Statystyczna analiza danych - projekt

Paweł Strzępka

Odczyt danych z pliku arkusza oraz ich obróbka

Dane pochodzą ze zbiorów Głównego Urzędu Statystycznego z Biutelynu Statystycznego Nr 4/2023 z dnia 25.05.2023 o częstotliwości miesięcznej. Zawierają dane z zakresu obszaru przemysłu gospodarki narodowej. Dotyczą produkcji sprzedanej przemysłu podanej w milionach PLN od roku 2010 do początku roku 2023.

```
getwd()
```

```
## [1] "D:/materialystudia/Statystycznaanaliza/Projekt"
```

```
library(readxl)
#### Odczyt danych z pliku arkusza oraz ich obrobka ####
daneraw <- read_excel("tabl46_produkcja_sprzedana_przemyslu.xlsx")
dane <- daneraw[-c(1:3),]
dane <- dane[-2,]
dane0 <- dane[,1]
dane1 <- dane[,8]
dane2 <- dane[,10]
danew <- data.frame(dane0, dane1, dane2)
colnames(danew) <- c("Miesiac", "Przetworstwo przemyslowe", "Produkcja artykulow spozywczych")
danew <- danew[-1,]
danew[,2] <- as.numeric(danew[,2])
danew[,3] <- as.numeric(danew[,3])
danew</pre>
```

##		Miesiac	Przetworstwo przemyslowe	Produkcja artykulow	spozywczych
##	2	2010 M01	53435.6		10545.7
##	3	2010 M02	55489.7		10532.7
##	4	2010 M03	67369.8		13023.2
##	5	2010 M04	61939.4		10900.3
##	6	2010 M05	64897.9		11814.8
##	7	2010 M06	70275.9		12120.8
##	8	2010 M07	66276.0		11849.2
##	9	2010 M08	64774.8		12166.0
##	10	2010 M09	73338.2		12550.8
##	11	2010 M10	71518.1		13035.0
##	12	2010 M11	70224.0		13037.8
##	13	2010 M12	66536.8		12931.0
##	14	2011 M01	62625.6		11997.4
##	1 5	2011 M02	66101.8		12263.5
##	16	2011 M03	78737.6		14066.8
##	17	2011 M04	72349.6		13458.1
##	18	2011 M05	74670.9		13255.1
##	19	2011 M06	75837.3		13418.4
##	20	2011 M07	71648.5		13152.5
##	21	2011 M08	75819.4		14392.9
##	22	2011 M09	86207.2		14927.2
##	23	2011 M10	83699.1		15465.6
##	24	2011 M11	83850.0		15607.4
##	25	2011 M12	79116.9		15342.3
##	26	2012 M01	75052.1		14266.5
##	27	2012 M02	73870.6		13944.0
##	28	2012 M03	83108.7		16081.4
##	29	2012 M04	77773.9		14489.5
##	30	2012 M05	82768.5		15592.0
##	31	2012 M06	80474.5		15069.3
##	32	2012 M07	78587.1		15126.4
##	33	2012 M08	78131.4		15670.6
##	34	2012 M09	82961.6		15566.2
##	35	2012 M10	87885.5		17356.2
##	36	2012 M11	82854.9		16593.8
##	37	2012 M12	68851.4		14946.5
##	38	2013 M01	74140.0		15654.1
##	39	2013 M02	72397.6		14444.3
##	40	2013 M03	80202.9		16638.0
##	41	2013 M04	78416.8		15290.4
##	42	2013 M05	79201.6		15534.1
##	43	2013 M06	82520.1		15316.9
##	44	2013 M07	83925.9		16263.8
##	45	2013 M08	79598.0		16110.7
##	46	2013 M09	87688.4		16510.8
##	47	2013 M10	91454.5		17616.8
##	48	2013 M11	84584.1		16650.7

