Influence of parameters

Morgane Pierre-Jean 2019-09-12

```
library(ggplot2)
library(tibble)
library(dplyr)
library(CrIMMix)
```

In this document we show the influence of sparsity parameters (for MoCluster and SGCCA), number of latent profiles (for MoCluster and SGCCA) and τ parameter for RGCCA. The first section simulates three heterogeneous blocks with 4 unbalanced groups composed of 10, 20, 5 and 25 individuals.

Simulations

Define paramaters for simulations

```
means <- c(2,2,2,2)
sds <- c(1,1,1,1)
params <- mapply(function (m, sd) return(c(mean=m, sd=sd)), means, sds, SIMPLIFY=FALSE)
params_beta <- list(c(mean1=-2, mean2=2, sd1=0.5, sd2=0.5))
S <- 50
nclust=4
n_byClust=c(10,20,5,25)

noiseD1=c(0.2)
noiseD2=c(0.1)/10
noiseD3=c(0.1)*3
props <- c(0.005, 0.01, 0.02)</pre>
```

Simulations of data sets

Here, we simulate three blocks (dat1, dat2, dat3).

Influence parameter

In this section, we evaluate the influence of the number of the latent variables for Mocluster and SGCCA. We define a grid for the value of the number of latent variables.

Influence of number of latent profiles

MoCluster


```
ari_moclust <- sapply (Moaresults, function(mm) {
   adjustedRIComputing(mm,sim$true.clust)
}, simplify = TRUE)

df_ari <- data.frame(ncomp=ncomp.grid, ARI=ari_moclust)
df_ari %>% ggplot(aes(x=ncomp, y=ARI))+geom_point()+geom_line()+theme_bw()
```


SGCCA

```
auc_eval_SGCCA <- sapply (SGCCAresults, function(mm) {</pre>
  roc_eval(truth= truth, fit = mm$fit, method = "SGCCA")
}, simplify = FALSE)
g_sgcca <- do.call(rbind, lapply(1:length(auc_eval_SGCCA), function (ss) {</pre>
  dd <- auc_eval_SGCCA[[ss]]</pre>
  n_by_data_set <- sapply(dd$TPR, length)</pre>
  tprs <- dd$TPR %>% unlist
  fprs <- dd$FPR %>% unlist
  data.frame(TPR=tprs, FPR=fprs,
              dataSet= sprintf("data set %s", rep(1:3, times=n_by_data_set)),
              k=as.factor(ss))
}))
g_sgcca %>% ggplot(aes(x=FPR, y=TPR, color=k))+geom_line()+facet_grid(dataSet~.)+theme_bw()
   1.00
   0.75
                                                                                   data
   0.50
                                                                                   set
   0.25
                                                                                         k
   0.00
                                                                                             1
   1.00
                                                                                            - 2
   0.75
                                                                                             3
                                                                                   data
A 0.50
                                                                                   set
   0.25
   0.00
                                                                                              7
   1.00
   0.75
                                                                                   data
   0.50
                                                                                   set
```

ARI

0.25

0.00

0.00

```
ari_SGCCA <- sapply (SGCCAresults, function(mm) {
   adjustedRIComputing(mm,sim$true.clust)
}, simplify = TRUE)

df_ari <- data.frame(ncomp=ncomp.grid[,1], ARI=ari_SGCCA)

df_ari %>% ggplot(aes(x=ncomp, y=ARI))+geom_point()+geom_line()+theme_bw()
```

0.50

FPR

0.75

0.25

Influence of sparsity parameters

As for the number of latent profiles, we evaluate the influence of the sparsity parameters for MoCluster and SGCCA by defining a grid of values.

