## Homework 3

## April 30, 2021

1. Suppose  $\mathbf{v}_1,...,\mathbf{v}_m$  is a list of vectors in V. Define  $T\in\mathcal{L}(\mathbb{R}^m,V)$  by

$$T(\mathbf{x}) = x_1 \mathbf{v}_1 + \dots + x_m \mathbf{v}_m,$$

$$T(\mathbf{x}^n) = Span(0, \dots v_m) = V.$$
for  $\mathbf{x} = \begin{cases} x_1 \\ \vdots \\ x_m \end{cases} \in \mathbb{R}^m.$ 
(a) What property of  $T$  corresponds to  $\mathbf{v}_1, \dots, \mathbf{v}_m$  spanning  $V$ ? Why?

- (b) What property of T corresponds to  $\mathbf{v}_1,...,\mathbf{v}_m$  being linearly independent? Why? Injective. It  $T(\mathbf{v}) = 0$   $\times_1 \mathbf{v}_1 + \cdots + \times_m \mathbf{v}_m = 0$ . Since  $\mathbf{v}_1,...,\mathbf{v}_m$  are through the contraction of  $\mathbf{v}_1,...,\mathbf{v}_m$  is linearly independent. (a) Suppose  $T \in \mathcal{L}(V,W)$  is injective and  $\mathbf{v}_1,...,\mathbf{v}_n$  is linearly independent.
- dent in V. Prove that  $T(\mathbf{v}_1),...T(\mathbf{v}_n)$  is linearly independent in W.
  - (b) Suppose  $\mathbf{v}_1, ..., \mathbf{v}_n$  spans V and  $T \in \mathcal{L}(V, W)$ . Prove that the list  $T(\mathbf{v}_1), ... T(\mathbf{v}_n)$  spans T(V).
  - (c) Suppose V is finite-dimensional and that  $T \in \mathcal{L}(V, W)$ . Prove that there exists a subspace U of V such that  $U \cap \text{Ker}(T) = \{0\}$  and T(V) = T(U). Find a basis.
- (a) Suppose V and W are both finite-dimensional. Prove that there exists 3. an injective linear transformation from V to W if and only if  $\dim V \leq \dim$ 
  - (b) Suppose V and W are both finite-dimensional. Prove that there exists an surjective linear transformation from V onto W if and only if  $\dim V > \dim W$ .
  - (c) Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists  $T \in \mathcal{L}(V,W)$  such that  $\mathrm{Ker}(T) = U$  if and



$$A = \left( \left( \left( \mathcal{C}_{1} \right) \right)_{C_{1}, b_{2}, b_{3}} \right) \left( \left( \mathcal{C}_{2} \right) \right)_{C_{1}, b_{2}, b_{3}} \left( \left( \mathcal{C}_{2} \right) \right)_{C_{2}, b_{3}, b_{3}} \left( \left( \mathcal{C}_{2} \right) \right)_{C_{3}, b_{3}, b_{3}} \left( \left( \mathcal{C}_{2$$

4. Let

$$\mathbf{b}_1 = \begin{Bmatrix} 1 \\ 1 \\ 0 \end{Bmatrix}, \mathbf{b}_2 = \begin{Bmatrix} 1 \\ 0 \\ 1 \end{Bmatrix}, \mathbf{b}_3 = \begin{Bmatrix} 0 \\ 1 \\ 1 \end{Bmatrix}$$

and let L be the linear transformation from  $\mathbb{R}^3$  into  $\mathbb{R}^3$  define by

$$L(\mathbf{x}) = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + (x_1 + x_2) \mathbf{b}_3,$$

find the matrix A representing L with respect to the ordered bases  $\{e_1, e_2\}$ and  $\{b_1, b_2, b_3\}$ .

5. Let

$$\mathbf{y}_1 = \begin{Bmatrix} 1 \\ 1 \\ 1 \end{Bmatrix}, \mathbf{y}_2 = \begin{Bmatrix} 1 \\ 1 \\ 0 \end{Bmatrix}, \mathbf{y}_3 = \begin{Bmatrix} 1 \\ 0 \\ 0 \end{Bmatrix}$$

and let  $\mathcal{I}$  be the identity operator on  $\mathbb{R}^3$ .

- (a) Find the coordinates of  $\mathcal{I}(\mathbf{e}_1)$ ,  $\mathcal{I}(\mathbf{e}_2)$ , and  $\mathcal{I}(\mathbf{e}_3)$  with respect to  $\{\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3\}$ .
- (b) Find a matrix A such that Ax is the coordinate vector of x with respect to  $\{y_1, y_2, y_3\}$ .

to 
$$\{y_1, y_2, y_3\}$$
.

(a)  $J(e_1) = e_1 = (y_1, y_2, y_3)$ 
(b)  $J(e_1) = e_2 = (y_1, y_2, y_3)$ 

$$\mathcal{I}(e_1) = e_2 = (y_1, y_2, y_3) \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$J(\theta_3) = \ell_3 = (\gamma_1, \gamma_2, \gamma_3) \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

$$\chi \xrightarrow{T} A\chi$$



$$(4) \quad A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \qquad T(\mathcal{P}_1) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = (3, ..., 3, ..., 3) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$