

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

Факультет	Информатика и вычислительная техника					
Кафедра	ПОВТиАС					
Направление	09.04.04 Программная инженерия (магистратура)					
ОПОП	Технология разработки сложных программных систем					

АРХИТЕКТУРА РАСПРЕДЕЛЕННЫХ СИСТЕМ ОБРАБОТКИ И ХРАНЕНИЯ ИНФОРМАЦИИ

Методические указания к практическим занятиям

Ростов-на-Дону 2019 г. Составители: к.т.н., доц. В.В. Долгов

УДК 004.75+004.415.2

Методические указания к выполнению практических работ по курсу

«Архитектура распределенных систем обработки и хранения информации» –

Ростов н/Д: Издательский центр ДГТУ, 2019. – 13 с.

В методической разработке рассматриваются цели, задания, краткие

пояснения по их выполнению, а также контрольные вопросы к практическим

занятиям по дисциплине «Архитектура распределенных систем обработки и

хранения информации» ДЛЯ магистров направления подготовки

09.04.04 «Программная инженерия».

Ответственный редактор: к.ф.-м.н., В.М. Поршеян

© В.В. Долгов, 2019

© Издательский центр ДГТУ, 2019

2

1 ОБЩИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ РАБОТ

1.1 Требование к лабораторному оборудованию

Аудитория для проведения лабораторных занятий должна быть укомплектована специализированной мебелью и индивидуальными компьютерами следующей минимальной комплектации:

- Процессор: не менее двух исполнительных ядер, совместимый с системой команд x86 и x64, с поддержкой аппаратной виртуализации.
 - Оперативная память: не менее 4 Гб.
 - Монитор: не менее 22" (дюймов) по диагонали.
 - Наличие локальной сети со скоростью обмена не менее 1 Гб/сек.
 - Наличие доступа в сеть Интернет со скоростью не менее 1 Мбит/сек.
 - Наличие клавиатуры и манипулятора «мышь».

На компьютерах должно быть установлено следующее программное обеспечение:

- Операционная система: Microsoft Windows 7 (или выше) и Ubuntu Desktop 18.04 (или выше). Допускается конфигурация, когда одна из операционных систем установлена внутри виртуальной машины (гипервизора).
- Среды разработки программ: Microsoft Visual Studio 2017 (или выше), IntelliJ IDEA Community Edition, Eclipse.
- Среды проектирования программного обеспечения: Microsoft Visio 2013 (или выше), ArgoUML, Violet UML.

1.2 Требования, предъявляемые при сдаче практических работ

Для сдачи практической работы студент должен предоставить отчет, содержащий архитектуру разрабатываемого программного обеспечения, обоснование выбранной архитектуры, а также UML-диаграммы классов,

состояний, вариантов использования и последовательной спроектированной системы.

Дополнительно, если это требуется для реализации проекта, может быть представлено описание собственного сетевого протокола, используемого в проекте, а также математическая модель решаемой задачи и разрабатываемой системы.

Студент должен быть готов ответить на вопросы преподавателя, принимающего работу, а также в рамках дискуссии на вопросы других студентов, присутствующих при сдаче проекта.

Сдача в виде практической работы ранее сдававшихся проектов, выложенных в сети Интернет, не допускается.

2 ПРАКТИЧЕСКАЯ РАБОТА №1: ПРОЕКТИРОВАНИЕ РАСПРЕДЕЛЕННОЙ ВЫЧИСЛИТЕЛЬНОЙ

2.1 Цель работы

Получить навыки разработки архитектуры распределенной вычислительной системы с централизованным управлением.

СИСТЕМАХ С ЦЕНТРАЛИЗОВАННЫМ УПРАВЛЕНИЕМ

2.2 Задание к лабораторной работе

Разработать архитектуру информационной системы, решающую в параллельном режиме одну из задач (согласно варианту задания) из таблицы 2.1.

Таблица 2.1 – Варианты заданий к лабораторной работе №1

№	Задание						
варианта							
1	Оптимизация целевой функции генетическим алгоритмом (островная						
	модель). Каждый вычислительный узел сети представляет						
	изолированный «остров», производящий локальную оптимизацию.						
	Центральный узел выбирает лучшее решение из локальных результатов,						
	полученных на «островах».						
2	Поиск всех простых чисел на заданном интервале (значения чисел не						
	вмещаются в стандартные элементарные типы данных). Проверку на						
	простоту чисел можно производить на основе вероятностных						
	алгоритмов проверки ().						
3	Распараллелить решение большой системы линейных уравнений.						
	Исходные матрицы системы задаются через файлы в формате CSV.						
	Метод распределения по узлам – произвольный.						

- 1. В чем преимущество использования централизованных распределенных вычислительных систем?
- 2. Каким условиям должна удовлетворять централизованная вычислительная задача, чтобы ее расчет был выгоден на распределенной системе?
- 3. Какие основные библиотеки используются для организации централизованных распределенных вычислений? Опишите кратко каждую из них?
- 4. Какие основные языки программирования используются при организации распределенных вычислений?
- 5. Надо ли учитывать задержки при передачи данных в сети при распределении вычислений?
- 6. Как влияет количество вычислительных узлов на коэффициент ускорения решаемой задачи? Зависит ли это от самой задачи?

