What is claimed is:

1. A compound of the formula:

(I)

5

wherein:

 R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_1 – C_4 heteroalkyl, COR^{11} , CO_2R^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

15 R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

5

R¹³ and R¹⁴ taken together form a bond;

R¹⁴ through R²⁰ each independently is selected from the group of hydrogen, F, Cl, Br, OR^{11} , C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

 R^{14} and R^{15} taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene,
mono-substituted methylidene, di-substituted methylidene, ethylidene, carbonyl and thiocarbonyl; or

 R^{14} and R^{16} taken together form a bond or "–O–" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

- or a pharmaceutically acceptable salt or prodrug thereof.
 - 2. A compound according to claim 1, wherein R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, COR^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$.
 - 3. A compound according to claim 1, wherein R^2 and R^3 each independently is selected from the group of C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
- 10 4. A compound according to claim 1, wherein

R⁵ and R⁷ taken together form a bond;

 R^4 and R^6 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

- 5. A compound according to claim 1, wherein
- R⁶ and R⁷ taken together are selected from the group of methylidene, and carbonyl;

 R^4 and R^5 each independently is selected from the group of hydrogen, F, and C_1 – C_4 alkyl.

- 6. A compound according to claim 1, wherein R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁–C₆ alkyl, C₁–C₆ heteroalkyl, and C₁–C₆ haloalkyl.
- 7. A compound according to claim 6, wherein R^8 through R^{10} each independently is selected from the group of hydrogen, F, and OR^{11} .
- 8. A compound according to claim 1, wherein R^{11} through R^{12} each independently is selected from the group of hydrogen, and C_1 – C_4 alkyl.
- 10 9. A compound according to claim 1, wherein

5

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;

 R^{15} , R^{17} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

10. A compound according to claim 1, wherein

15 R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, mono-substituted methylidene, ethylidene and di-substituted methylidene;

 R^{14} , R^{15} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

11. A compound according to claim 1, wherein

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

 R^{14} , R^{15} , R^{17} , R^{20} each independently is selected from the group of hydrogen, 5 F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

- 12. A compound according to claim 1, wherein said compound is selected from the group of:
- (\pm) -(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **24**);
- 10 (\pm)-(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **25**);
 - (+)-(5*l*,1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **27**);
- (-)-(5*l*, *l'l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **28**);
 - (±)-(5*l*, *l* '*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **29**);

- (\pm)-(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 30);
- (+)-(5*l*,1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **32**);
- 5 (-)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **33**);
 - (±)-(5*l*, *l* '*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **34**);
- (±)-(5*l*, *l* '*u*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-10 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **35**);
 - (+)-(5*l*, *l* '*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 37);
 - (-)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **38**);
- (\pm)-(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **39**);
 - (±)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 41);

- (\pm)-(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5H-chromeno[3,4-f]quinoline (compound 42);
- (\pm)-(5l,l'l)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 44);
- 5 (\pm) -(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 45);
 - (±)-(5*l*, *l* '*l*)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 47);
- (±)-(5*l*,1'*u*)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-10 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 48);
 - (\pm) -(5l, l'l)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **50**);
 - (\pm) -(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 51);
- (±)-5-(3-methyl-3-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **52**);
 - (±)-5-(2-cyclopenta-1,3-dienyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 53);

- (±)-(5*l*, *l'l*)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 55);
- (\pm) -(5l, l'u)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 56);
- 5 (\pm) -(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 58);
 - (\pm) -(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 59);
- (±)-(5*l*, *l* '*l*)-5-(3-ethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-10 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **61**);
 - (±)-(5*l*, *l* '*l*)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **62**);
 - (\pm)-(5l, l'l)-5-(3-methyl-3-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 63);
- (\pm)-(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 64);
 - (\pm)-(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **65**);

- (±)-(5l,1'l)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 67);
- (±)-(5l,1'u)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **68**);
- 5 (±)-5-(1-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **69**);
 - (±)-(5*l*,1'*l*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 71);
- (+)-(5*l*, 1'*l*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-10 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 73);
 - (-)-(5*l*, *l'l*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 74);
 - (\pm) -(5l, l'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 75);
- (\pm)-(5l,1'u)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 76);
 - (±)-(5*l*,1'*l*)-5-(2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylidene-5*H*-chromeno[3,4-*f*]quinoline (compound 77);

- (\pm) -(5l, l'l)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 79);
- (\pm) -(5l, l'u)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 80);
- 5 (\pm) -(5l, l'l)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 81);
 - (\pm) -(5l, 1'u)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 82);
- (\pm)-(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-1,2,2,4-10 tetramethyl-5H-chromeno[3,4-f]quinoline (compound 83);
 - (±)-5-(2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **84**);
 - (\pm) -(5l, l'l)-5-(2,3-dimethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 85);
- (±)-5-(3-methylidene-cyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 87);
 - (\pm) -(5l,l'u)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 88);

