PERAMALAN JUMLAH PENUMPANG PESAWAT BANDARA I GUSTI NGURAH RAI MENGGUNAKAN EXPONENTIAL SMOOTHING DAN RUEY-CHYN TSAUR

Wildan Fatturahman Mujtaba^{1 §}, I Gusti Ayu Made Srinadi², I Wayan Sumarjaya³

ABSTRACT

Bali province is a tourist destination island with good transportation. Airplane is the most used transportation to go to Bali. Convenience of the airline passengers are the most important thing for I Gusti Ngurah Rai Airport Authorithy. An exact forecast method is needed to predict the numbers of passenger in the future. There are two types of forecasting methods; triple exponential smoothing and Fuzzy Time Series Ruey-Chyn Tsaur, however based on the research Fuzzy Time Series Ruey-Chyn Tsaur is better than triple exponential smoothing due to a small error MAPE (Mean Absolute Percentage Error) of 2,4% and plot is close to actual data.

Keywords: forecasting, air passengers, triple exponential smoothing, Fuzzy Time Series Ruey-Chyn Tsaur

1. PENDAHULUAN

Provinsi Bali merupakan wilayah kepulauan yang menjadi tujuan destinasi wisata dengan sarana transportasi yang baik. Sarana ini mempunyai berperan penting dan strategis dalam menunjang segala aspek kehidupan di Bali. Salah satu transportasi yang paling banyak yang digunakan untuk menuju Bali adalah transportasi udara.

Pesawat terbang merupakan sarana yang dapat digunakan masyarakat untuk menunjang aktifitasnya, baik dalam hal bisnis maupun berwisata. Pada tahun 2019, Bandar Udara Internasional I Gusti Ngurah Rai merupakan salah satu bandar udara dengan lalu lintas terpadat di Indonesia setelah Bandara Soekarno Hatta dengan keberangkatan pesawat sebanyak 77.601 (BPS, 2020). Peningkatan jumlah penumpang di Bandara I Gusti Ngurah Rai terjadi pada lima tahun terakhir yaitu pada tahun 2015 sampai 2019 sebesar 5% (Kantor Otoritas Bandara Wilayah IV, 2020).

Salah satu hal yang vital bagi Otoritas Bandara I Gusti Ngurah Rai adalah memperhatikan kenyamanan pengguna transportasi udara, maka dibutuhkan suatu metode peramalan yang diharapkan mampu meramalkan jumlah penumpang pesawat dikemudian waktu atau masa yang akan datang dengan akurasi peramalan yang baik.

ISSN: 2303-1751

Peramalan adalah kegiatan dalam memperkirakan hal yang akan terjadi di waktuyang akan datang dan merupakan teknik dalam hal perencanaan yang efektif dan efisien. Model deret waktu adalah model dengan menggunakan data historis memprediksikan masa depan (Makridaris, 1983).

Metode yang digunakan dalam penelitian ini yaitu triple exponential smoothing dan fuzzy time series Ruey-Chyn Tsaur. Metode triple exponential smoothing adalah salah satu metode yang sering digunakan dalam meramalkan data time series untuk plot data trend dan seasonal, kelebihannya ialah kemudahan dalam operasi yang relatif tidak sulit. Pada penelitian terdahulu, metode triple exponential smoothing digunakan untuk meramalkan jumlah penumpang pesawat Bandara Internasional Adisutiipto memperoleh tingkat akurasi yang baik dengan error MSD yang kecil 82222422 (Munawaroh, 2010)

¹Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: <u>kwonwildan 14@gmail.com</u>]

²Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: sumarjaya@unud.ac.id]

³ProgramStudi Matematika, Fakultas MIPA – Universitas Udayana [Email: srinadi@unud.ac.id] [§]Corresponding Author

