유기 화합물 과 여러가지 화합물

2018. 03. 00

CONTENTS

- I 지방족 화합물
- Ⅱ 방향족 화합물
- Ⅲ 이성질체
- IV 기출 문제

출제 포인트

- 이 섹션에서는 탄소 화합물의 명명법부터 알케인, 알켄, 알카인 등의 비교적 간단한 탄화수소와 관련된 반응 및 성질을 묻는 문항이 출제되고 있다.
- 방향족 화합물의 경우 화합물의 종류와 대표적인 반응을 묻는 문제가 주로 출제되는 경향이 있으므로 비교적 광범위한 단원에 해당되지만 적어도 기출 문제만큼은 암기하여 고득점에 다가갈 수 있도록 하자.
- 유기화학은 탄소를 포함하는 화합물을 다루는 화학을 말하며, 지방족 화합물과 방향족 화합물로 구분된다.

- 개념
 - 방향족 화합물을 제외한 사슬형과 고리형의 탄소 화합물
- 지방족 화합물의 종류

알케인	탄소 사이에 단일 결합으로 이루어진 사슬 모양 탄화수소, C_nH_{2n+2}
알켄	탄소 원자 사이에 이중 결합이 있는 사슬 모양 탄화수소, C _n H _{2n} ※ 올레핀계 (에틸렌계) 탄화수소: 알켄 중 이중 결합이 1 개인 탄화수소
알카인	탄소 원자 사이에 삼중결합이 있는 사슬 모양 탄화수소, C _n H _{2n-2} ※ 아세틸렌계 탄화수소: 알카인중 삼중결합이 1개인 탄화수소
사이클로 알케인	고리 모양의 포화 탄화수소, C _n H _{2n} 예) C ₆ H ₁₂ (사이클로핵세인) ※ 포화 탄화수소 : 탄소 원자 사이가 모두 단일 결합으로 이루어진 탄화수소(알케인, 사이클로 알케인등) ※ 불포화 탄화수소 : 탄소 원자 사이에 이중 결합이나 삼중 결합을 포함한 탄화수소(알켄, 알카인등)

- 명명법:접두사-모체 -접미사
 - 접두사 : 치환기 위치
 - 모체 : 탄소개수
 - 접미사 : 작용기
 - 탄소 원자가 가장 긴 모체 사슬을 정한다.
 - 각 탄소 원자에 번호를 붙인다.
 - 치환기 종류와 수를 확인한다. 치환기가 동일한 것일 때 접두사 다이 (di-), 트라이(tri-), 태트라(tetra-) 등을 쓴다.
 - 숫자문자는 '-'로 연결한다.

❖예)

3-ethyl-3-methylhexane

- 명명법:접두사-모체 -접미사
 - 모체가 되는 기본 알케인 명명

기본 알케인	탄소 원자 수	기본 알케인	탄소 원자 수
Methane	1	Hexane	6
Ethane	2	Heptane	7
Propane	3	Octane	8
Butane	4	Nonane	9
Pentane	5	Decane	10

- 알케인에서 수소 한 개를 떼어 내면 알킬 그룹(alkyl group) 이 된다.
- 알킬 그룹은 끝이 '-일 (-yl)' 인 이름을 갖는다.
 - ❖ 예) CH₃- (메틸), CH₃CH₂ (에틸), CH₃CH₂CH₂- (프로필), CH₃CH₂CH₂- (뷰틸) 등

- 명명법:접두사-모체 -접미사
 - 알켄명명법
 - ❖이중 결합을 포함하는 긴 사슬을 골라 같은 길이를 가진 알케인의 이름 끝인 '-에인'을 '-엔'으로 바꾼다.
 - ❖ 이중 결합을 이룬 두 탄소 원자가 낮은 번호가 오도록 번호를 붙인다.
 - ❖이중 결합의 수가 2개이면 -diene, 3개이면 -triene으로 명명한다.
 - 알카인명명법
 - ❖이중 결합을 포함하는 긴 사슬을 골라 같은 길이를 가진 알케인의 이름 끝인 '-에인'을 '-아인'으로 바꾼다.

