- **3.1**-00100011
- **3.6**-0x15
- **3.7**-0x19
- **3.8**-21
- **3.9**-25
- **3.10**-11011101
- **3.11**-11100000

3.18-

16-Bit Binary	Hexadecimal	Decimal
1111111100111100	0xFF3C	-196
1111111110001000	0xFF88	-121
1111111110000000	0xFF80	-128
1111111111111010	0xFFFA	-4
000000000010001	0x0011	17
1111111111100111	0xFFE7	-25

- **3.20** One's complement number system is easier to negate the numbers. Two's complement does not have a negative zero and is much more advantageous in addition, subtraction, and multiplication.
- **3.21** 11010101 with an overflow of 1. Overflow occurred by taking the two's complement of 00010011, 11101101 and adding it to 11101000, making it a 9-bit value, with a 1-bit overflow.
- **3.22** 0x0088
- 3.24-

 $X = 0b10010100 = \underline{0d148}$

Y = 0b00101100 = 0d44

X + Y = 11000000 No overflow. 94+2C=0xC0

X - Y = 01101000 Overflow of 1, it is a 9-bit value.

D4+94=0x168

Y - X = 10011000 No overflow. 6C+2C=0x98