

FCC PART 15C TEST REPORT No. I16N00808-BLE

for

Silicon Application Corp.

Bluetooth GPS MODEL

Model Name: LINKIT2523HDK

With

Hardware Version: ELINK-T100-V2

Software Version: MT2523G_iot_sdk_dev_HDK_E2

FCC ID: 2AINMLINKIT2523HDK

Issued Date: Sep 5th, 2016

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT.

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@catr.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I16N00808-BLE	Rev.0	1st edition	2016-09-05

CONTENTS

1.	TE	EST LABORATORY	. 5
	1.1.	TESTING LOCATION	. 5
	1.2.	TESTING ENVIRONMENT	. 5
	1.3.	PROJECT DATA	. 5
	1.4.	SIGNATURE	. 5
2.	CI	LIENT INFORMATION	. 6
	2.1.	APPLICANT INFORMATION	. 6
	2.2.	MANUFACTURER INFORMATION	. 6
3.	E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 7
	3.1.	ABOUT EUT	. 7
	3.2.	INTERNAL IDENTIFICATION OF EUT	. 7
	3.3.	INTERNAL IDENTIFICATION OF AE	. 7
4.	RI	EFERENCE DOCUMENTS	. 8
	4.1.	DOCUMENTS SUPPLIED BY APPLICANT	. 8
	4.2.	REFERENCE DOCUMENTS FOR TESTING	. 8
5.	TE	EST RESULTS	. 9
	5.1.	SUMMARY OF TEST RESULTS	. 9
	5.2.	STATEMENTS	. 9
	5.3.	TERMS USED IN THE RESULT TABLE	. 9
	5.4.	LABORATORY ENVIRONMENT	10
6.	TE	EST FACILITIES UTILIZED	11
A	NNE	X A: MEASUREMENT RESULTS FOR RECEIVER	12
	A.0 A	ANTENNA REQUIREMENT	12
	A.1 N	MAXIMUM AVERAGE OUTPUT POWER	13
	A.2 F	PEAK POWER SPECTRAL DENSITY	13
	A.3 C	OCCUPIED 6DB BANDWIDTH	14
		BAND EDGES COMPLIANCE	
	A.5 T	TRANSMITTER SPURIOUS EMISSION	15
	A.5.1	TRANSMITTER SPURIOUS EMISSION - CONDUCTED	15
	A.5.2	2 Transmitter Spurious Emission - Radiated	16
	A.6 A	AC Powerline Conducted Emission	20
A	NNE	X B: TEST FIGURE LIST	21
	Fig.1		
	FIG.2		
	FIG.3	(, , , ,	
	FIG.4	` '	
	FIG.5	POWER SPECTRAL DENSITY (CH 19)	

No. I16N00808-BLE Page 4 of 38

	Fig.6	POWER SPECTRAL DENSITY (CH 39)	. 23
	Fig.7	OCCUPIED 6DB BANDWIDTH (CH 0)	. 24
	FIG.8	OCCUPIED 6DB BANDWIDTH (CH 19)	. 24
	Fig.9	OCCUPIED 6DB BANDWIDTH (CH 39)	. 25
	FIG.10	BAND EDGES (CH 0)	. 25
	FIG.11	BAND EDGES (CH 39)	. 26
	FIG.12	CONDUCTED SPURIOUS EMISSION (CH0, CENTER FREQUENCY)	. 26
	FIG.13	CONDUCTED SPURIOUS EMISSION (CH0, 30 MHz-3 GHz)	. 27
	FIG.14	CONDUCTED SPURIOUS EMISSION (CH0, 3 GHz-18 GHz)	. 27
	FIG.15	CONDUCTED SPURIOUS EMISSION (CH19, CENTER FREQUENCY)	. 28
	FIG.16	CONDUCTED SPURIOUS EMISSION (CH19, 30 MHz-3 GHz)	. 28
	Fig.17	CONDUCTED SPURIOUS EMISSION (CH19, 3 GHz-18 GHz)	. 29
	FIG.18	CONDUCTED SPURIOUS EMISSION (CH39, CENTER FREQUENCY)	. 29
	FIG.19	CONDUCTED SPURIOUS EMISSION (CH39, 30 MHz-3 GHz)	. 30
	FIG.20	CONDUCTED SPURIOUS EMISSION (CH39, 3 GHz-18 GHz)	. 30
	FIG.21	CONDUCTED SPURIOUS EMISSION (ALL CHANNELS, 18 GHz-26 GHz)	. 31
	FIG. 22	RADIATED SPURIOUS EMISSION (GFSK, CH0, 1 GHz ~18 GHz)	. 31
	FIG.23	RADIATED SPURIOUS EMISSION (CH19, 9 KHz-30 MHz)	. 32
	FIG.24	RADIATED SPURIOUS EMISSION (CH19, 30 MHz-1 GHz)	. 32
	FIG.25	RADIATED SPURIOUS EMISSION (CH19, 1 GHz-18 GHz)	. 33
	Fig.26	RADIATED SPURIOUS EMISSION (CH39, 1 GHz-18 GHz)	. 33
	FIG.27	RADIATED EMISSION POWER (GFSK, CH0, 2380GHz~2450GHz)	. 34
	FIG.28	RADIATED EMISSION POWER (GFSK, CH39, 2450GHz~2500GHz)	. 34
	FIG.29	RADIATED EMISSION: 18 GHz – 26.5 GHz	. 35
	FIG. 30	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE1)	. 36
	FIG. 31	AC POWER LINE CONDUCTED EMISSION (IDLE, AE1)	. 37
A	NNEX C	PERSONS INVOLVED IN THIS TESTING	. 38

