Table A.1 - References used in the database by type of reactor operating regime: batch

Number	Reference	Author(s)	Title
1	Ind. Eng. Chem. Des. Dev. 23, 637 – 641 (1984)	Beaumont, O.; Schwob, Y.	Influence of physical and chemical parameters on wood pyrolysis
2	J. Anal. Appl. Pyrolysis. 12, 61-70 (1987)	Valenzuela-Calahorro, C.; Bernalte-Garcia, A.; Gomez-Serrano, V.; Bernalte-Garcia, M.J.	Influence of particle size and pyrolysis conditions on yield, density, and some textural parameters of Chars prepared from holm-oak wood
3	<u>Fuel</u> . <u>68</u> , 1012-1016 (1989)	Figueiredo, J. L.; Valenzuela, C.; Bernalte, A.; Encinar, J. M.	Pyrolysis of holm-oak wood: influence of temperature and particle size
4	Ind. Eng. Chem. Res. 32, 2573–2579 (1993).	Balcı, S.; Doğu, T.; Yücel, H.	Pyrolysis Kinetics of Lignocellulosic Materials
5	Ind Eng. Chem. Process Des. Dev. 24, 844–852 (1985)	Nunn, T.R.; Howard, J.B.; Longwell, J.P.; Peters, W.A.	Product Compositions and Kinetics in the Rapid Pyrolysis of Milled Wood Lignin
6	Ind. Eng. Chem. Process Des. Dev. 24, 836–844 (1985)	Nunn, T.R.; Howard, J.B.; Longwell, J.P.; Peters, W.A.	Product Compositions and Kinetics in the Rapid Pyrolysis of Sweet Gum Hardwood
7	Fuel. 74, 1812–1822 (1995)	Raveendran, K.; Ganesh, A.; Khilar, K.C.	Influence of mineral matter on biomass pyrolysis characteristics
8	Fuel. 75, 1715–1720 (1996)	Raveendran, K.; Ganesh, A.	Heating value of biomass and biomass pyrolysis products
9	Fuel. 75, 987–998 (1996)	Raveendran, K.; Ganesh, A.; Khilar, K.C.	Pyrolysis characteristics of biomass and biomass components
10	Renew. Energy. 7, 233–250 (1996)	Williams, P.T.; Besler, S.	The influence of temperature and heating rate on the slow pyrolysis of biomass
11	Fuel Process. Technol. 55, 219–233 (1998)	Encinar, J.M.; Beltrán, F.J.; Ramiro, A.; González, J.F.	Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: Influence of variables
12	Energy. 24, 141–150 (1999)	Demirbaş, A.	Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil

13	Ind. Eng. Chem. Res. 38, 2216–2224 (1999)	Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G.	Product distribution from pyrolysis of wood and agricultural residues
14	J. Anal. Appl. Pyrolysis. 52, 33–49 (1999)	Pütün, A.E.; Özean, A.; Pütün, E.	Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: Yields and structural analysis of bio-oil
15	Biomass and Bioenergy. 16, 79–88 (1999)	Della Rocca, P.A.; Cerrella, E.G.; Bonelli, P.R.; Cukierman, A.L.	Pyrolysis of hardwoods residues: On kinetics and chars characterization
16	Energy Convers. Manag. 41, 1749–1756 (2000)	Çağlar, A.; Demirbaş, A.	Conversion of cotton cocoon shell to liquid products by pyrolysis
17	Fuel Process. Technol. 68, 209–222 (2000)	Encinar, J.M.; González, J.F.; González, J.	Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions
18	Biomass and Bioenergy. 19, 271–279 (2000)	Şensöz, S.; Angin, D.; Yorgun, S.	Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): Fuel properties of biooil
19	Ind. Eng. Chem. Res. 40, 5547–5556 (2001)	Di Blasi, C.; Branca, C.	Kinetics of Primary Product Formation from Wood Pyrolysis
20	Appl. Energy. 69, 293–306 (2001)	Fagbemi, L.; Khezami, L.; Capart, R.	Pyrolysis products from different biomasses: application to the thermal cracking of tar
21	J. Anal. Appl. Pyrolysis. 58–59, 995–1007 (2001)	Onay, Ö.; Beis, S.H.; Koçkar, Ö.M.	Fast pyrolysis of rapeseed in a well-swept fixed-bed reactor
22	Renew. Energy. 24, 615–625 (2001)	Özbay, N.; Pütün, A.E.; Uzun, B.B.; Pütün, E.	Biocrude from biomass: Pyrolysis of cottonseed cake
23	Fuel. 80, 1371–1378 (2001)	Pütün, A.E.; Özcan, A.; Gerçel, H.F.; Pütün, E.	Production of biocrudes from biomass in a fixed- bed tubular reactor: Product yields and compositions
24	Energy and Fuels. 15, 1488–1497 (2001)	Thunman, H.; Niklasson, F.; Johnsson, F.; Leckner, B.	Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds
25	Renew. Energy. 26, 21–32 (2002)	Beis, S.H.; Onay, Ö.; Koçkar, Ö.M.	Fixed-bed pyrolysis of safflower seed: Influence of pyrolysis parameters on product yields and compositions

