2. Statistical Modelling (2)

Statistical Modelling & Machine Learning

Jaejik Kim

Department of Statistics Sungkyunkwan University

STA3036

Jaejik Kim

Statistical Models

- Statistical (data) model: A method to look at data / Summary (reduction) of data.
- Statistical models consist of two elements; systematic and random effects.
 - Systematic effects: Pattern of data.
 - Random effects: Unexplained or random variation.
 - Systematic effects are likely to be blurred by random effects.
 - Random effects are usually described in statistical terms.
- ▶ Looking intelligently at data ⇒ Formulation of patterns ⇒ Statistical data models
 - Succinct description of the systematic variation in the data.
 - Description patterns in similar data that might be collected for another study.

Statistical Data Modelling (Parametric Models)

- ▶ E.g., consider the following model: $y = f(x; \theta)$.
 - No error & specified form of f.
 - For given x_1, \ldots, x_n , y takes the values $f(x_1; \theta), \ldots, f(x_n; \theta)$.
 - If θ is given, the values of y can be exactly reconstructed.
 - \Rightarrow For given x_1, \ldots, x_n, θ is an exact summary of y_1, \ldots, y_n .
- Since there are errors in practice, the relationship between y and x has approximately f.
 - $\hat{\mathbf{v}}_i = f(\mathbf{x}_i; \hat{\theta}), i = 1, \dots, n$: Theoretical or fitted values generated by the model f and the data.
 - ▶ The model cannot reproduce the original data values y_1, \ldots, y_n exactly.
 - The pattern from the model approximates the data values and it can be summarized by θ .

Fitting Data Models

- Estimation methods for data models:
 - Maximum likelihood estimation: Find model parameters maximizing the likelihood function for given data.
 - Bayesian estimation: Find the posterior distribution of model parameters for given prior distributions and likelihood function.
- This class focuses on the MI estimation.

Least Square Method

- ▶ Model: $Y = f(X; \theta) + \epsilon$.
 - Y: Continuous variable.
 - ► f: Model.
 - $X = (X_1, \dots, X_p)^{\top}$: Input variable vector.
 - \triangleright θ Model parameter vector.
 - ε: Random error.
- Least square method: Find θ minimizing the discrepancy between v and \hat{v} .

$$\sum_{i=1}^n (y_i - \hat{y}_i)^2,$$

where $\hat{\mathbf{y}}_i = f(\mathbf{x}_i; \hat{\boldsymbol{\theta}})$.

- If (1) y_i 's are statistically independent and (2) the variance of yi does not depend on its mean value, the LS criterion is valid as a measure of discrepancy between y and \hat{y} .
- Conditions (1) and (2) guarantee that all observations have the same weight.

Maximum Likelihood Estimation

- ▶ Data: $(y_1, x_1), \dots, (y_n, x_n)$.
- Assumption: X_1, \ldots, X_p are given (constant).
- ▶ Regression function: $E(Y|X=x) = f(x;\theta)$.
- \triangleright Random variables in the data: Y_1, \ldots, Y_n .
- To construct the likelihood function, the joint distribution of $Y_1, \ldots, Y_n, p(Y; \theta)$, should be identified.
- Likelihood function:

$$L(\boldsymbol{\theta}; \boldsymbol{y}) \equiv p(\boldsymbol{Y}; \boldsymbol{\theta}).$$

- ▶ MLE of model parameter θ : Let $I(\theta) = \log L(\theta)$.
 - \bullet maximizing $l(\theta)$ or θ minimizing $-2l(\theta)$.

