Chapitre 5 Programmation dynamique

HAI403I: Algorithmique 3

Université de Montpellier

1. Premier exemple : plus longue sous-suite croissante

2. Qu'est-ce que la programmation dynamique?

3. Deuxième exemple : choix de cours, le retour

4. Troisième exemple : la distance d'édition

5. Exemple spécial : le voyageur de commerce

Définition

Une plus longue sous-suite croissante (plssc) d'un tableau T d'entiers est une suite la plus grande possible d'indices

$$0 \le i_1 < i_2 < \dots < i_k \le n-1$$
 telle que $T[i_1] \le T[i_2] \le \dots \le T[i_k]$.

Entrée Un tableau T de n entiers Sortie 1 Une PLSSC de T

Entrée Un tableau T de n entiers Sortie 1 Une PLSSC de TSortie 2 La longueur d'une PLSSC de T

Entrée Un tableau T de n entiers Sortie 1 Une PLSSC de TSortie 2 La longueur d'une PLSSC de T

Exemple précédent

Entrée T = [1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16]Sortie 1 [1, 3, 7, 10, 12, 16] ou [1, 5, 7, 10, 14, 16] ou ... Sortie 2 6

Entrée Un tableau T de n entiers Sortie 1 Une PLSSC de TSortie 2 La longueur d'une PLSSC de T

Exemple précédent

Entrée
$$T = [1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16]$$

Sortie 1 $[1, 3, 7, 10, 12, 16]$ ou $[1, 5, 7, 10, 14, 16]$ ou . . . Sortie 2 6

▶ Algo. naïf : considérer toutes les sous-suites $\rightsquigarrow O(2^n)$

Entrée Un tableau T de n entiers Sortie 1 Une PLSSC de TSortie 2 La longueur d'une PLSSC de T

Exemple précédent

Entrée T = [1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16]Sortie 1 [1, 3, 7, 10, 12, 16] ou [1, 5, 7, 10, 14, 16] ou ...

▶ Algo. naïf : considérer toutes les sous-suites $\rightsquigarrow O(2^n)$

Algorithme de complexité polynomiale?

- ightharpoonup plssc(T) : longueur des PLSSC de T
- ightharpoonup L[i] : longueur des PLSSC de T finissant en case T[i]

- ▶ plssc(T) : longueur des PLSSC de T
- ightharpoonup L[i] : longueur des PLSSC de T finissant en case T[i]

Remarque
$$plssc(T) = \max_{0 \le i < n} L[i]$$

- plssc(T) : longueur des PLSSC de T
- ▶ L[i] : longueur des PLSSC de T finissant en case T[i]

Remarque
$$plssc(T) = \max_{0 \le i < n} L[i]$$

Lemme
$$L[i] = \begin{cases} 1 & \text{si } i = 0 \\ 1 + \max\{L[j] : j < i \text{ et } T[j] \le T[i]\} & \text{pour } 1 \le i < n \end{cases}$$

- ightharpoonup plssc(T) : longueur des PLSSC de T
- ▶ L[i] : longueur des PLSSC de T finissant en case T[i]

Remarque
$$plssc(T) = \max_{0 \le i < n} L[i]$$

Lemme
$$L[i] = \begin{cases} 1 & \text{si } i = 0 \\ 1 + \max\{L[j] : j < i \text{ et } T[j] \le T[i]\} & \text{pour } 1 \le i < n \end{cases}$$

Preuve On montre deux inégalités :

- \geq si $L[j_m]$ est le max, il existe une SSC $T[i_1], \ldots, T[i_k]$ de longueur $L[j_m] \leadsto T[i_1], \ldots, T[i_k], T[i]$ est une SSC de longueur $1 + L[j_m]$
- \leq si $T[i_1], \ldots, T[i_k]$ est une PLSSC finissant en $i(=i_k)$, alors $L[i_{k-1}] \geq k-1$ donc $\max\{L[j]: \ldots\} \geq k-1$

- ightharpoonup plssc(T) : longueur des PLSSC de T
- ▶ L[i] : longueur des PLSSC de T finissant en case T[i]

Remarque
$$plssc(T) = \max_{0 \le i < n} L[i]$$

Lemme
$$L[i] = \begin{cases} 1 & \text{si } i = 0 \\ 1 + \max\{L[j] : j < i \text{ et } T[j] \le T[i]\} & \text{pour } 1 \le i < n \end{cases}$$

Ne pas programmer la formule par un algorithme récursif!

Algorithme PLSSC

```
Algorithme : PLSSC(T)
L \leftarrow \text{tableau de taille } n, initialisé à 1
M \leftarrow L[0]
                                          // M contient max; L[i]
pour i = 1 à n - 1 faire
    m \leftarrow 0 // m contient max{L[j] : j < i, T[j] \le T[i]}
    pour i = 0 à i - 1 faire
        si T[j] \leq T[i] et L[j] > m alors
        m \leftarrow L[j]
    L[i] \leftarrow 1 + m
    si L[i] > M alors M \leftarrow L[i]
retourner M
```

Correction et complexité

Théorème

L'algorithme PLSSC calcule plssc(T) en temps $O(n^2)$.

```
Algorithme : PLSSC(T)
L \leftarrow tableau de taille n. initialisé à 1
M \leftarrow L[0]
pour i = 1 à n - 1 faire
      m \leftarrow 0
      pour j = 0 à i - 1 faire
           si T[j] \leq T[i] et L[j] > m alors
            m \leftarrow L[j]
      L[i] \leftarrow 1 + m
      si L[i] > M alors M \leftarrow L[i]
retourner M
```

Correction et complexité

Théorème

L'algorithme PLSSC calcule plssc(T) en temps $O(n^2)$.

Preuve de correction : utilisation de la formule récursive Preuve de complexité : double boucle

Correction et complexité

Théorème

L'algorithme PLSSC calcule plssc(T) en temps $O(n^2)$.

```
Algorithme: PLSSC(T)
L \leftarrow \text{tableau de taille } n, \text{ initialis\'e \`a } 1
M \leftarrow L[0]
\text{pour } i = 1 \text{ \`a } n - 1 \text{ faire}
m \leftarrow 0
\text{pour } j = 0 \text{ \`a } i - 1 \text{ faire}
\text{si } T[j] \leq T[i] \text{ et } L[j] > m \text{ alors}
\text{length} m \leftarrow L[j]
L[i] \leftarrow 1 + m
\text{si } L[i] > M \text{ alors } M \leftarrow L[i]
\text{retourner } M
```

Preuve de correction : utilisation de la formule récursive Preuve de complexité : double boucle

Comment calculer une plssc (en plus de sa longueur)?

- Retenir les indices des max
- ► Reconstruire a posteriori

Algorithme PLSSC avec reconstruction

```
Algorithme : PLSSC(T)
L \leftarrow \text{tableau de taille } n, initialisé à 1
Ind \leftarrow tab de taille n, initialisé à -1
i_M \leftarrow 0 // i_M est l'indice de fin
 d'une PLSSC
pour i = 1 à n - 1 faire
    m \leftarrow 0
    pour i = 0 à i - 1 faire
         si T[j] \leq T[i] et L[j] > m alors
         m \leftarrow L[j]; Ind[i] \leftarrow j
    L[i] \leftarrow 1 + m
    si L[i] > L[i_M] alors i_M \leftarrow i
retourner L[i_M], i_M et Ind
```

Algorithme PLSSC avec reconstruction

```
Algorithme : PLSSC(T)
L \leftarrow \text{tableau de taille } n, initialisé à 1
Ind \leftarrow tab de taille n, initialisé à -1
i_M \leftarrow 0 // i_M est l'indice de fin
 d'une PLSSC
pour i = 1 à n - 1 faire
    m \leftarrow 0
    pour i = 0 à i - 1 faire
         si T[j] \leq T[i] et L[j] > m alors
          m \leftarrow L[j]; Ind[i] \leftarrow j
    L[i] \leftarrow 1 + m
    si L[i] > L[i_M] alors i_M \leftarrow i
retourner L[i_M], i_M et Ind
```

Algorithme PLSSC avec reconstruction

```
Algorithme : PLSSC(T)
L \leftarrow \text{tableau de taille } n, initialisé à 1
Ind \leftarrow tab de taille n, initialisé à -1
i_M \leftarrow 0 // i_M est l'indice de fin
 d'une PLSSC
pour i = 1 à n - 1 faire
    m \leftarrow 0
    pour i = 0 à i - 1 faire
         si T[j] \leq T[i] et L[j] > m alors
          m \leftarrow L[j]; Ind[i] \leftarrow j
    L[i] \leftarrow 1 + m
    si L[i] > L[i_M] alors i_M \leftarrow i
retourner L[i_M], i_M et Ind
```

Lemme

L'algo. PLSSC_REC reconstruit une PLSSC de T en temps O(n).

