Document Clustering and Latent Semantic Indexing

CISC689/489-010, Lecture #18
Wednesday, April 22nd
Ben Carterette

Clustering Review

- Cluster documents according to similarity in feature space
- Types of clustering:
 - Flat or hierarchical
 - "Hard" or "soft"
- Clustering algorithms:
 - K-means: flat, "hard" clusters
 - Agglomerative or divisive hierarchical: hierarchical, softer clusters

K-Nearest Neighbor Clustering

- Alternative idea: fixed-size soft clusters
- *K-nearest neighbor*: for each item *j*, cluster it with the *K* things most similar to it
- K-nearest neighbor clustering forms one cluster per item
 - Clusters overlap
 - Does not necessarily have to cluster everything

5-Nearest Neighbor Clustering

Evaluating Clustering

- Clustering will never be 100% accurate
 - Documents will be placed in clusters they don't belong in
 - Documents will be excluded from clusters they should be part of
 - A natural consequence of using term statistics to represent the information contained in documents
- Like retrieval and classification, clustering effectiveness must be evaluated
- Evaluating clustering is challenging, since it is an unsupervised learning task

Evaluating Clustering

- If labels exist, can use standard IR metrics, such as precision and recall
 - In this case we are evaluating the ability of our algorithm to discover the "true" latent information

	Class A	Class B	Class C	Class D	
Cluster 1	A_1	B ₁	C_1	D_1	$prec_{cluster 1} = \frac{A_1}{A_1 + B_2 + C_1 + B_2}$
Cluster 2	A ₂	B ₂	C ₂	D ₂	$A_1 + B_1 + C_1 + D_1$ A_1
Cluster 3	A ₃	B ₃	C ₃	D_3	$rec_{\text{cluster 1}} = \frac{1}{A_1 + A_2 + A_3 + A_4}$
Cluster 4	A_4	B_4	C ₄	D_4	

- This only works if you have some way to "match" clusters to classes
- What if there are fewer or more clusters than classes?

Evaluating Clusters

 "Purity": the ratio between the number of documents from the dominant class in C to the size of C

$$purity(C_i) = \frac{1}{|C_i|} \max_j |X \text{ s.t. } X \in C_i \text{ and } X \in K_j|$$

- C_i is a cluster; K_i is a class
- Not such a great measure
 - Does not take into account coherence of the class
 - Optimized by making N clusters, one for each document

Evaluating Clusters

- With no labeled data, evaluation is even more difficult
- Best approach:
 - Evaluate the system that the clustering is part of
 - E.g. if clustering is used to aid retrieval, evaluate the cluster-aided retrieval
- What kinds of systems use clustering?

Clusters in IR Systems

- Automatic clustering has several uses:
 - Improving efficiency
 - Improving effectiveness of index
 - Improving effectiveness of retrieval

Improving Efficiency

- Clusters can be a time- and space-saving device:
 - Cluster all documents in the corpus
 - Compare queries to cluster representations rather than document representations
 - Store cluster information in inverted lists rather than document information

$$t_i
ightarrow (cf_i) \, (c_1, tf_{1i}), \ldots)$$
 Cluster term frequency

• Important in the 70s and 80s, not so much today

Improving Effectiveness

- Recall the cluster hypothesis:
 - "Closely associated documents tend to be relevant to the same requests"
- We may be able to improve retrieval by finding documents that are closely associated with documents that are likely to be relevant
 - Even if they don't contain query terms
 - E.g. perhaps they contain related terms the user didn't think of ("industry" → "companies", "businesses", "producers", ...)

Improving Effectiveness by Ranking Clusters

- As with clustering for efficiency, cluster all documents before indexing
- Store cluster information in inverted lists (but keep document information too)
- When a user enters a query, score the clusters
- Then score documents within the top-scoring clusters

Improving Effectiveness by Ranking Clusters

- Two approaches:
 - Rank the clusters from highest scoring to lowest scoring; within each cluster rank documents from highest scoring to lowest scoring
 - Rank the documents in the K highest-scoring clusters from highest score to lowest score
- Both tend to find relevant documents that are not found with non-clustering methods
 - But also miss relevant documents that are found with non-clustering methods

Scoring Clusters

- A cluster can be scored the same way as a document
 - Vector space model: cosine similarity between query vector and cluster centroid

- Language model:
$$P(Q|C) = \prod_{t \in Q} P(t|C) = \prod_{t \in Q} (1 - \alpha_C) \frac{tf_{tC}}{|C|} + \alpha_C \frac{ctf_t}{|C|}$$

• Or other ways:

