Clase 1 de Mecánica Estadística

Nombre del autor

22 de abril de 2025

Índice

1.	\mathbf{Rec}	uento de probabilidad y estadística
	1.1.	Espacio muestral y eventos
	1.2.	Probabilidad
	1.3.	Ejemplo: Dados
	1.4.	Variable aleatoria
	1.5.	Distribuciones importantes
	1.6.	Estadística
	1.7.	Ejemplo de estadística

1. Recuento de probabilidad y estadística

1.1. Espacio muestral y eventos

El espacio muestral Ω es el conjunto de todos los posibles resultados de un experimento aleatorio. Un evento es un subconjunto de Ω .

1.2. Probabilidad

Una función de probabilidad $\mathbb P$ asigna a cada evento $A\subseteq \Omega$ un número entre 0 y 1 tal que:

- $\blacksquare \ \mathbb{P}(\Omega) = 1$
- Si A_1, A_2, \ldots son disjuntos, entonces $\mathbb{P}(\bigcup_i A_i) = \sum_i \mathbb{P}(A_i)$

1.3. Ejemplo: Dados

Al lanzar un dado justo de seis caras, $\Omega = \{1, 2, 3, 4, 5, 6\}$ y cada evento tiene probabilidad $\frac{1}{6}$.

1.4. Variable aleatoria

Una variable aleatoria es una función $X:\Omega\to\mathbb{R}$. Por ejemplo, si X es el valor del dado, entonces $\mathbb{E}[X]=\sum_{i=1}^6 i\cdot \frac{1}{6}=3,5$

1.5. Distribuciones importantes

- Distribución binomial - Distribución de Poisson - Distribución normal

1.6. Estadística

Estudia cómo obtener conclusiones sobre una población a partir de una muestra.

1.7. Ejemplo de estadística

Si lanzamos 100 veces un dado, el promedio observado debería ser cercano a 3.5, pero hay fluctuaciones estadísticas.