Probabilités discrètes et continues

I	able des matieres
1	Dénombrement
	1.1 Permutations
	1.2 Arrangements
	1.3 Combinaisons
	1.4 Principes additif et multiplicatif
2	Introduction aux probabilités
	2.1 Généralités
	2.2 Axiomes
	2.3 Equiprobabilité
	2.3 Equiprobabilite
3	Probabilités conditionnelles
4	Variables aléatoires discrètes 1
	4.1 Introduction et premier exemple
	4.2 Définitions et propriétés générales
	4.3 Lois notables
	4.3.1 Loi équiprobable
	4.3.2 Loi binomiale
	4.3.3 Loi hypergéométrique
	4.3.4 Loi géométrique
5	Variables aléatoires continues
	5.1 Définitions et propriétés générales
	5.2 Lois notables
	5.2.1 Loi uniforme
	5.2.2 Loi Normale
	Propriétés de la fonction de densité
	La propriété des « 3 écart-types »

1 DÉNOMBREMENT

1.1 PERMUTATIONS

DÉFINITION 1. —

Soit n un entier positif ou nul.

Le nombre de **permutations** de n éléments distincts est le nombre de manières de les ordonner. On le note P_n et on a

$$P_n = n! = 1 \times 2 \times \cdots \times (n-2) \times (n-1) \times n$$

Exemple 2. Combien d'anagrammes du mot COMPTE peut on former?

Combien de classements sont possibles dans une compétition entre huit athlètes (sans ex-aequo)?

1.2 ARRANGEMENTS

DÉFINITION 3. ——

Soit deux entiers 0≤*k*≤*n*.

Le nombre d'**arrangements** de k éléments pris parmi n éléments distincts est le nombre de manières de choisir et d'ordonner ces k éléments. On le note A_n^k et on a

$$A_n^k = \frac{n!}{(n-k)!}$$

Exemple 4. Combien de podiums (or, argent, bronze) peut-on former dans le cadre d'une compétition olympique entre 8 athlètes?

J'ai 7 tâches à accomplir aujourd'hui. Combien de manières aurai-je de constituer une liste de 4 tâches prioritaires, classées de la plus urgente à la moins urgente?

1.3 COMBINAISONS

DÉFINITION 5. -

Soit deux entiers 0≤*k*≤*n*.

Le nombre de combinaisons de k éléments parmi n est le nombre de manière de choisir ces k éléments sans les ordonner. On le note $\binom{n}{k}$ et on a

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Exemple 6. Combien d'équipes de 3 collègues peut-on former dans une entreprise de 10 employé.e.s?

Combien de façons ai-je de choisir 4 livres à emmener en vacances parmi les 15 que je possède?

Note 7.

- La seule différence entre arrangements et combinaisons est l'importance de l'ordre. Par exemple, dans une compétition sportive à 8 participantes, il y a :
 - \rightarrow $\binom{8}{3}$ =56 groupes de 3 sportives
 - \rightarrow A_8^3 =336 podiums différents possibles (*l'ordre compte*)
- Pour $a,b\in\mathbb{Z}$ tels que $a\leq b$, l'ensemble des entiers compris entre a et b (inclus) contient éléments (cf. pas à pas)

Exercice 1. ——

On souhaite ranger sur une étagère 4 livres de mathématiques, 6 livres de physique, et 3 de chimie. Tous les livres sont distincts. De combien de façons peut-on effectuer ce rangement :

- a) si les livres doivent être groupés par matières.
- b) si seuls les livres de mathématiques doivent être groupés.

Exercice 2. —

Un questionnaire à choix multiples est constituée de 8 questions qui ont chacune trois réponses possibles, dont une exactement est juste. Combien y a-t-il de manières :

- de remplir le questionnaire?
- d'avoir tout faux?
- d'avoir exactement/au moins 7 réponses justes?
- d'avoir exactement 5 réponses justes?

CARTES À JOUER

Un jeu de 52 cartes est formé de 4 couleurs. Chaque couleur est composée de 13 cartes comme suit :

2, 3, 4, 5, 6, 7, 8, 9, 10, Valet, Dame, Roi, As.

Exercice 3. -

On tire simultanément 5 cartes d'un jeu de 32 cartes. Combien de tirages différents peut-on obtenir :

- a) au total
- b) contenant 5 carreaux ou 5 piques. c) contenant 2 carreaux et 3 piques.
- d) contenant au moins un roi. e) contenant au plus un roi.
- f) contenant exactement 2 rois et exactement 3 piques.

DÉFINITION 8.

Si E est un ensemble (de nombres, de personnes, de chaînes de caractères, ...) on appelle cardinal de E et on note card(E) le nombre d'éléments de E.

Exemple 9. On note $[a;b]=[a;b] \cap \mathbb{Z}$ et en supposant cet ensemble non vide on a

$$card([a;b]) = b-a+1.$$

1.4 Principes additif et multiplicatif

Proposition 10. -

On suppose qu'il y a N_1 TRUCS et N_2 MACHINS.

On suppose aussi qu'un **BIDULE** peut être soit un TRUC soit un MACHIN mais <u>pas les deux</u> à la fois.

On peut conclure qu'il y a $N_1 + N_2$ BIDULES.

