Octave routines for network analysis

GB

October 17, 2012

Contents

0.1 Basic network theory	 	 5 6
0.2.1 getNodes.m	 	 6
· · · · · · · · · · · · · · · · · · ·	 	
		6
0.2.2 getEdges.m		 7
0.2.3 numNodes.m		 7
0.2.4 numEdges.m	 	 7
0.2.5 linkDensity.m	 	 8
0.2.6 selfLoops.m	 	 8
0.2.7 multiEdges.m	 	 8
0.2.8 averageDegree.m	 	 9
0.2.9 numConnComp.m	 	 9
0.2.10 findConnComp.m	 	 9
0.2.11 giantComponent.m	 	 10
0.2.12 tarjan.m [8][9]	 	 10
0.2.13 graphComplement.m		10
0.2.14 graphDual.m	 	 11
0.2.15 subgraph.m	 	 11
0.2.16 leafNodes.m	 	 11
0.2.17 leafEdges.m		11
1 Diagnostic routines		12
1.1 Routines	 	 $\frac{-1}{12}$
1.1.1 isSimple.m		12^{-1}
1.1.2 isDirected.m		12
1.1.3 isSymmetric.m		12
1.1.4 isConnected.m		13
1.1.5 isWeighted.m		14
1.1.6 isRegular.m		14
1.1.7 isComplete.m		14
1.1.8 isEulerian.m		14
1.1.9 isTree.m		15
1.1.10 isGraphic.m [10]		15
1.1.10 isGraphic.m [10]		

2	Con		n routines			V T6
	2.1	Graph	representations			16
	2.2	Routin	nes			17
		2.2.1	adj2adjL.m			17
		2.2.2	adjL2adj.m			18
		2.2.3	adj2edgeL.m			18
		2.2.4	edgeL2adj.m			18
		2.2.5	adj2inc.m			18
		2.2.6	inc2adj.m			18
		2.2.7	adj2str.m			19
		2.2.8	str2adj.m			19
		2.2.9	adjL2edgeL.m			19
		2.2.10	edgeL2adjL.m			20
			inc2edgeL.m			20
			adj2simple.m			20
			edgeL2simple.m			20
			symmetrize.m			21
			symmetrizeEdgeL.m			21
			addEdgeWeights.m			21
3	Cen		measures. Distributions			21
	3.1		ality, distributions over the nodes/edges			21
	3.2	Routin	nes			24
		3.2.1	degrees.m			24
		3.2.2	rewire.m			24
		3.2.3	rewireAssort.m			24
		3.2.4	rewireDisassort.m			25
		3.2.5	aveNeighborDeg.m			25
		3.2.6	sortNodesBySumNeighborDegrees.m			25
		3.2.7	sortNodesByMaxNeighborDegree.m			26
		3.2.8	closeness.m			26
		3.2.9	nodeBetweennessSlow.m [14]			26
		3.2.10	nodeBetweennessFaster.m [14]			26
		3.2.11	edgeBetweenness.m [15]			27
		3.2.12	eigenCentrality.m			27
		3.2.13	clustCoeff.m			27
		3.2.14	weightedClustCoeff.m [16]			28
		3.2.15	pearson.m [17]			28
		3.2.16	richClubMetric.m [12]			29
		3.2.17	sMetric.m [18]			29
4		tances				30
	4.1		$\operatorname{uction} \ldots \ldots \ldots \ldots \ldots \ldots$			30
	4.2		168			32
		4.2.1	simpleDijkstra.m			32
		4.2.2	dijkstra.m			32
		4.2.3	shortestPathDP.m [20]			32
		4.2.4	minSpanTree.m			32
		4.2.5	BFS.m			33
		4.2.6	kneighbors.m			33
		4.2.7	kminNeighbors.m			33
		4.2.8	diameter.m			33

	CONTE	ENTS				
	4.2.9 avePathLength.m	34				
	4.2.10 smoothDiameter.m [21]	34				
	4.2.11 closeness.m					
	4.2.12 vertexEccentricity.m	34				
	4.2.13 graphRadius.m	35				
	4.2.14 distanceDistribution.m	35				
5	Motifs	35				
	5.1 Routines	35				
	5.1.1 numConnTriples.m	35				
	5.1.2 numLoops.m	36				
	5.1.3 loops3.m	36				
	5.1.4 loops4.m	37				
	5.1.5 numStarMotifs.m	37				
6	Spectral properties	38				
	6.1 Routines	38				
	6.1.1 laplacianMatrix.m	38				
	6.1.2 graphSpectrum.m					
	6.1.3 algebraicConnectivity.m	39				
	6.1.4 fieldlerVector.m					
	6.1.5 eigenCentrality.m					
	6.1.6 graphEnergy.m [23]					
7	Modularity 40					
	7.1 Basic modularity notions	40				
	7.2 Routines					
	7.2.1 simpleSpectralPartitioning.m	40				
	7.2.2 newmanGirvan.m [15]					
	7.2.3 newmanEigenvectorMethod.m [24] [25]					
	7.2.4 newmanCommFast.m [26]					
	7.2.5 modularityMetric.m [15] [26]					
	7.2.6 louvainCommunityFinding.m [27]					
8	Links	48				
\mathbf{A}	Additional Figures	50				

Figure 1: Graph of functions in this toolbox. An edge points from routine A to routine B if routine A is used within routine B.

0 Basic network routines

0.1 Basic network theory

A graph is a set of nodes, and an associated set of links between them.

Networks are instantiations of graphs. They often represent real world systems that can be modeled as a set of connected entities.

Network theory is a modern branch of graph theory, concerned with statistics on practical instances of mathematical graphs. Graph theory and network theory references are abundant. Social science is probably the most recent instigator of the trend to see the world as a network. In 1967, Milgram conducted his famous small world experiment [1], and found that Omahans are on average six steps away by acquaintance from Bostonians. Other prominent first sources are Price's work on the graph of scientific citations in 1965 [2] and in 1998, Watts and Strogatz's paper on dynamics of small-world networks [3].

Nowadays, there is no shortage of books and reviews on networks. Below is a non-exhaustive list of good reads [4] [5] [6] [7].

- S. Wasserman and K. Faust, Social network analysis, Cambridge University Press, 1994
- Duncan J. Watts, Six degrees: The science of a Connected Age, W. W. Norton, 2004
- M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167-256 (2003)
- Alderson D., Catching the Network Science Bug: ..., Operations Research, Vol. 56, No. 5, Sep-Oct 2008, pp. 1047-1065

Here are some basic notions about graphs that are useful to understand the routines in Section 0.2.

Figure 1 illustrates a general **directed** graph. The nodes are functions from this toolbox. An edge points from function A to function B if $function\ A$ is called within $function\ B$. For example, strongConnComp is used within tarjan. Notice, also that strongConnComp points to itself, i.e. strongConnComp contains a recursion. Stand-alone functions, that use no other function, are **single nodes** in the graph, such as leafNodes, qetEdges and graphDual.

A directed graph is a graph in which the links have a direction. In the functions graph one function can call another, but the call is usually not reciprocated.

A **single node** is a node without any connections to other nodes. *graphDual* is an example of a single node in Figure 1.

A **self-loop** is an edge which starts and ends at the same node. $(strongConnComp \rightarrow strongConnComp)$ is an example of a self-loop.

Multiedges are two or more edges which have the same origin and destination pair of nodes. This can be useful in some graph representations. In the functions graph this is equivalent to some function being called twice inside another function.

Basic graph statistics are the **number of nodes** (n) and the **number of edges** (m). The functions graph has 93 nodes and 93 edges.

The **link density** is derived directly from the number of nodes and number of edges: it is the number of edges, divided by the maximum possible number of edges.

$$density = \frac{m}{n(n-1)/2} \tag{1}$$

For the functions graph, the link density is about 0.022.

The average nodal degree is the average number of links per node. This is calculated as 2m/n (every edge is counted twice towards the total sum of degrees).

$$average \ degree = \frac{2m}{n} \tag{2}$$

The functions graph has 2 links per function on average.

A graph S is a **subgraph** of graph G, if the set of nodes (and edges) of S is subset of the set of nodes (and edges) of graph G.

A disconnected graph is a graph in which there are two nodes between which there exists no path of edges. In the functions graph there is no path between *rewire* and *subgraph*. So the functions graph is disconnected. Disconnected graphs consist of multiple connected components. The largest connected component (in number of nodes) is usually called the **giant component**.

In the context of **directed graphs**, the notion of strong and weak connectivity is important. A **strongly connected graph** is a graph in which there is a path from every node to every other node, where paths respect link directionality. In Figure 1, for example, there is a path from strongConnComp to tarjan, but no path in reverse. Therefore, the component (strongConnComp, tarjan) is not strongly connected. If, however, link directionality is disregarded, this subgraph is certainly connected. A **weakly connected graph** or subgraph is a graph which is connected if considered as undirected, but not connected if link directionality is taken into account.