##	49	2013	M12	74181.2	15844.7
##	50	2014	M01	77818.6	15681.4
##	51	2014	M02	76574.4	15068.4
##	52	2014	M03	85176.4	16123.1
##	53	2014	M04	83782.0	16484.7
##	54	2014	M05	82659.3	15628.3
##	55	2014	M06	82549.0	15533.8
##	56	2014	M07	84508.8	15552.1
##	57	2014	M08	76807.4	14992.8
##	58	2014	M09	90049.8	15752.2
##	59	2014	M10	92126.7	16636.7
##	60	2014	M11	83491.6	15430.5
##	61	2014	M12	78162.3	15588.0
##	62	2015	M01	77544.9	15008.5
##	63	2015	M02	79093.3	14442.9
##	64	2015	M03	90538.4	17073.9
##	65	2015	M04	83052.5	14669.2
##	66	2015	M05	82845.8	14863.9
##	67	2015	M06	88114.0	15500.3
##	68	2015	M07	86566.6	15680.8
##	69	2015	M08	78982.8	15552.4
##	70	2015	M09	91687.7	16327.0
##	71	2015	M10	92701.9	16917.6
##	72	2015	M11	89963.2	16470.6
##	73	2015	M12	84763.6	16277.3
##	74	2016	M01	78259.9	14929.6
##	75	2016	M02	84998.8	15310.0
##	76	2016	M03	91405.8	17193.0
##	77	2016	M04	89607.7	15868.8
##	78	2016	M05	87479.8	16299.2
##	79	2016	M06	94533.2	16774.2
##	80	2016	M07	84127.8	16357.6
##	81	2016	M08	86581.7	17276.9
##	82	2016	M09	96022.8	17641.0
##	83	2016	M10	93238.9	17971.2
##	84	2016	M11	95090.4	18350.8
##	85	2016	M12	90222.0	18239.2
##	86	2017	M01	89548.3	17167.4
##	87	2017		89354.5	16584.2
##		2017		106942.3	19608.0
##		2017		92003.4	17526.7
##	90	2017		97375.9	18411.3
##		2017		100335.0	18290.7
##		2017		91378.6	18028.1
##		2017		96402.2	19486.7
##		2017		104047.6	19112.8
##		2017		108566.5	20388.8
##	96	2017	M11	107159.7	20104.5

##	97	2017	M12	93744.4	18529.3
##	98	2018	M01	98466.1	18488.4
##	99	2018	M02	95645.5	17599.0
##	100	2018	M03	107998.9	20671.4
##	101	2018	M04	101839.2	18259.8
##	102	2018	M05	105403.0	19247.1
##	103	2018	M06	110367.4	19351.2
##	104	2018	M07	104201.8	19192.0
##	105	2018	M08	104815.7	19784.3
##	106	2018	M09	109057.3	19219.8
##	107	2018	M10	120058.2	21550.3
##	108	2018	M11	114289.5	20926.0
##	109	2018	M12	97740.9	18797.0
##	110	2019	M01	105407.6	20030.3
##	111	2019	M02	104732.8	18806.3
##	112	2019	M03	117131.6	20805.0
##	113	2019	M04	114030.8	21113.9
##	114	2019	M05	114859.7	20433.3
##	115	2019	M06	106974.7	19148.9
##	116	2019	M07	111119.3	20438.4
##	117	2019	M08	103588.8	20024.9
##	118	2019	M09	115605.5	20479.1
##	119	2019	M10	123564.9	22248.9
##	120	2019	M11	113914.7	21279.2
##	121	2019	M12	101940.2	20570.8
##	122	2020	M01	107930.2	20909.8
##	123	2020	M02	110371.0	20232.0
##	124	2020	M03	112859.6	23383.9
##	125	2020	M04	81309.9	19145.5
##	126	2020	M05	91615.0	19431.4
##	127	2020	M06	106630.8	20644.8
##	128	2020	M07	110893.8	21381.5
##	129	2020	M08	103546.6	20480.7
		2020		121294.9	21669.1
		2020		124627.8	22463.4
		2020		121530.0	21455.5
		2020		114106.1	21337.8
		2021		109027.9	20113.5
		2021		115050.9	20822.1
		2021		140583.8	25843.3
		2021		128028.5	22071.5
		2021		128604.3	23058.5
		2021		135713.8	23582.4
		2021		131599.9	22838.6
		2021		129084.3	23721.8
		2021		144298.5	24860.8
		2021		146798.5	25383.9
##	144	2021	MITT	154589.2	26254.8

