Normalisers in Quasipolynomial Time and the Category of Permutation Groups

Sergio Siccha

May 9, 2019

Lehr- und Forschungsgebiet Algebra, RWTH Aachen

Introduction

Goal

Theorem

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be a primitive group of PA type. The normaliser $N_{\operatorname{Sym} \Omega}(G)$ can be computed in quasipolynomial time $O(n^3 \cdot 2^{2 \log n \log \log n} \cdot |X|)$.

Joint work with Prof. Colva Roney-Dougal.

Recursion for Normalisers

Conventions

- $\log := \log_2$.
- All groups and sets are finite!
- Ω , Δ denote sets, G, H, T denote groups.
 - T always denotes a finite non-abelian simple group.
- Functions act from the left f(x) but groups from the right: $\alpha^g = g(\alpha)$.

Complexity and Computational

Group Theory

Complexity Classes

We use big O notation.

Polynomial Time: $f \in O(n^c)$

Quasipolynomial Time: $f \in 2^{O((\log n)^c)}$

Simply Exponential Time: $f \in 2^{O(n)}$

Exponential Time: $f \in 2^{O(n^c)}$

Normaliser and Subproblems

Simply Exponential

Normalisers of arbitrary groups

Polynomial

Normalisers of groups with restricted composition factors

Normalisers of simple groups

Quasipolynomial

Normalisers of primitive groups

Normaliser in the Symmetric Group

Why restrict to $N_{\text{Sym }\Omega}(G)$?

PA Type Groups and How To

Normalise Them

Fundamentals

Definition

Let $G \leq \operatorname{Sym} \Omega$ be transitive. G is *primitive* if there exists no non-trivial G-invariant partition of Ω .

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$. We call (f, φ) with $f : \Omega \xrightarrow{\sim} \Delta$ and $\varphi : G \xrightarrow{\sim} H$ a permutation isomorphism if $\forall g \in G \ \forall \alpha \in \Omega$:

$$f(\alpha^{g}) = f(\alpha)^{\varphi(g)}.$$

7

Socles

Definition

Let G be a group. The *socle* of G, denoted soc G, is the group generated by all minimal normal subgroups of G.

Theorem

The socle of a primitive group is characteristically simple.

Theorem (O'Nan-Scott)

Let $G \leq \operatorname{Sym} \Omega$ be primitive. We know all possible permutational isomorphism types of

- soc *G*,
- $N_{\operatorname{Sym}\Omega}(\operatorname{soc} G)$.

The AS Type

Definition

Let $G \leq \operatorname{Sym} \Omega$ be a primitive group.

G is a group of AS type if

- G is almost simple,
- soc *G* is non-abelian simple and non-regular.

Wreath Products (1)

Definition

Let H be a group and let $K \leq S_{\ell}$. K acts on H^{ℓ} by permuting components. The group $H \wr K := H^{\ell} \rtimes K$ is the wreath product of H with K.

Wreath Products (2)

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. The base group H^{ℓ} acts component-wise on Δ^{ℓ} . The top group K acts on Δ^{ℓ} by permuting the components. This yields the *product action of* $H \wr K$ on Δ^{ℓ} .

The PA Type

Definition

Let $G \leq \operatorname{Sym} \Omega$ be a primitive group. G is a group of PA type if

$$G \circlearrowleft \Omega \xrightarrow{\sim} \widehat{G} \circlearrowleft \Delta^{\ell}$$

with:

- T ひ △,
- soc $\widehat{G} = T^{\ell}$ in component-wise action,
- $\widehat{G} \leq N_{\operatorname{Sym} \Delta}(T) \wr S_{\ell}$ in product action.

Lemma

Let $T^{\ell} \leq \operatorname{Sym} \Delta^{\ell}$ act component-wise, transitively, and non-regularly. Then

$$N_{\operatorname{\mathsf{Sym}}\Delta^{\ell}}(T^{\ell}) = N_{\operatorname{\mathsf{Sym}}\Delta}(T) \wr S_{\ell}.$$

The Key Idea ...

