PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-186287

(43) Date of publication of application: 16.07.1996

(51)Int.CI.

H01L 33/00

(21)Application number: 06-328337

(71)Applicant: ROHM CO LTD

(22)Date of filing:

28.12.1994

(72)Inventor: MUSHIGAMI MASAHITO

(54) SEMICONDUCTOR LIGHT-EMITTING DIODE

(57)Abstract:

PURPOSE: To obtain a semiconductor lightemitting diode whose light takeout efficiency and brightness are enhanced by a method wherein a current distribution from a surface electrode up to a light-emitting region is improved and the optical path of light advancing to the transverse direction is shortened.

CONSTITUTION: In a light-emitting diode which is formed on a semiconductor substrate 1, a high-resistance layer 5 is formed on a light-emitting region layer, a low-resistance layer 6 is then formed on it in such a way that a part of the surface is exposed, an electrode 8 on the light-emitting surface side is formed over the surface of both resistance layers, and a semiconductor layer under the surface of a semiconductor layer which is sandwiched between adjacent sets of a plurality of parts

8b, for current supply, which are extended from a part 8a for bonding in the center of the electrode 8 is cut down to the substrate.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-186287

(43)公開日 平成8年(1996)7月16日

(51) Int.Cl.⁸

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 33/00

A

E

客査請求 未請求 請求項の数9 OL (全 7 頁)

(21)出願番号

特膜平6-328337

(22)出顧日

平成6年(1994)12月28日

(71)出廣人 000116024

ローム株式会社

京都府京都市右京区西院溝崎町21番地

(72)発明者 虫上 雅人

京都市右京区西院清崎町21番地 ローム株

式会社内

(74)代理人 弁理士 河村 洌 (外2名)

(54) 【発明の名称】 半導体発光ダイオード

(57) 【要約】

【目的】 半導体発光ダイオードにおいて、表面電極から発光領域に至る電流分布の改善および発生して横方向に進む光の光路の短縮により、光取出し効率および輝度の向上をはかる。

【構成】 半導体基板1上に形成される発光ダイオードにおいて、発光領域層の上に高抵抗層5が、さらにその上にその表面を一部露呈したまま低抵抗層6が、順次形成され、これら両抵抗層の表面に渡って発光表面側の電極8が形成され、さらに、その電極8において中心のボンディング用部分8aから延びる複数の電流供給用部分8bの隣合う組に挟まれる半導体層表面下の半導体層が、基板表面にいたるまで切欠かれている。

【特許請求の範囲】

【請求項1】 半導体基板と、該基板上に積層される複数の半導体層と、さらにその上に形成される表面電極とからなり、前記複数の半導体層のうちの所定の1つが活性層であって、該活性層の下方に位置する半導体層もしくは基板がすべて第1導電型で、該活性層の上方に位置する半導体層がすべて第2導電型であり、かつ、前記表面電極は、ポンディング用部分と、該ボンディング用部分の周囲の一部に接続し、その外側方向に延びる複数の電流供給用部分とからなり、該複数の電流供給用部分の10うちの隣り合う2つに挟まれる半導体層表面領域の少くとも1つについて、その領域直下の前記活性層を少くとも含む半導体層が、異なる2つ以上の方向で外部に面する側面を有する半導体発光ダイオード。

【請求項2】 前記複数の半導体層は、比較的電気抵抗の高い半導体からなる高抵抗層と、該高抵抗層の一部表面を除いてその上に形成され、比較的電気抵抗の低い半導体からなる低抵抗層とを含んでおり、前記表面電極のポンディング用部分は、前記高抵抗層上の前記低抵抗層の形成されない部分上に設けられ、かつ、前記表面電極の電流供給用部分は、少くともその一部が前記低抵抗層上に設けられてなる請求項1記載の半導体発光ダイオード。

【請求項3】 前記活性層が、その層を構成する半導体の禁止帯幅より広い禁止帯幅を有する半導体からなる、 上下2つのクラッド層のあいだに、それらと接触して設けられている請求項1または2記載の半導体発光ダイオード。