##	145	2021	M12	146782.5	26013.9
##	146	2022	M01	143201.1	25123.0
##	147	2022	M02	151863.4	26063.1
##	148	2022	M03	184993.9	33648.6
##	149	2022	M04	171943.8	31949.1
##	150	2022	M05	180369.4	32416.2
##	151	2022	M06	181518.8	32527.8
##	152	2022	M07	171266.6	31790.5
##	153	2022	M08	172052.8	33894.0
##	154	2022	M09	189096.2	34720.5
##	155	2022	M10	188338.8	35397.8
##	156	2022	M11	188900.6	35687.8
##	157	2022	M12	173585.7	34902.7
##	158	2023	M01	165250.5	32661.9

Cecha nr 1 Przetworstwo przemyslowe

Wyznaczenie najmniejszej wartości

```
#### Minimum C1 ####
minimumc1 <- min(danew$`Przetworstwo przemyslowe`)
minimumc1</pre>
```

```
## [1] 53435.6
```

Wyznaczenie największej wartości

```
#### Maskimum C1####
maksimumc1 <- max(danew$`Przetworstwo przemyslowe`)
maksimumc1</pre>
```

```
## [1] 189096.2
```

Rozstęp jest najprostszą miarą rozproszenia (zmienności). Jest różnicą między wartością maksymalną a minimalną ze zbioru obserwacji. Pokazuje zatem jedynie jaki jest zakres obserwacji

```
#### Rozstep C1####
rozstepc1 <- maksimumc1 - minimumc1
rozstepc1</pre>
```

```
## [1] 135660.6
```

Wartość średnia pochodzi z sumowania poszczególnych wyników i podzielenie tej sumy przez liczbę naszych obserwacji.

```
#### Srednia C1####
sredniac1 <- mean(danew$`Przetworstwo przemyslowe`)
sredniac1</pre>
```

```
## [1] 99792.19
```

Mediana to wartość cechy w szeregu uporządkowanym, powyżej i poniżej której znajduje się jednakowa liczba obserwacji. Mediana jest kwantylem rzędu 1/2

```
#### Mediana C1####

medianac1 <- median(danew$`Przetworstwo przemyslowe`)
medianac1</pre>
```

```
## [1] 91378.6
```

Odchylenie standardowe określa, jak szeroko wartości jakiejś wielkości są rozrzucone wokół jej średniej

```
#### Odchylenie standardowe C1####

odchyleniec1 <- sd(danew$`Przetworstwo przemyslowe`)
odchyleniec1</pre>
```

```
## [1] 29589.14
```

Kwartyle to wartości, które dzielą zebrane obserwacje na cztery równe, co do ilości elementów, grupy.

```
#### Kwartyle C1####
kwartylec1 <- quantile(danew$`Przetworstwo przemyslowe`)
kwartylec1</pre>
```

```
## 0% 25% 50% 75% 100%
## 53435.6 79201.6 91378.6 110371.0 189096.2
```

Wysoka wartość współczynnika oznacza duże zróżnicowanie cechy i świadczy o niejednorodności badanej populacji, niska wartość świadczy o małej zmienności cechy i jednorodności badanej populacji. Współczynnik zmienności jest ilorazem (wynikiem dzielenia) odchylenia standardowego cechy oraz jej średniej arytmetycznej.

```
#### Wspolczynnik zmiennosci C1####
wszmiennoscic1 <- (odchyleniec1/sredniac1) * 100
wszmiennoscic1</pre>
```

```
## [1] 29.65076
```