1. Test Laboratory

1.1. Testing Location

Location: CTTL(South Branch)

TCL International E city No. 1001 Zhongshanyuan Road, Nanshan Address:

District, Shenzhen, Guangdong, China 518000

1.2. Testing Environment

Normal Temperature:

15-35℃

Extreme Temperature:

-20/+60℃

Relative Humidity:

20-75%

1.3. Project data

Testing Start Date:

2016-07-20

Testing End Date:

2016-09-02

1.4. Signature

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

(Approvedthis test report)

2. Client Information

2.1. Applicant Information

Company Name: Silicon Application Corp.

Address: 7F,Block 2,Kai Da Er Building,No.168 TongShaRoad,XiLi

Town, Nanshan, Shen Zhen

City: ShenZhen

Postal Code:

Country: China

Telephone: 0755-26711655-32461

Fax: 0755-2695706

2.2. Manufacturer Information

Company Name: ShenZhen ElinkTime Technology Co.,LTD

Room545,Block A,Mingyou lidustrial City,No.168 of Baoyuan

Road, Xi Xiang, Baoan District, Shen Zhen, China

City: ShenZhen

Postal Code: /

Country: China

Telephone: 0755-23222851 Fax: 0755-23001184

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Bluetooth GPS MODEL

Model Name LINKIT2523HDK

Market Name

Frequency Band 2402MHz~2480MHz

Type of Modulation GFSK Number of Channels 40

FCC ID 2AINMLINKIT2523HDK

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt

EUT1 MT2523G_01 ELINK-T100-V2 MT2523G_iot_sdk_dev_HD 2016-07-20

K_E2

3.3. Internal Identification of AE

AE ID*	Description	Туре	SN
AE1	/	/	/

^{*}AE ID: is used to identify the test sample in the lab internally.

^{*}Note: Photographs of EUT are shown in ANNEX A of this test report.

^{*}EUT ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C: Nov	
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard for Testing Unlicensed	Jun,2013
	Wireless Devices	Jul1,2013
KDB 558074	Guidance for Performing Compliance Measurements on	Apr, 2016
	Digital Transmission Systems (DTS) Operating Under	
	§15.247	

5. Test Results

5.1. Summary of Test Results

No	Test cases	Standard Sub-clause	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	Occupied 6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Transmitter Spurious Emission -	15.247 (d)	Р
5	Conducted	13.247 (d)	F
6	Transmitter Spurious Emission -	15.247, 15.205, 15.209	Р
O	Radiated	13.247, 13.203, 13.209	F
7	AC Powerline Conducted Emission	15.107, 15.207	P

See ANNEX B and ANNEX C for details.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current
AFH	Adaptive Frequency Hopping
BW	Band Width
E.I.R.P.	equivalent isotropical radiated power
ISM	Industrial, Scientific and Medical
R&TTE	Radio and Telecommunications Terminal Equipment
RF	Radio Frequency
Tx	Transmitter

5.4. <u>Laboratory Environment</u>

Semi-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4Ω
Normalised site attenuation (NSA)	$<$ ± 4 dB, 3m/10m distance,from 30 to 1000 MHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Shielded room did not exceed following limits along the EMC testing:

	· ·
Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 MΩ
Ground system resistance	< 4Ω
Voltage Standing Wave Ratio	≤6dB, from 1 to 18 GHz,3m distance
(VSWR)	

