$1. \quad \int \sqrt{x} \sin x^{\frac{3}{2}} dx$

- 2. If $\int_0^6 f(x) dx = 12$, what is the value of $\int_0^6 f(6-x) dx$?
 - (A) 12
- (B) 6
- (C) 0
- (D) -6
- 3. If the substitution $u = 1 + \sqrt{x}$ is made, $\int \frac{(1 + \sqrt{x})^{3/2}}{\sqrt{x}} dx =$
 - (A) $\frac{1}{2} \int u^{3/2} du$ (B) $2 \int u^{3/2} du$ (C) $\frac{1}{2} \int \sqrt{u} du$ (D) $2 \int \sqrt{u} du$

- 4. If the substitution $u = \ln x$ is made, $\int_{e}^{e^2} \frac{1 (\ln x)^2}{x} dx =$
 - (A) $\int_{e}^{e^2} \left(\frac{1}{u} u^2\right) du$
 - (B) $\int_{e}^{e^2} (\frac{1}{u} u) du$
 - (C) $\int_{1}^{2} (1-u^2) du$
 - (D) $\int_{1}^{2} (1-u) du$
- 5. If f is continuous and $\int_{1}^{8} f(x) dx = 15$, find the value of $\int_{1}^{2} x^{2} f(x^{3}) dx$.

$$1. \quad \int_1^3 \frac{x+3}{x^2+6x} dx$$

$$2. \int_0^1 \frac{x}{e^{x^2}} dx$$

3. Which of the following is the antiderivative of $f(x) = \tan x$?

(A)
$$\sec x + \tan x + C$$

(B)
$$\csc x + \cot x + C$$

(C)
$$\ln \left| \csc x \right| + C$$

(D)
$$-\ln|\cos x| + C$$

4. What is the area of the region in the first quadrant bounded by the curve $y = \frac{\cos x}{2 + \sin x}$ and the vertical line $x = \frac{\pi}{2}$?

5.
$$\int_0^2 \frac{x^2}{x+1} dx$$

$$6. \quad \int_{1}^{e} \frac{\cos(\ln x)}{x} \, dx$$

$$1. \quad \int_0^{\pi} 4 \sin^4 \theta \ d\theta =$$

$$2. \quad \int_0^{\frac{\pi}{4}} 4 \tan^2 \theta \ d\theta =$$

3.
$$\int \sec^4 x \, dx =$$

4. Find the area bounded by the curves $y = \sin x$ and $y = \sin^3 x$ between x = 0 and $x = \frac{\pi}{2}$

1. If the substitution $x = 2 \tan \theta$ is made in $\int \frac{x^3}{\sqrt{x^2 + 4}} dx$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, the resulting integral is

(A)
$$4\int \tan^2\theta \sec\theta \ d\theta$$

(B)
$$4\int \tan^2\theta \sec^2\theta \ d\theta$$

(C)
$$8 \int \tan^3 \theta \ d\theta$$

(D)
$$8\int \tan^3\theta \sec\theta \, d\theta$$

$$2. \quad \int_{\sqrt{2}}^{2} \frac{1}{x\sqrt{x^2 - 1}} \ dx =$$

3. If
$$0 < \theta < \frac{\pi}{2}$$
, then $\int \frac{\sqrt{x^2 - 1}}{x^4} dx =$ _____

$$1. \int \frac{dx}{x^2 + x - 6} =$$

2.
$$\int_{4}^{7} \frac{5}{(x-2)(2x+1)} dx =$$

3.
$$\int \frac{x}{x^2 + 5x + 6} dx =$$

4.
$$\int \frac{2e^{2x}}{(e^x - 1)(e^x + 1)} dx =$$

5. Let
$$f$$
 be the function given by $f(\theta) = \int \frac{\sin \theta}{\cos \theta (\cos \theta - 1)} d\theta$.

- (a) Substitute $x = \cos \theta$ and write an integral expression for f in terms of x.
- (b) Use the method of partial fractions to find $f(\theta)$.

$$1. \quad \int x \sin(2x) \ dx =$$

$$2. \quad \int_0^2 x e^x \ dx =$$

3. If
$$\int x^2 \cos(3x) dx = f(x) - \frac{2}{3} \int x \sin(3x) dx$$
, then $f(x) =$

$$4. \quad \int x^2 \ln x \ dx =$$

5.
$$\int_0^{\pi/4} x \sec^2 x \, dx =$$

6.
$$\int \sec^3 x \, dx =$$

- $7. \quad \int f(x)\cos(nx) \ dx =$
 - (A) $\frac{1}{n}f(x)\sin(nx) \frac{1}{n}\int f'(x)\sin(nx) dx$
 - (B) $\frac{1}{n} f(x) \cos(nx) \frac{1}{n} \int f'(x) \cos(nx) dx$
 - (C) $n f(x) \cos(nx) + \frac{1}{n} \int f'(x) \sin(nx) dx$
 - (D) $n f(x) \cos(nx) \frac{1}{n} \int f'(x) \cos(nx) dx$
- 8. If $\int \arccos x \, dx = x \arccos x + \int f(x) \, dx$, then f(x) =
- (A) $-x\sqrt{1-x^2}$ (B) $x\sqrt{1-x^2}$ (C) $-\frac{1}{\sqrt{1-x^2}}$ (D) $\frac{x}{\sqrt{1-x^2}}$

x	f(x)	g(x)	f'(x)	g'(x)
1	-2	3	4	-1
3	2	-1	-3	5

9. The table above gives values of f, f', g, and g' for selected values of x.

If
$$\int_{1}^{3} f(x)g'(x) dx = 8$$
, then $\int_{1}^{3} f'(x)g(x) dx =$

- (A) -4
- (B) -1
- (C) 5
- (D) 8
- 10. Find the area of the region bounded by $y = \arcsin x$, y = 0, and x = 1. Show the work that leads to your answer.

1.
$$\int_{2}^{\infty} \frac{1}{\sqrt{x-1}} dx =$$

2.
$$\int_0^\infty \frac{1}{(x+3)(x+4)} dx =$$

$$3. \quad \int_0^4 \frac{dx}{(x-1)^{2/3}} =$$

- (A) $3\sqrt[3]{3}$ (B) $3(1-\sqrt[3]{3})$ (C) $3(1+\sqrt[3]{3})$
- (D) divergent

4.
$$\int_0^\infty x^2 e^{-x^3} =$$

- (A) $\frac{1}{3}$ (B) $\frac{1}{2}$
- (C) 1
- (D) divergent

$$5. \quad \int_0^1 \frac{\ln x}{\sqrt{x}} \, dx =$$

- (A) -6
- (B) -4
- (C) -2
- (D) divergent

6. If
$$\int_0^1 \frac{ke^{-\sqrt{x}}}{\sqrt{x}} dx = 1$$
, what is the value of k ?

- (A) $-\frac{1}{2}$ (B) $\frac{e}{2}$ (C) $\frac{1}{2}$
- (D) There is no such value of k

7. Let f be the function given by
$$f(x) = \frac{x}{\sqrt{x^2 + 1}} dx$$
.

- (a) Show that the improper integral $\int_{1}^{\infty} f(x) dx$ is divergent.
- (b) Find the average value of f on the interval $[1, \infty)$.