ДОМАШНЕЕ ЗАДАНИЕ "КРИВЫЕ И ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА", $1~{\rm kypc}$

Необходимо сделать хотя бы 4 задачи, оценка 10-12 баллов.

Условия задач

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 1.

1.
$$3x^2 + y^2 - 12x - 2y + 4 = 0$$
, $C(3; 1 + \sqrt{6})$

2.
$$4y^2 - 3x + 8y + 7 = 0$$
, $C\left(\frac{7}{4}; -\frac{7}{4}\right)$

3. Гипербола с фокусами $F_1(1;1)$ и $F_2(7;1)$ пересекает ось OY в точке $C(0;1+\sqrt{15})$

4.
$$y = -3 + \sqrt{-2x + 6}$$

5.
$$x^2 + y^2 - 4x + 2y + z - 4 = 0$$
$$4x^2 + 9y^2 - 16x + 18y - 11 = 0$$

Вариант 2.

1.
$$xy - x - 2y + 1 = 0$$
, $C\left(0; \frac{1}{2}\right)$

2.
$$\sqrt{3}x^2 + 4\sqrt{3}y^2 + 8x - 8\sqrt{2}y = 8\sqrt{3}$$
, $C\left(0; -\sqrt{\frac{2}{3}}\right)$

3. Парабола проходит через точку C(-4;-1), ее директриса имеет уравнение $x+\frac{3}{2}=0$, расстояние фокуса от вершины равно $\frac{1}{2}$, вершина лежит во второй четверти.

4.
$$x = -5 + \sqrt{3y^2 - 18}$$

5.
$$2x^2 + y^2 - 4x - 4y - z + 7 = 0$$
$$y^2 - 4y + z - 5 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой – в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой – в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой – в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 3.

1.
$$2x^2 - 12x + y + 16 = 0$$
, $C(4;0)$

1.
$$2x^2 - 12x + y + 16 = 0$$
, $C(4;0)$
2. $3x^2 - y^2 + 24x + 2y + 35 = 0$, $C(0;-5)$

3. Эллипс проходит через точку $C\left(1-\frac{3\sqrt{3}}{2};0\right)$, его большая ось параллельна оси OY, центр находится в

точке
$$O'\left(1;-\frac{5}{2}\right)$$
, эксцентриситет $\varepsilon=\frac{4}{5}$.

4.
$$y = -7 + \frac{2}{5}\sqrt{16 + 6x - x^2}$$

5.
$$x^{2} + y^{2} - 2x - 2y - 2z + 6 = 0$$
$$x^{2} + y^{2} + z^{2} - 2x - 2y - 4z - 2 = 0$$

Вариант 4.

1.
$$9x^2 - 16y^2 - 36x - 96y + 36 = 0$$
, $C\left(\frac{1}{3}; \frac{1}{4}\right)$

2.
$$5x^2 + 9y^2 - 30x + 18y = 126$$
, $C(0; \sqrt{15} - 1)$

3. Парабола симметрична относительно прямой, параллельной оси OY, проходит через точку C(1;0), имеет вершину в точке O'(-1; -4).

4.
$$x = -2 - \sqrt{4 + 2y^2}$$

5.
$$4x^{2} + y^{2} - 8x + 2y - 8z + 5 = 0$$
$$4x^{2} + y^{2} - 4z^{2} - 8x + 2y + 1 = 0$$

Вариант 5.

1.
$$y^2 - 4x - 8y + 24 = 0$$
, $C(6; 0)$

2.
$$16x^2 - 9y^2 + 32x + 18y + 16 = 0$$
, $C\left(-\frac{11}{16}; -\frac{1}{12}\right)$

3. Точки $A(-3\sqrt{5}-1;4)$ и $B(-1;4-2\sqrt{5})$ являются вершинами эллипса, а точка C(2,0) лежит на нем.

