Modelos y bases de datos Paso al modelo relacional

CEIS

2018-02

Agenda

Modelo Relacional

Relación-Tabla Tres aspectos

De Conceptual a Logico

Patrones Conceptos Relaciones

De lógico a código Modelos

Código

Agenda

Modelo Relacional Relación-Tabla

Tres aspectos

De Conceptual a Logico

Patrones

Conceptos

Relaciones

De lógico a código

Modelos

Código

Relación Tabla

Relación

Es una propiedad que asigna un valor de verdad a combinaciones de k datos (k-tuplas)

Capitales

capitales(p,c):- c es la capital de p

Tabla

Es una estructura bidimensional (filas, columnas) que contiene información

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERU

Relación

Es una propiedad que asigna un valor de verdad a combinaciones de k datos (k-tuplas)

Capitales

capitales(p,c):- c es la capital de p

Tabla

Es una estructura bidimensional (filas, columnas) que contiene información

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERU

Todo es relación - Todo es tabla

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL	
COLOMBIA	BOGOTA	
FRANCIA	PARIS	
ESPAÑA	MADRID	
LESOTO	MASERII	

Tres consecuencias

- Una relación tiene asignada un predicado (la propiedad)
- Las tuplas de la relación denotan proposiciones verdaderas derivadas de ese predicado

 Si cierta tupla no existe en una relación, podemos afirmar que la proposición correspondiente es falsa

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERII

Tres consecuencias

- Una relación tiene asignada un predicado (la propiedad) ¿Cuál sería la propiedad?
- Las tuplas de la relación denotan proposiciones verdaderas derivadas de ese predicado

 Si cierta tupla no existe en una relación, podemos afirmar que la proposición correspondiente es falsa

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERII

Tres consecuencias

- Una relación tiene asignada un predicado (la propiedad)
- Las tuplas de la relación denotan proposiciones verdaderas derivadas de ese predicado ¿Bogotá es la capital de Colombia?
- Si cierta tupla no existe en una relación, podemos afirmar que la proposición correspondiente es falsa

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERU

Tres consecuencias

- Una relación tiene asignada un predicado (la propiedad)
- Las tuplas de la relación denotan proposiciones verdaderas derivadas de ese predicado

¿Maseru es la capital de Lesoto?

 Si cierta tupla no existe en una relación, podemos afirmar que la proposición correspondiente es falsa

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERII

Tres consecuencias

- Una relación tiene asignada un predicado (la propiedad)
- Las tuplas de la relación denotan proposiciones verdaderas derivadas de ese predicado

- Si cierta tupla no existe en una relación, podemos afirmar que la proposición correspondiente es falsa
 - ¿Cali es la capital de Colombia?

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL	
COLOMBIA	BOGOTA	
FRANCIA	PARIS	
ESPAÑA	MADRID	
LESOTO	MASERII	

Tres consecuencias

- Una relación tiene asignada un predicado (la propiedad)
- Las tuplas de la relación denotan proposiciones verdaderas derivadas de ese predicado

 Si cierta tupla no existe en una relación, podemos afirmar que la proposición correspondiente es falsa

¿Quito es la capital de Ecuador?

La regla de oro

La regla de oro

Nunca debe permitirse una operación de actualización que deje cualquier variable de relación en un estado que viole su propio predicado.

La regla de oro

La regla de oro

Nunca debe permitirse una operación de actualización que deje cualquier variable de relación en un estado que viole su propio predicado.

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERU
BRASIL	RIO DE JANEIRO

¿Rio de Janeiro es la capital de Brasil?

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERU

Propiedades de relaciones

- ► No existen tuplas duplicadas
- Los tuplas no tienen orden
- Los atributos no tienen orden
- Cada tupla tiene un único valor para cada atributo

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERII

Propiedades de relaciones

- ► No existen tuplas duplicadas
- Los tuplas no tienen orden
- Los atributos no tienen orden
- Cada tupla tiene un único valor para cada atributo

¿Se cumplen en SQL?

