(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 April 2002 (25.04.2002)

PCT

(10) International Publication Number WO 02/33046 A2

(51) International Patent Classification7:

C12N

- (21) International Application Number: PCT/US01/49451
- (22) International Filing Date: 22 October 2001 (22.10.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/242,379

20 October 2000 (20.10.2000) U

- (71) Applicant (for all designated States except US): UNIVER-SITY OF MASSACHUSETTS [US/US]; 1 Beacon Street, 26th Floor, Boston, MA 02108 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CZECH, Michael,P. [US/US]; 75 Ruggles Street, Westborough, MA 01581

(US). CHERNIACK, Andrew, D. [US/US]; 22 Wigwam Hill Drive, Worcester, MA 01605 (US). GUILHERME, Adilson, L. [BR/US]; 46 Shrewsbury Green Drive, Apartment B, Shrewsbury, MA 01545 (US).

- (74) Agent: FASSE, Peter, J.; Fish & Richardson P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

[Continued on next page]

(54) Title: GLUCOSE TRANSPORT-RELATED GENES AND USES THEREOF

Novel Sequences from Clones in the Muscle-Adipocyte Union Library

Line number 259

>c0148

CCCCAACCTGCTCCATTGCTTGGGGGAGCGGTCCATGAGCGCTTGTCTCATCCCT GGCCTCCCGGGAAAGTCTATGCAAAAGCTAAGGTTAACA (SEQ 1D NO:1)

Line number 258

>c0827

TCACAGAGGCTCTGAGGCTACCACGAAGATGAACTCTCAGAAATGGGATTGTCA CCCTCGATGAGTTTCCAGTTCCCTCTCTGTTGTATGATGACACAAGAAGGTGAAG TGTTGCCTCTCTACAACTGGAAGAGGGAGA (SEQ 1D NO:2)

Line number 260

>c1083

(57) Abstract: Nucleotide sequences and amino acid sequences from nucleic acids and proteins involved in glucose transport are disclosed. The sequences are useful for producing DNA arrays that can be used for the diagnosis of, predictive testing for, and development of treatments for disorders involving glucose transport such as type II diabetes.

WO 02/33046 A2

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

GLUCOSE TRANSPORT-RELATED GENES AND USES THEREOF

5

TECHNICAL FIELD

This invention relates to molecular biology, cell biology, glucose transport, medicine, and type II diabetes.

10

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

Work on this invention was supported in part with funds from the Federal government. The government therefore has certain rights in the invention.

BACKGROUND

15

Insulin stimulates glucose transport in muscle and fat. One of the most critical pathways that insulin activates is the rapid uptake of glucose from the circulation in both muscle and adipose tissue. Most of insulin's effect on glucose uptake in these tissues is dependent on the insulin-sensitive glucose transporter. GLUT4 (reviewed in Czech and Corvera, 1999, J. Biol. Chem. 274:1865-1868, Martin et al., 1999, Cell Biochem. Biophys. 30:89-113, Elmendorf et al., 1999 Exp. Cell Res. 253:55-62). The mechanism of insulin action is impaired in diabetes, leading to less glucose transport into muscle and fat. This is thought to be a primary defect in type II diabetes. Potentiating insulin action has a beneficial effect on type II diabetes. This is believed to be the mechanism of action of the drug Rezulin (troglitazone).

25

1

20

Type II diabetes mellitus (non-insufin-dependent diabetes) is a group of disorders, characterized by hyperglycemia that can involve an impaired insufin secretory response to glucose and insufin resistance. One effect observed in type II diabetes is a decreased effectiveness of insulin in stimulating glucose uptake by skeletal muscle. Type II diabetes

accounts for about 85-90% of all diabetes cases. In some cases of type II diabetes the underlying physiological defect appears to be multifactoral.

SUMMARY

The invention is based on the discovery of hundreds of genes that are preferentially expressed in cell types in which glucose transport is affected in type II diabetes, i.e., skeletal muscle and adipose tissue, as well as certain proteins expressed in glucose-transporting vesicles. Accordingly, the invention features methods of identifying a gene whose expression is altered in a glucose transport-related disease or disorder such as type II diabetes.

10

15

20

25

5

The invention includes a method of identifying a gene whose expression is altered in a glucose transport-related disorder. The method includes the steps of providing a nucleic acid array having 4 or more nucleic acids immobilized on a solid support, each nucleic acid having a sequence of 10 or more consecutive nucleotides within any one of the sequences listed in Figs. 1, 2A-2R, 3A-3E, 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G or a complement thereof; providing a reference nucleic acid sample prepared from a tissue of a normal, control mammal; contacting the array with the reference sample; detecting hybridization of the reference sample with nucleic acids in the array, to obtain a reference pattern of glucose transport-related gene expression; providing a test nucleic acid prepared from a tissue of a mammal having a glucose transport-related disorder; contacting the array with the test sample; detecting hybridization of the test nucleic acid with nucleic acids in the array, to obtain a test pattern of glucose transport-related gene expression; and comparing the reference pattern with the test pattern to detect a gene whose expression is altered in the test pattern relative to its expression in the reference pattern. Figs. 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G provide GenBank accession numbers. By accessing the sites indicated by the accession numbers, one in the art can obtain the nucleotide sequence and polypeptide sequence for the listed gene. In some embodiments, the array has 10 or more nucleic acids. In other embodiments, the array has 100 or more nucleic acids. In yet other embodiments, the array has not more than 100 nucleic acids, or not more than 300 nucleic acids. In certain embodiments of the invention, the sequence is 30 or more nucleotides in

length. The reference nucleic acid and the test nucleic acid can be cDNAs, that are, in some embodiments, fluorescently labeled.

The invention includes a nucleic acid array having 4 or more nucleic acids immobilized on a solid support, each nucleic acid having a sequence of 10 or more consecutive nucleotides within any one of sequences listed in Figs. 1, 2A-2R, 3A-3E, 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G. In some embodiments, the array has 100 or more nucleic acids. In other embodiments, the array has not more than 100 nucleic acids, not more than 200 nucleic acids, or not more than 300 nucleic acids.

5

10

15

20

25

30

One aspect of the invention is an isolated nucleic acid molecule having a nucleotide sequence from any one of SEQ ID NOS:1-3, or a complement thereof. In some embodiments of the invention, the isolated nucleic acid sequence has a non-nucleic acid modifying group bound to either a 3' or 5' end of the nucleotide sequence or both; or a synthetic nucleic acid sequence bound to a 3' or 5' end of the nucleic acid sequence or both.

The invention also includes an isolated polypeptide having an amino acid sequence encoded by a nucleic acid sequence from any one of SEQ ID NOS:1-3.

Another embodiment of the invention is an isolated nucleic acid molecule having a nucleic acid sequence from any one of SEQ ID NOS:4-93, or a complement thereof. In certain embodiments, the nucleotide sequence has a non-nucleic acid modifying group bound to either a 3' or 5' end of the nucleotide sequence or both; or a synthetic nucleic acid sequence bound to a 3' or 5' end of the nucleic acid sequence or both. The invention includes an isolated nucleic acid molecule having a nucleic acid sequence selected from SEQ ID NOS:4-93, or a complement thereof. The invention also includes an isolated polypeptide having an amino acid sequence encoded by a nucleic acid sequence selected from any one of SEQ ID NOS:4-93.

In one aspect, the invention is method for identifying a candidate agent, that modulates the expression or activity of a glucose transport-related polypeptide. The method includes the steps of providing a sample containing a glucose transport-related polypeptide; adding a test agent to the sample; assaying the sample for expression or activity of the glucose transport-related polypeptide; and comparing the effect of the test agent on expression or activity of the glucose transport-related polypeptide relative to a control. A change in glucose transport-related polypeptide expression or activity indicates that the test

agent is a candidate agent that can modulate expression or activity of the glucose transport-related polypeptide. In some aspects of the method the test agent is a polynucleotide, a polypeptide, a small non-nucleic acid organic molecule, a small inorganic molecule, an antibody, an antisense oligonucleotide, or a ribozyme. In yet another embodiment, the glucose transport-related polypeptide is assayed using an antibody. In some embodiments of the invention, the glucose transport-related polypeptide is a human glucose transport-related polypeptide. The method can include the additional step of determining whether glucose transport is modulated in the presence of the test agent. The test agent can decrease or increase glucose transport. The assay can be a cell based assay or a cell-free assay. In certain embodiments of the invention, the glucose transport-related polypeptide is selected from the group of polypeptides encoded by sequences having the nucleic acid sequences listed in Figs. 1, 2A-2R, and 3A-3E, and the polypeptides listed in Figs. 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G 6-9.

5

10

15

20

25

30

Modulation of expression (nucleic acid or polypeptide) or activity can be an increase or a decrease in expression or activity compared to a reference. The amount of modulation is generally at least two fold (i.e., a two fold increase or decrease in expression or activity) compared to a reference or a control sample. For example, the amount of modulation can be five fold, ten fold, fifty fold, 100 fold, or more.

The invention includes a method for identifying a candidate agent that modulates expression of a glucose transport-related polynucleotide. The method includes the steps of providing a sample in which a glucose transport-related polynucleotide is expressed; adding a test agent to the sample; detecting expression of the glucose transport-related polynucleotide; and comparing the amount of expression of the glucose transport-related polynucleotide; and comparing the effect of the test agent on the amount of expression of the glucose transport-related polynucleotide in the sample relative to a control, such that a change in the amount of expression from the glucose transport-related polynucleotide indicates the test agent is a candidate agent that can modulate expression of the glucose transport-related polynucleotide. The test agent can be a polynucleotide, a polypeptide, a small non-nucleic acid organic molecule, a small inorganic molecule, an antibody, an antisense oligonucleotide or a ribozyme. In some embodiments, the glucose transport-related polynucleotide is a human glucose transport-related polynucleotide. In another aspect of the invention, the method

includes the step of determining whether glucose transport is modulated (e.g., increased or decreased) in the presence of the test agent. In some embodiments, the glucose transport-related polynucleotide is selected from the group of sequences listed in Figs. 1, 2A-2R, and 3A-3E-3 or a complement thereof, and listed in Figs. 6A-6E, 7A-7U, 8A-81, 9, 13A-13C, and 14A-14G, or a complement thereof. The assay used in the method can be cell-based assay or a cell-free assay.

5

10

15

20

25

30

The invention includes a method of diagnosing an individual having or at risk for a glucose transport-related disorder. The method includes the steps of providing a nucleic acid array having 4 or more nucleic acids immobilized on a solid support, each nucleic acid having a sequence of 10 or more nucleotides, the sequence having or containing a sequence selected from the group of the sequences listed in Figs. 1, 2A-2R, and 3A-3E, or a complement thereof, and the sequences of the genes listed in Figs. Figs. 6A-6E, 7A-7U, 8A-81, 9, 13A-13C, and 14A-14G, or a complement thereof; providing a nucleic acid sample from the individual; contacting the array with the sample from the individual; detecting hybridization of nucleic acid in the sample from the individual with each nucleic acid in the array, to obtain a pattern of glucose transport-related gene expression; comparing the pattern of glucose transport-related gene expression in sample from the individual with a reference pattern, such that a comparison of the pattern of expression in the individual compared to the reference pattern indicates whether the individual has or is at risk for a glucose transportrelated disorder. In some aspects of the invention, the array has 10 or more nucleic acids; or 100 or more nucleic acids. In other aspects of the invention, the array has not more than 100 nucleic acids; not more than 200 nucleic acids, or not more than 300 nucleic acids. In some embodiments, the sequence has 30 or more nucleotides. The sample from the individual can be a cDNA sample, and the cDNA sample can be fluorescently labeled. In some embodiments, the disorder is type II diabetes.

The invention also includes a nucleic acid array having 4 or more nucleic acids immobilized on a solid support, each nucleic acid comprising a sequence of 10 or more nucleotides, the sequence consisting of at least a portion of a sequence selected from the sequences listed in Figs. 1, 2A-2R, and 3A-3E, or a complement thereof, Figs. 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G, or a complement thereof.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the detailed description, and from the claims.

10

15

20

25

30

5

DESCRIPTION OF DRAWINGS

Fig. 1 is a depiction of nucleic acid sequences identified in the Muscle Adipocyte Union library; c0148 (SEQ ID NO:1), c0827 (SEQ ID NO:2), and c1083 (SEQ ID NO:3).

Figs. 2A-2R are a series of sequences identified in the Muscle-Adipocyte Union Library (MAU library) that contain previously unidentified sequences and ESTs.

Figs. 3A-3E are series of sequences identified in the Adipocyte Subtractive (subtractive) library that contain previously unidentified sequences and ESTs.

Fig. 4 is a diagram showing a suppression subtractive hybridization protocol.

Fig. 5 is a diagram showing a protocol for constructing the Muscle-Adipocyte Union library.

Figs. 6A-6E are a table showing genes expressed in the Adipocyte Subtractive Library.

Figs. 7A-7U are a table showing genes expressed in the Muscle-Adipocyte Union Library.

Figs. 8A-8I are a table showing the proteins identified in peaks 1 and 2 of GLUT4-associated vesicles.

Fig. 9 is a table listing those proteins/genes that are present in one or both of the subtractive and Muscle-Adipocyte-Union libraries and were also identified as proteins purified from Glut4 vesicles. "Yes" indicates that a peptide(s) corresponding to the protein was present in a preparation. "?" indicates that the protein has not yet been identified in this preparation but its presence has not been excluded.

Figs. 10A-10D are a series of hydrophobicity plots of the c0582 sequence.

Figs. 11A-11D are a series of hydrophobicity plots of the c0139 sequence.

Figs. 12A-12D are a series of hydrophobicity plots of the b0175 sequence.

Figs. 13A-13C are a table listing genes whose expression was not detected in fibroblasts, and was detected in adipocyte or muscle using GeneChips. Columns marked f1 and f2 are data from the fibroblast replicate chips, columns marked a1 and a2 are data from the adipocyte replicate chips, and the columns marked m1 and m2 are data from the muscle replicate chips. A indicates that the gene is absent in a tissue. P indicates that the gene is present in a tissue. An M indicates marginal signal and the software cannot determine if the gene is absent or present.

Figs. 14A-14G are tables listing genes whose expression was determined to be the same on all fibroblast chips, and increased on both adipocyte or muscle GeneChips compared to a fibroblast chip. The columns marked f1, f2, and f3 are fibroblast replicate chips. The columns marked a1, a2, and a3 are adipocyte replicate chips, and the columns marked m1, m2, and m3 are the muscle replicate chips. NC indicates no change of expression. M1 indicates that there was a moderate increase in expression. An I indicates an increase in expression. The function classes of the genes listed in the last column are as follows: Class I genes encode metabolic proteins; Class 2 genes encode signaling proteins.

Figs. 15A-15B are a table listing highly expressed genes common between the Muscle-Adipocyte Union library and the Mu-74 GeneChips Arrays.

DETAILED DESCRIPTION

Library of Glucose Transport-Related Sequences

5

10

15

20

25

30

Suppressive subtraction hybridization has been applied to create libraries (databases) of glucose transport-related nucleotide sequences. The Muscle-Adipocyte Union library contains about 230 glucose transport-related nucleotide sequences and was made by identifying nucleotide sequences selectively expressed in fat and muscle tissue, but not in fibroblasts. Sequences from the subtractive library or the MAU library can be used in the invention. Generally, the sequences are from the MAU library. Unless indicated otherwise below, the library referred to is the MAU library. The sequences in the library represent glucose transport-related genes that are candidates for involvement in insulin-related action,

and thus potential drug targets for glucose transport-related disorders. Glucose transport-related disorders include diseases such as type II diabetes, obesity, certain types of cardiovascular disease, and Syndrome X.

5

10

15

20

25

30

The library can be used to construct DNA arrays for identifying glucose transport-related genes whose expression is altered (increased or decreased) in diseases or disorders characterized by insulin resistance, e.g., type II diabetes, or defects in glucose transport. The library advantageously enables gene expression pattern comparisons that involve tens or hundreds of genes most likely to be involved in insulin resistance and type II diabetes, instead of comparisons that involve tens of thousands or hundreds of thousands of genes. This focus on a relatively small library advantageously simplifies data analysis and improves the signal-to-noise ratio. In addition to being useful for identifying individual glucose transport-related genes. DNA arrays of the invention can be used to identify gene expression patterns indicative of particular forms of type II diabetes or a predisposition (i.e., at risk for) for development of type II diabetes. The predisposition can be a genetic predisposition.

Once specific glucose transport-related genes are identified using the library, assays for expression of individual genes can be employed. Specific assays can be employed, for example, in diagnostic methods to diagnose type II diabetes, methods for diagnosing particular forms of type II diabetes, and methods for identifying individuals who have presymptomatic forms of type II diabetes or a genetic predisposition for development of type II diabetes. Such diagnostic assays may provide useful information for devising therapeutic strategies tailored to individual patients.

The library can also be used to assay expression of individual genes in animal (e.g., mouse) models of a disease in which glucose transport is affected. For example, cDNA can be prepared from RNA isolated from a mouse having a glucose transport-related disorder such as diabetes. The RNA can be isolated from a tissue that normally carries out glucose transport (e.g., muscle or adipose tissue). The cDNA is hybridized to sequences from the MAU library. Expression of the MAU library sequences is then compared to expression of the sequences in a mouse that does not have the disorder. A relative increase or decrease in the expression of a sequence in the mouse having a glucose transport disorder compared to an unaffected mouse indicates that the sequence is involved in the disorder. Such sequences are useful, e.g., for indicating genes or gene products as drug targets for treating the disorder.

Sequences in the MAU library fall into three categories: (1) novel sequences (Fig. 1): (2) sequences from genes for which at least partial sequences were known, but for which no function was known or predicted (Figs. 2A-2R and 3A-3E): and (3) sequences of genes with a known or predicted function (included in Figs. 6A-6E and 7A-7U). The novel sequences are designated c0148 (SEQ ID NO:1), c0827 (SEQ ID NO:2), and c1083 (SEQ ID NO:3), and they are set forth in Fig. 1.

Some of the library sequences are a novel combination of sequences based on partial sequencing of genes that were identified in the Adipocyte Subtractive library as differentially expressed in adipocyte and fibroblast cells combined with overlapping sequences that were obtained from databanks (GenBank and TIGR (The Institute for Genomic Research)). Additional library sequences are novel combinations of sequences based on partial sequencing of genes that are identified in the Muscle Adipocyte Union Library as differentially expressed in both adipocyte and muscle cells combined with overlapping sequences that were obtained from the databanks. Genes in these categories include b0117 (AAPT-like protein with CDP-alcohol phosphatidyltransferases signature sequence; SEQ ID NO:81), b0175 (GS2 protein; SEQ ID NO:87), c0139 (endophilin-like protein coil-coil plus SH3 domain; SEQ ID NO:12), c0250 (SEQ ID NO:17), c0352 (SEQ ID NO:18), c0582 (Rab GTPase domain; SEQ ID NO:33), c0591 (isoform of TIG2 protein; SEQ ID NO:34), and c0840 (Clu-like protein; SEQ ID NO:53). These sequences are depicted in Figs. 2A-2R and 3A-3E, and are particularly useful in the methods of the invention.

Sequences that are differentially expressed in adipocytes, muscle cells, or both (as compared to expression in, e.g., fibroblasts) are useful, e.g., as genes or providing gene products that are targets for treatments for disorders involving glucose transport and for diagnosis of disorders involving aberrant glucose transport such as type II diabetes.

DNA Arrays

5

10

15

20

25

30

DNAs containing complete or partial sequences from the library of glucose transport-related sequences can be used to construct conventional DNA arrays (sometimes called DNA chips or gene chips). A DNA array according to the invention can contain tens, hundreds, or thousands of individual sequences immobilized (tethered) at discrete, predetermined locations (addresses or "spots") on a solid, planar support, e.g., glass or nylon. Each spot

may contain more than one DNA molecule, but each DNA molecule at a given address has an identical nucleotide sequence. The DNA array can be a macroarray or microarray, the difference being in the size of the DNA spots. Macroarrays contain spots of about 300 microns in diameter or larger and can be imaged using gel or blot scanners. Microarrays contain spots less than 300 microns, typically less than 200 microns, in diameter.

5

10

15

20

25

30

For analysis and comparison of glucose transport-related gene expression patterns, an array is constructed using sequences from at least four, e.g., at least 10, 20, 40, 60, 80 or 100 genes in the above-described library. A population of labeled cDNA representing total mRNA from a sample of a tissue of interest, e.g., muscle or adipose tissue, is contacted with the DNA array under suitable hybridization conditions. Hybridization of cDNAs with sequences in the array is detected, e.g., by fluorescence at particular addresses on the solid support. Thus, a pattern of fluorescence representing a gene expression pattern in the tissue of a particular individual or group of individuals is obtained. These patterns of glucose transport-related gene expression can be digitized and stored electronically for computerized analysis and comparison. For example, an array according to the invention can be used to compare glucose transport-related gene expression of type II diabetic individuals with each other, and with non-diabetic individuals. Such comparisons will reveal specific genes whose expression is increased or decreased in a given tissue type in individuals with type II diabetes or other glucose transport-related diseases or disorders. Such arrays can also be used to diagnose individuals having or at risk for a glucose transport-related disorder such as type II diabetes. For example, a nucleic acid sample (e.g., cDNA) from an individual suspected of having a glucose transport-related disorder is prepared and hybridized to the array. The pattern (including the level) of expression of sequences in the sample is compared to a reference pattern (e.g., representing the pattern of expression in unaffected individuals, and/or representing the pattern of expression in individuals known to have a particular glucose transport-related disorder). A pattern of expression in the sample that varies from that of the unaffected reference, and/or corresponds with the pattern of expression in a glucose transport disorder indicates that the individual has a glucose transport disorder.

In some embodiments of the invention, cDNAs are used to form the array. Suitable cDNAs can be obtained by conventional polymerase chain reaction (PCR) techniques. The length of the cDNAs can be from 20 to 2,000 nucleotides, e.g., from 100 to 1,000

nucleotides. Other methods known in the art for producing cDNAs can be used. For example, reverse transcription of a cloned sequence can be used (for example, as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY, 1989)

5

10

15

20

25

30

The cDNAs are placed ("printed" or "spotted") onto a suitable solid support (substrate), e.g., a coated glass microscope slide, at specific, predetermined locations (addresses) in a two-dimensional grid. A small volume, e.g., 5 nanoliters, of a concentrated DNA solution is used in each spot. Spotting can be carried out using a commercial microspotting device (sometimes called an arraying machine or gridding robot) according to the vendor's instructions. Commercial vendors of solid supports and equipment for producing DNA arrays include BioRobotics Ltd., Cambridge, UK: Corning Science Products Division, Acton. MA; GENPAK Inc., Stony Brook, NY; SciMatrix, Inc., Durham, NC; and TeleChem International, Sunnyvale, CA.

The cDNAs can be attached to the solid support by any suitable method. In general, the linkage is covalent. Suitable methods of covalently linking DNA molecules to the solid support include amino cross-linking and UV crosslinking. For guidance concerning construction of cDNA arrays according to the invention, see, e.g., DeRisi et al., 1996, *Nature Genetics* 14:457-460; Khan et al., 1999, *Electrophoresis* 20:223-229; Lockhart et al., 1996, *Nature Biotechnol.* 14:1675-1680.

In some embodiments of the invention, the immobilized DNAs in the array are synthetic oligonucleotides. Preformed oligonucleotides can be spotted to form a DNA array, using techniques described above with regard to cDNA. In general, however, the oligonucleotides are synthesized directly on the solid support. Methods for synthesizing oligonucleotide arrays are known in the art. See, e.g., Fodor et al., U.S. Patent No. 5,744,305. The sequences of the oligonucleotides represent portions of the sequences in the library described above. For example, the lengths of oligonucleotides are 10 to 50 nucleotides, e.g., 15, 20, 25, 30, 35, 40, or 45 nucleotides.

In some embodiments of the invention, the human homologs of the identified sequences are used in the detection method. Examples of such human homologs are listed with their GenBank accession numbers in Figs. 6A-6E, 7A-7U, and 8A-81. In other embodiments, the sequence used for detection consists of highly conserved regions of the

sequence, e.g., sequence that is highly conserved between homologous mouse and human sequence.

Sample Preparation and Analysis

5

10

15

20

25

30

In methods of the invention, the transcription level of a glucose transport-related gene is assumed to be reflected in the amount of its corresponding mRNA present in cells of assayed tissue or cell lines derived from specific tissues. In general, mRNA from the cells or tissue is copied into cDNA under conditions such that the relative amounts of cDNA produced representing specific genes reflect the relative amounts of the mRNA in the sample. Comparative hybridization methods involve comparing the amounts of various, specific

mRNAs in two tissue samples, as indicated by the amounts of corresponding cDNAs hybridized to sequences from the glucose transport-related gene library.

The mRNA used to produce cDNA is generally isolated from other cellular contents and components. One useful approach for mRNA isolation is a two-step approach. In the first step, total RNA is isolated. The second step is based on hybridization of the poly(A) tails of mRNAs to oligo(dT) molecules bound to a solid support, e.g., a chromatographic column or magnetic beads. Total RNA isolation and mRNA isolation are known in the art and can be accomplished, for example, using commercial kits according to the vendor's instructions. Similarly, synthesis of cDNA from isolated mRNA is known in the art and can be accomplished using commercial kits according to the vendor's instructions. Fluorescent labeling of cDNA can be achieved by including a fluorescently labeled deoxynucleotide, e.g., Cy5-dUTP or Cy3-dUTP, in the cDNA synthesis reaction. For guidance concerning isolation of mRNA and synthesis of fluorescently labeled cDNA for analysis on a DNA array, see, e.g., Ross et al., 2000, *Nature Genetics* 24:227-235.

In the invention, conventional techniques for hybridization and washing of DNA arrays, detection of hybridization, and data analysis can be employed routinely without undue experimentation. Commercial vendors of hardware and software for scanning DNA arrays and analyzing data include Cartesian Technologies. Inc. (Irvine, CA); GSI Lumonics (Watertown, MA); Genetic Microsystems Inc. (Woburn, MA); and Scanalytics, Inc. (Fairfax, VA).

Isolated Nucleic Acid Molecules

5

10

15

20

25

30

The invention provides certain novel, isolated nucleic acids that encode murine glucose transport-related polypeptides, or biologically active portions thereof (Fig. 1). In addition to forming part of the library, these nucleic acids can be used as hybridization probes to identify the full-length genes that they represent, and to isolate related nucleic acids, e.g., murine nucleic acids can be used to identify and clone human homologs. These nucleic acids also can be used to design PCR primers for PCR amplification of related nucleic acid molecules. The full-length genes identified and isolated using these novel sequences are predicted to function in insulin-responsive glucose transport systems in mammalian muscle cells and adipose cells.

As used herein, "isolated DNA" means DNA that has been separated from DNA that flanks the DNA in the genome of the organism in which the DNA naturally occurs. The term therefore includes recombinant DNA incorporated into a vector, e.g., a cloning vector or an expression vector. The term also includes a molecule such as a cDNA, a genomic fragment, a fragment produced by PCR, or a restriction fragment. The term also includes a recombinant nucleotide sequence that is part of a hybrid gene construct, i.e., a construct encoding a fusion protein. The term excludes an isolated chromosome. Isolated nucleic acids of the invention (e.g., SEQ ID NOS:1-93) can include modifications at the 3' and/or 5' end of the molecule including a metal, a modified nucleotide residue, or a nucleotide sequence that is not contiguous with the sequence of interest in nature. Such modifications can also be made to the sequences or fragments of sequences used in the invention (e.g., sequences derived from the genes listed in Figs. 6-9 and 13-15).

A full length coding sequence that contains a novel nucleotide sequence of the invention, e.g., a nucleic acid molecule containing a sequence set forth in Fig. 1, or a complement thereof, can be isolated using conventional molecular biology techniques and the sequence information provided herein. For example the isolation can be accomplished without undue experimentation by applying techniques described in numerous treatises and reference manuals. For general guidance and specific protocols, sec, e.g., Sambrook et al., eds., *Molecular Cloning: A Laboratory Manual, 2nd ed.*, Cold Spring Harbor Laboratory. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; Ausubel et al. (eds.).

1994, Current Protocols in Molecular Biology, John Wiley & Sons, Inc.; Innes et al. (eds.), 1990, PCR Protocols, Academic Press.

A nucleic acid molecule of the invention can be amplified using cDNA, mRNA, or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. Once isolated, the full-length nucleic acid can be closed into an appropriate vector and characterized by conventional DNA sequence analysis, using standard techniques and equipment.

5

10

15

20

25

30

A nucleic acid fragment encoding a biologically active portion of a polypeptide encoded by a novel nucleic acid of the invention can be identified and prepared by isolating a portion of any of the sequences useful in the invention, expressing the encoded portion of the polypeptide protein (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the polypeptide.

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence set forth in Fig. 1, due to degeneracy of the genetic code and thus encode the same amino acid sequence as that encoded by the nucleotide sequence set forth in Fig. 1. The invention further encompasses isolated nucleic acid molecules that hybridize with the sequences set forth in Fig. 1 under high stringency conditions. As used herein, "high stringency" means the following: hybridization at 42° C in the presence of 50% formamide; a first wash at 65° C with 2 x SSC containing 1% SDS; followed by a second wash at 65° C with 0.1 x SSC.

In addition to the nucleotide sequences set forth in Fig. 1, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence may exist within a population (e.g., the human population). Such genetic polymorphisms may exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes that occur alternatively at a given genetic locus. As used herein, "allelic variation" means variation in a nucleotide sequence that occurs at a given locus, or variation in an amino acid sequence of a polypeptide encoded by the nucleotide sequence at a given locus. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be accomplished by using hybridization probes to identify nucleic acids corresponding to the same genetic locus in a variety of individuals. The nucleic acid is then sequenced (e.g., amplified using PCR and the

PCR products are sequenced) to identify variations. Isolated nucleic acids containing the nucleotide sequences of Fig. 1 that display allelic variations while retaining functional activity are within the scope of the invention.

5

10

15

20

25

30

In some embodiments of the invention, changes are introduced into the sequences of Fig. 1 by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein. For example, one can make nucleotide substitutions leading to amino acid substitutions at non-essential amino acid residues. A non-essential amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity of the gene product (e.g., a protein). For example, amino acid residues that are not conserved or only semi-conserved among homologs of various species may be non-essential for activity and thus would be likely targets for alteration. In contrast, amino acid residues that are conserved among the homologs of various species (e.g., murine and human) may be necessary for activity and thus would not be likely targets for alteration.

