MULTI-CONFIGURATION TIME DEPENDENT HARTREE THEORY

A TENSOR NETWORK PERSPECTIVE

Xinxian Chen

December 17, 2018

Department of Chemistry, Tsinghua University

Non-Relativistic Multi-Dimentional Problem

· TDSE:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\left|\Psi(\vec{q},t)\right\rangle=H|\Psi(\vec{q},t)\rangle$$

· TISE:

$$H|\Psi(\vec{q},t)\rangle = E|\Psi(\vec{q},t)\rangle$$

where

$$H = T + V$$

and $\vec{q} = (q_1, q_2, \dots, q_d)$.

$$d$$
-D Problem: $\vec{q} = (q_1, \dots, q_d)$

Standard procedure:

- 1. Choose a set of d-D basis $\{|\Phi_I(\vec{q})\rangle\}_{I=1}^N$, where $|\Phi_I(\vec{q})\rangle = \prod_{\kappa=1}^d \left|\varphi_{i_\kappa}^{(\kappa)}(q_\kappa)\right\rangle$
- 2. Integrate $H_{IJ} = T_{IJ} + V_{IJ}$
- 3. Solve TDSE/TISE in matrix form
 - · TDSE: $\mathrm{i}\hbar\dot{\mathbf{c}}=\mathbf{H}\mathbf{c}$
 - TISE: $\mathbf{Hc} = E\mathbf{c}$

Language: Tensor Network Notation

Tensors

Contraction

Express the Standard Procedure in TNN

Wavefunction

$$\langle \Phi_I | \Psi \rangle \quad \stackrel{i_1}{=} \quad \stackrel{i_2}{\swarrow} \quad \stackrel{\cdots}{\longrightarrow} \quad \stackrel{i_d}{\longrightarrow} \quad \stackrel{i_$$

where $i_{\kappa} \in \{1, \dots, n_{\kappa}\}, \kappa = 1, \dots, d$. Space for saving a wavefunction: $\prod_{\kappa=1}^{d} n_{\kappa}$ floats.

Express the Standard Procedure in TNN (Cont'd)

Normalization condition

$$1 = \langle \Psi | \Psi \rangle \approx \langle \Psi | P | \Psi \rangle = \begin{pmatrix} A^* \\ A \end{pmatrix}$$

TDSE

Express the Standard Procedure in TNN (Cont'd)

TISE

where
$$i_{\kappa} \in \{1, \ldots, n_{\kappa}\}, \kappa = 1, \ldots, d$$
.

Problem: $N = \prod_{\kappa=1}^{d} n_{\kappa}$ exponentially increase as d grows.

Structure of MCTDH Wavefunction

$$\langle \Phi_I | \Psi \rangle \quad = \quad \underbrace{i_1 \downarrow i_2 \downarrow \cdots \downarrow i_d \downarrow}_{i_2 \downarrow \cdots \downarrow i_d \downarrow}$$

where

$$\left\langle \Phi_{J}^{(1)} \middle| \Psi \right\rangle = \stackrel{j_1 \quad j_2 \quad \dots \quad j_d}{}$$

Idea: $j_{\kappa} \in \{1, \ldots, n_{\kappa}^{(1)}\}, \kappa = 1, \ldots, d$, and $n_{\kappa}^{(1)} < n_{\kappa}$.

Space for saving a wavefunction: $\prod_{\kappa=1}^d n_{\kappa}^{(1)} + \sum_{\kappa=1}^d n_{\kappa}^{(1)} n_{\kappa}$ floats.

Multi-Layer

More nodes, but smaller ranks.

Example 1:

Multi-Layer (Cont'd)

Example 2: matrix product states (MPSs) in DMRG

For a complete binary tree, the space for saving a wavefunction is $\mathcal{O}(dn^3)$ floats, if $n_\ell = \mathcal{O}(n)$ for all ℓ .

Generally, if rank $\leq p$ for all nodes, the space for saving a wavefunction is of $\mathcal{O}(dn^p)$.

Equations of Motion

Structure of H

Matrix product operators (MPOs)

Summation of products of operators

Equations of Motion (Cont'd)

where for all nodes, w. l. o. g., choose one term in ${\bf H}$ and one node as an example:

Equations of Motion (Cont'd)

and

Time complexity: if rank $\leq p$ for all nodes, then a step of multiplication is of $\mathcal{O}(tpdn^{p+1})$;

Space complexity: $\mathcal{O}(tpdn^2 + dn^p)$.

Example: 2-D harmonic oscillator

$$V = \frac{1}{2}x^2 + \frac{1}{2}y^2 + \frac{1}{4}xy$$
 (all in a. u.).

Start from the ground state when $V = \frac{1}{2}x^2 + \frac{1}{2}y^2$. Use Sine-DVR as the (primitive) basis set and n = 40, L = 10.

Figure 1: |a(t)| - t (using RK45 as ODE solver, $\Delta t = 0.001$ a.u.)

MCTDH vs. DMRG

Structure of Wavefunction: a TN perspective

· MCTDH

$$\mathbf{c} =$$

· DMRG

Algorithm: Differnet Choices

	TDSE	TISE
DMRG	Based on propergators	DMRG1, DMRG2
MCTDH	Based on DFVP	Self-consistent

o Other combinations?

Conclusions

- The structure of wavefunctions in MCTDH and DMRG can be unified in tensor network theory;
- The algorithms used in traditional MCTDH and DMRG are interchangeable in principle;
- The proper structure of wavefunctions in a specific problem needs further studying.

Acknowledgments

Thank you for your listening!

Normalization

General normalization condition at the ℓ -th node:

Normalization (Cont'd)

In order to hold all general normalization conditions during the propergation, one must have

where \mathbf{g} is Hermitian. For simplicity, choose $\mathbf{g} = 0$.