Title of the Invention

METHOD FOR OPERATING A PARTIALLY CLOSED, TURBOCHARGED GAS TURBINE CYCLE, AND GAS TURBINE SYSTEM FOR CARRYING OUT THE METHOD

BACKGROUND OF THE INVENTION

Field of the Invention

10

15

The present invention deals with the field of gas turbine technology. It relates to a method for operating a partially closed, turbocharged gas turbine cycle, and to a gas turbine system for carrying out the method.

Discussion of Background

- It is known that gas turbines for performing work can be constructed on the basis of turbochargers, as are used, for example, to turbocharge internal combustion engines. One such example is the microturbines (of type MT100) which have been available for some years from ABB-Energie-Services, with an electrical power of 100 kW, which are intended to serve as small combined heat and power generation installations (cf. Schweizerische Technische Zeitschrift STZ No. 4/2002, pages 38 to 40 or ABB Review 3/2000, pp. 22-30).
- 30 Since gas turbines designed in this way have at most moderately cooled turbines, the hot-gas temperature which acts on the turbine and is generated by the combustion of a fuel in the combustion chamber arranged between compressor and turbine cannot meet the very high standard set by modern gas turbine construction. Accordingly, to achieve any worthwhile level of efficiency of power generation, it is necessary to incorporate a recuperator, as is the case with the abovementioned microturbine MT100. In the recuperator,

heat is extracted from the hot turbine exhaust gases and used to heat the compressed combustion air before it enters the combustion chamber. This makes it possible to expect of efficiency of at least 30%.

5

Gas turbines constructed in this way result in a poor performance with regard to part-load efficiency, since the radial compressors used in turbochargers do not allow the intake mass flow to be controlled unless the throttling method, which is subject to very high levels of losses, were to be used. Consequently, the power has to be controlled by changing the turbine inlet temperature, which is highly unfavorable in terms of exercy.

15

20

10

A further drawback of a cycle configuration with a recuperator of this nature is firstly the low optimum pressure ratio with regard to efficiency, resulting in a low specific power based on the air flow. Secondly, the heat transfer on the low-pressure side of the recuperator is low, since the turbine exhaust gas is at only barometer pressure.

An unpublished earlier application in the name of the 25 Applicant has proposed a partially closed, turbocharged gas turbine cycle for conventional large gas turbines, in which an exhaust-gas turbocharger is connected on the low-pressure side of the recuperator, removes a partial stream from the cycle at a first 30 suitable temperature level of the recuperator expands it in turbine of the exhaust-gas the turbocharger, and also compresses intake ambient air in the turbine of the exhaust-gas turbocharger and feeds it to the cycle at a second suitable temperature level 35 of the recuperator.

SUMMARY OF THE INVENTION

Accordingly, one object of the invention is to provide a novel gas turbine cycle which is suitable for small combined heat and power generation installations, as well as a gas turbine system which is suitable for it.

The object is achieved by the combination of features described in claims 1 and 12. The essence of the invention consists in using a gas turbine in the manner of an exhaust-gas turbocharger having a radial compressor as power-generating gas turbine in a partially closed, turbocharged cycle.

- 15 It is preferable for the gas turbine used to be either a second exhaust-gas turbocharger or a microturbine.

 Known microturbines can in this case be considered as configurations derived from exhaust-gas turbochargers.
- 20 Preferably, the fraction of the working medium which is removed at the removal location is expanded in such a manner in the turbine of the first exhaust-gas turbocharger that the power required to drive the compressor of the first exhaust-gas turbocharger is 25 produced. To achieve this, the working medium to act on the charging turbine is removed from the recuperator on low-pressure side at a location where temperature level is just sufficient. In particular, the quantity of air supplied to the working medium by 30 the compressor of the first exhaust-gas turbocharger covers at least the demand for combustion air in the combustion chamber.

A preferred configuration of the method according to the invention is distinguished by the fact that heat is 35 extracted from the working medium in a precooler between the low-pressure-side exit from the recuperator and the entry to the compressor of the gas turbine. This heat can be used at least partially for heating purposes.

