TD 2 — Corrigé

1 Entraînement — Application du cours

1.1 Calculs sur les constantes d'équilibre

1. Expressions des constantes :

Réaction (1): HCO_3^- (aq) + $H_2O(l) \rightleftharpoons CO_3^{2-}$ (aq) + H_3O^+ (aq)

$$K_{1}^{\circ} = \frac{a_{\text{CO}_{3}^{2-}} \cdot a_{\text{H}_{3}\text{O}^{+}}}{a_{\text{HCO}_{3}^{-}} \cdot a_{\text{H}_{2}\text{O}}} = \frac{\left[\text{CO}_{3}^{2-}\right] / c^{\circ} \cdot \left[\text{H}_{3}\text{O}^{+}\right] / c^{\circ}}{\left[\text{HCO}_{3}^{-}\right] / c^{\circ} \cdot 1} = \frac{\left[\text{CO}_{3}^{2-}\right] \cdot \left[\text{H}_{3}\text{O}^{+}\right]}{\left[\text{HCO}_{3}^{-}\right] \cdot c^{\circ}}$$

Réaction (2): $Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$

$$K_2^{\circ} = \frac{a_{\text{Ag}^+}^2 \cdot a_{\text{CO}_3^{2-}}}{a_{\text{Ag}_2\text{CO}_3}} = \frac{\left([\text{Ag}^+]/c^{\circ} \right)^2 \cdot [\text{CO}_3^{2-}]/c^{\circ}}{1} = \frac{\left[\text{Ag}^+ \right]^2 \cdot \left[\text{CO}_3^{2-} \right]}{(c^{\circ})^3}$$

Réaction (3): $2 \text{ Ag(s)} + 2 \text{ H}_3 \text{O}^+ \text{ (aq)} \Longrightarrow 2 \text{ Ag}^+ \text{ (aq)} + \text{H}_2 \text{(g)} + 2 \text{ H}_2 \text{O(l)}$

$$K_{3}^{\circ} = \frac{a_{\mathrm{Ag}^{+}}^{2} \cdot a_{\mathrm{H}_{2}} \cdot a_{\mathrm{H}_{2}}^{2}}{a_{\mathrm{Ag}}^{2} \cdot a_{\mathrm{H}_{3}\mathrm{O}^{+}}^{2}} = \frac{\left([\mathrm{Ag}^{+}]/c^{\circ}\right)^{2} \cdot \left(P_{\mathrm{H}_{2}}/P^{\circ}\right)}{1 \cdot \left([\mathrm{H}_{3}\mathrm{O}^{+}]/c^{\circ}\right)^{2}} = \frac{\left[\mathrm{Ag}^{+}\right]^{2} \cdot P_{\mathrm{H}_{2}}}{\left[\mathrm{H}_{3}\mathrm{O}^{+}\right]^{2} \cdot P^{\circ}}$$

Ce qui donne:

$$K_3^{\circ} = \frac{[Ag^+]^2 \cdot P_{H_2}}{[H_3O^+]^2 \cdot P^{\circ}}$$

2. Déduction de la réaction globale et de K_4° :

En combinant les trois réactions :

- (1) directe
- (2) inverse
- (3) directe

On obtient:

$$2\,Ag\left(s\right) + HCO_{3}{}^{-} + H_{3}O^{+} \Longleftrightarrow Ag_{2}CO_{3}(s) + H_{2}(g) + 2\,H_{2}O\left(l\right)$$

TD 2 — Corrigé Page 1 sur 12

Donc:

$$K_4^\circ = \frac{K_1^\circ \cdot K_3^\circ}{K_2^\circ}$$

3. Calcul numérique :

$$K_4^{\circ} = \frac{10^{-10,2} \cdot 10^{-27}}{10^{-11}} = 10^{-10,2-27+11} = 10^{-26,2}$$

Ainsi, $K_4^{\circ} = 10^{-26,2}$.

