web-страница **djvu**-документ

Кинематика вращательного движения

В. И. Чивилев, *Квант*¹, 1986, № 11, 17, 18.

Медленно проехав перекресток, троллейбус стал удаляться по улице, плавно увеличивая свою скорость...

Движение колеса троллейбуса — это лишь один из многих примеров сложного механического движения в окружающем нас мире. Оказывается, любое сложное движение можно представить как сумму двух простых движений — поступательного и вращательного. Понимать это следует так: всегда можно подобрать такую поступательно движущуюся систему отсчета, относительно которой движение выглядит только как вращение вокруг некоторой неподвижной оси.

Какую же в нашем случае надо выбрать систему отсчета, чтобы в ней колесо троллейбуса совершало чистое вращение? Какими физическими величинами описывается это вращение, как эти величины связаны друг с другом и как зависят от времени? Такие вопросы могут возникнуть не только на пешеходном переходе, но и на уроке, экзамене, при решении конкретной задачи.

На первый вопрос ответить легко, догадавшись, что поступательно движущуюся систему отсчета можно связать с самим троллейбусом (точнее — его корпусом). Перед тем как ответить на остальные вопросы, заметим, что в нашем примере колесо вращается неравномерно — модуль скорости любой точки колеса меняется со временем.

Рассмотрим некоторую точку M колеса, находящуюся на расстоянии r

от оси вращения и имеющую в некоторый момент времени скорость \vec{v} и ускорение \vec{a} (рисунок 1). Из физических соображений разумно ускорение \vec{a} представить как сумму, двух составляющих: одна из них $\vec{a}_{\scriptscriptstyle \rm II}$ направлена по радиусу к центру окружности центростремительное ускорение, вторая $\vec{a}_{\rm K}$ направлена по касательной к окружности — касательное ускорение. Оба эти ускорения имеют определенный физический смысл — касательное ускорение характеризует быстроту изменения модуля скорости точки, а центростремительное характеризует быстроту изменения направления скорости точки. Можно показать, что модуль центростремительного ускорения $a_{\rm H} = v^2/r$ («Физика 8», §16), а модуль касательного ускорения $a_{\rm k} =$ $=\Delta v/\Delta t$, где Δv — изменение модуля v скорости точки за сколь угодно малое время Δt .

Линейные и угловые величины

Как уже говорилось, нам надо ввести такие физические величины, которые характеризовали бы неравномерное вращение колеса (в системе отсчета, связанной с троллейбусом). Попробуем это сделать по аналогии с прямолинейным неравномерным движением.

Puc. 1.

¹«Квант» — научно-популярный физикоматематический журнал.

Puc. 2.

Проследим за точкой M колеса в течение малого промежутка времени Δt . За это время точка пройдет по дуге окружности путь s и будет иметь скорость v и касательное ускорение a_{κ} (рисунок 2). Три величины s, v и a_{κ} , называемые линейными величинами, характеризуют движение точки M, но не могут служить для описания вращения всего колеса, так как в один и тот же момент времени другие точки, расположенные на других расстояниях от оси вращения, имеют другие линейные скорости, и касательные ускорения и пройденные ими пути тоже не одинаковы. Поэтому кроме линейных вводятся так называемые угловые величины, которые одинаковы для всех точек вращающегося колеса: угол поворота φ радиуса, соединяющего точку M с центром окружности, угловая скорость $\omega = \Delta \varphi / \Delta t \ (\Delta \varphi - \text{изменение})$ угла поворота за время Δt) и угловое ускорение $\varepsilon = \Delta\omega/\Delta t$ ($\Delta\omega$ — изменение угловой скорости).

Очевидно, что введенными здесь угловыми величинами можно описывать вращение не только троллейбусного колеса, но и любого другого тела. При этом с течением времени может изменяться не только угол поворота φ , но и угловая скорость ω и угловое ускорение ε . В частности, если угловое ускорение не зависит от времени, то угловая скорость изменяется равномерно и в таком случае говорят, что имеет ме-

сто равноускоренное вращение. Когда же угловая скорость остается постоянной, то угловое ускорение оказывается равным нулю и говорят о равномерном вращении тела.

Связь линейных и угловых величин

Понятно, что линейные и соответствующие им угловые величины должны быть определенным образом связаны между собой. Найдем эти связи.

При повороте радиуса, проведенного в точку M (см. рис. 2), на угол φ точка пройдет по дуге окружности путь

$$s = r\varphi. \tag{1}$$

За малое время Δt точка проходит расстояние $\Delta s = r \varphi_2 - r \varphi_1$, где φ_2 и φ_1 — углы поворота в конце и в начале интервала Δt . Разделив последнее равенство на Δt и учитывая, что $\Delta s/\Delta t = v$ и $(\varphi_2 - \varphi_1)/\Delta t = \Delta \varphi/\Delta t = \omega$, получим

$$v = r\omega. (2)$$

Заметим, что соотношение (2) связывает между собой линейную и угловую скорости не только при равномерном движении точки по окружности, но и при неравномерном движении тоже. Изменение модуля скорости точки за время Δt есть $\Delta v = r\omega_2 - r\omega_1$, где ω_2 и ω_1 — угловые скорости в конце и в начале промежутка Δt . Разделим последнее равенство на Δt и учтем, что $\Delta v/\Delta t = a_{\rm K}$ и $(\omega_2 - \omega_1)/\Delta t = \Delta \omega/\Delta t = \varepsilon$, тогда касательное ускорение

$$a_{\kappa} = r\varepsilon.$$
 (3)

Соотношения (1), (2) и (3) дают для движущейся по окружности точки простую связь между линейными и угловыми величинами: линейная величина равна произведению радиуса

окружности на соответствующую угловую величину. Эти соотношения получены нами для конкретной точки M колеса троллейбуса, но они справедливы и для любой другой точки вращающегося (как равномерно, так и неравномерно) тела.

Формулы кинематики для равноускоренного вращательного движения

Найдем зависимость угловой скорости ω и угла поворота φ колеса троллейбуса от времени t для случая вращения колеса с постоянным угловым ускорением ε .

Пусть начальная угловая скорость равна ω_0 . Тогда точка M, имея начальную скорость $v_0 = r\omega_0$, будет двигаться с постоянным по модулю касательным ускорением $a_{\rm k} = r\varepsilon$. По аналогии с прямолинейным равноускорен-

ным движением для линейной скорости v и пути s получим равенства

$$v = v_0 + a_{\kappa}t,\tag{4}$$

$$s = v_0 t + \frac{a_{\kappa} t^2}{2},\tag{5}$$

из которых после исключения времени t следует полезное соотношение:

$$v^2 - v_0^2 = 2a_{\kappa}s. (6)$$

Подставив в равенства (4)–(6) $s = r\varphi$, $v = r\omega$, $a_{\kappa} = r\varepsilon$, $v_0 = r\omega_0$ и упростив, получим соотношения

$$\omega = \omega_0 + \varepsilon t,$$

$$\varphi = \omega_0 t + \frac{\varepsilon t^2}{2},$$

$$\omega^2 - \omega_0^2 = 2\varepsilon \varphi.$$

Это и есть формулы кинематики для вращательного движения любого тела (а не только колеса троллейбуса) с постоянным угловым ускорением.