5 Another configuration is characterized in that the rotational speed of the first exhaust-gas turbocharger is controlled by means of an auxiliary machine which is connected to the first exhaust-gas turbocharger and in particular takes the form of an electrical machine connected to the grid system via converters, in order to set the level of turbocharging.

It is also conceivable for the rotational speed of the first exhaust-gas turbocharger to be controlled by an adjustable bypass between the compressor and the turbine of the first exhaust-gas turbocharger in order to set the level of turbocharging. Throttling and/or blow-off are also conceivable.

A widened version of the method according to the 20 invention is characterized in that the working medium which comes out of the compressor of the gas turbine is compressed further in the compressor of а before it enters exhaust-gas turbocharger the recuperator, and in that the working medium which flows 25 out of the combustion chamber is initially expanded in the turbine of the third exhaust-gas turbocharger before it enters the turbine of the gas turbine, in the working medium is cooled in which case intercooler before it enters the compressor of 30 exhaust-gas turbocharger. In addition, exhaust gas from the turbine of the third exhaust-gas turbocharger can be reheated in a second combustion chamber before it enters the turbine of the second exhaust-gas turbocharger. 35

A preferred configuration of the gas turbine system according to the invention is distinguished by the fact that a precooler is arranged between the entry to the compressor of the gas turbine and the low-pressure-side exit from the recuperator, that the first exhaust-gas turbocharger can be driven by an auxiliary machine, in particular in the form of an electrical connected to the grid system via converters, and that a bypass valve is arranged between the exit from the compressor and the entry to the turbine of the first exhaust-gas turbocharger. However, it is also possible for a blow-off member to be provided downstream of the throttling of the charger. a or particularly important for the low-pressure side of the recuperator to be tapped at a location where temperature level is just sufficient to be applied to the charging turbine, it being possible to control the tapping.

10

15

35

In particular, a third exhaust-gas turbocharger is 20 arranged between the gas turbine and the high-pressure side of the recuperator, in such a manner that the compressor of the third exhaust-gas turbocharger may be arranged between the exit from the compressor of the gas turbine and the high-pressure-side entry of 25 recuperator, and the turbine of the third exhaust-gas turbocharger is arranged between the entry the turbine of the gas turbine and the exit from combustion chamber. Furthermore, an intercooler may be arranged between the exit from the compressor of the 30 gas turbine and the entry to the compressor of third exhaust-gas turbocharger. Likewise, a further combustion chamber may be arranged downstream of the turbine of the third exhaust-gas turbocharger.

Further configurations will emerge from the dependent claims.

B02/118-0

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

10 Fig. 1 shows a simplified circuit diagram of a partially closed, turbocharger gas turbine cycle or system in accordance with a first exemplary embodiment of the invention with two exhaust-gas turbochargers; and

15

20

Fig. 2 shows a simplified circuit diagram of a partially closed, turbocharged gas turbine cycle or system in accordance with a second exemplary embodiment of the invention with three exhaust-gas turbochargers.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts 25 throughout the several views, Fig. 1 shows a simplified circuit diagram of a partially closed, turbocharged gas turbine cycle or system in accordance with a first exemplary embodiment of the invention with exhaust-gas turbochargers. A gas turbine in the form of 30 a first exhaust-gas turbocharger ATL1 has a compressor 1 and a turbine 2 on a common shaft 3 connected to a generator 4. The combustion air compressed by the compressor 1 is used in a combustion chamber 6 for combustion of a fuel which is supplied via a fuel feed 35 8, and the hot fuel gases are then expanded in the turbine 2 so as to perform work. The exhaust gas is returned from the exit of the turbine 2, via the

low-pressure side of a recuperator 5 and a precooler 7, to the entry to the compressor 1. The gas turbine cycle which is formed as a result via the recuperator 5 and the precooler 7 is, however, at most partially closed, with a second exhaust-gas turbocharger ATL2 being responsible for turbocharging the process. The quantity of air which is introduced into the gas turbine cycle 13 of the second exhaust-gas the compressor turbocharger ATL2 is intended to at least cover the demand for combustion air in the combustion chamber 6, which corresponds to a quarter of the circulating in the machines 1 and 2. The exhaust gases which are formed as a result of the combustion are expanded by the turbine 14 of the second exhaust-gas turbocharger ATL2, so that the power required to drive the compressor 13 is produced.