- 여러 가지 탄소 화합물
 - 작용기 :물질에서 공통적인 화학적인 성질과 반응성을 지니고 있는 특정 원자들의 배열

	일반식	예시	관용명	IUPAC 명명
알케인	RH	CH ₃ CH ₃	에테인	ethane
알켄	-C=C=	H ₂ C=CH ₂	에틸렌	ethene
알카인	-C≡C-	HC≡CH	아세틸렌	ethyne
할로알케인	RX	CH3CH2Cl	염화에틸	chloroethane
알코올	ROH	CH ₃ CH ₂ OH	에틸알코올	ethanol
에터	ROR	CH3OCH3	디메틸에터	methoxy methane
아민	RNH ₂ , RNH-, R ₃ N	CH ₃ NH ₂	메틸아민	methanamine
알데하이드	RCOH	CH ₃ COH	아세트알데하이드	ethanal
케톤	RCOR'	CH3COCH3	아세톤	propanone
카복실산	RCOOH	CH ₃ COOH	아세트산	ethanoic acid
에스터	RCOOR'	CH3COOCH3	메틸아세테이트	methyl ethanoate
아마이드	RCONH2, RCONHR', RCONR'R"	CH ₂ CONH ₂	아세트아마이드	ethanamide
니트릴	RC≡N	H ₂ CC≡N	아세트로니트릴	ethanenitrile

- 여러 가지 탄소 화합물
 - 알코올
 - ❖ 일반식 : R-OH
 - ❖ 명명법 : -OH기가 직접 연결된 가장 긴 사슬을 모체로 하여 이 사슬에 대응되는 알케인의 이름에서 맨 끝의 'e' 대신 'ol'(-올)을 붙인다.
 - ❖알코올 분류

1° 알코올 (1차 알코올)	 OH기가 연결된 탄소가 1개의 알킬기와 연결되어 있는 알코올 알데하이드(RCOH) → 카복실산(RCOOH)
2° 알코올 (2차 알코올)	• -OH기가 연결된 탄소가 2개의 알킬기와 연결되어 있는 알코올 • 케톤(RCOR')
3° 알코올 (3차 알코올)	-OH기가 연결된 탄소가 3개의 알킬기와 연결되어 있는 알코올산화 반응 거의 일어나지 않음

❖ 알코올 제법 : 알켄의 이중 결합에 산 촉매에 의하여 물이 첨가되어 알코 올을 생성

- 여러 가지 탄소 화합물
 - 에터
 - ❖ 일반식 : ROR'
 - ❖에터의 합성
 - ▶ 에탄올을 산(H₂SO₄) 촉매를 이용하여 탈수시켜 만듦
 - $ightharpoonup CH_3CH_2OH + H_2SO_4 \rightarrow CH_3CH_2OCH_2CH_3$
 - 알데하이드
 - ❖ 일반식: RCOH
 - ❖ 알데하이드 반응 : 은거울 반응
 - ➤ 알데하이드(R-CHO)는 암모니아성 질산은 용액(Tollens 시약)과 반응하여 은 (Ag)을 환원시키고 산화된다.
 - \triangleright 은거울 반응: R-CHO + $2Ag(NH_3)_2OH \rightarrow R-COOH + <math>2Ag + 4NH_3 + H_2O$

- 여러 가지 탄소 화합물
 - 아민
 - ❖ 일반식: RNH₂, RNH-, R₃N
 - ❖ 아민은 주로 염기로 작용한다.
 - ❖커플링 (Coupling, 짝지음 반응): 다이아조늄(RN₂+-) 이온은 약한 친전자체로 아주 반응성이 큰 방향족 화합물(페놀이나 3차 아릴아민)과 반응하여 아조(azo) 화합물을 만든다.
 - \triangleright 예) -Ar-N = N⁺ + Ar-Q(Q= -NR₂ or OH) → Ar-N=N-Ar'
 - 아미노산: 아미노산은 H₂N-RCH-COOH의 일반적인 구조를 지니 며 아미노기 (-NH₂)와 카복실기(-COOH)를 동시에 지닌 물질로 단백질 을 구성하는 기본 단위이다.