Wariancja informuje, jak bardzo zróżnicowany jest zbiór pod kątem koncentracji wokół średniej bądź też rozproszenia. Wartość zero oznacza identyczne wartości w zbiorze.

```
#### Wariancja C1####
wariancjac1 <- var(danew$`Przetworstwo przemyslowe`)
wariancjac1</pre>
```

```
## [1] 875517367
```

Trzeci moment centralny przyjmuje wartość zero dla rozkładu symetrycznego, wartości ujemne dla rozkładów o lewostronnej asymetrii i wartości dodatnie dla rozkładów o prawostronnej asymetrii.

```
#### Moment centralny rzedu 3 C1####
library(moments)
M3C1 <- moment(danew$`Przetworstwo przemyslowe`, order=3, central=TRUE)
M3C1</pre>
```

```
## [1] 3.496676e+13
```

Jeśli wartość współczynnika asymetrii jest równy zero, oznacza to, że rozkład jest symetryczny. Ujemne wartości wskazują na skośność w lewo, natomiast dodatnie wartości wskazują na skośność w prawo.

```
#### Wspolczynnik asymetrii ####
wsp_asymetriic1 <- skewness(danew$`Przetworstwo przemyslowe`)
wsp_asymetriic1</pre>
```

```
## [1] 1.362765
```

```
#### Graficzna reprezentacja danych C1####
```

Wykres paskowy

```
#### Wykres paskowy ####
library(graphics)
stripchart(danew$`Przetworstwo przemyslowe`)
```


Histogram służy do przedstawienia liczebności obserwacji danych w zadanych przedziałach badanej zmiennej.

```
#### Histogram ####
(hist(danew$`Przetworstwo przemyslowe`, breaks=13))
```

Histogram of danew\$`Przetworstwo przemyslowe`


```
## $breaks
    [1]
         50000
                60000
                       70000
                              80000
                                     90000 100000 110000 120000 130000 140000
## [11] 150000 160000 170000 180000 190000
##
## $counts
    [1] 2 9 30 34 21 20 13
                              8
                                 2
                                     5
##
##
## $density
##
    [1] 1.273885e-06 5.732484e-06 1.910828e-05 2.165605e-05 1.337580e-05
    [6] 1.273885e-05 8.280255e-06 5.095541e-06 1.273885e-06 3.184713e-06
## [11] 1.273885e-06 6.369427e-07 2.547771e-06 3.821656e-06
##
## $mids
    [1] 55000
               65000
                       75000 85000
                                     95000 105000 115000 125000 135000 145000
##
## [11] 155000 165000 175000 185000
##
## $xname
## [1] "danew$`Przetworstwo przemyslowe`"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
```

Dystrybuanta empiryczna to dystrybuanta wyliczona wprost z danych. W takiej sytuacji nie znamy prawdziwego rozkładu i bazujemy tylko na dostępnych obserwacjach

```
#### Dystrybuanta ####
plot(ecdf(danew$`Przetworstwo przemyslowe`))
```


Wykres pudełkowy zawiera informacje odnośnie położenia, rozproszenia i kształtu rozkładu danych. Zawiera mediane, rozstęp ćwiartkowy oraz wartości odstające, które odbiegają od reszty.

Wykres pudełkowy
boxplot(danew\$`Przetworstwo przemyslowe`)


```
#### Hipotezy C1####
```

Hipoteza zerowa: Średnia wartość jest równa 100000 Hipoteza alternatywna: Średnia wartość nie jest równa 100000

Nie ma podstaw do odrzucenia hipotezy zerowej

```
#hipoteza 1 Średnia wartość jest równa 102000
t.test(danew$`Przetworstwo przemyslowe`,mu = 100000)
```

```
##
## One Sample t-test
##
## data: danew$`Przetworstwo przemyslowe`
## t = -0.088002, df = 156, p-value = 0.93
## alternative hypothesis: true mean is not equal to 1e+05
## 95 percent confidence interval:
## 95127.6 104456.8
## sample estimates:
## mean of x
## 99792.19
```

