0.1 H16 数学 A

1 λ,μ の固有空間をそれぞれ V_{λ},V_{μ} とする. 対角化可能であるから $V=V_{\lambda}\oplus V_{\mu}$ である. $W_{\lambda}=W\cap V_{\lambda},W_{\mu}=W\cap V_{\mu}$ とする. $W_{\lambda}\cap W_{\mu}=W\cap V_{\lambda}\cap V_{\mu}=\{0\}$ である. また $w\in W$ に対して $w=w_{\lambda}+w_{\mu}$ となる $w_{\lambda}\in V_{\lambda},w_{\mu}\in V_{\mu}$ が一意的に存在する. $W\ni f(w)-\mu w=(\lambda-\mu)w_{\lambda}$ より $w_{\lambda}\in W_{\lambda}$ である. 同様に $w_{\mu}\in W_{\mu}$ である. よって $W=W_{\lambda}\oplus W_{\mu}$ である. W を f の固有空間の直和に分解できたから $f|_{W}$ は対角化可能である.

② (1)X のコンパクト集合 C をとる. $x \in X \setminus C$ を一つ固定する. 各 $y \in C$ に対して $x \in U_y, y \in V_y, U_y \cap V_y = \emptyset$ となる開集合 U_y, V_y が存在する. $\{V_y \mid y \in C\}$ は C の開被覆であるから有限部分集合 $C' \subset C$ が存在して $C \subset \bigcup_{y \in C'} V_y$ となる. $U = \bigcap_{y \in C'} U_y$ とする. U は x の開近傍であり $U \subset X \setminus C$ であるから x は C の外点. 任意の x でなりたつから C は閉集合である.

 $(2)A\cap B$ の開被覆 $S=\{U_{\lambda}\mid \lambda\in\Lambda\}$ を任意にとる. $S\cup\{X\setminus A\}$ は B の開被覆である. したがって有限部分集合 $\Lambda'\subset\Lambda$ が存在して $B\subset\bigcup_{\lambda\in\Lambda'}U_{\lambda}\cup(X\setminus A)$ となる. $A\cap B\subset\bigcup_{\lambda\in\Lambda'}U_{\lambda}$ である. したがって $A\cap B$ はコンパクト集合である.

 $\boxed{3} (1)G(x) = \int_0^x f(x,y)dy$ とする.

$$\frac{G(x+h) - G(x)}{h} = \int_0^{x+h} \frac{f(x+h,y)}{h} dy - \int_0^x \frac{f(x,y)}{h} dy = \int_x^{x+h} \frac{f(x,y)}{h} dy + \int_0^{x+h} \frac{f(x+h,y) - f(x,y)}{h} dy$$

$$= \int_0^h \frac{f(x,y+x)}{h} dy + \int_0^x \frac{f(x+h,y) - f(x,y)}{h} dy + \int_x^{x+h} \frac{f(x+h,y) - f(x,y)}{h} dy$$

である. 第一項は $\lim_{h\to 0}\int_0^h \frac{f(x,y+x)}{h}dy=\frac{\partial}{\partial h}\int_0^h f(x,y+x)dy=f(x,x)$ である.

第二項は $\frac{f(x+h,y)-f(x,y)}{h}=\frac{\partial f}{\partial x}(x+\theta h,y)$ となる $\theta\in(0,1)$ が存在して $\int_0^x \frac{f(x+h,y)-f(x,y)}{h}dy\leq\int_0^x \frac{\partial f}{\partial x}(x+\theta h,y)dy\leq\infty$ であるから優収束定理より $\lim_{h\to 0}\int_0^x \frac{f(x+h,y)-f(x,y)}{h}dy=\int_0^x \frac{\partial f}{\partial x}(x,y)dy$ である.