3 ПРАКТИЧЕСКАЯ РАБОТА №2:

ПРОЕКТИРОВАНИЕ РАСПРЕДЕЛЕННОЙ ДЕЦЕНТРАЛИЗОВАННОЙ ВЫЧИСЛИТЕЛЬНОЙ СИСТЕМЫ

3.1 Цель работы

Получить навыки проектирования вычислительных систем для распределенных децентрализованных вычислений.

3.2 Задание к лабораторной работе

Разработать архитектуру информационной системы, решающую в параллельном режиме одну из задач (согласно варианту задания) из таблицы 2.1.

Разрабатываемая система должна состоять из нескольких вычислительных узлов ни один из которых не должен быть выделен в качестве центрального. Архитектура системы должна обладать устойчивостью к отказу любого из работающих узлов.

- 1. В чем отличие децентрализованных вычислительных сетей от сетей с централизованным управлением?
- 2. С какими трудностями сталкиваются разработчики при организации децентрализованных вычислительных сетей? Какие преимущества они получают?
- 3. Что такое очереди сообщений? В каких сценариях организации вычислений они могут использоваться?
- 4. Какие различают режимы работы у очередей сообщений? Какой из этих режимов наиболее подходит для организации распределенных вычислений?

5.	Каким	образом	в деце	ентрализс	эванных	системах	решается	проблема
	неожид	цанного от	каза вы	числител	ьного уз.	ла?		

4 ПРАКТИЧЕСКАЯ РАБОТА №3:

ПРОЕКТИРОВАНИЕ ЦЕНТРАЛИЗОВАННОЙ РАСПРЕДЕЛЕННОЙ СИСТЕМЫ ХРАНЕНИЯ ИНФОРМАЦИИ

4.1 Цель работы

Получить навыки проектирования распределенной системы хранения данных с централизованным управлением.

4.2 Задание к лабораторной работе

Разработать архитектуру (и при необходимости протокол взаимодействия) для простой файловой системы (ФС), осуществляющую распределенное хранение информации (файлов) в узлах сети. Большие файлы должны хранится в виде отдельных блоков фиксированного размера каждый из которых может быть сохранен отдельно от других блоков того же файла.

Разрабатываемая система должна поддерживать следующий набор обязательных функций:

- сохранение файла в распределенной системе под выбранным именем;
- получение целого файла по имени или любой его последовательности состоящей из подряд идущих блоков;
- замена любого целого блока файла на новый;
- проверка наличия файла с заданным именем в ФС;
- удаление файла по имени.

Разрабатываемая система должна состоять из двух подсистем:

- подсистема хранения блоков данных;
- подсистема управления и доступа к ФС (центральный узел сети).

- 1. Назовите и опишите основные характеристики современных распределенных файловых систем.
- 2. В чем причина появления кластерных ФС? Какие основные проблемы они решают?
- 3. Что такое репликация данных? Какой коэффициент репликации на сегодняшний день считается приемлемым?
- 4. Что такое дедубликация данных? Какие технологии позволяют реализовать дедубликацию?
- 5. В чем сильные и слабые стороны централизованных распределенных ФС?
- 6. С какими проблемами приходится сталкиваться разработчикам централизованных распределенных ФС?

5 ПРАКТИЧЕСКАЯ РАБОТА №4:

ПРОЕКТИРОВАНИЕ ДЕЦЕНТРАЛИЗОВАННОЙ РАСПРЕДЕЛЕННОЙ СИСТЕМЫ ХРАНЕНИЯ ИНФОРМАЦИИ

5.1 Цель работы

Закрепление теоретических знаний и навыков проектирования алгоритмов поиска информации в децентрализованных (пиринговых) системах.

5.2 Задание к лабораторной работе

Спроектировать архитектуру для распределенного децентрализованного хранения данных вида «Ключ-Значение» (Key-Value).

Разрабатываемая система должна поддерживать следующий набор обязательных функций:

- сохранение (замена) блока данных ассоциированного с указанным ключом;
- получение блока данных по ключу;
- проверка наличия сохраненного ключа в системе;
- удаление ключа из системы (вместе с ассоциированными данными).

- 1. В чем преимущество распределенных децентрализованных ФС перед централизованными? В чем недостатки?
- 2. Какой алгоритмической сложностью должны обладать алгоритмы поиска в децентрализованных сетях?
- 3. Что такое САР-теорема? Какие ограничения она накладывает на распределенные децентрализованные системы?
- 4. Объясните работу одного из алгоритмов поиска данных в децентрализованных сетях?

- 5. В чем заключается проблема публикации данных в децентрализованных сетях?
- 6. Какие общие принципы построения логических часов в распределенных системах?

РЕКОМЕНДОВАННЫЕ И ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Э. Таненбаум Компьютерные сети. СПб: Питер, 2012.
- 2. Федотов И.Е. Модели параллельного программирования. СОЛОН-Пресс, 2012. — URL: https://e.lanbook.com/book/13807
- 3. Болодурина И.П., Волкова Т.В. Проектирование компонентов распределенных информационных систем. Оренбург-ский государственный университет, ЭБС АСВ, 2012. URL: http://www.iprbookshop.ru/30122.html
- 4. Э. Таненбаум, М. ван Стеен Распределенные системы. Принципы и парадигмы. СПб.: Питер, 2003.

Редактор А.А. Литвинова

ЛР № 04779 от 18.05.01.
В набор
В печать
Офьем 0,5 усл.п.л., уч.-изд.л.
Офсет.
Формат 60х84/16.
Бумага тип №3.
Заказ №
Тираж 75. Цена

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344010, г. Ростов-на-Дону, пл. Гагарина, 1.