Poproszę o uwagę, czyli o atencji

mgr inż. Dawid Wiśniewski - Przetwarzanie języka naturalnego 8 czerwca 2021

Atencja i

Atencja ii

Sieci Seq2Seq (koder/dekoder) do automatycznego tłumaczenia:

Prostokąty: komórki RNN generujące stany ukryte.

Cała (en)kodowana sekwencja, niezależnie od jej długości musi być ostatecznie osadzona w wektorze o niezmiennej długości.

Atencja iii

Czy cała historia słów rozkłada się po równo?

Atencja iv

A gdyby tak dekoder widział wszystkie stany ukryte?

Atencja v

Mamy: sekwencję embeddingów z warstwy ukrytej każdego kroku (en)kodera (klucze): $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$, ... $\vec{e_n}$

Mamy: embedding z warstwy ukrytej aktualnego kroku dekodera (zapytanie): $\vec{d_j}$

Atencja vi

Krok, liczymy iloczyn skalarny każdego stanu ukrytego (en)kodera z aktualnym stanem dekodera:

 $a_{ij} = \vec{e_i} \cdot \vec{d_j}$, gdzie *i* to indeksy kolejnych tokenow w (en)koderze.

Atencja vii

Otrzymujemy wektor o długości takiej jak ilość elementów w (en)koderze.

Następnie wektor ten normalizujemy softmaksem.

Atencja viii

Otrzymując współczynniki mówiące jak ważne (podobne) jest dane słowo (z (en)kodera) wobec słowa z dekodera.

Atencja ix

Wagi te użyte zostaną do policzenia wektora kontekstu, który obliczymy jako średnią ważoną (obliczonymi współczynnikami) po stanach ukrytych (en)kodera.

Wektor ten, zawiera informacje o istotnych tokenach pochodzących z enkodera. Możemy go np. skonkatenować ze stanem ukrytym dekodera, aby wygeneorwać token wyjściowy dla aktualnego kroku.

Atencja x

Atencja xi

Stan ukryty z aktualnego kroku dekodera sklejany jest z wektorem kontekstu i przepuszczany przez warstwę liniową w celu wygenerowania (wybrania) tokenu wyjściowego.

Atencja xii

Atencja xiii

Istnieje wiele podejść do atencji w NLP, ale wszystko zaczeło się od artykułu

Neural Machine Translation by Jointly Learning to Align and Translate z 2014 roku:

https://arxiv.org/abs/1409.0473

Alternatywne formy atencji przedstawiono w 2015 roku w artykule Effective Approaches to Attention-based Neural Machine Translation https://arxiv.org/abs/1508.04025

Transformer i

Jednak nawet atencja pozostawia pewne problemy. Przede wszystkim, połączenia rekurencyjne wymuszają przetwarzanie danych sekwencyjnie.

Rok 2017 podarował nam przełom: architekturę transformer, opisaną w artykule:

Attention is all you need

https://arxiv.org/abs/1706.03762

Transformer ii

Figure 1: The Transformer - model architecture.

Transformer iii

Obrazki na kolejnych slajdach pochodzą ze strony: https://jalammar.github.io/illustrated-transformer/

Transformer iv

Transformer składa się z 6 enkoderów i 6 dekoderów ustawionych jeden nad drugim.

Każdy element sekwencji w ramach danego enkodera/dekodera może być przekształcany równolegle.

Transformer v

Każda warstwa enkodera składa się z mechanizmu samo-atencji, po której następuje warstwa feedforward (fully-connected).

Transformer vi

Dekoder natomiast wprowadza pośredni krok znanej już nam z początku wykładu atencji między enkoderem a dekoderem.

Transformer vii

Transformer viii

Transformer ix

Transformer x

Transformer xi

Transformer xii

Transformer xiii

Transformer xiv

Transformer xv

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

=

Transformer xvi

Transformer xvii

Transformer xviii

