ICS Homework 12

December 17, 2021

1 Structs and Unions

Please answer the following questions according to the definition of heterogeneous data structures. Assume it is on an x86-64 machine.

```
struct node t {
 char type;
                                      8+8+8+8+16=48= 0x30
   union data t {
       struct {
         2 long lsn;
                                        8+8+8+16+8x8=104
         / char loaded;
         $ struct node_t **child_cache;
       x> short keys[7];
      Qx8 long children[8];
       } intern;
       struct {
         $ struct node_t* (*split) (int);
      short keys[7];
       /x) char values[32];
} leaf;
   } data;
  char status;
} node;
union data_t *data = &(node.data);
```

This declaration illustrates that structures can be embedded withinunions.

1. Fill in the following blocks.(please represent address with **Hex**)

Representation	Value
sizeof(node)	120
sizeof(node.data)	(04
sizeof(node.data.leaf)	56
sizeof(node.data.intern)	104
&node	0x601060
&(node.data)	0x601068
&(data- $>$ intern.loaded)	0x601070
&(data->intern.children)	Dxbologo
&(data->leaf.keys)	0xh01070
&(data->leaf.values)	0x601080.
&(node.status)	04601000

Oxboioje?

2. If you can rearrange the declarations in the **struct intern**, how many bytes of memory can you save in **struct intern** compared to the original declaration under x86-64?

Answer: & bytes

2 Arrays and Pointer Operations

Assume we have an array **int** a[100], the base address is stored in %rax. And we have a variable **long** i, stored in %rbx. Please write the corresponding instructions to get the value of the expression and store it to %rcx:

	Instruction	Expression
	movl (%rax), %ecx	a[0]
	mov / 40(2rax), Zecx	a[10]
moul	(2rax, 2rbx, 4). 2ecx	
	(Zrax, Zrbx,4), Zecx	
leag 2	(Brax,Brbx,4),Becx	&a[i + 5]

3 Nested Array

1. Assume we have to functions:

```
iint array[10][20][30];

int g(int *p, long i, long j, long k) {
    return p[_book+?0]+k+bb3}
}

(i+1) x 20 x }

f (j+2) x }

(i+3)

(i+1) x boo+(j+2) x }

(i+1) x boo+(j+2) x }

(i+1) x boo+(j+2) x }
```

```
int foo(long i, long j, long k) {
   return g(&array[-1][-2][-3], i, j, k);
}
```

Please fill the blank so that foo will return $\mathrm{array}[i][j][k];$