

Scikit-learn and Tour of Classifiers

Decision Tree learning

Decision Tree learning

- Based on recursive binary partition of the feature space
- Decide class based on a series of "questions"
- Partition based on axis-oriented hyperplanes ("zero weights only bias")

The number of partitions is called tree depth and determines model complexity

Very popular due to easy interpretability of the resulting decision function

Decision trees – Illustrative example

Tree depth = 3

Decision trees – Learning goal

- Learn a series of questions that will lead to a decision
- Which question? That is, which split do we choose?
 - Choose the split with the largest information gain (IG)
- We can repeat adding splits until leaf nodes are pure (all samples associated with the leaf node belong to the same class)
- Trees with only pure leaf nodes are usually too deep (overfitting!)
- Pruning a tree means removing branches or setting a limit for the maximum depth

Decision trees – Example showing feature space

Decision trees – Example showing feature space

Decision trees - Maximize information gain (IG)

Information gain (IG) of splitting along feature "f" with threshold "t", can be measured by

$$IG(D_p, (f, t)) = I(D_p) - \sum_{j=1}^{C=2} \frac{N_j(t)}{N_p} I(D_j(t))$$

- $D_n \subseteq D = \{X, y\}$ is the **subset** of the **data** at **node** n ("p": parent, "j": j-th child of parent p)
- N_n is the number of samples in D_n
- Typically, C=2 (number of child nodes); yields efficient data structures (binary trees)
- Finally, *I(D)* is the **impurity** of the data
- Choose split along the **feature with** the **maximum information gain**

$$\underset{\{f,t\}}{\operatorname{argmax}} \ IG(D_p,f,t)$$

Decision trees – Impurity measures (Classification error)

- Impurity measure (I) of a dataset associated with a node: a measure of how far away from a pure node (all samples one class) we are
- Let's give each node a unique index n; and K is the number of classes
- $D_n \subseteq D = \{X, y\}$ is the subset of the data at node n
- "Minimize probability of misclassification"

Classification error:
$$I_E(D_n) = 1 - \max_{c \in K} \{ p(c \mid D_n) \}$$

 $p(c \mid D_n)$: Sample probability of a sample having class c in data subset D_n

$$\rightarrow p(c \mid D_n) = \frac{N_c}{\sum_{c \in K} N_c} \qquad \sum_{c \in K} p(c \mid D_n) = 1$$

Decision trees – Sample probability at node

 $p(c \mid D_n)$: Sample probability of a sample having class c in data subset D_n

$$\rightarrow p(c \mid D_n) = \frac{N_c}{\sum_{c \in K} N_c} \qquad \sum_{c \in K} p(c \mid D_n) = 1$$

$$p(\bullet | D_p) = 5/11 = 0.45$$

$$p(\bullet | D_p) = 5/11 = 0.45$$

 $p(\bullet | D_p) = 6/11 = 0.55 = 1 - p(\bullet | D_p)$

$$p(\bullet | D_1) = 4/5 = 0.8$$

$$p(\blacksquare \mid D_1) = 1/5 = 0.2 = 1 - p(\bullet \mid D_1)$$

Decision trees – Sample probability at node

 $p(c \mid D_n)$: Sample probability of a sample having class c in data subset D_n

$$\rightarrow p(c \mid D_n) = \frac{N_c}{\sum_{c \in K} N_c} \qquad \sum_{c \in K} p(c \mid D_n) = 1$$

$$p(\bullet | D_p) = 5/11 = 0.45$$

$$p(\bullet | D_p) = 5/11 = 0.45$$

 $p(\bullet | D_p) = 6/11 = 0.55 = 1 - p(\bullet | D_p)$

$$p(\bullet | D_2) = 1/6 = 0.1\overline{6}$$

$$p(\blacksquare | D_2) = 5/6 = 0.8\overline{3} = 1 - p(\blacksquare | D_2)$$

Decision trees – Impurity at node

 $p(c \mid D_n)$: Sample probability of a sample having class c in data subset D_n

$$\to p(c \mid D_n) = \frac{N_c}{\sum_{c \in K} N_c}$$

Using classification error

$$I_E(D_n) = 1 - \max_{c \in K} \{ p(c \mid D_n) \}$$

Decision trees – Information gain by split

Using classification error

$$I_E(D_n) = 1 - \max_{c \in K} \{ p(c \mid D_n) \}$$

Information gain

$$IG = I(D_p) - \sum_{j=1}^{2} \frac{N_j}{N_p} I(D_j)$$

$$= 0.45 - (5/11 \cdot 0.2) - (6/11 \cdot 0.1\overline{6})$$

$$I_E(D_1) = 0.2$$

Decision trees – Information gain by split 2 (hypothetical)

Using classification error

$$I_E(D_n) = 1 - \max_{c \in K} \{ p(c \mid D_n) \}$$

Information gain

$$IG = I(D_p) - \sum_{j=1}^{2} \frac{N_j}{N_p} I(D_j)$$

$$= 0.45 - (5/11 \cdot 0) - (6/11 \cdot 0)$$
$$= 0.45$$

$$I_E(D_1) = 0$$

Decision trees – Impurity measures

Classification error:
$$I_E(D_n) = 1 - \max_{c \in K} \{ p(c \mid D_n) \}$$

Entropy:
$$I_H(D_n) := -\sum_{c \in K} p(c|D_n) \log_2 p(c|D_n)$$

(Information theory, Shannon 1948)