Hipoteza zerowa: Populacja ma rozkład normalny Hipoteza alternatywna: Populacja nie ma rozkładu normalnego

Odrzucamy hipotezę zerową na korzyść hipotezy alternatywnej

```
# hipoteza 2 dane mają rozkład normalny
shapiro.test(danew$`Przetworstwo przemyslowe`)
```

```
##
## Shapiro-Wilk normality test
##
## data: danew$`Przetworstwo przemyslowe`
## W = 0.86872, p-value = 1.649e-10
```

Cecha nr 2 Produkcja artykulow spozywczych

```
#### Minimum C2####
minimumc2 <- min(danew$`Produkcja artykulow spozywczych`)
minimumc2</pre>
```

```
## [1] 10532.7
```

```
#### Maskimum C2####
maksimumc2 <- max(danew$`Produkcja artykulow spozywczych`)
maksimumc2</pre>
```

[1] 35687.8

```
#### Rozstep C2####
rozstepc2 <- maksimumc2 - minimumc2
rozstepc2</pre>
```

[1] 25155.1

```
#### Srednia C2####
sredniac2 <- mean(danew$`Produkcja artykulow spozywczych`)
sredniac2</pre>
```

[1] 18646.42

```
#### Mediana C2####

medianac2 <- median(danew$`Produkcja artykulow spozywczych`)
medianac2</pre>
```

[1] 17193

```
#### Odchylenie standardowe C2####
odchyleniec2 <- sd(danew$`Produkcja artykulow spozywczych`)
odchyleniec2</pre>
```

[1] 5319.669

```
#### Kwantyle C2####
kwartylec2 <- quantile(danew$`Produkcja artykulow spozywczych`)
kwartylec2</pre>
```

```
## 0% 25% 50% 75% 100%
## 10532.7 15430.5 17193.0 20570.8 35687.8
```

```
#### Wspolczynnik zmiennosci C2####
wszmiennoscic2 <- (odchyleniec2/sredniac2) * 100
wszmiennoscic2</pre>
```

[1] 28.52917

```
#### Wariancja C2####
wariancjac2 <- var(danew$`Produkcja artykulow spozywczych`)
wariancjac2</pre>
```

[1] 28298875

```
#### Moment centralny rzedu 3 C2####
library(moments)

M3C2 <- moment(danew$`Produkcja artykulow spozywczych`, order=3, central=TRUE)
M3C2</pre>
```

[1] 218147285949

```
#### Wspolczynnik asymetrii ####
wsp_asymetriic2 <- skewness(danew$`Produkcja artykulow spozywczych`)
wsp_asymetriic2</pre>
```

[1] 1.463048

```
#### Graficzna reprezentacja danych C2####

#### Wykres paskowy ####
library(graphics)
stripchart(danew$`Produkcja artykulow spozywczych`)
```


Histogram
(hist(danew\$`Produkcja artykulow spozywczych`, breaks=13))

Histogram of danew\$`Produkcja artykulow spozywczych`


```
## $breaks
    [1] 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000
## [13] 34000 36000
##
## $counts
    [1] 6 13 39 28 21 24 8 4 3 0 2 5 4
##
## $density
   [1] 1.910828e-05 4.140127e-05 1.242038e-04 8.917197e-05 6.687898e-05
##
##
    [6] 7.643312e-05 2.547771e-05 1.273885e-05 9.554140e-06 0.000000e+00
## [11] 6.369427e-06 1.592357e-05 1.273885e-05
##
## $mids
    [1] 11000 13000 15000 17000 19000 21000 23000 25000 27000 29000 31000 33000
## [13] 35000
##
## $xname
## [1] "danew$`Produkcja artykulow spozywczych`"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
```

```
#### Dystrybuanta ####
plot(ecdf(danew$`Produkcja artykulow spozywczych`))
```

ecdf(danew\$`Produkcja artykulow spozywczych`)


```
#### Wykres pudełkowy ####
boxplot(danew$`Produkcja artykulow spozywczych`)
```