26	Energy Sources. 24, 337–345 (2002)	Demirbaş, A.	Analysis of Liquid Products from Biomass via Flash Pyrolysis
27	Energy Convers. Manag. 43, 877–884 (2002)	Demirbaş, A.	Pyrolysis and steam gasification processes of black liquor
28	Biomass and Bioenergy. 23, 307–314 (2002)	Gerçel, H.F.	The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake
29	Water Res. 36, 3261–3264 (2002)	Menéndez, J.A.; Inguanzo, M.; Pis, J.J.	Microwave-induced pyrolysis of sewage sludge
30	Energy Sources. 24, 275–285 (2002)	Pütün, A.E.	Biomass to bio-oil via fast pyrolysis of cotton straw and stalk
31	Energy. 27, 703–713 (2002)	Pütün, A.E.; Apaydin, E.; Pütün, E.	Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition
32	Energy Sources. 24, 347–355 (2002)	Şensöz, S.; Can, M.	Pyrolysis of pine (Pinus brutia Ten.) Chips: 1. Effect of Pyrolysis Temperature and Heating Rate on the Product Yields
33	Energy Sources. 24, 357–364 (2002)	Şensöz, S.; Can, M.	Pyrolysis of pine (Pinus brutia Ten.) chips: 2. Structural analysis of bio-oil
34	Energy Sources. 25, 767–778 (2003)	Bonelli, P.R.; Cerrella, E.G.; Cukierman, A.L.	Slow Pyrolysis of Nutshells: Characterization of Derived Chars and Process Kinetics
35	Biomass and Bioenergy. 25, 113–117 (2003)	Das, P.; Ganesh, A.	Bio-oil from pyrolysis of cashew nutshell - A near fuel
36	Energy Sources. 25, 753–765 (2003)	Güllü, D.	Effect of catalyst on yield of liquid products from biomass via pyrolysis
37	Energy Sources. 25, 879–892 (2003)	Onay, Ö.; Koçkar, Ö. M.	Production of bio-oil from biomass: Slow pyrolysis of rapeseed (Brassica napus L.) in a fixed-bed reactor
38	Bioresour. Technol. 89, 307–311 (2003)	Şensöz, S.	Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions

