LISTA 12 - RESOLUÇÃO

March 2, 2022

ESTATÍSTICA APLICADA A COMPUTAÇÃO

LISTA 12

ALUNA: Maria Eduarda Pereira de Souza Melo

QUESTÃO1:O conjunto de dados dados1.csv possue notas de 100 alunos do curso de Economia da FEA-USP, em prova da disciplina Introdução à Probabilidade e à Estatística, 1999. Construe uma distribuição de frequencias e um gráfico para essas notas.

```
[1]:
                 C
                          Ε
                               F
                                    G
                                        Η
                                             Ι
                                                  J
      3.5
               5.5
                                           4.0
          4.0
                    6.0 5.0
                             5.5
                                  5.0
                                      5.5
                                               10.0
    1 6.5 9.5
               4.0
                    7.0 7.5 3.0
                                  4.5
                                      5.0
                                           2.5
                                                6.0
    2 5.0 6.5
                    4.5 8.5 4.0
               3.5
                                  8.0
                                      7.0
                                           6.0
                                                7.5
                    6.0 6.5 7.5
    3 8.5 6.0 9.0
                                  5.5
                                      6.5
                                           8.0
                                                8.5
    4 4.5 7.5 8.0
                    3.0 4.0 8.0
                                  4.5 5.5
                                           6.0
                                                6.0
    5 7.5 3.5 3.0 7.0 1.5 4.5
                                10.0 5.5
                                           2.5
                                               10.0
    6 4.0 6.5 7.5 5.5 7.0 7.5
                                  6.0 6.5 6.5
                                                5.5
    7 6.5 5.0 5.5 7.5 8.0 6.5
                                  5.0 7.0 6.0
                                                5.5
                                  8.0 5.5 7.5
    8 3.0 5.0
               3.5 6.0 6.5 6.0
                                                6.0
    9 2.5 7.5 9.0 6.0 6.5 3.5
                                  4.5 7.0 5.0
                                                5.0
```

```
[2]: hist, bin_edges = np.histogram(dados1, bins='auto')
x = np.around(bin_edges, decimals=2)
```

df

```
[3]:
                    Absoluta
                               Relativa %
                                            cumulativa
     1.5 - 2.44
                                               0.009444
                            1
                                       1.0
     2.44 - 3.39
                            7
                                       7.0
                                              0.066111
     3.39 - 4.33
                           11
                                      11.0
                                              0.103889
      4.33 - 5.28
                           15
                                      15.0
                                              0.141667
     5.28 - 6.22
                           24
                                      24.0
                                              0.226667
     6.22 - 7.17
                           17
                                      17.0
                                              0.160556
     7.17 - 8.11
                           16
                                      16.0
                                              0.151111
      8.11 - 9.06
                            5
                                       5.0
                                              0.047222
     9.06 -10
                            4
                                       4.0
                                              0.037778
```

```
[4]: from matplotlib import pyplot as plt
%matplotlib inline
df['Absoluta'].plot.bar(title='Frequência absoluta das notas',color='#ADD8E6')
```

[4]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef2451220>

2. O conjunto de dados dados2.csv mostra os dados brutos de uma amostra de 27 imóveis anunciados para venda nos anúncios de um site especializado. Nesse exemplo,

cada observação é um imóvel e cada variável é um atributo dos imóveis (bairro, tipo, número de quartos, preço). Com base nesses dados: Importação dos dados:

```
[5]: d2= pd.read_csv('/home/eduarda/Área de Trabalho/dados2.csv',sep=';')
  dados2 = pd.DataFrame(d2)
  dados2
```

[5]:		Bairro	Tipo N	I de quartos	Preço (mil)
	0	Barra	Apto.	2	165
	1	Barra	Apto.	3	240
	2	Barra	Cobt.	3	158
	3	Barra	Sala	0	90
	4	Botafogo	Apto.	2	270
	5	Catete	Apto.	1	250
	6	Centro	Sala	1	110
	7	Copacabana	Apto.	2	210
	8	Copacabana	Apto.	2	200
	9	Copacabana	Apto.	3	280
	10	Flamengo	Apto.	>=4	330
	11	Flamengo	Cobt.	1	180
	12	Gávea	Apto.	3	290
	13	Jacarepaguá	Apto.	>=4	320
	14	Ipanema	Apto.	3	276
	15	Lagoa	Apto.	3	254
	16	Laranjeiras	Apto.	2	220
	17	Laranjeiras	Apto.	2	219
	18	Leblon	Apto.	>=4	340
	19	Leblon	Apto.	3	260
	20	Maracanã	Apto.	>=4	338
	21	Recreio	Cobt.	3	290
	22	São Conrado	Casa	>=4	430
	23	Tijuca	Apto.	2	200
	24	Tijuca	Apto.	2	210
	25	Tijuca	Casa	>=4	370
	26	Vila Isabel	Apto.	2	230

