Statistics

Collection of Formulas

Contents

1	Des	criptive Statistics	3	4	1 Statistical Hypothesis Testing	14
	1.1	Summary Statistics	3		4.1 Significance and Confidence Intervals	14
		1.1.1 Location	3		4.2 Tests for One Sample	14
		1.1.2 Dispersion	3		4.3 Tests for Goodness of Fit	15
		1.1.3 Concentration	3		4.4 Multiple Tests	15
		1.1.4 Shape	4	5	5 Regression	16
		1.1.5 Dependence	4		5.1 Models	16
	1.2	Tables	5		5.1.1 Simple Linear Model	16
	1.3	Diagrams	5		5.1.2 Multivariate Linear Model	16
		1.3.1 Histogram	5		5.1.3 Bayesian Linear Model	17 17
2	Pro	bability	6		5.1.5 Flexible Regression	17
	2.1	Combinatorics	6		5.1.6 Generalized Regression	18
	2.2	Probability Theory	6		5.1.7 Weighted Regression	18
	2.3	Random Variables/Vectors	6		5.2 Goodness of Fit	18
	2.4	Probability Distributions	7		5.2.1 Coefficient of Determination	18
	2.4	2.4.1 Discrete Distributions	7	6	Bayesian Statistics	19
		2.4.2 Continuous Distributions	8	U	6.1 Basics	19
		2.4.3 Exponential Family	8		6.2 Numerical Methods for the Posterior	19
	2.5	Multivariate Distributions	9			
	2.6	Limit Theorems	9	7	7 Sampling	21
	2.0	Limit Theorems	9		N. M. J. I. C. I	
3	Infe	Inference		8	8 Model Selection	22
	3.1	.1 Method of Moments		9	Dimensionality Reduction	23
	3.2	Loss Functions	11	10 Missing/Deficient Date		24
	3.3	Maximum Likelihood (ML)	12	10	10 Missing/Deficient Data	
	3 4	Consistency and Sufficiency	13	11	1 Experiment Design	25

Descriptive Statistics 1

1.1 **Summary Statistics**

Location 1.1.1

Mode Most frequent value of x_i . Two or more modes are possible (bimodal).

Median

$$\tilde{x}_{0.5} = \begin{cases} x_{((n+1)/2)} & \text{falls } n \text{ ungerade} \\ \frac{1}{2}(x_{(n/2)} + x_{(n/2+1)} & \text{falls } n \text{ gerade} \end{cases}$$

Quantile

$$\tilde{x}_{\alpha} = \begin{cases} x_{(k)} & \text{falls } n\alpha \notin \mathbb{N} \\ \frac{1}{2}(x_{(n\alpha)} + x_{(n\alpha+1)}) & \text{falls } n\alpha \text{ ganzzahlig} \end{cases}$$

$$k = \min x \in \mathbb{N}, \quad x > n\alpha$$

Minimum/Maximum

$$x_{\min} = \min_{i \in \{1, \dots, N\}} (x_i)$$
 $x_{\max} = \max_{i \in \{1, \dots, N\}} (x_i)$

1.1.2 Dispersion

Range

$$R = x_{(n)} - x_{(1)}$$

Interquartile Range

$$d_Q = \tilde{x}_{0.75} - \tilde{x}_{0.25}$$

(Empirical) Variance

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}$$

Estimates the second centralized moment.

Calculation Rules:

$$\star Var(aX + b) = a^2 \cdot Var(X)$$

Arithmetic Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Estimates the expectation $\mu = E[X]$ (first moment). Calculation Rules:

$$\star E(a+b\cdot X) = a+b\cdot E(X)$$

$$\star E(X \pm Y) = E(X) \pm E(Y)$$

Geometric Mean

$$\bar{x}_G = \sqrt[n]{\sum_{i=1}^n x_i}$$

For growth factors: $\bar{x}_G = \sqrt[n]{\frac{B_n}{R_n}}$

Harmonic Mean

$$\bar{x}_H = \frac{\sum\limits_{i=1}^n w_i}{\sum\limits_{i=1}^n \frac{w_i}{x_i}}$$

$\star \ Var(X \pm Y) = Var(X) + Var(Y) + 2Cov(X, Y)$

(Empirical) Standard Deviation

$$s = \sqrt{s^2}$$

Coefficient of Variation

$$\nu = \frac{s}{\bar{x}}$$

Average Absolute Deviation

$$e = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Estimates the first absolute centralized moment.

1.1.3 Concentration

Gini Coefficient

$$G = \frac{2\sum_{i=1}^{n} ix_{(i)} - (n+1)\sum_{i=1}^{n} x_{(i)}}{n\sum_{i=1}^{n} x_{(i)}} = 1 - \frac{1}{n}\sum_{i=1}^{n} (v_{i-1} + v_i)$$

with

$$u_i = \frac{i}{n}, \quad v_i = rac{\sum\limits_{j=1}^i x_{(j)}}{\sum\limits_{j=1}^i x_{(j)}} \qquad (u_0 = 0, \ v_0 = 0)$$

These are also the values for the Lorenz curve.

Range: $0 \le G \le \frac{n-1}{n}$

Lorenz-Münzner Coefficient (normed G) $G^+ = \frac{n}{n-1}G$

$$G^+ = \frac{n}{n-1}G$$

Range: $0 < G^+ < 1$

Shape 1.1.4

(Empirical) Skewness

$$\nu = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s} \right)^3$$

Estimates the third centralized moment, scaled with $(\sigma^2)^{\frac{2}{3}}$

(Empirical) Kurtosis

Range: $-1 \le \tau_b \le 1$

Range: $-1 \le \tau_c \le 1$

Spearman's Rank Correlation Coefficient

Kendall's/Stuart's τ_c

Without ties:

$$k = \left[n(n+1) \cdot \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s} \right)^4 - 3(n-1) \right] \cdot \frac{n-1}{(n-2)(n-3)} + 3$$

Estimates the fourth centralized moment, scaled with $(\sigma^2)^2$

Excess

$$\gamma = k - 3$$

 $\tau_b = \frac{K - D}{\sqrt{(K + D + T_X)(K + D + T_Y)}}$

 $T_X = \sum_{i=m} \sum_{j < n} n_{ij} n_{mn}$ Number of ties w.r.t. X $T_Y = \sum_{i < m} \sum_{j=n} n_{ij} n_{mn}$ Number of ties w.r.t. Y

 $\tau_c = \frac{2\min(k, l)(K - D)}{n^2(\min(k, l) - 1)}$

 $\rho = \frac{n(n^2 - 1) - \frac{1}{2}\sum\limits_{j = 1}^{J}b_j(b_j^2 - 1) - \frac{1}{2}\sum\limits_{k = 1}^{K}c_k(c_k^2 - 1) - 6\sum\limits_{i = 1}^{n}d_i^2}{\sqrt{n(n^2 - 1) - \sum\limits_{j = 1}^{J}b_j(b_j^2 - 1)}\sqrt{n(n^2 - 1) - \sum\limits_{k = 1}^{K}c_k(c_k^2 - 1)}}$

 $\rho = \frac{s_{rg_x rg_y}}{\sqrt{s_{rq_x rq_x} s_{rq_y rq_y}}}$

 $\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2)}$

1.1.5Dependence

for two nominal variables

 χ^2 -Statistic

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - \frac{n_{i+}n_{+j}}{n})^2}{\frac{n_{i+}n_{+j}}{n}} = n \left(\sum_{i=1}^k \sum_{j=1}^l \frac{n_{ij}^2}{n_{i+}n_{+j}} - 1 \right)$$

Range: $0 \le \chi^2 \le n(\min(k, l) - 1)$

Phi-Coefficient

$$\Phi = \sqrt{\frac{\chi^2}{n}}$$

Range: $0 \le \Phi \le \sqrt{\min(k, l) - 1}$

Cramér's V

$$V = \sqrt{\frac{\chi^2}{\min(k, l) - 1}}$$

Range: $0 \le V \le 1$

Contingency Coefficient C

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Range: $0 \le C \le \sqrt{\frac{\min(k,l)-1}{\min(k,l)}}$

Corrected Contingency Coefficient

$$C_{corr} = \sqrt{\frac{\min(k,l)}{\min(k,l) - 1}} \cdot \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Range $0 \le C_{corr} \le 1$

Odds-Ratio

$$OR = \frac{ad}{bc} = \frac{n_{ii}n_{jj}}{n_{ij}n_{ji}}$$

Range: $0 \le OR < \infty$

for two metric variables

Range: $-1 \le \rho \le 1$

Correlation Coefficient (Bravais-Pearson)

 $d_i = R(x_i) - R(y_i)$ rank difference

$$r = \frac{\overset{\longleftarrow}{S_{xy}}}{\sqrt{S_{xx}S_{yy}}} = \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$

with
$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})^2 (y_i - \bar{y})^2 \quad \text{or } s_{xy} = \frac{S_{xy}}{n}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \quad \text{or } s_{xx} = \frac{S_{xx}}{n}$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad \text{or } s_{yy} = \frac{S_{yy}}{n}$$

$$S_{yy} = \sum_{n=1}^{i=1} (y_i - \bar{y})^2 \qquad \text{or } s_{yy} = \frac{S_y}{r}$$

Range: $-1 \le r \le 1$

for two ordinal variables

Gamma (Goodman and Kruskal)

$$\gamma = \frac{K - D}{K + D}$$

$$K = \sum_{i < m} \sum_{j < n} n_{ij} n_{mn}$$
 Number of concordant pairs
$$D = \sum_{i < m} \sum_{j > n} n_{ij} n_{mn}$$
 Number of reversed pairs

Range: $-1 \le \gamma \le 1$

1.2 Tables

1.3 Diagrams

1.3.1 Histogram

$$\begin{split} & \text{sample: } X = \{x_1, x_2, ...; x_n\} \\ & k\text{-th bin: } B_k = [t_k, t_{k+1}) \,, k = \{0, 1, ..., m-1\} \\ & \text{Number of observations in the k-th bin: } v_k \\ & \text{bin width: } h = t_{k+1} - t_k, \forall k \end{split}$$

Scott's Rule

$$h^* \approx 3.5 \sigma n^{-\frac{1}{3}}$$

For approximately normal distributed data (min. MSE)

2 Probability

2.1 Combinatorics

		without replacement	with replacement
Permutations		n!	$\frac{n!}{n_1!\cdots n_s!}$
Combinations:	without order with order	$\binom{n}{m}$ $\binom{n}{m}m!$	$\binom{n+m-1}{m}$ n^m

with:

$$n! = n \cdot (n-1) \cdot \dots \cdot 1$$

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

2.2 Probability Theory

Laplace

$$P(A) = \frac{|A|}{|\Omega|}$$

Kolmogorov Axioms mathematical definition of probability

- (1) $0 \le P(A) \le 1 \quad \forall A \in \mathcal{A} = \sigma\text{-algebra}(\Omega)$
- (2) $P(\Omega) = 1$
- (3) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ $\forall A_i \in \mathcal{A}, i = 1, ..., \infty \text{ with } A_i \cap A_i = \emptyset \text{ for } i \neq j$

Implications:

- $P(\bar{A}) = 1 P(A)$
- $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $A \subseteq B \Rightarrow P(A) \le P(B)$

Probability (Mises) frequentist definition of probability

$$P(A) = \lim_{n \to \infty} \frac{n_A(n)}{n}$$

with n repetitions of a random experiment and $n_A(n)$ events A

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{for } P(B) > 0$$

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

Law of Total Probability

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i) \quad \text{for } \Omega = \bigcup_{i=1}^{\infty} A_i \text{ and } A_i \cap A_j = \emptyset$$

Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad \text{for } P(A), P(B) > 0$$

 ${\bf Stochastic\ Independence}$

A, B independent $\Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$

X, Y independent $\Leftrightarrow f_{XY}(x,y) = f_X(x) \cdot f_Y(y) \quad \forall x, y$

2.3 Random Variables/Vectors

$Random \ Variables \in \mathbb{R}$

Definition

$$Y:\Omega \to \mathbb{R}$$

The subset of possible values for $\mathbb R$ is called support.

Notation: Realisations of Y are depicted with lower case letters. Y = y means, that y is the realisation of Y.

Discrete and Continuous Random Variables

If the support is uncountably infinite, the random variable is called continuous, otherwise it is called discrete.

• **Density** $f(\cdot)$ (positive, integrates out to 1):

For continuous variables: $P(Y \in [a, b]) = \int_a^b f_Y(y) dy$

For discrete variables the density (and other functions) can be depicted like the corresponding function for continuous variables, if the notation is extended as follows:

$$\int_{-\infty}^y f_Y(\tilde{y}) d\tilde{y} := \sum_{k: k \le y} P(Y = k).$$
 This notation is used.

If
$$Y = g(X)$$
, then $f_Y(y) = \left| \frac{dg^{-1}(y)}{dy} \right| f_X(g^{-1}(y))$.

