Gödel's Incompleteness Theorem

Thm 4.17 All consistent axiomatic formulation of number theory which include Peano arithmetic include undecidable proposition.

Peano Arithmetic

- 1. Constant 0
- 2. Successor Operator S (s.t. $1 = S(0), 2 = S(S(0)), \ldots$)
- 3. Addition(+), Multiplication(⋅)
- 4. Logical Conjunction: \land, \lor, \lnot
- 5. Quantifier: \forall , \exists
- 6. Binary: <, =
- 7. Parenthesis: ()
- 8. Variables: $x, x^*, x^{**}...$
- Examples:
 - 1. "x divides y"

$$DIVIDES(x, y) : (\exists z)(y = x \cdot z)$$

2. "y is a prime number"

$$PRIME(y): (\forall x)(x = S(0) \lor x = y \lor \neg DIVIDES(x, y))$$

3. Goldbach's Conjecture

$$(\forall x)(x \geq S(S(0)) \Rightarrow (\exists y)(\exists z)(x+x=y+z \land PRIME(y) \land PRIME(z)))$$

 $lacksquare A\Rightarrow B$ is equivalent to $\neg A\lor B$

Thm 4.17's Proof idea: For any $\alpha, x \in \{0, 1\}^*$, construct a first-order Peano arithmetic formula $\phi_{\alpha,x}$ s.t. $\phi_{\alpha,x}$ is true if and only if M_{α} halts on x.

Assume for contradiction that the proof system is complete, i.e. every formula can either be proved or disproved. We construct a TM that enumerates all proofs π up to length k, and verify if π is a valid proof of $\phi_{\alpha,x}$ or $\neg\phi_{\alpha,x}$.

Since the proof system is complete, the TM M must halt, which implies that L_{halt} is decidable. Contradiction. $\it Q.E.D.$

Diophantine Equation

- A Diophantine Equation is a polynomial equation with integer coefficients and a finite number of unknowns.
- For example, $x^2+y^2+1=0$ has no solution. $3x^2-2xy-y^2z-7=0$ has a solution: x=1,y=2,z=-2.

Hilbert 10^{th} Problem

L_{Dio}

• $L_{Dio} = \{\langle p(x_1, \dots, x_n) \rangle | Diophantine\ equation\ p(x_1, \dots, x_n) = 0\ has\ a\ solution \}$

Thm 4.18(MRDP Thm.) L_{Dio} is undecidable.

Proof idea: For any $\alpha, w \in \{0,1\}^*$, construct a Diophantine equation $P_{\alpha,w}$ s.t. M_α halts on w if and only if $P_{\alpha,w}$ has an integral solution. Therefore, if L_{Dio} is decidable, L_{halt} is decidable. Contradiction. *Q.E.D.*

Complexity Theory

Def 5.1 Let $T:\mathbb{N}\to\mathbb{N}$. Let DTIME(T(n)) be the class of languages that can be decided by a TM in time O(T(n)).

$$P = \cup_{c \geq 1} DTIME(n^c) \ EXP = \cup_{c \geq 1} DTIME(2^{n^c})$$