Capitales

capitales(p,c):- c es la capital de p

CAPITALES

PAIS	CAPITAL
COLOMBIA	BOGOTA
FRANCIA	PARIS
ESPAÑA	MADRID
LESOTO	MASERII

Informal-Formal

Término relacional formal	Equivalente informal
relación	tabla
tupia	fila o registro
cardinalidad	número de filas
atributo	columna o campo
grado	número de columnas
clave primaria	identificador único
dominio	conjunto de valores válidos

Agenda

Modelo Relacional

Relación-Tabla

Tres aspectos

De Conceptual a Logico

Patrones

Conceptos

Relaciones

De lógico a código

Modelos

Código

Aspectos basicos

Aspecto estructural

Los usuarios perciben la información de la base de datos como tablas y nada más que tablas

Aspecto de integridad

Estas tablas satisfacen ciertas restricciones de integridad

Aspecto de manipulación

Las operaciones disponibles permiten derivar tablas a partir de tablas

Integridad-Claves

Clave candidata

El valor no se puede repetir

Clave externa

El valor debe existir en la tabla correspondiente, sino es nulo.

Integridad-Claves

Clave candidata

El valor no se puede repetir

- ► Clave primaria
 - Es la clave candidata seleccionada.
 - No está permitido que ningún componente de la clave primaria tenga valores nulos.
- ► Clave única
 - No se puede repetir pero puede tener valores nulos

Clave externa

El valor debe existir en la tabla correspondiente, sino es nulo.

Modelo relacional Mini

Equipos

```
Personas(cedula, nombre, nacimiento!)

Equipos(nombre)

EsHincha(cedula, nombre)

— Primaria
— Unica
— Foranea
```

Modelo relacional Mini

Equipos

```
Personas(cedula, nombre, nacimiento!)

Equipos(nombre)

EsHincha(cedula, nombre)

Primaria
Unica
Foranea
```

¿ A conceptual?

Agenda

Modelo Relaciona

Relación-Tabla Tres aspectos

De Conceptual a Logico Patrones

Conceptos Relaciones

De lógico a código Modelos Código

Definión

Un patrón es un par problema/solución con nombre que se puede aplicar en nuevos contextos, con consejos acerca de cómo aplicarlos en nuevas situaciones y discusiones sobre sus puntos fuertes y débiles.

- 1. Representar conceptos como tablas
- 2. Identificador de conceptos
- 3. Representar relaciones como tablas
- 4. Representar relaciones de herencia como tablas

Agenda

Modelo Relacional

Relación-Tabla Tres aspectos

De Conceptual a Logico

Patrones

Conceptos

Relaciones

De lógico a código Modelos

Código

De Persistencia

- 1. Representar conceptos como tablas
- 2. Identificador de conceptos
- 3. Representar relaciones como tablas
- 4. Representar relaciones de herencia como tablas

Proyecto id:_ fecha:_[0..1]

De Persistencia

- 1. Representar conceptos como tablas
- 2. Identificador de conceptos
- 3. Representar relaciones como tablas
- 4. Representar relaciones de herencia como tablas

Proyecto id:_ fecha:_[0..1]

Estructura

Nombre

Representación de objetos como tablas Representing Objects as Tables

Problema

¿ Cómo representar los conceptos en un esquema de base de datos relacional ?

Solución

Definir una tabla para cada concepto persistente. Los atributos del concepto que son tipos primitivos deben ser las columnas de la tabla. Los atributos del concepto que son colecciones deben representarse un tablas aparte.

Referencia

[Brown,1996]

Estructura

Nombre

Identificador de Objeto Object Identifier

Problema

¿ Cómo relacionar adecuadamente los objetos con las tuplas ?

Solución

Asignar un identificador a cada concepto y a la tupla correspondiente.

