Tightening big-M for Optimal Transmission Switching ISMP 2024 (July 23rd 2024)

Salvador Pineda

(joint work with J. M. Morales, C. Dominguez, A. Porras)

OASYS group, University of Málaga (Spain)

Optimal power flow (OPF): Determine the power generation and power flows to satisfy the demand at the minimum cost

The cheap unit satisfies the demand

Optimal solution: generate all with cheapest unit (cost = 1000€)

Electrons are not potatoes!!!

If $f_{13} \leq 40$, the expensive unit also generates (cost=1800€)

Network limits increate the cost!!!

If line 13 is disconnected, cost= 1000€

Disconnecting lines can reduce cost!!!

In the 118-bus system, the average cost saving is 13.2%

The optimal power flow (OPF) is formulated as a linear optimization problem

$$\min_{p_i, f_{ij}, \theta_i} \quad \sum_i c_i \, p_i \tag{1a}$$

s.t.
$$\sum_{(i,j)\in\mathcal{L}_{i}^{-}} f_{ij} - \sum_{(i,j)\in\mathcal{L}_{i}^{+}} f_{ij} = p_{i} - d_{i}, \quad \forall i$$
 (1b)

$$f_{ij} = b_{ij}(\theta_i - \theta_j), \quad \forall (i,j) \in \mathcal{L}$$
 (1c)

$$\underline{p}_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i \tag{1d}$$

$$-\underline{f}_{ij} \leqslant f_{ij} \leqslant \overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
 (1e)

The optimal transmission switching (OTS) requires binary variables x_{ij} and is formulated as a mixed-integer non-linear problem ...

$$\min_{p_i, f_{ij}, \theta_i, x_{ij}} \quad \sum_i c_i \, p_i \tag{2a}$$

s.t.
$$\sum_{(i,j)\in\mathcal{L}_{i}^{-}} f_{ij} - \sum_{(i,j)\in\mathcal{L}_{i}^{+}} f_{ij} = p_{i} - d_{i}, \quad \forall i$$
 (2b)

$$f_{ij} = x_{ij}b_{ij}(\theta_i - \theta_j), \quad \forall (i,j) \in \mathcal{L}$$
 (2c)

$$\underline{p}_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i \tag{2d}$$

$$- \underline{x_{ij}}\underline{f}_{ij} \leqslant f_{ij} \leqslant \underline{x_{ij}}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
 (2e)

$$\mathbf{x}_{ij} \in \{0, 1\}, \quad \forall (i, j) \in \mathcal{L}$$
 (2f)

... that can be directly solved using optimization solvers such as Gurobi.

To avoid the non-linear terms in

$$f_{ij} = \mathbf{x_{ij}} b_{ij} (\theta_i - \theta_j)$$

We replace it by

$$b_{ij}(\theta_i - \theta_j) - \overline{M}_{ij}(1 - x_{ij}) \leqslant f_{ij} \leqslant b_{ij}(\theta_i - \theta_j) - \underline{M}_{ij}(1 - x_{ij})$$

Together with equation

$$-x_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant x_{ij}\overline{f}_{ij}$$

We have that:

- If
$$x_{ij} = 1 \Rightarrow b_{ij}(\theta_i - \theta_j) \leqslant f_{ij} \leqslant b_{ij}(\theta_i - \theta_j)$$
 and $-\underline{f}_{ij} \leqslant f_{ij} \leqslant \overline{f}_{ij}$

- If
$$x_{ij}=0 \Rightarrow f_{ij}=0$$
 and $\underline{M}_{ij}\leqslant b_{ij}(\theta_i-\theta_j)\leqslant \overline{M}_{ij}$