- (a) classifique cada variável do conjunto; Bairro->Variavel qualitativa . Tipo->Variavel qualitativa. Numero de quartos-> Variavel quantitativa. Preço-> Variavel quantitativa.
- (b) monte uma distribuição de frequência para cada uma das variáveis;

0.0.1 BAIRRO:

```
[6]: absoluta=dados2['Bairro'].value_counts()
relativa= dados2['Bairro'].value_counts(normalize=True)*100
cumulativa=np.cumsum(dados2['Bairro'].value_counts())
ddf = pd.DataFrame(list(zip(absoluta,relativa, cumulativa)), columns =

□ ['Absoluta','Relativa %','cumulativa'])
```

```
ddf.index = absoluta.index
ddf
```

cumulativa

```
Barra
                              14.814815
                                                  7
     Tijuca
                         3
                              11.111111
     Copacabana
                         3
                                                 10
                             11.111111
     Laranjeiras
                         2
                              7.407407
                                                 12
     Flamengo
                         2
                              7.407407
                                                 14
    Leblon
                         2
                              7.407407
                                                 16
     São Conrado
                         1
                              3.703704
                                                 17
     Recreio
                         1
                              3.703704
                                                 18
    Maracanã
                         1
                              3.703704
                                                 19
     Ipanema
                         1
                              3.703704
                                                 20
    Lagoa
                         1
                              3.703704
                                                 21
                                                 22
    Botafogo
                         1
                              3.703704
     Jacarepaguá
                         1
                              3.703704
                                                 23
                                                 24
     Gávea
                         1
                              3.703704
                                                 25
     Centro
                         1
                              3.703704
     Catete
                                                 26
                         1
                              3.703704
     Vila Isabel
                         1
                              3.703704
                                                 27
[7]: %matplotlib inline
     absoluta.plot.bar(title='Frequência absoluta da variável Bairro', u
```

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef0397040>

color='#A0522D')

Absoluta Relativa %

[6]:


```
[8]: %matplotlib inline relativa.plot.bar(title='Frequência relativa da variável Bairro',⊔ ⇔color='#A0522D')
```

[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef02b6af0>


```
[9]: %matplotlib inline cumulativa.plot.bar(title='Frequência cumulativa da variável Bairro',⊔ ⇔color='#A0522D')
```

[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef0257df0>

0.0.2 TIPO:

```
absoluta=dados2['Tipo'].value_counts()
relativa= dados2['Tipo'].value_counts(normalize=True)*100
cumulativa = np.cumsum(dados2['Tipo'].value_counts())
df = pd.DataFrame(list(zip(absoluta,relativa,cumulativa)), columns =

→['Absoluta','Relativa %','cumulativa'])
df.index = absoluta.index
df
```

```
[10]:
             Absoluta Relativa % cumulativa
      Apto.
                    20
                         74.074074
                                              20
                                              23
      Cobt.
                     3
                         11.111111
      Sala
                     2
                                              25
                          7.407407
                     2
                          7.407407
                                              27
      Casa
```

```
[11]: %matplotlib inline relativa.plot.bar(title='Frequência relativa da variável Tipo',color='#7B68EE')
```

[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef016c2b0>

[12]: %matplotlib inline absoluta.plot.bar(title='Frequência absoluta da variável tipo',color='#7B68EE')

[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef0146340>


```
[13]: %matplotlib inline cumulativa.plot.bar(title='Frequência cumulativa da variável⊔ →Tipo',color='#7B68EE')
```

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef00b6160>

2.Distribuição de frequências para as variáveis quantitativas Numero de quartos e preço.

