

Méthodes de résolution alternatives des problèmes non linéaires en mécanique

Plan

La méthode asymptotique numérique

Méthodes de réduction de modèle basées sur

Classical approaches for solving nonlinear problems in mechanics

• Finite Element method + Newton-Raphson iterative procedure

Weak form of PDE:

Find
$$u \in \mathcal{G}, \mathcal{G} = \left\{ u/u = \overline{u} \text{ on } \partial \Omega_u, u \in W^{1,4}(\Omega) \right\}$$
 such that:

$$\int_{\Omega} S_{ij}(u) \delta E_{ij}(u, \delta u) d\Omega = \lambda \int_{\partial \Omega_F} F_i \delta u_i d\Gamma$$

$$\forall \delta u \in \mathcal{G}_0, \mathcal{G}_0 = \left\{ u/u = 0 \text{ on } \partial \Omega_u, u \in W^{1,4}(\Omega) \right\}$$

$$\delta E_{ij}(u, \delta u) = \frac{1}{2} \left(\frac{\partial (\delta u_i)}{\partial X_j} + \frac{\partial (\delta u_j)}{\partial X_i} + \frac{\partial (\delta u_j)}{\partial X_i} \frac{\partial (u_i)}{\partial X_j} + \frac{\partial (\delta u_i)}{\partial X_j} \frac{\partial (u_j)}{\partial X_i} \right)$$

Méthodes classiques pour la résolution itérative des équations non-linéaires

En N dimensions

$$\mathbf{K}_{\mathbf{t}}(\mathbf{u}^{k})\Delta\mathbf{u}^{k+1} = -\mathbf{R}(\mathbf{u}^{k})$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \mathbf{\Lambda}\mathbf{u}^{k+1}$$

Issues with problems involving instabilities and bifuraction solutions

Divergence of Newton-Raphson algorithms near limit points

Solutions: arc-length control

Difficulties: choice of numerical control parameters, small iterations, detection of bifurcation points...

J YVONNET 2006

A typical (one scale) mechanical nonlinear problem: elasticity with geometric nonlinearities: nonlinear partial differential equation

$$\frac{\partial P_{ij}(u(X))}{\partial X_j} = 0 \quad \text{in } \Omega$$

P: 1st Piola Kirchhoff stress tensor

$$P_{ij}N_j = \lambda F_i \quad \text{on } \partial \Omega_F$$
 $u_i = \overline{u}_i \quad \text{on } \partial \Omega_{II}$

Boundary conditions

$$\partial \Omega = \partial \Omega_{\mathrm{F}} \cup \partial \Omega_{\mathrm{u}}, \quad \partial \Omega_{\mathrm{F}} \cap \partial \Omega_{\mathrm{u}} = \emptyset$$

$$P_{ij}(u) = F_{ik}(u)S_{kj}(u)$$

$$F_{ij}(u) = \delta_{ij} + \frac{\partial u_i}{\partial X_j}$$

$$S_{ij}(u) = C_{ijkl} E_{kl}(u)$$

$$E_{ij}(u) = \frac{1}{2} \left(F_{ki}(u) F_{kj}(u) - \delta_{ij} \right)$$

The Asymptotic Numerical Method [Damil, Potier-Ferry, Cochelin 90-94....]

- Perturbation method (Taylor expansion) around a known solution u_0 , λ_0
- Development parameter a: related to the system evolution (in a mechanical problem: amplitude of applied force)
- Continuation procedure

$$\begin{cases} u(x,a) = u_0(x) + \sum_{i=1}^{N} \frac{a^i}{i!} \frac{\partial^i u(x,a)}{\partial a^i} + O_u(a^{N+1}) \\ \lambda(a) = \lambda_0 + \sum_{i=1}^{N} \frac{a^i}{i!} \frac{\partial^i \lambda(a)}{\partial a^i} + O_\lambda(a^{N+1}) \end{cases}$$

High order terms: not known explicitely in general

$$\begin{cases} u(x,a) = u_0(x) + \sum_{i=1}^{N} \frac{a^i}{i!} \frac{\partial^i u(x,a)}{\partial a^i} \\ \lambda(a) = \lambda_0 + \sum_{i=1}^{N} \frac{a^i}{i!} \frac{\partial^i \lambda(a)}{\partial a^i} \end{cases}$$

