Глава 1

Свойства определенного интеграла

Лекция **4**

1.1 Линейные свойства определенного интеграла

Определение. Если f(x) определена при x=a, то положим $\int_a^a f(x)dx \equiv 0$

Определение. Если a < b, а еще f(x) интегрируема на [a,b], то положим $\int\limits_{a}^{a} f(x) dx \equiv -\int\limits_{a}^{b} f(x) dx$

Теорема 1.1. Если f(x),g(x) интегрируемы на $[a,b],\ f(x)\pm g(x)$ тоже интегрируема на [a,b], причем $\int\limits_a^b (f(x)\pm g(x)dx)=\int\limits_a^b f(x)dx\pm \int\limits_a^b g(x)dx$

Доказатель ство. Если a=b, то доказывать нечего: $0=0\pm0$.

Если a < b, то: Берем $\forall T = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$; Берем $\forall \Xi = \{\xi_k\}_{k=1}^n$, тогда: рассмотрим $\sigma_T(f \pm g, \Xi) = \sum_{k=1}^n (f(\xi_k) \pm g(\xi_k)) \Delta x_k = \sum_{k=1}^n f(\xi_k) \Delta x_k \pm \sum_{k=1}^n g(\xi_k) \Delta x_k = \sigma_T(f, \Xi) \pm \sigma_T(g, \Xi) \rightarrow I_1 + I_2$, т.е

$$\int_{a}^{b} (f(x) \pm g(x))dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

Если $a > b \Rightarrow \int_{b}^{a} (f(x) \pm g(x)) dx = \int_{b}^{a} f(x) dx \pm \int_{a}^{a} g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$

Теорема 1.2. f(x) интегрируема на $[a,b]\Rightarrow \forall c\in\mathbb{R}\quad c\in f(x)$ интегрируема на [a,b],причем $\int\limits_{-b}^{b}cf(x)dx=$

$$c\int_{a}^{b}f(x)dx$$

Доказательство. Самостоятельно.

1.2 Интегрируемость произведения интегрируемых по Риману функций

Теорема 1.3. Если f(x), g(x) интегрируемы на $[a,b] \Rightarrow f(x)g(x)$ тоже интегрируема на [a,b]

Доказатель ство. Пусть
$$a < b.$$
 $f(x), g(x)$ интегрируемы на $[a,b] \Rightarrow f(x), g(x)$ — ограничены на $[a,b]$, т.е $\exists M^{(f)} > 0, M^{(g)} > 0: \begin{cases} |f(x)| \leqslant M^{(f)} \forall x \in [a,b] \\ |g(x)| \leqslant M^{(g)} \forall x \in [a,b] \end{cases}$. Берем $\forall T = \{a = x_0 < x_1 < \dots < x_n = b\}$; Введем $M_k^{(f)} = \sup_{x_{k-1} \leqslant x \leqslant x_k} f(x)$ $M_k^{(g)} = \sup_{x_k = 1} g(x)$ $M_k^{(fg)} = \sup_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_$

Лекция 5 14.02

1.3 Интегрируемость функции на внутреннем отрезке. Аддитивность определенного интеграла

Теорема 1.4. f(x) интегрируема на $[a,b] \Rightarrow \forall [c,d] \subset [a,b] f(x)$ интегрируема на [a,b]

 \mathcal{A} оказательство. f(x) интегрируема на $[a,b] \Rightarrow \lim_{\delta_T \to 0} (S_T(f,[a,b]) - s_T(f,[a,b])) \Rightarrow \text{ т.е } \forall \varepsilon > 0 \exists \delta > 0 :$ $\forall T, \delta_T < \delta \rightarrow 0 \leqslant S_T(f, [a, b]) - s_T(f, [a, b]) < \varepsilon$

Берем $\forall \tau$ — разбиение [c,d]. Дополним его до T (разбиение [a,b]). Считаем, что $a\leqslant c< d\leqslant b$;

$$T|_{[c,d]} = \tau; \delta_T < \delta$$

Рассмотрим
$$0 \leqslant S_T(f,[c,d]) - s_T(f,[c,d]) \leqslant S_T(f,[a,b]) - s_T(f,[a,b]) < \varepsilon$$
, т.е $\lim_{\delta_T \to 0} (S_T(f,[c,d]) - s_T(f,[c,d])) = 0 \Rightarrow f(x)$ интегрируема на $[c,d]$

