

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 35/74, C12N 1/20, C12P 1/04, A23K 1/00 // (C12P 1/04, C12R 1:01)		A1	(11) International Publication Number: WO 97/06811 (43) International Publication Date: 27 February 1997 (27.02.97)
(21) International Application Number:	PCT/GB96/01936	(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date:	8 August 1996 (08.08.96)		
(30) Priority Data: 9502809-8	11 August 1995 (11.08.95)	SE	
(71) Applicant (for all designated States except US):	EWOS AB [SE/SE]; P.O. Box 431, S-191 04 Solentuna (SE).		Published With international search report.
(72) Inventors; and (75) Inventors/Applicants (for US only):	KJELLEBERG, Staffan [SE/AU]; 22 Goorawali Avenue, La Perouse, NSW 2036 (AU). CONWAY, Patricia [AU/AU]; 22 Goorawali Avenue, La Perouse, NSW 2036 (AU). HAMMOND, Roger [GB/FT]; Hameenkylaantie 15, FIN-02660 Espoo (FI). JOBORN, Anna [SE/SE]; Kapteinsgatan 26A, S-414 58 Goteborg (SE). OLSSON, Christer [SE/SE]; Ulvedalsgatan 105, S-442 43 Kungaly (SE). WESTERDAHL, Allan [SE/SE]; Bockagatan 4, S-511 61 Skene (SE).		
(74) Agent:	MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).		

(54) Title: PROTECTION AGAINST PATHOGENIC MICROORGANISMS

(57) Abstract

The present invention relates to a bacteriostatic and bactericidal *Carnobacterium*. In particular one having the accession number DSM 10087 as deposited with the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH and/or an inhibitory compound produced by said strain.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LA	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LY	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France			UZ	Uzbekistan

WO 97/06811

PCT/GB96/01936

1 Protection Against Pathogenic Microorganisms

2

3 The present invention relates to a nutritionally and
4 prophylactically valuable product to improve the gut
5 microbiological flora in mammals, including man, and in
6 fish, shellfish and mollusces.

7

8 It is recognised that the status of the microbiological
9 flora in the gut of an animal may have a profound
10 effect on the wellbeing of the animal. Poor status of
11 the gut microflora may result in less than optimal
12 utilization of food and poor growth rate, in lower
13 production of the lower quality of products such as
14 milk, eggs, hide and carcass and/or in greater
15 susceptibility of the animal to disease which may be of
16 longer duration or of greater severity when the gut
17 microflora is poor.

18

19 There has therefore been considerable interest in
20 studying the gut microflora of animals, in ways of
21 establishing and maintaining a beneficial microflora
22 and in the mechanisms behind the observed benefits
23 conferred by a gut microflora of the correct status.
24 These investigations have concentrated on humans and on
25 livestock of commercial significance. Thus the farmed

WO 97/06811

PCT/GB96/01936

2

1 species that have been studied most are those such as
2 chickens and pigs, which commonly suffer from
3 intestinal diseases that may be treated or prevented by
4 intervention aimed at improving or modifying the gut
5 microflora. Even in the absence of disease,
6 commercially significant improvements in performance
7 may be achieved by manipulating, or changing, the gut
8 microflora.
9

10 The type of intervention to alter the gut microflora
11 may take several forms. Treatment with antibiotics is
12 often practised to eliminate pathogenic microbes from
13 the gut. This is usually accompanied by a reduction of
14 those naturally resident microbes considered neutral or
15 beneficial. Another form of intervention is to ensure
16 that food contains constituents that promote the growth
17 of beneficial microbes. Yet another form of
18 intervention is to deliberately treat the animals with
19 a live population of beneficial microbes, usually by
20 including such microbes in the food or drinking water.
21

22 Treatment with live microbes is increasingly practised.
23 The objective is to ensure that an adequate microflora
24 of the desired microbes is established in the gut at an
25 early age of the animal or introduce into a potentially
26 disrupted gut ecosystem. The microflora becomes
27 established within the gut by association with the gut
28 mucosa and by colonizing the luminal contents. Some
29 microbes may adhere directly to the mucosal epithelium
30 while others may be resident within the mucus that
31 lines the gut. The interactions between the microbes
32 and the host are complex but some detailed
33 understanding of microbe-microbe interactions and of
34 the surface interactions between gut microbes and
35 mucosal cells is emerging.
36

1 The detailed mode of action of the gut microflora is
2 not well understood, either with respect to the
3 biochemical reactions mediated by the whole population
4 or with respect to the activities of the individual
5 microbes within the population. This is particularly
6 true when considering effects on digestion and uptake
7 of nutrients. There is, however, more information
8 concerning the effects of gut microflora organisms on
9 health aspects. Such organisms have been studied with
10 respect to their activation of dietary, especially
11 xenobiotic, compounds to carcinogens, and
12 detoxification activity by desirable microbes: the
13 potentiation of both non-specific and specific
14 immunological defence mechanisms by desirable microbes:
15 and the antagonism against pathogenic microbes by
16 desirable microbes.

