Permit Number 1790

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	ontaminant <u>Emission F</u>	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
05COM-001	Portable Compressors	CO NO _x PM SO ₂ VOC	5.64 0.20 2.74 2.25 2.82	6.35 0.23 3.08 2.53 3.17
05LDR-051	Cyclohexane Drum Loading	VOC	0.61	0.001
05LTR-034	KA Trailer Loading	ding VOC 0.3		
05LBA-048	KA Barge Loading	VOC	1.07	0.61
5LTR-054	NVR Trailer Loading	VOC	0.56	0.025
PD-50	N₂O/NO _x Abater (6)	CO NH ₃ NO _x N ₂ O VOC	6.20 2.11 47.39 2922.08 2.11	25.84 4.50 20.25 6243.75 4.50
PD-16A	No. 1 Dryer Dust Scrubber	РМ	0.01	0.05
PD-16B	No. 2 Dryer Dust Scrubber	PM	0.01	0.05
PD-17	Adipic Acid Loading	PM	0.35	1.13
PD-32	Adipic Acid Solution Tank	NO _x	0.45	1.08
PD-33	No. 1 Vacuum Jet Seal Tank	NO _x	0.21	0.50
PD-34	No. 2 Vacuum Jet Seal Tank	NO_x	0.05	0.12
PD-35	Semi-Refined WML Received	NO _x	0.02	0.10

Emission Point No. (1)	Source Aname (2)	Air Contaminant Name (3)		
FOIIIL NO. (1)	Name (2)	Name (3)	10/111	TPY**
PD-36	RML Receiver	NO_x	0.02	0.10
PD-37	Semi-Refined WML Storage 1.14	Гаnk	NO_x	0.47
PD-38	RML Storage Tank	NO_x	0.22	0.53
PD-39	Solution Water Receiver	NO_x	0.02	0.10
PD-40	Solution Water Tank	NO_x	0.47	1.13
PD-41	No. 1 Refined Solution Receiv	ver NO _x	0.02	0.10
PD-42	No. 2 Refined Solution Receiv	ver NO _x	0.02	0.10
PD-43	PML Tank Vent	NO _x	0.01	0.01
PD-49	Refined Solution Storage Tan	k NO _x	0.22	0.54
PD-4	West Cone Burner (5)	CO NO _x VOC	5.10 52.90 0.10	22.30 39.80 0.44
PD-5	East Cone Burner (5)	See footnote		
05CLT-095	Adipic Acid Cooling Tower	РМ	0.78	3.41
NA-CLT	Nitric Acid Cooling Tower	РМ	0.30	1.30
PC-9	Vent Stack	$ NH_3 $ $ NO_x $ $ N_2O $	2.12 79.50 1097.70	8.50 210.00 2072.50
PC-14	Batch Stripping	NH_3	2.98	1.10
05FUG-050	KA Fugitives (4)	VOC	2.80	12.25
MEOH-FUG	Methanol Area Fugitives (4)	VOC	0.15	0.64

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates * lb/hr TPY**		
FD-27	AA Plant Fugitives (4)	VOC	0.07	0.30	
	. , ,				
FD-28	AA Inorganic Fugitives (4)	HNO₃	0.03	0.10	
FC-10	Fugitives (4)	HNO₃ NH₃	0.01 0.04	0.05 0.19	
		NO_x	0.02	0.07	
		N_2O	0.01	0.01	
05TFL-07B	No. 3 Cyane Tank	VOC	0.34	0.38	
05TFL-07C	No. 4 Cyane Tank	VOC	0.33	0.38	
05TFL-07D	No. 6 De-Inventory Tank	VOC	0.09	0.31	
05TFL-07E	No. 61 Cyane Tank	VOC	0.34	0.38	
05TFX-008	Lean Oil Tank	VOC	0.40	0.03	
05TFX-011	EDTA Storage Tank	VOC	0.01	0.01	
05TFX-012	EDTA Metering Tank	VOC	0.01	0.01	
05TFX-015	Seal Flush Tank	VOC	0.01	0.01	
05TFX-016	Cobalt Catalyst Tank	VOC	0.17	0.03	
05TFX-18A	No. 5 KA Tank	VOC	0.97	0.36	
05TFX-18B	No. 11 KA Tank	VOC	1.36	0.57	
05TFX-18C	No. 52 KA Tank	VOC	1.36	0.57	
05TFX-18D	No. 53 KA Tank	VOC	1.36	0.57	
05TFX-020	NVR Storage Tank K-2	VOC	0.04	0.05	
05TFX-021	NVR Storage Tank K-1	VOC	0.04	0.05	

