

Geodatenanalyse I: Statistisches Testen

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr
Montag	Tag 1 / Block 1	Tag 1 / Block 2
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2
Freitag	Tag 5 / Block 1	Tag 5 / Block 2

- 2.1 Einführung und Deskriptive Statistik
- ▶ 2.2 Statistischen Testen
- 2.3 Schließende Statistik und Wahrscheinlichkeiten

Lernziele Block 2.2

Am Ende der Stunde werden die Teilnehmer:

- ... die theoretischen Grundlagen des klassischen statistischen Testens kennen.
- verschiedene statistische Tests für unterschiedliche Zwecke in Python kennen und anwenden können.
- ... die Testergebnisse in Bezug auf Signifikanz und p-Wert bewerten und kritisch diskutieren können.

Problemstellung

Grundwassertemperaturen in Karlsruhe und im Hardtwald:

- ... passt unsere ursprüngliche Vermutung, dass die Temperatur im Wald 11°C beträgt?
- … sind die Temperaturen in der Stadt h\u00f6her, oder doch eher gleich?

Klassisches statistisches Testen

- Aufstellen einer Hypothese
 - z.B. "Die mittlere Grundwassertemperatur im Hardtwald beträgt 11°C".
- Prüfen der Hypothese
 - Vergleich von dem was man sieht, mit dem was man beobachten würde, wenn die Hypothese stimmt.
 - Je besser die Beobachtung zur Hypothese passt, desto eher wird man ihr vertrauen
- Eine Hypothese kann nicht endgültig bestätigt oder widerlegt werden!
- ... wir können uns aber dafür entscheiden sie anzunehmen oder abzulehnen

Ablauf eines statistisches Tests

- **Nullhypothese H**₀: "Die mittlere Temperatur beträgt 11°C."
- Hypothetischer Wert $\mu_0 = 11$
- Alternative Hypothese: "Die mittlere Temperatur beträgt nicht 11°C."

sruher Institut für Technologie

Ablauf eines statistisches Tests

- Definition eines Annahme, bzw. Ablehnungsbereichs
- Bedingte Wahrscheinlichkeit, dass wir H₀ ablehnen, obwohl H₀ stimmt
- Signifikanzniveau α (oftmals 0.05 oder 0.01)

	H_0 ist richtig	H_0 ist falsch
H_0 wird angenommen	richtig entschieden	β -Fehler
H_0 wird abgelehnt	α-Fehler	richtig entschieden

Tschirk (2014)

- 2 mögliche Fehler:
 - Ablehnen einer richtigen Nullhypothese: α-Fehler oder Fehler 1. Art
 - Annehmen einer falschen Nullhypothese: β-Fehler oder Fehler 2. Art

Ein- und zweiseitige Tests

► Zweiseitig: Nullhypothese μ_0 = 11

► Einseitig: Nullhypothese $\mu_0 \le 11$

Interpretation des Testergebnisses

- Signifikanzwert, p-Wert
- ▶ Wahrscheinlichkeit den beobachteten Wert zu erhalten, unter der Bedingung dass H_0 stimmt
- ► Ablehnen der Nullhypothese, wenn p-Wert $\leq \alpha$
 - Annahme der alternativen Hypothese
 - "statistisch signifikant" = "überzufällig"
- ► Ermöglicht Vergleich verschiedener Testergebnisse
- Gibt keine Aussage über die Größe des wahre Effekts
- Sagt nicht aus wie wahrscheinlich die Nullhypothese ist

Trennschärfe eines Tests

- Funktion 1 β: auch Güte, Stärke, engl. power
- β: Wahrscheinlichkeit, dass H₀
 korrekterweise abgelehnt wird

Abhängig von Anzahl der Proben

Übersicht einiger typischer Tests

Student's t-test (one sample)	Mittelwert einer Verteilung entspricht einem bestimmten Wert
Student's t-test (two sample)	Mittelwert zweier Verteilungen sind identisch
F-Test	Vergleicht die Varianz zweier Proben
Mann-Whitney U-Test	Differenz des Median zweier Verteilungen
Shapiro-Wilk Test	Test auf Normalverteilung

... viele mehr!

Parametrische und nicht-parametrische Tests

- ► Parametrische Tests setzen eine Normalverteilung der Stichproben voraus → Überprüfen!
- ggfs. müssen Datensätze normalisiert, bzw. standardisiert werden
- Parametrische Test:
 - Student's t-test
 - F-test
 - Analysis of Variance (ANOVA)
 - **...**
- Nicht-Parametrische Test:
 - Mann-Whitney U-test
 - **...**

Limitierungen statistischer Tests

- Eine Hypothese kann nicht endgültig bestätigt oder widerlegt werden
- Prüfung der Übereinstimmung von Stichprobe und Hypothese
- ► Der Test bevorzugt die Nullhypothese (kleiner *p*-Werte)
- Die Nullhypothese muss von der Stichprobe unabhängig sein

... was ein Test nicht kann

- 12 Missverständnisse zu p-Werten (Goodman, 2008):
- ▶ 1. mit p = 0.05 hat die Nullhypothese eine Chance von 5% wahr zu sein.
- 2. ein nicht-signifikanten Unterschied (p > 0.05) bedeutet, dass kein Unterschied zwischen den Gruppen besteht.
- 3. ein statistisch signifikantes Ergebnis ist wissenschaftlich bedeutsam.
- ▶ 7. p = 0.05 und $p \le 0.05$ bedeuten das Gleiche.

Übung 2.2: Statistisches Testen

- Grundwasserdatensatz Karlsruhe
 - Hypothesen testen
 - Verschiedene Tests
 - p-Werte bestimmen

Aufgaben in Jupyter Notebook: geodatenanalyse_1-2-2

Aufgabenbesprechung

- Hypothese 1:
 - ► Temperatur im Wald normalverteilt → H₀ annehmen
 - ► Temperatur = 11° C? \rightarrow H₀ nicht annehmen (p = 0.005)
 - Mittelwert Temperatur = 10.7°C, n = 8 → Trennschärfe!
- Hypothese 2:
 - Sauerstoffsättigung normalverteilt → H₀ annehmen
 - ► F = 1.79, $p = 0.12 \rightarrow H_0$ annehmen
 - ► T = 3.46, p = 0.0007, und $T > T_kritisch → H_0 ablehnen$
- Mann-Whitney U-test:
 - z.B. Phosphat, nicht normalverteilt, gleiche Verteilung in Wald und Stadt

Literatur

- Tschirk (2014) Statistik: Klassisch oder Bayes, Springer
- Steve Goodman (2008) A Dirty Dozen: Twelve P-Value Misconceptions

Nützliche Links:

https://machinelearningmastery.com/statistical-hypothesis-tests-inpython-cheat-sheet/

