應數一線性代數 2020 秋, 期末考 解答

字:::::::::::::::::::::::::::::::::::::
--

本次考試共有8頁(包含封面),有11題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一及最後一頁填上姓名學號,並在每一頁的最上方屬名,避免釘書針斷裂後考卷遺失。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。 沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:誠敬宏遠

誠,一生動念都是誠實端正的。 敬,就是對知識的認真尊重。 宏,開拓視界,恢宏心胸。 遠,任重致遠,不畏艱難。

請尊重自己也尊重其他同學,考試時請勿東張西望交頭接耳。

1. (10 points) Find the determinant of

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 & 3 \end{bmatrix}$$

Answer: _______

$$\begin{vmatrix} 2 & 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 & 3 \end{vmatrix} = 1 \times \begin{vmatrix} 2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & 3 \end{vmatrix}$$
 (expand on the 3rdcolumn.)
$$= 1 \times \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} \times \begin{vmatrix} 2 & 0 \\ -1 & 3 \end{vmatrix}$$
 (by 4-3 problem 11)
$$= 1 \times (-2 - 3) \times (6 - 0) = -30$$

- 2. (10 points) Suppose that A is a 5×5 matrix with determinant 7.
 - (a) Find $det(3A) = 3^5 \times 7 = 1701$
 - (b) Find $\det(A^{-1}) = \underline{1/7}$
 - (c) Find $det(2A^{-1}) = 2^5 \times 1/7 = 32/7$
 - (d) Find $det((2A)^{-1}) = 1/(2^5 \times 7) = 1/224$

3. (5 points) Suppose that A is a 3×3 matrix with row vectors \vec{a}, \vec{b} , and \vec{c} , and that det(A) = 3. Find the determinant of the matrix having $\vec{a}, \vec{b}, 2\vec{a} + 3\vec{b} + 2\vec{c}$ as its row vectors

 $Determinant = \underline{\qquad \qquad 6}$

$$\begin{vmatrix} \vec{a} \\ \vec{b} \\ 2\vec{a} + 3\vec{b} + 2\vec{c} \end{vmatrix} = \begin{vmatrix} \vec{a} \\ \vec{b} \\ 3\vec{b} + 2\vec{c} \end{vmatrix} (R_3 = R_3 - 2 \times R_1)$$

$$= \begin{vmatrix} \vec{a} \\ \vec{b} \\ 2\vec{c} \end{vmatrix} (R_3 = R_3 - 3 \times R_2)$$

$$= 2 \begin{vmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \end{vmatrix}$$

$$= 2 \times 3 = 6$$

4. (10 points)

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ -2 & 1 & 2 \end{bmatrix}$$

The inverse of $A = \begin{bmatrix} 0.5 & -0.5 & 0 \\ -1 & 3 & -1 \\ 1 & -2 & 1 \end{bmatrix}$, and the adjoint matrix of $A = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 6 & -2 \\ 2 & -4 & 2 \end{bmatrix}$

$$A^{-1} = \frac{adj(A)}{\det(A)}$$

$$adj(A) = [a'_{i,j}]^T$$
, where $a'_{i,j} = (-1)^{i+j} \det(A_{i,j})$

$$\vec{i} = [1, 0, 0], \vec{j} = [0, 1, 0], \vec{k} = [0, 0, 1],$$

$$\vec{b} \times \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 4 & 0 \\ 1 & 1 & 1 \end{vmatrix} = [4, 1, -5]$$

$$[1, 0, -3] \cdot [4, 1, -5] = 19$$

6. (10 points) Find out whether points (1, 2, 1), (3, 3, 4), (2, 2, 2) and (4, 3, 5) lie in a plane in \mathbb{R}^3

Answer: Yes

Name A(1, 2, 1), B(3, 3, 4), C(2, 2, 2) and D(4, 3, 5), then $\vec{AB} = [2, 1, 4], \vec{AC} = [1, 0, 1], \vec{AD} = [3, 1, 4]$

$$\begin{vmatrix} \vec{AB} \\ \vec{AC} \\ \vec{AD} \end{vmatrix} = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 3 & 1 & 4 \end{vmatrix} = 0$$

7. (10 points) Using Cramer's rule to find the component y of the solution vector for the given linear system.

$$\begin{cases} 2x - 3y = 1\\ -4x + 6y = -2 \end{cases}$$

$$y =$$
 無限多組解 or $\frac{2x-1}{3}$

$$|A| = \begin{vmatrix} 2 & -3 \\ -4 & 6 \end{vmatrix} = 0, |B_2| = \begin{vmatrix} 2 & 1 \\ -4 & -2 \end{vmatrix} = 0,$$

