Regressão Linear

Ronald Targino Nojosa

DEMA-UFC

Notas de Aula - Parte 2 Versão Parcial

- 1 Regressão Linear Simples
 - Somas de Quadrados
 - Estimação de σ^2
 - Graus de Liberdade (gl)
 - Quadrados Médios
 - Tabela da ANOVA
 - Testes de Hipóteses para β_0 e β_1

Regressão Linear Simples

Somas de Quadrados

Somas de Quadrados

Pergunta: Quanto da variação nos dados é explicada pela reta de regressão? Em outras palavras, o quanto da variação de Y pode ser explicada pela variação de X?

Para responder, seguiremos a partir da identidade

$$Y_i - \hat{Y}_i = (Y_i - \overline{Y}) - (\hat{Y}_i - \overline{Y}).$$

Note que

$$(Y_i - \overline{Y}) = (\hat{Y}_i - \overline{Y}) + (Y_i - \hat{Y}_i)$$
(10)

- o $(Y_i \overline{Y})$: distância entre o valor observado e a média geral
- $\circ~(Y_i-\hat{Y}_i)$: distância entre o valor observado e o predito pelo MRLS
- $(\hat{Y}_i \overline{Y})$: distância entre o valor predito e a média geral¹

Segue:

$$(Y_i - \overline{Y}) = (\hat{Y}_i - \overline{Y}) + (Y_i - \hat{Y}_i) \Rightarrow$$

$$\sum_{i=1}^n (Y_i - \overline{Y})^2 = \sum_{i=1}^n (\hat{Y}_i - \overline{Y})^2 + \sum_{i=1}^n (Y_i - \hat{Y}_i)^2.$$
(11)

As somas de quadrados² em (11) serão denotadas por

$$SQ_{Tot} = SQ_{Reg} + SQ_{Res}$$

²igualdade válida para modelos em que se verifica a equação (12); Tot: Total, Reg: Regressão, Res: Resíduo

Fazendo uso dos resultados vistos na seção Resíduos, o 3º termo no desenvolvimento para a obtenção da equação (11) é nulo:

$$2\sum_{i=1}^{n}(\hat{Y}_{i}-\overline{Y})(Y_{i}-\hat{Y}_{i})=2\left(\sum_{i=1}^{n}\hat{Y}_{i}e_{i}-\overline{Y}\sum_{i=1}^{n}e_{i}\right)=0.$$
 (12)

A relação em (11) mostra que a variação dos valores de Y em torno da sua média $(\sum (Y_i - \overline{Y})^2)$ pode ser dividida em duas partes: uma explicada pela regressão $(\sum (\hat{Y}_i - \overline{Y})^2)$ e outra não explicada pela regressão $(\sum (Y_i - \hat{Y}_i)^2)$, que se deve ao fato de que nem todas os pontos estão sobre a reta de regressão.

Identificação das Somas de Quadrados (SQ)³

$$SQ_{Tot} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = S_{YY}$$

 $SQ_{Reg} = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 = \hat{\beta}_1^2 S_{XX} = \hat{\beta}_1 S_{XY} = S_{XY}^2 / S_{XX}$
 $SQ_{Res} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = S_{YY} - S_{XY}^2 / S_{XX}$

³Tot: Total, Reg: Regressão, Res: Resíduo

Propostas das Somas de Quadrados (SQ)

- SQ_{Tot} : medir a variação total dos valores observados de Y em relação a sua média.
- SQ_{Reg} : medir a parcela da variabilidade de Y que é explicada pelo modelo de regressão
- SQ_{Res} : medir a parcela da variabilidade de Y que não é explicada pelo modelo de regressão

Pergunta: Qual a proporção da variabilidade de Y que é explicada pelo MRLS?

Temos:

$$egin{aligned} SQ_{Tot} &= SQ_{Reg} + SQ_{Res} \Rightarrow \ 1 &= rac{SQ_{Reg}}{SQ_{Tot}} + rac{SQ_{Res}}{SQ_{Tot}} \end{aligned}$$

Sendo, $\frac{SQ_{Reg}}{SQ_{Tot}} \ge 0$ e $\frac{SQ_{Res}}{SQ_{Tot}} \ge 0$, concluímos que

$$0 \leq rac{SQ_{Reg}}{SQ_{Tot}} \leq 1$$

Coeficiente de Determinação R²

 R^2 representa a proporção da variabilidade da variável resposta que é explicada pelo modelo de regressão. Por definição temos:

$$R^2 = \frac{SQ_{Reg}}{SQ_{Tot}},\tag{13}$$

com $0 \le R^2 \le 1$. Um valor de R^2 próximo a 1 não garante um bom ajuste do modelo de regressão.

