What Impulse Response Do Instrumental Variables Identify?

Bonsoo Koo (Monash U) Seojeong (Jay) Lee (Seoul National U) Myung Hwan Seo (Seoul National U)

> Sep 26, 2023 Simon Fraser University

Motivation

- Impulse response (IR) functions are dynamic causal effects
- \bullet IR analysis typically based on SVAR or LP

Motivation

- Impulse response (IR) functions are dynamic causal effects
- IR analysis typically based on SVAR or LP
- Literature treats a macro shock as homogeneous, despite being composite in nature
 - A monetary policy surprise in FOMC statement = pure monetary policy shock
 + information shock (Jarociński and Karadi, 2020)
 - A government spending shock: sum of sectoral spending shocks (Cox, Müller, Pasten, Schoenle, Weber, 2020; Bouakez, Rachedi and Santoro, 2020)

Motivation

- Impulse response (IR) functions are dynamic causal effects
- IR analysis typically based on SVAR or LP
- Literature treats a macro shock as homogeneous, despite being composite in nature
 - A monetary policy surprise in FOMC statement = pure monetary policy shock
 + information shock (Jarociński and Karadi, 2020)
 - A government spending shock: sum of sectoral spending shocks (Cox, Müller, Pasten, Schoenle, Weber, 2020; Bouakez, Rachedi and Santoro, 2020)
- IVs are often used as an important source of exogeneity to identify IRs to policy-relevant macro shocks
 - Proxy SVAR: Stock and Watson (2012), Mertens and Ravn (2013)
 - Local projection (Jordà, 2005) with instrumental variables (LP-IV): Stock and Watson (2018), Plagborg-Møller and Wolf (2021)

LP-IV

LP-IV: Single equation linear model with endogeneity

$$y_{t+h} = x_t \beta_h + u_{t+h}$$

- y_t , x_t : macro variables, z_t : instrument
- LP-IV estimand:

$$\beta_h \equiv \frac{Cov(y_{t+h}, z_t)}{Cov(x_t, z_t)}$$

- θ_h : IR to the macro shock that changes x_t by one unit on y_{t+h}
- Stock and Watson (2018) showed $\beta_h = \theta_h$
- What if the shock is composite?

ullet Show that eta_h is an affine combination of the IRs to the components of the macro shock

$$\beta_h = \sum_s w_s \theta_{h,s}$$

• $\theta_{h,s}$: IR to the sth component shock on y_{t+h}

ullet Show that eta_h is an affine combination of the IRs to the components of the macro shock

$$\beta_h = \sum_s w_s \theta_{h,s}$$

- $\theta_{h,s}$: IR to the sth component shock on y_{t+h}
- w_s : weights sum to one but can be negative

ullet Show that eta_h is an affine combination of the IRs to the components of the macro shock

$$\beta_h = \sum_s w_s \theta_{h,s}$$

- $\theta_{h,s}$: IR to the sth component shock on y_{t+h}
- w_s : weights sum to one but can be negative
- \bullet Propose identification strategies to obtain an identified set for $\theta_{h,s}$ using
 - Sign restrictions on w_s
 - Granular data (e.g. sectoral spending as well as total spending data)

ullet Show that eta_h is an affine combination of the IRs to the components of the macro shock

$$\beta_h = \sum_s w_s \theta_{h,s}$$

- $\theta_{h,s}$: IR to the sth component shock on y_{t+h}
- w_s : weights sum to one but can be negative
- \bullet Propose identification strategies to obtain an identified set for $\theta_{h,s}$ using
 - Sign restrictions on w_s
 - Granular data (e.g. sectoral spending as well as total spending data)
- Apply our identification strategies to revisit
 - Jarociński and Karadi (2020): IR to information shock/monetary policy shock
 - Ramey and Zubairy (2018): Estimating the government spending multipliers

Structural Vector Moving Average Model

$$\begin{pmatrix} x_t \\ \vdots \\ y_t \end{pmatrix} = \Theta(L) \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \\ \vdots \\ \varepsilon_{m,t} \end{pmatrix}$$

$$n \times 1 \qquad m \times 1$$
 observed unobserved endogenous structural shocks