- (±)-(5l,1'l)- 5-(2-cycloheptenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 89);
- (±)-(5l,1'l)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound **91**);
- 5 (\pm) -(5l, l'u)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 92);
 - (\pm) -(5l,1'l)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 94);
- (±)-(5l, l'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylene-5*H*-chromeno[3,4-f]quinolin-3-ol (Compound **95**);
 - (\pm) -(5l, l'l)- 5-(2,3-epoxy-2,3-dimethylcyclopentyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound **96**);
 - (\pm)-(5l, l'u)- 5-(2, 3-epoxy-3-methylcyclohexyl)-7, 9-difluoro-1, 2-dihydro-2, 2, 4-trimethyl-5H-chromeno[3, 4-f]quinoline (Compound 97); and
- 15 (\pm) -(5l, l'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-5H-chromeno[3,4-f]quinolin-4-one (Compound 98).
 - 13. A compound according to claim 1, wherein said compound is selected from the group of:

- (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **24**);
- (-)-(5*l*, *l* '*l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **28**);
- 5 (-)-(5*l*,1 *l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **33**);
 - (±)-(5*l*, *l* '*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 34);
- (±)-(5*l*,1'*u*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-10 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **35**);
 - (-)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **38**);
 - (±)-(5*l*, *l* '*l*)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **50**);
- 15 (\pm) -(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 51);
 - (±)-(5*l*, *l'l*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 71);

(-)-(5l,1'l)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 74); and

(±)-(5l,1'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-5*H*-chromeno[3,4-f]quinolin-4-one (Compound **98**).

5 · 14. A compound of the formula:

(II)

wherein:

15

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^6 is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^8 and R^{10} each independently is selected from the group consisting of hydrogen, F, Cl, Br, CN, OR^{11} , $NR^{11}R^{12}$, SR^{11} , COR^{11} , C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, C_1 – C_4 haloalkyl, allyl, and C_2 – C_4 alkenyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

 R^{14} , R^{15} , R^{18} , R^{22} , R^{23} , R^{24} each independently is selected from the group of hydrogen, F, Cl, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl;

5 R²², R²³, R²⁴ together consists of not more than 3 carbon atoms;

 R^{16} taken together with one of R^{14} , R^{18} , and R^{22} form a bond or "-O-" bridge;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

10 15. A compound according to claim 14, wherein

R² and R³ each independently is selected from the group of C₁-C₄ alkyl;

R⁶ is selected from the group of F, Cl, Br, C₁-C₄ alkyl, and C₁-C₄ haloalkyl;

 R^8 and R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl;

 R^{14} , R^{15} , R^{18} , R^{22} , R^{23} , R^{24} each independently is selected from the group of hydrogen, F, C₁–C₄ alkyl;

 R^{16} taken together with one of R^{14} , R^{18} , and R^{22} form a bond or "-O-" bridge;

5 n is 0, 1, or 2.

16. A compound according to claim 15, wherein

R² and R³ each independently is CH₃;

R⁶ is selected from the group of F, Cl, Br, CH₃, CH₂CH₃, and CF₃;

R⁸ is hydrogen or F;

R¹⁰ is selected from the group of hydrogen, F, Cl, Br, CN, OH, OCH₃, CH₃, CH₂CH₃, and CF₃;

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;

R¹⁵, R¹⁸, R²², R²³, and R²⁴ each independently is hydrogen or CH₃.

- 17. A pharmaceutical composition comprising a pharmaceutically
- 15 acceptable carrier and a compound of formula:

(I)

wherein:

R¹ is selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_1 – C_4 heteroalkyl, COR^{11} , CO_2R^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

 ${\ensuremath{R^2}}$ and ${\ensuremath{R^3}}$ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl; R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 - C_4 alkyl, C_1 - C_4 heteroalkyl, and C_1 - C_4 haloalkyl;

R¹³ is hydrogen; or

10

R¹³ and R¹⁴ taken together form a bond;

 R^{14} through R^{20} each independently is selected from the group of hydrogen, F, Cl, Br, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

 R^{16} and R^{17} taken together are selected from the group of methylidene, mono-substituted methylidene, di-substituted methylidene, ethylidene, carbonyl and thiocarbonyl; or

15 R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

- 18. A pharmaceutical composition according to claim 17, wherein R¹ is selected from the group of hydrogen, C₁-C₄ alkyl, COR¹¹, SO₂R¹¹, and CONR¹¹R¹².
 - 19. A pharmaceutical composition according to claim 17, wherein R^2 and R^3 each independently is selected from the group of C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
 - 20. A pharmaceutical composition according to claim 17, wherein
- 10 R⁵ and R⁷ taken together form a bond;

 R^4 and R^6 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

21. A pharmaceutical composition according to claim 17, wherein

 R^6 and R^7 taken together are selected from the group of methylidene, and carbonyl;

 R^4 and R^5 each independently is selected from the group of hydrogen, F, and C_1 – C_4 alkyl.

