Introducción a Series Temporales

¿Qué es una serie temporal?

Wikipedia:

A time series is a **series of data points indexed** (or listed or graphed) **in time order**. Most **commonly**, a time series is a sequence taken at **successive equally spaced points in time**.

Box & Jenkins AirPassenger Data (in thousands)

Random variation

Toda colección de datos tomada en el tiempo tiene ruido

Métodos de reducción de ruido: "smoothing" (alisamiento)

- Alisamiento por medias
- Alisamiento exponencial

Random variation

Toda colección de datos tomada en el tiempo tiene ruido

Métodos de reducción de ruido: "smoothing" (alisamiento)

- Alisamiento por medias
- Alisamiento exponencial

¿Qué pasa si queremos predecir usando la media de valores pasados?

Predicción con la media

La predicción con media sólo es útil cuando no hay "trend"

Moving average

Calcular la media en una ventana de N valores.

Simple Moving Average(SMA):

$$egin{align} ar{p}_{ ext{SM}} &= rac{p_M + p_{M-1} + \dots + p_{M-(n-1)}}{n} \ &= rac{1}{n} \sum_{i=0}^{n-1} p_{M-i} \end{aligned}$$

Weighted Moving Average (WMA):

$$ext{WMA}_M = rac{np_M + (n-1)p_{M-1} + \cdots + 2p_{(M-n+2)} + p_{(M-n+1)}}{n + (n-1) + \cdots + 2 + 1}$$

Exponentially Weighted Moving Average (EWMA)

$$S_t = \left\{ egin{aligned} Y_1, & t=1 \ lpha \cdot Y_t + (1-lpha) \cdot S_{t-1}, & t>1 \end{aligned}
ight.$$

Mean squared error (Error cuadrático medio)

Ejemplo: ventas de PC de un proveedor

- Calculamos la media de ventas
 - a. "error" = resta entre estimación (media) y valor real.
 - b. "error squared": error al cuadrado.
 - c. "SSE": suma de errores al cuadrado.
 - d. "MSE": media de errores cuadráticos

Series estacionarias vs Series no estacionarias

Presión del nivel del mar

Cantidad de pasajeros aéreos

Series estacionarias vs Series no estacionarias

Presión del nivel del mar

Cantidad de pasajeros aéreos

from statsmodels.tsa.stattools import adfuller
print adfuller(df['#Passengers'],)

Test de Dickley-Fuller

Presión del nivel del mar

Estadístico = -20.85582597179523

P-value = 0.0

Cantidad de pasajeros aéreos

Estadístico = 0.81536887920604695 p-value = 0.99188024343764103

Goodness of fit

En datos de entrenamiento

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Suponer que tenemos f entrenado en {(x1, y1),(x2, y2),...,(xn, yn)}, con un MSE pequeño. Nos interesa:

f(x0) que sea parecido y0, para (x0, y0) una nueva muestra.

¡Queremos elegir el mejor modelo/método que me de el **menor MSE en los** datos nuevos!,

Tendencia lineal

$$Y \approx \beta_0 + \beta_1 X$$
.

• Queremos los β que **mejor** ajusten

Tendencia lineal

$$Y \approx \beta_0 + \beta_1 X$$
.

Queremos los β que mejor ajusten

Criterio de cuadrados mínimos

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Tendencia lineal

$$Y \approx \beta_0 + \beta_1 X$$
.

Queremos los β que mejor ajusten

Criterio de cuadrados mínimos

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Errores

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right], \quad SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad (3.8)$$

- Intervalos de confianza:
 - Si los errores son *normales*, existe aproximadamente un 95% de probabilidades de encontrar a β en el intervalo

$$\left[\hat{\beta}_1 - 2 \cdot \text{SE}(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \cdot \text{SE}(\hat{\beta}_1)\right]$$

Escenario sencillo

Sabemos la función lineal:

$$f(x) = 2 + 3x$$

Suponemos que medimos con ruido

$$f(x) = 2 + 3x + \varepsilon$$

Calculamos los β para 1000 iteraciones

¿Coeficientes confiables?

Hipótesis nula: no hay relación entre X e Y

Formalmente, queremos ver si β≠0

Calculamos el estadístico

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)},$$

Si no hay relación entre X e Y, entonces tendremos una distribución t.

import statsmodels as sm
print sm.regression.linear_model.OLS(pas,dates).fit().summary()

Tendencia lineal

$$Y \approx \beta_0 + \beta_1 X$$
.