Gini impurity:
$$I_{Gini}(D_n) = \sum_{c \in K} p(c|D_n) \left(1 - p(c|D_n)\right) = 1 - \sum_{c \in K} p(c|D_n)^2$$

Impurity measure (I) of a dataset associated with a node: a measure of how far away from a pure node (all samples one class) we are

Decision trees – Impurity measures (overview)

Example for binary classification

Decision trees – Impurity measures (overview)

- In practice Gini impurity or Entropy are used
- They are differentiable functions (classification error is not) which simplifies finding optimal split
- They are more sensitive to changes in class probability and prefer splits which result in pure nodes with higher probability

Decision trees – Scikit-learn example Iris

- Train a decision tree on the iris data set
- from sklearn.tree import DecisionTreeClassifier
- Plot the decision tree graphically
- from sklearn.tree import plot_tree

```
03_decision_tree_iris.ipynb
```

- Examples for hyperparameters: max_depth, min_samples_leaf, criterion
- https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Decision trees – Scikit-learn example Iris

03_decision_tree_iris.ipynb

Decision trees – Scikit-learn example Iris (max_depth=2)

03_decision_tree_iris.ipynb

Decision trees – Scikit-learn example Iris (max_depth=4)

03_decision_tree_iris.ipynb

Decision trees – Scikit-learn example Iris (max_depth=20)

03_decision_tree_iris.ipynb

Overfitting!

Decision trees – Pruning trees

- Tuning the tree depth or minimal number of samples in a leaf node e.g. via grid search
- Or, for example, pruning via "cost-complexity analysis" in
 sci-kit learn (not syllabus)
 O3_decision_tree_cost_complexity.ipynb

Decision trees (summary)

- Decision trees can build complex (non-linear) decision boundaries by dividing the feature space into rectangles
- They are easy to interpret
- Need to be careful regarding depth of the decision tree
 - more complex the decision boundaries can easily result in overfitting
- Note: Feature scaling is not a requirement for decision tree algorithms
 - splits are easier to interpret with original scale

Scikit-learn and Tour of Classifiers

Random Forests

Random forests

- Combining multiple decision trees into a powerful classifier
- **Bagging** and **boosting** are methods to combine trees (more after Easter break)
- Instance of an ensemble learning algorithm (more detailed after Easter break)
- Average multiple trees (each high variance) to obtain a more robust model
- Very popular due to
 - their good classification performance
 - their scalability
 - their ease of use

Random forests – Bagging

 Goal: Build a more robust model that has a better generalisation performance and is less susceptible to overfitting

- Bagging stands for bootstrap aggregating (Breiman 1994)
- Averaging decreases the variance of the model, without increasing the bias

Random forests – Bagging

Random forest algorithm can be summarised in **four** simple steps

- 1. Draw a random **bootstrap sample** of size *n* (**randomly choose** *n* samples from the training set **with replacement**)
- 2. Grow a decision tree from the bootstrap sample. At each node
 - Randomly select d features (without replacement)
 - Split the node using the feature that provides the best split according to the objective function, for instance, maximising the information gain
- 3. Repeat the steps 1. and 2. k times (k: number of trees to be computed)
- 4. Aggregate the prediction by each tree to assign the class label by majority vote

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
100	1	1	no
260	1	3.5	yes
10	3	2.5	yes

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
100	1	1	no
260	1	3.5	yes
10	3	2.5	yes

	Volume	Clusters	Shape factor	Malignant?
•	350	4	1	no

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
100	1	1	no
260	1	3.5	yes
10	3	2.5	yes

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
260	1	3.5	yes

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
100	1	1	no
260	1	3.5	yes
10	3	2.5	yes

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
260	1	3.5	yes
100	1	1	no

Volume	Clusters	Shape factor	Malignant?	
350	4	1	no	
100	1	1	no	
260	1	3.5	yes	
10	3	2.5	yes	

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
260	1	3.5	yes
100	1	1	no
100	1	1	no

Original data

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
100	1	1	no
260	1	3.5	yes
10	3	2.5	yes

Bootstrapped sample

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
260	1	3.5	yes
100	1	1	no
100	1	1	no

Sample can occur multiple times

Some samples don't occur

Random forests – Bagging in images (select features)

Volume	Clusters	Shape factor	Malignant?
350	4	1	no
100	1	1	no
260	1	3.5	yes
10	3	2.5	yes

Randomly select features

Volume	Shape factor	Malignant?
350	1	no
100	1	no
260	3.5	yes
10	2.5	yes

Compute split that maximizes information gain among the selected features

Repeat for every node

Each split at any node may use a different subset of features

Random forests – Bagging in images (many trees)

Train many trees – each will look a bit different

Random forests – Bagging in images (voting)

Train many trees – each will look a bit different

Majority vote: **yes**

Random forests – Bagging summary

Random forest classifier (code example iris)


```
max_depth=3
n_estimators=100
n_jobs=2 (compute tree in parallel)
```

Decision boundary is smoother because it's obtained by a majority vote over 100 high variance decision trees

Random forest has usually a better generalization error than a single tree

```
03_random_forest_iris.ipynb
```

 $\tt 03_randomforest_and_decisiontree.ipynb$

Random forest classifier (summary)

- Robust classifier by averaging over many trees
- Do not offer the same level of interpretability as plain decision trees
- Typically, the more trees are used, the better
- But: using more than one tree results in higher computational effort
- Less hyperparameters to tune due to robustness
 - Number of trees (n_estimators)
 - Size of bootstrap samples → usually fixed to training size
 - Number of features to randomly select \rightarrow usually fixed to \sqrt{m} for m features

