional e π^2 é um número irracional.

[C]
$$\frac{\sqrt{28}}{\sqrt{7}} = \sqrt{4} = 2$$
 e 2 é um número racional.

[D]
$$(1 - \sqrt{7})(1 + \sqrt{7}) = 1 - 7 = -6 \text{ e } -6 < 0.$$

Logo, a opção correta é a [C].

24.
$$a = 3 - \sqrt{7}$$

 $\sqrt{7} \times (a - 1) + a^2 =$
 $= \sqrt{7} \times (3 - \sqrt{7} - 1) + (3 - \sqrt{7})^2 =$
 $= 3\sqrt{7} - 7 - \sqrt{7} + 9 - 2 \times 3\sqrt{7} + 7 =$
 $= -7 + 9 + 7 + 3\sqrt{7} - \sqrt{7} - 6\sqrt{7} =$
 $= 9 - 4\sqrt{7}$

25. Como π = 3,141592654... Por exemplo, $3,1415 < 3,14153 < \pi$.

26. [A] $\sqrt{7} \notin \mathbb{Q}$, $\sqrt{7}$ é um número irracional.

[B]
$$\sqrt{4} = 2 \in \mathbb{Q}$$
, $2 \in \mathbb{Z}$ e $2 \in \mathbb{N}$

$$[C] - \frac{27}{3} = -9 \in \mathbb{Q}$$
, $-9 \in \mathbb{Z}$ $e - 9 \notin \mathbb{N}$

[D]
$$\frac{11}{2} = 5.5 \in \mathbb{Q}$$
, $\frac{11}{2} \notin \mathbb{Z}$ e $\frac{11}{2} \notin \mathbb{N}$

Logo a opção correta é a [D].

27.

 $\frac{19}{3}$ = 6,(3), dízima infinita periódica de período 3.

27.2.
$$\frac{21}{5}$$
 21,0 $\frac{5}{10}$ 4,2 $\frac{21}{5}$ = 4,2, dízima finita

27.3.
$$\frac{13}{12}$$
13,0000... $\lfloor 12 \rfloor$
1 00 1,0833...
40
040
:

22. Por exemplo, $\sqrt{3} + (-\sqrt{3}) = 0 \in \mathbb{Q}$ e $\sqrt{3}$ e $-\sqrt{3}$ $\frac{13}{12} = 1,08(3)$, dízima infinita periódica de período 3.

28.
28.1.
$$2(\sqrt{5}-1)^2 + (\sqrt{3}-1)(\sqrt{3}+1) =$$

 $= 2(5-2\sqrt{5}+1) + (3-1) =$
 $= 10-4\sqrt{5}+2+2 =$
 $= 14-4\sqrt{5}$

28.2.
$$(2\sqrt{7})^2 - 3(\sqrt{7} + 2\sqrt{3}) =$$

 $= 4 \times 7 - 3\sqrt{7} - 6\sqrt{3} =$
 $= 28 - 3\sqrt{7} - 6\sqrt{3}$
28.3. $(\sqrt{5} - 2\sqrt{2})^2 =$
 $= 5 - 4\sqrt{10} + 4 \times 2 =$
 $= 5 + 8 - 4\sqrt{10} =$
 $= 13 - 4\sqrt{10}$
28.4. $(\sqrt{3} - 2)^2 - (5 - \sqrt{3})^2 =$
 $= 3 - 4\sqrt{3} + 4 - (25 - 10\sqrt{3} + 3) =$
 $= 3 + 4 - 4\sqrt{3} - 25 + 10\sqrt{3} - 3 =$
 $= 4 - 25 - 4\sqrt{3} + 10\sqrt{3} =$
 $= -21 + 6\sqrt{3}$

29. $\frac{13}{15}$ não pode ser representada por uma dízima finita porque é uma fração irredutível em que a decomposição em fatores primos do denominador admite um fator diferente de 2 e de 5. Logo, é uma dízima infinita periódica.

30.