- 1. Premier exemple: plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?

- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Exemple spécial : le voyageur de commerce

 $Programmation \ dynamique = r\'{e}cursion \ sans \ r\'{e}p\'{e}tition$

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints
- 2. Algorithme itératif pour la valeur optimale
 - en commençant par les plus petits sous-problèmes
 - approche « bottom-up »

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - ▶ en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints
- 2. Algorithme itératif pour la valeur optimale
 - en commençant par les plus petits sous-problèmes
 - approche « bottom-up »
- 3. Reconstruction de la solution a posteriori
 - ajout d'informations à l'algo. pour la valeur
 - algorithme de reconstruction indépendant

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints
- 2. Algorithme itératif pour la valeur optimale
 - en commençant par les plus petits sous-problèmes
 - approche « bottom-up »
- 3. Reconstruction de la solution a posteriori
 - ajout d'informations à l'algo. pour la valeur
 - algorithme de reconstruction indépendant
- « Diviser pour régner »

Sous-problèmes disjoints, approche « top-down »

Partie la plus importante (et difficile)!

Partie la plus importante (et difficile)!

Étapes

- 1. Spécification précise du problème
- 2. Formule récursive basée sur les solutions d'instances plus petites du même problème exactement

Partie la plus importante (et difficile)!

Étapes

- 1. Spécification précise du problème
- 2. Formule récursive basée sur les solutions d'instances plus petites du même problème exactement

- 1. Définition de L[i] en pas seulement plssc(T)
- 2. Expression de L[i] en fonction des L[j], j < i

Partie la plus importante (et difficile)!

Étapes

- 1. Spécification précise du problème
- 2. Formule récursive basée sur les solutions d'instances plus petites du même problème exactement

Plus longue sous-suite croissante

- 1. Définition de L[i] en pas seulement plssc(T)
- 2. Expression de L[i] en fonction des L[j], j < i

En pratique, étape souvent (très) guidée

Ingrédient 2 : Algorithme itératif

Partie plutôt facile... mais attention quand même!

Ingrédient 2 : Algorithme itératif

Partie plutôt facile... mais attention quand même!

Étapes

- 1. choix d'une structure de données (très souvent un tableau)
- 2. ordre de calcul si tableau multi-dimensionnel cf. ex. suivants
- 3. écriture effective de l'algorithme
- 4. analyse de complexité

Ingrédient 2 : Algorithme itératif

Partie plutôt facile... mais attention quand même!

Étapes

- 1. choix d'une structure de données (très souvent un tableau)
- 2. ordre de calcul si tableau multi-dimensionnel cf. ex. suivants
- 3. écriture effective de l'algorithme
- 4. analyse de complexité

- 1. Tableau L
- 2. Ordre croissant

Ingrédient 2 : Algorithme itératif

Partie plutôt facile... mais attention quand même!

Étapes

- 1. choix d'une structure de données (très souvent un tableau)
- 2. ordre de calcul si tableau multi-dimensionnel cf. ex. suivants
- 3. écriture effective de l'algorithme
- 4. analyse de complexité

Plus longue sous-suite croissante

- 1. Tableau L
- 2. Ordre croissant

En pratique, étape souvent non guidée

Partie de difficulté très variable!

Partie de difficulté très variable!

Étapes

- 1. ajout d'informations supplémentaires à l'algo. précédent
- 2. redescente depuis la solution générale vers les instances petites

Partie de difficulté très variable!

Étapes

- 1. ajout d'informations supplémentaires à l'algo. précédent
- 2. redescente depuis la solution générale vers les instances petites

Plus longue sous-suite croissante

- 1. tableau Ind, indice i_M
- 2. descente depuis $T[i_M]$, en suivant *Ind*

Partie de difficulté très variable!

Étapes

- 1. ajout d'informations supplémentaires à l'algo. précédent
- 2. redescente depuis la solution générale vers les instances petites

Plus longue sous-suite croissante

- 1. tableau Ind, indice i_M
- 2. descente depuis $T[i_M]$, en suivant *Ind*

En pratique, étape pas toujours effectuée

Conclusion sur la programmation dynamique

Comparaison avec les algorithmes gloutons :

- ➤ Algo. glouton : cas particulier de programmation dynamique avec un seul sous-problème
- Souvent pas suffisant

Conclusion sur la programmation dynamique

Comparaison avec les algorithmes gloutons :

- Algo. glouton : cas particulier de programmation dynamique avec un seul sous-problème
- ► Souvent pas suffisant

Les algorithmes gloutons fonctionnent rarement!

Conclusion sur la programmation dynamique

Comparaison avec les algorithmes gloutons :

- Algo. glouton : cas particulier de programmation dynamique avec un seul sous-problème
- Souvent pas suffisant

Les algorithmes gloutons fonctionnent rarement!

D'où vient ce nom?

- Belman (1940) : travaux en optimisation mathématique
 - ▶ Programmation : planification, ordonnancement
 - Dynamique : « it's impossible to use the word dynamic in a pejorative sense »
- Origine du mot peu claire : référence à la programmation linéaire, et/ou problèmes de financements (cf Wikipédia)

1. Premier exemple: plus longue sous-suite croissante

- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Exemple spécial : le voyageur de commerce

Revisitons nos classiques

Choix de cours valué Entrée cours $C_i = (d_i, f_i, e_i)$ [début, fin, crédits ECTS], $0 \le i < n$ Sortie un sous-ensemble de cours compatibles qui maximise le nombre total de crédits ECTS

Revisitons nos classiques

Choix de cours valué

Entrée cours $C_i = (d_i, f_i, e_i)$ [début, fin, crédits ECTS], $0 \le i < n$ Sortie un sous-ensemble de cours compatibles qui maximise le nombre total de crédits ECTS

Lemme

L'algorithme CHOIXCOURSGLOUTON vu pour le choix de cours non valué est arbitrairement mauvais sur ce problème!

Revisitons nos classiques

Choix de cours valué

Entrée cours $C_i = (d_i, f_i, e_i)$ [début, fin, crédits ECTS], $0 \le i < n$ Sortie un sous-ensemble de cours compatibles qui maximise le nombre total de crédits ECTS

Lemme

L'algorithme CHOIX COURS GLOUTON vu pour le choix de cours non valué est arbitrairement mauvais sur ce problème!

Exemple

$$C = \{(9, 12, 1), (11, 14, 100), (13, 15, 1)\}$$
:

- ► CHOIXCOURSGLOUTON renvoie une solution à 2 ECTS
- ► L'optimal est 50 fois meilleur!