0.2 Routines

0.2.1 getNodes.m

Returns the list of nodes for varying graph representations.

```
% Returns the list of nodes for varying graph representation types
% Inputs: graph structure (matrix or cell or struct) and type of
%
                                                 structure (string)
%
         'type' can be: 'adj', 'edgelist', 'adjlist' (neighbor list),
%
                                           'inc' (incidence matrix)
% Note 1: only the edge list allows non-consecutive node indexing
% Note 2: no build-in error check for graph structure
%
% Example representations of a directed triangle: 1->2->3->1
            'adj' - [0 1 0; 0 0 1; 1 0 0]
%
%
            'adjlist' - {1: [2], 2: [3], 3: [1]}
%
            'edgelist' - [1 2; 2 3; 3 1] or [1 2 1; 2 3 1; 3 1 1]
%
                                            (1 is the edge weight)
            'inc' - [-1 0 1
                      0 1 -1]
% GB: last updated, Sep 18 2012
```

0.2.2 getEdges.m

Returns the list of edges for varying graph representations.

```
% Returns the list of edges for graph varying representation types
% Inputs: graph structure (matrix or cell or struct) and type of
                                                structure (string)
% Outputs: edge list, mx3 matrix, where the third column is
                                                        edge weight
% Note 1: 'type' can be: 'adj', 'edgelist', 'adjlist' (neighbor list),
                                           'inc' (incidence matrix)
% Note 2: symmetric edges will appear twice, also in undirected
                                 graphs, (i.e. [n1,n2] and [n2,n1])
% Other routines used: adj2edgeL.m, adjL2edgeL.m, inc2edgeL.m
% Example representations of a directed triangle: 1->2->3->1
            'adj' - [0 1 0; 0 0 1; 1 0 0]
%
            'adjlist' - {1: [2], 2: [3], 3: [1]}
%
            'edgelist' - [1 2; 2 3; 3 1] or [1 2 1; 2 3 1; 3 1 1]
%
                                             (1 is the edge weight)
%
            'inc' - [-1 0 1
%
                      1 -1 0
%
                      0 1 -17
% GB: last updated, Sep 18 2012
```

0.2.3 numNodes.m

Number of vertices/nodes in the network.

```
% Returns the number of nodes, given an adjacency list, or adjacency matrix
% INPUTs: adjacency list: {i:j_1,j_2 ..} or adjacency matrix, ex: [0 1; 1 0]
% OUTPUTs: number of nodes, integer
%
% GB: last update Sep 19, 2012
function n = numNodes(adjL)
n = length(adjL);
```

0.2.4 numEdges.m

Number of edges/links in the network.

```
% Returns the total number of edges given the adjacency matrix
% INPUTs: adjacency matrix, nxn
% OUTPUTs: m - total number of edges/links
%
% Note: Valid for both directed and undirected, simple or general graph
% Other routines used: selfloops.m, issymmetric.m
% GB, last updated Sep 19, 2012
```

0.2.5 linkDensity.m

The density of links of the graph. $Density = \frac{m}{n(n-1)/2}$ (n is the number of nodes and m is the number of edges).

```
% Computes the link density of a graph, defined as the number
% of edges divided by number_of_nodes(number_of_nodes-1)/2
% where the latter is the maximum possible number of edges.
%
% Inputs: adjacency matrix, nxn
% Outputs: link density, a float between 0 and 1
%
% Note: The graph has to be non-trivial (more than 1 node).
% Other routines used: numNodes.m, numEdges.m
% GB: last update Sep 19, 2012
```

0.2.6 selfLoops.m

Number of selfloops, i.e. nodes connected to themselves.

```
% Counts the number of self-loops in the graph
%
% INPUT: adjacency matrix, nxn
% OUTPUT: integer, number of self-loops
%
% Note: in the adjacency matrix representation
% loops appear as non-zeros on the diagonal
% GB: last updated, Sep 20 2012
```

0.2.7 multiEdges.m

An edge counts towards the multi-edge total if it shares origin and destination nodes with another edge.

```
% Counts the number of multiple edges in the graph
% Multiple edges here are defined as two or more edges
       that have the same origin and destination nodes.
% Note 1: This creates a natural difference in counting
                    for undirected and directed graphs.
% INPUT: adjacency matrix, nxn
% OUTPUT: integer, number of multiple edges
% Examples: multiEdges([0 2; 2 0])=2, and
%
           multiEdges([0 0 1; 2 0 0; 0 1 0])=2
% Note 2: The definition of number of multi-arcs
      (node pairs that have multiple edges across them)
      would be: mA = length(find(adj>1)) (normalized by
%
%
       2 depending on whether the graph is directed)
% GB: last updated, Sep 20 2012
```

0.2.8 averageDegree.m

The average degree (# links) across all nodes. Defined as: $\frac{2m}{n}$, where n is the number of nodes and m is the number of edges. Also, $linkDensity = \frac{averageDegree}{n-1}$.

0.2.9 numConnComp.m

Calculating the number of connected components in the graph by using the algebraic connectivity.

```
% Calculate the number of connected components
% using the Laplacian eigenvalues
% - counting the number of zeros
%
% INPUTS: adjacency matrix, nxn
% OUTPUTs: the number of connected components
%
% Other routines used: graph_spectrum.m
% GB: last updated: September 22, 2012
```

0.2.10 findConnComp.m

findConnCompI.m: Finds the connected component to which node "i" belongs to.

```
% Find the connected component to which node "i" belongs to
%
% INPUTS: adjacency matrix and index of the key node
% OUTPUTS: all node indices of the nodes in the same group
% to which "i" belongs to (including "i")
%
% Note: Only works for undirected graphs.
% Other functions used: kneighbors.m
% GB: last updated, Sep 22 2012
```

findConnComp.m: Find the connected components in an undirected graph.

```
% Algorithm for finding connected components in a graph
% Note: Valid for undirected graphs only
%
% INPUTS: adj - adjacency matrix, nxn
% OUTPUTS: a list of the components comp{i}=[j1,j2,...jk]
%
```

```
% Other routines used: findConnCompI.m, degrees.m
% GB: last updated, September 22, 2012
```

0.2.11 giantComponent.m

The largest connected component in a graph. Returns the set of nodes in the largest component, as well as its adjacency matrix.

```
% Extract the giant component of a graph;
% The giant component is the largest connected component.
% INPUTS: adjacency matrix, nxn
% OUTPUTS: giant component matrix and node indices
% Other routines used: findConnComp.m, subgraph.m
% GB: last updated: September 22, 2012
0.2.12 tarjan.m [8][9]
tarjan.m: Returns the strongly connected components in a directed graph.
% Find the stronly connected components in a directed graph
% Source: Tarjan, "Depth-first search and linear graph algorithms",
                    SIAM Journal on Computing 1 (2): 146-160, 1972
% Wikipedia description:
% http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
% Input: graph, set of nodes and edges, in adjacency list format,
         example: L{1}=[2], L{2}=[1] is a single (1,2) edge
% Outputs: set of strongly connected components, in cell array format
% Other routines used: strongConnComp.m
% GB: last updated, Sep 22, 2012
strongConnComp.m: Support function for tarjan.m.
% Support function for tarjan.m
% "Performs a single depth-first search of the graph, finding all
% successors from the node vi, and reporting all strongly connected
% components of that subgraph."
% See: http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
%
% INPUTs: start node, vi;
          graph structure (list), L
          tarjan.m variables to update: S, ind, v, GSCC
% OUTPUTs: updated tarjan.m variables: S, ind, v, GSCC
```

0.2.13 graphComplement.m

% Note: Contains recursion.
% GB: last updated, Sep 22 2012

A graph with the same nodes, but "flipped" edges: where the original graph has an edge, the complement graph doesn't, and where the original graph doesn't have an edge, the complement graph does.

```
% Returns the complement of a graph.
% The complement graph has the same nodes, but edges
% where the original graph doesn't and vice versa.
%
% INPUTs: adj - original graph adjacency matrix, nxn
% OUTPUTs: complement graph adjacency matrix, nxn
%
% Note: Assumes no multiple edges
% GB: last updated, September 23, 2012
```

0.2.14 graphDual.m

The graph dual is the inverted nodes-edges graph.

```
% Finds the dual of a graph; a dual is the inverted nodes-edges graph.
% This is also called the line graph, adjoint graph or the edges adjacency.
%
% INPUTs: adjacency (neighbor) list representation of the graph (see adj2adjL.m)
% OUTPUTs: adj (neighbor) list of the corresponding dual graph and cell array of edges
%
Note: This routine only works for undirected, simple graphs.
% GB: last updated, Sep 23, 2012
```

0.2.15 subgraph.m

0.2.16 leafNodes.m

Leaf nodes are nodes connected to only one other node.

0.2.17 leafEdges.m

Leaf edges are edges with only one adjacent edge.

1 Diagnostic routines

These are functions that return boolean values depending on some property of the graph. They are often used by other algorithms whose output may vary with different graph types.

1.1 Routines

1.1.1 isSimple.m

A **simple graph** is a graph which contains no self-loops and no multiple edges, no directed and no weighted edges.

```
% Checks whether a graph is simple
% (undirected, no self-loops, no multiple edges, no weighted edges)
%
% INPUTs: adj - adjacency matrix, nxn
% OUTPUTs: S - a Boolean variable; true (1) or false (0)
%
% Other routines used: selfLoops.m, multiEdges.m, isDirected.m
% GB: last updated, September 23, 2012
```

1.1.2 isDirected.m

This routine checks whether a graph is directed or not.

```
% Checks whether the graph is directed, using the matrix transpose function %
% INPUTS: adjacency matrix, nxn
% OUTPUTS: boolean variable, 0 or 1
%
% Note: one-liner alternative: S=not(issymmetric(adj));
% GB: last updated, Sep 23, 2012
```

1.1.3 isSymmetric.m

Checks whether a matrix is symmetric.

```
\% Checks whether a matrix is symmetric (has to be square) \%
```

```
% INPUTS: adjacency matrix, nxn
% OUTPUTS: boolean variable, {0,1}
% GB: last update, Sep 23, 2012
1.1.4 isConnected.m
Checks whether a graph is connected.
% Determine if a graph is connected
% Idea by Ed Scheinerman, circa 2006,
%
       source: http://www.ams.jhu.edu/~ers/matgraph/
%
       routine: matgraph/@graph/isconnected.m
% INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean variable, 0 or 1
% Note: This function works only for undirected graphs.
% GB: last updated, Sep 23 2012
Alternative 1 to isConnected.m
If the algebraic connectivity is >0 then the graph is connected.
a = algebraic\_connectivity(adj);
S = false; if a > 0; S = true; end
```

Alternative 2 to isConnected.m

Uses the fact that multiplying the adjacency matrix to itself k times give the number of ways to get from i to j in k steps. If the end of the multiplication in the sum of all matrices there are 0 entries then the graph is disconnected. Computationally intensive, but can be sped up by the fact that in practice the diameter is very short compared to n, so it will terminate in order of $\log(n)$? steps.

function S=isconnected(el):

```
S=false;
adj=edgeL2adj(el);
n=numnodes(adj); % number of nodes
adjn=zeros(n);
adji=adj;
for i=1:n
    adjn=adjn+adji;
    adji=adji*adj;

if length(find(adjn==0))==0
    S=true;
    return
    end
end
```

Alternative 3 to isConnected.m

Find all connected components, if their number is 1, the graph is connected. Use findConnComp.m 0.2.10.