An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions, or deletions into the nucleotide sequence of c0148 (SEQ ID NO:1), c0827 (SEQ ID NO:2), and c1083 (SEQ ID NO:3) such that one or more amino acid substitutions, additions, or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, scrine, threonine, tyrosine, cysteine), nonpolar side chains (c.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be

screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

Isolating Homologous Sequences from Other Species

The human homologs of glucose-transport related genes and their products are useful for various embodiments of the present invention including diagnosis of glucose transport-related disorders such as type II diabetes. Homologs have already been identified for certain genes and GenBank Accession numbers are supplied for these. In those cases where a human homolog is not identified, several approaches can be used to identify such genes. These methods include low stringency hybridization screens of human libraries with a mouse glucose transport-related nucleic acid sequence, polymerase chain reactions (PCR) of human DNA sequence primed with degenerate oligonucleotides derived from a mouse glucose transport-related gene, two-hybrid screens, and database screens for homologous sequences.

15

20

25

30

10

5

Antisense Nucleic Acids

The invention includes antisense nucleic acid molecules, i.e., nucleic acid molecules whose nucleotide sequence is complementary to all or part of an mRNA based on the sequences c0148, c0827, and c1083 (Fig. 1). An antisense nucleic acid molecule can be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention. The non-coding regions ("5' and 3' untranslated regions") are the 5' and 3' sequences that flank the coding region and are not translated into amino acids.

An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides or more in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of

modified nucleotides which can be used to generate the antisense nucleic acid include 5fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xunthine, 4acetyleytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2.2-dimethylguanine, 2methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-Dmannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

25

30

The antisense nucleic acid molecules of the invention can be administered to a mammal, e.g., a human patient. Alternatively, they can be generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarities to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. For example, to achieve sufficient intracellular concentrations of

the antisense molecules, vector constructs can be used in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter.

An antisense nucleic acid molecule of the invention can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual, β-units, the strands run parallel to each other (Gaultier et al., 1987, *Nucleic Acids Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al., 1987, Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analog (Inoue et al., 1987, FEBS Lett. 215:327-330).

Antisense molecules that are complementary to all or part of a glucose transportrelated gene are also useful for assaying expression of such genes using hybridization
methods known in the art. For example, the antisense molecule is labeled (e.g., with a
radioactive molecule) and an excess amount of the labeled antisense molecule is hybridized
to an RNA sample. Unhybridized labeled antisense molecule is removed (e.g., by washing)
and the amount of hybridized antisense molecule measured. The amount of hybridized
molecule is measured and used to calculate the amount of expression of the glucose
transport-related gene. In general, antisense molecules used for this purpose can hybridize to
a sequence from a glucose transport-related gene under high stringency conditions such as
those described herein. When the RNA sample is first used to synthesize cDNA, a sense
molecule can be used. It is also possible to use a double-stranded molecule in such assays as
long as the double-stranded molecule is adequately denatured prior to hybridization.

Ribozymes

5

10

15

20

25

30

The invention also encompasses ribozymes that have specificity for the sequences c0148, c0827, and c1083. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach, 1988, Nature 334:585-591)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule of the invention can be designed based upon the nucleotide sequence of a cDNA disclosed herein. For example, a derivative

of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a glucose transport-related mRNA (Cech et al. U.S. Patent No. 4.987,071; and Cech et al., U.S. Patent No. 5,116,742). Alternatively, an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. *See, e.g.*, Bartel and Szostak, 1993, Science 261:1411-1418.

5

10

15

20

25 .

30

The invention also encompasses nucleic acid molecules that form triple helical structures. For example, expression of a polypeptide of the invention can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. *See generally* Helene, 1991, Anticancer Drug Des. 6(6):569-84; Helene, 1992, Ann. N.Y. Acad. Sci. 660:27-36; and Maher, 1992, Bioassays 14(12):807-15.

In various embodiments, the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (*see* Hyrup et al., 1996, Bioorganic & Medicinal Chemistry 4(1): 5-23). Peptide nucleic acids (PNAs) are nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs allows for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols, e.g., as described in Hyrup et al., 1996, *supra*; Perry-O'Keefe et al., 1996, *Proc. Natl. Acad. Sci. USA* 93: 14670-675.

PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup, 1996, *supra*; or as probes or primers for DNA sequence

and hybridization (Hyrup, 1996, *supra*; Perry-O'Keele et al., 1996, *Proc. Natl. Acad. Sci. USA* 93: 14670-675).

5

10

15

20

25

30

PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup, 1996, supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, 1996, supra, and Finn et al., 1996, Nucleic Acids Res. 24:3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5' end of DNA (Mag et al., 1989, Nucleic Acids Res. 17:5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al., 1996, Nucleic Acids Res. 24:3357-63). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al., 1975, Bioorganic Med. Chem. Lett. 5:1119-11124).

In some embodiments, the oligonucleotide includes other appended groups such as peptides (e.g., for targeting host cell receptors *in vivo*), or agents facilitating transport across the cell membrane (*see, e.g.*, Letsinger et al., 1989, *Proc. Natl. Acad. Sci. USA* 86:6553-6556; Lemaitre et al., 1987, *Proc. Natl. Acad. Sci. USA* 84:648-652; PCT Publication No. W0 88/09810) or the blood-brain barrier (*see, e.g.*, PCT Publication No. W0 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (*see, e.g.*, Krol et al., 1988, *Bio/Techniques* 6:958-976) or intercalating agents (*see, e.g.*, Zon, 1988, *Pharm. Res.* 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

Isolated Proteins

5

10

15

20

25

30

The invention provides isolated polypeptides encoded by glucose transport-related nucleic acids depicted in Figs. 1, 2A-2R, and 3A-3E. These polypeptides can be used, e.g., as immunogens to raise antibodies. Methods are well known in the art for predicting the translation products of the nucleic acids (i.e., using computer programs that provide the predicted polypeptide sequences and direction as to which of the three reading frames is the open reading frame of the sequence. These polypeptide sequences can then be produced either biologically (e.g., by positioning the nucleic acid sequence that encodes them in-frame in an expression vector transfected into a compatible expression system) or chemically using methods known in the art. The polypeptides encoded by the genes listed in Figs. 6-9 and 13-15 are also useful in the invention. For example, the entire polypeptide or a fragment thereof can be used to produce an antibody that is useful in a screening assay. Figs. 6-9 and 13-15, provide the GenBank accession numbers of the sequences, when available. These listings provide both nucleotide and polypeptide sequences that are useful in the invention.

An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as "contaminating protein"). In general, when the protein or biologically active portion thereof is recombinantly produced, it is also substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. In general, when the protein is produced by chemical synthesis, it is substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.

Expression of proteins and polypeptides can be assayed to determine the amount of expression. Methods for assaying protein expression are known in the art and include Western blot, immunoprecipitation, and radioimmunoassay.

5

10

15

20

25

30

Biologically active portions of a polypeptide of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the protein, which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100, or more amino acids in length. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the invention.

Polypeptides of the invention have the predicted amino acid sequence of an open reading frame of c0148 (SEQ ID NO:1), c0827 (SEQ ID NO:2), and c1083 (SEQ ID NO:3). In some embodiments, polypeptides of the invention have the predicted amino acid sequence selected from SEQ ID NOS:4-93. Other useful proteins are substantially identical (e.g., at least about 45%, preferably 55%, 65%, 75%, 85%, 95%, or 99%) to the predicted amino acid sequence of a polypeptide encoded by a polynucleotide comprising the polynucleotide sequence of c0148 (SEQ ID NO:1), c0827 (SEQ ID NO:2), and c1083 (SEQ ID NO:3) or substantially identical (e.g., at least about 93%, preferably 94%, 95%, 96%, or 99%) to the predicted amino acid sequence of a polypeptide encoded by a polynucleotide comprising the polynucleotide sequence of c0148 (SEQ ID NO:1), c0827 (SEQ ID NO:2), and c1083 (SEQ ID NO:3), and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In an embodiment of the invention, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at

http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In general, percent identity between amino acid sequences referred to herein is determined using the BLAST 2.0 program, which is available to the public at http://www.ncbi.nlm.nih.gov/BLAST. Sequence comparison is performed using an ungapped alignment and using the default parameters (Blossum 62 matrix, gap existence cost of 11, per residue gap cost of 1, and a lambda ratio of 0.85). The mathematical algorithm used in BLAST programs is described in Altschul et al., 1997, Nucleic Acids Research 25:3389-3402.

5

10

15

20

25

30

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises all or part (e.g., a biologically active portion) of a polypeptide of the invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the same polypeptide of the invention). Within the fusion protein, the term "operably linked" is intended to indicate that the polypeptide of the invention and the heterologous polypeptide are fused in-frame to each other. The heterologous polypeptide can be fused to the N-terminus or C-terminus of the polypeptide of the invention.

One useful fusion protein is a GST fusion protein in which the polypeptide of the invention is fused to the C-terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the invention.

In another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus. For example, the native signal sequence of a polypeptide of the invention can be removed and replaced with a signal sequence from another protein. For example, the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, 1992). Other examples of eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California). In yet another example, useful prokaryotic heterologous signal sequences

include the phoA secretory signal (Sambrook et al., *supra*) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).

5

10

15

20

25

30

In yet another embodiment, the fusion protein is an immunoglobulin fusion protein in which all or part of a polypeptide of the invention is fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand (soluble or membrane-bound) and a protein on the surface of a cell (receptor), to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of the invention. Inhibition of ligand/receptor interaction may be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies directed against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.

Chimeric and fusion proteins of the invention can be produced by standard recombinant DNA techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the invention.

A signal sequence of a polypeptide of the invention can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway. Thus, the invention pertains to the

described polypeptides having a signal sequence, as well as to the signal sequence itself and to the polypeptide in the absence of the signal sequence (i.e., the cleavage products). In one embodiment, a nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by methods known in the art. Alternatively, the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

The present invention also pertains to variants of the polypeptides of the invention. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.

Antibodies

5

10

15

20

25

30

An isolated polypeptide of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. The full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens. The antigenic peptide of a protein of the invention comprises at least 8 (e.g., 10, 15, 20, or 30) amino acid residues of the amino acid sequence of a sequence of the invention, e.g., c0148, c0827, and c1083, and encompasses an epitope of the protein such that an antibody raised against the

peptide forms a specific immune complex with the protein. Sequences also useful in the invention include polypeptides encoded by the sequences in Figs. 1, 2A-2R, and 3A-3E or polypeptides encoded by sequences comprising a sequence listed in Figs. 1, 2A-2R, and 3A-3R. Polypeptides encoded by the known genes identified herein as glucose transport-related genes are also useful in the invention.

5

10

15

20

25

30

Epitopes can be encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions. Hydrophilic regions of selected sequences are indicated in hydrophobicity plots (Figs. 10A-10D, 11A-11D, and 12A-12D). These plots or similar analyses can be used to identify hydrophilic regions in polypeptides useful in the invention.

An immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal). An appropriate immunogenic preparation can contain, for example, a recombinantly expressed or a chemically synthesized polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.

Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the specific antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein, 1975, *Nature* 256:495-497, the human B cell hybridoma technique (Kozbor et al., 1983, *Immunol. Today* 4:72), the EBV-hybridoma technique (Cole et al., 1985, *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing hybridomas is well known (*see generally Current Protocols in Immunology*, 1994, Coligan et al. (eds.) John Wiley & Sons, Inc., New York, NY). Hybridoma cells producing a monoclonal antibody of the invention are detected

by screening the hybridoma culture supernatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.

5

10

15

20

25

30

Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia *Recombinant Phage Antibody System*, Catalog No. 27-9400-01; and the Stratagene *SurfZAPTM Phage Display Kit*, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al., 1991, *Bio/Technology* 9:1370-1372; Hay et al., 1992, *Hum. Antibod. Hybridomas* 3:81-85; Huse et al., 1989, *Science* 246:1275-1281; Griffiths et al., 1993, *EMBO J.* 12:725-734.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184.187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al., 1988, *Science* 240:1041-1043; Liu et al., 1987, *Proc. Natl. Acad. Sci. USA* 84:3439-3443; Liu et al., 1987, *J. Immunol.* 139:3521-3526; Sun et al., 1987, *Proc. Natl. Acad. Sci. USA* 84:214-218; Nishimura et al., 1987, *Canc. Res.* 47:999-1005; Wood et al., 1985, *Nature* 314:446-449; and Shaw et al., 1988, *J. Natl. Cancer Inst.* 80:1553-1559); Morrison, 1985, *Science* 229:1202-1207; Oi et al., 1986, *Bio/Techniques* 4:214; U.S. Patent 5,225,539; Jones et al., 1986) *Nature* 321:552-525; Verhoeyan et al., 1988, *Science* 239:1534; and Beidler et al., 1988, *J. Immunol.* 141:4053-4060.

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

5

10

15

20

25

30

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., 1994, *Biotechnology* 12:899-903).

An antibody directed against a polypeptide of the invention (e.g., monoclonal antibody) can be used to isolate the polypeptide by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, such an antibody can be used to detect the protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide. The antibodies can also be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent

materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Screening Assays

5

10

15

20

25

30

The invention provides a method for identifying modulators, i.e., candidate agents or reagents, of expression or activity of a glucose transport-related nucleic acid or polypeptide. Such candidate agents or reagents include polypeptides, oligonucleotides, peptidomimetics, carbohydrates or small molecules such as small organic or inorganic molecules (e.g., non-nucleic acid small organic chemical compounds) that modulate expression (protein or mRNA) or activity of one or more glucose transport-related polypeptides or nucleic acids. In general, screening assays involve assaying the effect of a test agent on expression or activity of a glucose transport-related nucleic acid or polypeptide in a test sample (i.e., a sample containing the glucose transport-related nucleic acid or polypeptide). Expression or activity in the presence of the test compound or agent is compared to expression or activity in a control sample (i.e., a sample containing a glucose transport-related polypeptide that was not incubated in the presence of the test compound). A change in the expression or activity of the glucose transport-related nucleic acid or polypeptide in the test sample compared to the control indicates that the test agent or compound modulates expression or activity of the glucose transport-related nucleic acid or polypeptide and is a candidate agent.

In one embodiment, the invention provides assays for screening candidate agents that bind to or modulate the activity of a polypeptide or nucleic acid of the invention or biologically active portion thereof. The compounds to be screened, can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound"

library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam. 1997, Anticancer Drug Des. 12:145).

5

10

15

20

25

30

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al., 1993, *Proc. Natl. Acad. Sci. USA* 90:6909; Erb et al., 1994, *Proc. Natl. Acad. Sci. USA* 91:11422; Zuckermann et al., 1994, *J. Med. Chem.* 37:2678; Cho et al., 1993, *Science* 261:1303; Carrell et al., 1994, *Angew. Chem. Int. Ed. Engl.* 33:2059; Carell et al., 1994, *Angew. Chem. Int. Ed. Engl.* 33:2061; and Gallop et al., 1994, *J. Med. Chem.* 37:1233.

Libraries of compounds may be presented in solution (e.g., Houghten, 1992, *Bio/Techniques* 13:412-421), or on beads (Lam. 1991, *Nature* 354:82-84), chips (Fodor, 1993, *Nature* 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (Patent Nos. 5,571,698; 5,403,484; and 5,223,409), plasmids (Cull et al., 1992, *Proc. Natl. Acad. Sci. USA* 89:1865-1869) or phage (Scott and Smith, 1990, *Science* 249:386-390; Devlin, 1990, *Science* 249:404-406; Cwirla et al., 1990, *Proc. Natl. Acad. Sci. USA* 87:6378-6382; and Felici, 1991, *J. Mol. Biol.* 222:301-310).

In one embodiment, the assay is a cell-based assay in which a cell expressing a polypeptide of the invention, or a biologically active portion thereof, on the cell surface is contacted with a test compound. The ability of the test compound to bind to the polypeptide is then determined. The cell, for example, can be a yeast cell or a cell of mammalian origin. Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide or biologically active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with ¹²⁵I, ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of a polypeptide of the invention.

or a biologically active portion thereof, on the cell surface with a known compound which binds to the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or a biologically active portion thereof as compared to the known compound.

5

10

15

20

25

30

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide or a biologically active portion thereof can be accomplished. for example, by determining the ability of the polypeptide to bind to or interact with a target molecule.

Determining the ability of a polypeptide or nucleic acid of the invention to bind to or interact with a target molecule can be accomplished by one of the methods described herein for determining direct binding. As used herein, a "target molecule" is a molecule with which a selected polypeptide or nucleic acid (e.g., a polypeptide or nucleic acid of the invention) binds or interacts with in nature, for example, a molecule on the surface of a cell which expresses the selected protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A target molecule can be a polypeptide or nucleic acid of the invention or some other polypeptide, protein or nucleic acid. For example, a target molecule can be a component of a signal transduction pathway which facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a polypeptide of the invention) through the cell membrane and into the cell or a second intercellular protein which has catalytic activity or a protein which facilitates the association of downstream signaling moiecules with a polypeptide of the invention. Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can also be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the

target (e.g., intracellular Ca²⁺, diacylglycerol, or IP3), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a polypeptide of the invention operably linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation. When the target molecule is a nucleic acid, the compound can be, e.g., a ribozyme or antisense molecule.

5

10

15

20

25

30

In yet another embodiment, an assay of the present invention is a cell-free assay comprising contacting a polypeptide or nucleic acid of the invention, or biologically active portion thereof, with a test compound and determining the ability of the test compound to bind to the polypeptide or biologically active portion thereof. Binding of the test compound to the polypeptide can be determined either directly or indirectly as described above. In one embodiment, the assay includes contacting the polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide (e.g., its ability to compete with binding of the known compound), wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or biologically active portion thereof as compared to the known compound. When the test compound is targeted to a nucleic acid, the binding of the test compound to the nucleic acid can be tested, e.g., by binding, by fragmentation of the nucleic acid (as when the test compound is a ribozyme), or by inhibition of transcription or translation in the presence of the test compound.

In another embodiment, an assay is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. For example, determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished by determining the ability of the polypeptide of the invention to modify the target molecule. Such methods can, alternatively, measure the catalytic/enzymatic activity of the target molecule on an appropriate substrate. In general, modulation of the activity of the polypeptide of the invention or biologically portion thereof is determined by comparing the

activity in the absence of the test compound to the activity in the presence of the test compound.

5

10

15

20

25

30

In yet another embodiment, the cell-free assay comprises contacting a polypeptide or nucleic acid of the invention, or biologically active portion thereof, with a known compound which binds to the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide or nucleic acid, wherein determining the ability of the test compound to interact with the polypeptide or nucleic acid comprises determining the ability of the polypeptide or nucleic acid to preferentially bind to or modulate the activity of a target molecule.

The cell-free assays of the present invention are amenable to use of either a soluble form or the membrane-bound form of a polypeptide of the invention. In the case of cell-free assays comprising the membrane-bound form of the polypeptide, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the polypeptide is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-octylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton X-100, Triton X-114, Thesit, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPSO), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate.

In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize either the polypeptide of the invention or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to the polypeptide, or interaction of the polypeptide with a target molecule in the presence and absence of a test agent, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and microcentrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-Stransferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical; St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and

either the non-adsorbed target protein or a polypeptide of the invention, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity of the polypeptide of the invention can be determined using standard techniques.

5

10

15

20

25

30

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the polypeptide of the invention or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin.

Biotinylated polypeptide of the invention or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with the polypeptide of the invention or target molecules but which do not interfere with binding of the polypeptide of the invention to its target molecule can be derivatized to the wells of the plate, and unbound target or polypeptide of the invention trapped in the wells by antibody conjugation. Methods for detecting such complexes such as GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the polypeptide of the invention or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the polypeptide of the invention or target molecule.

In another embodiment, modulators of expression of a polypeptide of the invention are identified in a method in which a cell is contacted with a test agent or compound and the expression of the selected mRNA or protein (i.e., the mRNA or protein corresponding to a polypeptide or nucleic acid of the invention) in the cell is determined. The level of expression of the selected mRNA or protein in the presence of the test agent is compared to the level of expression of the selected mRNA or protein in the absence of the test agent. The test agent can then be identified as a modulator of expression of the polypeptide (i.e., a candidate compound) of the invention based on this comparison. For example, when expression of the selected mRNA or protein is greater (statistically significantly greater) in the presence of the test agent than in its absence, the test agent is identified as a candidate

agent that is a stimulator of the selected mRNA or protein expression. Alternatively, when expression of the selected mRNA or protein is less (statistically significantly less) in the presence of the test agent than in its absence, the test agent is identified as a candidate agent that is an inhibitor of the selected mRNA or protein expression. The level of the selected mRNA or protein expression in the cells can be determined by methods described herein.

In yet another aspect of the invention, a polypeptide of the inventions can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al., 1993, Cell 72:223-232; Madura et al., 1993, J. Biol. Chem. 268:12046-12054; Bartel et al., 1993, Bio/Techniques 14:920-924; Iwabuchi et al., 1993, Oncogene 8:1693-1696; and PCT Publication No. WO 94/10300), to identify other proteins, that bind to or interact with the polypeptide of the invention and modulate activity of the polypeptide of the invention. Such binding proteins are also likely to be involved in the propagation of signals by the polypeptide of the inventions as, for example, upstream or downstream elements of a signaling pathway involving the polypeptide of the invention.

Electronic Data Storage and Processing

5

10

15

20

25

30

The invention includes nucleic acid and polypeptide sequences that are provided in digital form that can be transmitted and read electronically (e.g., in a database). In some embodiments, the database can be queried for comparison with data provided (e.g., a nucleic acid sequence or a pattern of expression). All sequence information or data provided for comparison with the database can be transmitted to the database, e.g., by email, via the Internet, on diskette, or any other mode of electronic or non-electronic communication.

The invention thus features an electronic method of determining whether a patient has a glucose-transport related disorder by obtaining an electronic form of a nucleic acid sequence from the patient; obtaining a database of nucleic acid molecules whose expression is altered in a glucose transport-related disorder such as type II diabetes that includes nucleic acid molecules of individuals with glucose-transport related disorders; and comparing the patient nucleic acid sequence with the nucleic acid molecules in the database, wherein a patient nucleic acid sequence that matches a nucleic acid molecule in the database indicates the patient has or is at risk for a glucose-transport related disorder.

The invention also includes a database that includes an electronic form (e.g., digital form) of the nucleic acid molecules of the invention, and a computer-readable instructions for a processor to carry out the comparison method. The database can also be stored on a machine- or computer-readable medium, and can be accessed, e.g., through a communications network, such as the Internet.

5

10

15

20

25

30

As used herein, "sequence information" refers to any nucleotide and/or amino acid sequence information, including but not limited to full-length nucleotide and/or amino acid sequences, partial nucleotide and/or amino acid sequences. Moreover, information "related to" the sequence information includes detecting the presence or absence of a sequence (e.g., detection of expression of a sequence, fragment, or polymorphism), determination of the level of a sequence (e.g., detection of a level of expression, for example, a quantitative detection), detection of a reactivity to a sequence (e.g., detection of protein expression and/or levels, for example, using a sequence-specific antibody), detection of a pattern of expression of two or more sequences, and the like. These sequences can be read by electronic apparatus and can be stored on any suitable medium for storing, holding, or containing data or information that can be read and accessed by an electronic apparatus. Such media can include, but are not limited to: magnetic storage media, such as floppy disks, hard disk storage medium, and magnetic tape; optical storage media such as compact disks; electronic storage media such as RAM, ROM, EPROM. EEPROM and the like; general hard disks and hybrids of these categories such as magnetic/optical storage media. The medium is adapted or configured for having recorded thereon sequence information.

As used herein, the term "electronic apparatus" is intended to include any suitable computing or processing apparatus or other device configured or adapted for storing data or information. Examples of electronic apparatus suitable for use with the present invention include stand-alone computing apparatus such as personal computers (PCs) and large computer systems. These systems can be accessed by communications networks, including local area networks (LAN), wide area networks (WAN), Internet, Intranet, and Extranet. For example, the database can be made available on an Internet website.

As used herein, "stored" refers to a process for encoding information on the electronic apparatus readable medium. Those skilled in the art can readily adopt any of the presently

known methods for recording information on known media to generate manufactures comprising the sequence information.

5

10

15

20

25

30

A variety of software programs and formats can be used to store the sequence information on the electronic apparatus readable medium. For example, the sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect® and MicroSoft® Word®, or represented in the form of an ASCII file, stored in a database application, such as DB2®, Sybase®, Oracle®, or the like, as well as in other forms. Any number of data processor structuring formats (e.g., text file or database) can be employed to obtain or create a medium having recorded thereon the sequence information.

By providing sequence information in machine or computer-readable form, one can routinely access the sequence information for a variety of purposes. For example, one skilled in the art can use the sequence information in computer-readable form to compare a specific sequence with the sequence information stored within a database. Search means are used to identify fragments or regions of the sequences that match a particular sequence.

The present invention therefore provides a medium for storing or holding a database or instructions for performing a method for determining whether an individual has a specific disease or disorder related to glucose transport or a pre-disposition for a specific disease or disorder related to glucose transport, wherein the method can include analyzing the individual's sequence information and based on the sequence information, determining whether the individual has a particular disorder or a predisposition for a particular disorder associated with a specific genetic sequence, and/or recommending a particular treatment for the disorder or pre-disorder condition. For example, the pattern of expression of glucose transport-related sequences or proteins from an individual suspected of having a glucose transport-related disorder (e.g., type II diabetes) can be analyzed, and, based on the analysis (e.g., aberrant expression of one or more glucose transport-related genes), a diagnosis provided and instructions for treatment.

The invention will be further described in the following examples which do not limit the scope of the invention described in the claims.

EXAMPLES

Three approaches were used to identify genes and proteins involved in glucose transport. First, several subtractive cDNA libraries were constructed that consist of genes selectively expressed in insulin-responsive tissues. Furthermore, it has been discovered that at least two of these genes have a role in regulating GLUT4 translocation. As a second approach, microarrays were screened with fluorescently labeled probes synthesized from mRNA isolated from insulin-responsive tissues. In the third approach, a subcellular fraction was prepared that was enriched for vesicles involved in glucose transport. Proteins from this fraction were prepared and analyzed using microsequencing techniques. Additional analysis comparing the predicted protein sequences obtained in the first two approaches with the vesicle protein sequences provided a subset of sequences involved in glucose transport that are useful for certain aspects of the invention.

15 Example 1: Subtractive Libraries

5

10

20

25

30

Two methods were used to construct subtractive libraries.

In the first method, suppression subtractive hybridization was used (Diatchenko et al., 1996, Proc Natl. Acad. Sci U S A 93:6025-30). In this method, a first library was constructed that consisted of sequences that are highly expressed in muscle, but not in 3T3-L1 fibroblasts (available from American Type Culture Collection; ATCC). The second library consisted of sequences that are highly expressed in 3T3-L1 adipocytes, but not in 3T3-L1 fibroblasts. The general method for this procedure is diagrammed in Fig. 4.

Libraries were constructed by reverse transcription of total mRNA isolated from plates of confluent 3T3-L1 fibroblasts and 3T3-L1 adipocytes 9 to 10 days after the start of differentiation. The resulting cDNAs were then digested with the restriction enzyme Rsa I. Digested adipocyte cDNA was divided into two pools, and each pool was ligated to a different oligonucleotide adaptor. Adaptor 1 was:

5'-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-3' (SEQ ID NO:94)
GGCCCGTCCA-5' (SEQ ID NO:95)

Adaptor 2 was:

5'-CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3' (SEQ ID NO:96)
GCCGGCTCCA-5' (SEQ ID NO:97)

5

10

15

20

25

30

Each pool of adipocyte cDNA (tester DNA) was then hybridized with an excess of fibroblast cDNA (driver DNA) for 9 hours at 68° C. The two hybridization mixtures were combined and incubated overnight at 68° C. After hybridization the 5' overhangs were filled in with Taq DNA polymerase, and amplified by PCR using primers that are homologous to each of the adaptors. This subtraction procedure was also performed using the mouse muscle cDNA as the tester, and 3T3-L1 fibroblast cDNA as the driver.

As a test to demonstrate that muscle and adipocyte specific transcripts are amplified by this procedure, the final products of both subtractions were amplified using PCR primers internal to GLUT4 and α-tubulin transcripts. The final product of muscle subtraction (SUB) and the unsubtracted muscle cDNA (UNSUB) were used for PCR analysis with primers internal to the coding regions of Glut4 (G4) and α -tubulin-1 (TUB). Glut4 and α -tubulin-1 primers were designed to amplify 485 bp and 408 bp fragments respectively. PCR samples were removed after 23, 28 and 33 PCR cycles and loaded onto a 1.5% TAE (40mM Trisacetate, pH8.0 ImM EDTA) agarose gel. The gel was stained with ethidium bromide and visualized with UV light. As expected, GLUT4 cDNA (representing GLUT4 expression) was found in the subtracted muscle cDNA but tubulin cDNA was present in relatively small amounts because tubulin is expressed in both fibroblasts and muscle (and so a substantial amount of the tubulin sequence was subtracted out). GLUT4 is expressed in muscle but not in fibroblasts, and so, as expected present in relatively large amounts. In the musclesubtracted cDNA, the GLUT4 signal is stronger in earlier PCR cycles, while the tubulin signal in suppressed. Similar results were obtained with PCR analysis with 3T3-L1 adipocyte-subtracted cDNA.

To construct the libraries, the final PCR products from the 3T3-L1 adipocyte subtraction were digested with Rsa I and cloned into Eco RV restricted the pBluescript SK+ vector (STRATAGENE®) creating a library of adipocyte subtractive clones. The library contained approximately 2 X 10³ clones. The cloned plasmid DNA sequences were analyzed by dideoxy sequencing with either the M13 -20 or reverse primer on an ABI 377 automatic sequencer. In an initial round of sequencing, 183 independent clones, representing expression from 65 different genes, were sequenced. Sequences were analyzed in a search

against the non-redundant (NR) nucleotide database using the Blust program at www.ncbi.nlm.nih.gov/blast/blust.cgi. The gapped BLAST program was used against the non-redundant or the dbest database. All BLAST searches were performed using the default settings which are: Expect=10; Filter for Low complexity: on; Filter for Human Repeats: off; Mask for lookup table only: off; Matrix=Blosum62; Gap existence cost=11; Per residue gap cost=1: Lambda ratio=85.

Genes previously shown to be preferentially expressed or not preferentially expressed in adipocytes are those in which their mRNA expression profiles have been published in journal articles in the Medline database. A summary of these sequences is shown in Figs. 6A-6E. Approximately 60% of the sequenced clones in this library were from genes previously reported as overexpressed in 3T3-L1 adipocytes. Another 23% of the clones consisted of known gene sequences whose expression pattern was known in adipocytes, while 13% of the sequenced clones had unknown (previously unreported) sequences. Four percent of the cloned sequences are from genes of mitochondrial origin. The identity of the genes in the subtractive library that have already shown to be preferentially expressed in 3T3-L1 adipocytes are listed in Figs. 6A-6E. Genes, such as adipoQ and stearoyl-CoA desaturase, that are found at the highest frequency in this subtractive library are also those that were discovered in previous attempts to clone genes that are highly expressed in 3T3-L1 adipocytes upon differentiation (Ntambi et al., 1988, J. Biol. Chem 263:17291-17300; Bernlohr et al., 1984, Proc. Nat. Acad. Sci. USA 81: 5468-5472; Hu et al., 1996, J. Biol. Chem. 271:10697-10703; Min and Spiegelman. 1986, Nucleic Acids Res. 14:8879-8892).

