context-sensitive grammars, Intro to computability theory

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 10

- Turing machine: two-way infinite tape, read, write, move head
- Accept iff in a final state; configurations
- TMs with output, computing a function
- Recursively enumerable vs. recursive languages (always halt).
- Construction tricks:
 - · storage in state
 - multiple tracks (on a single tape)
- Variants of TMs:
 - multi-tape (independent heads),
 - nondeterministic (accept iff some choices lead to final state)

3.3 Turing Machines and grammars

Chomsky hierarchy: Type 0

Theorem

A language is recursively enumerable, if and only if it is generated by a Type 0 grammar.

Turing machine to grammar

- First generate the relevant portion of the tape and a copy of the input word (nonterminal X for each x ∈ Γ, in reverse)
- Why? TM can rewrite w, G must generate it, cannot modify
- We have $wB^n\underline{W}^RQ_0B^m$, where B^n , B^m is sufficient free space
- Then simulate moves (essentially reverse configs+free space)
- In a final state erase the simulated tape, keep only w

$$G=(\{S,C,D,E\}\cup\{\underline{X}\}_{x\in\Gamma}\cup\{Q_i\}_{q_i\in Q},\Sigma,\mathcal{P},S)$$
 where $\mathcal P$ is:

- (1) $S \to DQ_0E$ simulation starts in initial state $D \to xD\underline{X} \mid E$ generate input word, reverse copy for simulation $E \to BE \mid \epsilon$ generate sufficient free space for simulation
- (2) $\underline{X}P \to Q\underline{X'}$ for all $\delta(p,x) = (q,x',R)$ [direction reversed!] $\underline{X}PY \to \underline{X'Y}Q$ for all $\delta(p,x) = (q,x',L)$
- (3) $P \to C$ for all $p \in F$ $C\underline{X} \to C, \underline{X}C \to C$ clean the tape finish, generated w

Example: $L = \{a^{2n} | n \ge 0\}$

$$M=(\{q_0,q_1,q_2,q_F\},\{a\},\{a\},\delta,q_0,B,\{q_F\})$$
 where
$$\delta(q_0,a)=(q_1,a,R),$$

$$\delta(q_1,a)=(q_0,a,R),$$

$$\delta(q_0,B)=(q_F,B,L)$$

$$G = (\{S, C, D, E, Q_0, Q_1, Q_F, \underline{a}\}, \{a\}, S, \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3)$$

Initialize: \mathcal{P}_1	Simulate: \mathcal{P}_2	Cleanup: \mathcal{P}_3
$S \rightarrow DQ_0E$	$\underline{a}Q_0 o Q_1\underline{a}$	$Q_F o C$
$D o aD\underline{a} \mid E$	$\underline{a}Q_1 o Q_0 \underline{a}$	$C\underline{a} o C$
$E o BE \mid \epsilon$	$BQ_0\underline{a} o B\underline{a}Q_F$	$\underline{a}C \to C$
		BC o C
		$C \rightarrow \epsilon$

For w = aa: initialize $aaB\underline{aa}Q_0$, simulate $aaB\underline{a}Q_F\underline{a}$, cleanup: aa

Proof

$L(M) \subseteq L(G)$

- For $w \in L(M)$ there is a finite accepting sequence of moves
- The grammar generates sufficient space
- Then we simulate the moves
- Finally clean non-input symbols

$L(G) \subseteq L(M)$

- Steps in a derivation for $w \in L(G)$ may be in different order
- But we can reorder them into the phases (1), (2), (3)
- Since we eliminated the underlined symbols, we must have generated the cleaning variable C
- ullet In order to generate C we must have generated a final state
- A final state can only be generated from the initial state by a sequence of simulated moves

Grammar to Turing machine

Idea: The TM sequentially generates all possible derivations. (Note: here we do not care about efficiency.)

- code $S \Rightarrow \beta_1 \Rightarrow \ldots \Rightarrow \beta_n = \omega$ as a string $\#S \# \beta_1 \# \ldots \# \omega \#$
- construct a TM accepting exactly $\#\alpha\#\beta\#$ where $\alpha \Rightarrow \beta$
- construct a TM accepting $\#\beta_1\#\ldots\#\beta_k\#$ where $\beta_1\Rightarrow^*\beta_k$
- construct a TM generating sequentially all possible strings
- \bullet check if the string is a valid derivation ending with ω

3.4 Linear bounded automata and

context-sensitive grammars

Chomsky hierarchy: Type 1

Context-sensitive languages

Theorem

The following are equivalent for a language L:

- (i) L is generated by a context-sensitive grammar.
- (ii) L is generated by a monotone grammar.
- (iii) L is recognized by a Linear Bounded Automaton (LBA).
 - context-sensitive grammar: $\alpha_1 A \alpha_2 \to \alpha_1 \gamma \alpha_2$ where $A \in V$, $\gamma \in (V \cup T)^+$, $\alpha_1, \alpha_2 \in (V \cup T)^*$ $(S \to \epsilon \text{ if } S \text{ not in bodies})$
 - ullet monotone grammar: lpha
 ightarrow eta where $|lpha| \leq |eta|$
 - Linear Bounded Automaton (LBA): a nondeterministic TM only using the input portion of the tape [we formalize later]

Note: Context-sensitive grammars are monotone, $(i) \Rightarrow (ii)$ trivial. Monotone grammars do not shorten sentential forms in a derivation

Example: $L = \{a^n b^n c^n | n \ge 1\}$ is context-sensitive

(Recall that L is not context-free.)

A monotone grammar:

$$S oup aSBC \mid abC$$
 right amount of a, B, C
 $CB oup BC$ reorder to $a^nbB^{n-1}C^n$
 $bB oup bb$ $B oup b$ only if preceded by b
 $bC oup bc$ $C oup c$ only if preceded by b
 $cC oup cc$... or by c

The rule $CB \rightarrow BC$ is not context-sensitive. But we can convert it to a chain of context-sensitive rules:

$$CB \rightarrow XB$$
, $XB \rightarrow XY$, $XY \rightarrow BY$, $BY \rightarrow BC$

(Same for any monotone rule, as long as there are no terminals.)

Recall: separated grammar means productions of the form $\alpha \to \beta$ where either $\alpha, \beta \in V^+$ or $\alpha \in V, \beta \in T \cup \{\epsilon\}$

Lemma

Every monotone grammar can be converted to an equivalent context-sensitive grammar.

Proof: First, convert to separated grammar (as for ChNF). This preserves monotonicity, $V_a \rightarrow a$ is monotone, context-sensitive.

Then, convert every production $A_1 \dots A_m \to B_1 \dots B_n$ $(m \le n)$ to the following chain (using new auxiliary variables C_i):

$$A_1A_2 \dots A_m \to C_1A_2 \dots A_m \qquad C_1C_2 \dots C_m \to B_1C_2 \dots C_m$$

$$C_1A_2 \dots A_m \to C_1C_2 \dots A_m \qquad B_1C_2 \dots C_m \to B_1B_2 \dots C_m$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$C_1 \dots C_{m-1}A_m \to C_1 \dots C_{m-1}C_m \qquad B_1 \dots B_{m-1}C_m \to B_1 \dots B_{m-1}B_m \dots B_n \quad 11$$