1.2 Rendement d'une extraction

1. À l'équilibre:

$$P = \frac{[I_2 (org)]}{[I_2 (aq)]}$$

avec:

$$[I_2\left(aq\right)] = \frac{c_0V_0 - \xi}{V_0}, \quad [I_2\left(org\right)] = \frac{\xi}{V_1}$$

Il vient:

$$\xi = \frac{c_0 V_0}{1 + \frac{V_0}{PV_1}} = \frac{n_0}{1 + \frac{V_0}{PV_1}}, \text{ avec } n_0 = c_0 V_0$$

Application numérique : $\xi = 3.8 \times 10^{-5} \text{ mol}$

$$\rho = \frac{\xi}{c_0 V_0} = 76 \%$$

2. À l'issue de la première extraction, on a extrait :

$$\xi_1 = \frac{c_0 V_0}{1 + \frac{V_0}{PV_2}} = 3.1 \times 10^{-5} \text{ mol}$$

Il reste dans la phase aqueuse:

$$n_0' = n_0 - \xi_1$$

On réalise une seconde extraction sur le même volume V_0 , avec $V_2 = 10,0$ mL, on extrait :

$$\xi_2 = \frac{n_0'}{1 + \frac{V_0}{PV_2}} = 1.2 \times 10^{-5} \text{ mol}$$

Quantité totale extraite :

$$\xi_1 + \xi_2 = 4.3 \times 10^{-5} \text{ mol}$$

Rendement global:

$$\rho = \frac{\xi_1 + \xi_2}{c_0 V_0} = 86 \%$$

Conclusion : une extraction fractionnée est plus efficace qu'une extraction unique, à volume total de solvant identique.

2 Exercices intermédiaires

2.1 Complexe tétraamminezinc(II)

1. Complétons Tableau d'avancement volumique (en $mol \cdot L^{-1}$):

$$Zn^{2+} + 4NH_3 \longrightarrow [Zn(NH_3)_4]^{2+}$$

2. On sait que la concentration en Zn^{2+} à l'équilibre est $1,0\cdot 10^{-7}$ mol· L^{-1} , donc :

$$1.0 \cdot 10^{-2} - x = 1.0 \cdot 10^{-7} \implies x = 1.0 \cdot 10^{-2} - 1.0 \cdot 10^{-7} \approx 1.0 \cdot 10^{-2}$$

À l'équilibre, on a donc :

$$[[Zn(NH_3)_4]^{2+}] = x \approx 1.0 \cdot 10^{-2}$$
; $[NH_3] = 1.0 - 4x \approx 1.0 - 0.04 = 0.96$

Constante d'équilibre :

$$\beta_4 = \frac{[[Zn(NH_3)_4]^{2+}]}{[Zn^{2+}] \cdot [NH_3]^4}$$

Calcul:

$$\beta_4 = \frac{1,0 \cdot 10^{-2}}{1,0 \cdot 10^{-7} \cdot (0,96)^4} = \frac{1,0 \cdot 10^{-2}}{1,0 \cdot 10^{-7} \cdot 0,849} \approx \frac{1,0 \cdot 10^{-2}}{8,49 \cdot 10^{-8}} \approx 1,18 \cdot 10^5$$

$$\boxed{\beta_4 \approx 1,2 \cdot 10^5}$$

TD 2 — Corrigé Page 3 sur 12

2.2 Oxydation du fer (II)

Établissons le tableau d'avancement volumique (en mol· L^{-1}):

Constante d'équilibre :

L'eau est le solvant donc $a_{\rm H_2O}=1$. O₂ est un gaz, donc on utilise sa pression partielle. Les autres espèces sont en solution aqueuse diluée, donc :

$$K = \frac{[Fe^{3+}]^2}{[Fe^{2+}]^2 \cdot [H^+]^2} \cdot \left(\frac{P^{\circ}}{p_{O_2}}\right)^{1/2} = \left(\frac{2x}{0.10 - 2x}\right)^2 \cdot \frac{(P^{\circ})^{1/2}}{[H^+]^2 \cdot p_{O_2}^{1/2}}$$

Pourcentage de Fe²⁺ non oxydé :

L'équation précédente nous permet d'accéder à x en prenant la racine carrée de chaque membre :

$$\frac{2x}{0,10-2x} = \sqrt{K} \cdot \frac{[H^+] \cdot p_{O_2}^{1/4}}{(P^\circ)^{1/4}}$$

Nous nous intéressons au fer (II) restant (non oxydé) soit :

$$y = [Fe^{2+}]_{eq} = 0.10 - 2x$$

Or:

$$K = \left(\frac{0.10 - y}{y}\right)^2 \cdot \frac{(P^\circ)^{1/2}}{(0.10)^2 \cdot (0.2)^{1/2}}$$

