AUTOMATIC CONTROL

Computer Engineering and Electronic and Communications Engineering

Laboratory practice n. 5

Objectives: Steady state analysis and design, loop shaping design.

Problem 1: loop shaping design of feedback control systems

Consider the feedback control system below

where:

$$G(s) = \frac{10}{s(s+5)(s+10)}, d_{\partial}(t) = \delta_{\partial} \varepsilon(t), |\delta_{\partial}| \le 0.3$$

Design a cascade controller C(s) to meet the following requirements:

- 1. $|e_r^{\infty}| \leq 1$ in the presence of a linear ramp reference signal with unitary slope;
- $2. |y_{d_s}^{\infty}| \leq 0.1;$
- 3. $\hat{S} \leq 8.5\%$;
- 4. $t_{s,2\%} \leq 0.75 s$.

Evaluate through time domain simulation

- · requirements satisfaction;
- the maximum magnitude of the input signal u(t) in the presence of a step reference signal with amplitude 0.1;
- the maximum magnitude of the output signal y(t) in the presence of both a step reference signal with amplitude 0.1 and the disturbance d_a

After the design evaluate

- the resonant peak T_p (in dB) of the complementary sensitivity function as well as its bandwidth ω_B ;
- the resonant peak S_p (in dB) of the sensitivity function as well as its bandwidth ω_{BS} .

Write the expression of the final controller in the dc-gain form.

Conceptual problem

Problem 2: steady state analysis

Consider the following Nichols plots of four different loop functions L(s) of a unitary negative feedback, cascade compensation control system architecture

Suppose that, for each L(s), the generalized dc-gain is such that $K_g=\lim_{s\to 0} s^g L(s) > 0$, then, based on the Nichols plot only, determine which of the four

- 1. corresponds to a closed loop stable system
- 2. guarantees a finite value of $|e_r^{\infty}|$ in the presence of a constant reference signal
- 3. guarantees $|e_r^{\infty}| = 0$ in the presence of a constant reference signal
- 4. guarantees a finite value of $|e_r^{\infty}|$ in the presence of a linear ramp reference signal
- 5. guarantees $|e_r^{\infty}| = 0$ in the presence of a linear ramp reference signal
- 6. surely guarantees $\left| y_{d_a}^{\infty} \right| = 0$ in the presence of a constant actuator disturbance signal $d_a(t)$

(Answer:

1. \rightarrow 1,3,4 2. \rightarrow 1,3,4 3. \rightarrow 1,4 4. \rightarrow 1,4 5. \rightarrow 4 6. \rightarrow none)