1.1.5 isWeighted.m

Checks whether a graph has weighted links.

1.1.6 isRegular.m

A **regular graph** is a graph in which every node has the same number of links. *isRegular* checks whether a graph is regular.

```
% Checks whether a graph is regular, i.e.
% whether every node has the same degree.
%
% INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean, 0 or 1
%
% Note: Defined for unweighted graphs only.
% GB: last updated, Sep 23, 2012
```

1.1.7 isComplete.m

A complete graph is a graph in which all nodes are connected to all other nodes.

```
% Check whether a graph is complete, i.e.
% whether every node is linked to every other node.
%
INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean variable, true/false
%
% Note: Only defined for unweighted graphs.
% GB: last updated, Sep 23, 2012
```

1.1.8 isEulerian.m

Find out whether a graph is **Eulerian**.

A connected undirected graph is Eulerian if and only if every graph vertex has an even degree.

A connected directed graph is Eulerian if and only if every graph vertex has equal in- and out- degree.

```
% Check if a graph is Eulerian, i.e. it has an Eulerian circuit
% "A connected undirected graph is Eulerian if and only if
% every graph vertex has an even degree."
% "A connected directed graph is Eulerian if and only if
% every graph vertex has equal in- and out- degree."
% Note: Assume that the graph is connected.
%
```

```
% INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean variable, 0 or 1
%
% Other routines used: degrees.m, isDirected.m
% GB: last updated, Sep 23, 2012
```

1.1.9 isTree.m

Check whether a graph is a tree. A **tree** is a connected graph with n nodes and (n-1) edges.

```
% Check whether a graph is a tree
% A tree is a connected graph with n nodes and (n-1) edges.
% Source: "Intro to Graph Theory" by Bela Bollobas
%
% INPUTS: adjacency matrix, nxn
% OUTPUTS: Boolean variable, 0 or 1
%
% Other routines used: isConnected.m, numEdges.m, numNodes.m
% GB: last updated, Sep 24, 2012
```

1.1.10 isGraphic.m [10]

Check whether a sequence of number is graphic. A sequence of numbers is **graphic** if a graph exists with the same degree sequence [10].

```
% Check whether a sequence of number is graphical,
% i.e. a graph with this degree sequence exists
% Source: Erds, P. and Gallai, T.
% "Graphs with Prescribed Degrees of Vertices"
% [Hungarian]. Mat. Lapok. 11, 264-274, 1960.
%
% INPUTs: a sequence (vector) of numbers
% OUTPUTs: boolean, true or false
%
% Note: Not generalized to directed graph degree sequences.
% GB: last updated, Sep 24, 2012
```

1.1.11 isBipartite.m

Check whether a graph is bipartite. A **bipartite graph** is a graph for which the nodes can be split into two sets, A and B, such that any given edge connects a node from A to a node from B.

```
% Test whether a graph is bipartite. If so, return the two vertex sets.
% A bipartite graph is a graph for which the nodes can be split in two
% sets A and B, such that there are no edges that connect nodes within
% A or within B.
%
% Inputs: graph in the form of adjancency list (neighbor list, see adj2adjL.m)
% Outputs: true/false (boolean), empty set (if false) or two sets of vertices
%
% Note: This only works for undirected graphs.
% GB: last updated, Sep 24, 2012
```

2 Conversion routines

2.1 Graph representations

Most succintly, a graph is a set of edges. For example, $\{(n_1, n_2), (n_2, n_3), (n_4, n_4)\}$ is a representation which stands for a 4-node graph with 3 edges, one of which is a self-loop. It is also easy to see that this graph is directed and disconnected, and it has a 3-node weakly connected component (see 0.1), namely $\{n_1, n_2, n_3\}$.

For larger graphs, text or visual representation does not suffice to answer even simple questions about the graph. Below are the definitions of some common graph representations, that could be used for computation. These should help with understanding and using the conversion routines in Section 2.2.

For the following discussion, assume that \mathbf{n} is the number of nodes in a given graph, and \mathbf{m} is the number of edges.

An **adjacency matrix** is a $n \times n$ matrix A, such that A(i,j) = 1 if i is connected to j and A(i,j) = 0, otherwise. The 1s in the matrix stand for the edges. If the graph is undirected, then the matrix is symmetric, because A(i,j) = A(j,i) for any i and any j. While usually this is a 0-1 matrix, sometimes edge weights can be indicated by using other numbers, so most generally the adjacency matrix has zeros and positive entries.

An **edge list** is a matrix representation of the set of edges. For the toy example $\{(n_1, n_2), (n_2, n_3), (n_4, n_4)\}$, the edge list representation would be $[n_1 \ n_2; n_2 \ n_3; n_4 \ n_4]$. Edge lists can have weights too, for example

$$edge \ list = \left[\begin{array}{ccc} n_1 & n_2 & 0.5 \\ n_2 & n_3 & 1 \\ n_4 & n_4 & 2 \end{array} \right].$$

The **adjacency list** is the sparsest graph representation. For every node, only its list of neighbors is recorded. In Octave, one can use the cell structure to represent the adjacency list. In other languages this is known as a dictionary. The adjacency list representation of the 4-node example above is: $adjList\{n_1\} = [n_2]$, $adjList\{n_2\} = [n_3]$, $adjList\{n_4\} = [n_4]$.

The **incidence matrix** I is a table of nodes (n) versus edges (m). In other words, the rows are node indices and columns correspond to edges. So if edge e connects nodes i and j, then I(i,e) = 1 and I(j,e) = 1. For directed graphs I(i,e) = -1 and I(j,e) = 1, if i is the source node and j the target. For the above example:

$$I = egin{array}{c|cccc} & e_1 & e_2 & e_3 \ \hline n_1 & -1 & 0 & 0 \ n_2 & 1 & -1 & 0 \ n_3 & 0 & 1 & 0 \ n_4 & 0 & 0 & 1 \ \end{array}$$

There can be other representations depending on purpose, understanding, or algorithm implementation. Suppose that there is a reason to store graph information as text. Here is an example **string representation** that could be easily read and easily stored in a text file. It is essentially the adjacency list, with some string nomenclature. Nodes are indexed from 1 to n, and every node has a list neighbors (could be empty). Nodes and their lists are separated by commas (,), new neighbors by dots (.). Of course, this is arbitrary, but it is quite clear. The toy example representation is:

Four commas mean four nodes. Node 1 has one neighbor, namely node 2. Node 2 connects to node 3, node 3 has no neighbors (adjacent commas), and node 4 connects to itself. As an additional example, here is the

representation of an undirected triangle: "2.3,.1.3,.1.2,".

So there are many ways to write down and store a graph structure. Figure 2 shows one more example of all structures described above.

Figure 2: Most common graph representations: edge list, adjacency matrix, adjacency list and incidence matrix. Example of 7-node directed graph, with one self-loop. The string representation of this graph is ".2.3.4.5.6.7,.1,,.1,,.1,,.7,".

2.2 Routines

The functions in this section are conversion routines from one graph representation to another.

2.2.1 adj2adjL.m

Convert an adjacency matrix to an adjacency list.

```
% Converts an adjacency graph representation to an adjacency list.
% Note 1: Valid for a general (directed, not simple) graph.
% Note 2: Edge weights (if any) get lost in the conversion.
%
% INPUT: an adjacency matrix, nxn
% OUTPUT: cell structure for adjacency list: x{i_1}=[j_1,j_2 ...]
%
% GB: last updated, September 24 2012
```

2.2.2 adjL2adj.m

Convert an adjacency list to an adjacency matrix. This is the inverse function of adj2adjL.m 2.2.1

```
% Convert an adjacency list to an adjacency matrix.
%
INPUTS: adjacency list: length n, where L{i_1}=[j_1,j_2,...]
% OUTPUTS: adjacency matrix nxn
%
% Note: Assume that if node i has no neighbours, then L{i}=[];
% GB: last updated, Sep 25 2012
```

2.2.3 adj2edgeL.m

Convert an adjacency matrix to an edge list.

```
% Converts adjacency matrix (nxn) to edge list (mx3)
%
% INPUTS: adjacency matrix: nxn
% OUTPUTS: edge list: mx3
%
% GB: last updated, Sep 24, 2012
```

2.2.4 edgeL2adj.m

Converts edge list to adjacency matrix. This is the inverse routine of adj2edqeL.m 2.2.3.

```
% Converts edge list to adjacency matrix.
%
% INPUTS: edgelist: mx3, m - number of edges
% OUTPUTS: adjacency matrix nxn, n - number of nodes
%
% Note: information about nodes is lost: indices only (i1,...in) remain
% GB: last updated, Sep 25, 2012
```

2.2.5 adj2inc.m

Converts adjacency matrix to incidence matrix.

```
% Converts adjacency matrix to an incidence matrix
% Note: Valid for directed/undirected, simple/not simple graphs
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: incidence matrix: n x m (number of edges)
%
% Other routines used: isDirected.m
% GB: last updated, Sep 25 2012
```

2.2.6 inc2adj.m

Converts incidence matrix to adjacency matrix. This is the inverse function of adj2inc.m 2.2.5.

```
% Converts an incidence matrix representation to an
% adjacency matrix representation for an arbitrary graph.
%
INPUTs: incidence matrix, nxm (num nodes x num edges)
% OUTPUTs: adjacency matrix, nxn
%
% GB: last updated, Sep 25, 2012
```

2.2.7 adj2str.m

Converts adjacency matrix to a string graph representation.

2.2.8 str2adj.m

This is the reverse routine of adj2str.m 2.2.7. Converts a string graph representation to an adjacency matrix.

