Raman sideband cooling of single sodium atom to 3D ground state

Yichao Yu

Lee Liu, Dr. Nick Hutzler, Jessie Zhang, Dr. Jon Hood

Ni Group/Harvard

April 19, 2017

Wave function size

Molecule

Atom

Raman sideband cooling of Sodium

Raman sideband cooling of Sodium

Difficulties

- High initial temperature $(40\mu K)$
- High recoil heating

Raman sideband cooling of Sodium

Difficulties

- High initial temperature $(40\mu K)$
- High recoil heating

Cooling sequence

Rabi flopping (radial)

7 / 13

Rabi flopping (radial)

Good agreement between spectrum and Rabi flopping data.

Rabi flopping (axial)

Decoherence caused by magnetic field fluctuation.

Conclusion

67.6(3.1)% ground state preparation fidelity (79.5(3.6)% without loss)

Improvements

- Reduce off-resonance scattering from Raman beams
- Reduce magnetic field fluctuation
- Reduce loss during cooling

Axial matrix element

Radial 2 matrix element

Radial 3 matrix element

