AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) An electrode providing electrical contact with a surface of a patient, <u>said</u> [[the]] electrode comprising:
- A. a conductive member; and
- B. a conduction enhancer in contact with <u>said</u> [[the]] conductive member, <u>said</u> <u>conduction enhancer</u> comprising a carrier and a protein/fatty acid based compound.
- 2. (Currently Amended) The electrode according to Claim 1, wherein <u>said</u> [[the]] protein/fatty acid based compound comprises a lipopolypeptide.
- 3. (Original) The electrode according to Claim 2, wherein said lipopolypeptide comprises an acyleptide.
- 4. (Original) The electrode according to Claim 3, wherein said acyl peptide comprises a material selected from the group consisting of Lamepon S^{TM} , MayTein C^{TM} , and mixtures thereof.
- 5. (Currently Amended) The electrode according to Claim 4, wherein said carrier and conduction enhancer provide electrical contact with an electrical resistivity comprising less than about 10K Ohms when said electrode is applied to said [[the]] patient's surface.
- 6. (Original) The electrode according to Claim 1, wherein said conduction enhancer has an activity between about 0.25% and about 60%.
- 7. (Original) The electrode according to Claim 1, wherein said conduction enhancer has an activity between about 4% and about 50%.
- 8. (Original) The electrode according to Claim 1, wherein said conduction

enhancer has an activity between about 5% and about 30%.

- 9. (Original) The electrode according to Claim 1, wherein said conduction enhancer has an activity between about 10% and about 30%.
- 10. (Original) A method for decreasing the electrical resistivity between an electrode and the surface of a patient comprising: placing a carrier and a conduction enhancer comprising a protein/fatty acid based compound between said electrode and said surface.
- 11. (Original) The method according to Claim 10, wherein said protein/fatty acid based compound comprises a lipopolypeptide.
- 12. (Original) The method according to Claim 11, wherein said lipopolypeptide comprises an acyl peptide.
- 13. (Original) The method according to Claim 12, wherein said acyl peptide comprises a material selected from the group consisting of Lamepon S^{TM} , MayTein C^{TM} , and mixtures thereof.
- 14. (Original) The method according to Claim 13, wherein said carrier and conduction enhancer provide electrical contact with an electrical resistivity comprising less than about 10K Ohms when said electrode is applied to said patient's surface.
- 15. (Currently amended) The method according to Claim 14, wherein <u>said</u> [[the]] electrical resistivity is obtained in about 0.001 seconds to about 3 minutes.
- 16. (Original) The method according to Claim 14, wherein said electrical resistivity is obtained within about 0.01 seconds to about 30 seconds.
- 17. (Original) The method according to Claim 14, wherein said electrical

resistivity is less than about 6K Ohms.

- 18. (Original) The method according to Claim 14, wherein said electrical resistivity is maintained for at least about 8 hours.
- 19. (Original) The method according to Claim 14, wherein said electrical resistivity is maintained for at least about 72 hours.
- 20. (Original) The method according to Claim 10, wherein said composition comprises a gelling agent.
- 21. (Original) A composition for enhancing the electrical conductivity between an electrode and a patient's surface comprising:
 a mixture comprising a carrier and a protein/fatty acid based compound.
- 22. (Original) The composition according to Claim 21, wherein said protein/fatty acid based compound comprises a lipopolypeptide.
- 23. (Original) The composition according to Claim 22, wherein said lipopolypeptide comprises an acyl peptide.
- 24. (Original) The method according to Claim 23, wherein said acyl peptide comprises a material selected from the group consisting of Lamepon S^{TM} , MayTein CT^{TM} , and mixtures thereof.
- 25. (Original) The method according to Claim 24, wherein said carrier and conduction enhancer provide electrical contact with an electrical resistivity comprising less than about 10K Ohms when said electrode is applied to said patient's surface.
- 26. (Original) The composition according to Claim 25, wherein the concentration of said enhancer is at least 0.25%, wherein said electrical conductivity of with said

patient's skin when in contact with said enhancer is less than about 10K Ohm.

- 27. (Original) The composition according to Claim 26, wherein said mixture has an activity between about 0.25% and about 60%.
- 28. (Original) The composition according to Claim 27, wherein said mixture has an activity between about 4% and about 50%.
- 29. (Original) The composition according to Claim 28, wherein said mixture has an activity between about 5% and about 30%.
- 30. (Original) The composition according to Claim 21, wherein said mixture has an activity between about 10% and about 30%.
- 31. (Original) The composition according to Claim 21, wherein said mixture comprises a gelling agent.
- 32. (Original) An electrode providing electrical contact with a surface of a patient, said electrode comprising:
- A. a conductive member; and
- B. a conduction enhancer in contact with said conductive member comprising a carrier and a surfactant represented by the formula:

$$R'$$
 - CO - NH { $CR''H$ - CO - NH - CRH }_n $COOM$

wherein R, R', and R" are the same or different and may be independently selected from the group consisting of alkyl, aryl, amine, carbonyl, and carboxyl moieties; R, and R" may also be independently selected from the group consisting of -H, and -SH; wherein the repeat unit, n, is an integer from about 2 to about 2000; and wherein M is a metal ion.