Теорема 1.5. f(x) интегрируема на [a,b] и интегрируема на $[b,c] \Rightarrow f(x)$ интегрируема на [a,c], причем

$$\int_{a}^{c} f(x) = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Доказательство. $\exists \int\limits_a^b f(x)dx = I_1, \\ \exists \int\limits_a^c f(x)dx = I_2$ \Rightarrow Пусть $a < b < c: \quad f(x)$ ограничена на [a,b] и ограничена на [b,c] \Rightarrow

f(x) ограничена на $[a,c] \Rightarrow \exists m,M: m \leqslant f(x) \leqslant M \forall x \in [a,c]$

$$\lim_{\delta_{\tau_1} \to 0} S_{\tau_1}(f,[a,b]) = I_1, \quad \Rightarrow \forall \varepsilon > 0 \\ \exists \delta_1 > 0 : \forall \tau_1 \\ (\text{разбиение } [a,b]), \\ \delta_{\tau_1} < \delta_1 \\ \Rightarrow |S_{\tau_1}(f,[a,b]) - I_1| < \frac{\varepsilon}{3}$$

$$\lim_{\delta_{\tau_2} \to 0} S_{\tau_2}(f,[b,c]) = I_2 \qquad \Rightarrow \forall \varepsilon > 0 \\ \exists \delta_2 > 0 \\ (\text{разбиение } [b,c]), \delta_{\tau_2} < \delta_2 \Rightarrow |S_{\tau_2}(f,[b,c]) - I_2| < \frac{\varepsilon}{3}$$

$$x_n = c$$
 $\Rightarrow \exists k : b \in [x_{k-1}, x_k]$ $M_k = \sup f(x), M'_k = \sup_{x_{k-1} \le x \le b} \sup f(x), M''_k = \sup_{b \le x \le x_k} \sup f(x).$

Рассмотрим $T_1 = T \cup b \Rightarrow \delta_{T_1} \leqslant \delta_T < \delta$

$$|S_{T}(f,[a,c]) - (I_{1} + I_{2})| = |S_{T}(f,[a,c]) - S_{T_{1}}(f,[a,c]) + S_{T_{1}}(f,[a,c]) - (I_{1} + I_{2})| \leq |S_{T}(f,[a,c]) - S_{T_{1}}(f,[a,c])| + |S_{T_{1}}(f,[a,c]) - I_{1} - I_{2}| = \underbrace{|M_{k}(x_{k} - x_{k-1}) - M'_{k}(b - x_{k-1}) - M''_{k}(x_{k} - b)|}_{(M_{k} - M''_{k})(x_{k} - b) + (M_{k} - M'_{k})(b - x_{k-1}) \leq (M - m)(x_{k} - x_{k-1}) \leq (M - m)\delta_{T} < \delta(M - m) \leq \delta_{3}(M - m)} + |S_{T_{1}}(f,[a,c]) - S_{T_{1}}(f,[a,c]) - |S_{T_{1}}(f,[a,c]) - |S_{T_{1}}(f,[a,c]$$

$$(M_k - M_i'')(x_k - b) + (M_k - M_i')(b - x_{k-1}) \le (M - m)(x_k - x_{k-1}) \le (M - m)\delta_T < \delta(M - m) \le \delta_3(M - m)$$

 $S_{\tau_2}(f, [b, c]) - I_1 - I_2 | \leqslant$

$$\leq (M - m)\delta_3 + |S_{\tau_1}(f, [a, b] - I_1)| + |S_{\tau_2}(f, [b, c]) - I_2| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \Rightarrow \lim_{\delta_T \to 0} (S_T(f, [a, c]) - I_1 - I_2) = 0 = \lim_{\delta_T \to 0} (S_T(f, [a, c])) = I_1 + I_2 \implies 0$$

Аналогично (самостоятельно) $\lim_{\delta_T \to 0} s_T(f,[a,c]) = I_1 + I_2$

$$I_1 + I_2$$
 $\Rightarrow \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$

Теперь пусть $a < c < b \stackrel{a}{\underset{{}_{\rm T^2}}{\Rightarrow}} f(x)$ интегрируема на $[a,c] \Rightarrow \,$ работает только что рассмотренный случай $\,\Rightarrow\,$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \Rightarrow \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f$$

1.4 Монотонность определенного интеграла. Строгая монотонноость определенного интеграла от непрерывной функции

Теорема 1.6.
$$\int_{a}^{b} 1 dx = b - a$$

Доказательство. Самостоятельно.

Теорема 1.7. Пусть $a \leqslant b, f(x)$ интегрируема на $[a,b], f(x) \geqslant 0$ на $[a,b] \Rightarrow \int\limits_a^b f(x) dx \geqslant 0$

Доказательство. 1) a = b - очевидно.