Jaeiik Kim

Relationship between LS and ML

- $ightharpoonup \epsilon_i \sim^{iid} N(0, \sigma^2), i = 1, \ldots, n.$
- $Y_i \sim N(\mu_i, \sigma^2), i = 1, ..., n, \text{ where } \mu_i = E(Y_i) = f(\mathbf{x}_i; \boldsymbol{\theta}).$
- Since Y_i's are independent, the joint density of $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top}$ is

$$p(\mathbf{Y}; \boldsymbol{\theta}) = \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - \mu_i)^2}{2\sigma^2}\right) \right]$$
$$= \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - f(\mathbf{x}_i; \boldsymbol{\theta}))^2}{2\sigma^2}\right) \right].$$

Relationship between LS and ML

▶ MLE: For fixed σ^2 .

$$\max_{\boldsymbol{\theta}}[I(\boldsymbol{\theta})] \equiv \min_{\boldsymbol{\theta}} \left[-2I(\boldsymbol{\theta}; \boldsymbol{y})\right]$$

$$\equiv \min_{\boldsymbol{\theta}} \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - f(\boldsymbol{x}_i; \boldsymbol{\theta}))^2$$

$$\equiv \min_{\boldsymbol{\theta}} \sum_{i=1}^n (y_i - f(\boldsymbol{x}_i; \boldsymbol{\theta}))^2$$

$$\equiv \min_{\boldsymbol{\theta}} (\boldsymbol{y} - \boldsymbol{f})^\top (\boldsymbol{y} - \boldsymbol{f})$$

$$= LS \ criterion,$$
where $\boldsymbol{f} = (f(\boldsymbol{x}_1; \boldsymbol{\theta}), \dots, f(\boldsymbol{x}_n; \boldsymbol{\theta}))^\top$.

When Error Assumptions are Violated

- Assumptions for error ϵ :
 - (1) ϵ_i 's have constant variance.
 - (2) ϵ_i 's are independent.
 - (3) ϵ_i 's have normal distribution.
- From the residuals $r_i = y_i \hat{y}_i$, i = 1, ..., n, we can check the assumptions (1), (2) and (3).
- \blacktriangleright When the assumptions are violated, the model variance $\uparrow \Rightarrow$ Poor prediction.
- How to solve these violations?
 - ightharpoonup (1) \Rightarrow Weighted least squares.
 - ► (2) ⇒ Covariance matrix (e.g., time/spatial).
 - \triangleright (3) \Rightarrow Transformation.

Nonconstant Error

- ▶ Suppose that $\epsilon_i \sim N(0, \sigma_i^2)$, i = 1, ..., n and ϵ_i 's are independent.
- ▶ Then, $\mathbf{Y} \sim MVN(\mathbf{f}, \mathbf{\Sigma})$, where $\mathbf{\Sigma} = diag(\sigma_1^2, \dots, \sigma_n^2)$.
- Likelihood function:

$$L(\boldsymbol{\theta}; \boldsymbol{y}) = (2\pi)^{-n/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{f})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{f})\right\}.$$

► MLE: For known σ_i^2 , i = 1, ..., n,

$$\max_{\boldsymbol{\theta}} [I(\boldsymbol{\theta})] \equiv \min_{\boldsymbol{\theta}} [-2I(\boldsymbol{\theta}; \boldsymbol{y})]$$
$$\equiv \min_{\boldsymbol{\theta}} (\boldsymbol{y} - \boldsymbol{f})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{f}).$$

Nonconstant Error

ightharpoonup Consider the linear regression model. That is, $f = X\beta$. Then MLE of β is given by

 \blacktriangleright MLE of β is the weighted least square estimator (WLSE).

Nonconstant Error with Pattern

▶ If a residual plot shows some pattern, the variance function can be considered.

Variance Function

- ▶ Variance function: $Var(\epsilon_i) = \sigma^2 g^2(\mathbf{z}_i; \boldsymbol{\theta}, \boldsymbol{\gamma})$.
 - \triangleright z_i : Known vector, possibly x_i .
 - \triangleright σ : Unknown scale parameter.
 - ▶ $g(\cdot)$: Function to be estimated by parametric or nonparametric method.
 - \triangleright θ : Parameter vector of the model f.
 - $ightharpoonup \gamma$: Parameter vector of the variance function.
- $ightharpoonup Y_i \sim^{indep.} N(f(\mathbf{x}_i; \boldsymbol{\theta}), \ \sigma^2 g^2(\mathbf{z}_i; \boldsymbol{\theta}, \boldsymbol{\gamma})), \ i = 1, \dots, n.$
- Examples of variance function:
 - ► Linear pattern: $\sigma g(\mathbf{z}_i; \boldsymbol{\theta}, \boldsymbol{\gamma}) = \mathbf{z}_i^{\top} \boldsymbol{\gamma}$.
 - Exponential pattern: $\sigma^2 g^2(\mathbf{z}_i; \boldsymbol{\theta}, \boldsymbol{\gamma}) = \exp(\mathbf{z}_i^{\top} \boldsymbol{\gamma})$.
- ▶ $Var(Y_i)$ often depends on its mean $E(Y_i)$. In that case, z_i can be replaced with $\hat{y}_i = f(x_i; \hat{\theta})$.

