

Calculus II

Class Information

Lecture (14): Tuesday, Friday

Exercise (7): Wednesday

Grades 20% Assignment (>2/3)

80% Examination

Attendance (>2/3)

Office hours: After each class

Textbook: Calculus, 6th Edition, James Stewart

Reading materials: MIT Open Course 18-02SC Multivariable Calculus

Prerequisites

All enrolled students must have taken Calculus I, Linear Algebra

What we will cover

Full syllabus on course website

(Mainly 2 and 3 variables, but it is able to expand to more variables)

Part 1. Multivariable calculus - differentials

Parametrized curves, Partial differentials, Differentiation of composite functions, chain rule, Local minimum/maximum of a function, Implicit functions

Part 2. Multivariable calculus - integrals

Double Integral, Triple Integral, Area, Volume

Part 3. Differential equations

Part 4. Sequence and series

Convergence, approximated functions

Differentials of Multivariable

Integrals of Multivariable

Differential Equations

Sequence and Series
Review

Calculus II

Lecture 1 Parametrized Curves

What you will learn in Lecture 1

I. How to GRAPH EQUATIONS in 3D-Space with 2-variables

II. VECTORS and the Geometry of 3D-Space

III. Parametrized Curves

Calculus $I \approx$ One-Variable Calculus

One-Variable Function

One-Variable Calculus -- derivative of f

One-Variable Function

relationship, called **function**

$$y = f(x)$$
Independent variable

dependent variable

Visualizing the average rate of change of *f*

Visualizing the instantaneous rate of change of f

The **derivative of** f **at** a, written f'(a), is defined as

Rate of change of
$$f$$
 at a $= f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

If the limit exists, then f is said to be **differentiable at** a.

One-Variable Calculus -- derivative of f

Q: How do we measure the instantaneous rate of change for distance with regard to time?

One-Variable Function
$$y = f(x)$$
 \Rightarrow $r = v_0 + vt$ Assume that $v_0 = 0$

2018/6/13 Calculus II

What you will learn in Lecture 1

I. How to GRAPH EQUATIONS in 3D-Space with 2-variables

II. VECTORS and the Geometry of 3D-Space

III. Parametrized Curves

Goal of multivariable calculus: Tools to handle problems with function of several variables.

1.2 Function of Several Variables

(We have One-Variable in Calculus I)

1.2 Function of Several Variables

Notation

One-Variable Function

$$y = f(x)$$

$$z = f(x, y)$$

Two-Variable Function

Three-Variable Function

•

One-variable problem

Two-variable problem

Three-variable problem

1.2 Function of Several Variables

Two-Variable Function

1.2 Function of Several Variables

Definition of R³

The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}$ is the set of all ordered triples of real numbers and is denoted by \mathbb{R}^3 .

In 3D, an equation in x, y, and z represents a *surface* in \mathbb{R}^3 .

In 2D, the graph of an equation involving x and y is a *curve* in \mathbb{R}^2 .

2018/6/13 Calculus II 3 2 4 x 17

1.3.1 Coordinate axes in space

Coordinate axes

Right-hand rule

1.3.2 How to graph? By Point Table!

$$z = f(x, y)$$

Two-Variable Function

Coordinate axes in 3D-space

The point (1,2,5) in **3D-space**

Point Table of $f(x,y) = x^2 + y^2$

		y									
		-3	-2	-1	0	1	2	3			
x	-3	18	13	10	9	10	13	18			
	-2	13	8	5	4	5	8	13			
	-1	10	5	2	1	2	5	10			
	0	9	4	1	0	1	4	9			
	1	10	5	2	1	2	5	10			
	2	13	8	5	4	5	8	13			
	3	18	13	10	9	10	13	18			

Q: in the table, x = 0, y = 0, z = ?