Formule récursive pour le choix de cours valué

Cours triés par ordre de fin croissante C_0 , C_1 , ..., C_{n-1}

Notations

- maxECTS(k): nombre maximal d'ECTS avec les cours C_0 , ..., C_k (maxECTS(-1) = 0)

Formule récursive pour le choix de cours valué

Cours triés par ordre de fin croissante C_0 , C_1 , ..., C_{n-1}

Notations

- $ightharpoonup \operatorname{\mathsf{pred}}(k) = \max\{j: f_j \leq d_k\}$ (avec $\max(\emptyset) = -1$)
- maxECTS(k): nombre maximal d'ECTS avec les cours C_0 , ..., C_k (maxECTS(-1) = 0)

Lemme

```
maxECTS(0) = e_0 et pour 1 \le k < n,

maxECTS(k) = max(maxECTS(k-1), e_k + maxECTS(pred(k)))
```

Formule récursive pour le choix de cours valué

Cours triés par ordre de fin croissante C_0 , C_1 , ..., C_{n-1}

Notations

- $ightharpoonup \operatorname{\mathsf{pred}}(k) = \max\{j : f_j \le d_k\}$ (avec $\max(\emptyset) = -1$)
- maxECTS(k): nombre maximal d'ECTS avec les cours C_0 , ..., C_k (maxECTS(-1) = 0)

Lemme

```
maxECTS(0) = e_0 et pour 1 \le k < n,

maxECTS(k) = max(maxECTS(k-1), e_k + maxECTS(pred(k)))
```

Preuve : la solution optimale pour C_0, \ldots, C_k contient-elle C_k ?

- ▶ Si oui, les autres cours choisis sont parmi $C_0, \ldots, C_{\text{pred}(k)} \leadsto$ nb d'ECTS : $e_k + \text{maxECTS}(\text{pred}(k))$
- ▶ Si non, nb d'ECTS : \max ECTS(k-1)

Algorithme pour le choix de cours valué

```
Algorithme : MAXECTS(C)
Trier C par dates de fin croissantes
P \leftarrow \text{tableau de taille } n, \text{ initialisé à } -1 // prédécesseurs
pour k=1 à n-1 faire
    pour i = 0 à k - 1 faire
       si f_i \leq d_k alors P[k] \leftarrow j
M \leftarrow tableau de taille n, initialisé à 0
M[0] \leftarrow e_0
pour k=1 à n-1 faire
    si P[k] \neq -1 alors M[k] \leftarrow \max(M[k-1], e_k + M[P[k]])
    sinon M[k] \leftarrow \max(M[k-1], e_k)
retourner M[n-1]
```

Algorithme pour le choix de cours valué

```
Algorithme : MAXECTS(C)
Trier C par dates de fin croissantes
P \leftarrow \text{tableau de taille } n, \text{ initialisé à } -1 // prédécesseurs
pour k=1 à n-1 faire
    pour j = 0 à k - 1 faire
       si f_i \leq d_k alors P[k] \leftarrow j
M \leftarrow tableau de taille n, initialisé à 0
M[0] \leftarrow e_0
pour k=1 à n-1 faire
    si P[k] \neq -1 alors M[k] \leftarrow \max(M[k-1], e_k + M[P[k]])
    sinon M[k] \leftarrow \max(M[k-1], e_k)
retourner M[n-1]
```

Et pour le sac-à-dos?

Sac-à-dos (non fractionnaire)

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble d'objets qui rentre dans le sac, et maximise la valeur totale

Et pour le sac-à-dos?

Sac-à-dos (non fractionnaire)

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble d'objets qui rentre dans le sac, et maximise la valeur totale

Lemme

L'algorithme SÀDFRACGLOUTON n'est pas optimal pour le sac-à-dos non fractionnaire.

Et pour le sac-à-dos?

Sac-à-dos (non fractionnaire)

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble d'objets qui rentre dans le sac, et maximise la valeur totale

Lemme

L'algorithme SÀDFRACGLOUTON n'est pas optimal pour le sac-à-dos non fractionnaire.

- Exemples vus en cours et TD
- ► Algos de programmation dynamique optimaux \rightsquigarrow cf. TD

- 1. Premier exemple: plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Exemple spécial : le voyageur de commerce

AGORRYTNES

ALGORITHMES

À quelle distance se trouve-t-on du mot correct?

ALGORITHMES

À quelle distance se trouve-t-on du mot correct?

Distance 5

La distance d'édition

Définition

La distance d'édition (ou de Levenshtein, ou d'Ulam) entre deux mots A et B est la longueur de la plus courte suite de transformations pour passer de A à B, avec les transformations suivantes :

- insertion d'une nouvelle lettre
- suppression d'une lettre
- remplacement d'une lettre par une autre

La distance d'édition

Définition

La distance d'édition (ou de Levenshtein, ou d'Ulam) entre deux mots A et B est la longueur de la plus courte suite de transformations pour passer de A à B, avec les transformations suivantes :

- insertion d'une nouvelle lettre
- suppression d'une lettre
- remplacement d'une lettre par une autre

Définition alternative

Nombre minimal de désaccords dans un alignement de A et B

Définition du problème

Entrée Deux mots A et B sur un alphabet (mot : chaîne de caractère ou tableau de caractères ou ...) Sortie 1 La distance d'édition entre A et B

Sortie 2 Une suite de transformations minimale de A à B

Définition du problème

```
Entrée Deux mots A et B sur un alphabet (mot : chaîne de caractère ou tableau de caractères ou . . .)
```

Sortie 1 La distance d'édition entre A et B

Sortie 2 Une suite de transformations minimale de A à B

Utilité

- Orthographe :
 - Correcteur orthographique
 - Reconnaissance optique de caractères
- Linguistique (proximité de langues)
- Bioinformatique :
 - similarité de séquences ADN
 - similarité d'arbres phylogénétiques
- **.**..

- \triangleright $\delta(A,B)$: distance entre A et B
- edit(i,j) : distance entre A[0,i] et B[0,j]
- ► convention : $\operatorname{edit}(i, -1) = i + 1$ et $\operatorname{edit}(-1, j) = j + 1$ pourquoi?

- \triangleright $\delta(A,B)$: distance entre A et B
- edit(i,j) : distance entre A[0,i] et B[0,j]
- ► convention : $\operatorname{edit}(i, -1) = i + 1$ et $\operatorname{edit}(-1, j) = j + 1$ pourquoi ?

$$\mathsf{si}\ |A| = m\ \mathsf{et}\ |B| = \mathit{n},\ \delta(A,B) = \mathsf{edit}(\mathit{m}-1,\mathit{n}-1)$$

- \blacktriangleright $\delta(A,B)$: distance entre A et B
- edit(i,j) : distance entre A[0,i] et B[0,j]
- ► convention : $\operatorname{edit}(i, -1) = i + 1$ et $\operatorname{edit}(-1, j) = j + 1$ pourquoi ?

si
$$|A| = m$$
 et $|B| = n$, $\delta(A, B) = \operatorname{edit}(m - 1, n - 1)$

Trois alignements possibles

- \blacktriangleright $\delta(A,B)$: distance entre A et B
- edit(i,j) : distance entre A[0,i] et B[0,j]
- ► convention : $\operatorname{edit}(i, -1) = i + 1$ et $\operatorname{edit}(-1, j) = j + 1$ pourquoi ?

si
$$|A| = m$$
 et $|B| = n$, $\delta(A, B) = \operatorname{edit}(m - 1, n - 1)$

Trois alignements possibles

A[0,i-1] $A[i]$	$A[0,i] \qquad \qquad -$	$A[0,i-1] \cdots A[i]$
– B[0,j]	$ \bigcup_{\substack{B[0,j-1]}} B[j] $	B[j] $B[0,j-1]$

Alignements AGORR et ALGOR

,							
AGORR	_	AGOR	R	AGOR	R		
ALGO	R	ALGOR	_	ALGO	R		
3	1	1	1	2	0	\rightarrow	2

Formule récursive

Lemme

$$\begin{aligned} \operatorname{edit}(i,j) &= \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ \operatorname{où} 1_{A[i] \neq B[j]} &= 1 \text{ si } A[i] \neq B[j], \ 0 \text{ sinon} \end{aligned}$$