Sequences that are expressed in the Adipocyte Subtractive library that are from genes with unknown function are listed in Figs. 3A-3E.

Example 2: Construction of a Muscle-Adipocyte Library

5

10

15

20

25

30

To identify genes encoding proteins that are involved in glucose transport, gene expression in 3T3-L1 adipocytes and muscle was investigated. To accomplish this, another library was constructed consisting of genes that fulfilled the following two criteria. First, the genes had to be highly expressed in both 3T3-L1 adipocytes and mouse skeletal muscle; second, the genes could not be highly expressed in 3T3-L1 fibroblasts. This library, the Muscle-Adipocyte Union Library (MAU library), was constructed using a modification of

the suppression subtractive hybridization technique (Fig. 5). The method was like the subtractive suppression modification technique described in Fig. 4 except that adaptor I was ligated to Rsa I-digested 3T3-L1 adipocyte cDNA while adaptor 2 was ligated to Rsa Idigested mouse muscle cDNA. Both cDNAs were then hybridized to an excess of 3T3-L1 fibroblast DNA. The two hybridization reactions were then mixed to create hybrid molecules in which one strand originated from adipocytes and the second strand of the hybrid was from muscle. Because only these hybrid molecules have different adaptors on each end, they can be PCR amplified, unlike the rest of the cDNAs. These hybrid products were then amplified using PCR. The final PCR products of the 3T3-L1 muscle-adipocyte union subtraction were cloned into overhang vector pCR2.1. (INVITROGEN®) to produce a library of approximately 10⁴ clones. Plasmid DNAs were dideoxy sequenced with the either the M13-20 or reverse primer on an ABI 377 automatic sequencer. Sequences were searched against the non-redundant (NR) nucleotide database using the Blast program at www.ncbi.nlm.nih.gov/blast/blast.cgi. Genes previously shown to be overexpressed or not overexpressed in adipocytes are those in which their mRNA expression profiles has been published in journal articles in the Medline database. Figs. 7A-7U show the summary of sequences from this library. These clones represent as many as 265 different genes. About 40% of these sequences are expressed from genes that have previously been shown to be preferentially in muscle, adipocytes, or both tissues. Another 26% of the clones are sequences from known genes whose expression profile is not known, and 17% of the clones represent previously unidentified genes. A large percentage of sequences (12%) represent genes of mitochondrial origin. Fig. 1 shows sequences from this library that are novel, and Figs. 2A-2R show the sequences of selected clones from this library. Figs. 7A-7U show the genes that encode the sequences identified in the MAU library including the GenBank accession no., when one is known. Figs. 7A-7U also list the homologous human genes for these sequences and the expression profile of each sequence with respect to its expression in adipocytes and muscle.

The sequences identified in this manner are useful, e.g., for detecting a glucose transport-related disorder such as type II diabetes.

5

10

15

20

Example 3: mRNA Expression Profiles of Unknown Genes in the 3T3-L1 Adipocyte Subtractive and the Muscle-Adipocyte Union Libraries.

To determine the expression profile of cognate RNA from library clones that have not been previously reported to be overexpressed (i.e., preferentially expressed) in insulinsensitive (e.g., adipocyte and muscle) tissues, expression of these sequences was analyzed in undifferentiated 3T3-L1 cells and differentiated 3T3-L1 adipocytes. Northern blot analysis was used in which 3T3-L1 and mouse multi-tissue Northern blots were probed.

5

10

15

20

25

30

Cloned inserts from the Adipocyte Subtractive Library clones were labeled with ³²P-dCTP and used in an initial screen to probe Northern blots of total RNA from 3T3-L1 fibroblasts and adipocytes. For Northern blotting, 3T3-L1 and multiple tissue total RNA (10 µg) were electrophoresed on 1.2% agarose/6.6% formaldehyde gels, then transferred to Nytran membranes. Before transfer, gels were stained with ethidium bromide and visualized with UV light in order to confirm equal loading of RNAs. Blots were probed with inserts containing fragments of previously unidentified genes from both libraries Probes were labeled with P³²-dCTP and incubated with the membranes overnight at 42°C. Blots were washed twice with 2x SSC/0.1%SDS at room temperature, twice in 0.2x SSC/0.1% SDS at room temperature and twice in 0.2x SSC/0.1% SDS at 42°C. After washing, blots were exposed to a phosphor screen for one to three days. Phosphor screens were scanned with the Storm 860 Scanner from Molecular Dynamics. Full-length clones for many of these unknown genes have been obtained either by purchasing IMAGE Consortium clones or by screening muscle or adipocyte lambda libraries (such libraries can be made using methods known in the art).

Seventy-eight clones from the Adipocyte Subtractive Library were characterized. Sixty of the 78 cloned sequences (approximately 75%) were preferentially expressed upon adipocyte differentiation (i.e., in 3T3-L1 adipocytes).

Thirty-two clones from the 3T3-L1 Muscle-Adipocyte Union library (MAU library) were analyzed. Nineteen were preferentially expressed in 3T3-L1 adipocytes. This leads to the conclusion that approximately 50% of the clones in the MAU library, whose expression has not previously been reported, are preferentially expressed in 3T3-L1 adipocytes. This indicates that approximately 80% of the clones in the 3T3-L1 Adipocyte Subtractive Library and 70% of the clones in the Muscle-Adipocyte Union Library (MAU library) are highly

expressed in at least one insulin-sensitive tissue. (For the 3T3-L1 Adipocyte Subtractive Library, 60% of sequences previously shown to be preferentially expressed + ½ of 40% = 80%; for MAU library, 40% of sequences previously shown to be preferentially expressed + ½ of 60% of uncharacterized genes = 70%). Genes that were found to be preferentially expressed in 3T3-L1 adipocytes were used to probe mouse multi-tissue Northern blots. Using Northern analysis, it was confirmed that 11 previously unidentified genes from the MAU library (i.e., genes expressed in adipocytes and muscle) are expressed in at least two different insulin-sensitive tissues (see Figs. 6A-6E and 7A-7U; "overexpressed" indicates that the sequence was found to be preferentially expressed in insulin-sensitive cells in these experiments).

5

10

15

20

25

30

Using multi-tissue Northern blots it was shown that that six previously identified genes are highly expressed in insulin-sensitive tissues. Furthermore, at least two of these proteins have a role in regulating GLUT4. This was determined as follows. Three clones in the Muscle-Adipocyte Union Library consist of the 3' end of PP2Ca1 (Genbank Acession No.D28117 Kato et al., 1994, Gene 145:311-312). Northern blot analysis demonstrated that at least three transcripts of PP2Ca are highly expressed in both 3T3-L1 adipocytes and in mouse fat. We further examined mRNA expression of PP2Ca. For Northern blotting, 3T3-L1 and multiple tissue total RNA (10 µg) were separated by electrophoresis on 1.2% agarose/ 6.6% formaldehyde gels, then transferred on to Nytran membranes. Blots were probed with library clone c0452, which contains the last 216 base pairs of the PP2Ca1 coding sequence along with the 288 base pairs of 3' noncoding region. Probes were labeled with P³²-dCTP and incubated with the membranes overnight at 42°C. Blots were washed twice with 2x SSC/0.1%SDS at room temperature, twice in 0.2x SSC/0.1% SDS at room temperature and twice in 0.2x SSC/0.1% SDS at 42°C. After washing, 3T3-L1 blots were exposed to film for one day, while multi tissue northern blots were exposed to a phosphor screen for one to three days. Phosphor screens were scanned with the Storm 860 Scanner from Molecular Dynamics.

To assess the role of PP2Ca1 in insulin-stimulated glucose transport, PP2Ca1 protein was microinjected into 3T3-L1 adipocytes, and GLUT4 translocation was determined by immunofluorescence. Microinjection of PP2Ca1 was found to potentiate the ability of a submaximal 1 nM concentration of insulin to translocate GLUT4 to the plasma membrane to

levels close if not equal to that of a maximal 10nM insulin stimulation. To examine the effect of microinjected PP2Cα1 on GLUT4 translocation, 3T3-L1 adipocytes were incubated in serum free medium for two hours and microinjected with either IgG alone or PP2Cα along with IgG. Sixty minutes later adipocytes were incubated with media alone, 1 nM insulin or a maximally effective concentration of insulin (10 nM) for 30 minutes. Cells were then fixed with methanol and then stained with anti-GLUT4 antibody. Adipocytes were examined using fluorescence microscopy (Zeiss Axioskop, at 630x magnification) and scored for scored for the presence of substantial cell surface GLUT4 immunoreactivity at the plasma membrane. Controls are cells on the same coverslips that were not injected. Microinjection of phosphatases 2A or 2B had no effect on the ability of insulin to activate GLUT4 translocation. Western blotting has also revealed that PP2Cα selectively communoprecipitates insulin receptors but not PDGF receptors in an insulin-enhanced manner.

5

10

15

20

25

30

Gall (Q209L) Induced 2-Deoxyglucose Uptake in Differentiated 3T3-L1 Adipocytes.

Gα11 sequence (Genbank Accession No. U37411; Davignon et al., 1996, Genomics 31:359-366) was identified in the 3T3-L1 Adipocyte Subtractive Library. This protein is a member of the Gαq family which are heterotimeric components of G protein complexes. Northern blot analysis confirmed that Gα11 expression is induced upon 3T3-L1 adipocyte differentiation, and that it is more abundant by far in fat than in any other tissue. Differentiated 3T3-L1 adipocytes were seeded at 150,000 cells per well in 24 well plates and then infected with either control or Gα11 (Q209L) adenoviruses. Thirty hours after infection, plates were serum starved for two hours in Krebs-Ringer phosphate buffer with BSA and pyruvate. Plates were then treated with or without wortmannin (a specific inhibitor of PI3 kinase) for 15 minutes followed by stimulation with insulin or endothelin for 30 minutes. Cells were then assayed for 2-deoxyglucosc uptake as described in Frost and Lane (1985, J. Biol. Chem. 260:2646-2652).

For Northern blotting, 3T3-L1 and multiple tissue total RNA (10 µg) were separated on 1.2% agarose/ 6.6% formaldehyde gels, then transferred on to Nytran membranes. Blots were probed with library clone b0031, which contains nt 237 to nt 435 of the Ga11 coding sequence. Probes were labeled with P³²-dCTP and incubated with the membranes overnight at 42°C. Blots were washed twice with 2x SSC/0.1%SDS at room temperature, twice in 0.2x

SSC/0.1% SDS at room temperature and twice in 0.2x SSC/0.1% SDS at 42°C. After washing, 3T3-L1 blots were exposed to film for one day, while multi tissue northern blots were exposed to a phosphor screen for three days. Phosphor screens were scanned with the Storm 860 Scanner from Molecular Dynamics. A closely related protein Gq did not have this expression profile. Infection of 3T3-L1 adipocytes with a recombinant adenovirus expressing a constitutively active form of Ga11 expression, but not the native protein led to an increase in GLUT4 concentration in the plasma membrane, and a fourfold increase in glucose uptake in a wortmannin-insensitive manner. Thus, wortmannin does not inhibit the ability of the active form of Ga11 to stimulate GLUT4 translocation.

Since PI3 kinase activation is required for insulin to activate GLUT4 translocation, these data indicate that $G\alpha 11$ is likely a mediator of PI3 kinase independent activators of GLUT4 translocation, such as endothelin. In addition, these data demonstrate that glucose transport-related genes were identified using the methods described herein. They also illustrate an assay for identifying glucose transport-related sequences that are PI3 kinase independent activators of GLUT4 translocation.

Example 4: Polypeptides Isolated from GLUT4-Enriched Vesicles

The GLUT4 glucose transporter resides primarily in perinuclear membranes in unstimulated 3T3-L1 adipocytes and is acutely translocated to the cell surface in response to insulin. A novel method of purifying intracellular GLUT4-enriched membranes was used to identify polypeptides involved in glucose transport.

Antibodies

5

10

15

20

25

30

Rabbit polyclonal anti-GLUT4 antibody was raised against the C-terminal 12 amino acid sequence of GLUT4. Mouse anti-transferrin receptor was from Zymed. Rabbit polyclonal anti-VAMP2 antibody was from StressGen Biotechnologies Corp. Mouse monoclonal anti-vimentin antibody used in immunoblots and immuno-electron microscopy analysis was from Santa Cruz. Mouse monoclonal anti-α-tubulin antibody, used in immunoblot and immuno-electron microscopy analysis and the secondary antibodies conjugated to gold particles for immuno-electron microscopy were from Amersham Pharmacia Biotech.

Immunoblotting

5

10

15

20

25

30

Fractions from velocity gradients and equilibrium density gradient were prepared as described above and aliquots from these fractions were subjected to SDS-PAGE on resolving gels according to Laemmli (1970, Nature 227:680-685). Separated proteins were electrophoretically transferred to nitrocellulose membrane, blocked with 3% nonfat milk and 1% BSA in TTBS (0.05% Tween 20 in Tris-buffered saline) and then incubated with primary antibody in TTBS containing 1% BSA. After incubation, membranes were washed with TTBS and incubated with horseradish peroxidase-labeled anti-mouse IgG for the detection of monoclonal antibodies or with horseradish peroxidase-labeled anti-rabbit IgG for detection of polyclonal antibodies. Proteins were visualized using an enhanced chemiluminescent substrate kit (Amersham Pharmacia Biotech) and immunoblot intensities were quantified by a scanning densitometer.

Electron Microscopy

GLUT4-containing membranes of the insulin sensitive fractions from the equilibrium density gradient were isolated as described above. Fractions were pooled, pelleted by centrifugation at 48,000 rpm for 2 hours, resuspended in PBS and fixed in a final concentration of 2% paraformaldehyde in PBS. GLUT4-vesicles were then adsorbed to Formvard-coated gold grids and processed for double labeling as outlined in Martin et al. (*supra*) and Sleeman et al. (1998, J. Biol. Chem. 273:3132-3135). Grids were incubated with 50μl of primary antibody diluted in 1% BSA and PBS as follows: anti-GLUT4, anti-IRAP, anti-vimentin, anti-α-tubulin or non-immune IgG, as a negative control. After incubation with each IgG fraction, grids were labeled with either 5 or 15 nm gold particles conjugated to the secondary antibody (goat anti-rabbit or goat anti-mouse). Grids were stained with 1% uranyl acetate, dried and viewed using a transmission electron microscope PHILLIPS CM.10.

Purification of insulin-responsive GLUT4-containing membranes

GLUT4-containing membranes were prepared by first isolating low density (LD) microsomes then subjecting these to further purification on sucrose velocity gradients.

Finally, the GLUT4 fractions from the sucrose gradients were subjected to equilibrium density sucrose gradients. The preparations were made from primary, unstimulated or insulin stimulated rat adipocytes, although the could also be prepared from other tissues, e.g., striatal muscle.

5

10

15

20

To prepare the initial crude membrane preparations for purification, adipocytes were isolated from epididymal fat pads of Male Sprague-Dawley Rats (125-150 g) by collagenase digestion in Krebs-Ringer/HEPES, pH 7.4, supplemented with 2% bovine serum albumin and 2 mM pyruvate. Following digestion, the cells were washed and permitted to recover for 30 minutes. The cells were then incubated at 37°C with or without 100 nM insulin for 20 minutes. The cells were washed with PBS and immediately homogenized in buffer A (50 mM HEPES, pH 7.4, 10 mM NaF, 1 mM NaPPi, 0.1 mM Na₃VO₄, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, and 10 μg/ml leupeptin), and then subjected to differential centrifugation as described in Czech and Buxton, 1993, J. Biol. Chem. 268:9187-9190. Low density microsomes were prepared by modifications of previously described methods (Mackeell, D.W. and Jarret, L., 1970, J. Cell Biol., 44:417432). Briefly, cells were homogenized for 15 strokes with a motor-driven Teflon/glass homogenizer in 24 ml of buffer containing 10 mM Tris-Cl, pH 7.4, 1 mM EDTA, 250 mM sucrose, 10 mM NaF, 1 mM phenylmethylsufonyl fluoride. The homogenate were brought to 4°C and centrifuged for 20 minutes at 16,000 x g. The 16,000 x g supernatant was centrifuged at 48,000 x g for 20 minutes to obtain a pellet of high density microsomes and the resulting supernatant was centrifuged for 90 minutes at 200,000 x g to obtain a pellet of low density microsomes. The low density microsomes were resuspended at a final concentration of approximately 1-3 mg/ml. Protein was quantified using the bicinchoninic acid protein determination kit (Pierce) with bovine serum albumin as standard.

25

30

GLUT4-enriched fractions were then isolated from LD microsomal fractions utilizing the sedimentation sucrose velocity gradient centrifugation (Kandror et al., 1995, Biochem, J. 307:383-390; Heller-Harrision, et al., 1996, J. Biol. Chem. 271:10200-10204). Briefly, 1.5 to 2 mg of LD microsomal fractions were loaded onto a 10-35% sucrose velocity gradient (sucrose in buffer B: 20 mM HEPES, pH 7.4, 100 mM NaCl, 1 mM EDTA, 2 mM dithiothreitol, 1 mM, 10 mM NaF, 1 mM NaPPi, 0.1 mM Na₃VO₄.

centrifuged for 3.5 hours at 110,000 x g rpm in an SW28 rotor (Beckman) and 1 ml fractions were collected. The crude membrane fraction contains most of the GLUT4 present in unstimulated adipocytes and is composed primarily of intracellular membranes (Czech and Buxton, *supra*). This additional centrifugation step separates about 90% of the total membrane protein (fractions 1-7) from the GLUT4-enriched membranes (fractions 8-18).

5

10

15

20

25

30

Insulin treatment of rat adipocytes prior to disruption of the cells and preparation of these membranes causes a marked decrease in the yield of GLUT4 present in the latter fractions. However, no such insulin effect is observed when total membrane protein is measured because these membranes are still highly contaminated with membranes that do not contain GLUT4 and are not insulin-responsive.

To further resolve the membrane species associated with GLUT4, fractions 8-18 which contained most of the GLUT4 from the sucrose velocity gradient were subjected to equilibrium gradient centrifugation. Fractions from sucrose velocity gradients containing GLUT4-membranes (Fractions 8 to 18) were pooled, pelleted by ultracentrifugation at 48,000 rpm for 1.5 hours, resuspended in buffer B and then loaded onto an equilibrium density sucrose gradient (10-65% (w/v) in buffer B and centrifuged at 150,000 x g rpm for 18 hours in a SW 50.1 rotor (Beckman). After centrifugation, 0.25 ml fractions were collected starting from the top of the gradient. Fractions were analyzed for the total protein content using a Bradford assay (Bio-Rad).

Most of the membrane protein was distributed over fractions 5-20 after this procedure, whereas most of the GLUT4 was distributed within fractions 7-14. Importantly, GLUT4 was localized into two types of membranes (GLUT4 membranes) that can be distinguished based on their sensitivity to insulin. The amount of GLUT4 in fractions 7-9 (peak 1) was decreased when the cells were treated with insulin before homogenization and preparation of membranes, whereas the GLUT4 in fractions 10-20 (peak 2) was not affected by insulin treatment of the adipocytes. Strikingly, measurement of total membrane protein in the fractions of this gradient revealed a similar profile: about a 50% reduction in fractions 7-9 due to insulin action, with no insulin effect observed in fractions 10-20. This observed insulin-mediated decrease in total membranes recovered in fractions 7-9 indicates the successful partial purification of membranes of the insulin-responsive compartment or compartments in primary adipocytes. Similar data were obtained using 3T3-L1 adipocytes.

These methods can be used to, e.g., provide an enriched preparation of glucose transport-related sequences. In addition, in screening assays, a test compound can be incubated with the cells before isolation of the vesicles and the ability of the test compound to affect the localization of the glucose transport-related sequence determined.

5

10

15

20

25

30

Example 5: Characterization of GLUT4 Membranes

Two additional approaches were used to characterize the membranes resolved by equilibrium gradient centrifugation. First, each fraction from the gradient was analyzed by SDS-PAGE and silver staining of the constituent proteins. This analysis revealed that most of the membrane proteins in fractions 7 and 8 were dramatically reduced when membranes were derived from insulin-treated adipocytes. Certain proteins in fractions 6 and 9 showed the same effect, whereas many did not. These results suggest that membranes resolved in fractions 7 and 8 are highly purified insulin-responsive membranes, while those in fractions 6 and 9 are only partially purified. Membranes in higher density fractions show no detectable insulin-sensitivity in spite of the presence of significant GLUT4 protein. Many of the protein bands in the insulin-sensitive membranes are also present in the membranes that are not responsive to the hormone. These data are consistent with the hypothesis that the insulin sensitive membranes containing GLUT4 contain many of the same constituent proteins as other cell membranes that function in a hormone-insensitive mode. Thus, these proteins may also be targets for drugs that potentiate insulin action and ameliorate type II diabetes.

To further characterize the GLUT4 membrane preparation, we determined the distribution of transferrin receptors, thought to be present in endosomal membranes, and VAMP2 (vesicle-associated membrane protein), thought to be associated with insulinsensitive GLUT4-containing membranes (Kandror and Pilch, 1996, J. Biol. Chem. 271:21703-21708: Kandror and Pilch, 1996, Am. J. Physiol. 271:E1-E14). Surprisingly, both of these proteins were present in the fractions that were responsive to insulin and their distributions were more restricted to these fractions than was GLUT4 itself. These data suggest that the insulin-sensitive membranes in these fractions are contaminated by recycling endosomes, that transferrin receptor is present in the insulin-sensitive membranes, or both. The restriction of VAMP2 to the insulin-sensitive fractions is consistent with data showing that VAMP2 function is necessary for GLUT4 translocation to the plasma membrane in

response to insulin (Cain et al., 1992, J. Biol. Chem. 267:11681-11684; Martin et al., 1996, J. Cell. Biol. 134:625-635).

Expression of transferrin and/or VAMP2 can therefore be used as part of a system analyzing glucose transport, e.g., in diagnosing type II diabetes.

5

10

15

20

25

30

These experiments provide an example of a method for analyzing glucose transport, e.g., in an individual with type II diabetes. In such a case, insulin-sensitive cells from the individual are cultured and analyzed as above. Alterations in the amount or distribution of vesicle proteins compared to a control (i.e., normal with respect to diabetes) indicate that the individual has or is at-risk for a disorder involving glucose transport. Testing cells from the individual that were cultured in the presence or absence of insulin provides additional information regarding hormone sensitivity (e.g., by examining the distribution of vesicle proteins in the presence and absence of hormone.

Example 6: Identification of cytoskeletal proteins in GLUT4-containing membranes

To identify proteins present in the insulin-sensitive membranes containing GLUT4, the equivalent of fractions 7 and 8 were pooled, analyzed by SDS-PAGE and the gels silver stained. These results confirmed that many of the resident proteins in the membranes derived from insulin-treated cells were present at lower abundance compared to controls. Many of the protein bands, combined from both lanes, were subjected to tryptic hydrolysis and the peptides analyzed by mass spectrometry as described in Example 6. Of the proteins identified by this procedure, peptides derived from GLUT4 itself appeared in two closely spaced bands. Remarkably, the lower of these bands also contained a peptide corresponding to the phosphorylated form of the COOH-terminus of GLUT4, indicating significant amounts of phosphorylated GLUT4 are present in insulin-sensitive membranes. In addition, peptides corresponding to several proteins previously reported to be present in these membranes were identified, including the IGF-II/mannose-6-phosphate receptor, IRAP (insulin-regulated aminopeptidase), amine oxidase, long chain acyl-CoA synthetase, and SCAMPs (secretory carrier-associated membrane proteins). Two proteins not previously known to be present in insulin-sensitive GLUT4-containing membranes were also identified-vimentin, an intermediate filament subunit, and α-tubulin, the microtubule protein.

Two approaches were taken to determine if vimentin and α -tubulin are directly associated with membrane vesicles that also contain GLUT4 and are insulin-sensitive. In one approach, the membrane preparations obtained from the equilibrium gradient centrifugation were analyzed by MALDI-TOF MS analysis. In a second approach, the fractions were analyzed using immunoelectron microscopy using anti-GLUT4, anti-vimentin and anti-tubulin antibodies.

MALDI-TOF MS Analysis

5

10

15

20

25

30

Proteins resolved by SDS-PAGE were visualized by silver staining (Bio-Rad) and the bands were excised from one single dimensional 5-15% gel. The silver stained proteins bands were destained and tryptically digested (trypsin) in gel according to Gharahdaghi et al. (1999, Electrophoresis 20:601-605) with some slight modifications. The digested samples were further concentrated and desalted with Millipore Zip Tip C18 micro tips prior to MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) analysis. MALDI-TOF analyses were performed on a Kratos Analytical Kompact SEQ Instrument, equipped with a curved field reflectron. Peptide masses were searched against the non-redundant protein database using MS-Fit of the Protein Prospector program developed by Clauser et al (1999, Anal. Chem. 71:2871-2882) at University of California, San Francisco. Fragmentation information obtained from individual peptides via Post-Source-Decay (PDS) analysis was searched against the non-redundant protein database using the protein prospector program MS-Tag.

Immunoelectron Microscopy

Standard techniques were used to stain the prepared vesicles with anti-Glut4, anti-vimentin, and anti-tubulin antibodies conjugated to colloidal gold particles. Most of the vesicles in the preparations show reactivity with anti-GLUT4 indicating relatively low contamination with membranes that do not contain the transporter. Anti-vimentin and anti-tubulin antibodies were used to detect vimentin and tubulin in GLUT4-positive membranes. A fraction of these GLUT4-positive membrane vesicles also directly react with anti-vimentin and anti-tubulin. Non-immune antibodies showed no detectable staining of these membranes under the conditions of these experiments, while anti-GLUT4 staining was readily detected.

These results indicate that some GLUT4-containing membrane vesicles are associated with the cytoskeletal proteins vimentin, α -tubulin, or both.

To further assess association of vimentin and α -tubulin with insulin-sensitive membranes, the abundance of these cytoskeletal proteins was estimated using Western analysis, in each of the membrane fractions obtained by equilibrium gradient centrifugation. The relative abundance of GLUT4 protein versus vimentin and α -tubulin throughout these fractions was analyzed. Both vimentin and alpha-tubulin are present in all of the membrane fractions of the gradient except for the top few fractions. Strikingly, both of these proteins are greatly reduced in abundance in the same gradient fractions in which GLUT4 is reduced in response to the action of insulin. In membrane fractions of higher density, the concentrations of GLUT4, vimentin, and α -tubulin are all unaffected by prior treatment of cells with insulin. Taken together, these experiments demonstrate that two cytoskeletal proteins, vimentin and α -tubulin, are bound to subpopulations of the GLUT4-containing membranes that are insulin-responsive in rat adipocytes.

15

20

25

30

10

5

Example 7: Identification of Proteins Expressed in GLUT4-Containing Vesicles

GLUT4-containing membranes were isolated by velocity sedimentation, then further fractionated using sucrose density equilibrium gradients, and, as described above, GLUT4-containing fractions that exhibited the most insulin sensitivity (peak 1; fraction 7-8 and the fractions containing GLUT4 that were less insulin sensitive (when compared to the peak fractions) were identified. The biogenesis of the peak 1 vesicle fraction was also observed to increase during 3T3-L1 adipocyte differentiation. To identify proteins present in GLUT4-containing vesicles, fractions corresponding to peak 1 from primary adipocytes, peak 1 from 3T3-L1 adipocytes, and peak 2 from 3T3-L1 adipocytes were pooled, subjected to SDS-PAGE and silver stained. The protein bands were subjected to tryptic hydrolysis and the peptides analyzed by mass spectrometry using standard techniques. Figs. 8A-81 are a list of the peptides identified in peaks 1 and 2, as well as their GenBank Accession numbers and the Genbank Accession numbers of a human homolog if one is available.

These proteins are useful as targets for compounds that modulate glucose transport as well as for diagnosis of individuals having or at risk for disorders related to glucose transport.

Example 8: Comparison of Muscle-Adipocyte Union Library Sequences and GLUT4-Enriched Vesicle Sequences

A comparison was made between the glucose transport-related proteins identified in the subtractive and the Adipocyte Union libraries and glucose transport-related proteins identified in glucose transport vesicles. Fig. 9 lists those proteins that were in common between at least one of the libraries and were also identified in peak 1 or 2 of the vesicle preparation. Acetyl-CoA carboxylase, carboxylesterase, caveolin-1, CDC36, are listed in this figure although their presence in peak 1 or peak 2 is not confirmed.

Example 9: Analysis of Gene Expression Using DNA Arrays

5

10

15

20

25

30

DNA arrays can be used to assay the levels of gene expression of selected gene sequences. These were measured by assaying the amount of mRNA for the gene sequences selected for analysis in undifferentiated 3T3 L1 fibroblasts and differentiated 3T3 L1 adipocytes. The sequences selected for analysis are selected from the MAU library. Clones from the library that show significantly different levels of expression in differentiated adipocytes are selected for further analysis of their role in glucose transport.

A protocol for analyzing an array follows.

- 1. Clones that are previously sequenced are selected from the MAU library. These clones consist of known and unknown genes with various levels of expression in fibroblasts and adipocytes.
 - 2. Each of the clones is diluted 1:50 and then amplified by PCR.
 - 3. PCR fragments are gel purified and re-suspended in 20-30 μl of ddH₂O.
- 4. Nucleic acid concentration of the PCT products is measured by spectrophotometer (OD₂₆₀) and further dilutions are made bringing all samples to a concentration of 100 ng/μl.
- 5. The PCR samples are then dot blotted (i.e., each to a separate address) onto a charged nylon membrane at 50 ng per dot as described in steps a c.
 - a. The PCR samples are diluted to the desired concentration in 0.2 M NaOH/10 mM EDTA (denaturation solution) and then incubated at 37°C for lifteen minutes.
 - b. The nylon membranes are pre-wetted and placed into a dot blot apparatus. Suction is applied to the apparatus and buffer is washed through the openings.

c. After denaturation the DNA solution is place in the apparatus (each sample in a separate well) and suction is applied. Once the solution has gone through the filter, the wells are washed with additional denaturation solution. The membrane is then removed from the apparatus and cross-linked with UV-radiation. Membranes are then baked to dryness and stored in sealed bags until ready for use. The membrane with the PCR sample is referred to as an array.