- 33. (Original) The electrode according to Claim 32, wherein when a carbon containing moiety is selected, R , R', and R" have 1-20 carbon atoms.
- 34. (Currently Amended) The electrode according to Claim 32, wherein <u>said</u> [[the]] repeat unit, n, is an integer from about 150 to about 1800.
- 35. (Currently Amended) The electrode according to Claim 32, wherein <u>said</u> [[the]] surfactant is a mixture of compounds selected from said formula.
- 36. (Currently Amended) The electrode according to Claim 32, wherein <u>said</u> [[the]] metal ion, M, is selected from the group consisting of K⁺, Na⁺, and mixtures thereof.
- 37. (Original) A method for making electrical contact between an electrode and a patient's surface, which comprises the step of applying an electrode having a surface coated with a mixture of a carrier and a conduction enhancer comprising a protein/fatty acid based compound.
- 38. (Original) The method according to Claim 37, wherein said protein/fatty acid based compound comprises a lipopolypeptide.
- 39. (Original) The method according to Claim 38, wherein said lipopolypeptide comprises an acyl peptide.
- 40. (Original) The method according to Claim 39, wherein said acyl peptide comprises a material selected from the group consisting of Lamepon S^{TM} , MayTein CT^{TM} , and mixtures thereof.
- 41. (Original) The method according to Claim 40, wherein said carrier and conduction enhancer provide electrical contact with an electrical resistivity comprising

less than about 10K Ohms when said electrode is applied to said patient's surface.

- 42. (Original) The method according to Claim 41, wherein said acyl peptide has an activity of at least 0.25%.
- 43. (Original) The method according to Claim 37, wherein said patient's skin is unabraded.
- 44. (Currently Amended) The method according to Claim 41, wherein <u>said</u> [[the]] electrical resistivity is obtained in about 0.001 seconds to about 3 minutes.
- 45. (Original) The method according to Claim 41, wherein said electrical resistivity is obtained within about 0.01 seconds to about 30 seconds.
- 46. (Original) The method according to Claim 41, wherein said electrical resistivity is less than about 6K Ohms.
- 47. (Original) The method according to Claim 41, wherein said electrical resistivity is maintained for at least about 8 hours.
- 48. (Original) The method according to Claim 37, wherein said mixture comprises a gelling agent.

Claims 49 to 58. (Cancelled).

- 59. (Original) A surgical electrode for electrosurgery comprising a conductor and a conduction-enhancing amount of an acyl peptide.
- 60. (Original) An electrode for electrosurgery in a patient comprising:
- a. a conductor; and
- b. a conduction-enhancing amount of a mixture of a carrier and a surfactant selected

from the group consisting of Lamepon S^{TM} , MayTein C^{TM} , MayTein C^{TM} , and mixtures thereof, wherein said mixture is applied to a surface of said conductor.

- 61. (Original) The electrode according to Claim 60, wherein said conduction enhancer has an activity between about 0.25% and about 60%.
- 62. (Original) The electrode according to Claim 60, wherein said conduction enhancer has an activity between about 4% and about 50%.
- 63. (Original) The electrode according to Claim 60, wherein said conduction enhancer has an activity between about 5% and about 30%.
- 64. (Original) The electrode according to Claim 60, wherein said conduction enhancer has an activity between about 10% and about 30%.
- 65. (New) The electrode according to Claim 1, wherein said carrier comprises a liquid, cream, or gel.
- 66. (New) The electrode according to Claim 5, wherein said carrier comprises a liquid, cream, or gel.
- 67. (New) The method according to Claim 10, wherein said carrier comprises a liquid, cream, or gel.
- 68. (New) The method according to Claim 14, wherein said carrier comprises a liquid, cream, or gel.
- 69. (New) The method according to Claim 25, wherein said carrier comprises a liquid, cream, or gel.
- 70. (New) The electrode according to Claim 32, wherein said carrier comprises

a liquid, cream, or gel.

- 71. (New) The method according to Claim 37, wherein said carrier comprises a liquid, cream, or gel.
- 72. (New) The method according to Claim 41, wherein said carrier comprises a liquid, cream, or gel.
- 73. (New) The electrode according to Claim 60, wherein said carrier comprises a liquid, cream, or gel.