Capacitive Torque Sensor

USER MANUAL

By:- Team Capacitive Torque Sensor

Table of Contents

01. Introduction
1.1 Product Overview
02. Getting started
2.1 Unpacking
03. Operating Instructions
3.2 Instructions & get familiar
04. Maintenance
4.1 Preventive Maintenance

01. Introduction

1.1 Product Overview

The **Capacitive Torque Sensor** is a high-precision, compact sensing device specifically designed to measure torque in rotating systems with outstanding accuracy and reliability. Utilizing advanced differential capacitive sensing technology coupled with a high-resolution digital conversion interface, the sensor delivers exceptional sensitivity and stability across a wide range of applications.

play design, requiring no external signal conditioning or complex setup procedures. Simply connect the device via a standard **USB** cable to a PC or data acquisition system to instantly begin capturing real-time torque measurements. The integrated interface allows for seamless communication with monitoring software, enabling data visualization, logging, and analysis with minimal effort.

CAD Design

Actual Product

1.2 Product Packaging

The product is securely packed to ensure safe transport and easy setup. The package includes the following components:

- 1. **Sensor with shaft** The main sensor device equipped with a USB interface for data communication.
- 2.**USB 2.0 Cable** (USB-A to USB-B) Standard USB 2.0 cable for connecting the sensor to a computer or host device.
- 3.**2 Couplers with 4 Screws** Mechanical couplers designed for easy mounting of shaft connectors and external shaft, each accompanied by 2 screws (total of 4).
- 4.2 Coupler Connectors with 6 Screws Interface connectors for mechanical integration, each provided with 3 screws (total of 6).

1.3 Product Specifications

1.3.1 General Information

Parameter	Value
Shaft Material	Aluminium Alloy 6061-T6
Shaft Dimensions	1.7 cm (ends), 0.6 cm (middle)
Operating Temperature	Up to 140°C
Weight	Approx. 500 g

1.3.2 Technical specification

Parameter	Value
Sensing Principle	Differential Capacitive Sensing
Capacitance Range	±50 pF
Capacitance Resolution	156 aF at 1 kHz (PCAP04)
Torque Range	0 – 1 Nm
Measurable Capacitance Change	~357.4 fF at 1 Nm
Sampling Rate	1000 samples/second
Microcontroller	ATmega32U4, 16 MHz
Flash Memory	32 KB
RAM	2.5 KB
USB Support	Native USB 2.0

1.3.3 Electrical Specifications

Specification	Min	Max	Typical	Unit
Operating voltage	3.3	5	3.3	V
USB Operating voltage	4.75	5.25	5	V
USB Current Draw	_	25	10	mA
Logic Input Voltage	2.97	3.63	3.3	V
Logic Input Current	10	100	50	μΑ

1.3.4 Mechanical Specifications

1.4 Theory of Operation

The sensor measures torque by detecting changes in capacitance between differential plates. This happens due to the relative movement of the metal and dielectric plates mounted on the shaft. These changes are converted into digital data using a **PCAP04 CDC** chip and that result turned to torque values by substituting to an equation. The torque value is then transmitted to computer through **USB communication**.

02. Getting Started

2.1 Unpacking

Carefully open the **Capacitive Torque Sensor** package and remove all protective plastic coverings. We recommend retaining the original shipping container and internal packaging materials for future storage or transportation. Verify that the following items are included in the box:

- Sensor with internal shaft
- USB 2.0 Cable (USB-A to USB-B)
- 2 Couplers with 4 Screws
- 2 Coupler Connectors with 6 Screws
- User Manual

2.2 Prerequisites

- Manpower Required: One technician with basic electronics and mechanical knowledge.
- Tools Required: Allen keys, USB cable, torque driver.
- Materials Required: Mounting screws, coupler connector, alignment tools.
- Connection Diagram: USB-powered to Sensor by PC.

USB Connection to the sensor

2.3 Installation

Step 1: Prepare the Setup

- Clean the workspace.
- Gather necessary tools (screwdrivers, Allen keys).
- Ensure all components are available: sensor, screws, USB-B cable.

Face of the shaft

The coupler connector

Step 2: Mount the Sensor Mechanically

The coupler connector connects shaft to couplers of standard sizes.

- Identify the input and output shafts.
- Attach coupler connector of proper size to both: Select connectors matching the shaft diameter and secure them with set screws.
- Attach the connectors to proper couplers: Ensure the connectors align with the coupler's keyways or slots for a firm fit.
- Attach one of the couplers to the input shaft which is connected to torque generator (Motor):
- Attach the other coupler to the output shaft connecting the load.

• Use alignment tools to ensure no angular misalignment: Employ a laser alignment tool or dial indicator to confirm precise shaft alignment.