Construct $N_{\operatorname{Sym}\Omega}(\operatorname{soc} G)!$

... And Why It Works ...

Lemma

Let $G \leq \operatorname{Sym} \Omega$ be primitive of type PA. Then

$$[N_{\operatorname{Sym}\Omega}(\operatorname{soc} G):\operatorname{soc} G] \leq \sqrt{n}\cdot 2^{\log n\log\log n}.$$

Lemma

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be primitive of type PA. Let

 $N_{\operatorname{Sym}\Omega}(\operatorname{soc} G) = \langle Y \rangle$ be known.

Then $N_{\operatorname{Sym}\Omega}(G)$ can be computed in time

$$O(n^3 \cdot 2^{2\log n \log \log n} \cdot |X|).$$

... And How To Do It

Compute:

$$\mathsf{soc}\; G \circlearrowleft \Omega \xrightarrow{\sim} T^\ell \circlearrowleft \Delta^\ell$$

The Category of Permutation

Groups

Permutation Homomorphisms (1)

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$.

Let $f: \Omega \to \Delta$ be a map and $\varphi: G \to H$ be a group hom..

The pair (f, φ) is a permutation hom. from (G, Ω) to (H, Δ) if $\forall g \in G$:

$$\begin{array}{ccc}
\Omega & \xrightarrow{g} & \Omega \\
\downarrow^f & & \downarrow^t \\
\Delta & \xrightarrow{\varphi(g)} & \Delta
\end{array}$$

Permutation Homomorphisms (2)

Lemma

Let $G \leq \operatorname{Sym} \Omega$ and $f : \Omega \to \Delta$. There exists a permutation hom. (f,φ) if and only if

$$\left\{ f^{-1}(\left\{ x\right\}) \mid x \in \operatorname{Im} f \right\}$$

is G-invariant.

Permutation Homomorphisms (3)

$$\begin{array}{ccc}
\Omega & \xrightarrow{g} & \Omega \\
\downarrow^f & & \downarrow^f \\
\Delta & \xrightarrow{\varphi(g)} & \Delta
\end{array}$$

Remark

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$. A surjective map $f : \Omega \twoheadrightarrow \Delta$ uniquely determines, if it exists, a permutation homomorphism (f, φ) .

PermGrp

Definition

The category of permutation groups PermGrp consists of

- all pairs (G, Ω) with $G \leq \operatorname{Sym} \Omega$ as objects
- permutation homomorphisms as morphisms.

Product in PermGrp

Lemma

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups. Then $(G \times H, \Omega \times \Delta)$ with

$$G \stackrel{\pi_1}{\longleftarrow} G \times H \stackrel{\pi_2}{\longrightarrow} H$$

$$\Omega \xleftarrow{p_1} \Omega \times \Delta \xrightarrow{p_2} \Delta$$

is a product in PermGrp.

Cartesian Decompositions

Definition

Let C be a category and X an object of C. A family of morphisms $(f_i)_{i \in I}$ with $f_i \colon X \to X_i$ is called a *cartesian decomposition of* X if

$$\prod_{i\in I}f_i\colon X\to\prod_{i\in I}X_i$$

is an isomorphism.

Lemma

A family $(f_i)_{i \in I}$ is a cartesian decomposition of X if and only if X with $(f_i)_{i \in I}$ forms a product in C.

Homogeneous Cartesian Decompositions

Definition

Let $(f_i)_{i \in I}$ be a cartesian decomposition of X with $f_i \colon X \to X_i$. We call $(f_i)_{i \in I}$ homogeneous if

$$X_i \cong X_j \quad \forall i, j \in I.$$

Definition

Let $(f_i)_{i\in I}$ be a cartesian decomposition of X with $f_i: X \to X_i$. We call $(f_i)_{i\in I}$ strictly homogeneous if

$$X_i = X_j \quad \forall i, j \in I.$$

 \sim Compute a strictly homogeneous cartesian decomposition of soc G!