Smoothing with collection

$$S(C,Q) = \max_{D_i \in C} S(D_i, Q)$$

$$S(C,Q) = \min_{D_i \in C} S(D_i, Q)$$

$$S(C,Q) = \frac{1}{|C|} \sum_{D_i \in C} S(D_i, Q)$$

Using Clusters to Adjust Document

- Language models require background to smooth with
- Clusters provide a background, perhaps more focused than using entire collection
- Smooth document language model with cluster background first, then with collection background
 - $-P(w \mid D)$ frequency of term in document
 - P(w | C) frequency of term in all documents in a cluster
 - P(w | G) frequency of term in all documents in the collection

Smoothing Document Scores

Basic approach: linear interpolation

$$P(w|D) = \lambda_1 \frac{tf}{|D|} + \lambda_2 \frac{\sum_{D \in C} tf}{\sum_{D \in C} |D|} + \lambda_3 \frac{ctf}{|G|}$$

• Better approach: smooth cluster with collection, then smooth document with both

$$P(w|D) = \lambda \frac{tf}{|D|} + (1 - \lambda) \left(\beta \frac{\sum_{D \in C} tf}{\sum_{D \in C} |D|} + (1 - \beta) \frac{ctf}{|G|} \right)$$

Query-Time Clustering

- Clustering the entire collection takes a long time
- Can only use simple algorithms like K-means
- Instead, cluster the top documents ranked for a query
- Use those clusters to re-score and re-rank the documents

Does it Work?

• Retrieving clusters:

__ Verdict: no apparent improvement

Collection	retrieval (QL+DM)	Group-average	Single-linkage	Complete-linkage	Centroid
AP (training)	0.2179	0.2161 (t=0.8)	0.2153 (t=0.8)	0.2130 (t=0.8)	0.2164 (t=0.7)
WSJ	0.2958	0.2902 (t=0.8)	0.2911 (t=0.8)	0.2889 (t=0.8)	0.2936 (t=0.8)

• Clustering at index time, use clusters for smoothing Collection Simple Okapi QL+DM QL-CBDM %chg

Verdict: improvement over baselines

Collection	Simple Okapi	QL+DM	QL+CBDM	%chg
AP (K=2000)	0.2198	0.2179	0.2326 (+)	+6.73*
WSJ (K=2000)	0.2762	0.2958 (+)	0.3006 (+)	+1.62*
FT (K=2000)	0.2556	0.2610	0.2713 (+)	+3.95*
SJMN (K=2000)	0.2098	0.2032	0.2171 (+)	+6.88*
LA (K=2000)	0.2279	0.2468 (+)	0.2590 (+)	+4.94*
FR (K=1000)	0.2644	0.2875	0.3316	+15.37

Does it Work?

 Clustering at query time, use clusters for smoothing

Collection	Threshold	QL+TDM	QL+CBDM	%chg
	0.2	0.2107	0.2223	+5.46*
AP	0.4	0.2140	0.2247	+5.02*
	0.6	0.2113	0.2211	+4.64*
WSJ	0.2	0.2663	0.2954	+10.92*
	0.4	0.2707	0.3004	+10.95*
	0.6	0.2685	0.2998	+11.65*
FR	0.2	0.2409	0.2935	+21.84
	0.4	0.2265	0.2710	+19.64
	0.6	0.2276	0.2933	+28.84

Verdict: improvement over baselines

Clusters in IR – Summary

- Index-time clustering
 - Saves space in inverted file
 - Build topical hierarchies
 - Retrieve clusters of documents rather than individual documents
- Query-time clustering
 - After query is submitted, cluster results
 - Possibly detect subtopics or different interpretations of query

Latent Semantic Indexing

- Clustering only puts documents together based on term similarity
- Can we do more than that?
 - We'd like synonyms and highly related terms to count for more when calculating document similarity
 - And words that have multiple senses to count for less
- How can we do this?

Linear Algebra Background

- A *vector space* is defined by a set of linearly independent *basis vectors*
 - Linearly independent: no vector can be expressed as a linear combination of other vectors
- Every vector can be expressed as a linear combination of the basis vectors

• Example: These three vectors form a 3-dimensional vector space
$$B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Bases in the Vector Space Model

- When we discussed the VSM, we assumed bases could be formed from terms
 - Document and query vectors are linear combinations of term basis vectors
- But basis vectors have to be linearly independent—do terms satisfy this?
 - Probably not
 - Two terms that always appear together are not independent
 - More insidious example:
 - "bush" appears in documents about landscaping and documents about politics
 - The vector for "bush" may be a linear combination of many vectors for terms related to landscaping and terms related to politics