39	J. Anal. Appl. Pyrolysis. 71, 779–790 (2004)	Ateş, F.; Pütün, E.; Pütün, A.E.	Fast pyrolysis of sesame stalk: Yields and structural analysis of bio-oil
40	J. Anal. Appl. Pyrolysis. 72, 243–248 (2004)	Demirbas, A.	Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues
41	Energy Sources. 26, 771–782 (2004)	Onay, Ö.; Beis, S.H.; Koçkar, Ö.M.	Pyrolysis of walnut shell in a well-swept fixed-bed reactor
42	Biomass and Bioenergy. 26, 289–299 (2004)	Onay, O.; Koçkar, O.M.	Fixed-bed pyrolysis of rapeseed (Brassica napus L.)
43	Renew. Energy. 29, 779–787 (2004)	Özçimen, D.; Karaosmanoğlu, F.	Production and characterization of bio-oil and biochar from rapeseed cake
44	Energy. 29, 2171–2180 (2004)	Pütün, A.E.; Apaydm, E.; Pütün, E.	Rice straw as a bio-oil source via pyrolysis and steam pyrolysis
45	Fuel. 83, 1469–1482 (2004)	Sharma, R.K.; Wooten, J.B.; Baliga, V.L.; Lin, X.; Chan, W.G.; Hajaligol, M.R.	Characterization of chars from pyrolysis of lignin
46	J. Anal. Appl. Pyrolysis. 71, 669–694 (2004)	Schröder, E.	Experiments on the pyrolysis of large beechwood particles in fixed beds
47	Energy Sources. 26, 761–770 (2004)	Tuncel, F.; Gerçel, H.F.	Production and characterization of pyrolysis oils from Euphorbia macroclada
48	Renew. Energy. 30, 413–420 (2005)	Islam, M.N.; Islam, M.N.; Beg, M.R.A.; Islam, M.R.	Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization
49	Energy Sources. 27, 867–873 (2005)	Li, L.; Zhang, H.; Zhuang, X.	Pyrolysis of waste paper: Characterization and composition of pyrolysis oil
50	Fuel Process. Technol. 87, 25–32 (2005)	Pütün, A.E.; Uzun, B.B.; Apaydin, E.; Pütün, E.	Bio-oil from olive oil industry wastes: Pyrolysis of olive residue under different conditions
51	Ind. Eng. Chem. Res. 44, 8786–8795 (2005)	Wang, X.; Kersten, S.R.A.; Prins, W.; van Swaaij, W.P.M.	Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results
52	Microporous Mesoporous Mater. 96, 93–101 (2006)	Adam, J.; Antonakou, E.; Lappas, A.; Stöcker, M.; Nilsen, M.H.; Bouzga, A.; Hustad, J.E.; Øye, G.	In situ catalytic upgrading of biomass-derived fast pyrolysis vapors in a fixed bed reactor using mesoporous materials

53	J. Anal. Appl. Pyrolysis. 76, 285–289 (2006)	Demirbas, A.	Effect of temperature on pyrolysis products from four nutshells
54	Ind. Crops Prod. 23, 99–105 (2006)	Şensöz, S.; Kaynar, I.	Bio-oil production from soybean (Glycine max L.); Fuel properties of Bio-oil
55	Bioresour. Technol. 97, 429–436 (2006)	Şensöz, S.; Demiral, I.; Gerçel, H.F.	Olive bagasse (Olea europea L.) pyrolysis
56	J. Anal. Appl. Pyrolysis. 76, 230–237 (2006)	Tsai, W.T.; Lee, M.K.; Chang, Y.M.	Fast pyrolysis of rice straw, sugarcane bagasse, and coconut shell in an induction-heating reactor
57	Bioresour. Technol. 97, 569–576 (2006)	Uzun, B.B.; Pütün, A.E.; Pütün, E.	Fast pyrolysis of soybean cake: Product yields and compositions
58	Fuel. 86, 1892–1899 (2007)	Apaydin-Varol, E.; Pütün, E.; Pütün, A.E.	Slow pyrolysis of pistachio shell
59	Fuel. 86, 2514–2520 (2007)	Asadullah, M.; Rahman, M.A.; Ali, M.M.; Rahman, M.S.; Motin, M.A.; Sultan, M.B.; Alam, M.R.	Production of bio-oil from fixed bed pyrolysis of bagasse
60	Fuel Process. Technol. 88, 591–597 (2007)	Demirbas, A.	The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis
61	Fuel Process. Technol. 88, 523–531 (2007)	Onay, O.	Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor
62	Int. J. Energy Res. 31, 506–514 (2007)	Pütün, A.E.; Özbay, N.; Apaydın Varol, E.; Uzun, B.B.; Ateş, F.	Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product
63	Ind. Crops Prod. 26, 307–314 (2007)	Pütün, A.E.; Önal, E.; Uzun, B.B.; Özbay, N.	Comparison between the "slow" and "fast" pyrolysis of tobacco residue
64	Bioresour. Technol. 98, 22–28 (2007)	Tsai, W.T.; Lee, M.K.; Chang, Y.M.	Fast pyrolysis of rice husk: Product yields and compositions

