University Scheduling with Greedy Heuristics

Maria Albert Gimeno Adrien Haegel

Optimization using Metaheuristics

May 11, 2015

Introduction

• Greedy methods: human way of solving a problem

4 greedy methods are implemented

GRASP: Algorithm

- 1: min = +infinity
- 2: **while** time < timelimit **do**
- 3: Current Solution ← new empty solution
- 4: while lectures can still be scheduled do
- Construct N best choices for scheduling an unscheduled lecture in an empty Timeslot and Room
- 6: Schedule randomly one of these best choices
- 7: Update current solution value with delta evaluations functions
- 8: end while
- 9: **if** current solution value < min **then**
- 10: min ← current solution value
- 11: Best solution ← current solution
- 12: **end if**
- 13: end while

GRASP: Solution construction algorithm

```
1: for each unscheduled lecture do
       for each available time slot do
 2:
 3:
           Calculate time slot delta adding cost \Delta t
           for each available room do
4:
 5:
               Calculate room delta adding cost \Delta r
               if \Delta t + \Delta r < 0 then
6:
                   if \Delta t + \Delta r < \max_N \text{best solutions value}(N)
7:
    then
8:
                       Remove solution whose value is the
    maximum of the best solutions
                       Store current solution in best solutions
9:
                   end if
10:
               end if
11:
12:
           end for
       end for
13:
14: end for
```

GRASP: Tuning of the window size

GRASP: Tuning of the window size

Window size N	Average gap	Deviation
N = 1	68.11	0
N = 2	14.33	10.87
N = 3	20.85	12.96
N = 4	23.66	10.94
N = 5	31.10	11.99

Lecture-GRASP: Introduction

 Reduce the time needed to search through all possible solutions, by only adding one lecture at a time.

• The question is: how to order the lectures we choose?

 It is possible to construct a problem related ordering: Get rid of the lectures with many constraints first!

Lecture-GRASP: Pseudo-code

- 1: min = +infinity
- 2: while time < timelimit do
- 3: Current Solution ← new empty solution
- 4: Sort lectures
- 5: **for** each lecture to be scheduled **do**
- 6: Construct *N* best choices for scheduling this lecture in an empty Timeslot and Room
- Current Solution ← Schedule randomly one of these best choices
- 8: Update current solution value with delta evaluations functions
- 9: end for
- 10: **if** current solution value < min **then**
- 11: min ← current solution value
- 12: Best solution ← current solution
- 13: **end if**
- 14: end while

Lecture-GRASP: Sorting methods

Different sorting methods:

- Initial Sorting
- Random Sorting
- Sorting by students (+ reversed)
- Sorting by lectures (+ reversed)
- Sorting by curriculum
- Sorting by students + random

Lecture-GRASP: Tuning of the sorting methods

Lecture-GRASP: Tuning of window size

Sorting method	Average gap	Deviation
Initial Sorting	79.30	7.91
Random Sorting	80.71	11.55
Sorting by students	48.57	6.86
Sorting by students inverted	238.27	7.22
Sorting by lectures	98.96	9.35
Sorting by lectures inverted	101.36	9.20
Sorting by Curriculum	107.28	13.16
Sorting by students + random	34.11	8.03

 students + random benefits from the two best methods we had

Lecture-GRASP: Tuning of window size

Window size	Average gap	Deviation
1	3.42	9.00
2	11.70	12.68
3	18.88	8.78
4	23.65	10.21
5	34.11	7.29
6	64.95	6.86

- The most greedy selection method is the most efficient.
- The randomness is already in the sorting method.

Lecture-GRASP: Mean value of solution

Lecture-GRASP: Mean value of solution

Lecture-GRASP: Computational time analysis

 Lecture-Grasp is better than GRASP, mostly since the computational time for one iteration is much lower

Lecture-GRASP: Conclusions

- However, there is no local search, it takes a lot of time to construct a solution...
- ... that is going to be discarded right afterwards
- We need to perform local searches!
- We have not been doing this for nothing: we now have construction methods
- It is easy to implement LNS with that.

LNS: Introduction

- Take advantage of the existing solution
- Perform a local search vs. constructing a new solution
- Construct a new solution based on the old one with DESTROY and REPAIR functions
- The questions are:
 - What to destroy?
 - How to repair?

LNS: Introduction

- DESTROY COURSE
- DESTROY ROOM
- DESTROY TIME SLOT
- DESTROY CURRICULUM
- DESTROY RANDOM

- REPAIR GRASP with window length of 1
- REPAIR GRASP with window length of 2
- REPAIR
 LECTURE-GRASP with window length of 1

LNS: Algorithm

- 1: min = +infinity
- 2: Current Solution ← feasible solution
- 3: while time < timelimit do
- 4: Destroy current solution partially
- 5: Repair destroyed solution
- 6: Update current solution value with delta evaluations functions
- 7: **if** current solution value < min **then**
- 8: min ← current solution value
- 9: Best solution ← current solution
- 10: **end if**
- 11: end while