Variance Function Estimation

Log likelihood function:

$$\max_{\boldsymbol{\theta}, \boldsymbol{\gamma}, \boldsymbol{\sigma}} I(\boldsymbol{\theta}, \boldsymbol{\gamma}, \boldsymbol{\sigma}; \boldsymbol{y}, \boldsymbol{z}) = \max_{\boldsymbol{\theta}, \boldsymbol{\gamma}, \boldsymbol{\sigma}} - \sum_{i=1}^{n} \log \{ \sigma g(\boldsymbol{z}_{i}; \boldsymbol{\theta}, \boldsymbol{\gamma}) \}$$

$$-\frac{1}{2} \sum_{i=1}^{n} \left\{ \frac{(y_{i} - f(\boldsymbol{x}_{i}; \boldsymbol{\theta}))^{2}}{\sigma^{2} g^{2}(\boldsymbol{z}_{i}; \boldsymbol{\theta}, \boldsymbol{\gamma})} \right\}.$$

- In this maximization problem, it is not easy to find θ, γ, σ simultaneously.
- Pseudolikelihood estimation:
 - ▶ To find γ and σ , it maximizes $I(\hat{\theta}, \gamma, \sigma; \mathbf{y}, \mathbf{z})$, where $\hat{\theta}$ is the MLE from $I(\theta, \hat{\gamma}, \hat{\sigma}; \mathbf{y}, \mathbf{z})$.
 - **E**stimations of θ and (γ, σ) are iterated until $\hat{\theta}$ is converged.

Variance Function Estimation

- ► Residual: $r_i = y_i f(\mathbf{x}_i; \hat{\boldsymbol{\theta}})$.
- \triangleright $E(r_i^2) \approx \sigma^2 g^2(\mathbf{z}_i; \boldsymbol{\theta}, \boldsymbol{\gamma}).$
- ▶ If ϵ_i 's have normal distribution, $Var(r_i^2) \approx \sigma^4 g^4(\mathbf{z}_i; \boldsymbol{\theta}, \boldsymbol{\gamma})$.
- \triangleright Weighted estimator: γ and σ minimizing

$$\sum_{i=1}^{n} \frac{[r_i^2 - \sigma^2 g(\mathbf{z}_i; \boldsymbol{\gamma}, \boldsymbol{\theta})]^2}{\sigma^4 g^4(\mathbf{z}_i; \boldsymbol{\gamma}, \boldsymbol{\theta})}.$$

15/16

Algorithm

- 1. Set the initial parameter vectors $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\gamma}}$, $\hat{\boldsymbol{\sigma}}$.
- 2. For given $\hat{\theta}$, compute squared residuals $r_i^2 = [y_i f(x_i; \hat{\theta})]^2$.
- 3. Estimate the variance function parameters γ and σ by minimizing

$$\min_{\boldsymbol{\gamma},\boldsymbol{\sigma}} \sum_{i=1}^n \frac{[r_i^2 - \sigma^2 g(\mathbf{z}_i;\boldsymbol{\gamma},\hat{\boldsymbol{\theta}})]^2}{\hat{\sigma}^4 g^4(\mathbf{z}_i;\hat{\boldsymbol{\gamma}},\hat{\boldsymbol{\theta}})}.$$

- 4. Estimate θ maximizing $l(\theta, \hat{\gamma}, \hat{\sigma}; \mathbf{y}, \mathbf{z})$.
- 5. Iterate Steps 2–4 until θ is converged.