- 벤젠과 같은 특정한 형태의 고리를 포함한 탄소 화합물을 말한다.
- 방향족 화합물의 종류
 - 벤젠
 - ❖ 분자식 : C₆H₆
 - ❖구조식 :공명 혼성 구조

- ▶ 정육각형 평면구조
- ▶ 탄소-탄소의 결합 길이는 단일 결합과 이중 결합의 중간 정도(1.5중 결합)
- ▶ 매우 안정하여 친전자성 치환 반응을 주로 함
- ▶ 유기 용매(알코올, 에테르등)에 잘 녹음

- 방향족 화합물의 종류
 - 벤젠
 - ❖ 벤젠의 이치환체 : 벤젠에 두 개의 치환기가 있을 때 이들의 상대적인 위 치는 ortho, meta, para(o-, m-, p- 라고 줄여씀) 또는 숫자를 써서 표시

o-xylene	m-xylene	p-xylene
(오쏘자일렌 또는	(메타자일렌 또는	(파라자일렌 또는
오쏘크실렌)	메타크실렌)	파라크실렌)
CH ₃ CH ₃	CH ₃	CH ₃

- 방향족 유도체
 - 대표적인 방향족 유도체

톨루엔	페놀	아닐린
CH ₃	ОН	NH ₂
벤조산	클로로벤젠	나이트로벤젠
СООН	CI	NO ₂

- 방향족 유도체
 - 페놀
 - ❖ 일반식 : C₆H₅OH
 - ❖페놀의 반응
 - ▶ 수용액에서 산으로 작용 : 알코올보다 강한 산성을 띤다.
 - ▶ -OH기는 수소 결합을 할 수 있으므로 벤젠보다 끓는점이 높다.
 - ➤ Williamson 합성법에 의해 에터를 생성
 - \checkmark 예) C₆H₅OH + NaOH → C₆H₅ONa
 - \checkmark C₆H₅ONa + RCH₂-X \rightarrow C₆H₅OCH₂R
 - ➤ 정색 반응 : 염화제이철 (FeCl₃) 수용액과 반응하여 보라색 계열의 정색반응을 한다.

- 방향족 유도체
 - 기타 방향족 화합물

o-cresol (오쏘크레졸)	m-cresol (메타크레졸)
OH CH₃	OH CH3
p-cresol (파라크레졸)	나프탈렌
OH CH ₃	

- 방향족 화합물의 반응
 - 친전자성 치환 반응 : 친전자체에 의해 벤젠의 수소 친전자체로 치환 되는 반응
 - ❖ 벤젠 할로젠화 반응
 - ❖ 벤젠 나이트로화 반응
 - ❖ 벤젠 설폰화 반응
 - ❖ Friedel Crafts 알킬화 반응 : 벤젠과 할로젠화물(R-X)을 Lewis 산 촉매 AICI₃을 사용하여 벤젠을 알킬화시키는 반응
 - ❖ Friedel Crafts 아실화 반응 : 벤젠과 할로젠화 아실(RCOX)을 Lewis 산 촉매 AICl₃을 사용하여 벤젠을 아실화 시키는 반응

- 방향족 화합물의 반응
 - 친전자성 치환 반응 : 친전자체에 의해 벤젠의 수소 친전자체로 치환 되는 반응

- 방향족 화합물의 반응
 - 고온, 고압에서의 H₂ 첨가 반응

이성질체

- 개념
 - 분자식은 같으나 구조가 다른 유기 화합물
- 종류
 - 구조 이성질체 : 분자식은 같지만 원자들이 다른 순서로 연결되어 있 기 때문에 서로 다른 이성질체

분자식	구조 이성질체			
C ₄ H ₁₀	Butane	2-Methylpropane		
C ₄ H ₁₀ O	OH 1-Butanol	Diethyl ether		

이성질체

- 종류
 - 기하 이성질체
 - ❖ 구조 이성질체가 아니며 원자들이 똑같은 순서로 연결되어 있고, 단지 공간에서 원자배열이 다르다.
 - ❖ 대표적으로 탄소 원자 사이에 이중 결합이 있는 경우 치환기가 이중 결합 같은 쪽에 있으면 cis-형, 이중 결합 반대쪽에 있으면 trans-형이다.