Exemple 11.

Un touriste perdu part du point *O* et fait 5 pas sur l'axe (1 pas = 1 unité) vers la gauche ou vers la droite. Combien y a-t-il de manières de se retrouver à 2 pas du point de départ?

Proposition 12. —

On suppose qu'il y a N_1 TRUCS et N_2 MACHINS.

On peut conclure qu'il y a $N_1 \times N_2$ paires (TRUC,MACHIN).

Exemple 13. Si les 5 joueuses de l'équipe A doivent toutes affronter les 7 joueuses de l'équipe B, il y aura 5×7=35 matches en tout.

8 scientifiques doivent expliquer leur théorie à chacun.e des 7 autres individuellement lors d'un séminaire, il y aura 8×7=56 explications en tout.

Si lors de ce séminaire tout le monde serre la main à tout le monde, cela fait

..... poignées de main.

Exercice 4. -

9 livres distincts dont 4 de français, 3 de maths et 2 de chimie sont rangés dans une étagère. Combien y a-t-il de manières de les ranger :

- a) Sans condition supplémentaire?
- b) Si les livres de mathématiques sont tous placés tout à gauche?
- c) Si les livres de français sont ensemble?
- d) Si les livres sont regroupés par matière?

Exercice 5.

Un sac contient 5 jetons blancs et 8 jetons noirs. On suppose que les jetons sont discernables (numérotés par exemple) et on effectue un tirage de 6 jetons de ce sac.

- A) On suppose que les jetons sont tirés successivement en remettant à chaque fois le jeton tiré.
 - 1. Donner le nombre de résultats possibles.
 - 2. Combien de ces résultats amènent
 - a. exactement 1 jeton noir?
 - b. au moins 1 jeton noir?
 - c. au plus un jeton noir?
 - d. 2 fois plus de jetons noirs que de jetons blancs?
- B) Mêmes questions en supposant que les jetons sont tirés successivement sans remise.
- C) Mêmes questions en supposant que les jetons sont tirés simultanément.

Exercice 6.

Une main au poker est formée de 5 cartes extraites d'un jeu de 52 cartes. Traditionnellement, trèfle, carreau, coeur, pique sont appelées couleurs et les valeurs des cartes sont rangées dans l'ordre : 2, 3, 4, 5, 6, 7, 8, 9, 10, Valet, Dame, Roi, As. Dénombrer les mains suivantes :

- a) QUINTE FLUSH: main formée de 5 cartes consécutives de la même couleur (Attention! La suite As•2•3•4•5 est une quinte flush).
- b) CARRÉ: main contenant 4 cartes de la même valeur.
- c) FULL: main formée de 3 cartes de la même valeur et de deux autres cartes de même valeur.
- d) QUINTE: main formée de 5 cartes consécutives et qui ne sont pas toutes de la même couleur.
- e) BRELAN: main comprenant 3 cartes de même valeur (attention, on doit exclure les carrés et les fulls).

Exercice 7. -

Une entreprise décide de classer 20 personnes susceptibles d'être embauchées; leurs CV étant très proches, on décide de recourir au hasard : combien y-a-il de classements possibles :

- a) sans ex-aequo?
- b) avec 3 personnes ex-aequo en tête (et aucune autre ex-aequo)?
- c) avec exactement 2 personnes ex-aequo?

2 INTRODUCTION AUX PROBABILITÉS

Les probabilités sont la science de <u>l'anticipation</u>: on cherche à savoir à quelle fréquence un événement donné peut advenir (un événement = toute chose pouvant avoir lieu). Une méthode *empirique* (et LONGUE!) consiste à compiler des statistiques à partir d'un très grand nombre de tests/d'expériences et de noter ensuite les fréquences constatées de chaque événement.

Notre méthode, qui est *théorique*, sera de déterminer les fréquences attendues de ces événements en partant de quelques suppositions éclairées.

2.1 GÉNÉRALITÉS

DÉFINITION 14.

Les probabilités sont l'étude d'expériences dites aléatoires (dont on ne peut prédire avec certitude le résultat).

Le résultat d'une telle expérience est appelé **issue** notée ω . L'ensemble des issues est appelé **espace probabilisé** et noté Ω .

Un **événement** A est une sous-partie de Ω , c'est-à-dire un ensemble d'issues, potentiellement vide.

La fréquence théorique de réalisation de A est appelée **probabilité** de A et est notée P(A).

L'ensemble vide, aussi appelé événement impossible, est noté \emptyset .

Exemple 15. Si l'expérience étudiée est le lancer d'un dé équilibré à 6 faces, alors :

- l'issue est le nombre visible sur la fac supérieure du dé
- $\Omega = \{1;2;3;4;5;6\} = [1;6]$ est l'espace probabilisé
- $\forall k \in [1;6], \{k\}$ est un événement et $P(\{k\}) = \frac{1}{6}$
- on peut citer comme événements :

A: "obtenir un nombre pair" et A=

B : "ne pas obtenir un multiple de 3" et *B*=

C : "obtenir au plus 4" et *C*=

Exercice 8.