• Cumulative Distribution Function $F(\cdot)$:

$$F_Y(y) = P(Y \le y)$$

with $\lim_{y\to-\infty} F_Y(y) = 0$ and $\lim_{y\to\infty} F_Y(y) = 1$

Relationship:

$$F_Y(y) = \int_{-\infty}^{y} f_Y(\tilde{y}) d\tilde{y}$$

Moments

- Expectation (1. Moment): $\mu = E(Y) = \int y f_Y(y) dy$
- Variance (2. centralized Moment):

$$\sigma^2 = Var(Y) = E(\{Y - E(Y)\}^2) = \int (y - E(Y))^2 f_Y(y) dy$$
 Note: $E(\{Y - \mu\}^2) = E(Y^2) - \mu^2$

Proof:
$$E(\{Y-\mu\}^2) = E(Y^2-2Y\mu+\mu^2) = E(Y^2)-2\mu^2+\mu^2 = E(Y^2)-\mu^2$$

• kth Moment: $E(Y^k) = \int y^k f_Y(y) dy$, kth centralized Moment: $E(\{Y - E(Y)\}^k)$

Moment Generating Function

$$M_Y(t) = \mathcal{E}_Y(e^{tY})$$
 with $\frac{\partial^k M_Y(t)}{\partial t^k} \Big|_{t=0} = \mathcal{E}(Y^k)$

Cumulant Generating Function $K_Y(t) = \log M_Y(t)$

A random variable is uniquely defined by its moment generating function and vice versa (as long as moments and cumulants are finite).

$oldsymbol{Random} oldsymbol{Vectors} \in \mathbb{R}^q$

Definition

$$(Y_1, Y_2, ..., Y_q)$$

with random variables Y_i

Density and Cumulative Distribution Function

$$F(y_1,...,y_q) = P(Y_1 \le y_1,...,Y_q \le y_q)$$

$$P(a_1 \leq Y_1 \leq b_1, ..., a_q \leq Y_q \leq b_q) = \int_{a_1}^{b_1} ... \int_{a_q}^{b_q} f(y_1, ..., y_q) dy_1 ... dy_q$$

Marginal Density

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(y_1, ..., y_k) dy_2 ... dy_k$$

Conditional Density two-dimensional case

$$f_{Y_1|Y_2}(y_1|y_2) = \frac{f(y_1, y_2)}{f(y_2)}$$
 for $f(y_2) > 0$

Covariance and Correlation

$$Cov(Y_i, Y_k) = E(Y_iY_k) - E(Y_i)E(Y_k)$$

$$Cor(Y_j, Y_k) = \frac{Cov(Y_j, Y_k)}{\sqrt{Var(Y_j)Var(Y_k)}}$$

Iterated Expectation

$$E(Y) = E_X(E(Y|X))$$

Proof:

$$\mathbf{E}(Y) = \int y f(y) dy = \int \int y f(y|x) dy f_X(x) dx = \mathbf{E}_X \big(\mathbf{E}(Y|X) \big)$$

$$Var(Y) = E_X(Var(Y|X)) + Var_X(E(Y|X))$$

Proof:

$$\begin{aligned} \operatorname{Var}(Y) &= \int (y - \mu_Y)^2 f(y) dy \\ &= \int (y - \mu_Y)^2 f(y|x) f(x) dy dx \\ &= \int (y - \mu_Y|_x + \mu_Y|_x - \mu_Y)^2 f(y|x) f(x) dy dx \\ &= \int (y - \mu_Y|_x)^2 f(y|x) f(x) dy dx + \\ &\int (\mu_Y|_x - \mu_Y)^2 f(y|x) f(x) dy dx + \\ &2 \int (y - \mu_Y|_x) (\mu_Y|_x - \mu_Y) f(y|x) f(x) dy dx \\ &= \int \operatorname{Var}(Y|x) f(x) dx + \int (\mu_Y|_x - \mu_Y)^2 f(x) dx \\ &= \operatorname{E}_X(\operatorname{Var}(Y|X)) + \operatorname{Var}_X(\operatorname{E}(Y|X)) \end{aligned}$$

2.4 Probability Distributions

2.4.1 Discrete Distributions

Discrete Uniform

$$\begin{split} Y &\sim \mathrm{U}(\{y_1,...,y_k\}), \; y \in \{y_1,...,y_k\} \\ P(Y = y_i) &= \frac{1}{k}, \; i = 1,...,k \\ \mathrm{E}(Y) &= \frac{k+1}{2}, \; \mathrm{Var}(Y) = \frac{k^2-1}{12} \end{split}$$

Binomial Successes in independent trials

$$\begin{split} Y &\sim \mathrm{Bin}(n,\pi) \text{ with } n \in \mathbb{N}, \pi \in [0,1] \,, \ y \in \{0,...,n\} \\ P(Y &= y | \lambda) &= \binom{n}{y} \pi^k (1-\pi)^{n-y} \\ \mathrm{E}(Y | \pi, n) &= n\pi, \ \mathrm{Var}(Y | \pi, n) = n\pi (1-\pi) \end{split}$$

Poisson Counting model for rare events

only one event at a time, no autocorrelation, mean number of events over time is constant and proportional to length of the considered time interval

$$Y \sim \text{Po}(\lambda) \text{ with } \lambda \in [0, +\infty], y \in \mathbb{N}_0$$

$$\begin{split} P(Y = y | \lambda) &= \frac{\lambda^y exp^{-\lambda}}{y!} \\ \mathrm{E}(Y | p) &= \lambda, \, \mathrm{Var}(Y | p) = \lambda \end{split}$$

The model tends to overestimate the variance (Overdispersion). $Approximation \ \ {\rm of \ the \ Binomial \ for \ small \ p}$

Geometric

$$\begin{split} &Y\sim \operatorname{Geom}(\pi) \text{ with } \pi\in[0,1]\,,\ y\in\mathbb{N}_0\\ &P(Y=y|\pi)=\pi(1-\pi)^{y-1}\\ &\mathrm{E}(Y|\pi)=\frac{1}{\pi},\ \mathrm{Var}(Y|\pi)=\frac{1-\pi}{\pi^2} \end{split}$$

Negative Binomial

$$\begin{split} Y &\sim \mathrm{NegBin}(\alpha,\beta) \text{ with } \alpha,\beta \geq 0, \ y \in \mathbb{N}_0 \\ P(Y = y | \alpha,\beta) &= \binom{\alpha+y-1}{\alpha-1} \left(\frac{\beta}{\beta-1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{y} \\ \mathrm{E}(Y | \alpha,\beta) &= \frac{\alpha}{\beta}, \ \mathrm{Var}(Y | \alpha,\beta) = \frac{\alpha}{\beta^2}(\beta+1) \end{split}$$

2.4.2 Continuous Distributions

Continuous Uniform

$$\begin{split} Y &\sim \mathrm{U}(a,b) \text{ with } \alpha,\beta \in \mathbb{R}, a \leq b, \ y \in [a,b] \\ p(y|a,b) &= \frac{1}{b-a} \\ \mathrm{E}(Y|a,b) &= \frac{a+b}{2}, \ \mathrm{Var}(Y|a,b) = \frac{(b-a)^2}{12} \end{split}$$

Univariate Normal symmetric with μ and σ^2

$$Y \sim \mathcal{N}(\mu, \sigma^2) \text{ with } \mu \in \mathbb{R}, \sigma^2 > 0, \ y \in \mathbb{R}$$
$$p(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$
$$\mathcal{E}(Y|\mu, \sigma^2) = \mu, \ \mathcal{V}(Y|\mu, \sigma^2) = \sigma^2$$

Log-Normal

$$Y \sim \text{LogN}(\mu, \sigma^2) \text{ eith } \mu \in \mathbb{R}, \sigma^2 > 0, \ y > 0$$

$$p(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2 y}} \exp\left(-\frac{(\log y - \mu)^2}{2\sigma^2}\right)$$

$$E(Y|\mu, \sigma^2) = \exp(\mu + \frac{\sigma^2}{2}),$$

$$\text{Var}(Y|\mu, \sigma^2) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$$
 Relationship:
$$\log(Y) \sim \text{N}(\mu, \sigma^2) \Rightarrow Y \sim \text{LogN}(\mu, \sigma^2)$$

non-standardized Student's t statistical tests for μ with unknown (estimated) variance and ν degrees of freedom

$$\begin{split} &Y\sim \mathbf{t}_{\nu}(\mu,\sigma^2) \text{ with } \mu\in\mathbb{R},\sigma^2,\nu>0,\ y\in\mathbb{R}\\ &p(y|\mu,\sigma^2,\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma(\frac{\nu}{2})\Gamma(\sqrt{\nu\pi}\sigma)} \left(1+\frac{(y-\mu)^2}{\nu\sigma^2}\right)^{-\frac{\nu+1}{2}}\\ &\mathrm{E}(Y|\mu,\sigma^2,\nu) = \mu \text{ for } \nu>1,\\ &\mathrm{Var}(Y|\mu,\sigma^2,\nu) = \sigma^2\frac{\nu}{\nu-2} \text{ for } \nu>2 \end{split}$$

Relationship: $Y|\theta \sim N(\mu, \frac{\sigma^2}{\theta})$, $\theta \sim Ga(\frac{\nu}{2}, \frac{\nu}{2}) \Rightarrow Y \sim t_{\nu}(\mu, \sigma)$ $t_{\nu}(\mu, \sigma^2)$ has heavier tails then the normal distribution. $t_{\infty}(\mu, \sigma^2)$ approaches $N(\mu, \sigma^2)$.

Beta

$$\begin{split} Y &\sim \mathrm{Be}(a,b) \text{ with } a,b>0, \ y \in [0,1] \\ p(y|a,b) &= \frac{\Gamma\left(a+b\right)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1} \end{split}$$

2.4.3 Exponential Family

Definition

The exponential family comprises all distributions, whose density can be written as follows:

$$f_Y(y,\theta) = e^{t^T(y)\theta - \kappa(\theta)}h(y)$$

with $h(y) \ge 0$, t(y) vector of the canonical statistic, parameter vector θ and $\kappa(\theta)$ as the normalising constant.

Normalising Constant

$$1 = \int \exp^{t^T(y)\theta} h(y) dy \exp^{-\kappa(\theta)}$$

$$\begin{split} & \mathrm{E}(Y|a,b) = \frac{a}{a+b}, \\ & \mathrm{Var}(Y|a,b) = \frac{ab}{(a+b)^2 \left(a+b+1\right)}, \\ & \mathrm{mod}(Y|a,b) = \frac{a-1}{a+b-2} \text{ for } a,b > 1 \end{split}$$

Gamma

$$\begin{split} Y &\sim \operatorname{Ga}(a,b) \text{ with } a,b>0, \ y>0 \\ p(y|a,b) &= \frac{b^a}{\Gamma(a)} y^{a-1} \exp(-by) \\ \mathrm{E}(Y|a,b) &= \frac{a}{b}, \\ \mathrm{Var}(Y|a,b) &= \frac{a}{b^a}, \\ \operatorname{mod}(Y|a,b) &= \frac{a-1}{b} \text{ for } a \geq 1 \end{split}$$

Inverse-Gamma

$$\begin{split} Y &\sim \mathrm{IG}(a,b) \text{ with } a,b>0, \ y>0 \\ p(y|a,b) &= \frac{b^a}{\Gamma(a)} y^{-a-1} \exp(-\frac{b}{y}) \\ \mathrm{E}(Y|a,b) &= \frac{b}{a-1} \text{ for } a>1, \\ \mathrm{Var}(Y|a,b) &= \frac{b^2}{(a-1)^2(a-2)} \text{ for } a \geq 2, \\ \mathrm{mod}(Y|a,b) &= \frac{b}{a+1} \end{split}$$

Relationship: $Y^{-1} \sim \operatorname{Ga}(a,b) \Leftrightarrow Y \sim \operatorname{IG}(a,b)$

Exponential Time between Poisson events

$$\begin{split} Y &\sim \operatorname{Exp}(\lambda) \text{ with } \lambda > 0, \ y \geq 0 \\ p(y|\lambda) &= \lambda \exp(-\lambda y) \\ \operatorname{E}(Y|\lambda) &= \frac{1}{\lambda}, \ \operatorname{Var}(Y|\lambda) = \frac{1}{\lambda^2} \end{split}$$

$$\begin{split} &Y\sim\chi^2(\nu) \text{ with } \nu>0,,\,y\in\mathbb{R}\\ &p(y|\nu)=\frac{y^{\frac{\nu}{2}-1}e^{-\frac{y}{2}}}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)}\\ &\mathrm{E}(Y|\nu)=\nu,\,\mathrm{Var}(Y|\nu)=2\nu \end{split}$$

$$\Leftrightarrow \kappa(\theta) = \log \int \exp^{t^T(y)\theta} h(y) dy$$

 $\kappa(\theta)$ is the cumulant generating function, therefore e.g. $\frac{\partial \kappa(\theta)}{\partial \theta_1} = \mathrm{E}(t_1(Y))$

Members

- Poisson
- Geometric
- Exponential

- Normal $t(y) = \left(-\frac{y^2}{2}, y\right)^T$, $\theta = \left(\frac{1}{\sigma^2}, \frac{\mu}{\sigma^2}\right)^T$, $h(y) = \frac{1}{\sqrt{2\pi}}$, $\kappa(\theta) = \frac{1}{2} \left(-\log \frac{1}{\sigma^2} + \frac{\mu^2}{\sigma^2}\right)$
- Gamma

- Chi-Squared
- Beta
- Binomial

2.5 Multivariate Distributions

Multivariate Normal symmetric with μ_i and Σ

$$\begin{split} Y &\sim \mathcal{N}(\mu, \Sigma) \text{ with } \mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d} s.p.d., \ y \in \mathbb{R}^d \\ p(y|\mu, \Sigma) &= (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (y-\mu)^T \Sigma^{-1} (y-\mu)\right) \\ \mathcal{E}(Y|\mu, \Sigma) &= \mu, \ \text{Var}(Y|\mu, \Sigma) = \Sigma \end{split}$$

General Copulas

 $F(y_1,...,y_q)=C(F_1(y_1),...,F_q(y_q)) \text{ with } C:[0,1]^q\to [0,1]$ with C monotonically increasing as a cdf on $[0,1]^q$ Modelled as follows:

- 1. marginal distributions $F_i(y_i) = C(F_i(y_i), 1..., 1)$
- 2. dependence structure $\hat{u}_i = (\hat{u}_{i1}, ..., \hat{u}_{iq}) \stackrel{iid}{\sim} C(.)$ with $\hat{u}_{ij} := \hat{F}_j(y_{ij})$.

