MATLAB EXPO 2018

What's Behind 5G Wireless Communications?

M.Sc. Fatih Genç, FİGES

Agenda

- **5G** goals and requirements
- Modeling and simulating key 5G technologies
 - Release 15: Enhanced Mobile Broadband
 - IoT and V2X
- 5G development workflow

3GPP **Standardization Timeline**

Rel-14 Rel-15 Rel-16

Dec-17

Jun-18

Mar-20

Release 15

- Non-standalone
- 5G New Radio with LTE core network

Release 15

- Standalone
- 5G core network

Release 16

5G Phase 2

5G Applications and Requirements

New Applications

4K, 8K, 360° Video

Virtual Reality

Connected Vehicles

Internet of Things

5G Requirements / Use Cases

Enhanced mobile broadband (>10 Gbps)

Ultra low latency (<1 ms)

Massive machine-type communication (>1e5 devices)

Achieving Higher 5G Broadband Data Rates

Technical Solutions

Increased bandwidth

Better spectral efficiency

Flexible air interface

Densification

Higher Frequency Bands

New Physical Layer

MATLAB EXPO 2018

New RF Architectures

Massive MIMO

Massive MIMO antenna array for a Huawei 5G field trial.

Multi-Domain Engineering for 5G Subsystems must be designed and tested together

Agenda

5G goals and requirements

- Modeling and simulating key 5G technologies
 - Release 15: Enhanced Mobile Broadband
 - IoT and V2X
- 5G development workflow

Waveform Generation

- Test with standard-compliant waveforms
- Generate all physical channels and signals
- Off-the-shelf and full custom waveforms

New Physical Layer in Release 15

- Enhanced Mobile Broadband (eMBB):
 - Larger bandwidth
 - Greater spectral efficiency
- PHY techniques used to achieve goals
 - Flexible frame structure and carrier spacing
 - Shorter latency
 - Variable bandwidth
 - Higher capacity coding schemes
 - Channel models: sub-6GHz to mmWave

Baseband DSP for Large Bandwidths

- 5G waveform same as LTE: Cyclic-Prefix OFDM (CP-OFDM)
- New baseband techniques for higher capacity

μ	Subcarrier Spacing ∆f = 2 ^μ * 15kHz	Bandwidtl (MHz)	R2018a
0	15	49.50	
1	30	99	File Tools View Playback Help
2	60	198	5G Waveforms 5G Waveforms
3	120	396	30 kmt spacing — 120 kmt spaci
4	240	397.44	-50
5	480	397.44	- E - 60
	ease bandwid		-70 -80 -90 -50 -40 -20 -90 -50 -70 -80 -90 -80 -80 -80 -80 -80 -80 -80 -80 -80 -8

reduce latency with flexible subcarrier spacing

Reduce spectral leakage with filtering or windowing

Efficient Channel Coding Methods

 Low-Density Parity Check (LDPC) for data channel: memoryless block coding

Systematic Bits Additional Parity Bits **Punctured Bits** SNR (dB) Polar Codes for control channel: achieve channel capacity

Model Channel and Interference

- Interference
 - Multiple standards: 5G/LTE/WLAN
- 3D propagation channels
 - 5G, LTE, 802.11, Custom
- Visualize propagation on maps
 - Rx/Tx location
 - Signal strength and coverage
 - Signal-to-interference-plus-noise (SINR)

SINR for 5G urban macro-cell

5G Channel Model

- 3GPP TR 38.901: 500 MHz 100 GHz (mmWave)
- For massive MIMO arrays (>1024 elements)
- Delay profiles:
 - Clustered delay line (CDL): Full 3D model
 - Tapped delay line (TDL): Simplified for faster simulation
- Control key parameters

Channel delay spread

- Doppler shift
- MIMO correlation

5G Link Level Simulation

- End-to-end physical layer reference model
- Verify implementation
- Evaluate impact of algorithm designs on link performance

PDSCH

and mapping

waveform

generation:

OFDM, F-OFDM

or W-OFDM

channel model:

CDL or TDL

DL-SCH generation:

LDPC or Turbo

RF Power Amplifier (PA) Linearization

 5G frequencies and bandwidth put greater requirements on RF transmitter efficiency

- 5G PA's are difficult to model
 - Non-linearity
 - Memory effects

 Solution: Linearization using adaptive digital pre-distortion (DPD)

Characterize PA Model Using Measured Data

PA Data

MATLAB fitting procedure (White box)

```
function a_coef = fit_memory_poly_model(x,y,memLen,degLen,modType)
% FIT MEMORY POLY MODEL
% Procedure to compute a coefficient matrix given input and output
% signals, memory length, nonlinearity degree, and model type.
% Copyright 2017 MathWorks, Inc.
x = x(:);
y = y(:);
xLen = length(x);
switch modType
 case 'memPoly' % Memory polynomial
   xrow = reshape((memLen:-1:1)' + (0:xLen:xLen*(degLen-1)),1,[]);
    xVec = (0:xLen-memLen)' + xrow;
    xPow = x.*(abs(x).^(0:degLen-1));
    xVec = xPow(xVec);
  case 'ctMemPoly' % Cross-term memory polynomial
    absPow = (abs(x).^{(1:degLen-1))};
    partTop1 = reshape((memLen:-1:1)'+(0:xLen:xLen*(degLen-2)),1,[]);
    topPlane = reshape(
        [ones(xLen-memLen+1,1),absPow((0:xLen-memLen)' + partTop1)].', ...
       1,memLen*(degLen-1)+1,xLen-memLen+1);
    sidePlane = reshape(x((0:xLen-memLen)' + (memLen:-1:1)).',
        memLen,1,xLen-memLen+1);
    cube = sidePlane.*topPlane;
    xVec = reshape(cube,memLen*(memLen*(degLen-1)+1),xLen-memLen+1).';
coef = xVec\y(memLen:xLen);
                                                       R2018a
a_coef = reshape(coef,memLen,numel(coef)/memLen);
```

MATLAB PA model

PA model for circuit envelope simulation

PA + DPD Simulation

- Closed loop multi-domain simulation
 - Circuit Envelope for fast RF simulation
 - Low-power RF and analog components
 - DPD signal processing algorithm (behavioral or hardware-accurate)

Massive MIMO Antenna Arrays

- Model antenna and array beam patterns
- Model antenna element failures
- Optimize tradeoffs between antenna gain and channel capacity
- Simulate with 3D channel model

Hybrid Beamforming for Massive MIMO

- Beamforming partitioned between digital and RF
 - Each Tx and Rx element has phase control
 - Subarrays handle amplitude and additional phase
 - Number of transmit antennas can be $>> N_S(N_{RF})$
- Model and optimize beamforming architecture
- Model imperfections in the signal chain

Why Hybrid Beamforming?

- Massive MIMO reduces mmWave propagation loss
- Hybrid beamforming reduces implementation cost

Different realizations have different complexity tradeoffs

Agenda

- 5G goals and requirements
- Modeling and simulating key 5G technologies
 - Release 15: Enhanced Mobile Broadband

- Connecting Vehicles and IoT Devices
- 5G development workflow

V2X: Building the Connected Car Highway

Standards for V2X

- 5G: Reserved for future release
- Cellular V2X (C-V2X)
 - Release 14 LTE Sidelink
 - LTE System Toolbox
- DSRC
 - IEEE 802.11p

WLAN System Toolbox

PHY Waveform Generation

R2017b

Release 14 V2X Sidelink PSCCH and PSSCH Throughput

Demonstrates how to measure the Physical Sidelink Shared Channel (PSSCH) and Physical Sidelink Control Channel (PSCCH)

Future 5G Use Case: IoT Connectivity

- IoT use case reserved for future 5G release
- Cellular long-range standard: LTE NB-IoT
 - Compatible with LTE networks
 - Lower cost and power, extended range
- NB-IoT cost and power reduction techniques
 - Reduced peak rate and bandwidth (180 kHz)
 - Reduced maximum transmit power
 - Single antenna
 - No higher-order modulation (BPSK and QPSK)

Waveform Generation

BLERSimulation

Agenda

- 5G goals and requirements
- Modeling and simulating key 5G technologies
 - Release 15: Enhanced Mobile Broadband
 - Connecting Vehicles and IoT Devices

... to implementation

Customer Perspective

"We need a multidomain platform for simulation, rapid prototyping, and iterative verification from the behavior model to testbed prototyping to the industrial product. MATLAB and Simulink are helping us to achieve these goals."

- Kevin Law, director of algorithm architecture and design, Huawei

Can you tell us more about how MATLAB and Simulink are helping you?

These two platforms play an important role in our innovation areas like 5G, optical communication, and wireless terminals. The tools give us top-down Model-Based Design, a product ecosystem that covers multiple domains, and code generation and iterative verification.

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/h/80861v00_Huawei_QA.pdf

MATLAB & Simulink Wireless Design Environment

for baseband, RF, and antenna modeling and simulation

Algorithms, Waveforms, Measurements

- Communications System Toolbox
- LTE System Toolbox (5G Library)
- WLAN System Toolbox

RF Front End

- RF Toolbox
- RF Blockset

Antennas, Beamforming

- Antenna Toolbox
- Phased Array System Toolbox

- Simulink
- DSP System Toolbox
- Control System Toolbox

Mixed-signal

- Communications System Toolbox
- Antenna Toolbox
- LTE System Toolbox
- WLAN System Toolbox

Channel and Propagation

Over-the-Air Testing with SDR and RF Instruments

Over-the-air Testing
Instrument Control Toolbox
SDR Support Packages
Communications System Toolbox

Common Platform for Wireless Development

- > Algorithm Design and Verification
- > RF, Digital and Antenna Co-Design
- System Verification and Testing
- Rapid Prototyping and Production

Code Generation and Verification

Fixed-Point Designer

HDL Coder

HDL Verifier

LTE HDL Toolbox R2017b

Embedded Coder

Agenda

- 5G goals and requirements
- Modeling and simulating key 5G technologies
 - Release 15: Enhanced Mobile Broadband
 - Connecting Vehicles and IoT Devices
- 5G development workflow

Learn more...

Resources to Help You Get Started – Links in PDF Document

Conformance Testing

Ensure your designs comply with the supported 3GPP LTE standard releases.

» Learn more

5G Library

Simulate 3GPP 5G new radio technologies.

» Learn more

Power Amplifier Characterization with DPD for Reduced Signal

Provides a methodology for characterizing a nonlinear RF Blockset™ power amplifier (PA) with memory and an adaptive DPD

R2018a

Visualizing RF Budget Analysis Over Bandwidth

Programmatically perform an RF budget analysis of an RF receiver system and visualize computed budget results across the bandwidth

Improve SNR and Capacity of Wireless Communication Using...

The goal of a wireless communication system is to serve as many users with the highest possible data rate given constraints

Open Script

Introduction to Hybrid Beamforming

Introduces the basic concept of hybrid beamforming and shows how to simulate such a system.

Open Script

Massive MIMO Hybrid Beamforming

How hybrid beamforming is employed at the transmit end of a massive MIMO communications system, using techniques for both

R2018a

SINR Map for a 5G Urban Macro-Cell Test Environment

This example shows how to construct a 5G urban macro-cell test environment and visualize the signal-to-interference-plus-noise

R2018a

MATLAB EXPO

Resources – Links in PDF Document

View web resources

Wireless Communications Design with MATLAB

MATLAB and Simulink for 5G Technology Development

Read eBook and white papers

5G Development with MATLAB (eBook)

Hybrid Beamforming for Massive MIMO Phased Array Systems (white paper)

Four Steps to Building Smarter RF Systems with MATLAB (white paper)

Evaluating 5G Waveforms Over 3D Propagation Channels with the 5G Library (white paper)

Download software

Wireless communications trial package

Download the 5G Library