Metode kedua yang digunakan dalam penelitian ini adalah metode fuzzy time series Ruey-Chyn Tsaur vaitu salah satu metode yang sering digunakan untuk meramal pada fuzzy time Salah satu kelebihannya mempunyai nilaoi MAPE (Mean Absolute Percentage Error) yang kecil dibandingkan metode fuzzy time series lainnya (Jilani, 2010). Pada penelitian terdahulu, peramalan penjualan mobil yang dilakukan oleh Berutu pada 2013, menggunakan metode Ruev-Chyn ternyata diperoleh nilai MSE (Mean Square Error) yang lebih kecil, dan tingkat ke akuratannya baik yaitu sebesar Berdasarkan penelitian sebelumnya, secara umum metode Ruey-Chyn Tsaur memiliki tingkat akurasi yang cukup baik dibandingkan dengan triple exponential smoothing dengan nilai MAPE yang kecil (Berutu, 2013).

Kedua metode tersebut digunakan mengestimasi dan memprediksi model terbaik pada data penumpang pesawat di Bandar Udara Internasional I Gusti Ngurah Rai.

2. METODE PENELITIAN

2.1. Jenis dan Sumber Data

Data yang digunakan ialah data sekunder merupakan rekap data jumlah penumpang domestik di Bandara Internasional I Gusti Ngurah Rai. Sumber data adalah divisi angkutan udara Kantor Otoritas Bandara Wilayah IV. Data yang digunakan ialah data bulanan dari Januari 2015-Desember 2019.

2.2. Variabel Penelitian

Penelitian ini menggunakan satu variabel yaitu jumlah penumpang pesawat domestik di Bandara Internasional I Gusti Ngurah Rai. Variabel ini merupakan variabel deret waktu.

2.3. Metode Analisis Data

Teknik analisis data dilakukan dengan beberapa tahap yaitu:

2.3.1. Metode Triple Exponential Smoothing

- a. Input data.
- b. Menganalisis efek aditif dan efek multiplikatif data penumpang pesawat.
- c. Menentukan nilai awal peramalan
 - 1. Nilai awal untuk penghalusan total

$$L_0 = \frac{1}{s} (Z_1 + Z_2 + Z_3 + \dots + Z_s)$$
 (1)

2. Nilai awal untuk penghalusan trend

$$b_0 = \frac{1}{s} \left(\frac{Z_{s+1} - Z_1}{s} + \frac{Z_{s+2} - Z_2}{s} + \frac{Z_{s+3} - Z_3}{s} + \dots + \frac{Z_{s+s} - Z_s}{s} \right)$$
(2)

3. Nilai awal untuk penghalusan seasonal

$$I_k = Z_k - L_0 \tag{3}$$

Sedangkan untuk model Multiplikatif berbeda pada tahap *seasonal*

$$I_k = \frac{Z_k}{L_0} \tag{4}$$

- d. Melakukan pendugaan parameter α untuk penghalusan yang baru dilakukan (*level*), β untuk unsur *trend*, serta γ untuk unsur *seasonal*.
- e. Menghitung penghalusan model aditif dan multiplikatif dengan persamaan:
 - 1. Penghalusan *level* model Aditif $L_{t} = \alpha(y_{t} S_{t-1}) + (1 \alpha)(L_{t-1} + b_{t-1}) \quad (5)$
 - 2. Penghalusan *trend* model Aditif $b_{t} = \beta(L_{t} + L_{t-1}) + (1 \beta)b_{t-1}$ (6)
 - 3. Penghalusan *seasonal* model Aditif $S_t = \gamma(y_t L_t) + (1 \gamma)S_{t-s}$ (7)
 - 4. Penghalusan *level* model Multiplikatif $L_{t} = \alpha \frac{y_{t}}{s_{t-1}} + (1-\alpha)(L_{t-1} + b_{t-1}) \quad (8)$
 - 5. Penghalusan *trend* model Multiplikatif $b_t = \beta(L_t + L_{t-1}) + (1 \beta)b_{t-1}$ (9)
 - 6. Penghalusan *seasonal* model Multiplikatif

$$S_{t} = \gamma \frac{y_{t}}{L_{t}} + (1 - \gamma)S_{t-s}$$
 (10)

7. Peramalan (TES)

$$F_{t+m} = (L_t + mb_t)s_{t-s+m}$$
 (11)

- f. Menghitung peramalan metode TES model aditif dan multiplikatif.
- g. Menentukan model terbaik metode TES antar model aditif dan multiplikatif dengan cara membandingkan perhitungan nilai error MAPE.