30.1.
$$\left(\frac{3}{4} + \frac{1}{2}\right)$$
: $2 = \left(\frac{3}{4} + \frac{2}{4}\right)$: $2 = \frac{5}{4} \times \frac{1}{2} = \frac{5}{8} = 11,25$

R.: A moto do Guilherme ainda tem 11,25 litros de combustível.

30.2. Sabemos que o depósito cheio tem 18 litros. Como após a viagem ficou com 11,25 litros, então gastou 6,75 litros (18 - 11,25 = 6,75).

Como em 80 km gastou 6,75 litros, então

$$\frac{6,75 \ \ell \times 100 \ \text{km}}{80 \ \text{km}} \approx 8,44 \ \ell$$

R.: O consumo da mota nessa viagem foi 8,44 ℓ por cada 100 km.

31. Como 1 cm no mapa corresponde a 223,5 km na realidade, 3,4 cm no mapa corresponde a 759,9 km $(3,4 \times 223,5 = 759,9)$.

32.
$$x = 2\frac{3}{4} + 2 \times 1,1 =$$

$$= \frac{11}{4} + \frac{22}{10} =$$

$$= \frac{55}{20} + \frac{44}{20} =$$

$$= \frac{99}{20} =$$

$$= 4,95$$

$$y = 2\frac{3}{4} - 2 \times 1,1 =$$

$$= \frac{11}{4} - 2,2 =$$

$$= \frac{11}{4} - \frac{22}{10} =$$

$$= \frac{55}{20} - \frac{44}{20} =$$

$$= \frac{11}{20} =$$

$$= 0,55$$

R.: x = 4.95 e v = 0.55

33.
$$-3\frac{1}{2} + (-1,4) = -\frac{7}{2} - \frac{14}{10} =$$

$$= -\frac{35}{10} - \frac{14}{10} =$$

$$= -\frac{49}{10}$$

$$-3\frac{1}{2} \times (-1,4) = -\frac{7}{2} \times \left(-\frac{14}{10}\right) =$$

$$= \frac{49}{10}$$

R.: O simétrico de $-\frac{49}{10}$ é $\frac{49}{10}$.

34. Como a unidade está dividida em 15 partes iguais, temos:

$$a = \frac{1}{5} + \frac{1}{15} = \frac{3}{15} + \frac{1}{15} = \frac{4}{15}$$
$$b = \frac{3}{5} - \frac{1}{15} = \frac{9}{15} - \frac{1}{15} = \frac{8}{15}$$

35.1.
$$(-1)^{-3} \times \left(\frac{1}{3}\right)^2 + \frac{1}{3} \times (-5)^0 =$$

$$= -1 \times \frac{1}{9} + \frac{1}{3} \times 1 =$$

$$= -\frac{1}{9} + \frac{1}{3} =$$

$$= -\frac{1}{9} + \frac{3}{9} = \frac{2}{9}$$
35.2. $\left(-\frac{1}{2} - \frac{1}{1}\right)^{-2} : \left(-\frac{2}{1} - \frac{1}{2}\right)^{-2} =$

$$= \left(-\frac{1}{2} - \frac{2}{2}\right)^{-2} : \left(-\frac{4}{2} - \frac{1}{2}\right)^{-2} =$$

$$= \left(-\frac{3}{2}\right)^{-2} : \left(-\frac{5}{2}\right)^{-2} =$$

$$= \left[-\frac{3}{2} : \left(-\frac{5}{2} \right) \right]^{-2} =$$

$$= \left(\frac{3}{2} \times \frac{2}{5} \right)^{-2} =$$

$$= \left(\frac{3}{5} \right)^{-2} =$$

$$= \left(\frac{5}{3} \right)^{2} =$$

$$= \frac{25}{9}$$

35.3.
$$(5^{-2})^{-1} - (\sqrt{5})^2 + (-5)^{-1} =$$

$$= 5^2 - 5 + \left(-\frac{1}{5}\right) =$$

$$= 25 - 5 - \frac{1}{5} =$$

$$= \frac{20}{1} - \frac{1}{5} =$$

$$= \frac{100}{5} - \frac{1}{5} =$$

$$= \frac{99}{5}$$

36. [A] Verdadeira, porque $\sqrt{21}$ é um número irracional.

