

Gandhinagar Institute Of Technology

Subject – Digital Electronics (2140910)

Branch - Electrical

Topic - K - Map

Name

Abhishek Chokshi

Himal Desai

Harsh Dedakia

Enrollment No.

140120109005

140120109008

140120109012

Guided By - Prof. Gunjan Sir

The Karnaugh Map

Karnaugh Maps

- Karnaugh maps (K-maps) are graphical representations of Boolean functions.
- One map cell corresponds to a row in the truth table.
- Also, one map cell corresponds to a minterm or a maxterm in the Boolean expression
- Multiple-cell areas of the map correspond to standard terms.
- A K-map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the minimum expression.

What is K-Map

- It's similar to truth table; instead of being organized (i/p and o/p) into columns and rows, the K-map is an array of cells in which each cell represents a binary value of the input variables.
- The cells are arranged in a way so that simplification of a given expression is simply a matter of properly grouping the cells.
- K-maps can be used for expressions with 2, 3, 4, and
 5 variables.

Two-Variable Map

- \Box ordering of variables is IMPORTANT for $f(x_1,x_2)$, x_1 is the row, x_2 is the column.
- \triangleright Cell 0 represents $x_1'x_2'$; Cell 1 represents $x_1'x_2$; etc. If a minterm is present in the function, then a 1 is placed in the corresponding cell.

Two-Variable Map

- Any two adjacent cells in the map differ by ONLY one variable, which appears complemented in one cell and uncomplemented in the other.
- Example: $m_0 (=x_1'x_2')$ is adjacent to $m_1 (=x_1'x_2)$ and $m_2 (=x_1x_2')$ but NOT $m_3 (=x_1x_2)$

2-Variable Map -- Example

•
$$f(x_1,x_2) = x_1'x_2' + x_1'x_2 + x_1x_2'$$

= $m_0 + m_1 + m_2$
= $x_1' + x_2'$

- 1s placed in K-map for specified minterms m₀, m₁, m₂
- Grouping of 1s allows simplification
- What (simpler) function is represented by each dashed rectangle?

$$- x_1' = m_0 + m_1$$

 $- x_2' = m_0 + m_2$

Here m₀ covered twice

The 3 Variable K-Map

• There are 8 cells as shown:

C AB	O	
00	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$
01	$\overline{A}B\overline{C}$	$\overline{A}BC$
11	$AB\overline{C}$	ABC
10	$A\overline{B}\overline{C}$	$A\overline{B}C$

Example 3 var. k-map

☐ Minimize the following equation using k-map $y=\overline{A}\overline{B}\overline{C}+\overline{A}B\overline{C}+A\overline{B}C+ABC$

$$\overline{ABC} = 000 = 0$$
 $\overline{ABC} = 010 = 2$

$$ABC = 101 = 5$$
 $ABC = 111 = 7$

Using this fill the k-map

Grouping – here 2 groups of 2 1's
 Is possible

- ☐ For upper group A and C are constants and B is varying.

 Neglect B.A and C both are 0.

 Hence output of this group is ĀC̄
- For upper group A and C are constants and B is varying.
 Neglect B.A and C both are 0.
 Hence output of this group is AC
- > Thus output Y is given by ,

The 4-Variable K-Map

00	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

CD AB	00	01	11	10
00	$\overline{A}\overline{B}\overline{C}\overline{D}$	$\overline{A}\overline{B}\overline{C}D$	$\overline{A}\overline{B}CD$	$\overline{A}\overline{B}C\overline{D}$
01	$\overline{A}B\overline{C}\overline{D}$	$\overline{A}B\overline{C}D$	$\overline{A}BCD$	ĀBCD
11	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD	ABCD
10	$A\overline{B}\overline{C}\overline{D}$	$A\overline{B}\overline{C}D$	$A\overline{B}CD$	$A\overline{B}C\overline{D}$

Cell Adjacency

- Solve the given k-map
 - Step I -grouping
- Step II -output of each group
- Step III -final output
 - > Here answer is,

K-Map SOP Minimization

- The K-Map is used for simplifying Boolean expressions to their minimal form.
- A minimized SOP expression contains the fewest possible terms with fewest possible variables per term.
- Generally, a minimum SOP expression can be implemented with fewer logic gates than a standard expression.