Constructing the Normaliser of the Socle

The Algorithm - Input

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be a primitive group of PA type.

Note that T^{ℓ} has exactly ℓ minimal normal subgroups.

The Algorithm - Str. Hom. Cartesian Decomposition

Algorithm

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \Rightarrow \psi_i: \operatorname{soc} G \to T^{(i)}$.
- $g_1, \ldots, g_\ell \in G$ such that $T_i^{g_i} = T_1$.
- $R_i: \Delta_i \to \Delta_1, \ \delta \mapsto \delta^{g_i} \implies \rho_i: T^{(i)} \to T^{(1)}.$
- $P_i := R_i \circ Q_i : \Omega \to \Delta_1 \Rightarrow \varphi_i : \operatorname{soc} G \to T^{(1)}$.

 $((P_i, \varphi_i))_{i < \ell}$ is strictly homogeneous cartesian decomposition.

The Algorithm - Normaliser of Socle

• $((P_i, \varphi_i))_{i \leq \ell}$ is a strictly homogeneous cartesian decomposition of soc G.

• This yields soc $G \circlearrowleft \Omega \xrightarrow{\sim} T^{\ell} \circlearrowleft \Delta^{\ell}$.

- Construct $N_{\operatorname{Sym}\Delta}(T) \wr S_{\ell} \leq \operatorname{Sym}\Delta^{\ell}$.
- $\rightsquigarrow N_{\operatorname{Sym}\Omega}(\operatorname{soc} G).$

Summary

What To Take Away

- Category Theory makes (some) algorithms nicer.
- Let G be a primitive group of PA type. We can
 - construct the normaliser of the socle in polynomial time,
 - compute the normaliser in quasipolynomial time. (maybe even in polynomial time?)

Thank you!

Food for Thought

- $G \hookrightarrow H \wr K \leq N_{\operatorname{Sym} \Delta}(T) \wr S_{\ell}$.
 - $\rightsquigarrow \mathsf{Normalisers} \ \mathsf{in} \ \mathsf{polynomial} \ \mathsf{time}?$
- G leaves a combinatorial cartesian decomposition invariant if and only if it can be embedded into a product action wreath product $S_m \wr S_\ell$.
 - → Universal property?

Complexity Overview

Normaliser

Graph-Iso

Quasipolynomial:

String-Iso, Intersection, Cer

Polynomial:

Base & SGS, Composition

Universal Property of Wreath Products

Let $H \leq \operatorname{Sym} \Delta$, $K \leq \operatorname{Sym} \Gamma$.

$$H^{\Gamma} \longrightarrow G \longleftarrow K$$

$$\Delta^{\Gamma} \longrightarrow \Delta^{\Gamma} \longleftarrow \Gamma$$

$$H^{\Gamma} \longrightarrow G \xrightarrow{K} K$$

$$\Delta \times \Gamma \longrightarrow \Delta \times \Gamma \longrightarrow \Gamma$$

Combinatorial Cartesian Decompositions (1)

Definition

Let Ω be a set. For each $\gamma \in \Gamma$ let Δ_{γ} be a partition of Ω with $|\Delta_{\gamma}| \geq 2$. We say that $\{\Delta_{\gamma}\}_{\gamma \in \Gamma}$ is a *(combinatorial) cartesian decomposition of* Ω if for any choice of $\delta_{\gamma} \in \Delta_{\gamma}$ we have that

$$\bigcap_{\gamma \in \Gamma} \delta_{\gamma}$$

is a singleton set.

Lemma

There is a one-to-one correspondence between unordered cartesian decompositions and combinatorial cartesian decompositions.

Combinatorial Cartesian Decompositions (2)

Theorem (Praeger, Schneider)

A group $G \leq \operatorname{Sym} \Omega$ leaves a homogeneous combinatorial cartesian decomposition invariant if and only if G embeds into a product action wreath product $\operatorname{Sym} \Delta \wr \operatorname{Sym} \Gamma$.