[B] Verdadeira.

[C] Verdadeira, porque – $\sqrt{36}$ = –6 $\in \mathbb{Z}$.

[D] 7,1(43) é uma dízima infinita periódica, logo é um número racional.

Logo, a afirmação falsa é a da opção [D].

37.1.
$$(3^3)^2 \times \left(-\frac{1}{3}\right)^4 - 2^3 \times (\sqrt[3]{8})^{-2} =$$

= $3^6 \times (-3)^{-4} - 2^3 \times 2^{-2} =$
= $3^6 \times 3^{-4} - 2^1 = 3^2 - 2 = 9 - 2 = 7$

37.2.
$$\frac{(-0,3)^0 - \left[\left(\frac{1}{3}\right)^{-2} \times \left(\frac{1}{5}\right)^2\right]^2 \times \left(\frac{5}{3}\right)^4}{\frac{1}{3} \times \left[2^4 - \left(-\frac{1}{5}\right)^{-2}\right]^3} =$$

$$= \frac{1 - \left[3^2 \times \left(\frac{1}{5}\right)^2\right]^2 \times \left(\frac{5}{3}\right)^4}{\frac{1}{3} \times [16 - (-5)^2]^3} =$$

$$= \frac{1 - \left[\left(\frac{3}{5} \right)^2 \right]^2 \times \left(\frac{5}{3} \right)^4}{\frac{1}{3} \times (16 - 25)^3} =$$

$$= \frac{1 - \left(\frac{3}{5}\right)^4 \times \left(\frac{5}{3}\right)^4}{\frac{1}{3} \times (-9)^3} =$$

$$= \frac{1 - 1^4}{3^{-1} \times (-3^2)^3} =$$

$$= \frac{1 - 1}{3^{-1} \times (-3^6)} =$$

$$= 0$$

37.3.
$$\frac{-1 + (-7)^{-2} \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)^{25}}{3 - \left(-\frac{1}{2}\right)^{-2} \times (-3)^0} = \frac{-1 + \left(\frac{1}{7}\right)^2 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(\frac{1}{7}\right)^2 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^2 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^2 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^3 \times \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^4 - \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^4 - \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^4 - \left(-\frac{1}{7}\right)^4 - \left(-\frac{1}{7}\right)^4 - (-1)}{3 - (-2)^2 \times 1} = \frac{-1 + \left(-\frac{1}{7}\right)^4 - \left(-\frac{1}{7}\right$$

$$= \frac{-1 + \left(-\frac{1}{7}\right)^{2+3-4} + 1}{3-4} =$$

$$= -\frac{1}{7} : (-1) =$$

$$= \frac{1}{7}$$

37.4.
$$\frac{4^3 \times 8^4 : 2^{-7}}{2^{-1} \times (2^5)^2} =$$
$$= \frac{(2^2)^3 \times (2^3)^4 : 2^{-7}}{2^{-1} \times (2^2)^5} =$$

$$=\frac{2^6\times 2^{12}:2^{-7}}{2^{24}}=$$

$$=\frac{2^{6+12}:2^{-7}}{2^{24}}=$$

$$= \frac{2^{18} : 2^{-7}}{2^{24}} =$$
$$= \frac{2^{25}}{2^{24}} =$$

$$= 2^{25-24} =$$

= 2

38. $(n^2)^3 \times n^{-5} = n^6 \times n^{-5} = n$ Logo, a opção correta é a [B].

