SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 1

2008 Trial Examination

SOLUTIONS

Question 1

a.
$$\hat{\mathbf{a}} = \frac{1}{\sqrt{3}}(\mathbf{i} - \mathbf{j} + \mathbf{k})$$
 $\hat{\mathbf{b}} = \frac{1}{\sqrt{3}}(\mathbf{i} - \mathbf{j} - \mathbf{k})$

A2

b. The angle bisector can be found by adding $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$.

$$\hat{\mathbf{a}} + \hat{\mathbf{b}} = \frac{1}{\sqrt{3}} (\mathbf{i} - \mathbf{j} + \mathbf{k}) + \frac{1}{\sqrt{3}} (\mathbf{i} - \mathbf{j} - \mathbf{k})$$

$$= \frac{2}{\sqrt{3}} (\mathbf{i} - \mathbf{j})$$
A1

The magnitude of $\hat{\mathbf{a}} + \hat{\mathbf{b}}$ is $\frac{2\sqrt{2}}{\sqrt{3}}$. The unit vector of the angle bisector is

$$\frac{\sqrt{3}}{2\sqrt{2}} \times \frac{2}{\sqrt{3}} (\mathbf{i} - \mathbf{j}) = \frac{1}{\sqrt{2}} (\mathbf{i} - \mathbf{j})$$
 A1

Question 2

a.
$$z = 1$$
 $|z| = 1$, $Argz = 0$, thus $z = cis0$

b.
$$\sqrt[6]{1} = cis \frac{0 + 2k\pi}{6} = cis \frac{k\pi}{3}$$
, $k = 0,1,2,3,4,5$ or any other 6 integers

c.
$$\sqrt[12]{1} = cis \frac{2k\pi}{12} = cis \frac{k\pi}{6}$$

$$\sqrt[6]{1} \times \sqrt[12]{1} = cis \frac{k\pi}{3} \times cis \frac{k\pi}{6} = cis \left(\frac{k\pi}{3} + \frac{k\pi}{6}\right)$$

$$= cis \frac{k\pi}{2} = cis \frac{2k\pi}{4} \text{ which is } \sqrt[4]{1}.$$
A1

a.

$$\frac{1}{4}\cos 3\theta = \frac{1}{4}\cos(2\theta + \theta)$$

$$= \frac{1}{4}(\cos 2\theta \cos \theta - \sin 2\theta \sin \theta)$$

$$= \frac{1}{4}(2\cos^3 \theta - \cos \theta - 2\sin^2 \theta \cos \theta)$$

$$= \frac{1}{4}(2\cos^3 \theta - \cos \theta - 2\cos \theta + 2\cos^3 \theta)$$

$$= \cos^3 \theta - \frac{3}{4}\cos \theta$$
A1

b. For
$$x = \frac{2}{3}\cos\theta$$
 we have $27 \times \frac{8}{27}\cos^3\theta - 9 \times \frac{2}{3}\cos\theta = 1$
 $8\cos^3\theta - 6\cos\theta = 1$
 $\cos^3\theta - \frac{3}{4}\cos\theta = \frac{1}{8}$ M1

By substituting the result from **a.** $\frac{1}{4}\cos 3\theta = \frac{1}{8}$

$$\cos 3\theta = \frac{1}{2}, \quad \theta = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$$
 M1

The solutions are $x = \frac{2}{3}\cos\frac{\pi}{9}$, $\frac{2}{3}\cos\frac{5\pi}{9}$, $\frac{2}{3}\cos\frac{7\pi}{9}$

From $x = y \ln(xy)$, $\ln(xy) = \frac{x}{y}$

By differentiating implicitly

By differentiating implicitly
$$1 = \frac{dy}{dx} \ln(xy) + \frac{y}{xy} \left(y + x \frac{dy}{dx} \right) \text{. Substitute } \ln(xy) = \frac{x}{y}$$

$$1 = \frac{dy}{dx} \frac{x}{y} + \frac{y}{x} + \frac{dy}{dx}$$

$$\frac{dy}{dx} \left(\frac{x}{y} + 1 \right) = 1 - \frac{y}{x}$$

$$\frac{dy}{dx} \left(\frac{x+y}{y} \right) = \frac{x-y}{x}$$

$$\frac{dy}{dx} = \frac{y(x-y)}{x(x+y)}$$
A1

Question 5

$$v\frac{dv}{dx} = -g - 0.1v^2, \qquad \frac{dv}{dx} = -\left(\frac{g + 0.1v^2}{v}\right)$$