17

18 The effects of gut microbes on enteric pathogens such
19 as *Salmonella*, *Clostridium*, and *E. coli* have been
20 studied. Beneficial microbes can suppress or prevent
21 the colonization of the intestine by pathogens. The
22 mechanisms known or inferred are varied. There may be
23 very specific mechanisms such as the production of a
24 specific antimicrobial substance, such as bacteriocin,
25 by the beneficial microbes(s). There may be a
26 production of broad range antimicrobial such as
27 reuterin active against many bacteria, yeast and fungi.
28 Other chemical inhibitors of pathogens produced by
29 beneficial microbes include organic acids (in
30 particular lactic acid) and hydrogen peroxide.
31 Pathogens may also be selected against by the physical
32 conditions of pH and redox potential controlled by
33 beneficial microbes in the gut. Beneficial microbes may
34 also prevent pathogens from becoming established in the
35 gut by superior competition for nutrients or by
36 occupying sites on the gut mucosa or within the mucus

1 overlying the epithelial cells that would be required
2 by the pathogens for their colonization. A number of
3 these actions are encompassed within the term
4 "competitive exclusion".

5

6 **Background to the present invention**

7

8 In the studies of adjustment of the gut microflora in
9 humans and animals such as chickens, pigs and other
10 effective treatments have been shown to consist of
11 administration of live cultures of microbes which
12 consist of or include bacteria belonging to the group
13 described as "lactic acid bacteria". Such cultures are
14 often termed "probiotic" preparations. The
15 administration method is usually to provide the culture
16 in the food or drinking water although spraying of
17 newly hatched chicks and their surroundings has also
18 been effective. Successful administration may be
19 monitored by assessing the establishment of the
20 supplied microbe(s) in the animal's digestive tract.

21

22 The use of lactic acid bacteria as probiotic microbes
23 stemmed from the early work of Metchnikoff with human
24 infants and this group of bacteria has featured in much
25 of the later work in both humans and animals. It
26 appears that many mammals do have lactic acid bacteria
27 as beneficial microbes in their digestive tract but
28 other microbes, such as *Bacillus*, and yeast and fungi
29 can be effective. In avian species, lactic acid
30 bacteria are also important in probiotics but obligate
31 anaerobic bacteria are also claimed to be necessary for
32 protection against salmonellosis. In other cases a
33 mixed culture of relatively few (less than 10) types of
34 related microbes may be necessary; in yet other cases a
35 complex mixed culture containing many tens (perhaps
36 100) of different types of microbes may be effective.

1 The culture used in this last case may approximately
2 the entire resident beneficial microflora in the gut of
3 the target animal.

4

5 The source of probiotic microbes can be food such as
6 fermented milk products, like yoghurt, in the case that
7 it is desired to established or improve the population
8 of particular lactic acid bacteria in the gut, or
9 deliberately isolated cultures from the intestines of
10 the target animal. In the latter instance, successful
11 probiotic samples have been isolated from faecal
12 samples but the microflora of faeces represents largely
13 the transient microbial population in the gut whereas
14 it is often desired or advantageous to employ a culture
15 that is representative of the resident microbial
16 microflora in the gut in order to ensure that isolation
17 of the potential probiotic strain takes place from the
18 resident microflora, it is necessary to carry out
19 isolations from the alimentary canal directly, often
20 from a location where it is desired to encourage the
21 probiotic strain to reside. Thus scrapings of the
22 internal intestinal mucosa of recently sacrificed,
23 healthy animals may be a source for isolation of
24 suitable organisms for testing as probiotics.

25

26 It is observed that the distribution of the gut
27 microflora in both qualitative and quantitative aspects
28 is not uniform along the length of the alimentary
29 canal. Frequently, the greatest and most varied
30 populations are found in the lower intestine. It is
31 here that the gut microflora probably exerts its major
32 effect on digestion, nutrient uptake and also
33 intestinal colonization by pathogens.

34

35 After a population of the resident gut microflora has
36 been isolated, it may be used as such to inoculate an

WO 97/06811

PCT/GB96/01936

6

1 animal with an inadequate gut microflora or it may be
2 resolved into individual microbial strains for
3 reintroduction as single strains or as simplified mixed
4 populations. In the case that it is desired or
5 necessary to separate a mixed population into its
6 individual microbial strains, the techniques commonly
7 employed in microbiology may be used. In particular
8 separations may be made based upon the morphology of
9 colonies on various solid and liquid media grown with
10 different carbon and energy sources, with different
11 nitrogen sources, under different conditions of gas
12 supply (aerobic and anaerobic), at different pH values
13 and other conditions known to those skilled in the art.

15 If individual microbial stains are to be selected from
16 a mixed population for use as probiotic strains it is
17 necessary to apply some practical criteria for their
18 selection. These criteria are partly dependent on the
19 required attributes of a probiotic strain and include:

- origination from the animal species in question;
- sufficient stability to digestive conditions (acid, bile, enzymes) to allow survival;
- ability to colonize the animal species in question under practical conditions. This may include the ability to adhere to the intestinal cells although effective strains may be able to reside within the intestinal mucus or luminal contents without direct contact with the intestinal mucosal cells;
- antagonism against potential microbial pathogens. This may include the production of general or specific antimicrobial substances by the selected strain.
- safety in use. This includes the demonstration that the selected strain is not itself a pathogen causing a clinical disease.

1 It will be apparent that individual microbial strains
2 isolated from a population originating from resident
3 gut microflora of a healthy animal should meet many of
4 these criteria by definition: including origination
5 from the species in question and sufficient stability
6 and ability to colonize the animal gut. In terms of
7 selective criteria for choosing a probiotic strain, the
8 ability to adhere to intestinal mucosal cells may be
9 applied in the case where it is known that the microbe
10 must adhere to such cells, for example, when the strain
11 is to be applied to new born or newly hatched infants
12 which have a naked, or nearly so, gut mucosa. The
13 inability of a strain to adhere to the gut mucosa, does
14 not, however, indicate that the strain is without
15 utility as a probiotic.

