Retas

Prova Fase 3 - OBI2024

Juan é um artista talentoso que ama criar obras com padrões geométricos, e sua última criação envolve desenhar várias linhas retas em uma imensa tela infinita. Cada linha que ele desenha é representada por uma equação da forma $y = A \cdot x + B$, onde:

- \bullet A é a inclinação da linha, indicando o quanto ela sobe ou desce.
- ullet B é o ponto em que a linha cruza o eixo y (a interseção com o eixo vertical).

Por exemplo, a figura a seguir mostra a linha $y = -2 \cdot x + 9$:

Depois de desenhar N dessas linhas, Juan começou a observar que algumas delas se cruzavam, criando pontos de interseção. Fascinado por esses cruzamentos, ele decidiu focar em uma região específica da sua tela, delimitada entre dois valores no eixo x: X_1 e X_2 . Ele quer saber quantas interseções ocorrem dentro desse intervalo de x.

Por exemplo, se Juan desenhou as seguintes N=4 linhas:

- $\bullet \ y = -2 \cdot x + 9$
- $\bullet \ y = 1 \cdot x 3$
- $y = 1 \cdot x + 2$
- $\bullet \ y = 0 \cdot x + 5$

E deseja saber quantas interseções existem na região entre $X_1 = 3$ e $X_2 = 7$, podemos visualizar na figura a seguir que a resposta é 2:

Perceba que os pontos de interseção A e D estão na região de interesse de Juan, já os pontos C, B e E estão fora dessa região.

Sua tarefa é ajudar Juan a descobrir o número de interseções entre as N linhas que possuem o valor da coordenada x entre X_1 e X_2 (incluindo X_1 e X_2).

Entrada

A primeira linha contém três inteiros N, X_1, X_2 , onde N é o número de linhas desenhadas por Juan, X_1 é o limite inferior da coordenada x da região de interesse de Juan, enquanto X_2 é o limite superior dessa região.

As próximas N linhas descrevem as equações das linhas, cada uma contendo dois inteiros A_i e B_i , onde A_i é a inclinação da i-ésima linha, e B_i é o ponto em que a linha cruza o eixo y.

Saída

A saída deve conter um único número inteiro, a quantidade de interseções entre as N linhas que possuem o valor da coordenada x entre X_1 e X_2 (incluindo X_1 e X_2).

Restrições

- $1 \le N \le 10^5$
- $-10^9 \le X_1 \le X_2 \le 10^9$
- $-10^9 \le A_i, B_i \le 10^9$
- $A_i \neq A_j$ ou $B_i \neq B_j$ para todo $1 \leq i < j \leq N$. Ou seja, não existem duas linhas iguais.

Informações sobre a pontuação

A tarefa vale 100 pontos. Estes pontos estão distribuídos em subtarefas, cada uma com suas restrições adicionais às definidas acima.

- Subtarefa 1 (0 pontos): Esta subtarefa é composta apenas pelos exemplos mostrados abaixo. Ela não vale pontos, serve apenas para que você verifique se o seu programa imprime o resultado correto para os exemplos.
- Subtarefa 2 (16 pontos): N=2
- Subtarefa 3 (12 pontos): $N \leq 1000$
- Subtarefa 4 (11 pontos): $A_i = A_j$ para todo $1 \le i, j \le N 1$, ou seja, todas as N 1 primeiras retas possuem a mesma inclinação.
- Subtarefa 5 (15 pontos): $X_1 = X_2$
- Subtarefa 6 (18 pontos): $X_2 = X_1 + 1$ e $A_i \le 30$ para $1 \le i \le N$.
- Subtarefa 7 (28 pontos): Nenhuma restrição adicional.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
4 3 7	2
-2 9	
1 -3	
1 2	
0 5	

Explicação do exemplo 1: Este é o exemplo mostrado no enunciado.

Exemplo de entrada 2	Exemplo de saída 2
2 2 3 -2 9 1 2	1

Exemplo de entrada 3	Exemplo de saída 3
5 100 200	3
2 213	
2 209	
2 210 2 410	
4 10	

Exemplo de entrada 4	Exemplo de saída 4
4 1 1	6
15 -5	
0 10	
- 5 15	
-20 30	

Explicação do exemplo 4: As 4 retas têm o mesmo y=10 em x=1 (note que $X_1=X_2=1$), então todos os 6 pares de retas se intersectam. Perceba que o mesmo ponto pode ser contabilizado mais de uma vez caso ele seja a interseção de mais de um par de retas.