Denoising Diffusion Probabilistic Models

Jonathan Ho Ajay Jain Pieter Abbeel

UC Berkeley

Yujin

Xinke-Wang

Changfeng-Duan

JieLi

Yuhong-Sun

Content

- Background
- Introduction
- Seatures
- 4 Theory
- 6 Application
- Conclusion

- Background
- 2 Introduction
- Features
- 4 Theory
- 6 Application
- 6 Conclusion

What is generative model?

Regardless of precise definition, the terminology is constitutional because a generative model can be used to "generate" random instances

Deep generative models

With the rise of deep learning, a new family of methods, called deep generative models (DGMs)

- Generative adversarial networks (GANs)
- Variational autoencoders (VAEs)
- Flow Based Model

- Background
- 2 Introduction
- Features
- 4 Theory
- 6 Application
- 6 Conclusion

What is Diffusion Model?

We can say...

In machine learning, diffusion models, also known as diffusion probabilistic models, are a class of latent variable models.

Intuitive understanding

- Background
- 2 Introduction
- Seatures
- 4 Theory
- 6 Application
- 6 Conclusion

DDPM Features

Name.	Likelihood	Speed	Methods	Stability	Others
GAN	None	fast	One-step	Unstable	high quality
VAE	Uncertain	fast	One-step	Stable	-
Flow Model	Exactly	fast	Multi-step	Stable	-
DDPM	Uncertain	slow	Multi-step	Stable	beat GANs

Table: Comparision of generative model

Beat GANs

Model	FID	sFID	Prec	Rec	Model	FID	sFID	Prec	Rec	
LSUN Bedrooms 256×256					ImageNet 128×128					
DCTransformer [†] [42]	6.40	6.66	0.44	0.56	BigGAN-deep 5	6.02	7.18	0.86	0.35	
DDPM [25]	4.89	9.07	0.60	0.45	LOGAN [†] [68]	3.36				
IDDPM [43]	4.24	8.21	0.62	0.46	ADM	5.91	5.09	0.70	0.65	
StyleGAN [27]	2.35	6.62	0.59	0.48	ADM-G (25 steps)	5.98	7.04	0.78	0.51	
ADM (dropout)	1.90	5.59	0.66	0.51	ADM-G	2.97	5.09	0.78	0.59	
LSUN Horses 256×256					ImageNet 256×256					
StyleGAN2 [28]	3.84	6.46	0.63	0.48	DCTransformer [†] [42]	36.51	8.24	0.36	0.67	
ADM	2.95	5.94	0.69	0.55	VO-VAE-2 ^{†‡} [51]	31.11	17.38	0.36	0.57	
ADM (dropout)	2.57	6.81	0.71	0.55	IDDPM [‡] [43]	12.26	5.42	0.70	0.62	
					SR3 ^{†‡} [53]	11.30	51-44	0.70	0.02	
LSUN Cats 256×256					BigGAN-deep [5]	6.95	7.36	0.87	0.28	
DDPM [25]	17.1	12.4	0.53	0.48	ADM	10.94	6.02	0.69	0.63	
StyleGAN2 [28]	7.25	6.33	0.58	0.43	ADM-G (25 steps)	5.44	5.32	0.81	0.49	
ADM (dropout)	5.57	6.69	0.63	0.52	ADM-G (22 steps)	4.59	5.25	0.82	0.52	
ImageNet 64×64					ImageNet 512×512					
BigGAN-deep* 5	4.06	3.96	0.79	0.48	BigGAN-deep 5	8.43	8.13	0.88	0.29	
IDDPM [43]	2.92	3.79	0.74	0.62	ADM	23.24	10.19	0.73	0.60	
ADM	2.61	3.77	0.73	0.63	ADM-G (25 steps)	8.41	9.67	0.83	0.47	
ADM (dropout)	2.07	4.29	0.74	0.63	ADM-G	7.72	6.57	0.87	0.42	

Figure: Some data about beat GANs

- Background
- 2 Introduction
- Features
- 4 Theory
- 6 Application
- 6 Conclusion

The Process of DDPM

Figure: how the figure tranform to a Gaussian Distribution

Forward Equation

Forward

$$q(x_t|x_{t-1}) = N(x_t; x_{t-1}\sqrt{1-\beta t}, I\beta_t)$$
 (1)

$$x_t = x_{t-1}\sqrt{1-\beta_t} + z_t\sqrt{\beta_t}$$
 (2)

$$x_{t} = x_{t-1}\sqrt{1 - \beta_{t}} + z_{t}\sqrt{\beta_{t}} \quad (\text{let } 1 - \beta_{t} = \alpha_{t})$$

$$= x_{t-2}\sqrt{\alpha_{t}}(\sqrt{\alpha_{t-1}} + z_{t-2}\sqrt{1 - \alpha_{t-1}}) + z_{t-1}\sqrt{1 - \alpha_{t}}$$

$$= x_{t-2}\sqrt{\alpha_{t}\alpha_{t-1}} + z_{t-2}\sqrt{\alpha_{t} - \alpha_{t}\alpha_{t-1}} + z_{t-1}\sqrt{1 - \alpha_{t}}$$

$$= x_{t-2}\sqrt{\alpha_{t}\alpha_{t-1}} + z\sqrt{1 - \alpha_{t}\alpha_{t-1}}$$
(4a)

 $= x_0 \sqrt{\bar{\alpha_t}} + z \sqrt{1 - \bar{\alpha_t}}$

(5a)

Backward Equation

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)}$$

$$\propto \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)x_{t-1}^2 - \left(\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}\right)x_{t-1} + C(x_t, x_0)\right)\right)$$

$$= \exp\left(-\frac{1}{2}\left(Ax_{t-1}^2 + Bx_{t-1} + C\right)\right)$$

 $\mu = -\frac{B}{2A}, \sigma^2 = \frac{1}{A}$

Backward

$$p(x_t|x_{t-1}) = N(x_{t-1}; f_{\mu}(x_t, t), f_{\sigma}^2(x_t, t))$$
(4)

- Background
- 2 Introduction
- Features
- 4 Theory
- 6 Application
- 6 Conclusion

Text2Image

Generate images that match the description from the text, give some descriptions, and generate pictures that meet the description.

Figure: A dog is reading book

Image Refinement

Refine the blurry image to give the picture more detail.

Figure: Image Refinement with Diffusion

Inpainting

Padding the missing image can complement the details and content of the image.

Figure: inpainting with Diffusion

Colorization

Color fill images with missing colors.

Figure: Colorization with Diffusion

- Background
- 2 Introduction
- Features
- 4 Theory
- 6 Application
- Conclusion

Worries and Prospect

Worries

malicious uses for political purposes

Prospect

uses in art, photography, and music

References

Thank you for watching!

Here is the References

- Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851.
- Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis[J]. Advances in Neural Information Processing Systems, 2021, 34: 8780-8794.

Edit with LATEX