Emission	Source	Air Contaminant		Emission Rates *		
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**		
05TFX-022	Divert Tank K-6	VOC	0.71	0.10		
05TFL-023	Divert Tank K-8	VOC	0.71	0.10		
05TFX-024	NVR Storage Tank K-7	VOC	0.04	0.03		
05TFX-025	Divert Tank K-10	VOC	0.71	0.10		
05TFX-026	KA Storage Tank K-51	VOC	1.29	0.92		
05TFX-027	50A Tank	VOC	0.80	0.11		
05TFX-028	50B Tank	VOC	0.80	0.11		
05TFX-029	50C Tank	VOC	0.80	0.11		
05TFX-030	50D Tank	VOC	0.80	0.11		
05TFX-032	Unichem Tank	VOC	0.03	0.01		
05TFX-033	Crude KA/KALL Tank	VOC	6.82	16.06		
05TFX-035	Aqueous Waste Divert Tank	< VOC	0.13	0.02		
05TFX-038	Spill Containment Collection Tank	VOC	0.01	0.01		
05TFX-049	Portable Diesel Tank	VOC	0.25	0.01		
PD-45	DBE Process Tank Vent	VOC	0.19	0.80		
PJ-14I	Methanol Tank No. 41	VOC	0.143	0.12		
PJ-14J	Methanol Tank No. 42	VOC	0.143	0.12		
WWFUG	Wastewater Fugitives (4)	VOC	0.69	3.11		

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emissio lb/hr	on Rates * TPY**
PC-12	Ammonia Flare (MSS)	CO NH₃ NO _x VOC	1.073 3.410 1.903 0.408	0.861 1.840 1.079 0.322
PD-25	Absorber Vent (MSS)	CO NO _x N ₂ O VOC	53.00 72.90 14985.00 10.80	19.13 18.98 5852.00 4.22
05VNT-031	Aqueous Waste Decanter Ve (MSS)	nt CO VOC	0.04 0.14	0.01 0.02
05VNT-014	Steam Still Vent (MSS)	CO VOC	13.13 0.57	0.32 0.05
05VNT-037	Steam Still Decanter Vent (MSS)	CO VOC	2.63 0.11	0.06 0.01
5ABS-005	High Pressure Scrubber (MSS)	CO VOC	542.08 175.29	0.81 0.27
5ABS-013	Low Pressure Scrubber (MSS	S) CO VOC	206.09 25.81	0.31 0.04
MSS-FUG	MSS Emissions to Atmosphe (MSS)	re CO NO_x PM_{10} SO_2 VOC	6.71 5.84 0.87 0.01 151.19	0.39 0.44 0.02 0.01 1.84

- (1) Emission point identification either specific equipment designation or emission point number (EPN) from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name. Source name abbreviations:

Cyane - cyclohexane DBE - dibasic esters

EDTA - Ethylenediaminetetraacetic acid

KA - Ketone-Alcohol mixture of cyclohexanone and cyclohexanol

KALL - Ketone-Alcohol lower layer

NVR - non volatile residue

PML - Purge Mother Liquor (dibasic acid and water)RML - Refined Mother Liquor (adipic acid and water)

WML - Water Mother Liquor

(3) CO - carbon monoxide

NH₃ - ammonia

NO_x - total oxides of nitrogen

N₂O - nitrous oxide

PM - particulate matter, suspended in the atmosphere, including PM₁₀

PM₁₀ - particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns is emitted.

SO₂ - sulfur dioxide

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

HNO₃ - nitric acid

- (4) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
- (5) The holder of this permit, at his option, may emit all or part of the emissions allowed from the West Cone Burner (EPN PD-4) through the East Cone Burner (EPN PD-5). The sum of all emissions from both EPNs PD-4 and PD-5 may not exceed the maximum allowable emission rates shown for EPN PD-4.
- (6) The emissions allowed from the N₂O/NO_x Abater (EPN PD-50) include emissions referenced in Standard Permit Number 81904.

*	Emission rates a	re based	on and th	e facilities	are limited	by the	following	maximum	operating
	schedule:								

Hrs/day___ Days/week___ Weeks/year___ or Hrs/year_8,760_

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated: <u>June 20, 2011</u>