4.
$$y = 1 - \frac{4}{3}\sqrt{-6x - x^2}$$

5.
$$x^{2} + y^{2} - 2z^{2} - 4x - 6y + 4z + 11 = 0$$
$$x^{2} + y^{2} - z^{2} - 4x - 6y + 2z + 11 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой – в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой – в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой – в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 6.

1.
$$4\sqrt{3}x^2 + \sqrt{3}y^2 - 8\sqrt{2}x - 2y = \sqrt{3}$$
, $C\left(0; -\frac{1}{\sqrt{3}}\right)$

2.
$$3x^2 + 18x + 4y + 31 = 0$$
, $C(-1; -4)$

3. Асимптоты гиперболы параллельны осям координат
$$OX$$
 и OY , $F_1(4+3\sqrt{2};-2-3\sqrt{2})$ и $F_2(4-3\sqrt{2};-2+3\sqrt{2})$ — ее фокусы, а C — точка пересечения гиперболы с осью OX ; $C\left(-\frac{1}{2};0\right)$.

4.
$$x = 2 + \sqrt{4 - 2y}$$

5.
$$x^{2} + 2y^{2} - z^{2} - 2x + 4y + 2 = 0$$
$$x^{2} - 2x + z^{2} = 0$$

Вариант 7.

1.
$$u^2 + 3x + 4u = 2$$
. $C(-1:1)$

1.
$$y^2 + 3x + 4y = 2$$
, $C(-1; 1)$
2. $2x^2 - y^2 - 8x - 4y + 2 = 0$, $C(2 - \sqrt{3}; 0)$

3. Оси симметрии эллипса параллельны осям координат OX и OY, A(3;1) — вершина эллипса, $F_1(-1;4)$ его фокус, а точка $C\left(\frac{8\sqrt{2}}{3}-1;-\frac{2}{3}\right)$ принадлежит эллипсу.

4.
$$y = -1 + \frac{2}{3}\sqrt{x^2 - 4x - 5}$$

5.
$$x^2 - y^2 - 2x + 4y - 2z - 3 = 0$$
$$x^2 + y^2 - 2x - 4y + 4 = 0$$

Вариант 8.

1.
$$4x^2 - 21y^2 + 16x + 84y + 268 = 0$$
, $C(19; -8)$

2.
$$x^2 + 4y^2 - 2x - 4y = 2$$
, $C(1 + \sqrt{3}; 0)$

3. Директриса параболы имеет уравнение $y = \frac{13}{8}$, $F\left(-1; \frac{19}{8}\right)$ – ее фокус, а C – точка пересечения параболы с осью OY.

4.
$$x = -1\sqrt{4-2y-y^2}$$

5.
$$x^2 + y^2 - 2x + 2y - z + 4 = 0$$
$$x^2 + y^2 - 4x + 2y + 4 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В **задаче 5** привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 9.

1.
$$x^2 + 5y^2 - 6x + 20y + 4 = 0$$
, $C(3 - \sqrt{5}; 0)$

2.
$$2y^2 - x - 4y + 3 = 0$$
, $C(3;0)$

3. Углы между асимптотами гиперболы и осью OX равны 60° , O'(3;-1) — центр гиперболы, а точка $C(0;-1+2\sqrt{6})$ лежит на ней.

4.
$$y = -5 + \sqrt{-3x - 21}$$

5.
$$x^{2} + y^{2} - z^{2} - 2x - 4y + 6 = 0$$
$$4x^{2} + y^{2} - 8x - 4y + 4 = 0$$

Вариант 10.

1.
$$4x^2 + 16x + 3y + 7 = 0$$
, $C\left(-\frac{1}{2};0\right)$

2.
$$xy + x + 4y = 0$$
, $C(0; 0)$

3. Эллипс проходит через точку
$$C(1+5\sqrt{3};0)$$
, $F_1(1+7\sqrt{3};-4)$ и $F_2(1-7\sqrt{3};-4)$ – его фокусы.

4.
$$x = -3 - \sqrt{y^2 + 2y + 5}$$

5.
$$x^{2} + 9y^{2} - 4z^{2} + 4x + 54y + 121 = 0$$
$$x^{2} + y^{2} + 4x + 6y - 23 = 0$$

Вариант 11.

