Oppgaver i kommutativ algebra

Fredrik Meyer

1 Moduler

Oppgave (1). Vis at om m, n er koprimære, så er $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$.

Proof. Siden m og n er koprimære, finnes det $a, b \in \mathbb{Z}$ slik at an + bm = 1. La $x \otimes y \in (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$. Da er

$$x \otimes y = (1x \otimes y) = (an + bm)x \otimes y = (anx + bmx) \otimes y$$

 $(anx) \otimes y = x \otimes (any) = x \otimes 0 = 0.$

$$Så(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0.$$

Oppgave (2). La A være en ring, \mathfrak{a} et ideal, og M en A-modul. Vis at $(A/\mathfrak{a}) \otimes_A M \simeq M/\mathfrak{a}M$.

Proof. Først viser vi at $\mathfrak{a}M \simeq \mathfrak{a} \otimes M$. Men dette er enkelt. Vi definerer en avbildning:

$$\begin{array}{ccc} \mathfrak{a} \times M & \longrightarrow & \mathfrak{a} M \\ (a,m) & \longmapsto & am, a \in \mathfrak{a}, m \in M \end{array}$$

Denne avbildningen er bilineær og induserer en homomorfi. Det er klart at avbildningen $a\otimes m\mapsto am\mapsto a\otimes m$ er identiteten, så vi har en isomorfi. Legg nå merke til at

$$0 \longrightarrow \mathfrak{a} \longrightarrow A \longrightarrow A/\mathfrak{a} \longrightarrow 0 \tag{1}$$

er eksakt. Fra Prop 2.18 i Atiyah følger det da at

$$\mathfrak{a} \otimes_A M \longrightarrow A \otimes_A M \longrightarrow A/\mathfrak{a} \otimes_A M \longrightarrow 0$$

også er eksakt. Nå, legg merke til at

$$0 \longrightarrow \mathfrak{a}M \xrightarrow{\iota} M \xrightarrow{\pi} M/\mathfrak{a}M \longrightarrow 0 \tag{2}$$

er eksakt (ι er inklusjonsfunksjonen, og π er projeksjonen). Siden $\mathfrak{a} \otimes M \simeq \mathfrak{a} M$ og $A \otimes M \simeq M$ (Prop 2.14), har vi følgende kommutative diagram:

$$0 \longrightarrow \mathfrak{a} \otimes_{A} M \xrightarrow{\iota'} A \otimes_{A} M \xrightarrow{\pi'} A/\mathfrak{a} \otimes_{A} M \longrightarrow 0$$

$$\simeq \left| f' \qquad \qquad \simeq \left| f \qquad \qquad ? \right| \right|$$

$$0 \longrightarrow \mathfrak{a} M \xrightarrow{\iota} M \xrightarrow{\pi} M/\mathfrak{a} M \longrightarrow 0$$

Vi ønsker å definere en homomorfi $\psi: A/\mathfrak{a} \otimes M \to M/\mathfrak{a}M$. La $x \in A/\mathfrak{a} \otimes M$. Siden π' er surjektiv, finnes $y \in A \otimes M$ slik at $\pi'(y) = x$. Så la $\psi(x) = \pi \circ f(y)$. Vi må vise at ψ er veldefinert. Anta også at $\pi'(y') = x$. Da er $y - y' \in \text{Ker}(\pi')$, så $y - y' \in \text{im}(\iota')$. Da eksisterer en k slik at $\iota'(k) = y - y'$. Men $\pi \circ \iota \circ f'(k) = 0 = \pi \circ f \circ \iota'(k) = \pi \circ f(y - y') = \psi(y - y')$, så $\psi(y) = \psi(y')$, og ψ er veldefinert. Ved slangelemmaet finnes en eksakt sekvens

$$\operatorname{Ker}(f) \longrightarrow \operatorname{Ker}(\psi) \longrightarrow \operatorname{Coker}(f') \longrightarrow \operatorname{Coker}(f) \longrightarrow \operatorname{Coker}(\psi) \longrightarrow 0$$

Men siden f bijektiv, må $Ker(\psi) = Coker(\psi) = 0$, og ψ er en isomorfi. \square

Oppgave (3). La A være en lokal ring, og la M, N være endeliggenererte A-moduler. Da har vi at $M \otimes_A N = 0 \Rightarrow M = 0$ eller N = 0.