2)
$$a < b \Rightarrow \exists \int_{a}^{b} f(x)dx = I \geqslant S_{T}(f) = \sum_{k=1}^{n} m_{k} \Delta x_{k} \geqslant 0$$

Теорема 1.8. $a\leqslant b; f(x)$ и g(x) интегрируемы на [a,b], причем $f(x)\geqslant g(x)x\in [a,b]\Rightarrow \int\limits_a^b f(x)dx\geqslant \int\limits_a^b g(x)dx$

Доказательство. Самостоятельно.

Теорема 1.9. $f(x) \in C[a,b](a < b), f(x) \geqslant 0 \forall x \in [a,b], \ \textit{причем } f(x) \not\equiv 0 \ \textit{на } [a,b] \Rightarrow \int\limits_{a}^{b} f(x) dx > 0$

Доказатель ство.
$$\exists \xi \in (a,b): f(\xi) = A > 0$$
 \Longrightarrow $\exists \delta > 0: \forall x \in (\xi - \delta, \xi + \delta) f(x) > \frac{A}{2}$ Рассмотрим $\int\limits_a^b f(x) = \int\limits_{\geqslant 0}^{\xi - \delta} f(x) dx + \int\limits_{\xi - \delta}^{\xi + \delta} f(x) dx + \int\limits_{\xi + \delta}^b f(x) dx \geqslant 0 + \frac{A}{2} 2\delta + 0 = A + \delta \geqslant 0$

Теорема 1.10. $f(x), g(x) \in C[a,b](a < b); f(x) \geqslant g(x) \forall x \in [a,b], \ npurem \ f(x) \not\equiv g(x) \ na \ [a,b] \Rightarrow \int\limits_a^b f(x) dx > \int\limits_a^b g(x) dx$

Доказательство. Самостоятельно.

1.5 Интегрируемость модуля интегрируемых по Риману функций. Связь интеграла от функции с интегралом от ее модуля

Теорема 1.11. f(x) интегрируема на $[a,b] \Rightarrow |f(x)|$ тоже интегрируема на [a,b], причем $\left| \int\limits_a^b f(x) dx \right| \leqslant \left| \int\limits_a^b |f(x)| dx \right|.$

Доказатель ство. 1) Если $a = b \Rightarrow 0 \leqslant 0 \Rightarrow$ доказывать нечего.

2) Если a < b, то : f(x) интегрируема на $[a,b] \underset{\text{кр. инт.}}{\Rightarrow} \lim_{\delta_T \to 0} (S_T(f) - s_T(f)) = 0$, т.е $\varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta \Rightarrow 0 \leqslant S_T(f) - s_T(f) < \varepsilon$

Берем $\forall T = \{a = x_0 < x_1 < \dots < x_n = b\}, \delta_T < \delta$

$$M_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \sup f(x)$$

$$M'_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \sup |f(x)|$$

$$m_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \inf f(x)$$

$$m'_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \inf |f(x)|$$

- а) $0\leqslant m_k\leqslant M_k\Rightarrow f(x)\geqslant 0$ на $[x_{k-1},x_k\Rightarrow |f(x)|=f(x)$ на $[x_{k-1},x_k]\Rightarrow m_k'=m_k,M_k'=M_k\Rightarrow M_k'-m_k'=M_k$
- б) $m_k \leqslant M_k \leqslant 0 \Rightarrow f(x) \leqslant 0$ на $[x_{k-1}, x_k] \Rightarrow |f(x)| = -f(x)$ на $[x_{k-1}, x_k], M_k' = -m_k, m_k' = -M_k \Rightarrow M_k' m_k' = M_k m_k$
- в) $m_k \leqslant 0 \leqslant M_k \Rightarrow M_k' = \max(m_k, -m_k) \Rightarrow M_k' m_K' \leqslant M_k' \leqslant M_k m_k \Rightarrow$ в любом случае $0 \leqslant M_k' m_k' \leqslant M_k m_k | \Delta x_k$ и $\sum_{k=1}^n \Rightarrow 0 \leqslant S_T(|f|) s_T(|f|) \leqslant S_T(f) s_T(f) < \varepsilon \Rightarrow \lim_{\delta_T \to 0} (S_T(|f|) s_T(|f|)) = 0 \Rightarrow$ кр. инт |f(x)| интегрируема на [a,b].

