Rohit Suratekar

National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India

Phone: +91-802-366-6602 (Work), +91-988-082-8956 (Mobile)

Work Email: rohitcs@ncbs.res.in

Personal Email: rohitsuratekar@gmail.com Webpage: https://rohitsuratekar.com

Date of Birth: October 16, 1989

Nationality: Indian

Languages: English, Marathi, Hindi

Current position

Bridging Postdoctoral Fellow, National Centre for Biological Sciences, Bangalore

Areas of specialization

Computational Cell Biology

Education

2018 - **Bridging Postdoctoral Fellow** in Computational Cell Biology National Centre for Biological Sciences, Bangalore, India

2012 - 2018 **Doctor of Philosophy** in Computational Cell Biology

National Centre for Biological Sciences, Bangalore, India

Thesis topic: Understanding structure and dynamics of the Drosophila PI(4,5)P₂ cycle with

mathematical models.

2018

2007 - 2011 Bachelor of Technology in Biotechnology

Motilal Nehru National Institute of Technology, Allahabad, India

Thesis topic: Indirect and Direct Effect of Turbulence on Bacterial growth

Publications and Talks

Suratekar R, Panda A, Padinjat R, Krishna S (2018). Evidence of sinks and sources in the phospholipase C activated PIP₂ cycle. *FEBS Lett.* 2018 Mar; 592(6):962-972. PubMed

PMID: 29427502. doi: 10.1002/1873-3468.12998

ப	re	n	rı	n	+
_		.,			

Suratekar R, Padinjat R, Krishna S (2017). Evidence of sinks and sources in the PLC activated PIP₂ cycle. *bioRxiv*. 183509 doi: 10.1101/183509

Research talks

2018	2^{nd} International FishMed Conference on Zebrafish Research, FishMed 2018, Warsaw, Poland
	Evidence of sinks and sources in the PLC activated PIP2 cycle (Mar 25–27, 2018)
2018	Aspects of Gene and Cellular Regulation, Chennai, India
	Evidence of sinks and sources in the PLC activated PIP2 cycle (Jan 12–13, 2018)
2017	Physical Concepts in Stem Cell Biology, Tisvildeleje, Denmark
	Evidence of sinks and sources in the PLC activated PIP2 cycle (Aug 6–10, 2017)
2015	NCBS-RIKEN joint meeting for theoretical approaches in biology, Wako, Japan
	Speeding up PI(4,5)P₂ recovery with top gear (Apr 7–10, 2015)

Posters

2018	EMBL Symposium: Tissue Self-Organisation, Heidelberg, Germany
	Evidence of sinks and sources in the PLC activated PIP2 cycle (Mar 11–14, 2018)
2018	2 nd International FishMed Conference on Zebrafish Research, FishMed2018, Warsaw, Poland
	Evidence of sinks and sources in the PLC activated PIP ₂ cycle (Mar 25–27, 2018)
2018	Celebrating Diversity in Biology - NCBS Annual Talks, Bangalore, India
	Evidence of sinks and sources in the PLC activated PIP ₂ cycle (Jan 3-5, 2018)
2017	Futures in Biology - NCBS Annual Talks, Bangalore, India
	The Hitchhiker's Guide to The Regulation of PI(4,5)P ₂ Cycle During Drosophila melanogaster
	Phototransduction (Jan 11–14, 2017)
2015	Biology across scale - NCBS Annual Talks, Bangalore, India
	Regulation of levels of PI(4,5)P ₂ on the plasma membrane (Jan 5–8, 2015)
2014	Aspects of gene regulation, Chennai, India
	PI(4,5)P ₂ dynamics during Drosophila melagogaster phototransduction (Dec 16, 2014)
2014	NCBS Annual Talks, Bangalore, India

PI(4,5)P₂ dynamics during Drosophila melagogaster phototransduction (Jan 15–17, 2014)

Research Projects

Searching potential feedback links in existing signaling pathway

2013-present	Supervisors : Dr. Sandeep Krishna and Prof. Raghu Padinjat	
	National Centre for Biological Sciences, Bangalore.	

Understanding lipid transfer across membranes

Supervisors: Dr. Sandeep Krishna and Prof. Raghu Padinjat National Centre for Biological Sciences, Bangalore.

2013-2018 Regulation of lipid signaling pathway in *Drosophila melanogaster*

Supervisors : Dr. Sandeep Krishna and Prof. Raghu Padinjat National Centre for Biological Sciences, Bangalore.

2013 Modeling of Phosphatidic Acid turnover in *Drosophila melanogaster*

Supervisors: Prof. Raghu Padinjat and Dr. Sandeep Krishna

National Centre for Biological Sciences, Bangalore.

2012 Exploring connections between protein content, codon bias and GC content

Supervisor: Dr. Mukund Thattai

National Centre for Biological Sciences, Bangalore.

2010-2011 Indirect and Direct Effect of Turbulence on Bacterial growth

Supervisor: Dr. Shivesh Sharma

Motilal Nehru National Institute of Technology, Allahabad.

Fellowships and Awards

Young FishMed Speaker and Travel Award, FishMed, Poland Best Poster and Travel Award, NCBS Annual Talks, India

2012 - 2018 NCBS-TIFR graduate fellowship, India

2012 Graduate Aptitude Test in Engineering (GATE) fellowship, India

Minimum Skill Set

Experimental Biology

Average: Molecular biology techniques, Protein purification
Basic: Fly pushing, Optical Microscopy, Electro-physiology (ERG)

Computational Biology

Above average: Ordinary Differential Equations, Monte Carlo simulations, Diffusion reactions, Dynamical Systems, Parameter sensitivity analysis Average: Optimization techniques, Stochastic Calculus, Boolean Modelling

Basic: Partial Differential equations, Bayesian Analysis

Programming languages

Above average: Python 3, Java, Kotlin, Typescript, LATEX

Average: C++, Perl, Matlab

Basic: CSS, C#, SQL/Non-SQL database

References

Dr. Sandeep Krishna (NCBS, Bangalore), email: sandeep@ncbs.res.in Prof. Raghu Padinjat (NCBS, Bangalore), email: praghu@ncbs.res.in

GitHub/rohitsuratekar, Twitter/rohitsuratekar, ORCID/0000-0002-6281-5526