Notations et objectifs

 $\mathfrak{M}_n(\mathbb{C})$ désigne l'ensemble des matrices carrées à coefficients dans le corps $\mathbb{C}, n \geq 2$.

 $\mathrm{Sp}(A)$ désigne l'ensemble des valeurs propres de $A \in \mathfrak{M}_n(\mathbb{C})$.

 A^* désigne la matrice adjointe de la matrice $A \in \mathfrak{M}_n(\mathbb{C})$. Si $A = (a_{i,j})$ alors $A^* = (a'_{i,j})$ où $a'_{i,j} = \overline{a_{j,i}}$.

$$\mathbb{C}^n$$
 sera identifié à $\mathfrak{M}_{n,1}(\mathbb{C})$. Si $x \in \mathbb{C}^n$, on notera $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $x^* = (\overline{x_1} \dots \overline{x_n})$.

Si $z \in \mathbb{C}$, on note $\Re e(z)$ sa partie réelle et $\Im m(z)$ sa partie imaginaire.

 $\operatorname{tr}(A)$ désigne la trace de la matrice $A \in \mathfrak{M}_n(\mathbb{C})$.

 $A \in \mathfrak{M}_n(\mathbb{C})$ est dite normale si : $AA^* = A^*A$.

 $U \in \mathfrak{M}_n(\mathbb{C})$ est dite unitaire si : $UU^* = U^*U = I_n$.

Si \mathcal{M} et \mathcal{N} sont deux parties de \mathbb{C} , on note $\mathcal{M} + \mathcal{N}$, l'ensemble des z = x + y où $x \in \mathcal{M}$ et $y \in \mathcal{N}$. On note $\alpha \mathcal{M}$ l'ensemble des αx où $\alpha \in \mathbb{C}$ et $x \in \mathcal{M}$.

Les indications seront données en italique.

L'objet du problème est l'étude de propriétés de la partie de \mathbb{C} notée $\mathcal{F}(A)$ où $A \in \mathfrak{M}_n(\mathbb{C})$, définie comme l'ensemble des nombres complexes x^*Ax où $x \in \mathbb{C}^n$ vérifie $x^*x = 1$.

I. Enveloppe convexe; propriétés

Soit E un espace affine réel de dimension n. Étant donnés k points A_1, \ldots, A_k et k réels $\alpha_1, \ldots, \alpha_k$ tels que $\alpha_1 + \cdots + \alpha_k \neq 0$, on rappelle que le barycentre des points A_i affectés des coefficients α_i est l'unique point G tel que : $\alpha_1\overrightarrow{GA_1} + \cdots + \alpha_k\overrightarrow{GA_k} = \overrightarrow{0}$.

On adoptera dans la suite la notation : $G = \sum_{i=1}^k \alpha_i A_i$ si $\sum_{i=1}^k \alpha_i = 1$.

On rappelle qu'une partie \mathcal{P} de E est convexe si pour tous A, B de \mathcal{P} , et tout $u \in [0, 1]$, le barycentre (1 - u)A + uB est dans \mathcal{P} .

- 1. Soient $A_0, \ldots A_n$, (n+1) points de E tels que l'ensemble des vecteurs $(\overline{A_0A_i})_{1 \leqslant i \leqslant n}$ constitue une base de l'espace vectoriel associé à E. Montrer que, pour tout point M de E, il existe une famille unique de réels $\alpha_0, \ldots, \alpha_n$ telle que $\sum_{i=0}^n \alpha_i = 1$ et $M = \sum_{i=0}^n \alpha_i A_i$.
- 2. On appelle **enveloppe convexe** d'une partie non vide \mathcal{S} de E, l'intersection de toutes les parties convexes de E contenant \mathcal{S} . Montrer que l'enveloppe convexe de \mathcal{S} est convexe.
- 3. Montrer que l'ensemble des barycentres de la forme $\sum_{i=1}^k \alpha_i A_i$ avec $A_i \in \mathcal{S}, \alpha_i \geqslant 0$ pour

tout $i \in [1, k]$ et $\sum_{i=1}^{k} \alpha_i = 1$, est convexe. Montrer que c'est l'enveloppe convexe de S.