Formule récursive

Lemme

$$\begin{aligned} \operatorname{edit}(i,j) &= \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ \operatorname{où} 1_{A[i] \neq B[j]} &= 1 \text{ si } A[i] \neq B[j], \ 0 \text{ sinon} \end{aligned}$$

Preuve : Notation $\left| {A[0,i] \atop B[0,j]} \right|$: alignement, avec ${\sf edit}(i,j)$ désaccords

Lemme

$$\begin{split} \operatorname{edit}(i,j) &= \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ o\grave{u} \ 1_{A[i] \neq B[j]} &= 1 \ \operatorname{si} \ A[i] \neq B[j], \ 0 \ \operatorname{sinon} \end{split}$$

$$lackbox{ edit}(i,j) \leq \operatorname{edit}(i-1,j) + 1: \left| \begin{smallmatrix} A[0,i-1] \\ B[0,j] \end{smallmatrix} \right| + \operatorname{suppression} A[i]$$

Lemme

$$\begin{split} \operatorname{edit}(i,j) &= \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ o\grave{u} \ 1_{A[i] \neq B[j]} &= 1 \ si \ A[i] \neq B[j], \ 0 \ sinon \end{cases} \end{split}$$

▶
$$\operatorname{edit}(i,j) \leq \operatorname{edit}(i-1,j) + 1 : \left| A[0,i-1] \atop B[0,j] \right| + \operatorname{suppression} A[i]$$
▶ $\operatorname{edit}(i,j) \leq \operatorname{edit}(i,j-1) + 1 : \left| A[0,i] \atop B[0,j-1] \right| + \operatorname{insertion} B[j]$

$$lacksquare$$
 edit $(i,j) \leq$ edit $(i,j-1)+1: \left|egin{array}{c} A[0,i] \ B[0,j-1] \end{array}
ight|+$ insertion $B[j]$

Lemme

$$\begin{split} \operatorname{edit}(i,j) &= \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ o\grave{u} \ 1_{A[i] \neq B[j]} &= 1 \ si \ A[i] \neq B[j], \ 0 \ sinon \end{cases} \end{split}$$

- $lackbox{ edit}(i,j) \leq \operatorname{edit}(i-1,j) + 1: \left| egin{array}{c} A[0,i-1] \\ B[0,j] \end{array} \right| + \operatorname{suppression} A[i]$
- ▶ $\operatorname{edit}(i,j) \leq \operatorname{edit}(i,j-1) + 1 : \left| \frac{A[0,i]}{B[0,j-1]} \right| + \operatorname{insertion} B[j]$
- $\begin{array}{l} \bullet \ \ \mathsf{edit}(i,j) \leq \mathsf{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} : \left| \begin{smallmatrix} A[0,i-1] \\ B[0,j-1] \end{smallmatrix} \right| \, + \\ \mathsf{remplacement} \ A[i] \rightarrow B[j] \end{array}$

Lemme

$$\begin{split} \mathsf{edit}(i,j) &= \mathsf{min} \begin{cases} \mathsf{edit}(i-1,j) + 1 \\ \mathsf{edit}(i,j-1) + 1 \\ \mathsf{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ o\grave{u} \ 1_{A[i] \neq B[j]} &= 1 \ \mathit{si} \ A[i] \neq B[j], \ 0 \ \mathit{sinon} \end{split}$$

- $\operatorname{edit}(i,j) \leq \operatorname{edit}(i-1,j) + 1 : \left| \frac{A[0,i-1]}{B[0,j]} \right| + \operatorname{suppression} A[i]$
- $lackbox{ edit}(i,j) \leq \operatorname{edit}(i,j-1) + 1: \left| egin{array}{c} A[0,i] \ B[0,j-1] \end{array}
 ight| + \operatorname{insertion} B[j]$
- ▶ $\operatorname{edit}(i,j) \leq \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} : \left| A[0,i-1] \atop B[0,j-1] \right| + \operatorname{remplacement} A[i] \rightarrow B[j]$

$$\implies$$
 edit $(i,j) \le \min\{\dots\}$

$$\begin{aligned} \operatorname{edit}(i,j) &= \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ \operatorname{où} 1_{A[i] \neq B[j]} &= 1 \text{ si } A[i] \neq B[j], \ 0 \text{ sinon} \\ \end{aligned}$$
 Preuve Si $\operatorname{edit}(i,j) = d$,

$$\operatorname{edit}(i,j) = \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases}$$

$$où \ 1_{A[i] \neq B[j]} = 1 \ si \ A[i] \neq B[j], \ 0 \ sinon$$

$$\operatorname{Preuve Si \ edit}(i,j) = d,$$

$$\blacktriangleright \ A[i] = B[j] \implies \operatorname{edit}(i-1,j-1) = d$$

$$\begin{split} \operatorname{edit}(i,j) &= \min \begin{cases} \operatorname{edit}(i-1,j) + 1 \\ \operatorname{edit}(i,j-1) + 1 \\ \operatorname{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ o\grave{u} \ 1_{A[i] \neq B[j]} &= 1 \ si \ A[i] \neq B[j], \ 0 \ sinon \end{cases} \end{split}$$

Preuve Si
$$edit(i,j) = d$$
,

$$A[i] = B[j] \implies \operatorname{edit}(i-1, j-1) = d$$

$$ightharpoonup A[i] \neq B[j]$$
:

▶
$$edit(i-1, j-1) \ge d-1$$

$$ightharpoonup$$
 edit $(i, j-1) \ge d-1$

$$ightharpoonup$$
 edit $(i-1,j) \geq d-1$

$$\begin{split} \mathsf{edit}(i,j) &= \mathsf{min} \begin{cases} \mathsf{edit}(i-1,j) + 1 \\ \mathsf{edit}(i,j-1) + 1 \\ \mathsf{edit}(i-1,j-1) + 1_{A[i] \neq B[j]} \end{cases} \\ o\grave{u} \ 1_{A[i] \neq B[j]} &= 1 \ \mathit{si} \ A[i] \neq B[j], \ 0 \ \mathit{sinon} \end{split}$$

Preuve Si
$$edit(i,j) = d$$
,

$$A[i] = B[j] \implies \operatorname{edit}(i-1, j-1) = d$$

$$ightharpoonup A[i] \neq B[j]$$
:

▶
$$edit(i-1, j-1) \ge d-1$$

$$ightharpoonup$$
 edit $(i, j-1) \geq d-1$

$$ightharpoonup$$
 edit $(i-1,j) \geq d-1$

$$\implies \operatorname{edit}(i,j) \ge \min\{\dots\}$$

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1									
L	2									
G	3									
0	4									
R	5									
Ι	6									
T	7									
Η	8									
M	9									
Ε	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0								
L	2									
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	Τ	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2									
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
М	9									
Ε	10									

		A	G	0	R	R	Y	T	N	Ε
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1								
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
E	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1								
G	3									
0	4									
R	5									
I	6									
T	7									
Н	8									
M	9									
E	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
E	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2								
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1							
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4									
R	5									
I	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
A	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4		6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
I	6	5	4	3	2	2	3	4	5	6
T	7									
Н	8									
М	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
I	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8									
М	9									
Ε	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	_	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9									
Ε	10									

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
E	10									

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
E	10	9	8	7	6	6	6	6	6	5

L'algorithme

L'algorithme

• Convention : E[-1,j] = j+1; E[i,-1] = i+1

L'algorithme

• Convention : E[-1,j] = j+1; E[i,-1] = i+1

Lemme

L'algorithme DISTANCEEDITION renvoie $\delta(A, B)$ en temps O(mn).

