旅田海聖,岡本直樹,平川翼,山下隆義,藤吉弘亘(中部大学)

IS1-31

■研究背景

- ・ 食品製造工場における惣菜等の詰め込み作業は人手依存 → ピッキングロボットによる自動化が求められている
- 惣菜等の多くが不定形状であり、把持戦略の事前設計が困難→ データドリブンな深層学習を用いて把持戦略を決定
- 不確実性の考慮により少数の学習データで高精度な把持を実現

■従来手法

- 1. 学習データの不足に基づく不確実性を考慮した把持手法
 - Random Network Distillation (RND)を使用
 - Target Networkの出力を予測するようにPredict Networkを学習
 - 未知度が低い領域を把持位置として選択

Random Network Distillation (RND) モデル [K. Takahashi+, ICRA2021]

- 2. 食品特有の形状に基づく不確実性を考慮した把持手法
 - Mixture Density Network (MDN) を使用
 - 複数の把持量の可能性をガウス分布としてモデル化
 - ばらつきが低い領域を把持位置として選択

Mixture Density Network (MDN) モデル [K. Takahashi+, RA-L2021]

■従来手法の課題

- 1つの観点のみに基づいた不確実性の考慮
 - 学習不足や食品同士の絡まり合い等、複数の観点で存在
- 推論時のみ不確実性を考慮
 - 不確実性が低い領域を把持する戦略は,不確実性が高い領域 に関する学習が把持精度に影響しない

■ 提案手法

複数の観点に基づいて不確実性が低い領域を把持位置として選択→ 学習時に不確実性が低い領域を優先的に学習

モデル構造

- 入力:RGB画像+深度情報
- 出力:MDN → 把持量+ばらつき、RND → 未知度

学習方法

• 損失関数: $L = L_{MDN} + L_{RND}$

$$L_{MDN} = -\log \left[\sum_{k=1}^{K} \Pi_k \phi(O_{mass} | \mu_k, \sigma_k) \right]$$

 ϕ :ガウス関数, μ_k :平均値, σ_k :標準偏差, O_{mass} :正解把持量

$$L_{RND} = \left\| v_{target} - v_{predict} \right\|^2$$

 v_{target} :Target Networkの出力, $v_{predict}$:Predict Networkの出力

• 未知度に基づくサンプリング方法のUASamplerを提案

$$\tilde{s}_i = \begin{cases} \frac{1}{s_i} & \text{if } s_i \neq 0 \\ 0 & \text{otherwise} \end{cases}$$
 for each i $p_i = \frac{\tilde{s}_i}{\Sigma_j \tilde{s}_j}$ for each i

 s_i :i番目のデータに対する未知度, $ilde{s}_i$:未知度の逆数, p_i :サンプリング確率

推論方法

- 未知度と把持量のばらつきを考慮した把持位置選択
 - 1. 複数の把持候補位置を設定
 - 2. 候補位置に対する不確実性を推定
 - 3. 未知度とばらつきの順位の和が最小の位置を選択

*** 未知度に基づいた サンプリング確率の適用 WDN ・ 予測把持量 ・ 把持量のばらつき 誤差を計算 Target Network 学習データ ・ スクトル ・ アアedict Network ・ ベクトル ・ スクトル ・ スクトル ・ マクトル ・ マクトル

モデル構造と学習方法

把持位置選択の流れ

■実験環境

- ピッキングロボット:単腕・4軸のMyPalletizer
- カメラ:RGBカメラと深度センサを搭載したRealSense
- はかり:0.01g単位の計測が可能なもの
- 輪ゴム:絡まりが発生しやすい疑似食品

- 学習データの作成(100個収集)
 - 入力データ:140×140pxにクロップしたRGB画像と深度情報
 - 正解データ:ピッキングロボットの把持量

■ 評価実験

- 評価方法
 - 把持候補の位置としてトレイ内で75個の把持位置を設定
 - 各候補位置に対してモデルの予測を行い把持位置を選択
 - 予測把持量と計測把持量の差が閾値以下で把持成功と判定

把持成功率 [%]

未知度	ばらつき	UASampler	±0.5g	±1.0g	± 1.5g	±2.0g	±2.5g	±3.0g
✓			14	29	45	54	58	73
	✓		11	23	38	51	61	73
✓	✓		<u>23</u>	<u>35</u>	<u>55</u>	<u>62</u>	<u>68</u>	<u>82</u>
✓	✓	✓	27	49	64	74	81	88

- 未知度と把持量のばらつきの両方を考慮する有効性を確認
- UASamplerを導入する有効性を確認