Grouping

Rules of grouping -

1's & 0's can not be grouped

diagonal 1's can not be grouped

Elements in a group should be 2ⁿ

Minimum
Groups
should be
formed

For above rule group
Overlapping is applicable

Mapping a Standard SOP Expression

- For an SOP expression in standard form:
 - A 1 is placed on the K-map for each product term in the expression.
 - Each 1 is placed in a cell corresponding to the value of a product term.
 - Example: for the product term a 1 goes in the 101 cell on a 3-variable map. $A\overline{B}C$

C AB	0	1
00	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$
01	$\overline{A}B\overline{C}$	$\overline{A}BC$
11	$AB\overline{C}$	ABC
10	$A\overline{B}\overline{C}$	$A\overline{B}C$

Mapping a Standard SOP Expression

Three-Variable K-Maps

$$f = \sum (0,4) = \overline{B} \overline{C}$$

$$f = \sum (4,5) = A \overline{B}$$

$$f = \sum (0,1,4,5) = \overline{B}$$

$$f = \sum (0,1,2,3) = \overline{A}$$

$$f = \sum (0,4) = \overline{A} C$$

$$f = \sum (4,6) = A \overline{C}$$

$$f = \sum (0,2) = \overline{A} \overline{C}$$

$$f = \sum (0,2,4,6) = \overline{C}$$

Four-Variable K-Maps

00	01	11	10
0	0	0	0
0	1	0	0
0	1	0	0
0	0	0	0
	00 0 0	00 01 0 0 0 1 0 1	00 01 11 0 0 0 0 1 0 0 1 0

$$f = \sum (5,13) = B \bullet \overline{C} \bullet D$$

CE				
AB	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	1	0
10	0	0	0	0

$$f = \sum (13,15) = A \bullet B \bullet D$$

$$f = \sum (4,6) = \overline{A} \cdot B \cdot \overline{D}$$

00 01 11 10

$$f = \sum (2,3,6,7) = \overline{A} \cdot C$$

CI)	(633)	9-1	215
AB	00	01	11	10
00	0	0	1	1
01	0	0	0	0
11	0	0	0	0
10	0	0	1	1
		unite di		

11	0	0	0	0		11	0	0	0	0	THE REAL PROPERTY.
10	0	0	1	1		10	1	0	0	1	
f =	$\sum (2$,3,10),11) =	= B •	C	f =	= \(\sum_{\text{()}}),2,8,	10)=	B•Ī	5

Four-Variable K-Maps

$$f = \sum (4,5,6,7) = \overline{A} \bullet B$$

$$f = \sum (3,7,11,15) = C \bullet D$$

CE)			
AB	00	01	11	10
00	1	0	1	0
01	0	1	0	1
11	1	0	1	0
10	0	1	0	1

$$f = \sum (0,3,5,6,9,10,12,15)$$

$$f = A \otimes B \otimes C \otimes D$$

$$f = \sum (1, 2, 4, 7, 8, 11, 13, 14)$$

$$f = A \oplus B \oplus C \oplus D$$

$$f = \sum (1,3,5,7,9,11,13,15)$$

 $f = D$

$$f = \sum_{i=0}^{\infty} (0,2,4,6,8,10,12,14)$$
$$f = \overline{D}$$

$$f = \sum (4,5,6,7,12,13,14,15)$$

 $f = B$

$$f = \sum (0,1,2,3,8,9,10,11)$$

 $f = \overline{B}$

Determining the Minimum SOP Expression from the Map

Determining the Minimum SOP Expression from the Map

Mapping Directly from a Truth Table

			the second	· · · · · · · · · · · · · · · · · · ·
	I/P		O/P	
A	В	С	X	C_{1}
0	0	0	1 ~	AB
0	0	1	0	00
0	1	0	0	
0	1	1	0	01
1	0	0	1 ~	
1	0	1	0	11 1 1
1	1	0	1 -	10
1	1	1	1 -	
	0 0 0 0 1 1	A B 0 0 0 0 0 1 0 1 1 0 1 0 1 1	A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0	A B C X 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 -