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Τ	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
I	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
Т	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
E	10	9	8	7	6	6	6	6	6	5

Algorithme de reconstruction

```
Algorithme: ALIGNEMENT(A, B, E)
(i, j) \leftarrow (m - 1, n - 1)
tant que i > 0 et i > 0 faire
    si E[i, j] = E[i - 1, j - 1] et A[i] = B[j] alors
       (i, j) \leftarrow (i - 1, j - 1)
    sinon si E[i, j] = E[i - 1, j - 1] + 1 alors
       (i, j) \leftarrow (i - 1, j - 1)
    sinon si E[i, j] = E[i-1, j] + 1 alors
        Insérer \ll _ \gg après B[i]; i \leftarrow i-1
    sinon si E[i, j] = E[i, j - 1] + 1 alors
       Insérer « \_ » après A[i]; j \leftarrow j - 1
tant que i \geq 0 faire Insérer « \_ » en tête de B; i \leftarrow i - 1
tant que j \geq 0 faire Insérer « \_ » en tête de A; j \leftarrow j - 1
retourner A et B
```

Correction et complexité

Lemme

L'algorithme ALIGNEMENT aligne les mots A et B avec $\delta(A,B)$ désaccords, en temps O(m+n).

```
Algorithme: ALIGNEMENT (A, B, E)
(i, j) \leftarrow (m - 1, n - 1)
tant que i > 0 et i > 0 faire
     si E[i,j] = E[i-1,j-1] et A[i] = B[j]
           (i,j) \leftarrow (i-1,j-1)
     sinon si E[i, j] = E[i - 1, j - 1] + 1 alors
          (i, j) \leftarrow (i - 1, j - 1)
     sinon si E[i, j] = E[i-1, j] + 1 alors
           Insérer \ll _{\perp} \gg après B[j]; i \leftarrow i-1
     sinon si E[i, j] = E[i, j-1] + 1 alors
       Insérer \ll _{\perp} \gg après A[i]; j \leftarrow j-1
tant que i > 0 faire
     Insérer « \_ » en tête de B; i \leftarrow i - 1
tant que i > 0 faire
     Insérer « \_ » en tête de A; j \leftarrow j-1
retourner A et B
```

Correction et complexité

Lemme

L'algorithme ALIGNEMENT aligne les mots A et B avec $\delta(A,B)$ désaccords, en temps O(m+n).

```
Algorithme: ALIGNEMENT (A, B, E)
(i, j) \leftarrow (m - 1, n - 1)
tant que i > 0 et i > 0 faire
     si E[i,j] = E[i-1,j-1] et A[i] = B[j]
          (i,j) \leftarrow (i-1,j-1)
     sinon si E[i, j] = E[i - 1, j - 1] + 1 alors
          (i, j) \leftarrow (i - 1, j - 1)
     sinon si E[i,j] = E[i-1,j] + 1 alors
          Insérer \ll _{\perp} \gg après B[j]; i \leftarrow i-1
     sinon si E[i,j] = E[i,j-1] + 1 alors
       Insérer \ll _{-} \gg après A[i]; j \leftarrow j-1
tant que i > 0 faire
     Insérer « \_ » en tête de B; i \leftarrow i - 1
tant que i > 0 faire
     Insérer « \_ » en tête de A; j \leftarrow j-1
retourner A et B
```

Preuve de complexité : à chaque tour, i + j diminue de ≥ 1

Correction et complexité

Lemme

L'algorithme ALIGNEMENT aligne les mots A et B avec $\delta(A,B)$ désaccords, en temps O(m+n).

```
Algorithme: ALIGNEMENT(A, B, E)
(i, j) \leftarrow (m - 1, n - 1)
tant que i > 0 et j > 0 faire
     si E[i, j] = E[i - 1, j - 1] et A[i] = B[j]
           (i,j) \leftarrow (i-1,j-1)
     sinon si E[i, j] = E[i - 1, j - 1] + 1 alors
           (i, j) \leftarrow (i - 1, j - 1)
     sinon si E[i,j] = E[i-1,j] + 1 alors
           Insérer \ll _{\perp} \gg après B[j]; i \leftarrow i-1
     sinon si E[i, j] = E[i, j-1] + 1 alors
       Insérer \ll _ \gg après A[i]; j \leftarrow j-1
tant que i > 0 faire
    Insérer \ll _{\perp} \gg en tête de B; i \leftarrow i-1
tant que i > 0 faire
     Insérer « \_ » en tête de A; j \leftarrow j-1
retourner A et B
```

Preuve de complexité : à chaque tour, i+j diminue de ≥ 1 Preuve de correction : « en entrant dans la boucle, A[i+1,m-1] et B[j+1,n-1] sont alignés avec $\delta(A[i+1,m-1],B[j+1,n-1])$ désaccords »

- 1. Premier exemple : plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Exemple spécial : le voyageur de commerce

- ▶ Algorithme na \ddot{i} : essayer toutes les permutations $\rightsquigarrow O(n!)$
- ightharpoonup Algorithme polynomial : impossible sauf si $P=\mathsf{NP}$

- ▶ Algorithme na \ddot{i} : essayer toutes les permutations $\rightsquigarrow O(n!)$
- ightharpoonup Algorithme polynomial : impossible sauf si P = NP

Objectif: algorithme mieux que O(n!), mais pas polynomial

Entrée Ensemble $S = \{s_0, \dots, s_{n-1}\}$ de points dans le plan Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$ Sortie 2 Longueur $\ell_S = \sum_{i=0}^{n-1} \delta_{i_i i_{i+1}}$ du chemin le plus court $(i_n = i_0)$

Entrée Ensemble $S = \{s_0, \dots, s_{n-1}\}$ de points dans le plan Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta := \sqrt{(x_i - x_i)^2 + (y_i - y_i)^2}$ si $s_i = (x_i, y_i)$ et

totale, avec
$$\delta_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
 si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$

Sortie 2 Longueur $\ell_S = \sum_{j=0}^{n-1} \delta_{i_j i_{j+1}}$ du chemin le plus court $(i_n = i_0)$

• On peut fixer $s_{i_0} = s_0$

- Entrée Ensemble $S = \{s_0, \dots, s_{n-1}\}$ de points dans le plan
- Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta_{ij} = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$ si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$
- Sortie 2 Longueur $\ell_{\mathcal{S}} = \sum_{j=0}^{n-1} \delta_{i_j i_{j+1}}$ du chemin le plus court $(i_n = i_0)$
 - ightharpoonup On peut fixer $s_{i_0} = s_0$
 - ▶ Si $U \subset S$ avec $s_0, s_j \in U$, on note $\Delta(U, s_j)$ la longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

- Entrée Ensemble $S = \{s_0, \dots, s_{n-1}\}$ de points dans le plan
- Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta_{ij} = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$ si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$
- Sortie 2 Longueur $\ell_{\mathcal{S}} = \sum_{j=0}^{n-1} \delta_{i_j i_{j+1}}$ du chemin le plus court $(i_n = i_0)$
 - ightharpoonup On peut fixer $s_{i_0} = s_0$
 - ▶ Si $U \subset S$ avec $s_0, s_j \in U$, on note $\Delta(U, s_j)$ la longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

$$\ell_{\mathcal{S}} = \min_{j} \Delta(\{s_0, \dots, s_{n-1}\}, s_j) + \delta_{j,0}$$

 $\Delta(U, s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

 $\Delta(U,s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

Lemme

- $\Delta(\{s_0\}, s_0) = 0$ et $\Delta(U, s_0) = +\infty$ si |U| > 1

 $\Delta(U,s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

Lemme

- $\Delta(\{s_0\}, s_0) = 0$ et $\Delta(U, s_0) = +\infty$ si |U| > 1

Preuve : pour aller de s_0 à s_j ,

- ightharpoonup on choisit un point s_i
- ightharpoonup on va de s_0 à s_i
- ightharpoonup puis directement de s_i à s_j

 $\Delta(U,s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

Lemme

- $\Delta(\{s_0\}, s_0) = 0$ et $\Delta(U, s_0) = +\infty$ si |U| > 1

Preuve : pour aller de s_0 à s_j ,

- ▶ on choisit un point s_i
- ightharpoonup on va de s_0 à s_i
- ightharpoonup puis directement de s_i à s_j
 - \rightsquigarrow il *suffit* de trouver le meilleur s_i !