On isole le rapport $\frac{0.10 - y}{y}$:

$$\left(\frac{0.10 - y}{y}\right)^2 = K \cdot \frac{(0.10)^2 \cdot \sqrt{0.2}}{\sqrt{P^\circ}}$$

Expression littérale finale de y:

$$0.10 - y = y \cdot \sqrt{K} \cdot \frac{0.10 \cdot p_{O_2}^{1/4}}{(P^\circ)^{1/4}} \quad \Rightarrow \quad y = \frac{0.10}{1 + \sqrt{K} \cdot \frac{0.10 \cdot p_{O_2}^{1/4}}{(P^\circ)^{1/4}}}$$

Le pourcentage p de fer non oxydé correspond à :

TD 2 — Corrigé Page 4 sur 12

$$p = \frac{y}{0,10} = \frac{1}{1 + \sqrt{K} \cdot \frac{0.10 \cdot p_{O_2}^{1/4}}{(P^{\circ})^{1/4}}}$$

Application numérique :

On utilise les données :

$$K = 10^{56}$$
, $p_{O_2} = 0.2 \,\text{bar}$, $P^{\circ} = 1 \,\text{bar}$

On évalue:

$$p = \frac{1}{1 + \sqrt{10^{56} \cdot \frac{0,10 \cdot (0,2)^{1/4}}{1^{1/4}}}} = \frac{1}{1 + 10^{28} \cdot 0,10 \cdot (0,2)^{1/4}}$$

Avec:

$$(0.2)^{1/4} \approx 0.6687 \quad \Rightarrow \quad p = \frac{1}{1 + 10^{28} \cdot 0.10 \cdot 0.6687} = \frac{1}{1 + 6.687 \cdot 10^{26}}$$

$$p\approx 1.496\cdot 10^{-27}$$

Conclusion:

Le pourcentage de Fe²⁺ non oxydé est :

$$p \approx 1.5 \cdot 10^{-27}$$
 (soit totalement négligeable par rapport à 1)

La réaction est quasi totale, le Fe²⁺ est quasiment totalement oxydé.

2.3 Dissolution du spodumène (réaction totale)

Les deux réactions étant quantitatives, on peut raisonner sur les réactifs limitants.

L'acide sulfurique est considéré comme un diacide fort, il libère quantitativement deux ions H^+ en solution aqueuse selon :

$$H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$$

On a donc:

$$\frac{n_{\text{H}_2\text{SO}_4}}{1} = \frac{n_{\text{H}^+}}{2}$$

On cherche le volume (et donc la quantité de matière) minimale à introduire pour dissoudre 1 mole de spodumène, ce qui correspond à des conditions stœchiométriques. La réaction de dissolution du spodumène étant considérée comme quantitative, on peut écrire :

$$\frac{n_{\mathrm{H^+}}}{8} = n_{\mathrm{spodum\`ene}} \quad \Rightarrow \quad n_{\mathrm{H_2SO_4}} = 4 \, n_{\mathrm{spodum\`ene}}$$

TD 2 — Corrigé Page 5 sur 12

On dispose des relations suivantes :

$$\%_{\text{H}_2\text{SO}_4} = \frac{m_{\text{H}_2\text{SO}_4}}{m_{\text{solution}}}, \quad \rho_{\text{solution}} = d \times \rho_{\text{eau}}, \quad m_{\text{H}_2\text{SO}_4} = n_{\text{H}_2\text{SO}_4} \times M_{\text{H}_2\text{SO}_4}$$

Le volume de solution d'acide sulfurique à utiliser s'écrit :

$$V_{\text{solution}} = \frac{m_{\text{solution}}}{\rho_{\text{solution}}} = \frac{m_{\text{H}_2\text{SO}_4}}{\%_{\text{H}_2\text{SO}_4} \cdot d \cdot \rho_{\text{eau}}} = \frac{n_{\text{H}_2\text{SO}_4} \cdot M_{\text{H}_2\text{SO}_4}}{\%_{\text{H}_2\text{SO}_4} \cdot d \cdot \rho_{\text{eau}}} = \frac{4 \, n_{\text{spodumène}} \cdot M_{\text{H}_2\text{SO}_4}}{\%_{\text{H}_2\text{SO}_4} \cdot d \cdot \rho_{\text{eau}}}$$

Application numérique :

$$V_{\text{solution}} = \frac{4 \cdot 1.0 \cdot 98}{0.93 \cdot 2.0 \cdot 1.0} = 0.21 \,\text{L}$$

Remarque : en pratique, un excès d'acide sulfurique est nécessaire pour dissoudre totalement le spodumène.

