CCU relay

7 мая 2019 г.

Содержание

1	Уст	ановка	3
2	Обн	новление	3
3	Hac 3.1 3.2 3.3	тройка Файл конфигурации	3 4 4
4	Зап	уск	5
5	Пер	резапуск	5
6	Ост	ановка	5
7	Про	рверка работоспособности	6
8	Лиц	цензия	6
	8.1	Получение	6
	8.2	Обновление	6
	8.3	Информация	6
9	нт	TP API	7
	9.1	Ключ доступа	7
	9.2	Типы запросов	7
	9.3	Ошибки	7
	9.4	URL для входа в CCU shell	7
	9.5	Список IMEI контроллеров онлайн	8
	9.6	Идентификация контроллера	8
	9.7	Системная информация и режим охраны	8
	9.8	Режим охраны	10
		9.8.1 Получение	10

	9.8.2	Изменение	. 10
9.9	Входы	[. 11
9.10	Грани	цы входов	. 11
	9.10.1	Типы тревожных диапазонов	. 11
	9.10.2	Получение	. 12
	9.10.3	Изменение	. 12
9.11	Выход	(Ы	. 13
	9.11.1	Типы выходов	. 13
	9.11.2	Получение	13
	9.11.3	Управление	13
9.12	Профи	или	. 14
9.13	Событ		. 15
	9.13.1	Получение	. 15
	9.13.2	Подтверждение	. 18

Внимание!

Для выполнения ряда приведенных команд может потребоваться запуск от пользователя root или использование sudo.

1 Установка

 ccu_relay поставляется в виде файла ccu_relay -<version>.tar.gz. Поле <version> определяет версию.

2 Обновление

- 1. Если *ccu_relay* запущен, то перед обновлением его необходимо остановить (см. пункт 6).
- 2. Сохранить директорию $/opt/ccu_relay/config$, если в ней были изменены файлы.
- 3. Распаковать новую версию вместо или поверх старой.
- 4. Восстановить директорию $/opt/ccu_relay/config$, если это необходимо.
- 5. Запустить *ccu relay* (см. пункт 4).

3 Настройка

3.1 Файл конфигурации

```
Листинг 1: /opt/ccu relay/config/ccu relay.config
```

```
{host, "nohost"}.
{ccu_port, 30000}.
{https_port, 8443}.
%% {ssl_cacertfile, "ssl/cacert.pem"}.
{ssl_certfile, "ssl/cert.pem"}.
{ssl_keyfile, "ssl/privkey.pem"}.
{ssl_dhfile, "ssl/dh.pem"}.
{http_api_key, "nokey"}.
{license_keyfile, "license.key"}.
```

Строка, которая начинается с символа %, является комментарием и игнорируется.

Параметр	Тип	Описание	
host	строка	Имя хоста	
ccu_port	число	ССИ ТСР-порт	
https_port	число	HTTPS TCP-порт	
ssl_cacertfile	строка	Файл корневого сертификата (опционально)	
ssl_certfile	строка	Файл сертификата	
ssl_keyfile	строка	Файл приватного ключа сертификата	
ssl_dhfile	строка	Файл DH-параметров	
http_api_key	строка	HTTP API ключ доступа	
license_keyfile	строка	Файл лицензии	

Таблица 1: Параметры конфигурации

Имя хоста host используется при получении URL для входа в CCU shell (см. пункт 9.4).

TCP-порт *ccu_port* используется для подключения контроллеров CCU. Это же значение должно быть задано в конфигурации контроллера.

TCP-порт https port используется для HTTP API.

TCP-порт со значением меньше 1024 считается привилегированным. Требуется запуск от root.

Для HTTPS требуется SSL-сертификат. В поставку входит самоподписанный сертификат. При необходимости данный сертификат можно пересоздать (см. пункт 3.2), либо использовать сертификат, выданный центром сертификации (СА). Сертификат и ключ сертификата должны быть в PEM-кодировке.

Путь к файлу может задаваться как:

- относительный путь (относительно /opt/ccu relay/config)
- абсолютный путь (должен начинаться с символа /)

3.2 Создание самоподписанного сертификата и DH-параметров

```
openssl req -x509 -days 36500 -newkey rsa:2048 -nodes \
-keyout privkey.pem -out cert.pem
openssl dhparam -out dh-params.pem 2048
```

3.3 Настройка сервиса systemd

Для автозапуска в современных системах Linux используется systemd. Необходимо создать unit-файл сервиса: скопировать файл $/opt/ccu_relay/config/systemd/ccu_relay.service$ в $/etc/systemd/system/ccu_relay.service$.