Defined as unknown fields u_i and λ_i and computed numerically (via the Finite Element method)

$$\begin{cases} u(x) = u_0(x) + \sum_{i=1}^{N} a^i u_i(x) \\ \lambda = \lambda_0 + \sum_{i=1}^{N} a^i \lambda_i \end{cases}$$

A simple illustration

Example: Nonlinear PDE

$$\frac{\partial^2 u}{\partial x^2} + u^2 = \lambda + b.c$$

$$\lambda = a$$

$$u(a) = u_0 + au_1 + a^2u_2 + ... + a^Nu_N$$

$$\lambda(a) = \lambda_0 + a\lambda_1 + a^2\lambda_2 + \dots + a^N\lambda_N$$

Exemple: EDP non linéaire

$$\begin{cases} \frac{\partial^{2} u}{\partial x^{2}} + u^{2} = \lambda \\ \lambda = a \end{cases} \begin{cases} \frac{\partial^{2} u_{0}}{\partial x^{2}} + a \frac{\partial^{2} u_{1}}{\partial x^{2}} + a^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} + \dots + a^{N} \frac{\partial^{2} u_{N}}{\partial x^{2}} \\ + u_{0}^{2} + a u_{0} u_{1} + a^{2} u_{0} u_{2} + a^{3} u_{0} u_{3} + \dots + a^{N} u_{0} u_{N} \\ + a u_{1} u_{0} + a^{2} u_{1} u_{1} + a^{3} u_{1} u_{2} + \dots + a^{N} u_{0} u_{N} \\ + a^{2} u_{2} u_{0} + a^{3} u_{2} u_{1} + \dots \\ + a^{3} u_{3} u_{0} + \dots \\ + \dots \end{cases}$$

$$= \lambda_{0} + a \lambda_{1} + a^{2} \lambda_{2} + \dots + a^{N} \lambda_{N}$$

$$\lambda_{0} + a \lambda_{1} + a^{2} \lambda_{2} + \dots + a^{N} \lambda_{N} = a$$

Identification des même puissances de « a »:

$$\frac{\partial^{2} u_{0}}{\partial x^{2}} + a \frac{\partial^{2} u_{1}}{\partial x^{2}} + a^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} + \dots + a^{N} \frac{\partial^{2} u_{N}}{\partial x^{2}} + \dots + a^{N} u_{0} u_{N} + u_{0}^{2} + a u_{0} u_{1} + a^{2} u_{0} u_{2} + a^{3} u_{0} u_{3} + \dots + a^{N} u_{0} u_{N} + a u_{1} u_{0} + a^{2} u_{1} u_{1} + a^{3} u_{1} u_{2} + \dots + a^{N} u_{0} u_{N} + a^{2} u_{2} u_{0} + a^{3} u_{2} u_{1} + \dots + a^{N} u_{0} u_{N} + \dots + a$$

Ordre 0

$$\frac{\partial^2 u_0}{\partial x^2} + u_0^2 = \lambda_0$$
$$\lambda_0 = 0$$

Ordre 0

$$\frac{\partial^2 u_0}{\partial x^2} + u_0^2 = \lambda_0$$
$$\lambda_0 = 0$$

On suppose u_0 connue, exemple:

$$u_0 = 0$$
 $\lambda_0 =$

Identification des même puissances de a:

$$\begin{cases} \frac{\partial^{2} u_{0}}{\partial x^{2}} + a & \frac{\partial^{2} u_{1}}{\partial x^{2}} + a^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} + ... + a^{N} \frac{\partial^{2} u_{N}}{\partial x^{2}} \\ + u_{0}^{2} + a u_{0} u_{1} + a^{2} u_{0} u_{2} + a^{3} u_{0} u_{3} + ... + a^{N} u_{0} u_{N} \\ + a u_{1} u_{0} + a^{2} u_{1} u_{1} + a^{3} u_{1} u_{2} + ... + \\ + a^{2} u_{2} u_{0} + a^{3} u_{2} u_{1} + ... \\ + a^{3} u_{3} u_{0} + ... \\ + a u_{1} u_{0} + a u_{1} + a^{2} u_{2} + ... + a^{N} u_{1} u_{2} + ... + a^{N} u_{2} u_{1} = \lambda_{1} \\ + ... \\ + u_{1} u_{1} + u_{2} u_{1} + u_{2} u_{1} + u_{2} u_{2} + ... + u_{1} u_{2} u_{2} + ... + u_{2} u_{2} u_{1} = \lambda_{1} \\ \lambda_{1} = 1 \end{cases}$$

