

# **Statique des fluides : Série d'exercices n°3**

**BTS ATI** 

## Objectifs:

A partir du cours de statique des fluides, être capable :

- D'identifier les hypothèses et les données énoncées
- D'appliquer les lois de la mécanique des fluides

#### Eléments utilisés :

- Cours

Exercice 1 : Bilan des forces en hydrostatique



D'un coté, la plaque est soumise aux forces de pression de l'eau et de l'autre coté, elle est soumise à la pression atmosphérique ( $P_{atm}$ ). Sous l'effet des forces de pression hydrostatique variables fonction du niveau h, la plaque assure d'une façon naturelle la fermeture étanche ( $\theta = 0$ ) ou l'ouverture ( $\theta < 0$ ) du réservoir.

L'objectif de cet exercice est de déterminer la valeur h<sub>0</sub> du niveau d'eau à partir de laquelle le réservoir s'ouvre automatiquement.

## On donne:

- le poids volumique de l'eau :  $\varpi = 9.81.10^3 N/m^3$
- les dimensions de la plaque : a=0,75 m (selon l'axe  $\vec{Z}$ ) , b=1,500 (selon l'axe  $\vec{Y}$ )
- la distance entre le centre de surface G et l'axe de rotation  $(A, \vec{Z})$  est : d=50 mm
- la pression au point O est P<sub>o</sub>=P<sub>atm</sub>

### Travail demandé :

- 1) En appliquant le principe fondamental de l'hydrostatique, donner l'expression de la pression de l'eau P<sub>G</sub> au centre de surface G en fonction de la hauteur h.
- 2) Déterminer les expressions de la résultante R et du moment  $M_G$  associés au torseur des forces de pression hydrostatique dans le repère  $\left(G, \overrightarrow{X}, \overrightarrow{Y}, \overrightarrow{Z}\right)$ .
- 3) En déduire l'expression du moment  $\overrightarrow{M_A}$  des forces de pression de l'eau, par rapport à l'axe de rotation  $(A, \overrightarrow{Z})$ .
- 4) Donner l'expression du moment  $M'_A$  des forces de pression atmosphérique agissant sur la plaque, par rapport à l'axe de rotation  $(A, \vec{Z})$ .
- **5)** A partir de quelle valeur  $h_0$  du niveau d'eau la plaque pivote  $(\theta(0))$ ?

#### **Exercice 2 : Densimètre**

Le densimètre, comme son nom l'indique, est un outil qui permet d'obtenir la densité d'un fluide rapidement. Voici une courte vidéo qui explique son fonctionnement : https://www.youtube.com/watch?v=vG2TgD6L4To

On considère un densimètre formé d'un cylindrique creux de longueur L=400 mm et de diamètre d, dans lequel est placée une masse de plomb au niveau de sa partie inférieure. Le centre de gravité G du densimètre est situé à une distance a =10 mm par rapport au fond. Le densimètre flotte à la surface d'un liquide de masse volumique  $\rho$  inconnu. Il est immergé jusqu'à une hauteur h.

Lorsque le densimètre est placé dans de l'eau de masse volumique  $\rho_0 = 1000 \ kg \ / \ m^3$ , la hauteur immergée est  $h_0 = 200 \ mm$ .



#### Travail demandé :

- **1)** Quel est la masse volumique  $\rho$  du liquide si la hauteur immergée h=250 mm?
- 2) Quel est la masse volumique  $\rho_{\min}$  qu'on peut mesurer avec ce densimètre ?
- 3) Jusqu'à quelle valeur de la masse volumique  $\rho$  du liquide le densimètre reste dans une position d'équilibre verticale stable?
- 4) Donner un exemple de liquide dans lequel on risque d'avoir un problème de stabilité.