0.0.3 PREÇO:

```
[14]:
                      Absoluta Relativa % cumulativa
     90 - 146.67
                            2
                                7.407407
                                            4.197531
     146.67 - 203.33
                            5
                                18.518519
                                           10.493827
      203.33 - 260
                            8
                                29.629630
                                           16.790123
                            6 22.22222
     260 - 316.67
                                           12.592593
     316.67 - 373.33
                            5
                               18.518519
                                           10.493827
     373.33 - 430
                            1
                               3.703704
                                           2.098765
```

```
[15]: from matplotlib import pyplot as plt

%matplotlib inline
fi, classes,x= plt.hist(Distribuição_Preço, bins='auto', color='#CD5C5C')
plt.xticks(classes)
plt.yticks(fi)
plt.grid()
plt.title('Distribuição de Frequências da variável Preço')
```

[15]: Text(0.5, 1.0, 'Distribuição de Frequências da variável Preço')

0.0.4 NÚMERO DE QUARTOS:

```
absoluta=dados2['N de quartos'].value_counts()
relativa= dados2['N de quartos'].value_counts(normalize=True)*100
cumulativa = np.cumsum(dados2['N de quartos'].value_counts())
df = pd.DataFrame(list(zip(absoluta,relativa,cumulativa)), columns = ['Absoluta','Relativa','cumulativa'])
df.index = absoluta.index
df
```

```
[16]: Absoluta Relativa cumulativa
2 9 33.333333 9
3 8 29.629630 17
>=4 6 22.22222 23
```

1 3 11.111111 26 0 1 3.703704 27

[17]: %matplotlib inline absoluta.plot.bar(title ='Distribuição de Frequências da variável Número de⊔ →quartos', color='#FF6347')

[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ef0009ac0>

3. O conjunto de dados dados3.xls traz informações sobre um questionário aplicado aos alunos do primeiro ano do ensino médio de uma escola fornecendo informações sobre as seguintes variáveis: Turma: Qualitativa.

Gênero: Qualitativo.

Idade: Quantitativa.

Alt: Quantitativa.

Peso: Quantitativa.

Filhos: Quantitativa.

Fuma: Qualitativa.

Tolr: Qualitativa.

Exerc: Quantitativa. Cine: Quantitativa. OpCine: Qualitativa.

TV: Quantitativa. OpTV: Qualitativa.

[18]: d3= pd.read_excel('/home/eduarda/Área de Trabalho/dados3.xls')
 dados3 = pd.DataFrame(d3)
 dados3

[18]:	Turma	Sexo	Idade	Alt	Peso	Filhos	Fuma	Toler	Exerc	Cine	OpCine	TV	\
0	A	F	17	1.60	60.5	2	NAO	P	0	1	В	16	
1	A	F	18	1.69	55.0	1	NAO	M	0	1	В	7	
2	A	M	18	1.85	72.8	2	NAO	P	5	2	M	15	
3	Α	M	25	1.85	80.9	2	NAO	P	5	2	В	20	
4	A	F	19	1.58	55.0	1	NAO	M	2	2	В	5	
5	Α	M	19	1.76	60.0	3	NAO	M	2	1	В	2	
6	Α	F	20	1.60	58.0	1	NAO	P	3	1	В	7	
7	Α	F	18	1.64	47.0	1	SIM	I	2	2	M	10	
8	A	F	18	1.62	57.8	3	NAO	M	3	3	M	12	
9	Α	F	17	1.64	58.0	2	NAO	М	2	2	M	10	
10		F	18	1.72	70.0	1	SIM	I	10	2	В	8	
11		F	18	1.66	54.0	3	NAO	М	0	2	В	0	
12		F	21	1.70	58.0	2	NAO	M	6	1	M	30	
13		М	19	1.78	68.5	1	SIM	I	5	1	M	2	
14		F	18	1.65	63.5	1	NAO	I	4	1	В	10	
15		F	19	1.63	47.4	3	NAO	P	0	1	В	18	
16		F	17	1.82	66.0	1	NAO	P	3	1	В	10	
17		М	18	1.80	85.2	2	NAO	P	3	4	В	10	
18		F	20	1.60	54.5	1	NAO	P	3	2	В	5	
19		F	18	1.68	52.5	3	NAO	M	7	2	В	14	
20		F	21	1.70	60.0	2	NAO	P	8	2	В	5	
21		F	18	1.65	58.5	1	NAO	M	0	3	В	5	
22		F	18	1.57	49.2	1	SIM	I	5	4	В	10	
23		F	20	1.55	48.0	1	SIM	I	0	1	М	28	
24		F	20	1.69	51.6	2	NAO	P	8	5	M	4	
25		F	19	1.54	57.0	2	NAO	I	6	2	В	5	
26		F	23	1.62	63.0	2	NAO	M	8	2	М	5	
27		F	18	1.62	52.0	1	NAO	P	1	1	M	10	
28		F	18	1.57	49.0	2	NAO	P	3	1	В	12	
29		F	25	1.65	59.0	4	NAO	M	1	2	М	2	
30		F	18	1.61	52.0	1	NAO	P	2	2	M	6	
31		M	17	1.71	73.0	1	NAO	P	1	1	В	20	
32		F	17	1.65	56.0	3	NAO	M	2	1	В	14	
33	В В	F	17	1.67	58.0	1	NAO	M	4	2	В	10	

