Question	Scheme	Marks
10(a)	$AC = \sqrt{(2x)^2 + x^2} = \left(\sqrt{5}x\right)$	B1
	$VA = \sqrt[4]{5}x' \sin 45^{\circ} = \frac{\sqrt{10}}{2}x *$	M1A1
	_	cso
(1)		[3]
(b)	Height = $\sqrt{\left(\frac{\sqrt{10}}{3}x\right)^2 - \left(\frac{\sqrt{5}}{3}x\right)^2} = \frac{\sqrt{5}}{3}x$	M1A1
		[2]
(c)	$\cos \angle VBA = \frac{1}{-}$	2.64
	$\cos \angle VBA = \frac{1}{\sqrt{10}}$	M1
	2	
	$\Rightarrow \angle VBA = 50.768^o \approx 50.8^o$ awrt	A1
(1)		[2]
(d)	Let M be the point at which the diagonals AC and BD meet. The required angle is either AMB or DMC	B1
	AM = MB = $\frac{AC}{2} = \frac{\sqrt{5}x}{2}$ or DM=MC= $\frac{AC}{2} = \frac{\sqrt{5}x}{2}$	B1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$(\sqrt{5})^2 (\sqrt{5})^2$	
	$\cos \angle AMB = \frac{\left(\frac{\sqrt{5}}{2}\right)^2 + \left(\frac{\sqrt{5}}{2}\right)^2 - 2^2}{2 \times \frac{\sqrt{5}}{2} \times \frac{\sqrt{5}}{2}} \text{ oe}$	M1
	$\cos \angle AMB = \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} = oe$	
	$2 \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}$	A1 [4]
	3	[4]
	$(\cos \angle AMB = -\frac{3}{5} \Rightarrow \angle AMB = 126.869^{o}) \approx 126.9^{o} \text{ awrt}$	
(e)	1 \(\sqrt{\zeta}	
(-)	$9\sqrt{5} = \frac{1}{3} \times 2x \times x \times "\frac{\sqrt{5}}{2}x" \Rightarrow x = \cdots$	M1
	x = 3	A1
		[2]
	$\mathbf{T}_{\mathbf{C}}$	otal 13 marks

Part	Mark	Notes
(a)	B1	For using correct Pythagoras theorem to find length AC or ½ AC, explicit substitution must be seen.
	M1	For correct trigonometry using their AC in triangle VAC or half of their AC
		in triangle VAM or correct Pythagoras theorem (let M be the centre of the
		base at which the diagonals AC and BD meet) to find length VA . $e.g.$
		$VA = \sqrt{5}x\cos(45^\circ) = \frac{\sqrt{10}}{2}x or$
		$VA = \frac{\sqrt{5}}{2}x \div \cos(45^\circ) = \frac{\sqrt{10}}{2}x$ or $VA = \frac{\sqrt{5}}{2}x \div \sin(45^\circ) = \frac{\sqrt{10}}{2}x$
	A1	Achieves printed answer with no errors. Condone AV instead of VA
	cso	Note: \(\sqrt{10} \)
		$\frac{\sqrt{10}}{2}x \text{ written as } \frac{\sqrt{10x}}{2} \text{ is A0}, \qquad \frac{\sqrt{10}}{2}x \text{ written as } \frac{\sqrt{10x}}{2} \text{ is A1}$
(b)	M1	Uses the correct Pythagoras theorem or correct trigonometry with the given
		length VA= $\frac{\sqrt{10}}{2}x$ to find the height of the pyramid.
	A1	For $h = \frac{\sqrt{5}}{2}x$
		Correct exact answer only scores M1A1. This can be written down as the
		triangle is isosceles.
(c)	M1	Ignore missing x consistently throughout their solution.
		For using any appropriate trigonometry to find the angle <i>VBA</i>
		If attempts cosine rule, look for correct application of the cosine rule for the required angle:
		$\left \left(\frac{\sqrt{10}}{2} x \right)^2 = \left(\frac{\sqrt{10}}{2} x \right)^2 + \left(2x \right)^2 - 2 \times \frac{\sqrt{10}}{2} x \times 2x \cos(VBA) \text{ oe} \right $
	A1	For the correct angle awrt 50.8 ° (with or without degree sign)
(d)	B1	Identifies the angle required.(can be implied/embedded in their working)
	B1	For the correct lengths AM and MB or DM and MC or BE and ME
		Let E to be mid point of AB, correct length BE=x, ME=0.5x scores B1, this
	M1	mark can be implied/embedded in their working)
	IVII	Ignore missing <i>x</i> consistently throughout their solution. For using any appropriate trigonometry to find the required angle or half of
		the required angle.
	A1	For the correct angle. awrt 126.9° (with or without degree sign)
(e)	M1	For using the correct formula for the volume of a pyramid with their height
	A 4	of the pyramid and attempts to find a value of x.
	A1	For $x = 3$ with or without unit, ignore incorrect unit

