DoSA User Manual

Example of Linear Vibrator

2018-04-21 GiTae Kweon (zgitae@gmail.com)

DoSA Structure

Program Structure

Toolbar

1. Operations

2. Design

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel: Add a steel and determine specifications

3. Experiment

✓ Force : Magnetic force estimation for driving part

✓ Stroke : Magnetic force estimation for each stroke

✓ Current : Magnetic force estimation for each current

Analysis Model

Analysis Model

1. Shape Model

2. Product Specifications

가. Coil

• Coil Turns : 126 turns

• Coil Resistance: 15.75 Ohm

나. Magnet

• Material : NdFeB 52

• Magnetization Direction : 90 (UP)

다. Power

• Voltage: 2.5V

(Example Files : DoSA Install directory > Samples > LV)

New design

1. Toolbar > Click New button

- 2. Design Name: "LV"
- 3. Click OK

Parts Design

Add coil

1. Toolbar > Click Coil button

2. Coil Name: "coil"

3. Input the coil shape

✓ Coil Location: Base_X 1.5, Base_Y -0.67

✓ Left-down point : X 0, Y 0

(Relative coordinates)

✓ Right-Up Point : X 0.365, Y 1.18

(Relative coordinates)

4. Screen Adjustment : Use Fit All button

5. Click OK button

6. Check shape (FEMM Window)

Coil Design

- 1. Input the coil instrumental specifications
 - ✓ Part Material : Select Copper
 - ✓ Current Direction : Select IN (Inner direction)
 - ✓ Moving Parts : Select FIXED (Fixed Components)
 - ✓ Coil Wire Grade: Bonded_IEC_Grade_1B
 - ✓ Copper Diameter: 0.045 mm
 - ✓ Horizontal Coefficient : 0.95 (Bonded Type)
 - ✓ Vertical Coefficient : 1.13 (Bonded Type)
 - ✓ Resistance Coefficient : 1.1 (Bonded Type)
- 2. Calculate the coil specification
 - ✓ Click the "Coil Design" button

1			
Δ	Common Fields		
	Node Name	coil	
Δ	▲ Specification Fields		
	Part Material	Copper	
	Curent Direction	IN	
	Moving Parts	FIXED	
Δ	▲ Calculated Fields		
	Coil Turns	126	
	Coil Resistance [Ω]	15,74769	
	Coil Layers	6	
	Turns of One Layer	21	
Δ	■ Design Fields (optional)		
	Coil Wire Grade	Bonded_IEC_Grade_1B	
	Inner Diameter [mm]	3	
	Outer Diameter [mm]	3,73	
	Coil Height [mm]	1,18	
Copper Diameter [mm] 0.045			
	Wire Diameter [mm]	0,04953	
	Coil Temperature [*C]	20	
	Horizontal Coefficient	0,95	
	Vertical Coefficient	1,13	
	Resistance Coefficient	1,1	

Add magnet

- 1. Toolbar > Click Magnet button
- 2. Magnet Name: "magnet"
- 3. Magnet Shape
 - ✓ Magnet location : Base_X 0, Base_Y 0.4
 - ✓ Left-down Point : X 0, Y 0

(Relative Coordinates)

✓ Right-Up point : X 1.35, Y 1

(Relative Coordinates)

- 4. Screen Adjustment : Use Fit All button
- 5. Click OK button
- 6. Confirm Shape (FEMM window)

Magnet Settings

1. Magnet Settings

✓ Part Material : NdFeB 52 MGOe

✓ Direction : UP

✓ Moving Parts : MOVING (Moving parts)

Add plate

1. Toolbar > Click Steel Button

2. Steel Name: "plate"

3. Face Type: RECTANGLE

4. Plate Shape

✓ 자석 위치 : Base_X 0, Base_Y 0.2

✓ Left-down point : X 0, Y 0

(Relative Coordinates)

✓ Right-Up point : X 1.35, Y 0.2

(Relative Coordinates)

5. Screen Adjustment: Use Fit All button

6. Click OK button

7. Shape confirm (FEMM window)

Add yoke

1. Toolbar > Click Steel Button

- 2. Steel Name: "yoke"
- 3. Add input lines of point : Click 'A' button
- 4. Yoke Shape
 - ✓ Yoke location: Base_X 0, Base_Y 0.2
 - ✓ 1 Point : X 0, Y 1.4
 - ✓ 2 Point : X 0, Y 1.2
 - √ 3 Point : X 1.9, Y 1.2 (Arc, Dir check)
 - ✓ 4 Point : X 2.05, Y 1.05
 - ✓ 5 Point: X 2.05, Y 0
 - ✓ 6 Point : X 2.25, Y 0
 - √ 7 Point : X 2.25, Y 1.05 (Arc check)
 - ✓ 8 Point : X 1.9, Y 1.4
- 5. Screen Adjustment: Use Fit All button
- 6. Click OK button

Add yoke

7. Shape confirmation (FEMM window)

Plate, Yoke settings

1. Plate, Yoke settings

✓ Part Material : 430 Stainless Steel

✓ Moving Parts : MOVING (Moving Parts)

[BH curve]

Virtual Experiments

Experiment of magnetic force

- 1. Toolbar > Click Force Button
- Force
- 2. Force Experiment Name: "force"
- 3. Click OK button
- 4. Settings of magnetic force experiment
 - ✓ Voltage: 2.5 V
- 5. Click "Force Test" Button

Results of magnetic force

1. Force: -0.05428 N

Experiment of displacement-magnetic force

- 1. Toolbar > Click Stroke button
- 2. Stroke Experiment Name: "stroke"
- 3. Click OK button
- 4. Settings of the experiment
 - ✓ Voltage: 2.5 V
 - ✓ Initial Stroke: -0.5 mm
 - ✓ Final Stroke: 0.5 mm
 - ✓ Step Count: 5

Results of displacement-magnetic force

5. Information View > Click "Stroke Test" button

Experiment of current-magnetic force

1. Toolbar > Click Current button

2. Experiment Name: "current"

3. Click OK button

4. Experiment settings

✓ Initial Current: 0.0 A

✓ Final Current: 0.1 A

✓ Step Count: 5

Results of current-magnetic force

5. Information View > Click "Current Test" button

Thank You