MATH 425A HW11, NOV. 16, 10PM

JUAN SERRATOS

1. Chapter 6

Exercise 3.1.

A collection \mathcal{A} of real-valued functions on a set E is said to be **uniformly bounded** on E if there exists M>0 such that $|f(x)|\leq M$ for all $x\in E$, for all $f\in \mathcal{A}$. (So each function is bounded, and the same bound works for all functions in \mathcal{A} .) Let (f_n) be a sequence of bounded functions which converges uniformly to a limit function f. Prove that $\{f_n\}_{n=1}^{\infty}$ is a uniformly bounded subset of $(B(X), d_u)$.

Proof. As $f_n \to f$, then we may pick $\epsilon = 1$ such that there exists some $N \in \mathbb{N}$ where $n \ge N$ gives $|f_n - f| < 1$. For each f_n , we have that it is bounded by some corresponding $M_n > 0$, i.e. $|f_n| \le M_n$. Now write $M = \max\{M_1, \dots, M_N\}$. Then, for $n \ge N$, $|f_n| \le |f_n - f| + |f - f_N| + |f_N| < 2 + M$. Therefore we have that $\{f_n\}_{n=1}^{\infty}$ is a uniformly bounded subset of B(X). □

Exercise 3.2.

Let $(f_n)_{n=1}^{\infty}$ and $(g_n)_{n=1}^{\infty}$ be a sequence of real-valued functions on a set E, which converges uniformly on E to limit functions f and g, respectively.

- (a) Prove that $(f_n + g_n)_{n=1}^{\infty}$ converges to f + g uniformly on E.
- (b) If each f_n and each g_n is bounded, show that $(f_ng_n)_{n=1}^{\infty}$ converges uniformly to fg on E.

Proof. (a) As $(f_n)_{n=1}^{\infty}$ and $(g_n)_{n=1}^{\infty}$ both converge uniformly, we have some $N \in \mathbb{N}$ and $M \in \mathbb{N}$ such that for $n \geq N$ and $n \geq M$ we get $|f_n(x) - f(x)| < \epsilon/2$ and $|g_n(x) - g(x)| < \epsilon/2$, respectively, for (all) $\epsilon > 0$. Then

$$\begin{split} |(f_n+g_n)-(f+g)| &= |(f_n-f)+(g_n-g)| \\ &\leq |f_n-f|+|g_n-g| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

 $\text{for } n \geq \max\{M,N\}. \text{ Hence we have } (f_n+g_n)_{n=1}^\infty \text{ uniformly converging to } f+g \text{ on } E.$

(b) Suppose that f_n and g_n are bounded; that is, for all f_n and g_n , we have $|f_n(x)| \leq M$ and $|g_n(x)| \leq T$ for some $M, P \in \mathbb{R}$ and all $x \in X$. The idea is two get an $\epsilon/2$ demonstration after applying the triangle inequality many times. As $g_n \to g$, for $\epsilon > 0$, there is some $N_1 \in \mathbb{N}$ such that for $n \geq N_1$ we can write $|g_n - g| < \frac{\epsilon}{2M}$. Additionally, for $\epsilon > 0$, there exists some $N_2 \in \mathbb{N}$ such that $|f_n - f| < \frac{\epsilon}{2(1+T)}$ for $n \geq N_2$. Note that there exists an $N_3 \in \mathbb{N}$ such that $|g_n - g| < 1$ for $n \geq N_3$. Then $|g| \leq |g_n - g| + |g_n| < 1 + T$. Then for $n \geq \max\{N_1, N_2, N_3\}$,

$$\begin{split} |(f_n g_n) - fg| &= |(f_n g_n) - fg + (f_n g - f_n g)| = |(f_n g_n - f_n g) + (f_n g - fg)| \\ &\leq |f_n g_n - f_n g| + |f_n g - fg| = |f_n (g_n - g)| + |g(f_n - f)| \\ &= |f_n||g_n - g| + |g||f_n - f| < M\left(\frac{\varepsilon}{2M}\right) + (1 + T)\left(\frac{\varepsilon}{2(T + 1)}\right) = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Exercise 1.1.