Referencia

[Brown,1996]

Agenda

Modelo Relacional

Relación-Tabla Tres aspectos

De Conceptual a Logico

Patrones Conceptos

Relaciones

De lógico a código Modelos Código

- 1. Representar conceptos como tablas
- 2. Identificador de conceptos
- 3. Representar relaciones como tablas
- 4. Representar relaciones de herencia como tablas

- 1. Representar conceptos como tablas
- 2. Identificador de conceptos
- 3. Representar relaciones como tablas
- 4. Representar relaciones de herencia como tablas

- 1. Representar conceptos como tablas
- 2. Identificador de conceptos
- 3. Representar relaciones como tablas
- 4. Representar relaciones de herencia como tablas

Estructura

Nombre

Representación de relaciones como tablas Representing Object Relationships as Tables

Problema

¿ Cómo representar una relación en un esquema de base de datos relacional ?

Solución

- Crear una tabla asociativa para registrar los identificadores de cada uno de los objetos de la relación
- Para relaciones uno a uno o uno a muchos, Colocar una clave foránea en una de las tablas para representar la relación entre los objetos

Referencia

[Brown,1996]

Patrones

De Persistencia

- 1. Representar conceptos como tablas
- 2. Identificador de conceptos
- 3. Representar relaciones como tablas
- 4. Representar relaciones de herencia como tablas

Estructura

Nombre

Representación de herencia en una base de datos relacional Representing Inheritance in a Relational Database

Problema

 ξ Cómo representar una relación de herencia en un esquema de base de datos relacional ?

Solución

- Una tabla para el superconcepto y una para cada subconcepto (con los atributos propios)
- Una tabla para cada subconcepto (con todos los atributos) y, si no es abstracto, una para el superconcepto.
- Sólo una tabla con toda la información

Referencia

[Brown,1996]

Agenda

Modelo Relacional

Relación-Tabla Tres aspectos

De Conceptual a Logico

Patrones
Conceptos
Relaciones

De lógico a código Modelos

Código

Modelo mini

¿Modelo mini?

				I KINY	JOS		
V#	NOMBRE	ESTADO	CIUDAD	1	v#	P#	CAN.
V1	Smith	20	Londres		V1	P1	300
V2	Jones	10	París	anastrios	V1	P2	200
V3	Blake	30	París	elleatino a	V1	P3	400
V4	Clark	1111000	Londres		V1	P4	200
V5	Adams	30	Atenas		V1	P5	100
		Verticase		A.c.	V1	P6	100
S	***************************************	-	te-f Sper	with =	V2	P1	300
.5							
					V2	P2	400
P#	PARTE	COLOR	PESO	CIUDAD	V2 V3	P.2 P2	200
P#	PARTE Tuerca		PESO 12	CIUDAD	83695	T. C. COORED	200
34 .77		COLOR Rojo Verde			V3	P2	200 200 300
P1	Tuerca	Rojo	12	Londres	V3 V4 V4	P2 P4	200 200 300
P1 P2	Tuerca Perno	Rojo Verde	12 17	Londres París	V3 V4 V4	P2 P4	200 200 300
P1 P2 P3	Tuerca Perno Tornillo	Rojo Verde Azul	12 17 17	Londres París Roma	V3 V4 V4	P2 P4	400 200 200 300 400

Conceptual

¿Conceptual?

