Filter Summary Report: TIA simple Z3 ZL

Generated by MacAnalog-Symbolix

December 4, 2024

Contents

1	Examined $H(z)$ for TIA simple Z3 ZL: $\frac{Z_3Z_Lg_m}{Z_3g_m+Z_Lg_m}$,
2	HP	,
3	BP	,
	3.1 BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	•
	3.2 BP-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}} \right)$,
	3.3 BP-3 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	8
	3.4 BP-4 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$	8
	3.5 BP-5 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	(
	3.6 BP-6 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)^{\frac{1}{2}}$	(
	3.7 BP-7 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	(
	3.8 BP-8 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	
	3.9 BP-9 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \infty, 1\right)$	-
	3.10 BP-10 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$	
	3.11 BP-11 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	•

		$BP-12 \ Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) \dots $	12
	3.13	BP-13 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	13
4	\mathbf{LP}		13
E	\mathbf{BS}		13
J		BS-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$	13
		BS-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$	
	5.3	BS-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)^2$	14
	5.4	BS-4 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, R_L\right)$	15
c	GE		15
U	6.1	GE-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$	16
	6.2	GE-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)'$	16
	6.3	GE-3 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	17
	6.4	GE-4 $Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L\right)$	17
7	AP		18
Q	TNIX	ALID-NUMER	18
G			18
	8.2	INVALID-NUMER-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	18
9	INV	VALID-WZ	19
10	TNIX	ALID ODDED	10
ΤÜ		VALID-ORDER $INVALID ORDER 1.7(a) = (P_1 - 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,$	19 19
		INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$	
		INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$	19
	10.4	INVALID-ORDER-4 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$	19