16

17 In the case that one objective of using a probiotic is
18 to combat pathogenesis via the gut, selection based on
19 demonstrated antagonism towards likely or actual
20 pathogens in the gut of the species concerned is
21 indicated. Numerous in vitro methods of showing and
22 quantifying such antagonism are known to those skilled
23 in the art of selecting microbes producing antibiotics
24 and may be applied here, is recognized, however, that
25 antagonism, or the extend of antagonism, may vary
26 depending on the in vitro methods used. It is also
27 recognized that it may be difficult to show in vivo the
28 same antagonism which can be demonstrated in vitro,
29 partly because it is difficult to reproduce exactly the
30 in vivo conditions in the laboratory experiments.
31 However, the effectiveness of the probiotic may be
32 readily demonstrated by subjecting the animal treated
33 with the probiotic strain to challenge with a disease
34 causing microbe.

35

36 Since the gut microflora may harbour pathogenic

WO 97/06811

PCT/GB96/01936

8

1 microbes in the carrier state and hence there are no
2 signs of clinical disease, it is clearly necessary to
3 exclude such pathogens from the selected population of
4 probiotic strains. Suitable tests to establish the
5 non-pathogenicity of a test probiotic strain include
6 deliberate injection into the animal. One route for
7 injection in such tests is into the peritoneal cavity.
8 Observation of lack of disease symptoms and inability
9 to isolate live microbes of the test strain from the
10 target organs indicates lack of pathogenicity.

11

12 It is known that fish harbour bacteria with inhibiting
13 activity against pathogens in their gut microbial
14 flora. Thus Westerdahl, A., et al, Appl Environm.
15 Microbiol. 57:2223-2228 (1991), and Olsson, J. C., et
16 al, Appl Environm. Microbiol. 58:551-5556 (1992)
17 discloses isolation and characterization of turbot
18 associated bacteria with inhibitory effects against
19 Vibrio anguillarum.

20

21 US-A-4,657,762 discloses a composition useful in the
22 treatment of disturbances in the normal intestinal
23 flora of poultry, whereby the composition contains
24 anaerobic bacteria of intestinal origin.

25

26 Austin B., et al, J. Fish Disease. 15:55-61 (1992)
27 discloses inhibition of bacterial fish pathogens by
28 Tesraselmis suecica by administering supernatants and
29 extracts from heterotrophically grown Tesraselmis
30 suecica which inhibit different prawn pathogenic
31 vibrios.

32

33 Robertson, B., et al, J. Fish Diseases 13:291-400 (1990)
34 discusses enhancement of non-specific disease
35 resistance in Atlantic salmon, Salmo salar L., by a
36 glucan from Saccharomyces cerevisiae cell walls when

1 injected intraperitoneally.

2

3 Smith, P., et al, J. Fish Diseases, 16:521-524 (1993)
4 discloses evidence for the competitive exclusion of
5 Aeromonas salmonicida from fish with stress-inducible
6 furunculosis by a fluorescent pseudomonad isolated from
7 gill and gill mucus of brown salmon, Salmo trutta L.,
8 which strain had been isolated for its ability to
9 inhibit Aeromonas salmonicida.

10

11 Douillet, P. A., et al, Aquaculture, 112:25-40 (1994)
12 discloses the use of probiotic for the cultures of
13 larvae of the Pacific oyster (Crassostrea gigas
14 Thunberg) whereby addition of strain CA2 as a food
15 supplement to xenic larval cultures of the oyster
16 Crassostrea gigas enhanced growth of the larvae.

17

18 Description of Present Invention

19

20 It has now surprisingly been shown that a bacterium
21 found within a bacterial population isolated from one
22 Atlantic salmon, Salmo salar, exhibits strong
23 inhibitory effects against bacterial fish pathogens,
24 Vibrio anguillarum, (vibriosis), Vibrio ordalii
25 (vibriosis), Aeromonas salmonicida, (furunculosis), and
26 others. The strain which has been denoted strain K in
27 the following has been provided the accession number
28 DSM 10087 as deposited with the Deutsche Sammlung von
29 Mikroorganismen und Zellkulturen GmbH on 6 July 1995
30 under the Budapest Treaty.

31

32 The strain K, as hitherto isolated from an Atlantic
33 salmon, in accordance with Olsson, J. C., et al, Appl
34 Environm. Microbiol., 58:551-556 (1992) (enclosed herein
35 as a reference) proved to be a motile, Gram-positive
36 pleiomorphic, facultative anaerobic rod. The

WO 97/06811

PCT/GB96/01936

10

1 antibacterial activity of the strain K was analysed and
2 the results suggested that multiple, broad range
3 antibacterial compounds are released in the surrounding
4 medium during the logarithmic phase of growth in TSBS
5 (Tryptic Soya Broth supplemented with Salt, NaCl 2%
6 w/v) medium. The inhibitory compounds were also
7 produced when the strain K was grown in diluted
8 intestinal mucus, which suggests that the strain K
9 bacterium will proliferate and produce the
10 antibacterial substance in the gut. The antibacterial
11 compounds were heat labile, and were initially
12 determined to have a molecular weight of about 140-150
13 dalton by gel filtration. The antibacterial compounds
14 have been found to have an inhibitory activity against
15 both Gram-negative and Gram-positive bacteria, but not
16 against yeast. The antibacterial compounds are
17 bacteriostatic at low concentrations but bactericidal
18 at higher concentrations. The activity is maintained
19 when the compounds are stored in frozen state, but is
20 lost when maintained at 23°C.