$$\begin{vmatrix} \frac{\partial^{2} u_{1}}{\partial x^{2}} + 2 u_{0} u_{1} = \lambda_{1} \\ \lambda_{1} = 1 \end{vmatrix}$$

$$\lambda_{0} + a u_{1} + a^{2} u_{2} + ... + a^{N} u_{2} u_{2} + ... + u_{2} u_{2} u_{2} = u_{2} \end{aligned}$$

Ordre 1

$$\frac{\partial^2 u_1}{\partial x^2} + 2u_0 u_1 = \lambda_1$$
$$\lambda_1 = 1$$

Ordre 1

Ordre 1

$$\frac{\partial^2 u_1}{\partial x^2} + 2u_0 u_1 = \lambda_1$$
$$\lambda_1 = 1$$

$$\frac{\partial^2 u_1}{\partial x^2} = \lambda_1$$
$$\lambda_1 = 1$$

On trouve

$$u_1$$
 $\lambda_1 = 1$

Identification des même puissances de a:

Ordre 2

$$\frac{\partial^2 u_2}{\partial x^2} + 2u_0 u_2 + u_1^2 = \lambda_2$$

$$\lambda_2 = 0$$

$$\frac{\partial^2 u_2}{\partial x^2} = -u_1^2$$
$$\lambda_2 = 0$$

On trouve

$$\lambda_1^2 = 1$$

Etc...

The series has a radius of convergence: the solution is defined along « steps » through a continuation method

Continuation method

Given N, a tolerance ε is chosen such that

$$\epsilon = \frac{\|\mathbf{u}^{n+1}(N, a_{max}) - \mathbf{u}^{n+1}(N - 1, a_{max})\|}{\|\mathbf{u}^{n+1}(N, a_{max}) - \mathbf{u}^{n}\|}$$

A more involved example: elasticity with geometrical nonlinearity

$$\int_{\Omega} {}^{t} \mathbf{P} : \delta \mathbf{F} d\Omega = \lambda \mathcal{P}_{ext} (\delta \mathbf{u})$$

Constitutive law:

$$S = \mathbb{C} : \gamma$$

Kinematic relations:

$$\mathbf{P} = \mathbf{F} \cdot \mathbf{S}$$

$$\gamma = \frac{1}{2} (^{t} \mathbf{F} \cdot \mathbf{F} - \mathbf{I})$$

$$\mathbf{F} = \mathbf{I} + \nabla \mathbf{u}$$

$$\left\{ \begin{array}{l} \mathbf{U}(a) \\ \lambda(a) \end{array} \right\} = \left\{ \begin{array}{l} \mathbf{U}_0 \\ \lambda_0 \end{array} \right\} + \sum_{i=1}^{N} a^i \left\{ \begin{array}{l} \mathbf{U}_i \\ \lambda_i \end{array} \right\}$$

$$\mathbf{U} = \{\mathbf{P}, \mathbf{F}, \mathbf{S}, \gamma, \mathbf{u}\}$$

$$\int_{\Omega} \left(\sum_{i=0}^{N} a^{i t} \mathbf{P}_{i} : \delta \mathbf{F} \right) d\Omega = \sum_{i=0}^{N} a^{i} \lambda_{i} \, \mathscr{P}_{ext} \left(\delta \mathbf{u} \right)$$

$$\sum_{i=0}^{N} a^{i} \mathbf{S}_{i} = \mathbb{C} : \sum_{i=0}^{N} a^{i} \gamma_{i}$$

$$\sum_{i=0}^{N} a^{i} \mathbf{P}_{i} = \left(\sum_{i=0}^{N} a^{i} \mathbf{F}_{i}\right) \cdot \left(\sum_{i=0}^{N} a^{i} \mathbf{S}_{i}\right)$$

$$\sum_{i=0}^{N} a^{i} \gamma_{i} = \frac{1}{2} \left[\left(\sum_{i=0}^{N} a^{i t} \mathbf{F}_{i} \right) \cdot \left(\sum_{i=0}^{N} a^{i} \mathbf{F}_{i} \right) - \mathbf{I} \right]$$

$$\sum_{i=0}^{N} a^{i} \mathbf{F}_{i} = \mathbf{I} + \nabla \left(\sum_{i=0}^{N} a^{i} \mathbf{u}_{i} \right)$$