65	J. Anal. Appl. Pyrolysis. 78,	Worasuwannarak, N.; Sonobe, T.;	Pyrolysis behaviors of rice straw, rice husk, and
	265–271 (2007)	Tanthapanichakoon, W.	corncob by TG-MS technique
66	Energy and Fuels. 22, 1936–1943 (2008)	Ateş, F.; Işikdağ, M.A.	Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GC/MS
67	Energy. 33, 1233–1240 (2008)	Özbay, N.; Apaydin-Varol, E.; Burcu Uzun, B.; Eren Pütün, A.	Characterization of bio-oil obtained from fruit pulp pyrolysis
68	Bioresour. Technol. 99, 5492–5497 (2008)	Şensöz, S.; Angin, D.	Pyrolysis of safflower (Carthamus tinctorius L.) seed press cake: Part 1. The effects of pyrolysis parameters on the product yields
69	Bioresour. Technol. 99, 5498–5504 (2008)	Şensöz, S.; Angin, D.	Pyrolysis of safflower (Carthamus tinctorius L.) seed press cake in a fixed-bed reactor: Part 2. Structural characterization of pyrolysis bio-oils
70	Energy and Fuels. 22, 31–37 (2008)	Sricharoenchaikul, V.; Pechyen, C.; Aht-Ong, D.; Atong, D.	Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste
71	Bioresour. Technol. 99, 8771–8776 (2008)	Ucar, S.; Ozkan, A.R.	Characterization of products from the pyrolysis of rapeseed oil cake
72	Fuel. 88, 1991–1997 (2009)	Ateş, F.; Işikdağ, M.A.	Influence of temperature and alumina catalyst on pyrolysis of corncob
73	Int. J. Hydrogen Energy. 34, (2009) 1726–1734 (2009)	Dufour, A.; Girods, P.; Masson, E.; Rogaume, Y.; Zoulalian, A.	Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution
74	J. Anal. Appl. Pyrolysis. 85, (2009) 142–144 (2009)	Sánchez, M.E.; Lindao, E.; Margaleff, D.; Martínez, O.; Morán, A.	Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of biofuels and biochar soil management
75	J. Anal. Appl. Pyrolysis. 85, (2009) 155–162 (2009)	Sricharoenchaikul, V.; Atong, D.	Thermal decomposition study on Jatropha curcas L. waste using TGA and fixed bed reactor
76	J. Anal. Appl. Pyrolysis. 84, (2009) 151–156 (2009)	Uçar, S.; Karagöz, S.	The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and biooil properties

77	J. Anal. Appl. Pyrolysis. 88, 117–123 (2010)	Fu, P.; Hu, S.; Xiang, J.; Li, P.; Huang, D.; Jiang, L.; Zhang, A.; Zhang, J.	FTIR study of pyrolysis products evolving from typical agricultural residues
78	Bioresour. Technol. 101, (2010) 4162-4168 (2010)	Islam, M.R.; Parveen, M.; Haniu, H.	Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis
79	Bioresour. Technol. 101, (2010) 8424–8428 (2010)	Muradov, N.; Fidalgo, B.; Gujar, A.C.; T-Raissi, A.	Pyrolysis of fast-growing aquatic biomass - Lemna minor (duckweed): Characterization of pyrolysis products
80	Renew. Energy. 35, (2010) 1319–1324 (2010)	Özçimen, D.; Ersoy-Meriçboyu, A.	Characterization of biochar and bio-oil samples obtained from the carbonization of various biomass materials
81	Bioresour. Technol. 101, (2010) 4622–4629 (2010)	Razuan, R.; Chen, Q.; Zhang, X.; Sharifi, V.; Swithenbank, J.	Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors
82	Bioresour. Technol. 101, (2010) 6136–6146 (2010)	Shen, D.K.; Gu, S.; Luo, K.H.; Wang, S.R.; Fang, M.X.	The pyrolytic degradation of wood-derived lignin from the pulping process
83	Biomass and Bioenergy. 35, 1863–1872 (2011)	Abnisa, F.; Daud, W.M.A.W.; Husin, W.N.W.; Sahu, J.N.	Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in the pyrolysis process
84	Biomass and Bioenergy. 35, (2011) 3604–3616 (2011)	Abnisa, F.; Daud, W.M.A.W.; Sahu, J.N.	Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology
85	Bioresour. Technol. 102, (2011) 10711–10716 (2011)	Agrawalla, A.; Kumar, S.; Singh, R.K.	Pyrolysis of groundnut de-oiled cake and characterization of the liquid product
86	Bioresour. Technol. 102, (2011) 3512–3520 (2011)	Bae, Y.J.; Ryu, C.; Jeon, J.K.; Park, J.; Suh, D.J.; Suh, Y.W.; Chang, D.; Park, Y.K.	The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae
87	Bioresour. Technol. 102, (2011) 3946–3951 (2011)	Demiral, I.; Ayan, E.A.	Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the product yields and characterization of the liquid product
88	Bioresour. Technol. 102, (2011) 1869–1878 (2011)	Duman, G.; Okutucu, C.; Ucar, S.; Stahl, R.; Yanik, J.	The slow and fast pyrolysis of cherry seed