- 6. To analyze expression, the arrays are pre-hybridized for at least five minutes in modified Church's buffer (7% SDS, 1mMEDTA, 0.5 M NaHP04 pH 7.2).
- 7. Probes for the arrays are labeled in a modified first strand cDNA synthesis reaction as follows:
 - a. Two labeling reactions are carried out side by side. One using adipocyte mRNA as the substrate and using fibroblast mRNA as the substrate.
 - b. For each labeling reaction, 2 μg of mRNA is combined with 2 μl of oligo d(T) and 2 μl of random hexamer and incubated at 70°C for 10 minutes and then chilled on ice.
 - c. After the incubation, add 4 μl of 5X first strand buffer, 2μl of 0.1 M dithiothreitol (DTT), and 1 μl of a modified eNTP solution (A, T, and G at 500 μM final; C at 5 μM final), and 5 μl of labeled dCTP. Mix, microfuge, and place at 37°C for 2 minutes.
 - d. Add reverse transcriptase (2μl Superscript II; Life Technologies Inc.; Rockville,
 MD), mix and place at 32°C for one hour.
 - e. Place on ice to stop reaction.

5

10

15

20

25

- 8. Unincorporated dNTPs are removed from the probe mixture by passing the mixture through a G50-150 Sephadex column (Sigma) and centrifuging for 1 minute at 1000 x g.
 - a. To the labeling reaction add 1 µl 1% SDS, 1 µl 0.5M EDTA, and 3µl 3M NaOH and incubate at 68°C for three minutes and then at room temperature for fifteen minutes.
 - b. Add 10 μ l of 1 M Tris-HCl pH 7.5 and 3 μ l of 2N HCl.
 - c. Add an additional 50 μl of TEN (10mM Tris-Cl, 1mM EDTA, 100 mM NaCl, pH 8.0) buffer to the tube and filter the labeled mix through a G50-G150 Sephadex column to remove unincorporated nucleotides.

d. Add 50 μg of Cot1 DNA (Life Technologies Inc.; Rockville, MD) to this mixture; boil for five minutes, and hold at 68°C until ready to use.

9. The probe is added to a sufficient volume of modified Church's buffer and the mixture is added to the filters (add approximately the same number of counts to each array) and hybridized overnight at 65°C with gentle rocking.

5

10

15

20

25

30

- 10 After hybridization the filters are washed as follows: twice at room temperature with 2XSSC/0.05%SDS for five minutes, once at room temperature with 0.1XSSC/0.1%SDS for ten minutes and finally once or twice at 65°C with 0.1XSSC/0.1%SDS for 1 hour.
- 11 The damp arrays are wrapped in plastic wrap and put on a phosphor-imaging screen overnight (Filters may also be placed on auto-rad film).
- 12 Commercially available programs for phosphor-imagers quantify images. Alternatively the images can be quantified with commercially available graphics or image analysis programs. The quantified values represent the relative amount of expression of each sequence on the array.
- 13 The values are further analyzed by subtracting background from each measurement and the values are then graphically represented to facilitate comparisons between the values for fibroblast and for adipocytes.

This method allows for screening of multiple sequences in a single procedure. Such methods are useful for analyzing expression profiles in individuals having or at risk for a disorder related to glucose transport, for analyzing the ability of a test agent or a candidate agent to alter expression of a gene involved in glucose transport, and to analyze compounds that may be useful as drugs for other disorders for potential (deleterious) side effects resulting from unintended alterations in expression of genes involved in glucose transport.

Similar methods of analysis using arrays can be used for diagnostic purposes. For example, expression of sequences encoding proteins involved in glucose transport can be analyzed using a nucleic acid sample from the cells of an individual suspected of having a glucose transport-related disorder (e.g., type II diabetes). In general, the nucleic acid sample will represent sequences expressed in a cell type that conducts glucose transport. The sequences analyzed include sequences more highly expressed in adipocytes and/or muscle cells than in fibroblasts (including sequences expressed in adipocytes and/or muscle cells than on detectable expression in fibroblasts). Such sequences are described herein. The

level of expression of the sequences represented in the array is compared to a reference level of expression (representing the amount of expression present in an unaffected individual who is not at risk for the disorder). An alteration in the level of expression of one or more of the sequences indicates that the individual has or is at risk for the glucose transport-related disorder. The array may include one or more sequences that are used as standards (i.e., reference sequences) to normalize the data between reactions. In general, the sequences used as standards correspond to genes whose expression is not affected in glucose transport disorders. Sequences used as standards can also correspond to genes that are not differentially expressed between adipocytes, muscle cells, and fibroblasts. Examples of such sequences are described herein.

5

10

15

20

25

30

Example 10: Genechip Identification of Genes Not Expressed in 3T3-L1 Fibroblast, but Present in 3T3-L1 Adipocytes and Muscle

To further identify genes that are preferentially expressed in cells conducting glucose transport, the mouse U74A Genechip (Affymetrix) was probed with two independently produced sets of probes from 3T3-L1 fibroblast, 9 day old 3T3-L1 adipocytes, and mouse muscle. The experiments were carried out using standard methods, essentially as described above. The genes listed in Figs. 13A-13C are those whose expression was not detected in fibroblasts, and was detected in adipocyte or muscle on one or both of the duplicate Genechips based on the Absolute call of gene expression made by the Affymetrix Microarray Suite Software. The columns in Figs. 13A-13C marked f1 and f2 are data from the fibroblast replicate chips. The columns marked a1 and a2 are data from the adipocyte replicate chips. and the columns marked m1 and m2 are data from the muscle replicate chips. A indicates that the gene is absent in a tissue. P indicates that the gene is present in a tissue. An M indicates marginal signal and the software cannot determine if the gene is absent or present. The function classes of proteins listed in the last column are: Class 1 are genes encoding metabolic proteins; Class 2 are genes encoding signaling proteins; Class 3 are genes encoding cytoskeletal or trafficking proteins; and Class 4 are other proteins whose function is something other than those of Classes 1-3; and Class 5 are proteins of unknown function. Genes in italics encode mitochondrial proteins.

Genes that are expressed in adipocyte and/or muscle and are not expressed in fibroblasts are useful, e.g., for identifying genes whose expression is altered in disorders involving glucose transport, for detecting aberrations in glucose transport, and as targets for drugs designed to alter glucose transport. Genes that are expressed in both fibroblasts and adipocytes and/or muscle cells are also useful as reference sequences, e.g., to normalize data obtained when measuring expression patterns of genes expressed in glucose transport in a sample.

5

10

15

20

25

30

Example 11: Probe sets on Affymetrix GeneChip U74A whose expression is increased in both 3T3-L1 adipocytes and muscle compared to fibroblasts.

To determine the relative expression levels of genes in cells that conduct glucose transport compared to cells that do not conduct glucose transport, the mouse U74A GeneChip was probed with three independently produced cDNA probes from 3T3-L1 fibroblasts, 9 day old 3T3-L1 adipocytes, and mouse muscle. The experiments were conducted using standard methods, essentially as described above. The genes listed in Figs. 14A-14G are those whose expression was determined to be the same on all fibroblast chips, and increased on both adipocyte or muscle GeneChips based on the difference change of gene expression made by the Affymetrix Microarray Suite Software when compared to the first fibroblast chip. The columns marked f1, f2, and f3 are fibroblast replicate chips. The columns marked a1, a2, and a3 are adipocyte replicate chips, and the columns marked m1; m2, and m3 are the muscle replicate chips. NC indicates no change of expression. MI indicates that there was a moderate increase in expression. An I indicates an increase in expression. The function classes of the genes listed in the last column are as follows: Class I genes encode metabolic proteins; Class 2 genes encode signaling proteins; Class 3 genes encode cytoskeletal or trafficking proteins; Class 4 genes encode proteins with functions other than those of Classes 1-3; and Class 5 are proteins of unknown function. Genes listed in italics encode mitochondrial proteins.

Genes with increased expression in adipocyte and/or muscle compared to fibroblasts are candidate genes for a glucose transport pathway. Such genes are useful, e.g., for identifying genes whose expression is altered in disorders involving glucose transport, detecting aberrations in glucose transport (e.g., for diagnostic purposes), and as targets for

drugs designed to alter glucose transport. Genes whose expression is the same in fibroblasts and adipocytes and/or muscle cells are also useful as reference sequences, e.g., to normalize data obtained when measuring expression patterns of genes expressed in glucose transport in a sample.

In selecting nucleic acid sequences for the uses described herein, any of the genes or sequences identified using any of the above methods (i.e., subtraction libraries, vesicle proteins, or microarrays) can be combined. Particularly useful are those sequences corresponding to genes found to be preferentially expressed in adipocytes or muscle cells compared to fibroblasts in at least two of the methods. In some embodiments, the sequences are selected from those that are preferentially expressed in both adipocytes and muscle cells compared to their expression in fibroblasts in at least two of the methods.

Example 12: Assay for GLUT4 transport/insulin mediated transport

5

10

15

20

25

30

Methods are available for the rapid testing of the functions of proteins identified as glucose transport-related proteins, e.g., by assaying their role in GLUT4 regulation. For example, a reporter molecule that is a chimera of the transferrin receptor (exofacial domain) and the IRAP (insulin-regulated aminopeptidase) protein that traffics in cells like GLUT4 has been described as a surrogate for GLUT4 (Johnson et al., 2001, Mol. Biol. Cell 12:367-381; Lampson et al., 2000, J. Cell Sci. 113:4065-4076; Subtil et al., 2000, J. Biol. Chem. 275:4787-95; Johnson et al., 1998, J. Biol. Chem. 273:17968-17977). This chimera is expressed in cells and is sequestered in the perinuclear region under basal conditions. Insulin then stimulates the chimera's translocation to the cell surface. The translocation can be readily measured using an antibody raised against the exofacial domain of the transferrin receptor or by labeled transferrin itself. This assay is then applied to cells in which the protein of interest (e.g., a glucose transport-related protein) has altered expression. For example, the protein of interest can be overexpressed in a cell that also expresses the transferring/IRAP chimera, and the effect of overexpression on insulin regulation of translocation assayed. This assay can also be used to determine if a test agent or candate agent targeted to a glucose transport-related protein is an effective modulator of insulin regulation of translocation. For example, the candidate agent can be a ribozyme or antisense sequence that is targeted to a nucleic acid sequence encoding a glucose transport-related

protein, e.g., RabGAP or endophilin 1b. Similarly, the assay can be performed in the presence and absence of a candidate agent targeted to a glucose transport-related protein or nucleic acid sequence. An alteration in transport of the chimera in the presence of the candidate agent indicates that it is a candidate agent, useful for treating a disorder associated with aberrant glucose transport (e.g., type II diabetes).

5

10

15

20

25

Two examples of genes identified using the methods described herein that can be used in the assay methods described above are those encoding an apparent RabGAP and endophilin 1b. The RabGAP protein is predicted to be a negative regulator of Rab GTPases, which are known to promote membrane recycling of GLUT4 as it transits from intracellular storage sites to the plasma membrane and back into the cell. One such protein, Rab 4, is implicated in directing GLUT4 to its perinuclear recycling compartment, a necessary step for GLUT4 to respond to insulin. The RabGAP that was identified is predicted to inhibit Rab 4 by increasing the GTPase activity of Rab 4 leading to its binding GDP and deactivation. Thus, RabGAP is an excellent drug target in that its inhibition might lead to promoting Rab4, a required element in the regulation of GLUT4 by insulin. Endophilin 1b is related to a class of brain endophilin proteins that are involved in promoting endocytosis of plasma membrane proteins. The high expression of endophilin 1b in adipocytes indicates that it is likely to be involved in endocytosis of GLUT4 in these cells. Endophilin 1b is therefore another potential drug target in that its inhibition by a drug is predicted to retain GLUT4 at the cell surface membrane where it can promote glucose transport, thereby lowering blood glucose.

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

WHAT IS CLAIMED IS:

5

10

15

20

25

1. A method of identifying a gene whose expression is altered in a glucose transportrelated disease or disorder, the method comprising:

providing a nucleic acid array comprising 4 or more nucleic acids immobilized on a solid support, each nucleic acid comprising a sequence of 10 or more consecutive nucleotides within any one of the sequences listed in Figs. 1, 2A-2R, 3A-3E, 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G or a complement thereof:

providing a reference nucleic acid sample prepared from a tissue of a normal, control mammal;

contacting the array with the reference sample;

detecting hybridization of the reference sample with nucleic acids in the array, to obtain a reference pattern of glucose transport-related gene expression:

providing a test nucleic acid prepared from a tissue of a mammal having a glucose transport-related disease or disorder:

contacting the array with the test sample;

detecting hybridization of the test nucleic acid with nucleic acids in the array, to obtain a test pattern of glucose transport-related gene expression; and

comparing the reference pattern with the test pattern to detect a gene whose expression is altered in the test pattern relative to its expression in the reference pattern.

- 2. The method of claim 1, wherein the array comprises 10 or more nucleic acids
- 3. The method of claim 1, wherein the array comprises 100 or more nucleic acids.
- 4. The method of claim 1, wherein the array comprises not more than 100 nucleic acids.
- 5. The method of claim 1, wherein the array comprises not more than 200 nucleic acids.
- 6. The method of claim 1, wherein the array comprises not more than 300 nucleic acids.

7. The method of claim 1, wherein the sequence comprises 30 or more nucleotides.

- 8. The method of claim 1, wherein the reference nucleic acid and the test nucleic acid are cDNAs.
- 9. The method of claim 8, wherein the cDNAs comprise a fluorescent label.

5

10

15

20

- 10. A nucleic acid array comprising 4 or more nucleic acids immobilized on a solid support, each nucleic acid comprising a sequence of 10 or more consecutive nucleotides within any one of sequences listed in Figs. 1, 2A-2R, 3A-3E, 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G.
- 11. The array of claim 10, wherein the array comprises 100 or more nucleic acids.
- 12. The array of claim 10, wherein the array comprises not more than 100 nucleic acids.
 - 13. The array of claim 10, wherein the array comprises not more than 200 nucleic acids.
 - 14. The array of claim 10, wherein the array comprises not more than 300 nucleic acids.
 - 15. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-3, or a complement thereof.
 - 16. A nucleic acid molecule of claim 15, consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-3, or a complement thereof and a non-nucleic acid modifying group bound to either a 3' or 5' end of the nucleotide sequence or both.
 - 17. A nucleic acid molecule of claim 15, consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOS:1-3, or a complement thereof, and a synthetic nucleic acid sequence bound to a 3' or 5' end of the nucleic acid sequence or both.

18. An isolated polypeptide comprising an amino acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOS:1-3.

- 19. An isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOS:4-93, or a complement thereof.
- 20. A nucleic acid molecule of claim 19, consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOS:4-93, or a complement thereof and a non-nucleic acid modifying group bound to either a 3' or 5' end of the nucleotide sequence or both.
- 21. A nucleic acid molecule of claim 19, consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOS:4-93, or a complement thereof, and a synthetic nucleic acid sequence bound to a 3' or 5' end of the nucleic acid sequence or both.
- 22. An isolated nucleic acid molecule of claim 19, consisting of a nucleic acid sequence selected from the group consisting of SEQ ID NOS:4-93, or a complement thereof, .
- 23. An isolated polypeptide comprising an amino acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOS:4-93.
- 24. A method for identifying a candidate agent, that modulates the expression or activity of a glucose transport-related polypeptide, the method comprising:
- a) providing a sample containing a glucose transport-related polypeptide;
- b) adding a test agent to the sample;

5

10

15

20

- c) assaying the sample for expression or activity of the glucose transport-related polypeptide; and
 - comparing the effect of the test agent on expression or activity of the glucose transport-related polypeptide relative to a control, wherein a change in glucose transport-related polypeptide expression or activity indicates that the test agent is a candidate agent that can modulate expression or activity of the glucose transport-related polypeptide.

25. The method of claim 24, wherein the test agent is selected from the group consisting of a polynucleotide, a polypeptide, a small non-nucleic acid organic molecule, a small inorganic molecule, and an antibody.

5

26. The method of claim 24, wherein the test agent is selected from the group consisting of an antisense oligonucleotide and a ribozyme.

10

27. The method of claim 24, wherein the glucose transport-related polypeptide is assayed using an antibody.

human glucose transport-related polypeptide.

28. The method of claim 24, wherein the glucose transport-related polypeptide is a

15

29. The method of claim 24, wherein the method comprises the step of determining whether glucose transport is modulated in the presence of the test agent.

30. The method of claim 29, wherein glucose transport is decreased in the presence of the test agent.

20

31. The method of claim 29, wherein glucose transport is increased in the presence of the test agent.

25

- 32. The method of claim 24, wherein the assay is a cell based assay.
- 33. The method of claim 24, wherein the assay is a cell-free assay.

30

34. The method of claim 24, wherein the glucose transport-related polypeptide is selected from the group of polypeptides encoded by sequences comprising the nucleic acid sequences listed in Figs. 1, 2A-2R, and 3A-3E, and the polypeptides listed in Figs. 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G 6-9.

35. A method for identifying a candidate agent that modulates expression of a glucose transport-related polynucleotide, the method comprising:

PCT/US01/49451 -

- a) providing a sample in which a glucose transport-related polynucleotide is expressed;
 - b) adding a test agent to the sample;

WO 02/33046

5

10

15

20

25

- c) detecting expression of the glucose transport-related polynucleotide;
- d) determining the amount of expression of the glucose transport-related polynucleotide; and
- e) comparing the effect of the test agent on the amount of expression of the glucose transport-related polynucleotide in the sample relative to a control, wherein a change in the amount of expression from the glucose transport-related polynucleotide indicates the test agent is a candidate agent that can modulate expression of the glucose transport-related polynucleotide.
- 36. The method of claim 35, wherein the test agent is selected from the group consisting of a polynucleotide, a polypeptide, a small non-nucleic acid organic molecule, a small inorganic molecule, and an antibody.
 - 37. The method of claim 35, wherein the test agent is selected from the group consisting of an antisense oligonucleotide and a ribozyme.
 - 38. The method of claim 35, wherein the glucose transport-related polynucleotide is a human glucose transport-related polynucleotide.
 - 39. The method of claim 35, wherein the method comprises the step of determining whether glucose transport is modulated in the presence of the test agent.
 - 40. The method of claim 39, wherein glucose transport is decreased in the presence of the test agent.

41. The method of claim 39, wherein glucose transport is increased in the presence of the test agent.

- 42. The method of claim 35, wherein the glucose transport-related polynucleotide is selected from the group of sequences listed in Figs. 1, 2A-2R, and 3A-3E-3 or a complement thereof, and listed in Figs. 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G, or a complement thereof.
- 43. The method of claim 35, wherein the assay is a cell-based assay.
- 44. The method of claim 35, wherein the assay is a cell-free assay.
- 45. A method of diagnosing an individual having or at risk for a glucose transportrelated disorder, the method comprising:
 - (a) providing a nucleic acid array comprising 4 or more nucleic acids immobilized on a solid support, each nucleic acid comprising a sequence of 10 or more nucleotides, the sequence comprising or containing a sequence selected from the group of the sequences listed in Figs. 1, 2A-2R, and 3A-3E, or a complement thereof, and the sequences of the genes listed in Figs. Figs. 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G, or a complement thereof;
 - (b) providing a nucleic acid sample from the individual;
 - (c) contacting the array with the sample from the individual
 - (d) detecting hybridization of nucleic acid in the sample from the individual with each nucleic acid in the array, to obtain a pattern of glucose transport-related gene expression;
 - (e) comparing the pattern of glucose transport-related gene expression in sample from the individual with a reference pattern, wherein a comparison of the pattern of expression in the individual compared to the reference pattern indicates whether the individual has or is at risk for a glucose transport-related disorder.

5

10

15

20

46. The method of claim 41, wherein the array comprises 10 or more nucleic acids

47. The method of claim 41, wherein the array comprises 100 or more nucleic acids.

5

48. The method of claim 41, wherein the array comprises not more than 100 nucleic acids.

10

49. The method of claim 41, wherein the array comprises not more than 200 nucleic acids.

50. The method of claim 41, wherein the array comprises not more than 300 nucleic acids.

15

- 51. The method of claim 41, wherein the sequence comprises 30 or more nucleotides.
- 52. The method of claim 41, wherein the sample from the individual is a cDNA sample.

20

- 53. The method of claim 48, wherein the cDNA sample comprises a fluorescent label.
- 54. The method of claim 48, wherein the disorder is type II diabetes.

25

55. A nucleic acid array comprising 4 or more nucleic acids immobilized on a solid support, each nucleic acid comprising a sequence of 10 or more nucleotides, the sequence consisting of at least a portion of a sequence selected from the group consisting of the sequences listed in Figs. 1, 2A-2R, and 3A-3E, or a complement thereof, Figs. 6A-6E, 7A-7U, 8A-8I, 9, 13A-13C, and 14A-14G, or a complement thereof.

30

ŧ

Figure 1

Novel Sequences from Clones in the Muscle-Adipocyte Union Library

5

Line number 259

>c0148

CCCCAACCTGCTCCATTGCTTGGGGGAGCGGTCCATGAGCGCTTGTCTCATCCCT GGCCTCCCGGGAAAGTCTATGCAAAAGCTAAGGTTAACA (SEQ ID NO:1)

10

15

20

25

Line number 258

>c0827

TCACAGAGGCTCTGAGGCTACCACGAAGATGAACTCTCAGAAATGGGATTGTCA CCCTCGATGAGTTTCCAGTTCCCTCTCTGTTGTATGACACAAGAAGGTGAAG TGTTGCCTCTCTACAACTGGAAGAGGGAGA (SEQ 1D NO:2)

Line number 260

>c1083

WO 02/33046 PCT/US01/49451 2/77

Figure 2A

Muscle Adipocyte Union Library

Number: 172 >C0025

Line number 229

>C0039

Line number 240

>C0076

GTACAGTCCATGCTCATCTGAGAAATTTACAGACTACAGTTGGCCAAGTTCCT CACCATATGGTCATTATACCTTCCATAAGATTTTGATTCATGCTTACTTTCTG TATCCATTTCTGGCAAACAAGTTACTTGTATCATGACACAGGAGGATTTTAGT TAGCTCTCTTACACACACTATTTTATTGATGCATTATGAGATTTAATGACTATGA AGGGGAATGATAATTCTAGTTGGCCATCATTGGCAGCACTTACTACTAAAGT GGAAGTGAGACATTTGGACTGTATATCTGTTTGGTATGTTATATAACTACTAA AATTGAATGGTGGCAGAAAGGAATGAA (SEQ ID NO:6)

Line number 191

>c0089

3/77

Figure 2B

Line number 254

>c0095

GTACTTCTGCATGCACTCTTGCATGGCCCGGAAACTGGTCTATACAGTCTGAC CCCTTGATATCCTCTGTTGCTGTAGTGGAAGCAGGAGAATGCATACTTGAACT GCTCCCCACAGGGGCCGCTGGCCATTCCCCCAAGACATGGACAATTCCAGTT TAATATCTCCGTTAGGCAGTATCAACCCGTTGCTCCTCATAGGG (SEQ ID NO:8)

Line number 200

>c0103

line number 193

.>c0121

Line number 195

>c0124

4/77

Figure 2C

Line number 113

>c0139

GTACCAAAATATGGACAGAAAAGATAATGAAGCAGACCGAAGTGCTGTTGC AGCCAAATCCAAATGCCAGGATAGAAGAATTTGTTTATGAGAAACTGGATAG AAAAGCACCAAGTCGTATAAACAACCCGGAACTTTTGGGACAATATATGATT GATGCAGGAACTGAGTTTGGCCCAGGGACAGCTTATGGAAATGCCCTTATTA AATGTGGAGAAACACAGAAGCGAATTGGAACAGCTGACCGAGAGCTGATTC AAACATCAGCCTTAAAATTTCTCACTCCTTTAAGAAACTTTATAGAAGGGAT TACAAAACAATCGCAAAAGAAAGGAAACTATTACAGAATAAGAGACTGGAT TTGGATGCTGCAAAA (SEQ ID NO:12)

Line number 244

>c0152

GTACATGAACCAGATGTATTTCTCAGCTTTACATAGGGGAAAGGGAATTAAA AAAATACGCAATTGCCCAGCAAATGCAAATGTTTAAAAAAGGAAATGCAGAG AGAACTATGGGAATGGAACAAACAACAGACAGACAGACTTCAAACAGTGAAAGA AAAACAAACAAACAACCAGAGGGAGAAAAACAACAAAAGATCTGAAATCCA CCAATCGCTTTTTGAGCTGAATGGGGGTTGCTTTAAGACCAGAAGTCAAATGC CACTGCTGCTGGTGGTCTGCCACGTGGGGGTAGTTCACCTAATTCCAAATAGC TGGCCCTGCTTCAGGGCTGGGGCACCC (SEQ ID NO:13)

Line number 208

>c0196

AGGGGTGTAAACAGTAAACTGCTTTATTGAGACACTGTTACAACGATTCCTTT GTTACACAGTTTTAAAAATATTTTATAACACTCTTCCTGGGGAGAAGTTAAAAT CTGAGGCTTAGTTTAGACTGCTGGGAAATATACAATGTAC (SEQ ID NO:14)

Line number 196

>c0222

CAAGTTCTTCAGTTACAACCTAGTAGTATACTTACTCTTCCAACTGTCCTAAG
GTCACTTCCCAGCCAGCTTAGGATCTTCAGCATTTTTAAGAGCTGAAGCTCCC
TCTTGCCCTTCTTGTCTACTCCTCACTGCCAGTTGGGGCCTAGGCTTAGTCCTG
GGCAAATGTCCATGATCTTGCTGCTGTAGGAAGCTTGATAGGGCATTTGGCTC
AAATTTCAGAAGGCCTCGCTCCTGACCTAATTTCTCAAAGCTCCGGTAGTTCT
AGAACCCTCCAATTTCTCATCTGGTTGCAAGGCTTATTTTTCTTTT (SEQ ID
NO:15)

WO 02/33046 PCT/US01/49451 5/77

Figure 2D

Line number 243

>C0236

GTACATTCAACTTCTGCCCTGTAATTCGGCCAAGTAAGGCCCATATCCCTTGC CCTTCACTTCGAAGTTTCCCATTCAGATTTTGCAGTTCCTCTAATGATTCACAG AGCTTATTATATTCTACATGAAGCTTTTCTTGCTCATTCTCTAATTTATCCTTT ATATTCTTTTGTTCAGCCATATTTTCCTGAATTTGAATCATGCGCATATTTCTC TCAAAATAGTAATTCACAAAATCAGCAGTGAGAGCGGGCTGCTTATGCTTCC GCCTTCCATCCACACACTAGAACTAGTATCTGAATTTGTCCACTGGAAAGATATC CGT (SEQ ID NO:16)

Line number 203

>c0250

Line number 167

>c0352

GTACAAGGACCAGCTCTTGAAAGAGACAGTGCTCCAGCCACTGCTGCAGCCACAGATCATGTCAGCATGAGTAGTCGTGCTGCAGGCAAAACACAGAATGCTATCTTAATGACCATGCCAACATTATTGAATAGCCGAAAGTCCCTAAACCCACTCTCTGCTGCCTTATCAATGCTAAACCTTATTTGTCTTCATCAAGAGTAGTTCAAAAATATGCAACTAATTTAATAATTTTGAATGATGGTTTTATCTATAGCAATCTGTAGTAATATGTATATTATCTATTGGGATTTGTGTAATAAAAAAATCTAAGGGAACAAAATTTTATAACTACAAGCACTTAAGTAC(SEQ ID NO:18)

Line number 251

>c0367

Figure 2E

Line number 197

>c0380

Line number 236

>C0439

Line number 199

>c0442

Line number 198

>c0443

GTCCTTGCCCATTACCAAGAAGTATATGCCAGAGAATAAGGGCGTTCCTCTG CAAGGGAGCCAGGAGGACAAACCCTTCCCAGACTTTGACCCCTGGTCATCAT ATAATTGTGAGCAGAACGAGTCATAGCCCATCCCTGCCAACTGCACTGGCTG TGCCCAGATATTACCCCTCAAGGTAACGCTGCCAGA (SEQ ID NO:23)

Line number 210

>C0504

WO 02/33046 PCT/US01/49451

Figure 2F

Line number 250

>C0507

Line number 233

>C0513

GGCTTGTGAGGGTGACTGGACTGTCCAGTGTATGTCTGCTGCTTGTTCCACTG ACTCTACAGAAACAAAACCCGGTGGGTGCTAGACAGTGCTGGCTCTGC AAGCCATGTTGCTGTGGTTGTTACTTATGTGTCTGGTCCAAATAAAGGCAGCT GCTGATTTGTTAAAAAAAAA (SEQ ID NO:26)

Line number 234

>C0533

GTACAGTTTCATTTAGAAACTTTGTGACCTTGCCCTATTGTTGGGTTTTCTTAT
TTGTCCCTCCAGCTACTTTGTAACAGCCAGAGGTGACCCTTGAAGGAATCCTG
AGAAAGGAGCAAACAGGAATGGAGCCTAGCCACGGTCCCTCAGTTCGGCCTC
AGGGGCGTAGTCCTTCATTGGCTGCATTTTTCTTTGTGCTGGATCACACCCTTC
TGGATCAGATCGGGGACTTCCACTGCCAGCCAAGGACCCAGCCCCAGGGCCA
TGAGATGAGCTAGTCCAAACTTAGGCACATTCCTGGCCTACAAAGGTTTGAA
ATGATCAGTCAGACATATTTTGCCACCCCTGTAC (SEQ ID NO:27)

Line number 231

>C0536

Figure 2G

Line number 230 >C0538

Line number 238

>c0564

GTACAAAGGATCCAGAAAAGGGGACATTTTAAAAAAAATCACTGTTTAGGCCA CCAAACCAGGGGAATCGTGGTGTTACCATCCCATTAGAGTCCCAGTTTACAG GAAGACACACGAGACAGAGAGCAAAGCCAGTCTCTGTGCTTAGCTACTGTGG GGGACTGAACACATGTAAAGAAGTCCTACATGTCTGCTGGTCCTTTCCCACCA GCCCCCATCTTCAGGTCTCCTGAGCTGAACTTCAAT (SEQ ID NO:30)

Line number 253

> c0572

Line number 249

>c0580

Figure 2H

Line number 255 >c0582

Line number 194

>c0591

Line number 205

>C0596

Figure 2I

Line number 209

>C0600

GTACCAAAAGTCTTTATTTTTGGATGTTGCCTGAGATGACCTCTTTCCCCACTC
TCTGATTCTCATTCTTCCATGACACTCAGTTCCTCTTGCATACTCCCAAAGATG
GCAAGGTCTAACCATACATGGATCCTCTGGCTTTGGTTTCTGCGTTAAGTAAT
ACTGGTCACTCAGCCTCCATCTTGGAGGAGGATGTTTTCCTATACCACTCCTA
AAGGTAGTGACCGCACACCAAATCTTAGGTCTCCACTGTCTCAAGGGAATAT
AAAGACCCCAGGGTGGGCTGCAGGTTGCTTTAAACAAGGGGACTACAAGGA
CACCCACAGGTTTCTGCTCTACCCTCTGGCTTGGACAGCAACAGAGAGGCTTC
ATCTAAACTTAAGAAATTCTTTTCTACAAGGCAAGCTGTATCTGCTACCACCA
AC (SEQ ID NO:36)