- $\varepsilon_{s,t}$'s are mutually uncorrelated, $E[\varepsilon_t] = 0$, $E[\varepsilon_t \varepsilon_t'] > 0$
- $\Theta(L) = \Theta_0 + \Theta_1 L + \Theta_2 L^2 + \cdots$, L is the lag operator
- ullet Θ_h : $n \times m$ matrix of impulse responses whose elements are

$$\theta_{h,ys} \equiv E[y_{t+h}|\varepsilon_{s,t}=1] - E[y_{t+h}|\varepsilon_{s,t}=0]$$

Impulse Response to a Composite Shock

• Impulse response of y_{t+h} to the macro shock ξ_t :

$$\theta_{h,y*} \equiv E[y_{t+h}|\xi_t = 1] - E[y_{t+h}|\xi_t = 0]$$

• ξ_t : an unobserved exogenous **composite** macro shock

$$\xi_t = \sum_{s} \varepsilon_{s,t}$$

Impulse Response to a Composite Shock

ullet Impulse response of y_{t+h} to the macro shock ξ_t :

$$\theta_{h,y*} \equiv E[y_{t+h}|\xi_t = 1] - E[y_{t+h}|\xi_t = 0]$$

• ξ_t : an unobserved exogenous **composite** macro shock

$$\xi_t = \sum_{s} \varepsilon_{s,t}$$

• example: government spending shock = non-defense (ε_1) + defense (ε_2)

$$\begin{aligned} &(\varepsilon_1 = \frac{1}{2}, \varepsilon_2 = \frac{1}{2}) \Rightarrow \\ &(\varepsilon_1 = 1, \varepsilon_2 = 0) \Rightarrow \begin{bmatrix} \xi = 1 \end{bmatrix} \longrightarrow \begin{bmatrix} y \end{bmatrix} \\ &(\varepsilon_1 = 0, \varepsilon_2 = 1) \Rightarrow \end{bmatrix}$$

Impulse Response to a Composite Shock

• Impulse response of y_{t+h} to the macro shock ξ_t :

$$\theta_{h,y*} \equiv E[y_{t+h}|\xi_t = 1] - E[y_{t+h}|\xi_t = 0]$$

• ξ_t : an unobserved exogenous **composite** macro shock

$$\xi_t = \sum_{s} \varepsilon_{s,t}$$

• example: government spending shock = non-defense (ε_1) + defense (ε_2)

$$\begin{aligned} &(\varepsilon_1 = \frac{1}{2}, \varepsilon_2 = \frac{1}{2}) \Rightarrow \\ &(\varepsilon_1 = 1, \varepsilon_2 = 0) \Rightarrow \begin{bmatrix} \xi = 1 \end{bmatrix} \longrightarrow \begin{bmatrix} y \end{bmatrix} \\ &(\varepsilon_1 = 0, \varepsilon_2 = 1) \Rightarrow \end{bmatrix}$$

• The response of y_{t+h} to $\xi_t=1$ is heterogeneous to various shock combinations: **heterogeneous treatment**

Average Impulse Response

• If ξ_t were observed, $\theta_{h,y*}$ is the average of $\theta_{h,ys}$ wrt all possible combinations of $\varepsilon_{s,t}$ such that $\xi_t = 1$:

$$\begin{array}{l} (\varepsilon_1 = \frac{1}{2}, \varepsilon_2 = \frac{1}{2}) \Rightarrow \\ (\varepsilon_1 = 1, \varepsilon_2 = 0) \Rightarrow \\ (\varepsilon_1 = 0, \varepsilon_2 = 1) \Rightarrow \end{array}$$
 $\boxed{\xi = 1}$ \longrightarrow \boxed{y}

Average Impulse Response

• If ξ_t were observed, $\theta_{h,y*}$ is the average of $\theta_{h,ys}$ wrt all possible combinations of $\varepsilon_{s,t}$ such that $\xi_t = 1$:

$$\begin{array}{l} (\varepsilon_1 = \frac{1}{2}, \varepsilon_2 = \frac{1}{2}) \Rightarrow \\ (\varepsilon_1 = 1, \varepsilon_2 = 0) \Rightarrow \boxed{\xi = 1} \longrightarrow \boxed{\mathtt{y}} \\ (\varepsilon_1 = 0, \varepsilon_2 = 1) \Rightarrow \end{array}$$