10.5 INVALID-ORDER-5 $Z(s) = ($	L_1s, ∞, ∞	∞ , ∞ , ∞	$R_L)$				 	 	 	 	 	20
10.6 INVALID-ORDER-6 $Z(s) = ($	L_1s, ∞, ∞	∞ , ∞ , ∞	$, \frac{1}{C_L s}$				 	 	 	 	 	20
10.7 INVALID-ORDER-7 $Z(s) = \left(\right.$	L_1s, ∞, ∞	∞ , ∞ , ∞	$, \frac{R_{\perp}}{C_L R_L}$	$\left(\frac{L}{L}s+1\right)$			 	 	 	 	 	20
10.8 INVALID-ORDER-8 $Z(s) = ($	L_1s, ∞, ∞	∞ , ∞ , ∞	$R_L +$	$-\frac{1}{C_L s}$			 	 	 	 	 	20
10.9 INVALID-ORDER-9 $Z(s) = ($	L_1s, ∞, ∞	∞ , ∞ , ∞	, $L_L s$	$+\frac{1}{C_L s}$			 	 	 	 	 	20
10.10INVALID-ORDER-10 $Z(s) =$	(L_1s, ∞, ∞)	∞ , ∞ , c	$\circ, \frac{1}{C_L L}$	$\left(\frac{L_L s}{L_L s^2 + 1}\right)$			 	 	 	 	 	20
10.11INVALID-ORDER-11 $Z(s) =$	(L_1s, ∞, ∞)	∞ , ∞ , c	$o, L_L s$	$s + R_L$ -	$+\frac{1}{C_L s}$		 	 	 	 	 	21
10.12INVALID-ORDER-12 $Z(s) =$	`				. /		 	 	 	 	 	21
10.13INVALID-ORDER-13 $Z(s) =$	$\left(L_1s, \infty, \right.$	∞ , ∞ , o	∞ , $\frac{R_L}{L_L}$	$\frac{\left(L_L s + \frac{1}{C_L}\right)}{s + R_L + \frac{1}{C_L}}$	$\left(\frac{\frac{1}{L^s}}{\frac{1}{L^s}}\right)$		 	 	 	 	 	21
10.14INVALID-ORDER-14 $Z(s) =$	$\left(\frac{1}{C_1s}, \infty, \right)$	∞ , ∞ , c	o, R_L)			 	 	 	 	 	21
10.15INVALID-ORDER-15 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \right)$	∞ , ∞ , c	$O, \frac{1}{C_L s}$	·			 	 	 	 	 	21
10.16INVALID-ORDER-16 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \right)$	∞ , ∞ , c	$\circ, \frac{I}{C_L F}$	$\left(\frac{R_L}{R_L s+1}\right)$			 	 	 	 	 	21
10.17INVALID-ORDER-17 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \right)$	∞ , ∞ , o	$o, L_L s$	$s + \frac{1}{C_L s}$)		 	 	 	 	 	22
10.18INVALID-ORDER-18 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \right)$	∞ , ∞ , o	$o, L_L s$	$s + R_L$ -	$+\frac{1}{C_L s}$		 	 	 	 	 	22
10.19INVALID-ORDER-19 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \right)$	∞ , ∞ , c	$O, \frac{1}{C_L L}$	$\frac{L_L s}{L_L s^2 + 1} +$	$+R_L$		 	 	 	 	 	22
10.20INVALID-ORDER-20 $Z(s) =$	$\left(\frac{1}{C_1 s}, \infty, \right)$	∞ , ∞ , o	∞ , $\frac{R_L}{L_L}$	$\frac{\left(L_L s + \frac{1}{C_L}\right)}{s + R_L + \frac{1}{C_L}}$	$\left(\frac{L_s}{L_s}\right)$		 	 	 	 	 	22
10.21INVALID-ORDER-21 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , ∞ ,	R_L			 	 	 	 	 	22
10.22INVALID-ORDER-22 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , ∞ ,	$\frac{1}{C_L s}$			 	 	 	 	 	23
10.23INVALID-ORDER-23 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , ∞ ,	$R_L + \epsilon$	$\frac{1}{C_L s}$		 	 	 	 	 	23
10.24INVALID-ORDER-24 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , ∞ ,	$L_L s +$	$\frac{1}{C_L s}$		 	 	 	 	 	23
10.25INVALID-ORDER- 25 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , ∞ ,	$\frac{L_L s}{C_L L_L s^2}$	(2+1)		 	 	 	 	 	23
10.26INVALID-ORDER-26 $Z(s) =$	$\left(\frac{R_1}{C_1R_1s+1},\right.$	∞ , ∞ ,	∞ , ∞ ,	$L_L s +$	$R_L + \overline{\epsilon}$	$\left(\frac{1}{C_L s}\right)$	 	 	 	 	 	23
10.27INVALID-ORDER-27 $Z(s) =$	$\left(\frac{R_1}{C_1 R_1 s + 1},\right.$	∞ , ∞ ,	$\infty, \ \infty,$	$\overline{C_L s} + \overline{R}$	$\frac{1}{R_L} + \frac{1}{L_L s}$	$\Big)$.	 	 	 	 	 	23