- 22. A pharmaceutical composition according to claim 17, wherein R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁–C₆ alkyl, C₁–C₆ heteroalkyl, and C₁–C₆ haloalkyl.
- 23. A pharmaceutical composition according to claim 22, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, and OR¹¹.

5

- 24. A pharmaceutical composition according to claim 17, wherein R^{11} through R^{12} each independently is selected from the group of hydrogen, and C_1 – C_4 alkyl.
- 25. A pharmaceutical composition according to claim 17, wherein
 R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;
 - R^{15} , R^{17} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
- A pharmaceutical composition according to claim 17, wherein
 R¹⁶ and R¹⁷ taken together are selected from the group of methylidene,
 mono-substituted methylidene, ethylidene, and di-substituted methylidene;
 - $R^{14},\,R^{15},\,R^{18},\,R^{19},\,R^{20}\,\text{each independently is selected from the group of}$ hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
 - 27. A pharmaceutical composition according to claim 17, wherein

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

 R^{14} , R^{15} , R^{17} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

- 5 28. A method of treating an individual having a condition mediated by a progesterone receptor comprising administering to said individual a pharmaceutically effective amount of a compound according to any one of claims 1, 12 or 14.
- A method of treating an individual having a condition mediated by a
 progesterone receptor comprising administering to said individual a
 pharmaceutically effective amount of a compound represented by formula (I):

(I)

15 wherein:

 R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_1 – C_4 heteroalkyl, COR^{11} , CO_2R^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

5 R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

10 R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond;

 R^{14} through R^{20} each independently is selected from the group of hydrogen, F, Cl, Br, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

 R^{14} and R^{15} taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, mono-substituted methylidene, di-substituted methylidene, ethylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge; or

 R^{16} and R^{18} taken together form a bond when n is 1; or

 R^{16} and R^{19} taken together form a bond when n is 0;

R²¹ is hydrogen; or

 R^{21} and R^{20} taken together form a bond; .

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

15 30. A method of treating an individual having a condition mediated by a progesterone receptor comprising administering to said individual a pharmaceutically effective amount of a compound represented by formula (II):

(II)

wherein:

10

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^6 is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^8 and R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , $NR^{11}R^{12}$, SR^{11} , COR^{11} , C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, C_1 – C_4 haloalkyl, allyl, and C_2 – C_4 alkenyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

 R^{14} , R^{15} , R^{18} , R^{22} , R^{23} , R^{24} each independently is selected from the group of hydrogen, F, Cl, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl;

15 R²², R²³, R²⁴ together consists of not more than 3 carbon atoms;

 R^{16} taken together with one of R^{14} , R^{18} , and R^{22} form a bond or "-O-" bridge;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

- 5 31. A method according to claim 28, wherein said condition is selected from the group of dysfunctional uterine bleeding, dysmenorrhea, endometriosis, leiomyomas (uterine fibroids), hot flushes, mood disorders, meningiomas, hormonedependent cancers and female osteoporosis.
- 32. A method according to claim 28, wherein said condition is alleviated with female hormone replacement therapy.
 - 33. A method of modulating fertility in an individual comprising administering to said individual a pharmaceutically effective amount of a compound according to any one of claims 1, 12 or 14.
- 34. A method of providing contraception to an individual comprising
 15 administering to said individual a pharmaceutically effective amount of a compound according to any one of claims 1, 12 or 14.
 - 35. A method of modulating a progesterone receptor in an individual comprising administering to said individual a compound according to any one of claims 1, 12, or 14 in an amount effective to modulate a progesterone receptor.

36. A method according to claim 35, wherein said modulation is activation.

5

- 37. A method according to claim 36, wherein said compound provides at least 50% maximal activation of the progesterone receptor at a concentration of less than 100 nM.
- 38. A method according to claim 36, wherein said compound provides at least 50% maximal activation of the progesterone receptor at a concentration of less than 50 nM.
- 39. A method according to claim 36, wherein said compound provides at
 least 50% maximal activation of the progesterone receptor at a concentration of less than 20 nM.
 - 40. A method according to claim 36, wherein said compound provides at least 50% maximal activation of the progesterone receptor at a concentration of less than 10 nM.
- 15 41. A method of treating cancer, comprising administering to a patient in need thereof an effective amount of a compound according to any one of claims 1, 12 or 14.
 - 42. A method according to claim 41, wherein said cancer is selected from the group of ovarian cancer, breast cancer, endometrium cancer and prostate cancer.

43. A method of determining the presence of a progesterone receptor (PR) in a cell or cell extract comprising (a) labeling a compound according to any one of claims 1, 12 or 14; (b) contacting the cell or cell extract with said labeled compound; and (c) testing the contracted cell or cell extract to determine the presence of progesterone receptor.

5