On tire 5 fois une pièce à pile ou face. Quelle est la probabilité des événement suivants :

- a) A: « avoir 3 « face » d'affilée? »
- b) B: « avoir au moins 2 « pile »? »
- c) C: « avoir exactement 3 « face »? »
- d) D: « avoir plus de « pile » que de « face » ? »

Note 16. Souvent, déterminer Ω est la première chose à faire pour pouvoir modéliser une expérience aléatoire. Par exemple si l'expérience consiste à :

- choisir un entier naturel strictement inférieur à 100, alors Ω =
- lancer un pièce de monnaie deux fois, alors Ω =
- choisir deux nombres distincts dans [1;4], alors Ω =
- choisir une lettre au hasard dans le mot ABRACABRA, alors Ω =

DÉFINITION 17.

Soient A et B deux événements d'un espace probabilisé Ω .

L'**union** de A et B, notée $A \cup B$, est constituée des éléments qui sont dans A, dans B ou dans les deux à la fois.

L'**intersection** de A et B, notée $A\cap B$, est constituée des éléments qui sont à la fois dans A et dans B.

Le complémentaire ou contraire de A, noté A, est constitué des éléments qui appartiennent à Ω mais pas à A (on a alors nécessairement $A \cap \bar{A} = \emptyset$ et $A \cup \bar{A} = \Omega$).

La **différence** de A par B notée $A \backslash B$ est constituée des éléments qui appartiennent à A mais pas à B (et on a $A \backslash B = A \cap \bar{B}$).

 $\cup, \cap, \setminus, \overline{}$ sont appelés symboles ensemblistes.

Exemple 18. Hachurer ci-dessous les ensembles $(A \cap B) \cap \bar{C}$, $\overline{(A \cup B)} \cup C$ et $C \cap (\bar{A} \cup B)$

Exercice 9. -

Alice, Ben et Charlie se sont donné rendez-vous pour voir un film. On note respectivement A,B,C les événements « Alice/Ben/Charlie est en retard ».

Traduire avec les symboles ensemblistes les ensembles décrits ci-dessous :

- a) tout le monde est en retard
- b) personne n'est en retard
- c) au moins un.e d'entre eux est en retard
- d) seulement Alice est en retard
- e) Alice et Ben sont en retard, mais pas Charlie
- f) au moins deux d'entre eux sont en retard
- g) au plus deux d'entre eux sont en retard
- h) exactement un.e d'entre eux sont en retard
- i) exactement deux d'entre eux sont en retard

2.2 AXIOMES

Les trois axiomes suivants sont des règles que les probabilités doivent vérifier dans toute expérience :

- i. P(A) est compris entre 0 et 1
- ii. $P(\Omega)=1$
- iii. Si A et B n'ont aucune issue en commun on dit qu'ils sont **incompatibles** et on a alors $P(A \cup B) = P(A) + P(B)$.

Corollaire 19. —

Soit A et B deux événements et notons \bar{A} , le complémentaire de A dans Ω . Alors on a :

- $si A \subset B, P(A) \leq P(B)$
- $P(\bar{A})=1-P(A)$.

Exemple 20. En déduire la probabilité de l'événement *S* : « obtenir au moins un 6 en lançant 5 dés équilibrés ».

Déterminer la probabilité que parmi 12 personnes au moins deux ait le même mois de naissance (en supposant l'équiprobabilité).

Exercice 10.

On lance un dé à 6 faces. Quelle est la probabilité d'obtenir un 6 en supposant que :

- <u>cas n°1</u>: la probabilité d'obtenir une face donnée est proportionnelle à la valeur de cette face? (exemple : on a deux fois plus de chances d'obtenir un 4 qu'un 2)
- cas n°2: on a deux fois plus de chances d'avoir un 5 qu'un 6 et on a trois fois plus de chances d'avoir « au plus 4 » que d'avoir « au moins 5 » ?

Proposition 21. -

Propriétés d'une probabilité :

A et B sont deux événements d'un espace probabilisé Ω . Alors on a :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Conséquemment, on a aussi l'égalité

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$
.

Exemple 22. Dans une population, on suppose que :

- 12% ont les yeux verts
- 73% ont les cheveux bruns
- 4% ont les cheveux bruns et les yeux verts

Quel part de cette population a les cheveux bruns ou les yeux verts?

2.3 EQUIPROBABILITÉ

DÉFINITION 23.

On dit qu'une expérience est équiprobable lorsque la probabilité de chaque événement élémentaire $\{\omega\}$ avec $\omega \in \Omega$ est la même. Si on compte n issues, pour tout $\omega \in \Omega$, on a

$$P(\{\omega\}) = \frac{1}{n}$$

et plus généralement pour tout A⊂Ω,

$$P(A) = \frac{\text{nombre d'éléments de } A}{\text{nombre d'éléments de } \Omega}.$$

Exemple 24. Lorsqu'on tire une carte au hasard dans un jeu de 32 cartes, quelle est la probabilité (on donnera la réponse sous forme de fraction irréductible) de tirer :

un roi?un pique?

ni un roi, ni un pique? • ni une figure (valet, dame, ou roi), ni un carreau?

J'ai trois réunions à préparer qui doivent tomber dans ma semaine de travail (lundi au vendredi). On suppose que chaque réunion a une chance sur cinq d'avoir lieu un jour donné. Quelle est la probabilité (on donnera la réponse sous forme de fraction irréductible):

a) que les trois réunions aient lieu le même jour?

b) que les réunions aient lieu sur trois jours différents?

c) qu'au moins deux réunions aient lieu le même jour?