2.4 Equilibre en phase gazeuse

1. Quantité de matière de chaque composé introduit dans le récipient

— Pour le monoxyde d'azote NO, d'après la loi des gaz parfaits :

$$n_0(\text{NO}) = \frac{P_1 \cdot V}{R \cdot T_1} = \frac{6000 \cdot 2,000 \times 10^{-3}}{8,314 \cdot 300} \approx 4.81 \times 10^{-3} \,\text{mol}$$

— Pour le dibrome Br₂ :

$$n_0(\mathrm{Br_2}) = \frac{m}{M} = \frac{0.300}{159.8} \approx 1.88 \times 10^{-3} \,\mathrm{mol}$$

2. Quantité de matière totale à l'équilibre

On utilise de nouveau la loi des gaz parfaits, à la température $T_2=333\,\mathrm{K}$ et pression $P_2=8220\,\mathrm{Pa}$:

$$n_{\text{tot,eq}} = \frac{P_2 \cdot V}{R \cdot T_2} = \frac{8220 \cdot 2,000 \times 10^{-3}}{8,314 \cdot 333} \approx 5.94 \times 10^{-3} \,\text{mol}$$

3. Avancement ξ_{eq} de la réaction à l'équilibre

On écrit le tableau d'avancement (en mol) :

TD 2 — Corrigé Page 6 sur 12

La quantité de matière totale à l'équilibre est :

$$n_{\text{tot,eq}} = n_0(\text{NO}) + n_0(\text{Br}_2) - \xi$$

D'où:

$$\xi_{\rm eq} = n_0({\rm NO}) + n_0({\rm Br_2}) - n_{\rm tot,eq} \approx 4.81 \cdot 10^{-3} + 1.88 \cdot 10^{-3} - 5.94 \cdot 10^{-3} = 7.5 \times 10^{-4} \, {\rm mol}$$

4. Valeur de la constante d'équilibre K° à la température T_2

Toutes les espèces étant gazeuses, on utilise l'expression :

$$K^{\circ} = \frac{a_{\text{NOBr}}^2}{a_{\text{NO}}^2 \cdot a_{\text{Br}_2}} = \frac{\left(\frac{2\xi}{n_{\text{tot,eq}}}\right)^2}{\left(\frac{n_0(\text{NO}) - 2\xi}{n_{\text{tot,eq}}}\right)^2 \cdot \left(\frac{n_0(\text{Br}_2) - \xi}{n_{\text{tot,eq}}}\right)}$$

On obtient, après simplification (car les $n_{tot,eq}$ se simplifient à la puissance 0) :

$$K^{\circ} = \frac{(2\xi)^2}{(n_0(NO) - 2\xi)^2 \cdot (n_0(Br_2) - \xi)}$$

$$K^{\circ} = \frac{(2 \cdot 7.5 \cdot 10^{-4})^2}{(4.81 \cdot 10^{-3} - 2 \cdot 7.5 \cdot 10^{-4})^2 \cdot (1.88 \cdot 10^{-3} - 7.5 \cdot 10^{-4})} \approx 12.3$$

2.5 Fluoration du dioxyde d'uranium – Programme Python (d'après Centrale-Supélec)

1. Nous dressons le tableau d'avancement de la réaction en posant $n_0=1,0$ mol, avec la variable ξ :

L'état final est supposé à l'équilibre. La constante d'équilibre s'écrit :

$$K^{\circ} = 6.8 \cdot 10^4 = \frac{p_{\text{H}_2\text{O}}^2}{p_{\text{HF}}^4}$$

En exprimant les pressions partielles selon $p_i = \frac{n_i}{n_{\text{tot}}^g} \cdot p$, avec p = 1 bar, on a :

$$n_{\mathrm{tot}}^{\mathrm{g}}=1.0-2\xi$$
 \Rightarrow $p_{\mathrm{H}_{2}\mathrm{O}}=\frac{2\xi}{1-2\xi}$, $p_{\mathrm{HF}}=\frac{1-4\xi}{1-2\xi}$