2.3.2. Metode Fuzzy Time Series Ruey-Chyn Tsaur

Menentukan himpunan semesta
 Penentuan himpunan semesta merupakan tahap menentukan nilai maksimum serta nilai minimum untuk setiap data aktual dari jumlah penumpang perbulan untuk sejumlah data penumpang yang akan

dijadikan himpunan semesta (U=[min,max]).

2. Menentukan interval

Pemisahan himpunan semesta ke dalam interval dengan panjang yang sama , dalam menentukan besar interval digunakan metode Strugess.

3. Fuzzifikasi data

Fuzzifikasi (penyamaran) dari nilai himpunan nyata menjadi himpunan fuzzy sesuai dengan yang telah dibentuk. Prosesnya didefinisikan jika data real ke-i berada dalam interval U_i maka hasil fuzzifikasinya adalah A_i $(1 \le i \le n)$.

4. Menentukan fuzzy logical relationships Relasi fuzzy yaitu $A_i \rightarrow A_j$. Dimana A_j merupakan pengamatan pada waktu ke t-1 dan A_i ialah pengamatan pada waktu ke t

5. Menentukan *fuzzy logical relationships* group

Pengelompokkan nilai FLR yang sama. Hasil dari proses ini juga menjadi dasar perhitungan defuzzifikasi. Sehingga membentuk matriks transisi frekuensi.

6. Menghitung hasil ramalan

Mengubah bentuk *fuzzy* menjadi bilangan real. Pada proses ini bentuk *fuzzy* juga sekaligus menjadi tahap pemodelan data deret waktu dari metode peramalan ini.

7. Menghitung *error*

Menggunakan MAPE (*Mean Absolute Percentage Error*) dengan persamaan berikut

$$MAPE = \left(\frac{100\%}{n}\right) \sum_{t=1}^{n} \frac{\left|Y_{t} - F_{t}\right|}{Y_{t}}$$
(Tsaur, 2005)

3. HASIL DAN PEMBAHASAN

3.1 Deskripsi data

Identifikasi data kedatangan penumpang pesawat domestik di Bandara I Gusti Ngurah Rai pada Januari 2015-Desember 2019 pada Tabel 3.1

Tabel 3.1 Data Kedatangan Penumpang Pesawat Domestik

ISSN: 2303-1751

Bulan	Tahun					
	2015	2016	2017	2018	2019	
Jan	311.636	359.951	387.804	394.330	377.073	
Feb	300.620	348.410	332.742	405.378	363.736	
Mar	309.211	390.195	375.962	437.430	369.107	
Apr	339.866	386.318	415.931	454.709	371.883	
Mei	380.972	451.226	408.137	420.162	295.277	
Jun	358.808	383.007	403.597	481.479	457.760	
Jul	379.299	500.963	503.684	538.578	454.068	
Agt	386.070	450.042	475.014	489.990	483.823	
Sep	346.839	412.801	440.381	468.536	418.285	
Okt	401.273	416.044	393.517	476.692	440.904	
Nov	326.278	403.606	364.273	445.064	433.919	
Des	435.918	475.110	426.955	518.777	508.723	

Sumber: Data rekapan angkutan udara Kantor Otoritas Bandara Wilayah IV

Gambar 3.1. Plot Data Kedatangan Penumpang Pesawat

Dilihat bahwa terjadi kenaikan pada bulan Juli 2018 sebanyak 538.578 penumpang dan penurunan pada bulan Mei 2019 295.277 penumpang. Berdasarkan plot diatas terdapat unsur *trend* dan *seasonal*.