The copula density is
$$c(u_{1:q}) = \frac{\partial^q C(u_{1:q})}{\partial u_1 \dots \partial u_q}$$
 and $f(y_{1:q}) = c(F_1(y_1), \dots, F_q(y_q)) \prod_{j=1}^q f_j(y_j)$.

Tail Dependence

Tan Dependence upper:
$$\lambda_u := \lim_{u \to 1} P(Y_1 \ge F_1^{-1}(u) | Y_2 \ge F_2^{-1}(u))$$

$$= \lim_{u \to 1} \frac{1 - 2u + C(u, u)}{1 - u}$$
lower: $\lambda_l := \lim_{u \to 0} P(Y_1 \le F_1^{-1}(u) | Y_2 \le F_2^{-1}(u))$

$$= \lim_{u \to 0} \frac{C(u, u)}{u}$$

Gaussian Copula coefficients for pairwise dependences

$$c(u_{1:q}) = \frac{1}{|R|^{1/2}} \exp\left(-\frac{1}{2}u^T R^{-1}u\right)$$

For $Y_{ij} \sim N(\mu_j, \sigma_j)$: $f(y_{ij}; \mu_j, \sigma_j^2) = \frac{1}{\sigma_j} \phi(Z_{ij})$ with Z_{ij} the standardized Y_{ij} . With $u_{ij} = \phi^{-1}(Z_{ij})$, R can be estimated. $\lambda_l = 0, \lambda_u = 0$

Archimedean Copulas few parameters even in high dimensions

$$\psi(;\theta):[0,1]\to[0,\infty)$$

with the parametric generator function $\psi(u,\theta)$ continuous, strictly decreasing, convex, and $\psi(1,\theta)=0$ $\forall \theta$

$$C(u_{1:q};\theta) = \psi^{-1}(\psi(u_1;\theta) + ... + \psi(u_q;\theta);\theta)$$

- Clayton $\psi(t;\theta) = \frac{1}{\theta}(\theta^{-1} 1)$: $\lambda_l = 2^{-1/\theta}, \lambda_u = 0$
- Frank $\psi(t;\theta) = -\log \frac{\exp(-\theta t) 1}{\exp(-\theta) 1}$: $\lambda_l = 0, \ \lambda_u = 0$
- Gumbel $\psi(t;\theta) = (-\log(t))^{\theta}$: $\lambda_l = 0$, $\lambda_u = 2 2^{1/\theta}$

Pair Copulas flexible pairwise dependences

$$f_{123} = c_{12}c_{23}c_{23|1} \prod_{j=1}^{3} f_j$$

Generalized Extreme Value Distribution (GEV)

for block maxima $M_n := \max(Y_{1:n})$:

$$F_{M_n}(y) = P(M_n \le y) = P(Y_{1:n} \le y) = (F_Y(y))^n$$

$$\lim_{n \to \infty} f_{M_n}(y) = \begin{cases} 1, & \text{if } F(y) = 1\\ 0, & \text{otherwise} \end{cases}$$

For $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ fixed sequences, the standardized maximum $\frac{M_n-a_n}{b_n}$ converges to a GEV as $n\to\infty$.

$$G(x) = \begin{cases} \exp(-(1+\gamma z)^{-1/\gamma}), & \text{for } \gamma \neq 0\\ \exp(-\exp(-z)), & \text{for } \gamma = 0 \end{cases}$$

with location μ , scale σ , and shape γ and $z = \frac{x-\mu}{\sigma}$

- Gumbel $\gamma = 0$
- Weibull $\gamma > 0$
- Frechet-Pareto $\gamma < 0$

2.6 Limit Theorems

Law of Large Numbers

Central Limit Theorem

$$Z_n \stackrel{d}{\longrightarrow} N(0, \sigma^2)$$

with $Z_n = \sum_{i=1}^n \frac{Y_i}{\sqrt{n}}$ and Y_i i.i.d. with expectation 0 and

Proof:

For normal random variables $Z \sim N(\mu, \sigma^2)$: $K_Z(t) = \mu t + \frac{1}{2}\sigma^2 t^2$. The first two derivatives $\frac{\partial^k K_Z(t)}{\partial t^k}\Big|_{t=0}$ are μ and σ . All other moments are zero.

For
$$Z_n = (Y_1 + Y_2 + ... + Y_n)/\sqrt{n}$$
:

$$\begin{split} M_{Z_n}(t) &= \mathbf{E} \left(e^{t(Y_1 + Y_2 + \ldots + Y_n)/\sqrt{n}} \right) \\ &= \mathbf{E} \left(e^{tY_1/\sqrt{n}} \cdot e^{tY_2/\sqrt{n}} \cdot \ldots \cdot e^{tY_n/\sqrt{n}} \right) \\ &= \mathbf{E} \left(e^{tY_1/\sqrt{n}} \right) \mathbf{E} \left(e^{tY_2/\sqrt{n}} \right) \ldots \mathbf{E} \left(e^{tY_n/\sqrt{n}} \right) \\ &= M_Y^n(t/\sqrt{n}) \end{split}$$

Analoguously: $K_{Z_n}(t) = nK_Y(t/\sqrt{n})$.

$$\begin{split} \frac{\partial K_{Z_n}(t)}{\partial t} \bigg|_{t=0} &= \frac{n}{\sqrt{n}} \frac{\partial K_Y(t)}{\partial t} \bigg|_{t=0} = \sqrt{n} \mu \\ \frac{\partial^2 K_{Z_n}(t)}{\partial t^2} \bigg|_{t=0} &= \frac{n}{n} \frac{\partial^2 K_Y(t)}{\partial t^2} \bigg|_{t=0} = \sigma^2 \end{split}$$

Using the Taylor Expansion, we can write $K_{Z_n}(t)=0+\sqrt{n}\mu t+\frac{1}{2}\sigma^2 t^2+\ldots$, where the terms in ... are tending towards 0 as $n\to\infty$.

Therefore: $K_{Z_n}(t) \stackrel{n \to \infty}{\longrightarrow} K_Z(t)$ with $Z \sim \mathcal{N}(\sqrt{n}\mu, \sigma^2)$.

3 Inference

3.1 Method of Moments

The theoretical moments are estimated by their empirical counterparts:

$$E_{\hat{\theta}_{MM}}(Y^k) = m_k(y_1, ..., y_n)$$

For the exponential family: $\hat{\theta}_{MM} = \hat{\theta}_{ML}$

3.2 Loss Functions

Loss

$$\mathcal{L}: \mathcal{T} \times \Theta \rightarrow \mathbb{R}^+$$

with parameter space $\Theta \subset \mathbb{R}$, $t \in \mathcal{T}$ with $t : \mathbb{R}^n \to \mathbb{R}$ a statistic, that estimates the parameter θ , $\mathcal{L}(\theta, \theta) = 0$ holds

- absolute loss (L1): $\mathcal{L}(t,\theta) = |t \theta|$
- quadratic loss (L2): $\mathcal{L}(t,\theta) = (t-\theta)^2$

As θ is unknown, the loss is a theoretical quantity. It is also the realisation of a random variable as it depends on a sample.

Risk

$$R(t(.), \theta) = \mathcal{E}_{\theta} \left(\mathcal{L}(t(Y_1, ..., Y_n), \theta) \right)$$
$$= \int_{-\infty}^{\infty} \mathcal{L}(t(Y_1, ..., Y_n), \theta) \prod_{i=1}^{n} f(y_i; \theta) dy_i$$

Minimax Approach

The risk still depends on the true parameter θ .

Tentative estimation: Choose θ , s. t. the risk is maximal and then t(.), so that the risk is minimized (minimizing the worst case):

$$\hat{\theta}_{minimax} = \underset{t(.)}{\arg\min} \ \left(\underset{\theta \in \Theta}{\max} \ R(t(.); \theta) \right)$$

Mean Squared Error (MSE)

$$MSE(t(.), \theta) = \mathcal{E}_{\theta} \left(\{ t(Y) - \theta \}^2 \right)$$
$$= \operatorname{Var}_{\theta} \left(t(Y_1, ..., Y_n) \right) + Bias^2((t(.); \theta))$$
with $Bias(t(.); \theta) = \mathcal{E}_{\theta} \left(t(Y_1, ..., Y_n) \right) - \theta$

Proof:
Let
$$\mathcal{L}(t,\theta) = (t-\theta)^2$$

 $R(t(.),\theta) = \mathcal{E}_{\theta}(\{t(Y) - \theta\}^2)$
 $= \mathcal{E}_{\theta}(\{t(Y) - \mathcal{E}_{\theta}(t(Y)) + \mathcal{E}_{\theta}(t(Y)) - \theta\}^2)$
 $= \mathcal{E}_{\theta}(\{t(Y) - \mathcal{E}_{\theta}(t(Y))\}^2) + \mathcal{E}_{\theta}(\{\mathcal{E}_{\theta}(t(Y)) - \theta\}^2)$
 $+ 2\mathcal{E}_{\theta}(\{t(Y) - \mathcal{E}_{\theta}(t(Y))\}\{\mathcal{E}_{\theta}(t(Y)) - \theta\})$
 $= \mathcal{V}_{\alpha}(t(Y_1, ..., Y_n)) + Bias^2((t(.); \theta) + 0)$

Cramér-Rao Bound

$$MSE(\hat{\theta}, \theta) \geq Bias^2(\hat{\theta}, \theta) + \frac{\left(1 + \frac{\partial Bias(\hat{\theta}, \theta)}{\partial \theta}\right)^2}{I(\theta)}$$

Proof: For unbiased estimates: $\theta = E_{\theta}(\hat{\theta}) = \int t(y)f(y;\theta)dy$ $1 = \int t(y)\frac{\partial f(y;\theta)}{\partial \theta}dy$ $= \int t(y)\frac{\partial \log f(y;\theta)}{\partial \theta}f(y;\theta)dy$ $= \int t(y)s(y;\theta)f(y;\theta)dy$ $= \int (t(y)-\theta)(s(\theta;y)-0)f(y;\theta)dy \qquad \text{E}_{\theta}(s(\theta;y)) = 0$ $= \text{Cov}_{\theta}(t(Y);s(\theta;Y))$ $\geq \sqrt{\text{Var}_{\theta}(t(Y))}\sqrt{\text{Var}_{\theta}(s(\theta;Y))} \qquad \text{Cauchy-Schwarz}$ $= \sqrt{MSE(t(Y);\theta)}\sqrt{I(\theta)}$

Kullback-Leibler Divergence Comparing distributions

$$KL(\theta,t) = \int_{-\infty}^{\infty} \log \frac{f(\tilde{y};\theta)}{f(\tilde{y};t)} f(\tilde{y};\theta) d\tilde{y}$$

The KL divergence is not a distance as it is not symmetric. It is 0 for $t=\theta$ and >0 otherwise.

Proof:

Follows from $\log(x) \le x - 1 \forall x \ge 0$, with equality for x = 1.

 $R_{KL}(\theta, t(.))$ is approximated by the MSE.