Don't Care Conditions

- A don't care condition, marked by (X) in the truth table, indicates a condition where the design doesn't care if the output is a (0) or a (1).
- A don't care condition can be treated as a (0) or a (1) in a K-Map.
- Treating a don't care as a (0) means that you do not need to group it.
- Treating a don't care as a (1) allows you to make a grouping larger, resulting in a simpler term in the SOP equation.

Some You Group, Some You Don't

This don't care condition was treated as a (1). This allowed the grouping of a single one to become a grouping of two, resulting in a simpler term.

There was no advantage in treating this don't care condition as a (1), thus it was treated as a (0) and not grouped.

Example

Solution:

R	S	Т	U	F ₄
0	0	0	0	X
0	0	0	1	0
0	0	1	0	1
0	0	1	1	Х
0	1	0	0	0
0	1	0	1	X
0	1	1	0	X
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	Х
1	1	0	0	Х
1	1 1		1	0
1	1	1	0	0
1	1	1	1	0

IMPLEMENTATION OF K-MAPS

☐ In some logic circuits, the output responses for some input conditions are don't care whether they are 1 or 0.

In K-maps, don't-care conditions are represented by d's in the corresponding cells.

Don't-care conditions are useful in minimizing the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells
 - --> Reduce the number of variables in the product terms

K-Map POS Minimization

 The approaches are much the same (as SOP) except that with POS expression, 0s representing the standard sum terms are placed on the K-map instead of 1s.

Mapping a Standard POS Expression

K-map Simplification of POS Expression

$$(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$$

IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

- ☐ Logic function represented by a Karnaugh map can be implemented in the form of not-AND-OR
- ☐ A cell or a collection of the adjacent 1-cells can be realized by an AND gate, with some inversion of the input variables.

IMPLEMENTATION OF K-MAPS - Product-of-Sums Form -

- Logic function represented by a Karnaugh map can be implemented in the form of I-OR-AND
- If we implement a Karnaugh map using 0-cells, the complement of F, i.e., F', can be obtained. Thus, by complementing F' using DeMorgan's theorem F can be obtained

$$F(x,y,z) = (0,2,6)$$

Design of combinational digital circuits

- Steps to design a combinational digital circuit:
 - From the problem statement derive the truth table
 - From the truth table derive the unsimplified logic expression
 - Simplify the logic expression
 - From the simplified expression draw the logic circuit

Example: Design a 3-input (A,B,C) digital circuit that will give at its output (X) a logic 1 only if the binary number formed at the input has more ones than zeros.

Example: Design a 4-input (A,B,C,D) digital circuit that will give at its output (X) a logic 1 only if the binary number formed at the input is between 2 and 9 (including).

	Inputs	Output	
	ABCD	X	$X = \sum (2,3,4,5,6,7,8,9)$
0	0 0 0 0	0	
1	0 0 0 1	0	\rightarrow X
2	0 0 1 0	1	CD
3	0 0 1 1	1	AB 00 01 11 10
4	0 1 0 0	1	00 0 1 1 1 Same
5	0 1 0 1	1	
6	0 1 1 0	1	01 1 1 1 1
7	0 1 1 1	1	11 0 0 0 0
8	1 0 0 0	1	10 1 1 0 0
9	1 0 0 1	1	
10	1 0 1 0	0	
11	1 0 1 1	0	
12	1 1 0 0	0	$X = \overline{AC} + \overline{AB} + A\overline{B}\overline{C}$
13	1 1 0 1	0	A - AC + AB + AB C
14	1 1 1 0	0	
15	1 1 1 1	0	A B C D X