第三項はある 0 の近傍で $\left|\frac{f(x+h,y)-f(x,y)}{h}\right| \leq M$ であるから $\lim_{h\to 0}\int_x^{x+h}\frac{f(x+h,y)-f(x,y)}{h}dy \leq \lim_{h\to 0}\int_x^{x+h}Mdy=0$ である. よって $G'(x)=f(x,x)+\int_0^x\frac{\partial f}{\partial x}(x,y)dy$ である.

したがって $F'(x)=f(x,x)-f(x,-x)+\int_{-x}^{x}\frac{\partial f}{\partial x}(x,y)dy$ である。 さらに $F''(x)=\frac{\partial f}{\partial x}(x,x)+\frac{\partial f}{\partial y}(x,x)-\frac{\partial f}{\partial x}(x,-x)+\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)+\frac{\partial f}{\partial y}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial y}(x,x)+\frac{\partial f}{\partial y}(x$

4 広義積分が収束することを示す.被積分関数の実部は $u(x)=\frac{x\cos x-\varepsilon\sin x}{x^2+\varepsilon^2}$ で虚部は $v(x)=\frac{x\sin x+\varepsilon\cos x}{x^2+\varepsilon^2}$ である.共に原点近傍で有界である.

$$\left| \int_{-1}^{-M} \frac{x \cos x}{x^2 + \varepsilon^2} dx \right| = \left| \int_{1}^{M} \frac{x \cos x}{x^2 + \varepsilon^2} dx \right| = \left| \left[\frac{x \sin x}{x^2 + \varepsilon^2} \right]_{1}^{M} - \int_{1}^{M} \sin x \left(\frac{1}{x^2 + \varepsilon^2} - \frac{2x^2}{(x^2 + \varepsilon^2)^2} \right) dx \right|$$

$$\leq \left| \frac{M \sin M}{M^2 + \varepsilon^2} - \frac{\sin 1}{1 + \varepsilon^2} \right| + \int_{1}^{M} \left| \frac{(-x^2 + \varepsilon^2) \sin x}{(x^2 + \varepsilon^2)^2} \right| dx \leq \left| \frac{M \sin M}{M^2 + \varepsilon^2} - \frac{\sin 1}{1 + \varepsilon^2} \right| + \int_{1}^{M} \left| \frac{(x^2 + \varepsilon^2) \sin x}{x^4} \right| dx$$

よって $\int_1^\infty \frac{x\cos x}{x^2+\varepsilon^2} dx$, $\int_{-\infty}^{-1} \frac{x\cos x}{x^2+\varepsilon^2} dx$ は収束する. から u(x) の広義積分は収束する. 同様に v(x) の広義積分は収束する. したがって u(x)+iv(x) の広義積分は収束する.

 $f(z)=e^{iz}/(z-i\varepsilon)$ とすれば、f は $z\neq i\varepsilon$ で正則である。積分経路 C を原点中心の半径 $R>2\varepsilon$ の上半平面の半円板の周とする。 C_1 を実軸上の-R から R までの部分、 C_2 を半円とする。f の C での積分は留数定理

から $\int_C f(z)dz=2\pi i \mathrm{Res}(f,iarepsilon)=2\pi i e^{-arepsilon}$ である. C_2 での積分は $z=Re^{i heta}$ $(0\leq heta\leq\pi)$ とすると,

$$\left| \int_{C_2} f(z) dz \right| \le \int_0^{\pi} \left| \frac{e^{iRe^{i\theta}} Rie^{i\theta}}{Re^{i\theta} - i\varepsilon} \right| d\theta \le \int_0^{\pi} \frac{Re^{-R\sin\theta}}{R - \varepsilon} d\theta \le \frac{\pi R}{R - \varepsilon} e^{-R} \to 0 \quad (R \to \infty)$$

である. したがって $\int_{-\infty}^{\infty}f(x)dx=2\pi ie^{-\varepsilon}$ より $\frac{1}{2\pi i}\int_{-\infty}^{\infty}f(x)dx=e^{-\varepsilon}$ である.