The OTS is reformulated as a mixed-integer linear problem

$$egin{array}{ll} \min \limits_{p_i,f_{ij}, heta_i,x_{ij}} & \sum_i c_i\,p_i \ & ext{s.t.} & \sum \limits_{(i,j)\in\mathcal{L}_i^-} f_{ij} - \sum \limits_{(i,j)\in\mathcal{L}_i^+} f_{ij} = p_i - d_i, \quad orall i \end{array}$$

s.t.
$$\sum_{(i,j)\in\mathcal{L}_i^-} f_{ij} - \sum_{(i,j)\in\mathcal{L}_i^-} b_{ij}(\theta_i - \theta_j) - \overline{M}_{ij}$$
 $f_{ij} \leqslant b_{ij}(\theta_i - \theta_j)$

$$\begin{aligned} &(i,j) \in \mathcal{L}_{i} \\ &b_{ij}(\theta_{i} - \theta_{j}) - \overline{M}_{ij}(1 - \boldsymbol{x}_{ij}) \leqslant f_{ij}, \quad \forall (i,j) \in \mathcal{L} \\ &f_{ij} \leqslant b_{ij}(\theta_{i} - \theta_{j}) - \underline{M}_{ij}(1 - \boldsymbol{x}_{ij}), \quad \forall (i,j) \in \mathcal{L} \\ &\underline{p}_{i} \leqslant p_{i} \leqslant \overline{p}_{i}, \quad \forall i \\ &- \boldsymbol{x}_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant \boldsymbol{x}_{ij}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L} \end{aligned}$$

$$\begin{split} &\underline{p}_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i \\ &- \underbrace{x_{ij}}_{ij} \underline{f}_{ij} \leqslant f_{ij} \leqslant \underbrace{x_{ij}}_{ij} \overline{f}_{ij}, \\ &\underbrace{x_{ij}} \in \{0,1\}, \quad \forall (i,j) \in \mathcal{L} \end{split}$$

 \underline{M}_{ij} and M_{ij} must be valid bounds for $b_{ij}(\theta_i - \theta_j)$ if line is open

 \underline{M}_{ij} and M_{ij} must be small enough to avoid computational issues

$$\frac{1}{i}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$

$$orall (i,j) \in \mathcal{L}$$

$$(i,j) \in \mathcal{L}$$
 $(i,j) \in \mathcal{L}$

(3a)

(3b)

(3f)

(3g)

10 / 23

Since $\underline{M}_{ij} \leq b_{ij}(\theta_i - \theta_j) \leq \overline{M}_{ij}$ when $x_{ij} = 0$, we can compute these bounds for a particular switchable line (i', j') as

$$\overline{M}_{i'j'}^{\mathrm{OPT}} = \max_{p_i, f_{ij}, \theta_i, x_{ij}} b_{i'j'}(\theta_{i'} - \theta_{j'}) \tag{4a}$$

$$\mathrm{s.t.} \sum_{(i,j) \in \mathcal{L}_i^-} f_{ij} - \sum_{(i,j) \in \mathcal{L}_i^+} f_{ij} = p_i - d_i, \quad \forall i \tag{4b}$$

$$b_{ij}(\theta_i - \theta_j) - \overline{M}_{ij}(1 - x_{ij}) \leqslant f_{ij}, \quad \forall (i,j) \in \mathcal{L} \tag{4c}$$

$$f_{ij} \leqslant b_{ij}(\theta_i - \theta_j) - \underline{M}_{ij}(1 - x_{ij}), \quad \forall (i,j) \in \mathcal{L} \tag{4d}$$

$$\underline{p}_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i \tag{4e}$$

$$-x_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant x_{ij}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L} \tag{4f}$$

However, this problem is as difficult as the original one!!