【請求項4】 前記活性層および上下2つのクラッド層が、分離閉じ込めヘテロ構造を構成する請求項3記載の 30 半導体発光ダイオード。

【請求項5】 前記活性層およびクラッド層が、AI、 Ga、Asを含む化合物半導体からなる請求項3または 4記載の半導体発光ダイオード。

【請求項6】 前記活性層およびクラッド層が、AI、 Ga、In、Pを含む化合物半導体からなる請求項3ま たは4記載の半導体発光ダイオード。

【請求項7】 前記活性層およびクラッド層が、Zn、 Mg、Se、Sを含む化合物半導体からなる請求項3ま たは4記載の半導体発光ダイオード。

【請求項8】 前記表面電極のボンディング用部分は、 前記高抵抗層とショットキー接合する請求項2、3、 4、5、6または7記載の半導体発光ダイオード。

【請求項9】 前記表面電極のボンディング用部分の下面に絶縁体層をさらに有してなる請求項1、2、3、4、5、6または7記載の半導体発光ダイオード。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は発光効率を向上させた半 察がなされていない。とくに、MBE(分子線エピタキ 導体発光ダイオードに関する。さらに詳しくは、半導体 50 シ:Molecular Beam Epitaxy)法、MOVPE(有機金

層の表面からのみならず、横方向からの光の取出し効率 を高め、発光効率を向上させた化合物半導体発光ダイオ ードに関する。

[0002]

【従来の技術】発光ダイオード(以下、LEDという) の中でもとくにダブルヘテロ接合の化合物半導体を用い たものは高輝度であり、発光素子として注目されてい る。また、信号機や自動車のテールランプに用いられる などその需要も拡大している。このようなLEDにおい て、さらに発光効率を高めるために、素子内部におい て、発光部と電極との相対的位置関係を調整して、外部 への有効な光取出しを実現した例が、たとえば、特開平 4-229665号公報に記載されている。これを図5 を参照しながら簡単に説明する。ダブルヘテロ接合の化 合物半導体からなる発光ダイオードにおいて、発光表面 側の電極29と上部クラッド層24とのあいだの、該電 極29の直下に電流阻止層26が設けられている。この 構造により、電極29と30とのあいだに形成される電 流路は、電極29を出て下方に向かいながら電流拡散層 27中を横に広がって電流阻止層26を避けて活性層2 3に至る。すなわち、この構造においては、上下クラッ ド層22、24およびこれらに挟まれた活性層23から なる発光領域層のうち電流が通過する部分で発生する光 が上方に向かっても、その真上に金属膜で形成される電 極29が位置していないため、これによって光が遮られ るという無駄が起こらない。電極29の真下ではなく、 それより外側に拡がって流れる電流によって前記発光領 域層で発生する光は取出し効率が高く、輝度の向上をは かることができる。

【0003】また、この様なLEDが個々のチップ状にされて単独で用いられるとき、それは、たとえば、図4に示されるように、載置台11上の凹面内に搭載されるが、その凹面は光の反射面とされる。この構造によって、内部で発生して側面からチップ外へと取り出される光も、反射によって、そのチップの表面から放出される光と方向が揃えられて光路12となって使用に供されている。

[0004]

40

【発明が解決しようとする課題】このような従来の半導体発光ダイオードにおいては、(1)電流阻止層26をエッチングする工程が途中に挟まるため、連続エピタキシャル成長工程が1工程余分に必要となり、(2)電流分布の広がりを確保するために、電極29の大きさに比してある一定値以上に電流拡散層27を厚くする必要があり、いずれも、量産化、コストの低下、および製造時間の短縮を妨げる要因となる。また、このような半導体発光ダイオードがチップ状にされたときに、(3)その側面方向に進む光に対しては、減衰を少くするための考察がなされていない。とくに、MBE(分子線エピタキシ:Molecular Beam Epitaxy)法、MOVPE(有機金

属気相エピタキシ: Metal Organic Vapor Phase Epitax y) 法などのエピタキシャル成長技術を用いると、厚い膜の成長に時間が多くかかるため、コストアップとなり、活性層、クラッド層を含む半導体層の厚さも、ある程度薄くならざるをえない。その分、横方向に進む光が主には基板に入り込んでこれに吸収されてしまう確率が高くなる。

