# Marginal Deformations from Generalised Geometry

#### Anthony Ashmore

Mathematical Institute, Oxford

with D. Waldram, M. Petrini, M. Gabella, M. Graña 1602.02158; 1605.05730

#### The idea

# Generalised geometry is useful for understanding supersymmetric backgrounds

- Classic result in field theory on moduli spaces
- Marginal deformations of field theory gives deformations of AdS geometry and fluxes
- Can we realise field theory results in supergravity?

## Outline

- Introduction
- 2 Generalised geometry
- Generalised structures
- Marginal deformations

## Conformal field theories

CFTs are fixed points of RG flow

- Beta functions vanish
- Usually isolated points in space of couplings

SCFTs are special: admit conformal manifold of fixed points

• Deform by  $\delta \mathcal{L} = \sum_{i} \lambda_{i} \mathcal{O}_{i}$ 



#### SCFTs in four dimensions

Consider an  $\mathcal{N}=1$  SCFT in 4d. Classically, an operator  $\mathcal{O}$  is marginal if

- Dimension  $\Delta = 4$
- Coupling  $\lambda$  is dimensionless

Couplings can run under RG flow and change dimension

- Beta function for coupling must vanish
- Operator is then exactly marginal

Exactly marginal couplings define conformal manifold

# Example: $\mathcal{N} = 4$ super Yang–Mills

Exactly marginal deformations preserve  $\mathcal{N}=1$ 

• Superpotential deformations from chiral superfields  $\Phi_i$ 

$$\delta \mathcal{L} = \mathbf{f}^{ijk} \operatorname{tr}(\Phi_i \Phi_j \Phi_k)$$

 $f^{ijk}$  is complex symmetric tensor of SU(3) – ten marginal deformations

Compute one-loop beta functions

$$\gamma^{i}_{j} = f^{ikl}\bar{f}_{jkl} - \frac{1}{3}\delta^{i}_{j}f^{klm}\bar{f}_{klm} = 0$$

Leaves two exactly marginal deformations [Leigh, Strassler]

## General prescription

Why do the deformations have this form? [Green, Komargodski, Seiberg, Tachikawa,

Wecht; Kol]

$$\delta \mathcal{L} = \sum_{i} \lambda_{i} \mathcal{O}^{i}$$

 $\mathcal{N}=1$  theory has  $U(1)_R$  symmetry

- No global symmetries, all marginal deformations are exactly marginal
- Extra global symmetry G, exactly marginal couplings are given by a quotient

$$\mathcal{M}_{c} = \{\lambda_{i}\}/\!\!/ G$$

$$\mathcal{N}=4$$
 SYM has SU(4) R-symmetry – SU(3)  $\times$  U(1)\_R  $\subset$  SU(4)

$$\mathcal{M}_{c} = \{f^{ijk}\} /\!\!/ SU(3)$$
 dim  $\mathcal{M}_{c} = 10 - 8 = 2$ 

## General prescription

 $\mathcal{N}=1$  SCFT  $\mathcal{L}$  with global symmetry  $\emph{G}$ 

- No Kähler deformations only superpotential
- Deform by marginal operators  $\lambda_i \mathcal{O}^i$
- Some marginal directions are obstructed
- Unobstructed directions given by  $\mathcal{M}_c = \{\lambda_i\}/\!\!/ G$



## AdS / CFT

 $\mathcal{N}=1$  SCFT dual to type IIB supergravity on AdS $_5 imes M_5$  with eight supercharges ( $\mathcal{N}=2$ )

- $\bullet \ \mathcal{N} = 4 \ \mathsf{SYM} \longleftrightarrow \mathsf{IIB} \ \mathsf{on} \ \mathsf{AdS}_5 \times \mathsf{S}^5$
- Conformal manifold ←→ moduli space of vacua



# AdS / CFT

## $\mathsf{AdS}_5 \times \mathsf{S}^5$ in IIB

$$ds^{2}(S^{5}) = ds^{2}(\mathbb{CP}^{2}) + (d\psi + \eta)^{2}$$
  
 $F_{5} = dC_{4} = 4 \text{ vol}(AdS_{5}) + 4 \text{ vol}(S^{5})$ 

Killing vector:  $\partial_{\psi}$  dual to  $\sigma = d\psi + \eta$ 

• U(1)<sub>R</sub> symmetry of field theory

S<sup>5</sup> admits an SU(2) structure:

• Symplectic form:  $\omega$ ; holomorphic two-form:  $\Omega$ 

$$d\omega = 0$$
  $d\Omega = 3i \sigma \wedge \Omega$ 

# AdS / CFT

#### How do deformations appear in the dual geometry?

- ullet Superpotential  $\longleftrightarrow$  hypermultiplets
- Kähler ←→ vector multiplets

Need to understand supersymmetric flux backgrounds using these d.o.f.

