Section 2

Michael Brodskiy

Professor: A. Martsinkovsky

September 28, 2022

Contents

1	Partial Derivatives	3
2	Linear Approximation, Tangent Planes, and the Differential	3
3	Differentiation Rules	4
4	The Directional Derivative	5

List of Figures

1 Partial Derivatives

- The slope of f(x,y) depends on the direction in the xy-plane
 - The slope in the x-direction is called the partial derivative of f with respect to x
 - The slope in the y-direction is called the partial derivative of f with respect to y
 - Notation: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ or f_x , f_y
 - For Second Derivatives: $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial x \partial y}$ or f_{xx} , f_{xy} , f_{yx} , f_{yy}

If f, f_x, f_y , and f_{xy} are defined in a small disc around (x_o, y_o) and f_{yx} is continuous, then:

$$f_{xy} = f_{yx}$$
 in that disc

- The gradient of f
 - Given $f(x_1, x_2, ..., x_n)$, the gradient of f, $\overline{\nabla} f = \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n} \right\rangle$
 - It can be computed at a point: $\overline{\nabla} f(p) = \left\langle \frac{\partial f}{\partial x_1}(p), \frac{\partial f}{\partial x_2}(p), \dots, \frac{\partial f}{\partial x_n}(p) \right\rangle$
 - $\overline{\nabla} f \approx f'(x_o) \Delta x$

2 Linear Approximation, Tangent Planes, and the Differential

- In calculus I, the linear approximation is given by: $f(x) \approx f(a) + f'(a)(x-a)$
- In calculus III, the approximation uses the gradient: $\Delta f \approx \overline{\nabla} f(p) \cdot \Delta \overline{x}$
- Ex. in \mathbb{R}^2 z = f(x, y), p = (a, b):

$$\Delta f \approx \overline{\nabla} f(a,b) \cdot \langle x-a, y-b \rangle \Rightarrow f(x,y) - f(a,b) \Rightarrow f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Thus:

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

We find the linearization of f(x,y) near (a,b) (in \mathbb{R}^2)

• Linearization of f(x,y) near (a,b) is denoted by $L_f(\overline{x},\overline{p})$, where p is the vector $\langle a,b\rangle$

• Ex. Given a cylinder of radius r = .5 and a height of h = 1, estimate the change in volume when the radius is increased by .1 and the height is decreased by .1

$$V = \pi r^2 h \Rightarrow \Delta V \approx 2\pi (.5)(1)(r - .5) + \pi (.5)^2 (h - 1) = \pi (r - .5) + .25\pi (h - 1) \approx$$
$$-.75\pi + \pi r + .25\pi h \Rightarrow -.75\pi + \pi (.6) + .25\pi (.9) = .075\pi$$

- The graph of $z = L_f(\overline{x}, \overline{p})$ is called the tangent set to f at p
- Differentials

$$- df = \overline{\nabla} f \cdot d\overline{x}$$

$$- df = f_x dx + f_y dy + f_z dz$$

$$- df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

- Relative Differentials
 - $-\frac{df}{f}$
 - Think of this as a stencil for relative error $\left(\frac{\Delta f}{f}\right)$

3 Differentiation Rules

• Linearity of differentiation

1.
$$\nabla(af \pm bg) = a\nabla f \pm b\nabla g$$

• Product rule

2.
$$\nabla (fg)(p) = \nabla f(p)g(p) = \nabla g(p)f(p)$$

• Quotient rule

3.
$$\nabla \left(\frac{f}{g}\right)\Big|_p = \frac{g(p)\nabla f(p) - f(p)\nabla g(p)}{g^2(p)}$$

• Power rule

4.
$$\nabla f^{\alpha}(p) = \alpha f^{\alpha-1}(p) \nabla f(p)$$

• Chain rule

5.
$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \dots + \frac{\partial f}{\partial z}\frac{dz}{dt} \Rightarrow \nabla f \cdot \frac{d\overline{x}}{dt}$$

• Ex. A particle is moving through space. At t=2 seconds, the particle is at (3,4,7), and is moving with velocity $\langle -2,1,5\rangle$ meters per second. Suppose that there is also an electric potential in space, given by $\phi(x,y,z)=xy-z^2$ volts. Find the instantaneous rate of change, with respect to time t, of the electric potential at the particle's position at t=2 seconds.

$$\frac{d\phi}{dt}\Big|_{t=2} = \nabla\phi(\langle 3, 4, 7 \rangle) \cdot \frac{d\overline{p}}{dt}\Big|_{t=2} = \nabla\phi(\langle 3, 4, 7 \rangle) \cdot v(2) \Rightarrow$$

$$\nabla \phi = \langle y, x, -2z \rangle (\langle 3, 4, 7 \rangle) = \langle 4, 3, -14 \rangle \Rightarrow \langle 4, 3, -14 \rangle \cdot \langle -2, 1, 5 \rangle = -75 \text{ volts per second}$$

4 The Directional Derivative

- Directions live in the input of the function
- Same is true for ∇f
- What is rate of change of z = f(x, y) in the direction \overline{u} ?
 - Fix point p in xy-plane
 - Choose direction (\overline{u} -direction) in xy-plane
 - $D_{\overline{u}}f(p) = \nabla f(p) \cdot \overline{u}$
 - * This is the derivative of f at p in the direction of \overline{u}
- Alternative: Fix f(x,y) and point p, but \overline{u} varies
- What is \overline{u} in which f(x,y) changes in the fastest possible way?
 - When the angle between the direction and ∇f is $\theta = 0$ (because $\cos(\theta)$) is greatest at this angle
 - * Smallest occurs in opposite directions (when $\theta = \pi$) because $\cos(\theta)$ is the largest possible negative
 - * Equals zero when $\overline{u} \perp \nabla f(p) \left(i.e. \ \theta = \frac{\pi}{2}\right)$
 - Thus, $D_{\overline{u}}f(p)$ is largest possible in direction of $\nabla f(p)$
 - The largest rate is the magnitude of the gradient vector $(|\nabla f(p)|)$
 - * The largest rate is the negative magnitude, $-|\nabla f(p)|$
 - This is all assuming that $\nabla f(p) \neq 0$