Relationship between z = f(x, y) and (x, y) dependent variable Independent variable

 \boldsymbol{x}

1.3.2 How to graph? By Point Table!

$$z = f(x, y)$$

Two-Variable Function

 $\begin{array}{c} \text{Wire frame} \\ \text{picture of } f(x,y) = x^2 + y^2 \\ \text{for } -3 \leq x \leq 3, -3 \leq y \leq 3 \end{array}$

Wire frame picture of $f(x, y) = x^2 + y^2$ with more points plotted

 $\begin{array}{c} \text{Graph of} \\ f(x,y) = x^2 + y^2 \text{ for} \\ -3 \leq x \leq 3, -3 \leq y \leq 3 \end{array}$

Point Table of $f(x, y) = x^2 + y^2$

	g									
	-3	-2	-1	0	1	2	3			
-3	18	13	10	9	10	13	18			
-2	13	8	5	4	5	8	13			
-1	10	5	2	1	2	5	10			
0	9	4	1	0	1	4	9			
1	10	5	2	1	2	5	10			
2	13	8	5	4	5	8	13			
3	18	13	10	9	10	13	18			

Relationship between z = f(x, y) and (x, y)

1.3.3 Definition: Graph of function z = f(x, y)

$$z = f(x, y)$$

Two-Variable Function

$$(x, y, 0) \in D$$
 $(x, y) \in D$

Definition: If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y)

2018/6/13 Calculus II 22

1.3.4 Plane in 3D-Space Case 1: Naïve Plane

Example: What surfaces in \mathbb{R}^3 are represented by the following equations?

$$(1) z = 3$$

(2)
$$y = 5$$

(3)
$$y = 5$$
 in \mathbb{R}^2

(a) z = 3, a plane in \mathbb{R}^3

(b)
$$y = 5$$
, a plane in \mathbb{R}^3

(c)
$$y = 5$$
, a line in \mathbb{R}^2

1.3.4 Plane in 3D-Space Case 2: General Plane

Example: Sketch the graph of the function z = f(x, y) = 6 - 3x - 2y.

General Plane

Linear function in 3D-Space

$$f(x,y) = ax + by + c$$

$$z = ax + by + c$$

$$ax + by - z + c = 0$$

Why? We will discuss later after Vector ...

What you will learn in Lecture 1

I. How to GRAPH EQUATIONS in 3D-Space with 2-variables

II. VECTORS and the Geometry of 3D-Space

III. Parametrized Curves

So far, we basically only use the points (in table) to understand several variables in 3D-Space.

Let's try another way to see:

1.4 Vectors and The Geometry of Space

1.4.1 What is Vector?

The term **vector** is used by scientists to indicate a quantity that has **both magnitude** and **direction**.

Vector ≅ {magnitude, direction}

initial point (the tail) and terminal point (the tip)

$$\overrightarrow{OA} = \boldsymbol{a} = \langle a_1, a_2 \rangle$$

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

Scalar multiples of v

1.4.2 Vector with Components $\mathbf{a} = \overrightarrow{AB} = \langle a_1, a_2 \rangle$

$$a = \overrightarrow{AB} = \langle a_1, a_2 \rangle$$

Example: Find the vector represented by the directed line segment with initial point A(2,-3,4) and terminal point B(-2,1,1).

Hint: Compare each component of two Points, how much it changed?

Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation $A\hat{B}$ is

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Representations of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$

1.4.2 Vector Length (Distance between two points)

$$\mathbf{a} = \langle a_1, a_2 \rangle$$

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

Vector initialized from origin:
$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Calculus II

$$|\overrightarrow{OA}| = \sqrt{(a_1 - 0)^2 + (a_2 - 0)^2 + (a_3 - 0)^2}$$

Vector initialized from some free point P_1 in space:

$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

1.4.2 Vector Length (Distance between two points)

Example: The vector length (distance) from the point P(2, -1,7) to the point Q(1, -3,5) is

Solution:

$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$|\overrightarrow{PQ}| = \sqrt{(1-2)^2 + (-3-(-1))^2 + (5-7)^2} = \sqrt{1+4+4} = 3$$

2018/6/13

1.4.3 Equation of Sphere (derived from Vector Length)

Example: Find an equation of a sphere with radius r and center C(h, k, l).

From vector length (distance), we derived the sphere equation.

$$|\overrightarrow{CP}| = \eta$$

$$(x-h)^2+(y-k)^2+(z-l)^2=r^2$$

1.4.5 Line in 3D-Space

(Notice: The Figure 1 in Section 13.5 (Page 830) of the textbook (6th edition) is incorrect. Here uses the Figure from 7th edition.)