21

22 Strain K shows the following phenotypic
23 characterization:

24

25 The major fatty acids are 16:0 (31.1%); 16:1 (24.2%);
26 and 18:1 cis 9 (23.4%). The remaining fatty acids are:
27 18:2 cis 9, 12; 18:0A (10.8%); 14:0 (5.4%) and 18:0
28 (3.5%). Strain K can utilize the following carbon
29 sources: sucrose, maltose, trehalose, mannitol,
30 ribose, B-D-glucopyranoside. It was not able to
31 produce acids from the following carbon sources: cyclo-
32 dextrin, tagotose, D-arabitol, L-arabinose, melezitose,
33 melibiose, pullulan, glycogen, raffinose, lactose, and
34 sorbitol. It did not produce acetoin. It was able to
35 hydrolyse hippurate. Beta-Glucosidase activity was
36 demonstrated. No activity of the following enzymes

WO 97/06811

PCT/GB96/01936

11

1 were detected: urease, betagalactosidase, beta-
2 glucuronidase, alfa-galactosidase, arginin dihydrolase,
3 alanylphenylalanyl-prolin arylamidase, acide
4 pryoglutamique arylamidase, N-acetyl-beta-
5 glycosaminidase.

6
7 Strain K is sensitive to gentamycin, erythromycin,
8 rifampicin, tetracyclin, ampicillin, and kanamycin. It
9 is sensitive to a lesser extent to neomycin and
10 nalidixic acid. Strain K does not harbour any
11 detectable plasmids.

12
13 A 2.3 fold diluted of a cell-free culture supernatant
14 provides a total growth inhibition of Vibrio
15 anguillarum (HT11360). Aeromonas salmonicida (ATCC
16 14174) is more sensitive than the Vibrio anguillarum
17 strain, and a 10 times dilution results in total growth
18 inhibition during a 24 hours test period. Any dilution
19 of the TSBS does not interfere with these results.

20
21 The active compounds loses its activity gradually at
22 4°C and cannot be detected after 8 weeks. When frozen
23 the full activity remains for at least 12 months.

24
25 The activite compound of strain K inhibits a large
26 number of bacteria, whereby no difference is seen
27 between Gram-negative bacteria. All pathogens tested
28 were sensitive, whereby Staphylococcus aureas and
29 Proteus vulgaris CCUG 6327 proved to be the most
30 sensitive and E. Coli Av24 and Pseudomonas aeruginosa
31 the least. Yeast is not inhibited.

32
33 Strain K grows in intestinal mucus. Growth was
34 proceeded by a lag phase of at least 7.5 hours. This
35 is comparable with the length of the lag phase that is
36 exhibited in TSBS by the same strain in the same

1 temperature. Strain K was found to produce substances
2 during growth in mucus that are inhibitory to growth of
3 the fish pathogens Vibrio anguillarum and Aeromonas
4 salmonicida. The inhibitors were detected in the mucus
5 at the onset of the logarithmic growth (7.5 hours). An
6 increase in the inhibitory activity was observed
7 throughout the log phase and into stationary phase.
8 The growth of the pathogens was not inhibited in the
9 control culture with intestinal mucus without strain K.
10 The colonies on the TSBS plates were identified as
11 strain K, a Carnobacterium by biochemical tests. The
12 bacteria in the pinpoint colonies were found to be
13 motile, forming pairs or chains with four cells, Gram
14 positive, catalase and oxidase negative. Inhibition
15 zones were around the colonies when tested against *V.*
16 *anguillarum*.

17
18 The colony forming units (CFU) were found to increase
19 approximately 3 log during 12.5 hours of growth in
20 faeces suspension. No lag phase was seen during growth
21 in faeces suspension. After the culture had reached
22 stationary phase, at 12.5 hours, no further increase of
23 inhibitory activity was detected.

24
25 Production of substances that inhibit the growth of the
26 fish pathogens, V. anguillarum and A. salmonicida, was
27 detected after 7.5 hours. The inhibitory activity
28 increased until 12.5 hours and then remained unchanged.
29 V. anguillarum and A. salmonicida grew in the faeces
30 control. The identity of the strain K colonies was
31 confirmed as described in the previous section.

32
33 Neither strain K, nor its inhibiting compound (-s), is
34 toxic to fish. No fish in any tested group died or
35 showed any external signs of disease during the
36 experiments in which fish were exposed to strain K.

