

AN216535

WICED™ Studio 4 CYW92070xV3_EVAL Evaluation Board Hardware User Manual

Associated Part Family: CYW2070x

This document describes the CYW92070xV3_EVAL board and provides various pins, jumpers, switches, ports, and test points to access the CYW2070x to perform development, debug, evaluation, and troubleshooting.

Contents

1	Product Description	2
2	Board Layout	2
3	DIP Switch Setup	3
4	Jumper and Switch Settings	4
5	Current Consumption Measurement	5
6	Configuring the Board for COEX Testing	6
7	Further Information	6
D	ocument History	7

References	7
Worldwide Sales and Design Support	8
Cypress Products	8
PSoC® Solutions	8
Cypress Developer Community	8
WICED IoT	8
Technical Support	8

1 Product Description

The CYW2070x (CYW20706 and CYW20707) is a monolithic, single chip, Bluetooth (BT) dual-mode System-on-a-Chip (SoC) that includes a baseband processor, an ARM® Cortex™-M3 processor and an integrated transceiver. As the CYW20706, it is a fully embedded device running an embedded BT stack with support for embedded user applications developed with WICED Studio. As the CYW20707, it is a standalone BT Controller that communicates with an external MCU with an external BT stack via the HCI UART.

The Cypress CYW92070xV3_EVAL board (Figure 1) is an evaluation board that provides various pins, jumpers, switches, ports, and test points to access the CYW2070x to perform debug, evaluation, and troubleshooting.

Figure 1. CYW92070xV3_EVAL Board

2 Board Layout

Figure 2 shows the location of key jumpers and switches on the CYW92070xV3_EVAL board.

Note: Default jumper settings are identified in red.

Figure 2. CYW92070xV3_EVAL Evaluation Board Layout and Component Locations

3 DIP Switch Setup

Figure 2 shows the location for SW5, a switch that is used to configure PUART. Settings are shown in Table 1.

DIP State Description OFF Use P2 as PUART_RX 1 2 Use P33 as PUART_RX OFF 3 OFF Use P0 as PUART_TX 4 OFF Use P31 as PUART_TX OFF 5 Use P3 as PUART_CTS 6 OFF Use P30 as PUART_RTS

Table 1. SW5 DIP Switch Settings

Note: Only one of DIP switches 1 or 2 can be turned ON (but never both), and only one of DIP switches 3 or 4 can be turned ON (but never both).

Figure 2 shows the location for SW7, a switch that is used to configure serial flash and authentication IC connections. Settings are shown in Table 2.

Table 2. SW7 DIP Switch Settings

Dip	Default State	Description
1	OFF	Power serial flash from VDDIO
2	OFF	MISO connection between CYW and serial flash
3	OFF	MOSI connection between CYW and serial flash
4	OFF	CS connection between CYW and serial flash
5	OFF	CLK connection between CYW and serial flash
6	OFF	Power authentication IC from VDDIO
7	OFF	SDA connection between CYW and authentication IC
8	OFF	SCL connection between CYW and authentication IC

For applications requiring serial flash memory, enable the on-board serial flash by setting SW7 positions 1-6 to the ON position. For applications that do not require serial flash access, set these to the OFF position.

Authentication IC U4 is DNI by default. If the user decides to install this, then SW7 positions 7-8 should be placed in the ON position for proper connection. If authentication IC is not used, set these to the OFF position.

4 Jumper and Switch Settings

See Figure 2 for the jumpers and switch locations. Table 3 (below) shows the CYW92070xV3_EVAL board jumper and switch settings.

Table 3. CYW92070xV3_EVAL Board Jumper and Switch Settings

Jumper/Switch	State	Comment
J3	Shorted	Power supply to BT_VDDO
J6	Open	Short SCL to I2S_DO/SCL/P3
J7	Open	Short SDA to I2S_DI/SDA
J9	Shorted	Input of the internal 1.2V LDO
J10	Shorted	Input of the internal 2.5V LDO
J12	Shorted	Output of the internal 1.2V LDO
J17	Shorted	Power to VDDIO domain from the on-board 3.3V LDO regulator
J26		
1 and 2	Shorted	Connects UART_RX to FTDI TX
1 and 2	Shorted	Connects UART_TX to FTDI RX
1 and 2	Shorted	Connects UART_CTS to FTDI RTS
1 and 2	Shorted	Connects UART_RTS to FTDI CTS

Jumper/Switch	State	Comment
J28	Open	Use SW6 as input to GPIO P30
J29	Open	Connect GPIO P15 to FTDI2 RX for debug
SW2	_	Reset
SW3	_	Recovery
SW4	1 (OFF)	Power switch:
		1: OFF 3: ON
SW5	Open	See Table 1
SW6	_	Generic button
SW7	Open	See Table 2

Table 4 shows the CYW92070xV3_EVAL board headers.

Table 4. CYW92070xV3_EVAL Board Headers

Header	Description
J18	CYW test header - SPI, UART
J19	CYW test header - GPIO
J20	Arduino shield connection
J21	Arduino shield connection
J22	CYW test header: GPIO, Reset, I2S, PWM
J23	Arduino shield connection
J24	Arduino shield connection
J27	Debug interface

5 Current Consumption Measurement

Table 5 shows the low-power Bluetooth classic modes current measured for different sleep modes in three different scenarios.

Table 5. Low-Power Bluetooth Current

Mode	J9	J3	Total	Units
No scans enabled + sleepmode	0.114	0.084	0.198	mA
Page scan enabled + sleepmode	0.328	0.083	0.411	mA
Sniff link 1.28s, 4 attempts, 0 timeout, no scans + sleepmode	1.250	0.084	1.334	mA

Table 6 lists the jumper locations for measuring current.

Note: Remove the listed jumper and measure the current across the exposed pins.

Table 6. Current Measurements

To Measure	Remove the Jumper and Measure Across
VDDIO	J3
1.2V LDO input	J9
2.5V LDO input	J10
1.2V LDO output	J12
Entire CYW2070x	J17

6 Configuring the Board for COEX Testing

To configure the board for COEX testing, the following HW change must be made:

- Remove R48 (Refer to Figure 2 for component location).
- Make sure J28 is not installed (Default configuration is not installed).

7 Further Information

For further information on the CYW92070xV3_EVAL hardware board, refer to the following documents available as part of WICED Studio and available for download at the Cypress Support Community website [1]:

- CYW92070xV3_EVAL-Schematic [2]
- CYW2070x Hardware Interface and Selection and Programming [3]

Document History

Document Title: AN216535 - CYW92070xV3_EVAL Evaluation Board Hardware User Manual

Document Number: 002-16535

Revision	Submission Date	Description of Change	
*A	11/14/2016	Updated part numbers, added references, removed schematics	
**	10/03/2016	Initial revision	

References

- [1] Cypress Support Community (http://community.cypress.com/)
- [2] Bluetooth SoC for Embedded Wireless Devices: CYW92070xV3_EVAL Schematic
- [3] CYW2070x Hardware Interface Selection and Programming (AN216761)

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Cypress Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Lighting & Power Control cypress.com/powerpsoc

Memory cypress.com/memory

PSoC cypress.com/psoc

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless/RF cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Videos | Blogs | Training | Components

WICED IoT

Uniting CDC and WICED Solutions

Technical Support

cypress.com/support

PSoC is a registered trademark and WICED and PSoC Creator are trademarks of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone : 408-943-2600 Fax : 408-943-4730 Website : www.cypress.com

© Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.