Transfer Learning of Genome Wide Transcription Dynamics during Malaria Infection

Venelin Mitov ETH Zürich

October 2, 2013
Thesis presentation

Outline

Malaria Host Transcription Dynamics

Post-Infection Time Inference in Mice

Transfer Learning To Human Data

Discussion

A Transfer Learning Approach

Malaria Host Transcription Dynamics

Courtesy: National Institute of Allergy and

Infectious Diseases

Malaria Host Transcription Dynamics

Courtesy: National Institute of Allergy and

Infectious Diseases

Malaria Host Transcription Dynamics

Single-gene peaks

Multi-gene expression patterns

Such peaks need to be narrow and unique in time:

- Do such gene-markers exist for each day?
- Can narrow peaks be measured in all mice?

- more likely to be unique in time
- Possibly not narrow enough for 1-day precision
- Manually intractable

=> Supervised pattern recognition

Single-gene peaks

Such peaks need to be narrow and unique in time:

- Do such gene-markers exist for each day?
- Can narrow peaks be measured in all mice?

=> Supervised pattern recognition

Single-gene peaks

Such peaks need to be narrow and unique in time:

- Do such gene-markers exist for each day?
- Can narrow peaks be measured in all mice?

Multi-gene expression patterns

- more likely to be unique in time
- Possibly not narrow enough for 1-day precision
- Manually intractable

=> Supervised pattern recognition

Supervised Pattern Recognition

Linear Regression Formulation

Training data [X|y], $X \in \mathbb{R}^{n \times (1+d)}$ is the design matrix, $y \in \mathbb{T}^n$ is the response vector. Model the post-infection time as a real function of the gene-expression profile:

$$f: \mathbb{R}^d \to [0, 26] \subset \mathbb{R}$$

Linear regression:

$$y_i = \beta_0 + \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i, i = 1, ..., n, \epsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$

Analytical solution via Ordinary Least Squares (OLS):

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 = (X^T X)^{-1} X^T \mathbf{y}$$

Leave-One-Mouse-Out Cross Validation

Can we do better?

Classification Formulation

Consider the post-infection time as a discrete variable. Learn a score function, S, e.g. a probability, for each discrete value:

$$S_j: \mathbb{R}^d \to \mathbb{R}$$

One-against-all "predictor" function:

$$\mathcal{P}(\mathbf{x}) := \arg\max_{j \in \mathbb{T}} \mathcal{S}_j(\mathbf{x})$$

First Nearest Neighbor

$$\mathcal{P}_{\textit{kNN}}\big(\mathbf{x}; \ [X|\mathbf{y}], \delta\big) := \arg\max_{y \in \mathbb{T}} \sum_{i \in N_{\textit{k}}} \mathbb{1}[y = y_i]$$

Note: In the case of less than three training samples for every class, the only possible choise is k = 1 (First Nearest Neighbor)

Leave-One-Mouse-Out Cross Validation

Can we do better?

One-Against-All Binary Classification

Model the probabilities $\pi^{(j)}(\mathbf{x})$ of the transcriptome \mathbf{x} to belong to the day $j, j \in \mathbb{T}$. Training data for all days:[X|Y] where $X = [\mathbf{x}_1,...,\mathbf{x}_n]^T \in \mathbb{R}^{n \times (1+d)}$ and $Y \in \{-1,1\}^{n \times t}$ is a binary representation of the post-infection time for each sample:

X	1	2	3	 25	26
x_1	1	0	0	 0	0
x ₂	0	1	0	 0	0
x _n	0	0	0	 0	1

One-Against-All Linear Logistic Regression

Model the logit function, $logit(\pi) := log(\pi/(1-\pi))$, as a linear function of x:

$$logit(\pi^{(j)}(\mathbf{x})) \approx \mathbf{x}^T \boldsymbol{\beta}^{(j)}.$$

The negative log-likelihood is defined as:

$$-\ell^{(j)}(oldsymbol{eta}^{(j)};[X|\mathbf{y}_j]) = \sum \log\left(\mathbf{1} + \exp(-\mathbf{y}_j\odot Xoldsymbol{eta}^{(j)})
ight), \;\; j=1,...,t.$$

Maximum likelihood fit for $\beta^{(j)}$:

$$\boldsymbol{\beta}^{(j)*} := \arg \min_{\boldsymbol{\beta}^{(j)} \in \mathbb{R}^{(1+d)}} \left\{ -\ell^{(j)}(\boldsymbol{\beta}^{(j)}; [\boldsymbol{X}|\mathbf{y}_j]) \right\}$$