39

39.1.
$$\left(\frac{1}{3}\right)^{-2} \times \left(\frac{1}{3}\right)^{6} = \left(\frac{1}{3}\right)^{4}$$
 porque

$$\frac{(-3)^2}{(3^3)^2} = \frac{3^2}{3^6} = 3^{-4} = \left(\frac{1}{3}\right)^4$$

39.2.
$$[(-0,5)^{-2}]^{-3} \times \left(-\frac{1}{2}\right)^{-8} =$$

$$= \left(-\frac{1}{2}\right)^{6} \times \left(-\frac{1}{2}\right)^{-8} =$$

$$= \left(-\frac{1}{2}\right)^{-2}$$

40. 1 hora = 60 minutos

Como percorreu 35 km em 60 minutos,

$$\frac{35}{60} = 0.58(3) \approx 0.58$$

R.: A velocidade média foi, aproximadamente, 0,58 km/min.

41

41.1. $(-1)^{101} = -1$, porque a base é negativa e o expoente é împar.

41.2. $(-1)^{500} = 1$, porque o expoente é par.

41.3.
$$(-1)^0 \times (-1)^{32} \times 1^{43} = 1 \times 1 \times 1 = 1$$

42.

$$42.1. - \left(\frac{2}{3} + 0.3\right) - \frac{1}{3} \times \left(-0.1 + \frac{2}{5}\right) =$$

$$= -\left(-\frac{2}{3} + \frac{3}{10}\right) - \frac{1}{3} \times \left(-\frac{1}{10} + \frac{2}{5}\right) =$$

$$= -\left(-\frac{20}{30} + \frac{9}{30}\right) - \frac{1}{3} \times \left(-\frac{1}{10} + \frac{4}{10}\right) =$$

$$= -\left(-\frac{11}{30}\right) - \frac{1}{3} \times \left(\frac{3}{10}\right) =$$

$$= \frac{11}{30} - \frac{3}{10} =$$

$$= \frac{8}{30} =$$

$$= \frac{4}{30}$$

42.2.
$$2 \times \left(\frac{1}{3} - 4\right) + (-1)^{30} - \left(\frac{1}{4} + 0, 1\right) =$$

= $2 \times \left(\frac{1}{3} - \frac{12}{3}\right) + 1 - \left(-\frac{1}{4} + \frac{1}{10}\right) =$

$$= 2 \times \left(-\frac{11}{3}\right) + 1 - \left(-\frac{5}{20} + \frac{2}{20}\right) =$$

$$= -\frac{22}{3} + 1 - \left(-\frac{3}{20}\right) =$$

$$= -\frac{22}{3} + 1 + \frac{3}{20} =$$

$$= -\frac{440}{60} + \frac{60}{60} + \frac{9}{60} =$$

$$= -\frac{371}{60}$$

43. Como o volume de [ABCDEFGH] é igual a 1000 dm³, o comprimento da aresta é igual a 10 dm $(\sqrt[3]{1000} = 10)$.

Como a área total de [*IJKDLMNO*] é igual a 384 dm², o comprimento da aresta do cubo é igual a 8 dm

$$\left(\sqrt{\frac{384}{6}} = \sqrt{64} = 8\right).$$

Logo, $\overline{OH} = 10 - 8 = 2$.

R.: $\overline{OH} = 2 \text{ cm}$

44.
$$\sqrt{5,29} = \sqrt{\frac{529}{100}} = \frac{\sqrt{529}}{\sqrt{100}} = \frac{23}{10} = 2,3$$

Assim, a = 529, b = 529, c = 23 e d = 2,3.

Logo a opção correta é a [C].

45. Como a área do quadrado é igual a 81 cm², $\overline{AB} = 9$ cm ($\sqrt{81} = 9$).

Como [AB] é um raio de circunferência e $P = 2 \times \pi \times r$, então $P = 2 \times \pi \times 9 = 18\pi$.

R.: $P = 18\pi \text{ cm}$

n	2	4	6
n ²	$2^2 = 4$	$4^2 = 16$	$36 = 6^2$
n³	$2^3 = 8$	$4^3 = 64$	$6^3 = 216$

n	24	13	2,1
n ²	$24^2 = 576$	$169 = 13^2$	$2,1^2 = 4,41$
n^3	$13\ 824 = 24^3$	$13^3 = 2197$	$9,261 = 2,1^3$

47.
$$A_1 = ?$$

$$A_2 = 225 \Leftrightarrow \ell = \sqrt{225} \Leftrightarrow \ell = 15 \text{ cm}$$

 $\ell_1 = 3 \times 15 = 45 \text{ cm}$, então a área pedida é
 $A_1 = 45^2 = 2025 \text{ cm}^2$.