10.28INVALID-ORDER-28 $Z(s) = ($	$\frac{R_1}{C_1R_1s+1}$, ∞ , ∞ , ∞ , ∞ , $\frac{1}{C_LI}$	$\frac{L_L s}{L_L s^2 + 1} + R_L \bigg) . . .$	 	24
10.29INVALID-ORDER-29 $Z(s) = 1$	$\left(\frac{R_1}{C_1R_1s+1}, \infty, \infty, \infty, \infty, \frac{R_L}{L_L}\right)$	$\frac{\left(L_L s + \frac{1}{C_L s}\right)}{s + R_L + \frac{1}{C_L s}} $ \tau \tau \tau \tau \tau \tau \tau \tau	 	24
10.30INVALID-ORDER-30 $Z(s) = ($	$R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}}\right)$	 	24
10.31INVALID-ORDER-31 $Z(s) = ($	$R_1 + \frac{1}{C_1 s}$, ∞ , ∞ , ∞ , ∞ , $\frac{1}{C_L}$	$\left(\frac{R_L}{R_L s+1}\right)$	 	24
10.32INVALID-ORDER-32 $Z(s) = ($	$R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_I$	$L + \frac{1}{C_L s}$)	 	24
10.33 INVALID-ORDER-33 $Z(s)=\left(\right.$	$R_1 + \frac{1}{C_1 s}$, ∞ , ∞ , ∞ , ∞ , L_L	$Ls + \frac{1}{C_L s}$	 	25
10.34 INVALID-ORDER-34 $Z(s) = ($	$R_1 + \frac{1}{C_1 s}$, ∞ , ∞ , ∞ , ∞ , $\overline{C_L}$	$\left(\frac{L_L s}{L_L s^2 + 1}\right) \dots \dots$	 	25
10.35INVALID-ORDER-35 $Z(s) = ($	$R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ L_L$	$Ls + R_L + \frac{1}{C_L s}$	 	25
10.36INVALID-ORDER-36 $Z(s) = ($	$R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \overline{C_I}$	$\frac{1}{Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}$	 	25
10.37INVALID-ORDER-37 $Z(s) = ($	$R_1 + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \overline{C_L}$	$\left(\frac{L_L s}{L_L s^2 + 1} + R_L\right) \dots$	 	25
10.38INVALID-ORDER-38 $Z(s) = 1$	$(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_I}{L})$	$\frac{L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$	 	26
10.39INVALID-ORDER-39 $Z(s) = ($	•	\	 	26
10.40INVALID-ORDER-40 $Z(s) = ($	$L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R$	$R_L + \frac{1}{C_L s}$	 	26
10.41 INVALID-ORDER-41 $Z(s)=\left(\right.$	$L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty, \ \infty, \ L$	$c_L s + \frac{1}{C_L s}$	 	26
10.42 INVALID-ORDER-42 $Z(s)=\left(\right.$	$L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty, \ \overline{C}$	$\left(\frac{L_L s}{L_L L_L s^2 + 1}\right)$	 	26
10.43 INVALID-ORDER-43 $Z(s)=\left(\right.$	$L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty, \ \infty, \ L$	$r_L s + R_L + \frac{1}{C_L s}$.	 	26
10.44 INVALID-ORDER-44 $Z(s)=\left(\right.$	$L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty, \ \overline{C}$	$\frac{L_L s}{C_L L_L s^2 + 1} + R_L \Big) . .$	 	27
10.45INVALID-ORDER-45 $Z(s) = 1$	$L_1s + \frac{1}{C_1s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R}{I}$	$\frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$	 	27
10.46 INVALID-ORDER-46 $Z(s)=\left(\right.$	$\frac{L_1s}{C_1L_1s^2+1}$, ∞ , ∞ , ∞ , ∞ , $\frac{1}{C_L}$	$\left(\frac{1}{\sqrt{s}} \right) \dots \dots$	 	27
10.47 INVALID-ORDER-47 $Z(s)=\left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, \infty, \frac{C_L}{C_L}\right)$	$\left(\frac{R_L}{R_L s+1}\right)$	 	27
10.48INVALID-ORDER-48 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, R_L\right)$	$L + \frac{1}{C_L s}$)	 	27
10.49INVALID-ORDER-49 $Z(s) = ($	$\frac{L_1s}{C_1L_1s^2+1}$, ∞ , ∞ , ∞ , ∞ , L_L	$\left(s + \frac{1}{C_L s} \right) \dots $	 	28