- Since ξ_t is typically not observed, we use an instrument z_t
- ullet z_t effectively selects a particular combination of $arepsilon_{s,t}$'s based on $corr(z_t, arepsilon_{s,t})$
- ullet example: z_t is positively correlated with $arepsilon_1$, but not correlated with $arepsilon_2$

$$z_{t} \Rightarrow \begin{array}{c} (\varepsilon_{1} = \frac{1}{2}, \varepsilon_{2} = \frac{1}{2}) \Rightarrow \\ (\varepsilon_{1} = 1, \varepsilon_{2} = 0) \Rightarrow \begin{bmatrix} \xi = 1 \end{bmatrix} \longrightarrow \begin{bmatrix} y \end{bmatrix} \\ (\varepsilon_{1} = 0, \varepsilon_{2} = 1) \Rightarrow \end{array}$$

• Two different IVs may select different combinations of $\varepsilon_{s,t}$'s \Rightarrow IR identified by an IV is instrument-specific!

Assumptions for IV

Assumption 1 (IV validity)

- (i) $E[z_t\xi_t] \neq 0$ (relevance)
- (ii) $E[z_t \varepsilon_{r,t}] = 0$ for all r = S + 1, S + 2, ..., m (contemporaneous exogeneity)
- (iii) $E[z_t \varepsilon_{t+j}] = 0$ for $j \neq 0$ (lead-lag exogeneity)
 - Identical to Stock and Watson (2018) when S=1 where identification under homogeneity $(\xi_t = \varepsilon_{s,t})$ is established

Main Identification Result

To solve the scale indeterminancy of ξ_t , we measure the response of y_{t+h} wrt to the unit change in x_t .

Proposition 1

Under Assumption 1, for h = 0, 1, 2, ...,

$$\beta_h \equiv \frac{Cov(y_{t+h}, z_t)}{Cov(x_t, z_t)} = \sum_{s=1}^{S} w_s \theta_{h, ys},$$

under the unit effect normalization, where

$$w_s = \frac{Cov(z_t, \varepsilon_{s,t})}{Cov(x_t, z_t)}, \quad \sum_{s=1}^{S} w_s = 1$$

- LHS: LP-IV estimand for general (non-binary) z_t
- RHS: affine combination of structural impulse responses

LP-IV Estimand May Not Be Meaningful

- Suppose S = 2: $\xi_t = \varepsilon_{1,t} + \varepsilon_{2,t}$
- Under Assumption 1 and the unit effect normalization

$$\beta_{IV} = w_1 \theta_{h,y1} + w_2 \theta_{h,y2}$$

where
$$w_s = Cov(z_t \varepsilon_{s,t})/(Cov(z_t \varepsilon_{1,t}) + Cov(z_t \varepsilon_{2,t}))$$

- But we are not quite done yet, because the weight can be negative
- Why is this a problem?

- Negative weight arises in other literature:
 - TWFE: de Chaisemartin and D'Haultfoeuill (2020, AER)
 - 2SLS: Mogstad, Torgovitsky, and Walters (2021, AER)

What to do?

ullet eta_h may not identify what we aim to recover with composite macro shocks unless we can make

Assumption: Same-Sign

For all s = 1, 2, ..., S, either $Cov(z_t, \varepsilon_{s,t}) \ge 0$ or $Cov(z_t, \varepsilon_{s,t}) \le 0$.

- Should be checked for each case, but may not hold in some major applications
- Not a LP-IV specific problem: Plagborg-Møller and Wolf (2021) show SVAR and LP yield asymptotically same IR
- So. what to do?
- ullet Focus on identification of $heta_{h,vs}$ by imposing reasonable restrictions

Identification Strategy 1: Sign Restrictions

- Use the signs of the weight (w_s)
- WLOG assume $Cov(z_t, x_t) > 0$ then $sgn(w_s) = sgn(Corr(z_t, \varepsilon_{s,t}))$

$$w_s = \frac{Cov(z_t, \varepsilon_{s,t})}{Cov(z_t, x_t)}$$

- Consider restrictions such as $w_s > 0$ or $w_s < 0$
- Two components model:

$$\beta_h = w_1 \theta_{h,y1} + w_2 \theta_{h,y2}$$

where $w_1 + w_2 = 1$

Rearranging terms:

$$w_1 = \frac{\beta_h - \theta_{h,y2}}{\theta_{h,y1} - \theta_{h,y2}}, \quad w_2 = \frac{\theta_{h,y1} - \beta_h}{\theta_{h,y1} - \theta_{h,y2}}$$