【0005】本発明は、チップの表面部における光の取出し効率を高めるために、発光部における電流分布を考慮した半導体発光ダイオードにおいて、エピタキシャル 10 成長工程を、途中で他の工程で遮ることなく、しかも、さほど厚くない成長層によっても、電流拡散が十分に行われるとともに、発生した光のうち、とくに横方向に進むものについても、その光路を短くして光の損失の少い構造をえ、これにより発光効率の高い半導体発光ダイオードを提供することを目的とする。

[0006]

【課題を解決するための手段】本発明による半導体発光ダイオードは、その発光表面側の電極が、ワイヤボンディング用の部分と、電流供給用の部分に別れている。そ 20の電流供給用の部分は、比較的低抵抗の電流拡散用半導体層とオーミックに接続しており、その下に、発光領域に通じる電流路を形成するが、ワイヤボンディングのために広い面積を確保する必要がなく、また、その形状の制限を受けるものでもないので、実質的に光取出しを妨げることのないものとすることができる。さらには、その電流供給用の部分の下に位置するすべての発光領域から外部に至る距離をある一定値以下に抑え、側方から取り出される光も損失され難い構造を提供する。

【0007】また、その電極のワイヤボンディング用の 30 部分は、好ましくは、その下の半導体層と電気的に導通しないように、ショットキー接合または絶縁膜を介した接合によって半導体基板上に機械的に支えられており、その直下にできるだけ電流路を形成しないものとされる。

【0008】すなわち、本発明による半導体発光ダイオードは、半導体基板と、該基板上に順次積層され、途中に活性層を含む複数の半導体層と、さらにその上に形成される表面電極とからなり、該活性層の下方の半導体層もしくは基板がすべて第1導電型で、該活性層の上方の40半導体層がすべて第2導電型であり、かつ、前記表面電極は、ポンディング用部分と、該ポンディング用部分の周囲の一部に接続する複数の電流供給用部分とからなり、それらの電流供給用部分のうちの隣り合う2つに挟まれる半導体層の表面領域下の、前記活性層を少くとも含む半導体層が、異なる2つ以上の方向で外部に面する側面を有するものである。

【0009】ここに第1導電型または第2導電型とは、 n型またはp型の一方を第1導電型とするとき、他方の p型またはn型が第2導電型であることを意味する。 【0010】また、前記ボンディング用部分はできる限りその直下の半導体層とは導通しないのが好ましいが、そのための構造として、前記複数の半導体層は、比較的電気抵抗の高い半導体からなる高抵抗層と、該高抵抗層の一部表面を除いてその上に形成され、比較的電気抵抗の低い半導体からなる低抵抗層とをその表面部に含んでおり、前記表面電極が、前記高抵抗層および低抵抗層の両表面上に渡ってそれらの上に形成されて、ボンディング用部分と電流供給用部分の半導体層表面との電気的接続状態を異なるものとするのが好ましい。

【0011】さらに、本発明の半導体発光ダイオードは、その活性層が、その層を構成する半導体の禁止帯幅より広い禁止帯幅を有する半導体からなる、上下2つのクラッド層のあいだに、それらと接触して設けられる、いわば、ダブルヘテロ構造であることが好ましい。また、それらは、分離閉じ込めヘテロ構造(SCH: Separate Confinement Heterostructure)を構成するものであってもよい。

【0012】このような活性層およびクラッド層を構成するために、AI、Ga、Asを含む化合物半導体、AI、Ga、In、Pを含む化合物半導体またはZn、Mg、Se、Sを含む化合物半導体が用いられるのが好ましい。

【0013】なお、本発明の半導体発光ダイオードの表面電極は、その電流供給用部分の少くとも一部において、この低抵抗層と電気的に導通するオーミック接触を有し、また、そのボンディング用部分は、前記高抵抗層とショットキー接合するのが、必要な発光領域のみに電流を流すための簡単な構造をうるのに好ましい。ただし、この表面電極のボンディング用部分については、その下面に、さらに絶縁体層が設けられていて、前記高抵抗層と確実に絶縁されるものとしてもよい。

[0014]