Grouping terms with same exponent produces at order k

Grouping terms with same exponent produces
$$\begin{cases} \int_{\Omega}{}^{t}\mathbf{P}_{k}:\delta~\mathbf{F}~d\Omega=\lambda_{k}~\mathscr{P}_{ext}\left(\delta~\mathbf{u}\right)\\ \mathbf{S}_{k}=\mathbb{C}:\gamma_{k}\\ \mathbf{P}_{k}=\mathbf{F}_{0}\cdot\mathbf{S}_{k}+\mathbf{F}_{k}\cdot\mathbf{S}_{0}+\sum_{r=1}^{k-1}\mathbf{F}_{k-r}\cdot\mathbf{S}_{r}\\ \gamma_{k}=\frac{1}{2}\left({}^{t}\mathbf{F}_{0}\cdot\mathbf{F}_{k}+{}^{t}\mathbf{F}_{k}\cdot\mathbf{F}_{0}+\sum_{r=1}^{k-1}{}^{t}\mathbf{F}_{k-r}\cdot\mathbf{F}_{r}\right)\\ \mathbf{F}_{k}=\nabla~\mathbf{u}_{k} \end{cases}$$

Sequence of linear problems with same linear operator solved with FEM

$$\mathcal{L}(\mathbf{u}_{k}, \delta \mathbf{u}) = \lambda_{k} \,\, \mathcal{P}_{ext} \,(\delta \,\, \mathbf{u}) + \mathcal{F}_{k}^{nl}(\delta \mathbf{u})$$

$$\mathcal{L}(\mathbf{u}_{k}, \delta \mathbf{u}) = \int_{\Omega} {}^{t} \nabla \, \mathbf{u}_{k} : \mathbb{H} : \nabla \, \delta \mathbf{u} \, d\Omega \,\,,$$

$$\mathcal{F}_{k}^{nl}(\delta \mathbf{u}) = -\int_{\Omega} {}^{t} \mathbf{P}_{k}^{nl} : \nabla \, \delta \mathbf{u} \,\, d\Omega \,\, 1 < k \le N$$
Order k

Application to elastic buckling

$$u^{n+1}(a) = u^{n} + au_1 + a^2u_2 + \dots + a^{p}u_{p}$$
$$\lambda^{n+1}(a) = \lambda^{n} + a\lambda_1 + a^2\lambda_2 + \dots + a^{p}\lambda_{p}$$

- Piece-wise continuous approximation of the solution with respect to the development parameter a
- remove difficulties related to limit points

Exemples : flambement de microstructures cellulaires en compression

[Yvonnet, Zahrouni, Potier-Ferry, Computer Methods in Applied Mechanics and Enginnering, 2008]

Exemples : flambement de microstructures cellulaires

[Yvonnet, Zahrouni, Potier-Ferry, Computer Methods in Applied Mechanics and Enginnering, 2008]

Exemples : flambement de microstructures cellulaires

[Yvonnet, Zahrouni, Potier-Ferry, Computer Methods in Applied Mechanics and Enginnering, 2008]

Exemples : flambement de microstructures cellulaires

[Yvonnet, Zahrouni, Potier-Ferry, Computer Methods in Applied Mechanics and Enginnering, 2008]

Méthodes de réduction de modèles

Systèmes de grandes dimensions (nombre important de d.d.l.) :

- Matrice de grandes tailles à décomposer (inverser)
- Assemblage des matrices coûteux, place mémoire importante

Enjeux des méthodes de réduction de modèle : transformer un système d'équations de taille NxN en un système de « taille réduite » MxM avec M<<N

Applications : séries de problèmes non-linaires « similaires » de taille importante (Optimisation, calcul multi-échelles...)