10.50 INVALID-ORDER-50 $Z(s) = \Big($	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$	28
10.51INVALID-ORDER-51 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	28
10.52INVALID-ORDER-52 $Z(s) = \left(\right)$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right) \ \dots $	28
•	$\left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}+R_L\right)$	28
10.54INVALID-ORDER-54 $Z(s) = \left(\right.$	$\left(\frac{L_1s}{C_1L_1s^2+1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L\left(L_Ls+\frac{1}{C_Ls}\right)}{L_Ls+R_L+\frac{1}{C_Ls}}\right) \dots $	29
10.55 INVALID-ORDER-55 $Z(s) = \Big($	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$	29
10.56INVALID-ORDER-56 $Z(s) = ($	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots$	29
10.57INVALID-ORDER-57 $Z(s) = ($	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$	29
10.58INVALID-ORDER-58 $Z(s) = ($	$\left(L_1s + R_1 + \frac{1}{C_1s}, \infty, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1} + R_L\right)$	29
10.59INVALID-ORDER-59 $Z(s) = ($	$\left(L_{1}s + R_{1} + \frac{1}{C_{1}s}, \infty, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s + \frac{1}{C_{L}s}\right)}{L_{L}s + R_{L} + \frac{1}{C_{L}s}}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30
10.60INVALID-ORDER-60 $Z(s) = \left(\right.$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30
10.61INVALID-ORDER-61 $Z(s) = \left(\begin{array}{c} \\ \end{array}\right)$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right) \dots $	30
10.62INVALID-ORDER-62 $Z(s) = \left(\frac{1}{2}\right)^{n}$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30
10.63INVALID-ORDER-63 $Z(s) = \left(\right)$	$\left(\frac{1}{C_1s + \frac{1}{R_1} + \frac{1}{L_1s}}, \infty, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30
10.64INVALID-ORDER-64 $Z(s) = \left(\frac{1}{2}\right)^{-1}$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right) \dots $	31
10.65INVALID-ORDER-65 $Z(s) = \left(\right)$	$\left(\frac{1}{C_1s + \frac{1}{R_1} + \frac{1}{L_1s}}, \infty, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right) \dots \dots$	31
10.66INVALID-ORDER-66 $Z(s) = \left(\right)$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$	31
10.67INVALID-ORDER-67 $Z(s) = \left(\right.$	$\left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	31
10.68INVALID-ORDER-68 $Z(s) = ($	$\left(\frac{1}{C_{1}s + \frac{1}{R_{1}} + \frac{1}{L_{1}s}}, \infty, \infty, \infty, \infty, \frac{R_{L}\left(L_{L}s + \frac{1}{C_{L}s}\right)}{L_{L}s + R_{L} + \frac{1}{C_{L}s}}\right) \dots $	31
10.69INVALID-ORDER-69 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	32

10.70INVALID-ORDER-70 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1} + R_1,\right)$	∞ , ∞ , ∞ , ∞	$, \frac{R_L}{C_L R_L s + 1} $		 	 32
10.71INVALID-ORDER-71 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1} + R_1,\right.$	∞ , ∞ , ∞ , ∞	$, R_L + \frac{1}{C_L s})$		 	 32
10.72INVALID-ORDER-72 $Z(s) = ($	(- 2 /			
10.73INVALID-ORDER-73 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1} + R_1,\right.$	∞ , ∞ , ∞ , ∞	$, \frac{L_L s}{C_L L_L s^2 + 1} \bigg) . .$		 	 32
10.74INVALID-ORDER-74 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1,\right.$	∞ , ∞ , ∞ , ∞	$, L_L s + R_L + \frac{1}{C_L}$	$\left(\frac{1}{s}\right)$	 	 32
10.75INVALID-ORDER-75 $Z(s) = 1$						
10.76INVALID-ORDER-76 $Z(s) = ($	$\left(\frac{L_1s}{C_1L_1s^2+1}+R_1,\right.$	∞ , ∞ , ∞ , ∞	$, \frac{L_L s}{C_L L_L s^2 + 1} + R_L$)	 	 33
10.77INVALID-ORDER-77 $Z(s) = 1$	$\left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1,\right.$	∞ , ∞ , ∞ , ∞	$, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}$		 	 33

1 Examined H(z) for TIA simple Z3 ZL: $\frac{Z_3Z_Lg_m}{Z_3g_m+Z_Lg_m}$

$$H(z) = \frac{Z_3 Z_L g_m}{Z_3 g_m + Z_L g_m}$$

- 2 HP
- 3 BP
- 3.1 BP-1 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L R_3 s}{C_L L_L R_3 s^2 + L_L s + R_3}$$

Parameters:

Q:
$$C_L R_3 \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$

$$H(s) = \frac{L_L R_3 R_L s}{C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{C_L R_3 R_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_3 + R_L}{C_L R_3 R_L}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3 R_L}{R_3 + R_L}$$
 Qz: 0 Wz: None

3.3 BP-3
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s}{C_3 L_L R_L s^2 + C_L L_L R_L s^2 + L_L s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_L(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_L(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.4 BP-4
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s}{C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_L(C_3+C_L)}}(C_3+C_L)$$

wo:
$$\sqrt{\frac{1}{L_L(C_3+C_L)}}$$

bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_3 R_L s}{C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L}$$