## Supersymmetric backgrounds

#### Questions

- What objects parametrise hypers and vectors?
- How do the deformations appear in supergravity?
- How are the exactly marginal deformations selected?
- Can we find the deformed geometries?

# Supersymmetric backgrounds

#### Killing spinor equations

Supersymmetric background requires fermionic variations vanish

$$egin{aligned} (
abla_m \mp rac{1}{8} H_{mnp} \gamma^{np}) \epsilon^\pm + rac{1}{16} \mathrm{e}^\phi \sum_i 
ot\!\!\!/ _i \gamma_m \epsilon^\mp = 0 \end{aligned}$$
 $\gamma^m (
abla_m \mp rac{1}{24} H_{mnp} \gamma^{np} - \partial_m \phi) \epsilon^\pm = 0$ 

## Any underlying geometry?

- Geometric structures?
- Deformations and moduli spaces?

## Well-known story in six dimensions

Spinors define invariant tensors  $\omega_{mn}=\mathrm{i}\bar{\epsilon}^+\gamma_{mn}\epsilon^+$  and  $\Omega_{mnp}=\bar{\epsilon}^+\gamma_{mnp}\epsilon^-$ 

$$\mathsf{GL}(6;\mathbb{R})$$
  $\supset$   $\mathsf{Sp}(6;\mathbb{R})$  for  $\omega$   $\cup$   $\cup$   $\mathsf{SL}(3;\mathbb{C})$  for  $\Omega$   $\supset$   $\mathsf{SU}(3)$  for  $\{\omega,\Omega\}$ 

Fluxes are obstruction to integrability

$$d\Omega \sim flux$$
,  $d\omega \sim flux$ 

Good for classification and new solutions, but

• Deformations are difficult,  $d\delta\Omega$ ,  $d\delta\omega \neq 0$ .

[Gauntlett, Martelli, Waldram; Gauntlett, Pakis; Martelli, Sparks; Lüst, Tsimpis;...]

## The question

Keep all fluxes, warped ansatz

$$\mathrm{d} s_{10}^2 = \mathrm{e}^{2\Delta} \mathrm{d} s^2 (\mathrm{AdS}_5) + \mathrm{d} s^2 (\mathit{M}_5)$$

## What is the geometry of a generic $\mathcal{N}=2$ flux background?

- Pair of objects that define geometric structure?
- Integrability?
- Moduli space?

[Graña, Louis, Sim, Waldram; Graña, Orsi; Graña, Triendl]

## Outline

- Introduction
- 2 Generalised geometry
- Generalised structures
- Marginal deformations

## Generalised geometry

#### Basic idea

Unifies diffeomorphism and gauge symmetries

- Generalised tangent bundle whose sections parametrise the symmetries.
- Generalised Lie derivative by which the symmetries act.

#### Focus on type IIB

• Fields  $\{g, \phi, B, C^+, \Delta\}$  on internal  $M_5$ .

```
[Coimbra, Strickland-Constable, Waldram; Hull; Pacheco, Waldram; Berman, Perry;...] cf. [Hitchin; Gualtieri; Baraglia; Cremmer, Julia; de Wit, Nicolai; Siegel; Hohm, Kwak, Zweibach; Jeon, Lee, Park;...]
```

## Generalised geometry

## Generalised tangent bundle

$$E \simeq TM \oplus T^*M \oplus \wedge^5 T^*M \oplus \wedge^- T^*M$$

$$V^M = (v^m, \lambda_m, \tilde{\lambda}_{m_1...m_5}, \lambda^-)$$

E encodes diffeomorphisms and gauge transformations, e.g.

$$\delta B = \mathcal{L}_{\mathbf{v}} B + d\lambda, \qquad \delta C^{+} = \mathcal{L}_{\mathbf{v}} C^{+} + d\lambda^{-}$$

#### Generalised Lie derivative

 $L_V = diffeos + gauge$  "Leibniz algebroid"

## Generalised geometry

#### Adjoint bundle

Tensors transform as  $\mathsf{E}_{d(d)} \times \mathbb{R}^+$  representations

ad 
$$\tilde{F} \simeq \mathbb{R} \oplus (TM \otimes T^*M) \oplus \wedge^2 TM \oplus \wedge^2 T^*M \oplus \wedge^6 TM \oplus \wedge^6 T^*M$$

$$\oplus \wedge^+ TM \oplus \wedge^+ T^*M$$

$$R^M_{N} = (\dots, B_{mn}, \dots, C^+)$$

Potentials give isomorphism between E and  $TM \oplus T^*M \oplus ...$ 

$$V = e^{B+C^+} \tilde{V}$$

# "Supergravity = generalised geometry"

Neatly describes supergravity on  $M_5$ 

• Generalised metric  $G_{MN}$  equivalent to  $\{g, \phi, B, C^+, \Delta\}$ .