Méthode de réduction de modèles de type POD

POD (Proper orthognal decomposition)

Approximation de la solution Éléments Finis par projection dans un sous-espace de taillé $\mathbf{q}^R(t) = \phi_0 + \sum_{m=1}^M \phi_m \xi_m(t)$ Variables arbitraires

Fonctions de base globales

Soit H un espace de Hilbert d \Re^N ; Rn muni du produit $\langle .,. \rangle$ laire XX et de $\|\psi\| = \sqrt{\langle \psi, \psi \rangle} X$

Fonctions de base définies par le problème de minimisation

$$\frac{\mathsf{MIN}}{\boldsymbol{\phi}} \int_0^T \left\| \mathbf{u}(t) - \boldsymbol{\phi} \boldsymbol{\phi}^T \mathbf{u}(t) \right\|^2 dt$$
 Sous la contrainte
$$\left\langle \boldsymbol{\phi}_i, \boldsymbol{\phi}_j \right\rangle = \delta_{ij}$$

$$\left\langle oldsymbol{\phi}_{i},oldsymbol{\phi}_{j}
ight
angle =\delta_{ij}$$

Méthode de réduction de modèles de type POD

La minimisation conduit, après discrétisation temporelle du problème aux valeurs propres [Liang 2002,etc...]

$$\mathbf{Q}\boldsymbol{\phi}_i = \lambda_i \boldsymbol{\phi}_i$$

$$\mathbf{Q} = \frac{1}{S} \mathbf{U} \mathbf{U}^T$$

$$\boldsymbol{\phi}_0 = \bar{\mathbf{q}} = \frac{1}{S} \sum_{i=1}^{S} \mathbf{q}(t_i)$$

$$\mathbf{U} = \{\mathbf{q}(t_1) - \bar{\mathbf{q}}, \mathbf{q}(t_2) - \bar{\mathbf{q}}, ..., \mathbf{q}(t_S) - \bar{\mathbf{q}}\}$$

On cherche à obtenir un sous-espace de dimension M<<N

Erreur liée à la troncature de la base p $\lambda_1 \geq \lambda_2 \geq ... \lambda_M \geq ... \geq \lambda_{DN} \geq 0$.

$$\epsilon(M) = \sum_{i=1}^{S} \left\| \mathbf{q}(\mathbf{x}, t_i) - \mathbf{q}^R(\mathbf{x}, t_i) \right\| = \left(\sum_{i=M+1}^{DN} \lambda_i \right)^{1/2}$$

Critère :
$$\frac{\left(\sum_{i=M+1}^{DN}\lambda_i\right)^{1/2}}{\left(\sum_{i=1}^{DN}\lambda_i\right)^{1/2}}<\delta$$

Méthode de réduction de modèles de type POD

$$\mathbf{K}_{\mu}^{k} \Delta \mathbf{q}^{k+1} = \mathbf{f}_{ext(\mu)} - \mathbf{f}_{int}^{k} (\mathbf{q}_{\mu}^{k})$$

Incréments de déplacements projetés dans la base

réduite

$$\mathbf{\Delta}\mathbf{q}^{k+1} = \sum_{m=1}^{M} oldsymbol{\phi}_m \Delta \xi_m^{k+1} \qquad \mathbf{\Phi} \ = \ \{oldsymbol{\phi}_1, oldsymbol{\phi}_2, ..., oldsymbol{\phi}_M \}$$

Problème réduit linéarisé

$$\mathbf{\Phi}^{T}\mathbf{K}_{\mu}^{k}\mathbf{\Phi}\mathbf{\Delta}\boldsymbol{\xi}^{k+1} = \mathbf{\Phi}^{T}\left[\mathbf{f}_{ext(\mu)} - \mathbf{f}_{int}^{k}(\mathbf{q}_{\mu})\right]$$

