SMT-RAT 24.06

May 22, 2024

SMT-RAT [3] is an open-source C++ toolbox for strategic and parallel SMT solving consisting of a collection of SMT compliant implementations of methods for solving quantifier-free first-order formulas with a focus on non-linear real and integer arithmetic. Further supported theories include linear real and integer arithmetic, difference logic, bit-vectors and pseudo-Boolean constraints. A more detailed description of SMT-RAT can be found at https://smtrat.github.io/.

For quantifier-free non-linear real arithmetic (QF_-NRA) , SMT-RAT uses our implementation of the MCSAT framework [4] inspired by [8]. We employ incomplete methods to handle simpler problem classes more efficiently. Thus, our implementation is equipped with multiple explanation backends based on Fourier-Motzkin variable elimination, interval constraint propagation, virtual substitution as in [13], and a novel level-wise variant of the one-cell CAD [2, 10], which are called in this order. The level-wise one-cell CAD uses linear approximations of some cell boundaries which would otherwise be defined by polynomials with high degree, as described in [11]. The general MCSAT framework is integrated in our adapted minisat [5] solver. Our variable ordering is fully dynamic as suggested in [7]. Furthermore, we supplement our solver with an incomplete check for subtropical satisfiability [6] before the main MCSAT solver is called. For algebraic operations, we use libpoly [1].

For non-linear real arithmetic (NRA), SMT-RAT uses the cylindrical algebraic covering (CAlC) method [12] extended for quantifiers [9].

Current authors Jasper Nalbach, Valentin Promies, Erika Ábrahám (Theory of Hybrid Systems Group, RWTH Aachen University).

Previous contributions by former group members Gereon Kremer (currently at Certora), Florian Corzilius, Rebecca Haehn, Sebastian Junges, Stefan Schupp.

References

- [1] libpoly. https://github.com/SRI-CSL/libpoly.
- [2] Christopher W Brown and Marek Košta. Constructing a single cell in cylindrical algebraic decomposition. *Journal of Symbolic Computation*, 70:14–48, 2015.
- [3] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika Ábrahám. SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In *Proceedings of SAT 2015*, pages 360–368.
- [4] Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiability calculus. In *Proceedings* of VMCAI 2013, pages 1–12.
- [5] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of SAT 2013, pages 502–518.

- [6] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, and Xuan Tung Vu. Subtropical satisfiability. In Clare Dixon and Marcelo Finger, editors, Frontiers of Combining Systems, pages 189–206, Cham, 2017. Springer International Publishing.
- [7] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. The design and implementation of the model constructing satisfiability calculus. In *Proceedings of FMCAD 2013*, pages 173–180.
- [8] Dejan Jovanović and Leonardo De Moura. Solving non-linear arithmetic. In *International Joint Conference on Automated Reasoning*, pages 339–354. Springer, 2012.
- [9] Gereon Kremer and Jasper Nalbach. Cylindrical algebraic coverings for quantifiers. In Satisfiability Checking and Symbolic Computation 2022 (SC-square 2022), 2023.
- [10] Jasper Nalbach, Erika Ábrahám, Philippe Specht, Christopher W. Brown, James H. Davenport, and Matthew England. Levelwise construction of a single cylindrical algebraic cell. *Journal of Symbolic Computation*, 123:102288, 2024.
- [11] Valentin Promies. Underapproximating cell bounds in MCSAT using low-degree polynomials. Msc thesis, RWTH Aachen University, 2022.
- [12] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon Kremer. Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using cylindrical algebraic coverings, 2020. https://arxiv.org/pdf/2003.05633.pdf.
- [13] Erika Ábrahám, Jasper Nalbach, and Gereon Kremer. Embedding the virtual substitution method in the model constructing satisfiability calculus framework. In *Proceedings of SC*² 2017 at ISSAC, volume 1974 of CEUR Workshop Proceedings.