WO 97/06811

PCT/GB96/01936

13

1 Spleens from both infected with strain K and control
2 fish were free from culturable bacteria.
3

4 Media, diluent and culture conditions
5

6 The media and diluent used with Tryptic Soya Broth
7 (TSB, Difco) and TSBS (TSB supplemented with 2% NaCl);
8 TSA (TSB + 15% agar) and TSAS (TSA supplemented with 2%
9 NaCl); TSAS soft agar (TSBS + 5% agar); Marine agar
10 (MA, Difco); Nutrient agar (NA, Difco); Brain heart
11 infusion (BHI, Difco); Rogosa (Difco); TCBS Cholera
12 Medium (Oxoid); Marine Minimal Medium (MMM, Neidhardt
13 et al, (1974)); VFI (peptone 1.0g, yeast extract 0.5 g,
14 glucose 0.5g, starch 0.5g; Salmon intestinal buffer
15 (Hickman (1968)); NaHCO₃ 1.03g, NaCl 1.97g, KCl 0.16g,
16 CaCl₂.2H₂O 2.07g, MgSO₄.7H₂O 21.95g, MgCl₂.6H₂O 10.67g,
17 agar 15g distilled water 1000ml); VNSS agar (peptone
18 1.0g, yeast extract 0.5g, glucose 0.5g, starch 0.5g,
19 FeSO₄.7H₂O 0.01g, Na₂HPO₄ 0.01g, agar 15g in 1000ml NSS);
20 NSS (Nine Salt Solution: NaCl 17.6g, Na₂SO₄ 1.47g, NaHCO₃
21 0.08g, KCl 0.25g, KBr 0.04g, MgCl₂.6H₂O 1.87g, CaCl₂.2H₂O
22 0.41g, SrCl₂.6H₂O 0.008g, H₃BO₃ 0.008g in 1000 ml double
23 distilled water). Horse-blood agar (HBA, TSA
24 supplemented with 5% horse blood.
25

26 Bioassay for the detection of inhibitory effect
27

28 i) Double-layer agar method.
29

30 The plates were screened for inhibition by a
31 modified double-layer agar method described by
32 McLeod and Govnlock (1921). Macrocolonies of the
33 inhibitory bacteria were obtained by spot seeding
34 on agar plates (10 µl of a liquid culture in log
35 phase) and incubating the plates for 18 hours at
36 23°C. The macro-colonies were treated with

1 chloroform vapour for 30 min. The pathogen (100 μ l
2 of a 10 x diluted liquid culture) was then seeded
3 into a tube of melted (temperature to 45°C) TSAS
4 soft agar (3ml) mixed and then poured onto the top
5 of the plates. After incubation for 18 hours the
6 zones of growth inhibition created by the
7 producing colonies were measured as the distance
8 between the edge of the macro colony and the edge
9 of the clearing zone.

10

11 iii) Liquid bioassay in microtitre wells

12

13 The inhibitory effect was determined as changes in
14 the optical density (OD₆₁₀), using microtitre
15 spectrophotometer (Bio Tech. Biokinetics). The
16 inhibition assay was performed in microtitre wells
17 (Nunc, 96 wells). The inhibitory bacterium was
18 grown in TSBS at 23°C. The cells were removed by
19 centrifugation and the supernatant was filter
20 sterilized (MFS-25 cellulose acetate filter units,
21 0.2 μ m). The cell free supernatant (150 μ l) was
22 transferred to a microtitre well and an equal
23 volume of fresh TSBS (150 μ l) was added.
24 Thereafter the target microorganism (3 μ l from a
25 logphase culture) was inoculated in the well and
26 the growth was monitored by measuring the optical
27 density at 610 nm for 24 hours. As a control a
28 dilution series with 2% NaCl solution and TSBS was
29 made to relate growth of the pathogen with the
30 amount of medium added. To control for any auto-
31 inhibition by the pathogen, cell-free culture
32 supernatant (from a culture of the pathogens) was
33 treated in the same way as the supernatant derived
34 from the inhibitory strain.

WO 97/06811

PCT/GB96/01936

15

1 Table 1

2

3 The double-layer agar method was used to test growth
4 inhibition of a wide range of bacteria, as well as
5 salmon related yeasts by macro-colonies of isolated
6 strain K.

7

8	Organism	GRAM	Inhibition
9		±/-	Zone
10	Strain K	+	-
11	Vibrio anguillarum HTI 1360	+	+++
12	V. anguillarum 2129	+	+++
13	V. anguillarum	+	+++
14	V. ordalii NCMB 2127	+	++++
15	V. fisheri	+	++++
16	Photobacterium angustum S14	-	++++
17	Aeromonas salmonicida ATCC 14174		++++
18	A. hydrophila		+++
19	A. hydrophila NCTC 8049		++++
20	Escherichia coli B CCUG 214		+++
21	E. coli Av24	+	
22	Vibrio sp. 4:44		+++
23	Salmon isolate		+++
24	Vibrio sp. D2		+++++
25	Pseudomonas aeruginosa	+	
26	Staphylococcus aureus	+	+++++
27	Serratia marcescens CCUG 760	-	+++
28	Micrococcus luteus	+	++++
29	Proteus vulgaris CCUG 6327	-	+++++
30	Klebsiella oxytoca CCUG 383	-	+++
31	Bacillus majeaterium CCUG 1817	+	++++
32	B. subtilis CCUG 163B	+	++
33	Acinetobacter calcoaceticus CCUG 12864	-	++++
34	Streptomyces griseus CCUG 760		++++
35	Citrobacter freundii CCUG 418	-	++++

WO 97/06811

PCT/GB96/01936

16

1 Marine yeast Sc18 (unidentified fish
2 isolate) -
3 Marine yeast Sc3 *Saccharomyces cerevisiae*
4 CBS 7765 -
5 *Debaryomyces hansenii* HFI -
6 *S. cerevisiae* CBS 7764 -
7 -----
8 Inhibition zone radius (mm): 0 (-); 1-5 (+); 6-10 (++)
9 11-15 (+++); 16-20 (+++); >20 (++++)