 $[M \times M]$

Actualisation des variables réduites

$$oldsymbol{\xi}^{k+1} = oldsymbol{\xi}^k + oldsymbol{\Delta} oldsymbol{\xi}^{k+1}$$

$$oldsymbol{\Phi} = \{oldsymbol{\phi}_1, oldsymbol{\phi}_2, ..., oldsymbol{\phi}_M\}$$

$$\boldsymbol{\xi} = \{\xi_1, \xi_2, ..., \xi_M\}$$

Méthode de réduction de modèles de type POD

Exemple d'application : hyperelasticité non-linéaire en grandes transformations

$$\nabla \cdot \bar{\mathbf{P}} + \bar{\mathbf{B}} = 0 \quad and \quad \bar{\mathbf{P}}\bar{\mathbf{F}}^T = (\bar{\mathbf{P}}\bar{\mathbf{F}}^T)^T \quad in \quad \Omega_0$$

$$\mathbf{P} = \frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}}$$

$$\mathbf{P} = \frac{\partial \Psi(\mathbf{F})}{\partial \mathbf{F}} \qquad \Psi = c(J-1)^2 - d \log(J) + c_1(I_1 - 3) + c_2(I_2 - 3)$$

Matériau hyperelastique de type Mooney-Rivlin compressible

$$D_{\Delta \mathbf{u}} \delta W_{int}(\mathbf{u}, \delta \mathbf{u}) = \int_{\Omega_0} \left[\nabla_X (\delta \mathbf{u}) : \nabla_X (\Delta \mathbf{u}) \bar{\mathbf{S}} \right]$$

+
$$\bar{\mathbf{F}}^T \nabla_X (\delta \mathbf{u}) : \bar{\mathbf{C}}^e : \bar{\mathbf{F}}^T \nabla_X (\Delta \mathbf{u}) d\Omega$$

Problème tangent

Méthode de réduction de modèles de type POD

Exemple d'application : hyperelasticité non-linéaire en grandes transformations

Conditions aux limites : **u**=[**F**-**1**]**X**

Réponse d'un VER sous sollicitations complexes

Fig. 5. Values of F_{11} , F_{12} , F_{21} and F_{22} along the simulation.

Évolution des composantes de F

[Yvonnet & He 2007]

Méthode de réduction de modèles de

9 premiers modes

26 modes retenus pour 1056 ddl

[Yvonnet & He, Computational Physics (2007)]

Méthode de réduction de modèles de type POD

Comparaison entre solution complète (1056 ddl) et solution par modèle réduit (26 ddl)

[Yvonnet & He, Computational Physics (2007)]

Méthode de réduction de modèle

- Un problème complet doit être résolu pour détecter les corrélations entre modes et construire la base réduite
- Applications: problèmes à plusieurs paramètres
- Optimisation
- Méthodes multi-échelles

Conclusion

Pourquoi des méthodes alternatives à la méthode de Newton-Raphson ?

- Problèmes avec points limites → MAN
- Problèmes de grandes taille → Réduction de modèle

Homogenization of nonlinear problems using Asymptotic Numerical Method

A non linear homogenization method with posible instabilities: the multiscale MAN

The problem is formulated at two scales: both microscopic and macroscopic variables are expanded in finite series (ANM)

- Nonlinear problems (micro and macro) result in sequences of linear problems
- Superposition principle is applied on each linear problem;
- A localization tensor can be constructed for each step of the asymptotic expansion

Multiscale elasticity problem with geometrical/material nonlinearities

Multiscale FEM [Renard et al. 1987, Feyel 1998, Smit 1998, Geers and Kouznetsova], Asymptotic Homogenization [Hou and Wu 1997, Terada et

al. 2000]

on the RVE:

Multiscale ANM

$$\left\{ \frac{\Lambda(a)}{\lambda(a)} \right\} = \left\{ \frac{\Lambda_0}{\lambda_0} \right\} + \sum_{p=1}^{N} a^p \left\{ \frac{\Lambda_p}{\lambda_p} \right\}$$

Series expansions of both microscopic and macroscopic variables

$$\Lambda = (\bar{\mathbf{u}}, \overline{\mathbf{P}}, \mathbf{u}, \mathbf{P}, \ldots)$$

Macroscopic problem

Weak form related to the macroscopic problem

$$\int_{\Omega} {}^{t} \overline{\mathbf{P}} : \delta \overline{\mathbf{F}} d\Omega = \lambda \int_{\partial \Omega_{t}} \mathbf{f} . \delta \overline{\mathbf{u}} d\Gamma$$

MAN expansion: problem at order p

$$\int_{\Omega} {}^{t} \overline{\mathbf{P}}_{p} : \delta \overline{\mathbf{F}} d\Omega = \lambda_{p} \int_{\partial \Omega_{t}} \mathbf{f} . \delta \overline{\mathbf{u}} d\Gamma \qquad \forall p = 1...N$$