2.2.9 adjL2edgeL.m

Converts adjacency list to edge list.

```
% Converts adjacency list to an edge list.
%
% INPUTS: adjacency list
% OUTPUTS: edge list, mx3 (m - number of edges)
%
% GB: last updated, Sep 25 2012
```

2.2.10 edgeL2adjL.m

Converts an edge list to an adjacency list. This is the inverse routine of adjL2edqeL.m 2.2.9.

```
% Converts an edge list to an adjacency list.
%
% INPUTS: edge list, mx3, m - number of edges
% OUTPUTS: adjacency list
%
% Note: Information about edge weights (if any) is lost.
% GB: last updated, September 25, 2012
```

2.2.11 inc2edgeL.m

Converts incidence matrix to an edge list.

```
% Converts an incidence matrix to an edge list.
%
% Inputs: inc - incidence matrix nxm (number of nodes x number of edges)
% Outputs: edge list - mx3, m x (node 1, node 2, edge weight)
%
% Example: [-1; 1] <=> [1,2,1], one directed (1->2) edge
% GB: last updated, Sep 25 2012
```

2.2.12 adj2simple.m

Removes self-loops and multi-edges from an adjacency matrix. Also symmetrizes the matrix and removes edge weights to produce the matrix of the corresponding simple graph.

2.2.13 edgeL2simple.m

Removes self-loops and multi-edges from an edge list. Also symmetrizes the edge list and removes edge weights to produce the edge list of the corresponding simple graph.

```
% Convert an edge list of a general graph to the edge list of a
% simple graph (no loops, no double edges, no edge weights, symmetric)
%
% INPUTS: edgelist (mx3), m - number of edges
% OUTPUTs: edge list of the corresponding simple graph
%
% Note: Assumes all node pairs [n1,n2,x] occur once;
% if else see addEdgeWeights.m
% GB: last updated, Sep 25, 2012
```

2.2.14 symmetrize.m

```
% Symmetrize a non-symmetric matrix,
% i.e. returns the undirected version of a directed graph.
% Note: Where mat(i,j)~=mat(j,i), the larger (nonzero) value is chosen
% INPUTS: a matrix - nxn
\% OUTPUT: corresponding symmetric matrix - nxn
% GB: last updated: October 3, 2012
function adj_sym = symmetrize(adj)
adj_sym = max(adj,transpose(adj));
2.2.15 symmetrizeEdgeL.m
% Making an edgelist (representation of a graph) symmetric,
% i.e. if [n1,n2] is in the edge list, so is [n2,n1].
% INPUTs: edge list, mx3
% OUTPUTs: symmetrized edge list, mx3
% GB: last updated, October 3, 2012
Alternative to symmetrizeEdgeL.m using edgeL2adj.m, symmetrize.m and adj2edgeL.m.
def symmetrizeEdgeL(el):
    adj=edgeL2adj(el);
    adj=symmetrize(adj);
    el=adj2edgeL(adj);
   return el
2.2.16 addEdgeWeights.m
Adding edges that occur multiple times in an edge list; summing weights.
% Add multiple edges in an edge list
% INPUTS: original (non-compact) edge list
% OUTPUTS: final compact edge list (no row repetitions)
% Example: [1 2 2; 2 2 1; 4 5 1] -> [1 2 3; 4 5 1]
% GB: last updated, Sep 25 2012
```

3 Centrality measures. Distributions

3.1 Centrality, distributions over the nodes/edges

Node centrality refers to the place of nodes in the network, that is how are they connected to all other nodes in a local or global sense. Generally, there are centralities based on the number of links per node, or based on the number of paths that go through a node. These two are not necessarily unrelated, but over the entire

network, there could be nodes that do not score high in all centrality measures. The choice of measure usually depends on the question.

Most centrality notions were originally coined in the social networks literature [4]. Newman also provides a good review of centrality measures and distributions in [6]. Below follow basic definitions of the most popular centrality measures. Literature sources, where relevant, are cited in the text. The simple graphs in Figure 3 are used as examples.

Figure 3: Simple graph examples: a star, a circle, a "bowtie" graph and a lattice graph.

The **degree** of a node is the number of links adjacent to that node. The **total degree** is the sum total of in- and out-degrees. For an undirected graph, the *total degree* is usually just called the *degree*. The **degree** sequence is the list of degrees of all nodes. Not all sequences of non-negative numbers correspond to the degree sequence of a graph (see 1.1.10). The degree sequence of the star graph in Figure 3 is [5,1,1,1,1,1], whereas the degree sequence of the bowtie graph is [2,2,3,3,2,2].

The **degree distribution** P(k) is defined as the fraction of nodes with degree k. So if n_k nodes have degree k, then $P(k) = n_k/n$. The degree distribution of the bowtie graph is P(2) = 2/3, P(3) = 1/3. Often the **cumulative degree distribution** is used: P(k) is the fraction of nodes with degree greater than or equal to k.

There are two definitions of **clustering coefficient** [6]. In both, the goal is to measure how close-knit triples of connected nodes are. The first definition (eq 3) has a *global* perspective:

$$C = \frac{number\ of\ loops\ of\ size\ 3}{number\ of\ connected\ triples} \tag{3}$$

The second definition (eq 4) computes the clustering coefficient for every node and then takes the average over the entire graph. Let L be the adjacency list representation of the graph, and A be the adjacency matrix. Then L(i) is the list of neighbors of i.

$$C_{i} = \frac{\sum_{j,k \in L(i), j < k} A(j,k)}{\binom{|L(i)|}{2}} \qquad C = \frac{1}{n} \sum_{i=1}^{n} C_{i}$$
 (4)

Another way to write this on one line, using only the adjacency A is:

$$C = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{(\sum_{j=1}^{n} A(i,j))(\sum_{j=1}^{n} A(i,j) - 1)} \sum_{j=1}^{n} \sum_{k=1}^{n} A(i,j)A(i,k)A(j,k)$$

Among the example graphs in Figure 3 the star graph, the circle and the lattice graph all have zero clustering coefficients. That is easy to see, as none of them have triangle loops. So the clustering coefficient according to the first definition is automatically zero. In the second definition, for any node, no two of its neighbors are connected, so the first sum in equation 4 is zero. The bowtie graph, however, has a positive clustering coefficient. According to the first definition (eq 3), C = 2/6 = 1/3. And according to the second (eq 4),

 $C = \frac{1}{6}(1+1+1/3+1/3+1+1) = 7/9$. Therefore, the two definitions give different results between 0 and 1 (with some exceptions).

Assortativity deals with the question of whether nodes with similar degree connect to each other. It is essentially the degree-degree correlation across edges. The star example in Figure 3 is an example of the most disassortative graph: all lowest-degree nodes connect to the highest-degree node. The degree-degree correlation of this graph is -1. On the other hand, the circle graph in Figure 3 is most assortative: all nodes connect to nodes of the same degree. A *neutral* graph in terms of assortativity should be a random graph - because there is no preference in which nodes attach to which. The random graph should have a degree correlation of 0 (see Figure 9).

The **pearson degree correlation** is used to measure assortativity. It is defined as

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$
 (5)

where the sums are over the edges, and x and y are such that x_i and y_i are the degrees of the nodes at the ends of edge i. Note that for these x and y, it is always true that $\bar{x} = \bar{y}$.

Rewiring means moving edges, while keeping the nodes the same. Usually, rewiring experiments are **degree-preserving rewiring** experiments. That means that no matter how the ends of edges are relabeled, the degree of every node remains the same. This is done to determine to what extent graph topology depends on the degree distribution. It turns out, however, that there is a huge diversity of graphs with the same degree sequence [11]. The lattice graph in Figure 3 is a rewired version of the bowtie graph. Indeed, both graphs are connected and both have degree sequence [2, 2, 3, 3, 2, 2].

The **rich club metric** [12] measures the density of links among nodes which have a degree higher than some threshold degree. Intuitively, if all the highly-connected individuals are connected, then there's a *rich club*. If k is the threshold degree, and N_k is the set of nodes with $deg(i) \ge k$, then the rich club metric is defined as $\phi_k = linkDensity(G(N_k))$, where $G(N_k)$ is the subgraph of G defined by the set of nodes N_k . The link density is computed as in Section 0.2.5. The same can be written as $\phi_k = numEdges(G(N_k))/\binom{|N_k|}{2}$. For the bowtie graph $\phi_2 = 7/15$, $\phi_3 = 1$.

The **rich club distribution** is simply the rich club metric computed at different threshold degrees. The threshold k can vary from 0 to n-1, where n is the number of nodes. Often the rich club metric or distribution is normalized by the corresponding values for a random graph with the same degree distribution [12].

The eigenCentrality routine 3.2.12 is an implementation of eigenvector centrality. Eigenvector centrality reflects how important are all neighboring nodes. So high centrality will have nodes adjacent to high-scoring nodes. Eigenvector centrality is defined in [13]. If a node i's score x_i is the sum of score of all its neighboring nodes, then: $x_i = \frac{1}{\lambda} \sum_{j, s.t.} A(i,j) = 1$ $x_j = \frac{1}{\lambda} \sum_{j} A(i,j) x_j$. In vector form, $x = \frac{1}{\lambda} Ax \Rightarrow Ax = \lambda x$. The positive solution is given by the eigenvector corresponding to the largest eigenvalue (by the Perron-Frobenius theorem). Therefore, the eigenvector centrality is defined as the eigenvector corresponding to the largest eigenvalue. PageRank is a version of this idea.

Betweenness centrality [14] is a centrality measure for a node which reflects how many paths go through that node. More precisely, if node k sits on a shortest path between some nodes i and j, then this path counts towards the *betweenness* of k. Suppose σ_{ij} is the number of shortest paths between i and j and $\sigma_{ij}(k)$ is the number of shortest paths betweenness of node k is

defined as:

$$nodeBetw(k) = \sum_{\substack{all \ i, j \ s.t. \\ i \neq k \neq j}} \frac{\sigma_{ij}(k)}{\sigma_{ij}}$$

$$(6)$$

In practice, the betweenness is normalized by the number of node pairs $\binom{n}{2}$ (for directed graphs $2\binom{n}{2}$).