10
11 Table 2
12

13 Phenotype of strain K

14

15	<u>Property</u>	<u>Strain K</u>
16		
17	Single rod	+, two polar flagella
18	Pleomorphic	+
19	Motility	+
20	Flagellation	dipolar
21	Spores	-
22	Gram reaction	+
23	Colony diameter	<1 mm
24	Colony appearance on TSA	Circular; entire; semitranslucent; raised
25		
26	Pigmentation	Buff
27	Odour	-
28	Anaerobic growth	+
29	Temperature for growth	4-30°C
30	pH for growth	5.5 to 9
31	pH change during growth	7.2 to 6.8
32	Salinity for growth (NaCl)	0 to 6%
33	Catalase	-
34	Oxidase	-
35	Haemolysis	alfa
36	Urease	-

WO 97/06811

PCT/GB96/01936

17

1 Hydrogentsulphide production -
2 Fermentative in Leifson weak acid, no gas
3
4 Strain K is thereby identified as a Carnobacterium and
5 was primarily characterized as Carnobacterium
6 alterfunditum. However, further investigations of 16S
7 rRNA demonstrates that Carnobacterium alterfunditum is
8 the closest related organism with a homology of 98.7%.
9 However, according to previous publications (Collins et
10 al, 1987) this would justify describing the isolate as
11 a new species of the genus. Thus the strain K is a new
12 strain, whereby it will be named more specifically
13 later on.

14
15 The inhibitory compound(s) was partly purified by first
16 removing the bacteria cells from a TSBS culture by
17 centrifugation in the early stationary growth phase
18 (13000 x g for 10 min). The sample was then kept at
19 4 °C during the subsequent purification steps. The
20 cell-free culture supernatant was fractionated by
21 passing it through a 500 dalton cut-off filter (Amicon,
22 Difaflo YCO5). Further purification was performed by
23 gelfiltration using a G10 Sephadex (Pharmacia, Sweden)
24 in a XK26/40 column. PBS (2mM) was used as a effluent
25 buffer. The ultra-filtrated supernatant was applied to
26 the column and eluted at a flow rate of 44 ml/h.
27 Fractions (2.9 ml) were collected and examined for
28 antimicrobial activity by the liquid bioassay described
29 above. The apparent size of the inhibiting compound(-
30 s) was determined using a standard curve including NADH
31 (709 D), N-formyl-Met-Leu-Phe-Phe (584.7 D, Sigma),
32 Tyr-Gly-Gly (295.3 D, Sigma), L-tryptophan (204.23 D)
33 and tyrosine (181.19 D) as markers. Blue dextran was
34 used to determine the void volume of the column.
35
36 The inhibitor was extracted using ethyl acetate at pH

WO 97/06811

PCT/GB96/01936

18

1 2.5 and subsequently purified on TLC using silica gel.
2 The inhibitors are stable for at least 24 hours at a pH
3 of 2 to 11.

4

5 The partly purified inhibitory compound(-s) was
6 subjected to heat treatment, various enzyme treatments,
7 metaperiodate treatment, stability tested, and culture
8 media dependency.

9

10 The action of the inhibiting compound(-s) was
11 determined as follows. *Aeromonas salmonicida* from a
12 culture in log phase was inoculated into fresh TSBS to
13 a density of about 1×10^6 cells/ml. The culture was
14 incubated for 30 min prior to starting the experiment.
15 To 100 ml culture flasks, 10 ml of the *Aeromonas*
16 *salmonicida* culture and a mixture (10 ml final volume)
17 of the partly purified inhibitor supernatant, and NSS
18 (pH 7.2) was transferred such that a series of
19 concentrations of the inhibitor was obtained. The
20 cultures were slowly shaken at 23°C and samples in
21 triplicate were taken to determine the number of colony
22 forming units (CFU) during at time period of 26 hours.
23

24 A 4 fold dilution of the cell-free supernatant resulted
25 in total growth inhibition of *Vibrio anguillarum*
26 (H111360). *Aeromonas salmonicida* (ATCC 14174) was
27 found to be more sensitive than the *Vibrio anguillarum*
28 strain and a 10 fold dilution still resulted in a total
29 growth inhibition during the 24 hours test period. The
30 dilution of TSBS did not interfere with the results.
31

32 The action of the inhibitory compound(-s) against
33 *Aeromonas salmonicida* using different dilutions is
34 shown in the Table 3 below.

WO 97/06811

PCT/GB96/01936

19

Table 3

Dilution CFU.ml after

	0	1	2	3	4	5	6	7	8	9	10	11	hrs
2 fold	6.4	1.0	0.2	0.2	0.1	0.05	0.0	0.0	0.				x10 ⁵
						5	5	0					
4 fold	6.4	4.4	2.0	1.0	0.8	0.2	0.1	0.0					x10 ⁵
6 fold	6.4	5.4	3.0	1.9	1.4	1.0	0.8	0.2	0.	0.0	0.		x10 ⁵
								1	5	0			

1 The action of the inhibitory compound(-s) against
2 *Vibrio anguillarum* as determined as the growth of
3 strain K in TSBS at 23°C as and expressed as the
4 increase in optical density at 610 nm over time will be
5 given below. Further the minimal dilution of free cell
6 culture supernatant causing total inhibition of *Vibrio*
7 *anguillarum*. The results are combined in Table 4 below.