[Unit]

Description=Runner for ccu_relay

After=network.target

[Service]

WorkingDirectory=/opt/ccu_relay

ExecStart=/opt/ccu_relay/bin/ccu_relay start

ExecStop=/opt/ccu_relay/bin/ccu_relay stop

User=root

RemainAfterExit=yes

[Install]

WantedBy=multi-user.target

Разрешить сервис:

systemctl daemon-reload

systemctl enable ccu_relay.service

После перезагрузки сервис должен запуститься автоматически. Для контроля см. пункт 7.

4 Запуск

/opt/ccu_relay/bin/ccu_relay start

В /opt/ccu relay/log/info.log будет сообщение System started.

В случае ошибки в $/opt/ccu_relay/log/error.log$ будет сообщение $System\ startup\ failed$.

Для контроля см. пункт 7.

5 Перезапуск

/opt/ccu_relay/bin/ccu_relay restart

Перезапуск требуется после изменения файла конфигурации, если *ccu_relay* был запущен.

6 Остановка

/opt/ccu_relay/bin/ccu_relay stop

В /opt/ccu relay/log/info.log будет сообщение System stopped.

7 Проверка работоспособности

Для проверки работоспособности могут использоваться команды:

• идентификатор процесса

/opt/ccu_relay/bin/ccu_relay pid

• ping

/opt/ccu_relay/bin/ccu_relay ping

• статус сервиса systemd (если выполнялась настройка сервиса, как в пункте 3.3) systemctl status ccu_relay

8 Лицензия

8.1 Получение

Все используемые контроллеры ССU должны быть зарегистрированы в лицензии. Для получения файла лицензии необходимо сделать запрос на support@radsel.ru, в котором отправить список IMEI контроллеров.

Команды license reload и license info работают только после запуска сси relay.

8.2 Обновление

Путь к файлу лицензии задается параметром конфигурации *license_keyfile*. Полученный файл лицензии необходимо разместить по данному пути и выполнить команду:

/opt/ccu_relay/bin/ccu_relay license_reload

B /opt/ccu relay/log/info.log будет сообщение License file loaded.

В случае ошибки в $/opt/ccu_relay/log/error.log$ будет сообщение Failed loading license file.

8.3 Информация

/opt/ccu_relay/bin/ccu_relay license_info

Данная команда выдаст список IMEI контроллеров, которые зарегистрированы в лицензии.

9 HTTP API

9.1 Ключ доступа

Запрос должен содержать заголовок Authorization: Bearer < key>. Ключ доступа < key> задается параметром конфигурации http api key (см. пункт 3.1).

9.2 Типы запросов

Поддерживаются следующие типы запросов:

- GET получение данных
- POST передача данных

Формат обмена данными JSON. Запрос POST должен содержать заголовок *Content- Type: application/json*. Параметры запроса POST передаются в теле запроса.

9.3 Ошибки

В случае ошибки ответом на запрос будет объект с параметрами $error_code$ и $error_description$:

error_code error_description		Описание	
1 "CCU not found"		Контроллер с данным ІМЕІ не найден	
2	"CCU disconnected"	Контроллер отключился	
3 "Timeout"		Превышено время ожидания ответа	
4	"Too many requests"	Слишком много запросов	
5 "Internal error"		Внутренняя ошибка	

Таблица 2: Ошибки

9.4 URL для входа в CCU shell

Запрос:

GET /api/ccu/<imei>/auth

Ответ: строка/URL (действителен в течение 5 минут) Пример запроса curl:

curl -k -X GET -H 'Authorization: Bearer <key>' \
https://<host>/api/ccu/<imei>/auth

9.5 Список IMEI контроллеров онлайн

Запрос:

GET /api/ccu/online

Ответ: массив строк/IMEI Пример запроса curl:

curl -k -X GET -H 'Authorization: Bearer <key>' \
 https://<host>/api/ccu/online

9.6 Идентификация контроллера

Запрос:

GET /api/ccu/<imei>/id

Ответ:

Параметр	Значение	Описание	
id_dev_type	строка	Тип контроллера	
id_dev_mod	строка	Модификация контроллера	
id_ext_board	строка	Плата расширения	
id_hw	строка	Аппаратная версия	
id_fw	строка	Версия прошивки	
id_boot_loader	строка	Версия загрузчика	
id_build_date	строка	Дата сборки прошивки	
id_country	строка	Код страны	
id_sn	строка	Серийный номер	
id_imei	строка	IMEI	
id_gsm	строка	GSM	

Таблица 3: Идентификация контроллера

Пример запроса curl:

```
curl -k -X GET -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/id
```

9.7 Системная информация и режим охраны

Запрос:

GET /api/ccu/<imei>/sysinfo

Ответ:

Параметр	Значение	Описание
sysinfo	таблица 5	Системная информация
mode	таблица 8 и 9	Режим охраны

Таблица 4: Системная информация и режим охраны

Параметр	Значение	Описание	
sysinfo_gsm_signal	[таблица 6, число]	Статус и уровень GSM сигнала [дБм]	
sysinfo_ext_pwr	число/null	Внешнее питание [В]	
sysinfo_bat	[таблица 7, число/null]	Статус и заряд батареи [%]	
sysinfo_temp	число/null	Температура платы [°С]	
sysinfo_case	true/false/null	Корпус открыт/закрыт	
sysinfo_balance	число/null	Баланс SIM-карты	

Таблица 5: Системная информация

Если null, то значение не определено. Например, для $sysinfo_ext_pwr$ это означает, что внешнее питание отключено.