The above definion of betweenness is really about **node betweenness**. The same framework is extensible to edges, and hence **edge betweenness** is proportional to the number of shortest paths that go through a given edge. An edge betweenness algorithm is given in [15]. The highest betweenness edge in the bowtie graph is the $3\leftrightarrow 4$ edge.

3.2 Routines

3.2.1 degrees.m

Returns the total degree, and in- and out-degree sequence of an arbitrary adjacency matrix. The **total degree** of a node is the number of all links adjacent to that node. The **in-degree** is the number of incoming links, and the **out-degree** is the number of outdoing links.

3.2.2 rewire.m

Degree-preserving rewiring. A graph is rewired k number of times (edges are moved k times), while the degree of every node stays the same.

Other code on random rewiring by Maslov is available here http://www.cmth.bnl.gov/~maslov/matlab.htm.

```
% Degree-preserving random rewiring.
% Note 1: Assume unweighted undirected graph.
%
% INPUTS: edgelist, el (mx3) and number of rewirings, k (integer)
% OUTPUTS: rewired edgelist
%
% GB: last updated, Sep 26, 2012
```

3.2.3 rewireAssort.m

Degree-preserving rewiring with increasing assortativity.

```
% Degree-preserving random rewiring
% Every rewiring increases the assortativity (pearson coefficient)
%
% Note 1: There are rare cases of neutral rewiring
% (coeff stays the same within numerical error)
% Note 2: Assume unweighted undirected graph
%
% INPUTS: edge list, el (mx3) and number of rewirings, k
% OUTPUTS: rewired edge list
%
% Other routines used: degrees.m
% GB: last updated, Sep 27 2012
```

3.2.4 rewireDisassort.m

Degree-preserving rewiring with decreasing assortativity.

```
% Degree-preserving random rewiring.
% Every rewiring decreases the assortativity (pearson coefficient).
%
% Note 1: There are rare cases of neutral rewiring
% (pearson coefficient stays the same within numerical error).
% Note 2: Assume unweighted undirected graph.
%
% INPUTS: edge list, el and number of rewirings, k (integer)
% OUTPUTS: rewired edge list
% GB: last updated, Sep 27 2012
```

3.2.5 aveNeighborDeg.m

Computes the average degree of neighboring nodes for every vertex.

```
% Computes the average degree of neighboring nodes for every vertex.
% Note: Works for weighted degrees (graphs) also.
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: average neighbor degree vector, 1xn
%
% Other routines used: degrees.m, kneighbors.m
% GB: last updated, Sep 28, 2012
```

${\bf 3.2.6}\quad {\bf sortNodesBySumNeighborDegrees.m}$

Return graph node indices in order of decreasing nodal degree, and where there's equality, by the sum of neighbor degrees, and sum of neighbor degrees 2 links away, and so on. Ideas from [18] and [19].

```
% Sort nodes by degree, and where there's equality,
% by sum of neighbor degrees and then neighbors' neighbors degree and so on
% Ideas from s-max algorithm by Li et al 2005 "Towards a theory of scale-free graphs"
% and Guo, Chen, Zhou, "Fingerprint for Network Topologies"
%
% INPUTS: adjacency matrix, Os and 1s, nxn
% OUTPUTS: sorted sequence (nx1), where n is the number of
```

```
%
                                rows/cols of the adjacency
% Other routines used: degrees.m, kneighbors.m
% GB: last update, Oct 4, 2012
3.2.7 sortNodesByMaxNeighborDegree.m
Return nodal indices sorted nodes by degree, and where there's equality, by maximum neighbor degree.
% Sort nodes by degree, and where there's equality, by maximum neighbor degree
% Ideas from Guo, Chen, Zhou, "Fingerprint for Network Topologies"
% INPUTS: adjacency matrix, Os and 1s, nxn
% OUTPUTS: sorted sequence of nodal indices (nx1)
% Other routines used: degrees.m, kneighbors.m
% GB: last updated, Oct 4, 2012
3.2.8 closeness.m
Computes the closeness centrality for all vertices.
% Computes the closeness centrality for every vertex:
                       1/sum(dist to all other nodes)
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: vector of closeness centralities, nx1
% Source: social networks literature (example:
       Wasserman, Faust, "Social Networks Analysis")
%
% Other routines used: simpleDijkstra.m
% GB: last updated, Sep 28, 2012
3.2.9 nodeBetweennessSlow.m [14]
Returns the betweenness centrality of all vertices [14].
% This function returns the betweenness measure of all vertices.
% Betweenness centrality measure: number of shortest paths running through a vertex.
% Note 1: Valid for a general graph.
% Node 2: Using 'number of shortest paths through a node' definition.
% INPUTS: adjacency or distances matrix (nxn)
% OUTPUTS: betweeness vector for all vertices (1xn)
% Other routines used: numNodes.m, shortestPathDP.m
```

3.2.10 nodeBetweennessFaster.m [14]

% GB: Sep 28, 2012

A faster node betweenness algorithm (same input/output as 3.2.9).

```
% Betweenness centrality measure: number of shortest paths running through a vertex.
% Compute for all vertices, using Dijkstra's algorithm,
% and the 'number of shortest paths through a node' definition.
% Note: Valid for a general connected graph.
%
% INPUTS: adjacency or distances matrix, nxn
% OUTPUTS: betweeness vector for all vertices (1xn)
%
% Other routines used: dijkstra.m
% GB: Sep 29 2012
```

3.2.11 edgeBetweenness.m [15]

Computes edge betweenness. Analogous to node betweenness, edge betweenness is proportional to the number of shortest paths going through an edge. Algorithm described in [15].

```
% Edge betweenness routine, based on shortest paths.
% Source: Newman, Girvan, "Finding and evaluating community structure in networks"
% Note: Valid for undirected graphs only.
%
% INPUTs: edge list, mx3, m - number of edges
% OUTPUTs: w - betweenness per edge, mx3
%
% Other routines used: adj2edgeL.m, numNodes.m, numEdges.m, kneighbors.m
% GB: last modified, Sep 29, 2012
```

3.2.12 eigenCentrality.m

The eigenCentrality vector is essentially the eigenvector corresponding to the largest eigenvalue of the adjacency matrix. The \mathbf{i}^{th} component of this eigenvector gives the centrality score of the \mathbf{i}^{th} node in the network.

```
% The ith component of the eigenvector corresponding to the greatest % eigenvalue gives the centrality score of the ith node in the network. %
% INPUTs: adjacency matrix, nxn
% OUTPUTs: eigen(-centrality) vector, nx1
%
% GB: last updated, Sep 29, 2012
```

3.2.13 clustCoeff.m

Compute two clustering coefficients: one based on loops, and one based on local clustering (triangles). The first clustering coefficient is defined as the number of 3-loops (triangles), divided by the number of connected triples. The second clustering coefficient is node-centric. For all neighbor nodes of node i it measures what fraction connect with each other. A good review of clustering coefficients can be found in [6].

```
% Note: Valid for directed and undirected graphs
% INPUT: adjacency matrix, nxn
% OUTPUT: two graph average clustering coefficients (C1, C2)
          and clustering coefficient vector C (where mean(C) = C2)
% Other routines used: degrees.m, isDirected.m, kneighbors.m, numEdges.m,
                                   subgraph.m, loops3.m, numConnTriples.m
% GB: Sep 29, 2012
3.2.14 weightedClustCoeff.m [16]
Clustering coefficient for weighted graphs. Definition from [16].
% Weighted clustering coefficient.
% Source: Barrat et al, The architecture of complex weighted networks
% INPUTS: weighted adjacency matrix, nxn
% OUTPUTs: vector of node weighted clustering coefficients, nx1
% Other routines used: degrees.m, kneighbors.m
% GB: last updated, Sep 30 2012
Alternative to weightedClustCoeff.m
  functopn wC = weightedClustCoeff(adj):
  wadj=adj;
  adj=adj>0;
  [wdeg,~,~]=degrees(wadj);
  [deg,~,~]=degrees(adj);
  n=size(adj,1); % number of nodes
  wC=zeros(n,1);
  for i=1:n
      if deg(i)<2; continue; end
      s=0;
      for ii=1:n
          for jj=1:n
              s=s+adj(i,ii)*adj(i,jj)*adj(ii,jj)*(wadj(i,ii)+wadj(i,jj))/2;
          end
      end
      wC(i)=s/(wdeg(i)*(deg(i)-1));
  end
```

3.2.15 pearson.m [17]

Pearson degree correlation. Algorithm and ideas from [17].

```
% Calculating the Pearson coefficient for a degree sequence.
% Source: "Assortative Mixing in Networks", M.E.J. Newman, Phys Rev Let 2002
% INPUTs: M - (adjacency) matrix, nxn (square)
% OUTPUTs: r - Pearson coefficient
% Other routines used: degrees.m, numEdges.m, adj2inc.m
% GB: last updated, October 1, 2012
3.2.16 richClubMetric.m [12]
Rich club metric. Algorithm and ideas from [12].
% Compute the rich club metric for a graph.
% Source: Colizza, Flammini, Serrano, Vespignani,
% "Detecting rich-club ordering in complex networks",
%
                      Nature Physics, vol 2, Feb 2006
%
% INPUTs: adjacency matrix, nxn, k - threshold number of links
% OUTPUTs: rich club metric
% Other routines used: degrees.m, subgraph.m, numEdges.m
% GB: last updated, October 1, 2012
3.2.17 sMetric.m [18]
S-metric: the sum of products of nodal degrees across all edges. Definition and applications described in
[18].
\mbox{\%} The sum of products of degrees across all edges.
% Source: "Towards a Theory of Scale-Free Graphs:
%
         Definition, Properties, and Implications",
                  by Li, Alderson, Doyle, Willinger
\% Note: The total degree is used regardless of
          whether the graph is directed or not.
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: s-metric
% Other routines used: degrees.m
% GB: last updated, Oct 1 2012
Alternative to sMetric.m:
def sMetric(adj):
  [deg,~,~]=degrees(adj);
  el=adj2edgeL(adj);
  s=0;
  for e=1:size(e1,1)
      if el(e,1) == el(e,2)
          % count self-loops twice
```

```
s=s+deg(el(e,1))*deg(el(e,2))*el(e,3)*2;
else
    % multiply by the weight for edges with weights
    s=s+deg(el(e,1))*deg(el(e,2))*el(e,3);
end
end
```

4 Distances

4.1 Introduction

Distances in graphs are interesting to many fields, from transportation, logistics to social science and media. Milgram's letters experiment [1] brought attention to the distance between people in social networks via acquaintance. The six degrees of separation term talks about distance.

