In the Claims

Please amend page 34, line 1 as follows:

Claims What is claimed is:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1) (Original) An imaging agent which comprises a synthetic MSRA antagonist labelled with an imaging moiety, wherein the synthetic MSRA antagonist is a sulphonamidobenzamide compound, and wherein the imaging moiety can be detected externally in a non-invasive manner following administration of said labelled synthetic MSRA antagonist to the mammalian body *in vivo*.
- 2) (Original) The imaging agent of claim 1 wherein the sulphonamidobenzamide compound is of Formula (II):

$$R^4$$
 R^5
 R^1
 R^5
 R^1
 R^1

wherein;

z is 0, 1 or 2;

R¹-R¹⁴ are independently R groups, where R is:

hydrogen, hydroxy, carboxy, $C_{1\text{-}6}$ alkyl, nitro, cyano, amino, halogen, $C_{6\text{-}14}$ aryl, $C_{2\text{-}7}$ alkenyl, $C_{2\text{-}7}$ alkynyl, $C_{1\text{-}6}$ acyl, $C_{7\text{-}15}$ aroyl, $C_{2\text{-}7}$ carboalkoxy, $C_{2\text{-}15}$ carbamoyl, $C_{2\text{-}15}$ carbamyl, $C_{1\text{-}6}$ alkysulphinyl, $C_{6\text{-}14}$ arylsulphinyl, $C_{6\text{-}12}$ arylalkylsulphinyl, $C_{1\text{-}6}$ alkylsulphonyl, $C_{6\text{-}14}$ arylsulphonyl, $C_{6\text{-}12}$ arylalkylsulphonyl, sulphamyl, $C_{6\text{-}14}$ arylsulphonamido or $C_{1\text{-}6}$ alkylsulphonamido.

- 3) (Original) The imaging agent of claim 2 wherein each R^1 to R^{14} is chosen from: an imaging moiety, hydrogen, C_{1-6} alkyl, hydroxy, carboxy, amino or halogen.
- 4) (Currently amended) The imaging agent of elaims 2 and 3 claim 2, wherein one of R², R³, R⁷, R⁸ and R¹² in Formula (II) is an imaging moiety, and the remaining R², R³, R⁷, R⁸ and R¹² groups are independently selected from hydrogen, C₁₋₆ alkyl, carboxy, or a halogen selected from chlorine, bromine, fluorine or iodine.
- 5) (Currently amended) The imaging agent of elaims 2.4 claim 2, wherein R³, R⁸ and R¹² are each independently a halogen selected from chlorine, bromine, fluorine or iodine.
- 6) (Currently amended) The imaging agent of claims 1-5 claim 1, wherein said imaging moiety is selected from:
 - (i) a radioactive metal ion;
 - (ii) a paramagnetic metal ion;
 - (iii) a gamma-emitting radioactive halogen;
 - (iv) a positron-emitting radioactive non-metal;
 - (v) a hyperpolarised NMR-active nucleus;
 - (vi) a reporter suitable for *in vivo* optical imaging;
 - (vii) a □-emitter suitable for intravascular detection.
- 7) (Original) The imaging agent of claim 6, wherein the radioactive metal ion is a gamma emitter or a positron emitter.
- 8) (Original) The imaging agent of claim 7, wherein the radioactive metal ion is selected from ^{99m}Tc, ^{94m}Tc, ¹¹¹In, ^{113m}In, ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga, ⁶⁸Ga, ⁴⁸V, ⁵²Fe and ⁵⁵Co.

- 9) (Original) The imaging agent of claim 6, wherein the paramagnetic metal ion is selected from paramagnetic ions of Gd, Mn and Fe.
- 10) (Original) The imaging agent of claim 7, wherein the paramagnetic metal ion is Gd(III).
- 11) (Original) The imaging agent of claim 6, wherein the gamma-emitting radioactive halogen is a radioactive isotope of iodine.
- 12) (Original) The imaging agent of claim 11, wherein the radioactive isotope of iodine is chosen from ¹²³I or ¹³¹I.
- 13) (Original) The imaging agent of claim 6, wherein the positron-emitting radioactive non-metal is selected from ¹¹C, ¹³N, ¹⁵O, ¹⁷F, ¹⁸F, ¹²⁴I, ⁷⁵Br and ⁷⁶Br.
- 14) (Original) The imaging agent of claim 13, wherein the positron-emitting radioactive non-metal is ¹⁸F.
- 15) (Original) The imaging agent of claim 6 wherein the hyperpolarised NMR-active nucleus is selected from ¹³C, ¹⁵N, ¹⁹F, ²⁹Si and ³¹P.
- 16) (Original) The imaging agent of claim 15 wherein the hyperpolarized NMR-active nucleus is ¹³C.
- 17) (Currently amended) The imaging agent of elaims 6-10-claim 6, wherein the imaging moiety is a radioactive or a paramagnetic metal ion and the metal ion is attached to the MSRA antagonist as part of a metal complex to form a conjugate of Formula (III):