On pourra utiliser l'associativité du barycentre.

4. Soit
$$G = \sum_{i=1}^k \alpha_i A_i$$
 avec $A_i \in \mathcal{S}, \alpha_i \geqslant 0$ pour tout $i \in \llbracket 1, k \rrbracket$ et $\sum_{i=1}^k \alpha_i = 1$.

On suppose que k > n + 1.

a. Si $(\overrightarrow{A_1 A_i})_{2 \leqslant i \leqslant h}$ où $2 \leqslant h < k$, est une famille libre maximale parmi les vecteurs $\overrightarrow{A_1 A_i}$,

montrer qu'il existe une famille $(\lambda_1, \dots, \lambda_h) \in \mathbb{R}^h$ telle que $A_{h+1} = \sum_{i=1}^h \lambda_i A_i$ et $\sum_{i=1}^h \lambda_i = 1$.

b. Montrer que, pour tout $t \in \mathbb{R}$:

$$G = (\alpha_1 + t\lambda_1)A_1 + \dots + (\alpha_h + t\lambda_h)A_h + (\alpha_{h+1} - t)A_{h+1} + \dots + \alpha_k A_k.$$

- c. En faisant varier t à partir de zéro, montrer que G peut être considéré comme le barycentre à coefficients positifs ou nuls de (k-1) des points A_1, \ldots, A_k .
- d. En déduire que l'enveloppe convexe d'une partie S de E est l'ensemble des barycentres à coefficients positifs des familles de (n+1) points de S.
- 5. Soit \mathcal{S} une partie compacte de E. Montrer que son enveloppe convexe est compacte. On pourra l'exprimer comme image d'une certaine application continue.

II. Exemples

On rappelle que si $A \in \mathfrak{M}_n(\mathbb{C})$, $\mathcal{F}(A) = \{x^*Ax / x \in \mathbb{C}^n \text{ et } x^*x = 1\}$.

1. Déterminer $\mathcal{F}(A)$ dans les cas suivants :

(i)
$$A = I_n$$
. (ii) $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ (iii) $A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

- 2. Montrer que, si A est une matrice diagonale de $\mathfrak{M}_n(\mathbb{C})$, $\mathcal{F}(A)$ est l'enveloppe convexe des éléments diagonaux de A.
- 3. Montrer que, pour toute matrice A de $\mathfrak{M}_n(\mathbb{C})$, $\mathcal{F}(A)$ est une partie compacte de \mathbb{C} .
- 4. Montrer que, si $A \in \mathfrak{M}_n(\mathbb{C})$ et $\alpha \in \mathbb{C}$,

(i)
$$\mathcal{F}(A + \alpha I_n) = \mathcal{F}(A) + \{\alpha\}$$
 (ii) $\mathcal{F}(\alpha A) = \alpha \mathcal{F}(A)$.

- 5. Soit $A = (a_{i,j}) \in \mathfrak{M}_n(\mathbb{C})$. Montrer que $\mathcal{F}(A)$ contient $\operatorname{Sp}(A)$ ainsi que les éléments diagonaux $a_{i,i}$ $(1 \leq i \leq n)$ de A.
- 6. a. Montrer que toute matrice A de $\mathfrak{M}_n(\mathbb{C})$ s'écrit de façon unique A=H(A)+iS(A) où H(A) et S(A) sont hermitiennes.
 - b. Comparer $\mathcal{F}(H(A))$ et l'ensemble des $x = \Re e(z)$ lorsque z parcourt $\mathcal{F}(A)$.
- 7. Si A et B sont éléments de $\mathfrak{M}_n(\mathbb{C})$, montrer que : $\mathcal{F}(A+B) \subset \mathcal{F}(A) + \mathcal{F}(B)$. A-t-on : $\mathcal{F}(A) + \mathcal{F}(B) \subset \mathcal{F}(A+B)$?
- 8. Si A et U sont éléments de $\mathfrak{M}_n(\mathbb{C})$ et si U est unitaire, comparer $\mathcal{F}(U^*AU)$ et $\mathcal{F}(A)$.
- 9. Soit A une matrice normale de $\mathfrak{M}_n(\mathbb{C})$.
 - a. Avec les notations de 6.a. montrer que H(A) et S(A) commutent.
 - b. Montrer que tout sous-espace propre de H(A) est stable par S(A) et que si s est l'endomorphisme canoniquement associé à S(A), alors l'endomorphisme induit par s sur ce sous-espace vectoriel est diagonalisable dans une base orthonormale.
 - c. En déduire l'existence d'une matrice unitaire $U\in\mathfrak{M}_n(\mathbb{C})$ telle que $U^*H(A)U$ et $U^*S(A)U$ soient diagonales.
 - d. Comparer $\mathcal{F}(A)$ et l'enveloppe convexe de $\mathrm{Sp}(A)$.