$$-|f(x)| \leqslant f(x) \leqslant |f(x)| \quad \forall x \in [a,b] \Rightarrow -\int_a^b |f(x)| dx \leqslant \int_a^b f(x) dx \leqslant \int_a^b |f(x)| dx \Rightarrow$$

$$\Rightarrow \left| \int_a^b f(x) dx \right| \leqslant \int_a^b |f(x)| dx$$
 Если $a > b \Rightarrow \left| \int_a^b f(x) dx \right| \leqslant \left| \int_a^b |f(x)| dx \right|$

1.6 Неравенство Коши-Буняковского для определенных интегралов. Теорема о среднем и ее обобщение

Теорема 1.12 (Неравенство Коши-Буняковского). f(x), g(x) интегрируемы на $[a,b] \Rightarrow$

$$\Rightarrow \left[\int_{a}^{b} f(x)g(x)dx \right]^{2} \leqslant \left[\int_{a}^{b} f^{2}(x)dx \right] \left[\int_{a}^{b} g^{2}(x)dx \right]$$

Доказательство. Пусть a < b.

Рассмотрим
$$\varphi(\lambda) = \int_a^b (\lambda f(x) + g(x))^2 = \lambda^2 \underbrace{\int_a^b f^2(x) dx}_{=A} + 2\lambda \underbrace{\int_a^b f(x) g(x) dx}_{=B} + \underbrace{\int_a^b g^2(x) dx}_{=C} = A\lambda^2 + 2B\lambda + C$$

Если $A=0\Rightarrow B=0\Rightarrow B^2\leqslant AC$

Если
$$A\geqslant 0\Rightarrow B^2-AC\leqslant 0$$
, т.е $B^2\leqslant AC\Rightarrow \left[\int\limits_a^bf(x)g(x)dx\right]\leqslant \left(\int\limits_a^bf^2(x)dx\right)\left(\int\limits_a^bg^2(x)dx\right)$

Если $a = b \Rightarrow$ верно

Если
$$a > b \Rightarrow$$
 верно

Теорема 1.13 (1-ая теорема о среднем). f(x), g(x) интегрируемы на $[a,b]; m = \inf_{[a,b]} \inf f(x), M = \sup_{[a,b]} \sup f(x),$

$$g(x) \geqslant 0 \ \forall x \in [a, b] \Rightarrow \exists \mu \in [m, M]: \int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx$$

Доказательство. a < b. Пусть $g(x) \geqslant 0$ на [a, b].

 $m\leqslant f(x)\leqslant M\quad \forall x\in [a,b]$

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x) \Rightarrow m \int_{a}^{b} g(x)dx \leqslant \int_{a}^{b} f(x)g(x)dx \leqslant M \int_{a}^{b} g(x)dx$$

1) Если
$$\int\limits_a^b g(x)dx=0 \Rightarrow \int\limits_a^b f(x)g(x)dx=0 \Rightarrow \$$
утверждение верно $\forall \mu \in [m,M]$

2) Если
$$\int_{a}^{b} g(x)dx > 0 \Rightarrow m \leqslant \underbrace{\int_{a}^{b} f(x)g(x)dx}_{a} \leqslant M \Rightarrow \int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx$$

Если $g(x) \leq 0$ на [a,b], то рассмотрим $\tilde{g}(x) = -g(x) \geqslant 0$ на [a,b].

Если $a \geqslant b \Rightarrow$ самостоятельно.

Следствие 1. Если в условиях предыдущей теоремы $f(x) \in C[a,b] \Rightarrow \exists \xi \in [a,b]: \int\limits_a^b f(x)g(x)dx = \int\limits_a^b f(x)g(x)dx$

$$f(\xi) \int_{a}^{b} g(x) dx$$

Доказательство. По теореме Вейрештрасса: $\exists \alpha, \beta \in [a,b]: f(\alpha) = m \quad f(\beta) = M \qquad \mu \in [m,M] \underset{\text{т.Коши}}{\Rightarrow}$ $\exists \mu \in [\alpha,\beta] \subset [a,b]: f(\xi) = \mu$

Следствие 2. Если f(x) интегрируема на $[a,b], m = \inf_{a\leqslant x\leqslant b}\inf f(x), \ M = \sup_{a\leqslant x\leqslant b}\sup f(x) \Rightarrow \exists \mu\in [m,M]:$

$$\int\limits_a^b f(x)dx = \mu(b-a). \ A \ \text{ecsiv eige} \ f(x) \in C[a,b] \Rightarrow \exists \xi \in [a,b]: \int\limits_a^b f(x)dx = f(\xi)(b-a)$$

Доказательство. Самостоятельно.