Table 4

Incubation Time (hrs)	Increase in Optical density at 610 nm	Minimal dilution arbitrary units
5.5	0.025	30
6	0.05	
6.5	0.08	50
7	0.12	
7.5	0.15	70
8	0.18	
8.5	0.21	80
9	0.23	
9.5	0.25	80
10	0.25	
10.5	0.25	80
16	0.25	80

1 The present strain K the other strains capable of
2 producing the active compound or chemically related
3 compounds or the active compound derived therefrom and
4 chemically related compounds and derivatives thereof
5 can, in particular, be used in the prophylactic or
6 therapeutic treatment of fish infected by fish
7 pathogens, whereby an amount of the strain K that
8 provides an inoculum allowing the colonization of the
9 fish intestine by the strain K or an amount of the
10 strain K that provides an active amount of the
11 inhibiting compound, is administered to the fish, or an
12 active amount of the inhibiting compound as such is
13 administered to the fish for prophylactic and/or
14 therapeutic treatment of fish susceptible to fish
15 pathogens. Hereto all types of fish are encompassed,

1 to which strain K is not pathogenic, harmful or
2 deleterious, but in particular salmonids, turbot,
3 yellow tail, seabass/seabream and other types of farmed
4 fish and other aquaculture species, such as shellfish
5 (prawns and shrimps) and mollusces.

6

7 It might be so that strain K is pathogenic, harmful or
8 otherwise deleterious as such in some of the organism
9 to which it is administered although this is not
10 foreseen. However, the active compound(-s) therefrom
11 might each be so, but can be administered instead for
12 obtaining a bacteriostatic or bactericidal effect.

13

14 The strain K or active inhibiting compound derived
15 therefrom can be administered orally as such or via the
16 feed, which is the best mode, bathing of young or older
17 fish, single inoculation of young or older fish to
18 establish the strain K in the gut, or repeated
19 inoculation of young or older fish. When the active
20 compound as such is administered together with the
21 feed, one has to consider the lability of the compound,
22 if it is to be incorporated into the feed before the
23 hydrothermal forming of pellets. A suitable means to
24 avoid thermal destruction of the active compounds is to
25 add them to the feed pellets after their information
26 and cooling.

27

28 The strain K or its active inhibitory compound(-s) can
29 be administered in different ways such as via food,
30 feed-stuff including drinking water, as a composition
31 as such containing the strain. Further it can be added
32 via spraying the animals, including fishes, by
33 immersion of the animals, in particular when fish is
34 concerned, by injection into the gut, or via
35 inhalation.

1 Claims

2

3 1. Use of a probiotic for treating mammals, including
4 man, fish, shellfish and molluscs, comprising at
5 least one microbial strain isolated from the
6 resident gut microflora of healthy fish and
7 selected by methods known per se to be capable of
8 establishing itself at an effective level in the
9 intestine of the animal treated, whereby the
10 strain is a bacteriostatic and bactericidal
11 Carnobacterium.

12

13 2. The use as in Claim 1 of a Carnobacterium having
14 the accession number DSM 10087 as deposited with
15 the Deutsche Sammlung von Mikroorganismen und
16 Zellkulturen GmbH.

17

18 3. The use of said strain of claims 1-2 for the
19 prophylactic treatment of mammals, including man,
20 fish and other aquatic animals.

21

22 4. The use of said strain of Claims 1-2 for the
23 therapeutic treatment of mammals, including man,
24 fish and other aquatic animals.

25

26 5. The use of the probiotic of Claims 1 to 4, whereby
27 said strain is administered by immersion of the
28 subject in a liquid container said probiotic.

29

30 6. The use of the probiotic of Claims 1 to 4, whereby
31 said strain is administered via the food/feed
32 including drinking water, supplied to the subject.

33

34 7. The use of the probiotic of Claims 1 to 4, whereby
35 said strain is administered via spraying onto the
36 subject.

WO 97/06811

PCT/GB96/01936

23

- 1 8. The use of the probiotic of Claims 1 to 4, whereby
2 the said stain is administered via injection into
3 the subject.
- 4
- 5 9. The use of the probiotic of Claims 1 to 4, whereby
6 the said strain is administered via inhalation
7 into the subject.
- 8
- 9 10. The use according to Claims 2 to 9, whereby said
10 strain is used in the treatment of infections
11 caused by Gram-positive and/or Gram-negative
12 bacteria, such as *Vibrio anguillarum*, *Vibrio*
13 *ordalii*, *Vibrio fischeri*, *Aeromonas salmoncida*,
14 *Photobacterium angustum*, *Aeromonas hydrophila*,
15 *Staphylococcus aureus*, *Bacillus megaterium*,
16 *Acinetobacter calcoaceticus*, *Serratia marcescens*,
17 *Micrococcus luteus*, *Proteus vulgaris*.
- 18
- 19 11. A microbe inhibiting active compound derived from
20 strain of Claim 1.
- 21
- 22 12. The use of a microbe inhibiting active compound of
23 Claim 11 in the prophylactic treatment of mammals,
24 including man, fish, shellfish and molluscs.
- 25
- 26 13. The use of a microbe inhibiting active compound of
27 Claim 11 in the therapeutic treatment of mammals,
28 including man, fish and molluscs.
- 29
- 30 14. The use of a microbe inhibiting compound of Claim
31 12 or 13 for inhibiting the growth of Gram-
32 positive and/or Gram-negative bacteria, such as
33 *Vibrio anguillarum*, *Vibrio ordalii*, *Vibrio*
34 *fischeri*, *Aeromonas salmoncida*, *Photobacterium*
35 *angustum*, *Aeromonas hydrophila*, *Staphylococcus*
36 *aureus*, *Bacillus megaterium*, *Acinetobacter*

WO 97/06811

PCT/GB96/01936

24

1 *calcoaceticus*, *Serratia marcescens*, *Micrococcus*
2 *luteus*, *Proteus vulgaris*.