TD 2 — Corrigé Page 7 sur 12

D'où:

$$K^{\circ} = 6.8 \cdot 10^4 = \frac{4\xi^2 (1 - 2\xi)^2}{(1 - 4\xi)^4}$$

Cette équation permet de calculer ξ numériquement. Une méthode simple est d'approximer autour de $\xi \approx 0.25$, car $\xi \to 0.25 \Rightarrow 1 - 2\xi \approx 0.5$, $1 - 4\xi \approx 0$. On teste :

$$1 - 4\xi = 0.03 \Rightarrow \xi = 0.24$$

On réinjecte pour affiner l'estimation, ce qui confirme que $\boxed{\xi=0.24}$ mol à l'équilibre.

2. Programme Python permettant de simuler l'évolution du quotient de réaction :

```
# Entrée de l'état initial.

n0 = 1  # Quantité de HF.

n1 = 0  # Quantité d'eau.

# Calcul du quotient de réaction initial.

Q = 0

# Comparaison entre le quotient de réaction et la constante d'équilibre,

# puis augmentation jusqu'à atteindre la constante d'équilibre.

while Q < 68000:

n0 = n0 - 4 * 0.001

n1 = n1 + 2 * 0.001

Q = (n1**2) * (n0 + n1)**2 / n0**4

print (n0=1, n0, n1=1, n1)
```

3. La même méthode est utilisée. L'équation obtenue s'écrit toujours :

$$6.8 \cdot 10^4 = \frac{4\xi^2 (1 - 2\xi)^2}{(1 - 4\xi)^4}$$

dont la résolution fournit toujours $\xi = 0,24$ mol. Cette valeur n'est pas acceptable, car elle conduit à une quantité de matière en dioxyde d'uranium UO_2 négative. L'hypothèse de réalisation d'un équilibre chimique en fin d'évolution n'est par conséquent pas valide : la réaction est une réaction totale aboutissant à la disparition totale de la phase solide $UO_2(s)$ (rupture d'équilibre). Le tableau d'avancement s'écrit :

3 Approfondissement — Résolution de problèmes

TD 2 — Corrigé Page 8 sur 12

3.1 Équilibres simultanés 1 (CCP)

1. Exprimons les deux constantes d'équilibre par :

$$K_1^{\circ} = 0.950 = \frac{p_{\text{SO}_3}}{p^{\circ}}$$
 et $K_2^{\circ} = 400 = \frac{p_{\text{SO}_2}^2 p_{\text{O}_2}}{p_{\text{SO}_3}^2 p^{\circ}}$

2. La pression partielle en trioxyde de soufre est calculée en utilisant la constante d'équilibre K_1° :

$$p_{SO_3} = 0.950$$
 bar.

Comme $p_{O_2} = \frac{1}{2}p_{SO_2}$, il vient en utilisant la constante d'équilibre K_2° :

$$p_{SO_2} = 8,96 \text{ bar et } p_{O_2} = 4,48 \text{ bar.}$$

3. Réalisons les tableaux d'avancement en notant ξ_1 l'avancement relatif à l'équilibre de décomposition du gypse et ξ_2 l'avancement relatif à l'équilibre de décomposition du trioxyde de soufre. À l'équilibre nous avons :

La quantité de matière en trioxyde de soufre est calculée par utilisation de la relation :

$$p_{SO_3} = \frac{n_{SO_3}RT}{V}$$

avec $n_{SO_3}=\xi_1-2\xi_2=8$, 17×10^{-2} mol. La quantité de matière en dioxygène est fournie par la relation :

$$p_{\mathcal{O}_2} = \frac{n_{\mathcal{O}_2}RT}{V}$$

avec $n_{\rm O_2}=\xi_2=0.385$ mol. Ces relations permettent d'estimer les avancements :

$$\xi_1 = 0.852 \text{ mol}$$
 $\xi_2 = 0.385 \text{ mol}$

En fin de réaction il reste une quantité de matière en $CaSO_4(s)$ et $SiO_2(s)$ égale à 1,00 – $\xi_1=0,148$ mol.