Line number 245

> c0635

GTACAAGAGATGCACACTTGGAAACCTTGTAGTTGTGAGTAACATATTTATA CCTATCTTAGTGGGCTTCAGAGAAACAACACGTTATGTATAATAAAAATGGA GAATTAATAGTTTTTCCAGGTATAAATGTAC (SEQ ID NO:37)

Line number 213

>C0681

Line number 212

>C0684

Figure 2J

Line number 211

>C0689

GTACTTTGGGTTTGGGGACCTTGAGCACTGACGTGAAACTCTAAGGAACCTG
AGCCAAAGAAAACTATTCTCTCAGTGCTGGAACTCAGCGAGCACATGTGTAT
TCTGTGCAAGATGCGCATAAGTCGGGAGAAAGCTTTTACAGAGCAACGTTTC
AATCCTGACCAGGGCTCCAACAGACAAGATGTATGTCACGGCGAACAAGCCA
ATAAGCAGCACCCGTCATGGTTTCTGCTTCGGTTCCTGCCTTGAGTTCCTTTG
AGCGTCTCTCAATGGACTGTGGCCAGGGATATGTAAGCCAATAAACCATTTC
CTCCCCCAAGGGGTTTCAAGTCTTTATCTTAGCAATAGAAACCT (SEQ ID
NO:40)

Line number 241

>c0692

GTACAGTGTGATAGGACCACTGTCCTGGCAGAGCAGGACTAAAGGAATGTAG ACCCCATCTCAGTGTCTTCAGAAGGACTGTGAACAGAGGCAGCGTCTGCCAT GAAACCAGTTCACCGCTCCTCTCCATGAATTGACCTTTTCAATTTTTTAAAGT TATTTTTGAGACAGAGCCTCATGTAGCCCAGGCTGGCCTTGAGCTCTGATGT ATCTGAGGCTAGTCCTGAATTCCTAACTCTCCTGAGTGCTGAGATTGTCAAGC ACTGCATTAAACCTGGCTGGTCTCTTTGTCTTGACTTCCTATATCTTTGGCTCCT TCTGTCTCAGAATGATGGGAAGCCTGACGGGGAC (SEQ ID NO:41)

Line number 257

>c0710

GTACTTCCCATGTCGGTTAAAGTGTTTGTAGAGATAGCTGATCCGTTTGTTAA GGTTATGCAGGTCCTCAATGAACATCCTGTTTCCCACAAAATTTCTTCTTTCGG ACACAACGCTGCAATTCATTTCCTCCAGCCTCGAAGCCATACTGGGCCCTT GATCAGTTCTTTTGGGTGCTTCTCGAAATTCCCCAGGATTCCAATGTTGTCGT AGACGCCAAACAGAGCCCTCTTCTCGTTCCAGCGATCAACCACTTTGGGAGG TGGAAGAGTGAGCCTTACGAAGGCCAACCGTGGGACGCCCAGAGAGAAGCT TCTGCATGCCCGAGGGCACCCCAGCCCCACAGTCTTCTACTTGCCCGCCAAGG GACACTTCCTGCCATTACTCTAGCCTGTCCGCTCAGTAGGGGCAGCAAACCA GCCCGGAAAAATGGGGAGCGGGGGTGTGAATTTCAAAGCCCAGACACAGATT ACAGTCCCCAGGCGGGGACTTACACACGGTAGTGACAGTAAAAAGGAGCCATTT T (SEQ ID NO:42)

Line number 232

>C0724

Figure 2K

Line number 192

>c0729

GTACCCCAATTCCTCTGCATCCTGTGGTGATGGGGGTGACTGTGAAGCCCTGC TGGTCAGGCTTCCTCCAGTGACAGGGGCGGAGTCTGACGAGACTGGCCTAGC TCTCTACAGAGGGAGCCCCGGTGCTGTCATGCAGGGACATGACTCTTAACAT GACTCTTACAGGCTTCACAAGACAGTCTTAACTTCTGATCATCCCACCCCTGG GTTTTAGTGTTAG (SEQ ID NO:44)

Line number 252

>C0739

GTACTTGCTGCCTTCCTCGCGGAGCCGCGTCCTGATGACCTCGTGTGGGTAAG CGATGCAGGAGCACATCCCTTAGAAACAGCAGCAGCTGCCATGAGTCCAAA GAAGCCAGAGGAACTTTTCTCAGCTCCATCTGTGGAGGAGCGATCGGAGCG TCTTTCAAACACTTCTTTAAGCTCTCATAAATAGCAAAGCAGATGATTGTCTC CGAGATCCCAGCGTAGGAGGCGGTCAGCCCTCTATAGAAGCCGCGGACGCCT TCTGTCTGGTAGACACGTCGAGCACACTGGAGTGTTCATCTGCTTGCAGCC CCTCACCTTGCGTTCTAGCTGCATCCTCGTTTTAACCATCCAAATAGGATTCA TTAAGGTATTTGTGACAAAAGCTGCAGAGCCAGCTGAGAGAATGTGCACAGT ATTGCTATTAGGCACGAAGATGCCATTGAATTGCTCTTTTGGAATAA CATGCAAAGTAC (SEQ ID NO:45)

Lined number 214

>c0748

GTACTGTTGCACTTCATCCAGAAGTCCCCGGGTGACTATGTTCCCCAGGAGAA CATCCTGCAGGCCTTGGGTATCTCTGCAGAGGTTTGCTCCAGCAAGCCACCCC AGTGTGATGAAGAGGTGTGTGGGAGGTGACACGCACAGCCTGAGGACCCGG AGGCATCTGTAACCTTGGATGTTTTGGAACACAAAGAATCCCTGTGGAGCC ACTGAGCCAGGACGTTGGACCTTGTTCATCTTTCAACAGCAATGAGCCATTAA AGTGCAGGTCCTGGGCAAA (SEQ ID NO:46)

Line number 204

>c0762

GTACCCAGGCCCCTTTGCAAGATTTAATCTTGATTATCTCCTTTTATGTTAGAGGAGATATAGTATTTAGAACACTCTAAGATATGTTTATGTTCCTGAAGCTATCTTGCTCATGTTTAAGATACTAATTGTTTAAATGTAAGTTTTCAATAAACGTATTTCTTTAGAGCTGCC (SEQ ID NO:47)

Figure 2L

Line number 185

>C0784

GTCTGAAATATGTCTGAAAGAAGCATTGGAATTGTAAAATGCCCTATGAATT
TGCCAATCCTTAGGTGGAACCAGATAGCCTTTGATGCATATAAAGGACAGCG
GATCCGCTGCACTCCAGGTGCTCCAAGCCTCCTAATCAGGTCTAATTGAAC
TGCTGTGGACAGAGTGTGACGTCTGCTCAGGAGGAGAGGGTTTCACTGACCT
GGCTTTTAACAGTTCAAAGCAACAGGAGCAAAACACCCAAGTTGCGCATGAA
TCTGGCATGGTGTCTGATAAATCCTTGTGTGTCCCCCAAATGTGAAGGTTATG
GGCTATTCATTGTTTAGCCAGCTCTTGACATTCACCTTGGGAGTATGTTTGGT
AATCACTTGGAGACGCAGGGGAATAGTCAGTAATGTAGCATTTCTGTTAA
TTTCAATTTAACTATCTAGTAGTAC (SEQ ID NO:48)

Line number 227

>C0785

CCCACTGAAGGCTGAAGGCCAAAAAGGTGAAGGCCTCTTGAACAGCC CCAGCTGATGCCCATTTTGCAGCAGTTATTTTTTGATTAATTTTGGCAGCCTAT GGCCATTGTTATGACGACGACTTGAAGAACCTGACTAAGTATAACCTGACTA AGTGTTCCCTCCAAAGGGGCATGTATCTTTCCATGGGGCAGGCCCTGCCCTGT CATGCCAGCCAGCGTGCACCTTGACACTGGTGCCGTGGGCAACACAGACATT CAAGCCTACTCAATATGACAATTCCTCAGAAATGAGGACACTTAGCTGACAC ACAAAGCACCTTTTTATACAGATCAATGTTTTCTCATTAAACTGACTCTATTC (SEQ ID NO:49)

Line number 207

> c0793

Line number 246

>c0794

GTACCTTTGGAAGAGCAGTCAGAGCTCTTACCTGCTGAGCCATCTTGCCAGCC CAGTTCTTTGTCTTTTTAAGCATCTTTAATCCCAGCTTCACTTTCTCTGTCAATC ATCCTTAGGCCTTATACAGATCTTAGTGGAATCCACTCTATCAACCACATGGA GAGAGAAAGCTCTAAGAGCAGATGTAATTGGCTATGTTCAGAGCAGTCTGCT CATGGCAGCTGTAGGACACAGAGAATGGCTATATTTTCCTCCTTTGTAC (SEQ ID NO:51)

Figure 2M

Line number 247

>c0823

Line number 256

>c0840

Line number 215

>C0846

Figure 2N

Line number 202

>c0859

GTACCGCGCCATGGGCCTCAGCTCCAACTCCGCTGTGCGAGTTGAGTGGAT CGCGGCCGTCACCTTTGCTGCTGCACAGCCGCTCTCGGTTACCTGGCTTACA AGAAGTTCTACGCTAAAGAGAATCGCACCAAAGCTATGGTGAATCTTCAGAT CCAGAAAGACAACCCGAAGGTGGTGCATGCCTTCGACATGGAGGATCTGGGG GATAAGGCCGTGTA (SEQ ID NO:55)

Line number 217

>c0884

GTACCACTAACAGCTATTTTTTAACCAAAGTTACTCCAGAGAATTAGAGAAA TATGAAGTTGTCTGAAATAATTTATTGAAAAGTAAGATTTTTAAAAATCCAATC TATCCTGGTCTTACATTAATTAAAAAACCAAATGATGAAACACCATTTCAGAC TTATATACATCATGATCCAATTCTTAGAAAAAATGTAC (SEQ ID NO:56)

Line number 216

>C0901

GTACAGATGAGGTAATTTACAACACAGAAGTTGTTACTCTGTAAACCCTGAC CCTCCCTACCCCCACCCACTCAGATCTTTTAAAACTCTCCACATTTCTGCAA TGACTCCTTTTT (SEQ ID NO:57)

Line number 220

>C0935

GTACAATATTAACAGTTAGAGAACTGTTATTCAGAAAAAGGTGTTAAACATGA ACAGCAGACTCGGGCTGACTGTCAGCTGTGGAAACATAAGAGGTAACATCAG TTTAAGTGAAGGCGAAGCCTTGGTCCACAGGCAAGACTCACACGAGGACCAC AGGACTCAAGAACTGGGAAACTTACGGAGTGTGTGGGCACTGGTCAGTGAGT ATGGGGCTTGTTCAAAGTTTATCTCCTCATCTATAAAATTATTATTGACATGA TCTAAAACAAGACCAACTGGGAATGATTGTCATCAAAATCTAGAAAATTCTA TTAGGAACAAACTATGGAGCCCAAAGTTAATTGAAGAATGGATACTTTCCTA GGCAGAGTTTTCAAGTGTATTTTCCAAGCAACATCACACAGACTCATAGGCA ATGATGCAATTTTTAAATAGACAAGATTTTTTTCCCCCTCCAATACCTCAGAAC TTCATAGACATTGTTTGGAGAATCTGGTCACAAAA (SEQ ID NO:58)

Line number 239

>c0943

Figure 20

Line number 201 >c0974

Line number 235

>C0983

Line number 228

>c0991

WO 02/33046 PCT/US01/49451

Figure 2P

Line number 219

>C0996

Line number 248

>c1023

TTGTTTGAGGATTTATTTCAAGACAGCATCCAGAATACGATTCATTTAAAAG
AGCAAAATTAAGTATTTTGCCTCATTTTACCCTTCAAAAACTCGTAGCAATGC
AAATGCAAACCGCAAACCTCCCAAACGTGCCTCTCTGTATAGCTTTTTGGAAAT
GAGAGTTCATTGAAAATATTTTTCCATTTTCAGATGAGATGAGATTTGTTGGG
AAATCTTTGTTACAACTTGGGCATCTTGTGGGGAGATAAACTCTCGGACTGTC
CCAGAAACTCCTGGATTGATCTCATCTTCCTGGCTTCCTGAGCCCTTGGAAGAA
CAATCCAAGAAGACCTGGATCTTTTTCCTGCACGCCTTCGTCGCGGAATTCAT
TCTGCTTCCAGCAAGCCATCATCATCGACATCTTC (SEQ ID NO:64)

Line number 218

>C1032

Figure 2Q

Line number 237

>C1071

Line number 221

>C1099

Line number 242

>c1112

GTACATATGCACCAAATTCCATTTTAGAAGTTTCCATATCATTTTCATAGAAA ACAAAGTTTGAAAACAAGTTAACATTTAAACACAGCACGGTATTCTATCACA ACTGAAACTTTTCTTCTTTACAGGACTCAACAAAATCTAAAAAATGAACTATGC TGTAGATTTACTTCATGCAAAGATCTTTATGTTATCTCTGAAAATGAAAAGAA TGGCTTTAAAAAGCACATTTTATACTATTATGGCAACTTGTGTAC (SEQ ID NO:68)

Line number 222

>c1144

AGACAGTGCTGCCTCCTGGTGGATACGGTGGGATCCAGCTAGGTCATCTGA AAGATTAAGTCCCAGGATCTCAGCCAACAGTGACCATGCTTCCAGGGAAACT GCTTCCTGCACTTGCAGAACCACCAGTAGGCTGCAGGTGACTAACGTATCTG CAAGGTTAGAGATGCTCGGTGTTTCATACCCTGCGTTGGTCCTAGAGAGAAG GGCCTTTGGCATTGCTTTGGGCAGGTAGTGGGAGAAGAAAGGGATCCTGGGT GGGGTGTATTTATATATATATATTCGGTTTTGTTTGTAC (SEQ ID NO:69)

Figure 2R

Line number 223

>C1148

GTACAGATTATCCCTCCTGAGACGCTGTGCCATCGGCCAGCACTCTCACTCTT CCCACACCTTCCCTGTCCTGCTACCCACTGTTAGGCTCTCAGTGTCTCAG ACATCTGTAAGCTGCTACTTCATCTGCAAAGAAAATAGCTGTTCTTTTAAAAA TTAAACTATGTAC (SEQ ID NO:70)

Line number 224

>C1176

Line number 225

>C1201

Line number 226

>C1205

GTACTGGACTTTGTTACAAAGCGACCCAGTTGACTGCTTTGACAGGAGCAGA TGAGAAGCATATCTTATGTTCTGTAAGAATGAGGCTCTGAATCCCTCTCTATA GAAAAGGTTACAGGCACTGTTCTTTATAACCAAAGAGCTTCCAGGAGACTGA ACGTCTTTGCTGTCCACTCTTGTTTTTGTGTGAGTATATAATCTCACTCCAATCT GGTGCCATACTTCCCTTGGCTACCAAGCCACGTGCTGCCCTTGGTCCCCCTTTCCTAAGCACACTGAGAAATCGCACAGCTGTAACCTTCAGTCTTCCACA TAGCCTGGTAC (SEQ ID NO:73)

Line number 206

>c1217

AAACAATTATACTCCTGAATTCTCTCTGATATCTTTTAATATTTTAATGTG CACCTTTTTCTCTATATAGACACACTCATATACAGTTGAAAAGTTAAGTCAGA CTCTTCTTTATAGCCTTTCTGCCACTTGTTTCCTGACACCAGCTTTTATGAAAC AGACATATTTCAAGAGTTTTACTTCATTTTTTTTTAATAATACCACAGTATTCT ATCATTTACTATATTAGGATTCATTCAGTATTGAATATTTAGATTGTTTAATT TTTACTATCTAAAAAATATGTCAGACTCATCCTTGGGTGCAACCTAGTATGCTT G (SEQ ID NO:74)

WO 02/33046 PCT/US01/49451 20/77

Figure 3A

Adipocyte Subtractive Library Sequences

Line Number 55

>b0010

ACCTTGCTCTGCATGCCTTTCTCCCCCGTGCTGTCCCCTTTGGAGAGGTCACC AGGAACGCTTGAGGCAGTCTCCTGTCACTTTGGAGTGTGTATGTGTAGCAGGT CCAACAGGAAAGAATAAGTATGGTGTTGGGCTCAGCAGTCAAGAGCACACCC TGCTCTTACAGAGGACCTGCGTGTGGTTCCAAACACCCACTTCGGGTGGCCA CAAACCTCCTGTAATTCCAACCCCA (SEQ ID NO:75)

Line Number 47

> b0037

ACTTCCTCCACTTGGGGACCACTCCACTATGTGAGCATTTTCCTTTATATTTT TTATGAAAGCTGATCTTCCCTCTATAAGATTCCATGTTCTTAATGTTTATCGG TGCCAACAGACAGAGCCAATTTGCCAGACGGGTGGATAGAAAGGAAAGTGA CATGTCCCCTGTGTAGCTTTAAAGGTCTTCAGGCACTTCCATCTCTTCACATCC C (SEQ ID NO:76)

Line Number 59

>B0065

Line Number 57

>b0091

ACTTCCTTGTCAAAGCAAGAACATTTCCCCACGTTAACCCAAACCTCCACC TCCTATCCTGAAACCCTGACCACGGACTCACGGGAGTGTGCCGACAGCAGG TGCTATGATCACAAGATAATCAGAGATCCAGGAAGGAAAGGGAAGGGAAGGGAGGC . TGAAGGAACAGGAAGCATGGGATAAGCAAGACAAAGTGTGATAGCTTTCAA AGAAAATGTTGAGTTTCTTTTGGGATGGCTATGCTGTTCTTCA (SEQ ID NO:78)

Line Number 52

>B0096

Figure 3B

Line Number 64 >B0101

ACCATATTTCAAGAAGATAGCAGAAATTCAATGAAGTCGATTTAAAAACCTG GGGCTATTTACCTGGTCTGAGGTATGCAAGCTGTCCAAAGGTGGACACGTCT AAATAAATTTACCATGTCAGTTATCGGCCAAATGTTTTAGCATTTTTTTAAGC AGGATTTTCTTGGCTGAGAAGACAAGAAGACATTTTAATATCCATTGTAGAA ACGAGAATGGCTGGGCACTGATGGTGCACGCCTTTAATCCCAACACTTGGA AGGCAGAGGCAGGTGGATCTCTGTGAGTTGGAGTCTAGCCTGGTCTACAAAG TGAGTTCCAGAATAGCCAGGGCTACACAGAGAAACCCTGTGTTGGCCAAACC AAAGC (SEQ ID NO:80)

Line Number 63

>b0117

Line Number 53

> b0129

ACGAAGAGTCAGACAAAATTCCCCTCTAGCTCACCCATCCGTTGCTGAAATC TCTTTGGGAAGGTGGGGGAGATATAAGCCACATCTGCCCCTTCTCCTAAGGTC TCACTGACAAACTGAGGCAGGGTTCTGTCAGACTTTACTCCAAGGAACCAGT GAGTGTCATTAAAGCAGAGTGGTGTATAACAGGTGGTAGGGCGCCACTGGAT ACACAGATGAGAGTCTCCTGGTCCTTGACACCACTCCACAATCAGATAAAAT CAGTCAGCAAGGCCAGCTGGGACAACCCTTTTAAAAGGGGGACAGCTGACA CCTCCACCCCCCTCTGGGCTGGTGGTTGCTTGCTTCTGAGACAGTCACTCAAA TACTACCCCA (SEQ ID NO:82)

Line Number 51

>b0136

ACATTAATGATTTATTAAAAGAAACAACTCCTTGTCCCACTCCACTGTGCTGC TTGTAATCTCCATACATGGCCTCCATTTTCAACTGTTTTCTTGGTCACAGAACT CCAAACAAACACATTTTTTTTCCAGGTAAAAGCTGTTTTTAGTTTGTAGT (SEQ ID NO:83)

Figure 3C

Line Number 54 >b0154

ACCTATGTCATGGAAGGGAACTCTGTTACAAGCTTGAGCATATTTCAAATAA CTGTGGTAGTGCTGAGAAAATAGGCTTTGCATCTGGCTAAGAGAAAAAGAGCCT TCATGGAGTATCACAGAAAACTTCCAATTCTAGGTTTTCTATATACTTTGTTA CCTTGTTCAAAGAGATTTAATTGCTTCTATAATCAAAGAAGAACATGGAA CCCCCTCACTTCTAGGAAGTAGATGTGGTAACATTATTCCAGAGAATCTGTCA CCTAAAACTGAAGTGTTACAATCCCTTAAAGCTAACCGGCTCCCCAGTGTGT TATACAAGGCAAGCCAAGATAGCCTCACTGTCCCTGAACTGGAAGTGTCACA CAGCTCAG (SEQ ID NO:84)

Line Number 26

>b0158

ATACTCTTTAAATATTTTCAGTTTCTGATTTAGAGACATTGTTCACCACTGG ACTAGACTAACCTTGGATGCCGGTCAGTGACGACTTTGTCACACTAAATAAG ATGGCTGTTCTAGGCCTAAGACACTGTCTTGAGGGTCAGTAAGTGACGAGTC AGATGAGTTAACTGTGGGGAAACTAGAACATTCGAGCCAAGAATTATTG (SEQ ID NO:85)

Line Number 56

>B0174

Line Number 58

>b0175

ACTGTGGCCTCATTCCTCCTACCCTCCAAGGGGTGCGCTATGTGGATGGCGGC ATTTCAGACAACTTGCCACTTTATGAGCTGAAGAATACCATCACAGTGTCCCC ATTCTCAGGCGAGAGTGACATCTGCCCTCAGGACAGCTCCACCAACATCCAC GAGCTTCGCGTCACCAACACCAGCATCCAGTTCAACCTTCGCAATCTCTACCG CCTCTCGAAGGCTCTCTTCCCGCCAGAGCCCATGGTCCTCCGAGAGATGTGCA AACAGGGCTACAGAGATGGACTTCGATTCCTTAGGAGGAATGGCCTACTGAA (SEQ ID NO:87)

Figure 3D

Line Number 48

>b0188

Line Number 60

>b0217

ACTAATTGCAGTTATAACCCAAAAAGACTTCAAAGACATGAAAGAGACTCTT GGAGATGACATTACCGTGAAAATGTATTCCCCATCCTGGCCTAACTTTGACTA TACTCTGGTGGTTATTTTTGTAATTGCTGTGTTCACTGTGGCCTTAGGAGGGAT ACTGGAGTGGACTTATTGAATTGGAAAACATGAAGTCAGTGGAAGACGCCGA AGACAGAGAGACCAGAAAGGGAGAAGGACGATTACTTTACATTCAGTCCTCN CACAGTTGTTTGTGTTCGTGGTCATCTGCTGTATAATGATTGTCTTACTGTATTT CTTCTACAAGTGGCTTGTGTTTGTTATGATAGCGATTTTCTG (SEQ ID NO:89)

Line Number 62

>B0237

Line Number 50

>B0245

GATACAAGCAAACTGACTTCTGAAATGGACTATCACACTCTCCACCTGCCGG GCCCTCTCAAGCTGAGGTGGCTTTTTGCATTTTGCTACTCCTGGAGGCCATAG GCCAATGGATAATCTATGTTTCTCACTGTCTGTGTTTCCACCACGTTCCTAGCT CCCTGGAGT (SEQ ID NO:91)

Line Number 61

>b0274

WO 02/33046 PCT/US01/49451

24/77

Figure 3E

Line Number 49 >b0284

20332234.doc

Figure 4

Figure 5

Denature, hybridize and fill in the ends

Result: Amplification of Overexpressed cDNAs Common to Adipocytes and Muscle

Figure 6A

Adipocyte Subtractive Library

NUMBER Name	Name	Accession	Accession Human		Clone numbers	Hits	Class
		number	species	Accession			
-	stearoyl-CoA desaturase M21285	M21285	mouse	AF097514	4 13 20 29 46 50 51	28	genes overexpressed in
		J04190			52 54 64 72 76 105		adipocytes
					131 120 145 203 207		
					219 226 230 240 248		
					250 254 261 287 290		
2	adipoQ	U49915	mouse	NM_004797		20	genes overexpressed in
					69 124 132 133 134		adipocytes
					144a 146b 182 201		
					235 238 251 281		
3	CD36 (LDL receptor)	L23108	mouse	M98399	2 3 5 23 42 42b 68	14	genes overexpressed in
					135 170 171 199 200		adipocytes
					224 288		
4	adipocyte P2; lipid	M13264	mouse	J02874	14 24 62 70 78 80	13	genes overexpressed in
	binding protein				196 197 198 202 263	-	adipocytes
					273 278		
5	adipsin (possible serine M11768	M11768	mouse	NM_001928		=	genes overexpressed in
	profease)				159 183 187 228 267		adipocytes
9	haptoglobin	S67972	тоизе	NM_005143	47 148		genes overexpressed in
					150 151 280		adipocytes
7	long-chain acyl-CoA	D90109	rat	NM_001995	NM_001995 108 118 119 186 222 6	9	genes overexpressed in
	synthetase				236		adipocytes
œ		AL117472	pnman	AL117472	88 89	2	genes overexpressed in
	difference???)						adipocytes
6	medium-chain acyl-CoA U07159	U07159	mouse	NM_000016 32 34	·	2	genes overexpressed in
	dehydrogenase						adipocytes
10	acetyl-coenzyme A	X53003	rat	none	102	_	genes overexpressed in
	carboxylase						adipocytes
7	adipocyte hormone-	222867	rat	NM_000922 126	126	-	genes overexpressed in
	sensitive cyclic AMP						adipocytes
	phosphodiesterase						
12	caveolin-1	U07645	mouse	NM_001753 229	529		genes overexpressed in
				2			aulpocytes

,	n
ļ	5
	Ü
	Ħ
	ಮ
ľ	Ŧ.

٠				,			
£	pyruvate carboxylase	L09192	mouse	NM_000920 155	155		genes overexpressed in adipocytes
14	vascular endothelial growth	U22372	rat	AF024710	204	-	genes overexpressed in adipocytes
15	pro alpha1 (III) collagen chain (COL3A1)	X57983 S37761	esnow	NM_000090 177	177	-	genes not overexpressed in adipocytes
16	branched chain aminotransferase (BCATm)	U68417	rat	NM_001190 40 239 243	40 239 243	m	genes of unknown expression (metabolic)
17	NADH:ubiquinone reductase	X61100	human	X61100	15 140 141	e	genes of unknown expression (metabolic)
18	cytosolic 3-hydroxy 3- methylglutaryl coenzyme A synthase	X52625	rat	X66435	79 206	2	genes of unknown expression (metabolic)
19	3-hydroxyisobutyryl- coenzyme A hydrolase	099990	human	. 699990	19		genes of unknown expression (metabolic)
20	epoxide hydrolase	237107	mouse	NM_001979 33	33	-	genes of unknown expression (metabolic)
21	Inducible 6-	AF056320	human	AF056320	212		genes of unknown
	phosphofructo-2- kinase/fructose 2,6- bisphosphatase (IPFK-2)			!			expression (metabolic)
22		J05031 M26201	rat	NM_002225 81	81	-	genes of unknown expression (metabolic)
23	liver microsomal carboxylesterase	U10698	rat	NM_012122 216	216	, _	genes of unknown expression (metabolic)
24	ubiquinal cytochrome-c reductase core I	L16842	human	L16842	28	-	genes of unknown expression (metabolic)
25	CD98 heavy chain	U25708	esnow	J02939	95 113	2	genes of unknown expression (signaling)
26	diphosphoinositol polyphosphate phosphoydrolase type 2 alpha	AF191649	human	AF191649	158 209	2	genes of unknown expression (signaling)
27	BKLF (transcription factor)	U36340	mouse	NM_016531 220	220		genes of unknown expression (signaling)

	1 genes of unknown expression (signaling)	1 genes of unknown	expression (signaling)	1 genes of unknown expression (signaling)	1 genes of unknown expression (signaling)	/GG	1 genes of unknown expression (signaling)	1 genes of unknown expression (signaling)	3 genes of unknown expression (other)	2 genes of unknown expression (other)	1 genes of unknown expression (other)	1 genes of unknown (expression (other)	1 genes of unknown expression (other)	1 genes of unknown expression (other)	1 genes of unknown expression (other)	1 genes of unknown expression (other)	1 genes of unknown expression (unknown function)
Figure 6C	31	115		168	61		35	86	NM_002878 253 256 258	138 139	153	48	77	83	247	107	06
Figu	L40630	AA543412		M64240	NM_00631		M16750	M65254	NM_002878	L38995	AJ271729	M19283	NM_003299 77	NM_001969 83	NM_001015 247	D42055	M61199
	asnom	human		esnow	esnom		<u>ख</u> _	human	esnow	human	mouse	esnow	əsnom	rat	mouse	mouse	human
	U37413	AA543412,	AF153208	M63903	U22016, U35312		AF057026	M65254	AF034955	L38995	D78645	L21996	J03297	L11651	U93864	U96635	M61199
	G alpha 11	homo sapiens GC-rich			N-Cor (RIP13)		protein kinase KID-1	protein phosphatase-2A regulatory subunit-beta	Rad51d	mitochondrial elongation factor Tu	ucose- protein grp78		ERp99 encoding an endoplasmic reticulum transmembrane protein (GRP 94)	eukaryotic initiation factor 5 (elF-5)	Mus musculus ribosomal U93864 protein S11	tein ligase	cleavage signal-1 protein (cs-1)
	28	29		31	32		33	34	35	36	37	38	39	40	41	42	43