1.
$$7x^2 + 16y^2 + 14x - 32y = 89$$
, $C\left(\frac{1}{3}; 1 + \frac{2}{3}\sqrt{14}\right)$

2.
$$9x^2 - 7y^2 - 18x - 14y + 30 = 0$$
, $C(-13; 15)$

3. Парабола симметрична относительно прямой y+4=0 и пересекает ось OX в точке C(-5;0). Расстояние ее фокуса от директрисы равно 1, а ее ветви лежат в полуплоскости $x \leq 0$.

4.
$$y = 3 - 4\sqrt{x-1}$$

5.
$$y^{2} + z^{2} + x - 4y - 2z - 11 = 0$$
$$9y^{2} + 16z^{2} - 36y - 32z - 92 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 12.

- 1. $x^2 + 4x 4y 4 = 0$, C(0; -1)
- 2. $2x^2 + y^2 + 4x + 6y + 7 = 0$, $C(0; -3 \sqrt{2})$
- 3. Гипербола имеет фокусы $F_1(3;-1)$ и $F_2(-1;-1)$ и проходит через точку C(-1;2).
- 4. $x = -2\sqrt{-5 6y y^2}$

5.
$$y^2 + x - 2y - 7 = 0$$
$$2y^2 + z^2 - x - 4y + 4 = 0$$

Вариант 13.

- 1. $8x^2 + 9y^2 + 48x 18y = 207$, $C(0; 1 2\sqrt{6})$
- 2. $x^2 8y^2 4x 16y + 4 = 0$, $C\left(-\frac{2}{7}; \frac{2}{7}\right)$
- 3. Парабола лежит в полуплоскости $x\geqslant -3$, имеет вершину A(-3;2) и пересекает ось OX в точке C(1;0).
- 4. $y = -3 \sqrt{x-4}$

5.
$$x^{2} + y^{2} + z^{2} + 2x - 2y - 2z - 9 = 0$$
$$x^{2} + z^{2} + 2x - 4y - 2z + 6 = 0$$

Вариант 14.

- 1. $3x^2 12x + 4y + 8 = 0$, C(0; -2)
- 2. $9x^2 + 36y^2 + 60x 72y + 28 = 0$, $C\left(0; 1 + \frac{\sqrt{2}}{3}\right)$
- 3. Гипербола пересекает ось OX в точке $C\left(\frac{1}{3};0\right)$ и имеет асимптоты x+5=0 и y=3.
- $4. \ x = 9 2\sqrt{y^2 + 4y + 8}$

5.
$$x^2 + 4z^2 + 2x - 8y - 16z + 25 = 0$$
$$x^2 - 4y^2 + 4z^2 + 2x + 8y - 16z + 9 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 15.

1.
$$4x^2 + 3y^2 - 8x + 12y + 4 = 0$$
, $C\left(-\frac{1}{2}; -1\right)$

2.
$$3x^2 - y^2 - 30x + 2y + 26 = 0$$
, $C(0; 1 + 3\sqrt{3})$

3. Парабола симметрична относительно прямой y+3=0, имеет директрису $x=\frac{7}{4}$ и проходит через точку

$$C\left(\frac{1}{4}; -\frac{3}{2}\right).$$

4.
$$y = 1 - \sqrt{2x - x^2}$$

5.
$$4x^2 - 5y^2 + 4z^2 - 8x + 10y + 8z + 3 = 0$$
$$x^2 - y^2 + z^2 - 2x + 2y + 2z = 0$$

Вариант 16.

1.
$$x^2 - 8y^2 + 14x + 64y = 7$$
, $C\left(-\frac{1}{7}; \frac{1}{7}\right)$

2.
$$2x^2 - 5y - 4x + 12 = 0$$
, $C\left(\frac{7}{2}; \frac{9}{2}\right)$

3. Эллипс проходит через точку $C\left(\frac{5}{2};2\right)$, а его большая ось оканчивается вершинами A(-2;5) и B(-2;-7).

