HSC Worked Solutions projectmaths.com.au

06	7c	(i)	Write down the discriminant of $2x^2 + (k-2)x + 8$, where k is a constant.	1
		(ii)	Hence, or otherwise, find the values of k for which the parabola	2
			$v = 2x^2 + kx + 9$ does not intersect the line $v = 2x + 1$.	

i.
$$\Delta = b^2 - 4ac$$

 $= (k-2)^2 - 4(2)(8)$
 $= k^2 - 4k + 4 - 64$
 $= k^2 - 4k - 60$

ii. If no intersection, then $\Delta < 0$. $k^2 - 4k - 60 < 0$ (k - 10)(k + 6) < 0

$$-6 < k < 10$$

Board of Studies: Notes from the Marking Centre

- This provided the easiest mark of the question, with candidates required simply to write down the discriminant from the given quadratic equation.
- (ii) This was perhaps the most challenging part of the question, since it was left to candidates to see a connection between a value of an unknown in the coefficient of a term of the quadratic equation and the intersection of a parabola with a given line. Responses seldom linked this with the discriminant.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies