- 1. Find $\sup_A f$ and $\inf_A f$ in each of the following cases. In each case determine whether the function has a maximum or a minimum on A.
 - (a) f(x) = x(3-x), A = (-1,3).

Answer: First, we acknowledge that $f(A) = (-4, \frac{9}{4}]$. Then the $\sup_A f = \frac{9}{4}$ and $\inf_A f = -4$. The function has a maximum on A at $\frac{9}{4}$, however there is no minimum.

(b) $f(x) = \frac{x+3}{x-1}$, A = (1,5].

Answer: Again, we acknowledge that $f(A) = [2, \infty]$. Then the $\sup_A f = \infty$ and $\inf_A f = 5$. The minimum of this function on A is 5, however it has no maximum.

2. Let S and T be nonempty subsets of \mathbb{R} with the following property: $s \leq t$ for all $s \in S$ and $t \in T$. Prove that

$$\sup S < \inf T$$
.

Proof. To prove this, we first observe that since S is a nonempty subset of \mathbb{R} , then there exists an $M \in S$ such that $M \geq s$ for all $s \in S$. So, $\sup S = M$. Next, observe that since T is also a nonempty subset of \mathbb{R} , then there exists an $m \in T$ such that $m \leq t$ for all $t \in T$. So inf T = m.

Since $s \leq t$ for all $s \in S$ and $t \in T$, then $M \leq m$ and $\sup S \leq \inf T$.

3. Let A and B be two nonempty sets of real numbers. Prove that

$$\inf(A \cup B) = \min\{\inf A, \inf B\}.$$

Proof. We first note that since both A and B are nonempty subsets of \mathbb{R} , then there exists an $m \in A$ and an $n \in B$ such that $m \leq x$ for every $x \in A$ and $n \leq y$ for all $y \in B$. This implies that $\inf A = m$ and $\inf B = n$. If we were to take $\min \{\inf A, \inf B\}$, then 2 cases arise.

Case 1: Suppose that m < n. Then, $\min\{m, n\} = m$ and so $\inf(A \cup B) = \min\{\inf A, \inf B\}$. A similar case holds for n < m.

Case 2: Suppose that m = n. Then $\min\{m, n\} = m = n$ and $\inf(A \cup B) = \min\{\inf A, \inf B\}$.

In either case, $\inf(A \cup B) = \min\{\inf A, \inf B\}.$

4. Solve the equation $|2 - x^2| = 1$.

Answer: This absolute value expression creates two equations, which we will solve separately:

$$2-x^{2} = 1$$
 $2-x^{2} = -1$ $-x^{2} = -3$ $x^{2} = 1$ $x = \pm 1$ $x = \pm \sqrt{3}$

So $x = -\sqrt{3}, -1, 1, \sqrt{3}$.

5. Solve the equation $|2 - x^2| \ge 1$.

Answer: This absolute value inequality creates two inequalities which we will solve separately:

$$2-x^{2} \ge 1$$
 $2-x^{2} \le -1$ $-x^{2} \le -3$ $x^{2} \le 1$ $x^{2} \ge 3$

After evaluating, we will see that $x \le -\sqrt{3}$ or $x \ge -1$.

6. Let x, y be real numbers such that $|x-3| < \frac{1}{2}$ and $|3-y| < \frac{1}{2}$. Prove that |x-y| < 1.

Proof. First, let us solve for x in the first inequality:

$$-\frac{1}{2} < x - 3 < \frac{1}{2}$$
$$\frac{5}{2} < x < \frac{7}{2}.$$

Now let us solve for y:

$$-\frac{1}{2} < 3 - y < \frac{1}{2}$$
$$\frac{5}{2} < y < \frac{7}{2}.$$

We now see that $x, y \in (\frac{5}{2}, \frac{7}{2})$ and that the $\sup(\frac{5}{2}, \frac{7}{2}) = \frac{7}{2}$ and also that $\inf(\frac{5}{2}, \frac{7}{2}) = \frac{5}{2}$. Since $|\frac{7}{2} - \frac{5}{2}| = 1$ and $\frac{5}{2}, \frac{7}{2} \notin (\frac{5}{2}, \frac{7}{2})$, then |x - y| < 1.

7. Guess the following limit and prove that your answer is correct by using the definition (Def. 2.1.4):

$$\lim_{n \to \infty} \frac{3n+2}{2n-1}.$$

Proof. Let $\epsilon > 0$. Then we must show that there exists a δ such that $n > \delta$ implies $\left| \frac{3n+2}{2n-1} - \frac{3}{2} \right| < \epsilon$. Rewriting the expression in absolute values gives us

$$\left| \frac{3n+2}{2n-1} - \frac{3}{2} \right| = \left| \frac{6n-6n+4+3}{4n-2} \right| = \frac{7}{4n-2} < \frac{7}{4n}.$$

So, $\left|\frac{3n+2}{2n-1} - \frac{3}{2}\right| < \epsilon$ when $\frac{7}{4n} < \epsilon$, or whenever $n > \frac{7}{4\epsilon}$. Thus, we may choose $\delta = \frac{7}{4\epsilon}$.

8. Use the definition (Def. 2.1.4) to prove that

$$\lim_{n \to \infty} \left[\sqrt{n^2 + 1} - n \right] = 0.$$

Proof. Let $\epsilon > 0$ be arbitrary. We want to show that there exists a $\delta \in \mathbb{R}$ where if $0 < \delta < n$, then $\left| (\sqrt{n^2 + 1} - n) - 0 \right| < \epsilon$. First, let us rewrite the expression on the left of the inequality:

$$\left| (\sqrt{n^2 + 1} - n) \right| = \left| (\sqrt{n^2 + 1} - n) \cdot \frac{\sqrt{n^2 + 1} + n}{\sqrt{n^2 + 1} + n} \right| = \left| \frac{1}{\sqrt{n^2 + 1} + n} \right| = \frac{1}{\sqrt{n^2 + 1} + n}.$$

We can now say that the last expression will always be smaller than $\frac{1}{2n}$, so $|(\sqrt{n^2+1}-n)-0|<\epsilon$ whenever $\epsilon>\frac{1}{2n}$. Thus, $n>\frac{1}{2\epsilon}$ and we may choose $\delta=\frac{1}{2\epsilon}$.