МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по общей физике

4.3.2 Дифракция света на ультразвуковой волне в жидкости

Выполнила студентка группы Б06-103: Фитэль Алена

1 Введение

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жид-костью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

2 Теоретические сведения

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega = 2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m \ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Рисунок 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Схема установки. Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Параметры установки: фокусное расстояние объектива F=30 см, одно деление винта микроскопа составляет 20 мкм, полоса пропускания фильтра $\lambda=6400\pm200$ Å.

Во второй части работы будет использован метод темного поля для определения скорости ультразвука. Для этого изменим изначальную схему согласно Рисунку 3.

Рисунок 2: Схема для наблюдения дифракции на акустической решетке

Рисунок 3: Схема для наблюдения акустической решетки методом темного поля

3 Обработка результатов

3.1 Определение скорости ультразвука по дифракционной картине

1. Измерим положения x_m дифракционных максимумов с помощью микроскопического винта для четырех частот. Результаты измерений приведены в Таблице 1. На основе таблицы для каждой из частот проведем линейную аппроксимацию зависимости $x_m(m)$ (Рисунок 3).

ν , М Γ ц	m	-4	-3	-2	-1	0	1	2	3	4
1,17	$x_m, text$	450	730	1080	1370	1730	2060	2360	2700	2950
1,82		-	50	460	1150	1590	2110	2710	3280	-
1,55		-	460	790	1230	1610	2030	2540	3000	-
3,96		-	-	440	1500	2790	3730	5070	-	-

Таблица 1: Измерение координаты m-го максимума дифракционной картины для разных частот

2. По полученным коэффициентам наклона графика определим для каждой частоты l_m/m , и по формуле (4) рассчитаем длины волн Λ для всех частот. Резульатыт приведены в Таблице 2.

ν , М Γ ц	1.17	1.55	1.82	3.96
l_m/m , MKM	133.04	177.38	225.41	478.75
Λ , mkm	1343	1082	852	401

Таблица 2: Длины волн для разных частот

3. Построим график $\Lambda(1/\nu)$. По коэффициенту наклона определим скорость ультразвука в воде из формулы (5):

$$v = 1591 \pm 52 \text{ m/c}.$$

Для сравнения табличное значение составляет $v=1490~{\rm m/c}$

Рисунок 4: Графики зависимостей $x_m(m)$ для разных частот

Рисунок 5: Графики зависимости длин УЗ-волн от частоты

3.2 Определение скорости ультразвука методом темного экрана

- 1. Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: цена деления окулярной шкалы: $C=0.60\pm0.02$.
- 2. Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум горизонтальной нитью. Таким образом, осевая составляющая фазово-модулированной волны поглощается, а боковые остаются без изменения. Получившееся поле:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im\cos\Omega x; I(x) = m^2\cos^2\Omega x = m^2\frac{1+\cos^22\Omega x}{2}$$
 (6)

Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu\Lambda \tag{7}$$

3. Проведем измерение длины ультразвуковой волны. Полученные данные и проведенные расчеты преставленны в Таблице 3.

ν, МΓц	Количество делений	Количество темных полос	Λ ,	v M/c	$\delta\Lambda$,	δv ,
	шкалы окуляра, N	акустической решетки, n	MM	v, M/C	MM	м/с
1.2	100	11	1.2	1440	0.03	36
1.56	100	13	1.0	1560	0.03	47

Таблица 3: Вычисление длины ультразвуковой волны и ее скорости распространения в воде методом темного поля.

Усреднив результат получим: $v = 1500 \pm 42$ м/с.

Наблюдаемая картина при частоте $1.20~\mathrm{M}\Gamma\mathrm{n}.$

Наблюдаемая картина при частоте $1.20~\mathrm{M}\Gamma$ ц в контрасте.

Наблюдаемая картина при частоте $1.20~\mathrm{M}\Gamma\mathrm{\mu}.$

Наблюдаемая картина при частоте $1.20~\mathrm{M}\Gamma$ ц в контрасте.

4 Обсуждение результатов ии вывод

В работе была изучена дифракция света на акустической решетки, рассчитаны длина волны ультразвука и скорость его распространения в воде двумя способами: с помощью данных. полученных после измерения дифракционной картины и с помощью метода темного поля. Полученные результаты: $v=1591\pm52$ м/с. (дифракция) и $v=1500\pm42$ м/с - темное поле, при табличном значении v=1490 м/с.