				Figu	Figure 6D		
44	Mouse virus-like (VL30) M21123	M21123	mouse	none	180	-	genes of unknown
	retro-element						expression (unknown function)
45	mRNA for KIAA0516 protein Also HSS protein	AB011088	human	AB011088	264	.	genes of unknown expression (unknown
							function)
46	nuclear autoantigen	U17989	human	U17989	85		genes of unknown
	GS2NA				i		expression (unknown function)
47	unknown protein with WD reapeats	AA870601			37 38 39	٣	unknown genes with est
48	similar to drosphophila	U66411			188 189	2	unknown genes with est
	putative type III alcohol dehydrogenase (T3dh)						
49	unknown	AA960368			284 286	2	unknown genes with est
20	unknown??? (homology AA542151	AA542151			245 246	2	unknown genes with est
	to 3' end of ets 2??)						
51	unknown member of	AA260487			136 142	2	unknown genes with est
	WAP family has a						
	potential leucine zipper						
52	unknown	AA624008			96	-	unknown genes with est
53	unknown	AA850341			129	Į.	unknown genes with est
54	unknown	AA623774			154	1	unknown genes with est
22	unknown	AW761764			10	Į	unknown genes with est
56	unknown 3' end of	AA273445			174	-	unknown genes with est
	mRNA in T Cell gamma						
	locus						
22	unknown contig has	AA274981			91	<u> </u>	unknown genes with est
	repetitive day						
28	unknown gene	AF055000			175	-	unknown genes with est
	homologous to Homo						
	sapiens clone 24519						
	(unknown) gs2 like						
59	unknown homologous to AA472160	AA472160			65	 -	unknown genes with est
	unknown human gene						
	1 5050100						I

	unknown genes with est				unknown genes with est	•	unknown genes with est	_	unknown genes with est						unknown genes with est		Mitochondrial
	,				_		_		-					_	+		2
Figure 6E	217				274		237		117					;	101		NC_001807 21 86 116 121 173 271 283
Figu																	NC_001807
																	mouse
	AU079046				U39400		AA796808		AA822381						AA501113		V00711
	unknown homologous to AU079046	unknown human gene	HQ0270 and similar to	fos39554	Unknown homology to	NOF1 in wrong direction	unknown or transferrin AA796808	isoform	unknown possibly	homologous to human	AAPT1-like protein	(homolgy to	choline/ethanolamineph	osphotransferase)	unknown with b1	repetitive element	mitochondrial genome
į	09				61		62		63						64		92

	genes overexpressed in both	muscle and adipocytes	genes overexpressed in both	genes overexpressed in	adipocytes, unknown muscle	expression	•			-					·			genes overexpressed in	adipocytes, unknown muscle	expression		-							
			-	83														යි											
Figure 7B	563	İ	1140	98 100 149 189 191	207 217 210 249 307	317 333 396 426 444	500 521 527 554 558	571 594 602 608 609	615 660 667 669 670	690 691 703 718 733	753 765 792 803 808	809 834 845 858 869	874 877 881 889 890	894 910 911 934 946	948 951 998 1005	1024 1036 1049	1050	58 67 71 79 123 201	233 252 344 467 479	508 547 577 581 584	668 671 695 698 716	717 747 759 768 769	770 807 816 867 868	907 924 928 945 961	966 970 971 1021	1053 1096 1126	1127 1142 1149	1174 1192 1204	1220
Figu	295 860000_MN		M20747	J02874														AF097514						,					
	mouse		mouse	mouse														mouse											
	NM_009949 mouse		NM_009204	M13264														M21285	J04190			-							
	carnitine	palmitoyltransferase 2 (Cpt2)	glucose transporter (GLUT4)	adipocyte P2; lipid	binding protein					-								stearoyl-CoA desaturase M21285											
	12		13	14														15							•				

Figure 7A

Muscle-Adipocyte Union Library

NUMBER Name	Name	Accession	Accession Human		Clone numbers	Hits	Class
		number	species	accession number			
1	CD36 (LDL receptor)	L23108	mouse	M98399	88 174 451 488 495	26	genes overexpressed in both
					499 512 514 592 604		muscle and adipocytes
					643 656 662 709 781		
					830 917 926 936 964		٠
					1040 1095 1125		
					1151 1183 1219		
2	fructose-16-bisphospate	Y00516	esnow	NM_000034	NM_000034 51 129 136 316 359	17	genes overexpressed in both
	aldolase				378 623 722 750 815		muscle and adipocytes
					885 927 1045 1137		
					1143 1179 1194		
3	glycerol-3-phosphate	M25558	mouse	NM_005276	NM_005276 94 267 543 748 897	9	genes overexpressed in both
	dehydrogenase				977		muscle and adipocytes
4	hexokinase II	AJ238540	mouse	AF148513	566 620 642 708 878 5		genes overexpressed in both
							muscle and adipocytes
5	carbonic anhydrase III	909200_MN	mouse	AJ006473	593 836 1177	9	genes overexpressed in both
							muscle and adipocytes
9	lipoprotein lipase (LPL)	M60847	mouse	M60847	146 1090 1190	3	genes overexpressed in both
							muscle and adipocytes
7	medium-chain acyl-CoA	NM_007382	mouse	M16827	560 1074 1168	3	genes overexpressed in both
	dehydrogenase (MCAD)						muscle and adipocytes
9	aps	AF095576	_at	AB000520	311 346	2	genes overexpressed in both
							muscle and adipocytes
6	diazepam binding	NM_007830	mouse	M15887	528 1123	2	genes overexpressed in both
	inhibitor (Dbi)						muscle and adipocytes
5	glyceraldehyde-3-	NM_008084	mouse	NM_002046 773 1155	773 1155	2	genes overexpressed in both
	phosphate						muscle and adipocytes
	dehydrogenase (Gapd)						
-	probably the 3' UTR of	AA957207	mouse	X02160	551 1032	2	genes overexpressed in both
	the human insulin						muscle and adipocytes
	receptor via rai est						

(ر
Į	_
	<u>e</u>
	Ξ,
	Ω.
ļ	ų

	genes overexpressed in adipocytes, unknown muscle expression	genes overexpressed in adipocytes, unknown muscle expression	genes overexpressed in adipocytes, unknown muscle expression	genes overexpressed in adipocytes, unknown muscle expression					
	33	56	8	2	4	က	2	2	2
Figure 7C	NM_004797 75 363 376 382 436 447 454 456 510 511 516 548 583 630 719 826 837 866 879 893 903 918 920 946 1028 1041 1043 1053 1079 1086 1162 1198 1221	NM_001928 214 403 469 497 523 26 542 598 605 629 637 663 713 720 764 774 922 929 931 995 1018 1022 1038 1114 1116 1121 1156	74 99 606 697 821 1015 1025 1101	NM_002541 694 740 900 1103	235b 435 683 1161	525 634 1193	108 1102	229 448	38 835
Figu	NM_004797	NM_001928	D10040	NM_002541	none	Y08409	NM_016547 108 1102	NM_001753 229 448	NM_001262 38 835
	mouse	mouse	rat	mouse	mouse	mouse	тоиѕе	mouse	тоиѕе
	U49915	M11768	D90109 J05439	U02971	M61737	X95279	U45978	U07645	U19596
	adipoQ	adipsin	long-chain acyl-CoA synthetase	2-oxoglutarate dehydrogenase E1 component	FSP27 (homolgy to ced apotoctric proteins and nucleases)	spot 14	calcium-binding protein Cab45b	caveolin-1	Cdk4 and Cdk6 inhibitor U19596 p18 protein
	16	17	18	19	20	21	22	23	24

	genes overexpressed in adipocytes, unknown muscle expression	genes overexpressed in muscle, unknown adipocyte expression	genes overexpressed in muscle, unknown adipocyte expression	genes overexpressed in muscle, unknown adipocyte expression	genes overexpressed in muscle, unknown adipocyte expression	genes overexpressed in muscle, unknown adipocyte expression									
	-	-	-	<u></u>		~	ဖ	4	m	ღ	က	ო	2	2	2
Figure 7D	202	843	1060	672	721	145 402 275 607 631 7 923 1020	30 780 786 930 1034 6 1046	NM_001927 68 519 1135 1208	NM_006471 531 875 1145	776 1006 1138	452 453 474*	595 1057 1110	534 655	438 969	102 916
Figu	AC007130 202	NM_001122 843	AL117472	103620	none	X71129	AJ001259	NM_001927	NM_006471	L42373	887759	AF083441	NM_001126 534 655	102966	NM_002489 102 916
	rat	mouse	human	mouse	топѕе	human	mouse	rat	rat	human	rat	тоизе	mouse	mouse	mouse
	J04628	NM_007408 mouse	AL117472	NM_007861 mouse	AF064748	X71129	AJ001261	X73524	X05566	L42373	J04503	AF129888	NM_007421	X74510	U59509 U94586
	3-hydroxyisobutyrate dehydrogenase	adipose differentiation related protein (Adipophilin)	CAP (3' splice difference???, same as b088)	Dihydrolipoamide Dehydrogenase	53-12	electron transfer flavoprotein beta subunit	NIPSNAP2	desmin	myosin regulatory light chain (RLC)	phosphatase 2A B56- alpha (PP2A)	phosphatase 2C	Sui1 homolog	adenylosuccinate synthetase 1	ANC1 (Ant1) for adenine X74510 nucleotide carrier	mlrq-like protein NADH:ubiquinone oxidoreductase
	25	26	27	28	29	30	31	32	33	34	35	99	37	38	39

	<u>,</u>
	ure
	<u>.</u>
١	Į,

				rigu	rigure /E		
40	myoglobin	X04417	mouse	NM_005368 318 589	318 589	2	genes overexpressed in muscle,
							unknown adipocyte expression
41	pre-B cell enhancing	AF234625	mouse	NM_005746 314 597	314 597	2	genes overexpressed in muscle,
	ractor (PBEF)						unknown adipocyte expression
42	oha (CA binding	S68809	rat	NM_006271 84 1109	84 1109	2	genes overexpressed in muscle,
	protein)						unknown adipocyte expression
43	ubiquitin specific	AAF07565	mouse	NM_004205 175 942	175 942	2	genes overexpressed in muscle,
	protease 41 (UBP41)						unknown adipocyte expression
44	adhalin	AF019564	mouse	U08895	861	-	genes overexpressed in muscle,
							unknown adipocyte expression
45	amphiphysin 2	U86405	mouse	U87558	142	_	genes overexpressed in muscle,
							unknown adipocyte expression
46	angiopoietin-related	AF153606	human	AF153606	722	1	genes overexpressed in muscle,
	protein						unknown adipocyte expression
47	cytochrome c oxidase	U15541	mouse	попе	218		genes overexpressed in muscle,
	subunit VIII-H precursor (COX8H)						unknown adipocyte expression
48	enolase 3, beta	NM_007933	mouse	NM_001976 1171	1171		genes overexpressed in muscle,
							unknown adipocyte expression
49	eukaryotic initiation	L11651	rat	NM_001969 22	22	-	genes overexpressed in muscle,
	factor 5 (eIF-5)						unknown adipocyte expression
20	GLYCOGEN	NM_011224	mouse	303544	432	<u>-</u>	genes overexpressed in muscle,
	PHOSPHORYLASE	J03544					unknown adipocyte expression
51	insulin-like growth factor L12447	L12447	mouse	M65062	973	_	genes overexpressed in muscle,
	binding protein 5						unknown adipocyte expression
c u	((GFBP5)	047677		AB040004	107	,	
76	All 10, Alliesill-like protein D 1731	200	enoni		171		geries overexpressed in masse,
							unknown adipocyte expression
53	Madr2 (TGFB binding	U60530	mouse	NM_005901 429	429	_	genes overexpressed in muscle,
	partner)						unknown adipocyte expression
54	methyl-CpG binding	AF072243	mouse	NM_003927 676	929	-	genes overexpressed in muscle,
	protein 2						unknown adipocyte expression

1	7
	<u>و</u>
	ಷ
Ċ	Ī

				Figu	Figure 7F			
myosin light chain 2		U77943	mouse	NM_013292 1029	1029		genes overexpressed in muscle,	
(check)		0.000					ulikiowil aupocyle explession	
NADH:ubiquinone		AF044953	numan	AF044953	632		genes overexpressed in muscie, linknown adinocyte expression	
subunit								
outer membrane protein AF107295	tein	AF107295	rat	NM_018373 937	937		genes overexpressed in muscle,	
ohosnhofriictokinase		1125651	ig.	MZ6066	1068		denes overexpressed in muscle.	
muscle isozyme			<u>.</u>				unknown adipocyte expression	
phospholemman		AF089734	mouse	U72245	865		genes overexpressed in muscle,	
							unknown adipocyte expression	
sarcoglycan, alpha		NM_009161 mouse	mouse	NM_000023 842	842		genes overexpressed in muscle,	
							unknown adipocyte expression	
Skeletal muscle Actin	_	M12866	mouse	NM_001100 639	639	_	genes overexpressed in muscle,	
						-	unknown adipocyte expression	
skeletal muscle LIM		U77039	mouse	U60115	817	_	genes overexpressed in muscle,	
protein (FHL1)						ļ	unknown adipocyte expression	
(Tubulin alpha 4 (Tuba4)	1	NM_009447	mouse	X06956	693	_	genes overexpressed in muscle,	
							unknown adipocyte expression	
voltage dependent anion U30838	들	U30838	mouse	NM_003375 23	23		genes overexpressed in muscle,	
channel 2							unknown adipocyte expression	
Na+ K+-ATPase alpha	ا ھ	M14512	rat	NM_000702	NM_000702 135 440 492 562 570 11	<u>-</u>	genes of unknown expression	
_					624 704 746 824 919		(metabolic)	
					1163			
carboxylesterase (Es-HVFL)	١.	X65296	rat	NM_012122	NM_012122 427 494 799 949 5	5	genes of unknown expression (metabolic)	
ferrochelatase		NM_007998	esnow	NM_000140	NM_000140 431 578 666 812 5	2	genes of unknown expression (metabolic)	
					1001		7	

(5
t	gure /
	턴

	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)
	2	ഹ	S.	4	е С	က	က	ဗ	2	2	2	2	2	2
Figure 7G	NM_005566 496 576 618 687 1172	373 628 789 820 1117	248 587 706 1062 1085	NM_007100 559 806 1136 1203	308 490 545	204 211 891	561 899 1152	621 754 800	501 657	1069 1098	77 78	120 225	515 876	1010 1157
Figu	NM_005566	M74096	U07681	NM_007100	NM_004077 308 490 545	X15958	AF013160	NM_006759 621 754 800	NM_001359 501 657	M22538	NM_001866 77 78	NM_001979 120 225	NM_002300 515 876	NM_004551 1010 1157
	esnow	mouse	macaque	mouse	human	rat	human	human	rat	rat	mouse	еѕпош	еѕпош	human
	NM_010699	U21489	X87172	NM_007507	AF047042	X15958	AF013160	006759 NM	D00569	M22756	W13383	237107	NM_008492	NM_004551
	lactate dehydrogenase 1, A chain (Ldh1)	long-chain acyl-CoA dehydrogenase	NAD+-isocitrate dehydrogenase alpha subunit	ATP synthase, H+ transporting, mitochondrial F1F0complex, subunit e (Alp5k)	citrate synthase	enoyl-CoA hydratase	NADH-UBIQUINONE OXIDOREDUCTASE Fe-S PROTEIN 2; NDUF2	UDP-glucose pyrophosphorylase 2 (UGP2)	2,4-dienoyl-CoA reductase	24-kDa subunit of mitochondrial NADH dehydrogenase	cytochrome c oxidase subunit VIIb (cox7b)	epoxide hydrolase	lactate dehydrogenase 2, B chain (Ldh2)	NADH dehydrogenase (ubiquinone) Fe-S protein 3
	68	69	02	71	72	73	74	75	76	.27	78	79	80	81

	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)
	2	2	2	2	2	-	4		_	-			·
Figure 7H	749 779	491 677	882 1033	565 1187	294 489	736	1130	777	1209	1019	086	646	1147
Figu	NM_002574 749 779	NM_006214 491 677	NM_002633 882 1033	NM_006003 565 1187	NM_000018 294 489	AC007130	NM_014362 1130	AF086790	NM_004046 1209	AF058953	<u>U96</u> 781	NM_001190 646	NM_001916 1147
	mouse	mouse	rat	rat	mouse	rat	human	human	mouse	human	mouse	esnou	human
	AF157331	AF023463	L11694	M24542	AF017176	J04628	699990	af086790	NM_007505	AF058955	NM_007504	<u>U68526</u>	NM_001916
	peroxiredoxin I (PrxI)	peroxisomal phytanoyl- CoA alpha-hydroxylase (PAHX)	phosphoglucomutase	ubiquinol cytochrome c reductaseRieske (iron- sulfur protein)	very-long-chain acyl- CoA dehydrogenase	3-hydroxyisobutyrate dehydrogenase	3-hydroxyisobutyryl- coenzyme A hydrolase (same as b0019)	aconitase	ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit, isoform 1 (Atp5a1)	ATP-specific succinyl- CoA synthetase beta	ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 (Atp2a1)	branched chain aminotransferase (BCATm)	cytochrome c-1 (CYC1) NM_001916
	82	83	84	85	98	87	88	88	06	91	92	93	94

				Figr	Figure 71		
95	cytosolic class 3	AF032920	mouse	none	975	-	genes of unknown expression
	aldehyde dehydrogenase (Adh4)						(metabolic)
96	flavin-containing monooxygenase 1	NM_010231	esnow	NM_002021 702	702	1	genes of unknown expression (metabolic)
26	φ	X94616	mouse	NM_002103 787	787	1	genes of unknown expression (metabolic)
98	Inducible 6-	AF056320	human	AF056320	1084	_	genes of unknown expression
	phosphofructo-2- kinase/fructose 2,6- bisphosphatase (IPFK-2) same as b0212						(metabolic)
66	isopentenyl diphosphate AF003836 dimethylallyl diphosphate isomerase	AF003836	hamster	NM_004508 723	723	 -	genes of unknown expression (metabolic)
100	malate dehydrogenase	M16229	ыоизе	NM_005918 12	12	_	genes of unknown expression (metabolic)
101	malate dehydrogenase, soluble (Mor2),	NM_008618	mouse	NM_005917 590	290	1	genes of unknown expression (metabolic)
102	methylmalonate semialdehyde dehydrogenase via est	AA497435	mouse	AF159889	932	1	genes of unknown expression (metabolic)
103	ية ⊒.	D16479	rat	NM_000183 1072	1072	1	genes of unknown expression (metabolic)
104	NADH dehydrogenase (ubiquinone) 1 alpha	NM_004542	human	NM_004542 541	541		genes of unknown expression (metabolic)
105	NADH dehydrogenase (ubiquinone) 1 beta subcomplex	NM_005004	human	NM_005004 711	711	~~	genes of unknown expression (metabolic)
106	NADH-ubiquinone oxidoreductase B8 subunit (Ndufa2)	AF124786	mouse	NM_002488 782	782	-	genes of unknown expression (metabolic)
107	NADH-Ubiquinone reductase (Complex I- 30KD)	M58469 J05314	cow	NM_004551 187	187		genes of unknown expression (metabolic)
108	NADPH-cytochrome P450 oxidoreductase	D17571	тоизе	S90469	731	-	genes of unknown expression (metabolic)

7.7	. / 3
	rıgure
Ľ	L
į.	r.

_														
	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (metabolic)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)	genes of unknown expression (signaling)
	,	+	-	7	4	e	ဗ	က	2	2	2	2	2	2
6/21	791	372	397	1129	139 276 771 1115	59 610 1051	743 757 913	673 862 863	555 914	261 1184	763 805	742 756	107 659	180 1080
Jugur	NM_001055 /91	NM_000284 972	NM_012247 997	D26485	AF263293	NM_014408 59 610 1051	X66362	NM_007236 673 862 863	U26710	NM_004671 261 1184	NM_002836 763 805	AF142418	NM_003489 107 659	X63600
	mouse	mouse	human	сом	mouse	mouse	mouse	mouse	human	тоиѕе	esnow	mouse	mouse	mouse
	L02331		NM_012247	X59692	AA517877 AA462484	AF041433	NM_008795	AB025217	U26710	AF039567	M36033 M33671	U44940 AF091047	NM_008735	Z14132 Z31654
	phenol/aryl form sulfotransferase (M- STP1)	pyruvate dehydrogenase NM_008810 E1alpha subunit (Pdha1) via est	SELENOPHOSPHATE SYNTHETASE	ubiquinol-cytrochrome-c reductase (subunit I)	endophilin b1 isoform (unknown splicing varient)	Bet 3	PCTAIRE-motif protein kinase 3	Sid470p (CHP calcineurin B homologous protein) or EF-hand Ca(2+)-binding protein p22)	q-lqp	Msx-interacting-zinc finger protein 1 (Miz1)	protein tyrosine phosphatase PTP alpha/LRP	quaking type I (QKI) (KH U44940 domain RNA binding AF0910 protein)	RIP140 (transcriptional activator)	sphingomyelin phosphodiesterase
	109	110	111	112	113	114	115	116	117	118	119	120	121	122

Figure 7K

123	1D-myo-inositol- trisphosphate 3-kinase B	X5/206	numan	X5/206	(15		genes of unknown expression (signaling)
124	beta-spectrin 2, non- erythrocytic (Spnb2)	NM_009260	mouse	NM_003128 1106	1106		genes of unknown expression (signaling)
125		K02291	esnow	X51945	767		genes of unknown expression (signaling)
126	dishevelled-1 protein (DvI1)	U28138	mouse	NM_004421 520	520		genes of unknown expression (signaling)
127	inositol polyphosphate-1- MMU27295 phosphatase (Inpp1) (check art for exp)	MMU27295	mouse	NM_002194 1061	1061		genes of unknown expression (signaling)
128	Keap1	AB020063	esnow	NM_012289 1026	1026		genes of unknown expression (signaling)
129	mamalian homolog of yeast carbon catabolite repression 4 protein (transcription factor)	AF183960	mouse	NM_012118 712	712	_	genes of unknown expression (signaling)
130	polycystic kidney disease-associated protein (PKD1)	L39891	human	L39891	101p	_	genes of unknown expression (signaling)
131	rab28 (check)	X78606	rat	NM_004249 1134	1134	1	genes of unknown expression (signaling)
132	Rab7	NM_009005	mouse	NM_004637 872	872		genes of unknown expression (signaling)
133	rac1 (check abst for exp) X57277	X57277	mouse	M29870	841	1	genes of unknown expression (signaling)
134	Rho-associated coiled- coil forming kinase 1 (Rock1) via est	NM_009071	mouse	NM_005406 1067	1067	-	genes of unknown expression (signaling)
135	SH3-containing protein	AF026505	rat	NM_003603 955	955	1	genes of unknown expression (signaling)
136	sorting nexin 5 (SNX5)	AF121855	human	AF121855	752	1	genes of unknown expression (signaling)
137	TRIP3 gene; thyroid receptor interactor	L40410	human	L40410	6		genes of unknown expression (signaling)

j		
	Figure	
2	I.	

				ngı.ı	rigure / L		
138	rotein 216	NM_009551 mouse	mouse		1073	1	genes of unknown expression (signaling)
139	DERP2 and CDLK11H12 protein with weak homology to RAT TEST	AA796646	mouse	AB009685	256 802 1154	င	genes of unknown expression (other)
140	connexin 43 (CX43)	L10388	mouse	M65188	828 939	2	genes of unknown expression (other)
141	deafness dystonia protein (DDP)	980990	пришал	066035	353 364	2	genes of unknown expression (other)
142		L20294	esnow	7	641 870	2	genes of unknown expression (other)
143	PTP protein	X52101	mouse	x62006	401 468	2	genes of unknown expression (other)
144	putative guanylate binding protein	NM_008620	тоизе	NM_002053 568 588		2	genes of unknown expression (other)
145	Rap30 (helicase)	L01267	rat	NM_004128 775 1199	1199	2	genes of unknown expression (other)
146	Aop1 (Mer5) anti-oxidant M28723 protein 1	M28723	mouse	NM_006793 226	226	-	genes of unknown expression (other)
147	aspartyl protease; cathepsin D; protease	X53337	mouse	NM_001909 165	165	-	genes of unknown expression (other)
148	calpain small subunit (Ca(2+)-dependent proteinase)	NM_009795	mouse	NM_001749 183	183		genes of unknown expression (other)
149	chromatin nonhistone high mobility group protein (HGM-I(Y)	J04179	mouse	NM_002131 585	585	1	genes of unknown expression (other)
150	4	X05314	mouse	K02404	242	1	genes of unknown expression (other)
151	HC class I H2-L gene Contains Alu sequence	K02896	mouse	попе	537	1	genes of unknown expression (other)
152	histone macroH2A1.2 variant (check abst for exp)	AF171080	mouse	AF041483	839	_	genes of unknown expression (other)

ᄫ	
2	
_	
ð	
_	
⋾	
51	١
=	

	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)	genes of unknown expression (other)				
	1	1	-	1	-		-	-	1	-	-	-	τ	
Figure 7M	1189	271	727	557	1164	446	1087	1054	811	795	1195	1042	375	614
Figu	D89092	NM_006597 271	AB00794	AB002392	NM_013363 1164	NM_001358 446	NM_002951 1087	X06323	AF081571	NM_006276 795	NM_002979 1195	NM_006464 1042	270200	NM_003347 614
	mouse	mouse	rat	mouse	human	esnow	тоиѕе	human	ā	human	mouse	rat	human	mouse
		M19141 U73744	AF139185	NM_010923	NM_013363	AF017153	D31717	X06323	AF026554	NM_006276	M62361	X53565	270200	NM_009456
	JKTBP (hnRNP protein) AB017020	Mouse heat shock protein 70 cognate	ve otein)		procollagen C- endopeptidase enhancer 2	putative RNA helicase and RNA dependent ATPase	T)	ribosomal protein L3	sodium-dependent multi- AF026554 vitamin transporter (SMVT)	splicing factor, arginine/serine-rich 7 (35kD)	sterol carrier protein 2	trans-Golgi network integral membrane protein TGN38.	U5 snRNP-specific 200kD protein (RNA helicase)	ubiquitin-conjugating enzyme 7
	153	154	155	156	157	158	159	160	161	162	163	164	165	166

	3
	20 00 00
	L
	100
Z.	LAT 400 000 000 000 11 11 11 11 11 11 11 11 1
Figure 71	1007
	1 1 1 1
	0,000
	0,000, 11, 020
	ľ

	genes of unknown expression (unknown function)		noisserate amount of season	(unknown function)		genes of unknown expression	(unknown function)						genes of unknown expression	(UNKNOWN IUNCUOII)	genes of unknown expression	(unknown function)				genes of unknown expression	(diskilowii julicuoli)	genes of unknown expression	(unknown tunction)		genes of unknown expression (unknown function)	genes of unknown expression	(unknown function)		
	ഗ		_	<u>-</u>		3	·						7		2					2]				<u>-</u>	<u>-</u>			
rigure /in	20 352 526 567 9651131		NIM 005709 208 265 265 813	0.007.007.007	ľ	384 385 573							790 856		101v 110					25 85		250			658	283			
rıgn	AF151887		NIA OOSTOO	2000		AF179285							NM_006472 790 856	_	AB011166					none	T	AF044773			NM_007069 658	AB023234			
	mouse		himon			mouse							mouse		human					mouse		mouse			rat	human			
	AA420019 AA590078	AF181116	NIM OUGZOD	CO 1000 WIN		W44243							AF173681		AB011166					AF110764		NM_011793			X76453	AB023234			
	unknown BELONGS TO V		100		transcription regulator)	bromodomain-containing W44243	protein BP75,	homologous to	CEC01H6 (has a zinc	finger and is	homologous to	franscription factors)	doxin interacting	factor	unknown human protein	with homology to masin	and chromosomal	binding proteins. Protein	has a leucine zipper	unknown protein RS21- AF110764	90	breakpoint cluster region NM_011793	protein 1 (Bcrp1-	pending)	H-rev107	Human alpha3a intergrin AB023234	binding protein WD40	repeats 5' end	160:001
	167		160			169							170	į	171					172		173			174	175			

(0
	``
	Figure
	ij
١	1

	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)	genes of unknown expression (unknown function)
	1	-	-	-	<u></u>	<u></u>	-	-	* -	-	
Figure 70	1139	416	83	449	529	1104	518	1132	952	784	1202
Figu	AF125392	AB002302	NM_002337 83	U38810	D80010	NM_002857	NM_003477 518	U77664	AF009301	AF103803	AF151809
	human	human	өѕпош	human	mouse	hamster	human	һитал	human	human	human
	AF125392	AB002302	S67967	U38810	NM_015763	U05959	NM_003477	U77664	AF009301	AA407977 AF103803	AF151809
	insulin induced protein 2 AF125392	KIAA0304 gene (homologus to trithorax and HRX genes)	rotein protein in	mab-21	Mus muscutus cDNA sequence AF18047 unknown gene	PEROXISOMAL FARNESYLATED PROTEIN (PXF)	Pyruvate dehydrogenase NM_003477 complex, lipoyl-containing component X; E3-binding protein (PDX1)	RNaseP protein p38 (RPP38)	TEB4 protein	unknown gene homologous to Homo sapiens clone H41 unknown mRNA.	unknown homologous to AF151809 Homo sapiens CGI-51 protein mRNA
	176	177	178	179	180	181	182	183	184	185	186

	`		
i	2		
	ď	2	
	dr: F	3	`
	ï	7	
٠	_		

Figure 7P	unknown homologous to Ai006170 human NM_014766 990 1 genes of unknown expression HYPOTHETICAL NM_014766 PROTEIN KIAA0193	wn homology to AW120624 human AW120624 414 1 genes of unknown expression sapiens antigen (unknown function) 5-10 (#AF039692) EPTIDYL-PROLYL AANS ERASE domain le cyclophilin	wn human gene Ak001392 human Ak001392 678 1 genes of unknown expression 530 homology to sse Metallo-beta- ase superfamily	wn human gene AK000427 human AK000427 675 1 genes of unknown expression 420 fis with coil (unknown function) main	AA286376 AA79654	AA240742	AA389142	AB015632 591 1089	paon	AA572287	AA422249 222 979 2	AA105146 280 390 2	AA880575 443 460 2	AA53681 442 1044 2	AA125589 103 1108	10 11.65300432	Icrotonyl-Coa	
	unknown homologous to HYPOTHETICAL PROTEIN KIAA0193	unknown homology to Homo sapiens antigen NY-CO-10 (#AF039692) has PEPTIDYL-PROLYI CIS-TRANS ISOMERASE domain possible cyclophilin	unknown human gene FLJ10530 homology to Sulfatase Metallo-beta- lactamase superfamily	unknown human gene FLJ20420 fis with coil coil domain	unknown	unknown	unknown (maybe 112)	similar to type II membrane protein	(tazarotene-induced gene 2 (TIG2))	unknown	unknown	unknown	unknown	unknown	Unknown Homologous To Clone 584089 5'	G550452 3	Methylcrotonyl-Coa	
	187	188	189	190	191	192	193	194		195	196	197	198	199	200			

	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est
	2	2	2	2	2		_			<u>.</u> ,		_		_
Figure 7Q	974 978	859 986	250 535	762 854	596 640	1217	793	196	009	504	684	681	748	846
Fig			,											
	Al117411	AA065565	AA457865	AI746380	AA402287	U66411	AV154597 AA027890	AA472125	AI551808	AA254592	Al849511	AI552298	AI836168	AA230655
	unknown homologous to Al117411 KIAA0907 unknown human protein with KH domain (RNA binding domain)	unknown homology to kinesin like protein from C elegans	unknown in contiq in Chi AA457865 du Chat transcription region	unknown maybe SIN3A (NM_011378)	unknown to homology to AA402287 crgA (ring/zind finger protein) (no mouse est only human ests)	similar to drosphophila putative type III alcohol dehydrogenase (T3dh)	c 9 m			unknown			unknown	unknown
	201	202	203	204	205	206	207	208	209	210	212	213	214	215