Proof:
$$R_{KL}(\theta, t(.)) =$$

$$= \int_{-\infty}^{\infty} \mathcal{L}_{KL}(t(Y_1, ..., Y_n), \theta) \prod_{i=1}^{n} f(y_i; \theta) dy_i$$

$$= \int \int \log \frac{f(\tilde{y}; \theta)}{f(\tilde{y}; t)} f(\tilde{y}; \theta) d\tilde{y} \prod_{i=1}^{n} f(y_i; \theta) dy_i$$

$$= \int \int (\log f(\tilde{y}; \theta) - \log f(\tilde{y}; t)) f(\tilde{y}; \theta) d\tilde{y} \prod_{i=1}^{n} f(y_i; \theta) dy_i$$

$$\approx -\int \underbrace{\left(\int \frac{\partial \log f(\tilde{y}; \theta)}{\partial \theta} f(\tilde{y}; \theta) d\tilde{y}\right)}_{0} (t - \theta) \prod_{i=1}^{n} f(y_i; \theta) dy_i$$

$$+ \frac{1}{2} \int \underbrace{\left(-\int \frac{\partial^2 \log f(\tilde{y}; \theta)}{\partial \theta^2} f(\tilde{y}; \theta) d\tilde{y}\right)}_{I(\theta)} (t - \theta)^2 \prod_{i=1}^{n} f(y_i; \theta) dy_i$$

The last step is approximated by the Taylor Expansion: $\log f(\tilde{y},t) \approx \log f(\tilde{y},\theta) + \frac{\partial \log f(\tilde{y},\theta)}{\partial \theta}(t-\theta) + \frac{1}{2} \frac{\partial^2 \log f(\tilde{y},\theta)}{\partial \theta^2}(t-\theta)^2$

3.3 Maximum Likelihood (ML)

Prerequisites

- $Y_i \sim f(y; \theta)$ i.i.d.
- $\theta \in \mathbb{R}^p$
- $f(.;\theta)$ Fisher-regular:
 - $\{y: f(y;\theta) > 0\}$ independent of θ
 - Parameter space Θ is open
 - $f(y; \theta)$ twice differentiable
 - $-\int \frac{\partial}{\partial \theta} f(y;\theta) dy = \frac{\partial}{\partial \theta} \int f(y;\theta) dy$

Central Functions

- Likelihood $L(\theta; y_1, ..., y_n)$: $\prod_{i=1}^n f(y_i; \theta)$
- log-Likelihood $l(\theta; y_1, ...y_n)$: $\log L(\theta; y_1, ..., y_n) = \sum_{i=1}^n \log f(y_i; \theta)$
- Score $s(\theta; y_1, ..., y_n)$: $\frac{\partial l(\theta; y_1, ..., y_n)}{\partial \theta}$
- Fisher-Information $I(\theta)$: $-\mathbb{E}_{\theta}\left(\frac{\partial s(\theta;Y)}{\partial \theta}\right)$
- observed Fisher-Information $J(\theta)$: $-\mathbb{E}_{\theta}\left(\frac{\partial s(\theta;y)}{\partial \theta}\right)$

Attributes of the Score-Function

first Bartlett-Equation:

$$E\left(s(\theta;Y)\right) = 0$$

Proof:
$$1 = \int f(y;\theta)dy$$

$$0 = \frac{\partial 1}{\partial \theta} = \int \frac{\partial f(y;\theta)}{\partial \theta}dy = \int \frac{\partial f(y;\theta)/\partial \theta}{f(y;\theta)}f(y;\theta)dy$$

$$= \int \frac{\partial \log f(y;\theta)}{\partial \theta}f(y;\theta)dy = \int s(\theta;y)f(y;\theta)dy$$

second Bartlett-Equation:

$$\operatorname{Var}_{\theta}\left(s(Y;\theta)\right) = \operatorname{E}_{\theta}\left(-\frac{\partial^{2}logf(Y;\theta)}{\partial\theta^{2}}\right) = I(\theta)$$

Proof:

$$0 = \frac{\partial 0}{\partial \theta} = \frac{\partial}{\partial \theta} \int \frac{\partial \log f(y;\theta)}{\partial \theta} f(y;\theta) dy \qquad \text{see above}$$

$$= \int \frac{\partial^2 \log f(y;\theta)}{\partial \theta^2} f(y;\theta) dy$$

$$+ \int \frac{\partial \log f(y;\theta)}{\partial \theta} \frac{\partial f(y;\theta)}{\partial \theta} dy$$

$$= \operatorname{E}_{\theta} \left(\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2} \right)$$

$$+ \int \frac{\partial \log f(y;\theta)}{\partial \theta} \frac{\partial \log f(y;\theta)}{\partial \theta} f(y;\theta) dy$$

$$\Leftrightarrow \mathcal{E}_{\theta}\left(s(\theta;Y)s(\theta;Y)\right) = \mathcal{E}_{\theta}\left(-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta^2}\right)$$
 Bartlett's second equation holds then as $\mathcal{E}\left(s(\theta;Y)\right) = 0$

ML-Estimate

$$\hat{\theta}_{ML} = \arg\max l(\theta; y_1, ... y_n)$$

for Fisher-regular distributions: $\hat{\theta}_{ML}$ has asymptotically the smallest variance, given by the Cramér-Rao inequality,

$$s\left(\hat{\theta}_{ML}; y_1, ..., y_n\right) = 0$$
$$\hat{\theta} \stackrel{a}{\sim} N\left(\theta, I^{-1}(\theta)\right)$$

If the true model is unknown, the distribution is $\hat{\theta} \stackrel{a}{\sim} \mathcal{N}\left(\theta, I^{-1}(\theta)V(\theta)I^{-1}(\theta)\right)$ with $V(\theta)$ variance of the score function.

The ML-estimate is invariant: $\hat{\gamma} = g(\hat{\theta})$ if $\gamma = g(\theta)$.

Proof

$$\gamma = g(\theta) \Leftrightarrow \theta = g^{-1}(\gamma)$$

For the log-likelihood of γ at the location $\hat{\theta}$ holds:

$$\frac{\partial l(g^{-1}(\hat{\gamma}))}{\partial \gamma} = \frac{\partial g^{-1}(\gamma)}{\partial \gamma} \underbrace{\frac{\partial l(\hat{\theta})}{\partial \theta}}_{=0} = 0$$

Then, the Fisher information is $\frac{\partial \theta}{\partial \gamma} I(\theta) \frac{\partial \theta}{\partial \gamma}$

Proof:

$$\begin{split} I_{\gamma}(\gamma) &= -\mathrm{E}\left(\frac{\partial^{2}l(g^{-1}(\hat{\gamma}))}{\partial\gamma^{2}}\right) = -\mathrm{E}\left(\frac{\partial}{\partial\gamma}\left(\frac{\partial g^{-1}(\gamma)}{\partial\gamma}\frac{\partial l(\theta)}{\partial\theta}\right)\right) \\ &= -\mathrm{E}\left(\underbrace{\frac{\partial^{2}g^{-1}(\gamma)}{\partial\gamma}\frac{\partial l(\theta)}{\partial\theta}}_{\text{Expectation 0}} + \underbrace{\frac{\partial g^{-1}(\gamma)}{\partial\gamma}\frac{\partial^{2}l(\theta)}{\partial\theta^{2}}\frac{\partial g^{-1}(\gamma)}{\partial\gamma}}_{\text{Expectation 0}}\right) \\ &= \frac{\partial g^{-1}(\gamma)}{\partial\gamma}I(\theta)\frac{\partial g^{-1}(\gamma)}{\partial\gamma} = \frac{\partial\theta}{\partial\gamma}I(\theta)\frac{\partial\theta}{\partial\gamma} \end{split}$$

Delta rule: $\gamma \stackrel{a}{\sim} N(\hat{\gamma}, \frac{\partial \theta}{\partial \gamma} I^{-1}(\theta) \frac{\partial \theta}{\partial \gamma})$

Numerical computation of the ML estimate Fisher-Scoring as statistical version of the Newton-Raphson procedure

- 1. Initialize $\theta_{(0)}$
- 2. Repeat: $\theta_{(t+1)} := \theta_{(t)} + I^{-1}(\theta_{(t)})s(\theta_{(t)};y)$
- 3. Stop if $\|\theta_{(t+1)} \theta_{(t)}\| < \tau$; return $\hat{\theta}_{ML} = \theta_{(t+1)}$

$$\begin{split} \text{Proof:} \\ 0 &= s(\hat{\theta}_{ML}; y) \mathop \approx \limits_{Series}^{Taylor} s(\theta; y) + \frac{\partial s(\theta; y)}{\partial \theta} (\hat{\theta}_{ML} - \theta) \Leftrightarrow \\ \hat{\theta}_{ML} &\approx \theta - \left(\frac{\partial s(\theta; y)}{\partial \theta}\right)^{-1} s(\theta; y) \approx \theta - I^{-1}(\theta) s(\theta; y) \end{split}$$

As $\frac{\partial s(\theta;y)}{\partial \theta}$ is often complicated, its expectation $I(\theta)$ is used.

The second part in 2 can be weighted with a step size δ or $\delta(t) \in (0,1)$, e. g. to ensure convergence.

If $I(\theta)$ can't be analytically derived, simulation from $f(y;\theta_{(t)})$ can be used. For the exponential family, step 2 then changes to $\theta_{(t+1)} := \theta_{(t)} + \widehat{\mathrm{Var}}_{\theta_{(t)}}(t(Y))^{-1}\widehat{\mathrm{E}}_{\theta_{(t)}}(t(Y))$ as the ML estimate is the expectation.

Log Likelihood Ratio

$$lr(\theta, \hat{\theta}) := l(\hat{\theta}) - l(\theta) = \log \frac{L(\hat{\theta})}{L(\theta)}$$

with $2 \cdot lr(\theta, \hat{\theta}) \stackrel{a}{\sim} \chi_1^2$

oot:
$$l(\theta) \mathop {\approx} \limits_{Series}^{Taylor} l(\hat{\theta}) + \underbrace{\frac{\partial l(\hat{\theta})}{\partial \theta}}_{=0} (\theta - \hat{\theta}) + \frac{1}{2} \underbrace{\frac{\partial^2 l(\hat{\theta})}{\partial \theta^2}}_{\approx -I(\theta)} (\underbrace{\frac{\theta - \hat{\theta}}{\varepsilon I^{-1}(\theta)}}_{s(\theta; Y)})^2$$

$$\approx l(\hat{\theta}) - \frac{1}{2} \frac{s^2(\theta, Y)}{I(\theta)}$$

 $s(\theta, Y)$ is asymptotically normal.

If $\theta \in \mathbb{R}^p$ the corresponding distribution is χ_p^2 .

Relation to Kullback-Leibler divergence

$$\hat{\theta}_{ML} = \arg \min KL(g, f)$$

with f distributional model used and g true model

$$KL(g, f) = \int \log \frac{g(y)}{f(y)} g(y) dy$$
$$= \int \log(g(y)) g(y) dy - \int \log(f(y)) g(y) dy$$

To minimize that, the second component needs to be maximized. Its derivative is $\int s(\theta; y)g(y)dy = E_g(s(\theta; Y)) = 0$

3.4 Consistency and Sufficiency

Statistic

$$t: \mathbb{R}^n \to \mathbb{R}$$

 $t(Y_1,...,Y_n)$ depends on sample size n and is a random variable

(Weak) Consistency

$$MSE(\hat{\theta}, \theta) \xrightarrow{n \to \infty} 0 \Rightarrow \hat{\theta} \text{ consistent}$$

$$P(|\hat{\theta} - \mathcal{E}_{\theta}(\hat{\theta})| \geq \delta) \leq \frac{Var_{\theta}(\hat{\theta})}{\delta^2}$$
 using the inequality of Chebyshev and $MSE(t(.), \theta) = Var_{\theta}(t(Y_1, ..., Y_n)) + Bias^2((t(.); \theta))$

Sufficiency

A statistic $t(y_1,...,y_n)$ is sufficient for θ , if the conditional distribution $f(y_1,...,y_n|t_0=t(y_1,...,y_n);\theta)$ is independent of θ .

Neyman criterion:

$$t(Y_1, ..., Y_n)$$
 sufficient $\Leftrightarrow f(y; \theta) = h(y) g(t(y); \theta)$

Proof:

"⇒":

$$f(y;\theta) = \underbrace{f(y|t{=}t(y);\theta)}_{h(y)} \underbrace{f_t(t|y;\theta)}_{g(t(y);\theta)}$$

':
$$f_t(t;\theta) = \int_{t=t(y)} f(y;\theta) dy = \int_{t=t(y)} h(y)g(t;\theta) dy$$
 Therefore:

$$f\left(y|t=t(y);\theta\right) = \frac{f(y,t=t(y);\theta)}{f_t(t,\theta)} = \begin{cases} \frac{h(y)g(t;\theta)}{g(t;\theta)} & t=t(y)\\ 0 & \text{otherwise} \end{cases}$$

Minimal Sufficiency:

t(.) is sufficient and $\forall \tilde{t}(.) \exists h(.) \text{ s.t. } t(y) = h(\tilde{t}(y))$

4 Statistical Hypothesis Testing

4.1 Significance and Confidence Intervals

Significance Test

Assuming two states H_0 and H_1 and two corresponding decisions " H_0 " and " H_1 ", a decision rule (a threshold $c \in \mathbb{R}$ for the test statistic T(X)) is constructed s.t.:

$$p = P(\text{``H}_1\text{''}|H_0) \le \alpha$$

$$\frac{\text{``H}_0\text{''}}{H_0} \frac{\text{``H}_1\text{''}}{1 - p \text{ (correct)}} p \text{ (type I error)}$$

$$H_1 \beta \text{ (type II error)} 1 - \beta \text{ (correct)}$$

Power concerns the type II error

$$power = P("H_1"|H_1) = 1 - \beta$$

p-Value measures the amount of evidence against H_0

$$p \le \alpha \Leftrightarrow "H_0"$$

The p-value is uniformly distributed on [0,1] under H_0 .

4.2 Tests for One Sample

Normal Distribution $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$

Test for μ , known σ^2 (Simple Gauss-Test)

 $H_0: \mu = \mu_0 \quad vs. \quad H_1: \mu \neq \mu_0$

$$T(X) = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \stackrel{H_0}{\sim} \text{N}(0, 1)$$

Test for μ , unknown σ^2 (Simple t-Test)

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$

$$T(X) = \frac{\bar{X} - \mu_0}{\hat{\sigma}/\sqrt{n}} \overset{H_0}{\sim} t_{n-1}$$
 with $\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2}$

ML Estimate $\hat{\theta} \stackrel{a}{\sim} N(\theta, I^{-1}(\theta))$

Wald Test

 $H_0: \theta = \theta_0 \quad vs. \quad H_1: \theta \neq \theta_0$

$$T(X) = |\hat{\theta} - \theta_0| \stackrel{H_0}{\sim} N(0, I^{-1}(\theta_0))$$

As $\hat{\theta}$ converges to θ_0 under H_0 , it can also be used to calculate the variance: $I^{-1}(\hat{\theta})$.

