

Benchmarking Spike-Based Visual Recognition:

a Dataset, Evaluation and Algorithms

Qian Liu

Supervisor: Steve Furber

Co-Supervisor: David Lester

Adviser: Alvaro Fernandes

Aims and Motivations

- Unified spiking data
- Comparisons
- Evaluation methodology
- Promote future research

A Dataset: NE15-MNIST

- AER format
- jAER support code
- 4 subsets
 - Poisson: unified data generation
 - FoCal: Rank-Order-Coding
 - Flash: fast recognition
 - Moving: invariant recognition

Evaluation

- SNN models
 - biological training time
 - biological testing time
 - response latency
- H/W platforms
 - feasibility due to H/W limits
 - simulation time
 - energy use

	Preprocessing	Network	Training	Recognition
Brader et al. (2007)	None	Two layer, LIF neurons	Semi-supervised, STDP, calcium LTP/LTD	96.5%
Beyeler et al. (2013)	None	V1 (edge), V4 (orientation), and competitive decision, Izhikevich neurons	Semi-supervised, STDP, calcium LTP/LTD	91.6% 300 ms per test
Neftci et al. (2013)	Thresholding	Two layer RBM, LIF neurons	Event-driven contrastive divergence, supervised	91.9% 1 s per test
Diehl and Cook (2015)	None	Two layers, LIF neurons, inhibitory feedback	Unsupervised, exp. STDP, 3,000,000 s of training 200,000 s per iteration	95%
Diehl et al. (2015)	None	ConvNet or Fully connected, LIF neurons	Off-line trained with ReLU, weight normalization	99.1% (ConvNet), 98.6% (Fully connected); 0.5 s per test
Zhao et al. (2015)	Thresholding or DVS	Simple (Gabor), Complex (MAX) and Tempotron	Tempotron, supervised	Thresholding 91.3%, 11 s per test DVS 88.1%, 2 s per test

Evaluation

- SNN models
 - biological training time
 - biological testing time
 - response latency
- H/W platforms
 - feasibility due to H/W limits
 - simulation time
 - energy use

	System	Neuron Model	Synaptic Plasticity	Precision	Simulation Time	Energy/Power Usage
SpiNNaker (Stromatias et al., 2013)	Digital, Scalable	Programmabl Neuron/Synaj Axonal delay	e pse, rogrammable learning rule	11- to 14-bit synapses	Real-time Flexible time resolution	8 nJ/SE 54.27 MSops/W
TrueNorth (Merolla et al., 2014)	Digital, Scalable	Fixed models, Config params, Axonal delay	No plasticity	122 bits params & states, 4-bit synapse ^a	Real-time	46 GSops/W
Neurogrid (Benjamin et al., 2014)	Mixed- mode, Scalable	Fixed models, Config params	Fixed rule	13-bit shared synapses	Real-time	941 pJ/SE
HI-CANN (Schem- mel et al., 2010)	Mixed- mode, Scalable	Fixed models, Config params	Fixed rule	4-bit synapses	Faster than real-time ^b	198 pJ/SE 13.5 MSops/W (network only)
HiAER- IFAT (Yu et al., 2012)	Mixed- mode, Scalable	Fixed models, Config params	No plasticity	Analogue neu- ron/synapse	Real-time	22-pJ/SE (Park et al., 2014) 20GSops/W

Algorithms

- state-of-the-art
 - 2-Layer STDP learned
 - Spiking ConvNet (off-line training)
 - Spiking DBN (off-line training)
- Case studies
 - STDP online training on SpiNNaker
 - Spiking DBN on SpiNNaker (Evangelos Stromatias)

Case Study I: 2-layer STDP

a simple model

fast training

short latency

Case Study I: 2-layer STDP

Subclasses	Accuracy (%)		Simulation (s)		Power Use (W)	
per digit	N	S	N	S	N	S
1	79.62	79.50	554.77		~ 20	0.38
10	91.29	91.43	621.74		~ 20	0.38
50	92.98	92.92	1,125.12	12,000	~ 20	0.41
100	87.27	86.83	1,406.01		~19	0.44
1000	89.65	89.74	30,316.88		~17	1.50

The network with 500 decision neurons achieved a CA of 92.98% and average latency of 10.70 ms, and the simulation costs SpiNNaker 0.41 W on power use and 4,920J on energy use.

The work is submitted to the Frontiers in Neuromorphic Engineering under review process.

Future Work: Towards the Robust Object Recognition

- state-of-the-art
 - 2-Layer STDP learned 1 case study
 - Spiking ConvNet (off-line training) future case study
 - Spiking DBN (off-line training) online formalised training
- My exploration on Spiking DBN
 - Restricted Boltzmann Machine (RBM)
 - Deep Belief Net
 - Future work: spiking RBM & DBN

Current work has been written down in a study report.

Questions?