Exercice 12. —

On choisit de manière équiprobable un couple (x,y) dans $[-10;10]^2$. Déterminer **rigou**reusement la probabilité exacte des événements suivants (on donnera la réponse sous *forme de fraction irréductible)* :

a) A: "x=y" b) B: " $x \times y \ge 0$ " c) C: "x+y est pair"

d) D: "x>y" e) E: "l'écart positif entre <math>x et y est de 10"

f) F: " $x \times y$ est pair"

g) $A \cup \overline{B}$ h) $C \cap F$ i) $C \cup F$ j) $C \setminus F$

On pourra si on le souhaite (et quand c'est possible) exprimer ces événements sous forme ensembliste (à l'aide de {} et/ou de [;]).

Exercice 13.

On génère de manière équiprobable un anagramme du mot ANGERS. Quelle est la probabilité (on donnera la réponse sous forme de fraction irréductible) que :

- a) ce mot commence par la lettre A?
- b) les trois premières lettres de ce mot soient dans l'ordre alphabétique?
- c) ce mot commence par une consonne?
- d) ce mot commence par une consonne et finisse par une voyelle?

Exercice 14.

Ayant une infinité de temps devant moi, je décide lancer un dé équilibré à 6 face sans m'arrêter jusqu'à obtenir un 5 ou un 6.

On note p_n l'événement « obtenir un 5 ou un 6 au $n^{\text{ième}}$ lancer ».

- a) Déterminer **avec soin** p_n en fonction de n.
- b) Quelle est la probabilité d'obtenir un 5 ou un 6 au bout du 8ème lancer?
- c) Calculer $\sum_{n=1}^{10} p_n$ et interpréter (on pourra éventuellement faire un changement d'indice pour avoir une somme qui démarre à n=0).
- d) Calculer $\sum_{n=5}^{12} p_n$ et interpréter.
- e) Si on n'a pas fait d'erreur, que doit valoir $\sum_{n=1}^{+\infty} p_n$? Vérifier que c'est le cas.
- f) Calculer $\sum_{n=11}^{+\infty} p_n$ et interpréter.
- g) Déterminer la probabilité d'obtenir un 5 ou un 6 au bout d'un nombre pair de lancers.

3 PROBABILITÉS CONDITIONNELLES

DÉFINITION 25.

Parfois il est utile de supposer qu'un événement a nécessairement eu lieu. Dans ce cas, on peut s'intéresser à la probabilité que A ait eu lieu sachant que B a eu lieu. On note cette probabilité P(A|B) et on a

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Exemple 26. On veut calculer la probabilité qu'un jet de dé équilibré donne au moins un 2 sachant que le résultat est inférieur ou égal à 5.

On définit alors deux événements A: « obtenir ...

et B: « obtenir ...

et on a P(A|B)=

DÉFINITION 27. —

Deux événements sont dits indépendants si

$$P(A \cap B) = P(A)P(B)$$

ce qui est équivalent à

$$P(A|B)=P(A)$$

On admet que si A et B sont indépendants, alors A et B le sont aussi.

Exemple 28. On tire une boule parmi 15 boules numérotées de 1 à 15. Les événements « le numéro tiré est pair » et « le numéro tiré est un multiple de 3 » sont-is indépendants?

DÉFINITION 29. —

On appelle **partition de \Omega** la donnée d'événements $(A_1,...,A_k)$ tels que :

- les $(A_i)_{1 \le j \le k}$ sont disjoints : $\forall i, j \in [1, k], A_i \cap A_j = \emptyset$
- $les\ (A_j)_{1\leq j\leq k}$ « recouvrent » $\Omega:A_1\cup A_2\cup...\cup A_k=\Omega$

THÉORÈME 30. -

Soit $(A_1,...,A_k)$ une partition de Ω et avec $\forall i \in [1;k], P(A_i) \neq 0$ et B un événement d'un espace probabilisé Ω . Alors

$$P(B) = \sum_{i=1}^{k} P(A_i \cap B) = \sum_{i=1}^{k} P(B|A_i) P(A_i)$$

Exemple 31. Dans une urne composée de 5 boules rouges et 4 boules jaunes, quelle est la probabilité de tirer 2 boules rouges d'affilée (utiliser un arbre de probabilités)?

_	•	
F V A	rcice	15
ᆫᆺᆫ	LUCE	IJ.

Un bijoutier vend des perles. Le tableau ci-dessous donne la répartition des perles selon leur forme et leur couleur :

	Sphérique	Equilibrée	Baroque	TOTAL
Argentée	200	550	750	1500
Noire	200	550	250	1000
TOTAL	400	1100	1000	2500

On note respectivement *A*,*N*,*S*,*E*,*B* les événements « la perle est Argentée / Noire / Sphérique / Equilibrée / Baroque ».

Les probabilités seront écrites sous forme de fraction irréductible.

