Spring 2024

Lecture 8: Congestion Minimization

Lecturer: Zongchen Chen

1 Integer Programming and Linear Programming

Integer (linear) programming (IP) In an IP problem, we want to find an *integral* point that maximizes/minimizes a linear objective function under a few linear constraints.

$$\max_{x \in \mathbb{Z}^n} c_1 x_1 + \dots + c_n x_n \qquad \text{(objective function)}$$
 subject to
$$a_{11} x_1 + \dots + a_{1n} x_n \leq b_1$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} x_1 + \dots + a_{mn} x_n \leq b_m$$

$$x_1, \dots, x_n \geq 0$$

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$. In the matrix form, IP can be written as follows.

$$\max_{x \in \mathbb{Z}^n} c^{\mathsf{T}} x$$

subject to $Ax \le b$
 $x > 0$

If x is further restricted to $\{0,1\}^n$, then it is called a 0/1 IP problem.

Remark 1. 0/1 IP is NP-complete.

Example 2. Let G = (V, E) be an undirected graph. A vertex cover S of G is a subset of vertices such that every edge has at least one endpoint from S. We can find a minimum vertex cover by solving the following 0/1 IP.

$$\begin{aligned} & & & \min & & \sum_{v \in V} x_v \\ & \text{subject to} & & & x_u + x_v \geq 1, & \forall uv \in E \\ & & & & x_v \in \{0,1\}, & \forall v \in V \end{aligned}$$

Each x_v indicates whether v is inside the vertex cover or not. In particular, under these constraints the set $S = \{v \in V : x_v = 1\}$ is indeed a vertex cover. The objective function $\sum_{v \in V} x_v$ equals the size of S, which we want to minimize. Since finding a minimum vertex cover is NP-complete, this shows that 0/1 IP is NP-complete.

Linear programming (LP) In an LP problem, we want to find a point in \mathbb{R}^n that maximizes/minimizes a linear objective function under a few linear constraints. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$. In the matrix form, LP can be written as follows.

$$\max_{x \in \mathbb{R}^n} c^{\mathsf{T}} x$$

subject to $Ax \le b$
 $x \ge 0$

Remark 3. LP can be solved in polynomial time. Examples of algorithms for LP include the simplex algorithm and the ellipsoid algorithm.

2 Congestion Minimization Problem

In the congestion minimization problem, we are given a directed graph G = (V, E) and k source-sink pairs $(s_1, t_1), \ldots, (s_k, t_k)$. Our goal is to find k paths p_1, \ldots, p_k where each p_i is from s_i to t_i , such that the congestion of these paths is minimized. Here, the congestion of an edge e is defined by

$$cong(e) = |\{i \in [k] : e \in p_i\}| = number of paths using e,$$

and the congestion of paths p_1, \ldots, p_k is defined by

$$congestion = \max_{e \in E} cong(e).$$

Let \mathcal{P}_i denote the set of all paths from s_i to t_i for every $i \in [k]$. For each path $p \in \bigcup_{i=1}^k \mathcal{P}_i$, let x_p be an indicator variable such that $x_p = 1$ if the path p is used and $x_p = 0$ otherwise. Let $W \in \mathbb{N}^+$ denote the congestion of paths that we want to minimize. The congestion minimization problem can be solved by the following IP.

$$\begin{array}{ll} & \text{min} \quad W & \text{(IP for Congestion Minimization)} \\ & \text{subject to} & \sum_{p \in \mathcal{P}_i} x_p = 1, \quad \forall i \in [k] \\ & \sum_{i=1}^k \sum_{p \in \mathcal{P}_i: e \in p} x_p \leq W, \quad \forall e \in E \\ & x_p \in \{0,1\}, \quad \forall p \in \bigcup_{i=1}^k \mathcal{P}_i \\ & W \in \mathbb{N}^+ \end{array}$$

Solving this IP is computationally hard. We adopt the following strategy, which is a common approach in the design of approximation algorithm.