【作用】本発明による半導体発光ダイオードは、その光 取出し面の電極が、その下の半導体層と完全には電気的 に導通しないように構成されるワイヤボンディング用の 部分と、低抵抗の電流拡散用半導体層とオーミックに接 触する電流供給用の部分とに別れていて、発光領域に至 る電流路が、ワイヤボンディング用の電極に覆われない 部分の半導体基板表面下に効率よく広がり、それにより 発生する光は、その直上で電極に遮られることなく、表 面上から有効に取り出されるように設計された単独のチップであって、さらには、その発生場所から側面にかって進行する光も、そのチップ内の光路が短いため、減 衰がほとんど起こらないまま取り出される。これにより、活性層やクラッド層などの、光の発生に直接係わる 領域の厚さを充分にとらなくても高い発光効率を維持で きる。

【0015】また、本発明の構造は、部分的なエピタキ 50 シャル成長層を設ける必要がないため、エピタキシャル 成長工程は、通常の半導体発光ダイオードを製造するた めのものと同じ1回で、しかも、電流拡散用半導体層を さほど厚くない成長層によってえられ、量産性を高める ことができる。

[0016]

【実施例】

実施例 1

つぎに、本発明の半導体発光ダイオードの詳細を図示の 実施例によって説明する。図1(a)~(d)は、本発 明の半導体発光ダイオードの一実施例の製造工程を示す 10 平面説明図、図2(a)~(d)は、図1(a)~ (d) のそれぞれに対応する断面説明図である。これら

図1および図2において、(a)の工程では、たとえば n型である第1導電型のGaAs基板1の表面に、n型 Alx Gal-x As (0.5≦x≦0.8) クラッド層 2(たとえば、x=0.75、キャリア濃度5×10¹⁷ / c m³ 、厚さ2μm、S i ドープ)、ノンドープのA ly Gal-y As (0≦y≦0.7、y<x)活性層3 (たとえば、y=0.5、厚さ $0.2\mu m$ 、y=0.35、厚さ0. 1 μm、y=0. 5、厚さ0. 2 μmの各 20 々を順次3層に重ね合わせてSCH構造とする)、たと えばp型である第2導電型のAlx Gal-x Asクラッ ド層4 (たとえば、×=0.75、キャリア濃度5×1 0¹⁷ / c m³ 、厚さ2 μ m、B e ドープ)、不純物濃度 が1×10¹⁶~5×10¹⁷/cm³ (比抵抗が6.25 Ω・cm~0. 125Ω・cm) のp型A lz Gal-z As (0.5≦z≦0.8) 高抵抗層5 (たとえば、z =0.7、キャリア濃度 $3 \times 10^{17} / cm^3$ 、厚さ 3μ m、Beドープ)、不純物濃度が1×10¹⁸~1×10 19/cm³ (比抵抗が0.0625Ω・cm~0.01 30 25Ω·cm)のp型Alz Gal-z As低抵抗層6 (たとえば、z=0.7、キャリア濃度5×10¹⁸/c m³、厚さ3μm、Beドープ)、不純物濃度が5×1 O¹⁸~5×1O¹⁹/cm³ (比抵抗がO. O125Ω・ cm~0.0025Ω·cm) のp型GaAsキャップ 層7(たとえば、キャリア濃度2×10¹⁹ / cm³ 、厚 さ O. 3 μm、Beドープ)の各層を、順次、MBE法 またはMOVPE(有機金属気相エピタキシ:Metal Or ganic Vapor Phase Epitaxy) 法で成長する。

【0017】つぎに、(b)の工程では、ポンディング 40 メタルの取り付けられる位置に、穴をエッチングで形成 する。このエッチングは通常のホトリソグラフィエ程に より、ホトレジストをマスクとして、たとえばH2 SO 4 系エッチング液で、p型GaAsキャップ層7、p型 Alz Gal-z As低抵抗層6の一部をそれぞれエッチ ング除去し、p型AIz Gal-z As高抵抗層5の表面 が露出するようにする。穴の大きさは、ワイヤボンディ ングできる大きさで通常50~200μmφ(たとえ ば、150μmφ) とする。