7R
ī.
ng
压

	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est unknown genes with est unknown genes with est unknown genes with est	unknown genes with est
	-	4	-	- -	·	_	-
Figure 7S	533	983	439	1071	564	943 76 692 1112 236	152
Fign							
	AI526927	AV117710	AA190077	AA518356	AA210389	AA498553 AA920762 AA414352	AA517877
	unknown (homologus to unknown human clone CGI 126)	unknown homology to an AV117710 exon of sel-1 via est protein with FN2 domain (Homo sapiens gene for TSA305)	unknown homology to ANON-66Db	unknown (homology to CG9921 gene product or P100 protease)	unknown (homology to DKFZp586K1424)	c 9 %	human gene KIAA0/83 unknown possible homology to myosin
	234	235	236	237	238	240 241 242 243	244

	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est	unknown genes with est
	-	-		-		-	-	1	-	-	-
Figure 7T	635	794	823	1023	580	507	367	739	572	95	582
Figi											
	AA543736	AA120704	AA273814	W13360	AA571641	AW107472	AA511443	AA474460	AA210389	AA616045	AI503800
	unknown possible phospholipase A2 protein	unknown possible repetative element		y sophila	s (bBox iption	vn (potential zinc protein) with goy to autocrine factor	unknown related to mbln AA511443 protein and mindblind		(similar to KIAA0112)	4.	unknown similar to unknown human cDNA DKFZp761D0223similar to rb gaps
	245	246	247	248	249	250	251	252	253	254	255

	unknown genes with est		unknown genes with est		unknown genes without est	unknown genes without est	unknown genes without est	mitochondrial genes not overexpressed	genes not overexpiessed	genes not overexpressed	genes not overexpressed
	_				2	1	1	107		-	-
Figure 7U	840		710		827 984	148	1083	NC_001807 47 132 155 160 190 1 199 220 230 234 235a 240 275 289 312 343 356 393 417 423 425 434 498 502 505 517 524 539 540 546 574 575 586 599 611 612 617 622 627 647 648 651 661 665 674 679 696 679 699 700 705 714 725 726 728 737 738 741 760 761 783 788 801 804 810	244	1017	903
Figu								NC_001807 X04409	P4C 001100 WW	NM_006510 1017	NM_000366 903
					ı			mouse	mouse	mouse	тоизе
	AV043819		AA500671					V00711 AF116268	NM_UU752U	U35141	X64831
		unknown human protein KIAA0664 (Clu1 like)	unkown gene	homologous to unknown human gene HSPC241	unknown	unknown	unknown	mitochondrial genome Gas????	Bach1 via 1 C81197 (transcription factor)	g.	skeletal muscle alpha tropomyosin
	256		257		258	259	260	262	263	264	265

53/77

Figure 8A

Primary Adipocytes - PEAK 1

Band	Protein/Accession number
1	AM-2 Receptor (49942), human (NP_002323)
2	AM-2 Receptor (49942), human (NP_002323)
3	AM-2 Receptor (49942), human (NP_002323)
4	Non-Identified
5	IGFII-Receptor/ Cation-independent Mannose 6-P Receptor (1398935), human (NP_000867)
6	Fatty Acid Synthase (66561), human (G01880); Acetyl-CoA Carboxylase (116670), human (NP_000655)
7	DNAJ-Domain containing protein (3327170), human (T00361)
8	ABC1-Protein (6005701), human (009099)
9	IRAP (1674503), human (CAB61646)
10	IRAP (1674503), human (CAB61646)
11	IRAP (1674503), human (CAB61646)
12	Non-Identified .
13	ATP Citrate-Lyase (113116), human (AAB60340)
14	Amine Oxidase (4185817), human (NP_0037250)
15	Amine Oxidase (4185817), human (NP_0037250)
16	Alpha-2 Macroglobulin Receptor (4758686), human (NP_002323); Hormone sensitive Lipase (1346458), human (Q05469)
17	CD36 (3273897), human (NP_000063)
18	CD36 (3273897), human (NP_000063)
19	Long Chain Acyl-CoA Synthetase (126011), human (P33121)

54/77

Figure 8B

20	Long Chain Acyl-CoA Synthetase (126011), human (P33121)
21	Phosphatidylserine-Binding Protein/Substrate of PKC (455719), human (NP_004648)
22	EH-Domain-Containing Protein (1861774), human (1861774)
23	Novel
24	Carboxylesterase (1407780), human (AAB03611); Vimentin (401365), human (A25074)
25	α-Tubulin (223556), human (A23035); GLUT4 (121763), human (NP_001033); DLAST (266684), human (AAD30181)
26	GLUT4 (121763), human (NP_001033)
27	GLUT4-P (121763), human (NP_001033)
28	GLUT4 (121763), human (NP_001033); Non-Identified
29	Junctional Adhesion Molecule (5457119), human (AAD3794)
30	SCAMP (5032077), human (NP_005689)
31	Ribosomal Protein L6 (2507315), human (Q02878)
32	SCAMP (5032077), human (NP005689)
33	Non-Identified
34	Non-Identified
35	29 kD-Golgi SNARE (3213227), human (NP_006361); Non-Identified
36	Non-Identified
37	Caveolin-1 (1705645), human (AAD23745); Non-Identified
38	Caveolin-1 (1705645), human (AAD23745);

WO 02/33046 PCT/US01/49451.

55/77

Figure 8C

- 39 Novel
- 40 Novel

3T3-L1 Adipocytes - PEAK 1

Band Protein/Accession number

- 1 AM-2 Receptor (4758686), human (CAA38905) Myeloid associeted differentiation protein (3212400); human (3212400)
- 2 IGF II- Receptor (1709091), human (NP_000867) Non-muscle myosin heavy chain A (967249), human (P35579)
- 3 α-1 subunity Na+/K+-ATPase (114374), human (P05023) SERCA1a Ca2+-ATPase (477339), human (1586563)
- 4 IRAP (2144020), human (CAB61646)
 Leucine aminopeptidase placental (1888354), human (CAB94753)
 Protein 4.1G (3064263), human (P11171)
 Glutamyl-prolyl-t-RNA (4758294), human (NP_004437)
 ES/130 (4759056), human (NP_004578)
- 5 Coatomer protein α-subunit (6642754), human (NP_004362)
- 6 Coatomer protein α-subunit (6642754), human (NP 004362)
- 7 Non-Identified
- 8 Pyruvate Carboxylase (6679237), human (NP 000911)
- 9 Sortilin 1 (6653197), human (NP_002950) Myosin I heavy chain (480659), human (CAA67131) Proteasome subunit p112 (4506225), human (NP_002798) Major vault protein (497940), human (NP_005106)
- 10 Sortilin 1 (4507159), human (NP_002950) α-Catenin (2134736), human (I39438) Protein C23 (128843), human (NP_005372) Major vault protein (497940), human (NP_005106)

Figure 8D

- Coatomer protein β2-subunit (4758032), human (NP_004757)
 AP2 β1-subunit (4557469), human (NP_001273)
 AP2 α2-subunit (6671563), human (AAD15564)
 LIMP-II (126381), human (NP_002285)
 GRP94 (119362), human (AAF82792)
 Alix (3550456), human (NP_037506)
 Proteasome subunit p97 (1060888), human (BAA11226)
- Amine oxidase (5902787), human (NP_003725)
 Long chain Acyl-CoA synthetase 2 (6679739), human (P33121)
 Geosolin (121117), human (NP_000168)
 Calnexin (6671664), human (P27824)
 STA1(6678153), human (NP_009330)
 Hsp 90 (6680307), human (NP_031381)
 Glycogen synthase (517112), human (BAA06154)
- 13 RET II (3551509), human (NP_005104) Hormone sensitive lipase (1708847), human (Q05469)
- 14 Moesin (4505257), human (NP_002435)
 Long chain Acyl-CoA synthetase 2 (6679739), human (P33121)
 Calcium binding protein 2 (729436), human (NP_004902)
 Cytochrome P450 (6679421), human (P16435)
 GRP78 (121574), human (CAB71335)
- 15 Protein 4.1B (5020274), human (NP_001422) S3-12 protein (3236368), human (NP_001113) β1-Integrin (124964), human (P05556)
- 16 α6-Integrin (3183038), human (P23229)
 Vitronectin receptor (6680486), human (NP_002201)
 Oncoprotein LFC (6678666), human (Q92974)
 eIF3-p110 (4503525), human (AAC27674)
- Calcium binding protein 63K (2493471), human (NP_006175)
 Dihydrolipoamide acetyltransferase (226207), human (226207)
 Primary biliary cirrhosis autoantigen (2117706), human (P10515)
 Complement C3 (1352102), human (NP_000055)

WO 02/33046 PCT/US01/49451 57/77

Figure 8E

- Vimentin (281012), human (A25074)
 Carboxylesterase 1 (6679689), human (NP_036254)
 Lipoprotein lipase (6678710), human (NP_000228)
 PTRF (6679567), human (AAC63404)
 Prolyl-4-hidroxylase β-subunit (2507460), human (P07237)
 ER-60 protease (927670), human (P30101)
- Dynein light intermediate chain 53/55 (2618478), human (NP_006132) Calcium binding protein 1 (2501206), human (NP_005733)
 Dihydrolipoamide acetyltransferase (1710279), human (AAB50223) DEBT-91 (4838557), human (AAF67009)
 α-subunit ATP-synthase (6680748), human (NP_004037)
- 20 GLUT4 (6678015), human (NP_001033) Actin α-2(4501883), human (NP_001604) Ribosomal protein L3 (4506649), human (NP_000958)
- 21 SCAMP (3914963), human (O14828) GLUT4 (6678015), human (NP_001033)
- Annexin V(1351942), human (999924)
 Glyceraldehyde 3-phosphate dehydrogenase(4176768), human (NP_002037)
 TAX (1350763), human (Q02878)
 Ribosomal protein L5 (1173056), human (NP_000960)
- Proteasome C2 subunit (5757653), human (NP_002777)
 Proteasome 26S subunit PP31 (4506233), human (NP_002803)
 Ribosomal protein L7A (4506661), human (NP_000963)
 Ribosomal protein S3 (200770), human (AAA03081)
 Heme oxigenase 1 (123447), human (NP_002124)
- 24 BAP-31 protein (2137162), human (NP_005736)
 14-3-3 protein (4507953), human (NP_003397)
 Prohibitin (4505773), human (NP_002625)
 Micropain subunit IOTA (296736), human (CAA43964)
 Proteasome subunit zeta chain (4506187), human (NP_002781)
 C6-1 Proteasome PSMA7 chain (3805978), human (NP_002783)

58/77 Figure 8F

- v-SNARE Vti1-b (3213229), human (NP_006361) SNAP-23/Syndet (6678049), human (000161) BAP-31 protein (213712), human (NP_005736) Ubiquitin precursor (2118964), human (152220) Proteasome subunit zeta chain (4506187), human (NP_002781) C6-1 Proteasome PSMA7 chain (3805978), human (NP_002783) Ribosomal protein L13 (1083788), human (NP_000968)
- Synaptobrevin-like protein (1617398), human (NP_005629) Ferritin light chain (120524), human (P02792) Ribosomal protein (6677781), human (NP_000983)
- 27 BET-3 (2791806), human (NP_055223)
 Myosin regulatory light chain (NP_059039), human (AAA67367)
 Type II membrane protein (), human ()
 Polyposis locus protein 1 homolog (Q60870), human (Q00765)
 Cytochrome B5 (117809), human (P00167)
- 28 ATP-Synthase, δ-subunit (4502297), human (NP_001678)
 Cytochrome B5 (117809), human (P00167)
 Mytochondrial import receptor subunit TOM20 (298698), human (NP_055580)
 Ribosomal protein 40S (4506695), human (NP_001013)
- 29 VAMP3 (6678553), human (NP_004772) Cystatin C (1345935), human (AAA52164) Histone H1b (356168), human (NP_005312)
- 30 Non-muscle Myosin light chain 6 (127148), human (P24572) Cytochrome B5 (231928), human (P00167) Ribosomal protein 40S (4506695), human (NP 001013)
- 31 Annexin V(6753060), human (999924) Lipocortin V(2981437), human (999924) Membrane glicoprotein GP42 (114835), human (NP_001719) Ribosomal protein S6 (225901), human (P10660)
- Glyceraldehyde 3-phosphate dehydrogenase(120707), human (NP_002037) Calpactin I (113951), human (NP_004030) Ribosomal protein L5 (1173056), human (NP_000960)
- 33 β-Tubulin (135451), human (T08726)
 IMPDH II (124427), human (P12268)
 Vacuolar H+-ATPase (522193), human (AAA58661)

WO 02/33046 PCT/US01/49451

59/77

Figure 8G

- 34 α-1 subunity Na+/K+-ATPase (358959), human (P05023) Proteasome 26S p97 (1060888), human (BAA11226) Alix (3550456), human (NP_037506) Gelsolin (121117), human (NP_000168) β-Catenin (4503131), human (NP_001895)
- AM-2 precursor (4557225), human (NP_000005)
 Ca2+-ATPase 1-plasma membrane (4502287), human (NP_001673)
 α-1 subunity Na+/K+-ATPase (358959), human (P05023)

3T3-L1 Adipocytes - PEAK 2

Band Protein/Accession number

- Dynein heavy chain (294543), human (Q14204) Plectin (1709655), human (CAA91196)
- 2 MAP4 (7106363), human (NP_002366) HsGCN1 (3970973), human (AAC83183) Telomerase protein 1 (6678285), human (NP_009041)
- Myosin heavy chain A (6981236), human (P35579) MAP4 (7106363), human (NP_002366)
- 4 IQ-motif containing GTPase activatin protein (4506787),human (NP_003861) MAP4 (7106363), human (NP_002366)
- 5 Ribosomal binding protein ES/130 (4759056), human (NP_004578)
- Kinesin-related protein (2370435), human (NP_006603)
 Isoleucine t-RNA synthetase (4504555), human (NP_002152)
- 7 Pyruvate carboxylase (6679237), human (NP_000911)
 Serine/arginine-rich protein specific kinase (6678135),human (AAC29140)
 Ribonucleoprotein U (4758546), human (NP_004492)
- 8 Glycogen synthase (6680141), human (P13807)

60/77

Figure 8H

- 9 Hsp70 protein (5729877), human (NP_006588) Long chain fatty acid Acyl-CoA synthetase (126011),human (P33121)
- 10 Hsp70 protein (497940), human (NP_006588)
 GRP78 (121567), human (P11021)
 Estrogen-responsive finger protein (2137285),
 human (NP_005073)
 Major vault protein (497940), human (NP_005106)
- 11 Vimentin (138536), human (A25074)
 PI-Phospholipase I (91897), human (JC5704)
 DJ149A16.6 (Novel Protein) (4468866), human (HSPC117)
- 26S Protease regulatory subunit 6A (2492523), human (P17980) Human elongation factor 1-alpha (4503471), human (NP_001393) Ribosomal protein L4 (1710511), human (BAA04887)
- p38-2G4, Cell cycle protein (1083448), human (AAD05561) Ribosomal protein L3 (7305441), human (NP_000958) TAX responsive enhancer (6755354), human (Q02878)
- Nucleolar phosphoprotein (7242160), human (P06748) Endothelial monocyte-activating protein II (6679639), human (B55053)
- Pyruvate dehydrogenase (2144337), human (DEHUPB) Ribosomal protein L6 (2507315), human (Q02878) Ribosomal protein L5 (1173056), human (NP 000960)
- Ribosomal protein L6 (6755354), human (Q02878) Ribosomal protein S4 (227229), human (NP 000998)
- 17 Ribosomal protein 1 10A (6755350), human (CAB38627) Ribosomal protein S8 (4506743), human (NP_001003) BAP-31 (2137162), human (S49265) Ribosomal protein L13 (1350662), human (NP_000968)
- Ribosomal protein S14 (133785), human (NP_005608)
 Ribosomal protein S19 (4506695), human (NP_001013)
 Ribosomal protein S26 (6981488), human (P02383)
 Ribosomal protein L31 (4506633), human (NP_000984)
 Ribosomal protein S25 (4506707), human (NP_001019)
 Cytochrome B5 (231928), human (P00167)
 H2B histone family member (4504275), human (NP_003518)

WO 02/33046 PCT/US01/49451 61/77

Figure 8I

- Histone H 1.4 (1170151), human (NP_005312) Ribosomal protein S2 (4506719), human (P15880)
- 20 Aspartate t-RNA ligase (135099),human (NP_001340)
 Dynein light intermediate chain 2 (2494218), human (NP_006132)
 26S Protease regulatory subunit 6A (2492523), human (P17980)
 Tubulin β-5 (7106439),human (NP_006078)

Figure 9

人名英格兰人姓氏克里的变体 医多种性病		e entitals,	States Form	O 10-E1 Lean 2
多数為安全衛衛衛衛衛 學者不過行為不				
Glut4	Union	Yes	Yes	Yes
Long-chain Acyl-CoA	Both	Yes	Yes	Yes
dehydrogenase(synthetase)				
Acetyl-coa Carboxylase	Subtractive	Yes	;	3
Carboxylesterase	Union	Yes	ż	3
Caveolin-1	Both	Yes	ż	;
CDC36	Both	Yes	i	3
Glyceraldehyde-3-Phosphate	Union	ċ	Yes	Yes
Dehydrogenase				
Glycogen Synthase	Union	5	Yes	Yes
Grp78	Subtractive	ن	Yes	Yes
Grp94	Subtractive	3	Yes	Yes
Pyruvate Carboxlase	Subtractive	ż	Yes	Yes
Ribosomal Protein L3	Union	ن	Yes	Yes
Bet3	Union	;	Yes	;
Lipoprotein Lipase	Union	<i>.</i>	Yes	į
Myosin Regulatory Light Chain	Union	ż	Yes	¿
Na+ K+-ATPase alpha	Union	ن	Yes	i
S3-12	Union	ن	Yes	,
Heat Shock Protein 70	Union	3	5	Yes

Fig. 11B Janin hydrophobicity: Window = 11

65/77 Figure 12

ъ0175

Figure 134

Accession Account Accession Ac	m2 m3 class		P. P.	P P	- d	L d	В	- A	d d	D D	Ь	— В	p. p.	P P	- d	P P	P P 2	P P 2	P. P. 2	P P 2	P P 2	P P 2	P P 2	P P 2	P. P. 2	P _ P 2	P P 2	P 3	, i	D 100	P 3
NG-U744 98866_a1 nuclear-oncoded mitocloudrial acyltransferase 142996 A A A A A MG-U744 98866_a1 nuclear-oncoded mitocloudrial acyltransferase 120309 A A A A MG-U748 115824_a1 2.4-distonoly/ CoA-reductase 1.4000909 A A A MG-U74A 92592_a1 Glycetolphosphate debydrogenase 1, cytoplasmic M25558 A A A MG-U74A 92542_a1 Chyopophyrinogen decarboxylase M25558 A A A A MG-U74A 92542_a1 Chyopophyrinogen decarboxylase M25594 A A A MG-U74A 96092_a1 Estradiol Deta-Debydrogenase 4 MG-U74A 10199]_a1 Glutd Main-containing monooxygenase 4 MG-U74B MG-U74A 10199]_a1 Glutd Main-containing monooxygenase 4 MG-U74B	a3 m1	P P P	p P P	P P P	р р т	РРР	PPP	р. Р. Р	Р Р Р	P P P	ррр	РРР	d d d	РРР	p p p	РРР	р Р Р	р р р	ррр	ррр	P P P	ррр	b b p	р р р	- d - d - d	P P P	P P P	р р р	p p p	р р р	$\mathbf{p}\cdot\mathbf{p}\cdot\mathbf{p}$
Accession Accession MG-U744 98966_at unclear-encoded mitoclondrial acyltransferase L42996 A A MG-U744 98366_at unclear-encoded mitoclondrial acyltransferase L42996 A A MG-U74A 92592_at 2,4-dienoyl CoA reductase I, cytoplasmic L23934 A A MG-U74A 92592_at carbonic anhydrase II (CAII) M35944 A A MG-U74A 92645_at carbonic anhydrase II (CAII) M35944 A A MG-U74A 96055_i at carbonic anhydrase II (CAII) M35944 A A MG-U74A 96055_i at Estradiol I7 Beta-Dechydrogenase A I837440 A A MG-U74A 101901_at flavin-containing monoxygenase A I83383 A A MG-U74B 10210_at chosphofructo-2-kinase/fructose-2,6-bisphosphatase A I83383 A A MG-U74B 10220_at peptide methionine sulfoxide reductase A CA38642 A A MG-U74B 11221_at 1-4-alpha-glucan branching cnzyme A AA3383 A A MG-U74B 11220_at 1-4-alpha-glucan branc			a.	2	<u>a</u>		۵	Ê	1				4											a	ė.			(<u>a</u>	e e	<u>a</u>	
Accession Accession MG-U744 98266_at inicitar-encoded mitochondrial acyltransferase 142996 A MG-U744 98266_at anicitar-encoded mitochondrial acyltransferase 124090 A MG-U74A 92502_at anicitar-encoded mitochondrial acyltransferase L26050 A MG-U74A 92502_at carbonic anhydrase II (CAII) M25944 A MG-U74A 92645_at carbonic anhydrase II (CAII) M25944 A MG-U74A 96055_i at Estradio I J Beta-Dchydrogenase 4 A1648018 A MG-U74A 102191_at flavin-containing monooxygenase A1648018 A MG-U74B 102191_at flavin-containing monooxygenase A1648018 A MG-U74B 10210_at peptide methionine sulfoxide reductase A1648018 A MG-U74B 11028_at Foxos-L-prolinase A075373 A MG-U74B 112871_at malate dehydrogenase AAA58642 A MG-U74B 11287_at Fresisin AAA58642 A		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	٧.	Α,	× 1		۷	× .	⋖	۷ .	4		٧,	4	٧.	٧	4	٧.	7			ج ا ب		~	~			~	_	_	~
Accession Accession MG-U744 98966_at minclear-encoded mitoclondrial acyliransferase L42996 MG-U744 98266_at minclear-encoded mitoclondrial acyliransferase L42996 MG-U744 92592_at Glycerolphosphate dehydrogenase I, cytoplasmic M25584 MG-U74A 92642_at carbonic anhydrase II (CAII) M25944 MG-U74A 95645_at Iscusor U34691 MG-U74A 95645_at Grabonic anhydrase II (CAII) M25944 MG-U74A 96095_i_at Estradiol 17 Beta-Dehydrogenase 4 A1648018 MG-U74A 101991_at flavin-containing monooxygenase M1631740 MG-U74A 10237_at G-phosphofructo-2-kinase/fructose-2,6-bisphosphatase X98848 MG-U74A 10237_at G-phosphofructo-2-kinase/fructose-2,6-bisphosphatase A722073 MG-U74A 10237_at G-phosphofructo-2-kinase/fructose-2,6-bisphosphatase A723011 MG-U74B 11237_at malate dehydrogenase A722073 MG-U74C 132325_f at Histidine Triad Nucleotide-Binding Protein AAA3662 <			4	× -	~	~	~	▼	~ ₩	~	٧.	~	*	*	*	*	*	~	*	*	*		-51 -	*	` ▼	* (<u> </u>	*	*	٠ لا	٠ ٧
Array Name Probe Set gene MG-U74A 98966_at nuclear-encoded mitochondrial acyltransferase MG-U74A 98966_at nuclear-encoded mitochondrial acyltransferase MG-U74A 92592_at 2,4-dienoyl CoA reductase I MG-U74A 92592_at Glycerolphosphate dehydrogenase I, cytoplasmic MG-U74A 92643_at carbonic anhydrase II (CAII) MG-U74A 96095_i_at Estradiol I7 Beta-Dehydrogenase 4 MG-U74A 101991_at flavin-containing monooxygenase MG-U74A 101991_at flavin-containing monooxygenase MG-U74B 102197_at flavin-containing monooxygenase MG-U74B 102117_at flavin-containing monooxygenase MG-U74B 102117_at flavin-containing monooxygenase MG-U74B 102117_at flavin-containing monooxygenase MG-U74B 102117_at flavin-containing crachoryle crack reductase MG-U74B 110280_at flavin-containing crachoryle crack reductase MG-U74A 12220_a_at flavindene protein MG-U74A 12236_at flavin-containing crachoryle	Ξ	•	₹.	₹.	₹,	₹.	٦	٠,	أهد	٦,	4	4	4	-4,	4	*	4	4	*	4	٠,		*	*	`	•	-15-1	*	•	•	•
Array Name Probe Set MG-U74A 98966_at MG-U74B 115824_at MG-U74A 92592_at MG-U74A 92642_at MG-U74A 92642_at MG-U74A 92645_at MG-U74A 92645_at MG-U74A 101991_at MG-U74A 102314_at MG-U74B 102297_at MG-U74B 110280_at MG-U74B 110280_at MG-U74B 112871_at MG-U74B 102356_at MG-U74A 92202_g_at MG-U74A 102366_at MG-U74A 102366_at MG-U74A 102366_at MG-U74B 102366_at MG-U74B 102358_at MG-U74B 102356_at MG-U74B 102356_at MG-U74B 102356_at MG-U74B 111708_at MG-U74B 111708_at MG-U74B 11324_at MG-U74B 1030963_at MG-U74B 1030963_at </th <th>Accession number</th> <th>142996</th> <th>77,000</th> <th>M25558</th> <th>M25944</th> <th>U34691</th> <th>A1837440</th> <th>A1648018</th> <th>D16215</th> <th>M23383</th> <th>X98848</th> <th>AJ242973</th> <th>AF232011</th> <th>U70825</th> <th>AAA58642</th> <th>AAA37423</th> <th>AI553024</th> <th>AA710175</th> <th>AA718169</th> <th>U82441</th> <th>L28835</th> <th>XM_004466</th> <th>AB041261</th> <th>AF180471</th> <th>AB029496</th> <th>NM_015385</th> <th>U76456</th> <th>BC001075</th> <th>L42583</th> <th>U27106</th> <th>M95178</th>	Accession number	142996	77,000	M25558	M25944	U34691	A1837440	A1648018	D16215	M23383	X98848	AJ242973	AF232011	U70825	AAA58642	AAA37423	AI553024	AA710175	AA718169	U82441	L28835	XM_004466	AB041261	AF180471	AB029496	NM_015385	U76456	BC001075	L42583	U27106	M95178
Array Name Pro MG-U744 98966 MG-U74B 11582 MG-U74A 92592 MG-U74A 92645 MG-U74A 92645 MG-U74A 10231 MG-U74B 10231 MG-U74B 10231 MG-U74B 10231 MG-U74B 10232 MG-U74B 10238 MG-U74B 10238 MG-U74B 10238 MG-U74B 10238 MG-U74A 10298 MG-U74B 10298 MG-U74B 10298 MG-U74B 10298 MG-U74B 10398	อนอชี	nuclear-encoded mitochondrial acytransferase	2,4-dienoyl CoA reductase l	Glycerolphosphate dehydrogenase 1, cytoplasmic	carbonic anhydrase II (CAII)	Uroporphyrinogen decarboxylase	ISCU2	Estradiol 17 Beta-Dchydrogenase 4	flavin-containing monooxygenase	Glut4	6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase	peptide methionine sulfoxide reductase	peroxisomal trans 2-enoyl CoA reductase	5-oxo-L-prolinase	I,4-alpha-glucan branching enzyme	malate dehydrogenase	ZINC FINGER PROTEIN PLZ	Histidine Triad Nucleotide-Binding Protein	Resisitn	EBF-2	peroxisome membrane protein	heat shock transcription factor 2	calcium-independent phospholipase A2	Lpinl	semaphoring	CAP	tissue inhibitor of metalloproteinases	mitochondrial uncoupling protein 1	keratin 6	AP-2 50 kDA PROTEIN	alpha-actinin l
144222222222222222222222222222222222222	Probe Set	98966 at	115824_a1	92592_at	92642_at	94275_at			101991_at	102314_at	103297_at	107117_at	110280_at	112871_at	132325 f at	132987 f at		94365_at	102366 at	102958 at	104098 at	105496 at	108283 at	111708_at	111925_at	113344 at	130718_at	109963 6 at	108289 at	109254 f at	111431_at
7 2 8 4 8 9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Array Name	MG-U74A	MG-U74B	MG-U74A	MG-U74A			MG-U74A	MG-U74A	MG-U74A	10 MG-U74A	I MG-U74B	2 MG-U74B	13 MG-U74B	14 MG-U74C	15 MG-U74C			18 MG-U74A		20 MG-U74A				24 MG-U74B	25 MG-U74B		-			30 MG-U74B