Question	Scheme	Marks
11(a)	cos(A + A) = cos A cos A - sin A sin A	
	$\Rightarrow \cos 2A = \cos^2 A - (1 - \cos^2 A)$	M1
	24 2 24 4	A 1
	$\cos 2A = 2\cos^2 A - 1 *$	A1 cso
		[2]
(b)	$(2\cos^2 A - 1)^2 = (\cos 2A)^2$	<u></u>
		M1
	$\cos 4A = 2\cos^2 2A - 1 \Rightarrow \cos^2 2A = \frac{\cos 4A + 1}{2}$	
	$\cos 4A - 2\cos 2A - 1 \rightarrow \cos 2A - \frac{1}{2}$	M1
	$\cos 4.4 \pm 1$	
	$(2\cos^2 2A - 1)^2 = \frac{\cos 4A + 1}{2} *$	A1
	Z	cso
		[3]
(b)	$\cos 4A = 2\cos^2 2A - 1$	M1
ALT	$= 2(2\cos^2 A - 1)^2 - 1$	M1
	$(2\cos^2 A - 1)^2 = \frac{\cos 4A + 1}{2} *$	A 1
	2	A1 cso
		[3]
(c)	$y = \frac{\sin 2x}{2} + \frac{(2\cos^2 x - 1)^2}{2} + \frac{1}{8} \Rightarrow y = \frac{\sin 2x}{2} + \frac{\cos 4x}{4} + \frac{3}{8}$	Lo J
	$y = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \Rightarrow y = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$	M1
	$\frac{dy}{dx} = \cos 2 x - \sin 4 x$	45.54
		dM1
	$\frac{dy}{dx} = \cos 2x - 2\sin 2x \cos 2x = 0$	B1
	1	ы
	$\{\cos 2x(1-2\sin 2x)=0\} \Rightarrow \sin 2x = \frac{1}{2}$	
	$\Rightarrow x = \frac{\sin^{-1}\left(\frac{1}{2}\right)}{2} = \cdots$	
	$\Rightarrow x = \frac{\sin^2(2)}{2} = \cdots$	ddM
	$x = \frac{\pi}{12}$	A 1
	$x - \frac{1}{12}$	A1
	$\sin 2 \left(\left\ \frac{\pi}{\pi} \right\ \right) = \cos 4 \left(\left\ \frac{\pi}{\pi} \right\ \right) = 2$	
	$y = \frac{\sin 2\left(\frac{\pi}{12}\right)}{2} + \frac{\cos 4\left(\frac{\pi}{12}\right)}{4} + \frac{3}{8} = \frac{3}{4} \{ \Rightarrow \left(\frac{\pi}{12}, \frac{3}{4}\right) \}$	M1A1
	2 4 8 4 \(\frac{12}{4}\)	[7]
	To	tal 12 marks

Part	Mark	Notes		
(a)	M1	For correct use of $cos(A + B) = cos A cos B - sin A sin B \Rightarrow$		
		$cos(A + A) = cos A cos A - sin A sin A OR cos 2 A = cos^{2} A - sin^{2} A$		
		with the Pythagorean identity to eliminate sine from the identity.		
	A1	Achieves printed answer with no errors seen.		
	cso	Left hand side must be cos2A not cos(A+A)		
(b)	M1	Uses the given result from (a), replaces $(2\cos^2 A - 1)^2$ with $(\cos 2A)^2$		
	M1	Uses the given result from (a) or a correct identity to replace		
		$\cos^2 2A$ with $\frac{\cos^4 A+1}{2}$		
	A1	Fully correct proof showing all necessary steps. (If they meet in the middle,		
	cso	they must have a conclusion, accept e.g. shown, proved, L=R, etc.)		
(b)	M1	Uses the given result from (a) on cos 4A		
ALT	M1	Uses the given result from (a) or a correct identity on cos 2A		
	A1	Fully correct proof showing all necessary steps. (If they meet in the middle,		
	cso	they must have a conclusion, accept e.g. shown, proved, L=R, etc.)		
(c)	M 1	Rearranges the given y into the form		
		$\frac{\sin 2x}{2} + \frac{\cos 4x + 1}{k} + l$, oe, where k and l are nonzero constants		
		Or $\frac{\sin^2 2x}{2} + \frac{\cos^2 4x}{P} + Q$, oe, where P and Q are nonzero constants		
	dM1	(Allow mixed variables <i>x</i> and A for this method mark only) For an attempt to differentiate their <i>y</i> into the form		
	ulvii	Pcos(2x) \pm Qsin(4x) oe, where P, Q are nonzero constants		
		$P\cos(2x) \pm Q\sin(4x)$ be, where P, Q are nonzero constants Depends on the previous method mark.		
	B1			
		Uses $\sin 4x = 2\sin 2x \cos 2x$ or $\sin 4x = \sqrt{1 - \cos^2 4x}$ oe in their dy/dx (may be		
	1 18/41	implied by correct working)		
	ddM1	Sets their differentiated expression = 0 (can be implied) and attempts a correct		
		method to solve for $x = \dots$		
	A1	Depends on both previous method marks. For $x = \frac{\pi}{2}$ ignore extra realway are extrated of given range.		
	AI	For $x = \frac{\pi}{12}$, ignore extra x values are outside of given range.		
	7.74	Withhold A mark if extra solution seen in the given range.		
	M1	For attempting to find the value of y using their x, found by solving their $\frac{dy}{dx}$ =		
		0, provided x is in the range $0 \le x \le \frac{\pi}{6}$		
		Substitutes into the given y or their y, correct answer implies this mark, but for		
		incorrect answer, must see explicit substitution		
	A1	For the correct exact coordinates of P, $\left(\frac{\pi}{12}, \frac{3}{4}\right)$ or $\left(\frac{\pi}{12}, 0.75\right)$,		
		(12 1) (12)		
		accept $x = \frac{\pi}{12}$, $y = \frac{3}{4}$ or $x = \frac{\pi}{12}$, $y = 0.75$		