$[{MSRA antagonist}-(L)_x]_y-[metal complex]$ (III)

wherein:

-(L)_x- is a linker group wherein each L is independently -CZ₂-, -CZ=CZ-, -C=C-, -CZ₂CO₂-, -CO₂CZ₂-, -NZCO-, -CONZ-, -NZ(C=O)NZ-, -NZ(C=S)NZ-, -SO₂NZ-, -NZSO₂-, -CZ₂OCZ₂-, -CZ₂SCZ₂-, -CZ₂NZCZ₂-, a C₄₋₈ cycloheteroalkylene group, a C₄₋₈ cycloalkylene group, a C₃₋₁₂ heteroarylene

group, an amino acid or a monodisperse polyethyleneglycol (PEG) building block;

Z is independently chosen from H, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxyalkyl or C_{1-4} hydroxyalkyl;

x is an integer of value 0 to 10; and

y is 1, 2 or 3.

- 18) (Original) The imaging agent of claim 17 wherein the metal complex is a coordination complex of the radioactive metal ion or the paramagnetic metal ion with one or more ligands.
- 19) (Original) The imaging agent of claim 18 wherein said one or more ligands are chelating agents selected from diaminedioximes, N₃S ligands, N₂S₂ ligands, N₄ ligands and N₂O₂ ligands.
- 20) (Original) An imaging agent precursor of Formula (IIIa):

[$\{MSRA \text{ antagonist}\}-(L)_x]_y$ -[ligand] (IIIa)

wherein:

 $(L)_x$ is a linker group wherein L is as defined in claim 17; x is an integer of value 0 to 10; and y is 1, 2 or 3.

- 21) (Currently amended) A pharmaceutical composition comprising the imaging agent of claims 1-19 claim 1, together with a biocompatible carrier, in a form suitable for mammalian administration.
- 22) (Original) The pharmaceutical composition of claim 21 for use in the diagnostic imaging of cardiovascular disease.
- 23) (Currently amended) The pharmaceutical composition of elaims 21 and 22 claim 21 for use in the diagnostic imaging of atherosclerotic plaques, coronary artery disease, thrombosis, transient ischaemia or renal disease.

- 24) (Original) The pharmaceutical composition of claim 23 for use in the diagnostic imaging of atherosclerotic plaques.
- 25) (Original) The pharmaceutical composition of claim 24 for use in the diagnostic imaging of unstable atherosclerotic plaques.
- 26) (Currently amended) A kit for the preparation of the pharmaceutical composition of any of claims 21-27 claim 21, comprising a precursor of the imaging agent of any of claims 1-19 claim 1.
- 27) (Original) The kit of claim 26 wherein said precursor is of Formula (IIIa) of claim 20.
- 28) (Original) The kit of claim 27 wherein the preparation of said pharmaceutical composition comprises reaction of a radioactive metal ion or a paramagnetic metal ion with the precursor of Formula (IIIa).
- 29) (Original) The kit of claim 28 wherein the radioactive metal ion is selected from ^{99m}Tc, ¹¹¹In, ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga and ⁶⁸Ga.
- 30) (Currently amended) The kit of elaims 28 and 29 claim 28, wherein the radioactive metal ion is ^{99m}Tc.
- 31) (Original) The kit of claim 28 wherein the paramagnetic metal ion is selected from Gd, Mn and Fe.
- 32) (Original) The kit of claim 31 wherein the paramagnetic metal ion is Gd(III).
- 33) (Currently amended) Use of the imaging agent of claims 1-20 claim 1 for the diagnostic imaging of cardiovascular disease.
- 34) (Original) The use of claim 33 wherein the cardiovascular disease is atherosclerosis.