Proof. Siden A er en lokal ring, er k = A/m en kropp, hvor m er maksimalidealet. La M_k betegne $k \otimes_A M$. Anta at $M \otimes_A N = 0$. Da er trivielt også $M \otimes_A N \otimes k \otimes k \simeq M_k \otimes_A N_k = 0$. Om $M_k \otimes_A N_k = 0$ er åpenbart også $M_k \otimes_k N_k = 0$ siden k bare består av ekvivalensklasser av A. Siden M, N er endeliggenererte, er også M_k, N_k det. La x_i, y_j $(i, j \in I)$, for en endelig indeksmengde I) generere M_k, N_k , henholdsvis. Da er $M_k \otimes N_k$ generert av vektorene $x_i \otimes y_j$. Om M_k har dimensjon m og N_k har dimensjon n, har $M_k \otimes N_k$ derfor dimensjon mn. Men vi må ha mn = 0, så vi har at m = 0 eller n = 0. Det følger at $M_k = 0$ eller $N_k = 0$.

Uten tap av generalitet, anta $M_k = 0$. Fra forrige oppgave er $M_k \simeq M/mM$. Siden $M_k = 0$ er mM = M. Siden A er lokal, er m lik Jacobsonradikalet til A. Da følger det fra Nakayamas lemma at M = 0.

Oppgave (4). La M_i ($i \in I$) være en familie av A-moduler, og la

$$M=\oplus_{i\in I}M_i.$$

Da er M flat \Leftrightarrow hver M_i er flat.

Proof. La $M = \bigoplus_{i \in I} M_i$. Da har vi naturlige projeksjoner $\pi_i : M \to M_i$ og injeksjoner $\iota_i : M_i \to M$. La $f : N' \to N$ være en injektiv funksjon. Det er lett å se at følgende diagram kommuterer:

I ETTERTID: Ser at dette bare blir feil. Jeg antar jo at N også er eksakt! Derfor har vi jo ikke nødvendigvis injeksjonene over! Så jeg er målløs!

Oppgave (6). La M være en A-modul, og la M[x] være mengden av xpolynomer med koeffisienter i M. Definerer vi produktet av en $f \in A[x]$ med
en $g \in M[x]$ på den åpenbare måten, er M[x] en A[x]-modul. I tillegg er $M[x] \simeq A[x] \otimes_A M$.

Proof. At M[x] er en A[x]-modul er det samme som at $f \in A[x]$ virker lineært på elementer i M[x]. Men dette er åpenbart. Lar vi for eksempel $f, f' \in A[x]$ og $g \in M[x]$, er det trivielt at (f + f')g = fg + f'g.

Utfordringen ligger i å vise at $M[x] \simeq A[x] \otimes_A M$. Vi definerer en avbildning $\psi': A[x] \times M \to M[x]$. La $(f,m) \in A[x] \times M$, og la $\psi'(f,m) = mf$. Da er ψ' bilineær, og den induserer derfor en unik avbildning $\psi: A[x] \otimes_A M \to M[x]$ slik at $\psi(f \otimes m) = mf$. Vi definerer også en avbildning $\phi: M[x] \to A[x] \otimes_A M$ ved

$$mx^j \mapsto x^j \otimes m$$

Det er lett å se at denne er en homomorfi. La $\sum_j m_j x^j \in M[x]$. Da er

$$\psi \circ \phi(\sum_{j} m_{j} x^{j}) = \psi \circ (\sum_{j} \phi(m_{j} x^{j})) = \psi \circ (\sum_{j} (x^{j} \otimes m_{j})) = \sum_{j} m_{j} x^{j}$$

så $\psi \circ \phi$ er identitetsavbildningen. På den andre siden, la $f_i = \sum_j a_{ji} x^j \in$

A[x]. Et element i $A[x] \otimes M$ har formen $\sum_i (f_i \otimes m_i)$. La oss se på $\phi \circ \psi$:

$$\phi \circ \psi(\sum_{i} (f_{i} \otimes m_{i})) = \phi \circ \psi(\sum_{i} ((\sum_{j} a_{ji}x^{j}) \otimes m_{i}))$$

$$= \phi \circ \psi(\sum_{i} (\sum_{j} (a_{ji}x^{j} \otimes m_{i})))$$

$$= \phi \circ \psi(\sum_{i} (\sum_{j} (x^{j} \otimes a_{ji}m_{i})))$$

$$= \phi \circ (\sum_{i} \sum_{j} (\psi(x^{j} \otimes a_{ji}m_{i})))$$

$$= \phi(\sum_{i} \sum_{j} a_{ji}m_{i}x^{j})$$

$$= \sum_{i} \sum_{j} \phi(a_{ji}m_{i}x^{j})$$

$$= \sum_{i} \sum_{j} (x^{j} \otimes a_{ji}m_{i})$$

$$= \sum_{i} f_{i} \otimes m_{i}$$

Så $\phi \circ \psi$ er identitetsavbildningen, og de er begge derfor isomorfier ($\phi^{-1} = \psi$).