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2017-03-21	1 year

Radiated emission test system

No.	Equipment	Model	Serial	Serial Manufacturer	Calibration	Calibration
NO.	Equipment	Wiodei	Number	Manufacturei	Due date	Period
1	Chamber	FACT5-2.0	4166	ETS-Lindgren	2018-05-13	3 years
2	Test Receiver	ESCI	100701	Rohde & Schwarz	2017-08-09	1 year
3	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2017-01-20	3 years
4	Horn Antenna	3117	00066585	ETS-Lindgren	2019-03-05	3 years
5	Spectrum Analyser	FSP40	100378	Rohde & Schwarz	2016-12-18	1 year
6	Loop Antenna	HLA6120	35779	TESEQ	2019-05-10	3 years
7	Test Receiver	ESCI	100702	Rohde & Schwarz	2017-06-26	1 year
8	LISN	ESH2-Z5	100196	Rohde & Schwarz	2017-01-12	1 year

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren.

ANNEX A: MEASUREMENT RESULTS FOR RECEIVER

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement		
	An intentional radiator shall be designed to ensure that no antenna other than that		
	furnished by the responsible party shall be used with the device. The use of a		
	permanently attached antenna or of an antenna that uses a unique coupling to the		
	intentional radiator shall be considered sufficient to comply with the provisions of		
	this section. The manufacturer may design the unit so that a broken antenna can		
	be replaced by the user, but the use of a standard antenna jack or electrical		
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices		
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,		
	§15.219, or §15.221. Further, this requirement does not apply to intentional		
	radiators that must be professionally installed, such as perimeter protection		
	systems and some field disturbance sensors, or to other intentional radiators		
	which, in accordance with §15.31(d), must be measured at the installation site.		
	However, the installer shall be responsible for ensuring that the proper antenna is		
	employed so that the limits in this part are not exceeded.		

Conclusion: The Directional gains of antenna used for transmitting is 0 dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Average Output Power

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1)	< 30

Measurement Results:

Mode	Channel	Maximum Peak Output Power (dBm)		Conclusion
	0	-3.80	Fig.1	Р
GFSK	19	-3.55	Fig.2	Р
	39	-3.35	Fig.3	Р

See ANNEX C for test graphs.

Conclusion: Pass

A.2 Peak Power Spectral Density

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(d)	< 8 dBm/3 kHz

Measurement Results:

Mode	Channel	Peak Power Spectral Density (dBm)		Conclusion
	0	Fig.4	-20.89	Р
GFSK	19	Fig.5	-20.09	Р
	39	Fig.6	-20.17	Р

See ANNEX C for test graphs.

Conclusion: PASS

A.3 Occupied 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

Measurement Result:

Mode	Channel	Test Resu	ılts (kHz)	conclusion
	0	Fig.7	716.4	Р
GFSK	19	Fig.8	716.4	Р
	39	Fig.9	716.4	Р

See ANNEX C for test graphs.

Conclusion: PASS

A.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Channel	Test Results	Conclusion
CECK	0	Fig.10	Р
GFSK	39	Fig.11	Р

See ANNEX C for test graphs.

Conclusion: Pass

A.5 Transmitter Spurious Emission

A.5.1 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
FGC 47 GFR Fait 15.247 (u)	bandwidth

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.12	Р
	0	30 MHz-3 GHz	Fig.13	Р
		3GHz-18GHz	Fig.14	Р
		2.440 GHz	Fig.15	Р
GFSK	19	30 MHz-3 GHz	Fig.16	Р
GFSK		3GHz-18GHz	Fig.17	Р
		2.480 GHz	Fig.18	Р
	39	30 MHz-3 GHz	Fig.19	Р
		3GHz-18GHz	Fig.20	Р
	All channels	18GHz-26GHz	Fig.21	Р

See ANNEX C for test graphs.

Conclusion: Pass

A.5.2 Transmitter Spurious Emission - Radiated Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strength(µV/m)	Measurement
(MHz)	r leid strengtri(µ v/m)	distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note:

According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

	0	1 GHz ~18 GHz	Fig.22	Р
		9 kHz ~30 MHz	Fig.23	Р
	19	30 MHz ~1 GHz	Fig.24	Р
GFSK	19	1 GHz ~18 GHz	Fig.25	Р
	39	1 GHz ~18 GHz	Fig.26	Р
	Power(CH0)	2.38 GHz ~ 2.45 GHz	Fig.27	Р
	Power(CH39)	2.45 GHz ~ 2.5 GHz	Fig.28	Р
/	All channels	18 GHz~ 26.5 GHz	Fig.29	Р