A Line *L* in 3D-Space is determined by

- (1) A point on Line L
- (2) Direction of L

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

1.4.5 Line in 3D-Space – Parametric Equation

Two vectors are equal if and only if corresponding components are equal. Therefore we have the three scalar equations:

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

where $t \in \mathbb{R}$. These equations are called **parametric equations** of the line L through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$. Each value of the parameter t gives a point (x, y, z) on L.

1.4.6 Plane in 3D-Space

Dot Product Scalar product

DEFINITION If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

THEOREM If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Proof: Page 816

1.4.6 Plane in 3D-Space

Dot Product – What it can do?

COROLLARY If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

$$\mathbf{a} \cdot \mathbf{b} > 0$$

$$\mathbf{a} \cdot \mathbf{b} = 0$$

Two vectors **a** and **b** are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

$$\mathbf{a} \cdot \mathbf{b} < 0$$

Helpful to Find Normal Vector.

1.4.6 Plane in 3D-Space

A Plane *M* in 3D-Space is determined by

- (1) A point on plane M
- (2) Direction of Normal Vector of M

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz + d = 0$$

1.4 Vectors and The Geometry of Space

1.4.7 Quadric Surfaces

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

Example: Sketch the quadric surface with $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$.

These curves of intersection of the surface are called **traces** (or cross-sections) of the surface.

The ellipsoid
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

What you will learn in Lecture 1

I. How to GRAPH EQUATIONS in 3D-Space with 2-variables

II. VECTORS and the Geometry of 3D-Space

III. Parametrized Curves

1.5.1 Parametric Equations in Three Dimensions

A curve in the plane may be parameterized by the equations of the form

$$x = x(t), y = y(t), z = z(t)$$

As the parameter t changes, the point (x, y) traces out the curve with motion.

1.5.2 Parametric Equations in Three Dimensions

Example 1: Parametric equations for a rocket from the origin. Its initial x-velocity is $v_{0,x}$, and its initial y-velocity is $v_{0,y}$. (Page 877)

Trajectory

1.5.2 Parametric Equations in Three Dimensions

Additional knowledge of Vectors: Standard basis vectors

Standard basis vectors.

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$

$$\mathbf{j} = \langle 0, 1, 0 \rangle$$

$$i = \langle 1, 0, 0 \rangle$$
 $j = \langle 0, 1, 0 \rangle$ $k = \langle 0, 0, 1 \rangle$

The displacement vector from P to \vec{Q} is $4\vec{i} - \vec{j}$

1.5.2 Parametric Equations in Three Dimensions

Additional knowledge of Vectors: Standard basis vectors

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, then we can write

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle$$
$$= a_1 \langle 1, 0, 0 \rangle + a_2 \langle 0, 1, 0 \rangle + a_3 \langle 0, 0, 1 \rangle$$

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

Thus any vector in V_3 can be expressed in terms of \mathbf{i} , \mathbf{j} , and \mathbf{k} . For instance,

$$\langle 1, -2, 6 \rangle = \mathbf{i} - 2\mathbf{j} + 6\mathbf{k}$$

1.5.2 Parametric Equations in Three Dimensions

Example 2: Circle. Consider the parametric curve in the plane. (Page 658)

$$x(t) = a \cos t, y(t) = a \sin t.$$

1.5.2 Parametric Equations in Three Dimensions

Example 3: Cycloid (Page 660)

The cycloid is the trajectory of a point on a circle that is rolling without slipping along the x-axis. To be specific, we'll follow the point P that starts at the origin.

2018/6/13

1.5.2 Parametric Equations in Three Dimensions

Example 3: Cycloid (Page 660)

Review for Lecture 1

- Graph of function in 3D-Space with 2-Variables 3D coordinate system, \mathbb{R}^3 , Point Table
- Vector, Vector Length, Sphere Equation, Standard basis vector
- Equation of Line, Plane, Quadric Surface
- Normal Vector (Dot Product)
- Parametrized Curves (Parameter t; Use 'Vector view' to see it)

Assignment 1

github.com/uoaworks

References

- Textbook: Section 15.1, 13.1-13.3, 13.5, 13.6, 11.1
- MIT 18.02SC: MIT18_02SC_notes_8, MIT18_02SC_notes_9
- Calculus Single & Multivariable, 6th Editon, Hugues Hallett (Basically, figures used)