89	Energy Power Eng. 3, (2011) 332–338 (2011)	Figueiredo, M.K.K.; Romeiro, G.A.; Silva, R.V.S.; Pinto, P.A.; Damasceno, R.N.; D'Avila, L.A.; Franco, A.P.	Pyrolysis Oil from the Fruit and Cake of Jatropha curcas Produced Using a Low-Temperature Conversion (LTC) Process: Analysis of a Pyrolysis Oil-Diesel Blend
90	Bioresour. Technol. 102, (2011) 8211–8219 (2011)	Fu, P.; Yi, W.; Bai, X.; Li, Z.; Hu, S.; Xiang, J.	Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues
91	Ind. Crops Prod. 33, (2011) 481–487 (2011)	Isa, K.M.; Daud, S.; Hamidin, N.; Ismail, K.; Saad, S.A.; Kasim, F.H.	Thermogravimetric analysis and the optimization of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM)
92	Bioresour. Technol. 102, (2011) 11018–11026 (2011)	Maddi, B.; Viamajala, S.; Varanasi, S.	Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass
93	Fuel. 90, (2011) 2538–2544 (2011)	Singh, R.K.; Shadangi, K.P.	Liquid fuel from castor seeds by pyrolysis
94	J. Anal. Appl. Pyrolysis. 91, (2011) 183–189 (2011)	Wang, S.; Guo, X.; Wang, K.; Luo, Z.	Influence of the interaction of components on the pyrolysis behavior of biomass
95	Fuel. 95, 169–177 (2012)	Açikalin, K.; Karaca, F.; Bolat, E.	Pyrolysis of pistachio shell: Effects of pyrolysis conditions and analysis of products
96	J. Anal. Appl. Pyrolysis. 93, (2012) 170–177 (2012)	Imam, T.; Capareda, S.	Characterization of bio-oil, syn-gas, and bio-char from switchgrass pyrolysis at various temperatures
97	J. Anal. Appl. Pyrolysis. 94, (2012) 75–82 (2012)	Murata, K.; Liu, Y.; Inaba, M.; Takahara, I.	Catalytic fast pyrolysis of jatropha wastes
98	Bioresour. Technol. 124, (2012) 186–189 (2012)	Nayan, N.K.; Kumar, S.; Singh, R.K.	Characterization of the liquid product obtained by pyrolysis of karanja seed
99	Fuel. 96, (2012) 579–585 (2012)	Volli, V.; Singh, R.K.	Production of bio-oil from de-oiled cakes by thermal pyrolysis
100	Energy Convers. Manag. 76, 1073–1082 (2013)	Abnisa, F.; Arami-Niya, A.; Daud, W.M.A.W.; Sahu, J.N.; Noor, I.M.	Utilization of oil palm tree residues to produce bio- oil and bio-char via pyrolysis

