Class Imbalance

Problem Motivation

- Classification datasets can be "imbalanced"
 - o i.e. many observations of one class, few of another
- Costs of false positive different from cost of false negative
 - e.g. missing fraud is more costly than screening legitimate activity
- Accuracy-driven models will over-predict the majority class

2 Basic Solutions

Sampling

- Oversampling
- Undersampling
- SMOTE Synthetic Minority Oversampling TEchnique
- Cost-sensitive learning
 - modify cost function to account for different costs of false positives and false negatives

Sampling Techniques - Undersampling

- Undersampling randomly selects subset of majority class to balance training sample
- Can train multiple classifiers across many samples and ensemble their output
- Reduces runtime on very large datasets
- Discards potentially important observations

Sampling Techniques - Oversampling

- Oversampling replicates observations from minority class to balance training sample
- Can cause overfitting
- Doesn't discard information
- Often better to use SMOTE

Sampling Techniques - SMOTE

- SMOTE Synthetic Minority Oversampling TEchnique
- Generates new observations from minority class

Sampling Techniques - SMOTE

- For each minority class observation, generate new observation between it and any/all of its k-nearest neighbors
- Can be combined with undersampling and other techniques
- See also SMOTEBoosting and SMOTEBagging

Original paper: https://www.jair.org/media/953/live-953-2037-jair.pdf

Sampling Techniques - Distribution

What's the right amount of over-/under-sampling?

- If target goal is cost minimization, set ratio = CFP / CFN
- Can cross-validate to optimize metric of choice (e.g. Fbeta score)

Cost-sensitive Learning

- Can modify cost function to represent real world costs/benefits
- Use cost matrix representing costs of True/False Positive/Negative
- Makes business goal explicit in ML logic

Cost-sensitive Learning - Thresholding

- Typical threshold for positive classification is h = .5
- Instead select threshold to minimize expected cost
- For trees, this is done at each node
- Can plot "profit curve" which shows expected profit/loss over classification threshold
- See earlier lecture on this topic
- (Think about the equivalency with sampling!)

Cost-sensitive Logistic Regression

Logistic regression's usual objective function:

$$\ln p(\vec{y}|X;\theta) = \sum_{i=1}^{n} (y_i \ln h_{\theta}(x_i) + (1 - y_i) \ln(1 - h_{\theta}(x_i)))$$

New objective function, representing expected cost:

$$J^{c}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(y_{i} (h_{\theta}(X_{i}) C_{TP_{i}} + (1 - h_{\theta}(X_{i})) C_{FN_{i}}) + (1 - y_{i}) (h_{\theta}(X_{i}) C_{FP_{i}} + (1 - h_{\theta}(X_{i})) C_{TN_{i}}) \right).$$

Cost-sensitive Logistic Regression

- Logistic regression goal: accurately estimate parameter of Bernoulli random variables
- Cost-sensitive logistic regression goal: minimize misclassification cost
- Both assume that observations are Bernoulli

Cost Sensitivity vs Sampling

- Neither is strictly superior
- Oversampling tends to work well on small datasets
- Some algorithms don't have an obvious cost-sensitive adaptation, requiring sampling
- Methods can be combined (e.g. thresholding and SMOTE)

Cost-sensitivity vs Sampling

- Equivalency between cost-sensitivity and sampling based approaches
 - e.g. 2x oversampling is same as doubling misclassification cost using thresholding method

Confusion Matrix

	Predicted Positive	Predicted Negative
Actually	True	False
Positive	Positives	Negatives
Actually	False	True
Negative	Positives	Negatives

Classifier Metrics

Accuracy

$$\frac{TP+TN}{n}$$

True Positive Rate (Sensitivity/Recall)

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

True Negative Rate (Specificity)

$$\frac{TN}{N} = \frac{TN}{TN + FP}$$

Precision

$$\frac{TP}{TP + FP}$$

F1 Score

harmonic mean of precision and recall

$$F_1 = \frac{2*precision*recall}{precision+recall} = \frac{2}{\frac{1}{precision}+\frac{1}{recall}}$$

F_β Score

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 precision + recall}$$

ROC Plot

 Shows how true and false positive rates vary as the decision boundary is moved (<u>animation</u>)

ROC Plot

- If classifier A's ROC curve is strictly greater than classifier B's, then classifier A is always preferred
- If two classifier's ROC curves intersect, then the choice depends on relative importance of sensitivity and specificity

ROC - Area Under Curve (AUC)

- equals the probability that the model will rank a randomly chosen positive observation higher than a randomly chosen negative observation
- useful for comparing different classes of models in general setting