- **48.** Como 0,350 kg custa 5,25 €, então $\frac{5,25}{0,350}$ = 15
- R.: Cada quilograma de queijo custa 15 €.
- **49.** 790 000 + 150 000 = 940 000 euros Logo, *w* = 940 000 euros.
- **50.**
- **50.1.** Por exemplo, $\frac{1}{2}$.
- **50.2.** Por exemplo, $\sqrt{3}$.
- **50.3.** Por exemplo, π .
- **51.** Distância $T \rightarrow L$: $T = 4 \times 10^5$ km Distância $T \rightarrow S$: $S = 150 \times 10^6$ km

$$\frac{S}{T} = \frac{150 \times 10^6}{4 \times 10^5} = \frac{150}{4} \times \frac{10^6}{10^5} = 37.5 \times 10 = 375$$

Significa que a distância média da Terra ao Sol é 375 vezes maior do que a distância média da Terra à Lua.

52. Se $M \rightarrow \frac{5}{6}$ e $N \rightarrow \frac{5}{4}$ e a reta [MN] está dividida em cinco partes iguais.

$$\overline{MN} = \frac{5}{4} - \frac{5}{6} = \frac{15}{12} - \frac{10}{12} = \frac{5}{12}$$

$$\frac{5}{12}$$
: 5 = $\frac{5}{12} \times \frac{1}{5} = \frac{1}{12}$, cada espaço.

Então, *B* é igual a
$$\frac{5}{6} + 2 \times \frac{1}{12} = \frac{5}{6} + \frac{2}{12} = \frac{5}{6} + \frac{1}{6} = \frac{6}{6} = 1$$

Logo, a opção correta é a [C].

- 53. 1 molécula de água: 2 átomos de hidrogénio +
- + 1 átomo de oxigénio.

$$2 \times 1,67 \times 10^{-24} + 1 \times 2,66 \times 10^{-23} =$$

- $= 3.34 \times 10^{-24} + 26.6 \times 10^{-24} =$
- $= (3.34 + 26.6) \times 10^{-24} =$
- $= 29.94 \times 10^{-24} =$
- $= 2,994 \times 10^{-23}$
- **54.**

54.1.
$$\sqrt{36} = 6 \in \mathbb{Z}$$

54.2.
$$\sqrt{0.01} = 0.1 \in \mathbb{Q}$$

$$-3$$
, $(2) \in \mathbb{Q}$

$$\sqrt{36} = 6 \in \mathbb{Q}$$

$$-\frac{4}{5} \in \mathbb{Q}$$

 $0.75 \in \mathbb{Q}$

- **54.3.** Os números que pertencem a \mathbb{R} e não pertencem a \mathbb{Q} são os números irracionais, ou seja, $\sqrt{0,1}$.
- 55. [A] é falsa porque, por exemplo,

$$\sqrt{2} \times \sqrt{2} = 2 \in \mathbb{Q}$$
.

- [B] é falsa porque, por exemplo, $\left(\frac{5}{2}\right)^2 = \frac{25}{4} \in \mathbb{Q}$.
- [C] é falsa porque, por exemplo, $\pi^2 + 2 \times 5 = (\pi^2 + 10)$ é irracional.
- [D] é verdadeira porque a é irracional, então 5a + 7b também é irracional. Logo, a opção correta é a [D].
- **56.** [A] Falsa. 5 8 = -3 e -3 ∉ \mathbb{N}
- [B] Falsa. $\frac{5}{2}$ = 2,5 e 2,5 $\notin \mathbb{Z}$
- [C] Verdadeira.
- [D] Falsa. Por exemplo, $\sqrt{7} \times \sqrt{7} = 7 \in \mathbb{Q}$ Logo, a opção correta é a [C].
- **57.** [A] Falsa. a + b situa-se à direita do ponto B.
- [B] Verdadeira. O produto de qualquer número real positivo x por um número real compreendido entre 0 e 1 é sempre menor do que x. Como a é um número real positivo e b é um número real compreendido entre 0 e 1, logo $a \times b < a$ e, portanto, o ponto de abcissa $a \times b$ situa-se à esquera de A.
- [C] Falsa. Por exemplo, 0.2 0.6 = -0.4 < 0.2, situase à esquerda do ponto A.
- [D] Falsa. Por exemplo, $0.4 \times 0.6 = 0.24 < 0.4$, situa-se à esquerda do ponto A.