Prove parts (b) and (c) of the Proposition.

(a) Let A be subset of \mathbb{R} , let $\mathfrak{p} \in \mathbb{R}$ be a limit point of A with respect to \mathbb{R} , and let $f: A \to \overline{\mathbb{R}}$ be a function. Then

$$\lim_{x\to p} f(x) = +\infty$$

if and only if for every $L \in \mathbb{R}$, there exists $\delta > 0$ such that $0 < |x - p| < \delta$ and $x \in A$ together imply that f(x) > L.

(b) Let B be a subset of $\mathbb R$ that is not bounded above in $\mathbb R$, and let $g\colon B\to\overline{\mathbb R}$ be a function. Let q be a real number. Then

$$\lim_{x \to +\infty} g(x) = q$$

if and only if for every $\epsilon > 0$, there exists $M \in \mathbb{R}$ such that x > M and $x \in B$ together imply that $|g(x) - q| < \epsilon$.

(c) Let C be a subset of $\mathbb R$ that is not bounded above in $\mathbb R$; let $h\colon C\to\overline{\mathbb R}$ be a function. Then

$$\lim_{x\to +\infty} h(x) = +\infty$$

if and only if for every $N \in \mathbb{R}$, there exists $P \in \mathbb{R}$ such that x > P and $x \in C$ together imply h(x) > N.

Proof. Recall that a neighborhood of $+\infty$ is given by for any $c \in \mathbb{R}$ and x > c, the set $(c, +\infty)$ is a neighborhood of $+\infty$.

(b) (\Rightarrow) Let $\lim_{x\to +\infty} g(x) = q$ and $\varepsilon > 0$. As $q \in B(q,\varepsilon)$ is a neighborhood of q so we have a neighborhood U of $+\infty$, and we can write $U = (M, +\infty)$ by Proposition 1.1(a), such that $x \in U \cap B$ (i.e. x > M and $x \in B$) implies $g(x) \in V$, that is, $|g(x) - q| < \varepsilon$. (\Leftarrow) Suppose that for every $\varepsilon > 0$ there is some $M \in \mathbb{R}$ such that x > M and $x \in B$ implies $|g(x) - q| < \varepsilon$. Let $V = B(q,\varepsilon)$ be a neighborhood of q. Then as we have x > M and $x \in B$ (and g is not bounded), then g is a neighborhood of g. Then as we have g is a neighborhood of g. Then as we have g is a neighborhood of g. Then as we have g is a neighborhood of g. Then as we have g is a neighborhood of g is a neighborhood of g. Then as we have g is a neighborhood of g is a neighborhood of g. Then as we have g is a neighborhood of g is a neighborhood of g. Then as we have g is a neighborhood of g. Then as we have g is a neighborhood of g is a neighborhood of g. Then as we have g is a neighborhood of g is a neighborhood of g. Then as we have g is a neighborhood of g is a neighborhood of g. Then as we have g is a neighborhood of g is a neighborhood of g is a neighborhood of g. Then g is a neighborhood of g is a neighborhood of g is a neighborhood of g. Then g is a neighborhood of g. Then g is a neighborhood of g

(c) (\Rightarrow) Let $\lim_{x\to +\infty} h(x) = +\infty$, and let $N \in \mathbb{R}$. Then $(N, +\infty]$ is an open neighborhood of $+\infty$ in $\overline{\mathbb{R}}$ by Proposition 1.1(a). So we have an open neighborhood $U = (P, +\infty)$ of $+\infty$ such that $x \in U \cap C$ gives $h(x) \in (N, +\infty]$, which means that x > P for all $x \in C$ and also h(x) > N. (\Leftarrow) Assume that for every $N \in \mathbb{R}$, there exists some $P \in \mathbb{R}$ such that x > P and $x \in C$ implies h(x) > N. Then for every $N \in \mathbb{R}$, we have a neighborhood $U = (P, +\infty)$ of $+\infty$ by Proposition 1.1(a), and we also have that for x > P and $x \in C$ (i.e. $U \cap C$) we get $U \cap C$ we get $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ implies $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ implies $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in that $U \cap C$ implies $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in that $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exists an open neighborhood $U = (P, +\infty)$ of $U \cap C$ in the exist $U \cap C$

Exercise 4.1.