The constitutive law is not known explicitely at this scale, but known implicitely via the microscopic scale

Microscopic problem

Equations related to the microscopic problem

$$\begin{cases} \int_{\omega}^{t} \mathbf{P} : \delta \mathbf{F} d \boldsymbol{\omega} = 0 \\ \mathbf{S} = \mathbf{C}^{(r)} : \boldsymbol{\gamma} \end{cases}$$

$$\mathbf{P} = \mathbf{F} . \mathbf{S}$$

$$\boldsymbol{\gamma} = \frac{1}{2} \begin{pmatrix} {}^{t} \mathbf{F} . \mathbf{F} - \mathbf{I} \end{pmatrix}$$

$$\mathbf{F} = \nabla \mathbf{u} + \mathbf{I}$$

$$+ C.L. : \mathbf{u}^{+} - \mathbf{u}^{-} = (\overline{\mathbf{F}} - \mathbf{I}) . (\mathbf{X}^{+} - \mathbf{X}^{-})$$
 on $\partial \boldsymbol{\omega}$

Microscopic problem

Introducing asymptotic expansion

Order 1:

$$\begin{cases}
\int_{\omega}^{t} \mathbf{P}_{1} : \delta \mathbf{F} d \boldsymbol{\omega} = 0 \\
\mathbf{S}_{1} = \mathbf{C}^{(r)} : \boldsymbol{\gamma}_{1} \\
\mathbf{P}_{1} = \mathbf{F}_{0} \cdot \mathbf{S}_{1} + \mathbf{F}_{1} \cdot \mathbf{S}_{0} & in \boldsymbol{\omega} \\
\boldsymbol{\gamma}_{1} = \frac{1}{2} \begin{pmatrix}^{t} \mathbf{F}_{0} \cdot \mathbf{F}_{1} + {}^{t} \mathbf{F}_{1} \cdot \mathbf{F}_{0} \end{pmatrix} \\
\mathbf{F}_{1} = \nabla \mathbf{u}_{1} \\
+ C.L. : \mathbf{u}_{1}^{+} - \mathbf{u}_{1}^{-} = \overline{\mathbf{F}}_{1} \cdot (\mathbf{X}^{+} - \mathbf{X}^{-}) & on \boldsymbol{\partial} \boldsymbol{\omega}
\end{cases}$$

Order p:

$$\begin{cases} \int_{\mathbf{o}}^{t} \mathbf{P}_{p} : \delta \mathbf{F} d \mathbf{o} = 0 \\ \mathbf{S}_{p} = \mathbf{C}^{(r)} : \mathbf{\gamma}_{p} \\ \mathbf{P}_{p} = \mathbf{F}_{0} . \mathbf{S}_{p} + \mathbf{F}_{p} . \mathbf{S}_{0} + \sum_{r=1}^{p} \mathbf{F}_{r} . \mathbf{S}_{p-r} & in \mathbf{o} \\ \mathbf{\gamma}_{p} = \frac{1}{2} \begin{pmatrix} {}^{t} \mathbf{F}_{0} . \mathbf{F}_{p} + {}^{t} \mathbf{F}_{p} . \mathbf{F}_{0} + \sum_{r=1}^{p} {}^{t} \mathbf{F}_{r} . \mathbf{F}_{p-r} \end{pmatrix} \\ \mathbf{F}_{p} = \nabla \mathbf{u}_{p} \\ + C.L. : \mathbf{u}_{p}^{+} - \mathbf{u}_{p}^{-} = \overline{\mathbf{F}}_{p} . (\mathbf{X}^{+} - \mathbf{X}^{-}) & on \partial \mathbf{o} \end{cases}$$

Constructing the macroscopic constitutive law at order p

Order 1:

$$\mathbf{u}_1 = \mathbf{A} : \overline{\mathbf{F}}_1 \qquad A_{iik} = \widetilde{u}_i^{jk}$$

$$A_{ijk} = \widetilde{u}_i^{Jk}$$

A is a third order tensor. Asymptotic development of gradient tensor F yields: :

$$\nabla \mathbf{u}_1 = \mathbf{u}_{1,X} = \mathbf{F}_1 = \mathbf{A}_{,X} : \overline{\mathbf{F}}_1$$
 Localization tensor

 A_{X} is a fourth-order tensor.