MoCluster

```
auc_eval_moclust_k <- sapply (Moaresults_k, function(mm) {
   roc_eval(truth= truth, fit = mm$fit, method = "Mocluster")
}, simplify = FALSE)

g_moclust_k <- do.call(rbind, lapply(1:length(auc_eval_moclust_k), function (ss) {
   dd <- auc_eval_moclust_k[[ss]]
   n_by_data_set <- sapply(dd$TPR, length)
   tprs <- dd$TPR %>% unlist
   fprs <- dd$FPR %>% unlist
   data.frame(TPR=tprs, FPR=fprs,
```

```
dataSet= sprintf("data set %s", rep(1:3, times=n_by_data_set)),
              lambda=sprintf("lambda %s", as.factor(ss)))
}))
g_moclust_k %>% ggplot(aes(x=FPR, y=TPR, color=lambda))+geom_line()+facet_grid(dataSet~.)+theme_bw()
   1.00
   0.75
                                                                              data set
   0.50
   0.25
                                                                                     lambda
   0.00
                                                                                     — lambda 1
   1.00
                                                                                        lambda 2
   0.75
                                                                              data
                                                                                          lambda 3
E 0.50
                                                                              set 2
                                                                                          lambda 4
   0.25
                                                                                          lambda 5
   0.00
                                                                                          lambda 6
   1.00
                                                                                          lambda 7
   0.75
                                                                              data set 3
   0.50
   0.25 -
   0.00
         0.00
                           0.25
                                             0.50
                                                                0.75
                                        FPR
```

```
ari_moclust <- sapply (Moaresults_k, function(mm) {
   adjustedRIComputing(mm,sim$true.clust)
}, simplify = TRUE)

df_ari <- data.frame(grid.lambda=apply(k.grid, 2, paste,collapse=","), ARI=ari_moclust)
df_ari %>% ggplot(aes(x=grid.lambda, y=ARI, group=1))+geom_point()+geom_line()+theme_bw()
```


SGCCA

```
c1.grid <-c(0.3, 0.3, 0.4)%*%t(c(0.2,0.5,1,2))
SGCCAresults_k <- apply(c1.grid, 2, IntMultiOmics, method="SGCCA",
                     data=sim$data, K=4, C=1-diag(length(sim$data)), ncomp=rep(3,3))
## Warning in cor(A[[j]], Y[[j]]): l'écart type est nulle
## Warning in cor(A[[j]], Y[[j]]): l'écart type est nulle
## Warning in cor(A[[j]], Y[[j]]): l'écart type est nulle
## Warning in cor(A[[j]], Y[[j]]): l'écart type est nulle
ROC evaluation
auc_eval_SGCCA_k <- sapply (SGCCAresults_k, function(mm) {</pre>
 roc_eval(truth= truth, fit = mm$fit, method = "SGCCA")
}, simplify = FALSE)
g_sgcca_k <- do.call(rbind, lapply(1:length(auc_eval_SGCCA_k), function (ss) {</pre>
  dd <- auc_eval_SGCCA_k[[ss]]</pre>
  n_by_data_set <- sapply(dd$TPR, length)</pre>
  tprs <- dd$TPR %>% unlist
  fprs <- dd$FPR %>% unlist
 data.frame(TPR=tprs, FPR=fprs,
```

```
dataSet= sprintf("data set %s", rep(1:3, times=n_by_data_set)),
               lambda=sprintf("lambda %s", as.factor(ss)))
}))
g_sgcca_k %>% ggplot(aes(x=FPR, y=TPR, color=lambda))+geom_line()+facet_grid(dataSet~.)+theme_bw()
   1.00
   0.75
                                                                               data set 1
   0.50
   0.25
   0.00
   1.00
                                                                                      lambda
   0.75
                                                                                         - lambda 1
                                                                               data
E 0.50
                                                                                           lambda 2
                                                                               set 2
                                                                                           lambda 3
   0.25
                                                                                           lambda 4
   0.00
   1.00
   0.75
                                                                               data set 3
   0.50
   0.25
   0.00
                         0.25
         0.00
                                         0.50
                                                         0.75
                                                                         1.00
                                         FPR
```

```
ari_sgcca <- sapply (SGCCAresults_k, function(mm) {
   adjustedRIComputing(mm,sim$true.clust)
}, simplify = TRUE)

df_ari <- data.frame(grid.c1=apply(c1.grid, 2, paste,collapse=","), ARI=ari_sgcca)
df_ari %>% ggplot(aes(x=grid.c1, y=ARI, group=1))+geom_point()+geom_line()+theme_bw()
```


τ parameter influence

RGCCA


```
ari_rgcca <- sapply (RGCCAresults_k, function(mm) {
   adjustedRIComputing(mm,sim$true.clust)
}, simplify = TRUE)

df_ari <- data.frame(grid.c1=apply(c1.grid, 1, paste,collapse=","), ARI=ari_rgcca)
df_ari %>% ggplot(aes(x=grid.c1, y=ARI, group=1))+geom_point()+geom_line()+theme_bw()
```


Conclusion

To conclude, the number of latent variables and the values of sparsity parameters influence the performance of the methods. A too small or a too high number of latent variables could lead to bad performance. We observe similar results with the values of the sparsity parameters.