Microarray Data Analysis

Jialin Ma

October 17, 2018

Load Packages

```
suppressPackageStartupMessages({
    library(here)
    library(oligo)
})
```

Load the dataset

```
dataset <- read.celfiles(list.files(here("data/microarray"), full.names = TRUE))</pre>
```

```
## Platform design info loaded.
```

```
## Reading in : /home/jialin/Courses/code6150/data/microarray/GSM651310.CEL.gz
## Reading in : /home/jialin/Courses/code6150/data/microarray/GSM651315.CEL.gz
## Reading in : /home/jialin/Courses/code6150/data/microarray/GSM651320.CEL.gz
## Reading in : /home/jialin/Courses/code6150/data/microarray/GSM651325.CEL.gz
```

```
dataset <- dataset[, c(paste0(c("GSM651310", "GSM651320", "GSM651315", "GSM651325"),
".CEL.gz"))]
sampleNames(dataset) <- c("control_rep1", "control_rep2", "treat_rep1", "treat_rep2")
pData(dataset)$group <- c("control", "control", "treat", "treat")
dataset</pre>
```

```
## ExpressionFeatureSet (storageMode: lockedEnvironment)
## assayData: 409600 features, 4 samples
## element names: exprs
## protocolData
## rowNames: control_rep1 control_rep2 treat_rep1 treat_rep2
## varLabels: exprs dates
## varMetadata: labelDescription channel
## phenoData
## rowNames: control_rep1 control_rep2 treat_rep1 treat_rep2
## varLabels: index group
## varMetadata: labelDescription channel
## featureData: none
## experimentData: use 'experimentData(object)'
## Annotation: pd.hg.u95av2
```

Quality control

Boxplot

boxplot(dataset, target = "core")

exprs

MA plot

```
oligo::MAplot(dataset, pairs = TRUE, ylim = c(-1, 1))
```


Quality report of the raw data

The following will generate a quality report of the raw microarray data in docs/microarray_qualitymetrics directory.

```
library(arrayQualityMetrics)
arrayQualityMetrics(expressionset = dataset,
   outdir = "docs/microarray_qualitymetrics",
   force = TRUE, do.logtransform = TRUE,
   intgroup = c("group"))
```

RMA

The RMA method proceeds with background subtraction, normalization and summarization using a deconvolution method for background correction, quantile normalization and the RMA (robust multichip average) algorithm for summarization.

```
edata <- oligo::rma(dataset)

## Background correcting
## Normalizing
## Calculating Expression</pre>
edata
```

```
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 12625 features, 4 samples
## element names: exprs
## protocolData
## rowNames: control_rep1 control_rep2 treat_rep1 treat_rep2
## varLabels: exprs dates
## varMetadata: labelDescription channel
## phenoData
## rowNames: control_rep1 control_rep2 treat_rep1 treat_rep2
## varLabels: index group
## varMetadata: labelDescription channel
## featureData: none
## experimentData: use 'experimentData(object)'
## Annotation: pd.hg.u95av2
```

Access the quality after normalization

PCA plot before and after normalization

```
library(ggplot2)
library(cowplot)
plot_grid(
    local({
        PCA_raw <- prcomp(t(log2(exprs(dataset))), scale = FALSE)</pre>
        dataGG <- data.frame(PC1 = PCA_raw$x[,1], PC2 = PCA_raw$x[,2],</pre>
                          Group = pData(dataset)$group)
        qplot(PC1, PC2, data = dataGG, color = Group,
              main = "PCA plot of the raw data (log-transformed)", asp = 1.0, geom =
"text",
        label = sampleNames(dataset)) + scale_colour_brewer(palette = "Set2")
    }),
    local({
        PCA <- prcomp(t(exprs(edata)), scale = FALSE)</pre>
        dataGG <- data.frame(PC1 = PCA$x[,1], PC2 = PCA$x[,2],
                  Group = pData(dataset)$group)
        qplot(PC1, PC2, data = dataGG, color = Group,
            main = "PCA plot of the normalized data", asp = 1.0, geom = "text",
            label = sampleNames(edata)) +
            scale_colour_brewer(palette = "Set2")
    })
)
```

plot of the raw data (log-transformed) PCA plot of the normalized data

Boxplot before and after normalization

```
par(mfrow = c(1,2))
boxplot(dataset)
boxplot(edata)
```



```
par(mfrow = c(1,1))
```

