PROPOSITIONAL LOGIC

Prof Tejada <u>stejada@usc.edu</u>

USING TRUTH TABLES IN INFERENCE

	$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
R_5	false	false	false	false	false	false	false	tmc	truc	tmc	true	false	false
	$f_{\alpha}l_{\alpha\alpha}$	$f_{\alpha}I_{\alpha\alpha}$	$f_{\alpha}l_{\alpha}c$	false	$f_{\alpha l_{\alpha \alpha}}$	falso		tmic	trace	false	trace	false	falso
R_3	:	<i>jaise</i> :	; :	:	; :	<i>jaise</i> :	:	:	:	<i>jaise</i> :	:	:	<i>jase</i> :
R_3	false	truc	false	faise	false	false	false	true	true	false	true	tme	fabc
	false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
	false	true	$fals\epsilon$	false	false	true	jalse	true	true	true	true	true	\underline{true}
	false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
R_2	false	truc	false	falso	tmc	false	false	tmc	false	false	truc	tmc	falso
2	:	÷	:	:	:	:	:	:	:	:	:	:	:
R ₁	truc	truc	truc	truc	tmc	truc		false	truc	truc	false	true	false

- I. False |= True.
- 2. True |= False.
- 3. $(A \land B) = (A \Leftrightarrow B)$.
- 4. $A \Leftrightarrow B \models A \lor B$.
- 5. $A \Leftrightarrow B = \neg A \lor B$.
- $(A \land B) \Rightarrow C = (A \Rightarrow C) \lor (B \Rightarrow C). (C \lor (\neg A \land \neg B)) \equiv ((A \Rightarrow C) \land (B \Rightarrow C)).$
- 7. $(A \lor B) \land (\neg C \lor \neg D \lor E) = (A \lor B)$.
- 8. $(A \lor B) \land (\neg C \lor \neg D \lor E) = (A \lor B) \land (\neg D \lor E)$.
- 9. $(A \lor B) \land \neg (A \Rightarrow B)$ is satisfiable.
- 10. $(A \Leftrightarrow B) \land (\neg A \lor B)$ Is satisfiable.
- (A \Leftrightarrow B) \Leftrightarrow C has the same number of models as (A \Leftrightarrow B) for any fixed set of proposition symbols that includes A, B, C.

False *⊨* True.

False = True. TRUE

False has no models and hence entails every sentence

 True is true in all models and hence is entailed by every sentence.

► True = False.

True ⊨ False. FALSE

► False is not true in any models

 \triangleright $(A \land B) \models (A \Leftrightarrow B).$

 \triangleright (A \land B) \models (A \Leftrightarrow B). TRUE

- The left-hand side (A ∧ B) has exactly one model: A=True and B=True then (A ∧ B)=True
- That model is one of the two models of the right-hand side (A ⇔ B). Two models:
 - A=True and B=True then (A ⇔ B) =True
 - A=False and B=False then (A ⇔ B) =True

 \triangleright A \Leftrightarrow B \models A \vee B.

 \triangleright A \Leftrightarrow B \models A \vee B. FALSE

- (A ⇔ B) has two models:
 - A=True and B=True then (A ⇔ B) =True
 - A=False and B=False then (A ⇔ B) =True
- (AVB) is not True in this model
 - A=False and B=False then (A V B) = False

 $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable.

 $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable. TRUE

This sentence $(A \Leftrightarrow B) \land (\neg A \lor B)$ is True, when A=True and B=True

- I. False |= True.
- 2. True |= False.
- 3. $(A \land B) = (A \Leftrightarrow B)$.
- 4. $A \Leftrightarrow B \models A \lor B$.
- 5. $A \Leftrightarrow B = \neg A \lor B$.
- 6. $(A \land B) \Rightarrow C = (A \Rightarrow C) \lor (B \Rightarrow C). (C \lor (¬A \land ¬B)) \equiv ((A \Rightarrow C) \land (B \Rightarrow C)).$
- 7. $(A \lor B) \land (\neg C \lor \neg D \lor E) = (A \lor B)$.
- 8. $(A \lor B) \land (\neg C \lor \neg D \lor E) = (A \lor B) \land (\neg D \lor E)$.
- 9. $(A \lor B) \land \neg (A \Rightarrow B)$ is satisfiable.
- 10. $(A \Leftrightarrow B) \land (\neg A \lor B)$ Is satisfiable.
- (A ⇔ B) ⇔ C has the same number of models as (A ⇔ B) for any fixed set of proposition symbols that includes A, B, C.

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- Smoke ⇒ Smoke
- 2. Smoke \Rightarrow Fire
- 3. (Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)
- 4. Smoke ∨ Fire ∨ ¬Fire
- 5. ((Smoke ∧ Heat) ⇒ Fire) ⇔ ((Smoke ⇒ Fire) ∨ (Heat ⇒ Fire))
- 6. (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)
- 7. Big \vee Dumb \vee (Big \Rightarrow Dumb)

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- ► Smoke ⇒ Smoke

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- ► Smoke ⇒ Smoke Valid

- Convert to ¬Smoke V Smoke
- 2. When Smoke=True then ¬Smoke V Smoke = True
- 3. When Smoke=False then $\neg Smoke \lor Smoke = True$
- 4. Always True = Valid.

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- ► Smoke ⇒ Fire

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- ► Smoke ⇒ Fire Neither
- I. Convert to ¬Smoke V Fire
- 2. When Smoke=True and Fire=True then ¬Smoke V Fire = True
- 3. When Smoke=True and Fire=False then ¬Smoke V Fire =False
- 4. Not always True and not always False

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- ► (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- ► (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire) Valid
- 1. Convert to $\neg(Smoke \Rightarrow Fire) \lor ((Smoke \land Heat) \Rightarrow Fire)$
- 2. Convert to (Smoke $\land \neg Fire$) \lor (($\neg Smoke \lor \neg Heat$) \lor \lor \lor
- (Smoke ∧ ¬Fire) V Fire V (¬Smoke V ¬Heat)
- 4. ((Smoke V Fire) \land (¬Fire V Fire)) V (¬Smoke V ¬Heat)
- 5. ((Smoke V Fire) ∧ True) V (¬Smoke V ¬Heat)
- 6. (Smoke V Fire) V ((¬Smoke V ¬Heat)

- Decide whether each of the following sentences is valid, unsatisfiable, or neither.
- Smoke ⇒ Smoke
- 2. Smoke \Rightarrow Fire
- 3. (Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)
- 4. Smoke ∨ Fire ∨ ¬Fire
- 5. ((Smoke ∧ Heat) ⇒ Fire) ⇔ ((Smoke ⇒ Fire) ∨ (Heat ⇒ Fire))
- 6. (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)
- 7. Big \vee Dumb \vee (Big \Rightarrow Dumb)

REVIEW OF KEY TERMS

- Syntax: formal structure of sentences
- Semantics: truth of sentences with respect to models
 - ► Model: A possible world that defines truth values for all sentences
- Entailment: necessary truth of one sentence given another
- Inference: determine whether sentence entailed by KB
 - Or equivalently, derive new sentences from old
- Soundness: produce only entailed sentences
- Completeness: can produce all entailed sentences
- Equivalence: sentences are true in the same models
- Validity: sentence is true in all models
- Satisfiability: sentence is true in some model