Q:
$$\frac{R_{3}R_{L}\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}(C_{3}+C_{L})}{R_{3}+R_{L}}$$
 wo:
$$\sqrt{\frac{1}{L_{L}(C_{3}+C_{L})}}$$
 bandwidth:
$$\frac{R_{3}+R_{L}}{R_{3}R_{L}(C_{3}+C_{L})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{L}}{R_{3}+R_{L}}$$
 Qz: 0 Wz: None

3.6 BP-6
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$C_3 R_L \sqrt{\frac{1}{C_3 L_3}}$$
 wo: $\sqrt{\frac{1}{C_3 L_3}}$

bandwidth:
$$\frac{1}{C_3R_L}$$

K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.7 BP-7
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_L s}{C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + L_3 s + R_L}$$

Q:
$$R_L \sqrt{\frac{1}{L_3(C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{1}{L_3(C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L(C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: 0
Wz: None

3.8 BP-8
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_L s}{C_3 L_3 L_L R_L s^2 + C_L L_3 L_L R_L s^2 + L_3 L_L s + L_3 R_L + L_L R_L}$$

Q:
$$R_L \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}} (C_3 + C_L)$$

wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_L (C_3 + C_L)}$

K-LP: 0 K-HP: 0 K-BP: R_L Qz: 0 Wz: None

3.9 BP-9
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

Q:
$$\frac{C_3R_3R_L\sqrt{\frac{1}{C_3L_3}}}{R_3+R_L}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3+R_L}{C_3R_3R_L}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_L}{R_3+R_L}$ Qz: 0 Wz: None

3.10 BP-10
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+C_L)}}$$
 (C_3+C_L)
wo: $\sqrt{\frac{1}{L_3(C_3+C_L)}}$
bandwidth: $\frac{1}{R_3(C_3+C_L)}$
K-LP: 0

K-HP: 0K-BP: R_3 Qz: 0Wz: None

3.11 BP-11
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s}{C_3 L_3 R_3 R_L s^2 + C_L L_3 R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L}$$

Parameters:

$$Q \colon \frac{R_3 R_L \sqrt{\frac{1}{L_3 (C_3 + C_L)}} (C_3 + C_L)}{R_3 + R_L}$$
wo: $\sqrt{\frac{1}{L_3 (C_3 + C_L)}}$
bandwidth: $\frac{R_3 + R_L}{R_3 R_L (C_3 + C_L)}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3 R_L}{R_3 + R_L}$
Qz: 0
Wz: None

3.12 BP-12
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L R_3 s}{C_3 L_3 L_L R_3 s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s + L_3 R_3 + L_L R_3}$$

Q:
$$R_3 \sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$$
 ($C_3 + C_L$)
wo: $\sqrt{\frac{L_3 + L_L}{L_3 L_L (C_3 + C_L)}}$
bandwidth: $\frac{1}{R_3 (C_3 + C_L)}$
K-LP: 0

K-BP: R_3 Qz: 0 Wz: None

3.13 BP-13
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_3 L_L R_3 R_L s}{C_3 L_3 L_L R_3 R_L s^2 + C_L L_3 L_L R_3 R_L s^2 + L_3 L_L R_3 s + L_3 L_L R_4 s + L_3 R_3 R_L + L_L R_3 R_L}$$

Parameters:

Q:
$$\frac{R_3R_L\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}(C_3+C_L)}{R_3+R_L}$$
 wo:
$$\sqrt{\frac{L_3+L_L}{L_3L_L(C_3+C_L)}}$$
 bandwidth:
$$\frac{R_3+R_L}{R_3R_L(C_3+C_L)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_L}{R_3+R_L}$$
 Qz: 0 Wz: None

4 LP

5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_3 s + 1}$$

Q:
$$\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_3}$$
wo:
$$\sqrt{\frac{1}{C_LL_L}}$$
bandwidth:
$$\frac{R_3}{L_L}$$
K-LP: R_3 K-HP: R_3 K-BP: 0
Qz: None
Wz:
$$\sqrt{\frac{1}{C_LL_L}}$$

5.2 BS-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_L \sqrt{\frac{1}{C_L L_L}} (R_3 + R_L)}{R_3 R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_L L_L}} \\ \text{bandwidth:} \ \frac{R_3 R_L}{L_L (R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ \text{K-HP:} \ \frac{R_3 R_L}{R_3 + R_L} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_L L_L}} \end{array}$$

