

Analysis of long read data at the Flemish Super Computer

Erika Souche

Laboratory for Cytogenetics and Genome Research

Laboratory for Cytogenetics and Genome Research

Aims

- Implement genomic technologies to improve genetic diagnostic testing
- Map the causes and mechanisms underlying chromosomal rearrangements
- Improve preimplantation, prenatal and postnatal genetic testing of rare diseases
- Use liquid biopsies as a biomarker to map genic and non-genic diseases

One nextflow pipeline

Use of external software

Variant calling from mapping

Variant calling from de novo assembly

- Whole Exome Sequencing / Whole Genome Sequencing (WGS)
 - ~ 10-15 % Copy Number Variants (CNVs)
 - ~ 25-30 % SNVs & indels

- Whole Exome Sequencing / Whole Genome Sequencing (WGS)
 - ~ 10-15 % Copy Number Variants (CNVs)
 - ~ 25-30 % SNVs & indels

- ONT sequencing of unsolved trios
 - 27 trios
 - Structural variants (SVs)

~ 23,000 SVs per individual

~ 23,000 SVs per individual

~ 23,000 SVs per individual

~ 100 de novo SVs

~ 23,000 SVs per individual

~ 100 de novo SVs

~ 7 rare de novo SVs

~ 23,000 SVs per individual

~ 100 de novo SVs

~ 7 rare de novo SVs

 Inversion on chrX in a male patient

- de novo assembly
- Mapping of contigs to hg38

- de novo assembly
- Mapping of contigs to hg38

 SV locus not covered by de novo assembly

- ONT sequencing of unsolved trios
 - Structural variants (SVs)
 - Repeat expansions (STRs)
 - Epigenic modifications
 - Mosaïcism
 - •

- ONT sequencing of unsolved trios
 - Structural variants (SVs)
 - Repeat expansions (STRs)
 - Epigenic modifications
 - Mosaïcism
 - •
- Need for longer-term storage for active data

- ONT sequencing of unsolved trios
 - Structural variants (SVs)
 - Repeat expansions (STRs)
 - Epigenic modifications
 - Mosaïcism
 - ...
- Need for longer-term storage for active data

Tier1 data

Tier1 data

- Active data
- Data workflow
- Data structure
- => More sustainable for research laboratories

Tier1 data

- Metadata
- 4-year plan
 - Number of samples
 - Resource estimation
- Exit strategy

Resource monitoring

Neurodevelopmental disorders with methylation disturbances

- Neurodevelopmental disorders with methylation disturbances
- Proof of concept
 - 20 patients
 - 40 control samples

- Neurodevelopmental disorders with methylation disturbances
- Proof of concept
 - 20 patients
 - 40 control samples

- Extend model
 - => Processing of 210 samples

- Neurodevelopmental disorders with methylation disturbances
- Proof of concept
 - 20 patients
 - 40 control samples

- Extend model
 - => Processing of 210 samples

- Neurodevelopmental disorders with methylation disturbances
- Proof of concept
 - 20 patients
 - 40 control samples

- Extend model
 - => Processing of 210 samples

Tier1 compute

Tier1 compute

Pipeline description

- Resource optimisation
 - => Starting grant

Resource optimisation

• FAST5 to POD5

Number of nodes	Total number of cores	Wall clock time (s)	Speed-up (w.r.t. baseline)	Efficiency
1	1	16128	Not applicable	Not applicable
1	2	12566	1	1
1	4	6778	1.85	0.93
1	8	2708	4.64	1.16
1	16	2407	5.22	0.65
1	32	1445	8.70	0.54
1	64	1449	8.67	0.27
1	128	1548	8.12	0.13

Resource estimation

- Based on
 - Results of efficiency tests
 - Number of samples to process

Tier1 compute

9,240 CPU hours 8,316 GPU hours 21 TB scratch volume

Resource monitoring

Acknowledgements

Mathilde Geysens

Benjamin Huremagic

Chiara Campanelli

Greet Peeters

Senne Meynants

Natalia Olszewska

Kris Van Den Bogaert

Joris Vermeesch

Qiang Fu

Tatjana Jatsenko

Marta Sousa Santos

Kate Elizabeth Stanley

Olga Tsuiko

Stefania Tuveri

Yan Zhao

Jonas Demeulemeester

Tools used

Mapping

Minimap2

Structural variant calling

PBSV SVIM

Sniffles2 cuteSV

QDNAseq DipDiff

SURVIVOR

Quality control

mosdepth

NanoPlot

QUAST

de novo assembly

Verkko

shasta racon

flye

hifiasm

HapDup

Repeat expansion calling

straglr

TRGT

Small variant calling

Clair3 DeepVariant

WhatsHap

Data footprint

	Format	ONT	PacBio	ICLR
Raw data	FAST5/POD5 FASTQ.gz	1 TB 100 GB	- 50 GB	- 40 GB *
Aligned reads	BAM CRAM	100 GB 50 GB	50 GB 15 GB	25 GB 5 GB
Small variants	VCF.gz	100 MB	100 MB	100 MB
Structural variants	VCF	50 MB	50 MB	50 MB
Repeat expansions	VCF	10 MB	10 MB	10 MB
De novo assembly	FASTA	3 GB	3 GB	3 GB

^{*} After processing by Illumina

- 2,727 contigs
- ~86.7% of T2T covered

- 626 contigs > 100 kb
- ~86.67% of T2T covered