10

15

To supply the second exhaust-gas turbocharger ATL2 with precisely the amount of energy required for full-load operation, the quantity of flue gas required 20 turbine 14 should be removed from the for low-pressure side of the recuperator 5 at a removal location 9 at which the required temperature level is 13 of the The compressor present. exhaust-gas turbocharger ATL2 should likewise feed the 25 compressed air to the recuperator 5 in its low-pressure side at a feed location 10 at which precisely the compressor outlet temperature is present. Of course, this is only possible if the outlet temperature from the charging compressor exceeds that of the gas turbine 30 compressor by more than the temperature change in the recuperator 5, which can be achieved in accordance with Fig. 2.

35 A gas turbine configured in this way has the following advantages over the prior art:

Firstly, the degree of turbocharging allows part-load operation without the hot-gas temperature upstream of which keeps turbine 2 having to be reduced, efficiency high even under part-load. To lower the degree of turbocharging, it is possible, for example, to reduce the rotational speed of an electrical machine which is coupled to the second exhaust-gas turbocharger ATL2 and is connected to the grid system converters, resulting in a reduction rotational speed of the second exhaust-gas turbocharger ATL2 and an associated drop in the air stream which is delivered. However, the rotational speed of the second exhaust-gas turbocharger ATL2 can also be used by partially opening a bypass valve 11.

15

20

25

10

Secondly, the turbocharging of the gas turbine cycle significantly improves the heat transfer coefficients in the recuperator 5, for example pressure high 0.75, i.e. for example at 4 bar on the low-pressure side almost by a factor of 3. The required exchange surface area for the heat output to be exchanged is reduced by the same ratio. The same also applies, of course, to the precooler 7, which serves to discharge the waste heat extracted for heating purposes and as far as possible to recool the cycle gas or working medium on entry to the compressor 1.

Fig. 2 shows the circuit diagram of a widened second exemplary embodiment. In this case, a third exhaust-gas arranged between the 30 turbocharger ATL3 is exhaust-gas turbocharger ATL1 and the recuperator 5. The compressor 16 of the third exhaust-gas turbocharger ATL3 is located between the exit from the compressor 1 and the high-pressure-side entry to the recuperator 5. An intercooler 12 is provided in the connecting line. 35 The turbine 17 of the third exhaust-gas turbocharger ATL3 is arranged between the exit from the combustion chamber 6 and the entry to the turbine 2. At least

three exhaust-gas turbochargers ATL1,.... ATL3 of different size are used to construct an installation of this type. Exhaust-gas turbocharger ATL2 has approximately the same volumetric flow as the exhaust-gas turbocharger ATL1, which in the case of turbocharging to 4 bar results in approximately a quarter of the cycle flow as charge air quantity. The dimensions of the exhaust-gas turbocharger ATL3 are smaller by approximately a factor of 2.

10

15

20

5

Finally, in the case of the installation illustrated in Fig. 2, it is conceivable for the exhaust gas from the turbine 17 of the third exhaust-gas turbocharger ATL3 to be reheated in a downstream second combustion chamber 6' (indicated by dashed lines in Fig. 2).

Partially, closed turbocharged gas turbine systems of this nature are predominantly suitable for burning clean fuels, such as for example natural gas. In terms of the quantity structure required, their output is greater by the degree of turbocharging than generator gas turbines which are not turbocharged. Accordingly, the specific installation costs based on the power output should be lower.

25

30

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

LIST OF DESIGNATIONS

1	Compressor
2	Turbine
3	Shaft
4 .	Generator
5	Recuperator
6, 6'	Combustion chamber
7	Precooler
8	Fuel feed
9	Removal location
10	Feed location
11	Bypass valve
12	Intercooler
13, 16	Compressor
14, 17	Turbine
15	Electrical machine
100,200	Gas turbine system
ATL1,ATL3	Exhaust-gas turbocharger