- 8. (10 points) Circle True or False. Read each statement in original Greek before answering.
 - (a) True False There's an unique coordinate vector associated with each vector $\vec{v} \in V$ relative to a basis for V
 - (b) True False A linear transformation $T: V \to V'$ carries the zero vector of V into the zero vector of V'.
 - (c) True False The parallelogram (平行四邊形) in \mathbb{R}^2 determined by non-zero vectors \vec{a}, \vec{b} is a square (正方形) if and only if $\vec{a} \cdot \vec{b} = 0$
 - (d) True False The product of a square matrix and its adjoint is the identity matrix.
 - (e) True False There is no square matrix A such that $det(A^TA) = -1$.
 - (a) It needs to be an **ordered basis** to be TRUE.
 - (c) $\vec{a} = [1, 0], \vec{b} = [0, 2] \Rightarrow \vec{a} \cdot \vec{b} = 0$, but it's not a square.
 - (d) By Theorem 4.6: A * adj(A) = det(A)I

9. (10 points) Let V and V'' be vector spaces with ordered bases B = ([1,3,-2], [4,1,2], [-1,1,0]) and B' = ([1,0,1,0], [2,1,1,-1], [0,1,1,-1], [2,0,3,1]), respectively, and let $T: V \longrightarrow V'$ be the linear transformation having the given matrix A as matrix representation relative to B, B'. Find T([0,3,-6]).

$$A = \begin{bmatrix} 0 & 4 & -1 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

- (a) If $\vec{v} = [0, 3, -6]$, then $\vec{v}_B = [2, -1, -2]$
- (b) T([0,3,-6]) = [-14, -1, -12, -2].

$$\begin{bmatrix} 1 & 4 & -1 & 0 \\ 3 & 1 & 1 & 3 \\ -2 & 2 & 0 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 3 \\ 0 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 4 & -1 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 3 \\ 0 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ -3 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -14 \\ -1 \\ -12 \\ -2 \end{bmatrix}$$

- 10. (10 points) Let $T: P_3 \longrightarrow P_2$ be defined by T(p(x)) = D(p(x+1)), and let $B = (x^3, x^2, x, 1)$ and $B' = (x^2, x, 1)$.
 - (a) Find the matrix A as matrix representation of T relative to B, B'. $A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}$
 - (b) Use A to compute $T(4x^3 5x^2 + 3x 2) = \underline{12x^2 + 14x + 5}$.
 - (a) $T(x^3) = 3x^2 + 6x + 3$, $T(x^2) = 2x + 2$, $T(x^1) = 1$, $T(x^0) = 0$
 - (b)

$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 12 \\ 14 \\ 5 \end{bmatrix}$$

- 11. (10 points) Let $S = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x)\}$ is a set of functions in the vector space F of all functions mapping \mathbb{R} into \mathbb{R} .
 - (a) Prove that S is an independent set in F.
 - (b) Find a basis for the subspace of F generated by the functions $\{f_1, f_2, f_3, f_4\}$, where

$$f_1(x) = 1 - 2\sin(x) + 4\cos(x) - \sin(2x) - 3\cos(2x), \quad f_2(x) = 1 - 2\sin(x),$$

 $f_3(x) = 4\cos(x) - 5\sin(2x) + 3\cos(2x), \quad f_4(x) = 1 + 2\sin(2x)$

(a) Assume there exists $a, b, c, d, e \in \mathbb{R}$ such that $a + b\sin(x) + c\cos(x) + d\sin(2x) + e\cos(2x) = 0$.

by (1), (2), we have $c = 0, \Rightarrow a + e = 0$ —(5)

by (3), (4), we have $b = 0, \Rightarrow a - e = 0$ —(6)

by (5), (6), we have a = e = 0.

Since a = b = c = e = 0, we have $d\sin(2x) = 0$ for all $x, \Rightarrow d = 0$.

Hence, we have a = b = c = d = e = 0. Therefore, its independent.

(b)

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ -2 & -2 & 0 & 0 \\ 4 & 0 & 4 & 0 \\ -1 & 0 & -5 & 2 \\ -3 & 0 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the basis is $\{f_1, f_2, f_3, f_4\}$

學號:

,姓名

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	10	10	5	10	5	10	10	10	10	10	10	100
Score:												