Score Test

 $H_0: \theta = \theta_0 \quad vs. \quad H_1: \theta \neq \theta_0$

$$T(X) = |s(\theta_0; y)| \stackrel{H_0}{\sim} \mathrm{N}(0, I(\theta_0))$$

Advantage compared to the Wald Test: $\hat{\theta}$ does not have to be calculated.

Confidence Interval

 $[t_l(Y_{1:n}), t_r(Y_{1:n})]$ Confidence Interval

 \Leftrightarrow

$$P_{\theta}\left(t_{l}(Y_{1:n}) \leq \theta \leq t_{r}(Y_{1:n})\right) \geq 1 - \alpha$$

with $1 - \alpha$ confidence level und α significance level

Corresponding Test

$$\theta_0 \notin [t_l(y_{1:n}), t_r(y_{1:n})] \Leftrightarrow "H_1"$$

Specificity or True Negative Rate (1-empirical type I error)

$$TNR = \frac{\#TN}{\#N} = \frac{\#TN}{\#TN + \#FP}$$

Sensitivity or True Positive Rate, Recall (empirical power)

$$TPR = \frac{\#TP}{\#P} = \frac{\#TP}{\#TP + \#FN}$$

Likelihood Ratio Test

 $H_0: \theta = \theta_0 \quad vs. \quad H_1: \theta \neq \theta_0$

$$T(X) = 2(l(\hat{\theta}) - l(\theta_0)) \stackrel{H_0}{\sim} \chi_1^2$$

Neyman-Pearson Test

 $H_0: \theta = \theta_0 \quad vs. \quad H_1: \theta = \theta_1$

$$T(X) = l(\theta_0) - l(\theta_1)$$

For a given significance level α , the Neyman Pearson Test is the most powerful test for comparing two estimates for θ .

Proof:

Decision rule of the NP-Test: $\varphi^* = \begin{cases} 1 & \text{if } \frac{f(y;\theta_0)}{f(y;\theta_1)} \leq e^c \\ 0 & \text{otherwise} \end{cases}$

Need to show: $P(\varphi(Y)=1|\theta_1) \leq P(\varphi^*(Y)=1|\theta_1) \forall \varphi$

$$\begin{split} &P(\varphi^* = 1|\theta_1) - P(\varphi = 1|\theta_1) = \\ &= \int \{\varphi^*(y) - \varphi(y)\} f(y;\theta_1) dy \\ &\geq \frac{1}{\mathrm{e}^c} \int_{\varphi^* = 1} \{\varphi^*(y) - \varphi(y)\} f(y;\theta_0) dy \quad f(y;\theta_1) \geq \frac{f(y;\theta_0)}{\mathrm{e}^c} \\ &+ \frac{1}{\mathrm{e}^c} \int_{\varphi^* = 0} \{\varphi^*(y) - \varphi(y)\} f(y;\theta_0) dy \quad f(y;\theta_1) \leq \frac{f(y;\theta_0)}{\mathrm{e}^c} \\ &= \frac{1}{\mathrm{e}^c} \int \{\varphi^*(y) - \varphi(y)\} f(y;\theta_0) dy = 0 \\ &\mathrm{As} \ \alpha = \int \varphi^*(y) f(y;\theta_0) dy = \int \varphi(y) f(y;\theta_0) dy \end{split}$$

4.3 Tests for Goodness of Fit

Discrete (Chi-Squared)

 $H_0: X_i \sim F_0 \quad vs. \quad H_1: X_i \sim F \neq F_0$

$$T(X) = \sum_{k=1}^{K} \frac{(n_k - l_k)^2}{l_k} \overset{H_0}{\sim} \chi_{K-1-p}^2$$

with the following contingency table:

 $l_k > 5$ and $l_k > n-5$ for the χ^2_{K-1-p} -distribution to hold, F_0 needs to be known, but its p parameters can be estimated. The test can be applied to discretized continuous variables.

Continuous (Kolmogorov-Smirnov Test)

 $H_0: X_i \sim F_0 \quad vs. \quad H_1: X_i \sim F \neq F_0$

$$T(X) = \sup_{x} |F_n(x) - F_0(x;\theta)| \stackrel{H_0}{\sim} KS$$

with the distribution function $F(x;\theta)$ and the empirical counterpart $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{\{X_i \leq x\}}$

Proof:

$$\begin{split} P(\sup_{x} |F_{n}(x) - F(x;\theta)| &\leq t) = \\ &= P(\sup_{y} |F^{-1}(y;\theta) - x| \leq t) & \sum_{F(F^{-1}(y;\theta);\theta) = y}^{x \in [0,1], \ x = F^{-1}(y;\theta)} \\ &\stackrel{*}{=} P(\sup_{y} |\frac{1}{n} \sum_{i=1} \mathbbm{1}_{\{U_{i} \leq y\}} - y| \leq t) & \text{with } U_{i} \sim U(0,1) \\ &^{*}F_{n}(F^{-1}(y;\theta)) = \frac{1}{n} \sum_{i=1}^{n} \mathbbm{1}_{\{X_{i} \leq F^{-1}(y;\theta)\}} = \frac{1}{n} \sum_{i=1}^{n} \mathbbm{1}_{\{F(y;\theta) \leq y\}} \end{split}$$

For an estimated parameter the distribution of T(X) is not independent of F_0 : $T(X) \stackrel{H_0}{\sim} KS$ only holds asymptotically.

Pivotal Statistic

$$g(Y;\theta)$$
 pivotal

distribution of $g(Y;\theta)$ independent of θ

Approximative Pivotal Statistic

 $H_0: X_i \sim F$ pivotal vs. $H_1: X_i \sim F$ not pivotal

$$g(\hat{\theta}; \theta) = \frac{\hat{\theta} - \theta}{\sqrt{\operatorname{Var}(\hat{\theta})}} \stackrel{\alpha}{\sim} \operatorname{N}(0, 1)$$

with $\hat{\theta} = t(Y) \stackrel{\alpha}{\sim} N(\theta, Var(\hat{\theta}))$

$$KI = \left\lceil \hat{\theta} - z_{1-\frac{\alpha}{2}} \sqrt{\mathrm{Var}(\hat{\theta})}, \hat{\theta} + z_{1-\frac{\alpha}{2}} \sqrt{\mathrm{Var}(\hat{\theta})} \right\rceil$$

Proof: $1 - \alpha \approx P\left(z_{\frac{\alpha}{2}} \le \frac{\hat{\theta} - \theta}{\sqrt{\operatorname{Var}(\hat{\theta})}} \le z_{1 - \frac{\alpha}{2}}\right)$

4.4 Multiple Tests

Family-Wise Error Rate (FWER) as $p \sim U(0, 1)$ For m tests:

$$\alpha \leq P\left(\bigcup_{k=1}^{m} (p_k \leq \alpha) | H_{0k}, k = 1, ..., m\right) \leq m\alpha$$

$$FWER := P(\exists k : "H_1k" | \forall k : H_0k)$$

Bonferoni Adjustment

$$\alpha_B = \frac{\alpha}{m}$$

Šidák Adjustment only for independent tests

$$\alpha_S = 1 - (1 - \alpha)^{1/m}$$

Proof:

$$\alpha \stackrel{!}{=} P(\bigcup_{k=1}^{m} (p_k \le \alpha) | H_{0k}, k = 1, ..., m)$$
$$= 1 - (1 - \alpha)^{1/m}$$

Holm's Procedure also takes power into account

Order the p-values: $p_{(1)} \leq ... \leq p_{(m)}$ Step $x \in \{1,...,m\}$: if $p(x) > \frac{\alpha}{m+1-x}$ reject H_{01} to H_{0x} and stop, else move on to step x+1.

False Discovery Rate (FDR) balances type I and II errors, especially for $n \ll m$ problems

$$FDR = \mathbf{E}\left(\frac{\#"H1"|H_0}{\#"H1"}\right)$$

Order the p-values: $p_{(1)} \leq ... \leq p_{(m)}$, choose $\alpha \in (0,1)$ j is largest index s.t. $p(j) \leq \alpha j/m$, reject all H_0i for $i \leq j$

It can be shown that $FDR \leq m_0 \alpha/m$, with $m_0 = \#H_0$

Regression 5

5.1 Models

Simple Linear Model 5.1.1

Theoretical Model

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

Empirical Model

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Assumptions

- Independent Observations $y_1, ... y_n$ are independent
- Linearity of the Mean $E(Y|x) = \beta_0 + \beta_1 x$ or E(e|x) = 0
- Constant Variation $Var(Y|x) = \sigma^2$

For the normal linear model:

• Normality $e|x \sim N(0, \sigma^2)$; $Y|x \sim N(\hat{y}, \sigma^2)$

Attributes of the Regression Line

$$\begin{split} \hat{y}_i &= \hat{\beta}_0 + \hat{\beta}_1 x_i = \bar{y} + \hat{\beta}_1 (x_i - \bar{x}) \\ \hat{e}_i &= y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \\ &= y_i - (\bar{y} + \hat{\beta}_1 (x_i - \bar{x})) \\ \sum_{i=1}^n \hat{e}_i &= \sum_{i=1}^n y_i - \sum_{i=1}^n \bar{y} - \hat{\beta}_1 \sum_{i=1}^n (x_i - \bar{x}) \\ &= n\bar{y} - n\bar{y} - \hat{\beta}_1 (n\bar{x} - n\bar{x}) = 0 \\ \bar{y} &= \frac{1}{n} \sum_{i=1}^n \hat{y}_i = \frac{1}{n} (n\bar{y} + \hat{\beta}_1 (n\bar{x} - n\bar{x})) = \bar{y} \end{split}$$

Estimates (OLS)

$$\hat{\beta}_1 = \frac{Cov(x,y)}{Var(x)} = \frac{S_{xy}}{S_{xx}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \cdot \sqrt{\frac{S_{yy}}{S_{xx}}} = r\sqrt{\frac{S_{yy}}{S_{xx}}}$$

Proof:

Proof:
$$Cov(x,y) = Cov(x, \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}) = \hat{\beta}_1 Var(x) \\ \iff \hat{\beta}_1 = \frac{Cov(x,y)}{Var(x)}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$E[y] = E\left[\hat{\beta}_0 + \hat{\beta}_1 x + \hat{e}\right] \iff \hat{\beta}_0 = E[y] - \hat{\beta}_1 E[x]$$

The estimates are the same as for the ML procedure.

Estimates (ML) $Y|x \sim N(\beta_0 + \beta_1 x, \sigma^2)$

$$\hat{\beta}_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{1}{n} \sum_{i=1}^n x_i \hat{\beta}_1$$

$$\hat{\beta}_1 = \sum_{i=1}^n x_i (y_i - \hat{\beta}_0) / \sum_{i=1}^n x_i^2$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\beta}_0 - x_i \hat{\beta}_1)^2$$

The β -estimates are the same as for the OLS procedure.

Proof:

$$l(\beta_0, \beta_1, \sigma^2) = \sum_{i=1}^n \left\{ -\frac{1}{2}\sigma^2 - \frac{1}{2} \frac{(y_i - \beta_0 - \beta_1 x_i)^2}{\sigma^2} \right\}$$

Multivariate Linear Model 5.1.2

Theoretical Model

$$Y = X\beta + u$$

Empirical Model

$$Y = X\hat{\beta} + e$$
$$\hat{Y} = X\hat{\beta}$$

$$y = (y_1, ..., y_n)^T, e = (e_1, ..., e_n)^T, X = \begin{pmatrix} 1 & x_{11} & ... & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & ... & x_{np} \end{pmatrix}$$

Assumptions

- Independent Observations $y_1, ... y_n$ are independent
- Linearity of the Mean $E(Y|x_{1:p}) = X\beta$ or $E(e|x_{1:p}) = 0$
- Constant Variation $Var(Y|x) = \sigma^2$

For the normal linear model:

• Normality $e_i|x_{1:p} \sim N(0, \sigma^2)$; $Y|x \sim N(\hat{y}, \sigma^2)$

Estimates (ML) $Y|x_{1:p} \sim N(X\beta, \sigma^2)$

$$\hat{\beta} = \left((X^T X)^{-1} \right) X^T y$$

$$Var(\hat{\beta}) = \sigma^2 (X^T X)^{-1} = I^{-1}(\beta)$$

$$l(\beta, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} (y - X\beta)^T (y - X\beta)$$

The estimates are the same as for the OLS procedure.

 β is the Best Linear Unbiased Estimator

Proof:

Unbiased because of the Gauß-Markov Theorem: $E(\hat{\beta}) = (X^TX)^{-1}X^TE(Y|X) = (X^TX)^{-1}X^TX\beta = \beta$

$$\hat{\sigma}^2 = \frac{1}{n} (y - X\hat{\beta})^T (y - X\hat{\beta}); \quad \hat{\beta} \sim \mathcal{N}(\beta, \sigma^2 (X^T X)^{-1})$$

The ML-estimate for σ^2 is biased.

