

Computer Architecture

Lecture 1

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance

A Hierarchy of Languages

Assembly and Machine Language

- Machine language
 - Native to a processor: directly executed by hardware.
 - Instructions have only binary code: 1s and 0s.
- Assembly language
 - Readability of instructions is better than machine language
 - Every instruction an assembly translated to one instruction in machine language.
- Assemblers translate assembly to machine code
- Compilers translate high-level programs to machine code or to assembly code

High-level language program (in C)

Assembly language program (for MIPS)

Binary machine language program (for MIPS)

Architecture Classes

Assembly for C:=A+B:

Stack	Accumulator	Register (register-memory)	Register (load-store)
Push A	Load A	Load R1,A	Load R1,A
Push B	Add B	Add R1,B	Load R2,B
Add	Store C	Store C,R1	Add R3,R1,R2
Pop C			Store C,R3

Introduction **Instruction Format Processor Registers**

Stored Program Organization

Stored Program Organization

Basic Computer

Program

A program is a set of instructions that specify the operations, operands, and the sequence by which processing
has to occur.

• (Machine) Instruction

- A group of bits that tell the computer to *perform a specific operation* (a sequence of micro-operation).
- Instruction codes together with data are stored in memory.
- The CPU reads the next instruction from memory and placed in an Instruction Register (IR).
- The control unit is responsible of translating the instruction into the sequence of microoperations necessary to implement it.

Instruction Formats

• The most common fields in instruction formats:

• Operation field

The operation code field of an instruction is a group of bits that define various processor operations, such as add, subtract, complement, and shift.

• Address field

- > Operations specified by computer instructions are executed on some data stored in memory or processor registers.
- > Operands residing in memory are specified by their memory address.
- > Operands residing in processor registers are specified with a register address.

Addressing Modes

> Specifies a rule for interpreting or modifying the address field of the instruction (before the operand is actually referenced)

Addressing Modes

Direct Address Mode

➤ Instruction specifies the memory address which can be used directly to access the memory

• Indirect Addressing Mode

The address field of an instruction specifies the address of a memory location that contains the address of the operand

Instruction Format

<u>15</u>	14	12	11		0
I	Opc	ode		Address	

ADDRESSING MODES EXAMPLE

What is the Ac content and EA after executing the following instruction with two addressing modes?

Addressing Mode	Effective Address	Content of AC		
Direct address	500	/* AC ← 200 + M [500]	*/	1000
Indirect address	800	/* AC ← 200 + M[M[500]]	*/	500

Addres	s Memory
200	OPcode Mode
201	Address = 500
202	Next instruction
399	450
400	700
500	800
600	900
702	325
800	300

PC = 202

AC = 200

ADD operation means adding AC value with the content of memory then saves the result in AC

Introduction **Instruction Format Processor Registers**

Common Bus System

 The connection between register is done through bus which saves the circuitry.

COMMON BUS SYSTEM

PROCESSOR REGISTERS

- A processor has several registers each is used for different task such as holding instructions, addresses.
- The *Program Counter* (PC) stores the memory address of the next instruction to be executed.
 - the PC is 12 bits long Since the memory has 4096 words.
- The Address Register (AR) is used to keep track of what locations in memory it is addressing: a direct or indirect addressing.
 - The AR is a 12 bit register in the Basic Computer
- The *Data Register* (DR) holds the operand read from memory. The processor then uses this value as data for its operation.
- <u>The Accumulator (AC)</u> is a single *general-purpose register* in basic computer.

PROCESSOR REGISTERS

- Sometimes a processor needs a scratch register to store intermediate results or other temporary data.

 This register is known as the Temporary Register (TR).
- The Basic Computer uses a very simple model of input/output (I/O) operations
 - Input devices are considered to send 8 bits of character data to the processor
 - The processor can send 8 bits of character data to output devices
- The Input Register (INPR) holds an 8-bit character received from an input device
- The Output Register (OUTR) holds an 8-bit character to be send to an output device

PROCESSOR REGISTERS

Registers in the Basic Computer

List of Registers

_			<u>J</u>	
ſ	DR	16	Data Register	Holds memory operand
١	AR	12	Address Register	Holds address for memory
	AC	16	Accumulator	Processor register
١	IR	16	Instruction Register	Holds instruction code
١	PC	12	Program Counter	Holds address of instruction
ı	TR	16	Temporary Register	Holds temporary data
١	INPR	8	Input Register	Holds input character
	OUTR	8	Output Register	Holds output character

Thank you