3.2 Equilibres simultanés 2 (CCP)

1. Réalisons les tableaux d'avancement en notant ξ_1 l'avancement relatif à la réaction (1) et ξ_2 l'avancement relatif à la réaction (2), avec $n_1 = 1,00$ mol et $n_2 = 3,00$ mol :

TD 2 — Corrigé Page 9 sur 12

La quantité de matière totale gazeuse vaut :

$$n_{\text{tot}}^g = 4.00 + 2\xi_1.$$

2. Les quotients de réaction Q_1 et Q_2 des réactions (1) et (2) sont calculés par :

$$Q_{1} = \frac{p_{\text{CO}}p_{\text{H}_{2}}^{3}}{p_{\text{CH}_{4}}p_{\text{H}_{2}\text{O}}(p^{\circ})^{2}} = \frac{n_{\text{CO}}n_{\text{H}_{2}}^{3}}{n_{\text{CH}_{4}}n_{\text{H}_{2}\text{O}}(n_{\text{CO}} + n_{\text{H}_{2}} + n_{\text{CH}_{4}} + n_{\text{H}_{2}\text{O}})^{2}} \left(\frac{p_{\text{tot}}}{p^{\circ}}\right)^{2}$$
$$= \frac{(\xi_{1} - \xi_{2})(3\xi_{1} + \xi_{2})^{3}}{(1 - \xi_{1})(3 - \xi_{1} - \xi_{2})(4,00 + 2\xi_{1})^{2}} \left(\frac{p_{\text{tot}}}{p^{\circ}}\right)^{2}$$

et:

$$Q_2 = \frac{p_{\text{CO}_2}p_{\text{H}_2}}{p_{\text{CO}}p_{\text{H}_2\text{O}}} = \frac{n_{\text{CO}_2}n_{\text{H}_2}}{n_{\text{CO}}n_{\text{H}_2\text{O}}} = \frac{\xi_2(3\xi_1 + \xi_2)}{(\xi_1 - \xi_2)(3,00 - \xi_1 - \xi_2)}$$

Applications numériques : $Q_1 = 254$ et $Q_2 = 0.830$.

Dans les deux cas le quotient de réaction est inférieur à la constante d'équilibre, les réactions évoluent dans le sens de formation des produits (sens \rightarrow).

3.3 Dépolymérisation du paraldéhyde (d'après Ulm, 2015)

1. Quantité de matière à partir de la pression à haute température

À haute température, la pression d'équilibre P_{eq} devient linéaire en fonction de T, ce qui est cohérent avec le comportement d'un gaz parfait.

À
$$T = 100 \,^{\circ}\text{C} = 373 \,\text{K}$$
, on lit $P_{\text{eq}} = 5.0 \times 10^4 \,\text{Pa}$.

D'après la loi des gaz parfaits :

$$n_{\text{total}} = \frac{P_{\text{eq}}V}{RT} = \frac{5.0 \cdot 10^4 \cdot 50 \cdot 10^{-6}}{8.314 \cdot 373} \approx 2.7 \times 10^{-4} \,\text{mol}$$

Puisque la réaction est :

$$Pa(g) \Longrightarrow 3A(g)$$
 (avec $Pa = C_6H_{12}O_3$, $A = CH_3CHO$)

TD 2 — Corrigé Page 10 sur 12

et que la dépolymérisation est considérée totale, on en déduit :

$$n_0(\text{Pa}) = f = 2.7 \times 10^{-4} \,\text{mol}, \quad n_A = 3f = 8.0 \times 10^{-4} \,\text{mol}$$

2. Influence de la température sur l'équilibre

L'augmentation de température déplace l'équilibre vers la droite (dépolymérisation), ce qui indique que la réaction est endothermique. Cela est cohérent avec l'observation expérimentale : P_{eq} augmente avec T, donc la quantité d'éthanal formée augmente.

3. Lecture de P_A^* sur la figure

 P_A^* est la pression du système contenant uniquement la quantité $n_A=3f$ d'éthanal, dans le même volume V, à la température T. Graphiquement, c'est le prolongement linéaire de la courbe de $P_{\rm eq}(T)$ à haute température (où seule l'espèce A est présente), soit la courbe en pointillés sur le graphique.