3.2 Peramalan dengan metode *triple* exponential smoothing

Tahap ini data dibagi menjadi data *training* dimulai dari bulan Januari 2015 sampai bulan Desember 2018. Data *testing* dimulai dari bulan Januari 2019 sampai bulan Desember 2019. Plot data *training* dan data *testing* pada data jumlah penumpang pesawat domestik sebagai berikut:

Gambar 3.2. Plot Data Training dan Testing

Pemilihan parameter α, β dan γ

Menentukan nilai parameter yang akan meminimumkan *error*. Ketiga parameter tersebut ditentukan dengan bantuan *software R*.

Tabel 3.2 Nilai Parameter TES Aditif

Parameter	Nilai	
α	0,4196197	
β	0	
γ	1	

Tabel 3.3 Nilai Parameter TES Multiplikatif

Parameter	Nilai	
α	0,4222481	
β	0	
γ	1	

2. Peramalan jumlah kedatangan penumpang pesawat domestik

Tahap akhir adalah meramalkan pada dua belas periode pada tahun 2019. Hasil peramalan metode TES aditif dan multiplikatif diperoleh hasil pada tabel 3.4.

Peramalan jumlah penumpang pesawat domestik menggunakan metode TES Aditif pada tahun 2019. Jumlah penumpang tertinggi terjadi bulan Juli 2019 dengan ramalan sebanyak 613.163 penumpang. Penumpang terendah terjadi pada bulan Juli 2019 sebesar 475.194 penumpang. Hasil peramalan metode TES multiplikatif pada tahun 2019 penumpang tertinggi pada Bulan Juli 2019 sebanyak 629.375 penumpang, sedangkan penumpang terendah

terjadi pada bulan Februari 2019 sebesar 464.622 penumpang.

Tabel 3.4 Hasil Peramalan Menggunakan Metode TES Aditif

Period	Peramalan	
Jan 2019	484.772	
Feb 2019	475.194	
Mar 2019	504.892	
Apr 2019	525.131	
Mei 2019	513.216	
Jun 2019	554.408	
Jul 2019	613.163	
Aug 2019	568.934	
Sep 2019	541.958	
Okt 2019	535.424	
Nov 2019	503.825	
Des 2019	580.531	

Tabel 3.5 Hasil Peramalan Menggunakan Metode TES Multiplikatif

Period	Peramalan	
Jan 2019	484.772	
Feb 2019	464.622	
Mar 2019	500.121	
Apr 2019	525.035	
Mei 2019	510.188	
Jun 2019	557.202	
Jul 2019	629.372	
Aug 2019	578.282	
Sep 2019	544.606	
Okt 2019	533.051	
Nov 2019	493.236	
Des 2019	581.917	

Gambar 3.3. Plot Hasil Peramalan Metode TES Aditif

Gambar 3.4. Plot Hasil Peramalan Metode TES Multiplikatif

Berdasarkan nilai *error* yang diperoleh metode TES Aditif ialah 30,498555, sedangkan pada metode TES multiplikatif ialah 30,308116.

Diperoleh model terbaik yaitu metode TES multiplikatif dengan nilai parameter $\alpha = 0,4222481$, $\beta = 0$ dan $\gamma = 1$

3.3 Peramalan dengan metode fuzzy time series Ruey-Chyn Tsaur

Tahapan yang dilakukan pada metode *fuzzy time series Ruey-Chyn Tsaur*:

- 1. Mencari himpunan semesta dari Januari 2015-Desember 2019 dengan $D_{min} = 295.277$; $D_{max} = 538.578$; $D_1 = 5.277$; $D_2 = 1.422$ (U=[290.000; 540.000])
- Pemisahan himpunan semesta ke dalam interval dengan panjang yang sama menggunakan rumus Strugess sebagai berikut:

$$n = 1 + 3,322 \log N$$
$$= 7$$

Banyaknya interval yaitu tujuh interval. Langkah berikutnya, yaitu membagi himpunan semesta yang sudah ditentukan, ke dalam 7 interval yang sama panjang untuk nilai linguistiknya dan data terfuzzifikasinya:

$$l = \frac{\left[\left(D_{maks} + D_2 \right) - \left(D_{min} - D_1 \right) \right]}{n}$$

$$= \frac{\left[\left(538.578 + 1.422 \right) - \left(295.277 - 5.277 \right) \right]}{7}$$

$$= \frac{\left[\left(540.000 \right) - \left(290.000 \right) \right]}{7}$$

$$= 35.714, 28 \approx 35.714$$

Tujuh interval yang sama dalam himpunan U adalah

$$u_1, u_2, u_3, u_4, u_5, u_6, u_7$$

$$u_1 = [290.000, 325.714], u_2 = [325.714, 361.428],$$

$$u_3 = [361.428, 397.142], u_4 = [397.142, 432.856],$$

$$u_5 = [432.856, 468.570], u_6 = [468.570, 504.284],$$

$$u_7 = [504.284, 539.998]$$

- 3. Berdasarkan himpunan semesta yang sudah diperoleh, dapat ditentukan himpunan semesta untuk setiap data penumpang pesawat domestik, yaitu dengan mengubah data yang berbentuk interval ke dalam bentu linguistik. Data pada bulan Januari 2015 sebesar 311.636 masuk dalam interval $u_1 = [290.000; 325.714]$, kemudian dari himpunan semesta terbentuk, ketika berada pada himpunan A_1 maka u_1 memiliki derajat keanggotaan 1.
- 4. Tahap ini menentukan relasi logika fuzzy yaitu A_i → A_j , dengan A_i merupakan amatan pada waktu ke t-1 dan A_j adalah amatan pada waktu ke t. Dilihat pada data bulan Maret dan April 2015 masing-masing fuzzifikasinya A₁ dan A₂, maka FLR nya A₁ → A₂.
- Pengelompokan nilai FLR yang sama. Hasil dari proses ini juga menjadi dasar pada perhitungan defuzzifikasi. Sehingga membentuk matriks transisi frekuensi

$$P_{ij} = \begin{bmatrix} 2/4 & 1/4 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1/7 & 4/7 & 1/7 & 1/7 & 0 & 0 \\ 1/15 & 3/15 & 6/15 & 3/15 & 1/15 & 1/15 & 0 \\ 0 & 1/12 & 1/12 & 5/12 & 2/12 & 3/12 & 0 \\ 0 & 1/11 & 2/11 & 2/11 & 2/11 & 2/11 & 2/11 \\ 0 & 0 & 1/7 & 1/7 & 3/7 & 1/7 & 1/7 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/3 \end{bmatrix}$$

6. Mengubah bentuk *fuzzy* menjadi bilangan real. Pada tahap ini, proses pengembalian bentuk *fuzzy* juga sekaligus menjadi tahap pemodelan data deret waktu pada metode ini.

Menghitung hasil ramalan pada Februari 2015 dimana FLRG data aktual 2015 $A_12(A_1),(A_2),(A_5)$. Berdasarkan FLRG *one to many* maka perhitungannya sebagai berikut $\hat{Y}1_2 = Y_{(t-1)}P_{11} + m_2P_{12} + m_5P_{15}$, dimana $Y_{(t-1)}$ ialah data aktual sebelum data yang diramalkan yaitu 311.636, P_{11}

merupakan nilai probabilitas transisi dari A_1 ke A_1 yaitu 2/4, m_2 adalah nilai tengah

$$\hat{Y}1_2 = Y_{(t-1)}P_{11} + m_2P_{12} + m_5P_{15}$$
= 311.636x2/4+343.571x1/4+450.713x1
= 354.389
pada interval A₂ yaitu 343.571.

7. Berdasarkan persamaan pada 2.5, maka diperoleh nilai MAPE sebesar 2,4%. Plot data perbandingan antara peramalan dengan data aktual sebanyak 60 data menggunakan bantuan *software* Microsoft Excel pada Gambar 3.5.