Identified Set by Sign Restrictions

Proposition 2

Suppose that Assumption 1 holds. The identified set for $(\theta_{h,y1},\theta_{h,y2})$ under the sign restriction of $\{w_1>0,w_2>0\}$ is

$$\Theta_{++} = \{(\theta_{h,y1}, \theta_{h,y2}) | \theta_{h,y1} > \beta_h > \theta_{h,y2} \text{ or } \theta_{h,y1} < \beta_h < \theta_{h,y2} \}.$$

And the identified set under $\{w_1 > 0, w_2 < 0\}$ is

$$\Theta_{+-} = \{(\theta_{h,y1},\theta_{h,y2}) | \beta_h > \theta_{h,y1} > \theta_{h,y2} \text{ or } \beta_h < \theta_{h,y1} < \theta_{h,y2} \}.$$

Identified Set by Sign Restrictions

Figure: Identified Sets for Sign Restrictions on the Weight

Intersection of the Identified Sets

- Two instruments: z_t^A and z_t^B
- ullet Two LP-IV estimands: eta_h^A and eta_h^B
- Three cases of sign restrictions:
- Consider $\beta_h^A > \beta_h^B$ and $\beta_h^A < \beta_h^B$ for each case

Two IVs: $\Theta_{++}^A \cap \Theta_{++}^B$ and $\Theta_{+-}^A \cap \Theta_{+-}^B$

Figure: Intersection of Identified Sets

Two IVs: $\Theta_{++}^A \cap \Theta_{+-}^B$

Figure: Intersection of Identified Sets (cont)

Jarociński and Karadi (2020)

- The US Federal Open Market Committee (FOMC) announcements are usually considered as monetary policy shocks
- Observes that the interest rate and stock price surprises often move in the same direction upon the FOMC announcements
- FOMC announcement:

$$\xi_t = \varepsilon_{mp,t} + \varepsilon_{cb,t}$$

- $\varepsilon_{mp,t}$: pure monetary policy shock
- $\varepsilon_{cb,t}$: the central bank information shock

IV and Sign Restrictions

- High-frequency financial market surprises (the change between 10 minutes before and 20 minutes after the announcements)
- \bullet Two IVs: $z_t^{\it ff}$ and $z_t^{\it sp}$
- z_t^{ff} : high-frequency surprise in the fed funds futures
- z_t^{sp} : high-frequency surprise in the stock price
- Sign restrictions are

$$\begin{array}{lll} z_t^{\mathit{ff}}: & \mathit{Cov}(z_t^{\mathit{ff}}, \varepsilon_{\mathit{mp},t}) > 0, & \mathit{Cov}(z_t^{\mathit{ff}}, \varepsilon_{\mathit{cb},t}) > 0 & \Rightarrow \Theta_{++}^{\mathit{ff}} \\ z_t^{\mathit{sp}}: & & \mathit{Cov}(z_t^{\mathit{sp}}, \varepsilon_{\mathit{mp},t}) < 0, & \mathit{Cov}(z_t^{\mathit{sp}}, \varepsilon_{\mathit{cb},t}) > 0 & \Rightarrow \Theta_{+-}^{\mathit{sp}} \end{array}$$

Identified Set for Componentwise IR

Recall

$$\beta_h^j = w_{mp}^j \theta_{h,mp} + w_{cb}^j \theta_{h,cb}$$

where

$$w_s^j = \frac{Cov(z_t^j, \varepsilon_{s,t})}{Cov(z_t^j, x_t)}$$

for j = ff, sp and s = mp, cb

- $\theta_{h,mp}$: response of y_{t+h} to the unit change in the pure monetary shock (corresponding to 25BP change in x_t)
- $\theta_{h,cb}$: response of y_{t+h} to the unit change in the central bank information shock (corresponding to 25BP change in x_t)
- ullet Obtain the identified sets by $\Theta^{\it ff}_{++}\cap\Theta^{\it sp}_{+-}$

Data and Model

• Econometric model:

$$y_{t+h} = \mu_h + \beta_h x_t + \phi_h (L)' R_{t-1} + u_{t+h}$$

- y_t: macro variable of interest
- x_t : monthly average of the 1-year Treasury yield
- R_t : all the macro var including y_t , x_t , and z_t
- $\phi_h(L)$: a coeff vector of polynomial in the lag operator of order 12
- β_h : Responses to 25BP increase in 1-year government bond yield
- $\hat{\beta}_h^{ff}$, $\hat{\beta}_h^{sp}$: LP-IV est using z_t^{ff} and z_t^{sp} one at a time, respectively