よびキャップ層7上に図1(c)に示すように、たとえ ばAuからなる電極8を付着させる。この電極は、40 ~180μmφ(たとえば120μmφ)の円形ボンデ ィング用部分8aを中心に、10~80μm幅の棒状の 電流供給用部分8bを放射状に備えた形状とする。

【0019】最後に(d)の工程では、このAu電極を マスクとして最表面のp型GaAsキャップ層7を除去 し、この層によって光吸収が行われないようにし、裏面 には、たとえば、Au/Ge/Niからなる電極9を付 着する。また、棒状の電流供給用部分8bによって挟ま れる半導体層表面部の一部領域下の半導体層2~6を、 エッチングなどにより取り除き、個々の素子にチップ化

【0020】こうして形成された本発明の半導体発光ダ イオードチップの斜視図を図3に示す。電極8の各電流 供給用部分8b下に位置する半導体層のそれぞれが、円 形ポンディング用部分8aの下の半導体層部分に対して 半島状に突き出ている。

【0021】この実施例では、クラッド層4上に高抵抗 層5と低抵抗層6が設けられ、電極8のボンディング用 部分8 a は低抵抗層6が除去されて露出した高抵抗層5 上に設けられ、棒状の電流供給用部分8bは低抵抗層6 上にキャップ層7 (後述するように電極金属によっては キャップ層フは不用)を介して設けられている。高抵抗 層5は電極8のポンディング用部分8aとの接触が非オ ーミック接触になるようにするもので、電極用金属にも よるがAu、Ti、Ptなどを用いるばあいには不純物 濃度が1×10¹⁶~5×10¹⁷ /cm³ (比抵抗6.2 5Ω·cm~O. 125Ω·cm)程度、Au-Be合 金、AuーZn合金などを用いるばあいは不純物濃度が 1×10¹⁶~1×10¹⁷/cm³ (比抵抗6.25Ω・ cm~0. 625Ω·cm)程度であることが好まし い。厚さとしては余り厚くなると発光部までの抵抗分が 大きくなって順方向電圧が大きくなるため、1~10μ m程度であることが好ましい。また低抵抗層6は電流を 拡散する層であるが、棒状の電流供給用部分8bが発光 領域上に延びているため、比較的拡散し易く、従来の5 ~20 µ mに対し1~5 µ m程度に薄くすることができ

【0022】以上の例では、キャップ層7上のAu電極 8 b は、キャップ層 7 中のキャリア濃度が高いためノン アロイオーミックコンタクト(合金化しなくてもAuだ けでオーミックコンタクトが取れる)とすることがで き、また、高抵抗層5上のAu電極8aは、比抵抗が 6. 25Ω・cm~0. 125Ω・cm程度の高抵抗層 5中のキャリア濃度が低いため、ショットキー接合とな って電流が流れない。そのため、電極に印加される電圧 により流れる電流は専ら棒状の電流供給用部分8 b から 流れ、ボンディング用部分8aの下には余り電流が流れ 【0018】つぎに、(c)の工程では、この穴の中お 50 ず、極めて容易に本発明を実現する素子を作ることが可 能である。しかし、電極8aと高抵抗層5との絶縁性を高めるため、上記(b)の工程のあと、この工程で形成した穴の底面に、Si3 N4 、Al2 O3 などからなる絶縁膜を形成しても差し支えない。このような絶縁膜を介することにより、高抵抗層5の不純物濃度と電極用金属との関係を考慮しなくても、ポンディング用部分8aからの電流を完全に遮断することができる。また、前記電極としてAuーBe合金を用いれば、不純物濃度がキャップ層7より低い低抵抗層6ともオーミックコンタクトがえられるため、キャップ層7を設けないで直接アロ 10イオーミックコンタクトを形成してもよい。