Proof

$$H:=X(X^TX)^{-1}X^T \text{ hat matrix; } HH=H=H^T \text{ (idempotent)}$$

$$E((Y-X\hat{\beta})^T(Y-X\hat{\beta})) = E((Y^T(I_n-H)^T((I_n-H)Y))$$

$$= E(tr(Y^T(I_n-H)Y))$$

$$= E(tr((I_n-H)YY^T))$$

$$= tr((I_n-H)E(YY^T))$$

$$= tr((I_n-H)E(X\beta\beta^TX^T + \sigma I_n))$$

$$= \sigma^2 tr((I_n-H))$$

$$= \sigma^2 (n-p)$$

$$s^2 = \frac{1}{n-p} (y - X\hat{\beta})^T (y - X\hat{\beta}); \quad \hat{\beta} \sim t_{n-p}(\beta, s^2 (X^T X)^{-1})$$
 with s an unbiased estimator

5.1.3 Bayesian Linear Model

Prior flat prior

$$f_{\beta,\sigma^2}(\beta,\sigma^2) = \frac{1}{\sigma^2}$$

Posterior

Resulting posterior:

$$\begin{split} f_{post}(\beta,\sigma^2|y) \propto (\sigma^2)^{-\frac{n}{2}+1} \mathrm{e}^{-\frac{1}{2\sigma^2}(y-X\beta)^T(y-X\beta)} \end{split}$$
 Note:
$$f_{post}(\beta,\sigma^2|y) = f(\beta|\sigma^2,y) f(\sigma^2|y)$$

$$\begin{split} \beta | \sigma^2, y &\sim \mathcal{N}\left(\hat{\beta}, \sigma^2 (X^T X)^{-1}\right) \\ \sigma^2 | y &\sim \mathcal{IG}\left(\frac{n-p}{2}, \frac{s^2 (n-p)}{2}\right) \\ \beta | y &\sim t_{n-p}\left(\hat{\beta}, s^2 (X^T X)^{-1}\right) \end{split}$$

The two distributions for β mirror the results for $\hat{\beta}$ in the linear model.

5.1.4 Quantile Regression

Prediction Interval range of $1 - \alpha$ fraction of the data

$$Var(\hat{Y}|x_{1:p}) = Var(X\hat{\beta}) + \sigma^2$$

Determined by estimation variance (usually captured by confidence intervals) plus residual variance.

Quantile

$$Q(\tau) = \inf\{y: F(y) \geq \tau\}$$
 If F is invertable: $Q(\tau) = F^{-1}(\tau), \, \tau \in (0,1)$

Model

$$Q(\tau|x_{1:p}) = X\beta$$

For median regression: $\hat{\beta} = \arg \min \sum_{i=1}^{n} |y_i - x_i^T \beta|$

 $\hat{Q}(au) = \arg\min_{eta} \left(\sum_{i=1}^{n} \delta_{ au}(y_i - x_i^T eta) \right)$

with check function $\delta_{\tau}(y) = y \left(\tau - \mathbbm{1}_{\{y < 0\}}\right)$

Proof:

$$\begin{split} Q(\tau) &= \arg\min_{q} \mathrm{E}(\delta_{\tau}(Y-q)) \\ &= \arg\min_{q} \left\{ (\tau-1) \int\limits_{-\infty}^{q} (y-q)f(y)dy + \tau \int\limits_{q}^{\infty} (y-q)f(y)dy \right\} \\ &\mathrm{Differentiating w.r.t.} \ \ q \ \mathrm{gives} \ (\tau-1) \int_{-\infty}^{q} f(y)dy - \tau \int_{q}^{\infty} f(y)dy \\ &= (1-\tau)F(q) - \tau (1-F(q) = F(q) - \tau \end{split}$$

Estimates

The estimates for β can be computed with linear programming and are normally distributed with mean β .

5.1.5 Flexible Regression

Assumptions

- Independent Observations $y_1, ... y_n$ are independent
- Constant Variation $Var(Y|x) = \sigma^2$
- Normality $e_i|x_{1:p} \sim N(0, \sigma^2)$; $Y|x \sim N(\hat{y}, \sigma^2)$

Knot Placement

- equidistant
- based on quantiles (more structure where data is dense)
- all data points plus penalization

Penalized Regression Splines

$$\begin{split} ||y-X\beta||^2 + \lambda \int_{x_1}^{x_n} \left[f''(x) \right]^2 dx &= ||y-X\beta||^2 + \lambda \beta^T D\beta \\ l_p(\beta, \sigma^2, \lambda) &= l(\beta, \sigma^2) - \frac{\lambda}{2\sigma_\epsilon^2} \beta^T D\beta \\ \hat{\beta} &= (X^T X + \lambda D)^{-1} X^T y \end{split}$$

Difference Penalty

- first order: $\beta^T D\beta = \sum_{j=1}^p (\beta_{j+1} \beta_j)^2$
- second order: $\beta^T D\beta = \sum_{j=1}^p (\beta_{j+1} 2\beta_j + \beta_{j-1})^2$

Choosing λ Model complexity

$$\dim(\lambda) = tr\left\{ (X^TX + \lambda D)^{-1}(X^TX) \right\}$$

 $AIC(\lambda) = fit(\lambda) + 2\dim(\lambda)$

Numerically complex. Alternative: Bayes

 $\beta \sim N(0, \sigma_{\beta}^2 D^-)$ with $(D^-)^- = D$ (generalized inverse)

$$\log f(\beta, \sigma^2; \sigma_\beta^2 | y) \propto l(\beta, \sigma^2) - \frac{rk(D^-)}{2} \log(\sigma_\beta^2) - \frac{1}{2\sigma_\beta^2} \beta^T D^- \beta$$

As $\lambda=\frac{1}{\sigma_{\beta}^2}$, marginal posterior for σ_{β}^2 can be derived. E. g. set λ to the posterior mode estimate.

5.1.6 Generalized Regression

Assumptions

- Independent Observations $y_1, ... y_n$ are independent
- Linearity of the Mean $E(Y|x_{1:p}) = X\beta$ or $E(e|x_{1:p}) = 0$
- Exponential Family $Y|x \sim \exp\{t(y)\theta(x) \kappa(\theta(x))\} h(y)$

Link Function

Linear predictor $\eta = X\beta; \ \mu = \frac{\partial \kappa(\theta)}{\partial \theta} = \mathrm{E}(t(Y); \theta)$

$$\mu = g^{-1}(\eta)$$

If $\lambda = 0$, canonical link:

$$g(\theta) = \eta$$

- score function: $s(\beta) = X^T (t(y) E(t(Y); \eta))$
- estimate $\hat{\beta} = X^T E(t(Y); \hat{\eta}) = X^T t(y)$
- Fisher matrix $I(\beta) = X^T W X$ with W diagonal and $W_{ii} = \frac{\partial^2 \kappa(\eta_i)}{\partial \eta^2} = Var(t(Y_i), \eta_i)$

Examples:

- Logistic: logit $P(Y_i = 1 | x_i) = \log \frac{P(Y_i = 1 | x_i)}{1 P(Y_i = 1 | x_i)} = \eta$ $Var(Y_i | x_i) = P(Y_i = 1 | x_i) \cdot (1 P(Y_i = 1 | x_i))$
- Poisson: $log E(Y_i|x_i) = \eta$ $Var(Y_i|x_i) = E(Y_i|x_i) = e^{\eta}$

5.1.7 Weighted Regression

Different Precision variance heterogeneity: $e_i \sim N(0, \sigma_i^2)$

$$\begin{split} l(\beta,\sigma^2) &= -\frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}(y-X\beta)^TW(y-X\beta) \\ \text{with } W &= diag(\frac{1}{a_1},...,\frac{1}{a_n}) \text{ and } a_i = \frac{\sigma_i^2}{\sigma^2} \end{split}$$

$$\hat{\beta}_{ML} = (X^T W X)^{-1} (X^T W y)$$

$Var(\hat{\beta}_{ML}) = \sigma^2 (X^T W X)^{-1}$

Different Group Representation

$$Y_i | x_{i,1:p}, z_i \sim N(x_{i,1:p} \beta_{z_i}, \sigma^2)$$

with z_i indicating group affiliation

5.2 Goodness of Fit

5.2.1 Coefficient of Determination

$$R^2 = \frac{SS_{Explained}}{SS_{Total}} = 1 - \frac{SS_{Residual}}{SS_{Total}} = r^2$$

Range: $0 \le R^2 \le 1$

6 Bayesian Statistics

6.1 Basics

Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \qquad \text{für } P(A), P(B) > 0$$

or more general:

$$\begin{split} f_{post}(\theta|X) &= \frac{f(X|\theta) \cdot f_{\theta}(\theta)}{\int f(X|\tilde{\theta}) f_{\theta}(\tilde{\theta}) d\tilde{\theta}} \\ &= C \cdot f(X|\theta) \cdot f_{\theta}(\theta) \quad \text{choose C s.t.} \int f_{post}(\theta|X) = 1 \\ &\propto f(X|\theta) \cdot f_{\theta}(\theta) \end{split}$$

Point Estimates

$$\hat{\theta}_{postmean} = E_0(\vartheta|x) = \int_{\vartheta \in \Theta} \vartheta f_{\theta}(\vartheta|x) d\vartheta$$

$$\hat{\theta}_{postmode} = \underset{\vartheta}{\operatorname{argmax}} f_{\theta}(\vartheta, x)$$

$$\hat{\theta}_{Bayesrisk} = \underset{t(.)}{\operatorname{argmin}} R_{Bayes}(t(.))$$

with Bayes risk: $R_{Bayes}(t(.)) = \int_{\Theta} R(t(.), \vartheta) f_{\theta}(\vartheta) d\vartheta$

$$\hat{\theta}_{postBayesrisk} = \underset{t(.)}{\operatorname{argmin}} R_{postBayes}(t(.)|y)$$

with posterior Bayes risk:

$$R_{postBayes}(t(.)|y) = \int \mathcal{L}(t(y), \vartheta) f_{\theta}(\vartheta|y) d\vartheta = \mathcal{E}_{\theta|y}(\mathcal{L}(t(y), \theta)|y)$$

For squared loss: $\hat{\theta}_{postBayesrisk} = \hat{\theta}_{postmean}$

Credibility Interval

$$P_{\theta}(\theta \in [t_l(y), t_r(y)] | y) = \int_{t_l(y)}^{t_r(y)} f_{post}(\vartheta | y) d\vartheta \stackrel{!}{=} 1 - \alpha$$

- symmetric: $\int_{-\infty}^{t_l(y)} f_{post}(\vartheta|y) d\vartheta = \int_{t_r(y)}^{\infty} f_{post}(\vartheta|y) d\vartheta = \frac{\alpha}{2}$
- highest density: $HDI = \{\theta: f_{post}(\theta|y) \geq c\}$, choose c s.t. $\int_{\vartheta \in HDI(y)} f_{post}(\vartheta|y) d\vartheta = 1 \alpha$

Bayes Factor evidence contained in data for M_1 vs. M_2

$$\frac{P(M_1|y)}{P(M_0|y)} = \underbrace{\frac{f(y|M_1)}{f(y|M_0)}}_{\text{Power Factor}} \frac{P(M_1)}{P(M_0)}$$

with marginal likelihood $f(y|M_i) = \int f(y|\vartheta) f_{\theta}(\vartheta|M_i) d\vartheta$

Priors

Flat (uninformative) Prior

 $f_{\theta}(\theta)=const.$ for $\theta>0$, therefore: $f(\theta|X)=C\cdot f(X|\theta)$ As $\int f_{\theta}(\theta)=1$ not possible like this, this is not a real density. Changes for transformations of the parameter.

Proof: For
$$\gamma = g(\theta)$$
: $f_{\gamma}(\gamma) = f_{\theta}(g^{-1}(\gamma)) \left| \frac{\partial g^{-1}(\gamma)}{\partial \gamma} \right|$

No prior is truly uninformative.

Jeffrey's Prior transformation-invariant

For Fisher-regular distributions: $f(\theta) \propto \sqrt{I_{\theta}(\theta)}$

Proof:
For
$$\gamma = g(\theta)$$
 and $f_{\theta}(\theta) = \sqrt{I_{\theta}(\theta)}$:
 $f_{\gamma}(\gamma) \propto f_{\theta}(g^{-1}(\gamma)) \left| \frac{\partial g^{-1}(\gamma)}{\partial \gamma} \right| \propto \sqrt{\frac{\partial g^{-1}(\gamma)}{\partial \gamma}} I_{\theta}(g^{-1}(\gamma)) \frac{\partial g^{-1}(\gamma)}{\partial \gamma}$

$$= \sqrt{I_{\gamma}(\gamma)}$$

Maximizes the information gained from the data (under appropriate regulatory conditions), i. e. maximizes $\mathrm{E}(KL(f_{\theta}(.),f_{post}(.,x))$

Empirical Bayes

Let the prior depend on a hyper-parameter: $f_{\theta}(\theta, \gamma)$ Choose γ s. t. $L(\gamma) = f(x; \gamma) = \int f(x; \vartheta) f_{\theta}(\vartheta, \gamma) d\vartheta$ is maximal. Using the data to find the prior contradicts the Bayes approach of incorporating prior knowledge.