34	В	М	18	1.73	87.0	1	NAO	M	7	1	В	25
35	В	F	18	1.60	47.0	1	NAO	P	5	1	М	14
36	В	М	17	1.70	95.0	1	NAO	P	10	2	М	12
37	В	М	21	1.85	84.0	1	SIM	I	6	4	В	10
38	В	F	18	1.70	60.0	1	NAO	P	5	2	В	12
39	В	М	18	1.73	73.0	1	NAO	M	4	1	В	2
40	В	F	17	1.70	55.0	1	NAO	I	5	4	В	10
41	В	F	23	1.45	44.0	2	NAO	M	2	2	В	25
42	В	М	24	1.76	75.0	2	NAO	I	7	0	М	14
43	В	F	18	1.68	55.0	1	NAO	P	5	1	В	8
44	В	F	18	1.55	49.0	1	NAO	M	0	1	М	10
45	В	F	19	1.70	50.0	7	NAO	M	0	1	В	8
46	В	F	19	1.55	54.5	2	NAO	M	4	3	В	3
47	В	F	18	1.60	50.0	1	NAO	P	2	1	В	5
48	В	М	17	1.80	71.0	1	NAO	P	7	0	М	14
49	В	M	18	1.83	86.0	1	NAO	Р	7	0	M	20

VTqO 0 R 1 R 2 R 3 R 4 R R 5 6 R 7 R 8 R 9 R 10 N 11 R 12 R 13 N 14 R 15 R 16 N 17 R 18 R 19 М 20 R 21 R 22 R 23 R 24 N 25 R 26 R 27 R 28 R

```
29
      R
30
      N
31
      R
32
      R
33
      R.
34
      В
35
      R
36
      N
37
      R
38
      R
39
      R
40
      В
41
      R
42
      N
43
      R
44
      R
45
      R
46
      R
47
      R
48
      R
49
      В
```

0.0.5 Alt

```
[19]:
                               Absoluta Relativa % cumulativa
      1.45 - 1.50714286
                                                 2.0
                                                       0.001143
                                      1
      1.50714286 -1.56428571
                                      4
                                                8.0
                                                       0.004571
      1.56428571 - 1.62142857
                                     12
                                                24.0
                                                       0.013714
      1.62142857 - 1.67857143
                                      9
                                                18.0
                                                       0.010286
      1.67857143 - 1.73571429
                                     14
                                                28.0
                                                        0.016000
      1.73571429 - 1.79285714
                                      3
                                                6.0
                                                        0.003429
      1.79285714 - 1.85
                                      7
                                                14.0
                                                        0.008000
```

```
[20]: from matplotlib import pyplot as plt
%matplotlib inline
fi, classes,x= plt.hist(alt, bins='auto',color='#FF6347')
plt.xticks(classes)
plt.yticks(fi)
plt.grid()
plt.title('Distribuição de Frequências da variável Altura')
```

[20]: Text(0.5, 1.0, 'Distribuição de Frequências da variável Altura')