101	Bioresour. Technol. 128, (2013) 593–597 (2013)	Angin, D.	Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake
102	J. Anal. Appl. Pyrolysis. 103, (2013) 362–368 (2013)	Bakar, M.S.A.; Titiloye, J.O.	Catalytic pyrolysis of rice husk for bio-oil production
103	Bioresour. Technol. 130, (2013) 345–350 (2013)	Lee, Y.; Eum, P.R.B.; Ryu, C.; Park, Y.K.; Jung, J.H.; Hyun, S.	Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1
104	Bioresour. Technol. 148, (2013) 196–201 (2013)	Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.K.; Jung, J.; Hyun, S.	Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C
105	Fuel. 103, (2013) 437–443 (2013)	Nayan, N.K.; Kumar, S.; Singh, R.K.	Production of the liquid fuel by thermal pyrolysis of neem seed
106	Bioresour. Technol. 165, 336–342 (2014)	Chutia, R.S.; Kataki, R.; Bhaskar, T.	Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake
107	Waste Manag. 34, (2014) 210–218 (2014)	Hassen-Trabelsi, A.B.; Kraiem, T.; Naoui, S.; Belayouni, H.	Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char
108	Chem. Eng. Trans. 37, (2014) 115–120 (2014)	Hernandez-Mena, L.E.; Pécora, A.A.B.; Beraldo, A.L.	Slow pyrolysis of bamboo biomass: Analysis of biochar properties
109	J. Mater. Cycles Waste Manag. 16, (2014) 449–459 (2014)	Choudhury, N.D.; Chutia, R.S.; Bhaskar, T.; Kataki, R.	Pyrolysis of jute dust: Effect of reaction parameters and analysis of products
110	Energy Convers. Manag. 78, (2014) 518–526 (2014)	Jourabchi, S.A.; Gan, S.; Ng, H.K.	Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system
111	J. Anal. Appl. Pyrolysis. 110, (2014) 163–171 (2014)	Kiliç, M.; Pütün, E.; Pütün, A.E.	Optimization of Euphorbia rigida fast pyrolysis conditions by using response surface methodology
112	Bioresour. Technol. 155, (2014) 63–70 (2014)	Park, J.; Lee, Y.; Ryu, C.; Park, Y.K.	Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields
113	Polym. Degrad. Stab. 100, (2014) 1–9 (2014)	Părpăriță, E.; Brebu, M.; Uddin, M. A.; Yanik, J.; Vasile, C.	Pyrolysis behaviors of various biomasses

114	Bioresour. Technol. 174, (2014) 204–211 (2014)	Song, Y.; Tahmasebi, A.; Yu, J.	Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor
115	J. Anal. Appl. Pyrolysis. 105, (2014) 143–150 (2014)	Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A.	A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose, and lignin
116	Bioresour. Technol. 178, 83–89 (2015)	Bordoloi, N.; Narzari, R.; Chutia, R.S.; Bhaskar, T.; Kataki, R.	Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions
117	Bioresour. Technol. 177, (2015) 406–409 (2015)	Casoni, A.I.; Bidegain, M.; Cubitto, M.A.; Curvetto, N.; Volpe, M.A.	Pyrolysis of sunflower seed hulls for obtaining bio- oils
118	Fuel. 150, (2015) 672–678 (2015)	Morali, U.; Şensöz, S.	Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: Characterization of bio-oil and bio-char
119	Int. J. Chem. Eng. Appl. 6, (2015) 376–380 (2015)	Sharma, R.; Sheth, P.N.	Thermo-Chemical Conversion of Jatropha Deoiled Cake: Pyrolysis vs. Gasification
120	Bioresour. Technol. 178, (2015) 65–69 (2015)	Thangalazhy-Gopakumar, S.; Al- Nadheri, W.M.A.; Jegarajan, D.; Sahu, J.N.; Mubarak, N.M.; Nizamuddin, S.	Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production
121	Int. J. Hydrogen Energy. 40, (2015) 10780–10787 (2015)	Zhai, M.; Wang, X.; Zhang, Y.; Dong, P.; Qi, G.	Characteristics of rice husk tar pyrolysis by external flue gas
122	Bioresour. Technol. 191, (2015) 17–23 (2015)	Zhang, S.; Dong, Q.; Zhang, L.; Xiong, Y.	High-quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts
123	J. Anal. Appl. Pyrolysis. 122, 479–489 (2016)	Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M.	Production of bio-oils and bio-char from Arundo donax through microwave-assisted pyrolysis in a multimode batch reactor
124	Renew. Energy. 98, (2016) 245–253 (2016)	Bordoloi, N.; Narzari, R.; Sut, D.; Saikia, R.; Chutia, R.S.; Kataki, R.	Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus
125	Renew. Energy. 91, (2016) 21–31 (2016)	Cardoso, C.A.L.; Machado, M.E.; Caramão, E.B.	Characterization of bio-oils obtained from pyrolysis of bocaiuva residues