4.
$$x = -5 + \frac{2}{3}\sqrt{8 + 2y - y^2}$$

5.
$$2x^2 - 2y^2 + z^2 - 8x + 4y - 2z + 5 = 0$$
$$x^2 + y^2 - 4x - 2y + 4 = 0$$

Вариант 17.

1.
$$3x^2 + 4y^2 + 6x + 24y = 9$$
, $C(1;0)$

2.
$$7x^2 - 9y^2 - 56x - 54y + 24 = 0$$
, $C\left(\frac{1}{3}; \frac{1}{9}\right)$

3. Парабола симметрична относительно прямой y+1=0 и проходит через точки A(-2;-1) и C(4;2).

4.
$$y = -2 - \sqrt{4x - x^2}$$

5.
$$x^{2} - y^{2} - 4x + 2y + 2z + 3 = 0$$
$$x^{2} + y^{2} - 4x - 2y + 1 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 18.

1.
$$x^2 + 2y - 10x + 23 = 0$$
, $C(3; -1)$

2.
$$16x^2 + 25y^2 + 32x - 100y = 284$$
, $C\left(\frac{7}{3}; 2 + \frac{4}{3}\sqrt{5}\right)$

3. Фокусы равносторонней гиперболы находятся на расстоянии 6 от центра, одна из ее асимптот задается уравнением x=4, а C(-5;0) – точка пересечения гиперболы с осью OX. Центр расположен в верхней полуплоскости.

4.
$$x = 3 + \sqrt{4 - 2y}$$

5.
$$4x^2 + z^2 - 8x - 8y + 12 = 0$$
$$4x^2 + z^2 - 4 = 0$$

Вариант 19.

1.
$$16x^2 - 9y^2 + 128x - 36y + 364 = 0$$
, $C\left(0; \frac{14}{3}\right)$

2.
$$y^2 + x + 4y + 1 = 0$$
, $C(-1;0)$

3. Эллипс симметричен относительно прямой
$$y=1$$
, проходит через точку $C\left(0;1-\frac{\sqrt{5}}{3}\right)$ и имеет вершину

$$A(-2;0).$$

4.
$$y = -2 + \sqrt{x^2 - 6x}$$

5.
$$x^2 - y^2 + z^2 - 2x - 4z + 6 = 0$$
$$4x^2 + z^2 - 8x - 4z + 4 = 0$$

Вариант 20.

1.
$$x^2 - 4y + 2x + 9 = 0$$
, $C(1;3)$

2.
$$36x^2 + 20y^2 - 72x - 60y = 99$$
, $C\left(1 + \frac{\sqrt{15}}{2}; 0\right)$

3. Гипербола проходит через точку
$$C\left(\frac{1}{5};\frac{2}{5}\right)$$
 и имеет асимптоты $3x-4y+31=0$ и $3x+4y-1=0$.

4.
$$x = 2 - \sqrt{6 - 2y}$$

5.
$$x^2 + y^2 - 2x - 2y + z - 3 = 0$$
$$4x + z - 9 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 21.

1.
$$4x^2 - 5y^2 - 32x - 10y + 104 = 0$$
, $C\left(\frac{1}{4}; \frac{7}{2}\right)$

2.
$$y^2 - 2x + 4y + 2 = 0$$
, $C(1;0)$

3. Эллипс проходит через точку $C(3-\sqrt{2};0)$, имеет вершины A(5;-1) и $B(3;\sqrt{2}-1)$, а его оси параллельны осям координат OX и OY.

4.
$$y = 7 - \frac{3}{2}\sqrt{x^2 - 6x + 13}$$

5.
$$x^2 + z^2 + 2x + y - 2z - 4 = 0$$
$$6x^2 + 4z^2 + 12x - 8z - 14 = 0$$

Вариант 22.

