EE 345 Modeling and Simulation

Syllabus

- 1. Introduction
 - Course Logistics
 - Definitions of Modeling and Simulation
 - When to Apply These Techniques
 - Applications
 - Terminology & Components
 - Discrete vs. Continuous Time
 - Process Flow in Simulation Study
- 2. Simulation Examples
 - Queuing Systems
 - Control Systems
 - Robotic Systems
- 3. General Principles
 - Event-driven Simulation
 - World Views
 - List Processing
- 4. Simulation Software
 - History
 - Selection Process
 - Simulation in High Level Language (C, C++, Pascal, Fortran)
 - Simulation Packages (Matlab/Simulink)
 - Robot Simulation Tools
 - Robotics Toolbox for Matlab (for robot manipulators)
 - Webots from Cyberbotics Ltd. (for mobile robots)
 - Interpreted vs. Compiled Simulators
- 5. Statistical Models
 - Terminology and Concepts
 - Useful statistical Models
 - Distributions
- 6. Queuing Models
 - Characteristics
 - Performance Measures
 - Steady-State Behavior
 - Networks of Queues
- 7. Control System Models

- State Space Models
- Transfer Function Models
- Frequency Response Methods
- DC Motor Control Systems

8. Robotic System Models

- Robot Kinematics and Dynamics
- Vision-based Mobile Robot Localization and Navigation

9. Random Number Generation

- Properties of Random Numbers
- Generation of Pseudo-Random Numbers
- Testing for Randomness
- Pitfalls

10. Input Modeling

- Collecting Data
- Identifying Distribution
- Histograms
- Parameter Estimation
- Goodness-of-Fit
- Selecting Input Model without Data

11. Verification and Validation of Simulation Models

- Model Building, Verification, and Validation
- Verification of Simulation Models
- Calibration and Validation of Models

12. Output Analysis

- Types of Simulations with Respect to Output Analysis
- Stochastic Nature of Output Data
- Measures of Performance
- Output Analysis for Termination Simulations
- Output Analysis for Steady-State Simulations