극성	무극성
CI C CI H C=C H	CI C = C H
ci	C=C H s-1,2-Dichloroethene

- 1. CH₃ CHCl CH₃의 명명법으로 옳은 것은? (15-01)
 - 2 chloropropane
 di chloroethylene
 - 3 di methylmethane
 4 di methylethane
- 2. $CH_2 = CH CH = CH_2$ 를 옳게 명명한 것은? (12-02)

 - 3 -Butene
 3 Butadiene
 - ③ 1.3 Butadiene ④ 1.3 Butene
- 3. "2.3 dimethy 1.3 butadiene"의 화학구조식을 옳게 나타낸 것은? (09-04)

①
$$CH_2 = C - CH = CH_2$$

 CH_3

②
$$CH_2 = C - C = CH_2$$

 $CH_3 CH_3$

$$\begin{array}{c} \text{(3)} \quad \text{CH}_3 - \text{C} = \text{CH} - \text{CH}_3 \\ \text{CH}_3 \end{array}$$

$$\begin{array}{c} \text{(4)} \quad \text{CH}_3 \\ \text{CH} - \text{CH} = \text{CH}_2 \end{array}$$

- 4. 곧은 사슬 포화탄화수소의 일반적인 경향으로 옳은 것은? (10-04)
 - ① 탄소수가 증가할수록 비점은 증가하나 빙점은 감소한다.
 - ② 탄소수가 증가할수록 비점과 빙점이 모두 감소한다.
 - ③ 탄소수가 증가할수록 빙점은 증가하나 비점은 감소한다.
 - ④ 탄소수가 증가할수록 비점과 빙점은 모두 증가한다.
- 5. C_nH_{2n+2} 의 일반식을 갖는 탄화수소는? (15-01)

- Alkyne
 Alkene
 Alkane
 Cycloalkane
- 6. 알킨족 탄화수소의 일반식을 옳게 나타낸 것은? (10-01)

- 7. 올레핀계 탄화수소에 해당하는 것은? (11-02)

 - ① CH_4 ② $CH_2 = CH_2$ ③ CH = CH ④ CH_3CHO

		"		
8.		_	않은 것은? (16-01) ③ 에탄올	
9.			되는 것은? (14-01 ③ C ₆ H ₈	
10.	① 용접에 이		② 이중결합을 가지	고 있다. }하여 염화비닐을 생성한다.
11.			이 일어나지 않는 경 ③ 브롬	
12.		소에 해당하는 것은 ② 에틸렌	·? (14-02) ③ 프로판	④ 아세틸렌

13.	고리구조를 갖지 않고 분자식이	C ₁₆ H ₂₈ 인	탄화수소의	분자 중에는	2중	결합
	이 몇 개 있는가? (07-04)	10 20				

① 1개

② 2개

③ 3개

④ 4개

14.다음 화합물 중 파이 결합을 가지고 있는 물질은? (06-01)

 \bigcirc CH₃OH \bigcirc 3 ZnCl₂ \bigcirc 4 FeCl₃

15. 다음 작용기 중에서 메틸(methyl)기에 해당하는 것은? (14-04)

 \bigcirc -C₂H₅ \bigcirc -COCH₃ \bigcirc -NH₂ \bigcirc -CH₃

16. 작용기와 그 명칭을 나타낸 것 중 틀린 것은? (10-04)

① -OH: 히드록시기 ② -NH₂: 암모니아기

 $CH_3 = C - CH_3$

③ -CHO : 알데히드기 ④ -NO₂ : 니트로기

17. 시클로헥산에 대한 설명으로 옳은 것은? (12-02)

- ① 불포화고리 탄화수소이다.
- ③ 포화고리 탄화수소이다.

- ② 불포화사슬 탄화수소이다.
- ④ 포화사슬 탄화수소이다.

