Fiche explicative – GANSynth

Nom du modèle : GANSynth

• Type:

GAN (Generative Adversarial Network) pour audio basé sur spectrogrammes

Développeur :

Google Brain - Projet Magenta

• Date de sortie :

Avril 2019

Objectif

GANSynth propose une nouvelle approche pour **synthétiser des sons instrumentaux** en générant **des spectrogrammes** (plutôt que directement des signaux audio) et en les **reconvertissant** ensuite en sons grâce à des vocodeurs (ex : **Griffin-Lim**).

Résultat : génération plus rapide et de meilleure qualité que les approches précédentes comme **NSynth**.

🔍 Fonctionnement simplifié

Étape	Description
Entrée	Vecteur latent aléatoire + conditionnement sur type d'instrument
Génération	GAN génère un spectrogramme cohérent
Reconstruction	Vocodeur transforme le spectrogramme en onde sonore .wav

Techniques utilisées :

- Progressive Growing of GANs (croissance progressive de la complexité)
- Wasserstein GAN avec pénalité de gradient (WGAN-GP) pour stabiliser l'entraînement

Applications concrètes

- Synthèse rapide de **notes individuelles** (ex : piano, guitare, synthétiseur)
- Interpolation fluide entre sons → morphing créatif
- Création de nouvelles textures sonores pour musique électronique, jeux vidéo, recherche IA

X Exemples d'usage

Domaine	Exemple		
Synthétiseur IA	Générer des presets inédits de synthé		
Musique électronique	Créer de nouveaux sons pour techno, ambient		
Recherche audio IA	Étudier la morphologie sonore entre instruments		

Détails techniques

Caractéristique	Valeur
Architecture	GAN progressif conditionné
Framework	TensorFlow 1.x
Vocodeur utilisé	Griffin-Lim
Dataset d'entraînement	NSynth Dataset (305 979 sons instrumentaux)
Durée d'entraînement	Plusieurs jours sur TPU (Google Cloud)
Objectif	Génération rapide de haute fidélité (> 16kHz)

Ressources officielles et utiles

- Publication scientifique officielle sur arXiv

Démonstrations & alternatives pratiques

Google Colab utilisables aujourd'hui

• Sample Colab - Audio Models (Magenta)

Exemple de code simple pour générer du son (Simuler GANSynth)

https://colab.research.google.com/drive/1hyXI91iY8ABr9rFN8OytX5FtueaSThTm#scrollTo=ge3NZoqiBb6Y

Tableau des avantages / inconvénients

Avantages	X Inconvénients		
Génération ultra rapide	Entraînement lourd sur TPU/GPU		
Haute fidélité sonore	Génère uniquement des notes isolées		
Interpolation créative fluide	TensorFlow 1.x (obsolète en 2025)		
Open-source accessible	Complexe à utiliser directement pour débutant		