GFSK CH0 (1-18GHz)

Frequency	MaxPeak-	Polarizatio	Corr.	Margin	Limit	Commen
(MHz)	ClearWrit	n	(dB)	(dB)	(dBµV/	t
14163.500	55.8	Н	11.2	18.2	74.0	
15158.000	56.5	V	12.1	17.5	74.0	
15758.500	58.4	Н	12.8	15.6	74.0	
16202.500	58.8	V	13.1	15.2	74.0	
16791.000	59.3	Н	13.9	14.7	74.0	
17334.000	59.2	Н	14.0	14.8	74.0	

Frequency	Average-	Polarizatio	Corr.	Margin	Limit	Commen
(MHz)	ClearWrit	n	(dB)	(dB)	(dBµV/	t
14551.000	44.0	Н	11.9	10.0	54.0	
15180.500	44.7	Н	12.2	9.3	54.0	
15782.000	46.3	V	12.8	7.7	54.0	
16207.500	46.8	V	13.1	7.2	54.0	
16780.000	47.4	V	13.9	6.6	54.0	
17401.500	46.8	V	14.0	7.2	54.0	

GFSK CH19 (1-18GHz)

Frequency	MaxPeak-	Polarizatio	Corr.	Margin	Limit	Commen
(MHz)	ClearWrit	n	(dB)	(dB)	(dBµV/	t
14117.000	55.9	Н	11.1	18.1	74.0	
15111.5000	57.1	Н	12.1	16.9	74.0	
15692.000	58.4	Н	12.7	15.6	74.0	
16173.500	59.3	Н	13.1	14.7	74.0	
16777.500	59.7	V	13.9	14.3	74.0	
17323.500	59.2	V	14.0	14.8	74.0	

Frequency	Average-	Polarizatio	Corr.	Margin	Limit	Commen
(MHz)	ClearWrit	n	(dB)	(dB)	(dBµV/	t
14129.500	43.8	V	11.2	10.2	54.0	
15180.000	44.8	V	12.2	9.2	54.0	
15705.500	46.4	Н	12.7	7.6	54.0	
16215.500	46.7	V	13.1	7.3	54.0	
16743.500	47.5	V	13.9	6.5	54.0	
17304.000	46.9	Н	13.9	7.1	54.0	

GFSK CH39 (1-18GHz)

Frequency	MaxPeak-	Polarizatio	Corr.	Margin	Limit	Commen
(MHz)	ClearWrit	n	(dB)	(dB)	(dBµV/	t
14058.000	56.2	Н	11.0	17.8	74.0	
15067.500	56.7	Н	12.1	17.3	74.0	
15630.000	58.1	Н	12.5	15.9	74.0	
16273.500	58.3	Н	13.2	15.7	74.0	
16782.000	58.7	Н	13.9	15.3	74.0	
17407.500	58.2	V	14.0	15.8	74.0	

Frequency	Average-	Polarizatio	Corr.	Margin	Limit	Commen
(MHz)	ClearWrit	n	(dB)	(dB)	(dBµV/	t
14551.000	44.3	Н	11.9	9.7	54.0	
15154.500	45.1	Н	12.1	8.9	54.0	
15737.500	46.1	Н	12.8	7.9	54.0	
16211.500	46.2	V	13.1	7.8	54.0	
16777.000	46.9	V	13.9	7.1	54.0	
17294.000	46.5	V	13.9	7.5	54.0	

See ANNEX C for test graphs.

Conclusion: Pass

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

A.6 AC Powerline Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE1

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Result (dBμV) Traffic	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.30	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE1

Frequency range (MHz)	Average-peak Limit (dB _µ V)	Result (dBμV) Traffic	Conclusion	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.30	Р	
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

BLE (Quasi-peak Limit)-AE1

	<u>'</u>		
Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBμV)	Idle	Conclusion
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.31	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit)-AE1

Frequency range	Average-peak	Result (dB _μ V)	Conclusion	
(MHz)	Limit (dBμV)	Idle	Conclusion	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.31	Р	
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: The measurement results include the L1 and N measurements.

See ANNEX C for test graphs.