10. Si H est une matrice hermitienne de $\mathfrak{M}_n(\mathbb{C})$, déterminer $\mathcal{F}(H)$ en fonction des valeurs propres de H. On donnera une réponse faisant intervenir $\min (\operatorname{Sp}(H))$ et $\max (\operatorname{Sp}(H))$.

III. Description de $\mathcal{F}(A)$ lorsque $A \in \mathfrak{M}_{\mathbf{2}}(\mathbb{C})$

Dans toute cette partie III, à l'exception de la question 11, A désigne un élément de $\mathfrak{M}_2(\mathbb{C})$.

- 1. a. Montrer que l'on peut écrire $A=\lambda I_2+M$ avec $\lambda\in\mathbb{C},M\in\mathfrak{M}_2(\mathbb{C})$ et $\mathrm{tr}(M)=0$.
 - b. Montrer qu'il existe une matrice unitaire U de $\mathfrak{M}_2(\mathbb{C})$ telle que $U^*MU = \begin{pmatrix} \mu & \nu \\ \overline{\nu} & -\mu \end{pmatrix}$ avec $(\mu, \nu) \in \mathbb{C} \times \mathbb{C}$. On pourra utiliser II.6.a.
- 2. Montrer qu'il existe $(\theta_1, \theta_2) \in \mathbb{R}^2$ tel que, si $v = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ où $z_1 = e^{i\theta_1}, z_2 = e^{i\theta_2}$ alors $v^* \begin{pmatrix} \mu & \nu \\ \overline{\nu} & -\mu \end{pmatrix} v = 0.$
- 3. Montrer qu'il existe une matrice unitaire T de $\mathfrak{M}_2(\mathbb{C})$ telle que $T^*AT = \lambda I_2 + a\,N + b\,N^*$ avec $(\lambda,a,b)\in\mathbb{C}^3$ et $N=\begin{pmatrix}0&1\\0&0\end{pmatrix}$.

On note g l'application de \mathbb{C} dans \mathbb{C} définie par $z \mapsto g(z) = \lambda + az + b\overline{z}$.

- 4. Montrer que $\mathcal{F}(A) = g(\mathcal{F}(N))$.
- 5. Montrer que g est affine et en déduire que $\mathcal{F}(A)$ est convexe.
- 6. On note σ l'application linéaire associée à g. Soit $u = \sigma(1)$ et $v = \sigma(i)$. Montrer que $\det(\sigma) = \Im m(\overline{u}v)$, puis exprimer $\det(\sigma)$ en fonction $\det |a|$ et |b|.
- 7. Montrer que les propriétés suivantes sont équivalentes :
 - (i) $A A^* \neq A^* A$;
 - (ii) g est bijective;
 - (iii) $|a| \neq |b|$.
- 8. On suppose les propriétés équivalentes de la question III.7. satisfaites. On pose :

$$\mathcal{C} = \left\{ z \in \mathbb{C} \,\middle|\, |z| = rac{1}{2}
ight\} \qquad ext{et} \qquad \mathcal{E} = g(\mathcal{C})$$

- a. Comparer $\mathcal{F}(A)$ et l'enveloppe convexe de \mathcal{E} . Comparer \mathcal{E} et la frontière de $\mathcal{F}(A)$.
- b. On pose $a=|a|e^{i\alpha}$ et $b=|b|e^{i\beta}$ où $(\alpha,\beta)\in\mathbb{R}^2.$ Montrer que :

$$\mathcal{E} = \left\{ z = \lambda + \frac{1}{2} \left[(|a| + |b|) \cos(\theta) + i(|a| - |b|) \sin(\theta) \right] \exp\left(i \frac{\alpha + \beta}{2}\right) \, \Big| \theta \in \mathbb{R} \right\}$$