- 1. Relaxation: Solve an LP relaxation of the IP by removing the integral constraint, and obtain an optimal fractional solution;
- 2. Rounding: Transform the fractional solution we get into an integral solution of the original IP, and hope that it solves the IP approximately.

LP relaxation We relax the integral constraints $x_p \in \{0,1\}$ to $x_p \in [0,1]$ and $W \in \mathbb{N}^+$ to $W \ge 1$.

$$\begin{array}{ll} & \text{min} \quad W & \text{(LP Relaxation)} \\ & \text{subject to} & \displaystyle \sum_{p \in \mathcal{P}_i} x_p = 1, \quad \forall i \in [k] \\ & \displaystyle \sum_{i=1}^k \sum_{p \in \mathcal{P}_i: e \in p} x_p \leq W, \quad \forall e \in E \\ & 0 \leq x_p \leq 1, \quad \forall p \in \bigcup_{i=1}^k \mathcal{P}_i \\ & W \geq 1 \end{array}$$

Notice that there could be exponentially many variables in this LP relaxation since the number of paths from s_i to t_i can be exponentially large. We shall explain how to solve this LP relaxation efficiently later.

The following observation is important to us.

Fact 4. Let $(x_{\text{OPT}}^{\text{IP}}, W_{\text{OPT}}^{\text{IP}})$ denote an optimal (integral) solution to the IP for congestion minimization, and let $(x_{\text{OPT}}^{\text{IP}}, W_{\text{OPT}}^{\text{IP}})$ denote an optimal (fractional) solution to the LP relaxation. Then we have

$$W_{ ext{OPT}}^{ ext{IP}} \ge W_{ ext{OPT}}^{ ext{LP}}.$$

Randomized rounding Write $(x, W) = (x_{OPT}^{LP}, W_{OPT}^{LP})$ for simplicity. Our randomized rounding algorithm is given below.

Algorithm 1 Randomized rounding

Input: $(x, W) = (x_{\text{OPT}}^{\text{LP}}, W_{\text{OPT}}^{\text{LP}})$ an optimal (fractional) solution to the LP relaxation for each $i \in [k]$ do

 $(x_p)_{p\in\mathcal{P}_i}$ forms a distribution over \mathcal{P}_i (since $\sum_{p\in\mathcal{P}_i} x_p = 1$), and we choose a path $p_i \in \mathcal{P}_i$ randomly from this distribution; that is

$$Pr(\text{choose } p_i) = x_{p_i}, \quad \forall p_i \in \mathcal{P}_i$$

end for

return p_1, \ldots, p_k

Lemma 5. For every edge $e \in E$, we have

$$\Pr\left(\operatorname{cong}(e) \ge \frac{C \log n}{\log \log n} W\right) \le \frac{1}{2n^2}$$

where C > 0 is a large absolute constant.

Given the lemma, we are able to bound the congestion of paths we get via randomized rounding. Recall that congestion = $\max_{e \in E} \operatorname{cong}(e)$. We deduce that

$$\begin{split} \Pr\left(\text{congestion} \geq \frac{C \log n}{\log \log n} W_{\text{opt}}^{\text{IP}}\right) &\leq \Pr\left(\text{congestion} \geq \frac{C \log n}{\log \log n} W_{\text{opt}}^{\text{LP}}\right) \\ &\leq \sum_{e \in E} \Pr\left(\text{cong}(e) \geq \frac{C \log n}{\log \log n} W_{\text{opt}}^{\text{LP}}\right) \\ &\leq |E| \cdot \frac{1}{2n^2} \end{aligned} \tag{Union Bound}$$

Therefore, with probability at least 1/2, the congestion of paths we find is at most $\frac{C \log n}{\log \log n} W_{\text{OPT}}^{\text{IP}}$ where $W_{\text{OPT}}^{\text{IP}}$ is the minimum congestion. Namely, we can achieve an approximation ratio of $C \log n / \log \log n$ with high probability.

