ELEC2400

ELECTRONIC CIRCUITS

FALL 2021-22

HOMEWORK 4

Issued on Nov. 14, 2021 (Sunday)
Due date: Nov. 23, 2021 (Tuesday), 11:59pm
[Please submit your homework online https://canvas.ust.hk]

Assume ideal op amp in all cases.

Q1. Find the transfer functions
$$H(s) = \frac{V_o(s)}{V_{in}(s)}$$
 and $G(s) = \frac{I_o(s)}{V_{in}(s)}$.

Q2. Find the transfer functions
$$H(s) = \frac{V_o(s)}{V_{in}(s)}$$
 and $R(s) = \frac{V_o(s)}{I_{in}(s)}$.

Q3. Sketch the Bode plots of

$$H(s) = \frac{10^6 s}{s^2 + 10010s + 10^5}$$

Q4. Sketch the Bode plots of

$$H(s) = \frac{10^4}{\frac{s^2}{10} + 200s + 10^5}$$

Q5. Find the transfer function $H(s) = \frac{V_o(s)}{V_{in}(s)}$ and sketch the Bode plots of H(s).

Q6. Find the transfer function $H(s) = \frac{V_o(s)}{V_{in}(s)}$. What type of filter is this? What is the order?

Q7. Find the transfer function $H(s) = \frac{V_o(s)}{V_{in}(s)}$. Sketch the Bode plots for the case $R_1 = R_2 = 1$ $k\Omega$ and C = 1 μ F. What type of filter is this? What is the order?