- a) Calculer la probabilité des événements S et A.
- b) Traduire par une phrase l'événement $S \cap A$ et calculer sa probabilité. Les événements S et A sont-ils indépendants?
- c) Calculer $P(N \cup E)$ et interpréter le résultat.
- d) Le bijoutier choisit une perle parmi les perles équilibrées. Calculer la probabilité que la perle soit noire.
- e) Calculer $P_N(\bar{B})$ et traduire par une phrase.

Exercice 16.

Pour contacter une compagnie d'assurances, deux possibilités sont offertes : rendezvous en agence ou par téléphone. Le responsable du pôle « satisfaction » décide de réaliser une enquête afin de savoir si les client.e.s sont satisfait.e.s de leur accueil.

À l'issue de l'enquête les résultats sont les suivants :

- 38% se sont rendu.e.s en agence
- parmi les client.e.s qui se sont rendus en agence, 90% se sont déclaré.e.s satisfait.e.s de l'accueil
- parmi les client.e.s qui ont téléphoné, 15% ne sont pas satisfait.e.s de l'accueil

On interroge Lambda, une cliente ayant participé à l'enquête et on considère les événements suivants :

A: « Lambda s'est rendue en agence ». S: «Lambda est satisfaite ».

Les probabilités seront arrondies à 10^{-3} si nécessaire.

- a) Traduire les données (en pourcentage) de l'exercice en probabilités (éventuellement conditionnelles).
- b) Construire un arbre de probabilités permettant de représenter la situation.
- c) Calculer la probabilité que Lambda se soit rendue en agence et qu'elle ait été satisfaite de l'accueil.
- d) Montrer que P(S)=0.869.
- e) Calculer $P(A \cup S)$.
- f) Le responsable a pour objectif qu'il y ait moins de 12% des client.e.s non satisfait.e.s de l'accueil. Cet objectif est-il atteint?
- g) Sachant que Lambda se dit satisfaite, quelle est la probabilité qu'elle se soit rendue en agence?

4 VARIABLES ALÉATOIRES DISCRÈTES

4.1 Introduction et premier exemple

Lors d'une expérience aléatoire, il peut être intéressant d'étudier la valeur d'un nombre qui dépend de l'issue. Autrement dit, à tout $\omega \in \Omega$ on peut associer une grandeur réelle $X(\omega)$.

On appelle **variable aléatoire** cette fonction X qui associe un nombre à une issue. Elle peut servir à définir un événement : on notera (X=k) la réunion des issues ω telles que $X(\omega)=k$.

Exemple 32. On lance 3 fois une pièce équilibrée avec Ω ={	.} et <i>?</i>	X est le
nombre de piles obtenus.		

On a $X(\omega)$ =2 lorsque $\omega \in \{\dots\}$

On dira que X suit la **loi** suivante :

Qui peut se résumer à la formule $\forall k \in \dots$

Remarque 33. On notera $X(\Omega)$ l'ensemble des valeurs prises par X. Dans l'exemple précédent, $X(\Omega) = [0;3]$.

On peut définir cet ensemble plus formellement par :

$$X(\Omega) = \{X(\omega)/\omega \in \Omega\} = \{k \in \mathbb{R}/P(X=k) > 0\}.$$

Les variables aléatoires discrètes que l'on étudiera seront telles que $X(\Omega)$ soit fini.

4.2 DÉFINITIONS ET PROPRIÉTÉS GÉNÉRALES

Dans le reste de la section 4, X désignera une variable aléatoire discrète.

DÉFINITION 34.La loi d'une variable aléatoire est la donnée des valeurs de P(X=k) pour k parcourant $X(\Omega)$

Exercice 17.

En supposant dans chaque situation l'équiprobabilité des issues, déterminer la loi :

a) du nombre L de lettres dans un jour de la semaine choisi au hasard :

lundi - mardi - mercredi - jeudi - vendredi - samedi - dimanche

- b) du nombre C de chiffres dans l'écriture d'un entier choisi au hasard entre 1 et 1000
- c) du nombre N de piles obtenus après 3 lancers d'une pièce équilibrée
- d) du nombre M de mois de naissances différents pour un groupe de 3 personnes (ex : si trois personnes sont nées en janvier et 2 en mars, X=2)

Exercice 18. -

On note *N* le nombre de 6 obtenus en ayant lancé 20 dés à 6 faces équilibrés.

Déterminer la loi de N.

DÉFINITION 35.

L'espérance d'une variable aléatoire est sa moyenne pondérée par sa loi, c'est-à-dire le nombre

$$E(X) = \sum_{k \in X(\Omega)} kP(X=k)$$

Exemple 36.

Dans la cible ci-contre, les zones de tir sont respectivement délimitées par des cercles concentriques de rayons 15cm, 10cm et 5cm. On note X le nombre de points obtenus lors du lancer d'une fléchette ayant atteint la cible.

On suppose les probabilités proportionnelles à la surface de chaque zone. Calculer les surfaces des zones Z_1, Z_2 et Z_5 correspondant respectivement au gain de 1, 2 ou 5 points.

La loi de X est :

et E(X)=

Proposition 37.