Hierarchical Prior

$$x|\theta \sim f(x;\theta); \quad \theta|\gamma \sim f_{\theta}(\theta,\gamma); \quad \gamma \sim f_{\gamma}(\gamma)$$

Conjugate Priors

If Prior and Posterior belong to the same family of distributions for a given likelihood function, they are called conjugate.

Examples:

Prior	Likelihood	Posterior
$\pi \sim \mathrm{Be}(\alpha, \beta)$	$\operatorname{Bin}(n,\pi)$	$\operatorname{Be}(\alpha+k,\beta+n-k)$
$\mu \sim N(\gamma, \tau^2)$	$N(\mu, \sigma^2)$	$N(.,.) \stackrel{n \to \infty}{\longrightarrow} N(\bar{y}, \frac{\sigma^2}{n})$
$\sigma^2 \sim \mathrm{IG}(\alpha, \beta)$	$N(\mu, \sigma^2)$	$IG(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^{n} (y_i - \mu)^2)$
$\lambda \sim \mathrm{Ga}(\alpha, \beta)$	$Po(\lambda)$	$Ga(\alpha+n\bar{y},\beta+n)$

6.2 Numerical Methods for the Posterior

Numerical Integration here: trapezoid approximation

$$\int_{\Theta} f(y|\vartheta) f_{\theta}(\vartheta) d\vartheta \approx$$

$$\sum_{k=1}^{K} \frac{f(y; \theta_k) f_{\theta}(\theta_k) + f(y; \theta_{k-1}) f_{\theta}(\theta_{k-1})}{2} (\theta_k - \theta_{k-1})$$

only normalisation constant unknown, works well for one-dimensional integrals

Laplace Approximation

$$\int_{\Theta} f(y|\vartheta) f_{\theta}(\vartheta) d\vartheta \approx f(y; \hat{\theta}_{P}) f_{\theta}(\hat{\theta}_{P}) (2\pi)^{p/2} \left| J_{P}(\hat{\theta}_{P}) \right|^{\frac{1}{2}}$$

with the one-dimensional $J_P:=-\frac{\partial^2 l_{(n)}(\theta,y)}{\partial \theta^2}-\frac{\partial^2 \log f\theta(\theta)}{\partial \theta^2}$ Fisher information considering the prior, $\hat{\theta}_P$ posterior mode estimate s.t. $s_{P,\theta}(\hat{\theta}_P)=0$

Proof:

For n independent samples:

$$f_{post}(\theta|y) = \frac{\prod_{i=1}^{n} f(y_i|\theta) f_{\theta}(\theta)}{\int \prod_{i=1}^{n} f(y_i|\theta) f_{\theta}(\theta) d\theta}$$

Denominator: $\int e^{\left\{\sum_{i=1}^{n} \log f(y_i|\theta) + \log f_{\theta}(\theta)\right\}} d\theta =$

$$\int e^{\{l(\theta;y) + \log f_{\theta}(\theta)\}} d\theta \overset{TS}{\approx} \int e^{(l_P(\hat{\theta}_P) - \frac{1}{2}J_P(\hat{\theta}_P)(\vartheta - \hat{\theta}_P)^2)} d\vartheta$$

Resembles the normal distribution, therefore the inverse of the normalisation constant can be calculated, which gives the inverse of the Laplace approximation in the univariate case.

Works well for large n and is numerically simple also for big p.

Monte Carlo Approximations

The denominator can be written as $E_{\theta}(f(y;\theta)) = \int_{\Theta} f(y|\vartheta) f_{\theta}(\vartheta) d\vartheta$, which can be estimated by the arithmetic mean for a sample of $\theta_1, ..., \theta_N$, which needs to be drawn from the prior. The following methods to draw from non-standard distributions can be used for that.

• Inverse CDF

F(X) known. Since F(x) = u, $F^{-1}(u) = x$, $u \sim U(0, 1)$

- 1. Draw $u \sim U(0,1)$
- 2. Compute $F^{-1}(u)$ to get a value x

Proof:

$$P(x \le y) = P(F^{-1}(u) \le y) = P(u \le F(y)) = F(y)$$

• Rejection Sampling

An umbrella distribution g(x) can be found s. t. $\frac{f(x)}{g(x)} \le M \ \forall x \ \text{with} \ f(x) > 0 \ \text{when} \ g(x) > 0$

- 1. Draw candidate $y \sim g(x)$
- 2. Acceptance probability α for y: $\alpha = \frac{f(x)}{Mg(x)}$
- 3. Draw $u \sim U(0,1)$ and accept if $u \leq \alpha$, else: step 1

Proof:

$$\begin{split} P\left(Y \leq x | U \leq \frac{f(Y)}{Mg(Y)}\right) &= \frac{P\left(Y \leq x, U \leq \frac{f(Y)}{Mg(Y)}\right)}{P\left(U \leq \frac{f(Y)}{Mg(Y)}\right)} \\ &= \frac{\int_{-\infty}^{x} \int_{0}^{\frac{f(y)}{g(x)}} du \ g(y) dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y)} \frac{f(y)}{g(x)} du \ g(y) dy} &= \frac{\int_{-\infty}^{x} \frac{f(y)}{g(x)} g(y) dy}{\int_{-\infty}^{\infty} \frac{f(y)}{g(x)} g(y) dy} \\ &= \frac{\int_{-\infty}^{x} f(y) dy}{\int_{-\infty}^{\infty} f(y) dy} = P(X \leq x) \end{split}$$

• Importance Sampling

Directly estimate $E_{\theta}(f(y;\theta))$.

For sampling distribution g(x),

$$\frac{1}{N} \sum_{i=1}^{n} \frac{f(x)}{g(x)}$$

is a consistent estimator

Proof:

$$E_g\left(\frac{1}{N}\sum_{i=1}^n\frac{f(x)}{g(x)}\right) = \int\frac{f(x)}{g(x)}g(x)dx = \int f(x)dx = f(x)$$

Markov Chain Monte Carlo sample from $f_{post}(\theta|X)$

f(y) unknown, however:

$$\frac{f_{post}(\theta|x)}{f_{post}(\tilde{\theta}|x)} = \frac{f(x|\theta)f_{\theta}(\theta)}{f(y)} \frac{f(y)}{f(x|\tilde{\theta})f_{\theta}(\tilde{\theta})} = \frac{f(x|\theta)f_{\theta}(\theta)}{f(x|\tilde{\theta})f_{\theta}(\tilde{\theta})}$$

Metropolis-Hastings: Draw Markov Chain $\theta_1^*, ..., \theta_n^*$:

- 1. Draw candidate θ^* from proposal distribution $q\left(\theta|\theta_{(t)}^*\right)$
- 2. Accept $\theta_{(t+1)}^* = \theta^*$ with probability

$$\alpha(\theta_{(t)}|\theta^*) = \min \left\{ 1, \frac{f_{post}\left(\theta^*|y\right) q\left(\theta^*_{(t)}|\theta^*\right)}{f_{post}\left(\theta^*_{(t)}|y\right) q\left(\theta^*|\theta^*_{(t)}\right)} \right\}$$

$$\text{choose } \theta^*_{(t+1)} = \theta^*_{(t)}$$

This sequence has a stationary distribution for $n \to \infty$.

Choice of q: trade-off between exploring Θ and reaching a high α . Burn-in and thinning out give i.i.d. samples from $f_{post}(\theta|X)$.

Gibbs Sampling: For high dimensions α is close to zero.

Sample from the marginal distributions seperately:

$$\theta_{t+1,i}^* \sim f_{\theta_i|y,\theta \setminus \theta_i} \left(\theta_i^*|y,\theta_{t^*,i}\right)$$

with $\theta_{t^*,i}$ most recent estimates without θ_i

A Gibbs sampled sequence converges to $f_{post}(\theta|X)$ as stationary. Can also be used on its own, if marginal densities are known.

Variational Bayes Principles

Approximate $f_{post}(\theta|X)$ by $q_{\theta} = \min_{q_{\theta} \in Q} KL(f_{post}(.|X), q_{\theta}(.))$

Restrict q_{θ} to independence: $q_{\theta}(\theta) = \prod_{k=1}^{p} q_{k}(\theta_{k})$

Update each component iteratively. Works well for big p.

7 Sampling

Bootstrap

- 1. Draw y_i^* : n samples with replacement from y
- 2. Calculate the statistic of interest $t(y_i^*)$
- 3. Repeat this B times
- 4. *Plug-in Principle*: Whenever the distribution function is involved in estimating a statistic, use the empirical bootstrapped version instead.

In a **Parametric Bootstrap** the parameter is first estimated from the data and then Bootstrap samples are drawn from the resulting distribution.

Bootstrap Probability

$$P(Y_i \in Y^*) = 1 - (1 - \frac{1}{n})^n \stackrel{n \to \infty}{\to} 1 - e^{-1} \approx 0.632$$

Subsampling

- replacement m-out-of-n bootstrap
- non-replacement subsampling directly from true F

Permutation Test for two variables

- 1. Calculate t(x, y), e.g. differences in mean, correlation...
- 2. Draw samples x^* , y^* of size n from x and y without replacement ("shuffel")
- 3. Calculate $t(x^*, y^*)$
- 4. p-value = $\frac{1}{B} \sum_{b=1}^{B} \mathbb{1}_{\{t(x_b^*, y_b^*) \ge t(x, y)\}}$

For a **Boostrap Test** do step 2 with replacement.

Bootstrap in Regression

- Residual based: 1. Get Bootstrap sample e_i^* from fitted residuals $\hat{e} = y X\hat{\beta}$, 2. Calculate new response $y_i^* = x_i\hat{\beta} + e_i^*$, 3. Calculate $\hat{\beta}^*$
- Model based 1. Draw a sample from e_i ~ N(0, ô²),
 2. Calculate new response y_i* = x_iβ̂ + e_i*, 3. Calculate β̂*
- Pairwise 1. Draw (y_i^*, x_i^*) from the original sample for i = 1, ..., n, 2. Calculate $\hat{\beta}^*$
- Wild Set $\hat{e}_i^* = V_i^* \hat{e}_i$, with V_i^* from the 2-point distribution $P(V_i^* = \frac{\sqrt{5} + 1}{2}) = \frac{\sqrt{5} 1}{2\sqrt{5}}$ and $P(V_i^* = -\frac{\sqrt{5} 1}{2}) = \frac{\sqrt{5} + 1}{2\sqrt{5}}$, chosen as $\mathrm{E}(V_i^*) = 0$, $Var(V_i^*) = 1$, $\mathrm{E}(V_i^{*3}) = 1$

Consistency of a Bootstrap Estimator

$$\lim_{n \to \infty} P_n \left\{ \sup_{t} |G_n(t, F_n) - G_\infty(t, F)| > \epsilon \right\} = 0 \ \forall \epsilon$$

with $F_n(y) = \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{\{Y_i \leq y\}}$ empirical distribution function, $G_n(t,F) = P(T_n \leq t)$ exact finite sample distribution, and P_n joint probability of the sample

The bootstrap estimate is inconsistent for the maximum of a sample or if the θ lies on the boundary of Θ .

Mallow's Metric

$$\rho_p(F, G) = \inf_{\mathcal{T}_{XY}} \{ E(|X - Y|)^p \}^{\frac{1}{p}}$$

for F,G in the set of distributions where $\int_{-\infty}^{\infty} |t|^p dF(t) < \infty$; $(X,Y) \sim T \in \mathcal{T}_{XY}$ with $X \sim F$ and $Y \sim G$

Theorem of Beran and Ducharme

 $G_n(., F_n)$ is consistent if $\forall \epsilon > 0, F$ the following holds:

- 1. $\lim_{n \to \infty} P_n(\rho(F_n, F) > \epsilon) = 0$
- 2. $G_{\infty}(t, F)$ is a continuous function of t
- 3. $\forall t$ and sequences $\{H_n\}$ s. t. $\lim_{n\to\infty} \rho(H_n, F) = 0$ holds: $G_n(t, H_n) \to G_\infty(t, F)$

8 Model Selection

AIC (Akaike Information Criterion)

$$AIC = -2\sum_{i=1}^{n} \log f(y_i; \hat{\theta}) + 2p$$

The AIC estimates $2E_Y \{KL(g,f)\} - 2 \int \log(g(y))g(y)dy$. The latter component is unknown, so the absolute value of the AIC is not informative. The AIC favours complex models.

For regressions: $AIC = 2n \log(\hat{\sigma}^2) + 2(p+2)$

The AIC as theoretical cross validation

The AIC minimizes $E_{Y_{1:n}}\left\{E_Y\left[Y-\hat{\mu}\right]^2\right\}$ if we use the MSE instead of the Kullback-Leibler divergence. This can be estimated via cross validation.