The simplest types of distance notion in a graph is the **shortest path**. The shortest path from a node i to a node j is a path of edges that connects the two nodes, and it is the shortest possible in number of edges. If the edges have weight or cost, or there are constraints, the shortest path definition can vary. The prefered way to travel by air from Boston to Los Angeles could be the fastest - direct, or the cheapest - through various airport hubs, or a combination of the two.

Another distance-related notion is **small-world networks**. These are networks in which the distances are short with respect to the size of the network. More precisely, the diameter of the graph scales as log(n), where n is the number of nodes. Figure 4 shows an example of a small-world graph.

In this section most routines use the basic shortest path algorithm, by Dijkstra (see simpleDijkstra.m and dijkstra.m).

The diameter is the maximum shortest path over the shortest paths for all pairs of nodes.

The average path length is the average shortest path.

The two above are just two summaries of the distance distribution. The **distance distribution** is the frequency distribution of distances in the graph. Distance distributions can reveal graph structure. For example, Figure 5 shows that the Lufthansa network and a random graph with the same size and density have different distance distributions.

Figure 4: Small-world network example: the graph of the Lufthansa air routes from July 2006; 470 nodes (airports) and diameter of 5 ($log(470) \sim 6.15$). So 5 is the largest number of hops that need to be traveled to reach any airport from any starting location.

Figure 5: The distance distribution of the Lufthansa network from Figure 4 versus the distance distribution of a random graph with the same size (470 nodes) and same density (0.02).

4.2 Routines

4.2.1 simpleDijkstra.m

Computing distances from a given node to all other nodes in the graph, without remembering the paths.

```
% Implements a simple version of the Dijkstra shortest path algorithm
% Returns the distances from a single vertex to all others, doesn't save the path
%
% INPUTS: adjacency matrix, adj (nxn), start node s (index between 1 and n)
% OUTPUTS: shortest path length from start node to all other nodes, 1xn
%
% Note: Works for a weighted/directed graph.
% GB: last updated, September 28, 2012
```

4.2.2 dijkstra.m

Dijkstra's algorithm. This routine returns the shortest distances, as well as the paths.

```
% Dijkstra's algorithm.
%
% INPUTS: adj - adjacency matrix (nxn), s - source node, target - target node
% OUTPUTS: distance, d and path, P (from s to target)
%
% Note: if target==[], then dist and P include all distances and paths from s
% Other routines used: adj2adjL.m
% GB: last updated, Oct 5, 2012
```

4.2.3 shortestPathDP.m [20]

Shortest path algorithm using dynamic programming. Returns the minimum weight path length and the route. Ideas from [20].

```
% Shortest path algorithm using dynamic programming.
% Note: Valid for directed/undirected network.
% Disclaimer: if links have weights, they are treated as distances.
% Source: D. P. Bertsekas, Dynamic Programming and Optimal Control,
                              Athena Scientific, 2005 (3rd edition)
%
%
% INPUTs: L - (cost/path lengths matrix), s - (start/source node),
                                        t - (end/destination node)
%
% OUTPUTS:
%
        route - sequence of nodes on optimal path, at current stage
%
        ex: route(i,j) - best route from j to destination in (i) steps
%
        Jo - optimal cost function (path length)
% GB: last updated, Oct 5 2012
```

4.2.4 minSpanTree.m

Returns the minimum spanning tree, using Prim's algorithm.

```
% Prim's minimal spanning tree algorithm
% Prim's alg idea:
```

```
% start at any node, find closest neighbor and mark edges
% for all remaining nodes, find closest to previous cluster, mark edge
% continue until no nodes remain
%
% INPUTS: graph defined by adjacency matrix, nxn
% OUTPUTS: matrix specifying minimum spanning tree (subgraph), nxn
%
% Other routines used: isConnected.m
% GB: Oct 7, 2012
```

4.2.5 BFS.m

Breadth-first search.

```
% Implementation of breadth-first-search of a graph.
% Returns a breadth-first-search tree.
%
% INPUTs: adjacency list (nxn), start node index
% OUTPUTs: BFS tree, in adjacency list {} format (directed)
%
% GB: last updated, Oct 7 2012
```

4.2.6 kneighbors.m

Returns the list of nodes k links away from a start node i_0 . If the graph is undirected, i_0 will appear among the list of its own k-neighbors if k is even.

```
% Finds the number of k-neighbors (k links away) for every node
%
% INPUTS: adjacency matrix (nxn), start node index, k - number of links
% OUTPUTS: vector of k-neighbors indices
%
% GB: last updated, Oct 7 2012
```

4.2.7 kminNeighbors.m

Returns the indices of nodes that are minimum k links away from a given node i_0 .

4.2.8 diameter.m

The diameter is the longest shortest path in the graph.

```
% The longest shortest path between any two nodes nodes in the network.
% INPUTS: adjacency matrix, nxn
% OUTPUTS: network diameter
%
% Other routines used: simpleDijkstra.m
% GB: last updated, Oct 8 2012
```

4.2.9 avePathLength.m

The average path length is the average shortest path.

```
% Compute average path length for a network - the average shortest path
% Note: works for directed/undirected networks
%
% INPUTS: adjacency (or weights/distances) matrix, nxn
% OUTPUTS: average path length
%
% Other routines used: simpleDijkstra.m
% GB: Oct 8, 2012
```

4.2.10 smoothDiameter.m [21]

A relaxed or smoothed definition of diameter: the number d at which a threshold fraction p of pairs of nodes are at distance at most d. This diameter can be non-integer using interpolation. The definition and the idea come from [21].

4.2.11 closeness.m

Closeness can be classified under centralities, as well as distance measures. This routine is described in Section 3.2.8.

4.2.12 vertexEccentricity.m

The vertex eccentricity (of node i) is defined as the maximum distance to any other node.

```
% Vertex eccentricity - the maximum distance to any other vertex.
%
% Input: adjacency matrix, nxn
% Output: vector of eccentricities for all nodes, 1xn
```

```
%
% Other routines used: simpleDijkstra.m
% GB: last updated, Oct 10, 2012
```

4.2.13 graphRadius.m

The minimum vertex eccentricity is the graph radius. See Section 4.2.12.

```
% The minimum vertex eccentricity is the graph radius.
%
% Inputs: adjacency matrix (nxn)
% Outputs: graph radius
%
% Other routines used: vertexEccentricity.m
% GB: last updated, Oct 10 2012
```

4.2.14 distanceDistribution.m

The distribution of distances in the graph here is defined as the fraction of pairs of nodes at a distance x, for all integer x between 1 and n-1. The number of pairs at some distance is divided by the total number of pairs n(n-1) to obtain the fraction. This definition is used in [22].

5 Motifs

5.1 Routines

5.1.1 numConnTriples.m

 $triangle = [0 \ 1 \ 1; 1 \ 0 \ 1; 1 \ 1 \ 0]$

```
% Counts the number of connected triples in a graph.
% Note: works for undirected graphs only
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: integer - number of connected triples
%
% Other routines used: kneighbors.m, loops3.m
% GB: last updated, October 4, 2012
Examples:
```

```
> numConnTriples(triangle)
ans = 1
adj = [0\ 1\ 0; 1\ 0\ 0; 0\ 0\ 0] \# an edge and a single node
> numConnTriples(adj)
ans = 0
bowtie = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1; 0\ 0\ 0\ 1\ 1\ 0];
> numConnTriples(bowtie)
ans = 6
5.1.2 numLoops.m
Calculate the number of independent loops/cycles. Use G = m - n + c.
% Calculate the number of independent loops (use G=m-n+c)
%
       where G = num loops, m - num edges, n - num nodes,
                         c - number of connected components
% This is also known as the "cyclomatic number": the number of edges
% that need to be removed so that the graph doesn't have cycles.
% INPUTS: adjacency matrix, nxn
% OUTPUTs: number of independent loops (or cyclomatic number)
% Other routines used: numNodes.m, numEdges.m, findConnComp.m
% GB: last updated, Oct 5 2012
Examples:
bowtie = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1; 0\ 0\ 0\ 1\ 1];
> numLoops(bowtie)
ans = 2
undirected\_tree = [0 \ 1 \ 1; 1 \ 0 \ 0; 1 \ 0 \ 0]
> numLoops(undirected\_tree)
ans = 0
5.1.3 loops 3.m
Count all cycles of size 3 in the graph.
% Calculates number of loops/cycles of length 3
% INPUTs: adj - adjacency matrix, nxn
% OUTPUTs: L3 - number of triangles (loops of length 3)
% Note: Valid for an undirected network.
% GB: last updated, Oct 5, 2012
function L3 = loops3(adj)
L3 = trace(adj^3)/6; % trace(adj^3)/3!
```

```
Examples:
```

```
square = [0\ 1\ 0\ 1;1\ 0\ 1\ 0;0\ 1\ 0\ 1;1\ 0\ 1\ 0]; \\ > loops3(square) \\ ans = 0 \\ bowtie = [0\ 1\ 1\ 0\ 0\ 0;1\ 0\ 1\ 0\ 0;1\ 1\ 0\ 1\ 0\ 0;0\ 0\ 1\ 0\ 1\ 1;0\ 0\ 0\ 1\ 0\ 1;0\ 0\ 0\ 1\ 1\ 0]; \\ > loops3(bowtie) \\ ans = 2
```

5.1.4 loops4.m

Returns all 4-tuples of nodes that form cycles of size 4.

