Bac 2022 Nouvelle Calédonie Sciences physiques pour Sciences de l'ingénieur.e Durée : 30 min EXERCICE I – ÉTUDES DE MANŒUVRES AVEC UN GYROPODE Correction © https://labolycee.org

1. D'après l'énoncé, le système étudié a un mouvement rectiligne uniformément ralenti : le vecteur vitesse a donc pour direction l'axe (AB) et il est orienté de B vers A (dans le sens opposé au mouvement).

On définit un axe horizontal Ox porté par la droite (AB) et orienté positivement de A vers B.

Par définition $\vec{a} = \frac{d\vec{v}}{dt}$, par projection sur l'axe Ox on obtient $a_x = \frac{dv_x}{dt}$.

On considère que le mouvement est uniformément ralenti $a_x = \frac{\Delta V_x}{\Delta t}$.

$$a_{x} = \frac{\frac{(10-16)\text{km}}{1\text{h}}}{\frac{1}{11\text{ s}}} = \frac{\frac{(10-16)\times10^{3}\text{m}}{3600\text{ s}}}{\frac{3600\text{ s}}{1,1\text{ s}}} = -1,5\text{ m.s}^{-2}.$$

 $a_x < 0$ donc le vecteur \vec{a} est bien orienté de B vers A, il a pour direction la droite (AB).

$$a = \|\vec{a}\| = \sqrt{a_x^2} = 1.5 \text{ m.s}^{-2}$$

2. On cherche à établir l'équation horaire x(t).

D'après la question 1. $a_x = \frac{dv_x}{dt}$ avec $a_x = -1.5 \text{ m.s}^{-2}$

En primitivant : $v_x = -1.5.t + C_1$, or à t = 0, $v_x = v_A$ donc $v_x = -1.5.t + v_A$

Par définition $v_x = \frac{dx}{dt}$, ainsi en primitivant on obtient : $x = -1.5 \cdot \frac{t^2}{2} + v_A \cdot t + C_2$, or à t = 0, $x = x_A$

donc $x(t) = -0.75 \cdot t^2 + V_A \cdot t + X_A$.

À l'instant $t_B = 1,1$ s, le système est en B $x(t_B) = -0.75.t_B^2 + v_A.t_B + x_A$

La distance AB égale à $x(t_B) - x(t_A)$ donc $AB = -0.75.t_B^2 + v_A.t_B$

$$AB = -0.75 \times 1.1^2 + \frac{16}{3.6} \times 1.1 = 4.0 \text{ m}.$$

Remarque : Le schéma de la figure 2 est assez trompeur, car avec la distance de 4,5 m indiquée, il semble que AB soit largement supérieure à 4,5 m.

3. Première méthode:

Appliquons la $2^{\text{ème}}$ loi de Newton au système {gyropode et conducteur} dans le référentiel terrestre considéré galiléen : $\Sigma \overrightarrow{F_{\text{ext}}} = m.\vec{a}$

Le système étant soumis à son poids \overrightarrow{P} , la réaction normale du sol \overrightarrow{R} et les frottements $\overrightarrow{F_{\tau}}$:

$$\vec{P} + \vec{R} + \vec{F_{\tau}} = m.\vec{a}$$

En projetant sur l'axe du mouvement : $P_x + R_x + F_{Tx} = m.a_x$

Comme $\overrightarrow{F_T}$ et \overrightarrow{a} sont orientés vers l'arrière, $0+0-F_T=-m.a$

Ainsi $F_T = m.a$.

$$F_T = 110 \times 1,5 = 1,7 \times 10^2 \text{ N}.$$

Deuxième méthode : On utilise le théorème de l'énergie cinétique.