Bases in the Vector Space Model

- Is there a better way to choose the bases?
- Semantic concepts
 - Find a group of topics or concepts that are orthogonal
 - E.g. "landscaping" and "politics" topics are probably linearly independent
 - Each concept forms a basis vector
 - A document vector is a linear combination of concept vectors
- Note: this is not easy to do
 - Solving this problem would probably solve all of AI

Finding Linearly Independent Bases

- There are methods for finding linearly independent basis vectors
- We will apply one method and assume that the bases it produces represent "concepts"

Linear Algebra Background

• Matrix-vector multiplication:

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{21} & a_{22} & \dots \\ \dots & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots \\ a_{21}x_1 + a_{22}x_2 + \dots \\ \dots \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \dots \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \end{bmatrix}$$

- A transforms x
- Eigenvalues and eigenvectors
 - Given a square matrix A, the eigenvectors of A are the vectors x such that Ax is a scalar multiple of x
 - i.e. the vectors that are only transformed by length, not by direction

 $Ax=\lambda x$ Every x that satisfies this equation is an eigenvector. The $\it eigenvalues$ λ show how much A shortens or elongates x.

Eigenvectors and Eiegenvalues

• Example:

$$\begin{bmatrix} 6 & -2 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

- [1 2]' is an eigenvector of the matrix, and 2 is an eigenvalue
- How many eigenvalues are there for an n by n matrix?

$$Ax = \lambda x \Leftrightarrow (A - \lambda I)x = 0$$

- x is nonzero only if determinant of A $\lambda I = 0$
- The determinant is a polynomial in λ of degree n
- Therefore there are at most n eigenvalues

Examples

• Example 1:

$$A = egin{bmatrix} 30 & 0 & 0 \ 0 & 20 & 0 \ 0 & 0 & 1 \end{bmatrix} \quad egin{array}{ll} ext{eigenvalues} &=& 30, 20, 1 \ ext{eigenvectors} &=& egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

• Example 2:

$$A = \begin{bmatrix} 0.71 & 0.03 & -0.01 \\ 0.03 & 1.02 & 0.03 \\ -0.01 & 0.03 & 0.70 \end{bmatrix} \text{ eigenvalues } = \begin{bmatrix} 1.03, 0.72, 0.69 \\ -0.09 \\ -0.99 \\ -0.09 \end{bmatrix}, \begin{bmatrix} 0.82 \\ -0.03 \\ -0.57 \end{bmatrix}, \begin{bmatrix} 0.56 \\ -0.12 \\ 0.82 \end{bmatrix}$$

• Exercise: verify that $Ax = \lambda x$ holds

Eigenvectors and Eigenvalues

- Eigenvectors of symmetric matrices are linearly independent
 - Why? If an eigenvector x could be written as a sum of other vectors, then $Ax = \lambda x$ would not be true—x would not be an eigenvector in the first place!
- Therefore eigenvectors of symmetric matrices form a basis
 - Every vector in the space is a linear combination of the eigenvectors

Eigenvectors and Eigenvalues

- Eigenvalues of real-valued matrices are real numbers
- Eigenvalues of *positive semidefinite* matrices are non-negative

Eigen Decompositions

- A square matrix A can be decomposed into a matrix product $A=U\Lambda U^{-1}$ where
 - U is a matrix with eigenvectors of A as columns
 - $-\Lambda$ is a matrix with eigenvalues of A in decreasing order on the diagonal and 0 elsewhere
- A symmetric square matrix A can be decomposed into a matrix product $A=Q\Lambda Q'$
 - Q is a real orthogonal matrix with normalized eigenvectors as columns

So How Does This Apply to IR?

- If we had the right kind of matrix, a decomposition might be able to find orthogonal "concepts" in the document/term data
- Those concepts might be a better basis for a vector space model
- We could take the K most important concepts (corresponding to the K greatest eigenvalues) to reduce the dimensionality of the space
- ... but we don't have square symmetric matrices in IR

Eigen Decomp in IR

- Arrange N documents and V terms into a V x N matrix called A, where A_{ij} = term weight of term i in document j
 - This is neither square nor symmetric
- We can compute the following matrix products:
 - AA' = a V x V matrix of document similarities
 - $A'A = a N \times N$ matrix of term similarities
 - Note that these are both are square and symmetric both have eigen decompositions

Singular Value Decomposition

- SVD uses AA' and A'A to compute an eigen decomposition of A
 - AA' and A'A have the same number m of eigenvectors
 m ≤ min(N, V)
- Specifically: $A = U\Sigma V'$
 - U = a V x m matrix with eigenvectors of AA' as cols
 - V = a N x m matrix with eigenvectors of A'A as cols
 - $-\Sigma$ = an m x m matrix with the square roots of eigenvalues of AA' on the diagonal
 - Eigenvalues of AA' = eigenvalues of A'A