5.3 BS-3
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{L}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{L}}{L_{3}} \\ \text{K-LP:} \ R_{L} \\ \text{K-HP:} \ R_{L} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

5.4 BS-4
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + R_3 + R_L}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(R_3 + R_L)}{R_3R_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_L}{L_3(R_3 + R_L)} \\ \text{K-LP:} \ \frac{R_3R_L}{R_3 + R_L} \\ \text{K-HP:} \ \frac{R_3R_L}{R_3 + R_L} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

GE

6.1 GE-1
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_3 + R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_3 + R_L}{L_L} \\ &\text{K-LP: } R_3 \\ &\text{K-HP: } R_3 \\ &\text{K-BP: } \frac{R_3 R_L}{R_3 + R_L} \\ &\text{Qz: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

Q:
$$C_L \sqrt{\frac{1}{C_L L_L}} \left(R_3 + R_L \right)$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L (R_3 + R_L)}$
K-LP: $\frac{R_3 R_L}{R_3 + R_L}$
K-HP: $\frac{R_3 R_L}{R_3 + R_L}$
K-BP: R_3
Qz: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$
Wz: $\sqrt{\frac{1}{C_L L_L}}$

6.3 GE-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + 1}$$

$$\begin{array}{l} \text{Q: } \frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}+R_{L}} \\ \text{wo: } \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth: } \frac{R_{3}+R_{L}}{L_{3}} \\ \text{K-LP: } R_{L} \\ \text{K-HP: } R_{L} \\ \text{K-BP: } \frac{R_{3}R_{L}}{R_{3}+R_{L}} \\ \text{Qz: } \frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}} \\ \text{Wz: } \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

6.4 GE-4
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + L_3 s + R_3 + R_L}$$

Q:
$$C_3\sqrt{\frac{1}{C_3L_3}}$$
 (R_3+R_L)
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3(R_3+R_L)}$
K-LP: $\frac{R_3R_L}{R_3+R_L}$
K-HP: $\frac{R_3R_L}{R_3+R_L}$
K-BP: R_L
Qz: $C_3R_3\sqrt{\frac{1}{C_3L_3}}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

7 AP

INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

Parameters:

Q: $\frac{C_{3}C_{L}R_{3}R_{L}\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}}{C_{3}R_{3}+C_{L}R_{3}+C_{L}R_{L}}$ wo: $\sqrt{\frac{1}{C_{3}C_{L}R_{3}R_{L}}}$ bandwidth: $\frac{C_{3}R_{3}+C_{L}R_{3}+C_{L}R_{L}}{C_{3}C_{L}R_{3}R_{L}}$ K-LP: R_3 K-HP: 0 K-BP: $\frac{C_L R_3 R_L}{C_3 R_3 + C_L R_3 + C_L R_L}$ Qz: 0

Wz: None

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_3 C_L R_3 R_L \sqrt{\frac{1}{C_3 C_L R_3 R_L}}}{C_3 R_3 + C_3 R_L + C_L R_L} \\ &\text{wo:} \ \sqrt{\frac{1}{C_3 C_L R_3 R_L}} \\ &\text{bandwidth:} \ \frac{C_3 R_3 + C_3 R_L + C_L R_L}{C_3 C_L R_3 R_L} \\ &\text{K-LP:} \ R_L \\ &\text{K-HP:} \ 0 \end{aligned}$$

K-BP: $\frac{C_3R_3R_L}{C_3R_3+C_3R_L+C_LR_L}$ Qz: 0

Qz: 0 Wz: None

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_3 R_L}{R_3 + R_L}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3}{C_L R_3 s + 1}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_3 R_L}{C_L R_3 R_L s + R_3 + R_L}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_3 (C_L R_L s + 1)}{C_L R_3 s + C_L R_L s + 1}$$

10.5 INVALID-ORDER-5 $Z(s) = (L_1 s, \infty, \infty, \infty, \infty, R_L)$

$$H(s) = \frac{R_L}{C_3 R_L s + 1}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{1}{s\left(C_3 + C_L\right)}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L}{C_3 R_L s + C_L R_L s + 1}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L R_L s + 1}{s (C_3 C_L R_L s + C_3 + C_L)}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{C_L L_L s^2 + 1}{s \left(C_3 C_L L_L s^2 + C_3 + C_L \right)}$$