4. Établissons le tableau d'avancement volumique (en mol· L^{-1}) :

$$\begin{array}{c|cccc} & \text{Pa}(g) & \Longrightarrow & 3\,\text{A}(g) \\ \hline \text{État initial} & n_0 & & 0 \\ \hline \text{État final} & n_0 - \xi & & 3\xi \\ \end{array}$$

On a donc $n_{tot}(gaz) = n_0 + 2\xi$. La constante d'équilibre s'écrit en fonction des activités :

$$K_1^{\circ} = \frac{a_{\rm A}^3}{a_{\rm Pa}} = \frac{\left(\frac{P_{\rm A}}{P^{\circ}}\right)^3}{\frac{P_{\rm Pa}}{P^{\circ}}} = \frac{P_{\rm A}^3}{P_{\rm Pa} \cdot (P^{\circ})^2}$$

On exprime les pressions partielles à l'équilibre à partir des fractions molaires :

$$P_{\text{A,eq}} = \frac{n_{\text{A,eq}}}{n_{\text{gaz}}^{\text{tot}}} \cdot P_{\text{eq}}, \qquad P_{\text{Pa,eq}} = \frac{n_{\text{Pa,eq}}}{n_{\text{gaz}}^{\text{tot}}} \cdot P_{\text{eq}}$$

D'après le tableau d'avancement (molaires) :

$$n_{\rm A} = 3\xi$$
, $n_{\rm Pa} = n_0 - \xi$, $n_{\rm tot} = n_0 + 2\xi$

Donc:

$$P_{A,eq} = \frac{3\xi}{n_0 + 2\xi} \cdot P_{eq}, \qquad P_{Pa,eq} = \frac{n_0 - \xi}{n_0 + 2\xi} \cdot P_{eq}$$

En remplaçant dans K_1° :

$$K_{1}^{\circ} = \frac{\left(\frac{3\xi}{n_{0} + 2\xi} P_{\text{eq}}\right)^{3}}{\left(\frac{n_{0} - \xi}{n_{0} + 2\xi} P_{\text{eq}}\right) \cdot (P^{\circ})^{2}} = \frac{(3\xi)^{3} \cdot P_{\text{eq}}^{3}}{(n_{0} - \xi)(n_{0} + 2\xi)^{2} \cdot (P^{\circ})^{2}}$$

TD 2 — Corrigé Page 11 sur 12

On souhaite maintenant éliminer n_0 et ξ au profit de grandeurs mesurées.

$$P_{A}^{*} = \frac{3n_{0}RT}{V}, \quad P_{\text{eq}} = \frac{(n_{0} + 2\xi)RT}{V} \Rightarrow n_{0} = \frac{P_{A}^{*}V}{3RT}, \quad \xi = \frac{1}{2}\left(\frac{P_{\text{eq}}V}{RT} - n_{0}\right) = \frac{V}{2RT}\left(P_{\text{eq}} - \frac{P_{A}^{*}}{3}\right)$$

En remplaçant dans l'expression de K_1° , on obtient :

$$K_{1}^{\circ} = \frac{\left(\frac{3}{2}\left(P_{\text{eq}} - \frac{P_{A}^{*}}{3}\right)\right)^{3} \cdot P_{\text{eq}}^{3}}{\left(\frac{P_{A}^{*}}{3} - \frac{1}{2}\left(P_{\text{eq}} - \frac{P_{A}^{*}}{3}\right)\right) \cdot \left(\frac{P_{\text{eq}}}{RT/V}\right)^{2} \cdot (P^{\circ})^{2}}$$

Après simplification on obtient :

$$K_1^{\circ} = \frac{(3P_{\text{eq}} - P_A^*)^3}{4(P_A^* - P_{\text{eq}}) \cdot (P^{\circ})^2}$$

Cette expression permet un calcul précis à partir des données graphiques de $P_{\rm eq}$ et P_A^* .

5. Application numérique à $40\,^{\circ}\text{C}$

Lecture graphique : $P_{\rm eq}=3.9\times 10^4\,{\rm Pa}$, $P_A^*=4.0\times 10^4\,{\rm Pa}$ soit $K^\circ=11$. La réaction est très peu favorisée. Cette détermination de K° n'est pas très précise étant donné l'exploitation graphique...

TD 2 — Corrigé Page 12 sur 12