

$R(f) = H(f) \cdot S(f)$

So, if we can get vid of H(f) we can achieve our goal, since R(f) = S(f) implies V(t) = S(t).

-> We may add an additional filter of
frequency response H-(f) to the channel
and get H'(f) = H-(f) H(f) = 1,
making R(f) = S(f).

The above analysis also gives us insight regarding what frequency range should be used by signal s(t). For example, consider $h(t) = \alpha e^{-\alpha t}$ for a channel. Then $H(f) = \int_{-\infty}^{\infty} \alpha e^{-\alpha \tau} e^{-j\pi t \tau} d\tau$.

= $\frac{\alpha}{\alpha + j \pi i f}$ \Rightarrow $\begin{cases} f \ll l \text{ gives } H(f) \approx l \end{cases}$ $\begin{cases} f \gg l \text{ gives } H(f) \approx \frac{l}{f} \end{cases}$

This corresponds to our observation that with a lower frequency (i.e., longer interval in between), we will have less intersymbol interference, and vice versa.

P3 P4
The sampling theorem (Sec. 2.2.3) offers
another look at the signal rate.

Motivation to modulation:

Mony real-world channels are bardpass channels, i.e., IH(f) is significantly nonzero only within some frequency band f, < f < f 2. To reduce signal distortion, we may multiply the signal by a sinusoidal carrier, say cos(zafot), to make the modulated signal fall within the desirable frequency bard.

Then we send the modulated signal $s(t) \cdot cos(z\pi fot)$ over the channel. The receiving side of the chand may obtain $v(t) \approx s(t)$ by the following demodulation: 1° multiply $s(t) \cos(2\pi fot)$ by another $\cos(z\pi fot)$,

giving $v(t) = S(t) \cdot cos^2(z\pi f_0 t)$ $= \frac{1}{2}S(t) + \frac{1}{2}(S(t) \cdot cos(4\pi f_0 t))$ by applying the Pouble-angle formulae

 $\cos^2\theta = \frac{1 + \cos 2\theta}{2}$

2° filter out the high-frequency component

\(\frac{15}{2} \) (sct) \cos (476fot)) using, e.g., a low-pass
filter.

Summary (Take-home messages):

- (1) It is nontrivial to send data over a physical channel and have it correctly received at the other end of the channel
- (2) In the layered network architecture,

 physical channel "can be regarded simply

 as unreliable bit pipes by the

 higher layers." (Sec. 2.2.9)
- (3) Therefore, we must do error detection (and possibly error correction) at the higher layers. We will cover this topic next week in lecture 03!