10.10 INVALID-ORDER-10 $Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s}{C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L s^2 + C_L R_L s + 1}{s \left(C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L \right)}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(L_1 s, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L (C_L L_L s^2 + 1)}{C_3 C_L L_L R_L s^3 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + R_3 + R_L}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + C_L R_3 s + 1}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L}{C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{R_3 \left(C_L L_L R_L s^2 + L_L s + R_L \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + L_L s + R_3 + R_L}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L\left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 R_3 R_L s + C_L L_L R_3 s^2 + C_L L_L R_L s^2 + C_L R_3 R_L s + R_3 + R_L}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = \frac{R_L (C_3 R_3 s + 1)}{C_3 R_3 s + C_3 R_L s + 1}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L R_L s + 1)}{s (C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s (C_3 R_3 s + 1)}{C_3 C_L L_L R_3 s^3 + C_3 L_L s^2 + C_3 R_3 s + C_L L_L s^2 + 1}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_L L_L s^2 + C_L R_L s + 1)}{s (C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 R_3 s + 1 \right)}{C_3 C_L L_L R_3 R_L s^3 + C_3 L_L R_3 s^2 + C_3 L_L R_L s^2 + C_3 R_3 R_L s + C_L L_L R_L s^2 + L_L s + R_L}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 L_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + 1}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 R_3 s + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_L R_3 s^3 + C_3 C_L L_L R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(C_3 C_L L_3 s^2 + C_3 + C_L\right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L R_L s + 1}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 + C_L\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_3 L_L s^2 + C_L L_L s^2 + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_3 L_L R_L s^2 + L_L s + R_L s^2}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_L R_L s^3 + C_3 L_3 s^2 + C_3 L_L s^2 + C_3 R_L s + C_L L_L s^2 + 1}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_R L_s^3 + C_3 L_3 s^2 + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + C_L L_3 s^2 + 1}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_L s + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + 1}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_3 L_L s}{C_3 L_3 L_L s^2 + C_L L_3 L_L s^2 + L_3 + L_L}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3s \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_L s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_L R_L s^2 + L_3 s + L_L s + R_L}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_L s^4 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_L s^2 + L_3 s + R_L}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 + C_L \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_3 R_L s + C_L R_L s + 1}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (C_3 C_L L_3 s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 + C_L\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_1 L_2 L_2 s^4 + C_3 C_1 L_4 R_3 s^3 + C_3 L_3 s^2 + C_3 L_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 1}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L s^2 + C_L R_L s + 1\right)}{s \left(C_3 C_L L_3 s^2 + C_3 C_L L_L s^2 + C_3 C_L R_3 s + C_3 C_L R_L s + C_3 + C_L\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\frac{L_1s}{C_1L_1s^2+1}, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_Ls+\frac{1}{R_L}+\frac{1}{L_Ls}}\right)$$

