Hypothesis Testing In ANDVA (Partitioning Of Variance In The Anova)

Non rypothesis Ho: MI = M2 = M3 - - - MK

Alternate trypotresis Hi : Atleast one of the sample meen is not equal

M, # M2 + M3 - - EMR

Test Statistics

F

Test!	Statist	ίις			
	F=	Variance between	L Sampla		
		Variance Within	, sample	$H_0 = \overline{X}_1 = 5$	2 = X3
_ 2		Vaviana beho	vecn Sampla		one sample
	X	1 7/2	х3	mean is v	not equal
Variance	1	6	5		
Withen	2	7	6		
Samples	4	3	3		
	5	- 2	₹		
	3		7		

4-		Variance between	on Sampla	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(X,	N ₂	λ3	mean is not equal
Variance	1	6	5	
Wihin 6	2	7	6	
Samples	4	3	3 *	
	5	2	₹	
	3		7	
		- X ₂ = 19/5	 	

One Way ANOUR

One factor with aftern 2 leves, levels are independent

1) Doctors want to test a new medication which reduces headache. They splik the participant into 3 condition [15 mg, 30mg, 45 mg] halor on the doctor ask the patient to rate the heedache between [1-10]. Are there any differences between the 3 conditions alpha = 0.05?

alpha = 0.05? Ans)

Ir mg	30mg	4 Tong
9	7	4
8	6	3
7	6	2
8	7	3
8	8	4
9	7	3
8	6	2

1 Define Nuis and Alternate trypothers?

Ho: MIS= M30 = M4F

H, : not all u are cour/

- @ Significana &=0.05 (1:095
- 3 Calmere Degree of freedom

N=21

X=0.05 (.I=055 @ Significana Calculate Degree of freedom N=21 a=3 n=7 Of dfz df between = a-1=3-1=2 (2,18) df within = N-a=21-3=181= 1 able dfton = N-1 = 20 L=0.05 V (ritial value

1	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962	2.8536	2,7876	2.7186	2.6464	2.6090	2.5705	2.5309	2,4901	2.4480	2.4045
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.3410	2.2962
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.6710	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.4630	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2,5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2,4935	2.4247	2.3522	2.2756	2,2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.1040	2.0584	2.0107	1.9604
18	4.4139	3.554n	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.3080	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.8780
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928	2.3479	2.2776	2.2033	2,1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
		2 4560	2 0722	2 0 4 0 1	2 (010	2 5727	2.4074	2 1205	2.2550	2 2212	2.250.	2 . 252	2 00 50	20540	2 0102	10010	10155	1000	
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660	2.3210	2.2504	2.1757	2.0960	2.0540	2.0102	1.9645	1.9165	1.8657	1.8117
		3.4434	3.0491	2.8167	2.6613	2.5491	2,4638	2.3965	2.3419	2.2967	2,2258	2.1508	2.0707	2.0283	1.9842	1.9380	1.8894	1.8380	1.7831
22	4.3009	2,4424									EILEDO	201/2012					(21888)	1,0300	WIN 1987 1
22 23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201	2.2747	2,2036	2.1282	2.0476	2.0050	1.9605	1.9139	1.8648	1.0500	21060
212			525,000	2022000	2.6400 2.6207	2.5277 2.5082	2.4422 2.4226	2.3748 2.3551	2.3201 2.3002	11070002			2.0476 2.0267	2.0050 1.9838	1.9605 1.9390	1.9139 1.8920	122250	1.6360	
23	4.2793	3.4221	3.0280	2.7955		321/25/19			000000000	2.2747	2.2036	2.1282	78830357	272/2017()	100.000	23877078	1.8648	1.8380	
23 24	4.2793 4.2597	3.4221 3.4028	3.0280	2.7955 2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2747 2.2547	2,2036 2,1834	2.1282 2.1077	2.0267	1.9838	1.9390	1.8920	1.8648	1.830	
23 24	4.2793 4.2597	3.4221 3.4028	3.0280	2.7955 2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2747 2.2547	2,2036 2,1834	2.1282 2.1077	2.0267	1.9838	1.9390	1.8920	1.8648	1.000	
23 24 25	4.2793 4.2597 4.2417	3.4221 3.4028 3.3852	3.0280 3.0088 2.9912	2.7955 2.7763 2.7587	2.6207 2.6030	2.5082 2.4904	2.4226	2.3551	2.3002	2.2747 2.2547 2.2365	2.2036 2.1834 2.1649	2.1282 2.1077 2.0889	2.0267	1.9838	1.9390	1.8920 1.8718	1.8648	1.000	0
23 24 25 26	4.2793 4.2597 4.2417 4.2252	3.4221 3.4028 3.3852 3.3690	3.0280 3.0088 2.9912 2.9752	2.7955 2.7763 2.7587 2.7426	2.6207 2.6030 2.5868	2.5082 2.4904 2.4741	2.4226 2.4047 2.3883	2.3551 2.3371 2.3205	2.3002 2.2821 2.2655	2.2747 2.2547 2.2365 2.2197	2.2036 2.1834 2.1649 2.1479	2.1282 2.1077 2.0889	2.0267 2.0075	1.9838 1.9643	1.9390 1.9192 1.9010	1.8920 1.8718	1.8648	1,550	

Calware	F Tut	Statistics	F:	Vaviance	between	Sample
				VGvian ce	Within	Sample
	S.S	df	MŞ	F		
Betwee	n					
Within	1					
Total						

① SS between =
$$\frac{\sum (\sum a_i)^2 - \frac{T^2}{N}}{n}$$

15mg: 9+8+7+8+8+9+8=57

30 mg = 7 + 6+ 6+ 7+8 + 7+6=47

45mg: 4+3+2+3+4+3+2 = 21

oph my	Borng	Hing
9	7	4
8	6	3
7	6	2
8	7	3
8	6 8	4
9	7	3
8	6	2

$$= \frac{37407421}{31}$$

$$= \frac{98.67}{8.67}$$

$$= \frac{5}{4} + \frac{2}{4} + \frac{2$$

$$= 853 - \left[57^{2} + 47^{2} + 21^{2}\right]$$

$$= 10.29$$

$$= 853 - \left[57^{2} + 47^{2} + 21^{2}\right]$$

$$= 10.29$$

$$= 853 - \left[57^{2} + 47^{2} + 21^{2}\right]$$

$$= 10.29$$

$$= 853 - \left[57^{2} + 47^{2} + 21^{2}\right]$$

$$= 10.29$$

$$= 853 - \left[57^{2} + 47^{2} + 21^{2}\right]$$

$$= 10.29$$

$$= 853 - \left[57^{2} + 47^{2} + 21^{2}\right]$$

$$= 10.29$$

$$= 853 - \left[57^{2} + 47^{2} + 21^{2}\right]$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$= 10.29$$

$$=$$

Flost = Ms Bernean

Ms within

F = Variance between Sample

Variance Within Sample

It F is greater than 3.54.

MSwithin

F = 49.34 = 86.56

If F is greater than 3. True, Rejoit the no 86.56 > 3.7546 Rejoit the Mo.