Статус	Описание
"gsm_signal_weak"	Низкий
"gsm_signal_average"	Средний
"gsm_signal_good"	Хороший
"gsm_signal_excellent"	Отличный

Таблица 6: Статус GSM сигнала

Статус	Описание	
"bat_ok"	В норме	
"bat_not_used"	Не использовалась	
"bat_disconnected"	Отключена	
"bat_discharge_level1"	Разряжена до 1 уровня	
"bat_discharge_level2"	Разряжена до 2 уровня	

Таблица 7: Статус батареи

Пример запроса curl:

curl -k -X GET -H 'Authorization: Bearer <key>' \
https://<host>/api/ccu/<imei>/sysinfo

9.8 Режим охраны

9.8.1 Получение

Запрос:

GET /api/ccu/<imei>/mode

Ответ:

Если контроллер работает в однораздельном режиме, то режим охраны представлен строкой:

Режим охраны	Описание	
"disarm"	НАБЛЮДЕНИЕ	
"arm"	OXPAHA	
"protect"	ЗАЩИТА	

Таблица 8: Режим охраны

Если контроллер работает в многораздельном режиме, то режим охраны разделов представлен объектом:

Номер раздела	Значение	Описание
число в строковом представлении	таблица 8	Режим охраны раздела

Таблица 9: Режим охраны разделов

Количество разделов от 1 до 4. Если в конфигурации контроллера ни один раздел не имеет связанных входов, то объект mode будет пустым.

Пример запроса curl:

```
curl -k -X GET -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/mode
```

9.8.2 Изменение

Запрос:

POST /api/ccu/<imei>/mode

Параметр: см. таблицу 8 и 9 Ответ: см. таблицу 8 и 9 Пример запроса curl:

```
curl -k -X POST -d '"arm"' \
    -H 'Content-Type: application/json' \
    -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/mode
```

9.9 Входы

Запрос:

GET /api/ccu/<imei>/inputs

Ответ:

Номер входа	Значение	Описание
число в строковом представлении	таблица 11	Состояние входа

Таблица 10: Состояние входов

Значение	Описание	
false	Дискретный вход ПАССИВЕН	
true	Дискретный вход АКТИВЕН	
[false, число]	Аналоговый вход ПАССИВЕН, числовое значение	
[true, число]	Аналоговый вход АКТИВЕН, числовое значение	
[_, null]	Показания недостоверны	

Таблица 11: Состояние входа

Пример запроса curl:

```
curl -k -X GET -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/inputs
```

9.10 Границы входов

9.10.1 Типы тревожных диапазонов

Тип	Количество границ
Низкий или высокий	2
Низкий	1
Средний	2
Высокий	1
Низкий гистерезисный	2
Высокий гистерезисный	2

Таблица 12: Типы тревожных диапазонов

9.10.2 Получение

Запрос:

GET /api/ccu/<imei>/inputs/limits

Ответ:

Номер входа	Значение	Описание
		Для дискретного входа
число в строковом представлении	[число]	Для аналогового/RTD
		входа с одной границей
	[число, число]	Для аналогового/RTD
		входа с двумя
		границами

Таблица 13: Границы входов

Пример запроса curl:

```
curl -k -X GET -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/inputs/limits
```

9.10.3 Изменение

Запрос:

POST /api/ccu/<imei>/inputs/limits

Параметр: см. таблицу 13 Ответ: см. таблицу 13 Пример запроса curl:

```
curl -k -X POST -d '{"1":[70.1],"2":[20,22.5]}' \
    -H 'Content-Type: application/json' \
    -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/inputs/limits
```

9.11 Выходы

9.11.1 Типы выходов

Номер выхода	Тип
1	Реле 1
2	Реле 2
3	Выход 1
4	Выход 2
5	Выход 3
6	Выход 4
7	Выход 5

Таблица 14: Типы выходов

9.11.2 Получение

Запрос:

GET /api/ccu/<imei>/outputs

Ответ:

Номер выхода	Значение	Описание
WYG TO D OTTO YOUNG THE HOTTO DIGHT.	0	Выключен
число в строковом представлении	1	Включен

Таблица 15: Состояние выходов

Пример запроса curl:

```
curl -k -X GET -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/outputs
```

9.11.3 Управление

Запрос:

POST /api/ccu/<imei>/outputs

Параметр:

Номер выхода	Значение	Описание
	0	Выключить
	1	Включить
	2	Сценарий 1
	3	Сценарий 2
	4	Сценарий 3
	5	Сценарий 4
	6	Сценарий 5
число в строковом представлении	7	Сценарий 6
число в строковом представлении	8	Сценарий 7
	9	Сценарий 8
	10	Сценарий 9
	11	Сценарий 10
	12	Сценарий 11
	13	Сценарий 12
	14	Сценарий 13
	15	Сценарий 14

Таблица 16: Управление выходами

Ответ: см. таблицу 15 Пример запроса curl:

```
curl -k -X POST -d '{"1":1,"2":0}' \
    -H 'Content-Type: application/json' \
    -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/outputs
```

9.12 Профили

Запрос:

```
POST /api/ccu/<imei>/profile
```

Параметр: число (номер профиля для применения)

Ответ: число (номер примененного профиля)/null (если профиль запрещен) Пример запроса curl:

```
curl -k -X POST -d 1 \
    -H 'Content-Type: application/json' \
    -H 'Authorization: Bearer <key>' \
    https://<host>/api/ccu/<imei>/profile
```

9.13 События

9.13.1 Получение

Для получения событий используется технология Server Sent Events. Запрос:

GET /api/ccu/events

Ответ:

Параметр	Значение	Описание
imei	строка	IMEI контроллера (опционально)
event	таблица 18	Событие
ack	число	Код подтверждения события (опционально)

Таблица 17: Событийный объект

Если событийный объект содержит параметр ack, то событие должно быть подтверждено (см. пункт 9.13.2).

Значение	Описание
"keepalive"	Периодическое событие
	для поддержания
	соединения
"online"	Контроллер
	подключился
"offline"	Контроллер отключился
"event_power_on"	Внешнее питание
	включено
"event_power_off"	Внешнее питание
	отключено
["event_battery_low", число]	Батарея разряжена,
	значение [%]
["event_balance_low", число]	Баланс снизился,
	значение
["event_temp_low", число]	Температура платы
	упала, значение [°С]
["event_temp_normal", число]	Температура платы
	вернулась в допустимый
	диапазон, значение [°С]
["event_temp_high", число]	Температура платы
	поднялась, значение [°C]
"event_case_open"	Корпус контроллера
	открыт

Значение	Описание
["event_test", системная информация (таблица 5),	Тестовое сообщение
режим охраны (таблица 8 и 9)]	
["event_info", состояние входов (таблица 10),	Информационное
состояние выходов (таблица 15)]	сообщение
["event_disarm", источник события (таблица 19),	Переведен в режим
число/null]	НАБЛЮДЕНИЕ, номер
	раздела или null
["event_arm", источник события (таблица 19),	Переведен в режим
число/null]	ОХРАНА, номер
	раздела или null
["event_protect", <i>источник события</i> (таблица 19),	Переведен в режим
число/null]	ЗАЩИТА, номер
	раздела или null
["event_input", число, состояние входа (таблица 11)]	Вход
	АКТИВЕН/ПАССИВЕН,
	номер входа
["event_profile_applied", число]	Профиль применен,
	номер профиля
"event_device_on"	Контроллер включен
"event_device_restart"	Контроллер
	перезапущен
"event_firmware_upgrade"	Прошивка обновлена
["event_ext_runtime_error", число]	Ошибка выполнения
	программы ЕХТ,
	код ошибки

Таблица 18: События

Источник события	Описание
"source_button"	Кнопкой
["source_touch_memory", строка]	Ключом, идентификатор ключа
	или пользователь
"source_input"	С помощью входа
"source_scheduler"	Планировщиком задач по
	времени
["source_dtmf", строка]	Через голосовое меню,
	пользователь
["source_sms", строка]	С помощью SMS команды,
	пользователь
["source_csd", строка]	Через CSD соединение,
	пользователь
["source_call", строка]	С помощью вызова без установки
	соединения, пользователь
["source_ccu_shell", строка]	Через CCU shell, пользователь
"source_modbus"	Через Modbus
["source_bot", строка]	С помощью бота, пользователь
"source_ext"	Через программу ЕХТ

Таблица 19: Источник события (изменение режима охраны)

Пример запроса curl:

```
curl -k -X GET -H 'Authorization: Bearer <key>' \
https://<host>/api/ccu/events
```

Примеры событий:

9.13.2 Подтверждение

Запрос:

POST /api/ccu/<imei>/events/ack

Параметр: массив чисел

Ответ: нет

Пример запроса curl:

```
curl -k -X POST -d '[1,2]' \
    -H 'Content-Type: application/json' \
    -H 'Authorization: Bearer <key>' \
```

https://<host>/api/ccu/<imei>/events/ack