18.다음 화학반응 중 첨가반응이 아닌 것은? (07-01)

①
$$C_2H_2 + HCI \rightarrow CH_2 = CHCI$$
 ② $C_2H_4 + H_2O \rightarrow C_2H_5OH$

$$\textcircled{3} \ C_2H_4 + HCI \rightarrow C_2H_3CI + H_2 \qquad \textcircled{4} \ C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$$

$$2 C_2H_4 + H_2O \rightarrow C_2H_5OH$$

$$4 C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$$

19. 이소프로필알코올에 해당하는 것은? (15-02)

- (1) C_6H_5OH (2) CH_3CHO (3) CH_3COOH (4) $(CH_3)_2CHOH$

20. 다음 중 3차 알코올에 해당되는 것은? (14-04)

- 21. 산화에 의하여 카르보닐기를 가진 화합물을 만들 수 있는 것은? (16-01)
 - ① CH3-CH2-COOH ② CH3-CH-CH3
- OH

3 CH3-CH2-CH2-OH

- $CH_2 CH_2$ OHOH
- 22. 촉매하에 H_2O 의 첨가반응으로 에탄올을 만들 수 있는 물질은? (15-04)
- (1) CH_4 (2) C_2H_2 (3) C_6H_6 (4) C_2H_4

- 23. 에탄올은 공업적으로 약 280℃, 300기압에서 에틸렌에 물을 첨가하여 얻어 진다. 이때 사용되는 촉매는? (12-04)
 - $1 H_2SO_4$

- \bigcirc NH₃
- ③ HCl

4 AlCl₃

- 24. 2차 알코올이 산화되면 무엇이 되는가? (11-02)

- ① 알데히드 ② 에테르 ③ 카르복실산
- ④ 케톤

- 25. 알코올을 산화하면 알데히드가 생성된다. 이 때 알데히드를 얻을 수 없는 알 코올은? (06-01)
 - ① CH₃CH₂OH

 $CH_3 - OH - OH$ (3) CH₃

- 2 CH3CHCH2OH CH_3
- 4 CH₃CH₂CH₂OH
- 26.다음 중 부동액으로 사용되는 것은? (13-02)
 - ① 에탄

- ② 아세톤 ③ 이황화탄소 ④ 에틸렌글리콜

- 27. 디에틸에테르에 관한 설명으로 옳지 않은 것은? (13-02)
 - ① 휘발성이 강하고 인화성이 크다.
 - ② 증기는 마취성이 있다.
 - ③ 2개의 알킬기가 있다.
 - ④ 물에 잘 녹지만 알코올에는 불용이다.

28.	에탄올의 탈수로 만들어지는 물질로 물에 잘 녹지 않으며 마취성과 휘발성	10
	있는 액체는? (09-04)	

(1) C_6H_6 (2) CH_3COOH (3) $C_2H_5OC_2H_5$ (4) CH_3CHO

29.디에틸에테르는 에탄올과 진한 황산의 혼합물을 가열하여 제조할 수 있는데 이것을 무슨 반응이라고 하는가? (08-01)

① 중합 반응 ② 축합 반응 ③ 산화 반응 ④ 에스테르화 반응

30. 암모니아성 질산은 용액과 반응하여 은거울을 만드는 것은? (15-01)

31. 아세트알데히드에 대한 시성식은? (15-04)

4 CH₃COOCH₃

32. 다음 물질 중 환원성이 없는 것은? (15-04)

설탕
 9당
 4당

④ 포도당

- 33. 공업적으로 에틸렌을 PdCl₂ 촉매하에 산화시킬 때 주로 생성되는 물질은? (08-02)
 - ① CH₃OCH₃

- ② CH₃CHO ③ HCOOH

- 4 C_3H_7OH
- 34.다음 물질 중 수용액에서 약한 산성을 나타내며 염화제이철 수용액과 정색반 응을 하는 것은? (15-02)

- 35. 페놀 수산기(-OH)의 특성에 대한 설명으로 옳은 것은? (16-02)
 - ① 수용액이 강알칼리성이다.
 - ② -OH기가 하나 더 첨가되면 물에 대한 용해도가 작아진다.
 - ③ 카르복실산과 반응하지 않는다.
 - FeCl3용액과 정색 반응을 한다.

36. 페놀에 대한 설명 중 틀린 것은? (08-04)

- ① 카르복실산과 반응하여 에테르를 형성한다.
- ② 나트륨과 반응하여 수소 기체를 발생한다.
- ③ 수용액은 약한 산성을 띤다.
- ④ FeCl₃ 수용액과 반응하여 보라색으로 변한다.