DEDORES					ENVIOS			
V#	NOMBRE	ESTADO	CIUDAD	1	Elivios	v#	P#	CANI
V1	Smith	20	Londres			V1	P1	300
V2	Jones	10	París	- tourstild		V1	P2	200
V3	Blake	30	París	H-HHA		V1	P3	400
V4	Clark	111111111	Londres	i		V1	P4	200
1000	4.00	0.0	Atenas	1		V1	P.5	100
V5	Adams	30	ALenas					
V5	Adams	30	Acenas	e da		V1	P6	100
× 0	Adams	30	Ed Su	- An				
V5 ES	Adams	30	Acenas	As with a		V1	P6	100
× 0	Adams	COLOR	Ed Su	CIUDAD	\neg	V1 V2	P6 P1	100 300 400 200
ES	PARTE	COLOR	Ed Speri	CIUDAD	\exists	V1 V2 V2 V3	P6 P1 P2 P2	100 300 400 200
P# P1			PESO	- Malabanesi	\exists	V1 V2 V2 V3	P6 P1 P2 P2 P4	100 300 400 200
ES P#	PARTE Tuerca	COLOR	PESO 12	CIUDAD	7	V1 V2 V2 V3 V4	P6 P1 P2 P2	100 300 400 200 200 300
P# P1 P2	PARTE Tuerca Perno	COLOR Rojo Verde	PESO 12 17	CIUDAD Londres París	7	V1 V2 V2 V3 V4	P6 P1 P2 P2 P4	100 300 400 200 200 300
P# P1 P2 P3	PARTE Tuerca Perno Tornillo	COLOR Rojo Verde Azul	PESO 12 17 17	CIUDAD Londres París Roma		V1 V2 V2 V3 V4	P6 P1 P2 P2 P4	100 300 400 200 200 300

El nombre de los vendedores debe ser único

Agenda

Modelo Relacional

Relación-Tabla Tres aspectos

De Conceptual a Logico

Patrones Conceptos Relaciones

De lógico a código

Modelos

Código

Aspecto estructural

Tablas

```
CREATE TABLE VENDEDORES(

v# CHAR(2) NOT NULL,

nombre VARCHAR(20) NOT NULL,

estado NUMBER(2),

ciudad VARCHAR(10) NOT NULL);
```

Aspecto estructural

Tablas

```
CREATE TABLE VENDEDORES(

v# CHAR(2) NOT NULL,

nombre VARCHAR(20) NOT NULL,

estado NUMBER(2),

ciudad VARCHAR(10) NOT NULL);
```

- ▶ ¿ Tabla PARTES ?
- ▶ ¿ Tabla ENVIOS ?

Claves candidatas

```
CREATE TABLE VENDEDORES(
v# CHAR(2) NOT NULL,
nombre VARCHAR(20) NOT NULL,
estado NUMBER(2),
ciudad VARCHAR(10) NOT NULL);

ALTER TABLE VENDEDORES ADD CONSTRAINT PK_VENDEDORES
PRIMARY KEY (v#);

ALTER TABLE VENDEDORES ADD CONSTRAINT UK_VENDEDORES_NOMBRE
UNIQUE (nombre);
```

Claves candidatas

```
create table vendedores(
v# char(2) not null,
nombre varchar(20) not null,
estado number(2),
ciudad varchar(10) not null);

ALTER TABLE VENDEDORES ADD CONSTRAINT PK_VENDEDORES
PRIMARY KEY (v#);

ALTER TABLE VENDEDORES ADD CONSTRAINT UK_VENDEDORES_NOMBRE
UNIQUE (nombre);
```

- ▶ ; Tabla PARTES ?
- ► ; Tabla ENVIOS ?

Claves foraneas

```
CREATE TABLE ENVIOS(
v# CHAR(2) NOT NULL,
p# CHAR(2) NOT NULL,
cant NUMBER(5) NOT NULL);

ALTER TABLE ENVIOS ADD CONSTRAINT FK_ENVIOS_PARTES
FOREIGN KEY (p#) REFERENCES PARTES(p#);
```

Claves foraneas

```
CREATE TABLE ENVIOS(
v# CHAR(2) NOT NULL,
p# CHAR(2) NOT NULL,
cant NUMBER(5) NOT NULL);

ALTER TABLE ENVIOS ADD CONSTRAINT FK_ENVIOS_PARTES
FOREIGN KEY (p#) REFERENCES PARTES(p#);
```

▶ ¿ Tabla ENVIOS ? Completar