Logo, a opção correta é a [B].

58.
$$a = \sqrt{7} - 1$$
 e $b = \sqrt{5} - \sqrt{3}$
 $2a + 3b^2 =$
 $= 2 \times (\sqrt{7} - 1) + 3 \times (\sqrt{5} - \sqrt{3})^2 =$
 $= 2\sqrt{7} - 2 + 3 \times 5 - 2\sqrt{15} + 3 =$
 $= 2\sqrt{7} - 2 + 15 - 6\sqrt{15} + 9 =$
 $= 22 + 2\sqrt{7} - 6\sqrt{15}$

59. A afirmação C é falsa porque os números fracionários são racionais e não são inteiros.

Por exemplo, $\frac{5}{2} = 2.5$.

60.

60.1.
$$\frac{20.5 \times 10^6}{8.1 \times 10^6} = \frac{20.5}{8.1} \approx 253$$

2,53 - 1 = 1,53, ou seja, 153% de aumento.

60.2.
$$A = 20.5 \times 10^6 + 2.8 \times 10^6 =$$

= $(20.5 + 2.8) \times 10^6 =$
= $23.3 \times 10^6 =$
= 2.33×10^7
R.: $A = 2.33 \times 10^7$ hectares.

61.
61.1.
$$A_{\triangle} = \frac{b \times h}{2}$$

 $A_{\triangle} = \frac{(2 + \sqrt{3}) \times 4}{2} = 2 \times (2 + \sqrt{3}) = 2 \times (2$

62.
$$11 - \frac{4}{10} < a < 11 + \frac{4}{10} e 5 - \frac{2}{10} < b < 5 + \frac{2}{10}$$

$$\left(11 - \frac{4}{10}\right) \left(5 - \frac{2}{10}\right) < a \times b < \left(11 + \frac{4}{10}\right) \left(5 + \frac{2}{10}\right)$$

$$\Leftrightarrow \frac{106}{10} \times \frac{48}{10} < a \times b < \frac{114}{10} \times \frac{52}{10}$$

$$\Leftrightarrow \frac{5088}{100} < a \times b < \frac{5928}{100}$$

$$\Leftrightarrow$$
 50,88 < $a \times b$ < 59,28

$$\Leftrightarrow 50,88-11\times 5 < a\times b-11\times 5 < 59,28-11\times 5$$

$$\Leftrightarrow$$
 -4,12 < $a \times b$ - 11 \times 5 < 4,28

Como |4,12| < |4,28| podemos concluir que o erro máximo que se pode cometer ao aproximar $a \times b$ por 11×5 é 4,28.

63.
$$100\ 000 \times 4{,}35 \times 10^{-2} = 10^5 \times 4{,}35 \times 10^{-2} = 4{,}35 \times 10^3$$

64. 0,(32)

$$r = 0,3232...$$

 $100 \times r = 32,(32)$
 $100r - r = 99r \iff 32,(32) - 0,(32) = 99r$
 $\iff 99r = 32$
 $\iff r = \frac{32}{99}$

65.1.
$$\left(-2\frac{1}{2}\right)^2 - \left(-\frac{5}{2}\right)^2 = \left(-\frac{2}{5}\right)^2 = \left(\frac{2}{5}\right)^2$$