37. 페놀에 대한 설명 중 가장 거리가 먼 내용은? (06-02)

- ① 산성을 띤다
- ② FeCl₃ 용액을 가하면 정색반응을 한다.
- ③ 벤젠과 아세톤을 산촉매에서 반응시키면 큐멘(이소프로필벤젠)이 생성된다.
- ④ 벤젠보다 끓는점이 높다.

38. 다음 중 CH_3COOH 와 C_2H_5OH 의 혼합물에 소량의 진한황산을 가하여 가열 하였을 때 주로 생성되는 물질은? (07-01)

① 아세트산에틸

② 메탄산에틸

③ 글리세롤

④ 디에틸에테르

39. 커플링(coupling) 반응시 생성되는 작용기는? (14-04)

(1) $-NH_2$ (2) $-CH_3$ (3) -COOH (4) -N = N-

40. 벤젠에 관한 설명으로 틀린 것은? (15-04)

- ① 화학식은 C₆H₁₂이다. ② 알코올, 에테르에 잘 녹는다.

③ 물보다 가볍다. ④ 추운 겨울날씨에 응고될 수 있다.

41. 벤젠에 대한 설명으로 옳지 않은 것은? (12-04)

- ① 정육각형의 평면구조로 120°의 결합각을 갖는다.
- ② 결합길이는 단일결합과 이중결합의 중간이다.
- ③ 공명 혼성구조로 안정한 방향족 화합물이다.
- ④ 이중결합을 가지고 있어 치환반응보다 첨가반응이 지배적이다.

42.벤젠에 대한 설명으로 틀린 것은? (11-04)

- ① 상온, 상압에서 액체이다.
- ② 일치환체는 이성질체가 없다.
- ③ 일반적으로 치환반응 보다 첨가반응을 잘한다.
- ④ 이치환체에는 ortho, meta, para 3종이 있다.

	1 후 교세						
43.	벤젠에 진한 질산과 7 제 역할을 하여 얻어?			황산이 촉매와 탈수			
	① 니트로벤젠	② 클로로벤젠	③ 알킬벤젠	④ 벤젠술폰산			
44.	4. 프리델 - 크래프츠 반응에서 사용하는 촉매는? (15-01)						
		② SO ₃ ③ F	e ④ AlCl	3			

45. 프리델 - 크래프트 반응을 나타내는 것은? (11-02)

```
① C_6H_6 + _3H_2 Ni C_6H_{12} ② C_6H_6 + CH_3Cl AlCl<sub>3</sub> C_6H_6CH_3 + HCl
```

3
$$C_6H_6 + Cl_2$$
 Fe $C_6H_5Cl + HCl$ 4 $C_6H_6 + HONO_2$ $C_{-H_2SO_4}$ $C_6H_5NO_2 + H_2O$

46. 벤젠의 수소 2개를 염소로 치환한 디클로로벤젠의 구조 이성질체 수는 몇 개인가? (16-02)

1 5

(2) **4**

3 3

4 2

47.벤젠에 수소 원자 한 개는 -CH3기로, 또 다른 수소원자 한 개는 -OH 기로 치환되었다면 이성질체수는 몇 개 인가? (14-01)

1

2 2

3 3

4

48.	벤젠을 약 300℃,	높은	압력에서	Ni	촉매로	수소와	반응시켰읥	을 때	얻어	지는
	물질은? (14-04)									

① Cyclopentane ② Cyclopropane ③ Cyclohexane ④ Cyclooctane

49. 니트로벤젠의 증기에 수소를 혼합한 뒤 촉매를 사용하여 환원시키면 무엇이 되는가? (13-01)

① 페놀

② 톨루엔

③ 아닐린

④ 나프탈렌

50. 다음 중 벤젠 고리를 함유하고 있는 것은? (12-01)

아세틸렌

② 아세톤

③ 메탄

④ 아닐린

51. 다음 물질 중에서 염기성인 것은? (12-01)

① $C_6H_6NH_2$ (아닐린) ② $C_6H_5NO_2$ (니트로벤젠)

③ C₆H₅OH (페놀)

④ C₆H₅COOH (벤조산)

- 52. 다음에서 설명하는 물질의 명칭은? (16-02)
 - HCI 과 반응하여 염산염을 만든다.
 - 니트로벤젠을 수소로 환원하며 만든다.
 - CaOCl₂ 용액에서 붉은 보라색을 띤다.