Exercícios P2 - 1.1.

1. Mostre:

a.
$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - \frac{(\sum_{i=1}^{n} Y_i)^2}{n}$$

b.
$$\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 = \sum_{i=1}^{n} [\hat{\beta}_1(X_i - \overline{X})]^2 = \frac{S_{XY}^2}{S_{XX}}$$

c. $R^2 = r^2$, em que r é o coeficiente de correlação linear de Pearson.

Estimação de σ^2

Estimação de σ^2

Na busca de um estimador para σ^2 , vamos determinar as **Esperanças das Somas de Quadrados**:

Exercícios P2 - 1.2.

1. Mostre que:

a.
$$E(SQ_{Tot}) = \beta_1^2 S_{XX} + (n-1)\sigma^2$$

b.
$$E(SQ_{Reg}) = E(\hat{eta}_1^2 S_{XX}) = S_{XX} E(\hat{eta}_1^2) = \sigma^2 + \beta_1^2 S_{XX}$$

c.
$$E(SQ_{Res}) = (n-2)\sigma^2$$

Estimador de σ^2

Note que $E(SQ_{Res})=(n-2)\sigma^2$. Assim, o estimador não viesado para σ^2 é

$$\hat{\sigma}^2 = \frac{SQ_{Res}}{n-2}. (14)$$

Graus de Liberdade (gl)

Graus de Liberdade (gl)

Graus de Liberdade (gl)

Os **graus de liberdade** indicam quantos valores/termos são livres para variar após a "imposição de restrições" para a estimação das quantidades de interesse.

- Associados a $SQ_{Tot} = \sum_{i=1}^{n} (Y_i \overline{Y})^2$ temos (n-1) gl.
 - A SQ_{Tot} é uma função dos n termos $(Y_i \overline{Y})$. Para sua obtenção, 1 grau de liberdade é perdido devido a restrição $\sum_{i=1}^{n} (Y_i \overline{Y}) = 0$ sobre os desvios $(Y_i \overline{Y})$.
- Associados a $SQ_{Reg} = \sum_{i=1}^{n} (\hat{Y}_i \overline{Y})^2$ temos 1 gl.

 Mostramos que $SQ_{Reg} = \hat{\beta}_1^2 S_{XX}$, portanto apresenta 1 único grau de liberdade relacionado a obtenção de $\hat{\beta}_1$.

• Associados a $SQ_{Res} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$ temos (n-2) gl.

A SQ_{Res} é uma função dos n termos $(Y_i - \hat{Y}_i)$. Duas restrições são impostas sobre os resíduos $(Y_i - \hat{Y}_i)$ como resultado da estimação de $\hat{\beta}_0$ e $\hat{\beta}_1$.

Propriedade da aditividade dos graus de liberdade

$$(n-1)=1+(n-2)$$

Quadrados Médios

Quadrados Médios

Uma soma de quadrado dividida por seus graus de liberdade é denominada **Quadrado Médio (QM)**. De particular interesse na regressão, temos:

$$QM_{Reg} = rac{SQ_{Reg}}{1} = SQ_{Reg}$$
 $QM_{Res} = rac{SQ_{Res}}{n-2}$

Observações:

$$\circ$$
 $\hat{\sigma}^2 = QM_{Res}$ Equação (14)

o QMs não são aditivos, isto é, $QM_{Tot} \neq QM_{Reg} + QM_{Res}$

Exercícios P2 - 1.3.

1. Mostre que:

a.
$$E(QM_{Reg}) = \sigma^2 + \beta_1^2 S_{XX}$$

b.
$$E(QM_{Res}) = \sigma^2$$

Teste

Tabela da ANOVA

Análise de Variância Analysis of Variance - ANOVA

Os resultados vistos anteriormente são estruturados na denominada Tabela da Análise de Variância (Tabela ANOVA).

Tabela da Análise de Variância do MRLS

Fonte de variação	gl	SQ	QM	F_0
Regressão	1	$\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$	QM_{Reg}	QM_{Reg}/QM_{Res}
Resíduo	n-2	$\sum_{i=1}^n (Y_i - \hat{Y}_i)^2$	QM_{Res}	
Total	n-1	$\sum_{i=1}^{n} (Y_i - \overline{Y})^2$		

Nota: Abordaremos F_0 posteriormente. Se o valor observado de QM_{Reg}/QM_{Res} for grande, temos indicação para $\beta_1 \neq 0$, caso contrário, a indicação é para $\beta_1 = 0$, isto é, não há influência linear de X sobre Y.