	_	_							10	10	ın	ıc	ıv.	ĸ	ĸ	ĸ	v	vo.	ıc.	ı.	'n	ı.	w	vo i	w.	w I	'n	vo.	S	vo '	vo.	so i	ın i	n
	4	7	4	v.	un Se o	41 20	4,		- · ·		2	· ·	 	7. 2. d				- T		- ni	٠٠ ١٠٠	4 6	. 181			2 . 8			6	A.: 'S		A: 1	/	¥.
4							L																											
														Ţ.											il li					i je				
														WIE	d d	р р р			8	_				_	d		_	٠.	ر د نم		<u> </u>	٠.		4
				Σ.					4	<u>.</u>	4	d		A.	d	L	ے	2	MeM	٩	à	ė.	۵.	<u>.</u>	. به	۵.	_	۵	<u>.</u>	د ب	٠.	a.		2
2	< '	<	V	V	≺	∢	⋖	⋖	≺	⋖	<	⋖	⋖	⋖	٧	Z	⋖	<	≺	⋖	⋖	K	۷ ۶	Z	¥	∢	٧	∢	⋖	∢	∢	∢	⋖	∢
٠	W	4	∢ ′	W	¥	4	4	∢	4	¥	∢	∢	¥	~	∢ `	⋖	4	∢	¥	∢	¥	4	∢ ້	∢	∢	4	¥	< 1	M	∢.	¥	A	∢	~
		¥	∢ `	≺	∢	4	4	∢	4	W	∢	∢	¥	∢	4	∢	¥	∢	¥	4	¥	∢	∢	¥	¥	∢	∢	∢	¥	∢	¥	<	¥	<
				١	2.2	73	١.		_		٠,		8		S	39	4	9	6	99	<u>∞</u>	ب	유	34	9	7	1	49	4	7	7		92	17
	529	284	80	A1848685	A W 122957	AW049373	A1118905	A1848344	A1846600	X61450	A1848526	BC00272	AK018608	803	AJ278735	AAF45339	AB033114	AF151036	AK007799	AK023256	CAB58018	AF151036	AK001240	AK014834	AK025546	AF141312	AK002741	AW120749	AK017994	AF151807	A1049307	U66411	AA958966	AW259417
	M25529	U09284	L23108	A18	¥	ΑM	A.I.	A18	A18	X61	A18,	BCC	AK(U41803	A J 2	AA	AB(AFI	AK(ΑK	CAI	AFI	ΑK	ΑK	ΑK	AFI	ΑK	ΑW	AK	AFI	AI0	ñ	AA	¥
33																																		
Figure 13B				¥																														
gur				UI-M-AH1-agv-f-06-0-UI.s1 Mus musculus cDNA																														
F				sculu																														
				s mu																														
				⊒W.																														
	_			·U.s										hypertension-rclated protein												_								
	Scrine protease inhibitor I			0-90										led pa												hypoxia induced gene l								
	se in	,⊑		gv-f-		Ę						teín		-rcla												paor								
	rotea	PINCH protein		H-1	F	TCP-1 epsilon	E	E	F	191	_	PTD015 proteín	Ę	nsion		55	288	05	E	94)C10	05	78	E	93	indu	Ę	Ę	É		Ę	Ę	5	5
	ine p	Ç	CD36	M-A	unknown	.p-1	unknown	unknown	unknown	clone E161	C15orf4	000	unknown	pene	ORFI	CG13865	KIAA1288	HSPC202	unknown	FLJ13194	BACR7C10	HSPC202	FLJ10378	unknown	FLJ21893	poxi	unknown	unknown	unknown	CGI-49	unknown	ипкпомп	unknow n	unknown
	Scr	E	8	Ė	un	5	m	m	u	용	\overline{c}	Ы	nn	μ	Ö	\mathcal{E}	조	H	듐	교	B/	Ï	료	ä	正	μ	S	5	5	ŏ	n	5	'n	'n
	ia.	ب	ਜ਼							#	at	귫	¥	äŧ	at	ät	Ħ	äţ	t .	at	at	at.	Ħ.	Ę.	Ħ.	5	at	म	.	ä.	r at	12	Ħ,	Ħ,
	75_i_at	00 at	109884_f_at	2_at	95596_at	22_at	96237_at	97397_at	l at	100458_at	104567_at	105993_at	106215_at	106606_at	108493 at	108499 at	124_at	110826_at	215_at	079_at	113599_at	902_at	114296_at	14491_f_at	114801_at	341_at	115480_at	116809 at	116839_at	116896_ar	1785 r at	1834_r_at	843_at	318_at
	1015	1066	1098	9401	9559	9612	965	9739	9751	<u>00</u>	104	105	106	100	108	108	1091	10	1122	113(113	1135	114	1 4	114	115	115	911	116	116	1287	1288	129	130
	_		~	_	_	,		*	4	4	∢	m	m	m	m	m	æ	ത	ø	æ	മ	æ	В	B	8	В	B	œ	B	В	U	U	U	U
	J74A	U74B	U74E	U74A	MG-U74A	MG-U74A	MG-U74A	MG-U74A	MG-U74A	MG-U74A	MG-U74A	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74B	MG-U74C	MG-U74C	MG-U74C	MG-U74C
	MG-U74A	MG-U74B	MG-U74B	MG-U74A	MG-	MG	MĢ	MG-	MG	МĠ	-bW	ΜĠ	ΜĞ	MG.	-ĠW	MG.	Ŋ.	-b W	MĠ	-SMG	MG.	Ğ	ġ	ΜĠ	МĠ	Ġ	Ġ	ÓΜ	ΜĠ	Ğ	Ġ	ÄĠ	Σ	Ø
	33	34	35	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57	58	59	9	19	62	\mathcal{S}	\$	65	99

M P P P P P	M P MEW P P-P	M P P P P P P	APPW	A MI P P MI P P	A P P P P P	MIN P P WI P P
4	¥	A	¥	¥	¥	₹
4	<	Σ	٧	∢	N.	Š
C88213	AK008753	AA764539	AL137422	AJ272344	AV258761	AK009357

Figure 13C

unknown	141159_f_at	73 MG-U74C	73
unknown	139613_at	72 MG-U74C	72
unknown	138548_ar	71 MG-U74C	7.1
DKFZp761A1623	137131_at	70 MG-U74C	70
unknown	136067_at	69 MG-U74C	69
unknown	135403_at	68 MG-U74C	89
unknown	131255_at	67 MG-U74C	67

Figure 1 $\mu_{
m A}$

Ë			·	-		_						, State	_				Ι.		-	1	1	-	-	_	, been	
m2	1	-	1		1 .	1	1.	I	.	I	-		I		I		1	1.	I	-	M	Į	I	-	I	
m	-	-	1		1	I	-	I · ·	I	1	1	I	······································	ŀ	_	<u>, </u>			•	<u> </u>	: į	-		1		
, a3	-	1	1		-	-	_	bend		1		I	_	1	-				1	1	1	1	-	<u> </u>	-	
a2	1	I.,				-	-	-	. =	I		-	1				_		_	_			1	-	-	
al			- D	()		E)		Ü		C		Ü		0				\overline{C}				C li				5
t3	NC	NC NC	NC NC	NC NC	NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC
17	NC	NC	NC NC	NC	NC NC	NC NC	NC	NC	NC NC	NC	NC	NC	NC.	: NC	NC NC	NC NC	NC NC	NC NC	NC	NC.	NC.	NC:	NC:	NC.	NC NC	NC
Ξ	NC	S	NC	S	NC	NC	S	S	S	NC	SC	SC	NC	NC	SC	NC	S	NC	SC	NC	S	SC	S	S	NC	SC
Accession	U07159	L29123	X53157	M91458	M63245	1191458	M63245	AF041054	AF013160	X07295	A122756	NM_013387	NM_003001	711666	UI 5977	BC000439	U17248	X05341	70690X	BC001168	X15958	D29639	U01170	L47335	BC003432	M28723
Gene	Acetyl coenzyme A dehydrogenase, medium chain	adrenodoxin mRNA	mitochondrial cytochrome c oxidase subunit Vb	sterol-carrier protein 2	amino levulinate synthase	Sterol carrier protein 2	amino levulinate synthase	E1B 19K/Bc1-2-binding protein	Nadh-Ubiquinone Oxidoreductase 49 kDa Precursor	Malate dehydrogenase	24-kDa subuṇit of mitochondrial NADH dehydrogenase	ubiquinol-cytochrome c reductase complex (7.2 kDa)	succinate dehydrogenase complex, subunit C,	hexokinase II	long chain fatty acyl CoA synthetase	pyruvate dehydrogenase (lipoamide) beta	t succinate dehydrogenase iron-protein subunit	3-oxoacyl-CoA thiolase	Cytochrome C1	t NADH dehydrogenase 1 beta subcomplex, 2	mitochondrial enoyl-CoA hydratase	3-hydroxyacyl CoA dehydrogenase,	Carnitine palmitoyltransferase 2	branched chain alpha ketoacid decarboxylase El a subunit	electron-transfer-flavoprotein, alpha	Anti-oxidant protein I
probe set	92581_at	92587_aı	93119_at	93278_at	93500_at	93572_at	93581_at	93836_at	93972_at	93991_at	94062_at	94078_at	94216_at	94375_at	94507_at	94806_at	AIG-U74A 95053_s_at	95064_at	95072_ar	MG-U74A 95131 fat	95426_at	95485 at	95646_at	96035_at	96112_at	96256_at
chip	MG-U74A 92581_au	MG-U74A 92587_a	MG-U74A 93119_a	MG-U744 93278_a	MG-U74A 93500_a	MG-U74A 93572_a	MG-U744	MG-U74A 93836_a	MG-U744 93972_a	\\IG-U74.4	MG-U74A 94062_a	NIG-U74A 94078_aı	MG-U74A 94216_a	MG-U74A	NIG-U74A 94507_ai	MG-U74A 94806_aı	AIG-U74A	MG-U74A	MG-U74A 95072_al	MG-U74A	MG-U74A 95426_a	NG-U74A 95485_a1	MG-U74A 95646_a	MG-U74A 96035_a	MG-U74A 96112_a	MG-U74A 96256_aı
	1	7	.	4	ς,	9	7	8	6	10	11	12	13	14	15	91	17	18	61	20	21	22	23	24	25	26

	_	۔ ۔		-	-			<u>.</u>	· <u> </u>	_	_	_	_	1	ŀ		prog.	-			-	-	-	-	-	.	. I	-
	-		-	1		-	1	1	-	, -	1	•	****	=	-	-	1	-	-	-	1	1	1	. **		1	-	_
	1	·	1 1	1	1 1]]	. =		1 1	1 1	1 I	1		I . I]]			-	1	-	_	-	1 1]]	-	_	-	-
	_	-	. I	_		-	I) Heating	1	1	Į	_	. 🚅	· 📥	_		tera	-	-	_	,	-		1	_	_	
	NC	SC	NC	NC	NC	SC	SC	SC	NC	SC	SC	NC	SC	NC	NC	S	NC	NC	NC	NC	NC	NC	NC	NC	NC	SC	NC	NC
	SC	S	S	S	S	S	S	Š	S	S	S	SC	S	S	S	S	SC	Š	S	S	S	S	SC	S	SC	SC	SC	NC
	S	S	NC	S	NC	SC	NC	S	NC	NC	NC	SC	NC	NC	NC	NC	SC	SC	NC	NC	NC	NC	NC	SC	NC	NC	SC	NC
	NM_007103	AF144101	738996	AF118386	D10655	BC002370	NM_001098	AF067139	D16479	AJ224002	U73445	269232	D90401	UIOIIS	514048	745996	J04473	14734487	X51941	JE0381	AF043070	U11680	L16842	BC000484	X85983	AAA88512	44488512	BC000439
Figure 14B	NADH dehydrogenase (ubiquinone) flavoprotein l	succinyl-CoA synthetase	mitochondrial elongation factor Tu	AU-binding enoyl-CoA hydratase	dihydrolipoamide acetyltransferase	homolog of ESI protein	aconitase 2, mitochondrial	NADH:ubiquinone oxidoreductase NDUFS3 subunit	mitochondrial long-chain 3-ketoacyl-CoA thiolase	electron transfer flavoprotein	Dihydrolipoamide dehydrogenase	electron transfer flavoprotein-ubiquinone oxidoreductase	dihydrolipoamide succinyltransferase	Cytochrome c	dodecenoyl-CoA delta-isomerase	nuclear-encoded mitochondrial acyltransferase mRNA	mitochondrial fumarase	Dihydroxypolyprenylbenzoate Methyltransferase	Methylmalonyl coenzyme A mutase	NADH dehydrogenase 1 beta subcomplex, 10	tt branched chain alpha ketoacid dehydrogenase kinase	glycerol-3-phosphate acyltransferase	cytochrome-c reductase core l protein	at ubiquinol-cytochrome c reductase core protein II	Carnitine acetyltransferase	at alpha-propionyl-CoA carboxylase	alpha-propionyl-CoA carboxylase	pyruvate dehydrogenase (lipoamide) beta
	96267_at	96268_at	96626 at	96650_at	96746_at	96757_at	96870_ar	96899_at	96913_at	96947_aı	97502_at	97869 <u>a</u> 1	97880_at	98132_at	98527_at	98966_at	99148 at	99365_aı	99613_at	VIG-U74A 101525_at	MG-U74A 101557 fat b	101867_at	MG-U74A 101989_at	102000 f.a.	NG-U74A 103646_at	106267_s_a	11G-U74B 106268_at	111690_at
	MG-U74A 96267_at	MG-U74A 96268_at	MG-U74A 96626_a1	MG-U74A 96650_a	MG-U74A 96746_al	MG-U74A 96757_at	AJG-U744 96870_at	MG-U74A	MG-U74A 96913_at	MG-U74A	MG-U74A	VIC-N44	MG-U74A	MG-U74A 98132_at	NIG-U74A	MG-U74A	11G-U74A	AIG-U74A	AIG-U74A	AIG-U74A	AIG-U74A	AIG-U74A	NG-U74A	MG-U74A	N/G-U74A	AIG-U74B	NG-U74B	NG-U74B 111690_at
	27	28	53	30	31	32	33	3.4	35	36	37	38	39	0.		45	£,	<i>††</i>	45		47	%	65	30	21	25	53	54

Figure 14C

C NC I I I I I I	C NC	C NC I I I I I I I	C NC 1 1 1 1 1 1	C NC 1 1 1 1 1 1	C NC	C NC	C NC · I I I I I	C NC I I I I I I	C NC MI MIL I I I	C NC 1 1 1 1 1 1	C NC	C NC I I I I I I	C NC 1 1 1 1 1 1 1	C NC I I I I I I I	C NC I I I I I I	C NC II A LAMBERT MAN	C NC 1 1 1 1 1 1 1	C NC I I I I I I	C NC I I I I I I	C NC	C NC I I I I I I	C NC I I I MI MI M	NC NC I I I I I I	C NC	NC NC I I I I I I	NC NC II I II I I I	C NC
NC NC	NC NC	NC NC	NC X	NC N	NC NC	NC N	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC X	NC NC	NC N	NC X	NC NC
AF134983	NM_010022	U79296	XM_010374	M32599	M25558	·U68564	M21285	M21285	A1648018	BC003351	102652	X13135	AJ224162	NM_012505	NM_005326	X13752	J02652	D16215	AK003511	AF119390	M23383	L02331	X98848	M83088	AJ242973	AAB71082	NM_012505
energy-dependent regulator of proteolysis	dihydrolipoamide branched chain transacylase £2	dihydrolipoamide acetyl transferase	sodium/hydrogen exchanger isoform 6	glyceraldehyde-3-phosphate dehydrogenase	Glycerolphosphate dehydrogenase 1, cytoplasmic	Isocitrate dehydrogenase 3 (NAD+), gamma	Stearoyl-coenzyme A desaturase 1	Stearoyl-coenzyme A desaturase 1	Estradiol 17 Beta-Dehydrogenase 4	similar to NADH dehydrogenase I alpha subcomplex, 9	malate NADP oxidoreductase	Fatty acid synthase	putative lipoic acid synthetase	A TPase, Na+K+ transporting, alpha 2	hydroxyacyl glutathione hydrolase	Delta-aminolevulinate dehydratase	Malic enzyme, supernatant	flavin-containing monooxygenase	unknown Glyoxalase	alpha-2,3-sialyltransferase VI	Glut4	phenol/aryl form sulfotransferase	6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase	phosphoglucomutase I	peptide methionine sulfoxide reductase	similar to putative type III alcohol dehydrogenase	ATPase, Na+K+ transporting, alpha 2
NIG-U74B 112974_at	NG-U74B 115077 f_at	MG-U74B 115211_at	MG-U74B 115357_at	MG-U74A AFFX-	MG-U74A 92592_at	MG-U74A 93029_at	MG-U74A 94056_at	MG-U74A 94057_g_at	MG-U74A 96095_i_at	MG-U74A 96321_at	MG-U74A 96348_at	MG-U74A 98575_at	MG-U74A 98909_at	MG-U74A 99481_at	MG-U74A 100042_at	MG-U74A 101044_at	MG-U74A 101082_at	MG-U74A 101991_at	MG-U74A 102022_at	MG-U74A 102208_at	MG-U74A 102314_at	MG-U74A 103087_at	MG-U74A 103297_at	MG-U74A 104313_at	MG-U74B 107117 at	MG-U74B 108537_at	MG-U74B 113545_at
55	36	57	58	59	9	19	62	63	64	65	99	29	89	69	70	71	72	73	74	75	76	11	78	79	80	8	82

ı	_			Z			_				_					_	_ i.		_		_	_	-	_		_		-
	_	•	-	_	Titoli	-	_	<u>.</u>	MI	1	,	j	1	1	3000			<u>.</u>	_		_	1		-	-	. 1	· .	
		•	-	1	1	_:	MÎ	. !	,	1.	1	1		. 1	-	_	-	-	. 1	1	-	-	-	•	-	-	1	
	1	-	1	i	-		-	-	MI	1	I	-	-	-	<u>. </u>	-	1	-	1	-	1 .	1	-	I	_	-		_
				<u> </u>		Ξ.		-			7.)														<u></u>		_ []	- :
	NC NC	NC NC	NC NC	NC NC	C NC	C NC	O NC	C NC	NC NC	CNC	C NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
	NC N	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	ž UN	NC NC	NC NC	NC X	Ž OZ	NC N	Z V Z	Ž V V	Z ON	NC N	NC N	NC N	NC N	NC N	NC N	NC N	NC N	Z C Z	ZUZ	NC N
	Ž	Ž	Ž	Ž	Z	Z	Z	Z.	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
	79					1 0	41					6		_	_	,	11				66			0	6	ب	37	989
	619110 MX	354	AI553024	362	AJ251508	AA710175	NM_023041	431	AJ246002	AF180471	382	AA718169	465	AF077659	AY007381	AY007381	NM_019717	383	596	AJ271836	669600 MX	AF180471	AB041261	AB019120	AB020759	AF234625	XM_004537	989610_MN
	×,	D10354	A155	X72862	AJ2:	AA7	Σ̈́	X61431	A324	AFI	D78382	AA7	U41465	AF0	AYC	AYC	Σ	X89383	Y14296	AJ2	X	AFI	ABC	AB	AB(AF2	X	Z
Figure 14D	glutamic-pyruvate transaminase	at alanine aminotransferase	at Q05516 zinc finger protein plzf	at beta-3-adrenergic receptor	AWPi ,	Histidine Triad Nucleotide-Binding Protein	Peroxisomal farnesylated protein	diazepam-binding inhibitor	spastin protein	Lpin1	Tobi	r Resisitn	t B-cell leukemia/lymphoma 6	t homeodomain-interacting protein kinase 2	at AKR group XII-1 phospholipase A2	_at AKR group XII-1 phospholipase A2	t ADP-ribosylation-like factor 6 interacting protein 2		it BTEB-1 transcription factor.	it protein phosphatase 2C beta-1	it nuclear receptor interacting protein 1	it Lpin1	tt calcium-independent phospholipase A2	it Unknown seven transmembrane receptor	it Kruppel-like transcription factor	it pre-B-cell colony-enhancing factor	nt mitogen-activated protein kinase phosphatase x	ot kinase interacting protein 2
	113915_at	132388_f_a	92202_g_a	92537 g a	93082_at	94365_at	95074_at	97248_at	98428_at	98892_at	99532_at	102366_at	103015_at	103833_at	104342_i_	104343_f	104745_at	106573_at	106577_at	109110_at	110650_at	111708 at	111784_at	112336_at	113124_at	113762_at	113976_at	114062_at
	MG-U74B 113915_at	MG-U74C 132388_f_at	MG-U74A 92202_g_at	MG-U74A 92537_g_at	MG-U74A	MG-U74A 94365_at	MG-U74A 95074_at	MG-U74A	MG-U74A 98428_at	MG-U74A 98892_at	MG-U74A 99532_at	MG-U74A 102366_at	MG-U74A 103015_at	MG-U74A 103833_at	MG-U74A 104342_i_at	MG-U74A 104343_f_at	MG-U74A 104745_at	MG-U74B 106573_at	MG-U74B 106577_at	MG-U74B 109110_at	MG-U74B 110650_at	MG-U74B 111708_at	MG-U74B 111784_at	MG-U74B 112336_at	MG-U74B 113124_at	MG-U74B 113762_at	109 MG-U74B 113976_at	MG-U74B 114062_at
	83	84	85	98	87	88	68				93	94	95	96	76	86	66	100	101	102	103	104	105	106	107	108	109	110

Figure 14E

댇	
Н	
gure	
.ц.	
Œ,	

NC NC NC L L L L L L L L L L L L L L L L	NC NC NC I I I I I I	NC NC NC	NC NC NC	NC NC NC I I I I I I	NC NC NC	NC NC NC 1 1 1 1 1 1 1	NC NC NC I I MI I I I	NC NC NC I I I I I I I I	NC NC NC I I I I I I I	NC NC NC	NC NC NC	NC NC NC II I I I I I	NC NC NC I . I I I I I	NC NC NC I I I I I I	NC NC NC I I I I I I	NC NC NC I I I I I I I I	NC NC NC I I I I I I I I	NC NC NC I I I I I I I I	NC NC NC I I I MI I I	NC NC NC	NC NC NC I I I I I I I	NC NC NC I I I I I I I	NC NC NC I I I I I I	NC NC NC MIL I I I I I	NC NC NC I I I I I I	
A1648018	AW049373	AB032981	AAF47115	AI118905	AK002925	AB028857	AK004940	A1846600	AJ237586	AJ250690	AF244543	AK012126	AK003702	M15425	AF141312	AI01967	AF100956	L28835	AI019327	AK025085	BC00272	AI.157477	NM_020589	XM_008246	AJ278735	
MGC:7467		KIAA1155	unknown	unknown	unknown	mDj7	Riken clone:1300008B03	unknown	hypothetical protein	sr104 protein	1-17 unknown mRNA	unknown	unknown	Murine leukemia virus VLeco long terminal repeat	hypoxia induced gene 1	Unknown	MG-U74A 102991_s_at major histocompatibility locus class II region	peroxisome membrane protein	unknown	FLJ21432	PTD015 protein	similar to CG15168 gene product	MNCb-3350	hypothalamus protein HT008	ORFI	
MG-U74A 96096 f at	96122_at	96158_at	96212_at	96237_at	96615_at	96680_at	97420_at	97511_at	97908_at	98039_at	99471_at	99594_at	99636_at	99849_at	MG-U74A 101094_at	MG-U74A 101912_at	102991_s_8	MG-U74A 104098_at	104396_at	MG-U74A 104605_at	105993_at	107059 at	MG-U74B 107283_at	MG-U74B 108108_at	MG-U74B 108493_at	
MG-U74A	MG-U74A 96122_at	MG-U74A 96158_at	MG-U74A 96212_at	MG-U74A 96237_at	MG-U74A 96615_at	MG-U74A 96680_at	MG-U74A 97420_at	MG-U74A 97511_at	MG-U74A 97908_at	MG-U74A 98039_at	MG-U74A 99471_at	MG-U74A 99594_at	MG-U74A 99636_at	MG-U74A 99849_at	MG-U74A	MG-U74A	MG-U74A	MG-U74A	MG-U74A 104396_at	MG-U74A	MG-U74B 105993_at	MG-U74B	MG-U74B	MG-U74B		
139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	191	162	163	164	

Annell .	1	Same	-	1	. 1	1	_	<u>.</u>	IIÑ.	<u>.</u>	-	1	1		. 1	1	-	_	1	_	
C	C	C	C	C	IC I	IC I	i Di	1C 1	1C 1	ic I	IC L	Į C	NC NC MI	CC	IC MI	VC NI	NC NC MI	NC NC MI	NC	ZC.	
NC NC NC	NC NC NC	NC NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC NC	NC NC	NC NC	NC NC	NC	NC NC	NC NC	NC NC	SC	NC 1	SC	NC NC	
S Z	NC	SC	NC	NC	NC	S	SC	NC	S	NC	NC	NC	NC	NC	NC	SC	NC	NC	SC	NC	
AK008857	AK025636	AF151036	AA821545	AF132944	AK022654	AK007496	CAB58018	AI849005	AK001240	BC000270	AK003388	AF052185	AI595378	C88213	BC002211	AW20847	AW20847	AA764539	AA124582	AK009357	
unknown	168 MG-U74B 110471_i_at KIAA0172	HSPC202	unknown	CGI-10	FLJ12592	unknown protein	Similar to BACR7C10.a [Drosophila melanogaster].	unknown	FLJ10378	LRP16	unknown	clone 24418	unknown	unknown	MG-U74C 132466_f_at MGC:7467	t unknown	ıt unknown	unknown	unknown	ıt unknown	
MG-U74B 109016_at unknown	110471_i_at	MG-U74B 110826_at	112029_at	MG-U74B 112361_at	112864_at	MG-U74B 113212_at	113599_at	MG-U74B 113968_at	114296_at	MG-U74B 116644_at	MG-U74B 117208_at	179 MG-U74B 117301_at	MG-U74C 129952_at	MG-U74C 131255_at	132466_f_a	MG-U74C 135381 i at unknown	MG-U74C 135382 r at unknown	MG-U74C 136067 at unknown	MG-U74C 137124 at	MG-U74C 141159_f_at unknown	
MG-U74B	MG-U74B	MG-U74B	MG-U74B 112029_at		MG-U74B 112864_at	MG-U74B	MG-U74B 113599_at		MG-U74B 114296_at		MG-U74B	MG-U74B				MG-U74C	MG-U74C		MG-U74C	MG-U74C	
167	168	169	170	171	172	173	174	175	176	111	178	179	180	181	182	183	184	185	186	187	

Figure 14G

Figure 15A

Highly Expressed Genes common between the Muscle-Adipocyte Union library and the Mu-74 GeneChips Arrays.

	Name	Accession	Probe sets	Adipocyte	Muscle
		number		increase	increase
U001	CD36	L23108	93332_at	1.5 -0.5	2.8 -0.8
U003	J003 glyceraldehyde-3-phosphate	M32599	U74B AFFX-	1.9 -1.0	5.4 -0.3
	denyrdogenase		GandhMur/M32599 5 at		
U003	J003 glyceraldehyde-3-phosphate	M32599	U74A AFFX-	2.3 -0.9	4.7 -0.3
	dehyrdogenase				
			GapdhMur/M32599_5_at	-	
U004	J004 hexokinase II.	Y11666	94375_at	18.5 -18.0	28.1 -3.0
0000	J009 diazepam-binding inhibitor	X61431	97248_at	3.9 0.0	2.3 -0.1
U010	J010 Glycerolphosphate dehydrogenase 1,	M25558	92592_at	24.1 -2.0	21.3 -1.8
	cytoplasmic				
U010	U01.0 Glycerolphosphate dehydrogenase1,	M25558	92592_at	24.1 -2.0	21.3 -1.8
	cytoplasmic				
U012	U012 Camitine palmitoyltransferase 2	U01170	95646_at	4.3 -0.1	3.7 -0.1
U014	U014 Glut 4	M23383	102314_at	12.9 -0.4	35.8 -5.4
U015	J015 adipose fatty acid binding protein	M20497	100567_at	67.8 -17.3	21.5 -5.7
0016	J016 Stearoyl-coenzyme A desaturase 1	M21285	94056_at	30.2 -6.7	13.0 -1.9
0016	Stearoyl-coenzyme A desaturase 1	M21285	94057_g_at	114.5 -17.4	22.3 -3.2
U017	U017 AdipoÓ	U49915	99104_at	257.2 -70.9	35.7 -9.7
0018	U018 Adipsin	X04673	99671_at	405.4 -103.4	55.5 -10.8
0019	U019 long chain fatty acyl CoA synthetase	U15977	94507_at	35.9 -5.4	13.2 -0.6
0020	U020 Resistin	AA718169	102366_at	109 -43.8	9.7 -2.0

Figure 15B

U031 Lpin1 U031 Lpin1 U045 pre-B-cell colony enhancing factor U066 ATPase, NA+K+ transporting, alpha 2 AI847141 U078 AT-kDa subunit of mitochondrial U078 24-kDa subunit of mitochondrial AN048512 U078 AT-kDa subunit of mitochondrial AN048512 U078 AT-kDa subunit of mitochondrial AN048512 U078 AI847609 NADH dehydrogenase U096 Ravin-containing monooxygenase U106 NADH dehydrogenase U106 NADH dehydrogenase U106 NADH dehydrogenase U107 AIRTHAND AI	AI846934 AA709944 AIS10151 AF087687 A I847141 AW048512 AI847609	98892_at 111708_at 113762_at 95453_f_at 113545_at 95426_at 96426_at	5.2 - 1.1 10.7 - 2.0 2.1 - 0.8 30.5 - 13.5	4.3 -0.3 17.6 -0.6
U094 pre-B-cell colony enhancing factor U047 calcium-binding protein S100A1 U066 ATPase, NA+K+ transporting, alpha 2 AU074 mitochondrial enoyl-CoA hydratase U078 24-kDa subunit of mitochondrial NADH dehydrogenase U096 MADH U096 Ravin-containing monooxygenase U106 NADH dehydrogenase	AA709944 AI510151 AF087687 a 2 AI847141 AW048512 AI847609	111708_at 113762_at 95453_f_at 113545_at 95426_at 94062_at	10.7 -2.0 2.1 -0.8 30.5 -13.5	17.6 -0.6
U046 pre-B-cell colony enhancing factor U047 calcium-binding protein S100A1 U066 ATPase, NA+K+ transporting, alpha 2 LU074 mitochondrial enoyl-CoA hydratase U078 24-kDa subunit of mitochondrial NADH dehydrogenase U096 NADH U096 flavin-containing monooxygenase U106 NADH dehydrogenase	AIS10151 AF087687 a 2 AI847141 AW048512 AI847609	113762_at 95453_f_at 113545_at 95426_at 94062_at	2.1 -0.8 30.5 -13.5	
U066 ATPase, NA+K+ transporting, alpha 2 June 1006 ATPase, NA+K+ transporting, alpha 2 June 10074 mitochondrial enoyl-CoA hydratase U078 24-kDa subunit of mitochondrial NADH dehydrogenase U096 NADH U098 flavin-containing monooxygenase U106 NADH dehydrogenase U106 NADH dehydrogenase U106 NADH dehydrogenase U106 NADH dehydrogenase	AF087687 a 2 AI847141 AW048512 AI847609	95453 <u>f</u> at 113545 at 95426 at 94062_at	30.5 -13.5	2.4 -0.1
U066 ATPase, NA+K+ transporting, alpha 2 LU074 mitochondrial enoyl-CoA hydratase U078 24-kDa subunit of mitochondrial NADH dehydrogenase U096 NADH U098 flavin-containing monooxygenase U106 NADH dehydrogenase U106 NADH dehydrogenase U1010 NADH dehydrogenase	a 2 AI847141 AW048512 AI847609	113545_at 95426_at 94062_at		10.2 -1.7
U074 mitochondrial enoyl-CoA hydratase U078 24-kDa subunit of mitochondrial NADH dehydrogenase U096 NADH U106 NADH dehydrogenase U106 NADH dehydrogenase	AW048512 AI847609	95426_at 94062_at	2.7 -1.0	25.1 -1.6
U078 24-kDa subunit of mitochondrial NADH dehydrogenase U096 NADH U098 flavin-containing monooxygenase U106 NADH dehydrogenase	AI847609	94062_at	11.3 -3.4	4.3 -0.9
NADH dehydrogenase U096 NADH U098 flavin-containing monooxygenase U106 NADH dehydrogenase		l	2.8 -0.7	6.6 -0.2
dehydrogenase U096 NADH U098 flavin-containing monooxygenase U106 NADH dehydrogenase				
				
	X06994	95072 at	2.4 -0.5	4.0 -0.2
	D16215	101991_at	4.4 - 1.7	4.7 -1.1
÷	X07708	98118 at	0.9 -0.4	0.6 -0.0
	L02331	103087 at	12.7 -7.4	2.5 -0.1
<u> </u>	AW047363	95690_at	2.2 -0.5	3.9 -0.3
<u> </u>	AI846600	97511_at	5.5 - 1.6	10.6 -1.2
	AI846354	108537_at	18.4 -4.5	5.9 -0.1
type III alcohol dehydrogenase				
ative	AA71.0501	128834 r_at	3.6 -0.5	2.0 -1.0
type III alcohol dehydrogenase				
			•	