LNS: Tuning of destroying and repairing functions

Destroy Function

					,		
			Course	Curriculum	Room	Time slot	Random
		1	(107.1, 32.0)	(117.6, 7.9)	(54.6, 7.0)	(84.0, 26.1)	(62.4, 7.8)
9	a)	2	(107.2, 21.2)	(116.9, 7.0)	(54.8, 7.4)	(89.9, 27.8)	(60.9, 6.7)
Destroy	size	3	(46.4, 6.4)	(140.8, 8.6)	(81.9, 6.7)	(24.8, 6.3)	
ă	0,	4	(51.7, 5.9)			(35.9, 7.5)	
		5	(57.2, 6.5)			(45.6, 9.0)	
Destroy	4)	1	(112.6, 25.8)	(166.3, 9.8)	(88.5, 7.1)	(28.4, 13.2)	(94.4, 5.6)
str	size	2	(107.5, 32.7)	(160.0, 9.9)	(90.7, 6.1)	(37.2, 37.9)	(97.1, 5.9)
ے	0,	3	(63.7, 7.9)	(168.6, 7.7)	(109.4, 7.4)	(63.9, 10.3)	
		1	(103.8, 10.3)	(145.8, 8.1)	(78.7, 6.6)	(33.3, 13.5)	(86.8, 5.8)
6	a)	2	(101.6, 12.2)	(146.1, 6.9)	(78.8, 7.2)	(30.9, 17.4)	(85.1, 7.1)
Destroy	size	3	(92.3, 10.3)	(161.5, 9.5)	(96.8, 6.9)	(53.9, 10.2)	
ă	0,	4	(90.7, 5.9)			(59.6, 10.9)	
		5	(89.5, 7.1)			(67.6, 10.1)	

LNS: Comments

- DESTROY TIME SLOT gives in general good results
- Other destroying functions give good results for certain repairing functions and window lengths
- The random method does not give very good results

LNS: Mean value solution

LNS: Mean value solution

LNS: Computational time analysis

LNS: Conclusions

- Abrupt gap in solution compared to GRASP and Lecture-GRASP
- We can just choose one destroy and repairing method
- Random has not shown a good performance

ALNS: Introduction

Problems:

- Find a way to combine efficiently all the different LNS methods we implemented earlier.
- Some methods are better than others on specific datasets.
- Just using the differents methods randomly is not more efficient.

Solution: Use a reward system to incite the algorithm to use the efficient methods \rightarrow ALNS.

Theory
Tuning parameters
Results
Conclusions

ALNS: Algorithm

22: end if

```
1: min = +infinity

    Current Solution ← feasible solution

 3: while time < timelimit do
       Choose a destroy method from a probability array
   DestrovProba
       Destroy current solution partially
       Choose a repair method from a probability array
   RepairProba
       Repair destroyed solution
       if new solution value < Selection-Threshold · old
   solution value then
          Update current solution value with delta evaluations
   functions
10
          if current solution value < min then
11:
              min ← current solution value
12:
              Best solution ← current solution
              Update DestroyProba and RepairProba with
13:
   reward ω<sub>1</sub>
          else if current solution value < old solution value
14:
   then
              Update DestroyProba and RepairProba with
15:
   reward ω<sub>2</sub>
16
          else (current solution value > old solution value)
17:
              Update DestroyProba and RepairProba with
   reward ω<sub>3</sub>
18
          end if
19
       else
          Do NOT update the solution
20:
          Update DestroyProba and RepairProba with reward
21:
```

ALNS: Tuning

• A lot of parameters! Choice of the methods in ALNS, ω_1 , ω_2 , ω_3 , ω_4 , λ , selection-threshold.

• "Hill-Climbing" on the tuning, and some assumptions.

ALNS: Selection of the methods

We tested different sets of methods:

- ALNS-Full: All the LNS methods
- ALNS-select : Only the most efficient LNS methods
- ALNS-combined : The destroy and repair methods are combined

	ALNS-Full	ALNS-select	ALNS-combined
Average Gap	45.34	21.46	24.47
Deviation	11.78	12.55	10.77

Theory
Tuning parameters
Results
Conclusions

ALNS: Tuning the rewards and the damping factor

1	10^{-2}	$5 \cdot 10^{-3}$	$2.5 \cdot 10^{-3}$	10^{-3}	$5 \cdot 10^{-4}$	10^{-4}
Λ	10	3.10	2.5 10	10	5.10	10
S = 10	X	34.3	X	34.0	37.9	36.1
S = 50	Х	30.6	х	30.7	32.2	32.1
S=100	Х	28.1	х	30.4	28.7	32.0
S=250	26.2	28.9	30.1	Х	Х	Х
S=500	28.1	27.1	25.4	27.0	30.4	34.7
S=750	26.5	29.5	30.3	Х	Х	Х
S=1000	Х	30.3	х	39.4	30.3	40.3
S=10000	Х	Х	х	79.2	Х	79.2

Theory
Tuning parameters
Results
Conclusions

ALNS: Tuning the selection threshold

Selection Threshold	Average gap	Average deviation
1	112.8	18.5
1.01	43.1	7.7
1.015	39.0	9.5
1.02	28.6	6.6
1.025	27.8	15.7
1.03	32.9	17.5
1.04	41.3	14.5
1.07	67.6	19.2
1.1	91.6	25.8
1.2	125.4	23.6
1.3	118.3	21.3
1.4	115.8	8.1

ALNS: Mean value solution

ALNS: Mean value solution

Theory
Tuning parameters
Results
Conclusions

Conclusions

	Α	n · · ·
	Average gap	Deviation
GRASP	482.6	16.8
Lecture-GRASP	372.9	8.2
LNS-Course	132.0	6.4
LNS-Room	140.5	5.7
LNS-TS	83.1	4.4
ALNS	7.7	7.4

• Good perfomance due to a fast delta evaluation

 This was a construction process, and ALNS benefits from the optimization of the previous algorithms GRASP Method
A variation of GRASP: Lecture-Grasp
LNS Method
ALNS: Combining the destroy and repair methods

Theory
Tuning parameters
Results
Conclusions

Thank you