L'application espérance est linéaire, c'est-à-dire que pour toutes variables aléatoires X,Y et $∀a,b∈\mathbb{R},$

$$E(aX+bY)=aE(X)+bE(Y)$$

et de plus comme $E(1)=1^*$, on a

$$E(aX+b)=aE(X)+b.$$

Exemple 38. On suppose que jeter 5 fléchettes coûte 10 euros et les zones de la cible rapportent 1, 2 et 5 euros et on appelle *G* le gain obtenu après avoir lancé toutes les fléchettes.

Alors
$$G$$
= et $E(G)$ =

^{*}en notant 1 la variable aléatoire constante égale à 1

DÉFINITION 39.

La variance d'une variable aléatoire est le nombre positif

$$V(X) = \sum_{k \in X(\Omega)} (kP(X=k) - E(X))^2$$

qui s'obtient aussi grâce à

$$V(X) = E(X - E(X)^{2}) = E(X^{2}) - E(X)^{2}$$

et l'écart-type de X est

$$\sigma(X) = \sqrt{V(X)}$$
.

Exemple 40. Si une variable aléatoire *X* suit la loi suivante :

k	1	2	3
P(X=k)	0,1	0,6	0,3

Alors E(X)=

et $E(X^2)$ =

donc V(X)=

et $\sigma(X)$ =

Note 41. La variance n'est pas linéaire et on a :

$$V(aX+b)=a^2V(X)$$

ce qui implique que

$$\sigma(aX+B)=|a|\sigma(X)$$

Exercice 19.

Un entier *n* est choisit de manière équiprobable entre 1 et 1000.

- a) Z est le nombre de zéros à la fin de l'écriture (décimale) de n. Déterminer la loi de Z, son espérance et sa variance. (Vérifier que la somme des probabilités est bien égale à 1.)
- b) *C* est le nombre de chiffres dans l'écriture (décimale) de *n*. Déterminer la loi de *C*, son espérance et sa variance.
- c) Montrer que $P(C=2|Z>1)=\frac{9}{100}$ et que $P(Z=2|C=3)=\frac{1}{100}$.

Exercice 20.

5 boules vertes et 3 boules rouges sont placées dans une urne. On tire deux boules aléatoirement sans remise et on note *V* le nombre de boules vertes tirées.

- a) Déterminer en valeurs exactes la loi de V. (Vérifier que la somme des probabilités est bien égale à 1.)
- b) En **déduire** la loi de de *R*, le nombre de boules rouges tirées.
- c) Calculer $P((V \ge 1) \cap (R \ge 1))$, P(R = 1 | V = 2) et $P(R = 0 | V \ge 1)$.

Exercice 21. —

On prend au hasard, en même temps, trois ampoules dans un lot de 15 dont 5 sont défectueuses. On note X le nombre d'ampoules défectueuses obtenues. Pour chaque question :

- *i)* **Traduire** les événements suivants à l'aide de *X* et *ii)* **calculer** leurs probabilités.
 - a) A: « au moins une ampoule est défectueuse »;

Exemple : A correspond à $X \ge ...$ et P(A) = ...

- b) *B* : « exactement 3 ampoules sont défectueuses »;
- c) C: « au plus deux ampoules sont défectueuses ».

Exercice 22. —

a) On lance un dé 3 fois et on note L le rang du **premier** lancer où l'on obtient un 6 avec L=4 si l'on n'obtient jamais de 6.

Justifier et déterminer la loi de *L*.

b) 8 convives sont invités à une fête et se répartissent équiprobablement dans le salon, la chambre et la cuisine. On note V le nombre de pièces vides.

Justifier et déterminer la loi de V.

Exercice 23. -

L'oral d'un concours comporte au total 10 sujets; les candidat.e.s tirent au sort trois sujets et choisissent alors le sujet traité parmi ces trois sujets. Un candidat se présente en ayant révisé 6 sujets sur les 10 (pari risqué!).

En moyenne, combien de sujets aura-t-il révisé parmi les 3 proposés?

Exercice 24.

Un dé truqué est tel qu'on a une chance sur six d'obtenir un 1 (ou 2, 3, 4) et p est la probabilité d'obtenir un 6.

Déterminer la valeur de *p* pour que la valeur moyenne donnée par ce dé soit 4.

Exercice 25.

On rappelle que
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 et que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Dans une urne contenant 101 tickets numérotés de 0 à 100, on tire au hasard deux tickets sans remise et on note *A* le maximum des deux numéros obtenus et *B* le minimum.

- a) Combien y a-t-il d'issues possibles? Déterminer $A(\Omega)$ et $B(\Omega)$.
- b) Calculer $P(A \le 20)$ puis déterminer la loi de A. Vérifier que la somme des probabilités P(A=k) (pour $k \in A(\Omega)$) vaut bien 1.
- c) Déterminer E(A) et E(B).

 Indication : on pourra déterminer $E\left(\frac{A+B}{2}\right)$ en la justifiant mais sans calcul.

Exercice 26. -

On lance un dé équilibré à 6 faces dont on note ω le résultat et on appelle S le nombre de solutions <u>réelles</u> de l'équation

$$4x^2 + \omega x + 1 = 0$$

Déterminer la loi de *S* et son espérance.

Exercice 27. -

On pioche 3 cartes dans un jeu standard de 52 cartes et on considère chaque issue équiprobable. On note C le nombre de couleurs distinctes parmi les cartes piochées (si on a pioché 2 piques et 1 carreau, C=2 et si on a pioché 3 trèfles, C=1).