 $x_{i'i'} = 0$ (Line is forced to be open)

 $x_{ij} \in \{0, 1\}, \quad \forall (i, j) \in \mathcal{L}$

(4g)

(4h)

(4a)

Fattahi et. al (2019) find a bound on $\overline{M}_{ij}^{\mathrm{OPT}}$ if there exists a connected spanning subgraph of the network with non-switchable lines

$$\overline{M}_{i'j'}^{\text{OPT}} \leqslant b_{i'j'} \sum_{(k,l) \in SP_{i'j'}} \frac{\overline{f}_{kl}}{b_{kl}}$$

where $SP_{i'j'}$ is the shortest path between nodes i' and j' (very easy to compute using Dijkstra's algorithm)

 $\overline{M}_{i'j'}^{LR} = \max_{p_i, f_{ij}, \theta_i, x_{ij}} b_{i'j'}(\theta_{i'} - \theta_{j'})$

Instead of solving the original bounding problem to compute $\overline{M}_{ii}^{\mathrm{opt}}$, we solve the following linear relaxation

s.t.
$$\sum_{(i,j)\in\mathcal{L}_{i}^{-}} f_{ij} - \sum_{(i,j)\in\mathcal{L}_{i}^{+}} f_{ij} = p_{i} - d_{i}, \quad \forall i$$
(5b)
$$b_{ij}(\theta_{i} - \theta_{j}) - \overline{M}_{ij}(1 - x_{ij}) \leqslant f_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
(5c)
$$f_{ij} \leqslant b_{ij}(\theta_{i} - \theta_{j}) - \underline{M}_{ij}(1 - x_{ij}), \quad \forall (i,j) \in \mathcal{L}$$
(5d)
$$\underline{p}_{i} \leqslant p_{i} \leqslant \overline{p}_{i}, \quad \forall i$$
(5e)
$$-x_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant x_{ij}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
(5f)
$$0 \leqslant x_{ij} \leqslant 1, \quad \forall (i,j) \in \mathcal{L}$$
(5g)
$$x_{i'j'} = 0 \quad \text{(Line is forced to be open)}$$
(5h)

This problem can be "too relaxed" and provide poor bounds...

(5a)

(5b)

Inspired by Porras et. at (2022), we include a bound on the cost using a "reasonable good" feasible solution.

$$\sum_{i} c_i p_i \leqslant \mathsf{cost}$$

An upper bound on the cost can be obtained using **greedy heuristics**. For instance, we n start with all lines connected and disconnect the line that involves highest savings by solving several OPF problem. We repeat the process until any disconnection increases the cost (cost $^{\rm HEU}$).

If the bound on the cost is considered, we solve the following problem

$$\overline{M}_{i'j'}^{\mathrm{LR}} = \max_{p_i, f_{ij}, \theta_i, x_{ij}} \quad b_{i'j'}(\theta_{i'} - \theta_{j'})$$
 (6a)
$$\mathrm{s.t.} \quad \sum_{(i,j) \in \mathcal{L}_i^-} f_{ij} - \sum_{(i,j) \in \mathcal{L}_i^+} f_{ij} = p_i - d_i, \quad \forall i$$
 (6b)
$$b_{ij}(\theta_i - \theta_j) - \overline{M}_{ij}(1 - x_{ij}) \leqslant f_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
 (6c)
$$f_{ij} \leqslant b_{ij}(\theta_i - \theta_j) - \underline{M}_{ij}(1 - x_{ij}), \quad \forall (i,j) \in \mathcal{L}$$
 (6d)
$$\underline{p}_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i$$
 (6e)
$$-x_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant x_{ij}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$
 (6f)
$$0 \leqslant x_{ij} \leqslant 1, \quad \forall (i,j) \in \mathcal{L}$$
 (6g)
$$x_{i'j'} = 0$$
 (6h)

 $\sum c_i p_i \leqslant \mathsf{cost}^{\mathsf{HEU}}$

(6i)

