Package 'harmonious'

July 15, 2024

Type Package
Title Explanatory Item Response modeling in CmdStanR
Version 0.1.0
Author Nathan DePuy
Maintainer Nathan DePuy <depy@uiowa.edu></depy@uiowa.edu>
Description A package for performing Bayesian inference on Explanatory Item Repsonse models in CmdStanR
Depends R (>= 4.0.0), bayesplot, Cairo, ggplot2, pander, mathjaxr, loo, remotes, cmdstanr
Suggests testthat (>= 3.0.0)
Additional_repositories https://mc-stan.org/r-packages/
SystemRequirements CmdStan (https://mc-stan.org/users/interfaces/cmdstan)
Encoding UTF-8
LazyData true
Config/testthat/edition 3
RoxygenNote 7.3.2
Roxygen list(markdown=TRUE)
RdMacros mathjaxr
Remotes stan-dev/cmdstanr
Contents
CreateMod genData genReport hello initialize

2 CreateMod

Index																							•	•	•	• •	8
	teMod		Cr	eat	e A	djı	ınc	ct (Ст	dS	'tai	ı M	100	lel	Εı	nvi	roi	nm	en	t							

Description

Creates an environment to estimate the $p \times i$ interaction model with CmdStan.

Usage

```
CreateMod(
  coef_hyper,
  sd_hyper,
  nWarmup_init,
  nSamples_init,
  nWarmup_run,
  nSamples_run,
  aux_envir,
  isOptim
)
```

Arguments

coef_hyper	Hyperparameter value for the standard deviation of normally distributed parameters
sd_hyper	Hyperparameter value for the shape parameter of gamma distributed parameters
nWarmup_init	Number of burn-in draws for the fixed θ model
nWarmup_run	Number of burn-in draws for the free θ model
nSamples_run	Number of sampled posterior values for the free θ model (after burn-in has completed)
aux_envir	An environment object that contains objects to be loaded into the CreateMod environment (such as is returned by the genData function)
isOptim	Use a Maximum A Priori (MAP) optimizer for finding initial values?
nSampels_init	Number of posterior draws for the fixed θ model (after burn-in has completed)

Details

Creates an environment with methods for fitting the fixed θ and free θ models. Additionally, CreateMod includes a method for recursively checking \hat{R} convergence.

Value

an environment object containing fixed θ and free θ model results

See Also

```
initialize, sample, rhatCheck
```

genData 3

genData

Data Generating Function for the $p \times i$ Interaction Model

Description

Generates data for a $p \times i$ Interaction Model under the Explanatory Item Response theoretical framework.

Usage

genData(P, I, J, K, seed = NULL, isCorrI = TRUE)

Arguments

Р	Number of examinees
I	Number of items
J	Number of potential item feature categories
K	Number of potential person feature categories
seed	Integer seed for replication (if NULL, a random seed will be generated)
isCorrI	Draw Cholesky-factorized lower triangular matrix for modeling structured item residuals?

Details

Let a model of the log-odds transformed outcome (η_{pi}) be defined as:

$$\eta_{pi} = \theta_p \lambda_i + \tau_i + \sum_{k=1}^{K} \sum_{j=1}^{J} \beta_{jk(\eta)} x_{ik} z_{pj}$$

where the linear predictor of latent trait measurements θ_p is defined as:

$$\theta_p = \sum_{j=1}^{J} \beta_{j_{(\theta)}} z_{pj} + u_{p_{(\theta)}}$$

where the linear predictor of item slope/discrimination terms (λ_i) is defined as:

$$\lambda_i = \sum_{k=1}^K \beta_{k_{(\lambda)}} x_{ik} + u_{i_{(\lambda)}}$$

and where the linear predictor of item intercept/easiness terms (τ_i) is defined as:

$$\tau_i = \sum_{k=1}^{K} \beta_{k_{(\tau)}} x_{ik} + u_{i_{(\tau)}}$$

For the linear predictor of latent trait measurements, the following assumption is made on its residual terms for the purposes of model identification:

$$u_{p_{(\theta)}} \sim \mathcal{N}(0,1)$$

4 genReport

If an assumption is made that there is no structured dependency between the residual terms for the linear predictors of item intercepts and item slopes (isCorrI = FALSE), then:

$$u_{i_{(\lambda)}} \sim \mathcal{N}(0, \sigma_{\lambda}^2)$$

 $u_{i_{(\tau)}} \sim \mathcal{N}(0, \sigma_{\tau}^2)$

Whereas if it is assumed that the residuals of the linear predictors of item intercepts and item slopes is assumed to have a predictable underlying structure (isCorrI = TRUE), then:

$$\begin{bmatrix} u_{i_{(\lambda)}} \\ u_{i_{(\tau)}} \end{bmatrix} \sim \mathcal{MVN} \left(\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \mathbf{\Sigma} = \begin{bmatrix} \sigma_{\lambda}^2 & \sigma_{\lambda} \sigma_{\tau} \\ \sigma_{\tau} \sigma_{\lambda} & \sigma_{\tau}^2 \end{bmatrix} \right)$$

Value

an environment containing simulated data

genReport

Generate Text Report of Free θ Model Results

Description

Helper function that generates a text document in the user-specified save directory

Usage

```
genReport(saveDir, fileDetails, ...)
```

Arguments

saveDir Path to directory where report is saved
fileDetails string identifier for name of saved report
... additional arguments passed from parent frame

Details

Model results include posterior descriptives and simulated data information

Value

a . txt file of the free θ results

hello 5

hello

Hello, World!

Description

Prints 'Hello, world!'.

Usage

hello()

Examples

hello()

initialize

Run Fixed θ Model

Description

Runs the first step in the two-step estimation framework

Usage

```
initialize(...)
```

Arguments

... arguments passed from parent frame

Details

The first step in the two-step estimation framework for the $p \times i$ model

Value

Model results for the standardized θ model added to the environment rendered by CreateMod

See Also

CreateMod

6 rhatCheck

rCorr

Randomly Sample a Cholesky Factorized, Lower Triangular Matrix from a Lewandowski-Kurowicka-Joe Distribution

Description

Generates a lower triangular, invertible, positive-definite matrix

Usage

```
rCorr(nDim, eta = 1)
```

Arguments

nDim desired dimension of the sampled $n \times n$ matrix

eta concentration hyperparameter

Details

Using the onion method (Ghosh & Henderson, 2003), samples a Cholesky factorized lower-triangular matrix L from a Lewandowski-Kurowicka-Joe (LKJ) distribution given the concentration hyperparameter η , such that:

$$A = LL^{\top}$$

where A is a $n \times n$ matrix and is a member of the set of all symmetric, positive-definite matrices.

Value

a lower triangular $n \times n$ matrix

References

Ghosh, S. and Henderson, S. G. (2003). Behavior of the norta method for correlated random vector generation as the dimension increases. ACM Transactions on Modeling and Computer Simulation, 13(3), 276-294. https://doi.org/10.1145/937332.937336

rhatCheck

Recursive Validation for Rhat Convergence

Description

Helper function that validates \hat{R} convergence.

Usage

```
rhatCheck(...)
```

Arguments

... arguments passed from parent frame

sample 7

Details

```
\begin{array}{l} \textbf{Input:} \; \mathsf{CmdStan} \; \mathsf{model}, \; N_{\max}, \; \hat{R}_1 \\ \mathsf{Sample} \; \mathsf{CmdStan} \; \mathsf{model} \\ & \quad \textbf{while} \; \; \hat{R}_n \leq \hat{R}_{thresh} \; \; \textbf{or} \; \; n \leq N_{\max} \; \; \textbf{do} \\ & \quad \mathsf{Sample} \; \mathsf{CmdStan} \; \mathsf{model} \\ & \quad n \; += 1 \\ & \quad \textbf{end} \; \; \textbf{do} \\ & \quad \textbf{end} \; \; \textbf{while} \end{array}
```

Value

modified free θ model that is added to an environment created by CreateMod

References

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. (2021). Rank-normalization, folding, and localization: an improved r^ for assessing convergence of mcmc (with discussion). Bayesian Analysis, 16(2). https://doi.org/10.1214/20-ba1221

See Also

CreateMod

sample

Run Free θ Model

Description

Runs the second step of the two-step estiamtion framework

Usage

```
sample(...)
```

Arguments

... arguments passed from parent frame

Details

The second step treating latent trait measurements (θ_p) as freely estimated parameters in the two-step estimation framework for the $p \times i$ model

Value

Model results for the full model added to the environment rendered by CreateMod

See Also

CreateMod

Index

```
CreateMod, 2, 5, 7

genData, 2, 3
genReport, 4

hello, 5

initialize, 2, 5

rCorr, 6
rhatCheck, 2, 6

sample, 2, 7
```