Figure: Responses to 25BP Increase in One-year Government Bond Yield

Identification Strategy 2: Granular Data

• Consider granular data $x_{s,t}$ which is a part of the augmented SVMA system:

$$x_{1,t} = \varepsilon_{1,t} + \psi_{0,12}\varepsilon_{2,t} + \dots + \{\varepsilon_{t-1}, \varepsilon_{t-2}, \dots\}$$

$$x_{2,t} = \psi_{0,21}\varepsilon_{1,t} + \varepsilon_{2,t} + \dots + \{\varepsilon_{t-1}, \varepsilon_{t-2}, \dots\}$$

Augmented SVMA:

$$\begin{pmatrix} x_{1,t} \\ x_{2,t} \\ \vdots \\ y_t \end{pmatrix} = \Psi(L) \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \\ \vdots \\ \varepsilon_{m,t} \end{pmatrix}$$

$$n \times 1 \qquad m \times 1$$
 observed unobserved endogenous structural shocks

Identification Condition in the Augmented SVMA

Assumption 2 No contemporaneous inter-component causal effects:

$$0 = \psi_{0,12} = \psi_{0,21}$$

- Example: $x_{1,t}$: non-defense spending, $\varepsilon_{1,t}$: non-defense spending shock
- Similar to the recursive causal ordering in the triangular SVAR model
- Under Assumption 2, w_s is point-identified as

$$w_1 = \frac{Cov(x_{1,t}, z_t)}{Cov(x_t, z_t)}, \quad w_2 = \frac{Cov(x_{2,t}, z_t)}{Cov(x_t, z_t)}$$

Identified Set by Granular Data

Proposition 3

Suppose that Assumptions 1-2 hold. The identified set for $(\theta_{h,y1}, \theta_{h,y2})$ is

$$\Theta_L = \left\{ (\theta_{h,y1}, \theta_{h,y2}) \left| w_1 \theta_{h,y1} + w_2 \theta_{h,y2} = \beta_h \right. \right\}$$
 ,

where β_h , w_1 , and w_2 are functions of the observable moments.

- \bullet Θ_L is a hyperplane in R^2 (a line)
- Intersecting two lines gives a point
- For z_t^A and z_t^B ,

$$\Theta_{L}^{A} = \left\{ (\theta_{h,y1}, \theta_{h,y2}) \middle| w_{1}^{A} \theta_{h,y1} + w_{2}^{A} \theta_{h,y2} = \beta_{h}^{A} \right\}$$

$$\Theta_{L}^{B} = \left\{ (\theta_{h,y1}, \theta_{h,y2}) \middle| w_{1}^{B} \theta_{h,y1} + w_{2}^{B} \theta_{h,y2} = \beta_{h}^{B} \right\}$$

$$\bullet \ \Theta^{A}_{L} \cap \Theta^{B}_{L} = \{(\theta^*_{h,v1}, \theta^*_{h,v2})\}$$

Two IVs: $\Theta_L^A \cap \Theta_L^B$

Figure: Identified Sets using Granular Data

Ramey and Zubairy (2018)

- Government spending multiplier
 - The effect of an extra dollar of government purchases on total economic output
- Long debate on the magnitude of the government spending multiplier
- Most focus on the aggregate spending multiplier
- Two sectors: non-defense (s=1) and defense (s=2)
- Our focus: Non-defense spending multiplier

Multiplier Estimates in the Literature

- Barro (1984): around **0.6**, US defense spending in WWI, WWII, Korean War
- Blanchard and Perotti (2002): 0.9-1.3, VAR
- Romer and Bernstein (2009): around 1.6
- Ramey (2011): **0.6-1.2**, US defense spending, VAR
- Barro and Redlick (2011): 0.4-0.8, US defense spending
- Auerbach and Gorodnichenko (2012): 0-0.5 in expansions and 1-1.5 in recessions, Smooth Transition VAR
- Nakamura and Steinsson (2014): 1.5, open economy relative multiplier, panel
- Ramey and Zubairy (2018): around 0.6, 1889-2015, LP-IV

