Exercice 72 p 30

Algorithme d'Euclide

Pour aller plus loin

On appelle PGCD le plus grand diviseur commun de deux nombres.

- 1. Trouver le PGCD de 15 et 25, de 27 et 81.
- 2. a. Pour trouver ce PGCD, on peut utiliser l'algorithme d'Euclide. Ainsi, pour trouver le PGCD de 910 et 105 :
 - On commence par poser la division euclidienne de 910 par 105, on peut écrire $910 = 105 \times 8 + 70$.
 - On admet que le PGCD de 910 et 105 est égal au PGCD de 105 et de 70.
 - On recommence ensuite en posant la division euclidienne de 105 par 70.
 - On continue ainsi de suite. Le PGCD de 910 et 105 est le dernier reste non nul.

Quel est le PGCD de 910 et 105?

b. De la même manière, trouver le PGCD de 2 450 et 675.

Exercice 74 p 30

PPCM et PGCD

- 1. Décomposer 84 et 270 en produits de nombres premiers.
- 2. À l'aide de ces décompositions, trouver :
 - a. le plus petit multiple commun non nul (PPCM) de 84 et 270 ;
 - **b.** le plus grand diviseur commun (PGCD) de 84 et 270.
- 3. Trouver le PPCM et le PGCD de 450 et 750.

Exercice 76 p 30

Le jeu de Nim

Nathan et Fabien jouent au jeu de Nim.

En voici la règle :

- Il y a 21 allumettes sur la table au début de la partie.
- À chaque tour, on peut prendre 1, 2 ou 3 allumettes.
- Celui qui prend la dernière allumette a gagné.
- Nathan commence. Il prend 3 allumettes, puis Fabien prend 3 allumettes à son tour. Nathan en prend alors 2, puis Fabien en prend 3. Nathan en prend alors 3. Fabien en choisit 2.

Nathan peut-il encore gagner?

2. Un des deux joueurs peut gagner à tous les coups. Lequel et comment ?

Exercice 78 p 31

Vive la mariée!

Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes.

- 2. Emma et Arthur changent d'avis et décident de proposer des petits ballotins* dont la composition est identique. Ils souhaitent qu'il ne leur reste pas de dragées.
 - a. Emma propose d'en faire 90. Ceci convient-il ? Justifier.
 - **b.** Ils se mettent d'accord pour faire un maximum de ballotins.
 - Combien en feront-ils et quelle sera leur composition?
- * Un ballotin est un emballage pour confiseries, une boite par exemple.

Exercice 79 p 31

Les ballons

- À la fin d'une fête de village, tous les enfants présents se partagent équitablement les 428 ballons de baudruche qui ont servi à la décoration. Il reste alors 37 ballons.
 - Combien pouvait-il y avoir d'enfants ?
- 2. L'année suivante, les mêmes enfants se partagentéquitablementla totalité des 828 ballons utilisés cette année-là. Combien d'enfants étaient présents?

D'après DNB Asie, 2015.

Exercice 80 p 31

Parc d'attractions

Bienvenue au parc d'ani-math-ion!

Tarifs	Horaires
Entrée adulte : 12 €	Ouvert de 9 h à 18 h
Entrée enfant (moins de 12 ans) : 7 €	Dernières entrées à 17 h
Forfait famille : 35 €	Fermé le lundi

- 1. a. Est-il intéressant pour un couple et leur enfant de 8 ans de prendre le forfait famille?
 - **b.** À partir de quel nombre d'enfants un couple a-t-il intérêt à choisir le forfait famille ?
- 2. Au cours d'une journée, 89 forfaits famille ont été vendus pour 510 personnes.
 - a. Déterminer la recette correspondante.
 - b. Quel est le prix moyen par personne?
- 3. Au cours de cette même journée, 380 personnes n'ont pas utilisé le forfait famille pour une recette correspondante de 3 660 €.
 - Déterminer le nombre d'entrées adulte et le nombre d'entrées enfant vendues lors de cette journée.

D'après DNB Asie, 2012.