HW Jan 23, Johannes Byle

- 1.39 F=ma stays the same. The position of the ball is $(v_0cos\theta t-\frac{1}{2}gsin\phi t^2,(v_0sin\theta t-\frac{1}{2}gcos\phi t^2,0)$. Time it takes for the ball to reach the final position is where $0=t(2v_0sin\theta-gsin\phi t)$ or $t=\frac{2v_0sin\theta}{gsin\phi}$. Thus the ball is a distance of $\frac{2v_0^2cos\phi sin\theta}{gsin\phi}=\frac{2v_0^2cos(\phi+\theta)sin\theta}{gcos^2\phi}$ away from the origin. The maximum upward range is where $x=v_0\frac{v_0}{gsin\phi}-\frac{1}{2}gsin\phi(\frac{v_0}{gsin\phi})^2$ or $x=\frac{v_0^2}{g(1+sin\phi)}$.
- **1.41** Equation 1.48 is $F_r=m(\ddot{r}-r\dot{\phi}^2), F_\phi=m(r\ddot{\phi}+2\dot{r}\dot{\phi})$ Since R is constant $T=mR\omega^2$.
- 1.43 (a) $\hat{r} = \frac{x\hat{x} + y\hat{y}}{\sqrt{x^2 + y^2}}$, and $\sqrt{x^2 + y^2} = \sqrt{(rsin\theta cos\phi)^2 + (rsin\theta sin\phi)^2}$, or $\sqrt{x^2 + y^2} = \sqrt{r^2sin^2\theta(cos^2\phi + sin^2\phi)} = rsin\theta$. Thus $\hat{r} = \frac{rsin\theta cos\phi\hat{x} + rsin\theta sin\phi\hat{y}}{rsin\theta} = \hat{x}cos\phi + \hat{y}sin\phi$. We know $\hat{\phi} = -sin\phi\hat{x} + cos\phi\hat{y}$.
 - (b) $\dot{\hat{r}} = -\sin\phi\dot{\phi}\hat{x} + \cos\phi\dot{\phi}\hat{y}$ and $\dot{\hat{\phi}} = -\cos\phi\dot{\phi}\hat{x} \sin\phi\dot{\phi}\hat{y}$