 - ① 페놀 ② 아닐린 ③ 톨루엔
- ④ 벤젠술폰산
- 53. 다음 물질 중에서 염기성인 것은? (08-01)
 - (1) $C_6H_5NH_2$ (2) $C_6H_5NO_2$ (3) C_6H_5OH (4) $C_6H_5CH_3$

- 54. FeCl₃의 존재하에서 톨루엔과 염소를 반응시키면 어떤 물질이 생기는가? (12-01)
 - ① σ-클로로톨루엔

② ρ-살리실산메틸

③ 아세트아닐리드

- ④ 염화벤젠디아조늄
- 55. 방향족 탄화수소가 아닌 것은? (12-02)

- ① 톨루엔 ② 크실렌 ③ 나프탈렌 ④ 시클로펜탄

- 56. 다음 중 벤젠고리에 수산기와 메틸기를 함께 가지고 있는 화합물은? (06-02)
 - ① 글리세린

- ② 피크르산③ 크레졸

④ 크실렌

- 57. 다음 중 방향족 화합물이 아닌 것은? (10-01)
 - 톨루엔

- ② 아세톤
- ③ 크레졸

- ④ 아닐린
- 58. 벤젠의 유도체 TNT의 구조식을 옳게 나타낸 것은? (09-01)

$$\begin{array}{c} \text{3} & \text{NH}_2 \\ \text{O}_2\text{N} & \text{NO}_2 \\ \text{NO}_2 \end{array}$$

$$\begin{array}{c} \text{OH} \\ \text{O}_2\text{N} \\ \text{NO}_2 \\ \end{array}$$

59. TNT 는 어느 물질로부터 제조하는가? (11-01)

60. 다음 보기의 벤젠 유도제 가운데 벤젠의 치환반응으로부터 직접 유도 할 수 없는 것은? (10-02)

® -CL

(1) (a), (b) (2) (b), (d)

(3) (a), (c)

(4) (c), (d)

61. 벤조산은 무엇을 산화하면 얻을 수 있는가? (16-02)

톨루엔

② 니트로벤젠 ③ 트리니트로톨루엔

④ 페놀

62. 아미노기와 카르복실기가 동시에 존재하는 화합물은? (13-04)

① 식초산 ② 석탄산 ③ 아미노산 ④ 아민

63. 분자식이 같으면서도 구조가 다른 유기화합물을 무엇이라고 하는가? (13-02)

① 이성질제 ② 동소체 ③ 동위원소 ④ 방향족화합물

64. 다음 화합물들 가운데 기하학적 이성질체를 가지고 있는 것은? (16-01)

① $CH_2 = CH_2 - CH_3$ ② $CH_3 - CH_2 - CH_2 - OH$

65. 다음 중 기하 이성질체가 존재하는 것은? (13-04)

1 C_5H_{12} 2 $CH_3CH=CHCH_3$ 3 C_3H_7CI

(4) CH \equiv CH

66. 평면 구조를 가진 C₂H₂Cl₂의 이성질체의 수는? (13-04)

① 1개

② 2개 ③ 3개

(4) 47

67. 기하이성질체 때문에 극성 분자와 비극성 분자를 가질 수 있는 것은? (12-02)

(1) C_2H_4 (2) C_2H_3CI (3) $C_2H_2CI_2$ (4) C_2HCI_3

68.	다음 중 기하 이성질 ① CH ₃ CH=CH ₂			CH ₂ CH ₃	④ CH₃OH
69.	다음 중 이성질체로 ① CH ₃ OH 와 CH ₄ ③ CH ₃ OCH ₃ 와 CH ₃ C	-	② CH ₄ 와 C ₂ H ₈	₃ OCH ₃	
70.	부틸알코올과 이성점 ① 메틸알코올			④ 아세트	트알데히드
71.	탄소수가 5개인 포호① 2개② 3개			몇 개인기	' ? (14-04)
72.	C ₆ H ₁₄ 의 구조 이성 ³ ① 4 ② 5		하는가? (15-02) ④ 7		

Thank you