M1

$$x = -\int \frac{v}{g + 0.1v^2} dv$$
 By substituting $u = g + 0.1v^2$, $\frac{du}{dv} = 0.2v$

$$x = -\frac{1}{0.2} \int \frac{1}{u} dt = -5 \ln|u| + c$$
$$= -5 \ln(g + 0.1v^{2}) + c$$

M1

When x = 0, v = 80, $c = 5 \ln(g + 640)$

$$x = 5\ln\left(\frac{g + 640}{g + 0.1v^2}\right)$$

A1

For the maximum height v = 0

$$x = 5 \ln \left(\frac{g + 640}{g} \right) = 5 \ln \left(1 + \frac{640}{g} \right)$$

$$a = 5, b = 640$$

A1

a.

A1

b.
$$A = \int_{0}^{3} \sqrt{3x} dx + \int_{3}^{4} \sqrt{36 - 9x} dx - \int_{0}^{4} \frac{1}{4} x(x - 4) dx$$

correct limits

A1

or
$$A = \int_{0}^{3} \left(\sqrt{3x} - \frac{1}{4}x(x-4) \right) dx + \int_{3}^{4} \left(\sqrt{36 - 9x} - \frac{1}{4}x(x-4) \right) dx$$

correct integrals

A1

c.

$$A = \left[\frac{2}{9}(3x)^{3/2}\right]_0^3 - \left[\frac{2}{27}(36 - 9x)^{3/2}\right]_3^4 - \left[\frac{x^3}{12} - \frac{x^2}{2}\right]_0^4$$

$$= \frac{2}{9} \times 9^{3/2} + \frac{2}{27} \times 9^{3/2} - \frac{64}{12} + \frac{16}{2}$$

$$= \frac{32}{3} \quad \text{sq units}$$
A1

Question 7

$$\mathbf{r}(t) = (2 + 3\cos 2t)\mathbf{i} + (-3 + \sin 2t)\mathbf{j}, \quad t \ge 0.$$

a.

$$x = 2 + 3\cos 2t$$

$$y = -3 + \sin 2t$$

$$\cos 2t = \frac{x - 2}{3}$$

$$\sin 2t = y + 3$$

M1

Substituting into $\sin^2 2t + \cos^2 2t = 1$ gives the ellipse $\frac{(x-2)^2}{9} + (y+3)^2 = 1$ A1

c. When t = 0 $x = 2 + 3\cos 0 = 5$ $y = -3 + \sin 0 = -3$. Initial position is (5, -3).

The particle is moving anticlockwise as for $t = \frac{\pi}{4}$ its position is (2,-2).

A1

It returns to its initial position after $t = \pi$.

Question 8

$$\int_{-2}^{a} \frac{3}{(x+2)^2 + 16} dx = \frac{3\pi}{16}$$

$$\frac{3}{4} \left[\tan^{-1} \left(\frac{x+2}{4} \right) \right]_{-2}^{a} = \frac{3\pi}{16}$$

 $\frac{3}{4} \tan^{-1} \left(\frac{a+2}{4} \right) = \frac{3\pi}{16}$

$$\frac{a+2}{4} = 1$$

$$a = 2$$

A1

a.

A1

b.

$$N = 4g\cos\theta, \qquad a = \frac{1}{4}g\sin\theta$$
$$4g\sin\theta - \mu \times 4g\cos\theta = 4 \times \frac{1}{4}g\sin\theta$$
$$3\sin\theta = 4\mu\cos\theta$$
$$\mu = \frac{3\sin\theta}{4\cos\theta} = \frac{3}{4}\tan\theta$$

M2

A1