考试安排

时间: 2015-1-19 下午 2:30-4:30

教室: 3B115, 3B116, 3B215

题型:选择+简答(判断)+算法设计

概率算法

Ex.1 若将 y \leftarrow uniform(0, 1) 改为 y \leftarrow x, 则上述的算法估计的值是什么. 解: 如果x 取 (0, 1) 中的随机值,而y=x的话,意味着的比例 k/n代表y=x 这条 直线在圆弧内的长度和在正方形内的长度的比例r,所以求的值是4* $1/\sqrt{2}$,即 $2\sqrt{2}$ 。

Ex2. 在机器上用 $4\int_0^1 \sqrt{1-x^2} dx$ 估计 π 值,给出不同的 n 值及精度. 解:略。

Ex3. 设 a, b, c 和 d 是实数,且 a \leq b, c \leq d, f:[a, b] \rightarrow [c, d]是一个连续函数,写一概率算法计算积分: $\int_{a}^{b} f(x) dx$.

解: 略。

*EX4. 设 ϵ , δ 是(0,1)之间的常数,证明:若 I 是 $\int_a^b f(x) dx$ 的正确值,h 是由 HitorMiss 算法返回的值,则当 n \geq I(1-I)/ ϵ 2 δ 时有:

Prob[
$$|h-I| < \epsilon$$
] \geqslant 1- δ

上述的意义告诉我们: $Prob[|h-I|] \ge \epsilon] \le \delta$,即: 当 $n \ge I(1-I)/\epsilon^2\delta$ 时,算法的计算结果的绝对误差超过 ϵ 的概率不超过 δ ,因此我们根据给定 ϵ 和 δ 可以确定算法迭代的次数

$$n = \frac{I(1-I)}{\varepsilon^2 \delta} \le \left\lceil \frac{1}{4\varepsilon^2 \delta} \right\rceil (\because I(1-I) \le \frac{1}{4})$$

解此问题时可用切比雪夫不等式,将I看作是数学期望。

解: h是一个随机变量,记其期望和方差为 E[h]和 Var[h]。根据切比雪夫不等式

$$P(\mid h - E[h] \mid \geq \varepsilon) \leq \frac{Var[h]}{\varepsilon^2}$$

显然 E[h]=I。另一方面,在 HitorMiss 算法中,若随机取 n 个点,有 k 个点在积分范围内,则有 h=k / n。因为 n 个点中每一个点,其要么在积分范围内,要么不在积分范围内,因此 k 为二项分布 B(n,I),其中 I 为点落在积分范围内的概率,Var[k]=n*I(1-I)。又因为 k=h*n,所以

$$Var[h] = I(1-I)/n$$

将 n \geq I(1-I)/ $\epsilon^2 \delta$ 带入上式即可得证。

EX5. 用上述算法,估计整数子集 $1\sim n$ 的大小,并分析 n 对估计值的影响. 解: n 越大,估值越准确。

Ex6. 分析 dlogRH 的工作原理,指出该算法相应的 u 和 v.

解: Sherwood 算法的一般过程:

- 1). 将被解的实例变换到一个随机实例。 //预处理函数 u
- 2). 用确定算法解此随机实例,得到一个解。
- 3). 将此解变换为对原实例的解。 //后处理函数 v

dlogRH 是 Sherwood 算法的一个具体应用,dlogRH 为了消除输入实例中 a 的取值对执行时间的影响对其中的 $a=g^x \mod p$ 作随机预处理,得到与其对应的随机实例 c=u(x,r),并且对 c 使用确定性算法得到 y ,最后再把随机实例的结果 y 变换为输入实例 a 的解 x=v(y,r)。其中

u:
$$u(x, r) = \log_{g,p} c = (r+x) \mod (p-1)$$

v: $v(y, r) = (y-r) \mod (p-1)$

Ex7. 写一 Sherwood 算法 C, 与算法 A, B, D 比较, 给出实验结果。解: 略。

Ex8.证明: 当放置(k+1)th 皇后时,若有多个位置是开放的,则算法 QueensLV 选中其中任一位置的概率相等。

解: 当放置第(k+1)th 皇后时,如果有 n 个位置开放,依次记为 $\{S_1,S_2,...,S_n\}$ 。下面计算选择位置 S_i 的概率 P_i : S_i 被选中,则 uniform(1,...,i)=1,且对于所有 j>i 有 uniform(1,...,j)=0。显然 uniform(1,...,i)=1 的概率为 1/i, uniform(1,...,j)=0 的概率为(j-1)/j。所以

$$P_i = (\frac{1}{i} \times \frac{i}{i+1} \times \dots \times \frac{n-1}{n}) = \frac{1}{n}$$

Ex9. 写一算法,求 n=12~20 时最优的 StepVegas 值。解: 略。

```
Ex10:PrintPrimes{ //打印 1 万以内的素数 print 2, 3; n ←5; repeat if RepeatMillRab(n, ) then print n; n ←n+2; until n=10000; } 与确定性算法相比较,并给出 100~10000 以内错误的比例。解:略。
```

近似算法

EX11. 证明 G 中最大团的 size 为 α 当且仅当 G^m 里最大团的 size 是 m α 。解:

- 1). 充分性: 若 G 中最大团的 size 为 α , 则 G^m 里最大团的 size 是 $m\alpha$ 。 记 G 的最大团为 C,显然 C^m 是 G^m 的团,因此 G^m 里最大团的 size $\geq m\alpha$ 。 反正之,如果 size $\geq m\alpha$,根据鸽巢原理,一定有 $\beta > \alpha$ 个点落在同一个 G 的副本中,这 β 个点显然也是一个团,与 G 的最大团为 C 矛盾。
- 2). 必要性: 若 G^m 里最大团的 size 是 $m\alpha$,则 G 中最大团的 size 为 α 。 由充分性直接得到。

EX12. 完善证明 Th1.9 LPT 算法的近似性能比 $R_{LPT} = \frac{4}{3} - \frac{1}{3m}$.

解: PPT 给出了近似比的上界,为了完善证明,我们需要证明这个上界在某些实例下成立。

考虑输入实例 I*,满足如下条件:

$$P_i = 2m - \left\lceil \frac{i}{2} \right\rceil, i = 1, 2, \dots, 2m$$

$$P_{2m+1} = m$$

P_{1}	$P_{2m^{4^{j}}}$	$P_{2m+1} ^{\scriptscriptstyle \circlearrowleft}$	÷
P ₂ ⇔	P_{2m-1}	ė.	÷
₽	42	₽	÷
P _{m-1} ₽	$P_{m+2^{e^{\mathbb{J}}}}$	P	÷
$P_{m^{e^{\jmath}}}$	P_{m+1}	42	÷

LPT 运行结果

$P_{1^{4^{\mathfrak{I}}}}$	$P_{2m\text{-}2^{4^{\!\mathcal{I}}}}$	₽	+
$P_{2^{4^{\jmath}}}$	$P_{2m\text{-}3^{4^{\!\mathcal{I}}}}$	₽	*
47	4	4	*
$P_{m\text{-}1^{4^{\hspace{-0.05cm}\text{-}\hspace{-0.05cm}1}}}$	$P_{m^{e^{\mathbb{J}}}}$	₽	*
P _{2m-1} ₽	$\mathbf{P}_{2\mathbf{m}^{e^{\jmath}}}$	$P_{2m+1} \circ$	+

OPT 运行结果↓

可见 A(I*)=4m-1,且 OPT(I*)=3m,近似比为 $R_{LPT} = \frac{4}{3} - \frac{1}{3m}$ 。