LECON2112 Advanced Microeconomics II

- Assignment 6 -

(SOLUTIONS)

Professor Benoît Decerf TA: Thomas Eisfeld Academic Year: 2023/2024 Spring term

Exercises¹

9C2. Consider the following game:

(a) What is the set of weak PBEs when $\gamma > 0$?

Solution. Let σ_F be the probability that I fights after entry, μ_1 be I's belief that In_1 was E's entry strategy if entry has occurred, and σ_0 , σ_1 , σ_2 be the probabilities with which E actually chooses OUT, In_1 and In_2 respectively.

Note first that I plays Fight with positive probability if and only if its expected utility from doing so is at least as large as the expected utility of playing Accomodate:

$$EU_I(Fight) \ge = EU_I(Accomodate)$$

 $\Leftrightarrow -1(\mu) - 1(1-\mu) \ge -2(\mu) + 1(1-\mu)$

which means $\mu_1 \geq \frac{2}{3}$.

Suppose, first, that $\mu_1 > \frac{2}{3}$ is the system of beliefs at the weak PBE. If that is the case, I should always play Fight in case of entry, (so $\sigma_F = 1$). Therefore, it is always optimal for E to adopt entry strategy In_2 (so $\sigma_1 = 0$, $\sigma_2 = 1$). But the consistent beliefs condition requires that $\sigma_1 = 0$ implies $\mu_1 = 0$, a contradiction.

¹Source: Mas-Colell, Whinston, & Green, 1995. "Microeconomic Theory," Oxford University Press.

Suppose, instead, that $\mu_1 < \frac{2}{3}$ is the system of beliefs at the weak PBE. In this case, I should always play Accomodate in case of entry (so $\sigma_F = 0$). Therefore, it is always optimal for E to adopt entry strategy In_1 (so $\sigma_1 = 1$, $\sigma_2 = 0$). But the consistent beliefs condition requires that $\sigma_1 = 1$ implies $\mu_1 = 1$, which is again a contradiction.

Finally, consider $\mu_1 = \frac{2}{3}$ is the system of beliefs at the weak PBE. In this case, E must randomize in the equilibrium with positive probabilities attached to both In_1 and In_2 . I's probability of playing Fight must make E indifferent between playing In_1 and In_2 :

$$EU_E(In_1) = EU_E(In_2)$$

$$\Leftrightarrow -1(\sigma_F) + 3(1 - \sigma_F) = \gamma(\sigma_F) + 2(1 - \sigma_F),$$

which means $\sigma_F = \frac{1}{\gamma+2}$. Thus, E's payoff for entering (playing either In_1 or In_2) is $EU_E(In_1) = EU_E(In_2) = \frac{3\gamma+2}{\gamma+2}$. And since that is positive for any $\gamma > 0$, E never plays OUT. Note that as beliefs need to be consistent, it follows from $\mu_1 = \frac{2}{3}$ that $\sigma_1 = \frac{2}{3}$.

As a result, the unique weak PBE of this game when $\gamma>0$ is $(\sigma_0,\sigma_1,\sigma_2)=(0,\frac{2}{3},\frac{1}{3})$, $\sigma_F=\frac{1}{\gamma+2}$, and $\mu_1=\frac{2}{3}$.

(b) What is the set of weak PBEs when $\gamma \in (-1,0)$?

Solution. As in the previous case, we cannot have that $\mu_1 < \frac{2}{3}$ is the system of beliefs at the weak PBE. However, we can have $\mu_1 > \frac{2}{3}$ or $\mu_1 = \frac{2}{3}$.

For $\mu_1 > \frac{2}{3}$, I should always play Fight in case of entry (so $\sigma_F = 1$). Given $\gamma \in (-1,0)$, it is optimal for E to play OUT, which supports any beliefs in the information set of I. Therefore, one class of weak PBE is with $(\sigma_0, \sigma_1, \sigma_2) = (1, 0, 0)$, $\sigma_F = 1$, and $\mu_1 > \frac{2}{3}$.

When $\mu_1 = \frac{2}{3}$, and as before, E must randomize in the equilibrium with positive probabilities attached to both In_1 and In_2 . I's probability of playing Fight must make E indifferent between playing In_1 and In_2 :

$$EU_E(In_1) = EU_E(In_2)$$

$$\Leftrightarrow -1(\sigma_F) + 3(1 - \sigma_F) = \gamma(\sigma_F) + 2(1 - \sigma_F)$$

$$\Leftrightarrow 3 - 2\sigma_F = 2 - (2 - \gamma)\sigma_F,$$

which means $\sigma_F = \frac{1}{\gamma+2}$. Therefore, E's payoff for entering (by choosing In_1 or In_2), is $EU_E(In_1) = EU_E(In_2) = \frac{3\gamma+2}{\gamma+2}$.

With $\gamma \in (-1,0)$, E will actually enter if and only if γ is large enough to guarantee that

$$EU_E(In_1) = EU_E(In_2) > EU_E(OUT)$$

 $\Leftrightarrow \frac{3\gamma + 2}{\gamma + 2} > 0,$

which implies $\gamma > -\frac{2}{3}$.

So, if $\gamma \leq -\frac{2}{3}$, E will play OUT, meaning that a weak PBE with $\mu_1 = \frac{2}{3}$ does not exists. If, however, $\gamma > -\frac{2}{3}$, there exists a weak PBE such that $(\sigma_0, \sigma_1, \sigma_2) = (0, \frac{2}{3}, \frac{1}{3})$, $\sigma_F = \frac{1}{\gamma+2}$, and $\mu_1 = \frac{2}{3}$.