1.
$$xy + 2x + 4y = 8$$
, $C(4;0)$

2.
$$4x^2 + 9y^2 - 16x - 18y = 11$$
, $C\left(2 + \frac{3}{2}\sqrt{3}; 0\right)$

3. Парабола пересекает ось OX в т. C(1;0), имеет директрису $x=\frac{13}{3}$. Ее вершина расположена в четвертой четверти на расстоянии 1/3 от фокуса.

4.
$$x = -4 + 3\sqrt{y+5}$$

5.
$$x^2 - 4x + z - 3 = 0$$
$$x^2 + y^2 - 4x - z + 5 = 0$$

Вариант 23.

1.
$$x^2 + 2x + 3y = 8$$
, $C(2; 0)$

2.
$$3x^2 - y^2 + 36x + 2y + 80 = 0$$
, $C(0; -8)$

3. Эллипс симметричен относительно прямых x = 1 и y + 2 = 0, проходит через точку

$$A\left(1-\frac{5}{2}\sqrt{3};-5\right)$$
 и точку $C\left(1+\frac{10}{3}\sqrt{2};0\right)$.

4.
$$y = -1 - 3\sqrt{2 - x}$$

5.
$$4x^{2} + y^{2} + 4z^{2} - 16x - 2y + 9 = 0$$
$$y^{2} + 4z^{2} - 4x - 2y + 9 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 24.

1.
$$2x^2 - 8x - 3y + 17 = 0$$
, $C\left(\frac{1}{2}; \frac{9}{2}\right)$

2.
$$16x^2 + 9y^2 - 32x - 18y = 119$$
, $C\left(0; 1 - \frac{8}{3}\sqrt{2}\right)$

3. Гипербола проходит через точку
$$C\left(1+\frac{3}{4}\sqrt{5};0\right)$$
 и имеет асимптоты $4x+3y+5=0$ и $4x-3y=13$.

4.
$$x = 5 - \frac{3}{4}\sqrt{y^2 + 4y - 12}$$

5.
$$9y^2 + 4z^2 - 72x - 18y - 16z + 97 = 0$$
$$36x^2 - 9y^2 - 4z^2 - 72x + 18y + 16z + 47 = 0$$

Вариант 25.

1.
$$5x^2 + y^2 + 20x - 2y = 4$$
, $C(0; 1 - \sqrt{5})$

2.
$$5x^2 - 4y^2 + 20x - 8y = 64$$
, $C(12; 14)$

3. Парабола симметрична относительно прямой
$$y+1=0$$
, имеет фокус $F\left(-\frac{3}{8};-1\right)$, пересекает ось OX в точке $C\left(-\frac{3}{5};0\right)$, а ее ветви лежат в полуплоскости $x\geqslant 0$.

4.
$$y = 5 - 2\sqrt{3 - x}$$

5.
$$x^2 - y^2 - z^2 + 2y + 4z - 4 = 0$$
$$4x^2 - 3y^2 - 3z^2 + 6y + 12z - 15 = 0$$

Вариант 26.

1.
$$x^2 - 4x + 2y + 6 = 0$$
, $C(0; -3)$

2.
$$9x^2 + 2y^2 - 18x + 8y = 1$$
, $C\left(1 - \frac{\sqrt{10}}{3}; 0\right)$

3. Асимптоты гиперболы параллельны осям координат OX и OY, а фокусы имеют координаты

$$F_1(-3+\sqrt{2};1-\sqrt{2})$$
 и $F_2(-3-\sqrt{2};1+\sqrt{2})$. Точка C есть точка пересечения гиперболы с осью OY . $C\left(0;\frac{2}{3}\right)$.

4.
$$x = 4 + \sqrt{8y - 8}$$

5.
$$8x^{2} - 2y^{2} - z^{2} - 16x + 12y - 2z - 3 = 0$$
$$4x^{2} + y^{2} - 8x - 6y + 9 = 0$$

В задачах 1-2 заданное уравнение линии второго порядка привести к каноническому виду и построить кривую в системе координат OXY.

В задаче 3 по приведенным данным найти уравнение кривой в системе координат OXY.