3

4 15. A probiotic for treating mammals, including man,
5 fish, shellfish and molluscs comprising at least
6 one microbial strain isolated from the resident
7 gut microflora of healthy fish and selected by
8 methods known per se to be capable of establishing
9 itself at an effective level in the intestine of
10 the animal treated, whereby the strain is a
11 bacteriostatic and bactericidal *Carnobacterium*.
12

13 16. A probiotic according to Claim 15, wherein the
14 strain is a *Carnobacterium* having the accession
15 number DSM 10087 as deposited with the Deutsche
16 Sammlung von Mikroorganismen und Zellkulturen GmbH
17 in combination with other microbes isolated from a
18 gut microflora of a healthy subject.
19

20 17. The use of a bacteriostatic and bactericidal
21 compound expressed by said strain for the
22 treatment of mammals, including man, fish,
23 shellfish and molluscs in combination with other
24 microbes isolated from a gut microflora of a
25 healthy subject.

INTERNATIONAL SEARCH REPORT

Int. Appl. No.
PCT/GB 96/01936

IPC 6 A61K35/74 C12N1/20 C12P1/04 A23K1/00 // (C12P1/04, C12R1:01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A61K C12N- C12P A23K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>AQUATIC LIVING RESOURCES, vol. 7, no. 4, 1994, FRANCE, pages 277-282, XP000609995 F.-J. GATESOUPÉ: "LACTIC ACID BACTERIA INCREASE THE RESISTANCE OF TURBOT LARVAE, SCOPHTHALMUS MAXIMUS, AGAINST PATHOGENIC VIBRIO." See page 281</p> <p>---</p> <p>-/-</p>	1-10,15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on or promote claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

20 November 1996

Date of mailing of the international search report

06.12.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentstaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Authorized officer

Ryckebosch, A

INTERNATIONAL SEARCH REPORT

Inter	Final Application No
PCT/GB 96/01936	

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>APPLIED ENVIRONMENTAL MICROBIOLOGY, vol. 58, no. 2, February 1992, WASHINGTON, D.C., US, pages 551-556, XP000611262</p> <p>J.C. OLSSON ET AL.: "INTESTINAL COLONIZATION POTENTIAL OF TURBOT (SCOPHTHALMUS MAXIMUS)- AND DAB (LINANDA LINANDA)- ASSOCIATED BACTERIA WITH INHIBITORY EFFECTS AGAINST VIBRIO ANGUILLARUM."</p> <p>cited in the application</p> <p>see the whole document</p> <p>---</p>	1-10, 15
A	<p>CHEMICAL ABSTRACTS, vol. 115, no. 25, 23 December 1991 Columbus, Ohio, US; - abstract no. 275401v,</p> <p>A.M. BAYA ET AL.: "BIOCHEMICAL AND SEROLOGICAL CHARACTERIZATION OF CARNOBACTERIUM SPP. ISOLATED FROM FARMED AND NATURAL POPULATIONS OF STRIPED BASS AND CATFISH."</p> <p>page 557; column R;</p> <p>XP002018973</p> <p>see abstract</p> <p>& APPL. ENVIRON. MICROBIOL., vol. 57, no. 11, 1991, pages 3114-3120,</p> <p>---</p>	2, 16
A	<p>CHEMICAL ABSTRACTS, vol. 115, no. 19, 11 November 1991 Columbus, Ohio, US; abstract no. 202927m,</p> <p>P.D. FRANZMANN ET AL.: "PSYCHROTROPHIC, LACTIC ACID-PRODUCING BACTERIA FROM ANOXIC WATERS IN ACE LAKE, ANTARCTICA; CARNOBACTERIUM FUNDITUM SP. NOV. AND CARNOBACTERIUM ALTERFUNDITUM SP. NOV."</p> <p>page 542; column L;</p> <p>XP002018974</p> <p>see abstract</p> <p>& ARCH. MICROBIOL., vol. 156, no. 4, 1991, pages 255-262,</p> <p>---</p>	2, 16

-/-

INTERNATIONAL SEARCH REPORT

Intern'l Application No.
PCT, GB 96/01936

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CHEMICAL ABSTRACTS, vol. 117, no. 7, 17 August 1992 Columbus, Ohio, US; abstract no. 66155v, G. STOFFELS ET AL.: "PURIFICATION AND CHARACTERIZATION OF A NEW BACTERIOCIN ISOLATED FROM A CARNOBACTERIUM SP." page 429; column R; XP002018975 see abstract & APPL. ENVIRONM. MICROBIOL., vol. 58, no. 5, 1992, pages 1417-1422, -----	11

INTERNATIONAL SEARCH REPORT

International application No.
PCT/GB 96/01936

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

- Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claim(s) 1-10, 12-14, 17 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
- Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
- Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
- As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
- As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
- No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.