A GP Approach to QoS-Aware Web Service Composition including Conditional Constraints

Alexandre Sawczuk da Silva, Hui Ma, Mengjie Zhang

Evolutionary Computation Research Group

School of Engineering and Computer Science, Victoria University of Wellington

IEEE Congress on Evolutionary Computation, 25-28 May 2015

Introduction

Motivation •0000

> Service-Oriented Architecture (SOA): Organise processes and data in reusable modules for integration into new applications.

Web service

A functionality module that provides operations accessible over the network via a standard communication protocol.

Web Service Composition

The combination of Web services to achieve a more complex task. Fully automated scenario:

New weather by zip code service

Composition Dimensions

- **I Functional correctness:** Service inputs and outputs must be properly linked (e.g. Four Digit Number $\rightarrow ZipCode$, but not FourDigitNumber \rightarrow City).
- **2 Conditional constraints:** Condition leading to multiple possible execution paths (e.g. if *City* is a *NewZealandCity*, produce WindForecast instead of GeneralForecast).
- 3 Quality of Service (QoS): The overall quality of the composition (e.g. lowest execution time, lowest cost).

Existing Approaches

AI Planning

Build a solution service by service.

Dimensions: Functional correctness, conditional constraints.

Evolutionary Computation (EC)

Improve population of solutions over multiple generations.

Dimensions: Functional correctness, QoS.

Hybrid Approaches

Combine AI planning and EC ideas.

Dimensions: Functional correctness, QoS.

Goal

To propose a Genetic Programming (GP) composition approach that simultaneously considers all dimensions.

- Trees preserve functional correctness
- Conditions encoded in trees
- 3 Optimisation performed on QoS

Candidate Representation

Population Initialisation

An algorithm is used to create a candidate in graph format, and then translate it into a tree representation.

```
Input : I, O1, O2, C, P
    Output: candidate tree T

    if O<sub>2</sub> ≠ ∅ then

         G_1 \leftarrow \text{createGraph}(I \cup C.if, O_1);
         G_2 \leftarrow \text{createGraph}(I \cup C.else, O_2):
         T_1 \leftarrow \text{toTree}(G_1.input):
          T_2 \leftarrow \text{toTree}(G_2.input);
          T_3 \leftarrow \text{new ConditionalNode}(C);
          T_3.leftChild \leftarrow T_1:
          T_3.rightChild \leftarrow T_2:
 9:
          if C \square / then
10:
              T_3.prob \leftarrow P;
              return T3:
11:
12-
         else
              G<sub>4</sub> ← createGraph(I, C,else):
13:
              T_4 \leftarrow \text{toTree}(G_4.input);
14:
              T_3.prob \leftarrow T_4.final.P;
15:
16:
               T \leftarrow \text{new SequenceNode()};
               T.leftChild \leftarrow T_4:
17:
              T.rightChild \leftarrow T_3:
18:
              return T:
20:
         end
21: else
         G \leftarrow \text{createGraph}(I, O_1);
22:
          T \leftarrow toTree(G.input):
24
         return T;
25: end
```


Mutation and Crossover

Mutation: Selects random node and replaces it with equivalent subtree.

Crossover: Swaps any two equivalent terminal nodes.

Fitness Function

Experiments

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

Thank you!

Questions?