$$E_C(B) - E_C(A) = \sum W_{A \to B}(\vec{F})$$

$$\frac{1}{2}.m.\left(v_{B}^{2}-v_{A}^{2}\right)=W_{A\rightarrow B}\left(\overrightarrow{P}\right)+W_{A\rightarrow B}\left(\overrightarrow{R}\right)+W_{A\rightarrow B}\left(\overrightarrow{F_{T}}\right)$$

$$\frac{1}{2}.m.(v_B^2 - v_A^2) = \overrightarrow{P}.\overrightarrow{AB} + \overrightarrow{R}.\overrightarrow{AB} + \overrightarrow{F_T}.\overrightarrow{AB}$$

$$\frac{1}{2}.m.(v_{B}^{2}-v_{A}^{2}) = \|\vec{P}\|.\|\overrightarrow{AB}\|.\cos 90^{\circ} + \|\vec{R}\|.\|\overrightarrow{AB}\|.\cos 90^{\circ} + \|\vec{F_{T}}\|.\|\overrightarrow{AB}\|.\cos 180^{\circ}$$

$$\frac{1}{2}.m.(v_{B}^{2}-v_{A}^{2}) = -\|\vec{F_{T}}\|.\|\overrightarrow{AB}\|$$

$$\|\vec{F_{T}}\| = \frac{-\frac{1}{2}.m.(v_{B}^{2}-v_{A}^{2})}{\|\overrightarrow{AB}\|}$$

$$\frac{-\frac{1}{2}\times110\times\left(\left(\frac{10}{3.6}\right)^{2}-\left(\frac{16}{3.6}\right)^{2}\right)}{\|\vec{AB}\|} = 1.7\times10^{2} \text{ N}$$

4. En reprenant la démonstration précédente mais pour un système de masse m' > m: $F_T = m' \cdot a'$ donc $a' = \frac{F_T}{m'}$.

Comme m' > m et que F_T n'a pas changé, a' < a donc l'accélération est plus faible : le freinage entre A et B serait moins efficace.

Remarque : on retrouve la notion d'inertie : la masse s'oppose aux effets de la force, plus la masse d'un système est importante et plus il est difficile de le mettre en mouvement ou de modifier son mouvement.

5.
$$\vec{a} = \frac{d\vec{v}}{dt}$$
 or ici le vecteur vitesse change de direction donc $\frac{d\vec{v}}{dt} \neq \vec{0}$

Le mouvement est circulaire uniforme (car la vitesse reste constante) donc le vecteur accélération \vec{a} : - est radial, il a pour direction le rayon du cercle;

- est centripète, il est orienté vers le centre du cercle ;

- a pour valeur
$$a = \frac{v^2}{R} = \frac{\left(\frac{10}{3}, 6\right)^2}{4.5} = 1,7 \text{ m.s}^{-2}$$

Autre méthode : Dans le repère de Frenet, par définition $\vec{a} = \frac{dv}{dt}.\vec{u_r} + \frac{v^2}{R}.\vec{u_n}$.

Comme
$$v = \text{Cte alors } \vec{a} = 0.\overrightarrow{u_r} + \frac{v^2}{R}.\overrightarrow{u_n} \neq \vec{0}$$

 \vec{a} a même sens et même direction que $\overrightarrow{u_n}$, donc radial et centripète.

6. Méthode 1 : Notons a_{max} la valeur de l'accélération à ne pas dépasser ($a_{max} = 2,5 \text{ m.s}^{-2}$) :

$$a_{\text{max}} = \frac{V_{\text{max}}^2}{R} \Leftrightarrow V_{\text{max}} = \sqrt{R.a_{\text{max}}}$$

$$v_{\text{max}} = \sqrt{4.5 \times 2.5} = 3.4 \text{ m.s}^{-1} = 3.4 \times 3.6 \text{ km.h}^{-1} = 12 \text{ km.h}^{-1}$$

$$1.207476708 \text{ E1}$$

La vitesse en A était de 16 km.h-1 donc largement supérieure : le freinage était nécessaire.

Méthode 2: on calcule la valeur de l'accélération a_{SF} lors du mouvement circulaire s'il n'y avait pas eu de freinage entre A et B: $a_{SF} = \frac{V_A^2}{D}$.

$$a_{SF} = \frac{\left(\frac{16}{3.6}\right)^2}{4.5} = 4.4 \text{ m.s}^{-2}$$

Cette valeur est largement supérieure à la valeur limite de 2,5 m.s ⁻² : il fallait absolument freiner pour éviter le basculement.