How sensor is connected to shafts via coupling

03. Operating Instructions

Step 3: Launch the Software

- Open the torque sensor GUI software in your PC: Double-click the torque sensor GUI application icon on your desktop, or navigate to the installation directory (e.g., C:\Program Files\TorqueSensorGUI) and launch the executable file.
- Ensure USB drivers are properly installed in sensor: Verify that the latest USB drivers for the torque sensor are installed on your PC. If not, download them from the manufacturer's website and follow the installation wizard.
- Confirm the system detects the sensor: In the GUI software, go to the "Device" or "Connection" menu and select "Detect Sensor." Wait for the software to scan and display the sensor's serial number or model details in the status window. If the sensor is not detected, disconnect and reconnect the USB cable, then retry the detection process.
- Ensure the port number detect correctly: Check the software's connection settings to confirm the correct COM port (e.g., COM3) or USB port is assigned to the sensor. If the port is incorrect, manually select the appropriate port from the dropdown menu based on the PC's port assignment (visible in Device Manager).

Step 4: Calibrate the Sensor (Optional but Recommended)

- Enter calibration mode in the software.
- Apply known torque and note the output.
- Adjust settings for accurate measurement (gain, offset).
- Get the coefficient by polynomial curve fitting. Upload the coefficients to the microcontroller through USB.

Step 5: Final Testing

- Apply torque and check if real-time values are displayed.
- Verify stable, consistent readings.
- Ensure all mechanical and electrical parts are secure.

04. Maintenance

4.1 Preventive Maintenance

• Manpower: One technician.

• Tools & Equipment: Multimeter, torque calibrator software.

• Procedure:

- 1. Inspect enclosure and shaft weekly: Visually check the enclosure for cracks, dust accumulation, or signs of wear. Examine the shaft for misalignment, corrosion, or physical damage.
- 2. Check USB and connection integrity: Inspect the USB cable for fraying, bends, or loose connectors. Test the connection by plugging/unplugging and ensuring a secure fit.
- 3. Clean sensor with non-corrosive cloth: Refer to section 4.3
- 4. **Calibrate monthly:** Connect the torque calibrator software to the MCU via USB. Apply a known torque using a torque reference standard. Adjust the capacitance-to-digital converter settings based on the software's calibration prompts.

4.2 Troubleshooting

Problem	Possible Cause	Solution	
Not powering on	No power, faulty cable	Check 5V source and USB	
Inaccurate reading	Misalignment	Realign plates	
Noise in signal	EMI form environment	Use shielded USB cables	
Flat output	No torque / sensor damaged	Check load, inspect plates, Test the cable, see if LED light is visible through the USB opening	
Drift in readings	Temperature variations, aging components	Implement temperature compensation, periodic recalibration	
Zero offset error	Mechanical preload, residual stress	Perform zero calibration with no load, check mounting for stress	
Unstable readings	Mechanical vibration or loose aseembly	Secire sensor mounting, dampen vibrations, tighten screws	
Sensor overheating	Short circuit or overcurrent from USB supply	Check for shorts, ensure proper current draw, add protection circuitry	
USB not recognized	Fault USB cable or damaged USB connector	Try a different cable, inspect and clean USB port, check USB connector soldering	

4.3 Cleaning

Follow these steps for cleaning the torque sensor to ensure continued proper operation.

- 1. Power off the system and disconnect it from the USB.
- 2. Gently wipe the sensor plates with a non-corrosive, lint-free cloth to remove dust or debris.
- 3.Use compressed air and a small brush to clear hard-to-reach areas, avoiding excessive pressure.
- 4. Ensure no moisture or residue remains on the sensor surfaces.

4.4 Safety precautions

! WARNING:

To minimize risks and ensure safe operation, it is critical to follow current safety standards during the planning, configuration, installation, and use of the capacitive torque sensor.

A

L CAUTION:

Operate the capacitive torque sensor with extreme care. The sensor is a highprecision and sensitive device and can suffer irreversible damage from:

- Mechanical shock (e.g., dropping or striking),
- Chemical exposure (e.g., acids or solvents),
- Thermal stress (e.g., exposure to hot air, steam, or extreme temperature changes).

QUALIFIED PERSONNEL

Installation, handling, and operation of the capacitive torque sensor must only be performed by qualified personnel who have:

- Read and understood the full user manual,
- Paid particular attention to all safety warnings and technical requirements.

NOTICE

To ensure safe and reliable operation:

- 1. Periodically inspect all electrical and mechanical connections.
- 2. Always wear protective eyewear when working near rotating machinery.
- 3. Never wear loose clothing or neckties near rotating components.
- 4.Do not stand too close or lean over any rotating shafts or drive chains.