Hipoteza zerowa: Średnia wartość jest równa 19000 Hipoteza alternatywna: Średnia wartość nie jest równa 19000

Nie ma podstaw do odrzucenia hipotezy zerowej

```
#### Hipotezy C2####

#hipoteza 1 Średnia wartość jest równa 19000

t.test(danew$`Produkcja artykulow spozywczych`,mu = 19000)
```

```
##
## One Sample t-test
##
## data: danew$`Produkcja artykulow spozywczych`
## t = -0.83283, df = 156, p-value = 0.4062
## alternative hypothesis: true mean is not equal to 19000
## 95 percent confidence interval:
## 17807.80 19485.04
## sample estimates:
## mean of x
## 18646.42
```

Hipoteza zerowa: Populacja ma rozkład normalny Hipoteza alternatywna: Populacja nie ma rozkładu normalnego

Odrzucamy hipotezę zerową na korzyść hipotezy alternatywnej

```
# hipoteza 2 dane mają rozkład normalny
shapiro.test(danew$`Produkcja artykulow spozywczych`)
```

```
##
## Shapiro-Wilk normality test
##
## data: danew$`Produkcja artykulow spozywczych`
## W = 0.86382, p-value = 9.605e-11
```

Opis użytych funkcji:

getwd() - funkcja służy do pobrania bieżącego katalogu roboczego.

read_excel() - funkcja z pakietu "readxl" służy do odczytu pliku Excel do R i przechowywania danych w zmiennej.

data.frame() - funkcja z pakietu "base" tworzy ramkę danych na podstawie wektorów lub zmiennych. Używana jest do utworzenia nowej ramki danych o nazwie danew, łączącej wybrane kolumny z ramki danych daneraw.

colnames() - funkcja z pakietu "base" służy do nadania nazw kolumnom w ramce danych danew.

as.numeric() - funkcja z pakietu "base" służy do konwersji wybranych kolumn danew na format liczbowy.

min() - funkcja z pakietu "base" oblicza najmniejszą wartość wektora lub kolumny.

max() - funkcja z pakietu "base" oblicza największą wartość wektora lub kolumny.

mean() - funkcja z pakietu "base" oblicza średnią arytmetyczną wektora lub kolumny.

median() - funkcja z pakietu "stats" oblicza medianę wektora lub kolumny.

sd() - funkcja z pakietu "stats" oblicza odchylenie standardowe wektora lub kolumny.

quantile() - funkcja z pakietu "stats" oblicza kwantyle wektora lub kolumny.

var() - funkcja z pakietu "stats" oblicza wariancję wektora lub kolumny.

moment() - funkcja pochodzi z pakietu "moments", który udostępnia funkcje do obliczania momentów rozkładu. Została użyta do obliczenia trzeciego momentu centralnego

skewness() - funkcja z pakietu "moments" oblicza współczynnik asymetrii dla danej populacji. W wyniku otrzymasz wartość współczynnika asymetrii.

stripchart() - funkcja z pakietu "graphics" pochodzi z podstawowego pakietu graficznego w R. Służy do tworzenia wykresu paskowego (diagram punktowy).

hist() - funkcja z pakietu "graphics" służy do tworzenia histogramu dla określonej zmiennej.

ecdf() - funkcja z pakietu "stats" służy do tworzenia empirycznej funkcji dystrybucji skumulowanej (ECDF) dla określonej zmiennej.

boxplot() - funkcja z pakietu "graphics" służy do tworzenia wykresu pudełkowego dla określonej zmiennej.

t.test() - funkcja z pakietu "stats" służy do przeprowadzania testu t, który porównuje średnią próbkową z daną wartością lub wykonuje test t dwóch próbek.

shapiro.test() - funkcja z pakietu "stats" służy do przeprowadzania testu Shapiro-Wilka, który testuje hipotezę zerową, że populacja ma rozkład normalnego.