Çalışma Soruları 1

1		spent b term(s)	e that each y an algor having t xity of each	rithm for he steep	r solving best incr	a probl	em of siz	n. Sele	ect the	domi	nant
		Expre	ssion			Dor	ninant to	erm(s)	O(
		_	$\frac{001n^3 + 0}{001n^3 + 0}$	0.025n		1501	illiani o	orm(s)	0(-/-	
			$+100n^{1.5}$		$g_{10} n$					\neg	
			$+5n^{1.5}+2$							\dashv	
		-	$\frac{1}{2}n + n(\log n)$							\neg	
		$n \log_3$	$n + n \log_2$	2 n						\neg	
		$3\log_8$	$n + \log_2 \log$	$\log_2 \log_2$	n						
		100n -	$+0.01n^2$								
		0.01n	$+ 100n^2$								
		2n + i	$n^{0.5} + 0.5n$	$n^{1.25}$							
		0.01n	$\log_2 n + n$	$n(\log_2 n)$	2						
		100n l	$\log_3 n + n^3$	$^{3}+100r$	i						
		0.003	$\log_4 n + \log_4 n$	$\log_2 \log_2$	n						
2			Show that	at for ar	y real c	onstants	s a and i	b, where	b > (),	
			$(n+a)^b$	$=\Theta(n$	^b).						
3		ain why ingless.		ment, "	The runr	ning tim	e of alg	orithm /	4 is at	least	$O(n^2)$," is
4				Is 2n+	1 = O(2))n\9 Ie '	$2^{2n} - 0$	(2^n) ?			
5	Indi	cate for	r each nai						ow w	hethe	r <i>A</i> is <i>O</i> , <i>o</i> ,
											our answer
	shou	ıld be ir	the form	of the	table wi	th "yes	" or "no	" writter	n in ea	ch bo	X.
		\boldsymbol{A}	\boldsymbol{B}	0	0	Ω	ω	Θ			
	<i>a</i> .	$\lg^k n$	n^{ϵ}								
	b .	n^k	C^n								
	<i>c</i> .	\sqrt{n}	$n^{\sin n}$						\neg		
	<i>d</i> .	2 ⁿ	$2^{n/2}$						\dashv		
	e	$n^{\lg c}$	$c^{\lg n}$						\dashv		
	f.	lg(n!)	$\lg(n^n)$								
	_				•	•			_		

6	Prove your answers for question 5 using proof techniques you learned.						
7	Let $f(n)$ and $g(n)$ be asymptotically positive functions. Prove or disprove each of						
	the following conjectures.						
	$f(n) + g(n) = \Theta(\min(f(n), g(n))).$						
	$f(n) + g(n) = \Theta(\min(f(n), g(n))).$						
	$f(n) = \Theta(f(n/2)).$						
	$f(n) + o(f(n)) = \Theta(f(n)).$						
8	Use the most appropriate notation among O , Θ , and Ω to indicate the time efficiency class of sequential search (see Section 2.1)						
	a. in the worst case.						
	b. in the best case.						
	c. in the average case.						
9	Use the informal definitions of O , Θ , and Ω to determine whether the following assertions are true or false.						
	a. $n(n+1)/2 \in O(n^3)$ b. $n(n+1)/2 \in O(n^2)$						
	c. $n(n+1)/2 \in \Theta(n^3)$ d. $n(n+1)/2 \in \Omega(n)$						
10	For each of the following functions, indicate the class $\Theta(g(n))$ the function belongs to. (Use the simplest $g(n)$ possible in your answers.) Prove your assertions.						
	a. $(n^2+1)^{10}$ b. $\sqrt{10n^2+7n+3}$						
	c. $2n \lg(n+2)^2 + (n+2)^2 \lg \frac{n}{2}$ d. $2^{n+1} + 3^{n-1}$						
	e. $\lfloor \log_2 n \rfloor$						
11	Use limit method !!!						
11	Compute the following sums.						
	a. $1+3+5+7++999$						
	b. $2+4+8+16++1024$						
	c. $\sum_{i=3}^{n+1} 1$ d. $\sum_{i=3}^{n+1} i$ e. $\sum_{i=0}^{n-1} i(i+1)$						
	f. $\sum_{j=1}^{n} 3^{j+1}$ g. $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$ h. $\sum_{i=0}^{n-1} 1/i(i+1)$						

12	Find the order of growth of the following sums.
	a. $\sum_{i=0}^{n-1} (i^2+1)^2$ b. $\sum_{i=2}^{n-1} \lg i^2$
	c. $\sum_{i=1}^{n} (i+1)2^{i-1}$ d. $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$
13	The sample variance of n measurements $x_1, x_2,, x_n$ can be computed as
	$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \text{ where } \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
	or $\frac{\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2 / n}{n-1}.$
	Find and compare the number of divisions, multiplications, and addi- tions/subtractions (additions and subtractions are usually bunched to-
	gether) that are required for computing the variance according to each of these formulas.
14	Consider the following algorithm.
	Algorithm $Mystery(n)$ //Input: A nonnegative integer n $S \leftarrow 0$ for $i \leftarrow 1$ to n do $S \leftarrow S + i * i$ return S
	a. What does this algorithm compute?
	b. What is its basic operation?
	c. How many times is the basic operation executed?
	d. What is the efficiency class of this algorithm?
	e. Suggest an improvement or a better algorithm altogether and indi- cate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.
15	Consider the following algorithm.
	Algorithm $Secret(A[0n-1])$ //Input: An array $A[0n-1]$ of n real numbers $minval \leftarrow A[0]$; $maxval \leftarrow A[0]$ for $i \leftarrow 1$ to $n-1$ do if $A[i] < minval$ $minval \leftarrow A[i]$
	$ \mathbf{if} \ A[i] > maxval \\ maxval \leftarrow A[i] $
	return maxval - minval
	Answer same questions in problem 14.

16	Consider the following algorithm.
	Algorithm $Enigma(A[0n-1,0n-1])$ //Input: A matrix $A[0n-1,0n-1]$ of real numbers for $i \leftarrow 0$ to $n-2$ do for $j \leftarrow i+1$ to $n-1$ do if $A[i,j] \neq A[j,i]$ return false
	return true Answer same questions in problem 14.
17	Consider the following version of an important algorithm
	Algorithm $GE(A[0n-1,0n])$ //Input: An n -by- $n+1$ matrix $A[0n-1,0n]$ of real numbers for $i \leftarrow 0$ to $n-2$ do for $j \leftarrow i+1$ to $n-1$ do for $k \leftarrow i$ to n do $A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i] / A[i,i]$ a.> Find the time efficiency class of this algorithm. b.> What glaring inefficiency does this pseudocode contain and how can it be eliminated to speed the algorithm up?
18	A quadratic algorithm with processing time $T(n) = cn^2$ spends $T(N)$ seconds for processing N data items. How much time will be spent for processing $n = 5000$ data items, assuming that $N = 100$ and $T(N) = 1$ ms?
19	Software packages A and B have processing time exactly $T_{\rm EP}=3n^{1.5}$ and $T_{\rm WP}=0.03n^{1.75}$, respectively. If you are interested in faster processing of up to $n=10^8$ data items, then which package should be choose?
20	Let $f(n)$ and $g(n)$ be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.