Algorithme TSP

```
Algorithme : TSP(S)
\Delta \leftarrow tableau à 2 dimensions, indexé par les sous-ensembles de
       S contenant \{s_0\}, et par les entiers de 0 à n-1
\Delta[\{s_0\},0]=0
pour s = 2 \ a n faire
    pour tous les U \subset S de taille s tels que s_0 \in U faire
         \Delta[U, s_0] = +\infty
         pour tout s_i \in U, j \neq 0 faire
           | \Delta[U, s_i] = \min\{\Delta[U \setminus \{s_i\}, s_i] + \delta_{ij} : s_i \in U, i \neq j\}
retourner \min_i(\Delta[\{s_0,\ldots,s_n\},s_i)+\delta_{i0}]
```

Algorithme TSP

```
Algorithme : TSP(S)
\Delta \leftarrow tableau à 2 dimensions, indexé par les sous-ensembles de
       S contenant \{s_0\}, et par les entiers de 0 à n-1
\Delta[\{s_0\}, 0] = 0
pour s = 2 \ a n faire
    pour tous les U \subset S de taille s tels que s_0 \in U faire
         \Delta[U, s_0] = +\infty
         pour tout s_i \in U, j \neq 0 faire
          \Delta[U, s_i] = \min\{\Delta[U \setminus \{s_i\}, s_i] + \delta_{ij} : s_i \in U, i \neq j\}
retourner \min_i(\Delta[\{s_0,\ldots,s_n\},s_i)+\delta_{i0}]
```

Lemme

L'algorithme TSP calcule ℓ_S en temps $O(n^22^n)$

Preuve de la complexité

```
Algorithme: TSP(S)
\Delta \leftarrow tableau à deux dimensions, indexé par les
  sous-ensembles de S contenant \{s_0\}, et par les entiers de 0
  a n - 1
\Delta[\{s_0\}, 0] = 0
pour s = 2 \grave{a} n faire
       pour tous les U \subset S de taille s tels que s_0 \in U faire
       \Delta[U, s_0] = +\infty
\text{pour tout } s_j \in U, j \neq 0 \text{ faire}
\Delta[U, s_j] = \min\{\Delta[U \setminus \{s_j\}, s_i] + \delta_{ij} : s_i \in U, i \neq j\}
retourner \min_i(\Delta[\{s_0,\ldots,s_n\},s_i]+\delta_{i0})
```

Preuve

- ► Calcul du min : O(s) car |U| = s
- ▶ Boucle sur s_i : $O(s^2)$
- ▶ Boucle sur $U: \binom{n-1}{s-1} O(s^2)$ car $\binom{n-1}{s-1}$ ss-ens.
- ▶ Boucle sur $s: \sum_{s=2}^{n} \binom{n-1}{s-1} O(s^2) \le O(n^2) \sum_{s} \binom{n}{s} = O(n^2 2^n)$

SITIPIC					
•	<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄
$\{s_0\}$	0				
$\{s_0,s_1\}$	$+\infty$				
$\{s_0,s_2\}$	$+\infty$				
$\{s_0,s_3\}$	$+\infty$				
$\{s_0, s_4\}$	$+\infty$				
$\{s_0,s_1,s_2\}$	$+\infty$				
$\{s_0,s_1,s_3\}$	$+\infty$				
$\{s_0,s_1,s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\min_{i}(\Delta[S, i] + \delta_{i0})$					

cilibic					
•	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$\overline{\{s_0\}}$	0				
$\{s_0,s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$				
$\{s_0, s_3\}$	$+\infty$				
$\{s_0, s_4\}$	$+\infty$				
$\{s_0,s_1,s_2\}$	$+\infty$				
$\{s_0,s_1,s_3\}$	$+\infty$				
$\{s_0,s_1,s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0,s_2,s_4\}$	$+\infty$				
$\{s_0,s_3,s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\min_{j}(\Delta[S,j]+\delta_{j0})$					

CITIPIC					
	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$		18		
$\{s_0,s_3\}$	$+\infty$				
$\{s_0,s_4\}$	$+\infty$				
$\{s_0,s_1,s_2\}$	$+\infty$				
$\{s_0,s_1,s_3\}$	$+\infty$				
$\{s_0, s_1, s_4\}$	$+\infty$				
$\{s_0,s_2,s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0,s_3,s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\min_{i}(\Delta[S,j]+\delta_{i0})$					

Citipic					
	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$\overline{\{s_0\}}$	0				
$\{s_0,s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				
$\{s_0,s_1,s_2\}$	$+\infty$				
$\{s_0,s_1,s_3\}$	$+\infty$				
$\{s_0,s_1,s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0,s_2,s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\min_{j}(\Delta[S,j]+\delta_{j0})$					

יוקוווס	┖					
		s ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
	{ <i>s</i> ₀ }	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0,s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0, s_4\}$	$+\infty$				11,7
	$\{s_0,s_1,s_2\}$	$+\infty$				
	$\{s_0,s_1,s_3\}$	$+\infty$				
	$\{s_0,s_1,s_4\}$	$+\infty$				
	$\{s_0,s_2,s_3\}$	$+\infty$				
	$\{s_0,s_2,s_4\}$	$+\infty$				
	$\{s_0,s_3,s_4\}$	$+\infty$				
	$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
	$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
	$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
	$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
{ <i>s</i>	$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\overline{min_j}$	$\overline{(\Delta[S,j]+\delta_{j0})}$					
		-				

CII	ipic					
	•	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0,s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0, s_4\}$	$+\infty$				11, 7
	$\{s_0,s_1,s_2\}$	$+\infty$	34, 7			
	$\{s_0, s_1, s_3\}$	$+\infty$				
	$\{s_0, s_1, s_4\}$	$+\infty$				
	$\{s_0, s_2, s_3\}$	$+\infty$				
	$\{s_0, s_2, s_4\}$	$+\infty$				
	$\{s_0, s_3, s_4\}$	$+\infty$				
	$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
	$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
	$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
	$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
	$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
1	$\min_j (\Delta[S,j] + \delta_{j0})$					

CHIPIC						
•		<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0,s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0, s_4\}$	$+\infty$				11, 7
	$\{s_0,s_1,s_2\}$	$+\infty$	34,7	37, 4		
	$\{s_0,s_1,s_3\}$	$+\infty$				
	$\{s_0,s_1,s_4\}$	$+\infty$				
	$\{s_0,s_2,s_3\}$	$+\infty$				
	$\{s_0,s_2,s_4\}$	$+\infty$				
	$\{s_0,s_3,s_4\}$	$+\infty$				
	$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
	$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
	$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
	$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
	$\{s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta$	$\Delta[S,j] + \delta_{j0}$					

	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄
$\{s_0\}$	0				<u> </u>
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11, 7
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28,9	
$\{s_0, s_1, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta[\mathcal{S},j] + \delta_{j0}) \mid$					

Citipic					
	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$\{s_0\}$	0				
$\{s_0,s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0,s_4\}$	$+\infty$				11, 7
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0,s_1,s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0,s_2,s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta[S,j] + \delta_{j0})$					

SITIPIC						
•		<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0, s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0, s_4\}$	$+\infty$				11, 7
	$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
	$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
	$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
	$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
	$\{s_0, s_2, s_4\}$	$+\infty$				
	$\{s_0,s_3,s_4\}$	$+\infty$				
$\{s_0$	$\{s_1, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0$	$\{s_1, s_2, s_4\}$	$+\infty$				
$\{s_0$	$\{s_1, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0$	$\{s_1, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1\}$	$\{s_1, s_2, s_3, s_4\}$	$+\infty$				
$\min_i(\Delta[$	$\overline{S,j} + \delta_{i0}$					