MA plot after normalization

```
oligo::MAplot(edata, pairs = TRUE, ylim = c(-1, 1))
```


Heatmap with sample-to-sample distance after normalization

It can not provide too much information for us since the number of samples is limited.

Filter based on intensity

Microarray data commonly show a large number of probes in the background intensity range. They also do not change much across arrays. Hence they combine a low variance with a low intensity. We want to filter these results as they may contribute to false positive results in the differential expression analysis.

Histogram of the median intensities


```
## idx_thresh_median
## FALSE TRUE
## 5510 7115
```

```
edata <- subset(edata, idx_thresh_median)
```

Identification of differentially expressed genes

Create a simple design matrix.

```
library(limma)
f <- factor(c("control", "control", "treat", "treat"))
design <- model.matrix(~ 0 + f)
colnames(design)</pre>
```

```
## [1] "fcontrol" "ftreat"
```

```
colnames(design) <- c("control", "treat")
design</pre>
```

```
control treat
##
       1
## 1
         1
## 2
## 3
        0
              1
## 4
         0
## attr(,"assign")
## [1] 1 1
## attr(,"contrasts")
## attr(,"contrasts")$f
## [1] "contr.treatment"
```

We can fit the linear model, define appropriate contrast to test the hypothesis on treatment effect and compute the moderated t-statistics by calling the eBayes function.

```
data.fit <- lmFit(exprs(edata), design)
head(data.fit$coefficients)</pre>
```

```
## control treat
## 100_g_at 7.668756 7.715222
## 1000_at 7.500988 7.509880
## 1003_s_at 6.080299 5.955531
## 1004_at 5.637423 5.510949
## 1005_at 7.805104 9.312773
## 1006_at 7.453394 6.403360
```

```
contrast.matrix <- makeContrasts(treat-control,levels=design)
data.fit.con <- contrasts.fit(data.fit,contrast.matrix)
data.fit.eb <- eBayes(data.fit.con)</pre>
```

Volcano plot to show the distribution of fold change and p value.

```
volcanoplot(data.fit.eb,highlight=10)
```

7092

23

Then we sort the results by their absolute t-statistics.

```
top <- topTable(data.fit.eb, number = Inf)
head(top)</pre>
```

```
## logFC AveExpr t P.Value adj.P.Val B
## 37701_at 4.487768 7.288447 23.90482 8.923836e-07 0.00634931 3.279131
## 39528_at 2.155203 7.214587 14.46714 1.363637e-05 0.03491603 2.484241
## 1776_at 2.090149 7.318168 13.66205 1.855341e-05 0.03491603 2.354451
## 39681_at 2.219663 5.720843 13.51932 1.962953e-05 0.03491603 2.329679
## 40202_at 1.941558 6.657501 12.65317 2.798882e-05 0.03982809 2.166516
## 36630_at 1.995351 7.579214 11.72145 4.209550e-05 0.04991825 1.962962
```

Check how many results can we get if we use a p value cutoff by 0.001 or an adjusted p value cutoff by 0.05.

```
table(top$adj.P.Val < 0.05)

##
## FALSE TRUE
## 7109 6

table(top$P.Value < 0.001)

##
## FALSE TRUE</pre>
```

Microarray Data Analysis

We notice that the number of differential expressed genes are limited, which indicates the the effect of 4 hour DEX treatment may not be significant in altering the gene expression.