- Queremos los β que mejor ajusten
- Criterio de cuadrados mínimos

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

		OLD MCBIC	.331011	itC3u.	103			
=========	=======	========	=====	=====	=======	=======		
Dep. Variable	:	#Passenge	ers	R-squ	ared:			0.955
Model:		0	LS	Adj.	R-squared:			0.955
Method:		Least Squar	es	F-sta	tistic:			3055.
Date:	We	d, 16 Aug 20	17	Prob	(F-statistic):	2.3	19e-98
Time:		23:31:	25	Log-L	ikelihood:		-8	304.19
No. Observati	ons:	1	.44	AIC:				1610.
Df Residuals:		1	.43	BIC:				1613.
Df Model:			1					
Covariance Ty	pe:	nonrobu	ist					
	coef	std err	=====	===== t	P> t	======= [95.0%	Conf.	Int.]
x1	3.6012	0.065	55.	273	0.000	3.47	72	3.730

13,493

0.001

-0.264

2.148

Durbin-Watson:

Prob(JB):

Cond. No.

Jarque-Bera (JB):

0.271

6.026

1.00

0.0492

Omnibus:

Kurtosis:

Skew:

Prob(Omnibus):

import statsmodels as sm
print sm.regression.linear_model.OLS(pas,dates).fit().summary()

Tendencia lineal

$$Y \approx \beta_0 + \beta_1 X$$
.

- Queremos los β que mejor ajusten
- Criterio de cuadrados mínimos

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

```
Dep. Variable:
                          #Passengers
                                        R-squared:
                                                                         0.955
Model:
                                        Adj. R-squared:
                                                                         0.955
Method:
                        Least Squares F-statistic:
                                                                         3055.
Date:
                    Wed, 16 Aug 2017 Prob (F-statistic):
                                                                      2.19e-98
Time:
                             23:31:25
                                        Log-Likelihood:
                                                                       -804.19
No. Observations:
                                  144
                                        AIC:
                                                                         1610.
Df Residuals:
                                        BIC:
                                  143
                                                                         1613.
Df Model:
Covariance Type:
                            nonrobust
                                                            [95.0% Conf. Int.]
```

55,273

0.001

-0.264

2.148

0.000

Jarque-Bera (JB):

Prob(JB):

Cond. No.

3,472

3.730

0.271

6.026

1.00

0.0492

3,6012

x1

Omnibus:

Kurtosis:

Skew:

Prob(Omnibus):

0.065

Regresión lineal

```
dates = df.index.to_julian_date()
dates = sm.add_constant(dates)
fit = sm.regression.linear_model.OLS(pas,dates).fit()
```


	0							
Dep. Variable:		#	#Passengers			R-squared:		
Model:			OLS			Adj. R-squared:		
Method:		Le	Least Squares			F-statistic:		
	Date:		Sun, 03 Sep 2017			Prob (F-statistic):		
Time:			22:37:30			Log-Likelihood:		
No. Observations:			144			AIC:	1514.	
Df Residuals:			142			BIC:	1520.	
	Df Model:			1				
Covar	riance Type:		nonrobust					
	coef		std err		P> t	[0.025	0.975	
const	-2.123e+05	7390	.250	-28.725	0.000	-2.27e+05	-1.98e+05	
x 1	0.0873	3 0	.003	28.763	0.000	0.081	0.093	
(Omnibus:	24.600	Di	urbin-Wa	itson:	0.538		
Prob(C	Omnibus):	0.000	Jaro	que-Bera	(JB):	33.832		
Skew:		0.939		Prob	o(JB):	4.50e-08		
	Kurtosis:	4.453		Con	d. No.	4.69e+09		

Evaluando la regresión lineal

Residual Standard Error: fit.mse_resid

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

De	ep. Variable	: #	#Passengers			R-squared:		
	Model:		OLS			Adj. R-squared:		
	Method:		Least Squares			F-statistic:		
	Date:		Sun, 03 Sep 2017		Prob (F-statistic):		4.29e-61	
	Time	:	22:37:30			Log-Likelihood:		
No. Ob	servations	:		144		AIC:	1514.	
D	f Residuals	:		142		BIC:	1520.	
	Df Model	:		1				
Covar	riance Type	:	nor	robust				
	coe	f sto	d err	t	P> t	[0.025	0.975	
const	-2.123e+0	5 7390	.250	-28.725	0.000	-2.27e+05	-1.98e+0	
x 1	0.087	3 0	.003	28.763	0.000	0.081	0.093	
	Omnibus:	24.600	Du	ırbin-Wa	tson:	0.538		
Prob(C	Omnibus):	0.000	Jaro	ue-Bera	(JB):	33.832		
	Skew:	0.939		Prob	o(JB):	4.50e-08		
	Kurtosis:	4.453		Cond	d. No.	4.69e+09		