SITIPIC						
•		<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0,s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0, s_4\}$	$+\infty$				11, 7
	$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
	$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28,9	
	$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
	$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
	$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
	$\{s_0, s_3, s_4\}$	$+\infty$				
{ s ($\{s_1, s_1, s_2, s_3\}$	$+\infty$				
{ s ($\{s_1, s_2, s_4\}$	$+\infty$				
{ s ($\{s_1, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0\}$	$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0,s\}$	$\{1, s_2, s_3, s_4\}$	$+\infty$				
$\min_{i}(\Delta $	$\overline{[S,j]+\delta_{i0}}$					

Cilipic					
•	<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄
	0				
$\{s_0,s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$		18		
$\{s_0,s_3\}$	$+\infty$			17	
$\{s_0,s_4\}$	$+\infty$				11, 7
$\{s_0, s_1, s_2\}$	$+\infty$	34,7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\min_{i}(\Delta[S,j]+\delta_{i0})$					

	I				
	<i>s</i> ₀	s_1	s ₂	5 3	<i>S</i> ₄
$\{s_0\}$	0				
$\{s_0,s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$		18		
$\{s_0,s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11, 7
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\min_{i}(\Delta[S,j]+\delta_{i0})$					

	1 _	_	_	_	_
	<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄
$\{s_0$	} 0				
$\{s_0,s_1$	$\} \mid +\infty$	20,6			
$\{s_0, s_2\}$	$\} \mid +\infty$		18		
$\{s_0, s_3\}$	$\} \mid +\infty$			17	
$\{s_0, s_4\}$	$\} \mid +\infty$				11, 7
$\{s_0,s_1,s_2$	$\} \mid +\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$\} \mid +\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$\} \mid +\infty$	22, 1			31, 1
$\{s_0,s_2,s_3$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$\} \mid +\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$\} \mid +\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$\} \mid +\infty$				
$\min_{j}(\Delta[S,j] + \delta_{j0})$)				

on in pro						
•		<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0,s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0, s_4\}$	$+\infty$				11, 7
	$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
	$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
	$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
	$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
	$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28
	$\{s_0,s_3,s_4\}$	$+\infty$			17,0	22,4
{ 5	$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
{ 5	$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
{5	$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
{5	$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_0\}$	$\{s_1, s_2, s_3, s_4\}$	$+\infty$				
$\overline{\min_{i}(\Delta)}$	$\overline{[S,j]+\delta_{j0})}$					

CITIPIC						
•		<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄
{	s_0	0				
$\{s_0,$	$s_1\}$	$+\infty$	20,6			
$\{s_0,$	<i>s</i> ₂ }	$+\infty$		18		
$\{s_0,$	s ₃ }	$+\infty$			17	
$\{s_0,$	<i>s</i> ₄ }	$+\infty$				11, 7
$\{s_0, s_1,$	<i>s</i> ₂ }	$+\infty$	34, 7	37, 4		
$\{s_0, s_1,$	<i>s</i> ₃ }	$+\infty$	25, 2		28,9	
$\{s_0, s_1,$	<i>s</i> ₄ }	$+\infty$	22, 1			31, 1
$\{s_0, s_2,$	<i>s</i> ₃ }	$+\infty$		25, 5	26, 5	
$\{s_0, s_2,$	<i>s</i> ₄ }	$+\infty$		21, 7		28
$\{s_0, s_3,$	<i>s</i> ₄ }	$+\infty$			17,0	22,4
$\{s_0, s_1, s_2,$	<i>s</i> ₃ }	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2,$	<i>s</i> ₄ }	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3,$	<i>s</i> ₄ }	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3,$		$+\infty$		25,6	30, 2	31,9
$\{s_0, s_1, s_2, s_3,$	<i>s</i> ₄ }	$+\infty$				
$\min_{j}(\Delta[S,j]+a)$	δ_{j0}					

IIIPIC						
•		<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
{9	50}	0				
$\{s_0, s_0\}$	$\{s_1\}$	$+\infty$	20,6			
$\{s_0, s_0\}$	5 ₂ }	$+\infty$		18		
$\{s_0, s_0\}$	53}	$+\infty$			17	
$\{s_0, s_0\}$	54}	$+\infty$				11, 7
$\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	5 ₂ }	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	53}	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	54}	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3, s_4, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	53}	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_3, s_4, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	54}	$+\infty$		21, 7		28
$\{s_0, s_3, s_4, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	54}	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	53}	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_3\}$	54}	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	54}	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	54}	$+\infty$		25,6	30, 2	31,9
$\{s_0, s_1, s_2, s_3, s_4, s_4, s_5, s_6, s_6, s_6, s_6, s_6, s_6, s_6, s_6$	54}	$+\infty$	38, 5	38, 9	46, 7	45, 2
$\min_{i}(\Delta[S, j] + \delta)$	i0)					

eripic .						
		<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0,s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0,s_4\}$	$+\infty$				11, 7
$\{.$	s_0,s_1,s_2	$+\infty$	34, 7	37, 4		
$\{.$	s_0,s_1,s_3	$+\infty$	25, 2		28,9	
$\{.$	s_0, s_1, s_4	$+\infty$	22, 1			31, 1
$\{.$	s_0, s_2, s_3	$+\infty$		25, 5	26, 5	
{.	s_0, s_2, s_4	$+\infty$		21, 7		28
$\{.$	s_0, s_3, s_4	$+\infty$			17,0	22, 4
$\{s_0, \ldots \}$	$\{s_1,s_2,s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, \ldots \}$	s_1, s_2, s_4	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, \ldots \}$	s_1, s_3, s_4	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, \ldots \}$	s_2, s_3, s_4	$+\infty$		25, 6	30, 2	31,9
$\{s_0,s_1,\ldots$	s_2, s_3, s_4	$+\infty$	38, 5	38, 9	46, 7	45, 2
$\min_{j}(\Delta[S])$	$[j] + \delta_{j0}$		59,1	56,9	63,7	56,9

CHIPIC						
•		<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0,s_2\}$	$+\infty$		18		
	$\{s_0,s_3\}$	$+\infty$			17	
	$\{s_0,s_4\}$	$+\infty$				11, 7
	$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4		
	$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28,9	
	$\{s_0,s_1,s_4\}$	$+\infty$	22, 1			31, 1
	$\{s_0,s_2,s_3\}$	$+\infty$		25, 5	26, 5	
	$\{s_0,s_2,s_4\}$	$+\infty$		21, 7		28
	$\{s_0,s_3,s_4\}$	$+\infty$			17,0	22,4
{:	s_0, s_1, s_2, s_3	$+\infty$	34,8	37, 4	43,0	
{:	s_0, s_1, s_2, s_4	$+\infty$	38, 4	38, 9		45, 2
{:	s_0, s_1, s_3, s_4	$+\infty$	25, 3		30, 3	34, 2
{:	s_0, s_2, s_3, s_4	$+\infty$		25, 6	30, 2	31,9
$[s_0, s_0]$	s_1, s_2, s_3, s_4	$+\infty$	38, 5	38, 9	46, 7	45, 2
$\min_{j}(\Delta$	$(S,j] + \delta_{j0}$		59, 1	56, 9	63,7	56,9
		-				