Regularization and Automatic Variable Selection

- ► L2-penalty (Ridge): $\frac{1}{2}\lambda_2||\beta^{(j)}||_2^2 = \frac{1}{2}\lambda_2\sum_{k=1}^d \beta_k^{(j)^2}$
- ▶ L1-penalty (Lasso): $\lambda_1 ||\beta^{(j)}||_1 = \lambda_1 \sum_{k=1}^d |\beta_k|$
- Elastic Net penalty (Lasso+Ridge): $\lambda_1 ||\beta^{(j)}||_1 + \frac{1}{2}\lambda_2 ||\beta^{(j)}||_2^2$

Maximum A-Posteriori fit for $\beta^{(j)}$:

$$\boldsymbol{\beta}^{(j)*} := \arg\min_{\boldsymbol{\beta}^{(j)} \in \mathbb{R}^{(1+d)}} \left\{ -\ell^{(j)}(\boldsymbol{\beta}^{(j)}; [\boldsymbol{X}|\mathbf{y}_j]) + \lambda_1 ||\boldsymbol{\beta}||_1 + \frac{1}{2}\lambda_2 ||\boldsymbol{\beta}^{(j)}||_2^2 \right\}$$

Single Day versus Time Window Prediction

Single day

Predicted probabilities

Single Day versus Time Window Prediction

Single day

Predicted probabilities

Time Window

Aggregated Time Window Predictor (ATWINP)

Aggregated Time Window Predictor (ATWINP) 0.1/15

day

Leave-One-Mouse-Out Cross Validation

Can we do better?

The Idea of Multi-Task Learning

Single Task Learning

```
Training •
Task 1
           Data 1
                     Training 
Task 2
                     Training 9
Taskt
```

The Idea of Multi-Task Learning

Single Task Learning

Multi-Task Learning

Fused Elastic Net Logistic Regression (FLR)

Let $B:=[\beta^{(1)},...,\beta^{(t)}]\in\mathbb{R}^{(1+d)\times t}$ be the coefficient matrix for all tasks and let $R\in\mathbb{R}^{t\times t}$ be a matrix defined in the following way:

$$R_{ij} := egin{cases} 1 & ext{if } j=i-1 ext{ or } (i,j)=(1,t) \ 0 & ext{otherwise} \end{cases}, \ i,j=1,...,t.$$

The multi-task fused elastic net negative log-likelihood is defined as:

$$-\ell^{MT}(B; [X|Y]) := \sum \log([1] + \exp(-Y \odot XB))$$

$$+ ||[\lambda_1] \odot B||_1 + \frac{1}{2} ||[\lambda_2] \odot B||_2^2$$

$$+ ||[\nu] \odot B(I - R)||_1$$

The Fused Elastic Neto Logistic Regression (FENLR) fit for B is obtained by solving

$$B^* = \arg\min_{B \in \mathbb{R}^{(1+d) \times t}} -\ell^{MT}(B; [X|Y]).$$

Multi-Task Learning for Ordered Classification

Leave-One-Mouse-Out Cross Validation

₽

Top 60 Genes, ATWINP EN

Top 60 Genes, ATWINP FEN

Courtesy: National Institute of Allergy and

Infectious Diseases

Courtesy: National Institute of Allergy and

Infectious Diseases

Homology Mapping Between Mouse and Human Genes

Homology Mapping Between Mouse and Human Genes

Homology Mapping Between Mouse and Human Genes

- Of 18744 mouse sequences:
 - ▶ 15587 have a homologous sequence found in human,
 - ▶ 15328 of which are available on the human BeadChip of which:
- ▶ 7683 mouse sequences point to a unique human sequence,
- ▶ 6832 mouse sequences point to more than one human sequence,
- ▶ 813 mouse sequences point to human sequences pointed by other mouse sequences

Post-Infection Time Prediction in Human Patients

Discussion

- ▶ Our model can predict the post-infection time of an unlabeled infected mouse-sample with expected deviation of 1.28 days from the true post-infection time.
- ▶ The gene-expression profile of an infected host-organism preserves information with respect to the beginning of the infection, and can be used to characterize the disease progression on a fine time-scale.
- ▶ We were able to identify a set of genes that are informative for the disease progression in mice and we could quantify the effect of each selected gene at all points in the time-course of the infection.
- ▶ At the current time knowledge transfer from mouse to human patients cannot provide a valuable estimation of the post-infection time in humans.

Acknowledgements

- prof. Manfred Claassen Advisor of the master thesis project
- Stefan, Eirini, Anita, Ana colleagues in the Claassen's Group
- David and Brenda Stanford Microbiology and Immunology Lab