Déterminer la loi de *C* et son espérance.

4.3 LOIS NOTABLES

4.3.1 LOI ÉQUIPROBABLE

DÉFINITION 42.

On dit qu'une variable aléatoire suit une loi équiprobable à valeurs dans [a;b] lorsque

$$\forall k \in [a;b], P(X=k) = \frac{1}{b-a+1}$$

Alors
$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a+1)^2-1}{12}$.

Exercice 28. -

Soient X et Y deux variables suivant une loi équiprobable dans [0;100]

- a) Déterminer la loi de X+Y.
 - Quelle est la valeur la plus probable de X+Y? (valeur de k telle que P(X+Y=k) est maximale).
- b) Déterminer la loi de max(X,Y), la valeur maximale entre X et Y.

c)

4.3.2 LOI BINOMIALE

DÉFINITION 43. —

On répète n fois de manière indépendante la même expérience aléatoire ayant deux issues qu'on appelle réussite (de probabilité p) et échec (de probabilité 1-p).

Alors si X est le nombre de réussites après n répétitions, on a

$$\forall k \in [0;n], P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

On a de plus E(X)=np et V(X)=np(1-p).

Exemple 44. Si *X* représente le nombre de fois où l'on obtient un 5 ou un 6 après avoir lancé un dé 10 fois, alors *X*

4.3.3 LOI HYPERGÉOMÉTRIQUE

DÉFINITION 45. -

On dit qu'une variable aléatoire suit une loi **hypergéométrique** de paramètres (N,m,m) lorsque

$$\forall k \in [0;n], P(X=k) = \frac{\binom{m}{k} \binom{N-m}{n-k}}{\binom{N}{n}}$$

On a alors
$$E(X) = \frac{m}{N} \times n$$
 et $V(X) = \frac{(N-n)(N-m)nm}{N^3-N^2}$.

Exemple 46. On tire simultanément 5 cartes dans un jeu de 32 et *X* représente le nombre de têtes (valet, dame, roi) parmi celles tirées.

Alors P(X=k)=

et X suit loi hypergéométrique de paramètres (.....).

4.3.4 LOI GÉOMÉTRIQUE

Il s'agit de la seule loi discrète qu'on étudiera dont les valeurs sont dans $\mathbb{N}\setminus\{0\}$ et non dans un ensemble fini.

DÉFINITION 47.

On dit qu'une variable aléatoire suit une loi équiprobable de paramètre p lorsque

$$\forall k \ge 1, P(X=k) = p(1-p)^{k-1}$$

On a alors $E(X) = \frac{1}{p}$ et $V(X) = \frac{q}{p^2}$.

Exemple 48. Si on lance un dé à 6 faces jusqu'à qu'au rang X, on obtienne un 6 alors X suit une loi de paramètre

5 VARIABLES ALÉATOIRES CONTINUES

5.1 DÉFINITIONS ET PROPRIÉTÉS GÉNÉRALES

QUESTION: Imaginons qu'on choisisse de manière équiprobable un nombre *X* au hasard :

- compris entre 0 et 10 inclus
- ayant k chiffres après la virgule : par exemple pour k=1 les choix sont

Que vaut P(X=1) lorsque k=1, k=2, k=3?

Si on choisit maintenant *un nombre réel* au hasard entre 0 et 10, étant donné que son écriture décimale peut avoir autant de chiffres après la virgule qu'on le souhaite (et même une infinité, comme pour $\frac{1}{3}$ =0,333...), il paraît donc raisonnable d'avoir P(X=1)=0!

Plutôt que d'étudier P(X=y) pour un y donné de $X(\Omega)$, il paraît plus pertinent d'étudier $P(a \le X \le b)$ avec a < b (dans l'intervalle [a;b], X a une infinité de valeurs possibles).

DÉFINITION 49. —

Une variable aléatoire continue est construite à l'aide d'une fonction f dite de densité (ou simplement densité) définie sur $\mathbb R$ qui vérifie :

- $\forall t \in \mathbb{R}, f(t) \ge 0$
- $\int_{-\infty}^{+\infty} f(t) dt = 1$

et on a alors pour tout $\langle a,b\rangle\subset\mathbb{R}$, $P(X\in\langle a;b\rangle)=\int_a^b f(t)\,\mathrm{d}t$.

*Il s'agit d'un intervalle allant de a à b, a et b étant inclus ou exclus.

Note 50. $\langle a;b\rangle$ désigne un des intervalles [a;b], [a;b[, [a;b[et ,]a;b].

Rappel: $\int_{-\infty}^{+\infty} f(t) dt$ est la limite de $\int_{-a}^{a} f(t) dt$ quand $a \rightarrow +\infty$.

Exemple 51. Dans ce contexte, on a $P(1 < X \le 3) =$

et
$$P(X>5)=$$

Dans le reste de cette section, X désigne une variable aléatoire continue et f sa (fonction de) densité.

DÉFINITION 52.

La fonction de répartition de X est définie par

$$\forall t \in \mathbb{R}, F(t) = P(X \le t) = \int_{-\infty}^{t} f(s) ds$$

Remarque 53. On peut retenir que :

- *f* est la dérivée de *F*
- F est la primitive de f dont la limite en $-\infty$ est 0 et la limite en $+\infty$ est 1.