126	Energy Convers. Manag. 124, (2016) 587–597 (2016)	Chang, G.; Huang, Y.; Xie, J.; Yang, H.; Liu, H.; Yin, X.; Wu, C.	The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust
127	Renew. Energy. 96, (2016) 167–171 (2016)	Garg, R.; Anand, N.; Kumar, D.	Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization
128	J. Anal. Appl. Pyrolysis. 118, (2016) 202–224 (2016)	Kanaujia, P.K.; Naik, D.V.; Tripathi, D.; Singh, R.; Poddar, M.K.; Konathala, L.N. Siva Kumar; Sharma, Y.K.	Pyrolysis of Jatropha Curcas seed cake followed by optimization of liquid-liquid extraction procedure for the obtained bio-oil
129	Renew. Energy. 98, (2016) 238–244 (2016)	Krishna, B.B.; Biswas, B.; Ohri, P.; Kumar, J.; Singh, R.; Bhaskar, T.	Pyrolysis of Cedrus deodara sawmill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil
130	Ind. Crops Prod. 83, (2016) 529–536 (2016)	Lazzari, E.; Schena, T.; Primaz, C.T.; Maciel, G.P. da Silva; Machado, M.E.; Cardoso, C.A.L.; Jacques, R.A.; Caramão, E.B.	Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste
131	J. Clean. Prod. 136, (2016) 51–61 (2016)	Lim, C.H.; Mohammed, I.Y.; Abakr, Y.A.; Kazi, F.K.; Yusup, S.; Lam, H.L.	Novel input-output prediction approach for biomass pyrolysis
132	Energy Convers. Manag. 122, (2016) 526–534 (2016)	Ly, H.V.; Kim, S.S.; Choi, J.H.; Woo, H.C.; Kim, J.	Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production
133	Bioresour. Technol. 221, (2016) 682–685 (2016)	Moralı, U.; Yavuzel, N.; Şensöz, S.	Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char
134	J. Anal. Appl. Pyrolysis. 121, (2016) 84–92 (2016)	Quan, C.; Gao, N.; Song, Q.	Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization
135	Int. J. Hydrogen Energy. 41, (2016) 21121–21130 (2016)	Wang, X.; Lv, W.; Guo, L.; Zhai, M.; Dong, P.; Qi, G.	Energy and exergy analysis of rice husk high- temperature pyrolysis
136	Appl. Energy. 178, (2016) 346–352 (2016)	Zhao, N.; Li, B.X.	The effect of sodium chloride on the pyrolysis of rice husk

137	Bioresour. Technol. 237, 57–63 (2017)	Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T.	Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw, and rice husk
138	BioResources. 12, (2017) 4958–4971 (2017)	Liu, Z.; Wang, L.; Zhang, Y.; Li, Y.; Li, Z.; Cai, H.	Cellulose-lignin and xylan-lignin interactions on the formation of lignin-derived phenols in pyrolysis oil
139	Ind. Crops Prod. 95, (2017) 704–717 (2017)	Varma, A.K.; Mondal, P.	Pyrolysis of sugarcane bagasse in the semi-batch reactor: Effects of process parameters on product yields and characterization of products
140	Chem. Pap. 72, 603–616 (2018)	Mandal, S.; Bhattacharya, T.K.; Verma, A.K.; Haydary, J.	Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology
141	Elsevier B.V., 2018	Mishra, R.K.; Mohanty, K.	Thermocatalytic conversion of non-edible Neem seeds towards clean fuel and chemicals
142	J. Environ. Chem. Eng. 7 (2019)	Dhanavath, K.N.; Bankupalli, S.; Sugali, C.S.; Perupogu, V.; Nandury, S.V.; Bhargava, S.; Parthasarathy, R.	Optimization of process parameters for slow pyrolysis of neem press seed cake for liquid and char production
143	Bioengineering. 6 (2019)	Reza, M.S.; Ahmed, A.; Caesarendra, W.; Abu Bakar, M.S.; Shams, S.; Saidur, R.; Aslfattahi, N.; Azad, A.K.	Acacia holosericea: An invasive species for biochar, bio-oil, and biogas production
144	Waste Manag. 89, 224–235 (2019)	Varma, A.K.; Thakur, L.S.; Shankar, R.; Mondal, P.	Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products
145	Energy Institute, 2020	Mishra, R.K.; Muraraka, A.; Mohanty, K.	Optimization of process parameters and catalytic pyrolysis of Cascabela thevetia seeds over low-cost catalysts towards renewable fuel production
146	J. Clean. Prod. 272, (2020)	Singh, S.; Chakraborty, J.P.; Mondal, M.K.	Pyrolysis of torrefied biomass: Optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass

147	Biomass and Bioenergy. 132, (2020)	Vieira, F.R.; Luna, C.M.R.; Arce, G.L.A.F.; Ávila, I.	Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk
-----	------------------------------------	---	--