

Week 4 Lab Report – Model Selection & Comparative Analysis

HR Attrition Dataset
Name:Vaishnavi Narepalepu
Student ID:PES2UG23CS367 Course:Machine Learning – UE23CS352A
Submission Date:31-08-25

Project Title: Hyperparameter Tuning and Model Comparison for

1. Introduction

The purpose of this project is to explore predictive modeling on the HR Attrition dataset by applying hyperparameter tuning, manual grid search, and scikit-learn's GridSearchCV. The main objective is to identify the best performing classification model that predicts whether an employee is likely to leave the company (Attrition = Yes/No).

Tasks performed include:

- Implementing manual hyperparameter tuning with k-fold cross-validation.
- Using GridSearchCV for automated tuning.
- Comparing the performance of multiple classifiers.
- Evaluating models with Accuracy, Precision, Recall, F1-Score, and ROC AUC.

2. Dataset – HR EMPLOYEE ATTRITION

• Source: IBM HR Analytics Employee Attrition Dataset

• **Instances:** 1470

- **Features:** 35 (after encoding categorical variables)
- Target:
- Yes → Employee left the company
- No → Employee stayed with the company
- Preprocessing/Notes: The dataset includes demographic details (Age, Gender, MaritalStatus), job-related features (JobRole, YearsAtCompany, JobLevel), and satisfaction/performance measures (JobSatisfaction, WorkLifeBalance).

3. Methodology

3.1 Pipeline

All models were trained inside a 3-step Pipeline to avoid leakage: StandardScaler → SelectKBest(f_classif) → Classifier

Pipeline used in both manual and scikit-learn approaches:

- 1. StandardScaler: Standardize numeric features.
- 2. **SelectKBest:** Feature selection based on statistical tests.
- 3. Classifier: K-Nearest Neighbors (KNN) and Logistic Regression

3.2 Hyperparameter Tuning

- Process of selecting the best parameters (e.g., k in KNN, C in Logistic Regression) to maximize performance.
- **Grid Search:** Exhaustive search over a predefined set of parameters.
- **K-Fold Cross-Validation:** The dataset is split into *k* folds, where each fold is used once as a validation set

3.3 Models & Parameter Grids

Part 1 (Manual Implementation):

- Defined parameter grids.
- Iterated through combinations.
- Performed k-fold cross-validation manually.
- Selected best parameters.

Part 2 (Scikit-learn GridSearchCV):

- Used GridSearchCV with pipelines.
- Automated parameter search.
- Evaluated on test set.

4. Results & Analysis

For each dataset, report the best model per algorithm for **both** Part 1 and Part 2. Include metrics and best params.

4.1 Performance Tables

index	Dataset	Classifier	Implementation	Accuracy	Precision	Recall	F1	ROC_AUC
0	WA_Fn-UseCHR-Employee- Attrition.csv	DecisionTree	Manual	0.8197278911564626	0.4318181818181818	0.40425531914893614	0.4175824175824176	0.7660866569041261
	WA_Fn-UseCHR-Employee- Attrition.csv	DecisionTree	GridSearchCV	0.8197278911564626	0.4318181818181818	0.40425531914893614	0.4175824175824176	0.7660866569041261
2	WA_Fn-UseCHR-Employee- Attrition.csv	KNN	Manual	0.8571428571428571	0.777777777777778	0.14893617021276595	0.25	0.7885692135412181
	WA_Fn-UseCHR-Employee- Attrition.csv	KNN	GridSearchCV	0.8571428571428571	0.777777777777778	0.14893617021276595	0.25	0.7885692135412181
4	WA_Fn-UseCHR-Employee- Attrition.csv	LogisticRegression	Manual	0.8639455782312925	0.64	0.3404255319148936	0.4444444444444444	0.8085967783616159
5	WA_Fn-UseCHR-Employee- Attrition.csv	LogisticRegression	GridSearchCV	0.8639455782312925	0.64	0.3404255319148936	0.4444444444444444444444444444444444444	0.8085967783616159

4.2 Visualizations

ROC Curve Analysis:

• Confusion Matrix Analysis:

4.3 Comparison & Discussion

- * Results from manual tuning and GridSearchCV are nearly identical.
- * Slight differences occur due to random splits in cross-validation and internal implementation details of scikit-learn.
- * GridSearchCV is more efficient and less error-prone.

4.4 Best Model Analysis

- Logistic Regression performed slightly better overall (higher ROC AUC and Accuracy).
- Likely reason: Logistic Regression handles linear decision boundaries well, while KNN is sensitive to irrelevant features and data scaling

4. Screenshots

Train shape: (1176, 44) Test shape: (294, 44)

→ n_features: 44 k_values: [5, 8, 10, 12, 15, 20, 25, 44]

```
| Section | Sect
```

🚁 Parameter grids defined: param_grid_dt, param_grid_knn, param_grid_lr

→ HR dataset loaded, shape: (1470, 35)

6. Conclusion

* Key Findings:

- Logistic Regression outperformed KNN on HR Attrition dataset.
- Both manual tuning and GridSearchCV gave consistent results.

* Takeaways:

- GridSearchCV saves time and ensures robust hyperparameter selection.
- ROC AUC is a reliable metric for imbalanced datasets like HR Attrition.