【0023】実施例2

実施例2として、実施例1と半導体の組成の異なるもの をあげる。構成要素となる各半導体層の形状は図1およ び図2と同じであり、対応する部分に同じ番号を記し、 工程(a)のみを記載する。なお各層の不純物濃度およ び厚さは実施例1と同じである。すなわち、実施例2に おける工程(a)は、n型GaAs基板1の表面に、た とえばn型Als Gal-s InP(0.4≦s≦1. O) クラッド層 2 (たとえば、s=1. O、キャリア濃 20 度5×10¹⁷ / c m³ 、厚さ2 μ m、S e ドープ)、ノ ンドープのAlt Gal-t InP(0≦t≦0.6、t くs) 活性層3(たとえば、t=0.5、厚さ0.2μ m、t=0. 2、厚さ0. 1μmt=0. 5、厚さ0. 2μmの各々を順次3層に重ね合わせてSCH構造とす る)、p型Als Gal-s InPクラッド層4(たとえ ば、s=1.0、キャリア濃度5×10¹⁷/cm³、厚 さ1μm、Beドープ)、p型Alu Gal-u As (0.5≦u≦0.8)高抵抗層5 (たとえば、u= 0.7、キャリア濃度 $5 \times 10^{17} / cm^3$ 、厚さ 3μ m、Beドープ)、p型Alu Gal-u As低抵抗層6 (たとえば、u=0. 7、キャリア濃度 $5 \times 10^{18} \angle c$ m³、厚さ3μm、Beドープ)、p型GaAsキャッ プ層7 (たとえば、キャリア濃度2×10¹⁹ / c m³、 厚さ0.3 μ m、Beドープ)の各層を、順次、MOV PE法で成長する。

【0024】ついで、実施例1と同じ製造工程にしたがって、これと同一形状で半導体組成の異なる発光ダイオードをうる。

【0025】なお、本発明は、上述した実施例に限定さ 40 れるものではない。電極の形状、各半導体層の厚さ、組成などは、当業者が適宜設計できるものである。たとえば、半導体層の導電型はpとnが前記各実施例のものと逆であってもよい。また、電極の形状についても、電流供給用の部分が4つではなくそれ以上またはそれ以下であってもよいし、その形状も棒状のものに限定される必要はない。その間にはさまれる半導体層部分の切り欠きについてもその形状は適宜設計できるものであり、活性

層を含んでいさえすれば、すべての層を切り欠く必要もない。また、電極のボンディング用部分がその下に絶縁膜を有するばあいは、上記実施例で高抵抗層とされる半導体層が必ずしも高抵抗となる必要はなく、その層およびその上部に位置する低抵抗層を形成する上での設計自由度が広がる。さらに、本発明の本質は、光取出しを有効にする構造であって、活性層部や発光領域の層構造ではない。すなわち、本発明は、前記各実施例のSCH構造を有するLEDに限定されるものではなく、一般的なダブルへテロ構造、シングルへテロ構造やホモ接合構造のLEDにも同様に適用できる。

[0026]

【発明の効果】以上のように、本発明によれば、主に電極による光路の妨げを防いで表面からの光の取出し効率を高めた半導体発光ダイオードにおいて、横方向から取り出される光の損失も低下させ、発光効率および輝度をさらに高めた構造がえられる。また、電流拡散層の、電流路に制限が加えられるため、電流密度も低下せず、低電流、低電圧でも高い輝度、発光効率が維持される。本発明による半導体発光ダイオードは、連続エピタキシャル成長工程については1回で形成することができるとともに、発光効率の向上によってチップを構成する各エピタキシャル成長層をより薄く設計できるため、少ない工程数、短時間での製造を可能とし、量産に適し、コストダウンにも寄与する。

【図面の簡単な説明】

【図1】本発明の半導体発光ダイオードの実施例1の製造工程を示す平面説明図である。

【図2】本発明の半導体発光ダイオードの実施例1の製 30 造工程を示す断面説明図である。

【図3】本発明の半導体発光ダイオードの実施例1の斜 視説明図である。

【図4】発光ダイオードを載置台に搭載したときの光路 についての説明図である。

【図5】従来の半導体ダイオードの概略構造を示す断面 説明図である。

【符号の説明】

- 1 GaAs基板
- 2 下部クラッド層
-) 3 活性層
 - 4 上部クラッド層
 - 5 高抵抗層
 - 6 低抵抗層
 - 7 キャップ層
 - 8 表面電極
 - 8a ボンディング用部分
 - 8 b 電流供給用部分

特開平08-186287

(6)

【図5】