Gambar 3.5. Perbandingan Plot Peramalan dengan Data Aktual

3.4 Perbandingan hasil peramalan

Solusi untuk mengetahui hasil peramalan yang baik, dilakukan dengan dua cara membandingkan. Pertama, secara analitik dengan membandingkan nilai *error* (MAPE). Masing-masing nilai MAPE dari metode *triple exponential smoothing* dan *fuzzy time series Ruey-Chyn Tsaur* adalah 0,301 dan 0,024. Kedua secara visual dengan membandingkan plot aktual dengan hasil ramalan dari kedua metode.

Berdasarkan perbandingan peramalan penumpang pesawat di dapatkan hasil bahwa metode fuzzy time series Ruey-Chyn Tsaur lebih baik daripada metode triple exponential smoothing karena nilai MAPE lebih kecil dan plot mendekati data aktual.

Tabel 3.5 Perbandingan Hasil Peramalan Dengan Data Aktual

Periode / 4	Aktual (orang)	TES (orang)	FTS RCT (orang)
Jan-19	377.073	480.722	442.225
Feb-19	363.736	464.622	385.543
Mar-19	369.107	500.121	380.208
Apr-19	371.883	525.035	382.357
May-19	295.277	510.188	384.153
Jun-19	457.760	557.202	525.893
Jul-19	454.068	629.372	555.436
Aug-19	483.823	578.282	446.090
Sep-19	418.285	544.606	458.557
Oct-19	440.904	533.051	431.249
Nov-19	433.919	493.236	552.370
Dec-19	508.723	581.917	433.210

Berikut plot perbandingannya:

Gambar 3.6. Plot Perbandingan dari Hasil Peramalan dengan Data Aktual

4. SIMPULAN DAN SARAN

Peramalan jumlah kedatangan penumpang pesawat domestik di Bandara I Gusti Ngurah Rai dengan metode *fuzzy time series Ruey-Chyn Tsaur* lebih baik dari metode *triple exponential smoothing* dari Brown. Berdasarkan nilai MAPE yang kecil yaitu sebesar 2,4% dan plot yang mendekati data aktual dengan hasil peramalan dari Januari-Desember 2019 secara berurutan; 442.225; 385.543; 380.208; 382.357; 384.153; 525.893; 555.436; 446.090; 458.557; 431.249; 552.370; 433.210.

Pada penelitian selanjutnya diharapkan melakukan analisis dengan metode lainnya dan pada proses analisisnya lebih fokus kepada proses matematisnya bukan pada hasilnya.

ISSN: 2303-1751

DAFTAR PUSTAKA

- Badan Pusat Statistik, 2020. *Statistik Transportasi Udara Tahun 2019*. Jakarta: Badan Pusat Statistik.
- Berutu, S. S., 2013. Peramalan Penjualan dengan Metode *Fuzzy Time Series Ruey-Chyn Tsaur*. Tesis. Pasca Sarjana. Universitas Diponegoro, Semarang.
- Jilani A.T, Burney A. M, Ardil C. 2010. Fuzzy Metric Approach for Fuzzy Time Series Forecasting basedon Frequency Density Base Partitioning. *International Scholarly and Scientific Research and Innovation*: 4(7),1194-1199.
- Makridakis, S., Wheelwright, S.C., and McGee, V.E, 1983. *Forecasting, methods and Applications*. 2nd ed. USA: John Wiley and Sons Inc.
- Munawaroh, A.N, 2010. Peramalan Jumlah Penumpang Pada PT. Angkasa Pura I (PERSERO) Kantor Cabang Bandar Udara Internasional Adisutjipto Yogyakarta Dengan Metode *Winter's Exponential Smoothing* dan *Seasonal ARIMA*. Skripsi. Program Studi Matematika. Universitas Negeri Yogyakarta, Yogyakarta.
- Tsaur, Yang, Wang, 2005. Fuzzy Relation Analysis in Fuzzy Time Series Model. Computers and Mathematics with Application: 49, 539-548.