Bias Corrected AIC

$$AIC_{corr} = -2\sum_{i=1}^{n} \log f(y_i; \hat{\theta}) + 2p\left(\frac{n}{n-p-1}\right)$$

should be preferred if $\frac{n}{n} < 40$

BIC (Bayesian Information Criterion)

$$BIC = -2\sum_{i=1}^{n} \log f(y_i; \hat{\theta}) + \log(n)p$$

approximately maximizes the posterior probability of a model and selects less complex models as the AIC

DIC (Deviance Information Criterion) Bayesian AIC

$$DIC = D(y, \hat{\theta}_{postmean}) + 2p_D = \int D(y, \vartheta) f_{post}(\vartheta|y) d\vartheta + p_D$$

with deviance $D(y;\theta) := -2l(\theta)$ the difference in likelihood compared to the full model and $\Delta D(y;\theta,\hat{\theta}) = 2\left\{l(\hat{\theta}) - l(\theta)\right\} \stackrel{a}{\sim} \chi_p^2$ the difference in deviance

$$\begin{split} p_D := \mathrm{E}(\Delta D(y;\theta,\hat{\theta}_{\substack{post\\mean}}|y) = \int & D(y,\vartheta) f_{post}(\vartheta|y) d\vartheta - D(y,\hat{\theta}_{\substack{post\\mean}}) \end{split}$$
 The integral can be approximated using MCMC.

Model Averaging Using probabilities as weights

$$P(M_k|y) := \frac{\exp(-\frac{1}{2}\Delta IC_k)}{\sum_{k'=1}^K \exp(-\frac{1}{2}\Delta IC_k')}$$

with $\Delta IC_k = IC_k - min(IC)$

For regressions: $P(\text{covariate } x|y) = \sum_{k=1}^{K} \mathbbm{1}_{\{x \text{ in } M_k\}} P(M_k|y)$

Inference After Model Selection neglect is a quiet scandal

$$\begin{split} Var(\hat{\theta}) &= \mathcal{E}_{model}(Var(\hat{\theta}|model)) + Var_{model}(E(\hat{\theta}|model)) \\ &= \sum_{k=1}^{K} \pi_k Var_k(\hat{\theta}) + \sum_{k=1}^{K} \pi_k (\theta_k - \bar{\theta})^2 \end{split}$$

The last component depends on the true parameter and will be biased if the estimates are used.

Solutions:

- $\widehat{Var}(\hat{\theta}) = \left[\sum_{k=1}^{K} \pi_k \sqrt{\widehat{Var}_k(\hat{\theta}_k) + (\hat{\theta}_k \hat{\hat{\theta}})^2} \right]^2$
- $\bullet\,$ Use the Variance of the full (saturated) model
- Use bootstrap for confidence intervals

Lasso least absolute shrinkage and selection operator

$$l_p(\theta, \lambda) = l(\theta) - \lambda \sum_{j=1}^{p} |\theta_j|$$

This penalized log likelihood can be solved with iterative quadratic programming using a Taylor expansion. Using Bayesian view the penalty corresponds to a prior: $f_{\theta_j}(\theta_j) \propto \exp(-|\theta_j|) \text{ (Laplace prior)}$

9 Dimensionality Reduction

Covariance Matrix Σ

- \bullet symmetric, $\in \mathbb{R}^{n \times n}$ therefore $\frac{q(q+1)}{2}$ parameters
- positive definite, i. e. $\forall a \in \mathbb{R}^q : a^T \Sigma a \geq 0$

Marginal Independence

$$\Sigma_{jk} = 0 \Leftrightarrow Y_{ij}$$
 and Y_{ik} are independent

Conditional Independence

 $\Omega = \Sigma_{jk}^{-1} = 0 \Leftrightarrow Y_{ij}$ and Y_{ik} are independent given all other Y with concentration matrix Ω

Proof:

$$f(y_{.j},y_{.k}|y_{.\overline{j,k}}) = \frac{f(y)}{f_{.\overline{j,k}}} \propto f(y) \overset{\mathcal{N}(\mu,\Sigma)}{\propto} \exp\left\{-\frac{1}{2}y^T \Sigma^{-1} y\right\}$$

Graphical Models

visualize conditional dependences in a graph

Principal Component Analysis (PCA)

- 1. Use singular value decomposition $\Sigma = U\Lambda U^T$ with U matrix of orthonomal eigenvectors and $\Lambda = diag(\lambda_1,...,\lambda_q)$ matrix of sorted eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_q$ of Σ
- 2. Prune smallest k = q r eigenvalues in $\tilde{\Lambda}$
- 3. Simplify model with spectral decomposition $\tilde{Y} = \tilde{V}\tilde{\Lambda}^{1/2}\tilde{U}^T$ with \tilde{V} , \tilde{U} first r eigenvectors of YY^T and Y^TY respectively
- 4. explained variance $\sum_{i=1}^{r} \lambda_i / \sum_{i=1}^{q} \lambda_i$

Proof:

Karhunen-Loève expansion: $U\Lambda^{\frac{1}{2}}Z_{\cdot} \sim \mathcal{N}(0, U\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^T) = \mathcal{N}(0, \Sigma)$ with $Z_{\cdot} \sim \mathcal{N}(0, \mathbb{1})$, therefore $\tilde{Y}_{\cdot} = \tilde{V}\tilde{\Lambda}^{\frac{1}{2}}\tilde{Z}_{\cdot}$ With spectral decomposition: $Y = V\Lambda^{\frac{1}{2}}U^T$ (for column-centered Y)

Missing/Deficient Data 10

Missing Completely at Random (MCAR) independent

$$P(R_i|Y_i) = P(R_i)$$
 with $R_{ij} = \begin{cases} 0 & \text{if } Y_{ij} \text{ missing} \\ 1 & \text{otherwise} \end{cases}$ and $R_i = (R_{i1}, ..., R_{iq})$

Missing at Random (MAR) depends on observed variables

$$P(R_i|Y_i) = P(R_i|Y_{iO_i})$$

with $O_i = \{j : R_{ij} = 1\}$ and $M_i = \{j : R_{ij} = 0\}$

Complete case analysis P(Y|X,Z):

- only response Y_i MAR: unbiased
- only covariate X_i MAR: biased Asymptotically unbiased with inverse probability weighting:
 - 1. Estimate $\pi(y_i, z_i) = P(R_{X_i} = 1 | y_i, z_i)$
 - 2. Use weighted score function $\hat{s}_w(\theta) = \sum_{i=1}^n \frac{R_{X_i}}{\hat{\pi}} s_i(\theta)$
- both MAR: biased and $\pi(y_i, z_i)$ can not be estimated due to missing Y_i

Missing Not at Random (MNAR)

$$P(R_i|Y_i) \neq P(R_i|Y_{iO_i})$$

Can not be corrected to be unbiased.

EM Algorithm replace y_{iM} by $E(Y_{iM}|y_{iO})$ Expectation Step:

$$Q(\theta, \theta_{(t)}) = \sum_{i=1}^{n} \int l_i(\theta) f(y_{iM}|y_{iO}; \theta_{(t)}) dy_{iM}$$

Maximization Step:

$$\frac{\partial Q(\theta, \theta_{(t)})}{\partial \theta} = s(\theta, \theta_{(t)}) \stackrel{!}{=} 0$$

Louis' Formula for Variance Estimates in EM Settings

$$J_O(\theta) = \sum_{i=1}^n \{ E(J_i(\theta)|y_{iO}) - E(s_i(\theta)s_i(\theta)|y_{iO}) + s_{iO}(\theta)s_{iO}(\theta) \}$$

Multiple Imputation EM but considers estimation variability

- 1. Create K complete datasets by simulating missing data $\sim f_{post}(y_{iM}|y_{iO})$
- 2. Fit K models $Y_i \sim f(y|\theta)$
- 3. Rubin's Rule: $\hat{\theta}_{MI} = \frac{1}{K} \sum_{k=1}^K \hat{\theta}^*_{(k)};$ $\widehat{\text{Var}}(\hat{\theta}_{MI}) = \hat{V} + (1 + \frac{1}{K})\bar{B} \text{ with } \hat{V} = \frac{1}{K} \sum_{k=1}^K I^{-1}(\hat{\theta}^*_{(k)}) \text{ and }$ $\bar{B} = \frac{1}{K-1} \sum_{k=1}^{K} (\hat{\theta}_{(k)}^* - \hat{\theta}_{MI}) (\hat{\theta}_{(k)}^* - \hat{\theta}_{MI})^T$

Estimate Accuracy

$$\hat{\mu}_g - \mu_g = \rho_{R_g} \times \sigma_g \times \sqrt{\frac{N-n}{n}}$$

 $\hat{\mu}_g - \mu_g = \rho_{R_g} \times \sigma_g \times \sqrt{\frac{N-n}{n}}$ with ρ_{R_g} data quality (correlation between R_j and $g(Y_j)$), σ_g variability, and $\sqrt{\frac{N-n}{n}}$ data quantity; g some known function

- MCAR: $MSE(\hat{\mu}_g) = \frac{1}{N-1} \times \sigma_g^2 \times \frac{N-n}{n}$
- MNAR: $MSE(\hat{\mu}_g) = E(\rho_{R_g}^2) \times \sigma_g^2 \times \frac{N-n}{n}$ $n_{eff} = \frac{\frac{n}{N}}{1 - \frac{n}{N}} \frac{1}{\mathrm{E}(\rho_{P}^{2})}$

Measurement Error

 $U = X - X_m$ with $E(U) = \mu_U$ and $Var(U) = \sigma_U^2$ with μ_U systematic error (bias/validity), Var(U) (reliability) In Regression Settings:

- error in Y: $Y_m = \beta_0 + \beta_1 X + \epsilon + U$ and $E(Y_m|X) = \beta_0 + \mu_U + \beta_1 X$ leads to biased $\hat{\beta}_0$
- error in X: $Y = \beta_0 + \beta_1 X + \epsilon$ and $X_m = X + U$ leads to biased $\hat{\beta}_0$ and $\hat{\beta}_1$, the latter is attenuated by the inverse of reliability ratio $rr=\frac{\sigma_X^2}{\sigma_X^2+\sigma_U^2}=\frac{\sigma_{X_m}^2-\sigma_U^2}{\sigma_{X_m}^2}$ Getting information about σ_U^2 :
 - Validation Data with both X and X_m observed
 - Replication Data repeated measures of X_m
 - **Assumptions** e.g. $\sigma_U^2 = 0$ (naive estimator)

11 Experiment Design

Omitted Variables

Regression setting ignoring omitted Variables:

$$\int f_{Y|X,Z,U} f_{Z,U} dz du = \int \frac{f_{Y,X,Z,U}}{f_{X|Z,U}} dz du \neq f_{Y|X}$$

with Z observable and U unobservable quantities influencing Y Solutions:

- \bullet Randomization: randomly assign X and then observe Y
- Balancing: make X independent of Z

Analysis of Variances (ANOVA) of one categorical variable Linear constraint: $\sum_{k=1}^{K} n_k \beta_k = 0$ (usually controlled over β_K)

$$\hat{\beta}_{0,ML} = \hat{\mu}_{ML} = \sum_{k=1}^{K} \sum_{j=1}^{n_k} \frac{y_{kj}}{n} = \bar{y}_{..}$$

$$\hat{\beta}_{k,ML} = \sum_{j=1}^{n_k} \frac{y_{kj} - \bar{y}_{..}}{n_k} = \bar{y}_{k.} - \bar{y}_{..}$$

$$SS_{Total} = SS_{Explained} + SS_{Residual}$$

with

$$SS_{Total} = \sum_{i=1}^{n} (y_i - \bar{y}_{..})^2$$

$$SS_{Explained} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y}_{..})^2$$

$$SS_{Residual} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = S_{yy} - \hat{\beta}^2 S_{xx}$$

F-Test

$$F = \frac{SS_{Explained}/(df_0 - df_X)}{SS_{Residual}/df_X} \sim \mathcal{F}_{df_0 - df_X, df_X}$$
 with $df_0 = n{-}1$ and $df_X = n{-}K$

Block Design account for block effects

$$\begin{split} Y_{kbj} &= \mu + \beta_k + \alpha_k + \epsilon_{kbj} \\ \text{Linear constraints: } \sum_{k=1}^K n_k.\beta_k = 0 \text{ and } \sum_{b=1}^B n_{.b}\alpha_b = 0 \\ \text{For the F-Test: } df_0 &= df_Z = n - B \text{ and } df_{X+Z} = n - K - B + 1 \end{split}$$

Latin Squares Sodoku pattern for more variables

Instrumental Variable

$$Y = \beta_0 + X\beta_X + \overbrace{U\beta_U + \epsilon}^{\tilde{\epsilon}} \Rightarrow \frac{\partial Y}{\partial X} = \beta_X + \frac{\partial \tilde{\epsilon}}{\partial X}$$

Construct instrumental variable Z: $Cov(Z, \epsilon) = 0$, $Cov(Z, X) \neq 0$:

$$\frac{\partial Y}{\partial X}|(U=u) = \frac{\partial Y/\partial Z}{\partial X/\partial Z}$$

i.e. fit two regressions Y|Z and X|Z and set $\hat{\beta}_X=\frac{\hat{\beta}_{YZ}}{\hat{\beta}_{YZ}}$

Propensity Score

$$\tau = E(Y(1)|D=1) - E(Y(0)|D=1)$$

with τ average treatment effect on the treated, Y(1) response if treated, Y(0) analogous; D_i indicator if i is influenced by the treatment

$$E(Y(1)|D=1) - E(Y(0)|D=0) = \tau + \underbrace{E(Y(0)|D=1) - E(Y(0)|D=0)}_{\text{selection bias}}$$

If the selection bias is zero, D and X are unconfounded.

$$\hat{\tau} = \sum_{i=1}^{n} (Y_i(1) - Y_{j(i)}(0))$$

after matching treated individual i with individual j(i) from non-treatment group