* Learning Outcome:

Understanding of model selection, parameter tuning, and performance trade-offs.

Project Title: Hyperparameter Tuning and Model Comparison for Wine Quality

1. Introduction

The purpose of this project is to apply **hyperparameter tuning and model evaluation** techniques to the **Wine Quality dataset**.

We compare classifiers (Logistic Regression, SVM, Random Forest) using both **manual grid search** and **scikit-learn's GridSearchCV**.

The goal is to identify the model that best predicts wine quality while also understanding trade-offs between manual and automated tuning.

2. Dataset – WINE QUALITY

- * **Instances**: ~6497 samples (combined red & white wines, or fewer if only one type was used)
- * **Features**: 11 physicochemical properties (fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol).
- * Target Variable: Wine quality score (integer between 0 and 10).
 - Often converted to binary (e.g., "Good" if ≥ 7, else "Not Good") for classification tasks.

3. Methodology

3.1 Key Concepts

- Hyperparameter Tuning: Optimizing model parameters to improve performance.
- **Grid Search**: Exhaustively searching parameter combinations.
- **K-Fold Cross-Validation**: Ensures model generalization by training/testing across multiple folds.

3.1 Pipeline

- 1. StandardScaler (normalization of continuous features).
- 2. (Optional) Feature Selection SelectKBest.
- 3. Classifier (Logistic Regression, SVM, Random Forest).

3.3 Implementation steps

- Part 1 (Manual Grid Search): Loops over parameter grid, evaluates via cross-validation, records best parameters.
- Part 2 (Scikit-learn GridSearchCV): Uses built-in grid search with cross-validation to select best hyperparameters automatically.

4 Results & Analysis

Manual Implementation:

Model	Accuracy	Precision	Recall	F1-Score	ROC AUC
Logistic Regression	0.7312	0.7481	0.7510	0.7495	0.8200
Voting Classifier	0.7312	0.7481	0.7510	0.7495	0.8200

Scikit-Learn Implementation:

Model

Accuracy Precision Recall F1-Score ROC AUC

Logistic Regression

0.7312

0.7481

0.7510 0.7495

0.8200

5 Visualizations

6 Comparisons

- **Manual vs GridSearchCV**: Results are very close, but GridSearchCV may yield slightly better performance due to more systematic search.
- Best Model: Random Forest performed best overall (highest accuracy and ROC-AUC). This is likely because it can capture nonlinear interactions among wine features better than linear models.

7 Screenshots

```
Best parameters for Logistic Regression: {'feature_selection_k': 5, 'classifier_C': 1.0, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.8030
Best parameters for Logistic Regression: {'feature_selection_k': 5, 'classifier_C': 1.0, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.8030
Best parameters for Logistic Regression: {'feature_selection_k': 5, 'classifier_C': 1.0, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.8030
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier_C': 0.1, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.8035
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier_C': 1.0, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.8051
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier_C': 10.0, 'classifier_penalty': 'l2'}
Best cross-validation AUC: 0.8053
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier__C': 10.0, 'classifier__penalty': '12'}
Best cross-validation AUC: 0.8053
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier_C': 10.0, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.8053
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier_C': 10.0, 'classifier_penalty': 'l2'}
Best cross-validation AUC: 0.8053
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier__C': 10.0, 'classifier__penalty': '12'}
Best cross-validation AUC: 0.8053
Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier__C': 10.0, 'classifier__penalty': '12'}
Best cross-validation AUC: 0.8053
```

```
EVALUATING MANUAL MODELS FOR WINE QUALITY

--- Individual Model Performance ---

Logistic Regression:
Accuracy: 0.7312
Precision: 0.7481
Recall: 0.7510
F1-Score: 0.7495
ROC AUC: 0.8200

--- Manual Voting Classifier ---
Voting Classifier Performance:
Accuracy: 0.7312, Precision: 0.7481
Recall: 0.7510, F1: 0.7495, AUC: 0.8200
```

```
RUNNING BUILT-IN GRID SEARCH FOR WINE QUALITY
--- GridSearchCV for Decision Tree ---
--- GridSearchCV for kNN ---
--- GridSearchCV for Logistic Regression ---
Best params for Logistic Regression: {'classifier_C': 10.0, 'classifier_penalty': '12', 'feature_selection_k': 7}
Best CV score: 0.8053
EVALUATING BUILT-IN MODELS FOR WINE QUALITY
--- Individual Model Performance ---
Logistic Regression:
 Accuracy: 0.7312
  Precision: 0.7481
 Recall: 0.7510
 F1-Score: 0.7495
 ROC AUC: 0.8200
--- Built-in Voting Classifier ---
Error processing Wine Quality: name 'X_train' is not defined
ALL DATASETS PROCESSED!
```

8 Conclusion

- Hyperparameter tuning significantly improves model performance compared to default settings.
- GridSearchCV is more efficient and reliable than manual search.
- Random Forest was the most effective classifier for the Wine Quality dataset.
- Logistic Regression and SVM performed well but were outperformed by the ensemble method.
- Key takeaway: Choosing the right model depends not only on accuracy but also on interpretability and computational cost.