Exemple :	reconstr	uction

s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
20,6			
0	18		
0		17	
0			11, 7
34,7	37, 4		
25, 2		28,9	
22, 1			31, 1
0	25, 5	26, 5	
0	21, 7		28
0		17,0	22,4
34,8	37, 4	43,0	
38,4	38, 9		45, 2
25,3		30, 3	34, 2
0	25, 6	30, 2	31,9
38,5	38, 9	46,7	45, 2
59, 1	56, 9	63,7	56,9
	20, 6 34, 7 25, 2 22, 1 34, 8 34, 8 38, 4 25, 3 38, 4 25, 3	20,6 18 20,6 18 25,2 25,2 22,1 25,5 21,7 34,8 37,4 38,4 38,9 25,3 25,6 38,5 38,9	20,6 18 17 20,6 34,7 37,4 25,2 28,9 22,1 25,5 26,5 21,7 21,7 20, 34,8 37,4 43,0 25,3 38,4 38,9 25,3 30,3 25,6 30,2 25,6 30,2 25,6 38,5 38,9 46,7

 s_0

 $\overset{ullet}{s_1}$

citipie i reconsti	actic				
•	<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄
	0				
$\{s_0,s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11, 7
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25, 6	30, 2	31,9
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2
$\min_j(\Delta[S,j]+\delta_{j0})$		59, 1	56, 9	63,7	56,9

citiple : reconstituetion								
•	<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄			
	0							
$\{s_0,s_1\}$	$+\infty$	20,6						
$\{s_0,s_2\}$	$+\infty$		18					
$\{s_0, s_3\}$	$+\infty$			17				
$\{s_0, s_4\}$	$+\infty$				11, 7			
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4					
$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28, 9				
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1			
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5				
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28			
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4			
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2			
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2			
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9			
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2			
$\min_{j}(\Delta[S,j]+\delta_{j0})$		59, 1	56, 9	63,7	56,9			

	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>S</i> ₃	<i>S</i> ₄
	0			-	
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0,s_2\}$	$+\infty$		18		
$\{s_0,s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11, 7
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28,9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0,s_2,s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25, 6	30, 2	31,9
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46,7	45, 2
$min_j(\Delta[\mathcal{S},j] + \delta_{j0})$		59, 1	56, 9	63, 7	56,9

imple . reconstituetion							
	<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄		
$\{s_0\}$	0						
$\{s_0,s_1\}$	$+\infty$	20,6					
$\{s_0,s_2\}$	$+\infty$		18				
$\{s_0,s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11, 7		
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28, 9			
$\{s_0,s_1,s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5			
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25, 6	30, 2	31,9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2		
$\min_{j}(\Delta[S,j]+\delta_{j0})$		59, 1	56, 9	63,7	56,9		

mpre : reconstituetion							
•	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄		
$\{s_0\}$	0						
$\{s_0,s_1\}$	$+\infty$	20,6					
$\{s_0, s_2\}$	$+\infty$		18				
$\{s_0, s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11, 7		
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9			
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26,5			
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25, 6	30, 2	31,9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2		
$min_j(\Delta[S,j] + \delta_{j0})$		59, 1	56, 9	63,7	56,9		

inpic : reconstituetion							
•	<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄		
$\{s_0\}$	0						
$\{s_0,s_1\}$	$+\infty$	20,6					
$\{s_0,s_2\}$	$+\infty$		18				
$\{s_0, s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11, 7		
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28,9			
$\{s_0,s_1,s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0,s_2,s_3\}$	$+\infty$		25, 5	26,5			
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25, 6	30, 2	31,9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46,7	45, 2		
$\min_j (\Delta[S,j] + \delta_{j0})$		59, 1	56, 9	63,7	56,9		

inple: reconstruction							
•	<u>s</u> 0	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄		
$\{s_0\}$	0						
$\{s_0,s_1\}$	$+\infty$	20,6					
$\{s_0, s_2\}$	$+\infty$		18				
$\{s_0, s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11, 7		
$\{s_0,s_1,s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0,s_1,s_3\}$	$+\infty$	25, 2		28, 9			
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0,s_2,s_3\}$	$+\infty$		25, 5	26,5			
$\{s_0, s_2, s_4\}$	$+\infty$		21, 7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30,3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25, 6	30, 2	31,9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2		
$\min_{j}(\Delta[S,j]+\delta_{j0})$		59, 1	56,9	63,7	56,9		

Algorithme de reconstruction

```
Algorithme : TSP(S)
\Delta \leftarrow tableau à deux dimensions, indexé par les
  sous-ensembles
       de S contenant \{s_0\}, et par les entiers de 0 à n-1
Prec ← tableau de mêmes dimensions
\Delta[\{s_0\}, 0] = 0
pour s = 2 \ a n faire
      pour tous les U \subset S de taille s tels que s_0 \in U faire
           \Delta[U, s_0] = +\infty
           pour tout s_i \in U, j \neq 0 faire
                 \Delta[U,s_i] = \min\{\Delta[U \setminus \{s_i\}, s_i] + \delta_{ii} : s_i \in
                   U, i \neq j Prec[U, s_i] \leftarrow indice du minimum
retourner \min_i(\Delta[\{s_0,\ldots,s_n\},s_i)+\delta_{i0},
  indice du min et Prec
```

Algorithme de reconstruction

retourner $\min_i(\Delta[\{s_0,\ldots,s_n\},s_j)+\delta_{j0}$,

indice du min et Prec

```
Algorithme : \mathsf{TSP}(S) \Delta \leftarrow \mathsf{tableau} à deux dimensions, indexé par les sous-ensembles \mathsf{de}\ S contenant \{s_0\}, et par les entiers de 0 à n-1 \mathsf{Prec}\leftarrow \mathsf{tableau} de mêmes dimensions \Delta[\{s_0\},0]=0 \mathsf{pour}\ s=2 à n faire  \begin{array}{c|c} \mathsf{pour}\ tous\ les\ U\subset S\ de\ taille\ s\ tels\ que\ s_0\in U\ \mathsf{faire} \\ &\Delta[U,s_0]=+\infty \\ &\mathsf{pour}\ tout\ s_j\in U,\ j\neq 0\ \mathsf{faire} \\ &\Delta[U,s_j]=\min\{\Delta[U\setminus\{s_j\},s_i]+\delta_{ij}:s_i\in U,\ i\neq j\}\ \mathsf{Prec}[U,s_j]\leftarrow \mathsf{indice}\ \mathsf{du}\ \mathsf{minimum} \\ \end{array}
```

```
Algorithme: \mathsf{TSP-REC}(S, \Delta, \mathsf{Prec}, j) i_0 \leftarrow 0 i_1 \leftarrow j U \leftarrow S \mathsf{pour} \ k = 2 \ \grave{a} \ n - 1 \ \mathsf{faire} \begin{bmatrix} i_k \leftarrow \mathsf{Prec}[U, i_{k-1}] \\ U \leftarrow S \setminus \{s_{i_{k-1}}\} \end{bmatrix} \mathsf{retourner} (i_0, i_1, \dots, i_{n-1}, i_0)
```

Algorithme de reconstruction

```
Algorithme : TSP(S)
\Delta \leftarrow \text{tableau à deux dimensions, indexé par les}
 sous-ensembles
       de S contenant \{s_0\}, et par les entiers de 0 à n-1
Prec ← tableau de mêmes dimensions
\Delta[\{s_0\}, 0] = 0
pour s = 2 \ a n faire
     pour tous les U \subset S de taille s tels que s_0 \in U faire
            \Delta[U, s_0] = +\infty
           pour tout s_i \in U, j \neq 0 faire
                 \Delta[U,s_i] = \min\{\Delta[U \setminus \{s_i\},s_i] + \delta_{ii} : s_i \in
                   U, i \neq j Prec[U, s_i] \leftarrow indice du minimum
retourner \min_i(\Delta[\{s_0,\ldots,s_n\},s_i)+\delta_{i0},
 indice du min et Prec
```

Lemme

L'algorithme TSP-REC construit un chemin de longueur minimale en temps O(n)

Théorème

Théorème

- Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!

Théorème

- Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!
- Fonctionne aussi hors d'un plan euclidien (carte, plans, graphes, . . .)

Théorème

- Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!
- Fonctionne aussi hors d'un plan euclidien (carte, plans, graphes, . . .)
- ► Très utile en pratique comme en théorie!

Théorème

- Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!
- Fonctionne aussi hors d'un plan euclidien (carte, plans, graphes, . . .)
- ► Très utile en pratique comme en théorie!
- Un exemple : http://map.vroom-project.org/