5.1.5 numStarMotifs.m

s = 2

Number of k-tuples that form a "star" subgraph, i.e. a hub node with k-1 spokes.

6 Spectral properties

6.1 Routines

6.1.1 laplacianMatrix.m

The Laplacian of the graph is defined as the degree matrix minus the adjacency.

```
% The Laplacian matrix defined for a *simple* graph
% Def: the difference b/w the diagonal degree and the adjacency matrices
% Note: This is not the normalized Laplacian
% INPUTS: adjacency matrix, nxn
% OUTPUTs: Laplacian matrix, nxn
% GB: last updated, Oct 10 2012
The normalized Laplacian can be computed as:
def normLaplacianMatrix(adj):
n=length(adj);
 deg = sum(adj); % for other than simple graphs,
                 % use [deg,~,~]=degrees(adj);
L=zeros(n);
edges=find(adj>0);
for e=1:length(edges)
     [ii,jj]=ind2sub([n,n],edges(e))
     if ii==jj; L(ii,ii)=1; continue; end
     L(ii,jj)=-1/sqrt(deg(ii)*deg(jj));
 end
Example:
adj = [0 \ 1 \ 1; 1 \ 0 \ 1; 1 \ 1 \ 0] \# 3 \times 3 \text{ identity matrix}
> laplacianMatrix(adj)
ans =
     2 -1 -1
    -1
        2 -1
    -1 -1
```

6.1.2 graphSpectrum.m

The graph spectrum is the list of eigenvalues of the Laplacian of the graph.

```
% The eigenvalues of the Laplacian of the graph.
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: laplacian eigenvalues, sorted
%
% Other routines used: laplacianMatrix.m
% GB: last updated, Oct 10 2012
```

```
Examples:
```

```
 \begin{array}{l} > graphSpectrum([01;00])\\ ans = \\ 1\\ 0\\ \\ bowtie = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1; 0\ 0\ 0\ 1\ 1\ 0]; \\ > graphSpectrum(bowtie)\\ ans = \\ 4.5616e + 00\\ 3.0000e + 00\\ 3.0000e + 00\\ 3.0000e + 00\\ 4.3845e - 01\\ 2.4286e - 16\\ \end{array}
```

6.1.3 algebraicConnectivity.m

The second smallest eigenvalue of the Laplacian of the adjacency matrix of the graph.

6.1.4 fieldlerVector.m

ans = 0

Fiedler vector: the vector corresponding to the second smallest eigenvalue of the Laplacian matrix.

Example:

```
bowtie = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 0\ 1\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1; 0\ 0\ 0\ 1\ 1\ 0]; \\ > fiedlerVector(bowtie) \\ ans = \\ -0.46471 \\ -0.26096 \\ 0.26096 \\ 0.46471 \\ 0.46471 \\ 0.46471
```

6.1.5 eigenCentrality.m

This routine can be classified both in Spectral Properties, as well as in Centralities. See Section 3.2.12.

6.1.6 graphEnergy.m [23]

The graph energy is defined as the sum of the absolute values of (the real components of) the eigenvalues of the adjacency matrix. This definition and more about graph energy can be found in [23].

7 Modularity

7.1 Basic modularity notions

7.2 Routines

7.2.1 simpleSpectralPartitioning.m

Using the fiedler vector (Section 6.1.4) to assign nodes to partitions of pre-determined size.

Figure 6: Example of a random modular graph with 100 nodes and 4 communities. Created with random_modular_graph.m, Section ??).

Example: Suppose G is a random graph of 100 nodes created to have 4 well-expressed clusters of more tightly connected nodes. This can be done with the routine randomModularGraph. See Section ?? for how to use. Also, suppose that the goal is to assign the nodes into 4 partitions. Then the input to simpleSpectralPartitioning can look like:

```
\begin{array}{l} adj = randomModularGraph(100,\ 4,\ 0.15,\ 0.9);\\ modules = simpleSpectralPartitioning(adj, [25\ 25\ 25\ 25]) \end{array}
```

The output *modules* will be a list of four vectors of size 1x25. The routine also returns a plot, of the entries of the fiedler vector sorted, as well as a dot plot of the adjacency matrix, where the rows/columns are sorted to reflect the expected partitions. An example is shown in Figure 7.

7.2.2 newmanGirvan.m [15]

This is a community finding algorithm, by Newman and Girvan, based on the notion of edge betweenness (see Section 3.2.11). It is described in [15].

```
% Newman-Girvan community finding algorithm
% Source: Newman, Girvan, "Finding and evaluating
% community structure in networks"
% Algorithm idea:
```


Figure 7: Example of the plot output of *simpleSpectralPartitioning*. The input in this case is a random modular graph with 4 clusters of nodes.

Example: For the bowtie graph in Figure 3, with 2 desired components, the *newmanGirvan.m* routine returns:

```
 adj = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1\ 1\ 0]   modules = newmanGirvan(adj, 2);   > modules\{1\}   ans =   1\ 2\ 3   > modules\{2\}   ans =   4\ 5\ 6
```

If two outputs are specified, namely,

 $[modules, modules_hist] = newmanGirvan(adj, 2),$

then the history of consecutive partitions is returned also. In the case of the bowtie graph, the first module in the history is simply the entire graph, so:

```
> modules\_hist\{1\}
ans = 1 2 3 4 5 6
> modules\_hist\{2\}
ans = 1 2 3
```

The third output, the modularity score Q, is computed as in equation 5 in [15]. Define e_{ij} as the number of edges between module/community i and community j. Then e_{ii} is the number of edges within community i, and $\sum_{j} e_{ij}$ is the number of edges from community i to other communities. If $\sum_{j} e_{ij} = a_{i}$, then the modularity is computed as:

$$Q = \sum_{module\ i} (e_{ii} - a_i^2) \tag{7}$$

In the bowtie example: $[\sim, \sim, Q] = newmanGirvan(adj, 2);$ > QQ = 0.20408

7.2.3 newmanEigenvectorMethod.m [24] [25]

Find the "optimal" number of communities in a network. Algorithm described in [24] and [25].

```
% Find the "optimal" number of communities given a network using an eigenvector method
% Source: MEJ Newman: Finding community structure using the eigenvectors of matrices,
                                                                 arXiv:physics/0605087
%
          Newman, "Modularity and community structure in networks",
%
                                                       arxiv.org/pdf/physics/0602124v1
% Q=(s^T)Bs, Bij=Aij-kikj/2m
% Bij^g=Bij - delta_ij * (sum k over g)B_ik
\% Bij^g=(Aij-kikj/2m)-delta_ij(sum k over g)(A(g)_ik-deg(g)_i deg(k)_j/2(m_g))
\% Bij^g=(Aij-kikj/2m)-delta_ij(k_i^(g)-k_i*sum(deg^(g)/2m)
%
% STEPS:
% 1 define current modularity matrix
% 2 compute eigenvector corresp. to largest eigenvalue
% 3 separate into 2 modules based on signs in eigenvector
% terminate when max eigenvalue is 0 for all subgraphs
% Other functions used: numEdges.m, degrees.m, subgraph.m, isConnected.m
% GB: last modified, Oct 12, 2012
```

Example: For the bowtie graph adjancency, the newmanEigenvectorMethod.m routine returns the following:

```
 \begin{array}{l} adj = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 1\ 0] \\ modules = newmanEigenvectorMethod(adj); \end{array}
```

```
> modules\{1\}
ans =
1 \ 2 \ 3
> modules\{2\}
ans =
4 \ 5 \ 6
```

7.2.4 newmanCommFast.m [26]

A fairly fast community finding algorithm which returns the modularity metric for every possible number of communities from 1 (all nodes) to n (every node is in its own community). This is described in [26].

```
% Fast community finding algorithm by M. Newman
\% Source: "Fast algorithm for detecting community
%
                      structure in networks", Mark Newman
%
% INPUTs: adjacency matrix, nxn
% OUTPUTs: group (cluster) formation over time,
            modularity metric for each cluster breakdown
% Other functions used: numEdges.m
% Note: To save the plot generated in this routine:
        uncomment "print newmanCommFast_example.pdf"
% GB: last updated, Oct 12 2012
Example: For the bowtie graph of Figure 3, the output of newmanCommFast.m looks like:
bowtie = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1; 0\ 0\ 0\ 1\ 1\ 0]
[groups\_hist, Q] = newmanCommFast(bowtie);
> length(groups\_hist)
ans = 6
> groups\_hist\{5\}
ans =
[1,1] = [1 \ 2 \ 3]
[1, 2] = [4 \ 5 \ 6]
```

This routines also returns a plot of number of communities versus the modularity metric. The maximum modularity metric corresponds to the *best* partition of the nodes. For example, for the graph in Figure 6, the best partition is into 4 communities. This is shown in Figure 8.

7.2.5 modularityMetric.m [15] [26]

This is the modularity metric used in [15] (equation 5) and in [26]. Define e_{ij} as the number of edges between community i and community j. Then e_{ii} is the number of edges within community i, and $\sum_{j} e_{ij}$

Figure 8: Example output of newmanCommFast.m for the random graph in Figure 6. There are 100 nodes, and the maximum modularity occurs at 4 communities.

is the number of edges from community i to other communities. If $\sum_{j} e_{ij} = a_i$, then the modularity is computed as:

$$Q = \sum_{module\ i} (e_{ii} - a_i^2)$$

This is equation 7 in Section 7.2.2. This definition makes sense for undirected graphs only.

```
% Computing the modularity for a given module/commnunity break-down
% Defined as: Q=sum_over_modules_i (eii-ai^2) (eq 5) in Newman and Girvan.
% eij = fraction of edges that connect community i to community j, ai=sum_j (eij)
% Source: Newman, Girvan, "Finding and evaluating community structure in networks"
          Newman, "Fast algorithm for detecting community structure in networks"
%
% INPUTs: adjacency matrix, nxn
          set of modules as cell array of vectors, ex: {[1,2,3],[4,5,6]}
% OUTPUTs: modularity metric, in [-1,1]
% Note: This computation makes sense for undirected graphs only.
% Other functions used: numEdges.m
% GB: last updated, October 16, 2012
Example:
bowtie = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1; 0\ 0\ 0\ 1\ 1\ 0]
Q = modularityMetric(\{[1,2,3],[4,5,6]\}, bowtie)
> Q
Q = 0.20408
```

Alternative to modularity Metric.m: First define some nomenclature.