Then plot a histogram of p value distribution.

```
hist(top$P.Value, col = brewer.pal(3, name = "Set2")[1],
main = "Control vs Treatment of DEX by 4 hours", xlab = "p-values")
```

Control vs Treatment of DEX by 4 hours

We zoom in the plot to see p value distribution between 0 and 0.1.

```
hist(top$P.Value[top$P.Value < 0.1], col = brewer.pal(3, name = "Set2")[1],
main = "Control vs Treatment of DEX by 4 hours", xlab = "p-values")
```

Control vs Treatment of DEX by 4 hours

Zoom in again and the orange bin indicates the differentially expressed genes if we use a p value cutoff by 0.001.

Control vs Treatment of DEX by 4 hours

Annotating genes

We need to annotate the gene names by the probe IDs.

```
## 'select()' returned 1:many mapping between keys and columns
```

```
top$gene_name <- get_genename(rownames(top))</pre>
```

```
## 'select()' returned 1:many mapping between keys and columns
```

Generate a table of differentially expressed genes

We use a p value cutoff by 0.001.

```
top <- top[, c("symbol", "gene_name", "logFC", "P.Value", "adj.P.Val")]
top <- cbind(data.frame(probeID = rownames(top), stringsAsFactors = FALSE), top)
rownames(top) <- NULL
top <- top[top$P.Value < 0.001,]
knitr::kable(top)</pre>
```

probeID	symbol	gene_name	logFC	P.Value	adj.P.Val
37701_at	RGS2	regulator of G protein signaling 2	4.4877683	0.0000009	0.0063493
39528_at	RRAD	RRAD, Ras related glycolysis inhibitor and calcium channel regulator	2.1552028	0.0000136	0.0349160
1776_at	RRAD	RRAD, Ras related glycolysis inhibitor and calcium channel regulator	2.0901488	0.0000186	0.0349160
39681_at	ZBTB16	zinc finger and BTB domain containing 16	2.2196632	0.0000196	0.0349160
40202_at	KLF9	Kruppel like factor 9	1.9415580	0.0000280	0.0398281
36630_at	TSC22D3	TSC22 domain family member 3	1.9953514	0.0000421	0.0499183
1814_at	TGFBR2	transforming growth factor beta receptor 2	1.6309718	0.0000782	0.0785749
36629_at	TSC22D3	TSC22 domain family member 3	4.2511045	0.0000883	0.0785749
37760_at	BAIAP2	BAI1 associated protein 2	1.3443442	0.0001677	0.1325401
31850_at	GCLC	glutamate-cysteine ligase catalytic subunit	1.2492825	0.0002082	0.1481454
34721_at	FKBP5	FK506 binding protein 5	2.8581334	0.0002476	0.1601256
38013_at	MTUS1	microtubule associated scaffold protein 1	1.1129654	0.0004426	0.2624371
36100_at	VEGFA	vascular endothelial growth factor A	-1.2173336	0.0005370	0.2872803
33113_at	CITED2	Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2	1.1614203	0.0005779	0.2872803
37225_at	KANK1	KN motif and ankyrin repeat domains 1	1.0982152	0.0006381	0.2872803
40855_at	SAMD4A	sterile alpha motif domain containing 4A	1.0942596	0.0006460	0.2872803
37430_at	ALOX15B	arachidonate 15-lipoxygenase, type B	1.7852935	0.0007265	0.2993091
634_at	PRSS8	serine protease 8	1.0246834	0.0008545	0.2993091
1052_s_at	CEBPD	CCAAT enhancer binding protein delta	1.2372588	0.0008687	0.2993091
33272_at	SAA1	serum amyloid A1	1.7293550	0.0009106	0.2993091
40522_at	GLUL	glutamate-ammonia ligase	2.8331430	0.0009608	0.2993091
33900_at	FSTL3	follistatin like 3	0.9502991	0.0009643	0.2993091
33131_at	SOX4	SRY-box 4	-0.9740144	0.0009675	0.2993091