We also solve bounding problems to improve \underline{f}_{ij} and \overline{f}_{ij} as follows

$$\overline{f}_{i'j'}^{LR} = \max_{p_i, f_{ij}, \theta_i, x_{ij}} \quad b_{i'j'}(\theta_{i'} - \theta_{j'})$$
s.t.
$$\sum_{(i,j) \in \mathcal{L}_i^-} f_{ij} - \sum_{(i,j) \in \mathcal{L}_i^+} f_{ij} = p_i - d_i, \quad \forall i$$

$$b_{ij}(\theta_i - \theta_j) - \overline{M}_{ij}(1 - x_{ij}) \leqslant f_{ij}, \quad \forall (i,j) \in \mathcal{L}$$

$$f_{ij} \leqslant b_{ij}(\theta_i - \theta_j) - \underline{M}_{ij}(1 - x_{ij}), \quad \forall (i,j) \in \mathcal{L}$$

$$p_i \leqslant p_i \leqslant \overline{p}_i, \quad \forall i$$

$$-x_{ij}\underline{f}_{ij} \leqslant f_{ij} \leqslant x_{ij}\overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{L}$$

$$0 \leqslant x_{ij} \leqslant 1, \quad \forall (i,j) \in \mathcal{L}$$

$$x_{i'j'} = 1$$

$$\sum_{i} c_i p_i \leqslant \operatorname{cost}^{\operatorname{HEU}}$$

$$(7a)$$

$$(7b)$$

The proposed method runs as follows:

- Set \underline{f}_{ij} , \overline{f}_{ij} to original capacities
- f 2 Compute \underline{M}_{ij} , \overline{M}_{ij} using Fattahi's method
- Compute the cost bound cost HEU
- ① Solve bounding problems (LP) to adjust \underline{f}_{ij} , \overline{f}_{ij} , \underline{M}_{ij} , \overline{M}_{ij}
- Sepeat step 4 if needed
- Solve the OTS problem with improved bounds and maximum cost

- 118-bus system with 186-lines (69 switchable lines)
- 100 instances with different demands and connected subgraphs
- Total time = bounding problems (LPs) and final OTS problem (MIP)
- GAP at 0.01% and maximum time 1 hour

- 1 round of bounding problems
- Δ^M : Relative bigM values with respect to Fattahi
- ullet Δ^L : Relative line capacities with respect to original

Method	Δ^M	Δ^L	Time (s)	Unsolved	Max gap
Fattahi	100%	100%	672	14	0.69%
No cost	68%	74%	487	8	1.04%
$cost^{\mathrm{HEU}}$	64%	68%	170	1	0.03%

- Even without the cost constraint, the bounding problems improve computational performance
- Using the cost of a feasible solution close to the optimal further improves the performance of the proposed methodology

- Upper bound cost^{HEU}
- More rounds of bounding problems

Method	Δ^M	Δ^L	Time (s)	Unsolved	Max gap
Fattahi	100%	100%	672	14	0.69%
1 round	64%	68%	170	1	0.03%
2 rounds	56%	63%	87	0	-
3 rounds	52%	61%	81	0	-
4 rounds	50%	59%	80	0	-

- \bullet The bounds $\underline{f}_{ij},\,\overline{f}_{ij},\underline{M}_{ij},\,\overline{M}_{ij}$ are tightened in each iteration
- With four rounds the average time is reduced by 88%

- General-purpose solvers perform poorly (38 unsolved problems)
- Fattahi uses knowledge about the problem to adjust bigMs
- Our bound tightening method is the winner (max time 13 minutes)

Conclusions

• The optimal transmission switching (OTS) determines the lines that can be disconnected to reduce the operating cost.

Conclusions

 The optimal transmission switching (OTS) determines the lines that can be disconnected to reduce the operating cost.

 The OTS is formulated as a mixed-integer linear problem with bigMs that is computationally difficult to solve.

Conclusions

 The optimal transmission switching (OTS) determines the lines that can be disconnected to reduce the operating cost.

 The OTS is formulated as a mixed-integer linear problem with bigMs that is computationally difficult to solve.

 We propose a methodology that solves relaxed bounding problems to find tight bigMs and reduce the computational burden of the OTS.

Thanks for the attention!! Questions??

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

Tight big-Ms for Optimal Transmission Switching[™]

Salvador Pineda*, Juan Miguel Morales, Álvaro Porras, Concepción Domínguez OASYS Research Group, University of Málaga, Spain

More info: oasys.uma.es

Email: spineda@uma.es