Testes de Hipóteses para β_0 e β_1

Testes de Hipóteses para β_0 e β_1

Testes de Hipóteses para β_0 e β_1

Para testar hipóteses e construir intervalos de confiança é necessário considerar/utilizar a **suposição** de que os erros seguem uma distribuição normal de probabilidade. Portanto,

$$\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2).$$

Exercícios P2 - 1.4.

- 1. Para $Y \sim N(\mu, \sigma^2)$, com função geradora de momentos $M_Y(t) = E(e^{tY}) = e^{t\mu + \frac{t^2}{2}\sigma^2}$, $e\{Y_1, \dots, Y_n\}$ uma aas de Y, determine:
 - a. $M_W(t)$, em que W = a + bY, a e b constantes.
 - b. $M_S(t)$, em que $S = \sum_{i=1}^n Y_i$.
 - c. $M_{\overline{Y}}(t)$, em que $\overline{Y} = S/n$.
- 2. Para $Y_i \sim N(\mu_i, \sigma^2)$, i = 1, ..., n, independentes, determine $M_S(t)$, em que $S = \sum_{i=1}^n Y_i$.
- 3. Para $Y_i \sim N(\mu_i, \sigma^2)$, i = 1, ..., n, independentes, determine $M_S(t)$, em que $S = \sum_{i=1}^n a_i Y_i$, a_i 's constantes.

Um resultado importante para prosseguir com a parte inferencial é o **Teorema de Cochran**, que, sob as condições $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ e $\beta_1 = 0$, fornece condições necessárias e suficientes para estabelecer:

i.
$$\frac{SQ_{Tot}}{\sigma^2} \sim \chi^2_{(n-1)}$$
 ii. $\frac{SQ_{Reg}}{\sigma^2} \sim \chi^2_1$ iii. $\frac{SQ_{Res}}{\sigma^2} \sim \chi^2_{(n-2)}$

iv. SQ_{Res} e SQ_{Reg} são independentes.

Observando F_0 na tabela da ANOVA, vemos que:

$$\frac{QM_{Reg}}{QM_{Res}} = \frac{SQ_{Reg}/1}{SQ_{Res}/(n-2)} = \frac{\frac{SQ_{Reg}}{\sigma^2}/1}{\frac{SQ_{Res}}{\sigma^2}/(n-2)} = \frac{\chi_1^2/1}{\chi_{(n-2)}^2/(n-2)}.$$

Portanto, sob $\beta_1 = 0$ e normalidade dos erros,

$$F_0 = \frac{QM_{Reg}}{QM_{Res}} \sim F_{(1, n-2)}.$$
 (15)

Note que os valores esperados para QM_{Reg} e QM_{Res} sinalizam que se o valor observado de F_0 for grande, então, provavelmente, $\beta_1 \neq 0$.

Testes de Hipóteses para β_0 e β_1

Para $\beta_1 \neq 0$, demonstra-se que

$$F_0 = rac{QM_{Reg}}{QM_{Res}} \sim F_{(1, n-2, \lambda)},$$

isto é, F_0 tem distribuição F não central com parâmetro de não-centralidade $\lambda = \beta_1^2 S_{XX}/\sigma^2$.

Este desenvolvimento nos permite testar as hipóteses

$$H_0: \beta_1 = 0$$
 versus $H_1: \beta_1 \neq 0$

com base na estatística F_0 , rejeitando H_0 , sob um nível de significância $\alpha \in (0,1)$, se ⁴

$$F_0 > F_{(1-\alpha; 1, n-2)}$$
.

O nível descritivo do teste (valor-p; p value) será dado por

$$P(F_{(1, n-2)} > F_0).$$

Este é o teste da **Significância da Regressão** para o MRLS.

⁴para H_0 falsa, $E(QM_{Reg}) > E(QM_{Reg})$

Significância da regressão

Hipóteses:
$$H_0: \beta_1 = 0 \times H_1: \beta_1 \neq 0$$

Não rejeitar $H_0 \Rightarrow$ não há relação linear entre X e Y

Significância da regressão

Hipóteses:
$$H_0: \beta_1 = 0 \times H_1: \beta_1 \neq 0$$

Rejeitar $H_0 \Rightarrow$ há relação linear entre X e Y

Teste para o parâmetro β_1

Hipóteses:
$$H_0$$
: $\beta_1 = \beta_{1_0}$ versus H_1 : $\beta_1 \neq \beta_{1_0}$

Estimador:
$$\hat{\beta}_1 \sim N\left(\beta_{1_0}, \frac{\sigma^2}{S_{XX}}\right)$$

Variável de teste:
$$T_0=rac{\hat{eta}_1-eta_{1_0}}{\sqrt{rac{\hat{\sigma}^2}{S_{XX}}}}$$
, com $\hat{\sigma}^2=QM_{Res}$.