65.2.
$$\sqrt{2} < \frac{3}{2}$$

65.4.
$$4.35 \times 10^{-2} > 4.35 \times 10^{-3}$$

65.5.
$$\pi > 3,14$$

65.6.
$$\frac{7}{3} = 2$$
,(3)

66. [A]
$$\frac{\frac{2}{a}}{\frac{b}{c}} = \frac{2 \times c}{a \times b} \Leftrightarrow \frac{2}{a} \times \frac{c}{b} = \frac{2 \times c}{a \times b}$$
. Verdadeira

[B]
$$c \times \frac{a}{b} = \frac{a \times c}{b} \neq \frac{c \times a}{c \times b}$$
. Afirmação falsa.

[C]
$$\left(\frac{a}{b}\right)^{-c} = \left(\frac{b}{a}\right)^{c} = \frac{b^{c}}{a^{c}}$$
. Afirmação verdadeira.

[D] $(a \times b)^c = a^c \times b^c$. Afirmação verdadeira. Logo, a opção correta é a [B].

67. Se
$$A_{[ABCD]} = 36$$
, então $\overline{AB} = \sqrt{36} = 6$ cm.
Se $A_{[AEFC]} = 4$ cm², então $\overline{AE} = \sqrt{4} = 2$ cm.
Como $\overline{AB} = 6$ cm e $\overline{AE} = 2$ cm, então
 $\overline{EB} = 5 - 2 = 4$ cm e $\overline{EF} = 2$ cm.
Logo, $A_{[AFHB]} = 4 \times 2 = 8$ cm².

68.
$$\frac{13}{8} = \frac{13}{2^3} = \frac{13 \times 5^3}{2^3 \times 5^3} = \frac{1625}{1000} = 1,625$$

69. Sabemos que $31 \times 10^2 = 3100$. $55^2 < 31 \times 10^2 < 56^2$ $Logo, \left(\frac{55}{10}\right)^2 < 31 < \left(\frac{56}{10}\right)^2$ $\Leftrightarrow 5.5 < \sqrt{31} < 5.6$

70.
$$r = 0,(7)$$

10 × $r = 7,(7)$

$$10r - r = 9r \Leftrightarrow 9 \times r = 7,(7) - 0,(7) \Leftrightarrow r = \frac{7}{9}$$

71.

71.1. Como a unidade está dividida em quatro partes iguais, a abcissa do ponto $D \in \frac{3}{4}$.

71.2. A abcissa do ponto
$$F \neq 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3}$$
.

Assim,
$$k = \frac{4}{3}$$
 e, portanto, $k + \frac{4}{3} = \frac{4}{3} + \frac{4}{3} = \frac{8}{3}$.

Como $\frac{8}{3} = 2 + \frac{2}{3}$, o ponto cuja abcissa é $k + \frac{4}{3}$ é o ponto *J*.

72.

72.1.
$$-\sqrt{2} < -1.4 \Leftrightarrow -3 - \sqrt{2} < -4.4$$

72.2. $-\sqrt{7} < -2.6 \Leftrightarrow 3\sqrt{7} > 7.8$

73. Como
$$A_{[ABCD]} = 121$$
 cm², então $\overline{AB} = 11$ cm ($\sqrt{121} = 11$).

Como
$$A_{[ABIJ]}=16~{\rm cm^2}$$
, então $\overline{BI}=4~{\rm cm}~(\sqrt{16}=4)$.
Como $A_{[BEFC]}=16~{\rm cm^2}$, então $\overline{EF}=4~{\rm cm}~(\sqrt{16}=4)$.

Então,

$$P = \overline{CD} + \overline{AD} + \overline{AB} + \overline{BI} + \overline{IJ} + \overline{JC} + \overline{EF} + \overline{FG} + \overline{GC} =$$

$$= 11 \times 3 + 5 \times 4 + (11 - 4) = 60$$
R.: $P = 60$ cm

74. Se
$$7a < 5b$$
, então $a < \frac{5b}{7}$.

Logo, a opção correta é a [C].