Домашнее задание к ЛР №1

Обязательная часть

Если вы хотите изучить **git**, то сначала прочтите задание к необязательной части.

В этом задании вам предлагается создать модель двигателя постоянного тока с последовательным возбуждением (ДПТ с ПВ), схема включения которого представлена на рисунке 1.

Рисунок 1 – Схема включения ДПТ с ПВ

Данный двигатель можно описать следующей системой уравнений:

$$\begin{cases} J_{\text{\tiny AB}}\ddot{\varphi} = M_{\text{\tiny AB}} - M_{\text{\tiny TP}} \\ M_{\text{\tiny AB}} = k_{\text{\tiny M}}i \\ E_{\text{\tiny \PiP}} = k_{\text{\tiny ω}}\dot{\varphi} \\ U_{\text{\tiny YMP}} = \frac{di}{dt}(L_{\text{\tiny OB}} + L_{\text{\tiny S}}) + R_{\text{\tiny S}}i + E_{\text{\tiny \PiP}} \\ \Phi = L_{\text{\tiny OB}}i \\ K_{\text{\tiny ω}} = C_{\text{\tiny ω}}\Phi \\ K_{\text{\tiny M}} = C_{\text{\tiny M}}\Phi \end{cases}$$

где

- Јдв момент инерции вала двигателя;
- ϕ угловое положение вала двигателя;
- $M_{\rm дв}$ полезный момент, создаваемый двигателем;
- $M_{\rm Tp}$ момент трения;
- $I_{\rm g}$ сила тока в цепи якоря (ротора) двигателя;

- $R_{\rm g}$, $L_{\rm g}$ активное сопротивление и индуктивность обмоток якоря соответственно;
- $L_{\text{ов}}$ индуктивность обмотки возбуждения;
- $U_{\rm ynp}$ напряжение управления двигателя по цепи якоря;
- $E_{\rm np}$ противоэдс, наводящееся в цепи якоря;
- Ф магнитный поток, создаваемый обмоткой возбуждения;
- C_M , C_{ω} конструктивные коэффициенты двигателя;

При выполнении принять, что:

- $J_{AB} = 7 \cdot 10^{-6} (\kappa \Gamma \cdot M^2)$
- $C_M = 1.3 \left(\frac{\text{H·M}}{\Gamma_{\text{H·A}^2}} \right)$
- $C_{\omega} = 3.15 \left(\frac{\text{B·c}}{\Gamma_{\text{H}} \cdot \text{A}} \right)$
- $L_{\rm H} = 0.0015 \; (\Gamma {\rm H})$
- $R_{\rm g} = 8 \, ({\rm OM})$
- $L_{\text{OB}} = 0.013 \; (\Gamma \text{H})$

Вам необходимо:

- 1. Создать модель ДПТ с ПВ без учета сил сопротивления и момента нагрузки, построить графики тока, скорости и момента, а также его механическую характеристику (зависимость скорости от момента) при подаче 5 В;
- 2. Повторно построить графики при подаче 10 В, доказать, что система является нелинейной на основе полученных графиков;
- 3. Добавить в систему внутреннее вязкое трение ($M_{\rm Tp}=\beta\dot{\phi}$, где $\beta=0.001$), построить графики (те же, что и в пункте 1).

Необязательная часть

- 1. Рекомендуется изучить интерактивный курс <u>GitHowTo</u>. Его прохождение позволит вам подробнее познакомиться с этой системой контроля версий. Если хочется изучить ее более полно, то рекомендуем к прочтению книгу (вставка в отчет материала, относящегося к этому пункту, не является обязательной).
- 2. Рекомендуется сгенерировать SSH ключ и добавить его в аккаунт GitHub, если такового у вас ещё не имеется. Его наличие существенно упростит работу с удаленными репозиториями. Инструкцию по его созданию и добавления вы можете найти в файле SSH key generation.pdf.
- 3. Работа со своим удаленным репозиторием:
 - а. Создать публичный репозиторий на GitHub;
 - b. Привязать созданный репозиторий к локальному при помощи git remote;
 - с. Сделать обязательную часть, ведя при этом созданный репозиторий по следующему сценарию:
 - 1) В инициализированном репозитории сделать initial коммит и создать новую ветку dev;
 - 2) Выполнить пункты 1 и 2 обязательной части и сделать соответствующий коммит;
 - 3) От ветки dev создать новую ветку feature-viscous_friction и выполнить в ней пункт 3;
 - 4) Слить изменения из ветки feature-viscous_friction в ветку dev;
 - 5) Сделать push ветки dev на GitHub;
 - 6) Создать merge request в ветку master (main), назначить себя проверяющим и одобрить merge request;
 - d. Удостовериться, что ваши изменения сохранены на сервере;
 - е. В отчете отразить основные этапы работы при помощи вставки скриншотов, кусков кода и, самое главное, ссылки на репозиторий.