Sob
$$H_0$$
, $T_0 \sim t(n-2)$.

Teste para o parâmetro β_1

Regra de Decisão

Hipótese alterntiva	H_0 será rejeitada se		
$H_1: \beta_1 \neq \beta_{1_0}$	$ t_0 > t_{(1-\frac{\alpha}{2}),(n-2)}$		
$H_1: \beta_1 < \beta_{1_0}$	$t_0 < t_{\left(\frac{\alpha}{2}\right),(n-2)}$		
$H_1: \ \beta_1 > \beta_{1_0}$	$t_0 > t_{(1-\frac{\alpha}{2}),(n-2)}$		

Nota: t_0 é o valor observado de T_0 ; t(p,(n-2)) é o quantil de ordem p, $0 , de <math>T_0$; α é o nível de significância do teste.

Exercícios P2 - 1.5.

- 1. Vimos que $E(\hat{\beta}_1) = \beta_1$ e $V(\hat{\beta}_1) = \sigma^2/S_{XX}$. Mostre:
 - a. $\hat{eta}_1 \sim \mathcal{N}(eta_1, \sigma^2/S_{XX})$
 - b. $T_0 \sim t(n-2)^a$
- 2. Para cada um dos 3 casos (hipóteses alternativas) indique como calcular o nível descritivo do teste.
 - $^{a}t(v)$ é a razão entre uma N(0,1) e a raiz de uma $rac{\chi_{v}^{2}}{v}$, independentes

O teste para $\beta_1 = 0$ feito com base na estatística T_0 é equivalente ao teste da significância da regressão, no caso do MRLS, baseado na estatística F_0 . Teremos

$$T_0 = \frac{\hat{\beta}_1}{\sqrt{\frac{\hat{\sigma}^2}{S_{XX}}}}.$$

Verifique a equivalência mostrando que $T_0^2 = F_0$.

Teste para o parâmetro β_0

Hipóteses:
$$H_0$$
: $\beta_0 = \beta_{0_0}$ versus H_1 : $\beta_0 \neq \beta_{0_0}$

Estimador:
$$\hat{\beta}_0 \sim N\left(\beta_{0_0}, \frac{\sigma^2}{n} + \frac{\overline{X}^2 \sigma^2}{S_{XX}}\right)$$

Variável de teste:
$$T_0 = \frac{\hat{\beta}_0 - \beta_{0_0}}{\sqrt{\frac{\hat{\sigma}^2}{n} + \frac{\overline{X}^2 \hat{\sigma}^2}{S_{XX}}}}$$
, com $\hat{\sigma}^2 = QM_{Res}$.

Sob
$$H_0$$
, $T_0 \sim t(n-2)$.

Teste para o parâmetro β_0

Regra de Decisão

Hipótese alterntiva	H_0 será rejeitada se		
$H_1: \ \beta_0 \neq \beta_{0_0}$	$ t_0 > t_{(1-\frac{\alpha}{2}),(n-2)}$		
$H_1: \ \beta_0 < \beta_{0_0}$	$t_0 < t_{\left(\frac{\alpha}{2}\right),(n-2)}$		
$H_1: \ \beta_0 > \beta_{0_0}$	$t_0 > t_{(1-\frac{\alpha}{2}),(n-2)}$		

Nota: t_0 é o valor observado de T_0 ; t(p,(n-2)) é o quantil de ordem p, $0 , de <math>T_0$; α é o nível de significância do teste.

Exercícios P2 - 1.6.

- 1. Vimos que $E(\hat{\beta}_0) = \beta_0$ e $V(\hat{\beta}_0) = \frac{\sigma^2}{n} + \frac{\overline{X}^2 \sigma^2}{S_{YY}}$. Mostre:
 - a. $\hat{eta}_0 \sim N(eta_0, rac{\sigma^2}{n} + rac{\overline{X}^2 \sigma^2}{S_{XX}})$
 - b. $T_0 \sim t(n-2)^a$
- 2. Para cada um dos 3 casos (hipóteses alternativas) indique como calcular o nível descritivo do teste.
 - $^at(v)$ é a razão entre uma N(0,1) e a raiz de uma $rac{\chi^2_v}{v}$, independentes