

Automatic Dose Optimization for Radiotherapy

Paul Dubois

TheraPanacea MICS, CentraleSupélec Institut du Cancer de Montpellier

Re-inventing cancer treatment with Artificial Intelligence

THERAPANACEA

Reinventing cancer care through Al

- → Sub structures of the heart
- → SBRT Thorax
- 70 + structures on MR
- 3-4 minutes contouring
- Plug and play

MR Box

Synthetic CT for MR-guided workflow

- Avoid registrations errors
- Accelerate adaptive routines
- > Less machine time

Brain T1, Pelvis T2, Pelvis/Abdo Truefisp (ViewRay) And more under development

ART-Plan™ AdaptBox

Advantages

Accelerate, automatize and simplify adaptive radiation therapy.

Reduce the burdens of multiple manual Iterations.

Save time and optimize the resources of your department.

Take earlier and easier replanning decision.

Cancer treatments

- +: Safe (little damage to healthy tissues)
- -: Tumor needs to be localized & accessible

- -: Heavy medicine on all the body
- +: Tumor does not need to be localized

Cancer treatments

Radiotherapy

Chemotherapy

+: Safe

Surgery

-: Tumor needs to be loca

cine on all the body

s **not** need to be localized

- +: Relatively safe (most tissues are spared)
- -: Tumor needs to be (relatively) localized

Multi-Leaf Collimator

Spreading rays

Dose Spread

Delivering irradiation

Ideal heatmap

Discretized heatmap

Delivering discretized dose

Problem statement

% of the volume	Name	Dose
	PTV constraints:	
$\leq 1\%$	of Ext_Tumor receives	$\geq 70 \mathrm{Gy}$
$\geq 95\%$	of Tumor receives	$\geq 63 \mathrm{Gy}$
	OAR constraints:	
$\leq 1\%$	of Spinal_Cord receives	$\geq 43 \mathrm{Gy}$
$\leq 15\%$	of Heart receives	$\geq 30 \mathrm{Gy}$
$\leq 20\%$	of Esophagus receives	$\geq 10 \mathrm{Gy}$
$\leq 2\%$	of Lt_Lung receives	$\geq 20 \mathrm{Gy}$
$\leq 8\%$	of Lt_Lung receives	$\geq 10 \mathrm{Gy}$

List of "objectives"

Mathematical formulation

Parameters to optimize

 $x_{i,j}^{(heta)} ext{ with } 1 \leq i,j \leq N_{leaf_pairs} \ heta \in \Theta ext{ (the list of angles chosen for this case)}$

Parameters constraints

We cannot send negative dose, i.e.:

$$x_{i,j}^{(heta)} \geq 0$$

however, the angles are completely free.

Dose calculation

The dose on each voxel of the body y_v is approximated by:

$$y = \sum_{ heta \in \Theta} L^{(heta)} x^{(heta)}$$

We want to find the best dose distribution y.

Mathematical formulation

Ideal problem

Objective function

$$f(y) = \sum_{s \in \mathcal{S}} f_s(y)$$

 \Rightarrow if constraint is not satisfied for structure s, else $f_s(y) = 0$

Current Workflow

Patient data

- CT scan
- OARs & PTVs contours
- doctors' objectives

Treatment plan

- Fluences
- Leaf movements
- Dose per organ

Automatization (work in progress)

Patient data

- CT scan
- OARs & PTVs contours
- doctors' objectives

Treatment plan

- Fluences
- Leaf movements
- Dose per organ

Thank You