A: adjacency matrix m: total number of nodes k_i : the nodal degree of node i

 c_i : the community to which i belongs in some given partition δ : the delta function, i.e. $\delta(x,y) = 1$ if x = y, and is 0 otherwise e_{ss} : fraction of edges within community s (number of edges within community s divided by m)

$$Q = \sum_{i,j} \frac{1}{2m} (A(i,j) - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

$$\Leftrightarrow Q = \sum_{i,j} \frac{1}{2m} A(i,j) \delta(c_i, c_j) - \sum_{i,j} \frac{k_i k_j}{4m^2} \delta(c_i, c_j)$$

$$\Leftrightarrow Q = \sum_{s \in modules} e_{ss} - \sum_{s \in modules} \sum_{(i,j), i \in s, j \in s} \frac{k_i k_j}{4m^2}$$

$$\Leftrightarrow Q = \sum_{s \in modules} (e_{ss} - (\frac{\sum_{i,i \in s} k_i}{2m})^2)$$

$$(8)$$

Equation 8 above is equation 9 in [28].

```
def modularityMetric(modules,adj):
```

```
% alternative: Q = sum_ij { 1/2m [Aij-kikj/2m]delta(ci,cj) } =
% = sum_ij Aij/2m delta(ci,cj) - sum_ij kikj/4m^2 delta(ci,cj) =
% = sum_modules e_ss - sum_modules (kikj/4m^2) =
\% = sum_modules (e_ss - ((sum_i ki)/2m)^2)
n = numNodes(adj);
m = numEdges(adj);
% define the inverse of modules: node "i" <- module "c" if "i" in module "c"
mod={};
for mm=1:length(modules)
  for ii=1:length(modules{mm})
   mod{modules{mm}(ii)}=modules{mm};
  end
end
Q = 0;
for i=1:n
  for j=1:n
    if not(isequal(mod(i),mod(j))); continue; end
   Q = Q + (adj(i,j) - sum(adj(i,:))*sum(adj(j,:))/(2*m))/(2*m);
  end
end
```

7.2.6 louvainCommunityFinding.m [27]

The original paper describing this method is by Blondel et al [27]. There is also a dedicated site on the Louvain method.

In this method, the starting point is the alternative definition of the modularity from equation 8. For any given partition, i.e. set of clusters, where every node i belongs to a cluster c_i , the modularity is defined as:

$$Q = \sum_{i,j} \frac{1}{2m} (A(i,j) - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

See equation 8 for a reminder on what the notation means. The strategy then is to compare the modularity of a given partition with the *next* partition in which a node i is removed from its cluster and assigned to the cluster of a neighboring node j. The modularity gain (or loss) is $Q_1 - Q_0$, where the difference is the cluster assignment.

To make this computation easier, notice that all terms in Q_0 and Q_1 are the same, except for the two clusters, which reflect the change in assignment of node i. Let c_{i0} be the cluster to which i belongs at first and c_{i1} be the next cluster of i. Moreover, for any two nodes j and k, such that $j \neq i$ and $k \neq i$, it is true that $Q_1(j,k) - Q_0(j,k) = 0$. Therefore, the only interesting terms in this difference are where i is present, and all other nodes concerned are assigned to c_{i0} or c_{i1} . Then,

$$\Delta Q_i = Q_1(i) - Q_0(i)$$

$$\Delta Q_i = \frac{1}{2m} \sum_{j \in c_{i1}} (A(i,j) - \frac{k_i k_j}{2m}) - \frac{1}{2m} \sum_{j \in c_{i0}} (A(i,j) - \frac{k_i k_j}{2m})$$

$$\Delta Q_i = \frac{1}{2m} \left(\sum_{j \in c_{i1}} A(i,j) - \frac{k_i}{2m} \sum_{j \in c_{i1}} k_j - \sum_{j \in c_{i0}} A(i,j) + \frac{k_i}{2m} \sum_{j \in c_{i0}} k_j \right)$$

$$\Delta Q_i = \frac{1}{2m} \left(\sum_{j \in c_{i1}} A(i,j) - \sum_{j \in c_{i0}} A(i,j) \right) - \frac{k_i}{4m^2} \left(\sum_{j \in c_{i1}} k_j - \sum_{j \in c_{i0}} k_j \right)$$

Notice that $\sum_{j \in c_{i1}} A(i,j)$ is the degree of i within c_{i1} and $\sum_{j \in c_{i0}} A(i,j)$ is the degree of i within c_{i0} . Also, $\sum_{j \in c_{i1}} k_j$ is twice the number of edges in c_{i1} and $\sum_{j \in c_{i0}} k_j$ is twice the number of edges in c_{i0} . Therefore, a more simplified way to write ΔQ_i is:

$$\Delta Q_i = \frac{1}{2m} (k_{i,c_{i1}} - k_{i,c_{i0}}) - \frac{k_i}{2m^2} (m_{c_{i1}} - m_{c_{i0}})$$
(9)

This implementation of the Louvain method uses equation 9 at every step. Also, instead of iterating through the nodes sequentially until convergence (1 through n), this routine iterates through a random permutation of nodes at every step. This random shuffling improves the performance in practice (no theoretical justification).

```
% Note 3: Permuting randomly the node order at every step helps the
           algorithm performance. Unfortunately, node order in this
%
           algorithm affects the results.
%
% INPUTs: adjancency matrix, nxn
% OUTPUTs: modules, and node community labels (inmodule)
% Other routines used: numEdges.m, kneighbors.m
% GB: last updated, Oct 17 2012
Example:
bowtie = [0\ 1\ 1\ 0\ 0\ 0; 1\ 0\ 1\ 0\ 0; 1\ 1\ 0\ 1\ 0\ 0; 0\ 0\ 1\ 0\ 1\ 1; 0\ 0\ 0\ 1\ 0\ 1; 0\ 0\ 0\ 1\ 1];
[modules, inmodule] = louvainCommunityFinding(bowtie);
found 2 modules
> modules =
[1,1] =
2 1 3
[1, 2] =
564
}
> inmodule =
[1,1]=2
[1, 2] = 2
[1,3] = 2
[1, 4] = 4
[1, 5] = 4
[1, 6] = 4
```

8 Links

- Edward Scheinerman's Matgraph.
- Degree-preserving rewiring code by Sergei Maslov.
- Louvain method: Finding communities in large networks

References

- [1] Milgram's small world experiment; source: http://en.wikipedia.org/wiki/Small_world_experiment, last accessed: Sep 23, 2012
- [2] D.J. de S. Price, Networks of scientific papers, Science, 149, 1965
- [3] D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks, Nature 393, 1998
- [4] S. Wasserman and K. Faust, Social network analysis, Cambridge University Press, 1994
- [5] Duncan J. Watts, Six degrees: The science of a Connected Age, W. W. Norton, 2004

- [6] M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167-256 (2003)
- [7] Alderson D., Catching the Network Science Bug: ..., Operations Research, Vol. 56, No. 5, Sep-Oct 2008, pp. 1047-1065
- [8] Tarjan, R. E., Depth-first search and linear graph algorithms, SIAM Journal on Computing 1 (2): 146-160, 1972
- [9] Wikipedia description of Tarjan's algorithm; source: http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm, last accessed: Sep 23, 2012
- [10] Erdös, P. and Gallai, T. Graphs with Prescribed Degrees of Vertices [Hungarian]. Mat. Lapok. 11, 264-274, 1960.
- [11] Alderson, Li, Diversity of graphs with highly variable connectivity, Phys. Rev. E 75, 046102 (2007)
- [12] Vittoria Colizza, Alessandro Flammini, M. Angeles Serrano, Alessandro Vespignani, Detecting rich-club ordering in complex networks, Nature Physics 2, 110-115 (2006)
- [13] Wikipedia entry on eigenvector centrality; source: http://en.wikipedia.org/wiki/Centrality# Using_the_adjacency_matrix_to_find_eigenvector_centrality, last accessed: October 2, 2012
- [14] Wikipedia article on node betweenness; source: http://en.wikipedia.org/wiki/Betweenness_centrality, last accessed: September 28, 2012
- [15] M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69, 026113 (2004)
- [16] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, The architecture of complex weighted networks, PNAS March 16, 2004 vol. 101 no. 11, 3747-3752
- [17] M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002)
- [18] Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, Walter Willinger, Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications, Internet Math. Volume 2, Number 4 (2005), 431-523
- [19] Guo, Chen, Zhou, Fingerprint for Network Topologies, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, ISSN1867-8211, Vol 5, Part 1, Springer Berlin Heidelberg 2009
- [20] Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific, 2005 (3rd edition)
- [21] Leskovec, Kleinberg, Faloutsos, Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD'05, 2005, Chicago, IL
- [22] Mahadevan, Krioukov, Fall, Vahdat, Systematic Topology Analysis and Generation Using Degree Correlations, SIGCOMM '06 Proceedings
- [23] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch-ungszentram Graz. 103 (1978) 1-22.
- [24] M. E. J. Newman, Finding community structure using the eigenvectors of matrices, Phys. Rev. E 74, 036104 (2006)
- [25] M. E. J. Newman, Modularity and community structure in networks, PNAS June 6, 2006, vol. 103, no. 23, 8577-8582
- [26] M. E. J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E 69, 066133 (2004)

- [27] Blondel, Guillaume, Lambiotte, Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. (2008) P10008
- [28] M. E. J. Newman, Analysis of weighted networks, Phys. Rev. E 70, 056131 (2004)

A Additional Figures

Figure 9: The histogram of degree correlations (r) of 1000 random graphs.