

FIG. I

SEQ. I.D. NO. 345

FIG.2

FIG.3

SELECTION CYCLE:

FIG.4

EXPERIMENT:

FIG. 5

FIG. 6

FIG. 7

VARIABLE TEMPLATE SYNTHESIS USING TERMINAL TRANSFERASE

TAILING WITH TERMINAL TRANSFERASE
USING RANDOM NUCLEOTIDES.

5'

dNTPs

HOMOPOLYMER TAILING OF LENGTHENED 5'
PRIMER & 3' PRIMER.

5'

3' PRIMER

ANNEALING & FILLIN

5'

CCCCC
G GGGGG

FIG. 8

FIG. 9

ANCHORING OF BRIDGING OLIGONUCLEOTIDE &
SECONDARY LIGAND EVOLUTION.

FIG.10

SECONDARY LIGAND-DIRECTED PRIMARY LIGAND EVOLUTION.

FIG.11

in vitro transcript

FIG.12 A

FIG. 13

FIG.14

△ 1.1 ucaagAAUUCCCGUUUUCAGUCGGGAAAAACUGAACAaucu (13)

○ 1.3 ucaagAAUAUCUCCGAAGCCGAACGGGAAAACCCGGCaucu (1)

● 1.3 ----- G ----- A ----- (1)

□ 1.4 ucaagGGCAUCUGGGAGGGUAAGGGUAAGGUUGUCGGaucu (4)

△ 1.1 = SEQ. I.D. NO. 355

● 1.3 = SEQ. I.D. NO. 357

○ 1.3 = SEQ. I.D. NO. 356

□ 1.4 = SEQ. I.D. NO. 358

FIG. 15

ISOLATE

○ 2.1 a ucaag--AAUAUA-UCCGAACCUCGACGGGAUAACGAGAA-Gaucu (3)

□ 2.2 b ucaagUACCUAGGUAAAAGGGAGAACACGUGUGUU-cu (13)

● 2.5 b ucaagACAGUAUCCGUUCUUGAUCACGGGACAAAUGaucu (3)

△ 1.1 ucaagAAUCCGUUUUCAGUCGGAAAAACUGAACAucu (13)

○ 2.1a = SEQ. I.D. NO. 359

● 2.5b = SEQ. I.D. NO. 361

□ 2.2b = SEQ. I.D. NO. 360

△ 1.1 = SEQ. I.D. NO. 362

FIG. 16 A

SEQ. I.D. NO. 363

FIG.16 B

SEQ. I.D. NO. 364

FIG. 16 C

FIG.19B

FIG.19A

SEQ. I.D. NO. 367

	A	C	G	U
-4	36	0	0	0
-5	0	36	0	0
-6	4	3	1	28
-7	36	0	0	0
-10	36	0	0	0

	AU	CG	UA	GC	UG	GU	Bulge	END
-8/-3	0	24	0	12	0	0	0	0
-9/-2	0	25	0	10	1	0	36	0
-11/-1	0	24	2	10	0	0	0	1
-12/+1	8	1	8	10	7	1	3	3
-13/+2	6	5	8	9	3	1	3	4
-14/+3	9	0	4	10	2	3	6	8
-15/+4	4	0	9	6	0	1	0	2
-16/+5	10	1	2	1	1	3	1	1
-17/+6	0	4	6	1	4	2		

FIG.19C

FIG.20

FIG.21A

FIG.21B

FIG.22

Motif I (6a)

UUGAGAAA G
5' . . . gGGUGCA | | | CAC U (NUCLEOTIDES 2-38 OF SEQ. I.D. NO. 301)
3' . . . ucuauGU | | | GUG U
--CUCA-G U

Motif III (9a)

CC UUGaucua-
A GG | | | ugaa-3'
A CC | | | GCUU-5'
UU --CUAGUAA

SEQ. I.D. NO. 369

Motif II (1c)

AAGAUAA UCU
5' . . . AGAUG CAGC
3' . . . ucuAC GUCG A
-ACA-G UAG

SEQ. I.D. NO. 368

WT (Motif II-like Domain)

U ACGGUUA
A GACGCCUG | | CA . . . 3'
CUGGCAC | | GU . . . 5'
A -GCCG-G

SEQ. I.D. NO. 370

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

Motif II

FIG. 3I