Oppgave (8). i) Hvis M og N er flate A-moduler, så er også $M \otimes_A N$ det. ii) Hvis B er en flat A-algebra og N en flat B — modul, så er N flat som A-modul.

Proof. i)

La E være en kort eksakt sekvens:

$$E: 0 \longrightarrow P' \longrightarrow P \longrightarrow P'' \longrightarrow 0$$

Siden M er flat, er $E \otimes M$ eksakt fra Prop 2.19. Siden N er flat, er $(E \otimes M) \otimes N$ eksakt. Men fra Prop 2.14 er $(E \otimes M) \otimes N \simeq E \otimes (M \otimes N)$, så $E \otimes (M \otimes N)$ er eksakt. Men fra Prop 2.19 er dette ekvivalent med at $M \otimes N$ er flat.

ii)

Igjen, la E være en eksakt sekvens. Siden B er flat som A-modul, er $E \otimes_A B$ eksakt. Denne modulen er naturlig en B-modul, så det følger at $(E \otimes_A B) \otimes_B N$ er eksakt siden N er flat som B-modul. Fra Exercise 2.15 og Prop 2.14 i Atiyah er

$$(E \otimes_A B) \otimes_B N \simeq E \otimes_A (B \otimes_B N) \simeq E \otimes_A N$$

eksakt. Dette er fra Prop 2.19 ekvivalent med at N er flat som A-modul. \square

Oppgave (9). La

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

være en eksakt sekvens av A-moduler. Hvis M' og M'' er endeliggenererte, så er også M det.

Proof. Fra Prop 2.3 vet vi at M' og M'' er isomorfe med kvotienter av A^n for noen n. Det vil si at vi har surjektive avbildninger $\phi: A^n \to M'$ og $\theta: A^m \to M''$. Vi ønsker å definere en surjektiv avbildning $\mu: A^{m+n} \to M$:

Fra slangelemmaet vet vi at det finnes en eksakt sekvens fra

$$\operatorname{Coker}(\phi) \longrightarrow \operatorname{Coker}(\mu) \longrightarrow \operatorname{Coker}(\theta)$$

Siden ϕ, θ er surjektive, vil det umiddelbart følge at μ er surjektiv om vi klarer å definere den. Siden en avbildning fra en fri modul er bestemt av virkningen på basiselementene, kan vi definere μ for hver $(0, \ldots, 1, \ldots, 0)$ i A^{n+m} (vi kaller det i'te basiselementet for e_i). Om $1 \leq i \leq n$, finnes en unik $y \in A^n$ slik at $u(y) = e_i$. I så fall lar vi $\mu(e_i) = \phi \circ f(y)$. Denne er åpenbart veldefinert for $1 \leq i \leq n$. Om $n < i \leq n + m$ lar vi $\mu(e_i) = y$ slik at $g(y) = \theta \circ v(x)$ for en eller annen y. Dette går bra siden g er surjektiv. Dette er selvsagt også veldefinert (siden μ bare bestemmes av sine verdier på basiselementer). (det er også lett å sjekke at diagrammet er kommutativt)

Fra observasjonen over må μ være surjektiv, og fra Prop 2.3 i Atiyah, er dette ekvivalent med at M er endeliggenerert.

Oppgave (11). La A være en $ring \neq 0$. Vis at $A^m \simeq A^n \Rightarrow m = n$. Om $\phi: A^m \to A^n$ er surjective, så er $m \geq n$. Om $\phi: A^m \to A^n$ er injektiv, er alltid $m \leq n$?

Proof. La m være maksimalidealet i A og la $\phi:A^m\to A^n$ være en isomorfi. Siden A/m er en kropp, er $(A/m)\otimes A^m$ et vektorrom (naturlig en A/m-modul) med dimensjon m. Det følger at $1\otimes \phi:(A/m)\otimes A^m\to (A/m\otimes A^n)$ er en isomorfi mellom vektorrom av dimensjoner m,n. Det følger at m=n. (fordi de har henholdsvis m,n basiselementer)

Om $\phi:A^m\to A^n$ er surjektiv, er $1\otimes\phi$ som over en surjektiv (lett å sjekke!) lineæravbildning mellom vektorrom av dimensjoner m,n. Fra dimensjonsteoremet (f.eks MAT4000)

$$\dim \operatorname{Ker}(1 \otimes phi) + \dim \operatorname{Im}(\phi) = m$$

Men om ϕ er surjektiv, er så dim Ker $(1 \otimes phi) + n = m$, så $m \geq n$. Samme argumentasjon som over gir at om $\phi: A^m \to A^n$ er injektiv, så er $m \leq n$.