Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha}$	1
$\sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	Э
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	К
$\sigma_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	Е
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\kappa} +$	
	$3 \eta^{\alpha \chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta X \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta X} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\beta} \sigma^{\delta \varepsilon}{}_{\delta} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\alpha \delta \varepsilon} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{arepsilon}\partial^{arepsilon}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\lambda} \tau^{\lambda\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$	
Total constraints/ariatons	٧	

Quadratic (free) action $S = \begin{cases} S = \frac{1}{2} \int \partial u du d$
--

$ au_{1}^{\#2}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha} t_{1}^{\#1} \alpha t_{1}^{\#2}$	0	0	0	0	0	0	0	, t2
$\sigma_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	0	0	0	0	t_1 $f_{\#}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0	A#2 f#1 f#2
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	\mathcal{A}_{i1}^{*1}
$\sigma_{1}^{\#2}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	$A^{*2} = f^{*1}$
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0	$\mathcal{A}^{\#_1}$
•	$_{L}^{\sharp 1} + \alpha \beta$	$_{L}^{\sharp 2}+^{\alpha \beta}$	$_{\lfloor + \atop \lfloor + \atop \rfloor}^{\sharp 1} + ^{lpha eta}$	$\sigma_{1}^{\#1} +^{lpha}$	$r_{1}^{\#2} + \alpha$	$t_1^{\#1} + \alpha$	$t_1^{\#2} +^{\alpha}$	

O))))))	$\sigma_0^{\#}$	0	0	0	$\frac{1}{k^2 r_2}$				
			$\frac{1}{2}k^{2}(r_{3}+2r_{5})$				$\tau_{0}^{\#2}$	0	0	0	0				
0	0	0	(r ₃ +	0	0	0	$\tau_0^{\#1}$	0	0	0	0				
			$\frac{1}{2} k^2$				$\sigma_{0}^{\#1}$	0	0	0	0				
kt_2	CII.	2						$\sigma_{0}^{\#1}\dagger$	$\tau_{0}^{\#1}$ \dagger	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger	_			
$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0			$\mathcal{A}_{0}^{\#1}$		$f_{0^{+}}^{#2}$,	$\mathcal{A}_0^{\#1}$		
		īkt ₂					$\mathcal{A}_0^{\#}$	‡ †	0	0	0		0		
$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}$ i	0	0	0	0	$f_{0}^{\#}$		0	0	0		0		
2 <i>t</i> 2 3							$f_{0}^{\#}$	² †	0	0	0		0		
⁵) +	2	- kt ₂					$\mathcal{A}_0^{\#}$	¹ †	0	0	0	k^2	$r_2 + t_2$		
r3 + r	$\frac{\sqrt{2} t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$ $\vec{i} \sqrt{2} k t_2$	0	0	0	0			${\mathcal F}$	#1 2 ⁺ αβ	$f_{2}^{\#1}$	αβ	$\mathcal{A}_{2}^{\#1}{}_{lphaeta}$	X	1 #
$\mathcal{A}_{1}^{\#1} + \alpha^{\beta} \left k^2 \left(2 r_3 + r_5 \right) + \frac{2 t_2}{3} \right $		- <u>1</u> 3					\mathcal{A}_{2}^{2}	#1 †°	αβ _ 3	$\frac{3k^2r_3}{2}$	0		0		17
$\dagger^{\alpha \beta}$	$+^{\alpha\beta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$1 + \alpha$	$\mathcal{A}_{1}^{\#2} \dagger^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	f_{2}^{2}	$_{2}^{\#1}$ †	ιβ	0	0		0		
$\mathcal{A}_1^{\#1}$	$\mathcal{A}_1^{\#_2} \dagger^{\alpha\beta}$	$f_1^{\#1}$	$\mathcal{A}_{1^{\bar{-}}}^{\#1}$	$\mathscr{A}_1^{\#}$	f_1^*	$f_1^{\#}$	$\mathscr{A}_{2}^{\sharp 1}\! +^{lphaeta\chi}$			0	0		0		
											-				

0 0 0 0 0

0 0 0 0 0 0

Massive and massless spectra

Unitarity conditions