Analogue of Levi-Civita connection

• Gen. torsion-free connection D, compatible with gen. metric: DG = 0.

Gen. Ricci tensor gives bosonic action

$$S_{\rm B} = \int_{M_5} |{
m vol}_G| R \quad \Longrightarrow \quad {
m eq. of motion} = {
m gen. \, Ricci \, flat}$$

[Coimbra, Strickland-Constable, Waldram]

## Outline

- Introduction
- 2 Generalised geometry
- Generalised structures
- Marginal deformations

#### Generalised structures

Spinors define invariant tensors

$$J_{\alpha} = e^{B+C^{\pm}+\cdots}(\sigma_{\alpha}^{ij}\,\epsilon_{i}\otimes\bar{\epsilon}_{j}), \qquad K = e^{B+C^{\pm}+\cdots}(\epsilon^{ij}\,\epsilon_{i}\otimes\epsilon_{i}^{\mathsf{T}}).$$

Together they define a generalised USp(6) structure

$$\mathsf{E}_{6(6)} imes \mathbb{R}^+ \qquad \supset \qquad \mathsf{F}_{4(4)} ext{ for } \mathcal{K}$$
  $\qquad \qquad \cup \qquad \qquad \cup$   $\mathsf{SU}^*(6) ext{ for } J_{lpha} \qquad \supset \qquad \mathsf{USp}(6) ext{ for } \{J_{lpha}, \mathcal{K}\}$ 

#### Generalised structures

#### H structure

$$J_{\alpha} \in \Gamma(\operatorname{ad} \tilde{F} \otimes (\operatorname{det} T^*M)^{1/2})$$

Tensor in **78** of  $E_{6(6)} \times \mathbb{R}^+$  giving  $\mathfrak{su}_2$  algebra

$$[J_{\alpha},J_{\beta}]=2\kappa\epsilon_{\alpha\beta\gamma}J_{\gamma},\qquad {\rm tr}(J_{\alpha}J_{\beta})=-\kappa^2\delta_{\alpha\beta}\quad\in\Gamma(\det T^*M)$$

#### V structure

$$K \in \Gamma(E)$$
 satisfying  $c(K, K, K) \neq 0$ 

Vector in **27** of  $\mathsf{E}_{6(6)} \times \mathbb{R}^+$  where c is the  $\mathsf{E}_{6(6)}$  cubic invariant.

# Compatibility and USp(6)

#### HV structure

The structures are compatible if

$$J_{\alpha} \cdot K = 0,$$
  $\operatorname{tr}(J_{\alpha}J_{\beta}) = -c(K, K, K)\delta_{\alpha\beta}$ 

Structures intersect on  $SU^*(6) \cap F_{4(4)} = USp(6)$ .

Compatible pair  $\{J_{\alpha}, K\} \iff \mathsf{USp}(6)$  structure

$$K \sim e^{C_4}(\xi + \sigma \wedge \omega), \quad J_+ \sim e^{C_4}(\Omega + \Omega^{\sharp})$$

$$J_{\alpha} \cdot K = 0 \longrightarrow \omega \wedge \Omega = \imath_{\xi} \omega = \imath_{\xi} \Omega = 0$$

# Supersymmetry $\iff$ Integrability

## Supersymmetry

Integrability for  $\{J_{\alpha}, K\}$  is

$$\mu_{\alpha}(V) := -\frac{1}{2} \epsilon_{\alpha\beta\gamma} \int \operatorname{tr}(J_{\beta} L_{V} J_{\gamma}) = \lambda_{\alpha} \int c(K, K, V),$$
 $L_{K} K = 0, \qquad L_{K} J_{\alpha} = \epsilon_{\alpha\beta\gamma} \lambda_{\beta} J_{\gamma}$ 

These are equivalent to solving the Killing spinor equations

Integrable  $\{J_{\alpha}, K\} \iff \mathcal{N} = 2$  flux background

## Integrability for H structures

Consider space of H structures, coordinates  $J_{lpha} \in \mathcal{A}_{\mathsf{H}}$ 

• A<sub>H</sub> has hyper-Kähler metric, inherited fibrewise from

$$J_{\alpha}(x) \in \frac{\mathsf{E}_{6(6)} \times \mathbb{R}^{+}}{\mathsf{SU}^{*}(6)}$$