At order p we obtain

$$\mathbf{u}_p = \mathbf{A} : \overline{\mathbf{F}}_p + \mathbf{u}_p^{nl}$$

The vector u_p^{nl} is obtained by

$$L_t(\mathbf{u}_{p}^{nl}, \delta \mathbf{u}) = F_{p}^{nl}(\delta \mathbf{u})$$

in w

Then

$$\mathbf{F}_{p} = \mathbf{A}_{,X} : \overline{\mathbf{F}}_{p} + \mathbf{u}_{p,X}^{nl}$$

[Nezamabadi et al. 2009, Comput. Meth. Appl. Mech. Engng.] 47

Constructing the macroscopic constitutive law at order p

At order p we have:

$$\mathbf{P}_p = \mathbf{L} : \overline{\mathbf{F}}_p + \mathbf{P}_p^{nl}$$

The stress is obtained through:

$$\overline{\mathbf{P}}_{p} = \langle \mathbf{L} \rangle : \overline{\mathbf{F}}_{p} + \langle \mathbf{P}_{p}^{nl} \rangle$$

Introduction into the p-th order macroscopic problem

$$\int_{\Omega}^{t} \overline{\mathbf{P}}_{p} : \boldsymbol{\delta} \, \overline{\mathbf{F}} \, d \, \Omega = \lambda_{p} \int_{\partial \Omega_{t}} \mathbf{f} . \boldsymbol{\delta} \, \overline{\mathbf{u}} \, d \, \Gamma$$

$$\int_{\Omega} {}^{t} \overline{\mathbf{F}}_{p} : \langle \mathbf{L} \rangle : \delta \overline{\mathbf{F}} d\Omega = \lambda_{p} \int_{\partial \Omega_{t}} \mathbf{f} . \delta \overline{\mathbf{u}} d\Gamma - \int_{\Omega} {}^{t} \langle \mathbf{P}_{p}^{nl} \rangle : \delta \overline{\mathbf{F}} d\Omega$$

Macroscopic problem at order p

Numerical examples

In all examples:

ANM parameters: N = 15 $\delta = 10^{-6}$

Poisson's coefficient v = 0,3

validation of the Multiscale ANM procedure: heterogeneous nonlinear elastic beam

heterogeneous nonlinear elastic beam

heterogeneous nonlinear elastic beam

Circular inclusion, rigidity ratio $E_2/E_1 = 10$

Heterogeneous nonlinear problems with buckling

- Macroscopic buckling: curved roof
- Microscopic buckling: cellular microstructure

A curved roof with heterogeneous microstructure

A curved roof with heterogeneous microstructure

$$E_2/E_1=10$$

Composite structure with long fibers in compression

Composite structure with long fibers in compression

Composite structure with long fibers in compression

Composite structure with cellular microstructure in compression

Composite structure with cellular microstructure in compression

Local buckling of composite with elastoplastic long fibers

Local buckling of composite with elastoplastic long fibers

Conclusion

The ANM is an alternative to classical FEM/Newton-Raphon algorithms for solving nonlinear problems

Removes issues of NR when bifurcation and limit points occur

In some cases siginficantly reduces computational costs

(other advantages – not presented here – construction of bifurcation indicators)

Nonlinear problems are reformulated into a sequence of linear problems: advantages for homogenization problem: the superposition principle can be applied – well-known procedures for linear homogenization can be applied at each order

Instabilities at several scales can be handled

References

Nezamabadi S., Zahrouni H., Yvonnet J., Potier-Ferry M., A multiscale finite element approach for buckling analysis of elastoplastic long fibre composites, accepted in International Journal for Multiscale Computational Engineering, April 2009.

Nezamabadi S., Yvonnet J., Zahrouni H., Potier-Ferry M., A multilevel computational strategy for handling microscopic and macroscopic instabilities, Computer Methods in Applied Mechanics and Engineering, 198:2099-2110 (2009).

Yvonnet J., Zahrouni H., Potier-Ferry M., A model reduction method for the post-buckling analysis of cellular microstructures, Computer Methods in Applied Mechanics and Engineering, 197, 265-280 (2007).

More references about previous papers on ANM can be found in these references