0.0.6 Peso

```
[21]: Absoluta Relativa % cumulativa 44 - 51.29 10 20.0 1.457143
```

```
19
                                38.0
                                        2.768571
51.29 - 58.57
58.57 - 65.86
                      7
                                14.0
                                         1.020000
73.14 - 80.43
                      7
                                14.0
                                         1.020000
80.43 - 87.71
                                 2.0
                                         0.145714
87.71 - 95
                                10.0
                                         0.728571
95
                                 2.0
                                         0.145714
```

```
[22]: %matplotlib inline
  fi, classes,x= plt.hist(peso, bins='auto', color ='#2E8B57')
  plt.xticks(classes)
  plt.yticks(fi)
  plt.grid()
  plt.title('Distribuição de Frequências da variável Peso')
```

[22]: Text(0.5, 1.0, 'Distribuição de Frequências da variável Peso')

0.0.7 Turma

```
[23]: absoluta = dados3['Turma'].value_counts()
df = pd.DataFrame(absoluta)
df
```

[23]: Turma A 26

B 24

```
[24]: %matplotlib inline
absoluta.plot.bar(title = 'Distribuição de Frequência Absoluta da variável⊔

→Turma')
```

[24]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefe35100>

0.0.8 Gênero

```
[25]: absoluta = dados3['Sexo'].value_counts()
df = pd.DataFrame(absoluta)
df
```

[25]: Sexo F 37 M 13

[26]: %matplotlib inline absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável⊔ →Gênero')

[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefe04730>

0.0.9 Idade

```
[27]: absoluta = dados3['Idade'].value_counts()
df = pd.DataFrame(absoluta)
df
```

```
[27]:
           Idade
      18
              22
      17
               9
               7
      19
      20
               4
      21
               3
      25
               2
      23
               2
      24
               1
```

```
[28]: %matplotlib inline
absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável⊔
→Idade')
```

[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefdd50a0>

0.0.10 Filhos

```
[29]: absoluta = dados3['Filhos'].value_counts()
df = pd.DataFrame(absoluta)
df
```

[29]: Filhos
1 28
2 14
3 6
4 1
7 1

```
[30]: %matplotlib inline
absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável⊔
⊶Filhos')
```

[30]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefd48370>

0.0.11 Fuma

```
[31]: absoluta = dados3['Fuma'].value_counts()
df = pd.DataFrame(absoluta)
df
```

[31]: Fuma NAO 44 SIM 6

[32]: %matplotlib inline absoluta.plot.bar(title='Distribuição de Frequência Absoluta da variável Fuma')

[32]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefeda8b0>

0.0.12 Toler

```
[33]: absoluta = dados3['Toler'].value_counts()
df = pd.DataFrame(absoluta)
df
```

```
[34]: %matplotlib inline
absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável⊔

→Toler')
```

[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefc65940>

0.0.13 Exerc

```
[35]: absoluta = dados3['Exerc'].value_counts()
df = pd.DataFrame(absoluta)
df
```

```
[35]:
           Exerc
                8
       0
       5
                8
       2
                8
       3
                6
       7
                5
       4
                4
                3
       6
       8
                3
                3
       1
       10
                2
```

```
[36]: %matplotlib inline
absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável⊔
⇔exerc')
```

[36]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefc331c0>

0.0.14 Cine

```
[37]: absoluta = dados3['Cine'].value_counts()
df = pd.DataFrame(absoluta)
df
```

[38]: %matplotlib inline absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável Cine')

[38]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefbb5af0>

0.0.15 OpCine

```
[39]: absoluta = dados3['OpCine'].value_counts()
df = pd.DataFrame(absoluta)
df
```

[39]: OpCine
 B 32
 M 18

[40]: %matplotlib inline absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável⊔ ⇔Opcine')

[40]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefb21280>

$0.0.16 \quad TV$

```
[41]: absoluta = dados3['TV'].value_counts()
df = pd.DataFrame(absoluta)
df
```

3 1

```
[42]: %matplotlib inline absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável TV')
```

[42]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefaeea90>

0.0.17 OpTV

```
[43]: absoluta = dados3['OpTV'].value_counts()
df = pd.DataFrame(absoluta)
df
```

```
[43]: OpTV

R 39

N 7

B 3

M 1
```

```
[44]: %matplotlib inline absoluta.plot.bar(title ='Distribuição de Frequência Absoluta da variável OpTV')
```

[44]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eefa813d0>

