1
81. IF cl is unitary, then lts rows and columns
2 Form an orthonormal basis For C.
102. IF the rows and alumns of U Form an orthonorm
"basis For C, then U is unitary
Proof
13 1.
Let U, U2 UN denote the columns of U. Smce y
is unitary, we have UtU = 1, where
Ut denotes the Conjugate of transpose U.
14 To show that the Columns of U Form an
15 Orthonormal Set. Let's Consider the inner product
16 OF two arbitrary Columns Ui and Ui:
$u_i, u_j = u_i^{\dagger} u_j$
18 i = j, then (Ui, Ui) = Ui = since U is unitary
19 if i + j, then (4i, 4) = Uiti; = O Smeethe column of
20 a Unitary matrix are orthogonal to each other

8 Lets proue that columns of U span C. Since Uis 9 a Square matrix of size NXN, the columns of U 10 are Ui, Ua, ..., Un Which are Al electors in CN. 11 Since they are linearly independent (as 4 is inlesh 12 they Form a basis for CN. ": The Columns of U Form an orthonormal basis 2. IF the rows and columns of I form an ortho-14 normal basis For CX, then y is unitary 15 Again, 16 Let U, Uz, --, Un denote the rows OF I and let 17 Ulis denote the ith component of the ith row 19 Since the rows of I Form an Orthonormal bass 20 For C, we have :