DÉFINITION 54. -

L'espérance de X est la quantité

$$E(X) = \int_{-\infty}^{+\infty} t f(t) dt$$

et la médiane m de X est la solution de

$$P(X < m) = P(X > m)$$

ce qui revient à $F(m) = \frac{1}{2}$.

Exemple 55. Cas où X a pour densité :

$$f(t) = \begin{cases} 2/t^2 & \text{si } t \in [1;2] \\ 0 & \text{sinon} \end{cases}$$

DÉFINITION 56.

La variance de X peut toujours se calculer par $V(X)=E(X^2)-E(X)^2$ ou sinon par

$$V(X) = \int_{-\infty}^{+\infty} (t^2 - E(X)^2) f(t) dt$$

Pour calculer espérance et variance dont les intégrandes sont des produits, on peut avoir besoin d'une méthode appelée intégration par parties.

INTÉGRATION PAR PARTIES

Deux fonctions u et v dérivables vérifient :

$$\int_{a}^{b} u'(x)v(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x) dx$$

 \longrightarrow À utiliser quand on ne peut pas calculer de primitive directement et que l'intégrande est sous forme de produit.

DÉFINITION 57. -

Des variables aléatoires X et Y sont dites indépendantes si des événements associés à X et Y sont toujours indépendants, c'est-à-dire qu'avec I,J parties de $\mathbb R$ on a :

$$P(X \in I \text{ et } Y \in J) = P(X \in I) \times P(Y \in J)$$

5.2 LOIS NOTABLES

5.2.1 LOI UNIFORME

DÉFINITION 58. -

Une variable continue peut suivre **une loi uniforme** de paramètres (a,b) si elle vérifie les propriétés ci-dessous. C'est l'équivalent continu du cas équiprobable (dé, pile ou face, etc.).

Si c et d sont compris dans [a;b], on a

$$P(c < X < d) = \frac{d - c}{b - a} = \frac{largeur\ de\ l'intervalle}{amplitude\ totale}$$

On a alors
$$E(X) = \frac{a+b}{2}$$
 et $\sigma(X) = \frac{b-a}{\sqrt{12}}$.

Exercice 1. Quelle est la densité d'une loi uniforme?

Remarque 59. On peut remplacer les symboles < et > par ≤ et ≥ dans les parenthèses et la probabilité ne changera pas.

Dans nos calculs, on peut toujours se ramener au cas ci-dessus : si X suit une loi uniforme sur l'intervalle [5;10], alors $P(1< X<6)=P(5< X<6)=\frac{1}{5}$.

De même
$$P(X>8)=P(8< X<10)=\frac{2}{5}$$
.

5.2.2 LOI NORMALE

DÉFINITION 60.

On dit qu'une variable aléatoire est normale si elle suit **une Ioi normale (aussi appelée Gaus**-sienne) de paramètres (μ,σ) .

 σ est la variance de X et μ est son espérance.

On dit parfois que *X* est une variable normale.

Propriétés de la fonction de densité

Si X est une variable normale, la probabilité P(a < X < b) est égale à l'aire située sous la courbe de sa **fonction de densité** :

verticalement, entre l'axe des abscisses et la courbe

• horizontalement, entre les droites d'équations x=a et x=b

Remarque 61. D'après ce qui précède, comme $P(-\infty < X < +\infty) = 1$, l'aire totale sous la courbe de la fonction de densité vaut donc 1.

La fonction de densité de d'une variable normale a pour axe de symétrie la droite d'équation $x=\mu$.

On peut en déduire que $P(X \le \mu) = P(X \ge \mu) = 0.5$: la variable X a autant de chances d'être supérieure à sa moyenne que d'être inférieure.

La propriété des « 3 écart-types »

L'aire sous la courbe de la fonction de densité de X peut être découpée ainsi :

Comment lire ce graphe?

La variable X a 13,6% de chances d'être comprise entre μ –2 σ et μ – σ .

Elle a 34,1% de chances d'être comprise entre μ et $\mu+\sigma$.

Elle a 0,1% de chances d'être supérieure à μ +3 σ .

PROPOSITION 62.

On peut déduire du graphe suivant que

- $P(\mu \sigma \leq X \leq \mu + \sigma) \approx$
- *P*(*μ*−2*σ*≤*X*≤*μ*+2*σ*)≈
- $P(\mu-3\sigma \leq X \leq \mu+3\sigma) \approx$

Exemple 63. La taille en cm des étudiants d'une université suit une loi normale de moyenne 172 et d'écart type 10. On peut en déduire que :
% des étudiants mesurent entre 162 et 182 centimètres
% des étudiants mesurent entre 152 et 192 centimètres
% des étudiants mesurent entre 142 et 202 centimètres
Exemple 64. À Port-Louis (Ile Maurice), la température en degrés Celsius mesurée à midi suit une loi normale de moyenne 24 et d'écart-type 3.
On peut en déduire que :
• 68% des températures mesurées à midi sont comprises entre
 95% des températures mesurées à midi sont comprises entre
• 99,7% des températures mesurées à midi sont comprises entre