calificación 100 %

Practice quiz on Exponents and Logarithms

Re write the number $784=2\times2\times2\times2\times7\times7$ using exponents.	1/1 puntos
\bigcirc $(2 \times 7)^6$	
(05) (-5)	
$\bigcirc (2^6)(7^6)$	
\bigcirc (16 ⁴)(49 ²)	
Correcto For this type of problem, count the number of times each relevant factor appears in the product. That number is the exponent for that factor.	
What is $(x^2-5)^0$?	1/1 punto
\bigcirc (x^2)	
O -4	
\bigcirc $(x^2)-5$	
✓ Correcto	

- $(x-5)^{-5}$
- $(x-5)^{-6}$
- $(x-5)^{-1}$
- $\bigcirc (x-5)$

✓ Correcto

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times-3)}=(x-5)^{-6}$$

By the definition of negative exponents, this is equal to $\dfrac{1}{\left(x-5
ight)^6}$

 $^{\text{4.}}$ Simplify $\big(\frac{8^2}{8^7}\big)^2$

1/1 puntos

- $\bigcirc 8^{-5}$
- $\bigcirc 8^{-1}$
- $\bigcirc 8^{-4}$
- 8⁻¹⁰

✓ Correcto

We can first simplify what is inside the parenthesis to 8^{-5} using the Division and Negative Powers Rule

Then apply division and negative powers— the result is the same. $\frac{8^4}{8^{14}}=8^{-10}$

Solve for \boldsymbol{x}

- O 4
- 5
- 07
- O 28

$$\log(x) = \log 35 - \log 7$$

$$\log(x) = \log \left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

6. $\log_2(x^2 + 5x + 7) = 0$

1/1 puntos

Solve for \boldsymbol{x}

- $\bigcirc x = 3$
- x = 2 or x = 3
- $\bigcirc x = 2$

✓ Correcto

We use the property that $\,b^{\log_b a} = a\,$

Use both sides as exponent for 2.

$$2^{\log_2 x^2 + 5x + 7} = 2^0$$

$$x^2 + 5x + 7 = 1$$

$$x^2 + 5x + 6 = 0$$

$$(x+3)(x+2) = 0$$

$$x=-3 \qquad \quad \text{or} \quad \quad$$

$$x = -2$$

7. Simplify $\log_2 72 - \log_2 9$

1/1 puntos

- $\bigcirc \log_2 4$
- $\bigcirc \log_2 63$
- 3
- 0 4
 - ✓ Correcto

By the quotient rule, this is $\log_2 \frac{72}{9} = \log_2 2^3 = 3$

8. Simplify $\log_3 9 - \log_3 3 + \log_3 5$

1/1 puntos

- log₃ 15
- O 15
- $\bigcirc \log_3 8$
- 0 8
 - / Correcto

By the Quotient and Product Rules, this is $\log_3 \, \frac{9 \times 5}{3} \, = \log_3 15$

9. Simplify $\log_2\left(3^8\times 5^7\right)$

1/1 puntos

- $\bigcirc \hspace{0.8cm} \left(8 \times \log_2 3 \right) + \left(7 \times \log_2 5 \right)$
- $\bigcirc \ 15 \times \log_2 56$
- $\bigcirc \ (5 \times \log_2 3) + (8 \times \log_2 5)$
- $\bigcirc 56 \times \log_2 15$
 - ✓ Correcto

We first apply the Product Rule to convert to the sum: $\log_2(3^8) + \log_2(5^7)$. Then apply the power and root rule.

- O 20
- O 500
- 332.19
- 301.03

✓ Correcto

Use the change of base formula, $\log_a b = rac{\log_x b}{\log_x a}$

Where the "old" base is \boldsymbol{x} and the "new" base is \boldsymbol{a} .

So
$$\frac{100}{\log_{10}(2)} = \frac{100}{0.30103} = 332.19$$

- 11. A tree is growing taller at a continuous rate. In the past 12 years it has grown from 3 meters to 15 meters. Untal puntos What is its rate of growth per year?
 - 0 10.41%
 - O 12.41%
 - ① 13.41%
 - 0 11.41%

$$\frac{\sqrt{\frac{\text{Correcto}}{15}}}{\frac{\ln\frac{15}{3}}{12}} = 0.1341$$

 $^{12\cdot}$ Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25×10^{-10} grams weights 1000 Kilograms?

1/1 puntos

- O 0.875 days
- 875 days
- O 87.5 days

✓ Correcto

$$6.25 \times 10^{-10} \times e^{4t} = 10^6$$

$$4t = \ln \ (\frac{10^6}{(6.25 \times 10^{-10})}) = 35.00878$$

$$t = \ln \, \frac{10^6}{6.25 \times 10^{-10}} = 8.752195$$