It remains to prove Lemma 5. We shall use the following version of Chernoff bounds which is suitable when the deviation is large.

Lemma 6 (Chernoff Bounds). Let X_1, \ldots, X_n be independent random variables taking values in [0,1]. Let $X = \sum_{i=1}^n X_i$ be their sum with mean $\mu = \mathbb{E}X = \sum_{i=1}^n \mathbb{E}X_i$. Then we have

$$\forall \delta \geq 0: \ \Pr\left(X \geq (1+\delta)\mu\right) \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \leq \left(\frac{e}{1+\delta}\right)^{(1+\delta)\mu};$$
 Equivalently,
$$\forall a \geq \mu: \ \Pr\left(X \geq a\right) \leq \left(\frac{e\mu}{a}\right)^{a}.$$

Proof of Lemma 5. Let X_i be an indicator random variable such that $X_i = 1$ if $e \in p_i$ and $X_i = 0$ otherwise. Note that X_1, \ldots, X_k are jointly independent. Then we have

$$X = \sum_{i=1}^{k} X_i = \operatorname{cong}(e).$$

Notice that

$$\mathbb{E}X_i = \Pr\left(e \in p_i\right) = \sum_{p_i \in \mathcal{P}_i: e \in p_i} \Pr(\text{choose } p_i) = \sum_{p_i \in \mathcal{P}_i: e \in p_i} x_{p_i}.$$

Therefore, by the constraint of LP we have

$$\mathbb{E}X = \sum_{i=1}^{k} \mathbb{E}X_i = \sum_{i=1}^{k} \sum_{p_i \in \mathcal{P}_i : e \in p_i} x_{p_i} \le W$$

We deduce from the Chernoff bound (Lemma 6) that

$$\Pr\left(X \ge \frac{C \log n}{\log \log n}W\right) \le \left(\frac{e\mathbb{E}X}{\frac{C \log n}{\log \log n}W}\right)^{\frac{C \log n}{\log \log n}W} \tag{Chernoff Bound (Lemma 6))}$$

$$\le \left(\frac{\log \log n}{\log n}\right)^{\frac{C \log n}{\log \log n}} \tag{E}X \le W, \ e \le C, \ W \ge 1)$$

$$\le \left(\frac{1}{\sqrt{\log n}}\right)^{\frac{C \log n}{\log \log n}} \tag{log log } n \le \sqrt{\log n} \text{ when } n \text{ is sufficiently large)}$$

$$= e^{-\frac{1}{2}\log \log n \cdot \frac{C \log n}{\log \log n}}$$

$$\le \frac{1}{2n^2},$$

where C > 0 is a large constant independent of n.

3 Solving LP Relaxation

We give a compact representation of the original LP which contains polynomially many variables and constraints, and hence can be solved in polynomial time. For every vertex v, let $E_{\rm in}(v)$ be the set of edges directed into v, and $E_{\rm out}(v)$ the set of edges directed out of v.

$$\begin{array}{ll} & \text{min} \quad W & \text{(Compact Representation)} \\ & \text{subject to} & \sum_{e \in E_{\text{in}}(v)} x_e^i = \sum_{e \in E_{\text{out}}(v)} x_e^i, \quad \forall i \in [k], \ \forall v \in V \setminus \{s_i, t_i\} \\ & \sum_{e \in E_{\text{out}}(s_i)} x_e^i = 1, \quad \forall i \in [k] \\ & \sum_{e \in E_{\text{in}}(t_i)} x_e^i = 1, \quad \forall i \in [k] \\ & \sum_{i=1}^k x_e^i \leq W, \quad \forall e \in E \\ & 0 \leq x_e^i \leq 1, \quad \forall i \in [k], \ \forall e \in E \\ & W \geq 1 \end{array}$$

Fact 7. The two LPs are equivalent.

See Michael Dinitz's note for details.