Data

- y_t: De-trended real US GDP
- x_t : Real total government spending divided by trend GDP
- $x_{1,t}$: Real total non-defense spending divided by trend GDP
- $x_{2,t}$: Real total defense spending divided by trend GDP
- $(y_t, x_t, x_{1,t}, x_{2,t})$ are quarterly data from 1947Q1 to 2015Q4, obtained from FRED at St Louis FED
- z_t^{RZ} : Narrative military news series of Ramey and Zubairy (2018), "RZ news shock"
- z_t^{BP} : Defense spending shock of Blanchard and Perotti (2002), "BP defense shock"

Estimation of Non-Defense Spending Multiplier

$$\sum_{j=0}^{h} y_{t+j} = \mu_h + \beta_h \sum_{j=0}^{h} x_{t+j} + \phi_h(L)' R_{t-1} + u_{t+h}$$

- β_h is estimated by IV method (LP-IV)
- $\hat{\beta}_h^{RZ}$: LP-IV estimate using the RZ news shock
- $\widehat{\beta}_h^{BP}$: LP-IV estimate using the BP defense shock
- Using sectoral data (granular data) and two IVs, we obtain point identification of the sectoral spending multipliers

Estimated Multipliers with 90% CI

Negative Weight for Non-Defense Multiplier

- ullet Non-defense spending multiplier is >1 even when the aggregate and the defense spending multipliers are <1
- Due to a negative weight for non-defense spending multiplier
- Consider the decomposition of $\widehat{\beta}_h^{RZ}$ for h=18 (18 quarters):

- RZ news shock is negatively correlated with non-defense spending
- Suggests a violation of the same-sign condition

IR of Sectoral Spending: RZ News Shock

- Defense spending: blue
- Non-defense spending: red

BP Defense Shock

• Likewise, $\widehat{\beta}_h^{BP}$ for h=18 is decomposed into

$$\widehat{eta}_h^{BP}=\widehat{w}_{h,1}^{BP}$$
 $imes$ non-defense $+$ $\widehat{w}_{h,2}^{BP}$ $imes$ defense 0.69 0.03 1.02 0.97 0.68

- BP defense shock as an IV (almost) only affects the defense spending
- As a result, the BP-identified multiplier is very similar to the defense spending multiplier

IR of Sectoral Spending: BP Defense Shock

- Defense spending: blue
- Non-defense spending: red

What can we do with only one IV?

- Only one IV (RZ news shock) and the sectoral data
- LP-IV estimates:

$$\hat{\beta}_{h}^{RZ} = \hat{w}_{h,1}^{RZ} \times \text{non-defense} + \hat{w}_{h,2}^{RZ} \times defense[calibrated]$$

• We use Auerbach and Gorodnichenko (2012) and Barro and Redlick (2011) to calibrate the defense spending multiplier (more estimates available in the literature)

Sectoral Spending Multipliers using Calibration

Persistent Defense Spending Multiplier

Identified Set for Sectoral Spending Multipliers

Summary

- IR analysis using LP-IV when the macro shock is composite
- LP-IV estimand is an affine combination of componentwise IR (non-negative weights under the same-sign condition)
- Main intuition is that the IV may be heterogeneously correlated with the macro shock elements, which generates heterogeneous treatment
- LP-IV estimand should be carefully interpreted as a structural IR
- Simple to implement identification strategies for componentwise IR are proposed

Thank you!

Comparison with LATE

- Potential outcome framework with binary treatment D_i
 - $Y_i(0)$: potential outcome without treatment
 - $Y_i(1)$: potential outcome with treatment
- Individual treatment effect: $Y_i(1) Y_i(0)$
- Average treatment effect: $E[Y_i(1) Y_i(0)]$
- ullet Potential outcomes framework: Heterogeneous treatment effects and homogeneous treatment D_i for the treated
- ullet Our framework: Combinations of $arepsilon_{s,t}$ makes $\xi_t=1$
 - ⇒ Treatment is heterogeneous

Monotonicity and Same-Sign

- Figure: Monotonicity Figure: Same-Sign
- Imbens and Angrist (1994): $E[Y_i(1) Y_i(0)|\text{compliers}]$ (LATE)
- Both LATE and LP-IV estimand identify IV-specific structural parameter
- Monotonicity: A cross-person restriction on the potential treatment status
- Same-sign: A cross-shock restriction on the sign of correlation