- c. Déterminer la nature géométrique de la courbe \mathcal{E} et montrer que les points de $\operatorname{Sp}(A)$ possèdent, vis à vis de \mathcal{E} , des propriétés géométriques remarquables que l'on précisera. On pourra examiner le polynôme caractéristique de A.
- 9. Caractériser par une propriété géométrique simple de l'ensemble $\mathcal{F}(A)$, chacune des cinq propriétés suivantes de la matrice A:
 - (i) A est normale;
 - (ii) A possède une valeur propre double ;
 - (iii) A est unitaire;
 - (iv) A est hermitienne;
 - (v) A est scalaire (c'est à dire de la forme αI_2 avec $\alpha \in \mathbb{C}$).

- 10. Soient A et B deux matrices de $\mathfrak{M}_2(\mathbb{C})$. Montrer que, si $\mathcal{F}(A) = \mathcal{F}(B)$, alors il existe une matrice unitaire U de $\mathfrak{M}_2(\mathbb{C})$ telle que $B = U^*AU$.
- 11. Si A et B sont deux matrices de $\mathfrak{M}_n(\mathbb{C})$ avec $n \geq 3$. l'affirmation suivante est-elle exacte ? Si $\mathcal{F}(A) = \mathcal{F}(B)$, alors il existe une matrice unitaire U de $\mathfrak{M}_n(\mathbb{C})$ telle que $B = U^*AU$. On pourra chercher des matrices diagonales.

IV. Cas général

- 1. Soit $A \in \mathfrak{M}_n(\mathbb{C})$ et $B \in \mathfrak{M}_m(\mathbb{C})$ où $m \geq 2$ et $n \geq 2$. On note $A \oplus B$ la matrice diagonale par blocs $\operatorname{Diag}(A, B)$ élément de $\mathfrak{M}_{n+m}(\mathbb{C})$. Comparer $\mathcal{F}(A \oplus B)$ et l'enveloppe convexe de $\mathcal{F}(A) \cup \mathcal{F}(B)$.
- 2. Construire $\mathcal{F}(A)$ lorsque $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathfrak{M}_4(\mathbb{C})$. On prendra l'unité de longueur égale à 4 cm et l'on ne justifiera pas la construction proposée.
- 3. Soit $A \in \mathfrak{M}_n(\mathbb{C})$. On se propose de montrer que $\mathcal{F}(A)$ est convexe, c'est à dire que si $\alpha \in [0,1] \subset \mathbb{R}$, si $(x,y) \in \mathbb{C}^n \times \mathbb{C}^n$ avec $x^*x = y^*y = 1$, alors $\alpha.x^*Ax + (1-\alpha).y^*Ay \in \mathcal{F}(A)$. Ce résultat a été établi lorsque n = 2 à la question III.5. On suppose donc $n \geq 3$.
 - a. Si $(x,y) \in \mathbb{C}^n \times \mathbb{C}^n$, montrer qu'il existe une matrice unitaire $U \in \mathfrak{M}_n(\mathbb{C})$ et un couple (v,w) de $\mathbb{C}^n \times \mathbb{C}^n$ tels que $x=Uv,\ y=Uw$ et que toutes les composantes de v et w d'ordre au moins égal à 3 soient nulles.
 - b. Conclure.
- 4. Une application de la convexité de $\mathcal{F}(A)$.
 - Soit \mathcal{V} un espace vectoriel hermitien de dimension n. Si x et y sont deux éléments de \mathcal{V} , on note (x|y) le produit scalaire hermitien de x et y. Soit f un \mathbb{C} -endomorphisme de \mathcal{V} . On se propose de montrer qu'il existe une base orthonormale $\mathcal{B} = (e_1, \ldots, e_n)$ de \mathcal{V} telle que : $(e_1|f(e_1)) = \cdots = (e_n|f(e_n))$.
 - a. Montrer que l'on peut supposer que tr(f) = 0. On fait cette hypothèse dans toute la suite de la question 4.
 - b. Soit A la matrice de f dans une base orthonormale quelconque de \mathcal{V} . Montrer que $0 \in \mathcal{F}(A)$. (On pourra utiliser la question II.5.) et en déduire l'existence d'un vecteur e_1 de \mathcal{V} tel que $(e_1|e_1) = 1$ et $(e_1|f(e_1)) = 0$.
 - On note H l'orthogonal de e_1 dans \mathcal{V} et p le projecteur orthogonal sur H. Soit f' l'endomorphisme de H défini par $f'(x) = (p \circ f)(x)$.
 - c. Montrer que, si $x \in H$, on a (x|f'(x)) = (x|f(x)).
 - d. Conclure.