Let $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ be sequences in $\overline{\mathbb{R}}$. Prove the following statements.

- (a) If $s_n \leq t_n$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} s_n = +\infty$, then $\lim_{n \to \infty} t_n = +\infty$ as well.
- (b) If $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ converge in $\overline{\mathbb{R}}$ to s and t, respectively, and if $s_n \leq t_n$ for each $n \in \mathbb{N}$, then $s \leq t$.

Proof. (a) Let $s_n \leq t_n$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} s_n = +\infty$. Then we have that (s_n) is an unbounded sequence, meaning that for every $M \in \mathbb{R}$ such that M > 0 we have $s_n > M$. Then this forces $M \leq s_n \leq t_n$ for each $n \in \mathbb{N}$, and therefore t_n is also unbounded forcing $\lim_{n \to \infty} t_n = +\infty$ in $\overline{\mathbb{R}}$.

(b) Suppose $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ with $s_n \to s$ and $t_n \to t$ as $n \to \infty$. Further, assume $s_n \le t_n$ for all $n \in \mathbb{N}$. By way of contradiction, suppose that s > t. Then s - t > 0, and now we write $\epsilon = \frac{s-t}{2}$. As $s_n \to s$, then there is some $N_1 \in \mathbb{N}$ such that $n \ge N$ gives $s_n \in (s - \epsilon, s + \epsilon)$, i.e. $s - \epsilon < s_n < s + \epsilon$; similarly, we have some $N_2 \in \mathbb{N}$ where $n \ge N_2$ produces $t - \epsilon < t_n < t + \epsilon$. Now we have $t_n < t + \epsilon$, and so

$$t_n < t + \varepsilon = t + \frac{s-t}{2} = \frac{t+s}{2} = s - \varepsilon < s_n,$$

which is a contradiction. Therefore we have $s \leq t$.

Exercise 4.2.

Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences of real numbers. Prove that

$$\limsup_{n\to\infty}(a_n+b_n)\leq \limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n.$$

Provided that the RHS isn't of the form $\infty - \infty$.

Proof. We proceed by contradiction; suppose

$$\limsup (a_n + b_n)_{n \to \infty} > \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

As a short hand, we write $A = \limsup_{n \to \infty} \alpha_n$, $B = \limsup_{n \to \infty}$, and $\ell = \limsup_{n \to \infty} (\alpha_n + b_n)$. Then we have $\ell > A + B$ so $\ell - B > A$, and so there exists some $\gamma \in (A, \ell - B)$, so $\gamma > A = \limsup_{n \to \infty} \alpha_n$. By Theorem 4.2.(b), there exists some $N \in \mathbb{N}$ such that $n \geq N$ we get $\alpha_n < \gamma$ (i.e. for all but finitely many, as stated in the Theorem). Hence $\alpha_n + b_n < \gamma + b_n$ implies $\ell = \limsup_{n \to \infty} (\alpha_n + b_n) \leq \limsup_{n \to \infty} (\gamma + b_n) = \gamma + \limsup_{n \to \infty} b_n = \gamma + B$ (by the previous exercise and Theorem 4.2.(b)) when $n \geq N$. So $\ell \leq \gamma + B < \ell - B + B = \ell$, as we assumed $\gamma \in (A, \ell - B)$, and so we have a contradiction. Hence we have the desired inequality

$$\limsup_{n\to\infty}(a_n+b_n)\leq \limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n.$$

Department of Mathematics, University of Southern California, Los Angeles, CA 90007