Evaluando la regresión lineal

Residual Standard Error: fit.mse_resid

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

R-squared:
$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

 $TSS = \sum (y_i - \bar{y})^2$

Notar que
$$R^2 = r^2$$
 con $r = Cor(X, Y)$

De	p. Variable	: #	#Passengers		R-squared:		0.854	
	Model:		OLS			Adj. R-squared:		
	Method:		Least Squares			F-statistic:		
	Date:		Sun, 03 Sep 2017			Prob (F-statistic):		
	Time	i.	22:37:30			Log-Likelihood:		
No. Ob	servations	:		144		AIC:	1514.	
D	f Residuals	:		142		BIC:	1520.	
	Df Model	:		1				
Covar	iance Type	;	nor	nrobust				
	coe	f sto	d err	t	P> t	[0.025	0.975	
const	-2.123e+0	5 7390	.250	-28.725	0.000	-2.27e+05	-1.98e+05	
x 1	0.0873	3 0	.003	28.763	0.000	0.081	0.093	
(Omnibus:	24.600	Di	urbin-Wa	tson:	0.538		
Prob(C	Omnibus):	0.000	Jaro	que-Bera	(JB):	33.832		
	Skew:	0.939		Prob	o(JB):	4.50e-08		
	Kurtosis:	4.453		Cond	d. No.	4.69e+09		

Regresión lineal múltiple

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$

Queremos saber si alguno de los β es distinto de 0

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

Se calcula el estadístico $F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$

Mirando señal periódica

```
lineal = df.index.to_julian_date()*fit.params[1]+fit.params[0]
plt.plot(df.index,df['#Passengers']-lineal)
```


Mirando señal periódica: autocorrelación

Definición: la autocorrelación es la correlación de Pearson entre los valores de una serie temporal y la misma serie corrida por un lag

Mirando señal periódica: autocorrelación

```
Cómo hago para saber el periodo de repetición de los picos?
```

Transformada de Fourier

Espectro de frecuencias: toda señal s(t) puede ser descompuesta como

$$s(t) = \int_{\mathbb{R}} A(
u) e^{-2\pi i
u t} d\omega$$

O en caso de tener una señal f(t) integrable en el intervalo $[t_0 - T/2, t_0 + T/2]$

$$f(t) \sim rac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos igg(rac{2n\pi}{T} t igg) + b_n \sin igg(rac{2n\pi}{T} t igg)
ight]$$

EN CRIOLLO: una serie de datos puede ser escrita como sumas de sin y cos. Mirando los coeficientes de la serie de fourier podemos identificar patrones periódicos salientes.

Ejemplo: reconstrucción de una onda cuadrada

Mirando señal periódica

```
lineal = df.index.to_julian_date()*fit.params[1]+fit.params[0]
plt.plot(df.index,df['#Passengers']-lineal)
```


Fast Fourier Transform (welch)

```
import scipy

ac = [(df['#Passengers']-lineal).autocorr(lag=x) for x in range(1,100)]
f, Pxx_den = scipy.signal.welch(ac,fs=12)
plt.semilogy(f, Pxx_den)
```


TP de EEG

Electroencephalogram (EEG)

Frecuencias características en EEG

Resumen

- ¿Qué es una serie temporal?
- Suavizado por media, ventana móvil, etc
- Series estacionarias vs no estacionarias (test de Dickley-Fuller)
- Regresión lineal http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf
- Evaluación de la regresión lineal
- Analizando señal periódica
 - Autocorrelación
 - Transformada de fourier

Resumen de paquetes y funciones

Para manejo de series: pandas

import pandas as pd

Para regresión lineal y test adfuller: statsmodels

import statsmodels.api as sm

Sm.regression.OLS y sm.tsa.adfuller

Para autocorrelación: autocorr en pandas

Para FFT: método welch en scipy.signal

from scipy.signal import welch