Для задач 1-3 указать:

- 1) канонический вид уравнения линии;
- 2) преобразование параллельного переноса, приводящее к каноническому виду;
- 3) в случае эллипса: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, написать уравнения левой и верхней частей кривой в нечётных вариантах, уравнения правой и нижней частей кривой в чётных вариантах;
- в случае гиперболы: полуоси, эксцентриситет, центр, вершины, фокусы, расстояния от точки C до фокусов, уравнения асимптот, написать уравнения правой и нижней частей кривой в нечётных вариантах, уравнения левой и верхней частей кривой в чётных вариантах;
- в случае параболы: параметр, вершину, фокус, уравнение директрисы, расстояния от точки C до фокуса и директрисы, написать уравнения левой или верхней (в зависимости от положения кривой) частей кривой в нечётных вариантах, уравнения правой или нижней частей кривой в чётных вариантах.

Для точки C проверить свойство, характеризующее данный тип кривых как геометрическое место точек.

В задаче 4 построить кривую.

В задаче 5 привести уравнения поверхностей к каноническому виду, назвав их. Сделать чертёж поверхностей.

Вариант 27.

1.
$$x^2 - 8y^2 - 2x + 40y = 17$$
, $C(1 + 3\sqrt{2}; 0)$

2.
$$y^2 + 4x - 6y + 17 = 0$$
, $C(-3; 1)$

3. Эллипс симметричен относительно прямой y=1, проходит через точку $C\left(0;-\frac{3}{5}\right)$. Его большая ось имеет длину 10, а один из концов расположен в точке A(2;1).

4.
$$y = -5 + \sqrt{45 + 30x - 5x^2}$$

5.
$$4x^2 + 9y^2 + z^2 - 8x + 36y + 4 = 0$$
$$x^2 + y^2 - 2x + 4y + 1 = 0$$

Вариант 28.

1.
$$16x^2 + y^2 - 64x - 4y + 52 = 0$$
, $C\left(2 + \frac{\sqrt{3}}{2}; 0\right)$

2.
$$7x^2 - 9y^2 - 14x - 18y = 65$$
, $C\left(-10; \frac{25}{3}\right)$

3. Парабола симметрична относительно прямой x=3, пересекает ось OY в точке C(0;11), ее вершина расположена в четвертой четверти на расстоянии $\frac{3}{16}$ от директрисы.

$$4. \ \ x = 2 + \sqrt{28 - 2y^2 + 4y}$$

5.
$$9y^2 + z^2 - 18x - 18y + 45 = 0$$
$$9y^2 + z^2 - 9 = 0$$

Вариант 29.

1.
$$2y^2 + x + 16y + 33 = 0$$
, $C(-9; -2)$

2.
$$16x^2 + 12y^2 - 16x + 36y = 17$$
, $C\left(\frac{1}{2} + \frac{\sqrt{21}}{4}; 0\right)$

3. Равносторонняя гипербола имеет асимптоту x=1, пересекает ось OX в точке $C\left(-\frac{1}{3};0\right)$, а ось OY – в точке A(0;1).

4.
$$y = 2 + 2\sqrt{x-1}$$

5.
$$x^2 - y^2 + z^2 - 4x + 6z + 12 = 0$$
$$9x^2 + z^2 - 36x - 6z + 36 = 0$$

Вариант 30.

1.
$$4x^2 - 5y^2 - 8x + 20y = 11$$
, $C\left(1 + \frac{\sqrt{15}}{2}; 0\right)$

2.
$$x^2 + 6x + 2y + 3 = 0$$
, $C(-1; 1)$

3. Эллипс проходит через точку C(0;-1), а его малая ось оканчивается вершинами $A(-3;\sqrt{2}-2)$ и $B(-3;-\sqrt{2}-2)$.

4.
$$x = -1 - \sqrt{2y^2 - 12y + 8}$$

5.
$$2x^2 - 4x - z + 3 = 0$$
$$y + z - 3 = 0$$