SVD on the Document-Term Matrix

- Eigenvectors of AA' represent "document concepts"
- Eigenvectors of A'A represent "term concepts"
- Eigenvalues give the relative weight of the concepts
- The occurrence of a term in a document is a linear combination of "term concepts" and "document concepts"

Example

Technical Memo Example

- Titles:

 c1: Himan machine interface for Lab ABC computer applications
 c2: A survey of user opinion of computer system response time
 c3: The EPS user interface management system
 c4: System and human system engineering testing of EPS
 c5: Relation of user-perceived response time to error measurement

- m1: The generation of random, binary, unordered trees
 m2: The intersection graph of paths in trees
 m3: Graph minors IV: Widths of trees and well-quasi-ordering
 m4: Graph minors: A survey

Terms					Do	cumen	ts		
	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0		_0	_0	
interface	1	ō	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

From Deerwester, Dumais, Harshman, "Indexing by Latent Semantic Analysis"

Example

```
3.34
2.54
2.35
1.64
1.50
1.31
0.85
0.36
                                                                                    \begin{array}{c} -0.06 \\ -0.01 \\ 0.06 \\ 0.00 \\ 0.03 \\ -0.02 \\ -0.02 \\ -0.04 \\ 0.25 \\ -0.68 \\ 0.68 \end{array}
-0.41

-0.55

-0.59

0.10

0.33

0.07

0.07

0.19

-0.03

0.03

0.00

-0.01
                   \begin{array}{c} -0.11 \\ 0.28 \\ -0.11 \\ 0.33 \\ -0.16 \\ 0.08 \\ 0.01 \\ -0.54 \\ 0.59 \\ -0.07 \\ -0.30 \end{array}
                                                                       .52
.07
.30
.00
.17
.28
.28
.03
.47
.29
```

Verify: $T_0S_0D_0$ = original document-term matrix

Optimal Dimensionality Reduction

- SVD can also be used for dimensionality reduction
- Reduce Σ to the top-k largest eigenvalues
- For documents and terms, this effectively reduces the dimensionality to the k most important "concepts"
 - Furthermore, the reduction is optimal—it is the best reduction you could possibly do given the document-term matrix

Reducing to k=2 Concepts

```
X≈
                                        S
                                                              \begin{smallmatrix} 0.20 & 0.61 & 0.46 & 0.54 & 0.28 & 0.00 & 0.02 & 0.02 & 0.08 \\ -0.06 & 0.17 & -0.13 & -0.23 & 0.11 & 0.19 & 0.44 & 0.62 & 0.53 \end{smallmatrix}
                    0.49
0.62
0.45
                                                        0.40
0.37
0.51
                                                                                                                       -0.12
                                                                                  0.47
                                                                                               0.18 \\ 0.16
                                                                                                           -0.03
                                                                                               0.39
                                                                                                            0.03
                                                                                                                         0.08
                                                        \frac{1.23}{0.58}
                                                                     1.05
                                                                                               0.56 \\ 0.28
                                                                                                           -0.07
                                                        0.55 0.51
0.53 0.23
0.23 -0.14
                                                                                                           0.14
                                                                                  0.63
                                                                                               0.24
                                                                               0.21
                                                                                                                                      0.44
0.77
                                                                                                                                                   0.42
                                                                                               0.14
                                                                                                           0.24
                                                                                                                         0.55
                                                                                                                                                   0.66
                                                                  -0.10
                                                                                -0.21
                                                                                               0.15
```

Latent Semantic Analysis for Retrieval

```
    X≈ T S D'
    0.22 -0.11 0.22 0.061 0.46 0.54 0.28 0.00 0.02 0.02 0.08 0.20 -0.07 0.24 0.04 0.40 0.06 0.64 -0.17 0.27 0.11 0.27 0.11 0.30 -0.14 0.21 0.27 0.01 0.49 0.04 0.62 0.03 0.45
    Now D contains the new document vectors - Each a 2-D vector of "concept weights"
    To process a query Q: - Use T to transform it to the 2-D concept space - Weight the concepts using S - Q' = Q' T S<sup>-1</sup> - Calculate cosine similarity between Q' and each document
```

Example

LSI: Does it Work?

- Seems to be a little better than standard vector space model
 - Recall is good: intuitively it is retrieving "clusters" of documents related by topic, which improves recall
 - Precision is OK: it can find things that are not really related
- When it does not do well, it is hard to understand what happened
- It takes a very long time to do the SVD
 - In 1990, one day for ~10,000 documents