Conclusion: Pass

ANNEX B: TEST FIGURE LIST

Fig.1 Maximum Peak Output Power(GFSK, Ch 0)

Fig.2 Maximum Peak Output Power(GFSK, Ch 19)

Date: 2.5EP.2016 16:36:32

Fig.3 Maximum Peak Output Power(GFSK, Ch 39)

Date: 2.SEP.2016 16:37:52

Fig.4 Power Spectral Density (Ch 0)

Fig.5 Power Spectral Density (Ch 19)

Fig.6 Power Spectral Density (Ch 39)

Fig.7 Occupied 6dB Bandwidth (Ch 0)

Fig.8 Occupied 6dB Bandwidth (Ch 19)

Fig.9 Occupied 6dB Bandwidth (Ch 39)

Fig.10 Band Edges (Ch 0)

Fig.11 Band Edges (Ch 39)

Fig.12 Conducted Spurious Emission (Ch0, Center Frequency)

Fig.13 Conducted Spurious Emission (Ch0, 30 MHz-3 GHz)

Fig.14 Conducted Spurious Emission (Ch0, 3 GHz-18 GHz)

Fig.15 Conducted Spurious Emission (Ch19, Center Frequency)

Fig.16 Conducted Spurious Emission (Ch19, 30 MHz-3 GHz)

Fig.17 Conducted Spurious Emission (Ch19, 3 GHz-18 GHz)

Fig.18 Conducted Spurious Emission (Ch39, Center Frequency)

Fig.19 Conducted Spurious Emission (Ch39, 30 MHz-3 GHz)

Fig.20 Conducted Spurious Emission (Ch39, 3 GHz-18 GHz)

Fig.21 Conducted Spurious Emission (All channels, 18 GHz-26 GHz)

Fig. 22 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz)

Fig.23 Radiated Spurious Emission (Ch19, 9 kHz-30 MHz)

Fig.24 Radiated Spurious Emission (Ch19, 30 MHz-1 GHz)

Fig.25 Radiated Spurious Emission (Ch19, 1 GHz-18 GHz)

Fig.26 Radiated Spurious Emission (Ch39, 1 GHz-18 GHz)

Fig.27 Radiated Emission Power (GFSK, Ch0, 2380GHz~2450GHz)

Fig.28 Radiated Emission Power (GFSK, Ch39, 2450GHz~2500GHz)

Fig.29 Radiated emission: 18 GHz – 26.5 GHz

Fig. 30 AC Powerline Conducted Emission (Traffic, AE1)

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
19.074000	42.6	GND	L1	9.8	17.4	60.0
19.310000	42.8	GND	L1	9.8	17.2	60.0
19.510000	42.6	GND	L1	9.8	17.4	60.0
19.522000	42.5	GND	L1	9.8	17.5	60.0
19.614000	42.4	GND	L1	9.8	17.6	60.0
20.474000	42.7	GND	L1	9.9	17.3	60.0

MEASUREMENT RESULT: " Average "

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
19.126000	34.0	GND	L1	9.8	16.0	50.0
19.386000	33.7	GND	L1	9.8	16.3	50.0
19.562000	33.3	GND	L1	9.8	16.7	50.0
19.662000	33.0	GND	L1	9.8	17.0	50.0
19.746000	32.8	GND	L1	9.8	17.2	50.0
20.558000	33.5	GND	L1	9.9	16.5	50.0

Fig. 31 AC Power line Conducted Emission (Idle, AE1)

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
18.934000	42.3	GND	L1	9.8	17.7	60.0
19.150000	42.7	GND	L1	9.8	17.3	60.0
19.310000	42.6	GND	L1	9.8	17.4	60.0
20.242000	43.0	GND	L1	9.9	17.0	60.0
20.494000	43.3	GND	L1	9.9	16.7	60.0
20.686000	42.7	GND	L1	9.9	17.3	60.0

MEASUREMENT RESULT: " Average "

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBuV)			(dB)	(dB)	(dBuV)
19.134000	33.8	GND	L1	9.8	16.2	50.0
20.290000	33.8	GND	L1	9.9	16.2	50.0
20.298000	33.9	GND	L1	9.9	16.1	50.0
20.374000	33.9	GND	L1	9.9	16.1	50.0
20.382000	34.0	GND	L1	9.9	16.0	50.0
20.458000	34.0	GND	L1	9.9	16.0	50.0

ANNEX C: Persons involved in this testing

Test Name	Tester
Maximum Peak Output Power	Xu Ye, Tang Weisheng
Peak Power Spectral Density	Xu Ye, Tang Weisheng
Occupied 6dB Bandwidth	Xu Ye, Tang Weisheng
Band Edges Compliance	Xu Ye, Tang Weisheng
Transmitter Spurious Emission - Conducted	Xu Ye, Tang Weisheng
Transmitter Spurious Emission - Radiated	Xu Ye, Tang Weisheng
AC Powerline Conducted Emission	Xu Ye, Tang Weisheng

END OF REPORT