• Hyper-Kähler structure on  $\mathcal{A}_H$  preserved by diffeos and gauge transformations, parametrised by  $V \in \Gamma(E) \simeq \mathfrak{gdiff}$ 

$$\delta J_{\alpha} = L_{V} J_{\alpha} \in T A_{H}$$

Moment maps for action of GDiff

$$\mu_{lpha}(V) = -rac{1}{2}\epsilon_{lphaeta\gamma}\int {
m tr}(J_{eta}L_{V}J_{\gamma})$$

26 / 35

## Integrability for H structures

#### Moduli space

Structures related by GDiff are equivalent, moduli space is a hyper-Kähler quotient

$$\mathcal{M}_H = \mathcal{A}_H /\!\!/\!/ \mathsf{GDiff}$$

 $L_K J_{\alpha} = \epsilon_{\alpha\beta\gamma} \lambda_{\beta} J_{\gamma}$  takes a Kähler slice – Kähler quotient

- Not surprising c.f. gauged supergravity
- Quotient suggests same structure as dual field theory
- How do global symmetries appear?
- What has all this formalism bought for you?

## Outline

- Introduction
- 2 Generalised geometry
- Generalised structures
- Marginal deformations

#### Kähler deformations

## $\delta J_{\alpha} = 0$ and $\delta K \neq 0$ – Kähler deformations

Dual to Kähler deformations

$$L_{\delta K} J_{\alpha} = 0 \implies \delta \mu_{\alpha}(V) = \lambda_{\alpha} \int c(\delta K, K, V) = 0$$

but  $\delta K = 0$  is only solution

No Kähler deformations

## Superpotential deformations

## $\delta J_{\alpha} \neq 0$ and $\delta K = 0$ – superpotential deformations

Solutions to  $\delta\mu_{lpha}=0$  and  $L_{K}\delta J_{lpha}=0$  are marginal deformations

• Gives infinitesimal solution – equivalent to turning on three-form fluxes

Infinitesimal solution can be extended unless there are obstructions

- Which deformations extend to all orders?
- Where are the global symmetries?

## Higher-order deformations

#### Shortcut

Obstructions are conditions missed by the moment maps

- Any V such that  $L_V J_\alpha = 0$  satisfies the moment maps trivially
- $L_V J_{\alpha} = L_V K = 0$  imply V corresponds to a Killing vector that commutes with  $\xi$
- $\{V\}$  define  $G \times U(1)_R \subset Iso(M_5)$  global symmetry!

Impose missing conditions using moment map for G

 Missing equations given by quotient by G on space of linearised deformations

# Example: $AdS_5 \times S^5$

#### Marginal deformations

 $\delta J_{\alpha}$  generates flux, dual to marginal deformations  $\lambda_i \mathcal{O}^i$ 

•  $\delta\mu_{\alpha}(V)=0$  fixes flux in terms of function f which is holomorphic on cone

$$F_3 + i H \propto f \sigma \wedge \bar{\Omega} + \dots$$
  $\bar{\partial} f = 0$ 

•  $L_K J_{\alpha}$  fixes charge of f

$$\mathcal{L}_{\varepsilon}f=3if$$

 $\mathbb{C}^3$  with coordinates  $z_i$ :  $\mathcal{L}_{\xi}z_i=\mathsf{i}z_i$ 

$$f = f^{ijk} z_i z_j z_k$$

# Example: $AdS_5 \times S^5$

#### Obstruction from global symmetry

Higher-order calculations constrain f - long and difficult! [Aharony, Kol, Yankielowicz]

 $S^5$  has  $SO(6)\cong SU(4)$  isometry with  $\mbox{SU(3)}\times \mbox{U(1)}_R$  subgroup

- Obstruction due to SU(3) that preserves  $\{J_{\alpha}, K\}$
- Missing conditions are moment map for SU(3)

$$\gamma^{i}_{j} = f^{ikl} \bar{f}_{jkl} - \frac{1}{3} \delta^{i}_{j} f^{klm} \bar{f}_{klm} = 0$$

• Reproduces beta function from field theory. Only 10-8=2 complex degrees of freedom in f.

## Summary

# Generalised geometry is a natural language for supersymmetric backgrounds

- Flux backgrounds characterised by generalised structures
- Generalised structures package hyper and vector d.o.f. same as dual field theory

#### Supergravity realisation of classic field theory result

- Can find infinitesimal deformations and exactly marginal deformations from obstructions
- Works for AdS<sub>5</sub> and AdS<sub>4</sub> backgrounds

## Future work

#### Finite deformations

- Known for Lunin–Maldacena deformations:  $J_{lpha} 
  ightarrow {
  m e}^{eta} J_{lpha}$
- Metric on conformal manifold?

#### Dual quantities of field theory

- Central charge:  $a^{-1} \sim \int c(K, K, K)$
- a-maximisation as variational problem?
- Dimension of operators from wrapped branes

#### Topological theories