NATURAL LANGUAGE PROCESSING (PRACTICE)

NLP 251 - Lab 1: Lab Introduction

Department of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

General Introduction

- The lab sessions take place over 15 weeks (2 periods per week).
- Each week usually consists of two types of exercises: In-class Exercise (Deadline: 1 day) and Home-class Exercise (Deadline: 1–2 weeks).
- The exercises will include two formats: coding exercises and mathematical exercises.
- Each exercise allows up to 7 late submission days. For every late day, 1 point will be deducted from the total score.

Content Overview

- Preprocessing
- Language Models
- Vector Semantics and Embeddings
- Linear Models
- Optimizers

- Neural Networks
- Recurrent Neural Networks
- Sequence-to-Sequence Models
- Transformer Architectures
- Applications

Natural Language Processing

Introduction

NLP (Natural Language Processing) is the field of study and application aimed at enabling computers to understand and generate natural language.

What makes language hard

- Ambiguity
- 2 Context Dependency
- Oultural and Regional Differences
- Background Knowledge
- Massive amounts of unstructured and semi-structured data with new challenges

History of NLP

1 From 1950s -> 1980s: Rule-based Apprroach + experts

History of NLP

2 Late 1980 -> 2000s: Applying Statiscal Machine Learning

P(e_i3|v_j) =

my son is going to school con trai tôi dang di học e1 e2 e3 e4 e5 e6 v1 v2 v3 v4 v5 v6

History of NLP

3 Late 2010s: Appling Deep Learning: Representation learning

Natural Language Processing Task

- Text Classification: Sentiment analysis, Spam detection,
- Machine Translation: Translating text from one language to another
- Text Summarization: Generating a concise summary of a longer text
- Question Answering: Answering questions based on a given context or document

Natural Language Processing Task

- sentence
- Text Generation: Generating coherent and contextually relevant text
- Topic Modeling: Discovering the abstract topics that occur in a collection of documents.

• Language Modeling: Predicting the next word or sequence in a

- Word Embedding: Learning continuous vector representations of words
-

Traditional Methods

- Rule-Based Systems:
 - Grammar rules
 - Handcrafted features
- Statistical Models:
 - N-grams
 - Hidden Markov Models (HMMs)
 - Conditional Random Fields (CRFs)
- Bag of Words (BoW):
 - Simple representation of text
 - Ignores word order
- TF-IDF (Term Frequency-Inverse Document Frequency):
 - Weighs the importance of words
 - Widely used in information retrieval

Traditional Methods

• Word Embeddings:

- Word2Vec, GloVe, FastText
- Capture semantic relationships between words

• Sequence Models:

- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory (LSTM)
- Gated Recurrent Units (GRUs)

• Transformers:

- BERT (Bidirectional Encoder Representations from Transformers)
- GPT (Generative Pre-trained Transformer)
- T5 (Text-to-Text Transfer Transformer)

• Pre-trained Language Models:

- Fine-tuning for specific tasks
- Transfer learning

Important Libraries

- nltk: For preprocessing
- word_tokenize: For Vietnamese preprocessing
- Stanford NLPCore: For parsing
- Sklearn: model_selection, metric and train_test_split
- Word2Vec: Word Embedding
- Pytorch, TensorFlow: Deeplearning Framework
- Transformer, Huggingface: Pretrained models

Example Math Exercise

Problem

Suppose we have a collection of 3 documents document 1 says "lions eat fat cats"; document 2 says "cats eat fat mice"; document 3 says "mice eat fat cheese". Compute the cosine similarity of document 1 and document 2 with equal TF weighting:

0.25

2 0.0

3 0.5

a 0.75

1.0

Problem

Consider the following corpus of 3 sentences:

- I am here
- Who am I
- I would like to go

Caculate P(here Iam) assuming a bi-gram language model.

1/2

2/3

1/3

Example Code Exercise

- Get text from web data, pdf, word, txt.
- Check for plagiarism by word embedding and similarity scores.
- Building a spell-checking model based on n-grams
- Labeling parts of speech with a Hidden Markov Model (HMM)
- Training Sequence Model.
- Finetune Pretrained Model.

ANY QUESTIONS?

THANKS FOR LISTENING!