$$H(s) = \frac{L_LR_Ls\left(C_3L_3s^2+C_3R_3s+1\right)}{C_3C_LL_3L_LR_Ls^4+C_3C_LL_LR_3R_Ls^3+C_3L_3L_Ls^3+C_3L_3R_Ls^2+C_3L_LR_3s^2+C_3L_LR_Ls^2+C_3R_3R_Ls+C_LL_LR_Ls^2+L_Ls+R_Ls^2+C_3L_LR_3s^2+C_3L_LR_2s^2+C_3L_LR_3s^2+C_3L_2R_3s^2+C_3L_2R_3s^2+C_3L_3R_3s^2+C_3L$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_2 C_L L_3 L_4 s^4 + C_2 C_L L_4 R_3 s^3 + C_3 C_L L_4 R_4 s^3 + C_3 L_4 s^2 + C_2 L_4 s^2 + C_3 R_3 s + C_3 R_4 s + C_4 L_4 s^2 + 1}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_L R_3 s^3 + C_3 C_L L_R R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s + C_3 R_L s + C_L L_L s^2 + C_L R_L s + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L R_L s + 1\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 R_3 s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_3 R_3 s^2 + C_L L_L R_3 s^2 + L_3 s + R_3}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_L L_L R_L s^2 + L_L s + R_L\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_3 r^3 + C_$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{L_3 R_3 R_L s \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 R_3 R_L s^2 + C_L L_3 L_L R_3 s^3 + C_L L_3 L_L R_L s^3 + C_L L_3 R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_3 R_3 s + L_3 R_L s + R_3 R_L s^3 + C_L L_3 R_3 R_L s$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + 1}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_L L_3 R_L s^2 + C_L R_3 R_L s + L_3 s + R_3 + R_L}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{(C_L R_L s + 1) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_L s^2 + C_L R_3 s + 1}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_L L_3 L_L s^3 + C_L L_L R_3 s^2 + L_3 s + L_L s + R_3}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{\left(C_L L_L s^2 + C_L R_L s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 L_3 s^2 + C_L L_3 s^2 + C_L L_3 s^2 + C_L L_3 s + C_L R_4 s + 1}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$H(s) = \frac{L_L R_L s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L R_3 s^2 + L_3 L_L s^2 + L_3 R_L s^2 + L_3 R_L s + L_L R_3 s + L_L R_4 s + R_3 R_L s^2 + L_3 R_4 s^2 + L_3 R_4 s^3 + L_4 R_$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_LL_LR_Ls^2 + L_Ls + R_L\right)}{C_3C_LL_3L_LR_3s^4 + C_3C_LL_3L_LR_3s^4 + C_3L_3L_Ls^3 + C_3L_3R_3s^2 + C_3L_3R_Ls^2 + C_LL_3L_Ls^3 + C_LL_LR_3s^2 + C_LL_LR_Ls^2 + L_3s + L_Ls + R_3 + R_Ls^2}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{1}{C_1 s + \frac{1}{R_1} + \frac{1}{L_1 s}}, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_L \left(C_L L_L s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_L L_3 L_L s^3 + C_L L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 (C_3 L_3 s^2 + 1)}{C_3 C_L L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + 1}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1 \right)}{C_3 C_L L_3 R_3 R_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_3 R_L s^2 + C_3 R_3 R_L s + C_L R_3 R_L s + R_3 + R_L}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L R_L s + 1 \right)}{C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L R_3 R_L s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_L R_3 s + C_L R_L s + 1}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_L R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + 1}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L R_3 s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 L_3 L_L s^3 + C_3 L_3 R_3 s^2 + C_3 L_L R_3 s^2 + C_L L_L R_3 s^2 + L_L s + R_3}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_L L_L s^2 + C_L R_L s + 1 \right)}{C_3 C_L L_3 L_L s^4 + C_3 C_L L_3 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_3 C_L L_2 R_3 s^3 + C_3 C_L L_3 R_L s^3 + C_2 L_L R_3 s^3 + C_3 C_L R_3 R_L s^2 + C_3 R_3 s^2 + C_3 R_3 s + C_L L_L s^2 + C_L R_3 s + C_L R_L s + 1}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{1}{C_L s + \frac{1}{R_L} + \frac{1}{L_L s}}\right)$$

$$L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)$$

$$H(s) = \frac{L_L R_3 R_L s \left(C_3 L_3 s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 R_L s^4 + C_3 L_3 L_L R_3 s^3 + C_3 L_3 L_L R_1 s^3 + C_3 L_3 R_3 R_L s^2 + C_3 L_L R_3 R_L s^2 + C_L L_L R_3 R_L s^2 + L_L R_3 s + L_L R_L s + R_3 R_L s^2 + C_L R_3 R_L s^2 + C_L$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1} + R_L\right)$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \infty, \infty, \frac{R_L \left(L_L s + \frac{1}{C_L s}\right)}{L_L s + R_L + \frac{1}{C_L s}}\right)$$

$$H(s) = \frac{R_3 R_L \left(C_3 L_3 s^2 + 1\right) \left(C_L L_L s^2 + 1\right)}{C_3 C_L L_3 L_L R_3 s^4 + C_3 C_L L_3 R_L R_L s^4 + C_3 C_L L_3 R_3 R_L s^3 + C_3 C_L L_L R_3 R_L s^3 + C_3 L_3 R_L s^2 + C_3 L_3 R_L s^2 + C_L L_L R_3 s^2 + C_L L_L R_$$