- 5. Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Pour $\theta \in \mathbb{R}$, on note $H(e^{i\theta}A) = \frac{1}{2} \left(e^{i\theta}A + e^{-i\theta}A^* \right)$.
 - $H(e^{i\theta}A)$ est une matrice hermitienne.
 - a. S'il existe $\theta \in \mathbb{R}$ tel que $H(e^{i\theta}A)$ soit une matrice définie positive, déduire des résultats de la partie II. que 0 n'est pas élément de $\mathcal{F}(A)$.
 - b. Si \mathcal{C} est une partie convexe compacte, non vide de \mathbb{C} et $\alpha \in \mathbb{C} \setminus \mathcal{C}$, montrer qu'il existe une droite \mathcal{D} ne contenant pas α , qui sépare α et \mathcal{C} ie. (telle que le demi-plan ouvert limité par \mathcal{D} , contenant α , ne rencontre pas \mathcal{C}). On pourra considérer $\varphi : \mathcal{C} \to \mathbb{R}_+, z \mapsto |z \alpha|$.
 - c. Supposons que 0 n'appartienne pas à $\mathcal{F}(A)$. Déduire de la question précédente qu'il existe $\theta \in \mathbb{R}$ tel que $H(e^{i\theta}A)$ soit une matrice définie positive.

V. Caractérisation

L'application $\mathcal F$ de $\mathfrak M_n(\mathbb C)$ dans l'ensemble des parties de $\mathbb C$ a les propriétés suivantes :

- (1) Pour toute matrice $A \in \mathfrak{M}_n(\mathbb{C})$, $\mathcal{F}(A)$ est une partie convexe compacte de \mathbb{C} .
- (2) $\forall A \in \mathfrak{M}_n(\mathbb{C}), \ \forall \alpha \in \mathbb{C}, \ \mathcal{F}(A + \alpha I_n) = \mathcal{F}(A) + \{\alpha\} \ \text{et} \ \ \mathcal{F}(\alpha A) = \alpha \, \mathcal{F}(A).$
- (3) $\mathcal{F}(A) \subset \{z \in \mathbb{C} \mid \Re e(z) \geqslant 0\}$ si, et seulement si, la matrice $A + A^*$ est positive.
- (1) et (2) ont été prouvées dans les questions II.3, II.4 et IV.3.
- (3) est immédiate et n'est pas à démontrer.

Soient deux applications \mathcal{F}_1 et \mathcal{F}_2 de $\mathfrak{M}_n(\mathbb{C})$ dans \mathbb{C} vérifiant les propriétés (1), (2) et (3). Soit $A \in \mathfrak{M}_n(\mathbb{C})$; on suppose qu'il existe $\beta \in \mathbb{C}$ tel que $\beta \in \mathcal{F}_1(A)$ et $\beta \notin \mathcal{F}_2(A)$.

- 1. Déduire de la question IV.5.b. l'existence d'une droite \mathcal{L} du plan complexe séparant le point β et $\mathcal{F}_2(A)$.
- 2. Montrer qu'il existe $(\alpha_1, \alpha_2) \in \mathbb{C}^2$, $\alpha_1 \neq 0$ tel que : $\Re e(\alpha_1 \beta + \alpha_2) < 0$ et $\alpha_1 \mathcal{F}_2(A) + \{\alpha_2\} \subset \{z \in \mathbb{C} / \Re e(z) \geqslant 0\}$
- 3. En déduire une contradiction.
- 4. Conclure.